EXHIBIT 1

Patent Office Canberra

I, JANENE PEISKER, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. 2004903474 for a patent by THE UNIVERSITY OF WESTERN AUSTRALIA as filed on 28 June 2004.

WITNESS my hand this Twenty-second day of July 2005

JANENE PEISKER

TEAM LEADER EXAMINATION SUPPORT AND SALES

AZL Exhibit 1004 UWA v. AZL Int. No. 106,007 Page 1 of 36

> DEFENDANT/ COUNTER-PLAINTIFFS' EXHIBIT C.A. No. 21-1015-JLH

P/00/009 28/5/91 Regulation 3.2

ORIGINAL AUSTRALIA

Patents Act 1990

PROVISIONAL SPECIFICATION

Invention Title: "Antisense Oligonucleotides for Inducing Exon Skipping and Methods of Use Thereof"

The invention is described in the following statement:

AZL Exhibit 1004 UWA v. AZL

"Antisense oligonucleotides for inducing exon skipping and Methods of **Use Thereof**"

Field of the Invention

The present invention relates to novel antisense compounds and compositions suitable for facilitating exon skipping and methods of use thereof.

Background Art

Significant effort is currently being expended researching methods for suppressing or compensating for disease-causing mutations in genes. Antisense technologies are being developed using a range of chemistries to affect gene expression at a variety of different levels (transcription, splicing, stability, translation). Much of that research has focused on the use of antisense compounds to correct or compensate for abnormal or disease-associated genes in a myriad of different conditions.

Antisense molecules are able to inhibit gene expression with exquisite specificity 15 and because of this many research efforts concerning oligonucleotides as modulators of gene expression have focused on inhibiting the expression of targeted genes such as oncogenes or viral genes. The antisense oligonucleotides are directed either against RNA (sense strand) or against DNA where they form triplex structures inhibiting transcription by RNA polymerase II. To achieve a desired effect in specific gene down-regulation, the oligonucleotides must either promote the decay of the targeted mRNA or block translation of that mRNA, thereby effectively preventing de novo synthesis of the undesirable target protein.

20

Such techniques are not useful where the object is to up-regulate production of the native protein or compensate for mutations which induce premature termination of translation such as nonsense or frame-shifting mutations. Furthermore, in cases where a normally functional protein is prematurely terminated because of mutations therein, a means for restoring some functional protein production through antisense technology has been shown to be possible through intervention during the splicing processes (Sierakowska H, et al., (1996) Proc Natl Acad Sci USA 93,12840-12844; Wilton SD, et al., (1999) Neuromusc Disorders 9, 330-338; van Deutekom JC et al., (2001) Human Mol Genet 10, 1547-1554). In these cases, the defective gene transcript should not be subjected to targeted degradation so the antisense oligonucleotide chemistry should not promote target mRNA decay.

In a variety of genetic diseases, the effects of mutations on the eventual expression of a gene can be modulated through a process of targeted exon skipping during the splicing process. The splicing process is directed by complex multi-particle machinery that brings adjacent exon-intron junctions in pre-mRNA into close proximity and performs cleavage of phosphodiester bonds at the ends of the introns with their subsequent reformation between exons that are to be spliced together. This complex and highly precise process is mediated by sequence motifs in the pre-mRNA that are relatively short semi-conserved RNA segments to which bind the various nuclear splicing factors that are then involved in the splicing reactions. By changing the way the splicing machinery reads or recognises the motifs involved in pre-mRNA processing, it is possible to create differentially spliced mRNA molecules. Using this approach, it has been shown that errors and deficiencies in a coded mRNA could be bypassed or removed from the mature gene transcripts.

10

30

In nature, the extent of genetic deletion or exon skipping in the splicing process is not fully understood, although many instances have been documented to occur, generally at very low levels (Sherrat TG, et al., (1993) Am J Hum Genet 53, 1007-1015). However, it is recognised that if exons associated with disease-causing mutations can be specifically deleted from some genes, a shortened protein product can sometimes be produced that has similar biological properties of the native protein or has sufficient biological activity to ameliorate the disease caused by mutations associated with the target exon (Lu QL, et al., (2003) Nature Medicine 9, 1009-1014; Aartsma-Rus A et al., (2004) Am J Hum Genet 74: 83-92).

This process of targeted exon skipping is likely to be particularly useful in long genes where there are many exons and introns, where there is redundancy in the genetic constitution of the exons or where a protein is able to function without one or more particular exons (e.g. with the dystrophin gene, which consists of 79 exons; or possibly some collagen genes which encode for repeated blocks of sequence or the huge nebulin or titin genes which are comprised of ~80 and over 370 exons, respectively).

Efforts to redirect gene processing for the treatment of genetic diseases associated with truncations caused by mutations in various genes have focused on the use of antisense oligonucleotides that either: (1) fully or partially overlap with the elements involved in the splicing process; or (2) bind to the pre-mRNA at a position sufficiently close to the element to disrupt the binding and function of the splicing factors that would normally mediate a particular splicing reaction which occurs at that element (e.g., binds to the pre-mRNA at a position within 3, 6, or 9 nucleotides of the element to be blocked).

