TOPOLOGÍA ALGEBRAICA: EXAMEN FINAL UNA INTRODUCCIÓN A LOS CONJUNTOS SIMPLCIALES

Guido Arnone

La categoria Δ de ordinales finitos

Definición

La categoría Δ *de ordinales finitos tiene por objetos a los conjuntos* $[\![n]\!] := \{0 < 1 < \cdots < n\}$ *y por flechas a los morfismos de posets* $f : [\![n]\!] \to [\![m]\!]$.

Definición

Definimos para cada $\mathfrak{n} \in \mathbb{N}_0$ e $\mathfrak{i} \in [\![\mathfrak{n}]\!]$ los mapas de cocaras

$$\mathbf{d}^{\mathbf{i}}: \llbracket \mathbf{n}-\mathbf{1} \rrbracket \to \llbracket \mathbf{n} \rrbracket$$
 $\mathbf{j} \mapsto \begin{cases} \mathbf{j} & si \ \mathbf{j} < \mathbf{i} \\ \mathbf{j}+\mathbf{1} & si \ \mathbf{j} \geq \mathbf{i} \end{cases}$

y los mapas de codegeneraciones

$$\mathbf{s}^{\mathbf{i}}: \llbracket \mathbf{n}+\mathbf{1} \rrbracket \to \llbracket \mathbf{n} \rrbracket$$

$$\mathbf{j} \mapsto \begin{cases} \mathbf{j} & si \ \mathbf{j} \leq \mathbf{i} \\ \mathbf{j}-\mathbf{1} & si \ \mathbf{j} > \mathbf{i} \end{cases}$$

La categoria Δ de ordinales finitos

Proposición

Toda flecha $[n] \xrightarrow{f} [m]$ en Δ se puede escribir como una composición de mapas de cocaras y codegeneraciones.

Proposición

Los mapas de cocaras y codegeneraciones satisfacen las siguientes identidades cosimpliciales,

$$\begin{cases} d^{j}d^{i} = d^{i}d^{j-1} & si \ i < j \\ s^{j}d^{i} = d^{i}s^{j-1} & si \ i < j \\ s^{j}d^{j} = s^{j}d^{j+1} = 1 \\ s^{j}d^{i} = d^{i-1}s^{j} & si \ i > j+1 \\ s^{j}s^{i} = s^{i}s^{j+1} & si \ i \leq j \end{cases}$$

Conjuntos Simpliciales

Definición

Un conjunto simplicial es un funtor $X : \Delta^{op} \to \mathsf{Set}$.

Concretamente, éste consiste de

- (i) una sucesión de conjuntos X_0, X_1, X_2, \ldots, y
- (ii) para cada $n \in \mathbb{N}_0$ e $i \in [n]$, funciones $d_i : X_n \to X_{n-1}$ y $s_i : X_n \to X_{n+1}$ llamadas mapas de caras y degeneraciones respectivamente, que satisfacen las siguientes **identidades simpliciales**:

$$\begin{cases} d_i d_j = d_{j-1} d_i & \text{si } i < j \\ d_i s_j = s_{j-1} d_i & \text{si } i < j \\ d_j s_j = d_{j+1} s_j = 1 \\ d_i s_j = s_j d_{i-1} & \text{si } i > j+1 \\ s_i s_j = s_{j+1} s_i & \text{si } i \leq j \end{cases}$$

- El n-símplex estándar $\Delta^n := \Delta(-, [n])$
- Los complejos simpliciales ordenados
- El espacio clasificante BG de un grupo G
- \blacksquare Los símplices singulares $\mathscr{S}(X)$ de un espacio topológico X

- El n-símplex estándar $\Delta^n := \Delta(-, [n])$
- Los complejos simpliciales ordenados
- El espacio clasificante BG de un grupo G
- \blacksquare Los símplices singulares $\mathscr{S}(X)$ de un espacio topológico X

- El n-símplex estándar $\Delta^n := \Delta(-, [n])$
- Los complejos simpliciales ordenados
- El espacio clasificante BG de un grupo G
- Los símplices singulares $\mathcal{S}(X)$ de un espacio topológico X

