Signals and classifications

Signal: A signal is a function representing a physical quantity or variable, and typically contains information about the behavior or nature of the phenomenon.

Ex:

In an RC circuit, the signal can be the voltage across the capacitor or the current flowing through the register.

Mathematically, a signal is represented as a function of an independent variable t and is denoted by x(t).

System: It is a collection of components wherein individual components are constrained by the connecting inter-relationships such that the system as a whole fulfills some specific functions in response to varying demands.

Varying demand is a function of one or more parameters and is called the **signal**.

Ex: RC circuit as integrator or differentiator.

Continuous Time and Discrete Time signals

Continuous/Analog signal: A signal continuous in time taking continuous range of amplitude values, defined for all times.

Discrete/Digital signal: A discrete signal for which we only know values of the signal at discrete points in time.

A 1-dimensional **continuous** signal could for example be: $x(t) = \sin(2\pi f_0 t)$ where t represents the time.

A 1-dimensional **discrete** signal could for example be: $x[n] = \sin(2\pi f_0 n)$ where n represents the index 0, 1, 2, 3, ...

Representation of Signal

Mathematical/Functional

$$x[n] = \begin{cases} -3 & n = -2 \\ 2 & n = -1 \\ 0 & n = 0 \\ 3 & n = 1 \end{cases}$$
 or $x[n] = \begin{cases} 2^n & n \ge 0 \\ 0 & otherwise \end{cases}$

or
$$x[n] = \begin{cases} 2^n & n \ge 0 \\ 0 & otherwise \end{cases}$$

Sequence

$$x[n] = \begin{cases} -3 & -2 & 5 & 0 & -6 \\ & & \uparrow & \end{cases} \quad \text{or} \quad x[n] = \begin{cases} 2 & 3 & -1 & 2 \\ & \uparrow & \end{cases}$$

$$x[n] = \begin{cases} 2 & 3 & -1 & 2 \\ & \uparrow & & \end{cases}$$

Tabular

n	-3				
X[n]	-5	0	2	-2	9

Graphical

Types of signal

Elementary Signals:

- 1. Unit Impulse or Impulse Signal
- 2. Unit Step or Step signal
- 3. Ramp
- 4. Signum Function
- 5. Exponential

1. Unit Impulse or Impulse Signal

The unit impulse function, $\delta(t)$, is also known as Dirac Delta function. Consider a pulse occurring at t=0 of height $\frac{1}{4}$ and duration Δ as shown below

- $\delta(t)$ is defined as the limit of a suitably chosen conventional function having unity area over an small time interval.
- Mathematical Expression:

$$\bullet \quad \delta(t) = \begin{cases} 0, \ t \neq 0 \\ 1, \ t = 0 \end{cases}$$

$$\bullet \quad \delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

•
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

2. Unit Step or Step signal

A unit step function, u(t), is also known as Heaviside unit function.

Mathematical expression:

•
$$u(t) = \begin{cases} 0, t < 0 \\ 1, t > 0 \end{cases}$$

•
$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n > 0 \end{cases}$$

• The signal is discontinuous at t=0.

•
$$\int_{-\infty}^{\infty} \delta(t) dt = u(t)$$

•
$$\delta(t) = \frac{du(t)}{dt}$$

• Area under unit step is unity

3. Ramp

Ramp signal is denoted by r(t) or r[n].

Mathematical expression:

•
$$r(t) = \begin{cases} 0, t < 0 \\ t, t \ge 0 \end{cases}$$

•
$$r[n] = \begin{cases} 0, n < 0 \\ n, n \ge 0 \end{cases}$$

Area under unity ramp is unity

•
$$\int_{-\infty}^{\infty} u(t)dt = \int_{0}^{\infty} 1 dt = t = r(t)$$

•
$$u(t) = \frac{dr(t)}{dt}$$

4. Signum Function

Signum function is denoted as sgn(t).

Mathematical expression:

•
$$sgn(t) = \begin{cases} 1, & t > 0 \\ 0, & t = 0 \\ -1, & t < 0 \end{cases}$$

• $sgn(n) = \begin{cases} 1, & n > 0 \\ 0, & n = 0 \\ -1, & n < 0 \end{cases}$

•
$$sgn(n) = \begin{cases} 1, & n > 0 \\ 0, & n = 0 \\ -1, & n < 0 \end{cases}$$

•
$$sgn(t) = 2u(t) - 1$$

5. Exponential

Exponential signal is in the form of $x(t)=e^{\alpha t}$

The shape of exponential can be defined by α .

Case i: If $\alpha = 0 -> x(t) = e^0 = 1$

Case ii: If $\alpha < 0 \rightarrow x(t) = e^{-t}$. It is known as decaying exponential.

Case ii: If $\alpha > 0 \rightarrow (t) = e^t$. It is known as rising exponential.

