1. Grundlagen

 $\cos(x) = \sin\left(x + \frac{\pi}{2}\right)$ $\sin(x) = \cos\left(x - \frac{\pi}{2}\right)$

 $i(t) = \hat{i} \cdot \cos(\omega t + \varphi)$

Kreisfrequenz/Winkelgeschwindigkeit: $\omega = \frac{d\varphi}{dt} = \frac{2\pi}{T} = 2\pi \cdot f$

rotierende Spule, Änderung des Flusses: $\phi = \vec{B} \cdot \vec{A} = -B \cdot 2r \cdot l \cdot \cos \phi = \hat{\phi} \cdot (-\cos \omega t) = \phi(t)$ $(\hat{\phi} = Amplitude, Maximalwert, Scheitelwert)$

 \rightarrow Spannung wird induziert: $u_i = N \cdot \frac{d\phi}{dt} = N \cdot B \cdot l \cdot 2r \cdot \omega \cdot \sin \omega t = \widehat{u}_i \cdot \sin \omega t$

Nulldurchgang: Punkt am nächsten zum Ursprung, an dem Schwingung von ⊖ nach ⊕ wechselt φ = Nullphasenwinkel: Abstand zw. Ursprung und Nulldurchgang $i(t) = \hat{i} \cdot \sin(\omega t + \varphi)$

$$I_{eff} = I = \sqrt{\frac{1}{T} \cdot \int_{t=0}^{T} i^2(t) dt}$$

$$I_{eff} = I = \sqrt{\frac{1}{T} \cdot \int_{t=0}^{T} i^2(t) \, dt} \qquad \text{oder} \qquad I_{eff} = I = \sqrt{\frac{1}{2\pi} \cdot \int_{\omega t=0}^{2\pi} i^2(\omega t) \, d\omega t}$$

(Herleitung über Leistung P)

Sinus Dreieck Rechteck

PWM

Effektivwert
$$X = \sqrt{\frac{1}{T} \cdot \int_{t=0}^{T} x^2(t) dt}$$

(wenn nach links verschoben, ω = positiv, und umgekehrt)

$$\frac{\hat{t}}{\sqrt{2}} \qquad \frac{\hat{t}}{\sqrt{3}} \qquad \sqrt{I_0^2 + \hat{t}^2}$$

"selbe Leistung"

Arith. Mittelw.
$$\bar{x} = \frac{1}{T} \cdot \int_{t=0}^{T} x(t) dt$$

$$\hat{l} \cdot \frac{T_1}{T}$$

Gleichrichtwert $\overline{|x|} = \frac{1}{T} \cdot \int_{t=0}^{T} |x(t)| dt$

$$\frac{2}{\pi} \cdot \hat{l}$$

"selbe Ladungsmenge" → Flächen abschnittsweise von Nullstelle zu Nullstelle

Formfaktor

Scheitelfaktor
$$\xi = \frac{\hat{x}}{X} = \frac{Scheitelwert}{Effektivwert}$$

 $\sqrt{3}$

$$F = \frac{X}{|X|} = \frac{Effektivwert}{Gleichrichtwert}$$

$$\frac{\pi}{2\sqrt{2}}$$

$$\frac{\pi}{2\sqrt{2}}$$

Additionstheoreme

$$\frac{\text{duitionstrieoreme}}{x_1 + x_2}$$

$$\sin^2 x = rac{1}{2} \left(1 -
ight.$$

$$\sin x_1 - \sin x_2 = 2 \cdot \cos \left(\frac{x_1 + x_2}{2}\right) \cdot \sin \left(\frac{x_1 - x_2}{2}\right) \qquad \cos^2 x = \frac{1}{2} \left(1 + \cos(2x)\right)$$

$$\cos^2 x = rac{1}{2} \left(1 + \cos(2 x)
ight)$$

$$\cos x_1 + \cos x_2 = 2 \cdot \cos \left(\frac{x_1 + x_2}{2}\right) \cdot \cos \left(\frac{x_1 - x_2}{2}\right)$$

$$\cos x_1 - \cos x_2 = -2 \cdot \sin\left(\frac{x_1 + x_2}{2}\right) \cdot \sin\left(\frac{x_1 - x_2}{2}\right)$$

$$\sin x_1 \cdot \sin x_2 = \frac{1}{2} \left[\cos (x_1 - x_2) - \cos (x_1 + x_2) \right]$$

$$\cos x_1 \cdot \cos x_2 = \frac{1}{2} \left[\cos (x_1 - x_2) + \cos (x_1 + x_2) \right]$$

$$\sin x_1 \cdot \cos x_2 = \frac{1}{2} \left[\sin (x_1 - x_2) + \sin (x_1 + x_2) \right]$$

$$\sin(2x) = 2 \cdot \sin x \cdot \cos x$$

$$\cos(2x) = \cos^2 x - \sin^2 x$$

$$sin(\alpha + \beta) = sin(\alpha) \cdot cos(\beta) + cos(\alpha) \cdot sin(\beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha) \cdot \cos(\beta) - \cos(\alpha) \cdot \sin(\beta)$$

$$cos(\alpha + \beta) = cos(\alpha) \cdot cos(\beta) - sin(\alpha) \cdot sin(\beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha) \cdot \cos(\beta) + \sin(\alpha) \cdot \sin(\beta)$$

$\sin x_1 + \sin x_2 = 2 \cdot \sin \left(\frac{x_1 + x_2}{2}\right) \cdot \cos \left(\frac{x_1 - x_2}{2}\right) \qquad \sin^2 x = \frac{1}{2} \left(1 - \cos(2x)\right)$

$$\cos^2 x = rac{1}{2} \left(1 + \cos(2x)
ight)$$

Sinussatz

$$rad = \frac{deg}{360^{\circ}} \cdot 2\pi$$
$$deg = \frac{rad}{2\pi} \cdot 360^{\circ}$$

$$\frac{\mathsf{a}}{\sin\left(\alpha\right)} = \frac{\mathsf{b}}{\sin\left(\beta\right)} = \frac{\mathsf{c}}{\sin\left(\gamma\right)}.$$

