ОТВЕТЫ НА ВОПРОСЫ

1. Что такое функция Лагранжа?

(в лекции 1 задача о линейной оценке с минимальной дисперсией)?

Решается задача на условный экстремум: найти минимум (или максимум)

$$\min_{x} f(x) = ?$$
 $x = (x_1, x_2, ..., x_n)$ при условии $g(x) = 0$

$$g(x) = 0$$

Решение (необходимое условие): составить функцию Лагранжа:

$$L(x,\lambda) = f(x) - \lambda g(x)$$

«двух» переменных (x,λ) , и найти ее **безусловный** экстремум:

$$\min_{x,\lambda} L(x,\lambda) = ?$$

Необходимое условие:

$$\frac{\partial}{\partial x}L(x,\lambda) = 0, \Rightarrow \frac{\partial}{\partial x}f(x) - \lambda \frac{\partial}{\partial x}g(x) = 0, \qquad (1)$$

$$\frac{\partial}{\partial \lambda}L(x,\lambda) = 0 \Rightarrow g(x) = 0, \qquad (2)$$

$$\frac{\partial}{\partial \lambda} L(x, \lambda) = 0 \Longrightarrow \qquad g(x) = 0, \tag{2}$$

получаем, (1):

$$grad f(x) = \lambda grad g(x),$$

 $g(x) = 0$

<u>Очень **простой геометрический смысл** эт</u>их уравнений при n=2

Точка A — не искомая точка: двигаясь по g(x) = 0 пересекаем линии уровня f(x). Точка X – искомая точка: двигаясь в ее окрестности, f(x)не меяется, потому что касание кривой g(x) = 0 и f(x) = c

> 2. Что значит зависимость от параметра фиктивна? (о неравенстве Рао-Крамера)

Утверждение. Эффективная оценка $\phi(x)$ для f(a), если она существует, может быть представлена формулой

$$\varphi(x) = f(a) + \frac{f'(a)}{I_{\epsilon}(a)} \cdot \frac{\partial \ln p(x;a)}{\partial a}, \qquad (15)$$

причем зависимость правой части от параметра а фиктивна.

отличается усиленный ЗБЧ от ЗБЧ в форме Чебышева?

3БЧ в форме Чебышева:

$$\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\frac{1}{n}\sum_{i=1}^{n}M\xi_{i}\to 0$$
 по вероятности при $n\to\infty$, (A)

3БЧ усиленный

$$\frac{1}{n} \sum_{i=1}^{n} \xi_i - \frac{1}{n} \sum_{i=1}^{n} M \xi_i \to 0 \quad \text{с вероятностью 1 при } n \to \infty.$$
 (B)

 $\alpha_n \to 0$ по вероятности при $n \to \infty$,

T.e.

$$\forall \ \varepsilon > 0 \ \lim_{n \to \infty} P\{|\alpha_n| < \varepsilon\} = 1$$

Короткое обозначение

$$\alpha \xrightarrow{P} 0$$

 $\alpha_n \to 0$ с вероятностью 1 при $n \to \infty$.

$$P\left\{\lim_{n\to\infty}\alpha_n\to 0\right\}=1$$

Cx-ть с вер 1 \Rightarrow сх-ть по вер

$$P\left\{\lim_{n\to\infty}\alpha_n\to 0\right\}=1$$
 \Rightarrow $\alpha_n\to 0$, обратное неверно

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 4

§ 5. Методы построения оценок

Рассмотрим лишь три наиболее популярных метода.

5.1. Метод моментов.

Пусть $\xi_1, \, \xi_2 ... \, \xi_n$ - выборка,

т.е. n независимых наблюдений над случайной величиной, обозначим ее ξ_0 ,

 $F(x;a_1, a_2...a_R)$ -функция распределения, зависящая от неизвестных параметров $a = (a_1, a_2...a_R)$, всего R штук.

Требуется оценить их.

