PDA Computation

Friday, March 22, 2024

Announcements

- HW 5 out
 - Due Mon 3/25 12pm noon

Last Time:

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - push/pop top location only

Last Time:

 $\{0^n 1^n | n \ge 0\}$

An Example PDA

A **PDA transition** has **3 parts:**

- Read
- Pop
- Push

Formal Definition of PDA

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- **2.** Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet has special stack symbols, e.g., \$

- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- 5. $q_0 \in (Input \ Pop \ art \ state, \ and \ Push$
- **6.** $F \subseteq Q$ is the set of accept states.

Non-deterministic!
Result of a step is **set** of (STATE, STACK CHAR) pairs

$$Q = \{q_1, q_2, q_3, q_4\},\$$

PDA Format f_{Γ} efinition Example Stack alphabet has special stack symbol \$

$$F = \{q_1, q_4\},\$$

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

1. Q is the set of states,

Input

- 2. Σ is the input alphabet, Pop Push
- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$
 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

Last Time:

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma = \{0,1\},\$$

$$\Gamma = \{0, \$\},$$

$$F = \{q_1, q_4\}, \text{ and }$$

<u>In-class exercise</u>:

Fill in the blanks

$$Q =$$

$$\Sigma =$$

$$\Gamma =$$

$$F =$$

In-class exercise:

Fill in the blanks

$$Q = \{q_1, q_2, q_3, q_4\},\$$

$$\Sigma = \{0,1\},$$

$$\Gamma = \{0,1,\$\},$$

$$F = \{q_4\}$$

 q_3

arepsilon,\$ightarrow arepsilon

 δ is given by the following table, wherein blank entries signify \emptyset .

PDA M_3 recognizing the language $\{ww^{\mathcal{R}}|w\in\{0,1\}^*\}$

DFA Computation Rules

Informally

Given

- A DFA (~ a "Program")
- and Input = string of chars, e.g. "1101"

A **DFA** <u>computation</u> (~ "Program run"):

- Start in start state
- Repeat:
 - Read 1 char from Input, and
 - Change state according to transition rules

Result of computation:

- Accept if last state is Accept state
- Reject otherwise

Formally (i.e., mathematically)

- $M = (Q, \Sigma, \delta, q_0, F)$
- $w = w_1 w_2 \cdots w_n$

A **DFA computation** is a **sequence of states:**

• specified by $\hat{\delta}(q_0,w)$ where:

- *M* accepts w if $\hat{\delta}(q_0, w) \in F$
- *M* rejects otherwise

DFA Multi-step Transition Function

$$\hat{\delta}: Q \times \Sigma^* \to Q$$

- <u>Domain</u> (inputs):
 - state $q \in Q$
 - string $w = w_1 w_2 \cdots w_n$ where $w_i \in \Sigma$
- Range (output):
 - state $q \in Q$

A **DFA computation** is a **sequence of states:**

(Defined recursively)

Base case
$$\hat{\delta}(q,arepsilon)=q$$

Recursive Case
$$\hat{\delta}(q,w'w_n)=\delta(\hat{\delta}(q,w'),w_n)$$
 where $w'=w_1\cdots w_{n-1}$

PDA Computation?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only

A **DFA computation** is a **sequence of states** ...

A PDA computation is <u>not</u> just a <u>sequence of states</u> ...

... because the **stack contents** can change too!

PDA Configurations (IDs)

A configuration (or ID) is a "snapshot" of a PDA's computation

A sequence of configurations represents a PDA computation

PDA Computation, Formally

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Single-step

A configuration (q, w, γ) has three components q = the current state w = the remaining input string γ = the stack contents

Multi-step

• Base Case

0 steps

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

> 0 steps

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

Single step Recursive "call"

This specifies the **sequence of configurations** for a **PDA** computation

Input Read Pop Push $q_1 \xrightarrow{\varepsilon, \varepsilon \to \$} q_2 \xrightarrow{0, \varepsilon \to 0} q_2 \xrightarrow{1, 0 \to \varepsilon} q_3$

1,0ightarrowarepsilon

Remaining Input

Stack

State

Flashback: Computation and Languages

The language of a machine is the set of all strings that it accepts

• E.g., A DFA M accepts w if $\hat{\delta}(q_0,w) \in F$

• Language of $M = L(M) = \{ w \mid M \text{ accepts } w \}$

Language of a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

A **configuration** (q, w, γ) has three components

q = the current state

w = the remaining input string

 γ = the stack contents

PDAs and CFLs?

- PDA = NFA + a stack
 - Infinite memory
 - Push/pop top location only
- Want to prove: PDAs represent CFLs!

- We know: a CFL, by definition, is a language that is generated by a CFG
- Need to show: PDA ⇔ CFG
- Then, to prove that a language is a CFL, we can either:
 - Create a CFG, or
 - Create a PDA

A lang is a CFL iff some PDA recognizes it

- ⇒ If a language is a CFL, then a PDA recognizes it
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove this part: show the CFG has an equivalent PDA
- ← If a PDA recognizes a language, then it's a CFL

Shorthand: Multi-Symbol Read Transition

Shorthand: Multi-Stack Push Transition

Note the <u>reverse</u> order of pushes

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

CFG→PDA (sketch)

- Construct PDA from CFG such that:
 - PDA accepts input only if CFG generates it
- PDA:
 - simulates generating a string with CFG rules
 - by (nondeterministically) trying all rules to find the right ones

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \to \mathbf{a} T \mathbf{b}$)

 \Rightarrow **a**T**ab** (using rule $T \rightarrow T$ **a**)

 \Rightarrow **aab** (using rule $T \rightarrow \varepsilon$)

 $q_{\rm accept}$

Example Derivation using CFG:

 $q_{\rm loop}$

 $q_{\rm accept}$

A lang is a CFL iff some PDA recognizes it

- $| \checkmark | \Rightarrow | \text{If a language is a CFL, then a PDA recognizes it} |$
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - To prove this part: show PDA has an equivalent CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA

PDA P -> CFG G: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)

The Key IDEA

• To add terminals: pair up stack pushes and pops (essence of a CFL)

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \longrightarrow |$ If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ✓ ← If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Submit in-class work 3/20

On gradescope