Test report No. : 10028281S-A Page : 15 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# **APPENDIX 2:** SAR Measurement data

### **Appendix 2-1: Evaluation procedure**

The SAR evaluation was performed with the following procedure:

- **Step 1:** Measurement of the E-field at a fixed location above the central position of flat phantom was used as a reference value for assessing the power drop.
- **Step 2:** The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and suitable horizontal grid spacing of EUT. Based on these data, the area of the maximum absorption was determined by splines interpolation.
- **Step 3:** Around this point found in the Step 2 (area scan), a volume of more than or equal to 28mm(X axis)×28mm(Y axis)×24mm (Z axis) was assessed by measuring 8×8×7 (ratio step method (\*1)) points (or more) for 3-6GHz frequency band.
  - Any additional peaks found in the Step2 which are within 2dB of limit are repeated with this Step3 (Zoom scan). On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:
  - (1) The data at the surface were extrapolated, since the center of the dipoles is 1mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 2mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
  - (2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points  $(10\times10\times10)$  were interpolated to calculate the average.
  - (3) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- Step 4: Re-measurement of the E-field at the same location as in Step 1 for the assessment of the power drift.
- **Step 5**: Repeat Step 1-Step 4 with other condition or/and setup of EUT.

<sup>\*1.</sup> Ratio step method parameters used; the first measurement point: "1.4mm" from the phantom surface, the initial grid separation: "1.4mm", subsequent graded grid ratio: "1.4". These parameters comply with the requirement of the KDB 865664 D01 and recommended by Schmid & Partner Engineering AG (DASY5 manual).

Test report No.: 10028281S-A
Page: 16 of 56
Issued date: August 21, 2013

FCC ID : W2Z-01000005

# Appendix 2-2: SAR measurement data

# Step 1: Changed channels and operation mode

# Step 1-1 [Antenna #0(SISO)] Front (Patient side)&touch, 11a(6Mbps), 5180MHz(36ch)

# EUT: X-ray imaging system with wireless LAN; Type: DR-ID 911SE; Serial: H121014

(RF module) Type: SX-PCEAN(FF); Serial: 4E3F15

Communication System: IEEE 802.11a(6Mbps, BPSK/OFDM); Frequency: 5180 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5180 MHz;  $\sigma$  = 5.455 S/m;  $\epsilon_r$  = 47.37;  $\rho$  = 1000 kg/m³

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19;

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z=1.0, 25.0, 136.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

### 911se,body(patient)-touch/m52-1,ant0:frt(patient)&touch(d0mm),11a(6m),m5180/

Area Scan:90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.735 W/kg

Area Scan:90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.753 W/kg

Z Scan:135,5 (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.902 W/kg

Fast SAR (\*Polynomial): SAR(1 g) = 0.230 mW/g;

Zoom:xy28/z24,ratio1.4 (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 14.330 V/m; Power Drift = -0.20 dB, Maximum value of SAR (measured) = 0.894 W/kg

Peak SAR (extrapolated) = 1.736 mW/g

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.083 mW/g





Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

\*.liquid depth: 129mm; Position: distance of EUT to phantom: 0mm (2mm to liquid); ambient: 24.5 deg.C. ± < 1 deg.C. / 50 ± 5 %RH,

\*!liquid temperature: 23.9(start)/23.8(end)/24.2(in check) deg.C.; \*.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 10028281S-A Page : 17 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 2-2: SAR measurement data (cont'd)

Step 1: Changed channels and operation mode (cont'd)

# Step 1-2 [Antenna #1(SISO)] Front (Patient side)&touch, 11a(6Mbps), 5180MHz(36ch)

# EUT: X-ray imaging system with wireless LAN; Type: DR-ID 911SE; Serial: H121014

(RF module) Type: SX-PCEAN(FF); Serial: 4E3F15

Communication System: IEEE 802.11a(6Mbps, BPSK/OFDM); Frequency: 5180 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5180 MHz;  $\sigma = 5.455$  S/m;  $\epsilon_r = 47.37$ ;  $\rho = 1000$  kg/m Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19;

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 136.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

# 911se,body(patient)-touch/m52-2,ant1:frt(patient)&touch(d0mm),11a(6m),m5180/

Area Scan:90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.285 W/kg Area Scan:90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.298 W/kg Z Scan:135,5 (1x1x28): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 0.977 W/kg Fast SAR(\*.Polynomial): SAR(1 g) = 0.091 mW/g;

**Zoom:xy28/z24,ratio1.4 (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 9.732 V/m; Power Drift = 0.20 dB, Maximum value of SAR (measured) = 0.781 W/kg

Peak SAR (extrapolated) = 1.961 mW/g

SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.054 mW/g





Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- \*.liquid depth: 129mm; Position: distance of EUT to phantom: 0mm (2mm to liquid); ambient: 24.5 deg.C.  $\pm$ <1 deg.C. /50  $\pm$ 5 %RH,
- \*.liquid temperature: 23.8(start)/23.8(end)/24.2(in check) deg C.; \*.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 10028281S-A Page : 18 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 2-2: SAR measurement data (cont'd)

Step 1: Changed channels and operation mode (cont'd)

# Step 1-3 [Antenna #0(SISO)] Front (Patient side)&touch, 11a(6Mbps), 5240MHz(48ch)

# EUT: X-ray imaging system with wireless LAN; Type: DR-ID 911SE; Serial: H121014

(RF module) Type: SX-PCEAN(FF); Serial: 4E3F15

Communication System: IEEE 802.11a(6Mbps, BPSK/OFDM); Frequency: 5240 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5240 MHz;  $\sigma = 5.53$  S/m;  $\epsilon_r = 47.35$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19;

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

### 911se,body(patient)-touch/m52-4,ant0:frt(patient)&touch(d0mm),11a(6m),m5240/

Area Scan:90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.446 W/kg Area Scan:90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.526 W/kg Fast SAR: SAR(1 g) = 0.161 mW/g;

Zoom:xy28/z24,ratio1.4 (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 12.596 V/m; Power Drift = 0.05 dB, Maximum value of SAR (measured) = 0.760 W/kg

Peak SAR (extrapolated) = 1.440 mW/g

SAR(1 g) = 0.252 mW/g; SAR(10 g) = 0.077 mW/g





Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

- \*.liquid depth: 129mm; Position: distance of EUT to phantom: 0mm (2mm to liquid); ambient:  $24.5 \, \text{deg.C.} \pm < 1 \, \text{deg.C.} / 50 \pm 5 \, \% RH$ ,
- \*.liquid temperature: 23.8(start)23.8(end)/24.2(in check) deg.C.; \*.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 10028281S-A Page : 19 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 2-2: SAR measurement data (cont'd)

Step 1: Changed channels and operation mode (cont'd)

# Step 1-4 [Antenna #1(SISO)] Front (Patient side)&touch, 11a(6Mbps), 5240MHz(48ch)

# EUT: X-ray imaging system with wireless LAN; Type: DR-ID 911SE; Serial: H121014

(RF module) Type: SX-PCEAN(FF); Serial: 4E3F15

Communication System: IEEE 802.11a(6Mbps, BPSK/OFDM); Frequency: 5240 MHz; Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5240 MHz;  $\sigma = 5.53$  S/m;  $\epsilon_r = 47.35$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19;

-Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

-DASY52 52.8.2(969); SEMCAD X 14.6.6(6824)

### 911se,body(patient)-touch/m52-5,ant1:frt(patient)&touch(d0mm),11a(6m),m5240/

Area Scan:90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.271 W/kg Area Scan:90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.286 W/kg Fast SAR: SAR(1 g) = 0.073 mW/g;

Zoom:xy28/z24,ratio1.4 (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 8.978 V/m; Power Drift = -0.19 dB, Maximum value of SAR (measured) = 0.379 W/kg

Peak SAR (extrapolated) = 0.783 mW/g

SAR(1 g) = 0.109 mW/g; SAR(10 g) = 0.036 mW/g





Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No.7 shielded room,

<sup>\*.</sup>liquid depth: 129mm; Position: distance of EUT to phantom: 0mm (2mm to liquid); ambient:  $24.5 \, \text{deg.C.} \pm < 1 \, \text{deg.C.} / 50 \pm 5 \, \%$ RH,

<sup>\*.</sup>liquid temperature: 23.8(start)/23.8(end)/24.2(in check) deg.C.; \*.White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No.: 10028281S-A : 20 of 56 Page Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 2-2: SAR measurement data (cont'd)

Changed channels and operation mode (cont'd) Step 1:

