

RECHERCHE D'INFORMATION INFORMATION RETRIEVAL

CHAPITRE 4: Modèles booléen, Vectoriel

13 octobre 2025

I. INTRODUCTION

L'objectif d'un modèle de RI est de formaliser le processus de recherche d'information. Un modèle est une abstraction d'un processus.

Un modèle de RI doit comporter au minimum les modules suivants :

- ✓ Un module de représentation des documents (indexation)
- ✓ Un module de représentation des requêtes
- ✓ Un module d'appariement entre un document et une requête (similarité)

Modèles de base de la RI

II. CLASSIFICATION DES MODÈLES RI

Set Theoretic Models Represent documents and queries as **sets of terms**; retrieval based on set operations.

Algebraic / Vector-Based Models Represent documents and

queries as **vectors or matrices**; use algebraic similarity functions.

Probabilistic Models

Rank documents by the **probability of being relevant** to a given query.

Neural and deep models

Use **neural networks** to learn document–query relationships directly from data

Modèles de base de la RI

III. MODÈLES DE BASE À ÉTUDIER

Dans ce chapitre nous allons étudier les modèles de base suivants :

✓ Modèle booléen de base

Set Theoretic Model

√ Modèle vectoriel Algebraic Model

✓ Modèle booléen basé sur les ensembles flous

Set Theoretic Model

✓ Modèle booléen étendu Set Theoretic Model

√ Modèle booléen P-norme étendu Set Theoretic Model

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

- ✓ Le premier modèle formel proposé dans le domaine de la RI
- ✓ Repose sur la théorie des ensembles et la logique booléenne pour décrire la relation entre document et requêtes

A. Module de représentation des documents

- Dans ce modèle, chaque document est représenté par un ensemble de termes.
- Un terme a un poids binaire: 1 s'il présent dans le document, 0 sinon.
- Aucune pondération (comme la fréquence ou le poids TF-IDF) n'est calculée.

Le modèle ne tient donc pas compte de la fréquence d'apparition d'un terme, ni de sa rareté dans la collection.

Modèles de base de la RI

Modèles de base de la RI

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

B. Module de représentation de query

Une requête est un ensemble de mots exprimée sous forme logique combiné a

l'aide des opérateurs booléens : AND (Λ), OR(V), NOT (¬)

- AND (Λ): intersection le document contient tous les termes reliés par AND.
- OR (V): union le document contient au moins un des termes reliés par OR.
- NOT (¬) : négation le document ne contient pas le terme indiqué.

Interprétation :

Exemple: query = $t1 \wedge (t2 \vee -t3)$ •Le document doit inclure le terme t_1 ,

•et soit inclure t_2 soit ne pas contenir t_3 .

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

A. Module de représentation des documents

 Chaque document est représenté comme un vecteur binaire dans un espace de termes. La valeur 1 ou 0 indique la présence ou l'absence de ce terme dans le document.

$$d_j = (w_{1j}, w_{2j}, ..., w_{nj}) \qquad w_{ij} = egin{cases} 1 & ext{si } t_i \in d_j \ 0 & ext{sinon} \end{cases}$$

Exemple : d1 contient les termes : t1,t5,t7 est représenté par d1(1,0,0,0,1,0,1)

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

C. Module d'appariement / Matching

La similarité entre un document est une requête est calculée par une valeur exacte basée sur la présence ou l'absence des termes de la requête dans les documents, qui est soit 1 soit 0.

On note Appariement (q,d) par RSV(q,d) qui signifie « Retrieval Status Value » avec q: query et d: Document et Indique la pertinence du document d par rapport à la requête q.

- RSV(q,d) = 1 si en remplaçant les termes dans la requête par leurs poids dans le document (0 ou 1), puis en évaluant cette requête comme une expression logique, elle donnera 1
- 2) RSV(q,d) = 0 sinon

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

EXEMPLE

Soit l'ensemble des termes d'indexation (document, web, information, recherche, image, contenu).

