Computer Vision & Image Processing CSE 473 / 573

Instructor - Kevin R. Keane, PhD TAs - Radhakrishna Dasari, Yuhao Du, Niyazi Sorkunlu

Lecture 21
October 18, 2017
Introduction to Recognition

Slide credits

Svetlana Lazebnik

Introduction to object recognition

Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Overview

- Basic recognition tasks
- A statistical learning approach
- Traditional or "shallow" recognition pipeline
 - Bags of features
 - Classifiers
- Next time: neural networks and "deep" recognition pipeline

Common recognition tasks

Image classification

Image tagging

Object detection

Activity recognition

Image parsing

Image description

Image classification

The statistical learning framework

 Apply a prediction function to a feature representation of the image to get the desired output:

The statistical learning framework

- Training: given a training set of labeled examples
 {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by
 minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Steps

Slide credit: D. Hoiem

Traditional recognition pipeline

- Features are not learned
- Trainable classifier is often generic (e.g. SVM)

Bags of features

Traditional features: Bags-of-features

- Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

1. Local feature extraction

Sample patches and extract descriptors

2. Learning the visual vocabulary

Slide credit: Josef Sivic

2. Learning the visual vocabulary

Slide credit: Josef Sivic

2. Learning the visual vocabulary

Slide credit: Josef Sivic

Review: K-means clustering

 Want to minimize sum of squared Euclidean distances between features x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{\text{cluster } k} \sum_{\text{point } i \text{ in } \atop \text{cluster } k} (\mathbf{x}_i - \mathbf{m}_k)^2$$

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each feature to the nearest center
 - Recompute each cluster center as the mean of all features assigned to it

Example visual vocabulary

Bag-of-features steps

- Extract local features
- 2. Learn "visual vocabulary"
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

Lazebnik, Schmid & Ponce (CVPR 2006)

Lazebnik, Schmid & Ponce (CVPR 2006)

Lazebnik, Schmid & Ponce (CVPR 2006)

Scene classification results

	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2\times2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4\times4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3
$3(8\times8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3

Caltech101 classification results

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1 1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7

Traditional recognition pipeline

Classifiers: Nearest neighbor

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

All we need is a distance function for our inputs No training required!

K-nearest neighbor classifier

- For a new point, find the k closest points from training data
- Vote for class label with labels of the k points

K-nearest neighbor classifier

Which classifier is more robust to *outliers*?

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

K-nearest neighbor classifier

Left: Example images from the CIFAR-10 dataset. Right: first column shows a few test images and next to each we show the top 10 nearest neighbors in the training set according to pixel-wise difference.

Credit: Andrej Karpathy, http://cs231n.github.io/classification/

Linear classifiers

Find a *linear function* to separate the classes:

$$f(\mathbf{x}) = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

Visualizing linear classifiers

Source: Andrej Karpathy, http://cs231n.github.io/linear-classify/

Nearest neighbor vs. linear classifiers

NN pros:

- Simple to implement
- Decision boundaries not necessarily linear
- Works for any number of classes
- Nonparametric method

NN cons:

- Need good distance function
- Slow at test time

Linear pros:

- Low-dimensional parametric representation
- Very fast at test time

Linear cons:

- Works for two classes
- How to train the linear function?
- What if data is not linearly separable?

Support vector machines

 When the data is linearly separable, there may be more than one separator (hyperplane)

Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Distance between point
$$|\mathbf{x}_i \cdot \mathbf{w} + b|$$
 and hyperplane: $||\mathbf{w}||$

Therefore, the margin is $2/||\mathbf{w}||$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Finding the maximum margin hyperplane

- 1. Maximize margin 2 / ||w||
- 2. Correctly classify all training data:

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

Quadratic optimization problem:

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 \quad \text{subject to} \quad y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

SVM parameter learning

• Separable data: $\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$ subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ Maximize Max

Non-separable data:

$$\min_{\mathbf{w},b} \quad \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))$$

$$\text{Maximize margin} \qquad \text{Minimize classification mistakes}$$

SVM parameter learning

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b))$$

Demo: http://cs.stanford.edu/people/karpathy/svmjs/demo

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable

Input Space

Feature Space

Image source

Nonlinear SVMs

Linearly separable dataset in 1D:

Non-separable dataset in 1D:

We can map the data to a higher-dimensional space:

Slide credit: Andrew Moore

The kernel trick

- General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable
- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}, \mathbf{y}) = \boldsymbol{\varphi}(\mathbf{x}) \cdot \boldsymbol{\varphi}(\mathbf{y})$$

(to be valid, the kernel function must satisfy *Mercer's condition*)

The kernel trick

Linear SVM decision function:

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

The kernel trick

Linear SVM decision function:

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$$

Kernel SVM decision function:

$$\sum_{i} \alpha_{i} y_{i} \varphi(\mathbf{x}_{i}) \cdot \varphi(\mathbf{x}) + b = \sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

This gives a nonlinear decision boundary in the original feature space

C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>, Data Mining and Knowledge Discovery, 1998

Polynomial kernel: $K(\mathbf{x}, \mathbf{y}) = (c + \mathbf{x} \cdot \mathbf{y})^d$

Gaussian kernel

 Also known as the radial basis function (RBF) kernel:

$$K(\mathbf{x}, \mathbf{y}) = \exp\left(-\frac{1}{\sigma^2} \|\mathbf{x} - \mathbf{y}\|^2\right)$$

Gaussian kernel

Kernels for histograms

Histogram intersection:

$$K(h_1, h_2) = \sum_{i=1}^{N} \min(h_1(i), h_2(i))$$

Square root (Bhattacharyya kernel):

$$K(h_1, h_2) = \sum_{i=1}^{N} \sqrt{h_1(i)h_2(i)}$$

SVMs: Pros and cons

Pros

- Kernel-based framework is very powerful, flexible
- Training is convex optimization, globally optimal solution can be found
- Amenable to theoretical analysis
- SVMs work very well in practice, even with very small training sample sizes

Cons

- No "direct" multi-class SVM, must combine two-class SVMs (e.g., with one-vs-others)
- Computation, memory (esp. for nonlinear SVMs)

Generalization

- Generalization refers to the ability to correctly classify never before seen examples
- Can be controlled by turning "knobs" that affect the complexity of the model

Training set (labels known)

Test set (labels unknown)

Diagnosing generalization ability

- Training error: how does the model perform on the data on which it was trained?
- Test error: how does it perform on never before seen data?

Underfitting and overfitting

- Underfitting: training and test error are both high
 - Model does an equally poor job on the training and the test set
 - Either the training procedure is ineffective or the model is too "simple" to represent the data
- Overfitting: Training error is low but test error is high
 - Model fits irrelevant characteristics (noise) in the training data
 - Model is too complex or amount of training data is insufficient

Effect of training set size

Validation

- Split the data into training, validation, and test subsets
- Use training set to optimize model parameters
- Use validation test to choose the best model
- Use test set only to evaluate performance

