UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CCT PROGRAMA DE GRADUAÇÃO EM ENGENHARIA MECÂNICA

ANDRÉ LUIZ FLORIANO

SELEÇÃO DE CORREIAS

JOINVILLE 2025

1 INTRODUÇÃO

As correias são elementos de transmissão amplamente utilizados na indústria para transferir potência entre eixos, encontrando aplicação em equipamentos diversos como motores, compressores, bombas, ventiladores, máquinas agrícolas e sistemas de transporte. Sua versatilidade permite uso desde pequenos eletrodomésticos até grandes instalações industriais.

Entre as principais vantagens das correias destacam-se a operação silenciosa, absorção de vibrações, baixo custo de manutenção e facilidade de instalação. Estas características tornam as transmissões por correias uma solução prática e econômica para diversas aplicações mecânicas.

O presente trabalho aborda os critérios e metodologias para a escolha adequada de correias em projetos de engenharia mecânica, considerando fatores como tipo de aplicação, potência a ser transmitida, condições operacionais e requisitos de disposição.

Figura 1 – Aplicação automotiva de correias

Fonte: (Sild, 2022)

2 SELEÇÃO DE CORREIAS TRAPEZOIDAIS

A seleção de correias se inicia com a definição dos parâmetros fundamentais do sistema de transmissão, sendo eles:

- Potência a transmitir
- Rotação dos eixos
- Características do acionamento
- Estimativa de distância entre eixos

Pode-se dividir o processo de escolha em alguns passos bem definidos:

2.1 PASSO 01 - DEFINIÇÃO DA POTÊNCIA DE PROJETO

Com base na potência nominal, pode-se estimar a potência efetiva, com base nas condições de serviço, representadas por K_0 .

$$P_P = K_0 \cdot N_0 \tag{1}$$

Os valores para K_0 são obtidos a partir da seguinte tabela:

Figura 2 – Fator de Serviço

Características	Tipo de acionamento			
do equipamento	Motor elétrico	Motor de combustão interna		
	ou turbina	com acionamento	com acionamento	
		hidráulico	mecânico	
Constante (1)	1,0	1,0	1,2	
Choques moderados	1,3	1,2	1,4	
ou meio impulsivo (2)				
Choques pesados	1,5	1,4	1,7	
ou bastante impulsivo (3)				

2.2 PASSO 02 - DEFINIÇÃO DO PERFIL DA CORREIA

Com base na potência e na rotação do eixo, pode-se utilizar a Figura 3 para definir o perfil da correia

5000 4000 3450 3000 2500 2000 1500 Α В RPM do eixo mais rápido 1160 C 1000 D 870 800 690 575 500 300 250 200 150 100 300 400 500 1000 HP de Projeto (HP do motor x Fator de serviço)

Figura 3 – Gráfico de seleção para correias trapezoidais.

Fonte: (Barbieri, 2022)

Figura 4 – Opções de perfis de Correia

2.3 PASSO 03 - DEFINIÇÃO DOS DIÂMETROS DAS POLIAS

Caso não haja definição do diâmetro da polia motora, deve-se adotar o diâmetro recomendado pela Figura 3. A polia movida é determinada a partir da razão de transmissão necessária.

2.4 PASSO 04 - DEFINIÇÃO DA VELOCIDADE TANGENCIAL DA CORREIA

Possuindo todos os dados do sistema, pode-se calcular a velocidade da correia utilizando a Eq. (2).

$$v = w \cdot r_p = \frac{\pi \cdot d_p \cdot n}{60} \tag{2}$$

Em termos práticos, a velocidade a correia não deve ultrapassar 20 m/s.

2.5 PASSO 05 - DEFINIÇÃO DO COMPRIMENTO DA CORREIA E DO ÂNGULO DE ABRAÇAMENTO DA POLIA

Com a definição dos diâmetros das polias e a distância entre centros pode-se calcular o comprimento da polia:

Abertas:

$$L = 2a + 1,57(dp_2 + dp_1) + \frac{(dp_2 - dp_1)^2}{4a}$$
(3)

Cruzadas:

$$L = 2a + 1,57(dp_2 + dp_1) + \frac{(dp_2 + dp_1)^2}{4a}$$
(4)

