(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 25 May 2001 (25.05.2001)

PCT

(10) International Publication Number WO 01/36598 A1

- (51) International Patent Classification⁷: C12N 5/04, 5/10, 15/00, 15/09, 15/63, 15/70, 15/74, 15/82, 15/87, C07H 21/02, 21/04, A01H 1/00, 9/00, 11/00
- (21) International Application Number: PCT/US00/31458
- (22) International Filing Date: 14 November 2000 (14.11.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/166,228 17 November 1999 (17.11.1999) US 60/197,899 17 April 2000 (17.04.2000) US 60/227,439 22 August 2000 (22.08.2000) US

- (71) Applicant (for all designated States except US): MENDEL BIOTECHNOLOGY, INC. [US/US]; 21375 Cabot Boulevard, Hayward, CA 94541 (US).
- (71) Applicants and
- (72) Inventors: PINEDA, Omaira [CO/US]; 19563 Helen Place, Castro Valley, CA 94546 (US). YU, Guo-Liang [CN/US]; 242 Gravatt Drive, Berkeley, CA 94705 (US). CREELMAN, Robert [US/US]; 2801 Jennifer Drive, Castro Valley, CA 94546 (US). RIECHMANN, Jose, Luis [ES/US]; 115 Moss Avenue #308, Oakland, CA

94611 (US). HEARD, Jacqueline [US/US]; 810 Guildford Avenue, San Mateo, CA 94402 (US). RATCLIFFE, Oliver [GB/US]; 814 East 21st Street, Oakland, CA 94606 (US). REUBER, Lynne [US/US]; 2000 Walnut Avenue, Fremont, CA 94538 (US). KEDDIE, James [GB/US]; 54 McLellan Avenue, San Mateo, CA 94403 (US).

- (74) Agent: GUERRERO, Karen; Mendel Biotechnology, Inc., 21375 Cabot Boulevard, Hayward, CA 94545 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/36598 A1

(54) Title: ENVIRONMENTAL STRESS TOLERANCE GENES

(57) Abstract: Recombinant polynucleotides and methods for modifying the phenotype of a plant are provided. In particular, the phenotype that is being modified is a plant's environmental stress tolerance.

þ 5) • _}

·
·
·

·

.

)

ENVIRONMENTAL STRESS TOLERANCE GENES

RELATED APPLICATION INFORMATION

The present invention claims the benefit from US Provisional Patent Application Serial Nos. 60/166,228 filed November 17, 1999 and 60/197,899 filed April 17, 2000 and "Plant Trait Modification III" filed August 22, 2000.

FIELD OF THE INVENTION

This invention relates to the field of plant biology. More particularly, the present invention pertains to compositions and methods for phenotypically modifying a plant.

10

15

20

5

BACKGROUND OF THE INVENTION

Transcription factors can modulate gene expression, either increasing or decreasing (inducing or repressing) the rate of transcription. This modulation results in differential levels of gene expression at various developmental stages, in different tissues and cell types, and in response to different exogenous (e.g., environmental) and endogenous stimuli throughout the life cycle of the organism.

Because transcription factors are key controlling elements of biological pathways, altering the expression levels of one or more transcription factors can change entire biological pathways in an organism. For example, manipulation of the levels of selected transcription factors may result in increased expression of economically useful proteins or metabolic chemicals in plants or to improve other agriculturally relevant characteristics. Conversely, blocked or reduced expression of a transcription factor may reduce biosynthesis of unwanted compounds or remove an undesirable trait. Therefore, manipulating transcription factor levels in a plant offers tremendous potential in agricultural biotechnology for modifying a plant's traits.

25

The present invention provides novel transcription factors useful for modifying a plant's phenotype in desirable ways, such as modifying a plant's environmental stress tolerance.

SUMMARY OF THE INVENTION

In a first aspect, the invention relates to a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof; (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a); (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a

complementary nucleotide sequence thereof; (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c); (e) a nucleotide sequence which hybridizes under stringent conditions over substantially the entire length of a nucleotide sequence of one or more of: (a), (b), (c), or (d); (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e); (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide having a biological activity that modifies a plant's environmental stress tolerance; (h) a nucleotide sequence having at least 30% sequence identity to a nucleotide sequence of any of (a)-(g); (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g); (j) a nucleotide sequence which encodes a polypeptide having at least 30% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; and (I) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27. The recombinant polynucleotide may further comprise a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence. The invention also relates to compositions comprising at least two of the above described polynucleotides.

5

10

15

20

25

. 30

In a second aspect, the invention is an isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide described above.

In another aspect, the invention is a transgenic plant comprising one or more of the above described recombinant polynucleotides. In yet another aspect, the invention is a plant with altered expression levels of a polynucleotide described above or a plant with altered expression or activity levels of an above described polypeptide. Further, the invention may be a plant lacking a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27.

The plant may be a soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf, banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, or vegetable brassicas plant.

In a further aspect, the invention relates to a cloning or expression vector comprising the isolated or recombinant polynucleotide described above or cells comprising the cloning or expression vector.

In yet a further aspect, the invention relates to a composition produced by incubating a polynucleotide of the invention with a nuclease, a restriction enzyme, a polymerase; a polymerase and a primer; a cloning vector, or with a cell.

Furthermore, the invention relates to a method for producing a plant having improved environmental stress tolerance. The method comprises altering the expression of an isolated or recombinant polynucleotide of the invention or altering the expression or activity of a polypeptide of the invention in a plant to produce a modified plant, and selecting the modified plant for modified environmental stress tolerance.

5

10

15

20

25

30

In another aspect, the invention relates to a method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of the invention. The method comprises expressing a polypeptide encoded by the polynucleotide in a plant; and identifying at least one factor that is modulated by or interacts with the polypeptide. In one embodiment the method for identifying modulating or interacting factors is by detecting binding by the polypeptide to a promoter sequence, or by detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system, or by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.

In yet another aspect, the invention is a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest. The method comprises placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of the invention and monitoring one or more of the expression level of the polynucleotide in the plant, the expression level of the polypeptide in the plant, and modulation of an activity of the polypeptide in the plant.

In yet another aspect, the invention relates to an integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of the invention, or to a polypeptide encoded by the polynucleotide. The integrated system, computer or computer readable medium may comprise a link between one or more sequence strings to a modified plant environmental stress tolerance phenotype.

In yet another aspect, the invention is a method for identifying a sequence similar or homologous to one or more polynucleotides of the invention, or one or more polypeptides encoded by the polynucleotides. The method comprises providing a sequence database; and, querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

The method may further comprise of linking the one or more of the polynucleotides of the invention, or encoded polypeptides, to a modified plant environmental stress tolerance phenotype.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides a table of exemplary polynucleotide and polypeptide sequences of the invention. The table includes from left to right for each sequence: the SEQ ID No., the internal code reference number (GID), whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 2 provides a table of exemplary sequences that are homologous to other sequences provided in the Sequence Listing and that are derived from *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), identification of the homologous sequence, whether the sequence is a polynucleotide or polypeptide sequence, and identification of any conserved domains for the polypeptide sequences.

Figure 3 provides a table of exemplary sequences that are homologous to the sequences provided in Figures 1 and 2 and that are derived from plants other than *Arabidopsis thaliana*. The table includes from left to right: the SEQ ID No., the internal code reference number (GID), the unique GenBank sequence ID No. (NID), the probability that the comparison was generated by chance (P-value), and the species from which the homologous gene was identified.

. 20

25

30

5

10

15

DETAILED DESCRIPTION

The present invention relates to polynucleotides and polypeptides, e.g. for modifying phenotypes of plants.

In particular, the polynucleotides or polypeptides are useful for modifying traits associated with a plant's environmental stress tolerance when the expression levels of the polynucleotides or expression levels or activity levels of the polypeptides are altered. Specifically, the polynucleotides and polypeptides are useful for modifying traits associated with a plant's environmental stress tolerance, such as freezing, chilling, heat, drought, water saturation, salt, photoconditions, radiation and ozone, or the like. Plants with altered expression of the polynucleotides or polypeptides of the invention are more tolerant to these environmental stresses compared with plants without altered expression levels.

The polynucleotides of the invention encode plant transcription factors. The plant transcription factors are derived, e.g., from *Arabidopsis thaliana* and can belong, e.g., to one

or more of the following transcription factor families: the AP2 (APETALA2) domain transcription factor family (Riechmann and Meyerowitz (1998) J. Biol. Chem. 379:633-646); the MYB transcription factor family (Martin and Paz-Ares (1997) Trends Genet. 13:67-73); the MADS domain transcription factor family (Riechmann and Meyerowitz (1997) J. Biol. Chem. 378:1079-1101); the WRKY protein family (Ishiguro and Nakamura (1994) Mol. Gen. Genet. 244:563-571); the ankyrin-repeat protein family (Zhang et al. (1992) Plant Cell 4:1575-1588); the miscellaneous protein (MISC) family (Kim et al. (1997) Plant J. 11:1237-1251); the zinc finger protein (Z) family (Klug and Schwabe (1995) FASEB J. 9: 597-604); the homeobox (HB) protein family (Duboule (1994) Guidebook to the Homeobox Genes, Oxford University Press); the CAAT-element binding proteins (Forsburg and Guarente (1989) Genes Dev. 3:1166-1178); the squamosa promoter binding proteins (SPB) (Klein et al. (1996) Mol. Gen. Genet, 1996 250:7-16); the NAM protein family; the IAA/AUX proteins (Rouse et al. (1998) Science 279:1371-1373); the HLH/MYC protein family (Littlewood et al. (1994) Prot. Profile 1:639-709); the DNA-binding protein (DBP) family (Tucker et al. (1994) EMBO J. 13:2994-3002); the bZIP family of transcription factors (Foster et al. (1994) FASEB J. 8:192-200); the BPF-1 protein (Box P-binding factor) family (da Costa e Silva et al. (1993) Plant J. 4:125-135); and the golden protein (GLD) family (Hall et al. (1998) Plant Cell 10:925-936).

In addition to methods for modifying a plant phenotype by employing one or more polynucleotides and polypeptides of the invention described herein, the polynucleotides and polypeptides of the invention have a variety of additional uses. These uses include their use in the recombinant production (i.e, expression) of proteins; as regulators of plant gene expression, as diagnostic probes for the presence of complementary or partially complementary nucleic acids (including for detection of natural coding nucleic acids); as substrates for further reactions, e.g., mutation reactions, PCR reactions, or the like, of as substrates for cloning e.g., including digestion or ligation reactions, and for identifying exogenous or endogenous modulators of the transcription factors.

DEFINITIONS

5

10

15

20

25 .

30

A "polynucleotide" is a nucleic acid sequence comprising a plurality of polymerized nucleotide residues, e.g., at least about 15 consecutive polymerized nucleotide residues, optionally at least about 30 consecutive nucleotides, at least about 50 consecutive nucleotides. In many instances, a polynucleotide comprises a nucleotide sequence encoding a polypeptide (or protein) or a domain or fragment thereof. Additionally, the polynucleotide may comprise a promoter, an intron, an enhancer region, a polyadenylation site, a translation initiation

site, 5' or 3' untranslated regions, a reporter gene, a selectable marker, or the like. The polynucleotide can be single stranded or double stranded DNA or RNA. The polynucleotide optionally comprises modified bases or a modified backbone. The polynucleotide can be, e.g., genomic DNA or RNA, a transcript (such as an mRNA), a cDNA, a PCR product, a cloned DNA, a synthetic DNA or RNA, or the like. The polynucleotide can comprise a sequence in either sense or antisense orientations.

5

10

15

20

25

30

A "recombinant polynucleotide" is a polynucleotide that is not in its native state, e.g., the polynucleotide comprises a nucleotide sequence not found in nature, or the polynucleotide is in a context other than that in which it is naturally found, e.g., separated from nucleotide sequences with which it typically is in proximity in nature, or adjacent (or contiguous with) nucleotide sequences with which it typically is not in proximity. For example, the sequence at issue can be cloned into a vector, or otherwise recombined with one or more additional nucleic acid.

An "isolated polynucleotide" is a polynucleotide whether naturally occurring or recombinant, that is present outside the cell in which it is typically found in nature, whether purified or not. Optionally, an isolated polynucleotide is subject to one or more enrichment or purification procedures, e.g., cell lysis, extraction, centrifugation, precipitation, or the like.

A "recombinant polypeptide" is a polypeptide produced by translation of a recombinant polynucleotide. An "isolated polypeptide," whether a naturally occurring or a recombinant polypeptide, is more enriched in (or out of) a cell than the polypeptide in its natural state in a wild type cell, e.g., more than about 5% enriched, more than about 10% enriched, or more than about 20%, or more than about 50%, or more, enriched, i.e., alternatively denoted: 105%, 110%, 120%, 150% or more, enriched relative to wild type standardized at 100%. Such an enrichment is not the result of a natural response of a wild type plant. Alternatively, or additionally, the isolated polypeptide is separated from other cellular components with which it is typically associated, e.g., by any of the various protein purification methods herein.

The term "transgenic plant" refers to a plant that contains genetic material, not found in a wild type plant of the same species, variety or cultivar. The genetic material may include a transgene, an insertional mutagenesis event (such as by transposon or T-DNA insertional mutagenesis), an activation tagging sequence, a mutated sequence, a homologous recombination event or a sequence modified by chimeraplasty. Typically, the foreign genetic material has been introduced into the plant by human manipulation.

A transgenic plant may contain an expression vector or cassette. The expression cassette typically comprises a polypeptide-encoding sequence operably linked (i.e., under

regulatory control of) to appropriate inducible or constitutive regulatory sequences that allow for the expression of polypeptide. The expression cassette can be introduced into a plant by transformation or by breeding after transformation of a parent plant. A plant refers to a whole plant as well as to a plant part, such as seed, fruit, leaf, or root, plant tissue, plant cells or any other plant material, e.g., a plant explant, as well as to progeny thereof, and to *in vitro* systems that mimic biochemical or cellular components or processes in a cell.

The phrase "ectopically expression or altered expression" in reference to a polynucleotide indicates that the pattern of expression in, e.g., a transgenic plant or plant tissue, is different from the expression pattern in a wild type plant or a reference plant of the same species. For example, the polynucleotide or polypeptide is expressed in a cell or tissue type other than a cell or tissue type in which the sequence is expressed in the wild type plant, or by expression at a time other than at the time the sequence is expressed in the wild type plant, or by a response to different inducible agents, such as hormones or environmental signals, or at different expression levels (either higher or lower) compared with those found in a wild type plant. The term also refers to altered expression patterns that are produced by lowering the levels of expression to below the detection level or completely abolishing expression. The resulting expression pattern can be transient or stable, constitutive or inducible. In reference to a polypeptide, the term "ectopic expression or altered expression" further may relate to altered activity levels resulting from the interactions of the polypeptides with exogenous or endogenous modulators or from interactions with factors or as a result of the chemical modification of the polypeptides.

10

15

20

25

30

The term "fragment" or "domain," with respect to a polypeptide, refers to a subsequence of the polypeptide. In some cases, the fragment or domain, is a subsequence of the polypeptide which performs at least one biological function of the intact polypeptide in substantially the same manner, or to a similar extent, as does the intact polypeptide. For example, a polypeptide fragment can comprise a recognizable structural motif or functional domain such as a DNA binding domain that binds to a DNA promoter region, an activation domain or a domain for protein-protein interactions. Fragments can vary in size from as few as 6 amino acids to the full length of the intact polypeptide, but are preferably at least about 30 amino acids in length and more preferably at least about 60 amino acids in length. In reference to a nucleotide sequence, "a fragment" refers to any subsequence of a polynucleotide, typically, of at least consecutive about 15 nucleotides, preferably at least about 30 nucleotides, more preferably at least about 50, of any of the sequences provided herein.

The term "trait" refers to a physiological, morphological, biochemical or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic

is visible to the human eye, such as seed or plant size, or can be measured by available biochemical techniques, such as the protein, starch or oil content of seed or leaves or by the observation of the expression level of genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield or pathogen tolerance.

5

10

15

20

25

30

"Trait modification" refers to a detectable difference in a characteristic in a plant ectopically expressing a polynucleotide or polypeptide of the present invention relative to a plant not doing so, such as a wild type plant. In some cases, the trait modification can be evaluated quantitatively. For example, the trait modification can entail at least about a 2% increase or decrease in an observed trait (difference), at least a 5% difference, at least about a 10% difference, at least about a 20% difference, at least about a 30%, at least about a 50%, at least about a 70%, or at least about a 100%, or an even greater difference. It is known that there can be a natural variation in the modified trait. Therefore, the trait modification observed entails a change of the normal distribution of the trait in the plants compared with the distribution observed in wild type plant.

Trait modifications of particular interest include those to seed (such as embryo or endosperm), fruit, root, flower, leaf, stem, shoot, seedling or the like, including: enhanced tolerance to environmental conditions including freezing, chilling, heat, drought, water saturation, radiation and ozone; improved tolerance to microbial, fungal or viral diseases; improved tolerance to pest infestations, including nematodes, mollicutes, parasitic higher plants or the like; decreased herbicide sensitivity; improved tolerance of heavy metals or enhanced ability to take up heavy metals; improved growth under poor photoconditions (e.g., low light and/or short day length), or changes in expression levels of genes of interest. Other phenotype that can be modified relate to the production of plant metabolites, such as variations in the production of taxol, tocopherol, tocotrienol, sterols, phytosterols, vitamins, wax monomers, anti-oxidants, amino acids, lignins, cellulose, tannins, prenyllipids (such as chlorophylls and carotenoids), glucosinolates, and terpenoids, enhanced or compositionally altered protein or oil production (especially in seeds), or modified sugar (insoluble or soluble) and/or starch composition. Physical plant characteristics that can be modified include cell development (such as the number of trichomes), fruit and seed size and number, yields of plant parts such as stems, leaves and roots, the stability of the seeds during storage, characteristics of the seed pod (e.g., susceptibility to shattering), root hair length and quantity, internode distances, or the quality of seed coat. Plant growth characteristics that can be modified include growth rate, germination rate of seeds, vigor of plants and seedlings, leaf and flower senescence, male sterility, apomixis, flowering time,

flower abscission, rate of nitrogen uptake, biomass or transpiration characteristics, as well as plant architecture characteristics such as apical dominance, branching patterns, number of organs, organ identity, organ shape or size.

POLYPEPTIDES AND POLYNUCLEOTIDES OF THE INVENTION

5

10

15

20

25

30

The present invention provides, among other things, transcription factors (TFs), and transcription factor homologue polypeptides, and isolated or recombinant polynucleotides encoding the polypeptides. These polypeptides and polynucleotides may be employed to modify a plant's environmental stress tolerance.

Exemplary polynucleotides encoding the polypeptides of the invention were identified in the *Arabidopsis thaliana* GenBank database using publicly available sequence analysis programs and parameters. Sequences initially identified were then further characterized to identify sequences comprising specified sequence strings corresponding to sequence motifs present in families of known transcription factors. Polynucleotide sequences meeting such criteria were confirmed as transcription factors.

Additional polynucleotides of the invention were identified by screening Arabidopsis thaliana and/or other plant cDNA libraries with probes corresponding to known transcription factors under low stringency hybridization conditions. Additional sequences, including full length coding sequences were subsequently recovered by the rapid amplification of cDNA ends (RACE) procedure, using a commercially available kit according to the manufacturer's instructions. Where necessary, multiple rounds of RACE are performed to isolate 5' and 3' ends. The full length cDNA was then recovered by a routine end-to-end polymerase chain reaction (PCR) using primers specific to the isolated 5' and 3' ends. Exemplary sequences are provided in the Sequence Listing.

The polynucleotides of the invention were ectopically expressed in overexpressor or knockout plants and changes in the environmental stress tolerance of the plants was observed. Therefore, the polynucleotides and polypeptides can be employed to improve the environmental stress resistance of plants.

Making polynucleotides

The polynucleotides of the invention include sequences that encode transcription factors and transcription factor homologue polypeptides and sequences complementary thereto, as well as unique fragments of coding sequence, or sequence complementary thereto. Such polynucleotides can be, e.g., DNA or RNA, e.g., mRNA, cRNA, synthetic RNA, genomic DNA, cDNA synthetic DNA, oligonucleotides, etc. The polynucleotides are either double-stranded or

single-stranded, and include either, or both sense (i.e., coding) sequences and antisense (i.e., non-coding, complementary) sequences. The polynucleotides include the coding sequence of a transcription factor, or transcription factor homologue polypeptide, in isolation, in combination with additional coding sequences (e.g., a purification tag, a localization signal, as a fusion-protein, as a pre-protein, or the like), in combination with non-coding sequences (e.g., introns or inteins, regulatory elements such as promoters, enhancers, terminators, and the like), and/or in a vector or host environment in which the polynucleotide encoding a transcription factor or transcription factor homologue polypeptide is an endogenous or exogenous gene.

5

20

25

30

A variety of methods exist for producing the polynucleotides of the invention.

Procedures for identifying and isolating DNA clones are well known to those of skill in the art, and are described in, e.g., Berger and Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA ("Berger"); Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook") and Current Protocols in Molecular Biology, F.M. Ausubel et al., eds., Current Protocols, a joint venture between Greene Publishing Associates, Inc. and John Wiley & Sons, Inc., (supplemented through 2000) ("Ausubel").

Alternatively, polynucleotides of the invention, can be produced by a variety of in vitro amplification methods adapted to the present invention by appropriate selection of specific or degenerate primers. Examples of protocols sufficient to direct persons of skill through in vitro amplification methods, including the polymerase chain reaction (PCR) the ligase chain reaction (LCR), Qbeta-replicase amplification and other RNA polymerase mediated techniques (e.g., NASBA), e.g., for the production of the homologous nucleic acids of the invention are found in Berger, Sambrook, and Ausubel, as well as Mullis et al., (1987) PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) (Innis). Improved methods for cloning in vitro amplified nucleic acids are described in Wallace et al., U.S. Pat. No. 5,426,039. Improved methods for amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369: 684-685 and the references cited therein, in which PCR amplicons of up to 40kb are generated. One of skill will appreciate that essentially any RNA can be converted into a double stranded DNA suitable for restriction digestion, PCR expansion and sequencing using reverse transcriptase and a polymerase. See, e.g., Ausubel, Sambrook and Berger, all supra.

Alternatively, polynucleotides and oligonucleotides of the invention can be assembled from fragments produced by solid-phase synthesis methods. Typically, fragments of up to approximately 100 bases are individually synthesized and then enzymatically or chemically

ligated to produce a desired sequence, e.g., a polynucletotide encoding all or part of a transcription factor. For example, chemical synthesis using the phosphoramidite method is described, e.g., by Beaucage et al. (1981) <u>Tetrahedron Letters</u> 22:1859-69; and Matthes et al. (1984) <u>EMBO J.</u> 3:801-5. According to such methods, oligonucleotides are synthesized, purified, annealed to their complementary strand, ligated and then optionally cloned into suitable vectors. And if so desired, the polynucleotides and polypeptides of the invention can be custom ordered from any of a number of commercial suppliers.

HOMOLOGOUS SEQUENCES

5

10

15

20

25

30

Sequences homologous, i.e., that share significant sequence identity or similarity, to those provided in the Sequence Listing, derived from Arabidopsis thaliana or from other plants of choice are also an aspect of the invention. Homologous sequences can be derived from any plant including monocots and dicots and in particular agriculturally important plant species. including but not limited to, crops such as soybean, wheat, corn, potato, cotton, rice, oilseed rape (including canola), sunflower, alfalfa, sugarcane and turf; or fruits and vegetables, such as banana, blackberry, blueberry, strawberry, and raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits (such as apple, peach, pear, cherry and plum) and vegetable brassicas (such as broccoli, cabbage, cauliflower, brussel sprouts and kohlrabi). Other crops, fruits and vegetables whose phenotype can be changed include barley, rye, millet, sorghum, currant, avocado, citrus fruits such as oranges, lemons, grapefruit and tangerines, artichoke, cherries, nuts such as the walnut and peanut, endive, leek, roots, such as arrowroot, beet, cassava, turnip, radish, yam, and sweet potato, and beans. The homologous sequences may also be derived from woody species, such pine, poplar and eucalyptus.

Transcription factors that are homologous to the listed sequences will typically share at least about 30% amino acid sequence identity. More closely related transcription factors can share at least about 50%, about 60%, about 65%, about 70%, about 75% or about 80% or about 90% or about 95% or about 98% or more sequence identity with the listed sequences. Factors that are most closely related to the listed sequences share, e.g., at least about 85%, about 90% or about 95% or more % sequence identity to the listed sequences. At the nucleotide level, the sequences will typically share at least about 40% nucleotide sequence identity, preferably at least about 50%, about 60%, about 70% or about 80% sequence identity, and more preferably about 85%, about 90%, about 95% or about 97% or more sequence identity to one or more of the

PCT/US00/31458 WO 01/36598

listed sequences. The degeneracy of the genetic code enables major variations in the nucleotide sequence of a polynucleotide while maintaining the amino acid sequence of the encoded protein. Conserved domains within a transcription factor family may exhibit a higher degree of sequence homology, such as at least 65% sequence identity including conservative substitutions, and preferably at least 80% sequence identity.

Identifying Nucleic Acids by Hybridization

5

10

15

20

25

30

Polynucleotides homologous to the sequences illustrated in the Sequence Listing can be identified, e.g., by hybridization to each other under stringent or under highly stringent conditions. Single stranded polynucleotides hybridize when they associate based on a variety of well characterized physico-chemical forces, such as hydrogen bonding, solvent exclusion, base stacking and the like. The stringency of a hybridization reflects the degree of sequence identity of the nucleic acids involved, such that the higher the stringency, the more similar are the two polynucleotide strands. Stringency is influenced by a variety of factors, including temperature, salt concentration and composition, organic and non-organic additives, solvents, etc. present in both the hybridization and wash solutions and incubations (and number), as described in more detail in the references cited above.

An example of stringent hybridization conditions for hybridization of complementary nucleic acids which have more than 100 complementary residues on a filter in a Southern or northern blot is about 5°C to 20°C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The $T_{\rm m}$ is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Nucleic acid molecules that hybridize under stringent conditions will typically hybridize to a probe based on either the entire cDNA or selected portions, e.g., to a unique subsequence, of the cDNA under wash conditions of 0.2x SSC to 2.0 x SSC, 0.1% SDS at 50-65° C, for example 0.2 x SSC, 0.1% SDS at 65° C. For identification of less closely related homologues washes can be performed at a lower temperature, e.g., 50° C. In general, stringency is increased by raising. the wash temperature and/or decreasing the concentration of SSC.

As another example, stringent conditions can be selected such that an oligonucleotide that is perfectly complementary to the coding oligonucleotide hybridizes to the . coding oligonucleotide with at least about a 5-10x higher signal to noise ratio than the ratio for hybridization of the perfectly complementary oligonucleotide to a nucleic acid encoding a transcription factor known as of the filing date of the application. Conditions can be selected such that a higher signal to noise ratio is observed in the particular assay which is used, e.g., about 15x, 25x, 35x, 50x or more. Accordingly, the subject nucleic acid hybridizes to the unique

coding oligonucleotide with at least a 2x higher signal to noise ratio as compared to hybridization of the coding oligonucleotide to a nucleic acid encoding known polypeptide. Again, higher signal to noise ratios can be selected, e.g., about 5x, 10x, 25x, 35x, 50x or more. The particular signal will depend on the label used in the relevant assay, e.g., a fluorescent label, a colorimetric label, a radio active label, or the like.

Alternatively, transcription factor homologue polypeptides can be obtained by screening an expression library using antibodies specific for one or more transcription factors. With the provision herein of the disclosed transcription factor, and transcription factor homologue nucleic acid sequences, the encoded polypeptide(s) can be expressed and purified in a heterologous expression system (e.g., *E. coli*) and used to raise antibodies (monoclonal or polyclonal) specific for the polypeptide(s) in question. Antibodies can also be raised against synthetic peptides derived from transcription factor, or transcription factor homologue, amino acid sequences. Methods of raising antibodies are well known in the art and are described in Harlow and Lane (1988) Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York. Such antibodies can then be used to screen an expression library produced from the plant from which it is desired to clone additional transcription factor homologues, using the methods described above. The selected cDNAs can be confirmed by sequencing and enzymatic activity.

SEQUENCE VARIATIONS

5

10

15

20

It will readily be appreciated by those of skill in the art, that any of a variety of polynucleotide sequences are capable of encoding the transcription factors and transcription factor homologue polypeptides of the invention. Due to the degeneracy of the genetic code, many different polynucleotides can encode identical and/or substantially similar polypeptides in addition to those sequences illustrated in the Sequence Listing.

For example, Table 1 illustrates, e.g., that the codons AGC, AGT, TCA, TCC,

TCG, and TCT all encode the same amino acid: serine. Accordingly, at each position in the sequence where there is a codon encoding serine, any of the above trinucleotide sequences can be used without altering the encoded polypeptide.

Table 1

Amino acids			Codon					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	С	TGC	TGT				
Aspartic acid	Asp	D	GAC	GAT				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	TTC	TTT				
Glycine	Gly	G	GGA	GGC	GGG	GGT		
Histidine	His	H	CAC	CAT				
Isoleucine	Ile	I	ATA	ATC	ATT			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	TTA	TTG	CTA	CTC	CTG	CTT
Methionine	Met	M	ATG					
Asparagine	Asn	N	AAC	AAT				
Proline	Pro	P	CCA	CCC	CCG	CCT		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGÇ	CGG	CGT
Serine	Ser	S	AGC	AGT	TCA	TCC	TCG	TCT
Threonine	Thr	T	ACA	ACC	ACG	ACT		
Valine	Val	V	GTA	GTC	GTG	GTT		
Tryptophan	Trp	W	TGG					
Tyrosine	Tyr	Y	TAC	TAT				

Sequence alterations that do not change the amino acid sequence encoded by the polynucleotide are termed "silent" variations. With the exception of the codons ATG and TGG, encoding methionine and tryptophan, respectively, any of the possible codons for the same amino acid can be substituted by a variety of techniques, e.g., site-directed mutagenesis, available in the art. Accordingly, any and all such variations of a sequence selected from the above table are a feature of the invention.

5

10

15

20

In addition to silent variations, other conservative variations that alter one, or a few amino acids in the encoded polypeptide, can be made without altering the function of the polypeptide, these conservative variants are, likewise, a feature of the invention.

For example, substitutions, deletions and insertions introduced into the sequences provided in the Sequence Listing are also envisioned by the invention. Such sequence modifications can be engineered into a sequence by site-directed mutagenesis (Wu (ed.) Meth. Enzymol. (1993) vol. 217, Academic Press) or the other methods noted below. Amino acid substitutions are typically of single residues; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. In preferred embodiments, deletions or insertions are made in adjacent pairs, e.g., a deletion of two residues or insertion of two residues. Substitutions, deletions, insertions or any combination thereof can be

combined to arrive at a sequence. The mutations that are made in the polynucleotide encoding the transcription factor should not place the sequence out of reading frame and should not create complementary regions that could produce secondary mRNA structure. Preferably, the polypeptide encoded by the DNA performs the desired function.

Conservative substitutions are those in which at least one residue in the amino acid sequence has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the Table 2 when it is desired to maintain the activity of the protein. Table 2 shows amino acids which can be substituted for an amino acid in a protein and which are typically regarded as conservative substitutions.

10

5

Table 2

Residue	Conservative Substitutions			
Ala	Ser			
Arg	Lys			
Asn	Gln; His			
Asp	Glu			
Gln	Asn			
Cys	Ser			
Glu	Asp			
Gly	Pro			
His	Asn; Gln			
Ile	Leu, Val			
Leu	Ile; Val			
Lys	Arg; Gln			
Met	Leu; Ile			
Phe	Met; Leu; Tyr			
Ser	Thr; Gly			
Thr	Ser;Val			
Trp	Tyr Trp; Phe			
Tyr				
Val	Ile; Leu			

Substitutions that are less conservative than those in Table 2 can be selected by picking residues that differ more significantly in their effect on maintaining (a) the structure of

the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in protein properties will be those in which (a) a hydrophilic residue, e.g., seryl or threonyl, is substituted for (or by) a hydrophobic residue, e.g., leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g., lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g., glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g., phenylalanine, is substituted for (or by) one not having a side chain, e.g., glycine.

5

15

20

25

30

10 <u>FURTHER MODIFYING SEQUENCES OF THE INVENTION—MUTATION/ FORCED</u> EVOLUTION

In addition to generating silent or conservative substitutions as noted, above, the present invention optionally includes methods of modifying the sequences of the Sequence Listing. In the methods, nucleic acid or protein modification methods are used to alter the given sequences to produce new sequences and/or to chemically or enzymatically modify given sequences to change the properties of the nucleic acids or proteins.

Thus, in one embodiment, given nucleic acid sequences are modified, e.g., according to standard mutagenesis or artificial evolution methods to produce modified sequences. For example, Ausubel, *supra*, provides additional details on mutagenesis methods. Artificial forced evolution methods are described, e.g., by Stemmer (1994) Nature 370:389-391, and Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751. Many other mutation and evolution methods are also available and expected to be within the skill of the practitioner.

Similarly, chemical or enzymatic alteration of expressed nucleic acids and polypeptides can be performed by standard methods. For example, sequence can be modified by addition of lipids, sugars, peptides, organic or inorganic compounds, by the inclusion of modified nucleotides or amino acids, or the like. For example, protein modification techniques are illustrated in Ausubel, *supra*. Further details on chemical and enzymatic modifications can be found herein. These modification methods can be used to modify any given sequence, or to modify any sequence produced by the various mutation and artificial evolution modification methods noted herein.

Accordingly, the invention provides for modification of any given nucleic acid by mutation, evolution, chemical or enzymatic modification, or other available methods, as well as for the products produced by practicing such methods, e.g., using the sequences herein as a starting substrate for the various modification approaches.

For example, optimized coding sequence containing codons preferred by a particular prokaryotic or eukaryotic host can be used e.g., to increase the rate of translation or to produce recombinant RNA transcripts having desirable properties, such as a longer half-life, as compared with transcripts produced using a non-optimized sequence. Translation stop codons can also be modified to reflect host preference. For example, preferred stop codons for *S. cerevisiae* and mammals are TAA and TGA, respectively. The preferred stop codon for monocotyledonous plants is TGA, whereas insects and *E. coli* prefer to use TAA as the stop codon.

The polynucleotide sequences of the present invention can also be engineered in order to alter a coding sequence for a variety of reasons, including but not limited to, alterations which modify the sequence to facilitate cloning, processing and/or expression of the gene product. For example, alterations are optionally introduced using techniques which are well known in the art, e.g., site-directed mutagenesis, to insert new restriction sites, to alter glycosylation patterns, to change codon preference, to introduce splice sites, etc.

Furthermore, a fragment or domain derived from any of the polypeptides of the invention can be combined with domains derived from other transcription factors or synthetic domains to modify the biological activity of a transcription factor. For instance, a DNA binding domain derived from a transcription factor of the invention can be combined with the activation domain of another transcription factor or with a synthetic activation domain. A transcription activation domain assists in initiating transcription from a DNA binding site. Examples include the transcription activation region of VP16 or GAL4 (Moore et al. (1998) Proc. Natl. Acad. Sci. USA 95: 376-381; and Aoyama et al. (1995) Plant Cell 7:1773-1785), peptides derived from bacterial sequences (Ma and Ptashne (1987) Cell 51; 113-119) and synthetic peptides (Giniger and Ptashne, (1987) Nature 330:670-672).

25 EXPRESSION AND MODIFICATION OF POLYPEPTIDES

5

10

15

20

30

Typically, polynucleotide sequences of the invention are incorporated into recombinant DNA (or RNA) molecules that direct expression of polypeptides of the invention in appropriate host cells, transgenic plants, in vitro translation systems, or the like. Due to the inherent degeneracy of the genetic code, nucleic acid sequences which encode substantially the same or a functionally equivalent amino acid sequence can be substituted for any listed sequence to provide for cloning and expressing the relevant homologue.

Vectors, Promoters and Expression Systems

5

10

15

20

25

30

The present invention includes recombinant constructs comprising one or more of the nucleic acid sequences herein. The constructs typically comprise a vector, such as a plasmid, a cosmid, a phage, a virus (e.g., a plant virus), a bacterial artificial chromosome (BAC), a yeast artificial chromosome (YAC), or the like, into which a nucleic acid sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available.

General texts which describe molecular biological techniques useful herein, including the use and production of vectors, promoters and many other relevant topics, include Berger, Sambrook and Ausubel, *supra*. Any of the identified sequences can be incorporated into a cassette or vector, e.g., for expression in plants. A number of expression vectors suitable for stable transformation of plant cells or for the establishment of transgenic plants have been described including those described in Weissbach and Weissbach, (1989) Methods for Plant Molecular Biology, Academic Press, and Gelvin et al., (1990) Plant Molecular Biology Manual, Kluwer Academic Publishers. Specific examples include those derived from a Ti plasmid of Agrobacterium tumefaciens, as well as those disclosed by Herrera-Estrella et al. (1983) Nature 303: 209, Bevan (1984) Nucl Acid Res. 12: 8711-8721, Klee (1985) Bio/Technology 3: 637-642, for dicotyledonous plants.

Alternatively, non-Ti vectors can be used to transfer the DNA into monocotyledonous plants and cells by using free DNA delivery techniques. Such methods can involve, for example, the use of liposomes, electroporation, microprojectile bombardment, silicon carbide whiskers, and viruses. By using these methods transgenic plants such as wheat, rice (Christou (1991) Bio/Technology 9: 957-962) and corn (Gordon-Kamm (1990) Plant Cell 2: 603-618) can be produced. An immature embryo can also be a good target tissue for monocots for direct DNA delivery techniques by using the particle gun (Weeks et al. (1993) Plant Physiol 102: 1077-1084; Vasil (1993) Bio/Technology 10: 667-674; Wan and Lemeaux (1994) Plant Physiol 104: 37-48, and for Agrobacterium-mediated DNA transfer (Ishida et al. (1996) Nature Biotech 14: 745-750).

Typically, plant transformation vectors include one or more cloned plant coding sequence (genomic or cDNA) under the transcriptional control of 5' and 3' regulatory sequences and a dominant selectable marker. Such plant transformation vectors typically also contain a promoter (e.g., a regulatory region controlling inducible or constitutive, environmentally-or

developmentally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, an RNA processing signal (such as intron splice sites), a transcription termination site, and/or a polyadenylation signal.

Examples of constitutive plant promoters which can be useful for expressing the

TF sequence include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers
constitutive, high-level expression in most plant tissues (see, e.g., Odel et al. (1985) Nature
313:810); the nopaline synthase promoter (An et al. (1988) Plant Physiol 88:547); and the
octopine synthase promoter (Fromm et al. (1989) Plant Cell 1: 977).

A variety of plant gene promoters that regulate gene expression in response to 10 environmental, hormonal, chemical, developmental signals, and in a tissue-active manner can be used for expression of a TF sequence in plants. Choice of a promoter is based largely on the phenotype of interest and is determined by such factors as tissue (e.g., seed, fruit, root, pollen, vascular tissue, flower, carpel, etc.), inducibility (e.g., in response to wounding, heat, cold, drought, light, pathogens, etc.), timing, developmental stage, and the like. Numerous known 15 promoters have been characterized and can favorable be employed to promote expression of a polynucleotide of the invention in a transgenic plant or cell of interest. For example, tissue specific promoters include: seed-specific promoters (such as the napin, phaseolin or DC3 promoter described in US Pat. No. 5,773,697), fruit-specific promoters that are active during fruit ripening (such as the dru 1 promoter (US Pat. No. 5,783,393), or the 2A11 promoter (US Pat. No. 20 4,943,674) and the tomato polygalacturonase promoter (Bird et al. (1988) Plant Mol Biol 11:651), root-specific promoters, such as those disclosed in US Patent Nos. 5,618,988, 5,837,848 and 5,905,186, pollen-active promoters such as PTA29, PTA26 and PTA13 (US Pat. No. 5,792,929), promoters active in vascular tissue (Ringli and Keller (1998) Plant Mol Biol 37:977-988), flowerspecific (Kaiser et al, (1995) Plant Mol Biol 28:231-243), pollen (Baerson et al. (1994) Plant Mol 25 Biol 26:1947-1959), carpels (Ohl et al. (1990) Plant Cell 2:837-848), pollen and ovules (Baerson et al. (1993) Plant Mol Biol 22:255-267), auxin-inducible promoters (such as that described in van der Kop et al. (1999) Plant Mol Biol 39:979-990 or Baumann et al. (1999) Plant Cell 11:323-334), cytokinin-inducible promoter (Guevara-Garcia (1998) Plant Mol Biol 38:743-753), promoters responsive to gibberellin (Shi et al. (1998) Plant Mol Biol 38:1053-1060, Willmott et al. (1998) 38:817-825) and the like. Additional promoters are those that elicit expression in 30 response to heat (Ainley et al. (1993) Plant Mol Biol 22: 13-23), light (e.g., the pea rbcS-3A promoter, Kuhlemeier et al. (1989) Plant Cell 1:471, and the maize rbcS promoter, Schaffner and Sheen (1991) Plant Cell 3: 997); wounding (e.g., wunI, Siebertz et al. (1989) Plant Cell 1: 961); pathogens (such as the PR-1 promoter described in Buchel et al. (1999) Plant Mol. Biol. 40:387-

396, and the PDF1.2 promoter described in Manners et al. (1998) <u>Plant Mol. Biol.</u> 38:1071-80), and chemicals such as methyl jasmonate or salicylic acid (Gatz et al. (1997) <u>Plant Mol Biol</u> 48: 89-108). In addition, the timing of the expression can be controlled by using promoters such as those acting at senescence (An and Amazon (1995) <u>Science</u> 270: 1986-1988); or late seed development (Odell et al. (1994) <u>Plant Physiol</u> 106:447-458).

Plant expression vectors can also include RNA processing signals that can be positioned within, upstream or downstream of the coding sequence. In addition, the expression vectors can include additional regulatory sequences from the 3'-untranslated region of plant genes, e.g., a 3' terminator region to increase mRNA stability of the mRNA, such as the PI-II terminator region of potato or the octopine or nopaline synthase 3' terminator regions.

Additional Expression Elements

5

10

15

20

25

30

Specific initiation signals can aid in efficient translation of coding sequences. These signals can include, e.g., the ATG initiation codon and adjacent sequences. In cases where a coding sequence, its initiation codon and upstream sequences are inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only coding sequence (e.g., a mature protein coding sequence), or a portion thereof, is inserted, exogenous transcriptional control signals including the ATG initiation codon can be separately provided. The initiation codon is provided in the correct reading frame to facilitate transcription. Exogenous transcriptional elements and initiation codons can be of various origins, both natural and synthetic. The efficiency of expression can be enhanced by the inclusion of enhancers appropriate to the cell system in use.

Expression Hosts

The present invention also relates to host cells which are transduced with vectors of the invention, and the production of polypeptides of the invention (including fragments thereof) by recombinant techniques. Host cells are genetically engineered (i.e, nucleic acids are introduced, e.g., transduced, transformed or transfected) with the vectors of this invention, which may be, for example, a cloning vector or an expression vector comprising the relevant nucleic acids herein. The vector is optionally a plasmid, a viral particle, a phage, a naked nucleic acids, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants, or amplifying the relevant gene. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to those skilled in the art and in the references cited herein, including, Sambrook and Ausubel.

The host cell can be a eukaryotic cell, such as a yeast cell, or a plant cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Plant protoplasts are also suitable for some applications. For example, the DNA fragments are introduced into plant tissues, cultured plant cells or plant protoplasts by standard methods including electroporation (Fromm et al., (1985) Proc. Natl. Acad. Sci. USA 82, 5824, infection by viral vectors such as cauliflower mosaic virus (CaMV) (Hohn et al., (1982) Molecular Biology of Plant Tumors, (Academic Press, New York) pp. 549-560; US 4,407,956), high velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface (Klein et al., (1987) Nature 327, 70-73), use of pollen as vector (WO 85/01856), or use of Agrobacterium tumefaciens or A. rhizogenes carrying a T-DNA plasmid in which DNA fragments are cloned. The T-DNA plasmid is transmitted to plant cells upon infection by Agrobacterium tumefaciens, and a portion is stably integrated into the plant genome (Horsch et al. (1984) Science 233:496-498; Fraley et al. (1983) Proc. Natl. Acad. Sci. USA 80, 4803).

The cell can include a nucleic acid of the invention which encodes a polypeptide, wherein the cells expresses a polypeptide of the invention. The cell can also include vector sequences, or the like. Furthermore, cells and transgenic plants which include any polypeptide or nucleic acid above or throughout this specification, e.g., produced by transduction of a vector of the invention, are an additional feature of the invention.

For long-term, high-yield production of recombinant proteins, stable expression can be used. Host cells transformed with a nucleotide sequence encoding a polypeptide of the invention are optionally cultured under conditions suitable for the expression and recovery of the encoded protein from cell culture. The protein or fragment thereof produced by a recombinant cell may be secreted, membrane-bound, or contained intracellularly, depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides encoding mature proteins of the invention can be designed with signal sequences which direct secretion of the mature polypeptides through a prokaryotic or eukaryotic cell membrane.

Modified Amino Acids

5

10

15

20

25

30

Polypeptides of the invention may contain one or more modified amino acids.

The presence of modified amino acids may be advantageous in, for example, increasing polypeptide half-life, reducing polypeptide antigenicity or toxicity, increasing polypeptide storage stability, or the like. Amino acid(s) are modified, for example, co-translationally or post-translationally during recombinant production or modified by synthetic or chemical means.

Non-limiting examples of a modified amino acid include incorporation or other use of acetylated amino acids, glycosylated amino acids, sulfated amino acids, prenylated (e.g., farnesylated, geranylgeranylated) amino acids, PEG modified (e.g., "PEGylated") amino acids, biotinylated amino acids, carboxylated amino acids, phosphorylated amino acids, etc. References adequate to guide one of skill in the modification of amino acids are replete throughout the literature.

IDENTIFICATION OF ADDITIONAL FACTORS

5

10

15

20

25

30

A transcription factor provided by the present invention can also be used to identify additional endogenous or exogenous molecules that can affect a phentoype or trait of interest. On the one hand, such molecules include organic (small or large molecules) and/or inorganic compounds that affect expression of (i.e., regulate) a particular transcription factor. Alternatively, such molecules include endogenous molecules that are acted upon either at a transcriptional level by a transcription factor of the invention to modify a phenotype as desired. For example, the transcription factors can be employed to identify one or more downstream gene with which is subject to a regulatory effect of the transcription factor. In one approach, a transcription factor or transcription factor homologue of the invention is expressed in a host cell, e.g, a transgenic plant cell, tissue or explant, and expression products, either RNA or protein, of likely or random targets are monitored, e.g., by hybridization to a microarray of nucleic acid probes corresponding to genes expressed in a tissue or cell type of interest, by two-dimensional gel electrophoresis of protein products, or by any other method known in the art for assessing expression of gene products at the level of RNA or protein. Alternatively, a transcription factor of the invention can be used to identify promoter sequences (i.e., binding sites) involved in the regulation of a downstream target. After identifying a promoter sequence, interactions between the transcription factor and the promoter sequence can be modified by changing specific nucleotides in the promoter sequence or specific amino acids in the transcription factor that interact with the promoter sequence to alter a plant trait. Typically, transcription factor DNA binding sites are identified by gel shift assays. After identifying the promoter regions, the promoter region sequences can be employed in double-stranded DNA arrays to identify molecules that affect the interactions of the transcription factors with their promoters (Bulyk et al. (1999) Nature Biotechnology 17:573-577).

The identified transcription factors are also useful to identify proteins that modify the activity of the transcription factor. Such modification can occur by covalent modification, such as by phosphorylation, or by protein-protein (homo or-heteropolymer) interactions. Any

method suitable for detecting protein-protein interactions can be employed. Among the methods that can be employed are co-immunoprecipitation, cross-linking and co-purification through gradients or chromatographic columns, and the two-hybrid yeast system.

The two-hybrid system detects protein interactions in vivo and is described in Chien, et al., (1991), Proc. Natl. Acad. Sci. USA 88, 9578-9582 and is commercially available from Clontech (Palo Alto, Calif.). In such a system, plasmids are constructed that encode two hybrid proteins: one consists of the DNA-binding domain of a transcription activator protein fused to the TF polypeptide and the other consists of the transcription activator protein's activation domain fused to an unknown protein that is encoded by a cDNA that has been recombined into the plasmid as part of a cDNA library. The DNA-binding domain fusion plasmid and the cDNA library are transformed into a strain of the yeast Saccharomyces cerevisiae that contains a reporter gene (e.g., lacZ) whose regulatory region contains the transcription activator's binding site. Either hybrid protein alone cannot activate transcription of the reporter gene. Interaction of the two hybrid proteins reconstitutes the functional activator protein and results in expression of the reporter gene, which is detected by an assay for the reporter gene product. Then, the library plasmids responsible for reporter gene expression are isolated and sequenced to identify the proteins encoded by the library plasmids. After identifying proteins that interact with the transcription factors, assays for compounds that interfere with the TF protein-protein interactions can be preformed.

20 <u>IDENTIFICATION OF MODULATORS</u>

5

10

15

25

30

In addition to the intracellular molecules described above, extracellular molecules that alter activity or expression of a transcription factor, either directly or indirectly, can be identified. For example, the methods can entail first placing a candidate molecule in contact with a plant or plant cell. The molecule can be introduced by topical administration, such as spraying or soaking of a plant, and then the molecule's effect on the expression or activity of the TF polypeptide or the expression of the polynucleotide monitored. Changes in the expression of the TF polypeptide can be monitored by use of polyclonal or monoclonal antibodies, gel electrophoresis or the like. Changes in the expression of the corresponding polynucleotide sequence can be detected by use of microarrays, Northerns, quantitative PCR, or any other technique for monitoring changes in mRNA expression. These techniques are exemplified in Ausubel et al. (eds) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons (1998). Such changes in the expression levels can be correlated with modified plant traits and thus identified

molecules can be useful for soaking or spraying on fruit, vegetable and grain crops to modify traits in plants.

5

10

15

20

25

30

Essentially any available composition can be tested for modulatory activity of expression or activity of any nucleic acid or polypeptide herein. Thus, available libraries of compounds such as chemicals, polypeptides, nucleic acids and the like can be tested for modulatory activity. Often, potential modulator compounds can be dissolved in aqueous or organic (e.g., DMSO-based) solutions for easy delivery to the cell or plant of interest in which the activity of the modulator is to be tested. Optionally, the assays are designed to screen large modulator composition libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays).

In one embodiment, high throughput screening methods involve providing a combinatorial library containing a large number of potential compounds (potential modulator compounds). Such "combinatorial chemical libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as target compounds.

A combinatorial chemical library can be, e.g., a collection of diverse chemical compounds generated by chemical synthesis or biological synthesis. For example, a combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (e.g., in one example, amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound of a set length). Exemplary libraries include peptide libraries, nucleic acid libraries, antibody libraries (see, e.g., Vaughn et al. (1996) Nature Biotechnology, 14(3):309-314 and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al. Science (1996) 274:1520-1522 and U.S. Patent 5,593,853), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), and small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN Jan 18, page 33 (1993); isoprenoids, U.S. Patent 5,569,588; thiazolidinones and metathiazanones, U.S. Patent 5,549,974; pyrrolidines, U.S. Patents 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent 5,506,337) and the like.

Preparation and screening of combinatorial or other libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent 5,010,175, Furka, Int. J. Pept. Prot. Res. 37:487-493 (1991) and Houghton et al. Nature 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used.

In addition, as noted, compound screening equipment for high-throughput screening is generally available, e.g., using any of a number of well known robotic systems that have also been developed for solution phase chemistries useful in assay systems. These systems include automated workstations including an automated synthesis apparatus and robotic systems utilizing robotic arms. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput screening of potential modulators. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

5

15

20

25

30

Indeed, entire high throughput screening systems are commercially available.

These systems typically automate entire procedures including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, microfluidic implementations of screening are also commercially available.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like. The integrated systems herein, in addition to providing for sequence alignment and, optionally, synthesis of relevant nucleic acids, can include such screening apparatus to identify modulators that have an effect on one or more polynucleotides or polypeptides according to the present invention.

In some assays it is desirable to have positive controls to ensure that the components of the assays are working properly. At least two types of positive controls are appropriate. That is, known transcriptional activators or inhibitors can be incubated with cells/plants/ etc. in one sample of the assay, and the resulting increase/decrease in transcription can be detected by measuring the resulting increase in RNA/ protein expression, etc., according to the methods herein. It will be appreciated that modulators can also be combined with transcriptional activators or inhibitors to find modulators which inhibit transcriptional activation or transcriptional repression. Either expression of the nucleic acids and proteins herein or any additional nucleic acids or proteins activated by the nucleic acids or proteins herein, or both, can be monitored.

In an embodiment, the invention provides a method for identifying compositions that modulate the activity or expression of a polynucleotide or polypeptide of the invention. For example, a test compound, whether a small or large molecule, is placed in contact with a cell,

PCT/US00/31458 WO 01/36598

plant (or plant tissue or explant), or composition comprising the polynucleotide or polypeptide of interest and a resulting effect on the cell, plant, (or tissue or explant) or composition is evaluated by monitoring, either directly or indirectly, one or more of: expression level of the polynucleotide or polypeptide, activity (or modulation of the activity) of the polynucleotide or polypeptide. In some cases, an alteration in a plant phenotype can be detected following contact of a plant (or plant cell, or tissue or explant) with the putative modulator, e.g., by modulation of expression or activity of a polynucleotide or polypeptide of the invention.

SUBSEQUENCES

10

15

20

25

30

Also contemplated are uses of polynucleotides, also referred to herein as oligonucleotides, typically having at least 12 bases, preferably at least 15, more preferably at least 20, 30, or 50 bases, which hybridize under at least highly stringent (or ultra-high stringent or ultra-ultra- high stringent conditions) conditions to a polynucleotide sequence described above. The polynucleotides may be used as probes, primers, sense and antisense agents, and the like, according to methods as noted supra.

Subsequences of the polynucleotides of the invention, including polynucleotide fragments and oligonucleotides are useful as nucleic acid probes and primers. An oligonucleotide suitable for use as a probe or primer is at least about 15 nucleotides in length, more often at least about 18 nucleotides, often at least about 21 nucleotides, frequently at least about 30 nucleotides, or about 40 nucleotides, or more in length. A nucleic acid probe is useful in hybridization protocols, e.g., to identify additional polypeptide homologues of the invention, including protocols for microarray experiments. Primers can be annealed to a complementary target DNA strand by nucleic acid hybridization to form a hybrid between the primer and the target DNA strand, and then extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR) or other nucleic-acid amplification methods. See Sambrook and Ausubel, supra.

In addition, the invention includes an isolated or recombinant polypeptide including a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotides of the invention. For example, such polypeptides, or domains or fragments thereof, can be used as immunogens, e.g., to produce antibodies specific for the polypeptide sequence, or as probes for detecting a sequence of interest. A subsequence can range in size from about 15 amino acids in length up to and including the full length of the polypeptide.

PRODUCTION OF TRANSGENIC PLANTS

5

10

15

20

25

30

Modification of Traits

The polynucleotides of the invention are favorably employed to produce transgenic plants with various traits, or characteristics, that have been modified in a desirable manner, e.g., to improve the environmental stress resistance of a plant. For example, alteration of expression levels or patterns (e.g., spatial or temporal expression patterns) of one or more of the transcription factors (or transcription factor homologues) of the invention, as compared with the levels of the same protein found in a wild type plant, can be used to modify a plant's traits. An illustrative example of trait modification, improved environmental stress tolerance, by altering expression levels of a particular transcription factor is described further in the Examples and the Sequence Listing.

Antisense and Cosuppression Approaches

In addition to expression of the nucleic acids of the invention as gene replacement or plant phenotype modification nucleic acids, the nucleic acids are also useful for sense and anti-sense suppression of expression, e.g., to down-regulate expression of a nucleic acid of the invention, e.g., as a further mechanism for modulating plant phenotype. That is, the nucleic acids of the invention, or subsequences or anti-sense sequences thereof, can be used to block expression of naturally occurring homologous nucleic acids. A variety of sense and anti-sense technologies are known in the art, e.g., as set forth in Lichtenstein and Nellen (1997)

Antisense Technology: A Practical Approach IRL Press at Oxford University, Oxford, England. In general, sense or anti-sense sequences are introduced into a cell, where they are optionally amplified, e.g., by transcription. Such sequences include both simple oligonucleotide sequences and catalytic sequences such as ribozymes.

For example, a reduction or elimination of expression (i.e., a "knock-out") of a transcription factor or transcription factor homologue polypeptide in a transgenic plant, e.g., to modify a plant trait, can be obtained by introducing an antisense construct corresponding to the polypeptide of interest as a cDNA. For antisense suppression, the transcription factor or homologue cDNA is arranged in reverse orientation (with respect to the coding sequence) relative to the promoter sequence in the expression vector. The introduced sequence need not be the full length cDNA or gene, and need not be identical to the cDNA or gene found in the plant type to be transformed. Typically, the antisense sequence need only be capable of hybridizing to the target gene or RNA of interest. Thus, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous transcription factor sequence will be needed for effective antisense suppression. While antisense sequences of various lengths can be utilized, preferably,

the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. Preferably, the length of the antisense sequence in the vector will be greater than 100 nucleotides. Transcription of an antisense construct as described results in the production of RNA molecules that are the reverse complement of mRNA molecules transcribed from the endogenous transcription factor gene in the plant cell.

5

10

15

20

25

30

Suppression of endogenous transcription factor gene expression can also be achieved using a ribozyme. Ribozymes are RNA molecules that possess highly specific endoribonuclease activity. The production and use of ribozymes are disclosed in U.S. Patent No. 4,987,071 and U.S. Patent No. 5,543,508. Synthetic ribozyme sequences including antisense RNAs can be used to confer RNA cleaving activity on the antisense RNA, such that endogenous mRNA molecules that hybridize to the antisense RNA are cleaved, which in turn leads to an enhanced antisense inhibition of endogenous gene expression.

Vectors in which RNA encoded by a transcription factor or transcription factor homologue cDNA is over-expressed can also be used to obtain co-suppression of a corresponding endogenous gene, e.g., in the manner described in U.S. Patent No. 5,231,020 to Jorgensen. Such co-suppression (also termed sense suppression) does not require that the entire transcription factor cDNA be introduced into the plant cells, nor does it require that the introduced sequence be exactly identical to the endogenous transcription factor gene of interest. However, as with antisense suppression, the suppressive efficiency will be enhanced as specificity of hybridization is increased, e.g., as the introduced sequence is lengthened, and/or as the sequence similarity between the introduced sequence and the endogenous transcription factor gene is increased.

Vectors expressing an untranslatable form of the transcription factor mRNA, e.g., sequences comprising one or more stop codon, or nonsense mutation) can also be used to suppress expression of an endogenous transcription factor, thereby reducing or eliminating it's activity and modifying one or more traits. Methods for producing such constructs are described in U.S. Patent No. 5,583,021. Preferably, such constructs are made by introducing a premature stop codon into the transcription factor gene. Alternatively, a plant trait can be modified by gene silencing using double-strand RNA (Sharp (1999) Genes and Development 13: 139-141).

Another method for abolishing the expression of a gene is by insertion mutagenesis using the T-DNA of Agrobacterium tumefaciens. After generating the insertion mutants, the mutants can be screened to identify those containing the insertion in a transcription factor or transcription factor homologue gene. Plants containing a single transgene insertion

event at the desired gene can be crossed to generate homozygous plants for the mutation (Koncz et al. (1992) Methods in Arabidopsis Research, World Scientific).

Alternatively, a plant phenotype can be altered by eliminating an endogenous gene, such as a transcription factor or transcription factor homologue, e.g., by homologous recombination (Kempin et al. (1997) Nature 389:802).

5

10

15

20

25

30

A plant trait can also be modified by using the cre-lox system (for example, as described in US Pat. No. 5,658,772). A plant genome can be modified to include first and second lox sites that are then contacted with a Cre recombinase. If the lox sites are in the same orientation, the intervening DNA sequence between the two sites is excised. If the lox sites are in the opposite orientation, the intervening sequence is inverted.

The polynucleotides and polypeptides of this invention can also be expressed in a plant in the absence of an expression cassette by manipulating the activity or expression level of the endogenous gene by other means. For example, by ectopically expressing a gene by T-DNA activation tagging (Ichikawa et al. (1997) Nature 390 698-701; Kakimoto et al. (1996) Science 274: 982-985). This method entails transforming a plant with a gene tag containing multiple transcriptional enhancers and once the tag has inserted into the genome, expression of a flanking gene coding sequence becomes deregulated. In another example, the transcriptional machinery in a plant can be modified so as to increase transcription levels of a polynucleotide of the invention (See, e.g., PCT Publications WO 96/06166 and WO 98/53057 which describe the modification of the DNA binding specificity of zinc finger proteins by changing particular amino acids in the DNA binding motif).

The transgenic plant can also include the machinery necessary for expressing or altering the activity of a polypeptide encoded by an endogenous gene, for example by altering the phosphorylation state of the polypeptide to maintain it in an activated state.

Transgenic plants (or plant cells, or plant explants, or plant tissues) incorporating the polynucleotides of the invention and/or expressing the polypeptides of the invention can be produced by a variety of well established techniques as described above. Following construction of a vector, most typically an expression cassette, including a polynucleotide, e.g., encoding a transcription factor or transcription factor homologue, of the invention, standard techniques can be used to introduce the polynucleotide into a plant, a plant cell, a plant explant or a plant tissue of interest. Optionally, the plant cell, explant or tissue can be regenerated to produce a transgenic plant.

The plant can be any higher plant, including gymnosperms, monocotyledonous and dicotyledenous plants. Suitable protocols are available for *Leguminosae* (alfalfa, soybean,

clover, etc.), *Umbelliferae* (carrot, celery, parsnip), *Cruciferae* (cabbage, radish, rapeseed, broccoli, etc.), *Curcurbitaceae* (melons and cucumber), *Gramineae* (wheat, corn, rice, barley, millet, etc.), *Solanaceae* (potato, tomato, tobacco, peppers, etc.), and various other crops. See protocols described in Ammirato et al. (1984) <u>Handbook of Plant Cell Culture – Crop Species</u>. Macmillan Publ. Co. Shimamoto et al. (1989) <u>Nature</u> 338:274-276; Fromm et al. (1990) <u>Bio/Technology</u> 8:833-839; and Vasil et al. (1990) <u>Bio/Technology</u> 8:429-434.

5

10

15

20

25

30

Transformation and regeneration of both monocotyledonous and dicotyledonous plant cells is now routine, and the selection of the most appropriate transformation technique will be determined by the practitioner. The choice of method will vary with the type of plant to be transformed; those skilled in the art will recognize the suitability of particular methods for given plant types. Suitable methods can include, but are not limited to: electroporation of plant protoplasts; liposome-mediated transformation; polyethylene glycol (PEG) mediated transformation; transformation using viruses; micro-injection of plant cells; micro-projectile bombardment of plant cells; vacuum infiltration; and Agrobacterium tumeficiens mediated transformation. Transformation means introducing a nucleotide sequence in a plant in a manner to cause stable or transient expression of the sequence.

Successful examples of the modification of plant characteristics by transformation with cloned sequences which serve to illustrate the current knowledge in this field of technology, and which are herein incorporated by reference, include: U.S. Patent Nos. 5,571,706; 5,677,175; 5,510,471; 5,750,386; 5,597,945; 5,589,615; 5,750,871; 5,268,526; 5,780,708; 5,538,880; 5,773,269; 5,736,369 and 5,610,042.

Following transformation, plants are preferably selected using a dominant selectable marker incorporated into the transformation vector. Typically, such a marker will confer antibiotic or herbicide resistance on the transformed plants, and selection of transformants can be accomplished by exposing the plants to appropriate concentrations of the antibiotic or herbicide.

After transformed plants are selected and grown to maturity, those plants showing a modified trait are identified. The modified trait can be any of those traits described above. Additionally, to confirm that the modified trait is due to changes in expression levels or activity of the polypeptide or polynucleotide of the invention can be determined by analyzing mRNA expression using Northern blots, RT-PCR or microarrays, or protein expression using immunoblots or Western blots or gel shift assays.

INTEGRATED SYSTEMS—SEQUENCE IDENTITY

10

. 15

20

25

30

Additionally, the present invention may be an integrated system, computer or computer readable medium that comprises an instruction set for determining the identity of one or more sequences in a database. In addition, the instruction set can be used to generate or identify sequences that meet any specified criteria. Furthermore, the instruction set may be used to associate or link certain functional benefits, such improved environmental stress tolerance, with one or more identified sequence.

For example, the instruction set can include, e.g., a sequence comparison or other alignment program, e.g., an available program such as, for example, the Wisconsin Package Version 10.0, such as BLAST, FASTA, PILEUP, FINDPATTERNS or the like (GCG, Madision, WI). Public sequence databases such as GenBank, EMBL, Swiss-Prot and PIR or private sequence databases such as PhytoSeq (Incyte Pharmaceuticals, Palo Alto, CA) can be searched.

Alignment of sequences for comparison can be conducted by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. U.S.A. 85: 2444, by computerized implementations of these algorithms. After alignment, sequence comparisons between two (or more) polynucleotides or polypeptides are typically performed by comparing sequences of the two sequences over a comparison window to identify and compare local regions of sequence similarity. The comparison window can be a segment of at least about 20 contiguous positions, usually about 50 to about 200, more usually about 100 to about 150 contiguous positions. A description of the method is provided in Ausubel et al., supra.

A variety of methods of determining sequence relationships can be used, including manual alignment and computer assisted sequence alignment and analysis. This later approach is a preferred approach in the present invention, due to the increased throughput afforded by computer assisted methods. As noted above, a variety of computer programs for performing sequence alignment are available, or can be produced by one of skill.

One example algorithm that is suitable for determining percent sequence identity and sequence similarity is the BLAST algorithm, which is described in Altschul et al. <u>J. Mol. Biol</u> 215:403-410 (1990). Software for performing BLAST analyses is publicly available, e.g., through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is

5

10

15

20

25

30

referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).

In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence (and, therefore, in this context, homologous) if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.1, or less than about 0.01, and or even less than about 0.001. An additional example of a useful sequence alignment algorithm is PILEUP. PILEUP creates a multiple sequence alignment from a group of related sequences using progressive, pairwise alignments. The program can align, e.g., up to 300 sequences of a maximum length of 5,000 letters.

The integrated system, or computer typically includes a user input interface allowing a user to selectively view one or more sequence records corresponding to the one or more character strings, as well as an instruction set which aligns the one or more character strings with each other or with an additional character string to identify one or more region of sequence similarity. The system may include a link of one or more character strings with a particular

phenotype or gene function. Typically, the system includes a user readable output element which displays an alignment produced by the alignment instruction set.

The methods of this invention can be implemented in a localized or distributed computing environment. In a distributed environment, the methods may implemented on a single computer comprising multiple processors or on a multiplicity of computers. The computers can be linked, e.g. through a common bus, but more preferably the computer(s) are nodes on a network. The network can be a generalized or a dedicated local or wide-area network and, in certain preferred embodiments, the computers may be components of an intra-net or an internet.

5

10

15

20

30

Thus, the invention provides methods for identifying a sequence similar or homologous to one or more polynucleotides as noted herein, or one or more target polypeptides encoded by the polynucleotides, or otherwise noted herein and may include linking or associating a given plant phenotype or gene function with a sequence. In the methods, a sequence database is provided (locally or across an inter or intra net) and a query is made against the sequence database using the relevant sequences herein and associated plant phenotypes or gene functions.

Any sequence herein can be entered into the database, before or after querying the database. This provides for both expansion of the database and, if done before the querying step, for insertion of control sequences into the database. The control sequences can be detected by the query to ensure the general integrity of both the database and the query. As noted, the query can be performed using a web browser based interface. For example, the database can be a centralized public database such as those noted herein, and the querying can be done from a remote terminal or computer across an internet or intranet.

EXAMPLES

The following examples are intended to illustrate but not limit the present invention.

25 EXAMPLE I. FULL LENGTH GENE IDENTIFICATION AND CLONING

Putative transcription factor sequences (genomic or ESTs) related to known transcription factors were identified in the *Arabidopsis thaliana* GenBank database using the tblastn sequence analysis program using default parameters and a P-value cutoff threshold of -4 or -5 or lower, depending on the length of the query sequence. Putative transcription factor sequence hits were then screened to identify those containing particular sequence strings. If the sequence hits contained such sequence strings, the sequences were confirmed as transcription factors.

Alternatively, Arabidopsis *thaliana* cDNA libraries derived from different tissues or treatments, or genomic libraries were screened to identify novel members of a transcription family using a low stringency hybridization approach. Probes were synthesized using gene specific primers in a standard PCR reaction (annealing temperature 60°C) and labeled with ³²P dCTP using the High Prime DNA Labeling Kit (Boehringer Mannheim). Purified radiolabelled probes were added to filters immersed in Church hybridization medium (0.5 M NaPO₄ pH 7.0, 7% SDS, 1 % w/v bovine serum albumin) and hybridized overnight at 60 °C with shaking. Filters were washed two times for 45 to 60 minutes with 1xSCC, 1% SDS at 60°C.

To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed using the MarathonTM cDNA amplification kit (Clontech, Palo Alto, CA). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, followed by ligation of the MarathonTM Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA.

Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Nested primers, rather than single primers, were used to increase PCR specificity. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced and cloned. The process can be repeated until 5' and 3' ends of the full-length gene were identified. Then the full-length cDNA was generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR.

EXAMPLE II. CONSTRUCTION OF EXPRESSION VECTORS

5

10

15

20

25

30

The sequence was amplified from a genomic or cDNA library using primers specific to sequences upstream and downstream of the coding region. The expression vector was pMEN20 or pMEN65, which are both derived from pMON316 (Sanders et al, (1987) Nucleic Acids Research 15:1543-58) and contain the CaMV 35S promoter to express transgenes. To clone the sequence into the vector, both pMEN20 and the amplified DNA fragment were digested separately with Sall and Notl restriction enzymes at 37° C for 2 hours. The digestion products were subject to electrophoresis in a 0.8% agarose gel and visualized by ethidium bromide staining. The DNA fragments containing the sequence and the linearized plasmid were excised and purified by using a Qiaquick gel extraction kit (Qiagen, CA). The fragments of interest were ligated at a ratio of 3:1 (vector to insert). Ligation reactions using T4 DNA ligase (New England Biolabs, MA) were carried out at 16° C for 16 hours. The ligated DNAs were transformed into

competent cells of the *E. coli* strain DH5alpha by using the heat shock method. The transformations were plated on LB plates containing 50 mg/l kanamycin (Sigma).

5

10

15

Individual colonies were grown overnight in five milliliters of LB broth containing 50 mg/l kanamycin at 37° C. Plasmid DNA was purified by using Qiaquick Mini Prep kits (Qiagen, CA).

EXAMPLE III. TRANSFORMATION OF AGROBACTERIUM WITH THE EXPRESSION VECTOR

After the plasmid vector containing the gene was constructed, the vector was used to transform Agrobacterium tumefaciens cells expressing the gene products. The stock of Agrobacterium tumefaciens cells for transformation were made as described by Nagel et al. (1990) FEMS Microbiol Letts. 67: 325-328. Agrobacterium strain ABI was grown in 250 ml LB medium (Sigma) overnight at 28°C with shaking until an absorbance (A₆₀₀) of 0.5 – 1.0 was reached. Cells were harvested by centrifugation at 4,000 x g for 15 min at 4° C. Cells were then resuspended in 250 μl chilled buffer (1 mM HEPES, pH adjusted to 7.0 with KOH). Cells were centrifuged again as described above and resuspended in 125 μl chilled buffer. Cells were then centrifuged and resuspended two more times in the same HEPES buffer as described above at a volume of 100 μl and 750 μl, respectively. Resuspended cells were then distributed into 40 μl aliquots, quickly frozen in liquid nitrogen, and stored at -80° C.

above following the protocol described by Nagel et al. For each DNA construct to be transformed, 50 – 100 ng DNA (generally resuspended in 10 mM Tris-HCl, 1 mM EDTA, pH 8.0) was mixed with 40 μl of Agrobacterium cells. The DNA/cell mixture was then transferred to a chilled cuvette with a 2mm electrode gap and subject to a 2.5 kV charge dissipated at 25 μF and 200 μF using a Gene Pulser II apparatus (Bio-Rad). After electroporation, cells were immediately resuspended in 1.0 ml LB and allowed to recover without antibiotic selection for 2 – 4 hours at 28° C in a shaking incubator. After recovery, cells were plated onto selective medium of LB broth containing 100 μg/ml spectinomycin (Sigma) and incubated for 24-48 hours at 28° C. Single colonies were then picked and inoculated in fresh medium. The presence of the plasmid construct was verified by PCR amplification and sequence analysis.

30 <u>EXAMPLE IV. TRANSFORMATION OF ARABIDOPSIS PLANTS WITH AGROBACTERIUM TUMEFACIENS WITH EXPRESSION VECTOR</u>

After transformation of Agrobacterium tumefaciens with plasmid vectors containing the gene, single Agrobacterium colonies were identified, propagated, and used to

transform Arabidopsis plants. Briefly, 500 ml cultures of LB medium containing 50 mg/l kanamycin were inoculated with the colonies and grown at 28° C with shaking for 2 days until an absorbance (A_{600}) of > 2.0 is reached. Cells were then harvested by centrifugation at 4,000 x g for 10 min, and resuspended in infiltration medium (1/2 X Murashige and Skoog salts (Sigma), 1 X Gamborg's B-5 vitamins (Sigma), 5.0% (w/v) sucrose (Sigma), 0.044 μ M benzylamino purine (Sigma), 200 μ l/L Silwet L-77 (Lehle Seeds) until an absorbance (A_{600}) of 0.8 was reached.

Prior to transformation, Arabidopsis thaliana seeds (ecotype Columbia) were sown at a density of ~10 plants per 4° pot onto Pro-Mix BX potting medium (Hummert International) covered with fiberglass mesh (18 mm X 16 mm). Plants were grown under continuous illumination (50-75 μE/m²/sec) at 22-23° C with 65-70% relative humidity. After about 4 weeks, primary inflorescence stems (bolts) are cut off to encourage growth of multiple secondary bolts. After flowering of the mature secondary bolts, plants were prepared for transformation by removal of all siliques and opened flowers.

10

15

25

30

The pots were then immersed upside down in the mixture of Agrobacterium infiltration medium as described above for 30 sec, and placed on their sides to allow draining into a 1' x 2' flat surface covered with plastic wrap. After 24 h, the plastic wrap was removed and pots are turned upright. The immersion procedure was repeated one week later, for a total of two immersions per pot. Seeds were then collected from each transformation pot and analyzed following the protocol described below.

20 EXAMPLE V, IDENTIFICATION OF ARABIDOPSIS PRIMARY TRANSFORMANTS

Seeds collected from the transformation pots were sterilized essentially as follows. Seeds were dispersed into in a solution containing 0.1% (v/v) Triton X-100 (Sigma) and sterile H₂O and washed by shaking the suspension for 20 min. The wash solution was then drained and replaced with fresh wash solution to wash the seeds for 20 min with shaking. After removal of the second wash solution, a solution containing 0.1% (v/v) Triton X-100 and 70% ethanol (Equistar) was added to the seeds and the suspension was shaken for 5 min. After removal of the ethanol/detergent solution, a solution containing 0.1% (v/v) Triton X-100 and 30% (v/v) bleach (Clorox) was added to the seeds, and the suspension was shaken for 10 min. After removal of the bleach/detergent solution, seeds were then washed five times in sterile distilled H₂O. The seeds were stored in the last wash water at 4°C for 2 days in the dark before being plated onto antibiotic selection medium (1 X Murashige and Skoog salts (pH adjusted to 5.7 with 1 M KOH), 1 X Gamborg's B-5 vitamins, 0.9% phytagar (Life Technologies), and 50 mg/l kanamycin). Seeds were germinated under continuous illumination (50-75 μE/m²/sec) at 22-23°

C. After 7-10 days of growth under these conditions, kanamycin resistant primary transformants (T₁ generation) were visible and obtained. These seedlings were transferred first to fresh selection plates where the seedlings continued to grow for 3-5 more days, and then to soil (Pro-Mix BX potting medium).

Primary transformants were crossed and progeny seeds (T₂) collected; kanamycin resistant seedlings were selected and analyzed. The expression levels of the recombinant polynucleotides in the transformants varies from about a 5% expression level increase to a least a 100% expression level increase. Similar observations are made with respect to polypeptide level expression.

10

30

5

EXAMPLE VI. IDENTIFICATION OF ARABIDOPSIS PLANTS WITH TRANSCRIPTION FACTOR GENE KNOCKOUTS

in a known target gene was essentially as described in Krysan et al (1999) Plant Cell 11:22832290. Briefly, gene-specific primers, nested by 5-250 base pairs to each other, were designed from the 5' and 3' regions of a known target gene. Similarly, nested sets of primers were also created specific to each of the T-DNA or transposon ends (the "right" and "left" borders). All possible combinations of gene specific and T-DNA/transposon primers were used to detect by

PCR an insertion event within or close to the target gene. The amplified DNA fragments were then sequenced which allows the precise determination of the T-DNA/transposon insertion point relative to the target gene. Insertion events within the coding or intervening sequence of the genes were deconvoluted from a pool comprising a plurality of insertion events to a single unique mutant plant for functional characterization. The method is described in more detail in Yu and Adam, US Application Serial No. 09/177,733 filed October 23, 1998.

EXAMPLE VII. IDENTIFICATION OF ENVIRONMENTAL STRESS TOLERANCE PHENOTYPE IN OVEREXPRESSOR OR GENE KNOCKOUT PLANTS

Experiments were performed to identify those transformants or knockouts that exhibited an improved environmental stress tolerance. For such studies, the transformants were exposed to a variety of environmental stresses. Plants were exposed to chilling stress (6 hour exposure to 4-8°C), heat stress (6 hour exposure to 32-37°C), high salt stress (6 hour exposure to 200 mM NaCl), drought stress (168 hours after removing water from trays), osmotic stress (6 hour exposure to 3 M mannitol), or nutrient limitation (nitrogen, phosphate, and potassium) (Nitrogen: all components of MS medium remained constant except N was reduced to 20mg/L of

NH 4 NO3, or Phosphate: All components of MS medium except KH 2 PO 4, which was replaced by K2SO4, Potassium: All components of MS medium except removal of KNO3 and KH2PO4, which were replaced by NaH4PO4).

Table 3 shows the phenotypes observed for particular overexpressor or knockout

plants and provides the SEQ ID No., the internal reference code (GID), whether a knockout or
overexpressor plant was analyzed and the observed phenotype.

Table 3

SEQ ID No.	GID	Knockout (KO) or overexpressor (OX)	Phenotype observed
1	G22	OE	Increased tolerance to high salt
3	G188	KO	Better germination under osmotic stress
5	G225	OE	Increased tolerance to nitrogen-limited medium
7	G226	OE	Increased tolerance to nitrogen-limited medium
9	G256	OE	Better germination and growth in cold
11	G419	OE	Increased tolerance to potassium-free medium
13	G464	OE	Better germination and growth in heat
15	G482	OE	Increased tolerance to high salt
17	G502	KO	Increased sensitivity to osmotic stress
19	G526	OE	Increased sensitivity to osmotic stress
21	G545	OE	Susceptible to high salt
23	G561	OE	Increased tolerance to potassium-free medium
25	G664	OE	Better germination and growth in cold
27	G682	OE	Better germination and growth in heat
29	G911	OE .	Increased growth on potassium-free medium
31	G964	OE	Better germination and growth in heat
33	G394	OE	More sensitive to chilling
35	G489	OE	Increased tolerance to osmotic stress

For a particular overexpressor that shows a decreased tolerance to an environmental stress, it may be more useful to select a plant with a decreased expression of the particular transcription factor. For a particular knockout that shows a decreased tolerance to an environmental stress, it may be more useful to select a plant with an increased expression of the particular transcription factor.

EXAMPLE VIII. IDENTIFICATION OF HOMOLOGOUS SEQUENCES

10

15

Homologous sequences from *Arabidopsis* and plant species other than *Arabidopsis* were identified using database sequence search tools, such as the Basic Local Alignment Search Tool (BLAST) (Altschul et al. (1990) <u>J. Mol. Biol.</u> 215:403-410; and Altschul et al. (1997) <u>Nucl. Acid Res.</u> 25: 3389-3402). The tblastx sequence analysis programs were employed using the

BLOSUM-62 scoring matrix (Henikoff, S. and Henikoff, J. G. (1992) Proc. Natl. Acad. Sci. USA 89: 10915-10919).

Identified *Arabidopsis* homologous sequences are provided in Figure 2 and included in the Sequence Listing. The percent sequence identity among these sequences is as low as 47% sequence identity. Additionally, the entire NCBI GenBank database was filtered for sequences from all plants except *Arabidopsis thaliana* by selecting all entries in the NCBI GenBank database associated with NCBI taxonomic ID 33090 (Viridiplantae; all plants) and excluding entries associated with taxonomic ID 3701 (*Arabidopsis thaliana*). These sequences were compared to sequences representing genes of SEQ IDs Nos. 1-54 on 9/26/2000 using the Washington University TBLASTX algorithm (version 2.0a19MP). For each gene of SEQ IDs Nos. 1-54, individual comparisons were ordered by probability score (P-value), where the score reflects the probability that a particular alignment occurred by chance. For example, a score of 3.6e-40 is 3.6 x 10⁻⁴⁰. For up to ten species, the gene with the lowest P-value (and therefore the most likely homolog) is listed in Figure 3.

5

10

15

20

25

30

In addition to P-values, comparisons were also scored by percentage identity. Percentage identity reflects the degree to which two segments of DNA or protein are identical over a particular length. The ranges of percent identity between the non-Arabidopsis genes shown in Figure 3 and the Arabidopsis genes in the sequence listing are: SEQ ID No. 1: 53%-67%; SEQ ID No. 3: 38%-76%; SEQ ID No. 5: 34%-67%; SEQ ID No. 7: 50%-69%; SEQ ID No. 9: 32%-91%; SEQ ID No. 11: 48%-66%; SEQ ID No. 13: 34%-60%; SEQ ID No. 15: 58%-81%; SEQ ID No. 17: 65%-94%; SEQ ID No. 19: 72%-83%; SEQ ID No. 21: 52%-64%; SEQ ID No. 23: 40%-89%; SEQ ID No. 25: 86%-97%; SEQ ID No. 27: 41%-75%; SEQ ID No. 29: 29%-72%; SEQ ID No. 31: 49%-70%; SEQ ID No. 33: 56%-86%; SEQ ID No. 35: 61%-84%; SEQ ID No. 37: 40%-58%; SEQ ID No. 39: 63%-87%; SEQ ID No. 41: 51%-88%; SEQ ID No. 43: 80%-90%; SEQ ID No. 45: 79%-90%; SEQ ID No. 47: 30%-58%; SEQ ID No. 49: 52%-62%; SEQ ID No. 51: 55%-73% and SEQ ID No. 53: 44%-80%.

The polynucleotides and polypeptides in the Sequence Listing and the identified homologous sequences may be stored in a computer system and have associated or linked with the sequences a function, such as that the polynucleotides and polypeptides are useful for modifying the environmental stress tolerance of a plant.

All references, publications, patents and other documents herein are incorporated by reference in their entirety for all purposes. Although the invention has been described with

reference to the embodiments and examples above, it should be understood that various modifications can be made without departing from the spirit of the invention.

What is claimed is:

10

15

20

1. A transgenic plant with modified environmental stress tolerance, which plant comprises a recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:

- (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEQ ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof;
 (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substituted variant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's environmental stress tolerance;
 - (h) a nucleotide sequence having at least 30% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 30% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27;
- 25 (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; and (l) a nucleotide sequence which encodes a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27.
- The transgenic plant of claim 1, further comprising a constitutive, inducible, or tissueactive promoter operably linked to said nucleotide sequence.
 - 3. The transgenic plant of claim 1, wherein the plant is selected from the group consisting of: soybean, wheat, corn, potato, cotton, rice, oilseed rape, sunflower, alfalfa, sugarcane, turf,

banana, blackberry, blueberry, strawberry, raspberry, cantaloupe, carrot, cauliflower, coffee, cucumber, eggplant, grapes, honeydew, lettuce, mango, melon, onion, papaya, peas, peppers, pineapple, spinach, squash, sweet corn, tobacco, tomato, watermelon, rosaceous fruits, and vegetable brassicas.

5

15

20

- 4. An isolated or recombinant polynucleotide comprising a nucleotide sequence selected from the group consisting of:
 - (a) a nucleotide sequence encoding a polypeptide comprising a sequence selected from SEO ID Nos. 2N, where N=1-27, or a complementary nucleotide sequence thereof;
- (b) a nucleotide sequence encoding a polypeptide comprising a conservatively substitutedvariant of a polypeptide of (a);
 - (c) a nucleotide sequence comprising a sequence selected from those of SEQ ID Nos. 2N-1, where N=1-27, or a complementary nucleotide sequence thereof;
 - (d) a nucleotide sequence comprising silent substitutions in a nucleotide sequence of (c);
 - (e) a nucleotide sequence which hybridizes under stringent conditions to a nucleotide sequence of one or more of: (a), (b), (c), or (d);
 - (f) a nucleotide sequence comprising at least 15 consecutive nucleotides of a sequence of any of (a)-(e);
 - (g) a nucleotide sequence comprising a subsequence or fragment of any of (a)-(f), which subsequence or fragment encodes a polypeptide that modifies a plant's environmental stress tolerance;
 - (h) a nucleotide sequence having at least 30% sequence identity to a nucleotide sequence of any of (a)-(g);
 - (i) a nucleotide sequence having at least 60% identity sequence identity to a nucleotide sequence of any of (a)-(g);
 - (j) a nucleotide sequence which encodes a polypeptide having at least 30% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27;
 - (k) a nucleotide sequence which encodes a polypeptide having at least 60% identity sequence identity to a polypeptide of SEQ ID Nos. 2N, where N=1-27; and
- 30 (l) a nucleotide sequence which encodes a conserved domain of a polypeptide having at least 65% sequence identity to a conserved domain of a polypeptide of SEQ ID Nos. 2N, where N=1-27.

5. The isolated or recombinant polynucleotide of claim 4, further comprising a constitutive, inducible, or tissue-active promoter operably linked to the nucleotide sequence.

- A cloning or expression vector comprising the isolated or recombinant polynucleotide of
 claim 4.
 - 7. A cell comprising the cloning or expression vector of claim 6.
 - 8. A transgenic plant comprising the isolated or recombinant polynucleotide of claim 4.

10

15

- 9. A composition produced by one or more of:
 - (a) incubating one or more polynucleotide of claim 4 with a nuclease;
 - (b) incubating one or more polynucleotide of claim 4 with a restriction enzyme;
 - (c) incubating one or more polynucleotide of claim 4 with a polymerase;
- (d) incubating one or more polynucleotide of claim 4 with a polymerase and a primer;
 - (e) incubating one or more polynucleotide of claim 4 with a cloning vector, or
 - (f) incubating one or more polynucleotide of claim 4 with a cell.
 - 10. A composition comprising two or more different polynucleotides of claim 4.

20

- 11. An isolated or recombinant polypeptide comprising a subsequence of at least about 15 contiguous amino acids encoded by the recombinant or isolated polynucleotide of claim 4.
- 12. A plant ectopically expressing an isolated polypeptide of claim 11.

25

- 13. A method for producing a plant having a modified environmental stress tolerance, the method comprising altering the expression of the isolated or recombinant polynucleotide of claim 4 or the expression levels or activity of a polypeptide of claim 11 in a plant, thereby producing a modified plant, and selecting the modified plant for improved environmental stress tolerance thereby providing the modified plant with a modified environmental stress tolerance.
- 14. The method of claim 13, wherein the polynucleotide is a polynucleotide of claim 4.

15. A method of identifying a factor that is modulated by or interacts with a polypeptide encoded by a polynucleotide of claim 4, the method comprising:

- (a) expressing a polypeptide encoded by the polynucleotide in a plant; and
- (b) identifying at least one factor that is modulated by or interacts with the polypeptide.

5

- 16. The method of claim 15, wherein the identifying is performed by detecting binding by the polypeptide to a promoter sequence, or detecting interactions between an additional protein and the polypeptide in a yeast two hybrid system.
- 10 17. The method of claim 15, wherein the identifying is performed by detecting expression of a factor by hybridization to a microarray, subtractive hybridization or differential display.
 - 18. A method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest, the method comprising:
 - (a) placing the molecule in contact with a plant comprising the polynucleotide or polypeptide encoded by the polynucleotide of claim 4; and,
 - (b) monitoring one or more of:
 - (i) expression level of the polynucleotide in the plant;
 - (ii) expression level of the polypeptide in the plant;
 - (iii) modulation of an activity of the polypeptide in the plant; or
 - (iv) modulation of an activity of the polynucleotide in the plant.

20

15

- 19. An integrated system, computer or computer readable medium comprising one or more character strings corresponding to a polynucleotide of claim 4, or to a polypeptide encoded by the polynucleotide.
- 20. The integrated system, computer or computer readable medium of claim 19, further comprising a link between said one or more sequence strings to a modified plant environmental stress tolerance phenotype.

30

- 21. A method of identifying a sequence similar or homologous to one or more polynucleotides of claim 4, or one or more polypeptides encoded by the polynucleotides, the method comprising:
 - (a) providing a sequence database; and,

(b) querying the sequence database with one or more target sequences corresponding to the one or more polynucleotides or to the one or more polypeptides to identify one or more sequence members of the database that display sequence similarity or homology to one or more of the one or more target sequences.

5

- 22. The method of claim 21, wherein the querying comprises aligning one or more of the target sequences with one or more of the one or more sequence members in the sequence database.
- 10 23. The method of claim 21, wherein the querying comprises identifying one or more of the one or more sequence members of the database that meet a user-selected identity criteria with one or more of the target sequences.
 - 24. The method of claim 21, further comprising linking the one or more of the
- polynucleotides of claim 4, or encoded polypeptides, to a modified plant environmental stress tolerance phenotype.
 - 25. A plant comprising altered expression levels of an isolated or recombinant polynucleotide of claim 4.

20

- 26. A plant comprising altered expression levels or the activity of an isolated or recombinant' polypeptide of claim 11.
- 27. A plant lacking a nucleotide sequence encoding a polypeptide of claim 11.

,

Figure 1

	,	,	T
SEQ ID No.	GID	cDNA or protein	conserved domain
1	G22	cDNA	
2	G22	protein	89-157
3	G188	cDNA	
4	G188	protein	175-222
_ 5	G225	cDNA	
6	G225	protein	39-76
7	G226	cDNA	
8	G226	protein	28-78
9	G256	cDNA	
10	G256	protein	13-115
11	G419	cDNÁ	
12	G419	protein	392-452
13	G464	cDNA	
14	G464	protein	7-15,70-80,125-158,183-219
15	G482	cDNA	
16	G482	protein	25-116
17.	G502	cDNA	
18	G502	protein	10-155
19	G526	cDNA	
20	G526	protein	21-149
21	G545	cDNA	
22	G545	protein	82-102, 136-154
23	G561	cDNA	
24	G561	protein	248-308
25	G664	cDNA	
26	G664	protein	13-116
27	G682	cDNA	
28	G682	protein	22-53
29	G911	cDNA	
30	G911	protein	86-129
31	G964	cDNA	
32	G964	protein	126-186
33	G394	cDNA	
34	G394	protein	121-182
35	G489	cDNA	
36	G489	protein	57-156

Figure 2

SEQ ID No.	GID	homolog	cDNA or protein	conserved domain
37	G463	homolog of G464	cDNA	
38	G463	homolog of G464	protein	14-23, 77-88, 130-146, 194-227
39	G767	homolog of G502	cDNA	
40	G767	homolog of G502	protein	8-158
41	G765	homolog of G526	cDNA	
42	G765	homolog of G526	protein	23-167
43	G197	homolog of G664	cDNA	
44	G197	homolog of G664	protein	14-119
45	G255	homolog of G664	cDNA	
46	G255	homolog of G664	protein	14-115
47	G1113	homolog of G911	cDNA	
48	G1113	homolog of G911	protein	85-128
49	G398	homolog of G964	cDNA	
50	G398	homolog of G964	protein	128-191
51	G395	homolog of G394	cDNA	
52	G395	homolog of G394	protein	72-135
53	G393	homolog of G394	cDNA	
54	G393	homolog of G394	protein	106-169

Figure 3A

SEQ ID No.	GID	Genbank NID	P-value	Species
1	G22	790359	1.00E-45	Nicotiana tabacum
1	G22	3342210	6.60E-45	Lycopersicon esculentum
1	G22	6654776	1.60E-44	Medicago truncatula
1	G22	8809570	5.80E-44	Nicotiana sylvestris
1	G22	7627061	2.40E-39	Gossypium arboreum
1	G22	7324479	9.50E-36	Lycopersicon pennellii
1	G22	8980312	4.30E-31	Catharanthus roseus
1	G22	7528275	1.20E-30	Mesembryanthemum crystallinum
1	G22	6478844	4.60E-28	Matricaria chamomilla
1	G22	6847348	5.90E-26	Glycine max
3	G188	7779802	5.20E-36	Lotus japonicus
3.	G188	7284340	2.10E-34	Glycine max
3	G188	9361307	1.20E-27	Triticum aestivum
3	G188	7340336	1.10E-22	Oryza sativa
3	G188	6529152	3.60E-22	Lycopersicon esculentum
3	G188	8748477	7.70E-21	Medicago truncatula
3	G188	5456433	7.10E-14	Zea mays
3	G188	9302479	1.60E-12	Sorghum bicolor
3	G188	6696287	4.10E-12	Pinus taeda
3	G188	562242	9.00E-12	Brassica rapa
5	G225	4396287	4.40E-16	Glycine max
5	G225	309571	0.00029	Zea mays
5	G225	3857004	0.001	Populus tremula x Populus tremuloides
5	G225	9410205	0.019	Triticum aestivum
5	G225	9426190	0.015	Triticum turgidum subsp. durum
5	G225	8382118	0.025	Gossypium arboreum
5	G225	6782756	0.27	Oryza sativa
5	G225	7721017	0.4	Lotus japonicus
5	G225	6020136	0.47	Pinus taeda
5	G225	2921331	0.48	Gossypium hirsutum
7	G226	4396287	5.10E-15	Glycine max
7	G226	9410205	1.50E-05	Triticum aestivum
7	G226	3857004	0.11	Populus tremula x Populus tremuloides
7	G226	2428139	0.35	Oryza sativa
9	G256	1430847	1.30E-72	Lycopersicon esculentum
9	G256	9252441	1.20E-65	Solanum tuberosum
9	G256	8380712	2.20E-58	Gossypium arboreum
9	G256	8172976	1.60E-54	Medicago truncatula
9	G256	9205295	1.30E-44	Glycine max
9	G256	20562	6.40E-40	Petunia x hybrida
9	G256	4886263	4.40E-37	Antirrhinum majus
9	G256	6552360	5.00E-36	Nicotiana tabacum
9	G256	2312003	1.20E-35	Oryza sativa
9	G256	5268628	5.20E-35	Zea mays
11	G419	7239156	2.60E-59	Malus x domestica
11	G419	5278451	9.00E-58	Lycopersicon esculentum
11	G419	9205496	1.30E-55	Glycine max
11	G419	7628137	9.30E-51	Gossypium arboreum
11	G419	6069643	9.50E-51	Oryza sativa
11	G419	7562931	9.80E-45	Medicago truncatula
11	G419	7322293	2.30E-37	Lycopersicon hirsutum
11	G419	8404716	1.10E-29	Hordeum vulgare
11	G419	7217755	1.40E-29	Sorghum bicolor

Figure 3B

SEQ ID No.	GID	Genbank NID	P-value	Species
11	G419	9428023	4.60E-28	Triticum aestivum
13	G464	6527230		Lycopersicon esculentum
13	G464	9305572		Sorghum bicolor
13	G464	6604917		Medicago truncatula
13	G464	5058123		Glycine max
	G464	3760881	1.20E-19	Oryza sativa
13		5044476	1.20E-17	Gossypium hirsutum
13	G464	9412603	6.40E-15	Triticum aestivum
13	G464	7777277	3.20E-13	Lotus japonicus
13	G464		1.70E-11	Hordeum vulgare
13	G464	9410371	2.10E-10	Gossypium arboreum
13	. G464	7624108	5.50E-50	Glycine max
15	G482	7691987		Lotus japonicus
15	G482	7781090	1.30E-48	Lycopersicon esculentum
15	G482	7409616	1.10E-47	Triticum aestivum
15	G482	9416562	4.40E-46	
15	G482	22379	2.30E-44	Zea mays
15	G482	7501372	7.70E-44	Gossypium arboreum
15	G482	7765436	8.40E-42	Medicago truncatula
15	G482	5044464	1.20E-40	Gossypium hirsutum
15	G482	9441376	9.20E-40	Chlamydomonas reinhardtii
15	G482	8071558	3.50E-39	Solanum tuberosum
17	G502	6730941	1.60E-91	Oryza sativa
17	G502	7765679	1.60E-82	Medicago truncatula
17	G502	7502501	7.30E-80	Gossypium arboreum
17	G502	5510359	8.30E-77	Glycine max
17	G502	5601137	8.70E-76	Lycopersicon esculentum
17	G502	9302206	1.40E-73	Sorghum bicolor
17	G502	4089948	3.40E-50	Brassica napus
17	G502	8329134	7.90E-49	Mesembryanthemum crystallinum
17	G502	7723564	8.60E-49	Lotus japonicus
17	G502	4218534	1.80E-48	Triticum sp.
19	G526	5049217	3.40E-61	Gossypium hirsutum
19	G526	6066594	1.50E-55	Petunia x hybrida
19	G526	4384535	1.50E-54	Lycopersicon esculentum
19	G526	6454868	6.60E-54	Glycine max
19	G526	4977542	4.70E-52	Oryza sativa
19	G526	5343151	7.00E-51	Zea mays
19	G526	9361647	5.10E-50	Triticum aestivum
19	G526	6799764	4.30E-48	Medicago truncatula
19	G526	8708684	1.80E-47	Hordeum vulgare
19	G526	4218536	3.60E-47	Triticum sp.
21	G545	4666359	8.30E-55	Datisca glomerata
21	G545	7228328	3.70E-52	Medicago sativa
21	G545	1763062	1.30E-51	
21	G545	7206360	3.10E-44	Medicago truncatula
21	G545	7626808	9.60E-40	Gossypium arboreum
21	G545	439492	3.90E-39	
21	G545	4382658	1.70E-38	Lycopersicon esculentum
21	G545	8486215	8.70E-38	Euphorbia esula
21	G545	7322653	6.80E-37	
. 41			1.10E-33	
	[G545	(/ชีวีชี4ว	1.105-00	Lotus Japonious
21	G545 G561	7785845 2995461	5.60E-86	

Figure 3C

SEQ ID No.	GID	Genbank NID	P-value	Species
23	G561	1033058	5.90E-65	Raphanus sativus
23	G561	2815304	2.10E-35	Spinàcia oleracea
23	G561	1498300	1.60E-34	Petroselinum crispum
23	G561	169958	8.10E-32	Glycine max
23	G561	5381310	2.20E-30	Catharanthus roseus
23	G561	1155053	9.70E-28	Phaseolus vulgaris
23	G561	728627	1.90E-27	Nicotiana tabacum
23	G561	7565950	1.40E-21	Medicago truncatula
25	G664	1167483	4.90E-81	Lycopersicon esculentum
25	G664	7765706	6.30E-69	Medicago truncatula
25	G664	19052	9.30E-68	Hordeum vulgare
25	G664	7626566	4.00E-67	Gossypium arboreum
25	G664	5050757	2.60E-66	Gossypium hirsutum
25	G664	6850206	6.90E-66	Oryza sativa
25	G664	6667606	2.20E-63	Glycine max
25	G664	517492	9.30E-62	Zea mays
25	G664	9302672	1.50E-59	Sorghum bicolor
25	G664	5860031	9.20E-58	Pinus taeda
27	G682	309571	4.40E-08	Zea mays
27	G682	4396287	1.10E-05	Glycine max
27	G682	3857004	0.00051	Populus tremula x Populus tremuloides
27	G682	9410205	0.00085	Triticum aestivum
27	G682	8382118	0.0079	Gossypium arboreum
27	G682	2428139	0.017	Oryza sativa
27	G682	7339148	0.13	Lycopersicon esculentum
27	G682	9302672	0.32	Sorghum bicolor
27	G682	5048991	0.39	Gossypium hirsutum
27	G682	6555777	0.46	Pinus taeda
29	G911	4090113	6.10E-51	Brassica napus
29 .	G911	5893315	7.70E-25	Lycopersicon esculentum
29	G911	5048452	3.10E-23	Gossypium hirsutum
29	G911	9440241	1.90E-21	Glycine max
29	G911	6917169	1.80E-11	Lycopersicon pennellii
29	G911	9297970	3.20E-11	Sorghum bicolor
29	G911	7137594	4.90E-11	Zea mays
29	G911	9278447	4.60E-10	Lotus japonicus
29	G911	7560271	7.20E-10	Medicago truncatula
29	G911	5043346	4.50E-09	Sorghum halepense
31	G964	7624806	3.30E-72	Gossypium arboreum
31	G964	1234899	9.10E-66	Glycine max
31	G964	1149534	1.50E-61	Pimpinella brachycarpa
31	G964	8919872	3.40E-51	Capsella rubella
31	G964	992597	6.70E-51	Lycopersicon esculentum
31	G964	1235564	1.50E-38	Oryza sativa
31	G964	6605613	3.00E-32	Medicago truncatula
31	G964	1032371	4.50E-28	Helianthus annuus
31	G964	3868846	2.80E-25	Ceratopteris richardii
31	G964	8088109	6.40E-22	Sorghum bicolor
33	G394	8670502	7.90E-59	Glycine max
33	G394	3171738	2.00E-54	Craterostigma plantagineum
33	G394	1032371	1.10E-50	Helianthus annuus
33	G394	7624806	4.30E-47	Gossypium arboreum
33	G394	1160483	2.10E-46	Pimpinella brachycarpa
<u> </u>	3334	1 100403	Z. 10E-40	п штршена отаонусатра

Figure 3D

SEQ ID No.	GID	Genbank NID	P-value	Species
	G394	3868846		Ceratopteris richardii
33		992597	1.10E-44	Lycopersicon esculentum
33	G394	7558511	1.50E-44	Medicago truncatula
33	G394	8099247	6.20E-43	Oryza sativa
33	G394	8919872	1.20E-40	Capsella rubella
33	G394		4.40E-62	Lycopersicon esculentum
35	G489	6534956	2.60E-60	Medicago truncatula
35	G489	9055852 8382393	6.20E-51	Gossypium arboreum
35	G489		2.10E-50	Citrus x paradisi
35	G489	8789169	1.50E-47	Solanum tuberosum
35	G489	9252957	4.70E-47	Lycopersicon pennellii
35	G489	6918056	1.00E-46	Glycine max
35	G489	7590809		
35	G489	5257255	8.60E-43	Oryza sativa
35	G489	4152190	3.20E-41	Zea mays
35	G489	6069260	2.10E-39	Ceratodon purpureus
37	G463	6527230	4.90E-36	Lycopersicon esculentum
37	G463	9305572	5.50E-36	Sorghum bicolor
37	G463	3760881	1.20E-31	Oryza sativa
37	G463	6604917	1.30E-23	Medicago truncatula
37	G463	5058123	2.50E-21	Glycine max
-37 ·	G463	5044476	1.10E-19	Gossypium hirsutum
37	G463	9412603	1.70E-17	Triticum aestivum
37	G463	9419394	6.00E-17	Hordeum vulgare
37	G463	7624108	6.20E-17	Gossypium arboreum
37	G463	8547152	3.20E-16	Nicotiana tabacum
39	G767	5510359	2.80E-76	Glycine max
39	G767	7643155	4.20E-74	Medicago truncatula
39	G767	6977319	1.10E-72	Lycopersicon esculentum
39	G767	6730939	4.20E-68	Oryza sativa
39	G767	7502501	2.00E-67	Gossypium arboreum
39	G767	9302206	3.10E-65	Sorghum bicolor
39	G767	4218534	4.30E-51	Triticum sp.
39	G767	6732157	4.30E-51	Triticum monococcum
39	G767	9412602	6.90E-47	Triticum aestivum
39	G767	8329134	1.30E-46	Mesembryanthemum crystallinum
41	G765	4384535	3.10E-56	Lycopersicon esculentum
41	G765	6454868	8.50E-56	Glycine max
41	G765	1279639	4.30E-53	Petunia x hybrida
41	G765	4977542	2.00E-51	Oryza sativa
41	G765	4218536	2.00E-50	Triticum sp.
41	G765	6732159	2.00E-50	Triticum monococcum
41	G765	5049217	6.90E-50	Gossypium hirsutum
41	G765	9361647	4.50E-49	Triticum aestivum
41	G765	9296257	2.90E-48	Sorghum bicolor
41	G765	8708684	4.30E-46	Hordeum vulgare
43	G197	1167483	2.70E-76	Lycopersicon esculentum
		7626566	2.40E-73	Gossypium arboreum
43	i Giai			Medicago truncatula
43 43	G197 G197	7765706	1.50E-63	INEGICAÇO II UN CALUIA
43	G197	7765706 19052	1.50E-63 8.90E-63	Hordeum vulgare
43 43	G197 G197	19052	8.90E-63	Hordeum vulgare
43 43 43	G197 G197 G197	19052 5050757	8.90E-63 1.60E-62	Hordeum vulgare Gossypium hirsutum
43 43	G197 G197	19052	8.90E-63	Hordeum vulgare

Figure 3E

SEQ ID No.	GID	Genbank NID	P-value	Species
43	G197	5860031	3.90E-57	Pinus taeda
43	G197	9302672	3.80E-55	Sorghum bicolor
45	G255	1167483	6.40E-75	Lycopersicon esculentum
45	G255	7626566	6.40E-71	Gossypium arboreum
45	G255	19050	2.80E-65	Hordeum vulgare
45	G255	5050757	3.70E-63	Gossypium hirsutum
45	G255	7590249	4.10E-62	Glycine max
45	G255	7765706	4.40E-62	Medicago truncatula
45	G255	6850206	1.10E-61	Oryza sativa
45	G255	517492	3.50E-59	Zea mays
45	G255	9302672	1.60E-56	Sorghum bicolor
45	G255	7721017	2.60E-55	Lotus japonicus
47	G1113	4090113	2.30E-36	Brassica napus
47	G1113	5048452	6.80E-12	Gossypium hirsutum
47	G1113	5893315	9.50E-11	Lycopersicon esculentum
47	G1113	9440241	7.70E-09	Glycine max
49	G398	7624806	2.80E-67	Gossypium arboreum
49	G398	1234899	6.90E-64	Glycine max
49	G398	1149534	6.20E-63	Pimpinella brachycarpa
49	G398	8919872	2.60E-47	Capsella rubella
49	G398	992597	1.10E-39	Lycopersicon esculentum
49	G398	1235564	7.70E-39	Oryza sativa
49	G398	6605613	1.70E-33	Medicago truncatula
49	G398	8088109	3.60E-33	Sorghum bicolor
49	G398	3868846	1.60E-32	Ceratopteris richardii
49	G398	3171738	1.00E-27	Craterostigma plantagineum
51	G395	992597	5.30E-51	Lycopersicon esculentum
51	G395	7624806	2.00E-50	Gossypium arboreum
51	G395	1234899	1.50E-49	Glycine max
51	G395	1165131	1.90E-48	Pimpinella brachycarpa
51	G395	3868846	3.40E-47	Ceratopteris richardii
51	G395	7415619	1.30E-41	Physcomitrella patens
51	G395	8919872	7.40E-41	Capsella rubella
51	G395	1235564	2.70E-38	Oryza sativa
51	G395	8088109	2.30E-33	Sorghum bicolor
51	G395	1032371	3.30E-31	Helianthus annuus
53	G393	8670502	3.60E-55	Glycine max
53	G393	9199975	7.60E-46	Medicago truncatula
53	G393	3868846	9.60E-37	Ceratopteris richardii
53	G393	8919872	2.50E-35	Capsella rubella
53	G393	7624806	1.30E-34	Gossypium arboreum
53	G393	7415619	1.00E-33	Physcomitrella patens
53	G393	5897000	5.50E-33	Lycopersicon esculentum
53	G393	1235564	4.00E-32	Oryza sativa
53	G393	1165131	6.40E-32	Pimpinella brachycarpa
53	G393	3171738	1.50E-31	Craterostigma plantagineum

7					•	
ets.						
)						
3						
.9						
j						
·						
•						

MBI16 Sequence Listing.ST25 SEQUENCE LISTING

·.	Pineda, On Yu, Guo-L Creelman, Riechmann Heard, Jac Ratcliffe Reuber, L Keddie, Jac	iang Robert , Jose I cqueline , Oliver ynne	:				į			·
<120>	Environme	ental St	ress To	leran	ce Genes					
<130>	MBI-0016									
<150> <151>	60/166,2 1999-11-					-				
<150> <151>	60/197,8 2000-04-									
<150> <151>	Plant Tra 2000-08-		ficatio	n III			-			
<160>	54									
<170>	PatentIn	version	3.0							
<210><211><212><213>	1 913 DNA Arabidopa	sis thal	iana							
<220><221><222><222><223>	(81)(7	51)			•			-		
<400>	l catc tctc	actctc t	aaaatac	ac ac	tctcatca	aaaacct	tct o	ttcg	gttca	60
agaaaa	_	tccatt a	tg agc let Ser	tca t		cc gtt a	at aa	ic gg	c gtt y Val	60 113
agaaaa gaagca aac to	cate tete	tac tto	tg agc let Ser . cgt aa	tca to Ser So	ct gat to er Asp So 5	cc gtt a er Val <i>l</i> agc aac	aat aa Asn As	nc gg n Gl 10	c gtt y Val	
agaaaaa gaagca aac to Asn Se	catc tctc ttca agaa a cgg atg r Arg Met	tac tto Tyr Phe	tg agc let Ser cgt aa Arg As	tca to Ser So c ccg n Pro 20 g tta o Leu	et gat to er Asp So 5 agt ttc Ser Phe agt gtc	cc gtt a er Val A agc aac Ser Asi	aat aa Asn As gtt Val 25	atc Ile	c gtt y Val tta Leu	113
agaaaaa gaagca aac to Asn Se aac ga Asn As	a cgg atg r Arg Met 15 t aac tgg p Asn Trp	tac tto Tyr Phe agc gac Ser Asp	tg agc let Ser cgt aa Arg As ttg co Leu Pr	tca to Ser So c ccg n Pro 20 g tta o Leu	agt ttc Ser Phe agt gtc Ser Val gcc gtt Ala Val	agc aac ser Asi gac gat Asp Asi agc tcc	aat aa Asn As gtt Val 25 tct Ser	ac gg an Gl atc Ile caa Gln	tta Leu gac Asp	113
agaaaaa gaagca aac to Asn Se aac ga Asn As atg go Met Al	a cgg atg r Arg Met 15 at aac tgg p Asn Trp 30	tac tto Tyr Phe agc gac Ser Asp aac act Asn Thr	tg agc let Ser cgt aa Arg As ttg cc Leu Pr 35 ctc cg	c ccg n Pro 20 g tta o Leu t gat g Asp	agt ttc Ser Phe agt gtc Ser Val gcc gtt Ala Val	agc aac ser Asp gac gat Asp Asp 40 agc tcc Ser Ser 55	aat aa Asn As 2 gtt 1 Val 25 2 tct 2 Ser 2 ggc 3 Gly	ac gg in Gl atc Ile caa Gln tgg Trp	tta Leu gac Asp aca Thr	113 161 209
agaaaaa gaagca aac to Asn Se aac ga Asn As atg gc Met Al 45 ccc to Pro Se 60 gcg ac	a cgg atg r Arg Met 15 at aac tgg p Asn Trp 30 at att tac a Ile Tyr	tac tto Tyr Phe agc gac ser Asp aac act Asn Thr ccc gtt Pro Val 65	tg agc cet Ser cgt aa Arg As ttg cc Leu Pr 50 Leu Ar 50 Leu Cg Leu Ar 50 Leu Cg Leu Ar	tca to Ser So c ccg n Pro 20 g tta o Leu t gat g Asp t ccg r Pro c gcg	agt ttc Ser Phe agt gtc Ser Val gcc gtt Ala Val gcg gag Ala Glu 70 ccg agg	agc aac Ser Asi Asp Asi Asp Asi 40 agc tcc Ser Ser 55 gaa aat Glu Asi	aat aa Asn As 2 gtt 1 Val 25 2 tct 2 Ser 2 ggc 3 Gly 2 aag 1 Lys	atc Ile caa Gln tgg Trp cct Pro	gc gtt y Val tta Leu gac Asp aca Thr	113 161 209 257
agaaaaa gaagca aac to Asn Se aac ga Asn As atg gc Met Al 45 ccc to Pro Se 60 gcg ac Ala Th	a cgg atg ar Arg Met 15 ac tgg and Trp 30 at att tac a Ile Tyr ar Val Pro	tac tto Tyr Phe agc gac Ser Asr aac act Asn Thr ccc gtt Pro Val 65 agt ggc Ser Gly 80 agg agg	tg agc let Ser aa Arg As ttg co Leu Pr 35 Leu Ar 50 acc to Thr Se tca ca ca ser Hi	tca to Ser So c ccg n Pro 20 g tta o Leu t gat g Asp t ccg r Pro c gcg s Ala	agt ttc Ser Phe agt gtc Ser Val gcc gtt Ala Val gcg gag Ala Glu 70 ccg agg Pro Arg 85	agc aac Ser Asi Asp Asp Asp 40 agc tcc Ser Ser Ser Ser Glu Asr Cag aac Gln Lys	at aa a	ac gg nn Gl 10 atc Ile caa Gln tgg Trp cct Pro atg Met 90 gag	tta Leu gac Asp aca Thr ccg Pro 75 cag Gln	113 161 209 257 305
agaaaaa gaagca aac tc Asn Se aac ga Asn As atg gc Met Al 45 ccc tc Pro Se 60 gcg ac Ala Th	a cgg atg a cgg atg a cgg atg a Arg Met 15 a aac tgg p Asn Trp 30 a att tac a Ile Tyr c gtt cct a Val Pro a gaag gcg a Lys Ala a gga gtg g Gly Val	tac tto Tyr Phe agc gac Ser Asr aac act Asn Thr ccc gtt Pro Val agt ggc Ser Gly 80 agg agg Arg Arg	tg agc let Ser let gc let Ser let gc	tca to Ser So c ccg n Pro 20 g tta o Leu t gat g Asp t ccg s Ala g tgg to 100 t agg a Arg	agt ttc Ser Phe agt gtc Ser Val gcc gtt Ala Val gcg gag Ala Glu 70 ccg agg Pro Arg 85 ggg aaa Gly Lys	agc aac gat Asp Asp 40 agc tcc ser S	at aa a	ac gg nn Gl 10 atc Ile caa Gln tgg Trp cct Pro atg Met 90 gag Glu tac	gac Asp aca Thr ccg Pro 75 cag Gln att Ile	113 161 209 257 305

mh	D	61	3.00	21-	210	17-1					List:			Cln	Low	
inr	125	Glu	Asp	ALA	ATA	130	Ala	ıyr	Asp	Arg	135	Ala	Pne	GIII	Leu	
aga Arg 140	gga Gly	tcg Ser	aaa Lys	gct Ala	aag Lys 145	ctg Leu	aat Asn	ttt Phe	ccg Pro	cat His 150	ttg Leu	att Ile	ggt Gly	tct Ser	tgt Cys 155	545
aag Lys	tat Tyr	gag Glu	ccg Pro	gtt Val 160	agg Arg	att Ile	agg Arg	cct Pro	cgc Arg 165	cgt Arg	cgc Arg	tcg Ser	ccg Pro	gaa Glu 170	ccg Pro	593
tca Ser	gtc Val	tcc Ser	gat Asp 175	cag Gln	tta Leu	acg Thr	tcg Ser	gag Glu 180	cag Gln	aag Lys	agg Arg	gaa Glu	agc Ser 185	cac His	gtg Val	641
gat Asp	gac Asp	ggc Gly 190	gag Glu	tct Ser	agt Ser	ttg Leu	gtt Val 195	gta Val	ccg Pro	gag Glu	ttg Leu	gat Asp 200	ttc Phe	acg Thr	gtg Val	689
gat Asp	cag Gln 205	ttt Phe	tac Tyr	ttc Phe	gat Asp	ggt Gly 210	agt Ser	tta Leu	tta Leu	atg Met	gac Asp 215	caa Gln	tca Ser	gaa Glu	tgt Cys	737
		tct Ser					taa	ttag	gttt	aa q	gatta	agca	aa aa	atttg	gtcca	791
acga	agtti	tg o	etgta	atgaa	aa ta	atcta	atcga	a tga	actca	aca	ggti	ttga	atc a	atgat	catat	851
gtaa	atgt	gat g	ggaaa	attaa	aa ta	attga	acgti	t tgt	tttl	ttg	ttg	aaaa	aaa a	aaaa	aaaaa	911
aa																913
<210 <210 <210 <210	L> 1	2 226 PRT Arabi	idops	sis t	thali	Lana										الم الم
<400)> 2	2														
Met 1	Ser	Ser	Ser	Asp 5	Ser	Val	Asn	Asn	Gly 10	Val	Asn	Ser	Arg	Met 15	Tyr	
Phe	Arg	Asn	Pro 20	Ser	Phe	Ser	Asn	Val 25	Ile	Leu	Asn	Asp	Asn 30	Trp	Ser	
Asp	Leu	Pro 35	Leu	Ser	Val	Asp	Asp 40	Ser	Gln	Asp	Met	Ala 45	Ile	Tyr	Asn	
Thr	Leu 50	Arg	'Asp	Ala	Val	Ser 55	Ser	Gly	Trp	Thr	Pro 60	Ser	Val	Pro	Pro	
Val 65	Thr	Ser	Pro	Ala	Glu 70	Glu	Asn	Lys	Pro	Pro 75	Ala	Thr	Lys	Ala	Ser 80	
Gly	Ser	His	Ala	Pro 85	Arg	Gln	Lys	Gly	Met 90	Gln	Tyr	Arg	Gly	Val 95	Arg	
Arg	Arq	Pro	Trp	Gly	Lys	Phe	Ala	Ala 105	Glu	Ile	Arg	Asp	Pro	Lys	Lys	
	J		100					103								
Asn		Ala 115		Val	Trp	Leu	Gly 120		Tyr	Glu	Thr	Pro 125		Авр	Ala	

Page 2

Lys 145	Leu	Asn	Phe	Pro	His 150	Leu	Ile	Gly	Ser	Cys 155	Lув	Tyr	Glu	Pro	Val 160	
Arg	Ile	Arg	Pro	Arg 165	Arg	Arg	Ser	Pro	Glu 170	Pro	Ser	Val	Ser	Asp 175	Gln	
Leu	Thr	Ser	Glu 180	Gln	Lys	Arg	Glu	Ser 185	His	Val	Asp	Asp	Gly 190	Glu	Ser	
Ser	Leu	Val 195	Val	Pro	Glu	Leu	Asp 200	Phe	Thr	Val	Asp	Gln 205	Phe	Tyr	Phe	
qaA	Gly 210	Ser	Leu	Leu	Met	Asp 215	Gln	Ser	Glu	Сув	Ser 220	Tyr	Ser	Asp	Asn	
Arg 225	Ile							-								
<210 <210 <210 <210	l> : 2> I	3 1195 ONA Arabi	idops	sis t	:hali	iana										
<220 <220 <220 <220	2> 1> (CDS (50).	. (10	96)									-	5		
<400		Baa d	ataa	atcaa	aa ga	aagct	ttc	: tca	acgaa	attc	aaga	itcgo			e tee	58
													1	et Se	er Ser	
		tgg Trp											1 tct	tct	gtt	106
Ğlü tcc	Asp 5		Asp	Leu	Phe tgt	Ala 10 gct	Val ggt	Val cat	Arg	Ser	Cys 15 gac	Ser	tct Ser	tct Ser aac	gtt Val tgt	106 154
Glu tcc Ser 20	Asp 5 acc Thr	Trp	Asp aat Asn caa	tct Ser	tgt Cys 25 cct	Ala 10 gct Ala cct	Val ggt Gly cct	Val cat His	Arg gaa Glu cct	gac Asp 30	Cys 15 gac Asp	Ser ata Ile caa	tct Ser gga Gly	tct Ser aac Asn	gtt Val tgt Cys 35	
tcc Ser 20 aaa Lys	Asp 5 acc Thr caa Gln	acc Thr	Asp aat Asn caa Gln	tct Ser gat Asp 40	Phe tgt Cys 25 cct Pro	Ala 10 gct Ala cct Pro	Val ggt Gly cct Pro	val cat His cct Pro	gaa Glu cct Pro 45 aaa Lys	gac Asp 30 ctg Leu cca Pro	Cys 15 gac Asp ttt Phe	ser ata Ile caa Gln tta Leu	tct Ser gga Gly gct Ala	tct Ser aac Asn tct Ser 50	gtt Val tgt Cys 35 tct Ser	154
tcc Ser 20 aaa Lys tct Ser act	Asp 5 acc Thr caa Gln tgc Cys	Trp acc Thr caa Gln aac	Asp aat Asn caa Gln gag Glu 55 act	tct Ser gat Asp 40 tta Leu	Phe tgt Cys 25 cct Pro caa Gln	Ala 10 gct Ala cct Pro gat Asp	Val ggt Gly cct Pro tct Ser	val cat His cct Pro tgc Cys 60 cct	gaa Glu cct Pro 45 aaa Lys	gac Asp 30 ctg Leu cca Pro	Cys 15 gac Asp ttt Phe ttt Phe	ser ata Ile caa Gln tta Leu ctt	tct ser gga Gly gct Ala ccc Pro 65	tct Ser aac Asn tct Ser 50 gtt Val	gtt Val tgt Cys 35 tct Ser act Thr	154 202
tcc Ser 20 aaa Lys tct Ser act Thr	Asp 5 acc Thr caa Gln tgc Cys act Thr	acc Thr caa Gln aac Asn act Thr	Asp aat Asn caa Gln gag Glu 55 act Thr	tct Ser gat Asp 40 tta Leu act Thr	Phe tgt Cys 25 cct Pro caa Gln act Thr	Ala 10 gct Ala cct Pro gat Asp tgg Trp	yal ggt Gly cct Pro tct Ser tct ser 75	val cat His cct Pro tgc Cys 60 cct Pro	gaa Glu cct Pro 45 aaa Lys cct Pro	gac Asp 30 ctg Leu cca Pro cct	Cys 15 gac Asp ttt Phe ttt Phe cta Leu	ser ata Ile caa Gln tta Leu ctt Leu 80 caa	tct Ser gga Gly gct Ala ccc Pro 65 cct Pro	tct Ser aac Asn tct Ser 50 gtt Val cct Pro	gtt Val tgt Cys 35 tct Ser act Thr	154 202 250
Glu tcc Ser 20 aaaa Lys tct Ser act Thr	Asp 5 acc Thr caa Gln tgc Cys act Thr gcc Ala 85 ctc	Trp acc Thr caa Gln aac Asn act Thr 70	Asp aat Asn caa Gln gag Glu 55 act Thr tca Ser	tct Ser gat Asp 40 tta Leu act Thr	tgt Cys 25 cct Pro caa Gln act Thr	Ala 10 gct Ala cct Pro gat Asp tgg Trp ccc Pro 90 caa	Val ggt Gly cct Pro tct Ser tct Ser aat Asn	val cat His cct Pro tgc Cys 60 cct Pro atc Ile	gaa Glu cct Pro 45 aaa Lys cct Pro tta Leu cct	gac Asp 30 ctg Leu cca Pro cta Leu ctt	Cys 15 gac Asp ttt Phe cta Leu aaa Lys 95 agt	ser ata Ile caa Gln tta Leu ctt Leu 80 caa Gln	tct Ser gga Gly gct Ala ccc Pro 65 cct Pro	tct Ser aacc Asn tct Ser 50 gtt Val cct Pro	gtt Val tgt Cys 35 tct Ser act Thr	154 202 250 298
tcc Ser 20 aaa Lys tct Ser act Thr aaa Lys	Asp 5 acc Thr caa Gln tgc Cys act Thr gcc Ala 85 ctc Leu cca	Trp acc Thr caa Gln aacc Asn act Thr 70 tca Ser	aat Asn caa Gln gag Glu 55 act Thr tca Ser tca Ser act	tct Ser gat Asp 40 tta Leu act Thr cca gln tct	Phe tgt Cys 25 cct Pro caaa Gln act Thr tct Ser gat Asp 105	Ala 10 gct Ala cct Pro gat Asp tgg Trp ccc Pro 90 caa Gln	ggt gGly cct Pro tct Ser tct Ser tct Asn aaa Lys	val cat His cct Pro tgc Cys 60 cct Pro atc Ile cct Pro	gaa Glu cct Pro 45 aaa Lys cct Pro tta Leu	gac Asp 30 ctg Leu cca Pro cta Leu ctt Leu 110 ttt	Cys 15 gac Asp ttt Phe ttt Phe cta Leu aaa Lys 95 agt Ser aga	ser ata Ile caa Gln tta Leu ctt L80 caa Gln gtt Val	1 tct Ser gga Gly gct Ala ccc Pro 65 cct Pro gaa Glu agg Arg caa	tct Ser aac ABn tct Ser 50 gtt Val cct Pro caa Gln gtt Val	gtt Val tgt Cys 35 tct Ser act Thr cct Pro	154 202 250 298 346

		мот	16 Camia	nce Listing	QT25	
Gln Leu Leu	Gln Gln Gl: 135			Leu Arg Ser		Arg
aag aat cag Lys Asn Gln 150	Gln Lys Ar	a acc ata g Thr Ile 155	Cys His	gta acg caa Val Thr Glr 160	Glu Asn	ctt 538 Leu
tct tct gat Ser Ser Asp 165	ttg tgg gc Leu Trp Al	t tgg cgt a Trp Arg 170	aaa tac Lys Tyr	ggt caa aaa Gly Gln Lys 175	ccc atc Pro Ile	aaa 586 Lys
ggc tct cct Gly Ser Pro 180	tat cca ag Tyr Pro Ar 18	g Asn Tyr	tac aga Tyr Arg	tgt agt ago Cys Ser Ser 190	tca aaa Ser Lys	gga 634 Gly 195
tgt tta gca Cys Leu Ala	cga aaa ca Arg Lys Gl 200	a gtt gaa n Val Glu	aga agt Arg Ser 205	aat tta gat Asn Leu Asp	cct aat Pro Asn 210	atc 682 Ile
ttc atc gtt Phe Ile Val	act tac ac Thr Tyr Th 215	c gga gaa r Gly Glu	cac act His Thr 220	cat cca cgt His Pro Arc	cct act Pro Thr 225	cac 730 His
cgg aac tct Arg Asn Ser 230	Leu Ala Gl	a agt act y Ser Thr 235	Arg Asn	aaa tct cag Lys Ser Glr 240	n Pro Val	aac 778 Asn
ccg gtt cct Pro Val Pro 245	aaa ccg ga Lys Pro As	c aca tct p Thr Ser 250	cct tta Pro Leu	tcg gat aca Ser Asp Thr 255	a gta aaa : Val Lys	gaa 826 Glu
gag att cat Glu Ile His 260	ctt tct cc Leu Ser Pr 26	o Thr Thr	ccg ttg Pro Leu	aaa gga aad Lys Gly Asi 270	gat gac n Asp Asp	gtt 874 Val 275
caa gaa acg Gln Glu Thr	aat gga ga Asn Gly As 280	t gaa gat p Glu Asp	atg gtt Met Val 285	ggt caa gaa Gly Gln Glu	a gtc aac 1 Val Asn 290	Met
gaa gag gaa Glu Glu Glu	gag gag ga Glu Glu Gl 295	a gaa gaa u Glu Glu	gtg gaa Val Glu 300	gaa gat gat Glu Asp Asp	gaa gaa Glu Glu 305	gaa 970 Glu
gaa gat gat Glu Asp Asp 310	Asp Asp Va	g gat gat 1 Asp Asp 315) Leu Leu	ata cca aat Ile Pro Asi 32	и гел чта	gtg 1018 Val
aga gat cga Arg Asp Arg 325	gat gat tt Asp Asp Le	g ttc ttc u Phe Phe 330	gct gga Ala Gly	agt ttt cci Ser Phe Pro 335	a tct tgg o Ser Trp	tcc 1066 Ser
gcc gga tcc Ala Gly Ser 340	gcc ggt ga Ala Gly As	p Gly Gly	gga tga Gly	tgaaaacgaa	taaaatct	ca 1116
atttacaatt	tacaaaaaga	aaaaagtca	ıg tttta	atta ttattt	ttgt ttgt	taaaac 1176
ttgacattta	ttgtgttat					1195
<210> 4 <211> 348 <212> PRT <213> Arab	oidopsis tha	liana				

<400> 4

Met Ser Ser Glu Asp Trp Asp Leu Phe Ala Val Val Arg Ser Cys Ser 1 5 10 15

Ser Ser Val Ser Thr Thr Asn Ser Cys Ala Gly His Glu Asp Asp Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

MBI16 Sequence Listing.ST25
Gly Asn Cys Lys Gln Gln Gln Asp Pro Pro Pro Pro Pro Leu Phe Gln
35 40 45

Ala Ser Ser Ser Cys Asn Glu Leu Gln Asp Ser Cys Lys Pro Phe Leu 50 60

Pro Val Thr Thr Thr Thr Thr Thr Thr Trp Ser Pro Pro Pro Leu Leu 65 70 75 80

Pro Pro Pro Lys Ala Ser Ser Pro Ser Pro Asn Ile Leu Leu Lys Gln 85 90 95

Glu Gln Val Leu Leu Glu Ser Gln Asp Gln Lys Pro Pro Leu Ser Val 100 105 110

Arg Val Phe Pro Pro Ser Thr Ser Ser Ser Val Phe Val Phe Arg Gly

Gln Arg Asp Gln Leu Leu Gln Gln Gln Ser Gln Pro Pro Leu Arg Ser 130 135 140

Arg Lys Arg Lys Asn Gln Gln Lys Arg Thr Ile Cys His Val Thr Gln 145 150 155 160

Glu Asn Leu Ser Ser Asp Leu Trp Ala Trp Arg Lys Tyr Gly Gln Lys 165 170 175

Pro Ile Lys Gly Ser Pro Tyr Pro Arg Asn Tyr Tyr Arg Cys Ser Ser 180 190

Ser Lys Gly Cys Leu Ala Arg Lys Gln Val Glu Arg Ser Asn Leu Asp 195 200 205

Pro Asn Ile Phe Ile Val Thr Tyr Thr Gly Glu His Thr His Pro Arg

Pro Thr His Arg Asn Ser Leu Ala Gly Ser Thr Arg Asn Lys Ser Gln 225 230 235 240

Pro Val Asn Pro Val Pro Lys Pro Asp Thr Ser Pro Leu Ser Asp Thr 245 250 255

Val Lys Glu Glu Ile His Leu Ser Pro Thr Thr Pro Leu Lys Gly Asn 260 265 270

Asp Asp Val Glu Glu Thr Asn Gly Asp Glu Asp Met Val Gly Gln Glu 275 280 285

Glu Glu Glu Glu Asp Asp Asp Val Asp Asp Leu Leu Ile Pro Asn 305 310 315 320

Leu Ala Val Arg Asp Asp Asp Leu Phe Phe Ala Gly Ser Phe Pro 325 330 335

Page 5

PCT/US00/31458 WO 01/36598

MBI16 Sequence Listing.ST25

Ser Trp Ser Ala Gly Ser Ala Gly Asp Gly Gly Gly 340

<210><211><212><213>	5 584 DNA Arabi	.dops	is t	hali	ana										
<220> <221> CDS <222> (157)(441) <223> G225															
<400> ctctct	5 ctct d	acto	ttt	c tt	ttcc	gaga	aco	caac	caaa	aaaa	aago	cta d	ctatt	aatcc	60
ttcccc	tcgt o	gagga	aato	a tt	tctt	cttg	ttt	ctc	gaga	ttta	ttct	ct t	tctc	tctct	120
ctttct	ctgt (gtgtt	tegt	g to	ttca	igatt	agt:	tcg	atg Met 1	ttt Phe	cgt Arg	tca Ser	gac Asp 5	aag Lys	174
gcg ga Ala Gl	u Lys	atg Met 10	gat Asp	aaa Lys	cga Arg	cga Arg	cgg Arg 15	aga Arg	cag Gln	agc Ser	aaa Lys	gcc Ala 20	aag Lys	gct Ala	222
tct tg Ser Cy	t tcc s Ser 25	gaa Glu	gag Glu	gtg Val	agt Ser	agt Ser 30	atc Ile	gaa Glu	tgg Trp	gaa Glu	gct Ala 35	gtg Val	aag Lys	atg Met	270
tca ga Ser Gl	u Glu	gaa Glu	gaa Glu	gat Asp	ctc Leu 45	att Ile	tct Ser	cgg Arg	Met	tat Tyr .50	aaa Lys	ctc Leu	gtt Val	ggc Gly	318
gac ag Asp Ar 55	g tgg g Trp	gag Glu	ttg Leu	atc Ile 60	gcc Ala	gga Gly	agg Arg	atc Ile	ccg Pro 65	gga Gly	cgg Arg	acg Thr	ccg Pro	gag \ Glu 70	366
gag at Glu Il	a gag e Glu	aga Arg	tat Tyr 75	tgg Trp	ctt Leu	atg Met	aaa Lys	cac His 80	ggc Gly	gtc Val	gtt Val	ttt Phe	gcc Ala 85	aac Asn	414
aga cg Arg Ar	a aga g Arg	gac Asp 90	ttt Phe	ttt Phe	agg Arg	aaa Lys	tga	ttt	tttt	tgt	ttgg	atta	aa		461
agaaaa	tttt	cctc	tcct	ta a	ttca	caag	a ca	agaa	aaaa	agg	aaat	gta	cctg	teettg	521
aattac	tatt	ttgg	aatg	ta t	aatt	atct	a ta	tata	taag	aag	aaaa	aat	tgct	taggaa	581
ttt															584
<210> <211>	6 94												٠		

<211> 94 <212> PRT <213> Arabidopsis thaliana

Met Phe Arg Ser Asp Lys Ala Glu Lys Met Asp Lys Arg Arg Arg 15

Gln Ser Lys Ala Lys Ala Ser Cys Ser Glu Glu Val Ser Ser Ile Glu 20 30

Trp Glu Ala Val Lys Met Ser Glu Glu Glu Glu Asp Leu Ile Ser Arg 35 40 45

MBI16 Sequence Listing.ST25

Met Tyr Lys Leu Val Gly Asp Arg Trp Glu Leu Ile Ala Gly Arg Ile
50 60

Pro Gly Arg Thr Pro Glu Glu Ile Glu Arg Tyr Trp Leu Met Lys His

Gly Val Val Phe Ala Asn Arg Arg Arg Asp Phe Phe Arg Lys

<210> 7 <211> 407 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (10)..(348)

<223> G226

<400> 7
ccagtagtt atg gat aat acc aac cgt ctt cgt ctt cgt cgc ggt ccc agt
Met Asp Asn Thr Asn Arg Leu Arg Leu Arg Arg Gly Pro Ser

ctt agg caa act aag ttc act cga tcc cga tat gac tct gaa gaa gtg
Leu Arg Gln Thr Lys Phe Thr Arg Ser Arg Tyr Asp Ser Glu Glu Val
15 20 25 30

agt agc atc gaa tgg gag ttt atc agt atg acc gaa caa gaa gat gat
Ser Ser Ile Glu Trp Glu Phe Ile Ser Met Thr Glu Gln Glu Glu Asp

51

ctc atc tct cga atg tac aga ctt gtc ggt aat agg tgg gat tta ata
Leu Ile Ser Arg Met Tyr Arg Leu Val Gly Asn Arg Trp Asp Leu Ile
50
60

gca gga aga gtc gta gga aga aag gca aat gag att gag aga tac tgg
Ala Gly Arg Val Val Gly Arg Lys Ala Asn Glu Ile Glu Arg Tyr Trp
65 70 75

att atg aga aac tot gac tat ttt tot cac aaa cga cga cgt ott aat

11e Met Arg Asn Ser Asp Tyr Phe Ser His Lys Arg Arg Arg Leu Asn
80 85 90

aat tot coo tit tit tot act tot cot cit aat coo caa gaa aat cot 339 Asn Ser Pro Phe Phe Ser Thr Ser Pro Leu Asn Leu Gln Glu Asn Leu 95 100 105 110

aaa ttg taa agaaatcaaa ataaaagctt tcaatcataa aagtagaaca 388 Lys Leu

aatcttgaat gtcttctca 407

<210> 8 <211> 112 <212> PRT <213> Arabidopsis thaliana

<400> 8

Met Asp Asn Thr Asn Arg Leu Arg Leu Arg Gly Pro Ser Leu Arg 1 5 10 15

Gln Thr Lys Phe Thr Arg Ser Arg Tyr Asp Ser Glu Glu Val Ser Ser 20 25 30

Ile Glu Trp Glu Phe Ile Ser Met Thr Glu Glu Glu Asp Leu Ile
Page 7

Ser Arg Met Tyr Arg Leu Val Gly Asn Arg Trp Asp Leu Ile Ala Gly

Arg Val Val Gly Arg Lys Ala Asn Glu Ile Glu Arg Tyr Trp Ile Met 65 70 75 80

Arg Asn Ser Asp Tyr Phe Ser His Lys Arg Arg Arg Leu Asn Asn Ser 85 90 95

Pro Phe Phe Ser Thr Ser Pro Leu Asn Leu Gln Glu Asn Leu Lys Leu 100 105 110

<210> 9
<211> 1547
<212> DNA
<213> Arabidopsis
<220>
<221> CDS

35

<222> (312)..(1310) <223> G256

<400> 9 tcgtgagcgt tgtgtttctc ctcaacattc aaagtcttta gtgaaacctc tcttgtaaga 60 agccaaaaaa ataaagagaa agattcaaag aaggaaagaa attgaggatg actatttcaa 120 180 gtccaaagag agattttgag tagaccctct tcacaaaaat ccaatcttag agtcttacta gttactatct agcttacata cacagagaca ctataccaaa aatccaatct tattagagta 300 cttactatat agettacaca tacacacaca cgaagtacta tttcaacgat caagagcgtg tgcgtgagga t atg ggt aga cca cct tgt tgc gag aag att gag gtg aag
Met Gly Arg Pro Pro Cys Cys Glu Lys Ile Glu Val Lys 350 aaa gga cca tgg act ccc gaa gaa gac ata atc ttg gtc tct tat atc Lys Gly Pro Trp Thr Pro Glu Glu Asp Ile Ile Leu Val Ser Tyr Ile 398 caa caa cac ggc cct gga aat tgg aga tct gtc cct gca aac acc ggt Gln Gln His Gly Pro Gly Asn Trp Arg Ser Val Pro Ala Asn Thr Gly 446 ttg cta agg tgt agc aag agt tgc aga ctt aga tgg act aat tac ctt Leu Leu Arg Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu 50 60

cgt ccc ggg atc aaa cga gga aat ttc act caa ccg gaa gag aag atg
Arg Pro Gly Ile Lys Arg Gly Asn Phe Thr Gln Pro Glu Glu Lys Met
65 70 75

atc atc cac ctt caa gct ctt ttg gga aat aga tgg gca gct ata gca
Ile Ile His Leu Gln Ala Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala
80 85

tca tat cta cct cag agg acc gac aat gat atc aag aac tac tgg aac
Ser Tyr Leu Pro Gln Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn
95 100 105

act cat ctt aaa aag aaa cta gtg atg atg aag ttt caa aat ggt atc
Thr His Leu Lys Lys Leu Val Met Met Lys Phe Gln Asn Gly Ile
110 115 120 125

atc aac gaa aac aaa acc aat ctg gca aca gat att tcg tct tgt aat 734 Ile Asn Glu Asn Lys Thr Asn Leu Ala Thr Asp Ile Ser Ser Cys Asn

Page 8

_	130	MBI16 Sequence 1	Listing.ST25	
aat aac aac aat Asn Asn Asn Asn 149	i Gly Cys Asn	cac aac aaa agg His Asn Lys Arg 150	acc acc aac aaa q Thr Thr Asn Lys q 155	ggc 782 Gly
caa tgg gag aaa Gln Trp Glu Lys 160	a aaa ctt caa B Lys Leu Gln	aca gac atc aac Thr Asp Ile Asn 165	atg gcc aaa caa q Met Ala Lys Gln i 170	gcc 830 Ala
			tca ttg atc cct (Ser Leu Ile Pro) 185	
			acc acc act tat of Thr Thr Thr Tyr	
tca agc aca gad Ser Ser Thr Asp	aac atc tct Asn Ile Ser 210	aaa tta ctc cag Lys Leu Leu Gln 215	aac tgg aca agc (Asn Trp Thr Ser (220	tca 974 Ser
tca tcg tca aag Ser Ser Ser Lys 225	Pro Asn Thr	tca tca gtc tcc Ser Ser Val Ser 230	aac aac cgg agc (Asn Asn Arg Ser 9 235	tca 1022 Ser
agc ccc ggt gaa Ser Pro Gly Glv 240	a gga gga ctt 1 Gly Gly Leu	ttt gat cat cac Phe Asp His His 245	tct ttg ttc tca (Ser Leu Phe Ser (250	tcg 1070 Ser
aat toa gaa tot Asn Ser Glu Ser 255	gga tca gtt Gly Ser Val 260	gat gag aag ctg Asp Glu Lys Leu	aat ttg atg tcc o Asn Leu Met Ser o 265	gag 1118 Glu
aca agc atg tto Thr Ser Met Pho 270	aaa ggt gag Lys Gly Glu 275	agc aag cca gac Ser Lys Pro Asp 280	ata gac atg gaa g Ile Asp Met Glu	gct 1166 Ala 285
			caa ggc tcg ttg t Gln Gly Ser Leu S 300	
ttg atc gag aaa Leu Ile Glu Lys 309	Trp Leu Phe	gat gat caa ggc Asp Asp Gln Gly 310	ttg gtt cag tgt d Leu Val Gln Cys 2 315	gat 1262 Asp
gat agt caa gaa Asp Ser Gln Glu 320	Asp Leu Ile	gac gtg tct tta Asp Val Ser Leu 325	gag gag tta aaa t Glu Glu Leu Lys 330	taa 1310
tgataacaac agto	aagatt tgttct	ataa gaaaataaaa	cgtatagaac aacga	taaag 1370
ctagctaggt ttat	taattt ttcttt	cttt tgtctttct	ctatgatctt tagtta	acatt 1430
ttattttact gtg	ggcttg c ttgtg	gtca agtcgatgaa	gatcaaactg tgata	tacta 1490
tttatatgta aagt	actata aagtta	agag tagttgaata	aaaaaaaaa aaaaaa	aa 1547

<210> 10 <211> 332 <212> PRT

<213> Arabidopsis

<400> 10

Met Gly Arg Pro Pro Cys Cys Glu Lys Ile Glu Val Lys Lys Gly Pro 1 5 15

Trp Thr Pro Glu Glu Asp Ile Ile Leu Val Ser Tyr Ile Gln Gln His 20 25 30

Gly Pro Gly Asn Trp Arg Ser Val Pro Ala Asn Thr Gly Leu Leu Arg Page 9

35

Cys Ser Lys Ser Cys Arg Leu Arg Trp Thr Asn Tyr Leu Arg Pro Gly 50 60

Ile Lys Arg Gly Asn Phe Thr Gln Pro Glu Glu Lys Met Ile Ile His 65 70 75 80

Leu Gln Ala Leu Leu Gly Asn Arg Trp Ala Ala Ile Ala Ser Tyr Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Pro Gln Arg Thr Asp Asn Asp Ile Lys Asn Tyr Trp Asn Thr His Leu 100 105 110

Lys Lys Lys Leu Val Met Met Lys Phe Gln Asn Gly Ile Ile Asn Glu 115 120 125

Asn Lys Thr Asn Leu Ala Thr Asp Ile Ser Ser Cys Asn Asn Asn Asn 130 135 140

Asn Gly Cys Asn His Asn Lys Arg Thr Thr Asn Lys Gly Gln Trp Glu 145 150 150 160

Lys Lys Leu Gln Thr Asp Ile Asn Met Ala Lys Gln Ala Leu Phe Gln 165 170 175

Ala Leu Ser Leu Asp Gln Pro Ser Ser Leu Ile Pro Pro Asp Pro Asp 180 185 190

Ser Pro Lys Pro His His His Ser Thr Thr Thr Tyr Ala Ser Ser Thr 195 200 205

Asp Asn Ile Ser Lys Leu Leu Gln Asn Trp Thr Ser Ser Ser Ser Ser 210 215 220

Lys Pro Asn Thr Ser Ser Val Ser Asn Asn Arg Ser Ser Ser Pro Gly 225 230 235 240

Glu Gly Gly Leu Phe Asp His His Ser Leu Phe Ser Ser Asn Ser Glu 245 250 255

Ser Gly Ser Val Asp Glu Lys Leu Asn Leu Met Ser Glu Thr Ser Met 260 265 270

Phe Lys Gly Glu Ser Lys Pro Asp Ile Asp Met Glu Ala Thr Pro Thr 275 280 285

Thr Thr Thr Thr Thr Asp Asp Gln Gly Ser Leu Ser Leu Ile Glu 290 295 300

Lys Trp Leu Phe Asp Asp Gln Gly Leu Val Gln Cys Asp Asp Ser Gln 305 310 315 320

Glu Asp Leu Ile Asp Val Ser Leu Glu Glu Leu Lys 325 330

<210> 11 <211> 2405 <212> DNA <213> Arabidopsis thaliana	
<220> <221> CDS <222> (381)(2213) <223> G419	
<400> 11 aagccacaca atctctttc ttctctctc ctctgttata tctcttctgt ttaattcttt	60
tattettett egtetatett eteetataat etettetete teeetettea eetaaagaat	120
aagaagaaaa ataattcaca totttatgca aactacttto ttgtagggtt ttaggagcta	180
tctctattgt cttggttctg atacaaagtt ttgtaatttt catggtatga gaagatttgc	240
ctttctattt tgtttattgg ttctttttaa ctttttcttg gagatgggtt cttgtagatc	300
ttaatgaaac ttctgttttt gtcccaaaaa gagttttctt ttttcttctc ttctttttgg	360
gttttcaatt cttgagagac atg gca aga gat cag ttc tat ggt cac aat aac Met Ala Arg Asp Gln Phe Tyr Gly His Asn Asn 1 5 10	413
cat cat cat caa gag caa caa cat caa atg att aat cag atc caa ggg His His His Gln Glu Gln His Gln Met Ile Asn Gln Ile Gln Gly 15 20 25	461
ttt gat gag aca aac caa aac cca acc gat cat cat tac aat cat Phe Asp Glu Thr Asn Gln Asn Pro Thr Asp His His Tyr Asn His 30 35 40	509
cag atc ttt ggc tca aac tcc aac atg ggt atg atg ata gac ttc tct Gln Ile Phe Gly Ser Asn Ser Asn Met Gly Met Met Ile Asp Phe Ser 45 50 55	557
aag caa caa cag att agg atg aca agt ggt tcg gat cat cat cat cat Lys Gln Gln Gln Ile Arg Met Thr Ser Gly Ser Asp His His His 60 65 70 75	605
cat cat cag aca agt ggt ggt act gat cag aat cag ctt ctg gaa gat His His Gln Thr Ser Gly Gly Thr Asp Gln Asn Gln Leu Leu Glu Asp 80 85 90	653
tct tca tct gcc atg aga cta tgc aat gtt aat aat gat ttc cca agt Ser Ser Ser Ala Met Arg Leu Cys Asn Val Asn Asn Asp Phe Pro Ser 95 100 105	701
gaa gta aat gat gag aga cca cca caa aga cca agc caa ggt ctt tcc Glu Val Asn Asp Glu Arg Pro Pro Gln Arg Pro Ser Gln Gly Leu Ser 110 115 120	749
ctt tct ctc tcc tct tca aat cct aca agc atc agt ctc caa tct ttc Leu Ser Leu Ser Ser Ser Asn Pro Thr Ser Ile Ser Leu Gln Ser Phe 125 130 135	797
gaa ctc aga ccc caa caa caa caa caa ggg tat tcc ggt aat aaa tca Glu Leu Arg Pro Gln Gln Gln Gln Gln Gly Tyr Ser Gly Asn Lys Ser 140 145 150 155	845
aca caa cat cag aat ctc caa cac acg cag atg atg atg atg atg atg atg Thr Gln His Gln Asn Leu Gln His Thr Gln Met Met Met Met Met 160 165 170	893
aat agt cac cac caa aac aac aac aat aac aat cat c	941
cat cat cag ttt cag att ggg agt tcc aag tat ttg agt cca gct caa His His Gln Phe Gln Ile Gly Ser Ser Lys Tyr Leu Ser Pro Ala Gln 190 195 200	989

									-							
gag Glu	cta Leu 205	ctg Leu	agt Ser	gag Glu	ttt Phe	tgc Cys 210	agt Ser	ctt Leu	gga Gly	gta Val	aag Lys 215	gaa Glu	agc Ser	gat Asp	gaa Glu	1037
gaa Glu 220	gtg Val	atg Met	atg Met	atg Met	aag Lys 225	cat His	aag Lys	aag Lys	aag Lys	caa Gln 230	aag Lys	ggt Gly	aaa Lys	caa Gln	caa Gln 235	1085
gaa Glu	gag Glu	tgg Trp	gac Asp	aca Thr 240	agt Ser	cac His	cac His	agc Ser	aac Asn 245	Asn	gat Asp	caa Gln	cat His	gac Asp 250	Gln	1133
tct Ser	gcg Ala	act Thr	act Thr 255	tct Ser	tca Ser	aag Lys	aaa Lys	cat His 260	gtt Val	cca Pro	cca Pro	ctt Leu	cac His 265	tct Ser	ctt Leu	1181
gag Glu	ttc Phe	atg Met 270	gaa Glu	ctt Leu	cag Gln	aaa Lys	aga Arg 275	aaa Lys	gcc Ala	aag Lys	ttg Leu	ctc Leu 280	tcc Ser	atg Met	ctc Leu	1229
gaa Glu	gag Glu 285	ctt Leu	aaa Lys	aga Arg	aga Arg	tat Tyr 290	gga Gly	cat His	tac Tyr	cga Arg	gag Glu 295	caa Gln	atg Met	aga Arg	gtt Val	1277
gcg Ala 300	gcg Ala	gca Ala	gcc Ala	ttt Phe	gaa Glu 305	gcg Ala	gcg Ala	gtt Val	gga Gly	cta Leu 310	gga Gly	999 Gly	gca Ala	gag Glu	ata Ile 315	1325
tac Tyr	act Thr	gcg Ala	tta Leu	gcg Ala 320	tca Ser	agg Arg	gca Ala	atg Met	tca Ser 325	aga Arg	cac His	ttt Phe	cgg Arg	tgt Cys 330	tta Leu	1373
aaa Lys	gac Asp	gga Gly	ctt Leu 335	gtg Val	gga Gly	cag Gln	att Ile	caa Gln 340	gca Ala	aca Thr	agt Ser	caa Gln	gct Ala 345	ttg Leu	gga Gly	1421
gag Glu	aga Arg	gaa Glu 350	gag Glu	gat Asp	aat Asn	cgt Arg	gcg Ala 355	gtt Val	tct Ser	att Ile	gca Ala	gca Ala 360	cgt Arg	gga Gly	gaa Glu	1469
act Thr	cca Pro 365	cgg Arg	ttg Leu	aga Arg	ttg Leu	ctc Leu 370	gat Asp	caa Gln	gct Ala	ttg Leu	cgg Arg 375	caa Gln	cag Gln	aaa Lys	tcg Ser	1517
tat Tyr 380	cgc Arg	caa Gln	atg Met	act Thr	ctt Leu 385	gtt Val	gac Asp	gct Ala	cat His	cct Pro 390	tgg Trp	cgt Arg	cca Pro	caa Gln	cgc Arg 395	1565
ggc Gly	ttg Leu	cct Pro	gaa Glu	cgc Arg 400	gca Ala	gtc Val	aca Thr	acg Thr	ttg Leu 405	aga Arg	gct Ala	tgg Trp	ctc Leu	ttt Phe 410	gaa Glu	1613
cac His	ttt Phe	ctt Leu	cac His 415	cca Pro	tat Tyr	ccg Pro	agc Ser	gat Asp 420	gtt Val	gat Asp	aag Lys	cat His	ata Ile 425	ttg Leu	gcc Ala	1661
cga Arg	caa Gln	act Thr 430	ggt Gly	tta Leu	tca Ser	aga Arg	agt Ser 435	cag Gln	gta Val	tca Ser	aat Asn	tgg Trp 440	ttt Phe	att Ile	aat Asn	1709
gca Ala	aga Arg 445	gtt Val	agg Arg	cta Leu	tgg Trp	aaa Lys 450	cca Pro	atg Met	att Ile	gaa Glu	gaa Glu 455	atg Met	tac Tyr	tgt Cys	gaa Glu	1757
gaa Glu 460	aca Thr	aga Arg	agt Ser	gaa Glu	caa Gln 465	atg Met	gag Glu	att Ile	aca Thr	aac Asn 470	ccg Pro	atg Met	atg Met	atc Ile	gat Asp 475	1805
act Thr	aaa Lys	ccg Pro	gac Asp	ccg Pro 480	gac Asp	cag Gln	ttg Leu	Ile	cgt Arg 485	gtc Val	gaa Glu	ccg Pro	gaa Glu	tct Ser 490	tta Leu	1853
tcc Ser	tca Ser	ata Ile	gtg Val	aca Thr	aac Asn	cct Pro	aca Thr	tcc Ser	Lys	tcc Ser age 1	Gly	cac His	aac Asn	tca Ser	acc Thr	1901

