MRC02 控制板通讯协议 V1.1

1. 综述

1.1 应用

此协议应用于与 MRC02 控制板直接通信。

1.2 术语与定义

帧头:

帧的组成部分,一个帧的起始码,用于区分不同数据的标记,1个字节。

数据长度:

数据长度为2个字节,数据长度L为除帧头、数据长度和校验以外的字节数。L=5 表示无数据域。

硬件地址:

控制板硬件地址,2字节。

控制码:

功能码为2个字节,用来确定是属于什么功能。

命令序号:

命令序号为 1 个字节,建议上位机在调用指令时每条指令+1 使用,用以确定应答和 查询指令的对应关系。

数据域:

数据域其结构随功能码的功能而改变。

校验码:

通信消息的错误检测使用CRC16进行数据校验。校验域从信息长度字段首字节开始,包括信息长度、读写器编号和信息部分(指功能代码、命令序号和数据3个域)。采用 ${\sf CRC_CCITT} {\it S}$ ${\it CRC_CCITT}$ ${\it S}$ ${\it CRC_CCITT}$ ${\it S}$ ${\it T}$ ${\it CRC_CCITT}$ ${\it CRC_CCITT}$

1.3 通信接口

网络/RS485 通信模式

1.4 485 参数设定

波特率	数据位	停止位	奇偶校验位
38400bps	8bit	1bit	N(无奇偶校验)

2. 格式定义

编码	名称	字节数	说明
0x1B	帧头	1	帧的起始编码
0xHH 0xHH	数据长度	2	代表除帧头、数据长度和校验以外的
			字节的长度,范围 0x00—0xFF
0xHH 0xHH	主控板硬件地址	2	范围 0x00 0x00—0xFF 0xFF 主机地
			址 0x01
0xHH 0xHH	控制码	2	0x00 0x01—0xFF 0xFF: 代表命令功
			能
0xHH	命令序号	1	0x00—0xFF: 代表命令序号
0xHH0xHH	数据域	N	针对功能码实现功能的数据
0xHH 0xHH	CRC 校验	2	从数据长度到校验前的所有字节的
			CRC 校验值

3. 控制码列表

控制码	说明
0x00 0x01	获取设备信息
0x00 0x03	开始检卡
0x00 0x04	获取 UID(多层)
0x00 0x05	获取 UID(单层)
0x00 0x06	修改 AFI
0x00 0x07	指示灯控制
0x00 0x08	修改协议地址
0x00 0x09	读AFI
0x00 0x0A	指示灯开关状态控制

4. 接口功能

4.1 获取设备信息

	数据长 度	控制码	命令 序号	数据域	备注
控制主机发送	0x00 0x05	0x00 0x01	0x01	无	若无参数默认获取 全部
控制器回复	0x00 0x15	0x80 0x01	0x01	15 字节: 设备信息 或 1 字节: 错误码	0x00 正确 0x01 命令长度错 误

示例说明: 获取设备信息 (固件版本), 本命令也可作为心跳使用

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x05	0x00 0x15
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x01	0x80 0x01
命令序号	0x01	0x01
数据信息	无	0x00 0x03 0x01 0x00 0x02 0x00 0x02
		0x00 0x02 0x00 0x00 0x00 0x04 0x06
		0x02 0x03
CRC 校验	略	略

(当指令执行错误,返回错误码时 0x80 相应位置返回的值为 0x90,下同)

12 字节设备信息参数示例:

0x00,	//[0]产品类型 H
0x03,	//[1]产品类型 L
0x01,	//[2]硬件版本号 H
0x00,	//[3]硬件版本号 L
0x02,	//[4]固件版本号 1H
0x00,	//[5]固件版本号 1L
0x02,	//[6]固件版本号 2H
0x00,	//[7]固件版本号 2L
0x02,	//[8]Boot 版本号 H
0x00,	//[9]Boot 版本号 L
0x00,	//[10]SVN 版本号 H
0x00	//[11]SVN 版本号 L
0x00,	//[12]控制节数
0x00	//[13]控制层数
0x00,	//[14]控制面数
0x03,	//[15]控制面号

4.2 开始检卡

	数据长 度	控制码	命令 序号	数据域	备注
控制主机发送	0x00 0x06	0x00 0x03	0x01	1 字节: 0x01 开启全部 0x00 关闭 0x02 仅开启 A 面 0x03 仅开启 B 面	
控制器回复	0x00 0x06	0x80 0x03	0x01	1字节:错误码	0x00 正确, 无其他错误码