- El n-símplex estándar $\Delta^n := \Delta(-, [n])$
- Los complejos simpliciales ordenados
- El espacio clasificante BG de un grupo G
- Los símplices singulares $\mathcal{S}(X)$ de un espacio topológico X

- El n-símplex estándar $\Delta^n := \Delta(-, [n])$
- Los complejos simpliciales ordenados
- El espacio clasificante BG de un grupo G
- Los símplices singulares $\mathcal{S}(X)$ de un espacio topológico X

Conjuntos Simpliciales - Homología

Definición

Dado un conjunto simplicial X, definimos su **complejo de Moore** como el complejo de cadenas

$$\cdots \to \mathbb{Z} X_2 \xrightarrow{\eth} \mathbb{Z} X_1 \xrightarrow{\eth} \mathbb{Z} X_0,$$

con $\mathbb{Z}X_n$ el grupo abeliano libre generado por el conjunto X_n y el borde

$$\partial = \sum_{i=1}^{n} (-1)^{i} d_{i}$$

para cada $n \ge 0$. La **homología** $H_{\bullet}(X)$ de X es la homología de este complejo de cadenas.

$$\blacksquare \mathscr{S}(X) \rightsquigarrow H_{\bullet}(X)$$

Conjuntos Simpliciales - Homología

Definición

Dado un conjunto simplicial X, definimos su **complejo de Moore** como el complejo de cadenas

$$\cdots \to \mathbb{Z}X_2 \xrightarrow{\partial} \mathbb{Z}X_1 \xrightarrow{\partial} \mathbb{Z}X_0,$$

con $\mathbb{Z}X_n$ el grupo abeliano libre generado por el conjunto X_n y el borde

$$\mathfrak{d} = \sum_{i=1}^{n} (-1)^{i} d_{i}$$

para cada $n \ge 0$. La **homología** $H_{\bullet}(X)$ de X es la homología de este complejo de cadenas.

Morfismos Simpliciales

Definición

Dados dos complejos simpliciales $X,Y:\Delta^{op}\to Set$, un morfismo de conjuntos simpliciales de X a Y es una transformación natural $f:X\to Y.$ Concretamente, esto consiste en dar una familia de funciones $f_n:X_n\to Y_n$ tales que para cada $0\le i\le n$ los siguientes diagramas conmutan,

Morfismos Simpliciales - Ejemplos

■ Un morfismo $f: (K, \leq) \to (L, \preceq)$ de complejos simpliciales ordenados induce un morfismo simplicial $f: K \to L$ entre los conjuntos simpliciales inducidos via

$$f_n([\nu_{i_0},\ldots,\nu_{i_n}])=[f(\nu_{i_1}),\ldots,f(\nu_{i_n})].$$

• Un morfismo de grupos $\varphi: G \to H$ induce un morfismo simplicial $\varphi: BG \to BH$ entre sus espacios clasificantes definido por

$$\varphi_n(g_0,\ldots,g_n)=(\varphi(g_0),\ldots,\varphi(g_n)).$$

Definición

El funtor singular \mathscr{S} : Top \to sSet asigna a cada espacio su complejo singular y a cada función continua $f: X \to Y$ el morfismo simplicial $f_*: \mathscr{S}(X) \to \mathscr{S}(Y)$ dado por $(f_*)_n(\sigma) = f \circ \sigma$ para cada n-símplex singular $\sigma: |\Delta^n| \to X$.

Morfismos Simpliciales - Ejemplos

■ Un morfismo $f: (K, \leq) \to (L, \preceq)$ de complejos simpliciales ordenados induce un morfismo simplicial $f: K \to L$ entre los conjuntos simpliciales inducidos via

$$f_n([\nu_{i_0},\ldots,\nu_{i_n}])=[f(\nu_{i_1}),\ldots,f(\nu_{i_n})].$$

■ Un morfismo de grupos $\varphi: G \to H$ induce un morfismo simplicial $\varphi: BG \to BH$ entre sus espacios clasificantes definido por

$$\varphi_n(g_0,\ldots,g_n)=(\varphi(g_0),\ldots,\varphi(g_n)).$$

Definición

El funtor singular \mathscr{S} : Top \to sSet asigna a cada espacio su complejo singular y a cada función continua $f: X \to Y$ el morfismo simplicial $f_*: \mathscr{S}(X) \to \mathscr{S}(Y)$ dado por $(f_*)_n(\sigma) = f \circ \sigma$ para cada n-símplex singular $\sigma: |\Delta^n| \to X$.

