QUANTUM 4d GAUGE THEORY AND AN OUTLINE OF THE PROOF

BRIAN R. WILLIAMS

1. A RECOLLECTION OF *R*-MATRICES

1.1. **Warmup: braided monoidal categories.** Suppose that \mathcal{C} is an \mathcal{E}_2 , or braided, monoidal category. We have seen that we can view an \mathcal{E}_2 category as an \mathcal{E}_1 object in \mathcal{E}_1 monoidal (or just monoidal), categories

$$\mathfrak{C}\in Alg_{\epsilon_2}(\mathfrak{C}at)=Alg_{\epsilon_1}\left(Alg_{\epsilon_1}(\mathfrak{C}at)\right).$$

Concretely, this means that on \mathcal{C} we have two *compatible* tensor products \otimes , \boxtimes . Actually, \otimes , \boxtimes are naturally isomorphic

$$V \boxtimes W \cong (V \otimes 1) \boxtimes (1 \otimes W)$$
$$\cong (V \boxtimes 1) \otimes (1 \boxtimes W)$$
$$\cong V \otimes W.$$

All of the juice, therefore, is in the requirement that \otimes and \boxtimes are compatible. The most efficient way to encode this is to require that the bifunctor

$$\boxtimes : \mathfrak{C} \times \mathfrak{C} \to \mathfrak{C}$$

determined by \boxtimes is *monoidal*, where we view $\mathcal{C} \times \mathcal{C}, \mathcal{C}$ as monoidal categories via \otimes . Spelling out what this means boils down to requiring that there is a natural isomorphism

$$(V \otimes W) \otimes (V' \otimes W') \cong (V \otimes V') \otimes (W \otimes W')$$

for all objects V, V', W, W'. Setting V, W' = 1, we see that this isomorphism determines an isomorphism $\sigma_{W,V'}: W \otimes V' \to V' \otimes W$. The resulting structure $(\mathfrak{C}, \otimes, \sigma_{V,W})$ defines a *braided* monoidal category, where $\sigma_{V,W}$ are the braiding morphisms.

Conversely, given a braided monoidal category we can define

$$(V \otimes W) \otimes (V' \otimes W') \cong V \otimes (W \otimes V') \otimes W' \stackrel{\sigma_{W,V'}}{\cong} V \otimes (V' \otimes W) \otimes W' \cong (V \otimes V') \otimes (W \otimes W').$$

In other words, a braided monoidal category determines a monoidal structure on the bifunctor $(V, W) \mapsto V \otimes W$, and vice-versa.

1.2. **Drinfeld's rational** R**-matrix.** Recall that there is a \mathbb{C}^{\times} -action on $Y(\mathfrak{g})$. We define λ to have \mathbb{C}^{\times} -weight 1.

Theorem 1.1 ([?]). There is a unique element

$$R(\lambda) \in Y(\mathfrak{g}) \widehat{\otimes}_{\mathbb{C}[[\hbar]]} Y(\mathfrak{g}) \widehat{\otimes} \mathbb{C}((\lambda))$$

satisfying:

- (1) (\mathbb{C}^{\times} -invariance) $R(\lambda)$ is \mathbb{C}^{\times} -invariant.
- (2) (Translation equivariance) For all $a \in Y(\mathfrak{g})$

$$(T_{\lambda} \otimes T_0)\sigma\Delta(a) = R(\lambda)((T_{\lambda} \otimes T_0)\Delta(a))R(\lambda)^{-1} \in R(\lambda) \in Y(\mathfrak{g}) \widehat{\otimes}_{\mathbb{C}[[\hbar]]}Y(\mathfrak{g})\widehat{\otimes}\mathbb{C}((\lambda)).$$

(3) (??)
$$(\Delta \otimes 1)R(\lambda) = R_{13}(\lambda)R_{23}(\lambda)$$
 and $(1 \otimes \Delta)R(\lambda)$.

Remark 1.2. The *R*-matrix $R(\lambda)$ satisfies the Yang-Baxter equation with spectral parameter. This equation follows from the three listed properties in the theorem.

1.3. **Interpreting the spectral** *R***-matrix.** Our goal in this section is to interpret the *R*-matrix conditions in Theorem 1.1 in a more categorical way. The running example we should keep in mind from Section ?? is that to give a braided monoidal structure is equivalent to prescribing monoidality of the tensor product bifunctor. We will see something similar in the case of the *R*-matrix: the data of a rational *R*-matrix is equivalent to the monoidality of a certain functor. See Theorem BW: ref

For the remainder of this section, the category $\operatorname{Mod}_{Y(g)}^{fin}$ denotes the category of (non dg) $Y(\mathfrak{g})$ -modules that are free and finite dimensional as $\mathbb{C}[[\hbar]]$ -modules.

Definition 1.3. If $V \in \operatorname{Mod}_{\Upsilon(g)}^{fin}$, define the $\Upsilon(\mathfrak{g})((\lambda))$ -module

$$T_{\lambda}V = V \otimes_{\Upsilon(\mathfrak{g})} \Upsilon(\mathfrak{g})((\lambda)).$$

In the definition, we use the Hopf algebra homomorphism $T_{\lambda}: Y(\mathfrak{g}) \to Y(\mathfrak{g})((\lambda)) = Y(\mathfrak{g}) \widehat{\otimes} \mathbb{C}((\lambda))$. Similarly, define the $Y(\mathfrak{g})((\lambda))$ -module

$$T_0V = V \widehat{\otimes} \mathbb{C}((\lambda)) = V((\lambda))$$

as the induction of V along the embedding of Hopf algebras $T_0: Y(\mathfrak{g}) \to Y(\mathfrak{g})((\lambda))$, $a \mapsto a \otimes 1$.

