Math 56: Proofs and Modern Mathematics Homework 4 Solutions

Naomi Kraushar

November 8, 2021

Problem 1 (Axler 3.A.1). Suppose $b, c \in \mathbb{R}$. Define $T : \mathbb{R}^3 \to \mathbb{R}^2$ by T(x, y, z) = (2x?4y + 3z + b, 6x + cxyz). Show that T is linear if and only if b = c = 0.

Solution. Suppose first that b = c = 0, so T(x, y, z) = (2x - 4y + 3z, 6x). Let (x_1, y_1, z_1) , (x_2, y_2, z_2) be two arbitrary elements of \mathbb{R}^2 : we have

$$T((x_1, y_1, z_1) + (x_2, y_2, z_2)) = T(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$
 addition in \mathbb{R}^3

$$= (2(x_1 + x_2) - 4(y_1 + y_2) + 3(z_1 + z_2), 6(x_1 + x_2))$$

$$= (2x_1 + 2x_2 - 4y_1 - 4y_2 + 3z_1 + 3z_2, 6x_1 + 6x_2)$$
distribution in \mathbb{R}

$$= (2x_1 - 4y_1 + 3z_1, 6x_1) + (2x_2 - 4y_2 + 3z_2, 6x_2)$$
addition in \mathbb{R}^2

$$= T(x_1, y_1, z_1) + T(x_2, y_2, z_2).$$

So T commutes with addition. Similarly, let (x, y, z) be an arbitrary element of \mathbb{R}^3 and λ an arbitrary scalar in \mathbb{R} : we have

$$T(\lambda(x,y,z)) = T(\lambda x, \lambda y, \lambda z)$$
 scalar multiplication in \mathbb{R}^3
= $(2\lambda x - 4\lambda y + 3\lambda z, 6\lambda x)$
= $\lambda(2x - 4y + 3z, 6x)$ scalar multiplication in \mathbb{R}^2
= $\lambda T(x, y, z)$.

So T also commutes with scalar multiplication and is therefore linear.

Conversely, suppose that $a \neq 0$ or $b \neq 0$. If $b \neq 0$, then $T(0) = (b, 0) \neq 0$, so T is not linear, therefore b has to be zero if T is linear. Similarly, if b = 0 but $c \neq 0$, then

$$T(1,1,1) = (1,6+c), T(2,2,2) = (2,12+8c),$$

so $T(2,2,2) \neq 2T(1,1,1)$, since if $c \neq 0$, then $8c \neq 2c$, so T is not linear. Hence c must also be 0 if T is linear.

Problem 2 (Axler 3.A.3). Suppose that $T \in \mathcal{L}(\mathbb{F}^n, \mathbb{F}^m)$. Show that there exist scalars $a_{jk} \in \mathbb{F}, j = 1, \ldots, m, k = 1, \ldots, n$ such that

$$T(x_1,\ldots,x_n)=(a_{11}x_1+\cdots+a_{1n}x_n,\ldots,a_{m1}x_1+\cdots+a_{mn}x_n)$$

for every $(x_1, \ldots, x_n) \in \mathbb{F}^n$.

Solution. To prove this, we use the following basis for \mathbb{F}^n , called the *standard basis*:

$$e_1 = (1, 0, 0, \dots, 0)$$

 $e_2 = (0, 1, 0, \dots, 0)$
 \vdots
 $e_n = (0, \dots, 0, 1)$

where each e_j has zero co-ordinates except for the jth co-ordinate, which is 1. There are n of these, and we have

$$(x_1,\ldots,x_n)=x_1e_1+\cdots+x_ne_n,$$

so these indeed form a basis.

Now, for each e_j , the image $T(e_j)$ is an element of \mathbb{F}^m , so for every $j = 1, \ldots, n$, we have $T(e_j) = (a_{1j}, a_{2j}, \ldots, a_{mj})$ for some scalars $a_{1j}, \ldots, a_{mj} \in \mathbb{F}$. Using these image vectors, we have

$$T(x_1, ..., x_n) = T(x_1e_1 + \cdots + x_ne_n)$$
 (using the standard basis)

$$= x_1T(e_1) + \cdots + x_nT(e_n)$$
 (since T is linear)

$$= x_1(a_{11}, a_{21}, ..., a_{m1}) + \cdots + x_n(a_{1n} + a_{2n} + \cdots + a_{nn})$$

$$= (a_{11}x_1 + \cdots + a_{1n}x_n, ..., a_{m1}x_1 + \cdots + a_{mn}x_n)$$

(taking linear combinations in \mathbb{F}^m .)

This proves the statement.

(As an aside, if you're familiar with matrices, this is basically how they work, with respect to the standard bases for both \mathbb{F}^n and \mathbb{F}^m .)

Problem 3 (Axler 3.A.4). Suppose that $T \in \mathcal{L}(V, W)$ and v_1, \ldots, v_m is a list of vectors such that Tv_1, \ldots, Tv_m is a linearly independent list in W. Prove that v_1, \ldots, v_m is linearly independent.

