openEVario

Generated by Doxygen 1.8.9.1

Mon Mar 28 2016 23:41:26

Contents

1	Tode	o List			1
2	Nam	nespace	Index		3
	2.1	Names	space List	t	3
3	Clas	s Index			5
	3.1	Class	List		5
4	File	Index			7
	4.1	File Lis	st		7
5	Nam	nespace	Docume	entation	9
	5.1	openE	V Namesp	pace Reference	9
		5.1.1	Typedef	Documentation	9
			5.1.1.1	FloatType	9
			5.1.1.2	RotationMatrix3DType	9
			5.1.1.3	Vector3DType	10
		5.1.2	Variable	Documentation	10
			5.1.2.1	GRAVITY	10
			5.1.2.2	lenLatitude	10
6	Clas	s Docu	mentatio	o <mark>n</mark>	11
	6.1	openE	V::FastMa	ath Class Reference	11
		6.1.1	Detailed	Description	12
		6.1.2	Construc	ctor & Destructor Documentation	12
			6.1.2.1	FastMath	12
			6.1.2.2	~FastMath	12
		6.1.3	Member	r Function Documentation	12
			6.1.3.1	fastATan2	12
			6.1.3.2	fastATan2Pos	12
			6.1.3.3	fastATanRaw	13
			6.1.3.4	fastCos	13
			6125	factCin	10

iv CONTENTS

		6.1.3.6	fastSinPositive	13
		6.1.3.7	fastSinRaw	14
	6.1.4	Member	Data Documentation	14
		6.1.4.1	atanTable	14
		6.1.4.2	degToRad	14
		6.1.4.3	radToDeg	14
		6.1.4.4	sineSamplesPerDegree	14
		6.1.4.5	sinusTable	14
		6.1.4.6	sizeATanTable	15
		6.1.4.7	sizeSineTable	15
6.2	openE	V::GliderVa	arioMeasurementMatrix Class Reference	15
	6.2.1	Detailed	Description	15
	6.2.2	Member	Typedef Documentation	15
		6.2.2.1	MeasureMatrixType	15
	6.2.3	Construc	tor & Destructor Documentation	16
		6.2.3.1	GliderVarioMeasurementMatrix	16
		6.2.3.2	~GliderVarioMeasurementMatrix	16
	6.2.4	Member	Function Documentation	16
		6.2.4.1	calcMeasurementMatrix	16
		6.2.4.2	getMeasureMatrix	16
	6.2.5	Member	Data Documentation	16
		6.2.5.1	measurementMatrix	16
6.3	openE	V::GliderVa	arioMeasurementVector Class Reference	16
	6.3.1	Detailed	Description	17
	6.3.2	Member [*]	Typedef Documentation	18
		6.3.2.1	MeasureVectorType	18
	6.3.3	Member	Enumeration Documentation	18
		6.3.3.1	MeasureComponentIndex	18
	6.3.4	Construc	tor & Destructor Documentation	18
		6.3.4.1	GliderVarioMeasurementVector	18
		6.3.4.2	~GliderVarioMeasurementVector	18
	6.3.5	Member	Function Documentation	19
		6.3.5.1	getMeasureVector	19
	6.3.6	Member	Data Documentation	19
		6.3.6.1	accelX	19
		6.3.6.2	accelY	19
		6.3.6.3	accelZ	19
		6.3.6.4	gpsHeading	19
		6.3.6.5	gpsLatitude	19
		6.3.6.6	gpsLongitude	19

CONTENTS

		6.3.6.7	gpsMSL	19
		6.3.6.8	gpsSpeed	20
		6.3.6.9	gyroRateX	20
		6.3.6.10	gyroRateY	20
		6.3.6.11	gyroRateZ	20
		6.3.6.12	magX	20
		6.3.6.13	magY	20
		6.3.6.14	magZ	20
		6.3.6.15	measureVector	20
		6.3.6.16	pressAlt	20
		6.3.6.17	trueAirSpeed	21
6.4	openE'	V::GliderVa	arioStatus Class Reference	21
	6.4.1	Detailed	Description	23
	6.4.2	Member	Typedef Documentation	24
		6.4.2.1	StatusVectorType	24
	6.4.3	Member	Enumeration Documentation	24
		6.4.3.1	StatusComponentIndex	24
	6.4.4	Construc	tor & Destructor Documentation	25
		6.4.4.1	GliderVarioStatus	25
		6.4.4.2	~GliderVarioStatus	25
	6.4.5	Member	Function Documentation	25
		6.4.5.1	getStatusVector	25
		6.4.5.2	getStatusVector	25
		6.4.5.3	normalizeAngles	25
	6.4.6	Member	Data Documentation	26
		6.4.6.1	accelX	26
		6.4.6.2	accelY	26
		6.4.6.3	accelZ	26
		6.4.6.4	altMSL	26
		6.4.6.5	groundSpeedEast	26
		6.4.6.6	groundSpeedNorth	26
		6.4.6.7	gyroBiasX	26
		6.4.6.8	gyroBiasY	26
		6.4.6.9	gyroBiasZ	26
		6.4.6.10	heading	27
		6.4.6.11	latitude	27
		6.4.6.12	longitude	27
		6.4.6.13	pitchAngle	27
		6.4.6.14	pitchRateY	27
		6.4.6.15	rateOfSink	27

vi CONTENTS

		6.4.6.16	rollAngle	27
		6.4.6.17	rollRateX	27
		6.4.6.18	statusVector	27
		6.4.6.19	thermalSpeed	28
		6.4.6.20	trueAirSpeed	28
		6.4.6.21	verticalSpeed	28
		6.4.6.22	windSpeedEast	28
		6.4.6.23	windSpeedNorth	28
		6.4.6.24	yawRateZ	28
6.5	openE	V::GliderVa	arioTransitionMatrix Class Reference	28
	6.5.1	Detailed	Description	29
	6.5.2	Member	Typedef Documentation	29
		6.5.2.1	TransitionMatrixType	29
	6.5.3	Construc	tor & Destructor Documentation	29
		6.5.3.1	GliderVarioTransitionMatrix	29
		6.5.3.2	~GliderVarioTransitionMatrix	29
	6.5.4	Member	Function Documentation	29
		6.5.4.1	calcTransitionMatrix	29
		6.5.4.2	getTransitionMatrix	30
		6.5.4.3	updateStatus	30
	6.5.5	Member	Data Documentation	30
		6.5.5.1	transitionMatrix	30
6.6	openE	V::Measur	eMatrix Class Reference	30
	6.6.1	Detailed	Description	30
	6.6.2	Construc	tor & Destructor Documentation	30
		6.6.2.1	MeasureMatrix	30
		6.6.2.2	~MeasureMatrix	30
6.7	openE	V::Rotation	nMatrix Class Reference	31
	6.7.1	Detailed	Description	32
	6.7.2	Construc	tor & Destructor Documentation	32
		6.7.2.1	RotationMatrix	32
		6.7.2.2	RotationMatrix	32
		6.7.2.3	~RotationMatrix	32
	6.7.3	Member	Function Documentation	32
		6.7.3.1	calcPlaneVectorToWorldVector	32
		6.7.3.2	calculateRotationMatrixGloToPlane	32
		6.7.3.3	calculateRotationMatrixPlaneToGlo	33
		6.7.3.4	calcWorldVectorToPlaneVector	33
		6.7.3.5	getMatrixGloToPlane	33
		6.7.3.6	getMatrixPlaneToGlo	33

CONTENTS vii

		6.7.3.7	getPitch	33
		6.7.3.8	getRoll	33
		6.7.3.9	getYaw	33
		6.7.3.10	setPitch	33
		6.7.3.11	setRoll	33
		6.7.3.12	setYaw	34
	6.7.4	Member	Data Documentation	34
		6.7.4.1	matrixGloToPlane	34
		6.7.4.2	matrixGloToPlaneIsValid	34
		6.7.4.3	matrixPlaneToGlo	34
		6.7.4.4	matrixPlaneToGloIsValid	34
		6.7.4.5	pitch	34
		6.7.4.6	roll	34
		6.7.4.7	yaw	34
6.8	openE	V::RotMatr	rixConversion Class Reference	34
	6.8.1	Detailed	Description	35
	6.8.2	Construc	tor & Destructor Documentation	35
		6.8.2.1	RotMatrixConversion	35
		6.8.2.2	~RotMatrixConversion	35
	6.8.3	Member	Function Documentation	35
		6.8.3.1	axisAngleNormalizedToMat3Ex	35
		6.8.3.2	axisDominantV3Single	36
		6.8.3.3	orthoV3V3	36
		6.8.3.4	vectors2RotMatrix	36
File	Docum	entation		37
7.1			File Reference	37
7.1			ile Reference	37
7.2	7.2.1		efinition Documentation	38
	7.2.1	7.2.1.1	M_PI	38
7.3	src/Fas		t.cpp File Reference	39
7.4			Table.cpp File Reference	40
7.5			s.cpp File Reference	40
	7.5.1		Documentation	41
		7.5.1.1	main	41
		7.5.1.2	printSineTable	41
		7.5.1.3	usage	42
7.6	src/Glid	derVarioMe	easurementMatrix.cpp File Reference	42
7.7	src/Glid	derVarioMe	easurementMatrix.h File Reference	42
7.8	src/Glid	derVarioMe	easurementMatrix_test.cpp File Reference	43

7

viii CONTENTS

7.9	src/GliderVarioMeasurementVector.cpp File Reference	44
7.10	src/GliderVarioMeasurementVector.h File Reference	45
7.11	src/GliderVarioMeasurementVector_test.cpp File Reference	46
7.12	src/GliderVarioStatus.cpp File Reference	47
	7.12.1 Function Documentation	47
	7.12.1.1 operator <<	47
7.13	src/GliderVarioStatus.h File Reference	48
	7.13.1 Function Documentation	48
	7.13.1.1 operator <<	48
7.14	src/GliderVarioStatus_test.cpp File Reference	49
7.15	src/GliderVarioTransitionMatrix.cpp File Reference	49
7.16	src/GliderVarioTransitionMatrix.h File Reference	50
7.17	src/GliderVarioTransitionMatrix_test.cpp File Reference	51
7.18	src/MeasureMatrix.cpp File Reference	51
7.19	src/MeasureMatrix.h File Reference	52
7.20	src/MeasureMatrix_test.cpp File Reference	52
7.21	src/openEVario.cpp File Reference	53
	7.21.1 Function Documentation	53
	7.21.1.1 main	53
	7.21.2 Variable Documentation	54
	7.21.2.1 randomGenerator	54
	7.21.2.2 x	54
7.22	src/RotationMatrix.cpp File Reference	54
7.23	src/RotationMatrix.h File Reference	55
7.24	src/RotMatrixConversion.cpp File Reference	55
7.25	src/RotMatrixConversion.h File Reference	56
7.26	src/RotMatrixConversion_test.cpp File Reference	57
Index		59

Chapter 1

Todo List

Member openEV::GliderVarioMeasurementMatrix::calcMeasurementMatrix (FloatType timeDiff, Glider← VarioStatus const &lastStatus)

Normalized magnetometer values to direction

Member openEV::GliderVarioTransitionMatrix::calcTransitionMatrix (FloatType timeDiff, GliderVarioStatus const &lastStatus)

Calculation of Rate of Sink: Refine the vario compensation by considering the decrease of drag based on the polar.

