Первый курс, осенний семестр 2016/17 Конспект лекций по алгоритмам

Собрано 6 июня 2017 г. в 11:22

Содержание

1. Разбор теста	1
1.1. Разбор основных задач	1
1.2. Разбор дополнительных задач	2
2. Асимптотика	2
$2.1.~\mathcal{O}$ -обозначния	3
2.2. Рекуррентности и Карацуба	4
2.3. Теоремы о рекуррентных соотношениях	5
3. Асимптотика	6
3.1. Рекуррентности: окончание	6
3.2. Числа Фибоначчи	6
$3.3.~\mathcal{O}$ -обозначения через пределы	6
3.4. Суммы и интегралы	7
3.5. Примеры	7
3.6. Сравнение асимптотик	8
4. Структуры данных	9
4.1. C++	10
4.2. Неасимптотические оптимизации	11
4.3. Частичные суммы	12
4.4. Массив	12
4.5. Двусвязный список	12
4.6. Односвязный список	13
4.7. Список на массиве	13
4.8. Вектор (расширяющийся массив)	14
4.9. Стек, очередь, дек	
4.10. Очередь и стек с минимумом	
5. Структуры данных	16
5.1. Разбор арифметических выражений	16
5.2. Амортизационный анализ	
5.3. Бинпоиск	
5.3.1. Обыкновенный	
5.3.2. По предикату	
5.3.3. Вещественный, корни многочлена	
5.4. Два указателя и операции над множествами	

	5.5. Хеш-таблица	20
	5.5.1. На списках	20
	5.5.2. С открытой адресацией	20
	5.5.3. C++	21
6	Структуры данных	22
υ.		22 22
	1	22
		$\frac{22}{22}$
		$\frac{22}{22}$
		23
		$\frac{23}{24}$
	1	24 24
		$\frac{24}{25}$
	ı v	$\frac{25}{25}$
	, 1	
	·	26
		26
		26
		27
	6.4. Решение задачи по пройденным темам	27
7.	Пополняемые структуры	28
		28
		28
		28
		28
		29
		29
O		ഹ
٥.	1 1	29
	8.1. Квадратичные сортировки	
	8.2. Оценка снизу на время сортировки	
		32
		32
		32
	• • • • • • • • • • • • • • • • • • • •	33
	8.3.4. Сравнение сортировок	33
9.	Сортировки (продолжение)	34
		34
		34
	·	34
		35
		36
		36
	·	36
	9.3.3. С++	
		91

9.4.	nteger sorting
	9.4.1. Count sort
	9.4.2. Radix sort
	9.4.3. Bucket sort
10. Ky	
	Kirkpatrick'84 sort
10.2.	Van Embde Boas'75 trees
10.3.	Min-Max Heap (Atkison'86)
10.4.	Leftist Heap (Clark'72)
10.5.	Skew Heap (Tarjan'86)
	Списко-куча
11. Ky	
	Нижняя оценка на построение бинарной кучи
11.2.	Биномиальная куча (Vuillemin'78)
	11.2.1. Основные понятия
	11.2.2. Операции с биномиальной кучей
	11.2.3. Add и Merge за $\mathcal{O}(1)$
11.3.	Куча Фибоначчи (Fredman, Tarjan'84)
	11.3.1. Фибоначчиевы деревья
	11.3.2. Завершение доказательства
10 T	
	намическое программирование
12.1.	Базовые понятия
	12.1.1. Условие задачи
	12.1.2. Динамика назад
	12.1.3. Динамика вперёд
	12.1.4. Ленивая динамика
12.2.	Ещё один пример
12.3.	Восстановление ответа
12.4.	Графовая интерпретация
	Checklist
12.6.	Рюкзак
	12.6.1. Формулировка задачи
	12.6.2. Решение динамикой
	12.6.3. Оптимизируем память
	12.6.4. Добавляем bitset
	12.6.5. Восстановление ответа с линейной памятью
19.7	Квадратичные динамики
	Оптимизация памяти для НОП
12.0.	
	12.8.1. Храним биты
	12.8.2. Алгоритм Хиршберга (по wiki)
	12.8.3. Оценка времени работы Хиршберга
	12.8.4. Алгоритм Хиршберга (улучшенный)
	12.8.5. Область применение идеи Хиршберга

13. Динамическое программирование	58
13.1. bitset	58
13.1.1. Рюкзак	58
13.2. НВП за $\mathcal{O}(n\log n)$	58
13.3. Задача про погрузку кораблей	59
13.3.1. Измельчение перехода	59
13.3.2. Использование пары, как функции динамики	60
13.4. Рекуррентные соотношения	60
13.4.1. Пути в графе	61
13.5. Задача о почтовых отделениях	61
13.6. Оптимизация Кнута	62
13.7. Оптимизация методом "разделяй и властвуй"	63
13.8. Стресс тестирование	63
14. Динамическое программирование	63
14.1. Динамика по подотрезкам	64
14.2. Комбинаторика	64
14.3. Работа с множествами	65
14.4. Динамика по подмножествам	66
14.5. Гамильтоновы путь и цикл	67
14.6. Вершинная покраска	67
14.7. Вершинная покраска: решение за $\mathcal{O}(3^n)$	68
15. Динамическое программирование	68
15.1. Вершинная покраска: решение за $\mathcal{O}(2.44^n)$	69
15.2. Set cover	70
15.3. Bit reverse	70
15.4. Meet in the middle	70
$15.4.1.$ Количество клик в графе за $\mathcal{O}(2^{n/2})$	70
$15.4.2$. Рюкзак за $\mathcal{O}(2^{n/2}n)$	71
15.5. Динамика по скошенному профилю	72
16. Графы и поиск в глубину	73
16.1. Опеределения	74
16.2. Хранение графа	74
16.3. Поиск в глубину	74
16.4. Топологическая сортировка	74
16.5. Компоненты сильной связности	74

Лекция #1: Разбор теста

2 сентября

1.1. Разбор основных задач

• Задача #1

- (a) $O(n^2)$ сортировка вставками, выбором, пузырьком
- (a) $O(n \log n)$ merge sort, quick sort, heap sort
- (b) O(n+m) сортировка подсчетом.

```
1 vector < int > cnt (M, 0); // М нулей
2 for (i = 0; i < n; i++) // O(n)
3 cnt [a[i]] += 1;
4 for (i = 0; i < m; i++) // O(m)
5 for (j = 0; j < cnt [i]; j++) // O(n) в сумме по всем і
6 print(i); // выводим cnt [i] раз число і
```

- (b) O(n), O(m) формально **не верно**, правильно O(n+m).
- (b) $O(n + n \log_n m)$ цифровая сортировка (radix sort, digital sort).
- (b) Дополнительные баллы всем, кто вспомнил про длинные числа.
- (c) MergeSort работает за $\Theta(n \log n)$ всегда.

• Задача #2

- (a) Дек, реализация на массиве, O(1).
- (b) $Maccub, \mathcal{O}(1)$. i = rand() % n; swap(a[i], a[n-1]); return a[--n];
- (c) Куча, $\mathcal{O}(\log n)$
- (d) Двусвязный список + массив, $\mathcal{O}(1)$

Node p[]; p[i] — позиция в списке элемента, добавленного в i-й момент времени

- (e) Хеш таблица, рандомизированное $\mathcal{O}(1)$
- (f) Куча, $\mathcal{O}(\log n)$ + хеш таблица
- Задача #3а

• Задача #36 . Решение, за $\mathcal{O}(\sqrt{n})$:

```
for (a = 1; a * a <= n; a++) {
  b = sqrt(n - a * a);
  res += (a * a + b * b == n);
4 }</pre>
```

Решение, за $\mathcal{O}(\sqrt{n})$ элементарных арифметических операций с целыми числами:

```
1 int m = sqrt(n / 2), b = sqrt(n);
2 for (int a = 1; a <= m; a++) {
3 while ((tmp = a * a + b * b) > n) --b; // 2(n/2)^{1/2} умножений
4 if (tmp == n) res += (a == b ? 1 : 2);
```

5 | }

• Задача #4а

Одна из возможных идей — предподсчет за $\mathcal{O}(n^2)$, можно положить все элементы матрицы в хеш-таблицу и за $\mathcal{O}(1)$ отвечать на поступающие запросы. Если предподсчет запрещен, то на один запрос можно отвечать за время $\mathcal{O}(n)$:

```
1    i = n - 1, j = 0;
2    while (i >= 0 && j < n) {
3        if (a[i][j] == x) return 1;
4        (a[i][j] < x) ? ++j : --i;
5    }</pre>
```

Заметим, что без предподсчета быстрее чем за $\mathcal{O}(n)$ на запрос не ответить, так как на побочной диагонали могут стоять произвольные числа.

• Задача #46

Существуют решения за $\mathcal{O}(n)$, это или алгоритм Манакера (аналог Z-функции), или построение дерева палиндромов. Оба алгоритма просты в реализации и встретятся в курсе позднее. Здесь описаны лишь более простые решения. Итак, решения за $\mathcal{O}(n^2)$ и $\mathcal{O}(n \log n)$:

- 1. У каждого палиндрома есть центр. Центр находится или в позиции i, или между позициями i и (i+1). Центр можно перебрать.
- 2. Решим задачу для фиксированного центра x. Если есть палиндром с центром в x и длиной L, то есть и палиндромы с центром в x и длинами $L-2, L-4, \ldots$ Поэтому достаточно найти максимальное L.
- 3. Поиск максимального L за линейное время: while (s[x+L] == s[x-L]) L++;
- 4. Поиск максимального L за $\mathcal{O}(\log n)$: бинарный поиск, а внутри сравнение подстрок за $\mathcal{O}(1)$ с помощью полиномиальных хешей.

1.2. Разбор дополнительных задач

• Задача #8а

Рассмотрим все числа, как двоичные строки и положим в бор (trie). Ближе к корню старший бит. В каждой вершине бора будем хранить размер поддерева. Теперь при XOR достаточно для каждого уровня бора поменять порядок детей, это работает за глубину.

Задача #86

Решение за 1.38^n . Рассмотрим произвольную вершину v, мы ее или возьмем в ответ, или не возьмем. Если возьмем, то мы не можем брать её соседей. Получаем рекурсивное решение, которое в первой ветке удаляет вершину v и запускается от оставшейся части графа (не берёт v в ответ), а во второй ветке удаляет вершину v и всех её соседей, после чего запускается от остатка (берёт v в ответ). Пусть в исходном графе n вершин, тогда время работы нашего решения T(n), можно оценить как T(n) = T(n-1) + T(n-d-1), где d— степень вершины v. Чем d больше, тем лучше. Осталось заметить, что если в графе присутствуют только вершины степени не более двух, то наш граф— набор путей и циклов, и максимальное независимое множество ищется на нем жадно. Получили $T(n) \leq T(n-1) + T(n-4) \Rightarrow T(n) = \mathcal{O}(1.38^n)$.

Лекция #2: Асимптотика

5 сентября

$2.1. \mathcal{O}$ -обозначния

Рассмотрим функции $f, g: \mathbb{N} \to \mathbb{R}^{>0}$.

Def 2.1.1.
$$f = \Theta(g)$$
 $\exists N > 0, C_1 > 0, C_2 > 0 : \forall n \ge N, C_1 \cdot g(n) \le f(n) \le C_2 \cdot g(n)$

Def 2.1.2.
$$f = \mathcal{O}(q)$$
 $\exists N > 0, C > 0 : \forall n > N, f(n) < C \cdot q(n)$

Def 2.1.3.
$$f = \Omega(g)$$
 $\exists N > 0, C > 0 : \forall n \ge N, f(n) \ge C \cdot g(n)$

Def 2.1.4.
$$f = o(g) \quad \forall C > 0 \exists N > 0 : \forall n \ge N, f(n) \le C \cdot g(n)$$

Def 2.1.5.
$$f = \omega(g)$$
 $\forall C > 0 \exists N > 0 : \forall n \geq N, f(n) \geq C \cdot g(n)$

Понимание Θ : "равны с точностью до константы", "асимптотически равны".

Понимание \mathcal{O} : "не больше с точностью до константы", "асимптотически не больше"

Понимание о: "асимптотически меньше", "для сколь угодно малой константы не больше"

Θ	0	Ω	0	ω
=	<u> </u>	\geq	<	>

Замечание 2.1.6. $f = \Theta(g) \Leftrightarrow g = \Theta(f)$

Замечание 2.1.7. $f = \mathcal{O}(g), g = \mathcal{O}(f) \Leftrightarrow f = \Theta(g)$

Замечание 2.1.8. $f = \Omega(g) \Leftrightarrow g = \mathcal{O}(f)$

Замечание 2.1.9. $f = \omega(g) \Leftrightarrow g = o(f)$

Замечание 2.1.10. $f = \mathcal{O}(g), g = \mathcal{O}(h) \Rightarrow f = \mathcal{O}(h)$

Замечание 2.1.11. Обобщение: $\forall \beta \in \{\mathcal{O}, o, \Theta, \Omega, \omega\} \colon f = \beta(g), g = \beta(h) \Rightarrow \boxed{f = \beta(h)}$

Замечание 2.1.12. $\forall C>0 \quad Cf=\Theta(f)$

Докажем для примера 2.1.6.

Доказательство.
$$C_1g(n) \leq f(n) \leq C_2g(n) \Rightarrow \frac{1}{C_2}f(n) \leq g(n) \leq \frac{1}{C_1}g(n) \leq f(n)$$

Упражнение 2.1.13. $f = \mathcal{O}(\Theta(\mathcal{O}(g))) \Rightarrow f = \mathcal{O}(g)$

Упражнение 2.1.14. $f = \Theta(o(\Theta(\mathcal{O}(g)))) \Rightarrow f = o(g)$

Упражнение 2.1.15. $f = \Omega(\omega(\Theta(g))) \Rightarrow f = \omega(g)$

Упражнение 2.1.16. $f = \Omega(\Theta(\mathcal{O}(g))) \Rightarrow f$ может быть любой функцией

<u>Lm</u> 2.1.17. $g = o(f) \Rightarrow f \pm g = \Theta(f)$

Доказательство.
$$g = o(f) \exists N : \forall n \ge N \ g(n) \le \frac{1}{2} f(n) \Rightarrow \frac{1}{2} f(n) \le f(n) \pm g(n) \le \frac{3}{2} f(n)$$

<u>Lm</u> 2.1.18. $n^k = o(n^{k+1})$

Доказательство.
$$\forall C \forall n \geq C \quad n^{k+1} \geq C \cdot n^k$$

<u>Lm</u> 2.1.19. $P(x) = \Theta(x^{\deg P})$ при положительном старшем коэффициенте.

Доказательство. $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$. По леммам 2.1.12, 2.1.18 имеем, что все слагаемые кроме $a_k x^k$ являются $o(x^k)$. Поэтому по лемме 2.1.17 вся сумма является $\Theta(x^k)$.

2.2. Рекуррентности и Карацуба

• Алгоритм умножения чисел в столбик

Рассмотрим два многочлена $A(x) = 5 + 4x + 3x^2 + 2x^3 + x^4$ и $B(x) = 9 + 8x + 7x^2 + 6x^3$. Запишем массивы a[] = {5, 4, 3, 2, 1}, b[] = {9, 8, 7, 6}.

```
1 for (i = 0; i < an; i++) // an = 5
2 for (j = 0; j < bn; j++) // bn = 4
3 c[i + j] += a[i] * b[j];</pre>
```

Мы получили в точности коэффициенты многочлена C(x) = A(x)B(x).

Теперь рассмотрим два числа A = 12345 и B = 6789, запишем те же массивы и сделаем:

```
// Перемножаем числа без переносов, как многочлены

for (i = 0; i < an; i++) // an = 5

for (j = 0; j < bn; j++) // bn = 4

c[i + j] += a[i] * b[j];

// Делаем переносы, массив c = [45, 76, 94, 100, 70, 40, 19, 6, 0]

for (i = 0; i < an + bn; i++)

if (c[i] >= 10)

c[i + 1] += c[i] / 10, c[i] %= 10;

// Массив c = [5, 0, 2, 0, 1, 8, 3, 8, 0], ответ = 83810205
```

Данное умножение работает за $\Theta(nm)$, или $\Theta(n^2)$ в случае n=m.

