Полигоны с тождествами в решётке конгруэнций

И.Б. Кожухов, А.М. Пряничников

Введение

Решётка конгруэнций Соп A универсальной алгебры A является важной характеристикой этой алгебры. Наименьшим элементом этой решётки является отношение равенства $\Delta_A = \{(a,a)|a\in A\}$, а наибольшим — универсальное отношение $\nabla_A = A\times A$. Одним из направлений общей алгебры является изучение универсальных алгебр с теми или иными условиями на конгруэнции. Например, условие тривиальности решётки конгруэнций (Con $A = \{\Delta_A, \nabla_A\}$) определяет простые алгебры (простые группы, кольца, конгруэнц-простые полугруппы и т.д.), условие максимальности или минимальности — соответственно нётеровы и артиновы алгебры. В работе [1] исследовался класс алгебр, противоположный классу простых алгебр, а именно, алгебры, у которых всякое отношение эквивалентности является конгруэнцией (т.е. ConA = EqA, где EqA — решётка отношений эквивалентности на множестве A). Большое количество работ посвящено подпрямо неразложимым алгебрам, т.е. таким алгебрам A, что либо |A| = 1, либо решётка ConA содержит наименьший отличный от Δ_A элемент.

Универсальные алгебры, у которых решётка конгруэнций модулярна, или дистрибутивна, или является цепью, тоже привлекали большое внимание специалистов. Можно отметить работы по дистрибутивным и цепным кольцам и модулям, полигонам (над полугруппами) с дистрибутивной или модулярной решёткой конгруэнций [2, 3]. Интересно отметить, что, хотя полигон над полугруппой — аналог модуля над кольцом, но решётка конгруэнций модуля (т.е. решётка подмодулей) всегда модулярна, а для решётки конгруэнций полигона модулярность является редким явлением.

Дистрибутивные и модулярные решётки образуют многообразия, задаваемые соответственно тождеством $(x\vee y)\wedge z=(x\wedge z)\vee (y\wedge z)$ и тождеством $(x\vee y)\wedge (x\vee z)=x\vee (z\wedge (x\vee y))$ (см. [4, глава 5, теорема 347]). Цепи образуют класс решёток, не являющийся многообразием, но замкнутым относительно подрешёток и гомоморфных образов.

Пусть \mathcal{V} – многообразие всех решёток, а $\operatorname{Var} L$ – многообразие, порождаемое решёткой L.

Решёточное тождество называется nempuвиальным, если оно выполняется не во всех решётках. Обозначим через FL(n) свободную решётку с n свободными образующими. Следующие 3 леммы представляют собой хорошо известные утверждения, их доказательства мы приводим для полноты изложения.

Лемма 1. B конечной решётке выполняется хотя бы одно нетривиальное тож дество.

Доказательство. Пусть L – конечная решётка и ${\rm Var}\,L$ – многообразие, порождённое решёткой L. Многообразие, порождённое конечной алгеброй, локально конечно (см. [5, следствие 3.14]). Поэтому ${\rm Var}\,L$ состоит из локально конечных алгебр. Вместе с тем, не все решётки локально конечны: результат Φ . Уитмена (см. [6, §5, теорема 3]) показывает, что для любого n решётка FL(n) изоморфно вкладывается в FL(3), поэтому FL(n) – бесконечная решётка. Следовательно, ${\rm Var}\,L$ содержит не все решётки, а значит, существует нетривиальное тождество, выполняющееся для всех решёток, содержащихся в ${\rm Var}\,L$, и в частности, для L.

Лемма 2 ([7]). Всякое решёточное тождество, выполняющееся в решётке $Eq M \ для \ некоторого бесконечного множества <math>M$, тривиально.

Лемма 3. Если решётка L содержит в качестве подрешётки $\operatorname{Eq} M$ для какого-либо бесконечного множества M, то $\operatorname{Var} L = \mathcal{V}$.

Доказательство. Если в L выполняется нетривиальное решёточное тождество, то оно должно выполняться и в $\mathrm{Eq}\,M$, но это не так по лемме 2. Следовательно, в L выполняются только тривиальные решёточные тождества, т.е. $\mathrm{Var}\,L = \mathcal{V}$.

В связи с вышесказанным кажется естественным изучение универсальных алгебр, у которых решётка конгруэнций удовлетворяет какому-либо нетривиальному решёточному тождеству. Цель данной работы состоит в доказательстве следующих утверждений.

Теорема 1. Пусть X — полигон над конечной полугруппой. Тогда решёт-ка конгруэнций $\operatorname{Con} X$ удовлетворяет какому-либо нетривиальному решёточному тождеству в том и только том случае, если X конечен.

Теорема 2. Пусть $S = \mathcal{M}^0(G, I, \Lambda, P)$ — вполне 0-простая полугруппа и $|G| < \infty, |I| < \infty$. Тогда для любого полигона X с нулём над полугруппой S выполняется следующее: решётка конгруэнций $\operatorname{Con} X$ удовлетворяет какому-либо нетривиальному решёточному тождеству в том и только том случае, если X конечен.

Если I — бесконечное множество, то утверждение теоремы 2 неверно, как показывает предложение 1.

Предложение 1. Существует вполне θ -простая полугруппа $S=\mathcal{M}^0(G,I,\Lambda,P)$ и бесконечный полигон X с нулём над S такие, что решётка $\operatorname{Con} X$ двух-элементна (а значит, удовлетворяет нетривиальному решёточному тож-деству).

Основные сведения из универсальной алгебры можно найти в [8, 5], из теории полугрупп — в [9], полигонов над полугруппами — в [10], теории решёток — в [4].

Напомним, что *полигоном над полугруппой* называется множество X, на котором действует полугруппа S, т.е. определено отображение $X \times S \to X$, $(x,s) \mapsto xs$, удовлетворяющее условию x(st) = (xs)t при всех $x \in X$

 $X, s, t \in S$ (см. [10]). Полигон можно рассматривать как унарную алгебру, т.е. алгебру, у которой все операции унарны (операциями полигона X над полугруппой S являются умножения на элементы полугруппы, т.е. $x \mapsto xs$ $(s \in S)$).

Если полигон X является объединением своих подполигонов X_i $(i \in I)$ и $X_i \cap X_j = \emptyset$ при $i \neq j$, то мы называем X копроизведением полигонов X_i и пишем $X = \coprod_{i \in I} X_i$. Для любой полугруппы S мы будем обозначать через S^1 наименьшую полугруппу с единицей, содержащую S, т.е.

$$S^1 = egin{cases} S, & ext{если } S & ext{имеет единицу,} \ S \cup \{1\}, & ext{если } S & ext{ не имеет единицы.} \end{cases}$$

Пусть X – полигон над полугруппой S. Для элементов $x,y \in X$ положим $x \leqslant y \Leftrightarrow y \in xS^1$. Очевидно, отношение \leqslant является отношением квазипорядка на множестве X. Полигон X называется cеязным, если для любых $x,y \in X$ существует последовательность элементов $x_0,x_1,\ldots,x_{2k} \in X$ такая, что

$$x \geqslant x_0 \leqslant x_1 \geqslant x_2 \leqslant \ldots \geqslant x_{2k} \leqslant y$$
.

Нетрудно видеть, что связность полигона X над полугруппой S — это в точности связность графа с множеством вершин X и рёбрами (x, xs), где $x \in X$, $s \in S$ и $x \neq xs$. Кроме того, всякий полигон является копроизведением связных подполигонов (компонент связности).

 Hy лём полигона X над полугруппой S назовём такой элемент $z \in X$, что zs = z при всех $s \in S$.

Пусть X – полигон над полугруппой S и Y – его подполигон. Конгруэнция $\rho_Y = (Y \times Y) \cup \Delta_X$ наывается конгруэнцией Puca. Для фактор-полигона X/ρ_Y будем использовать также обозначение X/Y. Следующее утверждение хорошо известно, доказательство мы приведём лишь для полноты изложения.

Лемма 4. Пусть X — полигон, Y — его подполигон. Тогда решётки $\operatorname{Con} Y$ и $\operatorname{Con} X/Y$ изоморфно вкладываются в решётку $\operatorname{Con} X$.