Идея метода: <mark>неизвестные параметры выразить через начальные моменты, а затем вместо моментов подставить несмещенные и состоятельные оценки моментов.</mark>

Выразим R моментов через R параметров:

$$m_{1} = \int_{-\infty}^{\infty} x dF(x; a_{1}, a_{2}...a_{R}) = f_{1}(a_{1}, a_{2}...a_{R}),$$

$$m_{2} = \int_{-\infty}^{\infty} x^{2} dF(x; a_{1}, a_{2}...a_{R}) = f_{2}(a_{1}, a_{2}...a_{R}), \quad j = 1, 2...R.$$
...
$$m_{R} = \int_{-\infty}^{\infty} x^{R} dF(x; a_{1}, a_{2}...a_{R}) = f_{R}(a_{1}, a_{2}...a_{R}).$$
(1)

Пусть из этой системы равенств можно выразить параметры через моменты:

$$a_1 = g_1(m_1, m_2...m_R),$$

 $a_2 = g_2(m_1, m_2...m_R),$ $j = 1, 2...R.$
...
$$a_R = g_R(m_1, m_2...m_R).$$
(2)

Подставив вместо моментов $m_1, m_2 ... m_R$ оценки моментов $\hat{m}_1, \hat{m}_2 ... \hat{m}_R$, получаем:

$$\hat{a}_j = g_j(\hat{m}_1, \hat{m}_2...\hat{m}_R)$$
, где $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n \xi_i^k$, $k = 1, 2...R$.

Мы получили некоторые оценки $\hat{a}_1, \hat{a}_2...\hat{a}_R$; они называются оценками по ММ. Справедливы следующие свойства (см., например, [1], [3]):

1) <mark>если функции g_j (·), j = 1, 2...R, непрерывны, то оценки состоятельны:</mark>

2) если функции $g_i(\cdot)$, j=1,2...R, дифференцируемы, а распределение при любом а имеет 2R моментов, то оценки \hat{a}_j

асимптотически нормальн :
$$\hat{a}_j \sim N\left(a_j, \frac{1}{n}\sum_{l,s=1}^R (m_{l+s} - m_l \cdot m_s) \frac{\partial g_j}{\partial m_l} \frac{\partial g_j}{\partial m_s}\right)$$

В справедливости этих свойств нетрудно убедиться.

Несмещённость оценок не гарантируется.

Что такое асимптотическая нормальность? Если закон распределения оценки с ростом п стремится к нормальному, то говорят, что оценка асимптотически нормальна.

$$\hat{a} = g(\hat{m}) = g(m + \delta_{\hat{m}}) \approx g(m) + \delta_{\hat{m}} g'(m) = a + c \delta_{\hat{m}} \sim N$$

$$\hat{m}_{j} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{j} = m_{j} + \delta_{\hat{m}}, \ \delta_{\hat{m}} \to 0, \quad \delta_{\hat{m}} = \sum_{i=1}^{n} \sim N$$

Замечания.

- 1. В равенствах (1) вместо первых *R* моментов можно использовать любые *R* моментов; важно лишь, чтобы система была разрешима относительно параметров.
- 2. Моментные оценки не всегда обладают высокой точностью. Однако, обычно они достаточно просты в вычислительном отношении.

Пример 1. Оценим дисперсию σ^2 методом моментов. Дисперсия σ^2 выражается через первые два момента:

$$\sigma^2 = m_2 - m_1^2$$
.

Подставив оценки моментов, получим оценку s^2 для дисперсии σ^2 :

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2} - \left(\frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right)^{2} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2} - (\overline{\xi})^{2} = \frac{1}{n} \sum_{i=1}^{n} (\xi_{i} - \overline{\xi})^{2}.$$
 (3)

Последнее равенство нетрудно проверить:

$$\frac{1}{n} \sum_{i=1}^{n} (\xi_{i} - \overline{\xi})^{2} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2} - 2\overline{\xi} \cdot \frac{1}{n} \sum_{i=1}^{n} \xi_{i} + \overline{\xi}^{2} = \frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2} - \overline{\xi}^{2}.$$

Оценка (3) совпадает с оценкой s^2 , которая была проанализирована в разделе 2.3.

Пример 2. Оценка параметров равномерного распределения.

Пусть ξ_1 , $\xi_2...\xi_n$ — выборка из совокупности, распределенной по равномерному закону R[a, b] на отрезке [a, b]. Оценим два неизвестных параметра a и b. Первые два момента выражаются через два параметра:

$$m_1 = (a + b) / 2,$$

 $m_2 - m_1^2 = \sigma^2 = (b - a)^2 / 12.$

В этих уравнениях относительно a и b заменяем неизвестные моменты выборочными, при этом во втором уравнении слева, исходя из (3), имеем s^2 . Получаем:

$$\xi = (a+b)/2,$$

 $s^2 = (b-a)^2/12.$

$$\hat{a} + \hat{b} = 2\overline{\xi},$$

$$\hat{b} - \hat{a} = 2\sqrt{3} s.$$

Откуда:

$$\hat{a} = \overline{\xi} - \sqrt{3} s$$
, $\hat{b} = \overline{\xi} + \sqrt{3} s$.