Kosinussatz

$$c^2 = a^2 + b^2 - 2ab \cdot \cos(\gamma)$$

•
$$b^2 = a^2 + c^2 - 2ac \cdot \cos(\beta)$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos(\alpha)$$

Umrechnungen (p = parallel, r = reihe)

$$R_p = \frac{Z^2}{R_r} = \frac{R_r^2 + X}{R_r}$$

$$R_r = \frac{Z^2}{R_p} = \frac{R_p \cdot X_p^2}{R_p^2 + X_p^2}$$

$$\frac{R_r}{R_p} = \cos^2 \varphi$$

$$X_p = \frac{Z^2}{X_r} = \frac{R_r^2 + X_r^2}{X_r}$$
 $X_r = \frac{Z^2}{X_p} = \frac{X_p \cdot R_p^2}{R_p^2 + X_p^2}$ $\frac{L_r}{L_p} = \sin^2 \varphi$

$$X_r = \frac{Z^2}{X_p} = \frac{X_p \cdot R_p^2}{R_p^2 + X_p^2}$$

$$\frac{L_r}{L_p} = \sin^2 \varphi$$

$$Z^2 = R_r \cdot R_p = X_r \cdot X_p$$

$$\frac{c_{\mathbf{p}}}{c} = \sin^2 \varphi$$

$$\frac{\text{Umrechnungen}}{R_p = \frac{Z^2}{R_r} = \frac{R_r^2 + X_r^2}{R_r}} \qquad R_r = \frac{Z^2}{R_n} = \frac{R_p \cdot X_p^2}{R_n^2 + X_n^2} \qquad \frac{R_r}{R_n} = \cos^2 \varphi \qquad \sin(-x) = -\sin(x)$$

$$i(t) = \hat{i} \cdot \sin(\omega t + \varphi)$$

$$i(t) = \hat{i} \cdot \cos(\omega t + \varphi)$$

$$\rightarrow \underline{I} = \frac{\hat{i}}{\sqrt{2}} \cdot e^{j \cdot \varphi}$$

	Impedanz	komplex	Admittanz	komplex	\emph{I} nach \emph{U}	Reihenschaltung	Parallelschaltung
R	R	R	$\frac{1}{R}$	$\frac{1}{R}$	$\varphi=0^{\circ}$	$R = Z \cdot \cos \varphi$	$R = \frac{z}{\cos \varphi}$ $G = Y \cdot \cos \varphi_Y$
L	$X_L = \omega L$	$jX_L = j\omega L$	$B_L = -\frac{1}{\omega L}$	$jB_L = \frac{1}{j\omega L}$ $jB_L = \frac{1}{jX_L}$	φ = 90°	$X_L = Z \cdot \sin \varphi$	$X_L = \frac{z}{\sin \varphi}$ $B_L = Y \cdot \sin \varphi_Y$
С	$X_C = -\frac{1}{\omega C}$	$jX_C = \frac{1}{j\omega C}$	$B_C = \omega C$	$jB_C = j\omega C$ $jB_C = \frac{1}{jX_C}$	$\varphi = -90^{\circ}$	$X_C = Z \cdot \sin \varphi$	$X_C = \frac{Z}{\sin \varphi}$ $B_C = Y \cdot \sin \varphi_Y$
Z/Y		$\underline{Z} = Z \cdot e^{j\varphi}$ $\underline{Z} = \frac{1}{Y} \cdot e^{-j\varphi_Y}$		$\underline{\underline{Y}} = \underline{Y} \cdot e^{j\varphi_Y}$ $\underline{\underline{Y}} = \frac{1}{Z} \cdot e^{-j\varphi}$		$Z = \sqrt{R^2 + X^2}$ $Z = \sqrt{R^2 + (X_L + X_c)^2}$	$Y = \sqrt{G^2 + B^2} Y = \sqrt{G^2 + (B_C + B_L)^2}$
φ						$\varphi = \arctan\left(\frac{X}{R}\right)$	$\varphi = -\varphi_Y = -\arctan\left(\frac{B}{G}\right)$ $(\varphi_Y \text{ von U zu I})$
Resonanz						I max, U min	I min, U max

	Reihenschaltung	Parallelschaltung	Momentanleistung	Energie
F			$p(\omega t) = U \cdot I \cdot [1 - \cos(2\omega t)]$	$W = I^2 \cdot R \cdot T \text{ (pro Periode)}$
L	$Q_L = I^2 \cdot X_L = I^2 \cdot \omega \cdot L \Rightarrow L = \frac{Q_L}{\omega \cdot I^2}$	$Q_L = \frac{U^2}{X_L} = \frac{U^2}{\omega \cdot L} \qquad \Rightarrow L = \frac{U^2}{\omega \cdot Q_L}$	$p(\omega t) = U \cdot I \cdot \sin(2\omega t)$	$W_m = \frac{1}{2} \cdot L \cdot \hat{\imath}^2$ (nur bei i = max)
C	$Q_C = I^2 \cdot X_C = -\frac{I^2}{\omega C}$ $\Rightarrow C = -\frac{I^2}{O_C \cdot \omega}$	$Q_C = \frac{U^2}{X_C} = -U^2 \cdot \omega \cdot C$ $\Rightarrow C = -\frac{Q_C}{\omega \cdot U^2}$	$p(\omega t) = U \cdot I \cdot \sin(2\omega t)$	$W_e = \frac{1}{2} \cdot C \cdot \hat{u}^2$ (nur bei u = max)

