COMP3310/6331 - #7-8

Ethernet and WiFi

<u>Dr Markus Buchhorn:</u> <u>markus.buchhorn@anu.edu.au</u>

Acronym overload

- General "LANs": Ethernet, WiFi, Bluetooth, 4G?
 - Cheap, mass-produced, reasonably well-behaved, scalable and simple!
- Carrier-grade: SONET/SDH, ATM, FrameRelay, GPON, ...
 - Expensive, robust, service-level guarantees
- Data-centre: FibreChannel, Infiniband, FDDI, ...
 - High-speed, low-latency, specific-purpose
- Wireless: RF, LiFi, whitespace, Zigbee, Z-wave, HaLow, 6LoWPAN, ...
 - Regulated in some frequencies, free-for-all in others
 - Device-oriented: Low power (long battery life), long range, low datarates

Standards

- IEEE: community standards, active research, publications
 - Different to ISO, ITU, IEC government-recognised standards bodies
 - Physical engineering,
 - Also naming, best practices, software/hardware architecture, ...
- IEEE 802: standards and committee
 - LAN/MAN networks carrying variable-sized frames (not cells)
- 802.1: MAC details
- 802.3: Ethernet
- 802.11: Wireless LAN & Mesh
- 802.15: Wireless PAN
- 802.16: Broadband Wireless Access (WiMAX)

802.3 Ethernet

- 1983 coax cables, vampire taps, 10Mb/s
- It's evolved a lot since then: faster, further, more robust, more functionality
- Lots of individual standards, sometimes superseding or merging earlier versions.
- Lots of backwards compatibility
- 802.3a 802.3z (1985-1998)
- 802.3aa az (1998-2010)
- 802.3ba bz (2010-2016)
- 802.3ca cs (2016-today)

Which Ethernet?

- 10Base2 vs 1000Base-LX ??
- Naming:
 - Speeds: 10, 100, 1000 (Mb/s), 2.5G, 10G, 25G, 40G, 50G, 100G, 200G, 400G
 - Signal: BASE, PASS, BROAD
 - --? = media. T=Twisted Pair, S=short 850nm, L=long 1300nm, E=extralong 1550nm
 - C (or blank) =coax. Mostly. F=fibre. B=bidirectional (single fibre).
 - Last letter = encoding (8b/10b, ...), or ignored
 - Last number = channel count (wavelengths, copper pairs).
 - Or reach (2,5,36 * 100m, or 10,20,30*1km). Or ...

So...

• 1000BASE-LX:

- 1Gb/s, Baseband
- Fibre optic pairs,
- 8b/10b NRZ encoding

1000BASE-T

- 1Gb/s, Baseband
- Twisted Pair copper cables with 8P8C (RJ45) connectors, Cat5e or better
- Uses all four pairs, in both-directions simultaneously
- 4b/5b, PAM-5 encoding

Ethernet

- Started over shared medium coax CSMA-CD, Manchester
 - 10Base2, 10Base5
 - Moved to UTP, 10BaseT, using 1-4 pairs
 - A plethora of encodings, differential signalling, and ultimately fibre
 - Moved from shared media to fully-switched
- Half-duplex (bus) to full-duplex (SDM) to full-duplex (FDM)
- If not all 4 copper pairs in use, can run power, telephone over the others
 - And with FDM power over data wires. 802.3af, at, bt, and bu (for cars)
- Very good <u>plug-and-play</u>
 - Well designed to cope with network changes
- Very good <u>backwards compatibility</u>
 - Link negotiation on connection

Auto-negotiation

- When plugging in an Ethernet device to a switch, need to agree:
 - Speed
 - Duplex
 - Cross-over (which wire does what)
- Need to detect a plug-in/disconnect.
- Heartbeat = Normal Link Pulses (NLP)
- Capability = Fast Link Pulses (FLP)
 - Encodes messages in 16bit words
- Allows both ends to negotiate and agree
 - (if they're allowed to!)

An Ethernet frame

byte = 8bits

Preamble		MAC dest		802.1Q tag [opt]	/ I /	Payload	Checksum
7 byte	1 byte	6 byte	6 byte	4 byte	2 byte	42-1500 byte	4 byte

- Every device that can listen will receive the frame
- If the frame destination is not yours, drop it, otherwise inform Operating System
 - UNLESS you are in 'promiscuous mode', and listening to everything

Addressing

- (802) MAC addresses
- Globally unique address (EUI-48)
- Various allocations of 48 bits to a NIC

Written in hex: 38:10:d5:bc:be:99

'All ones' ff:ff:ff:ff:ff = broadcast frame

Some addresses are special messages

Ethernet hubs

• Shared media, CSMA and collisions – through a hub/repeater

Ethernet Switching

More scalable, more reliable

Control plane

Switch fabric – data plane

What goes where?

- Need to know which MAC address(es) is(are) on which port
 - Without being manually told
- Switches learn on the fly
 - Using source addresses, most trustworthy.
- First listen to what's coming in, and record the source MAC address
- Second if it's a new MAC destination:
 - Send it to all ports(*) (unicast port flooding)
 - Hope somebody replies, and then record their port.
- Broadcasting is now the switch's responsibility not the cable.

Hierarchy of switches

This works well for any loop-free topology

And now a 'broadcast' domain can be defined as wide as you want

What about if there are loops?

Redundant links. Parallel links. Short cuts. Made a mistake. Evil intent.

Spanning Tree

- Broadcast storms, MAC table updates, duplicate frames BAD!
- Develop an overlay view that <u>spans</u> the network with a loop-free <u>tree</u>
 - Effectively: disable some links ("block ports")
 - Switches need to work this out themselves, and adapt, in real-time
 - And then forward frames accordingly

Spanning Tree (Protocol) rules – 802.1d, w, ...

- Before doing anything else or on any change or a timer block all but STP traffic
- <u>Elect a root node</u> (lowest address wins), <u>and</u> at the same time
- Grow the shortest tree, using distance (hop count) and value (speed) from root
 - Tie-breaker: lowest address
 - Record the ports that are on the tree towards the root
- Initially everyone thinks they are the root and tells their neighbours so.
 - Some switches get disappointed quickly
 - They tell their neighbours
 - Everyone updates

https://www.youtube.com/watch?v=japdEY1UKe4

- Once converged: turn off ports (paths) that aren't on the tree
 - But remember they are there, if/when something changes

Casting

Broad-cast: Everyone gets it. MAC destination = all 1's (ff:ff:ff:ff:ff:ff)

Uni-cast: Only the intended recipient (should) get it. MAC destination

- Multi-cast: Everyone who is interested gets it
 - Special bit-flag in MAC address
 - Devices can 'subscribe' their NIC

Special features

- Link aggregation/ "trunking"
 - When a single 1Gb/s or 10Gb/s won't do
 - Performance
 - Failover

- 802.1AX (was 802.3ad) up to 8 (identical) links
- Link Aggregation Control Protocol (LACP)
 - Send a 'do you do LACP?' every second
 - If yes, identify other common links and aggregate
- Various modes: round-robin, active-backup, random-alloc, ...
 - Must not cause mis-ordered or partial frames, nor duplicates

Virtual LANs (VLANs)

• 802.1Q – add a 4-byte "tag" to the Ethernet frame

- Now have 2+ 'broadcast domains' on the same network
 - **Separation** of traffic
 - **Prioritisation** of traffic (was 802.1p)

Going big...

Preamble		MAC dest		802.1Q tag [opt]	/ -	1	Checksum
7 byte	1 byte	6 byte	6 byte	4 byte	2 byte	42-1500 byte	4 byte

- Standard maximum frame:
 - 1500 bytes data, 26-30(+12) bytes 'overhead' at best
 - At 10Gb/s, one maximum frame every 1.5µs
 - Buffers overflow, congestion, drops
- What happens if we make the payload bigger?
 - Jumbo Frames 9000 byte payload
 - Lower overhead, lower cpu load but need a different checksum

WiFi! (aka WLAN)

- WiFi is not wireless Ethernet
 - But has inherited a lot from it.
 - Access points like 802.3 repeaters
- Much more challenging communications environment, clients
 - More work to be robust and perform well
 - Rate and power adaptation
- Based on CSMA/CA with optional RTS/CTS (MACA)
 - Single access point for many clients...
- Along with OFDM, DSSS and MIMO

Acronym soup

OFDM – Orthogonal Frequency Division Multiplexing

- MIMO Multiple input, multiple output
 - Multiple antennas, beamforming (RX and TX)
 - Multiple paths, deconstructed interference, voodoo magic

- DSSS Direct Sequence Spread Spectrum
 - Related to Frequency Hopping Spread Spectrum
 - Uses codes across a frequency band (CDMA)
 - Encoded 1b/10b or even 1b/10,000b

Do not memorise, just enjoy...

Standards – IEEE 802.11

802.11	Hz	Bandwidth MHz	Datarate Mb/s	Range (m)	
а	5G	20	6-54	30-150(*)	
b	2.4G	22	1-11	30-150	
g	2.4G	20	6-54	30-150	
n	2.4G/5G	20-40	<600	70-250	
ac, ax	5G (2.4G)	20-160	<3500	30	
ad, ay	60G	2 or 160	<6600-10,000	3, 10	WiGig
af, ah	0.05-0.9	1-16	30-300	100-1000's	TV, HaLow

And another 30+ of "bonus features"...

Those ranges

- Assume area-coverage is what you want
- Can get more directional and longer range with 'cantennas'...

Channels @2.4GHz

- TV channels tune to central frequency
 - Not all channels in all countries
- (most) Channels overlap
- Channels taper at edges
- Different 802.11 interoperate by stopping!

Non-Overlapping Channels for 2.4 GHz WLAN 802.11b (DSSS) channel width 22 MHz

Microwaves, cordless phones, ...