5.2. Метод максимального правдоподобия.

Пусть $\xi_1, \xi_2...\xi_n$ — выборка, $q(x_i; a)$ — плотность распределения одного i-го наблюдения (в дискретном случае $q(x_i; a)$ — вероятность принятия дискретного значения x_i), $a = (a_1, a_2...a_R)$ — неизвестный параметр,

$$p_{\xi}(x;a) = \prod_{i=1}^{n} q(x_i;a)$$
 — распределение выборки $x = (x_1, x_2...x_n)$.

 Φ ункция $p_{\xi}(x;a)$, как функция параметра a, при фиксированном x, называется функцией правдоподобия.

Оценкой максимального правдоподобия (МП оценкой) а* параметра а называется такое значение, при котором функция правдоподобия $p_{\xi}(x;a)$ достигает максимума:

$$a^*: p_{\xi}(x;a^*) = \max_{a} p_{\xi}(x;a).$$
 (4)

Если максимум достигается во внутренней точке области определения функции, то a^* удовлетворяет системе уравнений:

$$\left. \frac{\partial \ln p_{\xi}(x;a)}{\partial a_i} \right|_{a=a^*} = 0, i = 1, 2...R.$$
 (4a)

Использование логарифма не изменяет точки максимума, но упрощает выкладки при независимых наблюдениях. Оценка $a^* = a^*(x)$ является функцией наблюдений x. Чтобы подчеркнуть случайность аргумента, напишем $a^*(\xi)$.

Пример 1. МП оценка параметров нормального распределения.

Пусть ξ_1 , $\xi_2...\xi_n$ — выборка из нормальной совокупности $N(m, \sigma^2)$, здесь $a \equiv (m, \sigma^2)$. Параметры m и σ^2 неизвестны. Плотность распределения выборки:

$$p_{\xi}(x; m, \sigma^2) = \prod_{i=1}^n (2\pi\sigma^2)^{-1/2} \exp\left\{-\frac{(x_i - m)^2}{2\sigma^2}\right\}.$$

Логарифм функции правдоподобия:

$$\ln p_{\xi}(x; m, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - m)^2.$$

Система уравнений для определения оценок:

$$\begin{cases} \frac{\partial \ln p_{\xi}(x; m, \sigma^2)}{\partial m} = \frac{2}{2} \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - m) = 0, \\ \frac{\partial \ln p_{\xi}(x; m, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^{n} (x_i - m)^2 = 0. \end{cases}$$

Из первого уравнения находим

$$m^* = \frac{1}{n} \sum_{i=1}^{n} x_i \equiv \bar{\xi}.$$
 (5)

Из второго уравнения находим

$$(\sigma^2)^* = \frac{1}{n} \sum_{i=1}^n (x_i - m^*)^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{\xi})^2.$$
 (6)

В данном случае оценки совпадают с выборочными средним и дисперсией.

Пример 2. МП оценка параметра равномерного распределения.

Пусть ξ_1 , $\xi_2...\xi_n$ — выборка из совокупности, распределенной по равномерному закону R[0, a] с неизвестным правым концом a > 0. Плотнсть распределения для одного наблюдения с номером і:

$$p(x_i,a) = \begin{cases} \frac{1}{a}, 0 \le x_i \le a, \\ 0, \text{иначе.} \end{cases}$$

Плотность распределения выборки &

$$\rho_{\xi}(x_1, x_2...x_n; a) = \begin{cases} (1/a)^n, 0 \le x_1 \le a, 0 \le x_2 \le a, ..., 0 \le x_n \le a, \\ 0, \text{ иначе.} \end{cases} = \begin{cases} (1/a)^n, 0 \le \min_i x_i, \max_i x_i \le a, \\ 0, \text{ иначе.} \end{cases}$$

