Molecular Biology

การค้นพบ DNA

หลังจากกลุ่มของ T.H. Morgan ค้นพบว่ายืนอยู่บนโครโมโซม ส่นประกอบสำคัญหลักที่อยู่บนโครโมโซม คือ โปรตีนและ ดีเอ็นเอกลายเป็นที่น่าสนใจว่าอะไรคือสารพันธุกรรม

การค้นพบสารพันธุกรรมได้รับประโยชน์อย่างมากจากการใช้ไวรัส

Frederik Griffith ทดลองในปี 1928 โดยใช้แบคทีเรียสองสายพันธุ์ แบบที่ก่อให้เกิดอันตรายและไม่ก่อให้เกิดอันตราย เขาฉีดแบคทีเรียทั้งสองสายพันธุ์ในหนูอย่างละกลุ่ม หนูที่ถูกฉีดด้วยแบคที่เรียที่ก่อให้เกิดอันตรายตาย ส่วนอีกกลุ่มไม่ตาย จากนั้นเขานำแบคทีเรียที่ไม่ก่อให้เกิดอันตรายไปทำให้ตายโดยใช้ความร้อนแล้วฉีดในหนู ปรากฏว่าหนูไม่ตาย หนูกลุ่ม สุดท้ายถูกฉีดด้วยแบคทีเรียที่ทำให้เกิดโรคที่ทำให้ตายแล้วผสมกับแบคทีเรียที่ไม่ก่อให้เกิดโรคที่ยังไม่ตาย ปรากฏว่าหนู ตาย (รูปที่ 1)

การทดลองนี้ทำให้เกิดปรากฏการณ์ที่เรียกว่า Transformation ซึ่งหมายความว่าเปลี่ยนแปลงของ genotype และ phenotype ที่เกิดจากดีเอ็นเอแปลกปลอม

รูปที่ 1 การทดลองของ Griffith

จากนั้น Oswald, Maclyn,และ McCarty ค้นพบว่าสารที่ก่อให้เกิดการ transformation นั้นเกิดจากดีเอ็นเอ แต่ นักวิทยาศาสตร์หลายคนยังไม่ได้เชื่อทั้งหมดเพราะข้อมูลเกี่ยวกับดีเอ็นเอในขณะนั้นมีน้อย ข้อมูลที่ได้ตามมาภายหลังได้ มากจากไวรัส bacteriophage

ในปี 1952 Alfred Hershey และ Martha Chase ยืนยันว่าสารพันธุกรรมคือดีเอ็นเอ โดยใช้ bacteriophage (ในที่นี้ ย่อว่าเฟจ)เขาใช้ส่วนประกอบของเฟจคือโปรตีนและดีเอ็นเอฉีดเข้าใน *E. coli* การหมุนเหวี่ยง (centrifugation) ทำให้ ส่วนที่หนักกว่า เช่นแบคทีเรีย ตกลงด้านล่าง เกาะรวมกันเรียกว่า pellet ขณะที่ส่วนที่เบากว่าลอยอยู่ด้านบนซึ่งรวมถึง อาหารเลี้ยงเชื้อและส่วนประกอบของเฟจ Hershey เมื่อวัดกัมมันตภาพรังสีพบว่าส่นด้านบนมีส่วนประกอบของ ³⁵S

ในขณะที่สนด้านล่าง (pellet) มีสนประกอบของ ³²P (รูปที่ 2) Hershey และ Chase จึงสรุปว่าดีเอ็นเอเป็นสารพันธุกรรม

รูปที่ 2 การทดลองของ Hershey และ Chase

ดีเค็นเค

ดีเอ็นเอเป็นพอลิเมอร์ประกอบด้วยนิวคลีโอไทด์ (nucleotides) ในโตรจีนัสเบส (nitrogenous base) และ หมู่ฟอสเฟต (phosphate group) ในโตรจีนัสเบสมีสี่ชนิด คือ adenine (A), thymine (T), guanine (G), และ cytosine (C)

Erwin Chargaff เมื่อปี 1950 เสนอว่าส่นประกอบของดีเอ็นเอจะแตกต่างกันในสิ่งมีชีวิตแต่ละสปีชีส์ เขาเสนอกฎสองข้อ คือ

