## Test de mathématiques Financière : 1h

La réussite passe par un effort constant.

Exercice 1 On considère un marché à deux périodes avec un actif non-risqué  $M_0 = 1$  et un actif risqué  $S_0 = 100$ . On a  $u_1 = 1.1$  et  $d_1 = 0.95$  pour la première étape, et  $u_2 = 1.05$  et  $d_2 = 0.9$  pour la deuxième étape. On prendra r = 0.

- 1. (a) Combien y-a-t-il de valeurs finales possibles pour l'actif risqué à t=2 ?
  - (b) Combien y-aurait-t-il de valeurs possibles si on étudiait un modèle à n étapes.
- 2. On déduit donc le graphe suivant :



Le but de cette question est de calculer le prix du Call  $C_0$  à la monnaie en t=0.

- (a) Calculer les prix du Call à  $t = 2 : C_2^{u_1 u_2}, C_2^{u_1 d_2}, C_2^{d_1 u_2}$  et  $C_2^{d_1 d_2}$ .
- (b) Calculer la probabilité risque neutre  $(p_2, 1-p_2)$  à la deuxième étape. On considèrera le triangle suivant :



- (c) Déduire le prix du Call à t=1 :  $C_1^{u_1}$  et  $C_1^{d_1}$ .
- (d) Calculer la probabilité risque neutre  $(p_1, 1-p_1)$  à la première étape. On considèrera le triangle suivant :



(e) Déduire  $C_0$ .

Exercice 2 On considère un marché à 3 périodes avec un actif non-risqué  $M_0 = 1$ et deux actifs risqués S tel que :  $-S_0^1 = 10, S_1^{1u} = 15 \text{ et } S_1^{1d} = 12, S_2^{1uu} = 22, S_2^{1ud} = 17 \text{ et } S_2^{1dd} = 12.$   $-S_0^2 = 5, S_1^{2u} = 7 \text{ et } S_1^{2d} = 6, S_2^{2uu} = 9, S_2^{2ud} = 8 \text{ et } S_2^{2dd} = 6.$ On suppose que r = 0.25. Préciser si le marché décrit ici présente un arbitrage

$$-S_0^1 = 10, S_1^{1u} = 15 \text{ et } S_1^{1d} = 12, S_2^{1uu} = 22, S_2^{1ud} = 17 \text{ et } S_2^{1dd} = 12.$$

$$-S_0^2 = 5$$
,  $S_1^{2u} = 7$  et  $S_1^{2d} = 6$ ,  $S_2^{2uu} = 9$ ,  $S_2^{2ud} = 8$  et  $S_2^{2dd} = 6$ .

possible? Si oui donner une stratégie d'arbitrage.