

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

	(1.11.11		
· ·	Информатика	· -	
АФЕДРА	Системы обработки	информации и упра	авления
	Отче	ËT	
	по лабораторно	й работе № 2	
	«Изучение библиотек	обработки данных	X >>
	по курсу «Технологии м	пашинного обучени	«R
Выполнил	τ:		
	гудент группы ИУ5-63 _		Волков А.С
		(Подпись, дата)	(Фамилия И.О.)
Прополет			
Проверил	•		

(Подпись, дата)

Гапанюк Ю.Е. (Фамилия И.О.)

Цель лабораторной работы:

Изучение библиотеки обработки данных Pandas.

Задание:

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания

- https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_english/assignments_demo/assignment01_pandas_uci_adult.ipynb?flush_cache=true

Выполнение лабораторной работы:

Assignment #1 (demo)

Exploratory data analysis with Pandas

Same assignment as a <u>Kaggle Kernel (https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset</u>) + <u>solution (https://www.kaggle.com/kashnitsky/a1-demo-pandas-and-uci-adult-dataset-solution)</u>.

In this task you should use Pandas to answer a few questions about the <u>Adult</u> (https://archive.ics.uci.edu/ml/datasets/Adult) dataset. (You don't have to download the data – it's already in the repository). Choose the answers in the web-form (https://docs.google.com/forms/d/1uY7Mpl2trKx6FLWZte0uVh3ULV4Cm tDud0VDFGCOKg).

Unique values of all features (for more information, please see the links above):

- age : continuous.
- workclass: Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, Without-pay, Never-worked.
- fnlwgt : continuous.
- education: Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, Preschool.
- education-num: continuous.
- marital-status: Married-civ-spouse, Divorced, Never-married, Separated, Widowed, Married-spouse-absent, Married-AF-spouse.
- occupation: Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv, Armed-Forces.
- relationship: Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried.
- race: White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black.
- · sex: Female, Male.
- capital-gain: continuous.
- capital-loss: continuous.
- hours-per-week : continuous.
- native-country: United-States, Cambodia, England, Puerto-Rico, Canada, Germany, Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands.
- salary: >50K,<=50K

In [2]:

```
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
# to draw pictures in jupyter notebook
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
# we don't like warnings
# you can comment the following 2 lines if you'd like to
import warnings
warnings.filterwarnings('ignore')
```

In [3]:

```
data = pd.read_csv('../data/adult.data.csv')
data.head()
```

Out[3]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black
4									•

1. How many men and women (sex feature) are represented in this dataset?

In [4]:

```
data['sex'].value_counts()
```

Out[4]:

Male 21790 Female 10771

Name: sex, dtype: int64

2. What is the average age (age feature) of women?

```
In [5]:
```

```
print(round(float(data.loc[data['sex']=='Female', ['age']].mean())))
```

37

3. What is the percentage of German citizens (native-country feature)?

```
In [6]:
print(round(float(data.loc[data['native-country']=='Germany', ['native-country']].count
()/data['native-country'].count()*100),2),'%')
0.42 %
```

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
In [7]:
```

```
print('Standard deviation for those who earn <=50K :',float(data.loc[data['salary']=='<
=50K', ['age']].std())) #std <=50
print('Mean deviation for those who earn <=50K :',float(data.loc[data['salary']=='<=50
K', ['age']].mad())) #mad <=50
print('Standard deviation for those who earn >50K :',float(data.loc[data['salary']=='>50K', ['age']].std())) #std >50
print('Mean deviation for those who earn >50K :',float(data.loc[data['salary']=='>50K', ['age']].mad())) #mad >50
```

```
Standard deviation for those who earn <=50K : 14.020088490824813 Mean deviation for those who earn <=50K : 11.467855024821914 Standard deviation for those who earn >50K : 10.519027719851785 Mean deviation for those who earn >50K : 8.47674579194268
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

```
In [8]:
```

```
highEduList = ['Bachelors','Prof-school','Assoc-acdm','Assoc-voc','Masters','Doctorate'
]
dataList = list(data.loc[data['salary'] == '>50K', 'education'].unique())
f1 = True;
for a in dataList:
    for b in highEduList:
        if a==b:
            f1 = True;
            break;
        if a!=b:
            f1 = False;
print(f1);
```

False

7. Display age statistics for each race (*race* feature) and each gender (*sex* feature). Use *groupby()* and *describe()*. Find the maximum age of men of *Amer-Indian-Eskimo* race.

