Quiz Questions: Sets and Functions

- 1. Let $S = \emptyset$. Which of the following is not a subset of P(P(S)) (The power set of the power set of S)?
 - A. Ø
 - B. {Ø}
 - C. {{**Ø**}}
 - D. $\{\emptyset, \{\{\emptyset\}\}\}\$
- 2. If you need to prove that S is a proper subset of T, it is sufficient to show which of the following?
 - A. |T S| > 0
 - B. |S| < |T|
 - C. There is an element of T that is not an element of S
 - D. None of these
- 3. According to De Morgan's laws $\overline{AU(B \cap C)} =$
 - A. $\overline{A} \cap (B \cap C)$
 - B. $\overline{A} \cup (\overline{B} \cap \overline{C})$
 - C. $\overline{A} \cap (\overline{B} \ U \ \overline{C})$
 - D. $\overline{A} \cup (B \cap C)$
- 4. Which of these rules defines a function f from the set of all letter strings of length 6 to the set {1,2,3,4,5,6}?
 - A. The number of vowels in the string. For example, f(TAZNAV) = 2.
 - B. The reverse of the string. For example, f(BAQKDU) = UDKQAB.
 - C. The number of distinct letters in the string. For example, f(TNVRRN) = 4.
 - D. The position in which the first Z occurs. For example, f(PPABZY) = 5.
- 5. Suppose $f: A \rightarrow B$ is a function. Which one of these statements is true?
 - A. If a_1 and a_2 are distinct elements of A, then $f(a_1) \neq f(a_2)$.
 - B. If $b \in B$, then there is at least one element $a \in A$ such that f(a) = b.
 - C. If $b \in B$, then there is exactly one $a \in A$ such that f(a) = b.
 - D. For each element $a \in A$, there is exactly one element $b \in B$ such that f(a) = b.
- 6. Let $f: A \rightarrow B$ where $B = \{0,1,4,9\}$ and f is defined by the rule $f(x) = x^2$. For which set A is "f" a correctly defined function from A to B and one-to-one
 - A. {1,2,3}
 - B. $\{-3,-1,0,2,3\}$
 - C. $\{0,1,4,9\}$

- D. {-1,0,1,2}
- 7. Let S be the set of all bit strings of length at least 2. Which of the following functions $f: S \to S$ is NOT one-to-one?
 - A. The string s with a 1 bit appended at the end
 - B. The string obtained by moving all 0's (if any) in *s* to the end of the string.
 - C. The reversal of s. (For example, f(110) = 011.)
 - D. The string obtained from interchanging 0's and 1's.
- 8. Suppose $f: \mathbf{R} \to \mathbf{R}$ has the following property for all real numbers x and y: if x < y then f(x) < f(y). Which is true?
 - A. f must be 1-1 but is not necessarily onto R.
 - B. f is onto R, but is not necessarily 1-1.
 - C. f must be both 1-1 and onto R.
 - D. f is not necessarily 1-1 and not necessarily onto R.