5. Монотонни редици. Неперово число

Галина Люцканова

21 октомври 2013 г.

Определение 5.1: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е монотонно растяща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n \leq a_{n+1}$.

Определение 5.2: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е строго монотонно растяща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n < a_{n+1}$.

<u>Пример 5.1:</u> Да разгледаме редицата $a_n = a$. Тъй като $a_{n+1} - a_n = a - a = 0 \ge 0$, то редицата е монотонно растяща, но не и строго монотонно растяща.

Пример 5.2: Да разгледаме редицата $a_n = n$. Тъй като $a_{n+1} - a_n = n + 1 - n = 1 \le 0$, то редицата е строго монотонно растяща.

Определение 5.3: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е монотонно намаляваща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n \geq a_{n+1}$.

Определение 5.4: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е строго монотонно намаляваща, ако за всяко $n \in \mathbb{N}$ е изпълнено $a_n > a_{n+1}$.

<u>Пример 5.3:</u> Да разгледаме редицата $a_n = a$. Тъй като $a_{n+1} - a_n = a - a = 0 \le 0$, то редицата е монотонно намаляваща. Единствените редици, които са едновременно монотонно растящи и монотонно намаляващи, са редиците от вида a_n

Пример 5.4: Да разгледаме редицата $a_n = -n^2$. Тъй като:

$$a_{n+1} - a_n = -(n+1)^2 - (-n^2) = -n^2 - 2n - 1 + n^2 = -2n - 1$$

Да не забравяме, че n>0, тъй като работим с редици, то тогава редицата е строго намаляваща.

Пример 5.5: Да разгледаме редицата $a_n = \frac{1}{n}$. Тъй като:

$$a_{n+1} - a_n = \frac{1}{n+1} - \frac{1}{n} = \frac{n - (n+1)}{n(n+1)} = -\frac{1}{n+1}$$

За да не останете с впечатлението, че всички редици са монотонно растящи или монотонно намаляващи ще дам и примери за редици, които не са нито монотонно растящи, нито монотонно намаляващи:

Пример 5.6: $a_n =$

<u>Твърдение 5.1:</u> Всяка ограничена отгоре монотонно растяща редица е сходяща.

Доказателство:

Нека $\{a_n\}$ е ограничена отгоре монотонно растяща редица и нека l е нейната точна горна граница. Да изберем произволно положително число ε . Тъй като l е точна горна граница, то от определението за точна горна граница следва, че за всяко $\varepsilon>0$ съществува някакъв член на редицата a_{ν} , такъв че $l\geq a_{\nu}>l-\varepsilon$. Но понеже редицата е монотонно растяща, то при $n>\nu$ е изпълнено, че $l+\varepsilon>l\geq a_n\geq a_{\nu}>l-\varepsilon$, т.е. при $n>\nu$ е в сила $l+\varepsilon>a_n>l-\varepsilon$, следователно редицата е сходяща към l.

Твърдение 5.2: Всяка ограничена отдолу монотонно намаляваща редица е сходяща.

Доказателство:

Доказателството е аналогично на това на предното твърдение.

<u>Пример 5.7:</u> За редиците в предните примери можем да кажем дали са сходящи, но чрез ползване на ϵ -дефиницията, но е доста по-удобно в някои случаи да ползваме горните твърдения:

Твърдение 5.3: Нека $\{a_n\}$ е монотонно растяща редица и нека $a_n \to a$. Тогава $a_n \le a$.

Доказателство:

Да допуснем противното т.е. $\{a_n\}$ е монотонно растяща редица и $a_n \to a$, но съществува ν , такова че $a_{\nu} > a$. Колкото и да е близо a_{ν} до a, винаги можем да изберем $\varepsilon > 0$, такова че $a_{\nu} \geq a + \varepsilon > a$. Понеже редицата е монотонно растяща, то тогава за всяко $n > \nu$ е изпълнено $a_n \geq a_{\nu} \geq a + \varepsilon > a$, т.е. имаме само краен брой елементи в ε -околност на a т.е. достигнахме до противоречие. С това доказхме, че $a_n \leq a$.