Documents:

- • d_1 = (document web document)
- •d₂ = (image contenu web)
- $\cdot d_3 = (document recherche information)$

Requêtes:

- • q_1 = (document \land web) \lor image
- • q_2 = (document V web) Λ image
- • q_3 = (web V image) \land document

Représentation binaire des documents

Terme	d ₁	d ₂	d₃
document	1	0	1
web	1	1	0
information	0	0	1
recherche	0	0	1
image	0	1	0
contenu	0	1	0

III.1. MODÈLE BOOLÉEN - BOOLEAN MODEL

EXEMPLE: Évaluation des requêtes

Document	document	web	image	q₁ = (document ∧ web) ∨ image	Q₂ = (document V web) ∧ image	q₃ = (web ∨ image) ∧ document
d₁	1	1	0	(1∧1)∨0 = 1	(1∨1)∧0 = 0	(1∨0)∧1 = 1
d ₂	0	1	1	(0∧1)∨1 = 1	(0∨1)∧1 = 1	(1∨1)∧0 = 0
d ₃	1	0	0	(1∧0)∨0 = 0	(1∨0)∧0 = 0	(0∨0)∧1 = 0

Pour q1 les d1 et d2 sont pertinent , pour q2 seulement le d2 est pertinent , pour q3 seul le d1 est pertinent

Modèles de base de la RI

Modèles de base de la RI

III.1. INCONVÉNIENT DU MODÈLE BOOLÉEN

- ✓ La sélection d'un document se fait sur la base d'une décision binaire (pertinent / non pertinent).
- ✓ Aucun ordre de pertinence n'est établi entre les documents sélectionnés.
- ✓ La **formulation des requêtes** est souvent difficile et pas toujours intuitive pour les utilisateurs.
- ✓ Dans le cas de **collections volumineuses**, le nombre de documents retournés peut être très important.

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

Origine:

- Proposé par Gérard Salton dans le système SMART (1970).
- Basé sur les principes de l'algèbre vectorielle.

Idée clé :

- Représenter documents et requêtes comme des vecteurs dans un espace de termes.
- Mesurer leur proximité géométriquement pour estimer la pertinence.

Pourquoi :

Le modèle booléen est trop rigide : il répond par oui/non.

- Le modèle vectoriel introduit une notion de degré de similarité.
- Il permet de classer les documents selon leur pertinence par rapport à une requête.
- On passe d'une recherche exacte à une recherche graduelle (ranking).

A. Module de représentation des documents

- Chaque document est représenté sous forme de vecteur de poids dans l'espace vectoriel engendré par tous les termes de la collection de documents.

$$T = \langle t_1, t_2, \dots, t_M
angle$$

• M = nombre total de termes dans la collection

$$d_j = (w_{1j}, w_{2j}, ..., w_{Mj})$$
 $\stackrel{ullet}{w_{ij}}$ = nombre total de termes dans la collection w_{ij} = poids du terme t_i dans le document d_j

- Chaque terme est pondéré selon une formule de pondération. La plus fréquemment utilisé

$$w_{ij} = TF_{ij} \times IDF_i$$

- Donc une collection est représentée par un fichier inverse avec pondération (vu dans le chapitre précédent)

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

C. Module d'appariement / Matching

- La pertinence dans le modèle vectoriel d'un document par rapport à une requête est mesurée à travers une similarité vectorielle.
- Chaque document et chaque requête sont représentés sous forme de vecteurs dans un espace de termes.

- La similarité dépend de l'angle entre ces vecteurs.
- Plus l'orientation du vecteur document est proche de celle du vecteur requête, plus le document est jugé pertinent.
- La similarité est mesurée par le cosinus de l'angle θ.

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

B. Module de représentation de guery

- Les requêtes sont aussi représentées sous forme de vecteurs dans l'espace vectoriel engendré par tous les termes de la collection de documents.
- On note Wiq le poids du terme dans la requête q
- Chaque terme est pondéré par **Wiq** =1 s'il existe dans la requête, 0 sinon.
- Donc, une requête $q=(w_{1q},w_{2q},...,w_{Mq})$ avec M le nombre de termes dans la collection.

