

İçerik

- · Sayı sistemleri
 - · Binary, Octal, Decimal, Hexadecimal
- Operatörler
 - · Aritmetik operatörler
 - · Mantıksal (Logic) operatörler
 - · Bitwise operatörler

Yıldız Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

İkili (Binary) Sayı Sistemi

- İkili sayı sisteminde sadece 0 ve 1 rakamları kullanılır.
 - · İki sayısı «10» şeklinde ifade edilir.
 - Ondalık sayı sisteminde olduğu gibi toplamın iki olması durumunda bir sonraki haneye aktarılır.
- İkili sayı sistemindeki sayıların yazımı genellikle ondalık sisteme göre daha uzundur.
 - Bunun temel nedeni ikilik sistemde her hanenin onluk sisteme göre daha az bilgi ifade edebilmesidir.
 - · Bundan dolayı ikilik sistemdeki hanelere bit adı verilir.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

-

Sekizlik (Octal) Sayı Sistemi

- Sekizlik sayı sisteminde sayılar sadece 8 rakam kullanılarak ifade edilir.
 - 0, 1, 2, 3, 4, 5, 6 ve 7
- Sekizlik sayı sisteminde her hane ikilik sayı sistemindeki 3-biti ifade eder. (2³ = 8)
- Sekizli sayı sistemi 12-bit, 24-bit ve 36-bit yapısındaki .eşitli işlemcilerde kullanılmıştır.
 - Örnek: PDP-8, ICL 1900 ve IBM mainframe

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

4

IN PERANTERING

Ondalık (Decimal) Sayı Sistemi

- Ondalık sayı sistemi
 - · Hindu Arabic, Arabic olarak ta bilinir.
 - 10 farklı rakam kullanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8 ve 9
- Kesirli sayıların gösterimi için nokta işareti kullanılır.
- Ondalık sayı sisteminde 543.21 sayısı
 - $(5 \times 10^2) + (4 \times 10^1) + (3 \times 10^0) + (2 \times 10^{-1}) + (1 \times 10^{-2})$ şeklinde değerlendirilir.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

Onaltılık (Hexadecimal) Sayı Sistemi

- Onaltılık sayı sisteminde sayıların ifade edilmesi için 16 değere ihtiyaç vardır.
 - · Bunun için 10 rakam ve 6 harften yararlanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - · A, B, C, D, E ve F
- Hanelerin kullanımı ondalık sayı sistemi ile aynıdır.
- Ondalık sayı sisteminde 256,058 sayısı
 - İkilik sayı sisteminde «11 1110 1000 0011 1010»
 - Sekizlik sayı sisteminde «764072»
 - Onaltılık sayı sisteminde «3E83A» şeklinde yazılır.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

Sayı Sistemleri Arasında Geçiş

- Matematiksel olarak sayı sistemleri arasındaki geçiş çarpma ve bölme işlemleri ile yapılır.
 - Ondalık sayı sisteminde başka sayı sistemine geçerken bölme
 - Diğer sayı sistemlerinden Ondalık sisteme geçerken çarpma

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

١

Sayı Sistemleri Arasında Geçiş

- İkilik, sekizlik ve onaltılık sayı sistemleri arasındaki geçişler daha pratik şekillerde yapılabilir.
- Sekizlik sistemdeki her hane, ikilik sistemdeki üç haneye karşılık gelir.
 - 1 000 010 111 100 011
 - 173
- Onaltılık sistemdeki her hane, ikilik sistemde dört haneye karşılık gelir.
 - 1000 0101 1110 0011
 - A09C

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

Aritmetik Operatörler

- Toplama (+)
- Çıkarma ()
- Çarpma (*)
- Bölme (/)
- Mod (mod)

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

9

İlişkisel Operatörler

- Büyüktür (>)
- Küçüktür (<)
- Büyük eşit (>=)
- Küçük eşit (<=)
- Eşit (=)
- Eğit değil (≠)

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

10

Mantıksal Operatörler

- Mantiksal AND (AND)
- Mantiksal OR (OR)
- Mantiksal Negation (NOT)

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

11

Bitwise Operatörler

- AND (&)
- OR (|)
- Exclusive OR (XOR)
- · Shift
 - Sol (<<)
 - Sağ (>>)
- Rotate
 - · Sol / Sağ

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

12

AND Operatörü

 AND operatörü her iki bit değerinin 1 olması durumunda 1 değerini sonuca taşır.

