Genetic algorithm

Python for Al

Optimizer: Gradient Descent

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)
}

Optimization

- Derivative-based Optimization
 - Descent Methods
 - The Method of Steepest Descent
 - Classical Newton's Method
 - Step Size Determination
- Derivative-free Optimization
 - Genetic Algorithms
 - Simulated Annealing
 - Random Search
 - Downhill Simplex Search

Example: *n*-queens

- Put n queens on an n x n board with no two queens on the same row, column, or diagonal
 - Note different search space... all states have N queens

Is it a satisfaction problem or optimization?

8-queens problem

- Need heuristic function
 - Convert to an optimization problem
- h = number of pairs of queens attacking each other
- h = 17 for the above state

Search Space Recap

- State
 - All N queens on the board in some configuration
- Successor function
 - Move single queen to another square in same column.
- Example of a heuristic function h(n):
 - the # of queens-pairs that are attacking each other
 - (we want to minimize this)

Hill climbing

Hill Climbing gets stuck in local maxima

Hill-climbing search: 8-queens problem

- •Is this a solution?
- •What is h?
- •Is any successor better?

Hill-climbing on 8-queens

- Randomly generated 8-queens starting states...
- 14% the time it solves the problem
- 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 - (for a state space with $8^8 = 17$ million states)

Hill-climbing with random restarts

- If at first you don't succeed, try, try again!
- Different variations
 - For each restart: run until termination vs. run for a fixed time
 - Run a fixed number of restarts or run indefinitely

Analysis

Use this algorithm.

- Say each search has probability p of success
 - E.g., for 8-queens, p = 0.14 with no sideways moves
- Expected number of restarts?

Restarts	0	2	4	8	16	32	64
Success?	14%	36%	53%	74%	92%	99%	99.994%

– Expected number of steps taken?

Encyclopedia of Sex An Intermedial Could to her for People of All Ages?

Hey! Perhaps sex can improve search?

Sure! Check out ye book.

Genetic algorithms

- Twist on Local Search: successor is generated by combining two parent states
- A state is represented as a string over a finite alphabet (e.g. binary)
 - 8-queens
 - State = position of 8 queens each in a column
- Start with k randomly generated states (population)
- Evaluation function (fitness function):
 - Higher values for better states.
 - Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens
- Produce the next generation of states by "simulated evolution"
 - Random selection
 - Crossover
 - Random mutation

String representation 16257483

Can we evolve 8-queens through genetic algorithms?

Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $8 \times 7/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc

Genetic algorithms

Has the effect of "jumping" to a completely different new part of the search space (quite non-local)

Example and code

- Download code in the classroom
- On class: follow a step by step tutorial