IQF - Resolução dos Minitestes

Felipe B. Pinto 61387 - MIEQB

11 de janeiro de 2022

Conteúdo

I Miniteste	2	III Miniteste	9
Questão 1 a)	2	Questão $1 \dots \dots$	9
Questão 2	2	$Questão 5 \dots \dots \dots$	14
Questão 5	2	Questão 6 \dots	16
Questão 7	3	$Questão 7 \dots \dots \dots$	17
Questão 8	3	Questão $10 \dots \dots$	18
Questão 9	3	IV Miniteste	19
II Miniteste	4	Questão $2 \dots \dots$	19
1	4	Questão $3 \dots \dots$	22
Questão 1	4	Questão $4 \dots \dots$	22
Questão 2	5	Questão $5 \dots \dots$	26
Questão 5	6	Questão 6 \dots	27
Questão 6	7	Questão 7 \dots	28
Questão 12	8	Questão 8	29
		Questão 11	30

I Miniteste

Questão 1 a)

Questão 2

$$\begin{split} & A + 2\,\mathrm{B} \longrightarrow \mathrm{C} + \mathrm{D} \\ & = \frac{n_C\,\mathrm{mol_C}}{n_{sys}\,\mathrm{mol_{sys}}} = \frac{\mathrm{mol_C}}{\mathrm{mol_A}}\,\frac{45.4\%\,\mathrm{mol_A}}{\mathrm{mol_A}}\,n_A\,\mathrm{mol_A}\,(n_A\,\mathrm{mol_A} + \\ & + \frac{2\,\mathrm{mol_B}}{\mathrm{mol_A}}\,\frac{(100 - 45.4)\,\%\,\mathrm{mol_A}}{\mathrm{mol_A}}\,n_A\,\mathrm{mol_A} + \frac{\mathrm{mol_C}}{\mathrm{mol_A}}\,\frac{45.4\%\,\mathrm{mol_A}}{\mathrm{mol_A}}\,n_A\,\mathrm{mol_A} + \\ & + \frac{\mathrm{mol_D}}{\mathrm{mol_A}}\,\frac{45.4\%\,\mathrm{mol_A}}{\mathrm{mol_A}}\,n_A\,\mathrm{mol_A} \Big)^{-1} = \\ & = 45.4\%\,\left(1 + 2\,(100 - 45.4)\% + 45.4\% + 45.4\%\right)^{-1}\,\mathrm{mol_C}\,\mathrm{mol_{sys}^{-1}} \cong \\ & \cong 15.13\,\%\,\mathrm{mol_C}\,\mathrm{mol_{sys}^{-1}} \end{split}$$

Questão 5

$$\begin{split} &(T_f - 20.41\,^{\circ}\mathrm{C}) \left(\frac{4.184\,\mathrm{J}}{^{\circ}\mathrm{C}\,\mathrm{g}_{\mathrm{H}_2\mathrm{O}_{(1)}}} \,1034\,\mathrm{g}_{\mathrm{H}_2\mathrm{O}_{(1)}} + \frac{1.75\,\mathrm{kJ}}{^{\circ}\mathrm{C}}\right) = \\ &= \frac{-726\,\mathrm{kJ}}{\mathrm{mol}_{\mathrm{CH}_3\mathrm{OH}}} \,\frac{\mathrm{mol}_{\mathrm{CH}_3\mathrm{OH}}}{32\,\mathrm{g}_{\mathrm{CH}_3\mathrm{OH}}} \,1.740\,\mathrm{g}_{\mathrm{CH}_3\mathrm{OH}} \implies \\ &\implies T_f = 20.41\,^{\circ}\mathrm{C} + \left(\frac{1.75\,\mathrm{kJ}}{^{\circ}\mathrm{C}} + \frac{4.184\,\mathrm{J}}{^{\circ}\mathrm{C}\,\mathrm{g}_{\mathrm{H}_2\mathrm{O}_{(1)}}} \,1034\,\mathrm{g}_{\mathrm{H}_2\mathrm{O}_{(1)}}\right)^{-1} * \\ &* \frac{-726\,\mathrm{kJ}}{\mathrm{mol}_{\mathrm{CH}_3\mathrm{OH}}} \,\frac{\mathrm{mol}_{\mathrm{CH}_3\mathrm{OH}}}{32\,\mathrm{g}_{\mathrm{CH}_3\mathrm{OH}}} \,1.740\,\mathrm{g}_{\mathrm{CH}_3\mathrm{OH}} \cong \\ &\cong 26.91\,^{\circ}\mathrm{C} \end{split}$$

$$= \Delta(H)_1 - 3\ \Delta H_2 = -3920 - 3\,(-566) = -2222\,\mathrm{kJ}$$

Questão 8

$$= \left(8 \left(-393.5\right) + 9 \left(-241.8\right) - \left(-249.9\right) - \left(8 + 9 - 25/2\right) 8.314 * 10^{-3} * 298\right) \frac{\mathrm{kJ}}{\mathrm{mol} \; (\mathrm{C_8H_{18(l)}})} * \frac{\mathrm{mol}_{\mathrm{C_8H_{18(l)}}}}{114 \, \mathrm{g}_{\mathrm{C_8H_{18(l)}}}} 228 \, \mathrm{g}_{\mathrm{C_8H_{18(l)}}} \cong \\ \cong -10.17 \, \mathrm{E}3 \, \mathrm{kJ}$$

Questão 9

$$\begin{split} v\, \mathrm{L_{HCl_{sol.i}}} &= \frac{\mathrm{L_{HCl_{sol.i}}}}{1.189\,\mathrm{kg_{HCl_{sol.i}}}} \, \frac{\mathrm{g_{HCl_{sol.i}}}}{0.38\,\mathrm{g_{HCl}}} \, \frac{36.46\,\mathrm{g_{HCl}}}{\mathrm{mol_{HCl}}} \, \frac{0.5\,\mathrm{mol_{HCl}}}{\mathrm{L_{HCl_{sol.f}}}} \, 250\,\mathrm{mL_{HCl_{sol.f}}} \\ &\cong 10.09\,\mathrm{mL_{HCl_{sol.f}}} \end{split}$$

II Miniteste

1

Questão 1

Temp (°C)	138	140	144
Metanol (bar)	10.43	10.97	12.12
Etanol (bar)	7.36	7.78	8.68

(i)

$$\begin{split} x \, \%_{\mathrm{C_2H_5OH_{(l)}}} &= P_{\mathrm{C_2H_5OH_{(g)}}} / P_{\mathrm{C_2H_5OH_{(g)}}}^* \wedge \\ \wedge \, P_{\mathrm{C_2H_5OH_{(g)}}} &= P_{tot} - (1 - X_{\mathrm{C_2H_5OH_{(l)}}}) \, P_{\mathrm{CH_3OH_{(g)}}}^* \implies \Longrightarrow \\ x \, \%_{\mathrm{C_2H_5OH_{(l)}}} &= \frac{P_{tot} - P_{\mathrm{CH_3OH_{(g)}}}^*}{P_{\mathrm{C_2H_5OH_{(g)}}}^* - P_{\mathrm{CH_3OH_{(g)}}}^*} = \frac{10 - 10.43}{7.36 - 10.43} \cong 14.01 \, \%_{\mathrm{C_2H_5OH_{(l)}}} \end{split}$$