• Алгоритм Карацубы

Чтобы перемножить два десятичных числа A и B длины n, разделим их на части по $k = \frac{n}{2}$ цифр $-A_1, A_2, B_1, B_2$. Заметим, что $A \cdot B = (A_1 + 10^k A_2)(B_1 + 10^k B_2) = A_1 B_1 + 10^k (A_1 B_2 + A_2 B_1) + 10^{2k} A_2 B_2$. Если написать рекурсивную функцию умножения (числа длины 1 будем умножать за $\mathcal{O}(1)$), то получим время работы:

$$T_1(n) = 4T_1(\frac{n}{2}) + \Theta(n)$$

Из последующей теоремы мы сделаем вывод, что $T_1(n) = \Theta(n^2)$. Алгоритм можно улучшить, заметив, что $A_1B_2 + A_2B_1 = (A_1 + A_2)(B_1 + B_2) - A_1B_1 - A_2B_2$, где вычитаемые величины уже посчитаны. Итого три умножения вместо четырёх:

$$T_2(n) = 3T_2(\frac{n}{2}) + \Theta(n)$$

Из последующей теоремы мы сделаем вывод, что $T_2(n) = \Theta(n^{\log_2 3}) = \Theta(n^{1.585...})$.

Данный алгоритм применим и для умножения многочленов, и для умножения чисел.

Псевдокод алгоритма Карацубы для умножения многочленов:

```
// n = 2^k, c(w) = a(w)*b(w)
 2
   Mul(n, a, b) {
 3
     if n == 1: return {a[0] * b[0]}
     a \longrightarrow a1, a2
     b \longrightarrow b1, b2
     x = Mul(n / 2, a1, b1)
 6
     y = Mul(n / 2, a2, b2)
8
     z = Mul(n / 2, a1 + a2, b1 + b2)
9
     // Умножение на \mathbf{w}^i - сдвиг массива на і
10
     return x + y * w^n + (z - x - y) * w^{n/2};
11 }
```

Чтобы умножить числа, сперва умножим их как многочлены, затем сделаем переносы.

2.3. Теоремы о рекуррентных соотношениях

Теорема 2.3.1. *Мастер Теорема* (теорема о простом рекуррентном соотношении)

Пусть $T(n) = aT(\frac{n}{b}) + f(n)$, где $f(n) = n^c$. При этом $a > 0, b > 1, c \ge 0$. Определим глубину рекурсии $k = \log_b n$. Тогда верно одно из трёх:

$$\begin{cases} T(n) = \Theta(a^k) = \Theta(n^{\log_b a}) & a > b^c \\ T(n) = \Theta(f(n)) = \Theta(n^c) & a < b^c \\ T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \log n) & a = b^c \end{cases}$$

Доказательство. Раскроем рекуррентность:

$$T(n) = f(n) + aT(\frac{n}{b}) = f(n) + af(\frac{n}{b}) + a^2f(\frac{n}{b^2}) + \dots = n^c + a(\frac{n}{b})^c + a^2(\frac{n}{b^2})^c + \dots$$

 $T(n) = f(n) + aT(\frac{n}{b}) = f(n) + af(\frac{n}{b}) + a^2f(\frac{n}{b^2}) + \dots = n^c + a(\frac{n}{b})^c + a^2(\frac{n}{b^2})^c + \dots$ Тогда $T(n) = f(n)(1 + \frac{a}{b^c} + (\frac{a}{b^c})^2 + \dots + (\frac{a}{b^c})^k)$. При этом в сумме k+1 слагаемых. Обозначим $q = \frac{a}{b^c}$ и оценим сумму $S(q) = 1 + q + \dots + q^k$.

Если q = 1, то $S(q) = k + 1 = \log_b n + 1 = \Theta(\log_b n)$

Если
$$q < 1$$
, то $S(q) = \frac{1-q^{k+1}}{1-q} = \Theta(1)$

Если
$$q < 1$$
, то $S(q) = \frac{1-q^{k+1}}{1-q} = \Theta(1)$
Если $q > 1$, то $S(q) = q^k + \frac{q^k-1}{q-1} = \Theta(q^k)$

Теорема 2.3.2. Обобщение Мастер Теоремы

Mастер Теорема верна и для $f(n) = n^c \log^d n$

 $T(n) = aT(\frac{n}{h}) + n^c \log^d n$. При $a > 0, b > 1, c \ge 0, d \ge 0$.

$$\begin{cases}
T(n) = \Theta(a^k) = \Theta(n^{\log_b a}) & a > b^c \\
T(n) = \Theta(f(n)) = \Theta(n^c \log^d n) & a < b^c \\
T(n) = \Theta(k \cdot f(n)) = \Theta(n^c \log^{d+1} n) & a = b^c
\end{cases}$$

Без доказательства.

Теорема 2.3.3. Об экспоненциальном рекуррентном соотношении

 $\overline{\text{Пусть }T(n)} = \sum b_i T(n-a_i)$. При этом $a_i > 0, b_i > 0, \sum b_i > 1$.

Тогда $T(n) = \Theta(\alpha^n)$, при этом α , является корнем уравнения $1 = \sum b_i \alpha^{-a_i}$, его можно найти бинарным поиском.

Доказательство. Предположим, что $T(n) = \alpha^n$, тогда $\alpha^n = \sum b_i \alpha^{n-a_i} \Leftrightarrow 1 = \sum b_i \alpha^{-a_i} = f(\alpha)$. Теперь нам нужно решить уравнение $f(\alpha) = 1$ для $\alpha \in [1, +\infty)$.

Если $\alpha = 1$, то $f(\alpha) = \sum b_i > 1$, если $\alpha = +\infty$, то $f(\alpha) = 0 < 1$. Кроме того $f(\alpha) \setminus [1, +\infty)$. Получаем, что на $[1, +\infty)$ есть единственный корень уравнения $1 = f(\alpha)$ и его множно найти бинарным поиском.

Мы показали, откуда возникает уравнение $1 = \sum b_i \alpha^{-a_i}$. Доказали, что у него $\exists!$ корень α . Теперь докажем по индукции, что $T(n) = \mathcal{O}(\alpha^n)$ (оценку сверху) и $T(n) = \Omega(\alpha^n)$ (оценку снизу). Доказательства идентичны, покажем $T(n) = \mathcal{O}(\alpha^n)$.

База индукции $B = [1 - \max_i a_i, 1]$, она нам определит константу C, что $T(\mathbf{n}) \leq C\alpha^n$ для $n \in B$.

Переход индукции:
$$T(n) = \sum b_i T(n-a_i) \stackrel{\text{по инд.}}{\leq} C \sum b_i \alpha^{n-a_i} \stackrel{\alpha \text{ - корень ур-я.}}{=} C \alpha^n$$
.

Лекция #3: Асимптотика

7 сентября

3.1. Рекуррентности: окончание

Lm 3.1.1. Доказательство по индукции

Есть простой метод решения рекуррентных соотношений: угадать ответ, доказать его по индукции. Рассмотрим на примере $T(n) = \max_{x=1..n-1} \left(T(x) + T(n-x) + x(n-x) \right)$.

Докажем, что $T(n) = \mathcal{O}(n^2)$, для этого достаточно доказать $T(n) \leq n^2$:

База: $T(1) = 1 < 1^2$.

Переход:
$$T(n) \le \max_{x=1..n-1} (x^2 + (n-x)^2 + x(n-x)) \le \max_{x=1..n-1} (x^2 + (n-x)^2 + 2x(n-x)) = n^2$$

• Примеры по теме рекуррентные соотношения

- 1. T(n) = T(n-1) + T(n-1) + T(n-2). Угадаем ответ 2^n , проверим по индукции: $2^n = 2^{n-1} + 2^{n-1} + 2^{n-2}$.
- 2. $T(n) = T(n-3) + T(n-3) \Rightarrow T(n) = 2T(n-3) = 4T(n-6) = \dots = 2^{n/3}$
- 3. T(n) = T(n-1) + T(n-3). Применяем 2.3.3, получаем $1 = \alpha^{-1} + \alpha^{-3}$, решаем бинпоиском, $\alpha = 1.4655\dots$

3.2. Числа Фибоначчи

Def 3.2.1. $f_1 = f_0 = 1, f_i = f_{i-1} + f_{i-2}$. $f_n - n$ -е число Фибоначчи.

• Оценки снизу и сверху

 $f_n=f_{n-1}+f_{n-2}$, рассмотрим $g_n=g_{n-1}+g_{n-1}$, $2^n=g_n\geq f_n$. $f_n=f_{n-1}+f_{n-2}$, рассмотрим $g_n=g_{n-2}+g_{n-2}$, $2^{n/2}=g_n\leq f_n$. Воспользуемся 2.3.3, получим $1=\alpha^{-1}+\alpha^{-2}\Leftrightarrow \alpha^2-\alpha-1=0$, получаем $\alpha=\frac{\sqrt{5}+1}{2}, f_n=\Theta(\alpha^n)$.

3.3. О-обозначения через пределы

Def 3.3.1. f = o(g) Onpedenenue vepes npeden: $\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0$

Def 3.3.2. $f = \mathcal{O}(g)$ Определение через предел: $\overline{\lim_{n \to +\infty}} \frac{f(n)}{g(n)} < +\infty$

Здесь необходимо пояснение: $\overline{\lim_{n \to +\infty}} f(n) = \lim_{n \to +\infty} (\sup_{x \in [n..+\infty]} f(x))$, где \sup – верхняя грань.

Lm 3.3.3. Определения o эквивалентны

Доказательство. Вспомним, что речь о положительных функциях f и g. Распишем предел по определению: $\forall C>0 \quad \exists N \quad \forall n\geq N \quad \frac{f(n)}{g(n)}\leq C \Leftrightarrow f(n)\leq Cg(n)$.

3.4. Суммы и интегралы

Def 3.4.1. Определённый интеграл $\int_a^b f(x)dx$ положительной функции f(x) – площадь под графиком f на отрезке [a..b].

$$\underline{\mathbf{Lm}}$$
 3.4.2. $\forall f(x) \nearrow [a..a+1] \Rightarrow f(a) \leq \int_{a}^{a+1} f(x) dx \leq f(a+1)$

$$\underline{\mathbf{Lm}}$$
 3.4.3. $\forall f(x) \nearrow [a..b+1] \Rightarrow \sum_{i=a}^{b} f(i) \le \int_{a}^{b+1} f(x) dx$

Доказательство. Сложили неравенства из 3.4.2

Lm 3.4.4.
$$\forall f(x) \nearrow [a..b], f > 0 \Rightarrow \int_a^b f(x) dx \leq \sum_{i=a}^b f(i)$$

Доказательство. Сложили неравенства из 3.4.2, выкинули [a-1,a] из интеграла.

Lm 3.4.5.
$$\forall f(x) \nearrow [a..b+1] \int_{a}^{b+1} f(x)dx - \sum_{i=a}^{b} f(i) \le f(b+1) - f(a)$$

Теорема 3.4.6. Замена суммы на интеграл

$$\forall f(x) \nearrow [1..\infty), f > 0, S(n) = \sum_{i=1}^{n} f(i), I_1(n) = \int_{1}^{n} I_2(n) = \int_{1}^{n+1} I_1(n) = \Theta(I_2(n)) \Rightarrow S(n) = S(n) = S(n)$$

Доказательство. Из лемм 3.4.3 и 3.4.4 имеем
$$I_1(n) \leq S(n) \leq I_2(n)$$
. $C_1I_1(n) \leq I_2(n) \leq C_2I_1(n) \Rightarrow I_1(n) \leq S(n) \leq I_2(n) \leq C_2I_1(n)$

• Как считать интегралы?

Формула Ньютона-Лейбница: $\int_a^b f'(x)dx = f(b) - f(a)$

Пример:
$$\ln'(n) = \frac{1}{n} \Rightarrow \int_{1}^{n} \frac{1}{x} dx = \ln n - \ln 1 = \ln n$$

3.5. Примеры

• Вложенные циклы for

```
#define forn(i, n) for (int i = 0; i < n; i++)
int counter = 0, n = 100;
forn(i, n)
forn(j, i)
forn(k, j)
forn(l, k)
forn(m, l)
counter++;
cout << counter << endl;</pre>
```

Чему равен counter? Во-первых, есть точный ответ: $\binom{n}{5} \approx \frac{n^5}{5!}$. Во-вторых, мы можем сходу посчитать число циклов и оценить ответ как $\mathcal{O}(n^5)$, правда константа $\frac{1}{120}$ важна, оценка через \mathcal{O} не даёт полное представление о времени работы.

• За сколько вычисляется *n*-е число Фибоначчи?

```
1 f[0] = f[1] = 1;
2 for (int i = 2; i < n; i++)
3 f[i] = f[i - 1] + f[i - 2];</pre>
```

Казалось бы за $\mathcal{O}(n)$. Но это в предположении, что "+" выполняется за $\mathcal{O}(1)$. На самом деле мы знаем, что $\log f_n = \Theta(n)$, т.е. складывать нужно числа длины $n \Rightarrow$ "+" выполняется за $\Theta(i)$, а n-е число Фибоначчи считается за $\Theta(n^2)$.

• Число делителей числа

```
1 vector<int> divisors[n + 1]; // все делители числа
2 for (int a = 1; a <= n; a++)
3 for (int b = a; b <= n; b += a)
4 divisors[b].push_back(a);
```

За сколько работает программа?

$$\sum_{a=1}^{n} \left\lceil \frac{n}{a} \right\rceil = \mathcal{O}(n) + \sum_{a=1}^{n} \frac{n}{a} = \mathcal{O}(n) + n \sum_{a=1}^{n} \frac{1}{a} \stackrel{3.4.6}{=} \mathcal{O}(n) + n \cdot \Theta\left(\int_{1}^{n} \frac{1}{x} dx\right) = \Theta(n \log n)$$

• Сумма гармонического ряда

Докажем более простым способом, что $\sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$

$$1 + \lfloor \log_2 n \rfloor \ge \frac{1}{1} + \underbrace{\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}}_{1/2} + \underbrace{\frac{1}{8} + \dots} \ge \sum_{k=1}^{n} \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \dots \ge \frac{1}{1} + \underbrace{\frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \dots}_{1/2} \ge 1 + \underbrace{\frac{1}{2} \lfloor \log_2 n \rfloor}_{1/2} \Rightarrow \sum_{k=1}^{n} \frac{1}{k} = \Theta(\log n)$$

3.6. Сравнение асимптотик

Def 3.6.1. Линейная сложсность $\mathcal{O}(n)$

Def 3.6.2. *Квадратичная сложность* $\mathcal{O}(n^2)$

Def 3.6.3. Полиномиальная сложеность $\exists k > 0 : \mathcal{O}(n^k)$

Def 3.6.4. Π *onunorapuф*M $\exists k > 0 : \mathcal{O}(\log^k n)$

Def 3.6.5. Экспоненциальная сложность $\exists c > 0 : \mathcal{O}(2^{cn})$

Теорема 3.6.6. $\forall x, y > 0, z > 1 \ \exists N \ \forall n > N \colon \ \log^x n < n^y < z^n$

Доказательство. Сперва докажем первую часть неравенства через вторую.

Пусть $\log n = k$, тогда $\log^x n < n^y \Leftrightarrow k^x < 2^{ky} = (2^y)^k = z^k \Leftarrow n^y < z^n$

Докажем вторую часть исходного неравенства $n^y < z^n \Leftrightarrow n < 2^{\frac{1}{y}n \log z}$

Пусть $n' = \frac{1}{y} n \log z$, обозначим $C = 1/(\frac{1}{y} \log z)$, пусть $C \le n'$ (возьмём достаточно большое n), тогда $n^y < z^n \Leftrightarrow n < 2^{\frac{1}{y} n \log z} \Leftrightarrow C \cdot n' < 2^{n'} \Leftarrow (n')^2 < 2^{n'}$

Докажем по индукции:

если $n \to 2n: n^2 \to 4n^2: 2^n \to 2^n \cdot 2^n$ (т.е. одно увеличилось в 4 раза, второе в 2^n раз) База: для любого значения из интервала [10..20) верно т.к. [100..400) < [1024..1048576). Переход: $[10..20) \rightarrow [20..40) \rightarrow [40..80) \rightarrow ...$

Cnedembue 3.6.7. $\forall x, y > 0, z > 1$: $\log^x \mathbf{n} = \mathcal{O}(n^y), n^y = \mathcal{O}(z^n)$

Доказательство. Возьмём константу 1.

