

Running Open-Source Machine-Learning Models On-Premises

Malte Groth

This talk in one diagram

"Providing access to Open-Source Machine-learning Models via self-hosted Web-Services for Inference"

on-premises infrastructure

What does it have to do with medicine?

This Setup is necessary for many applications in medicine dealing with AI for several reason.

In medicine, there is need for

- Data Security, e.g. because of sensitive data
- Transparency & Reliability, e.g. for science and traceable services
- Autonomy & Avalability, e.g. for not being dependent on internet providers
- Adaptability, e.g. in terms of fine-tuning
- ..

DEEPSHORE

Open-Source Machine-Learning Models

... are models available under an **Open-Source License** (e.g. Apache 2.0)

Sources: HuggingFace, PyTorchHub, Github

Open-Source models differ in terms of transparency, reproducibility and quality control

→ Do not confuse Open-Source with Openness

Advantages of Open-Source Machine-Learning Models

- Transparency and Reliability
- Availability
- Adaptability
- Performance
- Autonomy (avoiding Vendor-Lock-In)
- Cost-Saving

On-Premises

- Deployments and operations are located within physical premises of a company/organization
- Opposite of the cloud
- Full control over IT infrastructure, data and applications

Advantages of running Models on-premises

- Data Security and Privacy
- Latency and Performance
- Cost-Saving
- Offline Access
- Control over intellectual property
- Flexibility → if following a ...

Cloud-agnostic deployment strategy

Designing your Applications, tools and services in a way so they can migrate seamlessly between multiple cloud platforms and on-premises.

Kubernetes

... is a key technology for implementing a cloud-agnostic deployment strategy because it

- abstracts the underlying infrastructure
- has a **consistent** tooling and user interface
- provides scaling at ease

"Kubernetes (k8s) is a ...

- open-source
- container orchestration system
- for **automating** software deployment, **scaling** and management."

Kubernetes

Kubernetes Cluster simplified and from a user perspective: web service that can be used to manage and automate processes on many

KServe: Model Inference Platform on Kubernetes

KServe

- offers (auto)scaling, e.g.
 - if number of requests increases
 - if there is no load at all (scale to zero)
- standardized inference protocol across ML frameworks and Model Serving Runtimes
- simplifies model deployment

The demo in one Diagram

Summary

- Open-Source Machine-Learning Models have a lot of advantages.
- There are many reasons why it may be appropriate or even necessary to deploy models on-premise for a medical use case.
- You can gain high flexibility by choosing a cloud-agnostic approach.
- Kubernetes is a key technology for implementing a cloud-agnostic deployment strategy.
- KServe is a inference platform suited for deploying models in production on Kubernetes.

DEEPSHORE

Why Kubernetes?

- High Availability:
 - K8s clusters consists of multiple nodes
 - K8s controllers enable service (pod) replication
 - K8s controllers provide self-healing mechanisms
- Resource Efficiency:
 - K8s comes with a powerful scheduling

Link: https://dzone.com/articles/kubernetes-advantages-and-disadvantages

InferenceService

InferenceServices

- provide Inference APIs out-of-the-box
- support multiple ML frameworks/Model Serving Runtimes
- support for obtaining models from different storage locations
- provide Autoscaling, incl. Scale-To-Zero

"Since your model is being deployed as an InferenceService, not a raw Kubernetes Service, you just need to provide the storage location of the model and it gets some super powers out of the box \varnothing ."

InferenceService