Solution 1 without using groupby()

In [9]:

```
raceList = list(data['race'].unique())
genderList = list(data['sex'].unique())
for race in raceList:
    print(race,':',sep='')
    print(data.loc[data['race'] == race, ['age']].describe())
    print('-----')
for gender in genderList:
    print(gender,':',sep='')
    print(data.loc[data['sex'] == gender, ['age']].describe())
    print('-----')
```

```
age
       27816.000000
count
          38.769881
mean
std
          13.782306
min
          17.000000
25%
          28.000000
50%
          37.000000
75%
          48.000000
          90.000000
max
Black:
                age
count 3124.000000
mean
         37.767926
std
         12.759290
min
         17.000000
25%
         28.000000
50%
         36.000000
75%
         46.000000
         90.000000
max
Asian-Pac-Islander:
                age
count 1039.000000
mean
         37.746872
std
         12.825133
min
         17.000000
25%
         28.000000
50%
         36.000000
75%
         45.000000
         90.000000
max
Amer-Indian-Eskimo:
count 311.000000
        37.173633
mean
std
        12.447130
min
        17.000000
25%
        28.000000
50%
        35.000000
75%
        45.500000
        82.000000
max
Other:
              age
       271.000000
count
        33.457565
mean
std
        11.538865
min
        17.000000
        25.000000
25%
50%
        31.000000
75%
        41.000000
        77.000000
max
Male:
                 age
       21790.000000
count
mean
          39.433547
          13.370630
std
min
          17.000000
```

White:

```
25%
         29.000000
50%
         38.000000
75%
         48.000000
         90.000000
max
-----
Female:
               age
count 10771.000000
mean
         36.858230
         14.013697
std
min
         17.000000
25%
         25.000000
50%
         35.000000
75%
         46.000000
max
         90.000000
```

Solution2 using groupby()

In [10]:

```
data.groupby(['race', 'sex'])['age'].describe()
```

Out[10]:

		count	mean	std	min	25%	50%	75%	max
race	sex								
Amer-Indian-Eskimo	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0
Amer-malan-Eskimo	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0
Asian-Pac-Islander	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0
Asian-Pac-Islander	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0
black	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0
Other	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0
\\/\	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0
White	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0

The maximum age of men of Amer-Indian-Eskimo race:

In [11]:

```
raceAIEdata = data.loc[data['race'] == 'Amer-Indian-Eskimo']
print(int(raceAIEdata.loc[data['sex']=='Male', ['age']].max()))
```

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

In [31]:

```
maleData = data.loc[data['sex'] == 'Male']
maleCount = maleData.count()
marriedMaleData = maleData.loc[maleData['marital-status'].str.contains('Married'), ['sa
marriedMaleCount = int(marriedMaleData.count())
marriedMale50KData = marriedMaleData.loc[marriedMaleData['salary'] == '>50K']
marriedMale50Kcount = int(marriedMale50KData.count())
singleMaleData = maleData.loc[~maleData['marital-status'].str.contains('Married'), ['sa
singleMaleCount = int(singleMaleData.count())
singleMale50KData = singleMaleData.loc[singleMaleData['salary'] == '>50K']
singleMale50Kcount = int(singleMale50KData.count())
singleMale50Kprop = singleMale50Kcount/singleMaleCount
marriedMale50Kprop = marriedMale50Kcount/marriedMaleCount
if singleMale50Kprop > marriedMale50Kprop:
    print('Among single men')
else:
    print('Among married men')
print('Proportion among single men:',singleMale50Kprop)
print('Proportion among married men:',marriedMale50Kprop)
```

Among married men
Proportion among single men: 0.08449509031397745
Proportion among married men: 0.4405139945351156

9. What is the maximum number of hours a person works per week (*hours-per-week* feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

In [47]:

```
maxHours = int(data['hours-per-week'].max())
print('The maximum number of hours a person works per week:', maxHours, '\n')

maxHoursSalaryData = data.loc[data['hours-per-week'] == maxHours, ['salary']]
print(int(maxHoursSalaryData.count()), 'people work such a number of hours\n')

maxHours50KData = maxHoursSalaryData.loc[maxHoursSalaryData['salary'] == '>50K']
print('The percentage of those who earn a lot (>50K) among them:',round(int(maxHours50K))
Data.count())/int(maxHoursSalaryData.count())*100),'%')
```

The maximum number of hours a person works per week: 99

85 people work such a number of hours

The percentage of those who earn a lot (>50K) among them: 29 %

10. Count the average time of work (<i>hours-per-week</i>) for those who earn a little and a lot (<i>salary</i>) for each country (<i>native-country</i>). What will these be for Japan?						

