Homework # 10

1. For $\alpha > 2$ and $0 < a \le 1$, solve

$$\min_{x \in \mathbb{R}^p} \sum_{i=1}^p x_i^{\alpha}$$
subject to $||x||^2 = 1$,
$$x_i > a \text{ for } i = 1, 2, \dots, p.$$

2. (This is a well known problem in econometrics.) Let x_t be the units of cake we eat on day t for $t=1,\ldots,T$. We require $x_t \geq 0$ for each t and $x_1 + x_1 + \cdots + x_T = 1$. (We always eat a non-negative amount of cake and we have a total of 1 unit of cake to eat.) Define,

$$f(x) = \sum_{t=1}^{T} \beta^{t-1} u(x_t), \tag{2}$$

where $\beta \in (0,1)$ and u(w) is the amount of utility we derive from eating w units of cake. f(x) models the total utility we derive from eating the cake. Use the KKT conditions to find xthat maximizes utility for u(w) given by,

- (a) $u(w) = \sqrt{w}$,
- (b) $u(w) = w^2$.

(BE CAREFUL, the goal is to MAXIMIZE the utility.)

3. Let $y \in \mathbb{R}^n$ and A an $n \times p$ matrix. Consider the constrained optimization

$$\min_{x \in \mathbb{R}^p} \|y - Ax\|^2$$
 subject to
$$\sum_{i=1}^p x_i^2 \le a^2$$

- (a) Use the KKT conditions to solve this optimization.
- (b) Consider the ridge regression,

$$\min_{x \in \mathbb{R}^p} \|y - Ax\|^2 + \rho \|x\|^2, \tag{4}$$

- for $\rho > 0$. Let x^* be the solution. Show $x^* = (A^T A + \rho I)^{-1} A^T y$. Be sure to show that $(A^T A + \rho I)^{-1}$ always exists.
- (c) Assume $(A^TA)^{-1}$ exists. Show that for any $\rho > 0$, if $a = ||x^*||$ then the constrained optimization is also solved by x^* with Lagrange multiplier equal to ρ . (This provides a 1-1 correspondence between ridge regression and the constrained optimization in (a). The assumption of $(A^TA)^{-1}$ is not needed and we'll remove it in subsequent work.)
- 4. Consider the constrained optimization,

$$\min_{x \in \mathbb{R}^p} ||y - Ax||^2$$
subject to $x_i \ge 0$ for $i = 1, 2, \dots, p$

Write code that implements a projected gradient approach for solving this problem. Construct and test your code for various y, A combinations. (Don't forget to monitor the loss function!)