HW 3, STAT 450

Due: Friday, September 27

Directions: This assignment should be completed using Quarto and submitted to Canvas as a self-contained

HTML or PDF file.

Reading: Chapters 1 and 9 from R for Data Science (2e)

library(tidyverse)

Exercise 1

Using the \mathtt{mpg} data frame, recreate the R code necessary to make the following plots. In your submission include both the code and the plot.

Exercise 2

For this exercise use the CPS85 data frame from the mosaicData package. Use ggplot2 to create all graphics.

library(mosaicData)

head(CPS85)

```
wage educ race sex hispanic south married exper union age
                                                                    sector
## 1
     9.0
            10
                       М
                               NH
                                     NS Married
                                                    27
                                                         Not
                                                               43
                                                                     const
                  W
## 2
     5.5
            12
                  W
                       М
                               NH
                                     NS Married
                                                    20
                                                         Not
                                                               38
                                                                     sales
## 3 3.8
                       F
            12
                  W
                               NH
                                     NS
                                        Single
                                                     4
                                                         Not
                                                               22
                                                                     sales
## 4 10.5
            12
                  W
                       F
                               NH
                                     NS Married
                                                    29
                                                         Not 47 clerical
## 5 15.0
            12
                   W
                       М
                               NH
                                     NS Married
                                                    40 Union
                                                               58
                                                                     const
## 6 9.0
                       F
                               NH
            16
                  W
                                     NS Married
                                                    27
                                                          Not
                                                              49 clerical
```

dim(CPS85)

```
## [1] 534 11
```

A description of this data set is provided in the help menu.

```
help(CPS85)
```

a

Make a histogram and density plot of wage. For the histogram, set the argument binwidth = 3. Describe the shape of the distribution.

b

Make side-by-side box plots to look at the distribution of wage for each category of sector. Which sectors have the highest median wages? Which sector has the greatest variability in wages?

\mathbf{c}

Make a bar plot of sector. Which sector has the highest number of employees?

\mathbf{d}

Make a stacked bar plot that shows the relationship between **sector** and **sex**. Map the **sex** variable to the fill color of the bars.

e

Repeat part \mathbf{d} , but display proportions instead of counts. Which sectors have roughly the same proportion of male and female employees?

Exercise 3

In this exercise you'll make a map of Alameda County. First, make sure to load the relevant map packages:

```
library(maps)
library(mapproj)
```

 \mathbf{a}

Run the following code to make a map of California with county boundaries.

```
ca <- map_data("county", "ca")
ggplot(data = ca, aes(x = long, y = lat, group = group)) +
  geom_polygon(fill = "white", color = "black") +
  coord_map()</pre>
```

 \mathbf{b}

The object ca is a data frame that contains the coordinates for the polygons of each county in California. Here is a preview of the first several rows:

head(ca)

```
##
                    lat group order
                                        region subregion
          long
## 1 -121.4785 37.48290
                                                 alameda
                            1
                                  1 california
## 2 -121.5129 37.48290
                            1
                                  2 california
                                                 alameda
## 3 -121.8853 37.48290
                            1
                                  3 california
                                                 alameda
## 4 -121.8968 37.46571
                                  4 california
                                                 alameda
                            1
## 5 -121.9254 37.45998
                            1
                                  5 california
                                                 alameda
## 6 -121.9483 37.47717
                            1
                                  6 california
                                                 alameda
```

Run the following two commands, and explain what you think each command is doing.

```
unique(ca$subregion)
length(unique(ca$subregion))
```

 \mathbf{c}

Use the dplyr function filter() to extract the rows of the ca data frame that correspond to Alameda County. Store the subset in a new data frame called alameda_ca.

 \mathbf{d}

Use the subsetted data frame from part c to make a map of Alameda County with ggplot2.

Bonus

Make a map of the nine counties in the Bay Area (Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma).