Topic 2: Basic Models

Outcomes & Objectives

- Be proficient in modeling games mathematically
 - Apply decision-theoretic concepts (e.g. lotteries, utilities) to model agent decisions and outcomes in a game.
 - Use mathematical structures (e.g. matrices, graphs) to represent the state of the game.
 - ► Transform from one representation to another (e.g. extensive-form to normal-form and vice versa).
 - ▶ Identify some useful properties in games (e.g. zero-sum games)
- ▶ Be proficient with basic solution approaches.
 - ► Iterative Elimination of Dominated Strategies
 - Minimax Equilibrium
 - Nash Equilibrium
- ► Apply game theory in various applications.
 - ► Congestion games in transportation
 - ► MAC-layer games in computer/wireless networks
 - ► Game-theoretic security

Outcomes & Objectives (cont...)

- ▶ Be proficient in solving Stackelberg (leader-follower) games.
 - Model real-world interactions with leader-follower dynamics in various applications.
 - Develop a solution concept called Stackelberg equilibrium using principles of backward induction to solve Stackelberg games.
- ▶ Be proficient with extensive-form games.
 - Model perfectly observable multi-stage interactions in various examples and real-world applications.
 - Develop a solution concept called subgame perfect equilibrium via extending the concept of Stackelberg equilibrium to multi-stage games.

Games: Types and Representations

Definition

Game is a strategic framework where multiple intelligent agents interact with one another through their rational decisions.

Types of games:

- ► Non-cooperation vs. Cooperation
- ► Static vs. Dynamic
- ► Perfect-information vs. imperfect-information
- ► Complete-information vs. incomplete-information

Two basic representations:

- ► *Normal/Strategic Form*: Matrix Representation
- ► Extensive Form: Graph (Decision-Tree) Representation

Normal-Form Representation

Definition

A normal-form (or a strategic-form) game Γ is defined as a triplet $(\mathcal{N}, \mathcal{C}, \mathcal{U})$, where

- $ightharpoonup \mathcal{N} = \{1, \cdots, N\}$ is the set of N players (agents),
- ▶ $C = C_1 \times \cdots \times C_N$ is the strategy profile space, where C_i represents the set of strategic choices (actions) available at the i^{th} player,
- ▶ $\mathcal{U} = \{u_1, \cdots, u_N\}$ is the set of utility functions, where $u_i : \mathcal{C}_i \to \mathbb{R}$ represents the utility function at the i^{th} player.

Example: Matching Pennies

Two players toss their respective coins and compare their outcomes.

- $ightharpoonup \mathcal{N} = \{1, 2\}$ (Two-player game),
- $ightharpoonup \mathcal{C} = \{H, T\} \times \{H, T\},$
- $ightharpoonup \mathcal{U} = \{u_1, u_2\}$, where $u_i : \mathcal{C}_i \to \{-1, 1\}$ such that $u_1 + u_2 = 0$.

Player 2

		Heads	Tails
er 1	Heads	1, -1	-1, 1
Player 1	Tails	-1, 1	1, -1

Matching Pennies: Applications

- ► **Sports:** Soccer penalty kicks, Tennis serve-and-return plays
- ► **Security:** Attack-defense games in computer security, cops vs. adversaries in airports

Allied landing in Europe on June 6, 1944: Normandy vs. Calais

Example: Prisoner's Dilemma

Two prisoners involved in the same crime are being interrogated simultaneously in separate rooms. They can either cooperate or defect with the interrogators.

- $ightharpoonup \mathcal{N} = \{P_1, P_2\}$
- $\blacktriangleright \ \mathcal{C} = \{C, D\} \times \{C, D\}$
- $m{\nu}$ $\mathcal{U}=\{u_1,u_2\}$, where $u_i:\mathcal{C}_i o \mathbb{R}$, as shown in the matrix below.

		Cooperate	Defect
Prisoner 1	Cooperate	3, 3	0, 5
Priso	Defect	5, 0	1, 1

Prisoner's Dilemma: Applications

- ► **Networking:** *CSMA with Collision Avoidance* (a.k.a. TCP User's Game)
- ► Climate Change Politics: No country is motivated to curb CO_2 emissions for selfish reasons, although every country benefits from a stable climate.
- ► **Advertising:** Two competiting firms can either advertise, or not advertise about their products at a given time.
- ► Peer-to-Peer File Sharing: BitTorrent's unchoking strategies in search of cooperative peers to optimize downlink data-rates resemble those in this game.

Captures lack of trust between players!

Example: Tragedy of the Commons

- ▶ Farmer i (F_i) : Keep the sheep or not $(s_i \in \{0,1\})$
- lacktriangle Payoff for keeping the sheep =1 unit
- ► Village has limited stretch of grassland
- ▶ Damage to environment = 5 units (shared equally by all farmers)

Net utility at
$$F_i$$
: $u_i(s_1,\cdots,s_n)=s_i-5\left[\frac{s_1+\cdots+s_n}{n}\right]$

If n=2:

Farmer 2

		Sell	Keep
er 1	Sell	0, 0	-2.5, -1.5
Farmer 1	Keep	-1.5, -2.5	-4, -4

Tragedy of the Commons: Applications

Application: Spectrum Commons

- ➤ 3650 MHz (50 MHz block): Licensed Commons
- ► Wifi (2.4 GHz, 5 GHz): Unlicensed Commons

A multi-player generalization of Prisoner's Dilemma!