Leistungs-/Wirkfaktor: $\sin \varphi = \frac{Q}{A}$ Blindfaktor:

	allgemein	komplex	mit I (Reihe)	mit <i>U</i> (parallel)
S	$S = U \cdot I$ $S = \sqrt{P^2 + Q^2}$	$\underline{S} = P + jQ = S \cdot e^{j\varphi} = U \cdot I \cdot e^{j(\varphi_U - \varphi_I)}$ $= U \cdot e^{j\varphi_U} \cdot I \cdot e^{j(-\varphi_I)} = \underline{U} \cdot \underline{I}^*$	$\underline{S} = \underline{Z} \cdot I^2 = \frac{I^2}{\underline{Y}}$	$\underline{S} = \frac{U^2}{\underline{Z}^*} = \underline{Y}^* \cdot U^2$
P	$P = U \cdot I \cdot \cos \varphi = S \cdot \cos \varphi$	$P = Re(\underline{S}) = \frac{Q}{\tan \varphi} = Q \cdot \frac{Re(\underline{Z})}{Im(\underline{Z})}$	$P = Re\{\underline{Z}\} \cdot I^2$	$P = Re\left\{\frac{U^2}{\underline{Z}^*}\right\}$
Q	$Q = U \cdot I \cdot \sin \varphi = S \cdot \sin \varphi$	$Q = Im(\underline{S}) = P \cdot \tan \varphi = P \cdot \frac{Im(\underline{Z})}{Re(\underline{Z})}$	$Q = Im\{\underline{Z}\} \cdot I^2$	$Q = Im\left\{\frac{U^2}{\underline{Z}^*}\right\}$

Netzwerkberechnung

Anwendung der Kirchhoffschen Gesetze

- 1. Anzahl Zweige n und Anzahl Knoten p feststellen
- 2. Zählpfeile für unbekannte Größen eintragen
- 3. Knotenpunktsatz für p-1 Knoten aufstellen
- 4. Unabhängige Maschen wählen m = n (p-1), Umlaufsinn eintragen und Maschengleichungen aufstellen
- 5. Gleichungssystem sinnvoll (!) lösen

Überlagerungsmethode

Quellen nacheinander aktivieren/deaktivieren, anschließend Teilströme addieren: $I_0 = I_0' + I_0'' + ...$

Ersatzzweipolquellen/Schnittmethode

- → Teil des Netzwerkes wird durch eine ideale Spannungs-/ Stromguelle und einem Innenwiderstand Ri ersetzt Netzwerk an betrachteten Klemmen a-b öffnen und 2 der 3 folgenden Größen betrachten:
- 1. Leerlaufspannung a-b: $U_0 = U_0 \rightarrow Maschenregel!$
- 2. Kurzschlussstrom a-b: $I_k = I_\alpha$
- 3. Innenwiderstand Ri berechnen: Deaktivieren der Quellen und Berechnung des Gesamtwiderstands bei Leerlauf = Ri
- → Berechnung der 3. Größe durch Ohmsches Gesetz

Netzumwandlung (gilt nur für eine Frequenz!)

Stern → Dreieck

Dreieck → Stern

 $\underline{Z}_{12} = \underline{Z}_1 + \underline{Z}_2 + \frac{\underline{Z}_1 \cdot \underline{Z}_2}{Z_3}$ $\underline{Z}_1 = \frac{\underline{Z}_{12} \cdot \underline{Z}_{31}}{Z_{12} + Z_{23} + Z_{31}}$

 $\underline{Z}_{23} = \underline{Z}_2 + \underline{Z}_3 + \frac{\underline{Z}_2 \cdot \underline{Z}_3}{Z_1}$ $\underline{Z}_2 = \frac{\underline{Z}_{12} \cdot \underline{Z}_{23}}{Z_{12} + Z_{23} + Z_{31}}$

 $\underline{Z}_{31} = \underline{Z}_3 + \underline{Z}_1 + \underline{Z}_3 \cdot \underline{Z}_1 \qquad \underline{Z}_3 = \underline{Z}_{23} \cdot \underline{Z}_{31}$

4. Zwei-/Vierpole

 $U_1 = Z_{11} \cdot I_1 + Z_{12} \cdot I_2$

 $U_2 = Z_{21} \cdot I_1 + Z_{22} \cdot I_2$

Reihenschaltung: $[Z] = [Z_1] + [Z_2]$

Y-Parameter

Z-Parameter

 $\underline{I}_1 = \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2$

 $\underline{I}_2 = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2$

A-Parameter

 $\underline{I}_1 = \underline{A}_{21} \cdot \underline{U}_2 - \underline{A}_{22} \cdot \underline{I}_2$

Belasteter Vierpol (Z-Matrix bekannt)

VP1 $\boxed{\underline{Z}_2 \mid \underline{U}_2}$

 $\underline{U}_2 = -\underline{I}_2 \cdot \underline{Z}_2 \rightarrow$ in 2. Vierpolgleichung einsetzen \rightarrow nach I_2 auflösen und in 1. Vierpolgl. einsetzen Eingangswiderstand des belasteten Vierpols:

VP1

VP2

 $\underline{Z_e} = \frac{\underline{U_1}}{l_1} = \underline{Z_{11}} - \frac{\underline{Z_{12}} \cdot \underline{Z_{21}}}{\underline{Z_{22} + \underline{Z_2}}}$ (mit 1. Vierpolgleichung) $\underline{U}_1 = \underline{A}_{11} \cdot \underline{U}_2 - \underline{A}_{12} \cdot \underline{I}_2 \mid \text{ T: } \underline{Z}_{11} = \underline{Z}_{1T} + \underline{Z}_{2T}, \underline{Z}_{22} = \underline{Z}_{3T} + \underline{Z}_{2T}, \underline{Z}_{12} = \underline{Z}_{21} = \underline{Z}_{2T}$

 \rightarrow A_{11} und A_{22} dimensionslos

Verkettung von 2 A-Formen möglich: $A = A_1 \cdot A_2$

Blindstromkompensation: Reduzierung Q durch zusätzlichen C $\rightarrow Q_C = P \cdot (\tan \varphi' - \tan \varphi)$ (mit φ' als neuen Winkel) (Verbraucher in Parallelschaltung umwand. um Q_C zu berechnen!)

