LittlevGL Documentation

Release 6.1.2

Gabor Kiss-Vamosi

CONTENTS

1	Key features
2	Requirements
3	FAQ
	3.1 Where to get started?
	3.2 Where can I ask questions?
	3.3 Is my MCU/hardware supported?
	3.4 Is my display supported?
	3.5 Is LittlevGL free? How can I use it in a commercial product?
	3.6 Nothing happens, my display driver is not called. What have I missed?
	3.7 Why the display driver is called only one? Only the upper part of the display is refreshed
	3.8 Why I see only garbage on the screen?
	3.9 Why I see non-sense colors on the screen?
	3.10 How to speed up my UI?
	3.11 How to reduce flash/ROM usage?
	3.12 How to reduce the RAM usage
	3.13 How to work with an operating system?
	3.14 How to contribute to LittlevGL?
	3.15 How is LittlevGL versioned?
	3.16 Where can I find the documentation of the previous version (v5.3)?

English (en) - 中文 (zh-CN) - Français (fr) - Magyar (hu) - Türk (tr)

PDF version: LittlevGL.pdf

LittlevGL is a free and open-source graphics library providing everything you need to create embedded GUI with easy-to-use graphical elements, beautiful visual effects and low memory footprint.

Website • GitHub • Forum • Live demo • Simulator • Blog

CONTENTS 1

CHAPTER

ONE

KEY FEATURES

- Powerful building blocks such as buttons, charts, lists, sliders, images etc.
- Advanced graphics with animations, anti-aliasing, opacity, smooth scrolling
- Various input devices such as touchpad, mouse, keyboard, encoder etc.
- Multi-language support with UTF-8 encoding
- Multi-display support, i.e. use more TFT, monochrome displays simultaneously
- Fully customizable graphic elements
- Hardware independent to use with any microcontroller or display
- Scalable to operate with little memory (64 kB Flash, 16 kB RAM)
- OS, External memory and GPU supported but not required
- Single frame buffer operation even with advanced graphical effects
- Written in C for maximal compatibility (C++ compatible)
- Simulator to start embedded GUI design on a PC without embedded hardware
- Tutorials, examples, themes for rapid GUI design
- Documentation is available as online and offline
- Free and open-source under MIT license

REQUIREMENTS

- 16, 32 or 64 bit microcontroller or processor
- Greater than 16 MHz clock speed is recommended
- Flash/ROM: Greater than 64 kB size for the very essential components (greater than 180 kB is recommended)
- RAM:
 - Static RAM usage: approximately 8 to 16 kB depending on the used features and objects types
 - Stack: greater than 2kB (greater than 4 kB is recommended)
 - Dynamic data (heap): greater than 4 KB (greater than 16 kB is recommended if using several objects). Set by ${\sf LV_MEM_SIZE}$ in ${\it lv_conf.h}$
 - Display buffer: greater than "Horizontal resolution" pixels (greater than $10 \times$ "Horizontal resolution" is recommended)
- C99 or newer compiler
- Basic C (or C++) knowledge: pointers, structs, callbacks

Note that the memory usage might vary depending on the architecture, compiler and build options.

THREE

FAQ

3.1 Where to get started?

- For a general overview of LittlevGL visit littlevgl.com
- Go to the *Get started* section to try Live demos in you browser, learn about the Simulator(s) and learn the basics of LittlevGL
- A detailed porting guide can be found in the *Porting* section
- To learn how LittlevGL works go to the *Overview*
- To read tutorials or share your own experiences go to the Blog
- To see the source code of the library check it on GitHub: https://github.com/littlevgl/lvgl/

3.2 Where can I ask questions?

To ask questions in the Forum: https://forum.littlevgl.com/.

We use GitHub issues for development related discussion. So you should use them only if your question or issue is tightly related to the development of the library.

3.3 Is my MCU/hardware supported?

Every MCU which is capable of driving a display via Parallel port, SPI, RGB interface or anything else and fulfills the Requirements is supported by LittlevGL.

It includes:

- "Common" MCUs like STM32F, STM32H, NXP Kinetis, LPC, iMX, dsPIC33, PIC32 etc.
- Bluetooth, GSM, WiFi modules like Nordic NRF and Espressif ESP32
- Linux frame buffer like /dev/fb0 which includes Single board computers too like Raspberry Pi
- And anything else with a strong enough MCU and a periphery to drive a display

3.4 Is my display supported?

LittlevGL needs just one simple driver to copy an array of pixels into a given area of the display. If you can do this with your display then you can use the same display with LittlevGL.

It includes:

- TFTs with 16 or 24 bit color depth
- Monitors with HDMI port
- Small monochrome displays
- Gray-scale displays
- LED matrices
- or any other display where you can control the color/state of the pixels

See the *Porting* section to learn more.

3.5 Is LittlevGL free? How can I use it in a commercial product?

LittlevGL comes with MIT license which means you can download and use it for any purpose you want without any obligations.

3.6 Nothing happens, my display driver is not called. What have I missed?

Be sure you are calling $lv_tick_inc(x)$ in an interrupt and $lv_task_handler()$ in your main while(1).

Learn more in the *Tick* and *Task handler* section.

3.7 Why the display driver is called only one? Only the upper part of the display is refreshed.

Be sure you are calling lv disp flush_ready(drv) at the end of your "display flush callback".

3.8 Why I see only garbage on the screen?

Probably there a bug in your display driver. Try the following code without using LittlevGL:

```
#define BUF_W 20
#define BUF_H 10
lv_color_t buf[BUF_W * BUF_H];
lv_color_t * buf_p = buf;
uint16_t x, y;
for(y = 0; y < BUF_H; y++) {
   lv_color_t c = lv_color_mix(LV_COLOR_BLUE, LV_COLOR_RED, (y * 255) / BUF_H);</pre>
```

(continues on next page)

(continued from previous page)

```
for(x = 0; x < BUF_W; x++){
          (*buf_p) = c;
          buf_p++;
}

lv_area_t a;
a.x1 = 10;
a.y1 = 40;
a.x2 = a.x1 + BUF_W - 1;
a.y2 = a.y1 + BUF_H - 1;
my_flush_cb(NULL, &a, buf);</pre>
```

3.9 Why I see non-sense colors on the screen?

Probably LittlevGL's color format is not compatible with your displays color format. Check LV COLOR DEPTH in $lv_conf.h.$

If you are using 16 bit colors with SPI (or other byte-oriented) interface probably you need to set $LV_COLOR_16_SWAP$ 1 in $lv_conf.h$. It swaps the upper and lower bytes of the pixels.

3.10 How to speed up my UI?

- Turn on compiler optimization
- Increase the size of the display buffer
- Use 2 display buffers and flush the buffer with DMA (or similar periphery) in the background
- Increase the clock speed of the SPI or Parallel port if you use them to drive the display
- If you display has SPI port consider changing to a model with parallel because it has much higher throughput
- Keep the display buffer in the internal RAM (not in external SRAM) because LittlevGL uses it a lot and it should have a small access time

3.11 How to reduce flash/ROM usage?

You can disable all the unused feature (such as animations, file system, GPU etc.) and object types in $lv_conf.h.$

If you are using GCC you can add

- -fdata-sections -ffunction-sections compiler flags
- --gc-sections linker flag

to remove unused functions and variables.

3.12 How to reduce the RAM usage

- Lower the size of the Display buffer
- Reduce LV_MEM_SIZE in lv_conf.h. This memory used when you create objects like buttons, labels, etc.
- To work with lower LV_MEM_SIZE you can create the objects only when required and deleted them when they are not required anymore

3.13 How to work with an operating system?

To work with an operating system where tasks can interrupt each other you should protect LittlevGL related function calls with a mutex. See the *Operating system and interrupts* section to learn more.

3.14 How to contribute to LittlevGL?

There are several ways to contribute to LittlevGL:

- Write a few lines about your project to inspire others
- Answer other's questions
- Report and/or fix bugs
- Suggest and/or implement new features
- Improve and/or translate the documentation
- Write a blog post about your experiences

To learn more see Contributing guide

3.15 How is LittlevGL versioned?

LittlevGL follows the rules of Semantic versioning:

- Major versions for incompatible API changes. E.g. v5.0.0, v6.0.0
- Minor version for new but backwards-compatible functionalities. E.g. v6.1.0, v6.2.0
- Patch version for backwards-compatible bug fixes. E.g. v6.1.1, v6.1.2

The new versions are developed in dev-X.Y branchs on GitHub. It can be cloned to test the newset features, however, still anything can be changed there.

The bugfixes are added directly to the **master** branch on GitHub and a bugfix release is created every month.

3.16 Where can I find the documentation of the previous version (v5.3)?

You can download it here and open offline:

Docs-v5-3.zip

3.16.1 Get started

Live demos

You can see how LittlevGL looks like without installing and downloading anything either on target platform or on the host machine. There are some ready made user interfaces which you can easily try in your browser.

Go to the Live demo page and choose a demo you are interested in.

Simulator on PC

You can try out the LittlevGL using only your PC (i.e. without any development boards). The LittlevGL will run on a simulator environment on the PC where anyone can write and experiment the real LittlevGL applications.

Simulator on the PC have the following advantages:

- Hardware independent Write a code, run it on the PC and see the result on the PC monitor.
- Cross-platform Any Windows, Linux or OSX PC can run the PC simulator.
- Portability the written code is portable, which means you can simply copy it when using an embedded hardware.
- Easy Validation The simulator is also very useful to report bugs because it means common platform for every user. So it's a good idea to reproduce a bug in simulator and use the code snippet in the Forum.

Select an IDE

The simulator is ported to various IDEs (Integrated Development Environments). Choose your favorite IDE, read its README on GitHub, download the project, and load it to the IDE.

You can use any IDEs for the development but, for simplicity, the configuration for Eclipse CDT is focused in this tutorial. The following section describes the set-up guide of Eclipse CDT in more details.

Note: If you are on Windows, it's usually better to use the Visual Studio or CodeBlocks projects instead. They work out of the box without requiring extra steps.

Set-up Eclipse CDT

Install Eclipse CDT

Eclipse CDT is a C/C++ IDE.

Eclipse is a Java based software therefore be sure **Java Runtime Environment** is installed on your system.

On Debian-based distros (e.g. Ubuntu): sudo apt-get install default-jre

Note: If you are using other distros, then please refer and install 'Java Runtime Environment' suitable to your distro. Note: If you are using macOS and get a "Failed to create the Java Virtual Machine" error, uninstall any other Java JDK installs and install Java JDK 8u. This should fix the problem.

You can download Eclipse's CDT from: https://www.eclipse.org/cdt/downloads.php. Start the installer and choose $Eclipse\ CDT$ from the list.

Install SDL 2

The PC simulator uses the SDL 2 cross platform library to simulate a TFT display and a touch pad.

Linux

On **Linux** you can easily install SDL2 using a terminal:

- 1. Find the current version of SDL2: apt-cache search libsdl2 (e.g. libsdl2-2.0-0)
- 2. Install SDL2: sudo apt-get install libsdl2-2.0-0 (replace with the found version)
- 3. Install SDL2 development package: sudo apt-get install libsdl2-dev
- 4. If build essentials are not installed yet: sudo apt-get install build-essential

Windows

If you are using **Windows** firstly you need to install MinGW (64 bit version). After installing MinGW, do the following steps to add SDL2:

- 1. Download the development libraries of SDL.Go to https://www.libsdl.org/download-2.0.php and download Development Libraries: SDL2-devel-2.0.5-mingw.tar.gz
- 2. Decompress the file and go to $x86_64$ -w64-mingw32 directory (for 64 bit MinGW) or to i686-w64-mingw32 (for 32 bit MinGW)
- 3. Copy _...mingw32/include/SDL2 folder to C:/MinGW/.../x86_64-w64-mingw32/include
- 4. Copy $_\cdots mingw32/lib/$ content to $C:/MinGW/\cdots/x86_64-w64-mingw32/lib$
- 5. Copy __...mingw32/bin/SDL2.dll to {eclipse_worksapce}/pc_simulator/Debug/. Do it later when Eclipse is installed.

Note: If you are using Microsoft Visual Studio instead of Eclipse then you don't have to install MinGW.

OSX

On OSX you can easily install SDL2 with brew: brew install sdl2

If something is not working, then please refer this tutorial to get started with SDL.

Pre-configured project

A pre-configured graphics library project (based on the latest release) is always available to get started easily. You can find the latest one on GitHub or on the Download page. (Please note that, the project is configured for Eclipse CDT).

Add the pre-configured project to Eclipse CDT

Run Eclipse CDT. It will show a dialogue about the **workspace path**. Before accepting the path, check that path and copy (and unzip) the downloaded pre-configured project there. After that, you can accept the workspace path. Of course you can modify this path but, in that case copy the project to the corresponding location.

Close the start up window and go to File->Import and choose General->Existing project into Workspace. Browse the root directory of the project and click Finish

On **Windows** you have to do two additional things:

- Copy the SDL2.dll into the project's Debug folder
- Right click on the project -> Project properties -> C/C++ Build -> Settings -> Libraries -> Add ... and add mingw32 above SDLmain and SDL. (The order is important: mingw32, SDLmain, SDL)

Compile and Run

Now you are ready to run the LittlevGL Graphics Library on your PC. Click on the Hammer Icon on the top menu bar to Build the project. If you have done everything right, then you will not get any errors. Note that on some systems additional steps might be required to "see" SDL 2 from Eclipse but, in most of cases the configurations in the downloaded project is enough.

After a success build, click on the Play button on the top menu bar to run the project. Now a window should appear in the middle of your screen.

Now everything is ready to use the LittlevGL Graphics Library in the practice or begin the development on your PC.

Quick overview

Here you can learn the most important things about LittlevGL. You should read it first to get a general impression and read the detailed *Porting* and *Overview* sections after that.

Add LittlevGL into your project

The following steps show how to setup LittlevGL on an embedded system with a display and a touchpad. You can use the *Simulators* to get 'ready to use' projects which can be run on your PC.

- Download or Clone the library
- Copy the lvgl folder into your project
- Copy lvgl/lv_conf_templ.h as lv_conf.h next to the lvgl folder and set at least LV HOR RES MAX, LV VER RES MAX and LV COLOR DEPTH macros.
- Include lvql/lvql.h where you need to use LittlevGL related functions.
- Call lv_tick_inc(x) every x milliseconds in a Timer or Task (x should be between 1 and 10). It is required for the internal timing of LittlevGL.
- Call lv init()
- Create a display buffer for LittlevGL

• Implement and register a function which can **copy a pixel array** to an area of your display:

```
lv disp drv t disp drv;
                                      /*Descriptor of a display driver*/
lv disp drv init(&disp drv);
                                      /*Basic initialization*/
                                      /*Set your driver function*/
disp drv.flush cb = my disp flush;
disp drv.buffer = &disp buf;
                                      /*Assign the buffer to the display*/
lv disp drv register(&disp drv);
                                      /*Finally register the driver*/
void my disp flush(lv disp t * disp, const lv area t * area, lv color t * color p)
    int32 t x, y;
    for(y = area->y1; y <= area->y2; y++) {
        for(x = area->x1; x <= area->x2; x++) {
            set pixel(x, y, *color p); /* Put a pixel to the display.*/
            color p++;
        }
    }
   lv_disp_flush_ready(disp);
                                      /* Indicate you are ready with the flushing*/
}
```

• Implement and register a function which can **read an input device**. E.g. for a touch pad:

```
lv indev drv t indev drv;
                                           /*Descriptor of a input device driver*/
lv indev drv init(&indev drv);
                                           /*Basic initialization*/
indev drv.type = LV INDEV TYPE POINTER;
                                           /*Touch pad is a pointer-like device*/
indev drv.read_cb = my_touchpad_read;
                                           /*Set your driver function*/
lv indev drv register(&indev drv);
                                           /*Finally register the driver*/
bool my touchpad read(lv indev t * indev, lv indev data t * data)
    static lv coord t last x = 0;
    static lv coord t last y = 0;
   /*Save the state and save the pressed coordinate*/
   data->state = touchpad is pressed() ? LV INDEV STATE PR : LV INDEV STATE REL;
   if(data->state == LV_INDEV_STATE_PR) touchpad_get_xy(&last_x, &last_y);
   /*Set the coordinates (if released use the last pressed coordinates)*/
   data->point.x = last x;
   data->point.y = last y;
    return false; /*Return `false` because we are not buffering and no more data to,,
→read*/
}
```

• Call lv_task_handler() periodically every few milliseconds in the main while(1) loop, in Timer interrupt or in an Operation system task. It will redraw the screen if required, handle input devices etc.

Learn the basics

Objects (Widgets)

The graphical elements like Buttons, Labels, Sliders, Charts etc are called objects in LittelvGL. Go to *Object types* to see the full list of available types.

Every object has a parent object. The child object moves with the parent and if you delete the parent the

children will be deleted too. Children can be visible only on their parent.

The *screen* is the "root" parent. To get the current screen call lv_scr_act().

You can create a new object with <code>lv_<type>_create(parent, obj_to_copy)</code>. It will return an <code>lv_obj_t *</code> variable which should be used as a reference to the object to set its parameters. The first parameter is the desired <code>parent</code>, the second parameters can be an object to copy (<code>NULL</code> is unused). For example:

```
lv_obj_t * slider1 = lv_slider_create(lv_scr_act(), NULL);
```

To set some basic attribute lv_obj_set_<paramters_name>(obj, <value>) function can be used. For example:

```
lv_obj_set_x(btn1, 30);
lv_obj_set_y(btn1, 10);
lv_obj_set_size(btn1, 200, 50);
```

The objects has type specific parameters too which can be set by lv_<type>_set_<parameters_name>(obj, <value>) functions. For example:

```
lv_slider_set_value(slider1, 70, LV_ANIM_ON);
```

To see the full API visit the documentation of the object types or the related header file (e.g. $\v_{src/v_objx/lv_slider.h}$).

Styles

Styles can be assigned to the objects to changed their appearance. A style describes the appearance of rectangle-like objects (like a button or slider), texts, images and lines at once.

You can create a new style like this:

To set a new style for an object use the $lv_<type>set_style(obj, LV_<TYPE>_STYLE_<NAME>, &my_style) functions. For example:$

```
lv_slider_set_style(slider1, LV_SLIDER_STYLE_BG, &slider_bg_style);
lv_slider_set_style(slider1, LV_SLIDER_STYLE_INDIC, &slider_indic_style);
lv_slider_set_style(slider1, LV_SLIDER_STYLE_KNOB, &slider_knob_style);
```

If an object's style is NULL then it will inherit its parent's style. For example, the labels' style are NULL by default. If you place them on a button then they will use the style.text properties from the button's style.

Learn more in Style overview section.

Events

Events are used to inform the user if something has happened with an object. You can assign a callback to an object which will be called if the object is clicked, released, dragged, being deleted etc. It should look like this:

Learn more about the events in the *Event overview* section.

Examples

Button with label

```
lv_obj_t * btn = lv_btn_create(lv_scr_act(), NULL);
                                                        /*Add a button the current.
⇔screen*/
lv_obj_set_pos(btn, 10, 10);
                                                        /*Set its position*/
lv_obj_set_size(btn, 100, 50);
                                                        /*Set its size*/
lv_obj_set_event_cb(btn, btn_event_cb);
                                                        /*Assign a callback to the
→button*/
lv obj t * label = lv label create(btn, NULL);
                                                        /*Add a label to the button*/
lv_label_set_text(label, "Button");
                                                        /*Set the labels text*/
void btn_event_cb(lv_obj_t * btn, lv_event_t event)
    if(event == LV_EVENT_CLICKED) {
       printf("Clicked\n");
    }
}
```

Button

Button with styles

Add styles to the button from the previous example:

```
static lv style t style btn rel;
                                                        /*A variable to store the...
→released style*/
lv style copy(&style btn rel, &lv style plain);
                                                        /*Initialize from a built-in...
→style*/
style btn rel.body.border.color = lv color hex3(0x269);
style btn rel.body.border.width = 1;
style btn rel.body.main color = lv color hex3(0xADF);
style btn rel.body.grad color = lv color hex3(0x46B);
style btn rel.body.shadow.width = 4;
style btn rel.body.shadow.type = LV SHADOW BOTTOM;
style_btn_rel.body.radius = LV_RADIUS_CIRCLE;
style btn rel.text.color = lv color hex3(0xDEF);
static lv style t style btn pr;
                                                        /*A variable to store the
→pressed style*/
lv_style_copy(&style_btn_pr, &style_btn_rel);
                                                        /*Initialize from the...
→released style*/
style btn pr.body.border.color = lv color hex3(0x46B);
style_btn_pr.body.main_color = lv_color_hex3(0x8BD);
style_btn_pr.body.grad_color = lv_color_hex3(0x24A);
style btn pr.body.shadow.width = 2;
style_btn_pr.text.color = lv_color_hex3(0xBCD);
lv_btn_set_style(btn, LV_BTN_STYLE_REL, &style_btn_rel);
                                                           /*Set the button's
→released style*/
lv_btn_set_style(btn, LV_BTN_STYLE_PR, &style_btn_pr);
                                                           /*Set the button's...
→pressed style*/
```

Button

Slider and object alignment

```
lv obj t * label;
. . .
/* Create a slider in the center of the display */
lv_obj_t * slider = lv_slider_create(lv_scr_act(), NULL);
lv_obj_set_width(slider, 200);
                                                     /*Set the width*/
lv_obj_align(slider, NULL, LV_ALIGN_CENTER, 0, 0);
                                                     /*Align to the center of the
→parent (screen)*/
lv obj set event cb(slider, slider event cb);
                                                     /*Assign an event function*/
/* Create a label below the slider */
label = lv_label_create(lv_scr_act(), NULL);
lv label set text(label, "0");
lv_obj_set_auto_realign(slider, true);
lv obj align(label, slider, LV ALIGN OUT BOTTOM MID, 0, 10);
. . .
```

(continues on next page)

(continued from previous page)

76

List and themes

```
/*Texts of the list elements*/
const char * txts[] = {"First", "Second", "Third", "Forth", "Fifth", "Sixth", NULL};
/* Initialize and set a theme. `LV_THEME_NIGHT` needs to enabled in lv_conf.h. */
lv_theme_t * th = lv_theme_night_init(20, NULL);
lv_theme_set_current(th);
/*Create a list*/
lv_obj_t* list = lv_list_create(lv_scr_act(), NULL);
lv_obj_set_size(list, 120, 180);
lv_obj_set_pos(list, 10, 10);
/*Add buttons*/
uint8 t i;
for(i = 0; txts[i]; i++) {
   lv_obj_t * btn = lv_list_add_btn(list, LV_SYMBOL_FILE, txts[i]);
   lv_btn_set_toggle(btn, true);
                                             /*Enable on/off states*/
}
/* Initialize and set an other theme. `LV_THEME_MATERIAL` needs to enabled in lv_conf.
* If `LV TEHE_LIVE_UPDATE 1` then the previous list's style will be updated too.*/
th = lv theme_material_init(210, NULL);
lv_theme_set_current(th);
/*Create an other list*/
list = lv list create(lv scr act(), NULL);
lv obj set size(list, 120, 180);
lv_obj_set_pos(list, 150, 10);
/*Add buttons with the same texts*/
for(i = 0; txts[i]; i++) {
   lv obj t * btn = lv list add btn(list, LV SYMBOL FILE, txts[i]);
   lv obj set event cb(btn, list event);
```

(continues on next page)

(continued from previous page)

```
lv_btn_set_toggle(btn, true);
}
...
static void list_event(lv_obj_t * btn, lv_event_t e)
{
    if(e == LV_EVENT_CLICKED) {
        printf("%s\n", lv_list_get_btn_text(btn));
    }
}
```


Use LittlevGL from Micropython

Learn more about Micropython.

```
# Create a Button and a Label
scr = lv.obj()
btn = lv.btn(scr)
btn.align(lv.scr_act(), lv.ALIGN.CENTER, 0, 0)
label = lv.label(btn)
label.set_text("Button")

# Load the screen
lv.scr_load(scr)
```

Contributing

LittlevGL uses the Forum to ask and answer questions and GitHub's Issue tracker for development-related discussion (such as bug reports, feature suggestions etc.).

There are many opportunities to contribute to LittlevGL such as:

• Help others in the Forum.

- Inspire people by speaking about your project in My project category in the Forum or add it to the References post
- Improve and/or translate the documentation. Go to the Documentation repository to learn more
- Write a blog post about your experiences. See how to do it in the Blog repository
- Report and/or fix bugs in GitHub's issue tracker
- **Help in the developement**. Check the Open issues especially the ones with Help wanted label and tell your ideas about a topic or implement a feature.

If you are interested in contributing to LittlevGL, then please read the guides below to get started.

- Contributing guide
- Coding style guide

Micropython

What is Micropython?

Micropython is Python for microcontrollers. Using Micropython, you can write Python3 code and run it even on a bare metal architecture with limited resources.

Highlights of Micropython

- Compact Fits and runs within just 256k of code space and 16k of RAM. No OS is needed, although you can also run it with an OS, if you want.
- Compatible Strives to be as compatible as possible with normal Python (known as CPython).
- Versatile Supports many architectures (x86, x86-64, ARM, ARM Thumb, Xtensa).
- Interactive No need for the compile-flash-boot cycle. With the REPL (interactive prompt) you can type commands and execute them immediately, run scripts etc.
- **Popular** Many platforms are supported. The user base is growing bigger. Notable forks: MicroPython, CircuitPython, MicroPython_ESP32_psRAM_LoBo
- Embedded Oriented Comes with modules specifically for embedded systems, such as the machine module for accessing low-level hardware (I/O pins, ADC, UART, SPI, I2C, RTC, Timers etc.)

Why Micropython + LittlevGL?

Currently, Micropython does not have a good high-level GUI library by default. LittlevGL is an Object Oriented Component Based high-level GUI library, which seems to be a natural candidate to map into a higher level language, such as Python. LittlevGL is implemented in C and its APIs are in C.

Here are some advantages of using LittlevGL in Micropython:

- Develop GUI in Python, a very popular high level language. Use paradigms such as Object Oriented Programming.
- Usually, GUI development requires multiple iterations to get things right. With C, each iteration consists of Change code > Build > Flash > Run. In Micropython it's just Change code > Run! You can even run commands interactively using the REPL (the interactive prompt)

Micropython + LittlevGL could be used for:

- Fast prototyping GUI.
- Shorten the cycle of changing and fine-tuning the GUI.
- Model the GUI in a more abstract way by defining reusable composite objects, taking advantage of Python's language features such as Inheritance, Closures, List Comprehension, Generators, Exception Handling, Arbitrary Precision Integers and others.
- Make LittlevGL accessible to a larger audience. No need to know C in order to create a nice GUI on an embedded system. This goes well with CircuitPython vision. CircuitPython was designed with education in mind, to make it easier for new or unexperienced users to get started with embedded development.
- Creating tools to work with LittlevGL at a higher level (e.g. drag-and-drop designer).

So what does it look like?

TL;DR: It's very much like the CAPI, but Object Oriented for LittlevGL components.

Let's dive right into an example!

A simple example

```
import lvgl as lv
lv.init()
scr = lv.obj()
btn = lv.btn(scr)
btn.align(lv.scr_act(), lv.ALIGN.CENTER, 0, 0)
label = lv.label(btn)
label.set_text("Button")
lv.scr_load(scr)
```

How can I use it?

Online Simulator

If you want to experiment with LittlevGL + Micropython without downloading anything - you can use our online simulator!It's a fully functional LittlevGL + Micropython that runs entirely in the browser and allows you to edit a python script and run it.

Click here to experiment on the online simulator Hello World

PC Simulator

Micropython is ported to many platforms. One notable port is "unix", which allows you to build and run Micropython (+LittlevGL) on a Linux machine. (On a Windows machine you might need Virtual Box or WSL or MinGW or Cygwin etc.)

Click here to know more information about building and running the unix port

Embedded platform

At the end, the goal is to run it all on an embedded platform.Both Micropython and LittlevGL can be used on many embedded architectures, such as stm32, ESP32 etc. You would also need display and input drivers. We have some sample drivers (ESP32+ILI9341, as well as some other examples), but most chances are you would want to create your own input/display drivers for your specific purposes.Drivers can be implemented either in C as Micropython module, or in pure Micropython!

Where can I find more information?

- On the Blog Post
- On lv_micropython README
- On lv_binding_micropython README
- On LittlevGL forum (Feel free to ask anything!)
- On Micropython docs and forum

3.16.2 Porting

System overview

Application Your application which creates the GUI and handles the specific tasks.

LittlevGL The graphics library itself. Your application can communicate with the library to create a GUI. It contains a HAL (Hardware Abstraction Layer) interface to register your display and input device drivers.

Driver Besides your specific drivers, it contains functions to drive your display, optionally to a GPU and to read the touchpad or buttons.

Depending on the MCU, there are two typical hardware set-ups. One with built-in LCD/TFT driver periphery and another without it. In both cases, a frame buffer will be required to store the current image of the screen.

- 1. MCU with TFT/LCD driver If your MCU has a TFT/LCD driver periphery then you can connect a display directly via RGB interface. In this case, the frame buffer can be in the internal RAM (if the MCU has enough RAM) or in the external RAM (if the MCU has a memory interface).
- 2. External display controller If the MCU doesn't have TFT/LCD driver interface then an external display controller (E.g. SSD1963, SSD1306, ILI9341) has to be used. In this case, the MCU can communicate with the display controller via Parallel port, SPI or sometimes I2C. The frame buffer is usually located in the display controller which saves a lot of RAM for the MCU.

Set-up a project

Get the library

LittlevGL Graphics Library is available on GitHub: https://github.com/littlevgl/lvgl.

You can clone it or download the latest version of the library from GitHub or you can use the Download page as well.

The graphics library is the lvgl directory which should be copied into your project.

Configuration file

There is a configuration header file for LittlevGL called lv_conf.h. It sets the library's basic behaviour, disables unused modules and features, adjusts the size of memory buffers in compile-time, etc.

Copy lvgl/lv_conf_template.h next to the lvgl directory and rename it to lv_conf.h. Open the file and change the #if 0 at the beginning to #if 1 to enable its content.

 $lv_conf.h$ can be copied other places as well but then you should add LV_CONF_INCLUDE_SIMPLE define to your compiler options (e.g. -DLV_CONF_INCLUDE_SIMPLE for gcc compiler) and set the include path manually.

In the config file comments explain the meaning of the options. Check at least these three configuration options and modify them according to your hardware:

- 1. LV_HOR_RES_MAX Your display's horizontal resolution.
- 2. LV_VER_RES_MAX Your display's vertical resolution.
- 3. LV_COLOR_DEPTH 8 for (RG332), 16 for (RGB565) or 32 for (RGB888 and ARGB8888).

Initialization

To use the graphics library you have to initialize it and the other components too. The order of the initialization is:

- 1. Call *lv_init()*.
- 2. Initialize your drivers.

- 3. Register the display and input devices drivers in LittlevGL. More about *Display* and *Input device* registration.
- 4. Call lv tick inc(x) in every x milliseconds in an interrupt to tell the elapsed time. Learn more.
- 5. Call lv_task_handler() periodically in every few milliseconds to handle LittlevGL related tasks.
 Learn more.

Display interface

To set up a display an lv disp buf t and an lv disp drv t variable has to be initialized.

- lv_disp_buf_t contains internal graphics buffer(s).
- $lv_disp_drv_t$ contains callback functions to interact with the display and manipulate drawing related things.

Display buffer

lv_disp_buf_t can be initialized like this:

```
/*A static or global variable to store the buffers*/
static lv_disp_buf_t disp_buf;

/*Static or global buffer(s). The second buffer is optional*/
static lv_color_t buf_1[MY_DISP_HOR_RES * 10];
static lv_color_t buf_2[MY_DISP_HOR_RES * 10];

/*Initialize `disp_buf` with the buffer(s) */
lv_disp_buf_init(&disp_buf, buf_1, buf_2, MY_DISP_HOR_RES*10);
```

There are 3 possible configurations regarding the buffer size:

- 1. One buffer LittlevGL draws the content of the screen into a buffer and sends it to the display. The buffer can be smaller than the screen. In this case, the larger areas will be redrawn in multiple parts. If only small areas changes (e.g. button press) then only those areas will be refreshed.
- 2. Two non-screen-sized buffers having two buffers LittlevGL can draw into one buffer while the content of the other buffer is sent to display in the background. DMA or other hardware should be used to transfer the data to the display to let the CPU draw meanwhile. This way the rendering and refreshing of the display become parallel. Similarly to the *One buffer*, LittlevGL will draw the display's content in chunks if the buffer is smaller than the area to refresh.
- 3. Two screen-sized buffers. In contrast to Two non-screen-sized buffers LittlevGL will always provide the whole screen's content not only chunks. This way the driver can simply change the address of the frame buffer to the buffer received from LittlevGL. Therefore this method works the best when the MCU has an LCD/TFT interface and the frame buffer is just a location in the RAM.

Display driver

Once the buffer initialization is ready the display drivers need to be initialized. In the most simple case only the following two fields of $lv_disp_drv_t$ needs to be set:

- buffer pointer to an initialized lv disp buf t variable.
- flush_cb a callback function to copy a buffer's content to a specific area of the display.

There are some optional data fields:

- hor_res horizontal resolution of the display. (LV HOR RES MAX by default from lv_conf.h).
- ver_res vertical resolution of the display. (LV_VER_RES_MAX by default from $lv_conf.h$).
- color_chroma_key a color which will be drawn as transparent on chrome keyed images. LV_COLOR_TRANSP by default from $lv_conf.h$).
- user data custom user data for the driver. Its type can be modified in ly conf.h.
- anti-aliasing use anti-aliasing (edge smoothing). LV_ANTIALIAS by default from $lv_conf.h.$
- rotated if 1 swap hor_res and ver_res. LittlevGL draws in the same direction in both cases (in lines from top to bottom) so the driver also needs to be reconfigured to change the display's fill direction.
- screen_transp if 1 the screen can have transparent or opaque style. LV_COLOR_SCREEN_TRANSP needs to enabled in lv_conf.h.

To use a GPU the following callbacks can be used:

- gpu_fill_cb fill an area in memory with colors.
- gpu_blend_cb blend two memory buffers using opacity.

Note that, these functions need to draw to the memory (RAM) and not your display directly.

Some other optional callbacks to make easier and more optimal to work with monochrome, grayscale or other non-standard RGB displays:

- rounder_cb round the coordinates of areas to redraw. E.g. a 2x2 px can be converted to 2x8. It can be used if the display controller can refresh only areas with specific height or width (usually 8 px height with monochrome displays).
- set_px_cb a custom function to write the display buffer. It can be used to store the pixels more
 compactly if the display has a special color format. (e.g. 1-bit monochrome, 2-bit grayscale etc.) This
 way the buffers used in lv_disp_buf_t can be smaller to hold only the required number of bits for
 the given area size. set_px_cb is not working with Two screen-sized buffers display buffer
 configuration.
- monitor_cb a callback function tells how many pixels were refreshed in how much time.

fields of lv disp drv t variable it needs be initialized to with lv disp drv init(&disp drv). And finally toregister display for LittlevGL lv disp drv register(&disp drv) needs to be called.

All together it looks like this:

Here some simple examples of the callbacks:

```
void my flush cb(lv disp drv t * disp drv, const lv area t * area, lv color t * color
→p)
    /*The most simple case (but also the slowest) to put all pixels to the screen one-
→by-one*/
   int32 t x, y;
    for(y = area->y1; y <= area->y2; y++) {
        for(x = area->x1; x <= area->x2; x++) {
            put px(x, y, *color p)
            color p++;
        }
   }
   /* IMPORTANT!!!
    * Inform the graphics library that you are ready with the flushing*/
    lv_disp_flush_ready(disp);
}
void my_gpu_fill_cb(lv_disp_drv_t * disp_drv, lv_color_t * dest_buf, const lv_area_t_
→* dest_area, const lv_area_t * fill_area, lv_color_t color);
   /*It's an example code which should be done by your GPU*/
   uint32 t x, y;
   dest_buf += dest_width * fill_area->y1; /*Go to the first line*/
    for(y = fill_area->y1; y < fill_area->y2; y++) {
        for(x = fill_area->x1; x < fill_area->x2; x++) {
            dest buf[x] = color;
        dest_buf+=dest_width; /*Go to the next line*/
   }
}
void my_gpu_blend_cb(lv_disp_drv_t * disp_drv, lv_color_t * dest, const lv_color_t *_
⇒src, uint32 t length, lv opa t opa)
   /*It's an example code which should be done by your GPU*/
   uint32 t i;
    for(i = 0; i < length; i++) {
        dest[i] = lv_color_mix(dest[i], src[i], opa);
}
void my_rounder_cb(lv_disp_drv_t * disp_drv, lv_area_t * area)
 /* Update the areas as needed. Can be only larger.
  * For example to always have lines 8 px height:*/
  area->y1 = area->y1 & 0\times07;
  area->y2 = (area->y2 & 0 \times 07) + 8;
}
void my_set_px_cb(lv_disp_drv_t * disp_drv, uint8_t * buf, lv_coord_t buf_w, lv_coord_
→t x, lv_coord_t y, lv_color_t color, lv_opa_t opa)
    /* Write to the buffer as required for the display.
    * Write only 1-bit for monochrome displays mapped vertically:*/
buf += buf_w * (y >> 3) + x;
```

(continues on next page)

(continued from previous page)

```
if(lv_color_brightness(color) > 128) (*buf) |= (1 << (y % 8));
else (*buf) &= ~(1 << (y % 8));
}

void my_monitor_cb(lv_disp_drv_t * disp_drv, uint32_t time, uint32_t px)
{
   printf("%d px refreshed in %d ms\n", time, ms);
}</pre>
```

API

Display Driver HAL interface header file

Typedefs

```
typedef struct _disp_drv_t lv_disp_drv_t
    Display Driver structure to be registered by HAL

typedef struct _disp_t lv_disp_t
    Display structure.

Note lv_disp_drv_t should be the first member of the structure.
```

Enums

Functions

```
void lv_disp_drv_init(lv_disp_drv_t *driver)
```

Initialize a display driver with default values. It is used to have known values in the fields and not junk in memory. After it you can safely set only the fields you need.

Parameters

• driver: pointer to driver variable to initialize

```
void lv_disp_buf_init(lv_disp_buf_t *disp_buf, void *buf1, void *buf2, uint32_t size_in_px_cnt)
Initialize a display buffer
```

Parameters

disp buf: pointer lv disp buf t variable to initialize

- buf1: A buffer to be used by LittlevGL to draw the image. Always has to specified and can't be NULL. Can be an array allocated by the user. E.g. static lv_color_t disp buf1[1024 * 10] Or a memory address e.g. in external SRAM
- buf2: Optionally specify a second buffer to make image rendering and image flushing (sending to the display) parallel. In the disp_drv->flush you should use DMA or similar hardware to send the image to the display in the background. It lets LittlevGL to render next frame into the other buffer while previous is being sent. Set to NULL if unused.
- size in px cnt: size of the buf1 and buf2 in pixel count.

lv_disp_t *lv_disp_drv_register(lv_disp_drv_t *driver)

Register an initialized display driver. Automatically set the first display as active.

Return pointer to the new display or NULL on error

Parameters

• driver: pointer to an initialized 'lv_disp_drv_t' variable (can be local variable)

```
\label{eq:void_loss_drv_update} \ \ void \ \ \textbf{lv\_disp\_drv\_t*disp\_drv\_t*new\_drv)} \ \ void \ \ \textbf{lv\_disp\_drv\_t*new\_drv}.
```

Update the driver in run time.

Parameters

- disp: pointer to a display. (return value of lv disp drv register)
- new_drv: pointer to the new driver

void lv_disp_remove(lv_disp_t *disp)

Remove a display

Parameters

• disp: pointer to display

void lv_disp_set_default(lv_disp_t *disp)

Set a default screen. The new screens will be created on it by default.

Parameters

• disp: pointer to a display

lv_disp_t *lv_disp_get_default(void)

Get the default display

Return pointer to the default display

lv_coord_t lv_disp_get_hor_res(lv_disp_t *disp)

Get the horizontal resolution of a display

Return the horizontal resolution of the display

Parameters

• disp: pointer to a display (NULL to use the default display)

lv coord t lv disp get ver res(lv_disp_t*disp)

Get the vertical resolution of a display

Return the vertical resolution of the display

Parameters

• disp: pointer to a display (NULL to use the default display)

bool lv_disp_get_antialiasing(lv_disp_t *disp)

Get if anti-aliasing is enabled for a display or not

Return true: anti-aliasing is enabled; false: disabled

Parameters

• disp: pointer to a display (NULL to use the default display)

uint32_t lv_disp_get_dpi(lv_disp_t *disp)

Get the DPI of the display

Return dpi of the display

Parameters

• disp: pointer to a display (NULL to use the default display)

lv_disp_size_t lv_disp_get_size_category(lv_disp_t *disp)

Get the size category of the display based on it's hor. res. and dpi.

 ${\bf Return}\ {\it LV_DISP_SIZE_SMALL/MEDIUM/LARGE/EXTRA_LARGE}$

Parameters

• disp: pointer to a display (NULL to use the default display)

lv_disp_t *lv_disp_get_next(lv_disp_t *disp)

Get the next display.

Return the next display or NULL if no more. Give the first display when the parameter is NULL

Parameters

• disp: pointer to the current display. NULL to initialize.

lv_disp_buf_t *lv_disp_get_buf(lv_disp_t *disp)

Get the internal buffer of a display

Return pointer to the internal buffers

Parameters

• disp: pointer to a display

uint16_t lv_disp_get_inv_buf_size(lv_disp_t *disp)

Get the number of areas in the buffer

Return number of invalid areas

void lv_disp_pop_from_inv_buf(lv_disp_t *disp, uint16_t num)

Pop (delete) the last 'num' invalidated areas from the buffer

Parameters

• num: number of areas to delete

bool lv_disp_is_double_buf(lv_disp_t *disp)

Check the driver configuration if it's double buffered (both buf1 and buf2 are set)

Return true: double buffered; false: not double buffered

Parameters

• disp: pointer to to display to check

bool lv_disp_is_true_double_buf(lv_disp_t *disp)

Check the driver configuration if it's TRUE double buffered (both buf1 and buf2 are set and size is screen sized)

Return true: double buffered; false: not double buffered

Parameters

• disp: pointer to to display to check

struct lv_disp_buf_t

#include <lv_hal_disp.h> Structure for holding display buffer information.

Public Members

void *buf1

First display buffer.

void *buf2

Second display buffer.

void *buf_act

uint32 t size

lv_area_t area

volatile uint32 t flushing

volatile uint32_t flushing_last

volatile uint32 t last area

volatile uint32_t last_part

struct _disp_drv_t

#include <lv_hal_disp.h> Display Driver structure to be registered by HAL

Public Members

lv coord t hor res

Horizontal resolution.

lv_coord_t ver_res

Vertical resolution.

$lv_disp_buf_t *buffer$

Pointer to a buffer initialized with $lv_disp_buf_init()$. LittlevGL will use this buffer(s) to draw the screens contents

uint32 t antialiasing

1: antialiasing is enabled on this display.

uint32 t rotated

1: turn the display by 90 degree.

Warning Does not update coordinates for you!

uint32_t screen_transp

Handle if the the screen doesn't have a solid (opa == LV_OPA_COVER) background. Use only if required because it's slower.

```
uint32 t dpi
                         DPI (dot per inch) of the display. Set to LV DPI from lv Conf.h by default.
             void (*flush_cb)(struct _disp_drv_t *disp_drv, const lv_area_t *area, lv_color_t
                                                             *color p)
                         MANDATORY: Write the internal buffer (VDB) to the display. 'lv_disp_flush_ready()' has
                         to be called when finished
             void (*rounder cb)(struct disp drv t*disp drv, lv area t*area)
                         OPTIONAL: Extend the invalidated areas to match with the display drivers requirements E.g.
                         round y to, 8, 16 ...) on a monochrome display
             void (*set_px_cb)(struct _disp_drv_t *disp_drv, uint8_t *buf, lv coord t buf w,
                                                                lv_coord_t x, lv_coord_t y, lv_color_t color, lv_opa_t opa)
                         OPTIONAL: Set a pixel in a buffer according to the special requirements of the display Can be
                         used for color format not supported in LittelvGL. E.g. 2 bit -> 4 gray scales
                         Note Much slower then drawing with supported color formats.
             void (*monitor_cb)(struct__disp__drv__t *disp__drv, uint32__t time, uint32__t px)
                         OPTIONAL: Called after every refresh cycle to tell the rendering and flushing time + the number
                         of flushed pixels
             void \ (\textbf{*gpu\_blend\_cb}) \ (\textbf{struct} \_ \textit{disp\_drv\_t} \ \textbf{*} \\ \text{disp\_drv}, \ \textit{lv\_color\_t} \ \textbf{*} \\ \text{dest}, \ \textbf{const} \ \textit{lv\_color\_t} \\ \text{} \\ \text{*} \\ \text{dest}, \ \textbf{const} \ \textit{lv\_color\_t} \\ \text{*} \\ \text{*
                                                                           *src, uint32 t length, ly opa t opa)
                         OPTIONAL: Blend two memories using opacity (GPU only)
             void (*gpu fill cb)(struct disp drv t *disp drv, lv color t *dest buf, lv coord t
                                                                      dest width, const ly area t *fill area, ly_color_t color)
                         OPTIONAL: Fill a memory with a color (GPU only)
             lv color t color chroma key
                         On CHROMA_KEYED images this color will be transparent. LV_COLOR_TRANSP by default.
                         (lv conf.h)
             lv disp drv user data t user data
                         Custom display driver user data
struct disp t
              \#include < lv\_hal\_disp.h > Display structure.
             Note lv disp drv t should be the first member of the structure.
             Public Members
             lv_disp_drv_t driver
                         < Driver to the display A task which periodically checks the dirty areas and refreshes them
             lv_task_t *refr_task
             lv ll t scr ll
                         Screens of the display
             struct <u>lv obj</u> t *act scr
                         Currently active screen on this display
             struct <u>lv_obj_t</u>*top layer
                         See lv_disp_get_layer_top
             struct _lv_obj_t *sys_layer
                         See lv_disp_get_layer_sys
```

Input device interface

Types of input devices

To set up an input device an lv indev drv t variable has to be initialized:

type can be

- LV_INDEV_TYPE_POINTER touchpad or mouse
- LV_INDEV_TYPE_KEYPAD keyboard or keypad
- LV_INDEV_TYPE_ENCODER encoder with left, right, push options
- LV_INDEV_TYPE_BUTTON external buttons pressing the screen

read_cb is a function pointer which will be called periodically to report the current state of an input device.
It can also buffer data and return false when no more data to be read or true when the buffer is not empty.

Visit *Input devices* to learn more about input devices in general.

Touchpad, mouse or any pointer

Input devices which can click points of the screen belong to this category.

```
indev_drv.type = LV_INDEV_TYPE_POINTER;
indev_drv.read_cb = my_input_read;
...

bool my_input_read(lv_indev_drv_t * drv, lv_indev_data_t*data)
{
    data->point.x = touchpad_x;
    data->point.y = touchpad_y;
    data->state = LV_INDEV_STATE_PR or LV_INDEV_STATE_REL;
    return false; /*No buffering now so no more data read*/
}
```

Important: Touchpad drivers must return the last X/Y coordinates even when the state is LV INDEV STATE REL.

To set a mouse cursor use lv_indev_set_cursor(my_indev, &img_cursor). (my_indev is the return value of lv_indev_drv_register)

Keypad or keyboard

Full keyboards with all the letters or simple keypads with a few navigation buttons belong here.

To use a keyboard/keypad:

- Register a read_cb function with LV_INDEV_TYPE_KEYPAD type.
- Enable LV_USE_GROUP in $lv_conf.h$
- An object group has to be created: lv_group_t * g = lv_group_create() and objects have
 to be added to it with lv group add obj(g, obj)
- The created group has to be assigned to an input device: lv_indev_set_group(my_indev, g)
 (my_indev is the return value of lv_indev_drv_register)
- Use $LV_KEY_...$ to navigate among the objects in the group. See $lv_core/lv_group.h$ for the available keys.

Encoder

With an encoder you can do 4 things:

- 1. Press its button
- 2. Long-press its button
- 3. Turn left
- 4. Turn right

In short, the Encoder input devices work like this:

- By turning the encoder you can focus on the next/previous object.
- When you press the encoder on a simple object (like a button), it will be clicked.

- If you press the encoder on a complex object (like a list, message box, etc.) the object will go to edit mode whereby turning the encoder you can navigate inside the object.
- To leave edit mode press long the button.

To use an *Encoder* (similarly to the *Keypads*) the objects should be added to groups.

```
indev_drv.type = LV_INDEV_TYPE_ENCODER;
indev_drv.read_cb = my_input_read;
...

bool encoder_read(lv_indev_drv_t * drv, lv_indev_data_t*data){
   data->enc_diff = enc_get_new_moves();

   if(enc_pressed()) data->state = LV_INDEV_STATE_PR;
   else data->state = LV_INDEV_STATE_REL;

   return false; /*No buffering now so no more data read*/
}
```

Button

Buttons mean external "hardware" buttons next to the screen which are assigned to specific coordinates of the screen. If a button is pressed it will simulate the pressing on the assigned coordinate. (Similarly to a touchpad)

To assign buttons to coordinates use $lv_indev_set_button_points(my_indev, points_array).points_array should look like const <math>lv_point_t$ points_array[] = { $\{12,30\},\{60,90\},\ldots\}$

Important: The points_array can't go out of scope. Either declare it as a global variable or as a static variable inside a function.

```
indev_drv.type = LV_INDEV_TYPE_BUTTON;
indev_drv.read_cb = my_input_read;
bool button_read(lv_indev_drv_t * drv, lv_indev_data_t*data){
    static uint32_t last_btn = 0; /*Store the last pressed button*/
    int btn_pr = my_btn_read();
                                  /*Get the ID (0,1,2...) of the pressed button*/
                                   /*Is there a button press? (E.g. -1 indicated no.
    if(btn_pr >= 0) {
→button was pressed)*/
      last_btn = btn_pr;
                                    /*Save the ID of the pressed button*/
       data->state = LV_INDEV_STATE_PR; /*Set the pressed state*/
    } else {
       data->state = LV_INDEV_STATE_REL; /*Set the released state*/
   data->btn = last btn;
                                    /*Save the last button*/
    return false;
                                    /*No buffering now so no more data read*/
}
```

Other features

Besides read_cb a feedback_cb callback can be also specified in lv_indev_drv_t. feedback_cb is called when any type of event is sent by the input devices. (independently from its type). It allows making feedback for the user e.g. to play a sound on LV_EVENT_CLICK.

The default value of the following parameters can be set in $lv_conf.h$ but the default value can be overwritten in lv indev drv t:

- drag limit Number of pixels to slide before actually drag the object
- drag_throw Drag throw slow-down in [%]. Greater value means faster slow-down
- long_press_time Press time to send LV EVENT LONG PRESSED (in milliseconds)
- long_press_rep_time Interval of sending LV_EVENT_LONG_PRESSED_REPEAT (in milliseconds)
- read_task pointer to the lv_task which reads the input device. Its parameters can be changed by lv task ...() functions

Every Input device is associated with a display. By default, a new input device is added to the lastly created or the explicitly selected (using $lv_disp_set_default()$) display. The associated display is stored and can be changed in disp field of the driver.

API

Input Device HAL interface layer header file

Typedefs

Run time data of input devices Internally used by the library, you should not need to touch it.

```
typedef struct lv indev t lv indev t
```

The main input device descriptor with driver, runtime data ('proc') and some additional information

Enums

enum [anonymous]

Possible input device types

Values:

LV_INDEV_TYPE_NONE

Uninitialized state

LV INDEV TYPE POINTER

Touch pad, mouse, external button

LV_INDEV_TYPE_KEYPAD

Keypad or keyboard

LV_INDEV_TYPE_BUTTON

External (hardware button) which is assigned to a specific point of the screen

LV_INDEV_TYPE_ENCODER

Encoder with only Left, Right turn and a Button

enum [anonymous]

States for input devices

Values:

$LV_INDEV_STATE_REL = 0$

LV INDEV STATE PR

enum [anonymous]

Values:

LV DRAG DIR HOR = 0x1

Object can be dragged horizontally.

Object can be dragged vertically.

$LV_DRAG_DIR_BOTH = 0x3$

Object can be dragged in all directions.

LV DRAG DIR ONE = 0x4

Object can be dragged only one direction (the first move).

enum [anonymous]

Values:

LV GESTURE DIR TOP

Gesture dir up.

LV GESTURE DIR BOTTOM

Gesture dir down.

LV_GESTURE_DIR_LEFT

Gesture dir left.

LV_GESTURE_DIR_RIGHT

Gesture dir right.

Functions

void lv_indev_drv_init(lv_indev_drv_t *driver)

Initialize an input device driver with default values. It is used to surly have known values in the fields ant not memory junk. After it you can set the fields.

Parameters

• driver: pointer to driver variable to initialize

lv_indev_t *lv_indev_drv_register(lv_indev_drv_t *driver)

Register an initialized input device driver.

Return pointer to the new input device or NULL on error

Parameters

• driver: pointer to an initialized 'lv_indev_drv_t' variable (can be local variable)

```
void lv_indev_drv_update(lv_indev_t *indev, lv_indev_drv_t *new_drv)
```

Update the driver in run time.

Parameters

- indev: pointer to a input device. (return value of lv_indev_drv_register)
- new drv: pointer to the new driver

```
lv_indev_t *lv_indev_get_next(lv_indev_t *indev)
```

Get the next input device.

Return the next input devise or NULL if no more. Give the first input device when the parameter is NULL

Parameters

• indev: pointer to the current input device. NULL to initialize.

```
bool lv_indev_read(lv_indev_t *indev, lv_indev_data_t *data)
```

Read data from an input device.

Return false: no more data; true: there more data to read (buffered)

Parameters

- indev: pointer to an input device
- data: input device will write its data here

struct lv indev data t

 $\#include < lv_hal_indev.h >$ Data structure passed to an input driver to fill

Public Members

```
lv point t point
```

For LV INDEV TYPE POINTER the currently pressed point

uint32 t key

For LV_INDEV_TYPE_KEYPAD the currently pressed key

uint32 t btn id

For LV INDEV TYPE BUTTON the currently pressed button

int16 t enc diff

For LV_INDEV_TYPE_ENCODER number of steps since the previous read

lv_indev_state_t state

 ${\tt LV_INDEV_STATE_REL\ or\ LV_INDEV_STATE_PR}$

struct _lv_indev_drv_t

#include <lv_hal_indev.h> Initialized by the user and registered by 'lv_indev_add()'

Public Members

```
lv_indev_type_t type
```

< Input device type Function pointer to read input device data. Return 'true' if there is more data to be read (buffered). Most drivers can safely return 'false'

bool (*read cb)(struct lv indev drv t *indev drv, lv indev data t *data)

```
void (*feedback cb)(struct _lv_indev_drv_t *, uint8 t)
         Called when an action happened on the input device. The second parameter is the event from
         lv event t
     lv_indev_drv_user_data_t user_data
     struct disp t *disp
         < Pointer to the assigned display Task to read the periodically read the input device
     lv task t *read task
         Number of pixels to slide before actually drag the object
     uint8_t drag_limit
         Drag throw slow-down in [%]. Greater value means faster slow-down
     uint8 t drag throw
         At least this difference should between two points to evaluate as gesture
     uint8 t gesture min velocity
         At least this difference should be to send a gesture
     uint8 t gesture limit
         Long press time in milliseconds
     uint16_t long_press_time
         Repeated trigger period in long press [ms]
     uint16 t long press rep time
struct _lv_indev_proc_t
     #include <lv_hal_indev.h> Run time data of input devices Internally used by the library, you should
     not need to touch it.
     Public Members
     lv indev state t state
         Current state of the input device.
     lv_point_t act_point
         Current point of input device.
     lv point t last point
         Last point of input device.
     ly point t vect
         Difference between act point and last point.
     lv_point_t drag_sum
     lv_point_t drag_throw_vect
     struct _lv_obj_t *act_obj
     struct _lv_obj_t *last_obj
     struct _lv_obj_t *last_pressed
     lv_gesture_dir_t gesture_dir
     ly point t gesture sum
     uint8 t drag limit out
     uint8_t drag_in_prog
```

```
lv drag dir t drag dir
     uint8\_t~\texttt{gesture\_sent}
     struct _lv_indev_proc_t::[anonymous]::[anonymous] pointer
     lv_indev_state_t last_state
     uint32 t last key
     struct _lv_indev_proc_t::[anonymous]::[anonymous] keypad
     union _lv_indev_proc_t::[anonymous] types
     uint32 t pr timestamp
         Pressed time stamp
     uint32 t longpr rep timestamp
         Long press repeat time stamp
     uint8_t long_pr_sent
     uint8 t reset query
     uint8 t disabled
     uint8_t wait_until_release
struct _lv_indev_t
     #include < lv hal indev.h > The main input device descriptor with driver, runtime data ( 'proc')
     and some additional information
     Public Members
     lv indev drv t driver
     lv_indev_proc_t proc
     struct <u>lv obj t</u> *cursor
         Cursor for LV INPUT TYPE POINTER
     struct <u>lv group</u> t *group
         Keypad destination group
     const ly point t*btn points
         Array points assigned to the button ()screen will be pressed here by the buttons
```

Tick interface

The LittlevGL needs a system tick to know the elapsed time for animation and other tasks.

You need to call the lv_tick_inc(tick_period) function periodically and tell the call period in milliseconds. For example, lv_tick_inc(1) for calling in every millisecond.

lv_tick_inc should be called in a higher priority routine than lv_task_handler() (e.g. in an interrupt) to precisely know the elapsed milliseconds even if the execution of lv_task_handler takes longer
time.

With FreeRTOS lv tick inc can be called in vApplicationTickHook.

On Linux based operating system (e.g. on Raspberry Pi) lv tick inc can be called in a thread as below:

API

Provide access to the system tick with 1 millisecond resolution

Functions

```
uint32_t lv_tick_get(void)
Get the elapsed milliseconds since start up

Return the elapsed milliseconds

uint32_t lv_tick_elaps(uint32_t prev_tick)
Get the elapsed milliseconds since a previous time stamp

Return the elapsed milliseconds since 'prev_tick'

Parameters

• prev_tick: a previous time stamp (return value of systick_get())
```

Task Handler

To handle the tasks of LittlevGL you need to call $lv_task_handler()$ periodically in one of the followings:

- while(1) of main() function
- timer interrupt periodically (low priority then lv_tick_inc())
- an OS task periodically

The timing is not critical but it should be about 5 milliseconds to keep the system responsive.

Example:

```
while(1) {
    lv_task_handler();
    my_delay_ms(5);
}
```

To learn more about task visit the Tasks section.

Sleep management

The MCU can go to sleep when no user input happens. In this case, the main while(1) should look like this:

You should also add below lines to your input device read function if a wake-up (press, touch or click etc.) happens:

In addition to lv_disp_get_inactive_time() you can check lv_anim_count_running() to see if every animations are finished.

Operating system and interrupts

LittlevGL is **not thread-safe** by default.

However, in the following conditions it's valid to call LittlevGL related functions:

- In events. Learn more in Events.
- In *lv_tasks*. Learn more in *Tasks*.

Tasks and threads

If you need to use real tasks or threads, you need a mutex which should be invoked before the call of lv_task_handler and released after it. Also, you have to use the same mutex in other tasks and threads around every LittlevGL (lv_...) related function calls and codes. This way you can use LittlevGL in a real multitasking environment. Just make use of a mutex to avoid the concurrent calling of LittlevGL functions.

Interrupts

Try to avoid calling LittlevGL functions from the interrupts (except lv_tick_inc() and lv_disp_flush_ready()). But, if you need to do this you have to disable the interrupt which uses LittlevGL functions while lv_task_handler is running. It's a better approach to set a flag or some value and periodically check it in an lv_task.

Logging

LittlevGL has built-in log module to inform the user about what is happening in the library.

Log level

To enable logging, set LV USE LOG 1 in lv conf.h and set LV LOG LEVEL to one of the following values:

- LV_LOG_LEVEL_TRACE A lot of logs to give detailed information
- LV_LOG_LEVEL_INFO Log important events
- LV_LOG_LEVEL_WARN Log if something unwanted happened but didn't cause a problem
- LV LOG LEVEL ERROR Only critical issue, when the system may fail
- LV_LOG_LEVEL_NONE Do not log anything

The events which have a higher level than the set log level will be logged too. E.g. if you LV_LOG_LEVEL_WARN, errors will be also logged.

Logging with printf

If your system supports printf, you just need to enable LV_LOG_PRINTF in *lv_conf.h* to send the logs with printf.

Custom log function

If you can't use printf or want to use a custom function to log, you can register a "logger" callback with lv_log_register_print_cb().

For example:

```
void my_log_cb(lv_log_level_t level, const char * file, int line, const char * dsc)
 /*Send the logs via serial port*/
 if(level == LV LOG LEVEL ERROR) serial send("ERROR: ");
 if(level == LV_LOG_LEVEL_WARN) serial_send("WARNING: ");
 if(level == LV_LOG_LEVEL_INFO) serial_send("INFO: ");
 if(level == LV_LOG_LEVEL_TRACE) serial_send("TRACE: ");
 serial send("File: ");
 serial_send(file);
 char line str[8];
 sprintf(line_str,"%d", line);
 serial_send("#");
 serial_send(line_str);
 serial send(": ");
 serial_send(dsc);
 serial_send("\n");
}
lv_log_register_print_cb(my_log_cb);
```

Add logs

You can also use the log module via the LV_LOG_TRACE/INFO/WARN/ERROR(description) functions.

3.16.3 Overview

Objects

In the LittlevGL the **basic building blocks** of a user interface are the objects, also called *Widgets*. For example a *Button*, *Label*, *Image*, *List*, *Chart* or *Text area*.

Check all the *Object types* here.

Object attributes

Basic attributes

All object types share some basic attributes:

- Position
- Size
- Parent
- Drag enable
- Click enable etc.

You can set/get these attributes with $lv_obj_set_...$ and $lv_obj_get_...$ functions. For example:

To see all the available functions visit the Base object's documentation.

Specific attributes

The object types have special attributes too. For example, a slider has

- Min. max. values
- Current value
- Custom styles

For these attributes, every object type have unique API functions. For example for a slider:

The API of the object types are described in their Documentation but you can also check the respective header files (e.g. $lv_objx/lv_slider.h$)

Object's working mechanisms

Parent-child structure

A parent object can be considered as the container of its children. Every object has exactly one parent object (except screens), but a parent can have an unlimited number of children. There is no limitation for the type of the parent but, there are typical parent (e.g. button) and typical child (e.g. label) objects.

Moving together

If the position of the parent is changed the children will move with the parent. Therefore all positions are relative to the parent.

The (0;0) coordinates mean the objects will remain in the top left-hand corner of the parent independently from the position of the parent.

Modify the position of the parent:

(For simplicity the adjusting of colors of the objects is not shown in the example.)

Visibility only on the parent

If a child is partially or fully out of its parent then the parts outside will not be visible.

Create - delete objects

In LittlevGL objects can be created and deleted dynamically in run-time. It means only the currently created objects consume RAM. For example, if you need a chart, you can create it when required and delete it when it is not visible or necessary.

Every object type has its own **create** function with a unified prototype. It needs two parameters:

- A pointer to the parent object. To create a screen give NULL as parent.
- Optionally, a pointer to *copy* object with the same type to copy it. This *copy* object can be *NULL* to avoid the copy operation.

All objects are referenced in C code using an <code>lv_obj_t</code> pointer as a handle. This pointer can later be used to set or get the attributes of the object.

The create functions look like this:

```
lv_obj_t * lv_ <type>_create(lv_obj_t * parent, lv_obj_t * copy);
```

There is a common **delete** function for all object types. It deletes the object and all of its children.

```
void lv_obj_del(lv_obj_t * obj);
```

 $\lower lv_obj_del$ will delete the object immediately. If for any reason you can't delete the object immediately you can use $\lower lv_obj_del_async(obj)$. It is useful e.g. if you want to delete the parent of an object in the child's $\lower lv_event_delete$ signal.

You can remove all the children of an object (but not the object itself) using lv obj clean:

```
void lv_obj_clean(lv_obj_t * obj);
```

Screen - the most basic parent

The screens are special objects which have no parent object. So it is created like:

```
lv_obj_t * scr1 = lv_obj_create(NULL, NULL);
```

There is always an active screen on each display. By default, the library creates and loads a "Base object" as the screen for each display. To get the currently active screen use the <code>lv_scr_act()</code> function. To load a new one, use <code>lv_scr_load(scrl)</code>.

Screens can be created with any object type. For example, a Base object or an image to make a wallpaper.

Screens are created on the currently selected *default display*. The *default screen* is the last registered screen with <code>lv_disp_drv_register</code> or you can explicitly select a new default display using <code>lv_disp_set_default(disp)</code>. <code>lv_scr_act()</code> and <code>lv_scr_load()</code> operate on the currently default screen.

Visit Multi-display support to learn more.

Layers

Order of creation

By default, LittlevGL draws old objects on the background and new objects on the foreground.

For example, assume we added a button to a parent object named button1 and then another button named button2. Then button1 (with its child object(s)) will be in the background and can be covered by button2 and its children.


```
/*Create a screen*/
lv_obj_t * scr = lv_obj_create(NULL, NULL);
                        /*Load the screen*/
lv scr load(scr);
/*Create 2 buttons*/
lv obj t * btn1 = lv btn create(scr, NULL);
                                                 /*Create a button on the screen*/
lv btn set fit(btn1, true, true);
                                                  /*Enable to automatically set the...
⇒size according to the content*/
lv_obj_set_pos(btn1, 60, 40);
                                                    /*Set the position of the
→button*/
lv obj_t * btn2 = lv_btn_create(scr, btn1);
                                                  /*Copy the first button*/
                                                /*Set the position of the button*/
lv obj set pos(btn2, 180, 80);
/*Add labels to the buttons*/
lv obj t * label1 = lv label create(btn1, NULL); /*Create a label on the first...
→button*/
lv_label_set_text(label1, "Button 1");
                                                      /*Set the text of the label*/
lv_obj_t * label2 = lv_label_create(btn2, NULL);
                                                       /*Create a label on the
⇒second button*/
lv_label_set_text(label2, "Button 2");
                                                       /*Set the text of the
→label*/
/*Delete the second label*/
lv_obj_del(label2);
```

Bring to the foreground

There are several ways to bring an object to the foreground:

- Use lv_obj_set_top(obj, true). If obj or any of its children is clicked, then LittlevGL will automatically bring the object to the foreground. It works similarly to a typical GUI on a PC. When a window in the background is clicked, it will come to the foreground automatically.
- Use <code>lv_obj_move_foreground(obj)</code> to explicitly tell the library to bring an object to the foreground. Similarly, use <code>lv_obj_move_background(obj)</code> to move to the background.
- When lv_obj_set_parent(obj, new_parent) is used, obj will be on the foreground on the new_parent.

Top and sys layers

LittlevGL uses two special layers named as layer_top and layer_sys. Both are visible and common on all screens of a display. They are not, however, shared among multiple physical displays. The layer_top is always on top of the default screen (lv_scr_act()), and layer_sys is on top of layer top.

The layer_top can be used by the user to create some content visible everywhere. For example, a menu bar, a pop-up, etc. If the click attribute is enabled, then layer_top will absorb all user click and acts as a modal.

```
lv_obj_set_click(lv_layer_top(), true);
```

The layer_sys is also using for similar purpose on LittlevGL. For example, it places the mouse cursor there to be sure it's always visible.

Events

Events are triggered in LittlevGL when something happens which might be interesting to the user, e.g. if an object:

- is clicked
- is dragged
- its value has changed, etc.

The user can assign a callback function to an object to see these events. In practice, it looks like this:

(continues on next page)

(continued from previous page)

```
break;

case LV_EVENT_LONG_PRESSED:
    printf("Long press\n");
    break;

case LV_EVENT_LONG_PRESSED_REPEAT:
    printf("Long press repeat\n");
    break;

case LV_EVENT_RELEASED:
    printf("Released\n");
    break;
}

/*Etc.*/
}
```

More objects can use the same event callback.

Event types

The following event types exist:

Generic events

All objects (such as Buttons/Labels/Sliders etc.) receive these generic events regardless of their type.

Related to the input devices

These are sent when an object is pressed/released etc. by the user. They are used not only for *Pointers* but can used for *Keypad*, *Encoder* and *Button* input devices as well. Visit the *Overview of input devices* section to learn more about them.

- LV_EVENT_PRESSED The object has been pressed
- LV_EVENT_PRESSING The object is being pressed (sent continuously while pressing)
- LV_EVENT_PRESS_LOST The input device is still being pressed but is no longer on the object
- LV_EVENT_SHORT_CLICKED Released before LV_INDEV_LONG_PRESS_TIME time. Not called if dragged.
- LV_EVENT_LONG_PRESSED Pressing for LV_INDEV_LONG_PRESS_TIME time. Not called if dragged.
- LV_EVENT_LONG_PRESSED_REPEAT Called after LV_INDEV_LONG_PRESS_TIME in every LV_INDEV_LONG_PRESS_REP_TIME ms. Not called if dragged.
- LV_EVENT_CLICKED Called on release if not dragged (regardless to long press)
- LV_EVENT_RELEASED Called in every case when the object has been released even if it was dragged. Not called if slid from the object while pressing and released outside of the object. In this case, LV EVENT PRESS LOST is sent.

