Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. Linnhoff-Popien

Übungsblatt 6 Rechnerarchitektur im SoSe 2020

Zu den Modulen I, J

Besprechung: Besprechung der Übungsaufgaben in den Übungsgruppen vom 08. – 12. Juni 2020

Aufgabe Ü13: Addition von Dualzahlen

(- Pkt.)

Beantworten Sie folgende Fragen im Bezug auf die 2er-Komplement-Darstellung ganzer Zahlen:

- a. Geben Sie die größte und die kleinste darstellbare Zahl, sowie die Null bei Verwendung von 8 Bits an.
- b. Folgende Dualzahlen in 2er-Komplement-Darstellung sind gegeben: 10010001 und 10011011.
 - (i) Addieren Sie die beiden Zahlen.
 - (ii) Hat bei der Addition ein Überlauf (Overflow) stattgefunden? Begründen Sie kurz Ihre Antwort.
- c. Folgende Dualzahlen in 2er-Komplement-Darstellung sind gegeben: 10010001 und 01110011. Ohne Rechnung: Wird bei der Addition dieser Zahlen ein Überlauf oder ein Übertrag stattfinden? Bitte begründen Sie Ihre Antwort. Erklären Sie auch den Unterschied.

Aufgabe Ü14: Gleitkommazahlen

(- Pkt.)

- a. Geben Sie die Dezimaldarstellung der folgenden Gleitkommazahlen an. Interpretieren Sie die Kommazahl und den Exponenten jeweils als Sign/Magnitude Darstellung. Also das jeweils erste Bit von Mantisse und Exponent gilt als Vorzeichenbit.
 - (i) $(011,01)_2 \cdot 2^{(0101)_2}$
 - (ii) $(110, 11)_2 \cdot 2^{(0011)_2}$
 - (iii) $(111,01)_2 \cdot 2^{(1011)_2}$
- b. Geben Sie die Darstellung folgender Zahlen als Gleitkommazahl nach IEEE 754 in einfacher (32-Bit) Genauigkeit an. Hinweis: nach dem IEEE 754 Standard gilt folgendes:

$$(-1)^{S} \cdot (1 + Signifikant) \cdot 2^{(Exponent-Bias)}$$

- für das Vorzeichen S ein Bit,
- für den Signifikanten (Mantisse) 23 Bit bei einfacher und 52 Bit bei doppelter Genauigkeit,
- für den Exponenten 8 Bit bei einfacher und 11 Bit bei doppelter Genauigkeit

reserviert und den Bias auf $127 = 2^{8-1} - 1$ bei einfacher bzw. auf $1023 = 2^{11-1} - 1$ bei doppelter Genauigkeit setzt.

- (i) $(15,75)_{10}$
- (ii) $(-0,75)_{10}$
- c. Wandeln Sie folgende Zahl, die in Gleitkommadarstellung (IEEE 754) gegeben ist, in ihre Dezimaldarstellung um.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	1	0	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	Evnonent									Significand														٦							