Esercizio 1	Fare Gauss per il rango, creare il sistema (prendo le x in comune e le tratto come libere), isolo le x, sostituisco le x trovate nel vettore X, eseguo $X \cdot v = 0$, isolo una x, sostituisco nuovamente e noi costruisco il vettore prendendo i coefficienti
Esercizio 2	Calcolare il det di una 2×2 a caso, se det $\neq 0$ allora $rk(A) \geq 2$ possiamo orlarla, altrimenti ne cerco un'altra, calcoliamo il det di tutte le possibili 3×3 , le λ in comune alle 3×3 sono quelle che $rk(A) = 2$, tutte le altre $rk(A) = 3$;
Esercizio 3	 Se A è una matrice nilpotente (ossia esiste un intero positivo n tale che Aⁿ = 0) allora det A = 0 → Nilpotente non invertibile allora A² è simmetrica → M simmetrica se M = M^T ⇒ M^T = (M·M)^T ⇒ M = M^T, sostituisci M con A² Sia A ∈ M_{3.2}(R) di rango 2, allora il sistema lineare AX = B ammetre soluzioni comunque si scelga la matrice B dei termini noti. → Se si sceglie B t.c rk(A B) = 3 allora il sistema e impossibile (non ammette soluzioni) per Rouché-Capelli (∞²-3) A³ - A = I₂ → A(A²-I) = I ⇒ (A²-I) = A-I quindi AA⁻¹ = I (A è invertibile (∞²-3) A³ - A = (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Bsercizio 4	 I vettori v₁,, v_n sono base di R^N se rk(M) = N con M = (v₁ v_n) (M matrice composta dai vettori) Base ortogonale di v,w: (det(R₁R₂) / R₁ sono le righe dei vettori Dipendenza lineare: αv₁ + βv₂ = 0 oppure la matrice composta dai vettori non ha rango N Indipendenza lineare: αv₁ + βv₂ = 0 → α = β = 0 oppure la matrice composta dai vettori ha rango N v₃ = (v₃/2) è multiplo scalare di v₁ = (v₁/2) se (v₁/2) significa che v₂ non appartiene allo spazio generato da v₁ e quindi v₂ non deve essere multiplo scalare di v₁ v₂ ∉ (v₁) significa che v₂ non appartiene allo spazio generato da v₁ e quindi v₂ non deve essere multiplo scalare di v₁ Due vettori v₁ e v₂ sono ortogonali tra loro quando il loro prodotto scalare e' 0, ovvero v₁ · v₂ = v₁x · v₂x + v₁y · v₂y + v₁z · v₂z = 0 Norma vettore v = √v₁/2 + v₂/2, per "allungare" un vettore a una lunghezza L si usa la formula v' = L · ∏v₁ v · v₂
	 Gauss: R_i = R_i + (-a_{ij}/a_{jj}) · R_j Rouché-Capelli: ∞#incognite-rk(A) A invertibile se det A ≠ 0, det(A⁻¹) = 1/det A A non invertibile se A^N = 0 Il prodotto di due matrici diagonale è diagonale, una matrice diagonale non è per forza invertibile (potrebbe avere degli zeri nella diagonale) e ogni matrice diagonale è simmetrica Teorema di Binét: det(AB) = det A · det B Calcolo matrice inversa: scriviamo (M I), eseguiamo Gauss (da entrambe le parti), gli elementi sopra il pivot li poniamo tutti a 0 (sempre alla Gauss (x₁) · (x₂) / (x₂) = x₁x₂ + y₁y₂ + z₁z₂ √x₁ · (x₂) / (z₁) AX = B ammette soluzioni se rk(A B) = rk(A)

 $\frac{\sqrt{25} = 5}{\sqrt{100} = 10}$ $\frac{\sqrt{225} = 15}{\sqrt{400} = 20}$ $\frac{\sqrt{625} = 25}{\sqrt{900} = 30}$

 $\sqrt{16} = 4$ $\sqrt{81} = 9$ $\sqrt{196} = 14$ $\sqrt{361} = 19$ $\sqrt{576} = 24$ $\sqrt{841} = 29$

 $\sqrt{9} = 3$ $\sqrt{64} = 8$ $\sqrt{169} = 13$ $\sqrt{324} = 18$ $\sqrt{529} = 23$ $\sqrt{784} = 28$

 $\sqrt{4} = 2$ $\sqrt{49} = 7$ $\sqrt{144} = 12$ $\sqrt{289} = 17$ $\sqrt{484} = 22$ $\sqrt{729} = 27$

 $\sqrt{1} = 1$ $\sqrt{36} = 6$ $\sqrt{121} = 11$ $\sqrt{256} = 16$ $\sqrt{441} = 21$ $\sqrt{676} = 26$