Доказатель ство. Нетрудно проверить, что отображение $\rho \mapsto \rho \cup \Delta_X$ является изоморфным вложением решётки $\mathrm{Con}\,Y$ в решётку $\mathrm{Con}\,X$.

Утверждение о том, что Con X/Y — подрешётка решётки Con X, следует из общеалгебраического факта: Если ρ — конгруэнция алгебры A, то существует взаимно однозначное соответствие между конгруэнциями алгебры A/ρ и теми конгруэнциями на A, которые содержат ρ ; при этом это соответствие сохраняет операции \vee и \wedge , поэтому решётка Con A/ρ изоморфна отрезку $[\rho, \nabla_A]$ решётки Con A (см. Биркгоф, гл. VI, теорема 7).

Полигоны над конечными полугруппами

Пусть X – полигон над полугруппой S. Ранее был определён квазипорядок на X: $x \leq y \Leftrightarrow y \in xS^1$. По квазипорядку стандартным образом определяются отношения эквивалентности и отношение порядка. А именно, пусть

$$x \sim y \Leftrightarrow x \leqslant y \land y \leqslant x.$$

Тогда \sim – отношение эквивалентности на множестве X. На фактор-множестве X/\sim квазипорядок \leqslant индуцирует порядок, который мы также будем обозначать через \leqslant . А именно, пусть K_1, K_2 – два класса эквивалентности отношения \sim . $K_1 \leqslant K_2$ означает, что $x \leqslant y$ при каких-либо (а значит, и при всех) $x \in K_1, y \in K_2$.

Для $x,y\in X$ полагаем

$$x < y \Leftrightarrow x \leqslant y \land x \nsim y$$
.

Лемма 5. Om Howehue < Ha X транзитивно.

Доказательство. Пусть x < y и y < z. Тогда $x \leqslant y$ и $y \leqslant z$. Ввиду транзитивности отношения \leqslant мы получаем: $x \leqslant z$. Предположим, что $x \sim z$. Тогда $z \leqslant x$. Отсюда $x \leqslant y \leqslant z \leqslant x$, т.е. $x \sim y$, а это противоречит предположению.

Лемма 6. Пусть X – полигон над конечной полугруппой S, причём |S| = n. Если $x_k < x_{k-1} < \ldots < x_1 < x_0$ – последовательность элементов из X, то $k \le n$.

Доказательство. Пусть k > n. Мы имеем:

$$x_{k-1} = x_k s_{k-1}, x_{k-2} = x_{k-1} s_{k-2}, \dots, x_1 = x_2 s_1, x_0 = x_1 s_0$$

при некоторых $s_0, \ldots, s_{k-1} \in S^1$. Так как $x_i \neq x_j$ при $i \neq j$, то $s_0, \ldots, s_{k-1} \in S$. Очевидно,

$$x_i = x_k s_{k-1} s_{k-2} \dots s_i \tag{1}$$

при всех $i=0,1,\ldots,k-1$. Элементы $s_{k-1},s_{k-1}s_{k-2},\ldots,s_{k-1}s_{k-2}\ldots s_1s_0$ принадлежат полугруппе S, так как |S|=n и k>n, то среди этих элементов есть совпадающие, т.е. $s_{k-1}s_{k-2}\ldots s_i=s_{k-1}s_{k-2}\ldots s_j$ при некоторых $i\neq j$. Будем считать, что i< j. Из формулы (1) видно, что в этом случае $x_i=x_j$, однако, это противоречит неравенству $x_j< x_i$.

Только что доказанная лемма позволяет ввести понятие длины элемента и длины полигона. Пусть X — полигон над конечной полугруппой S. Положим

$$Z_0 = \{ x \in X \mid \forall y \in X \ x \leqslant y \to x \sim y \}.$$

 \mathcal{A} линой l(x) элемента $x \in X$, назовём наибольшее число k такое, что существует цепочка элементов

$$x = x_k < x_{k-1} < \dots < x_1 < x_0.$$

Так как эта цепочка наибольшей длины, то $x_0 \in Z_0$. По лемме 6 $k \leqslant n$. Длиной полигона X назовём число $l(X) = \max\{l(x) \mid x \in X\}$. Таким образом, $l(x) \leqslant n$ при всех $x \in X$. Очевидно, $l(x) = 0 \Leftrightarrow x \in Z_0$. Ясно, что $l(X) \leqslant n$.

Доказатель ство теоремы 1. Пусть X — полигон над конечной полугруппой S и |S|=n. Если X — конечный полигон, то решётка $\operatorname{Con} X$ также конечна, а значит, по лемме 1 она содержится в некотором собственном подмногообразии многообразия \mathcal{V} .

Осталось доказать, что если X бесконечен, то решётка ${\rm Con}\, X$ не содержится ни в каком собственном подмногообразии многообразия ${\mathcal V}$. Доказательство проведём индукцией по длине l(X) полигона X.

Базис индукции. Пусть l(X) = 0. Тогда $X = Z_0$, и мы имеем:

$$\forall x \in X \ \forall s \in S \ \exists t \in S \ xst = x.$$

Очевидно, что в этом случае отношение \sim является конгруэнцией, классами которой являются множества xS^1 ($x\in X$). Эти множества конечны, поэтому X/\sim – бесконечный полигон, состоящий целиком из нулей. Отсюда следует, что $\mathrm{Con}\,(X/\sim)=\mathrm{Eq}\,(X/\sim)$, и по лемме $2\,\mathrm{Con}\,(X/\sim)$ не удовлетворяет никакому нетривиальному решёточному тождеству. Из леммы $4\,\mathrm{следу-}$ ет, что решётка $\mathrm{Con}\,X$ также не удовлетворяет никакому нетривиальному тождеству.

Индуктивный переход. Пусть l(X)=m>0. Если Z_0 — бесконечный подполигон, то по только что доказанному решётка $\operatorname{Con} Z_0$ не содержится ни в каком собственном подмногообразии многообразия $\mathcal V$. По лемме 4 решётка $\operatorname{Con} X$ содержит изоморфную копию решётки $\operatorname{Con} Z_0$, следовательно, решётка $\operatorname{Con} X$ также не содержится ни в каком собственном подмногообразии.

Далее будем считать, что $|Z_0|<\infty$. Положим $X'=X/Z_0$. Тогда X' – бесконечный полигон.

Пусть $Z_1 = \{x \in X' \mid \forall y \in X' \ x < y \to y = z_0\}$. Проверим, что Z_1 - подполигон. Пусть $x \in Z_1$, $s \in S$. Если $x = z_0$, то $xs = z_0$ (очевидно, z_0 - нуль). Пусть $x \neq z_0$. Имеем: $x \leqslant xs$. Если $xs = z_0$, то $xs \in Z_1$. Если $xs \neq z_0$, то $x \not < xs$. Следовательно, $xs \sim x$. Пусть xs < y. Тогда $x \leqslant y$. Если x < y, то $y = z_0$ - то, что требуется доказать. Если $x \not < y$, то $x \sim y$, а значит, $y \sim xs$. Таким образом, $xs \in Z_1$.

Предположим, что Z_1 бесконечен. Рассмотрим следующие отношения на полигоне Z_1 :

$$\alpha = \{ (x, y) \in Z_1 \times Z_1 \mid xS^1 = yS^1 \},$$

$$\beta = \{ (x, y) \in Z_1 \times Z_1 \mid \forall s \in S^1 \ xs = z_0 \leftrightarrow ys = z_0 \}.$$

Ранее отношение α было обозначено символом \sim . Докажем, что отношение $\alpha \cap \beta$ – отношение эквивалентности. Пусть $s \in S$, $(x,y) \in \alpha \cap \beta$. Если $xs = z_0$, то ввиду включения $(x,y) \in \beta$ мы имеем также $ys = z_0$. Следовательно, $(xs,ys) \in \alpha \cap \beta$. Пусть $xs \neq z_0$. Тогда также $ys \neq z_0$. Мы имеем: $x \leqslant xs$. Так как $x \in Z_1$ и $xs \neq z_0$, то $x \not< xs$. Следовательно, $xs \sim x$. Аналогично $ys \sim y$. Так как $x \sim y$, то $xs \sim ys$, т.е. $(xs,ys) \in \alpha$. Докажем, что $(xs,ys) \in \beta$. Так как $xs \sim ys$, то $xs \cdot 1 = z_0 \leftrightarrow ys \cdot 1 = z_0$. Проверим, что также $xs \cdot t = z_0 \leftrightarrow ys \cdot t = z_0$ при $t \in S$. Пусть $xst = z_0$. Так как $(x,y) \in \beta$, то $yst = z_0$. Теперь ясно, что $(xs,ys) \in \beta$. Таким образом, доказано, что $\alpha \cap \beta$ – конгруэнция.