(ii)

$$\begin{split} &y\,\%_{\text{CH}_3\text{OH}_{(\text{g})}} = P_{\text{CH}_3\text{OH}_{(\text{g})}}/P_{tot} \wedge \\ &\wedge P_{\text{CH}_3\text{OH}_{(\text{g})}} = (1 - X_{\text{C}_2\text{H}_5\text{OH}_{(\text{l})}})\,P_{\text{CH}_3\text{OH}_{(\text{g})}}^* \implies \\ &\implies y\,\%_{\text{CH}_3\text{OH}_{(\text{g})}} = (1 - X_{\text{C}_2\text{H}_5\text{OH}_{(\text{l})}})\,P_{\text{CH}_3\text{OH}_{(\text{g})}}^*/P_{tot} \cong \\ &\cong (1 - 140.07\,\text{E} - 3)\,10.47/10 \cong 90.04\,\%_{\text{CH}_3\text{OH}_{(\text{g})}} \end{split}$$

$$\begin{split} &y\%(\text{g/g})\;(\text{C}_2\text{H}_5\text{OH}_{(\text{g})}) = m_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}}/m_{tot_{(\text{g})}}\wedge\\ &\wedge m_{tot_{(\text{g})}} = m_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} + m_{\text{H}_2\text{O}_{(\text{g})}}\wedge\\ &\wedge m_{\text{H}_2\text{O}} = \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{\text{mol}_{\text{H}_2\text{O}}} n_{\text{H}_2\text{O}} \,\text{mol}_{\text{H}_2\text{O}}\wedge\\ &\wedge m_{\text{C}_2\text{H}_5\text{OH}} = \frac{46.0\,\text{g}_{\text{C}_2\text{H}_5\text{OH}}}{\text{mol}_{\text{C}_2\text{H}_5\text{OH}}} \, n_{\text{C}_2\text{H}_5\text{OH}} \, \text{mol}_{\text{C}_2\text{H}_5\text{OH}}\wedge\\ &\wedge m_{\text{C}_2\text{H}_5\text{OH}} = \frac{46.0\,\text{g}_{\text{C}_2\text{H}_5\text{OH}}}{\text{mol}_{\text{C}_2\text{H}_5\text{OH}}} \, n_{\text{C}_2\text{H}_5\text{OH}} \, \text{mol}_{\text{C}_2\text{H}_5\text{OH}}\wedge\\ &\wedge N_{\text{C}_2\text{H}_5\text{OH}} = Y_{\text{C}_2\text{H}_5\text{OH}} \, N_{tot}\wedge\\ &\wedge N_{\text{H}_2\text{O}} = (1 - Y_{\text{C}_2\text{H}_5\text{OH}}) \, N_{tot}\wedge\\ &\wedge Y_{\text{C}_2\text{H}_5\text{OH}} = \frac{X_{\text{C}_2\text{H}_5\text{OH}} \, P_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}}^2}{P_{tot}} \\ &\wedge P_{tot} = X_{\text{C}_3\text{H}_5\text{OH}} \, P_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}}^2 \\ &\wedge P_{tot} = X_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} \, N_{tot}\wedge\\ &\wedge N_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} + (1 - X_{\text{C}_2\text{H}_5\text{OH}}) \, P_{\text{H}_2\text{O}_{(\text{g})}}^*\wedge\\ &\wedge N_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} = [\text{C}_2\text{H}_5\text{OH}_{(\text{g})}] \, \frac{\text{mol}_{\text{C}_3\text{H}_5\text{OH}}}{46.0\,\text{g}_{\text{C}_2\text{H}_5\text{OH}}} \\ &\wedge N_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} = [\text{C}_2\text{H}_5\text{OH}_{(\text{g})}] \, \frac{\text{mol}_{\text{C}_2\text{H}_5\text{OH}}}{46.0\,\text{g}_{\text{C}_2\text{H}_5\text{OH}}} \\ &\wedge N_{\text{H}_2\text{O}_{(\text{g})}} = (1 - [\text{C}_2\text{H}_5\text{OH}_{(\text{g})}] \, \frac{\text{mol}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} \\ &\rightarrow y \, \%(\text{g/g}) \, (\text{C}_2\text{H}_5\text{OH}_{(\text{g})}) = \\ &= \left(1 + \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{46.0\,\text{g}_{\text{C}_2\text{H}_5\text{OH}_{(\text{g})}} \, \frac{\text{mol}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}}}{\frac{\text{mol}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} \, \frac{\text{mol}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} - \frac{\text{P}_{\text{H}_2\text{O}_{(\text{g})}}}{18.0\,\text{g}_{\text{H}_2\text{O}}}} \\ &= \left(1 + \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{\frac{\text{mol}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} + \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} \, \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} - \frac{18.0\,\text{g}_{\text{H}_2\text{O}}}{18.0\,\text{g}_{\text{H}_2\text{O}}} \, \frac{1}{18.0\,\text{g}_{\text{H}_2\text{O}}} \, \frac{1}{18.0\,\text{g}_{\text{H}_2\text{O}}} \, \frac{1}{18.0\,\text{g}_{\text{H}_2\text{O}}}$$

$$\begin{split} & m\left({\rm g/mol}\right)\,({\rm X}) = m_2\,{\rm g_X}/n_2\,{\rm mol_X} \wedge \\ & \wedge n_2\,{\rm mol_X} = \Delta T_{2\,f}\,m_2\,{\rm g_{H_2O}}/K_b \wedge \\ & \wedge k_b = \Delta T_{1\,f}\,m_1\,{\rm g_{H_2O}}/n_1\,{\rm mol_X} \implies \\ & \Longrightarrow m\left({\rm g/mol}\right)\,({\rm X}) = \frac{50.012\,{\rm g_X}}{\frac{\Delta T_{2\,f}\,m_2\,{\rm g_{H_2O}}}{\Delta T_{1\,f}\,m_1\,{\rm g_{H_2O}}/n_1\,{\rm mol_X}}} = \frac{50.012}{\frac{(-5.14)\,120}{(-0.46)\,500/0.1251}}\,({\rm g/mol})\,\,({\rm X}) \cong \\ & \cong 149.07\,({\rm g/mol})\,\,({\rm X}) \end{split}$$

$$A_{(s)} + B_{(g)} \rightleftharpoons C_{(s)} + 2D_{(g)}$$

	$\frac{\Delta H_{f298\mathrm{K}}^{\circ}}{\mathrm{kJmol}^{-1}}$	$\frac{\Delta S_{f298\mathrm{K}}^{\circ}}{\mathrm{kJ}\mathrm{mol}^{-1}}$
$\overline{\mathrm{A_{(s)}}}$	0	18.3
$\mathrm{B}_{(\mathrm{g})}$	-380	397
$C_{(s)}$	0	38.3
$D_{(g)}$	-192	200

(i)

$$\begin{split} K_c &= \exp\left(-\Delta H_r^\circ/RT + \Delta S_r^\circ/R\right) = \\ &= \exp\left(-\frac{(2\left(-192\right) - \left(-380\right))}{8.31\left(-20 + 273\right)} + \frac{(38.3 + 2\left(200\right) - \left(18.3397\right))}{8.31}\right) \cong \\ &\cong 15.93 \end{split}$$

(ii)

$$y_{B} \text{ (mol/g) (B)} = P_{B}/P_{tot} \land$$

$$\land P_{tot} = P_{C} + P_{B} \land$$

$$\land P_{B} = 15 - x \land$$

$$\land P_{C} = 2x \land$$

$$\land (2x)^{2}/(15 - x) = K_{p} \implies$$

$$\Longrightarrow$$

III Miniteste

Questão 1

Titulou-se $12\,\mathrm{mL}$ de uma solução de $0.09\,\mathrm{M}$ de ibuprofeno ((CH₃)₂CHC₆H₅CH(CH₃)COOH, $K_a=3.72\,\mathrm{E}-5$) (princípio activo anti-inflamatório) com uma solução $0.15\,\mathrm{M}$ de NaOH, a $25\,^{\circ}\mathrm{C}$.