A	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- · A & B = ?
 - 0000 1100

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

13

OR Operatörü

A	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

- OR operatörü iki bit değerinden birinin 1 olması durumunda 1 değerini sonuca taşır.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A | B = ?
 - 0011 1101

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

14

XOR Operatörü

- XOR operatörü her iki bit değerinin aynı olması durumunda 0, farklı olması durumunda 1 üretir.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A XOR B = ?
 - 0011 0001

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

A XOR B

0

0

1

0

0

15

29.09.2018

SHIFT Operatörü

- A sayısı halen 60 değerine sahip ©
 - 0011 1100
- Sola doğru shift işlemi iki kere gerçekleştirildiğinde
 - · A << 2
 - · 240 1111 0000
- Sağa doğru shift işlemi üç kere gerçekleştirildiğinde
 - · A>>3
 - · 7 0000 0111

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

16

Bilgisayarda Sayı Sistemi – I

- · Günümüz bilgisayarları ikili sayı sistemini kullanır.
- Dolayısıyla bilgisayarda işlem görecek veya saklanacak tüm bilgiler "bit"ler ile ifade edilir.
 - · tam sayılar
 - · kesirli sayılar
 - · harfler /karakter
 - · resimler, videolar vb.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

Bilgisayarda Sayı Sistemi — II • Neden ondalık sayı sistemi değil ? • ENIAC ondalık sistemi kullanıyordu! • Daha fazla sinyal seviyesi ihtiyacı hassasiyet problemi yaratır. • Toplama, çarpma vb. işlemlerin gerçekleştirilmesi zorlaşır. • İkili sistemde bilginin aktarımı daha kolay! • parazit, gürültülere karşı daha dayanıklı

Bilginin Eşlenmesi - I · Herhangi bir veri tipinin bellekte tutulması için bir eşleme MATRIX of PIXELS (mapping) işlemi yapılmalı · Aynı veri tipi için farklı eşleme yapıları bulunabilir. · Örnek: · ASCI - American Standard Code for Information Interchange · EBCDIC - Extended Binary Coded Decimal Interchange Code • UTF - Unicode Transformation **Format** Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 20 29.09.2018

Bilginin Eşlenmesi – II

Değer	1. Sistem	2. Sistem		
0	101	000		
1	011	001		
2	111	010		
3	000	011		
4	110	100		
5	010	101		
6	001	110		
7	100	111		

- Örneğin 0-7 arasındaki sayıları temsil edecek bir eşleme oluşturulması
- Hangi sistem daha iyi ?
 - Test etmek için aritmetik işlemleri deneyebilirsiniz

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

29.09.2018

21

Bilginin Eşlenmesi – III

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0.	0	(WAL)	32	20	(SPACE)	64	40	60	96	60	A.C.
1	1	ISTANT OF HEADWIGT	33	21	1	65	41	A	97	62	a
2	2	ISTANT OF TEXT!	34	22	8.1	56	42	8	98	62	b
3	1	MARKOV TEXT?	35	23.	*	67	43	c	99	63	C
4	A	JEND OF REALISHINGSON	36	24		68	44	D	100	64	d
5	5	/ENOUNTY	37	25	16	69	45		101	65	e
6	6	MCNNOWLEDGE	38	26	4	70	46	*	102	66	+
7	7	BELLZ	39	27		71	47	G	103	67	п
8	8	ISACKSTN/CE7	40	28	(72	48	H	184	68	h
9	9	PROSEZONTAL TABLE	41	29	133	73.	40	1	105	69	
10	A	SUME FEED!	42	2A	4	7.4	44	1	106	64	1
11	В	IVERTICAL TAST	43	28		75	48	K	107	68	k
12	C	IFORM REED!	44	20		76	40	L	108	6C	1
13	D	ACAPAMGE RETURNS	45	20	-	77	4D	M	109	6D:-	m
14	E	55HVT 0077	46	2E	7477	78	4E	N	110	6E	11
15	F	/SHVT XV/	47	ZF.	11.	79	4F	0	111	GF	D.
16	10	IDATA LINK ESCAPEI	48	36	0	80	50	p	112	70	m.
17	11	IDENICE CONTROL ()	49	31	1	81	51	0	113	71	
18	12	IDENCE CONTROL 21	50	32	2	82	52	R	114	72	7
19	13	IDENCE CONTROL 3/	51	33.	3	83	53	5	115	73	
20	14	IDENCE CONTROL 41	52	34	4	84	54	T	116	74	1
21	15	INEGATIVE ACKNOWLEDGES	53	35	5	85	55	U	117	75	u.
22	16	JSYNTHRONDUS ADLEY	54	36	6	86	56	v	118	76	V
23	17	lens or mans, mocki	55	37	7	87	57	w	119	77	w
24	38	EAWOUL	56	38		RR	58	×	120	78	*
25	19	DAD OF REDURE	57	39	9	89	59	Y	121	79	W
26	16	ISURS (7079)	58	3A	4	90	5.0	Z	122	16	*
27	18	It-scape!	50	38	- 2	91	58	T.	123	335	
28	10	PAESEMBARDE!	50	30		92	50	1	124)C	1
29	10	ESROOP SEMINARING	61	30		93	50	To	125	30	4
30	1E	ISECORD SEMINATORE	62	3E		94	56	W.	126	76	200
24	20	ENTER DOOR THE PARTY		20		A.F.	7.0		120	700	