For example, modulation of mutant dystrophin splicing with antisense oligoribonucleotides has been reported both *in vitro* and *in vivo*. In one type of dystrophin mutation reported in Japan, a 52-base pair deletion mutation causes exon 19 to be removed with the flanking introns during the splicing process (Matsuo *et al.*, (1991) <u>J Clin Invest.</u> 87:2127-2131). An *in vitro* minigene splicing system has been used to show that a 31-mer 2'-O-methyl oligoribonucleotide complementary to the 5' half of the deleted sequence in dystrophin Kobe exon 19 inhibited splicing of wild-type *pre-mRNA* (Takeshima *et al.* (1995), <u>J. Clin. Invest.</u>, 95, 515-520). The same oligonucleotide was used to induce exon skipping from the native dystrophin gene transcript in human cultured lymphoblastoid cells.

Dunckley et al., (1997) <u>Nucleosides & Nucleotides</u>, 16, 1665-1668 described in vitro constructs for analysis of splicing around exon 23 of mutated dystrophin in the mdx mouse mutant, a model for muscular dystrophy. Plans to analyse these constructs in vitro using 2' modified oligonucleotides targeted to splice sites within and adjacent to mouse dystrophin exon 23 were discussed, though no target sites or sequences were given.

25

2'-O-methyl oligoribonucleotides were subsequently reported to correct dystrophin deficiency in myoblasts from the *mdx* mouse from this group. An antisense oligonucleotide targeted to the 3' splice site of murine dystrophin Intron 22 was reported to cause skipping of the mutant exon as well as several flanking exons and created a novel in-frame dystrophin transcript with a novel internal deletion. This mutated dystrophin was expressed in 1-2% of antisense treated mdx myotubes. Use of other oligonucleotide modifications such as 2'-O-methoxyethyl phosphodiesters are described (Dunckley *et al.* (1998) <u>Human Mol. Genetics</u>, 5, 1083-90).

Thus, antisense molecules may provide a tool in the treatment of genetic disorders such as Duchenne Muscular Dystrophy (DMD). However, attempts to induce exon skipping using antisense molecules have had mixed success. Studies on dystrophin exon 19, where successful skipping of that exon from the dystrophin pre-mRNA was achieved using a variety of antisense molecules directed at the flanking splice sites or motifs within the exon involved in exon definition as described by Errington et al. (2003) J Gen Med 5, 518-527".

In contrast to the apparent ease of exon 19 skipping, the first report of exon 23 skipping in the *mdx* mouse by Dunckley *et al.*, (1998) is now considered to be reporting only a naturally occurring revertant transcript or artefact rather than any true antisense activity. In addition to not consistently generating transcripts missing exon 23, Dunckley *et al.*, (1998) did not show any time course of induced exon skipping, or even titration of antisense oligonucleotides, to demonstrate dose dependent effects where the levels of exon skipping corresponded with increasing or decreasing amounts of antisense oligonucleotide. Furthermore, this work could not be replicated by other researchers.

The first example of specific and reproducible exon skipping in the *mdx* mouse model was reported by Wilton et al., (1999) Neuromuscular Disorders 9, 330-338. By directing an antisense molecule to the donor splice site, consistent and efficient exon 23 skipping was induced in the dystrophin mRNA within 6 hours of treatment of the cultured cells. Wilton et al., (1999), also describe targeting the

acceptor region of the mouse dystrophin pre-mRNA with longer antisense oligonucleotides and being unable to repeat the published results of Dunckley et al., (1998). No exon skipping, either 23 alone or multiple removal of several flanking exons, could be reproducibly detected using a selection of antisense oligonucleotides directed at the acceptor splice site of intron 22.

While the first antisense oligonucleotide directed at the intron 23 donor splice site induced consistent exon skipping in primary cultured myoblasts, this compound was found to be much less efficient in immortalized cell cultures expressing higher levels of dystrophin. However, with refined targeting and antisense oligonucleotide design, the efficiency of specific exon removal was increased by almost an order of magnitude (see Mann CJ et al., (2002) J Gen Med 4, 644-654).

Thus, there remains a need to provide antisense oligonucleotides capable of binding to and modifying the splicing of a target nucleotide sequence. Simply directing the antisense oligonucleotides to motifs presumed to be crucial for splicing is no guarantee of the efficacy of that compound in a therapeutic setting.

Summary of the Invention

The present invention provides antisense molecule compounds and compositions suitable for binding to RNA motifs involved in the splicing of premRNA that are able to induce specific and efficient exon skipping and a method for their use thereof.

20

25

The choice of target selection plays a crucial role in the efficiency of exon skipping and hence its subsequent application of a potential therapy. Simply designing antisense molecules to target regions of pre-mRNA presumed to be involved in splicing is no guarantee of inducing efficient and specific exon skipping. The most obvious or readily defined targets for splicing intervention are the donor and acceptor splice sites although there are less defined or conserved motifs including exonic splicing enhancers, silencing elements and branch points. The acceptor and donor splice sites have consensus sequences of about 16 and

8 bases respectively (see Figure 1 for schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process).

According to a first aspect, the invention provides antisense molecules capable of binding to a selected target to induce exon skipping.

