概率论与数理统计

主讲人: 吴娟

制作人: 叶鹰 吴娟

wujuan@hust.edu.cn

§ 3.2 边缘分布

一、边缘分布函数

$$F_X(x) = P(X \le x) = P(X \le x, Y < +\infty) = F(x, +\infty)$$

$$F_{Y}(y) = P(Y \le y) = P(X < +\infty, Y \le y) = F(+\infty, y)$$

二、D.R.V.的边缘分布

$$P(X = x_i) = \sum_{j} P(X = x_i, Y = y_j) = \sum_{j} p_{ij} \triangleq p_{i\bullet}$$

$$P(Y = y_j) = \sum_{i} P(X = x_i, Y = y_j) = \sum_{i} p_{ij} = p_{\bullet j}$$

例1 在有1件次品和5件正品的产品中,分别进行有放回和不放回地任取两次,定义随机变量(X,Y)如下:

$$X =$$
 $\begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{n} \\ \mathbf{0}, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{n} \end{cases}$ $Y =$ $\begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{z} \mathbf{n} \\ \mathbf{0}, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{n} \end{cases}$

求(X,Y)的联合概率分布和两个边缘概率分布。

解(1)有放回抽样:

$$P(X = 0, Y = 0)$$

$$= P(X = 0)P(Y = 0 / X = 0)$$

$$= \frac{1}{6} \times \frac{1}{6} = \frac{1}{36}$$

(2) 不放回抽样:

$$P(X = 0, Y = 0)$$
= $P(X = 0)P(Y = 0 / X = 0)$
= $\frac{1}{6} \times 0 = 0$

20,120,1	72 119 0		
XY	0	1	$p_{i\bullet}$
0	1/36	5/36	1/6
1	5/36	25/36	5/6
$p_{\bullet j}$	1/6	5/6	1
XY	0	1	$p_{i\bullet}$
X Y 0	0	1 1/6/1/21	$p_{i\bullet}$
X Y 0 1		$ \begin{array}{c c} 1 \\ \frac{1}{6} & 1 \\ \frac{5}{6} & \frac{4}{3^5} \end{array} $	$p_{i\bullet}$ $\frac{1}{6}$ $\frac{5}{6}$

联合分布可以导出边缘分布,但反之不然。

Y	\mathcal{Y}_1	\mathcal{Y}_2	•••	${\mathcal Y}_j$	•••	p_{i}
x_1	p_{11}	p_{12}		p_{1j}	•••	$p_{1.}$
x_2	p_{21}	p_{22}	•••	p_{2j}		p_{2}
x_i	p_{i1}	p_{i2}		p_{ij}		p_{i}
						:
$p_{\cdot j}$	$p_{\cdot 1}$	$p_{\cdot 2}$		$p_{\cdot j}$	•••	

三、C.R.V.的边缘分布

$$F_X(x) = F(x, +\infty) = \int_{-\infty}^x \int_{-\infty}^{+\infty} f(u, v) du dv = \int_{-\infty}^x \left[\int_{-\infty}^{+\infty} f(u, v) dv \right] du$$

故**X**的边缘密度函数
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

同理Y的边缘密度函数 $f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$

例2 设 $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, 求X和Y的边缘密度 函数。

解 (X,Y)的联合密度函数

$$f(x,y) = \frac{\exp\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho \frac{(x-\mu_1)}{\sigma_1} \frac{(y-\mu_2)}{\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2} \right] \}}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2}$$

$$\Leftrightarrow u = \frac{x-\mu_1}{\sigma_1}, v = \frac{y-\mu_2}{\sigma_2}, \text{ II}$$

$$f(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} \frac{1}{\sigma_2} \exp[-\frac{u^2-2\rho u v + v^2}{\sigma_2}] dv$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_{-\infty}^{+\infty} \frac{1}{2\pi\sigma_1 \sqrt{1 - \rho^2}} \exp\left[-\frac{u^2 - 2\rho uv + v^2}{2(1 - \rho^2)}\right] dv$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sqrt{1-\rho^2}} \exp\left[-\frac{(v-\rho u)^2}{2(\sqrt{1-\rho^2})^2}\right] dv \exp\left[-\frac{(1-\rho^2)u^2}{2(1-\rho^2)}\right]$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$\mathbb{P} X \sim N(\mu_1, \sigma_1^2), \quad \boxed{\exists 2 Y \sim N(\mu_2, \sigma_2^2)}$$

例3设(X,Y)在G上服从均匀分布,其中

$$G = \{(x,y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}, \quad \bar{x} f_X(x) \text{ 和 } f_Y(y).$$

解
$$f(x,y) = \begin{cases} \frac{1}{ab\pi}, & \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\\ 0, & \text{其他} \end{cases}$$

$$f_X(x) = \int_{-b\sqrt{1-x^2/a^2}}^{b\sqrt{1-x^2/a^2}} \frac{1}{ab\pi} dy = \frac{2}{a^2\pi} \sqrt{a^2 - x^2} \qquad -a < x < a$$

$$f(x)$$

$$f_{Y}(y) = \begin{cases} \frac{2}{b^{2}\pi} \sqrt{b^{2} - y^{2}}, & -b < y < b \\ 0, & 其他 \end{cases}$$

§ 3.3 条件分布

一、问题

身高 $X\sim N(170,4^2)$,体重 $Y\sim N(59,2^2)$, $X|Y=50\sim N(?,?)$

二、D.R.V.的条件分布

$$P(X = x_i, Y = y_j) = p_{ij}$$
 $P(X = x_i) = p_{i\bullet}$, $P(Y = y_j) = p_{\bullet j}$

