Structure of pHs BJTAMP

Antoine $Falaize^1$ and John Doe^2

¹Project-team S3*, , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France
 ²Project-team S3[†], , STMS, IRCAM-CNRS-UPMC (UMR 9912), , 1 Place Igor-Stravinsky, 75004 Paris, France

June 12, 2016

1 System netlist

line	label	dictionary.component	nodes	parameters
$\overline{\ell_1}$	IN	electronics.source	('A', 'ref')	{ type voltage
ℓ_2	Cin	electronics.capacitor	('A', 'B')	C ('Cin', 1e-05)
ℓ_3	Rbc	electronics.resistor	('B', 'C')	R ('Rcd', 270000.0)
ℓ_4	ВЈТ	electronics.bjt	('B', 'C', 'ref')	mu ('mu', 1.1) betaF ('betaF', 300) Vt ('Vt', 0.026) betaR ('betaR', 4) Rb ('Rb', 20) Rc ('Rc', 0.1) Is ('Is', 1e-14) Re ('Re', 0.1)
ℓ_5	Rcd	electronics.resistor	('C', 'D')	{ R ('Rcd', 1000.0)
ℓ_6	VCC	electronics.source	('D', 'ref')	${igl\{}$ type voltage
ℓ_7	Cout	electronics.capacitor	('C', 'F')	C ('Cout', 1e-05)
ℓ_8	OUT	electronics.source	('F', 'ref')	{ type current

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 2;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 7;$$

^{*}http://s3.ircam.fr †http://s3.ircam.fr

Figure 1: Graph of system BJTAMP.

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 3;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\text{Cin}} \\ x_{\text{Cout}} \end{pmatrix}$$
;

Dissipation variable $\mathbf{w} = \begin{pmatrix} w_{\text{Rcd}} \\ w_{\text{BJTbe}} \\ w_{\text{BJTrc}} \\ w_{\text{BJTre}} \\ w_{\text{BJTrb}} \\ w_{\text{Rbc}} \end{pmatrix}$;

Input
$$\mathbf{u} = \begin{pmatrix} u_{\text{IN}} \\ u_{\text{VCC}} \\ u_{\text{OUT}} \end{pmatrix};$$
Output $\mathbf{y} = \begin{pmatrix} y_{\text{IN}} \\ y_{\text{VCC}} \\ y_{\text{OUT}} \end{pmatrix};$

3 Constitutive relations

$$\text{Hamiltonian } \mathbf{H}(\mathbf{x}) = \frac{0.5}{\text{Cout}} \cdot x_{\text{Cout}}^2 + \frac{0.5}{\text{Cin}} \cdot x_{\text{Cin}}^2 \\ \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \begin{pmatrix} \frac{1}{\text{Cin}} \cdot x_{\text{Cin}} \\ \frac{10}{\text{Cout}} \cdot x_{\text{Cout}} \end{pmatrix}; \\ \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \begin{pmatrix} -\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbe}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbe}} + \frac{1}{\text{betaF}} \cdot \left(\text{betaF} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbe}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbe}} + \frac{1}{\text{betaR}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbe}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbe}} + \frac{1}{\text{betaR}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbe}}}{\text{Vt-mu}}} - 1\right) - 1.0 \cdot 10^{-9} \cdot w_{\text{BJTbe}} + \frac{1}{\text{betaR}} \cdot \left(\text{betaR} + 1\right) \cdot \left(\text{Is} \cdot \left(e^{\frac{w_{\text{BJTbe}}}{\text{Vt-mu}}} - 1\right) - \frac{1}{\text{betaF}} \cdot \left(\text{betaF} + 1\right) \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{w_{\text{BJTbe}}}{\text{Vt-mu}} + 1.0 \cdot 10^{-9}\right) - \frac{1}{\text{betaR}} \cdot \left(\text{betaB} - 1\right) - \frac{1}{\text{betaR}} \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{1}{\text{betaF}} \cdot \left(\frac{1}{\text{betaF}} - 1\right) - \frac{1}{\text{betaR}} \cdot \left(\frac{1}{\text{betaR}} - 1\right) - \frac{1}{\text{betaR}} \cdot \left(\frac{1}{\text{betaB}} - 1\right) - \frac{1}{\text{betaR}} \cdot \left(\frac{1}{\text{betaF}} - 1\right) - \frac{1}{\text{betaR}} \cdot \left(\frac{1}{\text{betaR}} - 1\right) - \frac{1}{\text{betaR}} \cdot$$

4 System parameters

4.1 Constant

parameter	value (SI)	
betaF:	300	
betaR:	4	
Rb:	20	
Rcd:	1000.0	
Re:	0.1	
Vt:	0.026	
Cin:	1e-05	
mu:	1.1	
Is:	1e-14	
Cout:	1e-05	
Rc:	0.1	