Solution. Consider the equation $a_1v_1 + \cdots + a_mv_m = 0$. We can apply T to both sides of this equation, and since T is linear, this gives us

$$a_1 T v_1 + \dots + a_m T v_m = T(0) = 0.$$

Since the vectors Tv_1, \ldots, Tv_m are linearly independent, this means that $a_1, \ldots, a_m = 0$. Hence v_1, \ldots, v_m are linearly independent as required. **Problem 4** (Axler 3.B.2). Suppose that V is a vector space, $S, T \in \mathcal{L}(V, V)$ are such that range $S \subset \text{null } T$. Prove that $(ST)^2 = 0$.

Solution. Since range $S \subset \text{null } T$, we have T(S(v)) = 0 for any $v \in V$, so that TS = 0. Note that "multiplication" here is composition of linear maps, which is associative, but not commutative! This gives us $(ST)^2 = (ST)(ST) = S(TS)T = S0T = 0$, as required.

Problem 5 (Axler 3.B.13). Suppose that T is a linear map from \mathbb{F}^4 to \mathbb{F}^2 such that

$$\operatorname{null} T = \{(x_1, x_2, x_3, x_4) \in \mathbb{F}^4 : x_1 = 5x_2, x_3 = 7x_4\}.$$

Prove that T is surjective.

Solution. We have a subspace of \mathbb{F}^4 defined by the solutions to two linearly independent equations, so we expect that dim null T = 4 - 2 = 2. Let's prove this rigorously: using the equations, we can say that a general element in null T is of the form

$$(5x_2, x_2, 7x_4, x_4) = x_2(5, 1, 0, 0) + x_4(0, 0, 7, 1)$$

for some scalars $x_2, x_4 \in \mathbb{F}$. Hence the vectors (5, 1, 0, 0) and (0, 0, 7, 1) span null T. Moreover, they are linearly independent, as if

$$a(5,1,0,0) + b(0,0,7,1) = (0,0,0,0),$$

then looking at the first or second co-ordinate gives us a=0, and looking at the third or fourth co-ordinate gives us b=0. Hence (5,1,0,0) and (0,0,7,1) form a basis of null T, so dim null T=2. By the rank-nullity theorem, we have dim null $T+\dim \operatorname{range} T=\dim \mathbb{F}^4$. We know that dim null T=2 and dim $\mathbb{F}^4=4$, so we have dim range T=2. Now range $T\subset \mathbb{F}^2$, which also has dimension 2, so, by Homework 4 Problem 2, we have range $T=\mathbb{F}^2$. By definition, this is the same as saying that T is surjective.

Problem 6 (Axler 3.B.20). Suppose that W is finite dimensional and $T \in \mathcal{L}(V, W)$. Show that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.

Solution. (\Leftarrow): Suppose that there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V. Suppose that we have $v \in V$ such that Tv = 0. Since ST is the identity, we have STv = v, and since S is linear, we also have STv = S(0) = 0. Hence v = 0, so null T is trivial and T is injective.

 (\Rightarrow) : Suppose that T is injective. We first prove that T preserves linear independence, i.e. if v_1, \ldots, v_n are linearly independent in V, then Tv_1, \ldots, Tv_n are linearly independent in W. (NOTE: This is NOT true if T is not injective!) Suppose that v_1, \ldots, v_n is a linearly independent list, and suppose that $a_1Tv_1 + \cdots + a_nTv_n = 0$. Using the linearity of T, we can

rewrite this as $T(a_1v_1 + \cdots + a_nv_n) = 0$. Since T is injective, Tv = 0 if and only if v = 0, so this means that $a_1v_1 + \cdots + a_nv_n = 0$, so $a_1, \ldots, a_n = 0$ by linear independence of v_1, \ldots, v_n .

This means that if we have a basis for V, the image of that basis in W is a linearly independent set: in particular, V must be finite-dimensional and satisfy $\dim V \leq \dim W$. Let v_1, \ldots, v_n be a basis for V; we know that Tv_1, \ldots, Tv_n is a linearly independent list in W. Let us extend this to a basis of W, which will be of the form $Tv_1, \ldots, Tv_n, w_1, \ldots, w_m$, for some $w_1, \ldots, w_m \in W$. Define the linear map $S: W \to V$ by setting $S(Tv_i) = v_i$ and $S(w_j) = 0$ (note: you can make $S(w_j)$ anything in V, this is just simplest), and extending this to a linear map on all of W. This is a linear map, so let's check that ST is the identity on V. Let v be an arbitrary vector in V, so $v = a_1v_1 + \cdots + a_nv_n$, using our basis. Then

$$STv = ST(a_1v_1 + \dots + a_nv_n)$$

 $= S(a_1Tv_1 + \dots + a_nTv_n)$ (using linearity of T)
 $= a_1S(Tv_1) + \dots + a_nS(Tv_n)$ (using linearity of S)
 $= a_1v_1 + \dots + a_nv_n$ (using definition of S on basis elements)
 $= v$.

Hence we have a linear map $S \in \mathcal{L}(W, V)$ such that ST is the identity on V, as required.

(Additional notes for your interest: first, the map S is not unique unless dim $V = \dim W$, because I can set $S(w_j)$ to be anything I want (it didn't have to be 0) and it will still be a linear map such that ST is the identity on V. Second, there is a similar statement for *surjectivity*: let V be a finite dimensional vector space, and let $T \in \mathcal{L}(V, W)$. Then T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity on W.)