This question paper contains 4+2 printed pages]

Roll No.	

S. No. of Question Paper : 2645

Unique Paper Code : 32347607

Name of the Paper : Machine Learning

Name of the Course : B.Sc. (Hons.) Computer Science : DSE-3 and an the amplication was an an an art and the

Semester

Maximum Marks: 75 Duration: 3 Hours

(Write your Roll No. on the top immediately on receipt of this question paper.)

Section A is compulsory.

Attempt any 4 questions from Section B.

Use of scientific calculator is allowed.

Section A (Compulsory)

- For a classification problem to classify 250 training instances into two classes TRUE and FALSE, the prediction pattern of a classifier is shown below:
 - (1) 120 TRUE class instances classified as TRUE

	(2) 85 TRUE class instances classified as FALSE	
	(3) 25 FALSE class instances classified as TRUE	
	(4) 20 FALSE class instances classified as FALSE	3
	Find the accuracy of this classifier.	4
(b)	State Naïve Bayes theorem.	2
(c)	List and explain three applications of mac	hine
	learning.	3
(d)	Why can't linear regression be used for classificati	on ?
	Explain with the help of an example.	3
(e)	Write the expression for cost function of log	gistic
	regression and explain it.	3
(f)	What do you mean by polynomial regression? Ex	xplain
	it with an example.	3
(g)	How does single layer perceptron function ?	3
(h)	Draw the diagram of a neural network required to	handle
	five class problems.	3
(i)	What do you mean by reinforcement learning? G	ive an
	example.	3

5

- (f) Give an expression of binary sigmoidal activation function and obtain first derivative of the function.
- (k) The sales of a company (in million rupees) for each year are shown in the table below:

x (year)	y (sales)
2005	12
2006	19
2007	29
2008	37
2009	45
2010	49

- (a) Find the least square regression line y = ax + b.
- (b) Use the least squares regression line as a model to estimate the sales of the company in 2013.

Section B

 Using Naïve Bayes classification rule for the following training data, predict whether an old student having high income and excellent credit rating will buy a computer or not.

Id	Ag		ncome	Stud	dent	Credit Rating		Buys
	37.		High	1	No -	Fair		No
1.	You	ung	High	1	No	Exceller	at	No
2.		iddle	High		No	Fair		Yes
3.		Old	Medium		No	Fair		Yes
4.		Old	Low		Yes	Fair		Yes
6	1	Old	Low		Yes	Excell	ent	No
7	1	Middle	Low		Yes	Excel	lent	Yes
		Young	Media	ım	No	Fa	ir	No
	9.	Young		N	Yes	F	air	Yes
	10.	Old	1	ium	Yes	F	air	Yes
	11.	Youn	g Med	ium	Yes		ellent	Yes
	12.	Midd		tium	No	Ex	cellent	Ye
	13.	Mide	ile H	igh	Yes	S	Fair	Ye
	14.	I II	1	dium	N	o E	cellent	N

- 3. (a) What is over-fitting in logistic regression? How can this problem be resolved?
 - (b) Discuss the classification of Machine Learning algorithms.
- (a) Find the linear regression coefficients using gradient descent method for the following dataset when learning rate = 0.1. Carry out the process for 2 iterations.

HA	X	Y
	0	2
	1	3
	2	5
	3	4
	4	6

- (b) Explain how can logistic regression be used for solving more than two class problems?
- 5. (a) What is the cost function for linear regression? Derive least square estimation of the coefficients?
 - (b) Explain two methods of updating weights for a single layer perceptron.

- 6. (a) Explain the gradient descent method for obtaining the parameters of Logistic regression.
 - (b) Differentiate between Linear regression and Logistic regression.
- 7. (a) Explain Back-propagation algorithm for multilayer perceptron. 6
 - (b) Write the truth table of OR operation and solve it using single layer perceptron.