# [Antenna #0+#1(MIMO)] Front (Patient side)&touch, 11n(40HT)(MCS8), 5230MHz(46ch)

### EUT: X-ray imaging system with wireless LAN; Type: DR-ID 911SE; Serial: H121014

(RF module) Type: SX-PCEAN(FF); Serial: 4E3F15

Communication System: IEEE 802.11n(40HT)(MCS8, BPSK/OFDM); Frequency: 5230 MHz, Crest Factor: 1.0 Medium: MSL5800; Medium parameters used: f = 5230 MHz;  $\sigma = 5.501 \text{ S/m}$ ;  $\epsilon_r = 47.33$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19; -DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17 -Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

### (Ant#0)911se,body(patient)-touch/m52-3,ant0+1(mimo):frt(patient)&touch(d0mm),n40(ht8),m5230/

Area Scan(ant0):90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.469 W/kg Area Scan(ant0):90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dv=1.000 mm; Maximum value of SAR (interpolated) = 0.485 W/kg Fast SAR: SAR(1 g) = 0.149 mW/g;

**Zoom(ant#0):xy28/z24,ratio1.4 (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 11.273 V/m; Power Drift = -0.08 dB, Maximum value of SAR (measured) = 0.579 W/kg

Peak SAR (extrapolated) = 1.112 mW/g

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.064 mW/g

(Ant#1) 911se,body(patient)-touch/m52-3,ant0+1(mimo):frt(patient)&touch(d0mm),n40(ht8),m5230/

Area Scan(ant1):90x100,10 (10x11x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.125 W/kg Area Scan(ant1):90x100,10 (91x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 0.130 W/kg Fast SAR: SAR(1 g) = 0.041 mW/g;

Zoom(ant#1):xy28/z24,ratio1.4 (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 11.273 V/m; Power Drift = -0.08 dB, Maximum value of SAR (measured) = 0.298 W/kg

Peak SAR (extrapolated) = 0.736 mW/g

SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.032 mW/g





Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,

\*.liquid depth: 129mm; Position: distance of EUT to phantom: 0mm (2mm to liquid); ambient: 24.5 deg.C.  $\pm$  < 1 deg.C.  $\pm$  < 0.0 ± 5 %RH,

\*!liquid temperature: 23.8(start)/23.8(end)/24.2(in check) deg.C.; \*White cubic: zoom scan area, Red cubic: big=SAR(10g)/small=SAR(1g)

Test report No. : 10028281S-A Page : 21 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

# **APPENDIX 3:** Test instruments

# Appendix 3-1: Equipment used

| Control No.           | Instrument                                       | Manufacturer                     | Model No                                       | Serial No           | Test Item   | Calibration Date * Interval(month)           |
|-----------------------|--------------------------------------------------|----------------------------------|------------------------------------------------|---------------------|-------------|----------------------------------------------|
| COTS-SSAR-0           | DASY52                                           | Schmid&Partner<br>Engineering AG | DASY52 V8.2 B969                               | -                   | SAR         | -                                            |
| COTS-KSEP-0           | Dielectric measurement                           | Agilent                          | 85070                                          | 1                   | SAR         | -                                            |
| SSAR-02               | SAR measurement system                           | Schmid&Partner<br>Engineering AG | DASY5                                          | 1324                | SAR         | Pre Check                                    |
| SSRBT-02              | SAR robot                                        | Schmid&Partner<br>Engineering AG | TX60 Lspeag                                    | F12/5L2QA1/A<br>/01 | SAR         | 2012/09/24 * 12                              |
| KDAE-R01              | Data Acquisition<br>Electronics                  | Schmid&Partner<br>Engineering AG | DAE4                                           | 518                 | SAR         | 2012/10/18 * 12                              |
| KPB-R02               | Dosimetric E-Field<br>Probe                      | Schmid&Partner<br>Engineering AG | EX3DV4                                         | 3540                | SAR         | 2012/07/19 * 12                              |
| KSDA-02               | Dipole Antenna                                   | Schmid&Partner<br>Engineering AG | D5GHzV2                                        | 1070                | SAR(daily)  | 2013/03/14 * 12                              |
| KPFL-01               | Flat Phantom                                     | Schmid&Partner<br>Engineering AG | Oval flat phantom<br>ELI 4.0                   | 1059                | SAR         | 2012/10/31 * 12                              |
| SSNA-01               | Network Analyzer                                 | Agilent                          | 8753ES                                         | US39171777          | SAR         | 2012/12/29 * 12                              |
| KEPP-01               | Dielectric probe                                 | Agilent                          | 85070E/8710-2036                               | 2540                | SAR         | 2013/03/05 * 12                              |
| SSG-03                | Signal Generator                                 | Agilent                          | N5181 A                                        | MY48181119          | SAR(daily)  | 2013/01/30 * 12                              |
| KPA-12                | RF Power Amplifier                               | MILMEGA                          | AS2560-50                                      | 1018582             | SAR(daily)  | Pre Check                                    |
| KCPL-07               | Directional Coupler                              | Pulsar Microwave Corp.           | CCS30-B26                                      | 0621                | SAR(daily)  | Pre Check                                    |
| KPM-06                | Power Meter                                      | Rohde & Schwarz                  | NRVD                                           | 101599              | SAR(daily)  | 2012/09/13 * 12                              |
| KIU-08                | Power sensor                                     | Rohde & Schwarz                  | NRV-Z4                                         | 100372              | SAR(daily)  | 2012/09/13 * 12                              |
| KIU-09                | Power sensor                                     | Rohde & Schwarz                  | NRV-Z4                                         | 100371              | SAR(daily)  | 2012/09/13 * 12                              |
| KAT10-P1              | Attenuator                                       | Weinschel                        | 24-10-34                                       | BY5927              | SAR(daily)  | 2013/02/27 * 12                              |
| KPM-05                | Power meter                                      | Agilent                          | E4417A                                         | GB41290718          | SAR(daily)  | 2013/04/18 * 12                              |
| KPSS-01               | Power sensor                                     | Agilent                          | E9327A                                         | US40440544          | SAR(daily)  | 2013/04/18 * 12                              |
| SAT20-SAR1            | Attenuator                                       | TME                              | SFA-01AXPJ-20                                  | _                   | SAR(daily)  | 2013/04/05 * 12                              |
| KRU-01                | Ruler(300mm)                                     | Shinwa                           | 13134                                          | _                   | SAR(daily)  | 2013/04/05 * 12                              |
| KRU-02                | Ruler(150mm,L)                                   | Shinwa                           | 12103                                          | _                   | SAR         | 2013/03/25 * 12                              |
| KRU-04                | Ruler(300mm)                                     | Shinwa                           | 13134                                          | _                   | SAR(daily)  |                                              |
| KRU-05                | Ruler(100x50mm,L)                                | Shinwa                           | 12101                                          |                     | SAR (dally) | 2013/05/27 * 12                              |
| KOS-13                | Digtal thermometer                               | HANNA                            |                                                | KOS-13              | SAR         | 2013/05/27 * 12                              |
| KOS-13                |                                                  | SATO KEIRYOKI                    | Checktemp-2                                    | 015246/08169        | SAR         | 2013/01/31 * 12                              |
| KUS-14                | Thermo-Hygrometer<br>data logger                 | SATO KEIRYOKI                    | SK-L200THII $\alpha$ /<br>SK-LTHII $\alpha$ -2 | 015246/08169        | SAR         | 2013/01/31 * 12                              |
| SOS-11                | Humidity Indicator                               | A&D                              | AD-5681                                        | 4063424             | SAR         | 2013/02/27 * 12                              |
| SSA-04                | Spectrum Analyzer                                | Advantest                        | R3272                                          | 101100994           | SAR(moni.)  | 2012/12/17 * 12                              |
| KPM-08                | Power meter                                      | Anritsu                          | ML2495A                                        | 6K00003356          | Ant.pwr     | 2012/09/14 * 12                              |
| KPSS-04               | Power sensor                                     | Anritsu                          | MA2411B                                        | 012088              | Ant.pwr     | 2012/09/14 * 12                              |
| KAT10-S3              | Attenuator                                       | Agilent                          | 8490D 010                                      | 50924               | Ant.pwr     | 2013/02/19 * 12                              |
| KCC-D22               | Microwave Cable                                  | Hirose Electric                  | U.FL-2LP-066J1-<br>A-(200)                     | -                   | Ant.pwr     | Pre Check                                    |
| KCC-D23               | Microwave cable                                  | Hirose Electric                  | U.FL-2LP-066J1-<br>A-(200)                     | -                   | Ant.pwr     | Pre Check                                    |
| KTM-G1                | Terminator                                       | Hirose Electric                  | HRM-TMP-05(40)                                 | -                   | Ant.pwr     | -                                            |
| KSA-08                | Spectrum Analyzer                                | Agilent                          | E4446A                                         | MY46180525          | Ant.pwr     | 2013/03/04 * 12                              |
| SWTR-03               | DI water                                         | MonotaRo                         | 34557433                                       | -                   | SAR(daily)  | Pre Check                                    |
| KSLM580-02            | Tissue simulation liqud<br>(5800MHz,body)        | Schmid&Partner<br>Engineering AG | SL AAM 501 AB                                  | 110520-3            | SAR         | Daily check)<br>Target value ±5%             |
| No.7<br>Shielded room | SAR shielded room<br>(2.76m(W)x3.76m(D)x2.4m(H)) | TDK                              | -                                              | -                   | SAR         | (Daily check)<br>Ambient noise:<br>< 12mW/kg |

The expiration date of calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

[Test Item] SAR: Specific Absorption Rate, Ant.pwr: Antenna terminal conducted power

Test report No. : 10028281S-A Page : 22 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

### **Appendix 3-2: Configuration and peripherals**

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot), which positions the probes with a positional repeatability of better than  $\pm$  0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetry probes EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.



