Evaluating Hypotheses

Overview

- Sample versus Generalisation Error
- Error Estimators and Confidence Intervals
- Methods of Evaluation
- Comparing Machine Learning Methods

Sample vs Generalisation Error

- Suppose we have
 - hypothesis h
 - target concept/function c
 - data distribution D
 - sample of data S (drawn from D)
- Sample error

error_S(h)
$$\equiv 1/n$$
 . $\Sigma_{x \in S} \delta(c(x) \neq h(x))$
where $\delta(c(x) \neq h(x)) = 1$ if $c(x) \neq h(x)$; 0 otherwise

Generalisation error

$$\operatorname{error}_{D}(h) \equiv \operatorname{Pr}_{x \in D} [c(x) \neq h(x)]$$

How well does error_S(h) estimate error_D(h)?

Bias and Variance Over Sample Error

Bias

$$E[error_S(h)] - error_D(h)$$

- error_S(h) can be optimistically biased when S is used to train h
- Use S independent to h for an unbiased estimate of error_D(h)
- Variance

$$E[(error_S(h) - E[error_S(h)])^2]$$

- Even with unbiased S, error_S(h) may still VARY from error_D(h)
- Smaller S ⇒ greater expected variance

Bias and Variance Over Sample Error

- More complex models have
 - Lower error bias
 - More expressive hypothesis representations allow models to be overfit
 - Higher error variance
 - Allow small changes in data to cause greater changes in trained model

Bias and Variance Over Sample Error

- Example decision trees
 - As decision trees grow larger
 - More constraints placed over instances
 - Fewer instances per leaf node
 - Evidence or support for a given rule (at a leaf node) is weaker
 - Small changes in training data will affect resultant tree more
 - A tree that fits a training set S' too perfectly, will not adequately generalise over D (i.e., overfitting)

Low Variance

- ◆ Measuring error over S' is a poor indicator of D
- It will likely give an overly optimistic estimate (as since the graph from the previous slide)

General Practice

- Use data independent to training for evaluation
- This corresponds to any part of the training process, including the use of wrapper-based methods
 - Feature selection
 - Algorithm hyperparameters
- There may be a need for validation as well as testing data
 - First validate models for selection
 - Then evaluate selected models
- Usually, all data is drawn from the same distribution
 - May wish to test a h on data from a different distribution
 - Ensure data is drawn from distribution being reported on

Estimating error_S(h)

- Experiment
 - 1. Choose sample S (independent of h) according to D
 - where the size of S, |S| = n
 - 2. Measure error_s(h)
- error_s(h) is a random variable
 - i.e., result of an experiment
- □ The success or failure of each $x \in S$, is a **Bernoulli Trial**
 - The outcome $c(x) \neq h(x)$ is either True or False
 - Given h, the outcome for each x_i and x_j are independent, where x_i , $x_i \in S$, $i \neq j$

Random Variable error_S(h)

- Rerun the experiment with different randomly drawn S
 (of size n)
 - Probability of observing r misclassified examples is given by the *Binomial Distribution*

$$P(r) = n! / (r! (n - r)!) \cdot error_D(h)^r \cdot (1 - error_D(h))^{n-r}$$

Binomial Distribution

Probability r misclassifications by h over n instances is Pr[X=r]

Since X follows a Binomial distribution, we have

$$Pr[X = r] = P(r) = n! / (r! (n - r)!) \cdot p^{r} \cdot (1 - p)^{n-r}$$

- Expected, or mean value X (based on n trials $X_1, ..., X_n$) $E[X] \equiv E[X_1 + ... + X_n] = E[X_1] + ... + E[X_n] = p + ... + p = np$
- Variance of X is

Var[X] or
$$\sigma^2_X \equiv \text{Var}[X_1 + ... + X_n] = \text{Var}[X_1] + ... + \text{Var}[X_n]$$

= $p(1 - p) + ... + p(1 - p) = np(1 - p)$

Standard deviation of X is

$$\sigma_X \equiv (E[(X - E[X])^2])^{0.5} = (np(1 - p))^{0.5}$$

Binomial Distribution for error_s(h)

- error_S(h) follows a Binomial Distribution with
 - Expected, or mean error_S(h) is

$$E[error_S(h)] \equiv error_D(h) \approx p = r/n$$

- error_S(h) is an unbiased estimator of error_D(h)
 - Expected value of r is np (by Binomial Distribution)
 - Expected value of r/n = p (since n is constant)
- Variance in error_s(h) comes from solely from variance in r
 - ◆ Variance of r is np(1 p)
 - Variance of error_S(h) is np(1 p) / n² (try work this out)
- Standard deviation of error_s(h) is thus
 - Variance of Standard deviation of r divided by n
 - Or $((error_s(h))(1 error_s(h)) / n)^{0.5}$

Central Limit Theorem

- Consider a set of independent, identically distributed random variables Y₁, ..., Y_n, all governed by an arbitrary probability distribution with mean μ and finite variance σ².
- □ With sample mean, $\overline{Y} = 1/n$. $\Sigma_{i=0, ..., n} Y_i$
- Central Limit Theorem:

As $n \to \infty$, the distribution governing \overline{Y} approaches a **Normal distribution**, with mean μ and variance σ^2/n .

Whenever we define an estimator that is a mean of some sample (e.g., error_S(h)), the distribution governing this estimator can be approximated by a Normal distribution for sufficiently large n.

Normal Approximation

- A binomial distribution B(n, p) may be approximated by the normal distribution N(np, np(1 p))
 - Loosely, this assumes that n is large enough and p is not too skewed towards the extremes (0 or 1)
 - By using this approximation, we may define a 1-tailed or 2-tailed confidence interval that encapsulates α% of the area under the normal curve

Example

 Suppose we observe 12 errors in a validation sample of 40 instances

- error_S(h) = r/n = 12/40 = 0.3
- Var[r] = np(1 p) = 40(0.3)(1 0.3) = 8.4
- standard deviation of $r = (8.4)^{0.5} \approx 2.9$
- standard deviation of error_S(h) = 2.9 / 40 = 0.07
- For a 95% confidence interval over $error_D(h)$: $error_S(h) \pm 1.96((error_S(h))(1 - error_S(h)) / n)^{0.5}$
- For the example above, this gives the interval
 0.3 ± 0.14

Problems with Normal Approximation

- Several arguments have been made against using the normal approximation
 - Bound may exceed [0,1]
 - Zero-width intervals at r = 0, 1; these falsely imply certainty
 - Observed inconsistencies with significance testing
- There are several more favourable alternatives
 - e.g., Wilson score
- You should review these independently

Questions?