Math 110, Summer 2013 Instructor: James McIvor Homework 2 Due Wednesday, July 10th

- (1) (Axler 2.11) If V is a finite-dimensional vector space and U a subspace of V with dim $U = \dim V$, prove that U = V.
- (2) (Axler 2.17) Prove that if U_1, \ldots, U_m are subspaces of a finite-dimensional space V such that $V = U_1 \oplus \cdots \oplus U_m \oplus U_m$ U_m , then

$$\dim V = \dim U_1 + \dots + \dim U_m$$

- (3) Suppose V is a vector space of dimension n, and U is a subspace of V of dimension m, and that W is another subspace of V such that V = U + W. What are the possible values for dim W? What are the possible values for dim W if we assume further that $V = U \oplus W$? Justify your answers.
- (4) Prove that the following functions are linear maps:
 - (a) "Evaluation map": Let $c \in \mathbb{F}$. The map $T_c \colon P(\mathbb{F}) \to \mathbb{F}$ is given by $T_c p(x) = p(c)$.
 - (b) "Multiplication by x": $T: P(\mathbb{F}) \to P(\mathbb{F})$ is given by Tp(x) = xp(x).
- (5) Prove what I call the "Construction Theorem": Let dim V = n, and (v_1, \ldots, v_n) be a basis for V, and let w_1,\ldots,w_n be any n vectors in W. Then there exists a unique linear map $T\colon V\to W$ such that $Tv_i=w_i$ for each $i = 1, \ldots, n$.
- (6) Let V be a vector space, and U, W two subspaces such that $V = U \oplus W$. We define a map $P_U \colon V \to V$ (the "projection onto U") as follows. Pick any v in V. Write it as v = u + w, for some $u \in U$ and $w \in W$. Then set $P_U(v) = u$.

 - (a) Prove that P_U is a linear map. (b) Prove that $P_U^2 = P_U$ (here P_U^2 means $P_U \circ P_U$).
- (7) Consider the one-dimensional complex vector space \mathbb{C}^1 . Let $T:\mathbb{C}^1\to\mathbb{C}^1$ be given by T(a+bi)=a. Is Tlinear? Explain why or why not.
- (8) (Axler 3.1) Prove that if dim V=1 and $T\in\mathcal{L}(V,V)$, then there is a scalar $a\in\mathbb{F}$ such that Tv=av for every v in V.
- (9) Consider the following two functions: $S_1: \mathbb{F} \to \mathcal{L}(P(\mathbb{F}), \mathbb{F})$ given by, for $c \in \mathbb{F}$, $S_1c = T_c$ (where T_c is the evaluation map defined in problem 4a), and $S_2: \mathcal{L}(P(\mathbb{F}), \mathbb{F}) \to \mathbb{F}$, where $S_2(T) = T(x^n)$ (here n is some fixed natural number).
 - (a) Verify that S_1 is not linear.
 - (b) For which natural number(s) n is the composite function $S_2 \circ S_1 \colon \mathbb{F} \to \mathbb{F}$ nevertheless still linear?