The DASY5 system for performing compliance tests consist of the following items:

- A standard high precision 6-axis robot (Stäubli TX/RX family) with controller, teach pendant and software.
- An arm extension for accommodating the data acquisition electronics (DAE).
- 2 An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements,
- 3 mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- 6 The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- 7 A computer running Win7 professional operating system and the DASY5 software.
- 8 R Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- 9 The phantom.
- 10 The device holder for EUT. (low-loss dielectric palette) (\*. when it was used.)
- 11 Tissue simulating liquid mixed according to the given recipes.
- 12 Validation dipole kits allowing to validate the proper functioning of the system.

Test report No.: 10028281S-A Page: 23 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

### **Appendix 3-3:** Test system specification

TX60 Lsepag robot/CS8Csepag-TX60 robot controller

•Number of Axes : 6 •Repeatability : ±0.02mm

Manufacture : Stäubli Unimation Corp.

**DASY5** Measurement server

• Features : The DASY5 measurement server is based on a PC/104 CPU board with a

400MHz intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected

to the PC/104 bus of the CPU board.

Calibration : No calibration required.

•Manufacture : Schmid & Partner Engineering AG

Data Acquisition Electronic (DAE)

• Features : Signal amplifier, multiplexer, A/D converter and control logic.

Serial optical link for communication with DASY5 embedded system (fully remote controlled). 2 step probe touch detector for mechanical surface

detection and emergency robot stop (not in -R version)

•Measurement Range :  $1\mu V$  to > 200 mV (16bit resolution and 2 range settings: 4 mV, 400 mV)

•Input Offset voltage :  $< 1\mu V$  (with auto zero)

•Input Resistance :  $200\text{M}\Omega$ 

Battery Power
 Manufacture
 Schmid & Partner Engineering AG

Electro-Optical Converter (EOC61)

Manufacture : Schmid & Partner Engineering AG

Light Beam Switch (LB5/80)

•Manufacture : Schmid & Partner Engineering AG

SAR measurement software

•Item : Dosimetric Assessment System DASY5

•Software version : DASY52, V8.2 B969

•Manufacture : Schmid & Partner Engineering AG

E-Field Probe

•Model : EX3DV4 (serial number: 3540)

Symmetrical design with triangular core.

Built-in shielding against static charges.

PEEK enclosure material (resistant to organic solvents, e.g., DGBE).

•Frequency : 10MHz to 6GHz, Linearity: ±0.2 dB (30MHz to 6GHz)

•Conversion Factors : 750, 835, 900, 1750, 1810, 1900, 2000, 2450, 2600, 5200, 5300, 5500, 5600,

5800MHz (Head and Body)

•Directivity : ±0.3 dB in HSL (rotation around probe axis)

 $\pm 0.5$  dB in tissue material (rotation normal to probe axis)  $10\mu \text{W/g}$  to > 100 mW/g; Linearity:  $\pm 0.2$  dB (noise: typically  $< 1\mu \text{W/g}$ )

•Dynamic Range
•Dimension
• 10μW/g to > 100 mW/g; Linearity
•Dimension
• Overall length: 330mm (Tip: 20mm)

Tip diameter: 2.5mm (Body: 12mm)

Typical distance from probe tip to dipole centers: 1mm

• Application : High precision dosimetric measurement in any exposure scenario (e.g., very strong gradient

fields). Only probe which enables compliance testing for frequencies up to 6GHz with precision

of better 30%.

•Manufacture : Schmid & Partner Engineering AG

Phantom

•Type : <u>ELI 4.0 oval flat phantom</u>

Shell Material
 Fiberglass
 Shell Thickness
 Bottom plate: 2 ±0.2mm
 Dimensions
 Bottom elliptical: 600×400mm, Depth: 190mm (Volume: Approx. 30 liters)

Manufacture : Schmid & Partner Engineering AG

**Device Holder** 

□ Urethane foam

KSDH-01: In combination with the ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Transmitter devices can be easily and accurately positioned. The low-loss dielectric urethane foam was used for the mounting section of device holder.

•Material: POM •Manufacture: Schmid & Partner Engineering AG











Test report No. : 10028281S-A Page : 24 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 3-4: Simulated tissue composition and parameter confirmation

| Liquid type                         | Body, MBBL 3500-5800V5        |
|-------------------------------------|-------------------------------|
| M/N / Control No.                   | SL AAM 501 AB / KSLM580-02    |
| Ingredient                          | Mixture (%)                   |
| Water                               | 60-80 %                       |
| C8H18O3 (DGBE)                      | 20-40 %                       |
| (Diethylene glycol monobutyl ether) | 20 40 70                      |
| NaCl                                | 0-1.5 %                       |
| Manufacture                         | Schmid&Partner Engineering AG |

\*. The dielectric parameters were checked prior to assessment using the 85070E dielectric probe kit.

|                       |         |          |          | Die        | electri | c parar | neter measurei            | ment re | sults (B  | ody tissu | e)        |           |      |           |      |
|-----------------------|---------|----------|----------|------------|---------|---------|---------------------------|---------|-----------|-----------|-----------|-----------|------|-----------|------|
| From Ambient Liq.T.[d |         | deg.C.]  | Liquid   | Parameters | Targe   | t value |                           | ΔSAR    | Deviation | Limit     | Deviation | Limit     |      |           |      |
| Date                  | Freq.   | Temp     | Humidity | Before     | After   | Depth   | Relative permittivity: Er | #1:Std. | #2:Cal.   | Measured  | (1g) [%]  | for#1     | [%]  | for #2    | [%]  |
|                       | [MITIZ] | [deg.C.] | [%RH]    | Delore     | Aiter   | [mm]    | Conductivity: σ           | (*1)    | (*2)      |           | (*3)      | (Std.)[%] | [70] | (Cal.)[%] | (*2) |
| July 5,               | 5200    | 24.3     | 57       | 24.2       | 24.2    | (129)   | er [-]                    | 49.01   | 47.0      | 47.45     | (+0.56)   | -3.2      | ±5   | +1.0      | ±5   |
| 2013                  | 3200    | 24.3     | 31       | 24.2       | 24.2    | (129)   | σ[S/m]                    | 5.299   | 5.42      | 5.472     | (+0.56)   | +3.3      | ±5   | +0.8      | ±5   |

<sup>\*1.</sup> The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r01).