5 For example, to induce exon skipping in exons 4, 6, 7 and 8 in the Dystrophin gene transcript the antisense molecules are preferably selected from the group listed in Table 1.

According to a second aspect, the present invention provides antisense molecules selected and or adapted to aid in the prophylactic or therapeutic treatment of a genetic disorder comprising at least an antisense molecule in a form suitable for delivery to a patient.

According to a third aspect, the invention provides a method for treating a patient suffering from a genetic disease wherein there is a mutation in a gene encoding a particular protein and the affect of the mutation can be abrogated by exon skipping, comprising the steps of: (a) selecting an antisense molecule in accordance with the methods described herein; and (b) administering the molecule to a patient in need of such treatment.

Other aspects and advantages of the invention will become apparent to those skilled in the art from a review of the ensuing description, which proceeds with reference to the following figures.

Brief Description of the Drawings

Figure 1 Schematic representation of motifs and domains involved in exon recognition, intron removal and the splicing process.

Figure 2. Diagrammatic representation of the concept of antisense oligonucleotide induced exon skipping to by-pass disease-causing mutations (not drawn to scale). The hatched box represents an exon carrying a mutation that prevents the translation of the rest of the mRNA into a protein. The solid black bar represents an

antisense oligonucleotide that prevents inclusion of that exon in the mature mRNA.

Figure 3

Figure 4

Gel electrophoresis showing differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. The preferred compound [H8A(-06+18)] induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured normal human muscle cells. The less preferred antisense oligonucleotide [H8A(-06+14)] also induces efficient exon skipping, but at much higher concentrations. Other antisense oligonucleotides directed at exon 8 either only induced lower levels of exon skipping or no detectable skipping at all (not shown).

10

Gel electrophoresis showing differing efficiencies of two antisense molecules directed at internal domains within exon 7, presumably exon splicing enhancers. The preferred compound [H7A(+45+67)] induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells. The less preferred antisense oligonucleotide [H7A(+2+26)] induces only low levels of exon skipping at the higher transfection concentrations. Other antisense oligonucleotides directed at exon 7 either only induced lower levels of exon skipping or no detectable skipping at all (not shown).

20

Figure 5

Gel electrophoresis showing an example of low efficiency exon 6 skipping using two non-preferred antisense molecules directed at human exon 6 donor splice site. Levels of induced exon 6 skipping are either very low [H6D(+04-21)] or almost undetectable [H6D(+18-04)]. These are examples of non-preferred antisense oligonucleotides to demonstrate that antisense oligonucleotide design plays a crucial role in the efficacy of these compounds.

Figure 6

Gel electrophoresis showing strong and efficient human exon 6 skipping using an antisense molecules [CH6A(+69+91)] directed at an exon 6 internal domain, presumably an exon splicing enhancer.

> AZL Exhibit 1004 UWA v. AZL

This preferred compound induces consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells.

Figure 7

Gel electrophoresis showing strong human exon 4 skipping using an antisense molecule H4A(+13+32) directed at an exon 6 internal domain, presumably an exon splicing enhancer. This preferred compound induces strong and consistent exon skipping at a transfection concentration of 20 nanomolar in cultured human muscle cells.

10

Brief Description of the Sequence listings

SEQ ID	SEQUENCE	NUCLEOTIDE SEQUENCE (5' - 3')
· 1	H8A(-06+18)	GAU AGG UGG UAU CAA CAU CUG UAA
2	H8A (-03+18)	GAU AGG UGG UAU CAA CAU CUG
3	H8A(-07+18)	GAU AGG UGG UAU CAA CAU CUG UAA G
. 4	H8A(-06+14)	GGU GGU AUC AAC AUC UGU AA
5	H8A(-10+10)	GUA UCA ACA UCU GUA AGC AC
6	H7A(+45+67)	UGC AUG UUC CAG UCG UUG UGU GG
7	H7A(+02+26)	CAC UAU UCC AGU CAA AUA GGU CUG G
8	H7D(+15-10)	AUU UAC CAA CCU UCA GGA UCG AGU A
9	H7A(-18+03)	GGC CUA AAA CAC AUA CAC AUA
10	C6A(-10+10)	CAU UUU UGA CCU ACA UGU GG
11	C6A(-14+06)	UUU GAC CUA CAU GUG GAA AG
12	C6A(-14+12)	UAC AUU UUU GAC CUA CAU GUG GAA AG

13	C6A(-13+09)	AUU UUU GÁC CUA CAU GGG AAA G
14	CH6A(+69+91)	UAC GAG UUG AUU GUC GGA CCC AG
15	C6D(+12-13)	GUG GUC UCC UUA CCU AUG ACU GUG G
: 16	C6D(+06-11)	GGU CUC CUU ACC UAU GA
17	H6D(+04-21)	UGU CUC AGU AAU CUU CUU ACC UAU
18	H6D(+18-04)	UCU UAC CUA UGA CUA UGG AUG AGA
19	H4A(+13+32)	GCA UGA ACU CUU GUG GAU CC
20	H4D(+04-16)	CCA GGG UAC UAC UUA CAU UA
21	H4D(-24-44)	AUC GUG UGU CAC AGC AUC CAG

Table 1: Description of 2'-O-methyl phosphorothicate antisense oligonucleotides that have been used to date to study induced exon skipping during the processing of the dystrophin pre-mRNA.