Morfismos Simpliciales - Ejemplos

■ Un morfismo $f: (K, \leq) \to (L, \preceq)$ de complejos simpliciales ordenados induce un morfismo simplicial $f: K \to L$ entre los conjuntos simpliciales inducidos via

$$f_n([v_{i_0}, \dots, v_{i_n}]) = [f(v_{i_1}), \dots, f(v_{i_n})].$$

■ Un morfismo de grupos $\varphi: G \to H$ induce un morfismo simplicial $\varphi: BG \to BH$ entre sus espacios clasificantes definido por

$$\phi_n(g_0,\ldots,g_n)=(\phi(g_0),\ldots,\phi(g_n)).$$

Definición

El funtor singular $\mathscr{S}: \mathsf{Top} \to \mathsf{sSet}$ asigna a cada espacio su complejo singular y a cada función continua $\mathsf{f}: \mathsf{X} \to \mathsf{Y}$ el morfismo simplicial $\mathsf{f}_*: \mathscr{S}(\mathsf{X}) \to \mathscr{S}(\mathsf{Y})$ dado por $(\mathsf{f}_*)_{\mathsf{n}}(\sigma) = \mathsf{f} \circ \sigma$ para cada n -símplex singular $\sigma: |\Delta^{\mathsf{n}}| \to \mathsf{X}$.

Subcomplejos, Productos, Coproductos

Definición

Sea X un conjunto simplicial. Un **subconjunto simplicial** o subcomplejo de X es un conjunto simplicial K que satisface $K_n \subseteq X_n$ para cada $n \ge 0$ y cuyos mapas de caras y degeneraciones están dados por (co)restringir los de X.

Definición

Dados dos conjuntos simpliciales X e Y se define su **producto** $X \times Y$ como el conjunto simplicial dado por

$$(X \times Y)_n := X_n \times Y_n, \quad d_i = d_i^X \times d_i^Y, \quad s_i = s_i^X \times s_i^Y.$$

para cada $0 \le i \le n$.

De forma similar, su **coproducto** $X \sqcup Y$ es el conjunto simplicial dado por

$$(X\sqcup Y)_n:=X_n\sqcup Y_n,\quad d_i=d_i^X\sqcup d_i^Y,\quad s_i=s_i^X\sqcup s_i^Y.$$

para cada $0 \le i \le n$.

Complejos de Funciones

Definición

Sean X e Y conjuntos simpliciales. Definimos el **complejo de** funciones Hom(X,Y) dado por

$$\mathbf{Hom}(X, Y)_n := \mathrm{hom}_{\mathsf{sSet}}(X \times \Delta^n, Y)$$

para cada $n \in \mathbb{N}_0$ y

$$\theta^*: \text{Hom}(X,Y)_{\mathfrak{m}} \to \text{Hom}(X,Y)_{\mathfrak{n}}$$

$$f \longmapsto f \circ (1_X \times \theta)$$

para cada $[n] \xrightarrow{\theta} [m]$.

Ley Exponencial

Definición

Dados X e Y conjuntos simpliciales, se define la función evaluación

$$ev : X \times \mathbf{Hom}(X, Y) \rightarrow Y.$$

dada por $ev_n(x, f) = f(x, 1_n)$. Esta resulta un morfismo simplicial que natural en ambas variables.

Teorema (Ley Exponencial)

Si K, X e Y son conjuntos simpliciales, la aplicación

$$ev_* : hom_{sSet}(K, Hom(X, Y)) \rightarrow hom_{sSet}(X \times K, Y)$$

 $g \longmapsto ev \circ (1_X \times g)$

está bien definida y es biyectiva. Más aún, esta resulta natural en las tres variables.

Símplices Degenerados

Definición

Sea X un conjunto simplicial. Un n-simplex $x \in X_n$ se dice degenerado si existe $y \in X_{n-1}$ tal que $s_i(y) = x$ para algún $i \in [n]$. En caso contrario, decimos que x es no degenerado y notamos

$$NX_n := \{x \in X_n : x \text{ es no degenerado}\}.$$

Proposición

Sea X un conjunto simplicial. Si $x \in X$ es un símplex degenerado, entonces existe un único símplex no degenerado $y \in X$ y mapas de degeneración s_{i_1}, \ldots, s_{i_k} tales que $x = s_{i_1} \cdots s_{i_k} y$.