E também o ângulo de contato:

$$\theta = \pi \pm 2arcsen\left(\frac{dp_2 - dp_1}{2a}\right) \tag{5}$$

2.6 PASSO 06 - DEFINIÇÃO DO COMPRIMENTO PADRONIZADO DA CORREIA E CORREÇÃO DA DISTÂNCIA ENTRE CENTROS

O comprimento da correia deve ser aproximado em um comprimento comercial, encontrado na Tabela 9.13 de (Barbieri, 2022). A diferença entre o comprimento original e o padronizado será corrigida na distância entre centros com base na Eq. (6).

$$a_{conv} = a - \left(\frac{L - L_{tab}}{2}\right) \tag{6}$$

2.7~ PASSO 07 - DETERMINAÇÃO DOS FATORES DE CORREÇÃO

A fim de acomodar propriamente as correias padronizadas, pequenos ajustes nos ângulos de contato e comprimento devem ser realizados, utilizando as Figuras 5 e 6

Figura 5 – Fator de Correção Arco

Arco de contato (graus)	F _{AC}
180	1,00
177	0,99
174	0,985
171	0,98
169	0,97
166	0,965
163	0,96
160	0,95
157	0,94
154	0,935
151	0,93
148	0,92
145	0,91
142	0,90
139	0,89
136	0,88
133	0,87
130	0,86
127	0,85
123	0,83
120	0,82
113	0,80
106	0,77
99	0,73
91	0,70

Figura 6 – Fator de Correção Comprimento

Designação do	Perfil/F _{LD}				
tamanho	А	В	С	D	
26	0,81				
31	0,84				
35	0,87	0,81			
38	0,88	0,83			
42	0,90	0,85			
46	0,92	0,87			
51	0,94	0,89	0,80		
55	0,96	0,90	-		
60	0,98	0,92	0,82		
68	1,00	0,95	0,85		
75	1,02	0,97	0,87		
80	1,04	-	-		
81	-	0,98	0,89		
85	1,05	0,99	0,90		
90	1,06	1,00	0,91		
96	1,08	-	0,92		
97	-	1,02	-		
105	1,10	1,04	0,94		
112	1,11	1,05	0,95		
120	1,13	1,07	0,97	0,86	
128	1,14	1,08	0,98	0,87	
144		1,11	1,00	0,90	
158		1,13	1,02	0,92	
173		1,15	1,04	0,93	
180		1,16	1,05	0,94	
195		1,18	1,07	0,96	
210		1,19	1,08	0,98	
240		1,22	1,11	1,00	
270		1,25	1,14	1,03	
300		1,27	1,16	1,05	
330			1,19	1,07	
360			1,21	1,09	
390			1,23	1,11	
420			1,24	1,12	
480				1,16	

2.8 PASSO 08 - DETERMINAÇÃO DO HP BÁSICO E DO HP ADICIONAL POR CORREIA

Dada designação de correia possui parâmetros máximos de operação, utilizando as tabelas 9.6 a 9.9 e 9.6A a 9.9A de (Barbieri, 2022), pode-se estimar a potência básica e adicional

$$HP_{class} = HP_{bas} + HP_{adic} \tag{7}$$

2.9 PASSO 09 - DETERMINAÇÃO DO HP EFETIVO E DO NÚMERO DE CORREIAS

Com os fatores de correção em mãos, juntamente com os valores de potência, pode-se estimar a potência efetiva. Também seno possível definir o número de correias necessárias para o projeto.

$$HP_{\text{efet}} = HP_{\text{class}} \cdot F_{AC} \cdot F_{LP} \tag{8}$$

$$N_{\text{correias}} = \frac{P_p}{HP_{\text{efet}}} \tag{9}$$

3 SELEÇÃO DE CORREIAS SINCRONIZADORAS

Para a escolha das polias sincronizadoras são necessários os parâmetros fundamentais para correias trapezoidais citados na seção 2.

3.1 PASSO 01 - DEFINIÇÃO DA POTÊNCIA DO PROJETO

Com base na Figura 2 para se obter o fator de serviço, na Eq.(1) se consegue calcular a potência de projeto.

3.2 PASSO 02 - DEFINIÇÃO DA ESPECIFICAÇÃO DA CORREIA

A partir da potência e da rotação do eixo motor, é possível determinar a especificação da correia utilizando a Figura 7

Figura 7 – Ábaco seleção de correias sincronizadoras

3.3 PASSO 03 - DEFINIÇÃO DOS NÚMEROS DE DENTES E DIÂMETROS DAS POLIAS

Em função da potência de projeto e da rotação do eixo mais rápido, é possível definir o número de dentes mais recomendado para a polia motora, com base nas tabelas 9.10 a 9.13 de (Barbieri, 2022). Deve-se manter em mente o número mínimo de dentes recomendado para cada situação.