Detailed Description of the Invention

5 General

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variation and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in the specification, individually or collectively and any and all combinations or any two or more of the steps or features.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of exemplification only. Functionally equivalent products, compositions and methods are clearly within the scope of the invention as described herein.

Sequence identity numbers (SEQ ID NO:) containing nucleotide and amino acid sequence information included in this specification are collected at the end of the description and have been prepared using the programme Patentin Version 3.0. Each nucleotide or amino acid sequence is identified in the sequence listing by the numeric indicator <210> followed by the sequence identifier (e.g. <210>1, <210>2, etc.). The length, type of sequence and source organism for each nucleotide or amino acid sequence are indicated by information provided in the numeric indicator fields <211>, <212> and <213>, respectively. Nucleotide and amino acid sequences referred to in the specification are defined by the information provided in numeric indicator field <400> followed by the sequence identifier (e.g. <400>1, <400>2, etc.).

An antisense molecules nomenclature system was proposed and published to distinguish between the different antisense molecules (see Mann et al., (2002) <u>J</u> <u>Gen Med</u> 4, 644-654). This nomenclature became especially relevant when testing several slightly different antisense molecules, all directed at the same target region, as shown below:

H# A/D (x:y).

The first letter designates the species (e.g. H: human, M: murine, C: canine)

"#" designates target dystrophin exon number.

- 20 "A/D" indicates acceptor or donor splice site at the beginning and end of the exon, respectively.
 - (x y) represents the annealing coordinates where "-" or "+" indicate intronic or exonic sequences respectively. As an example, A(-6+18) would indicate the last 6 bases of the intron preceding the target exon and the first 18 bases of the target exon. The closest splice site would be the acceptor so these coordinates would be preceded with an "A". Describing annealing coordinates at the donor splice site could be D(+2-18) where the last 2 exonic bases and the first 18 intronic bases correspond to the annealing site of the antisense molecule. Entirely exonic annealing coordinates that would be represented by A(+65+85), that is the site between the 65th and 85th nucleotide from the start of that exon.

The entire disclosures of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference. No admission is made that any of the references constitute prior art or are part of the common general knowledge of those working in the field to which this invention relates.

As used necessarily herein the term "derived" and "derived from" shall be taken to indicate that a specific integer may be obtained from a particular source albeit not directly from that source.

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

Other definitions for selected terms used herein may be found within the detailed description of the invention and apply throughout. Unless otherwise defined, all other scientific and technical terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which the invention belongs.

Description of the Preferred Embodiment

When antisense molecule(s) are targeted to nucleotide sequences involved in splicing in exons within pre-mRNA sequences, normal splicing of the exon may be inhibited causing the splicing machinery to by-pass the entire mutated exon from the mature mRNA. The concept of antisense oligonucleotide induced exon skipping is shown in Figure 2. In many genes, deletion of an entire exon would lead to the production of a non-functional protein through the loss of important functional domains or the disruption of the reading frame. In some structural proteins, however, it is possible to shorten the protein by deleting one or more exons, without disrupting the reading frame, from within the protein without seriously altering the biological activity of the protein. Typically, such proteins have a structural role and or possess functional domains at their ends. The

present invention describes antisense molecules capable of binding to specified dystrophin pre-mRNA targets and re-directing processing of that gene.

According to a first aspect of the invention, there is provided antisense molecules capable of binding to a selected target to induce exon skipping. To induce exon skipping in exons of the Dystrophin transcript, the antisense molecules are preferably selected from the group of compounds shown in Table 1.

Designing antisense molecules to completely mask consensus splice sites may not necessarily generate any skipping of the targeted exon. Furthermore, the inventors have discovered that size or length of the antisense oligonucleotide itself is not always a primary factor when designing antisense molecules. With some targets such as exon 19, antisense oligonucleotides as short as 12 bases were able to induce exon skipping, albeit not as efficiently as longer (20-31 bases) oligonucleotides. In some other targets, such as murine dystrophin exon 23, antisense oligonucleotides only 17 residues long were able to induce more efficient skipping than another overlapping compound of 25 nucleotides.

The inventors have also discovered that there does not appear to be any standard motif that can be blocked or masked by antisense molecules to redirect splicing. In some exons, such as mouse dystrophin exon 23, the donor splice site was the most amenable to target to re-direct skipping of that exon. It should be noted that designing and testing a series of exon 23 specific antisense molecules to anneal to overlapping regions of the donor splice site showed considerable variation in the efficacy of induced exon skipping. As reported in Mann et al., (2002) there was a significant variation in the efficiency of bypassing the nonsense mutation depending upon antisense oligonucleotide annealing ("Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy". J Gen Med 4: 644-654). Targeting the acceptor site of exon 23 or several internal domains was not found to induce any consistent exon 23 skipping.