Для $s \in S^1$ обозначим через ρ_S отношение эквивалентности, имеющее не более двух классов: $K_1 = \{x \in Z_1 \mid xs = z_0\}, K_2 = \{x \in Z_1 \mid xs \neq z_0\}$ (один из классов может быть пустым). Очевидно, классами отношения эквивалентности β являются пересечения классов отношений ρ_S . Таким образом, β имеет не более, чем 2^{n+1} классов. Так как Z_1 бесконечно, то существует хотя бы один бесконечный класс, скажем, K.

Так как классы отношения α конечны, то то же верно для классов отношения $\alpha\cap\beta$. Следовательно, $Y=Z_1/\alpha\cap\beta$ — бесконечный полигон. Для

любых $y \in Y$ и $s \in S$ мы имеем: ys = y или $ys = z_0$. Пусть K' – множество классов отношения $\alpha \cap \beta$, содержащихся в множестве K. Очевидно, K' – бесконечное подмножество полигона Y. Возьмём любое $\tau \in \operatorname{Eq} K'$. Положим $\rho(\tau) = \tau \cup \Delta_{Y \setminus K'}$. Проверим, что $\rho(\tau) \in \operatorname{Con} Y$. Действительно, пусть $(y,y') \in \rho(\tau)$ и $s \in S$. Если $(y,y') \notin \tau$, то y = y', а значит, ys = y's. Пусть $(y,y') \in \tau$. Тогда $ys \in \{y,z_0\}, \ y' \in \{y',z_0\}, \$ причём $ys = z_0 \leftrightarrow y's = z_0$. Это означает, что либо (ys.y's) = (y,y'), либо $(ys,y's) = (z_0,z_0)$. В любом случае $(ys,y's) \in \rho(\tau)$. Нетрудно видеть, что $\{\rho(\tau) \mid \tau \in \operatorname{Eq} K'\}$ – подрешётка решётки $\operatorname{Con} Y$, изоморфная решётке $\operatorname{Eq} K'$. Так как K' бесконечно, то решётка $\operatorname{Con} Y$ не удовлетворяет нетривиальному тождеству.

Чтобы завершить доказательство теоремы, нам осталось рассмотреть случай, когда Z_1 – конечное множество. Положим $X''=X'/Z_1$.

Докажем, что l(X'') < m. Пусть

$$x_k < x_{k-1} < \ldots < x_1 < x_0$$

— цепь наиольшей длины в X''. Предположим, что $k\geqslant m$, и приведём это предположение к противоречию. Так как $X''=(X'\setminus Z_1)\cup\{0\}$, то $x_1\neq Z_1$. По определению Z_1 это означает, что существует такое $y\in X'$, что $x_1< y$ и $y\neq 0$. Если $y\notin Z_1$, то y< z при некотором $z\neq 0$, и мы можем получить цепочку

$$x_k < x_{k-1} < \ldots < x_1 < y < z$$

элементов из X, которая показывает, что $l(X)\geqslant k+1>m$ — противоречие с условием. Таким образом, $y\in Z_1$ и $y\neq z_0$ в X', т.е. $y\notin Z_0$ в X. Так как $y\notin Z_0$, то y< z при некотором $z\in X$. Мы снова получаем цепочку

$$x_k < x_{k-1} < \ldots < x_1 < y < z,$$

существование которой приводит к противоречию.

Таким образом, l(X'') < m. Так как X'' бесконечен, то по предположению индукции решётка $\operatorname{Con} X''$ не удовлетворяет нетривиальному решёточному тождеству. Так как X'' – гомоморфный образ полигона X, то по лемме $4 \operatorname{Con} X''$ – подрешётка решётки $\operatorname{Con} X$. Отсюда получаем, что решётка $\operatorname{Con} X$ не удовлетворяет нетривиальному тождеству.

Полигоны над вполне простыми и вполне 0-простыми полугруппами

Вполне простой полугруппой называется полугруппа S, не имеющая нетривиальных идеалов и имеющая хотя бы один примитивный идемпотент (т.е. идемпотент, минимальный относительно естественного порядка на множестве идемпотентов: $e \le f \Leftrightarrow ef = fe = e$). Полугруппа S с нулём называется вполне θ -простой, если выполнены условия: 1) S не имеет идеалов, отличных от $\{0\}$ и S; 2) S имеет θ -минимальный (т.е. минимальный среди ненулевых) идемпотент; 3) $S^2 \ne 0$.

Рисовская матричная полугруппа $\mathcal{M}^0(G,I,\Lambda,P)$ (здесь G – группа, I и Λ – множества, $P=\|p_{\lambda i}\|$ ($\lambda\in\Lambda,i\in I$) – матрица с элементами из $G\cup\{0\}$) определяется как множество, состоящее из элемента 0 и элементов вида

 $(g)_{i\lambda}$, где $g \in G$, $i \in I$, $\lambda \in \Lambda$, с умножением

$$(g)_{i\lambda} \cdot (h)_{j\mu} = \begin{cases} (gp_{\lambda j}h)_{i\mu}, \text{ если } p_{\lambda j} \neq 0, \\ 0, \text{ если } p_{\lambda j} = 0. \end{cases}$$

Рисовская матричная полугруппа $\mathcal{M}(G,I,\Lambda,P)$, где G,I,Λ,P такие же, как и выше, но $p_{\lambda i} \in G$ при всех $i \in I, \lambda \in \Lambda$ – это множество элементов вида $(g)_{i\lambda}$ с умножением

$$(g)_{i\lambda} \cdot (h)_{i\mu} = (gp_{\lambda i}h)_{i\mu}.$$

Хорошо известная теорема Сушкевича — Риса утверждает, что вполне простые полугруппы — это в точности полугруппы, изморфные полугруппе $\mathcal{M}(G,I,\Lambda,P)$, а вполне 0-простые — изоморфные рисовской матричной полугруппе $\mathcal{M}^0(G,I,\Lambda,P)$, при условии, что матрица P не содержит нулевых строк или столбцов (см. [9], теорема 3.5 и замечания перед леммой 3.1).

Для полугрупп S с нулём мы будем рассматривать полигоны X с нулём и накладывать требование $0 \cdot s = x \cdot 0 = 0$ для любых $s \in S, \ x \in X$.

Все полигоны над полугруппой $\mathcal{M}(G,I,\Lambda,P)$ и все полигоны с нулём над полугруппой $\mathcal{M}^0(G,I,\Lambda,P)$ были описаны в работе [11]. Приведём это описание, но сначала надо сделать несколько предварительных рассуждений.

Пусть S — полугруппа с единицей e. Полигон X над S называется yнитарным, если xe=x для всех $x\in X$. Полигон X над полугруппой S (необязательно имеющей единицу) называется yиклическим, если $X=aS^1$ для некоторого $a\in X$. Всякая полугруппа S является полигоном на собой, при этом конгруэнции этого полигона — это в точности правые конгруэнции полугруппы. Нетрудно проверить, что правая конгруэнция группы G — это в точности разложения в правые смежные классы по подгруппе группы G. Если H — подгруппа группы G, через G/H мы будем обозначать множество правых смежных классов Hg, где $g\in G$. G/H является G — полигоном относительно операции $Hg\cdot g'=Hgg'$. Пусть $\{H_\gamma|\gamma\in\Gamma\}$ — семейство подгрупп группы G. Положим

$$Q = \bigsqcup_{\gamma \in \Gamma} (G/H_{\gamma}).$$

Нетрудно видеть, что написанное выражение — это общий вид любого унитарного полигона над группой G, а G/H — общий вид унитарного циклического полигона.

