Question Number		Scheme	
Q1	(a)	A population is collection of all items	B1 (1)
	(b)	(A random variable) that is a function of the sample which contains no unknown quantities/parameters.	B1 (1)
	(c)	The voters in the town	B1
		Percentage/proportion voting for Dr Smith	B1
	(d)	Probability Distribution of those voting for Dr Smith from all possible samples (of size 100)	(2) B1
		(61 525 100)	(1)
			[5]
		Notes	
	(a)	B1 – collection/group all items – need to have /imply all eg entire/complete/every	
	(b)	B1 – needs <u>function/calculation(o.e.)</u> of the <u>sample/random variables/observations</u> and <u>no unknown quantities/parameters(o.e.)</u> NB do not allow unknown variables e.g. "A calculation based <u>solely</u> on observations from a given sample." B1 "A calculation based <u>only</u> on known data from a sample" B1 "A calculation based on known observations from a sample" B0	Solely/only imply no unknown quantities
	(c)	B1 – Voters	quantities
		Do not allow 100 voters.	
		B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone	
	(d)	B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith.	
		e.g "It is all possible values of the percentage and their associated probabilities." B0 no context	

Ques Num			Sche	eme		Ma	arks
Q2	(a)	Let X be the random $X \sim B(9, 0.2)$	variable the number o	of games Bhim loses.		B1	
		$P(X \le 3) - P(X \le 2)$	= 0.9144 - 0.7382	or $(0.2)^3 (0.8)^6 \frac{9}{3!}$	<u>0!</u> 6!	M1	
			= 0.1762	=0.1762	awrt 0.176	A1	(3)
	(b)	$P(X \le 4) = 0.9804$			awrt 0.98	M1A1	(2)
	(c)	Mean = 3 variance	$=2.85, \frac{57}{20}$			B1 B	31 (2)
	(d)	Po(3)	20		poisson	M1	
		$P(X > 4) = 1 - P(X \le 1)$	(4)			M1	
		= 1 - 0.8153					
		= 0.1847				A1	(3) [10]
		Notes					
	(a)	B1 – writing or use of I	B(9, 0.2)				
		M1 for writing/ using	$g P(X \le 3) - P(X \le 2)$	or $(p)^3 (1-p)^6 \frac{9!}{3!6}$	- !		
		A1 awrt 0.176					
	(b)	M1 for writing or usi A1 awrt 0.98	$ng P(X \le 4)$				
	(c)	B1 3 B1 2.85, or exact equ	ivalent				
	(d)	M1 for using Poisson M1 for writing or usi 0.8912 Po(2.5) A1 awrt 0.185		$P(X \le 4)$ is 0.7254 I	Po(3.5) and		
		Special case: Use of					
		(a) can get B1 M1 A0	0 – B1 if written B(9,	0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$	- or awrt to 0.161		
		If B(9, 0.2) is not see (b) can get M1 A0 - N 0.964	M1 for writing or using	•			
		Use of Normal in (d) Can get M0 M1 A0	•	ite $1 - P(X \le 4)$ or g	et awrt 0.187		

Question Number	Scheme				
Q3	Method 1	Method 2	Method 3		
	$P(X > 6) = \frac{1}{6}$	$P(4 < X < 6) = \frac{1}{3}$	$P(X > 6) = \frac{1}{6}$	B1 M1	
	$P(X<4)=\frac{1}{2}$		$Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$	A1	
	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$1 - \frac{1}{3} = \frac{2}{3}$	$\cot 1 = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	M1dep B A1 (5)	
				[5]	
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on a diagram on x-axis) M1 for $P(X > 6)$ or $P(6 < X < 7)$; or $P(X < 4)$ or $P(1 < X < 4)$; or $P(4 < X < 6)$ Allow $\le and \ge signs$				
	A1 $\frac{1}{6}$; or $\frac{1}{2}$; $\frac{1}{3}$ must match the probability statement M1 for adding their " $P(X > 6)$ " and their " $P(X < 4)$ " or 1 - their " $P(4 < X < 6)$ " dep on getting first B mark				
	A1 cao $\frac{2}{3}$				
	Method 3 Y~U[3, 9] B1 for 6 with U[1,7]and 6 M1 for P(X > 6) or P(6 <				
	A1 $\frac{1}{6}$; or $\frac{1}{2}$; must match the 1	probability statement			
	` `	> 6)" and their "P($Y>$ 6)" dep	o on getting first B mark		
	A1 cao $\frac{2}{3}$				

Question Number	Scheme		(S
Q4 (a)	$\frac{4}{9}(m^2 + 2m - 3) = 0.5$	M1	
	$m^{2} + 2m - 4.125 = 0$ $m = \frac{-2 \pm \sqrt{4 + 16.5}}{2}$ $m = 1.26, -3.264$ (median =) 1.26	M1	(3)
(b)	Differentiating $\frac{d\left(\frac{4}{9}(x^2+2x-3)\right)}{dx} = \frac{4}{9}(2x+2)$	M1 A1	
	$f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5\\ 0 & \text{otherwise} \end{cases}$	B1ft ((3)
(c)	$P(X \ge 1.2) = 1 - F(1.2)$ = 1 - 0.3733	M1	
	$= \frac{47}{75}, \ 0.6267$ awrt 0.627	A1 ((2)
(d)	$(0.6267)^4 = 0.154$ awrt 0.154 or 0.155	M1 A1	(2)
		[10]
	<u>Notes</u>		
(a)	M1 putting $F(x) = 0.5$ M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root. If they use Trial and improvement they have to get the correct answer to gain the second M mark.		
(b)	M1 attempt to differentiate. At least one $x^n \to x^{n-1}$ A1 correct differentiation B1 must have both parts- follow through their F'(x) Condone <		
(c)	M1 finding/writing $1 - F(1.2)$ may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) dx$ or $1 - \int_{1}^{1.2} \frac{8}{9}(x+1) dx$		
	or $\int_{1.2}^{1.5}$ "their f(x)" dx. Condone missing dx		
	A1 awrt 0.627		
(d)	M1 (c) ⁴ If expressions are not given you need to check the calculation is correct to 2sf.		
	A1 awrt 0.154 or 0.155		

(a) (b) (i)	Connecting occurs at random/independently, singly or at a constant rate	D4 (4)				
		B1 (1)				
	Po (8)	B1				
	P(X=0) = 0.0003	M1A1				
(ii)	$P(X \ge 4) = 1 - P(X \le 3)$	M1				
	$=1-0.04\overline{24}$	A1 (5)				
	= 0.9576					
(c)	$H_0: \lambda = 4 (48) H_1: \lambda > 4 (48)$	B1				
	N(48,48)	M1 A1				
	Method 1 Method 2					
	$P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right) \qquad \frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$	M1 M1 A1				
	$= P (Z \ge 1.66) = 1 - 0.9515$					
	$\begin{vmatrix} 1 & 0.0315 \\ = 0.0485 \end{vmatrix}$ $x = 59.9$	A1				
	0.0485 < 0.05					
	Reject H ₀ . Significant. 60 lies in the Critical region	M1				
	The number of failed connections at the first attempt has increased.	A1 ft (9)				
(a)	Notes B1 Any one of randomly/independently/singly/constant rate. Must have context of					
(u)	connection/logging on/fail					
(b)	B1 Writing or using Po(8) in (i) or (ii)					
(i)	M1 for writing or finding $P(X=0)$					
` '	A1 awrt 0.0003					
(ii)	M1 for writing or finding $1 - P(X \le 3)$					
	A1 awrt 0.958					
(c)	B1 both hypotheses correct. Must use λ or μ					
	M1 identifying normal					
	A1 using or seeing mean and variance of 48					
	These first two marks may be given if the following are seen in the standardisation					
	formula: 48 and $\sqrt{48}$ or awrt 6.93					
	M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$)					
	M1 for standardising using their mean and their standard deviation and using either					
	Method 1 [59.5, 60 or 60.5. accept \pm z.] Method 2 [($x\pm$ 0.5) and equal to a \pm z value)					
	A1 correct z value awrt ± 1.66 or $\pm \frac{59.5 - 48}{\sqrt{48}}$, or $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$					
	A1 awrt 3 sig fig in range 0.0484 – 0.0485, awrt 59.9					
	M1 for "reject H ₀ " or "significant" maybe implied by "correct contextual comment"					
	If one tail hypotheses given follow through "their prob" and 0.05 , $p < 0.5$					
	If two tail hypotheses given follow through "their prob" with 0.025 , $p < 0.5$					
	If one tail hypotheses given follow through "their prob" and 0.95 , $p > 0.5$					
	If two tail hypotheses given follow through "their prob" with 0.975 , $p > 0.5$					
	If no H ₁ given they get M0					
	A1 ft correct contextual statement followed through from their prob and H_1 need					
	the words <u>number</u> of <u>failed connections/log ons</u> has <u>increased</u> o.e.					
	Allow "there are more failed connections"					
	NB A correct contextual statement <u>alone</u> followed through from their prob and H ₁ gets M1 A1					