Bluetooth...

Link 2

Link 3

Link 1

FHSS, 0.6ms timeslice

802.11 WiFi Channels @5GHz

802.11ac Channel Allocation (N America)

802.11 Frames

X Mb/s Y Mb/s

Preamble	Start Frame	PLCP	Header	Payload	Checksum
7/16 byte	1 byte	6 byte	30 byte	0-2312 byte	4 byte

	Duration/ Connection	Addr 1	Addr 2	Addr 3	Seq Ctrl	Addr 4
2 byte	2 byte	6 byte	6 byte	6 byte	2 byte	6 byte

PLCP = Physical Link Convergence Protocol – (rate, checksum, length)

802.11 Frame-types

	Duration/ Connection	Addr 1	Addr 2	Addr 3	Seq Ctrl	Addr 4
2 byte	2 byte	6 byte	6 byte	6 byte	2 byte	6 byte

- All those addresses... src, dest, AP and 'other'
- Frame Control:
 - Control Frames
 - Control the communication with the Access Point
 - Management Frames
 - Manage the relationship with the Access Point
 - Data Frames
 - Send data...

Reliability

- LANs should be simple
 - LANs should not do overly-smart things
- But: LANs should perform efficiently, effectively

- Who takes care of errors?
 - Defined as 'failure to get through correctly' for multiple reasons
- Three approaches:
 - Detect errors and drop frames (something else will take care of it 802.3)
 - Detect errors and <u>fix frames at receiver</u> (forward error correction)
 - Detect errors and sender sends again (Automated Repeat reQuest ARQ 802.11)

ARQ by ACK

- For every frame I send, receiver should ACKnowledge receipt
 - As long as it arrives correct!
 - If they don't ACK, within a timeout, send it again
- What happens if the ACK is lost?
 - Send again, but flag it's a resent frame
- What happens if timeout is too short?
 - Send again, but flag it's a resent frame
- Stop-and-wait ARQ
 - Helps with high delays
 - Single-bit sequence number (alternate 0,1)
 - ACK includes that sequence number
- Robust, but throttles performance as (bandwidth*delay) goes up

802.11 Control Frames

- Request To Send (RTS)
- Clear To Send (CTS)
- Acknowledge (ACK)

- Request for RTS (RRTS)
- Data Sending (DS)

Client by association

- Need to know what's available:
 - 1. SSID (service set identifier) a wireless (V)LAN
 - 2. Access Points that accept connections for that SSID
- So either:
 - Listen for AP's offering services, or
 - Call out for AP's offering services
- Identify who you are (authentication)
- Associate with an AP (resource allocation)
- And then keep it running, while everything changes...

802.11 Management Frames

- Beacon
- Probe Request and Probe Response

- Authentication (open or shared-key)
 - Deauthentication
- Association Request and Association Response
 - Disassociation
 - Reassociation Request and Reassocation Response

What's out there

• **Beacon**: (broadcast) I'm an AP and can offer these SSIDs at these rates in these frequencies with these standards and ...

- Probe request: (broadcast) I'm a client, what can you offer?
 - **Probe Response** (<u>targeted</u>): I can offer these SSIDs ...
 - Can also Probe request 'do you offer SSID X?'

Authentication

- Open
 - Laptop: "Hi, I'm Markus' laptop"
 - AP: "Welcome, Markus' laptop"
- Shared key
 - Laptop: "Hi, I'm Markus' laptop"
 - AP: "Sure you are. Encrypt the following with our shared key"
 - Laptop: "Here you are..."
 - AP: "Ok, welcome Markus' laptop"
- Not that it actually cares about your identity...
 - Can also have username/pw, MAC filters, Wireless Protected Setup (WPS), ...
- Deauthentication
 - Either direction

Pass-through authentication

- 802.1X
 - Uses Extensible Authentication Protocol (EAP)
 - Can be used on 802.11, 802.3, etc.
 Typically RADIUS back-end
 Keep PW's off AP's

 Supplicant

 Supplicant

Internet or other LAN resources

Encryption – everything is sniffable

- Wired Equivalent Privacy WEP
 - Don't go there. Single key, easily calculated from traffic sniffing.
- WiFi Protected Access WPA
 - With Pre-shared-key (PSK)="personal" or 802.1X="enterprise",
 - Temporal Key Integrity Protocol (TKIP) per-frame-key
 - Better integrity checks than simple CRC
 - Heaps better. Still broken, largely through WPS ("easy-to-join" feature)
- WPA2
 - Lots of additional measures. Much stronger encryption and other protections. KRACKed (2017)
- WPA3
 - Warm off the press (Jan 2018)
- Question around what in a frame is encrypted/protected, and when some info leaks.
 - My neighbour is talking to an interesting site?

If nothing else: WiFi and others in 2.4G

- Get on to 5G!
- Collision with Bluetooth and microwave ovens and DECT phones and ...
 - Note 802.15.2: WG on "bluetooth and wifi co-existence" is 'hibernating'.