 $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 7.854E + 4 \times f^3 + 9.402E - 3 \times f^2 - 2.742E - 2 \times f - 0.2026 / C\sigma = 9.804E - 3 \times f^3 - 8.661E - 2 \times f^2 + 2.981E - 2 \times f + 0.7829$ 

The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r01), the dielectric parameters suggested for head and body tissue simulating liquid are given at 3000 and 5800MHz. As an intermediate solution, dielectric parameters for the frequencies between 3000 to 5800 MHz were obtained using linear interpolation.

|         | Sta  | ndard  |      |        |          | In            | terpolatea | !           |        |
|---------|------|--------|------|--------|----------|---------------|------------|-------------|--------|
| f(MHz)  | Head | Tissue | Body | Tissue | f (MHz)  | . Head Tissue |            | Body Tissue |        |
| I (MHZ) | εr   | σ[S/m] | εr   | σ[S/m] | I (MIHZ) | er er         | σ[S/m]     | er          | σ[S/m] |
| 3000    | 38.5 | 2.40   | 52.0 | 2.73   | 5180     | 36.01         | 4.635      | 49.04       | 5.276  |
| 5800    | 35.3 | 5.27   | 48.2 | 6.00   | 5200     | 35.99         | 4.655      | 49.01       | 5.299  |
|         |      |        |      |        | 5230     | 35.95         | 4.686      | 48.97       | 5.334  |
|         |      |        |      |        | 5240     | 35.94         | 4.696      | 48.96       | 5.346  |

# Appendix 3-5: Daily check data

Prior to the SAR assessment of EUT, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The daily check results are in the table below. (\*. Refer to Appendix 3-6 of measurement data.)

|                |                      |      |          |          |          |        | Ι      | aily cl       | heck result        | s                             |       |          |                                        |           |       |
|----------------|----------------------|------|----------|----------|----------|--------|--------|---------------|--------------------|-------------------------------|-------|----------|----------------------------------------|-----------|-------|
|                | Freq. Liquid Ambient |      |          | Lionid   | i Liquid |        | ou [ ] | εr [-] σ[S/m] |                    | Daily check target & measured |       |          |                                        |           |       |
| Date           | MHzl                 | .1   | Temp     | Humidity | Liquiu   |        | Depth  |               | Er [-]<br>measured | measured                      | drift | S        | AR 1g [W/kg]                           | Deviation | Limit |
|                | [MHZ]                | Type | [deg.C.] | [%RH]    | Check    | Before | After  | [mm]          | measureu           | measureu                      | [dB]  | Target   | Measured (*5)                          | [%]       | [%]   |
| July 5<br>2013 | 5200                 | Body | 24.8     | 55       | 24.2     | 24.1   | 23.9   | 129           | 47.45              | 5.472                         | 0.05  | 7.41(*4) | 7.70 (at 100mW)<br>(ΔSAR corrected: -) | +3.9      | ±10   |

<sup>\*4.</sup> The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822) and D5GHzV2 (sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D2450V2-822 Jan13 / D5GHzV2-1070 Mar13, the data sheet was filed in this report).

<sup>\*5.</sup> Since the body SAR measured b body tissue,  $\Delta$ SAR correction was not applied.



Test setup for the system performance check

<sup>\*2.</sup> The target value is a parameter defined in the calibration data sheet of D2450V2 (sn:822)/ D5GHzV2 (sn:1070) dipole calibrated by Schmid & Partner Engineering AG (Certification No. D2450V2-822 Jan13 / D5GHzV2-1070 Mar13, the data sheet was filed in this report.).

<sup>\*3.</sup>  $\Delta$ SAR correction was only applied to head simulated tissue.

Test report No.: 10028281S-A : 25 of 56 Page

: August 21, 2013 Issued date

FCC ID : W2Z-01000005

#### Appendix 3-6: Daily check measurement data

### 5200MHz Daily check (Body tissue) / Forward conducted power: 100mW

EUT: Dipole(5GHz); Type: D5GHzV2; Serial: 1070

Communication System: CW; Frequency: 5200 MHz; Crest Factor: 1.0

Medium: MSL5800; Medium parameters used: f = 5200 MHz;  $\sigma = 5.472$  S/m;  $\varepsilon_r = 47.45$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

**DASY Configuration:** -Probe: EX3DV4 - SN3540; ConvF(4.16, 4.16, 4.16); Calibrated: 2012/07/19; -DASY52 52.8.2(969); SEMCAD X 14.6.6(6824) -Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 25.0, 141.0 -Electronics: DAE4 Sn518; Calibrated: 2012/10/17

-Phantom: ELI v4.0; Type: QDOVA001BA; Serial: 1059; Phantom section: Flat Section

Area:60x60,10 (7x7x1): Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 19.6 W/kg

Area:60x60,10 (61x61x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm; Maximum value of SAR (interpolated) = 20.2 W/kg **Z Scan**;140,5 (1x1x29): Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 20.3 W/kg Fast SAR: SAR(1 g) = 7.77 mW/g;

Zoom:xy4-z1.4/d1.4/r1.4 2 (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm;

Reference Value = 67.705 V/m; Power Drift = 0.05 dB, Maximum value of SAR (measured) = 17.9 W/kg

Peak SAR (extrapolated) = 29.828 mW/g (+3.2)

SAR(1 g) = 7.7 mW/g (+3.9%, vs. speag-cal. = 7.41 mW/g); SAR(10 g) = 2.25 mW/g



- Remarks: \*. Date tested: 2013/07/05; Tested by: Hiroshi Naka; Tested place: No. 7 shielded room,

  - \*liquid depth: 129mm; Position: distance of dipole to phantom: 8mm (10mm to liquid); ambient: 24.8 deg.C. /55 %RH, \*liquid temperature: 24.1(start)/23.9(end)/24.2(in check) deg.C.; \*White cubic: zoom scan area, Red cubic: big=SAR(10g )/small=SAR(1g)

# Appendix 3-7: Daily check uncertainty

| Uncertainty of system daily check (~6GHz) (Body liquid, 2.4-6GHz, e', σ: ≤5%) (√06) | 1g SAR   | 10g SAR  |
|-------------------------------------------------------------------------------------|----------|----------|
| Combined measurement uncertainty of the measurement system (k=1)                    | ± 12.7 % | ± 12.4 % |
| Expanded uncertainty (k=2)                                                          | ± 25.4 % | ± 24.8 % |

|    | Error Description                                            | Uncertainty<br>Value | Probability distribution | Divisor    | ci<br>(1g) | ci<br>(10g) | ui<br>(1g)         | ui<br>(10g)        | Vi, veff |
|----|--------------------------------------------------------------|----------------------|--------------------------|------------|------------|-------------|--------------------|--------------------|----------|
| A  | Measurement System (DASY5)                                   |                      |                          |            |            |             | (std. uncertainty) | (std. uncertainty) |          |
| 1  | Probe Calibration Error (2.45,5.2,5.3,5.5,5.6,5.8GHz±100MHz) | ±6.55 %              | Normal                   | 1          | 1          | 1           | ±6.55 %            | ±6.55 %            | $\infty$ |
| 2  | Axial isotropy                                               | ±4.7 %               | Rectangular              | √3         | 0.7        | 0.7         | ±1.9 %             | ±1.9%              | 00       |
| 3  | Hemispherical isotropy (*flat phantom, <5°)                  | ±9.6 %               | Rectangular              | √3         | 0.7        | 0.7         | ±3.9 %             | ±3.9%              | $\infty$ |
| 4  | Boundary effects                                             | ±4.8 %               | Rectangular              | √3         | 1          | 1           | ±2.8 %             | ±2.8%              | 00       |
| 5  | Probe linearity                                              | ±4.7 %               | Rectangular              | √3         | 1          | 1           | ±2.7 %             | ±2.7%              | 00       |
| 6  | Probe modulation response (CW)                               | ±0.0 %               | Rectangular              | √3         | 1          | 1           | ±0.0 %             | ±0.0%              | $\infty$ |
| 7  | System detection limit                                       | ±1.0 %               | Rectangular              | √3         | 1          | 1           | ±0.6 %             | ±0.6%              | 00       |
| 8  | Response Time Error (<5ms/100ms wait)                        | ±0.0 %               | Rectangular              | √3         | 1          | 1           | ±0.0 %             | ±0.0%              | ∞        |
| 9  | Integration Time Error (CW)                                  | ±0.0 %               | Rectangular              | √3         | 1          | 1           | ±0.0 %             | ±0.0%              | $\infty$ |
| 10 | System readout electronics (DAE)                             | ±0.3 %               | Normal                   | 1          | 1          | 1           | ±0.3 %             | ±0.3 %             | 00       |
| 11 | RF ambient conditions-noise                                  | ±3.0 %               | Rectangular              | √3         | 1          | 1           | ±1.7%              | ±1.7%              | ∞        |
| 12 | RF ambient conditions-reflections                            | ±3.0 %               | Rectangular              | √3         | 1          | 1           | ±1.7%              | ±1.7%              | $\infty$ |
| 13 | Probe positioner mechanical tolerance                        | ±3.3 %               | Rectangular              | √3         | 1          | 1           | ±1.9 %             | ±1.9%              | ∞        |
| 14 | Probe positioning with respect to phantom shell              | ±6.7 %               | Rectangular              | √3         | 1          | 1           | ±3.9 %             | ±3.9%              | ∞        |
| 15 | Max.SAR evaluation                                           | ±4.0 %               | Rectangular              | √3         | 1          | 1           | ±2.3 %             | ±2.3 %             | $\infty$ |
| В  | Test Sample Related                                          |                      |                          |            |            |             |                    |                    |          |
| 16 |                                                              | ±5.5 %               | Normal                   | 1          | 1          | 1           | ±5.5 %             | ±5.5%              | ∞        |
| 17 | Dipole to liquid distance (10mm±0.2mm,<2deg.)                | ±2.0 %               | Rectangular              | √3         | 1          | 1           | ±1.2 %             | ±1.2%              | $\infty$ |
| 18 | Drift of output power (measured, <0.2dB)                     | ±2.5 %               | Rectangular              | √3         | 1          | 1           | ±1.4 %             | ±1.4%              | ∞        |
| C  | Phantom and Setup                                            |                      |                          |            |            |             |                    |                    |          |
| 19 | Phantom uncertainty                                          | ±2.0 %               | Rectangular              | $\sqrt{3}$ | 1          | 1           | ±1.2 %             | ±1.2%              | $\infty$ |
| 20 | Liquid conductivity (target) (≤5%)                           | ±5.0%                | Rectangular              | √3         | 0.64       | 0.43        | ±1.8 %             | ±1.2%              | 8        |
| 21 | Liquid conductivity (meas.)                                  | ±3.0 %               | Normal                   | 1          | 0.64       | 0.43        | ±1.9 %             | ±1.3 %             | $\infty$ |
| 22 | Liquid permittivity (target) (≤5%)                           | ±5.0%                | Rectangular              | √3         | 0.6        | 0.49        | ±1.7%              | ±1.4%              | $\infty$ |
| 23 | Liquid permittivity (meas.)                                  | ±3.0 %               | Normal                   | 1          | 0.6        | 0.49        | ±1.8 %             | ±1.5%              | ∞        |
| 24 | Liquid Conductivity-temp.uncertainty (≤2deg.C.)              | ±5.2 %               | Rectangular              | √3         | 0.78       | 0.71        | ±2.3 %             | ±2.1 %             | oc       |
| 25 | Liquid Permittivity-temp.uncertainty (≤2deg.C.)              | ±0.8 %               | Rectangular              | √3         | 0.23       | 0.26        | ±0.1 %             | ±0.1 %             | 00       |
|    | Combined Standard Uncertainty                                |                      |                          |            |            |             | ±12.7%             | ±12.4 %            |          |
|    | Expanded Uncertainty (k=2)                                   |                      |                          |            |            |             | ±25.4 %            | ±24.8 %            |          |

