Analysis PhD Qualifying Exam August 15, 2022 Ionut Chifan and Raúl Curto

PART I: REAL ANALYSIS

Choose either problem $\mathbf{R-1A}$ or $\mathbf{R-1B}$ below and solve it.

R-1.A. (10 points) Let $E := (0, +\infty), g \in L^1(E)$, and define $f: E \to \mathbb{R}$ by

$$f(x) := \int_{(0,x)} g \ (x \in E).$$

- (a) Prove that f is absolutely continuous on E.
- (b) Prove that f may fail to be Lipschitz on E, that is, find $g \in L^1(E)$ such that the associated f is not Lipschitz on E.
- (c) Prove that when $g \in L^{\infty}(E)$, then f is Lipschitz.
- (d) For $g \in L^{\infty}$, find the best Lipschitz constant for f.

R-1B. (10 points) Let $\{E_k\}_{k=1}^n$ be a finite family of measurable subsets of [0,1]. Assume that every $x \in [0,1]$ belongs to at least three sets in the family. Prove that there exists $k = 1, \ldots, n$ such that

$$m(E_k) \ge \frac{3}{n}$$
,

where m denotes Lebesgue measure.

R-2. (10 points) Consider the sequence of real valued functions on [0, 1] given by

$$f_n(x) := \begin{cases} 2n & \frac{1}{2n} \le x \le \frac{1}{n} \\ 0 & x \in \left[0, \frac{1}{2n}\right) \cup \left(\frac{1}{n}, 1\right]. \end{cases}$$

(a) Find

$$\int_0^1 \lim_n f_n.$$

(b) Find

$$\lim_{n} \int_{0}^{1} f_{n}.$$

- (c) Does Fatou's Lemma apply to the sequence $\{f_n\}$? Why or why not?
- (d) Does the Lebesgue Dominated Convergence Theorem apply to the sequence $\{f_n\}$? Why or why not?