Esqueletos

Definición

Sea X un conjunto simplicial $y n \in \mathbb{N}_0$. Definimos el n-esqueleto $\mathsf{sk}_n X$ de X como el menor subcomplejo de X que tiene a los j-símplices de X para cada $j \in [\![n]\!]_0$. Es decir, es el complejo

$$(\mathsf{sk}_n\mathsf{X})_{\mathfrak{j}} = \begin{cases} \mathsf{X}_{\mathfrak{j}} & \textit{si}\; \mathfrak{j} \leq \mathsf{n} \\ \{x \in \mathsf{X}_{\mathfrak{j}} : x = \mathsf{s}_{\mathfrak{i}_1} \cdots \mathsf{s}_{\mathfrak{i}_{\mathfrak{j}-n}} \mathsf{y}\; \textit{con}\; \mathsf{y} \in \mathsf{X}_{\mathsf{n}} \} & \textit{si}\; \mathfrak{j} > \mathsf{n} \end{cases}$$

junto con las restricciones de los mapas de caras y degeneraciones de X. Se tienen además las siguientes inclusiones,

$$\mathsf{sk}_0 X \subset \mathsf{sk}_1 X \subset \mathsf{sk}_2 X \subset \cdots \subset \mathsf{sk}_n X \subset \cdots$$

Esqueletos

Proposición

Si X es un conjunto simplicial, entonces $X \simeq \operatorname{colim}_{n \geq 0} \operatorname{sk}_n X$ donde el colímite se toma sobre el diagrama inducido por las inclusiones entre los n-esqueletos.

Proposición

Si X es un conjunto simplicial y $n \in \mathbb{N}$, entonces el siguiente diagrama

$$\begin{array}{ccc} \coprod_{n \in NX_n} \eth \Delta^n \, \longrightarrow \, \mathsf{sk}_{n-1} X \\ & & & \downarrow \\ & & & \downarrow \\ \coprod_{n \in NX_n} \Delta^n \, \longrightarrow \, \mathsf{sk}_n X \end{array}$$

es un puhsout.

Realización Geométrica

Definición

Sea X un conjunto simplicial. Dotando a cada conjunto X_n de la topología discreta, definimos la **realización geométrica** de X como el espacio topológico

$$|X| := \left(\coprod_{n \geq 0} X_n \times |\Delta^n|\right) \Big/ \sim$$

donde identificamos a los puntos

$$(x, |d^i|(p)) \sim (d_i(x), p)$$

y

$$(x,|s^i|(p)) \sim (s_i(x),p)$$

para cada mapa de cocara y codegeneración.

Realización Geométrica - Ejemplos

- La realización geométrica de Δⁿ es homeomorfa al n-símplex topológico estándar.
- En general, si K es un complejo simplicial ordenado, la realización geométrica de su conjunto simplicial asociado es homeomorfa a la realización geométrica como complejo simplicial.
- Una posible realización de la n-esfera: podemos dar un conjunto simplicial con sólo dos símplices no degenerados cuya realización geométrica sea homeomorfa a la esfera «pegando los bordes de un (n − 1)-símplex en un punto».

Realización Geométrica - Ejemplos

- La realización geométrica de Δⁿ es homeomorfa al n-símplex topológico estándar.
- En general, si K es un complejo simplicial ordenado, la realización geométrica de su conjunto simplicial asociado es homeomorfa a la realización geométrica como complejo simplicial.
- Una posible realización de la n-esfera: podemos dar un conjunto simplicial con sólo dos símplices no degenerados cuya realización geométrica sea homeomorfa a la esfera «pegando los bordes de un (n − 1)-símplex en un punto».

Realización Geométrica - Ejemplos

- La realización geométrica de Δⁿ es homeomorfa al n-símplex topológico estándar.
- En general, si K es un complejo simplicial ordenado, la realización geométrica de su conjunto simplicial asociado es homeomorfa a la realización geométrica como complejo simplicial.
- Una posible realización de la n-esfera: podemos dar un conjunto simplicial con sólo dos símplices no degenerados cuya realización geométrica sea homeomorfa a la esfera «pegando los bordes de un (n-1)-símplex en un punto».

