

ALGORITMOS

- Procedimento passo a passo para resolver um problema
- Pessoas tem inteligência e habilidade racional => fazem perguntas para se esclarecer.
- Computador não tem senso próprio => deve receber instruções explícitas (algoritmos)

ALGORITMOS

- Um <u>algoritmo</u> <u>correto</u> deve possuir 3 qualidades:
- 1- Cada passo do algoritmo deve ser uma instrução que possa ser realizada
- 2- A ordem dos passos deve ser precisamente determinada
- 3- O algoritmo deve ter fim

Estruturas de Algoritmos - Apresentação ALGORITMO PARA TROCAR PNEU DE UM CARRO

Estruturas de Algoritmos - Apresentação ALGORITMO PARA TROCAR PNEU DE UM CARRO

Estruturas de Algoritmos - Apresentação

ALGORITMO PARA TROCAR PNEU DE UM CARRO

1

Estruturas de Algoritmos - Apresentação

ALGORITMO PARA TROCAR PNEU DE UM CARRO

Estrutura de Algoritmos

■ Em uma estrutura <u>seqüencial</u>, os passos são tomados em uma seqüência <u>pré-definida</u>.

3

Estrutura de Algoritmos

 Uma estrutura condicional permite a escolha do grupo de ações a ser executado quando determinada condição é ou não satisfeita.

Estrutura de Algoritmos

Uma estrutura de repetição permite que uma seqüência de comandos seja executada repetidamente até que uma determinada condição de interrupção seja satisfeita.

10

Apresentação das Estruturas de Algoritmos (Outra Notação)

ALGORITMO PARA TROCAR PNEU DE UM CARRO

<u>Início</u> Trocar Pneu <u>Fim</u>

E se o estepe estiver <u>vazio</u>? Isto traz necessidade de uma <u>decisão</u> entre dois <u>cursos</u>

ESTRUTURA CONDICIONAL

Início
se <0 estepe está vazio> então
chamar borracheiro
senão
mudar o pneu
fim se
Fim

12

ESTRUTURA CONDICIONAL

Início se <o estepe está vazio> então chamar borracheiro A atividade de mudar o pneu pode ser mais detalhada fim se Fim

ESTRUTURA SEQUENCIAL

```
Início
se <o estepe está vazio> então
chamar borracheiro
senão
levantar o carro
desparafusar a roda
remover a roda
colocar o estepe
parafusar a roda
abaixar o carro
fim se
Fim
```

ESTRUTURA SEQUENCIAL

```
Início
se <0 estepe está vazio> então
chamar borracheiro
senão

A atividade de desparafusar a roda
pode ser mais detalhada
colocar o estepe
A atividade de parafusar a roda pode
ser mais detalhada
fim se
Fim
```

ESTRUTURA SEQUENCIAL

```
se <o estepe está vazio> então
    chamar borracheiro
  senão
    levantar o carro
    desparafusar o 1º parafuso
    desparafusar o 2º parafuso
    desparafusar o 3º parafuso
    desparafusar o 4º parafuso
    remover a roda
    colocar o estepe
    parafusar o 1º parafuso
parafusar o 2º parafuso
    parafusar o 3º parafuso
    parafusar o 4º parafuso
    abaixar o carro
  fim se
Fim
```

ESTRUTURA SEQUENCIAL

```
Início
se <0 estepe está vazio> então
chamar borracheiro
senão
levantar o carro
desparafusar o 1º parafuso

A repetição é inconveniente
desparafusar o 4º parafuso
remover a roda
colocar o estepe
parafusar o 1º parafuso
A repetição é inconveniente

parafusar o 4º parafuso
abaixar o carro
fim se
Fim
```

<u>ESTRUTURA DE REPE</u>TIÇÃO se <o estepe está vazio> então chamar borracheiro <u>senã</u>o levantar o carro enquanto <houver parafuso para desapertar> faça desparafusar a roda fim enquanto remover a roda colocar o estepe enquanto houver parafuso para apertar faça parafusar a roda fim do enquanto abaixar o carro fim se **Fim**

Desenvolvimento do Algoritmo

Começamos com uma afirmação genérica da <u>solução do problema</u> e prosseguimos até o algoritmo final, aumentando <u>sistematicamente</u> o nível de detalhamento.

Desenvolvimento do Algoritmo

Como saber se já temos um nível suficiente de detalhes no algoritmo?

- Isso depende do <u>agente</u> que irá executar o algoritmo
- Os computadores têm um conjunto muito <u>limitado</u> de instruções e o algoritmo deve ser expresso nos termos dessas instruções.

20

METODOLOGIA DE DESENVOL -VIMENTO DE ALGORITMOS

- Passo 1: <u>ler</u> cuidadosamente a especificação do <u>problema</u> até o final.
- Passo 2: se depois de <u>ler várias vezes</u>, ainda não entender o problema, pergunte ao professor <u>até entender</u>.
- Passo 3: levantar e analisar todas as <u>saídas</u> exigidas na especificação do problema.
- Passo 4: levantar e analisar todas as <u>entradas</u> citadas na especificação do problema.

METODOLOGIA DE DESENVOL -VIMENTO DE ALGORITMOS

- Passo 5: verificar se é necessário gerar <u>valores</u>
 <u>internamente ao</u> algoritmo e levantar as
 variáveis necessárias e os valores iniciais
 de cada uma (comentar)
- Passo 6: levantar e analisar todas as <u>transforma-</u>
 <u>cões</u> necessárias para, dadas as entradas
 e valores gerados internamente, produzir
 as saídas especificadas (comentar)

21 22

METODOLOGIA DE DESENVOL -VIMENTO DE ALGORITMOS

Passo 7: <u>testar</u> cada passo do algoritmo, verificando se as transformações intermediárias executadas estão conduzindo aos objetivos desejados. Utilizar, sempre que possível, valores de teste que permitam prever os resultados.

Passo 8: fazer uma <u>reavaliação geral</u>, elaborando o algoritmo através da integração das partes.

23