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

C. Module d'appariement / Matching

Pourquoi le cosinus entre les vecteurs (requête et document)

Rappel algébrique:

- Le cosinus mesure la **proportion de direction commune** entre deux vecteurs

$$\cos(heta) = rac{ec{u} \cdot ec{v}}{\|ec{u}\| \, \|ec{v}\|} \hspace{0.5cm} \cos(heta) = rac{u_1 v_1 + u_2 v_2}{\sqrt{u_1^2 + u_2^2} \, \sqrt{v_1^2 + v_2^2}}$$

- Le Produit scalaire: u1v1 + u2v2 mesure à quel point les deux vecteurs vont dans la même direction.
- Les normes ||u|| et ||v|| servent à neutraliser la taille des vecteurs (on compare juste leur orientation).

C. Module d'appariement / Matching

Donc la formue de similarité entre document et requête s'adopte commet suit dans le modèle vectoriel : $q \cdot d_j$

 $\operatorname{Sim}(q,d_j) = \cos(heta) = rac{q \cdot d_j}{\|q\| \|d_j\|}$

Pourquoi normaliser les vecteurs?

- Les documents longs ont plus de termes et donc des poids plus grands.
- Pour éviter ce biais, on divise par la norme du vecteur.
- Ainsi, la similarité dépend uniquement de la direction, pas de la longueur.

Avec :

$$q\cdot d_j = \sum_i w_{iq} imes w_{ij}$$

$$\|q\| = \sqrt{\sum_i w_{iq}^2}, \quad \|d_j\| = \sqrt{\sum_i w_{ij}^2}$$

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

MESURES DE SIMILARITÉ VECTORIELLE

La similarité entre un document et une requête est calculée selon l'une des formules suivantes :

roduit interne
$$extit{RSV}ig(d_j$$
 , $qig) = \sum w_{ij} * w_{iq}$

Coef. de Dice
$$RSV(d_j, q) = \frac{2 * \sum w_{ij} * w_{iq}}{\sum w_{ij}^2 + \sum w_{iq}^2}$$

 $(w_{i,j})$ poids du terme i dans le document j $(w_{i,q})$ poids du terme i dans la requête q.

Mesure du cosinus
$$RSV(d_j,q) = \frac{\sum w_{ij} * w_{iq}}{\sqrt{\sum w_{ij}^2 * \sum w_{iq}^2}}$$

Mesure du Jaccard
$$RSV(d_j,q) = \frac{\sum w_{ij} * w_{iq}}{\sum w_{ij}^2 + \sum w_{iq}^2 - \sum w_{ij} * w_{iq}}$$

Modèles de base de la RI

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

Soit la collection de 3 documents suivants :

D1 : { langage de programmation python est très utilisé pour le traitement de texte }

D2 : { le langage JAVA est basé sur le langage C++ }

D3 : { un langage de programmation est un langage utilisé pour traduire un algorithme en un programme }

stopwords: { de, est, très, pour, le, un, en }

La requête q:{ langage python java }

- Donner le fichier inverse de la collection avec la formule : poids(ti, dj)=(freq(ti,dj)/max(freq(dj))*log(N/ni+1)
- 2. Calculer la similarité entre chaque document et la requête q par les quatre formules du modèle vectoriel.

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

Données (rappel)

Documents (après suppression des stopwords) :

•D1 = { langage, programmation, python, utilisé, traitement, texte }

•D2 = { langage, JAVA, basé, langage, C++ }

•D3 = { langage, programmation, langage, utilisé, traduire, algorithme, programme }

Requête : $q = \{\text{langage, python, java }\}$ on prend java $\equiv JAVA$)

Nombre de documents N = 3.