Definición

Sea $k \in \mathbb{N}_0$. Un punto $p \in |\Delta^k|$ del k-símplex topólogico se dice interior si no existe un mapa de cocara $d^i : \Delta^{k-1} \to \Delta^k y \ q \in |\Delta^{k-1}|$ tal que $|d^i|(q) = p$.

Proposición

Sea $k \in \mathbb{N}_0$ y $p \in |\Delta^k|$. Si p es interior, existen únicos $l \in \mathbb{N}_0$, $q \in |\Delta^l|$ y d^{i_1}, \ldots, d^{i_s} mapas de cocara tales que $p = |d^{i_1} \cdots d^{i_s}|(q)$ En particular, si $p \in |\Delta^{k+1}|$ es interior, y s^j es un mapa de codegeneración, entonces $s_j(p)$ es interior.

Definición

Sea X un conjunto simplicial. Un punto $(x,p) \in \coprod_{n \geq 0} X_n \times |\Delta^n|$ se dice **no degenerado** si p es interior y x no degenerado.

Lema

Definición

Sea $k \in \mathbb{N}_0$. Un punto $p \in |\Delta^k|$ del k-símplex topólogico se dice interior si no existe un mapa de cocara $d^i : \Delta^{k-1} \to \Delta^k y \ q \in |\Delta^{k-1}|$ tal que $|d^i|(q) = p$.

Proposición

Sea $k \in \mathbb{N}_0$ y $p \in |\Delta^k|$. Si p es interior, existen únicos $l \in \mathbb{N}_0$, $q \in |\Delta^l|$ y d^{i_1}, \ldots, d^{i_s} mapas de cocara tales que $p = |d^{i_1} \cdots d^{i_s}|(q)$. En particular, si $p \in |\Delta^{k+1}|$ es interior, y s^j es un mapa de codegeneración, entonces $s_j(p)$ es interior.

Definición

Sea X un conjunto simplicial. Un punto $(x, p) \in \coprod_{n \geq 0} X_n \times |\Delta^n|$ se dice **no degenerado** si p es interior y x no degenerado.

Lema

Definición

Sea $k \in \mathbb{N}_0$. Un punto $p \in |\Delta^k|$ del k-símplex topólogico se dice interior si no existe un mapa de cocara $d^i : \Delta^{k-1} \to \Delta^k \ y \ q \in |\Delta^{k-1}|$ tal que $|d^i|(q) = p$.

Proposición

Sea $k \in \mathbb{N}_0$ y $p \in |\Delta^k|$. Si p es interior, existen únicos $l \in \mathbb{N}_0$, $q \in |\Delta^l|$ y d^{i_1}, \ldots, d^{i_s} mapas de cocara tales que $p = |d^{i_1} \cdots d^{i_s}|(q)$. En particular, si $p \in |\Delta^{k+1}|$ es interior, y s^j es un mapa de codegeneración, entonces $s_j(p)$ es interior.

Definición

Sea X un conjunto simplicial. Un punto $(x, p) \in \coprod_{n \geq 0} X_n \times |\Delta^n|$ se dice **no degenerado** si p es interior y x no degenerado.

Lema

Definición

Sea $k \in \mathbb{N}_0$. Un punto $p \in |\Delta^k|$ del k-símplex topólogico se dice interior si no existe un mapa de cocara $d^i : \Delta^{k-1} \to \Delta^k \ y \ q \in |\Delta^{k-1}|$ tal que $|d^i|(q) = p$.

Proposición

Sea $k \in \mathbb{N}_0$ y $p \in |\Delta^k|$. Si p es interior, existen únicos $l \in \mathbb{N}_0$, $q \in |\Delta^l|$ y d^{i_1}, \ldots, d^{i_s} mapas de cocara tales que $p = |d^{i_1} \cdots d^{i_s}|(q)$. En particular, si $p \in |\Delta^{k+1}|$ es interior, y s^j es un mapa de codegeneración, entonces $s_j(p)$ es interior.