	MBI16 Sequence	Listing.ST25
495	500	505

4	495	500	505	
	atg tcg tta ggg tc Met Ser Leu Gly Se 51	r Thr Phe Asp Phe		1949
	gtg aca tac gct gg Val Thr Tyr Ala Gl 530		o Arg Gly Asp Val	1997
	ctt ggg tta caa cg Leu Gly Leu Gln Arg 545			2045
	tct cca gtg acg gc Ser Pro Val Thr Ala 560			2093
Arg Asp His I	att gaa gaa gga cc Ile Glu Glu Gly Pro 575			2141
	caa gtt cag aat tt Gln Val Gln Asn Le 59	u Pro Tyr Arg Ası		2189
	cat gat att gtt tg His Asp Ile Val 610	a gattaaaaga ttag	ggaccaa agttatcgat	2243
acatattttc ca	aaaaccgat tcggttat	gt aacggtttag tta	agataaaa accaaattag	2303
atatttatat at	taccgttgt ctgattgg	at tggaggattg gtg	ggacaagg agatattatt	2363

2405

<210> 12

<211> 610 <212> PRT

<213> Arabidopsis thaliana

<400> 12

Met Ala Arg Asp Gln Phe Tyr Gly His Asn Asn His His His Gln Glu
1 10 15

Gln Gln His Gln Met Ile Asn Gln Ile Gln Gly Phe Asp Glu Thr Asn 20 25 30

Gln Asn Pro Thr Asp His His His Tyr Asn His Gln Ile Phe Gly Ser 35 40

Asn Ser Asn Met Gly Met Met Ile Asp Phe Ser Lys Gln Gln Gln Ile 50 60

Arg Met Thr Ser Gly Ser Asp His His His His His Gln Thr Ser 65 70 75 80

Gly Gly Thr Asp Gln Asn Gln Leu Leu Glu Asp Ser Ser Ser Ala Met 85 90 95

Arg Leu Cys Asn Val Asn Asn Asp Phe Pro Ser Glu Val Asn Asp Glu 100 105 110

Arg Pro Pro Gln Arg Pro Ser Gln Gly Leu Ser Leu Ser Leu Ser Ser 115 120 125

MBI16 Sequence Listing.ST25

Ser Asn Pro Thr Ser Ile Ser Leu Gln Ser Phe Glu Leu Arg Pro Gln 130 135 140

Gln Gln Gln Gly Tyr Ser Gly Asn Lys Ser Thr Gln His Gln Asn 145 150 155 160

Leu Gln His Thr Gln Met Met Met Met Met Met Asn Ser His His Gln
165 170 175

Asn Asn Asn Asn Asn His Gln His His Asn His His Gln Phe Gln
180 185 190

Ile Gly Ser Ser Lys Tyr Leu Ser Pro Ala Gln Glu Leu Leu Ser Glu
195 200 205

Phe Cys Ser Leu Gly Val Lys Glu Ser Asp Glu Glu Val Met Met Met 210 220

Lys His Lys Lys Lys Gln Lys Gly Lys Gln Gln Glu Glu Trp Asp Thr 225 230 235 240

Ser His His Ser Asn Asn Asp Gln His Asp Gln Ser Ala Thr Thr Ser 245 250 255

Ser Lys Lys His Val Pro Pro Leu His Ser Leu Glu Phe Met Glu Leu 260 265 270

Gln Lys Arg Lys Ala Lys Leu Leu Ser Met Leu Glu Glu Leu Lys Arg 275 280 285

Arg Tyr Gly His Tyr Arg Glu Gln Met Arg Val Ala Ala Ala Ala Phe 290 295 300

Glu Ala Ala Val Gly Leu Gly Gly Ala Glu Ile Tyr Thr Ala Leu Ala 305 310 315 320

Ser Arg Ala Met Ser Arg His Phe Arg Cys Leu Lys Asp Gly Leu Val

Gly Gln Ile Gln Ala Thr Ser Gln Ala Leu Gly Glu Arg Glu Glu Asp 340 345 350

Asn Arg Ala Val Ser Ile Ala Ala Arg Gly Glu Thr Pro Arg Leu Arg 355 360 365

Leu Leu Asp Gln Ala Leu Arg Gln Gln Lys Ser Tyr Arg Gln Met Thr 370 380

Leu Val Asp Ala His Pro Trp Arg Pro Gln Arg Gly Leu Pro Glu Arg 385 390 395 400

Ala Val Thr Thr Leu Arg Ala Trp Leu Phe Glu His Phe Leu His Pro

Tyr Pro Ser Asp Val Asp Lys His Ile Leu Ala Arg Gln Thr Gly Leu 420 425 430

Page 14

Ser	Arg	Ser 435	Gln	Val	Ser	Asn	Trp 440	Phe	Ile	Asn	Ala	Arg 445	Val	Arg	Leu	
Trp	Lys 450	Pro	Met	Ile	Glu	Glu 455	Met	Tyr	Суз	Glu	Glu 460	Thr	Arg	Ser	Glu	
Gln 465	Met	Glu	Ile	Thr	Asn 470	Pro	Met	Met	Ile	Asp 475	Thr	Lys	Pro	Asp	Pro 480	
qaA	Gln	Leu	Ile	Arg 485	Val	Glu	Pro	Glu	Ser 490	Leu	Ser	Ser	Ile	Val 495	Thr	
Asn	Pro	Thr	Ser 500	Lys	Ser	Gly	His	Asn 505	Ser	Thr	His	Gly	Thr 510	Met	Ser	
Leu	Gly	Ser 515	Thr	Phe	Asp	Phe	Ser 520	Leu	Tyr	Gly	Asn	Gln 525	Ala	Val	Thr	
Tyr	Ala 530	Gly	Glu	Gly	Gly	Pro 535	Arg	Gly	Asp	Val	Ser 540	Leu	Thr	Leu	Gly	
Leu 545	Gln	Arg	Asn	Asp	Gly 550	Asn	Gly	Gly	Val	Ser 555	Leu	Ala	Leu	Ser	Pro 560	
Val	Thr	Ala ·	Gln	Gly 565	Gly	Gln	Leu	Phe	Tyr 570	Gly	Arg	Asp	His	Ile 575	Glu	
Glu	Gly	Pro	Val 580	Gln	Tyr	Ser	Ala	Ser 585	Met	Leu	Asp	Авр	Asp 590	Gln	Val	
Gln	Asn	Leu 595	Pro	Tyr	Arg	Asn	Leu 600	Met	Gly	Ala	Gln	Leu 605	Leu	His	Asp	
Ile	Val 610															
<210 <211 <212 <213	> 9 > I	.3 989 NA Tabi	.dops	is t	:hali	.ana										
<220 <221 <222 <223	> (> (. (66	4)												
<400 ctct		.3 Igt a	tcat	tg ga	ıg to	tagg:	gttt	: tgt	tatt					gtg Val		5
			gtg Val													10
ttg Leu	gga Gly	tta Leu	999 Gly 25	ctc Leu	agc Ser	ctc Leu	ggt Gly	ggt Gly 30	ggc Gly	gcg Ala	tgg Trp	aaa Lys	gag Glu 35	cgt Arg	G1 y 999	15:
agg	att	ctt	act	gct	aag	gat	ttt	cct	tcc	gtt	999	tct	aaa	cgc	tct	19:

Arg	Ile	Leu 40	Thr	Ala	Lys	Asp					List Gly			Arg	Ser	
gct Ala	gaa Glu 55	tct Ser	tcc Ser	tct Ser	cac His	caa Gln 60	gga Gly	gct Ala	tct Ser	cct Pro	cct Pro 65	cgt Arg	tca Ser	agt Ser	caa Gln	247
											atg Met					295
											gaa Glu					343
											gtg Val					391
											gtg Val					439
gtt Val	ggt Gly 135	ata Ile	ggc Gly	aga Arg	aaa Lys	gtg Val 140	gat Asp	atg Met	aga Arg	gct Ala	cat His 145	tcg Ser	tct Ser	tac Tyr	gaa Glu	487
											gga Gly					535
											tta Leu					583
											gga Gly					631
			gga Gly							tga	aaag	geti	cg g	gatca	ıtggga	684
acct	caga	aag d	tagt	ggad	t ag	gctco	caaga	a cgt	caaç	jagc	agaa	aggat	ag a	caaa	igaaac	744
aaco	ctgt	tt a	igcti	ccct	t co	caaag	gctgg	g cat	tgtt	tat	gtat	tgt	tg a	aggtt	tgcaa	804
ttta	ctc	gat a	cttt	ttga	a ga	aagt	attt	tgg	gagaa	tat	ggat	aaaa	igc a	atgca	gaagc	864
ttag	jatat	ga t	ttga	atco	g gt	tttc	ggat	ato	gttt	tgc	ttag	gtca	att o	aatt	cgtag	924
tttt	ccaç	gtt t	gttt	ctto	t tt	ggct	gtgt	aco	aatt	atc	tato	ttci	gt	gagag	jaaagc	984
tctt	g															989
<210 <211 <212	> 2 > I	14 207 PRT	dona		. h - 1 4											

Arabidopsis thaliana .

Met Arg Gly Val Ser Glu Leu Glu Val Gly Lys Ser Asn Leu Pro Ala 1 5 15

Glu Ser Glu Leu Glu Leu Gly Leu Gly Leu Ser Leu Gly Gly Ala $20 \hspace{1.5cm} 25 \hspace{1.5cm} 25$

Trp Lys Glu Arg Gly Arg Ile Leu Thr Ala Lys Asp Phe Pro Ser Val $_{35}$ 40 45

Gly Ser 50	Lys	Arg	Ser	Ala	Glu 55						ing. Gly		Ser	Pro	
Pro Arg 65	Ser	Ser	Gln	Val 70	Val	Gly	Trp	Pro	Pro 75	Ile	Gly	Leu	His	Arg 80	
Met Asn	Ser	Leu	Val 85	Asn	Asn	Gln	Ala	Met 90	Lys	Ala	Ala	Arg	Ala 95	Glu	
Glu Gly	Asp	Gly 100	Glu	Lys	Lys	Val	Val 105	Lys	Asn	Gly	Glu	Leu 110	Lys	Asp	
Val Ser	Met 115	Lys	Val	Asn	Pro	Lys 120	Val	Gln	Gly	Leu	Gly 125	Phe	Val	Lys	,
Val Asn 130		Asp	Gly	Val	Gly 135	Ile	Gly	Arg	Lys	Val 140	Авр	Met	Arg	Ala	
His Ser 145	Ser	туг	Glu	Asn 150	Leu	Ala	Gln	Thr	Leu 155	Glu	Glu	Met	Phe	Phe 160	
Gly Met	Thr	Gly	Thr 165	Thr	Cys	Arg	Glu	Thr 170	Val	Lys	Pro	Leu	Arg 175	Leu	
Leu Asp	Gly	Ser 180	Ser	Asp	Phe	Val	Leu 185	Thr	Tyr	Glu	Asp	Lys 190	Gly	Ile	
Gly Cys	Leu 195	Leu	Glu	Met	Phe	His 200	Gly	Glu	Cys	Leu	Ser 205	Thr	Arg		
<211> <212>	15 1065 DNA Arab:	idops	sis t	hal i	iana										
<222>	CDS (188) G482) (7	760)						٠			·			
<400> tcgaccc	15 acg d	gtc	ggad	a ct	:taac	aatt	cac	acct	tct	ctti	ttac	ete t	tect	aaaac	60
cctaaat	ttc d	tege	ettea	g to	ttcc	cact	. caa	gtca	acc	acca	atto	gaa t	tega	itttcg	120
aatcatt	gat g	gaaa	tgat	t to	gaaaa	aaga	gta	aagt	tta	tttt	ttta	att o	cttg	taatt	180
ttcagaa		61A 888													229
aac aac Asn Asn 15	cag Gln	aac Asn	gga Gly	cag Gln 20	tcc Ser	tcc Ser	ttg Leu	tct Ser	cca Pro 25	aga Arg	gag Glu	caa Gln	gac Asp	agg Arg 30	277
ttc ttg Phe Leu															325
gcc aac Ala Asn															373
gtc tcc	gag	ttc	atc	agc	ttc	gtc	acc		gaa age		tct	gat	aag	tgt	421

Val Ser Glu Phe Ile Ser Phe Val Thr Gly Glu Ala Se 65 70 75	er Asp Lys Cys
cag aag gag aag agg aag acg atc aac gga gac gat to Gln Lys Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Le 80 85 90	tg ctc tgg gct 469 eu Leu Trp Ala
atg act act cta ggt ttt gag gat tat gtt gag cca tt Met Thr Thr Leu Gly Phe Glu Asp Tyr Val Glu Pro Le 95 100 105	tg aaa gtt tac 517 eu Lys Val Tyr 110
ttg cag agg ttt agg gag atc gaa ggg gag agg act gg Leu Gln Arg Phe Arg Glu Ile Glu Gly Glu Arg Thr G 115	ga cta ggg agg 565 ly Leu Gly Arg 125
cca cag act ggt ggt gag gtc gga gag cat cag aga ga Pro Gln Thr Gly Gly Glu Val Gly Glu His Gln Arg A 130	at gct gtc gga 613 sp Ala Val Gly 140
gat ggc ggt ggg ttc tac ggt ggt ggt ggt ggg atg c Asp Gly Gly Gly Phe Tyr Gly Gly Gly Gly Gly Met G 145	ag tat cac caa 661 ln Tyr His Gln 55
cat cat cag ttt ctt cac cag cag aac cat atg tat g His His Gln Phe Leu His Gln Gln Asn His Met Tyr G 160 165 170	ga gcc aca ggt 709 ly Ala Thr Gly
ggc ggt agc gac agt gga ggt gga gct gcc tcc ggt ag Gly Gly Ser Asp Ser Gly Gly Gly Ala Ala Ser Gly A 175 180 185	gg aca agg act 757 rg Thr Arg Thr 190
taa caaagattgg tgaagtggat ctctctctgt atatagatac a	taaatacat 810
gtatacacat gcctattttt acgacccata taaggtatct atcat	gtgat agaacgaaca 870
ttggtgttgg tgatgtaaaa tcagatgtgc attaagggtt tagat	tttga ggctgtgtaa 930
aagaagatca agtgtgcttt gttggacaat aggattcact aacga	atctg cttcattgga 990
tcttgtatgt aactaaagcc attgtattga atgcaaatgt tttca	tttgg gatgctttaa 1050
aaaaaaaaaa aaaaa	1065
<210> 16 <211> 190 <212> PRT <213> Arabidopsis thaliana	
<400> 16	
Met Gly Asp Ser Asp Arg Asp Ser Gly Gly Gln A 1 10	sn Gly Asn Asn 15
Gln Asn Gly Gln Ser Ser Leu Ser Pro Arg Glu Gln A 20 25	sp Arg Phe Leu 30
Pro Ile Ala Asn Val Ser Arg Ile Met Lys Lys Ala L 35 40	eu Pro Ala Asn 5
Ala Lys Ile Ser Lys Asp Ala Lys Glu Thr Met Gln G 50 55 60	lu Cys Val Ser

Glu Phe Ile Ser Phe Val Thr Gly Glu Ala Ser Asp Lys Cys Gln Lys 65 70 75 80

Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Thr 85 90 95

MBI16 Sequence Listing.ST25 Thr Leu Gly Phe Glu Asp Tyr Val Glu Pro Leu Lys Val Tyr Leu Gln 105 Arg Phe Arg Glu Ile Glu Gly Glu Arg Thr Gly Leu Gly Arg Pro Gln Thr Gly Gly Glu Val Gly Glu His Gln Arg Asp Ala Val Gly Asp Gly Gly Gly Phe Tyr Gly Gly Gly Gly Met Gln Tyr His Gln His His 145 150 155 160 Gln Phe Leu His Gln Gln Asn His Met Tyr Gly Ala Thr Gly Gly Gly Ser Asp Ser Gly Gly Gly Ala Ala Ser Gly Arg Thr Arg Thr <210> 17 <211> 1409 <212> DNA <213> Arab Arabidopsis thaliana <220> <221> CDS <222> (224)..(1093) <223> G502 <400> 17 ttgatgccgc tcaatcccac tatccttcgc aaggaccctt cctctatata aggaagttca 60 tttcatttgg agaggacacg ctgacaagct gactctagca gatctgggac cgtcgaccca 120 180 cgcgtccgaa ttgattagga taggatcagg atcatcctca acaacctcct cctaattcct 235 cctccattca tagtaacaat aatattaaga aagagggtaa act atg tca gaa tta Met Ser Glu Leu tta cag ttg cct cca ggt ttc cga ttt cac cct acc gat gaa gag ctt Leu Gln Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu 283 gtc atg cac tat ctc tgc cgc aaa tgt gcc tct cag tcc atc gcc gtt Val Met His Tyr Leu Cys Arg Lys Cys Ala Ser Gln Ser Ile Ala Val 331 ccg atc atc gct gag atc gat ctc tac aaa tac gat cca tgg gag ctt Pro Ile Ile Ala Glu Ile Asp Leu Tyr Lys Tyr Asp Pro Trp Glu Leu 40 45 50379 cct ggt tta gcc ttg tat ggt gag aag gaa tgg tac ttc ttc tct ccc Pro Gly Leu Ala Leu Tyr Gly Glu Lys Glu Trp Tyr Phe Phe Ser Pro 427 agg gac aga aaa tat ccc aac ggt tcg cgt cct aac cgg tcc gct ggt Arg Asp Arg Lys Tyr Pro Asn Gly Ser Arg Pro Asn Arg Ser Ala Gly 70 75 80 475 tct ggt tac tgg aaa gct acc gga gct gat aaa ccg atc gga cta cct Ser Gly Tyr Trp Lys Ala Thr Gly Ala Asp Lys Pro Ile Gly Leu Pro 523 90 aaa ccg gtc gga att aag aaa gct ctt gtt ttc tac gcc ggc aaa gct Lys Pro Val Gly Ile Lys Lys Ala Leu Val Phe Tyr Ala Gly Lys Ala 571 cca aag gga gag aaa acc aat tgg atc atg cac gag tac cgt ctc gcc 619 Page 19

Pro	Lys	Gly	Glu 120	Lys	Thr	Asn	MBI Trp	16 S Ile 125	eque Met	nce His	List Glu	ing. Tyr	ST25 Arg 130	Leu	Ala	
gac Asp	gtt Val	gac Asp 135	cgg Arg	tcc Ser	gtt Val	cgc Arg	aag Lys 140	aag Lys	aag Lys	aat Asn	agt Ser	ctc Leu 145	agg Arg	ctg Leu	gat Asp	667
gat Asp	tgg Trp 150	gtt Val	ctc Leu	tgc Cys	cgg Arg	att Ile 155	tac Tyr	aac Asn	aaa Lys	aaa Lys	gga Gly 160	gct Ala	acc Thr	gag Glu	agg Arg	715
cgg Arg 165	gga Gly	cca Pro	ccg Pro	cct Pro	ccg Pro 170	gtt Val	gtt Val	tac Tyr	ggc Gly	gac Asp 175	gaa Glu	atc Ile	atg Met	gag Glu	gag Glu 180	763
aag Lys	ccg Pro	aag Lys	gtg Val	acg Thr 185	gag Glu	atg Met	gtt Val	atg Met	cct Pro 190	ccg Pro	ccg Pro	ccg Pro	caa Gln	cag Gln 195	aca Thr	811
agt Ser	gag Glu	ttc Phe	gcg Ala 200	tat Tyr	ttc Phe	gac Asp	acg Thr	tcg Ser 205	gat Asp	tcg Ser	gtg Val	ccg Pro	aag Lys 210	ctg Leu	cat His	859
act Thr	acg Thr	gat Asp 215	tcg Ser	agt Ser	tgc Cys	tcg Ser	gag Glu 220	cag Gln	gtg Val	gtg Val	tcg Ser	ccg Pro 225	gag Glu	ttc Phe	acg Thr	907
agc Ser	gag Glu 230	gtt Val	cag Gln	agc Ser	gag Glu	ccc Pro 235	aag Lys	tgg Trp	aaa Lys	gat Asp	tgg Trp 240	tcg Ser	gcc Ala	gta Val	agt Ser	955
aat Asn 245	gac Asp	aat Asn	aac Asn	aat Asn	acc Thr 250	ctt Leu	gat Asp	ttt Phe	999 Gly	ttt Phe 255	aat Asn	tac Tyr	att Ile	gat Asp	gcc Ala 260	1003
acc Thr	gtg Val	gat Asp	aac Asn	gcg Ala 265	ttt Phe	gga Gly	gga Gly	gga Gly	999 Gly 270	agt Ser	agt Ser	aàt Asn	cag Gln	atg Met 275	ttt Phe	1051
ccg Pro	cta Leu	cag Gln	gat Asp 280	atg Met	ttc Phe	atg Met	tac Tyr	atg Met 285	cag Gln	aag Lys	cct Pro	tac Tyr	tag			1093
aagg	gaat	tc c	tttc	ctgo	c go	cgaa	acgo	aac	gcaa	aac	gacc	ctcg	tt t	ttgo	gttta	1153
tggc	aaca	.cg a	gaco	gttt	t at	atgg	tcaa	tga	gtgt	gcc	gatt	cggc	ca t	taga	tttct	1213
gtto	agto	tt c	gttt	atto	t at	agac	cgtc	cga	tttc	aga	tcat	ccct	aa t	cgga	cggtg	1,273
gtcg	ttgg	at g	tato	agta	g tg	tatt	actg	tgt	tagg	tag	aaga	aaat	cc a	cttg	ttctt	1333
aaat	tggc	at a	aaag	tcag	a ag	ctaa	tatt	tat	atgt	gcc	gcaa	tcaa	tt t	aata	ttttc	1393
tgtc	taaa	aa a	aaaa	a										-		1409
-210	. 1	0														

<210> 18 <211> 289 <212> PRT

<213> Arabidopsis thaliana

Met Ser Glu Leu Leu Gln Leu Pro Pro Gly Phe Arg Phe His Pro Thr 1 5 15

Asp Glu Glu Leu Val Met His Tyr Leu Cys Arg Lys Cys Ala Ser Gln 25 30

Ser Ile Ala Val Pro Ile Ile Ala Glu Ile Asp Leu Tyr Lys Tyr Asp 35 40 45

MBI16 Sequence Listing.ST25
Pro Trp Glu Leu Pro Gly Leu Ala Leu Tyr Gly Glu Lys Glu Trp Tyr
50 60

Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ser Arg Pro Asn 65 70 80

Arg Ser Ala Gly Ser Gly Tyr Trp Lys Ala Thr Gly Ala Asp Lys Pro

Ile Gly Leu Pro Lys Pro Val Gly Ile Lys Lys Ala Leu Val Phe Tyr 100 110

Ala Gly Lys Ala Pro Lys Gly Glu Lys Thr Asn Trp Ile Met His Glu 115 120 125

Tyr Arg Leu Ala Asp Val Asp Arg Ser Val Arg Lys Lys Asn Ser 130 135 140

Leu Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Asn Lys Lys Gly 145 150 160

Ala Thr Glu Arg Arg Gly Pro Pro Pro Pro Val Val Tyr Gly Asp Glu
165 170 175

Ile Met Glu Glu Lys Pro Lys Val Thr Glu Met Val Met Pro Pro Pro 180 185 190

Pro Gln Gln Thr Ser Glu Phe Ala Tyr Phe Asp Thr Ser Asp Ser Val

Pro Lys Leu His Thr Thr Asp Ser Ser Cys Ser Glu Gln Val Val Ser 210 215 220

Pro Glu Phe Thr Ser Glu Val Gln Ser Glu Pro Lys Trp Lys Asp Trp 225 230 235 240

Ser Ala Val Ser Asn Asp Asn Asn Asn Thr Leu Asp Phe Gly Phe Asn 245 250 255

Tyr Ile Asp Ala Thr Val Asp Asn Ala Phe Gly Gly Gly Ser Ser

Asn Gln Met Phe Pro Leu Gln Asp Met Phe Met Tyr Met Gln Lys Pro 275 280 285

Tyr

2105 19

<211> 1481

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (181)..(1188)

<223> G526

MBI16 Sequence Listing.ST25

<40	0>	19					МВ	116	Sequ	ence	Lis	ting	.ST2	5		
cga	CCC	acgc	gtc	gaga	att d	ctct	ccag	gc ta	agcti	tct	aa	ttca	tttt	tct	ttcttca	60
tct	tctt	ctt	gtgt	gato	ctc t	ctt	ccaa	aa ta	agct	tato	ati	tctt	acaa	aaa	tatttct	120
999	tttc	etga	tatt	gtto	ett g	ttct	ctto	ga at	ctt	atta	cti	cgaaa	aaac	ata	taaagtg	180
atg Met 1	gcg	g gtt Val	gtg l Val	gtt Val 5	gaa Glu	gaa Glu	a ggt a Gly	gtg Val	gtg Val	ttg Lei	aat Asi	cat n His	gga Gly	g gg(Gl)	gaa Glu	228
gag Glu	Ctt Leu	gto Val	gat Asp 20	tto Lev	g cca n Pro	cct Pro	ggt Gly	tto Phe 25	agg Arg	j ttt j Phe	cat His	cca Pro	a aca Thi	a gad	gaa Glu	276
gag Glu	ato Ile	ata Ile 35	aca Thr	tgt Cys	tac Tyr	ctt Leu	aag Lys 40	gag Glu	aag Lys	gtt Val	tta Lev	a aac a Asr 45	ago Sei	cga Arg	ttc Phe	324
acg Thr	gct Ala 50	gtg Val	gcc Ala	atg Met	gga Gly	gaa Glu 55	gct Ala	gat Asp	cto Leu	aac Asn	aac Lys 60	tgt Cys	gag Glu	cct Pro	tgg Trp	372
gat Asp 65	t tg Leu	cca Pro	aag Lys	agg Arg	gca Ala 70	aag Lys	atg Met	999 Gly	gag Glu	aaa Lys 75	gag Glu	tto Phe	tac Tyr	tto Phe	ttc Phe 80	420
tgt Cys	caa Gln	agg Arg	gac Asp	agg Arg 85	aag Lys	tat Tyr	ccg	act Thr	999 Gly 90	atg Met	agg Arg	acg	aac Asn	cgt Arg 95	gcg Ala	468
acg Thr	gag Glu	tca Ser	gga Gly 100	Tyr	tgg Trp	aaa Lys	gcc Ala	acc Thr 105	61 y 999	aag Lys	gat Asp	aag Lys	gag Glu 110	Ile	ttc Phe	516
aaa Lys	ggc Gly	aaa Lys 115	GTA	tgt Cys	ctc Leu	gtt Val	999 Gly 120	atg Met	aag Lys	aaa Lys	aca Thr	ctt Leu 125	Val	ttt Phe	tat Tyr	564
aga Arg	gga Gly 130	aga Arg	gct Ala	cca Pro	aaa Lys	ggt Gly 135	gaa Glu	aag Lys	act Thr	aat Asn	tgg Trp 140	gtc Val	atg Met	cat His	gaa Glu	612
tat Tyr 145	cgt Arg	ctt Leu	gaa Glu	ggc Gly	aaa Lys 150	tat Tyr	tcg Ser	tat Tyr	tac Tyr	aat Asn 155	ctc Leu	cca Pro	aaa Lys	tct Ser	gca Ala 160	660
agg Arg	gac Asp	gaa Glu	tgg Trp	gtc Val 165	gtg Val	tgt Cys	agg Arg	gtt Val	ttt Phe 170	cac His	aag Lys	aac Asn	aat Asn	cct Pro 175	tct Ser	708
acc Thr	aca Thr	acc Thr	caa Gln 180	cca Pro	atg Met	acg Thr	aga Arg	ata Ile 185	ccc Pro	gtt Val	gaa Glu	gat Asp	ttc Phe 190	aca Thr	agg Arg	756
atg Met	gat Asp	tct Ser 195	cta Leu	gag Glu	aac Asn	att Ile	gat Asp 200	cat His	ctc Leu	cta Leu	gac Asp	ttc Phe 205	tca Ser	tct Ser	ctt Leu	804
cct Pro	cct Pro 210	ctc Leu	ata Ile	gac Asp	ccg Pro	agt Ser 215	ttc Phe	atg Met	agt Ser	caa Gln	acc Thr 220	gaa Glu	caa Gln	cca Pro	aac Asn	852
ttc Phe 225	aaa Lys	ccc Pro	atc Ile	aac Asn	cct Pro 230	cca Pro	act Thr	tac Tyr	gat Asp	atc Ile 235	tca Ser	tca Ser	cca Pro	atc Ile	caa Gln 240	900
ccc Pro	cat His	cat His	ttc Phe	aat Asn 245	tct Ser	tac Tyr	caa Gln	tca Ser	atc Ile 250	ttt Phe	aac Asn	cac His	cag Gln	gtt Val 255	ttt Phe	948
ggt Gly	tct Ser	gct Ala	tcg Ser 260	ggc Gly	tct Ser	acg Thr	Tyr	aac Asn 265	aac Asn	aac Asn	aac Asn	gag Glu	atg Met 270	atc Ile	aag Lys	996

atg gag caa tca ct Met Glu Gln Ser Le 275	t gtt agt gta	16 Sequence Li tct caa gaa a Ser Gln Glu T	ica tgc cta agc i	tca 1044 Ser
gat gtg aac gcg aa Asp Val Asn Ala As 290	c atq act aca	Thr Thr Glu V	ita tot tog ggt (cct 1092 Pro
gta atg aaa caa ga Val Met Lys Gln Gl 305	a atg ggg atg u Met Gly Met 310	atg gga atg g Met Gly Met V 315	al Asn Gly Ser	aag 1140 Lys 320
tcg tat gaa gat ct Ser Tyr Glu Asp Le 32	u Cys Asp Leu	agg ggg gac t Arg Gly Asp L 330	tg tgg gac ttc eu Trp Asp Phe 335	taa 1188
ttaatcattt gactgtg	gtg aaagagtata	tttgttggga t	ttaaatcat gttag	ttaat 1248
acatatacat ataggat	tta ctagaggctt	aatcctagtt a	actattttc acttc	attga 1308
tattatttaa ttagttg	att gtttaattag	tttatacttt a	tagtgtggt taaaa	aagaa 1368
aagaaaggat tgtgata	att tgggatttta	gtgcataagt t	atatotoaa tgtaa	actgt 1428
atttgtatcc aaaaaaa	aaa aaaaaaaaa	aaaaaaaaaa a	laaaaaaaaa aaa	1481
-				
<pre><210> 20 <211> 335 <212> PRT <213> Arabidopsis</pre>	thaliana	٠.		
<400> 20				
Met Ala Val Val Va 1 5	l Glu Glu Gly	Val Val Leu A 10	Asn His Gly Gly	Glu
Glu Leu Val Asp Le	u Pro Pro Gly	Phe Arg Phe H 25	lis Pro Thr Asp	Glu
Glu Ile Ile Thr Cy 35	s Tyr Leu Lys 40	Glu Lys Val L	Leu Asn Ser Arg	Phe 🔨
Thr Ala Val Ala Me 50	t Gly Glu Ala 55		ys Cys Glu Pro 0	Trp
Asp Leu Pro Lys Ar	g Ala Lys Met 70	Gly Glu Lys G 75	Slu Phe Tyr Phe	Phe 80 .
Cys Gln Arg Asp Ar 85	g Lys Tyr Pro	Thr Gly Met A	arg Thr Asn Arg . 95	Ala
Thr Glu Ser Gly Ty	r Trp Lys Ala	Thr Gly Lys A	Asp Lys Glu Ile 110	Phe
Lys Gly Lys Gly Cy 115	s Leu Val Gly 120	Met Lys Lys T	Thr Leu Val Phe	Tyr
Arg Gly Arg Ala Pr 130	o Lys Gly Glu · 135		Trp Val Met His (Glu
Tyr Arg Leu Glu Gl 145	y Lys Tyr Ser 150	Tyr Tyr Asn I 155	Leu Pro Lys Ser	Ala 160
Arg Asp Glu Trp Va	l Val Cys Arg	Val Phe His I	Lys Asn Asn Pro	Ser

Page 23

MBI16 Sequence Listing.ST25 170 Thr Thr Gln Pro Met Thr Arg Ile Pro Val Glu Asp Phe Thr Arg 180 185 190 Met Asp Ser Leu Glu Asn Ile Asp His Leu Leu Asp Phe Ser Ser Leu Pro Pro Leu Ile Asp Pro Ser Phe Met Ser Gln Thr Glu Gln Pro Asn Phe Lys Pro Ile Asn Pro Pro Thr Tyr Asp Ile Ser Ser Pro Ile Gln Pro His His Phe Asn Ser Tyr Gln Ser Ile Phe Asn His Gln Val Phe Gly Ser Ala Ser Gly Ser Thr Tyr Asn Asn Asn Asn Glu Met Ile Lys Met Glu Gln Ser Leu Val Ser Val Ser Gln Glu Thr Cys Leu Ser Ser Asp Val Asn Ala Asn Met Thr Thr Thr Thr Glu Val Ser Ser Gly Pro Val Met Lys Gln Glu Met Gly Met Gly Met Val Asn Gly Ser Lys Ser Tyr Glu Asp Leu Cys Asp Leu Arg Gly Asp Leu Trp Asp Phe 325 330 335 <210> 21 <211> 890 <212> DNA <213> Arabidopsis thaliana <220> <221> CDS <222> (55)..(738) <223> G545 gcaaccttca aactaaaact cgagagacaa gaaatcctca gaatctttaa ctta atg 57 Met gcg ctc gag gct ctt aca tca cca aga tta gct tct ccg att cct cct Ala Leu Glu Ala Leu Thr Ser Pro Arg Leu Ala Ser Pro Ile Pro Pro 105 ttg ttc gaa gat tct tca gtc ttc cat gga gtc gag cac tgg aca aag Leu Phe Glu Asp Ser Ser Val Phe His Gly Val Glu His Trp Thr Lys 153 ggt aag cga tct aag aga tca aga tcc gat ttc cac cac caa aac ctc Gly Lys Arg Ser Lys Arg Ser Arg Ser Asp Phe His His Gln Asn Leu 201 40

60

act gag gaa gag tat cta gct ttt tgc ctc atg ctt ctc gct cgc gac Thr Glu Glu Glu Tyr Leu Ala Phe Cys Leu Met Leu Leu Ala Arg Asp

V	VO 0	1/365	98											-		PC	T/US00/31458
aac Asn	cgt Arg	cag Gln	cct Pro	cct Pro 70	cct Pro	cct Pro	ccg	gcg	gtg	nce gag Glu	aag	ttg	agc	tac Tyr 80	aag Lys	2	297
						acg Thr										3	145
						aag Lys										3	193
						tcg Ser 120										4	141
						cac His											189
						ggc Gly										5	337
aac Asn	aac Asn	aac Asn	atc Ile 165	Asn	act Thr	agt Ser	agc Ser	gtg Val 170	tcc Ser	aac Asn	tcc Ser	gaa Glu	ggt Gly 175	gcg Ala	Gly ggg	. 5	i85
						agt Ser										. 6	i33
						tcg Ser 200											
						aag Lys										7	229
caa Gln		taa	ggaa	attt	ac t	taga	acgat	a ag	gatti	cgtt	: tgt	atac	tgt			. 7	78
tgag	jagtt	gt g	gtage	gaatt	t gt	tgac	tgta	cat	acca	aat	tgga	cttt	ga c	tgat	tccaa	8	38
ttct	tctt	gt t	ctt	catt	t ta	aaaa	ttat	: taa	acce	gatt	cttt	acca	ıca a	aa		8	90
<210 <211 <212 <213	l> 2 !> I	22 27 RT Arabi	idops	sis t	hali	lana											
<400)> 2	2							•								
Met 1	Ala	Leu	Glu	Ala 5	Leu	Thr	Ser	Pro	Arg 10	Leu	Ala	Ser	Pro	Ile 15	Pro		
Pro	Leu	Phe	Glu 20	Азр	Ser	Ser	Val	Phe 25	His	Gly	Val	Glu	His 30	Trp	Thr	•	
Lys	Gly	Lув 35	Arg	Ser	Lys	Arg	Ser 40	Arg	Ser	Авр	Phe	His 45	His	Gln	Asn		
Leu	Thr 50	Glu	Glu	Glu	Tyr	Leu 55	Ala	Phe	Cys	Leu	Met 60	Leu	Leu	Ala	Arg		
Asp 65	Asn	Arg	Gln	Pro	Pro 70	Pro	Pro	Pro	Ala	Val 75	Glu	Lys	Leu	Ser	Tyr 80		

PCT/US00/31458 WO 01/36598

MBI16 Sequence Listing.ST25 Lys Cys Ser Val Cys Asp Lys Thr Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Asn Leu Ser Gln Thr Leu Ser Gly Gly Gly Asp Asp His Ser Thr Ser Ser Ala Thr Thr Thr Ser Ala Val Thr Thr Gly Ser Gly Lys Ser His Val Cys Thr Ile Cys Asn Lys Ser Phe Pro Ser Gly Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Glu Gly Asn Asn Asn Ile Asn Thr Ser Ser Val Ser Asn Ser Glu Gly Ala Gly Ser Thr Ser His Val Ser Ser Ser His Arg Gly Phe Asp Leu Asn Ile Pro Pro Ile Pro Glu Phe Ser Met Val Asn Gly Asp Asp Glu Val Met Ser Pro Met Pro Ala Lys Lys Pro Arg Phe Asp Phe Pro Val Lys Leu Gln Leu 225 <210> 23 <211> 1413 <212> DNA Arabidopsis thaliana <213> <220> <221> <222> (86)..(1168) <223> G561 <400> 23 aatttgtttt tttttctttt gtgggttcaa ttcgaattgt tttccctgag actcaagtta 60 ctgtgtcatt actctgcatt gagca atg ggt agc aac gaa gaa gga aac ccc Met Gly Ser Asn Glu Glu Gly Asn Pro 160 act aac aac tct gat aag cca tcg caa gct gct gct cct gag cag agt Thr Asn Asn Ser Asp Lys Pro Ser Gln Ala Ala Ala Pro Glu Gln Ser 10 15 20 25 aat gtt cat gtg tat cat cat gac tgg gct gct atg cag gca tat tat Asn Val His Val Tyr His His Asp Trp Ala Ala Met Gln Ala Tyr Tyr 30 35 40208 ggg cct aga gtt ggt ata cct caa tat tac aac tca aat ttg gcg cct Gly Pro Arg Val Gly Ile Pro Gln Tyr Tyr Asn Ser Asn Leu Ala Pro 45 50 55 256 ggt cat gct cca ccg cct tat atg tgg gcg tct cca tcg cca atg atg Gly His Ala Pro Pro Pro Tyr Met Trp Ala Ser Pro Ser Pro Met Met 60 65 70 304

