

PHAR 227G Pharmacokinetics:

Intravenous infusion

Xinyu (Eric) Wang, PhD

Associate Professor of Pharmaceutical Sciences
PCOM - School of Pharmacy

Learning objectives

After completing this lecture, students should be able to:

- 1. Explain steady state during intravenous continuous infusion.
- 2. Describe how half-life affects the time required to reach steady state.
- 3. Describe the situations where continuous IV infusion stops before or after the steady state is reached.
- 4. Calculate plasma concentration of a drug following continuous IV infusion before or after the steady state is reached.
- 5. Explain the reason why a loading dose is required right before continuous IV infusion.
- Solve problems related to the calculation of a loading dose and plasma concentration of a drug at any time after a loading dose and immediate IV infusion.

Pharmacokinetics

Intravenous infusion

Introduction:

Drug administration route:

- --- oral, topical, or parenteral
- --- parenteral: intravenous, subcutaneous, and intramuscular

In Concentration (mg1/1)

--- intravenous: intravenous bolus and intravenous infusion

Intravenous Bolus Dosing:

Introduction:

Intravenous infusion:

- --- Drug is infused slowly through a vein into the plasma at a constant rate.
- --- It allows precise control of C_p to match the individual needs of the patient.
- --- It maintains an effective constant C_p for drugs with a narrow therapeutic window.
- --- Continuous IV infusion avoids wide fluctuation between C_{max} and C_{min}.
- --- It allows co-administration of drugs (antibiotics) with IV fluids (electrolytes and nutrients).
- --- It allows easy control of maintenance or termination of drug therapy.

Continuous IV infusion:

- --- At time zero, $C_p = 0$
- --- At steady state,

Rate of drug input (infusion rate) = Rate of drug output (elimination rate)

Continuous IV infusion: one compartment model drugs

- --- dD/dt: The change in the amount of drug in the body at any time
- --- dD/dt = rate of input rate of output
- --- Differential equation: $dD/dt = R_a k_eD$
- D: the amount of drug in the body
- R_a: the infusion rate (zero order)
- k_e: the elimination rate constant (first order)
- --- Integrated equation with substitution of $D = C_p \cdot V_d$:

$$C_p = \frac{S \cdot F \cdot R_a}{k_e \cdot V_d} (1 - e^{-k_e \cdot t})$$

Continuous IV infusion: one compartment model drugs

$$C_p = \frac{S \cdot F \cdot R_a}{k_e \cdot V_d} (1 - e^{-k_e \cdot t})$$
Steady-state level

At infinite time (t = ∞), $e^{-k_e t}$ approaches zero and 1 - $e^{-k_e t}$ =1. C_p is drug plasma concentration at steady state C_{ss} .

$$C_{ss} = \frac{S \cdot F \cdot R_a}{k_a \cdot V_d} \longrightarrow C_{ss} = \frac{S \cdot F \cdot R_a}{CI}$$

Continuous IV infusion: one compartment model drugs

$$C_{ss} = \frac{S \cdot F \cdot R_a}{Cl}$$

$$R_a = \frac{Dose}{\tau}$$

$$C_{ss} = \frac{S \cdot F \cdot Dose / \tau}{Cl}$$

Clearance:

--- proportionality constant relates steady state drug plasma concentration to rate of drug administration.

S·F·R_a = CI · C_{ss}

$$Cl = \frac{S \cdot F \cdot Dose / \tau}{C_{ss}}$$

Continuous IV infusion: one compartment model drugs

1) A.J. is a 65 kg patient with asthma. What would be an appropriate infusion rate of drug A if the target steady-state concentration were 12 mg/L? Given that $V_d = 0.50$ L/Kg and $t_{1/2} = 8.0$ hour for drug A.

2) B.M. is a 76 kg patient with asthma receiving 40 mg/hr of drug X. A steady-state plasma level was 16.9 mg/L. What would be an appropriate infusion rate for B.M. if the target steady-state plasma level were 12 mg/L?

Continuous IV infusion: one compartment model drugs

Steady-state drug concentration (C_{ss}):

- --- C_p where the rate of drug leaving the body equal to the rate of drug entering the body (No net change in the amount of drug in the body).
- --- C_{ss} remains constant at steady state.

