

## Abel-konkurransen 1998–99

## Fasit til første runde

**Oppgave 1:** Dersom 7x < 100, så er  $x < \frac{100}{7} = 14\frac{2}{7}$ . Det største slike heltall er dermed 14.

Oppgave 2: En terning har 6 sideflater, 12 kanter og 8 hjørner. Summen er dermed 26.

**Oppgave 3:** Merk at  $10^3 = 1000$  mens  $2^{10} = 1024$ , og at både  $10^{-3}$  og  $2^{-10}$  er mindre enn en. Alternativene A og C er de eneste som er større enn 1024, henholdsvis  $1024\frac{1}{1024}$  og  $1024\frac{1}{1000}$ . Siden 1000 < 1024 er  $\frac{1}{1000} > \frac{1}{1024}$ , så alternativ C er størst.

**Oppgave 4:** Summen av de to likningene gir 3a = (a + b) + (2a - b) = 7 + 17 = 24, hvilket gir a = 8. Da blir b = -1 og a - b = 9.

**Oppgave 5:** La n være antall trinn. Når Per er kommet halvveis opp, har han tatt  $\frac{n}{2}$  trinn; Kari har da tatt  $\frac{n}{2} - 52$  trinn. Når Per er kommet helt opp, har han tatt n trinn og Kari n - 52 trinn. Siden Kari da er kommet tre ganger så langt, er  $n - 52 = 3 \cdot (\frac{n}{2} - 52)$ . Ved å løse denne likningen finner man at n = 208.

**Oppgave 6:** Anta at punktene ligger på linjen y = ax + b. Ved å sette inn (x,y) = (2,-3) og (4,3) får vi at 2a + b = -3 og 4a + b = 3. Differansen 2a = (4a + b) - (2a + b) = 3 - (-3) = 6 gir a = 3; da blir b = -9. Dersom  $(5, \frac{k}{2})$  ligger på linjen, må  $\frac{k}{2} = 5a + b = 5 \cdot 3 - 9 = 6$ , hvilket gir k = 12.

**Oppgave 7:** Hvis vi legger til x i teller og nevner på begge brøkene, får vi at  $\frac{2+x}{3+x} = \frac{20+x}{23+x}$ . Det er mulig å gange opp med nevnerne og så løse den likningen man får. En annen metode er å se at det må finnes et tall k slik at  $20+x=k\cdot(2+x)$  og  $23+x=k\cdot(3+x)$ . Trekker vi den første likningen fra den siste, får vi at  $3=(23+x)-(20+x)=k\cdot(3+x)-k\cdot(2+x)=k$ , hvilket gir k=3. Da får vi likningen 20+x=6+3x, som gir x=7. Dette er en faktor i  $56=7\times8$ .

**Oppgave 8:** Ved å sette inn n = 1 får man  $a_1^2 - a_0 a_2 = 3^2 - a_2$  som skal være lik  $(-1)^1 = -1$ ; dette gir  $a_2 = 10$ . Ved å sette n = 2 får man  $a_2^2 - a_1 a_3 = 10^2 - 3a_3$  som skal være lik  $(-1)^2 = 1$ ; dette gir  $a_3 = 33$ .

**Oppgave 9:** La sirkelen ha radius r, og la x være sidelengden i det lille kvadratet (det som ligger i halvsirkelen.) Dersom vi trekker en linje fra sentrum i sirkelen til et av hjørnene på sirkelbuen, får vi en rettvinklet trekant der hypotenusen har lengde r og katetene har lengder x og  $\frac{x}{2}$ . Pytagoras' setning gir at  $r^2 = x^2 + (\frac{x}{2})^2 = \frac{5}{4}x^2$ , og det følger at arealet av dette kvadratet blir  $K_1 = x^2 = \frac{4}{5}r^2$ .

La så y betegne sidelengden i det store kvadratet. Fordi diagonalen til kvadratet også er en diameter i sirkelen, har den lengden 2r. Pytagoras gir at  $y^2 + y^2 = (2r)^2$ , og derfor blir  $y^2 = K_2 = 2r^2$ . Forholdet  $K_1 : K_2$  er da  $\frac{2}{5}$ .

**Oppgave 10:** Siden 3 er et oddetall er også  $3^{11}$  et oddetall; tilsvarende er  $5^{12}$  et oddetall. Summen  $3^{11} + 5^{12}$  blir dermed et partall: det er delelig med 2. Siden 2 er det minste primtall som finnes, og 2 deler  $3^{11} + 5^{12}$ , er svaret 2.

**Oppgave 11:** Det første punktet kan velges på 12 forskjellige måter og det andre på 11 forskjellige måter. Siden hvert par av punkter kan velges i to forskjellige rekkefølger, er da hvert par tatt med to ganger. Antallet par blir altså  $\frac{12\cdot11}{2}=66$ . **C** 

Oppgave 12: Trekk linjestykker fra sentrum i sirkelen til punktene der linjene tangerer sirkelen; disse to linjestykkene skjærer ut en tredjedel av sirkelen. Linjen fra sirkelsenteret til A deler  $\angle A$  i to like store deler, slik at trekanten bestemt av punktene A, sirkelsenteret og ett av tangeringspunktene, er en  $30^{\circ}-60^{\circ}-90^{\circ}$ -trekant. Siden den korteste kateten, radiusen, er 1, er hypotenusen 2; den andre kateten blir dermed  $\sqrt{3}$  ifølge Pytagoras' setning. Trekanten har dermed areal  $\frac{\sqrt{3}}{2}$ , og de to trekantene som utgjør det skraverte området pluss sirkelsektoren har areal  $\sqrt{3}$ . Sirkelen har areal  $\pi$ , og siden sirkelsektoren utgjør en tredjedel, har denne areal  $\frac{\pi}{3}$ . Arealet av det skraverte området er derfor  $\sqrt{3}-\frac{\pi}{3}$ .