WDI16 Company	listing omor
gct cct tat gga gca cca tat cca cca ttt t	
Ala Pro Tyr Gly Ala Pro Tyr Pro Pro Phe C 75	85
tat gct cat cct ggt gtt caa atg ggc tca c	
Tyr Ala His Pro Gly Val Gln Met Gly Ser G	in Pro Gln Gly Pro Val .00 105
tot caa toa goa tot gga gtt aca acc cot t	tq acc att gat gca cca 448
Ser Gln Ser Ala Ser Gly Val Thr Thr Pro I 110 115	
	•
gct aat toa gct gga aac toa gat cat ggg t Ala Asn Ser Ala Gly Asn Ser Asp His Gly F	The Met Lys Lys Leu Lys
125 130	135
gag ttc gat gga ctt gca atg tca ata agc a Glu Phe Asp Gly Leu Ala Met Ser Ile Ser A	
140 145	150
gct gaa cat agc agc agt gaa cat agg agt t Ala Glu His Ser Ser Ser Glu His Arg Ser S	
155 160	165
gat ggc tct agc aat ggt agt gat ggt aat a	
Asp Gly Ser Ser Asn Gly Ser Asp Gly Asn T 170 175 1	.80 185
tct agg agg aaa aga agg caa caa aga tca c	ca agc act ggt gaa aga 688
Ser Arg Arg Lys Arg Arg Gln Gln Arg Ser F	Pro Ser Thr Gly Glu Arg 200
ccc tca tct caa aac agt ctg cct ctt aga g	gt gaa aat gag aaa ccc 736
Pro Ser Ser Gln Asn Ser Leu Pro Leu Arg	
205 210	
gat gtg act atg ggg act cct gtt atg ccc a Asp Val Thr Met Gly Thr Pro Val Met Pro T	hr Ala Met Ser Phe Gln
220 225	230
aac tot got ggc atg aac ggt gtg cca cág c Asn Ser Ala Gly Met Asn Gly Val Pro Gln P	
235 240	245
gtt aaa cga gag aag aga aaa cag tca aac c Val Lys Arg Glu Lys Arg Lys Gln Ser Asn A	
	160 265
tca aga ctg agg aag cag gct gaa aca gaa c	aa cta tct gtc aaa gtt 928
Ser Arg Leu Arg Lys Gln Ala Glu Thr Glu G 270 275	In Leu Ser Val Lys Val 280
qac qca tta qta qct qaq aac atq tct ctg a	gg tot aaa ota ggo cag 976
Asp Ala Leu Val Ala Glu Asn Met Ser Leu A 285 290	rg Ser Lys Leu Gly Gln 295
cta aac aat gag tct gag aaa cta cgg ctg g	
Leu Asn Asn Glu Ser Glu Lys Leu Arg Leu G	lu Asn Glu Ala Ile Leu
300 305	310
gat caa ctg aaa gcg caa gca aca ggg aaa a Asp Gln Leu Lys Ala Gln Ala Thr Gly Lys T	
315 320	325
cga gtt gat aag aac aac tct gta tca ggt a Arg Val Asp Lys Asn Asn Ser Val Ser Gly S	
	40 345
caa ctg tta aat gca agt ccg ata acc gat c Gln Leu Leu Asn Ala Ser Pro Ile Thr Asp P	ect gte geg get age tga 1168
350 355	360
ccgtggccgc aacaatgaga acccgatatt tcttcctt	tg ggttgtgatt gtaacttaaa 1228
aggagacttt ttgtttttat tcttagattt gtagctct	ct gcatagtgag cataaattga 1288
Doe	. 27

MBI16 Sequence Listing.ST25

tgtaatatgg tttaagagat tcggtgttct ctggtgtgtg ctgcaaccac ataattggtg 1348
atagataggt ttagttatat aagcaaatgt attagagata aggggagaca tatttgatgg 1408
tcttt 1413

<210> 24

<211> 360

<212> PRT

<213> Arabidopsis thaliana

<400> 24

Met Gly Ser Asn Glu Glu Gly Asn Pro Thr Asn Asn Ser Asp Lys Pro 1 10 15

Ser Gln Ala Ala Pro Glu Gln Ser Asn Val His Val Tyr His His 20 25 30

Asp Trp Ala Ala Met Gln Ala Tyr Tyr Gly Pro Arg Val Gly Ile Pro 35 40 45

Gln Tyr Tyr Asn Ser Asn Leu Ala Pro Gly His Ala Pro Pro Pro Tyr 50 60

Met Trp Ala Ser Pro Ser Pro Met Met Ala Pro Tyr Gly Ala Pro Tyr 65 70 80

Pro Pro Phe.Cys Pro Pro Gly Gly Val Tyr Ala His Pro Gly Val Gln 85 90 95

Met Gly Ser Gln Pro Gln Gly Pro Val Ser Gln Ser Ala Ser Gly Val 100 105 110

Thr Thr Pro Leu Thr Ile Asp Ala Pro Ala Asn Ser Ala Gly Asn Ser 115 120 125

Asp His Gly Phe Met Lys Lys Leu Lys Glu Phe Asp Gly Leu Ala Met 130 135 140

Ser Ile Ser Asn Asn Lys Val Gly Ser Ala Glu His Ser Ser Ser Glu 145 150 150 160

His Arg Ser Ser Gln Ser Ser Glu Asn Asp Gly Ser Ser Asn Gly Ser 165 170 175

Asp Gly Asn Thr Thr Gly Gly Glu Gln Ser Arg Arg Lys Arg Arg Gln
180 185 190

Gln Arg Ser Pro Ser Thr Gly Glu Arg Pro Ser Ser Gln Asn Ser Leu 195 200 205

Pro Leu Arg Gly Glu Asn Glu Lys Pro Asp Val Thr Met Gly Thr Pro 210 215 220

Val Met Pro Thr Ala Met Ser Phe Gln Asn Ser Ala Gly Met Asn Gly 225 230 235 240

MBI16 Sequence Listing.ST25 Val Pro Gln Pro Trp Asn Glu Lys Glu Val Lys Arg Glu Lys Arg Lys 250 Gln Ser Asn Arg Glu Ser Ala Arg Arg Ser Arg Leu Arg Lys Gln Ala Glu Thr Glu Gln Leu Ser Val Lys Val Asp Ala Leu Val Ala Glu Asn Met Ser Leu Arg Ser Lys Leu Gly Gln Leu Asn Asn Glu Ser Glu Lys Leu Arg Leu Glu Asn Glu Ala Ile Leu Asp Gln Leu Lys Ala Gln Ala Thr Gly Lys Thr Glu Asn Leu Ile Ser Arg Val Asp Lys Asn Asn Ser Val Ser Gly Ser Lys Thr Val Gln His Gln Leu Leu Asn Ala Ser Pro Ile Thr Asp Pro Val Ala Ala Ser 355 <210> <211> 1087 <212> DNA Arabidopsis thaliana <213> <220> CDS <221> (104)..(952) <222> <223> G664 <400> 25 60 caatccctca atataaaata acaagtagaa ttgatctgcc tatatataag attttgagac gaaataagat ctaaaccaca agaaagaaag taaacataaa agt atg gga agg tca Met Gly Arg Ser 115 ccg tgc tgt gag aaa gct cac aca aac aaa gga gca tgg acg aaa gaa Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala Trp Thr Lys Glu 163 gag gac gag agg ctc gtc gcc tac att aaa gct cat gga gaa ggc tgc Glu Asp Glu Arg Leu Val Ala Tyr Ile Lys Ala His Gly Glu Gly Cys 211 259 tgg aga tot otc occ aaa goo goo gga ott ott ogo tgt ggo aag ago Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg Cys Gly Lys Ser tgc cgt ctc cgg tgg atc aac tat ctc cgg cct gac ctt aag cgt gga Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp Leu Lys Arg Gly 55 60 65 307 aac ttc acc gag gaa gaa gac gaa ctc atc atc aag ctc cat agc ctt Asn Phe Thr Glu Glu Glu Asp Glu Leu Ile Ile Lys Leu His Ser Leu 70 75 80355 ctt ggc aac aaa tgg tcg ctt att gcc ggg aga tta ccg gga aga aca Leu Gly Asn Lys Trp Ser Leu Ile Ala Gly Arg Leu Pro Gly Arg Thr 85 90 95 100 403 gat aac gag ata aag aac tat tgg aac acg cat ata cga aga aag ctt 451 Page 29

MBI16 Sequence Listing.ST25	
Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Ile Arg Arg Lys Leu 105 110 115	
ata aac aga ggg att gat cca acg agt cat aga cca atc caa gaa tca Ile Asn Arg Gly Ile Asp Pro Thr Ser His Arg Pro Ile Gln Glu Ser	499
120 125 130	
tca gct tct caa gat tct aaa cct aca caa cta gaa cca gtt acg agt	547
Ser Ala Ser Gln Asp Ser Lys Pro Thr Gln Leu Glu Pro Val Thr Ser	
	595
aat acc att aat atc tca ttc act tct gct cca aag gtc gaa acg ttc Asn Thr Ile Asn Ile Ser Phe Thr Ser Ala Pro Lys Val Glu Thr Phe	333
150 155 160	
cat gaa agt ata agc ttt ccg gga aaa tca gag aaa atc tca atg ctt His Glu Ser Ile Ser Phe Pro Gly Lys Ser Glu Lys Ile Ser Met Leu	643
165 170 175 180	
acg ttc aaa gaa gaa aaa gat gag tgc cca gtt caa gaa aag ttc cca	691
Thr Phe Lys Glu Glu Lys Asp Glu Cys Pro Val Gln Glu Lys Phe Pro 185 190 195	
	739
gat ttg aat ctt gag ctc aga atc agt ctt cct gat gat gtt gat cgt Asp Leu Asn Leu Glu Leu Arg Ile Ser Leu Pro Asp Asp Val Asp Arg	739
200 205 210	
ctt caa ggg cat gga aag tca aca acg cca cgt tgt ttc aag tgc agc Leu Gln Gly His Gly Lys Ser Thr Thr Pro Arg Cys Phe Lys Cys Ser	787
215 220 225	
tta ggg atg ata aac ggc atg gag tgc aga tgc gga aga atg aga tgc	835
Leu Gly Met Ile Asn Gly Met Glu Cys Arg Cys Gly Arg Met Arg Cys 230 235 240	
gat gta gtc gga ggt agc agc aag ggg agt gac atg agc aat gga ttt	883
Asp Val Val Gly Gly Ser Ser Lys Gly Ser Asp Met Ser Asn Gly Phe	003
245 250 255 260	
gat ttt tta ggg ttg gca aag aaa gag acc act tct ctt ttg ggc ttt Asp Phe Leu Gly Leu Ala Lys Lys Glu Thr Thr Ser Leu Leu Gly Phe	931
265 270 275	
cga agc ttg gag atg aaa taa tattgtcaaa ttttaggcgt aactgtacaa	982
Arg Ser Leu Glu Met Lys 280	
aacttttgcc tagataattt gaaagtatat cttcaacttg tatgagaaat ttaactggtg	1042
aattataata tatagaatti giittitaaa aaaaaaaaaa	1087
<210> 26	
<211> 282 <212> PRT	
<213> Arabidopsis thaliana	
<400> '26	
Met Gly Arg Ser Pro Cys Cys Glu Lys Ala His Thr Asn Lys Gly Ala	
1 5 10 15	
The The Lie Clu Clu See Clu See Lou Val Sla See The York State	
Trp Thr Lys Glu Glu Asp Glu Arg Leu Val Ala Tyr Ile Lys Ala His	

Trp Thr Lys Glu Glu Asp Glu Arg Leu Val Ala Tyr Ile Lys Ala His $20 \hspace{1.5cm} \hbox{25} \hspace{1.5cm} \hbox{30}$

Gly Glu Gly Cys Trp Arg Ser Leu Pro Lys Ala Ala Gly Leu Leu Arg 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp 50 55

Leu 65	Lys	Arg	Gly	Asn	Phe 70	Thr					List Glu			Ile	Lys 80	
Leu	His	Ser	Leu	Leu 85	Gly	Asn	Lys	Trp	Ser 90	Leu	Ile	Ala	Gly	Arg 95	Leu	
Pro	Gly	Arg	Thr 100	Asp	Ásn	Glu	Ile	Lys 105	Asn	Tyr	Trp	Asn	Thr 110	His	Ile	
Arg	Arg	Lys 115	Leu	Ile	Asn	Arg	Gly 120	Ile	Asp	Pro	Thr	Ser 125	His	Arg	Pro	
Ile	Gln 130	Glu	Ser	Ser	Ala	Ser 135	Gln	Asp	Ser	Lys	Pro 140	Thr	Gln	Leu	Glu	
Pro 145	Val	Thr	Ser	Asn	Thr 150	Ile	Asn	Ile	Ser	Phe 155	Thr	Ser	Ala	Pro	Lys 160	
Val	Glu	Thr	Phe	His 165	Glu	Ser	Ile	Ser	Phe 170	Pro	Gly	Lys	Ser	Glu 175	Lys	
Ile	Ser	Met	Leu 180	Thr	Phe	Lys	Glu	Glu 185	Lys	Asp	Glu	Сув	Pro 190	Val	Gln	
Glu		Phe 195	Pro	Asp	Leu	Asn	Leu 200	Glu	Leu	Arg	Ile	Ser 205	Leu	Pro	Авр	
Авр	Val 210	Asp	Arg	Leu	Gln	Gly 215	His	Gly	Lys	Ser	Thr 220	Thr	Pro	Arg	Cys	
Phe 225	Lys	Сув	Ser	Leu	Gly 230	Met	Ile	Asn	Gly	Met 235	Glu	Cys	Arg	Суѕ	Gly 240	
Arg	Met	Arg	Сув	Asp 245	Val	Val	Gly	Gly	Ser 250	Ser	Lys	Gly	Ser	Asp [.] 255	Met	
Ser	Asn	Gly	Phe 260	Asp	Phe	Leu	Gly	Leu 265	Ala	Lys	ГÀ8	Glu	Thr 270	Thr	Ser	
Leu					Ser		Glu 280	Met	Lys							
<210 <210 <210 <210	l> 2 2> I	27 228 DNA Arabi	idops	sis t	hali	ana										
<220 <220 <220 <220	L> (2>	CDS (1).	. (228	3)		,										
<400 atg Met 1	gat	27 aac Asn	cat His	cgc Arg 5	agg Arg	act Thr	aag Lys	caa Gln	ccc Pro 10	aag Lys	acc Thr	aac Asn	tcc Ser	atc Ile 15	gtt Val	48
act Thr	tct Ser	tct Ser	tct Ser 20	gaa Glu	gaa Glu	gtg Val	agt Ser	agt Ser 25	Leu	Glu	Trp	gaa Glu	gtt Val 30	gtg Val	aac Asn	96
									P	age	31					

MRTIS	Sequence	Lietina	CT25
MDITO	sequence	LISTING.	3123

	•						MBI	16 S	eque	nce :	List	ing.	ST25			
								gtc Val								144
								G1y 999								192
								atg Met								228
<210 <211 <212 <213	l>	28 75 PRT Arabi	dops	sis t	:hali	iana										
<400)> 2	28														
Met 1	Asp	Asn	His	Arg 5	Arg	Thr	Lys	Gln	Pro 10	Lys	Thr	Asn	Ser	Ile 15	Val	
Thr	Ser	Ser	Ser 20	Glu	Glu	Val _.	Ser	Ser 25	Leu	Glu	Trp	Glu	Val 30	Val	Asn	
Met	Ser	Gln 35	Glu	Glu	Glu	Asp	Leu 40	Val	Ser	Arg	Met	His 45	Lys	Leu	Val	
Gly	Asp 50	Arg	Trp	Glu	Leu	Ile 55	Ala	Gly	Arg	Ile	Pro 60	Gly	Arg	Thr	Ala	
Gly 65	Glu	Ile	Glu	Arg	Phe 70	Trp	Val	Met	Lys	Asn 75						
<210 <210 <210 <210	L> 4 2> 1	29 480 DNA Arabi	idops	sis t	hali	iana										
<220 <220 <220 <220	L> (?>	CDS (1).	. (480))												
<400 atg Met 1	ggt	29 ctt Leu	cct Pro	gaa Glu 5	gat Asp	ttc Phe	atc Ile	acc Thr	gag Glu 10	ctt Leu	cag Gln	att Ile	cca Pro	ggt Gly 15	tac Tyr	48
ata Ile	tta Leu	aag Lys	ata Ile 20	ctt Leu	tac Tyr	gtc Val	atc Ile	ggt Gly 25	ttc Phe	ttt Phe	aga Arg	gac Asp	atg Met 30	gtc Val	gat Asp	96
gct Ala	ctt Leu	tgt Cys 35	cct Pro	tac Tyr	att Ile	ggt Gly	cta Leu 40	cct Pro	agt Ser	ttt Phe	cta Leu	gac Asp 45	cac His	aac Asn	gag Glu	144
								cac His								192
								gtt Val								240
gat Asp	ccg Pro	gaa Glu	gat Asp	tgt Cys	tgt Cys	acg Thr	gtt Val	tgt Cys	Leu	tca Ser age	Asp	ttt Phe	gag Glu	tcc Ser	gac Asp	288

	85	MBI16 Seque	ence Listing.ST	25 95
	Gln Leu Pro		cac gtg ttt ca His Val Phe Hi	s His His
tgt tta gac cgt Cys Leu Asp Arg 115	tgg atc gtt Trp Ile Val	gac tac aad Asp Tyr Asr 120	: aag atg aaa tg Lys Met Lys Cy 125	gt ccg gtt 384 's Pro Val
tgt cgg cac cgg Cys Arg His Arg 130	ttc tta ccg Phe Leu Pro 135	aaa gaa aaq Lys Glu Lys	tac acg caa to Tyr Thr Gln Cy 140	gt gat tgg 432 /8 Asp Trp
			gtg gaa agt ac Val Glu Ser Th	
<210> 30 <211> 159 <212> PRT <213> Arabidor	sis thaliana			·
<400> 30				
Met Gly Leu Pro 1	Glu Asp Phe 5	Ile Thr Glu	Leu Gln Ile Pr	o Gly Tyr 15
Ile Leu Lys Ile 20	Leu Tyr Val	Ile Gly Phe 25	Phe Arg Asp Me	
Ala Leu Cys Pro 35	Tyr Ile Gly	Leu Pro Ser 40	Phe Leu Asp Hi	s Asn Glu
Thr Ser Gly Pro	Asp Pro Thr 55	Arg His Ala	Leu Ser Thr Se	er Ala Ser
Leu Ala Asn Glu 65	Leu Ile Pro 70	Val Val Arg	Phe Ser Asp Le	eu Pro Thr 80
Asp Pro Glu Asp	Cys Cys Thr 85	Val Cys Leu 90	Ser Asp Phe Gl	u Ser Asp 95
Asp Lys Val Arg		Lys Cys Gly 105	His Val Phe Hi	
Cys Leu Asp Arg	Trp Ile Val	Asp Tyr Asn 120	Lys Met Lys Cy 125	rs Pro Val
Cys Arg His Arg	Phe Leu Pro 135	Lys Glu Lys	Tyr Thr Gln Cy 140	s Asp Trp
Gly Ser Gly Ser 145	Asp Trp Phe 150	Ser Asp Glu	Val Glu Ser Th	r Asn
<210> 31 <211> 1221 <212> DNA <213> Arabidop	sis thaliana		•	
<220> <221> CDS <222> (162)(<223> G964	1013)		<u> </u>	

MBI16 Sequence Listing.ST25

<400 attt		itc o	cacaa	agaç	gt co	taac	ttcg	g agt	tga:	aca	aaca	ıccat	tt c	ctcat	ct	cta	60
tctc	agaa	ag a	acaa	acca	at tt	cgt	ttct	tto	tttc	tct	atto	tcat	aa g	gaaa	ata	taa	120
ttcc	tgaa	ac t	gttg	gagtt	c tt	gtga	ıaagg	g aaa	taaa	aaa			g at				176
gaa Glu	gat Asp	cta Leu	ggt Gly	ttg Leu 10	agc Ser	cta Leu	agc Ser	tta Leu	999 Gly 15	ttt Phe	tca Ser	caa Gln	aat Asn	cac His 20	aa As:	t n	224
cct Pro	ctt Leu	cag Gln	atg Met 25	aat Asn	ctg Leu	aat Asn	cct Pro	aac Asn 30	tct Ser	tca Ser	tta Leu	tca Ser	aac Asn 35	aat Asn	ct. Le	c u	272
cag Gln	aga Arg	ctc Leu 40	cca Pro	tgg Trp	aac Asn	caa Gln	aca Thr 45	ttc Phe	gat Asp	cct Pro	aca Thr	tca Ser 50	gat Asp	ctt Leu	cg	c 3	320
aag Lys	ata Ile 55	gac Asp	gtg Val	aac Asn	agt Ser	ttt Phe 60	cca Pro	tca Ser	acg Thr	gtt Val	aac Asn 65	tgc Cys	gag Glu	gaa Glu	ga As	c p	368
aca Thr 70	gga Gly	gtt Val	tcg Ser	tca Ser	cca Pro 75	aac Asn	agt Ser	acg Thr	atc Ile	tca Ser 80	agc Ser	acc Thr	att Ile	agc Ser	99 G1 85	Y	416
aag Lys	aga Arg	agt Ser	gag Glu	aga Arg 90	gaa Glu	gga Gly	atc Ile	tcc Ser	gga Gly 95	acc Thr	ggc Gly	gtt Val	ggc Gly	tcc Ser 100	99 G1	y C	464
			gac Asp 105														512
tca Ser	gat Asp	gaa Glu 120	gaa Glu	gaa Glu	gac Asp	999 Gly	ggc Gly 125	gaa Glu	acg Thr	tcg Ser	agg Arg	aag Lys 130	aag Lys	ctc Leu	ag	g 3	560
tta Leu	tca Ser 135	aaa Lys	gat Asp	cag Gln	tct Ser	gct Ala 140	ttt Phe	ctc Leu	gaa Glu	gag Glu	act Thr 145	ttc Phe	aaa Lys	gaa Glu	ca Hi	С В	608
			aat Asn													n	656
ttg Leu	acg Thr	gca Ala	aga Arg	caa Gln 170	gtg Val	gaa Glu	gtg Val	tgg Trp	ttc Phe 175	caa Gln	aac Asn	aga Arg	aga Arg	gct Ala 180	ag Ar	a g	704
acc Thr	aag Lys	tta Leu	aag Lys 185	caa Gln	acg Thr	gag Glu	gta Val	gat Asp 190	tgc Cys	gaa Glu	tac Tyr	ttg Leu	aaa Lys 195	cgg Arg	tg Cy	C 8	752
gta Val	gag Glu	aag Lys 200	cta Leu	acg Thr	gaa Glu	gag Glu	aac Asn 205	cgg Arg	aga Arg	ctt Leu	cag Gln	aaa Lys 210	gag Glu	gct Ala	at Me	g t	800
gag Glu	ctt Leu 215	cga Arg	act Thr	ctc Leu	aag Lys	ctg Leu 220	tct Ser	cca Pro	caa Gln	ttc Phe	tac Tyr 225	ggt Gly	cag Gln	atg Met	ac Th	t r	848
cca Pro 230	cca Pro	act Thr	aca Thr	ctc Leu	atc Ile 235	atg Met	tgt Cys	cct Pro	tcg Ser	tgc Cys 240	gag Glu	cgt Arg	gta Val	gct Ala	99 G1 24	y	896
			tcg Ser														944

MBI16 Sequence Listing.ST25 ccg tgg att gct tgt gct cag gtg gct cat ggg ctg aat ttt gaa Pro Trp Ile Ala Cys Ala Gly Gln Val Ala His Gly Leu Asn Phe Glu
gcc ttg cgt cca cga tcg taa tttttagtgg tggggggaagg gtgttttggg Ala Leu Arg Pro Arg Ser
280 ttttttcatt accgitatat agtctatctg tgtggggtca ttgtaatttt ggatgattgg
ccttctcatg aactagtcat atgtatgatg caaccttaaa aatatttcaa gtagcaaaac
ttaattacaa acttgctata ttaaccaaaa attatgaaaa aaaaaaaaaa
<210> 32 <211> 283 <212> PRT <213> Arabidopsis thaliana
<400> 32
Met Met Met Gly Lys Glu Asp Leu Gly Leu Ser Leu Ser Leu Gly Phe 1 10 15
Ser Gln Asn His Asn Pro Leu Gln Met Asn Leu Asn Pro Asn Ser Ser 20 25 30
Leu Ser Asn Asn Leu Gln Arg Leu Pro Trp Asn Gln Thr Phe Asp Pro 35 40 45
Thr Ser Asp Leu Arg Lys Ile Asp Val Asn Ser Phe Pro Ser Thr Val 50 60
Asn Cys Glu Glu Asp Thr Gly Val Ser Ser Pro Asn Ser Thr Ile Ser 65 70 75 80
Ser Thr Ile Ser Gly Lys Arg Ser Glu Arg Glu Gly Ile Ser Gly Thr 85 90 95.
Gly Val Gly Ser Gly Asp Asp His Asp Glu Ile Thr Pro Asp Arg Gly 100 105 110
Tyr Ser Arg Gly Thr Ser Asp Glu Glu Glu Asp Gly Glu Thr Ser 115 120 125
Arg Lys Lys Leu Arg Leu Ser Lys Asp Gln Ser Ala Phe Leu Glu Glu 130 .135 140
Thr Phe Lys Glu His Asn Thr Leu Asn Pro Lys Gln Lys Leu Ala Leu 145 150 155 160
Ala Lys Lys Leu Asn Leu Thr Ala Arg Gln Val Glu Val Trp Phe Gln 165 170 175
Asn Arg Arg Ala Arg Thr Lys Leu Lys Gln Thr Glu Val Asp Cys Glu 180 185 190
Tyr Leu Lys Arg Cys Val Glu Lys Leu Thr Glu Glu Asn Arg Arg Leu 195 200 205
Gln Lys Glu Ala Met Glu Leu Arg Thr Leu Lys Leu Ser Pro Gln Phe Page 35

MBI16 Sequence Listing.ST25 210 215 220

Tyr Gly Gln Met Thr Pro Pro Thr Thr Leu Ile Met Cys Pro Ser Cys 225 230 235 240 Glu Arg Val Ala Gly Pro Ser Ser Ser Asn His His His Asn His Arg Pro Val Ser Ile Asn Pro Trp Ile Ala Cys Ala Gly Gln Val Ala His Gly Leu Asn Phe Glu Ala Leu Arg Pro Arg Ser <210> 33 <211> 1249 <212> DNA Arabidopsis thaliana <213> <220> <221> CDS <222> (82)..(918) <223> G394 <400> 33 gaaattotta acaaacaatt ttottoataa tattaattot caagatotta aagattatat taatacgaag agaaaattca a atg ggt ctt gat gat tca tgc aac aca ggt Met Gly Leu Asp Asp Ser Cys Asn Thr Gly ctt gtt ctt ggt tta ggc ctc tca cca acg cct aat aat tac aat cat Leu Val Leu Gly Leu Gly Leu Ser Pro Thr Pro Asn Asn Tyr Asn His 159 gcc atc aag aaa tct tcc tcc act gtg gac cat cgt ttc atc agg ctc Ala Ile Lys Ser Ser Ser Thr Val Asp His Arg Phe Ile Arg Leu 30 35 40207 gat ccg tcg ttg act cta agc cta tcc ggt gag agc tac aag atc aag Asp Pro Ser Leu Thr Leu Ser Leu Ser Gly Glu Ser Tyr Lys Ile Lys 45 50 55 255 act ggt gcc ggc gcc ggc gac caa att tgc cgg cag acc tcg tcc cac Thr Gly Ala Gly Ala Gly Asp Gln Ile Cys Arg Gln Thr Ser Ser His 303 agc ggc atc tca tct ttc tcg agc gga agg gta aag aga gaa aga gaa Ser Gly Ile Ser Ser Phe Ser Ser Gly Arg Val Lys Arg Glu Arg Glu 351 atc tcc ggc ggc gat gga gaa gaa gag gcg gag gag acg acg gag aga Ile Ser Gly Gly Asp Gly Glu Glu Glu Ala Glu Glu Thr Thr Glu Arg 399 gtg gtg tgt tcg aga gtg agt gat gat cat gac gat gaa gaa ggt gtt Val Val Cys Ser Arg Val Ser Asp Asp His Asp Asp Glu Glu Gly Val 447 agt gct cgt aaa aag ctt aga ctc act aaa caa caa tct gct ctt ctc Ser Ala Arg Lys Lys Leu Arg Leu Thr Lys Gln Gln Ser Ala Leu Leu 495 130 543 gaa gat aac ttc aaa ctt cat agc acc ctt aat ccc aag caa aaa caa Glu Asp Asn Phe Lys Leu His Ser Thr Leu Asn Pro Lys Gln Lys Gln 150 get ett geg aga cag etg aat eta agg eet aga caa gtt gaa gtg tgg 591

Ala Leu Ala Arg Gln Leu Asn Leu Arg Pro Arg Gln Val Glu Val Trp

Page 36

		MBI16 Sequence	Listing.ST25	
155	160	165	•	170
		aca aaa cta aag Thr Lys Leu Lys 180		
		tgc gag act tta Cys Glu Thr Leu 195		
		gac ctt aag gct Asp Leu Lys Ala 210		
ccg ttt tac Pro Phe Tyr 220	atg cac atg ccg Met His Met Pro 225	gcg gcg act ttg Ala Ala Thr Leu	act atg tgc cct Thr Met Cys Pro 230	tct 783 Ser
		ggt gtc gga gga Gly Val Gly Gly 245		
		gct ttc tcc atc Ala Phe Ser Ile 260		
		cct tct gca gca Pro Ser Ala Ala 275		tta 928
gttatttaat t	ctttttgtt ggttt!	Etttt ttgtttctta	aatcaaatta ggaa	ttagtt 988
agaagataaa t	cccagggaa aaaata	attac gttgaaattg	gggggaaatg gggta	atagtc 1048
tttatagata a	agactettea aegati	ccac tttattttc	ggtgggattg ttgg	ttgatg 1108
aagaaaaaa a	aatagtttgt aatta	aggt ttaaatatgt	agagaaaaaa tgac	gaatat 1168
gtattatctt g	tttttttt ccttc	gaata tgtattacgg	taatataaat ttgc	ttgtaa 1228
aaataataaa t	atattattt g			1249
<210> 34 <211> 278 <212> PRT <213> Arabi	idopsis thaliana			
<400> 34.				
Met Gly Leu 1	Asp Asp Ser Cys 5	Asn Thr Gly Leu 10	Val Leu Gly Leu 15	Gly
Leu Ser Pro	Thr Pro Asn Asn 20	Tyr Asn His Ala 25	Ile Lys Lys Ser 30	Ser
Ser Thr Val	Asp His Arg Phe	Ile Arg Leu Asp	Pro Ser Leu Thr 45	Leu
Ser Leu Ser 50	Gly Glu Ser Tyr 55	Lys Ile Lys Thr	Gly Ala Gly Ala 60	Gly
Asp Gln Ile 65	Cys Arg Gln Thr 70	Ser Ser His Ser 75	Gly Ile Ser Ser	Phe 80
Ser Ser Gly	Arg Val Lys Arg 85	Glu Arg Glu Ile 90	Ser Gly Gly Asp 95	Gly

Glu Glu Glu Ala Glu Glu Thr Thr Glu Arg Val Val Cys Ser Arg Val

			100				MBI:	16 Se 105	equer	ice I	List	ing.S	T25 110				
Ser	Asp	Asp 115	His	Asp	Asp	Glu	Glu 120	Gly	Val	Ser	Ala	Arg 125	Lys	Lys	Leu		
Arg	Leu 130	Thr	Lys	Gln	Gln	Ser 135	Ala	Leu	Leu	Glu	Asp 140	Asn	Phe	Lys	Leu		
His 145	Ser	Thr	Leu	Asn	Pro. 150	Lys	Gln	Lys	Gln	Ala 155	Leu	Ala	Arg	Gln	Leu 160		
Asn	Leu	Arg	Pro	Arg 165	Gln	Val	Glu	Val	Trp 170	Phe	Gln	Asn	Arg	Arg 175	Ala		
Arg	Thr	Lys	Leu 180	Lys	Gln	Thr	Glu	Val 185	Asp	Сув	Glu	Phe	Leu 190	Lys	Lys		
Cys	Сув	Glu 195	Thr	Leu	Thr	Asp	Glu 200	Asn	Arg	Arg	Leu	Gln 205	Lys	Glu	Leu		
Gln	Asp 210	Leu	Lys	Ala	Leu	Lys 215	Leu	Ser	Gln	Pro	Phe 220	Tyr	Met	His	Met		
Pro 225	Ala	Ala	Thr	Leu	Thr 230	Met	Сув	Pro	Ser	Cys 235	Glu	Arg	Leu	Gly	Gly 240		
Gly	Gly	Val	Gly	Gly 245		Thr	Thr	Ala	Val 250	Asp	Glu	Glu	Thr	Ala 255	Lys		
Gly	Ala	Phe	Ser 260		Val	Thr	Lys	Pro 265	Arg	Phe	Tyr	Asn	Pro 270	Phe	Thr		
Asn	Pro	Ser 275	Ala	Ala	Сув												
<21 <21 <21 <21	1> 2>	35 1147 DNA Arab	idop	sis	thal	iana											
<22 <22 <22 <22	1> 2>	CDS (33) G489	(6	95)													
<40 tgg	0> atca	35 aca	agac	catg	ıga c	agto	tgga	ıg ct	atg Met	aac Asn	tat Tyr	ggc	aca Thr 5	aac Asn	cca Pro	!	53
+20	caa Glr	acc Thi	aac Asr	ccs Pro	atg Met	ago Ser	acc Thi	act Thr	gct Ala	gct	act Thr	gta Val	gca Ala	gga Gly	ggt	1	01

149

197

gcg gca caa cca ggc cag ctg gcg ttc cac cag atc cat cag cag cag Ala Ala Gln Pro Gly Gln Leu Ala Phe His Gln Ile His Gln Gln Gln 25 30 35

cag cag caa cag ctg gca cag cag ctt caa gca ttt tgg gag aac caa Gln Gln Gln Gln Leu Ala Gln Gln Leu Gln Ala Phe Trp Glu Asn Gln 40 45 50 55

WO 01/36598 PCT/US00/31458 MBI16 Sequence Listing.ST25 ttc aaa gag att gag aag act acc gat ttc aag aac cac agc ctt ccc Phe Lys Glu Ile Glu Lys Thr Thr Asp Phe Lys Asn His Ser Leu Pro ctt gcg aga atc aag aaa atc atg aaa gcg gat gaa gat gtc cgt atg Leu Ala Arg Ile Lys Lys Ile Met Lys Ala Asp Glu Asp Val Arg Met 293 atc tcg gct gag gcg ccg gtc gtg ttt gca agg gcc tgt gag atg ttc Ile Ser Ala Glu Ala Pro Val Val Phe Ala Arg Ala Cys Glu Met Phe 341 atc ctg gag ctg aca ctc agg tcg tgg aac cac act gag gag aat aag Ile Leu Glu Leu Thr Leu Arg Ser Trp Asn His Thr Glu Glu Asn Lys 389 agg cgg acg ttg cag aag aac gat att gct gct gct gtg act aga acc Arg Arg Thr Leu Gln Lys Asn Asp Ile Ala Ala Ala Val Thr Arg Thr 437 gat att ttt gat ttc ctt gtg gat att gtt ccc cgg gag gat ctc cga Asp Ile Phe Asp Phe Leu Val Asp Ile Val Pro Arg Glu Asp Leu Arg 485 gat gaa gtc ttg gga agt att ccg agg ggc act gtc ccg gaa gct gct Asp Glu Val Leu Gly Ser Ile Pro Arg Gly Thr Val Pro Glu Ala Ala 155 160 165 533 gct gct ggt tac ccg tat gga tac ttg cct gca gga act gct cca ata Ala Ala Gly Tyr Pro Tyr Gly Tyr Leu Pro Ala Gly Thr Ala Pro Ile 170 175 180 581 gga aat ccg gga atg gtt atg ggt aat ccc ggt ggt gcg tat cca cct Gly Asn Pro Gly Met Val Met Gly Asn Pro Gly Gly Ala Tyr Pro Pro 629 aat cct tat atg ggt caa cca atg tgg caa caa cag gca cct gac caa Asn Pro Tyr Met Gly Gln Pro Met Trp Gln Gln Ala Pro Asp Gln cct gac cag gaa aat tag caagaaactg tgagtcttcc agcttcgcgg 725 Pro Asp Gln Glu Asn ccgctctaga caggcctcgt accggatect ctagctagag ctttcgttcg tatcatcggt 785 ttcgacaacg ttcgtcaagt tcaatgcatc agtttcattg cgcacacacc agaatcctac 845 tgagtttgag tattatggca ttgggaaaac tgtttttctt gtccatttgt tgtgcttgta atttactgtg ttttttattc ggttttcgct atcgaactgt gaaatggaaa tggatggaga 965 1025 agagttaatg aatgatatgg cettttgtte atteteaaat taatattatt tggtttttet 1085 cttatttgtg gggatgaatt tgaaattata agagatatgc aaacattttg tttgagtaaa atgtgcaaat cgtggcctct aatgacccga agttaatatg aggagtaaaa cacttgtagg 1145 tg 1147 <210> <211> 220 <212> PRT <213> Arabidopsis thaliana <400> Met Asn Tyr Gly Thr Asn Pro Tyr Gln Thr Asn Pro Met Ser Thr Thr