Related to pointer

These events are sent only by pointer-like input devices (E.g. mouse or touchpad)

- LV_EVENT_DRAG_BEGIN Dragging of the object has started
- LV_EVENT_DRAG_END Dragging finished (including drag throw)
- LV_EVENT_DRAG_THROW_BEGIN Drag throw started (released after drag with "momentum")

Related to keypad and encoder

These events are sent by keypad and encoder input devices. Learn more about *Groups* in [overview/indev](Input devices) section.

- LV_EVENT_KEY A Key is sent to the object. Typically when it was pressed or repeated after a long press
- LV_EVENT_FOCUSED The object is focused in its group
- LV_EVENT_DEFOCUSED The object is defocused in its group

General events

Other general events sent by the library.

• LV_EVENT_DELETE The object is being deleted. Free the related user-allocated data.

Special events

These events are specific to a particular object type.

- LV_EVENT_VALUE_CHANGED The object value has changed (e.g. for a Slider)
- LV_EVENT_INSERT Something is inserted to the object. (Typically to a Text area)
- LV_EVENT_APPLY "Ok", "Apply" or similar specific button has clicked. (Typically from a Keyboard object)
- LV_EVENT_CANCEL "Close", "Cancel" or similar specific button has clicked. (Typically from a Keyboard object)
- LV_EVENT_REFRESH Query to refresh the object. Never sent by the library but can be sent by the user.

Visit particular Object type' s documentation to understand which events are used by an object type.

Custom data

Some events might contain custom data. For example, $LV_EVENT_VALUE_CHANGED$ in some cases tells the new value. For more information, see the particular *Object type's documentation*. To get the custom data in the event callback use $lv_event_get_data()$.

The type of the custom data depends on the sending object but if it's a

• single number then it's uint32 t * or int32 t *

• text then char * or const char *

Send events manually

To manually send events to an object, use lv_event_send(obj, LV_EVENT_..., &custom_data).

For example, it can be used to manually close a message box by simulating a button press (although there are simpler ways of doing this):

```
/*Simulate the press of the first button (indexes start from zero)*/
uint32_t btn_id = 0;
lv_event_send(mbox, LV_EVENT_VALUE_CHANGED, &btn_id);
```

Or to perform refresh generically:

```
lv_event_send(label, LV_EVENT_REFRESH, NULL);
```

Styles

Styles are used to set the appearance of the objects. Styles in lvgl are heavily inspired by CSS. The concept in nutshell is the following:

- A style is an lv_style_t variable which can hold properties, for example border width, text color and so on. It's similar to class in CSS.
- Not all properties have to be specified. Unspecified properties will use a default value.
- Styles can be assigned to objects to change their appearance.
- A style can be used by any number of objects.
- Styles can be cascaded which means multiple styles can be assigned to an object and each style can have different properties. For example style_btn can result in a default gray button and style_btn_red can add only a background-color=red to overwrite the background color.
- Later added styles have higher precedence. It means if a property is specified in two styles the later added will be used.
- Some properties (e.g. text color) can be inherited from the parent(s) if it's not specified in the object.
- Objects can have local styles which has higher precedence than "normal" styles.
- Unlike CSS (where pseudo classes describes different states, e.g. :hover), in lvgl a property is assigned to a given state.
- Transition can be applied when the object changes state.

States

The objects can be in the following states:

- LV_STATE_DEFAULT (0x00): Normal, released
- LV_STATE_CHECKED (0x01): Toggled or checked
- LV_STATE_FOCUSED (0x02): Focused via keypad or encoder or clicked via touchpad/mouse
- LV STATE EDITED (0x04): Edit by an encoder

- LV_STATE_HOVERED (0x08): Hovered by mouse (not supported now)
- LV_STATE_PRESSED (0x10): Pressed
- LV_STATE_DISABLED (0x20): Disabled or inactive

Combination of states are also possible, for example LV_STATE_FOCUSED | LV_STATE_PRESSED.

The styles properties can be defined in every state and state combination. For example setting different background color for default and pressed state. If a property is not defined in a state the best matching state's property will be used. Typically it means the property with LV_STATE_DEFAULT state. If the property is not set even for the default state the default value will be used. (See later)

But what does the "best matching state's property" really means? States has a precedence which is shown by their value (see in the above list). A higher value means a higher precedence. To determine which state's property to use let's use an example. Let's see the background color is defined like this:

- LV_STATE_DEFAULT: white
- LV_STATE_PRESSED: gray
- LV STATE FOCUSED: red
- 1. By the default the object is in default state, so it's a simple case: the property is perfectly defined in object's current state as white
- 2. When the object is pressed there are 2 related properties: default with white (default is related to every state) and pressed with gray. The pressed state has 0x10 precedence which is higher than the default state' s 0x00 precedence, so gray color will be used.
- 3. When the object is focused the same thing happens as in pressed state and red color will be used.
- 4. When the object is focused and pressed both gray and red would work, but the pressed state has higher precedence than focused so gray color will be used.
- 5. It's possible to set e.g rose color for LV_STATE_PRESSED | LV_STATE_FOCUSED. In this case this combined state has 0x2 + 0x10 = 0x12 precedence, which higher than the pressed states precedence so rose color would be used.
- 6. When the object is checked there is no property to set the background color for this state. So in lack of a better option the object remains white from the default state's property.

Cascading styles

It's not required to set all the properties in one style. It's possible add more styles to an object and the let the later added style to modify or extend the properties in the other styles. For example, create a general gray button style and create a new for red buttons where only the new background color is set.

It's the same concept when in CSS all the used classes are listed like <div class=".btn .btn-red">.

The later added styles has higher precedence over the earlier ones. So from the previous gray/red the red background color will overwrite the gray background color. However the precedence coming from states are still taken into account. So let's examine the following case:

- the basic button style defines dark-gray color for default state and light-gray color pressed state
- the red button styles sets the background color to red only in the default state

In this case when the button is pressed the light-gray color is a better match because it describes the the current state perfectly.

Inheritance

Some properties (typically that are related to texts) can be inherited from the parent object's styles. Inheritance is applied only if the given property is not set in the object's styles (even in default state). In this case, if the property is inheritable, the properties value will be searched in the parent too until a part can tell a value for the property. The parents will use their own state to tell the value. So is button is pressed, and text color comes from here, the pressed text color will be used.

Part of the objects

Objects can have parts which can have their own style. For example a page has four parts:

- Background
- Scrollable
- Scrollbar
- Edge flash

![page small.png](A scrollable page in lvgl)

There is three type of of object parts main, virtual and real.

The main part is usually the background and largest part of the object. Some object has only has main part. For example a button has only a background.

The virtual parts are additional parts just drawn on the fly to the main part. There is no "real" object behind them. For example the page's scrollbar is not a real object, it's just drawn when the page's background is drawn. The virtual parts always have the same state as the main part. If the property can be inherited, the main part will be also considered before going to the parent.

The real parts are real objects created and managed by the main object. For example the page's scrollable part is real object. Real parts can be in different state than the main part.

To see which parts an object has see their documentation.

Initialize styles and set/get properties

Styles are stored in <code>lv_style_t</code> variables. Style variables should be <code>static</code>, global or dynamically allocated. In other words they can not be local variables in functions which are destroyed when the function exists. Before using a style it should be initialized with <code>lv_style_init(&my_style)</code>. After initializing the style properties can be set added to it. Property set functions looks like this: <code>lv_style_set_<property_name>(&style, <state>, <value>);</code> For example the <code>above mentioned</code> example looks like this:

It's possible to copy a style with lv_style_copy(&style_destination, &style_source). After copy properties still can be added freely.

To remove a property use:

```
\label{local_prop} $$ v_style_remove_prop(\&style, LV_STYLE_BG_COLOR \mid (LV_STATE_PRESSED << LV_STYLE_STATE\_ \\ $\Rightarrow POS));
```

To get the value from style in a state functions with the following prototype are available: lv_style_get_prperty_name>(&style, <state>, <result poiner>);. The the best matching property will be selected and it's precedence will be returned. -1 will be returned if the property is not found. For example:

To reset a style (free all it's data) use

```
lv_style_reset(&style);
```

Managing style list

A style on it's own not that useful. It should be assigned to an object to take its effect. Every part of the objects store a *style list* which is the list of assigned styles.

To add a style to an object use lv_obj_add_style(obj, <part>, &style) For example:

An objects style list can be reset with lv obj reset style list(obj, <part>)

If a style which is already assigned to an object changes (i.e. one of it's property is set to a new value) the objects using that style should be notified with $lv_obj_refresh_style(obj)$

To get a final value of property, including cascading, inheritance, local styles and transitions (see below), get functions like this can be used: lv_obj_get_style_property_name>(obj, <part>). These functions uses the object's current state and if no better candidate returns a default value. For example:

```
lv_color_t color = lv_obj_get_style_bg_color(btn, LV_BTN_PART_MAIN);
```

Local styles

In the object's style lists so called local properties can be stored as well. It's the same concept than CSS's <div style="color:red"><. The local style just like a normal style created only for a given object.

To set a local property use functions like lv_obj_set_style_local_roperty_name>(obj, <part>, <state>, <value>);For example:

Transitions

By default, when an object changes state (e.g. it's pressed) the new properties from the new state are set immediately. However with transitions it's possible to play an animation of value change. For example, on pressing a button its background color can be animated to the pressed color over 300 ms.

The parameters of the transitions are stored in the styles. It's possible to set

- the time of the transition
- the delay before starting the transition
- the animation path (also known as timing function)
- the properties to animate

The transition properties can be defined for each state. For example setting 500 ms transition time in default state will mean that when the object goes to default state 500 ms transition time will be applied. Setting 100 ms transition time in pressed state will mean 100 ms transition time when going to presses state. In summary, this configuration will result in fast going to presses state and slow going back to default.

Properties

The following properties can be used in the styles.

Mixed properties

- radius (lv_style_int_t): Set the radius of the background. 0: no radius, LV_RADIUS_CIRCLE: maximal radius.
- clip_corner (bool): true: enable to clip the overflowed content on the rounded (radius > 0) corners.
- size (lv_style_int_t): Size of internal elements of the widgets. See the documentation of the widgets if this property is used or not.
- transform_width (lv style int t): Make the object wider on both sides with this value.
- transform_height (lv_style_int_t) Make the object higher on both sides with this value.
- opa_scale (lv_style_int_t): Inherited. Scale down all opacity values of the object by this factor. As it's inherited the children objects will be affected too.

Padding properties

Set the space on the edges and between the children objects. Typically used by *Container* object if layout or auto fit is enabled. However other widgets also use them to set spacing. See the documentation of the widgets for the details.

- pad_top (lv_style_int_t): Set the padding on the top.
- pad_bottom (lv_style_int_t): Set the padding on the bottom.
- pad_left (lv style int t): Set the padding on the left.
- pad_right (lv style int t): Set the padding on the right.
- pad_inner (lv_style_int_t): Set the padding inside the object between children.

Background properties

The background is a simple rectangle which can have gradient and radius rounding.

- bg_color (lv_color_t) Specifies the color of the background. Default value: LV_COLOR_WHITE
- bg_opa (lv_opa_t) Specifies opacity of the background. Default value: LV_OPA_TRANSP.
- bg_grad_color (lv_color_t) Specifies the color of the background's gradient. The color on the right or bottom is bg_grad_dir != LV_GRAD_DIR_NONE. Default value: LV_COLOR_WHITE.
- bg_main_stop (uint8_t): Specifies where should the gradient start. 0: at left/top most position, 255: at right/bottom most position.
- bg_grad_stop (uint8_t): Specifies where should the gradient start. 0: at left/top most position, 255: at right/bottom most position. Default value: 255.
- bg_grad_dir (lv_grad_dir_t) Specifies the direction of the gradient. Can be LV_GRAD_DIR_NONE/HOR/VER. Default value: LV_GRAD_DIR_NONE.
- **bg_blend_mode** (lv_blend_mode_t): Set the blend mode the background. Can be LV_BLEND_MODE_NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV_BLEND_MODE_NORMAL.


```
#include "lvgl/lvgl.h"

/**
   * Using the background style properties
   */
void lv_ex_style_1(void)
{
    static lv_style_t style;
    lv_style_init(&style);
    lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);

/*Make a gradient*/
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
```

(continues on next page)

(continued from previous page)

```
lv_style_set_bg_grad_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
lv_style_set_bg_grad_dir(&style, LV_STATE_DEFAULT, LV_GRAD_DIR_VER);

/*Shift the gradient to the bottom*/
lv_style_set_bg_main_stop(&style, LV_STATE_DEFAULT, 128);
lv_style_set_bg_grad_stop(&style, LV_STATE_DEFAULT, 192);

/*Create an object with the new style*/
lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Border properties

The border in drawn on to of the background. It has radius rounding.

- border_color (lv_color_t) Specifies the color of the border.
- border_opa (lv_opa_t) Specifies opacity of the border.
- border_width (lv_style_int_t): Set the width of the border.
- border_side (lv_border_side_t) Specifies which sides of the border to draw. Can be LV_BORDER_SIDE_NONE/LEFT/RIGHT/TOP/BOTTOM/FULL. ORed values are also possible. Default value: LV BORDER SIDE FULL.
- border post (bool): If true the border will be drawn all children has been drawn.
- border_blend_mode (lv_blend_mode_t): Set the blend mode of the border. Can be LV_BLEND_MODE_NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV_BLEND_MODE_NORMAL.


```
#include "lvgl/lvgl.h"
* Using the border style properties
void lv_ex_style_2(void)
    static lv style t style;
   lv style init(&style);
   /*Set a background color and a radius*/
   lv style set radius(&style, LV STATE DEFAULT, 20);
    lv style set bg opa(&style, LV STATE DEFAULT, LV OPA COVER);
    lv style set bg color(&style, LV STATE DEFAULT, LV COLOR SILVER);
   /*Add border to the bottom+right*/
   lv_style_set_border_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv_style_set_border_width(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_border_opa(&style, LV_STATE_DEFAULT, LV_OPA_50);
    lv_style_set_border_side(&style, LV_STATE_DEFAULT, LV_BORDER_SIDE_BOTTOM | LV_
→BORDER SIDE RIGHT);
    /*Create an object with the new style*/
    lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
    lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Outline properties

The outline is similar to *border* but is drawn outside of the object.

- outline color (lv color t) Specifies the color of the outline.
- outline_opa (lv_opa_t) Specifies opacity of the outline.
- outline_width (lv style int t): Set the width of the outline.
- outline_pad (lv style int t) Set the space between the object and the outline.
- outline_blend_mode (lv_blend_mode_t): Set the blend mode of the outline. Can be LV BLEND MODE NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV BLEND MODE NORMAL.


```
#include "lvgl/lvgl.h"
* Using the outline style properties
void lv_ex_style_3(void)
    static lv_style_t style;
   lv_style_init(&style);
    /*Set a background color and a radius*/
   lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv style set bg color(&style, LV STATE DEFAULT, LV COLOR SILVER);
   /*Add outline*/
   lv_style_set_outline_width(&style, LV_STATE_DEFAULT, 2);
    lv_style_set_outline_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv_style_set_outline_pad(&style, LV_STATE_DEFAULT, 8);
    /*Create an object with the new style*/
    lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
    lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Shadow properties

The shadow is a blurred area under the object.

- ${\bf shadow_color}({\tt lv_color_t})$ Specifies the color of the shadow.
- shadow_opa (lv opa t) Specifies opacity of the shadow.

- shadow_width (lv style int t): Set the width (blur size) of the outline.
- shadow_ofs_x (lv style int t): Set the an X offset for the shadow.
- shadow_ofs_y (lv_style_int_t): Set the an Y offset for the shadow.
- **shadow_spread** (lv_style_int_t): ake the shadow larger than the background in every direction by this value.
- shadow_blend_mode (lv_blend_mode_t): Set the blend mode of the shadow. Can be LV BLEND MODE NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV_BLEND_MODE_NORMAL.


```
#include "lvgl/lvgl.h"
* Using the Shadow style properties
void lv_ex_style_4(void)
    static lv_style_t style;
   lv_style_init(&style);
   /*Set a background color and a radius*/
   lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
   /*Add a shadow*/
   lv_style_set_shadow_width(&style, LV_STATE_DEFAULT, 8);
    lv_style_set_shadow_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv style set shadow ofs x(&style, LV STATE DEFAULT, 10);
    lv_style_set_shadow_ofs_y(&style, LV_STATE_DEFAULT, 20);
   /*Create an object with the new style*/
    lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
```

(continues on next page)

(continued from previous page)

```
lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Pattern properties

The pattern is an image (or symbol) drawn in the middle of the background or repeated to fill the whole background.

- pattern_image (const void *): Pointer to an lv_img_dsc_t variable, a path to an image file or a symbol.
- pattern_opa (lv_opa_t): Specifies opacity of the pattern.
- pattern_recolor (lv_color_t): Mix this color to the pattern image. In case of symbols (texts) it will be the text color.
- pattern_recolor_opa (lv_opa_t): Intensity of recoloring. Default value: LV_OPA_TRANSP (no recoloring).
- pattern_repeat (bool): true: the pattern will be repeated as a mosaic. false: place the pattern in the middle of the background.
- pattern_blend_mode (lv_blend_mode_t): Set the blend mode of the pattern. Can be LV BLEND MODE NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV BLEND MODE NORMAL.


```
#include "lvgl/lvgl.h"

/**
  * Using the pattern style properties
  */
void lv_ex_style_5(void)
{
```

(continues on next page)

(continued from previous page)

```
static lv style t style;
    lv_style_init(&style);
    /*Set a background color and a radius*/
    lv style set radius(&style, LV STATE DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv style set bg color(&style, LV STATE DEFAULT, LV COLOR SILVER);
    /*Add a repeating pattern*/
   lv_style_set_pattern_image(&style, LV_STATE_DEFAULT, LV_SYMBOL_OK);
    lv_style_set_pattern_recolor(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv style set pattern opa(&style, LV STATE DEFAULT, LV OPA 50);
    lv style set pattern repeat(&style, LV STATE DEFAULT, true);
    /*Create an object with the new style*/
   lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
    lv obj align(obj, NULL, LV ALIGN CENTER, 0, 0);
}
```

Value properties

Value is an arbitrary text drawn to the background. It can be a lightweighted replacement of the creating label objects.

- value str (const char *): Pointer to text to display. Only the pointer is saved.
- value color (lv color t): Color of the text.
- value_opa (lv opa t): Opacity of the text.
- value_font (const lv font t *): Pointer to font of the text.
- value_letter_space (lv style int t): Letter space of the text.
- value_line_space (lv style int t): Line space of the text.
- value_align (lv_align_t): Alignment of the text. Can be LV ALIGN
- value_ofs_x (lv_style_int_t): X offset from the original position of the alignment.
- value_ofs_y (lv_style_int_t): Y offset from the original position of the alignment.
- value_blend_mode (lv_blend_mode_t): Set the blend mode of the text. Can be LV_BLEND_MODE_NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV_BLEND_MODE_NORMAL.


```
#include "lvgl/lvgl.h"
* Using the value style properties
void lv_ex_style_6(void)
    static lv_style_t style;
    lv style init(&style);
    /*Set a background color and a radius*/
   lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
   /*Add a value text properties*/
   lv style set value color(&style, LV STATE DEFAULT, LV COLOR BLUE);
    lv_style set_value_align(&style, LV_STATE_DEFAULT, LV_ALIGN_IN_BOTTOM_RIGHT);
    lv_style_set_value_ofs_x(&style, LV_STATE_DEFAULT, 10);
    lv_style_set_value_ofs_y(&style, LV_STATE_DEFAULT, 10);
    /*Create an object with the new style*/
   lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
    lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
   /*Add a value text to the local style. This way every object can have different,
→text*/
   lv_obj_set_style_local_value_str(obj, LV_OBJ_PART_MAIN, LV_STATE_DEFAULT, "Text");
}
```

Text properties

Properties for textual object.

- text_color (lv_color_t): Color of the text.
- $text_opa$ (lv_opa_t): Opacity of the text.
- text_font (const lv font t *): Pointer to font of the text.
- text_letter_space (lv style int t): Letter space of the text.
- text_line_space (lv style int t): Line space of the text.
- text_decor (lv_text_decor_t): Add text decoration. Can be LV_TEXT_DECOR_NONE/UNDERLINE/STRIKETHROUGH.
- $text_sel_color$ (lv $color_t$): Set background color of text selection.
- text_blend_mode (lv_blend_mode_t): Set the blend mode of the text. Can be LV BLEND MODE NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV BLEND MODE NORMAL.


```
#include "lvgl/lvgl.h"

/**
   * Using the text style properties
   */
void lv_ex_style_7(void)
{
    static lv_style_t style;
    lv_style_init(&style);

    lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
    lv_style_set_border_width(&style, LV_STATE_DEFAULT, 2);
    lv_style_set_border_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
```

(continues on next page)

(continued from previous page)

Line properties

Properties of lines.

- line_color (lv_color_t): Color of the line.
- line_opa (lv_opa_t): Opacity of the line.
- line_width (lv style int t): Width of the line.
- line_dash_width (lv_style_int_t): Width of dash. Dashing is drawn only for horizontal or vertical lines. 0: disable dash.
- line_dash_gap (lv_style_int_t): Gap between two dash line. Dashing is drawn only for horizontal or vertical lines. 0: disable dash.
- line_rounded (bool): true: draw rounded line endings.
- line_blend_mode (lv_blend_mode_t): Set the blend mode of the line. Can be
 LV BLEND MODE NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV BLEND MODE NORMAL.

Image properties

Properties of image.

- image_recolor (lv_color_t): Mix this color to the pattern image. In case of symbols (texts) it will be the text color.
- image_recolor_opa (lv_opa_t): Intensity of recoloring. Default value: LV_OPA_TRANSP (no recoloring).
- image_opa (lv_opa_t): Opacity of the image.
- image_blend_mode (lv_blend_mode_t): Set the blend mode of the image. Can be LV_BLEND_MODE_NORMAL/ADDITIVE/SUBTRACTIVE). Default value: LV_BLEND_MODE_NORMAL.


```
#include "lvgl/lvgl.h"
* Using the image style properties
void lv_ex_style_8(void)
    static lv_style_t style;
    lv style init(&style);
    /*Set a background color and a radius*/
    lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
    lv style set border width(&style, LV STATE DEFAULT, 2);
    lv_style_set_border_color(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv_style_set_pad_top(&style, LV_STATE_DEFAULT, 10);
    lv_style_set_pad_bottom(&style, LV_STATE_DEFAULT, 10);
    lv style set pad left(&style, LV STATE DEFAULT, 10);
    lv_style_set_pad_right(&style, LV_STATE_DEFAULT, 10);
   lv_style_set_image_recolor(&style, LV_STATE_DEFAULT, LV_COLOR_BLUE);
   lv_style_set_image_recolor_opa(&style, LV_STATE_DEFAULT, LV_OPA_50);
    /*Create an object with the new style*/
   lv_obj_t * obj = lv_img_create(lv_scr_act(), NULL);
    lv_obj_add_style(obj, LV_IMG_PART_MAIN, &style);
    LV IMG DECLARE(img cogwheel argb);
    lv img set src(obj, &img cogwheel argb);
    lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Transition properties

Properties to describe state change animations.

- transition_time (lv_style_int_t): Time of the transition.
- transition_delay (lv_style_int_t): Delay before the transition.
- transition_1 (property name): A property on which transition should be applied. Use the property name with upper case with LV STYLE prefix, e.g. LV STYLE BG COLOR
- transition 2 (property name): Same as transition 1 just for an other property.
- transition_3 (property name): Same as transition_1 just for an other property.
- transition_4 (property name): Same as transition_1 just for an other property.
- transition_5 (property name): Same as transition_1 just for an other property.
- transition_6 (property name): Same as transition_1 just for an other property.
- **transition_path** (lv_anim_path_cb_t): An animation path for the transition. Built pats can be used, e.g. lv_anim_path_overshoot.


```
#include "lvgl/lvgl.h"

/**
    * Using the transitions style properties
    */
void lv_ex_style_9(void)
{
    static lv_style_t style;
    lv_style_init(&style);

    /*Set a background color and a radius*/
    lv_style_set_radius(&style, LV_STATE_DEFAULT, 5);
    lv_style_set_bg_opa(&style, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style, LV_STATE_DEFAULT, LV_COLOR_SILVER);
```

(continues on next page)

(continued from previous page)

```
/*Set different background color in pressed state*/
lv_style_set_bg_color(&style, LV_STATE_PRESSED, LV_COLOR_GRAY);

/*Set different transition time in default and pressed state
    *fast press, slower revert to default*/
lv_style_set_transition_time(&style, LV_STATE_DEFAULT, 500);
lv_style_set_transition_time(&style, LV_STATE_PRESSED, 200);

/*Small delay to make transition more visible*/
lv_style_set_transition_delay(&style, LV_STATE_DEFAULT, 100);

/*Add `bg_color` to transitioned properties*/
lv_style_set_transition_prop_1(&style, LV_STATE_DEFAULT, LV_STYLE_BG_COLOR);

/*Create an object with the new style*/
lv_obj_t * obj = lv_obj_create(lv_scr_act(), NULL);
lv_obj_add_style(obj, LV_OBJ_PART_MAIN, &style);
lv_obj_align(obj, NULL, LV_ALIGN_CENTER, 0, 0);
}
```

Scale properties

Auxiliary properties for scale like elements. Scales have a normal and and end region. As the name implies the end region is the end of the scale where can be critical values or inactive values. The normal region is before the end region. Both region could have different properties.

- scale_grad_color (lv color t): In normal region make gradient to this color on the scale lines.
- scale_end_color (lv_color_t): Color of the scale lines in the end region.
- scale_width (lv style int t): Width of the scale. Default value: LV DPI / 8.
- scale_border_width (lv_style_int_t): Width of a border drawn on the outer side of the scale in the normal region.
- scale_end_border_width (lv_style_int_t): Width of a border drawn on the outer side of the scale in the end region.
- scale_end_line_width (lv style int t): Width of a scale lines in the end region.

Themes

Themes are collection of styles. There is always an active theme whose styles are automatically applied when an object is created. It gives a default appearance to UI which can modified by adding further styles.

The default theme is set in $lv_conf.h$ with $lv_THEME_...$ defines. Every theme has the following properties

- primary color
- · secondary color
- small font
- normal font

- subtitle font
- title font

The usage of these parameters depends on the given theme.

There are 3 built-in themes:

- empty: no default styles are added
- default: an impressive, modern theme
- template: a very simple theme which can be copied to create custom theme

Input devices

An input device usually means:

- Pointer-like input device like touchpad or mouse
- Keypads like a normal keyboard or simple numeric keypad
- Encoders with left/right turn and push options
- External hardware buttons which are assigned to specific points on the screen

Important: Before reading further, please read the [Porting] (/porting/indev) section of Input devices

Pointers

Pointer input devices can have a cursor. (typically for mouses)

Note that the cursor object should have $lv_obj_set_click(cursor_obj, false)$. For images, *click-ing* is disabled by default.

Keypad and encoder

You can fully control the user interface without touchpad or mouse using a keypad or encoder(s). It works similar to the TAB key on the PC to select the element in an application or a web page.

Groups

The objects, you want to control with keypad or encoder, needs to be added to a *Group*. In every group, there is exactly one focused object which receives the pressed keys or the encoder actions. For example, if

a *Text area* is focused and you press some letter on a keyboard, the keys will be sent and inserted into the text area. Similarly, if a *Slider* is focused and you press the left or right arrows, the slider's value will be changed.

You need to associate an input device with a group. An input device can send the keys to only one group but, a group can receive data from more than one input device too.

To create a group use $lv_group_t * g = lv_group_create()$ and to add an object to the group use $lv_group_add_obj(g, obj)$.

The associate a group with an input device use $lv_indev_set_group(indev, g)$, where indev is the return value of lv indev drv register()

Keys

There are some predefined keys which have special meaning:

- LV_KEY_NEXT Focus on the next object
- LV KEY PREV Focus on the previous object
- LV_KEY_ENTER Triggers LV EVENT PRESSED/CLICKED/LONG PRESSED etc. events
- LV_KEY_UP Increase value or move upwards
- LV_KEY_DOWN Decrease value or move downwards
- LV_KEY_RIGHT Increase value or move the the right
- LV KEY LEFT Decrease value or move the the left
- LV_KEY_ESC Close or exit (E.g. close a Drop down list)
- LV_KEY_DEL Delete (E.g. a character on the right in a Text area)
- LV_KEY_BACKSPACE Delete a character on the left (E.g. in a Text area)
- LV_KEY_HOME Go to the beginning/top (E.g. in a *Text area*)
- LV_KEY_END Go to the end (E.g. in a *Text area*))

The most important special keys are LV_KEY_NEXT/PREV, LV_KEY_ENTER and LV_KEY_UP/DOWN/LEFT/RIGHT. In your read_cb function, you should translate some of your keys to these special keys to navigate in the group and interact with the selected object.

Usually, it's enough to use only $\mathsf{LV_KEY_LEFT/RIGHT}$ because most of the objects can be fully controlled with them.

With an encoder, you should use only LV_KEY_LEFT, LV_KEY_RIGHT, and LV_KEY_ENTER.

Edit and navigate mode

Since keypad has plenty of keys, it's easy to navigate between the objects and edit them using the keypad. But, the encoders have a limited number of "keys" hence, difficult to navigate using the default options. *Navigate* and *Edit* are created to avoid this problem with the encoders.

In Navigate mode, the encoders LV_KEY_LEFT/RIGHT is translated to LV_KEY_NEXT/PREV. Therefore the next or previous object will be selected by turning the encoder. Pressing LV_KEY_ENTER will change to Edit mode.

In *Edit* mode, LV_KEY_NEXT/PREV is usually used to edit the object. Depending on the object's type, a short or long press of LV KEY ENTER changes back to *Navigate* mode. Usually, an object which can not be

pressed (like a *Slider*) leaves *Edit* mode on short click. But with object where short click has meaning (e.g. *Button*), long press is required.

Styling the focused object

To visually highlight the focused element, its Main style will be updated. By default, some orange color is mixed with the original colors of the style. A new style modifier callback be set by <code>lv_group_set_style_mod_cb(g, my_style_mod_cb)</code>. A style modifier callback receives a pointer to a caller group and a pointer to a style to modify. The default style modifier looks like this (slightly simplified):

```
static void default style mod cb(lv group t * group, lv style t * style)
   /*Make the bodies a little bit orange*/
   style->body.border.opa = LV OPA COVER:
   style->body.border.color = LV COLOR ORANGE;
   style->body.border.width = LV DPI / 20;
                            = lv color mix(style->body.main color, LV COLOR ORANGE,...
   style->body.main color
→LV OPA 70);
   style->body.grad color
                            = lv color mix(style->body.grad color, LV COLOR ORANGE,...
style->body.shadow.color = lv color mix(style->body.shadow.color, LV COLOR ORANGE,
/*Recolor text*/
   style->text.color = lv color mix(style->text.color, LV COLOR ORANGE, LV OPA 70);
   /*Add some recolor to the images*/
   if(style->image.intense < LV OPA MIN) {</pre>
       style->image.color = LV_COLOR_ORANGE;
       style->image.intense = LV OPA 40;
   }
}
```

This style modifier callback is used for keypads and encoder in *Navigate* mode. For the *Edit* mode and other callback is used which can be set with <code>lv_group_set_style_mod_edit_cb()</code>. By default, it has a greenish color.

Live demo

Try this Live demo to see how a group and touchpad-less navigation works in the practice.

API

Input device

Functions

```
void lv_indev_init(void)
```

Initialize the display input device subsystem

void lv_indev_read_task(lv_task_t *task)

Called periodically to read the input devices

Parameters

• task: pointer to the task itself

lv_indev_t *lv_indev_get_act(void)

Get the currently processed input device. Can be used in action functions too.

Return pointer to the currently processed input device or NULL if no input device processing right now

lv_indev_type_t lv_indev_get_type(const lv_indev_t *indev)

Get the type of an input device

Return the type of the input device from lv_hal_indev_type_t (LV_INDEV_TYPE_...)

Parameters

• indev: pointer to an input device

```
void lv_indev_reset(lv_indev_t *indev, lv_obj_t *obj)
```

Reset one or all input devices

Parameters

- indev: pointer to an input device to reset or NULL to reset all of them
- **obj**: pointer to an object which triggers the reset.

void lv_indev_reset_long_press(lv_indev_t *indev)

Reset the long press state of an input device

Parameters

• indev_proc: pointer to an input device

void lv indev enable(lv indev t *indev, bool en)

Enable or disable an input devices

Parameters

- indev: pointer to an input device
- en: true: enable; false: disable

```
void \ \textbf{lv\_indev\_t} * indev\_t * indev\_t * indev\_t * cur\_obj\_t * cur\_obj)
```

Set a cursor for a pointer input device (for LV_INPUT_TYPE_POINTER and LV_INPUT_TYPE_BUTTON)

Parameters

- indev: pointer to an input device
- cur_obj: pointer to an object to be used as cursor

void lv indev set group(lv_indev_t *indev, lv_group_t *group)

Set a destination group for a keypad input device (for LV INDEV TYPE KEYPAD)

Parameters

- indev: pointer to an input device
- group: point to a group

void lv_indev_set_button_points(lv_indev_t *indev, const lv_point_t points[])

Set the an array of points for LV_INDEV_TYPE_BUTTON. These points will be assigned to the buttons to press a specific point on the screen

Parameters

- indev: pointer to an input device
- group: point to a group

void lv_indev_get_point(const lv_indev_t *indev, lv_point_t *point)

Get the last point of an input device (for LV_INDEV_TYPE_POINTER and LV_INDEV_TYPE_BUTTON)

Parameters

- indev: pointer to an input device
- point: pointer to a point to store the result

lv_gesture_dir_t lv indev get gesture dir(const lv_indev_t *indev)

Get the current gesture direct

Return current gesture direct

Parameters

• indev: pointer to an input device

uint32_t lv_indev_get_key(const lv_indev_t *indev)

Get the last pressed key of an input device (for LV INDEV TYPE KEYPAD)

Return the last pressed key (0 on error)

Parameters

• indev: pointer to an input device

bool lv indev is dragging (const lv_indev_t *indev)

Check if there is dragging with an input device or not (for LV_INDEV_TYPE_POINTER and LV INDEV TYPE BUTTON)

Return true: drag is in progress

Parameters

• indev: pointer to an input device

void lv_indev_get_vect(const lv_indev_t *indev, lv point t *point)

Get the vector of dragging of an input device (for LV_INDEV_TYPE_POINTER and LV INDEV TYPE BUTTON)

Parameters

- indev: pointer to an input device
- point: pointer to a point to store the vector

lv res t lv indev finish drag(lv indev t*indev)

Manually finish dragging. LV SIGNAL DRAG END and LV EVENT DRAG END will be sent.

Return LV RES INV if the object being dragged was deleted. Else LV RES OK.

Parameters

• indev: pointer to an input device

void lv_indev_wait_release(lv_indev_t *indev)

Do nothing until the next release

Parameters

• indev: pointer to an input device

```
lv_task_t *lv indev get read task(lv_disp_t*indev)
```

Get a pointer to the indev read task to modify its parameters with lv_task_... functions.

Return pointer to the indev read refresher task. (NULL on error)

Parameters

• indev: pointer to an inout device

lv_obj_t *lv_indev_get_obj_act(void)

Gets a pointer to the currently active object in index proc functions. NULL if no object is currently being handled or if groups aren't used.

Return pointer to currently active object

```
lv\_obj\_t *lv\_indev\_search\_obj(lv\_obj\_t *obj, lv\_point\_t *point)
```

Search the most top, clickable object by a point

Return pointer to the found object or NULL if there was no suitable object

Parameters

- **obj**: pointer to a start object, typically the screen
- point: pointer to a point for searning the most top child

Groups

Typedefs

```
typedef uint8_t lv_key_t
typedef void (*lv_group_style_mod_cb_t)(struct _lv_group_t *, lv_style_t *)
typedef void (*lv_group_focus_cb_t)(struct _lv_group_t *)
typedef struct _lv_group_t lv group_t
```

Groups can be used to logically hold objects so that they can be individually focused. They are NOT for laying out objects on a screen (try lv_cont for that).

```
typedef uint8 tlv group refocus policy t
```

Enums

```
\begin{array}{c} \textbf{enum} \ [\textbf{anonymous}] \\ Values: \end{array}
```

```
 \begin{split} \mathbf{LV\_KEY\_UP} &= 17 \\ \mathbf{LV\_KEY\_DOWN} &= 18 \\ \mathbf{LV\_KEY\_RIGHT} &= 19 \\ \mathbf{LV\_KEY\_LEFT} &= 20 \\ \mathbf{LV\_KEY\_ESC} &= 27 \end{split}
```

```
LV_KEY_DEL = 127
     LV_KEY_BACKSPACE = 8
     LV_KEY_ENTER = 10
     LV_KEY_NEXT = 9
     LV_KEY_PREV = 11
     LV_KEY_HOME = 2
     LV_KEY_END = 3
enum [anonymous]
     Values:
     LV GROUP REFOCUS POLICY NEXT = 0
     LV\_GROUP\_REFOCUS\_POLICY\_PREV = 1
Functions
void lv_group_init(void)
     Init. the group module
     Remark Internal function, do not call directly.
lv group t *lv group create(void)
     Create a new object group
     Return pointer to the new object group
void lv_group_del(lv_group_t *group)
     Delete a group object
     Parameters
           • group: pointer to a group
void lv group add obj(lv group t*group, lv obj t*obj)
     Add an object to a group
     Parameters
          • group: pointer to a group
           • obj: pointer to an object to add
void lv_group_remove_obj (lv_obj_t *obj)
     Remove an object from its group
     Parameters
           • obj: pointer to an object to remove
void lv_group_remove_all_objs(lv_group_t *group)
     Remove all objects from a group
     Parameters
           • group: pointer to a group
void lv_group_focus_obj (lv_obj_t *obj)
     Focus on an object (defocus the current)
     Parameters
```

• **obj**: pointer to an object to focus on

void lv_group_focus_next(lv_group_t *group)

Focus the next object in a group (defocus the current)

Parameters

• group: pointer to a group

void lv_group_focus_prev(lv_group_t *group)

Focus the previous object in a group (defocus the current)

Parameters

• group: pointer to a group

void lv_group_focus_freeze(lv_group_t *group, bool en)

Do not let to change the focus from the current object

Parameters

- group: pointer to a group
- en: true: freeze, false: release freezing (normal mode)

lv_res_t $lv_group_send_data(\mathit{lv_group_t*group}, uint32_t c)$

Send a control character to the focuses object of a group

Return result of focused object in group.

Parameters

- **group**: pointer to a group
- C: a character (use LV KEY .. to navigate)

Set a function for a group which will modify the object's style if it is in focus

Parameters

- group: pointer to a group
- style mod cb: the style modifier function pointer

$$\begin{tabular}{ll} void $lv_group_set_style_mod_edit_cb($lv_group_t & *group, & lv_group_style_mod_cb_t \\ & style_mod_edit_cb) \end{tabular}$$

Set a function for a group which will modify the object's style if it is in focus in edit mode

Parameters

- group: pointer to a group
- style mod edit cb: the style modifier function pointer

$\label{eq:condition} \begin{tabular}{ll} void $lv_group_set_focus_cb(\mathit{lv_group_t*group}, \mathit{lv_group_focus_cb_t} focus_cb) \end{tabular}$

Set a function for a group which will be called when a new object is focused

Parameters

- **group**: pointer to a group
- focus_cb: the call back function or NULL if unused

void lv_group_set_refocus_policy(lv_group_t *group, lv_group_refocus_policy_t policy)

Set whether the next or previous item in a group is focused if the currently focussed obj is deleted.

Parameters

- group: pointer to a group
- new: refocus policy enum

void lv_group_set_editing(lv_group_t *group, bool edit)

Manually set the current mode (edit or navigate).

Parameters

- group: pointer to group
- edit: true: edit mode; false: navigate mode

void lv_group_set_click_focus(lv_group_t *group, bool en)

Set the click_focus attribute. If enabled then the object will be focused then it is clicked.

Parameters

- group: pointer to group
- en: true: enable click focus

void lv_group_set_wrap(lv_group_t *group, bool en)

Set whether focus next/prev will allow wrapping from first->last or last->first object.

Parameters

- group: pointer to group
- en: true: wrapping enabled; false: wrapping disabled

lv_style_t *lv_group_mod_style(lv_group_t *group, const lv_style_t *style)

Modify a style with the set 'style mod' function. The input style remains unchanged.

Return a copy of the input style but modified with the 'style mod' function

Parameters

- group: pointer to group
- style: pointer to a style to modify

lv_obj_t *lv_group_get_focused(const lv_group_t *group)

Get the focused object or NULL if there isn't one

Return pointer to the focused object

Parameters

• **group**: pointer to a group

lv group user data t *lv group get user data(lv group t *group)

Get a pointer to the group's user data

Return pointer to the user data

Parameters

• group: pointer to an group

Get a the style modifier function of a group

Return pointer to the style modifier function

Parameters

• group: pointer to a group

lv_group_style_mod_cb_t lv_group_get_style_mod_edit_cb(const lv_group_t *group)

Get a the style modifier function of a group in edit mode

Return pointer to the style modifier function

Parameters

• **group**: pointer to a group

lv_group_focus_cb_t lv_group_get_focus_cb(const lv_group_t *group)

Get the focus callback function of a group

Return the call back function or NULL if not set

Parameters

• group: pointer to a group

bool lv_group_get_editing(const lv_group_t *group)

Get the current mode (edit or navigate).

Return true: edit mode; false: navigate mode

Parameters

• group: pointer to group

bool lv_group_get_click_focus(const lv_group_t *group)

Get the click_focus attribute.

Return true: click_focus is enabled; false: disabled

Parameters

• group: pointer to group

bool lv_group_get_wrap(lv_group_t *group)

Get whether focus next/prev will allow wrapping from first->last or last->first object.

Parameters

- group: pointer to group
- en: true: wrapping enabled; false: wrapping disabled

struct _lv_group_t

 $\#include < lv_group.h > Groups$ can be used to logically hold objects so that they can be individually focused. They are NOT for laying out objects on a screen (try lv_cont for that).

Public Members

lv_ll_t obj_ll

Linked list to store the objects in the group

lv_obj_t **obj_focus

The object in focus

lv_group_style_mod_cb_t style_mod_cb

A function to modifies the style of the focused object

lv_group_style_mod_cb_t style_mod_edit_cb

A function which modifies the style of the edited object

lv group focus cb t focus cb

A function to call when a new object is focused (optional)

lv_style_t style_tmp

Stores the modified style of the focused object

lv_group_user_data_t user_data

uint8 t frozen

1: can't focus to new object

uint8 t editing

1: Edit mode, 0: Navigate mode

uint8_t click_focus

1: If an object in a group is clicked by an indev then it will be focused

uint8_t refocus_policy

1: Focus prev if focused on deletion. 0: Focus next if focused on deletion.

uint8 t wrap

1: Focus next/prev can wrap at end of list. 0: Focus next/prev stops at end of list.

Displays

Important: The basic concept of *display* in LittlevGL is explained in the [Porting](/porting/display) section. So before reading further, please read the [Porting](/porting/display) section first.

In LittlevGL, you can have multiple displays, each with their own driver and objects.

Creating more displays is easy: just initialize more display buffers and register another driver for every display. When you create the UI, use <code>lv_disp_set_default(disp)</code> to tell the library which display to create objects on.

Why would you want multi-display support? Here are some examples:

- Have a "normal" TFT display with local UI and create "virtual" screens on VNC on demand. (You need to add your VNC driver).
- Have a large TFT display and a small monochrome display.
- Have some smaller and simple displays in a large instrument or technology.
- Have two large TFT displays: one for a customer and one for the shop assistant.

Using only one display

Using more displays can be useful, but in most cases, it's not required. Therefore, the whole concept of multi-display is completely hidden if you register only one display. By default, the lastly created (the only one) display is used as default.

lv_scr_act(), lv_scr_load(scr), lv_layer_top(), lv_layer_sys(), LV_HOR_RES and LV_VER_RES are always applied on the lastly created (default) screen. If you pass NULL as disp parameter to display related function, usually the default display will be used. E.g. lv_disp_trig_activity(NULL) will trigger a user activity on the default screen. (See below in *Inactivity*).

Mirror display

To mirror the image of the display to another display, you don't need to use the multi-display support. Just transfer the buffer received in drv.flush_cb to another display too.

Split image

You can create a larger display from smaller ones. You can create it as below:

- 1. Set the resolution of the displays to the large display's resolution.
- 2. In drv.flush cb, truncate and modify the area parameter for each display.
- 3. Send the buffer's content to each display with the truncated area.

Screens

Every display has each set of Screens and the object on the screens.

Be sure not to confuse displays and screens:

- **Displays** are the physical hardware drawing the pixels.
- Screens are the high-level root objects associated with a particular display. One display can have multiple screens associated with it, but not vice versa.

Screens can be considered the highest level containers which have no parent. The screen's size is always equal to its display and size their position is (0;0). Therefore, the screens coordinates can't be changed, i.e. $lv_obj_set_pos(), lv_obj_set_size()$ or similar functions can't be used on screens.

A screen can be created from any object type but, the two most typical types are the *Base object* and the *Image* (to create a wallpaper).

To create a screen, use $lv_obj_t * scr = lv_<type>_create(NULL, copy)$. copy can be an other screen to copy it.

To load a screen, use lv_scr_load(scr). To get the active screen, use lv_scr_act(). These functions works on the default display. If you want to to specify which display to work on, use lv disp get scr act(disp) and lv disp load scr(disp, scr).

Screens can be deleted with $lv_obj_del(scr)$, but ensure that you do not delete the currently loaded screen.

Opaque screen

Usually, the opacity of the screen is LV OPA COVER to provide a solid background for its children.

However, in some special cases, you might want a transparent screen. For example, if you have a video player that renders video frames on a lower layer, you want to create an OSD menu on the upper layer (over the video) using LittlevGL.

To do this, the screen should have a style that sets body.opa or image.opa to LV_OPA_TRANSP (or another non-opaque value) to make the screen opaque.

Also, $LV_COLOR_SCREEN_TRANSP$ needs to be enabled. Please note that it only works with $LV_COLOR_DEPTH = 32$.

The Alpha channel of 32-bit colors will be 0 where there are no objects and will be 255 where there are solid objects.

Features of displays

Inactivity

The user's inactivity is measured on each display. Every use of an *Input device* (if associated with the display) counts as an activity. To get time elapsed since the last activity, use <code>lv_disp_get_inactive_time(disp)</code>. If <code>NULL</code> is passed, the overall smallest inactivity time will be returned from all displays (not the default display).

You can manually trigger an activity using lv_disp_trig_activity(disp). If disp is NULL, the default screen will be used (and not all displays).

Colors

The color module handles all color-related functions like changing color depth, creating colors from hex code, converting between color depths, mixing colors, etc.

The following variable types are defined by the color module:

- lv_color1_t Store monochrome color. For compatibility, it also has R, G, B fields but they are always the same value (1 byte)
- lv_color8_t A structure to store R (3 bit),G (3 bit),B (2 bit) components for 8-bit colors (1 byte)
- lv_color16_t A structure to store R (5 bit),G (6 bit),B (5 bit) components for 16-bit colors (2 byte)
- lv_color32_t A structure to store R (8 bit), G (8 bit), B (8 bit) components for 24-bit colors (4 byte)
- lv_color_t Equal to lv color1/8/16/24 t according to color depth settings
- lv_color_int_t uint8_t, uint16_t or uint32_t according to color depth setting. Used to build
 color arrays from plain numbers.
- lv_opa_t A simple uint8_t type to describe opacity.

The lv_color_t, lv_color1_t, lv_color8_t, lv_color16_t and lv_color32_t types have got four fields:

- ch.red red channel
- ch.green green channel
- ch.blue blue channel
- full red + green + blue as one number

You can set the current color depth in $lv_conf.h$, by setting the LV_COLOR_DEPTH define to 1 (monochrome), 8, 16 or 32.

Convert color

You can convert a color from the current color depth to another. The converter functions return with a number, so you have to use the full field:

Swap 16 colors

You may set LV_COLOR_16_SWAP in $lv_conf.h$ to swap the bytes of RGB565 colors. It's useful if you send the 16-bit colors via a byte-oriented interface like SPI.

As 16-bit numbers are stored in Little Endian format (lower byte on the lower address), the interface will send the lower byte first. However, displays usually need the higher byte first. A mismatch in the byte order will result in highly distorted colors.

Create and mix colors

You can create colors with the current color depth using the LV_COLOR_MAKE macro. It takes 3 arguments (red, green, blue) as 8-bit numbers. For example to create light red color: $my_color = COLOR\ MAKE(0xFF,0x80,0x80)$.

Colors can be created from HEX codes too: $my_color = lv_color_hex(0x288ACF)$ or $my_color = lv_folro_hex3(0x28C)$.

Mixing two colors is possible with mixed_color = lv_color_mix(color1, color2, ratio). Ration can be 0..255. 0 results fully color2, 255 result fully color1.

Colors can be created with from HSV space too using lv_color_hsv_to_rgb(hue, saturation, value). hue should be in 0..360 range, saturation and value in 0..100 range.

Opacity

To describe opacity the lv_opa_t type is created as a wrapper to uint8_t. Some defines are also introduced:

- LV_OPA_TRANSP Value: 0, means the opacity makes the color completely transparent
- LV_OPA_10 Value: 25, means the color covers only a little
- LV_OPA_20 ···OPA_80 come logically
- LV_OPA_90 Value: 229, means the color near completely covers
- LV_OPA_COVER Value: 255, means the color completely covers

You can also use the LV_OPA_* defines in lv_color_mix() as a ratio.

Built-in colors

The color module defines the most basic colors such as:

- #FFFFFF LV COLOR WHITE
- #000000 LV COLOR BLACK
- #808080 LV_COLOR_GRAY
- #c0c0c0 LV COLOR SILVER
- #ff0000 LV_COLOR_RED
- #800000 LV COLOR MAROON
- #00ff00 LV_COLOR_LIME
- #008000 LV_COLOR_GREEN
- #808000 LV COLOR OLIVE
- #0000ff LV_COLOR_BLUE
- #000080 LV COLOR NAVY
- #008080 LV_COLOR_TEAL
- #00ffff LV COLOR CYAN
- #00ffff LV_COLOR_AQUA
- #800080 LV COLOR PURPLE
- #ff00ff LV COLOR MAGENTA
- #ffa500 LV COLOR ORANGE
- #ffff00 LV COLOR YELLOW

as well as LV COLOR WHITE (fully white).

API

Display

Functions

```
lv\_obj\_t *lv\_disp\_get\_scr\_act(lv\_disp\_t *disp)
```

Return with a pointer to the active screen

Return pointer to the active screen object (loaded by 'lv scr load()')

Parameters

• disp: pointer to display which active screen should be get. (NULL to use the default screen)

void lv_disp_load_scr(lv_obj_t *scr)

Make a screen active

Parameters

• scr: pointer to a screen

$lv \ obj \ t *lv \ disp \ get \ layer \ top(lv \ disp \ t *disp)$

Return with the top layer. (Same on every screen and it is above the normal screen layer)

Return pointer to the top layer object (transparent screen sized lv_obj)

Parameters

• disp: pointer to display which top layer should be get. (NULL to use the default screen)

lv_obj_t *lv_disp_get_layer_sys(lv_disp_t *disp)

Return with the sys. layer. (Same on every screen and it is above the normal screen and the top layer)

Return pointer to the sys layer object (transparent screen sized lv_obj)

Parameters

• disp: pointer to display which sys. layer should be get. (NULL to use the default screen)

void lv_disp_assign_screen(lv_disp_t *disp, lv_obj_t *scr)

Assign a screen to a display.

Parameters

- disp: pointer to a display where to assign the screen
- scr: pointer to a screen object to assign

lv_task_t *lv_disp_get_refr_task(lv_disp_t *disp)

Get a pointer to the screen refresher task to modify its parameters with lv_task_... functions.

Return pointer to the display refresher task. (NULL on error)

Parameters

• disp: pointer to a display

uint32 t lv disp get inactive time(const lv disp t *disp)

Get elapsed time since last user activity on a display (e.g. click)

Return elapsed ticks (milliseconds) since the last activity

Parameters

• disp: pointer to an display (NULL to get the overall smallest inactivity)

void lv_disp_trig_activity(lv_disp_t *disp)

Manually trigger an activity on a display

Parameters

• disp: pointer to an display (NULL to use the default display)

static lv_obj_t *lv scr act(void)

Get the active screen of the default display

Return pointer to the active screen

static lv_obj_t *lv_layer_top(void)

Get the top layer of the default display

Return pointer to the top layer

```
static lv_obj_t *lv_layer_sys(void)
     Get the active screen of the default display
     Return pointer to the sys layer
static void lv_scr_load(lv_obj_t *scr)
Colors
Typedefs
typedef uint32_t lv_color_int_t
typedef lv_color32_t lv_color_t
Enums
enum [anonymous]
     Opacity percentages.
     Values:
     LV_OPA_TRANSP = 0
     \mathbf{LV}_{\mathbf{0}}\mathbf{PA}_{\mathbf{0}}=0
     LV_0PA_10 = 25
     LV OPA 20 = 51
     \mathbf{LV\_0PA\_30} = 76
     \mathbf{LV\_0PA\_40} = 102
     \mathbf{LV\_0PA\_50} = 127
     LV OPA 60 = 153
     LV_0PA_70 = 178
     \mathbf{LV\_0PA\_80} = 204
     LV_0PA_90 = 229
     LV_OPA_100 = 255
     LV_OPA_COVER = 255
Functions
static uint8_t lv_color_to1(lv_color_t color)
static uint8_t lv_color_to8(lv_color_t color)
static uint16_t lv_color_to16(lv_color_t color)
static uint32_t lv_color_to32(lv_color_t color)
static lv_color_t lv_color_mix(lv_color_t c1, lv_color_t c2, uint8_t mix)
     Mix two colors with a given ratio.
     Return the mixed color
```

Parameters

- c1: the first color to mix (usually the foreground)
- c2: the second color to mix (usually the background)
- mix: The ratio of the colors. 0: full c2, 255: full c1, 127: half c1 and halfc2

```
static void lv color premult(lv_color_t c, uint8 t mix, uint16 t *out)
```

```
static lv_color_t lv_color_mix_premult(uint16_t *premult_c1, lv_color_t c2, uint8_t mix)
```

Mix two colors with a given ratio. It runs faster then lv_color_mix but requires some pre computation.

Return the mixed color

Note 255 won't give clearly c1.

Parameters

- c1: The first color. Should be preprocessed with lv color premult(c1)
- c2: The second color. As it is no pre computation required on it
- mix: The ratio of the colors. 0: full c2, 255: full c1, 127: half c1 and half c2. Should be modified like mix = 255 mix

Mix two colors. Both color can have alpha value. It requires ARGB888 colors.

Parameters

- bg color: background color
- bg opa: alpha of the background color
- fg color: foreground color
- fq opa: alpha of the foreground color
- res color: the result color
- res_opa: the result opacity

static uint8 tlv color brightness(lv_color_t color)

Get the brightness of a color

Return the brightness [0..255]

Parameters

• color: a color

Return the given RGB color in RGB (with LV COLOR DEPTH depth)

Parameters

```
• h: hue [0..359]
           • S: saturation [0..100]
           • v: value [0..100]
lv_color_hsv_t lv_color_rgb_to_hsv(uint8_t r8, uint8_t g8, uint8_t b8)
     Convert a 32-bit RGB color to HSV
     Return the given RGB color in HSV
     Parameters
           • r8: 8-bit red
           • g8: 8-bit green
           • b8: 8-bit blue
lv_color_hsv_t lv_color_to_hsv(lv_color_t color)
     Convert a color to HSV
     Return the given color in HSV
     Parameters
           • color: color
union lv_color1_t
     Public Members
     uint8_t blue
     uint8\_t green
     uint8_t red
     struct lv_color1_t::[anonymous] ch
     uint8 t full
union lv_color8_t
     Public Members
     uint8\_t blue
     uint8_t green
     uint8_t red
     struct lv_color8_t::[anonymous] ch
     uint8_t full
union lv_color16_t
```

Public Members

```
uint16 t blue
    uint16\_t green
    uint16 t red
    uint16_t green_h
    uint16_t green_l
    struct lv_color16_t::[anonymous] ch
    uint16 t full
union lv_color32_t
    Public Members
    uint8 t blue
    uint8_t green
    uint8 t red
    uint8_t alpha
    struct lv_color32_t::[anonymous] ch
    uint32 t full
struct lv color hsv t
    Public Members
```

uint16_t h
uint8_t s
uint8 t v

Fonts

In LittlevGL fonts are collections of bitmaps and other information required to render the images of the letters (glyph). A font is stored in a lv_font_t variable and can be set in style's text.font field. For example:

```
my_style.text.font = &lv_font_roboto_28; /*Set a larger font*/
```

The fonts have a **bpp** (bits per pixel) property. It shows how many bits are used to describe a pixel in the font. The value stored for a pixel determines the pixel's opacity. This way, with higher bpp, the edges of the letter can be smoother. The possible bpp values are 1, 2, 4 and 8 (higher value means better quality).

The bpp also affects the required memory size to store the font. For example, bpp = 4 makes the font nearly 4 times greater compared to bpp = 1.

Unicode support

LittlevGL supports **UTF-8** encoded Unicode characters. You need to configure your editor to save your code/text as UTF-8 (usually this the default) and be sure that, LV_TXT_ENC is set to LV_TXT_ENC_UTF8 in *lv_conf.h.* (This is the default value)

To test it try

```
lv_obj_t * label1 = lv_label_create(lv_scr_act(), NULL);
lv_label_set_text(label1, LV_SYMBOL_OK);
```

If all works well, a ✓ character should be displayed.

Built-in fonts

There are several built-in fonts in different sizes, which can be enabled in $lv_conf.h$ by LV_FONT_\cdots defines:

- LV_FONT_ROBOTO_12 12 px
- LV FONT ROBOTO 16 16 px
- LV FONT ROBOTO 22 22 px
- LV FONT ROBOTO 28 28 px

The built-in fonts are **global variables** with names like <code>lv_font_roboto_16</code> for 16 px hight font. To use them in a style, just add a pointer to a font variable like shown above.

The built-in fonts have bpp = 4, contains the ASCII characters and uses the Roboto font.

In addition to the ASCII range, the following symbols are also added to the built-in fonts from the FontAwesome font.

- □ LV_SYMBOL_AUDIO
- E LV_SYMBOL_VIDEO
- LV_SYMBOL_LIST
- ✓ LV_SYMBOL_OK
- ★ LV_SYMBOL_CLOSE
- U LV_SYMBOL_POWER
- LV_SYMBOL_SETTINGS
- LV_SYMBOL_TRASH
- ♠ LV_SYMBOL_HOME
- LV_SYMBOL_DOWNLOAD
- LV_SYMBOL_DRIVE
- ∠C LV_SYMBOL_REFRESH
- LV_SYMBOL_MUTE
- ◆ LV_SYMBOL_VOLUME_MID
- LV_SYMBOL_VOLUME_MAX
- LV_SYMBOL_IMAGE
- LV_SYMBOL_PREV
- LV_SYMBOL_PLAY
- LV_SYMBOL_PAUSE
- LV_SYMBOL_STOP
- ▶ LV_SYMBOL_NEXT
- ▲ LV_SYMBOL_EJECT
- LV_SYMBOL_LEFT
- > LV SYMBOL RIGHT
- + LV_SYMBOL_PLUS
- LV_SYMBOL_MINUS
- ULV_SYMBOL_EYE_OPEN
- LV_SYMBOL_EYE_CLOSE

- ▲ LV_SYMBOL_WARNING
- ★ LV_SYMBOL_SHUFFLE
- ▲ LV_SYMBOL_UP
- LV_SYMBOL_DOWN
- LV_SYMBOL_LOOP
- LV_SYMBOL_DIRECTORY
- ♣ LV_SYMBOL_UPLOAD
- LV_SYMBOL_CALL
- * LV_SYMBOL_CUT
- LV SYMBOL COPY
- LV_SYMBOL_SAVE
- LV SYMBOL CHARGE
- LV_SYMBOL_PASTE
- LV_SYMBOL_BELL
- LV SYMBOL KEYBOARD
- **✓** LV_SYMBOL_GPS
- LV_SYMBOL_FILE
- LV_SYMBOL_WIFI
- LV_SYMBOL_BATTERY_FULL
- LV_SYMBOL_BATTERY_3
- LV_SYMBOL_BATTERY_2
- LV_SYMBOL_BATTERY_1
- LV_SYMBOL_BATTERY_EMPTY
- ◆ LV_SYMBOL_USB
- LV SYMBOL BLUETOOTH
- LV SYMBOL BACKSPACE
- LV_SYMBOL_SD_CARD
- ← LV SYMBOL NEW LINE

The symbols can be used as:

lv_label_set_text(my_label, LV_SYMBOL_OK);

Or with together with strings:

lv_label_set_text(my_label, LV_SYMBOL_OK "Apply");

Or more symbols together:

lv_label_set_text(my_label, LV_SYMBOL_OK LV_SYMBOL_WIFI LV_SYMBOL_PLAY);

Special features

Bidirectional support

Most of the languages use Left-to-Right (LTR for short) writing direction, however some languages (such as Hebrew) uses Right-to-Left (RTL for short) direction.

LittlevGL not only supports RTL texts but supports mixed (a.k.a. bidirectional, BiDi) text rendering too. Some examples:

The names of these states in Arabic are الكويت and الكويت respectively.

in Arabic. مفتاح معايير الويب! The title is

The BiDi support can be enabled by LV_USE_BIDI in $lv_conf.h$

All texts have a base direction (LTR or RTL) which determines some rendering rules and the default alignment of the text (Left or Right). However, in LittlevGL, base direction is not only for labels. It's a general property which can be set for every object. If unset then it will be inherited from the parent. So it's enough to set the base direction of the screen and every object will inherit it.

The default base direction of screen can be set by LV_BIDI_BASE_DIR_DEF in lv_conf.h.

To set an object's base direction use <code>lv_obj_set_base_dir(obj, base_dir)</code>. The possible base direction are:

- LV BIDI DIR LTR: Left to Right base direction
- LV BIDI DIR RTL: Right to Left base direction
- LV BIDI DIR AUTO: Auto detect base direction
- LV_BIDI_DIR_INHERIT: Inherit the base direction from the parent (default for non-screen objects)

This list summarizes the effect of RTL base direction on objects:

- Create objects by default on the right
- lv tabview: displays tabs from right to left
- lv_cb: Show the box on the right
- lv_btnm: Show buttons from right to left
- lv_list: Show the icon on the right
- lv ddlist: Align the options to the right
- The texts in lv_table, lv_btnm, lv_kb, lv_tabview, lv_ddlist, lv_roller are processed to display correctly with RTL parts too

Subpixel rendering

Subpixel rendering means to increase the horizontal resolution by rendering on Red, Green and Blue channel instead of pixel level. It results in higher quality letter anti-alaising.

Subpixel rendering requires to generate the fonts with special settings:

- In the online converter tick the **Subpixel** box
- In the command line tool use --lcd flag. Note that the generated font needs about 3 times more memory.

Subpixel rendering works only if the color channels of the pixels have a horizontal layout. That is the R, G, B channels are next eachother and not above eachother. The order of color channels also needs to match with the library settings. By default the LittlevGL assumes RGB order, however it can be swapped by setting LV SUBPX BGR 1 in $lv_conf.h$.

Compress fonts

The bitmaps of the fonts can be compressed by

- ticking the Compressed check box in the online converter
- not passing --no-compressflag to the offline converter (applies compression by default)

The compression is more effective with larger fonts and higher bpp. However, it's about 30% slower to render the compressed fonts. Therefore it's recommended to compress only the largest fonts of user interface, because

- they need the most memory
- they can be compressed better
- and probably they are used less frequently then the medium sized fonts. (so performance cost is smaller)

Add new font

There are several ways to add a new font to your project:

- 1. The simplest method is to use the Online font converter. Just set the parameters, click the *Convert* button, copy the font to your project and use it. Be sure to carefully read the steps provided on that site or you will get an error while converting.
- 2. Use the Offline font converter. (Requires Node.js to be installed)
- 3. If you want to create something like the built-in fonts (Roboto font and symbols) but in different size and/or ranges, you can use the built_in_font_gen.py script in lvgl/scripts/built_in_font folder. (It requires Python and lv_font_conv to be installed)

To declare the font in a file, use LV_FONT_DECLARE(my_font_name).

To make the fonts globally available (like the builtin fonts), add them to $LV_FONT_CUSTOM_DECLARE$ in $lv_conf.h.$

Add new symbols

The built-in symbols are created from FontAwesome font.

- 1. Search symbol on https://fontawesome.com. For example the USB symbol. Copy it's Unicode ID which is 0xf287 in this case.
- 2. Open the Online font converter. Add Add FontAwesome.woff. .
- 3. Set the parameters such as Name, Size, BPP. You'll use this name to declare and use the font in your code.
- 4. Add the Unicode ID of the symbol to the range field. E.g. 0xf287 for the USB symbol. More symbols can be enumerated with $_{\star}$.
- 5. Convert the font and copy it to your project. Make sure to compile the .c file of your font.
- 6. Declare the font using extern lv_font_t my_font_name; or simply LV FONT DECLARE(my font name);

Using the symbol

- 1. Convert the Unicode value to UTF8. You can do it e.g on this site. For 0xf287 the Hex UTF-8 bytes are EF 8A 87.
- 2. Create a define from the UTF8 values: #define MY USB SYMBOL "\xEF\x8A\x87"
- 3. Create a label and set the text. Eg. lv_label_set_text(label, MY_USB_SYMBOL)

Note - lv_label_set_text(label, MY_USB_SYMBOL) searches for this symbol in the font defined in style.text.font properties. To use the symbol you may need to change it. Eg style.text.font = my font name

Add a new font engine

LittlevGL's font interface is designed to be very flexible. You don't need to use LittlevGL's internal font engine but, you can add your own. For example, use FreeType to real-time render glyphs from TTF fonts or use an external flash to store the font's bitmap and read them when the library needs them.

To do this a custom lv font t variable needs to be created:

```
/*Describe the properties of a font*/
lv_font_t my_font;
my_font.get_glyph_dsc = my_get_glyph_dsc_cb;
                                                    /*Set a callback to get info
→about gylphs*/
my_font.get_glyph_bitmap = my_get_glyph_bitmap_cb; /*Set a callback to get bitmap of_
→a glyp*/
my_font.line_height = height;
                                                    /*The real line height where any
→text fits*/
my_font.base_line = base_line;
                                                    /*Base line measured from the top...
→of line_height*/
my font.dsc = something required;
                                                    /*Store any implementation...
⇒specific data here*/
my font.user data = user data;
                                                    /*Optionally some extra user.
-data*/
/* Get info about glyph of `unicode_letter` in `font` font.
* Store the result in `dsc_out`.
* The next letter (`unicode_letter_next`) might be used to calculate the width
→required by this glyph (kerning)
bool my_get_glyph_dsc_cb(const lv_font_t * font, lv_font_glyph_dsc_t * dsc_out,_

¬uint32_t unicode_letter, uint32_t unicode_letter_next)

                                                                       (continues on next page)
```

(continued from previous page)

