1.Solution:

Let A be the $|V| \times |V|$ adjacency matrix of G.

Pseudocode:

```
1: for i \leftarrow 1 to |V|

2: for j \leftarrow 1 to |V|

3: G^{2}[i][j] \leftarrow 0

4: for t \leftarrow 1 to |V|

5: G^{2}[i][j] \leftarrow \max(G^{2}[i][j], a[i][t]*a[t][j])

6: return G^{2}
```

Time Complexity:

In this pseudocode, there are three loops. For the third loop, the operation only costs O(1) time. Thus the time complexity is $O(|V|^3)$.

2. Solution:

Discovery/finishing times from performing the DFS traversal of the graph are as follows:

Vertex	Discover time	Finish time
m	1	20
q	2	5
t	3	4
r	6	19
u	7	8
y	9	18
v	10	17
W	11	14
Z	12	13
X	15	16
n	21	26
0	22	25
S	23	24
p	27	28

The sequence is obtained by reading off the entries in decreasing order of finish time: p(28), p(26), p(25), p(26), p(2

3. Solution:

Suppose that the form of the graph is the adjacency list form.

Pseudocode:

```
1: for each vertex u \in V do
```

2: in-degree[u] $\leftarrow 0$ # take time O(|V|)

3: for each vertex $u \in V$ do

4: for each $v \in Adi[u]$

5: in-degree[v] \leftarrow in-degree[v] + 1 # computes the in-degree for all vertices, which take time O(|V|+|E|)

6: **Q**←Ø # **Q** is a queue

cs430-section: Spring 2021

7: for each vertex $u \in V$ do

8: if in-degree [u] = 0 then

9: Enqueue (Q,u) # collects a list with all vertices of in-degree 0, which take time O(|V|)

If the in-degrees of some vertex decreases to 0, then it's added to the list

10: while Q≠Ø do

11: $u \leftarrow Dequeue(Q)$

12: output u

13: for each $v \in Adi[u]$ do

14: $in-degree[v] \leftarrow in-degree[v] - 1$

15: if in-degree[v] = 0 then

16: Enqueue (Q,v) # take time O(|V|+|E|)

The sorted result is given by the order in which they are extracted from the list. Time Complexity: O(|V| + |E|).

Discussion: If the input graph is cyclic, then the list becomes empty before finishing all the vertices, and it's impossible for this algorithm to complete the sort.

4. Solution:

The given algorithm will fail.

Counterexample:

cs430-section: Spring 2021

According to the given algorithm, we can get a tree of total cost 1+4+2=7. But obviously, the weight of the minimum-spanning-tree should be 1+2+3=6. So the given algorithm fails to obtain a minimum spanning tree.