Page 39

Ala Ala Thr Val Ala Gly Gly Ala Ala Gln Pro Gly Gln Leu Ala Phe

	\						MBI	16 S	eque	nce 1	List	ing.	ST25			
His	Gln	Ile 35	His	Gln	Gln	Gln	Gln 40	Gln	Gln	Gln	Leu	Ala 45	Gln	Gln	Leu	
Gln	Ala 50	Phe	Trp	Glu	Asn	Gln 55	Phe	Lys	Glu	Ile	Glu 60	Lys	Thr	Thr	Asp	
Phe 65	Lys	Asn	His	Ser	Leu 70	Pro	Leu	Ala	Arg	Ile 75	Lys	Lys	Ile	Met	Lys 80	
Ala	Asp	Glu	Asp	Val 85	Arg	Met	Ile	Ser	Ala 90	Glu	Ala	Pro	Val	Val 95	Phe	
Ala	Arg	Ala	Сув 100	Glu	Met	Phe	Ile	Leu 105	Glu	Leu	Thr	Leu	Arg 110	Ser	Trp	
Asn	His	Thr 115		Glu	Asn	Lys	Arg 120	Arg	Thr	Leu	Gln	Lys 125	Asn	Asp	Ile	
Ala	Ala 130	Ala	Val	Thr	Arg	Thr 135	Asp	Ile	Phe	Asp	Phe 140	Leu	Val	Asp	Ile	
Val 145	Pro	Arg	Glu	Авр	Leu 150		Asp	Glu	Val	Leu 155	Gly	Ser	Ile	Pro	Arg 160	
Gly	Thr	Val	Pro	Glu 165	Ala	Ala	Ala	Ala	Gly 170	Туг	Pro	Туг	Gly	Tyr 175	Leu	
Pro	Ala	Gly	Thr 180		Pro	Ile	Gly	Asn 185	Pro	Gly	Met	: Val	. Met	Gly	Asn	
Pro	Gly	Gly 195		туг	Pro	Pro	Asn 200	Pro	Туг	Met	Gly	/ Glr 205	Pro	Met	Trp	
Gln	Gln 210		Ala	Pro	Asp	Glr 215	Pro) Asp	Glr	Glu	220	1				
<21 <21 <21 <21	1> 2>	37 1262 DNA Arab	? oidor	osis	thal	.iana	à									
<22	10> 12> 12>	CDS (21) G463	7) 3	(957)	•											
cto															ctctctc	
tct	ttc	ttc	ttt	gtcti	tcc t	tttc	ccag	gt _. tq	gttt	tttt	t tg	ctct	ctct	gcc	ttcttga	120
cti	tca	aaag	act	cttt	ett 1	tctt	ttgg	at t	gatt	ttgg	a tt	ctag	ggct	ctc	tttctt	180
tag	gtgg	gttt	ttg	ttgt	tgt (tgtt	gtgg	tc t	ctct	g at Me 1	g at t Il	t ac e Th	t ga r Gl	a ct u Le 5	t gag u Glu	234
ate Me	g 99 t G1	g aa y Ly	a gg s Gl 10	y Gl	g ag u Se	t ga r Gl	g ct u Le	t ga u Gl 15	и ге	t gg u Gl	t ct y Le	a gg u Gl	g ct y Le 20	u se	t ctt r Leu	282

WO 01/36598	PCT/US00/31458
MBI16 Sequence Listing.ST25 ggc ggt gga acg gcg gcc aag att ggt aaa tca ggt ggt ggt ggc gcg Gly Gly Gly Thr Ala Ala Lys Ile Gly Lys Ser Gly Gly Gly Gly Ala 25 30 35	330
tgg gga gag cgt gga agg ctt ttg acg gct aag gat ttt cct tct gtt Trp Gly Glu Arg Gly Arg Leu Leu Thr Ala Lys Asp Phe Pro Ser Val 40 45 50	378
ggt tct aaa cgt gct gct gat tct gct tct cat gct ggt tca tct cct Gly Ser Lys Arg Ala Ala Asp Ser Ala Ser His Ala Gly Ser Ser Pro 55 60 65 70	426
cct cgt tca agt caa gtt gtt gga tgg cct cct ata ggg tca cac agg Pro Arg Ser Ser Gln Val Val Gly Trp Pro Pro Ile Gly Ser His Arg 75 80 85	474
atg aac agt ttg gtt aat aac caa gct aca aag tca gca aga gaa gaa Met Asn Ser Leu Val Asn Asn Gln Ala Thr Lys Ser Ala Arg Glu Glu 90 95 100	522
gaa gaa gct ggt aag aag aaa gtg aaa gat gat gaa cct aaa gat gtg Glu Glu Ala Gly Lys Lys Lys Val Lys Asp Asp Glu Pro Lys Asp Val 105 110 115	570
aca aag aaa gtg aat ggg aaa gta caa gtt gga ttt att aag gtg aac Thr Lys Lys Val Asn Gly Lys Val Gln Val Gly Phe Ile Lys Val Asn 120 125 130	618
atg gat gga gtt gct ata gga aga aaa gtg gat ttg aat gct cat tct Met Asp Gly Val Ala Ile Gly Arg Lys Val Asp Leu Asn Ala His Ser 135 140 145 150	666
Ser Tyr Glu Asn Leu Ala Gln Thr Leu Glu Asp Met Phe Phe Arg Thr 155 160 165	. 714
aat ccg ggt act gtc ggg tta acc agt cag ttc act aaa ccg ttg agg Asn Pro Gly Thr Val Gly Leu Thr Ser Gln Phe Thr Lys Pro Leu Arg 170 175 180	762
Ctt tta gat gga tcg tct gag ttt gta ctt act tat gaa gat aag gaa Leu Leu Asp Gly Ser Ser Glu Phe Val Leu Thr Tyr Glu Asp Lys Glu 185 190 195	810
gga gat tgg atg ctt gtt ggt gat gtt cca tgg aga atg ttc atc aac Gly Asp Trp Met Leu Val Gly Asp Val Pro Trp Arg Met Phe Ile Asn 200 205 210	858
tcg gtg aaa agg cta cgt gtg atg aaa acc tct gaa gct aat gga ctc Ser Val Lys Arg Leu Arg Val Met Lys Thr Ser Glu Ala Asn Gly Leu 215 220 225 230	906
gct gca cga aat caa gaa cca aac gag aga cag cga aag cag c	954
tag atctcttttc gacgttacgg tgttacaggt tttatatttt ggggttttgc	1007
aagtetgaga taettetgaa geaageataa getagattga tettatatee agtttgtgta	1067
ttttcttggt tcttataatg gtttttactg gttttcttta gtttttttt ttgctgtctt	1127
ttaatttteg gttgcgattt cactatatac tatggatgga agagaatgct ctttatatct	1187
tttactacac tgtaaatatt tgaagcttat ctaatatcgt ttttaagggt taaaaaaaccc tgacgtagcc tcgag	1247
<210> 38 <211> 246 <212> PRT <213> Arabidopsis thaliana	5215
<400> 38	

MBI16 Sequence Listing.ST25

Met Ile Thr Glu Leu Glu Met Gly Lys Gly Glu Ser Glu Leu Glu Leu 1 10 15

Gly Leu Gly Leu Ser Leu Gly Gly Gly Thr Ala Ala Lys Ile Gly Lys 20 25 30

Ser Gly Gly Gly Gly Ala Trp Gly Glu Arg Gly Arg Leu Leu Thr Ala 35

Lys Asp Phe Pro Ser Val Gly Ser Lys Arg Ala Ala Asp Ser Ala Ser 50 60

His Ala Gly Ser Ser Pro Pro Arg Ser Ser Gln Val Val Gly Trp Pro 65 70 75 80

Pro Ile Gly Ser His Arg Met Asn Ser Leu Val Asn Asn Gln Ala Thr 85 90 95

Lys Ser Ala Arg Glu Glu Glu Glu Ala Gly Lys Lys Lys Val Lys Asp 100 105 110

Asp Glu Pro Lys Asp Val Thr Lys Lys Val Asn Gly Lys Val Gln Val 115 120 125

Gly Phe Ile Lys Val Asn Met Asp Gly Val Ala Ile Gly Arg Lys Val 130 135 140

Asp Leu Asn Ala His Ser Ser Tyr Glu Asn Leu Ala Gln Thr Leu Glu 145 150 150 160

Asp Met Phe Phe Arg Thr Asn Pro Gly Thr Val Gly Leu Thr Ser Gln 165 170 175

Phe Thr Lys Pro Leu Arg Leu Leu Asp Gly Ser Ser Glu Phe Val Leu 180 185 190

Thr Tyr Glu Asp Lys Glu Gly Asp Trp Met Leu Val Gly Asp Val Pro

Trp Arg Met Phe Ile Asn Ser Val Lys Arg Leu Arg Val Met Lys Thr 210 215 220

Ser Glu Ala Asn Gly Leu Ala Ala Arg Asn Gln Glu Pro Asn Glu Arg 225 230 235 240

Gln Arg Lys Gln Pro Val

<210> 39

<211> 905

<212> DNA <213> Arabidopsis thaliana

<220>

<221> CDS

<222> (76)..(837)

<223> G767

MBI16 Sequence Listing.ST25

gadacagge cadee as as as see jjj jee jee vej as aan aan aa													
gaaaataggt taatt atg atg aaa tct ggg gct gat ttg caa ttt cca cca Met Met Lys Ser Gly Ala Asp Leu Gln Phe Pro Pro 1 5 10	111												
gga ttt aga ttt cat cct acg gat gag gag cta gtc ctc atg tat ctc Gly Phe Arg Phe His Pro Thr Asp Glu Glu Leu Val Leu Met Tyr Leu 15 20 25	159												
tgt cgt aaa tgc gcg tcg cag ccg atc cct gct ccg att atc acc gaa Cys Arg Lys Cys Ala Ser Gln Pro Ile Pro Ala Pro Ile Ile Thr Glu 30 35 40	207												
ctc gat ttg tac cga tat gat cct tgg gac ctt ccc gac atg gct ttg Leu Asp Leu Tyr Arg Tyr Asp Pro Trp Asp Leu Pro Asp Met Ala Leu 45 50 55 60	255												
tac ggt gaa aag gag tgg tat ttt ttc tca cca aga gat cga aag tat Tyr Gly Glu Lys Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr 65 70 75	303												
cca aac ggt tca aga ccc aac cgt gca gct ggt act gga tat tgg aaa Pro Asn Gly Ser Arg Pro Asn Arg Ala Ala Gly Thr Gly Tyr Trp Lys 80 85 90	351												
gct acc gga gct gat aaa cca ata ggt cgt cct aaa ccg gtt ggt att Ala Thr Gly Ala Asp Lys Pro Ile Gly Arg Pro Lys Pro Val Gly Ile 95 100 105	399												
aag aag gct cta gtg ttt tac tcg gga aaa cct cca aat gga gag aaa Lys Lys Ala Leu Val Phe Tyr Ser Gly Lys Pro Pro Asn Gly Glu Lys 110 115 120	447												
acc aat tgg att atg cac gaa tac cgg ctc gct gac gtt gac cgg tcg Thr Asn Trp Ile Met His Glu Tyr Arg Leu Ala Asp Val Asp Arg Ser 125 130 135 140	495												
gtt cgt aag aaa aac agt cta aga ttg gac gat tgg gta ttg tgt cgt Val Arg Lys Lys Asn Ser Leu Arg Leu Asp Asp Trp Val Leu Cys Arg 145 150 155	543												
ata tat aac aag aaa ggt gtc atc gag aag cga cga agc gat atc gag Ile Tyr Asn Lys Lys Gly Val Ile Glu Lys Arg Arg Ser Asp Ile Glu 160 165 170	591												
gac ggg tta aag cct gtg act gac acg tgt cca ccg gaa tct gtg gcg Asp Gly Leu Lys Pro Val Thr Asp Thr Cys Pro Pro Glu Ser Val Ala 175 180 185	639												
aga ttg atc tcc ggc tcg gag caa gcg gtg tca ccg gaa ttc acg tgt Arg Leu Ile Ser Gly Ser Glu Gln Ala Val Ser Pro Glu Phe Thr Cys 190 195 200	687												
agc aac ggt cgg ttg agt aat gcc ctt gat ttt ccg ttt aat tac gta Ser Asn Gly Arg Leu Ser Asn Ala Leu Asp Phe Pro Phe Asn Tyr Val 205 210 215 220	735												
gat gcc atc gcc gat aac gag att gtg tca cgg cta ttg ggc ggg aat Asp Ala Ile Ala Asp Asn Glu Ile Val Ser Arg Leu Leu Gly Gly Asn 225 230 235	783												
Cag atg tgg tcg acg acg ctt gat cca ctt gtg gtt agg cag gga act Gln Met Trp Ser Thr Thr Leu Asp Pro Leu Val Val Arg Gln Gly Thr 240 245 250	831												
ttc tga gttgtcacgt gcgattagag ttagtggaaa gtggaaacta tcactgtctg Phe	887												
ttttcgcacg tgtcgggc	905												

PCT/US00/31458 WO 01/36598

MBI16 Sequence Listing.ST25

<210>

<211> 253 PRT

Arabidopsis thaliana <213>

<400>

Met Met Lys Ser Gly Ala Asp Leu Gln Phe Pro Pro Gly Phe Arg Phe 1 5 10 15

His Pro Thr Asp Glu Glu Leu Val Leu Met Tyr Leu Cys Arg Lys Cys 20 25 30

Ala Ser Gln Pro Ile Pro Ala Pro Ile Ile Thr Glu Leu Asp Leu Tyr

Arg Tyr Asp Pro Trp Asp Leu Pro Asp Met Ala Leu Tyr Gly Glu Lys
50 55

Glu Trp Tyr Phe Phe Ser Pro Arg Asp Arg Lys Tyr Pro Asn Gly Ser 65 70 75 80

Arg Pro Asn Arg Ala Ala Gly Thr Gly Tyr Trp Lys Ala Thr Gly Ala 85 90 95

Asp Lys Pro Ile Gly Arg Pro Lys Pro Val Gly Ile Lys Lys Ala Leu 100 105 110

Val Phe Tyr Ser Gly Lys Pro Pro Asn Gly Glu Lys Thr Asn Trp Ile 115 120 125

Met His Glu Tyr Arg Leu Ala Asp Val Asp Arg Ser Val Arg Lys Lys 130 135 140

Asn Ser Leu Arg Leu Asp Asp Trp Val Leu Cys Arg Ile Tyr Asn Lys 145 150 160

Lys Gly Val Ile Glu Lys Arg Arg Ser Asp Ile Glu Asp Gly Leu Lys 165 170 175

Pro Val Thr Asp Thr Cys Pro Pro Glu Ser Val Ala Arg Leu Ile Ser

Gly Ser Glu Gln Ala Val Ser Pro Glu Phe Thr Cys Ser Asn Gly Arg

Leu Ser Asn Ala Leu Asp Phe Pro Phe Asn Tyr Val Asp Ala Ile Ala

Asp Asn Glu Ile Val Ser Arg Leu Leu Gly Gly Asn Gln Met Trp Ser 225 230 240

Thr Thr Leu Asp Pro Leu Val Val Arg Gln Gly Thr Phe

<210> 41 <211> 1479

<212> DNA Arabidopsis thaliana

MBI16 Sequence Listing.ST25

<220> <221> CDS <222> (192)..(962) G765 <223> <400> 41 60 tttaactgca tagttcttcc tcaaattgct catacctttg cttctctttc tttctttatt 120 caacctctta tttcttcttc agcaccaacg tgtatctgca gtaaacacat atccatcgat 180 cqatctcctc aaaaagttat tgttttcttg aaggattttt cttgttcttg atcaagcata catatatata g atg gtg gaa gaa ggc ggc gta gtt gtg aat caa gga gga Met Val Glu Glu Gly Gly Val Val Van Gln Gly Gly 230 gat cag gag gtg gtg gat ttg cct ccg ggg ttt cgg ttt cac cct act Asp Gln Glu Val Val Asp Leu Pro Pro Gly Phe Arg Phe His Pro Thr 278 gat gaa gag ata ata act cac tac ctc aaa gag aag gtc ttc aac atc Asp Glu Glu Ile Ile Thr His Tyr Leu Lys Glu Lys Val Phe Asn Ile 326 cga ttt acc gcg gca gcg att ggt caa gcc gac ctc aac aag aac gag Arg Phe Thr Ala Ala Ala Ile Gly Gln Ala Asp Leu Asn Lys Asn Glu 374 cca tgg gat cta cca aag att gca aag atg ggg gag aag gag ttt tac Pro Trp Asp Leu Pro Lys Ile Ala Lys Met Gly Glu Lys Glu Phe Tyr 422 ttt ttc tgc cag agg gat cgg aag tat ccg acc ggg atg agg acg aac Phe Phe Cys Gln Arg Asp Arg Lys Tyr Pro Thr Gly Met Arg Thr Asn 80 85 90 470 cgt gcg acc gtg tct ggt tat tgg aag gcg acc ggg aag gac aag gag Arg Ala Thr Val Ser Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys Glu 95 100 105 518 atc ttt aga ggc aaa ggt tgt ctt gtt ggg atg aag aaa aca ctt gtt Ile Phe Arg Gly Lys Gly Cys Leu Val Gly Met Lys Lys Thr Leu Val 110 115 120 120 566 ttc tat aca gga aga gct cct aaa ggt gaa aag acc aat tgg gtt atg Phe Tyr Thr Gly Arg Ala Pro Lys Gly Glu Lys Thr Asn Trp Val Met 130 135 140 cat gaa tat cgt ctt gat gga aaa tat tct tat cat aac ctc ccc aaa His Glu Tyr Arg Leu Asp Gly Lys Tyr Ser Tyr His Asn Leu Pro Lys 145 150 155 662 acc gca agg gat gaa tgg gtg tgt agg gtt ttt cac aag aac gct Thr Ala Arg Asp Glu Trp Val Val Cys Arg Val Phe His Lys Asn Ala 710 cct agt act aca atc act act aca aaa caa ctc tca agg att gat tct Pro Ser Thr Thr Ile Thr Thr Thr Lys Gln Leu Ser Arg Ile Asp Ser 758 180 806 ctt gat aac att gat cat ctc tta gac ttc tca tct ctc cct cct ctc Leu Asp Asn Ile Asp His Leu Leu Asp Phe Ser Ser Leu Pro Pro Leu 200 ata gat ccg ggt ttc ttg ggt caa ccc gcc caa gct tct ccg gtg ccc Ile Asp Pro Gly Phe Leu Gly Gln Pro Ala Gln Ala Ser Pro Val Pro 854 gtc aac acg atc tca aac ctg tct cca cca tcc tac aac cgc acc Val Asn Asn Thr Ile Ser Asn Leu Ser Pro Pro Ser Tyr Asn Arg Thr 902 230 agt cga caa cac tta cct tcc tac cca age tct caa ttt ccc tta cca 950 Page 45

•	
MBI16 Sequence Listing.ST25 Ser Arg Gln His Leu Pro Ser Tyr Pro Ser Ser Gln Phe Pro Leu Pro 240 245 250	
ctc ggt ccc taa ttccggatct gatttcggct acggggcagg ttcaggcaat Leu Gly Pro 255	1002
aataacaaag gtatgatcaa gttggagcat tetettgtga gtgtgtetca agaaaceggt	1062
ttgagttccg atgtgaacac aaccgcaacg ccagagatat cttcttatcc aatgatgatg	1122
aatccggcaa tgatggatgg tagcaagtca gcgtgtgatg gtcttgatga cttgatcttc	1182
tgggaagatt tatatactag ctaaatttgg gaaaaggtta tttgttaatt gtgattgaag	1242
agtggcatat tgattactcg tctagtgttt ttaatcgtgt aattagttcg tatataatat	1302
acatgtacat aagatcatta ggtttattag gcattggact ttagttcggt gattgcttac	1362
ctagttttta gcttgagaaa aaaggctgtc attggggtta tgtttctttg tgattaactt	1422
gtacatatat acatttaaat taaacgtatg gtttaaatcg tttaaaaaaa aaaaaaa	1479
<210> 42 <211> 256 <212> PRT <213> Arabidopsis thaliana	
<400> 42	
Met Val Glu Glu Gly Gly Val Val Val Asn Gln Gly Gly Asp Gln Glu 1 10 15	
Val Val Asp Leu Pro Pro Gly Phe Arg Phe His Pro Thr Asp Glu Glu 20 25 30	
Ile Ile Thr His Tyr Leu Lys Glu Lys Val Phe Asn Ile Arg Phe Thr 35 40 45	
Ala Ala Ala Ile Gly Gln Ala Asp Leu Asn Lys Asn Glu Pro Trp Asp 50 55 60	
Leu Pro Lys Ile Ala Lys Met Gly Glu Lys Glu Phe Tyr Phe Phe Cys 75 80	
Gln Arg Asp Arg Lys Tyr Pro Thr Gly Met Arg Thr Asn Arg Ala Thr 85 90 95	
Val Ser Gly Tyr Trp Lys Ala Thr Gly Lys Asp Lys Glu Ile Phe Arg 100 105 110	
Gly Lys Gly Cys Leu Val Gly Met Lys Lys Thr Leu Val Phe Tyr Thr 115 120 125	
Gly Arg Ala Pro Lys Gly Glu Lys Thr Asn Trp Val Met His Glu Tyr 130 135 140	
Arg Leu Asp Gly Lys Tyr Ser Tyr His Asn Leu Pro Lys Thr Ala Arg 145 150 155 160	
Asp Glu Trp Val Val Cys Arg Val Phe His Lys Asn Ala Pro Ser Thr 165 170 175	

Thr I	ie Thr	Thr 180	Thr	Lys	Gln	MBI:	16 Se Ser 185	equei Arg	nce I Ile	List: Asp	ing.: Ser	ST25 Leu 190	Asp	Asn	
Ile A	sp His 195		Leu	Asp	Phe	Ser 200	Ser	Leu	Pro	Pro	Leu 205	Ile	Авр	Pro	
	he Leu 10	Gly	Gln	Pro	Ala 215	Gln	Ala	Ser	Pro	Val 220	Pro	Val	Asn	Asn	
Thr I	le Ser	Asn	Leu	Ser 230	Pro	Pro	Ser	Tyr	Asn 235	Arg	Thr	Ser	Arg	Gln 240	
His L	eu Pro	Ser	Tyr 245	Pro	Ser	Ser	Gln	Phe 250	Pro	Leu	Pro	Leu	Gly 255	Pro	. :
<210><211><212><213>	825 DNA	idops	sis (hali	iana										
<220><221><222><222><223>	CDS		5)										-		
<400> atg g Met G 1	• 43 gga agg Gly Arg	tct Ser	cct Pro 5	tgc Cys	tgt Cys	gag Glu	aaa Lys	gac Asp 10	cac His	aca Thr	aac Asn	aaa Lys	gga Gly 15	gct Ala	48
tgg a Trp T	ct aag Thr Lys	gaa Glu 20	gaa Glu	gac Asp	gat Asp	aag Lys	ctc Leu 25	atc Ile	tct Ser	tac Tyr	atc Ile	aaa Lys 30	gct Ala	cac His	96
ggt g Gly G	gaa ggt Slu Gly 35	tgt Cys	tgg Trp	cgt Arg	tct Ser	ctt Leu 40	cct Pro	aga Arg	ţcc Ser	gcc Ala	ggt Gly 45	ctt Leu	caa Gln	cgt Arg	144
Cys G	gga aaa 31y Lys 50	agc Ser	tgt Cys	cgt Arg	ctc Leu 55	cga Arg	tgg Trp	att Ile	aac Asn	tat Tyr 60	ctc Leu	cga Arg	cct Pro	gat Asp	192
ctc a Leu L 65	ag agg Lys Arg	ggt Gly	aac Asn	ttc Phe 70	acc Thr	ctc Leu	gaa Glu	gaa Glu	gat Asp 75	gat Asp	ctc Leu	atc Ile	atc Ile	aaa Lys 80	240
cta c Leu H	cat ago His Ser	ctt Leu	ctc Leu 85	ggt Gly	aac Asn	aag Lys	tgg Trp	tct Ser 90	ctt Leu	att Ile	gcg Ala	acg Thr	aga Arg 95	tta Leu	288
cca g Pro G	gga aga Gly Arg	aca Thr 100	gat Asp	aac Asn	gag Glu	att Ile	aag Lys 105	aat Asn	tac Tyr	tgg Trp	aac Asn	aca Thr 110	cat His	gtt Val	336
aag a Lys A	agg aag Arg Lys 115	Leu	tta Leu	aga Arg	aaa Lys	999 Gly 120	att Ile	gat Asp	ccg Pro	gcg Ala	act Thr 125	cat His	cga Arg	cct Pro	384
Ile A	aac gaq Asn Gli 130	acc Thr	aaa Lys	act Thr	tct Ser 135	caa Gln	gat Asp	tcg Ser	tct Ser	gat Asp 140	tct Ser	agt Ser	aaa Lys	aca Thr	432
gag g Glu A 145	gac cct Asp Pro	ctt Leu	gtc Val	aag Lys 150	att Ile	ctc Leu	tct Ser	ttt Phe	ggt Gly 155	Pro	cag Gln	ctg Leu	gag Glu	aaa Lys 160	480
ata g Ile A	gca aat Ala Asi	ttc Phe	999 Gly 165	Asp	gag Glu	aga Arg	att Ile	caa Gln 170	Lys	aga Arg	gtt Val	gag Glu	tac Tyr 175	ser	528

Page 47

MBI16 Sequence Listing.ST25

									-			-				
gtt Val	gtt Val	gaa Glu	gaa Glu 180	aga Arg	tgt Cys	ctg Leu	gac Asp	ttg Leu 185	aat Asn	ctt Leu	gag Glu	ctt Leu	agg Arg 190	atc Ile	agt Ser	576
cca Pro	cca Pro	tgg Trp 195	caa Gln	gac Asp	aag Lys	ctc Leu	cat His 200	gat Asp	gag Glu	agg Arg	aac Asn	cta Leu 205	agg Arg	ttt Phe	G1 999	624
aga Arg	gtg Val 210	aag Lys	tat Tyr	agg Arg	tgc Cys	agt Ser 215	gcg Ala	Cya Cya	cgt Arg	ttt Phe	gga Gly 220	ttc Phe	999 Gly	aac Asn	ggc Gly	672
aag Lys 225	gag Glu	tgt Cys	agc Ser	tgt Cys	aat Asn 230	aat Asn	gtg Val	aaa Lys	tgt Cys	caa Gln 235	aca Thr	gag Glu	gac Asp	agt Ser	agt Ser 240	720
agc Ser	agc Ser	agt Ser	tat Tyr	tct Ser 245	tca Ser	acc Thr	gac Asp	att Ile	agt Ser 250	agt Ser	agc Ser	att Ile	ggt Gly	tat Tyr 255	gac Asp	768
ttc Phe	t tg Leu	ggt Gly	cta Leu 260	Asn	aac Asn	act Thr	agg Arg	gtt Val 265	ttg Leu	gat Asp	ttt Phe	agc Ser	act Thr 270	hen	gaa Glu	816
_	aaa Lys	tga														825

<210> 44

<212> PRT

<213> Arabidopsis thaliana

<400> 44

Met Gly Arg Ser Pro Cys Cys Glu Lys Asp His Thr Asn Lys Gly Ala 1 10 15

Trp Thr Lys Glu Glu Asp Asp Lys Leu Ile Ser Tyr Ile Lys Ala His 20 25 30

Gly Glu Gly Cys Trp Arg Ser Leu Pro Arg Ser Ala Gly Leu Gln Arg 35 40 45

Cys Gly Lys Ser Cys Arg Leu Arg Trp Ile Asn Tyr Leu Arg Pro Asp 50 55 60

Leu Lys Arg Gly Asn Phe Thr Leu Glu Glu Asp Asp Leu Ile Ile Lys 65 70 75 80

Leu His Ser Leu Leu Gly Asn Lys Trp Ser Leu Ile Ala Thr Arg Leu 85 90 90

Pro Gly Arg Thr Asp Asn Glu Ile Lys Asn Tyr Trp Asn Thr His Val

Lys Arg Lys Leu Leu Arg Lys Gly Ile Asp Pro Ala Thr His Arg Pro 115 120 125

Ile Asn Glu Thr Lys Thr Ser Gln Asp Ser Ser Asp Ser Ser Lys Thr 130 135 140

Glu Asp Pro Leu Val Lys Ile Leu Ser Phe Gly Pro Gln Leu Glu Lys 145 150 155 160

Page 48

MBI16 Sequence Listing.ST25

Ile Ala Asn Phe Gly Asp Glu Arg Ile Gln Lys Arg Val Glu Tyr Ser Val Val Glu Glu Arg Cys Leu Asp Leu Asn Leu Glu Leu Arg Ile Ser Pro Pro Trp Gln Asp Lys Leu His Asp Glu Arg Asn Leu Arg Phe Gly Arg Val Lys Tyr Arg Cys Ser Ala Cys Arg Phe Gly Phe Gly Asn Gly Lys Glu Cys Ser Cys Asn Asn Val Lys Cys Gln Thr Glu Asp Ser Ser Ser Ser Ser Tyr Ser Ser Thr Asp Ile Ser Ser Ser Ile Gly Tyr Asp Phe Leu Gly Leu Asn Asn Thr Arg Val Leu Asp Phe Ser Thr Leu Glu 265 Met Lys <210> 45 <211> 918 <212> DNA <213> Arabidopsis thalina <220> CDS <221> <222> (30)..(839) <223> G255 agcatcatca tcatcagaag aagagagtc atg gga aga tct cct tgc tgc gag Met Gly Arg Ser Pro Cys Cys Glu aaa gaa cac atg aac aaa ggt gct tgg act aaa gaa gaa gat gag aga Lys Glu His Met Asn Lys Gly Ala Trp Thr Lys Glu Glu Asp Glu Arg 10 15 20 101 cta gtc tct tac atc aag tct cac ggt gaa ggt tgt tgg cga tct ctt Leu Val Ser Tyr Ile Lys Ser His Gly Glu Gly Cys Trp Arg Ser Leu 25 30 35 40 149 cct aga gcc gct ggt ctc ctt cgc tgc ggt aaa agc tgc cgt ctt cgg Pro Arg Ala Ala Gly Leu Leu Arg Cys Gly Lys Ser Cys Arg Leu Arg 45 50 55 197 tgg att aac tat ctc cga cct gat ctc aaa aga gga aac ttt aca cat Trp Ile Asn Tyr Leu Arg Pro Asp Leu Lys Arg Gly Asn Phe Thr His 60 65 70245 gat gaa gat gaa ctt atc atc aag ctt cat agc ctc cta ggc aac aag Asp Glu Asp Glu Leu Ile Ile Lys Leu His Ser Leu Leu Gly Asn Lys 75 80 85 293 tgg tct ttg att gcg gcg aga tta cct gga aga aca gat aac gag atc Trp Ser Leu Ile Ala Ala Arg Leu Pro Gly Arg Thr Asp Asn Glu Ile 341

aag aac tac tgg aac aca cat ata aag agg aag ctt ttg agc aaa ggg

Page 49

Lув 105	Asn	Tyr	Trp	Asn	Thr 110	His	MBI: Ile	Lys	equer Arg	Lys 115	List: Leu	ing.S Leu	ST25 Ser	Lys	Gly 120	
att Ile	gat Asp	cca Pro	gcc Ala	act Thr 125	cat His	aga Arg	999 Gly	atc Ile	aac Asn 130	gag Glu	gca Ala	aaa Lys	att Ile	tct Ser 135	gat Asp	437
ttg Leu	aag Lys	aaa Lys	aca Thr 140	aag Lys	gac Asp	caa Gln	att Ile	gta Val 145	aaa Lys	gat Asp	gtt Val	tct Ser	ttt Phe 150	gtg Val	aca Thr	485
aag Lys	ttt Phe	gag Glu 155	gaa Glu	aca Thr	gac Asp	aag Lys	tct Ser 160	G1y 999	gac Asp	cag Gln	aag Lys	caa Gln 165	aat Asn	aag Lys	tat Tyr	533
att Ile	cga Arg 170	aat Asn	999 999	tta Leu	gtt Val	tgc Cys 175	aaa Lys	gaa Glu	gag Glu	aga Arg	gtt Val 180	gtt Val	gtt Val	gaa Glu	gaa Glu	581
aaa Lys 185	ata Ile	ggc Gly	cca Pro	gat Asp	ttg Leu 190	aat Asn	ctt Leu	gag Glu	ctt Leu	agg Arg 195	He	agt Ser	cca Pro	cca Pro	tgg Trp 200	629
caa Gln	aac Asn	cag Gln	aga Arg	gaa Glu 205	ata Ile	tct Ser	act Thr	tgc Cys	act Thr 210	gcg Ala	tcc Ser	cgt Arg	ttt Phe	tac Tyr 215	atg Met	677
gaa Glu	aac Asn	gac Asp	atg Met 220	Glu	tgt Cys	agt Ser	agt Ser	gaa Glu 225	act Thr	gtg Val	aaa Lys	tgt Cys	caa Gln 230	Inr	gag Glu	725
aat Asn	agt Ser	agc Ser 235	agc Ser	att Ile	agc Ser	tat Tyr	tct Ser 240	Ser	att Ile	gat Asp	att Ile	agt Ser 245	ser	agt Ser	aac Asn	773
gtt Val	ggt Gly 250	Tyr	gac Asp	ttc Phe	ttg Leu	ggt Gly 255	Leu	aag Lys	aca Thr	aga Arg	att Ile 260	Leu	gat Asp	ttt Phe	cga Arg	821
agc Ser 265	Leu	gaa Glu	atg Met	aaa Lys	taa	atg	aata	gta	ttag	atto	tt a	attt	gtag	g		869
tct	gata	atg	aatg	ttag	at t	cgcg	gccc	t ct	agac	aggo	ctc	gtac	cg			918
<21 <21 <21 <21	1> 2>	46 269 PRT Arab	oidop	sis	thal	ina										
<40	0>	46														
Met 1	Gly	Arg	Ser	Pro 5	Сув	Сув	Glu	Lys	Glu 10	His	Met	. Asn	Lys	Gly 15	Ala	
Tr	Thi	. Lys	3 Glu 20	Glu	a Asp	Glu	Arg	Leu 25	Val	. Sei	туг	Ile	30	s Ser	His	
Gly	Glu	35	/ Суя	Tr	Arg	Ser	Let 40	Pro	Arg	Ala	a Ala	Gl ₃ 45	, Le	ı Lev	Arg	
Cys	5 Gly 50	Lys	s Sei	с Сув	a Arg	Leu 55	ı Arç	Trp	ıle	e Ası	1 Tyi 60	. Lev	a Arg	g Pro	Asp	
Let 65	. Ly	a Arg	g Gly	Ası	n Phe 70	e Thi	c His	aA s	Glı	1 Asj 75	p Glv	ı Leı	1 Ile	e Ile	e Lys 80	
Le	ı Hi	s Se	r Le	ı Le	u Gly	Ası	ı Ly	s Tr	Sei	r Le	ı Ile	e Ala	a Ala	a Arg	g Leu	

MBI16 Sequence Listing.ST25

									-			_				
Pro	Gly	Arg	Thr 100	Asp	Asn	Glu	Ile	Lys 105	Asn	Tyr	Trp	Asn	Thr 110	His	Ile	
Lys	Arg	Lys 115	Leu	Leu	Ser	Lys	Gly 120	Ile	Asp	Pro	Ala	Thr 125	His	Arg	Gly	
Ile	Asn 130	Glu	Ala	Lув	Ile	Ser 135	Авр	Leu	Lys	Lys	Thr 140	Lys	Asp	Gln	Ile	
Val 145	Lys	Asp	Val	Ser	Phe 150	Val	Thr	Lys	Phe	Glu 155	Glu	Thr	Asp	Lув	Ser 160	
Gly	Asp	Gln	Lys	Gln 165	Asn	Lys	Tyr	Ile	Arg 170	Asn	Gly	Leu	Val	Cys 175	Lys	
Glu	Glu	Arg	Val 180	Val	Val	Glu	Glu	Lys 185	Ile	Gly	Pro	Asp	Leu 190	Asn	Leu	
Glu	Leu	Arg 195		Ser	Pro	Pro	Trp 200	Gln	Asn	Gln	Arg	Glu 205	Ile	Ser	Thr	
Сув	Thr 210	Ala	Ser	Arg	Phe	Tyr 215	Met	Glu	Asn	Asp	Met 220	Glu	Сув	Ser	Ser	
Glu 225	Thr	Val	Lys	Cys	Gln 230	Thr	Glu	Asn	Ser	Ser 235	Ser	Ile	Ser	Tyr	Ser 240	
Ser	Ile	Авр	Ile	Ser 245	Ser	Ser	Asn	۷al	Gly 250	Tyr	Asp	Phe	Leu	Gly 255	Leu	
ГÀв	Thr	Arg	Ile 260		Asp	Phe	Arg	Ser 265	Leu	Glu	Met	Lys				
<210 <210 <210 <210	1> 2>	47 660 DNA Arab	idop	sis	thal	iana								-		
<22 <22 <22	0> 1>	CDS (48)	(5	21)												
<22	3>	G111	3												,	
<40 aag	0> cttt	47 atc	tctt	tctt	tc t	ctcc	tctc	t at	cttt	ctct	cac	acto	atg Met	ggt	ctt Leu	56
cca Pro	Thr	gat Asp	ttc Phe	aaa Lys	gag Glu	ctt Leu 10	cag Gln	att Ile	cca Pro	ggt Gly	tac Tyr 15	gta Val	cta	aaa Lys	aca Thr	104
ctt Leu 20	tac Tyr	gto Val	ato Ile	ggt Gly	tto Phe	ttt	aga Arg	a gac	atg Met	gtc Val	qat	gct Ala	ctt Leu	tgt Cys	cct Pro 35	152
tac	ato Ile	ggt Gly	cta Leu	cca Pro	agt	ttt Phe	ctt Leu	gac Asp	cac His	aac Asn	gag Glu	aco Thi	tct Ser	cga Arg	tcc Ser	200
gac	ccg	acc	: cga		gct	ctc	tco	acç		gca Page		ctt	gco	aac	gag	248

