Math 501 Homework (§5.4 Uniform Continuity)

Problem 1. Let I be closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. If $\epsilon > 0$ then there exists a Lipschitz function $g_{\epsilon}: I \to \mathbb{R}$ such that $|f(x) - g_{\epsilon}(x)| < \epsilon$ for all $x \in I$

Solution. Take g_{ϵ} , a piecewise linear function on $I \to \mathbb{R}$. By definition, if we divide I in a finite number of disjoint intervals $I_1, I_2, \ldots, I_m, g_{\epsilon}$ is a linear function on each interval I_k . Let the slopes of these linear functions be m_k respectively and $M = \max(m_k)$.

Since M is the largest slope of g_{ϵ} between any two points $x, u \in I, x \neq u$ we have

$$\left|\frac{g_{\epsilon}(x) - g_{\epsilon}(u)}{x - u}\right| \le M$$

We thus prove that all piecewise linear functions are Lipschitz functions. Combining this result with **Theorem 5.4.13** we prove the existence of a Lipschitz function $g_{\epsilon}: I \to \mathbb{R}$ such that

$$|f(x) - g_{\epsilon}(x)| < \epsilon$$