accreditation 48–50	certification 47–48, 417, 707
Advanced Simulation and Computing Program (ASC) 378,	closed form solution 199, 213, 228, 240
678–679, 684	code
adjoint method	complexity 151, 160-161
for adaptation 349, 354-356	coverage 156, 158-159, 716, 729
for discretization error estimation 298, 299, 306-309	definition 170
aleatory uncertainty 51-52, 53, 70-71, 97-99, 101-107, 118,	reliability (see software, reliability)
121, 384, 488, 489, 527–528, 544–548, 556, 566–569,	code verification 63-64, 145, 170, 180, 190-192, 208, 220,
572, 601–605, 609, 720–721, 742	222-223, 225-228, 383, 715-716, 731-732
definition 51–52	criteria 171–175
sources 386, 417	definition 32–34
algorithm consistency 145, 177, 178-180, 196, 225-226, 286,	responsibility 204-205, 729-731
297, 345	coding error (see coding mistake)
anisotropic mesh (see mesh refinement, anisotropic)	coding mistake 56-57, 64, 124, 146, 151, 157, 170, 175, 193,
application domain 41-44, 61, 72-73, 378-380, 491,	196, 202, 215, 226, 383, 482, 630
573–575	coefficient of variation (COV) 492, 500, 581
application of interest 60, 70-73, 478, 674	conceptual model 22-23, 30, 117-119, 128-132, 209, 478,
asymptotic range 185, 229, 241, 288, 299, 312, 317-318, 322,	699
325, 331, 343	confidence interval 440, 493-497, 501-502, 508-510,
	514–517, 611–614, 653
Bayesian inference 479, 483-484, 556, 567, 611, 627-628,	configuration management 34, 165-166, 715-716
630–632, 663–664	consistency (see algorithm consistency)
benchmark numerical solution 241, 243, 715	convergence
bisection method 262	asymptotic (see asymptotic range)
boundary condition 153, 193, 203, 204	discretization error 172, 174, 179-180, 183, 186-189, 193,
order 210	203, 249, 286, 294, 297, 312, 335, 337, 350, 354, 355,
types 210	383, 585
Verification 221, 223-225, 289	iterative (see iterative convergence)
Validation 40, 412-415, 429, 462	rate (see order of accuracy)
bug (see coding mistake)	statistical 258-260, 605
Burgers' equation 213, 214-216, 235, 272-273, 278,	Cramer's rule 266
344–347, 361–366	credibility 8-15, 23, 67, 401, 696-702
	computational simulation phases
calculation verification (see solution verification)	Phase 1: conceptual modeling 118-119, 128-132
calibration 7, 31-32, 64, 373, 382-385, 393-394, 401-404,	Phase 2: mathematical modeling 119-121, 132-135
476–479, 625–626, 663–664, 704, 715	Phase 3: discretization and algorithm selection 121-123,
definition 44–47	135
experimental 57, 415, 430	Phase 4: computer programming 123-124, 135
parameter (see parameter calibration)	Phase 5: numerical solution 124-125, 136
capability maturity model integration (CMMI) 166, 696	Phase 6: solution representation 125-127, 136

