

Comparison of Results on the 2010 CEC Benchmark Function Set

presented by

P. N. Suganthan

Associate Professor School of Electrical and Electronics Engineering Nanyang Technological university, Singapore. Email: epnsugan@ntu.edu.sg

July 2010

Evaluation Criteria

- **Problems**: 10D and 30D versions of 18 scalable minimization problems with constraints
- Minimize f(X), $X = (x_1, x_2, ..., x_D)$ and $X \in S$
- Subject to $g_i(X) \le 0$, i = 1,..., p $h_j(X) = 0$, j = p + 1,..., m
- Equality constraints are transformed into inequalities of the form $|h_j(X)| \varepsilon \le 0$, for j = p+1,...,m
- In this special session ε is set to 0.0001
- Reference:

R. Mallipeddi, P. N. Suganthan, "Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real-Parameter Optimization", *Technical Report*, Nanyang Technological University, Singapore, 2010

Evaluation Criteria – Problem Properties

D 11 /0 1 D	T. COL: C	Number of	Feasibility Region (ρ)		
Problem/Search Range	Type of Objective	E	I	10D	30D
C01 $[0,10]^D$	Non Separable	0	2 Non Separable	0.997689	1.000000
C02 [-5.12,5.12] ^D	Separable	1 Separable	2 Separable	0.000000	0.000000
C03 [-1000,1000] ^D	Non Separable	1 Non Separable	0	0.000000	0.000000
C04 [-50,50] ^D	Separable	4 2 Non Separable, 2 Separable	0	0.000000	0.000000
C05 [-600,600] ^D	Separable	2 Separable	0	0.000000	0.000000
C06 [-600,600] ^D	Separable	2 Rotated	0	0.000000	0.000000
C07 [-140,140] ^D	Non Separable	0	1 Separable	0.505123	0.503725
C08 [-140,140] ^D	Non Separable	0	1 Rotated	0.379512	0.375278
C09 [-500500] ^D	Non Separable	1 Separable	0	0.000000	0.000000

Evaluation Criteria- Problem Properties

D 11 /C 1 D	T COL: (Number o	Feasibility Region (ρ)		
Problem/Search Range	Type of Objective	E	I	10D	30D
C10	Non Separable	1	0	0.000000	0.000000
[-500,500] ^D	rvon separable	Rotated	V	0.00000	0.000000
C11	Rotated	1	0	0.000000	0.000000
$[-100,100]^D$	Kotated	Non Separable	U	0.000000	0.000000
C12	C	1	1	0.000000	0.000000
$[-1000, 1000]^D$	Separable	Non Separable	Separable	0.000000	0.000000
C13	0 11	0	3	0.000000	0.000000
$[-500,500]^D$	Separable	0	2 Separable, 1 Non Separable	0.000000	
C14	N G 11	0	3	0.002112	0.006123
$[-1000, 1000]^D$	Non Separable	0	Separable	0.003112	
C15	N G 11	^	3	0.002210	0.006022
$[-1000,1000]^D$	Non Separable	0	Rotated	0.003210	0.006023
C16		2	2		
$[-10,10]^D$	Non Separable	Separable	1 Separable, 1 Non Separable	0.000000	0.000000
C17	N C 11	1	2	0.000000	0.000000
$[-10,10]^D$	Non Separable	Separable	Non Separable	0.000000	0.000000
C18		1	1		0.000000
[-50,50] ^D	Non Separable	Separable	Separable	0.000010	0.000000

Evaluation Criteria

- D is the number of decision variables
- $\rho = |F|/|S|$ is the estimated ratio between the feasible region and the search space
- *I* is the number of inequality constraints
- E is the number of equality constraints
- Runs/problem: 25
- Max FES: 200000 for 10D and 600000 for 30D
- Feasible Run: A run during which at least one feasible solution is found within Max FES.
- Feasible Rate = (# of feasible runs) / Total runs.
- The above quantity is computed for each problem separately.

Evaluation Criteria

- Ranking is given to each algorithm on every problem based on the following criteria
- 1. Algorithms giving 100% feasibility rate are ranked based on mean value of the 25 runs
- 2. Algorithms having feasibility rate in the range >0% <100% are ranked based on feasibility rate.
- 3. Algorithms with 0% feasibility rate are ranked based on overall violation (normalized).
- Finally we add all the ranks of a particular algorithm over all problems to get the total rank
- Average Rank = Total rank/36

Algorithms

- jDEsoco Janez Brest, et al (An Improved Self-adaptive Differential ...)
- DE-VPS M. Fatih Tasgetiren, eta al (An Ensemble of Differential ...)
- RGA Amit Saha, et al (Hybrid Gradient Projection Genetic ...)
- E-ABC Efren Mezura Montes, et al (Elitist Artificial Bee Colony...)
- εDEg Tetsuyuki Takahama & Setsuko Sakai (Constrained ...)
- DCDE Zhihui Li, et al (Differential Evolution with Dynamic ...)
- Co-CLPSO J. J. Liang, et al (Coevolutionary Comprehensive Learning ...)
- CDEb6e6rl Josef Tvrdik & Radka Polakova (Competitive Differential ...)
- sp-MODE Gilberto Reynoso-Meza et al (Multiobjective optimization ...)
- MTS Lin-Yu Tseng and Chun Chen (Multiple Trajectory Search ...)
- IEMA Hemanth Kumar Singh, et al (Performance of Infeasibility ...)
- ECHT R. Mallipeddi & P. N. Suganthan (Differential Evolution NATIONAL PROPERTY NATIONAL PROPERTY