```
{
   /*Your code here*/
    /* Store the result.
    * For example ...
   dsc_out->adv_w = 12;
                                /*Horizontal space required by the glyph in [px]*/
    dsc_out->box_h = 8;
                                /*Height of the bitmap in [px]*/
   dsc_out->box_w = 6;
                               /*Width of the bitmap in [px]*/
   dsc_out->ofs_x = 0;
                               /*X offset of the bitmap in [pf]*/
   dsc_out->ofs_y = 3;
                               /*Y offset of the bitmap measured from the as line*/
   dsc out->bpp = 2;
                               /*Bits per pixel: 1/2/4/8*/
                                /*true: glyph found; false: glyph was not found*/
    return true;
}
/* Get the bitmap of `unicode letter` from `font`. */
const uint8_t * my_get_glyph_bitmap_cb(const lv_font_t * font, uint32_t unicode_
→letter)
{
    /* Your code here */
    /* The bitmap should be a continuous bitstream where
    * each pixel is represented by `bpp` bits */
    return bitmap;
                     /*Or NULL if not found*/
}
```

Images

An image can be a file or variable which stores the bitmap itself and some metadata.

Store images

You can store images in two places

- as a variable in the internal memory (RAM or ROM)
- as a file

Variables

The images stored internally in a variable is composed mainly of an <code>lv_img_dsc_t</code> structure with the following fields:

header

- cf Color format. See below
- w width in pixels (≤ 2048)
- -h height in pixels (≤ 2048)
- always zero 3 bits which need to be always zero
- reserved reserved for future use

- data pointer to an array where the image itself is stored
- data size length of data in bytes

These are usually stored within a project as C files. They are linked into the resulting executable like any other constant data.

Files

To deal with files you need to add a *Drive* to LittlevGL. In short, a *Drive* is a collection of functions (*open*, *read*, *close*, etc.) registered in LittlevGL to make file operations. You can add an interface to a standard file system (FAT32 on SD card) or you create your simple file system to read data from an SPI Flash memory. In every case, a *Drive* is just an abstraction to read and/or write data to a memory. See the *File system* section to learn more.

Images stored as files are not linked into the resulting executable, and must be read to RAM before being drawn. As a result, they are not as resource-friendly as variable images. However, they are easier to replace without needing to recompile the main program.

Color formats

Various built-in color formats are supported:

- LV_IMG_CF_TRUE_COLOR Simply stores the RGB colors (in whatever color depth LittlevGL is configured for).
- LV_IMG_CF_TRUE_COLOR_ALPHA Like LV_IMG_CF_TRUE_COLOR but it also adds an alpha (transparency) byte for every pixel.
- LV_IMG_CF_TRUE_COLOR_CHROMA_KEYED Like LV_IMG_CF_TRUE_COLOR but if a pixel has LV_COLOR_TRANSP (set in *lv_conf.h*) color the pixel will be transparent.
- LV_IMG_CF_INDEXED_1/2/4/8BIT Uses a palette with 2, 4, 16 or 256 colors and stores each pixel in 1, 2, 4 or 8 bits.
- LV_IMG_CF_ALPHA_1/2/4/8BIT Only stores the Alpha value on 1, 2, 4 or 8 bits. The pixels take the color of style.image.color and the set opacity. The source image has to be an alpha channel. This is ideal for bitmaps similar to fonts (where the whole image is one color but you' d like to be able to change it).

The bytes of the LV IMG CF TRUE COLOR images are stored in the following order.

For 32-bit color depth:

- Byte 0: Blue
- Byte 1: Green
- Byte 2: Red
- Byte 3: Alpha

For 16-bit color depth:

- Byte 0: Green 3 lower bit, Blue 5 bit
- Byte 1: Red 5 bit, Green 3 higher bit
- Byte 2: Alpha byte (only with LV_IMG_CF_TRUE_COLOR_ALPHA)

For 8-bit color depth:

- Byte 0: Red 3 bit, Green 3 bit, Blue 2 bit
- Byte 2: Alpha byte (only with LV IMG CF TRUE COLOR ALPHA)

You can store images in a *Raw* format to indicate that, it's not a built-in color format and an external *Image decoder* needs to be used to decode the image.

- LV_IMG_CF_RAW Indicates a basic raw image (e.g. a PNG or JPG image).
- LV_IMG_CF_RAW_ALPHA Indicates that the image has alpha and an alpha byte is added for every pixel.
- LV_IMG_CF_RAW_CHROME_KEYED Indicates that the image is chrome keyed as described in LV IMG CF TRUE COLOR CHROMA KEYED above.

Add and use images

You can add images to LittlevGL in two ways:

- using the online converter
- manually create images

Online converter

The online Image converter is available here: https://littlevgl.com/image-to-c-array

Adding an image to LittlevGL via online converter is easy.

- 1. You need to select a BMP, PNG or JPG image first.
- 2. Give the image a name that will be used within LittlevGL.
- 3. Select the Color format.
- 4. Select the type of image you want. Choosing a binary will generate a .bin file that must be stored separately and read using the *file support*. Choosing a variable will generate a standard C file that can be linked into your project.
- 5. Hit the *Convert* button. Once the conversion is finished, your browser will automatically download the resulting file.

In the converter C arrays (variables), the bitmaps for all the color depths (1, 8, 16 or 32) are included in the C file, but only the color depth that matches LV_COLOR_DEPTH in $lv_conf.h$ will actually be linked into the resulting executable.

In case of binary files, you need to specify the color format you want:

- RGB332 for 8-bit color depth
- RGB565 for 16-bit color depth
- RGB565 Swap for 16-bit color depth (two bytes are swapped)
- RGB888 for 32-bit color depth

Manually create an image

If you are generating an image at run-time, you can craft an image variable to display it using LittlevGL. For example:

```
uint8_t my_img_data[] = {0x00, 0x01, 0x02, ...};

static lv_img_dsc_t my_img_dsc = {
    .header.always_zero = 0,
    .header.w = 80,
    .header.h = 60,
    .data_size = 80 * 60 * LV_COLOR_DEPTH / 8,
    .header.cf = LV_IMG_CF_TRUE_COLOR,
    .data = my_img_data,
};
```

If the color format is LV_IMG_CF_TRUE_COLOR_ALPHA you can set data_size like 80 * 60 * LV_IMG_PX_SIZE_ALPHA_BYTE.

Another (possibly simpler) option to create and display an image at run-time is to use the Canvas object.

Use images

The simplest way to use an image in LittlevGL is to display it with an lv_img object:

```
lv_obj_t * icon = lv_img_create(lv_scr_act(), NULL);

/*From variable*/
lv_img_set_src(icon, &my_icon_dsc);

/*From file*/
lv_img_set_src(icon, "S:my_icon.bin");
```

If the image was converted with the online converter, you should use LV_IMG_DECLARE(my_icon_dsc) to declare the image in the file where you want to use it.

Image decoder

As you can see in the *Color formats* section, LittlevGL supports several built-in image formats. In many cases, these will be all you need. LittlevGL doesn't directly support, however, generic image formats like PNG or JPG.

To handle non-built-in image formats, you need to use external libraries and attach them to LittlevGL via the *Image decoder* interface.

The image decoder consists of 4 callbacks:

- **info** get some basic info about the image (width, height and color format).
- **open** open the image: either store the decoded image or set it to **NULL** to indicate the image can be read line-by-line.
- read if open didn't fully open the image this function should give some decoded data (max 1 line) from a given position.
- **close** close the opened image, free the allocated resources.

You can add any number of image decoders. When an image needs to be drawn, the library will try all the registered image decoder until finding one which can open the image, i.e. knowing that format.

The LV_IMG_CF_TRUE_COLOR_..., LV_IMG_INDEXED_... and LV_IMG_ALPHA_... formats (essentially, all non-RAW formats) are understood by the built-in decoder.

Custom image formats

The easiest way to create a custom image is to use the online image converter and set Raw, Raw with alpha or Raw with chrome keyed format. It will just take every byte of the binary file you uploaded and write it as the image "bitmap". You then need to attach an image decoder that will parse that bitmap and generate the real, renderable bitmap.

header.cf will be LV_IMG_CF_RAW, LV_IMG_CF_RAW_ALPHA or LV_IMG_CF_RAW_CHROME_KEYED accordingly. You should choose the correct format according to your needs: fully opaque image, use alpha channel or use chroma keying.

After decoding, the raw formats are considered $True\ color$ by the library. In other words, the image decoder must decode the Raw images to $True\ color$ according to the format described in [#color-formats] (Color formats) section.

If you want to create a custom image, you should use LV_IMG_CF_USER_ENCODED_0..7 color formats. However, the library can draw the images only in *True color* format (or *Raw* but finally it's supposed to be in *True color* format). So the LV_IMG_CF_USER_ENCODED_... formats are not known by the library, therefore, they should be decoded to one of the known formats from [#color-formats](Color formats) section. It's possible to decode the image to a non-true color format first, for example, LV_IMG_INDEXED_4BITS, and then call the built-in decoder functions to convert it to *True color*.

With *User encoded* formats, the color format in the open function (dsc->header.cf) should be changed according to the new format.

Register an image decoder

Here's an example of getting LittlevGL to work with PNG images.

First, you need to create a new image decoder and set some functions to open/close the PNG files. It should looks like this:

```
/*Create a new decoder and register functions */
lv_img_decoder_t * dec = lv_img_decoder_create();
lv_img_decoder_set_info_cb(dec, decoder_info);
lv_img_decoder_set_open_cb(dec, decoder_open);
lv_img_decoder_set_close_cb(dec, decoder_close);
* Get info about a PNG image
* @param decoder pointer to the decoder where this function belongs
* @param src can be file name or pointer to a C array
* @param header store the info here
* @return LV RES OK: no error; LV RES INV: can't get the info
static lv res t decoder info(lv img decoder t * decoder, const void * src, lv img
→header_t * header)
  /*Check whether the type `src` is known by the decoder*/
 if(is_png(src) == false) return LV_RES_INV;
 /* Read the PNG header and find `width` and `height` */
 header->cf = LV_IMG_CF_RAW_ALPHA;
 header->w = width;
```

(continues on next page)

(continued from previous page)

```
header->h = height;
}
* Open a PNG image and return the decided image
* @param decoder pointer to the decoder where this function belongs
* @param dsc pointer to a descriptor which describes this decoding session
* @return LV_RES_OK: no error; LV_RES_INV: can't get the info
static lv_res_t decoder_open(lv_img_decoder_t * decoder, lv_img_decoder_dsc_t * dsc)
  /*Check whether the type `src` is known by the decoder*/
  if(is_png(src) == false) return LV_RES_INV;
 /*Decode and store the image. If `dsc->img_data` is `NULL`, the `read_line`.
→function will be called to get the image data line-by-line*/
  dsc->img data = my png decoder(src);
  /*Change the color format if required. For PNG usually 'Raw' is fine*/
  dsc->header.cf = LV_IMG_CF_...
 /*Call a built in decoder function if required. It's not required if`my png
→decoder` opened the image in true color format.*/
 lv res t res = lv img decoder built in open(decoder, dsc);
  return res:
}
* Decode `len` pixels starting from the given `x`, `y` coordinates and store them in.,
→`buf`.
* Required only if the "open" function can't open the whole decoded pixel array...
\hookrightarrow (dsc->img data == NULL)
 ^{arkprime} @param decoder pointer to the decoder the function associated with
* @param dsc pointer to decoder descriptor
* @param x start x coordinate
* @param y start y coordinate
* @param len number of pixels to decode
* @param buf a buffer to store the decoded pixels
* @return LV RES OK: ok; LV RES INV: failed
lv res t decoder built in read line(lv img decoder t * decoder, lv img decoder dsc t,
\rightarrow^* dsc, lv coord t x,
                                                   lv coord t y, lv coord t len, uint8
\rightarrowt * buf)
  /*With PNG it's usually not required*/
  /*Copy `len` pixels from `x` and `y` coordinates in True color format to `buf` */
}
 * Free the allocated resources
* @param decoder pointer to the decoder where this function belongs
```

(continues on next page)

(continued from previous page)

```
* @param dsc pointer to a descriptor which describes this decoding session
*/
static void decoder_close(lv_img_decoder_t * decoder, lv_img_decoder_dsc_t * dsc)
{
   /*Free all allocated data*/
   /*Call the built-in close function if the built-in open/read_line was used*/
   lv_img_decoder_built_in_close(decoder, dsc);
}
```

So in summary:

- In decoder info, you should collect some basic information about the image and store it in header.
- In decoder_open, you should try to open the image source pointed by dsc->src. Its type is already in dsc->src_type == LV_IMG_SRC_FILE/VARIABLE. If this format/type is not supported by the decoder, return LV_RES_INV. However, if you can open the image, a pointer to the decoded *True color* image should be set in dsc->img_data. If the format is known but, you don't want to decode while image (e.g. no memory for it) set dsc->img_data = NULL to call read_line to get the pixels.
- In decoder close you should free all the allocated resources.
- decoder_read is optional. Decoding the whole image requires extra memory and some computational overhead. However, if can decode one line of the image without decoding the whole image, you can save memory and time. To indicate that, the *line read* function should be used, set dsc->img_data = NULL in the open function.

Manually use an image decoder

LittlevGL will use the registered image decoder automatically if you try and draw a raw image (i.e. using the lv_img object) but you can use them manually too. Create a lv_img_decoder_dsc_t variable to describe the decoding session and call lv img decoder open(), lv img decoder open().

```
lv_res_t res;
lv_img_decoder_dsc_t dsc;
res = lv_img_decoder_open(&dsc, &my_img_dsc, &lv_style_plain);

if(res == LV_RES_OK) {
   /*Do something with `dsc->img_data`*/
   lv_img_decoder_close(&dsc);
}
```

Image caching

Sometimes it takes a lot of time to open an image. Continuously decoding a PNG image or loading images from a slow external memory would be inefficient and detrimental to the user experience.

Therefore, LittlevGL caches a given number of images. Caching means some images will be left open, hence LittlevGL can quickly access them from dsc->img data instead of needing to decode them again.

Of course, caching images is resource-intensive as it uses more RAM (to store the decoded image). LittlevGL tries to optimize the process as much as possible (see below), but you will still need to evaluate if this would

be beneficial for your platform or not. If you have a deeply embedded target which decodes small images from a relatively fast storage medium, image caching may not be worth it.

Cache size

The number of cache entries can be defined in LV_IMG_CACHE_DEF_SIZE in *lv_conf.h*. The default value is 1 so only the most recently used image will be left open.

The size of the cache can be changed at run-time with lv_img_cache_set_size(entry_num).

Value of images

When you use more images than cache entries, LittlevGL can't cache all of the images. Instead, the library will close one of the cached images (to free space).

To decide which image to close, LittlevGL uses a measurement it previously made of how long it took to open the image. Cache entries that hold slower-to-open images are considered more valuable and are kept in the cache as long as possible.

If you want or need to override LittlevGL's measurement, you can manually set the *time to open* value in the decoder open function in dsc->time_to_open = time_ms to give a higher or lower value. (Leave it unchanged to let LittlevGL set it.)

Every cache entry has a "life" value. Every time an image opening happens through the cache, the life of all entries are decreased to make them older. When a cached image is used, its life is increased by the time to open value to make it more alive.

If there is no more space in the cache, always the entry with the smallest life will be closed.

Memory usage

Note that, the cached image might continuously consume memory. For example, if 3 PNG images are cached, they will consume memory while they are opened.

Therefore, it's the user's responsibility to be sure there is enough RAM to cache, even the largest images at the same time.

Clean the cache

Let's say you have loaded a PNG image into a <code>lv_img_dsc_t my_png</code> variable and use it in an <code>lv_img</code> object. If the image is already cached and you then change the underlying PNG file, you need to notify <code>LittlevGL</code> to cache the image again. Otherwise, there is no easy way of detecting that the underlying file changed and <code>LittlevGL</code> will still draw the old image.

To do this, use <code>lv_img_cache_invalidate_src(&my_png)</code>. If <code>NULL</code> is passed as a parameter, the whole cache will be cleaned.

API

Image decoder

Typedefs

typedef uint8_t lv_img_src_t

Get info from an image and store in the header

Return LV RES OK: info written correctly; LV RES INV: failed

Parameters

- src: the image source. Can be a pointer to a C array or a file name (Use lv img src get type to determine the type)
- header: store the info here

$$\label{typedef} \begin{array}{ll} \mbox{typedef} & \mbox{lv_res_t} \ (*\mbox{lv_img_decoder_open_f_t}) (\mbox{struct} & \mbox{_} lv_img_decoder & *\mbox{decoder}, \\ & \mbox{struct} & \mbox{_} lv_img_decoder_dsc & *\mbox{decoder}, \\ \end{array}$$

Open an image for decoding. Prepare it as it is required to read it later

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor. src, style are already initialized in it.

Decode len pixels starting from the given x, y coordinates and store them in buf. Required only if the "open" function can' t return with the whole decoded pixel array.

Return LV_RES_OK: ok; LV_RES_INV: failed

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor
- X: start x coordinate
- y: start y coordinate
- len: number of pixels to decode
- buf: a buffer to store the decoded pixels

Close the pending decoding. Free resources etc.

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor

```
typedef struct <u>lv img decoder lv img decoder t</u>
```

typedef struct _lv_img_decoder_dsc lv_img_decoder_dsc_t

Describe an image decoding session. Stores data about the decoding

Enums

enum [anonymous]

Source of image.

Values:

LV IMG SRC VARIABLE

LV IMG SRC FILE

Binary/C variable

LV IMG SRC SYMBOL

File in filesystem

LV IMG SRC UNKNOWN

Symbol (lv_symbol_def.h)

Functions

void lv_img_decoder_init(void)

Initialize the image decoder module

lv_res_t lv_img_decoder_get_info(const char *src, lv_img_header_t *header)

Get information about an image. Try the created image decoder one by one. Once one is able to get info that info will be used.

Return LV_RES_OK: success; LV_RES_INV: wasn' t able to get info about the image

Parameters

- src: the image source. Can be 1) File name: E.g. "S:folder/img1.png" (The drivers needs to registered via lv_fs_add_drv()) 2) Variable: Pointer to an lv_img_dsc_t variable 3) Symbol: E.g. LV_SYMBOL_OK
- header: the image info will be stored here
- lv_res_t lv_img_decoder_open(lv_img_decoder_dsc_t*dsc, const void *src, lv_color_t color)

 Open an image. Try the created image decoder one by one. Once one is able to open the image that decoder is save in dsc

Return LV_RES_OK: opened the image. dsc->img_data and dsc->header are set. LV RES INV: none of the registered image decoders were able to open the image.

Parameters

- dsc: describe a decoding session. Simply a pointer to an lv img decoder dsc t variable.
- src: the image source. Can be 1) File name: E.g. "S:folder/img1.png" (The drivers needs to registered via lv_fs_add_drv()) 2) Variable: Pointer to an lv_img_dsc_t variable 3) Symbol: E.g. LV_SYMBOL_OK
- style: the style of the image

Read a line from an opened image

Return LV_RES_OK: success; LV_RES_INV: an error occurred

Parameters

dsc: pointer to lv_img_decoder_dsc_t used in lv_img_decoder_open

- X: start X coordinate (from left)
- y: start Y coordinate (from top)
- len: number of pixels to read
- buf: store the data here

void lv_img_decoder_close(lv_img_decoder_dsc_t *dsc)

Close a decoding session

Parameters

• dsc: pointer to lv_img_decoder_dsc_t used in lv_img_decoder_open

lv_img_decoder_t *lv_img_decoder_create(void)

Create a new image decoder

Return pointer to the new image decoder

void lv_img_decoder_delete(lv_img_decoder_t *decoder)

Delete an image decoder

Parameters

• decoder: pointer to an image decoder

Set a callback to get information about the image

Parameters

- decoder: pointer to an image decoder
- info cb: a function to collect info about an image (fill an lv img header t struct)

Set a callback to open an image

Parameters

- decoder: pointer to an image decoder
- open cb: a function to open an image

```
\begin{tabular}{ll} void $\tt lv\_img\_decoder\_set\_read\_line\_cb(\it lv\_img\_decoder\_t & *decoder, \\ \it lv\_img\_decoder\_read\_line\_f\_t read\_line\_cb) \\ \end{tabular}
```

Set a callback to a decoded line of an image

Parameters

- decoder: pointer to an image decoder
- read_line_cb: a function to read a line of an image

```
\begin{tabular}{ll} void $lv\_img\_decoder\_set\_close\_cb($lv\_img\_decoder\_t *decoder, $lv\_img\_decoder\_close\_f\_t$ \\ $close\_cb($) \end{tabular}
```

Set a callback to close a decoding session. \overline{E} .g. close files and free other resources.

Parameters

- decoder: pointer to an image decoder
- close_cb: a function to close a decoding session

Get info about a built-in image

Return LV_RES_OK: the info is successfully stored in header; LV_RES_INV: unknown format or other error.

Parameters

- decoder: the decoder where this function belongs
- src: the image source: pointer to an lv img dsc t variable, a file path or a symbol
- header: store the image data here

$$lv_res_t$$
 $lv_img_decoder_built_in_open(lv_img_decoder_t*decoder, lv_img_decoder_dsc_t*dsc)$

Open a built in image

Return LV_RES_OK: the info is successfully stored in header; LV_RES_INV: unknown format or other error.

Parameters

- decoder: the decoder where this function belongs
- dsc: pointer to decoder descriptor. src, style are already initialized in it.

Decode len pixels starting from the given x, y coordinates and store them in buf. Required only if the "open" function can't return with the whole decoded pixel array.

Return LV RES OK: ok; LV RES INV: failed

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor
- X: start x coordinate
- y: start y coordinate
- len: number of pixels to decode
- buf: a buffer to store the decoded pixels

```
\label{eq:void_lv_img_decoder_t} \begin{tabular}{ll} void $lv\_img\_decoder\_built\_in\_close($lv\_img\_decoder\_t$ *$decoder, $lv\_img\_decoder\_dsc\_t$ *$dsc) \end{tabular}
```

Close the pending decoding. Free resources etc.

Parameters

- decoder: pointer to the decoder the function associated with
- dsc: pointer to decoder descriptor

struct _lv_img_decoder

Public Members

```
lv_img_decoder_info_f_t info_cb
lv_img_decoder_open_f_t open_cb
lv_img_decoder_read_line_f_t read_line_cb
lv_img_decoder_close_f_t close_cb
lv_img_decoder_user_data_t user_data
```

struct _lv_img_decoder_dsc

#include < lv imq_decoder.h > Describe an image decoding session. Stores data about the decoding

Public Members

```
lv ima decoder t*decoder
```

The decoder which was able to open the image source

const void *src

The image source. A file path like "S:my_img.png" or pointer to an lv img dsc t variable

lv color t color

Style to draw the image.

```
lv_img_src_t src_type
```

Type of the source: file or variable. Can be set in open function if required

lv img header t header

Info about the opened image: color format, size, etc. MUST be set in open function

const uint8 t *img data

Pointer to a buffer where the image's data (pixels) are stored in a decoded, plain format. MUST be set in open function

uint32 t time to open

How much time did it take to open the image. [ms] If not set lv_img_cache will measure and set the time to open

const char *error_msg

A text to display instead of the image when the image can't be opened. Can be set in open function or set NULL.

void *user data

Store any custom data here is required

Image cache

Functions

```
lv_img_cache_entry_t *lv_img_cache_open(const void *src, lv_color_t color)
```

Open an image using the image decoder interface and cache it. The image will be left open meaning if the image decoder open callback allocated memory then it will remain. The image is closed if a new image is opened and the new image takes its place in the cache.

Return pointer to the cache entry or NULL if can open the image

Parameters

- src: source of the image. Path to file or pointer to an lv_img_dsc_t variable
- style: style of the image

void lv_img_cache_set_size(uint16_t new_slot_num)

Set the number of images to be cached. More cached images mean more opened image at same time which might mean more memory usage. E.g. if 20 PNG or JPG images are open in the RAM they consume memory while opened in the cache.

Parameters

• new_entry_cnt: number of image to cache

void lv_img_cache_invalidate_src(const void *src)

Invalidate an image source in the cache. Useful if the image source is updated therefore it needs to be cached again.

Parameters

• src: an image source path to a file or pointer to an lv_img_dsc_t variable.

struct lv_img_cache_entry_t

 $\#include < lv_img_cache.h >$ When loading images from the network it can take a long time to download and decode the image.

To avoid repeating this heavy load images can be cached.

Public Members

```
\begin{tabular}{ll} $lv\_img\_decoder\_dsc\_t$ & {\tt dec\_dsc} \\ & Image & information \end{tabular}
```

int32 t life

Count the cache entries's life. Add time_tio_open to life when the entry is used. Decrement all lifes by one every in every $lv_img_cache_open$. If life == 0 the entry can be reused

File system

LittlevGL has a 'File system' abstraction module that enables you to attach any type of file systems. The file system is identified by a drive letter. For example, if the SD card is associated with the letter 'S', a file can be reached like "S:path/to/file.txt".

Add a driver

To add a driver, lv fs drv t needs to be initialized like this:

(continues on next page)

(continued from previous page)

```
drv.close_cb = my_close_cb;
                                          /*Callback to close a file */
drv.read_cb = my_read_cb;
                                          /*Callback to read a file */
drv.write_cb = my_write_cb;
                                         /*Callback to write a file */
drv.seek_cb = my_seek_cb;
                                         /*Callback to seek in a file (Move cursor)
→*/
drv.tell_cb = my_tell_cb;
                                         /*Callback to tell the cursor position */
drv.trunc_cb = my_trunc_cb;
                                         /*Callback to delete a file */
drv.size_cb = my_size_cb;
                                         /*Callback to tell a file's size */
drv.rename_cb = my_size_cb;
                                         /*Callback to rename a file */
drv.dir_open_cb = my_dir_open_cb;
                                         /*Callback to open directory to read its.
→content */
drv.dir_read_cb = my_dir_read_cb;
                                         /*Callback to read a directory's content */
drv.dir_close_cb = my_dir_close_cb;
                                         /*Callback to close a directory */
drv.free_space_cb = my_size_cb;
                                         /*Callback to tell free space on the drive
*/
drv.user data = my user data;
                                          /*Any custom data if required*/
lv_fs_drv_register(&drv);
                                         /*Finally register the drive*/
```

Any of the callbacks can be NULL to indicate that that operation is not supported.

As an example of how the callbacks are used, if you use lv_fs_open(&file, "S:/folder/file.txt", LV_FS_MODE_WR), LittlevGL:

- 1. Verifies that a registered drive exists with the letter 'S'.
- 2. Checks if it's open cb is implemented (not NULL).
- 3. Calls the set open cb with "folder/file.txt" path.

Usage example

The example below shows how to read from a file:

```
lv_fs_file_t f;
lv_fs_res_t res;
res = lv_fs_open(&f, "S:folder/file.txt", LV_FS_MODE_RD);
if(res != LV_FS_RES_OK) my_error_handling();

uint32_t read_num;
uint8_t buf[8];
res = lv_fs_read(&f, buf, 8, &read_num);
if(res != LV_FS_RES_OK || read_num != 8) my_error_handling();

lv_fs_close(&f);
```

The mode in lv_fs_open can be LV_FS_MODE_WR to open for write or LV_FS_MODE_RD | LV_FS_MODE_WR for both

This example shows how to read a directory's content. It's up to the driver how to mark the directories, but it can be a good practice to insert a '/' in front of the directory name.

```
lv fs dir t dir;
lv_fs_res_t res;
res = lv_fs_dir_open(&dir, "S:/folder");
if(res != LV_FS_RES_OK) my_error_handling();
char fn[256];
while(1) {
    res = lv fs dir read(&dir, fn);
    if(res != LV_FS_RES_0K) {
        my_error_handling();
        break;
    }
    /*fn is empty, if not more files to read*/
    if(strlen(fn) == 0) {
        break;
    printf("%s\n", fn);
}
lv_fs_dir_close(&dir);
```

Use drivers for images

Image objects can be opened from files too (besides variables stored in the flash).

To initialize the image, the following callbacks are required:

- open
- close
- read
- seek
- tell

API

Typedefs

```
typedef uint8_t lv_fs_res_t
typedef uint8_t lv_fs_mode_t
typedef struct _lv_fs_drv_t lv_fs_drv_t
```

Enums

enum [anonymous]

Errors in the file system module.

Values:

```
LV_FS_RES_OK = 0
```

```
LV_FS_RES_HW_ERR
LV_FS_RES_FS_ERR
LV_FS_RES_NOT_EX
LV_FS_RES_FULL
LV_FS_RES_LOCKED
LV_FS_RES_DENIED
LV_FS_RES_BUSY
LV_FS_RES_TOUT
LV_FS_RES_NOT_IMP
LV_FS_RES_OUT_OF_MEM
LV_FS_RES_INV_PARAM
LV_FS_RES_UNKNOWN
```

enum [anonymous]

Filesystem mode.

Values:

LV_FS_MODE_WR = 0x01LV_FS_MODE_RD = 0x02

Functions

void lv_fs_init(void)

Initialize the File system interface

void lv fs drv init(lv_fs_drv_t*drv)

Initialize a file system driver with default values. It is used to surly have known values in the fields ant not memory junk. After it you can set the fields.

Parameters

ullet drv: pointer to driver variable to initialize

void lv fs drv register(lv fs drv t *drv p)

Add a new drive

Parameters

• drv_p: pointer to an lv_fs_drv_t structure which is inited with the corresponding function pointers. The data will be copied so the variable can be local.

lv_fs_drv_t *lv_fs_get_drv(char letter)

Give a pointer to a driver from its letter

Return pointer to a driver or NULL if not found

Parameters

• letter: the driver letter

bool lv fs is ready(char letter)

Test if a drive is rady or not. If the ready function was not initialized true will be returned.

Return true: drive is ready; false: drive is not ready

Parameters

• letter: letter of the drive

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file_p: pointer to a *lv_fs_file_t* variable
- path: path to the file beginning with the driver letter (e.g. S:/folder/file.txt)
- mode: read: FS_MODE_RD, write: FS_MODE_WR, both: FS_MODE_RD | FS_MODE_WR

Close an already opened file

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

• file p: pointer to a lv_fs_file_t variable

lv_fs_res_t lv_fs_remove(const char *path)

Delete a file

Return LV FS RES OK or any error from lv fs res t enum

Parameters

• path: path of the file to delete

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- file p: pointer to a lv_fs_file_t variable
- buf: pointer to a buffer where the read bytes are stored
- btr: Bytes To Read
- br: the number of real read bytes (Bytes Read). NULL if unused.

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file p: pointer to a lv fs file t variable
- buf: pointer to a buffer with the bytes to write
- btr: Bytes To Write
- br: the number of real written bytes (Bytes Written). NULL if unused.

lv fs res t **lv** fs seek(lv fs file t*file p, uint32 t pos)

Set the position of the 'cursor' (read write pointer) in a file

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- file_p: pointer to a *lv_fs_file_t* variable
- pos: the new position expressed in bytes index (0: start of file)

lv_fs_res_t lv_fs_tell(lv_fs_file_t *file_p, uint32_t *pos)

Give the position of the read write pointer

Return LV_FS_RES_OK or any error from 'fs_res_t'

Parameters

- file_p: pointer to a lv_fs_file_t variable
- pos_p: pointer to store the position of the read write pointer

$$lv_fs_res_t$$
 lv_fs_trunc($lv_fs_file_t$ * $file_p$)

Truncate the file size to the current position of the read write pointer

Return LV FS RES OK: no error, the file is read any error from ly fs res t enum

Parameters

• file p: pointer to an 'ufs_file_t' variable. (opened with lv_fs_open)

Give the size of a file bytes

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- file_p: pointer to a lv_fs_file_t variable
- size: pointer to a variable to store the size

Rename a file

Return LV FS RES OK or any error from 'fs res t'

Parameters

- oldname: path to the file
- newname: path with the new name

$$lv_fs_res_t$$
 lv_fs_dir_open($lv_fs_dir_t$ * $rddir_p$, const char * $path$)

Initialize a 'fs dir t' variable for directory reading

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

- rddir_p: pointer to a 'fs_read_dir_t' variable
- path: path to a directory

Read the next filename form a directory. The name of the directories will begin with '/'

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

• rddir p: pointer to an initialized 'fs_rdir_t' variable

• fn: pointer to a buffer to store the filename

lv_fs_res_t lv_fs_dir_close(lv_fs_dir_t *rddir_p)

Close the directory reading

Return LV_FS_RES_OK or any error from lv_fs_res_t enum

Parameters

• rddir p: pointer to an initialized 'fs_dir_t' variable

lv_fs_res_t lv_fs_free_space(char letter, uint32_t *total_p, uint32_t *free_p)

Get the free and total size of a driver in kB

Return LV FS RES OK or any error from lv fs res t enum

Parameters

- letter: the driver letter
- total_p: pointer to store the total size [kB]
- free p: pointer to store the free size [kB]

char *lv_fs_get_letters(char *buf)

Fill a buffer with the letters of existing drivers

Return the buffer

Parameters

• buf: buffer to store the letters ('\0' added after the last letter)

const char *lv_fs_get_ext(const char *fn)

Return with the extension of the filename

Return pointer to the beginning extension or empty string if no extension

Parameters

• fn: string with a filename

char *lv_fs_up(char *path)

Step up one level

Return the truncated file name

Parameters

• path: pointer to a file name

const char *lv fs get last(const char *path)

Get the last element of a path (e.g. U:/folder/file -> file)

Return pointer to the beginning of the last element in the path

Parameters

• buf: buffer to store the letters ('\0' added after the last letter)

struct _lv_fs_drv_t

Public Members

char letter

uint16_t file_size

```
uint16 t rddir size
    bool (*ready_cb) (struct _lv_fs_drv_t *drv)
    lv_fs_res_t (*open_cb)(struct _lv_fs_drv_t *drv, void *file_p, const char *path,
                            lv\_fs\_mode\_t mode)
    lv_fs_res_t (*close_cb)(struct _lv_fs_drv_t *drv, void *file_p)
    lv fs res t (*remove cb)(struct lv fs drv t *drv, const char *fn)
    lv_fs_res_t (*read_cb)(struct _lv_fs_drv_t *drv, void *file_p, void *buf, uint32_t btr,
                            uint32_t *br
    lv_fs_res_t (*write_cb)(struct _lv_fs_drv_t *drv, void *file_p, const void *buf,
                             uint32 t btw, uint32 t *bw)
    lv_fs_res_t (*seek_cb)(struct _lv_fs_drv_t *drv, void *file_p, uint32_t pos)
    lv fs res t (*tell cb)(struct lv fs drv t *drv, void *file p, uint32 t *pos p)
    lv fs res t (*trunc cb)(struct lv fs drv t *drv, void *file p)
    lv fs res t (*size cb)(struct lv fs drv t *drv, void *file p, uint32 t *size p)
    lv_fs_res_t (*rename_cb)(struct _lv_fs_drv_t *drv, const char *oldname, const char
                              *newname)
    lv_fs_res_t (*free_space_cb)(struct _lv_fs_drv_t *drv, uint32_t *total_p, uint32_t
                                   *free_p)
    lv_fs_res_t (*dir_open_cb)(struct _lv_fs_drv_t *drv, void *rddir_p, const char *path)
    lv fs res t (*dir read cb)(struct lv fs drv t *drv, void *rddir p, char *fn)
    lv_fs_res_t (*dir_close_cb)(struct _lv_fs_drv_t *drv, void *rddir_p)
    lv_fs_drv_user_data_t user_data
         Custom file user data
struct lv fs file t
    Public Members
    void *file d
    lv_fs_drv_t*drv
struct lv fs dir t
    Public Members
    void *dir d
    lv_fs_drv_t *drv
```

Animations

You can automatically change the value of a variable between a start and an end value using animations. The animation will happen by the periodical call of an "animator" function with the corresponding value parameter.

The *animator* functions has the following prototype:

```
void func(void * var, lv_anim_var_t value);
```

This prototype is compatible with the majority of the *set* function of LittlevGL. For example lv_obj_set_x(obj, value) or lv_obj_set_width(obj, value)

Create an animation

To create an animation an lv_anim_t variable has to be initialized and configured with lv_anim_set_. . . () functions.

```
lv anim t a;
lv_anim_set_exec_cb(&a, btn1, lv_obj_set_x);
                                                /*Set the animator function and...
→variable to animate*/
lv anim set time(\&a, duration, delay);
lv anim set values(&a, start, end);
                                                /*Set start and end values. E.g. 0,...
→150*/
lv_anim_set_path_cb(&a, lv_anim_path_linear);
                                               /*Set path from `lv_anim_path_...`
→functions or a custom one.*/
lv_anim_set_ready_cb(&a, ready_cb);
                                                /*Set a callback to call then...
→animation is ready. (Optional)*/
lv anim set playback(&a, wait time);
                                                 /*Enable playback of teh animation...
→with `wait_time` delay*/
                                                 /*Enable repeat of teh animation with
lv_anim_set_repeat(&a, wait_time);
→ `wait_time` delay. Can be compiled with playback*/
lv anim create(\&a);
                                                /*Start the animation*/
```

You can apply **multiple different animations** on the same variable at the same time. For example, animate the x and y coordinates with $lv_obj_set_x$ and $lv_obj_set_y$. However, only one animation can exist with a given variable and function pair. Therefore $lv_anim_create()$ will delete the already existing variable-function animations.

Animation path

You can determinate the **path of animation**. In the most simple case, it is linear, which means the current value between *start* and *end* is changed linearly. A *path* is a function which calculates the next value to set based on the current state of the animation. Currently, there are the following built-in paths:

- lv_anim_path_linear linear animation
- lv_anim_path_step change in one step at the end
- lv_anim_path_ease_in slow at the beginning
- lv_anim_path_ease_out slow at the end
- lv_anim_path_ease_in_out slow at the beginning and end too
- lv anim path overshoot overshoot the end value
- lv_anim_path_bounce bounce back a little from the end value (like hitting a wall)

Speed vs time

By default, you can set the animation time. But, in some cases, the animation speed is more practical.

The <code>lv_anim_speed_to_time(speed, start, end)</code> function calculates the required time in milliseconds to reach the end value from a start value with the given speed. The speed is interpreted in <code>unit/sec</code> dimension. For example, <code>lv_anim_speed_to_time(20,0,100)</code> will give 5000 milliseconds. For example, in case of <code>lv obj set x unit</code> is pixels so <code>20 means 20 px/sec</code> speed.

Delete animations

You can **delete an animation** by **lv_anim_del(var, func)** by providing the animated variable and its animator function.

API

Input device

Typedefs

typedef void (*lv_anim_exec_xcb_t)(void *, lv_anim_value_t)

Generic prototype of "animator" functions. First parameter is the variable to animate. Second parameter is the value to set. Compatible with <code>lv_xxx_set_yyy(obj, value)</code> functions The <code>x</code> in <code>_xcb_t</code> means its not a fully generic prototype because it doesn't receive <code>lv_anim_t *</code> as its first argument

typedef void (*lv_anim_custom_exec_cb_t)(struct _lv_anim_t *, lv_anim_value_t)
Same as lv_anim_exec_xcb_t but receives lv_anim_t * as the first parameter. It's more consistent but less convenient. Might be used by binding generator functions.

```
typedef void (*lv_anim_ready_cb_t)(struct _lv_anim_t *)
```

Callback to call when the animation is ready

```
typedef void (*lv_anim_start_cb_t)(struct _lv_anim_t*)
```

Callback to call when the animation really stars (considering delay)

```
typedef struct _lv_anim_t lv_anim_t
```

Describes an animation

Enums

enum [anonymous]

Can be used to indicate if animations are enabled or disabled in a case

Values:

```
LV_ANIM_OFF
LV_ANIM_ON
```

Functions

void lv_anim_core_init(void)

Init. the animation module

void lv_anim_init(lv_anim_t *a)

Initialize an animation variable. E.g.: lv_anim_t a; lv_anim_init(&a); lv_anim_set_...(&a); lv_anim_create(&a);

Parameters

• a: pointer to an lv_anim_t variable to initialize

static void lv anim set var(lv anim t*a, void *var)

Set a variable to animate

Parameters

- a: pointer to an initialized lv anim t variable
- var: pointer to a variable to animate

static void lv_anim_set_exec_cb(lv_anim_t *a, lv_anim_exec_xcb_t exec_cb)

Set a function to animate var

Parameters

- a: pointer to an initialized lv anim t variable
- exec_cb: a function to execute during animation LittelvGL's built-in functions can be used. E.g. lv_obj_set_x

static void lv_anim_set_time(lv_anim_t *a, uint32_t duration)

Set the duration of an animation

Parameters

- a: pointer to an initialized lv_anim_t variable
- duration: duration of the animation in milliseconds

static void lv_anim_set_delay(lv_anim_t *a, uint32_t delay)

Set a delay before starting the animation

Parameters

- a: pointer to an initialized lv_anim_t variable
- $\mbox{delay} \colon \mbox{delay}$ before the animation in milliseconds

```
static void lv_anim_set_values(lv_anim_t *a, lv_anim_value_t start, lv_anim_value_t
end)
```

Set the start and end values of an animation

Parameters

- a: pointer to an initialized lv_anim_t variable
- start: the start value
- end: the end value

Similar to lv_anim_set_exec_cb but lv_anim_custom_exec_cb_t receives lv_anim_t * as its first parameter instead of void *. This function might be used when LittlevGL is binded to other

languages because it's more consistent to have lv_anim_t * as first parameter. The variable to animate can be stored in the animation's $user_sata$

Parameters

- a: pointer to an initialized lv_anim_t variable
- exec cb: a function to execute.

static void **lv_anim_set_path_cb**(*lv_anim_t* **a*, *lv_anim_path_cb_t path_cb*) Set the path (curve) of the animation.

Parameters

- a: pointer to an initialized lv_anim_t variable
- path_cb: a function the get the current value of the animation. The built in functions starts with lv_anim_path_...

$\textbf{static} \ \text{void} \ \textbf{lv_anim_set_start_cb} (\textit{lv_anim_t} *a, \textit{lv_anim_ready_cb_t} \ \textit{start_cb})$

Set a function call when the animation really starts (considering delay)

Parameters

- a: pointer to an initialized lv_anim_t variable
- start cb: a function call when the animation starts

$\verb|static| void lv_anim_set_ready_cb| (\textit{lv}_anim_t *a, \textit{lv}_anim_ready_cb_t| \textit{ready}_cb)|$

Set a function call when the animation is ready

Parameters

- a: pointer to an initialized lv_anim_t variable
- ready_cb: a function call when the animation is ready

static void lv_anim_set_playback_time(lv_anim_t *a, uint16_t time)

Make the animation to play back to when the forward direction is ready

Parameters

- a: pointer to an initialized lv_anim_t variable
- time: the duration of the playback animation in milliseconds. 0: disable playback

static void lv_anim_set_playback_delay(lv_anim_t *a, uint16_t delay)

Make the animation to play back to when the forward direction is ready

Parameters

- a: pointer to an initialized lv anim t variable
- **delay**: delay in milliseconds before starting the playback animation.

static void lv_anim_set_repeat_count(lv_anim_t *a, uint16_t cnt)

Make the animation repeat itself.

Parameters

- a: pointer to an initialized lv anim t variable
- cnt: repeat count or LV_ANIM_REPEAT_INFINITE for infinite repetition. 0: to disable repetition.

static void lv_anim_set_repeat_delay(lv_anim_t *a, uint16_t delay)

Set a delay before repeating the animation.

Parameters

- a: pointer to an initialized lv anim t variable
- delay: delay in milliseconds before repeating the animation.

void lv_anim_start(lv_anim_t *a)

Create an animation

Parameters

• a: an initialized 'anim_t' variable. Not required after call.

static int32_t lv_anim_get_delay(lv_anim_t *a)

Get a delay before starting the animation

Return delay before the animation in milliseconds

Parameters

• a: pointer to an initialized lv anim t variable

bool lv anim del(void *var, lv anim exec xcb t exec cb)

Delete an animation of a variable with a given animator function

Return true: at least 1 animation is deleted, false: no animation is deleted

Parameters

- var: pointer to variable
- exec_cb: a function pointer which is animating 'var', or NULL to ignore it and delete all the animations of 'var

```
lv_anim_t *lv_anim_get(void *var, lv_anim_exec_xcb_t exec_cb)
```

Get the animation of a variable and its exec_cb.

Return pointer to the animation.

Parameters

- var: pointer to variable
- $exec_cb$: a function pointer which is animating 'var', or NULL to delete all the animations of 'var'

```
static bool lv anim custom del(lv anim t*a, lv anim custom exec cb t exec cb)
```

Delete an animation by getting the animated variable from a. Only animations with <code>exec_cb</code> will be deleted. This function exists because it's logical that all anim. functions receives an <code>lv_anim_t</code> as their first parameter. It's not practical in C but might make the API more consequent and makes easier to generate bindings.

Return true: at least 1 animation is deleted, false: no animation is deleted

Parameters

- a: pointer to an animation.
- exec_cb: a function pointer which is animating 'var', or NULL to ignore it and delete all the animations of 'var

uint16_t lv_anim_count_running(void)

Get the number of currently running animations

Return the number of running animations

```
uint16_t lv_anim_speed_to_time(uint16_t speed, lv_anim_value_t start, lv_anim_value_t end)
```

Calculate the time of an animation with a given speed and the start and end values

Return the required time [ms] for the animation with the given parameters

Parameters

- speed: speed of animation in unit/sec
- start: start value of the animation
- end: end value of the animation

void lv_anim_refr_now(void)

Manually refresh the state of the animations. Useful to make the animations running in a blocking process where $lv_task_handler$ can't run for a while. Shouldn't be used directly because it is called in $lv_refr_now()$.

lv_anim_value_t lv_anim_path_linear(const lv_anim_t *a)

Calculate the current value of an animation applying linear characteristic

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_in(const lv_anim_t *a)

Calculate the current value of an animation slowing down the start phase

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_out(const lv_anim_t *a)

Calculate the current value of an animation slowing down the end phase

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_ease_in_out(const lv_anim_t *a)

Calculate the current value of an animation applying an "S" characteristic (cosine)

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_overshoot(const lv_anim_t *a)

Calculate the current value of an animation with overshoot at the end

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_bounce(const lv_anim_t *a)

Calculate the current value of an animation with 3 bounces

Return the current value to set

Parameters

• a: pointer to an animation

lv_anim_value_t lv_anim_path_step(const lv_anim_t *a)

Calculate the current value of an animation applying step characteristic. (Set end value on the end of the animation)

Return the current value to set

Parameters

• a: pointer to an animation

struct lv anim t

 $\#include < lv_anim.h > Describes an animation$

Public Members

void *var

Variable to animate

$lv_anim_exec_xcb_t$ exec_cb

Function to execute to animate

$lv_anim_path_cb_t$ path_cb

Function to get the steps of animations

$lv_anim_start_cb_t$ start_cb

Call it when the animation is starts (considering delay)

lv_anim_ready_cb_t ready_cb

Call it when the animation is ready

${\rm int}32_{\rm t}$ start

Start value

int32 t end

End value

uint32_t time

Animation time in ms

int32 t act time

Current time in animation. Set to negative to make delay.

uint32_t playback_delay

Wait before play back

uint32_t playback_time

Duration of playback animation

uint32_t repeat_delay

Wait before repeat

uint16_t repeat_cnt

Repeat count for the animation

uint8_t early_apply

1: Apply start value immediately even is there is delay

lv_anim_user_data_t user_data

Custom user data

```
uint32_t time_orig
uint8_t playback_now
Play back is in progress
uint32_t has_run
Indicates the animation has run in this round
```

Tasks

LittlevGL has a built-in task system. You can register a function to have it be called periodically. The tasks are handled and called in <code>lv_task_handler()</code>, which needs to be called periodically every few milliseconds. See *Porting* for more information.

The tasks are non-preemptive, which means a task cannot interrupt another task. Therefore, you can call any LittlevGL related function in a task.

Create a task

To create a new task, use <code>lv_task_create(task_cb, period_ms, LV_TASK_PRIO_OFF/LOWEST/LOW/MID/HIGH/HIGHEST, user_data)</code>. It will create an <code>lv_task_t * variable</code>, which can be used later to modify the parameters of the task. <code>lv_task_create_basic()</code> can also be used. It allows you to create a new task without specifying any parameters.

A task callback should have void (*lv_task_cb_t)(lv_task_t *); prototype.

For example:

```
void my_task(lv_task_t * task)
{
    /*Use the user_data*/
    uint32_t * user_data = task->user_data;
    printf("my_task called with user data: %d\n", *user_data);

    /*Do something with LittlevGL*/
    if(something_happened) {
        something_happened = false;
        lv_btn_create(lv_scr_act(), NULL);
    }
}
...

static uint32_t user_data = 10;
lv_task_t * task = lv_task_create(my_task, 500, LV_TASK_PRIO_MID, &user_data);
```

Ready and Reset

lv task ready(task) makes the task run on the next call of lv task handler().

lv_task_reset(task) resets the period of a task. It will be called again after the defined period of
milliseconds has elapsed.

Set parameters

You can modify some parameters of the tasks later:

- lv_task_set_cb(task, new_cb)
- lv task set period(task, new period)
- lv_task_set_prio(task, new_priority)

One-shot tasks

You can make a task to run only once by calling <code>lv_task_once(task)</code>. The task will automatically be deleted after being called for the first time.

Measure idle time

You can get the idle percentage time <code>lv_task_handler</code> with <code>lv_task_get_idle()</code>. Note that, it doesn't measure the idle time of the overall system, only <code>lv_task_handler</code>. It can be misleading if you use an operating system and call <code>lv_task_handler</code> in an task, as it won't actually measure the time the OS spends in an idle thread.

Asynchronous calls

In some cases, you can't do an action immediately. For example, you can't delete an object right now because something else is still using it or you don't want to block the execution now. For these cases, you can use the <code>lv_async_call(my_function, data_p)</code> to make <code>my_function</code> be called on the next call of <code>lv_task_handler</code>. <code>data_p</code> will be passed to function when it's called. Note that, only the pointer of the data is saved so you need to ensure that the variable will be "alive" while the function is called. You can use <code>static</code>, global or dynamically allocated data.

For example:

```
void my_screen_clean_up(void * scr)
{
    /*Free some resources related to `scr`*/

    /*Finally delete the screen*/
    lv_obj_del(scr);
}
...
/*Do somethings with the object on the current screen*/
/*Delete screen on next call of `lv_task_handler`. So not now.*/
lv_async_call(my_screen_clean_up, lv_scr_act());
/*The screen is still valid so you can do other things with it*/
```

If you just want to delete an object, and don't need to clean anything up in my_screen_cleanup, you could just use lv_obj_del_async, which will delete the object on the next call to lv_task_handler.

API

```
Typedefs
```

```
typedef void (*lv_task_cb_t)(struct _lv_task_t *)
    Tasks execute this type type of functions.

typedef uint8_t lv_task_prio_t
typedef struct _lv_task_t lv_task_t
    Descriptor of a lv_task
```

Enums

enum [anonymous]

Possible priorities for ly tasks

Values:

```
LV_TASK_PRIO_OFF = 0
LV_TASK_PRIO_LOWEST
LV_TASK_PRIO_LOW
LV_TASK_PRIO_MID
LV_TASK_PRIO_HIGH
LV_TASK_PRIO_HIGHEST
_LV_TASK_PRIO_NUM
```

Functions

```
void lv task core init(void)
```

Init the lv_task module

```
lv_task_t *lv_task_create_basic(void)
```

Create an "empty" task. It needs to initialized with at least $lv_task_set_cb$ and $lv_task_set_period$

Return pointer to the craeted task

Create a new ly task

Return pointer to the new task

- task_xcb: a callback which is the task itself. It will be called periodically. (the 'x' in the argument name indicates that its not a fully generic function because it not follows the func_name(object, callback, ...) convention)
- period: call period in ms unit
- prio: priority of the task (LV TASK PRIO OFF means the task is stopped)
- user_data: custom parameter

void lv_task_del(lv_task_t *task)

Delete a lv task

Parameters

• task: pointer to task_cb created by task

void lv_task_set_cb(lv_task_t *task, lv_task_cb_t task_cb)

Set the callback the task (the function to call periodically)

Parameters

- task: pointer to a task
- task cb: the function to call periodically

void lv_task_set_prio(lv_task_t *task, lv_task_prio_t prio)

Set new priority for a ly task

Parameters

- task: pointer to a lv_task
- prio: the new priority

void lv_task_set_period(lv_task_t *task, uint32_t period)

Set new period for a lv_task

Parameters

- task: pointer to a lv_task
- period: the new period

void lv_task_ready(lv_task_t *task)

Make a lv_task ready. It will not wait its period.

Parameters

• task: pointer to a lv task.

void lv task once(lv task t *task)

Delete the lv_task after one call

Parameters

• task: pointer to a lv_task.

void lv_task_reset(lv_task_t *task)

Reset a lv_task. It will be called the previously set period milliseconds later.

Parameters

• task: pointer to a ly task.

void lv_task_enable(bool en)

Enable or disable the whole lv_task handling

Parameters

• en: true: ly task handling is running, false: ly task handling is suspended

uint8_t lv_task_get_idle(void)

Get idle percentage

Return the lv_task idle in percentage

struct lv task t

#include <lv_task.h> Descriptor of a ly_task

Public Members

uint32 t period

How often the task should run

uint32 t last run

Last time the task ran

lv task cb t task cb

Task function

void *user_data

Custom user data

uint8 t prio

Task priority

 $uint8_t$ once

1: one shot task

Drawing

With LittlevGL, you don't need to draw anything manually. Just create objects (like buttons and labels), move and change them and LittlevGL will refresh and redraw what is required.

However, it might be useful to have a basic understanding of how drawing happens in LittlevGL.

The basic concept is to not draw directly to the screen, but draw to an internal buffer first and then copy that buffer to screen when the rendering is ready. It has two main advantages:

- 1. **Avoids flickering** while layers of the UI are drawn. For example, when drawing a *background* + *button* + *text*, each "stage" would be visible for a short time.
- 2. It's faster to modify a buffer in RAM and finally write one pixel once than read/write a display directly on each pixel access. (e.g. via a display controller with SPI interface). Hence, it's suitable for pixels that are redrawn multiple times (e.g. background + button + text).

Buffering types

As you already might learn in the *Porting* section, there are 3 types of buffers:

- 1. One buffer LittlevGL draws the content of the screen into a buffer and sends it to the display. The buffer can be smaller than the screen. In this case, the larger areas will be redrawn in multiple parts. If only small areas changes (e.g. button press), then only those areas will be refreshed.
- 2. Two non-screen-sized buffers having two buffers, LittlevGL can draw into one buffer while the content of the other buffer is sent to display in the background. DMA or other hardware should be used to transfer the data to the display to let the CPU draw meanwhile. This way, the rendering and refreshing of the display become parallel. If the buffer is smaller than the area to refresh, LittlevGL will draw the display's content in chunks similar to the *One buffer*.
- 3. Two screen-sized buffers In contrast to Two non-screen-sized buffers, LittlevGL will always provide the whole screen's content, not only chunks. This way, the driver can simply change the address of the frame buffer to the buffer received from LittlevGL. Therefore, this method works best when the MCU has an LCD/TFT interface and the frame buffer is just a location in the RAM.

Mechanism of screen refreshing

- 1. Something happens on the GUI which requires redrawing. For example, a button has been pressed, a chart has been changed or an animation happened, etc.
- 2. LittlevGL saves the changed object's old and new area into a buffer, called an *Invalid area buffer*. For optimization, in some cases, objects are not added to the buffer:
 - Hidden objects are not added.
 - Objects completely out of their parent are not added.
 - Areas out of the parent are cropped to the parent's area.
 - The object on other screens are not added.
- 3. In every LV DISP DEF REFR PERIOD (set in *lv_conf.h*):
 - LittlevGL checks the invalid areas and joins the adjacent or intersecting areas.
 - Takes the first joined area, if it's smaller than the display buffer, then simply draw the areas' content to the display buffer. If the area doesn't fit into the buffer, draw as many lines as possible to the display buffer.
 - When the area is drawn, call flush cb from the display driver to refresh the display.
 - If the area was larger than the buffer, redraw the remaining parts too.
 - Do the same with all the joined areas.

While an area is redrawn, the library searches the most top object which covers the area to redraw, and starts to draw from that object. For example, if a button's label has changed, the library will see that it's enough to draw the button under the text, and it's not required to draw the background too.

The difference between buffer types regarding the drawing mechanism is the following:

- One buffer LittlevGL needs to wait for lv_disp_flush_ready() (called at the end of flush_cb) before starting to redraw the next part.
- 2. Two non-screen-sized buffers LittlevGL can immediately draw to the second buffer when the first is sent to flush_cb because the flushing should be done by DMA (or similar hardware) in the background.
- 3. Two screen-sized buffers After calling flush_cb, the first buffer, if being displayed as frame buffer. Its content is copied to the second buffer and all the changes are drawn on top of it.

3.16.4 Object types (Widgets)

Base object (lv_obj)

Overview

The 'Base Object' implements the basic properties of an object on a screen, such as:

- coordinates
- parent object
- children
- main style
- attributes like Click enable, Drag enable, etc.

In object-oriented thinking, it is the base class which all other objects in LittlevGL inherit from. This, among another things, helps reduce code duplication.

Coordinates

The object size can be modified on individual axes with $lv_obj_set_width(obj, new_width)$ and $lv_obj_set_height(obj, new_height)$, or both axes can be modified at the same time with $lv_obj_set_size(obj, new_width, new_height)$.

You can set the x and y coordinates relative to the parent with $lv_obj_set_x(obj, new_x)$ and $lv_obj_set_y(obj, new_y)$, or both at the same time with $lv_obj_set_pos(obj, new_x, new y)$.

You can align the object to another with $lv_obj_align(obj, obj_ref, LV_ALIGN_..., x_shift, y_shift)$.

- **obj** is the object to align.
- obj_ref is a reference object. obj will be aligned to it. If obj_ref = NULL, then the parent of obj will be used.
- The third argument is the type of alignment. These are the possible options:

The alignment types build like LV ALIGN OUT TOP MID.

• The last two arguments allow you to shift the object by a specified number of pixels after aligning it.

For example, to align a text below an image: $lv_obj_align(text, image, LV_ALIGN_OUT_BOTTOM_MID, 0, 10).Or$ to align a text in the middle of its parent: $lv_obj_align(text, NULL, LV_ALIGN_CENTER, 0, 0)$.

 $\lower lv_obj_align_origo$ works similarly to $\lower lv_obj_align$ but, it aligns the center of the object rather than the top-left corner.

For example, $lv_obj_align_origo(btn, image, LV_ALIGN_OUT_BOTTOM_MID, 0, 0)$ will align the center of the button the bottom of the image.

The parameters of the alignment will be saved in the object if $LV_USE_OBJ_REALIGN$ is enabled in $lv_conf.h$. You can then realign the objects simply by calling $lv_obj_realign(obj)$. (It's equivalent to calling lv_obj_align again with the same parameters.)

If the alignment happened with lv obj align origo, then it will be used when the object is realigned.

If lv_obj_set_auto_realign(obj, true) is used the object will be realigned automatically, if its size changes in lv_obj_set_width/height/size() functions. It's very useful when size animations are applied to the object and the original position needs to be kept.

Note that the coordinates of screens can't be changed. Attempting to use these functions on screens will result in undefined behavior.

Parents and children

You can set a new parent for an object with lv_obj_set_parent(obj, new_parent). To get the current parent, use lv_obj_get_parent(obj).

To get the children of an object, use <code>lv_obj_get_child(obj, child_prev)</code> (from last to first) or <code>lv_obj_get_child_back(obj, child_prev)</code> (from first to last). To get the first child, pass <code>NULL</code> as the second parameter and use the return value to iterate through the children. The function will return <code>NULL</code> if there are no more children. For example:

```
lv_obj_t * child;
child = lv_obj_get_child(parent, NULL);
while(child) {
    /*Do something with "child" */
    child = lv_obj_get_child(parent, child);
}
```

lv_obj_count_children(obj) tells the number of children on an object.
lv_obj_count_children_recursive(obj) also tells the number of children but counts children of children recursively.

Screens

When you have created a screen like <code>lv_obj_create(NULL, NULL)</code>, you can load it with <code>lv scr load(screen1)</code>. The <code>lv scr act()</code> function gives you a pointer to the current screen.

If you have more display then it's important to know that these functions operate on the lastly created or the explicitly selected (with lv disp set default) display.

To get the screen an object is assigned to, use the lv_obj_get_screen(obj) function.

Layers

There are two automatically generated layers:

- top layer
- system layer

They are independent of the screens and the same layers will be shown on every screen. The *top layer* is above every object on the screen and the *system layer* is above the *top layer* too. You can add any pop-up windows to the *top layer* freely. But, the *system layer* is restricted to system-level things (e.g. mouse cursor will be placed here in lv indev set cursor()).

The lv_layer_top() and lv_layer_sys() functions gives a pointer to the top or system layer.

You can bring an object to the foreground or send it to the background with lv obj move foreground(obj) and lv obj move background(obj).

Read the *Layer overview* section to learn more about layers.

Style

The base object stores the *Main style* of the object. To set a new style, use <code>lv_obj_set_style(obj, &new style)</code> function. If <code>NULL</code> is set as style, then the object will inherit its parent's style.

Note that, you should use <code>lv_obj_set_style</code> only for "Base objects". Every other object type has its own style set function which should be used for them. For example, a button should use <code>lv btn set style()</code>.

If you modify a style, which is already used by objects, in order to refresh the affected objects you can use either $lv_obj_refresh_style(obj)$ on each object using it or to notify all objects with a given style use $lv_obj_report_style_mod(\&style)$. If the parameter of $lv_obj_report_style_mod$ is NULL, all objects will be notified.

Read the Style overview to learn more about styles.

Events

To set an event callback for an object, use <code>lv_obj_set_event_cb(obj, event_cb)</code>,

To manually send an event to an object, use <code>lv_event_send(obj, LV_EVENT_..., data)</code>

Read the <code>Event overview</code> to learn more about the events.

Attributes

There are some attributes which can be enabled/disabled by lv_obj_set_...(obj, true/false):

- hidden Hide the object. It will not be drawn and will be considered by input devices as if it doesn't exist., Its children will be hidden too.
- **click** Allows you to click the object via input devices. If disabled, then click events are passed to the object behind this one. (E.g. *Labels* are not clickable by default)
- top If enabled then when this object or any of its children is clicked then this object comes to the foreground.
- drag Enable dragging (moving by an input device)
- drag_dir Enable dragging only in specific directions. Can be LV DRAG DIR HOR/VER/ALL.
- drag throw Enable "throwing" with dragging as if the object would have momentum
- **drag_parent** If enabled then the object's parent will be moved during dragging. It will look like as if the parent is dragged. Checked recursively, so can propagate to grandparents too.
- **parent_event** Propagate the events to the parents too. Checked recursively, so can propagate to grandparents too.
- opa scale enable Enable opacity scaling. See the [#opa-scale] (Opa scale) section.

Opa scale

If <code>lv_obj_set_opa_scale_enable(obj, true)</code> is set for an object, then the object's and all of its children's opacity can be adjusted with <code>lv_obj_set_opa_scale(obj, LV_OPA_...)</code>. The opacities stored in the styles will be scaled down by this factor.

It is very useful to fade in/out an object with some children using an Animation.

A little bit of technical background: during the rendering process, the opacity of the object is decided by searching recursively up the object's family tree to find the first object with opacity scaling (Opa scale) enabled.

If an object is found with an enabled *Opa scale*, then that *Opa scale* will be used by the rendered object too.

Therefore, if you want to disable the Opa scaling for an object when the parent has Opa scale, just enable Opa scaling for the object and set its value to LV OPA COVER. It will overwrite the parent's settings.

Protect

There are some specific actions which happen automatically in the library. To prevent one or more that kind of actions, you can protect the object against them. The following protections exists:

- LV_PROTECT_NONE No protection
- LV_PROTECT_POS Prevent automatic positioning (e.g. Layout in Containers)
- LV_PROTECT_FOLLOW Prevent the object be followed (make a "line break") in automatic ordering (e.g. Layout in *Containers*)
- LV_PROTECT_PARENT Prevent automatic parent change. (e.g. *Page* moves the children created on the background to the scrollable)
- LV_PROTECT_PRESS_LOST Prevent losing press when the press is slid out of the objects. (E.g. a *Button* can be released out of it if it was being pressed)
- LV_PROTECT_CLICK_FOCUS Prevent automatically focusing the object if it's in a *Group* and click focus is enabled.
- LV_PROTECT_CHILD_CHG Disable the child change signal. Used internally by the library

The $lv_obj_set/clear_protect(obj, LV_PROTECT_...)$ sets/clears the protection. You can use 'OR' ed values of protection types too.

Groups

Once, an object is added to *group* with lv_group_add_obj(group, obj) the object's current group can be get with lv obj get group(obj).

lv_obj_is_focused(obj) tells if the object is currently focused on its group or not. If the object is not
added to a group, false will be returned.

Read the *Input devices overview* to learn more about the *Groups*.

Extended click area

By default, the objects can be clicked only on their coordinates, however, this area can be extended with lv_obj_set_ext_click_area(obj, left, right, top, bottom). left/right/top/bottom describes how far the clickable area should extend past the default in each direction.

This feature needs to enabled in $lv_conf.h$ with LV_USE_EXT_CLICK_AREA. The possible values are:

- LV_EXT_CLICK_AREA_FULL store all 4 coordinates as lv_coord_t
- LV_EXT_CLICK_AREA_TINY store only horizontal and vertical coordinates (use the greater value of left/right and top/bottom) as uint8 t

Styles

Use lv_obj_set_style(obj, &style) to set a style for a base object.

All style.body properties are used. The default style for screens is lv_style_scr and $lv_style_plain_color$ for normal objects

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Base obejcts with custom styles

code

```
#include "lvgl/lvgl.h"
void lv ex obj 1(void)
   lv obj t * obj1;
   obj1 = lv_obj_create(lv_scr_act(), NULL);
   lv_obj_set_size(obj1, 100, 50);
   lv obj align(obj1, NULL, LV ALIGN CENTER, -60, -30);
   /*Copy the previous object and enable drag*/
   lv_obj_t * obj2;
   obj2 = lv_obj_create(lv_scr_act(), obj1);
   lv obj align(obj2, NULL, LV ALIGN CENTER, 0, 0);
   lv_obj_set_drag(obj2, true);
   static lv_style_t style_shadow;
   lv_style_init(&style_shadow);
   lv style set shadow width(&style shadow, LV STATE DEFAULT, 10);
   lv_style_set_shadow_spread(&style_shadow, LV_STATE_DEFAULT, 5);
   lv_style_set_shadow_color(&style_shadow, LV_STATE_DEFAULT, LV_COLOR_BLUE);
   /*Copy the previous object (drag is already enabled)*/
   lv obj t * obj3;
   obj3 = lv_obj_create(lv_scr_act(), obj2);
   lv_obj_add_style(obj3, LV_OBJ_PART_MAIN, &style_shadow);
   lv_obj_align(obj3, NULL, LV_ALIGN_CENTER, 60, 30);
```

MicroPython

No examples yet.

typedef uint8_t lv_protect_t

API

```
Typedefs
```

```
typedef uint8_t lv_state_t
typedef struct _lv_obj_t lv_obj_t
typedef uint8_t lv_obj_part_t
```

Enums

enum [anonymous]

Design modes

Values:

LV DESIGN DRAW MAIN

Draw the main portion of the object

LV DESIGN DRAW POST

Draw extras on the object

LV DESIGN COVER CHK

Check if the object fully covers the 'mask_p' area

enum [anonymous]

Design results

Values:

LV_DESIGN_RES_OK

Draw ready

LV DESIGN RES COVER

Returned on ${\sf LV_DESIGN_COVER_CHK}$ if the areas is fully covered

LV DESIGN RES NOT COVER

Returned on LV DESIGN COVER CHK if the areas is not covered

LV DESIGN RES MASKED

Returned on LV DESIGN COVER CHK if the areas is masked out (children also not cover)

enum [anonymous]

Values:

LV EVENT PRESSED

The object has been pressed

LV EVENT PRESSING

The object is being pressed (called continuously while pressing)

LV_EVENT_PRESS_LOST

User is still pressing but slid cursor/finger off of the object

LV EVENT SHORT CLICKED

User pressed object for a short period of time, then released it. Not called if dragged.

LV EVENT LONG PRESSED

Object has been pressed for at least LV INDEV LONG PRESS TIME. Not called if dragged.

LV EVENT LONG PRESSED REPEAT

 $\label{localized condition} {\it Called after LV_INDEV_LONG_PRESS_TIME in every LV_INDEV_LONG_PRESS_REP_TIME {\it ms.} \\ {\it Not called if dragged.}$

LV EVENT CLICKED

Called on release if not dragged (regardless to long press)

LV EVENT RELEASED

Called in every cases when the object has been released

LV EVENT DRAG BEGIN

LV_EVENT_DRAG_END

LV EVENT DRAG THROW BEGIN

LV EVENT GESTURE

The object has been getture

LV EVENT KEY

LV EVENT FOCUSED

LV EVENT DEFOCUSED

LV_EVENT_LEAVE

LV_EVENT_VALUE_CHANGED

The object's value has changed (i.e. slider moved)

LV_EVENT_INSERT

LV_EVENT_REFRESH

LV EVENT APPLY

"Ok", "Apply" or similar specific button has clicked

LV EVENT CANCEL

"Close", "Cancel" or similar specific button has clicked

LV_EVENT_DELETE

Object is being deleted

enum [anonymous]

Signals are for use by the object itself or to extend the object's functionality. Applications should use $lv_obj_set_event_cb$ to be notified of events that occur on the object.

Values:

LV SIGNAL CLEANUP

Object is being deleted

LV SIGNAL CHILD CHG

Child was removed/added

LV SIGNAL COORD CHG

Object coordinates/size have changed

LV_SIGNAL_PARENT_SIZE_CHG

Parent's size has changed

LV SIGNAL STYLE CHG

Object's style has changed

LV SIGNAL BASE DIR CHG

The base dir has changed

LV SIGNAL REFR EXT DRAW PAD

Object's extra padding has changed

LV_SIGNAL_GET_TYPE

LittlevGL needs to retrieve the object's type

LV SIGNAL GET STYLE

Get the style of an object

LV_SIGNAL_GET_STATE_DSC

Get the state of the object

LV_SIGNAL_HIT_TEST

Advanced hit-testing

LV SIGNAL PRESSED

The object has been pressed

LV SIGNAL PRESSING

The object is being pressed (called continuously while pressing)

LV_SIGNAL_PRESS_LOST

User is still pressing but slid cursor/finger off of the object

LV SIGNAL RELEASED

User pressed object for a short period of time, then released it. Not called if dragged.

LV SIGNAL LONG PRESS

Object has been pressed for at least LV_INDEV_LONG_PRESS_TIME. Not called if dragged.

LV_SIGNAL_LONG_PRESS_REP

Called after $LV_INDEV_LONG_PRESS_TIME$ in every $LV_INDEV_LONG_PRESS_REP_TIME$ ms. Not called if dragged.

LV_SIGNAL_DRAG_BEGIN

LV_SIGNAL_DRAG_THROW_BEGIN

LV SIGNAL DRAG END

LV SIGNAL GESTURE

The object has been gesture

LV SIGNAL LEAVE

Another object is clicked or chosen via an input device

LV SIGNAL FOCUS

LV_SIGNAL_DEFOCUS

LV SIGNAL CONTROL

LV_SIGNAL_GET_EDITABLE

enum [anonymous]

Values:

$LV_PROTECT_NONE = 0x00$

$LV_PROTECT_CHILD_CHG = 0x01$

Disable the child change signal. Used by the library

LV PROTECT PARENT = 0x02

Prevent automatic parent change (e.g. in ly page)

LV PROTECT POS = 0x04

Prevent automatic positioning (e.g. in lv_cont layout)

LV PROTECT FOLLOW = 0x08

Prevent the object be followed in automatic ordering (e.g. in ly cont PRETTY layout)