1. Titulado

2. Titulante

- 3. Solução final
- (i) O pH da solução de ibuprofeno antes de se iniciar a titulação é _____

$$\begin{split} &[\mathrm{H}_{3}\mathrm{O}^{+}_{(\mathrm{aq})1}] = x \wedge \\ & \wedge \frac{x^{2}}{[\mathrm{H}\mathrm{A}_{(\mathrm{aq})1}]_{\mathrm{i}} - x} = K_{a} \Longrightarrow \\ & \Rightarrow p\mathrm{H} = -\log(x) \wedge \\ & \Rightarrow \wedge x^{2} + K_{a} \, x - K_{a} \left[\mathrm{H}\mathrm{A}_{(\mathrm{aq})1} \right]_{i} = 0 \Longrightarrow \\ & \Rightarrow p\mathrm{H} = -\log \left(\frac{-K_{a} \pm \sqrt{K_{a}^{2} - 4 \left(-K_{a} \left[\mathrm{H}\mathrm{A}_{(\mathrm{aq})1} \right]_{i} \right)}}{2} \right) = \\ & = -\log \left(\frac{-3.72 \; \mathrm{E} - 5 \pm \sqrt{(3.72 \; \mathrm{E} - 5)^{2} - 4 \left(-3.72 \; \mathrm{E} - 5 * 0.09 \right)}}{2} \right) \cong \\ & \cong 2.74 \end{split}$$

(ii) Para que o pH da solução seja igual a 4.43 temos que adicionar ____mL de solução de NaOH $_{\rm (aq)}$.

$$\begin{split} pKa &= -\log(K_a) = 4.43 = pH \land \\ \land K_a \, [\text{HA}] &= [\text{A}^-][\text{H}_3\text{O}^+] \\ &\Longrightarrow Vol_2 = N_{\text{NaOH}_{(\text{aq})2}}/2 \, [\text{NaOH}_{(\text{aq})2}] = [\text{HA}]_{t0} \, Vol_1/2 \, [\text{NaOH}_{(\text{aq})2}] = \\ &= \frac{0.09 * 0.120}{2 * 0.15} = 36.00 \, \text{mL}_{\text{NaOH}_{(\text{aq})2}} \end{split}$$

(iii) O pH da solução após a adição de 4.0 mL da solução de NaOH é _____

	HA +	OH⁻ ⇌	A^- +	${ m H_2O}$
t0	$[\mathrm{HA}]_{t0}$	$\left[\mathrm{OH}^{-} \right]_{t0}$	0	-
t1	$[\mathrm{HA}]_{t1}^{\circ}$	0	$\left[\mathrm{OH}^{-}\right] _{t0}$	_
	HA +	H ₂ O <i>⇌</i>	A^- +	$\mathrm{H_{3}O^{+}}$
t2	$[\mathrm{HA}]_{t1}$	_	$\left[\mathrm{OH}^{-} \right]_{t0}$	$\left[\mathrm{H_{3}O^{+}}\right]_{t2}$

Concentrações(M) para solução final

$$\begin{split} pH &= -\log \left(K_a \frac{[\text{HA}]_{t0} - [\text{OH}^-]_{t0}}{[\text{OH}^-]_{t0}} \right) \land \\ \land [\text{HA}]_{t0} &= [\text{HA}]_1 * Vol_1 / Vol_3 \land [\text{OH}^-]_{t0} = [\text{OH}^-]_2 * Vol_2 / Vol_3 \implies \\ \implies pH &= -\log \left(K_a \left(\frac{[\text{HA}]_1 * Vol_1 / Vol_3}{[\text{OH}^-]_2 * Vol_2 / Vol_3} - 1 \right) \right) = \\ &= -\log \left(3.72 \text{ E} - 5 \left(\frac{0.09 * 0.012}{0.15 * 0.004} - 1 \right) \right) \cong 4.53 \end{split}$$

(iv) O pH da solução após a adição de 9.0 mL da solução de NaOH é ____

	HA +	OH⁻ ⇌	A^- +	$\mathrm{H_{2}O}$
$\overline{t0}$	$[\mathrm{HA}]_{t0}$	$\left[\mathrm{OH}^{-}\right] _{t0}$	0	_
t1	0		$\left[\mathrm{HA}\right]_{t0}$	

Concentrações(M) para solução final

$$\begin{split} pH &= 14 + \log \left(\left[\text{OH}^- \right]_{t1} \right) = \\ &= 14 + \log \left(\left[\text{OH}^- \right]_{t0} - \left[\text{HA} \right]_{t0} \right) = \\ &= 14 + \log \left(\left(\left[\text{OH}^- \right]_2 Vol_2 / Vol_3 \right) - \left(\left[\text{HA} \right]_1 Vol_1 / Vol_3 \right) \right) = \\ &= 14 + \log \left(\frac{\left[\text{OH}^- \right]_2 Vol_2 - \left[\text{HA} \right]_1 Vol_1}{Vol_1 + Vol_2} \right) = \\ &= 14 + \log \left(\frac{0.15 * 0.0090 - 0.009 * 0.012}{0.012 + 0.0090} \right) \cong \\ &\cong 12.77 \end{split}$$

(v) No ponto de equivalência o pH da solução é ____

	HA +	OH⁻ ⇌	A^- +	H ₂ O
t0	$[\mathrm{HA}]_{t0}$	$[\mathrm{HA}]_{t0}$	0	
t1	0	0	$[\mathrm{HA}]_{t0}$	
t2	$\left[\mathrm{HA}\right]_{t2}$	$\left[\mathrm{HA}\right]_{t2}$	$\left[\mathrm{A}^{-} ight]_{t2}$	