Аналогично се доказва

<u>Твърдение 5.4:</u> Нека $\{a_n\}$ е монотонно намаляваща редица и нека $a_n \to a$. Тогава $a_n \ge a$.

Да разгледаме редицата с общ член $a_n = \left(1 + \frac{1}{n}\right)^n$. Ще докажем, че редицата е сходяща, като докажем, че тя е монотонно растяща и ограничена отгоре.

1. Първо ще докажем, че редицата е растяща. За целта ще пресметнем a_n и a_{n+1}

$$a_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \cdot 1^{n-k} \cdot \frac{1}{n^k} = \sum_{k=0}^n \frac{n!}{k! \cdot (n-k)!} \cdot 1^{n-k} \cdot \frac{1}{n^k}$$

Ако не ви е ясно нещо от предния ред, е добре да погледнете темата за Нютонов бином. Означаваме $c_k = \frac{n!}{k!\cdot(n-k)!}\cdot 1^{n-k}\cdot \frac{1}{n^k}.$ Сега ще

преобразуваме поотделно $c_0, c_1, c_2,...c_n$:

$$c_{0} = \frac{n!}{0! \cdot (n-0)!} \cdot 1^{n-0} \cdot \frac{1}{n^{0}} = \frac{n!}{1 \cdot n!} 1 \cdot \frac{1}{1} = 1$$

$$c_{1} = \frac{n!}{1! \cdot (n-1)!} \cdot 1^{n-1} \cdot \frac{1}{n^{1}} = \frac{n}{1} \cdot 1 \cdot \frac{1}{n} = 1$$

$$c_{2} = \frac{n!}{2! \cdot (n-2)!} \cdot 1^{n-2} \cdot \frac{1}{n^{2}} = \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} = \frac{1}{2!} \cdot \frac{n-1}{n} = \frac{1}{2!} \left(1 - \frac{1}{n}\right)$$
...
$$c_{k} = \frac{n!}{k! \cdot (n-k)!} \cdot 1^{n-k} \cdot \frac{1}{n^{k}} = \frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{1}{n^{k}} =$$

$$= \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)$$
...
$$c_{n} = \frac{n!}{n! \cdot (n-n)!} \cdot 1^{n-n} \cdot \frac{1}{n^{n}} = \frac{n!}{n!} \cdot \frac{1}{n^{n}} = \frac{1}{n!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{1}{n} =$$

$$= \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right)$$

И така получаваме:

$$a_n = 1 + 1 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) + \dots + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) = 2 + \sum_{k=0}^{n} \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)$$

За да не правим всички тези сметки и за a_{n+1} , просто в последното равенство заместваме n с n+1 и получаваме:

$$a_{n+1} = 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right)$$

Да напомня, че искаме да докажем, че редицата $\{a_n\}$ е строго монотонно растяща, т.е. $a_n < a_{n+1}$. За целта ще покажем, че $a_{n+1} - a_n >$

0:

$$a_{n+1} - a_n = 2 + \sum_{k=2}^{n+1} \frac{1}{k!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right) - \left(2 + \sum_{k=2}^{n} \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{k-1}{n}\right)\right) =$$

$$= \sum_{k=2}^{n} \frac{1}{k!} \cdot \left[\left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right) - \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)\right] + \frac{1}{(n+1)!} \cdot \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{n}{n+1}\right)$$

Нека 0 < s < n следователно:

$$n < n+1$$

$$\frac{1}{n} > \frac{1}{n+1}$$

$$1 > \frac{s}{n} > \frac{s}{n+1} > 0$$

$$-1 < \frac{s}{n} < -\frac{s}{n+1} < 0$$

$$0 = 1 - (-1) < 1 - \frac{s}{n} < 1 - \frac{s}{n+1} < 1 - 0 = 1$$

Да вземем s = 1, 2, 3, ..., k - 1:

$$0 < 1 - \frac{1}{n} < 1 - \frac{1}{n+1} < 1$$

$$0 < 1 - \frac{2}{n} < 1 - \frac{2}{n+1} < 1$$
...