Extensive-form representation captures more information!

- state evolution in a game and the corresponding choice sets
- order of moves
- ▶ information asymmetries in the game (TBD in Topic T4)

Play-Order in Matching Pennies:

Information Sets

- ► Imperfect observations, nature's randomness and incomplete information about the players' types
 - \Rightarrow State uncertainty.
- ► State uncertainty ⇒ Limited information at the agent.

Definition

An *information set* \mathcal{I}_i of the i^{th} player P_i is the set of that decision nodes at P_i that are indistinguishable to P_i itself.

To be covered in detail in T4: Information Asymmetry in Games

Extensive-Form Games: Formal Definition

Definition

An *extensive-form game* Γ is defined as a tuple $\Gamma=(\mathcal{N},\mathcal{C},G,\pi,P,\mathcal{I},\mathcal{U})$, where

- $ightharpoonup \mathcal{N} = \{1, \dots, N\}$ is the set of N players (agents),
- $ightharpoonup \mathcal{C} = \mathcal{C}_1 \times \cdots \times \mathcal{C}_N$ is the strategy profile space,
- $lackbox{lack}{G}$ is a decision tree rooted at node 0 (chance node) with vertices representing the game's states and edges representing different player decisions,
- $ightharpoonup \pi$ represents the chance probabilities at all the alternatives available at the chance node.
- $P: \tilde{G} \to \mathcal{N}$ represents the player function that associates each proper subhistory $\tilde{G} \in G$ to a certain player,
- $\mathcal{I}=\{\mathcal{I}_1,\cdots,\mathcal{I}_N\}$ represents the set of information sets at all the players,
- $ightharpoonup \mathcal{U} = \{u_1, \cdots, u_N\}$ is the set of utility functions.

Equivalence of Representations

Can we eliminate temporal dynamics in extensive-form games to gain substantial conceptual simplification, if questions of timing are inessential to our analysis?

Note: This is not straightforward, i.e.,

$$\Gamma_e = (\mathcal{N}, \mathcal{C}, G, \pi, P, \mathcal{I}, \mathcal{U}) \implies \Gamma = (\mathcal{N}, \mathcal{C}, \mathcal{U})$$

due to the presence of information sets \mathcal{I} , play-order, and nature's randomness in π .

Equivalence of Representations (cont...)

Example: Consider the following two Matching Pennies games with non-identical information sets...

		Heads	Tails
1 1265	Heads	1, -1	-1, 1
	Tails	-1, 1	1, -1

Equivalence of Representations (cont...)

Exercise: Transform the following extensive-form game into a normal-form representation:

Transformation in Large Games is Difficult!

Example: Tic-Tac-Toe

▶ $\mathcal{N} = \{1, 2\}$

▶ Environment: 3×3 grid

▶ Player 1: Place a cross (x) in a blank space

▶ Player 2: Place a nought (○) in a blank space

► Possible outcomes: Win, Loose, Draw

► The first player to have three symbols in straight line wins. The other player looses.

Natural to represent in extensive-form... How about normal-form representation? Extensive-form representation^a:

Source: K. Binmore, "Playing for Real: A Text on Game Theory," Oxford University Press, 2007.

Solution Concepts for Normal-Form Games

Assume that we can always transform an extensive-form game into a normal-form equivalent.

Specifically, we will focus on the following solution concepts:

- ► Iterative Elimination of Dominated Strategies
- ► Minimax Equilibrium
- ► Nash Equilibrium

Iterative Elimination of Dominated Strategies

Can we use the notion of dominance to solve games?

Idea: Eliminate one or more dominated strategies at each player in an iterative manner...

Consider the following game:

Player 2

		b ₁	b ₂	b ₃	b ₄
	a_1	7, 1	2, 5	0, 7	0,0
Player 1	a ₂	5, 2	3, 3	5, 2	2, 0
	a_3	2, 7	2, 5	4, 0	0, 0
	a_4	1, 0	1, 0	1, 0	-1, 0

Iterative Elimination of Dominated Strategies (cont...)

Step 1: $a_3 \gtrsim a_4 \Rightarrow \text{Eliminate } a_4$

Step 2: $b_3 \succsim b_4 \Rightarrow \mathsf{Eliminate}\ b_4$

Step 3: $a_2 \succsim a_3 \Rightarrow \mathsf{Eliminate}\ a_3$

Step 4: $b_2 \succsim b_1 \Rightarrow \mathsf{Eliminate}\ b_1$

Step 5: $a_2 \succsim a_1 \Rightarrow \mathsf{Eliminate}\ a_1$

Step 6: $b_2 \succsim b_3 \Rightarrow \mathsf{Eliminate}\ b_3$

Player 2

Pure/Mixed Strategies

Definition

Given a choice (strategy) set C_i at player i, then every $c \in C_i$ is called a **pure strategy**.