Cumulative Distribution Function (CDF) 52, 70-71, 96, 99, sources 72, 108-113, 117-119, 284, 288, 323, 324, 103 136-137 386-388, 413, 440, 487, 561, 566-569, 591-592 customer 13, 50, 60, 65, 373, 731 error 25-27, 63-64, 67, 474-476, 495-497, 529, 630-631 bias 68-69, 72-73, 107 databases, for verification and validation 747-753 code (see coding mistake) debugging 146, 155-156, 196, 201, 226, 410 definition 57-59, 481-483 Dempster-Shafer theory (see evidence theory) discretization (see discretization error) design of experiments (DOE) 422, 437, 441, 442-455, 465, iterative (see iterative error) measurement 371-372, 421, 432-434, 437-442 direct solution methods (for linear systems of equations) 261, model (see model form uncertainty) 263-264, 265-266, 269 numerical 34-35, 145, 249, 250-252, 283-284, 286, 313, 320, 382-383, 487, 591-592, 630, 701, 717-718 direct substitution iteration 262, 320 discontinuities (see singularities) round-off (see round-off error) discretization sources 32, 56-57, 116, 123-125, 126-127, 381-385 of the domain 294-297 truncation (see truncation error) of the mathematical model 288-294 error transport equation (see discretization error transport discretization error 35, 174, 177, 181, 184, 185, 189, 252, equation) 343-348, 592 Euler equations 230-231, 282, 335 definition 178, 286 evidence theory 56, 98, 556 estimation (see discretization error estimators) exact solution temporal 196-201 manufactured solution (see Method of Manufactured transport 181, 286-287 Solutions) discretization error estimators 297-309, 337, 588-591 traditional exact solution 210-219, 226 a posteriori 297-299 expert opinion 25, 54-58, 121, 570-572, 625, 689 a priori 297 experimental uncertainty 377, 381-385, 387-388, 421, for system response quantities 304, 306-309 437-442, 454-455 higher-order estimates 299-301 design of experiments (see design of experiments) reliability 317-322 ISO Guide (GUM) 421, 437, 440, 448 residual-based methods 301-309 uncertainty of 322-329 factor of safety 324-326, 328, 329, 590, 733 discretization error transport equation 301-304, 351-352 failure (system) 115-116 continuous 181, 286, 302-303, 305, 312, 344 false position method 263 discrete 303, 344 finite element residual (see residual, continuous) discretization methods finite element residual methods 305-306, 352 finite difference 289-290 explicit 302, 305, 352-354, 356 finite element 292-294 implicit 302, 305-306, 308 finite volume 290-291 formal methods (for software) 159 dual problem (see adjoint method) formal order of accuracy 174, 190, 194, 208, 210, 215, 291, dynamic software testing 34, 155-157, 161-162 293, 300, 312, 314, 322, 360 defect testing 155-157 definition 180-182, 312 regression testing 34, 157, 196, 686 evaluating 177, 181-182, 345-347 validation testing (in software engineering) 157 reduction due to discontinuities 182, 335-336 Fourier stability analysis (see von Neumann stability analysis) effectivity index 298-299 fractional uniform refinement 331-332 Empirical Distribution Function (EDF) 101-107, 354-356 gap analysis 62, 678, 684-689 energy norm 297-298, 300-301, 305, 308, 589 commercial codes 690-691 environment, of a system 5, 38, 41-44, 87-89, 97, 119, definition 684 130-132, 395, 557 Gauss-Jordan elimination 266 epistemic uncertainty 51, 70-71, 99, 488-489, 527-528, Gauss-Seidel iteration 266-268, 274, 579 544-548, 556, 606-610, 617, 660, 742 Gaussian distribution (see normal distribution) blind (see uncertainty, blind) Gaussian elimination 265-266 definition 53-57 generalized truncation error expression (GTEE) 177-178, recognized (see uncertainty, recognized) 302-304, 345-347

governing equations (see mathematical model)	machine precision 229, 258, 279, 362
grid (see mesh)	machine zero (see machine precision)
grid convergence index (GCI) 323-329, 590, 733	manufactured solution (see Method of Manufactured
definition 324–325	Solutions)
factor of safety method 328	mathematical model 13, 29, 69-71, 91, 119-121, 170
global averaging method 327–328	definition 38, 92–98
implementation 325–326	maturity assessment (of models and simulations)
least squares method 326–327	CMMI (see capability maturity model integration)
grid refinement (see mesh refinement)	credibility assessment scale 701
grid refinement factor 183, 186, 199–201, 311, 314, 318–320,	PCMM (see predictive capability maturity model)
329, 330–332, 595	technology readiness levels (TRL) 697–699
	mean, sample 438, 493–495
heat conduction equation	mesh
steady 228, 241, 271, 292, 377	body-fitted (see mesh, curvilinear)
unsteady 176, 212, 213, 214, 221, 269	Cartesian 191, 228, 269, 290, 291, 295–296, 312, 331, 344
hypothesis testing 479–483, 493, 611	curvilinear 189, 191, 295
	quality (see mesh refinement, consistent)
imprecise probability 99, 528, 609	refinement (see mesh refinement)
inconsistency (see algorithm consistency)	resolution (see mesh refinement, uniform)
infinite series solution 195, 240, 241	structured 189, 191, 294–295, 331, 332, 358, 359
integral equation (see mathematical model)	topology 190–192, 195
iteration matrix 266, 268, 271, 273–275, 279–281	transformation 173, 189–190, 228, 312, 345–347, 361
iterative convergence 184–185, 229, 241, 262–263, 264,	unstructured 189, 191, 203, 295, 330, 332, 358, 589
266–267, 273–283, 317, 587–588	mesh adaptation (see solution adaptation)
criteria 276–278	mesh refinement 317, 329, 332
definition 263, 264, 273–274	adaptive (see solution adaptation)
error (see iterative error)	anisotropic 188, 345–346, 347–348, 351
general 275–276	consistent 186–189
monotone 274–275	factor (see grid refinement factor)
oscillatory 275	fractional uniform (<i>see</i> fractional uniform refinement)
iterative error 35, 185, 260–261, 263–264, 265, 274, 382, 586–588, 591	methods (see richardson extrapolation)
	systematic 176, 185–189, 313, 324, 329–330, 346
definition 260, 273 estimation 278–281	unidirectional 197, 333–334 uniform 186
local convergence rate 279–281	method of characteristics 213
machine zero method 279	Method of Manufactured Solutions (MMS) 33, 219–234, 729
practical approach for estimating 282–283	750
relation to iterative residual 281–282	examples with order verification 228–234
iterative method 261–269	guidelines 222–223
hybrid 269	physically realistic 234–239
Krylov subspace 268–269	procedure 220–222
stationary 266–268	verifying boundary conditions 223–225
iterative residual (<i>see</i> residual, iterative)	mixed order 181, 335–336
	model
Jacobi iteration 229, 267, 269, 274	accuracy assessment (see validation metric)
JCEAP (Joint Computational Experimental Aerodynamics	adequacy (see validation, aspects)
Program) 409	alternative plausible models 575, 611, 615-617
experimental design 422–437	calibration (see calibration)
experimental uncertainty estimation 437-455	competing models (see model, alternative plausible
synergism with simulation 455-465	models)
	conceptual (see conceptual model)
Latin hypercube sampling (LHS) (see Monte Carlo sampling)	definition 92
LU decomposition 266	extrapolation/interpolation 36, 43-44, 541-544, 611-615,
Lax's equivalence theorem 180	646, 657–663