2 **Todo List**

Chapter 2

Namespace Index

2.1	Namespace List
Here i	s a list of all namespaces with brief descriptions:

Namespace Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

openEV::FastMath	1
openEV::GliderVarioMeasurementMatrix	5
openEV::GliderVarioMeasurementVector	6
openEV::GliderVarioStatus	
GliderVarioStatus manages the Kalman filter state x	1
openEV::GliderVarioTransitionMatrix	8
openEV::MeasureMatrix	0
openEV::RotationMatrix	1
openEV::RotMatrixConversion	4

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

src/FastMath.cpp	37
src/FastMath.h	37
src/FastMath_test.cpp	39
src/FastMathSineTable.cpp	40
src/genSineTables.cpp	40
src/GliderVarioMeasurementMatrix.cpp	42
src/GliderVarioMeasurementMatrix.h	42
src/GliderVarioMeasurementMatrix_test.cpp	43
src/GliderVarioMeasurementVector.cpp	44
src/GliderVarioMeasurementVector.h	45
src/GliderVarioMeasurementVector_test.cpp	46
src/GliderVarioStatus.cpp	47
src/GliderVarioStatus.h	48
src/GliderVarioStatus_test.cpp	49
src/GliderVarioTransitionMatrix.cpp	
src/GliderVarioTransitionMatrix.h	50
src/GliderVarioTransitionMatrix_test.cpp	
src/MeasureMatrix.cpp	
src/MeasureMatrix.h	52
src/MeasureMatrix_test.cpp	
src/openEVario.cpp	53
src/RotationMatrix.cpp	
src/RotationMatrix.h	
src/RotMatrixConversion.cpp	55
src/RotMatrixConversion.h	56
cro/PotMatrixConversion, test one	E7

8 File Index

Chapter 5

Namespace Documentation

5.1 openEV Namespace Reference

Classes

- class FastMath
- · class GliderVarioMeasurementMatrix
- class GliderVarioMeasurementVector
- class GliderVarioStatus

GliderVarioStatus manages the Kalman filter state x.

- · class GliderVarioTransitionMatrix
- · class MeasureMatrix
- · class RotationMatrix
- · class RotMatrixConversion

Typedefs

- typedef float FloatType
- typedef Eigen::Matrix< FloatType, 3, 1 > Vector3DType
- typedef Eigen::Matrix< FloatType, 3, 3 > RotationMatrix3DType

Variables

- FloatType constexpr lenLatitude = 111132.0
- static FloatType constexpr GRAVITY = 9.81

5.1.1 Typedef Documentation

5.1.1.1 typedef float openEV::FloatType

The global float type. Change this one to double, and the entire system will run in double. For optimal performance this should be *float*. Eigen can use the NEON unit for vectorized arithmetic.

Definition at line 42 of file GliderVarioStatus.h.

5.1.1.2 typedef Eigen::Matrix<FloatType, 3, 3> openEV::RotationMatrix3DType

Definition at line 48 of file GliderVarioStatus.h.

5.1.1.3 typedef Eigen::Matrix<FloatType, 3, 1> openEV::Vector3DType

This vector type is used for all 3-dimensional representations of values in Kartesian coodinates Definition at line 47 of file GliderVarioStatus.h.

5.1.2 Variable Documentation

5.1.2.1 FloatType constexpr openEV::GRAVITY = 9.81 [static]

Constant of gravity acceleration. exact values for Germany can be obtained from the German gravity base mesh Deutsches Schweregrundnetz 1994 (DSGN 94) http://www.bkg.bund.de/nn_175464/SharedDocs/
Download/DE-Dok/DSGN94-Punktbeschreibung-PDF-de,templateId=raw,property=publicationFile.pdf/DSGN94-Punktbeschreibung-PDF-de.pdf The constant here is a rough average between Hamburg and Munich (I live in Norther Germany). Since a Kalman filter is not exact numeric science any inaccuracy should be covered by the process variance.

Definition at line 42 of file GliderVarioTransitionMatrix.h.

5.1.2.2 FloatType constexpr openEV::lenLatitude = 111132.0

The rough length of a degree latitude in meter at 45deg North. https://en.wikipedia.org/wiki/Longitude#Noting_← and calculating longitude

Definition at line 38 of file GliderVarioTransitionMatrix.cpp.

Chapter 6

Class Documentation

6.1 openEV::FastMath Class Reference

```
#include <FastMath.h>
```

Public Member Functions

- FastMath ()
- virtual ∼FastMath ()

Static Public Member Functions

- static FloatType fastSin (FloatType angle)
- static FloatType fastCos (FloatType angle)
- static FloatType fastATan2 (FloatType y, FloatType x)

Static Public Attributes

- static constexpr unsigned sineSamplesPerDegree = 8
 - the sinus table is calculated in 1/8 degree steps
- static constexpr unsigned sizeSineTable = 360*sineSamplesPerDegree
 - the sinus table is calculated in 1/8 degree steps
- static constexpr unsigned sizeATanTable = 256
 - the arc tan table is defined for the 1st 45 degrees in 256 steps.
- static constexpr double radToDeg = 180.0 / M PI
- static constexpr double degToRad = M_PI / 180.0

Static Protected Member Functions

- static FloatType fastSinRaw (FloatType angle)
- static FloatType fastATan2Pos (FloatType y, FloatType x)
- static FloatType fastATanRaw (FloatType tanVal)
- static FloatType fastSinPositive (FloatType angle)

Static Protected Attributes

• static const double sinusTable [sizeSineTable+1]

The table of pre-computed sine values. The table is one item longer than sizeSineTable because I need the interpolation to +360 degrees!

static const double atanTable [sizeATanTable+1]

6.1.1 Detailed Description

FastMath

Faster implementations of CPU and time intensive functions, particular trigonometric functions. For a Kalman filter the last bit of accuracy is not required. That is what the process (co)variance is for (within other inaccuracies:)).

All trigonometric functions here are used in degrees (0-360 deg)!

Definition at line 54 of file FastMath.h.

6.1.2 Constructor & Destructor Documentation

```
6.1.2.1 openEV::FastMath::FastMath()
```

Definition at line 31 of file FastMath.cpp.

```
6.1.2.2 openEV::FastMath::∼FastMath() [virtual]
```

Definition at line 36 of file FastMath.cpp.

6.1.3 Member Function Documentation

```
6.1.3.1 static FloatType openEV::FastMath::fastATan2( FloatType y, FloatType x ) [inline], [static]
```

Calculates the arc tan angle for the x and y component in Cartesian coordinates. Based on the signs of x and y the function returns angles from the entire circle The returned angle is in degrees from 0 to 360 degrees.

Parameters

in	X	component
in	у	component

Returns

Angle in degrees 0-360 deg.

Definition at line 102 of file FastMath.h.

```
6.1.3.2 static FloatType openEV::FastMath::fastATan2Pos ( FloatType y, FloatType x ) [inline], [static], [protected]
```

Calculates the arc tangent from the x and y component of Cartesian coordinates within the first quadrant, i.e. x and y must >= 0

Parameters

in	х	x-component of a point in Cartesian coordinates
in	У	x-component of a point in Cartesian coordinates

Returns

the arc tangent of the ratio of x and y

Definition at line 157 of file FastMath.h.

6.1.3.3 static FloatType openEV::FastMath::fastATanRaw (FloatType *tanVal*) [inline], [static], [protected]

Calculate the arc tangent value of a value between 0 and < 1. This function interpolates the pre-calculated values from the table atanTable. Due to the range of the input values only the first octant can be calculated. Everything must be mirrored from this partial range.

Parameters

in	tanVal	tan value, i.e. the ratio of x and y. tan value $must$ be $>= 0$ and < 1 . This
		function is only defined in the 1st 45 degrees.

Returns

the arc tan value in degrees.

Definition at line 187 of file FastMath.h.

6.1.3.4 static FloatType openEV::FastMath::fastCos (FloatType angle) [inline], [static]

Parameters

in	angle	in degrees
----	-------	------------

Returns

The cosine value of the angle

Definition at line 89 of file FastMath.h.

6.1.3.5 static FloatType openEV::FastMath::fastSin(FloatType angle) [inline], [static]

Parameters

_			
	in	angle	in degrees.

Returns

The sine value of the angle

Definition at line 74 of file FastMath.h.

6.1.3.6 static FloatType openEV::FastMath::fastSinPositive (FloatType angle) [inline], [static], [protected]

Parameters

in	angle	in degrees. The angle MUST be \geq = 0.

Returns

The sine value of the angle

Definition at line 204 of file FastMath.h.

6.1.3.7 static FloatType openEV::FastMath::fastSinRaw (FloatType angle) [inline], [static], [protected]

Parameters

in	angle	in degrees. The angle $must >= 0.0$ and < 360.0
----	-------	---

Returns

The sine value of the angle

Definition at line 138 of file FastMath.h.

6.1.4 Member Data Documentation

6.1.4.1 const double openEV::FastMath::atanTable [static], [protected]

The table of pre-computed arc sine values from 0 to 45 deg. Anything else is derived from this range. Here 2 larger than the number of increments: including 0, all 256 steps in between, and 1

Definition at line 131 of file FastMath.h.

6.1.4.2 constexpr double openEV::FastMath::degToRad = M_PI/180.0 [static]

Definition at line 62 of file FastMath.h.

6.1.4.3 constexpr double openEV::FastMath::radToDeg = 180.0 / M_PI [static]

Definition at line 61 of file FastMath.h.

6.1.4.4 constexpr unsigned openEV::FastMath::sineSamplesPerDegree = 8 [static]

the sinus table is calculated in 1/8 degree steps

Definition at line 58 of file FastMath.h.

6.1.4.5 const double openEV::FastMath::sinusTable [static], [protected]

The table of pre-computed sine values. The table is one item longer than sizeSineTable because I need the interpolation to +360 degrees!

Generated by genSineTables.cpp.

Definition at line 127 of file FastMath.h.

6.1.4.6 constexpr unsigned openEV::FastMath::sizeATanTable = 256 [static]

the arc tan table is defined for the 1st 45 degrees in 256 steps.

Definition at line 60 of file FastMath.h.

6.1.4.7 constexpr unsigned openEV::FastMath::sizeSineTable = 360*sineSamplesPerDegree [static]

the sinus table is calculated in 1/8 degree steps

Definition at line 59 of file FastMath.h.

The documentation for this class was generated from the following files:

- · src/FastMath.h
- src/FastMath.cpp
- src/FastMathSineTable.cpp

6.2 openEV::GliderVarioMeasurementMatrix Class Reference

#include <GliderVarioMeasurementMatrix.h>

Public Types

typedef Eigen::Matrix < FloatType, GliderVarioMeasurementVector::MEASURE_NUM_ROWS, GliderVario ←
 Status::STATUS_NUM_ROWS > MeasureMatrixType

Multiplication matrix. Dimensions come directly from the status and measurement vector sizes.

Public Member Functions

- GliderVarioMeasurementMatrix ()
- virtual ~GliderVarioMeasurementMatrix ()
- MeasureMatrixType const & getMeasureMatrix () const
- void calcMeasurementMatrix (FloatType timeDiff, GliderVarioStatus const &lastStatus)

Protected Attributes

• MeasureMatrixType measurementMatrix

6.2.1 Detailed Description

Definition at line 19 of file GliderVarioMeasurementMatrix.h.

6.2.2 Member Typedef Documentation

6.2.2.1 typedef Eigen::Matrix<FloatType,GliderVarioMeasurementVector::MEASURE_NUM_ROWS,Glider ← VarioStatus::STATUS_NUM_ROWS> openEV::GliderVarioMeasurementMatrix::MeasureMatrixType

Multiplication matrix. Dimensions come directly from the status and measurement vector sizes.

Definition at line 25 of file GliderVarioMeasurementMatrix.h.

6.2.3 Constructor & Destructor Documentation

6.2.3.1 openEV::GliderVarioMeasurementMatrix::GliderVarioMeasurementMatrix ()

Definition at line 12 of file GliderVarioMeasurementMatrix.cpp.

6.2.3.2 openEV::GliderVarioMeasurementMatrix::~GliderVarioMeasurementMatrix() [virtual]

Definition at line 41 of file GliderVarioMeasurementMatrix.cpp.

6.2.4 Member Function Documentation

6.2.4.1 void openEV::GliderVarioMeasurementMatrix::calcMeasurementMatrix (FloatType timeDiff, GliderVarioStatus const & lastStatus)

Todo Normalized magnetometer values to direction

Definition at line 46 of file GliderVarioMeasurementMatrix.cpp.

6.2.4.2 MeasureMatrixType const& openEV::GliderVarioMeasurementMatrix::getMeasureMatrix() const [inline]

Returns

reference to the internal matrix for direct matrix manipulation, or arithmetic operations.