Следующие два утверждения дают описание полигонов над вполне простыми и вполне 0-простыми полугруппами.

Предложение 2 ([11], теорема 5). Пусть X – множество, $S = \mathcal{M}(G, I, \Lambda, P)$ – вполне простая полугруппа, $\{H_{\gamma}|\gamma \in \Gamma\}$ – семейство подгрупп группы $G,\ Q = \bigsqcup_{\gamma \in \Gamma} (G/H_{\gamma})$ – унитарный полигон над G. Пусть для $i \in I$ и $\lambda \in \Lambda$ определены отображения $\pi_i : X \to Q,\ \varkappa_{\lambda} : Q \to X$ такие, что $q\varkappa_{\lambda}\pi_i = q \cdot p_{\lambda i}$ при любых $q \in Q,\ i \in I,\ \lambda \in \Lambda.$ Для $x \in X$ и $(g)_{i\lambda} \in S$ положим $x \cdot (g)_{i\lambda} = (x\pi_i \cdot g)\varkappa_{\lambda}.$ Тогда X будет являться полигоном над S. Кроме того, всякий полигон над вполне простой полугруппой изоморфен полигону, устроенному таким образом.

Предложение 3 ([11], теорема 4). Пусть X – множество c выделенным e нём элементом e, $S = \mathcal{M}^0(G, I, \Lambda, P)$ – вполне e-простая полугруппа,

 $\{H_{\gamma}|\gamma\in\Gamma\}$ — семейство подгрупп группы $G,\ Q=\bigsqcup_{\gamma\in\Gamma}(G/H_{\gamma})$ — полигон над $G.\ Q^0=Q\cup\{0\}$. Пусть для $i\in I$ и $\lambda\in\Lambda$ определены отображения $\pi_i:X\to Q^0,\ \varkappa_\lambda:Q^0\to X$ такие, что $0\pi_i=0,\ 0\varkappa_\lambda=0,\ q\varkappa_\lambda\pi_i=q\cdot p_{\lambda i}$ при $q\in Q^0,\ i\in I,\ \lambda\in\Lambda$. Положим $x\cdot 0=0,\ x\cdot (g)_{i\lambda}=(x\pi_i\cdot g)\varkappa_\lambda$ при $x\in X,\ (g)_{i\lambda}\in S\setminus\{0\}$. Тогда X — полигон c нулём над S. Кроме того, любой полигон c нулём над вполне o-простой полугруппой изоморфен полигону, устроенному таким образом.

Пусть X — полигон с нулём и X_i $(i \in I)$ — его подполигоны. Если $X = \bigcup_{i \in I} X_i$ и $X_i \cap X_j = \{0\}$ при $i \neq j$, то мы говорим, что X является 0-копроизведением полигонов X_i , и пишем $X = \bigsqcup_{i \in I}^0 X_i$.

Теперь пусть X — полигон с нулём над вполне 0-простой полугруппой $S=\mathcal{M}^0(G,I,\Lambda,P)$, полученный вышеописанной конструкцией, т.е. $Q^0,\varkappa_\lambda,\pi_i$ имеют тот же смысл, что и в предложении 3. Положим $Q_\gamma=(G/H_\gamma)\cup\{0\}$. Для $q\in Q^0,\ \gamma\in\Gamma$ положим $X_q=\bigcup\{q\varkappa_\lambda|\lambda\in\Lambda\},\ X^{(\gamma)}=\bigcup\{X_q|q\in Q\}$. Нам понадобится ряд свойств этих множеств, проверка не составляет труда.

Предложение 4 ([11], леммы 1—4 и предл. 1).

- (1) $X^{(\gamma)}$ подполигон полигона X;
- (2) $X^{(\gamma)} \cap X^{(\delta)} = \{0\} \ npu \ \gamma \neq \delta;$
- (3) $XS = \bigsqcup_{\gamma \in \Gamma}^{0} X^{(\gamma)};$
- (4) $xS = X^{(\gamma)}$ discrete $x \in X^{(\gamma)} \setminus \{0\}$;
- (5) $X = (X \setminus XS) \cup \bigsqcup_{\gamma \in \Gamma}^{0} z_{\gamma}S$, npuvëm $z_{\gamma} \neq 0$ u $z_{\gamma} \in xS$ npu $scex \ x \in X^{(\gamma)} \setminus \{0\}$.

Доказательство теоремы 2. Необходимость. Если X – конечный полигон, то решётка $\operatorname{Con} X$ конечна, а значит, удовлетворяет нетривиальному решёточному тождеству.

 \mathcal{A} остаточность. Пусть X — полигон над вполне 0-простой полугруппой $S=\mathcal{M}^0(G,I,\Lambda,P)$, где $|I|,|\Lambda|<\infty$, и решётка $\operatorname{Con} X$ удовлетворяет нетривиальному решёточному тождеству. Заметим вначале, что $|X\setminus XS|<\infty$. Действительно, если $X\setminus XS$ — бесконечное множество, то X/XS — бесконечный полигон с нулевым умножением. Поэтому $\operatorname{Con}(X/XS)=\operatorname{Eq}(X/XS)$. Так как X/XS бесконечно, то по лемме $\operatorname{Eq}(X\setminus XS)$ не удовлетворяет нетривиальному тожджеству. По лемме $\operatorname{Eq}(X\setminus XS)$ по удовлетворяет положению. Сол (X/XS). Следовательно, решётка $\operatorname{Con} X$ не удовлетворяет никакому нетривиальному тождеству, что противоречит предположению.

Итак, $|X\setminus XS|<\infty$. Пользуясь предложением 4, представим X в виде $X=(X\setminus XS)\cup \bigsqcup_{\gamma\in\Gamma}^0 z_\gamma S$. Осталось доказать, что Γ – конечное множество и полигоны $z_\gamma S$ конечны.

Рассмотрим какое-либо z_{γ} . По предожению 4 $z_{\gamma}S$ порождается любым своим ненулевым элементом, в частности, $z_{\gamma}=z_{\gamma}s$ при некотором $s\in S$. Так как $z_{\gamma}\neq 0$, то $s=(g)_{i\lambda}$. Имеем: $z_{\gamma}=z_{\gamma}(g)_{i\lambda}$. Найдём такое $j\in I$, что $p_{\lambda j}\neq 0$. Тогда будем иметь: $z_{\gamma}=z_{\gamma}\cdot (g)_{i\lambda}=z_{\gamma}\cdot ((g)_{i\lambda}\cdot (p_{\lambda j}^{-1})_{j\lambda})=(z_{\gamma}\cdot (g)_{i\lambda})\cdot (p_{\lambda j}^{-1})_{j\lambda}=z_{\gamma}\cdot (p_{\lambda j}^{-1})_{j\lambda})$. Нетрудно видеть, что $(p_{\lambda j}^{-1})_{j\lambda}$ – идемпотент.

По условию I – конечное множество. Для каждого $i \in I$ выберем $\lambda \in \Lambda$ так, что $p_{\lambda i} \neq 0$. Положим $e_i = (p_{\lambda i}^{-1})_{i\lambda}$. Таким образом, если $I = \{i_1, \ldots, i_m\}$, то мы имеем набор идемпотентов $e_1 = (p_{\lambda_1 i_1}^{-1})_{i_1\lambda_1}, \ldots, e_m = (p_{\lambda_m i_m}^{-1})_{i_m\lambda_m}$. Для каждого $\gamma \in \Gamma$ выберем какое-либо одно $i \in I$ такое, что $z_{\gamma} = z_{\gamma}e_i$. Соответственно этому Γ разобьётся на m подмножеств: $\Gamma_1, \ldots, \Gamma_m$, где Γ_i — множество таких γ , для которых выбрано e_i . Так как Γ бесконечно, то хотя бы одно из Γ_i также бесконечно. Вез ограничения общности можно считать, что Γ_1 бесконечно. Положим $Y = \bigsqcup_{\gamma \in \Gamma_1}^0 z_{\gamma}S$. Так как Y – подполигон полигона X, то решётка $\operatorname{Con} Y$ удовлетворяет нетривиальному тождеству.

