Probabilistic Machine Learning: 4. Beta-binomial model

Tomasz Kajdanowicz, Przemysław Kazienko (substitution)

Department of Computational Intelligence Wroclaw University of Science and Technology

Wrocław University
of Science and Technology

.

The presentation was inspired by Chapter 3 of Kevin Murphy book "Machine Learning A Probabilistic Perspective", 2012, MIT. Apropriate agreements to propagate his ideas has been acquired.

Beta-binomial model

"Number game"

- ▶ inferring a distribution over a discrete variable drawn from a finite hypothesis space
- given a series of discrete observations
- computations particularly simple: sum, multiplication and division

What if, like in many applications, the unknown parameters are continuous?

- ▶ the hypothesis space is subset of \mathbb{R}^K , where K is the number of parameters
- replace sums with integrals

Coin toss example

The problem:

- inferring the probability that a coin shows up heads
- given a series of observed coin tosses

Might seem trivial, but

- this model forms the basis of many of the methods
- historically important, since it was the example which was analyzed in Bayes' original paper of 1763

Recipe of specifying the model

Define

- likelihood
- ▶ prior

and derive

- posterior
- posterior predictive

The problem

Let's consider a single binary random variable:

- ▶ $X_i \sim Bern(\theta)$
- $ightharpoonup X_i = 1$ represents "heads", $X_i = 0$ represents "tails"
- ▶ $\theta \in [0, 1]$ is the parameter (probability of heads)
- $p(X_i = 1|\theta) = \theta, \ p(X_i = 0|\theta) = 1 \theta$

Probability distribution over X

- $\blacktriangleright Bern(X|\theta) = \theta^{N_1}(1-\theta)^{N_0}$
- if the data are iid, the likelihood has the same shape
- ▶ there are $N_1 = \sum_{i=1}^N \mathbb{1}(X_i = 1)$ heads and $N_0 = \sum_{i=1}^N \mathbb{1}(X_i = 0)$ tails
- N₀ and N₁ are called **sufficient statistics** (this is **all** we need to know about data to infer θ)

Bernoulli distribution recap

$$Bern(X|\theta) = \theta^{N_1}(1-\theta)^{N_0}$$

$$N = N_0 + N_1$$

Mean:

$$ightharpoonup \mathbb{E}(\mathsf{X}) = \theta$$

Variance:

$$var(X) = \theta(1-\theta)$$

The problem: continuing

Let's demistyfy the examplary problem more:

- ▶ suppose the data consists of the count of the number of heads N_1 observed in a fixed number $N = N_1 + N_0$ of trials
- ▶ $N_1 \sim Bin(N, \theta)$
- ▶ binomial pmf: $Bin(k|n,\theta) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$
- ▶ term $\binom{n}{k}$ is constant independent of θ , thus the **binomial sampling model is the** same as the likelihood for the Bernoulli model

Likelihood: in general

Likelihood:

- ▶ a tool for summarizing the data's evidence about unknown parameter in the model
- \blacktriangleright as below: considered as a function of θ
- \blacktriangleright or: is the likelihood function (of θ)
- ▶ the probability of "the value x of X for the parameter value θ "

Discrete probability distribution

$$\mathcal{L}(x \mid \theta) = p_{\theta}(x) = P_{\theta}(X = x)$$

Continuous probability distribution

$$\mathcal{L}(\mathbf{x}\mid\theta)=f_{\theta}(\mathbf{x})$$

9/21

Likelihood of our problem

$$\mathcal{L}(\mathcal{D} \mid \theta) = \theta^{N_1} (1 - \theta)^{N_0}$$

Figure: Likelihood \mathcal{D} ={HH}

Figure: Likelihood \mathcal{D} ={HHHH}}

What about prior?

