ПРАКТИЧЕСКАЯ РАБОТА №5

Расчет запаса устойчивости по норме решения матричного уравнения Ляпунова

Выполнила: Евдокимова Дарья, 21205

Цель работы: рассчитать запасы устойчивости ПИ- и ПИД-регуляторов по норме решения матричного уравнения Ляпунова; сравнить с показателями устойчивости по годографу Найквиста из лабораторной работы 10.4.

Для непрерывного случая: см. со стр. 89 пособия

Программа для среды Scilab имеет вид:

```
A=[1 2; 2 1] // матрица дифференциального уравнения;
I=eye(A) // единичная матрица;
H=lyap(A,-I,'c') // решение уравнения Ляпунова;
spec(H) // вычисление спектра H;
// если в спектре H нет отрицательных значений,
// то матрица A устойчива
```

Следствие 5. При условии устойчивости матрицы А верны равенства

$$\varkappa(A) = \sup_{v(0) \neq 0} \frac{\int_0^\infty v(t)^\top v(t) dt}{v(0)^\top v(0)} = \sup_{v(0) \neq 0} \frac{v(0)^\top H v(0)}{v(0)^\top v(0)} = ||H||.$$

Вычисление показателя $\varkappa(A)$ в Scilab:

```
Н=1уар(А,-еуе(А),'с') // решение уравнения Ляпунова;
spec(H) // вычисление спектра решения;
// если в спектре нет отрицательных значений, то
kappa=norm(H,2)
// в противном случае матрица А неустойчива
Для дискретного случая: см. со стр. 107 пособия
```

Для анализа устойчивости системы (5.16) ищется решение H дискретного уравнения Ляпунова. Если все собственные числа $\lambda(H)$ строго положительны (т. е. H > 0), то система устойчива. Программа для Scilab:

```
Ad=[0.8 0.1; 0.2 0.7] // матрица разностного уравн.; 
I=eye(Ad) // единичная матрица; 
H=lyap(Ad,-I,'d') // решение дискретн. уравн. Ляпунова;
```

ГЛАВА 5. ДИСКРЕТНЫЕ СИСТЕМЫ

```
spec(H) // вычисление спектра;
// если в спектре Н нет отрицательных значений,
// разностное уравнение с матрицей Ad устойчиво
```

Вычисление показателя $\varkappa_d(A_d)$ в Scilab:

```
H=lyap(Ad,-eye(Ad),'d') //решение дискретного уравн. Ляпунова;
spec(H) // вычисление спектра решения;
// если в спектре нет отрицательных значений, то
kappad=norm(H,2)
// в противном случае
// разностное уравнение с матрицей Ad неустойчиво
```

Уравнения Ляпунова:

Непрерывный случай	Дискретный случай		
$A^{\mathrm{T}}H + HA = -I$	$A^{\mathrm{T}}dHdAd-Hd=-I$		

Для того, чтобы определить, насколько устойчива система используется показатель устойчивости, чем менее устойчиво решение, тем больше его норма

Системы управления с непрерывным временем

ПИ-рег

Код программы

```
n = 5
T0 = 0.91
Ti = 5.5
K = 1.08
T1 = 0
// создание полинома, оператор Лапласа для передаточной функции
s = poly(0, 's')
// вычисление передаточной функции
W_right = 1 / (1 + s * T0)^n
Wleft = K * (1 + (1 / (Ti * s))) * W_right
W = Wleft / (1 + Wleft)
disp('Wleft = ', Wleft)
disp('W = ', W)
// Создание линейной системы на основе передаточной функции
// 'c' - передатчная ф-ия задана в форме коэф-ов полиномов (числитель и знаменатель)
sys_lin = syslin('c', W)
// Извлечение матриц состояний и матрицы передачи D из линейной системы
[A, B, C, D] = abcd(sys lin)
disp('A = ', A)
disp('B = ', B)
disp('C = ', C)
disp('D = ', D)
// Получение спектра матрицы А (собственных значений)
mat A spec = spec(A)
disp('Спектр матрицы A', mat_A_spec)
// Решение уравнения Ляпунова, А - матрица системы
//AX + XA^T = C, C = -eye(A) - отрицательная единичная матрица размером как A
// 'c' - непрерывная система
// H содержит решение (X)
H = \underline{lyap}(A, -\underline{eye}(A), 'c')
disp('H = ', H)
// Нахждение собственных векторов Н
mat_H_spec = spec(H)
disp('Спектр матрицы H', mat H spec)
// Проверка условия устойчивости
if (mat_H_spec > 0) then
  disp('Н положительно определена. По Th Ляпунова система устойчива асимптотически')
  // показатель устойчивости
  kappa = norm(H, 2)
else
  kappa = %inf
disp('kappa(A) = ', kappa)
```

Результат такой:

```
"Н положительно определена. По Тh Ляпунова система устойчива асимптотически"

"kappa(A) = "

36.352755
```