In other exons targeted for removal, masking the donor splice site did not induce any exon skipping. However, by directing antisense molecules to the acceptor splice site (human exon 8 as discussed below), strong and sustained exon skipping was induced. It should be noted that removal of human exon 8 was tightly linked with the co-removal of exon 9. There is no strong sequence homology between the exon 8 AOs and corresponding regions of exon 9 so it does not appear to be a matter of cross reaction. Rather the splicing of these two exons is inextricably linked. This is not an isolated instance as the same effect is observed in canine cells where targeting exon 8 for removal also resulted in the skipping of exon 9. Targeting exon 23 for removal in the mouse dystrophin pre-mRNA also results in the frequent removal of exon 22 as well. This effect occurs in a dose dependent manner and also indicates close coordinated processing of 2 adjacent exons.

In other targeted exons, antisense molecules directed at the donor or acceptor splice sites did not induce exon skipping while annealing antisense molecules to intra-exonic regions (i.e. exon splicing enhancers within human dystrophin exon 6) was most efficient at inducing exon skipping. Some exons, both mouse and human exon 19 for example, are readily skipped by targeting antisense molecules to a variety of motifs. That is, targeted exon skipping is induced after using antisense oligonucleotides to mask donor and acceptor splice sites or exon splicing enhancers.

To identify and select antisense oligonucleotides suitable for use in the modulation of exon skipping, a nucleic acid sequence whose function is to be modulated must first be identified. This may be, for example, a gene (or mRNA transcribed form the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor sites, or exonic splicing enhancer elements). Splicing branch points and exon recognition sequences or splice enhancers are also potential target sites for modulation of mRNA splicing.

20

Preferably, the present invention aims to provide antisense molecules capable of binding to a selected target in the dystrophin pre-mRNA to induce efficient and consistent exon skipping. Duchenne muscular dystrophy arises from mutations

that preclude the synthesis of a functional dystrophin gene product. These Duchenne muscular dystrophy gene defects are typically nonsense mutations or genomic rearrangements such as deletions, duplications or microdeletions or insertions that disrupt the reading frame. As the human dystrophin gene is a large and complex gene with the 79 exons being spliced together to generate a mature mRNA with an open reading frame of approximately 11,000 bases, there are many positions where these mutations can occur. Consequently, a comprehensive antisense oligonucleotide based therapy to address many of the different disease-causing mutations in the dystrophin gene will require that many exons can be targeted for removal during the splicing process.

Within the context of the present invention, preferred target site(s) are those involved in mRNA splicing (i.e. splice donor sites, splice acceptor sites or exonic splicing enhancer elements). Splicing branch points and exon recognition sequences or splice enhancers are also potential target sites for modulation of mRNA splicing.

The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridisable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense molecule need not be 100% complementary to that of its target sequence to be specifically hybridisable. An antisense molecule is specifically hybridisable when binding of 25 the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

While the above method may be used to select antisense molecules capable of deleting any exon from within a protein that is capable of being shortened without affecting its biological function, the exon deletion should not lead to a reading frame shift in the shortened transcribed mRNA. Thus, if in a linear sequence of three exons the end of the first exon encodes two of three nucleotides in a codon and the next exon is deleted then the third exon in the linear sequence must start with a single nucleotide that is capable of completing the nucleotide triplet for a codon. If the third exon does not commence with a single nucleotide there will be a reading frame shift that would lead to the generation of truncated or a nonfunctional protein.

It will be appreciated that the codon arrangements at the end of exons in structural proteins may not always break at the end of a codon, consequently there may be a need to delete more than one exon from the pre-mRNA to ensure in-frame reading of the mRNA. In such circumstances, a plurality of antisense oligonucleotides may need to be selected by the method of the invention wherein each is directed to a different region responsible for inducing splicing in the exons that are to be deleted.

The length of an antisense molecule may vary so long as it is capable of binding selectively to the intended location within the pre-mRNA molecule. The length of such sequences can be determined in accordance with selection procedures described herein. Generally, the antisense molecule will be from about 10 nucleotides in length up to about 50 nucleotides in length. It will be appreciated however that any length of nucleotides within this range may be used in the method. Preferably, the length of the antisense molecule is between 17 to 30 nucleotides in length.

20

25

30

In order to determine which exons can be connected in a dystrophin gene, reference should be made to an exon boundary map. Connection of one exon with another is based on the exons possessing the same number at the 3' border as is present at the 5' border of the exon to which it is being connected. Therefore, if exon 7 were deleted, exon 6 must connect to either exons 12 or 18 to maintain the reading frame. Thus, antisense oligonucleotides would need to

be selected which redirected splicing for exons 7 to 11 in the first instance or exons 7 to 17 in the second instance. Another and somewhat simpler approach to restore the reading frame around an exon 7 deletion would be to remove the two flanking exons. Induction of exons 6 and 8 skipping should result in an inframe transcript with the splicing of exons 5 to 9. In practise however, targeting exon 8 for removal from the pre-mRNA results in the co-removal of exon 9 so the resultant transcript would have exon 5 joined to exon 10. The inclusion or exclusion of exon 9 does not alter the reading frame. Once the antisense molecules to be tested have been identified, they are prepared according to standard techniques known in the art. The most common method for producing antisense molecules is the methylation of the 2' hydroxyribose position and the addition of a phosphorothicate backbone to produce molecules that superficially resemble RNA but that are much more resistant to nuclease degradation.