Definition

Given a player i with a set of pure strategies C_i , a **mixed** strategy σ_i is a lottery over C_i .

Zero-Sum Games

Definition

A **zero-sum game** is the one in which the sum of individual players' utilities for each outcome sum to zero.

Example: Matching Pennies.

In two-player zero-sum games, if Alice (Player 1) wins, Bob (Player 2) looses, and vice versa. Therefore, w.l.o.g, we represent the utility matrix using Alice's utilities.

Minimax Equilibrium

Worst-Case Analysis:

- ► Alice minimizes her maximum utility (*min-max* strategy).
- ▶ Bob maximizes his minimum utility (*max-min* strategy).

$$\max_{a \in \mathcal{C}_A} \left(\min_{b \in \mathcal{C}_B} u(a,b) \right) \ \leq \ u(a,b) \ \leq \ \min_{b \in \mathcal{C}_B} \left(\max_{a \in \mathcal{C}_A} u(a,b) \right)$$

Minimax equilibrium is a saddle point in utilities!

Example:

	Bob			
		b ₁	b ₂	b ₃
	a_1	2	0	
Alice	a_2		-3	
	a_3	1	-2	2
	Maximum utility	4	0 (2

Bob

Minimax Equilibrium: (a_1, b_2)

Minimax Equilibrium (cont...)

Example 2:

Player 2

		b ₁	b ₂	b ₃	b ₄	Minimum utility
1	a_1	3	2	1	0	0
	a_2	0	1	2	0	0
Player 1	a_3	1	0	2	1	0
	a_4	3	1	2	2	1
	Maximum utility	3	2 (2 (2 (,

Minimax equilibrium may not exist in pure strategies!

Minimax Equilibrium (cont...)

Minimax equilibrium exists in mixed strategies within finite games!

- Alice minimizes her maximum expected utility (min-max strategy).
- ▶ Bob maximizes his minimum expected utility (*max-min* strategy).

$$\max_{p_a \in \Delta(\mathcal{C}_A)} \left(\min_{p_b \in \Delta(\mathcal{C}_B)} u(p_a, p_b) \right) \; \leq \; u(p_a, p_b) \; \leq \; \min_{p_b \in \Delta(\mathcal{C}_B)} \left(\max_{p_a \in \Delta(\mathcal{C}_A)} u(p_a, p_b) \right)$$

Example: Matching Pennies

Bob

		H (p _b)	T (1 – p_b)
Alice	Н (р _а)	1	-1
Ā	T (1 $-p_a$)	-1	1

EU: $u(p_a, p_b) = 1 - 2p_a - 2p_b + 4p_a p_b$

Gradiant:

$$\nabla u = \begin{bmatrix} \frac{\partial u}{\partial p_a} \\ \frac{\partial u}{\partial p_b} \end{bmatrix} = 0 \implies p_a = p_b = \frac{1}{2}$$

Hessian matrix: $|\nabla^2 u| < 0 \Rightarrow \mathsf{Saddle}$ Point!

$$\nabla^2 u = \begin{bmatrix} \frac{\partial^2 u}{\partial p_a^2} & \frac{\partial^2 u}{\partial p_b \partial p_a} \\ \frac{\partial^2 u}{\partial p_a \partial p_a} & \frac{\partial^2 u}{\partial p_a^2} \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}.$$

Best Response of a Player

Definition

Given a strategic form game $\Gamma = (\mathcal{N}, \mathcal{C}, \mathcal{U})$ and a strategy profile $c_{-i} \in \mathcal{C}_{-i}$, we say $c_i \in \mathcal{C}_i$ is a **best response** of player i with respect to c_{-i} if

$$u_i(c_i, \mathbf{c}_{-i}) \ge u_i(c_i', \mathbf{c}_{-i}), \quad \text{for all } c_i' \in \mathcal{C}_i.$$

Example: Consider the Matching Pennies game.

 $\blacktriangleright BR_1(P_2 \leadsto H) = H$

$$\blacktriangleright BR_1(P_2 \leadsto T) = T$$

$$ightharpoonup BR_2(P_1 \leadsto H) = T$$

$$ightharpoonup BR_2(P_1 \leadsto T) = H$$

Player 1

		•		
		Heads	Tails	
•	Heads	1, -1	-1, 1	
•	Tails	-1, 1	1, -1	

Plaver 2

Nash Equilibrium: A Solution Concept

No player should have the motivation to unilaterally deviate from their respective strategies!

In other words, every player picks a best response to all the other players' strategies.