→ leicht ohmsch-induktiv, da bei Resonanz Spannungsmaximum

Wirkleistung im Verbraucher:

$$P_{\nu} = \frac{U_{q}^{2} \cdot R_{\nu}}{(R_{\nu} + R_{\nu})^{2} + (X_{\nu} + X_{\nu})^{2}} = f(R_{\nu}, X_{\nu})$$

<u>Leistungsanpassung</u> wenn: $R_V = R_i$ und $X_V = -X_i$

(Herleitung über $R_V = \sqrt{R_i^2 + (X_V + X_i)^2}$)

 $\rightarrow Z_V = Z_i^*$ und $\varphi_V = -\varphi_i$

→bei Leistungsanpassung: Resonanz

$$P_{v,max} = \frac{U_q^2}{4R_i}$$

 $(U_q = eff.!$ und R_i vor Umwandlung!)

 \rightarrow Gesamtleistung Quelle: $P_{Quelle} = 2 \cdot P_{v,max} = \frac{U_q^2}{2R_i} \rightarrow \eta = 50\%$

bei Fehlanpassung:

$$\frac{P_v}{P_{v,max}} = \frac{4x}{(1+x)^2 + y^2} \quad \text{ mit } x = \frac{R_v}{R_i} \quad \text{ und } y = \frac{X_v + X_i}{R_i}$$

5. Ortskurven / Frequenzgang

Generell irgendwas in dB berechnen:

 $10 \cdot \log_{10} \left(\frac{x}{y}\right)$ bei Leistung, Energie

 $20 \cdot \log_{10} \left(\frac{x}{y}\right)$ bei Spannung, Strom

Grenzfrequenz (beide Impedanzen gleich groß)

RC-Glied: $\omega_g = \frac{1}{RC}$ LR-Glied: $\omega_g = \frac{R}{L}$

 $\text{Verst\"{a}rkung: } v = 20 \; dB \cdot \log \frac{\underline{u_2}}{\underline{u_1}} \quad \text{D\"{a}mpfung: } \alpha = 20 \; dB \cdot \log \frac{\underline{u_2}}{\underline{u_1}} \; \; \text{(negativ!)}$

	allgemein	LR/RC-Tiefpass	CR/RL-Hochpass
Übertragungs- Funktion / Frequenzgang	$\underline{G}(\omega) = \frac{\underline{U}_2}{\underline{U}_1}$	$\frac{1}{1+j\frac{\omega}{\omega_g}}$	$\frac{1}{1-j\frac{\omega_g}{\omega}}$
Amplituden- gang	<u>G</u> (ω)	$\frac{\sqrt{1^2}}{\sqrt{1^2 + \left(\frac{\omega}{\omega_g}\right)^2}}$	$\frac{\sqrt{1^2}}{\sqrt{1^2 + \left(\frac{\omega g}{\omega}\right)^2}}$
Phasengang	$ \varphi = \arctan \frac{Im(\underline{G}(\omega))}{Re(\underline{G}(\omega))} $	$-\arctan\left(\frac{\omega}{\omega_g}\right) =$ $\arctan\left(\frac{\omega_g}{\omega}\right)$	$-\arctan\left(\frac{\omega}{\omega_g}\right) =$ $\arctan\left(\frac{\omega_g}{\omega}\right)$
$\omega \ll \omega_g$	$20 \cdot \log_{10}(\underline{G}(\omega))$	$0 dB / \varphi = 0$	$+20 dB/Dek./\varphi = 90^{\circ}$
$\omega = \omega_g$		$-3 dB / \varphi = -45^{\circ}$	$-3 dB / \varphi = +45^{\circ}$
$\omega \gg \omega_g$		$-20 dB/Dek./\varphi = -90^{\circ}$	$0 dB / \varphi = 0$

Schaltungstyp	\underline{Z} bzw. \underline{U} – Ortskurve	<u>Y</u> bzw. <u>I</u> - Ortskurve	
Reihenschaltung (variabler Blindanteil) $R_0 \qquad p \cdot X_0$ $p = -\infty + \infty$	$X \xrightarrow{ind.} R_0 \uparrow \downarrow $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Parallelschaltung (variabler Blindanteil) R_0 $p \cdot X_\theta$ $p = -\infty + \infty$	$\begin{array}{c} X \\ p \to + \infty \\ \hline p \pm 0 \\ \hline \\ p \to - \infty \\ \end{array}$	$\begin{array}{c c} B & & \\ \hline kap. & & \\ 1/R_0 & & \\ \hline R_0 & \\ \hline ind. & \\ \end{array}$	
Reihenschaltung (variabler Wirkanteil) $p \cdot R_{\theta} \qquad X_{0}$ $p = 0+\infty$	$\begin{array}{c c} +X_0 & X \\ & \downarrow & \\ X_0 & \downarrow & \\ X_0 & \downarrow & \\ & & \downarrow & \\ -X_0 & & & \\ \end{array}$	$\begin{array}{c c} 1/ X_0 & & kap. \\ \hline X_0 \uparrow & & p \to +\infty \\ \hline -1/ X_0 & & ind. & G \end{array}$	
Parallelschaltung (variabler Wirkanteil) $p \cdot R_g$ X_0 $p = 0+\infty$	$\begin{array}{c} +X_0 \\ \\ X_0 \\ \\ -X_0 \end{array} \qquad \begin{array}{c} X ind. \\ \\ p \rightarrow +\infty \\ \\ kap. R \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

6. Brückenschaltung

 $\begin{array}{ccc} \frac{\underline{Z_1}}{\underline{Z_2}} = \underline{\underline{Z_3}} & \text{und} & \underline{\underline{Z_1}} = \underline{\underline{Z_2}} \\ \underline{Z_3} & \underline{Z_4} & \\ \text{und} & \underline{Z_1} \cdot \underline{Z_4} = \underline{Z_2} \cdot \underline{Z_3} \end{array}$

Bei Darstellung durch andere Bauteile müssen Einheiten passen!