При фиксированных $x_1, x_2...x_n$ функция правдоподобия убывает $(1/a)^n$ при $a \ge \max_i x_i$ и равна 0 при $a \ge \max_i x_i$ (рис. 2). Максимум достигается при

$$\mathbf{a}^* = \max_i x_i.$$

Рис. 2. Функция правдоподобия

Проанализируем эту оценку. Ее функция распределения:

$$F_{a^*}(y) = P\{a^* = \max_{i} \xi_i < y\} = \prod_{i=1}^n P\{\xi_i < y\} = \left[F_{\xi}(y)\right]^n = \begin{cases} 0, & y < 0, \\ (y/a)^n, & y \in [0, a] \\ 1, & y > a. \end{cases}$$

Плотность распределения:

$$p_{a^*}(y) = [F_{a^*}(y)] = \frac{n}{a} (y/a)^{n-1}, y \in [0,a],$$
 иначе 0.

Математическое ожидание:

$$\mathsf{Ma}^* = \int_0^a y p_{a^*}(y) dy = \int_0^a y \frac{n}{a} (y/a)^{n-1} dy = a n \int_0^a (y/a)^n d(y/a) = \frac{n}{n+1} a \neq a,$$

т.е. оценка смещенная.

Оценку легко исправить, т.е. сделать несмещенной, умножив ее на $\frac{n+1}{n}$, в результате чего получим оценку

$$\hat{a} = \frac{n+1}{n} \max x_i.$$

Она уже несмещенная. Ее второй момент

$$M\hat{a}^{2} = \left(\frac{n+1}{n}\right)^{2} \left(\max x_{i}\right)^{2} = \left(\frac{n+1}{n}\right)^{2} \int_{0}^{a} y^{2} \frac{n}{a} (y/a)^{n-1} dy = a^{2} \left(\frac{n+1}{n}\right)^{2} n \int_{0}^{a} (y/a)^{n+1} d(y/a)$$

$$= a^{2} \left(\frac{n+1}{n}\right)^{2} \frac{n}{n+2}$$

Дисперсия

$$D\hat{a} = M\hat{a}^2 - (M\hat{a})^2 = a^2 \left(\frac{n+1}{n}\right)^2 \frac{n}{n+2} - a^2 = \frac{a^2}{n(n+2)}$$

Из вышесказанного видно, что дисперсия убывает быстрее, чем 1/n, что противоречит неравенству (14) раздела 3.2. Однако, в этом примере условия неравенства Рао-Крамера не выполняются, а именно, условие 1 о независимости носителья вероятности от параметра. Дисперсия может убывать быстрее, и это пример сверхэффективной оценки.

Свойства оценок максимального правдоподобия.

Пусть $\xi = (\xi_1, \xi_2...\xi_n)$ — выборка объема n из совокупности, распределенной с плотностью q(x;a), и выражение

$$p(x_1, x_2 ... x_n; a) = \prod_{i=1}^n q(x_i; a)$$
 (7)

является плотностью распределения выборки.

При некоторых весьма широких условиях (см. ниже) оценки максимального правдоподобия:

- состоятельны;
- <mark>— асимптотически эффективны;</mark>
- <mark>— асимптотически нормальны.</mark>

Для одномерного случая:

$$Ma* \to a$$
, $Da* \to \left\{ nM \left[\frac{\partial \ln q(\xi_i; a)}{\partial a} \right]^2 \right\}^{-1} = \left\{ nI(a) \right\}^{-1}$ при $n \to \infty$. (8)

Условия, при которых вышеприведенные свойства верны, совпадают с условиями неравенства Рао-Крамера:

- a) независимость от параметра *а* множества *X* = {*x: q(x/a) ≠* 0}носителя вер-ти;
- б) существование производных $\frac{\partial q}{\partial a}$ и $\frac{\partial^2 q}{\partial a^2}$;
- в) существование интеграла $\operatorname{M}\!\left[rac{\partial \ln q(\xi;a)}{\partial a}
 ight]^2.$

Доказательство справедливости этих свойств можно найти, например, в [5]. Примем на веру состоятельность и покажем, как возникает асимптотическая эффективность и асимптотическая нормальность.