ПИД-рег

Код программы

```
n = 5
T0 = 0.91
Ti = 4.05
K = 1.35
T1 = 0
Td = Ti / 4
Tc = Td / 8
s = poly(0, 's')
Wright = 1 / (1 + s * T0)^n
Wleft = K * (1 + (1 / (Ti * s)) + ((Td * s)/(Tc * s + 1))) * Wright
W = Wleft / (1 + Wleft)
disp('Wleft = ', Wleft)
disp('W = ', W)
sys_lin = syslin('c', W)
[A, B, C, D] = \underline{abcd}(sys\_lin)
disp('A = ', A)
disp('B = ', B)
disp('C = ', C)
disp('D = ', D)
mat A spec = spec(A)
disp('Спектр матрицы A', mat A spec)
H = \underline{lyap}(A, -eye(A), 'c')
disp('H = ', H)
mat_H_spec = spec(H)
disp('Спектр матрицы H', mat_H_spec)
if (mat_H_spec > 0) then
  disp('H положительно определена. По Th Ляпунова система устойчива асимптотически')
  kappa = norm(H, 2)
  kappa = %inf
disp('kappa(A) = ', kappa)
```

Результат:

```
"Н положительно определена. По Th Ляпунова система устойчива асимптотически"

"kappa(A) = "

45.259907
```

Системы управления с дискретным временем

ПИ-рег

Данные берем при Т=1.5

Для ПИ-регулятора							
T1	Kcrit	K = K_H =	1710147	Ти = Т_и,Н =			
		Kcrit * 0.45		Ткрит/1.2	Ошибка		
0,00	2,5989	1,1695	8,2600	6,883333333	5,976		
1,50	3,3710	1,5170	11,6870	9,739166667	40,198		

Код программы

```
T0 = 0.91
n = 5
Ti = 9.739166667
K = 1.5170
// Шаг дискретизации
h = Ti / 100
T1 = 1.5
// Получение передаточной функции
s = poly(0, 's')
exp_decomp = 1 - T1*s + (T1*s)^2/2 - (T1*s)^3/6 + (T1*s)^4/24
Wright = exp_decomp / (1 + s * T0)^n
Wleft = K * (1 + (1 / (Ti * s))) * Wright
W = Wleft / (1 + Wleft)
disp('Wleft = ', Wleft)
disp('W = ', W)
// Создание линейной системы на основе передаточной функции
sys lin = syslin('c', W)
// Преобразование непрерывной передаточной функции в дискретную форму с заданным
временным шагом h (частота дискретизации системы)
// Получаем дискретную линейную модель передатчной функции W с временным шагом h
sys_discr = dscr(sys_lin, h)
// Нахождение данных, необходимых для уравнения Ляпунова
A_discr = sys_discr.A
E discr = -eye(A discr)
```

```
disp('A_discr = ', A_discr)
disp('E_discr = ', E_discr)
// Нахождение собственных чисел матрицы А
mat_A_spec = spec(A_discr)
disp('Спектр матрицы A_discr', mat_A_spec)
// Решение уравнения Ляпунова
// Флаг 'd' говорит о том, что система дискретная
H discr = <u>lvap(A discr, E discr, 'd')</u>
disp('H_discr = ', H_discr)
// Нахождение собственных чисел матрицы - решения уравнения Ляпунова
mat_H_spec = spec(H_discr)
disp('Спектр матрицы H_discr', mat_H_spec)
if (mat_H_spec > 0) then
 disp('Н положительно определена. По Th Ляпунова система устойчива асимптотически')
  // Получение коэффициента устойчивости
  kappa = norm(H discr, 2)
else
  kappa = %inf
disp('kappa(A_discr) = ', kappa)
```

Результат такой:

```
"Н положительно определена. По Th Ляпунова система устойчива асимптотически"

"kappa(A_discr) = "

2354.4729
```

ПИД-рег

Данные берем при T=1.5

Для ПИД-регулятора (покоординатная настройка)							
T1	Kcrit	K = K_H = Kcrit * 0.45	LUDIAT	Ти = Т_и,Н = Ткрит/1.2	Ошибка		
0,00	2,4	1,0800	6,6000	5,5	5,626		
1,50	2,5	1,1250	9,6000	8	10,449		

Код программы

```
T0 = 0.91

n = 5

Ti = 8

K = 1.125

Td = Ti / 4

Tc = Td / 8

T1 = 1.5

h = Ti / 100
```

```
s = poly(0, 's')
exp decomp = 1 - T1*s + (T1*s)^2/2 - (T1*s)^3/6 + (T1*s)^4/24
Wright = \exp_{\text{decomp}} / (1 + s * T0)^n
Wleft = K * (1 + (1 / (Ti * s)) + ((Td * s)/(Tc * s + 1))) * Wright
W = Wleft / (1 + Wleft)
disp('Wleft = ', Wleft)
disp('W = ', W)
sys lin = syslin('c', W)
sys_discr = dscr(sys_lin, h)
A discr = sys discr.A
E_discr = -eye(A_discr)
disp('A_discr = ', A_discr)
disp('E_discr = ', E_discr)
mat A spec = spec(A discr)
disp('Спектр матрицы A discr', mat A spec)
H_discr = \underline{Vap}(A_discr, E_discr, 'd')
disp('H_discr = ', H_discr)
mat_H_spec = spec(H_discr)
disp('Спектр матрицы H_discr', mat_H_spec)
if (mat H spec > 0) then
  disp('Н положительно определена. По Th Ляпунова система устойчива асимптотически')
  kappa = norm(H_discr, 2)
  kappa = %inf
disp('kappa(A_discr) = ', kappa)
```

Результат:

```
"Н положительно определена. По Th Ляпунова система устойчива асимптотически"

"kappa(A_discr) = "

1988.7452
```