- 1. ส่วนประกอบของเบสแตกต่างกันในสิ่งมีชีวิตแต่ละสปีชีส์
- 2. สัดส่วนของ A เท่ากับT และ G เท่ากับ C

โครงสร้างของดีเอ็นเอ

Maurice Wilkins และ Rosalind Franklin ใช้เทคนิค X-ray diffraction หาโครงสร้าง Franklinได้ถ่ายรูปดีเอ็นเอ ด้วยวิธีนี้ แฟรงคลิน X-ray ภาพ crystallographic ของดีเอ็นเอทำให้ Watson อนุมานว่าดีเอ็นเอเป็นขดลวด ภาพเอกซเรย์ยังช่วย ให้วัตสันสามารถสรุปความกว้างของเกลียวและระยะห่างของฐานในโตรเจนได้ รูปแบบในภาพแสดงให้เห็นว่าโมเลกุลดี เอ็นเอถูกสร้างขึ้นจากสองเส้นขึ้นรูปเกลียวคู่

รูปที่ 3 Franklin และ ภาพ x-ray diffraction ของเธอ

นิวคลีโอไทด์บนสายดีเอ็นเอเดียวกันเชื่อมต่อกันด้วยพันธะฟอสโฟไดเอสเทอร์ (Phosphodiester) ระหว่างคาร์บอนตัวที่ สามบนน้ำตาลกับหมู่ฟอสเฟสที่เกาะที่น้ำตาลตัวที่ห้าของนิวคลีโอไทด์โมเลกุลถัดมา

เพื่อให้เข้าใจ double helix ให้นึกภาพเอามือขวาพันรอบโมเลกุลดีเอ็นเอที่แสดงในรูปโดยให้นิ้วหัวแม่มือชี้ขึ้น นึกภาพนิ้ว เลื่อนไปตามด้านนอกของเกลียว มือของคุณควรเคลื่อนไปพร้อมกับเกลียวขึ้นไปในทิศทางที่นิ้วหัวแม่มือชี้

รูปที่ 4 3'-5'phosphodiester bond และโครงสร้างของดีเอ็นเอ

Watson และ Crick สร้างรูปแบบของเกลียวคู่เพื่อให้สอดคล้องกับภาพ X-ray และคุณสมบัติทางเคมีของดีเอ็นเอ แฟรงคลินได้ข้อสรุปว่ามี backbones สองสายอยู่ด้านนอก น้ำตาลฟอสเฟตกับในโตรจีนัสเบสจับคู่ภายในโมเลกุลของ วัต สันสร้างแบบจำลองที่ backbones เป็นแบบ antiparallel (หน่วยย่อยของมันวิ่งไปในทิศทางตรงกันข้าม) เขาระบุว่า adenine (A) จับคู่กับ thymine (T) เท่านั้นและ guanine (G) จับคู่กับ cytosine (C) เท่านั้น แบบจำลองวัตสัน - คริก อธิบายกฎของChargaff ที่ระบุว่าในสิ่งมีชีวิตใด ๆ จำนวน A = T และจำนวน G = C

รูปที่ 5 โครงสร้างของการจับกันของเบส

เนื่องจากทั้งสองเส้นของดีเอ็นเอจะประกอบแต่ละกลุ่มสาระการทำหน้าที่เป็นแม่แบบสำหรับการสร้างสายใหม่ในการเพิ่ม จำนวน ในขณะเพิ่มจำนวนดีเอ็นเอโมเลกุลสายเดิมจะคลายออกและสายใหม่สองเส้นถูกสร้างขึ้นตามกฏการจับคู่พื้นฐาน รูปแบบการจำลองแบบsemiconservativeของวัตสันและคริกระบุว่าโมเลกุลดีเอ็นเอใหม่แต่ละตัวจะมีสายเก่าหนึ่งเส้น และอีกหนึ่งเส้นที่สร้างขึ้นใหม่

