Data Analysis with Mixed-Integer Optimisation for Scheduling Royal Mail Deliveries

MENG INDIVIDUAL PROJECT

Athanasios Liaskas

Problem Description

Context of the Problem

- Each MC is responsible for a broad geographic region.
- Trips are performed by each MC's fleet of HGV vehicles.

Atomic Block Definition

A **single round-trip** that commences at the Exeter MC, and after stopping at various external locations concludes again at the MC.

Breakdown of an Atomic Block

Structure of a driver's Duty: $Activities(A_i)$, inside Atomic Blocks which themselves create a Duty.

Š

What is an Activity?

Types of Activities featured in the dataset

The set of activities signifying the *task by task* actions performed by drivers, as observed in the data exploration.

Activity	Description
Start/End	The <i>beginning</i> , and <i>end</i> of a duty.
Travel	A travel leg between locations.
Load/Unload	Loading and offloading of mail units.
Meal Relief	A meal-allowance break.
Distribution/Processing	Non-essential administrative tasks.
Park Vehicle	Parking of HGV at end of duty.
Check	Scheduled servicing of HGV.
Clean	Scheduled <i>cleaning</i> of HGV.

High-level Overview

The *duty* assigned to each driver is a collection of *blocks*, which themselves contain *activities*.

Building Blocks

- Activity: Intervals of jobs performed inside an Atomic Block.
- Atomic Block: A round-trip starting and concluding at the MC.
- <u>Duty:</u> The total time that a driver works for, in a day.

b

Royal Mail Historical Schedules

What is a Schedule?

The set of all the **duties** assigned to each HGV driver for a day of the week.

Evaluation of Historical Schedules

Motivation for Sensitivity Analysis

- How good are the historical schedules, and can they be improved?
- Our goal is to propose schedules with favourable characteristics.

Simplifying Assumptions

Key Simplifications

- (1) We consider a **duty** as a *machine* and a **block** as a *job*, freely assigning blocks to duties.
- (2) The duration of a block stays constant, irrespective of the timing of its occurrence.
- (3) The **routes** are **fixed**, and we **maintain** the **order** with which we visit external locations.

Load Balancing

Model Description

- Objective: find a more balanced schedule in terms of duty length.
- We minimise the maximum length of a duty.
- We execute all blocks featured in the historical schedule.
- Each driver executes at most one block per unit of time.

minimize
$$y$$
 subject to $y \ge \sum_{j=1}^n x_{i,j}p_j$ $\forall i \in D$
$$\sum_{i=1}^m x_{i,j} = 1 \qquad \forall j \in B$$

$$y \ge 0$$

$$x_{i,j} \in \{0,1\} \qquad \forall j \in B, \ i \in D$$

Numerical Results

(%) Reduction		
Makespan	Maximum Difference	
28%	72%	

Results Interpretation

A more **balanced** schedule. We redistributed the workload to reduce the amount of overtime that drivers need to perform.

Number of Duties vs Maximum Duty Length

Model Description

- We fix an upper threshold of duty length L and execute all blocks while minimising the amount of duties.
- We vary L and conduct a Sensitivity Analysis to determine the minimum number of duties that give us a feasible schedule.

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^m y_i \\ \text{subject to} & y_i \geq x_{i,j} & \forall \ i \in D, \ j \in B \\ & \sum_{i=1}^m x_{i,j} = 1 & \forall \ j \in B \\ & \sum_{j=1}^n x_{i,j} p_j \leq L & \forall \ i \in D \\ & y \geq 0 \\ & x_{i,j} \in \{0,1\} & \forall \ j \in B, \ i \in D \end{array}$$

Numerical Results

Results Interpretation

There is a trade-off between the maximum duty length and the number of duties. It is possible to schedule all blocks with around 30% fewer duties.

Number of Blocks with Limited Driver Time

Model Description

- Minimise the maximum duty L and determine the maximum number of blocks that can still be completed.
- We preserve the duties at the historical level of 183 duties.
- We conduct a Sensitivity Analysis by varying *L* to determine the maximum number of blocks that can be processed for each *L*.

$$\begin{array}{ll} \text{maximize} & \sum_{i=1}^m x_{i,j} \\ \text{subject to} & \sum_{i=1}^m x_{i,j} \leq 1 & \forall \ j \in B \\ & \sum_{j=1}^n x_{i,j} p_j \leq L & \forall \ i \in D \\ & y \geq 0 \\ & x_{i,j} \in \{0,1\} & \forall \ j \in B, \ i \in D \end{array}$$

Numerical Results

Results Interpretation

Reducing the maximum time a driver works for by 25% only reduces the number of blocks that can be processed by 10%.

Eliminating Redundant Activities

What is **useful** time?

We classify the activities as **useful** or **not** to signify which activities must be maintained when minimising *non-useful* time.

Activity	Useful Time
Start/End	✓
Travel	✓
Load/Unload	✓
Meal Relief	✓
Distribution/Processing	Х
Park Vehicle	Х
Check	Х
Clean	X

Table 1: List of useful or not activities.

Redefining the Problem

Actions Taken

Artificially created more space for optimisation in the data by deleting activities that we classified as **non-useful working time**.

(%) Reduction		
Schedule	Makespan	Maximum Difference
Historical	28%	72%
Redefined	36%	78%

Redefined Sensitivity Analysis

(a) Number of duties required as a function of the Maximum Duty Length (in 30min intervals), up to 24 hours per duty.