$$0 < 1 - \frac{k-1}{n} < 1 - \frac{k-1}{n+1} < 1$$

Да умножим всички получени неравенства:

$$0 < \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) < \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right) < 1 \tag{\star}$$

От предното неравенството следват две неравенства:

(a) Ако заместим k = n + 1, получаваме, че:

$$0 < \left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{n}{n+1}\right)$$

(б) Ако прехвърлим лявата страна на неравенството отдясно, получаваме, че:

$$\left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right) - \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) > 0$$

Да се завърнем към целта:

$$a_{n+1} - a_n = \sum_{k=2}^{n} \underbrace{\frac{1}{k!}}_{>0} \cdot \underbrace{\left[\left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n+1}\right) - \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right)\right]}_{>0 \text{ or } (6)} + \underbrace{\frac{1}{(n+1)!}}_{>0} \cdot \underbrace{\left(1 - \frac{1}{n+1}\right) \cdot \dots \cdot \left(1 - \frac{n}{n+1}\right)}_{>0 \text{ or } (a)} > 0$$

т.е. редицата е монотонно растяща.

2. Ще докажем, че редицата е ограничена отгоре. Първо ще използваме неравенството (\star):

$$a_n = 1 + 1 + \frac{1}{2!} \cdot \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{k!} \cdot \left(1 - \frac{1}{n}\right) \cdot \dots \cdot \left(1 - \frac{k-1}{n}\right) + \dots + \frac{1}{n!} \cdot \left(1 - \frac{1}{n}\right) \dots \left(1 - \frac{n-1}{n}\right) < 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{k!} + \dots + \frac{1}{n!}$$

Но ние знаем, че:

$$k! = k \cdot (k-1) \cdot \dots \cdot 1 > \underbrace{2 \cdot 2 \cdot \dots}_{\text{n-1 fighth}} \cdot 1 = 2^{n-1}$$

От предното неравенство стигаме до извода:

$$\frac{1}{k!} < \frac{1}{2^{n-1}}$$

И се връщаме към преработката на $(\star\star)$:

$$a_n < 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{k!} + \dots + \frac{1}{n!} < 1 + 1 + \frac{1}{2} + \dots + \frac{1}{2^{k-1}} + \dots + \frac{1}{2^{n-1}} = 1 + 1 + \frac{1}{2} + \dots + \frac{1}{2^{k-1}} + \dots + \frac{1}{2^{n-1}} = 1 + 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + 1 \cdot \frac{1}{2^{n-1}} = 1 + 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + 1 \cdot \frac{1}{2^{n-1}} = 1 + 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + 1 \cdot \frac{1}{2^{n-1}} = 1 + 1 \cdot \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} < 1 + 1 \cdot \frac{1}{2^{n-1}} = 1 + 1 \cdot \frac{1}{2^{n$$

сумата на първите п члена на геометричната прогресия

$$< 1 + 1 \cdot \frac{1}{1 - \frac{1}{2}} = 1 + \frac{1}{\frac{1}{2}} = 3$$

Така получихме, че $a_n < 3$.

Тъй като доказахме, че редицата $\{a_n\}$ е монотонно растяща и ограничена, то тя е сходяща по твърдение 1. Границата на редицата с общ член $\left(1+\frac{1}{n}\right)^n$ се нарича Неперова число и се бележи с числото e. Понеже редицата е монотонно растяща, то $2=a_1< a_n<3$. Правим граничен преход в неравенството и получаваме, че 2< e<3. Всъщност може да се докаже, че e е ирационално число с първи няколко знака след десетичната запетая:

$$e = 2,718281828459.$$

Теорема 5.1 (на Щолц) : Нека $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$ са две редици от числа, като $b_n \to \infty$ и $\{b_n\}_{n=1}^{\infty}$ е строго растяща. Тогава ако $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = l$, то съществува $\lim_{n\to\infty} \frac{a_n}{b_n}$ и $\lim_{n\to\infty} \frac{a_n}{b_n} = l$.

