# Fyzikální praktikum I 5. Poissonova konstanta a měření dutých objemů

Jméno: **Michal Červeňák** Kolega: Kruh: **Pondelok** Číslo skup.:

Měřeno: 16.10.2017 Zpracování: 5 h Klasifikace:



# 1 Úkol 1

# 1.1 Pracovní úkol

1. DU: Odvoď te rovnici pro Poissonovu konstantu (14)[?]. Vyjděte z (2)[?] a (13)[?].

4

2. Změřte Poissonovu konstantu metodou kmitajícího pístku.

3. Změřte Poissonovu konstantu Clément-Désormesovou metodou. Nezapomeňte provést opravu vašeho měření na systematické chyby.

4. Oba výsledky vzájemně porovnejte (procentuálně) a diskutujte, jestli je v rámci chyb můžete považovat za stejné.

#### 1.2 Teória

Poissonova konstanta  $\kappa$  j pomer merného tepla  $C_p$  pri stálom objeme a pri stálom objeme  $C_V$ , teda

$$\kappa = \frac{C_p}{C_V} \,.$$

#### 1.2.1 Clémentova-Désormesova metoda

Metóda určuje Poissonova konstanta z adiabatického deja, pri ktorom vypúšťame plyn z nádoby kde je pretlak h. A po vypustení a ustálení teplôt h'. Pre výpočet  $\kappa$  môžeme odvodiť vzorec

$$\kappa = \frac{h}{h - h'} \,. \tag{1}$$

#### 1.2.2 Metoda kmitajícího pístku

Pre hodnotu  $\kappa$  môžeme odvodiť vzťah na závislosť do doby kmitu

$$\kappa = \frac{4mV}{T^2 p r^4} \,, \tag{2}$$

kde

$$p = b + \frac{mg}{\pi r^2} \,,$$

,<br/>pričom bje atmosferický tlak, hmotnosť piestu j<br/>e $m=4.59\cdot 10^{-3}\,\rm kg,$ objem banky je  $V=1,\!133\,\rm l,$  priemer piestu je<br/>  $2r=11.9\cdot 10^{-3}\,\rm m$ a g je tiažové zrýchlenie.

#### 1.2.3 Spracovanie chýb merania

Označme  $\langle t \rangle$ aritmetický priemer nameraných hodnôt  $t_i,$ a $\Delta t$ hodnotu  $\langle t \rangle - t,$ pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{3}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(4)

pričom n je počet meraní.

Majme veličina u = f(x, y, z, ...), potom podľa zákou šírenia chýb platí

$$\sigma_u = \sqrt{\left(\frac{\partial f}{\partial x}\right)_0^2 \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)_0^2 \sigma_y^2 + \left(\frac{\partial f}{\partial z}\right)_0^2 \sigma_z^2 + \dots},$$
 (5)

kde  $\sigma_i$  je stredná chyba veličiny i v bode  $(x_0, y_0, z_0)$ .

## 1.3 Postup merania

## 1.3.1 Metoda kmitajícího pístku

Najskôr bolo zapnuté čerpadlo vzduchu ktoré privádza vzduch do nádoby, ventilom bol nastavený prúd vzduchu, tak aby piest kmital medzi značkami. Bol spustený digitálny čítač kmitov a nastavený na počítanie kmitov po  $t=300\,\mathrm{s}$ , po uplynutí intervalu boli dáta zaznamenané a opätovné spustenie počítanie.

#### 1.3.2 Clémentova-Désormesova metoda

Pripravená nádoba nádoba bola natlakovaná pomocou mechu, bol uzavretý prívodný ventil tlak v nádobe bol odmeraný barometru. Pomocou rýchlo-ventilu bola časť vzduchu odpustená, pričom bol zaznamenaný čas otvorenia ventilu. Následne sa počkalo  $\sim 1\,\mathrm{min}$  na ustálenie teplôt v nádobe s okolím a bol zmeraný opäť tlak v aparatúre.

# 1.4 Pomôcky

Barometr, aparatura na měřené Poissonovy konstanty Clément-Désormesovou metodou, aparatura pro měření Poissonovy konstanty metodou kmitajícího pístku.