(b) Number of blocks processed as a function of the Maximum Duty Length (in 30min intervals), up to the historical average duty length.

Dealing with Uncertainty

Motivation for Uncertainty Study

- Initial study to determine the schedules' level of robustness.
- Robustness is evaluated by measuring deadline deviations and delays to makespan.
- Our goal is to determine which methodology provides the most robust schedule.

We simulate uncertainty by applying box uncertainty sets of different magnitudes on the blocks of an instance.

Incorporating Uncertainty into Schedules

¹Applies Makespan Scheduling Formulation from slide 9

Numerical Results

Sch	edule	Optimised	Recovered	Makespan	Overrun Duties
	Undisturbed				
Nominal		✓		08:25	0
	•	D	isturbed		
Instance					
	reduced	✓		10:00	71
U: ±30%	reduced		Х	10:46	44
O. ±30/6	augmented	/		10:12	73
			Х	10:46	60
U: ±40%	reduced	✓		10:44	79
			Х	11:29	66
	augmented	/		11:26	89
			Х	11:41	68
<i>U</i> : ±50%	reduced	✓		10:44	68
			Х	12:15	58
	augmented	✓		10:52	82
			Х	12:19	79

Results Interpretation

The **perturbed optimal** schedule has an improved makespan compared to the **recovered** schedule. However, it has substantially more delayed duties.

Lexicographic Load Balancing

Model Description

 We minimise the LexOpt Weigthed Sum to obtain a new schedule. We then compare it to the recovered wrt. robustness.

$$\begin{array}{ll} \text{minimise} & \sum_{i=1}^m w_i y_i \\ \text{subject to} & y_i \geq y_{i+1} & \forall \ i \in D \\ \\ & y_i \geq \frac{1}{m-i+1} (\sum_{j=1}^n p_j - \sum_{q=1}^i -1 y_q) & \forall \ i \in D \\ \\ & y_i \geq \sum_{j=1}^n p_j * x_{i,j} & \forall \ i \in D \\ \\ & \sum_{i=1}^m x_{i,j} = 1 & \forall \ j \in B \\ \\ & y_i \geq 0 \\ & x_{i,j} \in \{0,1\} & \forall \ j \in B, \ i \in D \\ \\ & \text{where } w_i = 2^{m-i} \end{array}$$

Numerical Results

Sch	edule	Lexicographic	Recovered	Makespan	Overrun Duties
	Undisturbed				
Nominal		✓		08:25	0
		Dis	turbed		
Inst	ance				
	reduced	✓		10:49	43
U: ±30%			Х	10:46	44
O. ±30%	augmented	✓		10:53	58
			Х	10:46	60
<i>U</i> : ±40%	reduced	✓		12:16	64
			Х	11:29	66
	augmented	✓		11:45	68
			Х	11:41	68
<i>U</i> : ±50%	reduced	✓		12:15	57
			Х	12:15	58
	augmented	✓		12:22	79
			Х	12:19	79

Results Interpretation

The **LexOpt** generated schedule consistently outperforms or matches the **recovered** *wrt*. deadline deviations. It is only marginally beaten in terms of makespan delays.

Imperial College London Concluding Remarks

Future Directions				
(1)	Schedules that satisfy the Meal-Relief constraint en-			
	forced by EU regulations.			
(2)	Incorporating Deadline Constraints.			
(3)	Investigating the VRP aspect of the problem.			
(4)	Study the effect of Ellipsoidal Uncertainty Sets.			

Appendix - Departure Waves Scheduling

Results Interpretation

Optimising the problem in *wave sub-instances* generates schedules with an **08:25** makespan similar to the results seen in slide 10.

Appendix - Pre-emptive Load Balancing

Model Description

- Objective: find the theoretical optimal schedule wrt. duty length.
- We minimise the maximum length of a duty.
- We execute all blocks featured in the historical schedule.
- Each driver executes at most one activity per unit of time.

$$\begin{array}{ll} \text{minimise} & y \\ \\ \text{subject to} & y \geq \sum_{j=1}^n x_{i,j} \qquad \forall \ i \in D \\ \\ & \sum_{i=1}^m x_{i,j} = p_j \qquad \forall \ j \in B \\ \\ & y \geq \sum_{i=1}^m x_{i,j} \qquad \forall \ j \in B \\ \\ & y, x_{i,j} \geq 0 \end{array}$$

Appendix - Numerical Results

Historical		
Makespan	Optimality Gap	
08:05	3.1%	

Redefined		
Makespan	Optimality Gap	
06:32	6.6%	

Results Interpretation

We achieve a lower-bound with respect to the maximum duty length observed in the **theoretical optimal schedules**. They are merely theoretical limits that are practically unrealisable.

Appendix - Glossary

These terms are used interchangeably throughout the dissertation, to not tire the reader by using the same term repeatedly.

- Timetable = Schedule = Itinerary
- Duty = Shift
- Break = Meal-Relief
- HGV = Heavy Goods Vehicles = 7.5 tonne lorries
- HGV Driver = Employee
- Model = Formulation
- Maximum Difference² = Measure of the difference in the distribution of load between the heaviest and least loaded duties.

 $^{^2\}mathsf{Stein}$ C. et al. Scheduling When You Do Not Know the Number of Machines.