- need of prior with support over [0,1] interval
- easier, if it would have the same form as likelyhood, for some prior parameters γ_1 and γ_2 :

$$p(\theta) \propto \theta^{\gamma_1} (1-\theta)^{\gamma_2}$$

easy evaluation of posterior: adding exponents

$$\mathcal{L}(\theta \mid \mathcal{D})p(\theta) = \theta^{N_1}(1-\theta)^{N_0}\theta^{\gamma_1}(1-\theta)^{\gamma_2} = \theta^{N_1+\gamma_1}(1-\theta)^{N_0+\gamma_2}$$

Conjugate priors

When the prior and the posterior have the same form, we say that the prior is a conjugate prior for the corresponding likelihood.

Conjugate priors

Likelihood	Model parameters	Conjugate prior distribution	Prior hyperparameters	Posterior hyperparameters	Interpretation of hyperparameters ^[note 1]	Posterior predictive ^[note 2]
Bernoulli	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + n - \sum_{i=1}^n x_i$	$lpha = 1$ successes, $eta = 1$ failures $^{ ext{(note 1)}}$	$p(\tilde{x}=1) = \frac{\alpha'}{\alpha' + \beta'}$
Binomial	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{(note 1)}}$	$\operatorname{BetaBin}(\tilde{x} \alpha',\beta')$ (beta-binomial)
Negative binomial with known failure number, r	p (probability)	Beta	α, β	$\alpha + \sum_{i=1}^n x_i, \beta + rn$	$\alpha-1$ total successes, $\beta-1$ failures ^[note 1] (i.e., $\frac{\beta-1}{r}$ experiments, assuming r stays fixed)	
			k, θ	$k + \sum_{i=1}^{n} x_i, \frac{\theta}{n\theta + 1}$	k total occurrences in $\frac{1}{ heta}$ intervals	$NB(\bar{x} k', \theta')$ (negative binomial)
Poisson	λ (rate)	Gamma	α , β ^[note 3]	$\alpha + \sum_{i=1}^n x_i, \ \beta + n$	lpha total occurrences in eta intervals	$\operatorname{NB}\left(\tilde{x} \alpha', \frac{1}{1+\beta'}\right)$ (negative binomial)
Categorical	p (probability vector), k (number of categories; i.e., size of p)	Dirichlet	α	$oldsymbol{lpha} + (c_1, \dots, c_k),$ where c_i is the number of observations in category i	$lpha_i - 1$ occurrences of category $i^{ ext{finite } 1]}$	$\begin{split} p(\tilde{x} = i) &= \frac{{\alpha_i}'}{\sum_i {\alpha_i}'} \\ &= \frac{{\alpha_i} + c_i}{\sum_i {\alpha_i} + n} \end{split}$
Multinomial	${m p}$ (probability vector), ${m k}$ (number of categories; i.e., size of ${m p}$)	Dirichlet	α	$\alpha + \sum_{i=1}^n \mathbf{x}_i$	$lpha_i - 1$ occurrences of category $i^{ ext{(note 1)}}$	$\operatorname{DirMult}(\mathbf{\tilde{x}} oldsymbol{lpha}')$ (Dirichlet-multinomial)
Hypergeometric with known total population size, N	M (number of target members)	Beta-binomial ^[4]	$n=N, \alpha, \beta$	$\alpha + \sum_{i=1}^n x_i, \beta + \sum_{i=1}^n N_i - \sum_{i=1}^n x_i$	$lpha-1$ successes, $eta-1$ failures $^{ ext{(note 1]}}$	
Geometric	p_0 (probability)	Beta	α, β	$\alpha+n,\beta+\sum_{i=1}^n x_i-n$	lpha-1 experiments, $eta-1$ total failures [note 1]	

please check: https://en.wikipedia.org/wiki/Conjugate_prior (source)

Beta distribution

- conjugate prior for the Bernoulli, binomial, negative binomial and geometric distributions
- ▶ Beta $(\theta|a,b) \sim \theta^{a-1}(1-\theta)^{b-1}$

Beta distribution

- required a, b > 0
- if a = b = 1, we get the uniform distirbution
- ▶ if a and b are both less than 1, we get a bimodal distribution with "spikes" at 0 and 1
- ▶ if *a* and *b* are both greater than 1, the distribution is unimodal

