应用运筹学基础:线性规划 (4) - 对偶与对偶单纯形法

这一节课讲解了线性规划的对偶问题及其性质。

引入对偶问题

$$\max_{x} \qquad 4x_1 + 3x_2$$

考虑一个线性规划问题: s.t. $2x_1+3x_2\leq 24$ 我们可以把这个问题看作一个生产模型:一份 $5x_1+2x_2\leq 26$ x>0

产品 A 可以获利 4 单位价格,生产一份需要 2 单位原料 C 和 5 单位原料 D; 一份产品 B 可以获利 3 单位价格,生产一份需要 3 单位原料 C 和 2 单位原料 D。现有 24 单位原料 C,26 单位原料 D,问如何分配生产方式才能让获利最大。

但假如现在我们不生产产品,而是要把原料都卖掉。设 1 单位原料 C 的价格为 y_1 ,1 单位原料 D 的价格为 y_2 ,每种原料制定怎样的价格才合理呢?

首先,原料的价格应该不低于产出的产品价格(不然还不如自己生产…),所以我们有如下限制: $\dfrac{2y_1+5y_2\geq 4}{3y_1+2y_2\geq 3}$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下目标 $\dfrac{3y_1+2y_2\geq 3}{3y_1+2y_2\geq 3}$

$$\min_y \quad 24y_1 + 26y_2$$

函数: $\min_y \quad 24y_1 + 26y_2$ 合起来就是下面这个线性规划问题: $\sup_{y = 0} \frac{2y_1 + 5y_2 \ge 4}{3y_1 + 2y_2 \ge 3}$ $y \ge 0$

就是原问题的对偶问题。

对偶问题

$$\max_{x} c^{T}x$$

对于一个线性规划问题(称为原问题,primal,记为 P) $ext{s.t.}$ $ext{$Ax \leq b$}$ 我们定义它的对偶问题 $ext{$x \geq 0$}$

$$\min_{x}$$
 $b^{T}y$

(dual, 记为 D) 为 $_{\mathrm{s.t.}}$ $A^Ty\geq c$ 这里的对偶变量 y,可以看作是对原问题的每个限制,都用 $y\geq 0$

一个变量来表示。

原问题限制条件的不等号,和对偶问题限制条件的不等号,是相互关联的。假设原问题是一个最大化问题,设 a_i^T 表示 A 中的第 i 行,我们有以下结论:

1. 若限制条件为 $a_i^Tx \leq b_i$,那么对偶问题中有 $y_i \geq 0$

证明略, 根据对偶问题的定义即可获得。

2. 若限制条件为 $a_i^T x \geq b_i$, 那么对偶问题中有 $y_i \leq 0$

把不等式转换为标准形式显然有 $-a_i^Tx \leq -b_i$ 。令 $\bar{y}_i = -y_i$,用 \bar{y}_i 表示原问题的第 i 个限制,令 $y' = \begin{bmatrix} y_1 & \dots & y_{i-1} & \bar{y}_i & y_{i+1} & \dots & y_m \end{bmatrix}^T$,那么对偶问题可以写为 $\min_{y'} \quad [b_1 & \dots & b_{i-1} & -b_i & b_{i+1} & \dots & b_m]y'$ s.t. $[a_1 & \dots & a_{i-1} & -a_i & a_{i+1} & \dots & a_m]y' \geq c$ 将 $y_i = -\bar{y}_i$ 代回式中即可获得。 $y' \geq 0$

3. 若限制条件为 $a_i^T x = b_i$,那么对偶问题中对 y_i 无限制

 $a_i^Tx=b_i$ 可以看作 $a_i^Tx\geq b_i$ 与 $a_i^Tx\leq b_i$,用 \bar{y}_i 和 \tilde{y}_i 表示这两个限制,并令 $y'=\begin{bmatrix}y_1&\dots&\bar{y}_i&\tilde{y}_i&\dots&y_m\end{bmatrix}^T$,那么对偶问题可以写为 $\min_{y'} & \begin{bmatrix}b_1&\dots&b_i&-b_i&\dots&b_m\end{bmatrix}y'$ s.t. $\begin{bmatrix}a_1&\dots&a_i&-a_i&\dots&a_m\end{bmatrix}y'\geq c$ 令 $y_i=\bar{y}_i-\tilde{y}_i$,代回上面的式子中即可获得原来的 $y'\geq 0$

