Task 1

Data:

S	The set of all suppliers
P	The set of all plants

Decision variables:

Decision variables.				
X_{ij}	The decision variable representing amount of biomass to transport between i and j	$i \in S$	$j \in P$	
SC_i	The supply capacity of any given supplier		$i \in S$	
PC_j	The capacity of any given plant		$j \in P$	
TP_{ij}	The cost of transportation between i and j, given in \$ per Mg per kilometer of biomass. The total cost of a trip is thus $C_{ij} * X_{ij}$	<i>i</i> ∈ <i>S</i>	$j \in P$	
D	The total demand, which is 500,000,000 liters of bio-ethanol, requires 2,155,172 Mg of biomass			
L	The cost of loading and unloading a truck, given as a constant 10000			
I_j	The investment cost for each plant		$j \in P$	
B_j	A binary variable that represents whether or not we've invested in a plant	$B \in \{0,1\}$	$j \in P$	
Y_j	The conversion capacity of each plant		$j \in P$	
R	The constant conversion rate of bioethanol per Mg of biomass, which is 232 liters/Mg.			

Objective function:

$$Minimize\ Z = \sum_{i \in S} \sum_{j \in P} (TP_{ij} * X_{ij}) + \sum_{j \in P} (I_j * B_j)$$

Constraint to:

 $\sum_{i \in S} \sum_{j \in P} X_{ij} \geq D$ The sum of flow between all i's and j's meets the production goal $\sum_{i \in S} \sum_{j \in P} X_{ij} \leq SC_i$ The sum of the outgoing flow from each supplier is less than or equal to its available supply $\sum_{j \in P} \sum_{i \in S} X_{ij} \leq PC_j$ The sum of incoming flow to each plant is less than or equal to its capacity $\sum_{i \in S} \sum_{j \in P} X_{ij} = \sum_{i \in P} \sum_{j \in S} X_{ij}$ The sum of outgoing flow from all suppliers equals the ingoing flow to all plants