Concentrações(M) para solução final

$$\begin{split} pH &= 14 + \log \left(\left[\text{HA} \right]_{t2} \right) \land \\ \land \left[\text{HA} \right]_{t2} &= \left[\text{HA} \right]_{t0} - \left[\text{A}^{-} \right]_{t2} \land \\ \land \frac{\left[\text{A}^{-} \right]_{t2}}{\left[\text{HA} \right]_{t2}^{2}} &= K_{a} \implies \\ \implies pH &= 14 + \log \left(\left[\text{HA} \right]_{t2} \right) \land \\ \land \frac{\left[\text{HA} \right]_{t0} - \left[\text{HA} \right]_{t2}}{\left[\text{HA} \right]_{t2}^{2}} &= K_{a} \implies \\ \implies \left[\text{HA} \right]_{t2}^{2} &= \frac{-2 \pm \sqrt{1 - 4 * K_{a} * \left(-\left[\text{HA} \right]_{t0} \right)}}{2 K_{a}} \land \\ \land pH &= 14 + \log \left(\frac{-1 \pm \sqrt{1 - 4 * K_{a} * \left(-\left[\text{HA} \right]_{t0} \right)}}{2 K_{a}} \right) = \\ &= 14 + \log \left(\frac{-1 \pm \sqrt{1 - 4 * 3.72 \; \text{E} - 5 * \left(-0.09 \right)}}{2 * 3.72 \; \text{E} - 5} \right) \cong \\ \cong 12.95 \end{split}$$

Responda às seguintes questões com base nas constantes do produto de solubilidade e nos dados de potencial de redução padrão fornecidos

•
$$K_{ps}(CuCl) = 1.0 E - 6$$

•
$$E^{\circ}(Cu^{+}_{(aq)}/Cu_{(s)}) = 0.36 V$$

•
$$E^{\circ}(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0.77 \,\text{V}$$

Considere a pilha constituída pelo acoplamento da semi-célula

$$\begin{split} \mathrm{Fe^{3+}(1.0~E-5)\,M,\,Fe^{2+}(1.0~E-3)\,M} &\left| \mathrm{Pt_{(s)}~com~Cu_{(s)}/CuCl_{sat}} \right. \\ &\left. \mathrm{Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}} \right. \\ &\left. \mathrm{Cu_{(s)}} \rightleftharpoons \mathrm{Cu^{+}_{(aq)} + e^{-}} \right. \\ &\left. \mathrm{Fe^{3+} + Cu_{(s)}} \rightleftharpoons \mathrm{Fe^{2+} + Cu^{+}_{(aq)}} \right. \end{split}$$

(i) A 25 °C o valor do potencial padrão de redução da pilha assim formada será $E^\circ = ___V$

$$E^{\circ} = E^{\circ}_{\text{catedo}} - E^{\circ}_{\text{anodo}} = (0.77 - 0.36) \,\text{V} = 0.41 \,\text{V}$$

(ii) Calcule o quociente da reação que ocorre na pilha, $Q = \underline{\hspace{1cm}}$

$$Q = \frac{[\text{Fe}^{2+}] [\text{Cu}^+]}{[\text{Fe}^{3+}]} \land \\ \land [\text{Cu}^+] [\text{CI}^-] = [\text{Cu}^+]^2 = K_{ps} \implies \\ \implies Q = \frac{[\text{Fe}^{2+}] \sqrt{K_{ps}}}{[\text{Fe}^{3+}]} = \\ = \frac{1.0 \text{ E} - 3\sqrt{1.0 \text{ E} - 6}}{1.0 \text{ E} - 5} = \\ = 0.1$$

(iii) A pilha apresenta uma diferença de potencial $E = \underline{\hspace{1cm}}$

$$\begin{split} E &= E^{\circ} - 0.0257 \, \ln(Q)/n = \\ &= 0.41 - 0.0257 \, \ln(0.1) \, \text{V}/1 \cong \\ &\cong 469.18 \, \text{E} - 3 \, \text{V} \end{split}$$

(iv) A constante de equilíbrio da reação que ocorre na pilha é $K = \underline{\hspace{1cm}}$

$$0.0257 \ln K/n = E^{\circ} \implies$$

$$\implies K = \exp\left(\frac{n E^{\circ}}{0.0257}\right) =$$

$$= \exp\left(\frac{1 * 0.41}{0.0257}\right) =$$

$$= 2.72$$

Considere agora uma nova pilha onde se utilizou uma solução com $[Cu^+]$ = 0.01 M ao invés da solução saturada de CuCl no elétrodo de cobre, mantendo todas as outras condições constantes.

(v) A nova pilha assim formada tem uma força eletromotriz de $E = \underline{\hspace{1cm}} V$

$$\begin{split} E &= E^{\circ} - 0.0257 \, \ln(Q_2)/n \wedge \\ &\wedge Q_2 = \frac{\left[\text{Fe}^{2+} \right] \left[\text{Cu}^+ \right]}{\left[\text{Fe}^{3+} \right]} \implies \\ &\implies E = E^{\circ} - 0.0257 \, \ln\left(\frac{\left[\text{Fe}^{2+} \right] \left[\text{Cu}^+ \right]}{\left[\text{Fe}^{3+} \right]} \right)/n = \\ &= 0.41 \, \text{V} - 0.0257 \, \ln\left(\frac{1.0 \, \text{E} - 2 * 0.01}{1.0 \, \text{E} - 5} \right)/1 \cong \\ &\cong 350.82 \, \text{E} - 3 \, \text{V} \end{split}$$

Questão 6

Para preparar 250 mL de uma solução de ácido nítrico 0.39 M, partindo de uma solução concentrada do ácido nítrico (70%(g/g)) e densidade = $1.420 \, \mathrm{kg} \, \mathrm{L}^{-1}$) que volume de solução de HNO₃ concentrada necessito?

$$\begin{split} Vol_{\rm HNO_3} &= \frac{\rm L_{\rm HNO_{3(aq)1}}}{1.420\,{\rm kg_{\rm HNO_{3(aq)1}}}} \, \frac{\rm g_{\rm HNO_{3(aq)1}}}{0.7\,{\rm g_{\rm HNO_3}}} \, \frac{63.01\,{\rm g_{\rm HNO_3}}}{\rm mol_{\rm HNO_3}} \, \frac{0.39\,{\rm mol_{\rm HNO3}}}{\rm L_{\rm HNO_{3(aq)2}}} \, * \\ &* \, 250\,{\rm mL_{\rm HNO_{3(aq)2}}} \cong 6.181\,{\rm mL_{\rm HNO_{3(aq)1}}} \end{split}$$

Qual a diferença de potencial de uma pilha constituida por um elétrodo de prata e um elétrodo de estanho mergulhados respectivamente numa solução $9.09 \ \mathrm{E} - 2 \ \mathrm{M} \ \mathrm{em} \ \mathrm{Ag}^+$ e numa solução $3.87 \ \mathrm{E} - 2 \ \mathrm{M} \ \mathrm{em} \ \mathrm{Sn}^{2+}$, a $25 \ ^{\circ}\mathrm{C}$?

