

Paul MacNeilage, Psychology Eelke Folmer, Computer Science

Motion is Change Detection

Reichardt Motion Detector

Reichardt Motion Detector

Motion detection neurons

Feature detection neurons

Intermediate neurons

Image on photoreceptors

Aperture Problem

Ambiguity of local motion signals

Adaptation

Waterfall illusion

Motion Illusions

Waterfall illusion

 Motion adaptation – dedicated mechanisms

Motion is processed independent of position information

Apparent Motion

 When motion is perceived from a series of still images...

Kineograph, 1868

Apparent Motion

Captain underpants – <u>flip-o-rama</u>

Apparent Motion

When motion is perceived from a series of still images...

Frame Rates

FPS	Occurrence
2	Stroboscopic apparent motion starts
10	Ability to distinguish individual frames is lost
16	Old home movies; early silent films
24	Hollywood classic standard
25	PAL television before interlacing
30	NTSC television before interlacing
48	Two-blade shutter; proposed new Hollywood standard
50	Interlaced PAL television
60	Interlaced NTSC television; perceived flicker in some displays
72	Three-blade shutter; minimum CRT refresh rate for comfort
90	Modern VR headsets; no more discomfort from flicker
1000	Ability to see zipper effect for fast, blinking LED
5000	Cannot perceive zipper effect

Hierarchical Motion Processing

Hierarchical Motion Processing

Optic Array

Linear Optic Flow

Linear Optic Flow

- Heading
- FOE (Focus of Expansion)
- Radial Flow
- LaminarFlow

Scale Ambiguity of Linear Optic Flow

Same optical flow can be generated...

Traveling fast through a large scene

Traveling slowly through a small scene

Optic flow alone cannot tell how fast you are moving

Angular Optic Flow

v

Angular Optic Flow

Laminar

Radial

Linear + Angular Motion

Traveling on a curved path

и

Linear + Angular Motion

Linear motion plus eye movement

Kaminiarz, Schlack, Bremmer (2014)

Linear + Angular Motion

Pursuit of point in scene adds rotational flow

Linear (self-motion)

Angular (eye rotation)

Linear + Angular Motion

Classical example of motion parallax

Eye Motion

Eye Motion

Head Motion

Crowell, Banks, Shenoy, Anderson (1998) Nat. Neuroscience

Ambiguity of Optic Flow

Eye Motion

Head Motion

Environmental Motion

Crowell, Banks, Shenoy, Anderson (1998) Nat. Neuroscience

Self- versus Object Motion

How can you tell which?

Motor Signals

Oculomotor (eye-in-head)

Neck-motor (head-on-body)

Locomotor (body-in-space)

v

Implications for VR

Retinal slip during head turn with fixation

Virtual Object

Low fps; slippage leads to "judder"

v

Implications for VR

Solution for judder

Blank the screen between frames (low persistence)

Implications for VR

Rendering self-motion:

- Scale ambiguity of optic flow?
 - Include objects to scale the scene
- Object vs self-motion
 - Large objects can confuse self-motion

Implications for VR

- Role of motor signals?
 - Perceiving motion while moving
 - Not well-studied

MORE TO COME