Les poids (déjà calculés)

EXEMPLE PRATIQUE:					
Terme	D1	D2	D3		
langage	0.301	0.301	0.301		
programmation	0.398	0	0.199		
python	0.602	0	0		
utilisé	0.398	0	0.199		
traitement	0.602	0	0		
texte	0.602	0	0		
JAVA	0	0.301	0		
basé	0	0.301	0		
C++	0	0.301	0		
traduire	0	0	0.301		
algorithme	0	0	0.301		

O

programme

0.301

Produit	interne

$$RSV(d_j,q) = \sum w_{ij} * w_{iq}$$

Coef. de Dice
$$RSV(d_j,q) = \frac{2 * \sum w_{ij} * w_{iq}}{\sum w_{ij}^2 + \sum w_{iq}^2}$$

Mesure du Jaccard
$$RSV(d_j,q) = \frac{\sum w_{ij} * w_{iq}}{\sum w_{ij}^2 + \sum w_{iq}^2 - \sum w_{ij} * w_{iq}}$$

 $(w_{i,i})$ poids du terme i dans le document j $(w_{i,q})$ poids du terme i dans la requête q.

Indice: Requête $q = \{\text{langage, python, java }\}$

Réaliser une représentation vecteur query binaire

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la query q et chaque document
- **Produit interne**

•RSV(D1, q) =
$$0.301_{(langage)} + 0.602_{(python)} + 0_{(JAVA)} = 0.903$$

•RSV(
$$D2^{i}q$$
) = $0.301_{(langage)} + 0_{(JAVA)} + 0_{(python)} = 0.602$

•RSV(D3,q) =
$$0.301_{(langage)} + 0 + 0 = 0.301$$

Classement: D1 > D2 > D3

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

1) Vocabulaire (ordre des dimensions)

On reprend le vocabulaire utilisé pour la collection (même ordre que précédemment)

2) Requête $q = \{\text{langage, python, java}\}$ — représentation vecteur binaire

Règle : $w_{i,q} = 1$ si le terme t_i appartient à la requête, sinon 0.

Donc le vecteur requête (même ordre que le vocabulaire) est :

$$q = (1\ 0\ 1\ 0\ 0\ 0\ 1\ 0\ 0\ 0\ 0)$$

On retient généralement seulement les composantes non nulles : q contient les dimensions « langage, python, JAVA ».

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la query q et chaque document
- Mesure de Cosinus

Norme de la requête
$$\sqrt{\sum_{i} w_{i,q}^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} = 1.732$$

Document D1:
$$\sqrt{\sum_{i=1}^{8} w_{i,1}^2} = \sqrt{0.301^2 + 0.398^2 + 0.602^2 + 0.398^2 + 0.602^2 + 0.602^2}$$
$$= \sqrt{1.4946} = 1.223$$

$$= \sqrt{1.4946} = 1.223$$

$$RSV(D1, q) = \frac{0.903}{1.223 \times 1.732} = 0.426$$

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la guery q et chaque document
- Mesure de Cosinus

Norme de la requête
$$\sqrt{\sum_{i} w_{i,q}^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} = 1.732$$

Document D2:
$$\sqrt{\sum_{i=1}^{8} w_{i,2}^2} = \sqrt{0.301^2 + 0.301^2 + 0.301^2 + 0.301^2}$$
$$= \sqrt{0.3624} = 0.602$$
$$RSV(D2, q) = \frac{0.602}{0.602 \times 1.732} = 0.577$$

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la guery q et chaque document
- Coef de Dice $\sum_{i} w_{i,q}^2 = 1^2 + 1^2 + 1^2 = 3$.