•
$$E^{\circ}(Ag^{+}/Ag) = 0.800 \text{ V}$$

•
$$E^{\circ}(\mathrm{Sn}^{2+}/\mathrm{Sn}) = -0.136\,\mathrm{V}$$

$$2 \operatorname{Ag^+_{(aq)}} + 2 \operatorname{e^-} \Longrightarrow 2 \operatorname{Ag_{(s)}}$$

 $\operatorname{Sn_{(s)}} \Longrightarrow \operatorname{Sn^{2+}_{(aq)}} + 2 \operatorname{e^-}$

$$\begin{split} E &= E^{\circ} - 0.0257 \, \ln(Q)/n = \\ &= (0.800 - (-0.0136)) \, \mathrm{V} - 0.0257 \, \ln\left(\frac{3.87 \, \mathrm{E} - 2}{(9.09 \, \mathrm{E} - 2)^2}\right) \, \mathrm{V}/2 \cong \\ &\cong 824.57 \, \mathrm{E} - 3 \, \mathrm{V} \end{split}$$

Qual a concentração de amónia aquosa (NH_3) em mol dm^{-3} (M) necessária para iniciar a precipitação de $Fe(OH)_2$ de uma solução 0.0025 M em $FeCl_2$?

•
$$K_h(NH_3) = 1.8 E - 5$$

•
$$K_{ps}(\text{Fe(OH)}_2) = 1.6 \text{ E} - 14$$

	$NH_{3(aq)}$ +	$H_2O_{(l)} \iff$	$NH_{4}^{+}_{(aq)} +$	$\mathrm{OH}^{\mathrm{(aq)}}$
t0	$\left[\mathrm{NH_3}\right]_{t0}$		0	0
t1	$\left[\mathrm{NH_3}\right]_{t1}^{t}$		$[\mathrm{NH_4}^+]_{t1}$	$\left[\mathrm{OH}^{-}\right] _{t1}$
	Fe(OH)	2(s) ====	$\mathrm{Fe}^{2+}_{(\mathrm{aq})} +$	$2\mathrm{OH^{(aq)}}$
t1	_		$\left[\mathrm{Fe}^{2+}\right]_{t1}$	$\left[\mathrm{OH}^{-}\right] _{t1}$

$$\begin{split} & \left[\text{NH}_{3} \right]_{t0} = \left[\text{NH}_{3} \right]_{t1} + \left[\text{OH}^{-} \right]_{t1} \land \\ & \wedge \frac{\left[\text{OH}^{-} \right]_{t1}^{2}}{\left[\text{NH}_{3} \right]_{t1}} = K_{b} \land \\ & \wedge \left[\text{Fe}^{2+} \right]_{t1} \left[\text{OH}^{-} \right]_{t1}^{2} = K_{ps} \implies \\ & \Longrightarrow \left[\text{NH}_{3} \right]_{t0} = \frac{\left| K_{ps} / \left[\text{Fe}^{2+} \right]_{t1} \right|}{K_{b}} + \sqrt{K_{ps} / \left[\text{Fe}^{2+} \right]_{t1}} = \\ & = \frac{\left| 1.6 \text{ E} - 14 / 0.0025 \right|}{1.8 \text{ E} - 5} + \sqrt{1.6 \text{ E} - 14 / 0.0025} \cong \\ & \cong 2.89 \text{ E} - 6 \text{ M} \end{split}$$

IV Miniteste

Questão 2

Responda as seguintes questões com base nas constantes do produto de solubilidade e nos dados de potencial de redução padrão fornecidos

•
$$E^{\circ}(Ag^{+}/Ag) = +0.80 \text{ V}$$

•
$$K_{ps}(AgCl) = 1.6 E - 10$$

•
$$E^{\circ}(Cu^{+}/Cu) = +0.34 \,\mathrm{V}$$

Considere a pilha constituida pela acoplamento da seim-célula:

$$Cu_{(s)}|Cu^{+}$$
 (1.0 E -2 M) com $AgCl_{(sat)}|Ag_{(s)}$

(i)

A 25 °C o valor do potencial padrão de reduçã da pilha assim formada será $E^{\circ} =$ V

$$\Delta E^{\circ} = E^{\circ} (Ag^{+}/Ag) - E^{\circ} (Cu^{+}/Cu) = (0.80 - 0.34) V = 0.44 V$$

(ii)

Calcule o quociente da reação que ocorre na pilha, $Q = \underline{\hspace{1cm}}$

$$\begin{aligned} Q &= [\mathrm{Cu}^+]/[\mathrm{Ag}^+] \wedge \\ \wedge & [\mathrm{Ag}^+][\mathrm{Cl}^-] = K_{ps}(\mathrm{AgCl}) \wedge \\ \wedge & [\mathrm{Cl}^-] = [\mathrm{Ag}^+] \end{aligned} \Longrightarrow \\ \Rightarrow Q &= \frac{[\mathrm{Cu}^+]}{\sqrt{K_{ps}(\mathrm{AgCl})}} = \frac{1.0 \; \mathrm{E} - 2}{\sqrt{1.6 \; \mathrm{E} - 10}} \cong 790.57$$

(iii)

A pilha apresenta uma diferença de potencial $E = \underline{\hspace{1cm}} V$

$$E = E^{\circ} - \frac{R\,T}{N\,\mathcal{F}}\,\ln(Q) = 0.44 - \frac{8.31*(25+273.15)}{1*9.65\,\mathrm{E4}}\,\ln(7.91\,\mathrm{E2}) \cong 2.69\,\mathrm{E} - 1\,\mathrm{V}$$

(iv)

A constante de equilíbrio da reação que ocorre na pilha é K =

$$K = \exp\left(N\mathcal{F}\,E^{\circ}/R\,T\right) = \exp\left(1*96.49\,\mathrm{E}3*0.44/8.31*(25+273.15)\right) \cong 27.39\,\mathrm{E}6$$

Considere agora uma nova pilha onde se utilizou uma solução com $[\mathrm{Ag}^+]=1~\mathrm{E}-10~\mathrm{M}$ ao invés da solução saturada de AgCl no elétodo de prata, mantendo todas as outras condições constantes.

(v)

A nova pilha assim formada tem uma força eletromotriz de E= _____ V

$$\begin{split} E &= E^{\circ} - \frac{RT}{N\mathcal{F}} \ln(Q) \wedge \\ \wedge &\quad Q = [\mathrm{Ag^{+}}]/[\mathrm{Cu^{+}}] \end{split} \Longrightarrow \\ &\implies E = E^{\circ} - \frac{RT}{N\mathcal{F}} \ln\left(\frac{[\mathrm{Ag^{+}}]}{[\mathrm{Cu^{+}}]}\right) = \\ &= -0.44 - \frac{8.31 * 298}{1 * 96.49 \, \mathrm{E3}} \ln\left(\frac{1.0 \, \mathrm{E} - 10}{1.0 \, \mathrm{E} - 2}\right) \cong 33.27 \, \mathrm{E} - 3 \, \mathrm{V} \end{split}$$

(vi)

No cátodo desta nova pilha ocorre a seguinte semi-reação de redução:

a) Cu⁺/Cu

b) Ag^+/Ag

 $\mathrm{Cu}^+/\mathrm{Cu}$

(vii)

Enquanto no ânodo a semi-reação de oxidação é:

a) Cu/Cu⁺

b) Ag/Ag⁺

 Ag/Ag^{+}

A constante cinética de hidrólise do etanoato de metilo a 35 °C é 1.82 vezes maior que a 25 °C, enquanto que para a hidrólise da sacarose essa relação é de 4.13. Qual a relação entre as energias de ativação destas duas reações?

