

KIT-Fakultät für Informatik

Prof. Dr. Mehdi Tahoori, Prof. Dr. Wolfgang Karl

Musterlösungen zur Klausur

Digitaltechnik und Entwurfsverfahren (TI-1)

und

Rechnerorganisation (TI-2)

am 25. Februar 2019, 13:30 - 15:30 Uhr

Name:	Vorname:	Matrikelnummer:	
Bond	James	007	

	Note:	1,0
Gesamtpunktzahl:		90 von 90 Punkten
Truigabe 10		4 von 41 unven
Aufgabe 10		4 von 4 Punkten
Aufgabe 9		14 von 14 Punkten
Aufgabe 8		10 von 10 Punkten
Aufgabe 7		11 von 11 Punkten
Aufgabe 6		6 von 6 Punkten
Rechnerorganisation (TI	-2)	
Aufgabe 5		5 von 5 Punkten
Aufgabe 4		6 von 6 Punkten
Aufgabe 3		11 von 11 Punkten
Aufgabe 2		12 von 12 Punkten
Aufgabe 1		11 von 11 Punkten
Digitaltechnik und Entw	urfsverfahren (T	I-1)

Aufgabe 1 Schaltfunktionen

(11 Punkte)

1. DMF:

$$y_{DMF} = c \ b \ a \ \lor \ \overline{c} \ \overline{b}$$

			a	• .	
	1	1	0		_
b	0	0	1	0	
0	0	0		0	$\bigg _{d}$
	1	1	0	0	
	7		(2	

2. KMF: 3 P.

$$\begin{array}{lll} y_{KMF} & = & (c \ \lor \ \overline{b}) \cdot (\overline{c} \ \lor \ b) \cdot (\overline{b} \ \lor \ a) & \text{oder} \\ y_{KMF} & = & (c \ \lor \ \overline{b}) \cdot (\overline{c} \ \lor \ b) \cdot (\overline{c} \ \lor \ a) & \end{array}$$

3.

Produktterm	X	Erklärung
$\overline{d} \ \overline{c} \ b$		überdeckt werder m_0 noch m_{10}
$c \overline{b}$	X	$\overline{d}\ \overline{c}\ \overline{a}$ wird kein Kernpimimplikant mehr
$d \bar{b} a$		Nicht angrenzend an den beiden Kernpimimplikanten.
$c\ b\ \overline{a}$	X	$\overline{c}\ b\ \overline{a}$ wird kein Kernpimimplikant mehr.

4. PLA: Bündelminimierung der Funktionen:

$$f_1 = b a \lor c b \overline{a}$$

$$f_3 = \overline{c} b \lor c \overline{b} \overline{a}$$

$$f_2 = \overline{b} \lor c b \overline{a}$$

$$f_4 = \overline{c} b \lor b a \lor c \overline{b} \overline{a} = f_3 \lor b a$$

2 P.

Aufgabe 2 Minimierungsverfahren

(12 Punkte)

1. KMF von f(c, b, a):

3 P.

$$f(c,b,a) = \overline{c} (\overline{b} a \lor b \overline{a} \overline{c} \lor b a c) \lor c (\overline{a} \lor c a)$$

$$= \overline{c} \overline{b} a \lor \overline{c} b \overline{a} \lor c a \lor c \overline{a}$$

$$= \overline{c} \overline{b} a \lor \overline{c} b \overline{a} \lor c$$

$$= \overline{b} a \lor b \overline{a} \lor c$$

$$= (b \overline{b} \lor a \overline{a} \lor b \overline{a} \lor \overline{b} a) \lor c$$

$$= (\overline{b} \lor \overline{a}) (b \lor a) \lor c$$

$$= (c \lor \overline{b} \lor \overline{a}) (c \lor b \lor a)$$

4 P.

2.

Nr.	gebildet aus	W	Würfel		gestrichen wegen
		С	b	a	
1		0	1	0	
2		1	1	0	
3		1	0	1	$\subset 9$
4		0	1	1	⊂ 7
5		1	1	1	⊂ 7
6	2,1	_	1	0	⊂ 8
7	5,4	_	1	1	⊂ 8
8	7,6	_	1	_	Primimplikant
9	8,3	1	-	1	Primimplikant

Die Primimplikanten sind: b und c a

2 P.

3. (a) h(d, c, b, a) ist unvollständig definiert.