- Küçük ve büyük harfler
- · Noktalama işaretleri
- · Matematiksel ifadeler
- Rakamlar
- Kontrol karakterleri

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

22

Bilginin Eşlenmesi – IV

Negatif Sayılar

- · 1's complement
 - En yüksek anlamlı bit (Most Significant Bit, MSB) işaret (sign) biti olarak kullanılır.
 - 0 : pozitif sayı
 - · 1: negatif sayı
 - · Sayının ikilik sistemdeki yazımının her bitin 1'e göre tersi alınır.
 - 11:0000 1011
 - · -11:1111 0100
- · 2's complement
 - 1'e göre ters alma işleminde sıfır için iki farklı değer üretilir. 2'ye göre ters alma işleminde ise bu problem yoktur.
 - 1'e göre ters alma işleminden sonra sayıya 1 eklenir.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

23

Bilginin Eşlenmesi - V

- Kesirli sayılar
 - IEEE Standard 754Floating Point Numbers
 - Single/Double precision
- Her iki formatta kullanılan yöntem benzerdir.
 - Kesirli sayının ifade edilmesi için kullanılacak 32-bit veya 64-bit uzunluğundaki alan Sign, Exponent ve Mantissa olarak adlandırılan 3 parçaya bölünür.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

24

Bilginin Eşlenmesi – V

- İşaret (Sign) Bit
 - 0 pozitif bir sayıyı, 1 ise negatif bir sayıyı ifade eder.
- Üs (Exponent) Bit'leri
 - Hem pozitfi hem de negatif üs bilgisinin ifade edilebilmesi için biased notation adı verilen yöntem kullanılır. IEEE standardında single precision için bu değer 127, double precision için ise 1023'tür.
- Ondalıklı (Mantissa) bitler
 - · Normalizasyon yapılmış olarak saklanır.
 - · İkili sistemde yapılan normalizasyon bir bit kazandıracaktır!

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

Bellek Organizasyonu

- İşlemciler aritmetik lojik işlemleri farklı boyutlardaki bilgiler üzerinde gerçekleştirebilir.
 - İşlemcinin tek seferde işleyebildiği bilgi boyutu bit cinsinden ifade edilir.
 - · 16-bit, 32-bit, 64-bit
 - Zaman zaman adres yolu ile veri yolu birbirinden farklı boyutta olan işlemcilerde olabilir.
- Günümüzde birçok kişisel bilgisayar 64-bit üzerinde işlem yapar.
 - 32-bit üzerinde işlem yapan bilgisayarların bellek adresleme kapasitesi 4GB ile sınırlıdır.

32-bit words	64-bit words	bytes	addr.
			0000
Addr:			0001
0000			0002
	Addr:		0003
	0000		0004
Addr:	W.DAGOORGEL		0005
0004			0006
			0007
			0008
Addr:			0009
8000			0010
	Addr:		0011
	8000		0012
Addr:			0013
0012			0014
			0015

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

29.09.2018

27

Little Endian / Big Endian

- Endian verinin belleğe yerleşiminin nasıl yapılacağını belirler.
- 0x0001020304050607

00	01	02	03	04	05	06	07
a	a+1	a+2	a+3	a+4	a+5	a+6	a+7

BIG ENDIAN

LITTLE ENDIAN

07	06	05	04	03	03	02	01
a	a+1	a+2	a+3	a+4	a+5	a+6	a+7

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

28