Проверим, что для $\gamma \in \Gamma_1$ имеет место эквивалентность (при $s \in S$):

$$e_i s = 0 \Leftrightarrow z_{\gamma} e_i s = 0.$$

Действительно, импликация \Rightarrow очевидна. Докажем обратную импликацию. Пусть $z_{\gamma}e_{i}s=0$. Если $e_{i}s\neq0$, то по свойствам вполне 0-простой полугруппы мы будем иметь $e_{i}st=e_{i}$ при некотором $t\in S$. Отсюда получаем: $z_{\gamma}=z_{\gamma}e_{i}st=z_{\gamma}e_{i}s\cdot t=0$, что противоречит выбору элемента z_{γ} .

Из только что доказанной эквивалентности слеует ещё одна эквивалентность:

$$z_{\gamma}s = 0 \Leftrightarrow z_{\delta}s = 0 \tag{2}$$

при $\gamma, \delta \in \Gamma_1$ и $s \in S$.

Пусть σ — произвольное отношение эквивалентности на множестве Γ_1 . Обозначим через $\rho(\sigma)$ конгруэнцию полигона Y, порождённого парами (z_γ, z_δ) , где $(\gamma, \delta) \in \sigma$. Докажем, что отображение $\varphi : \sigma \to \rho(\sigma)$ является вложением решёток $\varphi : \text{Eq}\,\sigma \longrightarrow \text{Con}\,Y$. Тот факт, что φ сохраняет решёточные операции \vee и \wedge , очевиден. Требуется доказать, что φ — вложение. Для этого покажем, что $(z_\xi, z_\eta) \in \rho(\sigma) \Rightarrow (\xi, \eta) \in \sigma$ при $\xi, \eta \in \Gamma_1$. Так как $(z_\xi, z_\eta) \in \rho(\sigma)$, то мы имеем цепочку равенств

где $s_1,\ldots,s_n\in S^1$, а $\{u_i,v_i\}=\{z_{\gamma_i},z_{\delta_i}\}$ при $(\gamma_i,\delta_i)\in\sigma$ $(i=1,2,\ldots,n)$. Так как $z_n\neq 0$, то $u_1s_1\neq 0$.

Очевидно, $u_1s_1 \neq 0$. Ввиду 2 также $v_1s_1 \neq 0$, отсюда $u_2s_2 \neq 0$. И т.д. Получаем, что $u_is_i, v_is_i \neq 0$ при всех i. Так как $z_\xi = u_1s_1$ и $u_1 = z_{\xi_1}$, при некотором $\xi_1 \in \Gamma_1$, то $\xi_1 = \xi$. Тогда $v_1 = z_{\eta_1}$ где $(\xi, \eta_1) \in \sigma$. Так как $u_2s_2 \neq 0$ и $u_2 = z_{\xi_2}$, то $\xi_2 = \eta_1$. Продолжим рассуждать аналогичным образом. В результате получим: если $u_i = z_{\xi_i}, \ v_i = z_{\eta_i}$, то $\xi = \xi_1, (\xi_1, \eta_1) \in \sigma, \ \xi_2 = \eta_1, \ (\xi_2, \eta_2) \in \sigma, \ldots, \ \xi_n = \eta_{n-1}, \ (\xi_n, \eta_n) \in \sigma, \ \eta_n = \eta$. Так как σ транзитивно, то $(\xi, \eta) \in \sigma$.

Мы доказали, что отображение $\sigma \mapsto \rho(\sigma)$ является вложением решётки $\operatorname{Eq} \Gamma_1$ в решётку $\operatorname{Con} Y$. Наличие такого вложения показывает, что решётка $\operatorname{Con} X$ не удовлетворяет никакому нетривиальному тождеству, а значит, решётка $\operatorname{Con} X$ тоже не удовлетворяет, но это противоречит условию. Полученное противоречие показывает, что $|\Gamma| < \infty$.

Для доказательства теоремы 2 достаточно показать, что полигоны $z_{\gamma}S$ конечны. Предположим, что $z_{\gamma}S$ бесконечен. Так как $z_{\gamma} \in z_{\gamma}S$ и $z_{\gamma} \neq 0$, то $z_{\gamma} = z_{\gamma} \cdot (g)_{i\lambda}$ при некоторых $g \in G$, $i \in I$, $\lambda \in \Lambda$. Отсюда получаем: $z_{\gamma} = z_{\gamma} \cdot (g)_{i\lambda} \cdot (g)_{i\lambda}$, а значит, $(g)_{i\lambda} \cdot (g)_{i\lambda} \neq 0$, т.е. $p_{\lambda i} \neq 0$. Положим $e_{i} = (p_{\lambda i}^{-1})_{i\lambda}$. Тогда будем иметь: $z_{\gamma} = z_{\gamma} \cdot (g)_{i\lambda} = z_{\gamma} \cdot ((g)_{i\lambda} \cdot e_{i}) = (z_{\gamma} \cdot (g)_{i\lambda})e_{i} = z_{\gamma}e_{i}$. Следовательно, $z_{\gamma}S = z_{\gamma}e_{i}S$.

Очевидно $e_iS=R_i$, где $R_i=\{(g)_{i\eta}\mid g\in G,\eta\in\Lambda\}\cup\{0\}$. Множество R_i — это правый идеал полугруппы S, а значит, R_i — это правый идеал полугруппы S, а значит, R_i — подполигон полигона S, если S рассматривать как полигон над S с естественный действием.

По условию множество I конечно. Будем считать, что $I=\{1,2,\ldots,m\}$. Строка с индексом λ сэндвич-матрицы P имеет вид $(p_{\lambda 1},\ldots,p_{\lambda m})$, где $p_{\lambda i}\in G\cup\{0\}$. Так как множество G конечно, то различных строк может быть лишь конечное число. Так как $z_{\gamma}S=z_{\gamma}R_i$ – бесконечное множество, то множество R_i также бесконечно, а значит, Λ бесконечно. Разобьём множество Λ на классы, относя к одному классу такие λ и η , у которых $(p_{\lambda 1},\ldots,p_{\lambda m})=(p_{\eta 1},\ldots,p_{\eta m})$. Тогда мы получим разбиение множества Λ на конечное число подмножеств: $\Lambda=\Lambda_1\cup\Lambda_2\cup\ldots\cup\Lambda_k$. Так как множество $z_{\gamma}R_i$ бесконечно, то найдётся такое $g\in G$, что множество $\{z_{\gamma}(g)_{i\lambda}|\lambda\in\Lambda\}$ бесконечно. Следовательно, можно составить последовательность попарно различных элементов $z_{\gamma}(g)_{i\lambda_1},z_{\gamma}(g)_{i\lambda_2},\ldots$

Пусть $\Lambda' = \{\lambda_1, \lambda_2, \ldots\}$. Это множество бесконечно. Следовательно, существует такое t, что $\Lambda' \cap \Lambda_t$ бесконечно. Множество $\Lambda' \cap \Lambda$ можно рассматривать как подпоследовательность последовательности Λ' . Пусть $\Lambda' \cap \Lambda_t = \{\eta_1, \eta_2, \ldots\}$. Тогда мы будем иметь:

$$z_{\gamma} \cdot (g)_{i\lambda_k} \neq z_{\gamma} \cdot (g)_{i\lambda_l}$$
 при $k \neq l$, (3)

$$p_{\lambda_k j} = p_{\lambda_l j}$$
 при любых $j \in I$ и $k, l \in \mathbb{N}$. (4)

Положим $u_k = z_\gamma \cdot (g)_{i\lambda_k}$ для $k \in \mathbb{N}$. Из 3 следует, что u_1, u_2, u_3, \ldots – различные элементы полигона $z_\gamma S$. Из 4 следует, что $u_k s = u_l s$ при любых $k, l \in \mathbb{N}$ и $s \in S$ Пусть σ – произвольное отношение эквивалентности на множестве $U = \{u_1, u_2, \ldots\}$. Тогда $\sigma \cup \Delta_{z_\gamma S}$ будет являться конгруэнцией полигона $z_\gamma S$. Таким образом, мы имеем вложение решёток $\operatorname{Eq} U \to \operatorname{Con}(z_\gamma S)$. Так как множество U бесконечно, то решётка $\operatorname{Con}(z_\gamma S)$ не удовлетворяет нетривиальным решёточным тождествам, а значит, решётка $\operatorname{Con} X$ тоже не удовлетворяет, а это противоречит предположению. Полученное противоречие завершает доказательство теоремы 2.