In [57]:

```
pd.set_option('display.max_rows', None)
print(data.groupby(['native-country', 'salary'])['hours-per-week'].mean(), '\n')

JapData = data.loc[data['native-country'] == 'Japan']

print('Japan:')
print('<=50K:', float(JapData.loc[JapData['salary'] == '<=50K', ['hours-per-week']].mean()))
print('>50K:', float(JapData.loc[JapData['salary'] == '>50K', ['hours-per-week']].mean()))
```

native country	calany	
native-country ?	salary <=50K	40.164760
•	>50K	45.547945
Cambodia	<=50K	41.416667
Camboata	>50K	40.000000
Canada	<=50K	37.914634
Carrada	>50K	45.641026
China	<=50K	37.381818
	>50K	38.900000
Columbia	<=50K	38.684211
	>50K	50.000000
Cuba	<=50K	37.985714
	>50K	42.440000
Dominican-Republic	<=50K	42.338235
	>50K	47.000000
Ecuador	<=50K	38.041667
-1 - 1	>50K	48.750000
El-Salvador	<=50K	36.030928
Fig. 1 and	>50K	45.000000
England	<=50K	40.483333 44.533333
France	>50K	44.533333
rrance	<=50K >50K	50.750000
Germany	<=50K	39.139785
GCI marry	>50K	44.977273
Greece	<=50K	41.809524
	>50K	50.625000
Guatemala	<=50K	39.360656
	>50K	36.666667
Haiti	<=50K	36.325000
	>50K	42.750000
Holand-Netherlands	<=50K	40.000000
Honduras	<=50K	34.333333
	>50K	60.000000
Hong	<=50K	39.142857
	>50K	45.000000
Hungary	<=50K	31.300000
India	>50K	50.000000
India	<=50K >50K	38.233333 46.475000
Iran	<=50K	41.440000
11 411	>50K	47.500000
Ireland	<=50K	40.947368
	>50K	48.000000
Italy	<=50K	39.625000
·	>50K	45.400000
Jamaica	<=50K	38.239437
	>50K	41.100000
Japan	<=50K	41.000000
	>50K	47.958333
Laos	<=50K	40.375000
	>50K	40.000000
Mexico	<=50K	40.003279
Nicanagua	>50K	46.575758
Nicaragua	<=50K >50K	36.093750 37.500000
Outlying-US(Guam-USVI-etc)	>50K <=50K	41.857143
Peru	<=50K	35.068966
· - ·	>50K	40.000000
Philippines	<=50K	38.065693
• •	>50K	43.032787

```
Poland
                             <=50K
                                       38.166667
                             >50K
                                       39.000000
Portugal
                                       41.939394
                             <=50K
                                       41.500000
                             >50K
Puerto-Rico
                                       38.470588
                             <=50K
                                       39.416667
                             >50K
Scotland
                             <=50K
                                       39.444444
                                       46.666667
                             >50K
South
                             <=50K
                                       40.156250
                                       51.437500
                             >50K
Taiwan
                                       33.774194
                             <=50K
                             >50K
                                       46.800000
Thailand
                             <=50K
                                       42.866667
                             >50K
                                       58.333333
Trinadad&Tobago
                             <=50K
                                       37.058824
                             >50K
                                       40.000000
United-States
                             <=50K
                                       38.799127
                             >50K
                                       45.505369
Vietnam
                             <=50K
                                       37.193548
                             >50K
                                       39.200000
Yugoslavia
                                       41.600000
                             <=50K
                             >50K
                                       49.500000
```

Name: hours-per-week, dtype: float64

Japan: <=50K: 41.0

>50K: 47.958333333333336

Other solution for Japan:

In [58]:

```
data.loc[data['native-country'] == 'Japan'].groupby(['native-country', 'salary'])['hour
s-per-week'].mean()
```

Out[58]:

native-country salary

Japan <=50K 41.000000 >50K 47.958333

Name: hours-per-week, dtype: float64