Features

- Primitive features, e.g.:
 - weight, length, width, height, volume ...
 - variance, moments, eigenvalues, ...
 - amplitude, frequency, phase, duration, roll-off, flux ...
 - beats per minute, temperature, pressure,...
 - edges, corners, lines, curvature, ...
 - mean RGB colour, colour histogram, ...
- Semantic features, e.g.:
 - colour layout (red, cyan, magenta,...)
 - texture descriptors (coarse, fine, rough, smooth,...)
 - shape descriptors (rectangular, circular, elliptical,...)
 - kind of day (warm, cold, sunny, rainy, ...)
- Statistical features...
- Complex features...

Example: Image Categorization

Quick Review: Features

- Features describe characteristics of our data.
- The combination of d features is represented as a d-dimensional column vector called a feature vector.

• The d-dimensional space defined by the feature vector is called the *feature space*. x_2

 ${f x}$ is a point in feature space ${f X}$

Example: 3D feature space X

Feature Properties

what makes a good feature vector?

good features, also linearly-separable features

bad features

features

nonlinearly-separable features

multimodal features

Dimensionality Reduction

- Strive for compact representation of the *properties* of data.
- This compact representation removes redundancy/irrelevancy.
- The choice of features is very important as it influences:
 - accuracy of classification
 - time needed for classification
- no. of learning examples
- difficulty in performing classification

Feature Selection and Feature Extraction:

- to generate a set of descriptors or characteristic attributes from data
- to allow representation of data in a reduced dimension

Selection or Extraction?

Two general approaches to dimensionality reduction:

- Feature Selection: Selecting a subset of the existing features without a transformation
- Feature Extraction: Transforming the existing features into a lower dimensional space

Implementing Feature Selection

Feature Selection is necessary in a number of situations,

e.g. there may be too many features or may be too expensive to obtain.

Given a feature set $\{x_i\}$, i=1,...,N, find a subset \mathbf{X} of size d with d < N, that optimizes an objective function $J(\mathbf{X})$, e.g. P(correct classification). This function would have to be evaluated many times:

e.g. for 10 features out of 25 one would have to consider 3,268,760 feature sets.

 $\frac{N!}{(N-d)!d!}$

 Feature Selection involves a search strategy that may explore the space of all possible combinations of features.

Heuristic Feature Selection Methods

- Best single features under the feature independence assumption: choose by significance tests.
- bottom-up: build up d features incrementally, starting with an empty set → step-wise feature selection:
 - The best single-feature is picked first
 - Then next best feature conditioned to the first, ...
- top-down: start with full set of features and remove redundant ones successively → step-wise feature elimination

Feature Extraction

- Linear or non-linear transformation of the original variables to a lower dimensional feature space → also known as feature selection in the transformed space.
- Given a feature space R^N with feature vectors \mathbf{m} find a mapping $\mathbf{x} = \mathbf{\Phi}(\mathbf{m})$: $R^N \to R^d$, d < N such that the transformed feature vector $\mathbf{x} = \{x_i\} \in R^d$ preserves (most of) the information or structure in R^N .
- Ideally, we want distinguishing features that are invariant to operations on the input data:

Example: how would a robot recognise an object given there might be translation, rotation, scaling, projective distortion, deformation, etc.

Spatial Filtering

We can filter signals and symbols in the spatial/time domain:

- introduce some form of enhancement
 - remove noise/outliers
 - smoothing/averaging out detail
 - sharpening/highlighting detail
- prepare for next stage of processing
 - feature extraction

Filters are also referred to as *kernels* or *masks*.

Spatial Filtering

Many spatial filters are implemented with *convolution* masks.

To do convolution we need to know about *neighbourhoods*.

Convolution mask is applied to each signal sample and its neighbourhood.