Distribution properties

mean=
$$\frac{a}{a+b}$$
, mode= $\frac{a-1}{a+b-2}$, var= $\frac{ab}{(a+b)^2(a+b+1)}$

14/21

Beta prior

Beta
$$(\theta|a,b)\sim \theta^{a-1}(1-\theta)^{b-1}$$

- prior parameters a and b are called hyper-parameters
- ▶ set *a* and *b* to encode your prior belief

Example

- ▶ to encode our beliefs that θ has mean 0.7 and standard deviation 0.2, we set a =2.975 and b =1.275
- ▶ to encode our beliefs that θ has mean 0.15 and that we think it lives in the interval (0.05, 0.30), we find a =4.5 and b =25.5

Posterior

Multiply the likelihood by the beta prior:

$$p(\theta|\mathcal{D}) \propto Bin(N_1|\theta, N_0 + N_1)Beta(\theta|a, b) \propto Beta(\theta|N_1 + a, N_0 + b)$$

Figure: Beta(2,2) prior updated with Binomial likelihood with sufficient statistics $N_1 = 3, N_0 = 17$ yealds Beta(5,19)

Figure: Beta(5,2) prior updated with Binomial likelihood with sufficient statistics $N_1 = 11, N_0 = 13$ yealds Beta(16,15)

Remark: two ways of updating posterior

Updating the posterior sequentially is equivalent to updating in a single batch

Let D_a and D_b are two datasets with sufficient statistics N_1^a , N_0^a and N_1^b , N_0^b ; let $N_1 = N_1^a + N_1^b$ and $N_0 = N_0^a + N_0^b$ be the sufficient statistics of the combined datasets

Batch mode:

$$p(\theta|\mathcal{D}_a, \mathcal{D}_b) \propto Bin(N_1|\theta, N_1 + N_0)Beta(\theta|a, b) \propto Beta(\theta|N_1 + a, N_0 + b)$$

Sequential mode:

$$\begin{split} p(\theta|\mathcal{D}_a,\mathcal{D}_b) &\propto p(\theta|\mathcal{D}_b)p(\theta|\mathcal{D}_a))\\ &\propto Bin(N_1^b|\theta,N_1^b+N_0^b)Beta(\theta|N_1^a+a,N_0^a+b)\\ &\propto Beta(\theta|N_1^a+N_1^b+a,N_0^a+N_0^b+b) \end{split}$$

REMARK! Online learning

Posterior mean and mode

MAP

$$\hat{\theta}_{MAP} = \frac{a + N_1 - 1}{a + b + N - 2}$$

When we use a uniform prior, then the MAP estimate reduces to the MLE, which is just the empirical fraction of heads:

$$\hat{\theta}_{MLE} = \frac{N_1}{N}$$

Posterior mean

$$\bar{\theta} = \frac{a + N_1}{a + b + N}$$

Posterior predictive distribution

How to make prediction of future observable data?

Predicting the probability of heads in a single future trial under a Beta(a, b) posterior:

$$p(\tilde{x} = 1|\mathcal{D}) = \int_0^1 p(x = 1|\theta)p(\theta|\mathcal{D})dx$$
$$= \int_0^1 \theta Beta(\theta|a, b)d\theta = \mathbb{E}(\theta|\mathcal{D}) = \frac{a}{a+b}$$

The mean of the posterior predictive distribution is equivalent (in this case) to plugging in the posterior mean parameters: $p(\tilde{\mathbf{x}}|\mathcal{D}) = Ber(\tilde{\mathbf{x}}|\mathbb{E}[\theta|\mathcal{D}])$

Overfitting

- ▶ let assume $p(\tilde{\mathbf{x}}|\mathcal{D}) = Ber(\tilde{\mathbf{x}}|\hat{\theta}_{\mathsf{MLE}})$
- ightharpoonup and N=3 with 3 tails in a row
- $\blacktriangleright \text{ MLE is } \hat{\theta} = 0/3 = 0$
- this makes the observed data as probable as possible
- ▶ **BUT** we predict that heads are impossible

This is called: **zero count problem** or the **sparse data problem**. Approximation can perform quite poorly.