Definition

Given a normal (strategic) form game $\Gamma = (\mathcal{N}, \mathcal{C}, \mathcal{U})$, we call a strategy profile (c_1, \cdots, c_N) a **pure-strategy Nash equilibrium (PSNE)** if $u_i(c_i, c_{-i}) \geq u_i(c_i', c_{-i})$, for all $c_i' \in \mathcal{C}_i$, for all $i \in \mathcal{N}$.

Computing PSNE: Battle of the Sexes

Description:

- ► Two-player coordination game.
- ► Husband (*H*): Prefers football game over movie
- ► Wife (W): Prefers movie over football game

Best-Response and Equilibrium Analysis:

- $ightharpoonup BR_H(W \leadsto F) = F$
- $ightharpoonup BR_H(W \leadsto M) = M$
- $\blacktriangleright BR_W(H \leadsto F) = F$
- \blacktriangleright $BR_W(H \rightsquigarrow M) = M$
- ▶ PSNE: (F, F), (M, M)

Wife

	Football	Movie
Football	2, 1	0, 0
Movie	0, 0	1, 2

Application: Distributed Resource Allocation Games (e.g. 5G Networks)

► Tasks can be performed only when various resources (e.g. computational power, wireless spectrum) are available simultaneously.

Motivates players to form groups (or coalitions)!

Computing PSNE: Cournot's Duopoly

- ▶ Two firms produce identical item of quantities q_1 and q_2 , while incurring 4c units of cost/quantity.
- ▶ Market clearing price: p(q) = 100 2q, where $q = q_1 + q_2$.

Utility of the Firm-i:
$$u_i(q_1, q_2) = q_i \cdot p(q_1 + q_2) - 4c \cdot q_i$$

If Firm- $\{-i\}$ produces q_{-i} , then Firm-i finds its best response as follows:

$$\frac{\partial u_i(q_i, q_{-i})}{\partial q_i} = 100 - 2(q_i + q_{-i}) - 2q_i - 4c = 0.$$

At NE, since both firms play best responses with each other, we have...

System of two best-response equations:

$$ightharpoonup BR_1(q_2) \Rightarrow 2q_1 + q_2 = 50 - 2c$$

►
$$BR_2(q_1) \Rightarrow q_1 + 2q_2 = 50 - 2c$$

Solving them, we obtain

$$q_1^* = q_2^* = \frac{50 - 2c}{3}$$

Computing PSNE: Potential Games

Definition

A function $\Phi: \mathcal{C} \to \mathbb{R}$ is called an *ordinal potential function* for the game Γ , if for all $i \in \mathcal{N}$ and all $c_{-i} \in \mathcal{C}_{-i}$.

$$u_i(c,c_{-i}) - u_i(c',c_{-i}) > 0, \text{ iff } \Phi(c,c_{-i}) - \Phi(c',c_{-i}) > 0, \text{ for all } c,c' \in \mathcal{C}_i.$$

Definition

A function $\Phi:\mathcal{C}\to\mathbb{R}$ is called an *exact potential function* for the game Γ , if for all $i\in\mathcal{N}$ and all $c_{-i}\in\mathcal{C}_{-i}$,

$$u_i(c,c_{-i}) - u_i(c',c_{-i}) = \Phi(c,c_{-i}) - \Phi(c',c_{-i}) > 0, \text{ for all } c,c' \in \mathcal{C}_i.$$

Definition

A game Γ is called a **potential game** if it admits a potential function.

Theorem: [Moderer and Shapley, 1996]

Every finite ordinal potential game has a PSNE.

Example: Congestion Games

Definition

A *congestion model* M is defined as a tuple $(\mathcal{N}, \mathcal{R}, \mathcal{C}, x)$, where

- $ightharpoonup \mathcal{N} = \{1, \cdots, N\}$ is the set of players
- $ightharpoonup \mathcal{R} = \{1, \cdots, K\}$ is the set of resources
- $ightharpoonup \mathcal{C} = \mathcal{C}_1 imes \cdots imes \mathcal{C}_N$, where \mathcal{C}_i consists of sets of resources that player i can take.
- $x=\{x_1(\ell),\cdots,x_K(\ell)\}$, where $x_k(\ell)$ is the cost of each user who uses k^{th} resource when a total of ℓ users are using it.
- Congestion games arise when users share resources to complete a given task.
 - Examples: Drivers share roads in a transportation network.

Definition

Based on the congestion model M, a **congestion game** is defined as $\Gamma = (\mathcal{N}, \mathcal{C}, \mathcal{U})$, with $u_i(c_i, c_{-i}) = \sum_{k \in c_i} x_k(\ell_k)$, where ℓ_k is the number of users of resource k under strategy $c = \{c_i, c_{-i}\}$.

Example: Congestion Games (cont...)

Theorem: [Rosenthal, 1973]

Every congestion game is a potential game.

Rosenthal's Potential function: For every strategy profile $c \in \mathcal{C}$, define

$$\Phi(c) = \sum_{k \in \mathcal{R}} \left(\sum_{\ell=1}^{\ell_k(c)} x_k(\ell) \right).$$

Theorem: [Moderer and Shapley, 1996]

Every potential game can be equivalently mapped to a congestion game.