<sup>\*</sup> This measurement uncertainty budget is suggested by IEEE 1528, IEC 62209-2 and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget).

Test report No.: 10028281S-A : 26 of 56 Page Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accremited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Cartificate No: EX3-3540 Jul12/2

| Óbject                           | EX3DV4 - SN:3540                                                                                                                                                                                                                 |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)         | QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4<br>Calibration procedure for dosimetric E-field probes                                                                                                                    |
| Calibration date:                | July 19, 2012                                                                                                                                                                                                                    |
| This calibration certificate doc | July 19, 2012  urnerits the traceability to national standards, which roelize the physical units of measurements (SI) neertainties with confidence probability are given on the following pages and are part of the certificate. |
| All calibrations have been con   | ducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.                                                                                                                                 |

| Primary Standards          | 10              | Cal Date (Certificate No.)        | Scheduled Calibration   |
|----------------------------|-----------------|-----------------------------------|-------------------------|
| Power meter E4419B         | GB41293874      | 29-Mar-12 (No. 217-01508)         | Apr-13                  |
| Power sensor E4412A        | MY41498087      | 29-Mar-12 (No. 217-01508)         | Apr-13                  |
| Reference 3 dB Attenuator  | SN; S5054 (3d)  | 27-Mar-12 (No. 217-01531)         | Apr-13                  |
| Reference 20 dB Attenuator | SN: 55086 (20b) | 27-Mar-12 (No. 217-01529)         | Adv-13                  |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532)         | Apr-13                  |
| Reference Probe ES3DV2     | SN: 3013        | 29-Dec-11 (No. ES3-3013_Dec11)    | Dec-12                  |
| DAE4                       | SN: 660         | 10-Jan-12 (No. DAE4-660_Jan12)    | Jan-13                  |
| Secondary Standards        | ID.             | Check Date (in house)             | Scheduled Check         |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-11)  | In flouse check: Apr-13 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12  |

|                | Name           | Function                                   | Signature                |
|----------------|----------------|--------------------------------------------|--------------------------|
| Calibrated by: | Jelon Kasirati | Laboratory Technician                      | F-CC                     |
| Approved by:   | Kasa Pokowo    | Technical Mirroger                         | selle                    |
|                |                | I without written approval of the laborato | Issued February 14, 2013 |

Certificate No: EX3-3540\_Jul12/2

Page 1 of 11

Test report No.: 10028281S-A
Page: 27 of 56
Issued date: August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizenscher Kalibrierdianst
C Service suisse d'étalonnage
Servicio svizzero di baratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accorditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL lissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization φ in rotation around probe axis

Polarization 9 9 rotation around an exist hat is in the plane normal to probe exis (at measurement (senter),

i.e., 8 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, 'IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques! December 2003

Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used it close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization (to 500 MHz in TEM-cell; to 1800 MHz: R22 waveguide).
   NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E<sup>2</sup>-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical (inearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal observations.
- Ax,y,z, Bx,y,z, Cx,y,z, Dx,y,z, VRx,y,z, A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): In a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3540 Jul12/2

Page 2.0/11

Test report No. : 10028281S-A Page : 28 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4 - SN:3540 July 19, 2012

# Probe EX3DV4

SN:3540

Manufactured: Calibrated: August 23, 2005 July 19, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3540\_Jul12/2

Page 3 of 11

Test report No.: 10028281S-A : 29 of 56 Page Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540 July 19, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

### Basic Calibration Parameters

|                                            | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------------------------|----------|----------|----------|-----------|
| Norm (µV/(V/m) <sup>2</sup> ) <sup>A</sup> | 0.44     | 0.53     | 0.54     | ± 10.1.%  |
| DCP (mV) <sup>8</sup>                      | 105.4    | 102.2    | 107.6    |           |

### Modulation Calibration Parameters

| UID   | Communication System Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   | A<br>dB | B<br>dB√μV | C    | D<br>dB | WK<br>mV | Unc (k=2) |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|------------|------|---------|----------|-----------|
| 0     | CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X | 0.0     | 0.0        | 1.0  | 0.00    | 193.8    | ±3.8 %    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 0.0     | 0.0        | 7.0  |         | 168.5    |           |
|       | I was a second of the second o | Z | 0.0     | 0.0        | 1.0  | 7.      | 161.7    |           |
| 10274 | UMTS-FDD (HSUPA, Subtest 5, 3GPP<br>Rel8,10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X | 5.83    | 66.8       | 18.9 | 4.87    | 118.5    | ±3.8 %    |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y | 5.61    | 66.1       | 18.5 |         | 106.3    |           |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 | 6.08    | 67.9       | 19.4 |         | 132.2    |           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

<sup>The uncertainties of NormX.Y.Z do not affect the E<sup>2</sup>-field uncertainty inside FSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectaingular distribution and is expressed for the square of the field value.</sup> 

Test report No.: 10028281S-A : 30 of 56 Page Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540 July 19, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

# Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 41.9                       | 0.89                  | 10.71   | 10.71   | 10.71   | 0.10  | 1.76          | ± 12.0 %       |
| 835                  | 41,5                       | 0.90                  | 10,10   | 10.10   | 10.10   | 0.10  | 1.04          | ± 12.0 %       |
| 900                  | 41.5                       | 0.97                  | 9.95    | 9,95    | 9.95    | 0.10  | 1.31          | ± 12.0 %       |
| 1450                 | 40.5                       | 1.20                  | 9.24    | 9.24    | 9.24    | 0.18  | 1.65          | ± 12.0 %       |
| 1750                 | 40.1                       | 1.37                  | 9.13    | 9.13    | 9.13    | 0.42  | 0.74          | ±12.0 %        |
| 1810                 | 40.0                       | 1:40                  | 8.79    | 8.79    | 8.79    | 0.42  | 0.75          | ± 12.0 %       |
| 1900                 | 40.0                       | 1.40                  | -8.68   | 8.68    | 8.68    | 0.29  | 0.86          | ±12.0 %        |
| 1950                 | 40.0                       | 1.40                  | 8.40    | 8.40    | 8.40    | 0.41  | 0.74          | ± 12,0 %       |
| 2000                 | 40.0                       | 1.40                  | 8.59    | 8.59    | 8.59    | 0.44  | 0.75          | ±12.09         |
| 2450                 | 39.2                       | 1.80                  | 7.62    | 7,62    | 7.62    | 0.26  | 0.98          | ± 12.0 9       |
| 2600                 | 39.0                       | 1.96                  | 7.50    | 7.50    | 7.50    | 0.36  | 0.81          | ± 12.0.9       |
| 5200                 | 36.0                       | 4.66                  | 4.65    | 4.65    | 4.65    | 0.40  | 1.80          | ± 13,1 9       |
| 5300                 | :35.9                      | 4.76                  | 4.37    | 4,37    | 4.37    | 0.40  | 1.80          | ± 13,1 9       |
| 5500                 | 35.6                       | 4.96                  | 4.45    | 4.45    | 4.45    | 0.45  | 1.80          | ±13.19         |
| 5600                 | 35.5                       | 5.07                  | 4.10    | 4.10    | 4.10    | 0.50  | 1.80          | ± 13,19        |
| 5800                 | 35.3                       | 5.27                  | 4.14    | 4.14    | 4.14    | 0.50  | 1.80          | ± 13.1 9       |