รูปที่ 6 โมเดลของการเพิ่มจำนวนดีเอ็นเอและการทดลองของ Meselson และ Stahl

DNA replication การจำลองแบบดีเอ็นเอ

DNA replication เริ่มที่จุดเฉพาะที่เรียกว่า origin of replication สองสายดีเอ็นเอจะถูกแยกออก เปิดการจำลองแบบ "bubble" ซึ่งในโครโมโซมของพวก eukaryotic อาจมีหลายร้อยหรือหลายพัน origin of replication การเพิ่มจำนวนนี้ เกิดขึ้นในทั้งสองทิศทางจากแต่ละจุดจนกว่าจะคัดลอกโมเลกุลทั้งหมด

รูปที่ 7 การเพิ่มจำนวนดีเอ็นเอใน prokaryotes และ eukaryotes

ปลายของแต่ละ replication bubble จะเรียกว่า replication fork มีลักษณะคล้ายรูปตัววาย ซึ่งเป็นบริเวณที่ดีเอ็นเอ สายใหม่จะถูกสร้างขึ้น เอนไซม์helicaseมีหน้าที่คลายเกลียวดีเอ็นเอที่บริเวณreplication forkนี้ โปรตีนSingle strand binding proteinsจะเข้ามาจับและช่วยรักษาให้สายดีเอ็นเอที่ถูกคลายออกคงตัวอยู่ได้ เอนไซม์Topoisomeraseคลาย เกลียวบริเวณที่เป็นเกลียวซ้อนเกลียวของดีเอ็นเอ

รูปที่ 8 บริเวณ replication fork

เอนไซม์ DNA polymerases จำเป็นต้องใช้ primer เพื่อจะได้เติมเบสให้กับดีเอ็นเอสายใหม่ primers นี้ถูกสร้างด้วย เอนไซม์ที่จะสร้างRNA primersประมาณ5-10เบสก่อน ที่ปลายด้าน3′จะเป็นบริเวณที่ให้เริ่มต้นการสร้างสายใหม่

เอนไซม์ DNA polymerase นี้มีหน้าที่สังเคราะห์ดีเอ็นเอสายใหม่ที่เริ่มบริเวณreplication fork เอนไซม์นี่ส่วนใหญ่ จำเป็นต้องใช้primer และสายดีเอ็นเอที่เป็นtemplate การสังเคราะห์ดีเอ็นเอสายใหม่มีอัตราโดยประมาณที่500นิวคลีโอ ไทด์ต่อวินาทีในแบคทีเรียและ50นิวคลีโอไทด์ต่อวินาทีในคน แต่ละนิวคลีโอไทด์จะถูกต่อเข้าไปในสายดีเอ็นเอสายใหม่นี้ คือnucleoside triphosphate เมื่อnucleoside triphosphateมาต่อกันจะเสียหมู่ฟอสเฟตออกไปสองหมู่

ฐปที่ 9 Dephosphorylation

DNA polymeraseจะต่อนิวคลีโอไทด์ที่ปลาย3′ เท่านั้น นั่นคือสายดีเอ้นเอสายใหม่จะถูกสร้างจาก 5′ไป3′

รูปที่ 10 DNA replication ของ leading strand

ลักษณะที่เป็นantiparallelของดีเอ็นเอนี้ทำให้การสังเคราะห์ดีเอ็นเอสายใหม่มีกระบวนการต่างกันเล็กน้อย สายดีเอ็นเอ ที่สร้างใหม่สายหนึ่งจะถูกสร้างได้ต่อเนื่องจากร'ไป3'ซึ่งเรียกว่า leading strand แต่อีกสายจะถูกสร้างทีละน้อยจากปลาย 5'ไป3'เช่นกัน เรียกว่า lagging strand ดีเอ็นเอสายใหม่ที่ถูกสร้างบนสายlagging strandนี้จะเป็นช่วงสั้นๆเรียกว่า Okazaki fragmentsซึ่งจะถูกเชื่อมเข้าด้วยในภายหลังด้วยเอนไซม์ DNA ligase

