Reconnaissance des formes

Master IVI

- Introduction
 - Toy's story
 - Problématique
- Problématique illustrée
 - Ce qu'il faut retenir
- Un peu de vocabulaire
 - Quelques définitions utiles
 - Tâches à effectuer
- Construire un classifieur
 - Objectifs et enjeux
- Epilogue

•00000000000

Introduction Toy's story

00000000000

Toy's story

Introduction

00000000000

Toy's story

Introduction

000000000000

Introduction Toy's story

000000000000

Qu'est-ce que la RdF?

RdF: discrimination ou classification supervisée

Fig.: schéma de la RdF.

La reconnaissance des formes est d'abord un problème d'apprentissage du modèle (classifieur ou algo. de RdF)

Qu'est-ce que la RdF?

Objectifs

- Construire des algorithmes d'apprentissage permettant d'affecter des données à des classes représentatives du problème
- Evaluer les performances du processus
 - Comment apprendre et bien apprendre dans un contexte où les données sont imparfaites?
 - Capacité des algorithmes à bien se comporter face à des données n'ayant pas servi à l'apprentissage?

Qu'est-ce que la RdF?

Fig.: phases de la RdF.

Caractéristiques

- Réduire la taille du problème en décrivant les données par quelques caractéristiques
- Mais les caractéristiques doivent être discriminantes.

Introduction 000000000000 Problématique

Mesures, caractéristiques

(b) Son histogramme.

Fig.: exemple pour une image en niveaux de gris.

Introduction

Mesures, caractéristiques

Commentaires

- Image en niveaux de gris : 720×576 pixels codés sur 8 bits
 = 414.720 valeurs entières comprises entre 0 et 255.
- Son histogramme : 256 valeurs entières (occurences) pouvant être approximées par 2 gaussiennes (4 réels : 2 moyennes et 2 variances).

La problématique centrale de la RdF

La problématique centrale de la RdF

- Construire un modèle expliquant et discriminant les différentes catégories de données (apprentissage)
- Savoir reconnaître une forme malgré des modifications par rapport au modèle.

Deux familles de solution de la RdF

- RdF statistique : objet de ce cours.
- RdF syntaxique :
 - Représentation des formes sur un alphabet avec une grammaire
 - Mise en évidence des liens entre les composantes.

Les grandes étapes d'un processus de RdF

"Roadbook" de la RdF

- Recueil des données brutes
- Génération de caractéristiques
- Sélection des caractéristiques pertinentes
- Etiquetage des classes
- Conception du classifieur
- Evaluation du système

Représentation graphique

La forme est représentée par un vecteur dans \mathbb{R}^d

Fig.: Discrimination de trois classes d'iris.

Description

- Les différents modèles sont représentées par des classes dans le même espace.
- Un modèle ne correspond pas à un point à cause de la variabilité.

Représentation graphique

Prendre une décision, c'est faire une application de l'espace des formes (espace de représentation) vers l'espace de décision

Fig.: Discrimination de trois classes d'iris.

Problème : Présence de bruit (non fiabilité des observations).

Ce qu'il faut retenir

Introduction

Représentation graphique

Problème

- Structurer l'espace des caractéristiques en régions (classes) avec des frontières plus ou moins complexes
- Faire en sorte que ce partitionnement permette de prendre les meilleures décisions (affectation d'un vecteur forme à la bonne classe)

Espace des formes (caractéristiques)

Représentation graphique

Méthodes statistiques

- Classes = caractérisées de manière probabiliste
- Problème : veiller à ce que le modèle utilisé (classifieur) puisse supporter la variabilité des données manipulées

Espace des formes (caractéristiques)

Fig.: Partitionnement de classes.

En résumé

Principes de base de la RdF

- Construire une règle de décision (apprentissage)
- Coût, risque, erreur

Méthodes et algorithmes

- méthodes « historiques » statistiques (analyse discriminante)
- k-ppv (non paramétrique)
- arbres de décision
- réseaux de neurones (modèles probabilistes)
- ...

Ce qu'il faut retenir

Introduction

Concepteur/utilisateur

Fig.: Point de vue concepteur vs. point de vue utilisateur.

Aspects techniques

Résumé

- Variables aléatoires discrètes/continues
- Probabilité, probabilité conditionnelle
- Fonction de répartition et densité
- Lois usuelles : Bernouilli, binomiale, Poisson, normale
- Espérance, variance : cas discret, cas continu

Introduction

Classement vs. classification

Classement

- Consiste à placer chaque individu d'une population dans une classe parmi plusieurs classes prédéfinies en fonction des caractéristiques de l'individu (variables explicatives)
- Le résultat du classement est un ensemble de règles permettant d'affecter (assigner) un individu à une classe.

