The *simplified circuit* can be easily identified as the *three-legged creature*, and using the *ZVTC technique*:

$$R_C^0 = R' + R'' + G_{m2}R'R'' = 1.27 G\Omega$$

Now, to get an estimate of the *DPF* f_d, we assume that the *open-loop gain* is exactly 100 dB, and the *first pole* of the *uncompensated op-amp* is *exactly 1 MHz*

$$\Rightarrow$$
 f_d = 10 Hz

Also, $f_d = \omega_d/(2\pi)$, with $\omega_d = 1/\tau$, and $\tau = R_C^0 C_C$

> Thus:

$$C_{\rm C} = \tau / R_{\rm C}^0 = 12.5 \text{ pF}$$

- ➤ Note that with this *compensation scheme*, the *open-loop bandwidth* of the *compensated op-amp* drops all the way down to *10 Hz*, from *1 MHz*
- ➤ However, this is not really a *limitation*, since the *open-loop gain* is *so high*, that even with *negative feedback*, *sufficiently high values of gain can be achieved*

\succ Unity-Gain Bandwidth (f_T) :

- Product of the dominant pole frequency and the open-loop gain
- This is also the *bandwidth* of the system when the *gain is unity* (hence the name!)
- Also known as the gain-bandwidth product (GBP)
- It is *1 MHz* for this case
- Note that under *DPC*, it's also the *first pole* of uncompensated system
- With negative feedback, the GBP remains constant \Rightarrow As gain \checkmark , bandwidth \uparrow , and vice-versa

A_{v0}: Midband Gain, ω_d : Compensated Bandwidth, ω_T : Unity-Gain Bandwidth N₁ and ω_1 , N₂ and ω_2 : Amount of Feedback and Corresponding Bandwidth A₁, A₂: Gain With Feedback N₁, N₂ $A_{v0}\omega_d = A_1\omega_1 = A_2\omega_2 = \omega_T$

• Protection Circuits:

- $ightharpoonup Q_{15}$ -R₆: *Overload protection circuit* for Q_{14}
- ➤ Similar to that discussed in the chapter on Output Stages
- R₆ senses the current being sourced by Q₁₄ to load
- When the *drop* across R_6 *approaches* V_{γ} of Q_{15} , it starts to *bypass* the *base current* of Q_{14}
 - ⇒ The current does not increase indefinitely
- \triangleright Protection scheme of Q_{20} is slightly different

- For the *previous case* of Q_{14} , the *load current* was *flowing out* of the circuit
- \succ However, for Q_{20} , the *load current* is *flowing* into the circuit
- Thus, the circuit should be *protected* by *limiting* the amount of this *current*
- \triangleright Here, R₇ senses the current being sunk by Q₂₀
- As soon as the *drop* across R_7 *approaches* V_{γ} of Q_{21} , it *turns on* and starts to *bypass* the *current* through Q_{20}

- ► Values of R_6 and R_7 are slightly different to account for the difference in V_{γ} for npn and pnp BJTs
- \succ Initially, this *shunted current* starts to *flow* through the *unnumbered* 50 kΩ resistor to $-V_{CC}$
- When the *drop* across this 50 k Ω resistor *approaches* V_{γ} of Q_{24} , it starts to *turn on*, which makes Q_{22} to *turn on* too (note that Q_{22} and Q_{24} form a *mirror*)
- Now, the *collector* of Q_{22} is *connected* to the *base* of Q_{16}

- Thus, Q₁₆ starts to *lose* its *base drive*, since a *part of it* is *shunted away* by Q₂₂
- ➤ Hence, Q₁₆ conducts less, and produces a chain reaction, which limits the current sinking capability of the output stage
- > Thus, the *circuit gets protected*
- \triangleright Now, about the *role played by Q*_{23B}
- > *Note*: $V_{B16} = V_{E23B}$, and $V_{C17} = V_{B23B}$

$$\Rightarrow$$
 V_{EB23B} = V_{B16} - V_{C17}

$$ightharpoonup$$
 Also, $V_{C17} = V_{B17} + V_{CB17}$

 \triangleright Noting that $V_{B17} = V_{E16}$:

$$V_{EB23B} = V_{B16} - V_{E16} - V_{CB17} = V_{BE16} - V_{CB17}$$

- \triangleright Under *normal operating condition*, $V_{BE16} \sim 0.7 \text{ V}$
- ➤ If Q_{17} also is in the *FA mode*, which is the *desired mode of operation*, then the *CB junction* of Q_{17} will be *reverse biased*
 - \Rightarrow V_{CB17} is *positive*
 - \Rightarrow V_{EB23B} < V_{BE16}, and Q_{23B} would *remain off*
- Now, if for any reason whatsoever, Q_{17} moves towards saturation, then V_{CB17} would decrease