

#### UV SY32 Détection d'objets

#### Philippe XU

philippe.xu@utc.fr

GI

Semestre de printemps 2017

### Classification









### Détection







#### Plan



- 1. Fenêtre glissante (sliding window)
- 2. Données d'apprentissage
- 3. Evaluation d'un détecteur
- 4. Récapitulatif

#### Plan



- 1. Fenêtre glissante (sliding window)
- 2. Données d'apprentissage
- 3. Evaluation d'un détecteur
- 4. Récapitulatif

# Fenêtre glissante





## Méthode par fenêtre glissante



- Transformer un problème de détection en plusieurs problèmes de classification.
- Parcourir de manière exhaustive l'image en termes de position et d'échelle.
- On impose la forme des boîtes englobantes :
  - Exemples :
    - Personnes : H = 2 x L
    - Visages: H = L
- En pratique, on impose souvent une taille fixe :
- Exemples :
  - Personnes : 128 x 64 pixels
  - Visages: 32 x 32 pixels

### En pratique







Au lieu de changer la taille de la fenêtre glissante, il est souvent plus efficace de redimensionner l'image d'origine et garder une fenêtre de taille fixe.

# Fenêtre glissante





# Suppression des non-maxima



#### Association de boîtes englobantes :

Aire de recouvrement :

$$A_{ij} = \frac{A(B_i \cap B_j)}{A(B_i \cup B_j)}$$

• Critère de décision :

$$A_{ij} > 1/2$$



### Suppression des non-maxima



- Parcourir l'ensemble des boîtes par ordre décroissant de score.
- Pour chaque paire de boîtes ayant un recouvrement suffisant, supprimer la boîte avec le plus faible score.

2017

# Suppression des non-maxima





#### Plan



- 1. Fenêtre glissante (sliding window)
- 2. Données d'apprentissage
- 3. Evaluation d'un détecteur
- 4. Récapitulatif

# Exemples négatifs







# Exemples négatifs



- 1. Générer aléatoirement un ensemble d'exemples négatifs.
- 2. Apprendre un premier classifieur utilisant ces exemples.
- 3. Utiliser le classifieur sur l'ensemble des images d'apprentissage.
- 4. Prendre tous les faux positifs comme exemples négatifs supplémentaires.
- 5. Recommencer l'apprentissage.

#### Plan



- 1. Fenêtre glissante (sliding window)
- 2. Données d'apprentissage
- 3. Evaluation d'un détecteur
- 4. Récapitulatif

### Performance







#### Performance



#### Approche par fenêtre glissante :

- Plusieurs centaines de fenêtre par image.
- Seulement quelques fenêtres positives.
- Un classifieur qui décide toujours « non » aura un taux de bonne classification de presque 100%.

## Précision/rappel



| <b>Prédiction\Vérité</b> | +1                  | -1                  |
|--------------------------|---------------------|---------------------|
| +1                       | Vrais positifs (VP) | Faux positifs (FP)  |
| -1                       | Faux négatifs (FN)  | Vrais négatifs (VN) |

$$Précision = \frac{\#VP}{\#VP + \#FP}$$

Rappel = 
$$\frac{\#VP}{\#VP + \#FN}$$

#### Construction de la courbe



- Trier les détections par ordre décroissant de score.
- En ajoutant une à une les détections, on calcule à chaque pas un point de la courbe.
- On peut utiliser la moyenne de toutes les précisions comme mesure unique.

20

## Précision/rappel (classification)





# Précision/rappel (détection)





### Score unique



- Précision moyenne : aire sous la courbe de précision/rappel
- Moyenne harmonique (F-score) :

$$F_1 = 2 \times \frac{P \times R}{P + R}$$

23

#### Plan



- 1. Fenêtre glissante (sliding window)
- 2. Données d'apprentissage
- 3. Evaluation d'un détecteur
- 4. Récapitulatif

### Récapitulatif



#### 1. Première apprentissage

- Fenêtres positives + génération aléatoire de fenêtres négatives
- 2. Calcul des vecteurs descripteurs
- 3. Apprentissage d'un classifieur (validation croisée)

#### 2. Deuxième apprentissage

- 1. Détection sur l'ensemble des images d'apprentissage par une fenêtre glissante
- 2. Ajouter tous les faux positifs aux exemples négatives
- 3. Calcul des vecteurs descripteurs sur les nouvelles données
- 4. Apprentissage d'un nouveau classifieur

### Choix des paramètres



- Taille de la fenêtre glissante
- Nombre d'exemples négatifs aléatoires
- Taille du pas (spatial et échelle) de la fenêtre glissante
- Choix du vecteur descripteur
- Choix du classifieur