Note: Usually, congestion games in transportation are modeled with large number of players $(N \to \infty)$. In such a case, NE in the presence of infinitesimal players is referred to as *Wardrop Equilibrium*.

Existence of Nash Equilibrium

Claim: PSNE may not always exist in a normal-form game!

Example: Matching Pennies

Definition

Given a normal (strategic) form game $\Gamma=(\mathcal{N},\mathcal{C},\mathcal{U})$, we call a mixed-strategy profile (π_1,\cdots,π_N) as a **mixed-strategy Nash equilibrium (MSNE)** if $u_i(\pi_i,\pi_{-i})\geq u_i(\pi_i',\pi_{-i})$, for all $\pi_i'\in\Delta(\mathcal{C}_i)$, for all $i\in\mathcal{N}$.

Theorem: [Nash 1951]

There always exists a MSNE in any finite normal-form game.

How to find MSNE?

Computing MSNE

Definition

Given a normal (strategic) form game $\Gamma=(\mathcal{N},\mathcal{C},\mathcal{U})$ and a mixed strategy π_i at the i^{th} player, the **support** of π_i , denoted as $\delta(\pi_i)$, is the set of all pure strategies of the i^{th} player which have non-zero probabilities, i.e.,

$$\delta(\pi_i) \triangleq \{ c \in \mathcal{C}_i \mid \pi_i(c) > 0 \}.$$

Note: Although there are uncountably infinite number of mixed strategies, there can only be finitely many supports of Nash Equilibria (NE), which is

$$(2^{|\mathcal{C}_1|}-1)\times\cdots\times(2^{|\mathcal{C}_N|}-1)$$

Idea: Consider each support at a time and search for NE.

Computing MSNE (cont...)

Theorem

The mixed strategy profile (π_1, \cdots, π_N) is a NE if and only if, for all $i \in \mathcal{N}$,

- (C1) $u_i(c,\pi_{-i})$ is the same $\forall \ c \in \delta(\pi_i)$, and
- (C2) $u_i(c, \pi_{-i}) \ge u_i(c', \pi_{-i}), \ \forall \ c \in \delta(\pi_i), \ \forall \ c' \notin \delta(\pi_i).$

If NE exists in the support $\mathcal{X}_1 \times \cdots \times \mathcal{X}_N$, where $\mathcal{X}_i = \delta(\pi_i)$, then there exists numbers w_1, \cdots, w_N and mixed strategies π_1, \cdots, π_N such that

(1)
$$w_i = \sum_{c_{-i} \in \mathcal{C}_{-i}} \left(\prod_{j \neq i} \pi_j(c_j) \right) u_i(c_i, c_{-i}), \ \forall \ c_i \in \mathcal{X}_i, \ \forall \ i \in \mathcal{N},$$

(2)
$$w_i \ge \sum_{c_{-i} \in \mathcal{C}_{-i}} \left(\prod_{j \ne i} \pi_j(c_j) \right) u_i(c_i, c_{-i}), \ \forall \ c_i \in \mathcal{C}_i - \mathcal{X}_i, \ \forall \ i \in \mathcal{N}.$$

(1)
$$\Rightarrow \sum_{i=1}^N |\mathcal{X}_i|$$
 eqns, and (2) $\Rightarrow \sum_{i=1}^N |\mathcal{C}_i - \mathcal{X}_i|$ eqns.

Computing MSNE...

We also need to ensure the definition of support, i.e.,

- (3) $\pi_i(c) > 0, \ \forall \ c \in \mathcal{X}_i, \ \forall \ i \in \mathcal{N}$,
- (4) $\pi_i(c) = 0, \ \forall \ c \in \mathcal{C}_i \mathcal{X}_i, \ \forall \ i \in \mathcal{N}$
- (5) $\sum_{c \in \mathcal{C}_i} \pi_i(c) = 1, \ \forall \ i \in \mathcal{N}.$

$$(3)\Rightarrow \sum_{i=1}^N |\mathcal{X}_i| \text{ eqns, } (4)\Rightarrow \sum_{i=1}^N |\mathcal{C}_i-\mathcal{X}_i| \text{ eqns, and } (5)\Rightarrow N \text{ eqns.}$$

Find w_1, \dots, w_N and π_1, \dots, π_N such that Equations (1)-(5) hold true.

$$\qquad \qquad \#(\text{variables}) = N + \sum_{i \in \mathcal{N}} |\mathcal{C}_i|, \qquad \#(\text{equations}) = N + 2 \sum_{i \in \mathcal{N}} |\mathcal{C}_i|$$

- ► Two-Player Games ⇒ Linear Complementarity Problem (LCP)
- ▶ N-Player Games $(N > 2) \Rightarrow$ Non-Linear Complementarity Problem (NLCP)

Hence, computing NE in general games is HARD!

However, NE for 2-player zero-sum games can be found efficiently!