Доказателство:

1. Ще докажем, че $\lim_{n\to\infty} \frac{a_{n+1}-a_k}{b_{n+1}-b_k}=l$, където k е фиксирано число. Понеже k е фиксирано число, то и a_k и b_k са фиксирани числа т.е. не зависят от n. Да фиксираме $\varepsilon>0$. Понеже редицата $\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ е сходяща и клони към l, то съществува естествено число ν , такова че ако $n>\nu$ е в сила

$$\left| \frac{a_{n+1} - a_n}{b_{n+1} - b_n} - l \right| < \varepsilon. \tag{1}$$

Сега да преработим малко (1):

$$\left| \frac{a_{n+1} - a_n}{b_{n+1} - b_n} - l \right| < \varepsilon$$

$$-\varepsilon < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} - l < \varepsilon$$

$$l - \varepsilon < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} < l + \varepsilon$$

Сега можем да умножим неравенството по $(b_{n+1}-b_n)$, тъй като $\{b_n\}$ е строго растяща по условие. Тогава получаваме:

$$(l-\varepsilon)(b_{n+1}-b_n) < a_{n+1} - a_n < (l+\varepsilon)(b_{n+1} - b_n)$$
 (2)

Понеже неравенство (2) е изпълнено при $n>\nu$, тогава то е в сила и за $n\ge \nu+1$. Нека $k:=\nu+1$. Неравенството (2) е в сила за $n\ge k$, значи то е изпълнено за $k,\ k+1,...,n$:

$$(l-\varepsilon)(b_{k+1}-b_k) < a_{k+1}-a_k < (l+\varepsilon)(b_{k+1}-b_k)$$

$$(l-\varepsilon)(b_{k+2}-b_{k+1}) < a_{k+2}-a_{k+1} < (l+\varepsilon)(b_{k+2}-b_{k+1})$$

$$...$$

$$(l-\varepsilon)(b_n-b_{n-1}) < a_n-a_{n-1} < (l+\varepsilon)(b_n-b_{n-1})$$

Сега събираме всички неравенства:

$$(l-\varepsilon)(b_n-b_k) < a_n - a_k < (l+\varepsilon)(b_n - b_k)$$

Сега делим на $(b_n - b_k)$:

$$l - \varepsilon < \frac{a_n - a_k}{b_n - b_k} < l + \varepsilon \tag{2}$$

И така доказахме, че $\lim_{n\to\infty} \frac{a_n-a_k}{b_n-b_k}=l$.

2. Ще докажем, че $\lim_{n\to\infty} \frac{a_n}{b_n} = l$. За целта ще направим следните преобразувания:

$$\frac{a_n}{b_n} = \frac{a_n - a_k + a_k}{b_n} = \frac{a_n - a_k}{b_n} + \frac{a_k}{b_n} = \frac{(a_n - a_k)(b_n - b_k)}{b_n(b_n - b_k)} + \frac{a_k}{b_n} =
= \frac{(a_n - a_k)b_n}{b_n(b_n - b_k)} - \frac{(a_n - a_k)b_k}{b_n(b_n - b_k)} + \frac{a_k}{b_n} = \frac{a_n - a_k}{b_n - b_k} - \frac{(a_n - a_k)b_k}{b_n(b_n - b_k)} + \frac{a_k}{b_n} =
= \frac{a_n - a_k}{b_n - b_k} - \frac{b_k}{b_n} \cdot \frac{a_n - a_k}{b_n - b_k} + \frac{a_k}{b_n}.$$