Definición

Sea X un conjunto simplicial. Un punto $(x, p) \in \coprod_{n \geq 0} X_n \times |\Delta^n|$ se dice **no degenerado** si p es interior y x no degenerado.

Lema

Realización Geométrica - La adjunción $|\cdot| \dashv \mathscr{S}(-)$

Proposición

Se tiene un funtor $|\cdot|$: sSet \to Top que asigna a cada conjunto simplicial X su realización geométrica, y a cada morfismo simplicial $f: X \to Y$ una flecha $|f|: |X| \to |Y|$ inducida por las funciones $\{f_n \times 1: X_n \times |\Delta^n| \to Y_n \times |\Delta^n|\}_{n \ge 0}$.

Teorema *Existe una adjunción*

En otras palabras, se tiene una biyección $\mathsf{Top}(|X|,Y) \simeq \mathsf{sSet}(X,\mathscr{S}(Y))$ entre las funciones continuas $|X| \to Y$ y los morfismos simpliciales $X \to \mathscr{S}(Y)$. Más aún, esta biyección es natural tanto en X como en Y.

Realización Geométrica - La adjunción $|\cdot| \dashv \mathscr{S}(-)$

Proposición

Se tiene un funtor $|\cdot|$: sSet \to Top que asigna a cada conjunto simplicial X su realización geométrica, y a cada morfismo simplicial $f: X \to Y$ una flecha $|f|: |X| \to |Y|$ inducida por las funciones $\{f_n \times 1: X_n \times |\Delta^n| \to Y_n \times |\Delta^n|\}_{n \ge 0}$.

Teorema *Existe una adjunción*

En otras palabras, se tiene una biyección $\mathsf{Top}(|X|,Y) \simeq \mathsf{sSet}(X,\mathscr{S}(Y))$ entre las funciones continuas $|X| \to Y$ y los morfismos simpliciales $X \to \mathscr{S}(Y)$. Más aún, esta biyección es natural tanto en X como en Y.

Realización Geométrica - CW Arpoximación

Observación

La realización geométrica $|\cdot|$: sSet \to Top preserva colímites. En particular, preserva coproductos y pushouts.

Teorema

La realización geométrica de un conjunto símplicial X es un CW-complejo, con una celda por cada símplex no degenerado.

Teorema

Si X es un espacio topológico, la counidad de la adjunción $\eta_X: |\mathscr{S}(X)| \to X$ es una equivalencia débil. Concretamente, si $f: X \to Y$ es una función continua entonces el diagrama

conmuta, y tanto η_X como η_Y son equivalencias débiles.

Realización Geométrica - CW Arpoximación

Observación

La realización geométrica $|\cdot|$: sSet \to Top preserva colímites. En particular, preserva coproductos y pushouts.

Teorema

La realización geométrica de un conjunto símplicial X es un CW-complejo, con una celda por cada símplex no degenerado.

Teorema

Si X es un espacio topológico, la counidad de la adjunción $\eta_X: |\mathscr{S}(X)| \to X$ es una equivalencia débil. Concretamente, si $f: X \to Y$ es una función continua entonces el diagrama

conmuta, y tanto η_X como η_Y son equivalencias débiles.

Realización Geométrica - CW Arpoximación

Observación

La realización geométrica $|\cdot|$: sSet \to Top preserva colímites. En particular, preserva coproductos y pushouts.

Teorema

La realización geométrica de un conjunto símplicial X es un CW-complejo, con una celda por cada símplex no degenerado.

Teorema

Si X es un espacio topológico, la counidad de la adjunción $\eta_X: |\mathscr{S}(X)| \to X$ es una equivalencia débil. Concretamente, si $f: X \to Y$ es una función continua entonces el diagrama

$$|\mathscr{S}(X)| \xrightarrow{|Sf|} |\mathscr{S}(Y)|$$

$$\downarrow \eta_X \qquad \qquad \downarrow \eta_Y$$

$$X \xrightarrow{f} Y$$

conmuta, y tanto η_X como η_Y son equivalencias débiles.

Fibraciones de Kan

Definición

Un morfismo simplicial $f: X \to Y$ se dice una fibración de Kan (o simplemente una fibración) si para cada diagrama conmutativo de la forma

existe una flecha $\Delta^n \to X$ que sigue haciendo conmutar el diagrama.

