# Pattern Recognition & Machine Learning

Lab-2 :- "Decision Trees"

## **Objectives**

According to the Document provided, our goals were as follows :-

- 1. To construct Decision Tree Classifiers using Entropy and Gini as criterions. In support of this, use <u>link</u> as a Dataset.
- 2. To construct a Decision Tree Regressor, using dataset as a file for Input Dataset.

#### **Procedures**

For accomplishing these objectives, certain components would be required as follows :-

- 1. Preprocessing the Dataset
- 2. Shuffling and Splitting into Train and Test portions
- 3. Cross-Validating and Predicting through Models
- 4. Generating certain structural and parametric details about Models
- 5. Plotting these Trees and their corresponding Decision Surfaces.

# **Inputting the Datasets**

Through the given links, Datasets were obtained and their distribution details can be brought out as follows:-

#### Dataset from Question-I



Seeing these Feature-Wise Distributions, there might be chances that Decision Tree Classifiers can tend towards some biasness, irrespective of whatsoever Criterion would be picked.

#### Dataset from Question-II

"45.5 Objective" based Distribution

#### Recent Trend-Wise Distribution





Again, seeing these Distributions, Decision Tree Regressor can also tend towards some biasness.

## **Libraries / Dependencies**

- 1. Sklearn
- 2. Numpy
- 3. Pandas
- 4. Graphviz
- 5. Matplotlib

# **Extracting Features through pre-processing**

Both Datasets had some flaws and missing values. So, in order to resolve them according to the working of models, we incorporated some pre-processing measures as follows:-

#### 1. Encoding Categorical Features :-

For Categorical Labels, Ordinal Encoder was used, which assigns the float value of a particular label, according to its relative alphabetic order.

Ex:- Afternoon as 0, Evening as 1 and Morning as 2.

#### 2. Eliminating NaN Values :-

In Dataset-II , \* and \*\* were invalid values, in respect to features. So, they were converted to NaN value and then removed. As a proof, we can see the Dataset Distribution as follows:-



#### 3. Converting Strings to Float Values :-

In Dataset-II, Strings were used for big numeric figures. So, those values were converted to float64 format.

# **Splitting into Train and Test Sub-portions**

For Decision Tree Classifiers as well as Decision Tree Regressor, the Ratio for Training and Test Dataset Portions, was kept to 9:1 . Although for smaller Datasets, it can lead to Overfitting, but the ratio behaves fine for Large Datasets.

# **Cross-Validation Details**

Cross Validation Scores were calculated for Decision Tree Classifiers and Decision Tree Regressor. The details with number of folds=5, were as follows:-

#### **Decision Tree Classifiers**



| Criterion | Array of scores                             | Mean Score (Approx) | Standard Deviation |
|-----------|---------------------------------------------|---------------------|--------------------|
| Entropy   | 0.33333333<br>0.66666667<br>1<br>0.5<br>0.5 | 0.6                 | 0.2260             |
| Gini      | 0.33333333<br>0.66666667<br>1<br>1<br>0.5   | 0.7                 | 0.2666             |

## **Decision Tree Regressor**



| Criterion          | Array of Scores                                                    | Mean Score (Approx) | Standard Deviation |
|--------------------|--------------------------------------------------------------------|---------------------|--------------------|
| Mean Squared Error | 0.31068099<br>0.81292212<br>0.85281763<br>0.93396697<br>0.88365991 | 0.7588              | 0.2275             |

## **Details about Models**

Some Characteristics about Decision Tree Classifiers and Decision Tree Regressor were given, as follows:-

#### **Decision Tree Classifiers**

| Criterion | Depth of Tree | No. of Leaf Nodes | Gini Impurities                                                                                                      |  |
|-----------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------|--|
| Entropy   | 4             | 7                 | Feature: 0, Score: 0.30355<br>Feature: 1, Score: 0.18150<br>Feature: 2, Score: 0.32757<br>Feature: 3, Score: 0.18739 |  |
| Gini      | 4             | 7                 | Feature: 0, Score: 0.38393<br>Feature: 1, Score: 0.20000<br>Feature: 2, Score: 0.18750<br>Feature: 3, Score: 0.22857 |  |

### **Decision Tree Regressor**

| Criterion          | Depth of Tree | No. of Leaf Nodes | Gini Impurities                                                                                                                                                                                                                                    |  |
|--------------------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Mean Squared Error | 22            | 1518              | Feature: 0, Score: 0.00475 Feature: 1, Score: 0.00003 Feature: 2, Score: 0.00189 Feature: 3, Score: 0.00052 Feature: 4, Score: 0.00318 Feature: 5, Score: 0.08402 Feature: 6, Score: 0.13662 Feature: 7, Score: 0.71412 Feature: 8, Score: 0.05487 |  |

# **Accuracy metrics of models**

After constructing Decision Tree Classifiers and Decision Tree Regressor, their accuracies were brought out, upon their corresponding Test Dataset Portions. Those details were as follows:-

| Criterion                       | Test Accuracy |
|---------------------------------|---------------|
|                                 |               |
| Classifier :- Entropy           | 50%           |
|                                 |               |
| Classifier :- Gini              | 50%           |
|                                 |               |
| Regressor :- Mean Squared Error | mse = 0.9691  |
|                                 |               |
|                                 |               |
|                                 |               |