

CS 4271 Abhik Roychoudhury National University of Singapore

Abhik Rovchoudhury, CS4271 lectures

State Explosion Problem

- Our CTL model checking algorithm is linear in size of state space and formula
 - Suffers from State Space Explosion problem since the state space is exponential in the number of system components.
- We need more space efficient representation of sets of state and transition relation
 - Reduced Ordered Binary Decision Diagrams (ROBDD) is a data structure to achieve this.

Abhik Rovchoudhury, CS4271 lectures

ROBDD - the context

- To discuss ROBDD, let us first discuss BDD.
- BDD is a data structure for compactly representing boolean functions.
 - Boolean functions have a fundamental role in computing
 - Suitable for directly modeling combinational circuits
 - Can capture the set of states and transition relation of finite state machines corresponding to sequential circuits.
 - · Leads to more space efficient model checking

Abhik Roychoudhury, CS4271 lectures

In the previous lecture

- · Binary decision Diagrams
 - Basic Definitions
 - Reduction of BDDs
- The importance of variable orders
- Reduced Ordered BDD as a compact normal form representation of a boolean function.

Abhik Roychoudhury, CS4271 lectures

Today's lecture

- · Getting BDDs ready for use in MC
 - Using BDDs for representing sets of states.
 - Using BDDs for representing sets of transitions.
 - Performing binary boolean operations on BDDs
 - Can be used to achieve set operations on sets of states represented by BDDs

Abbik Rovchoudhury, CS4271 Jectures

Representing sets of states

- Kripke Structure M = $(S, S0, \rightarrow, L)$
 - Represent a set of states S' ⊆ S as a BDD
 - $^{\circ}$ We can then represent the sets of intermediate sets of states St $_{\phi}$ constructed during the model checking algo., as a BDD
 - \circ So, represent S' \subseteq S as a boolean function
 - What will be the input variables for this boolean function?

Abhik Roychoudhury, CS4271 lectures

State Variables

- Assume all state variables are boolean.
 - If not, they can be described as collections of boolean vars.
- Suppose there are n boolean state vars.
 - Hence 2ⁿ possible valuations of these state vars.
 - Definition of Kripke structure allows more than one state to have the same valuation for all variables.
 - If this is the case, we can ensure that each state has a unique valuation of state vars, by
 - · Merging states with identical variable valuations, or
 - Simply increasing the set of state variables in order to distinguish the states.

Abbik Pouchoudhuny CS4271 lectures

Defining the boolean function

- If we can choose n boolean state variables, such that each state in the Kripke Structure M = (S, S0, →, L) is a unique valuation of these variables
 - Consider a boolean function with these n inputs.
 - $^\circ\,$ Each state $s\in S$ can be uniquely identified with exactly one row of the truth table for such a function.
- $^\circ\,$ A subset of states $S'\subseteq S$ is thus uniquely identified with a subset of rows of the truth table.
- $^\circ\,$ To make the boolean function represent S', we make it output $\,$ I in exactly these rows, output 0 in all other rows.
- OK, that's great, but what are boolean inputs?

Abbile Doughoudhum CC4271 Jostumo

Choice of boolean inputs

- Kripke Structure $M = (S,S0,\rightarrow,L)$
 - $^{\circ}$ L maps S to $2^{\text{AP}}\!,$ where AP is the set of atomic propositions.
 - Choose AP as the set of boolean state variables.
 - Each state must have a unique valuation of AP, for the AP we choose
 - $^{\circ}$ A set of states S' \subseteq S is represented as a boolean function $F_{S'}(x_1,...,x_n)$ where
 - AP = $\{x_1,...,x_n\}$ is the set of atomic propositions used in defining the labeling function.

Abhik Roychoudhury, CS4271 lectures

Example

- s1 stands for the valuation
- ∘ p = 0, q=1
- {s1} is represented by f1(p,q) = $\neg p \land q$
- s2 stands for the valuation
 - p = 0, q = 0
- {s2} is represented by fI(p,q) = $\neg p \land \neg q$
- $\{s1,s2\}$ is represented by $F(p,q) = f1(p,q) \lor f2(p,q)$

Abbik Roychoudhury, CS4271 Jectures

Example

- To construct a ROBDD for representing the set {s1,s2}
 - We need an ordering of the input variables of F(p,q)
 - Choose the order p < q
 - Construct the ROBDD for
 - $^{\circ} \qquad \mathsf{F}(\mathsf{p},\mathsf{q}) = \mathsf{fI}\left(\mathsf{p},\mathsf{q}\right) \vee \mathsf{f2}(\mathsf{p},\mathsf{q})$
 - $= (\neg p \wedge q) \vee (\neg p \wedge \neg q)$

Representing Transition Relation Represent transition relation → as a boolean function F(x₁,...,x_n, x'₁,...,x'_n) where AP = {x₁,...,x_n} This is function's output is true if and only if Values of x₁,...,x_n correspond to a state s ∈ S Values of x'₁,...,x'_n correspond to a state s' ∈ S (s, s') ∈ → The 2n-ary function F above can be represented as a ROBDD if we fix an order among x₁,...,x_n,x'₁,...,x'_n Note: Keep in mind that M = (S, SO, →,L) is the Kripke Structure

