Lab Project #4 — Cachelab

- Due Thursday, December 14, 6:00 PM
 - No extensions possible!
 - Due to grading deadlines
- Download <u>cachelab-handout.tar.gz</u> from *Canvas*
 - https://canvas.wpi.edu/files/885348/download?download_frd=1
- Optional two-person teams
 - Must "register" by sending e-mail to cs2011-staff@cs.wpi.edu
 - ... in order to register team in Canvas
 - Either team member may submit on behalf of self or on behalf of team
 - Canvas gives you the option at the time of submission

Cachelab

■ Two parts:-

A. Cache simulator

- Interprets memory access traces from valgrind
- 200-300 lines of C code

B. Array transpose function

- Minimize number of cache misses & evictions
- Performance counts!
- valgrind traces performance on cache simulator

Part A:- Cache simulator

Four arguments:

- s:- 2^s is number of sets
- E:— associativity; E = 2^e, the number of lines per set
 - $E = 1 \Rightarrow$ Direct-mapped cache
- b:- 2^b is number of data bytes per cache line
- t:- tracefile (output from valgrind) of memory references
 - Each line represents one memory access
 - L = load; S = store; M = modify (equivalent to L + S)

Cache simulator (continued)

- Read sequence of memory traces from trace file
- Ignore instruction fetches!
- Pass all data accesses (load, store, modify) thru your simulated cache
 - Record hits, misses, evictions

Follow Programming Rules in project description

- Print summary of all cache activity ...
 - ... using provided PrintSummary () function

Part B:- Matrix transpose

- Write a *fast* matrix transpose function ...
- ... that is cache aware

- Test against your simulator to determine how fast
 - Measured in numbers of misses

Matrix transpose

- valgrind used to trace your transpose function
 - Invoked via ./test-trans function from handout
- Traces passed to *your* simulator
 - Performance measured in terms of numbers of
 - Cache hits
 - Cache misses
 - Cache evictions

Project Handout

- cachelab-handout.tar.gz
 - On course web-site on Canvas
 - Select Projects and click on the link in projects table

Includes

Also, project description (docx, pdf)

- csim-ref a reference simulator (binary only)
 - For helping to validate your simulator
- csim.c a skeleton for building your simulator
- traces a directory full of traces for testing
- trans.c contains transpose functions; you modify this
- test-trans program to evaluate your transpose function

Matrix transpose

- Write a fast matrix transpose function ...
- ... that is cache aware
- Test cases:-
 - 32 × 32
 - 64 × 64
 - 61 × 67 ←
 - s = 5, E = 1, b = 5

Use autograder in handout to check your score!

Graders may substitute different numbers

- Score based on number of misses!
 - Fewer misses is better
 - Too many misses ⇒ zero performance points for that case!

Two-person Teams

- You may optionally work in teams of two
- Register your team with <u>cs2011-staff@cs.wpi.edu</u>
 so that we may enter it into Canvas
- Remember to register early!
 - We may not be watching e-mail when project is nearly due!

Note about teams

- Do NOT divide up the project by
 - One member works on csim.c
 - Other member works on trans.c
- Reason:— csim.c is 3 times more difficult than trans.c

- Cannot always detect, but ...
 - If we do detect this behavior, it is a 25% penalty.

Submission

- Tarball named username-handin.tar or teamname-handin.tar
 - username replaced by your WPI user ID or by team name as registered in Canvas
 - Automatically created every time you issue make command in cachelab-handout directory
 - "make USER=username" and "make USER=teamname" automatically create tarballs with user (or team) name specified after '=' sign

Submit to Canvas

Project Cachelab

Extra Credit

- Submit a working version of csim.c by Friday, December 8, 6:00 PM
 - Extra-credit submission file name must be extra-username-handin.tar Or extra-teamnamehandin.tar
 - Must execute graders' traces correctly

Reminder: Academic Honesty

Course rules:-

- You may consult with your classmates and others about algorithms and approaches to project
- You may resource online and other materials for inspiration

However,

You may not copy or look at code

Lots of temptations exist on web

Don't succumb to them

Reminder: Academic Honesty (continued)

- Detected violations:—
 - Grade of Incomplete for the course
 - Resolution in C-term according to WPI procedures for Academic Dishonesty
- Very disagreeable for all involved

Questions?