$$T = \frac{As}{V} = \frac{s}{\Omega}$$
 und $H = \frac{Vs}{A} = \frac{S}{A}$

Inversion

Betrag: $Z = \frac{1}{v}$

Phase: $e^{\varphi_Z} = e^{-\varphi_Z}$

Gerade durch Ursprung

→ Gerade durch Ursprung

Gerade <u>nicht</u> durch Ursprung

→ Kreis durch Ursprung

Kreis <u>nicht</u> durch Ursprung

→ Kreis nicht durch Ursprung

Frequenzgang eines RC – Tiefpasses ("Bode-Diagramm")

Frequenzgang eines RC – Hochpasses, ("Bode-Diagramm")

Inversion

Gerade <u>nicht</u> durch Ursprung → Kreis durch Ursprung

- 1. Senkrechte von Ursprung auf Gerade legen, Schnittpunkt ist am nächsten an Ursprung (N1)
- 2. Diesen Schnittpunkt invertieren ($Z=\frac{1}{\gamma}$, $\varphi=-\varphi$) (N3)
- 3. Mitte zwischen diesem invertierten Schnittpunkt aus 2 und Ursprung ist Kreismittelpunkt (N2)
- 4. Für Werte: Bezifferungsgerade als Spiegelung von Z(p)

Kreis <u>nicht</u> durch Ursprung → Kreis <u>nicht</u> durch Ursprung

- 1. Punkt bestimmen der am nächsten an Ursprung ist (N1)
- 2. Diesen Punkt invertieren (N3)
- 3. Punkt bestimmen der am entferntesten an Ursprung liegt (N2)
- 4. Diesen Punkt invertieren (N4)
- 5. Mitte zwischen Punkt aus 2 und Punkt aus 4 ist Kreismittelpunkt (M_Y)
- 6. Für Werte: Bezifferungskreis als Spiegelung von Z(p)

7. Gekoppelte Kreise

$$\begin{aligned} & \underline{M} = k_m \cdot \sqrt{L_1 \cdot L_2} & \underline{X_M} = k_m \cdot \sqrt{X_{L1} \cdot X_{L2}} & k_m = \sqrt{(1 - \sigma_1) \cdot (1 - \sigma_2)} \\ & \text{Streufaktor } \sigma_1 = 1 - \frac{\phi_{12}}{\phi_1} = \frac{\phi_{\sigma_1}}{\phi_1} \left(= 1 - \frac{N_1 \cdot M}{N_2 \cdot L_1} \right) \text{Gesamtstreu.: } \sigma = \sigma_1 + \sigma_2 - \sigma_1 \sigma_2 \end{aligned}$$

Induktive Kopplung/Transformator/Übertrager

Trafo-Formel: $U_1 = \frac{\omega}{\sqrt{2}} N_1 \cdot A_{Fe} \cdot B_{max}$ $(B_{max} = Maximalflussdichte, Sättigung)$

(Achtung! Gilt nur für idealen Trafo, also Streuung = 0 und keine Wicklungswiderstände)

Belastung: $\ddot{\mathbf{u}} = \frac{N_1}{N_2} = \frac{I_2}{I_1}$ Übersetzungsverhältnis: Leerlauf: $\ddot{\mathbf{u}} = \frac{N_1}{N_2} = \frac{U_1}{U_2}$

Fall 1: gleichsinnige Wicklung

M positiv, also $+j\omega M$ und L_1-M etc.

Fall 2: gegensinnige Wicklung

M negativ, also $-j\omega M$ und $L_1 + M$ etc.

Fall 3: I_2 zeigt in andere Richtung

 I_2 muss in Z-Matrix negativ sein (-180°)

$$\begin{pmatrix} \underline{u}_1 \\ \underline{v}_2 \end{pmatrix} = \begin{pmatrix} R_1 + j\omega L_1 & \pm j\omega M \\ \pm j\omega M & R_2 + j\omega L_2 \end{pmatrix} \cdot \begin{pmatrix} \underline{l}_1 \\ \underline{l}_2 \end{pmatrix}$$

Punkte:

- wenn Strom I in dem Kreis mit Quelle auf Punkt-Seite in Spule fließt, fließt er in anderem Kreis auf Punkt-Seite aus der Spule raus, außer dieser besitzt auch Quelle
- wenn U_{L1} von Punkt weg zeigt, zeigt auch U_{M2} in anderem Kreis von Punkt weg
- Pfeilrichtung von U_{L2} wird durch Stromrichtung von \underline{I}_2 festgelegt (bei Leerlauf = 0)

Wirkleistung P_M (Leistung an R_2 und R_V)

Wirkungsgrad: Wirkleistung an R_L

 $P_M = P_2 = Re\{U_{M2} \cdot I_2^*\} = Re\{-U_{M1} \cdot I_1^*\}$ (U_{M2} entspricht Quellenspannung in Kreis 2) \rightarrow wenn P₁ < 0 und P₂ > 0 Übertragung von Kreis 1 zu Kreis 2 $P_1 = Re\{U_{M1} \cdot \underline{I}_1^*\}$ \rightarrow wenn P₁ > 0 und P₂ < 0 Übertragung von Kreis 2 zu Kreis 1

Achtung! Gilt nur wenn Bedingung 1 siehe ,Punkte' erfüllt, sonst andersrum

Sekundärseite als Ersatzspannungsquelle

 $U_q=U_2$ bei Leerlauf $I_q=-I_2$ bei Kurzschluss $Z_i=rac{U_{20}}{I_{10}}$

Schaltung von Induktivitäten

$\mu = const.$	Reihenschaltung	Parallelschaltung
ohne magn.	$L_{ges} = L_1 + L_2$	1 1 1
Kopplung	Ü	$\frac{\overline{L_{ges}}}{L_{1}} = \frac{1}{L_{1}} + \frac{1}{L_{2}}$
mit magn.	$L_{ges} = L_1 + L_2 \pm 2M$	$L_1L_2-M^2$
Kopplung		$L_{ges} = \frac{1}{L_1 + L_2 \mp 2M}$
	(gleichsinnige Kopplung → +)	(gleichsinnige Kopplung → -)
Gesamt-	$\underline{Z}_E = \underline{Z}_1 + \underline{Z}_2 \pm 2\underline{Z}_M$	$Z_1 - \underline{Z}_1 \cdot \underline{Z}_2 - \underline{Z}_M^2$
widerstand		$\underline{Z}_E = \frac{\underline{Z}_1 \ \underline{Z}_2 \ \underline{Z}_M}{\underline{Z}_1 + \underline{Z}_2 \ \overline{+} \ 2\underline{Z}_M}$
	(gleichsinnige Kopplung → +)	(gleichsinnige Kopplung → -)