Algorithms to Compute MSNE

- ► Two-player zero-sum games ⇒ Linear Programming (LP)
- ► Two-player general-sum games ⇒ Lemke's Method
- ▶ N-player general-sum games ⇒ Lemke-Howson's Method (along many others).

This is still an active research topic!

In this course, we will only cover one algorithm for solving two-player zero-sum games.

Games & Linear Programming

This algorithm works only for two-player zero-sum games!

Before we solve games, let us build some background knowledge in linear programming!

Linear Programming (LP)

Minimize a linear function in the presence of a linear constraints.

Problem: Primal (P) $\min_{x \in \mathbb{R}} \quad c^T x$ $\text{subject to} \quad 1. \ Ax = b,$ $2. \ x \succeq 0.$

Solution:

- ▶ No closed form solution
- ▶ Reliable/Efficient algorithms (Run time: $O(n^2m)$ if $m \ge n$.)
- ► Software Packages: CVX

LP and Duality

Definition

The Lagrangian function is defined as

$$L(x, \lambda, \mu) = c^T x + \lambda^T (Ax - b) - \mu^T x$$
$$= -b^T \lambda + (A^T \lambda + c - \mu)^T x$$

- Weighted sum of objective function and constraints.
- \blacktriangleright λ, μ : Lagrangian multipliers

Definition

The Lagrangian dual function is defined as

$$g(\lambda,\mu) = \min_{x \in \mathbb{R}} L(x,\lambda,\mu) = \begin{cases} -b^T \lambda, & \text{if } A^T \lambda + c - \mu = 0 \\ -\infty, & \text{otherwise}. \end{cases}$$

LP and Duality (cont...)

Lower Bound Property: If $\lambda \geq 0$, for any $x \in \mathbb{R}$, we have

$$c^T x \ge L(x, \lambda, \mu) \ge \min_{x} L(x, \lambda, \mu) = g(\lambda, \mu)$$

In other words, if v_P^* is the optimal value of the primal problem P, then, for any $\mu\succeq 0$ and $\lambda\succeq 0$, we also have $v_P^*\geq g(\lambda,\mu).$ In other words,

$$v_P^* \ge -b^T \lambda$$
, if $A^T \lambda + c \succeq 0$.

Problem: Dual (D)

 $\label{eq:continuous_problem} \begin{aligned} & \underset{\lambda,\mu}{\text{maximize}} & & g(\lambda,\mu) \\ & \text{subject to} & & 1. & \mu \succeq 0 \end{aligned}$

2. $\lambda \succ 0$

 $\max_{\lambda} \mathsf{maximize} \quad -b^T \lambda$

 $\text{subject to} \quad 1. \ A^T \lambda + c \succeq 0$

2. $\lambda \succeq 0$

LP and Duality (cont...)

Let v_D^* is the optimal value of the dual problem D.

Note that, $v_P^* \geq v_D^*$ always holds true.

Strong Duality: $v_P^* = v_D^*$.

► Holds true for linear programs as long as there exists a feasible point *x* in the search space (Slater's constraint qualifications).

Solution Methods:

- ► Simplex Method
- ► Interior-point Method
- ► Ellipsoid Method
- Cutting-plane Method

Python Packages for Solving LPs

- scipy.optimize.linprog
 - ► interior-point (default)
 - revised simplex
 - ► simplex (legacy)
- ► PuLP package (relies on CPLEX, COIN, gurobi solvers)
 - ► interior-point
 - revised simplex
- ► CVXPY (recommended, open source)
 - ► interior-point (CVXOPT/ECOS)
 - ► first-order optimization (SCS parallelism with OpenMP)

Provides optimal solution to the dual problem as a certificate!

LP & Game Theory

- ▶ Let Alice's (row-player) utility matrix be U of size $m \times n$.
- ▶ Therefore, Bob's utility matrix is -U.
- ightharpoonup Let Alice's and Bob's mixed strategies be a and b respectively.
- Expected utility at Alice = $a^T U b$.
- Alice's goal: $\min_{b} \left(\max_{a} a^{T} U b \right)$

Note: $\max_{a} a^T U b = \max_{i} e_i^T U b \triangleq \eta$,

where e_i is a vector of all zeros except for a one in the i^{th} position. Alice's worst-case strategy can be found by solving

Problem: Alice's Primal

$$\label{eq:continuity} \begin{split} & \underset{\eta \in \mathbb{R}, b \in \mathbb{R}^n}{\text{minimize}} & & \eta \\ & \text{subject to} & & 1. & \eta \mathbf{1} \succeq Ub, \text{ for all } i=1,\cdots, \\ & & 2. & \mathbf{1}^Tb=1 \\ & & 3. & b \succeq 0. \end{split}$$

LP & Game Theory (cont...)