Definition at line 31 of file GliderVarioMeasurementMatrix.h.

6.2.5 Member Data Documentation

6.2.5.1 MeasureMatrixType openEV::GliderVarioMeasurementMatrix::measurementMatrix [protected]

Definition at line 48 of file GliderVarioMeasurementMatrix.h.

The documentation for this class was generated from the following files:

- src/GliderVarioMeasurementMatrix.h
- src/GliderVarioMeasurementMatrix.cpp

6.3 openEV::GliderVarioMeasurementVector Class Reference

#include <GliderVarioMeasurementVector.h>

Public Types

enum MeasureComponentIndex {
 MEASURE_IND_GPS_LAT, MEASURE_IND_GPS_LON, MEASURE_IND_GPS_ALTMSL, MEASURE_I
 ND_GPS_HEADING,
 MEASURE_IND_GPS_SPEED, MEASURE_IND_ACC_X, MEASURE_IND_ACC_Y, MEASURE_IND_A
 CC_Z,
 MEASURE_IND_GYRO_RATE_X, MEASURE_IND_GYRO_RATE_Y, MEASURE_IND_GYRO_RATE_Z,

MEASURE_IND_GYRO_RATE_X, MEASURE_IND_GYRO_RATE_Y, MEASURE_IND_GYRO_RATE_Z, MEASURE_IND_MAG_X,

MEASURE_IND_MAG_Y, MEASURE_IND_MAG_Z, MEASURE_IND_PRESS_ALT, MEASURE_IND_TAS, MEASURE_NUM_ROWS }

typedef Eigen::Matrix< FloatType, MEASURE_NUM_ROWS, 1 > MeasureVectorType

Public Member Functions

- GliderVarioMeasurementVector ()
- virtual ∼GliderVarioMeasurementVector ()
- MeasureVectorType const & getMeasureVector () const

Public Attributes

- FloatType & gpsLatitude = measureVector [MEASURE_IND_GPS_LAT]
 Latitude in Dea.
- FloatType & gpsLongitude = measureVector [MEASURE_IND_GPS_LON]
 Longitude in Deg.
- FloatType & gpsMSL = measureVector [MEASURE_IND_GPS_ALTMSL]
 Altitude MSL in m.
- FloatType & gpsHeading = measureVector [MEASURE_IND_GPS_HEADING]
 Heading in Deg.
- FloatType & gpsSpeed = measureVector [MEASURE_IND_GPS_SPEED]
 Speed in knots.
- FloatType & accelX = measureVector [MEASURE_IND_ACC_X]
 Acceleration along the X axis in m/s².
- FloatType & accelY = measureVector [MEASURE_IND_ACC_Y]

Acceleration along the Y axis in m/s^2 .

• FloatType & accelZ = measureVector [MEASURE_IND_ACC_Z]

Acceleration along the Z axis in m/s^2 .

FloatType & gyroRateX = measureVector [MEASURE_IND_GYRO_RATE_X]

Turn rate around the X axis in Deg/s.

- FloatType & gyroRateY = measureVector [MEASURE_IND_GYRO_RATE_Y]
 Turn rate around the Y axis in Deg/s.
- FloatType & gyroRateZ = measureVector [MEASURE_IND_GYRO_RATE_Z]
 Turn rate around the Z axis in Deg/s.
- FloatType & magX = measureVector [MEASURE IND MAG X]

magnetic field strength along X axis in uT (absolute strength is irrelevant, only used to determine attitude)

- FloatType & magY = measureVector [MEASURE_IND_MAG_Y]
 - magnetic field strength along Y axis in uT (absolute strength is irrelevant, only used to determine attitude)
- FloatType & magZ = measureVector [MEASURE_IND_MAG_Z]
 - magnetic field strength along Z axis in uT (absolute strength is irrelevant, only used to determine attitude)
- FloatType & pressAlt = measureVector [MEASURE_IND_PRESS_ALT]
 pressure altitude in MSL
- FloatType & trueAirSpeed = measureVector [MEASURE_IND_TAS]

True air speed (based on difference pressure and air density based on absolute pressure) in m/s.

Protected Attributes

MeasureVectorType measureVector

holder of the vector

6.3.1 Detailed Description

This is the measurement input vector into the Kalman filter. Not all measurements are the raw instrument readings. Particularly pressure readings are converted into altitude and speed before because the conversions are highly non-linear. Otherwise all units are converted to ISO base units. Absolute Magnetometer readings are irrelevant but their ratios are used to estimate the attitude.

Definition at line 41 of file GliderVarioMeasurementVector.h.

6.3.2 Member Typedef Documentation

6.3.2.1 typedef Eigen::Matrix<FloatType,MEASURE_NUM_ROWS,1> openEV::GliderVarioMeasurement ← Vector::MeasureVectorType

Definition at line 79 of file GliderVarioMeasurementVector.h.

6.3.3 Member Enumeration Documentation

6.3.3.1 enum openEV::GliderVarioMeasurementVector::MeasureComponentIndex

Enumerator

MEASURE_IND_GPS_LAT Latitude in Deg.

MEASURE_IND_GPS_LON Longitude in Deg.

MEASURE IND GPS ALTMSL Altitude MSL in m.

MEASURE_IND_GPS_HEADING Heading in Deg.

MEASURE_IND_GPS_SPEED Speed in knots.

MEASURE_IND_ACC_X Acceleration along the X axis in m/s $^{\land}$ 2.

MEASURE_IND_ACC_Y Acceleration along the Y axis in m/s².

MEASURE_IND_ACC_Z Acceleration along the Z axis in m/s $^{\land}$ 2.

MEASURE_IND_GYRO_RATE_X Turn rate around the X axis in Deg/s.

MEASURE_IND_GYRO_RATE_Y Turn rate around the Y axis in Deg/s.

MEASURE_IND_GYRO_RATE_Z Turn rate around the Z axis in Deg/s.

MEASURE_IND_MAG_X magnetic field strength along X axis in uT (absolute strength is irrelevant, only used to determine attitude)

MEASURE_IND_MAG_Y magnetic field strength along Y axis in uT (absolute strength is irrelevant, only used to determine attitude)

MEASURE_IND_MAG_Z magnetic field strength along Z axis in uT (absolute strength is irrelevant, only used to determine attitude)

MEASURE_IND_PRESS_ALT pressure altitude in MSL

MEASURE_IND_TAS True air speed (based on difference pressure and air density based on absolute pressure) in m/s.

MEASURE_NUM_ROWS

Definition at line 49 of file GliderVarioMeasurementVector.h.

6.3.4 Constructor & Destructor Documentation

 $\textbf{6.3.4.1} \quad open \textbf{EV::GliderVarioMeasurementVector::GliderVarioMeasurementVector()} \quad [\texttt{inline}]$

Definition at line 43 of file GliderVarioMeasurementVector.h.

6.3.4.2 openEV::GliderVarioMeasurementVector::~GliderVarioMeasurementVector() [virtual]

Definition at line 31 of file GliderVarioMeasurementVector.cpp.

6.3.5 Member Function Documentation

6.3.5.1 MeasureVectorType const& openEV::GliderVarioMeasurementVector::getMeasureVector() const [inline]

Returns

reference to the internal vector for direct matrix manipulation.

Definition at line 111 of file GliderVarioMeasurementVector.h.

6.3.6 Member Data Documentation

6.3.6.1 FloatType& openEV::GliderVarioMeasurementVector::accelX = measureVector [MEASURE IND ACC X]

Acceleration along the X axis in m/s².

Definition at line 89 of file GliderVarioMeasurementVector.h.

6.3.6.2 FloatType& openEV::GliderVarioMeasurementVector::accelY = measureVector [MEASURE IND ACC Y]

Acceleration along the Y axis in m/s^2 .

Definition at line 90 of file GliderVarioMeasurementVector.h.

6.3.6.3 FloatType& openEV::GliderVarioMeasurementVector::accelZ = measureVector [MEASURE IND ACC Z]

Acceleration along the Z axis in m/s^2 .

Definition at line 91 of file GliderVarioMeasurementVector.h.

6.3.6.4 FloatType& openEV::GliderVarioMeasurementVector::gpsHeading = measureVector [MEASURE_IND_GPS_HEADING]

Heading in Deg.

Definition at line 85 of file GliderVarioMeasurementVector.h.

6.3.6.5 FloatType& openEV::GliderVarioMeasurementVector::gpsLatitude = measureVector [MEASURE_IND_GPS_LAT]

Latitude in Deg.

Definition at line 82 of file GliderVarioMeasurementVector.h.

6.3.6.6 FloatType& openEV::GliderVarioMeasurementVector::gpsLongitude = measureVector [MEASURE_IND_GPS_LON]

Longitude in Deg.

Definition at line 83 of file GliderVarioMeasurementVector.h.

6.3.6.7 FloatType& openEV::GliderVarioMeasurementVector::gpsMSL = measureVector [MEASURE_IND_GPS_ALTMSL]

Altitude MSL in m.

Definition at line 84 of file GliderVarioMeasurementVector.h.

6.3.6.8 FloatType& openEV::GliderVarioMeasurementVector::gpsSpeed = measureVector [MEASURE IND GPS SPEED]

Speed in knots.

Definition at line 86 of file GliderVarioMeasurementVector.h.

6.3.6.9 FloatType& openEV::GliderVarioMeasurementVector::gyroRateX = measureVector [MEASURE_IND_GYRO_RATE_X]

Turn rate around the X axis in Deg/s.

Definition at line 94 of file GliderVarioMeasurementVector.h.

6.3.6.10 FloatType& openEV::GliderVarioMeasurementVector::gyroRateY = measureVector
[MEASURE_IND_GYRO_RATE_Y]

Turn rate around the Y axis in Deg/s.

Definition at line 95 of file GliderVarioMeasurementVector.h.

6.3.6.11 FloatType& openEV::GliderVarioMeasurementVector::gyroRateZ = measureVector
[MEASURE_IND_GYRO_RATE_Z]

Turn rate around the Z axis in Deg/s.

Definition at line 96 of file GliderVarioMeasurementVector.h.

- 6.3.6.12 FloatType& openEV::GliderVarioMeasurementVector::magX = measureVector [MEASURE_IND_MAG_X] magnetic field strength along X axis in uT (absolute strength is irrelevant, only used to determine attitude)

 Definition at line 99 of file GliderVarioMeasurementVector.h.
- 6.3.6.13 FloatType& openEV::GliderVarioMeasurementVector::magY = measureVector [MEASURE_IND_MAG_Y] magnetic field strength along Y axis in uT (absolute strength is irrelevant, only used to determine attitude)

 Definition at line 100 of file GliderVarioMeasurementVector.h.
- 6.3.6.14 FloatType& openEV::GliderVarioMeasurementVector::magZ = measureVector [MEASURE_IND_MAG_Z] magnetic field strength along Z axis in uT (absolute strength is irrelevant, only used to determine attitude)

 Definition at line 101 of file GliderVarioMeasurementVector.h.
- **6.3.6.15 MeasureVectorType openEV::GliderVarioMeasurementVector::measureVector** [protected]

holder of the vector

Definition at line 116 of file GliderVarioMeasurementVector.h.

6.3.6.16 FloatType& openEV::GliderVarioMeasurementVector::pressAlt = measureVector [MEASURE IND PRESS ALT]

pressure altitude in MSL

Definition at line 104 of file GliderVarioMeasurementVector.h.

6.3.6.17 FloatType& openEV::GliderVarioMeasurementVector::trueAirSpeed = measureVector [MEASURE_IND_TAS]

True air speed (based on difference pressure and air density based on absolute pressure) in m/s.

Definition at line 105 of file GliderVarioMeasurementVector.h.

The documentation for this class was generated from the following files:

- · src/GliderVarioMeasurementVector.h
- src/GliderVarioMeasurementVector.cpp

6.4 openEV::GliderVarioStatus Class Reference

GliderVarioStatus manages the Kalman filter state x.