form uncertainty 36–40	definition 28
mathematical (see mathematical model)	extrapolation/interpolation 41–44, 46–47
strong form 98	predictive capability 38–40, 59–75, 134, 402–405, 478–479,
tree structure 565	622–626
types 92–95	responsibilities, staff 729–738
updating (see calibration)	responsibilities, management 738–747
weak form 98	Step 1: identify uncertainties 557, 561, 640
modeling and simulation (see scientific computing)	Step 2 characterize uncertainties 565–575, 640–654
Monte Carlo sampling (MCS) 103–113, 125, 582, 600–610	Step 3: estimate solution error 584–592
Latin hypercube sampling (LHS) 135–136, 605–610	Step 4: estimate total uncertainty 599–617, 655–663
nested (second order, two-dimensional) 98–99	Step 5: model updating 622–633
replicated 112, 608	Step 6: sensitivity analysis 633–638
•	predictive capability maturity model (PCMM)
Newton's method 263, 272, 275	aggregation of scores 723–724
normal distribution 102, 440, 493-495, 576-578,	characteristics 711–721
640–642	purpose 707–711
norm 171, 184, 195, 198-200, 273, 274, 297-298, 472,	structure 702–707
485, 501–502, 586	probability interpretations 113, 494, 609, 627
numerical benchmark solution (see benchmark numerical	probability bounds analysis (PBA) 556, 606
solution)	definition 98–100
	example 111-113, 135-137
observed order of accuracy 182-185, 195-196, 198-201, 318,	p-box (see also imprecise probability) 99, 136, 474,
320–322, 324, 383, 590	526-528
constant grid refinement factor 318-320	probability density function (PDF) 52, 102
definition 175, 182, 318	programming, agile 150–151
non-constant grid refinement factor 320	programming error (see coding mistake)
order of accuracy	
observed (see observed order of accuracy)	random uncertainty (see aleatory uncertainty)
formal (see formal order of accuracy)	random variable (see aleatory uncertainty)
order verification procedures	reality of interest 30
downscaling method 203-204	recovery methods 300-301
residual method 202-203	reducible uncertainty (see epistemic uncertainty)
standard 192–197	replicated Monte Carlo sampling (see Monte Carlo sampling)
statistical method 203	residual 305, 349, 351-356, 444-447
with spatial and temporal discretization 197-201	continuous 277, 304, 305, 352
	discrete 182, 202, 307, 314, 315
parameter 401–404	finite element (see residual, continuous)
calibration 44–47	iterative 262, 263, 264, 268, 272, 277–278, 283
estimation 44–47, 375, 479–480	method (see order verification procedures, residual
types 622–625	method)
uncertainty 559-560, 566-572, 606-610	relation to iterative error (see iterative error, relation to
updating 478-479, 483-484, 626-633	iterative residual)
partial differential equation (see mathematical model)	relation to truncation error 303–304
phenomena identification and ranking table (PIRT) 677–684,	revision control (see version control)
688–691	Richardson extrapolation 299, 309, 589
planning and prioritization 673–678	assumptions 312–313
pollution error (see discretization error, transport)	completed 314
polynomial chaos 125, 601	completed in space and time 314
pooling CDFs (u-pooling) 535–544, 649–662	error estimate 315
possibility theory 56	generalized 311–312
precision (floating point)	least squares extrapolation 314–315
double 253, 279	standard 310–311
single 253, 279	risk 89, 90, 119, 120, 130–132
prediction 35–40, 59–75, 96–100, 476–479, 555–557	definition 115–116