对偶问题的形式。容易看出 y_i 是可正可负的,没有限制。

4. 若 $x_i \geq 0$,那么对偶问题中有 $A_i^Ty \geq c_i$ 5. 若 $x_i \leq 0$,那么对偶问题中有 $A_i^Ty \leq c_i$ 6. 若 x_i 无限制,那么对偶问题中有 $A_i^Ty = c_i$

这三条的推导和前三条类似,这里不再赘述。

对偶问题的性质

这一部分讲解线性规划中对偶问题的若干性质。

对称性

P 的对偶是 D,那么 D 的对偶也是 P。如果我们把对偶问题变成标准形式,有 $\max_{y} \quad y^T(-b) \quad \min_{x} \quad -c^Tx$ s.t. $(-A^T)y \leq -c$ 它的对偶问题是 s.t. $-Ax \geq -b$ 把目标函数和限制都乘以 -1 之后就是 $y \geq 0$ 原问题。

弱对偶定理 (weak duality)

设 x 和 y 分别是原问题和对偶问题的可行解,我们有 $c^Tx \leq b^Ty$ 。这是因为,由 y 的可行性我们有 $A^Ty \geq c$,即 $y^TA \geq c^T$,两边同乘以 x 有 $y^TAx \geq c^Tx$;由 x 的可行性我们还有 $Ax \leq b$,那么 $y^TAx \leq y^Tb$,合起来就是 $c^Tx \leq b^Ty$ 。

由弱对偶定理我们马上获得以下两条性质。

最优性

若 x 和 y 分别是原问题和对偶问题的可行解,而且 $c^Tx=b^Ty$,那么 x 和 y 分别是原问题和对偶问题的最优解。

无界性

若原问题有可行解无最优解(就是目标函数值可以取无穷大),那么对偶问题无可行解;若对偶问题有可行解无最优解,那么原问题无可行解。

 \max

$$\min\limits_y \qquad y_1-2y_2$$

对偶问题是 $\mathrm{s.t.} \qquad y_1-y_2 \geq 1 \ -y_1+y_2 \geq 1 \ y \geq 0$

强对偶定理 (strong duality)

若原问题(或对偶问题)有有限最优解,那么对偶问题(或原问题)也有有限最优解,且二者最优解相等。

可以通过单纯形法的计算过程来辅助证明。

是原问题和对偶问题的最优解。

的 x 和 y, 使得原问题和对偶问题的目标函数值相等,那么根据弱对偶定理,这两个可行解分别

互补松弛定理 (complementary slackness)

若 x^* 与 y^* 分别是原问题和对偶问题的可行解,那么以下两点等价:

 $1. x^*$ 和 y^* 分别是原问题和对偶问题的最优解;

\2.
$$(y^{*T}A - c^T)x^* = 0$$
 且 $y^{*T}(Ax^* - b) = 0$ 。

由 2 推出 1 很简单,把括号都打开后有 $y^{*T}b=y^{*T}Ax^*=c^Tx^*$,根据弱对偶定理得 x^* 和 y^* 分别是原问题和对偶问题的最优解。

由 1 推出 2 也不难,根据弱对偶定理中的推导,我们有 $y^{*T}b \geq y^{*T}Ax^* \geq c^Tx^*$ 。而 x^* 和 y^* 分别是原问题和对偶问题的最优解,那么 $y^{*T}b = c^Tx^*$,不等式就会全部取等,即 $y^{*T}b = y^{*T}Ax^* = c^Tx^*$,加上括号就行了。