Selecione uma opção de resposta:

A energia de ativação para a hidrólize do etanoato de metile é _____vezes a energia de ativação para a hidrólise da sacarose.

$$\begin{split} k &= A \, \exp \left(\frac{E_a}{R \, T} \right) \implies E_a = \frac{R \, \mathrm{K} \, \ln \frac{k_{35 \, ^{\circ} \mathrm{C}}}{k_{25 \, ^{\circ} \mathrm{C}}}}{(35 + 273.15)^{-1} - (25 + 273.15)^{-1}} \implies \\ &\implies \frac{E_a (\mathrm{etanoato} \, \mathrm{de} \, \mathrm{metilo})}{E_a (\mathrm{sacarose})} = \frac{\frac{R \, \mathrm{K} \, \ln \frac{k_{35 \, ^{\circ} \mathrm{C}}}{k_{25 \, ^{\circ} \mathrm{C}}}}{(35 + 273.15)^{-1} - (25 + 273.15)^{-1}}}{R \, \mathrm{K} \, \ln \frac{k_{35 \, ^{\circ} \mathrm{C}}}{k_{25 \, ^{\circ} \mathrm{C}}}}{(35 + 273.15)^{-1} - (25 + 273.15)^{-1}} = \\ &= \frac{\ln (1.82)}{\ln (4.13)} \cong 0.42 \end{split}$$

Questão 4

Os produtos de solubilidade para uma série de iodetos são os seguintes:

•
$$k_{sp}(TII) = 6.5 E - 8$$

•
$$k_{sp}(PbI_2) = 7.1 E - 9$$

•
$$k_{sp}(AgI) = 8.3 E - 17$$

•
$$k_{sp}(BiI_3) = 8.1 E - 19$$

Quais das seguintes afirmações em relação à ordem de solubilidade estão corretas? Selecione uma ou mais opções de resposta:

- A. Em água: $PbI_2 > TII > AgI > BiI_3$
- B. Numa solução 0.1 M do cation: $PbI_2 > BiI_3 > TII > AgI$
- C. Numa solução $0.1\,\mathrm{M}$ em NaI: $\mathrm{PbI}_2 > \mathrm{BiI}_3 > \mathrm{AgI} > \mathrm{TII}$
- D. O AgI é o sal mais insolúvel da série em duas das condições.
- (i) Em àgua

$$\begin{split} & \left[\mathbf{X} \right]_1 \left[\mathbf{I} \right]_1^n = k_{sp}(\mathbf{X} \mathbf{I_n}) \, \wedge \\ & \wedge \quad \left[\mathbf{X} \right]_1 = x \, \wedge \\ & \wedge \quad \left[\mathbf{I} \right]_1 = n \, x \end{split} \\ & \Rightarrow \begin{cases} x([\mathrm{PbI}_2]) &= \sqrt[3]{7.1 \; \mathrm{E} - 9/2^2} &\cong 1.21 \, \mathrm{E} - 3 \, \wedge \\ & \wedge \quad x([\mathrm{TII}]) &= \sqrt[2]{6.5 \; \mathrm{E} - 8/1^1} &\cong 2.55 \, \mathrm{E} - 4 \, \wedge \\ & \wedge \quad x([\mathrm{AgI}]) &= \sqrt[2]{8.3 \; \mathrm{E} - 17/1^1} &\cong 9.11 \, \mathrm{E} - 9 \, \wedge \\ & \wedge \quad x([\mathrm{BiI}_3]) &= \sqrt[4]{8.1 \; \mathrm{E} - 19/3^3} &\cong 1.32 \, \mathrm{E} - 5 \end{split}$$

(ii) Numa solução 0.1 M do cation

$$\begin{split} & \left[\mathbf{X} \right]_{1} \left[\mathbf{I} \right]_{1}^{n} = k_{sp}(\mathbf{X}\mathbf{I}_{\mathbf{n}}) \, \wedge \\ & \wedge \quad \left[\mathbf{X} \right]_{1} = x + 0.1 \cong 0.1 : k_{sp}(\mathbf{X}\mathbf{I}_{\mathbf{n}}) \leq 1 \, \, \mathbf{E} - 3 \, \wedge \\ & \wedge \quad \left[\mathbf{I} \right]_{1} = n \, x \end{split} \\ & \Longrightarrow \quad x(\mathbf{X}\mathbf{I}_{\mathbf{n}}) \cong \sqrt[n]{k_{sp}(\mathbf{X}\mathbf{I}_{\mathbf{n}})/0.1/n} : k_{sp}(\mathbf{X}\mathbf{I}_{\mathbf{n}}) \leq 1 \, \, \mathbf{E} - 3 \, \Longrightarrow \\ & \Longrightarrow \quad \left\{ \begin{array}{c} x([\mathbf{Pb}\mathbf{I}_{2}]) &= \sqrt[3]{7.1 \, \, \mathbf{E} - 9/0.1/2} \, \, \cong 2.07 \, \mathbf{E} - 3 \, \wedge \\ & \wedge \quad x([\mathbf{TII}]) &= \sqrt[2]{6.5 \, \, \mathbf{E} - 8/0.1/1} \, \, \cong 8.06 \, \mathbf{E} - 4 \, \wedge \\ & \wedge \quad x([\mathbf{Ag}\mathbf{I}]) &= \sqrt[2]{8.3 \, \, \mathbf{E} - 17/0.1/1} \, \, \cong 2.88 \, \mathbf{E} - 8 \, \wedge \\ & \wedge \quad x([\mathbf{Bi}\mathbf{I}_{3}]) &= \sqrt[4]{8.1 \, \, \mathbf{E} - 19/0.1/3} \, \, \cong 1.78 \, \mathbf{E} - 5 \end{split} \right.$$

(iii) Numa solução 0.1 M em NaI

$$\begin{aligned} & \left[\mathbf{X} \right] \left[\mathbf{I} \right]^n = k_{sp}(\mathbf{X} \mathbf{I}_{\mathbf{n}}) \land \\ & \wedge & \left[\mathbf{X} \right]_1 = x \land \\ & \wedge & \left[\mathbf{I} \right]_1 = 0.1 + x \cong 0.1 : k_{sp}(\mathbf{X} \mathbf{I}_{\mathbf{n}}) \leq 1 \; \mathbf{E} - 3 \end{aligned} \end{aligned} \Longrightarrow \\ & \Rightarrow x(\mathbf{X} \mathbf{I}_{\mathbf{n}}) \cong k_{sp}(\mathbf{X} \mathbf{I}_{\mathbf{n}}) / 0.1^n \; \Longrightarrow \\ & \Rightarrow \begin{cases} x([\mathrm{Pb} \mathbf{I}_2]) &= 7.1 \; \mathbf{E} - 9 / 0.1^2 \; \cong 7.10 \; \mathbf{E} - 7 \land \\ & \wedge \; x([\mathrm{TII}]) &= 6.5 \; \mathbf{E} - 8 / 0.1^1 \; \cong 6.50 \; \mathbf{E} - 7 \land \\ & \wedge \; x([\mathrm{AgI}]) &= 8.3 \; \mathbf{E} - 17 / 0.1^1 \; \cong 8.30 \; \mathbf{E} - 16 \land \\ & \wedge \; x([\mathrm{BiI}_3]) &= 8.1 \; \mathbf{E} - 19 / 0.1^3 \; \cong 8.10 \; \mathbf{E} - 16 \end{aligned}$$

(iv) O AgI é o sal mais insolúvel da série em duas das condições.