```
\textbf{LV\_PROTECT\_PRESS\_LOST} = 0x10
         If the indev was pressing this object but swiped out while pressing do not search other object.
     LV PROTECT CLICK FOCUS = 0x20
          Prevent focusing the object by clicking on it
enum [anonymous]
     Values:
     LV\_STATE\_DEFAULT = 0x00
     LV\_STATE\_CHECKED = 0x01
     LV STATE FOCUSED = 0x02
     LV STATE EDITED = 0x04
     LV STATE HOVERED = 0x08
     LV\_STATE\_PRESSED = 0x10
     LV STATE DISABLED = 0x20
enum [anonymous]
     Values:
     LV_OBJ_PART_MAIN
     {f LV\_OBJ\_PART\_VIRTUAL\_LAST} = 0{f x}01
     LV_0BJ_PART_REAL_LAST = 0x40
     LV_OBJ_PART_ALL = 0xFF
Functions
void lv_init(void)
     Init. the 'lv' library.
void lv deinit(void)
     Deinit the 'lv' library Currently only implemented when not using custom allocators, or GC is enabled.
lv\_obj\_t *lv obj create(lv\_obj\_t *parent, const lv\_obj\_t *copy)
     Create a basic object
     Return pointer to the new object
     Parameters
           • parent: pointer to a parent object. If NULL then a screen will be created
           • copy: pointer to a base object, if not NULL then the new object will be copied from it
lv res t lv obj del(lv \ obj \ t * obj)
     Delete 'obj' and all of its children
     Return LV_RES_INV because the object is deleted
     Parameters
           • obj: pointer to an object to delete
```

A function to be easily used in animation ready callback to delete an object when the animation is

void lv obj del anim ready cb(lv anim t *a)

ready

Parameters

• a: pointer to the animation

void lv_obj_del_async(struct _lv_obj_t *obj)

Helper function for asynchronously deleting objects. Useful for cases where you can't delete an object directly in an LV_EVENT_DELETE handler (i.e. parent).

See lv_async_call

Parameters

• obj: object to delete

void lv_obj_clean(lv_obj_t *obj)

Delete all children of an object

Parameters

• obj: pointer to an object

void lv_obj_invalidate_area(const lv_obj_t *obj, const lv_area_t *area)

Mark an area of an object as invalid. This area will be redrawn by 'lv_refr_task'

Parameters

- obj: pointer to an object
- area: the area to redraw

void lv_obj_invalidate(const lv_obj_t *obj)

Mark the object as invalid therefore its current position will be redrawn by 'lv refr task'

Parameters

• obj: pointer to an object

void lv obj set parent(lv_obj_t*obj, lv_obj_t*parent)

Set a new parent for an object. Its relative position will be the same.

Parameters

- obj: pointer to an object. Can't be a screen.
- parent: pointer to the new parent object. (Can' t be NULL)

void lv obj move foreground($lv \ obj \ t * obj$)

Move and object to the foreground

Parameters

• **obj**: pointer to an object

void lv obj move background(lv obj t *obj)

Move and object to the background

Parameters

• **obj**: pointer to an object

void **lv obj set pos** (lv obj t *obj, lv coord t x, lv coord t y)

Set relative the position of an object (relative to the parent)

- obj: pointer to an object
- X: new distance from the left side of the parent

• y: new distance from the top of the parent

void $lv_obj_set_x(lv_obj_t * obj, lv_coord_t x)$

Set the x coordinate of a object

Parameters

- **obj**: pointer to an object
- X: new distance from the left side from the parent

Set the y coordinate of a object

Parameters

- obj: pointer to an object
- y: new distance from the top of the parent

Set the size of an object

Parameters

- obj: pointer to an object
- W: new width
- h: new height

Set the width of an object

Parameters

- obj: pointer to an object
- W: new width

void lv_obj_set_height(lv_obj_t *obj, lv_coord_t h)

Set the height of an object

Parameters

- **obj**: pointer to an object
- h: new height

void lv_obj_set_width_margin(lv_obj_t*obj, lv_coord_t w)

Set the width of an object by taking the left and right margin into account. The object heigwidthht will be $obj \ w = w - margon \ left - margin \ right$

Parameters

- **obj**: pointer to an object
- W: new height including margins

void lv obj set height margin(lv_obj_t*obj, lv_coord t h)

Set the height of an object by taking the top and bottom margin into account. The object height will be $obj_h = h - margon_top - margin_bottom$

- obj: pointer to an object
- h: new height including margins

void $lv_obj_align(lv_obj_t *obj$, const $lv_obj_t *base$, $lv_align_t align$, $lv_coord_t x_mod$, $lv_coord_t y mod$)

Align an object to an other object.

Parameters

- obj: pointer to an object to align
- base: pointer to an object (if NULL the parent is used). 'obj' will be aligned to it.
- align: type of alignment (see 'lv_align_t' enum)
- x_mod: x coordinate shift after alignment
- y_mod: y coordinate shift after alignment

void $lv_obj_align_origo(lv_obj_t *obj_t *obj_t *base, lv_align_t align, lv_coord_t x_mod, lv_coord_t y_mod)$

Align an object to an other object.

Parameters

- **obj**: pointer to an object to align
- base: pointer to an object (if NULL the parent is used). 'obj' will be aligned to it.
- align: type of alignment (see 'lv_align_t' enum)
- x mod: x coordinate shift after alignment
- y mod: y coordinate shift after alignment

void lv_obj_realign(lv_obj_t *obj)

Realign the object based on the last lv_obj_align parameters.

Parameters

• obj: pointer to an object

void lv_obj_set_auto_realign(lv_obj_t *obj, bool en)

Enable the automatic realign of the object when its size has changed based on the last <code>lv_obj_align</code> parameters.

Parameters

- obj: pointer to an object
- en: true: enable auto realign; false: disable auto realign

void **lv_obj_set_ext_click_area**(lv_obj_t*obj, lv_coord_t left, lv_coord_t right, lv_coord_t top, lv_coord_t bottom)

Set the size of an extended clickable area

Parameters

- **obj**: pointer to an object
- left: extended clickable are on the left [px]
- right: extended clickable are on the right [px]
- top: extended clickable are on the top [px]
- bottom: extended clickable are on the bottom [px]

$\label{eq:void_lv_obj_t} \mathbf{void} \ \mathbf{lv_obj_add_style} (\mathit{lv_obj_t} \ ^*\mathit{obj}, \ \mathrm{uint8_t} \ \mathit{part}, \ \mathrm{lv_style_t} \ ^*\mathit{style} \mathbf{)}$

Add a new stye to the style list of an object.

- obj: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN, LV BTN PART MAIN, LV SLIDER PART KNOB
- style: pointer to a style to add (Only its pointer will be saved)

void lv obj clean style list(lv_obj_t*obj, uint8 t part)

Reset a style to the default (empty) state. Release all used memories and cancel pending related transitions. Typically used in 'LV_SIGN_CLEAN_UP.

Parameters

- **obj**: pointer to an object
- part: the part of the object which style list should be reseted. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB

void lv_obj_reset_style_list(lv_obj_t *obj, uint8_t part)

Reset a style to the default (empty) state. Release all used memories and cancel pending related transitions. Also notifies the object about the style change.

Parameters

- **obj**: pointer to an object
- part: the part of the object which style list should be reseted. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB

void lv_obj_refresh_style(lv_obj_t *obj, lv_style_property_t prop)

Notify an object about its style is modified

Parameters

• obj: pointer to an object

void lv obj report style mod(lv style t *style)

Notify all object if a style is modified

Parameters

• style: pointer to a style. Only the objects with this style will be notified (NULL to notify all objects)

```
void _{lv\_obj\_set\_style\_local\_color(lv\_obj\_t*obj, uint8\_t type, lv\_style\_property\_t prop, lv\_color t color)}
```

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has color type

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_BORDER_COLOR | (LV STATE PRESSED << LV STYLE STATE POS)
- the: value to set

void _lv_obj_set_style_local_int(lv_obj_t *obj, uint8_t type, lv_style_property_t prop, lv_style int t value)

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has integer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_BORDER_WIDTH | (LV_STATE_PRESSED << LV_STYLE_STATE_POS)
- the: value to set

$$\label{eq:cobj_set_style_local_opa} \begin{tabular}{ll} void $$_$lv_obj_set_style_local_opa($lv_obj_t*obj, uint8_t type, lv_style_property_t prop, lv_opa_t opa) \end{tabular}$$

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has opacity type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_BORDER_OPA | (LV_STATE_PRESSED << LV_STYLE_STATE_POS)
- the: value to set

```
void _lv_obj_set_style_local_ptr(lv_obj_t *obj, uint8_t type, lv_style_property_t prop, lv_style_fptr_dptr_t value)
```

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has pointer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_TEXT_FONT | (LV STATE PRESSED << LV STYLE STATE POS)
- the: value to set

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: lv obj style get trasition path()

Note for performance reasons it's not checked if the property really has pointer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_TEXT_FONT | (LV STATE PRESSED << LV STYLE STATE POS)
- the: value to set

Set a local style property of a part of an object in a given state.

Note shouldn't be used directly. Use the specific property get functions instead. For example: lv_obj_style_get_text_font()

Note for performance reasons it's not checked if the property really has pointer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_TEXT_FONT | (LV_STATE_PRESSED << LV_STYLE_STATE_POS)
- the: value to set

```
bool _{\tt lv\_obj\_remove\_style\_local\_prop(\it lv\_obj\_t *obj, uint8\_t part, lv\_style\_property\_t prop)}
```

Remove a local style property from a part of an object with a given state.

Note shouldn't be used directly. Use the specific property remove functions instead. For example: lv obj style remove border opa()

Return true: the property was found and removed; false: teh property was not found

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be removed. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: a style property ORed with a state. E.g. LV_STYLE_TEXT_FONT | (LV_STATE_PRESSED << LV_STYLE_STATE_POS)

void lv_obj_set_hidden(lv_obj_t *obj, bool en)

Hide an object. It won't be visible and clickable.

- **obj**: pointer to an object
- en: true: hide the object

void lv_obj_set_adv_hittest(lv_obj_t *obj, bool en)

Set whether advanced hit-testing is enabled on an object

Parameters

- obj: pointer to an object
- en: true: advanced hit-testing is enabled

void lv_obj_set_click(lv_obj_t *obj, bool en)

Enable or disable the clicking of an object

Parameters

- obj: pointer to an object
- en: true: make the object clickable

void $lv_obj_set_top(lv_obj_t *obj, bool en)$

Enable to bring this object to the foreground if it or any of its children is clicked

Parameters

- **obj**: pointer to an object
- en: true: enable the auto top feature

void lv_obj_set_drag(lv_obj_t *obj, bool en)

Enable the dragging of an object

Parameters

- **obj**: pointer to an object
- en: true: make the object dragable

void lv_obj_set_drag_dir(lv_obj_t*obj, lv_drag_dir_t drag_dir)

Set the directions an object can be dragged in

Parameters

- **obj**: pointer to an object
- drag dir: bitwise OR of allowed drag directions

void lv_obj_set_drag_throw(lv_obj_t*obj, bool en)

Enable the throwing of an object after is is dragged

Parameters

- obj: pointer to an object
- en: true: enable the drag throw

void lv_obj_set_drag_parent(lv_obj_t *obj, bool en)

Enable to use parent for drag related operations. If trying to drag the object the parent will be moved instead

Parameters

- **obj**: pointer to an object
- en: true: enable the 'drag parent' for the object

void lv_obj_set_gesture_parent(lv_obj_t *obj, bool en)

Enable to use parent for gesture related operations. If trying to gesture the object the parent will be moved instead

Parameters

- **obj**: pointer to an object
- en: true: enable the 'gesture parent' for the object

void lv_obj_set_parent_event(lv_obj_t*obj, bool en)

Propagate the events to the parent too

Parameters

- obj: pointer to an object
- en: true: enable the event propagation

void lv obj set base dir(lv_obj_t*obj, lv bidi dir t dir)

Set the base direction of the object

Parameters

- **obj**: pointer to an object
- dir: the new base direction. LV BIDI DIR LTR/RTL/AUTO/INHERIT

void lv_obj_add_protect(lv_obj_t *obj, uint8_t prot)

Set a bit or bits in the protect filed

Parameters

- **obj**: pointer to an object
- prot: 'OR' -ed values from lv protect t

void lv_obj_clear_protect(lv_obj_t *obj, uint8_t prot)

Clear a bit or bits in the protect filed

Parameters

- obj: pointer to an object
- prot: 'OR' -ed values from lv_protect_t

void lv_obj_set_state(lv_obj_t *obj, lv_state_t state)

Set the state (fully overwrite) of an object. If specified in the styles a transition animation will be started from the previous state to the current

Parameters

- **obj**: pointer to an object
- state: the new state

void lv_obj_add_state(lv_obj_t *obj, lv_state_t state)

Add a given state or states to the object. The other state bits will remain unchanged. If specified in the styles a transition animation will be started from the previous state to the current

Parameters

- **obj**: pointer to an object
- state: the state bits to add. E.g LV_STATE_PRESSED | LV_STATE_FOCUSED

void lv_obj_clear_state(lv_obj_t *obj, lv_state_t state)

Remove a given state or states to the object. The other state bits will remain unchanged. If specified in the styles a transition animation will be started from the previous state to the current

- **obj**: pointer to an object
- state: the state bits to remove. E.g LV STATE PRESSED | LV STATE FOCUSED

void lv_obj_finish_transitions(lv_obj_t *obj, uint8_t part)

Finish all pending transitions on a part of an object

Parameters

- **obj**: pointer to an object
- part: part of the object, e.g LV_BRN_PART_MAIN or LV_OBJ_PART_ALL for all parts

void lv_obj_set_event_cb(lv_obj_t*obj, lv_event_cb_t event_cb)

Set a an event handler function for an object. Used by the user to react on event which happens with the object.

Parameters

- **obj**: pointer to an object
- event_cb: the new event function

```
lv_res_t lv_event_send(lv_obj_t *obj, lv_event_t event, const void *data)
```

Send an event to the object

Return LV_RES_OK: obj was not deleted in the event; LV_RES_INV: obj was deleted in the event

Parameters

- **obj**: pointer to an object
- event: the type of the event from lv_event_t.
- data: arbitrary data depending on the object type and the event. (Usually NULL)

$$lv_res_t$$
 $lv_event_send_func(lv_event_cb_t event_xcb, lv_obj_t *obj, lv_event_t event, const void *data)$

Call an event function with an object, event, and data.

Return LV_RES_OK: obj was not deleted in the event; LV_RES_INV: obj was deleted in the event

Parameters

- event_xcb: an event callback function. If NULL LV_RES_0K will return without any actions. (the 'x' in the argument name indicates that its not a fully generic function because it not follows the func name(object, callback, ...) convention)
- obj: pointer to an object to associate with the event (can be NULL to simply call the event_cb)
- event: an event
- data: pointer to a custom data

const void *lv event get data(void)

Get the data parameter of the current event

Return the data parameter

```
void lv_obj_set_signal_cb(lv_obj_t*obj, lv_signal_cb_t signal_cb)
```

Set the a signal function of an object. Used internally by the library. Always call the previous signal function in the new.

- **obj**: pointer to an object
- signal cb: the new signal function

lv_res_t lv_signal_send(lv_obj_t*obj, lv_signal_t signal, void *param)

Send an event to the object

Return LV RES OK or LV RES INV

Parameters

- obj: pointer to an object
- event: the type of the event from lv event t.

$void lv_obj_set_design_cb(lv_obj_t *obj, lv_design_cb_t design_cb)$

Set a new design function for an object

Parameters

- obj: pointer to an object
- design cb: the new design function

void *lv_obj_allocate_ext_attr(lv_obj_t *obj, uint16_t ext_size)

Allocate a new ext. data for an object

Return pointer to the allocated ext

Parameters

- **obj**: pointer to an object
- ext size: the size of the new ext. data

void lv_obj_refresh_ext_draw_pad(lv_obj_t *obj)

Send a 'LV_SIGNAL_REFR_EXT_SIZE' signal to the object to refresh the extended draw area. he object needs to be invalidated by <code>lv_obj_invalidate(obj)</code> manually after this function.

Parameters

• **obj**: pointer to an object

lv obj t *lv obj get screen(const lv obj t *obj)

Return with the screen of an object

Return pointer to a screen

Parameters

• obj: pointer to an object

lv_disp_t *lv_obj_get_disp(const lv_obj_t *obj)

Get the display of an object

Return pointer the object's display

Parameters

• scr: pointer to an object

lv_obj_t *lv_obj_get_parent(const lv_obj_t *obj)

Returns with the parent of an object

Return pointer to the parent of 'obj'

Parameters

• **obj**: pointer to an object

```
lv\_obj\_t *lv\_obj\_get\_child(const \ lv\_obj\_t *obj, const \ lv\_obj\_t *child)
```

Iterate through the children of an object (start from the "youngest, lastly created")

Return the child after 'act_child' or NULL if no more child

Parameters

- **obj**: pointer to an object
- child: NULL at first call to get the next children and the previous return value later

$lv_obj_t *lv_obj_get_child_back(const lv_obj_t *obj, const lv_obj_t *child)$

Iterate through the children of an object (start from the "oldest", firstly created)

Return the child after 'act child' or NULL if no more child

Parameters

- **obj**: pointer to an object
- child: NULL at first call to get the next children and the previous return value later

uint16_t lv_obj_count_children(const $lv_obj_t *obj$)

Count the children of an object (only children directly on 'obj')

Return children number of 'obj'

Parameters

• **obj**: pointer to an object

uint16_t lv_obj_count_children_recursive(const lv_obj_t *obj)

Recursively count the children of an object

Return children number of 'obj'

Parameters

• obj: pointer to an object

void lv_obj_get_coords(const lv_obj_t *obj, lv_area_t *cords_p)

Copy the coordinates of an object to an area

Parameters

- **obj**: pointer to an object
- cords_p: pointer to an area to store the coordinates

void lv_obj_get_inner_coords(const lv_obj_t *obj, lv_area_t *coords_p)

Reduce area retried by $lv_obj_get_coords()$ the get graphically usable area of an object. (Without the size of the border or other extra graphical elements)

Parameters

• coords p: store the result area here

lv_coord_t lv_obj_get_x(const lv_obj_t *obj)

Get the x coordinate of object

Return distance of 'obj' from the left side of its parent

Parameters

• obj: pointer to an object

lv coord tlv obj get y(const lv obj t*obj)

Get the y coordinate of object

Return distance of 'obj' from the top of its parent

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_width(const lv_obj_t *obj)

Get the width of an object

Return the width

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_height(const lv_obj_t *obj)

Get the height of an object

Return the height

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_width_fit(const lv_obj_t *obj)

Get that width reduced by the left and right padding.

Return the width which still fits into the container

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_height_fit(const lv_obj_t *obj)

Get that height reduced by the top an bottom padding.

Return the height which still fits into the container

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_height_margin(lv_obj_t *obj)

Get the height of an object by taking the top and bottom margin into account. The returned height will be $obj_h + margon_top + margin_bottom$

Return the height including thee margins

Parameters

• obj: pointer to an object

lv_coord_t lv_obj_get_width_margin(lv_obj_t *obj)

Get the width of an object by taking the left and right margin into account. The returned width will be obj_w + margon_left + margin_right

Return the height including thee margins

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_width_grid(lv_obj_t*obj, uint8_t div, uint8_t span)

Divide the width of the object and get the width of a given number of columns. Take paddings into account.

Return the width according to the given parameters

Parameters

- **obj**: pointer to an object
- div: indicates how many columns are assumed. If 1 the width will be set the the parent's width If 2 only half parent width inner padding of the parent If 3 only third parent width 2 * inner padding of the parent
- span: how many columns are combined

lv_coord_t lv_obj_get_height_grid(lv_obj_t*obj, uint8_t div, uint8_t span)

Divide the height of the object and get the width of a given number of columns. Take paddings into account.

Return the height according to the given parameters

Parameters

- **obj**: pointer to an object
- div: indicates how many rows are assumed. If 1 the height will be set the the parent's height If 2 only half parent height inner padding of the parent If 3 only third parent height 2 * inner padding of the parent
- span: how many rows are combined

bool lv_obj_get_auto_realign(const $lv_obj_t *obj$)

Get the automatic realign property of the object.

Return true: auto realign is enabled; false: auto realign is disabled

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_left(const lv_obj_t *obj)

Get the left padding of extended clickable area

Return the extended left padding

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_right(const lv_obj_t *obj)

Get the right padding of extended clickable area

Return the extended right padding

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_top(const lv_obj_t *obj)

Get the top padding of extended clickable area

 ${f Return}$ the extended top padding

Parameters

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_click_pad_bottom(const lv_obj_t *obj)

Get the bottom padding of extended clickable area

Return the extended bottom padding

• **obj**: pointer to an object

lv_coord_t lv_obj_get_ext_draw_pad(const lv_obj_t*obj)

Get the extended size attribute of an object

Return the extended size attribute

Parameters

• **obj**: pointer to an object

$lv_style_list_t *lv_obj_get_style_list(const lv_obj_t *obj, uint8_t part)$

Get the style list of an obejct's part.

Return pointer to the style list. (Can be NULL)

Parameters

- **obj**: pointer to an object.
- part: part the part of the object which style list should be get. E.g. LV_OBJ_PART_MAIN, LV BTN PART MAIN, LV SLIDER PART KNOB

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_width()$

Note for performance reasons it's not checked if the property really has integer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN, LV BTN PART MAIN, LV SLIDER PART KNOB
- prop: the property to get. E.g. LV_STYLE_BORDER_WIDTH. The state of the object will be added internally

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_color()$

Note for performance reasons it's not checked if the property really has color type

- **obj**: pointer to an object
- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB

• prop: the property to get. E.g. LV_STYLE_BORDER_COLOR. The state of the object will be added internally

 $lv_opa_t_lv_obj_get_style_opa(const lv_obj_t *obj$, uint8_t part, $lv_style_property_t prop$)

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has opacity type

Parameters

- obj: pointer to an object
- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: the property to get. E.g. LV_STYLE_BORDER_OPA. The state of the object will be added internally

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_border_opa()$

Note for performance reasons it's not checked if the property really has pointer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: the property to get. E.g. LV_STYLE_TEXT_FONT. The state of the object will be added internally

```
static lv_style_prop_cb_t _lv_obj_get_style_func_ptr(const _lv_obj_t *obj, _uint8_t _part, lv_style_property_t _prop)
```

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: lv obj style get trasition path()

Note for performance reasons it's not checked if the property really has pointer type

Parameters

• **obj**: pointer to an object

- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN,
 LV BTN PART MAIN, LV SLIDER PART KNOB
- prop: the property to get. E.g. LV_STYLE_TEXT_FONT. The state of the object will be added internally

Get a style property of a part of an object in the object's current state. If there is a running transitions it is taken into account

Return the value of the property of the given part in the current state. If the property is not found a default value will be returned.

Note shouldn't be used directly. Use the specific property get functions instead. For example: $lv_obj_style_get_text_font()$

Note for performance reasons it's not checked if the property really has pointer type

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be get. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB
- prop: the property to get. E.g. LV_STYLE_TEXT_FONT. The state of the object will be added internally

lv_style_t *lv_obj_get_local_style(lv_obj_t *obj, uint8_t part)

Get the local style of a part of an object.

Return pointer to the local style if exists else NULL.

Parameters

- **obj**: pointer to an object
- part: the part of the object which style property should be set. E.g. LV_OBJ_PART_MAIN, LV_BTN_PART_MAIN, LV_SLIDER_PART_KNOB

bool lv obj get hidden(const lv_obj_t*obj)

Get the hidden attribute of an object

Return true: the object is hidden

Parameters

• **obj**: pointer to an object

bool lv_obj_get_adv_hittest(const lv_obj_t *obj)

Get whether advanced hit-testing is enabled on an object

Return true: advanced hit-testing is enabled

Parameters

• obj: pointer to an object

bool lv obj get click(const lv_obj_t*obj)

Get the click enable attribute of an object

Return true: the object is clickable

Parameters

• **obj**: pointer to an object

bool lv_obj_get_top(const lv_obj_t *obj)

Get the top enable attribute of an object

Return true: the auto top feature is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag(const lv_obj_t *obj)

Get the drag enable attribute of an object

Return true: the object is dragable

Parameters

• obj: pointer to an object

lv_drag_dir_t lv_obj_get_drag_dir(const lv_obj_t *obj)

Get the directions an object can be dragged

Return bitwise OR of allowed directions an object can be dragged in

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag_throw(const lv_obj_t *obj)

Get the drag throw enable attribute of an object

Return true: drag throw is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_drag_parent(const $lv_obj_t *obj$)

Get the drag parent attribute of an object

Return true: drag parent is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_parent_event(const $lv_obj_t *obj$)

Get the drag parent attribute of an object

Return true: drag parent is enabled

Parameters

• **obj**: pointer to an object

bool lv_obj_get_gesture_parent(const $lv_obj_t *obj$)

Get the gesture parent attribute of an object

Return true: gesture parent is enabled

Parameters

• **obj**: pointer to an object

lv_bidi_dir_t lv_obj_get_base_dir(const lv_obj_t *obj)

lv_opa_t lv_obj_get_opa_scale_enable(const lv_obj_t *obj)

Get the opa scale enable parameter

Return true: opa scaling is enabled for this object and all children; false: no opa scaling

Parameters

• **obj**: pointer to an object

lv_opa_t lv_obj_get_opa_scale(const lv_obj_t *obj)

Get the opa scale parameter of an object

Return opa scale [0..255]

Parameters

• obj: pointer to an object

uint8_t lv_obj_get_protect(const lv_obj_t *obj)

Get the protect field of an object

Return protect field ('OR' ed values of lv_protect_t)

Parameters

• obj: pointer to an object

bool $lv_obj_is_protected(const lv_obj_t *obj, uint8_t prot)$

Check at least one bit of a given protect bitfield is set

Return false: none of the given bits are set, true: at least one bit is set

Parameters

- **obj**: pointer to an object
- prot: protect bits to test ('OR' ed values of lv protect t)

Get the signal function of an object

Return the signal function

Parameters

• **obj**: pointer to an object

lv_design_cb_t lv obj get design cb(const lv_obj_t*obj)

Get the design function of an object

Return the design function

Parameters

• **obj**: pointer to an object

lv_event_cb_t lv_obj_get_event_cb(const lv_obj_t *obj)

Get the event function of an object

Return the event function

Parameters

• **obj**: pointer to an object

bool lv_obj_is_point_on_coords(lv_obj_t*obj, const lv_point_t*point)

Check if a given screen-space point is on an object's coordinates.

This method is intended to be used mainly by advanced hit testing algorithms to check whether the point is even within the object (as an optimization).

- obj: object to check
- point: screen-space point

bool **lv_obj_hittest**(lv_obj_t *obj, lv_point_t *point)

Hit-test an object given a particular point in screen space.

Return true if the object is considered under the point

Parameters

- obj: object to hit-test
- point: screen-space point

void *lv_obj_get_ext_attr(const lv_obj_t *obj)

Get the ext pointer

Return the ext pointer but not the dynamic version Use it as ext->data1, and NOT da(ext)->data1

Parameters

• **obj**: pointer to an object

void lv_obj_get_type(const lv_obj_t*obj, lv_obj_type_t*buf)

Get object's and its ancestors type. Put their name in $type_buf$ starting with the current type. E.g. $buf.type[0]="lv_btn"$, $buf.type[1]="lv_cont"$, $buf.type[2]="lv_obj"$

Parameters

- obj: pointer to an object which type should be get
- buf: pointer to an lv obj type t buffer to store the types

${\tt lv_obj_user_data_t~lv_obj_get_user_data(const~\it lv_obj_t~*\it obj)}$

Get the object's user data

Return user data

Parameters

• **obj**: pointer to an object

$lv_obj_user_data_t *lv_obj_get_user_data_ptr(const \ \mathit{lv_obj_t *obj})$

Get a pointer to the object's user data

Return pointer to the user data

Parameters

• obj: pointer to an object

void lv_obj_set_user_data(lv_obj_t*obj, lv_obj_user_data_t data)

Set the object's user data. The data will be copied.

Parameters

- obj: pointer to an object
- data: user data

void *lv obj get group(const lv_obj_t *obj)

Get the group of the object

Return the pointer to group of the object

Parameters

• **obj**: pointer to an object

bool lv_obj_is_focused(const lv_obj_t *obj)

Tell whether the object is the focused object of a group or not.

Return true: the object is focused, false: the object is not focused or not in a group

Parameters

• **obj**: pointer to an object

 lv_res_t $lv_obj_handle_get_type_signal(lv_obj_type_t*buf, const char*name)$

Used in the signal callback to handle LV SIGNAL GET TYPE signal

Return LV_RES_OK

Parameters

- **buf**: pointer to *lv_obj_type_t*. (**param** in the signal callback)
- name: name of the object. E.g. "lv_btn". (Only the pointer is saved)

Initialize a rectangle descriptor from an object's styles

Note Only the relevant fields will be set. E.g. if **border width == 0** the other border properties won't be evaluated.

Parameters

- **obj**: pointer to an object
- type: type of style. E.g. LV_OBJ_PART_MAIN, LV_BTN_STYLE_REL or LV_PAGE_STYLE_SCRL
- draw dsc: the descriptor the initialize

$$\label_{\tt dsc(\it lv_obj_t *obj, uint8_t type, lv_draw_label_dsc_t *draw_dsc)} \label_{\tt dsc_t type, lv_draw_label_dsc_t type, lv_draw_label_dsc_t} \label_{\tt dsc} \label_{$$

```
\label{eq:condition} \mbox{void $\tt lv\_obj\_init\_draw\_img\_dsc($\it lv\_obj\_t*obj$, uint8\_t $\it part$, $\tt lv\_draw\_img\_dsc\_t*draw\_dsc)$}
```

$$\label{eq:cobj_init_draw_line_dsc} $$ \text{void } \textbf{lv_obj_init_draw_line_dsc}_t = $$ $$ \text{void } \textbf{lv_obj_init_draw_line_dsc}_t $$ $$ \text{void } \textbf{lv_obj_init_draw_line_dsc}_t $$$$

Get the required extra size (around the object's part) to draw shadow, outline, value etc.

Parameters

- **obj**: poinr to an object
- part: part of the object

void lv obj fade in(
$$lv \ obj \ t *obj$$
, uint32 t $time$, uint32 t $delay$)

Fade in (from transparent to fully cover) an object and all its children using an opa scale animation.

Parameters

- obj: the object to fade in
- time: duration of the animation [ms]
- delay: wait before the animation starts [ms]

void **lv obj fade out** (lv obj t *obj, uint32 t time, uint32 t delay)

Fade out (from fully cover to transparent) an object and all its children using an opa_scale animation.

```
• obj: the object to fade in
```

- time: duration of the animation [ms]
- delay: wait before the animation starts [ms]

struct lv_realign_t

Public Members

const struct lv obj t *base

lv_coord_t xofs

lv_coord_t yofs

lv_align_t align

uint8 t auto realign

uint8_t origo_align

1: the origo (center of the object) was aligned with lv_obj_align_origo

struct _lv_obj_t

Public Members

struct _lv_obj_t *parent

Pointer to the parent object

lv_ll_t child_ll

Linked list to store the children objects

lv area t coords

Coordinates of the object (x1, y1, x2, y2)

lv_event_cb_t event_cb

Event callback function

$lv_signal_cb_t$ signal_cb

Object type specific signal function

lv_design_cb_t design_cb

Object type specific design function

void *ext_attr

Object type specific extended data

uint8_t ext_click_pad_hor

Extra click padding in horizontal direction

uint8_t ext_click_pad_ver

Extra click padding in vertical direction

lv_area_t ext_click_pad

Extra click padding area.

lv_coord_t ext_draw_pad

EXTtend the size in every direction for drawing.

```
uint8 t click
         1: Can be pressed by an input device
     uint8_t drag
          1: Enable the dragging
     uint8_t drag_throw
          1: Enable throwing with drag
     uint8_t drag_parent
          1: Parent will be dragged instead
     uint8 t hidden
         1: Object is hidden
     uint8 t top
          1: If the object or its children is clicked it goes to the foreground
     uint8_t parent_event
         1: Send the object's events to the parent too.
     uint8 t adv hittest
          1: Use advanced hit-testing (slower)
     uint8_t gesture_parent
         1: Parent will be gesture instead
     lv drag dir t drag dir
          Which directions the object can be dragged in
     lv_bidi_dir_t base_dir
          Base direction of texts related to this object
     void *group p
     uint8 t protect
          Automatically happening actions can be prevented. 'OR' ed values from lv_protect_t
     lv state t state
     lv realign t realign
         Information about the last call to lv\_obj\_align.
     lv_obj_user_data_t user_data
          Custom user data for object.
struct lv_obj_type_t
     #include \langle v_obj.h \rangle Used by v_obj get type(). The object's and its ancestor types are stored
     Public Members
     const char *type[LV_MAX_ANCESTOR_NUM]
          [0]: the actual type, [1]: ancestor, [2] #1' s ancestor ···[x]: "lv_obj"
struct lv_hit_test_info_t
     Public Members
     lv_point_t *point
     bool result
```

Public Members uint8_t part lv_style_list_t *result struct lv_get_state_info_t Public Members uint8_t part lv_state_t result

Arc (lv_arc)

Overview

The Arc are consists of a background and a foreground arc. Both can have start and end angles and thickness.

Parts and Styles

The Arc's main part is called LV_ARC_PART_MAIN. It draws a background using the typical background style properties and an arc using the *line* style properties. The arc's size and position will respect the padding style properties.

LV_ARC_PART_INDIC is virtual part and it draws an other arc using the *line* style proeprties. It's padding values are interpreted relative to the background arc. The radius of the indicator arc will be modified according to the greatest padding value.

Usage

Angles

To set the angles of the background, use the <code>lv_arc_set_bg_angles(arc, start_angle, end_angle)</code> function or <code>lv_arc_set_bg_start/end_angle(arc, start_angle)</code>. Zero degree is at the middle right (3 o' clock) of the object and the degrees are increasing in a clockwise direction. The angles should be in <code>[0;360]</code> range.

Similarly, lv_arc_set_angles(arc, start_angle, end_angle) function or lv_arc_set_start/end_angle(arc, start_angle) sets the angles of the indicator arc.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about Keys.

Example

C

Simple Arc

code

```
#include "lvgl/lvgl.h"

#if LV_USE_ARC

void lv_ex_arc_1(void)
{
    /*Create an Arc*/
    lv_obj_t * arc = lv_arc_create(lv_scr_act(), NULL);
    lv_arc_set_end_angle(arc, 200);
    lv_obj_set_size(arc, 150, 150);
    lv_obj_align(arc, NULL, LV_ALIGN_CENTER, 0, 0);
}

#endif
```

Loader with Arc

code

```
#include "lvgl/lvgl.h"
#if LV_USE_ARC
* An `lv task` to call periodically to set the angles of the arc
* @param t
static void arc_loader(lv_task_t * t)
   static int16 t a = 270;
   a+=5;
   lv_arc_set_end_angle(t->user_data, a);
    if(a >= 270 + 360) {
        lv_task_del(t);
        return;
    }
}
* Create an arc which acts as a loader.
void lv_ex_arc_2(void)
  /*Create an Arc*/
 lv obj t * arc = lv arc create(lv scr act(), NULL);
 lv arc set bg angles(arc, 0, 360);
  lv_arc_set_angles(arc, 270, 270);
  lv_obj_align(arc, NULL, LV_ALIGN_CENTER, 0, 0);
```

(continues on next page)

(continued from previous page)

```
/* Create an `lv_task` to update the arc.
  * Store the `arc` in the user data*/
  lv_task_create(arc_loader, 20, LV_TASK_PRIO_LOWEST, arc);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_arc_part_t
```

Enums

```
\begin{array}{c} \textbf{enum} \ [\textbf{anonymous}] \\ Values: \end{array}
```

```
LV_ARC_PART_BG = LV_OBJ_PART_MAIN

LV_ARC_PART_INDIC

_LV_ARC_PART_VIRTUAL_LAST
```

 $LV_ARC_PART_REAL_LAST = _LV_OBJ_PART_REAL_LAST$

Functions

```
lv\_obj\_t *lv\_arc\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a arc objects

Return pointer to the created arc

Parameters

- par: pointer to an object, it will be the parent of the new arc
- copy: pointer to a arc object, if not NULL then the new object will be copied from it

```
void lv arc set start angle(lv_obj_t*arc, uint16 t start)
```

Set the start angle of an arc. 0 deg: right, 90 bottom, etc.

Parameters

- arc: pointer to an arc object
- start: the start angle

```
void lv_arc_set_end_angle(lv_obj_t *arc, uint16_t end)
```

Set the start angle of an arc. 0 deg: right, 90 bottom, etc.

Parameters

- arc: pointer to an arc object
- end: the end angle

void lv_arc_set_angles(lv_obj_t *arc, uint16_t start, uint16_t end)

Set the start and end angles

Parameters

- arc: pointer to an arc object
- start: the start angle
- end: the end angle

void lv_arc_set_bg_start_angle(lv_obj_t *arc, uint16_t start)

Set the start angle of an arc background. 0 deg: right, 90 bottom, etc.

Parameters

- arc: pointer to an arc object
- start: the start angle

void lv_arc_set_bg_end_angle(lv_obj_t*arc, uint16_t end)

Set the start angle of an arc background. 0 deg: right, 90 bottom etc.

Parameters

- arc: pointer to an arc object
- end: the end angle

void lv_arc_set_bg_angles(lv_obj_t *arc, uint16_t start, uint16_t end)

Set the start and end angles of the arc background

Parameters

- arc: pointer to an arc object
- start: the start angle
- end: the end angle

void **lv_arc_set_rotation**(lv_obj_t *arc, uint16_t rotation_angle)

Set the rotation for the whole arc

Parameters

- arc: pointer to an arc object
- rotation angle: rotation angle

uint16_t lv_arc_get_angle_start(lv_obj_t *arc)

Get the start angle of an arc.

Return the start angle [0..360]

Parameters

• arc: pointer to an arc object

$uint16_t$ lv_arc_get_angle_end(lv_obj_t *arc)

Get the end angle of an arc.

Return the end angle [0..360]

Parameters

• arc: pointer to an arc object

$uint16_t$ lv_arc_get_bg_angle_start(lv_obj_t *arc)

Get the start angle of an arc background.

Return the start angle [0..360]

Parameters

• arc: pointer to an arc object

uint16_t lv_arc_get_bg_angle_end(lv_obj_t *arc)

Get the end angle of an arc background.

Return the end angle [0..360]

Parameters

• arc: pointer to an arc object

struct lv_arc_ext_t

Public Members

```
uint16_t rotation_angle
uint16_t arc_angle_start
uint16_t arc_angle_end
uint16_t bg_angle_start
uint16_t bg_angle_end
lv_style_list_t style_arc
```

Bar (Iv_bar)

Overview

The bar object has a background and an indicator on it. The width of the indicator is set according to the current value of the bar.

Vertical bars can be created if the width of the object is smaller than its height.

Not only end, but the start value of the bar can be set which changes the start position of the indicator.

Parts and Styles

The Bar's main part is called LV BAR PART BG and it uses the typical background style properties.

LV_BAR_PART_INDIC is a virtual part which also uses all the typical background properties. By default the indicator maximal size is the same as the background's size but setting positive padding values in LV_BAR_PART_BG will make the indicator smaller. (negative values will make it larger) If the *value* style property is used on the indicator the alignment will be calculated based on the current size of the indicator. For example a center aligned value is always shown in the middle of the indicator regardless it's current size.

Usage

Value and range

A new value can be set by <code>lv_bar_set_value(bar, new_value, LV_ANIM_ON/OFF)</code>. The value is interpreted in a range (minimum and maximum values) which can be modified with <code>lv_bar_set_range(bar, min, max)</code>. The default range is 1..100.

The new value in $lv_bar_set_value$ can be set with or without an animation depending on the last parameter (lv_aNIM_oN/oFF). The time of the animation can be adjusted by $lv_bar_set_anim_time(bar, 100)$. The time is in milliseconds unit.

It's also possible to set the start value of the bar using $lv_bar_set_start_value(bar, new_value, LV_ANIM_ON/OFF)$

Modes

The bar can be drawn symmetrical to zero (drawn from zero, left to right), if it's enabled with $lv_bar_set_type(bar, LV_BAR_TYPE_SYMMETRICAL)$.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about *Keys*.

Example

C

Simple Bar

code

```
#include "lvgl/lvgl.h"
#if LV_USE_BAR

void lv_ex_bar_1(void)
{
    lv_obj_t * bar1 = lv_bar_create(lv_scr_act(), NULL);
    lv_obj_set_size(bar1, 200, 20);
    lv_obj_align(bar1, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_bar_set_anim_time(bar1, 2000);
    lv_bar_set_value(bar1, 100, LV_ANIM_ON);
}

#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_bar_type_t
typedef uint8_t lv_bar_part_t
```

Enums

enum [anonymous] Values: LV_BAR_TYPE_NORMAL LV_BAR_TYPE_SYMMETRICAL LV_BAR_TYPE_CUSTOM enum [anonymous] Bar parts

LV_BAR_PART_BG

Values:

LV_BAR_PART_INDIC

Bar background style.

_LV_BAR_PART_VIRTUAL_LAST

Bar fill area style.

Functions

```
lv\_obj\_t *lv\_bar\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a bar objects
```

Return pointer to the created bar

Parameters

- par: pointer to an object, it will be the parent of the new bar
- copy: pointer to a bar object, if not NULL then the new object will be copied from it

```
void lv_bar_set_value(lv_obj_t *bar, int16_t value, lv_anim_enable_t anim)
```

Set a new value on the bar

Parameters

- bar: pointer to a bar object
- value: new value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

```
void lv_bar_set_start_value(lv_obj_t *bar, int16_t start_value, lv_anim_enable_t anim)
Set a new start value on the bar
```

Parameters

- bar: pointer to a bar object
- value: new start value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediatelly

```
void lv_bar_set_range(lv_obj_t *bar, int16_t min, int16_t max)
```

Set minimum and the maximum values of a bar

- bar: pointer to the bar object
- min: minimum value
- max: maximum value

void lv_bar_set_type(lv_obj_t *bar, lv_bar_type_t type)

Set the type of bar.

Parameters

- bar: pointer to bar object
- type: bar type

void lv_bar_set_anim_time(lv_obj_t *bar, uint16_t anim_time)

Set the animation time of the bar

Parameters

- bar: pointer to a bar object
- anim_time: the animation time in milliseconds.

int16_t lv_bar_get_value(const lv_obj_t *bar)

Get the value of a bar

Return the value of the bar

Parameters

• bar: pointer to a bar object

int16_t lv_bar_get_start_value(const lv_obj_t*bar)

Get the start value of a bar

Return the start value of the bar

Parameters

• bar: pointer to a bar object

int16_t lv_bar_get_min_value(const lv_obj_t *bar)

Get the minimum value of a bar

 ${\bf Return}\,$ the minimum value of the bar

Parameters

• bar: pointer to a bar object

int16 tlv bar get max value(const lv obj t*bar)

Get the maximum value of a bar

Return the maximum value of the bar

Parameters

• bar: pointer to a bar object

lv_bar_type_t lv_bar_get_type(lv_obj_t *bar)

Get the type of bar.

Return bar type

Parameters

• bar: pointer to bar object

```
{\rm uint}16\_{\rm t} lv_bar_get_anim_time(const lv\_obj\_t*bar)
     Get the animation time of the bar
     Return the animation time in milliseconds.
     Parameters
           • bar: pointer to a bar object
struct lv_bar_anim_t
     Public Members
     lv_obj_t *bar
     lv_anim_value_t anim_start
     lv anim value t anim end
     lv_anim_value_t anim_state
struct lv bar ext t
     \#include < lv\_bar.h > Data of bar
     Public Members
     int16 t cur value
     int16 t min value
     int16_t max_value
     int16_t start_value
     lv area t indic area
     lv_anim_value_t anim_time
     lv_bar_anim_t cur_value_anim
     lv_bar_anim_t start_value_anim
     uint8 t type
     lv style list t style indic
```

Button (lv_btn)

Overview

Buttons are simple rectangle-like objects. They are derived from *Containers* so layout and fit are also available. Besides, it can be enabled to automatically go to checked state on click.

Parts and Styles

The buttons has only a main style called $LV_BTN_PART_MAIN$ and it can use all the properties from the following groups:

• background

- border
- outline
- shadow
- value
- pattern
- transitions

It also uses the padding properties when layout or fit is enabled.

Usage

States

To make buttons usage simpler the button's state can be get with lv_btn_get_state(btn). It returns one of the following values:

- LV_BTN_STATE_RELEASED
- LV_BTN_STATE_PRESSED
- LV_BTN_STATE_CHECKED_RELEASED
- LV_BTN_STATE_CHECKED_PRESSED
- LV BTN STATE DISABLED

With $lv_btn_get_state(btn, LV_BTN_STATE_...)$ the buttons state can be changed manually.

If a more precise description of the state is required (e.g. focused) the general lv_obj_get_state(btn) can be used.

Checkable

You can configure the buttons as *toggle button* with lv_btn_set_checkable(btn, true). In this case, on click, the button goes to LV_STATE_CHECKED state automatically, or back when clicked again.

Layout and Fit

Similarly to Containers, buttons also have layout and fit attributes.

- lv_btn_set_layout(btn, LV_LAYOUT_...) set a layout. The default is LV_LAYOUT_CENTER. So, if you add a label, then it will be automatically aligned to the middle and can't be moved with lv_obj_set_pos(). You can disable the layout with lv_btn_set_layout(btn, LV LAYOUT OFF).
- lv_btn_set_fit/fit2/fit4(btn, LV_FIT_..) enables to set the button width and/or height automatically according to the children, parent, and fit type.

Events

Besides the Generic events the following Special events are sent by the buttons:

• LV_EVENT_VALUE_CHANGED - sent when the button is toggled.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Buttons:

- LV_KEY_RIGHT/UP Go to toggled state if toggling is enabled.
- LV_KEY_LEFT/DOWN Go to non-toggled state if toggling is enabled.

Note that, the state of LV_KEY_ENTER is translated to LV_EVENT_PRESSED/PRESSING/RELEASED etc. Learn more about Keys.

Example

C

Simple Buttons

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_BTN

static void event_handler(lv_obj_t * obj, lv_event_t event)
(continues on part page)
```

(continues on next page)

(continued from previous page)

```
if(event == LV_EVENT_CLICKED) {
        printf("Clicked\n");
   else if(event == LV_EVENT_VALUE_CHANGED) {
        printf("Toggled\n");
}
void lv_ex_btn_1(void)
   lv_obj_t * label;
   lv_obj_t * btn1 = lv_btn_create(lv_scr_act(), NULL);
    lv_obj_set_event_cb(btn1, event_handler);
    lv_obj_align(btn1, NULL, LV_ALIGN_CENTER, 0, -40);
    label = lv label create(btn1, NULL);
   lv_label_set_text(label, "Button");
    lv_obj_t * btn2 = lv_btn_create(lv_scr_act(), NULL);
   lv_obj_set_event_cb(btn2, event_handler);
    lv_obj_align(btn2, NULL, LV_ALIGN_CENTER, 0, 40);
    lv_btn_set_checkable(btn2, true);
    lv btn toggle(btn2);
    lv_btn_set_fit2(btn2, LV_FIT_NONE, LV_FIT_TIGHT);
    label = lv_label_create(btn2, NULL);
    lv_label_set_text(label, "Toggled");
#endif
```


code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV USE BTN
* Advanced button transition examples
void lv ex btn 2(void)
   /*Gum-like button*/
    static lv_style_t style_gum;
    lv style init(&style gum);
    lv style set transform width(&style gum, LV STATE PRESSED, 10);
    lv_style_set_transform_height(&style_gum, LV_STATE_PRESSED, -10);
    lv_style_set_value_letter_space(&style_gum, LV STATE PRESSED, 5);
    lv_style_set_transition_path(&style_gum, LV_STATE_DEFAULT, lv_anim_path_
→overshoot);
    lv style set transition path(&style gum, LV STATE PRESSED, lv anim path ease in
→out);
    lv_style_set_transition_time(&style_gum, LV_STATE_DEFAULT, 250);
    lv style set transition delay(\&style gum, LV STATE DEFAULT, 100);
    lv\_style\_set\_transition\_prop\_1(\&style\_gum, LV\_STATE\_DEFAULT, LV\_STYLE\_TRANSFORM\_
→WIDTH);
    lv_style_set_transition_prop_2(&style_gum, LV_STATE_DEFAULT, LV_STYLE_TRANSFORM_
→HEIGHT);
    lv_style_set_transition_prop_3(&style_gum, LV_STATE_DEFAULT, LV_STYLE_VALUE_
→LETTER_SPACE);
    lv_obj_t * btn1 = lv_btn_create(lv_scr_act(), NULL);
    lv_obj_align(btn1, NULL, LV_ALIGN_CENTER, 0, -80);
    lv_obj_add_style(btn1, LV_BTN_PART_MAIN, &style_gum);
    /*Instead of creating a label add a values string*/
   lv_obj_set_style_local_value_str(btn1, LV_BTN_PART_MAIN, LV_STATE_DEFAULT, "Gum");
   /*Halo on press*/
    static lv_style_t style_halo;
    lv_style_init(&style_halo);
    lv_style_set_transition_time(&style_halo, LV_STATE_PRESSED, 400);
    lv_style_set_transition_time(&style_halo, LV_STATE_DEFAULT, 0);
    lv_style_set_transition_delay(&style_halo, LV_STATE_DEFAULT, 200);
    lv_style_set_outline_width(&style_halo, LV_STATE_DEFAULT, 0);
    lv_style_set_outline_width(&style_halo, LV_STATE_PRESSED, 20);
    lv_style_set_outline_opa(&style_halo, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv style set outline opa(&style halo, LV STATE FOCUSED, LV OPA COVER);
                                                                              /*Just...
→to be sure, the theme might use it*/
    lv_style_set_outline_opa(&style_halo, LV_STATE_PRESSED, LV_OPA_TRANSP);
    lv_style_set_transition_prop_1(&style_halo, LV_STATE_DEFAULT, LV_STYLE_OUTLINE_
    lv_style_set_transition_prop_2(&style_halo, LV_STATE_DEFAULT, LV_STYLE_OUTLINE_
→WIDTH);
    lv_obj_t * btn2 = lv_btn_create(lv_scr_act(), NULL);
    lv obj align(btn2, NULL, LV ALIGN CENTER, 0, 0);
    lv_obj_add_style(btn2, LV_BTN_PART_MAIN, &style halo);
    lv obj set style local value str(btn2, LV BTN PART MAIN, LV STATE DEFAULT, "Halo
");
```

(continues on next page)

(continued from previous page)

```
/*Ripple on press*/
    static lv_style_t style_ripple;
    lv style_init(&style_ripple);
    lv style set transition time(&style ripple, LV STATE PRESSED, 300);
    lv_style_set_transition_time(&style_ripple, LV_STATE_DEFAULT, 0);
    lv_style_set_transition_delay(&style_ripple, LV_STATE_DEFAULT, 300);
    lv_style_set_bg_opa(&style_ripple, LV_STATE_DEFAULT, 0);
    lv_style set_bg_opa(&style_ripple, LV_STATE_PRESSED, LV_OPA_80);
    lv_style_set_border_width(&style_ripple, LV_STATE_DEFAULT, 0);
    lv_style_set_outline_width(&style_ripple, LV_STATE_DEFAULT, 0);
    lv style set transform width(&style ripple, LV STATE DEFAULT, -20);
    ly style set transform height(&style ripple, LV STATE DEFAULT, -20);
    lv_style_set_transform_width(&style_ripple, LV_STATE_PRESSED, 0);
    lv_style_set_transform_height(&style_ripple, LV_STATE_PRESSED, 0);
    lv_style_set_transition_path(&style_ripple, LV_STATE_DEFAULT, lv_anim_path_ease_
→out);
    lv style set transition prop 1(&style ripple, LV STATE DEFAULT, LV STYLE BG OPA);
    lv_style_set_transition_prop_2(&style_ripple, LV_STATE_DEFAULT, LV_STYLE_
→TRANSFORM WIDTH);
    lv_style_set_transition_prop_3(&style_ripple, LV_STATE_DEFAULT, LV_STYLE_
→TRANSFORM HEIGHT);
    lv obj t * btn3 = lv btn create(lv scr act(), NULL);
    lv obj align(btn3, NULL, LV ALIGN CENTER, 0, 80);
    lv obj add style(btn3, LV BTN PART MAIN, &style ripple);
    lv_obj_set_style_local_value_str(btn3, LV_BTN_PART_MAIN, LV_STATE DEFAULT, "Ripple
→");
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_btn_state_t
typedef uint8_t lv_btn_part_t
```

Enums

enum [anonymous]

Possible states of a button. It can be used not only by buttons but other button-like objects too

Values:

```
LV_BTN_STATE_RELEASED
LV_BTN_STATE_PRESSED
```

```
LV_BTN_STATE_CHECKED_RELEASED
LV_BTN_STATE_CHECKED_PRESSED
LV_BTN_STATE_DISABLED
_LV_BTN_STATE_LAST
```

enum [anonymous]

Styles

Values:

```
LV_BTN_PART_MAIN = LV_OBJ_PART_MAIN
_LV_BTN_PART_VIRTUAL_LAST
LV_BTN_PART_REAL_LAST = _LV_OBJ_PART_REAL_LAST
```

Functions

```
lv\_obj\_t *lv\_btn\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a button object

Return pointer to the created button

Parameters

- par: pointer to an object, it will be the parent of the new button
- copy: pointer to a button object, if not NULL then the new object will be copied from it

```
void lv btn set checkable(lv_obj_t*btn, bool tgl)
```

Enable the toggled states. On release the button will change from/to toggled state.

Parameters

- btn: pointer to a button object
- tgl: true: enable toggled states, false: disable

```
void lv_btn_set_state(lv_obj_t*btn, lv_btn_state_t state)
```

Set the state of the button

Parameters

- btn: pointer to a button object
- **state**: the new state of the button (from ly btn state t enum)

```
void lv_btn_toggle(lv_obj_t *btn)
```

Toggle the state of the button (ON->OFF, OFF->ON)

Parameters

• btn: pointer to a button object

```
static void lv_btn_set_layout(lv_obj_t*btn, lv_layout_t layout)
```

Set the layout on a button

- btn: pointer to a button object
- layout: a layout from 'lv_cont_layout_t'

static void **lv_btn_set_fit4**(*lv_obj_t* **btn*, *lv_fit_t left*, *lv_fit_t right*, *lv_fit_t top*, *lv_fit_t bottom*)

Set the fit policy in all 4 directions separately. It tells how to change the button size automatically.

Parameters

- btn: pointer to a button object
- left: left fit policy from lv fit t
- right: right fit policy from lv fit t
- top: top fit policy from lv_fit_t
- bottom: bottom fit policy from lv fit t

static void **lv_btn_set_fit2**(lv_obj_t*btn, lv_fit_t hor, lv_fit_t ver)

Set the fit policy horizontally and vertically separately. It tells how to change the button size automatically.

Parameters

- btn: pointer to a button object
- hor: horizontal fit policy from lv_fit_t
- ver: vertical fit policy from lv fit t

static void lv_btn_set_fit(lv_obj_t *btn, lv_fit_t fit)

Set the fit policy in all 4 direction at once. It tells how to change the button size automatically.

Parameters

- btn: pointer to a button object
- fit: fit policy from lv_fit_t

lv_btn_state_t lv_btn_get_state(const lv_obj_t *btn)

Get the current state of the button

Return the state of the button (from ly btn state t enum)

Parameters

• btn: pointer to a button object

bool lv_btn_get_checkable(const lv_obj_t *btn)

Get the toggle enable attribute of the button

Return true: checkable enabled, false: disabled

Parameters

• btn: pointer to a button object

static lv_layout_t lv_btn_get_layout(const lv_obj_t *btn)

Get the layout of a button

Return the layout from 'lv cont layout t'

Parameters

• btn: pointer to button object

static lv_fit_t lv_btn_get_fit_left(const lv_obj_t *btn)

Get the left fit mode

 ${f Return}$ an element of ${f lv_fit_t}$

Parameters

• btn: pointer to a button object

static lv_fit_t lv_btn_get_fit_right(const lv_obj_t *btn)

Get the right fit mode

Return an element of lv fit t

Parameters

• btn: pointer to a button object

static lv_fit_t lv_btn_get_fit_top(const lv_obj_t *btn)

Get the top fit mode

Return an element of lv_fit_t

Parameters

• btn: pointer to a button object

static lv_fit_t lv_btn_get_fit_bottom(const lv_obj_t *btn)

Get the bottom fit mode

Return an element of lv_fit_t

Parameters

• btn: pointer to a button object

struct lv btn ext t

 $\#include < lv_btn.h >$ Extended data of button

Public Members

```
lv\_cont\_ext\_t cont
```

Ext. of ancestor

$uint8_t \ \textbf{checkable}$

1: Toggle enabled

Button matrix (lv_btnmatrix)

Overview

The Button Matrix objects can display multiple buttons in rows and columns.

The main reasons for wanting to use a button matrix instead of a container and individual button objects are:

- The button matrix is simpler to use for grid-based button layouts.
- The button matrix consumes a lot less memory per button.

Parts and Styles

The Button matrix's main part is called LV_BTNMATRIX_PART_BG. It draws a background using the typical background style properties.

LV_BTNMATRIX_PART_BTN is virtual part and it refers to the buttons on the button matrix. It also uses all the typical background properties.

The top/bottom/left/right padding values from the background are used to keep some space on the sides. Inner padding is applied between the buttons.

Usage

Button's text

There is a text on each button. To specify them a descriptor string array, called map, needs to be used. The map can be set with $lv_btnmatrix_set_map(btnm, my_map)$. The declaration of a map should look like const char * map[] = {"btn1", "btn2", "btn3", ""}. Note that the last element has to be an empty string!

Use "\n" in the map to make line break. E.g. {"btn1", "btn2", "\n", "btn3", ""}. Each line's buttons have their width calculated automatically.

Control buttons

The buttons width can be set relative to the other button in the same line with $lv_btnmatrix_set_btn_width(btnm, btn_id, width)$ E.g. in a line with two buttons: btnA, width = 1 and btnB, width = 2, btnA will have 33 % width and btnB will have 66 % width. It's similar to how the flex-grow property works in CSS.

In addition to width, each button can be customized with the following parameters:

- LV_BTNMATRIX_CTRL_HIDDEN make a button hidden (hidden buttons still take up space in the layout, they are just not visible or clickable)
- LV_BTNMATRIX_CTRL_NO_REPEAT disable repeating when the button is long pressed
- LV_BTNMATRIX_CTRL_DISABLED make a button disabled
- LV_BTNMATRIX_CTRL_CHECKABLE enable toggling of a button
- LV_BTNMATRIX_CTRL_CHECK_STATE set the toggle state
- LV_BTNMATRIX_CTRL_CLICK_TRIG if 0, the button will react on press, if 1, will react on release

The set or clear a button's control attribute, use <code>lv_btnmatrix_set_btn_ctrl(btnm, btn_id, LV_BTNM_CTRL_...)</code> and <code>lv_btnmatrix_clear_btn_ctrl(btnm, btn_id, LV_BTNM_CTRL_...</code>.) respectively. More <code>LV BTNM CTRL ...</code> values can be <code>Ored</code>

The set/clear the same control attribute for all buttons of a button matrix, use lv_btnmatrix_set_btn_ctrl_all(btnm, btn_id, LV_BTNM_CTRL_...) and lv_btnmatrix_clear_btn_ctrl_all(btnm, btn_id, LV_BTNM_CTRL_...).

The set a control map for a button matrix (similarly to the map for the text), use $v_btnmatrix_set_ctrl_map(btnm, ctrl_map)$. An element of $ctrl_map$ should look like $ctrl_map[0] = width | LV_BTNM_CTRL_NO_REPEAT | LV_BTNM_CTRL_TGL_ENABLE$. The number of elements should be equal to the number of buttons (excluding newlines characters).

One check

The "One check" feature can be enabled with lv_btnmatrix_set_one_check(btnm, true) to allow only one button to be checked (toggled) at once.

Recolor

The texts on the button can be recolored similarly to the recolor feature for *Label* object. To enable it, use lv_btnmatrix_set_recolor(btnm, true). After that a button with #FF0000 Red# text will be red.

Notes

The Button matrix object is very light weighted because the buttons are not created just virtually drawn on the fly. This way, 1 button use only 8 extra bytes instead of the ~100-150 byte size of a normal *Button* object (plus the size of its container and a label for each button).

The disadvantage of this setup is that the ability to style individual buttons to be different from others is limited (aside from the toggling feature). If you require that ability, using individual buttons is very likely to be a better approach.

Events

Besides the Generic events, the following Special events are sent by the button matrices:

• LV_EVENT_VALUE_CHANGED - sent when the button is pressed/released or repeated after long press. The event data is set to the ID of the pressed/released button.

Learn more about *Events*.

Keys

The following Keys are processed by the Buttons:

- LV_KEY_RIGHT/UP/LEFT/RIGHT To navigate among the buttons to select one
- LV_KEY_ENTER To press/release the selected button

Learn more about Keys.

Example

C

Simple Button matrix

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_BTNMATRIX
static void event_handler(lv_obj_t * obj, lv_event_t event)
   if(event == LV_EVENT_VALUE_CHANGED) {
       const char * txt = lv_btnmatrix_get_active_btn_text(obj);
       printf("%s was pressed\n", txt);
   }
}
"Action1", "Action2", ""};
void lv ex btnmatrix 1(void)
   lv obj t * btnm1 = lv btnmatrix create(lv scr act(), NULL);
   lv_btnmatrix_set_map(btnm1, btnm_map);
   lv_btnmatrix_set_btn_width(btnm1, 10, 2);  /*Make "Action1" twice as wide...
→as "Action2"*/
   lv_btnmatrix_set_btn_ctrl(btnm1, 10, LV_BTNMATRIX_CTRL_CHECKABLE);
   lv btnmatrix set btn ctrl(btnm1, 11, LV BTNMATRIX CTRL CHECK STATE);
   lv obj align(btnm1, NULL, LV ALIGN CENTER, 0, 0);
   lv_obj_set_event_cb(btnm1, event_handler);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint16_t lv_btnmatrix_ctrl_t
typedef uint8_t lv_btnmatrix_part_t
```

Enums

enum [anonymous]

Type to store button control bits (disabled, hidden etc.) The first 3 bits are used to store the width

Values:

$\textbf{LV_BTNMATRIX_CTRL_HIDDEN} = 0x0008$

Button hidden

$LV_BTNMATRIX_CTRL_NO_REPEAT = 0x0010$

Do not repeat press this button.

$LV_BTNMATRIX_CTRL_DISABLED = 0x0020$

Disable this button.

LV BTNMATRIX CTRL CHECKABLE = 0x0040

Button can be toggled.

LV BTNMATRIX CTRL CHECK STATE = 0x0080

Button is currently toggled (e.g. checked).