Следствие 3.6.8. $\forall x, y > 0, z > 1$: $\log^x \mathbf{n} = o(n^y), n^y = o(z^n)$

Доказательство. Достаточно перейти к чуть меньшим y, z и воспользоваться теоремой. $\exists N \, \forall n \geq N \, \log^x n < n^{y-\varepsilon} = \frac{1}{n^{\varepsilon}} n^y, \, \frac{1}{n^{\varepsilon}} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow \log^x = o(n^y).$ $\exists N \, \forall n \geq N \, n^y < (z-\varepsilon)^n = \frac{1}{z/(z-\varepsilon)^n} z^n, \, \frac{1}{z/(z-\varepsilon)^n} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow n^y = o(z^n).$

$$\exists N \,\forall n \ge N \, n^y < (z - \varepsilon)^n = \frac{1}{z/(z - \varepsilon)^n} z^n, \, \frac{1}{z/(z - \varepsilon)^n} \underset{n \to \infty}{\longrightarrow} 0 \Rightarrow n^y = o(z^n).$$

• Посмотрим как ведут себя функции на графике

Заметим, что $2^{n/2}$, n^2 и $\log^2 n$, \sqrt{n} на бесконечности ведут себя иначе:

Лекция #4: Структуры данных

14 сентября

4.1. C++

• Warnings

1. Сделайте, чтобы компилятор g++/clang отображал вам как можно больше warning-ов:

```
-Wall -Wextra -Wshadow
```

2. Пишите код, чтобы при компиляции не было warning-ов.

• Range check errors

Давайте рассмотрим стандартную багу: int a[3]; a[3] = 7;

В результате мы получаем undefined behavior. Код иногда падает по runtime error, иногда нет. Чтобы такого не было, во-первых, используйте вектора, во-вторых, включите debug-режим.

```
1 #define _GLIBCXX_DEBUG // должна быть до всех #include
vector<int> a(3);
a[3] = 7; // 100% Runtime Error!
```

Для пользователей linux есть более профессиональное решение: valgrind.

• Struct (структуры)

```
struct Point {
1
2
     int x, y;
3
  };
4
  Point p, q = \{2, 3\};
  p.x = 3;
6
   struct Point2 {
7
     int x, y;
8
     Point2( int x, int y ) {
9
       // конструктор, функция, вызываемая для создания нового объекта
10
11
12 | Point2 *p2 = new Point2(2, 3), q2(2, 3);
```

• Pointers (указатели)

Рассмотрим указатель int *a;

а – указатель на адрес в памяти (по сути целое число, номер ячейки).

*а – значение, которое лежит по адресу.

```
int b = 3;
int *a = &b; // сохранили адрес b в пременную а
int c[10];
a = c; // указатель на первый элемент массива
*a = 7; // теперь c[0] == 7
Point *p = new Point(); // выделили память под новый Point, указтель записали в р
(*p).x = 3; // записали значение в х
p->x = 3; // запись, эквивалентная предыдущей
```

4.2. Неасимптотические оптимизации

При написании программы, если хочется, чтобы она работала быстро, стоит обращать внимание не только на асимптотику, но и избегать использования некоторых операций, которые работают дольше, чем кажется.

- 1. Ввод и вывод данных. cin/cout, scanf/printf... Используйте буфферизированный ввод/вывод через fread/fwrite.
- 2. Операции библиотеки <math.h>: sqrt, cos, sin, atan и т.д. Эти операции раскладывают переданный аргумент в ряд, что происходит не за $\mathcal{O}(1)$.
- 3. Взятие числа по модулю, деление с остатком: a / b, a % b.
- 4. Доступ к памяти. Существует два способа прохода по массиву:
 Random access: for (i = 0; i < n; i++) sum += a[p[i]]; здесь p случайная перестановка
 Sequential access: for (i = 0; i < n; i++) sum += a[i];
- 5. Функции работы с памятью: new, delete. Тоже работают не за $\mathcal{O}(1)$.
- 6. Вызов функций. Пример, который при $n=10^7$ работает секунду и использует ≥ 320 mb.

```
1 void go( int n ) {
   if (n <= 0) return;
   go(n - 1); // компилируйте с -00, чтобы оптимизатор не раскрыл хвостовую рекурсию в цикл
   }
```

Для оптимизации можно использовать inline – указание оптимизатору, что функцию следует не вызывать, а попытаться вставить в код.

• История про кеш

В нашем распоряжении есть примерно такие объёмы

- 1. Жёсткий диск. Самая медленная память, 1 терабайт.
- 2. Оперативная память. Средняя, 8 гигабайта.
- 3. Keiii L3. Быстрая, 4 мегабайта.
- 4. Кеш L1. Сверхбыстрая, 32 килобайта.

Отсюда вывод. Если у нас есть два алгоритма $\langle T_1, M_1 \rangle$ и $\langle T_2, M_2 \rangle$: $T_1 = T_2 = \mathcal{O}(n^2)$; $M_1 = \mathcal{O}(n^2)$; $M_2 = \Theta(n)$, то второй алгоритм будет работать быстрее для больших значений n, так как у первого будут постоянные промахи мимо кеша.

И ещё один. Если у нас есть два алгоритма $\langle T_1, M_1 \rangle$ и $\langle T_2, M_2 \rangle$: $T_1 = T_2 = \Theta(2^n)$; $M_1 = \Theta(2^n)$; $M_2 = \Theta(n^2)$, То первый в принципе не будет работать при $n \approx 40$, ему не хватит памяти. Второй же при больших $n \approx 40$ неспешно, за несколько часов, но отработает.

• Быстрые операции

memcpy(a, b, n) (скопировать n байт памяти), strcmp(s, t) (сравить строки). Работают в 8 раз быстрее цикла for за счёт 128-битных SSE и 256-битных AVX регистров!

4.3. Частичные суммы

Дан массив a[] длины n, нужно отвечать на большое число запросов get(1, r) — посчитать сумму на отрезке [l, r] массива a[].

Наивное решение: на каждый запрос отвечать за $\Theta(r-l+1) = \mathcal{O}(n)$.

Префиксные или частичные суммы:

```
1 void precalc() { // предподсчёт за \mathcal{O}(n) sum [0] = 0;
3 for (int i = 0; i < n; i++) sum [i + 1] = sum [i] + a[i]; // [0..i]
4 }
5 int get( int 1, int r ) { // [l..r] return sum [r + 1] - sum [1]; // [0..r] - [0..l), \mathcal{O}(1)
7 }
```

4.4. Массив

Создать массив целых чисел на n элементов: int a[n];

Индексация начинается с 0, массивы имеют фиксированный размер. Функции:

- 1. get(i) a[i], обратиться к элементу массива с номером i, $\mathcal{O}(1)$
- 2. set(i,x) a[i] = x, присвоить элементу под номером i значение x, $\mathcal{O}(1)$
- 3. find(x) найти элемент со значением x, $\mathcal{O}(n)$
- 4. add_begin(x), add_end(x) добавить элемент в начало, в конец, $\mathcal{O}(n)$
- 5. $del_begin(x)$, $del_end(x)$ удалить элемент из начала, из конца, $\mathcal{O}(n)$

Последние команды работают долго т.к. нужно найти новый кусок памяти нужного размера, скопировать весь массив туда, удалить старый.

Другие названия для добавления: insert, append, push.

Другие названия для удаления: remove, erase, pop.

4.5. Двусвязный список

```
1 struct Node {
2 Node *prev, *next; // указатели на следующий и предыдущий элементы списка
3 int x;
4 };
5 struct List {
6 Node *head, *tail; // head, tail - фиктивные элементы
7 };
```

```
\begin{array}{lll} \texttt{get(i), set(i, x)} & \mathcal{O}(i) \\ \texttt{find(x)} & \mathcal{O}(n) \\ \texttt{add\_begin(x), add\_end(x)} & \Theta(1) \\ \texttt{del\_begin(), del\_end()} & \Theta(1) \\ \texttt{delete(Node*)} & \Theta(1) \end{array}
```

Указатель tail нужен, чтобы иметь возможность добавлять в конец, удалять из конца за $\mathcal{O}(1)$. Ссылки prev, чтобы ходить по списку в обратном направлении, удалять из середины за $\mathcal{O}(1)$.

```
Node *find( List 1, int x ) { // найти в списке за линию
2
     for (Node *p = 1->head->next; p != 1->tail; p = p->next)
3
       if (p->x == x)
                                                                  Single Linked List
4
         return p;
5
    return 0;
                                                                      <del></del>∤७│<del>ढ़</del>ः
6 }
7
  Node *erase( Node *v ) {
                                                          HEAD
                                                                   Double Linked List
    v->prev->next = v->next;
9
     v->next->prev = v->prev;
10 }
11 Node *push_back( List &1, Node *v ) {
    Node *p = new Node();
12
13
     p->x = x, p->prev = 1.tail->prev, p->next = 1.tail;
14
     p->prev->next = p, p->next->prev = p;
15 | }
16 void makeEmpty( List &l ) { // создать новый пустой список
17
    1->head = new Node(), 1->tail = new Node();
     1->head->next = 1->tail, 1->tail->prev = 1->head;
19 }
```

4.6. Односвязный список

```
struct Node {
 1
 2
     Node *next; // не храним ссылку назад, нельзя удалять из середины за O(1)
 3
     int x;
   };
 4
   // 0 - пустой список
6 | Node *head = 0; // не храним tail, нельзя добавлять в конец за O(1)
   void push_front(Node* &head, int x) {
8
     Node *p = new Node();
     p \rightarrow x = x, p \rightarrow next = head, head = p;
9
10 }
```

4.7. Список на массиве

```
vector < Node > a; // массив всех Node - ов списка
struct {
   int next, x;
};
int head = -1;
void push_front(int & head, int x) {
   a.push_back(Node {head, x});
   head = a.size() - 1;
}
```

Можно сделать свои указатели. У нас **next** – номер ячейки массива (указатель на ячейку массива).

4.8. Вектор (расширяющийся массив)

Обычный массив не удобен тем, что его размер фиксирован заранее и ограничен. Идея улучшения: выделим заранее size ячеек памяти, когда реальный размер массива n станет больше size, удвоим size, перевыделим память. Операции с вектором: get(i), set(i, x) $\mathcal{O}(1)$ (как и у массива)

```
find(x) O(1) (как и у массива) push_back(x) O(1) (в среднем) pop_back() O(1) (в худшем)
```

```
int size, n, *a;
  void push_back(int x) {
2
3
    if (n == size) {
      int *b = new int[2 * size];
4
5
      copy(a, a + size, b);
6
      a = b, size *= 2;
7
8
    a[n++] = x;
9
  void pop_back() { n--; }
```

Теорема 4.8.1. Среднее время работы одной операции $\mathcal{O}(1)$

Доказательство. Заметим, что перед удвоением размера $n \to 2n$ будет хотя бы $\frac{n}{2}$ операций push_back, значит среднее время работы последней всех push_back между двумя удвоениями, включая последнее удвоение $\mathcal{O}(1)$

4.9. Стек, очередь, дек

Это названия интерфейсов (множеств функций, доступных пользователю)

```
Стек (stack) push_back за \mathcal{O}(1), pop_back за \mathcal{O}(1). First In Last Out. 
Очередь (queue) push_back за \mathcal{O}(1), pop_front за \mathcal{O}(1). First In First Out. 
Дек (deque) все 4 операции добавления/удаления.
```

Реализовывать все три структуры можно, как на списке так и на векторе.

Деку нужен двусвязный список, очереди и стеку хватит односвязного.

Beктор у нас умеет удваиваться только при push_back. Что делать при push_front?

- 1. Можно удваиваться в другую сторону.
- 2. Можно использовать циклический вектор.

• Дек на циклическом векторе

```
deque: { vector<int>a; int start, end; }, данные хранятся в [start, end) sz(): { return a.size(); } n(): { return end - start + (start <= end ? 0 : sz()); } get(i): { return a[(i + start) % sz()]; } push_front(x): { start = (start - 1 + sz()) % sz(), a[start] = x; }
```

4.10. Очередь и стек с минимумом

В стеке можно поддерживать минимум. Для этого по сути нужно поддерживать два стека – стек данных и стек минимумов.

• Стек с минимумом – это два стека.

```
push(x): a.push(x), m.push(min(m.back(), x)
Здесь m — "частичные минимумы", стек минимумов.
```

• Очередь с минимумом через два стека

Чтобы поддерживать минимум на очереди проще всего представить е \ddot{e} , как два стека a и b.

```
Stack a, b;
void push(int x) { b.push(x); }
int pop() {
  if (a.empty()) // стек а закончился, пора перенести элементы b в а
  while (b.size())
  a.push(b.pop());
return a.pop();
}
int getMin() { return min(a.getMin(), b.getMin()); }
```

Лекция #5: Структуры данных

21 сентября

5.1. Разбор арифметических выражений

Разбор выражений с числами, скобками, операциями. Предположим, все операции левоассоциативны (вычисляются слева направо).

```
stack<int> value; // уже посчитанные значения
   stack < char > ор; // ещё не выполненные операции
3
   void make() { // выполнить правую операцию
    int b = value.top(); value.pop();
     int a = value.top(); value.pop();
5
6
     char o = op.top(); op.pop();
7
     value.push(a o b); // да, не скомпилится, но смысл такой
8
9
   int eval(string s) { // s без пробелов
10
     s = '(' + s + ')' // при выполнении последней ), выражение вычислится
11
     for (char c : s)
       if ('0' <= c && c <= '9') value.push(c - '0');</pre>
12
       else if (c == '(') op.push(c);
13
       else if (c == ')') {
14
         while (op.top() != '(') make();
15
16
         op.pop();
17
       } else {
18
         while (op.size() && priorioty(op.top()) >= priorioty(c)) make();
19
         op.push(c);
20
21
     return value.top();
22
  }
```

Теорема 5.1.1. Время разбора выражения s со стеком равно $\Theta(|s|)$

Доказательство. В функции eval число вызовов push не больше |s|. Операция make уменьшает размер стеков, поэтому число вызовов make не больше числа операций push в функции eval.

5.2. Амортизационный анализ

Пусть наша программа состоит из элементарных кусков (операций), i-й из которых работает t_i .

```
Def 5.2.1. t_i – real time (реальное время) m = \frac{\sum_i t_i}{n} – average time (среднее время) a_i = t_i + \Delta \varphi – amortized time (амортизированное время)
```

 $\Delta \varphi = \varphi_{new} - \varphi_{old}$ (изменение функции φ).

 a_i – время, амортизированное функцией φ . Можно рассматривать любую φ .

На самом деле нам интересно оценивать "время работы в среднем", то есть m.

Амортизационный анализ – язык, на котором можно доказывать такие утверждения.

• Пример: вектор.

Рассмотрим $\varphi = -size$ (размер вектора, взяли такой потенциал из головы).

- 1. Нет удвоения: $a_i = t_i + \Delta \varphi = 1 + 0 = \mathcal{O}(1)$
- 2. Есть удвоение: $a_i = t_i + \Delta \varphi = size + (\varphi_{new} \varphi_{old}) = size 2size + size = 0 = \mathcal{O}(1)$ Получили $a_i = \mathcal{O}(1)$, хочется сделать из этого вывод, что $m = \mathcal{O}(1)$

• Строгие рассуждения.

Lm 5.2.2.
$$\sum a_i = \sum t_i + (\varphi_{end} - \varphi_{start})$$

Доказательство. Сложили равенства $a_i = t_i + (\varphi_{i+1} - \varphi_i)$

Теорема 5.2.3.
$$a_i = \mathcal{O}(f) \Rightarrow m = \mathcal{O}(f + \left| \frac{\varphi_{end} - \varphi_{start}}{n} \right|)$$

 \mathcal{A} оказательство. В лемме a_i заменяем на $\mathcal{O}(f)$, делим равенство на n, заменяем $\frac{\sum_i t_i}{n}$ на m

• Пример: push, pop(k)

Пусть есть операции push за $\mathcal{O}(1)$ и pop(k) — достать сразу k элементов за $\Theta(k)$.

Докажем, что в среднем время любой операции $\mathcal{O}(1)$.

 $\varphi = size$

```
push: a_i = t_i + \Delta \varphi = 1 + 1 = \mathcal{O}(1)
pop: a_i = t_i + \Delta \varphi = k - k = \mathcal{O}(1)
```

Также заметим, что $0 \le \varphi \le n$, поэтому $|\varphi_{end} - \varphi_{start}| \le n$.