# 1.5 Výsledky merania

#### 1.5.1 Metoda kmitajícího pístku

V tab. 1 sú zaznamenané počty kmitov za čas  $t=300\,\mathrm{s}$ , pre jednotlivé merania. Z hodnôt v tab 1 bol vypočítaná priemerná hodnota počtu kmitov $\langle N \rangle = 883, 2\pm 2, 0$ . Pomocou vzťahov 2 a 5 bola vypočítaná Poissonova konstanta  $\kappa=1,62\pm0,01$ .

| $\frac{N}{[-]}$ |  |
|-----------------|--|
| 879             |  |
| 885             |  |
| 886             |  |
| 885             |  |
| 884             |  |
| 883             |  |
| 883             |  |
| 883             |  |
| 882             |  |
| 882             |  |

Tab. 1: Namerané počty kmitov N za čas  $t=300\,\mathrm{s}$ 

#### 1.5.2 Clémentova-Désormesova metoda

Namerané hodnoty výšok hladín, pred a po vypustení, na otváracom čase sú v tabuľke 3. Tie boli vynesené do grafu 1, dáta boli preložené lineárnou funkciu  $f(t) = (-0.15 \pm 0.10) \, t + (1.335 \pm 0.021)$ , kde absolútny člen odpovedá hodnote  $\kappa$ , extrapolovanej pre nulový otvárací čas, teda pre dokonalý adiabatický dej. Hodnoty vypočítané len za pomoci tabuľky a priemeru podľa vzťahu 4 je  $\kappa = 1,305 \pm 0,044$ stat. $\pm 0,341$ sys..

#### 1.6 Diskusia

Pri metóde kmitajúceho piestu je hlavný zdroj chýb netesnosť medzi piestom a aparatúrou

Clémentova-Désormesova metoda sa však viac približuje očakávanému výsledku  $\kappa = -\infty 1,40~pre~N_2~alebo~O_2[2]$ . Hlavné nepresnosti pri tejto metóde spočívajú v nie dokonalým vyrovnaním teplôt po vypustení plynu, nedostatočným tepelným izolovaním nádoby.

Zároveň je vidno, že fitom a extrapoláciou sme výsledok upresnili narozdiel od jednoduchého vypočítania priemernej hodnoty z tabuľky.

## 1.7 Záver

Clémentova-Désormesovou metódou bola  $\kappa_{(0)}=1,335\pm0,021$  resp.  $\kappa=1,305\pm0,044$ stat. $\pm0,341$ sys., a metódou kmitajúceho piestu  $\kappa=1,62\pm0,01$ .

# 2 Úkol #2

#### 2.1 Pracovní úkol

1. Určete objem láhve metodou vážení.



Obr. 1: Vypočítané hodnoty  $\kappa$  v závislosti na otváracom čase t, preložené funkciou  $f(t)=(-0.15\pm0.10)\,t+(1.335\pm0.021)$ 

- 2. Určete objem ťěze láhve pomocí komprese plynu.
- 3. Oba výsledky vzájemně porovnejte.

# 2.2 Pomôcky

Fľaška (nádoba), plynová byreta s porovnávacím ramenem, katetometr, teploměr, barometr, digitálne váhy do 5 kg.

# 3 Teória

#### 3.0.1 Metóda kompresie plynu

Pre metódu kompresie plynu v našom prípade môžeme odvodiť vzťah

$$V = (V_2 - V_1) \frac{p}{\Delta p} + V_2 - V_{100}, \qquad (6)$$

, kde

$$\Delta p = \Delta h \varrho g \,,$$

pričom  $V_1$  je objem v byrete pri vyrovnaní tlakov,  $\Delta h$  je rozdiel hladín, a  $V_2$  výška hladiny po kompresií, g je tiažové zrýchlenie a p je atmosferický tlak. V našom prípade  $V_1=14\,\%$  a  $V_{100}=65,6\,\mathrm{cm}^3$ 

