- 3.1 a) Show that the solution of the circuit in Fig. 3.9 (see Example 3.1) satisfies Kirchhoff's current law at junctions x and y.
 - Show that the solution of the circuit in Fig. 3.9 satisfies Kirchhoff's voltage law around every closed loop.

- 3.2 a) Find the power dissipated in each resistor in the circuit shown in Fig. 3.9.
 - b) Find the power delivered by the 120 V source.
 - Show that the power delivered equals the power dissipated.

- 3.3 For each of the circuits shown in Fig. P3.3,
 - a) identify the resistors connected in series,
 - simplify the circuit by replacing the seriesconnected resistors with equivalent resistors.

- 3.4 For each of the circuits shown in Fig. P3.4,
 - a) identify the resistors connected in parallel,
 - simplify the circuit by replacing the parallelconnected resistors with equivalent resistors.

- 3.5 For each of the circuits shown in Fig. P3.3,
 - a) find the equivalent resistance seen by the source,
 - b) find the power developed by the source.

Find the equivalent resistance $R_{\rm ab}$ for each of the circuits in Fig. P3.8.

3.8

(a) Rab = 24 + 400|160 + 12 = 24 + 16 + 12 = 729(b) Rab = 12k|18k + 5.2k = 10k9(c) kab = 12001172011800 = 2889

3.13 In the voltage-divider circuit shown in Fig. P3.13, the no-load value of v_o is 4 V. When the load resistance R_L is attached across the terminals a and b, v_o drops to 3 V. Find R_L .

3.17 For the current divider circuit in Fig. P3.17 calculate

- $\frac{\mathsf{PSPICE}}{\mathsf{MULTISIM}}$ a) i_o and v_o .
 - b) the power dissipated in the 6 Ω resistor.
 - c) the power developed by the current source.

8.17

Reg = 301 (12+ 90110) = 201115 = (00)

V_2 = 10.2,4 = 24 / 0 = U_2 an = 30 24 - 164

V_3 = 90110 (24) = 384 - 144

V_3 = 90110 (24) = 384 - 144

(1) - 24 - 144 - 15.36 Work

(1) - 24 - 144 - 57.6 Work

(1) - 24 - 144 - 57.6 Work

3.18 Specify the resistors in the current divider circuit in Property Fig. P3.18 to meet the following design criteria:

$$i_g = 50 \text{ mA}; v_g = 25 \text{ V}; i_1 = 0.6i_2;$$

 $i_3 = 2i_2; \text{ and } i_4 = 4i_1.$

3/18

$$0,05 = i_1 + i_2 + i_3 + i_4 = 0.6i_2 + i_2 + 2i_2 + 4i_4 = 0.6i_2 + i_2 + 2i_4$$
 $i_2 = 0.05 | 6 = 0.00833 = 8.33 \text{ mA}$
 $i_4 = 0.6i_2 = 0.6(0.00833) = 0.005 = 5 \text{ mA}$
 $i_3 = 2i_2 = 2(0.00833) = 0.01667 = 16.67 \text{ mA}$
 $i_4 = 4i_1 = 4(0.005) = 0.02 = 20 \text{ mA}$
 $i_4 = 4i_1 = 4(0.005) = 0.02 = 20 \text{ mA}$
 $i_4 = 25 | i_2 = 25 | 0.00833 = 3000 = 3.12$
 $i_4 = 25 | i_3 = 25 | 0.01667 = 1500 = 1.55 \text{ k.s.}$
 $i_4 = 25 | i_4 = 25 | 0.01667 = 1500 = 1.55 \text{ k.s.}$
 $i_4 = 25 | i_4 = 25 | 0.01667 = 1500 = 1.55 \text{ k.s.}$
 $i_4 = 25 | i_4 = 25 | 0.01667 = 1500 = 1.55 \text{ k.s.}$

There is often a need to produce more than one voltage using a voltage divider. For example, the memory components of many personal computers require voltages of -12 V, 5 V, and +12 V, all with respect to a common reference terminal. Select the values of R_1 , R_2 , and R_3 in the circuit in Fig. P3.19 to meet the following design requirements:

- a) The total power supplied to the divider circuit by the 24 V source is 80 W when the divider is unloaded.
- b) The three voltages, all measured with respect to the common reference terminal, are $v_1=12~{\rm V},$ $v_2=5~{\rm V},$ and $v_3=-12~{\rm V}.$

$$R1 = \frac{12-5}{\frac{10}{3}} = 2.1R$$

$$\frac{7}{7} = R$$

$$R2 = \frac{5}{10} = 1,5 \Omega$$

$$\frac{10}{3}$$

$$\frac{10}{3}$$

$$\frac{10}{3}$$

$$\frac{10}{3}$$

a) Show that the current in the kth branch of the circuit in Fig. P3.22(a) is equal to the source current i_g times the conductance of the kth branch divided by the sum of the conductances, that is,

$$i_k = \frac{i_g G_k}{G_1 + G_2 + G_3 + \dots + G_k + \dots + G_N}$$

b) Use the result derived in (a) to calculate the current in the 5 Ω resistor in the circuit in Fig. P3.22(b).

- a) Find the voltage v_x in the circuit in Fig. P3.28 using voltage and/or current division.
- b) Replace the 18 V source with a general voltage source equal to V_s . Assume V_s is positive at the upper terminal. Find v_x as a function of V_s .

3.28

(a)
$$V_{6h} = \frac{6}{9} \cdot 17 = 13.9V$$
 $V_{3h} = \frac{7}{3} \cdot 18 = \frac{13.9V}{1.5V}$

(b) $V_{6h} = \frac{6}{8} \cdot \frac{1}{8} = \frac{13.9V}{4}$
 $V_{5h} = \frac{1}{4} \cdot \frac{$

For the circuit in Fig. P3.32, calculate i_1 and i_2 using current division.

3,32

$$8_{eq} = (201/80 + 4)1/30 + 8 = 20$$
 $8_{eq} = (64ky 6.25) = 182.5mA$
 $12 = 3011 (4+801/20) = 18 = 0.025 = 0.25mA$
 $149 = 3011 (4+801/20) = 18 = 0.025 = 0.25mA$
 $149 = 3011 (4+801/20) = 18 = 0.025 = 0.25mA$
 $149 = 3011 (4+801/20) = 0.09 = 0.000$
 $12 = 801/20 (149) = 0.09 = 0.000$

Find the power dissipated in the 3 $k\Omega$ resistor in the circuit in Fig. P3.52.

3.52 Req = 750+ (15,000+3000) 11 (25,000+5000)=750+11,250
=12 & D.

Source current= 192 /12,000=16 mA

The current will move on the
$$45$$
 & 1 and 3 & 1 .

? 3 & = $\frac{11,150}{18,000}$ (0,016) = 10 mA

P3x = 10 000 (0,01) = 10 mA

3.53 Find the detector current i_d in the unbalanced bridge in Fig. P3.53 if the voltage drop across the detector is negligible.

- PSPICE MULTISIM
- 3.58 a) Find the equivalent resistance R_{ab} in the circuit in Fig. P3.58 by using a Y-to- Δ transformation involving resistors R_2 , R_3 , and R_5 .
 - b) Repeat (a) using a Δ -to-Y transformation involving resistors R_3 , R_4 , and R_5 .
 - c) Give two additional Δ -to-Y or Y-to- Δ transformations that could be used to find R_{ab} .

Find i_o and the power dissipated in the 140 Ω resistor in the circuit in Fig. P3.62.

For the circuit shown in Fig. P3.63, find (a) i_1 , (b) v, (c) i_2 , and (d) the power supplied by the voltage source.

- a) The fixed-attenuator pad shown in Fig. P3.67 is a) The fixed-attenuator pad shown in Fig. F3.07 is called a *bridged tee*. Use a Y-to-Δ transformation to show that R_{ab} = R_L if R = R_L.
 b) Show that when R = R_L, the voltage ratio v_o/v_i equals 0.50.

A resistive touch screen has 5 V applied to the grid in the x-direction and in the y-direction. The screen has 480 pixels in the x-direction and 800 pixels in the y-direction. When the screen is touched, the voltage in the x-grid is 1 V and the voltage in the y-grid is 3.75 V.)

- a) Calculate the values of α and β .
- a) Calculate the x- and y-coordinates of the pixel at the point where the screen was touched.

A resistive touch screen has 640 pixels in the x-direction and 1024 pixels in the y-direction. The resistive grid has 8 V applied in both the x- and y-directions. The pixel coordinates at the touch point are (480, 192). Calculate the voltages V_x and V_y .

3,74

$$x = (1-a) px$$

$$1-a=\frac{2}{4}$$
 $a=\frac{1}{4}$ $4x=45a$ $4x_2=8.\frac{1}{4}=2x$