Mögliche Begründungen:

- \bullet Der Primimplikant F überdeckt drei Minterme, jedoch überdecken Primimplikanten bei vollständig definierten Funktionen 2^n Minterme.
- A (Minterm 4) wäre kein Primimplikant, weil er in F enthalten ist und somit umschließt A auch don't care Stellen.
- B (Minterm 8) wäre kein Primimplikant, wenn die Funktion vollständig definiert ist, da B dann in C (Mintermen 8 und 9) enthalten wäre und somit B don't care Stellen umschließt.

(b) DMF von h(d, c, b, a)

	4	5	6	8	9	10	13
A	×						
В				×			
С				×	×		
D				×		×	
E					×		×
F	×	×	×				
G		×					×

 \bullet Kern-Primimplikanten: F und D \to Spalten mit den Mintermen 4, 5, 6, 8 und 10 werden gestrichen \to reduzierte Tabelle:

	9	13
A		
В		
С	×	
Е	×	×
G		×

- Primimplikant E dominiert C und G (überdeckt sowohl 9 als auch 13)
- A und B sind entbehrlich. DMF:

$$h(d,c,b,a) \ = \ F \ \lor D \ \lor E \ = \ \overline{d} \ c \ \lor d \ \overline{c} \ \overline{a} \ \lor \ d \ \overline{b} \ a$$

Aufgabe 3 Spezielle Bausteine

(11 Punkte)

1. CMOS-Transistor-Schaltbild von f(c, b, a):

$$f(c,b,a) = \overline{c(b \vee a)} = c \overline{\wedge} (b \vee a) = c \overline{\wedge} \overline{(b \nabla a)}$$

2. Schaltnetz von p = odd(w, x, y, z):

$$p = \text{odd}(w, x, y, z) = \text{MINt}(1, 2, 4, 7, 8, 11, 13, 14)$$

Hinweis: high-aktives Reset ist ebenfalls eine gültige Lösung. 3. 3-Bit Schieberegister:

Aufgabe 4 Laufzeiteffekte

(6 Punkte)

1. Zeitdiagramm:

2. Hasardfehler (falls ja, Analyse):

Ja, es tritt ein Hasardfehler auf, denn y ist zu Beginn und Ende des Übergangs 1, wechselt während des Übergangs jedoch kurzzeitig auf 0.

Betrachtet man nun die möglichen Folgen von Funktionswerten beim Übergang $(0,0,0) \to (1,1,1)$, stellt man fest, dass die Folge von Funktionswerten bei bestimmten Eingabewechseln (z.B. a, b, c) nicht monoton ist (siehe KV-Diagramm auf nächster Seite). Somit handelt es sich um einen Funktionshasard.

Insgesamt ist der Hasard also als 1-statischer Funktionshasard zu klassifizieren.

y(c, b, c)	- (c		
	1	1	1 5	1
b	1	3 0	1	1

Aufgabe 5 Schaltwerke

(5 Punkte)

1. Automatengraph:

Aufgabe 6 Mikroprozessor

(6 Punkte)

Aufgabe 7 *C, MIPS–Assembler & MIMA* (11 Punkte)

1. MIPS-Programmstücke in C-Sprache

(a) a = b = c = 0;
 if (i < 5) {
 a = 1;
 b = 2;
 c = 3;
 }
 d = 5;</pre>

(b) a = b = c = 0;

```
if (i < 5) {
    a = 1;
    b = 2;
    c = 3;
}
else {
    a = 4;
    b = 5;
    c = 6;
}
d = 5;</pre>
```

Hinweis: Deklarationen und Definitionen von Variablen und Arrays sind nicht nötig.

2. Mikroprogamm für ADD a bei der MIMA in Register-Transfer-Schreibweise:

Aufgabe 8 Pipelining

(10 Punkte)

1. Datenabhängigkeiten:

3 P.

• Echte Abhängigkeiten (*True Dependence* δ^t):

• Ausgabeabhängigkeiten (Output Dependence δ^o):

• Gegenabhängigkeit (Anti Dependence δ^a): Keine

2. Pipelinekonflikte:

Bei echten Abhänigigkeiten müssen mindestens 3 Befehle dazwischen liegen. \Rightarrow Alle echten Datenabhänigigkeiten führen zu Konflikten.

