An Introduction to Statistical Learning with Applications in R

Gareth James, Daniela Witten, Trevor Hastie, & Robert Tibshirani

Chapter 2: Exercises

Graham Strickland

October 27, 2024

Question 1

- (a) Given a very large sample size n and a small number of predictors p, an inflexible method would be better than a flexible one, since the risk of overfitting is less.
- (b) For the same reasons as (a), a flexible method would yield better results for small n and large p.
- (c) A flexible method would yield better results, since non-linear functions cannot be accurately modelled by linear functions.
- (d) If there is high variance in the error terms, an inflexible method would be better, since a flexible method would introduce even more variance in the values of \hat{f} .

Question 2

- (a) This is a classification problem, since we are trying to identify a qualitative trend in the data. It is an inference problem, since we are not trying to estimate future values of f. In this case, we have n = 500 and p = 4.
- (b) This is a classification problem, since we are trying to classify the product as either a success or a failure. It is also a prediction problem, since we are looking to estimate a future output. We have n = 20 and p = 14.

(c) This is a regression problem since we have quantitative data and assume that it fits some function f, which we are attempting to estimate. Since this is a future estimate, it is a prediction problem. We have n = 52 and p = 4.

Question 3

(a) We have the following R plot of various error curves: Arbitrary polynomi-

Figure 1: Typical (squared) bias, variance, training error, test error, and Bayes (irreducible) error $\,$

als of the appropriate degree were used to generate these plots, since they are approximations, using the following script:

```
# Exercise 2.3(a) - Plots of error curves
squared_bias <- function(x) {
  return((x - 1.25)^4 + 0.01 * x^3 + 0.05 * x^2 - 0.1 * x + 1.15)</pre>
```

```
}
variance <- function(x) {</pre>
  return((x - 1.25)^4 + 0.01 * x^3 + 0.05 * x^2 - 0.1 * x + 0.25)
training_err <- function(x) {</pre>
  return((x - 1.25)^4 + 0.01 * x^3 + 0.05 * x^2 - 0.1 * x + 1.25)
test_err <- function(x) {</pre>
  return(-(x - 1.25)^3 + 0.05 * x^2 - 0.1 * x + 1.0)
bayes_err <- function(x) {</pre>
  return(rep(1.0, length(x)))
x < - seq(0, 2.5, by = 0.1)
y1 <- squared_bias(x)</pre>
y2 <- variance(x)</pre>
y3 <- training_err(x)</pre>
y4 <- test_err(x)
y5 <- bayes_err(x)
pdf("ex2_3_a.pdf")
plot(x, y1,
  type = "l", col = "blue", lwd = 1, ylim = c(0, 2.5), xlab = "Flexibility",
  ylab = "Value", main = "Typical Error Curves"
lines(x, y2, col = "red", lwd = 1)
lines(x, y3, col = "green", lwd = 1)
lines(x, y4, col = "orange", lwd = 1)
lines(x, y5, col = "gray", lwd = 1, lty = 2)
legend("topright",
  legend = c(
    "(Squared) bias", "Variance", "Training Error", "Test Error",
    "Bayes (irreducible) Error"
  col = c("blue", "red", "green", "orange", "gray"), lwd = 1
```

dev.off()