$LV_BTNMATRIX_CTRL_CLICK_TRIG = 0x0100$

1: Send LV EVENT SELECTED on CLICK, 0: Send LV EVENT SELECTED on PRESS

enum [anonymous]

Values:

LV_BTNMATRIX_PART_BG

LV_BTNMATRIX_PART_BTN

Functions

LV_EXPORT_CONST_INT(LV_BTNMATRIX_BTN_NONE)

```
lv\_obj\_t *lv\_btnmatrix\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a button matrix objects

Return pointer to the created button matrix

- par: pointer to an object, it will be the parent of the new button matrix
- **copy**: pointer to a button matrix object, if not NULL then the new object will be copied from it

void $lv_btnmatrix_set_map(lv_obj_t*btnm, const char*map[])$

Set a new map. Buttons will be created/deleted according to the map. The button matrix keeps a reference to the map and so the string array must not be deallocated during the life of the matrix.

Parameters

- btnm: pointer to a button matrix object
- map: pointer a string array. The last string has to be: "" . Use "\n" to make a line break.

void lv_btnmatrix_set_ctrl_map(lv_obj_t*btnm, const lv_btnmatrix_ctrl_t ctrl_map[])

Set the button control map (hidden, disabled etc.) for a button matrix. The control map array will be copied and so may be deallocated after this function returns.

Parameters

- btnm: pointer to a button matrix object
- ctrl_map: pointer to an array of lv_btn_ctrl_t control bytes. The length of the array and position of the elements must match the number and order of the individual buttons (i.e. excludes newline entries). An element of the map should look like e.g.: ctrl_map[0] = width | LV BTNMATRIX CTRL NO REPEAT | LV BTNMATRIX CTRL TGL ENABLE

void lv btnmatrix set focused btn(lv_obj_t*btnm, uint16 t id)

Set the focused button i.e. visually highlight it.

Parameters

- btnm: pointer to button matrix object
- id: index of the button to focus(LV BTNMATRIX BTN NONE to remove focus)

$$\label{eq:const_void_lv_btnmatrix_part_t type} \ \ \text{const} \ \ \text{lv_style_t} \\ *style)$$

Set a style of a button matrix

Parameters

- btnm: pointer to a button matrix object
- type: which style should be set
- style: pointer to a style

void lv_btnmatrix_set_recolor(const lv_obj_t *btnm, bool en)

Enable recoloring of button's texts

Parameters

- btnm: pointer to button matrix object
- en: true: enable recoloring; false: disable

Set the attributes of a button of the button matrix

Parameters

- btnm: pointer to button matrix object
- btn_id: 0 based index of the button to modify. (Not counting new lines)

Clear the attributes of a button of the button matrix

Parameters

- btnm: pointer to button matrix object
- btn id: 0 based index of the button to modify. (Not counting new lines)

void lv_btnmatrix_set_btn_ctrl_all(lv_obj_t*btnm, lv_btnmatrix_ctrl_t ctrl)

Set the attributes of all buttons of a button matrix

Parameters

- btnm: pointer to a button matrix object
- ctrl: attribute(s) to set from lv_btnmatrix_ctrl_t. Values can be ORed.

void lv btnmatrix clear btn ctrl all(lv obj t*btnm, lv btnmatrix ctrl t ctrl)

Clear the attributes of all buttons of a button matrix

Parameters

- btnm: pointer to a button matrix object
- ctrl: attribute(s) to set from lv btnmatrix ctrl t. Values can be ORed.
- en: true: set the attributes; false: clear the attributes

void lv_btnmatrix_set_btn_width(lv_obj_t*btnm, uint16_t btn_id, uint8_t width)

Set a single buttons relative width. This method will cause the matrix be regenerated and is a relatively expensive operation. It is recommended that initial width be specified using <code>lv_btnmatrix_set_ctrl_map</code> and this method only be used for dynamic changes.

Parameters

- btnm: pointer to button matrix object
- btn_id: 0 based index of the button to modify.
- width: Relative width compared to the buttons in the same row. [1..7]

void lv btnmatrix set one check(lv_obj_t*btnm, bool one_chk)

Make the button matrix like a selector widget (only one button may be toggled at a time). Checkable must be enabled on the buttons you want to be selected with lv_btnmatrix_set_ctrl or lv btnmatrix set btn ctrl all.

Parameters

- btnm: Button matrix object
- one chk: Whether "one check" mode is enabled

const char **lv btnmatrix get map array(const lv obj t*btnm)

Get the current map of a button matrix

Return the current map

Parameters

• btnm: pointer to a button matrix object

bool lv btnmatrix get recolor(const lv_obj_t*btnm)

Check whether the button's text can use recolor or not

Return true: text recolor enable; false: disabled

Parameters

• btnm: pointer to button matrix object

uint16_t lv_btnmatrix_get_active_btn(const lv_obj_t *btnm)

Get the index of the lastly "activated" button by the user (pressed, released etc) Useful in the the event cb to get the text of the button, check if hidden etc.

Return index of the last released button (LV_BTNMATRIX_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv_btnmatrix_get_active_btn_text(const lv_obj_t *btnm)

Get the text of the lastly "activated" button by the user (pressed, released etc) Useful in the the ${\tt event}$ cb

Return text of the last released button (NULL: if unset)

Parameters

• btnm: pointer to button matrix object

uint16 t lv btnmatrix get focused btn(const lv_obj_t*btnm)

Get the focused button's index.

Return index of the focused button (LV_BTNMATRIX_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv btnmatrix get btn text(const lv obj t *btnm, uint16 t btn id)

Get the button's text

Return text of btn index' button

Parameters

- btnm: pointer to button matrix object
- btn_id: the index a button not counting new line characters. (The return value of lv btnmatrix get pressed/released)

bool lv_btnmatrix_get_btn_ctrl(lv_obj_t*btnm, uint16_t btn_id, lv_btnmatrix_ctrl_t ctrl)

Get the whether a control value is enabled or disabled for button of a button matrix

Return true: long press repeat is disabled; false: long press repeat enabled

Parameters

- btnm: pointer to a button matrix object
- btn_id: the index a button not counting new line characters. (E.g. the return value of lv btnmatrix get pressed/released)
- ctrl: control values to check (ORed value can be used)

bool lv btnmatrix get one check(const lv_obj_t*btnm)

Find whether "one toggle" mode is enabled.

Return whether "one toggle" mode is enabled

Parameters

• btnm: Button matrix object

struct lv_btnmatrix_ext_t

Public Members

```
const char **map_p
lv_area_t *button_areas
lv_btnmatrix_ctrl_t *ctrl_bits
lv_style_list_t style_btn
uint16_t btn_cnt
uint16_t btn_id_pr
uint16_t btn_id_focused
uint16_t btn_id_act
uint8_t recolor
uint8_t one_check
```

Calendar (Iv_calendar)

Overview

The Calendar object is a classic calendar which can:

- highlight the current day
- highlight any user-defined dates
- display the name of the days
- go the next/previous month by button click
- highlight the clicked day

Parts and Styles

The calendar's main part is called LV_CALENDAR_PART_BG. It draws a background using the typical background style properties.

Besides the following virtual parts exist:

- LV_CALENDAR_PART_HEADER The upper area where the current year and month's name is shown. It also has buttons to move the next/previous month. It uses typical background properties and padding to keep some distance from the background (top, left, right) and the day names (bottom).
- LV_CALENDAR_PART_DAY_NAMES Shows the name of the days below the header. It uses the *text* style properties padding to keep some distance from the background (left, right), header (top) and dates (bottom).
- LV_CALENDAR_PART_DATES Show the date numbers from 1..28/29/30/31 (depending on current month). Different "state" of the states are drawn according to the states defined in this part:
 - normal dates: drawn with LV_STATE_DEFAULT style
 - pressed date: drawn with LV STATE PRESSED style
 - today: drawn with LV STATE FOCUSED style
 - highlighted dates: drawn with LV_STATE_CHECKED style

Usage

Overview

To set and get dates in the calendar, the lv_calendar_date_t type is used which is a structure with year, month and day fields.

Current date

To set the current date (today), use the $lv_calendar_set_today_date(calendar, &today_date)$ function.

Shown date

To set the shown date, use lv calendar set shown date(calendar, &shown date);

Highlighted days

The list of highlighted dates should be stored in a <code>lv_calendar_date_t</code> array loaded by <code>lv_calendar_set_highlighted_dates(calendar, &highlighted_dates)</code>.Only the arrays pointer will be saved so the array should be a static or global variable.

Name of the days

The name of the days can be adjusted with $lv_calendar_set_day_names(calendar, day_names)$ where day_names looks like const char * $day_names[7] = {"Su", "Mo", ...};$

Name of the months

Similarly to day_names, the name of the month can be set with lv calendar set month names(calendar, month names array).

Events

Besides the Generic events, the following Special events are sent by the calendars: LV_EVENT_VALUE_CHANGED is sent when the current month has changed.

In *Input device related* events, lv_calendar_get_pressed_date(calendar) tells which day is currently being pressed or return NULL if no date is pressed.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Calendar with day select

```
2018 October
<
                          >
Su Mo Tu We Th Fr Sa
30
             3
    1
         2
                 4
                11
                     12
         9
            10
14
    15
        16
            17
                18
                     19
                         20
    22
21
        23
            24
                25
                     26
                         27
28
    29
        30
            31
                     2
                          3
                 1
    5
                     g
4
         6
             7
                 8
                         10
```

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_CALENDAR
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        lv_calendar_date_t * date = lv_calendar_get_pressed_date(obj);
        if(date) {
            printf("Clicked date: %02d.%02d.%d\n", date->day, date->month, date->
→year);
    }
}
void lv_ex_calendar_1(void)
    lv_obj_t * calendar = lv_calendar_create(lv_scr_act(), NULL);
    lv_obj_set_size(calendar, 235, 235);
    lv_obj_align(calendar, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(calendar, event_handler);
    /*Set the today*/
    lv_calendar_date_t today;
```

(continues on next page)

(continued from previous page)

```
today.year = 2018;
    today.month = 10;
    today.day = 23;
    lv_calendar_set_today_date(calendar, &today);
    lv_calendar_set_showed_date(calendar, &today);
    /*Highlight some days*/
    static lv_calendar_date_t highlihted_days[3]; /*Only it's pointer will be_
⇒saved so should be static*/
   highlihted_days[0].year = 2018;
    highlihted days[0].month = 10;
   highlihted days[0].day = 6;
    highlihted days[1].year = 2018;
    highlihted_days[1].month = 10;
   highlihted_days[1].day = 11;
    highlihted_days[2].year = 2018;
    highlihted_days[2].month = 11;
    highlihted_days[2].day = 22;
    lv calendar set highlighted dates(calendar, highlihted days, 3);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_calendar_part_t
```

Day name style

Enums

```
enum [anonymous]
Calendar parts

Values:

LV_CALENDAR_PART_BG
Background and "normal" date numbers style

LV_CALENDAR_PART_HEADER

LV_CALENDAR_PART_DAY_NAMES
Calendar header style

LV_CALENDAR_PART_DATE
```

Functions

lv_obj_t *lv_calendar_create(lv_obj_t *par, const lv_obj_t *copy)

Create a calendar objects

Return pointer to the created calendar

Parameters

- par: pointer to an object, it will be the parent of the new calendar
- copy: pointer to a calendar object, if not NULL then the new object will be copied from it

```
void lv_calendar_set_today_date(lv_obj_t *calendar, lv_calendar_date_t *today)
Set the today's date
```

Parameters

- calendar: pointer to a calendar object
- today: pointer to an *lv_calendar_date_t* variable containing the date of today. The value will be saved it can be local variable too.

Set the currently showed

Parameters

- calendar: pointer to a calendar object
- **showed**: pointer to an *lv_calendar_date_t* variable containing the date to show. The value will be saved it can be local variable too.

```
\begin{tabular}{ll} void $\tt lv\_calendar\_set\_highlighted\_dates($\it lv\_obj\_t *calendar, $\it lv\_calendar\_date\_t $\it highlighted[], uint16\_t $\it date\_num)$ \\ \end{tabular}
```

Set the the highlighted dates

Parameters

- calendar: pointer to a calendar object
- highlighted: pointer to an *lv_calendar_date_t* array containing the dates. ONLY A POINTER WILL BE SAVED! CAN'T BE LOCAL ARRAY.
- date num: number of dates in the array

```
\label{eq:const_char_set_day_names} \textbf{(} \textit{lv\_obj\_t *calendar}, \textbf{const } \textit{char ***day\_names}\textbf{)}
```

Set the name of the days

Parameters

- calendar: pointer to a calendar object
- day_names: pointer to an array with the names. E.g. const char * days[7] = {"Sun", "Mon", ...} Only the pointer will be saved so this variable can't be local which will be destroyed later.

```
void lv\_calendar\_set\_month\_names(lv\_obj\_t*calendar, const char **month\_names)
Set the name of the month
```

Parameters

• calendar: pointer to a calendar object

• month_names: pointer to an array with the names. E.g. const char * days[12] = {"Jan", "Feb", ...} Only the pointer will be saved so this variable can't be local which will be destroyed later.

$lv_calendar_date_t *lv_calendar_get_today_date(const \ lv_obj_t *calendar)$ Get the today's date

Return return pointer to an lv calendar date t variable containing the date of today.

Parameters

• calendar: pointer to a calendar object

$lv_calendar_date_t *lv_calendar_get_showed_date(const \ lv_obj_t *calendar)$

Get the currently showed

Return pointer to an $lv_calendar_date_t$ variable containing the date is being shown.

Parameters

• calendar: pointer to a calendar object

$lv_calendar_date_t *lv_calendar_get_pressed_date(const \ lv_obj_t *calendar)$ Get the the pressed date.

Return pointer to an *lv_calendar_date_t* variable containing the pressed date. **NULL** if not date pressed (e.g. the header)

Parameters

• calendar: pointer to a calendar object

$lv_calendar_date_t *lv_calendar_get_highlighted_dates(const lv_obj_t *calendar)$ Get the highlighted dates

Return pointer to an *lv_calendar_date_t* array containing the dates.

Parameters

• calendar: pointer to a calendar object

uint16_t lv_calendar_get_highlighted_dates_num(const lv_obj_t *calendar)

Get the number of the highlighted dates

Return number of highlighted days

Parameters

• calendar: pointer to a calendar object

const char **lv calendar get day names(const lv obj t*calendar)

Get the name of the days

Return pointer to the array of day names

Parameters

• calendar: pointer to a calendar object

const char **lv calendar get month names(const lv_obj_t *calendar)

Get the name of the month

Return pointer to the array of month names

Parameters

• calendar: pointer to a calendar object

struct lv_calendar_date_t

#include <\lv_calendar.h> Represents a date on the calendar object (platform-agnostic).

Public Members

```
uint16_t year
int8_t month
int8_t day
struct lv_calendar_ext_t
```

Public Members

```
lv_calendar_date_t today
lv_calendar_date_t showed_date
lv_calendar_date_t *highlighted_dates
int8_t btn_pressing
uint16_t highlighted_dates_num
lv_calendar_date_t pressed_date
const char **day_names
const char **month_names
lv_style_list_t style_header
lv_style_list_t style_day_names
lv_style_list_t style_date_nums
```

Canvas (Iv_canvas)

Overview

A Canvas is like an *Image* where the user can draw anything. Rectangles, texts, images, lines arcs can be drawn here using lvgl's drawing engine. Besides some "effects" can be applied as well like rotation, zoom and blur.

Parts and Styles

The Canvas has on one main part called LV_CANVAS_PART_MAIN and only the *image_recolor* property is used to give a color to LV_IMG_CF_ALPHA_1/2/4/8BIT images.

Usage

Buffer

The Canvas needs a buffer which stores the drawn image. To assign a buffer to a Canvas, use lv canvas set buffer(canvas, buffer, width, height, LV IMG CF ...). Where

buffer is a static buffer (not just a local variable) to hold the image of the canvas. For example, static lv_color_t buffer[LV_CANVAS_BUF_SIZE_TRUE_COLOR(width, height)]. LV CANVAS BUF SIZE ... macros help to determine the size of the buffer with different color formats.

The canvas supports all the built-in color formats like LV_IMG_CF_TRUE_COLOR or LV IMG CF INDEXED 2BIT. See the full list in the Color formats section.

Palette

For LV_IMG_CF_INDEXED_... color formats, a palette needs to be initialized with lv canvas set palette(canvas, 3, LV COLOR RED). It sets pixels with *index=3* to red.

Drawing

To set a pixel on the canvas, use $lv_canvas_set_px(canvas, x, y, LV_COLOR_RED)$. With $LV_IMG_CF_INDEXED_...$ or $LV_IMG_CF_ALPHA_...$, the index of the color or the alpha value needs to be passed as color. E.g. $lv_color_t_c; c.full = 3;$

<code>lv_canvas_fill_bg(canvas, LV_COLOR_BLUE, LV_OPA_50)</code> fills the whole canvas to blue with 50% opacity. Note that, if the current color format doesn't support colors (e.g. <code>LV_IMG_CF_ALPHA_2BIT</code>) teh color will be ignored. Similarly, if opacity is not supported (e.g. <code>LV_IMG_CF_TRUE_COLOR</code>) it will be ignored.

An array of pixels can be copied to the canvas with lv_canvas_copy_buf(canvas, buffer_to_copy, x, y, width, height). The color format of the buffer and the canvas need to match.

To draw something to the canvas use

- lv_canvas_draw_rect(canvas, x, y, width, heigth, &draw_dsc)
- lv_canvas_draw_text(canvas, x, y, max_width, &draw_dsc, txt, LV_LABEL_ALIGN_LEFT/CENTER/RIGTH)
- lv_canvas_draw_img(canvas, x, y, &img_src, &draw_dsc)
- lv_canvas_draw_line(canvas, point_array, point_cnt, &draw_dsc)
- lv_canvas_draw_polygon(canvas, points_array, point_cnt, &draw_dsc)
- lv_canvas_draw_arc(canvas, x, y, radius, start_angle, end_angle, &draw_dsc)

draw_dsc is an lv_draw_rect/label/img/line_dsc_t variable which should be first initialized
with lv_draw_rect/label/img/line_dsc_init() function and then it's filed should be modified
with the desired colors and other values.

The draw function can draw to any color format. For example, it's possible to draw a text to an $LV_IMG_VF_ALPHA_8BIT$ canvas and use the result image as a mask in $lv_objmask$ later.

Traformations

lv_canvas_transform() can be used to rotate and/or scale the image of an image and store the result on the canvas. The functions needs to following paramters:

- canvas pointer to a canvas object to store the result of the transformation.
- img pointer to an image descriptor to transform. Can be the image descriptor of an other canvas too (lv canvas get img()).

- angle the angle of rotation (0..3600), 0.1 deg resolution
- **ZOOM** zoom factor (256 no zoom, 512 double size, 128 half size);
- $offset_x$ offset X to tell where to put the result data on destination canvas
- offset_y offset X to tell where to put the result data on destination canvas
- pivot_x pivot X of rotation. Relative to the source canvas. Set to source width / 2 to rotate around the center
- pivot_y pivot Y of rotation. Relative to the source canvas. Set to source height / 2 to rotate around the center
- antialias true: apply anti-aliasing during the transformation. Looks better but slower.

Note that a canvas can't be rotated on itself. You need a source and destination canvas or image.

Blur

A given area of the canvas can be blurred horizontall with <code>lv_canvas_blur_hor(canvas, &area, r)</code> of vertically with <code>lv_canvas_blur_ver(canvas, &area, r)</code>. r is the radius of the blur (greater value means more intensive burring). <code>area</code> is the area where the blur should be applied (interpreted relative to the canvas)

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Drawing on the Canvas and rotate

code

```
#include "lvgl/lvgl.h"
#if LV_USE_CANVAS
#define CANVAS WIDTH 200
#define CANVAS_HEIGHT 150
void lv ex canvas 1(void)
    lv_draw_rect_dsc_t rect_dsc;
    lv_draw_rect_dsc_init(&rect_dsc);
    rect_dsc.radius = 10;
    rect_dsc.bg_opa = LV_OPA_COVER;
    rect_dsc.bg_grad_dir = LV_GRAD_DIR_HOR;
    rect dsc.bg color = LV COLOR RED;
    rect dsc.bg grad color = LV COLOR BLUE;
    rect dsc.border width = 2;
    rect dsc.border opa = LV OPA 90;
    rect_dsc.border_color = LV_COLOR_WHITE;
    rect_dsc.shadow_width = 5;
    rect dsc.shadow ofs x = 5;
    rect_dsc.shadow_ofs_y = 5;
    lv_draw_label_dsc_t label_dsc;
    lv_draw_label_dsc_init(&label_dsc);
    label_dsc.color = LV_COLOR_YELLOW;
    static lv color t cbuf[LV CANVAS BUF SIZE TRUE COLOR(CANVAS WIDTH, CANVAS
→HEIGHT)];
    lv obj t * canvas = lv canvas create(lv scr act(), NULL);
```

(continues on next page)

(continued from previous page)

```
lv_canvas_set_buffer(canvas, cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, LV_IMG_CF_TRUE_
→COLOR);
    lv_obj_align(canvas, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_canvas_fill_bg(canvas, LV_COLOR_SILVER, LV_OPA_COVER);
    lv_canvas_draw_rect(canvas, 70, 60, 100, 70, &rect_dsc);
   lv_canvas_draw_text(canvas, 40, 20, 100, &label_dsc, "Some text on text canvas",
→LV_LABEL_ALIGN_LEFT);
   /* Test the rotation. It requires an other buffer where the orignal image is
⇔stored.
    * So copy the current image to buffer and rotate it to the canvas */
   lv_color_t cbuf_tmp[CANVAS_WIDTH * CANVAS_HEIGHT];
   memcpy(cbuf_tmp, cbuf, sizeof(cbuf_tmp));
   lv_img_dsc_t img;
    img.data = (void *)cbuf_tmp;
    img.header.cf = LV_IMG_CF_TRUE_COLOR;
    img.header.w = CANVAS WIDTH;
    img.header.h = CANVAS HEIGHT;
    lv_canvas_fill_bg(canvas, LV_COLOR_SILVER, LV_OPA_COVER);
    lv_canvas_transform(canvas, &img, 30, LV_IMG_ZOOM_NONE, 0, 0, CANVAS_WIDTH / 2,

    GANVAS_HEIGHT / 2, true);
#endif
```

Transparent Canvas with chroma keying

code

```
#include "lvgl/lvgl.h"
#if LV USE CANVAS
#define CANVAS_WIDTH 50
#define CANVAS HEIGHT 50
* Create a transparent canvas with Chroma keying and indexed color format (palette).
void lv ex canvas 2(void)
    /*Create a button to better see the transparency*/
    lv btn create(lv scr act(), NULL);
    /*Create a buffer for the canvas*/
    static lv_color_t cbuf[LV_CANVAS_BUF_SIZE_INDEXED_1BIT(CANVAS_WIDTH, CANVAS_
→HEIGHT)];
    /*Create a canvas and initialize its the palette*/
    lv_obj_t * canvas = lv_canvas_create(lv_scr_act(), NULL);
    lv_canvas_set_buffer(canvas, cbuf, CANVAS_WIDTH, CANVAS_HEIGHT, LV_IMG_CF_INDEXED_
\hookrightarrow1BIT);
    lv canvas set palette(canvas, 0, LV COLOR TRANSP);
    lv canvas set palette(canvas, 1, LV COLOR RED);
    /*Create colors with the indices of the palette*/
    lv_color_t c0;
    lv_color_t c1;
    c0.full = 0;
    c1.full = 1;
    /*Transparent background*/
   lv_canvas_fill_bg(canvas, c1, LV_OPA_TRANSP);
   /*Create hole on the canvas*/
   uint32_t x;
    uint32_t y;
    for (y = 10; y < 30; y++) {
        for(x = 5; x < 20; x++) {
            lv_canvas_set_px(canvas, x, y, c0);
    }
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_canvas_part_t
```

Enums

enum [anonymous]

Values:

LV CANVAS PART MAIN

Functions

```
lv\_obj\_t *lv\_canvas\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a canvas object

Return pointer to the created canvas

Parameters

- par: pointer to an object, it will be the parent of the new canvas
- copy: pointer to a canvas object, if not NULL then the new object will be copied from it

Set a buffer for the canvas.

Parameters

- buf: a buffer where the content of the canvas will be. The required size is (lv_img_color_format_get_px_size(cf) * w * h) / 8) It can be allocated with lv_mem_alloc() or it can be statically allocated array (e.g. static lv_color_t buf[100*50]) or it can be an address in RAM or external SRAM
- canvas: pointer to a canvas object
- W: width of the canvas
- h: height of the canvas
- cf: color format. LV_IMG_CF_...

```
void lv canvas set px(lv obj t*canvas, lv coord t x, lv coord t y, lv color t c)
```

Set the color of a pixel on the canvas

Parameters

- · canvas:
- X: x coordinate of the point to set
- y: x coordinate of the point to set
- C: color of the point

```
void lv_canvas_set_palette(lv_obj_t *canvas, uint8_t id, lv_color_t c)
```

Set the palette color of a canvas with index format. Valid only for LV IMG CF INDEXED1/2/4/8

- canvas: pointer to canvas object
- id: the palette color to set:

- for LV_IMG_CF_INDEXED1: 0..1
- for LV IMG CF INDEXED2: 0..3
- for LV IMG CF INDEXED4: 0..15
- for LV_IMG_CF_INDEXED8: 0..255
- C: the color to set

lv_color_t lv_canvas_get_px(lv_obj_t *canvas, lv_coord_t x, lv_coord_t y)

Get the color of a pixel on the canvas

Return color of the point

Parameters

- · canvas:
- X: x coordinate of the point to set
- y: x coordinate of the point to set

$lv_img_dsc_t *lv_canvas_get_img(lv_obj_t *canvas)$

Get the image of the canvas as a pointer to an $lv_img_dsc_t$ variable.

Return pointer to the image descriptor.

Parameters

• canvas: pointer to a canvas object

```
void lv_canvas_copy_buf( lv_obj_t*canvas, const void *to_copy, lv_coord_t x, lv_coord_t y, lv_coord_t w, lv_coord_t h)

Copy a buffer to the canvas
```

Parameters

- canvas: pointer to a canvas object
- to_copy: buffer to copy. The color format has to match with the canvas' s buffer color format
- X: left side of the destination position
- y: top side of the destination position
- W: width of the buffer to copy
- h: height of the buffer to copy

```
void lv_canvas_transform(lv\_obj\_t*canvas, lv_img_dsc_t*img, int16_t angle, uint16_t zoom, lv_coord_t offset\_x, lv_coord_t offset\_y, int32_t pivot\_x, int32_t pivot\_y, bool antialias)
```

Transform and image and store the result on a canvas.

- canvas: pointer to a canvas object to store the result of the transformation.
- img: pointer to an image descriptor to transform. Can be the image descriptor of an other canvas too $(lv_canvas_get_img())$.
- angle: the angle of rotation (0..3600), 0.1 deg resolution
- **ZOOM**: zoom factor (256 no zoom);
- offset X: offset X to tell where to put the result data on destination canvas

- offset y: offset X to tell where to put the result data on destination canvas
- pivot_x: pivot X of rotation. Relative to the source canvas Set to source width / 2 to rotate around the center
- pivot_y: pivot Y of rotation. Relative to the source canvas Set to source height / 2 to rotate around the center
- antialias: apply anti-aliasing during the transformation. Looks better but slower.

```
void lv_canvas_blur_hor(lv_obj_t*canvas, const lv_area_t*area, uint16_t r)
Apply horizontal blur on the canvas
```

Parameters

- canvas: pointer to a canvas object
- r: radius of the blur

```
void lv_canvas_blur_ver(lv_obj_t*canvas, const lv_area_t*area, uint16_t r)
Apply vertical blur on the canvas
```

Parameters

- canvas: pointer to a canvas object
- area: the area to blur. If **NULL** the whole canvas will be blurred.
- r: radius of the blur

```
void lv_canvas_fill_bg(lv_obj_t*canvas, lv_color_t color, lv_opa_t opa)
Fill the canvas with color
```

Parameters

- canvas: pointer to a canvas
- color: the background color

```
void \begin{cal} {\bf lv\_canvas\_draw\_rect} (\it lv\_obj\_t *canvas, lv\_coord\_t x, lv\_coord\_t y, lv\_coord\_t w, lv\_coord\_t h, lv\_draw\_rect\_dsc\_t *rect\_dsc) \\ {\bf Draw\ a\ rectangle\ on\ the\ canvas} \end{cal}
```

Parameters

- canvas: pointer to a canvas object
- X: left coordinate of the rectangle
- y: top coordinate of the rectangle
- W: width of the rectangle
- h: height of the rectangle
- style: style of the rectangle (body properties are used except padding)

Draw a text on the canvas.

- canvas: pointer to a canvas object
- X: left coordinate of the text
- \bullet y: top coordinate of the text

- max_w: max width of the text. The text will be wrapped to fit into this size
- style: style of the text (text properties are used)
- txt: text to display
- align: align of the text (LV LABEL ALIGN LEFT/RIGHT/CENTER)

Draw an image on the canvas

Parameters

- canvas: pointer to a canvas object
- src: image source. Can be a pointer an lv img dsc t variable or a path an image.
- style: style of the image (image properties are used)

Draw a line on the canvas

Parameters

- canvas: pointer to a canvas object
- points: point of the line
- point cnt: number of points
- style: style of the line (line properties are used)

Parameters

- canvas: pointer to a canvas object
- points: point of the polygon
- point cnt: number of points
- style: style of the polygon (body.main_color and body.opa is used)

Draw an arc on the canvas

Parameters

- canvas: pointer to a canvas object
- X: origo x of the arc
- **y**: origo y of the arc
- r: radius of the arc
- start angle: start angle in degrees
- end_angle: end angle in degrees
- style: style of the polygon (body.main color and body.opa is used)

struct lv_canvas_ext_t

Public Members

```
lv_img_ext_t img
lv_img_dsc_t dsc
```

Checkbox (lv_cb)

Overview

The Checkbox objects are built from a *Button* background which contains an also Button *bullet* and a *Label* to realize a classical checkbox.

Parts and Styles

The Check box's main part is called LV_CHECKBOX_PART_BG. It's a container for a "bullet" and a text next to it. The background uses all the typical background style properties.

The bullet is real lv_obj object and can be referred with LV_CHACKBOX_PART_BULLET. The bullet automatically inherits the state of the background. So the background is pressed the bullet goes to pressed state as well. The bullet also uses all the typical background style properties.

There is not dedicated part for the label. Its styles can be set in the background's styles because the *text* styles properties are always inherited.

Usage

Text

The text can be modified by the <code>lv_checkbox_set_text(cb, "New text")</code> function. It will dynamically allocate the text.

To set a static text, use <code>lv_checkbox_set_static_text(cb, txt)</code>. This way, only a pointer of <code>txt</code> will be stored and it shouldn't be deallocated while the checkbox exists.

Check/Uncheck

You can manually check / un-check the Checkbox via lv_checkbox_set_checked(cb, true/false). Setting true will check the checkbox and false will un-check the checkbox.

Disabled

To make the Checkbox disabled, use lv checkbox set disabled(cb, true).

Events

Besides the Generic events the following Special events are sent by the Checkboxes:

• LV_EVENT_VALUE_CHANGED - sent when the checkbox is toggled.

Note that, the generic input device-related events (like $LV_EVENT_PRESSED$) are sent in the inactive state too. You need to check the state with $lv_cb_is_inactive(cb)$ to ignore the events from inactive Checkboxes.

Learn more about *Events*.

Keys

The following Keys are processed by the 'Buttons':

- LV_KEY_RIGHT/UP Go to toggled state if toggling is enabled
- $LV_KEY_LEFT/DOWN$ Go to non-toggled state if toggling is enabled

Note that, as usual, the state of LV_KEY_ENTER is translated to $LV_EVENT_PRESSED/PRESSING/RELEASED$ etc.

Learn more about Keys.

Example

C

Simple Checkbox

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_CHECKBOX

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
```

(continues on next page)

(continued from previous page)

```
if(event == LV_EVENT_VALUE_CHANGED) {
    printf("State: %s\n", lv_checkbox_is_checked(obj) ? "Checked" : "Unchecked");
}

void lv_ex_chechbox_1(void)
{
    lv_obj_t * cb = lv_checkbox_create(lv_scr_act(), NULL);
    lv_checkbox_set_text(cb, "I agree to terms and conditions.");
    lv_obj_align(cb, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(cb, event_handler);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8 tlv checkbox style t
```

Enums

```
enum [anonymous]
```

Checkbox styles.

Values:

```
LV\_CHECKBOX\_PART\_BG = LV\_BTN\_PART\_MAIN
```

Style of object background.

LV CHECKBOX PART VIRTUAL LAST

 $\textbf{LV_CHECKBOX_PART_BULLET} = _LV_BTN_PART_REAL_LAST$

Style of box (released).

_LV_CHECKBOX_PART_REAL_LAST

Functions

```
lv\_obj\_t *lv\_checkbox\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a check box objects
```

Return pointer to the created check box

- par: pointer to an object, it will be the parent of the new check box
- COPY: pointer to a check box object, if not NULL then the new object will be copied from it

void $lv_checkbox_set_text(lv_obj_t*cb, const char*txt)$

Set the text of a check box. txt will be copied and may be deallocated after this function returns.

Parameters

- **cb**: pointer to a check box
- txt: the text of the check box. NULL to refresh with the current text.

void $lv_checkbox_set_static_text(lv_obj_t*cb, const char*txt)$

Set the text of a check box. txt must not be deallocated during the life of this checkbox.

Parameters

- cb: pointer to a check box
- txt: the text of the check box. NULL to refresh with the current text.

static void **lv_checkbox_set_checked**(lv_obj_t *cb, bool checked)

Set the state of the check box

Parameters

- **cb**: pointer to a check box object
- checked: true: make the check box checked; false: make it unchecked

static void lv_checkbox_set_disabled(lv_obj_t *cb)

Make the check box inactive (disabled)

Parameters

• cb: pointer to a check box object

${\rm void}~ \textbf{lv_checkbox_style_t~} type,~ \textbf{const}~ \text{lv_style_t~} *style \textbf{_t~} type,~ \textbf{const}~ \textbf{-t~} type,~ \textbf{con$

Set a style of a check box

Parameters

- **cb**: pointer to check box object
- type: which style should be set
- style: pointer to a style

const char *lv_checkbox_get_text(const lv_obj_t *cb)

Get the text of a check box

Return pointer to the text of the check box

Parameters

• **cb**: pointer to check box object

static bool lv_checkbox_is_checked(const lv_obj_t*cb)

Get the current state of the check box

Return true: checked; false: not checked

Parameters

• **cb**: pointer to a check box object

static bool lv_checkbox_is_inactive(const $lv_obj_t *cb$)

Get whether the check box is inactive or not.

Return true: inactive; false: not inactive

• cb: pointer to a check box object

struct lv_checkbox_ext_t

Public Members

```
lv_btn_ext_t bg_btn
lv_obj_t *bullet
lv_obj_t *label
```

Chart (lv_chart)

Overview

Charts consist of the following:

- A background
- Horizontal and vertical division lines
- Data series, which can be represented with points, lines, columns, or filled areas.

Data series

You can add any number of series to the charts by <code>lv_chart_add_series(chart, color)</code>. It allocates data for a <code>lv_chart_series_t</code> structure which contains the chosen <code>color</code> and an array for the data points.

Series' type

The following data display types exist:

- LV_CHART_TYPE_NONE Do not display any data. It can be used to hide a series.
- $LV_CHART_TYPE_LINE$ Draw lines between the points.
- LV CHART TYPE COL Draw columns.
- LV_CHART_TYPE_POINT Draw points.
- LV_CHART_TYPE_AREA Draw areas (fill the area below the lines).
- LV_CHART_TYPE_VERTICAL_LINE Draw only vertical lines to connect the points. Useful if the chart width is equal to the number of points, because it can redraw much faster than the LV_CHART_TYPE_AREA.

You can specify the display type with <code>lv_chart_set_type(chart, LV_CHART_TYPE_...)</code>. The types can be 'OR' ed (like <code>LV_CHART_TYPE_LINE | LV_CHART_TYPE_POINT)</code>.

Modify the data

You have several options to set the data of series:

- 1. Set the values manually in the array like ser1->points[3] = 7 and refresh the chart with lv chart refresh(chart).
- 2. Use the lv chart set next(chart, ser, value).
- 3. Initialize all points to a given value with: lv_chart_init_points(chart, ser, value).
- 4. Set all points from an array with: lv chart set points(chart, ser, value array).

Use LV_CHART_POINT_DEF as value to make the library skip drawing that point, column, or line segment.

Update modes

lv_chart_set_next can behave in two ways depending on update mode:

- LV_CHART_UPDATE_MODE_SHIFT Shift old data to the left and add the new one o the right.
- LV_CHART_UPDATE_MODE_CIRCULAR Circularly add the new data (Like an ECG diagram).

The update mode can be changed with lv_chart_set_update_mode(chart, LV CHART UPDATE MODE ...)

Number of points

The number of points in the series can be modified by lv_chart_set_point_count(chart, point_num). The default value is 10.

Vertical range

You can specify the minimum and maximum values in y-direction with lv_chart_set_range(chart, y_min, y_max). The value of the points will be scaled proportionally. The default range is: 0..100.

Division lines

The number of horizontal and vertical division lines can be modified by lv_chart_set_div_line_count(chart, hdiv_num, vdiv_num). The default settings are 3 horizontal and 5 vertical division lines.

Series' appearance

To set the line width and point radius of the series, use the lv_chart_set_series_width(chart, size) function. The default value is 2.

The opacity of the data lines can be specified by lv_chart_set_series_opa(chart, opa). The default value is LV_OPA_COVER.

You can apply a dark color fade on the bottom of columns and points by lv_chart_set_series_darking(chart, effect) function. The default dark level is LV_0PA_50.

Tick marks and labels

Ticks and labels beside them can be added.

lv_chart_set_margin(chart, 20) needs to be used to add some extra space around the chart for the ticks and texts. Otherwise, you will not see them at all. You may need to adjust the number 20 depending on your requirements.

lv_chart_set_x_tick_text(chart, list_of_values, num_tick_marks,
LV_CHART_AXIS_...) set the ticks and texts on x axis. list_of_values is a string with '\n'
terminated text (expect the last) with text for the ticks. E.g. const char * list_of_values
= "first\nseco\nthird". list_of_values can be NULL. If list_of_values is set then
num_tick_marks tells the number of ticks between two labels. If list_of_values is NULL then it
specifies the total number of ticks.

Major tick lines are drawn where text is placed, and minor tick lines are drawn elsewhere. lv_chart_set_x_tick_length(chart, major_tick_len, minor_tick_len) sets the length of tick lines on the x-axis.

The same functions exists for the y axis too: $lv_chart_set_y_tick_text$ and $lv_chart_set_y_tick_length$.

Styles

You can set the styles with lv_chart_set_style(btn, LV_CHART_STYLE_MAIN, &style).

- style.body properties set the background's appearance.
- style.line properties set the division lines' appearance.
- style.text properties set the axis labels' appearance.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about Keys.

Example

C

Line Chart

code

```
#include "lvgl/lvgl.h"
#if LV_USE_CHART
void lv_ex_chart_1(void)
    /*Create a chart*/
    lv_obj_t * chart;
    chart = lv_chart_create(lv_scr_act(), NULL);
    lv_obj_set_size(chart, 200, 150);
    lv_obj_align(chart, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_chart_set_type(chart, LV_CHART_TYPE_LINE); /*Show lines and points too*/
   /*Add two data series*/
   lv_chart_series_t * ser1 = lv_chart_add_series(chart, LV_COLOR_RED);
    lv chart_series_t * ser2 = lv_chart_add_series(chart, LV_COLOR_GREEN);
   /*Set the next points on 'ser1'*/
   lv chart set next(chart, ser1, 10);
    lv_chart_set_next(chart, ser1, 30);
    lv_chart_set_next(chart, ser1, 70);
    lv_chart_set_next(chart, ser1, 90);
   /*Directly set points on 'ser2'*/
    ser2->points[0] = 90;
    ser2->points[1] = 70;
```

(continues on next page)

(continued from previous page)

```
ser2->points[2] = 65;
ser2->points[4] = 65;
ser2->points[5] = 65;
ser2->points[6] = 65;
ser2->points[7] = 65;
ser2->points[8] = 65;
ser2->points[9] = 65;
lv_chart_refresh(chart); /*Required after direct set*/
}
#endif
```

MicroPython

No examples yet.

API

```
Typedefs
```

```
typedef uint8_t lv_chart_type_t
typedef uint8_t lv_chart_update_mode_t
typedef uint8_t lv_chart_axis_options_t
```

Enums

enum [anonymous]

Chart types

Values:

```
\textbf{LV\_CHART\_TYPE\_NONE} = 0x00
```

Don't draw the series

 $LV_CHART_TYPE_LINE = 0x01$

Connect the points with lines

 $\textbf{LV_CHART_TYPE_COLUMN} = 0x02$

Draw columns

enum [anonymous]

Chart update mode for lv chart set next

Values:

LV_CHART_UPDATE_MODE_SHIFT

Shift old data to the left and add the new one o the right

LV_CHART_UPDATE_MODE_CIRCULAR

Add the new data in a circular way

enum [anonymous]

Data of axis

Values:

$$LV_CHART_AXIS_SKIP_LAST_TICK = 0x00$$

don't draw the last tick

$LV_CHART_AXIS_DRAW_LAST_TICK = 0x01$

draw the last tick

LV_CHART_AXIS_INVERSE_LABELS_ORDER = 0x02

draw tick labels in an inversed order

enum [anonymous]

Values:

$$\label{eq:lv_chart_part_bg} \begin{split} \mathbf{LV_CHART_PART_BG} &= \mathit{LV_OBJ_PART_MAIN} \\ \mathbf{LV_CHART_PART_SERIES_BG} &= \mathit{LV_OBJ_PART_VIRTUAL_LAST} \\ \mathbf{LV_CHART_PART_SERIES} \end{split}$$

Functions

```
LV_EXPORT_CONST_INT(LV_CHART_POINT_DEF)
```

Create a chart background objects

Return pointer to the created chart background

Parameters

- par: pointer to an object, it will be the parent of the new chart background
- COPY: pointer to a chart background object, if not NULL then the new object will be copied from it

```
lv chart series t *lv chart add series(lv obj t *chart, lv color t color)
```

Allocate and add a data series to the chart

Return pointer to the allocated data series

Parameters

- chart: pointer to a chart object
- color: color of the data series

void lv_chart_clear_serie(lv_obj_t *chart, lv_chart_series_t *serie)

Clear the point of a serie

Parameters

- chart: pointer to a chart object
- serie: pointer to the chart's serie to clear

```
void lv_chart_set_div_line_count(lv_obj_t*chart, uint8_t hdiv, uint8_t vdiv)
```

Set the number of horizontal and vertical division lines

- chart: pointer to a graph background object
- hdiv: number of horizontal division lines
- vdiv: number of vertical division lines

void lv_chart_set_range(lv_obj_t *chart, lv_coord_t ymin, lv_coord_t ymax)

Set the minimal and maximal y values

Parameters

- chart: pointer to a graph background object
- ymin: y minimum value
- ymax: y maximum value

void lv_chart_set_type(lv_obj_t *chart, lv_chart_type_t type)

Set a new type for a chart

Parameters

- chart: pointer to a chart object
- type: new type of the chart (from 'lv_chart_type_t' enum)

void lv_chart_set_point_count(lv_obj_t*chart, uint16_t point_cnt)

Set the number of points on a data line on a chart

Parameters

- chart: pointer r to chart object
- point cnt: new number of points on the data lines

$\label{eq:coord_ty} \ \ void \ \textbf{lv_chart_init_points} \ (\textit{lv_obj_t*chart}, \textit{lv_chart_series_t*ser}, \textit{lv_coord_t} \ \textit{y}) \\$

Initialize all data points with a value

Parameters

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- y: the new value for all points

$\label{eq:chart_set_points} \textbf{void} \ \textbf{lv_chart_series_} t \ *ser, \ \textbf{lv_coord_} t \ \textit{y_array} \textbf{[]} \textbf{)}$

Set the value of points from an array

Parameters

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- y_array: array of 'lv_coord_t' points (with 'points count' elements)

void lv_chart_set_next(lv_obj_t*chart, lv_chart_series_t*ser, lv_coord_t y)

Shift all data right and set the most right data on a data line

- chart: pointer to chart object
- ser: pointer to a data series on 'chart'
- ullet y: the new value of the most right data

void **lv_chart_set_update_mode**(lv_obj_t *chart, lv_chart_update_mode_t update_mode) Set update mode of the chart object.

Parameters

- chart: pointer to a chart object
- update: mode

 $\label{eq:chart_set_x_tick_length} \begin{tabular}{ll} void $lv_chart_set_x_tick_length(lv_obj_t *$chart, uint8_t $major_tick_len, uint8_t $minor_tick_len) \end{tabular}$

Set the length of the tick marks on the x axis

Parameters

- chart: pointer to the chart
- major_tick_len: the length of the major tick or LV_CHART_TICK_LENGTH_AUTO to set automatically (where labels are added)
- minor_tick_len: the length of the minor tick, LV_CHART_TICK_LENGTH_AUTO to set automatically (where no labels are added)

void $lv_chart_set_y_tick_length(lv_obj_t *chart, uint8_t major_tick_len, uint8_t minor_tick_len)$ Set the length of the tick marks on the y axis

Parameters

- chart: pointer to the chart
- major_tick_len: the length of the major tick or LV_CHART_TICK_LENGTH_AUTO to set automatically (where labels are added)
- minor_tick_len: the length of the minor tick, LV_CHART_TICK_LENGTH_AUTO to set automatically (where no labels are added)

void $lv_chart_set_secondary_y_tick_length(lv_obj_t *chart, uint8_t major_tick_len, uint8_t minor_tick_len)$ Set the length of the tick marks on the secondary v axis

Parameters

- chart: pointer to the chart
- major_tick_len: the length of the major tick or LV_CHART_TICK_LENGTH_AUTO to set automatically (where labels are added)
- minor_tick_len: the length of the minor tick, LV_CHART_TICK_LENGTH_AUTO to set automatically (where no labels are added)

```
void lv_chart_set_x_tick_texts(lv_obj_t *chart, const char *list_of_values, uint8_t num_tick_marks, lv_chart_axis_options_t options)

Set the x-axis tick count and labels of a chart
```

- chart: pointer to a chart object
- list of values: list of string values, terminated with , except the last
- num_tick_marks: if list_of_values is NULL: total number of ticks per axis else number of
 ticks between two value labels
- options: extra options

Set the secondary y-axis tick count and labels of a chart

Parameters

- chart: pointer to a chart object
- list_of_values: list of string values, terminated with , except the last
- num_tick_marks: if list_of_values is NULL: total number of ticks per axis else number of ticks between two value labels
- options: extra options

```
\label{eq:const_set_v_tick_texts} void \  \  \textbf{lv\_chart\_set\_y\_tick\_texts} (\textit{lv\_obj\_t *chart, const } \textit{char *list\_of\_values, uint8\_t } \\ \textit{num\_tick\_marks, lv\_chart\_axis\_options\_t options})
```

Set the y-axis tick count and labels of a chart

Parameters

- chart: pointer to a chart object
- list_of_values: list of string values, terminated with , except the last
- num_tick_marks: if list_of_values is NULL: total number of ticks per axis else number of ticks between two value labels
- options: extra options

Get the type of a chart

Return type of the chart (from 'lv chart t' enum)

Parameters

• chart: pointer to chart object

uint16_t lv_chart_get_point_count(const lv_obj_t *chart)

Get the data point number per data line on chart

Return point number on each data line

Parameters

• chart: pointer to chart object

void lv_chart_refresh(lv_obj_t *chart)

Refresh a chart if its data line has changed

Parameters

• chart: pointer to chart object

struct lv chart series t

Public Members

```
lv_coord_t *points
lv_color_t color
uint16_t start_point
struct lv_chart_axis_cfg_t
```

Public Members

Public Members

```
lv_ll_t series_ll
lv_coord_t ymin
lv_coord_t ymax
uint8_t hdiv_cnt
uint8_t vdiv_cnt
uint16_t point_cnt
lv_style_list_t style_series_bg
lv_style_list_t style_series
lv_chart_type_t type
lv_chart_axis_cfg_t y_axis
lv_chart_axis_cfg_t x_axis
uint8_t update_mode
```

Container (lv_cont)

Overview

The containers are essentially a **basic object** with some special features.

Layout

You can apply a layout on the containers to automatically order their children. The layout spacing comes from style.body.padding. ... properties. The possible layout options:

- LV_LAYOUT_OFF Do not align the children.
- LV_LAYOUT_CENTER Align children to the center in column and keep padding.inner space between them.
- LV_LAYOUT_COL_ Align children in a left-justified column. Keep padding.left space on the left, pad.top space on the top and padding.inner space between the children.

- LV_LAYOUT_COL_M Align children in centered column. Keep padding.top space on the top and padding.inner space between the children.
- LV_LAYOUT_COL_R Align children in a right-justified column. Keep padding.right space on the right, padding.top space on the top and padding.inner space between the children.
- LV_LAYOUT_ROW_T Align children in a top justified row. Keep padding.left space on the left, padding.top space on the top and padding.inner space between the children.
- LV_LAYOUT_ROW_M Align children in centered row. Keep padding.left space on the left and padding.inner space between the children.
- LV_LAYOUT_ROW_B Align children in a bottom justified row. Keep padding.left space on the left, padding.bottom space on the bottom and padding.inner space between the children.
- LV_LAYOUT_PRETTY Put as many objects as possible in a row (with at least padding. inner space and padding.left/right space on the sides). Divide the space in each line equally between the children. Keep padding.top space on the top and pad.inner space between the lines.
- LV_LAYOUT_GRID Similar to LV_LAYOUT_PRETTY but not divide horizontal space equally just let padding.left/right on the edges and padding.inner space between the elements.

Autofit

Container have an autofit feature which can automatically change the size of the container according to its children and/or parent. The following options exist:

- LV_FIT_NONE Do not change the size automatically.
- LV_FIT_TIGHT Shrink-wrap the container around all of its children, while keeping padding. top/bottom/left/right space on the edges.
- LV_FIT_FLOOD Set the size to the parent's size minus padding.top/bottom/left/right (from the parent's style) space.
- LV_FIT_FILL Use LV_FIT_FLOOD while smaller than the parent and LV_FIT_TIGHT when larger. It will ensure that the container is, at minimum, the size of its parent.

To set the auto fit mode for all directions, use <code>lv_cont_set_fit(cont, LV_FIT_...)</code>. To use different auto fit horizontally and vertically, use <code>lv_cont_set_fit2(cont, hor_fit_type, ver_fit_type)</code>. To use different auto fit in all 4 directions, use <code>lv_cont_set_fit4(cont, left_fit_type, right_fit_type, top_fit_type, bottom_fit_type)</code>.

Styles

You can set the styles with lv cont set style(btn, LV CONT STYLE MAIN, &style).

• style.body properties are used.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Container with auto-fit

Short text It is a long text Here is an even longer text

code

(continues on next page)

(continued from previous page)

```
/*Refresh and pause here for a while to see how `fit` works*/
uint32_t t;
lv_refr_now(NULL);
t = lv_tick_get();
while(lv_tick_elaps(t) < 500);

label = lv_label_create(cont, NULL);
lv_label_set_text(label, "It is a long text");

/*Wait here too*/
lv_refr_now(NULL);
t = lv_tick_get();
while(lv_tick_elaps(t) < 500);

label = lv_label_create(cont, NULL);
lv_label_set_text(label, "Here is an even longer text");
}
#endif</pre>
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_layout_t
typedef uint8_t lv_fit_t
```

Enums

enum [anonymous]

Container layout options

Values:

```
\mathbf{LV\_LAYOUT\_OFF} = 0
```

No layout

LV_LAYOUT_CENTER

Center objects

LV_LAYOUT_COLUMN_LEFT

COULMN:

- Place the object below each other
- Keep pad_top space on the top
- Keep pad inner space between the objectsColumn left align

LV LAYOUT COLUMN MID

Column middle align

LV LAYOUT COLUMN RIGHT

Column right align

LV_LAYOUT_ROW_TOP

ROW:

- Place the object next to each other
- Keep pad_left space on the left
- Keep pad inner space between the objects
- If the object which applies the layout has base_dir == LV_BIDI_DIR_RTL the row will start from the right applying pad.right spaceRow top align

LV LAYOUT ROW MID

Row middle align

LV LAYOUT ROW BOTTOM

Row bottom align

LV_LAYOUT_PRETTY_TOP

PRETTY:

- Place the object next to each other
- If there is no more space start a new row
- Respect pad_left and pad_right when determining the available space in a row
- Keep pad_inner space between the objects in the same row
- Keep pad_inner space between the objects in rows
- Divide the remaining horizontal space equally Row top align

LV_LAYOUT_PRETTY_MID

Row middle align

LV LAYOUT PRETTY BOTTOM

Row bottom align

LV LAYOUT GRID

GRID

- Place the object next to each other
- If there is no more space start a new row
- Respect pad left and pad right when determining the available space in a row
- Keep pad_inner space between the objects in the same row
- Keep pad_inner space between the objects in rows
- Unlike PRETTY, GRID always keep pad_inner space horizontally between objects so it doesn't divide the remaining horizontal space equally Align same-sized object into a grid

_LV_LAYOUT_LAST

enum [anonymous]

How to resize the container around the children.

Values:

LV FIT NONE

Do not change the size automatically

LV_FIT_TIGHT

Shrink wrap around the children

LV_FIT_PARENT

Align the size to the parent's edge

LV FIT MAX

Align the size to the parent's edge first but if there is an object out of it then get larger

```
_LV_FIT_LAST
```

enum [anonymous]

Values:

```
LV_CONT_PART_MAIN = LV_OBJ_PART_MAIN

_LV_CONT_PART_VIRTUAL_LAST = _LV_OBJ_PART_VIRTUAL_LAST

LV_CONT_PART_REAL_LAST = _LV_OBJ_PART_REAL_LAST
```

Functions

```
lv\_obj\_t *lv\_cont\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a container objects

Return pointer to the created container

Parameters

- par: pointer to an object, it will be the parent of the new container
- copy: pointer to a container object, if not NULL then the new object will be copied from it

```
void lv_cont_set_layout(lv_obj_t *cont, lv_layout_t layout)
```

Set a layout on a container

Parameters

- cont: pointer to a container object
- layout: a layout from 'lv_cont_layout_t'

```
void \ \textbf{lv\_cont\_set\_fit4} (\textit{lv\_obj\_t} * cont, \textit{lv\_fit\_t left}, \textit{lv\_fit\_t right}, \textit{lv\_fit\_t top}, \textit{lv\_fit\_t bottom})
```

Set the fit policy in all 4 directions separately. It tell how to change the container's size automatically.

Parameters

- cont: pointer to a container object
- left: left fit policy from lv_fit_t
- right: right fit policy from lv fit t
- top: top fit policy from lv fit t
- bottom: bottom fit policy from lv_fit_t

```
static void lv cont set fit2(lv obj t*cont, lv fit t hor, lv fit t ver)
```

Set the fit policy horizontally and vertically separately. It tells how to change the container's size automatically.

Parameters

```
• cont: pointer to a container object

    hor: horizontal fit policy from lv fit t

           • ver: vertical fit policy from lv fit t
static void lv_cont_set_fit(lv_obj_t *cont, lv_fit_t fit)
     Set the fit policy in all 4 direction at once. It tells how to change the container's size automatically.
     Parameters
           • cont: pointer to a container object
           • fit: fit policy from lv_fit_t
lv_layout_t lv_cont_get_layout(const lv_obj_t *cont)
     Get the layout of a container
     Return the layout from 'lv_cont_layout_t'
     Parameters
           • cont: pointer to container object
lv_fit_t lv_cont_get_fit_left(const lv_obj_t *cont)
     Get left fit mode of a container
     Return an element of lv fit t
     Parameters
           • cont: pointer to a container object
lv_fit_t lv_cont_get_fit_right(const lv_obj_t *cont)
     Get right fit mode of a container
     Return an element of lv fit t
     Parameters
           • cont: pointer to a container object
lv_fit_t lv_cont_get_fit_top(const lv_obj_t *cont)
     Get top fit mode of a container
     Return an element of lv fit t
     Parameters
           • cont: pointer to a container object
lv fit t lv cont get fit bottom(const lv obj t*cont)
     Get bottom fit mode of a container
     Return an element of lv_fit_t
     Parameters
           • cont: pointer to a container object
struct lv_cont_ext_t
     Public Members
```

lv_layout_t layout
lv_fit_t fit_left

```
lv\_fit\_t fit_right lv\_fit\_t fit_top lv\_fit\_t fit_bottom
```

color picker (lv_cpicker)

Overview

As its name implies Color picker allows to select color. The Hue, Saturation and Value of the color can be selected after each other.

The widget has two forms: circle (disc) and rectangle.

In both forms, be long pressing the object, the color picker will change to the next parameter of the color (hue, saturation or value). Besides, double click will reset the current parameter.

Parts and Styles

The Color picker's main part is called LV_CPICKER_PART_BG. In circular form it uses *scale_width* to set the the width of the circle and *pad_inner* for padding between the circle and the inner preview circle. In rectangle mode *radius* can be used to apply a radius on the rectangle.

The object has virtual part called LV_CPICKER_PART_KNOB which is rectangle (or circle) drawn on the current value. It uses all the rectangle like style properties and padding to make it larger than the width of the circle or rectangle background.

Usage

Type

The type of the Color picker can be changed with $lv_cpicker_set_type(cpicker, LV_CPICKER_TYPE_RECT/DISC)$

Set color

The colro can be set manually with $lv_cpicker_set_hue/saturation/value(cpicker, x)$ or all at once with $lv_cpicker_set_hsv(cpicker, hsv)$ or $lv_cpicker_set_color(cpicker, rgb)$

Color mode

The current color moed can be manually selected with $lv_cpicker_set_color_mode(cpicker, LV_CPICKER_COLOR_MODE_HUE/SATURATION/VALUE)$.

The color moe be fixed (do not change with long press) using lv cpicker set color mode fixed(cpicker, true)

Knob color

lv_cpicker_set_knob_colored(cpicker, true) make the knob to automatically show the selected
color as background color.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

- LV_KEY_UP, LV_KEY_RIGHT Increment the current parameter's value by 1
- LV_KEY_DOWN, LV_KEY_LEFT Decrement the current parameter's by 1
- LV_KEY_ENTER By long press the next mode will be shown. By double click the current parameter will be reset.

Learn more about Keys.

Example

C

Disc color picker

code

```
#include "lvgl/lvgl.h"
#if LV_USE_CPICKER

void lv_ex_cpicker_1(void)
{
    lv_obj_t * cpicker;

    cpicker = lv_cpicker_create(lv_scr_act(), NULL);
    lv_obj_set_size(cpicker, 200, 200);
    lv_obj_align(cpicker, NULL, LV_ALIGN_CENTER, 0, 0);
}
#endif
#endif
```

MicroPython

No examples yet.

API

```
Typedefs
typedef uint8_t lv_cpicker_type_t
typedef uint8_t lv_cpicker_color_mode_t
Enums
enum [anonymous]
    Values:
    LV_CPICKER_TYPE_RECT
    LV_CPICKER_TYPE_DISC
enum [anonymous]
    Values:
    LV CPICKER COLOR MODE HUE
    LV CPICKER COLOR MODE SATURATION
    LV_CPICKER_COLOR_MODE_VALUE
enum [anonymous]
    Values:
    LV\_CPICKER\_PART\_MAIN = LV\_OBJ\_PART\_MAIN
    LV\_CPICKER\_PART\_INDIC = \_LV\_OBJ\_PART\_VIRTUAL\_LAST
    _LV_CPICKER_PART_VIRTUAL_LAST
```

 $LV_CPICKER_PART_REAL_LAST = _LV_OBJ_PART_REAL_LAST$

Functions

lv_obj_t *lv_cpicker_create(lv_obj_t *par, const lv_obj_t *copy)

Create a colorpicker objects

Return pointer to the created colorpicker

Parameters

- par: pointer to an object, it will be the parent of the new colorpicker
- copy: pointer to a colorpicker object, if not NULL then the new object will be copied from it

void lv_cpicker_set_type(lv_obj_t*cpicker, lv_cpicker_type_t type)

Set a new type for a colorpicker

Parameters

- cpicker: pointer to a colorpicker object
- type: new type of the colorpicker (from 'lv_cpicker_type_t' enum)

bool lv_cpicker_set_hue(lv_obj_t *cpicker, uint16_t hue)

Set the current hue of a colorpicker.

Return true if changed, otherwise false

Parameters

- cpicker: pointer to colorpicker object
- hue: current selected hue [0..360]

bool lv cpicker set saturation(lv_obj_t*cpicker, uint8 t saturation)

Set the current saturation of a colorpicker.

Return true if changed, otherwise false

Parameters

- cpicker: pointer to colorpicker object
- saturation: current selected saturation [0..100]

bool lv_cpicker_set_value(lv_obj_t *cpicker, uint8_t val)

Set the current value of a colorpicker.

Return true if changed, otherwise false

Parameters

- cpicker: pointer to colorpicker object
- val: current selected value [0..100]

bool lv_cpicker_set_hsv(lv_obj_t *cpicker, lv_color_hsv_t hsv)

Set the current hsv of a colorpicker.

Return true if changed, otherwise false

Parameters

- cpicker: pointer to colorpicker object
- hsv: current selected hsv

bool lv_cpicker_set_color(lv_obj_t *cpicker, lv_color_t color)

Set the current color of a colorpicker.

Return true if changed, otherwise false

Parameters

- cpicker: pointer to colorpicker object
- color: current selected color

void lv_cpicker_set_color_mode(lv_obj_t *cpicker, lv_cpicker_color_mode_t mode)

Set the current color mode.

Parameters

- cpicker: pointer to colorpicker object
- mode: color mode (hue/sat/val)

void lv_cpicker_set_color_mode_fixed(lv_obj_t *cpicker, bool fixed)

Set if the color mode is changed on long press on center

Parameters

- cpicker: pointer to colorpicker object
- fixed: color mode cannot be changed on long press

void lv_cpicker_set_indic_colored(lv_obj_t*cpicker, bool en)

Make the indicator to be colored to the current color

Parameters

- cpicker: pointer to colorpicker object
- en: true: color the indicator; false: not color the indicator

```
lv\_cpicker\_color\_mode\_t lv\_cpicker\_get\_color\_mode(lv\_obj\_t *cpicker)
```

Get the current color mode.

Return color mode (hue/sat/val)

Parameters

• cpicker: pointer to colorpicker object

bool lv_cpicker_get_color_mode_fixed(lv_obj_t *cpicker)

Get if the color mode is changed on long press on center

Return mode cannot be changed on long press

Parameters

• cpicker: pointer to colorpicker object

uint16 tlv cpicker get hue(lv_obj_t*cpicker)

Get the current hue of a colorpicker.

Return current selected hue

Parameters

• cpicker: pointer to colorpicker object

uint8_t lv_cpicker_get_saturation(lv_obj_t*cpicker)

Get the current saturation of a colorpicker.

Return current selected saturation

Parameters

• cpicker: pointer to colorpicker object

uint8_t lv_cpicker_get_value(lv_obj_t *cpicker)

Get the current hue of a colorpicker.

Return current selected value

Parameters

• cpicker: pointer to colorpicker object

lv_color_hsv_t lv_cpicker_get_hsv(lv_obj_t *cpicker)

Get the current selected hsv of a colorpicker.

Return current selected hsv

Parameters

• cpicker: pointer to colorpicker object

lv_color_t lv_cpicker_get_color(lv_obj_t *cpicker)

Get the current selected color of a colorpicker.

Return current selected color

Parameters

• cpicker: pointer to colorpicker object

bool lv_cpicker_get_indic_colored(lv_obj_t*cpicker)

Whether the indicator is colored to the current color or not

Return true: color the indicator; false: not color the indicator

Parameters

• cpicker: pointer to colorpicker object

bool lv_cpicker_get_preview(lv_obj_t *cpicker)

Whether the preview is enabled or not

Return en true: preview is enabled; false: preview is disabled

Parameters

• cpicker: pointer to colorpicker object

struct lv_cpicker_ext_t

Public Members

```
lv_color_hsv_t hsv
lv_style_list_t style_list
lv_point_t pos
uint8_t colored
struct lv_cpicker_ext_t::[anonymous] indic
uint32_t last_click_time
uint32_t last_change_time
lv_point_t last_press_point
```

```
lv_cpicker_color_mode_t color_mode
uint8_t color_mode_fixed
lv_cpicker_type_t type
```

Drop-down list (lv_dropdown)

Overview

The drop-down list allows the user to select one value from a list.

The drop-down list is closed by default and displays a single value or a predefined text. When activated (by click on the drop-down list), a list is created from which the user may select one option. When the user selects a new value, the list is deleted.

Parts and Styles

The drop-down list's main part is called LV_DROPDOWN_PART_MAIN which is a simple lv_obj object. It uses all the typical background properties. *Pressed*, *Focused*, *Edited* etc. stiles are also applied as usual.

The list, which is created when the main object is clicked, is an *Page*. Its background part can be referenced with LV_DROPDOWN_PART_LIST and uses all the typical background properties for the rectangle itself and text properties for the options. To adjust the space between the options use the *text_line_space* style property. Padding values can be used to make some space on the edges.

The scrollable part of the page is hidden and its styles are always empty (so transparent with no padding).

The scrollbar can be referenced with $LV_DROPDOWN_PART_SCRLBAR$ and uses all the typical background properties.

The selected option can be referenced with LV_DROPDOWN_PART_SELECTED and uses all the typical background properties. It will used in its default state to draw a rectangle on the selected option, and in pressed state to draw a rectangle on the being pressed option.

Usage

Overview

Set options

The options are passed to the drop-down list as a string with <code>lv_dropdown_set_options(dropdown, options)</code>. The options should be separated by <code>\n</code>. For example: <code>"First\nSecond\nThird"</code>. The string will be saved in the drop-down list, so it can in local variable too.

The lv_dropdown_add_option(dropdown, "New option", pos) function inserts a new option to pos index.

To save memory the options can set from a static(constant) string too with <code>lv_dropdown_set_static_options(dropdown, options)</code>. In this case the options string should be alive while the drop-down list exists and <code>lv_dropdown_add_option</code> can't be used

You can select an option manually with lv_dropdown_set_selected(dropdown, id), where id is the index of an option.

Get selected option

The get the currently selected option, use $lv_dropdown_get_selected(dropdown)$. It will return the *index* of the selected option.

lv_dropdown_get_selected_str(dropdown, buf, buf_size) copies the name of the selected option to a buf.

Direction

The list can be created on any side. The default LV_DROPDOWN_DOWN can be modified by lv dropdown set dir(dropdown, LV DROPDOWN DIR LEFT/RIGHT/UP/DOWN) function.

If the list would be vertically out of the screen, it will aligned to the edge.

Symbol

A symbol (typically an arrow) can be added to the drop down list with $lv_dropdown_set_symbol(dropdown, LV_SYMBOL_...)$

If the direction of the drop-down list is LV_DROPDOWN_DIR_LEFT the symbol will be shown on the left, else on the right.

Maximum height

The maximum height of drop-down list can be set via lv_dropdown_set_max_height(dropdown, height). By default it's set to 3/4 vertical resolution.

Show selected

The main part can either show the selected option or a static text. It can controlled with lv dropdown set show selected(sropdown, true/false).

The static text can be set with $lv_dropdown_set_text(dropdown, "Text")$. Only the pointer of the text is saved.

Animation time

The drop-down list's open/close animation time is adjusted by lv_dropdown_set_anim_time(ddlist, anim time). Zero animation time means no animation.

Manually open/close

To manually open or close the drop-down list the $lv_dropdown_open/close(dropdown, LV ANIM ON/OFF)$ function can be used.

Events

Besides the Generic events, the following Special events are sent by the drop-down list:

• LV_EVENT_VALUE_CHANGED - Sent when the new option is selected.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Buttons:

- LV_KEY_RIGHT/DOWN Select the next option.
- LV_KEY_LEFT/UP Select the previous option.
- LY_KEY_ENTER Apply the selected option (Send LV_EVENT_VALUE_CHANGED event and close the drop-down list).

Example

C

Simple Drop down list

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_DROPDOWN
```

(continues on next page)

(continued from previous page)

```
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        char buf[32];
        lv_dropdown_get_selected_str(obj, buf, sizeof(buf));
        printf("Option: %s\n", buf);
    }
}
void lv_ex_dropdown_1(void)
    /*Create a normal drop down list*/
    lv_obj_t * ddlist = lv_dropdown_create(lv_scr_act(), NULL);
    lv_dropdown_set_options(ddlist, "Apple\n"
            "Banana\n"
            "Orange\n"
            Melon\n
            "Grape\n"
            "Raspberry");
    lv_obj_align(ddlist, NULL, LV_ALIGN_IN_TOP_MID, 0, 20);
    lv_obj_set_event_cb(ddlist, event_handler);
}
#endif
```

Drop "up" list

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_DROPDOWN
* Create a drop LEFT menu
void lv_ex_dropdown_2(void)
   /*Create a drop down list*/
    lv obj t * ddlist = lv_dropdown_create(lv_scr_act(), NULL);
    lv dropdown set options(ddlist, "Apple\n"
            "Banana\n"
            "Orange\n"
            Melon\n
            "Grape\n"
            "Raspberry");
    lv_dropdown_set_dir(ddlist, LV_DROPDOWN_DIR_LEFT);
    lv dropdown set symbol(ddlist, NULL);
    lv_dropdown_set_show_selected(ddlist, false);
    lv_dropdown_set_text(ddlist, "Fruits");
    /*It will be called automatically when the size changes*/
    lv_obj_align(ddlist, NULL, LV_ALIGN_IN_TOP_RIGHT, 0, 20);
    /*Copy the drop LEFT list*/
   ddlist = lv_dropdown_create(lv_scr_act(), ddlist);
    lv_obj_align(ddlist, NULL, LV_ALIGN_IN_TOP_RIGHT, 0, 100);
}
#endif
```

MicroPython

No examples yet.

API

LV_DROPDOWN_DIR_LEFT

LV_DROPDOWN_DIR_RIGHT

enum [anonymous]

Values:

 $\label{eq:lv_dropdown_part_main} \textbf{LV}_\textbf{OBJ}_\textbf{PART}_\textbf{MAIN}$ $\label{eq:lv_dropdown_part_list} \textbf{LV}_\textbf{DROPDOWN}_\textbf{PART}_\textbf{SCRLBAR}$ $\label{eq:lv_dropdown_part_selected} \textbf{LV}_\textbf{DROPDOWN}_\textbf{PART}_\textbf{SELECTED}$

Functions

$lv_obj_t *lv_dropdown_create(lv_obj_t *par, const lv_obj_t *copy)$

Create a drop down list objects

Return pointer to the created drop down list

Parameters

- par: pointer to an object, it will be the parent of the new drop down list
- COPY: pointer to a drop down list object, if not NULL then the new object will be copied from it

void lv_dropdown_set_text(lv_obj_t *ddlist, const char *txt)

Set text of the ddlist (Displayed on the button if show selected = false)

Parameters

- ddlist: pointer to a drop down list object
- txt: the text as a string (Only it's pointer is saved)

void lv_dropdown_clear_options(lv_obj_t*ddlist)

Clear any options in a drop down list. Static or dynamic.

Parameters

• ddlist: pointer to drop down list object

void lv_dropdown_set_options(lv_obj_t *ddlist, const char *options)

Set the options in a drop down list from a string

Parameters

- ddlist: pointer to drop down list object
- options: a string with "separated options. E.g. "One\nTwo\nThree" The options string can be destroyed after calling this function

void lv_dropdown_set_static_options(lv_obj_t *ddlist, const char *options)

Set the options in a drop down list from a string

Parameters

- ddlist: pointer to drop down list object
- options: a static string with " separated options. E.g. "One\nTwo\nThree"

$void \ \textbf{lv_dropdown_add_option} (\textit{lv_obj_t} * \textit{ddlist}, \ \textbf{const} \ \text{char} * \textit{option}, \ \text{uint} 16_t \ \textit{pos})$

Add an options to a drop down list from a string. Only works for dynamic options.

Parameters

- ddlist: pointer to drop down list object
- option: a string without ". E.g. "Four"
- pos: the insert position, indexed from 0, LV_DROPDOWN_POS_LAST = end of string

void $lv_dropdown_set_selected(lv_obj_t*ddlist, uint16_t sel_opt)$

Set the selected option

Parameters

- ddlist: pointer to drop down list object
- sel opt: id of the selected option (0 ···number of option 1);

void lv_dropdown_set_dir(lv_obj_t *ddlist, lv_dropdown_dir_t dir)

Set the direction of the a drop down list

Parameters

- ddlist: pointer to a drop down list object
- dir: LV DROPDOWN DIR LEF/RIGHT/TOP/BOTTOM

void lv_dropdown_set_max_height(lv_obj_t *ddlist, lv_coord_t h)

Set the maximal height for the drop down list

Parameters

- ddlist: pointer to a drop down list
- h: the maximal height

void lv_dropdown_set_symbol(lv_obj_t *ddlist, const char *symbol)

Set an arrow or other symbol to display when the drop-down list is closed.

Parameters

- ddlist: pointer to drop down list object
- symbol: a text like LV_SYMBOL_DOWN or NULL to not draw icon

void lv_dropdown_set_show_selected(lv_obj_t *ddlist, bool show)

Set whether the ddlist highlight the last selected option and display its text or not

Parameters

- ddlist: pointer to a drop down list object
- show: true/false

const char *lv dropdown get text($lv \ obj \ t *ddlist$)

Get text of the ddlist (Displayed on the button if show selected = false)

Return the text string

Parameters

• ddlist: pointer to a drop down list object

const char *lv dropdown get options(const lv obj t *ddlist)

Get the options of a drop down list

Return the options separated by " -s (E.g. "Option1\nOption2\nOption3")

Parameters

• ddlist: pointer to drop down list object

uint16_t lv_dropdown_get_selected(const $lv_obj_t *ddlist$)

Get the selected option

Return id of the selected option (0 ···number of option - 1);

Parameters

• ddlist: pointer to drop down list object

uint16_t lv_dropdown_get_option_cnt(const lv_obj_t *ddlist)

Get the total number of options

Return the total number of options in the list

Parameters

• ddlist: pointer to drop down list object

void lv_dropdown_get_selected_str(const lv_obj_t *ddlist, char *buf, uint16_t buf_size)

Get the current selected option as a string

Parameters

- ddlist: pointer to ddlist object
- buf: pointer to an array to store the string
- buf size: size of buf in bytes. 0: to ignore it.

lv coord t lv dropdown get max height(const lv obj t*ddlist)

Get the fix height value.

Return the height if the ddlist is opened (0: auto size)

Parameters

• ddlist: pointer to a drop down list object

const char *lv dropdown get symbol(lv_obj_t *ddlist)

Get the symbol to draw when the drop-down list is closed

Return the symbol or NULL if not enabled

Parameters

• ddlist: pointer to drop down list object

lv_dropdown_dir_t lv_dropdown_get_dir(const lv_obj_t *ddlist)

Get the symbol to draw when the drop-down list is closed

Return the symbol or NULL if not enabled

Parameters

• ddlist: pointer to drop down list object

bool lv_dropdown_get_show_selected(lv_obj_t *ddlist)

Get whether the ddlist highlight the last selected option and display its text or not

Return true/false

Parameters

• ddlist: pointer to a drop down list object

void lv_dropdown_open(lv_obj_t *ddlist)

Open the drop down list with or without animation

Parameters

• ddlist: pointer to drop down list object