11. Nicht-sinusförmige Vorgänge

Arithmetischer Mittelwert: $\bar{\iota} = I_0$

Effektivwert: $I = \sqrt{I_0^2 + I_1^2 + I_2^2 + \cdots}$ (Vorsicht ab I_1 wenn Amplitude gegeben)

Leistung

Wirk-/Blindleistung der n-ten Harmonischen: $P_n = U_n \cdot I_n \cdot \cos \varphi_n / Q_n = U_n \cdot I_n \cdot \sin \varphi_n$ $(\varphi_n \text{ von } I_n \text{ nach } U_n)$

Wirk-/Blindleistung gesamt: $P = U_0 \cdot I_0 + \sum_{n=1}^{\infty} U_n \cdot I_n \cdot \cos \varphi_n / Q = \sum_{n=1}^{\infty} U_n \cdot I_n \cdot \sin \varphi_n$ \rightarrow für R gilt: $P = R \cdot I^2 = R \cdot (I_0^2 + I_1^2 + I_2^2 + \cdots)$, ebenso für $P = \frac{U^2}{R}$

Verzerrungen

Strom durch L: Dämpf. der Oberschwingungen $\frac{1}{n} \rightarrow$ "glättet" Strom, vermindert Oberwellen Spannung an C: Verstärk, der Oberschwingungen $n \rightarrow$ "verstärkt" Oberwellen nicht-linear: Übertragungskennlinie n-ten Grades → Oberschwing, bis n-faches v. Grundschwing.

Klirrfaktor (Oberschwingungsgehalt):

$$k = \frac{\sqrt{U_2^2 + U_3^2 + \cdots}}{\sqrt{U_1^2 + U_2^2 + U_3^2 + \cdots}} \quad \text{(für } I \text{ analog; kein } U_0 \text{ bzw } I_0!)$$

Klirrfaktor von U_a gefragt und U_e gegeben:

- 1. Formel für Amplitudengang $|G(\omega)|$ aufstellen
- 2. Pro Frequenz $|G(\omega)|$ berechnen (evtl. direkt über $G(\omega)$ mit TR)
- 3. Jeweilige Amplit. mit $|G(\omega)|$ Wert multipliz.
- 4. Daraus Klirrfaktor berechnen

Netzwerk mit 2 Quellen unterschiedlicher Frequenz:

(sin oder cos egal, da nur Betrag wichtig)

- 1. Quellenstrom/-spannung als komplexe Zahl darstellen
- 2. Gesuchte (Teil-)größe damit bestimmen
- 3. Betrag des Ergebnisses in Klirrfaktor-Formel einsetzen
- 4. Für alle Quellen wiederholen
- 5. Quellen mit niedrigster Frequenz ist Grundschwingung

$$\Rightarrow g^2 + k^2 = 1$$

8. Dreiphasen-Wechselstrom

Erzeuger: Sternschaltung

Strang-/Sternspannungen: Spann. an Zweigen des Sterns

 $\left|\underline{U}_{1}\right|=\left|\underline{U}_{2}\right|=\left|\underline{U}_{3}\right|=U_{Strang}=\left|\underline{U}_{1N}\right|=\left|\underline{U}_{2N}\right|=\left|\underline{U}_{3N}\right|$

Außenleiterspannungen: Spannungen zw. Phasen

$$\left|\underline{U}_{12}\right| = \left|\underline{U}_{23}\right| = \left|\underline{U}_{31}\right| = U_{AL} = \sqrt{3} \cdot U_{Strang}$$

 $\underline{U}_{12} = \underline{U}_{1N} - \underline{U}_{2N} = \underline{U}_1 - \underline{U}_2$ etc.

Außenleiterströme: $I_{AL} = I_{Strang}$

Erzeuger: Dreieckschaltung

Strangströme: Ströme an Kanten des Dreiecks

 \underline{I}_{12} und \underline{I}_{23} und \underline{I}_{31}

Außenleiterspannungen: Spannungen zw. Phasen = Strangspannung

$$\left|\underline{U}_{12}\right| = \left|\underline{U}_{23}\right| = \left|\underline{U}_{31}\right| = U_{AL} = U_{Strang}$$

Außenleiterströme:

$$I_{AL} = \sqrt{3} \cdot I_{Strang}$$

$$I_1 = I_{31} - I_{12}$$

$$\underline{I}_2 = \underline{I}_{12} - \underline{I}_{23}$$

 $I_3 = I_{23} - I_{31}$

Gilt nur für Δ-Erzeuger:

Verbraucher

symmetrische Belastung

Stern: kein Neutralleiter nötig

Dreieck: $I_{AL} = \sqrt{3} \cdot I_{Strang}$ und $\frac{\underline{I_1}}{U_1} = 3\underline{Y}$

äquivalent: $\underline{Z_{Stern}} = \frac{\underline{Z_{Dreieck}}}{3}$ und $\underline{Y_{Stern}} = 3 \cdot \underline{Y_{Dreieck}}$

Gilt nur für Δ -Verbraucher: \underline{I}_{31} \underline{I}_{12} \underline{I}_{12} \underline{I}_{12}

unsymmetrische Belastung

Stern: mit Neutralleiter: Ausgleichsstrom $\underline{I}_N = \underline{I}_1 + \underline{I}_2 + \underline{I}_3$

Potential von Verbraucher- u. Netzsternpunkt gleich

 $\underline{U}_U = \underline{U}_1$ etc. und $\underline{I}_1 = \underline{U}_1 \cdot \underline{Y}_1$ etc.

ohne Neutralleiter: Potentialdifferenz $\underline{\underline{U}}' = \underline{\underline{\underline{U}}_1 \cdot \underline{Y}_U + \underline{U}_2 \cdot \underline{Y}_V + \underline{U}_3 \cdot \underline{Y}_W}_{Y_U + Y_V + Y_W}$

 $\underline{U}_U = \underline{U}_1 - \underline{U}'$ etc. und $\underline{I}_1 = \underline{U}_U \cdot \underline{Y}_U$ etc. $\underline{I}_1 + \underline{I}_2 + \underline{I}_3 = 0$!!!