• Пример: $a^2 + b^2 = N$

```
int y = sqrt(n), cnt = 0;
for (int x = 0; x * x <= n; x++) {
   while (x * x + y * y > n) y--;
   if (x * x + y * y == n) cnt++;
}
```

Одной операцией назовём итерацию внешнего цикла for.

Рассмотрим сперва корректный потенциал $\varphi = y$.

$$a_i = t_i + \Delta \varphi = (y_{old} - y_{new} + 1) + (y_{new} - y_{old}) = \mathcal{O}(1)$$

Также заметим, что $0 \le \varphi \le \sqrt{n}$, поэтому $|\varphi_{end} - \varphi_{start}| \le \sqrt{n}$.

Теперь рассмотрим плохой потенциал $\overline{\varphi} = y^2$.

$$a_i = t_i + \Delta \overline{\varphi} = (y_{old} - y_{new} + 1) + (y_{new}^2 - y_{old}^2) = \mathcal{O}(1)$$

Но, при этом $\varphi_{start} = n, \varphi_{end} = 0$, поэтому нам по теореме не получится сделать вывод, что среднее время одной операции (итерации цикла for) равно $\mathcal{O}(1)$.

Теперь рассмотрим другой плохой потенциал $\tilde{\varphi}=0.$

$$a_i = t_i + \Delta \tilde{\varphi} = (y_{old} - y_{new} + 1) = \mathcal{O}(\sqrt{n})$$

• Монетки.

Докажем ещё одним способом, что вектор работает в среднем за $\mathcal{O}(1)$.

Когда мы делаем push_back без удвоения памяти, накопим 2 монетки.

Когда мы делаем push_back с удвоением $size \to 2size$, это занимает size времени, но мы можем заплатить за это, потратив size накопленных монеток. Число денег никогда не будет меньше нуля, так как до удвоения было хотя бы $\frac{size}{2}$ операций "push_back без удвоения".

Эта идея равносильна идее про потенциалы. Мы неявно определяем функцию φ через её $\Delta \varphi$. φ – количество накопленных и ещё не потраченных монеток. $\Delta \varphi$ = соответственно +2 и -size.

5.3. Бинпоиск

5.3.1. Обыкновенный

Дан отсортированный массив. Сортировать мы пока умеем только так: int a[n]; sort(a, a + n); vector<int> a(n); sort(a.begin(), a.end()); Сейчас мы научимся за $\mathcal{O}(\log n)$ искать в этом массиве элемент x

```
bool find( int 1, int r, int x ) { // [1,r]
2
    while (1 <= r) {
3
      int m = (1 + r) / 2;
4
      if (a[m] == x) return m;
5
      if (a[m] < x) 1 = m + 1;
6
      else r = m - 1;
7
8
    return 0;
9
  }
```

<u>Lm</u> **5.3.1.** Время работы $\mathcal{O}(\log n)$

Доказательство. Каждый раз мы уменьшаем длину отрезка [l,r] как минимум в 2 раза.

• lowerbound . Можно искать более сложную величину min $i: a_i \geq x$.

```
int lower_bound( int 1, int r, int x ) { // [1,r)
    while (1 < r) {
    int m = (1 + r) / 2;
    if (a[m] < x) 1 = m + 1;
    else r = m;
}
return 1;
}</pre>
```

Если все элементы [l,r) меньше x, lower_bound вернёт r. Время работы также $\mathcal{O}(\log n)$. Заметим, что этот бинпоиск строго сильнее, функцию find теперь можно реализовать так: return a[lower_bound(1, r, x)] == x;

В языке С++ есть стандартные функции

```
int i = lower_bound(a, a + n, x) - a; // min i: a[i] >= x
int i = upper_bound(a, a + n, x) - a; // min i: a[i] > x
```

Через них легко найти $[\max i : a_i \le x] = \text{upper_bound} - 1$ и $[\max i : a_i < x] = \text{lower_bound} - 1$.

5.3.2. По предикату

Можно написать ещё более общий бинпоиск, при этом сделать код более простым. Пусть есть функция булева функция (предикат) f, которая до некоторой позиции i имеет значение 0, а, начиная с i, имеет значение 1.

Тогда мы бинпоиском можем найти такие l+1=r, что f(l)=0, f(r)=1

```
void find_predicate( int &1, int &r ) { // f(1) = 0, f(r) = 1
while (r - 1 > 1) {
  int m = (1 + r) / 2;
```

```
4 (f(m) ? r : 1) = m;
5 }
6 }
```

Как это использовать для решении задачи lower_bound?

```
1 bool f( int i ) { return a[i] >= x; }
2 int l = -1, r = n;
3 find_predicate(l, r); // f() будет вызываться только для элементов от l+1 до r-1
4 return r; // f(r) = 1, f(r-1) = 0
```

5.3.3. Вещественный, корни многочлена

Дан многочлен P нечётной степени со старшим коэффициентом 1. У него есть вещественный корень и мы можем его найти бинарным поиском с любой наперёд заданной точностью ε .

Сперва нужно найти точки l, r: P(l) < 0, P(r) > 0.

```
1 for (1 = -1; P(1) >= 0; 1 *= 2);
2 for (r = +1; P(r) <= 0; r *= 2);
```

Теперь собственно поиск корня:

```
1 while (r - 1 > ε) {
2   double m = (1 + r) / 2;
3   (P(m) < 0 ? 1 : r) = m;
4 }</pre>
```

Внешний цикл может бысть бесконечным из-за погрешности.

Пример: $l = 10^9, r = 10^9 + 10^{-6}, \varepsilon = 10^{-9}$. Чтобы он точно завершился, посчитаем, сколько мы хотим итераций: $k = \log_2 \frac{r-l}{\varepsilon}$, и сделаем ровно k итераций: for (int i = 0; i < k; i++). Поиск всех вещественных корней многочелна степени n есть в разборе практики.

5.4. Два указателя и операции над множествами

Множества можно хранить в виде отсортированных массивов. Наличие элемента в множестве тогда можно проверять за $\mathcal{O}(\log n)$, а элементы перебирать за линейное время. Также за линейное время, зная A и B, методом "двух указателей" можно найти $A \cap B$, $A \cup B$, $A \setminus B$. Также можно искать объединение мультимножеств. В языке C++ это операции set_intersection, set_union, set_difference, merge. Все они имеют синтаксис k = merge(a, a+n, b, b+m, c)-c, где c - указатель на область результата, память выделить должны вы сами, а k - количество элементов в ответе. Пример применение "двух указателей" для поиска пересечения.

Bapuaнm #1, for:

```
1 B[|B|] = +∞; // барьерный элемент

2 for (int k = 0, j = 0, i = 0; i < |A|; i++) {

while (B[j] < A[i]) j++;

4 if (B[j] == A[i]) C[k++] = A[i];

5 }
```

Bapuaнт #2, while:

```
1 int i = 0, j = 0;
2 while (i < |A| && j < |B|)
3 if (A[i] == B[j]) C[k++] = A[i++], j++;
4 else (A[i] < B[j] ? i : j)++;</pre>
```

5.5. Хеш-таблица

Структура данных, умеющая делать операции add, del, find за рандомизированное $\mathcal{O}(1)$. Принципиально лучше вектора, который умеет делать find только за $\mathcal{O}(n)$.

5.5.1. На списках

```
l list<int> h[N]; // собственно хеш-таблица void add( int x ) { h[x % N].push_back(x); } // \mathcal{O}(1) в худшем auto find( int x ) { return find(h[x % N].begin(), h[x % N].end(), x); } // find paforaer за длину списка void erase( int x ) { h[x % N].erase(find(x)); } // работает за find + \mathcal{O}(1)
```

Bместо list можно использовать любую структуру данных, vector, или даже хеш-таблицу.

Если в хеш-таблице живёт n элементов и они равномерно распределены по спискам, в каждом списке $\frac{n}{N}$ элементов. Значит, если $n \leq N$ и при равномерном распределении элементов, все операции работают за $\mathcal{O}(1)$. Как сделать распределение равномерным? Подобрать хорошую хеш-функцию!

Замечание 5.5.1. Если N простое, то хеш-функция $\mathbf{x} \to \mathbf{x}$ % \mathbf{N} достаточно хорошая.

Без доказательства.

При росте n, оно станет больше N, в этот момент нужно перевыделить память $N \to 2N$, и все элементы передобавить на новое место. Амортизированное время удвоения $\mathcal{O}(1)$.

5.5.2. С открытой адресацией

Реализуется на одном циклическом массиве. Хеш-функция используется, чтобы получить начальное значение ячейки. Далее двигаемся вправо, пока не найдём ячейку, в которой живёт наш элемент или свободную ячейку, куда можно его поселить.

```
unsigned h[N]; // собственно хеш-таблица
int getIndex( unsigned x ) { // поиск индекса по элементу
int i = x % N; // используем хеш-функцию
while (h[i] && h[i] != x) // x != 0, ноль обозначает свободную ячейку
if (++i == N) // массив циклический
i = 0;
return i;
}
```

- 1. Добавление: h[getIndex(x)] = x;
- 2. Удаление: h[getIndex(x)] = -1;, нужно потребовать x != -1, ячейка не становится свободной.
- 3. Поиск: return h[getIndex(x)] != 0;

<u>Lm</u> 5.5.2. Если в хеш-таблице размера N занято αN ячеек, $\alpha < 1$, матожидание время работы getIndex не более $\frac{1}{1-\alpha}$.

Доказательство. Худший случай – х отсутствует в хеш-таблице. Без доказательства предположим, что свободные ячейки при хорошей хеш-функции расположены равномерно. Тогда на каждой итерации цикла while вероятность "не остановки" равна α . Вероятность того, что мы не остановимся и после k шагов равна α^k . Значит время работы равно $1+\alpha+\alpha^2+\alpha^3+\cdots=\frac{1}{1-\alpha}$. ■

• Переполнение хеш-таблицы

При слишком малом α операции с хеш-таблицей начинают работать долго. При $\alpha=0$ (нет свободных ячеек), getIndex будет бесконечно искать свободную. Что делать? При $\alpha<\frac{1}{3}$ удваивать размер и за линейное время передобавлять все элементы в новую таблицу. При копировании, конечно, пропустим все -1 (уже удалённые ячейки).

5.5.3. C++

unordered_set<int> h; – хеш-таблица, хранящая множество int-ов.

Использование:

```
1. unordered_set<int> h(N); выделить заранее память под N ячеек 2. h.count(x); проверить наличие x 3. h.insert(x); добавить x, если уже был, ничего не происходит удалить x, если его не было, ничего не происходит
```

unordered_map<int, int> h; - хеш-таблица, хранящая pair<int, int>, пары int-ов.

Использование:

```
1. unordered_map<int, int> h(N); выделить заранее память под N ячеек 2. h[i] = x; i-й ячейкой можно пользовать, как обычным массивом есть ли пара с первой половиной i (ключ i) 4. h.erase(i); удалить пару с первой половиной i (ключ i)
```

Также эта структура называется "ассоциативный массив". Каждому ключу i в соответствие ставится его значение h[i].

Лекция #6: Структуры данных

28 сентября

6.1. Избавляемся от амортизации

Серьёзный минус вектора – амортизированное время работы. Сейчас мы модифицируем структуру данных, она начнёт чуть дольше работать, использовать чуть больше памяти, но время одной операции в худшем будет $\mathcal{O}(1)$.

6.1.1. Вектор (решаем проблему, когда случится)

В тот push_back, когда старый вектор а переполнился, выделим память под новый вектор b, новый элемент положим в b, копировать а пока не будем. Сохраним pos = |a|. Инвариант: первые pos элементов лежат в a, все следующие в b. Каждый push_back будем копировать по одному элементу.

```
int *a, *b; // выделенные области памяти
   int pos; // разделитель скопированной и не скопированной частей
   int n, size; // количество элементов; выделенная память
   void push_back(int x) {
5
     if (pos > 0) b[pos] = a[pos], pos--;
6
     if (n == size) {
7
       delete [] a; // мы его уже скопировали, он больше не нужен
8
9
       n = size, size *= 2;
10
       pos = n, b = new int[size];
11
12
     b[n++] = x;
13 | }
```

Как мы знаем, **new** работает за $\mathcal{O}(\log n)$, это нас устроит.

Тем не менее в этом месте тоже можно получить $\mathcal{O}(1)$.

\underline{Lm} 6.1.1. K моменту n == size вектор а целиком скопирован в b.

Доказательство. У нас было как минимум n операций push_back, каждая уменьшала pos.

Операция обращения к i-му элементу обращается теперь к (i < pos ? a : b).

Время на копировани не увеличилось. Время обращения к *i*-му элементу чуть увеличилось (лишний **if**). Памяти в среднем теперь нужно в 1.5 раз больше, т.к. мы в каждый момент храним и старую, и новую версию вектора.

6.1.2. Вектор (решаем проблему заранее)

Сделаем так, чтобы время обращения к i-му элементу не изменилось.

Мы начнём копировать заранее, в момент size = 2n, когда вектор находится в нормальном состоянии. Нужно к моменту очередного переполнения получить копию вектора в память большего размера. За n push_back-ов должны успеть скопировать все size = 2n элементов. Поэтому будем копировать по 2 элемента. Когда в такой вектор мы записываем новые значения (a[i]=x), нам нужно записывать в обе версии – и старую, и новую.

6.1.3. Хеш-таблица

Хеш-таблица — ещё одна структура данных, которая при переполнении удваивается. К ней можно применить оба описанных подхода. Применим первый. Чтобы это сделать, достаточно научиться перебирать все элементы хеш-таблицы и добавлять их по одному в новую хеш-таблицу.

- (а) Можно кроме хеш-таблицы дополнительно хранить "список добавленных элементов".
- (б) Можно пользоваться тем, что число ячеек не более чем в два раза больше числа элементов, поэтому будем перебирать ячейки, а из них выбирать не пустые. Новые элементы, конечно, мы будет добавлять только в новую хеш-таблицу.

6.1.4. Очередь с минимумом через два стека

Напомним, что есть очередь с минимумом.

```
1 Stack a, b;
void push(int x) { b.push(x); }
int pop() {
if (a.empty()) // стек а закончился, пора перенести элементы b в а
while (b.size())
a.push(b.pop());
return a.pop();
}
```

Воспользуемся вторым подходом "решаем проблему заранее". К моменту, когда стек a опустеет, у нас должна быть уже готова перевёрнутая версия b. Вот общий шаблон кода.

```
Stack a, b, a1, b1;
 1
 2
   void push(int x) {
 3
     b1.push(x); // кидаем не в b, а в b1, копию b
 4
     STEP; // сделать несколько шагов копирования
5
 6
   int pop() {
 7
     if (копирование завершено)
8
       a = a1, b = b1, начать новое копирование;
9
     STEP; // сделать несколько шагов копирования
10
     return a.pop();
11 | }
```

Почему нам вообще нужно копировать внутри push? Если мы делаем сперва 10^6 push, затем 10^6 pop, к моменту всех этих pop у нас уже должен быть подготовлен длинный стек a. Если в течение push мы его не подготовили, его взять неоткуда.

При копировании мы хотим построить новый стек **a1** по старым **a** и **b** следующим образом (STEP сделает несколько шагов как раз этого кода):

```
while (b.size()) a1.push(b.pop());
for (int i = 0; i < a.size(); i++) a1.push(a[i]);</pre>
```

Заметим, что a.size() будет меняться при вызовах a.pop_back(). for проходит элементы a снизу вверх. Так можно делать, если стек a реализован через вектор без амортизации. Из кода видно, что копирование состоит из |a| + |b| шагов. Будем поддерживаем инвариант, что до начала копирования $|a| \ge |b|$. В каждом pop будем делать 1 шаг копирования, в каждом push также 1 шаг. Проверка инварианта после серии push: за k пушей мы сделали $\ge k$ копирований, поэтому $|a_1| \ge |b_1|$. Проверка корректности pop: после первых |b| операций поп все элементы b уже скопировались, далее мы докопируем часть a, которая не подверглась pop_back-ам.

6.2. Бинарная куча

Рассмотрим массив a[1..n]. Его элементы образуют бинарное дерево с корнем в 1. Дети i – вершины 2i, 2i+1. Отец i – вершина $\lfloor \frac{i}{2} \rfloor$.