```
\mathbf{void} \ \mathbf{lv\_dropdown\_close} (\mathit{lv\_obj\_t} \ *ddlist)
```

Close (Collapse) the drop down list

Parameters

- ddlist: pointer to drop down list object
- anim_en: LV_ANIM_ON: use animation; LV_ANOM_OFF: not use animations

struct lv_dropdown_ext_t

Public Members

```
lv_obj_t *page
const char *text
const char *symbol
char *options
lv_style_list_t style_selected
lv_style_list_t style_page
lv_style_list_t style_scrlbar
lv_coord_t max_height
uint16_t option_cnt
uint16_t sel_opt_id
uint16_t sel_opt_id
orig
uint16_t pr_opt_id
lv_dropdown_dir_t dir
uint8_t show_selected
uint8 t static txt
```

Gauge (Iv_gauge)

Overview

The gauge is a meter with scale labels and one or more needles.

Parts and Styles

The Gauge's main part is called LV_GAUGE_PART_MAIN. It draws a background using the typical background style properties and "minor" scale lines using the *line* and *scale* style properties. It also uses the *text* properties to set the style of the scale labels. *pad_inner* is used to set space between the scale lines and the scale labels.

LV_GAUGE_PART_NEEDLE is also virtual part and it describes the needle(s) via the *line* style properties. *size* and the typical background properties are used to describe a rectangle (or circle) in the picot point of the needle(s). *pad_inner* is used to to make the needle(s) smaller than the outer radius of the scale lines.

Usage

Set value and needles

The gauge can show more than one needle. Use the <code>lv_gauge_set_needle_count(gauge, needle_num, color_array)</code> function to set the number of needles and an array with colors for each needle. The array must be static or global variable because only its pointer is stored.

You can use lv gauge set value(gauge, needle id, value) to set the value of a needle.

Scale

You can use the <code>lv_gauge_set_scale(gauge, angle, line_num, label_cnt)</code> function to adjust the scale angle and the number of the scale lines and labels. The default settings are 220 degrees, 6 scale labels, and 21 lines.

The scale of the Gauge can have offset. It can be adjusted with lv_gauge_set_angle_offset(gauge, angle).

Range

The range of the gauge can be specified by lv_gauge_set_range(gauge, min, max). The default range is 0..100.

Critical value

To set a critical value, use lv_gauge_set_critical_value(gauge, value). The scale color will be changed to scale_end_color after this value. The default critical value is 80.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about Keys.

Example

C

Simple Gauge

code

```
#include "lvgl/lvgl.h"
#if LV_USE_GAUGE
void lv_ex_gauge_1(void)
   /*Describe the color for the needles*/
   static lv_color_t needle_colors[3];
    needle_colors[0] = LV_COLOR_BLUE;
    needle_colors[1] = LV_COLOR_ORANGE;
   needle_colors[2] = LV_COLOR_PURPLE;
   LV_ASSERT_MEM_INTEGRITY();
   /*Create a gauge*/
   lv_obj_t * gauge1 = lv_gauge_create(lv_scr_act(), NULL);
   lv_gauge_set_needle_count(gauge1, 3, needle_colors);
    lv_obj_set_size(gauge1, 200, 200);
    lv_obj_align(gauge1, NULL, LV_ALIGN_CENTER, 0, 0);
   /*Set the values*/
    lv_gauge_set_value(gauge1, 0, 10);
    LV_ASSERT_MEM_INTEGRITY();
    lv_gauge_set_value(gauge1, 1, 20);
    LV ASSERT MEM INTEGRITY();
```

(continues on next page)

(continued from previous page)

```
lv_gauge_set_value(gauge1, 2, 30);

LV_ASSERT_MEM_INTEGRITY();
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef void (*lv_gauge_format_cb_t) (lv_obj_t*gauge, char buf[], int bufsize, int32_t value) typedef uint8_t lv_gauge_style_t
```

Enums

enum [anonymous]

```
Values:

LV_GAUGE_PART_MAIN = LV_LINEMETER_PART_MAIN

LV_GAUGE_PART_MAJOR = _LV_LINEMETER_PART_VIRTUAL_LAST

LV_GAUGE_PART_NEEDLE
```

 ${\tt LV_GAUGE_PART_REAL_LAST} = {\tt LV_LINEMETER_PART_REAL_LAST}$

 ${\tt LV_GAUGE_PART_VIRTUAL_LAST} = {\tt LV_LINEMETER_PART_VIRTUAL_LAST}$

Functions

```
lv\_obj\_t *lv\_gauge\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a gauge objects
```

Return pointer to the created gauge

Parameters

- par: pointer to an object, it will be the parent of the new gauge
- COPY: pointer to a gauge object, if not NULL then the new object will be copied from it

```
\label{eq:count} \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} ors[] \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $needle\_cnt$, $const $lv\_color\_t$ $colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $lv\_colors[]$) \\ \hline \begin{tabular}{ll} void $lv\_gauge\_set\_needle\_count($lv\_obj\_t*gauge$, uint8\_t $lv\_obj\_t*gauge$, uint8\_t $lv\_obj\_t*gauge$, uint8\_t $lv\_obj\_t*gauge$, uint8\_t $lv\_obj\_t*
```

Set the number of needles

Parameters

- gauge: pointer to gauge object
- needle_cnt: new count of needles

• colors: an array of colors for needles (with 'num' elements)

void lv_gauge_set_value(lv_obj_t *gauge, uint8_t needle_id, int32_t value)

Set the value of a needle

Parameters

- gauge: pointer to a gauge
- needle id: the id of the needle
- value: the new value

static void **lv_gauge_set_range**(lv_obj_t *gauge, int32_t min, int32_t max)

Set minimum and the maximum values of a gauge

Parameters

- gauge: pointer to he gauge object
- min: minimum value
- max: maximum value

static void **lv_gauge_set_critical_value**(*lv_obj_t*gauge*, int32_t value)

Set a critical value on the scale. After this value 'line.color' scale lines will be drawn

Parameters

- gauge: pointer to a gauge object
- value: the critical value

void **lv_gauge_set_scale**(lv_obj_t*gauge, uint16_t angle, uint8_t line_cnt, uint8_t label_cnt)
Set the scale settings of a gauge

Parameters

- gauge: pointer to a gauge object
- angle: angle of the scale (0..360)
- line_cnt: count of scale lines. To get a given "subdivision" lines between labels: line_cnt = (sub_div + 1) * (label_cnt 1) + 1
- label cnt: count of scale labels.

static void **lv_gauge_set_angle_offset**(lv_obj_t *gauge, uint16_t angle)

Set the set an offset for the gauge's angles to rotate it.

Parameters

- qauge: pointer to a line meter object
- angle: angle offset (0..360), rotates clockwise

```
void lv_gauge_set_needle_img(lv_obj_t *gauge, const void *img, lv_coord_t pivot_x, lv_coord_t pivot_y)
```

Set an image to display as needle(s). The needle image should be horizontal and pointing to the right (--->).

Parameters

- gauge: pointer to a gauge object
- img_src: pointer to an lv_img_dsc_t variable or a path to an image (not an lv_img object)

- pivot x: the X coordinate of rotation center of the image
- pivot y: the Y coordinate of rotation center of the image

void lv gauge set formatter cb(lv_obj_t*gauge, lv_gauge_format_cb_t format_cb)

Assign a function to format gauge values

Parameters

- gauge: pointer to a gauge object
- format_cb: pointer to function of lv_gauge_format_cb_t

int32_t lv_gauge_get_value(const lv_obj_t *gauge, uint8_t needle)

Get the value of a needle

Return the value of the needle [min,max]

Parameters

- gauge: pointer to gauge object
- needle: the id of the needle

uint8_t lv_gauge_get_needle_count(const lv_obj_t *gauge)

Get the count of needles on a gauge

Return count of needles

Parameters

• gauge: pointer to gauge

static int32_t lv_gauge_get_min_value(const lv_obj_t *lmeter)

Get the minimum value of a gauge

Return the minimum value of the gauge

Parameters

• gauge: pointer to a gauge object

static int32_t lv_gauge_get_max_value(const lv_obj_t *lmeter)

Get the maximum value of a gauge

Return the maximum value of the gauge

Parameters

• gauge: pointer to a gauge object

static int32 t lv gauge get critical value(const lv obj t*qauqe)

Get a critical value on the scale.

Return the critical value

Parameters

• gauge: pointer to a gauge object

uint8_t lv_gauge_get_label_count(const lv_obj_t *gauge)

Set the number of labels (and the thicker lines too)

Return count of labels

Parameters

• gauge: pointer to a gauge object

static uint16 t lv gauge get line count(const lv_obj_t*gauge) Get the scale number of a gauge **Return** number of the scale units **Parameters** • qauge: pointer to a gauge object

static uint16_t lv_gauge_get_scale_angle(const lv_obj_t *gauge)

Get the scale angle of a gauge

Return angle of the scale

Parameters

• gauge: pointer to a gauge object

static uint16_t lv_gauge_get_angle_offset(lv_obj_t *gauge)

Get the offset for the gauge.

Return angle offset (0..360)

Parameters

• gauge: pointer to a gauge object

```
const void *lv_gauge_get_needle_img(lv_obj_t *gauge, const void *img, lv_coord_t
                                      pivot_x, lv_coord_t pivot_y)
```

Get an image to display as needle(s).

Return pointer to an lv img dsc t variable or a path to an image (not an lv img object). NULL if not used.

Parameters

• gauge: pointer to a gauge object

lv coord t lv gauge get needle img pivot x(lv_obj_t*gauge)

Get the X coordinate of the rotation center of the needle image

Return the X coordinate of rotation center of the image

Parameters

• qauge: pointer to a gauge object

lv coord_t lv_gauge_get_needle_img_pivot_y(lv_obj_t *gauge)

Get the Y coordinate of the rotation center of the needle image

Return the X coordinate of rotation center of the image

Parameters

• qauge: pointer to a gauge object

struct lv gauge ext t

Public Members

```
lv linemeter ext t lmeter
int32 t *values
const lv_color_t *needle colors
const void *needle_img
```

```
lv_point_t needle_img_pivot
lv_style_list_t style_needle
lv_style_list_t style_strong
uint8_t needle_count
uint8_t label_count
lv_gauge_format_cb_t format_cb
```

Image (Iv_img)

Overview

Images are the basic object to display from the flash (as arrays) or externally as files. Images can display symbols (LV SYMBOL ...) too.

Using the Image decoder interface custom image formats can be supported as well.

Parts and Styles

The images has only a main part called LV_IMG_PART_MAIN which uses the typical background style properties to draw a background rectangle and the *image* properties. The padding values are used to make the background virtually larger. (It won't change the image's real size but the size modification is applied only during drawing)

Usage

Image source

To provide maximum flexibility, the source of the image can be:

- a variable in the code (a C array with the pixels).
- a file stored externally (like on an SD card).
- a text with Symbols.

To set the source of an image, use lv img set src(img, src).

To generate a **pixel array** from a PNG, JPG or BMP image, use the Online image converter tool and set the converted image with its pointer: lv_img_set_src(img1, &converted_img_var); To make the variable visible in the C file, you need to declare it with LV_IMG_DECLARE(converted_img_var).

To use **external files**, you also need to convert the image files using the online converter tool but now you should select the binary Output format. You also need to use LittlevGL's file system module and register a driver with some functions for the basic file operation. Got to the *File system* to learn more. To set an image sourced from a file, use lv img set src(img, "S:folder1/my img.bin").

You can set a **symbol** similarly to *Labels*. In this case, the image will be rendered as text according to the *font* specified in the style. It enables to use of light-weighted mono-color "letters" instead of real images. You can set symbol like lv img set src(img1, LV SYMBOL OK).

Label as an image

Images and labels are sometimes used to convey the same thing. For example, to describe what a button does. Therefore, images and labels are somewhat interchangeable. To handle these images can even display texts by using LV_SYMBOL_DUMMY as the prefix of the text. For example, $lv_img_set_src(img, LV_SYMBOL_DUMMY$ "Some text").

Transparency

The internal (variable) and external images support 2 transparency handling methods:

- Chrome keying Pixels with LV COLOR TRANSP (lv_conf.h) color will be transparent.
- Alpha byte An alpha byte is added to every pixel.

Palette and Alpha index

Besides True color (RGB) color format, the following formats are also supported:

- Indexed Image has a palette.
- Alpha indexed Only alpha values are stored.

These options can be selected in the font converter. To learn more about the color formats, read the *Images* section.

Recolor

The images can be re-colored in run-time to any color according to the brightness of the pixels. It is very useful to show different states (selected, inactive, pressed, etc.) of an image without storing more versions of the same image. This feature can be enabled in the style by setting <code>img.intense</code> between <code>LV_OPA_TRANSP</code> (no recolor, value: 0) and <code>LV_OPA_COVER</code> (full recolor, value: 255). The default value is <code>LV_OPA_TRANSP</code> so this feature is disabled.

Auto-size

It is possible to automatically set the size of the image object to the image source's width and height if enabled by the <code>lv_img_set_auto_size(image, true)</code> function. If <code>auto-size</code> is enabled, then when a new file is set, the object size is automatically changed. Later, you can modify the size manually. The <code>auto-size</code> is enabled by default if the image is not a screen.

Mosaic

If the object size is greater than the image size in any directions, then the image will be repeated like a mosaic. It's a very useful feature to create a large image from only a very narrow source. For example, you can have a 300×1 image with a special gradient and set it as a wallpaper using the mosaic feature.

Offset

With <code>lv_img_set_offset_x(img, x_ofs)</code> and <code>lv_img_set_offset_y(img, y_ofs)</code>, you can add some offset to the displayed image. It is useful if the object size is smaller than the image source size. Using the offset parameter a Texture atlas or a "running image" effect can be created by <code>Animating</code> the x or y offset.

Transformations

Using the <code>lv_img_set_zoom(img, factor)</code> the images will be zoomed. Set <code>factor</code> to <code>256</code> or <code>LV_IMG_ZOOM_NONE</code> to disable zooming. A larger value enlarges the images (e.g. <code>512</code> double size), a smaller value shrinks it (e.g. <code>128</code> half size). Fractional scale works as well. E.g. <code>281</code> for <code>10%</code> enlargement.

To rotate the image use lv_img_set_angle(img, angle). Angle has 0.1 degree precision, so for 45.8° set 458.

By default, the pivot point of the rotation is the center of the image. It can be changed with lv_img_set_pivot(img, pivot_x, pivot_y). 0;0 is the top left corner.

The quality of the transformation can be adjusted with <code>lv_img_set_antialias(img, true/false)</code>. With enabled anti-aliasing the transformations has a higher quality but they are slower.

The transformations require the whole image to be available. Therefore indexed images (LV_IMG_CF_INDEXED_...), alpha only images (LV_IMG_CF_ALPHA_...) or images from files can be transformed. In other words transformations work only on true color images stored as C array, or if a custom Image decoder returns the whole image.

Note that, the real coordinates of image object won't change during transformation. That is lv obj get width/height/x/y() will returned the original, non-zoomed coordinates.

Rotate

The images can be rotated with

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Image from variable and symbol

code

```
#include "lvgl/lvgl.h"
#if LV_USE_IMG

LV_IMG_DECLARE(img_cogwheel_argb);

void lv_ex_img_1(void)
{
    lv_obj_t * img1 = lv_img_create(lv_scr_act(), NULL);
    lv_img_set_src(img1, &img_cogwheel_argb);
    lv_obj_align(img1, NULL, LV_ALIGN_CENTER, 0, -20);

    lv_obj_t * img2 = lv_img_create(lv_scr_act(), NULL);
    lv_img_set_src(img2, LV_SYMBOL_OK "Accept");
    lv_obj_align(img2, img1, LV_ALIGN_OUT_BOTTOM_MID, 0, 20);
}
#endif
#endif
```

Image recoloring

code

```
#include "lvgl/lvgl.h"
#if LV USE IMG
#define SLIDER WIDTH 20
static void create sliders(void);
static void slider_event_cb(lv_obj_t * slider, lv_event_t event);
static lv_obj_t * red_slider, * green_slider, * blue_slider, * intense_slider;
static lv_obj_t * img1;
LV IMG DECLARE(img cogwheel argb);
void lv ex img 2(void)
   /*Create 4 sliders to adjust RGB color and re-color intensity*/
    create sliders();
   /* Now create the actual image */
   img1 = lv_img_create(lv_scr_act(), NULL);
    lv_img_set_src(img1, &img_cogwheel_argb);
    lv obj align(img1, NULL, LV ALIGN IN RIGHT MID, -20, 0);
static void slider event cb(lv obj t * slider, lv event t event)
    if(event == LV EVENT VALUE CHANGED) {
        /* Recolor the image based on the sliders' values */
        lv color t color = lv color make(lv slider get value(red slider), lv slider
→get_value(green_slider), lv_slider_get_value(blue_slider));
        lv opa t intense = lv slider get value(intense slider);
        lv obj set style local image recolor opa(img1, LV IMG PART MAIN, LV STATE
→DEFAULT, intense);
                                                                       (continues on next page)
```

(continued from previous page)

```
lv_obj_set_style_local_image_recolor(img1, LV_IMG_PART_MAIN, LV_STATE_DEFAULT,
→ color);
   }
static void create sliders(void)
    /* Create a set of RGB sliders */
    /* Use the red one as a base for all the settings */
    red_slider = lv_slider_create(lv_scr_act(), NULL);
    lv_slider_set_range(red_slider, 0, 255);
    lv obj set size(red slider, SLIDER WIDTH, 200); /* Be sure it's a vertical slider,
    lv_obj_set_style_local_bg_color(red_slider, LV_SLIDER_PART_INDIC, LV_STATE_
→DEFAULT, LV COLOR RED);
    lv_obj_set_event_cb(red_slider, slider_event_cb);
   /* Copy it for the other three sliders */
    green_slider = lv_slider_create(lv_scr_act(), red slider);
    lv obj set style local bg color(green slider, LV SLIDER PART INDIC, LV STATE
→DEFAULT, LV COLOR LIME);
    blue slider = lv slider create(lv scr act(), red slider);
    lv_obj_set_style local_bg_color(blue_slider, LV_SLIDER_PART_INDIC, LV_STATE_
→DEFAULT, LV COLOR BLUE);
    intense slider = lv slider create(lv scr act(), red slider);
    lv_obj_set_style_local_bg_color(intense_slider, LV_SLIDER_PART_INDIC, LV_STATE_
→DEFAULT, LV_COLOR_GRAY);
    lv_slider_set_value(intense_slider, 255, LV_ANIM_OFF);
    lv obj align(red slider, NULL, LV ALIGN IN LEFT MID, 20, 0);
    lv obj align(green slider, red slider, LV ALIGN OUT RIGHT MID, 20, 0);
    lv_obj_align(blue_slider, green_slider, LV_ALIGN_OUT_RIGHT_MID, 20, 0);
    lv_obj_align(intense_slider, blue_slider, LV_ALIGN_OUT_RIGHT_MID, 20, 0);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_img_part_t

Enums

```
enum [anonymous]

Values:
```

LV_IMG_PART_MAIN

Functions

```
lv\_obj\_t *lv\_img\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create an image objects

Return pointer to the created image

Parameters

- par: pointer to an object, it will be the parent of the new button
- COPY: pointer to a image object, if not NULL then the new object will be copied from it

void lv_img_set_src(lv_obj_t *img, const void *src_img)

Set the pixel map to display by the image

Parameters

- img: pointer to an image object
- data: the image data

void lv_img_set_auto_size(lv_obj_t *img, bool autosize_en)

Enable the auto size feature. If enabled the object size will be same as the picture size.

Parameters

- img: pointer to an image
- en: true: auto size enable, false: auto size disable

void $lv_img_set_offset_x(lv_obj_t*img, lv_coord_t x)$

Set an offset for the source of an image. so the image will be displayed from the new origin.

Parameters

- img: pointer to an image
- X: the new offset along x axis.

void lv img set offset $y(lv_obj_t*img, lv_coord_ty)$

Set an offset for the source of an image. so the image will be displayed from the new origin.

Parameters

- imq: pointer to an image
- y: the new offset along y axis.

void lv_img_set_pivot(lv_obj_t *img, lv_coord_t pivot_x, lv_coord_t pivot_y)

Set the rotation center of the image. The image will be rotated around this point

Parameters

- imq: pointer to an image object
- pivot x: rotation center x of the image
- pivot_y: rotation center y of the image

void $lv_img_set_angle(lv_obj_t*img, int16_t angle)$

Set the rotation angle of the image. The image will be rotated around the set pivot set by $lv_img_set_pivot()$

Parameters

- img: pointer to an image object
- angle: rotation angle in degree with 0.1 degree resolution (0..3600: clock wise)

void lv_img_set_zoom(lv_obj_t *img, uint16_t zoom)

Set the zoom factor of the image.

Parameters

- img: pointer to an image object
- **ZOOM**: the zoom factor.
 - -256 or LV ZOOM IMG NONE for no zoom
 - <256: scale down
 - ->256 scale up
 - 128 half size
 - 512 double size

void lv_img_set_antialias(lv_obj_t *img, bool antialias)

Enable/disable anti-aliasing for the transformations (rotate, zoom) or not

Parameters

- img: pointer to an image object
- antialias: true: anti-aliased; false: not anti-aliased

const void *lv_img_get_src(lv_obj_t *img)

Get the source of the image

Return the image source (symbol, file name or C array)

Parameters

• img: pointer to an image object

const char *lv_img_get_file_name(const lv_obj_t *img)

Get the name of the file set for an image

Return file name

Parameters

• img: pointer to an image

bool lv_img_get_auto_size(const lv_obj_t *img)

Get the auto size enable attribute

Return true: auto size is enabled, false: auto size is disabled

Parameters

• img: pointer to an image

lv coord t lv img get offset x(lv_obj_t*img)

Get the offset.x attribute of the img object.

Return offset.x value.

Parameters

• img: pointer to an image

lv_coord_t lv_img_get_offset_y(lv_obj_t *img)

Get the offset.y attribute of the img object.

Return offset.y value.

Parameters

• img: pointer to an image

uint16_t lv_img_get_angle(lv_obj_t *img)

Get the rotation angle of the image.

Return rotation angle in degree (0..359)

Parameters

• img: pointer to an image object

void lv_img_get_pivot(lv_obj_t *img, lv_point_t *center)

Get the rotation center of the image.

Parameters

- img: pointer to an image object
- center: rotation center of the image

uint16_t lv_img_get_zoom(lv_obj_t *img)

Get the zoom factor of the image.

Return zoom factor (256: no zoom)

Parameters

• img: pointer to an image object

bool lv_img_get_antialias(lv_obj_t *img)

Get whether the transformations (rotate, zoom) are anti-aliased or not

Return true: anti-aliased; false: not anti-aliased

Parameters

• img: pointer to an image object

struct lv_img_ext_t

Public Members

const void *src

lv_point_t offset

 $lv_coord_t \ \textbf{W}$

lv_coord_t **h**

uint16 t angle

lv_point_t pivot

 $uint16_t$ zoom

uint8_t src_type

uint8_t auto_size

uint8_t cf

uint8 t antialias

Image button (Iv_imgbtn)

Overview

The Image button is very similar to the simple 'Button' object. The only difference is that, it displays user-defined images in each state instead of drawing a rectangle. Before reading this section, please read the *Button* section for better understanding.

Parts and Styles

The Image button object has only a main part called LV_IMG_BTN_PART_MAIN from where all *image* style properties are used. It's possible to recolor the image in each state with *image_recolor* and *image_recolor_opa* properties. For example, to make the image darker if it is pressed.

Usage

Image sources

To set the image in a state, use the <code>lv_imgbtn_set_src(imgbtn, LV_BTN_STATE_..., &img_src)</code>. The image sources works the same as described in the <code>Image object</code> except that, "Symbols" are not supported by the Image button.

If LV_IMGBTN_TILED is enabled in $lv_conf.h$, then $lv_imgbtn_set_src_tiled(imgbtn, LV_BTN_STATE_..., &img_src_left, &img_src_mid, &img_src_right)$ becomes available. Using the tiled feature the middle image will be repeated to fill the width of the object. Therefore with LV_IMGBTN_TILED, you can set the width of the Image button using $lv_obj_set_width()$. However, without this option, the width will be always the same as the image source's width.

Button features

Similarly to normal Buttons lv_imgbtn_set_checkable(imgbtn, true/false), lv_imgbtn_toggle(imgbtn) and lv_imgbtn_set_state(imgbtn, LV_BTN_STATE_...) also works.

Events

Beside the Generic events, the following Special events are sent by the buttons:

• LV_EVENT_VALUE_CHANGED - Sent when the button is toggled.

Note that, the generic input device related events (like $LV_EVENT_PRESSED$) are sent in the inactive state too. You need to check the state with $lv_btn_get_state(btn)$ to ignore the events from inactive buttons.

Learn more about *Events*.

Keys

The following Keys are processed by the Buttons:

- LV_KEY_RIGHT/UP Go to toggled state if toggling is enabled.
- LV_KEY_LEFT/DOWN Go to non-toggled state if toggling is enabled.

Note that, as usual, the state of LV KEY ENTER is translated to LV EVENT PRESSED/PRESSING/ RELEASED etc.

Learn more about Keys.

Example

C

Simple Image button

code

```
#include "lvgl/lvgl.h"
#if LV_USE_IMGBTN
void lv_ex_imgbtn_1(void)
    LV_IMG_DECLARE(imgbtn_green);
   LV_IMG_DECLARE(imgbtn_blue);
   /*Darken the button when pressed*/
    static lv_style_t style;
    lv_style_init(&style);
    lv_style_set_image_recolor_opa(&style, LV_STATE_PRESSED, LV_OPA_30);
```

(continues on next page)

(continued from previous page)

```
lv style set image recolor(&style, LV STATE PRESSED, LV COLOR BLACK);
    lv_style_set_text_color(&style, LV_STATE_DEFAULT, LV_COLOR_WHITE);
    /*Create an Image button*/
    lv obj t * imgbtn1 = lv imgbtn create(lv scr act(), NULL);
    lv_imgbtn_set_src(imgbtn1, LV_BTN_STATE_RELEASED, &imgbtn_green);
    lv_imgbtn_set_src(imgbtn1, LV_BTN_STATE_PRESSED, &imgbtn_green);
    lv_imgbtn_set_src(imgbtn1, LV_BTN_STATE_CHECKED_RELEASED, &imgbtn_blue);
    lv imgbtn set src(imgbtn1, LV BTN STATE CHECKED PRESSED, &imgbtn blue);
    lv imgbtn set checkable(imgbtn1, true);
    lv_obj_add_style(imgbtn1, LV_IMGBTN_PART_MAIN, &style);
    lv obj align(imgbtn1, NULL, LV ALIGN CENTER, 0, -40);
   /*Create a label on the Image button*/
    lv obj t * label = lv label create(imgbtn1, NULL);
    lv_label_set_text(label, "Button");
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_imgbtn_part_t
```

Enums

```
\begin{array}{c} \textbf{enum} \ [\textbf{anonymous}] \\ Values: \end{array}
```

 $LV_IMGBTN_PART_MAIN = LV_BTN_PART_MAIN$

Functions

```
lv\_obj\_t *lv\_imgbtn\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a image button objects
```

Return pointer to the created image button

Parameters

- par: pointer to an object, it will be the parent of the new image button
- copy: pointer to a image button object, if not NULL then the new object will be copied from it

```
void lv_imgbtn_set_src(lv_obj_t *imgbtn, lv_btn_state_t state, const void *src)
Set images for a state of the image button
```

Parameters

- imgbtn: pointer to an image button object
- state: for which state set the new image (from lv_btn_state_t) '
- Src: pointer to an image source (a C array or path to a file)

Set images for a state of the image button

Parameters

- imgbtn: pointer to an image button object
- state: for which state set the new image (from $lv_btn_state_t$) '
- src_left: pointer to an image source for the left side of the button (a C array or path to a file)
- src_mid: pointer to an image source for the middle of the button (ideally 1px wide) (a C array or path to a file)
- src_right: pointer to an image source for the right side of the button (a C array or path to a file)

static void **lv_imgbtn_set_checkable**(lv_obj_t *imgbtn, bool tgl)

Enable the toggled states. On release the button will change from/to toggled state.

Parameters

- imgbtn: pointer to an image button object
- tql: true: enable toggled states, false: disable

static void **lv_imgbtn_set_state**(lv_obj_t*imgbtn, lv_btn_state_t state)

Set the state of the image button

Parameters

- imgbtn: pointer to an image button object
- state: the new state of the button (from ly btn state t enum)

static void lv imgbtn toggle(lv_obj_t*imgbtn)

Toggle the state of the image button (ON->OFF, OFF->ON)

Parameters

• imgbtn: pointer to a image button object

const void *lv imgbtn get src(lv obj t *imgbtn, lv btn state t state)

Get the images in a given state

Return pointer to an image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

const void *lv imgbtn get_src_left(lv_obj_t*imgbtn, lv_btn_state_t state)

Get the left image in a given state

Return pointer to the left image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

const void *lv_imgbtn_get_src_middle(lv_obj_t *imgbtn, lv_btn_state_t state)

Get the middle image in a given state

Return pointer to the middle image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

$\textbf{const} \ \operatorname{void} \ *\textbf{lv_imgbtn_get_src_right} (\ lv_obj_t \ *imgbtn, \ lv_btn_state_t \ state)$

Get the right image in a given state

Return pointer to the left image source (a C array or path to a file)

Parameters

- imgbtn: pointer to an image button object
- state: the state where to get the image (from lv btn state t) '

static lv_btn_state_t lv_imgbtn_get_state(const lv_obj_t *imgbtn)

Get the current state of the image button

Return the state of the button (from lv_btn_state_t enum)

Parameters

• imgbtn: pointer to a image button object

static bool lv_imgbtn_get_checkable(const lv_obj_t *imgbtn)

Get the toggle enable attribute of the image button

Return ture: toggle enabled, false: disabled

Parameters

• imgbtn: pointer to a image button object

struct lv imgbtn ext t

Public Members

```
lv_btn_ext_t btn
const void *img_src_mid[_LV_BTN_STATE_LAST]
const void *img_src_left[_LV_BTN_STATE_LAST]
const void *img_src_right[_LV_BTN_STATE_LAST]
lv_img_cf_t act_cf
uint8 t tiled
```

Keyboard (lv_keyboard)

Overview

The Keyboard object is a special *Button matrix* with predefined keymaps and other features to realize a virtual keyboard to write text.

Parts and Styles

Similarly to Button matices Keyboards consist of 2 part:

- LV_KEYBOARD_PART_BG which is the main part and uses all the typical background properties
- LV_KEYBOARD_PART_BTN which is virtual part for the buttons. It also uses all typical backround proeprties and the *text* properties.

Usage

Modes

The Keyboards have the following modes:

- $LV_KEYBOARD_MODE_TEXT_LOWER$ Display lower case letters
- LV_KEYBOARD_MODE_TEXT_UPPER Display upper case letters
- LV_KEYBOARD_MODE_TEXT_SPECIAL Display special characters
- LV_KEYBOARD_MODE_NUM Display numbers, +/- sign, and decimal dot.

The TEXT modes' layout contains buttons to change mode.

To set the mode manually, use <code>lv_keyboard_set_mode(kb, mode)</code>. The default more is <code>LV KEYBOARD MODE TEXT UPPER</code>.

Assign Text area

You can assign a *Text area* to the Keyboard to automatically put the clicked characters there. To assign the text area, use lv keyboard set textarea(kb, ta).

The assigned text area's cursor can be managed by the keyboard: when the keyboard is assigned, the previous text area's cursor will be hidden and the new one will be shown. When the keyboard is closed by the Ok or Close buttons, the cursor also will be hidden. The cursor manager feature is enabled by $lv_keyboard_set_cursor_manage(kb, true)$. The default is not managed.

New Keymap

You can specify a new map (layout) for the keyboard with <code>lv_keyboard_set_map(kb, map)</code> and <code>lv_keyboard_set_ctrl_map(kb, ctrl_map)</code>. Learn more about the <code>Button matrix</code> object. Keep in mind that, using following keywords will have the same effect as with the original map:

- LV_SYMBOL_OK Apply.
- LV_SYMBOL_CLOSE Close.

- LV_SYMBOL_BACKSPACE Delete on the left.
- LV_SYMBOL_LEFT Move the cursor left.
- LV_SYMBOL_RIGHT Move the cursor right.
- "ABC" Load the uppercase map.
- "abc" Load the lower case map.
- "Enter" New line.

Events

Besides the Generic events, the following Special events are sent by the keyboards:

- LV_EVENT_VALUE_CHANGED Sent when the button is pressed/released or repeated after long press. The event data is set to the ID of the pressed/released button.
- LV _EVENT_APPLY The Ok button is clicked.
- LV_EVENT_CANCEL The *Close* button is clicked.

The keyboard has a **default event handler** callback called <code>lv_keyboard_def_event_cb</code>. It handles the button pressing, map changing, the assigned text area, etc. You can completely replace it with your custom event handler however, you can call <code>lv_keyboard_def_event_cb</code> at the beginning of your event handler to handle the same things as before.

Learn more about *Events*.

Keys

The following *Keys* are processed by the buttons:

- $\bullet~LV_KEY_RIGHT/UP/LEFT/RIGHT$ To navigate among the buttons and select one.
- LV_KEY_ENTER To press/release the selected button.

Learn more about *Keys*.

Examples

C

Keyboard with text area

code

```
#include "lvgl/lvgl.h"
#if LV_USE_KEYBOARD

void lv_ex_keyboard_1(void)
{
    /*Create a keyboard and apply the styles*/
    lv_obj_t *kb = lv_keyboard_create(lv_scr_act(), NULL);
    lv_keyboard_set_cursor_manage(kb, true);

    /*Create a text area. The keyboard will write here*/
    lv_obj_t *ta = lv_textarea_create(lv_scr_act(), NULL);
    lv_obj_align(ta, NULL, LV_ALIGN_IN_TOP_MID, 0, LV_DPI / 16);
    lv_textarea_set_text(ta, "");
    lv_coord_t max_h = LV_VER_RES / 2 - LV_DPI / 8;
    if(lv_obj_get_height(ta) > max_h) lv_obj_set_height(ta, max_h);

    /*Assign the text area to the keyboard*/
    lv_keyboard_set_textarea(kb, ta);
}
#endif
```

MicroPython

Keyboard with text area

No examples yet.

API

```
Typedefs
```

```
typedef uint8_t lv_keyboard_mode_t
typedef uint8_t lv_keyboard_style_t
```

Enums

enum [anonymous]

Current keyboard mode.

Values:

LV_KEYBOARD_MODE_TEXT_LOWER
LV_KEYBOARD_MODE_TEXT_UPPER
LV_KEYBOARD_MODE_SPECIAL
LV_KEYBOARD_MODE_NUM

enum [anonymous]

Values:

LV_KEYBOARD_PART_BG
LV_KEYBOARD_PART_BTN

Functions

```
lv\_obj\_t *lv\_keyboard\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a keyboard objects

Return pointer to the created keyboard

Parameters

- par: pointer to an object, it will be the parent of the new keyboard
- copy: pointer to a keyboard object, if not NULL then the new object will be copied from it

```
void lv keyboard set textarea(lv_obj_t*kb, lv_obj_t*ta)
```

Assign a Text Area to the Keyboard. The pressed characters will be put there.

Parameters

- kb: pointer to a Keyboard object
- ta: pointer to a Text Area object to write there

```
void lv_keyboard_set_mode(lv_obj_t*kb, lv_keyboard_mode_t mode)
```

Set a new a mode (text or number map)

Parameters

- kb: pointer to a Keyboard object
- mode: the mode from 'lv_keyboard_mode_t'

void lv_keyboard_set_cursor_manage(lv_obj_t*kb, bool en)

Automatically hide or show the cursor of the current Text Area

Parameters

Parameters

- kb: pointer to a Keyboard object
- en: true: show cursor on the current text area, false: hide cursor

void **lv_keyboard_set_map**(lv_obj_t *kb, lv_keyboard_mode_t mode, **const** char *map[]) Set a new map for the keyboard

set a new map for the keyboard

- kb: pointer to a Keyboard object
 - mode: keyboard map to alter 'lv keyboard mode t'
 - map: pointer to a string array to describe the map. See 'lv_btnmatrix_set_map()' for more info.

$\begin{tabular}{lll} void $lv_keyboard_set_ctrl_map(lv_obj_t *$kb, $lv_keyboard_mode_t$ mode, $constle bt btnmatrix $ctrl_t$ $ctrl_map(]) \\ \end{tabular}$

Set the button control map (hidden, disabled etc.) for the keyboard. The control map array will be copied and so may be deallocated after this function returns.

Parameters

- kb: pointer to a keyboard object
- mode: keyboard ctrl map to alter 'lv_keyboard_mode_t'
- ctrl_map: pointer to an array of lv_btn_ctrl_t control bytes. See: lv_btnmatrix_set_ctrl_map for more details.

lv_obj_t *lv_keyboard_get_textarea(const lv_obj_t *kb)

Assign a Text Area to the Keyboard. The pressed characters will be put there.

Return pointer to the assigned Text Area object

Parameters

• kb: pointer to a Keyboard object

lv_keyboard_mode_t lv_keyboard_get_mode(const lv_obj_t *kb)

Set a new a mode (text or number map)

Return the current mode from 'lv_keyboard_mode_t'

Parameters

• kb: pointer to a Keyboard object

bool $lv_keyboard_get_cursor_manage(const <math>lv_obj_t^*kb)$

Get the current cursor manage mode.

Return true: show cursor on the current text area, false: hide cursor

Parameters

• kb: pointer to a Keyboard object

static const char **lv_keyboard_get_map_array(const lv_obj_t *kb)

Get the current map of a keyboard

Return the current map

Parameters

• **kb**: pointer to a keyboard object

void lv_keyboard_def_event_cb(lv_obj_t*kb, lv_event_t event)

Default keyboard event to add characters to the Text area and change the map. If a custom event_cb is added to the keyboard this function be called from it to handle the button clicks

Parameters

- kb: pointer to a keyboard
- event: the triggering event

struct lv_keyboard_ext_t

Public Members

```
lv_btnmatrix_ext_t btnm
lv_obj_t *ta
lv_keyboard_mode_t mode
uint8 t cursor mng
```

Label (lv_label)

Overview

A label is the basic object type that is used to display text.

Parts and Styles

The label has only a main part, called LV_LABEL_PART_MAIN. It uses all the typical background properties and the *text* properties. The padding values can be used to make the area for the text small in the related direction.

Usage

Set text

You can set the text on a label at runtime with <code>lv_label_set_text(label, "New text")</code>. It will allocate a buffer dynamically, and the provided string will be copied into that buffer. Therefore, you don't need to keep the text you pass to <code>lv label set text</code> in scope after that function returns.

With $lv_label_set_text_fmt(label, "Value: %d", 15)$ printf formatting can be used to set the text.

Labels are able to show text from a **static character buffer** which is **\0**-terminated. To do so, use <code>lv_label_set_static_text(label, "Text")</code>. In this case, the text is not stored in the dynamic memory and the given buffer is used directly instead. This means that the array can't be a local variable which goes out of scope when the function exits. Constant strings are safe to use with <code>lv_label_set_static_text</code> (except when used with <code>LV_LABEL_LONG_DOTS</code>, as it modifies the buffer in-place), as they are stored in ROM memory, which is always accessible.

You can also use a raw array as label text. The array doesn't have to be $\0$ terminated. In this case, the text will be saved to the dynamic memory like with $\0$ label_set_text. To set a raw character array, use the $\0$ label_set_array_text(label, char_array, size) function.

Line break

Line breaks are handled automatically by the label object. You can use \n to make a line break. For example: "linel\nline2\n\nline4"

Long modes

By default, the width of the label object automatically expands to the text size. Otherwise, the text can be manipulated according to several long mode policies:

- LV_LABEL_LONG_EXPAND Expand the object size to the text size (Default)
- LV_LABEL_LONG_BREAK Keep the object width, break (wrap) the too long lines and expand the object height
- LV_LABEL_LONG_DOTS Keep the object size, break the text and write dots in the last line (not supported when using lv_label_set_static_text)
- $LV_LABEL_LONG_SROLL$ Keep the size and scroll the label back and forth
- LV_LABEL_LONG_SROLL_CIRC Keep the size and scroll the label circularly
- LV_LABEL_LONG_CROP Keep the size and crop the text out of it

You can specify the long mode with lv_label_set_long_mode(label, LV_LABEL_LONG_...)

It's important to note that, when a label is created and its text is set, the label's size already expanded to the text size. In addition with the default LV_LABEL_LONG_EXPAND, long mode lv_obj_set_width/height/size() has no effect.

So you need to change the *long mode* first set the new *long mode* and then set the size with lv obj set width/height/size().

Another important note is that LV_LABEL_LONG_DOTS manipulates the text buffer in-place in order to add/remove the dots. When lv_label_set_text or lv_label_set_array_text are used, a separate buffer is allocated and this implementation detail is unnoticed. This is not the case with lv_label_set_static_text! The buffer you pass to lv_label_set_static_text must be writable if you plan to use LV LABEL LONG DOTS.

Text align

The lines of the text can be aligned to the left, right or center with <code>lv_label_set_align(label, LV_LABEL_ALIGN_LEFT/RIGHT/CENTER)</code>. Note that, it will align only the lines, not the label object itself.

Vertical alignment is not supported by the label itself; you should place the label inside a larger container and align the whole label object instead.

Text recolor

In the text, you can use commands to recolor parts of the text. For example: "Write a #ff0000 red# word". This feature can be enabled individually for each label by lv label set recolor() function.

Note that, recoloring work only in a single line. Therefore, \n should not use in a recolored text or it should be wrapped by $LV_LABEL_LONG_BREAK$ else, the text in the new line won't be recolored.

Very long texts

Lvgl can efficiently handle very long (> 40k characters) by saving some extra data (\sim 12 bytes) to speed up drawing. To enable this feature, set LV_LABEL_LONG_TXT_HINT 1 in $lv_conf.h.$

Symbols

The labels can display symbols alongside letters (or on their own). Read the *Font* section to learn more about the symbols.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about Keys.

Example

C

Label recoloring and scrolling

Re-color words of a label and wrap long text automatically.

It is a circularly scro

code

```
#include "lvgl/lvgl.h"
#if LV USE LABEL
void lv_ex_label_1(void)
    lv_obj_t * label1 = lv_label_create(lv_scr_act(), NULL);
    lv label set long mode(label1, LV LABEL LONG BREAK); /*Break the long lines*/
    lv label set recolor(label1, true);
                                                            /*Enable re-coloring by...
⇔commands in the text*/
    lv label set align(label1, LV LABEL ALIGN CENTER); /*Center aligned lines*/
    lv_label_set_text(label1, "#0000ff Re-color# #ff00ff words# #ff0000 of a# label "
                              "and wrap long text automatically.");
    lv obj set width(label1, 150);
    lv_obj_align(label1, NULL, LV_ALIGN_CENTER, 0, -30);
    lv_obj_t * label2 = lv_label_create(lv_scr_act(), NULL);
   lv_label_set_long_mode(label2, LV_LABEL_LONG_SROLL_CIRC);
                                                                /*Circular scroll*/
    lv_obj_set_width(label2, 150);
    lv_label_set_text(label2, "It is a circularly scrolling text. ");
    lv_obj_align(label2, NULL, LV_ALIGN_CENTER, 0, 30);
}
#endif
```

Text shadow

A simple method to create shadows on text It even works with

newlines and spaces.

code

(continues on next page)

(continued from previous page)

```
/* Create a style for the shadow*/
    static lv_style_t label_shadow_style;
    lv_style_init(&label_shadow_style);
    lv_style_set_text_opa(&label_shadow_style, LV_STATE_DEFAULT, LV_OPA_50);
    lv_style_set_text_color(&label_shadow_style, LV_STATE_DEFAULT, LV_COLOR_RED);
    /*Create a label for the shadow first (it's in the background) */
    lv_obj_t * shadow_label = lv_label_create(lv_scr_act(), NULL);
    lv obj add style(shadow label, LV LABEL PART MAIN, &label shadow style);
    /* Create the main label */
   lv_obj_t * main_label = lv_label_create(lv_scr_act(), NULL);
    lv label set text(main label, "A simple method to create\n"
                                  "shadows on text\n"
                                  "It even works with\n\n"
                                  "newlines
                                               and spaces.");
   /*Set the same text for the shadow label*/
   lv_label_set_text(shadow_label, lv_label_get_text(main_label));
    /* Position the main label */
   lv_obj_align(main_label, NULL, LV_ALIGN_CENTER, 0, 0);
    /* Shift the second label down and to the right by 2 pixel */
    lv obj align(shadow label, main label, LV ALIGN IN TOP LEFT, 1, 1);
}
#endif
```

Align labels

```
A text with multiple lines

A text with multiple lines

A text with multiple lines
```

code

```
#include "lvgl/lvgl.h"
#if LV USE LABEL
static void text changer(lv task t * t);
lv obj t * labels[3];
/**
* Create three labels to demonstrate the alignments.
void lv_ex_label_3(void)
    /*`lv label set align` is not required to align the object itslef.
    * It's used only when the text has multiple lines*/
   /* Create a label on the top.
    * No additional alignment so it will be the reference*/
    labels[0] = lv label create(lv scr act(), NULL);
    lv_obj_align(labels[0], NULL, LV_ALIGN_IN_TOP_MID, 0, 5);
   lv_label_set_align(labels[0], LV_LABEL_ALIGN_CENTER);
   /* Create a label in the middle.
    * `lv obj align` will be called every time the text changes
    * to keep the middle position */
    labels[1] = lv_label_create(lv_scr_act(), NULL);
    lv_obj_align(labels[1], NULL, LV_ALIGN_CENTER, 0, 0);
    lv_label_set_align(labels[1], LV_LABEL_ALIGN_CENTER);
    /* Create a label in the bottom.
    * Enable auto realign. */
   labels[2] = lv_label_create(lv_scr_act(), NULL);
    lv_obj_set_auto_realign(labels[2], true);
    lv_obj_align(labels[2], NULL, LV_ALIGN_IN_BOTTOM_MID, 0, -5);
   lv_label_set_align(labels[2], LV_LABEL_ALIGN_CENTER);
    lv_task_t * t = lv_task_create(text_changer, 1000, LV_TASK_PRIO_MID, NULL);
    lv_task_ready(t);
}
static void text_changer(lv_task_t * t)
    const char * texts[] = {"Text", "A very long text", "A text with\nmultiple\nlines
→", NULL};
    static uint8_t i = 0;
    lv_label_set_text(labels[0], texts[i]);
    lv_label_set_text(labels[1], texts[i]);
    lv_label_set_text(labels[2], texts[i]);
   /*Manually realaign `labels[1]`*/
   lv_obj_align(labels[1], NULL, LV_ALIGN_CENTER, 0, 0);
    if(texts[i] == NULL) i = 0;
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_label_long_mode_t
typedef uint8_t lv_label_align_t
typedef uint8 t lv label part t
```

Enums

enum [anonymous]

Long mode behaviors. Used in 'lv label ext t'

Values:

LV_LABEL_LONG_EXPAND

Expand the object size to the text size

LV_LABEL_LONG_BREAK

Keep the object width, break the too long lines and expand the object height

LV LABEL LONG DOT

Keep the size and write dots at the end if the text is too long

LV_LABEL_LONG_SROLL

Keep the size and roll the text back and forth

LV_LABEL_LONG_SROLL_CIRC

Keep the size and roll the text circularly

LV_LABEL_LONG_CROP

Keep the size and crop the text out of it

enum [anonymous]

Label align policy

Values:

LV_LABEL_ALIGN_LEFT

Align text to left

LV_LABEL_ALIGN_CENTER

Align text to center

LV LABEL ALIGN RIGHT

Align text to right

LV LABEL ALIGN AUTO

Use LEFT or RIGHT depending on the direction of the text (LTR/RTL)

enum [anonymous]

Label styles

Values:

LV_LABEL_PART_MAIN

Functions

```
LV_EXPORT_CONST_INT(LV_LABEL_DOT_NUM)

LV_EXPORT_CONST_INT(LV_LABEL_POS_LAST)

LV_EXPORT_CONST_INT(LV_LABEL_TEXT_SEL_OFF)

lv_obj_t *lv_label_create(lv_obj_t *par, const lv_obj_t *copy)

Create a label objects
```

Return pointer to the created button

Parameters

- par: pointer to an object, it will be the parent of the new label
- copy: pointer to a button object, if not NULL then the new object will be copied from it

```
void lv_label_set_text(lv_obj_t *label, const char *text)
```

Set a new text for a label. Memory will be allocated to store the text by the label.

Parameters

- label: pointer to a label object
- text: '\0' terminated character string. NULL to refresh with the current text.

```
void lv_label_set_text_fmt(lv_obj_t *label, const char *fmt, ...)
```

Set a new formatted text for a label. Memory will be allocated to store the text by the label.

Parameters

- label: pointer to a label object
- fmt: printf-like format

```
void lv label set array text(lv_obj_t*label, const char *array, uint16 t size)
```

Set a new text for a label from a character array. The array don't has to be '\0' terminated. Memory will be allocated to store the array by the label.

Parameters

- label: pointer to a label object
- array: array of characters or NULL to refresh the label
- size: the size of 'array' in bytes

void lv_label_set_static_text(lv_obj_t *label, const char *text)

Set a static text. It will not be saved by the label so the 'text' variable has to be 'alive' while the label exist.

Parameters

- label: pointer to a label object
- text: pointer to a text. NULL to refresh with the current text.

void lv_label_set_long_mode(lv_obj_t*label, lv_label_long_mode_t long_mode)

Set the behavior of the label with longer text then the object size

Parameters

• label: pointer to a label object

• long_mode: the new mode from 'lv_label_long_mode' enum. In LV_LONG_BREAK/LONG/ROLL the size of the label should be set AFTER this function

void lv_label_set_align(lv_obj_t *label, lv_label_align_t align)

Set the align of the label (left or center)

Parameters

- label: pointer to a label object
- align: 'LV LABEL ALIGN LEFT' or 'LV LABEL ALIGN LEFT'

void lv label set recolor(lv_obj_t*label, bool en)

Enable the recoloring by in-line commands

Parameters

- label: pointer to a label object
- en: true: enable recoloring, false: disable

void lv_label_set_anim_speed(lv_obj_t *label, uint16_t anim_speed)

Set the label's animation speed in LV_LABEL_LONG_SROLL/SCROLL_CIRC modes

Parameters

- label: pointer to a label object
- anim speed: speed of animation in px/sec unit

void lv_label_set_text_sel_start(lv_obj_t *label, uint16_t index)

Set the selection start index.

Parameters

- label: pointer to a label object.
- index: index to set. LV_LABEL_TXT_SEL_0FF to select nothing.

void lv_label_set_text_sel_end(lv_obj_t *label, uint16_t index)

Set the selection end index.

Parameters

- label: pointer to a label object.
- index: index to set. LV_LABEL_TXT_SEL_0FF to select nothing.

char *lv_label_get_text(const lv_obj_t *label)

Get the text of a label

Return the text of the label

Parameters

• label: pointer to a label object

lv label long mode tlv label get long mode(const lv obj t*label)

Get the long mode of a label

Return the long mode

Parameters

• label: pointer to a label object

lv_label_align_t lv_label_get_align(const lv_obj_t *label)

Get the align attribute

Return LV LABEL ALIGN LEFT or LV LABEL ALIGN CENTER

Parameters

• label: pointer to a label object

bool lv_label_get_recolor(const lv_obj_t *label)

Get the recoloring attribute

Return true: recoloring is enabled, false: disable

Parameters

• label: pointer to a label object

uint16_t lv_label_get_anim_speed(const lv_obj_t *label)

Get the label's animation speed in LV LABEL LONG ROLL and SCROLL modes

Return speed of animation in px/sec unit

Parameters

• label: pointer to a label object

void lv_label_get_letter_pos(const lv_obj_t *label, uint16_t index, lv_point_t *pos)

Get the relative x and y coordinates of a letter

Parameters

- label: pointer to a label object
- index: index of the letter [0 ···text length]. Expressed in character index, not byte index (different in UTF-8)
- pos: store the result here (E.g. index = 0 gives 0;0 coordinates)

uint16_t lv_label_get_letter_on(const lv_obj_t *label, lv_point_t *pos)

Get the index of letter on a relative point of a label

Return the index of the letter on the 'pos_p' point (E.g. on 0;0 is the 0. letter) Expressed in character index and not byte index (different in UTF-8)

Parameters

- label: pointer to label object
- $\bullet\,$ pos: pointer to point with coordinates on a the label

bool lv label is char under pos(const lv obj t*label, lv point t*pos)

Check if a character is drawn under a point.

Return whether a character is drawn under the point

Parameters

- label: Label object
- pos: Point to check for characte under

uint16_t lv_label_get_text_sel_start(const lv_obj_t *label)

Get the selection start index.

Return selection start index. LV LABEL TXT SEL OFF if nothing is selected.

Parameters

• label: pointer to a label object.

uint16_t lv_label_get_text_sel_end(const lv_obj_t *label)

Get the selection end index.

Return selection end index. LV LABEL TXT SEL OFF if nothing is selected.

Parameters

• label: pointer to a label object.

```
lv_style_list_t *lv_label_get_style(lv_obj_t *label, uint8_t type)
```

```
void lv label ins text(lv_obj_t *label, uint32 t pos, const char *txt)
```

Insert a text to the label. The label text can not be static.

Parameters

- label: pointer to a label object
- pos: character index to insert. Expressed in character index and not byte index (Different in UTF-8) 0: before first char. LV_LABEL_POS_LAST: after last char.
- txt: pointer to the text to insert

```
void lv_label_cut_text(lv_obj_t*label, uint32_t pos, uint32_t cnt)
```

Delete characters from a label. The label text can not be static.

Parameters

- label: pointer to a label object
- pos: character index to insert. Expressed in character index and not byte index (Different in UTF-8) 0: before first char.
- cnt: number of characters to cut

struct lv_label_ext_t

#include <lv_label.h> Data of label

Public Members

```
char *text
char *tmp_ptr
char tmp[LV_LABEL_DOT_NUM + 1]
union lv_label_ext_t::[anonymous] dot
uint16_t dot_end
uint16_t anim_speed
lv_point_t offset
lv_draw_label_hint_t hint
uint16_t sel_start
uint16_t sel_end
lv_label_long_mode_t long_mode
uint8_t static_txt
```

```
uint8_t align
uint8_t recolor
uint8_t expand
uint8_t dot_tmp_alloc
```

LED (lv_led)

Overview

The LEDs are rectangle-like (or circle) object. It's brightness can be adjusted. With lower brightness the the colors of the LED become darker.

Parts and Styles

The LEDs have only one main part, called $LV_LED_PART_MAIN$ and it uses all the typical background style properties.

Usage

Brightness

You can set their brightness with lv_led_set_bright(led, bright). The brightness should be between 0 (darkest) and 255 (lightest).

Toggle

Use $lv_led_on(led)$ and $lv_led_off(led)$ to set the brightness to a predefined ON or OFF value. The $lv_led_toggle(led)$ toggles between the ON and OFF state.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

LED with custom style

code

```
#include "lvgl/lvgl.h"
#if LV_USE_LED
void lv_ex_led_1(void)
   /*Create a LED and switch it OFF*/
   lv_obj_t * led1 = lv_led_create(lv_scr_act(), NULL);
    lv_obj_align(led1, NULL, LV_ALIGN_CENTER, -80, 0);
   lv_led_off(led1);
   /*Copy the previous LED and set a brightness*/
   lv_obj_t * led2 = lv_led_create(lv_scr_act(), led1);
   lv_obj_align(led2, NULL, LV_ALIGN_CENTER, 0, 0);
   lv_led_set_bright(led2, 190);
   /*Copy the previous LED and switch it ON*/
   lv_obj_t * led3 = lv_led_create(lv_scr_act(), led1);
    lv_obj_align(led3, NULL, LV_ALIGN_CENTER, 80, 0);
    lv_led_on(led3);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_led_part_t
```

Enums

enum [anonymous]

Values:

$$LV_LED_PART_MAIN = LV_OBJ_PART_MAIN$$

Functions

$$lv_obj_t *lv_led_create(lv_obj_t *par, const lv_obj_t *copy)$$

Create a led objects

Return pointer to the created led

Parameters

- par: pointer to an object, it will be the parent of the new led
- copy: pointer to a led object, if not NULL then the new object will be copied from it

Set the brightness of a LED object

Parameters

- led: pointer to a LED object
- bright: LV_LED_BRIGHT_MIN (max. dark) ···LV_LED_BRIGHT_MAX (max. light)

```
void lv_led_on(lv_obj_t *led)
```

Light on a LED

Parameters

• led: pointer to a LED object

Light off a LED

Parameters

• led: pointer to a LED object

void lv_led_toggle(lv_obj_t *led)

Toggle the state of a LED

Parameters

• led: pointer to a LED object

```
uint8 t lv led get bright(const lv_obj_t*led)
     Get the brightness of a LEd object
     Return bright 0 (max. dark) ···255 (max. light)
     Parameters
           • led: pointer to LED object
struct lv_led_ext_t
     Public Members
```

uint8 t bright

Line (lv_line)

Overview

The Line object is capable of drawing straight lines between a set of points.

Parts and Styles

The Line has only a main part, called LV_LABEL_PART_MAIN. It uses all the *line* style properties.

Usage

Set points

The points has to be stored in an lv_point_t array and passed to the object by the lv_line_set_points(lines, point_array, point_cnt) function.

Auto-size

It is possible to automatically set the size of the line object according to its points. It can be enable with the lv line set auto size(line, true) function. If enabled then when the points are set the object' s width and height will be changed according to the maximal x and y coordinates among the points. The auto size is enabled by default.

Invert y

By deafult, the y == 0 point is in the top of the object. It might be conter-intuitive in some cases so the y coordinates can be inverted with lv line set y invert(line, true). In this case, y == 0 will be the bottom of teh obejct. The *y invert* is disabled by default.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about *Keys*.

Example

C

Simple Line

code

```
#include "lvgl/lvgl.h"
#if LV_USE_LINE

void lv_ex_line_1(void)
{
    /*Create an array for the points of the line*/
    static lv_point_t line_points[] = { {5, 5}, {70, 70}, {120, 10}, {180, 60}, {240, ...}
    -10} };

    /*Create style*/
    static lv_style_t style_line;
    lv_style_init(&style_line);
    lv_style_set_line_width(&style_line, LV_STATE_DEFAULT, 8);
    lv_style_set_line_color(&style_line, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv_style_set_line_rounded(&style_line, LV_STATE_DEFAULT, true);

/*Create a line and apply the new style*/
    lv_obj_t * line1;
```

(continues on next page)

(continued from previous page)

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_line_style_t
```

Enums

$\textbf{enum} \ [\text{anonymous}]$

Values:

LV_LINE_PART_MAIN

Functions

```
lv\_obj\_t *lv\_line\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a line objects
```

Return pointer to the created line

Parameters

• par: pointer to an object, it will be the parent of the new line

```
void lv_line_set_points (lv_obj_t*line, const lv_point_t point_a[], uint16_t point_num) Set an array of points. The line object will connect these points.
```

Parameters

- line: pointer to a line object
- point_a: an array of points. Only the address is saved, so the array can NOT be a local variable which will be destroyed
- point num: number of points in 'point a'

```
void lv_line_set_auto_size(lv_obj_t *line, bool en)
```

Enable (or disable) the auto-size option. The size of the object will fit to its points. (set width to x max and height to y max)

Parameters

• line: pointer to a line object

• en: true: auto size is enabled, false: auto size is disabled

```
void lv_line_set_y_invert(lv_obj_t *line, bool en)
```

Enable (or disable) the y coordinate inversion. If enabled then y will be subtracted from the height of the object, therefore the y=0 coordinate will be on the bottom.

Parameters

- line: pointer to a line object
- en: true: enable the y inversion, false:disable the y inversion

bool lv_line_get_auto_size(const lv_obj_t *line)

Get the auto size attribute

Return true: auto size is enabled, false: disabled

Parameters

• line: pointer to a line object

bool lv_line_get_y_invert(const lv_obj_t *line)

Get the y inversion attribute

Return true: y inversion is enabled, false: disabled

Parameters

• line: pointer to a line object

```
struct lv_line_ext_t
```

Public Members

```
const lv_point_t *point_array
uint16_t point_num
uint8_t auto_size
uint8 t y inv
```

List (lv_list)

Overview

The Lists are built from a background *Page* and *Buttons* on it. The Buttons contain an optional icon-like *Image* (which can be a symbol too) and a *Label*. When the list becomes long enough it can be scrolled.

Parts and Styles

The List has the same parts as the Page

- LV_LIST_PART_BG
- LV LIST PART SCRL
- LV_LIST_PART_SCRLBAR
- LV LIST PART EDGE FLASH

Refer to the *Page* documentation for details.

The buttons on the list are treated as normal buttons and they only have a main part called ${\sf LV}$ BTN PART MAIN.

Usage

Add buttons

You can add new list elements (button) with lv_list_add_btn(list, &icon_img, "Text") or with symbol lv_list_add_btn(list, SYMBOL_EDIT, "Edit text"). If you do not want to add image use NULL as image source. The function returns with a pointer to the created button to allow further configurations.

The width of the buttons is set to maximum according to the object width. The height of the buttons are adjusted automatically according to the content. ($content\ height + padding_top + padding_bottom$).

The labels are created with LV_LABEL_LONG_SROLL_CIRC long mode to automatically scroll the long labels circularly.

Delete buttons

To delete a list element just use lv_obj_del(btn) on the return value of lv_list_add_btn(). To clean the list (remove all buttons) use lv list clean(list)

Manual navigation

You can navigate manually in the list with lv list up(list) and lv list down(list).

You can focus on a button directly using lv_list_focus(btn, LV_ANIM_ON/OFF).

The animation time of up/down/focus movements can be set via: lv_list_set_anim_time(list, anim_time). Zero animation time means not animations.

Layout

By default the list is vertical. To get a horizontal list use $lv_list_set_layout(list, LV_LAYOUT_ROW_MID)$.

Edge flash

A circle-like effect can be shown when the list reaches the most top or bottom position. lv list set edge flash(list, true) enables this feature.

Scroll propagation

If the list is created on an other scrollable element (like a *Page*) and the list can't be scrolled further the scrolling can be propagated to the parent. This way the scroll will be continued on the parent. It can be enabled with lv_list_set_scroll_propagation(list, true)

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Lists:

- LV_KEY_RIGHT/DOWN Select the next button
- LV_KEY_LEFT/UP Select the previous button

Note that, as usual, the state of LV_KEY_ENTER is translated to $LV_EVENT_PRESSED/PRESSING/RELEASED$ etc.

The Selected buttons are in LV_BTN_STATE_PR/TG_PR state.

To manually select a button use $lv_list_set_btn_selected(list, btn)$. When the list is defocused and focused again it will restore the last selected button.

Learn more about Keys.

Example

C

Simple List

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV USE LIST
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_CLICKED) {
       printf("Clicked: %s\n", lv_list_get_btn_text(obj));
    }
}
void lv_ex_list_1(void)
   /*Create a list*/
   lv_obj_t * list1 = lv_list_create(lv_scr_act(), NULL);
    lv obj set size(list1, 160, 200);
    lv_obj_align(list1, NULL, LV_ALIGN_CENTER, 0, 0);
   /*Add buttons to the list*/
   lv_obj_t * list_btn;
   list btn = lv list add btn(list1, LV SYMBOL FILE, "New");
   lv_obj_set_event_cb(list_btn, event_handler);
   list_btn = lv_list_add_btn(list1, LV_SYMBOL_DIRECTORY, "Open");
   lv_obj_set_event_cb(list_btn, event_handler);
    list btn = lv list add btn(list1, LV SYMBOL CLOSE, "Delete");
    lv_obj_set_event_cb(list_btn, event_handler);
    list btn = lv list add btn(list1, LV SYMBOL EDIT, "Edit");
```

(continues on next page)

(continued from previous page)

```
lv_obj_set_event_cb(list_btn, event_handler);
list_btn = lv_list_add_btn(list1, LV_SYMBOL_SAVE, "Save");
lv_obj_set_event_cb(list_btn, event_handler);
list_btn = lv_list_add_btn(list1, LV_SYMBOL_BELL, "Notify");
lv_obj_set_event_cb(list_btn, event_handler);
list_btn = lv_list_add_btn(list1, LV_SYMBOL_BATTERY_FULL, "Battery");
lv_obj_set_event_cb(list_btn, event_handler);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_list_style_t
```

Enums

```
\textbf{enum} \ [\text{anonymous}]
```

List styles.

Values:

```
LV_LIST_PART_BG = LV_PAGE_PART_BG
```

List background style

LV LIST PART SCRLBAR = LV PAGE PART SCRLBAR

List scrollbar style.

 $LV_LIST_PART_EDGE_FLASH = LV_PAGE_PART_EDGE_FLASH$

List edge flash style.

 $_LV_LIST_PART_VIRTUAL_LAST = _LV_PAGE_PART_VIRTUAL_LAST$

 $LV_LIST_PART_SCRL = LV_PAGE_PART_SCRL$

List scrollable area style.

