Phase aberrations in cycles per diameter

Sine wave aberration is a pair of delta functions in its 'Fourier transform domain'

At small amplitudes this corresponds to pair of bright spots in the PSF: pupil: $exp(i\phi) \sim 1 + i\phi$ image: $\delta(0) + FT(sine)$

As size of aberration increases, exp(iφ) expansion gets higher order terms. Quadratic terms produce spots at twice the separation...

Part II - PSF theory

Optical Path Difference

This is the deviation of the wavefront from 'perfect'... when talking of an image being formed by a converging wavefront,

THE DEVIATION OF THE WAVEFRONT FROM THE PERFECT SPHERICAL CONVERGING WAVE

is the optical path difference.

In a collimated beam such as an interferometer, the deviation of a wavefront from the perfect, flat wavefront is the OPD.

OPD(x,y) is a real function in 'pupil space', dimensions of LENGTH usually At wavelength it is expressed in RADIANS of PHASE: $\phi(x,y) = (2 \pi / \lambda) OPD(x,y)$

diverging spherical

UNFOCUSSED IMAGES MEASURE THE MIRRORS

S. BASINGER

Choosing the amount of defocus

What is the best defocus to use?

Signal strength for given spatial frequency of aberration (number of ripples across mirror) is periodic in 1/defocus

B. Dean, C. Bowers, "Diversity Selection for Phase-Diverse-Phase-Retrieval," JOSA, 20(8), 2003, pp. 1490-1504