Def 6.2.1. Бинарная куча — массив, индексы которого образуют описанное выше дерево, в котором верно основное свойство кучи: для каждой вершины i значение a[i] является минимумом в поддереве i.

$\underline{\mathbf{Lm}}$ **6.2.2.** Высота кучи равна $\lceil \log_2 n \rceil$

Доказательство. Высота равна длине пути от n до корня. Заметим, что для всех чисел от 2^k до $2^{k+1}-1$ длина пути в точности k.

• Интерфейс

Бинарная куча за $\mathcal{O}(\log n)$ умеет делать следующие операции.

- 1. GetMin(). Нахождение минимального элемента.
- 2. Add(x). Добавление элемента.
- 3. DelMin(). Удаление минимума.

Если для элементов хранятся "обратные указатели", позволяющие за $\mathcal{O}(1)$ переходить от элемента к ячейке кучи, содержащей элемент, то куча также за $\mathcal{O}(\log n)$ умеет:

- 4. DecreaseKey(x, y). Уменьшить значение ключа x до y.
- 5. Del(x). Удалить из кучи x.

6.2.1. GetMin, Add, DelMin

Реализуем сперва три простые операции.

Наша куча: int n, *a;. Память выделена, её достаточно.

```
1 void Init() { n = 0; }
2 int GetMin() { return a[1]; }
3 void Add(int x) { a[++n] = x, siftUp(n); }
4 void DelMin() { swap(a[1], a[n--]), siftDown(1); }
5 // DelMin перед удалением сохранил минимум в a[n]
```

Здесь siftUp — проталкивание элемента вверх, а siftDown — проталкивание элемента вниз. Обе процедуры считают, что дерево обладает свойством кучи везде, кроме указанного элемента.

```
void siftUp(int i) {
1
2
     while (i > 1 && a[i / 2] > a[i]) // пока мы не корень и отец нас больше
3
       swap(a[i], a[i / 2]), i /= 2;
4
5
   void siftDown( int i ) {
6
     while (1) {
7
       int 1 = 2 * i;
       if (1 + 1 <= n && a[1 + 1] < a[1]) 1++; // выбрать меньшего из детей
8
9
       if (!(1 <= n && a[1] < a[i])) break; // если все дети не меньше нас, это конец
10
       swap(a[1], a[i]), i = 1; // перейти в ребёнка
11
12
```

<u>Lm</u> **6.2.3.** Обе процедуры корректны

Доказательство. По индукции на примере siftUp. В каждый момент времени верно, что поддерево i – корректная куча. Когда мы выйдем из while, у i нет проблем с отцом, поэтому вся куча корректна из предположения корректно было всё кроме i.

 $\underline{\mathbf{Lm}}$ **6.2.4.** Обе процедуры работают за $\mathcal{O}(\log n)$

Доказательство. Они работают за высоту кучи, которая по 6.2.2 равна $\mathcal{O}(\log n)$.

6.2.2. Обратные ссылки и DecreaseKey

Давайте предположим, что у нас есть массив значений: vector<int> value.

В куче будем хранить индексы этого массива. Тогда все сравнения a[i] < a[j] следует заменить на сравнения через value: value[a[i]] < value[a[j]]. Чтобы добавить элемент, теперь нужно сперва добавить его в конец value: value.push_back(x), а затем сделать добавление в кучу Add(value.size() - 1). Хранение индексов позволяет нам для каждого і помнить позицию в куче pos[i]: a[pos[i]] == i. Значения pos[] нужно пересчитывать каждый раз, когда мы меняем значения a[]. Как теперь удалить произвольный элемент с индексом i?

```
void Del(int i) {
  i = pos[i];
  h[i] = h[n--], pos[h[i]] = i; // не забыли обновить pos
  siftUp(i), siftDown(i); // новый элемет может быть и меньше, и больше
}
```

Процедура DecreaseKey(i) делается похоже: перешли к pos[i], сделали siftUp.

 ${\bf \underline{Lm}}$ **6.2.5.** Del и DecreaseKey корректны и работают за $\mathcal{O}(\log n)$

Доказательство. Следует из корректности и времени работы siftUp, siftDown

6.2.3. Build, HeapSort

```
1 void Build( int n, int *a ) {
2   for (int i = n; i >= 1; i--)
3    siftDown(i);
4 }
```

<u>Lm</u> **6.2.6.** Функция Build построит корректную бинарную кучу.

Доказательство. Когда мы проталкиваем i, по индукции слева и справа уже корректные бинарные кучи. По корректности операции $sift_down$ после проталкивания i, поддерево i является корректной бинарной кучей.

Lm 6.2.7. Время работы функции Build $\Theta(n)$

Доказательство. Пусть $n=2^k-1$, тогда наша куча — полное бинарное дерево. На самом последнем (нижнем) уровне будет 2^{k-1} элементов, на предпоследнем 2^{k-2} элементов и т.д. $\mathtt{sift_down(i)}$ работает за $\mathcal{O}(\text{глубины поддерева }i)$, поэтому суммарное

время работы
$$\sum_{i=1}^k 2^{k-i}i = 2^k \sum_{i=1}^k \frac{i}{2^i} \stackrel{(*)}{=} 2^k \cdot \Theta(1) = \Theta(n)$$
. (*) доказано на практике.

```
void HeapSort() {
Build(n, a); // строим очередь с максимумом, O(n)
forn(i, n) DelMax(); // максимум окажется в конце и т.д., O(nlogn)
}
```

 $\underline{\mathbf{Lm}}$ 6.2.8. Функция HeapSort работает за $\mathcal{O}(n \log n)$, использует $\mathcal{O}(1)$ дополнительной памяти.

Доказательство. Важно, что функция Build не копирует массив, строит кучу прямо в a. ■

6.3. Аллокация памяти

Задача: реализовать две функции

- 1. int new(int x) выделяюет x байт, возвращает адрес первой свободной ячейки
- 2. void delete(int addr) освобождает память, по адресу addr, которую когда-то вернул new

В общем случае задача сложная. Сперва рассмотрим популярное решение более простой задачи.

6.3.1. Стек

Разрешим освобождать не любую область памяти, а последнюю выделенную.

```
int pos = 0; // указатель на первую свободную ячейку
int new( unsigned x ) { // push(x)

pos += x;
assert(pos <= MAX_MEM); // проверить, что памяти всё ещё хватает

return pos - x;
}

void delete( unsigned x ) { // pop

pos = x; // очищать можно только последнюю выделенную
}</pre>
```

В C++ при вызове функции, создании локальных переменных используется ровно такая же модель аллокации память, называется также – "стек". Иногда имеет смысл реализовать свой стек-аллокатор и перегрузить глобальный operator new, так как стандартные STL-контейнеры vector, set внутри много раз обращаются к стандартному медленному operator new.

6.3.2. Список

Ещё один частный простой случай $\mathbf{x} = \text{CONST}$, все выделяемые ячейки одного размера. Пусть наше адресуемое пространство 32-битное, то есть, $\text{MAX_MEM} \leq 2^{32}$. Тогда давайте исходные MAX_MEM байт памяти разобьём на 4 байта head и на $k = \lfloor \frac{\text{MAX_MEM}-4}{\max(x,4)} \rfloor$ ячеек по $\max(x,4)$ байт. Каждая из k ячеек или свободная, тогда она — "указатель на следующую свободную", или занята, тогда она — "x байт полезной информации". head — начало списка свободных ячеек, первая свободная. Изначально все ячейки свободны и объединены в список.

```
char mem[MAX_MEM]; // наша память
2
  unsigned new() { // вернёт целое число - адрес в нашем 32-битном пространстве mem
3
     unsigned res = head;
     head = *(unsigned *)(mem + head); // взяли 4-байтовое число по адресу head
4
5
     return res;
6
7
   void delete( unsigned x ) {
8
     *(unsigned *)(mem + x) = head; // записали в первые 4 байта ячейки число х
9
     head = x;
10
```

6.3.3. Куча и хеш-таблица

МАХ_МЕМ байт памяти разобьются на подряд идущие куски свободного пространства и подряд идущие куски занятого пространства. Давайте все куски свободного пространства хранить в куче с максимумом в корне, сравнивающей куски по размеру. Кроме того будем для каждого свободного или занятого куска [l..r] хранить pair[1] = r, pair[r] = 1, pair – хеш-таблица.

• Операция new(x).

Если в корне кучи максимум меньше x, память не выделяется. Иначе память выделяется за $\mathcal{O}(1) + \langle \text{время просеивания вниз в куче} \rangle = \mathcal{O}(\log n)$.

• Операция delete.

Нужно объединить несколько кусков свободной памяти в один. Хеш-таблица поможет. Куче нужно уметь удалять из середины, для этого поддерживаем обратные ссылки.

• **Хеш-таблица.** Все обновления хеш-таблицы происходят за $\mathcal{O}(1)$.

Откуда брать память под кучу и хеш-таблицу? У себя же =). Рекурсивный вызов.

6.4. Решение задачи по пройденным темам

Задача: даны два массива, содержащие множества, найти размер пересечения. **Решения:**

- 1. Отсортировать первый массив, бинпоиском найти элементы второго.
- 2. Отсортировать оба массива, пройти двумя указателями.
- 3. Элементы одного массива положить в хеш-таблицу, наличие элементов второго проверить.

Лекция #7: Пополняемые структуры

5 октября

7.1. Пополняемые структуры

Все описанные в этом разделе идеи применимы не ко всем структурам данных. Тем не менее к любой структуре любую из описанных идей можно *попробовать* применить.

7.1.1. Ничего \rightarrow Удаление

Вид "ленивого удаления". Пример: куча. Есть операция **DelMin**, хотим операцию удаления произвольного элемента, ничего не делая. Будем хранить две кучи — добавленные элементы и удалённые элементы.

```
Heap a, b;
void Add(int x) { a.add(x); }
void Del(int x) { b.add(x); }
int DelMin() {
while (b.size() && a.min() == b.min())
a.delMin(), b.delMin(); // пропускаем уже удалённые элементы
return a.delMin();
}
```

Асимптотика не ухудшилась.

Время работы DelMin теперь амортизированное, в худшем случае $\Theta(n)$.

$7.1.2.~\Pi$ оиск ightarrow Удаление

Вид "ленивого удаления". Таким приёмом мы уже пользовались при удалении из хеш-таблицы с открытой адресацией. Идея: у нас есть операция Find, отлично, найдём элемент, пометим его, как удалённый. Удалять прямо сейчас не будем.

7.1.3. Add \rightarrow Merge

Merge (слияние) – операция, получаещая на вход две структуры данных, на выход даёт одну, равную их объединению. Старые структуры объявляются невалидными.

Пример #1. Мегее двух сортированных массивов.

Пример #2. Мегде двух куч. Сейчас мы научимся делать его быстро.

• Идея. У нас есть операция добавления одного элемента, переберём все элементы меньшей структуры данных и добавим их в большую.

```
Heap Merge(Heap a, Heap b) {
  if (a.size < b.size) swap(a, b);
  for (int x : b) a.Add(x);
  return a;
}</pre>
```

 $\underline{\operatorname{Lm}}$ 7.1.1. Если мы начинаем с \varnothing и делаем N произвольных операций из множества $\{\operatorname{Add}, \operatorname{Merge}\}$, функция Add вызовется не более $N\log_2 N$ раз.

Доказательство. Посмотрим на код и заметим, что $|a| + |b| \ge 2|b|$, поэтому для каждого x, переданного Add верно, что "размер структуры, в которой живёт x, хотя бы удвоился" ⇒ $\forall x$ количество операций Add(x) не более $\log_2 N$ ⇒ суммарное число всех Add не более $N \log_2 N$. ■

7.1.4. Build \rightarrow Add

• Решение #1. Корневая.

Сперва разберём задачу из домашнего задания и поймём, что мы умеем делать операцию Add амортизированно за $\mathcal{O}(\sqrt{n})$.

Пример: сортированный массив.

```
Build = sort = \mathcal{O}(n \log n). Rebuild = merge = \mathcal{O}(n). Get = бинпоиск = \mathcal{O}(\log n).
```

Структура данных: храним сортированный массив и новых k элементов, поддерживаем $k \leq \sqrt{\text{Rebuild}}$. Когда нам нужно добавить новый элемент, сортированный массив мы не трогаем, добавляем в его в пачку из k элементов.

Get: вызвать бинпоиск для сортированного массива, перебрать все $k \leq \sqrt{\texttt{Rebuild}}$ элементов.

Add: добавить элемент, k++, если k стало больше $\sqrt{\text{Rebuild}}$, вызвать Rebuild.

Среднее время работы Add равно $\sqrt{\text{Rebuild}} = \sqrt{n}$, суммарное время n операций Get/Add равно $\mathcal{O}(n\sqrt{\text{Rebuild}}) = \mathcal{O}(n\sqrt{n})$.

• Решение #2. Пополняемые структуры.

Пусть у нас есть структура S с интерфейсом S.Build, S.Get, S.AllElements. У любого числа N есть единственное представление в двоичной системе счисления $a_1a_2...a_k$ Для хранения $N=2^{a_1}+2^{a_2}+\cdots+2^{a_k}$ элементов будем хранить k структур S из $2^{a_1},2^{a_2},\ldots,a^{a_k}$ элементов. $k\leq log_2n$. Новый Get работает за $k\cdot S.$ Get, обращается к каждой из k частей. Сделаем Add(x). Для этого добавим ещё одну структуру из 1 элемента. Теперь сделаем так, чтобы не было структур одинакового размера.

```
for (i = 1; есть две структуры размера i; i *= 2)
Добавим S.Build(A.AllElements + B.AllElements). // A, B - те самые две структуры
Удалим две старые структуры
```

Заметим, что по сути мы добавляли к числу N единицу в двоичной системе счисления.

 $\underline{\operatorname{Lm}}$ 7.1.2. Пусть мы начали с пустой структуры, было n вызовов Add и k вызовов Build(a_1), Build(a_2), . . . , Build(a_k). Тогда $\sum_{i=1}^k a_i \leq n \log_2 n$

Доказательство. Когда элемент проходит через Build размер структуры, в которой он живёт, удваивается. Поэтому каждый x пройдёт через Build не более $\log_2 n$ раз.

```
<u>Lm</u> 7.1.3. \forall k \geq 1, a_i > 0: (\sum a_i)^k \geq \sum a_i^k (без доказательства)
```

 $\underline{\operatorname{Lm}}$ 7.1.4. Суммарное время обработки n запросов не более $\operatorname{Build}(n\log_2 n)$

Применение данной идеи для сортированного массива будем называть "пополняемый массив".

7.1.5. Build \rightarrow Add, Del

Научим "пополняемый массив обрабатывать запросы".

- 1. Count(1, r) посчитать число $x: l \le x \le r$
- 2. Add(x) добавить новый элемент
- 3. Del(x) удалить ранее добавленный элемент

Для этого будем хранить два "пополняемых массива" — добавленные элементы, удалённый элементы. Когда нас просят сделать Count, возвращаем разность Count-ов за $\mathcal{O}(\log^2 n)$. Add и Del работают амортизированно за $\mathcal{O}(\log n)$, так как вместо Build, который должен делать sort, мы вызовем merge двух сортированных массивов за $\mathcal{O}(n)$.

Лекция #8: Сортировки

5 октября

8.1. Квадратичные сортировки

Def 8.1.1. Сортировка называется стабильной, если одинаковые элементы она оставляет в исходном порядке.

Пример: сортируем людей по имени. Люди с точки зрения сортировки считаются равными, если у них одинаковое имя. Тем не менее порядок людей в итоге важен. Во всех таблицах (гуглдок и т.д.) сортировки, которые вы применяете к данным, стабильные.

Def 8.1.2. *Инверсия* – *napa* $i < j : a_i > a_j$

Def 8.1.3. Inv - обозначение для числа инверсий в массиве

<u>Lm</u> 8.1.4. Массив отсортирован ⇔ Inv = 0

• Selection sort (сортировка выбором)

На каждом шаге выбираем минимальный элемент, ставим его в начале.

```
for (int i = 0; i < n; i++) {
   j = index of min on [i..n);
   swap(a[j], a[i]);
}</pre>
```

• Insertion sort (сортировка вставками)

Пусть префикс длины i уже отсортирован, возьмём a_i и вставим куда надо.

```
1 for (int i = 0; i < n; i++)
2 for (int j = i; j > 0 && a[j] > a[j - 1]; j--)
3 swap(a[j], a[j - 1]);
```

Корректность: по индукции по i

Заметим, что можно ускорить сортировку, место для вставки искать бинпоиском.