Certificate No: EX3-3540\_Jul12/2

Page 5 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and d) can be relaxed to ± 10% friquid compensation formula is applied to measured SAR values. Aft requencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Test report No.: 10028281S-A : 31 of 56 Page Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4-SN:3540 July 19, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

# Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>c</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------|
| 750                  | 55.5                       | 0.96                               | 10.51   | 10,51   | 10.51   | 0.80  | 0.58          | ± 12.0 %       |
| 835                  | 55.2                       | 0.97                               | 10.24   | 10.24   | 10.24   | 0.30  | 0.96          | ± 12.0 %       |
| 900                  | 55.0                       | 1.05                               | 10.12   | 10.12   | 10.12   | 0.25  | 1.16          | ± 12.0 %       |
| 1750                 | 53.4                       | 1.49                               | 8,49    | 8.49    | 8.49    | 0.67  | 0.62          | ± 12.0 %       |
| 1810                 | 53.3                       | 1.52                               | 8,40    | 8.40    | 8.40    | 0.28  | 0.97          | ± 12.0 %       |
| 1900                 | 53.3                       | 1.52                               | 8.24    | 8.24    | 8.24    | 0.33  | 0.87          | ± 12,0 %       |
| 2000                 | 53.3                       | 1,52                               | 8.38    | 8.38    | 8,38    | 0.20  | 1.18          | ± 12,0 %       |
| 2450                 | 52.7                       | 1.95                               | 7.72    | 7.72    | 7.72    | 0.79  | 0.51          | ± 12.0 %       |
| 2600                 | 52.5                       | 2.16                               | 7.58    | 7,58    | 7.58    | 0.80  | 0.50          | ± 12.0 %       |
| 5200                 | 49.0                       | 5.30                               | 4.16    | 4.16    | 4.16    | 0,45  | 1.90          | ± 13.1 %       |
| 5300                 | 48,9                       | 5.42                               | 3.96    | 3,96    | 3.96    | 0.45  | 1.90          | ± 13.1 %       |
| 5500                 | -48.6                      | 5.65                               | 3.72    | 3.72    | 3.72    | 0.50  | 1,90          | 113,19         |
| 5600                 | 48.5                       | 5.77                               | 3.69    | 3.69    | 3.69    | 0.50  | 1.90          | ±13.19         |
| 5800                 | 48.2                       | 6.00                               | 3.61    | 3.61    | 3.61    | 0.50  | 1.90          | ± 13.1 %       |

Certificate No: EX3-3540\_Jul 12/2

Page 6 of 11

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty of calibration frequency and the uncertainty for the indicated frequency band.

\*As frequencies below 3 GHz, the validity of fissue parameters (a and of) can be released to ± 10% if figuid companisation formula is applied to measured SAR values. As frequencies above 3 GHz, the validity of fissue parameters (e and of) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Test report No. : 10028281S-A Page : 32 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540 July 19, 2012

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3540\_Jul12/2

Page 7 of 11

Test report No. : 10028281S-A Page : 33 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540 July 19, 2012

# Receiving Pattern (\$\phi\$), \$\partial = 0°





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Test report No. : 10028281S-A Page : 34 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540 July 19, 2012

# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Test report No.: 10028281S-A : 35 of 56 Page : August 21, 2013 Issued date

FCC ID : W2Z-01000005

Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- \$N:3540 July 19, 2012

# **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error (ø, θ), f = 900 MHz



Certificate No: EX3-3540\_Jul12/2

Page 10 of 11

Test report No. : 10028281S-A Page : 36 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-8: Calibration certificate: E-Field Probe (EX3DV4) (cont'd)

EX3DV4- SN:3540. July 19, 2012

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3540

# Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 156.9      |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 2 mm       |

Certificate No: EX3-3540\_Jul12/2

Page 11 of 11

Test report No.: 10028281S-A : 37 of 56 Page Issued date : August 21, 2013

: W2Z-01000005 FCC ID

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2)

# Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

|                                                                                                                                                                                                                               | CERTIFICATE                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Object                                                                                                                                                                                                                        | D5GHzV2 - SN:                                                                                                                               | 1070                                                                                                                                                                                                                                                                                              |                                                                                                                |
| Calibration procedure(s)                                                                                                                                                                                                      | QA CAL-22.v2<br>Calibration proce                                                                                                           | edure for dipole validation kits bet                                                                                                                                                                                                                                                              | ween 3-6 GHz                                                                                                   |
| Calibration date:                                                                                                                                                                                                             | March 14, 2013                                                                                                                              |                                                                                                                                                                                                                                                                                                   |                                                                                                                |
| The massurements and the uni                                                                                                                                                                                                  | certainties with confidence p                                                                                                               | ional standards, which realize the physical un<br>probability are given on the following pages an                                                                                                                                                                                                 | d are part of the certificate.                                                                                 |
| Calibration Equipment used (M                                                                                                                                                                                                 |                                                                                                                                             | ry facility: environment temperature (22 $\pm$ 3)°(                                                                                                                                                                                                                                               | C and humidity < 70%.                                                                                          |
|                                                                                                                                                                                                                               |                                                                                                                                             |                                                                                                                                                                                                                                                                                                   |                                                                                                                |
|                                                                                                                                                                                                                               | ID#                                                                                                                                         | Cal Date (Certificate No.)                                                                                                                                                                                                                                                                        | Scheduled Calibration                                                                                          |
|                                                                                                                                                                                                                               | ID #<br>GB37480704                                                                                                                          | Cal Date (Certificate No.)<br>01-Nov-12 (No. 217-01640)                                                                                                                                                                                                                                           | Scheduled Calibration<br>Oct-13                                                                                |
| Power mater EPM-442A                                                                                                                                                                                                          |                                                                                                                                             | 01-Nov-12 (No. 217-01640)                                                                                                                                                                                                                                                                         |                                                                                                                |
| Power mater EPM-442A<br>Power sensor HP 8481A                                                                                                                                                                                 | GB37480704                                                                                                                                  |                                                                                                                                                                                                                                                                                                   | Oct-13<br>Oct-13                                                                                               |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                                                                                   | GB37480704<br>US37292783<br>SN: 5058 (20k)                                                                                                  | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)                                                                                                                                                                                                                                            | Oct-13                                                                                                         |
| Power meter EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                                                                                    | GB37480704<br>US37292783<br>SN: 5058 (20k)                                                                                                  | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)                                                                                                                                                                                  | Oct-13<br>Oct-13<br>Apr-13<br>Apr-13                                                                           |
| Power mater EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe EX3DV4                                                                                          | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327                                                                            | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)                                                                                                                                                                                                               | Otl-13<br>Otl-13<br>Apr-13                                                                                     |
| Power mater EPM-442A<br>Power sensor HP 8481A<br>Reference 20 dB Atteruator<br>Type-N mismatch combination<br>Reference Probe EX3DV4<br>DAE4                                                                                  | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3503<br>SN: 601                                                     | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>28-Dec-12 (No. EX3-3503_Dec12)<br>27-Jun-12 (No. DAE4-601_Jun12)                                                                                                              | Oct-13<br>Oct-13<br>Apr-13<br>Apr-13<br>Dec-13<br>Jun-13                                                       |
| Power mater EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards                                                                             | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3503<br>SN: 601                                                     | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01530)<br>28-Dec-12 (No. EX3-3503_Dec12)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)                                                                                     | Oct-13<br>Oct-13<br>Apr-13<br>Apr-13<br>Dec-13<br>Jun-13<br>Scheduled Check                                    |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 8481A                                                       | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3503<br>SN: 601                                                     | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01533)<br>28-Dec-12 (No. EX3-3503_Dec12)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)<br>18-Oct-02 (in house check Oct-11)                                                | Oct-13 Oct-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-13                               |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 9481A RF generator R&S SMT-06                               | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3503<br>SN: 601                                                     | 01-Nov-12 (No. 217-01640)<br>01-Nov-12 (No. 217-01640)<br>27-Mar-12 (No. 217-01530)<br>27-Mar-12 (No. 217-01530)<br>28-Dec-12 (No. EX3-3503_Dec12)<br>27-Jun-12 (No. DAE4-601_Jun12)<br>Check Date (in house)                                                                                     | Oct-13<br>Oct-13<br>Apr-13<br>Apr-13<br>Dec-13<br>Jun-13<br>Scheduled Check                                    |
| Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 9481A RF generator R&S SMT-06 Network Analyzer HP 8753E     | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5047.3 / 06327<br>SN: 3503<br>SN: 601                                                     | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 26-Dec-12 (No. EX3-3503, Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)                                  | Oct-13 Oct-13 Apr-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 |
| Primary Standards Power meter EPM-442A Power sensor HP 9481A Reference 20 dB 416 Reference 20 dB 2000 Reference Probe EX3DV4 DAE4 Secondary Standards Power sensor HP 9481A RF generator R&S SMT-06 Network Analyzer HP 8753E | GB37480704<br>US37292783<br>SN: 5058 (20k)<br>SN: 5057.3 / 06327<br>SN: 3503<br>SN: 601<br>ID #<br>MY41092317<br>100005<br>US37390585 S4208 | 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 27-Mar-12 (No. 217-01530) 27-Mar-12 (No. 217-01533) 28-Dec-12 (No. EX3-3503_Dec12) 27-Jun-12 (No. DAE4-601_Jun12) Check Date (in house) 18-Oct-02 (In house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) | Oct-13 Oct-13 Apr-13 Apr-13 Apr-13 Dec-13 Jun-13 Scheduled Check In house check: Oct-13 In house check: Oct-13 |