Define $x = \left[\begin{array}{c} b \\ \eta \end{array} \right]$. Then, Alice's primal can be equivalently written as:

Problem: Alice's Primal 2

$$\label{eq:minimize} \begin{aligned} & \underset{x \in \mathbb{R}^{n+1}}{\text{minimize}} & & e_{n+1}^T x \\ & \text{subject to} & & 1. & \left[\begin{array}{cc} -U & \mathbf{1} \\ I_n & \mathbf{0} \end{array} \right] x \succeq 0. \\ & & 2. & \left[\mathbf{1}^T & \mathbf{0} \right] x = 1. \end{aligned}$$

Lagrangian function:

$$L(x,\lambda,\mu) = e_{n+1}^T x - \lambda^T \left[\begin{array}{cc} -U & \mathbf{1} \\ I_n & \mathbf{0} \end{array} \right] x + \mu \left\{ \begin{bmatrix} \mathbf{1}^T & \mathbf{0} \end{bmatrix} x - 1 \right\}.$$

Lagrangian dual:

$$\begin{array}{lcl} g(\lambda,\mu) & = & \min L(x,\lambda,\mu) \\ & = & \begin{cases} -\mu, & \text{if } e_{n+1} - \left[\begin{array}{cc} -U^T & I_n \\ \mathbf{1}^T & \mathbf{0} \end{array} \right] \lambda + \mu \left[\begin{array}{cc} \mathbf{1} \\ 0 \end{array} \right] = 0 \\ -\infty, & \text{otherwise.} \end{array}$$

LP & Game Theory (cont...)

Since $e_{n+1}^T x \ge L(x,\lambda,\mu) \ge g(\lambda,\mu)$, we have $e_{n+1}^T x^* \ge g(\lambda,\mu)$, $\forall \lambda \succeq 0, \forall \mu \succeq 0$.

Problem: Alice's Dual

$$\begin{array}{ll} \text{minimize} & -\mu \\ \\ \text{subject to} & 1. & \left[\begin{array}{cc} -U^T & I_n \\ \mathbf{1}^T & \mathbf{0} \end{array} \right] \lambda = e_{n+1} + \mu \left[\begin{array}{cc} \mathbf{1} \\ 0 \end{array} \right]. \end{array}$$

Equivalently, if we let $\hat{b} = \lambda_{-n}$ (λ without the last n entries), we have

Problem: Alice's Dual 2

minimize
$$-\mu$$
 subject to $\mathbf{1}. \quad -U^T \hat{b} \succeq \mu \mathbf{1},$ $\mathbf{2}. \quad \mathbf{1}^T \hat{b} = 1,$ $\mathbf{3}. \quad \hat{b} \succeq 0.$

Claim

Alice's dual problem is equivalent to Bob's primal problem.

Solving Multi-Stage Games

- ► Consider a two-player game where Alice and Bob choose mixed strategies $(\sigma_a, \sigma_b) \in \Delta(\mathcal{C}_A) \times \Delta(\mathcal{C}_B)$ at equilibrium.
- $\blacktriangleright \ \ \mathsf{MSNE} \colon \boldsymbol{\sigma}_a = {}_{\boldsymbol{x} \in \Delta(\mathcal{C}_A)} \boldsymbol{\sigma}_b^T U_A \boldsymbol{x} \ \ \mathsf{and} \ \ \boldsymbol{\sigma}_b = {}_{\boldsymbol{y} \in \Delta(\mathcal{C}_B)} \boldsymbol{y}^T U_B \boldsymbol{\sigma}_a.$
- This means that Alice and Bob choose their strategies simultaneously.

Will players choose (σ_a, σ_b) at equilibrium, if they choose their strategies in a leader-follower setting?

Isn't there a first mover advantage?

Is NE an Appropriate Solution Concept?

Consider the following game:

- ► PSNE: (*U*, *L*)
- Now, say Alice leads the game via announcing a strategy.
- ▶ However, such an announcement should be made via taking Bob's response into account. $BR_B(U) = L \quad \Rightarrow \quad U_A = 2$

$$BR_B(D) = R \quad \Rightarrow \quad U_A = 3$$

The equilibrium in this leader-follower game is (D, R)!Note that the outcome is more favorable to Alice!

Real-World Leader-Follower Interactions

- Airport Security: Cops are stationed strategically, and adversaries choose their attack strategy.
- Markets: Big firms announce their strategies, after which new startups arise in the market.
- Recommender Systems: Users make decisions after a recommendation is presented to them.

Heinrich Von Stackelberg (1934)

Equilibrium in Stackelberg Games

Consider a two-player game where Alice is the leader, and Bob is the follower.

- \blacktriangleright Assume the utility matrices at Alice and Bob are U_A and U_B respectively.
- ▶ Let Alice choose $x_a \in \Delta(\mathcal{C}_A)$, and Bob choose $x_b \in \Delta(\mathcal{C}_B)$.

Idea: Use backward induction

 Maximize Alice's expected utility, while accounting for Bob's response in the next stage.

