

Speaker

Kareem El-Safty

- Al & ML Engineer "Computer Vision"
- Dean of School of Al.
- Researcher in QML.

Agenda

ML

Not Inference But Prediction [1,2]

Not Al

It's Smart Decisions

Machine Learning is simply giving a machine the cognitive ability to perform a task without human interference in terms of accuracy

ML Applications

image source

Practical Examples

[1], [2]

[6]

[3], [4], [5]

ML Pipeline

TRAINING model training Training Set Machine Learning [1,2,3,4] Raw data & Validation target Set hyperparameters tuning model selection evaluation **Test Set** Model **PREDICTING** Predict New data Target

links

1	RBM [1]	Energy Function
2	Neural Networks demystified	 Physics explains the inner workings of NNs [2,3]
3	Reinforcement learning	• Error correcting circuits [4,5,6]

Quantisation

machine learning method

k-nearest neighbour support vector machines k-means clustering

neural networks decision trees

Bayesian theory hidden Markov models

quantum approach

Efficient calculation of classical distances on a quantum computer

First explorations of quantum models

Reformulation in the language of open quantum systems

[1,2,3,4,5]

Quantisation cont.

Method	Speedup	Amplitude amplification	HHL	Adiabatic	qRAM
Bayesian inference ^{106,107}	O(√N)	Yes	Yes	No	No
Online perceptron ¹⁰⁸	O(√N)	Yes	No	No	Optional
Least-squares fitting ⁹	O(logN)*	Yes	Yes	No	Yes
Classical Boltzmann machine ²⁰	O(√N)	Yes/No	Optional/No	No/Yes	Optional
Quantum Boltzmann machine ^{22,61}	O(logN)*	Optional/No	No	No/Yes	No
Quantum PCA ¹¹	O(logN)*	No	Yes	No	Optional
Quantum support vector machine ¹³	O(logN)*	No	Yes	No	Yes
Quantum reinforcement learning ³⁰	O(√N)	Yes	No	No	No

^{*}There exist important caveats that can limit the applicability of the method⁵¹.

Variational circuits

- Meaning of variational concept [1,2,3,4]
- Different arch [<u>5</u>]
- Examples [<u>6,7,8</u>]
- Quantum Supremacy and NISQ [9]

Continuous Variable

	cv	Qubit
Basic element	Qumodes	Qubits
Information unit	1 nat ($\log_2 e$ bits)	1 bit
Relevant operators	Quadrature operators \hat{x},\hat{p} Mode operators $\hat{a},\hat{a}^{\dagger}$	Pauli operators $\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z$
Common states	Coherent states $ lpha angle$ Squeezed states $ z angle$ Number states $ n angle$	Pauli eigenstates $\ket{0/1},\ket{\pm},\ket{\pm i}$
Common gates	Rotation, Displacement, Squeezing, Beamsplitter, Cubic Phase	Phase Shift, Hadamard, CNOT, T Gate
Common measurements	Homodyne \hat{x}_{ϕ} , Heterodyne $Q(\alpha)$, Photon-counting $ n\rangle\langle n $	Pauli-basis measurements $ 0/1 angle\langle 0/1 , \pm angle\langle \pm , \pm i angle\langle \pm i $

image source

CV cont

How to Start:

- Quantum Optics and Information Science [1,2,3]
- Maths [<u>4</u>]
- papers [<u>5,6</u>]

Wonderful Examples

- Continuous-variable quantum neural networks
- Quantum machine learning in feature Hilbert spaces

Getting Started

- 1. Math
 - 1.1. <u>math for ML</u>, <u>important book for Linear Algebra</u>
 - 1.2. <u>important book</u> for explaining quantum computing
- Machine Learning
 - 2.1. <u>a 4 course</u> specialization
 - 2.2. Deep learning [<u>1,2</u>]
- 3. Quantum Mechanics: "whoever tells you that you don't need a good understanding of QM to study quantum computing, do not trust him/her"
 - 3.1. QM 1, QM 2
 - 3.2. basic hardware [3,4]
 - 3.2.1. Quantum comm
 - 3.2.1.1. quantum internet $\begin{bmatrix} 5 \end{bmatrix}$
 - 3.2.1.2. quantum crypto [<u>6</u>]
 - 3.3. Quantum computing
 - 3.3.1. [7], [8] and its series, QML [9]

Thank you