2.5 – Limits at Infinity MATH 2554 – Calculus I Fall 2019

Warm-up Problem: Consider the function $f(x) = -3 + \frac{x^2}{x^3 + 25}$.

Evaluate f(x) at x = 100, 1000, 10000.

What is your conjecture about $\lim_{x\to\infty} f(x)$?

Definition (Limits at Infinity and Horizontal Asymptotes)

If f(x) becomes arbitrarily close to a finite number L for all sufficiently large and positive x, then we write

$$\lim_{x\to\infty}f(x)=L$$

and say the limit of f(x) as x approaches infinity is L.

In this case, the line y = L is a horizontal asymptote of f.

The limit at negative infinity, $\lim_{x\to -\infty} f(x) = M$ is defined analogously. When this limit exists, the line y=M is a horizontal asymptote.

A Limit at Infinity that's also an Infinite Limit

Let n > 0 be a positive integer.

Compute $\lim_{x\to\infty} x^n$ and $\lim_{x\to-\infty} x^n$.

Definition (End behavior)

The behavior of a function as $x \to \pm \infty$ is called the end behavior of a function.

Theorem (The end behavior of powers and polynomials)

Let $n \in \mathbb{N}$ and p be the polynomial

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
 where $a_n \neq 0$.

Then

- 1. $\lim_{x \to \pm \infty} x^n = \infty$ when n is even.
- 2. $\lim_{x \to \infty} x^n = \infty$ and $\lim_{x \to -\infty} x^n = -\infty$ when n is odd.
- 3. $\lim_{x \to \pm \infty} \frac{1}{x^n} = \lim_{x \to \pm \infty} x^{-n} = 0.$
- 4. $\lim_{x \to \pm \infty} p(x) = \lim_{x \to \pm \infty} a_n x^n$ where the limit (which is infinite) depends on $\deg p = n$ and the sign of a_n .

Example What are the end behaviors of $f(x) = -3x^3 + 4x^2 - 1$ as $x \to \pm \infty$.

End behaviors of rational functions. The goal is to understand the pattern of the end behaviors as $x \to \pm \infty$ of the following functions:

1.
$$f(x) = \frac{x+1}{2x^2+3}$$

2.
$$g(x) = \frac{4x^3 - 3x}{2x^3 + 5x^2 + x + 2}$$

3.
$$h(x) = \frac{6x^4 - 1}{4x^3 + 3x^2 + 2x + 6}$$

Theorem (End behavior and asymptotics of rational functions)

Suppose that $f(x) = \frac{p(x)}{q(x)}$ is a rational function where

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_2 x^2 + a_1 x + a_0$$

$$q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_2 x^2 + b_1 x + a_0$$

with $a_m \neq 0$ and $b_n \neq 0$.

- 1. If m < n, then $\lim_{x \to \pm \infty} f(x) = 0$ and y = 0 is a horizontal asymptote.
- 2. If m = n, then $\lim_{x \to \pm \infty} f(x) = \frac{a_m}{b_n}$ and $y = \frac{a_m}{b_n}$ is a horizontal asymptote.
- 3. If m > n, then $\lim_{x \to \pm \infty} f(x) = \infty$ or $-\infty$ and f has no horizontal asymptote.

Special cases of the end behavior of rational functions. As before, let $f(x) = \frac{p(x)}{q(x)}$ is a rational function where

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_2 x^2 + a_1 x + a_0$$

$$q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_2 x^2 + b_1 x + a_0$$

- ▶ Vertical asymptotes. If f is in reduced form (this means p and q share no common factors), then the vertical asymptotes of f occur at the zeros of q.
- ▶ Slant asymptotes. If m = n + 1, then $\lim_{x \to \infty} f(x) = \infty$ or $-\infty$. While f has no horizontal asymptote, f has a slant asymptote.

What is the slant asymptote of
$$h(x) = \frac{6x^4 - 1}{4x^3 + 3x^2 + 2x + 6}$$
?

Algebraic and Transcendental Functions. Find the end behaviors of the following functions:

$$algebraic f(x) = \frac{4x^3}{2x^3 + \sqrt{9x^6 + 15x^4}}$$

- ▶ transcendental $g(x) = e^x$
- ▶ trigonometric $h(x) = \cos x$

Homework Problems: Section 2.5 (pp.100-101): #3-10, 17-36 odds, 37-53 odds, 71-79 odds,