Dreieck: $\underline{I}_1 = \underline{I}_{12} - \underline{I}_{31}$ $\underline{I}_{12} = U_{12} \cdot \underline{Y}_{12}$

 $\underline{I}_2 = \underline{I}_{23} - \underline{I}_{12}$ $\underline{I}_{23} = U_{23} \cdot \underline{Y}_{23}$ (symmetrieunabhängig)

 $I_3 = I_{31} - I_{23}$ $I_{31} = \overline{U_{31}} \cdot Y_{31}$

Leistung (Einzelleistungen auch mit $P = I^2 \cdot R$ etc. berechenbar!)

Symmetrie egal

 $\underline{S}_{ges} = \underline{S}_1 + \underline{S}_2 + \underline{S}_3 = \underline{U}_1 \cdot \underline{I}_1^* + \underline{U}_2 \cdot \underline{I}_2^* + \underline{U}_3 \cdot \underline{I}_3^*$

oder (nur bei Dreieck): $\underline{S}_{qes} = U_{12} \cdot \underline{I}_{12}^* + U_{23} \cdot \underline{I}_{23}^* + U_{31} \cdot I_{31}^*$

 $P_{ges} = Re\{\underbrace{S_{ges}}\} = U_1 \cdot I_1 \cdot \cos \varphi_1 + U_2 \cdot I_2 \cdot \cos \varphi_2 + U_3 \cdot I_3 \cdot \cos \varphi_3 = P_1 + P_2 + P_3$

 $Q_{ges} = Im\{\underline{S}_{ges}\} = U_1 \cdot I_1 \cdot \sin\varphi_1 + U_2 \cdot I_2 \cdot \sin\varphi_2 + U_3 \cdot I_3 \cdot \sin\varphi_3 = Q_1 + Q_2 + Q_3$

andere Möglichkeit, aber nur ohne Neutralleiter:

Achtung wenn ein Z = 0!
wenn bspw
$$\underline{U}_1 = 0 \rightarrow \underline{U}_2 = \underline{U}_{21}$$

Achtung bei Wattmeter! U startet immer an

Leiter an dem Wattmeter liegt!

$$\underline{S} = \underline{U}_{12} \cdot \underline{I}_1^* + \underline{U}_{32} \cdot \underline{I}_3^*$$

$$P = Re\{\underline{U}_{12} \cdot \underline{I}_{1}^{*}\} + Re\{\underline{U}_{32} \cdot \underline{I}_{3}^{*}\} = U_{12} \cdot I_{1} \cdot \cos\varphi_{12} + U_{32} \cdot I_{3} \cdot \cos\varphi_{32} = P_{1} + P_{3} \qquad (\varphi_{12} \angle von \underline{I}_{1} zu \underline{U}_{12})$$

$$Q = Im\{\underline{U_{12}} \cdot \underline{I_1^*}\} + Im\{\underline{U_{32}} \cdot \underline{I_3^*}\} = U_{12} \cdot I_1 \cdot \sin \varphi_{12} + U_{32} \cdot I_3 \cdot \sin \varphi_{32} = Q_1 + Q_3 \quad (\varphi_{12} \angle von \underline{I_1} zu \underline{U_{12}})$$

symmetrische Belastung

Für Stern und Dreieck gilt:

 $P_{ges} = \sqrt{3} \cdot U_{AL} \cdot I_{AL} \cdot \cos \varphi$ (Achtung! φ = Phase von I_{Strang} nach U_{Strang})

 $Q_{ges} = \sqrt{3} \cdot U_{AL} \cdot I_{AL} \cdot \sin \varphi$ (Achtung! φ = Phase von I_{Strang} nach U_{Strang})

Messung einzelner Phase:

 $P_{Strang} = U_{Strang} \cdot I_{Strang} \cdot \cos \varphi = Re\{\underline{U} \cdot \underline{I}^*\}$ (U_{Strang} und I_{Strang} bei * und Δ anders!)

 $Q_{Strang} = U_{Strang} \cdot I_{Strang} \cdot \sin \varphi = Im\{\underline{U} \cdot \underline{I}^*\}$ (U_{Strang} und I_{Strang} bei * und Δ anders!)

 $\rightarrow P = 3 \cdot P_{Strang}$ und $Q = 3 \cdot Q_{Strang}$

(wenn kein Neutralleiter: künstlicher Sternpunkt mit $R_1 = R_2 = R_3$)

unsymmetrische Belastung

künstlicher Sternpunkt mit $R_1 = R_2 = R_3$

(ohne N-Leiter: Einzelleistungen P_1 etc. nicht repräsentativ, aber Summe)

11. Ausgleichsvorgänge

$$u_L = L \cdot \frac{di}{dt}$$

$$i_C = C \cdot \frac{du}{dt}$$

Strom (L) bzw. Spannung (C) kann sich nicht sprunghaft ändern

Einschaltvorgang
$$i(t) = \frac{U}{R} \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

