Eye Disease Classification

Members: Prajwal Sharma (21103020)

Mentors: Dr. Sudesh Rani

Dr. Poonam Saini

Content:

- Objectives
- Dataset
- Preprocessing
 - □ Keras Layers
 - OpenCV
- ☐ Models
- Results & Graphs
- Inferences Drawn
- Future Outlooks
- Conclusion

Objectives

- Educational Research: Reviewing existing literature on fundus image classification and eye defect detection.
- Data Preparation: Preprocessing and curating fundus image datasets for model training.
- Fundus Image Classification: Implementing deep learning models for automatic classification of fundus images.
- Comparing Model Performance: Analyzing and comparing the effectiveness of different classification models.
- Eye Defect Detection (Localization): Developing algorithms to detect and localize eye defects within fundus images.
- Web Application (Deployment): Creating a user-friendly interface to deploy the developed models for real-world usage.

Dataset

The dataset consists of

- Normal (1074)
- Diabetic Retinopathy (1098)
- □ Cataract (1038)
- ☐ Glaucoma (1007)

These Fundus (RGB) images are collected from various sources like IDRiD, Ocular recognition, HRF etc.

Split Ratio:- Train:Test:Val = 8:1 : 1

Preprocessing

- Using tf.keras.layers
 - Resizing
 - Rescaling
 - ☐ Random Zoom
 - width wise
 - Height wise
 - □ Random Flip
 - Horizontal flip
 - ☐ Random Contrast
 - \Box (-50,50)

Augmented Image for the previous Image

Histogram Equalisation

rgb(Original)

clip_limit = 100

clip_limit = 10

Models

- Model From Scratch
 - ☐ Lenet 2
 - ☐ ResNet_34
- Pretrained models
 - → EfficientNet-V2B0
 - ☐ Inception-V3
 - □ DenseNet-121
 - □ VGG-16
 - ☐ ResNet-50

Above pretrained models were pretrained on imagenet dataset

Model's Parameter

- ☐ Feature Extraction Parameter
 - ☐ Image Size = (128,128)
- Classifier Parameter
 - ☐ Units (128,16,4)
- General Parameters:
 - Optimizer = Adam
 - ☐ Epochs = 100
 - ☐ Batch Size = 16
- Callbacks
 - ☐ Checkpoint (for best Weights)
 - ☐ ReduceLROnPlateau (0.7,5)

Model: "Full Model"

Layer	(type)
Input	(InputLayer)
Rescal	e (Rescaling)
Resize	(Resizing)
Augmen	t_Layers (Sequential)
base_M	odel (Sequential)
Global (Globa	AveragePool lAveragePooling2D)
Densel	(Dense)
Norml	(BatchNormalization)
Dropou	tl (Dropout)
Dense2	(Dense)
Norm2	(BatchNormalization)
Dr opo u	t2 (Dropout)
Output	(Dense)

Comparisons

Model Results

GradCam Images Using Trained Models

GradCAM (Gradient-weighted Class Activation Mapping) is a technique in computer vision that visualizes the regions of an image that are important for predicting a particular class.

GradCAM provides valuable insights into the decision-making process of deep learning models, aiding in model interpretation and understanding

Hidden Layers Feature Maps

Future Outlook

- ☐ Diverse Dataset and Eye Disease Classification: Expanding dataset diversity for improved classification accuracy.
- Advanced Preprocessing Techniques: Implementing additional preprocessing methods to refine model performance.
- Exploring Python Libraries: Utilizing diverse Python libraries to enhance functionalities.
- □ Defective Part Localization: Extending classification to include defect localization for precise diagnosis.
- ☐ Web Server Deployment: Deploying final models on web servers for easy access by stakeholders.
- Research Paper References: Incorporating a wider range of research papers for informed methodology.
- □ Comparative Analysis: Comparing results with existing research for validation and improvement insights.

Conclusion

- Exceptional model performance: Achieved over 99% accuracy on all test, train, and validation data without overfitting.
- Effective strategy: Transfer learning combined with fine-tuning proved successful in training pretrained models.
- □ Vital role of augmentation and preprocessing: Contributed significantly to enhancing model performance

References

- □ Dataset :
 - [1] Guna Venkat Doddi. (Nov,2022). Eye_diseases_classification. Version 1.Retrieved 10 Feb,2024.[Dataset]. from https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification.
- Research Papers
 - [2] B.Şener ,E. Sumer , Classification of Eye Disease from Retinal Images Using Deep Learning, December 2023 [Research Paper] .Available:

 https://www.researchgate.net/publication/376140342 Classification of Eye Disease from Retinal Images Using Deep Learning . [Accessed 20 Feb ,2024]
 - [3] A. Shamsan, Dr. E. Senan Automatic Classification of Colour Fundus Images for Prediction Eye Disease Types Based on Hybrid Features ,11 May,2023 [Research Paper]. Available: https://www.mdpi.com/2075-4418/13/10/1706. [Accessed 21 Feb, 2024]
 - [4] Dr.T. Nazir, Dr. A. Irtaza, Retinal Image Analysis for Diabetes-Based Eye Disease Detection Using Deep Learning, 5 Sept 2020 [Research Paper]. Available: https://www.mdpi.com/2076-3417/10/18/6185 .[Accessed 26 Feb, 2024]