3. Beseitigung der Konflikte:

2 P.

R5, R	12, R2
	R5, R

NOP

NOP

S3:

ADD

R5, R5, R3

NOP

NOP

NOP

S4: ADD

R1, R1, R5

4. Problem:

Es entsteht ein Konflikt zwischen der Befehlshol-Phase und der Speicherzugriffs-Phase, da evtl. beide aus dem Cache lesen wollen.

Aufgabe 9 Cache-Speicher

(14 Punkte)

1. (a) Größe eines Cache-Blocks in Byte:

1 P.

- 5 Bits Byte-Offset \rightarrow Blockgröße: $2^5 = 32$ Byte
- (b) Kapazität des Cache-Speichers:

1 P.

11 Bits Index $\rightarrow 2^{11}$ Sätze

A2-Cache $2 \times 2^{11} = 2^{12}$ Cache-Blöcke mit je 32 Bytes

Cache-Kapzität: $2^{12} \times 32 = 2^{12} \times 2^5$ Byte = 2^{17} Byte = 128 KByte

(c) Der insgesamt erforderliche Speicherbedarf:

2 P.

Kapazität + (Tag-Länge + 2 Statusbits) × (Anzahl der Cache-Blöcke)

128 KByte + $(16 + 2) \cdot 2^{12}$ Bit = 128 KByte + $2 \cdot 2^{12}$ Byte + $2 \cdot 2^{12}$ Bit =

128 KByte + 8 KByte + 1 KByte = 137 KByte

(d) Zugriff auf die Adresse 0x00EF1A34:

2 P.

A2-Cache \rightarrow Es wird ein Vergleich mit 2 Zeilen im durchgeführt.

Satz-Index = $0001\ 1010\ 001_2 = 209_{10}$

 \rightarrow Der Vergleich wird mit den Zeilen 418 (0x1A2) und 419 (0x1A3) durchgeführt.

4 P.

2.

Adresse	0x44	0xA0	0xC3	0x9E	0x66	0x2D	0x6B	0x49
Index	4	2	4	1	6	2	6	4
Tag	0	1	1	1	0	0	0	0
read/write	w	r	w	r	r	W	r	W
Hit/Miss	×	_	_	×	×	_	×	_
write back?	nein	nein	ja	nein	nein	nein	nein	ja

3. Widerlegung durch Beispiel bei dem Aussage falsch ist:

4 P.

Angenommen wir betrachten einen 2-fach und 4-fach satzassoziativen Cache, welcher jeweils aus 4 Cachezeilen besteht, sowie die Speicherzugriffsfolge: $ABCD(ABEFCD)^n$. Für den 2-fach satzassoziativen Cache werden die Speicherzugriffe A, B, E, F auf den ersten Satz und C und D auf den zweiten Satz abgebildet. Die Zustände der Caches verändern sich durch diese Folge wie folgt:

2-fach assoziativ

A	\mathbf{A}	Е	A	Е	
В	В	F	В	F	

C C	C
D D	D

4-fach assoziativ

A	\mathbf{A}	С	Е
В	В	D	F
С	Е	A	С
D	F	В	D

Die fett makierten Buchstaben geben einen Cache-Hit an. Der 2-fach satzassoziative Cache ermöglicht für die gewählte Sequenz 6 Hits, während der 4-fach satzassoziative Cache nur 2 Hits ermöglicht. Somit ist die Behauptung widerlegt!

Aufgabe 10 Allgemeines

(4 Punkte)

- 1. Arithmetisches Pipelining:
 - Lange Berechnung in Teilschritte zerlegen (in mehrere Pipelinestufen), wichtig bei komplizierteren arithmetischen Operationen, wie Multiplikation, Division, Fließkommaoperationen, ...
- 2. Zwei Eigenschaften einer superskalaren Pipeline:
 - Mehrere voneinander unabhängige Ausführungseinheiten
 - Zur Laufzeit werden pro Takt mehrere Befehle aus einem sequentiellen Befehlsstrom den Verarbeitungseinheiten zugeordnet und ausgeführt
 - Dynamische Erkennung und Auflösung von Konflikten
- 3. Mooresches Gesetz: Anzahl der Transistoren (Schaltkreiskomponenten), die auf einem IC integriert werden können, verdoppelt sich alle (ein bis) zwei Jahre