Definition

A Stackelberg equilibrium is a mixed strategy $(\sigma_a,\sigma_b)\in\Delta(\mathcal{C}_A)\times\Delta(\mathcal{C}_B)$ such that

$$\sigma_a = {}_{\boldsymbol{x} \in \Delta(\mathcal{C}_A)} \boldsymbol{y}^*(\boldsymbol{x})^T U_A \boldsymbol{x} \text{ and } \sigma_b = \boldsymbol{y}^*(\sigma_a),$$

where $y^*(x) = {}_{y \in \Delta(\mathcal{C}_B)} y^T U_B x$ is Bob's best response to Alice's strategy $x \in \Delta(\mathcal{C}_A)$.

Theorem

Every two-player finite game admits a Stackelberg equilibrium.

Stackelberg Competition in Markets

- ► Consider two firms with same product, with Firm 1 making the first move.
- ▶ Firm-i produces $s_i \ge 0$ quantity at a cost c_i per item.
- ▶ Unit Price: $p(s_1 + s_2) = a b(s_1 + s_2)$
- ► Utility: $U_i(s_1, s_2) = p(s_1, s_2)s_i c_i s_i$

Firm 2's Best Response: $\max_{s_2 \geq 0} \left[a - b(s_1 + s_2) \right] s_2 - c_2 s_2$ Differentiate w.r.t. s_2 and equate it to zero:

$$a - bs_1 - 2bs_2 - c_2 = 0$$

In other words, $s_2^*(s_1) = \frac{1}{2b} [a - c_2 - bs_1]_+$

Firm 1's Commitment: $\max_{s_1 \ge 0} \left[a - b(s_1 + s_2^*(s_1)) \right] s_1 - c_1 s_1$

• If $s_1 > \frac{a - c_2}{c_1}$, then $s_2^* = 0$.

Differentiate w.r.t. s_2 and equate it to zero:

$$a - 2bs_1 - c_1 = 0. \implies s_1^* = \left[\frac{a - c_1}{2b}\right]_+.$$

Else, $s_2^*(s_1) = \frac{1}{2b} [a - c_2 - bs_1].$

Differentiate w.r.t. s_1 and equate it to zero:

$$a - 2bs_1 + \frac{b}{2}s_1 - \frac{1}{2}[a - c_2 - bs_1] - c_1 = 0. \implies s_1^* = \left[\frac{a - 2c_1 + c_2}{2b}\right].$$

Stackelberg Prisoner's Dilemma

- Two prisoners, Alice and Bob, are interrogated sequentially.
- ► Alice leads and decides whether to cooperate/defect, and Bob picks a choice having seen Alice's choice, as shown below.

Alleviating First Mover's Advantage...

Can we alleviate first mover's advantage?

Follower needs to commit on their strategies, even if they do not make sense rationally!

Example: What if, in the following game, Player 2 declares to choose R if Player 1 chooses A?

- Commitment must be observable and irreversable!
- ► Many real-world examples:
 - William, the Conqueror, ordered his soldiers to burn their ships after landing to prevent men from retreating!
 - ► Hernn Corts sank his ships after landing in Mexico for the same reason.

The power to constrain an adversary depends on the power to bind oneself

Thomas Schelling

Solving Perfect Extensive-Form Games...

Consider the following extensive-form game:

Not all Nash equilibria makes sense in extensive-form!

Subgame Perfect Equilibrium

Definition

Given a perfect-information extensive-form game G, the **subgame** of G rooted at node h is the restriction of G to the descendants of h. The set of subgames of G consists of all of subgames of G rooted at some node in G.

Definition

The $\it subgame-perfect\ equilibrium\ (SPE)$ of a game G are all strategy profiles s such that, for any subgame G' of G, the restriction of s to G' is a Nash equilibrium of G'.

Claim

Every subgame perfect equilibrium is a Nash equilibrium.

Claim

Every finite extensive-form game has at least one subgame perfect equilibrium.

This is essentially called the *principle of optimality* in dynamic programming.

SPE and Backward Induction

The underlying philosophy of SPE is:

Identify the equilibria in the "bottom-most" subgame trees, and assumes that those equilibria will be played as one backs up sequentially to evaluate larger trees.

This is backward induction¹.

Exercise:

 $^{^{1}}$ Backward induction is also called $\emph{minimax algorithm}$ in two-player zero-sum games.

Backward Induction: Concerns and Challenges

SPE and Backward induction has their own share of concerns:

- ► Computationally infeasible in large extensive games.
 - ightharpoonup Example: Chess ($\sim 10^{150}$ nodes.)
 - ▶ Needs gradual development of tree using a *heuristic* search algorithm!
 - ► Examples: Alpha-Beta Pruning, Monte-Carlo Tree Search
- ► Consider the following *centipede* game:

 $SPE \Rightarrow Players always choose to go down!$

But, this is indeed a paradox at the second player!!!

Summary

- Representation: How to represent games mathematically?
- ► *Information Asymmetry:* What causes information sets to exist in games?
- ► *Transformation:* How to represent extensive-form games in normal-form?
- Solution Concepts: What do we mean by solving a game?
- Computing Equilibria: How can we find solutions to a game?
- Solving Bayesian Games: How to account for uncertainty in solution concepts?