

Voxel Based Morphometry (VBM)

Marta M. Correia
MRC Cognition and Brain Sciences Unit

Overview of VBM

- Voxel-wise grey-matter (GM) volume analysis
- Very widely used technique to investigate GM changes
 - Volume/density changes between populations
 - Correlations with cognitive metrics or clinical scores

Fully automated

20 year old

80 year old

From John Ashburner

mrc-cbu.cam.ac.uk

MRC Cognition and Brain Sciences Unit

1. Extracting brain information: brain extraction and tissue segmentation

- 2. Creating the template: make a study-specific template
- Iteratively register all GM images to generate a representative template
- Equal number of images from each group

Iterative image registration

3. Processing the native GM images:

Non-linear registration to the template

3. Processing the native GM images:

• Jacobian modulation to compensate for contraction/enlargement during non-linear registration

3. Processing the native GM images:

• Jacobian modulation to compensate for contraction/enlargement during non-linear registration

From Mark Jenkinson

3. Processing the native GM images:

• Smoothing with Gaussian kernel

mrc-cbu.cam.ac.uk

4. Statistical analysis:

- Create the design matrix
- Use **randomise** for non-parametric inference

4. Statistical analysis:

- Create the design matrix
- Use randomise for non-parametric inference

Interpretation of results

• VBM results are sensitive to real GM volume changes

Also sensitive to changes in folding

- But can also reflect processing errors:
 - poor registration

segmentation mistakes

Questions?