示例说明: 开始检卡

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x06	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x03	0x80 0x03
命令序号	0x01	0x01
数据信息	0x01	0x00
CRC 校验	略	略

4.3 读取 UID (多层)

	数据长	控制码	命令 序号	数据域	备注
控制主机发送	0x00 0x0D	0x00 0x04	0x01	查询的设备 ID: 8 字 节: bit 控制	每两个字节代指一 节,每一位代指一 层 ID,高位在前, 高字节在后
从机回复	0x00 0xXX	0x80 0x04	0x01	起始标志: 0x00 数据应答格式 1: (1字节 ID 号+(1字节 D) 号+(1字节 D) 或 1字节状态码))*15)*获取层数m 数据应答格式 2: (1字节 ID 号+ 1字节错误码)*获取层数m	状态码: 0x83 无标签 错误码: 0x00 正确; 0x02 离线; 0x03 读卡未完成;

		仕事与士 000	
		结束标志: 0x88	

示例说明 1: 获取第一节 ID12 UID, 无标签

	控制主机发送	控制器回复1	控制器回复 2	控制器回复3
帧头	0x1B	0x1B	0x1B	0x1B
数据长度	0x00 0x0D	0x00 0x06	0x00 0x24	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01	0x00 0x01	0x00 0x01
控制命令	0x00 0x04	0x80 0x04	0x80 0x04	0x80 0x04
命令序号	0x01	0x01	0x01	0x01
数据信息	0x00 0x08 0x00	0x00	0x0C 0x01 0x83 0x02	0x88
	0x00 0x00 0x00		0x83 0x03 0x83 0x04	
	0x00 0x00		0x83 0x05 0x83 0x06	
			0x83 0x07 0x83 0x08	
			0x83 0x09 0x83 0x0A	
			0x83 0x0B 0x83 0x0C	
			0x83 0x0D 0x83 0x0E	
			0x83 0x0F 0x83	
CRC 校验	略	略	略	略

示例说明 2: 获取第三节 ID6 UID,位置 3 有一张标签

	控制主机发送	控制器回复1	控制器回复 2	控制器回复3
帧头	0x1B	0x1B	0x1B	0x1B
数据长度	0x00 0x0D	0x00 0x06	0x00 0x2B	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01	0x00 0x01	0x00 0x01
控制命令	0x00 0x04	0x80 0x04	0x80 0x04	0x80 0x04
命令序号	0x02	0x02	0x02	0x02
数据信息	0x00 0x00 0x00	0x00	0x26 0x01 0x83 0x02	0x88
	0x00 0x20 0x00		0x83 0x03 0xE0 0x11	
	0x00 0x00		0x22 0x33 0x44 0x55	
			0x66 0x77 0x04 0x83	
			0x05 0x83 0x06 0x83	
			0x07 0x83 0x08 0x83	
			0x09 0x83 0x0A 0x83	
			0x0B 0x83 0x0C 0x83	
			0x0D 0x83 0x0E 0x83	
			0x0F 0x83	
CRC 校验	略	略	略	略

4.4 读取 UID (单层)

数据长度	空制码	数据域	备注
------	-----	-----	----

控制主机发送	0x00 0x06	0x00 0x05	0x01	1 字节: ID	
控制器回复	0x00 0x06	0x80 0x05	0x01	数据应答格式 1: 1 字节 ID 号+ (1 字 节位置号+ (8 字节 UID 或 1 字节状态码))*15 数据应答格式 2: 1 字节 ID 号+ 1 字节错误码	状态码: 0x83 无标签 错误码: 0x00 正确; 0x02 离线; 0x03 读卡未完成;

示例说明: 获取 ID1 UID, 1号位置有一张标签

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x06	0x00 0x2A
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x05	0x80 0x05
命令序号	0x01	0x01
数据信息	0x01	0x01 0xE0 0x11 0x22 0x33 0x44 0x55
		0x66 0x77 0x02 0x83 0x03 0x83 0x04
		0x83 0x05 0x83 0x06 0x83 0x07 0x83
		0x08 0x83 0x09 0x83 0x0A 0x83 0x0B
		0x83 0x0C 0x83 0x0D 0x83 0x0E
		0x83 0x0F 0x83
CRC 校验	略	略

4.5 修改 AFI

	数据长 度	控制码	命令 序号	数据域	备注
控制主机发送	0x00 0x09	0x00 0x06	0x01	1字节: AFI 1字节: ID 2字节: 位置号(bit 控制,高位在前,高字节在后) 8字节: 标签 UID (0xE0 在后) 或: 1字节: AFI 1字节: ID 2字节: 位置号(bit 控制,高位在前,高字	