risk-informed decision-making 59, 93, 610, 721–725,	statistical sampling error 258–260
737–738	strong solution 209, 289
round-off error 185, 252-258	superconvergence 300–301
	surroundings 38, 69, 94-95, 118-119, 128-131, 440, 496,
sampling (see Monte Carlo sampling)	558–560, 753–754
scenario 61, 97-101, 115, 119, 130-131, 395, 557, 561, 599,	definition 84-87, 501
615	symbolic manipulation 222
definition 87–89	system 69–71, 92–95, 128–131, 558–560
scientific computing (defined) 2	definition 84–87
screening (scoping) analysis 557–558, 707	system failure (see failure, system)
secant method 263	system response quantity (SRQ) 41–44, 61, 66–67, 97–101
sensitivity analysis 15, 100-101, 456, 633-634, 664,	spectrum character 377–378, 418–420
719–721	•
global 635–638	T experiments 161-162
local 634–635	temporal refinement factor (see grid refinement factor)
separation of variables 211–212	Thomas algorithm 265, 266, 270
series solution (see infinite series solution)	transformations
similarity solution 239–241, 520	for solving differential equations 212-213
simulation 51, 71, 96–101	mesh (see mesh, transformation)
definition 92–95	truncation error 180–182, 190, 203, 301–304, 335, 349,
singularities 241, 244, 287, 322, 334–336, 349	351–354
software	analysis 175–178, 344–345
cost estimation 165	analysis on nonuniform meshes 345–347
defect 149, 153	definition 175
development 147–151	
failure 154	uncertainty
fault 153	aleatory (see aleatory uncertainty)
management 164–167	blind
quality 159–161	characterization 66, 70, 108–113, 119, 384, 386,
quality assurance 33–34, 63–64, 166, 729–732	565–575
refactoring 151	definition 51–57
reliability (see software, quality)	epistemic (see epistemic uncertainty)
requirements 162–164	lack of knowledge (see epistemic uncertainty)
static analysis (see static analysis)	model (see model form uncertainty)
testing (see dynamic software testing)	model input 97–101, 475–476, 558–560, 569–572
validation 153	numerical 283–284, 288
verification 153	parameter (<i>see</i> parameter uncertainty)
software engineering 146–147	predictive (<i>see</i> predictive capability)
solution adaptation 249, 343	quantification, responsibilities 736–747
adaptive remeshing 358	recognized
criteria 349–356	roogmied
mesh refinement (h-adaptation) 358–359	validation
mesh movement (r-adaptation) 359–360	aspects 35–39, 374–375
order refinement (p-adaptation) 360	definitions 22, 24, 25
solution verification 382, 716	difficulties 401–405
definition 34, 249, 250	domain 41–44, 61, 378–381, 573–575
error sources 34–35, 250–252	experiment 64–66, 372–388, 409–422
responsibilities 732–734	hierarchy 27, 388–396
stability (of discretization methods)	metric (see validation metric)
stakeholders 60–61, 565, 697, 709–710, 733	plan 61, 593, 596
definition 675	project-oriented 378–381
standard deviation 38, 69, 84–87, 440, 496, 501	pyramid (see validation, hierarchy)
standards, development 94–95, 753–754	responsibilities 734–736, 738–747
static analysis (of software) 154–155	scientific 375–378

Validation metric 67–69, 474–476, 573–575, 611–615
area metric (comparing CDFs and p-boxes) 486, 524–548,
612–654, 655–663
definition 36, 374, 473
difference between means 484–486, 491–524
pooling (*see* pooling CDFs)
recommended features 486–490
variability (*see* aleatory uncertainty)
verification

calculation (see solution verification)

code (see code verification) definition 13–14, 26 plan 61, 593, 596 responsibilities 204–205, 729–734, 738–747 solution (see solution verification) version control 151–153, 166 von Neumann stability analysis 179

weak solution 209, 211, 226