Attribute-Efficient Learning of Monomials over Highly-Correlated Variables

Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, Kiran Vodrahalli

Columbia University

Yahoo Research, Aug. 2019

General Learning Problem

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f is from a low-complexity class

Assumption 2: $x^{(i)} \sim D$, some reasonable distribution

Goal: Recover f exactly

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

Goal 1: Learn f with low sample complexity

Goal 2: Learn f computationally efficiently

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

f linear → classical compressed sensing

Goal 2: Learn f computationally efficiently

Linear functions: Compressed Sensing

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

Goal 1: Learn f with $poly(\log p, k)$ samples

Goal 2: Learn f in poly(p, k, m) runtime

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

f nonlinear? Perhaps a polynomial...

Goal 2: Learn f computationally efficiently

Sparse polynomial functions

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m \subset \mathbb{R}^p \times \mathbb{R}$$
, drawn i.i.d.

Assumption 1: f depends on only k features

Goal 1: Learn f with $poly(\log p, k)$ samples

Goal 2: Learn f in poly(p, k, m) runtime

Simplest Case: Sparse Monomials

A Simple
Nonlinear
Function Class

In *p* dimensions and *k* sparse

Ex:
$$f(x_1, ..., x_p) := x_3 \cdot x_{17} \cdot x_{44} \cdot x_{79}$$
 $k = 4$

The Learning Problem

Given:
$$\{(x^{(i)}, f(x^{(i)}))\}_{i=1}^m$$
, drawn i.i.d.

Assumption 1: f is a k-sparse monomial function

Assumption 2: $\mathbf{x}^{(i)} \sim \mathcal{N}(0, \Sigma)$

Goal: Recover f exactly

Attribute-Efficient Learning

•Sample efficiency: $m = \text{poly}(\log(p), k)$

•Runtime efficiency: poly(p, k, m) ops

Goal: achieve both!

$$x_i \in \{\pm 1\}$$

- Monomials ≡ Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime

- Sparse linear regression
 [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]
 - $poly(p, 2^d, s)$ samples and runtime
 - ullet d is maximum degree
 - s is number of monomials

$$x_i \in \{\pm 1\}$$

- Monomials ≡ Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

- Sparse linear regression
 [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]
 - $poly(p, 2^d, s)$ samples and runtime
 - *d* is maximum degree
 - *s* is number of monomials
 - Works for Gaussian and Uniform distributions...

$$x_i \in \{\pm 1\}$$

- Monomials ≡ Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

- Sparse linear regression
 [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]
 - $poly(p, 2^d, s)$ samples and runtime
 - *d* is maximum degree
 - *s* is number of monomials
 - Works for Gaussian and Uniform distributions...
 - BUT they must be product distributions!

$$x_i \in \{\pm 1\}$$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]
 - $poly(p, 2^d, s)$ samples and runtime
 - *d* is maximum degree
 - *s* is number of monomials
 - Works for Gaussian and Uniform distributions...
 - BUT they must be product distributions!
 - Whitening blows up complexity

$$x_i \in \{\pm 1\}$$

- Monomials ≡ Parity functions
- No attribute-efficient algs! [Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]
 - Even in the **noiseless** setting
 - Brute force: $poly(\log p, k)$ samples, $O(p^k)$ runtime
 - Can improve to $O(p^{k/2})$ runtime
 - Improper learner: $O(p^{1-1/k})$ samples, $O(p^4)$ runtime
 - Even under avg. case assumptions...
 - $poly(p, 2^k)$ samples and runtime

$$x_i \in \mathbb{R}$$

- Sparse linear regression [Candes+'04, Donoho+'04, Bickel+'09...]
- Sparse sums of monomials
 [Andoni+'14]

Uncorrelated features:

$$\mathbb{E}[xx^T] = \begin{bmatrix} \sigma_1^2 & 0 \\ \sigma_2^2 & 0 \\ \sigma_3^2 & \sigma_4^2 \end{bmatrix}$$

Potential Degeneracy of $| = \mathbb{E}[xx^T]$

$$= \mathbb{E}[xx^T]$$

Singular matrix

can be low-rank!