Сортировка всё равно останется квадратичной.

• Bubble sort (сортировка пузырьком)

Бесполезна. Изучается, как дань истории. Простая.

```
for (int i = 0; i < n; i++)
for (int j = 1; j < n; j++)
if (a[j - 1] > a[j])
swap(a[j - 1], a[j]);
```

Корректность: на каждой итерации внешнего цикла очередной максимальный элемент встаёт на своё место, "всплывает".

• Сравним пройденные сортировки.

```
Название < swap stable Selection \mathcal{O}(n^2) \mathcal{O}(n) - Insertion \mathcal{O}(n+\operatorname{Inv}) \mathcal{O}(n+\operatorname{Inv}) + Here = Subble = = Subble = S
```

Три нижние стабильны, т.к. swap применяется только к соседям, образующим инверсию. Количество swap-ов в Insertion равно Inv, т.к. каждый ровно на 1 уменьшает Inv.

Чем ценна сортировка выбором? swap может быть дорогой операцией. Пример: мы сортируем 10^3 тяжёлых для swap объектов, не имея дополнительной памяти.

Чем ценна сортировка вставками? Малая константа. Самая быстрая.

8.2. Оценка снизу на время сортировки

Пусть для сортировки объектов нам разрешено общаться с этими объектами единственным способом – сравнивать их на больше/меньше. Такие сортировки называются *основанные на сравнениях*.

<u>Lm</u> 8.2.1. Сортировка, основанная на сравнениях, делает на всех тестах $o(n \log n)$ сравнений $\Rightarrow \exists$ тест, на котором результат сортировки **не** корректен.

Доказательство. Докажем, что существует тест-перестановка. Всего есть n! различных перестановок. Пусть сортировка делает не более k сравнений. Заставим её делать ровно k сравнений (возможно, несколько бесполезных). Результат каждого сравнения — меньше (0) или больше (1). Сортировка получает k бит информации, и результат её работы зависит только от этих k бит. То есть, если для двух перестановок она получит одни и те же k бит, одну из этих двух перестановок она отсортирует неправильно.

Сортировка корректна $\Rightarrow 2^k > n!$.

 $2^k < n! \Rightarrow$ сортировка не корректна.

Осталось вспомнить, что $\log(n!) = \Theta(n \log n)$.

Мы доказали *нижнюю оценку* на время работы произвольной сортировки сравнениями. Доказали, что любая детерминированная (без использования случайных чисел) корректная сортировка делает хотя бы $\Omega(n\log n)$ сравнений.

8.3. Быстрые сортировки

Мы уже знаем одну сортировку за $\mathcal{O}(n \log n)$ – HeapSort.

Отметим её замечательные свойства: не использует дополнительной памяти, детерминирована.

8.3.1. CountSort (подсчётом)

Целые числа от 0 до m-1 можно отсортировать за $\mathcal{O}(n+m)$.

В частности целые число от 0 до 2n можно отсортировать за $\mathcal{O}(n)$.

```
int n, a[n];
for (int i = 0; i < n; i++) O(n)
count[x]++; // насчитали, сколько раз x встречается в a
for (int x = 0; x < m; x++) O(m), перебрали x в порядке возрастания
while (count[x]--)
out(x);</pre>
```

Мы уже доказали, что сортировки, основанные на сравнениях не могут работать за $\mathcal{O}(n)$. В данном случае мы пользовались операцией count[x]++, ячейки массива count упорядочены также, как и числа. Именно это даёт ускорение.

8.3.2. MergeSort (слиянием)

Идея: отсортируем левую половину массива, правую половину массива, сольём два отсортированных массива в один методом двух указателей.

```
void MergeSort( int 1, int r, int *a, int *buffer ) { // [1, r)
    if (r - 1 <= 1) return;
    int m = (1 + r) / 2;
    MergeSort(1, m, a, buffer);
    MergeSort(m, r, a, buffer);
    Merge(1, m, r, a, buffer); // слияние за O(r-l), используем буффер
}
```

buffer — дополнительная память, которая нужна функции Merge. Функция Merge берёт отсортированные куски [l,m), [m,r), запускает метод двух указателей, который отсортированное объединение записывает в buffer. Затем buffer копируется в $\mathbf{a}[l,r)$.

<u>Lm</u> 8.3.1. Время работы $\mathcal{O}(n \log n)$

```
Доказательство. T(n) = 2T(\frac{n}{2}) + n = \Theta(n \log n)
```

• Нерекурсивная версия без копирования памяти

Оставим ту же процедуру Merge, перепишем только рекурсивную функцию:

```
int n, *a, *buffer;
for (int k = 0; (1 << k) < n; k++)
for (int i = 0; i < n; i += 2 * (1 << k))

Merge(i, min(n, i + (1 << k), min(n, i + 2 * (1 << k)), a, buffer)
swap(a, bufffer);
return a; // результат содержится именно тут, указатель может отличаться от исходного a</pre>
```

8.3.3. QuickSort (быстрая)

Идея: выберем некий x, разобьём наш массив a на три части < x, = x, > x, сделаем два рекурсивных вызова, чтобы отсортировать первую и третью части. Утверждается, что сортировка будет быстро работать, если как x взять случайный элемент a

```
def QuickSort(a):
    if len(a) <= 1: return a
    x = random.choice(a)
    b0 = select (< x).
    b1 = select (= x).
    b2 = select (> x).
    return QuickSort(b0) + b1 + QuickSort(b2)
```

Этот псевдокод описывает общую идею, но обычно, чтобы QuickSort была реально быстрой сортировкой используют другую версию разделения массива на части.

Код 8.3.2. Быстрый partition.

```
void Partition( int 1, int r, int x, int *a, int &i, int &j ) { // [l,r], x ∈ a[l,r]
i = 1, j = r;
while (i <= j) {
   while (a[i] < x) i++; // (*)
   while (a[j] > x) j--;
   if (i <= j) swap(a[i++], a[j--]);
}
</pre>
```

Этот вариант разбивает отрезок [l,r] массива a на части [l,j](j,i)[i,r].

Замечание 8.3.3. $a[l,j] \le x, a(j,i) = x, a[i,r] \ge x$

Замечание 8.3.4. Алгоритм не выйдет за пределы [l, r]

Доказательство. $x \in a[l,r]$, поэтому выполнится хотя бы один swap. После swap в момент (*) верно верно $l < i \ge j < r$. Более того $a[l] \le x, a[r] \ge x$.

Код 8.3.5. Собственно код быстрой сортировки:

```
void QuickSort( int 1, int r, int *a ) { // [1, r]
   if (1 >= r) return;
   int i, j;
   Partition(1, r, a[random [1, r]], i, j);
   QuickSort(1, j, a); // j < i
   QuickSort(i, r, a); // j < i
}</pre>
```

8.3.4. Сравнение сортировок

```
Название Время space stable HeapSort \mathcal{O}(n\log n) \Theta(1) - MergeSort \Theta(n\log n) \Theta(n) + QuickSort \mathcal{O}(n\log n) \Theta(\log n) -
```

Интересен вопрос существования стабильной сортировки, работающей за $\mathcal{O}(n \log n)$, не использующей дополнительную память. Среди уже изученных такой нет.

Такая сортировка существует. Она получается на основе MergeSort и Merge за $\mathcal{O}(n)$ без дополнительной памяти. На практике мы научимся делать inplace stable Merge за $\mathcal{O}(n\log n)$.

Лекция #9: Сортировки (продолжение)

12 октября

9.1. Два указателя, алгоритм Мо

Вернёмся в прошлое, к указателям. На практике мы решили задачу "выбрать самый короткий отрезок, содержащий хотя бы k различных чисел". В процессе научились пересчитывать величину "количество различных чисел на отрезке" за $\mathcal{O}(1)$ с использованием хеш-таблицы $\operatorname{count}[\mathbf{x}]$ частота числа x. Функцию "количество различных чисел на отрезке" мы будем использовать, как пример. Длина массива -n, число запросов -m.

- Задача. Дана функция f[l,r], мы её умеем пересчитывать за $\mathcal{O}(1)$ при операциях 1++, 1--, r++, r--. Нужно посчитать её на данном нам наборе отрезков $[l_i, r_i]$.
- **Простой случай.** $l_i \leq l_{i+1}, r_i \leq r_{i+1}$. Два указателя. Решение за $\mathcal{O}(n+m)$.
- Общий случай. Отрезки произвольные. Давайте сгруппируем отрезки по левому концу. В i-й группе отрезки j: $ki \le l_j < k(i+1)$. где оптимальный параметр k будет найден позднее, это примерно \sqrt{n} . Отсортируем все отрезки по r_i , разобьём их на группы. Это заняло $O(sort+n) \le O(n+m)$ времени. Отвечая на запросы внутри группы отрезков, мы будем следующий считать через уже посчитанный предыдущий. Правая граница будет смещаться только вправо, левая граница при каждом пересчёте не более чем на k. Пусть в i-й группе t_i отрезков, тогда найти ответ для всех них мы можем за $O(k \cdot t_i + n)$. Здесь n суммарное расстояние, которое пройдёт правый конец. $k \cdot t_i$ сколько максимум пройдёт левый конец.

$$Time \le \sum_{i=1}^{n/k} (n + t_i k) = \frac{n^2}{k} + mk \stackrel{(*)}{=} n\sqrt{m}$$

(*). Выберем оптимальное $k: \frac{n^2}{k} \downarrow$, $mk \uparrow$ с ростом $k, f+g = \Theta(max(f,g)) \Rightarrow$ минимум асимптотики достигается при $\frac{n^2}{k} = mk \Rightarrow \frac{n^2}{m} = k^2 \Rightarrow mk = n\sqrt{m}$.

9.2. Quick Sort

• Глубина.

Можно делать не два рекурсивных вызова, а только один, от меньшей части.

Тогда в худшем случае доппамять = глубина = $\mathcal{O}(\log n)$.

Вместо второго вызова (l_2,r_2) сделаем 1 = l_2 , r = r_2 , goto start.

\bullet Выбор x.

На практике и в дз мы показали, что при любом детерминированом выборе x или даже как медианы элементов любых трёх фиксированных элементов, \exists тест, на котором время работы сортировки $\Theta(n^2)$. Чтобы на любом тесте QuickSort работал $\mathcal{O}(n \log n)$, нужно выбирать $\mathbf{x} = \mathbf{a}[\mathsf{rand}()]$. Тем не менее, так как рандом – медленная функция, иногда для скорости пишут версию без рандома.

9.2.1. Оценка времени работы

Будем оценивать QuickSort, основанный на partition, который делит элементы на (< x), x, (> x). Также мы предполагаем, что все элементы различны.

• Доказательство #1.

Теорема 9.2.1. $T(n) \le C n \ln n$, где $C = 2 + \varepsilon$

Доказательство. Докажем по индукции.

$$T(n) = n + \frac{1}{n} \sum_{i=0..n-1} (T(i) + T(n-i-1))$$

Здесь среднее арифметическое берётся по всем вариантам выбора x среди всех элементов a. Чтобы оценить данную сумму, перейдём к интегралу.

$$T(n) = n + \frac{2}{n} \sum_{i=0}^{n-1} T(i) \le n + \frac{2}{n} \sum_{i=0}^{n-1} (Ci \ln i) \le \frac{2}{n} C \int_{1}^{n} i \ln i di$$

Такой интеграл берётся по частям. Мы просто угадаем ответ $\frac{1}{2}x^2 \ln x - \frac{1}{4}x^2$.

$$T(n) \le n + \frac{2C}{n} \left(\left(\frac{1}{2}n^2 \ln n - \frac{1}{4}n^2 \right) - \left(0 - \frac{1}{4} \right) \right) = n + Cn \ln n - \frac{2C}{4}n + \frac{2C}{4n} \stackrel{C>2}{\le} Cn \ln n$$

• Доказательство #2.

Время работы вероятностного алгоритма — среднее арифметическое по всем рандомам. Время QuickSort пропорционально числу сравнений. Число сравнений — сумма по всем парам i < j характеристической функции "сравнивали ли мы эту пару", каждую пару мы сравним не более одного раза.

$$\frac{1}{R} \sum_{random} T(i) = \frac{1}{R} \sum_{random} \left(\sum_{i < j} is(i,j) \right) = \sum_{i < j} \left(\frac{1}{R} \sum_{random} is(i,j) \right) = \sum_{i < j} Pr[\text{сравнения}(i,j)]$$

 Γ де Pr — вероятность. Осталось оценить вероятность. Для этого скажем, что у каждого элемента есть его индекс в отсортированном массиве.

Lm 9.2.2.
$$Pr[$$
сравнения $(i,j)] = \frac{2}{j-i+1}$ при $i < j$

Доказательство. Сравниться i и j могут только, если при некотором Partition выбор пал на один из них. Рассмотрим дерево рекурсии. Посмотрим на самую глубокую вершину, [l,r) всё ещё содержит и i-й, и j-й элементы. Все элементы $i+1, i+2, \ldots, j-1$ также содержатся (т.к. i и j – индексы в отсортированном массиве). i и j разделятся \Rightarrow Partition выберет один из j-i+1 элементов отрезка [i,j]. С вероятностью $\frac{2}{j-i+1}$ он совпадёт с i или j, тогда и только тогда i и j сравнятся.

Осталось посчитать сумму
$$\sum_{i < j} \frac{2}{j-i+1} = 2 \sum_{i} \sum_{j>i} \frac{1}{j-i+1} \le 2(n \ln n + \Theta(n))$$

9.2.2. Introsort'97

Ha основе Quick Sort можно сделать быструю детерминированную сортировку.

- 1. Делаем Quick Sort от N элементов
- 2. Если r-l не более 10, переключаемся на Insertion Sort
- 3. Если глубина более $3 \ln N$, переключаемся на Heap Sort

Такая сортировка называется Introsort, в C++::STL используется именно она.

9.3. Порядковые статистики

Задача поиска к-й порядковой статистики формулируется своим простейшим решением

```
int statistic(a, k) {
  sort(a);
  return a[k];
}
```

9.3.1. Одноветочный QuickSort

Вспомним реализацию Quick Sort 8.3.5

Quick Sort = выбрать x + Partition + 2 рекурсивных вызова Quick Sort.

Будем делать только 1 рекурсивный вызов:

Код 9.3.1. Порядковая статистика

```
int Statistic( int 1, int r, int *a, int k ) { // [1, r]
   if (r <= 1) return;
   int i, j;
   Partition(1, r, a[random [1, r]], i, j);
   if (j < k && k < i) return x;
   return k <= j ? Statistic(1, j, a) : Statistic(i, r, a);
}</pre>
```

Действительно, зачем вызываться от второй половины, если ответ находится именно в первой?

Теорема 9.3.2. Время работы 9.3.1 равно $\Theta(n)$

Доказательство. С вероятностью $\frac{1}{3}$ мы попадем в элемент, который лежит во второй трети сортированного массива. Тогда после Partition размеры кусков будут не более $\frac{2}{3}n$. Если же не попали, то размеры не более n, вероятность этого $\frac{2}{3}$. Итого:

$$T(n) = n + \frac{1}{3}T(\frac{2}{3}n) + \frac{2}{3}T(n) \Rightarrow T(n) = 3n + T(\frac{2}{3}n) \le 9n = \Theta(n)$$

Замечание 9.3.3. Мы могли бы повторить доказательство 9.2.1, тогда нам нужно было бы оценить сумму $\sum T(\max(i, n-i-1))$. Это технически сложнее, зато дало бы константу 4.

9.3.2. Детерминированный алгоритм

Statistic = выбрать x + Partition + 1 рекурсивный вызов Statistic.

Чтобы этот алгоритм стал детерминированным, нужно хорошо выбирать x.

• Идея. Разобьем n элементов на группы по 5 элементов, в каждой группе выберем медиану, из полученных $\frac{n}{5}$ медиан выберем медиану, это и есть x.

Утверждение 9.3.4. На массиве длины 5 медиану можно выбрать за 6 сравнений.