**Oppgave 13:** Vi har  $\frac{1}{\sqrt{2}+1} = \frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)} = \sqrt{2}-1$  og  $\frac{1}{\sqrt{3}-1} = \frac{\sqrt{3}+1}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{\sqrt{3}+1}{2}$ . Vi kan også merke oss at  $\sqrt{2}(2-\sqrt{2}) = 2(\sqrt{2}-1)$ . Ved å sette inn disse uttrykkene får vi at  $\frac{\sqrt{3}+1}{\sqrt{2}+1} - \frac{\sqrt{2}(2-\sqrt{2})}{\sqrt{3}-1} = (\sqrt{3}+1)(\sqrt{2}-1) - (\sqrt{2}-1)(\sqrt{3}+1) = 0$ . **A** 

**Oppgave 14:** La S være sentrum i sirkelen, og la A og B være to nabohjørner på åttekanten. Trekanten SAB er da en likebent trekant med  $\angle S = 45^{\circ}$ . Arealsetningen gir at arealet av trekanten blir  $\frac{1}{2} \cdot SA \cdot SB \cdot \sin 45^{\circ} = \frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2} = 4\sqrt{2}$ . Det er åtte slike trekanter i åttekanten, og det samlede arealet er derfor  $32\sqrt{2}$ .

**Oppgave 15:** En heltallig løsning av likningen er (m,n)=(20,0). De andre kan man få ved å legge til 5k på n og trekke fra 6k fra m der k er et heltall: m=20-6k, n=5k. Dette gir  $nm=30(\frac{10}{3}k-k^2)=30((\frac{10}{6})^2-(k-\frac{10}{6})^2)$ . Dette uttrykket er størst mulig når k ligger nærmest mulig  $\frac{10}{6}$ : det vil si for k=2. Da blir m=8, n=10 og nm=80.

**Oppgave 16:** Siden 89 er et primtall må  $a, b \in \{1, -1, 89, -89\}$ . Dersom  $a = \pm 1$ , får vi at  $a = \pm 1 < b < a^2 = 1$ , hvilket ikke er mulig for  $b = \pm 89$ . Dermed må  $a = \pm 89$  og  $b = \pm 1$ ; men for a = 89 og  $b = \pm 1$  blir a = 89 < b umulig, så eneste mulighet er a = -89, b = -1. Ved å sette inn finner vi at dette er en løsning.

**Oppgave 17:** La AC = 2x og BC = 2y. Da er  $AD^2 = (2x)^2 + y^2$  og  $BE^2 = x^2 + (2y)^2$ . Vi ønsker å finne  $AB = \sqrt{(2x)^2 + (2y)^2} = 2\sqrt{x^2 + y^2}$ . Vi tar summen  $AD^2 + BE^2 = 5(x^2 + y^2)$  som også er lik  $7^2 + 4^2 = 65$ : det gir  $x^2 + y^2 = 13$ . Dermed har vi at  $AB = 2\sqrt{13}$ .

**Oppgave 18:** Vi har at x > y. For at  $x^3 + y^4$  skal bli negativ, må x < 0. Vi finner for eksempel at x = -0.3 og y = -0.4 gir  $x^3 + y^4 = -0.027 + 0.0256 < 0$ . Dersom vi setter x = 0 og y = -1, vil de tre siste uttrykkene,  $x^4 + y^3$ ,  $x^3 + y^3$  og  $x^4 - y^4$ , alle bli lik -1. Dermed er ingen av uttrykkene positive for alle x og y.

**Oppgave 19:** La S være sentrum i sirkelen; da danner CDS en rettvinklet trekant med kateter av lengder 5 og 12 og dermed med hypotenus  $13 = \sqrt{5^2 + 12^2}$ . La sirkelen tangere AB i punktet P. C S og P ligger da på linje og trekantene CDS og CPA er likeformede. Siden SP = 5 og CS = 13, er CP = 18. På grunn av likeformetheten er  $\frac{AC}{CP} = \frac{CS}{CD} = \frac{13}{12}$ , og CP = 18 gir til slutt  $AC = \frac{39}{2}$ .

Oppgave 20: Del tallene fra 1 til 100 inn i grupper:  $X_1 = \{1, 11, 21, \dots, 91\}, \dots, X_{10} = \{10, 20, \dots, 100\}$ . At summen av to forskjellige elementer i A ikke skal være delelig med 10, betyr følgende: A kan ikke innholde to forskjellige elementer fra  $X_5$  eller to forskjellige elementer fra  $X_{10}$ , men høyst ett element fra hver av de to; A kan ikke inneholde elementer fra både  $X_1$  og  $X_9$ , fra både  $X_2$  og  $X_8$ , fra både  $X_3$  og  $X_7$ , eller fra både  $X_4$  og  $X_6$ . For å få med flest mulig elementer i A vil man da ha med ett element fra  $X_5$  og ett element fra  $X_{10}$ ; videre vil man ta med hele  $X_1$  eller hele  $X_9$ , hele  $X_2$  eller hele  $X_8$ , hele  $X_3$  eller hele  $X_7$ , og hele  $X_4$  eller hele  $X_6$ . Det er ti elementer i hver  $X_i$ -gruppe, så dette gir 42 elementer.