

DW03_updn_ctr

Up/Down Counter

Version, STAR and Download Information: IP Directory

Features and Benefits

- Up/down count control
- Asynchronous reset
- Loadable count register
- Counter enable
- Terminal count flag

Description

DW03_updn_ctr is a general-purpose binary up-down counter. The counter data path is *width* bits wide and has 2^{width} states from "000…000" to "111…111", depending on the specified width. The counter is clocked on the positive edge of the clk input.

Table 1-1 Pin Description

Pin Name	Width	Direction	Function	
data	width bit(s)	Input	Input data bus	
up_dn	1 bit	Input	Count up $(up_dn = 1)$ or count down $(up_dn = 0)$	
load	1 bit	Input	Counter load enable, active low	
cen	1 bit	Input	Counter enable, active high	
clk	1 bit	Input	Clock	
reset	1 bit	Input	Asynchronous counter reset, active low	
count	width bit(s)	Output	Output count bus	
tercnt	1 bit	Output	Terminal count flag	

Table 1-2 Parameter Description

Parameter	Value	Function	
width ≥ 1		Width of the count output bus	

Table 1-3 Synthesis Implementations

Implementation Name	Function	License Feature Required
str	Synthesis model	DesignWare

Table 1-4 Simulation Models

Model	Function	
DW03.DW03_UPDN_CTR_CFG_SIM	Design unit name for VHDL simulation	
dw/dw03/src/DW03_updn_ctr_sim.vhd	VHDL simulation model source code	
dw/sim_ver/DW03_updn_ctr.v	Verilog simulation model source code	

Table 1-5 Counter Operation Truth Table

reset	load	cen	up_dn	Operation
0	Х	Х	Х	Reset
1	0	Х	Х	Load
1	1	0	Х	Standby
1	1	1	0	Count down
1	1	1	1	Count up

The reset, active low, provides for an asynchronous reset of the counter to "000...0". If the reset pin is connected to '1', then the reset logic is not synthesized, resulting in a smaller and faster counter.

The up_dn input controls whether the counter counts up (up_dn is HIGH) or down (up_dn is LOW), starting on the next clk cycle.

The counter is loaded with data by asserting load (LOW) and applying data on the data input. The data load operation is synchronous with respect to the positive edge of clk.

The count enable pin, cen, is active high. When cen is HIGH, the counter is active. When cen is LOW, the counter is disabled and count remains at the same value.

The tercnt is an output port. When counting up, tercnt is HIGH at count = "111....111". When counting down, tercnt is HIGH at count = "000....000".

Timing Diagrams

The following timing diagrams show various conditions for DW03_updn_ctr.

Figure 1-1 Functional Operation - 1

Figure 1-2 Functional Operation - 2

Related Topics

- Logic Sequential Overview
- DesignWare Building Block IP Documentation Overview

HDL Usage Through Component Instantiation - VHDL

```
library IEEE, DWARE, DWARE;
use IEEE.std_logic_1164.all;
use DWARE.DWpackages.all;
use DWARE.DW_foundation_comp.all;
entity DW03 updn ctr inst is
  generic ( inst_width : POSITIVE := 8 );
  port ( inst_data : in std_logic_vector(inst_width-1 downto 0);
         inst up dn : in std logic;
         inst_load : in std_logic;
         inst_cen : in std_logic;
         inst_clk
                    : in std logic;
         inst_reset : in std_logic;
         count_inst : out std_logic_vector(inst_width-1 downto 0);
         tercnt_inst : out std_logic );
end DW03_updn_ctr_inst;
architecture inst of DW03_updn_ctr_inst is
begin
  -- Instance of DW03_updn_ctr
  U1 : DW03_updn_ctr
    generic map ( width => inst_width )
    port map ( data => inst_data, up_dn => inst_up_dn,
               load => inst load, cen => inst cen, clk => inst clk,
               reset => inst_reset, count => count_inst,
               tercnt => tercnt_inst );
end inst;
-- pragma translate_off
configuration DW03_updn_ctr_inst_cfg_inst of DW03_updn_ctr_inst is
  for inst
  end for; -- inst
end DW03_updn_ctr_inst_cfg_inst;
-- pragma translate_on
```

HDL Usage Through Component Instantiation - Verilog

```
module DW03_updn_ctr_inst( inst_data, inst_up_dn, inst_load,
                           inst_cen, inst_clk, inst_reset,
                           count_inst, tercnt_inst );
  parameter width = 8;
  input [width-1 : 0] inst_data;
  input inst_up_dn;
  input inst_load;
  input inst_cen;
  input inst_clk;
  input inst_reset;
  output [width-1 : 0] count_inst;
  output tercnt_inst;
  // Instance of DW03_updn_ctr
  DW03_updn_ctr #(width)
    U1 ( .data(inst_data), .up_dn(inst_up_dn), .load(inst_load),
         .cen(inst_cen), .clk(inst_clk), .reset(inst_reset),
         .count(count_inst), .tercnt(tercnt_inst));
endmodule
```

DWBB_201806.0

June 2018

Copyright Notice and Proprietary Information

© 2018 Synopsys, Inc. All rights reserved. This Synopsys software and all associated documentation are proprietary to Synopsys, Inc. and may only be used pursuant to the terms and conditions of a written license agreement with Synopsys, Inc. All other use, reproduction, modification, or distribution of the Synopsys software or the associated documentation is strictly prohibited.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader's responsibility to determine the applicable regulations and to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Trademarks

Synopsys and certain Synopsys product names are trademarks of Synopsys, as set forth at https://www.synopsys.com/company/legal/trademarks-brands.html.

All other product or company names may be trademarks of their respective owners.

Third-Party Links

Any links to third-party websites included in this document are for your convenience only. Synopsys does not endorse and is not responsible for such websites and their practices, including privacy practices, availability, and content.

Synopsys, Inc. 690 E. Middlefield Road Mountain View, CA 94043

www.synopsys.com