| $\frac{h_1}{[\mathrm{cm}]}$ | $\frac{h_2}{[\mathrm{cm}]}$ | $\frac{t}{[\mathbf{s}]}$ | $\frac{h_1'}{[\mathrm{cm}]}$ | $\frac{h_2'}{[\mathrm{cm}]}$ | $\frac{\kappa}{[-]}$ |
|-----------------------------|-----------------------------|--------------------------|------------------------------|------------------------------|----------------------|
| $10.0 \pm 1.0$              | $49.0 \pm 1.0$              | $0.154 \pm 0.001$        | $24.5 \pm 1.0$               | $34,5 \pm 1,0$               | $1,34 \pm 0,21$      |
| $14.0 \pm 1.0$              | $45,2 \pm 1,0$              | $0,178 \pm 0,001$        | $26,0 \pm 1,0$               | $33,0 \pm 1,0$               | $1,29 \pm 0,30$      |
| $13,0 \pm 1,0$              | $46,5 \pm 1,0$              | $0,134 \pm 0,001$        | $26,5 \pm 1,0$               | $33,0 \pm 1,0$               | $1,24 \pm 0,32$      |
| $12,0 \pm 1,0$              | $47.0 \pm 1.0$              | $0,158 \pm 0,001$        | $25,5 \pm 1,0$               | $34,0 \pm 1,0$               | $1,32 \pm 0,25$      |
| $11,0 \pm 1,0$              | $48,5 \pm 1,0$              | $0.143 \pm 0.001$        | $25,0 \pm 1,0$               | $34,5 \pm 1,0$               | $1,34 \pm 0,22$      |
| $13,0 \pm 1,0$              | $46,5 \pm 1,0$              | $0,129 \pm 0,001$        | $25,5 \pm 1,0$               | $34.0 \pm 1.0$               | $1,34 \pm 0,25$      |
| $9.5 \pm 1.0$               | $50.0 \pm 1.0$              | $0.167 \pm 0.001$        | $24.0 \pm 1.0$               | $35,0 \pm 1,0$               | $1,37 \pm 0,19$      |
| $10,0 \pm 1,0$              | $49.5 \pm 1.0$              | $0,150 \pm 0,001$        | $25,0 \pm 1,0$               | $34,5 \pm 1,0$               | $1,32 \pm 0,22$      |
| $13,0 \pm 1,0$              | $46.5 \pm 1.0$              | $0.131 \pm 0.001$        | $25,5 \pm 1,0$               | $34.0 \pm 1.0$               | $1,34 \pm 0,25$      |
| $12,0 \pm 1,0$              | $47.5 \pm 1.0$              | $0,426 \pm 0,001$        | $26.0 \pm 1.0$               | $33,5 \pm 1,0$               | $1,27 \pm 0,28$      |
| $13.5 \pm 1.0$              | $46.0 \pm 1.0$              | $0.180 \pm 0.001$        | $26.0 \pm 1.0$               | $33,5 \pm 1,0$               | $1,30 \pm 0,28$      |
| $19,0 \pm 1,0$              | $40.5 \pm 1.0$              | $0,274 \pm 0,001$        | $27.5 \pm 1.0$               | $32,0 \pm 1,0$               | $1,26 \pm 0,46$      |
| $13,0 \pm 1,0$              | $46.5 \pm 1.0$              | $0.354 \pm 0.001$        | $26,0 \pm 1,0$               | $33.5 \pm 1.0$               | $1,29 \pm 0,28$      |
| $15,0 \pm 1,0$              | $44.5 \pm 1.0$              | $0.143 \pm 0.001$        | $26,0 \pm 1,0$               | $33,5 \pm 1,0$               | $1,35 \pm 0,28$      |
| $18,5 \pm 1,0$              | $41,0 \pm 1,0$              | $0,185 \pm 0,001$        | $27.0 \pm 1.0$               | $32,5 \pm 1,0$               | $1,32 \pm 0,38$      |
| $19,0 \pm 1,0$              | $40,5 \pm 1,0$              | $0,109 \pm 0,001$        | $27.0 \pm 1.0$               | $32,5 \pm 1,0$               | $1,34 \pm 0,39$      |
| $17.5 \pm 1.0$              | $42,0 \pm 1,0$              | $0,095 \pm 0,001$        | $27.5 \pm 1.0$               | $33,0 \pm 1,0$               | $1,29 \pm 0,38$      |
| $12,5 \pm 1,0$              | $47.0 \pm 1.0$              | $0,097 \pm 0,001$        | $25,5 \pm 1,0$               | $34.0 \pm 1.0$               | $1,33 \pm 0,25$      |
| $25,0 \pm 1,0$              | $34,5 \pm 1,0$              | $0.153 \pm 0.001$        | $29,0 \pm 1,0$               | $30,5 \pm 1,0$               | $1,\!19 \pm 1,\!37$  |
| $10,0 \pm 1,0$              | $49,5 \pm 1,0$              | $0,407 \pm 0,001$        | $25,5 \pm 1,0$               | $34,0 \pm 1,0$               | $1,27 \pm 0,25$      |

Tab. 2: Namerané hodnoty výšok hladín  $h_i$  pred vypustením a  $h_i'$  po vypustení časti vzduchu, t je otvárací čas a  $\kappa$  vypočítaná pomocou vzťahu 1 a 5

## 3.0.2 Metóda vážení

Jednotkový objem vody je závisí na teplote t v °C podľa vzťahu

$$V_v = 0.9998 \cdot (1 + 0.00018t) \frac{\text{cm}^3}{\text{g}}.$$
 (7)

Potom objem metódou váženia určíme ako

$$V = (m_n - m_p) V_v, \qquad (8)$$

kde  $m_n$  je hmotnosť nádoby s vodou,  $m_p$  je hmotnosť prázdnej nádoby a  $V_v$  je jednotkový objem zo vzťahu 7.

