

RESULTADOS DE LA AUDITORÍA

- 1. Análisis de la estructura de los edificios:
 - Resistencia de los materiales:
 Los edificios están construidos con hormigón armado, lo que proporciona una resistencia adecuada para soportar la instalación de cubiertas verdes y sistemas de aislamiento térmico.
 - Carga máxima:
 La estructura puede soportar una carga adicional de hasta 150 kg/m²
 en las cubiertas, permitiendo la instalación de cubiertas verdes con vegetación y sustrato.
- 2. Características de las cubiertas:
 - Composición actual:
 Las cubiertas están formadas por tejas cerámicas y una capa de impermeabilización. Se detecta un bajo nivel de aislamiento térmico.
 - Superficie disponible:
 La superficie total de las cubiertas aptas para la implementación de cubiertas verdes es de 1000m².
- 3. Estudio de puentes térmicos:
 - Puntos débiles:
 Se identifican puentes térmicos en las uniones entre fachadas y cubiertas, generando pérdidas de calor significativas.
 - Pérdidas de calor:
 Estos puentes térmicos representan aproximadamente un 15% del consumo energético actual.
- 4. Estimación del consumo energético actual:
 - Consumo histórico:
 La urbanización consume un promedio de 35.000kW anuales para calefacción y refrigeración.

RESULTADOS DE LA AUDITORÍA · RESULTADOS DE LA AUDITORÍA · RESULTADOS DE LA AUDITORÍA ·

- 5. Análisis de las condiciones climáticas:
 - Exposición solar:
 Las fachadas orientadas al oeste reciben una exposición significativa al sol durante la tarde.
 - Orientación de los edificios:
 La mayoría de los edificios tienen una orientación que permite
 optimizar el diseño de las cubiertas verdes y jardines verticales para mejorar la eficiencia térmica.
- 6. Evaluación de materiales:
 - Capacidad de aislamiento:
 Los materiales actuales tienen una capacidad de aislamiento térmico
 baja (U-value de 1.2 W/m²K), lo que requiere mejoras para alcanzar niveles óptimos de eficiencia energética.
 - Investigación de materiales ecosostenibles:
 Se identifican aislantes naturales con un U-value de 0.3 W/m²K, lo que permitiría mejorar significativamente la eficiencia térmica de los edificios.
- 7. Estudio de la vegetación actual:
 - Superficie vegetada:
 Actualmente, existen áreas verdes y jardines con una superficie de aproximadamente 500m² que pueden integrarse en el diseño de cubiertas verdes y jardines verticales.
- 8. Estimación de tasas de refrigeración y calentamiento:
 - Reducción de ganancia de calor:
 La implementación de cubiertas verdes reduciría la tasa de ganancia de calor en un 20%.
 - Disminución de pérdida de calor:
 Las medidas propuestas reducirían la tasa de pérdida de calor en un
 25%.

RESULTADOS DE LA AUDITORÍA · RESULTADOS DE LA AUDITORÍA · RESULTADOS DE LA AUDITORÍA ·

Propuesta de soluciones de rehabilitación térmica:

- o Instalación de **cubiertas verdes en 800m²** de superficie de cubiertas, lo que reduciría el consumo energético en 10.000 kW anuales y ahorraría aproximadamente 5.000 euros al año.
- La incorporación de materiales ecosostenibles con un U-value de 0.3
 W/m2K mejoraría la eficiencia energética en un 40%, generando un ahorro adicional de 5,000 kW anuales y 2,500 euros al año.
- Instalación de toldos vegetales y zonas verdes estratégicas reduciría el consumo de refrigeración en un 15%.
- La aplicación de **pinturas refractantes** en las fachadas reduciría la absorción de calor en un 10%, mejorando el confort térmico en el interior de los edificios.