Complejos de Kan

Definición

Un conjunto simplicial X se dice un **complejo de Kan** si el morfismo simplicial $X \xrightarrow{!\exists} \Delta^0$ es una fibración de Kan.

Equivalentemente,

• Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada morfismo simplicial $\alpha: \Lambda_k^n \to X$ tenemos una extensión $\overline{\alpha}: \Delta^n \to X$ al n-símplex,

$$\Lambda_k^n \xrightarrow{\alpha} X$$

$$\downarrow \qquad \qquad X$$

$$\Delta^n$$

■ Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada n-upla de (n-1)-símplices $(x_0, \ldots, \widehat{x}_k, \ldots, x_n)$ de X tales que $d_i x_j = d_{j-1} x_i$ si i < j, $i, j \neq k$, existe un n-símplex $x \in X_n$ tal que $d_i x = x_i$ para cada i.

Complejos de Kan

Definición

Un conjunto simplicial X se dice un **complejo de Kan** si el morfismo simplicial $X \xrightarrow{!\exists} \Delta^0$ es una fibración de Kan.

Equivalentemente,

■ Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada morfismo simplicial $\alpha: \Lambda_k^n \to X$ tenemos una extensión $\overline{\alpha}: \Delta^n \to X$ al n-símplex,

$$\Lambda^n_k \xrightarrow{\alpha} X$$

$$\downarrow \qquad \qquad \downarrow^{\pi}$$

$$\Delta^n$$

■ Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada n-upla de (n-1)-símplices $(x_0, \ldots, \widehat{x}_k, \ldots, x_n)$ de X tales que $d_i x_j = d_{j-1} x_i$ si i < j, $i, j \neq k$, existe un n-símplex $x \in X_n$ tal que $d_i x = x_i$ para cada i.

Complejos de Kan

Definición

Un conjunto simplicial X se dice un **complejo de Kan** si el morfismo simplicial $X \xrightarrow{!\exists} \Delta^0$ es una fibración de Kan.

Equivalentemente,

■ Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada morfismo simplicial $\alpha: \Lambda_k^n \to X$ tenemos una extensión $\overline{\alpha}: \Delta^n \to X$ al n-símplex,

$$\Lambda_k^n \xrightarrow{\alpha} X$$

$$\downarrow^{\pi} \overline{\alpha}$$

$$\Lambda^n$$

■ Un conjunto simlpicial X es un complejo de Kan sí y sólo si para cada n-upla de (n-1)-símplices $(x_0, \ldots, \widehat{x}_k, \ldots, x_n)$ de X tales que $d_i x_j = d_{j-1} x_i$ si i < j, $i, j \neq k$, existe un n-símplex $x \in X_n$ tal que $d_i x = x_i$ para cada i.

Complejos de Kan

Proposición

Una función continua $f: X \to Y$ es una fibración de Serre sí y sólo si el morfismo simplicial $\mathscr{S}(f): \mathscr{S}(X) \to \mathscr{S}(Y)$ es una fibración de Kan.

$$\begin{array}{cccc} |\Lambda^n_k| \to X & & \Lambda^n_k \to \mathscr{S}(X) \\ & & & \downarrow^\exists \nearrow \downarrow_f & \leftrightsquigarrow & & \downarrow^\exists \nearrow \searrow \downarrow_{\mathscr{S}(f)} \\ |\Delta^n| \to Y & & \Delta^n \to \mathscr{S}(Y) \end{array}$$

Proposición

Si X es un espacio topológico, entonces $\mathcal{S}(X)$ es un complejo de Kan.

Homotopía Simplicial

Una **homotopía** entre dos morfismos simpliciales $f, g: X \to Y$ es un morfismo simplicial $H: X \times \Delta^1 \to Y$ que vale f al restringir el 1-símplex en una cara g g al restringir a la otra.