#include <GliderVarioStatus.h>

Public Types

enum StatusComponentIndex {
 STATUS_IND_LONGITUDE, STATUS_IND_LATITUDE, STATUS_IND_ALT_MSL, STATUS_IND_PITCH,
 STATUS_IND_ROLL, STATUS_IND_SPEED_GROUND_N, STATUS_IND_SPEED_GROUND_E, STAT
 US_IND_TAS,
 STATUS_IND_HEADING, STATUS_IND_RATE_OF_SINK, STATUS_IND_VERTICAL_SPEED, STATUS
 IND_ACC_X,
 STATUS_IND_ACC_Y, STATUS_IND_ACC_Z, STATUS_IND_ROTATION_X, STATUS_IND_ROTATIO
 N_Y,
 STATUS_IND_ROTATION_Z, STATUS_IND_GYRO_BIAS_X, STATUS_IND_GYRO_BIAS_Y, STATUS_
 IND_GYRO_BIAS_Z,
 STATUS_IND_WIND_SPEED_N, STATUS_IND_WIND_SPEED_E, STATUS_IND_THERMAL_SPEED,
 STATUS_NUM_ROWS }

Index, i.e. positions of the status components in the status vector.

typedef Eigen::Matrix< FloatType, STATUS_NUM_ROWS, 1 > StatusVectorType
 Saves typing of the complex template type.

Public Member Functions

- GliderVarioStatus ()
- virtual ∼GliderVarioStatus ()
- StatusVectorType & getStatusVector ()
- StatusVectorType const & getStatusVector () const
- void normalizeAngles ()

Public Attributes

FloatType & longitude = statusVector[STATUS_IND_LONGITUDE]

Longitude in deg. East.

FloatType & latitude = statusVector[STATUS_IND_LATITUDE]

Latitude in deg North.

FloatType & altMSL = statusVector[STATUS_IND_ALT_MSL]

Altitude in m over Mean Sea Level.

• FloatType & pitchAngle = statusVector[STATUS_IND_PITCH]

Pitch angle in deg. nose up. Pitch is applied after yaw.

FloatType & rollAngle = statusVector[STATUS IND ROLL]

Roll angle in deg. right. Roll is applied after yaw and pitch.

FloatType & groundSpeedNorth = statusVector[STATUS_IND_SPEED_GROUND_N]

Ground speed component North in m/s.

FloatType & groundSpeedEast = statusVector[STATUS IND SPEED GROUND E]

Ground speed component East in m/s.

FloatType & trueAirSpeed = statusVector[STATUS_IND_TAS]

True air speed in m/s relative to surrounding air.

FloatType & heading = statusVector[STATUS_IND_HEADING]

Heading of the plane in deg. right turn from true north. This is the flight direction relative to the surrounding air.

FloatType & rateOfSink = statusVector[STATUS IND RATE OF SINK]

Rate of sink in m/s relative to the surrounding air. Sink because the Z axis points downward.

FloatType & verticalSpeed = statusVector[STATUS IND VERTICAL SPEED]

Absolute vertical speed in m/s downward. Z axis is downward.

FloatType & accelX = statusVector[STATUS_IND_ACC_X]

Acceleration in m/s^2 on the X axis of the plane.

FloatType & accelY = statusVector[STATUS_IND_ACC_Y]

Acceleration in m/s^2 on the Y axis of the plane.

FloatType & accelZ = statusVector[STATUS_IND_ACC_Z]

Acceleration in m/s^2 on the Z axis of the plane.

FloatType & rollRateX = statusVector[STATUS_IND_ROTATION_X]

Roll rate in deg/s to the right around the X axis.

FloatType & pitchRateY = statusVector[STATUS_IND_ROTATION_Y]

Pitch rate in deg/s nose up around the Y axis.

FloatType & yawRateZ = statusVector[STATUS IND ROTATION Z]

Yaw (turn) rate in deg/s around the Z axis.

FloatType & gyroBiasX = statusVector[STATUS_IND_GYRO_BIAS_X]

Bias (0-offset) of the X axis gyro in deg/s.

FloatType & gyroBiasY = statusVector[STATUS_IND_GYRO_BIAS_Y]

Bias (0-offset) of the Y axis gyro in deg/s.

FloatType & gyroBiasZ = statusVector[STATUS IND GYRO BIAS Z]

Bias (0-offset) of the Z axis gyro in deg/s.

FloatType & windSpeedNorth = statusVector[STATUS_IND_WIND_SPEED_N]

Wind speed North component in m/s.

FloatType & windSpeedEast = statusVector[STATUS_IND_WIND_SPEED_E]

The direction is the direction from where the wind blows.

• FloatType & thermalSpeed = statusVector[STATUS IND THERMAL SPEED]

The true reason for the whole exercise!:)

Protected Attributes

• StatusVectorType statusVector

6.4.1 Detailed Description

GliderVarioStatus manages the Kalman filter state x.

The class defines the Kalman filter status x as a vector of floats or doubles. Each component of the status vector is clearly identified by the index in the vector. The indexes are enumerated in the *StatusComponentIndex* enum. The components and index enumerators of the status vector are as follows:

Worldwide Position:

- Longitude STATUS_IND_LONGITUDE: Longitude in decimal degrees. Eastern hemisphere is positive, western hemisphere is negative.
- Latitude STATUS_IND_LATITUDE: **Latitude** in decimal degrees. Nothern hemisphere is positive, southern hemisphere is negative.
- Altitude MSL STATUS IND ALT MSL: Altitude above MSL in m(eter).

Attitude:

- · Yaw angle STATUS IND YAW: Yaw angle in Degrees to the right of true North. Also known as Heading
- Pitch angle STATUS_IND_PITCH: **Pitch** angle in Degrees nose upward. 0 = horizontal flight. Also known as **Elevation**.
- Roll angle STATUS_IND_ROLL: Roll angle in degrees right. Left roll is negative. Also known as Bank.

Speeds and directions

- Ground speed STATUS_IND_SPEED_GROUND Ground Speed in m/s
- Direction over ground STATUS_IND_DIR_GROUND Flight Direction over ground in Degrees to the right to true North.
- True air speed STATUS IND TAS True Air Speed in m/s. Speed relative to the surrounding air
- Plane heading STATUS_IND_HEADING **True Heading of the plane**. I assume that the heading is equal to my movement vector in the air, i.e. I assume that I am not slipping.
- Plane rate of Climb STATUS_IND_RATE_OF_CLIMB Rate of Climb of the air plane relative to the air in m/s.
 Up is positive. This is kind of my stick thermals. STATUS_IND_VERTICAL_SPEED and Rate of climb are identical in stagnant air.
- Absolute vertical speed STATUS_IND_VERTICAL_SPEED Absolute vertical speed in m/s

Accelerations in reference to the body coordinate system

- Accel X axis STATUS IND ACC X Acceleration along X axis in m/s²
- Accel Y axis STATUS IND ACC Y Acceleration along Y axis in m/s²
- Accel Z axis STATUS_IND_ACC_Z Acceleration along Y axis in m/s²

Turn rates in reference to the body coordinate system

- Rotation around X axis Rotation around X axis in degrees per second
- Rotation around Y axis Rotation around Y axis in degrees per second
- · Rotation around Z axis Rotation around Z axis in degrees per second

Derived values which improve the responsiveness of the Kalman filter

• Gyro X bias STATUS_IND_GYRO_BIAS_X **Gyro X axis bias** Gyros tend to have a bias, i.e an offset of the 0-value. The bias is not constant but varies over time. Tracking it helps to make the filter more responsive

- · Gyro Y bias STATUS IND GYRO BIAS Y Gyro Y axis bias
- · Gyro Z bias STATUS IND GYRO BIAS Z Gyro Z axis bias
- Wind speed STATUS IND WIND SPEED Wind Speed in m/s
- Wind direction STATUS_IND_WIND_DIR Wind Direction in Degrees, STATUS_IND_DIR_GROUND
- Thermal speed STATUS_IND_THERMAL_SPEED The real thermal updraft in m/s

Definition at line 104 of file GliderVarioStatus.h.

6.4.2 Member Typedef Documentation

6.4.2.1 typedef Eigen::Matrix<FloatType,STATUS_NUM_ROWS,1> openEV::GliderVarioStatus::StatusVector ← Type

Saves typing of the complex template type.

Definition at line 156 of file GliderVarioStatus.h.

6.4.3 Member Enumeration Documentation

6.4.3.1 enum openEV::GliderVarioStatus::StatusComponentIndex

Index, i.e. positions of the status components in the status vector.

Enumeration of the components of the Kalman status vector x

Enumerator

STATUS_IND_LONGITUDE Position and attitude. Longitude in deg. East

STATUS_IND_LATITUDE Latitude in deg North.

STATUS_IND_ALT_MSL Altitude in m over Mean Sea Level.

STATUS_IND_PITCH Pitch angle in deg. nose up. Pitch is applied after yaw.

STATUS IND_ROLL Roll angle in deg. right. Roll is applied after yaw and pitch.

STATUS_IND_SPEED_GROUND_N Speeds and directions. Ground speed component North in m/s

STATUS_IND_SPEED_GROUND_E Ground speed component East in m/s.

STATUS_IND_TAS True air speed in m/s relative to surrounding air.

STATUS_IND_HEADING Heading of the plane in deg. right turn from true north. This is the flight direction relative to the surrounding air.

STATUS_IND_RATE_OF_SINK Rate of sink in m/s relative to the surrounding air. Sink because the z axis points downward.

STATUS_IND_VERTICAL_SPEED Absolute vertical speed in m/s downward. Z axis is direction down.

STATUS_IND_ACC_X Acceleration in m/s² on the X axis of the plane. Accelerations in reference to the body coordinate system. Accelerations are on the axis of the *plane*. If the plane is pitched up an acceleration on the X axis would speed the plane upward, not forward.

STATUS_IND_ACC_Y Acceleration in m/s^2 on the Y axis of the plane.

STATUS IND ACC Z Acceleration in m/s² on the Z axis of the plane.

STATUS_IND_ROTATION_X Turn rates in reference to the body coordinate system. Roll rate in deg/s to the right around the X axis

STATUS_IND_ROTATION_Y Pitch rate in deg/s nose up around the Y axis.

STATUS_IND_ROTATION_Z Yaw (turn) rate in deg/s around the Z axis.

STATUS_IND_GYRO_BIAS_X Derived values which improve the responsiveness of the Kalman filter. Some are also the true goals of the filter. Bias (0-offset) of the X axis gyro in deg/s

STATUS_IND_GYRO_BIAS_Y Bias (0-offset) of the Y axis gyro in deg/s.

STATUS_IND_GYRO_BIAS_Z Bias (0-offset) of the Z axis gyro in deg/s.

STATUS_IND_WIND_SPEED_N Wind speed North component in m/s.

STATUS_IND_WIND_SPEED_E The direction is the direction *from where* the wind blows. Wind speed East component in m/s

STATUS_IND_THERMAL_SPEED The true reason for the whole exercise! :)

STATUS_NUM_ROWS The number of rows in the vector.

Definition at line 112 of file GliderVarioStatus.h.

6.4.4 Constructor & Destructor Documentation

6.4.4.1 openEV::GliderVarioStatus::GliderVarioStatus ()

Definition at line 33 of file GliderVarioStatus.cpp.

6.4.4.2 openEV::GliderVarioStatus::~GliderVarioStatus() [virtual]

Definition at line 39 of file GliderVarioStatus.cpp.

6.4.5 Member Function Documentation

6.4.5.1 StatusVectorType& openEV::GliderVarioStatus::getStatusVector() [inline]

Returns

reference to the internal vector for direct matrix manipulation or matrix arithmetics

Definition at line 166 of file GliderVarioStatus.h.

6.4.5.2 StatusVectorType const& openEV::GliderVarioStatus::getStatusVector() const [inline]

Returns

reference to the internal vector for direct matrix arithmetics

Definition at line 174 of file GliderVarioStatus.h.

6.4.5.3 void openEV::GliderVarioStatus::normalizeAngles ()

Updating the status may lead to wrap-around of angles. Here are the limits: -Pitch: $90 \le$ pitch ≤ 90 ; If you fly a looping and turn past perpendicular you essentially roll 180 deg, and reverse direction 180 deg -Roll: -180 \le roll < 180; 180 deg counts as -180 -Yaw: $0 \le$ yaw < 360; 360 deg counts as 0. Note that pitch must be normalized fist. It may flip roll and yaw around. Yaw and roll are independent from the other angles.