Em agua e em 0.1 M do cátion.

Qual a concentração de amónia aquosa (NH_3) em mol/dm^3 (M) necessária para iniciar a precipitação de $Mg(OH)_2$ de uma solução 0.041 M em Mg_2^+ ? (Na resposta indique apenas o resultado numérico)

•
$$k_b(NH_3) = 1.8 E - 5$$

•
$$k_{sp}(Mg(OH)_2) = 1.2 E - 11$$

	NH_{30}	$(aq) + H_2O_{(l)}$	\longrightarrow NH ₄ ⁺ (a	$_{ m o,q)} + { m OH}^{ m (aq)}$)
t	NH	$_{3(aq)}$ H	$C_2O_{(1)}$ N	$\mathrm{H_4}^+_{(\mathrm{l})}$	$\mathrm{OH}^{(\mathrm{l})}$
0	[NH	$[I_3]_0$ –	0		0
1	[NF	$[I_3]_1$ –	[($\mathrm{OH}^-]_1$	$[OH^-]_1$
$\frac{\mathrm{Mg(OH)_{2(s)}} \iff \mathrm{Mg^+_{(aq)}} + 2\mathrm{OH^{(aq)}}}$					
	t	$\mathrm{OH}^{\mathrm{(aq)}}$	${\rm Mg}^+_{(l)}$	$\mathrm{NH_4}^+$	1)
	1	$[\mathrm{OH}^-]_1$	$[\mathrm{Mg}^+]_1$	_	

$$\begin{split} & \left[\text{NH}_{3} \right]_{0} = \left[\text{NH}_{3} \right]_{1} + \left[\text{OH}^{-} \right]_{1} \land \\ & \wedge \left[\text{NH}_{3} \right]_{1} = \left[\text{OH}^{-} \right]_{1}^{2} / k_{b} (\left[\text{NH}_{3} \right]) \land \\ & \wedge \left[\text{OH}^{-} \right]_{1} > \sqrt{k_{sp} (\text{Mg(OH)}_{2}) / \left[\text{Mg}^{+} \right]_{1}} \right)^{2}} \implies \\ & \Longrightarrow \left[\text{NH}_{3} \right]_{0} = \frac{\left(\sqrt{k_{sp} (\text{Mg(OH)}_{2}) / \left[\text{Mg}^{+} \right]_{1}} \right)^{2}}{k_{b} (\left[\text{NH}_{3} \right])} + \sqrt{k_{sp} (\text{Mg(OH)}_{2}) / \left[\text{Mg}^{+} \right]_{1}} = \\ & = \frac{1.2 \text{ E} - 11 / 0.041}{1.8 \text{ E} - 5} + \sqrt{1.2 \text{ E} - 11 / 0.041} \cong 33.37 \text{ E} - 6 \end{split}$$

Qual a constante de equilíbrio, a 25 °C, para a seguinte reação:

$$2 \operatorname{Ag}^+ + \operatorname{Sn} \rightleftharpoons \operatorname{Sn}^{2+} + 2 \operatorname{Ag}$$

•
$$E^{\circ}(Ag^{+}/Ag) = +0.800 \,\text{V}$$
 • $E^{\circ}(Sn^{2+}/Sn) = -0.136 \,\text{V}$

Utilize notação científica na resposta (exemplo: 0.00010 será 1.0 E - 4)

$$\begin{array}{c} k = \exp\left(\frac{-\Delta G^{\circ}}{RT}\right) \, \wedge \\ \wedge \ \Delta G^{\circ} = -n \, \mathcal{F} \, E^{\circ} \end{array} \right\} \implies k = \exp\left(\frac{n \, \mathcal{F} \, E^{\circ}}{RT}\right) = \\ = \exp\left(\frac{2 * 96.49 \, \mathrm{E3} \left(0.800 - \left(-0.136\right)\right)}{8.31 * \left(25 + 273.15\right)}\right) \cong 43.99 \, \mathrm{E30}$$

A reação do violeta de cristal (VC) com o ion hidroxilo é uma reação elementar bimolecular, com uma velocidade que obedece a uma cinética de 2^a ordem global, correspondendo à expressão: $v = -\frac{\mathrm{d}[VC]}{\mathrm{d}t} = k\,[\mathrm{OH}^-][\mathrm{VC}]$. A reação foi realizada em condições tais que a reação apresenta uma aparente cinética de 1^a ordem. A concentração do VC ao longo do tempo foi seguida por espectroscopia de UV-Vis a $22\,^{\circ}\mathrm{C}$ e $40\,^{\circ}\mathrm{C}$ e os resultados experimentais estão representados no gráfico abaixo:

Sabendo que a concentração do ion hidroxilo em ambas as misturas rescionais foi $0.01 \,\mathrm{M}$, calcule a velocidade da reação a $40 \,^{\circ}\mathrm{C}$ ao fim de $2.5 \,\mathrm{min}$. (responda em $\mathrm{M \, s^{-1}}$, não escreva a unidade na resposta indique só o valor, tolerância 5%)

$$\begin{array}{l} v = k \, [\mathrm{OH}^-][\mathrm{VC}] \, \wedge \\ \wedge \quad k \, [\mathrm{OH}^-] = -(-0.0021) \, \wedge \\ \wedge \quad \left[\mathrm{VC} \right]_{t,40 \, ^{\circ}\mathrm{C}} = \exp(-0.0021 \, t - 11.178) \end{array} \end{array} \right\} \implies \\ \Rightarrow v = k \, [\mathrm{OH}^-] \, \exp(-0.0021 \, t - 11.178) = \\ = 0.0021 \, \exp(-0.0021 \, (2.5 * 60) - 11.178) \cong 21.42 \, \mathrm{E} - 9 \\ \end{array}$$

Recorrendo a uma tabela de potenciais de eletrodos padrões, indique se cada uma das semi-células se comporta como ânodo ou cátodo quando acoplata com um eletrodo padrão de hidrogênio para formar uma célula galvânica e calcule a diferença de potencial da célula.