Asp	Pro	Thr	Arg 55	Leu	Ala	Leu	Ser	.6 Se Thr 60	quen Ser	ce I Ala	isti Thr	ng . S Leu	T25 Ala 65	Asn	Glu	
tta Leu	atc Ile	ccg Pro 70	gtg Val	gtt Val	cgt Arg	Phe	tcc Ser 75	gat Asp	ctt Leu	tta Leu	acc Thr	gat Asp 80	ccg Pro	gaa Glu	gat Asp	296
tgc Cys	tgc Cys 85	acg Thr	gtt Val	tgc Cys	tta Leu	tcc Ser 90	gat Asp	ttt Phe	gta Val	tcc Ser	gac Asp 95	gat Asp	aag Lys	att Ile	aga Arg	344
cag Gln 100	ctg Leu	ccg Pro	aag Lys	tgt Cys	gga Gly 105	cac His	gtg Val	ttt Phe	cat His	cat His 110	cgt Arg	tgt Cys	tta Leu	gac Asp	cgt Arg 115	392
tgg Trp	atc Ile	gtt Val	gac Asp	tgt Cys 120	aat Asn	aag Lys	ata Ile	acg Thr	tgc Cys 125	ccg Pro	att Ile	tgt Cys	cgg Arg	aac Asn 130	cgg Arg	440
ttc Phe	tta Leu	ccg Pro	gag Glu 135	gaa Glu	aag Lys	tcc Ser	acg Thr	ccg Pro 140	ttt Phe	gat Asp	tgg Trp	ggt Gly	act Thr 145	tca Ser	gat Asp	488
tgg Trp	ttt Phe	aga Arg 150	Asp	gaa Glu	gtg Val	gag Glu	agt Ser 155	acc Thr	aac Asn	taa	taal	tgat	ggt	ttta	cttta	541
ctt	tta	ctt	tttt	cacg	gt aa	atati	ttt	tac	etgta	ataa	ttc	tttc	ttc	caaa	ctactg	601
															tttgt	660
<21 <21 <21 <21	1> 2>	48 157 PRT	i don	ais	thal	iana										
		48	Luop		-											
<40 Met 1			Pro	Thr 5	Asp	Phe	Lys	Glu	Leu 10	Gln	Ile	Pro	Gly	Туг 15	Val	
Leu	Lys	Thr	Leu 20	Tyr	· Val	Ile	Gly	Phe 25	Phe	Δra	Asp	Met	Val	Asç	Ala	
Leu	Сув										-		30			
Car		Pro 35	туг	Ile	Gly	Leu	Pro 40	Ser	Phe				٠.	ı Glu	Thr	
261	: Arg	35					40	-		Leu	Asp	His 45	Asr		Thr	
	50	35 3 Se1	. Yet) Pro	Thr	Arg 55	Leu	Ala	. Leu	Leu Ser	Asp Thr	His 45	Asr Ala	a Thi		
Ala 65	50 ABI	35 g Ser	: Asp	Pro	Pro	Arg 55 Val	Leu Val	Ala	Leu Phe	Leu Ser Ser 75	Asp Thr 60	His 45 Ser	Asr Ala	a Thi	Leu Asp	
Ala 65	50 ABI	35 3 Ser 1 Glu 1 Asj	Asp Lev	Pro I Ile S Cys 85	Pro 70	Arg 55 Val	Leu Val	Ala Arg	Leu Phe Ser 90	Leu Ser 75	Asp Thr 60 Asp	His 45 Ser Lev	Asr Ala Lev	Thi Thi Asj 95	: Leu : Asp 80	
Ala 65 Pro	50 Ası Cili	35 Ser n Glu Asp	Cys Gli 100	Pro Ile S Cys 85	Pro 70 The	Arg 55 Val	Leu Val Cys	Ala Arg	Leu Phe Ser 90	Leu Ser 75 Asy	Asp Thr 60 Asp Phe	His 45 : Ser Dev	Asr Ala Let Se: Hi 11	Thir Asj	Asp 80 Asp	

MBI16 Sequence Listing.ST25
Thr Ser Asp Trp Phe Arg Asp Glu Val Glu Ser Thr Asn
145 150 155

<210> 49 <211> 1201 <212> DNA <213> Arabidopsis thaliana <220> CDS <221> <222> (148)..(996) G398 <400> 49 60 agaaggtttc tcttgtcctc catacactta gcacaactga taaatctttt gaggtaaaat 120 cagctttaga tcaaggtttt tctagtcatc tctactcata aagatcaaag cttttgctat tctcattttc taccaagaga caatatc atg atg atg ggt aaa gag gat ttg ggt
Met Met Met Gly Lys Glu Asp Leu Gly 174 tta agt ctt agc ttg gga ttt gca caa aac cat cct ctc cag cta aat Leu Ser Leu Ser Leu Gly Phe Ala Gln Asn His Pro Leu Gln Leu Asn 20 ctt aaa ccc act tct tca cca atg tcc aat ctc cag atg ttt cca tgg Leu Lys Pro Thr Ser Ser Pro Met Ser Asn Leu Gln Met Phe Pro Trp 270 aac caa acc ctt gtt tct tcc tca gat caa caa aag caa cag ttt ctt Asn Gln Thr Leu Val Ser Ser Ser Asp Gln Gln Lys Gln Gln Phe Leu 45 50 55318 agg aaa atc gac gtg aac agc ttg cca aca acg gtg gat ttg gaa gag Arg Lys Ile Asp Val Asn Ser Leu Pro Thr Thr Val Asp Leu Glu Glu 366 gag aca gga gtt tcg tct cca aac agt acg atc tcg agc aca gtg agt Glu Thr Gly Val Ser Ser Pro Asn Ser Thr Ile Ser Ser Thr Val Ser 414 gga aag agg agg agt act gaa aga gaa ggt acc tcc ggt ggt ggt tgc Gly Lys Arg Arg Ser Thr Glu Arg Glu Gly Thr Ser Gly Gly Cys 462 gga gat gac ctt gac atc act cta gat aga tct tcc tca cgt gga acc Gly Asp Asp Leu Asp Ile Thr Leu Asp Arg Ser Ser Ser Arg Gly Thr 510 tcc gat gaa gag gaa gat tac gga ggt gag act tgt agg aag aag ctt Ser Asp Glu Glu Glu Asp Tyr Gly Gly Glu Thr Cys Arg Lys Leu 125 130 135 558 aga cta tcc aaa gat caa tcc gca gtt ctc gaa gac act ttc aaa gag Arg Leu Ser Lys Asp Gln Ser Ala Val Leu Glu Asp Thr Phe Lys Glu 606 cac aat act ctc aat ccc aaa cag aag ctg gct ttg gct aag aag cta His Asn Thr Leu Asn Pro Lys Gln Lys Leu Ala Leu Ala Lys Lys Leu 155 160 165 654 ggt tta aca gca aga caa gtg gaa gtg tgg ttc caa aac aga aga gca Gly Leu Thr Ala Arg Gln Val Glu Val Trp Phe Gln Asn Arg Arg Ala 702 agg aca aag tta aag cag acc gaa gtg gat tgc gag tat ttg aaa aga Arg Thr Lys Leu Lys Gln Thr Glu Val Asp Cys Glu Tyr Leu Lys Arg 750

Page 53

798

tgt gtt gag aaa tta acg gaa gag aat cgg cgg ctc gag aaa gag gca Cys Val Glu Lys Leu Thr Glu Glu Asn Arg Arg Leu Glu Lys Glu Ala 205 210 215

MBI16 Sequence Listing.ST25

MBI16 Sequence Listing.ST25	
gcg gaa cta aga gca tta aag ctt tca ccg cgg ttg tat ggt cag a Ala Glu Leu Arg Ala Leu Lys Leu Ser Pro Arg Leu Tyr Gly Gln M 220 225 230	tg 846 let
agt cca ccg acc aca ctt ttg atg tgt cca tcg tgt gaa cgt gtg g Ser Pro Pro Thr Thr Leu Leu Met Cys Pro Ser Cys Glu Arg Val A 235 240 245	gcc 894 Ma
gga cca tcc tca tct aac cac aac cag cga tct gtc tca ttg agt c Gly Pro Ser Ser Ser Asn His Asn Gln Arg Ser Val Ser Leu Ser I 250 255 260 2	cca 942 Pro 265
tgg ctc caa atg gcc cat ggg tca acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct atgg transcription for the first car acc ttt gat gtg atg cgt cct acc ttt gat gtg atg cgt acc ttt gat gtg atg acc ttt gat gtg acc ttt gacc ttt gat gtg acc ttt gat gtg acc ttt gat gtg acc ttt gat gtg ac	agg 990 Arg
tot taa otttaatgot gottotatgg gttgtgtgtg ggtoattgta otttttaga Ser	at 1046
tattgactct cagetaatgt atcettaaaa geetttttet aettttaaat ttaet	ttaat 1106
ctaattaaat tagttgtcca tgtcttcttg ataacaaaaa aatttataat tataa	aaaaa 1166
aaaaacagga taaaaaaaaa aaaaaaaaaa aaaaa	1201
<210> 50 <211> 282 <212> PRT <213> Arabidopsis thaliana	
<400> 50	
Met Met Met Gly Lys Glu Asp Leu Gly Leu Ser Leu Ser Leu Gly 1 10 15	Phe
Ala Gln Asn His Pro Leu Gln Leu Asn Leu Lys Pro Thr Ser Ser 20 25 30	Pro
Met Ser Asn Leu Gln Met Phe Pro Trp Asn Gln Thr Leu Val Ser 35 40 45	Ser
Ser Asp Gln Gln Lys Gln Gln Phe Leu Arg Lys Ile Asp Val Asn 50 60	Ser
Leu Pro Thr Thr Val Asp Leu Glu Glu Glu Thr Gly Val Ser Ser 65 70 75	Pro 80
Asn Ser Thr Ile Ser Ser Thr Val Ser Gly Lys Arg Arg Ser Thr 85 90 95	Glu
Arg Glu Gly Thr Ser Gly Gly Gly Cys Gly Asp Asp Leu Asp Ile 100 105 110	Thr
Leu Asp Arg Ser Ser Ser Arg Gly Thr Ser Asp Glu Glu Glu Asp 115 120 125	Tyr
Gly Gly Glu Thr Cys Arg Lys Lys Leu Arg Leu Ser Lys Asp Gln 130 135 140	Ser
Ala Val Leu Glu Asp Thr Phe Lys Glu His Asn Thr Leu Asn Pro 145 150 155	Lys 160

			_			_	MBI	16 Se	quer	ice 1	List	ing.	ST25	~ 3	**- 7	
Gln :	Lys	Leu	Ala	Leu 165	Ala	Lys	Lys	Leu	Gly 170	Leu	Tnr	Ala	Arg	175	Vai	
Glu '	Val	Trp	Phe 180	Gln	Asn	Arg	Arg	Ala 185	Arg	Thr	Lys	Leu	Lys 190	Gln	Thr	
Glu	Val	Asp 195	Cys	Glu	Tyr	Leu	Lys 200	Arg	Cys	Val	Glu	Lys 205	Leu	Thr	Glu	
	Asn 210	Arg	Arg	Leu	Glu	Lys 215	Glu	Ala	Ala	Glu	Leu 220	Arg	Ala	Leu	Lys	
Leu 225	Ser	Pro	Arg	Leu	Tyr 230	Gly	Gln	Met	Ser	Pro 235	Pro	Thr	Thr	Leu	Leu 240	
Met	Cys \	Pro	Ser	Сув 245	Glu	Arg	Val	Ala	Gly 250	Pro	Ser	Ser	Ser	Asn 255	His	
Asn	Gln	Arg	Ser 260	Val	Ser	Leu	Ser	Pro 265	Trp	Leu	Gln	Met	Ala 270	His	Gly	
Ser	Thr	Phe 275	Asp	Val	Met	Arg	Pro 280	Arg	Ser				•			
<210 <211 <212 <213	.> ! !> I	51 937 ONA Arab	idops	sis (thal	lana						•	,			
<220 <221 <222 <223	> (!>	CDS (120) 3395	·) (*	797)												
<400 gcac)> !	51 ccc (acta	tecti	tic go	caag	accc	t to	ctcta	atat	aag	gaag	ttc :	attt	catttg	60
gaga	ıgga	cac	gctg	acaa	gc tạ	gact	ctag	c ag	atct	ggta	ccg	tcga	caa	ggag	gaaga	119
atg Met 1	ccc Pro	tta Leu	gga Gly	gca Ala 5	gct Ala	acg Thr	gtt Val	gtg Val	gag Glu 10	gag Glu	gaa Glu	gag Glu	gag Glu	gag Glu 15	gag Glu	167
gaa Glu	gcg Ala	gtg Val	cct Pro 20	agt Ser	atg Met	tca Ser	gta Val	tcg Ser 25	ccg Pro	ccg Pro	gat Asp	agt Ser	gta Val 30	acg Thr	tcg Ser	215
tcg Ser	ttt Phe	caa Gln 35	ttg Leu	gac Asp	ttt Phe	G1y 999	att Ile 40	aaa Lys	agt Ser	tat Tyr	ggt Gly	tat Tyr 45	gag Glu	aga Arg	aga Arg	263
agc Ser	aat Asn 50	aag Lys	aga Arg	gat Asp	att Ile	gat Asp 55	gat Asp	gaa Glu	gtg Val	gag Glu	aga Arg 60	tca Ser	gcc Ala	tca Ser	aga Arg	311
gcc Ala 65	agc Ser	aac Asn	gaa Glu	gac Asp	aac Asn 70	gat Asp	gac Asp	gag Glu	aat Asn	gga Gly 75	tcc Ser	act	agg Arg	aag Lys	aaa Lys 80	359
ctt Leu	aga Arg	ctc Leu	tcc Ser	aaa Lys 85	gac Asp	caa Gln	tct Ser	gct	ttt Phe 90	ctt Leu	gaa Glu	gac Asp	agc Ser	Phe 95	aaa Lys	407
gaa Glu	cac His	agt Ser	acc	Leu	aat Asn	cct Pro	aaa Lys	cag Gln	Lys	att	gca	ttg Leu	gcg Ala 110	. rAs	cag Gln	455

PCT/US00/31458 WO 01/36598

							MBII	6 Se	quer	ice I	ist	ing.S	T25			
ttg Leu	aat Asn	ctt Leu 115	cgt Arg	cct Pro	cgt Arg	Gln	gtt Val 120	gaa Glu	gtc Val	tgg Trp	ttt Phe	caa Gln 125	aac Asn	aga Arg	cga Arg	503
gcc Ala	agg Arg 130	aca Thr	aag Lys	ctg Leu	Lys	caa Gln 135	acg Thr	gaa Glu	gtg Val	gac Asp	tgt Cys 140	gaa Glu	tac Tyr	cta Leu	aag Lys	551
aga Arg 145	Cys	tgt Cys	gag Glu	tca Ser	cta Leu 150	acc Thr	gaa Glu	gaa Glu	aac Asn	cgg Arg 155	agg Arg	ctt Leu	caa Gln	aaa Lys	gag Glu 160	599
gtt Val	aaa Lys	gaa Glu	ttg Leu	aga Arg 165	acc Thr	ttg Leu	aag Lys	act Thr	tcc Ser 170	aca Thr	ccc Pro	ttt Phe	tac Tyr	atg Met 175	caa Gln	647
ctt Leu	ccg Pro	gcc Ala	act Thr 180	act Thr	ctc Leu	act Thr	atg Met	tgc Cys 185	cct Pro	tct Ser	tgt Cys	gaa Glu	cgt Arg 190	gtt Val	gcc Ala	695
act Thr	tca Ser	gca Ala 195	gca Ala	cag Gln	ccc Pro	tcc Ser	acg Thr 200	tca Ser	gct Ala	gcc Ala	cac His	aac Asn 205	ctc Leu	tgt Cys	ttg Leu	743
tcc Ser	acg Thr 210	Ser	tca Ser	ttg Leu	att Ile	ccg Pro 215	gtt Val	aag Lys	cct Pro	cgg	ccg Pro 220	gcc Ala	aaa Lys	caa Gln	gtt Val	7 91
Ser		aag	cacci	tg c §	gaaat	acag	gt t	tgag	caaa	c gg	gcgg	ccgc	tct	agac	agg	847
225		GGG	ast c	ctct:	an ci	raga	actt	t ca	ttca	tatc	atc	qqtt	tċg	açaa	cgttcg	907
	agtt								5			-	_			937
LCa	-5		tyac	acca	90 0	-5	-5-5	_								
<21 <21 <21 <21	0> 1> 2>	52 225 PRT	oidop				-9-9								·	
<21 <21 <21 <21	0> 1> 2> 3>	52 225 PRT Arab 52	oidop	sis	thal	iana							61	. 01	g).	
<21 <21 <21 <21 <40 Met	0> 1> 2> 3> 0>	52 225 PRT Arab 52 Leu	idop Gly	sis Ala 5	thal Ala	iana Thr	Val	. Val	10					13	Glu	
<21 <21 <21 <21 <40 Met	0> 1> 2> 3> 0>	52 225 PRT Arab 52 Leu	idop Gly	sis Ala 5	thal Ala	iana Thr	Val	. Val	10					13	Glu Ser	
<21 <21 <21 <21 <1 Glu	0> 1> 2> 3> 0> Pro	52 225 PRT Arab 52 Leu	dop Gly Pro	sis Ala 5 Ser	thal Ala Met	iana Thr Ser	Val	. Val . Ser 25	Pro	Pro) Ası	Ser	va] 30	. Thi		
<21 <21 <21 <40 Met 1	0> 1> 2> 3> 0> Pro	52 225 PRT Arab 52 Leu Val	Gly Pro 20	sis Ala 5 Ser	thal Ala Met	iana Thr Ser	Val	Val Ser 25	Pro	Pro	Asr	Ser Tyr 45	• Va] 30 • Glu	Thi	Ser	
<211 <211 <211 <211 <400 Met 1 1 Sen	0> 1> 2> 3> 0> Pro Pro Ass 50	52 225 PRT Arab 52 Leu Val	Gly Pro 20 Leu	Ala 5 Ser Asp	Ala Met	Thr Ser Gly	Val	. Val Ser 25	Pro	Tyr	Gl)	Tyr 45	Val 30 Glu	Thi Arg	Ser J Arg	
<211 <211 <211 <211 <400 Meet 1 See See All 655	0> 1> 2> 3> 0> Pro Pro ABI 50 ABI 50	52 225 PRT Arab 52 1 Val Val 35 1 Lys	Gly Pro 20 Leu Arg	Ala 5 Ser Asp	Ala Met Phe Ala Ala Ala Ala	Thr Ser Gly Asp	Val Val Ile 40 Asp	Val Ser 25 Lys Glu	Pro Ser Val	Glu Gly 75	Gly Arg 60	y Tyr 45 Ser	· Val 30 · Glu · Ala	Thi Arc	Ser Arg Arg	
<pre><21 <21 <21 <21 <40 Met 1 Glu Sen Al: 65</pre>	0> 1> 2> 3> 0> Pro i Ala c Pho so so so so so i Ala c Ass so s	52 225 PRT Arab 52 52 Leu 1 Val	idop Gly Pro 20 1 Leu 3 Arg	Alas Ser Asp Asp Asp	Ala Ala Met Phe Asn 70 Asn 70	Thr Ser Gly Asp 55	Val Val Ile 40 Asp Asp	Val Ser 25 Lys Glu Glu Ala	Pro Ser Value Asia Pho 90	Pro Tyr Glu 1 Glu 75	Asp Gly Arg 60 Ser	y Tyr 45 Ser Thr	Yal 30 Glu Argaran	Thi Arg	Ser Arg Lys	

MBI16 Sequence Listing.ST25

Ala Arg Thr Lys Leu Lys Gln Thr Glu Val Asp Cys Glu Tyr Leu Lys Arg Cys Cys Glu Ser Leu Thr Glu Glu Asn Arg Arg Leu Gln Lys Glu Val Lys Glu Leu Arg Thr Leu Lys Thr Ser Thr Pro Phe Tyr Met Gln Leu Pro Ala Thr Thr Leu Thr Met Cys Pro Ser Cys Glu Arg Val Ala Thr Ser Ala Ala Gln Pro Ser Thr Ser Ala Ala His Asn Leu Cys Leu Ser Thr Ser Ser Leu Ile Pro Val Lys Pro Arg Pro Ala Lys Gln Val Ser 225 <210> <211> 927 <212> DNA <213> Arabidopsis thaliana <221> (37) .. (861) <222> G393 <223> <400> 53 aaattttaaa ggcatatttt tttcatttcg actcag atg ggt ttt gat gat aca Met Gly Phe Asp Asp Thr tgc aac aca ggt ctt gtt ctt gga tta ggt ccc tca cca att tca aat Cys Asn Thr Gly Leu Val Leu Gly Leu Gly Pro Ser Pro Ile Ser Asn 102 aat tac aat agt acc atc aga caa tcc tcc gtt tac aag ctc gag ccg Asn Tyr Asn Ser Thr Ile Arg Gln Ser Ser Val Tyr Lys Leu Glu Pro 25 30 35 150 tcg ttg act cta tgc ctc tcg ggc gat ccc tcg gtt acc gtg gtg acc Ser Leu Thr Leu Cys Leu Ser Gly Asp Pro Ser Val Thr Val Val Thr 40 45 50198 gga gct gac cag cta tgc cgt cag acg tca tct cac agc gga gtc tct Gly Ala Asp Gln Leu Cys Arg Gln Thr Ser Ser His Ser Gly Val Ser 246 tct ttc tca agc ggg agg gtg gtg aaa aga gag aga gac ggt ggc gaa Ser Phe Ser Ser Gly Arg Val Val Lys Arg Glu Arg Asp Gly Glu Glu 75 80 85 294 gag tcg ccg gag gag gaa gag atg acg gag aga gtt ata agt gat tac Glu Ser Pro Glu Glu Glu Glu Met Thr Glu Arg Val Ile Ser Asp Tyr 342 cat gaa gat gaa gat ggt att agt gct aga aaa aaa ctt agg ctt acg His Glu Asp Glu Glu Gly Ile Ser Ala Arg Lys Lys Leu Arg Leu Thr 390 aaa caa caa tot got ott ott gag gaa ago tto aag gat cat ago acc

								•								
Lys	Gln 120	Gln	Ser	Ala	Leu	Leu 125	MBI: Glu	16 Se Glu	equer Ser	ice I Phe	Listi Lys 130	ing.S Asp	His	Ser	Thr	
ctt Leu 135	aat Asn	ccc Pro	aaa Lys	caa Gln	aag Lys 140	caa Gln	gtt Val	ctg Leu	gct Ala	aga Arg 145	cag Gln	ctg Leu	aat Asn	cta Leu	agg Arg 150	486
cct Pro	aga Arg	caa Gln	gtt Val	gaa Glu 155	gta Val	tgg Trp	ttt Phe	caa Gln	aat Asn 160	aga Arg	aga Arg	gcc Ala	agg Arg	aca Thr 165	aag Lys	534
ctg Leu	aag Lys	caa Gln	aca Thr 170	gaa Glu	gta Val	gat Asp	tgt Cys	gag Glu 175	ttt Phe	ttg Leu	aag Lys	aag Lys	tgt Cys 180	tgt Cys	gaa Glu	582
aca Thr	tta Leu	gca Ala 185	Авр	gag Glu	aac Asn	ata Ile	aga Arg 190	ctt Leu	cag Gln	aaa Lys	gag Glu	att Ile 195	caa Gln	gaa Glu	ctc Leu	630
aaa Lys	acc Thr 200	Leu	aaa Lys	ttg Leu	act Thr	cag Gln 205	ccc Pro	ttt Phe	tac Tyr	atg Met	cac His 210	atg Met	cct Pro	gca Ala	tcg Ser	678
act Thr 215	Leu	acg Thr	aag Lys	tgt Cys	cct Pro 220	tct Ser	tgt Cys	gag Glu	aga Arg	atc Ile 225	ggc Gly	ggc Gly	ggc Gly	ggc Gly	999 Gly 230	726
٠.,		gga Gly	gga Gly	gga Gly 235	ggt Gly	ggc Gly	ggc Gly	agc Ser	999 Gly 240	gct Ala	acc Thr	gcg Ala	gtg Val	att Ile 245		774
gat Asj	gga Gly	agt Ser	acg Thr	Ala	aaa Lys	gga Gly	gct Ala	ttc Phe 255	ser	atc Ile	tcc Ser	tca Ser	aag Lys 260	FIC	cac His	822
tte Pho	tto Phe	aac Asr 265	Pro	ttt Phe	act Thr	aac Asn	cca Pro	Ser	gca Ala	gct Ala	tgt Cys	tga	ata	gtta	att	871
cg	ttaa			actt	aa a	atat	taat	t tt	cttt	tttt	ttt	tggg	tgg	catt	tt	927
-2	10>	54														
<2 <2	11> 12> 13>	274 PRT	oidor	sis	thal	iana	ı									
		54														
Me 1	t Gl	y Pho	e Asp	Asp 5	Thr	Сує	Ası	ı Thr	Gly 10	Leu	val	Lev	ı Gly	/ Let	ı Gly	
Pr	o Se	r Pr	0 Ile 20	e Sei	Asn	Авг	тул	c Asr 25	Se1	Th:	: Ile	e Arg	g Glr 30	n Sei	Ser	
Va	l Ty	r Ly 35		u Glı	ı Pro	Se	Let 40	u Thi	. Let	ı Cys	Lev	1 Sei 45	c Gly	у Авј	Pro	
Se	r Va 50		r Va	l Va	l Thr	Gl ₃	y Ala	a As _l	Gl:	n Lei	а Су: 60	s Ar	g Gl	n Th	r Ser	
Se 65		s Se	r Gl	y Va	1 Ser 70	: Se	r Ph	e Se	r Se	r Gl ₃	y Ar	g Va	l Va	l Ly	s Arg 80	
G!	lu Ar	g As	p Gl	y Gl 85	y Gli	ı Gl	u Se	r Pr	o Gl ¹ 90	u Gl	u Gl	u Gl	u Me	t Th 95	r Glu	
A	rg Va	1 11	.e Se 10		р Ту:	r Hi	s Gl	u As 10	p G1 5	u Gl	u Gl	y Il	e Se 11	r Al O	a Arg	

MBI16 Sequence Listing.ST25

Lys Lys Leu Arg Leu Thr Lys Gln Gln Ser Ala Leu Leu Glu Glu Ser 115 120 125

Phe Lys Asp His Ser Thr Leu Asn Pro Lys Gln Lys Gln Val Leu Ala 130 135 140

Arg Gln Leu Asn Leu Arg Pro Arg Gln Val Glu Val Trp Phe Gln Asn 145 150 155 160

Arg Arg Ala Arg Thr Lys Leu Lys Gln Thr Glu Val Asp Cys Glu Phe 165 170 175

Leu Lys Lys Cys Cys Glu Thr Leu Ala Asp Glu Asn Ile Arg Leu Gln 180 185 190

Lys Glu Ile Gln Glu Leu Lys Thr Leu Lys Leu Thr Gln Pro Phe Tyr 195 200 205

Met His Met Pro Ala Ser Thr Leu Thr Lys Cys Pro Ser Cys Glu Arg 210 215 220

Ala Thr Ala Val Ile Val Asp Gly Ser Thr Ala Lys Gly Ala Phe Ser 245 250 255

Ile Ser Ser Lys Pro His Phe Phe Asn Pro Phe Thr Asn Pro Ser Ala 260 265 270

Ala Cys

	-			
				•
)				
*1				
,				
9		·		
)				
n e e e e e e e e e e e e e e e e e e e				
ý				

n al application No.

PCT/US00/31458

		FC170300/3143	•					
IPC(7) 11/00	SSIFICATION OF SUBJECT MATTER : C12N 5/04, 5/10, 15/00, 15/09, 15/63, 15/70,		04; A01H 1/00, 9/00,					
US CL	: 435/320 1, 419, 468; 536/23.1; 800/ 278, 295							
B. FIEL	DS SEARCHED	······						
	cumentation searched (classification system followed 35/320.1, 419, 468; 536/23.1; 800/ 278, 295	by classification symbols)						
Documentati	on searched other than minimum documentation to th	e extent that such documents are includ	ed in the fields searched					
	ata base consulted during the international search (nai ontinuation Sheet	me of data base and, where practicable,	search terms used)					
	UMENTS CONSIDERED TO BE RELEVANT							
Category *	Citation of document, with indication, where a		Relevant to claim No.					
P,X	Database GenEmbl on STIC, USPTO, (Arlington,		4-6					
P,Y	AC002388, LlN et al. 'Sequence analysis of chrom thaliana,' abstract, Nature, 1999, Vol. 402, 761-76		1-3, 7-13, 25-27					
P,X	Database EST on STIC, USPTO, (Arlington, VA, ASAMIZU et al. 'A large scale analysis of cDNA i		4-6					
P,Y	12,028 non-redundant expressed sequence tags from libraries, abstract, DNA Research, 2000, Vol. 7, 1	n normalized and size-selected cDNA	1-3, 7-13, 25-27					
x	Database EST on STIC, USPTO, (Arlington, VA,		4-6					
Y	CHEN et al. unpublished, abstract, 08 September 1	777 .	1-3, 7-13, 25-27					
X Y	Database EST on STIC, USPTO, (Arlington, VA, NEWMAN et al. 'Genes galore: a summary of met scale partial sequencing of anonymous Arabidopsis	hods for accessing results from large-	4-6 					
	Physiology, 1994, Vol. 106, 1241-1255.							
Funther	documents are listed in the continuation of Box C.	See patent family annex.						
* S	pecial categories of cited documents:	"T" later document published after the in						
	defining the general state of the art which is not considered to be lar relevance	date and not in conflict with the appl principle or theory underlying the in	vention					
•	plication or patent published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered novel is taken alone						
establish i specified)	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination							
"O" document	referring to an oral disclosure, use, exhibition or other means	being obvious to a person skilled in t	be art					
	published prior to the international filing date but later than the ate claimed	"&" document member of the same pater	ı family					
	ctual completion of the international search	Date of mailing of the international se	arch report					
	2001 (13.02.2001)	U IIII						
	ailing address of the ISA/US	Authorized officer 7:001	/ 11. 0					
	unissioner of Patents and Tradetnarks PCT	Cynthia Collins	allino Jos					
	hington, D.C. 20231							
Facsimile No	o. (703)305-3230	Telephone No. (703) 605-1210						

Form PCT/ISA/210 (second sheet) (July 1998)

E | application No.
PCT/US00/31458

Database EST on STIC, USPTO, (Arlington, VA, USA), GenBank Accession AA598183, NEWMAN et al. 'Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones,' abstract, Plant Physiology, 1994, Vol. 106, 1241-1255. Database PIR_66 on STIC, USPTO, (Arlington, VA, USA), Accession T00409, ROUNSLEY et al. unpublished, abstract, 01 February 1999. Database SPTREMBL_15 on STIC, USPTO, (Arlington, VA, USA), Accession 022167, ROUNSLEY et al. unpublished, abstract, 01 January 1998. T,E RIECHMANN et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110. P,A SUNG et al. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 519-528. RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428.	Catagoris	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
et al. 'Genes gators: a summary of methods for accessing results from large-seate parinal sequencing of anoxymous Arabidopsis cDNA cloues,' abstract, Plant Physiology, 1994, Vol. 106, 1241-1255. Database PIR 66 on STIC, USPTO, (Arlington, VA, USA), Accession T00409, ROUNSLEY et al. umpublished, abstract, 01 February 1999. Database SPTREMBL_15 on STIC, USPTO, (Arlington, VA, USA), Accession 022167, ROUNSLEY et al. umpublished, abstract, 01 January 1998. RIECHMANN et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110. P.A. SUNG et al. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 319-328. P.Y. RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428. US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral identity in Arabidopsis. Development. March 1999, Vol. 102, pages 1109-1120. A. RIECHMANN et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 3969-978. A. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 134-1249. A. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1994-1910. A. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, ApetaLa3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996. Vol. 93, pages 4793-4798. A. RIECHMANN et		Deschare EST on STIC USPID (Arlington, VA. USA), GenBank Accession AA598183, NEWMAN	4-6
Database SPTREMBL. 15 on STIC, USPTO, (Arlington, VA, USA), Accession 022167, ROUNSLEY et al. unpublished, abstract, 01 January 1998. RIECHMANN et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110. SUNG et al. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 519-528. RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428. VS 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral Identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. A RIECHMANN et al. The APJ/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. A RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins API, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins AP57, AP57 and AP57 ALA, AP57 ALA, P1, P1, P1, AP57 AND AP57 AND AP57 AND AP57 AND AP57 ALA, AP57 ALA, P1, P1, P1, AP57 AND AP57 AND AP57 AND AP57 ALA, AP57 ALA, P1, P1, P1, P1, P1, P1, P1, P1, P1, P1		last at "Compare onlors: a summary of methods for accessing results from large-scale partial sequencing of	1-3, 7-13, 25-27
Database SPTREMBL 15 on STIC, USPTO, (Arlington, VA, USA), Accession 022167, ROUNSLEY et al. unpublished, abstract, 01 January 1998. T.E RIECHMANN et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110. SUNG et al. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 519-528. P.Y RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428. V US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral Identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. A SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. A RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1249-1259. A RIECHMANN et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of ambC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins AP5TALA1, AP6TALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996. Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins AP6TALA1, AP6TALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996. Vol. 33, pages 4793-4798. BIEADD et al. Symbiotic induction of a	. 	Database PIR_66 on STIC, USPTO, (Arlington, VA, USA), Accession T00409, ROUNSLEY et al. unpublished, abstract, 01 February 1999.	
eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110. SUNG et al. Developmentally regulated expression of two MADS-box genes, MdMADS3 and MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 519-528. P.Y RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428. US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. A SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. A RIECHMANN et al. The APZ/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. A RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, Pl, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of numbC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. A RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEADD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	x 	Database SPTREMBL_15 on STIC, USPTO, (Arlington, VA, USA), Accession 022167, ROUNSLEY et al. unpublished, abstract, 01 January 1998.	
MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210, pages 519-528. RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428. Y US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral Identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of mmC5, a member of a novel subfamily. Molecular Plant-Microbe Intersections. July 1997, Vol. 10, No. 5, pages 665-676. RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798.	T,E	RIECHMANN et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 15 December 2000, Vol. 290, pages 2105-2110.	
Biology. October 2000, Vol. 3, pages 423-434, especially pages 421-428. US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46. RATCLIFFE et al. Separation of shoot and floral Identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novet subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. A RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. A RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	P.A	MdMADS4, in the morphogenesis of flower buds and fruits in apple. Planta. March 2000, Vol. 210,	
RATCLIFFE et al. Separation of shoot and floral identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	P,Y	RIECHMANN et al. A genomic perspective on plant transcription factors. Current Opinion in Plant Biology. October 2000, Vol. 3, pages 423-434, especially pages 427-428.	1-13, 25-27
RATCLIFFE et al. Separation of shoot and floral Identity in Arabidopsis. Development. March 1999, Vol. 126, pages 1109-1120. SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978. RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, Pl, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. A RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996. Vol. 24, No. 16, pages 3134-3141. A RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	Y	US 5,892,009 A (THOMASHOW et al.) 06 April 1999, column 14, lines 1-46.	1-3, 7-10, 12-13, 25-27
A RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646. A RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, P1, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. A HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmbC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. A RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. A RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.		RATCLIFFE et al. Separation of shoot and floral identity in Arabidopsis. Development. March 1999,	
Vol. 379, pages 633-646. RIECHMANN et al. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, Pl, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmbC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3. PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	SUNG et al. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiology. August 1999, Vol. 120, pages 969-978.	
proteins AP1, AP3, Pl, and AG is independent of their DNA-binding specificity. Molecular Biology of the Cell. July 1997, Vol., pages 1243-1259. HEARD et al. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily. Molecular Plant-Microbe Interactions. July 1997, Vol. 10, No. 5, pages 665-676. RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	RIECHMANN et al. The AP2/EREBP family of plant transcription factors. Biol. Chem. June 1998, Vol. 379, pages 633-646.	
characterization of nmhC5, a member of a novel subfamily. Molecular Plant-Microxe interactions. July 1997, Vol. 10, No. 5, pages 665-676. RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101. RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3. PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS, Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molecular biology of	
A RIECHMANN et al. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1996, Vol. 24, No. 16, pages 3134-3141. A RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	characterization of nmhC5, a member of a novel subfamily. Molecular Plant-Microse interactions. July	
APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Actor Research. August 1990. Vol. 24, No. 16, pages 3134-3141. RIECHMANN et al. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. May 1996, Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	RIECHMANN et al. MADS domain proteins in plant development. Biol. Chem. October 1997. Vol. 378, pages 1079-1101.	
APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. Wasy 1990. Vol. 93, pages 4793-4798. HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules.	A	APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Research. August 1990.	
A HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules. Proc. Natl. Acad. Sci. USA. June 1995, Vol. 92, pages 5273-5277.	A	APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Naii. Acad. Sci. USA. May 1990.	
, , , , , , , , , , , , , , , , , , ,	A	HEARD et al. Symbiotic induction of a MADS-box gene during development of alfalfa root nodules. Proc. Natl. Acad. Sci. USA. June 1995, Vol. 92, pages 5273-5277.	

International application No.

PCT/US00/31458

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims. 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee. 3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-13, 25-27 SEQ ID NOS:1 and 2 Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

nai application No.

PCT/US00/31458

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups I-XXVII, claim(s) 1-13 and 25-27, drawn to transgenic plants with modified environmental stress tolerance, polynucleotides and vectors for producing said transgenic plants, and methods of making said transgenic plants. Applicant must elect one pair of sequences (one nucleotide sequence and its corresponding amino acid translation) per Group to be examined, i.c. SEQ ID NOS: 1 and 2 in Group I, SEQ ID NOS: 3 and 4 in Group II, SEQ ID NOS: 5 and 6 in Group III, etc.

Group XXVIII, claim(s) 15-17, drawn to a method of identifying a factor that is modulated by or interacts with a polypeptide.

Group XXIX, claim(s) 18, drawn to a method of identifying a molecule that modulates activity or expression of a polynucleotide or polypeptide of interest.

Group XXX, claim(s) 19 and 20, drawn to an integrated system, computer, or computer readable medium.

Group XXXI, claim(s) 21-23, drawn to a method of identifying a polynucleotide sequence.

The inventions listed as Groups I-XXXI do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Groups I-XXVII are drawn to transgenic plants and methods of producing said plants with nucleic acid sequences. The methods of Groups I-XXVII differ from each other in that they are directed to plant transformation methods and transgenic plants with structurally and functionally distinct nucleic acid sequences which encode structurally and functionally different amino acid sequences. In addition, Groups XXVIII, XXIX, and XXXI are different methods from any of Groups I-XXVII in that they have different method steps and different end products, and Group XXX requires a computer system. Thus, there is no single special technical feature which links the inventions of Groups I-XXXI under PCT Rule 13.2.

Continuation of B. FIELDS SEARCHED Item 3: STN (agricola, biosis, biotechno, biotechds, biotechabs, caba, caplus, embase, medline, uspatfull, wpids, pctfull, europatfull, japio) SEARCH TERMS: inventor names, plant transcription factor, stress tolerance; STIC sequence search for SEQ ID NOS: 1 and 2