Definition at line 44 of file GliderVarioStatus.cpp.

6.4.6 Member Data Documentation

6.4.6.1 FloatType& openEV::GliderVarioStatus::accelX = statusVector[STATUS_IND_ACC_X]

Acceleration in m/s 2 on the X axis of the plane.

Definition at line 207 of file GliderVarioStatus.h.

6.4.6.2 FloatType& openEV::GliderVarioStatus::accelY = statusVector[STATUS IND ACC Y]

Acceleration in m/s 2 on the Y axis of the plane.

Definition at line 208 of file GliderVarioStatus.h.

6.4.6.3 FloatType& openEV::GliderVarioStatus::accelZ = statusVector[STATUS IND ACC Z]

Acceleration in m/s 2 on the Z axis of the plane.

Definition at line 209 of file GliderVarioStatus.h.

6.4.6.4 FloatType& openEV::GliderVarioStatus::altMSL = statusVector[STATUS_IND_ALT_MSL]

Altitude in m over Mean Sea Level.

Definition at line 192 of file GliderVarioStatus.h.

6.4.6.5 FloatType& openEV::GliderVarioStatus::groundSpeedEast = statusVector[STATUS_IND_SPEED_GROUN ← D E]

Ground speed component East in m/s.

Definition at line 199 of file GliderVarioStatus.h.

6.4.6.6 FloatType& openEV::GliderVarioStatus::groundSpeedNorth = statusVector[STATUS_IND_SPEED_GROUN ← D_N]

Ground speed component North in m/s.

Definition at line 198 of file GliderVarioStatus.h.

6.4.6.7 FloatType& openEV::GliderVarioStatus::gyroBiasX = statusVector[STATUS IND GYRO BIAS X]

Bias (0-offset) of the X axis gyro in deg/s.

Definition at line 217 of file GliderVarioStatus.h.

6.4.6.8 FloatType& openEV::GliderVarioStatus::gyroBiasY = statusVector[STATUS_IND_GYRO_BIAS_Y]

Bias (0-offset) of the Y axis gyro in deg/s.

Definition at line 218 of file GliderVarioStatus.h.

6.4.6.9 FloatType& openEV::GliderVarioStatus::gyroBiasZ = statusVector[STATUS_IND_GYRO_BIAS_Z]

Bias (0-offset) of the Z axis gyro in deg/s.

Definition at line 219 of file GliderVarioStatus.h.

6.4.6.10 FloatType& openEV::GliderVarioStatus::heading = statusVector[STATUS_IND_HEADING]

Heading of the plane in deg. right turn from true north. This is the flight direction relative to the surrounding air. Definition at line 201 of file GliderVarioStatus.h.

Dominion at mio 201 of the Gilder various account

6.4.6.11 FloatType& openEV::GliderVarioStatus::latitude = statusVector[STATUS IND LATITUDE]

Latitude in deg North.

Definition at line 191 of file GliderVarioStatus.h.

6.4.6.12 FloatType& openEV::GliderVarioStatus::longitude = statusVector[STATUS IND LONGITUDE]

Longitude in deg. East.

Definition at line 190 of file GliderVarioStatus.h.

6.4.6.13 FloatType& openEV::GliderVarioStatus::pitchAngle = statusVector[STATUS_IND_PITCH]

Pitch angle in deg. nose up. Pitch is applied after yaw.

Definition at line 194 of file GliderVarioStatus.h.

6.4.6.14 FloatType& openEV::GliderVarioStatus::pitchRateY = statusVector[STATUS_IND_ROTATION_Y]

Pitch rate in deg/s nose up around the Y axis.

Definition at line 213 of file GliderVarioStatus.h.

6.4.6.15 FloatType& openEV::GliderVarioStatus::rateOfSink = statusVector[STATUS_IND_RATE_OF_SINK]

Rate of sink in m/s relative to the surrounding air. Sink because the Z axis points downward.

Definition at line 202 of file GliderVarioStatus.h.

6.4.6.16 FloatType& openEV::GliderVarioStatus::rollAngle = statusVector[STATUS IND ROLL]

Roll angle in deg. right. Roll is applied after yaw and pitch.

Definition at line 195 of file GliderVarioStatus.h.

6.4.6.17 FloatType& openEV::GliderVarioStatus::rollRateX = statusVector[STATUS_IND_ROTATION_X]

Roll rate in deg/s to the right around the X axis.

Definition at line 212 of file GliderVarioStatus.h.

6.4.6.18 StatusVectorType openEV::GliderVarioStatus::statusVector [protected]

Definition at line 226 of file GliderVarioStatus.h.

6.4.6.19 FloatType& openEV::GliderVarioStatus::thermalSpeed = statusVector[STATUS_IND_THERMAL_SPEED]

The true reason for the whole exercise! :)

Definition at line 223 of file GliderVarioStatus.h.

6.4.6.20 FloatType& openEV::GliderVarioStatus::trueAirSpeed = statusVector[STATUS IND TAS]

True air speed in m/s relative to surrounding air.

Definition at line 200 of file GliderVarioStatus.h.

6.4.6.21 FloatType& openEV::GliderVarioStatus::verticalSpeed = statusVector[STATUS_IND_VERTICAL_SPEED]

Absolute vertical speed in m/s downward. Z axis is downward.

Definition at line 203 of file GliderVarioStatus.h.

6.4.6.22 FloatType& openEV::GliderVarioStatus::windSpeedEast = statusVector[STATUS_IND_WIND_SPEED_E]

The direction is the direction from where the wind blows.

Wind speed East component in m/s

Definition at line 221 of file GliderVarioStatus.h.

6.4.6.23 FloatType& openEV::GliderVarioStatus::windSpeedNorth = statusVector[STATUS_IND_WIND_SPEED_N]

Wind speed North component in m/s.

Definition at line 220 of file GliderVarioStatus.h.

6.4.6.24 FloatType& openEV::GliderVarioStatus::yawRateZ = statusVector[STATUS IND ROTATION Z]

Yaw (turn) rate in deg/s around the Z axis.

Definition at line 214 of file GliderVarioStatus.h.

The documentation for this class was generated from the following files:

- src/GliderVarioStatus.h
- src/GliderVarioStatus.cpp

6.5 openEV::GliderVarioTransitionMatrix Class Reference

#include <GliderVarioTransitionMatrix.h>

Public Types

• typedef Eigen::Matrix< FloatType, GliderVarioStatus::STATUS_NUM_ROWS, GliderVarioStatus::STATU← S_NUM_ROWS > TransitionMatrixType

Public Member Functions

- GliderVarioTransitionMatrix ()
- virtual ∼GliderVarioTransitionMatrix ()
- TransitionMatrixType & getTransitionMatrix ()
- void calcTransitionMatrix (FloatType timeDiff, GliderVarioStatus const &lastStatus)
- void updateStatus (GliderVarioStatus const &oldStatus, GliderVarioStatus &newStatus, FloatType timeDiff)

Protected Attributes

TransitionMatrixType transitionMatrix

6.5.1 Detailed Description

This is the transition matrix implementation of the Kalman filter. The transition matrix is re-calculated before every update step because it depends on the elapsed interval, and on the current attitude (i.e. heading pitch and roll affect the TAS vs speed and course over ground).

Definition at line 50 of file GliderVarioTransitionMatrix.h.

6.5.2 Member Typedef Documentation

6.5.2.1 typedef Eigen::Matrix<FloatType,GliderVarioStatus::STATUS_NUM_ROWS,GliderVarioStatus::STAT

US_NUM_ROWS> openEV::GliderVarioTransitionMatrix::TransitionMatrixType

Definition at line 53 of file GliderVarioTransitionMatrix.h.

6.5.3 Constructor & Destructor Documentation

6.5.3.1 openEV::GliderVarioTransitionMatrix::GliderVarioTransitionMatrix() [inline]

Definition at line 56 of file GliderVarioTransitionMatrix.h.

 $\textbf{6.5.3.2} \quad \textbf{openEV::GliderVarioTransitionMatrix::} \sim \textbf{GliderVarioTransitionMatrix} \, (\ \) \quad [\texttt{virtual}]$

Definition at line 40 of file GliderVarioTransitionMatrix.cpp.

6.5.4 Member Function Documentation

6.5.4.1 void openEV::GliderVarioTransitionMatrix::calcTransitionMatrix (FloatType timeDiff, GliderVarioStatus const & lastStatus)

Recalculates the transition matrix. Only active coefficients are recalculated. All other coefficients are supposed to be 0 as they were set at construction time.

Parameters

in	timeDiff	Time since last update in seconds.
in	lastStatus	Most recent status vector. Used to convert world into local coordinates.

Todo Calculation of Rate of Sink: Refine the vario compensation by considering the decrease of drag based on the polar.

Definition at line 46 of file GliderVarioTransitionMatrix.cpp.

30 Class Documentation

6.5.4.2 TransitionMatrixType& openEV::GliderVarioTransitionMatrix::getTransitionMatrix() [inline]

Definition at line 64 of file GliderVarioTransitionMatrix.h.

6.5.4.3 void openEV::GliderVarioTransitionMatrix::updateStatus (GliderVarioStatus const & oldStatus, GliderVarioStatus & newStatus, FloatType timeDiff) [inline]

Extrapolates the newStatus from the oldStatus after timeDiff seconds. internally recalculates the transition matrix.

Parameters

in	oldStatus	Last known status
out	newStatus	New status by extrapolation after timeDiff seconds
in	timeDiff	The time difference in seconds

Definition at line 88 of file GliderVarioTransitionMatrix.h.

6.5.5 Member Data Documentation

6.5.5.1 TransitionMatrixType openEV::GliderVarioTransitionMatrix::transitionMatrix [protected]

Definition at line 103 of file GliderVarioTransitionMatrix.h.

The documentation for this class was generated from the following files:

- src/GliderVarioTransitionMatrix.h
- src/GliderVarioTransitionMatrix.cpp

6.6 openEV::MeasureMatrix Class Reference

#include <MeasureMatrix.h>

Public Member Functions

- MeasureMatrix ()
- virtual ∼MeasureMatrix ()

6.6.1 Detailed Description

Definition at line 32 of file MeasureMatrix.h.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 openEV::MeasureMatrix::MeasureMatrix ()

Definition at line 31 of file MeasureMatrix.cpp.

6.6.2.2 openEV::MeasureMatrix::~MeasureMatrix() [virtual]

Definition at line 37 of file MeasureMatrix.cpp.

The documentation for this class was generated from the following files:

- src/MeasureMatrix.h
- src/MeasureMatrix.cpp

6.7 openEV::RotationMatrix Class Reference

#include <RotationMatrix.h>

Public Member Functions

RotationMatrix ()

Default constructor. Initialized all angles to 0. The rotation matrix is the Identity matrix.

RotationMatrix (FloatType yaw, FloatType pitch, FloatType roll)

Constructor with initial angles. The matrix is not yet defined.

- virtual ∼RotationMatrix ()
- void setYaw (FloatType yaw)

set yaw angle . Invalidates the matrix.

- FloatType getYaw ()
- void setPitch (FloatType pitch)

set pitch angle . Invalidates the matrix.

- FloatType getPitch ()
- void setRoll (FloatType roll)

set roll angle . Invalidates the matrix.

- FloatType getRoll ()
- void calcPlaneVectorToWorldVector (const Vector3DType &planeVector, Vector3DType &worldVector)
- void calcWorldVectorToPlaneVector (const Vector3DType &worldVector, Vector3DType &planeVector)
- RotationMatrix3DType & getMatrixGloToPlane ()

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

RotationMatrix3DType & getMatrixPlaneToGlo ()

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

Protected Member Functions

- void calculateRotationMatrixGloToPlane ()
- void calculateRotationMatrixPlaneToGlo ()

Protected Attributes

RotationMatrix3DType matrixGloToPlane

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

· RotationMatrix3DType matrixPlaneToGlo

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

- bool matrixGloToPlaneIsValid
- bool matrixPlaneToGloIsValid
- FloatType yaw

Yaw angle in deg. in the norm DIN 9300. Also called **Heading**. Turning right hand around the z axis, i.e. in navigation direction.