STEADY STATE

Copyright © 2010 Wolfes Kluwer Health | Lippincott Williams & Wilkins

Continuous IV infusion: one compartment model drugs

Time required to reach C_{ss} :

Copyright @ 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins

--- Depending on the elimination half-life of the drug.

Percent of C _{ss} Reached	Number of Half-Lives
90	3.32
95	4.32
99	6.65

Continuous IV infusion: one compartment model drugs

Effect of R_a on C_{ss} :

- --- Increase in R increase C_{ss} .
- --- increase in R does NOT shorten the time to reach C_{ss} .

Continuous IV infusion: one compartment model drugs

CASE 1: Infusion stopped prior to steady state

CASE 2: Infusion stopped after steady state is reached

Continuous IV infusion: one compartment model drugs

CASE 1: Infusion stopped prior to steady state

$$C_{1} = \frac{S \cdot F \cdot R_{a}}{Cl} (1 - e^{-k_{e} \cdot t_{1}})$$

$$C_{2} = \frac{S \cdot F \cdot R_{a}}{Cl} (1 - e^{-k_{e} \cdot t_{1}}) \cdot e^{-k_{e} \cdot t_{2}}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow C_{2}$$

$$\downarrow C_{1}$$

$$\downarrow$$

Continuous IV infusion: one compartment model drugs

CASE 1: Infusion stopped prior to steady state

$$C_1 = \frac{S \cdot F \cdot R_a}{Cl} (1 - e^{-k_e \cdot t_1}) \quad C_{ss} = \frac{S \cdot F \cdot R_a}{Cl}$$

Fraction of steady state achieved at time t₁:

$$(1 - e^{-k_e \cdot t_1})$$

$$C_2 = \frac{S \cdot F \cdot R_a}{Cl} (1 - e^{-k_e \cdot t_1}) \cdot e^{-k_e \cdot t_2}$$
 $C_2 = C_1 \cdot e^{-k_e \cdot t_2}$

Fraction of drug remaining at t_2 : $e^{-k_e \cdot t_2}$

Continuous IV infusion: one compartment model drugs

CASE 1: Infusion stopped prior to steady state

Example: A drug was administered at a rate of 500 mg/hr by iv infusion (S=1). This drug has a clearance of 5.0 L/hr and an elimination half life of 5 hr.

- a) Estimate the drug plasma concentration 10 hr after the initiation of the infusion.
- b) If the drug was infused for 10 hr, estimate the drug plasma concentration 15 hr after the initiation of the infusion.

Continuous IV infusion: one compartment model drugs

CASE 2: Infusion stopped after steady state is reached

$$C_1 = C_{ss} = \frac{S \cdot F \cdot R_a}{Cl}$$

$$C_2 = C_{ss} \cdot e^{-k_e \cdot t_2}$$

Continuous IV infusion: one compartment model drugs

CASE 2: Infusion stopped after steady state is reached

Example: An Aminophylline (ethylene diamine salt of theophylline) infusion was administered at a rate of 100 mg/hr to a patient (S=0.8). This patient has a theophylline clearance of 2.8 L/hr and an elimination half life of 3 hr.

- a) Estimate the expected steady-state plasma concentration of the ophylline after the initiation of the infusion.
- b) If the drug was infused for 20 hr, estimate the drug plasma concentration 25 hr after the initiation of the infusion.

Continuous IV infusion: one compartment model drugs

Continuous IV infusion + Loading dose:

Reason:

- --- It usually takes 4 to 5 half-lives for a drug to reach steady state concentration after continuous IV infusion.
- --- An immediate therapeutic effect of the drug is desired.

Limitation:

- --- Drugs with substantial side effect at large doses.
- --- Drugs preferred to be accumulated slowly rather than achieving therapeutic concentrations immediately.