Поскольку из $\frac{n}{5}$ меньшие $\frac{n}{10}$ не больше x, хотя бы $\frac{3}{10}n$ элементов исходного массива **не более** выбранного x. Аналогично хотя бы $\frac{3}{10}n$ элементов **не менее** выбранного x. Это значит, что после Partition размеры кусков не будут превосходить $\frac{7}{10}n$. Теперь оценим время работы алгоритма:

$$T(n) \le 6\frac{n}{5} + T(\frac{n}{5}) + n + T(\frac{7}{10}n) = n + \frac{9}{10}n + (\frac{9}{10})^2 n + \dots = 10n = \Theta(n)$$

9.3.3. C++

В C++::STL есть следующие функции

- 1. $nth_element(a, a + k, a + n) k$ -я статистика на основе одноветочного Quick Sort. После вызова функции k-я статистика стоит на своём месте, слева меньшие, справа большие.
- 2. partition(a, a + n, predicate) Partition по произвольному предикату.

9.4. Integer sorting

За счёт чего получается целые числа сортировать быстрее чем произвольные объекты? $\forall k$ операция деления нацело на $k \colon x \to \left\lfloor \frac{x}{k} \right\rfloor$ сохраняет порядок.

Если мы хотим сортировать вещественные числа, данные с точностью $\pm \varepsilon$, их можно привести к целым: домножить на $\frac{1}{\varepsilon}$ и округлить, после чего сортировать целые.

9.4.1. Count sort

Давайте используем уже известный нам Count Sort, чтобы стабильно отсортировать пары $\langle a_i, b_i \rangle$

```
void CountSort(int n, int *a, int *b) { // 0 <= a[i] < m</pre>
1
2
    for (int i = 0; i < n; i++)</pre>
3
      count[a[i]]++; // сколько раз встречается
4
    // pos[i] -- позиция начала куска ответа, состоящего из пар <i, ?>
5
    for (int i = 0; i + 1 < m; i++)
6
      pos[i + 1] = pos[i] + count[i];
7
    for (int i = 0; i < n; i++)</pre>
8
      result[pos[a[i]]++] = {a[i], b[i]}; // нужна доппамять!
9
```

Важно то, что сортировка стабильна, из этого следует наш следующий алгоритм:

9.4.2. Radix sort

Отсортируем n строк длины L. Символ строки – целое число из [0, k).

- Алгоритм: отсортируем сперва по последнему символу, затем по предпоследнему и т.д.
- **Корректность:** мы сортируем стабильной сортировкой строки по символу номер i, строки уже отсортированы по символам (i, L]. Из стабильности имеем, что строки равные по i-му символу будут отсортированы как раз по $(i, L] \Rightarrow$ теперь строки отсортированы по [i, L].
- Время работы: мы L раз вызвали сортировку подсчётом $\Rightarrow \mathcal{O}(L(n+k))$. Теперь заметим, что $\forall k$ число из [0,m) строка длины $\log_k m$ над алфавитом [0,k). При k=n получаем время работы $n\lceil\log_n m\rceil$.

9.4.3. Bucket sort

Главная идея заключается в том, чтобы числа от \min до \max разбить на n бакетов (пакетов, карманов, корзин). Числовая прямая бьётся на n отрезков равной длины, i-й отрезок:

$$\left[\min + \tfrac{i}{n}(\max - \min + 1), \min + \tfrac{i+1}{n}(\max - \min + 1)\right)$$

Каждое число x_j попадает в отрезок номер $i_j = \lfloor \frac{x_j - \min}{\max - \min + 1} n \rfloor$. Бакеты уже упорядочены: все числа в 0-м меньше всех чисел в 1-м и т.д. Осталось упорядочить числа внутри бакетов. Это

можно сделать или вызовом Insertion Sort (алгоритм B.I.), чтобы минимизировать константу, или рекурсивным вызовом Bucket Sort (алгоритм B.B.)

Код 9.4.1. Bucket Sort

```
1
   void BB( vector<int> &a ) {
2
     if (a.empty()) return;
3
     int min = *min_element(a.begin(), a.end());
4
     int max = *max_element(a.begin(), a.end());
5
     if (min == max) return; // уже отсортирован
6
     vector < int > b[n];
7
     for (int x : a) {
       int i = (long long)n * (x - min) / (max + min + 1); // номер бакета
8
9
       b[i].push_back(x);
10
     }
11
     a.clear();
12
     for (int i = 0; i < n; i++) {
13
       ВВ(b[i]); // отсортировали каждый бакет рекурсивным вызовом
14
       for (int x : b[i]) a.push_back(x); // сложили результат в массив а
15
     }
16 | }
```

$\underline{\mathbf{Lm}}$ 9.4.2. $\max - \min \leq n \Rightarrow$ и ВВ, и ВІ работают за $\Theta(n)$

Доказательство. В каждом рекурсивном вызове $\max - \min \le 1$

<u>Lm</u> 9.4.3. ВВ работает за $\mathcal{O}(n\lceil\log(\max-\min)\rceil)$

Доказательство. Ветвление происходит при $n \geq 2 \Rightarrow$ длина диапазона сокращается как минимум в два раза \Rightarrow глубина рекурсии не более \log . На каждом уровне рекурсии суммарно не более n элементов.

3амечание 9.4.4. На самом деле ещё быстрее, так как уменьшение не в 2 раза, а в n раз.

<u>Lm</u> 9.4.5. На массиве, сгенерированном равновероятностным распределении, время $BI = \Theta(n)$

Доказательство. Время работы ВІ: $T(n) = \frac{1}{R} \sum_{random} \left(\sum_i k_i^2 \right)$, где k_i – размер i-го бакета.

Заметим, что $\sum_{i} k_{i}^{2}$ – число пар элементов, у которых совпал номер бакета.

$$\frac{1}{R} \sum_{random} \left(\sum_{i} k_{i}^{2} \right) = \frac{1}{R} \sum_{random} \left(\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} [i_{j_{1}} == \ i_{j_{2}}] \right) = \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \left(\frac{1}{R} \sum_{random} [i_{j_{1}} == \ i_{j_{2}}] \right) = \sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \Pr[i_{j_{1}} == \ i_{j_{2}}]$$

Осталось посчитать вероятность, при $j_1 = j_2$ получаем 1, при $j_1 \neq j_2$ получаем $\frac{1}{n}$ из равномерности распределения $T(n) = n \cdot 1 + n(n-1) \cdot \frac{1}{n} = 2n-1 = \Theta(n)$. Получили точное среднее время работы ВІ на случайных данных.

Лекция #10: Кучи

19 октября

10.1. Kirkpatrick'84 sort

Научимся сортировать n целых чисел из промежутка [0, C) за $\mathcal{O}(n \log \log C)$.

Пусть $2^{2^{k-1}} < C \le 2^{2^k}$, округлим вверх до 2^{2^k} (log log C увеличился не более чем на 1).

Если числа достаточно короткие, отсортируем их подсчётом, иначе каждое 2^k -битное число x_i представим в виде двух 2^{k-1} -битных половин: $x_i = \langle a_i, b_i \rangle$.

Отсортируем отдельно a_i и b_i рекурсивными вызовами.

```
vector<int> Sort(int k, vector<int> &x) {
2
     int n = x.size()
3
     if (n \ge 2^{2^k}) return CountSort(x) // 3a O(n)
4
     vector < int > a(n), b(n), as, result;
     unordered_map<int, vector<int>> A; // хеш-таблица
5
6
     for (int i = 0; i < n; i++) {</pre>
       a[i] = \text{старшие } 2^{k-1} \text{ бит } x[i];
7
       b[i] = младшие <math>2^{k-1} бит x[i];
8
9
       A[a[i]].push_back(b[i]); // для каждого a[i] храним все парные с ним b[i]
10
11
     // построим список ключей хеш-таблицы, список всех а[i]
12
     for (auto &p : A) as.push_back(p.first);
13
     as = Sort(k - 1, as); // отсортировали все a[i]
14
     for (int a : as) {
       vector <int > &bs = A[a]; // теперь нужно отсортировать вектор bs
15
16
       int i = max_element(bs.begin(), bs.end()) - bs.begin(), max_b = bs[i];
17
       swap(bs[i], bs.back()), bs.pop_back(); // удалили максимальный элемент
18
       bs = Sort(k - 1, bs); // отсортировали всё кроме максимума
19
       for (int b : bs) result.push_back(<a, b>); // выписали результат без максимума
20
       result.push_back(<a, max_b>); // отдельно добавили максимальный элемент
21
22
     return result;
23
```

Оценим время работы. $T(k,n) = n + \sum_i T(k-1,m_i)$. m_i – размеры подзадач, рекурсивных вызовов. Вспомним, что мы из каждого списка bs выкинули 1 элемент, максимум. Поэтому:

$$\sum_{i} m_{i} = |as| + \sum_{a} (|bs_{a}| - 1) = \sum_{a} |bs_{a}| = n$$

Глубина рекурсии не более k, на каждом уровне рекурсии суммарный размер всех подзадач не более n. Поэтому суммарное время работы $\mathcal{O}(nk) = \mathcal{O}(n\log\log C)$.

Жаль, но на практике из-за большой константы хеш-таблицы преимущества мы не получим.

10.2. Van Embde Boas'75 trees

Куча над целыми числами из [0, C), умеющая всё, что подобает уметь куче, за $\mathcal{O}(\log \log C)$. При описании кучи есть четыре принципиально разных случая:

- 1. Мы храним пустое множество
- 2. Мы храним ровно одно число
- 3. C < 2
- 4. Мы храним хотя бы два числа, C > 2.

Первые три вы разберёте самостоятельно, здесь же детально описан **только 4-й случай**. Пусть $2^{2^{k-1}} < C \le 2^{2^k}$, округлим C вверх до 2^{2^k} ($\log \log C$ увеличился не более чем на 1). Основная идея – промежуток [0,C) разбить на \sqrt{C} кусков длины \sqrt{C} . Также, как и в BucketSort, i-й кусок содержит числа из $[i\sqrt{C},(i+1)\sqrt{C})$. Заметим, $\sqrt{C}=\sqrt{2^{2^k}}=2^{2^{k-1}}$. Теперь опишем кучу уровня $k \ge 1$, Heap<k>, хранящую числа из $[0,2^{2^k})$.

```
1 struct Heap<k> {
   int min, size; // отдельно храним минимальный элемент и размер
   Heap<k-1>* notEmpty; // номера непустых кусков
   unoredered_map<int, Heap<k-1>*> parts; // собственно куски
   };
```

• Как добавить новый элемент?

Hомер куска по числу x: index(x)= (x >> 2^{k-1});

```
void Heap<k>::add(int x) {
 1
 2
     // size \geq 2, k \geq 2, разбираем только интересный случай
3
     int i = index(x);
 4
     if parts[i] is empty
        notEmpty->add(i); // появился новый непустой кусок, делаем рекурсивный вызов
 5
 6
        parts[i]->add(x); // \mathcal{O}(1)
 7
8
        parts[i]->add(x); // рекурсивный вызов
9
     size++.
10
     min = parts[notEmpty->min()]->min(); // универсальный способ пересчитать минимум, \mathcal{O}(1)
11 }
```

Время работы равна глубине рекурсии = $\mathcal{O}(k) = \mathcal{O}(\log \log C)$.

• Как удалить элемент?

```
void Heap < k > :: del(int x) {
1
2
     // size \geq 2, k \geq 2, разбираем только интересный случай
3
     int i = index(x);
4
     if parts[i]->size == 1
5
       notEmpty ->del(i); // кусок стал пустым, делаем рекурсивный вызов
6
       parts[i] = empty heap
7
     else
8
       parts[i]->del(i)
9
     min = parts[notEmpty->min()]->min(); // универсальный способ пересчитать минимум, \mathcal{O}(1)
10 }
```

Время работы и анализ такие же, как при добавлении. Получается, мы можем удалить не только минимум, а произвольный элемент по значению за $\mathcal{O}(\log \log C)$.

10.3. Min-Max Heap (Atkison'86)

Min-Max куча — Inplace структура данных, которая строится на исходном массиве и умеет делать Min, Max за $\mathcal{O}(1)$, а также Add и ExtractMin за $\mathcal{O}(\log n)$.

Заметим, что мы могли бы просто завести две кучи, одну на минимум, вторую на максимум, а между ними хранить обратные ссылки. Минусы этого решения – в два раза больше памяти, примерно в два раза больше константа времени.

Дети в Міп-Мах куче такие же, как в бинарной $i \to 2i, 2i+1$. Инвариант: на каждом нечётном уровне хранится минимум в поддереве, на каждом чётном максимум в поддереве. В корне h[1] хранится минимум. Максимум считается как $\max(h[2], h[3])$. Операции Add и ExtractMin также, как в бинарной куче выражаются через SiftUp, SiftDown.

• SiftUp

Предположим, что вершина v, которую нам нужно поднять, находится на уровне минимумов (противоположный случай аналогичен). Тогда $\frac{v}{2}$, отец v, находится на уровне максимумов. Возможны следующие ситуации:

- 1. Значение у v небольше, чем у отца, тогда делаем обычный SiftUp с шагом $i \to \frac{i}{4}$.
- 2. Иначе меняем местами v и $\frac{v}{2}$, и из $\frac{v}{2}$ делаем обычный SiftUp с шагом $i \to \frac{i}{4}$.

Время работы, очевидно, $\mathcal{O}(\log n)$. Алгоритм сделает не более чем $\frac{n}{2}+1$ сравнение, то есть, примерно в два раза быстрее SiftUp от обычной бинарной кучи.

• Корректность SiftUp.

Если нет конфликта с отцом, то вся цепочка от i с шагом два $(i, \frac{i}{4}, \frac{i}{16}, \dots)$ не имеет конфликтов с цепочкой с шагом два от отца. После swap внутри SiftUp конфликт не появится. Если же с отцом был конфликт, то после swap $(v, \frac{v}{2})$ у $\frac{v}{2}$ и его отца, $\frac{v}{4}$, конфликта нет.

• SiftDown

Предположим, что вершина v, которую нам нужно спустить, находится на уровне минимумов (противоположный случай аналогичен). Тогда дети v находятся на уровне максимумов. Возможны следующие ситуации:

- 1. У v меньше 4 внуков. Обработает случай руками за $\mathcal{O}(1)$.
- 2. Среди внуков v есть те, что меньше v. Тогда найдём наименьшего внука v и поменяем его местами с v. Осталось проверить, если на новом месте v конфликтует со своим отцом, поменять их местами. Продолжаем SiftDown из места, где первоначально был наименьший внук v.
- 3. У v все внуки неменьше. Тогда ничего исправлять не нужно.

На каждой итерации выполняется 5 сравнений — за 4 выберем минимум из 5 элементов, ещё за 1 решим возможный конфликт с отцом. После этого глубина уменьшается на 2. Итого $\frac{5}{2}\log_2 n + \mathcal{O}(1)$ сравнений. Что чуть больше, чем у обычной бинарной кучи $(2\log_2 n$ сравнений).

MinMax кучу можно построить за линейное время inplace аналогично двоичной куче.

10.4. Leftist Heap (Clark'72)

Пусть в корневом дереве каждая вершина имеет степень 0, 1 или 2. Введём для каждой вершины

Def 10.4.1. d(v) – расстояние вниз от v до ближайшего отсутствия вершины.

```
Заметим, что d(NULL) = 0, d(v) = \min(d(v.left), d(v.right)) + 1
```

```
Lm 10.4.2. d(v) \leq log_2(size + 1)
```

Доказательство. Заметим, что полное бинарное дерево высоты d(v)-1 является нашим поддеревом $\Rightarrow size \geq 2^{d(v)}-1 \Leftrightarrow size+1 \geq 2^d(v)$

Def 10.4.3. Левацкая куча (leftist heap) – структура данных в виде бинарного дерева, в котором в каждой вершине один элемент. Для этого дерева выполняются условие кучи и условие leftist: $\forall v \ d(v.left) \geq d(v.right)$

Cледствие 10.4.4. В левацкой куче $\log_2 n \ge d(v) = d(v.right) + 1$

Главное преимущество левацких куч над предыдущими — возможностью быстрого слияния (Merge). Через Merge выражаются Add и ExtractMin (слияние осиротевших детей).

• Merge

Для удобства реализации EMPTY — пустое дерево, которое имеет left = EMPTY, right = EMPTY, $x = +\infty$, d = 0.

```
Node* Merge(Node* a, Node* b) {
if (a->x >= b->x) swap(a, b); // теперь а - общий корень
if (b == EMPTY) return a; // теперь обе кучи непусты
a->right = Merge(a->right, b);
if (a->right->d > a->left->d) // если нарушен инвариант leftist
swap (a->right, a->left); // исправили инвариант leftist
a->d = a->right->d + 1; // обновили d
return a;
}
```

Время работы: на каждом шаге рекурсии величина a->d+b->d уменьшается $\Rightarrow time \le a->d+b->d \le 2\log_2 n$.