FloatType pitch

Pitch angle in deg. in the norm DIN 9300. Also called Elevation. Turning nose up around the y axis is positive.

FloatType roll

Roll angle in deg. in the norm DIN 9300. Also called **Bank angle**.

32 Class Documentation

6.7.1 Detailed Description

Definition at line 47 of file RotationMatrix.h.

6.7.2 Constructor & Destructor Documentation

```
6.7.2.1 openEV::RotationMatrix::RotationMatrix() [inline]
```

Default constructor. Initialized all angles to 0. The rotation matrix is the Identity matrix.

Definition at line 53 of file RotationMatrix.h.

6.7.2.2 openEV::RotationMatrix::RotationMatrix(FloatType yaw, FloatType pitch, FloatType roll) [inline]

Constructor with initial angles. The matrix is not yet defined.

Definition at line 68 of file RotationMatrix.h.

6.7.2.3 openEV::RotationMatrix::~RotationMatrix() [virtual]

Definition at line 33 of file RotationMatrix.cpp.

6.7.3 Member Function Documentation

6.7.3.1 void openEV::RotationMatrix::calcPlaneVectorToWorldVector (const Vector3DType & planeVector, Vector3DType & worldVector) [inline]

Convert the plane vector into the world vector

Parameters

in	planeVector	The vector in plane coordinates
out	worldVector	The vector in world coordinates

Definition at line 123 of file RotationMatrix.h.

6.7.3.2 void openEV::RotationMatrix::calculateRotationMatrixGloToPlane() [protected]

Calculates the rotation matrix global to plane is calculated.

Calculates the rotation matrix. The matrix from world coordinates to plane coordinates is calculated only.

Again the the angle definitions:

- Yaw angle = Heading
- Pitch angle = Elevation
- Rollwinkel = Bank angle

Implementing the matrix according to the German Wikipedia https://de.wikipedia.org/wiki/Eulersche_Winkel#

Drehfolgen in der Fahrzeugtechnik

 $\{align\} M_{GNR} & = \{pmatrix\} & & - - & + & + & - & \{pmatrix\} \{align\}$

Definition at line 56 of file RotationMatrix.cpp.

6.7.3.3 void openEV::RotationMatrix::calculateRotationMatrixPlaneToGlo() [inline], [protected]

Calculate the rotation matrix plane to global. Do this by transposing the global to plane matrix.

Definition at line 179 of file RotationMatrix.h.

6.7.3.4 void openEV::RotationMatrix::calcWorldVectorToPlaneVector (const Vector3DType & worldVector, Vector3DType & planeVector) [inline]

Convert the world vector into the plane vector

Parameters

in	worldVector	The vector in world coordinates
out	planeVector	The vector in plane coordinates

Definition at line 134 of file RotationMatrix.h.

6.7.3.5 RotationMatrix3DType& openEV::RotationMatrix::getMatrixGloToPlane() [inline]

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

Definition at line 140 of file RotationMatrix.h.

6.7.3.6 RotationMatrix3DType& openEV::RotationMatrix::getMatrixPlaneToGlo() [inline]

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

Definition at line 145 of file RotationMatrix.h.

6.7.3.7 FloatType openEV::RotationMatrix::getPitch() [inline]

Definition at line 104 of file RotationMatrix.h.

6.7.3.8 FloatType openEV::RotationMatrix::getRoll() [inline]

Definition at line 115 of file RotationMatrix.h.

6.7.3.9 FloatType openEV::RotationMatrix::getYaw () [inline]

Definition at line 93 of file RotationMatrix.h.

 $\textbf{6.7.3.10} \quad \textbf{void openEV::RotationMatrix::setPitch (FloatType \textit{pitch})} \quad \texttt{[inline]}$

set pitch angle. Invalidates the matrix.

Definition at line 97 of file RotationMatrix.h.

6.7.3.11 void openEV::RotationMatrix::setRoll (FloatType roll) [inline]

set roll angle. Invalidates the matrix.

Definition at line 108 of file RotationMatrix.h.

34 Class Documentation

6.7.3.12 void openEV::RotationMatrix::setYaw (FloatType yaw) [inline]

set yaw angle . Invalidates the matrix.

Definition at line 86 of file RotationMatrix.h.

6.7.4 Member Data Documentation

6.7.4.1 RotationMatrix3DType openEV::RotationMatrix::matrixGloToPlane [protected]

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

Definition at line 153 of file RotationMatrix.h.

6.7.4.2 bool openEV::RotationMatrix::matrixGloToPlanelsValid [protected]

Definition at line 157 of file RotationMatrix.h.

6.7.4.3 RotationMatrix3DType openEV::RotationMatrix::matrixPlaneToGlo [protected]

The rotation matrix from the global(world) coordinate system to the plane coordinate system.

Definition at line 155 of file RotationMatrix.h.

6.7.4.4 bool openEV::RotationMatrix::matrixPlaneToGlolsValid [protected]

Definition at line 158 of file RotationMatrix.h.

6.7.4.5 FloatType openEV::RotationMatrix::pitch [protected]

Pitch angle in deg. in the norm DIN 9300. Also called **Elevation**. Turning nose up around the y axis is positive.

Definition at line 164 of file RotationMatrix.h.

6.7.4.6 FloatType openEV::RotationMatrix::roll [protected]

Roll angle in deg. in the norm DIN 9300. Also called Bank angle.

Definition at line 166 of file RotationMatrix.h.

6.7.4.7 FloatType openEV::RotationMatrix::yaw [protected]

Yaw angle in deg. in the norm DIN 9300. Also called **Heading**. Turning right hand around the z axis, i.e. in navigation direction.

Definition at line 162 of file RotationMatrix.h.

The documentation for this class was generated from the following files:

- · src/RotationMatrix.h
- src/RotationMatrix.cpp

6.8 openEV::RotMatrixConversion Class Reference

#include <RotMatrixConversion.h>

Public Member Functions

- RotMatrixConversion ()
- virtual ∼RotMatrixConversion ()

Static Public Member Functions

static void vectors2RotMatrix (RotationMatrix3DType &rotMatrix, Vector3DType const &v1, Vector3DType const &v2)

Static Private Member Functions

- static int axisDominantV3Single (Vector3DType const &vec)
- static void orthoV3V3 (Vector3DType &p, Vector3DType const &v)
- static void axisAngleNormalizedToMat3Ex (RotationMatrix3DType *mat, Vector3DType const &axis, const FloatType angle_sin, const FloatType angle_cos)

6.8.1 Detailed Description

The algorithm to construct a rotation matrix from two vectors comes from: http://stackoverflow.↔ com/questions/23166898/efficient-way-to-calculate-a-3x3-rotation-matrix-from-the-rotation-matrix-f

The algorithm to decompose a rotation matrix into the Euler angles comes from $http://nghiaho. \leftarrow com/?page_id=846$

Definition at line 43 of file RotMatrixConversion.h.

6.8.2 Constructor & Destructor Documentation

```
6.8.2.1 openEV::RotMatrixConversion::RotMatrixConversion() [inline]
```

Definition at line 45 of file RotMatrixConversion.h.

```
6.8.2.2 openEV::RotMatrixConversion::~RotMatrixConversion( ) [virtual]
```

Definition at line 30 of file RotMatrixConversion.cpp.

6.8.3 Member Function Documentation

6.8.3.1 void openEV::RotMatrixConversion::axisAngleNormalizedToMat3Ex (RotationMatrix3DType * mat, Vector3DType const & axis, const FloatType angle_sin, const FloatType angle_cos) [static], [private]

Does the basic calculation of the rotation matrix.

Parameters

out	mat	Due to a gcc 5.3 bug I cannot pass mat as a reference but I have to pass the pointer.
in	axis	

36 Class Documentation

in	angle_sin	
in	angle_cos	

Definition at line 115 of file RotMatrixConversion.cpp.

6.8.3.2 int openEV::RotMatrixConversion::axisDominantV3Single (Vector3DType const & vec) [static], [private]

Determines the dominant axis in the vector, i.e. the dimension with the greatest length

Parameters

in	vec	

Returns

0: x-axis, 1: y-axis, 2: y-axis

Definition at line 81 of file RotMatrixConversion.cpp.

6.8.3.3 void openEV::RotMatrixConversion::orthoV3V3 (Vector3DType & p, Vector3DType const & v) [static], [private]

Calculate the orthogonal

Parameters

out	р	The orthogonal vector to v
in	V	Input.

Definition at line 91 of file RotMatrixConversion.cpp.

6.8.3.4 void openEV::RotMatrixConversion::vectors2RotMatrix (RotationMatrix3DType & rotMatrix, Vector3DType const & v1, Vector3DType const & v2) [static]

Calculate a rotation matrix from 2 normalized vectors. v1 and v2 must be unit length.

Parameters

out	rotMatrix	The rotation matrix to map v1 to v2
in	v1	the original vector
in	v2	the resulting vector after being multiplied with rotMatrix.

Definition at line 43 of file RotMatrixConversion.cpp.

The documentation for this class was generated from the following files:

- src/RotMatrixConversion.h
- src/RotMatrixConversion.cpp

Chapter 7

File Documentation

7.1 src/FastMath.cpp File Reference

#include "FastMath.h"
Include dependency graph for FastMath.cpp:

Namespaces

openEV

7.2 src/FastMath.h File Reference

```
#include <math.h>
#include <assert.h>
#include "GliderVarioStatus.h"
```

Include dependency graph for FastMath.h:

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::FastMath

Namespaces

openEV

Macros

• #define M_PI 3.14159265358979323846 /* pi */

7.2.1 Macro Definition Documentation

7.2.1.1 #define M_PI 3.14159265358979323846 /* pi */

Definition at line 38 of file FastMath.h.

7.3 src/FastMath_test.cpp File Reference

#include "FastMath.h"
Include dependency graph for FastMath_test.cpp:

7.4 src/FastMathSineTable.cpp File Reference

#include "FastMath.h"
Include dependency graph for FastMathSineTable.cpp:

Namespaces

openEV

7.5 src/genSineTables.cpp File Reference

#include <iostream>
#include <stdio.h>
#include "FastMath.h"

Include dependency graph for genSineTables.cpp:

Functions

- static int printSineTable (const char *fileName)
 Generate constant sinus tables for FastMath genSineTables.cpp.
- static void usage ()
- int main (int argc, const char **argv)

7.5.1 Function Documentation

7.5.1.1 int main (int argc, const char ** argv)

Definition at line 134 of file genSineTables.cpp.

7.5.1.2 static int printSineTable (const char * fileName) [static]

Generate constant sinus tables for FastMath genSineTables.cpp.

Created on: Dec 27, 2015 Author: hor

This file is part of openEVario, an electronic variometer for glider planes Copyright (C) 2016 Kai Horstmann

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.Print the sine table into a c++ source file "fileName".

Definition at line 32 of file genSineTables.cpp.

```
7.5.1.3 static void usage ( ) [static]
```

Definition at line 130 of file genSineTables.cpp.