Continuous IV infusion: one compartment model drugs

Continuous IV infusion + Loading dose (IV bolus):

C_p from loading dose (LD) only:

$$C_p = C_0 \cdot e^{-k_e \cdot t} = \frac{S \cdot F \cdot LD}{V_d} \cdot e^{-k_e \cdot t}$$

C_p from IV infusion only:

$$C_p = \frac{S \cdot F \cdot R_a}{k_e \cdot V_d} (1 - e^{-k_e \cdot t})$$

C_p from combined IV bolus of a LD and IV infusion given at the same time:

$$C_p = \frac{S \cdot F \cdot LD}{V_d} \cdot e^{-k_e \cdot t} + \frac{S \cdot F \cdot R_a}{k_e \cdot V_d} (1 - e^{-k_e \cdot t})$$

Continuous IV infusion: one compartment model drugs

Continuous IV infusion + Loading dose (IV bolus):

How to calculate loading dose (LD):

$$LD = \frac{C_{ss} \cdot V_{d}}{S \cdot F}$$

Recall equation for C_{ss}:

$$C_{ss} = \frac{S \cdot F \cdot R_a}{k_e \cdot V_d} \Longrightarrow \frac{C_{ss} \cdot V_d}{S \cdot F} = \frac{R_a}{k_e}$$

Equation for LD:

$$LD = \frac{R_a}{k_e}$$

Continuous IV infusion: one compartment model drugs

Continuous IV infusion + Loading dose (IV bolus):

Intravenous infusion with loading doses a ($>R_a/k_e$), b ($=R_a/k_e$), and c ($<R_a/k_e$). Curve d represents an IV infusion without loading dose.

Continuous IV infusion: one compartment model drugs

Continuous IV infusion + Loading dose (IV bolus): practice problems

1) A physician wants to administer an anesthetic agent at a rate of 2 mg/hr by IV infusion. The elimination rate constant is 0.1 hr⁻¹ and the volume of distribution (one compartment) is 10 L. What loading dose should be recommended if the doctor wants the drug level to reach 2 μg/mL immediately?

2) What is the concentration of a drug 6 hours after administration of a loading dose (IV bolus) of 10 mg and simultaneous infusion at 2 mg/hr (the drug has a $t_{1/2}$ of 3 hours and a volume of distribution of 10 L)?

Continuous IV infusion: one compartment model drugs

fast IV infusion (Loading dose) followed by slow IV infusion:

For example,

A patient needs to receive drug T ($k = 0.17 \ hr^{-1}$; $V_d = 25 \ L$) with a required $C_p = 14.1 \ mg/L$. If we wish to give a loading dose in the form of a fast infusion over 30 minutes we need to give the infusion at a rate which will produce $C_p = 14.1 \ mg/L$ at 30 minutes. Therefore, $C_{p(30 \ min)} = 14.1 \ mg/L$. Calculate the fast infusion rate R_a .

Continuous IV infusion: one compartment model drugs

loading dose + multiple continuous IV infusion:

A male patient (70 kg) is given drug X by continuous IV infusion. The following dosage regimen is provided:

- a) A loading dose of 550 mg drug X was given by IV bolus followed immediately by IV infusion;
- b) 1st continuous IV infusion of 60 mg/hr is administered for 30 hrs and then stopped for 12 hr;
- c) 2nd continuous IV infusion of 50 mg/hr is administered for 15 hrs and then stopped for 2 hr.

What is the concentration of drug X at this time? Assume $V_d = 0.48$ L/kg and CI = 3.6 L/hr.

Continuous IV infusion: two compartment model drugs

- --- Many drugs given by IV infusion follow 2-compartment kinetics. examples: theophylline and lidocaine
- --- C_{ss} is achieved after a distribution equilibrium is reached between central and tissue compartment.
- --- Constant C_{ss} results in constant drug concentrations in the tissue.
- --- At steady state, C_{plasma} does not equal to C_{tissue}.
- --- Continuous IV infusion + Loading dose (IV bolus):
 - Note: It is not possible to maintain an instantaneous, stable steady-state blood level for a two-compartment model drug with a zero-order rate of infusion.

Reference

- 1. Winter's Basic Clinical Pharmacokinetics, 6th Edition (2018), Beringer, PM.
- 2. Concepts in Clinical Pharmacokinetics, 6th Edition (2014), DiPiro, JT, *et al.*
- 3. Applied Biopharmaceutics and Pharmacokinetics, 7th Edition (2016), Shargel, L, *et al*.

PHAR 227G Pharmacokinetics:

Intravenous infusion

The End

Xinyu (Eric) Wang, PhD

Associate Professor of Pharmaceutical Sciences
PCOM-School of Pharmacy