Certificate No: D5GHzV2-1070\_Mar13

Page 1 of 20

Test report No. : 10028281S-A Page : 38 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

#### Glossarv:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

# Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

c) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1070\_Mar13

Page 2 of 20

Test report No. : 10028281S-A Page : 39 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

### Measurement Conditions

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                                                                            | V52.8.5                          |
|------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation                                                                           |                                  |
| Phantom                      | Modular Flat Phantom V5.0                                                                        |                                  |
| Distance Dipole Center - TSL | 10 mm                                                                                            | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4.0 mm, dz = 1.4 mm                                                                     | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 5200 MHz ± 1 MHz<br>5300 MHz ± 1 MHz<br>5500 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5800 MHz ± 1 MHz |                                  |

# Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 36.0         | 4.66 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.4 ± 6 %   | 4.52 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 5200 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.97 W/kg                |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 78.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm3 (10 g) of Head TSL | condition          |                          |
|---------------------------------------------|--------------------|--------------------------|
| SAR measured                                | 100 mW input power | 2.28 W/kg                |
| SAR for nominal Head TSL parameters         | normalized to 1W   | 22.5 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 3 of 20

Test report No.: 10028281S-A : 40 of 56 Page

Issued date : August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Head TSL parameters at 5300 MHz

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.9         | 4.76 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.3 ± 6 %   | 4.62 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5300 MHz

| SAR averaged over 1 cm3 (1 g) of Head TSL | Condition          |                            |
|-------------------------------------------|--------------------|----------------------------|
| SAR measured                              | 100 mW input power | 8.27 W/kg                  |
| SAR for nominal Head TSL parameters       | normalized to 1W   | 81.9 W / kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.38 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.5 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5500 MHz The following parameters and calculations of

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.6         | 4.96 mha/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 34.0 ± 6 %   | 4.80 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.52 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 84.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.42 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.9 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 4 of 20

Test report No.: 10028281S-A : 41 of 56 Page

Issued date : August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

### Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head T\$L parameters            | 22.0 °C         | 35.5         | 5.07 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.9 ± 6 %   | 4.91 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5600 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 8.38 W/kg                |
| SAR for nominal Head TSI, parameters                  | normalized to 1W   | 82.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.39 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.6 W/kg ± 19.5 % (k=2) |

# Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 35.3         | 5.27 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 33.6 ± 6 %   | 5.11 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 5800 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Hea | d TSL Condition    |                          |
|--------------------------------------------------|--------------------|--------------------------|
| SAR measured                                     | 100 mW input power | 7.88 W/kg                |
| SAR for nominal Head TSL parameters              | normalized to 1W   | 77.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.25 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 22.2 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 5 of 20

Test report No.: 10028281S-A : 42 of 56 Page

Issued date : August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 49.0         | 5.30 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 47.0 ± 6 %   | 5.42 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5200 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.41 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 73.5 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.08 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.6 W/kg ± 19.5 % (k=2) |

# Body TSL parameters at 5300 MHz The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.9         | 5.42 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.9 ± 6 %   | 5.55 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5300 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.56 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 75.0 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.12 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 6 of 20

Test report No.: 10028281S-A Page: 43 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.6         | 5.65 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.5 ± 6 %   | 5.80 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5500 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 7.92 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 78.6 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.20 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 21.8 W/kg ± 19.5 % (k=2) |

### Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.5         | 5.77 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.4 ± 6 %   | 5.94 mha/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5600 MHz

| SAR averaged over 1 cm3 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.99 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 79.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Bo | dy TSL condition   |                          |
|---------------------------------------------------|--------------------|--------------------------|
| SAR measured                                      | 100 mW input power | 2.22 W/kg                |
| SAR for nominal Body TSL parameters               | normalized to 1W   | 22.0 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 7 of 20

Test report No. : 10028281S-A Page : 44 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 48.2         | 6.00 mha/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 46.1 ± 6 %   | 6.21 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL at 5800 MHz

| SAR averaged over 1 cm2 (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------|--------------------|--------------------------|
| SAR measured                              | 100 mW input power | 7.39 W/kg                |
| SAR for nominal Body TSL parameters       | normalized to 1W   | 73.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.05 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 19.5 % (k=2) |

Certificate No: D5GHzV2-1070\_Mar13

Page 8 of 20

Test report No.: 10028281S-A : 45 of 56 Page Issued date : August 21, 2013

: W2Z-01000005

FCC ID

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

### Appendix

### Antenna Parameters with Head TSL at 5200 MHz

| ŀ | impedance, transformed to feed point | 50.7 Ω - 12.5  Ω |
|---|--------------------------------------|------------------|
| F | Return Loss                          | - 18.2 dB        |

# Antenna Parameters with Head TSL at 5300 MHz

| Impedance, transformed to feed point | 51.9 Ω - 6.5 JΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 23.6 dB       |

### Antenna Parameters with Head TSL at 5500 MHz

| Impedance, transformed to feed point | 49.2 Ω - 7.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.5 dB       |

# Antenna Parameters with Head TSL at 5600 MHz

| Impedance, transformed to feed point | 55.6 Ω - 9.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 19.4 dB       |

### Antenna Parameters with Head TSL at 5800 MHz

| Impedance, transformed to feed point | 53.9 Ω - 4.8  Ω |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.6 dB       |  |

Certificate No: D5GHzV2-1070\_Mar13

Page 9 of 20

Test report No. : 10028281S-A Page : 46 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Antenna Parameters with Body TSL at 5200 MHz

| Impedance, transformed to feed point | 49.8 Ω - 12.4 jΩ |  |
|--------------------------------------|------------------|--|
| Return Loss                          | - 18.2 dB        |  |

# Antenna Parameters with Body TSL at 5300 MHz

| Impedance, transformed to feed point | 51.3 Ω - 5.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 25.8 dB       |  |

### Antenna Parameters with Body TSL at 5500 MHz

| Impedance, transformed to feed point | 49.3 Ω - 5.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 24.9 dB       |  |

### Antenna Parameters with Body TSL at 5600 MHz

| Impedance, transformed to feed point | 54.5 Ω - 8.2 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 21.0 dB       |

# Antenna Parameters with Body TSL at 5800 MHz

| Impedance, transformed to feed point | 54.5 Ω - 2.5  Ω |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 26,2 dB       |  |

# General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.203 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxiat cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

| Manufactured by | SPEAG              |
|-----------------|--------------------|
| Manufactured on | September 26, 2008 |

