7424

BOARD DIPLOMA EXAMINATION, (C-20) JUNE/JULY—2022

DACE - FOURTH SEMESTER EXAMINATION

ENGINEERING MATHEMATICS-III

Time: 3 hours [Total Marks: 80

PART—A

 $3 \times 10 = 30$

Instructions: (1) Answer **all** questions.

- (2) Each question carries **three** marks.
- 1. Solve $(D^2 + 1)y = 0$
- **2.** Solve $(D^2 + 4D + 6)y = 0$
- 3. Find the particular integral of differential equation $(D^2 4D + 8)y = e^{-x}.$
- **4.** Find the particular integral of differential equation $(D^2 16)y = \sin 2x$.
- **5.** Find $L\{2e^{-7t} + 5t^3 + 2\sinh 2t\}$.
- **6.** Find $L\left\{e^{-t}\cos 2t\right\}$.
- 7. Find $L^{-1}\left\{\frac{1}{s^2+4s+20}\right\}$.

1 [Contd...

- **8.** Write down the Fourier series expansion of a function f(x) in the interval (-1,1). Give the corresponding formulae for finding the coefficients.
- **9.** Obtain the value of " b_n " in Fourier series expansion of $f(x) = \cos x$ in the interval $-\pi < x < \pi$.
- **10.** Obtain the value of " a_0 " in the half range cosine series expansion of f(x) = 3x + 1 in the interval 0 < x < 2.

PART—B 8×5=40

Instructions: (1) Answer either (a) **or** (b) from each questions from part-B.

(2) Each question carries **eight** marks.

11. (a) Solve
$$(D^4 - D^3 - 9D^2 - 11D - 4)Y = 0$$

(b) Solve
$$(D^2 - 3D + 2)y = (e^x + 1)^2$$

12. (a) Solve
$$(D^2 + 5D - 6)y = \sin 4x \sin x$$

(b) Solve
$$(D^2 + 4)y = x^2 + 3$$

13. (a) Find
$$L(f(t))$$
 if $f(t) = \begin{cases} 1, & 0 < t < 2 \\ 2, & t > 2 \end{cases}$

(b) Evaluate $L\{t(\sin t + \cos t)\}$

/7424 2 [Contd...

14. (a) Evaluate $L\left\{\frac{\cos at - \cos bt}{t}\right\}$

(OR)

- (b) Evaluate $L^{-1} \left\{ \frac{s+1}{s^2 + 6s 7} \right\}$
- **15.** (a) Find $L^{-1} \left\{ \frac{s}{(s-1)(s-2)} \right\}$
 - (b) Find $L^{-1}\left\{\frac{s}{\left(s^2+1\right)^2}\right\}$ by using convolution theorem.

PART—C

 $10 \times 1 = 10$

Instructions: (1) Answer the following question.

(2) The question carries **ten** marks.

16. Find the Fourier series for $f(x) = x^2$ in the interval $(0,2\pi)$.

/7424

AA22-PDF