To avoid degradation of pre-mRNA during duplex formation with the antisense molecules, the antisense molecules used in the method may be adapted to minimise or prevent cleavage by endogenous RNase H. This property is highly preferred as the treatment of the RNA with the unmethylated oligonucleotides either intracellularly or in crude extracts that contain RNase H leads to degradation of the pre-mRNA: antisense oligonucleotide duplexes. Any form of 20 modified antisense molecules that is capable of by-passing or not inducing such degradation may be used in the present method. An example of antisense molecules which when duplexed with RNA are not cleaved by cellular RNase H. is 2'-O-methyl derivatives. 2'-O-methyl-oligoribonucleotides are very stable in a cellular environment and in animal tissues, and their duplexes with RNA have higher Tm values than their ribo- or deoxyribo- counterparts.

15

Antisense molecules that do not activate RNase H can be made in accordance with known techniques (see, e.g., U.S. Pat. 5,149,797). molecules, which may be deoxyribonucleotide or ribonucleotide sequences, simply contain any structural modification which sterically hinders or prevents binding of RNase H to a duplex molecule containing the oligonucleotide as one member thereof, which structural modification does not substantially hinder or ... disrupt duplex formation. Because the portions of the oligonucleotide involved in

duplex formation are substantially different from those portions involved in RNase H binding thereto, numerous antisense molecules that do not activate RNase H are available. For example, such antisense molecules may be oligonucleotides wherein at least one, or all, of the internucleotide bridging phosphate residues are modified phosphates, such as methyl phosphonates, methyl phosphorothioates, phosphoromorpholidates, phosphoropiperazidates and phosphoramidates. For example, every other one of the internucleotide bridging phosphate residues may be modified as described. In another non-limiting example, such antisense molecules are molecules wherein at least one, or all, of the nucleotides contain a 2' lower alkyl moiety (e.g., C₁-C₄, linear or branched, saturated or unsaturated alkyl, such as methyl, ethyl, ethenyl, propyl, 1-propenyl, 2-propenyl, and isopropyl). For example, every other one of the nucleotides may be modified as described.

While antisense oligonucleotides are a preferred form of the antisense molecules, the present invention comprehends other oligomeric antisense molecules, including but not limited to oligonucleotide mimetics such as are described below.

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds,

the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone.

Modified oligonucleotides may also contain one or more substituted sugar moieties. Oligonucleotides may also include nucleobase (often referred to in the art simply as "base") modifications or substitutions. Certain nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. Such moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-S-tritylthiol, a thiocholesterol, an aliphatic chain, e.g., dodecandiol or undecyl residues, a phospholipid, e.g., di-hexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-rac-glycero-3-H-phosphonate, a polyamine or a polyethylene glycol chain, or adamantane acetic acid, a palmityl moiety, or an octadecylamine or hexylamino-carbonyl-oxycholesterol moiety.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds that are chimeric compounds. "Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense molecules, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least

10

30

one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the increased resistance to nuclease degradation, increased cellular uptake, and an additional region for increased binding affinity for the target nucleic acid.

The antisense molecules used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense molecules of the invention are synthesised *in vitro* and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the *in vivo* synthesis of antisense molecules. The molecules of the invention may also be mixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption.

The antisense molecules of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such pro-drugs, and other biologically.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

AZL Exhibit 1004 UWA v. AZI

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, (including by nebulizer, intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intra-arterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

AZL Exhibit 1004 UWA v. AZL Those of ordinary skill in the field should appreciate that applications of the above method has wide application for identifying antisense molecules suitable for use in the treatment of many other diseases.

EXAMPLES

The following Examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these Examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. The references cited herein are expressly incorporated by reference.

Methods of molecular cloning, immunology and protein chemistry, which are not explicitly described in the following examples, are reported in the literature and are known by those skilled in the art. General texts that described conventional molecular biology, microbiology, and recombinant DNA techniques within the skill of the art, included, for example: Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989); Glover ed., DNA Cloning: A Practical Approach, Volumes I and II, MRL Press, Ltd., Oxford, U.K. (1985); and Ausubel, F., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. Current Protocols in Molecular Biology. Greene Publishing Associates/Wiley Intersciences, New York (2002).

Determining Induced exon skipping in human muscle cells

20

25

Attempts by the inventors to develop a rational approach in antisense molecules design were not completely successful as there did not appear to be a consistent trend that could be applied to all exons. As such, the identification of the most effective and therefore most therapeutic antisense molecules compounds has been the result of empirical studies.

These empirical studies involved the use of computer programs to identify motifs potentially involved in the splicing process. Other computer programs were also used to identify regions of the pre-mRNA which may not have had extensive

secondary structure and therefore potential sites for annealing of antisense molecules. Neither of these approaches proved completely reliable in designing antisense oligonucleotides for reliable and efficient induction of exon skipping.

