CC0285 - Probabilidade II

Transformação - 19/08/2019

Prof. Mauricio Mota

1 Introdução

O objetivo destas notas de aula é desenvolver o conceito de transformação de uma variável contínua X. O capítulo 5 do Meyer é a base para a construção do conceito de transformação. O aluno deverá ler também o capítulo 7 do livro do Bussab&Morettin. Para fixar as ideias resolva os exemplos apresentados.

2 Transformação de Uma Variável Aleatória Contínua Unidimensional X.

Seja X uma variável aleatória contínua unidimensional com função densidade de probabilidade dada por f(x) com suporte A. Seja F(x) a respectiva função de distribuição de X.

2.1 Caso Biunívoco.

Suponha que:

i. y = h(x) define uma transformação biunívoca de A em B.

ii. A derivada de $x = h^{-1}(y) = w(y)$ com respeito a y é uma função contínua e não nula para todo $y \in B$.

Então Y = h(X) é uma variável aleatória contínua X com suporte B e densidade:

$$g(y) = f(w(y)) |w'(y)| I_B(y).$$

Se o suporte de Xb for A=(a,b) o suporte de Y é, B=(h(a),h(b)) se h for crescente ou B=(h(b),h(a)) se h for decrescente .

2.2 Caso Não Biunívoco.

A condição que y=h(x) seja uma transformação biunívoca de A em B é muito restritiva. Vamos relaxá-la, isto é, suponha que o suporte de A possa ser decomposto em uma partição finita (ou infinita enumerável), A_1,A_2,\ldots,A_m de tal maneira que y=h(x) defina uma transformação biunívoca de A_i em $B,\ i=1,2,\ldots,m$. Seja $x=h_i^{-1}(y)=w_i(y)$ a inversa de y=h(x) para $x\in A_i,\ i=1,2,\ldots,m$.

Então Y = h(X) é uma variável aleatória contínua X com suporte B e densidade:

$$g(y) = \sum_{i=1}^{m} f(w_i(y)) |w'_i(y)| I_B(y).$$

3 Exemplos.

Para uma melhor fixação das ideias apresentadas serão resolvidos alguns exemplos.

3.1 Exemplo 1:

Seja $X \sim U(0,1)$. Qual a densidade de Y = -ln(X)?

3.2 Exemplo 2:

Seja $X \sim Pareto(0,1)$. Qual a densidade de Y = ln(X)?

3.3 Exemplo **3**:

Seja $X \sim Normal(\mu, \sigma^2)$. Qual a densidade de $Y = e^X$?

3.4 Exemplo 4:

Seja $X \sim Gumbel(\alpha,\beta)$. Qual a densidade de $Y = e^{-\dfrac{X-\alpha}{\beta}}$?

3.5 Exemplo **5**:

Seja $X \sim Laplace(0,1)$. Qual a densidade de Y = |X|?

3.6 Exemplo 6:

Seja $X \sim Laplace(0,1)$. Qual a densidade de $Y = X^2$?

3.7 Exemplo 7:

Seja X uma v.a.c. com densidade :

$$f(x) = \frac{2(x+1)}{9} I_{(-1,2)}$$
.

Mostre que a densidade de $Y=X^2$ é dada por:

$$g(y) = \frac{2}{9} y^{-1/2} I_{(0,1)}(y) + \frac{1}{9} (1 + y^{-1/2}) I_{(1,4)}(y).$$

3.8 Exemplo 8:

Seja $X \sim Normal(0,1).$ Qual a densidade de $Y = X^2$?

3.9 Exemplo 9:

Seja $X \sim Normal(\mu, 1)$. Qual a densidade de $Y = X^2$?

3.10 Exemplo 10:

Seja $X \sim Normal(\mu, \sigma^2)$. Qual a densidade de $Y = X^2$?

3.11 Exemplo 11:

Seja $X \sim U(-3/2, 3/2)$. Qual a densidade de $Y = (X^2 - 1)^2$?

Obs. Este exemplo foi extraído do livro: Teoria da Probabilidade, de autoria dos professores Rathie e Peter Zornig. Editora UNB.

3.12 Exemplo 12:

Considere a transformação Y = F(X), a função de distribuição acumulada de X. Mostre que ela tem distribuição uniforme padrão.

3.13 Exemplo 13:

Considere a transformação Y = S(X), a função de sobrevivência de X. Mostre que ela tem distribuição uniforme padrão.

3.14 Exemplo 14:

Sejam $X \sim Exp(1)$ e $Y \sim Exp(1)$, independentes. Identifique a lei de U = Min(X,Y).

3.15 Exemplo 15:

Sejam $X \sim Exp(1)$ e $Y \sim Exp(1)$, independentes. Qual a lei de V = Max(X,Y).