FICHA 3 Outubro

Limites e continuidade

1. Em cada alínea, determina $\lim_{x\to c} f(x)$ para o valor de c indicado:

2. Estude a existência de limite na origem, para as seguintes funções:

3. Calcule, se existirem, os seguintes limites (recorde que $\lim_{x\to 0} \frac{\sin x}{x} = 1$):

(a)
$$\lim_{x\to 0^-} \frac{|x|}{x}$$
;

(b)
$$\lim_{x \to -1^+} \frac{7}{x+1}$$
;

(a)
$$\lim_{x\to 0^-} \frac{|x|}{x}$$
; (b) $\lim_{x\to -1^+} \frac{7}{x+1}$; (c) $\lim_{x\to 0} \frac{\sin 3x - \sin 2x}{x}$;

(d)
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

(e)
$$\lim_{x \to -5^+} \frac{|x+5|}{x+5}$$
;

(d)
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$
; (e) $\lim_{x \to -5^+} \frac{|x+5|}{x+5}$; (f) $\lim_{x \to 0} \frac{\sin(x^3) - \sin^3 x}{x^3}$;

(g)
$$\lim_{x \to 0^+} \frac{\sin \sqrt{x}}{x}$$

(h)
$$\lim_{x \to 3^+} \frac{\sqrt{(x-3)^2}}{x-3}$$

$$\text{(g)} \lim_{x \to 0^+} \frac{\sin \sqrt{x}}{x} \; ; \qquad \text{(h)} \lim_{x \to 3^+} \frac{\sqrt{(x-3)^2}}{x-3} \; ; \qquad \text{(i)} \lim_{x \to 0^+} \frac{\sqrt{x} - \sin^2 \sqrt{x}}{x} \; ;$$

(j)
$$\lim_{x \to 0} \frac{\sin 5x}{\sin x}$$

(k)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
;

$$\text{(j)} \lim_{x \to 0} \frac{\sin 5x}{\sin x} \; ; \qquad \text{(k)} \lim_{x \to 0} \frac{1 - \cos x}{x^2} \; ; \qquad \text{(l)} \lim_{x \to +\infty} \frac{x - \sin x}{x + \sin x} \; ;$$

(m)
$$\lim_{x \to -\infty} e^{\cos x}$$

(m)
$$\lim_{x \to -\infty} e^{\cos x}$$
; (n) $\lim_{x \to +\infty} e^x \cos x$; (o) $\lim_{x \to -\infty} e^x \cos x$;

(o)
$$\lim_{x \to \infty} e^x \cos x$$
;

(p)
$$\lim_{x \to +\infty} \frac{1}{1 + e^{1/x}}$$

(q)
$$\lim_{x\to 0} \frac{1}{1+e^{1/x}}$$
;

(p)
$$\lim_{x \to +\infty} \frac{1}{1 + e^{1/x}}$$
; (q) $\lim_{x \to 0} \frac{1}{1 + e^{1/x}}$; (r) $\lim_{x \to +\infty} (x^2 + x \cos x)$;

(s)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - x - 2}$$
; (t) $\lim_{x \to 2} \frac{1/x^3 - 1/8}{x - 2}$; (u) $\lim_{x \to 0} (\sec x \cos(1/x))$.

(u)
$$\lim_{x\to 0} (\operatorname{sen} x \cos(1/x))$$

4. Sabendo que $\lim_{x\to 0} f(x) = 2$, calcula o limite em x=0 das seguintes funções:

(a)
$$\frac{(x-1)f(x)}{f(x)^3-1}$$
; (b) $(f(x)-2)\cos(\frac{1}{x})$.

- 5. Em cada alínea da pergunta 1., estude a continuidade da função no ponto c indicado. Nos casos em que a função não é contínua no ponto, justifique.
- 6. Determine o domínio de continuidade das seguintes funções

(a)
$$f(x) = \begin{cases} x & \text{se } x > 1 \\ \frac{1}{x} & \text{se } 0 < x \le 1 \\ 0 & \text{se } x \le 0 \end{cases}$$
; (b) $f(x) = \begin{cases} \frac{|x|}{x} & \text{se } x \ne 0 \\ 1 & \text{se } x = 0 \end{cases}$.

- 7. Mostre que a função $h: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $h(x) = \sin x + 1 x^2$ possui, pelo menos, um zero em] $-\pi$, 0[e outro em]0, π [.
- 8. Mostre que as seguintes equações possuem soluções nos intervalos indicados:

(a)
$$x^3 - x + 3 = 0$$
, $] - 2, -1[;$ (b) $x = \cos x$, $[0, \pi/2]$;

(b)
$$x = \cos x$$
, $[0, \pi/2]$

(c)
$$x = -\log x$$
, [0, 1]; (d) $2 + x = e^x$, \mathbb{R} ;

(d)
$$2 + x = e^x$$
.

(e)
$$x^5 + x^3 = 2$$
, [0]

(e)
$$x^5 + x^3 = 2$$
, [0, 1]; (f) $\frac{1}{x} = \sec x$, $\left[\frac{\pi}{2}, \pi\right]$.

9. Seja f uma função contínua no seu domínio. Dizemos que f tem um ponto fixo se existir um elemento x do domínio tal que f(x) = x. Prove que a função f com domínio [-1,1] que satisfaz f(-1) = 0 = f(1) tem um ponto fixo.