 $_LV_LIST_PART_REAL_LAST = _LV_PAGE_PART_REAL_LAST$

Functions

```
lv\_obj\_t *lv\_list\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a list objects

Return pointer to the created list

Parameters

- par: pointer to an object, it will be the parent of the new list
- copy: pointer to a list object, if not NULL then the new object will be copied from it

void lv_list_clean(lv_obj_t *list)

Delete all children of the scrl object, without deleting scrl child.

Parameters

• list: pointer to an object

lv_obj_t *lv_list_add_btn(lv_obj_t *list, const void *img_src, const char *txt)

Add a list element to the list

Return pointer to the new list element which can be customized (a button)

Parameters

- list: pointer to list object
- img_fn : file name of an image before the text (NULL if unused)
- txt: text of the list element (NULL if unused)

bool lv_list_remove(const lv_obj_t *list, uint16_t index)

Remove the index of the button in the list

Return true: successfully deleted

Parameters

- list: pointer to a list object
- index: pointer to a the button's index in the list, index must be $0 <= index < lv_list_ext_t.size$

void lv list focus btn(lv_obj_t*list, lv_obj_t*btn)

Make a button selected

Parameters

- list: pointer to a list object
- btn: pointer to a button to select NULL to not select any buttons

static void lv list set sb mode(lv obj t*list, lv scrlbar mode t mode)

Set the scroll bar mode of a list

Parameters

- list: pointer to a list object
- **sb mode**: the new mode from 'lv_page_sb_mode_t' enum

static void lv list set scroll propagation(lv_obj_t*list, bool en)

Enable the scroll propagation feature. If enabled then the List will move its parent if there is no more space to scroll.

Parameters

- list: pointer to a List
- en: true or false to enable/disable scroll propagation

static void lv list set edge flash(lv obj t*list, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- list: pointer to a List
- en: true or false to enable/disable end flash

$\textbf{static} \ \operatorname{void} \ \textbf{lv_list_set_anim_time} (\textit{lv_obj_t} \ * \textit{list}, \ \operatorname{uint16_t} \ \textit{anim_time})$

Set scroll animation duration on 'list up()' 'list down()' 'list focus()'

Parameters

- list: pointer to a list object
- anim time: duration of animation [ms]

void lv list set layout(lv_obj_t*list, lv_layout_t layout)

Set layout of a list

Parameters

- list: pointer to a list object
- layout: which layout should be used

const char *lv_list_get_btn_text(const lv_obj_t *btn)

Get the text of a list element

Return pointer to the text

Parameters

• btn: pointer to list element

lv_obj_t *lv_list_get_btn_label(const lv_obj_t *btn)

Get the label object from a list element

Return pointer to the label from the list element or NULL if not found

Parameters

• btn: pointer to a list element (button)

lv_obj_t *lv_list_get_btn_img(const lv_obj_t *btn)

Get the image object from a list element

Return pointer to the image from the list element or NULL if not found

Parameters

• btn: pointer to a list element (button)

$lv_obj_t *lv_list_get_prev_btn(const lv_obj_t *list, lv_obj_t *prev_btn)$

Get the next button from list. (Starts from the bottom button)

Return pointer to the next button or NULL when no more buttons

Parameters

- list: pointer to a list object
- prev btn: pointer to button. Search the next after it.

$\mathit{lv_obj_t} * \texttt{lv_list_get_next_btn} (\texttt{const} \ \mathit{lv_obj_t} * \mathit{list}, \ \mathit{lv_obj_t} * \mathit{prev_btn})$

Get the previous button from list. (Starts from the top button)

Return pointer to the previous button or NULL when no more buttons

Parameters

- list: pointer to a list object
- prev btn: pointer to button. Search the previous before it.

int32_t lv_list_get_btn_index(const lv_obj_t *list, const lv_obj_t *btn)

Get the index of the button in the list

Return the index of the button in the list, or -1 of the button not in this list

Parameters

- list: pointer to a list object. If NULL, assumes btn is part of a list.
- btn: pointer to a list element (button)

uint16_t lv_list_get_size(const lv_obj_t *list)

Get the number of buttons in the list

Return the number of buttons in the list

Parameters

• list: pointer to a list object

lv_obj_t *lv_list_get_btn_selected(const lv_obj_t *list)

Get the currently selected button. Can be used while navigating in the list with a keypad.

Return pointer to the selected button

Parameters

• list: pointer to a list object

lv_layout_t lv_list_get_layout(lv_obj_t *list)

Get layout of a list

Return layout of the list object

Parameters

• list: pointer to a list object

static lv_scrlbar_mode_t lv_list_get_sb_mode(const lv_obj_t *list)

Get the scroll bar mode of a list

Return scrollbar mode from 'lv_page_sb_mode_t' enum

Parameters

• list: pointer to a list object

static bool lv list get scroll propagation(lv obj t*list)

Get the scroll propagation property

Return true or false

Parameters

• list: pointer to a List

static bool lv_list_get_edge_flash(lv_obj_t *list)

Get the scroll propagation property

Return true or false

Parameters

• list: pointer to a List

static uint16_t lv_list_get_anim_time(const lv_obj_t *list)

Get scroll animation duration

Return duration of animation [ms]

Parameters

• list: pointer to a list object

```
void lv_list_up(const lv_obj_t *list)
```

Move the list elements up by one

Parameters

• list: pointer a to list object

void lv_list_down(const lv_obj_t *list)

Move the list elements down by one

Parameters

• list: pointer to a list object

```
void lv_list_focus(const lv_obj_t *btn, lv_anim_enable_t anim)
```

Focus on a list button. It ensures that the button will be visible on the list.

Parameters

- btn: pointer to a list button to focus
- anim: LV_ANOM_ON: scroll with animation, LV_ANIM_OFF: without animation

struct lv_list_ext_t

Public Members

```
lv_page_ext_t page
lv_obj_t *last_sel_btn
lv_obj_t *act sel btn
```

Line meter (lv_lmeter)

Overview

The Line meter object consists of some radial lines which draw a scale. Setting a value for the Line meter will change the color of the scale lines proportionally.

Parts and Styles

The Line meter has only a main part, called LV_LINEMETER_PART_MAIN. It uses all the typical background properties the draw a rectangle-like or circle background and the *line* and *scale* properties to draw the scale lines. The active lines (which are related to smaller values the the current value) are colored from *line_color* to *scale_grad_color*. The lines in the end (after the current value) are set to *scale_end_color* color.

Usage

Set value

When setting a new value with lv_linemeter_set_value(linemeter, new_value) the proportional part of the scale will be recolored.

Range and Angles

The lv_linemeter_set_range(linemeter, min, max) function sets the range of the line meter.

You can set the angle of the scale and the number of the lines by: lv_linemeter_set_scale(linemeter, angle, line_num). The default angle is 240 and the default line number is 31.

Angle offset

By default the scale angle is interpreted symmetrically to the y axis. It results in "standing" line meter. With <code>lv_linemeter_set_angle_offset</code> an offset can be added the scale angle. It can used e.g to put a quarter line meter into a corner or a half line meter to the right or left side.

Mirror

By default the Line meter's lines are activated clock-wise. It can be changed using lv_linemeter_set_mirror(linemeter, true/false).

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about Keys.

Example

C

Simple Line meter

code

```
#include "lvgl/lvgl.h"
#if LV_USE_LINEMETER
void lv_ex_linemeter_1(void)
    /*Create a line meter */
   lv_obj_t * lmeter;
    lmeter = lv_linemeter_create(lv_scr_act(), NULL);
    lv_linemeter_set_range(lmeter, 0, 100);
                                                              /*Set the range*/
    lv_linemeter_set_value(lmeter, 80);
                                                              /*Set the current
→value*/
   lv_linemeter_set_scale(lmeter, 240, 21);
                                                              /*Set the angle and
→number of lines*/
   lv_obj_set_size(lmeter, 150, 150);
    lv_obj_align(lmeter, NULL, LV_ALIGN_CENTER, 0, 0);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_linemeter_part_t

Enums

enum [anonymous]

Values:

```
LV_LINEMETER_PART_MAIN
_LV_LINEMETER_PART_VIRTUAL_LAST
_LV_LINEMETER_PART_REAL_LAST = _LV_OBJ_PART_REAL_LAST
```

Functions

```
lv_obj_t *lv_linemeter_create(lv_obj_t *par, const lv_obj_t *copy)
```

Create a line meter objects

Return pointer to the created line meter

Parameters

- par: pointer to an object, it will be the parent of the new line meter
- copy: pointer to a line meter object, if not NULL then the new object will be copied from it

```
void lv_linemeter_set_value(lv_obj_t *lmeter, int32_t value)
```

Set a new value on the line meter

Parameters

- lmeter: pointer to a line meter object
- value: new value

```
void lv_linemeter_set_range(lv_obj_t *lmeter, int32_t min, int32_t max)
```

Set minimum and the maximum values of a line meter

Parameters

- lmeter: pointer to he line meter object
- min: minimum value
- max: maximum value

```
void lv_linemeter_set_scale(lv_obj_t *lmeter, uint16_t angle, uint16_t line_cnt)
```

Set the scale settings of a line meter

Parameters

- lmeter: pointer to a line meter object
- angle: angle of the scale (0..360)
- line_cnt: number of lines

$void \ \textbf{lv_linemeter_set_angle_offset} (\textit{lv_obj_t *lmeter}, \ uint16_t \ \textit{angle})$

Set the set an offset for the line meter's angles to rotate it.

Parameters

- lmeter: pointer to a line meter object
- angle: angle offset (0..360), rotates clockwise

```
void lv_linemeter_set_mirror(lv_obj_t *lmeter, bool mirror)
```

Set the orientation of the meter growth, clockwise or counterclockwise (mirrored)

Parameters

- lmeter: pointer to a line meter object
- mirror: mirror setting

int32_t lv_linemeter_get_value(const lv_obj_t *lmeter)

Get the value of a line meter

Return the value of the line meter

Parameters

• lmeter: pointer to a line meter object

int32_t lv_linemeter_get_min_value(const lv_obj_t *lmeter)

Get the minimum value of a line meter

Return the minimum value of the line meter

Parameters

• lmeter: pointer to a line meter object

int32_t lv_linemeter_get_max_value(const lv_obj_t *lmeter)

Get the maximum value of a line meter

Return the maximum value of the line meter

Parameters

• lmeter: pointer to a line meter object

uint16_t lv_linemeter_get_line_count(const lv_obj_t *lmeter)

Get the scale number of a line meter

Return number of the scale units

Parameters

• lmeter: pointer to a line meter object

uint16_t lv_linemeter_get_scale_angle(const lv_obj_t *lmeter)

Get the scale angle of a line meter

Return angle of the scale

Parameters

• lmeter: pointer to a line meter object

uint16 tlv linemeter get angle offset(lv obj t*lmeter)

Get the offset for the line meter.

Return angle offset (0..360)

Parameters

• lmeter: pointer to a line meter object

void lv linemeter draw scale(lv obj t*lmeter, const lv area t*clip_area, uint8 t part)

bool lv_linemeter_get_mirror(lv_obj_t *lmeter)

get the mirror setting for the line meter

Return mirror (true or false)

Parameters

• lmeter: pointer to a line meter object

struct lv_linemeter_ext_t

Public Members

```
uint16_t scale_angle
uint16_t angle_ofs
uint16_t line_cnt
int32_t cur_value
int32_t min_value
int32_t max_value
uint8 t mirrored
```

Message box (Iv_msdbox)

Overview

The Message boxes act as pop-ups. They are built from a background *Container*, a *Label* and a *Button* matrix for buttons.

The text will be broken into multiple lines automatically (has $LV_LABEL_LONG_MODE_BREAK$) and the height will be set automatically to involve the text and the buttons (LV_FIT_TIGHT fit vertically)-

Parts and Styles

The Message box's main part is called LV_MSGBOX_PART_MAIN and it uses all the typical background style properties. Using padding will add space on the sides. *pad_inner* will add space between the text and the buttons. The *label* style properties affect the style of text.

The buttons parts are the same as in case of Button matrix:

- LV_MSGBOX_PART_BTN_BG the background of the buttons
- LV MSGBOX PART BTN the buttons

Usage

Set text

To set the text use the $lv_msgbox_set_text(msgbox, "My text")$ function. Not only the pointer of the text will be saved, so the text can be in a local variable too.

Add buttons

To add buttons use the $v_msgbox_add_btns(msgbox, btn_str)$ function. The button's text needs to be specified like const char * $btn_str[] = {"Apply", "Close", ""}$. For more information visit the $Button\ matrix\ documentation$.

The button matrix will be created only when lv_msgbox_add_btns() is called for the first time.

Auto-close

With lv_msgbox_start_auto_close(mbox, delay) the message box can be closed automatically after delay milliseconds with an animation. The lv_mbox_stop_auto_close(mbox) function stops a started auto close.

The duration of the close animation can be set by lv_mbox_set_anim_time(mbox, anim_time).

Events

Besides the Generic events the following Special events are sent by the Message boxes:

• LV_EVENT_VALUE_CHANGED sent when the button is clicked. The event data is set to ID of the clicked button.

The Message box has a default event callback which closes itself when a button is clicked.

Learn more about *Events*.

##Keys

The following *Keys* are processed by the Buttons:

- LV_KEY_RIGHT/DOWN Select the next button
- LV_KEY_LEFT/TOP Select the previous button
- LV_KEY_ENTER Clicks the selected button

Learn more about *Keys*.

Example

C

Simple Message box

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_MSGBOX
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
       printf("Button: %s\n", lv_msgbox_get_active_btn_text(obj));
    }
}
void lv_ex_msgbox_1(void)
    static const char * btns[] ={"Apply", "Close", ""};
    lv_obj_t * mbox1 = lv_msgbox_create(lv_scr_act(), NULL);
    lv_msgbox_set_text(mbox1, "A message box with two buttons.");
    lv_msgbox_add_btns(mbox1, btns);
    lv obj set width(mbox1, 200);
    lv_obj_set_event_cb(mbox1, event_handler);
    lv_obj_align(mbox1, NULL, LV_ALIGN_CENTER, 0, 0); /*Align to the corner*/
}
#endif
```

Modal

Welcome to the modal message box demo! Press the button to display a message

code

```
#include "lvgl/lvgl.h"
#if LV USE MSGBOX
static void mbox_event_cb(lv_obj_t *obj, lv_event_t evt);
static void btn_event_cb(lv_obj_t *btn, lv_event_t evt);
static void opa anim(void * bg, lv anim value t v);
static lv obj t *mbox, *info;
static lv_style_t style_modal;
static const char welcome_info[] = "Welcome to the modal message box demo!\n"
        "Press the button to display a message box.";
static const char in_msg_info[] = "Notice that you cannot touch "
        "the button again while the message box is open.";
void lv ex msqbox 2(void)
    lv_style_init(&style_modal);
    lv_style_set_bg_color(&style_modal, LV_STATE_DEFAULT, LV_COLOR_BLACK);
    /* Create a button, then set its position and event callback */
    lv obj t *btn = lv btn create(lv scr act(), NULL);
    lv_obj_set_size(btn, 200, 60);
    lv_obj_set_event_cb(btn, btn_event_cb);
   lv_obj_align(btn, NULL, LV_ALIGN_IN_TOP_LEFT, 20, 20);
   /* Create a label on the button */
   lv obj t *label = lv label create(btn, NULL);
    lv label set text(label, "Display a message box!");
```

(continues on next page)

(continued from previous page)

```
/* Create an informative label on the screen */
    info = lv_label_create(lv_scr_act(), NULL);
    lv_label_set_text(info, welcome_info);
    lv_label_set_long_mode(info, LV_LABEL_LONG_BREAK); /* Make sure text will wrap */
    lv obj set width(info, LV HOR RES - 10);
    lv_obj_align(info, NULL, LV_ALIGN_IN_BOTTOM_LEFT, 5, -5);
}
static void mbox_event_cb(lv_obj_t *obj, lv_event_t evt)
    if(evt == LV EVENT DELETE && obj == mbox) {
        /* Delete the parent modal background */
        lv_obj_del_async(lv_obj_get_parent(mbox));
        mbox = NULL; /* happens before object is actually deleted! */
        lv_label_set_text(info, welcome_info);
    } else if(evt == LV_EVENT_VALUE_CHANGED) {
        /* A button was clicked */
        lv_msgbox_start_auto_close(mbox, 0);
    }
}
static void btn_event_cb(lv_obj_t *btn, lv_event_t evt)
    if(evt == LV EVENT CLICKED) {
        /* Create a full-screen background */
        /* Create a base object for the modal background */
        lv_obj_t *obj = lv_obj_create(lv_scr_act(), NULL);
        lv_obj_reset_style_list(obj, LV_OBJ_PART_MAIN);
        lv obj add style(obj, LV OBJ PART MAIN, &style modal);
        lv_obj_set_pos(obj, 0, 0);
        lv_obj_set_size(obj, LV_HOR_RES, LV_VER_RES);
        static const char * btns2[] = {"0k", "Cancel", ""};
        /* Create the message box as a child of the modal background */
        mbox = lv msgbox create(obj, NULL);
        lv msgbox add btns(mbox, btns2);
        lv_msgbox_set_text(mbox, "Hello world!");
        lv obj align(mbox, NULL, LV ALIGN CENTER, 0, 0);
        lv_obj_set_event_cb(mbox, mbox_event_cb);
        /* Fade the message box in with an animation */
        lv anim t a;
        lv anim init(\&a);
        lv_anim_set_var(&a, obj);
        lv_anim_set_time(&a, 500);
        lv_anim_set_values(&a, LV_OPA_TRANSP, LV_OPA_50);
        lv_anim_set_exec_cb(&a, (lv_anim_exec_xcb_t)opa_anim);
        lv anim start(&a);
        lv label set text(info, in msg info);
        lv obj align(info, NULL, LV ALIGN IN BOTTOM LEFT, 5, -5);
    }
}
```

(continues on next page)

(continued from previous page)

```
static void opa_anim(void * bg, lv_anim_value_t v)
{
    lv_obj_set_style_local_bg_opa(bg, LV_OBJ_PART_MAIN, LV_STATE_DEFAULT, v);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_msgbox_style_t
```

Enums

enum [anonymous]

Message box styles.

Values:

```
\label{eq:lv_msgbox_part_bg} \begin{split} \mathbf{LV\_MSGBOX\_PART\_BG} &= \mathit{LV\_CONT\_PART\_MAIN} \\ \mathbf{LV\_MSGBOX\_PART\_BTN\_BG} &= \mathit{_LV\_CONT\_PART\_REAL\_LAST} \\ \mathbf{LV\_MSGBOX\_PART\_BTN} \end{split}
```

Functions

```
lv\_obj\_t *lv\_msgbox\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a message box objects

Return pointer to the created message box

Parameters

- par: pointer to an object, it will be the parent of the new message box
- copy: pointer to a message box object, if not NULL then the new object will be copied from it

```
void lv_msgbox_add_btns(lv_obj_t*mbox, const char*btn_mapaction[]) Add button to the message box
```

Parameters

- mbox: pointer to message box object
- btn_map : button descriptor (button matrix map). E.g. a const char *txt[] = { "ok", "close", ""} (Can not be local variable)

void lv_msgbox_set_text(lv_obj_t *mbox, const char *txt)

Set the text of the message box

Parameters

- mbox: pointer to a message box
- txt: a '\0' terminated character string which will be the message box text

void lv msgbox set anim time(lv obj t*mbox, uint16 t anim time)

Set animation duration

Parameters

- mbox: pointer to a message box object
- anim time: animation length in milliseconds (0: no animation)

void lv_msgbox_start_auto_close(lv_obj_t *mbox, uint16_t delay)

Automatically delete the message box after a given time

Parameters

- mbox: pointer to a message box object
- delay: a time (in milliseconds) to wait before delete the message box

void lv_msgbox_stop_auto_close(lv_obj_t*mbox)

Stop the auto. closing of message box

Parameters

• mbox: pointer to a message box object

${\tt void}~ \textbf{lv_msgbox_set_style} (\textit{lv_obj_t}~*mbox, \textit{lv_msgbox_style_t}~ type, \textbf{const}~ \text{lv_style_t}~*style\textbf{)}$

Set a style of a message box

Parameters

- mbox: pointer to a message box object
- type: which style should be set
- style: pointer to a style

void lv_msgbox_set_recolor(lv_obj_t *mbox, bool en)

Set whether recoloring is enabled. Must be called after lv msqbox add btns.

Parameters

- btnm: pointer to button matrix object
- en: whether recoloring is enabled

const char *lv_msgbox_get_text(const lv_obj_t *mbox)

Get the text of the message box

Return pointer to the text of the message box

Parameters

• **mbox**: pointer to a message box object

uint16_t lv_msgbox_get_active_btn(lv_obj_t*mbox)

Get the index of the lastly "activated" button by the user (pressed, released etc) Useful in the the ${\tt event_cb}$.

Return index of the last released button (LV_BTNMATRIX_BTN_NONE: if unset)

Parameters

• btnm: pointer to button matrix object

const char *lv_msgbox_get_active_btn_text(lv_obj_t *mbox)

Get the text of the lastly "activated" button by the user (pressed, released etc) Useful in the the event_cb.

Return text of the last released button (NULL: if unset)

Parameters

• btnm: pointer to button matrix object

uint16_t lv_msgbox_get_anim_time(const $lv_obj_t *mbox$)

Get the animation duration (close animation time)

Return animation length in milliseconds (0: no animation)

Parameters

• mbox: pointer to a message box object

bool lv_msgbox_get_recolor(const lv_obj_t *mbox)

Get whether recoloring is enabled

Return whether recoloring is enabled

Parameters

• mbox: pointer to a message box object

lv_obj_t *lv_msgbox_get_btnmatrix(lv_obj_t *mbox)

Get message box button matrix

Return pointer to button matrix object

Remark return value will be NULL unless lv_msgbox_add_btns has been already called

Parameters

• mbox: pointer to a message box object

struct lv msgbox ext t

Public Members

```
\begin{array}{l} lv\_cont\_ext\_t \ \ \mathbf{bg} \\ \\ lv\_obj\_t \ ^*\mathbf{text} \\ \\ lv\_obj\_t \ ^*\mathbf{btnm} \\ \\ \\ \mathbf{uint}16\_t \ \mathbf{anim\_time} \end{array}
```

Object mask (lv_objmask)

Overview

The *Object mask* is capable of add some mask to drawings when its children is drawn.

Parts and Styles

The Object mask has only a main part called LV_OBJMASK_PART_BG and it uses the typical background style properties.

Usage

Adding mask

Before adding a mask to the *Object mask* the mask should be initialized:

```
lv_draw_mask_<type>_param_t mask_param;
lv_draw_mask_<type>_init(&mask_param, ...);
lv_objmask_mask_t * mask_p = lv_objmask_add_mask(objmask, &mask_param);
```

Lvgl supports the following mask types:

- line clip the pixels on the top/bottom left/right of a line. Can be initialized from two points or a point and an angle:
- angle keep the pixels only between a given start and end angle
- radius keep the pixel only inside a rectangle which can have radius (can for a circle too). Can be inverted to keep the pixel outside of the rectangle.
- fade fade vertically (change the pixels opacity according to their y position)
- map use an alpha mask (a byte array) to describe the pixels opacity.

The coordinates in the mask are relative to the Object. That is if the object moves the masks move with it. For the details of the mask init function see the API documentation below.

Update mask

AN existing mask can be updated with $lv_objmask_update_mask(objmask, mask_p, new_param)$, where $mask_p$ is return value of $lv_objmask_add_mask$.

Remove mask

A mask can be removed with lv objmask remove mask(objmask, mask p)

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No Keys are processed by the object type.

Learn more about Keys.

Example

C

Several object masks

code

```
#include "lvgl/lvgl.h"
#if LV_USE_OBJMASK
void lv_ex_objmask_1(void)
    /*Set a very visible color for the screen to clearly see what happens*/
    lv_obj_set_style_local_bg_color(lv_scr_act(), LV_OBJ_PART_MAIN, LV_STATE_DEFAULT,_
→lv_color_hex3(0xf33));
    lv_obj_t * om = lv_objmask_create(lv_scr_act(), NULL);
    lv_obj_set_size(om, 200, 200);
    lv_obj_align(om, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_t * label = lv_label_create(om, NULL);
    lv_label_set_long_mode(label, LV_LABEL_LONG_BREAK);
    lv_label_set_align(label, LV_LABEL_ALIGN_CENTER);
    lv_obj_set_width(label, 180);
    lv_label_set_text(label, "This label will be masked out. See how it works.");
    lv obj align(label, NULL, LV ALIGN IN TOP MID, 0, 20);
    lv_obj_t * cont = lv_cont_create(om, NULL);
    lv obj set size(cont, 180, 100);
    lv_obj_set_drag(cont, true);
    lv_obj_align(cont, NULL, LV_ALIGN_IN_BOTTOM_MID, 0, -10);
```

(continues on next page)

(continued from previous page)

```
lv_obj_t * btn = lv_btn_create(cont, NULL);
    lv_obj_align(btn, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_style_local_value_str(btn, LV_BTN_PART_MAIN, LV_STATE_DEFAULT, "Button")
");
   uint32 t t;
    lv_refr_now(NULL);
    t = lv_tick_get();
   while(lv_tick_elaps(t) < 1000);</pre>
    lv area_t a;
    lv_draw_mask_radius_param_t r1;
   a.x1 = 10;
   a.y1 = 10;
    a.x2 = 190;
    a.y2 = 190;
    lv draw mask radius init(&r1, &a, LV RADIUS CIRCLE, false);
    lv_objmask_add_mask(om, &r1);
    lv refr now(NULL);
    t = lv_tick_get();
   while(lv_tick_elaps(t) < 1000);</pre>
    a.x1 = 100;
    a.v1 = 100;
    a.x2 = 150;
    a.y2 = 150;
    lv_draw_mask_radius_init(&r1, &a, LV_RADIUS_CIRCLE, true);
    lv_objmask_add_mask(om, &r1);
    lv refr now(NULL);
    t = lv_tick_get();
    while(lv_tick_elaps(t) < 1000);</pre>
    lv_draw_mask_line_param_t l1;
    lv_draw_mask_line_points init(&l1, 0, 0, 100, 200, LV_DRAW_MASK_LINE_SIDE_TOP);
    lv objmask add mask(om, &l1);
    lv refr now(NULL);
    t = lv tick get();
   while(lv_tick_elaps(t) < 1000);</pre>
    lv draw mask fade param t f1;
    a.x1 = 100;
    a.y1 = 0;
    a.x2 = 200;
    a.y2 = 200;
    lv draw mask fade init(&f1, &a, LV OPA TRANSP, 0, LV OPA COVER, 150);
    lv_objmask_add_mask(om, &f1);
}
#endif
```

Text mask

Text with gradient

code

```
#include "lvgl/lvgl.h"
#if LV_USE_OBJMASK
#define MASK WIDTH 100
#define MASK HEIGHT 50
void lv_ex_objmask_2(void)
    /* Create the mask of a text by drawing it to a canvas*/
   static lv opa t mask map[MASK WIDTH * MASK HEIGHT];
   /*Create a "8 bit alpha" canvas and clear it*/
   lv_obj_t * canvas = lv_canvas_create(lv_scr_act(), NULL);
   lv canvas set buffer(canvas, mask map, MASK WIDTH, MASK HEIGHT, LV IMG CF ALPHA
   lv_canvas_fill_bg(canvas, LV_COLOR_BLACK, LV_OPA_TRANSP);
   /*Draw a label to the canvas. The result "image" will be used as mask*/
   lv draw label dsc t label dsc;
    lv_draw_label_dsc_init(&label_dsc);
    label dsc.color = LV COLOR WHITE;
    lv canvas draw text(canvas, 5, 5, MASK WIDTH, &label dsc, "Text with gradient",,
→LV LABEL ALIGN CENTER);
    /*The mask is reads the canvas is not required anymore*/
   lv_obj_del(canvas);
   /*Create an object mask which will use the created mask*/
    lv obj t * om = lv objmask create(lv scr act(), NULL);
    lv obj set size(om, MASK WIDTH, MASK HEIGHT);
```

(continues on next page)

(continued from previous page)

```
lv_obj_align(om, NULL, LV_ALIGN_CENTER, 0, 0);
    /*Add the created mask map to the object mask*/
    lv_draw_mask_map_param_t m;
    lv area t a;
    a.\overline{x}1 = \overline{0};
    a.y1 = 0;
    a.x2 = MASK_WIDTH - 1;
    a.y2 = MASK_HEIGHT - 1;
    lv_draw_mask_map_init(&m, &a, mask_map);
    lv_objmask_add_mask(om, &m);
    /*Create a style with gradient*/
    static lv_style_t style_bg;
    lv_style_init(&style_bg);
    lv_style_set_bg_opa(&style_bg, LV_STATE_DEFAULT, LV_OPA_COVER);
    lv_style_set_bg_color(&style_bg, LV_STATE_DEFAULT, LV_COLOR_RED);
    lv_style_set_bg_grad_color(&style_bg, LV_STATE_DEFAULT, LV_COLOR_BLUE);
    lv_style_set_bg_grad_dir(&style_bg, LV_STATE_DEFAULT, LV_GRAD_DIR_HOR);
    /* Create and object with the gradient style on the object mask.
     * The text will be masked from the gradient*/
    lv_obj_t * bg = lv_obj_create(om, NULL);
    lv_obj_reset_style_list(bg, LV_OBJ_PART_MAIN);
    lv obj add style(bg, LV OBJ PART MAIN, &style bg);
    lv obj set size(bg, MASK WIDTH, MASK HEIGHT);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_objmask_part_t
```

Enums

```
enum [anonymous]
    Values:
    LV OBJMASK PART MAIN
```

Functions

```
lv\_obj\_t *lv\_obj\_ask\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a object mask objects
```

Return pointer to the created object mask

Parameters

- par: pointer to an object, it will be the parent of the new object mask
- COPY: pointer to a object mask object, if not NULL then the new object will be copied from it

```
\mathit{lv\_objmask\_mask\_t} * \texttt{lv\_objmask\_add\_mask(} \mathit{lv\_obj\_t} * \mathit{objmask}, \mathit{void} * \mathit{param} \texttt{)}
```

Add a mask

Return pointer to the added mask

Parameters

- objmask: pointer to an Object mask object
- param: an initialized mask parameter

```
\label{eq:conditional} \mbox{void $\ensuremath{\textbf{lv}}\_objmask\_update\_mask($\ensuremath{\textit{lv}}\_obj\_t$ *$\ensuremath{\textit{obj}}\_t$ *$\ensuremath{\textit{obj}}\_t$ *$\ensuremath{\textit{obj}}\_mask\_mask\_t$ *$\ensuremath{\textit{mask}}\_t$ *$\ensuremath{\textit{mask}}$, void *$\ensuremath{\textit{param}}$) }
```

Update an already created mask

Parameters

- objmask: pointer to an Object mask object
- mask: pointer to created mask (returned by lv_objmask_add_mask)
- param: an initialized mask parameter (initialized by lv_draw_mask_line/angle/.../init)

```
void lv_objmask_remove_mask(lv_obj_t*objmask, lv_objmask_mask_t*mask)
```

Remove a mask

Parameters

- objmask: pointer to an Object mask object
- mask: pointer to created mask (returned by lv_objmask_add_mask) If NULL passed all
 masks will be deleted.

```
struct lv_objmask_mask_t
```

```
Public Members
```

void *param

```
struct lv_objmask_ext_t
```

Public Members

```
\begin{array}{c} lv\_cont\_ext\_t \text{ cont} \\ lv\_ll\_t \text{ mask\_ll} \end{array}
```

Typedefs

```
typedef uint8_t lv_draw_mask_res_t
typedef uint8_t lv_draw_mask_type_t
```

ly coord t

*mask buf,

```
abs_x, lv_coord_t abs_y, lv_coord_t
                                                     len, void *p)
typedef uint8_t lv_draw_mask_line_side_t
typedef struct _lv_draw_mask_map_param_t lv_draw_mask_map_param_t
Enums
enum [anonymous]
     Values:
    LV DRAW MASK RES FULL TRANSP
    LV_DRAW_MASK_RES_FULL_COVER
    LV DRAW MASK RES CHANGED
    LV DRAW MASK RES UNKNOWN
enum [anonymous]
     Values:
    LV_DRAW_MASK_TYPE_LINE
    LV_DRAW_MASK_TYPE_ANGLE
    LV_DRAW_MASK_TYPE_RADIUS
    LV_DRAW_MASK_TYPE_FADE
    LV DRAW MASK TYPE MAP
enum [anonymous]
     Values:
    LV\_DRAW\_MASK\_LINE\_SIDE\_LEFT = 0
    LV DRAW MASK LINE SIDE RIGHT
    LV DRAW MASK LINE SIDE TOP
    LV DRAW MASK LINE SIDE BOTTOM
Functions
int16_t lv_draw_mask_add(void *param, void *custom_id)
    Add a draw mask. Everything drawn after it (until removing the mask) will be affected by the mask.
    Return the an integer, the ID of the mask. Can be used in lv draw mask remove id.
    Parameters
          • param: an initialized mask parameter. Only the pointer is saved.
          custom id:
                                 custom
                                          pointer
                                                        identify
                                                                  the
                                                                       mask.
                                                                                    Used
                             a
             lv draw mask remove custom.
lv_draw_mask_res_t lv_draw_mask_apply(lv_opa_t
                                                      *mask\_buf,
                                                                    lv coord t
                                                                                  abs_x x,
    lv_coord_t abs_y, lv_coord_t len)
Apply the added buffers on a line. Used internally by the library's drawing routines.
    Return Oneof these values:
```

typedef lv draw mask res_t (*lv draw mask cb t)(lv opa t

- \bullet LV_DRAW_MASK_RES_FULL_TRANSP: the whole line is transparent. <code>mask_buf</code> is not set to zero
- LV_DRAW_MASK_RES_FULL_COVER: the whole line is fully visible. mask_buf is unchanged
- LV_DRAW_MASK_RES_CHANGED: mask_buf has changed, it shows the desired opacity of each pixel in the given line

Parameters

- $mask_buf$: store the result mask here. Has to be len byte long. Should be initialized with 0xFF.
- abs x: absolute X coordinate where the line to calculate start
- abs_y: absolute Y coordinate where the line to calculate start
- len: length of the line to calculate (in pixel count)

void *lv draw mask remove id(int16 t id)

Remove a mask with a given ID

Return the parameter of the removed mask. If more masks have custom_id ID then the last mask's parameter will be returned

Parameters

• id: the ID of the mask. Returned by lv draw mask add

void *lv draw mask remove custom(void *custom id)

Remove all mask with a given custom ID

Return return the parameter of the removed mask. If more masks have custom_id ID then the last mask's parameter will be returned

Parameters

• custom_id: a pointer used in lv_draw_mask_add

uint8_t lv_draw_mask_get_cnt(void)

Count the currently added masks

Return number of active masks

Initialize a line mask from two points.

Parameters

- param: pointer to a lv_draw_mask_param_t to initialize
- plx: X coordinate of the first point of the line
- ply: Y coordinate of the first point of the line
- p2x: X coordinate of the second point of the line
- p2y: y coordinate of the second point of the line
- side: and element of lv_draw_mask_line_side_t to describe which side to keep. With LV_DRAW_MASK_LINE_SIDE_LEFT/RIGHT and horizontal line all pixels are kept With LV_DRAW_MASK_LINE_SIDE_TOP/BOTTOM and vertical line all pixels are kept

Initialize a line mask from a point and an angle.

Parameters

- param: pointer to a lv_draw_mask_param_t to initialize
- px: X coordinate of a point of the line
- py: X coordinate of a point of the line
- angle: right 0 deg, bottom: 90
- side: and element of lv_draw_mask_line_side_t to describe which side to keep. With LV_DRAW_MASK_LINE_SIDE_LEFT/RIGHT and horizontal line all pixels are kept With LV_DRAW_MASK_LINE_SIDE_TOP/BOTTOM and vertical line all pixels are kept

Initialize an angle mask.

Parameters

- param: pointer to a lv draw mask param t to initialize
- vertex_x: X coordinate of the angle vertex (absolute coordinates)
- vertex_y: Y coordinate of the angle vertex (absolute coordinates)
- start_angle: start angle in degrees. 0 deg on the right, 90 deg, on the bottom
- end angle: end angle

```
void lv_draw_mask_radius_init(\(lv_draw_mask_radius_param_t *param, const \) lv_area_t *rect, \(lv_coord_t radius, bool inv)\)
Initialize a fade mask.
```

Parameters

- param: param pointer to a lv_draw_mask_param_t to initialize
- rect: coordinates of the rectangle to affect (absolute coordinates)
- radius: radius of the rectangle
- inv: true: keep the pixels inside teh rectangle; keep teh pixels outside of the rectangle

```
void lv_draw_mask_fade_init(lv_draw_mask_fade_param_t *param, const lv_area_t *coords, lv_opa_t opa_top, lv_coord_t y_top, lv_opa_t opa_bottom, lv_coord_t y_bottom)
```

Initialize a fade mask.

Parameters

- param: pointer to a lv_draw_mask_param_t to initialize
- coords: coordinates of the area to affect (absolute coordinates)
- opa top: opacity on the top
- y top: at which coordinate start to change to opacity to opa bottom
- opa_bottom: opacity at the bottom
- y bottom: at which coordinate reach opa bottom.

```
void lv draw mask map init(lv draw mask map param t*param, const lv area t*coords,
                              const ly opa t *map)
    Initialize a map mask.
    Parameters
          • param: pointer to a lv draw mask param t to initialize
          • coords: coordinates of the map (absolute coordinates)
          • map: array of bytes with the mask values
struct lv_draw_mask_common_dsc_t
    Public Members
    lv\_draw\_mask\_cb\_t cb
    lv_draw_mask_type_t type
struct lv draw mask line param t
    Public Members
    lv\_draw\_mask\_common\_dsc\_t dsc
    lv point t p1
    lv\_point\_t p2
    lv draw mask line side t side
    struct lv draw mask line param t::[anonymous] cfg
    lv_point_t origo
    int32_t xy_steep
    int32_t yx_steep
    int32_t steep
    int32\_t spx
    uint8 t flat
    uint8 t inv
struct lv_draw_mask_angle_param_t
    Public Members
    lv draw mask common dsc t dsc
    lv point t vertex p
    ly coord t start angle
    lv_coord_t end_angle
    struct lv_draw_mask_angle_param_t::[anonymous] cfg
    lv draw mask line param t start line
```

```
lv draw mask line param t end line
    uint16_t delta_deg
struct lv_draw_mask_radius_param_t
    Public Members
    lv_draw_mask_common_dsc_t dsc
    lv_area_t rect
    lv_coord_t radius
    uint8\_t outer
    struct lv_draw_mask_radius_param_t::[anonymous] cfg
    int32_t y_prev
    lv_sqrt_res_t y_prev_x
struct lv_draw_mask_fade_param_t
    Public Members
    lv draw mask common dsc t dsc
    lv area t coords
    lv_coord_t y_top
    lv\_coord\_t \ \textbf{y\_bottom}
    lv_opa_t opa_top
    lv_opa_t opa_bottom
    struct lv_draw_mask_fade_param_t::[anonymous] cfg
struct _lv_draw_mask_map_param_t
    Public Members
    lv draw mask common dsc t dsc
    lv_area_t coords
    const lv_opa_t *map
    struct _lv_draw_mask_map_param_t::[anonymous] cfg
Page (lv_page)
Overview
```

The Page consist of two ${\it Containers}$ on each other:

- $\bullet \ \ a \ {\bf background}$
- a top which is scrollable.

Parts and Styles

The Page's main part is called LV_PAGE_PART_BG which is the background of the Page. It uses all the typical background style properties. Using padding will add space on the sides.

The scrollable object can be referenced via the LV_PAGE_PART_SCRL part. It also uses all the typical background style properties and padding to add space on the sides.

LV_LIST_PART_SCROLLBAR is a virtual part of the background to draw the scroll bars. Uses all the typical background style properties, *size* to set the width of the scroll bars, and *pad_right* and *pad_bottom* to set the spacing.

LV_LIST_PART_EDGE_FLASHis also a virtual part of the background to draw a semicircle on the sides when the list can not be scrolled in that direction further. Uses all the typical background properties.

Usage

The background object can be referenced as the page itself like. E.g. to set the page's width: lv_obj_set_width(page, 100).

If a child is created on the page it will be automatically moved to the scrollable container. If the scrollable container becomes larger then the background it can be scrolled by dragging (like the lists on smartphones).

By default, the scrollable's has LV_FIT_MAX fit in all directions. It means the scrollable size will be the same as the background's size (minus the padding) while the children are in the background. But when an object is positioned out of the background the scrollable size will be increased to involve it.

Scrollbars

Scrollbars can be shown according to four policies:

- LV_SCRLBAR_MODE_OFF Never show scroll bars
- LV SCRLBAR MODE ON Always show scroll bars
- LV SCRLBAR MODE DRAG Show scroll bars when the page is being dragged
- LV SCRLBAR MODE AUTO Show scroll bars when the scrollable container is large enough to be scrolled
- LV SCRLBAR MODE HIDE Hide the scroll bar temporally
- LV_SCRLBAR_MODE_UNHIDE Unhide the previously hidden scrollbar. Recover the original mode too

The scroll bar show policy can be changed by: $lv_page_set_scrlbar_mode(page, SB_MODE)$. The default value is LV SCRLBAR MODE AUTO.

Glue object

A children can be "glued" to the page. In this case, if the page can be scrolled by dragging that object. It can be enabled by the lv page glue obj(child, true).

Focus object

An object on a page can be focused with <code>lv_page_focus(page, child, LV_ANIM_ONO/FF)</code>. It will move the scrollable container to show a child. The time of the animation can be set by

lv_page_set_anim_time(page, anim_time) in milliseconds. child doesn' t have to be a direct
child of the page. This is it works if the scrollable object is the grandparent of the object too.

Manual navigation

You can move the scrollable object manually using lv_page_scroll_hor(page, dist) and lv page scroll ver(page, dist)

Edge flash

A circle-like effect can be shown if the list reached the most top/bottom/left/right position. lv page set edge flash(list, en) enables this feature.

Scroll propagation

If the list is created on an other scrollable element (like an other page) and the Page can't be scrolled further the scrolling can be propagated to the parent to continue the scrolling on the parent. It can be enabled with lv_page_set_scroll_propagation(list, true)

Clean the page

All the object created on the page can be clean with lv_page_clean(page). Note that lv obj clean(page) doesn't work here because it would delete the scrollable object too.

Scrollable API

There are functions to directly set/get the scrollable's attributes:

- lv_page_get_scrl()
- lv page set scrl fit/fint2/fit4()
- lv page set scrl width()
- lv page set scrl height()
- lv page set scrl fit width()
- lv page set scrl fit height()
- lv page set scrl layout()

Events

Only the Generic events are sent by the object type.

The scrollable object has \mathbf{a} default event callback which propagates the to the background object: LV EVENT PRESSED, LV EVENT PRESSING. events LV_EVENT_PRESS_LOST,LV_EVENT_RELEASED, LV_EVENT_SHORT_CLICKED, LV_EVENT_CLICKED, LV EVENT LONG PRESSED, LV EVENT LONG PRESSED REPEAT

Learn more about *Events*.

 $\#\#\mathrm{Keys}$

The following *Keys* are processed by the Page:

• LV_KEY_RIGHT/LEFT/UP/DOWN Scroll the page

Learn more about Keys.

Example

C

Page with scrollbar

Lorem ipsum
dolor sit
amet,
consectetur
adipiscing
elit,
sed do
eiusmod
tempor

code

```
#include "lvgl/lvgl.h"
#if LV_USE_PAGE
void lv_ex_page_1(void)
    /*Create a page*/
   lv_obj_t * page = lv_page_create(lv_scr_act(), NULL);
    lv_obj_set_size(page, 150, 200);
   lv_obj_align(page, NULL, LV_ALIGN_CENTER, 0, 0);
   /*Create a label on the page*/
    lv_obj_t * label = lv_label_create(page, NULL);
    lv label set long mode(label, LV LABEL LONG BREAK);
                                                                 /*Automatically
→break long lines*/
    lv_obj_set_width(label, lv_page_get_width_fit(page));
                                                                  /*Set the label
→width to max value to not show hor. scroll bars*/
    lv_label_set_text(label, "Lorem ipsum dolor sit amet, consectetur adipiscing elit,
```

(continues on next page)

(continued from previous page)

```
"sed do eiusmod tempor incididunt ut labore et dolore

"Ut enim ad minim veniam, quis nostrud exercitation

"laboris nisi ut aliquip ex ea commodo consequat. Duis

"dolore\n"

"eu fugiat nulla pariatur.\n"

"Excepteur sint occaecat cupidatat non proident, sunt in

"qui officia deserunt mollit anim id est laborum.");

#endif

"sed do eiusmod tempor incididunt ut labore et dolore

"Ut enim ad minim veniam, quis nostrud exercitation

"laboris nisi ut aliquip ex ea commodo consequat. Duis

"dolor in reprehenderit in voluptate velit esse cillum

"eu fugiat nulla pariatur.\n"

"Excepteur sint occaecat cupidatat non proident, sunt in

"qui officia deserunt mollit anim id est laborum.");

#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_scrlbar_mode_t
typedef uint8_t lv_page_edge_t
typedef uint8_t lv_part_style_t
```

Enums

enum [anonymous]

Scrollbar modes: shows when should the scrollbars be visible

Values:

```
LV SCRLBAR MODE OFF = 0x0
```

Never show scroll bars

 $LV_SCRLBAR_MODE_ON = 0x1$

Always show scroll bars

 $LV_SCRLBAR_MODE_DRAG = 0x2$

Show scroll bars when page is being dragged

LV SCRLBAR MODE AUTO =0x3

Show scroll bars when the scrollable container is large enough to be scrolled

LV SCRLBAR MODE HIDE = 0x4

Hide the scroll bar temporally

LV SCRLBAR MODE UNHIDE =0x5

Unhide the previously hidden scroll bar. Recover original mode too

enum [anonymous]

Edges: describes the four edges of the page

Values:

```
\label{eq:LV_PAGE_EDGE_LEFT} \begin{split} \textbf{LV_PAGE\_EDGE\_TOP} &= 0x1 \\ \textbf{LV_PAGE\_EDGE\_RIGHT} &= 0x4 \\ \textbf{LV_PAGE\_EDGE\_BOTTOM} &= 0x8 \\ \end{split}
```

enum [anonymous]

Values:

```
LV_PAGE_PART_BG = LV_CONT_PART_MAIN

LV_PAGE_PART_SCRLBAR = _LV_OBJ_PART_VIRTUAL_LAST

LV_PAGE_PART_EDGE_FLASH

_LV_PAGE_PART_VIRTUAL_LAST

LV_PAGE_PART_SCRL = _LV_OBJ_PART_REAL_LAST

_LV_PAGE_PART_REAL_LAST
```

Functions

```
lv\_obj\_t *lv\_page\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a page objects
```

Return pointer to the created page

Parameters

- par: pointer to an object, it will be the parent of the new page
- copy: pointer to a page object, if not NULL then the new object will be copied from it

```
void lv page clean(lv_obj_t *page)
```

Delete all children of the scrl object, without deleting scrl child.

Parameters

• page: pointer to an object

```
lv_obj_t *lv_page_get_scrl(const lv_obj_t *page)
```

Get the scrollable object of a page

Return pointer to a container which is the scrollable part of the page

Parameters

• page: pointer to a page object

${\rm uint}16_{\rm t}$ ${\rm lv_page_get_anim_time(const}\ {\it lv_obj_t*page)}$

Get the animation time

Return the animation time in milliseconds

Parameters

• page: pointer to a page object

void lv_page_set_scrlbar_mode(lv_obj_t *page, lv_scrlbar_mode_t sb_mode)

Set the scroll bar mode on a page

Parameters

- page: pointer to a page object
- **sb_mode**: the new mode from 'lv_page_sb.mode_t' enum

void lv page set anim time($lv \ obj \ t *page$, uint16 t anim time)

Set the animation time for the page

Parameters

- page: pointer to a page object
- anim_time: animation time in milliseconds

void lv_page_set_scroll_propagation(lv_obj_t *page, bool en)

Enable the scroll propagation feature. If enabled then the page will move its parent if there is no more space to scroll. The page needs to have a page-like parent (e.g. <code>lv_page</code>, <code>lv_tabview</code> tab, <code>lv_win</code> content area etc) If enabled drag direction will be changed <code>LV_DRAG_DIR_ONE</code> automatically to allow scrolling only in one direction at one time.

Parameters

- page: pointer to a Page
- en: true or false to enable/disable scroll propagation

void lv page set edge flash($lv \ obj \ t *page$, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- page: pointer to a Page
- en: true or false to enable/disable end flash

Set the fit policy in all 4 directions separately. It tell how to change the page size automatically.

Parameters

- page: pointer to a page object
- left: left fit policy from lv fit t
- right: right fit policy from lv_fit_t
- top: bottom fit policy from lv_fit_t
- bottom: bottom fit policy from lv fit t

```
static void lv_page_set_scrl_fit2(lv_obj_t*page, lv_fit_t hor, lv_fit_t ver)
```

Set the fit policy horizontally and vertically separately. It tell how to change the page size automatically.

Parameters

- page: pointer to a page object
- hot: horizontal fit policy from lv fit t
- ver: vertical fit policy from lv fit t

static void lv_page_set_scrl_fit(lv_obj_t *page, lv_fit_t fit)

Set the fit policyin all 4 direction at once. It tell how to change the page size automatically.

Parameters

- page: pointer to a button object
- fit: fit policy from lv_fit_t

static void lv_page_set_scrl_width(lv_obj_t*page, lv_coord_t w)

Set width of the scrollable part of a page

Parameters

- page: pointer to a page object
- W: the new width of the scrollable (it has no effect is horizontal fit is enabled)

static void **lv_page_set_scrl_height**(*lv_obj_t*page*, lv_coord_t *h*)

Set height of the scrollable part of a page

Parameters

- page: pointer to a page object
- h: the new height of the scrollable (it has no effect is vertical fit is enabled)

static void lv_page_set_scrl_layout(lv_obj_t*page, lv_layout_t layout)

Set the layout of the scrollable part of the page

Parameters

- page: pointer to a page object
- layout: a layout from 'lv_cont_layout_t'

lv_scrlbar_mode_t lv_page_get_sb_mode(const lv_obj_t *page)

Set the scroll bar mode on a page

Return the mode from 'lv page sb.mode t' enum

Parameters

• page: pointer to a page object

bool lv page get scroll propagation(lv_obj_t*page)

Get the scroll propagation property

 ${f Return}\;\;{
m true}\;{
m or}\;{
m false}$

Parameters

• page: pointer to a Page

bool lv page get edge flash($lv \ obj \ t *page$)

Get the edge flash effect property.

Parameters

• page: pointer to a Page return true or false

lv coord t lv page get width fit(lv_obj_t*page)

Get that width which can be set to the children to still not cause overflow (show scrollbars)

Return the width which still fits into the page

Parameters

• page: pointer to a page object

lv_coord_t lv_page_get_height_fit(lv_obj_t *page)

Get that height which can be set to the children to still not cause overflow (show scrollbars)

Return the height which still fits into the page

Parameters

• page: pointer to a page object

lv_coord_t lv_page_get_width_grid(lv_obj_t *page, uint8_t div, uint8_t span)

Divide the width of the object and get the width of a given number of columns. Take into account the paddings of the background and scrollbale too.

Return the width according to the given parameters

Parameters

- page: pointer to an object
- div: indicates how many columns are assumed. If 1 the width will be set the the parent's width If 2 only half parent width inner padding of the parent If 3 only third parent width 2 * inner padding of the parent
- span: how many columns are combined

lv_coord_t lv_page_get_height_grid(lv_obj_t *page, uint8_t div, uint8_t span)

Divide the height of the object and get the width of a given number of columns. Take into account the paddings of the background and scrollbale too.

Return the height according to the given parameters

Parameters

- page: pointer to an object
- div: indicates how many rows are assumed. If 1 the height will be set the the parent's height If 2 only half parent height inner padding of the parent If 3 only third parent height 2 * inner padding of the parent
- span: how many rows are combined

static lv coord t lv page get scrl width(const lv obj t*page)

Get width of the scrollable part of a page

Return the width of the scrollable

Parameters

• page: pointer to a page object

static lv_coord_t lv_page_get_scrl_height(const lv_obj_t *page)

Get height of the scrollable part of a page

Return the height of the scrollable

Parameters

• page: pointer to a page object

static lv_layout_t lv_page_get_scrl_layout(const lv_obj_t *page)

Get the layout of the scrollable part of a page

Return the layout from 'lv cont layout t'

Parameters

• page: pointer to page object

static lv_fit_t lv_page_get_scrl_fit_left(const lv_obj_t *page)

Get the left fit mode

Return an element of lv_fit_t

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_right(const lv_obj_t *page)

Get the right fit mode

Return an element of lv fit t

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_top(const lv_obj_t *page)

Get the top fit mode

Return an element of lv_fit_t

Parameters

• page: pointer to a page object

static lv_fit_t lv_page_get_scrl_fit_bottom(const lv_obj_t *page)

Get the bottom fit mode

Return an element of lv_fit_t

Parameters

• page: pointer to a page object

bool lv_page_on_edge (lv_obj_t *page, lv_page_edge_t edge)

Find whether the page has been scrolled to a certain edge.

Return true if the page is on the specified edge

Parameters

- page: Page object
- edge: Edge to check

void lv page glue obj (lv_obj_t *obj, bool glue)

Glue the object to the page. After it the page can be moved (dragged) with this object too.

Parameters

- obj: pointer to an object on a page
- qlue: true: enable glue, false: disable glue

void lv page focus (lv_obj_t *page, const lv_obj_t *obj, lv_anim_enable_t anim_en)

Focus on an object. It ensures that the object will be visible on the page.

Parameters

- page: pointer to a page object
- **obj**: pointer to an object to focus (must be on the page)
- anim_en: LV_ANIM_ON to focus with animation; LV_ANIM_OFF to focus without animation

void lv_page_scroll_hor(lv_obj_t *page, lv_coord_t dist)

Scroll the page horizontally

Parameters

- page: pointer to a page object
- **dist**: the distance to scroll (< 0: scroll left; > 0 scroll right)

void lv_page_scroll_ver(lv_obj_t *page, lv_coord_t dist)

Scroll the page vertically

Parameters

- page: pointer to a page object
- **dist**: the distance to scroll (< 0: scroll down; > 0 scroll up)

void lv_page_start_edge_flash(lv_obj_t *page, lv_page_edge_t edge)

Not intended to use directly by the user but by other object types internally. Start an edge flash animation.

Parameters

- page:
- edge: the edge to flash. Can be $LV_PAGE_EDGE_LEFT/RIGHT/TOP/BOTTOM$

struct lv_page_ext_t

Public Members

```
lv_cont_ext_t bg
lv_obj_t *scrl
lv_style_list_t style
lv_area_t hor_area
lv_area_t ver_area
uint8_t hor_draw
uint8 t ver draw
lv scrlbar mode t mode
struct lv_page_ext_t::[anonymous] scrlbar
lv\_anim\_value\_t state
uint8 t enabled
uint8_t top_ip
uint8_t bottom_ip
uint8_t right_ip
uint8 t left ip
struct lv_page_ext_t::[anonymous] edge_flash
uint16_t anim_time
lv_obj_t *scroll_prop_obj
uint8 t scroll prop
```

Roller (lv_roller)

Overview

Roller allows you to simply select one option from more with scrolling.

Parts and Styles

The Roller's main part is called LV_ROLLER_PART_BG. It's a rectangle and uses all the typical background properties. The style of the Roller's label is inherited from the *text* style properties of the background. To adjust the space between the options use the *text_line_space* style property. The *padding* style properties set the space on the sides.

The selected option in the middle can be referenced with LV_ROLLER_PART_SELECTED virtual part. It also uses all the typical background properties and *text_color* property to change the color of the options in the selected area.

Usage

Set options

The options are passed to the Roller as a string with lv_roller_set_options(roller, options, LV_ROLLER_MODE_NORMAL/INFINITE). The options should be separated by \n. For example: "First\nSecond\nThird".

 ${\tt LV_ROLLER_MODE_INIFINITE~make~the~roller~circular}.$

You can select an option manually with lv_roller_set_selected(roller, id, LV_ANIM_ON/OFF), where *id* is the index of an option.

Get selected option

The get the currently selected option use lv_roller_get_selected(roller) it will return the *index* of the selected option.

lv_roller_get_selected_str(roller, buf, buf_size) copy the name of the selected option to buf.

Align the options

To align the label horizontally use <code>lv_roller_set_align(roller, LV_LABEL_ALIGN_LEFT/CENTER/RIGHT)</code>.

Visible rows

The number of visible rows can be adjusted with lv_roller_set_visible_row_count(roller, num)

Animation time

When the Roller is scrolled and doesn't stop exactly on an option it will scroll to the nearest valid option automatically. The time of this scroll animation can be changed by <code>lv_roller_set_anim_time(roller, anim_time)</code>. Zero animation time means no animation.

Events

Besides, the Generic events the following Special events are sent by the Drop down lists:

• LV_EVENT_VALUE_CHANGED sent when a new option is selected

Learn more about *Events*.

Keys

The following Keys are processed by the Buttons:

- LV_KEY_RIGHT/DOWN Select the next option
- LY_KEY_ENTER Apply the selected option (Send LV_EVENT_VALUE_CHANGED event)

Example

C

Simple Roller

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_ROLLER
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV EVENT VALUE CHANGED) {
        char buf[32];
        lv_roller_get_selected_str(obj, buf, sizeof(buf));
        printf("Selected month: %s\n", buf);
    }
}
void lv ex roller 1(void)
    lv_obj_t *roller1 = lv_roller_create(lv_scr_act(), NULL);
    lv_roller_set_options(roller1,
                        "January\n"
                        "February\n"
                        "March\n"
                        "April\n"
                        "May\n"
                        "June\n"
                        "July\n"
                        "August\n"
                        "September\n"
                        "October\n"
                        "November\n"
                        "December",
                        LV_ROLLER_MODE_INIFINITE);
    lv_roller_set_visible_row_count(roller1, 4);
    lv_obj_align(roller1, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(roller1, event_handler);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_roller_mode_t
typedef uint8_t lv_roller_part_t
```

Enums

enum [anonymous]

Roller mode.

Values:

LV_ROLLER_MODE_NORMAL

Normal mode (roller ends at the end of the options).

LV ROLLER MODE INIFINITE

Infinite mode (roller can be scrolled forever).

enum [anonymous]

Values:

```
 \begin{split} \mathbf{LV\_ROLLER\_PART\_BG} &= \mathit{LV\_PAGE\_PART\_BG} \\ \mathbf{LV\_ROLLER\_PART\_SELECTED} &= \mathit{LV\_PAGE\_PART\_VIRTUAL\_LAST} \\ \mathbf{LV\_ROLLER\_PART\_VIRTUAL\_LAST} \\ \end{split}
```

Functions

```
lv\_obj\_t *lv\_roller\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a roller object

Return pointer to the created roller

Parameters

- par: pointer to an object, it will be the parent of the new roller
- copy: pointer to a roller object, if not NULL then the new object will be copied from it

```
void lv_roller_set_options (lv_obj_t *roller, const char *options, lv_roller_mode_t mode) Set the options on a roller
```

Parameters

- roller: pointer to roller object
- options: a string with " separated options. E.g. "One\nTwo\nThree"
- mode: LV ROLLER MODE NORMAL or LV ROLLER MODE INFINITE

```
void lv roller set align(lv obj t*roller, lv label align t align)
```

Set the align of the roller's options (left, right or center[default])

Parameters

- roller: pointer to a roller object
- align: one of lv label align t values (left, right, center)

```
void lv_roller_set_selected(lv_obj_t*roller, uint16_t sel_opt, lv_anim_enable_t anim)
Set the selected option
```

Parameters

- roller: pointer to a roller object
- **sel_opt**: id of the selected option (0 ···number of option 1);
- anim: LV_ANOM_ON: set with animation; LV_ANIM_OFF set immediately

void lv_roller_set_visible_row_count(lv_obj_t *roller, uint8_t row_cnt)

Set the height to show the given number of rows (options)

Parameters

- roller: pointer to a roller object
- row cnt: number of desired visible rows

void lv_roller_set_auto_fit(lv_obj_t *roller, bool auto_fit)

Allow automatically setting the width of roller according to it's content.

Parameters

- roller: pointer to a roller object
- auto_fit: true: enable auto fit

static void **lv_roller_set_anim_time**(lv_obj_t *roller, uint16_t anim_time)

Set the open/close animation time.

Parameters

- roller: pointer to a roller object
- anim_time: open/close animation time [ms]

uint16_t lv_roller_get_selected(const lv_obj_t *roller)

Get the id of the selected option

Return id of the selected option (0 ···number of option - 1);

Parameters

• roller: pointer to a roller object

uint16_t lv_roller_get_option_cnt(const lv_obj_t *roller)

Get the total number of options

Return the total number of options in the list

Parameters

• roller: pointer to a roller object

$void \ \textbf{lv_roller_get_selected_str(const} \ \textit{lv_obj_t*roller}, \ char \ *\textit{buf}, \ uint16_t \ \textit{buf_size})$

Get the current selected option as a string

Parameters

- roller: pointer to roller object
- buf: pointer to an array to store the string
- buf size: size of buf in bytes. 0: to ignore it.

lv label align t lv roller get align(const lv obj t *roller)

Get the align attribute. Default alignment after _create is LV_LABEL_ALIGN_CENTER

LV LABEL ALIGN RIGHT

or

Parameters

• roller: pointer to a roller object

bool lv roller get auto fit(lv obj t*roller)

Get whether the auto fit option is enabled or not.

Return true: auto fit is enabled

Parameters

• roller: pointer to a roller object

${\tt const~char~*lv_roller_get_options(const~\it lv_\it obj_t~*roller)}$

Get the options of a roller

Return the options separated by "-s (E.g. "Option1\nOption2\nOption3")

Parameters

• roller: pointer to roller object

static uint16_t lv_roller_get_anim_time(const lv_obj_t *roller)

Get the open/close animation time.

Return open/close animation time [ms]

Parameters

• roller: pointer to a roller

struct lv_roller_ext_t

Public Members

```
lv_page_ext_t page
lv_style_list_t style_sel
uint16_t option_cnt
uint16_t sel_opt_id
uint16_t sel_opt_id_ori
lv_roller_mode_t mode
uint8_t auto_fit
```

Slider (lv_slider)

Overview

The Slider object looks like a *Bar* supplemented with a knob. The knob can be dragged to set a value. The Slider also can be vertical or horizontal.

Parts and Styles

The Slider's main part is called LV SLIDER PART BG and it uses the typical background style properties.

LV_SLIDER_PART_INDIC is a virtual part which also uses all the typical background properties. By default, the indicator maximal size is the same as the background's size but setting positive padding values in LV_SLIDER_PART_BG will make the indicator smaller. (negative values will make it larger) If the *value* style property is used on the indicator the alignment will be calculated based on the current size of the indicator. For example a center aligned value is always shown in the middle of the indicator regardless it's current size.

LV_SLIDER_PART_KNOB is a virtual part using all the typical background properties to describe the knob(s). Similarly to the *indicator* the *value* text is also aligned to the current position and size of the knob. By default the knob is square (with a radius) with side length equal to the smaller side of the slider. The knob can be made larger with the *padding* values. Padding values can be asymmetric too.

Usage

Value and range

To set an initial value use lv_slider_set_value(slider, new_value, LV_ANIM_ON/OFF). lv_slider_set_anim_time(slider, anim_time) sets the animation time in milliseconds.

To specify the range (min, max values) the lv slider set range(slider, min, max) can be used.

Symmetrical and Range

Besides the normal type the Slider can be configured in two additional types:

- LV SLIDER TYPE NORMAL normal type
- LV_SLIDER_TYPE_SYMMETRICAL draw the indicator symmetrical to zero (drawn from zero, left to right)
- LV_SLIDER_TYPE_RANGE allow the use of an additional knob for the left (start) value. (Can be used with lv_slider_set/get_left_value())

The type can be changed with lv_slider_set_type(slider, LV_SLIDER_TYPE_...)

Events

Besides the Generic events the following Special events are sent by the Slider:

• LV_EVENT_VALUE_CHANGED Sent while the slider is being dragged or changed with keys. The event is sent continuously while the slider is dragged and only when it is released. Use lv_slider_is_dragged to decide whether is slider is being dragged or just released.

Keys

- LV_KEY_UP, LV_KEY_RIGHT Increment the slider's value by 1
- LV_KEY_DOWN, LV_KEY_LEFT Decrement the slider' s value by 1

Learn more about *Keys*.

Example

C

Slider with custo mstyle

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_SLIDER

static void event_handler(lv_obj_t * obj, lv_event_t event)
{
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("Value: %d\n", lv_slider_get_value(obj));
    }
}

void lv_ex_slider_l(void)
{
    /*Create a slider*/
    lv_obj_t * slider = lv_slider_create(lv_scr_act(), NULL);
    lv_obj_align(slider, NULL, LV_ALIGN_CENTER, 0, 0);
    lv_obj_set_event_cb(slider, event_handler);
}

#endif
```

Set value with slider

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV USE SLIDER
static void slider_event_cb(lv_obj_t * slider, lv_event_t event);
static lv_obj_t * slider_label;
void lv ex slider 2(void)
    /* Create a slider in the center of the display */
    lv obj t * slider = lv slider create(lv scr act(), NULL);
    lv_obj_set_width(slider, LV_DPI * 2);
    lv_obj_align(slider, NULL, LV_ALIGN_CENTER, 0, 0);
   lv_obj_set_event_cb(slider, slider_event_cb);
   lv slider set range(slider, 0, 100);
   /* Create a label below the slider */
   slider label = lv label create(lv scr act(), NULL);
   lv_label_set_text(slider_label, "0");
    lv obj set auto realign(slider label, true);
    lv obj align(slider label, slider, LV ALIGN OUT BOTTOM MID, 0, 10);
   /* Create an informative label */
    lv_obj_t * info = lv_label_create(lv_scr_act(), NULL);
    lv_label_set_text(info, "Welcome to the slider+label demo!\n"
                            "Move the slider and see that the label\n"
                            "updates to match it.");
    lv obj align(info, NULL, LV ALIGN IN TOP LEFT, 10, 10);
}
static void slider event cb(lv obj t * slider, lv event t event)
```

(continues on next page)

(continued from previous page)

```
{
    if(event == LV_EVENT_VALUE_CHANGED) {
        static char buf[4]; /* max 3 bytes for number plus 1 null terminating byte */
        snprintf(buf, 4, "%u", lv_slider_get_value(slider));
        lv_label_set_text(slider_label, buf);
    }
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_slider_type_t
```

Enums

```
enum [anonymous]
Values:

LV_SLIDER_TYPE_NORMAL

LV_SLIDER_TYPE_SYMMETRICAL

LV_SLIDER_TYPE_RANGE

enum [anonymous]

Built-in styles of slider

Values:

LV_SLIDER_PART_BG

LV_SLIDER_PART_INDIC

Slider background style.

LV_SLIDER_PART_KNOB

Slider indicator (filled area) style.
```

Functions

```
lv\_obj\_t *lv\_slider\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a slider objects
```

Return pointer to the created slider

Parameters

• par: pointer to an object, it will be the parent of the new slider

• copy: pointer to a slider object, if not NULL then the new object will be copied from it

static void lv_slider_set_value(lv_obj_t *slider, int16_t value, lv_anim_enable_t anim)

Set a new value on the slider

Parameters

- slider: pointer to a slider object
- value: new value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

Set a new value for the left knob of a slider

Parameters

- slider: pointer to a slider object
- left value: new value
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

static void **lv_slider_set_range**(lv_obj_t*slider, int16_t min, int16_t max)

Set minimum and the maximum values of a bar

Parameters

- slider: pointer to the slider object
- min: minimum value
- max: maximum value

static void **lv_slider_set_anim_time**(lv_obj_t *slider, uint16_t anim_time)

Make the slider symmetric to zero. The indicator will grow from zero instead of the minimum position.

Parameters

- slider: pointer to a slider object
- en: true: enable disable symmetric behavior; false: disable

static void **lv_slider_set_type**(lv_obj_t *slider, lv_slider_type_t type)

Set the animation time of the slider

Parameters

- slider: pointer to a bar object
- anim time: the animation time in milliseconds.

$int16_t$ lv_slider_get_value(const lv_obj_t *slider)

Get the value of the main knob of a slider

Return the value of the main knob of the slider

Parameters

• slider: pointer to a slider object

static int16_t lv_slider_get_left_value(const lv_obj_t *slider)

Get the value of the left knob of a slider

Return the value of the left knob of the slider

Parameters

• slider: pointer to a slider object

static int16_t lv_slider_get_min_value(const lv_obj_t *slider)

Get the minimum value of a slider

Return the minimum value of the slider

Parameters

• slider: pointer to a slider object

static int16_t lv_slider_get_max_value(const lv_obj_t *slider)

Get the maximum value of a slider

Return the maximum value of the slider

Parameters

• slider: pointer to a slider object

bool lv_slider_is_dragged(const lv_obj_t *slider)

Give the slider is being dragged or not

Return true: drag in progress false: not dragged

Parameters

• slider: pointer to a slider object

static uint16_t lv_slider_get_anim_time(lv_obj_t*slider)

Get the animation time of the slider

Return the animation time in milliseconds.

Parameters

• slider: pointer to a slider object

static lv_slider_type_t lv_slider_get_type(lv_obj_t *slider)

Get whether the slider is symmetric or not.

Return true: symmetric is enabled; false: disable

Parameters

• slider: pointer to a bar object

struct lv_slider_ext_t

Public Members

```
lv_bar_ext_t bar
lv_style_list_t style_knob
lv_area_t left_knob_area
lv_area_t right_knob_area
int16_t *value_to_set
uint8 t dragging
```

Spinbox (Iv_spinbox)

Overview

The Spinbox contains a number as text which can be increased or decreased by *Keys* or API functions. Under the hood the Spinbox is a modified *Text area*.

Parts and Styles

The Spinbox's main part is called LV_SPINBOX_PART_BG which is a rectangle-like background using all the typical background style properties. It also describes the style of the label with its *text* style properties.

LV_SPINBOX_PART_CURSOR is a virtual part describing the cursor. Read the *Text area* documentation for a detailed description.

Set format

lv_spinbox_set_digit_format(spinbox, digit_count, separator_position) set the format of the number. digit_count sets the number of digits. Leading zeros are added to fill the space on
the left. separator_position sets the number of digit before the decimal point. 0 means no decimal
point.

lv_spinbox_set_padding_left(spinbox, cnt) add cnt "space" characters between the sign an
the most left digit.

Value and ranges

lv spinbox set range(spinbox, min, max) sets the range of the Spinbox.

lv spinbox set value(spinbox, num) sets the Spinbox's value manually.

lv_spinbox_increment(spinbox) and lv_spinbox_decrement(spinbox) increments/decrements the value of the Spinbox.

lv spinbox set step(spinbox, step) sets the amount to increment decrement.

Events

Besides the Generic events the following Special events are sent by the Drop down lists:

- LV_EVENT_VALUE_CHANGED sent when the value has changed. (the value is set as event data as int32 t)
- LV_EVENT_INSERT sent by the ancestor Text area but shouldn' t be used.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Buttons:

• LV_KEY_LEFT/RIGHT With Keypad move the cursor left/right. With Encoder decrement/increment the selected digit.

- LY_KEY_ENTER Apply the selected option (Send LV_EVENT_VALUE_CHANGED event and close the Drop down list)
- LV_KEY_ENTER With Encoder got the net digit. Jump to the first after the last.

