Élément chimique			Famille	Configuration électronique	
24	Cr	Chrome	Métal de transition	[Ar]	$4s^13d^5$
28	Ni	Nickel	Métal de transition	[Ar]	$4s^{1}3d^{9}$ (*)
29	Cu	Cuivre	Métal de transition	[Ar]	$4s^13d^{10}$
41	Nb	Niobium	Métal de transition	[Kr]	$5s^14d^4$
42	Mo	Molybdène	Métal de transition	[Kr]	$5s^14d^5$
44	Ru	Ruthénium	Métal de transition	[Kr]	$5s^14d^7$
45	Rh	Rhodium	Métal de transition	[Kr]	$5s^14d^8$
46	Pd	Palladium	Métal de transition	[Kr]	$4d^{10}$
47	Ag	Argent	Métal de transition	[Kr]	$5s^{1}4d^{10}$
57	La	Lanthane	Lanthanide	[Xe]	$6s^2$ 5 d ¹
58	Ce	Cérium	Lanthanide	[Xe]	$6s^2\mathbf{4f^15d^1}$
64	Gd	Gadolinium	Lanthanide	[Xe]	$6s^2$ 4f 7 5d 1
78	Pt	Platine	Métal de transition		$6s^{1}4f^{1}45d^{9}$
79	Au	Or	Métal de transition	[Xe]	$6s^{1}4f^{14}5d^{10}$
89	Ac	Actinium	Actinide	[Rn]	$7s^2$ 6 d ¹
90	Th	Thorium	Actinide	[Rn]	$7s^2$ 6d ²
91	Pa	Protactinium	Actinide	[Rn]	$7s^2$ 5f ² 6d ¹
92	U	Uranium	Actinide	[Rn]	$7s^2$ 5f ³ 6d ¹
96	Cm	Curium	Actinide	[Rn]	$7s25\mathbf{f}^76\mathbf{d}^1$
103	Lr	Lawrencium	Actinide	[Rn]	$7s^2$ 5 f^{14} 7 p^1

^(*) Le nickel présente deux configurations électroniques :

TAB. 0.1: Distribution des électrons dans les orbitales atomiques par sous-couche électronique

[—] Une configuration régulière [Ar] $4s^23d^8$ présentant le niveau d'énergie le plus bas expérimentalement ;

[–] Une configuration irrégulière [Ar] $4s^13d^9$ présentant le niveau d'énergie moyen le plus bas. C'est cette configuration qui sera utilisée dans les calculs.