7.6 src/GliderVarioMeasurementMatrix.cpp File Reference

#include "GliderVarioMeasurementMatrix.h"
Include dependency graph for GliderVarioMeasurementMatrix.cpp:

Namespaces

openEV

7.7 src/GliderVarioMeasurementMatrix.h File Reference

```
#include "GliderVarioStatus.h"
#include "GliderVarioMeasurementVector.h"
```

Include dependency graph for GliderVarioMeasurementMatrix.h:

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::GliderVarioMeasurementMatrix

Namespaces

openEV

7.8 src/GliderVarioMeasurementMatrix_test.cpp File Reference

#include "GliderVarioMeasurementMatrix.h"

Include dependency graph for GliderVarioMeasurementMatrix_test.cpp:

Namespaces

• openEV

7.9 src/GliderVarioMeasurementVector.cpp File Reference

#include "GliderVarioMeasurementVector.h"

Include dependency graph for GliderVarioMeasurementVector.cpp:

Namespaces

openEV

7.10 src/GliderVarioMeasurementVector.h File Reference

#include "GliderVarioStatus.h"
Include dependency graph for GliderVarioMeasurementVector.h:

This graph shows which files directly or indirectly include this file:

Classes

· class openEV::GliderVarioMeasurementVector

Namespaces

openEV

7.11 src/GliderVarioMeasurementVector_test.cpp File Reference

#include "GliderVarioMeasurementVector.h"
Include dependency graph for GliderVarioMeasurementVector_test.cpp:

Namespaces

openEV

7.12 src/GliderVarioStatus.cpp File Reference

#include "GliderVarioStatus.h"
#include <iomanip>
Include dependency graph for GliderVarioStatus.cpp:

Namespaces

openEV

Functions

• std::ostream & operator<< (std::ostream &o, openEV::GliderVarioStatus &s)

7.12.1 Function Documentation

7.12.1.1 std::ostream & o, openEV::GliderVarioStatus & s)

Definition at line 140 of file GliderVarioStatus.cpp.

7.13 src/GliderVarioStatus.h File Reference

#include <Dense>

Include dependency graph for GliderVarioStatus.h:

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::GliderVarioStatus

GliderVarioStatus manages the Kalman filter state x.

Namespaces

openEV

Typedefs

- typedef float openEV::FloatType
- typedef Eigen::Matrix< FloatType, 3, 1 > openEV::Vector3DType
- typedef Eigen::Matrix< FloatType, 3, 3 > openEV::RotationMatrix3DType

Functions

• std::ostream & operator<< (std::ostream &o, openEV::GliderVarioStatus &s)

7.13.1 Function Documentation

7.13.1.1 std::ostream& operator << (std::ostream & o, openEV::GliderVarioStatus & s)

Definition at line 140 of file GliderVarioStatus.cpp.

7.14 src/GliderVarioStatus_test.cpp File Reference

#include "GliderVarioStatus.h"
Include dependency graph for GliderVarioStatus_test.cpp:

7.15 src/GliderVarioTransitionMatrix.cpp File Reference

```
#include <GliderVarioTransitionMatrix.h>
#include "GliderVarioStatus.h"
#include "RotationMatrix.h"
#include "FastMath.h"
```

Include dependency graph for GliderVarioTransitionMatrix.cpp:

Namespaces

openEV

Variables

• FloatType constexpr openEV::lenLatitude = 111132.0

7.16 src/GliderVarioTransitionMatrix.h File Reference

#include "GliderVarioStatus.h"
Include dependency graph for GliderVarioTransitionMatrix.h:

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::GliderVarioTransitionMatrix

Namespaces

openEV

Variables

static FloatType constexpr openEV::GRAVITY = 9.81

7.17 src/GliderVarioTransitionMatrix_test.cpp File Reference

#include "GliderVarioTransitionMatrix.h"
Include dependency graph for GliderVarioTransitionMatrix_test.cpp:

7.18 src/MeasureMatrix.cpp File Reference

#include "MeasureMatrix.h"
Include dependency graph for MeasureMatrix.cpp:

Namespaces

openEV

7.19 src/MeasureMatrix.h File Reference

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::MeasureMatrix

Namespaces

openEV

7.20 src/MeasureMatrix_test.cpp File Reference

#include "MeasureMatrix.h"
Include dependency graph for MeasureMatrix_test.cpp:

Namespaces

openEV

7.21 src/openEVario.cpp File Reference

```
#include <random>
#include <iostream>
#include <math.h>
#include <sys/time.h>
#include "GliderVarioStatus.h"
#include "GliderVarioTransitionMatrix.h"
#include "RotationMatrix.h"
#include "FastMath.h"
#include "GliderVarioMeasurementVector.h"
#include "GliderVarioMeasurementMatrix.h"
```

Include dependency graph for openEVario.cpp:

Functions

• int main (int argc, char *argv[])

The one and only main() function Startup and intialization. Demonization if required. Entry into the main processing loop.

Variables

- mt19937 randomGenerator
- FloatType x = 0

7.21.1 Function Documentation

7.21.1.1 int main (int argc, char * argv[])

The one and only main() function Startup and intialization. Demonization if required. Entry into the main processing loop.

Parameters

argc	
argv	

Returns

TODO remove all the test code, and replace it by real application code.

Definition at line 56 of file openEVario.cpp.

7.21.2 Variable Documentation

7.21.2.1 mt19937 randomGenerator

Definition at line 43 of file openEVario.cpp.

7.21.2.2 FloatType x = 0

Definition at line 45 of file openEVario.cpp.

7.22 src/RotationMatrix.cpp File Reference

```
#include "RotationMatrix.h"
#include "FastMath.h"
```

Include dependency graph for RotationMatrix.cpp:

Namespaces

openEV

7.23 src/RotationMatrix.h File Reference

#include "GliderVarioStatus.h"
Include dependency graph for RotationMatrix.h:

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::RotationMatrix

Namespaces

openEV

7.24 src/RotMatrixConversion.cpp File Reference

#include "RotMatrixConversion.h"

Include dependency graph for RotMatrixConversion.cpp:

Namespaces

openEV

7.25 src/RotMatrixConversion.h File Reference

```
#include <math.h>
#include <float.h>
#include "GliderVarioStatus.h"
Include dependency graph for RotMatrixConversion.h:
```

src/RotMatrixConversion.h

math.h float.h GliderVarioStatus.h

Dense

This graph shows which files directly or indirectly include this file:

Classes

• class openEV::RotMatrixConversion

Namespaces

openEV

7.26 src/RotMatrixConversion_test.cpp File Reference

#include "RotMatrixConversion.h"
Include dependency graph for RotMatrixConversion_test.cpp:

Namespaces

openEV

Index

\sim FastMath	fastATan2
openEV::FastMath, 12	openEV::FastMath, 12
~GliderVarioMeasurementMatrix	fastATan2Pos
openEV::GliderVarioMeasurementMatrix, 16	openEV::FastMath, 12
~GliderVarioMeasurementVector	fastATanRaw
openEV::GliderVarioMeasurementVector, 18	openEV::FastMath, 13
~GliderVarioStatus	fastCos
openEV::GliderVarioStatus, 25	openEV::FastMath, 13
\sim GliderVarioTransitionMatrix	FastMath
openEV::GliderVarioTransitionMatrix, 29	openEV::FastMath, 12
\sim MeasureMatrix	FastMath.h
openEV::MeasureMatrix, 30	M_PI, 38
\sim RotMatrixConversion	fastSin
openEV::RotMatrixConversion, 35	openEV::FastMath, 13
\sim RotationMatrix	fastSinPositive
openEV::RotationMatrix, 32	openEV::FastMath, 13
	fastSinRaw
accelX	openEV::FastMath, 14
openEV::GliderVarioMeasurementVector, 19	FloatType
openEV::GliderVarioStatus, 26	openEV, 9
accelY	
openEV::GliderVarioMeasurementVector, 19	GRAVITY
openEV::GliderVarioStatus, 26	openEV, 10
accelZ	genSineTables.cpp
openEV::GliderVarioMeasurementVector, 19	main, 41
openEV::GliderVarioStatus, 26	printSineTable, 41
altMSL	usage, 41
openEV::GliderVarioStatus, 26	getMatrixGloToPlane
atanTable	openEV::RotationMatrix, 33
openEV::FastMath, 14	getMatrixPlaneToGlo
axisAngleNormalizedToMat3Ex	openEV::RotationMatrix, 33
openEV::RotMatrixConversion, 35	getMeasureMatrix
axisDominantV3Single	openEV::GliderVarioMeasurementMatrix, 16
openEV::RotMatrixConversion, 36	getMeasureVector
	openEV::GliderVarioMeasurementVector, 19
calcMeasurementMatrix	getPitch
openEV::GliderVarioMeasurementMatrix, 16	openEV::RotationMatrix, 33
calcPlaneVectorToWorldVector	getRoll
openEV::RotationMatrix, 32	openEV::RotationMatrix, 33
calcTransitionMatrix	getStatusVector
openEV::GliderVarioTransitionMatrix, 29	openEV::GliderVarioStatus, 25
calcWorldVectorToPlaneVector	getTransitionMatrix
openEV::RotationMatrix, 33	openEV::GliderVarioTransitionMatrix, 30
calculateRotationMatrixGloToPlane	getYaw
openEV::RotationMatrix, 32	openEV::RotationMatrix, 33
calculateRotationMatrixPlaneToGlo	GliderVarioMeasurementMatrix
openEV::RotationMatrix, 33	openEV::GliderVarioMeasurementMatrix, 16
dogToDod	GliderVarioMeasurementVector
degToRad	openEV::GliderVarioMeasurementVector, 18
openEV::FastMath. 14	GliderVarioStatus

openEV::GliderVarioStatus, 25	openEV::GliderVarioMeasurementVector, 18
GliderVarioStatus.cpp	MEASURE_IND_GPS_SPEED
operator<<, 47	openEV::GliderVarioMeasurementVector, 18
GliderVarioStatus.h	MEASURE_IND_GYRO_RATE_X
operator<<, 48	openEV::GliderVarioMeasurementVector, 18
GliderVarioTransitionMatrix	MEASURE_IND_GYRO_RATE_Y
openEV::GliderVarioTransitionMatrix, 29	openEV::GliderVarioMeasurementVector, 18
gpsHeading	MEASURE_IND_GYRO_RATE_Z
openEV::GliderVarioMeasurementVector, 19	openEV::GliderVarioMeasurementVector, 18
gpsLatitude	MEASURE_IND_MAG_X
openEV::GliderVarioMeasurementVector, 19	openEV::GliderVarioMeasurementVector, 18
gpsLongitude	MEASURE IND MAG Y
openEV::GliderVarioMeasurementVector, 19	openEV::GliderVarioMeasurementVector, 18
gpsMSL	MEASURE_IND_MAG_Z
openEV::GliderVarioMeasurementVector, 19	openEV::GliderVarioMeasurementVector, 18
gpsSpeed	MEASURE_IND_PRESS_ALT
	openEV::GliderVarioMeasurementVector, 18
openEV::GliderVarioMeasurementVector, 19	•
groundSpeedEast	MEASURE_IND_TAS
openEV::GliderVarioStatus, 26	openEV::GliderVarioMeasurementVector, 18
groundSpeedNorth	MEASURE_NUM_ROWS
openEV::GliderVarioStatus, 26	openEV::GliderVarioMeasurementVector, 18
gyroBiasX	magX
openEV::GliderVarioStatus, 26	openEV::GliderVarioMeasurementVector, 20
gyroBiasY	magY
openEV::GliderVarioStatus, 26	openEV::GliderVarioMeasurementVector, 20
gyroBiasZ	magZ
openEV::GliderVarioStatus, 26	openEV::GliderVarioMeasurementVector, 20
gyroRateX	main
openEV::GliderVarioMeasurementVector, 20	genSineTables.cpp, 41
gyroRateY	openEVario.cpp, 53
openEV::GliderVarioMeasurementVector, 20	matrixGloToPlane
gyroRateZ	openEV::RotationMatrix, 34
openEV::GliderVarioMeasurementVector, 20	matrixGloToPlaneIsValid
•	openEV::RotationMatrix, 34
heading	matrixPlaneToGlo
openEV::GliderVarioStatus, 26	openEV::RotationMatrix, 34
	matrixPlaneToGloIsValid
latitude	openEV::RotationMatrix, 34
openEV::GliderVarioStatus, 27	MeasureComponentIndex
lenLatitude	openEV::GliderVarioMeasurementVector, 18
openEV, 10	MeasureMatrix
longitude	openEV::MeasureMatrix, 30
openEV::GliderVarioStatus, 27	MeasureMatrixType
,	openEV::GliderVarioMeasurementMatrix, 15
M PI	measureVector
FastMath.h, 38	
MEASURE IND ACC X	openEV::GliderVarioMeasurementVector, 20
openEV::GliderVarioMeasurementVector, 18	MeasureVectorType
MEASURE_IND_ACC_Y	openEV::GliderVarioMeasurementVector, 18
openEV::GliderVarioMeasurementVector, 18	measurementMatrix
MEASURE_IND_ACC_Z	openEV::GliderVarioMeasurementMatrix, 16
openEV::GliderVarioMeasurementVector, 18	normalizeAngles
MEASURE_IND_GPS_ALTMSL	
openEV::GliderVarioMeasurementVector, 18	openEV::GliderVarioStatus, 25
MEASURE_IND_GPS_HEADING	
	onenEV 0
	openEV, 9
openEV::GliderVarioMeasurementVector, 18	FloatType, 9
openEV::GliderVarioMeasurementVector, 18 MEASURE_IND_GPS_LAT	FloatType, 9 GRAVITY, 10
openEV::GliderVarioMeasurementVector, 18	FloatType, 9

