Большая книга из ESP32forth

версия 1.1 - 22 октября, 2023

Автор

Marc PETREMANN

petremann@arduino-forth.com

Соавтор

- Vaclav POSELT
- Thomas SCHREIN

Содержание

Автор	
Соавтор	
Введение	
Помощь в переводе	
Обнаружение карты ESP32	4
Презентация	4
Сильные стороны	
Входы/выходы GPIO на ESP32	5
Периферийные устройства ESP32	7
Ресурсы	8
по-английски	8
На французском	
GitHub	

Введение

С 2019 года я управляю несколькими веб-сайтами, посвященными разработке языка FORTH для плат ARDUINO и ESP32, а также веб-версией eForth:

- ARDUINO : https://arduino-forth.com/
- ESP32: https://esp32.arduino-forth.com/
- eForth web: https://eforth.arduino-forth.com/

Эти сайты доступны на двух языках: французском и английском. Каждый год я плачу за хостинг основного сайта **arduino-forth.com**.

Рано или поздно – и как можно позже – произойдет, что я больше не смогу обеспечивать устойчивость этих объектов. Последствием будет то, что информация, распространяемая этими сайтами, исчезнет.

Эта книга представляет собой компиляцию материалов с моих веб-сайтов. Он распространяется бесплатно из репозитория Github. Этот метод распространения обеспечит большую устойчивость, чем веб-сайты.

Кстати, если кто-то из читателей этих страниц захочет внести свой вклад, мы будем рады этому. :

- предлагать главы;
- сообщать об ошибках или предлагать изменения;
- помочь с переводом...

Помощь в переводе

Google Translate позволяет легко переводить тексты, но с ошибками. Вот и прошу помощи в исправлении переводов.

На практике я предоставляю уже переведенные главы в формате LibreOffice. Если вы хотите помочь с этими переводами, вашей ролью будет просто исправить и вернуть эти переводы.

Исправление главы занимает мало времени, от одного до нескольких часов.

Чтобы связаться со мной: petremann@arduino-forth.com

Обнаружение карты ESP32

Презентация

Плата ESP32 не является платой ARDUINO. Однако инструменты разработки используют определенные элементы экосистемы ARDUINO, такие как ARDUINO IDE.

Сильные стороны

По количеству доступных портов карта ESP32 находится между ARDUINO NANO и ARDUINO UNO. Базовая модель имеет 38 разъемов:

Устройства ESP32 включают в себя:

- 18 каналов аналого-цифрового преобразователя (АЦП)
- 3 интерфейса SPI
- 3 интерфейса UART
- 2 интерфейса I2С
- 16 выходных каналов ШИМ
- 2 цифро-аналоговых преобразователя (ЦАП)
- 2 интерфейса I2S
- 10 емкостных сенсорных GPIO

Функции ADC (аналогово-цифрового преобразователя) и ADC (цифро-аналогового преобразователя) назначены на определенные статические контакты. Однако вы можете решить, какие контакты будут UART, I2C, SPI, PWM и т. д. Вам просто нужно

назначить их в коде. Это возможно благодаря функции мультиплексирования чипа ESP32.

Большинство разъемов имеют многократное использование.

Но что отличает плату ESP32, так это то, что она в стандартной комплектации оснащена поддержкой Wi-Fi и Bluetooth, что платы ARDUINO предлагают только в виде расширений.

Входы/выходы GPIO на ESP32

Здесь на фотографии карта ESP32, на которой мы объясним роль различных входов/выходов GPIO:

Положение и количество входов/выходов GPIO могут меняться в зависимости от марки карты. В этом случае подлинными являются только указания, представленные на физической карте. На фото нижний ряд слева направо: CLK, SD0, SD1, G15, G2, G0, G4, G16.....G22, G23, GND.

На этой диаграмме мы видим, что нижний ряд начинается с 3V3, а на фотографии этот ввод-вывод находится в конце верхнего ряда. Поэтому очень важно не полагаться на схему, а дважды проверить правильность подключения периферийных устройств и компонентов на физической карте ESP32.

Платы разработки на базе ESP32 обычно имеют 33 контакта, кроме контактов источника питания. Некоторые контакты GPIO имеют несколько специфических функций:

GPIO	Возможные имена
6	SCK/CLK
7	SCK/CLK
8	SDO/SD0
9	SDI/SD1
10	SHD/SD2
11	CSC/CMD

Если ваша карта ESP32 имеет входы/выходы GPIO6, GPIO7, GPIO8, GPIO9, GPIO10, GPIO11, вам определенно не следует их использовать, поскольку они подключены к флэш-памяти ESP32. Если вы их используете, ESP32 не будет работать.

GPIO1(TX0) и GPIO3(RX0) ввода-вывода используются для связи с компьютером по UART через порт USB. Если вы ими воспользуетесь, то больше не сможете общаться с картой.

GPIO36(VP), GPIO39(VN), GPIO34, GPIO35 ввода-вывода можно использовать только как вход. У них также нет встроенных внутренних подтягивающих и понижающих резисторов.

Разъем EN позволяет контролировать состояние зажигания ESP32 через внешний провод. Он подключен к кнопке EN на карте. Когда ESP32 включен, он составляет 3,3 В. Если мы подключим этот контакт к земле, ESP32 выключится. Вы можете использовать его, когда ESP32 находится в коробке и вы хотите иметь возможность включать/выключать его с помощью переключателя.

Периферийные устройства ESP32

Для взаимодействия с модулями, датчиками или электронными схемами ESP32, как и любой микроконтроллер, имеет множество периферийных устройств. Их больше, чем на классической плате Arduino.

ESP32 имеет следующие периферийные устройства:

- 3 интерфейса UART
- 2 интерфейса I2C
- 3 интерфейса SPI
- 16 ШИМ-выходов
- 10 емкостных датчиков
- 18 аналоговых входов (АЦП)
- 2 выхода ЦАП

Некоторые периферийные устройства уже используются ESP32 во время его основной работы. Таким образом, для каждого устройства существует меньше возможных интерфейсов.

Ресурсы

по-английски

• **ESP32forth** страницу поддерживает Брэд НЕЛЬСОН, создатель ESP32forth. Там вы найдете все версии (ESP32, Windows, Web, Linux...). https://esp32forth.appspot.com/ESP32forth.html

.

На французском

• **ESP32 Forth** сайт на двух языках (французский, английский) с множеством примеров

https://esp32.arduino-forth.com/

GitHub

- **Ueforth** ресурсы, поддерживаемые Брэдом НЕЛЬСОНОМ. Содержит все исходные файлы языков Forth и С для ESP32forth. https://github.com/flagxor/ueforth
- **ESP32forth** исходные коды и документация для ESP32forth. Ресурсы поддерживаются Марком ПЕТРЕМАНОМ. https://github.com/MPETREMANN11/ESP32forth
- **ESP32forthStation** ресурсы, поддерживаемые Ульрихом Хоффманом. Автономный компьютер Forth с одноплатным компьютером LillyGo TTGO VGA32 и ESP32forth.

https://github.com/uho/ESP32forthStation

- **ESP32Forth** ресурсы, поддерживаемые FJ RUSSO https://github.com/FJRusso53/ESP32Forth
- esp32forth-addons ресурсы, поддерживаемые Питером ФОРТОМ <u>https://github.com/PeterForth/esp32forth-addons</u>
- **Esp32forth-org** Репозиторий кода для членов групп Forth2020 и ESp32forth. https://github.com/Esp32forth-org

•

Лексический индекс