AME 21216 - Score Sheet

A9 - Spring-Mass Oscillator

NDID#:				
_	 	 	 	

For more details on any of the items below, please refer to the lab handout.

To more details on any or the items below, please refer t	o the lab ham	1001.
Item and Description	Points Awarded	Possible Points
Technical writing – Using the correct format, address all questions from the lab handout in the paragraphs.		3
A plot of acceleration (m/s²) vs. time (s) for one of the data sets. (Show only two periods of oscillation.)		4
A plot of velocity (m/s) vs. time (s) computed from the previous acceleration data set (Show only two periods of oscillation.)		4
A plot of spectral density (amplitude vs. freq.) of the Y acceleration data computed using the FFT code on the A9 web page		4
A table containing the following parameters: • The measured mass of the weight with electronics mounted <i>m</i> (kg).		
• The measured spring constant <i>k</i> (N/m).		
• The <i>theoretical</i> natural resonance frequency <i>f_n</i> (Hz).		5
 The natural resonance frequency f_n (Hz) measured using the stopwatch. 		
• The natural resonance frequency f_n (Hz) determined from the FFT plot.		
TOTAL		20

NOTE: Although measured data is typically plotted as individual markers, transient signals (such as acceleration vs. time) should be plotted as a continuous line.