As tabelas de (Barbieri, 2022) 9.20 a 9.23 fornecem o diâmetro das polias em função do número de dentes.

3.4 PASSO 04 - DEFINIÇÃO DA VELOCIDADE TANGENCIAL DA CORREIA

Usa-se a Eq. (2) para determinar a velocidade tangencial da correia

3.5 PASSO 05 - DEFINIÇÃO DA DISTÂNCIA ENTRE EIXOS

Para uma estimativa prévia da distância entre os eixos, pode-se usar as seguintes relações:

$$a > 0, 5(d_{p2} + d_{p1}) + 15$$
mm e $a < 2, 0(d_{p2} + d_{p1})$ (10)

3.6 PASSO 06 - CÁLCULO DO COMPRIMENTO DA CORREIA

Utiliza-se a Eq. (3) para o cálculo do comprimento da correia

3.7 PASSO 07 - ESCOLHA DO COMPRIMENTO E CORREÇÃO DA DISTÂNCIA ENTRE CENTROS

Efetiva-se os ajustes de comprimento com base nas Tabelas 9.14 a 9.17 de (Barbieri, 2022). O ajuste final é realizado usando a Eq. (6).

3.8 PASSO 08 - DETERMINAÇÃO DE DENTES EM CONTATO COM A POLIA PEQUENA

É possível determinar a quantidade de dentes em contato com a polia pequena durante o funcionamento do sistema utilizando:

$$z_e = \frac{z_1}{6} \left(3 - \frac{d_{p2} - d_{p1}}{a_{corr}} \right) \tag{11}$$

3.9~ PASSO 09 - DETERMINAÇÃO DOS FATORES DE CORREÇÃO

Como nas correias trapezoidais, fatores de correção precisam ser aplicados, são obtidos a partir das Figuras 8 e 9, com base no número de dentes em contato e o comprimento.

Figura 8 – Fator de correção com número de dentes

Número de dentes em contato com a polia pequena	Fz
≥ 6	1,00
5	0,80
4	0,60
3	0.40
2	0,20

Fonte: (Barbieri, 2022)

Figura 9 – Fator de correção com comprimento

PERFIL 3M		PERFIL 5M		
L _{TAB} (mm)	F _{LP}	L _{TAB} (mm)	F _{LP}	
≤ 190	0,8	≤ 440	0,8	
>190 ≤ 260	0,9	> 440 ≤ 555	0,9	
> 260 ≤ 400	1,0	> 555 ≤ 800	1,0	
> 400 ≤ 600	1,1	> 800 ≤ 1100	1,1	
> 600	1,2	> 1100	1,2	
PERFIL 8M		PERFIL 14M		
L _{TAB} (mm)	F _{LP}	L _{TAB} (mm)	F _{LP}	
≤ 600	0,8	≤ 1190	0,8	
> 600 ≤ 880	0,9	> 1190 ≤ 1610	0,9	
> 880 ≤ 1200	1,0	> 1610 ≤ 1890	0,95	
> 1200 ≤ 1760	1,1	> 1890 ≤ 2450	1,0	
> 1760	1,2	> 2450 ≤ 3150	1,05	

3.10 PASSO 10 - VERIFICAÇÃO DA POTÊNCIA NOMINAL DA CORREIA

Os limites de potência nominal que as correias são capazes de transmitir estão presentes nas Tabelas 9.10 a 9.13 de (Barbieri, 2022), se encontram em função do número de dentes e da rotação. Deve-se verificar se a correia selecionada atende os requisitos do projeto, caso seja necessário deve-se selecionar uma largura de correia superior, a seguinte equação exibe essa relação.

$$P_N F_{LP} F_Z \ge P_P \tag{12}$$

REFERÊNCIAS

BARBIERI, Renato. **Elementos de Máquinas**: Projeto de sistemas mecânicos. 2. ed. São Paulo: Blucher, 2022. Descrição física. Citado 10 vezes nas páginas 2, 3, 4, 5, 6, 7, 8, 9, 10 e 11.

SILD, Siim. **Belt Drives & Types of Belts**. 2022. Acesso em: 25 de Setembro de 2025. Disponível em: https://fractory.com/belt-drives/. Citado na página 1.