<u>2D signal data</u>

3	2	4	4	2	6
3	4	5	4	3	6
4	2	4	4	3	3
3	2	4	4	2	6
3	2	4	5	2	6

Response g(x)

Convolution Filter/Kernel h(x)

COMS21202 - SPS

16

Convolution Filter/Kernel h(x)

Convolution Filter/Kernel h(x)

Convolution Filter/Kernel h(x)

Convolution Filter/Kernel h(x)

Response g(x)

Convolution Filter/Kernel h(x)

f(x)

Filter

g(x)

Convolution Filter/Kernel h(x)

COMS21202 - SPS

22

Convolution

- \bullet f is the signal, h is the convolution filter
 - -h has an origin: e.g. $\frac{1}{4}$ 1 2 1
 - Normalization factor, e.g. $\frac{1}{4}$, is also part of the filter!
- The discrete version of convolution is defined as:

$$g(x) = \sum_{m=-s}^{s} f(x-m)h(m)$$
 e.g. $s = 1,2,..., n$

2D Convolution

The discrete version of 2D convolution is defined as

$$g(x, y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x-m, y-n)h(m, n)$$

Shorthandform:

f(x+1, y+1)h(-1,-1)
+ f(x+1, y)h(-1,0)
+ f(x+1, y-1)h(-1,1)
+ f(x, y+1)h(0,-1)
+ f(x, y)h(0,0)
+ f(x, y-1)h(0,1)
+ f(x-1, y+1)h(1,-1)
+ f(x-1, y)h(1,0)
+ f(x-1, y-1)h(1,1)

2D Correlation

The discrete version of 2D correlation is defined as

$$g(x, y) = \sum_{m=-1}^{1} \sum_{n=-1}^{1} f(x+m, y+n)h(m, n)$$

Correlation=Convolution when kernel is symmetric under 180° rotation, e.g.

1 2 1

Spatial Low/High Pass Filtering

- 1D: turning the treble/bass knob down on audio equipment!
- 2D: smooth/sharpen image

1 9	1	1	1
	1	1	1
	1	1	1

	-1	-1	-1
1	-1	8	-1
16	-1	-1	-1

Spatial/Frequency Domain Filtering

Convolution Theorem:

Convolution in spatial domain is equivalent to multiplication in frequency domain (and vice versa)

$$g = f * h$$
 implies $G = FH$

$$g = fh$$
 implies $G = F * H$

Example: Edge Features

- Edges occur in images where there is discontinuity (or change) in the intensity function.
- Biggest change

 derivative has maximum magnitude.
- Gradient points in the direction of most rapid change in intensity

Small set of example edges:

Edge Measures

Edge direction

$$\phi = \theta - \frac{\pi}{2}$$

Edge magnitude

$$\left\|\nabla f\right\| = \sqrt{\left[\frac{\partial f}{\partial x}\right]^2 + \left[\frac{\partial f}{\partial y}\right]^2}$$

gradient direction

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$

$$\nabla f = \left[0, \frac{\partial f}{\partial y} \right]$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Sobel Edge Detector

- 2D gradient measurement in two different directions.
- Uses these 3x3 convolution masks:

Matlab: Sobel Edge Detection

```
% Sobel edge detection
A = imread('house.gif');
fx = [-1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1]
fy = [1 \ 2 \ 1; 0 \ 0 \ 0; -1 \ -2 \ -1]
gx = conv2(double(A), double(fx))/8;
gy = conv2(double(A), double(fy))/8;
mag = sqrt((gx).^2+(gy).^2);
ang = atan(gy./gx);
figure; imagesc(mag); axis off; colormap gray
figure; imagesc(ang); axis off; colormap gray
```

Histogram of Edge Gradients

Power Spectrum Features

 Primary metric in the frequency domain is *power*, i.e. the square of the magnitude.

Example:

- Texture exhibits peaks in the power spectrum (especially if it is periodic or directional).
- Common to extract features by measuring the power in specific regions of the spectrum.

power

$$\sum_{u} \sum_{v} |F(u,v)|^2$$

Spectral Features from Spectral Regions

• Fourier space, with origin at z=(u=0,v=0).

$$a \le u \le b$$
$$c \le v \le d$$

box

$$-r_b \le u \le r_b$$

$$\pm \sqrt{r_a^2 - u^2} \le v \le \pm \sqrt{r_b^2 - u^2}$$

ring

$$u^2 + v^2 = r^2$$

$$\theta_1 \le \tan^{-1} \frac{v}{u} \le \theta_2$$
sector

Sum the power for $u, v \in \Re$

Fourier Assignment

- Now on Blackboard
- Submission due

April 29th (end of Week 23)

"Well, here we go again. ... Did anyone here not eat his or her homework on the way to school?"