

Projeto Final 10. Relógio Despertador Programável

Departamento de Eletrónica, Telecomunicações e Informática

Mestrado Integrado em Engenharia Eletrónica e Telecomunicações

Ano Letivo 2018/2019

Laboratórios de Sistemas Digitais P14 – Prof. José Luís Azevedo

Nome: Emanuel Veiga Pereira

Nmec: 93235;

03/06/2018

Introdução

O trabalho consiste na modelação de hardware de um relógio despertador programável, tendo como exemplo os relógios do nosso quotidiano, com as funções: relógio normal, acerto ou configuração de horas/dias da semana e despertador programável. (R.D.P = relógio despertador programável)

Arquitetura do sistema

Neste projeto é necessário usar módulos como por exemplo:

Relógio normal, quando o modo de configuração apresenta as entradas "00" inserida pelo utilizador: Neste caso 7 contadores que servem como relógio (um contador para os minutos unidades, minutos dezenas, horas unidades, horas dezenas e dia da semana e outros dois contadores para os segundos mas em modo open, ou seja invisíveis) e um sinal com frequência de 1Hz, vindo de um pulse generetor que serve para os segundos. A cada pulso de relógio deverá ser incrementado 1 minuto;

Figura 1: Relógio normal

Relógio ajustável terá as mesmas funcionalidades que o relógio normal sendo que o utilizador poderá selecionar o dígito que pretende alterar, de uma forma sequencialmente, através de uma máquina de estados. Sendo que em cada dígito poderá ter a opção de aumentar o dígito ou diminuir, através de um novo contador acrescentando as condições de enUp e enDown e modo Acerto. O DeBouncer foi usado na KEY(2);

Figura 2: Relógio normal ajustável

Relógio Despertador Programável: o sistema vai ter uma memória RAM que armazenará os alarmes inseridos pelo utilizador, neste momento estou a testar ainda com register para armazenar o valor inserido pelo utilizador, mais tarde passará para uma RAM;

Implementação

Unidade de Controlo: A unidade de controlo é essencialmente uma máquina de estados que controla o que aparece nos displays e modos de configuração.

<u>Fase2(Unidade de Controlo)</u>: Esta fase é composta por 6 estados, um estado para quando está a contas (running) e cinco estados para cada digito, para fins de acertar o relógio;

Figura 3: Máquina de Estados da Fase2

<u>Fase3(Unidade de Controlo):</u> Esta fase é composta por mais um estado (Alarm) que permite ao utilizador guardar um alarme;

Figura 4: Máquina de Estados da Fase3

Validação

As validações deste projeto foram maioritariamente feitas através de testes no kit da FPGA, sendo que utilizei várias vezes o VWF para acompanhar os resultados.

Conclusão

Em primeiro lugar ao longo da realização do trabalho foram surgindo algumas dificuldades, essas apenas foram possíveis de ser superadas através de uma análise intensiva do código. A terceira fase não foi efetuada com sucesso primeiramente tentei guardar o alarme num registo e depois mais tarde passar para uma RAM, mas sem sucesso. Concluindo, este trabalho permitiu-me adquirir mais conhecimentos sobre a programação em VHDL e aprender um pouco sobre o funcionamento dos despertadores e da sua modelação.

Manual do utilizador

SW(0) E SW(1)	Modo de Configuração
"00"	Normal de contagem
"01"	Acerto de horas/dias da semana
"11"	Programação da função despertador

KEY/HEX

HEX0	Minutos, unidade
HEX1	Minutos, dezenas
HEX2	Horas, unidades
HEX3	Horas, dezenas
HEX4	Dia da semana
HEX7	Modo de Funcionamento
KEY0	Incrementar 1 unidade
KEY1	Decrementar 1 unidade
KEY2	Seleção de dígitos
KEY3	Seleção de alarmes

LEDG(8) - INDICAÇÃO DE SEGUNDOS