$$u_C(t) = U \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$

Ausschaltvorgang
$$i(t) = \frac{U}{R} \cdot e^{-\frac{t}{\tau}}$$

$$i(t) = -\frac{U}{R} \cdot e^{-\frac{t}{\tau}}$$

9. Resonanzkreise

10. Verlustbehaftete Bauelemente

	Güte $Q = \frac{Blindleistung\ an\ L\ oder\ C}{Wirkleistung\ an\ R}$		Bandbreite umgekehrt prop. zu Güte
Serienresonanz R-L-C ${\rm Strom}\underline{{\rm maximum}}$ $\omega_r = \frac{1}{\sqrt{LC}} \qquad \Rightarrow f_r = \frac{1}{2\pi\sqrt{LC}}$	$Q_s = rac{U_{Cr}}{U} = rac{U_{Lr}}{U} = rac{1}{R} \cdot \sqrt{rac{L}{c}}$ Dämpfung: $d = rac{1}{Q}$	$\omega_{g_{o/u}} = \frac{\pm R + \sqrt{R^2 + 4\frac{L}{C}}}{2L} \qquad I_{g_{o/u}} = \frac{I_r}{\sqrt{2}}$ $Z_{g_{o/u}} = \sqrt{2} \cdot Z_r \qquad Y_{g_{o/u}} = \frac{Y_r}{\sqrt{2}}$ $X_g = \pm R$ Phasenwinkel: $\varphi_g = \pm 45^\circ$ $\rightarrow \underline{Z}_g = \sqrt{2} \cdot R \cdot e^{\pm j45^\circ}$	$B = \Delta f$ $\Delta \omega = \frac{R}{L}$ $\frac{\Delta f}{f_r} = \frac{\Delta \omega}{\omega_r} = \frac{1}{Q_s}$
Parallelresonanz R-L-C $ \text{Strom} \underline{\text{minimum}} $	$Q_p = R \cdot \sqrt{\frac{c}{L}}$ Dämpfung: $d = \frac{1}{Q}$	$\omega_{g_{o/u}} = \frac{\pm \frac{1}{R} + \sqrt{\left(\frac{1}{R}\right)^2 + 4\frac{C}{L}}}{2C} I_{g_{o/u}} = \sqrt{2} \cdot I_r$ $Z_{g_{o/u}} = \frac{Z_r}{\sqrt{2}} \qquad Y_{g_{o/u}} = \sqrt{2} \cdot Y_r$	$\Delta\omega = \frac{1}{RC}$ $\frac{\Delta f}{f_r} = \frac{\Delta\omega}{\omega_r} = \frac{1}{Q_p}$
Beliebiges Netzwerk		$\begin{array}{c} \omega_r \text{ bestimmen:} \\ \text{Gleichung für } \underline{Z} \text{ oder } \underline{Y} \text{ aufstellen} \\ \rightarrow \text{ nach } Re \} \text{ und } Im \} \text{ trennen} \\ \rightarrow Im \} \text{ gleich 0 setzen} \\ \rightarrow \text{ nach } \omega \text{ auflösen} \\ \rightarrow \text{ (schauen dass Form } \frac{1}{\sqrt{LC}} \cdot \dots \text{ rauskommt)} \end{array}$	

Widerstände

Skin-Effekt: bei AC ist J außen am Leiter höher

ESB für höhere Frequenzen:

nur wenn mehrlagig

Thermisches Rauschen (frequenzunabn.)

→ Ladungsträger führen ungerichtete Beweg. aus Boltzmann-Konst.: $k = 1.38044 \cdot 10^{-23} \ W \cdot s \cdot K^{-1}$

spektrale Rauschspannungsdichte:

$$U_{Nth} = \sqrt{4 \cdot k \cdot T \cdot R} \left[\sqrt{\frac{V^2}{Hz}} \right] / I_{Nth} = \sqrt{\frac{4 \cdot k \cdot T}{R}} \left[\sqrt{\frac{A^2}{Hz}} \right]$$

→ mittlere Rauschleist.:

$$P = \int_{fu}^{fo} \frac{U_{Nth}^{2}(f)}{R} df = \int_{fu}^{fo} I_{Nth}^{2}(f) \cdot R \, df$$

durch Bandpass begrenzt:

$$U = U_{Nth} \cdot \sqrt{\Delta f}$$
 / $I = I_{Nth} \cdot \sqrt{\Delta f}$

durch Tiefpass begrenzt:

$$U=U_{Nth}\cdot\sqrt{\Delta f\cdot rac{\pi}{2}}$$
 bzw. $I=I_{Nth}\cdot\sqrt{\Delta f\cdot rac{\pi}{2}}$

10. Verlustbehaftete Bauelemente

Generell:

Güte $Q_C = \frac{1}{\tan \delta}$

Verlustwinkel $\delta = 90^{\circ} - \varphi$

Kondensatoren

ESB:

höhere Frequenzen:

 $\tan \delta = \frac{Wirkleist. in R}{Blindleist. in C} = ESR \cdot \omega \cdot C_s$

niedrigere Frequenzen und DC:

 $\tan\delta = \frac{\textit{Wirkleistung in R}}{\textit{Blindleistung in C}} = \frac{1}{\omega \cdot \textit{C}_p \cdot \textit{R}_p}$

Z abhängig von Frequenz für oberstes ESB:

→ verhält sich nur <u>unterhalb</u> Resonanzfrequ. wie Kondensator

→ niedr. Frequ: kleiner R_p → tan δ ↑ → hohe Frequ: großer ESR → tan δ ↑

Spulen

 $L=N^2\cdot A_L$ ightarrow Induktivitätsfaktor A_L: mehrlagige Zylinderspule: $A_L=\mu_0\mu_r\cdot rac{A}{l}$

Ringkernspule: $A_L = \mu_0 \mu_r \cdot \frac{r^2}{d} \cdot \left[1 + \left(\frac{r}{d} \right)^2 \right]$

Luftspule (Verluste wg. Drahtwiderstand):

Güte $Q = \frac{Blindleist.}{Wirkleist.} = \frac{\omega L}{R_{ges}} = \frac{1}{\tan \delta}$

<u>Spule mit Eisenkern</u> (Verluste durch Wirbelströme):

(Vermeidung durch Einzelbleche)

 \rightarrow verhält sich nur <u>unterhalb</u> f_r wie Spule

Laufzeitresonanz: $f_r = \frac{c}{l_{Draht}} \cdot \left(\frac{1}{4}bis\frac{1}{6}\right)$ $\lambda_r = \frac{c}{f_r}$ (mit c = 300.000.000 m/s)