Vector3DType, 9	magY, 20
openEV::FastMath, 11	magZ, 20
∼FastMath, 12	MeasureComponentIndex, 18
atanTable, 14	measureVector, 20
degToRad, 14	MeasureVectorType, 18
fastATan2, 12	pressAlt, 20
fastATan2Pos, 12	trueAirSpeed, 21
fastATanRaw, 13	openEV::GliderVarioStatus, 21
fastCos, 13	~GliderVarioStatus, 25
FastMath, 12	accelX, 26
fastSin, 13	accelY, 26
fastSinPositive, 13	accelZ, 26
fastSinRaw, 14	altMSL, 26
radToDeg, 14	getStatusVector, 25
sineSamplesPerDegree, 14	GliderVarioStatus, 25
sinusTable, 14	groundSpeedEast, 26
sizeATanTable, 14	groundSpeedNorth, 26
sizeSineTable, 15	gyroBiasX, 26
openEV::GliderVarioMeasurementMatrix, 15	gyroBiasY, 26
~GliderVarioMeasurementMatrix, 16	gyroBiasZ, 26
calcMeasurementMatrix, 16	heading, 26
getMeasureMatrix, 16	latitude, 27
GliderVarioMeasurementMatrix, 16	longitude, 27
MeasureMatrixType, 15	normalizeAngles, 25
measurementMatrix, 16	pitchAngle, 27
openEV::GliderVarioMeasurementVector, 16	pitchRateY, 27
~GliderVarioMeasurementVector, 18	rateOfSink, 27
accelX, 19	rollAngle, 27
accelY, 19	rollRateX, 27
accelZ, 19	STATUS_IND_ACC_X, 24
getMeasureVector, 19	STATUS_IND_ACC_Y, 24
GliderVarioMeasurementVector, 18	STATUS_IND_ACC_Z, 24
gpsHeading, 19	STATUS_IND_ALT_MSL, 24
gpsLatitude, 19	STATUS_IND_GYRO_BIAS_X, 25
gpsLongitude, 19	STATUS IND GYRO BIAS Y, 25
gpsMSL, 19	STATUS_IND_GYRO_BIAS_Z, 25
gpsSpeed, 19	STATUS IND HEADING, 24
gyroRateX, 20	STATUS IND LATITUDE, 24
gyroRateY, 20	STATUS_IND_LONGITUDE, 24
gyroRateZ, 20	STATUS_IND_PITCH, 24
MEASURE IND ACC X, 18	STATUS IND RATE OF SINK, 24
MEASURE IND ACC Y, 18	STATUS IND ROLL, 24
MEASURE_IND_ACC_Z, 18	STATUS_IND_ROTATION_X, 24
MEASURE IND GPS ALTMSL, 18	STATUS IND ROTATION Y, 24
MEASURE IND GPS HEADING, 18	STATUS IND ROTATION Z, 24
MEASURE_IND_GPS_LAT, 18	STATUS_IND_SPEED_GROUND_E, 24
MEASURE IND GPS LON, 18	STATUS IND SPEED GROUND N, 24
MEASURE IND GPS SPEED, 18	STATUS IND TAS, 24
MEASURE_IND_GYRO_RATE_X, 18	STATUS_IND_THERMAL_SPEED, 25
MEASURE IND GYRO RATE Y, 18	STATUS IND VERTICAL SPEED, 24
MEASURE_IND_GYRO_RATE_Z, 18	STATUS_IND_WIND_SPEED_E, 25
MEASURE_IND_MAG_X, 18	STATUS_IND_WIND_SPEED_N, 25
MEASURE_IND_MAG_Y, 18	STATUS_NUM_ROWS, 25
MEASURE_IND_MAG_Z, 18	StatusComponentIndex, 24
MEASURE_IND_PRESS_ALT, 18	statusVector, 27
MEASURE_IND_TAS, 18	StatusVectorType, 24
MEASURE_NUM_ROWS, 18	thermalSpeed, 27
magX, 20	trueAirSpeed, 28
5 /	1, -

verticalSpeed, 28	openEV::GliderVarioStatus, 27
windSpeedEast, 28	pressAlt
windSpeedNorth, 28	openEV::GliderVarioMeasurementVector, 20
yawRateZ, 28	printSineTable
openEV::GliderVarioTransitionMatrix, 28	genSineTables.cpp, 41
\sim GliderVarioTransitionMatrix, 29	
calcTransitionMatrix, 29	radToDeg
getTransitionMatrix, 30	openEV::FastMath, 14
GliderVarioTransitionMatrix, 29	randomGenerator
transitionMatrix, 30	openEVario.cpp, 54
TransitionMatrixType, 29	rateOfSink
updateStatus, 30	openEV::GliderVarioStatus, 27
openEV::MeasureMatrix, 30	roll
\sim MeasureMatrix, 30	openEV::RotationMatrix, 34
MeasureMatrix, 30	rollAngle
openEV::RotMatrixConversion, 35	openEV::GliderVarioStatus, 27
\sim RotMatrixConversion, 35	rollRateX
axisAngleNormalizedToMat3Ex, 35	openEV::GliderVarioStatus, 27
axisDominantV3Single, 36	RotMatrixConversion
orthoV3V3, 36	openEV::RotMatrixConversion, 35
RotMatrixConversion, 35	RotationMatrix
vectors2RotMatrix, 36	openEV::RotationMatrix, 32
openEV::RotationMatrix, 31	RotationMatrix3DType
\sim RotationMatrix, 32	openEV, 9
calcPlaneVectorToWorldVector, 32	OTATUO IND. ACC. V
calcWorldVectorToPlaneVector, 33	STATUS_IND_ACC_X
calculateRotationMatrixGloToPlane, 32	openEV::GliderVarioStatus, 24
calculateRotationMatrixPlaneToGlo, 33	STATUS_IND_ACC_Y
getMatrixGloToPlane, 33	openEV::GliderVarioStatus, 24
getMatrixPlaneToGlo, 33	STATUS_IND_ACC_Z
getPitch, 33	openEV::GliderVarioStatus, 24
getRoll, 33	STATUS_IND_ALT_MSL
getYaw, 33	openEV::GliderVarioStatus, 24
matrixGloToPlane, 34	STATUS_IND_GYRO_BIAS_X
matrixGloToPlaneIsValid, 34	openEV::GliderVarioStatus, 25
matrixPlaneToGlo, 34	STATUS_IND_GYRO_BIAS_Y
matrixPlaneToGloIsValid, 34	openEV::GliderVarioStatus, 25
pitch, 34	STATUS_IND_GYRO_BIAS_Z
roll, 34	openEV::GliderVarioStatus, 25
RotationMatrix, 32	STATUS_IND_HEADING
setPitch, 33	openEV::GliderVarioStatus, 24
setRoll, 33	STATUS_IND_LATITUDE openEV::GliderVarioStatus, 24
setYaw, 34	STATUS IND LONGITUDE
yaw, 34	openEV::GliderVarioStatus, 24
openEVario.cpp	STATUS IND PITCH
main, 53	openEV::GliderVarioStatus, 24
randomGenerator, 54	STATUS_IND_RATE_OF_SINK
x, 54	openEV::GliderVarioStatus, 24
operator<<	STATUS IND ROLL
GliderVarioStatus.cpp, 47	openEV::GliderVarioStatus, 24
GliderVarioStatus.h, 48	STATUS IND ROTATION X
orthoV3V3	openEV::GliderVarioStatus, 24
openEV::RotMatrixConversion, 36	STATUS IND ROTATION Y
pitch	openEV::GliderVarioStatus, 24
openEV::RotationMatrix, 34	STATUS IND ROTATION Z
pitchAngle	openEV::GliderVarioStatus, 24
openEV::GliderVarioStatus, 27	STATUS_IND_SPEED_GROUND_E
pitchRateY	openEV::GliderVarioStatus, 24
p	oponie i namadi tanootatad, et

STATUS_IND_SPEED_GROUND_N openEV::GliderVarioStatus, 24	StatusVectorType openEV::GliderVarioStatus, 24
STATUS IND TAS	opone vdiidoi variootatao, 2 i
openEV::GliderVarioStatus, 24	thermalSpeed
STATUS_IND_THERMAL_SPEED	openEV::GliderVarioStatus, 27
openEV::GliderVarioStatus, 25	transitionMatrix
STATUS_IND_VERTICAL_SPEED	openEV::GliderVarioTransitionMatrix, 30
openEV::GliderVarioStatus, 24	TransitionMatrixType
STATUS_IND_WIND_SPEED_E	openEV::GliderVarioTransitionMatrix, 29
openEV::GliderVarioStatus, 25	trueAirSpeed
·	openEV::GliderVarioMeasurementVector, 21
STATUS_IND_WIND_SPEED_N	openEV::GliderVarioStatus, 28
openEV::GliderVarioStatus, 25	
STATUS_NUM_ROWS	updateStatus
openEV::GliderVarioStatus, 25	openEV::GliderVarioTransitionMatrix, 30
setPitch Set Pitch No. 100	usage
openEV::RotationMatrix, 33	genSineTables.cpp, 41
setRoll	
openEV::RotationMatrix, 33	Vector3DType
setYaw	openEV, 9
openEV::RotationMatrix, 34	vectors2RotMatrix
sineSamplesPerDegree	openEV::RotMatrixConversion, 36
openEV::FastMath, 14	verticalSpeed
sinusTable	openEV::GliderVarioStatus, 28
openEV::FastMath, 14	•
sizeATanTable	windSpeedEast
openEV::FastMath, 14	openEV::GliderVarioStatus, 28
sizeSineTable	windSpeedNorth
openEV::FastMath, 15	openEV::GliderVarioStatus, 28
src/FastMath.cpp, 37	
src/FastMath.h, 37	X
src/FastMath_test.cpp, 39	openEVario.cpp, 54
src/FastMathSineTable.cpp, 40	
src/GliderVarioMeasurementMatrix.cpp, 42	yaw
src/GliderVarioMeasurementMatrix.h, 42	openEV::RotationMatrix, 34
src/GliderVarioMeasurementMatrix_test.cpp, 43	yawRateZ
src/GliderVarioMeasurementVector.cpp, 44	openEV::GliderVarioStatus, 28
src/GliderVarioMeasurementVector.h, 45	
src/GliderVarioMeasurementVector_test.cpp, 46	
src/GliderVarioStatus.cpp, 47	
src/GliderVarioStatus.h, 48	
src/GliderVarioStatus test.cpp, 49	
src/GliderVarioTransitionMatrix.cpp, 49	
src/GliderVarioTransitionMatrix.h, 50	
src/GliderVarioTransitionMatrix_test.cpp, 51	
src/MeasureMatrix.cpp, 51	
src/MeasureMatrix.h, 52	
src/MeasureMatrix_test.cpp, 52	
src/RotMatrixConversion.cpp, 55	
src/RotMatrixConversion.h, 56	
src/RotMatrixConversion_test.cpp, 57	
src/RotationMatrix.cpp, 54	
src/RotationMatrix.h, 55	
src/genSineTables.cpp, 40	
src/openEVario.cpp, 53	
StatusComponentIndex	
openEV::GliderVarioStatus, 24	
statusVector	
openEV::GliderVarioStatus, 27	