Рассмотрим случайную функцию от а

$$S_n(a,\xi) = \frac{1}{n} \sum_{i=1}^n \frac{\partial \ln q_{\xi}(\xi_i;a)}{\partial a}.$$
 (9)

Учитывая (4a) $\left. \frac{\partial \ln p_{\xi}(x;a)}{\partial a_i} \right|_{a=a^*} = 0$ определение МП-оценки

$$u(7) p(x_1, x_2 ... x_n; a) = \prod_{i=1}^n q(x_i; a)$$
 (7)

ясно, что оценка a^* является корнем этой случайной функции от параметра a

$$S_n(a^*,\xi) = 0.$$

Пусть a_0 — истинное значение параметра. Рассмотрим $S_n(a,\xi)$ - случайную величину в точке истинного значения параметра $a=a_0$. Учитывая состоятельность,

$$\tau.e. a^* \rightarrow a_0$$

и гладкость функции $S_n(a,\xi)$, по теореме Лагранжа имеем:

$$S_{n}(a_{0},\xi) = S_{n}(a^{*},\xi) + (a_{0} - a^{*}) S'_{n}(\alpha,\xi),$$
(10)

где a — промежуточная точка между a_0 и a^* , причем $a \to a_0$.

В силу предыдущего уравнения, справа первое слагаемое равно 0. Умножим это соотношение на \sqrt{n} :

$$\sqrt{n} S_n(\mathbf{a}_0, \xi) = \sqrt{n} (\mathbf{a}_0 - \mathbf{a}^*) S'_n(\alpha, \xi), \tag{11}$$

Слева имеем случайную величину

$$\zeta = \sqrt{n} S_n(a_0,\xi),$$

которая, учитывая суммирование случайных величин в (9), асимптотически нормальна $N(0, I(a_0))$ с параметрами: М.О.

$$\mathsf{M}\zeta = \sqrt{n}\,\mathsf{M}S_n(a_0,\xi) = \left.\sqrt{n}\int_X \frac{\partial \ln q_\xi(x;a)}{\partial a}\right|_{a=a_0} q_\xi(x;a_0)dx = 0.$$

При вычислении интеграла учтено, что

$$\int_{X} \frac{1}{q_{\xi}(x;a)} \frac{\partial q_{\xi}(x;a)}{\partial a} \bigg|_{a=a_{0}} q_{\xi}(x;a_{0}) dx = \frac{\partial}{\partial a} \int_{X} q_{\xi}(x;a) dx \bigg|_{a=a_{0}} = 0.$$

Что касается дисперсии, то она равна информации Фишера в одном наблюдении в точке *a*₀: действительно

$$\mathsf{D}\zeta = \frac{n \cdot n}{n^2} D \frac{\partial \ln q_{\xi}(\xi_i; a)}{\partial a} \bigg|_{a=a_0} = \mathsf{M} \left[\frac{\partial \ln q_{\xi}(\xi_i; a)}{\partial a} \bigg|_{a=a_0} \right]^2 = \mathsf{I}(a_0).$$

Теперь определим параметры случайной величины $S'_n(\alpha,\xi)$ в правой части (11) при $n \to \infty$ с учетом того, что $\alpha \to a_0$:

$$\mathsf{MS'}_n(\alpha,\xi) = \int_X \frac{\partial^2 \ln q_\xi(x;a)}{\partial a^2} \bigg|_{a=\alpha} q_\xi(x;a_0) dx \to -I(a_0),$$

$$\mathsf{DS'}_n(\alpha,\xi) = \frac{1}{n} D \frac{\partial^2 \ln q_\xi(\xi;a)}{\partial a^2} \bigg|_{a=\alpha} \to 0.$$

Это означает, что $S'_n(\bar{a},\xi)$ сходится к константе $I(a_0)$. Из (11) в пределе получаем

$$\zeta = -\sqrt{n} (a_0 - a^*) I(a_0),$$

что означает, выразив a^* через ζ :

$$\mathbf{a}^* = \mathbf{a}_0 + \frac{\zeta}{\sqrt{n}I(a_0)}.$$

Из этого следует, что оценка a^* асимптотически нормальна, а дисперсия $\{nl(a_0)\}^{-1}$. Это значение совпадает с границей Рао-Крамера. Замечания.

1. Эффективная оценка, если она существует, является оценкой максимального правдоподобия.

Действительно, если φ(x) — эффективная оценка для параметра а, то по лемме из раздела 3.3 имеем

$$\frac{\partial \ln p(x;a)}{\partial a} = I(a)[\varphi(x) - a],$$

откуда, приравнивая производную к нулю, получаем $a^* = \varphi(x)$.

