



# OpenPlanner Future Developments and Success Stories

Dr. Hatem Darweesh Researcher, Takeda-Lab Graduate School of Informatics, Nagoya University Founder of ZATITECH

# Agenda

- 1) Introduction to OpenPlanner
  - a) Architecture
  - b) Design, Libraries and ROS Nodes
  - c) Versions and repositories
- 2) Connection with Autoware
- 3) OpenPlanner Features
  - a) Global Planning
  - b) HMI bridge
  - c) Local Planning
    - i) Local trajectory generation using Forward/Backward simulation
    - ii) Lane Change
  - d) Trajectory and Behavior Estimation
- 4) OpenPlanner Road Network Map Support
- 5) Development Roadmap

# OpenPlanner 2.5 Architecture



# Design - Self contained functionality

# **Simulation:** op based traffic simulator

- op\_car\_simulator
- op\_perception\_simulator
- op\_signs\_simulator
- op pose2tf

# **Control**, Feed Forward PID with ACC support:

op\_waypoint\_follower

# **HMI,** Feed Forward PID with ACC support:

op\_hmi\_bridge

### OpenPlanner (old version)

- way\_planner (global planning)
- dp\_planner (local planning)
- ff\_waypoint\_follower

# OpenPlanner Libraries: contains all the core functions

- op\_utilities
- op\_simu
- op\_ros\_helpers
- op\_planner

# **Tracking,** simple kf contour tracker:

- lidar kf contour track

# **Planning**, global & local planning, trajectory & behavior estimation:

- op\_global\_planner
- op\_common\_params
- op\_trajectory\_generator
- op\_motion\_predictor
- op\_trajectory\_evaluator
- op\_behavior\_selector

# Versions and Repos

Autoware.Al Repo: <a href="https://github.com/Autoware-Al/autoware.ai">https://github.com/Autoware-Al/autoware.ai</a>

- Include up to OpenPlanner 1.5.

Personal Repo: <a href="https://github.com/hatem-darweesh">https://github.com/hatem-darweesh</a>

- Include modification to projects (common, core\_planning, core\_perception) to accommodate
   OpenPlanner 2.0+
- The GitHub upstream based on **Release 1.13.0**. Means other projects such as (utilities, visualization, simulation, messages) have to checked out as **1.13.0**
- The modifications to Release 1.13 for the mentioned projects are in branch openplanner.1.13

Connection to Autoware.Al



OpenPlanner Features

# **Global Planning**



# **Global Planning**



**HMI** Bridge

# Human-Machine Interface (HMI) Bridge



# General Case - State Machine



# But Routing Case - State Machine

- Many special operation states could be define for a wide range of applications.



**Local Planning** 

# Local Planning OpenPlanner 1.5

- Obstacle avoidance
- Curb avoidance
- Stop sign behavior
- Traffic light behavior
- Yielding for others



Local Planner 2.5+

# Local Trajectory Generation Using Forward/Backward Simulation

### Problems with current trajectory generation approach:

- It doesn't consider any vehicle parameters (kinematics or dynamics)
- Generated trajectory is impossible to follow exactly using waypoint following controllers
- Generating smoother trajectories leads to cutting corners especially in the tight corners
- Because there are big difference between the generated trajectories and the actual vehicle motion path, trajectory evaluation is not accurate

## **Solution:** Forward/Backward Simulation

- Forward simulation consists of two main stages:
  - Motion step (using the kinematic model of the vehicle including the steering delay).
  - Control step (using P controller to find control signals for each moving step)

- Backward simulation:
  - Currently achieved by switching start/goal points and simulate the vehicle moving on the opposite direction.



# Example - 90 degree turn



# Algorithm analysis

### Advantages:

- Less parameters to tune compared to other trajectory optimization techniques
- Once it is tuned it will work within the kinematics limits of the vehicle
- Could plan backward, so it will find the path which can lead to exact target position and orientation. With forward planning only this can't be guaranteed

### Disadvantages:

- Same as normal open planner trajectory generation, if the trajectory is switched often that could lead to overshooting or oscillation
- Shouldn't be called while driving in a tight turn, it will overshoot

# Lane Change in Local Planner

- In OpenPlanner 1.5, lane change was supported only in Global Planning step.



# Lane Change - Worst case scenario



Trajectory and Behavior Estimation

# Behavior and Trajectory Estimation \*

- Novice technique using behavior planner with multi-cue particle filter to estimate intention and trajectory of surrounding vehicles.
- This is an important step for the planner to be able to handle complex social situation.





<sup>\* &</sup>quot;Estimating The Probabilities of Surrounding Vehicle's intentions and Trajectories using a Behavior Planner". IJAE Vol.10 No.4, 2019

# Step 1) Trajectory Extraction from Road network map



# Step 2) Assign probabilities to trajectories and behaviors

- It could understand both intentions of the Bus and the vehicle on the other lane.
- It is easy for decision make now to decide between overtake or wait.





# Road Network Map Support

# HD Map supported by OpenPlanner



# Internal Road Network Map ER design (KML format)



# Supported formats vs Versions

### AISAN Vector Maps (.csv files), Supported by all versions:

- Receive from Autoware then convert to internal format
- Parse .csv files then convert to internal format

### Lanelet2 (.osm file), Supported by OpenPlanner 2.0+:

Parse .osm file then convert to internal format

### KML (.kml file), Supported by all versions:

- Parse .kml file then convert to internal format

### OpenDRIVE (.xodr file), Third party conversion:

- Convert offline using ASSURE mapping tool to KML or Lanelet2.

Development Roadmap

# OpenPlanner Future development

- Use Markov Decision Processes (MDP) instead of deterministic trajectory evaluation.
  - That will replace finding only "best trajectories" with finding "best policy", which include both safe trajectory and recommended velocity.
- Overtake behavior state should be integrated with Global planning similar to Lane change.
- OpenPlanner 2.0+ rebase to Autoare.Al 1.15 Release. Release is still pending for testing.
- ROS2 implementation for OpenPlanner 2.0+ nodes so it could be easily integrated to Autoware.Pilot & Autoware.Auto.

# Thank You