Document D1:

Somme des carrés (document) :

$$\sum_{i} w_{i,1}^2 = 0.301^2 + 0.398^2 + 0.602^2 + 0.398^2 + 0.602^2 + 0.602^2 = 1.494621$$

$$\sum_{i} w_{i,1} \cdot w_{i,q} = 0.903.$$

Donc:

$$Dice(D1,q) = \frac{2 \times 0.903}{1.494621 + 3} = \frac{1.806}{4.494621} \approx 0.4018$$

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la guery q et chaque document
- Mesure de Cosinus

Norme de la requête
$$\sqrt{\sum_{i} w_{i,q}^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} = 1.732$$

Document D3 :
$$\sqrt{\sum_{i=1}^{8} w_{i,3}^2} = \sqrt{0.301^2 + 0.199^2 + 0.199^2 + 0.301^2 + 0.301^2 + 0.301^2}$$
$$= \sqrt{0.4416} = 0.665$$
$$RSV(D, 3q) = \frac{0.301}{0.665 \times 1.732} = 0.262$$

Classement: D2 > D1 > D3

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la query q et chaque document
- Coef de Dice $\sum_{i} w_{i,q}^2 = 1^2 + 1^2 + 1^2 = 3$.

Document D2:

Somme des carrés (document) :

$$\sum_{i} w_{i,2}^2 = 0.301^2 + 0.301^2 + 0.301^2 + 0.301^2 = 0.362404$$

$$\sum_{i} w_{i,2} \cdot w_{i,q} = 0.602.$$

Donc:

$$Dice(D2, q) = \frac{2 \times 0.602}{0.362404 + 3} = \frac{1.204}{3.362404} \approx 0.3581$$

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

3) Calcul de Similarité entre la query q et chaque document

• Coef de Dice
$$\sum_{i} w_{i,q}^2 = 1^2 + 1^2 + 1^2 = 3$$
.

Document D3

$$\sum_{i} w_{i,3}^2 = 0.301^2 + 0.199^2 + 0.199^2 + 0.301^2 + 0.301^2 + 0.301^2 = 0.441606$$

$$\sum_{i} w_{i,3} \cdot w_{i,q} = 0.301.$$

Donc :

$$Dice(D, 3q) = \frac{2 \times 0.301}{0.441606 + 3} = \frac{0.602}{3.441606} \approx 0.1749$$

Classement D1 > D2 > D3

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la guery q et chaque document
- Mesure de Jaccard

Document D3 :
$$\sum_{i} w_{i,3}^2 = 0.301^2 + 0.199^2 + 0.199^2 + 0.301^2 + 0.301^2 + 0.301^2 = 0.441606$$

$$\sum_{i} w_{i,3} \cdot w_{i,q} = 0.301$$

$$\operatorname{Jaccard}(D3,q) = \frac{0.301}{0.441606 + 3 - 0.301} = \frac{0.301}{3.140606} \approx 0.09584$$

Classement D1 > D2 > D3

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

EXEMPLE PRATIQUE

- 3) Calcul de Similarité entre la query q et chaque document
- Mesure de Jaccard

$$\begin{aligned} \mathbf{Document \, D1:} & \sum_{i} w_{i,1}^2 = 0.301^2 + 0.398^2 + 0.602^2 + 0.398^2 + 0.602^2 + 0.602^2 = 1.494621 \\ & \sum_{i} w_{i,1} \cdot w_{i,q} = 0.903 \\ & \operatorname{Jaccard}(D \cdot 1q) = \frac{0.903}{1.494621 + 3 - 0.903} = \frac{0.903}{3.591621} \approx 0.25142 \\ \mathbf{Document \, D2:} & \sum_{i} w_{i,2}^2 = 0.301^2 + 0.301^2 + 0.301^2 + 0.301^2 = 0.362404 \\ & \sum_{i} w_{i,2} \cdot w_{i,q} = 0.602 \\ & \operatorname{Jaccard}(D \cdot 2q) = \frac{0.602}{0.362404 + 3 - 0.602} = \frac{0.602}{2.760404} \approx 0.21808 \end{aligned}$$

Modèles de base de la RI

III.2. MODÈLE VECTORIEL - VECTOR SPACE MODEL (VSM)