# 3.1 Postup merania

## 3.1.1 Metóda kompresie plynu

Najskôr bol povolením ventilu vyrovnaný tlak v byrete s atmosferickým tlakom. Bola odčítaná a zaznamenaná počiatočná hodnota  $V_1$ , odzvdušňovací ventil pol zatvorený.

Následne sa vertikálne pohlo s nádobou s vodou, počkalo sa na ustálenie hladín a boli odčítané hodnoty  $\Delta h$  reprezentované  $h_1$  a  $h_2$ ,  $V_2$ . Postup sa opakoval niekoľkokrát pre veľkú nádobu. Meraná nádoba bola vymenená za utesnenie a postup bol zopakovaný pre meranie objemu len hadičky.

#### 3.1.2 Metóda vážení

- 1. Prázdna nádoba bola odvážená na digitálnych váhach
- 2. Merané nádoba bola pookraj naplnená vodou a dôkladne osušení jej povrch
- 3. Naplnená nádoba bola opäť odvážená

# 3.2 Výsledky merania

## 3.2.1 Metóda kompresie plynu

V tab. 3 sú zaznamenané namerané hodnoty  $V_2$  a  $\Delta h$  z ktorých bola vypočítaná hodnota V. V prvej časti tabuľky sú hodnoty pre fľašku v druhej časti je hodnota pre samotnú hadičku.

| $\frac{h_1}{[\mathrm{mm}]}$ | $\frac{h_2}{[\mathrm{mm}]}$ | $\frac{V_2}{[\%]}$ | $\frac{V}{[\text{cm}^3]}$ |
|-----------------------------|-----------------------------|--------------------|---------------------------|
| 127,90                      | 127,90                      | 14                 | _                         |
| 102,78                      | 87.76                       | 18                 | 1738,07                   |
| 87.95                       | 46.29                       | 22                 | 1240,99                   |
| 153,53                      | 186,76                      | 10                 | 750,90                    |
| 143,42                      | 169,16                      | 11,5               | 595, 49                   |
| 164,84                      | 164, 84                     | 70                 | _                         |
| 162,91                      | 126,60                      | 7,5                | 65,59                     |
| 161,35                      | 103,88                      | 8                  | 65,59                     |
| 165,90                      | 184,78                      | 3,5                | 65,58                     |
| 163,40                      | 123, 39                     | 7,4                | 65,59                     |

Tab. 3: Namerané hodnoty  $h_1$ ,  $h_2$  a  $V_2$  a vypočítaný objem V, v prvej časti pre nádobu a v druhej pre hadičku.

Objem fľašky  $V_f = 1071,15\pm514,30 \,\mathrm{cm^3}$  po odčítaný objemu hadičky  $V_h = 65,59\pm0,01 \,\mathrm{cm^3}$  bol určený ako  $V = 1005,55\pm514,30 \,\mathrm{cm^3}$ .

## 3.2.2 Metóda vážení

Hmotnosť prázdnej suchej nádoby bola určená  $m_p=(570\pm1)$  g, jednotková hmotnosť vody pri  $t=12,5\,^{\circ}\mathrm{C}$  bola určená podľa 7 ako  $V_v=1,003\,\frac{\mathrm{cm}^3}{\mathrm{g}}$  Hmotnosť po naplnení vodou bola určená  $m_n=(1582\pm1)$  g. Podľa vzorca 8 bol objem nádoby určený ako  $V=(1012\pm2)~\mathrm{cm}^3$ .

# 3.3 Diskusia

Navzdory veľkej chybe merania u metódy kompresie plynu sa stredná hodnota zhoduje s hodnotou nameranou metódou váženia, ktorá je zároveň omoc presnejšia. Hlavným problémom u metódy kompresie plynu bola postupná strata tlaku cez odvzdušňovací ventil a iné netesnosti, pokiaľ sa pomocou katetometru odmerala výška tak časť vzduchu uniklo a teda sa hladina sa výrazne pohla, Je zaujímavé, že pri tomto meraní štatistická chyba dosiahla úrovne  $\sim 50\%$ , čo z tohoto merania robí veľmi nepresné meranie.

# 3.4 Záver

Metódou váženia bol objem nádoby určený na  $V=(1012\pm2)~{\rm cm^3}$ . Metódou kompresie plynu bol určený objem  $V=(1005,55\pm514,30)~{\rm cm^3}$ .

# Reference

- [1] Měření Poissonovy konstanty a dutých objemů [cit. 22.10.2017] Dostupné po prihlásení na: https://praktikum.fjfi.cvut.cz/pluginfile.php/4350/mod\_resource/content/4/Poisson\_171006.pdf
- [2] Fyzikální a jiné konstanty [cit. 15.10.2017] Jiří Bureš: http://www.converter.cz/prevody/konstanty.htm