Question Number		Scheme		Marks		
Q6	(a)	2 outcomes/faulty or not faulty/success or fail	B1			
		A constant probability	B1			
		Independence		(2)		
		Fixed number of trials (fixed <i>n</i>)		(2)		
	(b)	$X \sim B(50,0.25)$	M1			
	(-,	$P(X \le 6) = 0.0194$				
		$P(X \le 7) = 0.0453$				
		$P(X \ge 18) = 0.0551$				
		$P(X \ge 19) = 0.0287$				
		$CR X \le 6$ and $X \ge 19$	A1 A1	(3)		
	(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)		
	(d)	8(It) is not in the Critical region or 8(It) is not significant or $0.0916 > 0.025$;	M1;			
		There is evidence that the probability of a faulty bolt is 0.25 or the company's claim	A1ft			
		is correct.		(2)		
	(0)	H 0.25 H 40.25	B1B1			
	(e)	$H_0: p = 0.25 H_1: p < 0.25$	M1A1			
		$P(X \le 5) = 0.0070 \text{ or } CR X \le 5$	MIAI			
		0.007 < 0.01,	M1			
		5 is in the critical region, reject H_0 , significant. There is evidence that the probability of faulty bolts has decreased	A1ft	(6)		
		There is evidence that the probability of faulty boits has decreased		(5) [15]		
	(-)	Notes				
	(a)	B1 B1 one mark for each of any of the four statements. Give first B1 if only one corre	ct state	ment		
	(b)	given. No context needed. M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Co	ndone i	100		
	(5)	of P in critical region for the method mark.	iluolic (150		
		A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept $P(X \le 6)$				
		A1 (X) \geq 19 o.e. [19,50] DO NOT accept P(X \geq 19)				
	(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5				
	7-15	A1 awrt 0.0481				
	(d)	M1 one of the given statements followed through from their CR.				
		A1 contextual comment followed through from their CR. NB A correct contextual comment <u>alone</u> followed through from their CR will get M1	Α 1			
	(e)	B1 for H_0 must use p or $\pi(pi)$	AI			
	(-)	B1 for H_1 must use p or π (pi)				
		M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct of	critical			
		region				
		A1 awrt $0.007/\text{CR } X \le 5$				
		M1 correct statement using their Probability and 0.01 if one tail test				
		or a correct statement using their Probability and 0.005 if two tail test.				
		The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compati	ble with	1		
		their H ₁ . If no H ₁ given M0				
		A1 correct contextual statement follow through from their prob and H ₁ . Need faulty bolts and decreased.				
		NB A correct contextual statement <u>alone</u> followed through from their prob and H ₁ get				

Question Number		Scheme	
Q7	(ai)	$f(y) \ge 0 \text{ or } f(3) \ge 0$	M1
		$ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$	
		$a \ge 3$	A1 cso
	(ii)	$\int_{0}^{3} k(ay - y^{2})dy = 1$ integration	M1
		$\int_{0}^{3} k(ay - y^{2}) dy = 1$ integration $\left[k \left(\frac{ay^{2}}{2} - \frac{y^{3}}{3} \right) \right]_{0}^{3} = 1$ answer correct	A1
		$k\left(\frac{9a}{2} - 9\right) = 1$ answer = 1	M1
		$k\left[\frac{9a-18}{2}\right] = 1$	
		$k = \frac{2}{9(a-2)} *$	A1 cso (6)
	(b)	$\int_0^3 k(ay^2 - y^3) dy = 1.75$ Int $\int xf(x)$	M1
			A1
		$\left[k\left(\frac{ay^3}{3} - \frac{y^4}{4}\right)\right]_0^3 = 1.75$ Correct integration $\int xf(x) = 1.75 \text{ and limits } 0.3$	M1dep
		$k\left(9a - \frac{81}{4}\right) = 1.75$	
		$2\left(9a - \frac{81}{4}\right) = 15.75(a - 2)$ subst k	M1dep
		$2.25a = -31.5 + \frac{81}{2}$	
		a = 4 *	A1cso
		$k = \frac{1}{9}$	B1 (6)

Question Number	Scheme	Ma	arks
(c)		B1 B1	
(d)	mode = 2	B1	(2)
(a) (i)	Notes Notes M1 for putting $f(y) \ge 0$ or $f(3) \ge 0$ or $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or	(a-3)	[15])≥0
(ii)	or state in words the probability can not be negative o.e. A1 need one of $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$ and $a \ge 1$ M1 attempting to integrate (at least one $y^n \to y^{n+1}$) (ignore limits) A1 Correct integration. Limits not needed. And equals 1 not needed. M1 dependent on the previous M being awarded. Putting equal to 1 and have the correction of the previous M being awarded.		nits.
(b)	A1 cso M1 for attempting to find $\int yf(y) dy$ (at least one $y^n \to y^{n+1}$) (ignore limits) A1 correct Integration		
(c)	M1 $\int yf(y) = 1.75$ and limits 0,3 dependent on previous M being awarded M1 subst in for k. dependent on previous M being awarded A1 cso 4 B1 cao 1/9 B1 correct shape. No straight lines. No need for patios. B1 completely correct graph. Needs to go through origin and the curve ends at 3. Special case: If draw full parabola from 0 to 4 get B1 B0 Allow full marks if the port $x = 3$ and $x = 4$ is dotted and the rest of the curve solid.	ion be	tween
(d)	B1 cao 2		