Algorithms' Parameters

Algorithm	Parameters
jDEsoco	$NP, p_0, \tau_1, \tau_2, F_l, F_u, \theta, \beta, c_p, \alpha_1, \alpha_2, G_c$
DE-VPS	NP, CR, F, NFT $_0$, λ , θ , t_c , c_p
RGA	$N, p_c, \eta_c, p_m, \eta_m$
E-ABC	SN, S, ε , MR, dec, FEs ratio, cycle limit, Step size variation
εDEg	$N, F_0, CR_0, T_c, \theta, P_g, R_g, M$
DCDE	NP, F, CR, P, L, L_FEs
Co-CLPSO	w, c, V _{max} , ps, R, L, L_FES, T, P _c
CDEb6e6rl	NP , n_0 , δ
sp-MODE	$F, Cr, N_s(k) , P(0) , \alpha_{\varepsilon}$
MTS	SSS, Threshold, M ₁ , M ₂
IEMA	N, Crossover Probability, Crossover Index, Mutation Probability, Mutation Index, α
ECHT	$NP, CR, F, p_f, \theta, T_c, c_p$

Algorithms' Comparison (10D)

Alg/Prob	C01	C02	C03	C04	C05	C06	C07	C08	C09
jDEsoco	6	12	8	1	9	4	1	2	3
DE-VPS	10	6	10	8	5	9	9	10	5
RGA	8	8	12	7	10	10	10	4	6
E-ABC	9	7	11	10	7	7	11	11	8
εDEg	1	5	1	4	1	1	1	8	1
DCDE	11	4	1	9	1	1	7	9	4
Co-CLPSO	7	3	5	6	1	1	8	1	7
CDEb6e6rl	4	9	6	1	11	11	1	7	11
sp-MODE	1	11	9	12	12	12	1	6	12
MTS	12	10	7	11	6	6	12	12	9
IEMA	5	1	4	5	8	8	5	5	10
ECHT	1	2	1	1	4	5	6	3	2

Algorithms' Comparison (10D)

Alg/Prob	C10	C11	C12	C13	C14	C15	C16	C17	C18
jDEsoco	4	3	4	3	4	7	8	9	9
DE-VPS	5	7	9	5	5	4	1	6	1
RGA	6	8	10	6	7	6	9	7	7
E-ABC	9	11	4	7	11	10	6	8	8
εDEg	1	1	1	1	1	2	7	4	1
DCDE	3	5	8	11	2	1	5	2	5
Co-CLPSO	7	10	3	8	3	3	2	5	6
CDEb6e6rl	11	6	2	1	10	12	11	11	11
sp-MODE	12	12	12	12	9	8	12	12	12
MTS	8	9	11	10	12	11	10	10	10
IEMA	10	2	4	4	6	5	3	1	1
ECHT	2	4	4	9	8	9	4	3	1

Algorithms' Comparison (30D)

Alg/Prob	C01	C02	C03	C04	C05	C06	C07	C08	C09
jDEsoco	5	8	3	3	8	2	1	6	2
DE-VPS	11	6	7	7	4	7	6	9	8
RGA	7	7	11	6	5	8	11	12	7
E-ABC	8	9	10	9	6	6	12	8	9
εDEg	2	3	2	4	1	1	3	2	3
DCDE	10	2	1	8	9	9	5	3	12
Co-CLPSO	9	1	9	5	2	3	8	7	6
CDEb6e6rl	1	10	5	2	11	10	1	1	1
sp-MODE	3	11	8	12	12	12	10	10	11
MTS	12	12	6	10	7	5	7	11	10
IEMA	4	5	12	11	10	11	4	4	5
ECHT	6	4	4	1	3	4	9	5	4

Algorithms' Comparison (30D)

A.L. /DL.	C40	C44	040	040	C4.4	CAE	040	047	C40
Alg/Prob	C10	C11	C12	C13	C14	C15	C16	C17	C18
jDEsoco	2	3	1	1	4	6	7	9	9
DE-VPS	6	7	9	9	5	4	6	5	4
RGA	7	6	6	8	9	7	9	8	6
E-ABC	10	9	7	5	7	9	8	7	8
εDEg	3	2	10	4	1	2	1	6	7
DCDE	1	5	2	7	3	1	5	4	3
Co-CLPSO	8	10	3	10	5	3	1	3	5
CDEb6e6rl	12	1	8	3	10	11	10	12	11
sp-MODE	11	12	12	12	12	10	12	10	10
MTS	9	8	4	11	11	12	11	11	12
IEMA	5	11	11	2	2	5	4	1	1
ECHT	4	4	5	6	8	8	1	2	1

Comparison of Algorithms

Algorithm	Ranking					
	10D	30D	Overall	Average		
jDEsoco	97	80	177	4.92		
DE-VPS	115	120	235	6.53		
RGA	141	140	281	7.81		
E-ABC	155	147	302	8.39		
εDEg	42	57	99	2.75		
DCDE	89	90	179	4.97		
Co-CLPSO	86	98	184	5.11		
CDEb6e6rl	136	120	256	7.11		
sp-MODE	177	190	367	10.19		
MTS	176	169	345	9.58		
IEMA	87	108	195	5.42		
ECHT	69	79	148	4.11		

Final Rank

Rank	Algorithm
1 st	εDEg
2 nd	ECHT
3 rd	jDEsoco
4 th	DCDE
5 th	Co-CLPSO
6 th	IEMA
7 th	DE-VPS
8 th	CDEb6e6rl
9 th	RGA
10 th	E-ABC
11 th	MTS
12 th	sp-MODE

