Claims Frequency Distribution Models

Chapter 6

Stat 346 - Short-term Actuarial Math

Introduction

- Here we introduce a large class of counting distributions, which are discrete distributions with support consisting of non-negative integers.
- Generally used for modeling number of events, but in an insurance context, the number of claims within a certain period, e.g. one year.
- We call these claims frequency models.
- Let N denote the number of events (or claims). Its probability mass function (pmf), $p_k = \Pr(N=k)$, for $k=0,1,2,\ldots$, gives the probability that exactly k events (or claims) occur.

Some familiar discrete distributions

Some of the most commonly used distributions for number of claims:

- Binomial (with Bernoulli as special case)
- Poisson
- Geometric
- Negative Binomial
- The (a, b, 0) class
- The (a, b, 1) class

Bernoulli random variables

• N is Bernoulli if it takes only one of two possible outcomes:

$$N = \left\{ \begin{array}{ll} 1, & \text{if a claim occurs} \\ 0, & \text{otherwise} \end{array} \right..$$

- q is the standard symbol for the probability of a claim, i.e. $\Pr(N=1)=q$.
- We write $N \sim \mathsf{Bernoulli}(q)$.
- $\bullet \ \operatorname{Mean} \ \mathsf{E}(N) = q \ \operatorname{and} \ \operatorname{variance} \ \mathsf{Var}(N) = q(1-q)$

Binomial random variables

• We write $N \sim {\sf Binomial}(m,q)$ if N has a ${\sf Binomial}$ distribution with pmf:

$$p_k = \Pr(N = k) = \binom{m}{k} q^k (1 - q)^{m-k} = \frac{m!}{k!(m-k)!} q^k (1 - q)^{m-k},$$

for $k = 0, \ldots, m$.

- Binomial r.v. is also the sum of independent Bernoulli's with $N = \sum_{k=1}^m N_k$ where each $N_k \sim \text{Bernoulli(q)}$.
- ullet Mean $\mathsf{E}(N) = mq$ and variance $\mathsf{Var}(N) = mq(1-q)$

Poisson random variables

• $N \sim \mathsf{Poisson}(\lambda)$ if pmf is

$$p_k = P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \text{ for } k = 0, 1, 2, \dots$$

- Mean and variance are equal: $E(N) = Var(N) = \lambda$
- Sums of independent Poissons: If N_1, \ldots, N_n be n independent Poisson variables with parameters $\lambda_1, \ldots, \lambda_n$, then the sum

$$N = N_1 + \dots + N_n$$

has a Poisson distribution with parameter $\lambda = \lambda_1 + \cdots + \lambda_n$.

Negative binomial random variable

• N has a Negative Binomial distribution, written $N \sim \mathsf{NB}(\beta, r)$, if its pmf can be expressed as

$$p_k = \Pr(N = k) = \binom{k + r - 1}{k} \left(\frac{1}{1 + \beta}\right)^r \left(\frac{\beta}{1 + \beta}\right)^k,$$

for k = 0, 1, 2, ... where $r > 0, \beta > 0$.

- Mean: $\mathsf{E}(N) = r\beta$
- Variance: $Var(N) = r\beta(1+\beta)$.
- Clearly, since $\beta > 0$, the variance of the NB exceeds the mean.

Geometric random variable

- The Geometric distribution is a special case of the Negative Binomial with r=1.
- \bullet N is said to be a Geometric r.v. and written as $N \sim \mathsf{Geometric}(p)$ if its pmf is therefore expressed as

$$p_k = \Pr(N = k) = \frac{1}{1+\beta} \left(\frac{\beta}{1+\beta}\right)^k, \quad \text{for } k = 0, 1, 2, \dots.$$

• Mean is $E(N) = \beta$ and variance is $Var(N) = \beta(1 + \beta)$.

Special class of distributions

 The (a, b, 0) class of distributions satisfies the recursion equations of the general form:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}, \quad \text{for} \quad k = 1, 2, \dots.$$

- The three distributions (including Geometric as special case of NB)
 are the only distributions that belong to this class: Binomial, Poisson,
 and Negative Binomial.
- It can be shown that the applicable parameters a and b are:

Distribution	Values of a and b
Binomial(m,q)	$a = -\frac{q}{1-q}, \ b = (m+1)\frac{q}{1-q}$
$Poisson(\lambda)$	$a=0$, $b=\lambda$
NB(eta,r)	$a = \frac{\beta}{1+\beta}$, $b = (r-1)\frac{\beta}{1+\beta}$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Example

Suppose N is a counting distribution satisfying the recursive probabilities:

$$\frac{p_k}{p_{k-1}} = \frac{4}{k} - \frac{1}{3},$$

for
$$k = 1, 2, \dots$$

Identify the distribution of N.