รูปที่ 11 การสร้างดีเอ็นเอสายใหม่บนlagging strand

สรุปกระบวนการจำลองดีเอ็นเอ DNA replication

รูปที่ 12 การจำลองดีเอ็นเอ

รูปที่ 13 เอนไซม์ที่ใช้ในกระบวนการจำลองดีเอ็นเอ

ดีเอ็นเอที่ถูกสร้างใหม่จะถูกตรวจสอบความถูกต้องของลำดับเบสด้วยเอนไซม์ DNA polymerase เปลี่ยนเบสที่ไม่ ถูกต้องออกแล้วเอาเบสที่ถูกต้องใส่เข้าไป ดีเอ็นเอสามารถถูกทำลายด้วยสารเคมีหรือทางกายภาพเช่นรังสีเอ็กซ์หรือควัน บุหรี่ การเปลี่ยนแปลงสามารถเกิดขึ้นได้อย่างรวดเร็ว นิวคลีโอไทด์สามารถถูกตัดออกเพื่อเปลี่ยนนิวคลีโอไทด์ใหม่เข้าไป แทนที่ด้วยเอนไซม์ nuclease

รูปที่ 14 การตัดนิวคลีโอไทด์ออกแล้วแทนที่ด้วยนิวคลีโอไทด์ใหม่

อัตราความผิดพลาดหลังจากการถูกตรวจสอบ (proofreading) ด้วยเอนไซม์DNA polymerase นั้นมีค่าต่ำ มากแต่ไม่ได้แปลว่าจะไม่ความผิดพลาดเลย ลำดับเบส(sequence)ที่เกิดการเปลี่ยนแปลงอาจอยู่ถาวรและถ่ายทอด ไปยังรุ่นต่อไปได้ การเปลี่ยนแปลง(mutations)นี้เป็นสาเหตุของความหลากหลายทางพันธุกรรมที่การคัดเลือกโดย ธรรมชาติ(natural selection)ใช้ซึ่งอาจทำให้เกิดสปีชีส์ใหม่ขึ้นได้

การจำลองดีเอ็นเอจากร ไป3 นั้นทำให้ไม่มีทางที่จะมีการจำลองปลายร ได้ครบถ้วน ทำให้ปลายร นี่สั้นลงทุกครั้งที่มีการ เพิ่มจำนวนดีเอ็นเอ ปัญหานี้เกิดขึ้นในeukayotesแต่ไม่ใช่ในprokayotesเพราะในสิ่งมีชีวิตกลุ่มนี้มีโครโมโซมเป็น วงกลม

ในโครโมโซมของeukaryotesจะมีส่วนปลายที่เรียกว่าtelomeres ปลายtelomeresนี้ไม่ได้ช่วยป้องกันการสั้น ของดีเอ็นเอแต่ช่วยให้ยืนที่อยู่ยนดีเอ็นเอโดยเฉพาะยืนที่อยู่ใกล้ๆปลายไม่ถูกตัดสั้นลงเร็วกว่าที่ควร การสั้นลงของปลาย terlomeresนี้มีความสัมพันธ์กับอายุ เอนไซม์telomeraseช่วนในการสร้างปลายtelomeresในเซลล์สืบพันธุ์

รูปที่ 16 โครโมโซมและtelomeres (สีแดง)

โครโมโซมแบคทีเรียเป็นแบบเกลียวคู่ รูปร่างเป็นวงมีโปรตีนเกาะอยู่บ้าง ในแบคทีเรียดีเอ็นเอเป็นแบบsupercoiled และพบได้ในบริเวณของเซลล์ที่เรียกว่านิวคลีออยด์

โครโมโซมยูคาริโอตมีโมเลกุลของดีเอ็นเอเป็นแบบเส้น มีโปรตีนเกาะจำนวนมาก ในเซลล์ยูคาริโอตดีเอ็นเอจะรวมเข้ากับ โปรตีนรวมเรียกว่าโครมาติน โปรตีนที่เรียกว่าฮิสโตนมีหน้าที่แรกในการบรรจุในโครมาติน โครมาตินเมื่อกางออกคล้ายดู คล้ายสายลูกบัด (beads on a string) แต่ละ"ลูกบัด" จะเป็น nucleosome nucleosomeเป็นหน่วย พื้นฐานของการบรรจุดีเอ็นเอ แต่ละnucleosomeประกอบด้วยโปรตีนฮิสโตนสี่ชนิด ชนิดละสองโมเลกุลทำให้ในหนึ่ง nucleosomeมีฮิสโตนทั้งสิ้นแปดโมเลกุล ปลายหางของโปรตีนฮิสโตนจะยื่นออกมาจากnucleosome ที่ปลาย หางของฮิสโตนนี้มีส่วนเกี่ยวข้องในการควบคุมการแสดงออกของยีน