Dados

•
$$k_{sp}(AgBr) = 5.2 E - 13$$

•
$$E^{\circ}(Ag^{+}/Ag) = 0.8 \text{ V}$$

•
$$E^{\circ}(Pb^{+2}/Pb) = -0.13 V$$

•
$$E^{\circ}(\mathrm{Sn}^{+4}/\mathrm{Sn}^{+2}) = 0.13 \,\mathrm{V}$$

Opções

(i)
$$Pt|Sn^{4+}$$
 (0.2 M), Sn^{2+} (0.1 M)

$$\begin{split} E &= E^{\circ} - \frac{RT}{N\mathcal{F}} \ln(Q) = \\ &= 0.13 \, \mathrm{V} - \frac{8.314 * (25 + 273.15)}{2 * 96485.332} \, \ln\left(\frac{0.1}{0.2}\right) \, \mathrm{V} \cong 0.139 \end{split}$$

(ii)
$$Pt|Sn^{4+}$$
 (1.0 E $-6 M$), Sn^{2+} (0.5 M)

$$\begin{split} E &= E^{\circ} - \frac{RT}{N\mathcal{F}} \ln(Q) = \\ &= -0.13 \, \mathrm{V} - \frac{8.314 * (25 + 273.15)}{2 * 96 \, 485.332} \, \ln\left(\frac{1.0 \, \mathrm{E} - 6}{0.5}\right) \, \mathrm{V} \cong 0.039 \end{split}$$

(iii)
$$Pb|Pb^{2+}$$
 (2.00 E $-4 M$)

$$\begin{split} E &= E^{\circ} - \frac{R\,T}{N\,\mathcal{F}} \ln(Q) = \\ &= 0.13\,\mathrm{V} - \frac{8.314*(25+273.15)}{2*96\,485.332} \,\ln(2.00\;\mathrm{E}\,-4)\,\mathrm{V} \cong 0.239 \end{split}$$

(iv) $Ag|AgBr_{(sat)}$, KBr (1 E -4 M)

$$E = E^{\circ} - \frac{RT}{N\mathcal{F}} \ln(Q) \wedge \\ \wedge Q = [Ag^{+}]^{2} \wedge \\ \wedge [Ag^{+}] = k_{sp} (AgBr) / [Br^{+}]$$
 $\Longrightarrow E = E^{\circ} - \frac{RT}{N\mathcal{F}} \ln\left(\left(\frac{k_{sp}(AgBr)}{[Br^{+}]}\right)^{2}\right) = \\ = -0.8 - \frac{8.314 * (25 + 273.15)}{2 * 96 485.332} \ln\left(\left(\frac{5.2 E - 13}{1 E - 4}\right)^{2}\right) \approx 0.490$

Questão 11

A reação do violeta de cristal (VC) com o ion hidroxilo é uma reação elementar bimolecular, com uma velocidade que obedece a uma cinética de 2ª ordem global, correspondendo à expressão: $v = -\Delta \text{VC}/\Delta t = k \, [\text{OH}^-] \, [\text{VC}]$. Quando $[\text{OH}^-] \, \text{v} \, [\text{VC}]$, podemos escrever a seguinte expressão $v = -\, \text{d} \, [\text{VC}]/\, \text{d}t = k' \, [\text{VC}], \, k' = k \, [\text{OH}^-]$

A concentração do VC ao longo do tempo foi seguida por espectroscopia de UV-Vis a 22 °C e 40 °C e os resultados experimentais estão representados no gráfico abaixo:

b)

Calcule o tempo necessário para reduzir a concentração de violeta de cristal a 20% do seu valor inicial, a 22 °C, t=__s

$$\left. \begin{array}{l} t = -(\ln{[\text{VC}]} + 11.175)/6 \ \text{E} - 4 \, \wedge \\ \wedge \ \left[\text{VC} \right]_t = 20\% \left[\text{VC} \right]_0 \end{array} \right\} \implies \\ \implies t = -(\ln{(20\% \exp(-11.175))} + 11.175)/6 \ \text{E} - 4 \cong 2.68 \, \text{E}3 \end{array}$$

 $\mathbf{c})$

Sabendo que a concentração do ion hidroxilo em ambas as misturas reacionais foi 0.01 M, calcule a velocidade da reação a 22 °C ao fim de 8 min, v= M s⁻¹

$$\begin{array}{l} v = k \, [\mathrm{OH}^{\scriptscriptstyle{-}}] [\mathrm{VC}] \, \wedge \\ \wedge \quad k \, [\mathrm{OH}^{\scriptscriptstyle{-}}] = -(-6 \, \mathrm{E} - 4) \, \wedge \\ \wedge \quad [\mathrm{VC}]_{(}t) = \exp(-6 \, \mathrm{E} - 4 \, t - 11.175) \end{array} \right\} \implies \\ \\ \Longrightarrow v_{8 \, \mathrm{min}} = 6 \, \mathrm{E} - 4 \, \exp(-6 \, \mathrm{E} - 4 \, (8 * 60) - 11.175) \cong 6.31 \, \mathrm{E} - 9 \end{array}$$

d)

A energia de ativação da reação é $__J \, \text{mol}^{-1}$

$$\left. \begin{array}{l} E_a = -R \left(22 + 273.15\right) \, \ln(k_{22\,^{\circ}\mathrm{C}}/A) \, \wedge \\ \wedge \quad k_{22\,^{\circ}\mathrm{C}} = k'_{22\,^{\circ}\mathrm{C}}/[\mathrm{OH}^-] \, \wedge \\ \wedge \quad [\mathrm{OH}^-] = k'_{40\,^{\circ}\mathrm{C}}/k_{40\,^{\circ}\mathrm{C}} \, \wedge \\ \wedge \quad k_{40\,^{\circ}\mathrm{C}} = A \, \exp\left(\frac{-E_a}{R \, (40 + 273.15)}\right) \end{array} \right\} \Longrightarrow \\ \\ \Longrightarrow E_a = \frac{R \, \ln(k'_{40\,^{\circ}\mathrm{C}}/k'_{22\,^{\circ}\mathrm{C}})}{295.15^{-1} - 313.15^{-1}} = \frac{8.31 \, \ln(2.1 \, \, \mathrm{E} - 3/0.6 \, \, \mathrm{E} - 3)}{295.15^{-1} - 313.15^{-1}} \cong 53.48 \, \mathrm{E3}$$

e)

A constante cinética da reação de hidroxilação do violeta de cristal a 28 °C é, $k=__M^{-1}$ s⁻¹

$$\left. \begin{array}{l} k_{28\,^{\circ}\mathrm{C}} = A\,\exp\left(-E_a/R(28+273.15)\right)\,\wedge \\ \wedge \ A = k_{22\,^{\circ}\mathrm{C}}/\exp\left(-E_a/R(22+273.15)\right)\,\wedge \\ \wedge \ k_{22\,^{\circ}\mathrm{C}} = k_{22\,^{\circ}\mathrm{C}}'/[\mathrm{OH}^-]\,\wedge \\ \wedge \ E_a = \frac{R\,\ln(k_{40\,^{\circ}\mathrm{C}}'/k_{22\,^{\circ}\mathrm{C}}')}{295.15^{-1}-313.15^{-1}} \\ \Longrightarrow k_{28\,^{\circ}\mathrm{C}} = \frac{k_{22\,^{\circ}\mathrm{C}}'}{[\mathrm{OH}^-]}\,* \\ * \exp\left(\frac{\ln(k_{40\,^{\circ}\mathrm{C}}'/k_{22\,^{\circ}\mathrm{C}}')}{295.15^{-1}-313.15^{-1}}\left((22+273.15)^{-1}-(28+273.15)^{-1}\right)\right) = \\ = \frac{0.6\;\mathrm{E}-3}{0.01}\,\exp\left(\frac{\ln(2.1\;\mathrm{E}-3/0.6\;\mathrm{E}-3)}{295.15^{-1}-313.15^{-1}}\left((295.15)^{-1}-(301.15)^{-1}\right)\right) \cong \\ \cong 92.63\;\mathrm{E}-3 \end{array}$$