With this notation in place, we can define the following functor that will be relevant for the remainder of the section. Define

(1)
$$F_{\lambda}: \operatorname{Mod}_{\Upsilon(g)}^{fin} \times \operatorname{Mod}_{\Upsilon(g)}^{fin} \to \operatorname{Mod}_{\Upsilon(g)}((\lambda))$$

on objects by $(V, W) \mapsto T_0 V \otimes T_{\lambda} W$. Similarly, we have the functor

$$F_{\lambda}': \operatorname{Mod}_{\Upsilon(g)}^{fin} \times \operatorname{Mod}_{\Upsilon(g)}^{fin} \to \operatorname{Mod}_{\Upsilon(\mathfrak{g})}((\lambda))$$

defined on objects by $(V, W) \mapsto T_{\lambda}V \otimes T_{0}W$.

Construction 1.4. Suppose $S(\lambda) \in Y(\mathfrak{g}) \otimes Y(\mathfrak{g})((\lambda))$ is any element, and fix $V, W \in \operatorname{Mod}_{Y(\mathfrak{g})}^{fin}$. Note that $V \otimes W = V \otimes_{\mathbb{C}[[\hbar]]} W$ is a module for the Hopf algebra $Y(\mathfrak{g}) \otimes Y(\mathfrak{g})$. Multiplication by $S(\lambda)$ on $V \otimes W((\lambda))$ defines an endomorphism

$$S_{V,W} \in \operatorname{End}_{\mathbb{C}((\lambda))}(V \otimes W((\lambda))).$$

Note that for this endomorphism to be well-defined, we needed V, W to be finite rank as $\mathbb{C}[[\hbar]]$ -modules.

Lemma 1.5. Suppose $S(\lambda) \in Y(\mathfrak{g}) \otimes Y(\mathfrak{g})((\lambda))$ satisfies condition (3) of Theorem 1.1. Then, $S(\lambda)$ defines a natural transformation of functors

$$\eta_S: F_\lambda \xrightarrow{\cong} F'_\lambda \circ \sigma$$

via the formula

$$\eta_S(V,W) = \sigma \circ S_{V,W} : T_0V \otimes T_\lambda W \to T_\lambda W \otimes T_0V.$$

Lemma 1.6. Suppose $S(\lambda) \in Y(\mathfrak{g}) \otimes Y(\mathfrak{g})((\lambda))$ satisfies condition (2) of Theorem 1.1. Then, for all $V_1, V_2, V_3 \in \operatorname{Mod}_{Y(\mathfrak{g})}^{fin}$ the following diagrams commute

We need one last technical lemma before proceeding. Suppose that \mathcal{C} , \mathcal{D} are monoidal categories. We view the tensor products $\otimes_{\mathcal{C}}$, $\otimes_{\mathcal{D}}$ as bifunctors

$$\otimes_{\mathfrak{C}}: \mathfrak{C} \times \mathfrak{C} \to \mathfrak{C}$$
 , $\otimes_{\mathfrak{D}}: \mathfrak{D} \times \mathfrak{D} \to \mathfrak{D}$.

Suppose that $G: \mathcal{C} \to \mathcal{D}$ a functor. A natural transformation making G a monoidal functor is the data of a natural transformation of functors $\mathcal{C} \times \mathcal{C} \to \mathcal{D}$

$$\eta: G \circ \otimes_{\mathfrak{C}} \xrightarrow{\cong} \otimes_{\mathfrak{D}} \circ (G \times G).$$

In other words, we have isomorphisms $G(c \otimes_{\mathbb{C}} c') \cong G(c) \otimes_{\mathbb{D}} G(c')$ that are natural in $c, c' \in \mathbb{C}$.

Lemma 1.7. Let F_{λ} be the functor from Equation (1). Then, the data of a natural transformation making F a monoidal functor is equivalent to the data of a natural transformation

$$\eta: F_{\lambda} \xrightarrow{\cong} F'_{\lambda} \circ \sigma$$

such that the diagrams (??) and (??) commute.

We can summarize a consequence of the above lemmas in the following way.

Theorem 1.8. Drinfeld's R-matrix $R(\lambda)$ gives rise to a natural transformation η_R , as in Lemma 1.5, making the functor

$$F_{\lambda}: \operatorname{Mod}_{Y(g)}^{fin} \times \operatorname{Mod}_{Y(g)}^{fin} \to \operatorname{Mod}_{Y(\mathfrak{g})((\lambda))}.$$

monoidal.

1.4. A variation for comodules. Define

$$F_{\lambda}^{\text{comod}}: \text{Comod}_{Y^*(\mathfrak{g})} \times \text{Comod}_{Y^*(\mathfrak{g})} \to \text{Comod}_{Y^*(\mathfrak{g})}((\lambda))$$
 by $(V, W) \mapsto T_{\lambda}V \otimes T_0W$.

Theorem 1.9. *The following pieces of data are equivalent:*

(1) An R-matrix with spectral parameter

$$R(\lambda) \in F^0(Y(\mathfrak{g}) \otimes Y(\mathfrak{g}))((\lambda))$$

satisfying (1),(2), and (3) of Theorem 1.1.

(2) The data of a natural transformation making F_{λ} a monoidal functor.

When such an $R(\lambda)$ is given, we will denote by F_R or $F_{R(\lambda)}$ the associated monoidal functor.

2. THE OPE

2.1. The main result.

Theorem 2.1 ([?]). There is a natural equivalence of monoidal functors $Comod_{Y^*(\mathfrak{g})} \times Comod_{Y^*(\mathfrak{g})} \to Comod_{Y^*(\mathfrak{g})}((\lambda))$

$$F_{OPE} \cong F_{R(\lambda)}$$

where $F(R(\lambda))$ is the monoidal functor corresponding to Drinfeld's R-matrix as in Theorem 1.9.