Solution to the Recursive Probability Example

Given recursive probabilities:

$$\frac{p_k}{p_{k-1}} = \frac{4}{k} - \frac{1}{3},$$

for k = 1, 2, ...

• Comparing with the general form of (a, b, 0) class:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}$$

we have $a=-\frac{1}{3}$ and b=4.

 Comparing with the known distributions, only the binomial distribution has a negative a. Set $a = -\frac{1}{3} = -\frac{q}{1-q}$ and $b = 4 = (m+1)\frac{q}{1-q}$

4日 (日本) (日本) (日本) (日本)

SOA question

The distribution of accidents for 84 randomly selected policies is as follows:

Number of Accidents	Number of Policies
0	32
1	26
2	12
3	7
4	4
5	2
6	1

Identify the frequency model that best represents these data.

Analyzing the Accident Data

Given accident data for 84 policies:

<u>-1</u>
1
6
1 6 8 7
7
C
)
(((

 \bullet Analyzing the ratio $\frac{p_k}{p_{k-1}}$ for each k to identify a possible distribution from the (a, b, 0) class.

Truncation and modification at zero

 The (a, b, 1) class of distributions satisfies the recursion equations of the general form:

$$\frac{p_k}{p_{k-1}} = a + \frac{b}{k}, \quad \text{for} \quad k = 2, 3, \dots.$$

- Only difference with the (a,b,0) class is the recursion here begins at p_1 instead of p_0 . The values from k=1 to $k=\infty$ are the same up to a constant of proportionality. For the class to be a distribution, the remaining probability must be set for k=0.
 - zero-truncated distributions: the case when $p_0 = 0$
 - zero-modified distributions: the case when $p_0 > 0$
- The distributions in the second subclass is indeed a mixture of an (a,b,0) and a degenerate distribution. A zero-modified distribution can be viewed as a zero-truncated by setting $p_0=0$.

Chapter 6 (Stat 346)

Expectation and Variance

Zero-Modified and Zero-Truncated Distributions

 For a zero-truncated distribution, the expected value (mean) and variance are given by:

$$\begin{split} \mathsf{E}[X_{\mathsf{trunc}}] &= \frac{\mathsf{E}[X]}{1-p_0}, \\ \mathsf{Var}[X_{\mathsf{trunc}}] &= \frac{\mathsf{Var}[X]}{1-p_0} - \frac{p_0 \cdot [\mathsf{E}[X]]^2}{(1-p_0)^2}, \end{split}$$

where X_{trunc} is the zero-truncated version of the random variable X.

• For a zero-modified distribution, assuming that $X_{\rm mod}$ is the modified variable and p_0' is the modified probability at zero:

$$\begin{split} \mathsf{E}[X_{\mathsf{mod}}] &= (1 - p_0') \cdot \mathsf{E}[X_{\mathsf{trunc}}], \\ \mathsf{Var}[X_{\mathsf{mod}}] &= (1 - p_0') \cdot \mathsf{Var}[X_{\mathsf{trunc}}] + p_0' \cdot (1 - p_0') \cdot [\mathsf{E}[X_{\mathsf{trunc}}]]^2. \end{split}$$

Zero-Modified and Zero-Truncated Distributions

- Zero-Modified Distributions:
 - In zero-modified distributions, the probability at zero, p_0 , is artificially altered.
 - This modification changes the probabilities p_k for $k \geq 1$.
 - The adjusted probabilities for $k \ge 1$ are:

$$p_k' = \frac{(1-p_0')\cdot p_k}{1-p_0} \quad \text{for } k \geq 1,$$

where p_k are the original probabilities, p_0 is the original probability at zero, and p_0' is the modified probability at zero.