Example

C

Simple Spinbox

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_SPINBOX

static lv_obj_t * spinbox;

static void lv_spinbox_increment_event_cb(lv_obj_t * btn, lv_event_t e)
{
    if(e == LV_EVENT_SHORT_CLICKED || e == LV_EVENT_LONG_PRESSED_REPEAT) {
        lv_spinbox_increment(spinbox);
    }
}

static void lv_spinbox_decrement_event_cb(lv_obj_t * btn, lv_event_t e)
{
    if(e == LV_EVENT_SHORT_CLICKED || e == LV_EVENT_LONG_PRESSED_REPEAT) {
        lv_spinbox_decrement(spinbox);
    }
}
```

(continues on next page)

(continued from previous page)

```
void lv_ex_spinbox_1(void)
    spinbox = lv spinbox create(lv scr act(), NULL);
    lv_spinbox_set_range(spinbox, -1000, 90000);
    lv_spinbox_set_digit_format(spinbox, 5, 2);
    lv_spinbox_step_prev(spinbox);
    lv_obj_set_width(spinbox, 100);
    lv obj align(spinbox, NULL, LV ALIGN CENTER, 0, 0);
   lv coord t h = lv obj get height(spinbox);
    lv obj t * btn = lv btn create(lv scr act(), NULL);
    lv_obj_set_size(btn, h, h);
    lv obj align(btn, spinbox, LV ALIGN OUT RIGHT MID, 5, 0);
    lv_theme_apply(btn, LV_THEME_SPINBOX_BTN);
    lv_obj_set_style_local_value_str(btn, LV_BTN_PART_MAIN, LV_STATE_DEFAULT, LV_
→SYMBOL PLUS);
    lv_obj_set_event_cb(btn, lv_spinbox_increment_event_cb);
    btn = lv_btn_create(lv_scr_act(), btn);
    lv_obj_align(btn, spinbox, LV_ALIGN_OUT_LEFT_MID, -5, 0);
    lv_obj_set_event_cb(btn, lv_spinbox_decrement_event_cb);
    lv_obj_set_style_local_value_str(btn, LV_BTN_PART_MAIN, LV_STATE_DEFAULT, LV_
→SYMBOL MINUS);
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_spinbox_part_t
```

Enums

Functions

```
lv\_obj\_t *lv\_spinbox\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a spinbox objects

Return pointer to the created spinbox

Parameters

- par: pointer to an object, it will be the parent of the new spinbox
- copy: pointer to a spinbox object, if not NULL then the new object will be copied from it

```
void lv spinbox set rollover(lv_obj_t*spinbox, bool b)
```

Set spinbox rollover function

Parameters

- spinbox: pointer to spinbox
- b: true or false to enable or disable (default)

```
void lv_spinbox_set_value(lv_obj_t *spinbox, int32_t i)
```

Set spinbox value

Parameters

- spinbox: pointer to spinbox
- i: value to be set

```
void lv_spinbox_set_digit_format(lv_obj_t *spinbox, uint8_t digit_count, uint8_t separator_position)
```

Set spinbox digit format (digit count and decimal format)

Parameters

- spinbox: pointer to spinbox
- digit count: number of digit excluding the decimal separator and the sign
- separator_position: number of digit before the decimal point. If 0, decimal point is not shown

```
void lv_spinbox_set_step(lv_obj_t *spinbox, uint32_t step)
```

Set spinbox step

Parameters

- spinbox: pointer to spinbox
- step: steps on increment/decrement

```
\label{eq:condition} \begin{picture}(t) void $\tt lv\_spinbox\_set\_range(\it lv\_obj\_t*spinbox, int 32\_t \it range\_min, int 32\_t \it range\_max)$ \\ \end{picture}
```

Set spinbox value range

Parameters

- **spinbox**: pointer to spinbox
- range_min: maximum value, inclusive
- range max: minimum value, inclusive

${\tt void}~ \textbf{lv_spinbox_set_padding_left(} \textit{lv_obj_t*spinbox}, ~ uint8_t~ \textit{padding)}$

Set spinbox left padding in digits count (added between sign and first digit)

Parameters

- spinbox: pointer to spinbox
- cb: Callback function called on value change event

bool lv_spinbox_get_rollover(lv_obj_t *spinbox)

Get spinbox rollover function status

Parameters

• spinbox: pointer to spinbox

int32_t lv_spinbox_get_value(lv_obj_t *spinbox)

Get the spinbox numeral value (user has to convert to float according to its digit format)

Return value integer value of the spinbox

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_step_next(lv_obj_t *spinbox)

Select next lower digit for edition by dividing the step by 10

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_step_prev(lv_obj_t *spinbox)

Select next higher digit for edition by multiplying the step by 10

Parameters

• spinbox: pointer to spinbox

void lv_spinbox_increment(lv_obj_t *spinbox)

Increment spinbox value by one step

Parameters

• spinbox: pointer to spinbox

void lv spinbox decrement(lv_obj_t *spinbox)

Decrement spinbox value by one step

Parameters

• spinbox: pointer to spinbox

struct lv_spinbox_ext_t

Public Members

```
lv_textarea_ext_t ta
int32_t value
int32_t range_max
int32_t range_min
int32_t step
uint8_t rollover
uint16_t digit_count
uint16_t dec_point_pos
```

uint16_t digit_padding_left

Example

Spinner (Iv_spinner)

Overview

The Spinner object is a spinning arc over a border.

Parts and Styles

The Spinner uses the following parts:

- LV_SPINNER_PART_BG: main part
- LV_SPINNER_PART_INDIC: the spinning arc (virtual part)

The parts and style works the same as in case of Arc. Read its documentation for a details description.

Usage

Arc length

The length of the arc can be adjusted by lv spinner set arc length(spinner, deg).

Spinning speed

The speed of the spinning can be adjusted by lv spinner set spin time(preload, time ms).

Spin types

You can choose from more spin types:

- LV_SPINNER_TYPE_SPINNING_ARC spin the arc, slow down on the top
- LV_SPINNER_TYPE_FILLSPIN_ARC spin the arc, slow down on the top but also stretch the arc
- LV_SPINNER_TYPE_CONSTANT_ARC spin the arc at a constant speed

To apply one if them use lv_spinner_set_type(preload, LV_SPINNER_TYPE_...)

Spin direction

The direction of spinning can be changed with $lv_spinner_set_dir(preload, LV_SPINNER_DIR_FORWARD/BACKWARD)$.

Events

Only the Generic events are sent by the object type.

Keys

No *Keys* are processed by the object type.

Learn more about *Keys*.

Example

C

Simple spinner

code

```
#include "lvgl/lvgl.h"
#if LV_USE_SPINNER

void lv_ex_spinner_1(void)
{
    /*Create a Preloader object*/
    lv_obj_t * preload = lv_spinner_create(lv_scr_act(), NULL);
    lv_obj_set_size(preload, 100, 100);
    lv_obj_align(preload, NULL, LV_ALIGN_CENTER, 0, 0);
}
#endif
```

MicroPython

MicroPython

No examples yet.

API

```
Typedefs
```

```
typedef uint8_t lv_spinner_type_t
typedef uint8_t lv_spinner_dir_t
typedef uint8_t lv_spinner_style_t
```

Enums

enum [anonymous]

Type of spinner.

Values:

```
LV_SPINNER_TYPE_SPINNING_ARC
LV_SPINNER_TYPE_FILLSPIN_ARC
LV_SPINNER_TYPE_CONSTANT_ARC
```

enum [anonymous]

Direction the spinner should spin.

Values:

```
LV_SPINNER_DIR_FORWARD
LV_SPINNER_DIR_BACKWARD
```

enum [anonymous]

Values:

```
\label{eq:lv_arc_part_bg} \begin{split} \textbf{LV\_SPINNER\_PART\_BG} &= \textit{LV\_ARC\_PART\_BG} \\ \textbf{LV\_SPINNER\_PART\_INDIC} &= \textit{LV\_ARC\_PART\_INDIC} \\ \textbf{_LV\_SPINNER\_PART\_VIRTUAL\_LAST} \\ \textbf{_LV\_SPINNER\_PART\_REAL\_LAST} &= \textit{_LV\_ARC\_PART\_REAL\_LAST} \end{split}
```

Functions

```
lv\_obj\_t *lv\_spinner\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
Create a pre loader objects
```

Return pointer to the created pre loader

Parameters

• par: pointer to an object, it will be the parent of the new pre loader

• COPY: pointer to a pre loader object, if not NULL then the new object will be copied from it

void lv_spinner_set_arc_length(lv_obj_t*preload, lv_anim_value_t deg)

Set the length of the spinning arc in degrees

Parameters

- preload: pointer to a preload object
- deg: length of the arc

void lv_spinner_set_spin_time(lv_obj_t *preload, uint16_t time)

Set the spin time of the arc

Parameters

- preload: pointer to a preload object
- time: time of one round in milliseconds

$$\label{eq:const_void_lv_spinner_style} \begin{picture}($v_obj_t *preload, $lv_spinner_style_t $ type, $ const $lv_style_t $ *style) \end{picture}$$

Set a style of a pre loader.

Parameters

- preload: pointer to pre loader object
- type: which style should be set
- style: pointer to a style

void lv_spinner_set_type(lv_obj_t *preload, lv_spinner_type_t type)

Set the animation type of a spinner.

Parameters

- preload: pointer to pre loader object
- type: animation type of the preload

void lv_spinner_set_dir(lv_obj_t *preload, lv_spinner_dir_t dir)

Set the animation direction of a spinner

Parameters

- preload: pointer to pre loader object
- direction: animation direction of the preload

lv_anim_value_t lv_spinner_get_arc_length(const lv_obj_t *preload)

Get the arc length [degree] of the a pre loader

Parameters

• preload: pointer to a pre loader object

uint16_t lv_spinner_get_spin_time(const lv_obj_t *preload)

Get the spin time of the arc

Parameters

• preload: pointer to a pre loader object [milliseconds]

const lv_style_t *lv_spinner_get_style(const lv_obj_t *preload, lv_spinner_style_t type) Get style of a pre loader.

Return style pointer to the style

Parameters

- preload: pointer to pre loader object
- type: which style should be get

lv_spinner_type_t lv_spinner_get_type(lv_obj_t *preload)

Get the animation type of a spinner.

Return animation type

Parameters

• preload: pointer to pre loader object

lv_spinner_dir_t lv_spinner_get_dir(lv_obj_t *preload)

Get the animation direction of a spinner

Return animation direction

Parameters

• preload: pointer to pre loader object

void lv_spinner_anim_cb(void *ptr, lv_anim_value_t val)

Animator function (exec_cb) to rotate the arc of spinner.

Parameters

- ptr: pointer to spinner
- val: the current desired value [0..360]

struct lv_spinner_ext_t

Public Members

```
lv_arc_ext_t arc
lv_anim_value_t arc_length
uint16_t time
lv_spinner_type_t anim_type
lv_spinner_dir_t anim_dir
```

Switch (Iv_switch)

Overview

The Switch can be used to turn on/off something. It looks like a little slider.

Parts and Styles

The Switch uses the following parts:

- LV_SWITCH_PART_BG: main part
- LV_SWITCH_PART_INDIC: the indicator (virtual part)

The parts and style works the same as in case of Slider. Read its documentation for a details description. ## Usage

Change state

The state of the Switch can be changed by clicking on it or by $lv_switch_on(switch, LV_ANIM_ON/OFF)$, $lv_switch_off(switch, LV_ANIM_ON/OFF)$ or $lv_switch_toggle(switch, LV_ANOM_ON/OFF)$ functions

Animation time

The time of animations, when the switch changes state, can be adjusted with lv_switch_set_anim_time(switch, anim_time).

Events

Besides the Generic events the following Special events are sent by the Switch:

• LV_EVENT_VALUE_CHANGED Sent when the switch changes state.

Keys

- LV_KEY_UP, LV_KEY_RIGHT Turn on the slider
- LV_KEY_DOWN, LV_KEY_LEFT Turn off the slider

Learn more about Keys.

Example

C

Simple Switch

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_SWITCH
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
        printf("State: %s\n", \ \overline{l}v\_switch\_get\_state(obj) \ ? \ "On" \ : \ "Off");
    }
}
void lv_ex_switch_1(void)
    /*Create a switch and apply the styles*/
    lv_obj_t *sw1 = lv_switch_create(lv_scr_act(), NULL);
    lv_obj_align(sw1, NULL, LV_ALIGN_CENTER, 0, -50);
    lv_obj_set_event_cb(sw1, event_handler);
    /*Copy the first switch and turn it ON*/
    lv_obj_t *sw2 = lv_switch_create(lv_scr_act(), sw1);
    lv_switch_on(sw2, LV_ANIM_ON);
    lv_obj_align(sw2, NULL, LV_ALIGN_CENTER, 0, 50);
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_switch_part_t
```

Enums

enum [anonymous]

Switch parts.

Values:

Switch background.

$$\textbf{LV_SWITCH_PART_INDIC} = LV_BAR_PART_INDIC$$

Switch fill area.

$$\begin{array}{l} \textbf{LV_SWITCH_PART_KNOB} = _LV_BAR_PART_VIRTUAL_LAST\\ \text{Switch knob.} \end{array}$$

_LV_SWITCH_PART_VIRTUAL_LAST

Functions

```
lv\_obj\_t *lv\_switch\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a switch objects

Return pointer to the created switch

Parameters

- par: pointer to an object, it will be the parent of the new switch
- **COPY**: pointer to a switch object, if not NULL then the new object will be copied from it

```
void lv switch on(lv_obj_t *sw, lv_anim_enable_t anim)
```

Turn ON the switch

Parameters

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

```
void lv_switch_off(lv_obj_t *sw, lv_anim_enable_t anim)
```

Turn OFF the switch

Parameters

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

```
bool lv_switch_toggle(lv_obj_t *sw, lv_anim_enable_t anim)
```

Toggle the position of the switch

Return resulting state of the switch.

Parameters

- SW: pointer to a switch object
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

void lv_switch_set_knob_img(lv_obj_t*sw, const void *img_src)

Set an image to display on the knob of the switch.

Parameters

- SW: pointer to a switch object
- img_src: pointer to an lv_img_dsc_t variable or a path to an image (not an lv_img object)

void lv switch set knob on $img(lv \ obj \ t *sw$, const void $*img \ src)$

Set an image to display on the knob of the switch when it's in ON state

Parameters

- SW: pointer to a switch object
- img_src: pointer to an lv_img_dsc_t variable or a path to an image (not an lv_img object)

static void lv_switch_set_anim_time(lv_obj_t*sw, uint16_t anim_time)

Set the animation time of the switch

Return style pointer to a style

Parameters

- SW: pointer to a switch object
- anim_time: animation time

static bool lv_switch_get_state(const lv_obj_t *sw)

Get the state of a switch

Return false: OFF; true: ON

Parameters

• SW: pointer to a switch object

const void *lv slider get_knob_off_img(lv_obj_t *sw, const void *img_src)

Get an image to display on the knob of the switch when it's in OFF state

Return the image source: pointer to an lv_img_dsc_t variable or a path to an image (not an lv img object)

Parameters

• SW: pointer to a switch object

const void *lv slider get knob on img(lv_obj_t *sw, const void *imq_src)

Get an image to display on the knob of the switch when it's in ON state

Return the image source: pointer to an $lv_img_dsc_t$ variable or a path to an image (not an lv_img object)

Parameters

• SW: pointer to a switch object

static uint16_t lv_switch_get_anim_time(const lv_obj_t *sw)

Get the animation time of the switch

Return style pointer to a style

Parameters

• SW: pointer to a switch object

struct lv_switch_ext_t

Public Members

```
lv_bar_ext_t bar
lv_style_list_t style_knob
uint8 t state
```

Table (lv_table)

Overview

Tables, as usual, are built from rows, columns, and cells containing texts.

The Table object is very light weighted because only the texts are stored. No real objects are created for cells but they are just drawn on the fly.

Parts and Styles

The main part of the Table is called LV_TABLE_PART_BG. It's a rectangle like background and uses all the typical background style properties.

For the cells there are 4 virtual parts. Every cell has type (1, 2, 3 or 4) which tells which part's styles to apply on them. The cell parts are:

- LV TABLE PART CELL1
- LV TABLE PART CELL2
- LV TABLE PART CELL3
- LV TABLE PART CELL4

The cells also use all the typical background style properties. If there is a line break (n) in a cell's content then a horizontal division line will drawn after the line break using the *line* style properties.

The style of texts in the cells are inherited from the cell parts or the background part.

Usage

Rows and Columns

To set number of rows and columns use $lv_table_set_row_cnt(table, row_cnt)$ and $lv_table_set_col_cnt(table, col_cnt)$

Width and Height

The width of the columns can be set with lv_table_set_col_width(table, col_id, width). The overall width of the Table object will be set to the sum of columns widths.

The height is calculated automatically from the cell styles (font, padding etc) and the number of rows.

Set cell value

The cells can store only texts so numbers needs to be converted to text before displaying them in a table.

lv_table_set_cell_value(table, row, col, "Content"). The text is saved by the table so it
can be even a local variable.

Line break can be used in the text like "Value\n60.3".

Align

The text alignment in cells can be adjusted individually with lv_table_set_cell_align(table, row, col, LV LABEL ALIGN LEFT/CENTER/RIGHT).

Cell type

You can use 4 different cell types. Each has its own style.

Cell types can be used to add different style for example to:

- table header
- first column
- highlight a cell
- etc

The type can be selected with lv_table_set_cell_type(table, row, col, type) type can be 1, 2, 3 or 4.

Merge cells

Cells can be merged horizontally with lv_table_set_cell_merge_right(table, col, row, true). To merge more adjacent cells apply this function for each cell.

Crop text

By default, the texts are word-wrapped to fit into the width of the cell and the height of the cell is set automatically. To disable this and keep the text as it is enable <code>lv_table_set_cell_crop(table, row, col, true)</code>.

Scroll

The make the Table scrollable place it on a Page

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

No *Keys* are processed by the object type.

Learn more about *Keys*.

Example

C

Simple table

code

```
#include "lvgl/lvgl.h"
#if LV_USE_TABLE

void lv_ex_table_1(void)
{
    lv_obj_t * table = lv_table_create(lv_scr_act(), NULL);
    lv_table_set_col_cnt(table, 2);
    lv_table_set_row_cnt(table, 4);
    lv_obj_align(table, NULL, LV_ALIGN_CENTER, 0, 0);

/*Make the cells of the first row center aligned */
```

(continues on next page)

(continued from previous page)

```
lv_table_set_cell_align(table, 0, 0, LV_LABEL_ALIGN_CENTER);
    lv_table_set_cell_align(table, 0, 1, LV_LABEL_ALIGN_CENTER);
    /*Align the price values to the right in the 2nd column*/
    lv_table_set_cell_align(table, 1, 1, LV_LABEL_ALIGN_RIGHT);
lv_table_set_cell_align(table, 2, 1, LV_LABEL_ALIGN_RIGHT);
lv_table_set_cell_align(table, 3, 1, LV_LABEL_ALIGN_RIGHT);
    lv_table_set_cell_type(table, 0, 0, 2);
    lv_table_set_cell_type(table, 0, 1, 2);
    /*Fill the first column*/
    lv table set cell value(table, 0, 0, "Name");
    lv_table_set_cell_value(table, 1, 0, "Apple");
    lv_table_set_cell_value(table, 2, 0, "Banana");
    lv_table_set_cell_value(table, 3, 0, "Citron");
    /*Fill the second column*/
    lv_table_set_cell_value(table, 0, 1, "Price");
    lv_table_set_cell_value(table, 1, 1, "$7");
    lv_table_set_cell_value(table, 2, 1, "$4");
    lv_table_set_cell_value(table, 3, 1, "$6");
}
#endif
```

MicroPython

No examples yet.

MicroPython

No examples yet.

API

Enums

```
enum [anonymous]
Values:

LV_TABLE_PART_BG

LV_TABLE_PART_CELL1

LV_TABLE_PART_CELL2

LV_TABLE_PART_CELL3

LV_TABLE_PART_CELL4
```

Functions

```
lv\_obj\_t *lv\_table\_create(lv\_obj\_t *par, const lv\_obj\_t *copy)
```

Create a table object

Return pointer to the created table

Parameters

- par: pointer to an object, it will be the parent of the new table
- copy: pointer to a table object, if not NULL then the new object will be copied from it

```
void lv_table_set_cell_value( lv_obj_t *table, uint16_t row, uint16_t col, const char *txt)

Set the value of a cell.
```

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]
- txt: text to display in the cell. It will be copied and saved so this variable is not required after this function call.

```
void lv_table_set_row_cnt(lv_obj_t*table, uint16_t row_cnt)
```

Set the number of rows

Parameters

- table: table pointer to a Table object
- row cnt: number of rows

```
void lv_table_set_col_cnt(lv_obj_t *table, uint16_t col_cnt)
```

Set the number of columns

Parameters

- table: table pointer to a Table object
- col cnt: number of columns. Must be < LV TABLE COL MAX

```
void lv_table_set_col_width(lv_obj_t *table, uint16_t col_id, lv_coord_t w)
```

Set the width of a column

Parameters

- table: table pointer to a Table object
- col_id: id of the column [0 .. LV_TABLE_COL_MAX -1]
- W: width of the column

```
\begin{table} void $\tt lv\_table\_set\_cell\_align($\it lv\_obj\_t$ *\it table$, uint16\_t $\it row$, uint16\_t $\it col$, $\it lv\_label\_align\_t$ align) $\end{table}
```

Set the text align in a cell

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row cnt -1]
- col: id of the column [0 .. col cnt -1]

- align: LV_LABEL_ALIGN_LEFT or LV_LABEL_ALIGN_CENTER or LV LABEL ALIGN RIGHT
- void **lv_table_set_cell_type**(lv_obj_t *table, uint16_t row, uint16_t col, uint8_t type) Set the type of a cell.

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]
- type: 1,2,3 or 4. The cell style will be chosen accordingly.
- void **lv_table_set_cell_crop**($lv_obj_t *table$, uint16_t row, uint16_t col, bool crop) Set the cell crop. (Don't adjust the height of the cell according to its content)

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]
- **crop**: true: crop the cell content; false: set the cell height to the content.
- void **lv_table_set_cell_merge_right**($lv_obj_t *table$, uint16_t row, uint16_t col, bool en) Merge a cell with the right neighbor. The value of the cell to the right won't be displayed.

Parameters

- table: table pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col cnt -1]
- en: true: merge right; false: don' t merge right
- const char *lv_table_get_cell_value(lv_obj_t *table, uint16_t row, uint16_t col)
 Get the value of a cell.

Return text in the cell

Parameters

- table: pointer to a Table object
- row: id of the row [0 .. row cnt -1]
- col: id of the column [0 .. col cnt -1]

uint16_t lv_table_get_row_cnt(lv_obj_t *table)

Get the number of rows.

Return number of rows.

Parameters

• table: table pointer to a Table object

uint16_t lv_table_get_col_cnt(lv_obj_t *table)

Get the number of columns.

Return number of columns.

Parameters

• table: table pointer to a Table object

lv_coord_t lv_table_get_col_width(lv_obj_t*table, uint16_t col_id)

Get the width of a column

Return width of the column

Parameters

- table: table pointer to a Table object
- col id: id of the column [0 .. LV_TABLE_COL_MAX -1]

$lv_label_align_t$ $lv_table_get_cell_align(lv_obj_t*table, uint16_t row, uint16_t col)$

Get the text align of a cell

Return LV_LABEL_ALIGN_LEFT (default in case of error) or LV_LABEL_ALIGN_CENTER or LV_LABEL_ALIGN_RIGHT

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]

$lv_label_align_t$ lv_table_get_cell_type(lv_obj_t *table, uint16_t row, uint16_t col) Get the type of a cell

Return 1,2,3 or 4

Parameters

- table: pointer to a Table object
- row: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]

$lv_label_align_t$ $lv_table_get_cell_crop(lv_obj_t *table, uint16_t row, uint16_t col)$

Get the crop property of a cell

Return true: text crop enabled; false: disabled

Parameters

- table: pointer to a Table object
- **row**: id of the row [0 .. row cnt -1]
- **col**: id of the column [0 .. col_cnt -1]

$bool \ \textbf{lv_table_get_cell_merge_right} (\textit{lv_obj_t*table}, \ uint16_t \ \textit{row}, \ uint16_t \ \textit{col})$

Get the cell merge attribute.

Return true: merge right; false: don' t merge right

Parameters

- table: table pointer to a Table object
- **row**: id of the row [0 .. row_cnt -1]
- col: id of the column [0 .. col_cnt -1]

```
lv_res_t lv_table_get_pressed_cell(lv_obj_t *table, uint16_t *row, uint16_t *col)
Get the last pressed or being pressed cell
```

Return LV_RES_OK: a valid pressed cell was found, LV_RES_INV: no valid cell is pressed

Parameters

- table: pointer to a table object
- row: pointer to variable to store the pressed row
- col: pointer to variable to store the pressed column

union lv_table_cell_format_t

```
\#include < lv\_table.h > Internal table cell format structure.
```

Use the lv_table APIs instead.

Public Members

```
uint8_t align
uint8_t right_merge
uint8_t type
uint8_t crop
struct lv_table_cell_format_t::[anonymous] s
uint8_t format_byte
struct lv_table_ext_t
```

Public Members

```
uint16_t col_cnt
uint16_t row_cnt
char **cell_data
lv_style_list_t cell_style[LV_TABLE_CELL_STYLE_CNT]
lv_coord_t col_w[LV_TABLE_COL_MAX]
uint8_t cell_types
```

Tabview (lv_tabview)

Overview

The Tab view object can be used to organize content in tabs.

Parts and Styles

The Tab view object has several parts. The main is LV_TABVIEW_PART_BG. It a rectangle-like container which holds the other parts of the Tab view.

On the background 2 important real parts are created:

- LV_TABVIEW_PART_BG_SCRL: it's the scrollable part of *Page*. It holds the content of the tabs next to each other. The background of the Page is always transparent and can't be accessed externally.
- LV_TABVIEW_PART_TAB_BG: The tab buttons which is a *Button matrix*. Clicking on a button will scroll LV_TABVIEW_PART_BG_SCRL to the related tab's content. The tab buttons can be accessed via LV_TABVIEW_PART_TAB_BTN. The height of the tab's button matrix is calculated from the font height plus padding of the background's and the button's style.

All the listed parts supports the typical background style properties and padding.

LV_TABVIEW_PART_TAB_BG has an additional real part, an indicator, called LV_TABVIEW_PART_INDIC. It's a thin rectangle-like object under the currently selected tab. When the tab view is animated to an other tab the indicator will be animated too. It can be styles using the typical background style properties. The *size* style property will set the its thickness.

When a new tab is added a *Page* is create for them on LV_TABVIEW_PART_BG_SCRL and a new button is added to LV_TABVIEW_PART_TAB_BG Button matrix. The created Pages can be used as normal Pages and they have the usual Page parts.

Usage

Adding tab

New tabs can be added with lv_tabview_add_tab(tabview, "Tab name"). It will return with a pointer to a *Page* object where the tab's content can be created.

Change tab

To select a new tab you can:

- Click on it on the Button matrix part
- Slide
- Use lv_tabview_set_tab_act(tabview, id, LV_ANIM_ON/OFF) function

Tab button's position

By default, the tab selector buttons are placed on the top of the Tab view. It can be changed with lv_tabview_set_btns_pos(tabview, LV_TABVIEW_TAB_POS_TOP/BOTTOM/LEFT/RIGHT/NONE)

LV TABVIEW TAB POS NONE will hide the tabs.

Note that, you can't change the tab position from top or bottom to left or right when tabs are already added.

Animation time

The animation time is adjusted by lv_tabview_set_anim_time(tabview, anim_time_ms). It is used when the new tab is loaded.

Scroll propagation

As the tabs' content object is a Page it can receive scroll propagation from an other Page-like object. For example, if a text area is created on the tab's content and that Text area is scrolled but it reached the end the scroll can be propagated to the content Page. It can be enabled with lv_page/textarea_set_scroll_propagation(obj, true).

By default the tab's content Pages have enabled scroll propagation, therefore when they are scrolled horizontally the scroll is propagated to LV_TABVIEW_PART_BG_SCRL and this way the Pages will be scrolled.

The manual sliding can be disabled with lv_page_set_scroll_propagation(tab_page, false).

Events

Besides the Generic events the following Special events are sent by the Slider:

• LV_EVENT_VALUE_CHANGED Sent when a new tab is selected by sliding or clicking the tab button

Learn more about *Events*.

Keys

The following *Keys* are processed by the Tabview:

- LV_KEY_RIGHT/LEFT Select a tab
- LV_KEY_ENTER Change to the selected tab

Learn more about *Keys*.

Example

C

Simple Tabview

Tab1 Tab2 Tab3

This the first tab

If the content of a tab become too long the it automatically become scrollable.

code

```
#include "lvgl/lvgl.h"
#if LV_USE_TABVIEW
void lv_ex_tabview_1(void)
    /*Create a Tab view object*/
    lv_obj_t *tabview;
    tabview = lv tabview create(lv scr act(), NULL);
    /*Add 3 tabs (the tabs are page (lv page) and can be scrolled*/
    lv_obj_t *tab1 = lv_tabview_add_tab(tabview, "Tab 1");
lv_obj_t *tab2 = lv_tabview_add_tab(tabview, "Tab 2");
    lv obj t *tab3 = lv tabview add tab(tabview, "Tab 3");
    /*Add content to the tabs*/
    lv obj t * label = lv label create(tab1, NULL);
    lv_label_set_text(label, "This the first tab\n\n"
                               "If the content\n"
                               "of a tab\n"
                               "become too long\n"
                               "the it \n"
                               "automatically\n"
                               "become\n"
                               "scrollable.");
    label = lv label create(tab2, NULL);
    lv label set text(label, "Second tab");
    label = lv label create(tab3, NULL);
    lv label set text(label, "Third tab");
```

(continues on next page)

(continued from previous page)

```
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

```
typedef uint8_t lv_tabview_btns_pos_t
typedef uint8_t lv_tabview_part_t
```

Enums

enum [anonymous]

Position of tabview buttons.

Values:

```
LV_TABVIEW_TAB_POS_NONE
LV_TABVIEW_TAB_POS_TOP
LV_TABVIEW_TAB_POS_BOTTOM
LV_TABVIEW_TAB_POS_LEFT
LV_TABVIEW_TAB_POS_RIGHT
```

enum [anonymous]

Values:

```
LV_TABVIEW_PART_BG = LV_OBJ_PART_MAIN

_LV_TABVIEW_PART_VIRTUAL_LAST = _LV_OBJ_PART_VIRTUAL_LAST

LV_TABVIEW_PART_BG_SCRL = _LV_OBJ_PART_REAL_LAST

LV_TABVIEW_PART_TAB_BG

LV_TABVIEW_PART_TAB_BTN

LV_TABVIEW_PART_INDIC

_LV_TABVIEW_PART_REAL_LAST
```

Functions

```
 lv\_obj\_t * \textbf{lv\_tabview\_create} (lv\_obj\_t * par, \textbf{const} \ lv\_obj\_t * copy) \\ \text{Create a Tab view object}
```

Return pointer to the created tab

Parameters

- par: pointer to an object, it will be the parent of the new tab
- copy: pointer to a tab object, if not NULL then the new object will be copied from it

void lv_tabview_clean(lv_obj_t *tabview)

Delete all children of the scrl object, without deleting scrl child.

Parameters

• tabview: pointer to an object

$lv_obj_t *lv_tabview_add_tab(lv_obj_t *tabview, const char *name)$

Add a new tab with the given name

Return pointer to the created page object (lv_page). You can create your content here

Parameters

- tabview: pointer to Tab view object where to ass the new tab
- name: the text on the tab button

```
void lv_tabview_set_tab_act(lv_obj_t *tabview, uint16_t id, lv_anim_enable_t anim)
```

Set a new tab

Parameters

- tabview: pointer to Tab view object
- id: index of a tab to load
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

void lv_tabview_set_anim_time(lv_obj_t *tabview, uint16_t anim_time)

Set the animation time of tab view when a new tab is loaded

Parameters

- tabview: pointer to Tab view object
- anim time: time of animation in milliseconds

void lv tabview set btns pos(lv obj t*tabview, lv tabview btns pos t btns pos)

Set the position of tab select buttons

Parameters

- tabview: pointer to a tab view object
- btns pos: which button position

uint16_t lv_tabview_get_tab_act(const lv_obj_t *tabview)

Get the index of the currently active tab

Return the active tab index

Parameters

• tabview: pointer to Tab view object

uint16_t lv_tabview_get_tab_count(const lv_obj_t *tabview)

Get the number of tabs

Return tab count

Parameters

• tabview: pointer to Tab view object

```
lv_obj_t*lv tabview get tab(const lv_obj_t*tabview, uint16 t id)
     Get the page (content area) of a tab
     Return pointer to page (lv_page) object
     Parameters
           • tabview: pointer to Tab view object
           • id: index of the tab (>= 0)
uint16_t lv_tabview_get_anim_time(const lv_obj_t *tabview)
     Get the animation time of tab view when a new tab is loaded
     Return time of animation in milliseconds
     Parameters
           • tabview: pointer to Tab view object
lv_tabview_btns_pos_t lv_tabview_get_btns_pos(const lv_obj_t *tabview)
     Get position of tab select buttons
     Parameters
           • tabview: pointer to a ab view object
struct lv_tabview_ext_t
     Public Members
     lv obj t*btns
     lv obj t *indic
     lv \ obj \ t *content
     const char **tab_name_ptr
     lv point t point last
     uint16_t tab_cur
     uint16 t tab cnt
     uint16 t anim time
     lv tabview btns pos t btns pos
```

Text area (lv_textarea)

Overview

The Text Area is a *Page* with a *Label* and a cursor on it. Texts or characters can be added to it. Long lines are wrapped and when the text becomes long enough the Text area can be scrolled.

Parts and Styles

The Text area has the same parts as *Page*. Expect LV_PAGE_PART_SCRL because it can't be referenced and it's always transparent. Refer the Page's documentation of details.

Besides the Page parts the virtual LV_TEXTAREA_PART_CURSOR part exists to draw the cursor. The cursor's area is always the bounding box of the current character. A block cursor can be created by adding a background color and background opa to LV_TEXTAREA_PART_CURSOR's style. The create line cursor let the cursor transparent and set the *border_side* property.

Usage

Add text

You can insert text or characters to the current cursor's position with:

- lv textarea add char(textarea, 'c')
- lv textarea add text(textarea, "insert this text")

To add wide characters like 'a', 'B' or CJK characters use lv_textarea_add_text(ta, "a").

lv_textarea_set_text(ta, "New text") changes the whole text.

Placeholder

A placeholder text can be specified - which is displayed when the Text area is empty - with lv_textarea_set_placeholder_text(ta, "Placeholder text")

Delete character

To delete character the left. the from of current cursor position use lv textarea del char(textarea). То delete from right the use lv textarea del char forward(textarea)

Move the cursor

The cursor position can be modified directly with $lv_textarea_set_cursor_pos(textarea, 10)$. The 0 position means "before the first characters", $LV_TA_CURSOR_LAST$ means "after the last character"

You can step the cursor with

- lv_textarea_cursor_right(textarea)
- lv textarea cursor left(textarea)
- lv textarea cursor up(textarea)
- lv textarea cursor down(textarea)

If lv_textarea_set_cursor_click_pos(textarea, true) is called the cursor will jump to the position where the Text area was clicked.

Hide the cursor

The cursor can be hidden with lv_textarea_set_cursor_hidden(textarea, true).

Cursor blink time

The blink time of the cursor can be adjusted with $lv_textarea_set_cursor_blink_time(textarea, time_ms)$.

One line mode

The Text area can be configures to be one lined with lv_ta_set_one_line(ta, true). In this mode the height is set automatically to show only one line, line break character are ignored, and word wrap is disabled.

Password mode

The text area supports password mode which can be enabled with lv textarea set pwd mode(textarea, true).

If the • (Bullet, U+2022) character exists in the font, the entered characters are converted to it after some time or when a new character is entered. If • not exists, * will be used.

In password mode lv_textarea_get_text(textarea) gives the real text, not the bullet characters.

The visibility time can be adjusted with lv_textarea_set_pwd_show_time(textarea, time_ms).

Text align

The text can be aligned to the left, center or right with lv_textarea_set_text_align(textarea, LV LABEL ALIGN LET/CENTER/RIGHT).

In one line mode, the text can be scrolled horizontally only if the text is left aligned.

Accepted characters

You can set a list of accepted characters with lv_textarae_set_accepted_chars(ta, "0123456789.+-"). Other characters will be ignored.

Max text length

The maximum number of characters can be limited with lv_textarea_set_max_length(textarea, max char num)

Very long texts

If there is a very long text in the Text area (e. g. > 20k characters) its scrolling and drawing might be slow. However, by enabling LV_LABEL_LONG_TXT_HINT 1 in $lv_conf.h$ it can be hugely improved. It will save some info about the label to speed up its drawing. Using LV_LABEL_LONG_TXT_HINT the scrolling and drawing will as fast as with "normal" short texts.

Select text

A part of text can be selected if enabled with lv_textarea_set_text_sel(textarea, true). It works like when you select a text on your PC with your mouse.

Scrollbars

The scrollbars can shown according to different policies set by lv_textarea_set_sb_mode(textarea, LV SCRLBAR MODE ...). Learn more at the *Page* object.

Scroll propagation

When the Text area is scrolled on an other scrollable object (like a Page) and the scrolling has reached the edge of the Text area, the scrolling can be propagated to the parent. In other words, when the Text area can be scrolled further, the parent will be scrolled instead.

It can be enabled with lv_ta_set_scroll_propagation(ta, true).

Learn more at the *Page* object.

Edge flash

When the Text area is scrolled to edge a circle like flash animation can be shown if it is enabled with lv_ta_set_edge_flash(ta, true)

Events

Besides the Generic events the following Special events are sent by the Slider:

- LV_EVENT_INSERT Sent when a character before a character is inserted. The evnet data is the text planned to insert. lv_ta_set_insert_replace(ta, "New text") replaces the text to insert. The new text can't be in a local variable which is destroyed when the event callback exists. "" means do not insert anything.
- LV_EVENT_VALUE_CHANGED When the content of the text area has been changed.

Keys

- LV_KEY_UP/DOWN/LEFT/RIGHT Move the cursor
- Any character Add the character to the current cursor position

Learn more about Keys.

Example

C

Simple Text area

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV USE TEXTAREA
lv_obj_t * ta1;
static void event_handler(lv_obj_t * obj, lv_event_t event)
    if(event == LV_EVENT_VALUE_CHANGED) {
       printf("Value: %s\n", lv_textarea_get_text(obj));
    else if(event == LV_EVENT_LONG_PRESSED_REPEAT) {
        /*For simple test: Long press the Text are to add the text below*/
        const char * txt = "\n\nYou can scroll it if the text is long enough.\n";
        static uint16 t i = 0;
        if(txt[i] != '\0') {
            lv_textarea_add_char(ta1, txt[i]);
            i++;
        }
    }
}
void lv ex textarea 1(void)
    ta1 = lv_textarea_create(lv_scr_act(), NULL);
    lv_obj_set_size(ta1, 200, 100);
    lv_obj_align(ta1, NULL, LV_ALIGN_CENTER, 0, 0);
    lv textarea set text(tal, "A text in a Text Area"); /*Set an initial text*/
    lv obj set event cb(ta1, event handler);
}
```

(continues on next page)

(continued from previous page)

#endif

Text are with password field

code

```
#include "lvgl/lvgl.h"
#include <stdio.h>
#if LV_USE_TEXTAREA && LV_USE_KEYBOARD
static void kb_event_cb(lv_obj_t * event_kb, lv_event_t event);
static void ta_event_cb(lv_obj_t * ta, lv_event_t event);
static lv_obj_t * kb;
void lv_ex_textarea_2(void)
    /* Create the password box */
   lv_obj_t * pwd_ta = lv_textarea_create(lv_scr_act(), NULL);
   lv_textarea_set_text(pwd_ta, "");
   lv_textarea_set_pwd_mode(pwd_ta, true);
   lv_textarea_set_one_line(pwd_ta, true);
   lv_obj_set_width(pwd_ta, LV_HOR_RES / 2 - 20);
   lv_obj_set_pos(pwd_ta, 5, 20);
   lv_obj_set_event_cb(pwd_ta, ta_event_cb);
   /* Create a label and position it above the text box */
   lv_obj_t * pwd_label = lv_label_create(lv_scr_act(), NULL);
   lv_label_set_text(pwd_label, "Password:");
    lv obj align(pwd label, pwd ta, LV ALIGN OUT TOP LEFT, 0, 0);
    /* Create the one-line mode text area */
```

(continues on next page)

(continued from previous page)

```
lv_obj_t * oneline_ta = lv_textarea_create(lv_scr_act(), pwd_ta);
    lv textarea set pwd mode(oneline ta, false);
    lv_obj_align(oneline_ta, NULL, LV_ALIGN_IN_TOP_RIGHT, -5, 20);
    /* Create a label and position it above the text box */
    lv_obj_t * oneline_label = lv_label_create(lv_scr_act(), NULL);
    lv_label_set_text(oneline_label, "Text:");
    lv_obj_align(oneline_label, oneline_ta, LV_ALIGN_OUT_TOP_LEFT, 0, 0);
    /* Create a keyboard and make it fill the width of the above text areas */
    kb = lv_keyboard_create(lv_scr_act(), NULL);
    lv obj set event cb(kb, kb event cb); /* Setting a custom event handler stops the
→ keyboard from closing automatically */
    lv_obj_set_size(kb, LV_HOR_RES, LV_VER_RES / 2);
    lv_keyboard_set_textarea(kb, pwd_ta); /* Focus it on one of the text areas to_u
⇔start */
    lv keyboard set cursor manage(kb, true); /* Automatically show/hide cursors on,
→text areas */
static void kb_event_cb(lv_obj_t * event_kb, lv_event_t event)
    /* Just call the regular event handler */
    lv keyboard def event cb(event kb, event);
static void ta_event_cb(lv_obj_t * ta, lv_event_t event)
    if(event == LV_EVENT_CLICKED) {
        /* Focus on the clicked text area */
        if(kb != NULL)
            lv_keyboard_set_textarea(kb, ta);
    else if(event == LV EVENT INSERT) {
        const char * str = lv_event_get_data();
        if(str[0] == '\n') {
            printf("Ready\n");
        }
    }
}
#endif
```

MicroPython

No examples yet.

API

Typedefs

typedef uint8_t lv_textarea_style_t

Enums

enum [anonymous]

Possible text areas tyles.

Values:

$LV_TEXTAREA_PART_BG = LV_PAGE_PART_BG$

Text area background style

$LV_TEXTAREA_PART_SCRLBAR = LV_PAGE_PART_SCRLBAR$

Scrollbar style

LV TEXTAREA PART EDGE FLASH =
$$LV$$
 PAGE PART EDGE FLASH

Edge flash style

Cursor style

LV TEXTAREA PART PLACEHOLDER

Placeholder style

$$_LV_TEXTAREA_PART_REAL_LAST = _LV_PAGE_PART_REAL_LAST$$

Functions

LV_EXPORT_CONST_INT(LV_TEXTAREA_CURSOR_LAST)

Create a text area objects

Return pointer to the created text area

Parameters

- par: pointer to an object, it will be the parent of the new text area
- copy: pointer to a text area object, if not NULL then the new object will be copied from it

```
void lv_textarea_add_char(lv_obj_t *ta, uint32_t c)
```

Insert a character to the current cursor position. To add a wide char, e.g. ' \acute{A} ' use ' \acute{A}

Parameters

- ta: pointer to a text area object
- C: a character (e.g. 'a')

void lv textarea add text(lv_obj_t*ta , const char *txt)

Insert a text to the current cursor position

Parameters

- ta: pointer to a text area object
- txt: a '\0' terminated string to insert

void lv_textarea_del_char(lv_obj_t *ta)

Delete a the left character from the current cursor position

Parameters

• ta: pointer to a text area object

void lv_textarea_del_char_forward(lv_obj_t *ta)

Delete the right character from the current cursor position

Parameters

• ta: pointer to a text area object

void lv_textarea_set_text(lv_obj_t *ta, const char *txt)

Set the text of a text area

Parameters

- ta: pointer to a text area
- txt: pointer to the text

void lv_textarea_set_placeholder_text(lv_obj_t *ta, const char *txt)

Set the placeholder text of a text area

Parameters

- ta: pointer to a text area
- txt: pointer to the text

void lv_textarea_set_cursor_pos(lv_obj_t*ta, int16_t pos)

Set the cursor position

Parameters

- **obj**: pointer to a text area object
- pos: the new cursor position in character index < 0 : index from the end of the text LV_TEXTAREA_CURSOR_LAST: go after the last character

$void lv_textarea_set_cursor_hidden(lv_obj_t*ta, bool hide)$

Hide/Unhide the cursor.

Parameters

- ta: pointer to a text area object
- hide: true: hide the cursor

void lv_textarea_set_cursor_click_pos(lv_obj_t *ta, bool en)

Enable/Disable the positioning of the the cursor by clicking the text on the text area.

Parameters

- ta: pointer to a text area object
- en: true: enable click positions; false: disable

void lv_textarea_set_pwd_mode(lv_obj_t *ta, bool en)

Enable/Disable password mode

Parameters

- ta: pointer to a text area object
- en: true: enable, false: disable

void lv_textarea_set_one_line(lv_obj_t *ta, bool en)

Configure the text area to one line or back to normal

Parameters

- ta: pointer to a Text area object
- en: true: one line, false: normal

void lv_textarea_set_text_align(lv_obj_t *ta, lv_label_align_t align)

Set the alignment of the text area. In one line mode the text can be scrolled only with LV_LABEL_ALIGN_LEFT. This function should be called if the size of text area changes.

Parameters

- ta: pointer to a text are object
- align: the desired alignment from lv_label_align_t. (LV LABEL ALIGN LEFT/CENTER/RIGHT)

void lv textarea set accepted chars(lv_obj_t*ta, const char*list)

Set a list of characters. Only these characters will be accepted by the text area

Parameters

- ta: pointer to Text Area
- list: list of characters. Only the pointer is saved. E.g. "+-.,0123456789"

void lv textarea set max length(lv_obj_t*ta, uint16 t num)

Set max length of a Text Area.

Parameters

- ta: pointer to Text Area
- num: the maximal number of characters can be added (lv_textarea_set_text ignores it)

void lv_textarea_set_insert_replace(lv_obj_t *ta, const char *txt)

In LV_EVENT_INSERT the text which planned to be inserted can be replaced by an other text. It can be used to add automatic formatting to the text area.

Parameters

- ta: pointer to a text area.
- txt: pointer to a new string to insert. If "" no text will be added. The variable must be live after the event_cb exists. (Should be global or static)

static void lv textarea set sb mode(lv obj t*ta, lv scrlbar mode t mode)

Set the scroll bar mode of a text area

Parameters

- ta: pointer to a text area object
- **sb mode**: the new mode from 'lv_page_sb_mode_t' enum

$to void v_textarea_set_scroll_propagation(lv_obj_t*ta, bool en)$

Enable the scroll propagation feature. If enabled then the Text area will move its parent if there is no more space to scroll.

Parameters

- ta: pointer to a Text area
- en: true or false to enable/disable scroll propagation

static void **lv_textarea_set_edge_flash(** *lv_obj_t* * *ta*, bool *en***)**

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- page: pointer to a Text Area
- en: true or false to enable/disable end flash

void lv_textarea_set_text_sel(lv_obj_t *ta, bool en)

Enable/disable selection mode.

Parameters

- ta: pointer to a text area object
- en: true or false to enable/disable selection mode

void lv_textarea_set_pwd_show_time(lv_obj_t*ta, uint16_t time)

Set how long show the password before changing it to '*'

Parameters

- ta: pointer to Text area
- time: show time in milliseconds. 0: hide immediately.

void lv_textarea_set_cursor_blink_time(lv_obj_t *ta, uint16_t time)

Set cursor blink animation time

Parameters

- ta: pointer to Text area
- time: blink period. 0: disable blinking

const char *lv_textarea_get_text(const lv_obj_t *ta)

Get the text of a text area. In password mode it gives the real text (not '*' s).

Return pointer to the text

Parameters

• ta: pointer to a text area object

const char *lv_textarea_get_placeholder_text(lv_obj_t *ta)

Get the placeholder text of a text area

Return pointer to the text

Parameters

• ta: pointer to a text area object

$lv \ obj \ t *lv \ textarea get label(const <math>lv \ obj \ t *ta$)

Get the label of a text area

Return pointer to the label object

Parameters

• ta: pointer to a text area object

uint16_t lv_textarea_get_cursor_pos(const $lv_obj_t *ta$)

Get the current cursor position in character index

Return the cursor position

Parameters

• ta: pointer to a text area object

bool lv_textarea_get_cursor_hidden(const lv_obj_t *ta)

Get whether the cursor is hidden or not

Return true: the cursor is hidden

Parameters

• ta: pointer to a text area object

bool lv_textarea_get_cursor_click_pos(lv_obj_t*ta)

Get whether the cursor click positioning is enabled or not.

Return true: enable click positions; false: disable

Parameters

• ta: pointer to a text area object

bool lv_textarea_get_pwd_mode(const $lv_obj_t *ta$)

Get the password mode attribute

Return true: password mode is enabled, false: disabled

Parameters

• ta: pointer to a text area object

bool lv_textarea_get_one_line(const $lv_obj_t *ta$)

Get the one line configuration attribute

Return true: one line configuration is enabled, false: disabled

Parameters

• ta: pointer to a text area object

const char *lv_textarea_get_accepted_chars(lv_obj_t *ta)

Get a list of accepted characters.

Return list of accented characters.

Parameters

• ta: pointer to Text Area

uint16_t lv_textarea_get_max_length(lv_obj_t *ta)

Set max length of a Text Area.

 ${\bf Return}\,$ the maximal number of characters to be add

Parameters

• ta: pointer to Text Area

static lv_scrlbar_mode_t lv_textarea_get_sb_mode(const lv_obj_t *ta)

Get the scroll bar mode of a text area

Return scrollbar mode from 'lv_page_sb_mode_t' enum

Parameters

• ta: pointer to a text area object

static bool lv_textarea_get_scroll_propagation(lv_obj_t*ta)

Get the scroll propagation property

Return true or false

Parameters

• ta: pointer to a Text area

static bool lv_textarea_get_edge_flash(lv_obj_t *ta)

Get the scroll propagation property

Return true or false

Parameters

• ta: pointer to a Text area

bool lv_textarea_text_is_selected(const $lv_obj_t *ta$)

Find whether text is selected or not.

Return whether text is selected or not

Parameters

• ta: Text area object

bool lv_textarea_get_text_sel_en(lv_obj_t *ta)

Find whether selection mode is enabled.

Return true: selection mode is enabled, false: disabled

Parameters

• ta: pointer to a text area object

uint16_t lv_textarea_get_pwd_show_time(lv_obj_t *ta)

Set how long show the password before changing it to '*'

Return show time in milliseconds. 0: hide immediately.

Parameters

• ta: pointer to Text area

uint16_t lv_textarea_get_cursor_blink_time(lv_obj_t *ta)

Set cursor blink animation time

Return time blink period. 0: disable blinking

Parameters

• ta: pointer to Text area

void lv_textarea_clear_selection(lv_obj_t *ta)

Clear the selection on the text area.

Parameters

• ta: Text area object

void lv_textarea_cursor_right(lv_obj_t *ta)

Move the cursor one character right

Parameters

• ta: pointer to a text area object

void lv_textarea_cursor_left(lv_obj_t *ta)

Move the cursor one character left

Parameters

• ta: pointer to a text area object

void $lv_textarea_cursor_down(lv_obj_t*ta)$

Move the cursor one line down

Parameters

• ta: pointer to a text area object

void lv_textarea_cursor_up(lv_obj_t *ta)

Move the cursor one line up

Parameters

• ta: pointer to a text area object

struct lv textarea ext t

Public Members

```
lv_page_ext_t page
lv_obj_t *label
char *placeholder_txt
lv style list t style placeholder
char *pwd_tmp
const char *accapted_chars
uint16\_t max_length
uint16_t pwd_show_time
lv_style_list_t style
lv_coord_t valid_x
uint16\_t pos
uint16 t blink time
lv\_area\_t area
uint16_t txt_byte_pos
uint8 t state
uint8 t hidden
uint8_t click_pos
struct lv_textarea_ext_t::[anonymous] cursor
uint16_t sel_start
uint16\_t sel_end
uint8_t text_sel_in_prog
uint8_t text_sel_en
uint8 t pwd mode
uint8_t one_line
```

Tile view (lv_tileview)

Overview

The Tileview is a container object where its elements (called *tiles*) can be arranged in a grid form. By swiping the user can navigate between the tiles.

If the Tileview is screen sized it gives a user interface you might have seen on the smartwatches.

Parts and Styles

The Tileview has the same parts as *Page*. Expect LV_PAGE_PART_SCRL because it can't be referenced and it's always transparent. Refer the Page's documentation of details.

Usage

Valid positions

The tiles don't have to form a full grid where every element exists. There can be holes in the grid but it has to be continuous, i.e. there can't be an empty rows or columns.

With $lv_tileview_set_valid_positions(tileview, valid_pos_array, array_len)$ the valid positions can be set. Scrolling will be possible only to this positions. The 0,0 index means the top left tile. E.g. lv_point_t valid_pos_array[] = {{0,0}, {0,1}, {1,1}, {{LV_COORD_MIN, LV_COORD_MIN}}} gives a Tile view with "L" shape. It indicates that there is no tile in {1,1} therefore the user can't scroll there.

In other words, the $valid_pos_array$ tells where the tiles are. It can be changed on the fly to disable some positions on specific tiles. For example, there can be a 2x2 grid where all tiles are added but the first row (y = 0) as a "main row" and the second row (y = 1) contains options for the tile above it. Let's say horizontal scrolling is possible only in the main row and not possible between the options in the second row. In this case the $valid_pos_array$ needs to changed when a new main tile is selected:

- for the first main tile: $\{0,0\}$, $\{0,1\}$, $\{1,0\}$ to disable the $\{1,1\}$ option tile
- for the second main tile $\{0,0\}$, $\{1,0\}$, $\{1,1\}$ to disable the $\{0,1\}$ option tile

Set tile

To set the currently visible tile use $lv_tileview_set_tile_act(tileview, x_id, y_id, LV_ANIM_ON/OFF)$.

Add element

To add elements just create an object on the Tileview and position it manually to the desired position.

lv_tileview_add_element(tielview, element) should be used to make possible to scroll (drag) the Tileview by one its element. For example, if there is a button on a tile, the button needs to be explicitly added to the Tileview to enable the user to scroll the Tileview with the button too.

Scroll propagation

The scroll propagation feature of page-like objects (like List) can be used very well here. For example, there can be a full-sized List and when it reaches the top or bottom most position the user will scroll the tile view instead.

Animation time

The animation time of the Tileview can be adjusted with lv_tileview_set_anim_time(tileview, anim time).

Animations are applied when

- a new tile is selected with lv tileview set tile act
- the current tile is scrolled a little and then released (revert the original title)
- the current tile is scrolled more than half size and then released (move to the next tile)

Edge flash

An "edge flash" effect can be added when the tile view reached hits an invalid position or the end of tile view when scrolled.

Use lv_tileview_set_edge_flash(tileview, true) to enable this feature.

Events

Besides the Generic events the following Special events are sent by the Slider:

• LV_EVENT_VALUE_CHANGED Sent when a new tile loaded either with scrolling or lv_tileview_set_act. The event data is set ti the index of the new tile in valid_pos_array (It's type is uint32 t *)

Keys

- LV_KEY_UP, LV_KEY_RIGHT Increment the slider's value by 1
- LV_KEY_DOWN, LV_KEY_LEFT Decrement the slider's value by 1

Learn more about Keys.

Example

C

Tileview with content

code

```
#include "lvgl/lvgl.h"
#if LV_USE_TILEVIEW
void lv_ex_tileview_1(void)
    static lv_point_t valid_pos[] = {{0,0}, {0, 1}, {1,1}};
    lv_obj_t *tileview;
    tileview = lv_tileview_create(lv_scr_act(), NULL);
    lv_tileview_set_valid_positions(tileview, valid_pos, 3);
    lv_tileview_set_edge_flash(tileview, true);
   lv_obj_t * tile1 = lv_obj_create(tileview, NULL);
    lv_obj_set_size(tile1, LV_HOR_RES, LV_VER_RES);
    lv_tileview_add_element(tileview, tile1);
   /*Tile1: just a label*/
   lv obj t * label = lv label create(tile1, NULL);
    lv label set text(label, "Scroll down");
    lv_obj_align(label, NULL, LV_ALIGN_CENTER, 0, 0);
    /*Tile2: a list*/
    lv_obj_t * list = lv_list_create(tileview, NULL);
   lv_obj_set_size(list, LV_HOR_RES, LV_VER_RES);
    lv_obj_set_pos(list, 0, LV_VER_RES);
    lv_list_set_scroll_propagation(list, true);
    lv_list_set_sb_mode(list, LV_SCRLBAR_MODE_OFF);
    lv list add btn(list, NULL, "One");
    lv_list_add_btn(list, NULL, "Two");
    lv_list_add_btn(list, NULL, "Three");
    lv_list_add_btn(list, NULL, "Four");
```

(continues on next page)

(continued from previous page)

```
lv_list_add_btn(list, NULL, "Five");
lv_list_add_btn(list, NULL, "Six");
lv_list_add_btn(list, NULL, "Seven");
lv_list_add_btn(list, NULL, "Eight");

/*Tile3: a button*/
lv_obj_t * tile3 = lv_obj_create(tileview, tile1);
lv_obj_set_pos(tile3, LV_HOR_RES, LV_VER_RES);
lv_tileview_add_element(tileview, tile3);

lv_obj_t * btn = lv_btn_create(tile3, NULL);
lv_obj_align(btn, NULL, LV_ALIGN_CENTER, 0, 0);
lv_tileview_add_element(tileview, btn);
label = lv_label_create(btn, NULL);
lv_label_set_text(label, "No scroll up");
}

#endif
```

MicroPython

No examples yet.

API

Enums

Functions

Return pointer to the created tileview

Parameters

- par: pointer to an object, it will be the parent of the new tileview
- copy: pointer to a tileview object, if not NULL then the new object will be copied from it

```
void lv tileview add element(lv obj t*tileview, lv obj t*element)
```

Register an object on the tileview. The register object will able to slide the tileview

Parameters

- tileview: pointer to a Tileview object
- element: pointer to an object

```
void lv\_tileview\_set\_valid\_positions(lv\_obj\_t *tileview, const lv\_point\_t valid\_pos[], uint16 t valid pos cnt)
```

Set the valid position's indices. The scrolling will be possible only to these positions.

Parameters

- tileview: pointer to a Tileview object
- valid_pos: array width the indices. E.g. lv_point_t p[] = {{0,0}, {1,0}, {1,1}. Only the pointer is saved so can't be a local variable.
- valid pos cnt: numner of elements in valid pos array

Set the tile to be shown

Parameters

- tileview: pointer to a tileview object
- **x**: column id (0, 1, 2···)
- y: line id (0, 1, 2···)
- anim: LV_ANIM_ON: set the value with an animation; LV_ANIM_OFF: change the value immediately

static void lv tileview set edge flash(lv_obj_t*tileview, bool en)

Enable the edge flash effect. (Show an arc when the an edge is reached)

Parameters

- tileview: pointer to a Tileview
- en: true or false to enable/disable end flash

static void lv_tileview_set_anim_time(lv_obj_t*tileview, uint16_t anim_time)

Set the animation time for the Tile view

Parameters

- tileview: pointer to a page object
- anim time: animation time in milliseconds

```
void lv_tileview_get_tile_act(lv_obj_t *tileview, lv_coord_t *x, lv_coord_t *y)
```

Get the tile to be shown

Parameters

- tileview: pointer to a tileview object
- **x**: column id (0, 1, 2···)
- y: line id $(0, 1, 2 \cdots)$

$\verb|static| bool lv_tileview_get_edge_flash(|lv_obj_t*tileview)|$

Get the scroll propagation property

Return true or false

Parameters

• tileview: pointer to a Tileview

```
static uint16_t lv_tileview_get_anim_time(lv_obj_t*tileview)
```

Get the animation time for the Tile view

Return animation time in milliseconds

Parameters

• tileview: pointer to a page object

struct lv_tileview_ext_t

Public Members

```
lv_page_ext_t page
const lv_point_t *valid_pos
uint16_t valid_pos_cnt
uint16_t anim_time
lv_point_t act_id
uint8_t drag_top_en
uint8_t drag_bottom_en
uint8_t drag_left_en
uint8_t drag_right_en
```

Window (Iv_win)

Overview

The Window is container-like objects built from a header with title and button and a content area.

Parts and Styles

The main part is LV WIN PART BG which holds the two other real parts:

- 1. LV WIN PART HEADER: a header Container on the top with a title and control buttons
- 2. LV_WIN_PART_CONTENT_SCRL the scrollable part of a Page for the content below the header.

Besides these, LV_WIN_PART_CONTENT_SCRL has a scrollbar part called LV_WIN_PART_CONTENT_SCRL. Read the documentation of *Page* for more details on the scrollbars.

All parts supports the typical background properties. The title uses the Text properties of the header part.

The height of the control buttons is: header height - header padding top - header padding bottom.

Title

On the header, there is a title which can be modified by: lv win set title(win, "New title").

Control buttons

Control buttons can be added to the right side of the header with: lv_win_add_btn(win,
LV_SYMBOL_CLOSE). The second parameter is an *Image* source so it can be a symbol, a pointer to an
lv_img_dsc_t variable or a path to file.

The width of the buttons can be set with $lv_win_set_btn_width(win, w)$. If w == 0 the buttons will be square-shaped.

lv win close event cb can be used as an event callback to close the Window.

Scrollbars

The scrollbar behavior can be set by lv_win_set_scrlbar_mode(win, LV_SCRLBAR_MODE_...). See *Page* for details.

Manual scroll and focus

To scroll the Window directly you can use lv_win_scroll_hor(win, dist_px) or lv_win_scroll_ver(win, dist_px).

To make the Window show an object on it use lv_win_focus(win, child, LV_ANIM_ON/OFF).

The time of scroll and focus animations can be adjusted with $lv_win_set_anim_time(win, anim_time_ms)$

Layout

To set a layout for the content use <code>lv_win_set_layout(win, LV_LAYOUT_...)</code>. See *Container* for details.

Events

Only the Generic events are sent by the object type.

Learn more about *Events*.

Keys

The following *Keys* are processed by the Page:

• LV_KEY_RIGHT/LEFT/UP/DOWN Scroll the page

Learn more about Keys.

Example

C

Simple window

Window title

This is the content of the window

You can add control buttons to the window header

The content area becomes automatically scrollable is it's large enough.

Volumen scroll the content

code

```
#include "lvgl/lvgl.h"
#if LV_USE_WIN
void lv_ex_win_1(void)
    /*Create a window*/
    lv_obj_t * win = lv_win_create(lv_scr_act(), NULL);
                                                                  /*Set the title*/
    lv win set title(win, "Window title");
    /*Add control button to the header*/
   lv_obj_t * close_btn = lv_win_add_btn(win, LV SYMBOL CLOSE);
                                                                           /*Add
→close button and use built-in close action*/
   lv obj set event cb(close btn, lv win close event cb);
   lv win add btn(win, LV SYMBOL SETTINGS); /*Add a setup button*/
   /*Add some dummy content*/
   lv_obj_t * txt = lv_label_create(win, NULL);
    lv label set text(txt, "This is the content of the window\n\n"
                           "You can add control buttons to\n"
                           "the window header\n"
                           "The content area becomes\n"
                           "automatically scrollable is it's \n"
                           "large enough.\n\n"
                           " You can scroll the content\n"
                           "See the scroll bar on the right!");
}
#endif
```

MicroPython

No examples yet.

API

Enums

enum [anonymous]

Window parts.

Values:

LV WIN PART BG =
$$LV$$
 OBJ PART MAIN

Window object background style.

$$LV_WIN_PART_HEADER = _LV_OBJ_PART_REAL_LAST$$

Window titlebar background style.

LV WIN PART CONTENT SCRL

Window content style.

LV_WIN_PART_SCRLBAR

Window scrollbar style.

Functions

$$\mathit{lv_obj_t} * \texttt{lv_win_create} (\mathit{lv_obj_t} * \mathit{par}, \, \texttt{const} \, \mathit{lv_obj_t} * \mathit{copy})$$

Create a window objects

Return pointer to the created window

Parameters

- par: pointer to an object, it will be the parent of the new window
- copy: pointer to a window object, if not NULL then the new object will be copied from it

```
void lv_win_clean(lv_obj_t *win)
```

Delete all children of the scrl object, without deleting scrl child.

Parameters

• win: pointer to an object

```
lv\_obj\_t *lv\_win\_add\_btn(lv\_obj\_t *win, const void *img\_src)
```

Add control button to the header of the window

Return pointer to the created button object

Parameters

- win: pointer to a window object
- img src: an image source ('lv img t' variable, path to file or a symbol)

```
void lv win close event cb(lv obj t*btn, lv event t event)
```

Can be assigned to a window control button to close the window

Parameters

- btn: pointer to the control button on teh widows header
- evet: the event type

void lv_win_set_title(lv_obj_t *win, const char *title)

Set the title of a window

Parameters

- win: pointer to a window object
- title: string of the new title

void lv_win_set_header_height(lv_obj_t *win, lv_coord_t size)

Set the control button size of a window

Return control button size

Parameters

• win: pointer to a window object

void lv_win_set_btn_width(lv_obj_t *win, lv_coord_t width)

Set the width of the control buttons on the header

Parameters

- win: pointer to a window object
- width: width of the control button. 0: to make them square automatically.

void $lv_win_set_content_size(lv_obj_t*win, lv_coord_t w, lv_coord_t h)$

Set the size of the content area.

Parameters

- win: pointer to a window object
- W: width
- h: height (the window will be higher with the height of the header)

void lv win set layout(lv_obj_t *win, lv_layout_t layout)

Set the layout of the window

Parameters

- win: pointer to a window object
- layout: the layout from 'lv layout t'

void lv_win_set_scrlbar_mode(lv_obj_t*win, lv_scrlbar_mode_t sb_mode)

Set the scroll bar mode of a window

Parameters

- win: pointer to a window object
- sb mode: the new scroll bar mode from 'lv sb mode t'

void lv_win_set_anim_time(lv_obj_t *win, uint16_t anim_time)

Set focus animation duration on lv_win_focus()

Parameters

• win: pointer to a window object

• anim time: duration of animation [ms]

void lv_win_set_drag(lv_obj_t *win, bool en)

Set drag status of a window. If set to 'true' window can be dragged like on a PC.

Parameters

- win: pointer to a window object
- en: whether dragging is enabled

const char *lv_win_get_title(const lv_obj_t *win)

Get the title of a window

Return title string of the window

Parameters

• win: pointer to a window object

lv_obj_t *lv_win_get_content(const lv_obj_t *win)

Get the content holder object of window (lv_page) to allow additional customization

Return the Page object where the window's content is

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_btn_size(const lv_obj_t *win)

Get the control button size of a window

Return control button size

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_header_height(const lv_obj_t *win)

Get the header height

Return header height

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_btn_width(lv_obj_t *win)

Get the width of the control buttons on the header

Return width of the control button. 0: square.

Parameters

• win: pointer to a window object

lv_obj_t *lv win get from btn(const lv_obj_t *ctrl_btn)

Get the pointer of a widow from one of its control button. It is useful in the action of the control buttons where only button is known.

Return pointer to the window of 'ctrl btn'

Parameters

• ctrl_btn: pointer to a control button of a window

$lv\ layout\ t\ lv\ win\ get\ layout(lv\ obj\ t\ *win)$

Get the layout of a window

Return the layout of the window (from 'lv_layout_t')

Parameters

• win: pointer to a window object

lv_scrlbar_mode_t lv_win_get_sb_mode(lv_obj_t *win)

Get the scroll bar mode of a window

Return the scroll bar mode of the window (from 'lv_sb_mode_t')

Parameters

• win: pointer to a window object

uint16_t lv_win_get_anim_time(const lv_obj_t *win)

Get focus animation duration

Return duration of animation [ms]

Parameters

• win: pointer to a window object

lv_coord_t lv_win_get_width(lv_obj_t *win)

Get width of the content area (page scrollable) of the window

Return the width of the content area

Parameters

• win: pointer to a window object

static bool lv_win_get_drag(const lv_obj_t *win)

Get drag status of a window. If set to 'true' window can be dragged like on a PC.

Return whether window is draggable

Parameters

• win: pointer to a window object

void $lv_win_focus(lv_obj_t*win, lv_obj_t*obj, lv_anim_enable_t anim_en)$

Focus on an object. It ensures that the object will be visible in the window.

Parameters

- win: pointer to a window object
- **obj**: pointer to an object to focus (must be in the window)
- anim_en: LV_ANIM_ON focus with an animation; LV_ANIM_OFF focus without animation

static void lv_win_scroll_hor(lv_obj_t *win, lv_coord_t dist)

Scroll the window horizontally

Parameters

- win: pointer to a window object
- **dist**: the distance to scroll (< 0: scroll right; > 0 scroll left)

static void lv_win_scroll_ver(lv_obj_t *win, lv_coord_t dist)

Scroll the window vertically

Parameters

• win: pointer to a window object

• dist: the distance to scroll (< 0: scroll down; > 0 scroll up)

struct lv_win_ext_t

Public Members

lv_obj_t *page
lv_obj_t *header
char *title_txt
lv_coord_t btn_w