Доказательство предложения 1. Рассмотрим вполне 0-простую полугруппу $S = \mathcal{M}^0(\{1\}, \mathbb{N}, \mathbb{N}, P)$, где

$$p_{ij} = \begin{cases} 1 \text{ при } i = j, \\ 0 \text{ при } i \neq j. \end{cases}$$

Докажем, что правый идеал

$$R = \{(1)_{1i} | i \in \mathbb{N}\} \cup \{0\}$$

является бесконечным полигоном над S, у которого решётка конгруэнций двухэлементна, а именно, $\mathrm{Con}\,R=\{\Delta_R,\nabla_R\}$, т.е. R – конгруэнц-простой

полигон. В этом случае решётка $\operatorname{Con} R$ конечна, а значит, удовлетворяет нетривиальному тождеству (например, тождеству дистрибутивности).

Для доказательства того, что $\mathrm{Con}\,R=\{\Delta_R,\nabla_R\}$, достаточно доказать, что конгруэнция, порождённая парой (x,y), где $x,y\in R$ и $x\neq y$, совпадает с ∇_R .

Пусть ρ – конгруэнция, порождённая парой $(0,(1)_{1i})$. Так как $(0,(1)_{1i})$ · $(1)_{ij}=(0,(1)_{1j})$, то $(0,(1)_{1j})\in\rho$. Аналогично $(0,(1)_{1k})\in\rho$ при любом k. Следовательно, $((1)_{1j},(1)_{1k})\in\rho$. Таким образом, $\rho=\nabla_R$. Также несложно доказывается, что $\rho=\nabla_R$, если ρ порождается парой $((1)_{1i},(1)_{1j})$, где $i\neq j$.

Часть 2

Полигон U над полугруппой S называется npocmым, если $uS = U \ \forall u \in U$, и $kohzpy \ni hu$ -npocmым, если $|Con U| \leqslant 2$.

Лемма 7. Пусть U — простой полигон над вполне простой полугруппой $S = \mathcal{M}(G, I, \Lambda, P)$. Тогда $U = uS = uR_i$ для любого $u \in U, i \in I$. Кроме того, $u \cdot (p_{\lambda i}^{-1})_{i\lambda} = u$ при некотором $\lambda \in \Lambda$.

 \mathcal{A} оказательство. Так как uS и uR_i – подполигоны и U – простой, то $U=us=uR_i$. Так как U – простой, то $u\in uR_i$. Следовательно, $u=u\cdot (g)_{i\lambda}$ при некотором $\lambda\in\Lambda$. Имеем: $u\cdot (p_{\lambda i}^{-1})_{i\lambda}=u\cdot (g)_{i\lambda}\cdot (p_{\lambda i}^{-1})_{i\lambda}=u\cdot (p_{\lambda i}^{-1})_{i\lambda}$.

Лемма 8. Пусть U – простой полигон над вполне простой полугруппой $S = \mathcal{M}(G, I, \Lambda, P)$. Тогда для любого $i \in I$ существует такая конгруэнция ρ полигона R_i , что $U \cong R_i/\rho$.

Доказательство. По предыдущей лемме при некотором $\lambda \in \Lambda$ мы имеем $u = ue_i$, где $e_i = (p_{\lambda i}^{-1})_{i\lambda}$. Рассмотрим отображение $\varphi : R_i \to U, \ r \to ur, \ r \in R_i$. Очевидно, φ – гомоморфизм полигонов. Так как U – простой, то $R_i \varphi = U$. Теперь по теореме об изоморфизме $U \cong R_i/\rho$ для некоторого $\rho \in \operatorname{Con} R_i$.

В работе [12] были описаны все правые конгруэнции вполне простой полугруппы $S = \mathcal{M}(G, I, \Lambda, P)$. Так как $S_S \cong \bigsqcup_{i \in I} R_i$, то можно с помощью теоремы 2 из [12] найти все конгруэнции полигона R_i . Однако, для дальнейшего нам не нужно будет полное описание, а потребуется лишь установить некоторые свойства конгруэнций на R_i . Это мы сделаем независимо от работы [12].

Лемма 9. Пусть ρ – конгруэнция полигона R_i . Полигон R_i рассмотрим как дизъюнктное объединение подмножеств: $R_i = \bigcup_{\lambda \in \Lambda} (G)_{i\lambda}$, где $(G)_{i\lambda} = \{(g)_{i\lambda} | g \in G\}$ при $\lambda \in \Lambda$. Тогда существует подгруппа H группы G такая, что

$$((a)_{i\lambda}, (b)_{i\lambda}) \in \rho \Leftrightarrow Ha = Hb.$$
 (5)

Доказательство. Зафиксируем $\lambda \in \Lambda$ и рассмотрим отношение $\rho' = ((G)_{i\lambda} \times (G)_{i\lambda}) \cap \rho$ на множестве $(G)_{i\lambda}$. Нетрудно видеть, что $(G)_{i\lambda}$ – группа, изоморфная группе G (изоморфизмом является отображение $g \mapsto (gp_{\lambda i}^{-1})_{i\lambda}$). Очевидно, ρ' является правой конгруэнцией группы $(G)_{i\lambda}$. Пусть σ – отношение на группе G, определённое правилом

$$(g, g') \in \sigma \Leftrightarrow ((g)_{i\lambda}, (g')_{i\lambda}) \in \rho.$$
 (6)

Проверим, что σ — правая конгруэнция группы G. Действительно, пусть $(g,g')\in \sigma$ и $a\in G$. Тогда из 6 следует, что $((g)_{i\lambda},(g')_{i\lambda})\in \rho$. Умножив на $(p_{\lambda i}^{-1}a)_{i\lambda}$ получим:

$$((g)_{i\lambda} \cdot (p_{\lambda i}^{-1}a)_{i\lambda}, (g')_{i\lambda} \cdot (p_{\lambda i}^{-1}a)_{i\lambda}) \in \rho,$$

т.е. $((ga)_{i\lambda}, (g'a)_{i\lambda}) \in \rho$. Ввиду 6 это означает, что $(ga, g'a) \in \sigma$. Таким образом, σ – правая конгруэнция группы G. Хорошо известно, что правая конгруэнция на группе соответствует разложению группы G на правые смежные классы по некоторой подгруппе H. Следовательно, $(g, g') \in \sigma \Leftrightarrow Hg = Hg'$.

Итак, для каждого $\lambda \in \Lambda$ мы имеем:

$$((g)_{i\lambda}, (g')_{i\lambda}) \in \rho \Leftrightarrow Hg = Hg'$$

для некоторой подгруппы H группы G. Для доказательства утверждения 5 осталось показать, что подгруппа H не зависит от $\lambda \in \Lambda$.

Пусть H, H' – подгруппы, $\lambda, \mu \in \Lambda$ и

$$((a)_{i\lambda}, (b)_{i\lambda}) \in \rho \Leftrightarrow Ha = Hb,$$

$$((a)_{i\mu}, (b)_{i\mu}) \in \rho \Leftrightarrow Ha' = Hb'.$$

Пусть $h \in H$. Тогда $((e)_{i\lambda}, (h)_{i\lambda}) \in \rho$. Умножив справа на $(e)_{i\mu}$, получим: $((p_{\lambda i})_{i\mu}, (hp_{\lambda i})_{i\mu}) \in \rho$, а значит, $H'p_{\lambda i} = H'hp_{\lambda i}$. Отсюда получаем: $h \in H'$. Нами доказано, что $H' \subseteq H$.