2. Оценка максимального правдоподобия является функцией достаточной статистики, если последняя существует.

Действительно, если T(x) — достаточная статистика, то в силу критерия факторизации в разделе 4.2 справедливо представление p(x;a) = g(T(x), a)h(x),

и потому

$$\max_{a} p(x;a) = h(x) \cdot \max_{a} g(T(x), a),$$

откуда экстремальная точка $a^* = a^*[(T(x))]$.

5.3. Метод порядковых статистик.

В статистике широко используется система числовых характеристик, называемых *квантилями*.

Значение х $_{p}$ случайной величины ξ называется **p-квантилью**, если

$$P\{\xi < x_p\} = p,$$

где x_{ρ} — это корень уравнения $F_{\xi}(x_{\rho}) = p$

(рис. 3).

Примеры р-квантили:

х_{0,5} — медиана — характеристика среднего значения случайной величины;
 х_{0,98} — максимальное, в некотором смысле, значение случайной величины,

T.K. $P\{\xi < x_{0.98}\} = 0.98;$

 $x_{0,02}$ — минимальное, в некотором смысле, значение случайной величины,

т.к. $P\{\xi \ge x_p\} = 1 - P\{\xi < x_p\} = \frac{1-p}{p}$

 $x_{3/4}$ и $x_{1/4}$ — верхняя и нижняя квартили; их разность $(x_{0,75} - x_{0,25})$ — межквартильная широта — служит характеристикой разброса. Рис. 3. Графическая иллюстрация квантили x_p

Оценка p-квантилей. Неизвестные p-квантили легко оцениваются по выборке. Действительно, пусть $x_1, x_2...x_n$ — результаты n независимых наблюдений над случайной величиной ξ с функцией распределения F(x). Упорядочив их по возрастанию, получаем вариационный ряд

$$X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$$
.

Чтобы подчеркнуть случайность ряда, запишем его греческими символами

$$\xi_{(1)} \le \xi_{(2)} \le \dots \le \xi_{(n)}.$$

Член вариационного ряда $\xi_{(i)}$ с номером i (заметим, что это случайная величина) называется i-й порядковой статистикой. По вариационному ряду построим функцию $F_n^*(x) \equiv F_n^*(x;\xi_{(1)} \leq \xi_{(2)} \leq ... \leq \xi_{(n)})$ эмпирического распределения, и, согласно общему принципу о том, что выборочные характеристики являются состоятельными оценками характеристик распределения генеральной совокупности, рассмотрим в качестве оценки для p-квантили x_p выборочную квантиль ζ_p , т.е. корень уравнения

$$F_n^*(\zeta_n) = \rho. (8)$$

Поскольку $F_n^*(x)$ — функция кусочно-постоянная, то корнем является одна из порядковых статистик

$$\zeta_p = \xi_{([np]+1)},\tag{9}$$

с номером [*np*]+1, т.е. целая часть числа *np* плюс 1(рис. 4).

Нетрудно показать, что ζ_p является состоятельной оценкой для x_p . Кроме того, известна **теорема Крамера**, которая гласит, что для непрерывных распределений с плотностью q(x) оценка ζ_p

нормальна

параметрами:

Рис. 4. Графическая иллюстрация выборочной квантили

$$M\zeta_p = x_p, \quad D\zeta_p = \frac{1}{n} \frac{p(1-p)}{q^2(x_p)}.$$
 (10)

асимптотически

Метод оценки параметров основан на оценках ζ_p при разных p. Пусть ξ_1 , $\xi_2...\xi_n$ — выборка с функцией распределения F(x;a), зависящей от параметра a, значение которого требуется оценить. Выберем p так, чтобы квантиль x_p зависела от параметра:

$$x_p = f(a)$$
.

Выразим параметр a через квантиль x_p :

$$a = g(x_p),$$

и вместо x_p подставим выборочную квантиль $\zeta_p = \xi_{([np]+1)}$, в результате чего получим состоятельную оценку

$$\hat{a} = g(\xi_{([np]+1)}).$$

Таким же образом можно построить оценки и для неодномерного параметра.

Основное и очень важное преимущество оценок, основанных на порядковых статистиках, — их устойчивость к засорению наблюдений и к изменениям закона распределения.