Правим граничен преход в равенството и получаваме:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{a_n - a_k}{b_n - b_k} - \lim_{n \to \infty} \frac{b_k}{b_n} \cdot \frac{a_n - a_k}{b_n - b_k} + \lim_{n \to \infty} \frac{a_k}{b_n} = l - b_k \lim_{n \to \infty} \frac{1}{b_n} \cdot \lim_{n \to \infty} \frac{a_n - a_k}{b_n - b_k} + a_k \lim_{n \to \infty} \frac{1}{b_n} = l - b_k \cdot 0 \cdot l + a_k \cdot 0 = l$$

Последното се получи тъй като a_k и b_k и са фиксирани, а l е реално число. \blacksquare

Следствие 5.1(на Коши): Нека $\lim_{n\to\infty} a_n = a$. Тогава $\lim_{n\to\infty} \frac{a_1+a_2+\ldots+a_n}{n} = a$.

Доказателство:

Да разгледаме редиците $c_n = a_1 + a_2 + ... + a_n$ и $b_n = n$. Можем да пресметнем:

$$\frac{c_{n+1}-c_n}{b_{n+1}-b_n} = \frac{a_1+a_2+\ldots+a_{n+1}-(a_1+a_2+\ldots+a_n)}{n+1-n} = \frac{a_{n+1}}{1} = a_n \to a$$

По теоремата на Щолц получаваме, че е изпълнено $\lim_{n\to\infty}\frac{c_n}{b_n}=a$, т.е. $\lim_{n\to\infty}\frac{a_1+a_2+...+a_n}{n}=a$.

Следствие 5.2: Нека $a_n > 0$ и $\lim_{n \to \infty} a_n = a$. Тогава $\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = a$.

Доказателство:

1. $a \neq 0$ Да разгледаме редицата $b_n = \frac{1}{a_n}$. Тъй като $\lim_{n \to \infty} a_n = a$, то $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{a} = b$. Тогава можем да приложим следствие 1 за b_n и получаваме:

$$\lim_{n \to \infty} \frac{b_1 + b_2 + \dots + b_n}{n} = b$$

$$\lim_{n \to \infty} \frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n} = \frac{1}{a}$$

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = a$$

2.
$$a=0$$
, to $\lim_{n\to\infty}\frac{1}{a_n}=\infty$

$$\lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = 0 = a \quad \blacksquare$$

Следствие 5.3: Нека $a_n > 0$ и $\lim_{n \to \infty} a_n = a$. Тогава $\lim_{n \to \infty} \sqrt[n]{a_1 \cdot a_2 \dots a_n} = a$

Доказателство:

Понеже $\lim_{n\to\infty} a_n = \overline{a}$, то по следствие 1 и следствие 2 получаваме:

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a \lim_{n \to \infty} \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} = a$$

Освен това тъй като е в сила неравенството между средно аритметично, средно геометрично и средно хармонично т.е.

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} \le \sqrt[n]{a_1 \cdot a_2 \dots a_n} \le \frac{a_1 + a_2 + \dots + a_n}{n},$$

то по лемата за двамата полицаи получаваме $\lim_{n\to\infty} \sqrt[n]{a_1\cdot a_2\dots a_n}=a.$

Следствие 5.4: Нека $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = a$. Тогава $\lim_{n \to \infty} \sqrt[n]{a_n} = a$.

Доказателство:

Нека да разгледаме редицата $b_n=\frac{a_{n+1}}{a_n}$ и $b_1=a_1$. Тъй като $\lim_{n\to\infty}b_n=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=a$, то по предното следствие получаваме:

$$a = \lim_{n \to \infty} \sqrt[n]{b_1 \cdot b_2 \dots b_n} = \lim_{n \to \infty} \sqrt[n]{a_1 \cdot \frac{a_2}{a_1} \dots \frac{a_{n-1}}{a_{n-2}} \cdot \frac{a_n}{a_{n-1}}} = \lim_{n \to \infty} \sqrt[n]{a_n}. \quad \blacksquare$$