这个定理揭示了原始问题的最优解和对偶问题的最优解之间的关系,它们对限制条件的满足是"一紧一松"的。

对偶单纯形法

利用强对偶定理,我们可以为单纯形法作出另一种解释。

我们知道,单纯形法的停止条件是所有检验数非正(如果是 min 问题就是所有检验数非负)。 而从强对偶定理的推导中我们可以看到,所有检验数非正时,我们就能构造一个对偶问题的可行解,使得原问题和对偶问题的目标函数值相等,那么它们分别是原问题和对偶问题的最优解。也就是说,单纯形法是在保证原问题可行解的情况下,尝试构造对偶问题的可行解(这个可行解让目标函数值与原问题相同),如果构造成功,那么两个都是最优解。这种单纯形法又称为原始单纯形法。

相应地,我们可以设计对偶单纯形法:在保证对偶问题可行解(所有检验数非正,如果是 min 问题就是所有检验数非负)的情况下,尝试构造原始问题的可行解(这个可行解让目标函数值与 对偶问题相同),如果构造成功,那么两个都是最优解。

下面以 min 问题为例,简要说明对偶单纯形法的计算步骤:

\1. 找到一组基, 使得所有检验数非负;

\2. 如果单纯形表中 b 的那一列出现负数,说明当前基不可行(因为有 $x \ge 0$ 的限制),选择负数中 b 的绝对值最大的那一行(设为第 i 行),对应的变量 x_i 作为出基变量(要把该变量从负数调到 0);

\3. 假设第 i 行中, x_j 的系数为 a_j ,检验数为 d_j ,那么在所有 $a_j < 0$ 的变量中,选择 d_j/a_j 绝对值最小的那一列,对应的变量 x_k 作为入基变量,回到 2。如果所有 $a_j \geq 0$,那么原问题无可行解;

\4. 如果单纯形表中 b 的那一列均非负,说明构造出了一个原问题的可行解,算法结束。

为什么要选择 $a_k < 0$ 的变量呢?我们写出出基变量和非基变量之间的关系式 $\sum_{j \in N} a_j x_j + x_i = b_i$ 如果 $a_k > 0$,那么为了把 x_i 从负数调到 0,又要保证等式成立, x_k 只能 从 0 变成负数,就不能入基了;相反,如果 $a_k < 0$,那么为了让等式成立, x_k 会从 0 变成正数,就可以入基,向原始问题的可行解靠近一步。

为什么要选择 d_j/a_j 绝对值最小的变量呢?我们写出 x_k 和其它变量的关系式,以及目标函数和

$$x_k = rac{b_i - x_i}{a_k} - \sum_{j \in N, j
eq k} rac{a_j}{a_k} x_j$$

检验数的关系式:

$$z=v+\sum_{j\in N}d_jx_j=\sum_{j\in N, j
eq k}(d_j-rac{d_k}{a_k}a_j)x_j-rac{d_k}{a_k}x_i+(v+rac{d_k}{a_k}b_i)$$

一 $\dfrac{d_k}{a_k} \geq 0$ 偶问题的可行解,我们需要保证变量替换之后,检验数仍然非负,即 第一个式 $d_j - \dfrac{d_k}{a_k} a_j \geq 0$

子显然满足,因为原检验数 $d_k \geq 0$,且 $a_k < 0$ 。第二个式子在 a_j 为正数时显然满足, a_j 为负数时,需要 $\frac{d_j}{a_i} \leq \frac{d_k}{a_k}$ 才能满足,这就是选择 d_j/a_j 绝对值最小的变量的原因。

$$\min_{x} \quad 9x_1 + 5x_2 + 3x_3$$

举一个例子 $\mathbf{s.t.}$ $3x_1+2x_2-3x_3\geq 3$ 加入松弛变量后,问题转化为 $2x_1+x_3\geq 5$

$$x \geq 0$$

s.t.
$$3x_1+2x_2-3x_3-x_4=3$$
 绘制单纯形表,第一次迭代: $\frac{9}{x_4}$ $\frac{5}{-3}$ $\frac{3}{-2}$ $\frac{0}{-3}$ $\frac{0}{-3}$

选择 x_4 出基. 由于 3/9 < 5/2,选择 x_1 入基,第三次迭代:

的最优解为 $x_1 = 2, x_2 = 0, x_3 = 1$,目标函数值为 21。