Примеры оценок параметров нормального распределения. Пусть $\xi_1, \, \xi_2...\xi_n$ — выборка из нормальной совокупности $N(m, \, \sigma^2)$.

1) Оценка среднего т. Известно или нет значение с — безразлично. В силу симметрии нормального распределения параметр т является медианой, т.е. квантилью уровня ½, и потому может быть оценен выборочной медианой:

$$\hat{m} = \zeta_{1/2} = \xi_{([n/2]+1)}$$

Можно сравнить по точности эту оценку с эффективной оценкой

$$\hat{m} = \sum_{i=1}^{n} \xi_i / n$$

с дисперсией $D\hat{m}^* = \sigma^2/n$.

Согласно n (10), теореме Крамера, $D\hat{m} \approx \frac{1}{n} \cdot \frac{0.5(1-0.5)}{(2\pi\sigma^2)^{-1}} = \frac{\sigma^2}{n} \cdot \frac{\pi}{2}$

т.е. очень простая и устойчивая к засорению оценка \hat{m} уступает по точности оценке \hat{m}^* в $\sqrt{\pi/2} \approx 1,25$ раза, т.е. 25 %.

2) Оценка стандартного уклонения о.

Легко проверить, что верхняя и нижняя квартили равны соответственно $x_{3/4} = m + 0.675\sigma$ и $x_{1/4} = m - 0.675\sigma$, т.к.

$$P\{\xi < m+0.675\sigma\} = 3/4, P\{\xi < m-0.675\sigma\} = 1/4$$

И потому

$$\sigma = (x_{3/4} - x_{1/4}) / 1,35,$$

и потому оценивать σ можно следующим образом:

$$\hat{\sigma} = \frac{\zeta_{3/4} - \zeta_{1/4}}{1,35} = \frac{\xi_{([3n/4]+1)} - \xi_{([n/4]+1)}}{1,35} .$$

3) Оценка стандартного уклонения σ по размаху.

Пусть $\xi_{(1)}$ и $\xi_{(n)}$ — минимальный и максимальный член выборки, разность которых называется размахом w:

$$W = \xi_{(n)} - \xi_{(1)}$$
.

Ясно, что $Mw = c(n)\sigma$, и потому оценкой для σ может служить

$$\hat{\sigma} = w/c(n) = k(n)w$$

где k(n) берем из статистических таблиц [4]. Ниже приведены значения коэффициента k(n) и коэффициента эффективности

$$eff = \frac{\sigma_0^2}{D\hat{\sigma}}$$
, где σ_0^2 — нижняя граница Рао-Крамера,

а также потеря точности

$$(1-\sqrt{eff})\cdot 100$$
,

измеряемая в процентах, по сравнению с нижней границей Рао-Крамера.

Табл. 1. Значение коэффициентов *k* и *n*

n	2	5	10
k(n)	0,866	0,430	0,325
eff	1,000	0,955	0,855
потеря точности, (1 – \sqrt{eff})100, %	0	2,5	7

Для устойчивости оценки к засорению используют подразмахи w_m порядка m, где m=1, 2, 3...:

$$W_m = \xi_{(n-m+1)} - \xi_{(m)}$$

так что оценка имеет вид:

$$\hat{\sigma} = k_m(n) \ w_m$$
.

Значение коэффициента $k_m(n)$ берется из таблиц.

4) Распределение порядковых статистик. При анализе оценок, получаемых рассматриваемым методом, необходимо знать

распределения порядковых статистик. Если распределение одного наблюдения ξ непрерывно с плотностью p(x) = F'(x), то плотность распределения для k-й порядковой статистики ξ (k) выражается следующей формулой:

$$p_{\xi_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} F^{k-1}(x) [1 - F(x)]^{n-k} p(x),$$

которая получается вычислением вероятности события

$$p_{\xi_{(k)}}(x)\Delta x = P\left\{\xi_{(k)} \in (x - \Delta x, x)\right\},\,$$

означающего, что при n-кратном испытании случайной величины ξ событие $\{\xi < x - \Delta x\}$, вероятность которого $F(x - \Delta x)$, появится (k-1) раз, событие $\{\xi \ge x\}$, вероятность которого (1 - F(x)), появится (n-k) раз, и событие $\{\xi \in (x - \Delta x, x)\}$, вероятность которого $p(x)\Delta x$, появится 1 раз.