Rest of the Talk

1. Algorithm

2. Intuition

3. Analysis

4. Conclusion

1. Algorithm

The Algorithm

Ex:
$$f(x_1, ..., x_p) := x_3 \cdot x_{17} \cdot x_{44} \cdot x_{79}$$

$$\begin{cases} \left\{ \left(x^{(i)}, f(x^{(i)}) \right) \right\}_{i=1}^{m} & \log |\cdot| \\ \text{Gaussian Data} & \left\{ \left(\log |x^{(i)}|, \log |f(x^{(i)})| \right) \right\}_{i=1}^{m} \\ \text{Log-transformed Data} & \end{cases}$$

2. Intuition

Why is our Algorithm Attribute-Efficient?

• Runtime: basis pursuit is efficient

- Sample complexity?
 - Sparse linear regression? E.g.,

$$\log |f(x_1, ..., x_p)| := \log |x_{17}| + \log |x_{44}| + \log |x_{79}|$$

But: sparse recovery properties may not hold...

Degenerate High Correlation

Recall the example:

$$= \begin{bmatrix} 1 & 0 & \sqrt{.5} & 0 \\ 0 & 1 & \sqrt{.5} & 0 \\ \sqrt{.5} & \sqrt{.5} & 1 & & \\ & & \ddots & & \\ 0 & & & 1 & 0 \\ 0 & & & 1 \end{bmatrix}$$

Sparse recovery conditions false!

Summary of Challenges

Highly correlated features

Nonlinearity of log | · |

Need a recovery condition...

Log-Transform affects Data Covariance

3. Analysis

Restricted Eigenvalue Condition [Bickel, Ritov, & Tsybakov '09]

Restricted Eigenvalue RE(k)

$$\min_{v \in C} \frac{v^T X X^T v}{||v||_2^2} > \epsilon$$

"restricted strong convexity"

Note: $RE(k) \ge \lambda_{min}(XX^T)$

Ex:
$$S = \{3, 17, 44, 79\}$$

 $k = 4$

Restricted Eigenvalue Condition [Bickel, Ritov, & Tsybakov '09]

Restricted Eigenvalue RE(k)

$$\min_{v \in C} \frac{v^T X X^T v}{||v||_2^2} > \epsilon$$

"restricted strong convexity"

Note: $RE(k) \ge \lambda_{min}(XX^T)$

Sufficient to prove exact recovery for basis pursuit!

Ex:
$$S = \{3, 17, 44, 79\}$$

 $k = 4$

Cone restriction

$$C = \{v: ||v_S||_1 \ge ||v_{S^c}||_1\}$$
$$|S| = k$$

Sample Complexity Analysis

Exact Recovery for Basis Pursuit with high probability

with high probability

Sample Complexity Analysis

Population Transformed Eigenvalue

$$\lambda_{min}(1) > \epsilon > 0$$

Concentration of Restricted Eigenvalue

$$\lambda_{RE(k)}($$

Sample Complexity Bound:

$$m = \tilde{O}\left(\frac{k^2 \log 2k}{1 - \rho} \cdot \log^2 \frac{2p}{\delta}\right)$$

with ingli propability

Exact Recovery for Basis Pursuit with high probability

$$= \mathbb{E}[xx^T]$$

• Hermite expansion of log | · |:

•
$$l \ge 1$$
: $c_{2l}^2 \sim \frac{\sqrt{\pi}}{4} \cdot \frac{1}{l^{3/2}}$

off-diagonals decay fast!

• Apply λ_{min} to Hermite formula:

$$\lambda_{min}$$
 $\geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min}$ $(2l)$

• Apply Gershgorin Circle Theorem:

$$\lambda_{min} = (2l) \geq 1 - (p-1)\rho^{2l}$$
 (for large enough l)

$$= \mathbb{E}[xx^T]$$

• Hermite expansion of log | · |:

•
$$l \ge 1$$
: $c_{2l}^2 \sim \frac{\sqrt{\pi}}{4} \cdot \frac{1}{l^{3/2}}$

• 11 (21) off-diagonals decay fast!

$$= \mathbb{E}[xx^T]$$

• Hermite expansion of log | · |:

$$= c_0^2 1_{pxp} + \sum_{l=1}^{\infty} c_{2l}^2 \mathbf{1}^{(2l)}$$

•
$$l \ge 1$$
: $c_{2l}^2 \sim \frac{\sqrt{\pi}}{4} \cdot \frac{1}{l^{3/2}}$

• 1 off-diagonals decay fast!