Annealing sites on the dystrophin pre-mRNA were selected for examination, initially based upon known or predicted motifs or regions involved in splicing. 20Me antisense oligonucleotides were designed to be complementary to the target sequences under investigation and were synthesised on an Expedite 8909 Nucleic Acid Synthesiser. Upon completion of synthesis, the oligonucleotides were cleaved from the support column and de-protected in ammonium hydroxide before being desalted. The quality of the oligonucleotide synthesis was monitored by the intensity of the trityl signals upon each deprotection step during the synthesis as detected in the synthesis log. The concentration of the antisense oligonucleotide was estimated by measuring the absorbance of a diluted aliquot at 260nm.

Specified amounts of the antisense molecules were then tested for their ability to induce exon skipping in an *in vitro* assay, as described below.

Briefly, normal primary myoblast cultures were prepared from human muscle biopsies obtained after informed consent. The cells were propagated and allowed to differentiate into myotubes using standard culturing techniques. The cells were then transfected with the antisense oligonucleotides by delivery of the oligonucleotides to the cells as cationic lipoplexes, mixtures of antisense molecules or cationic liposome preparations.

The cells were then allowed to grow for another 24 hours, after which total RNA was extracted and molecular analysis commenced. Reverse transcriptase amplification (RT-PCR) was undertaken to study the targeted regions of the dystrophin pre-mRNA or induced exonic re-arrangements.

25

For example, in the testing of an antisense molecule for inducing exon 19 skipping the RT-PCR test scanned several exons to detect involvement of any adjacent exons. For example, when inducing skipping of exon 19, RT-PCR was carried out with primers that amplified across exons 17 and 21. Amplifications of

even larger products in this area (i.e. exons 13-26) were also carried out to ensure that there was minimal amplification blas for the shorter induced skipped transcript. Shorter or exon skipped products tend to be amplified more efficiently and may bias the estimated of the normal and induced transcript.

The sizes of the amplification reaction products were estimated on an agarose gel and compared against appropriate size standards. The final confirmation of identity of these products was carried to by direct DNA sequencing to establish that the correct or expected exon junctions have been maintained.

Once efficient exon skipping had been induced with one antisense molecule, subsequent overlapping antisense molecules may be synthesized and then evaluated in the assay as described above. Our definition of an efficient antisense molecule is one that induces strong and sustained exon skipping at transfection concentrations in the order of 300 nM or less.

Antisense Oligonucleotides Directed at Exon 8

Antisense oligonucleotides directed at exon 8 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Figure 3 shows differing efficiencies of two antisense molecules directed at exon 8 acceptor splice site. H8A(-06+18) [SEQ ID NO:1], which anneals to the last 6 bases of intron 7 and the first 18 bases of exon 8, induces substantial exon 8 and 9 skipping when delivered into cells at a concentration of 20 nM. The shorter antisense molecule, H8A(-06+14) [SEQ ID NO: 4] was only able to induce exon 8 and 9 skipping at 300 nM, a concentration some 15 fold higher than H8A(-06+18), which is the preferred antisense molecule.

This data shows that some particular antisense molecules induce efficient exon skipping while another antisense molecule, which targets a near-by or overlapping region, can be much less efficient. Titration studies show one compound is able to induce targeted exon skipping at 20 nM while the less efficient antisense molecules only induced exon skipping at concentrations of 300 nM and above. Therefore, we have shown that targeting of the antisense

molecules to motifs involved in the splicing process plays a crucial role in the overall efficacy of that compound.

Efficacy refers to the ability to induce consistent skipping of a target exon. However, sometimes skipping of the target exons is consistently associated with a flanking exon. That is, we have found that the splicing of some exons is tightly linked. For example, in targeting exon 23 in the mouse model of muscular dystrophy with antisense molecules directed at the donor site of that exon, dystrophin transcripts missing exons 22 and 23 are frequently detected. As another example, when using an antisense molecule directed to exon 8 of the human dystrophin gene, all induced transcripts are missing both exons 8 and 9. Dystrophin transcripts missing only exon 8 are not observed.

Table 2 below discloses antisense molecule sequences that induce exon 8 (and 9) skipping.

Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H8A(-06+18)	5'-GAU AGG UGG UAU CAA CAU CUG UAA	Very strong to 20 nM (+++)
H8A (-03+18)	5' – GAU AGG UGG UAU CAA CAU CUG	Very strong skipping to 40nM (+++)
H8A(-07+18)	5' - GAU AGG UGG UAU CAA CAU CUG UAA G	Strong skipping to 40nM (+++)
H8A(-06+14)	5' – GGU GGU AUC AAC AUC UGU AA	Skipping to 300nM (++)
H8A(-10+10)	5' GUA UCA ACA UCU GUA AGC AC	Patchy/weak skipping to 100nm (+/-)

Table 2

Antisense Oligonucleotides Directed at Exon 7

10

Antisense oligonucleotides directed at exon 7 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Figure 4 shows the preferred antisense molecule, H7A(+45+67) [SEQ ID NO: 6], and another antisense molecule, H7A(+2+26) [SEQ ID NO: 7], inducing exon 7 skipping. Nested amplification products span exons 3 to 9. Additional products above the induced transcript missing exon 7 arise from amplification from carry-over outer primers from the RT-PCR as well as heteroduplex formation.

Table 3 below discloses antisense molecule sequences for induced exon 7 skipping.

Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H7A(+45+67)	5' UGC AUG UUC CAG UCG UUG UGU GG	Strong skipping to 20nM (+++)
H7A(+02+26)	5' - CAC UAU UCC AGU CAA AUA GGU CUG G	Weak skipping at 100nM (++)
H7D(+15-10)	5' – AUU UAC CAA CCU UCA GGA UCG AGU A	Weak skipping to 300nM (+)
H7A(-18+03)	5' - GGC CUA AAA CAC AUA CAC AUA	Weak skipping to 300nM (+)

Table 3

Antisense Oligonucleotides Directed at Exon 6

15

20

O Antisense oligonucleotides directed at exon 6 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Figure 5 shows an example of two non-preferred antisense molecules inducing very low levels of exon 6 skipping in cultured human cells. Targeting this exon for specific removal was first undertaken during a study of the canine model using the oligonucleotides as listed in Table 4, below. Some of the human specific oligonucleotides were also evaluated, as shown in Figure 5. In this example, both antisense molecules target the donor splice site and only induced low levels of exon 6 skipping. Both H6D(+4-21) [SEQ ID NO: 17] and H6D(+18-4) [SEQ ID NO: 18] would be regarded as non-preferred antisense molecules.

One antisense oligonucleotide that induced very efficient exon 6 skipping in the canine model, C6A(+69+91) [SEQ ID NO: 14], would anneal perfectly to the corresponding region in human dystrophin exon 6. This compound was

evaluated, found to be highly efficient at inducing skipping of that target exon, as shown in Figure 6 and is regarded as the preferred compound for induced exon 6 skipping.

Table 4 below discloses antisense molecule sequences for induced exon 6 skipping.

Antisense Oligo name	Sequence	Ability to induce skipping
C6A(-10+10)	5' CAU UUU UGA CCU ACA UGU GG	No skipping
C6A(-14+06)	5' UUU GAC CUA CAU GUG GAA AG	No skipping
C6A(-14+12)	5' UAC AUU UUU GAC CUA CAU GUG GAA AG	No skipping
C6A(-13+09)	5' AUU UUU GAC CUA CAU GGG AAA G	No skipping
CH6A(+69+91)	5' UAC GAG UUG AUU GUC GGA CCC AG	Strong skipping to 20 nM (+++)
C6D(+12-13)	5' GUG GUC UCC UUA CCU AUG ACU GUG G	Weak skipping at 300 nM (+)
C6D(+06-11)	5' GGU CUC CUU ACC UAU GA	No skipping
H6D(+04-21)	5' UGU CUC AGU AAU CUU CUU ACC UAU	Weak skipping to 50 nM (++)
H6D(+18-04)	5' UCU UAC CUA UGA CUA UGG AUG AGA	Very weak skipping to 300 nM (+)

Table 4

Antisense Oligonucleotides Directed at Exon 4

Antisense oligonucleotides directed at exon 4 were prepared and tested for their ability to induce exon skipping in human muscle cells using similar methods as described above.

Figure 7 shows an example of a preferred antisense molecule inducing skipping of exon 4 skipping in cultured human cells. In this example, one preferred antisense compound, H4A(+13+32), which targeted a presumed exonic splicing enhancer induced efficient exon skipping at a concentration of 20 nanomolar while other non-preferred antisense oligonucleotides failed to induce even low levels of exon 4 skipping.

Table 5 below discloses antisense molecule sequences for induced exon 4 skipping.

Antisense Oligonucleotide name	Sequence	Ability to induce skipping
H4A(+13+32)	5' GCA UGA ACU CUU GUG GAU CC	Skipping to 20 nM (++)
H4D(+04-16)	5' CCA GGG UAC UAC UUA CAU UA	No skipping
H4D(-24-44)	5' AUC GUG UGU CAC AGC AUC CAG	No skipping

Table 5

Dated this _ TWENTY-EIGHTH

day of

JUNE

2004.

The University of Western Australia Applicant

Wray & Associates Perth, Western Australia Patent Attorneys for the Applicant Donor

FIGURE 1.

Donor	GCAGACUGACGgucucalu
ESE	CUAGC <u>UGGAG</u> CA////CCGU
Acceptor	ugagugaccucuuucucgcagGCGCUAGCUGGAGCA/////CCGUGCAGACUGACGgucucalu
dq	ncangcacngag

FIGURE 2

H8A(-06+14)

H8A(-06+18)

M 600 300 100 50 20 UT 600 300 100 50 20 UT

M

FIGURE 3

AZL Exhibit 1004 UWA v. AZL H7A(+45+67) H7A(+2+26)

M 600 300 100 50 20 600N M 600 300 100 50 20 600N M

FIGURE 4

AZL Exhibit 1004

H6D(+4-21)

H6D(+18-4)

(nM)

M 600 300 100 50 20 600N M 600 300 100 50 20 UT

FIGURE 5

6A(+69+91)

M 600 300 200 100 50 20 UT

FIGURE 6

AZL Exhibit 1004 UWA v. AZL

H4A(+13+32)

300 100 50 20 UT Neg M M 600

FIGURE 7

AZL Exhibit 1004 UWA v. AZL inc. No. 100,007 Page 36 of 36