Лемма 10. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ – вполне простая полугруппа, $R_i = \{(g)_{i\lambda} | g \in G, \lambda \in \Lambda\}$ – главный правый идеал полугруппы S, рассматриваемый как правый полигон над S. Пусть ρ – конгруэнция полигона R_i и H – подгруппа группы G, определённая в лемме g. Если $((a)_{i\lambda}, (b)_{i\mu}) \in \rho$, то $p_{\lambda j} p_{u,j}^{-1} \in a^{-1}Hb$ при всех $j \in I$.

Доказатель ство. Возьмём любые $j \in I$, $\nu \in \Lambda$. тогда получим: $((a)_{i\lambda} \cdot (e)_{j\nu}, (b)_{i\mu} \cdot (e)_{j\nu}) \in \rho$, т.е. $((ap_{\lambda j})_{i\nu}, (bp_{\mu j})_{i\nu}) \in \rho$. По лемме 9 $Hap_{\lambda i} = Hbp_{\mu j}$. Следовательно, $p_{\lambda j}p_{\mu j}^{-1} \in a^{-1}Hb$.

Лемма 11. Пусть $S = \mathcal{M}(G, I, \Lambda, P)$ – вполне простая полугруппа. Возьмём любое $i \in I$ и подгруппу H группы G. Для $(a)_{i\lambda}, (b)_{i\mu} \in R_i$ положим

$$((a)_{i\lambda}, (b)_{j\mu}) \in \rho \Leftrightarrow \forall j \in I \ p_{\lambda j} p_{\mu j}^{-1} \in a^{-1} Hb.$$
 (7)

Тогда ρ является конгруэнцией полигона R_i . Кроме того, ρ – наибольшая конгруэнция на R_i , удовлетворяющая условию 5.

Доказатель ство. Проверим, что формула 7 определеяет конгруэнцию. При $\lambda = \mu$ мы получим $((a)_{i\lambda}, (b)_{i\mu}) \in \rho \Leftrightarrow e \in a^{-1}Hb$, то есть $((a)_{i\lambda}, (b)_{i\lambda}) \in \rho \Leftrightarrow Ha = Hb$. Поэтому на каждом множестве $(G)_{i\lambda}$ полигона R_i мы получаем разбиение группы G на правые смежные классы по H. Отсюда следует рефлексивность отношения ρ .

Пусть $((a)_{i\lambda},(b)_{i\mu}) \in \rho$. Тогда $p_{\lambda j}p_{\mu j}^{-1} \in a^{-1}Hb$ при всех $j \in I$. Следовательно, $(p_{\lambda j}p_{\mu j}^{-1})^{-1} \in a^{-1}Hb$, т.е. $p_{\mu j}p_{\lambda j}^{-1} \in b^{-1}Ha$ при всех j. Это означает, что $((b)_{i\mu},(a)_{i\lambda}) \in \rho$. Этим доказана симметричность отношения ρ . Покажем транзитивность.

Пусть $((a)_{i\lambda},(b)_{i\mu}),((b)_{i\mu},(c)_{i\nu})\in\rho$. Тогда $p_{\lambda j}p_{\mu j}^{-1}\in a^{-1}Hb,\ p_{\mu j}p_{\nu j}^{-1}\in b^{-1}Hc$ при всех $j\in I$. Перемножив эти соотношения, получим: $p_{\lambda j}p_{\nu j}^{-1}\in a^{-1}Hc$. Так как это выполняется при всех $j\in I$, то ρ транзитивно.

Докажем, что ρ выдерживает умножение на элементы полугруппы S. Пусть $((a)_{i\lambda},(b)_{i\mu})\in\rho$. Умножив на $(c)_{j\nu}$, получим пару $((ap_{\lambda j})_{i\nu},(bp_{\mu j})_{i\nu})$. Так как $p_{\lambda j}p_{\mu j}^{-1}\in a^{-1}Hb$, то $Hap_{\lambda j}=Hbp_{\mu j}$. Следовательно, $((ap_{\lambda j})_{i\nu},(bp_{\mu j})_{i\nu})\in\rho$.

Докажем, что конгруэнция ρ наибольшая среди тех, которые соответствуют подгруппе H. Пусть $\rho' \in \operatorname{Con} R_i$ такова, что $((a)_{i\lambda}, (b)_{i\lambda}) \in \rho \Leftrightarrow Ha = Hb$ и пусть $((a)_{i\lambda}, (b)_{i\mu}) \in \rho'$. Тогда $((a)_{i\lambda} \cdot (e)_{j\nu}, (b)_{i\mu} \cdot (e)_{j\nu}) \in \rho'$. То

есть $((ap_{\lambda j})_{i\nu},(bp_{\mu j})_{i\nu})\in \rho'$. Поэтому $Hap_{\lambda j}=Hbp_{\mu j},$ а значит, $p_{\lambda j}p_{\mu j}^{-1}\in H,$ так как это выполнено для всех $j\in I,$ то ввиду (7) $((a)_{i\lambda},(b)_{i\mu})\in \rho.$ Таким образом, $ho'\subseteq
ho$. Этим доказана максимальность конгруэнции ho.

Покажем теперь, что существует конечная группа G и бесконечные множества I и Λ такие, что над полугруппой $S = \mathcal{M}(G, I, \Lambda, P)$ при подходящем выборе сэндвич-матрицы P можно построить бесконечный полигон X над S, у которого решётка конгруэнций тривиальна, т.е. $\operatorname{Con} X = \{\Delta_X, \nabla_X\}$, а значит, решётка $\operatorname{Con} X$ удовлетворяет нетривиальному тождеству.

Возьмём в качестве группы G симметрическую группу на 3-элементном множестве: $G = S_3 = \{e, (12), (13), (23), (123), (132)\}$. Положим a = (13), b = (13)(23), h = (12), $H = \langle (12) \rangle = \{e, h\}$. Далее, пусть $I = \Lambda = \mathbb{N}_0 = \{0, 1, 2, \ldots\}$. Сэндвич-матрицу $P = \|p_{\lambda i}\|$ будем строить из следующих соображений. Рассмотрим $I \times \Lambda$ таблицу T

Таблица 1: Таблица Т

то есть

$$t_{j\lambda} = \begin{cases} a, \text{ если } \lambda \text{ чётно и } j \neq \lambda, \\ ha, \text{ если } \lambda \text{ чётно и } j = \lambda, \\ b, \text{ если } \lambda \text{ нечётно и } j \neq \lambda, \\ hb, \text{ если } \lambda \text{ нечётно и } j = \lambda. \end{cases}$$

Элементы матрицы P определим рекуррентно, полагая $p_{0j}=e$ для всех $j\in\mathbb{N}_0$ и $p_{\lambda+1,j}=t_{j\lambda}^{-1}p_{\lambda j}$ $(\lambda,j\in\mathbb{N}_0).$ Пусть $S=\mathcal{M}(S_3,\mathbb{N}_0,\mathbb{N}_0,P),$ где P определена выше. Правый идеал

$$R_0 = \{(g)_{0\lambda} | g \in G, \lambda \in \Lambda\}$$

полугруппы S будем рассматривать как полигон над S. Рассмотрим конгруэнцию ho над R_0 , определённую по формуле 7, которую мы в нашем случае перепишем в виде

$$((g_1)_{0\lambda}, (g_2)_{0\mu}) \in \rho \Leftrightarrow \forall j \in I \ p_{\lambda j} p_{\mu j}^{-1} \in g_1^{-1} H g_2.$$
 (8)

Положим $X = R_0/\rho$.