Example • Transitions • p q p' q' • (s0, s1) • (s1, s2) • (s2, s0) • (s2, s0) • (s2, s2) • 0 0 0 0 All input valuations above (marked in red) should produce 1 as output. All other input valuations should produce 0 as output. Abhik Roychoudhury, CS4271 lectures 17

In the remaining part today ... • Getting BDDs ready for use in MC • Using BDDs for representing sets of states. • Using BDDs for representing sets of transitions. • Performing binary boolean operations on BDDs • Can be used to achieve set operations on sets of states represented by BDDs

Manipulating ROBDDs

- So far we have seen how to represent
 - Sets of states/transitions as boolean function
 - And hence as BDD
- While performing model checking, sets of states represented as BDD
- Set operations now need to be translated as logical operations on BDDs

Manipulating ROBDDs

- $St_{EGf} = St_{EGf} Temp$
- $bdd_{EGf} = bdd_{EGf} / \ !Temp$
- St_{EFf} = St_{EFf} U Temp
- bdd_{EFf} = bdd_{EFf} V Temp

If sets are represented as boolean functions, set operations as logical operations (in propositional logic).

ROBDDs are a reduced representation of boolean functions. How to apply boolean functions on ROBDDs?

Manipulating ROBDDs

- St_{AGf} = St_f
- bdd_{AGf}=bdd_f
- do{
- do{
- $\exists t \; s {\rightarrow} t \wedge t {\not\in} \; \mathsf{St}_{\mathsf{AGf}} \quad \cdots$
- $St_{AGf} = St_{AGf} Temp;$ } until no change to St_{AGf};
- Return St_{AGf}

ROBDDs are a reduced representation of boolean functions. How to apply boolean functions on ROBDDs?

Manipulation of ROBDDs

- We now give an algorithm Apply
 - \circ 2²² = 16 logical operations on boolean func.
- Do not see model checking as graph
 - Transitions systems represented as BDDs
 - Traversal achieved by logical operations
 - "Symbolic" Model Checking (Next class)
- Let us look at the Apply algorithm.

Applying boolean operations

- ROBDDs are a compact representation of boolean functions
- · How to efficiently apply boolean operations to two ROBDDs, e.g.
 - $FI(x,y,z) = x \wedge z$
 - F2(x,y,z) = x ∨ y
 - Define $F(x,y,z) = FI(x,y,z) \oplus F2(x,y,z)$
 - How to construct the ROBDD for F from the ROBDD for FI and F2 (given a variable order, of course!)

Binary Ops on Boolean Fn

F1	F2	F
0	0	?
0	1	?
1	0	?
1	1	?

2^4 = 16 such logical operations exist.

Let * denote any such logical operation.

Binary Operations • Let the variable order be $x_1 < x_2 < ... < x_n$ • $F(x_1,...,x_n) = FI(x_1,...,x_n) * F2(x_1,...,x_n)$ • Derivation: • $F(x_1,...,x_n) = (x_1 \land F|_{x_1}) \lor (\neg x_1 \land F|_{x_1})$ • $= (x_1 \land (F1 * F2)|_{x_1}) \lor (\neg x_1 \land (F1 * F2)|_{\neg x_1})$ • $= (x_1 \land (F1 |_{x_1} * F2 |_{x_1})) \lor (\neg x_1 \land (F1 |_{x_1} * F2 |_{x_1}))$

Efficiency Issues

- Any recursive call (f*f') in the computation of F1*F2 corresponds to
 - A pair of vertices, one each from the ROBDD of FI and F2
 - If any such call was made before, the cached answer can be directly used.
 - Tremendous savings, since (f*f') might have generated many other recursive calls.
- Note:After (F1*F2) is computed, the resultant BDD must be Reduced as before.

Abhik Rovchoudhury, CS4271 lectures

Formal Def. of Apply

- Applying a logical operation * to two OBDDs representing boolean functions f, f'
- Defined as a recursive procedure Apply(F1, F2)
- Case 0: If Apply(F1,F2) has already been computed then return result from result-cache.
- Flse
 - $^{\circ}$ Let v1, v2 be the root nodes of the OBDD for F1, F2
 - Employ Case 1 or Case 2 or Case 3 or Case 4

Abbik Roychoudbury, CS4271 Jectures

Case 1:Terminal Vertex

- If vI and v2 are terminal vertices
- then result := value(v1) * value(v2)
- add result to result-cache;
- return(result)

Abhik Roychoudhury, CS4271 lectures

Cases 2, 3, 4

- Let var(v1) = x1 and var(v2) = x2
 - xI and x2 are the root vars. of OBDDs for FI,F2
- Since we are working with OBDDs, we can locate x1, x2 in the variable order
 - $^{\circ}$ Case 2,3,4 differ in the positions of x1, x2 in the ordering of variables of F1, F2

Abhik Roychoudhury, CS4271 lectures

Case 2: $x = x^2$ Result := x^1 Apply(x^2) Apply(

Summary

- BDD : A space efficient data structure for representing transition system.
- Can also represent intermediate sets of states during model checking in a space efficient fashion.
- Set operations performed during model checking can be achieved through boolean operations on BDD.
- Canonical form to detect fixed points.
- Next class:
 - Symbolic model checking algorithm which proceeds by manipulating BDDs.

Abhik Rovchoudhury, CS4271 lectures