				节在后)	
控制器回复	0x00 0x06	0x80 0x06	0x01	1字节:错误码	0x00 正确 0x01 命令长度错 误 0x02 通信错误

示例说明:修改 ID 为 1,2 号位置标签的 AFI 为 03

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x09	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x06	0x80 0x06
命令序号	0x01	0x01
数据信息	0x03 0x01 0x02	0x00
	0x00	
CRC 校验	略	略

4.6 指示灯闪烁

	数据长 度	控制码	命令序号	数据域	备注
控制主机发送	0x00 0x0B	0x00 0x07	0x01	1 字节:次数 2 字节:闪烁半周期 (*100ms)低字节在前 {1 字节:层号 2 字节:位置号(bit 控制,高位在前,高字节在后)}*m	次 数 设 置 为 255 (0xff)表示指示灯 常闪
控制器回复	0x00 0x0X	0x80 0x07	0x01	1 字节: 0x00 或 2 字节*n: ID+错误码	0x00 执行成功 其余为执行失败

示例说明: 1层, 2位置指示灯以500ms 频率闪烁10次

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x0B	0x00 0x0X
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x07	0x80 0x07
命令序号	0x01	0x01
数据信息	0x0a 0x05 0x00	0x00
	0x01 0x02 0x00	

CRC 校验	略	略

4.7 修改协议地址

,		数据长 度	控制码	命令 序号	数据域	备注
	控制主机发送	0x00	0x00	001	2字节:地址(低字节	
	控制主机及区	0x07	0x08	0x01	在前)	
Ī	控制器回复	0x00	0x80	0x01	1 字节:错误码	0x00 修改成功
	江門硆凹及	0x06	0x08	UXUI	1 子口: 坩灰吗	0x01 修改失败

示例说明:设置地址为 0x0004

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x07	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x08	0x80 0x08
命令序号	0x01	0x01
数据信息	0x04 0x00	0x00
CRC 校验	略	略

4.8 读取 AFI

	数据长 度	控制码	命令序号	数据域	备注
控制主机发送	0x00 0x08	0x00 0x09	0x01	1 字节: ID 2 字节: 位置号(bit 控制,高位在前,高字节在后) 8 字节: 标签 UID (0xE0 在后) 或: 1 字节: ID 2 字节: 位置号(bit 控制,高位在前,高字节在后)	
控制器回复	0x00 0x06	0x80 0x09	0x01	1 字节:AFI	错误码: 0x01 指令格式错误 0x02 通讯失败

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x08	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x09	0x80 0x09
命令序号	0x01	0x01
数据信息	0x01 0x02 0x00	0x03
CRC 校验	略	略

4.9 指示灯打开或关闭

	数据长 度	控制码	命令 序号	数据域	备注
控制主机发送	0x00 0x09	0x00 0x0A	0x01	1 字节: 0 关闭, 1 打 开 {1 字节: ID 2 字节: 位置号(bit 控 制, 高位在前, 高字 节在后)}*m	关闭可用于停止闪 烁
控制器回复	0x00 0x0X	0x80 0x0A	0x01	1 字节: 0x00 或 2 字节*n: ID+错误码	0x00 执行成功 其余为执行失败

示例说明: 1层2位置指示灯打开,执行成功

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x09	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x0A	0x80 0x0A
命令序号	0x01	0x01
数据信息	0x01 0x01 0x02	0x00
	0x00	
CRC 校验	略	略

4.10 设置读写器数量

	数据长 度	控制码	命令序号	数据域	备注
控制主机发送	0x00 0x08	0x00 0x0B	0x01	1 字节: 单个控制板 所控制的节数 1 字节: 架体层数 1 字节: 架体面数	架体面数: 0x01 为单 A 面 0x02 为单 B 面 0x03 为双面

控制器回复	0x00 0x06	0x80 0x0B	0x01	1字节:错误码	0x00 执行成功 0x02 命令校验错误 0x04 命令参数错误
-------	--------------	--------------	------	---------	---

示例说明:单个控制板控制 4 节双面 6 层的密集架

	控制主机发送	控制器回复
帧头	0x1B	0x1B
数据长度	0x00 0x08	0x00 0x06
硬件地址	0x00 0x01	0x00 0x01
控制命令	0x00 0x0B	0x80 0x0B
命令序号	0x01	0x01
数据信息	0x04 0x06 0x03	0x00
CRC 校验	略	略