Предложение 5. X – бесконечный полигон над полугруппой $S = \mathcal{M}(S_3, \mathbb{N}_0, \mathbb{N}_0, P)$,

Доказатель ство. Докажем вначале, что X бесконечен. Для этого достаточно доказать, что $((g_1)_{0\lambda}, (g_2)_{0\mu}) \notin \rho$ при $|\lambda - \mu| \geqslant 2$ и любых $g_1, g_2 \in G$. Можно считать, что $\mu = \lambda + k$, где $k \geqslant 2$. Рассмотрим выражение $p_{\lambda j} p_{\mu j}^{-1}$. Преобразуем его: $p_{\lambda j} p_{\mu j}^{-1} = p_{\lambda j} p_{\lambda + k, j}^{-1} = p_{\lambda j} p_{\lambda + 1, j}^{-1} \cdot p_{\lambda + 1, j} p_{\lambda + 2, j}^{-1} \cdot \dots \cdot p_{\lambda + k - 1, j} p_{\lambda + k, j}^{-1} = p_{\lambda j} p_{\lambda + k, j}^{-1} = p_{\lambda j} p_{\lambda + k, j}^{-1} = p_{\lambda j} p_{\lambda + 1, j}^{-1} \cdot p_{\lambda + 1, j} p_{\lambda + 2, j}^{-1} \cdot \dots \cdot p_{\lambda + k - 1, j} p_{\lambda + k, j}^{-1} = p_{\lambda j} p_{\lambda + k, j}^{-$ $t_{j\lambda}t_{j,\lambda+1}\dots t_{j,\lambda+k-1}$. Возьмём следующие значения индекса j: $j=\lambda,j=\lambda+1, j=\lambda+2$. Будем считать, что λ – чётное число (случай нечётного λ рассматривается аналогично). Рассмотрим фрагмент таблицы T:

$$j = \lambda$$

$$j = \lambda + 1$$

$$j = \lambda + 2$$

$$k + k + k$$

$$k + k$$

$$k + k + k$$

$$k +$$

Имеем:

$$\begin{split} p_{\lambda\lambda}p_{\mu\lambda}^{-1} &= ha \cdot b \cdot a \cdot w, \\ p_{\lambda,\lambda+1}p_{\mu,\lambda+1}^{-1} &= a \cdot hb \cdot a \cdot w, \\ p_{\lambda,\lambda+2}p_{\mu,\lambda+2}^{-1} &= a \cdot b \cdot ha \cdot w, \end{split}$$

где w — некоторый элемент группы G. Нетрудно проверить, что элементы haba, ahba и abha различны. Следовательно, при $|\lambda - \mu| \geqslant 2$ множество $\{p_{\lambda j}p_{\mu j}^{-1}|i\in I\}$ содержит 3 различных элемента, поэтому $\{p_{\lambda j}p_{\mu j}^{-1}|i\in I\}\not\subseteq \rho$. таким образом, X — бесконечный полигон.

Докажем теперь, что X конгруэнц-простой. По лемме $10~\rho$ – наибольшая конгруэнция полигона R_0 , соответствующая подгруппе H. Пусть $\rho' \in \mathrm{Con}\,R_0$ и $\rho' \supset \rho$. Тогда ρ' соответствует некоторой подгруппе $H' \supset H$. Нетрудно видеть, что H – максимальная собственная подгруппа группы S_3 , поэтому $H' = S_3$.

Из таблицы T видно, что

$$\{p_{\lambda j}p_{\lambda+1,j}^{-1}|j\in I\}=\begin{cases}\{a,ha\}\text{ при чётном }\lambda,\\\{b,hb\}\text{ при нечётном }\lambda.\end{cases}$$

Значит, при чётном λ мы имеем: $p_{\lambda j}p_{\lambda+1,j}^{-1}\in Ha$ при всех $j\in I$, а при нечётном λ имеем включение $p_{\lambda j}p_{\lambda+1,j}^{-1}\in Hb$ при всех $j\in I$. Таким образом, для любого $\lambda\in\Lambda$ существуют $g_1,g_2\in G$ такие, что $((g_1)_{0\lambda},(g_2)_{0\lambda+1})\in\rho$. Так как $\rho'\supset\rho$ и ρ — наибольшая конгруэнция, соответствующая подгруппе H, то по лемме 10 существуют элементы $\lambda\in\Lambda$ и $g_1,g_2\in G$ такие, что $((g_1)_{0\lambda},(g_2)_{0\lambda})\in\rho'$ и $Hg_1\neq Hg_2$. Лемма 9 показывает теперь, что существует подгруппа H' группы G такая, что

$$((q_1)_{0\lambda}, (q_2)_{0\lambda}) \in \rho' \Leftrightarrow H'a = H'b.$$

Так как $\rho' \supset \rho$, то $H' \supset H$. Но H — максимальная собственная подгруппа, следовательно, H' = G. Таким образом, $((g_1)_{0\lambda}, (g_2)_{0\lambda}) \in \rho'$ при любых $\lambda \in \Lambda$ и $g_1, g_2 \in G$. Ранее мы доказали, что $((g_1)_{0\lambda}, (g_2)_{0,\lambda+1}) \in \rho$ при любом λ и подходящем выборе элементов $g_1, g_2 \in G$. Подводя итог этим рассуждениям, мы получаем, что $((g_1)_{0\lambda}, (g_2)_{0\mu}) \in \rho'$ при любых $\lambda, \mu \in \Lambda$ и $g_1, g_2 \in G$. Таким образом, $\rho' = \nabla_{R_0}$. Переходя к полигону $X = R_0/\rho$, мы заключаем, что полигон X не имеет нетривиальных конгруэнций. То есть $Con X = \{\Delta_x, \nabla_x\}$.

Следствие 1. Существует вполне простая полугруппа $S = \mathcal{M}(G, I, \Lambda, P)$ с конечной группой G и бесконечными множествами I и Λ и бесконечный полигон X над S такой, что решётка $\operatorname{Con} X$ не удовлетворяет никакому нетривиальному тождеству.

В заключение скажем несколько слов о вполне простых полугруппах $S=\mathcal{M}(G,I,\Lambda,P)$, у которых группа G бесконечна. Здесь бесконечные полигоны X с решёткой конгруэнций $\mathrm{Con}\,X$, удовлетворяющей нетривиальному тождеству, существуют даже в случае когда $|I|,|\Lambda|<\infty$. Действительно, пусть $|I|=|\Lambda|=1$ и $G=\mathbb{Z}_{p^\infty}$ – квазициклическая группа. Тогда $S\cong G$, и решётка конгруэнций полигона S (над S) изоморфна решётке подгрупп группы G. Хорошо известно, что решётка $\mathrm{Sub}\,\mathbb{Z}_{p^\infty}$ является бесконечной цепью, а значит, удовлетворяет нетривиальному тождеству (скажем, тождеству дистрибутивности). Впрочем, любая абелева группа имеет модулярную решётку конгруэнций, а значит, в ней выполняется нетривиальное тодлество.

Список литературы

- [1] И.Б. Кожухов А.В. Решетников. Алгебры, у которых все отношения эквивалентности являются конгруэнциями. Фундамент. и прикл. матем., 16(3):161–192, 2010.
- [2] А.А. Степанова Д.О. Птахов. Решётки конгруэнций полигонов. Дальневосточный математический журнал, 13(1):107–115, 2013.
- [3] А.Р. Халиуллина. Условия модулярности решётки конгруэнций полигонов над полугруппой правых или левых нулей. Дальневосточный математический журнал, 15(1):102–120, 2015.
- [4] George Gratzer. Lattice Theory: Foundation. Birkhauser, 2011.
- [5] Кон П. Универсальная алгебра. М.:Мир, 1969.
- [6] Скорняков Л.А. Элементы теории структур. М.: Наука, 1970.
- [7] Sachs D. Identities in finite partition lattices. Proceedings of the American Mathematical Society, 12(6):944–945, 1961.
- [8] Мальцев А.И. Алгебраические системы. М.:Наука, 1970.
- [9] Клиффорд А. Престон Г. Алгебраическая теория полугрупп. М.:Мир, 1964.
- [10] Kilp M., Knauer U., and Mikhalev A.V. Monoids, acts and categories. N.Y.
 Berlin, Walter de Gruyter, 2000.
- [11] Avdeyev A.Yu. Kozhukhov I.B. Acts over completely 0-simple semigroups. *Acta Cybernetica*, 14(4):523–531, 2000.
- [12] Robert H. Oehmke. Right congruences and semisimplicity for rees matrix semigroups. *Pacific Journal of Mathematics*, 54(2):143–163, 1974.