Ésta se dice **relativa** a un subcomplejo K de X si además es «constante en K».

$$\begin{array}{ccc} X \times \Delta^0 & \xrightarrow{\simeq} & X \\ 1 \times d_1 \Big| & & \downarrow f \\ X \times \Delta^1 & \xrightarrow{H} & Y \\ 1 \times d_0 \Big\uparrow & & \uparrow g \\ X \times \Delta^0 & \xrightarrow{\simeq} & X \\ X \times \Delta^1 & \xrightarrow{H} & Y \\ i \times 1 \Big\uparrow & & \uparrow \alpha \\ K \times \Delta^1 & \xrightarrow{\pi_1} & K \end{array}$$

Homotopía Simplicial

Proposición

Si X es un complejo de Kan, entonces las homotopías simpliciales de vértices definen una relación de equivalencia en X_0 .

Observación

En particular esto nos dice que Δ^1 no es un complejo de Kan.

Homotopía Simplicial

Proposición

Si X es un conjunto simplicial e Y un complejo de Kan, las homotopías simpliciales definen una relación de equivalencia en $hom_{sSet}(X,Y)$.

Proposición

Sea X un conjunto simplicial e Y un complejo de X un. Si X es un subcomplejo de Y, las homotopías simpliciales relativas a X definen una relación de equivalencia en X0.

Grupos de Homotopía

Definición

Sea X un complejo de Kan y $n \in \mathbb{N}$. Se define el n-ésimo grupo de homotopía con punto base $v \in X_0$ como el conjunto $\pi_n(X,v)$ de clases de homotopía relativas a $\partial \Delta^n$ de morfismos simpliciales $\alpha:\Delta^n \to X$ que valen constantemente v en el borde del símplex,

$$\begin{array}{ccc}
\Delta^{n} & \xrightarrow{\alpha} X \\
\uparrow & & \downarrow^{\uparrow} \\
\partial \Delta^{n} & \xrightarrow{\exists!} \Delta^{0}
\end{array}$$

Theorem

Si X es un complejo de Kan y $\nu \in X_0$ un vértice, entonces $\pi_n(X,\nu)$ es un grupo para todo $n \in \mathbb{N}$.

Definición

Decimos que un complejo de Kan M es un **complejo minimal** si cada vez que se tienen dos n-símplices $x,y:\Delta^n\to M$ homotópicos relativos a $\partial\Delta^n$ se tiene que x=y.

Lema

Sea X un conjunto simplicial. Si $x,y\in X_n$ son dos símplices degenerados tales que $\partial x=\partial y$, entonces x=y.

Proposición

Si X un complejo de Kan, entonces existe un subcomplejo minimal $i: M \hookrightarrow X$ y una retracción $r: X \to M$ tal que $ir \simeq 1_X$.

Teorema

Definición

Decimos que un complejo de Kan M es un **complejo minimal** si cada vez que se tienen dos n-símplices $x,y:\Delta^n\to M$ homotópicos relativos a $\partial\Delta^n$ se tiene que x=y.

Lema

Sea X un conjunto simplicial. Si $x,y\in X_n$ son dos símplices degenerados tales que $\partial x=\partial y$, entonces x=y.

Proposición

Si X un complejo de Kan, entonces existe un subcomplejo minimal $i: M \hookrightarrow X$ y una retracción $r: X \to M$ tal que $ir \simeq 1_X$.

Teorema

Definición

Decimos que un complejo de Kan M es un **complejo minimal** si cada vez que se tienen dos n-símplices $x,y:\Delta^n\to M$ homotópicos relativos a $\partial\Delta^n$ se tiene que x=y.

Lema

Sea X un conjunto simplicial. Si $x,y\in X_n$ son dos símplices degenerados tales que $\partial x=\partial y$, entonces x=y.

Proposición

Si X un complejo de Kan, entonces existe un subcomplejo minimal $i:M\hookrightarrow X$ y una retracción $r:X\to M$ tal que $ir\simeq 1_X$.

Teorema

Definición

Decimos que un complejo de Kan M es un **complejo minimal** si cada vez que se tienen dos n-símplices $x,y:\Delta^n\to M$ homotópicos relativos a $\partial\Delta^n$ se tiene que x=y.

Lema

Sea X un conjunto simplicial. Si $x,y\in X_n$ son dos símplices degenerados tales que $\partial x=\partial y$, entonces x=y.

Proposición

Si X un complejo de Kan, entonces existe un subcomplejo minimal $i:M\hookrightarrow X$ y una retracción $r:X\to M$ tal que $ir\simeq 1_X$.

Teorema