Certificate No: D5GHzV2-1070\_Mar13

Page 10 of 20

Test report No. : 10028281S-A Page : 47 of 56 Issued date : August 21, 2013

: W2Z-01000005

FCC ID

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# DASY5 Validation Report for Head TSL

Date: 13.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

# DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz;  $\sigma=4.52$  S/m;  $\epsilon_r=34.4;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5300 MHz;  $\sigma=4.62$  S/m;  $\epsilon_r=34.3;$   $\rho=1000$  kg/m $^3$ , Medium parameters used: f=5300 MHz;  $\sigma=4.62$  S/m;  $\epsilon_r=34.3;$   $\rho=1000$  kg/m $^3$ ,

Medium parameters used: f = 5600 MHz;  $\sigma$  = 4.91 S/m;  $\epsilon_r$  = 33.9;  $\rho$  = 1000 kg/m<sup>3</sup> Medium parameters used: f = 5800 MHz;  $\sigma$  = 5.11 S/m;  $\epsilon_r$  = 33.6;  $\rho$  = 1000 kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1);
   Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76);
   Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

#### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.581 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.97 W/kg; SAR(10 g) = 2.28 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.313 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 8.27 W/kg; SAR(10 g) = 2.38 W/kg

Maximum value of SAR (measured) = 19.8 W/kg

### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

Page 11 of 20

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.127 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 33.9 W/kg

SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.42 W/kg

Maximum value of SAR (measured) = 20.9 W/kg

Certificate No: D5GHzV2-1070\_Mar13

UL Japan, Inc. Shonan EMC Lab.

Test report No. : 10028281S-A Page : 48 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.687 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.38 W/kg; SAR(10 g) = 2.39 W/kg

Maximum value of SAR (measured) = 20.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.292 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 32.8 W/kg

SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 19.7 W/kg



Certificate No: D5GHzV2-1070\_Mar13

Page 12 of 20

Test report No. : 10028281S-A Page : 49 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Impedance Measurement Plot for Head TSL



Certificate No: D5GHzV2-1070\_Mar13

Page 13 of 20

Test report No.: 10028281S-A Page: 50 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

#### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

### **DASY5 Validation Report for Body TSL**

Date: 14.03.2013

Test Laboratory: SPEAG, Zurich, Switzerland

#### DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1070

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz,

Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz;  $\sigma = 5.42 \text{ S/m}$ ;  $\varepsilon_r = 47$ ;  $\rho = 1000 \text{ kg/m}^3$ ,

Medium parameters used: f = 5300 MHz;  $\sigma = 5.55 \text{ S/m}$ ;  $\varepsilon_r = 46.9$ ;  $\rho = 1000 \text{ kg/m}^3$ ,

Medium parameters used: f = 5500 MHz;  $\sigma = 5.8 \text{ S/m}$ ;  $\epsilon_r = 46.5$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Medium parameters used: f = 5600 MHz;  $\sigma = 5.94 \text{ S/m}$ ;  $\varepsilon_r = 46.4$ ;  $\rho = 1000 \text{ kg/m}^3$ ,

Medium parameters used: f = 5800 MHz;  $\sigma = 6.21$  S/m;  $\epsilon_r = 46.1$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

### DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.030 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 28.9 W/kg

SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.855 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.56 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 18.0 W/kg

### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.871 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 34.0 W/kg

SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.2 W/kg

Maximum value of SAR (measured) = 19.4 W/kg

Certificate No: D5GHzV2-1070\_Mar13

Page 14 of 20

Test report No. : 10028281S-A Page : 51 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

### Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.618 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 35.1 W/kg

SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.22 W/kg

Maximum value of SAR (measured) = 19.7 W/kg

# Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.394 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 34.3 W/kg

SAR(1 g) = 7.39 W/kg; SAR(10 g) = 2.05 W/kg

Maximum value of SAR (measured) = 18.5 W/kg



Certificate No: D5GHzV2-1070\_Mar13

Page 15 of 20

Test report No. : 10028281S-A Page : 52 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Impedance Measurement Plot for Body TSL



Certificate No: D5GHzV2-1070\_Mar13

Page 16 of 20

Test report No. : 10028281S-A Page : 53 of 56

Issued date : August 21, 2013

FCC ID : W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

### Appendix B: Additional Measurements

Upon customer request, additional antenna parameter measurements were done using customer spacers, for Head and Body conditions. Results are summarized on the following pages.

# Antenna Parameters with Head TSL at 5200 MHz

| New spacer   | 50.7 Ω - 12.5 jΩ | - 18.2 dB |
|--------------|------------------|-----------|
| UL spacer #1 | 51.0 Ω - 12.2 jΩ | - 18.4 dB |
| UL spacer #2 | 51.2 Ω - 12.0 jΩ | - 18.6 dB |

# Antenna Parameters with Head TSL at 5300 MHz

| New spacer   | 51.9 Ω - 6.5 jΩ | - 23.6 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 51.9 Ω - 6.3 jΩ | - 23.8 dB |
| UL spacer #2 | 52.0 Ω - 6.0 jΩ | - 24.1 dB |

# Antenna Parameters with Head TSL at 5500 MHz

| New spacer   | 49.2 Ω - 7.4 jΩ | - 22.5 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 49.6 Ω - 7.6 jΩ | - 22.4 dB |
| UL spacer #2 | 50.0 Ω - 7.0 jΩ | - 23.1 dB |

# Antenna Parameters with Head TSL at 5600 MHz

| New spacer   | 55.6 Ω - 9.9 jΩ | - 19.4 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 55.7 Ω - 9.2 ]Ω | - 19.8 dB |
| UL spacer #2 | 55.6 Ω - 8.8 jΩ | - 20.1 dB |

# Antenna Parameters with Head TSL at 5800 MHz

| New spacer   | 53.9 Ω - 4.8 jΩ | - 24.6 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.2 Ω - 4.7 jΩ | - 24.4 dB |
| UL spacer #2 | 54.6 Ω - 3.9 jΩ | - 24.8 dB |

Certificate No: D5GHzV2-1070\_Mar13

Page 17 of 20

Test report No. : 10028281S-A Page : 54 of 56

FCC ID

Issued date : August 21, 2013

: W2Z-01000005

# Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Antenna Parameters with Body TSL at 5200 MHz

| New spacer   | 49.8 Ω - 12.4 ϳΩ | - 18.2 dB |
|--------------|------------------|-----------|
| UL spacer #1 | 49.9 Ω - 12.4 jΩ | - 18.2 dB |
| UL spacer #2 | 50.1 Ω - 12.3 jΩ | - 18.3 dB |

# Antenna Parameters with Body TSL at 5300 MHz

| New spacer   | 51.3 Ω - 5.0 jΩ | - 25.8 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 51.4 Ω - 5.0 jΩ | - 25.8 dB |
| UL spacer #2 | 51.5 Ω - 4.8 jΩ | - 26.2 dB |

# Antenna Parameters with Body TSL at 5500 MHz

| New spacer   | 49.3 Ω - 5.6 jΩ | - 24.9 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 49.2 Ω - 5.6 jΩ | - 24.9 dB |
| UL spacer #2 | 49.5 Ω - 5.4 jΩ | - 25.2 dB |

# Antenna Parameters with Body TSL at 5600 MHz

| New spacer   | 54.5 Ω - 8.2 ]Ω | - 21.0 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.7 Ω - 8.2 jΩ | - 20.9 dB |
| UL spacer #2 | 54.8 Ω - 7.8 jΩ | - 21.2 dB |

# Antenna Parameters with Body TSL at 5800 MHz

| New spacer   | 54.5 Ω - 2.5 jΩ | - 26.2 dB |
|--------------|-----------------|-----------|
| UL spacer #1 | 54.4 Ω - 2.2 jΩ | - 26.5 dB |
| UL spacer #2 | 54.8 Ω - 1.8 jΩ | - 26.2 dB |

Certificate No: D5GHzV2-1070\_Mar13

Page 18 of 20

Test report No. : 10028281S-A Page : 55 of 56 Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Impedance Measurement Plot for Head TSL (UL Spacer #1)



# Impedance Measurement Plot for Head TSL (UL Spacer #2)



Certificate No: D5GHzV2-1070\_Mar13

Page 19 of 20

Test report No.: 10028281S-A

Page : 56 of 56 (End of Report)

Issued date : August 21, 2013

FCC ID : W2Z-01000005

Appendix 3-9: Calibration certificate: Dipole (D5GHzV2) (cont'd)

# Impedance Measurement Plot for Body TSL (UL Spacer #1)



# Impedance Measurement Plot for Body TSL (UL Spacer #2)



Certificate No: D5GHzV2-1070\_Mar13

Page 20 of 20