Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 1 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант 25

Виконав студент: ІП-15 Поліщук Валерій Олександрович (шифр, прізвище, ім'я, по батькові)

Перевірив:	
------------	--

(прізвище, ім'я, по батькові)

Київ 2021

Лабораторна робота №1

Дослідження лінійних алгоритмів

Варіант 25

Мета — дослідити лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції, набути практичних навичок їх використання під час складання лінійних програмних специфікацій.

Постановка задачі

Знайти периметр та площу довільного трикутника за координатами його вершин.

Математична модель

Змінна	Тип	Ім'я	Призначення	
Значення координати х	Дійсне	Ax	Вхідні дані	
першої точки (А)				
Значення координати у	Дійсне	Ay	Вхідні дані	
першої точки (А)				
Значення координати х	Дійсне	Bx	Вхідні дані	
другої точки (В)				
Значення координати у	Дійсне	By	Вхідні дані	
другої точки (В)				
Значення координати х	Дійсне	Cx	Вхідні дані	
третьої точки (С)				
Значення координати у	Дійсне	Су	Вхідні дані	
третьої точки (C)				
Периметр трикутника	Дійсне	P	Результат, вихідні дані	
Пиомо тами	Дійсне	S	Результат, вихідні дані	
Площа трикутника	Діисне	3	гезультат, вихідні дані	
Довжина сторони АВ	Дійсне	AB	Проміжні дані	
T DG	т.и	D.C.		
Довжина сторони ВС	Дійсне	BC	Проміжні дані	
Довжина сторони АС	Дійсне	AC	Проміжні дані	
, ,	F 3		1	

Довжину сторін знаходимо за формулою $V((x_b - x_a)^2 + (y_b - y_a)^2)$, а площу — за формулою Герона.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо процес обчислення довжин сторін трикутника.

Крок 3. Деталізуємо процес знаходження периметра Р трикутника.

Крок 4. Деталізуємо процес знаходження площі S трикутника.

Псевдокод

Крок 1

початок

```
введення Ах, Ау, Вх, Ву, Сх, Су

<u>обчислення довжин сторін АВ, ВС, АС</u>

обчислення периметра Р трикутника

обчислення площі S трикутника
```

кінець

Крок 2

початок

```
введення Ax, Ay, Bx, By, Cx, Cy
AB:=sqrt(sqr(Bx - Ax) + sqr(By - Ay))
BC:=sqrt(sqr(Cx - Bx) + sqr(Cy - By))
AC:=sqrt(sqr(Cx - Ax) + sqr(Cy - Ay))
обчислення периметра Р трикутника
обчислення площі S трикутника
```

кінець

Крок 3

початок

кінець

Крок 4

початок

кінець

Блок-схема

Кінець

Кінець

Випробування алгоритму

Блок	Дія
	Початок
1	Введення: Ах=1, Ау=1, Вх=1, Ву=6, Сх=5, Су=1
2	AB:= $sqrt(sqr(1 - 1) + sqr(6 - 1)) = 5$ BC:= $sqrt(sqr(5 - 1) + sqr(1 - 6)) \approx 6,4$ AC:= $sqrt(sqr(5 - 1) + sqr(1 - 1)) = 4$
3	P:=5+6,4+4=15,4
4	S:= $sqrt(7,7*(7,7-5)*(7,7-6,4)*(7,7-4))\approx 10$
5	Вивід:15,4; 10
	Кінець

Висновки

Я дослідив лінійні програмні специфікації для подання перетворювальних операторів та операторів суперпозиції та набув практичних навичок їх використання під час складання лінійних програмних специфікацій.