รูปที่ 17 การบรรจุโครมาตินในeukaryotes

โครโมโซมประกอบด้วยโมเลกุลของดีเอ็นเอที่อัดไปด้วยโปรตีน

โครมาตินมีการเปลี่ยนแปลงไปตามวัฏจักรของเซลล์ ในการแบ่งเซลล์ระยะinterphase เส้นใยโครมาตินจะมีขนาด ราวๆ10นาโนเมตร และบางส่วนมีขนาดราวๆ30นาดนเมตรโดยการม้วนขดกันของเส้นใยโครมาติน ส่วนของโครมาตินที่มี การอัดกันอย่างหลวมๆเรียกว่าeuchromatin โครมาตินในช่วงinterphase (centromeres และ telomeres) บางส่วนจะอัดกันแน่นเรียกว่าheterochromatin heterochromatinที่อีดกันอย่าง หนาแน่นทำให้เซลล์แสดงข้อมูลทางพันธุกรรมที่อยู่ในบริเวณเหล่านี้ได้ยาก

แบบฝึกหัด

Source of DNA	Base Percentage Adenine	Base Percentage Guanine	Base Percentage Cytosine	Base Percentage Thymine
Sea urchin	32.8	17.7	17.3	32.1
Salmon	29.7	20.8	20.4	29.1
Wheat	28.1	21.8	22.7	
E. Coil	24.7	26.0		
Human	30.4			30.1
Ox	29.0			
Average %				

Hershey and Chase ยืนยันว่า DNA เป็นสารพันธุกรรมด้วยการทดลองใด

- A. DNA linkage mapping
- B. Transformation of DNA in Streptococcus pneumoniae
- C. X-ray crystallography of DNA molecules
- D. Radio-labelling DNA and protein

Template strandของสายดีเอ็นเอมีลำดับเบสเป็น 3'TAGGCATTGCA 5 'สายดีเอ็นเอที่สร้างขึ้นจากเทม เพลตนี้คือครูปร?

- A. 5' ATCCGTAACGT 3'
- B. 5' AUCCGUAACGU 3'
- C. 5' TAGGCATTGCA 3'
- D. 5' TGCAATGCCTA 3'

ข้อใดต่อไปนี้จับคู่เอนไซม์จำลองดีเอ็นเอกับหน้าที่ได้อย่างถูกต้อง

- A. Topoisomerases ทำงานนำหน้าreplication forkเพื่อป้องกัน supercoiling
- B. DNA polymerase ฉันแยกสายDNAที่replication fork
- C. Helicase เชื่อมระหว่างชิ้นส่วนดีเอ็นเอ
- D. DNA primase เพิ่มไพรเมอร์โดยการเพิ่มนิวคลีโอไทด์ให้กับ 3'

อ่านเพิ่มเติม

Concepts of Biology on OpenStax. https://openstax.org/books/concepts-biology/pages/9-introduction

Discovery of DNA on Khan academy. https://www.khanacademy.org/science/biology/dna-as-the-genetic-material dna-discovery-and-structure/a/classic-experiments-dna-as-the-genetic-material

Watson, J. D., and F. H. C. Crick. "Molecular Structure of Nucleic Acids." *Nature* 1953 Apr 25; 171 (4356): 737–8.

Molecular Visualizations of DNA. https://www.wehi.edu.au/wehi-tv/molecular-visualisations-dna

DNA replication. https://www.youtube.com/watch?v=4jtmOZalvS0

The Central Dogma of Biology. https://www.youtube.com/watch?v=9kOGOY7vthk