Топки в кутии

п кутии

	различими		различими	неразличими	
\mathfrak{m} топки	различими	без ограничения	n ^m	без ограничения	$\sum_{k=1}^{n} {m \brace k}$
			n <u>m</u>	≤ 1 топка в кутия (инекции)	$[\![m \leq n]\!]$
		≥ 1 топка в кутия (сюрекции)	$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m$	≥ 1 топка в кутия (сюрекции)	${m \choose n}$
	неразличими	без ограничения	$\binom{m+n-1}{m}$	без ограничения	$\sum_{k=1}^{n} p(m,k)$
		≤ 1 топка в кутия (инекции)	$\binom{n}{m}$	≤ 1 топка в кутия (инекции)	$[\![m \leq n]\!]$
		≥ 1 топка в кутия (сюрекции)	$\binom{m-1}{m-n}$	≥ 1 топка в кутия (сюрекции)	p(m,n)

Обяснение на нотациите:

• $n^{\underline{m}}$ е кратък запис за произведението $\prod_{k=0}^{m-1} (n-k)$. С други думи,

$$n^{\underline{m}} = n \times (n-1) \times (n-2) \times ... \times (n-m+1)$$

Очевидно е, че $n^{\underline{m}}=0$ при m>n. Освен това, има смисъл да се дефинира $n^{\underline{0}}\stackrel{\mathrm{def}}{=}1$, тъй като единицата е неутрален елемент на операцията умножение. $n^{\underline{m}}$ се чете n на nadauqa степен m (n to the m falling на английски).

• $\binom{\mathfrak{m}}{\mathfrak{n}}$ —чете се "m-подмножество-n"—е *число на Стирлинг от втори род.* $\binom{\mathfrak{m}}{\mathfrak{n}}$ е броят на начините за разбиване на m-елементно множество на n подмножества. В сила е рекурентното уравнение

$$\left\{ m\atop n \right\} = n \left\{ m-1\atop n \right\} + \left\{ m-1\atop n-1 \right\} \ {\rm за} \ m>0 \ {\rm H} \ m\geq n.$$

с гранични условия $\binom{k}{k} = 1$ за $k \geq 0$ и $\binom{k}{0} = 0$ за k > 0. Лесно се вижда, че числата на Стирлинг от втори род са свързани с броя на сюрекциите от m елементен домейн в n елементен кодомейн така:

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} (n-k)^m = n! \binom{m}{n}.$$

• p(m,n) е броят на целочислените разбивания на числото m на n части (на английски, number of integer partitions). Целочислено разбиване на m на n части е всяка сума от n положителни естествени числа (където $1 \le n \le m$), равна на m, където редът на

сумиране няма значение. Тогава $\sum_{k=1}^{n} p(m,k)$ е броят на целочислените разбивания на числото m. Примерно, числото 4 има пет целочислени разбивания:

$$4 = 1 + 1 + 1 + 1$$

$$4 = 1 + 1 + 2$$

$$4 = 2 + 2$$

$$4 = 1 + 3$$

$$4 = 4$$

Очевидно, p(4,2) = 2.

В сила е рекурентното уравнение

$$p(n, k) = p(n - k, k) + p(n - 1, k - 1)$$

с гранични условия p(k,k) = 1 за $k \geq 0$ и p(k,0) = 0 за $k \geq 1$ и p(t,k) = 0 за t < k.

 \bullet [[q]], където q някакъв израз с булева интерпретация, се дефинира така:

$$\llbracket q \rrbracket = egin{cases} 1, & \text{ако } q \text{ е истина} \\ 0, & \text{в противен случай.} \end{cases}$$

Примерно, $[\![m \leq n]\!]$ е равно на 1, когато $m \leq n$, а във всички останали случаи е 0. Тази нотация се нарича *нотация на Iverson*.