Classification

- Consiste à regrouper les individus d'une population en un nombre limité (fixé) de classes qui ne sont pas prédéfinies mais déterminées au cours de l'opération.
- Les classes sont constituées d'individus ayant des caractéristiques similaires et séparent les individus ayant des caractéristiques différentes

Prédiction

Introduction

Prédiction

- Consiste à estimer la valeur d'une variable continue (dite "cible", "à expliquer", "réponse", "de contrôle",...)
- Exemples de variable "cible" : poids (en fonction de la taille), consommation électrique (en fonction de la température extérieure)

Classement vs. prédiction

- <u>Classement</u>: la variable à expliquer est catégorielle (discrimination)
- <u>Prédiction</u>: la variable à expliquer est continue (on parle aussi de régression)

Introduction

Techniques inductives vs. techniques transductives

Techniques inductives

Une phase d'apprentissage (phase inductive) → élaboration d'un modèle résumant les relations entre variables et qui peut ensuite être appliqué à de nouvelles données pour en déduire un classement ou une prédiction (phase déductive).

Techniques transductives

Une seule étape (éventuellement réitérée) au cours de laquelle chaque individu est directement classé (ou prédit) en référence à d'autres individus déjà classés. Pas de modèle élaboré (exemple de technique transductive : les k-ppv)

Introduction

Techniques inductives ou techniques transductives?

- Technique inductive résume dans un modèle l'information contenue dans les données → permet l'application du modèle à de nouvelles données
- Technique transductive manipule un ensemble de données déjà classées pour tout nouveau classement à effectuer.
- On utilise surtout les techniques inductives

Introduction

Principes des techniques inductives

Etapes

- Apprentissage : construction du modèle sur un échantillon pour lequel on connaît la variable cible.
- Validation du modèle: vérification du modèle sur un deuxième échantillon pour lequel on connaît la valeur de la variable cible qui est comparée à la valeur prédite par le modèle.
- Test : troisième échantillon pour évaluer le taux d'erreur du modèle.
- Finalement : application du modèle à l'ensemble de la population à traiter (détermination de la variable cible pour chaque donnée)

Données, attributs, classes

Définitions

- **Donnée : x** décrite par d caractéristiques ou attributs
- Ensemble de données : $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$
- Attribut : caractéristique à valeur dans un domaine (e.g. \mathbb{R})
- Ensemble d'attributs : $e.g. \mathbb{R}^d$
- Classe: y variable cible
- Ensemble des classes solutions (espace des **décisions)**: $\mathcal{C} = \{y_1, y_2, \dots, y_m\}$

Remarque: Une donnée x est décrite par un ensemble d'attributs (vecteur d'attributs) ou caractéristiques

Nature des attributs ou caractéristr

Variétés

- Numériques : les plus fréquentes (valeur de température, durée d'un signal, niveau de gris, . . .
- Ordinales : qui peuvent être ordonnées (salaire du plus petit au plus élevé)
- Nominales : couleur des yeux
- Binaires : présence/absence d'une propriété, sexe, ...
- Symboliques : carrefour routier à position géographique (lat., long.) = à une extrémité de la RN10 et à une extrémité de la RN15

Types de tâches

Variétés

- Classification non supervisée (clustering) ou catégorisation : chercher des groupes de données partageant des caractéristiques communes →
 - on cherche une partition de l'espace des données
 - Ensemble fini (discret) de classes (cardinalité=nb entier)
 - Interprétation des groupes constitués pas toujours aisée
- Discrimination (classification) ou classification supervisée: affecter des données à des classes (groupes) connues ou construites à partir d'un apprentissage
 - Ensemble fini (discret) de classes
 - Apprentissage à partir d'une base d'exemples étiquetés (i.e. dont on connait la classe d'appartenance)
- Régression : ensemble infini (et continu)
 - Estimation, prédiction

Le problème posé

Objectifs

- Faire de la reconnaissance de formes (RdF)
- Faire de la prédiction

Enjeux

- Construire des fonctions pour décider
- Fonction = classifieur, prédicteur
- Comprendre les données, en extraire de l'information pour prendre une décision
- Problème : comment construire ces fonctions ?

Le problème posé

Comment classer?

- Il faut fournir à l'ordinateur une fonction (algorithme) lui permettant d'associer une catégorie à une donnée
- Donc :
 - Il faut d'abord déterminer les variables pertinentes (sélection)
 - Puis un type de fonction de classement (classifieur linéaire, arbre de décision, réseaux de neurones, ...)

Le problème posé

Comment classer?

Dans tous ces cas de figure, il faut déterminer les paramètres de la fonction de classement utilisée :

- Règles dans les règles de décision
- Conditions et branchements dans les arbres de décision
- Coefficients dans les classificateurs linéaires
- Distributions de probabilité dans les classificateurs probabilistes
- Poids dans les réseaux de neurones

This is the end of this part!