- Zero-Truncated Distributions:
 - In a zero-truncated distribution, occurrences at zero are removed (i.e., $p_0'=0$).
 - The probabilities p_k for $k \geq 1$ are scaled up so that the distribution sums to 1.
 - The adjusted probabilities are:

$$p_k' = \frac{p_k}{1 - p_0} \quad \text{for } k \ge 1,$$

The Role of $C = \frac{1-p_0'}{1-p_0}$

Define the constant:

$$C = \frac{1 - p_0'}{1 - p_0}$$

• This constant establishes a proportionality between the probabilities of the zero-modified and zero-truncated distributions:

$$p'_k = C \cdot p_k$$
, for $k \ge 1$.

 Additionally, this proportionality extends to the moments of the distribution:

$$\mathsf{E}[X_{\mathsf{mod}}^k] = C \cdot \mathsf{E}[X^k].$$

 C plays a key role in linking the expectations and variances of zero-modified and zero-truncated distributions.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Zero-Modified Poisson Example $(p'_0 > 0)$

• Consider a Poisson distribution with rate parameter $\lambda = 3$:

$$p_k = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots$$

- Let the original $p_0 = e^{-\lambda} \approx 0.0498$, and modify it to $p_0' = 0.1$.
- Compute *C*:

$$C = \frac{1 - p_0'}{1 - p_0} = \frac{1 - 0.1}{1 - 0.0498} \approx 0.947.$$

Adjusted probabilities:

$$p'_k = C \cdot p_k$$
, for $k \ge 1$.

• Example for k = 1, 2:

$$p_1' = 0.947 \cdot 0.1494 \approx 0.1415, \quad p_2' = 0.947 \cdot 0.224 \approx 0.212.$$

Adjusted expectation:

$$\mathsf{E}[X_m od] = C \cdot \mathsf{E}[X] = 0.947 \cdot 3 \approx 2.841.$$

Variance of the Zero-Modified Poisson Distribution

 To compute the variance of the zero-modified Poisson distribution, we use:

$$\mathsf{Var}[X_\mathsf{mod}] = \mathsf{E}[X_\mathsf{mod}^2] - (\mathsf{E}[X_\mathsf{mod}])^2 \,.$$

• Start by finding $E[X_{mod}^2]$:

$$\mathsf{E}[X^2_{\mathsf{mod}}] = C \cdot \mathsf{E}[X^2],$$

• For a Poisson distribution with $\lambda = 3$:

$$\mathsf{Var}[X] = \lambda = 3, \quad \mathsf{E}[X] = \lambda = 3.$$

Thus:

$$\mathsf{E}[X^2] = 3 + 3^2 = 12.$$

• Compute $E[X_{mod}^2]$:

$$E[X_{\text{mod}}^2] = C \cdot E[X^2] = 0.947 \cdot 12 \approx 11.364.$$

• Finally, compute $Var[X_{mod}]$:

$$Var[X_{mod}] = 11.364 - (2.841)^2 \approx 11.364 - 8.070 = 3.294.$$

Zero-Truncated Poisson Example $(p'_0 = 0)$

• For a zero-truncated Poisson distribution $(p'_0 = 0)$:

$$p'_{k} = \frac{p_{k}}{1 - p_{0}}, \quad \text{for } k \ge 1,$$

$$p_{k} = \frac{\lambda^{k} e^{-\lambda}}{k!}.$$

- Let $\lambda = 3$, so $p_0 = e^{-\lambda} \approx 0.0498$ and $1 p_0 \approx 0.9502$.
- Example for k = 1, 2:

$$p_1' = \frac{p_1}{1 - p_0} = \frac{0.1494}{0.9502} \approx 0.1572, \quad p_2' = \frac{p_2}{1 - p_0} = \frac{0.2240}{0.9502} \approx 0.2357.$$

• Expected value for the zero-truncated Poisson:

$$\mathsf{E}[X_{\mathsf{trunc}}] = \frac{\mathsf{E}[X]}{1 - p_0} = \frac{3}{0.9502} \approx 3.157.$$

4□ > 4團 > 4 ≣ > 4 ≣ > ■ 900

Illustrative example

Consider the zero-modified Geometric distribution with probabilities

$$p_0 = \frac{1}{2}$$
 $p_k = \frac{1}{6} \left(\frac{2}{3}\right)^{k-1}$, for $k = 1, 2, 3, ...$

Derive the mean and the variance of this distribution.