Recursive Properties of Hermite Polynomials

+

Stirling Approximation

Note: $c_l = 0$ if l odd.

$$= \mathbb{E}[xx^T]$$

• Hermite expansion of log | · |:

•
$$l \ge 1$$
: $c_{2l}^2 \sim \frac{\sqrt{\pi}}{4} \cdot \frac{1}{l^{3/2}}$

• [12] off-diagonals decay fast!

$$= \mathbb{E}[xx^T]$$

• Apply λ_{min} to Hermite formula:

$$\lambda_{min}$$
 $\geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min}$ $(2l)$

Apply Gershgorin Circle Theorem:

$$\lambda_{min} = (2l) \ge 1 - (p-1)\rho^{2l}$$

(for large enough l)

$$= \mathbb{E}[\log|x|\log|x|^T]$$

$$= \mathbb{E}[xx^T]$$

• Apply
$$\lambda_{min}$$
 to Hermite formula:

$$= c_0^2 1_{pxp} + \sum_{l=1}^{\infty} c_{2l}^2 \mathbf{1}^{(2l)} \lambda_{min} \qquad \geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min} \mathbf{1}^{(2l)}$$

• Apply Gershgorin Circle Theorem:

$$\lambda_{min} \stackrel{(2l)}{\blacktriangleright} \geq 1 - (p-1)\rho^{2l}$$
(for large enough l)

$$= \mathbb{E}[xx^T]$$

• Apply λ_{min} to Hermite formula:

$$\lambda_{min}$$
 $\geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min} \sum_{l=1}^{(2l)}$

Apply Gershgorin Circle Theorem:

$$\lambda_{min} \sum_{l=1}^{(2l)} \geq 1 - (p-1)\rho^{2l}$$
 (for large enough l)

The Full, Ugly Bound

$$\lambda_{min}$$
 \geq

$$\sum_{l=1}^{\frac{\log(p-1)}{2\log(\rho^{-1})}} \frac{\lambda_{min} (2l)}{5l^{3/2}} + \frac{2}{5} \sqrt{\frac{2\log\rho^{-1}}{\log\frac{p-1}{\rho}} + \max\{2, \log(\rho^{-1})\}}$$

$$= \mathbb{E}[xx^T]$$

• Apply λ_{min} to Hermite formula:

$$\lambda_{min}$$
 $\geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min} \sum_{l=1}^{(2l)}$

Apply Gershgorin Circle Theorem:

$$\lambda_{min} \left[\frac{(2l)}{2} \ge 1 - (p-1)\rho^{2l} \right]$$
(for large enough l)

$$= \mathbb{E}[xx^T]$$

• Apply λ_{min} to Hermite formula:

$$\lambda_{min}$$
 $\geq \sum_{l=1}^{\infty} c_{2l}^2 \lambda_{min} \sum_{l=1}^{(2l)}$

Apply Gershgorin Circle Theorem:

$$\lambda_{min} \sum_{l=1}^{(2l)} \geq 1 - (p-1)\rho^{2l}$$
 (for large enough l)

Concentration of Restricted Eigenvalue

•
$$|\lambda_{RE(k)}(\widehat{\mathbf{L}}) - \lambda_{RE(k)}(\widehat{\mathbf{L}})| < k \cdot ||\widehat{\mathbf{L}} - \widehat{\mathbf{L}}||_{\infty}$$

- Follows from Holder's inequality and the Restricted Cone condition
- Log-transformed variables are sub-exponential

•
$$\max_{j,k \in [p]} \frac{1}{m} \sum_{i=1}^{m} Var\left(\log \left|x_j^{(i)}\right| \log \left|x_k^{(i)}\right|\right) \le C$$

- Elementwise ℓ_{∞} error concentrates
 - [Kuchibhotla & Chakrabortty '18]

$$= \mathbb{E}[\log|x|\log|x|^T]$$

Concentration of Elementwise ℓ_{∞} error

With probability at least $1 - 3e^{-t}$,

$$|| \mathbf{a} - \mathbf{a} \mathbf{b}||_{\infty}$$

$$\leq O\left(\sqrt{\frac{t + \log p}{m}} + \frac{(\log m)^2(t + \log p)^2}{m}\right)$$

[Kuchibhotla & Chakrabortty '18]

4. Conclusion

Recap

- Attribute-efficient algorithm for monomials
 - Prior (nonlinear) work: uncorrelated features
 - This work: allow highly correlated features
 - Works beyond multilinear monomials

Blessing of nonlinearity

Future Work

Rotations of product distributions

Additive noise

Sparse polynomials with correlated features

Thanks! Questions?