则定义给定 $Y=y_i$ 下,X的条件分布律(列)为

$$P(X=x_i \mid Y=y_j) = \frac{P(X=x_i, Y=y_i)}{P(Y=y_j)} = \frac{p_{ij}}{p_{\bullet j}}, \qquad i = 1,2,...$$

给定 $X=x_i$ 下,Y的条件分布律(列)为

$$P(Y=y_j|X=x_i) = \frac{p_{ij}}{p_{i\bullet}}, \quad j=1,2,...$$

例1
$$P(X=m)=\frac{1}{4}$$
, $m=1,2,3,4$,

求条件分布X|Y=n.

$$P(Y = n \mid X = m) = \frac{1}{m}, n=1,2,...m.$$

X	1	2	3	4	$p_{i\bullet}$	X/Y=1	X/Y=2	$X/_{Y=3}$	X/Y=4
1	$\frac{1}{4}$	0	0	0	1/4	12/25	0	0	0
2	$\frac{1}{8}$	$\frac{1}{8}$	0	0	1/4	6/25	6/13	0	0
3	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$			4/25			
4	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	1/4	3/25	3/13	3/7	1
$p_{ullet j}$	25/48	13/48	7/48	3/48	1	1	1	1	1
Y/X=2	1/2	1/2	0	0					

$$P(X = n, Y = m) = e^{-14} \frac{7.14^{m}}{m!} \cdot \frac{6.86^{n-m}}{(n-m)!} \qquad n = 0,1,\dots \\ m = 0,1,\dots, n$$

求X与Y的边缘分布和条件分布。

解
$$P(X = n) = \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} 7.14^m 6.86^{n-m} \frac{e^{-14}}{n!} = \frac{(7.14 + 6.86)^n}{n!} e^{-14}$$

$$n = 0,1,\dots$$
即 $X \sim P(14)$

$$P(Y = m) = \sum_{n=m}^{\infty} \frac{6.86^{n-m}}{(n-m)!} e^{-6.86} \times \frac{7.14^{m}}{m!} e^{-7.14} = \frac{7.14^{m}}{m!} e^{-7.14} = \frac{7.14^{m}}{m!} e^{-7.14}$$

$$M = 0,1,...$$

$$P(Y = m / X = n) = \frac{e^{-14} \frac{7.14^m}{m!} \cdot \frac{6.86^{n-m}}{(n-m)!}}{\frac{14^n}{n!} e^{-14}} = C_n^m (\frac{7.14}{14})^m (\frac{6.86}{14})^{n-m} \qquad (n \boxplus \mathbb{R})$$

$$Y / X = n \sim B(n, 0.51)$$

三、C.R.V.的条件分布

$$f_{X/Y}(x/y) = \frac{f(x,y)}{f_Y(y)}$$
 $f_{Y/X}(y/x) = \frac{f(x,y)}{f_X(x)}$

例3
$$(X,Y) \sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$$
,求 $f_{X/Y}(x/y)$ 与 $f_{Y/X}(y/x)$.

$$f_{X/Y}(x/y) = \frac{\frac{1}{2\pi\sqrt{1-\rho^2}\sigma_1\sigma_2} \exp\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x-\mu_1)}{\sigma_1}\frac{(y-\mu_2)}{\sigma_2} + \frac{(y-\mu_2)^2}{\sigma_2^2}\right]\}}{1}$$

$$\frac{1}{\sqrt{2\pi}\sigma_2}\exp\{-\frac{(y-\mu_2)^2}{2\sigma_2^2}\}$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1\sqrt{1-\rho^2}} \exp\left\{-\frac{\left[x - (\mu_1 + \frac{\sigma_1}{\sigma_2}\rho(y - \mu_2))\right]^2}{2\sigma_1^2(1-\rho^2)}\right\}$$

$$\mathbb{R} X/Y = y \sim N(\mu_1 + \frac{\sigma_1}{\sigma_2} \rho(y - \mu_2), \quad \sigma_1^2 (1 - \rho^2))$$

同理
$$Y/X = x \sim N(\mu_2 + \frac{\sigma_2}{\sigma_1}\rho(x-\mu_1), \sigma_2^2(1-\rho^2))$$

单选题 100分

条件概率密度函数 $f_{X/Y}(x/y)$

- A 是一元实函数
- B 是二元实函数

例4 己知
$$f(x,y) = \begin{cases} \frac{1}{ab\pi}, & \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \\ 0, & 其他 \end{cases}$$

求条件密度函数 $f_{y/y}(x/y)$.

解
$$f_{Y}(y) = \begin{cases} \frac{2}{b^{2}\pi} \sqrt{b^{2} - y^{2}}, & -b < y < b \\ 0, & 其他 \end{cases}$$

当 -b < v < b 时

$$f_{X/Y}(x/y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{b}{2a} \frac{1}{\sqrt{b^2 - y^2}}, & -\frac{a}{b} \sqrt{b^2 - y^2} < x < \frac{a}{b} \sqrt{b^2 - y^2} \\ 0, & \text{#th} \end{cases}$$

$$\mathbb{R} I X \mid Y = y \sim U(-\frac{a}{b}\sqrt{b^2 - y^2}, \ \frac{a}{b}\sqrt{b^2 - y^2})$$

思考题

设随机变量 X_1, X_2 的概率分布为

$$X_{1} \sim \begin{bmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{bmatrix} \qquad X_{2} \sim \begin{bmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$X_2 \sim \begin{vmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{vmatrix}$$

且 $P(X_1X_2=0)=1$,求 (X_1,X_2) 的联合分布。

解

X_2 X_1	-1	0	1	$p_{i\bullet}$
0	$\frac{1}{4}$	0	1/4	$\frac{1}{2}$
1	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$p_{ullet j}$	1/4	1/2	1/4	