AVANTAGES DU MODÈLE VECTORIEL

- ✓ La pondération améliore les résultats de recherche
- ✓ La mesure de similarité permet d'ordonner les documents selon leur pertinence vis à vis de la requête
- ✓ Simple à programmer

INCONVÉNIENTS DU MODÈLE VECTORIEL

- La représentation vectorielle suppose l'indépendance entre termes
- Le sens des termes n'est pas pris en compte

III.3. MODÈLE BOOLÉEN BASÉ SUR LES ENSEMBLES FLOUS

Origine et Principe

- Ce modèle est une extension du modèle booléen classique.
- Introduit la notion de degré d'appartenance au lieu d'une valeur binaire (0 ou 1).
- Un document peut être partiellement pertinent pour une requête.
- Ce modèle relie la logique booléenne à la théorie des ensembles flous (fuzzy sets) de Zadeh, 1965.

Modèles de base de la RI

III.3. MODÈLE BOOLÉEN BASÉ SUR LES ENSEMBLES FLOUS

B. Représentation des requêtes

Une requête reste booléenne mais appliquée à des valeurs floues. Ex: $q=t_1 \wedge (t_2 \vee \neg t_3)$

C. Calcul de la similarité floue

Le degré de pertinence RSV entre la requête et un document entre un document et une requête est calculée selon les formules suivantes :

$$RSV(d_j,t_i)=w_{ij}$$

$$RSV(d_j, t_1 \wedge t_2) = \min(RSV(d_j, t_1), RSV(d_j, t_2))$$

$$RSV(d_j, t_1 \lor t_2) = \max(RSV(d_j, t_1), RSV(d_j, t_2))$$

$$RSV(d_i, \neg t_i) = 1 - RSV(d_i, t_i)$$

III.3. MODÈLE BOOLÉEN BASÉ SUR LES ENSEMBLES FLOUS

A. Module de représentation des documents

- Chaque document est représenté comme un ensemble de termes avec des poids flous, qui mesure à quel point le terme caractérise le document.

$$d_j = \{(t_1, w_{1j}), (t_2, w_{2j}), \dots, (t_M, w_{Mj})\}$$

où:

- t_i : terme de la collection
- ullet $w_{ij} \in [0,1]$: degré d'appartenance du terme t_i au document d_j
- Ces poids proviennent souvent du **TF-IDF** ou d'autres mesures de pondération

Modèles de base de la RI

III.3. MODÈLE BOOLÉEN BASÉ SUR LES ENSEMBLES FLOUS

Exemple pratique

Supposons un document d_1 avec les poids suivants (issus d'un calcul TF*IDF ou donnés) :

- $\bullet RSV(d_{1}, t_{1}) = 0.8$
- $\bullet RSV(d_{1'}t_2) = 0.4$
- $\bullet RSV(d_{1'}t_3) = 0.6$

Conjonction (ET) RSV(d1,t1 \wedge t2)= min(0.8,0.4)=0.4

Disjonction (OU) RSV(d1,t1 \vee t2)= max(0.8,0.4)=0.8

Négation (NON) $RSV(d_1' \neg t_3) = 1 - 0.6 = 0.4$

- Le document est **pertinent à 0.4** pour la requête $t_1 \wedge t_2$.
- Il est **pertinent à 0.8** pour la requête $t_1 \vee t_2$.
- Il est **peu pertinent (0.4)** pour la requête $\neg t_3$.

Modèles de base de la RI

III.3. MODÈLE BOOLÉEN BASÉ SUR LES ENSEMBLES FLOUS

AVANTAGES

- ✓ Représente la pertinence graduelle, plus réaliste.
- ✓ Supporte les combinaisons complexes de termes (ET/OU/NON).
- ✓ Plus flexible que le modèle booléen strict.

INCONVÉNIENTS

- Ne repose pas sur une base probabiliste.
- Les résultats peuvent dépendre de la pondération choisie (TF-IDF, fréquence...).
- Peut être moins précis que le modèle vectoriel pour les requêtes longues.