10.5. Skew Heap (Tarjan'86)

Уберём условие $d(v.left) \ge d(v.right)$. В функции Merge уберём 5 и 7 строки. То есть, в Merge мы теперь не храним d, а просто всегда делаем swap детей. Полученная куча называется "скошенной" (skew heap). В худшем случае один Merge теперь может работать $\Theta(n)$, но мы докажем амортизированную сложность $\mathcal{O}(\log_2 n)$. Скошенная куча выгодно отличается длиной реализации и константой времени работы.

• Доказательство времени работы

```
Def 10.5.1. Пусть v – вершина, p – её отец, size – размер поддерева. Ребро p \to v называется Тяжёлым если size(v) > \frac{1}{2} size(p) Лёгкиим если size(v) \le \frac{1}{2} size(p)
```

Def 10.5.2. Ребро $p \to v$ называется правым, если v – правый сын p.

Заметим, что из вершины может быть не более 1 тяжёлого ребра вниз.

 $\underline{\mathbf{Lm}}$ 10.5.3. На любом вертикальном пути не более $\log_2 n$ лёгких рёбер.

Доказательство. При спуске по лёгкому ребру размер поддерева меняется хотя бы в 2 раза.

Как теперь оценить время работы Merge? Нужно чем-то самортизировать количество тяжёлых рёбер. Введём потенциал φ = "количество правых тяжёлых рёбер".

Теорема 10.5.4. Время работы Merge в среднем $\mathcal{O}(\log n)$

 $\ensuremath{\mathcal{A}}$ оказательство. Разделим время работы i-й операции на две части – количество лёгких и тяжёлых рёбер.

$$t_i = \mathbf{I}_i + \mathbf{T}_i \leq log_2n + \mathbf{T}_i$$

Теперь распишем изменения потенциала φ . Для этого заметим, что если мы прошли вправо по лёгкому ребро, то количество правых тяжёлых увеличилось после **swap** на 0 или на 1, если же мы прошли вправо по тяжёлому ребру, то количество правых тяжёлых после **swap** точно уменьшилось на 1.

$$\Delta \varphi \ge \log_2 n - \mathsf{T}_i \Rightarrow a_i = t_i + \Delta \varphi \le 2logn$$

Осталось заметить, что $0 \le \varphi \le n-1$, поэтому среднее время работы $\mathcal{O}(\log n)$.

10.6. Списко-куча

Будем хранить элементы кучи в двусвязном списке и поддерживать указатель на текущий минимум Заметим, что операции Merge, Add, DecreaseKey, GetMin в списке работают за $\mathcal{O}(1)$.

Операция ExtractMin состоит из GetMin за $\mathcal{O}(1)$, удаления из списка за $\mathcal{O}(1)$ и самой сложной части "найти новый минимум", которую мы пока умеем делать лишь за $\mathcal{O}(n)$.

Хочется линейный проход по всем элементам самортизировать уменьшением длины списка. Например, можно все элементы разбить по группы по \sqrt{n} элементов, подробнее можно посмотреть в разборе домашнего задания.

Лекция #11: Кучи

26 октября

11.1. Нижняя оценка на построение бинарной кучи

Мы уже умеем давать нижние оценки на число сравнений во многих алгоритмах. Везде это делалось по одной и той же схеме, например, для сортировки "нам нужно различать n! перестановок, поэтому нужно сделать хотя бы $\log(n!) = \Theta(n \log n)$ сравнений".

В случае построения бинарной кучи от перестановки, ситуация сложнее. Есть несколько возможных корректных ответов. Собственно любая корректная куча может быть ответом. Обозначим за H(n) количество перестановок, являющихся корректной бинарной кучей.

 $\underline{\mathbf{Lm}}$ 11.1.1. $H(n)=\frac{n!}{\prod_i size_i}$, где $size_i$ – размер поддерева i-й вершины кучи

Доказательство. $H(n)=\binom{n-1}{l}H(l)H(r)=\frac{n!}{l!r!n}H(l)H(r)$, где $l,\,r$ – размеры детей, l+r+1=n.

Аналогично $H(l)=\frac{l!}{ll!lr!l}H(ll)H(lr),$ где $ll,\ lr$ – размеры левых внуков.

Аналогично $H(r)=\frac{r!}{rl!rr!r}H(rl)H(rr)$, где rl, rr – размеры правых внуков.

Подставляем, получаем $H(n) = \frac{n!}{l!r!n} \frac{l!}{l!lr!l} \frac{r!}{r!lrr!r} H(rl) H(rr) H(ll) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{lr!} \frac{H(rl)}{r!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(ll) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr) H(lr) = \frac{n!}{n \cdot l \cdot r} \frac{H(ll)}{l!l} \frac{H(lr)}{l!l} \frac{H(rr)}{rr!} \frac{H(rr)}{rr!} H(rr) H(lr) H(lr)$

Подставляя внуков и т.д. получим формулу, которую доказываем.

Теорема 11.1.2. Любой корректный алгоритм построения бинарной кучи делает в худшем случае не менее 1.364n сравнений

Доказательство. Пусть алгоритм делает k сравнений, тогда он разбивает n! перестановок на 2^k классов. Класс — те перестановки, на которых наш алгоритм одинаково сработает. Заметим, что алгоритм делающий одно и то же с разными перестановками, на выходе даст разные перестановки. Если x_i — количество элементов в i-м классе, корректный алгоритм переведёт эти x_i перестановок в x_i различных бинарных куч. Поэтому

$$x_i \le H(n)$$

Из $\sum_{i=1..2^k} x_i = n!$ имеем $\max_{i=1..2^k} x_i \ge \frac{n!}{2^k}$. Итого:

$$H(n) \ge \max x_i \ge \frac{n!}{k} \Rightarrow \frac{n!}{\prod_i size_i} \ge \frac{n!}{2^k} \Rightarrow 2^k \ge \prod size_i \Rightarrow k \ge \sum \log size_i$$

Рассмотрим случай полного бинарного дерева $n=2^k-1\Rightarrow \sum \log size_i=(\log 3)\frac{n+1}{4}+(\log 7)\frac{n+1}{8}+(\log 15)\frac{n+1}{16}+\cdots=(n+1)(\frac{\log 3}{4}+\frac{\log 7}{8}+\frac{\log 15}{16}+\ldots).$ При $n\to +\infty$ величина $\frac{\sum \log size_i}{n+1}$ имеет предел, вычисление первых 20 слагаемых даёт $1.36442\ldots$ и ошибку в 5-м знаке после запятой.

11.2. Биномиальная куча (Vuillemin'78)

11.2.1. Основные понятия

Определим понятие "биномиальное дерево" рекурсивно.

Def 11.2.1. Биномиальным деревом ранга 0 или T_0 будем называть одну вершину. Биномиальным деревом ранга n+1 или T_{n+1} будем называть дерево T_n , κ корню которого подвесили еще одно дерево T_n (порядок следования детей не важен). При этом биномиальное дерево должно удовлетворять свойству кучи (значение в вершине не меньше значения в предках).

Выпишем несколько простых свойств биномиальных деревьев.

Lm 11.2.2.
$$|T_n| = 2^n$$

Доказательство. Индукция по рангу дерева (далее эта фраза и проверка базы индукции будет опускаться). База: для n=0 дерево состоит из одной вершины.

Переход:
$$|T_{n+1}| = |T_n| + |T_n| = 2^n + 2^n = 2^{n+1}$$
.

<u>**Lm**</u> 11.2.3. $degRoot(T_n) = n$

Доказательство.
$$degRoot(T_{n+1}) = degRoot(T_n) + 1 = n + 1$$

<u>Lm</u> 11.2.4. Сыновьями T_n являются деревья $T_0, T_1, ..., T_{n-1}$.

Доказательство. Сыновья
$$T_{n+1}$$
 – все сыновья T_n , т.е. $T_0,...,T_{n-1}$, и новый T_n .

<u>Lm</u> 11.2.5. $depth(T_n) = n$

Доказательство.
$$depth(T_{n+1}) = max(depth(T_n), 1 + depth(T_n)) = 1 + depth(T_n) = 1 + n$$

• Как хранить биномиальное дерево?

```
1 struct Node{
2  Node *next, *child, *parent;
3  int x, rank;
4 };
```

Здесь child — ссылка на первого сына, next — ссылка на брата, x — полезные данные, которые мы храним. Список сыновей вершины v: v->child, v->child->next, v->child->next->next, ...
Теперь определим понятие "биномиальная куча".

Def 11.2.6. Биномиальная куча – список биномиальных деревьев различного ранга.

У любого числа n есть единственное представление в двоичной системе счисления $n = \sum_i 2^{k_i}$. В биномиальной куче из n элементов деревья будут иметь размеры как раз 2^{k_i} . Заметим, что в списке не более $\log_2 n$ элементов.

11.2.2. Операции с биномиальной кучей

Add и ExtractMin выражаются, также как и в левацкой куче, через Merge. Чтобы выразить ExtractMin заметим, что дети корня любого биномиального дерева по определению являются биномиальной кучей. То есть, после удаления минимума нужно сделать Merge от кучи, образованной детьми удалённой вершины и оставшихся деревьев.

DecreaseKey — обычный SiftUp, работает по лемме 11.2.5 за $\mathcal{O}(\log n)$.

В чём проблема Merge, почему просто не соединить два списка? После соединения появятся биномиальные деревья одинакового ранга. К счастью, по определению мы можем превратить их в одно дерево большего ранга

```
Node* join(Node* a, Node* b) { // a->rank == b->rank
if (a->x > b->x) swap(a, b);
b->next = a->child, a->child = b; // добавили b в список детей а
return a;
}
```

Теперь пусть у нас есть список с деревьями возможно одинакового ранга. Отсортируем их по рангу и будем вызывать join, пока есть деревья одного ранга.

```
1
  list < Node *> Normalize( list < Node *> &a ) {
2
     list < Node *> roots [maxRank + 1], result;
3
     for (Node* v : a) roots[v->rank].push_back(v);
     for (int rank = 0; rank <= maxRank; rank++) {</pre>
4
5
       while (roots[i].size() >= 2U) {
6
         Node* a = roots[i].back(); roots[i].pop_back();
7
         Node* b = roots[i].back(); roots[i].pop_back();
         roots[i + 1].push_back(join(a, b));
8
9
       }
10
11
     return result;
12 | }
```

Время работы Normalize равно $|a| + maxRank = \mathcal{O}(\log n)$.

11.2.3. Add и Merge за $\mathcal{O}(1)$

У нас уже полностью описана классическая биномиальная куча. Давайте её ускорять. Уберём условие на "все ранги должны быть различны". То есть, новая куча — список произвольных биномиальных деревьев. Теперь Add, Merge, GetMin, очевидно, работают за $\mathcal{O}(1)$. Но ExtractMin теперь работает за длину списка. Вызовем после ExtractMin процедуру Normalize, которая укоротит список до $\mathcal{O}(\log_2 n)$ корней. Теперь время ExtractMin самортизируется потенциалом $\varphi = \text{Roots}$ (длина списка, количество корней).

Теорема 11.2.7. Среднее время работы ExtractMin равно $\mathcal{O}(\log n)$

```
Доказательство. t_i = \mathtt{Roots} + \mathtt{maxRank}, \ \Delta \varphi \leq \log_2 n - \mathtt{Roots} \Rightarrow a_i = t_i + \Delta \varphi = \mathcal{O}(\log n). Заметим также, 0 \leq \varphi \leq n \Rightarrow среднее время ExtractMin \mathcal{O}(\log n).
```

11.3. Куча Фибоначчи (Fredman, Tarjan'84)

Отличается от всех вышеописанных куч тем, что умеет делать DecreaseKey за $\mathcal{O}(1)$. Является

апгрейдом биномиальной кучи. Собственно биномиальные кучи практической ценности не имеют, они во всём хуже левацкой кучи, а нужны они нам, как составная часть кучи Фибоначчи.

Если DecreaseKey будет основан на SiftUp, как ни крути, быстрее $\log n$ он работать не будет. Нужна новая идея для DecreaseKey, вот она: отрежем вершину со всем её поддеревом и поместим в список корней. Чтобы "отрезать" за $\mathcal{O}(1)$ кроме ссылки на отца теперь ещё нужно хранить двусвязный спикой детей (left, right).

```
struct Node {
Node *child, *parent, *left, *right;
int x, degree; // ранг биномиального дерева равен степени
bool marked; // удаляли ли мы уже сына у этой вершины
};
```

• Пометки marked

Чтобы деревья большого ранга оставались большого размера, нужно запретить удалять у них много детей. Скажем, что marked – флаг, равный единице, если мы уже отрезали сына вершины. Когда мы пытаемся отрезать у v второго сына, отрежем рекурсивно и вершину v тоже.

```
1 list < Node *> heap; // куча - список корней биномиальных деревьев
2
   void CascadingCut(Node *v) {
     Node *p = v->parent;
3
4
     if (p == NULL) return; // мы уже корень
5
     p->degree --; // поддерживаем степень, будем её потом использовать, как ранг
     <Delete v from linked list of children of p>
6
7
     heap.push_back(v), v->marked = 0; // начнём новую жизнь в качестве корня!
     if (p->parent && p->marked++) // если папа - корень, ничего не нужно делать
8
       CascadingCut(p); // y p только что отрезали второго сына, пора сделать его корнем
9
10 | }
   void DecreaseKey(int i, int x) { // i - номер элемента
11
12
     pos[i] -> x = x; // обратная ссылка
13
     CascadingCut(i);
14 | }
```

Важно заметить, что когда вершина v становится корнем, её mark обнуляется, она обретает новую жизнь, как корневая вершина ранга v->degree.

Def 11.3.1. Ранг вершины в Фибоначчиевой куче – её степень на тот момент, когда вершина последний раз была корнем.

Если мы ни разу не делали DecreaseKey, то rank = degree. В общем случае:

```
Lm 11.3.2. v.rank = v.degree + v.mark
```

Заметим, что ранги нам нужны только в Normalize, то есть, в тот момент, когда вершина является корнем.

Теорема 11.3.3. DecreseKey работает в среднем за $\mathcal{O}(1)$

Доказательство. Marked — число помеченных вершин. Пусть $\varphi = \mathtt{Roots} + 2\mathtt{Marked}$.

Амортизированное время операций кроме DecreaseKey не поменялось, так как они не меняют Marked. Пусть DecreaseKey отрезал k+1 вершину, тогда Δ Marked $\leq -k$, Δ Roots $\leq k+1$, $a_i=t_i+\Delta\varphi=t_i+\Delta$ Roots $+2\Delta$ Marked $\leq (k+1)+(k+1)-2k=\Theta(1)$.

11.3.1. Фибоначчиевы деревья

Чтобы оценка $\mathcal{O}(\log n)$ на ExtractMin не испортилась нам нужно показать, что size(rank) – всё ещё экспоненциальная функция.

Def 11.3.4. Фибоначчиево дерево F_n – биномиальное дерево T_n , с которым произвели рекурсивное обрезание: отрезали не более одного сына, и рекурсивно запустились от выживших детей.

Оценим S_n – минимальный размер дерева F_n

Lm 11.3.5.
$$\forall n \geq 2$$
: $S_n = 1 + S_0 + S_1 + \cdots + S_{n-2}$

Доказательство. Мы хотим минимизировать размер.

Отрезать ли сына? Конечно, да! Какого отрезать? Самого толстого, то есть, F_{n-1} .

Заметим, что полученное рекуррентное соотношение верно также и для чисел Фибоначчи:

Lm 11.3.6.
$$\forall n \geq 2$$
: $Fib_n = 1 + Fib_0 + Fib_1 + \cdots + Fib_{n-2}$

Доказательство. Индукция. Пусть
$$Fib_{n-1} = Fib_0 + Fib_1 + \cdots + Fib_{n-3}$$
, тогда $1 + Fib_0 + Fib_1 + \cdots + Fib_{n-2} = (1 + Fib_0 + Fib_1 + \cdots + Fib_{n-3}) + Fib_{n-2} = Fib_{n-1} + Fib_{n-2} = Fib_n$

Lm 11.3.7.
$$S_n = Fib_n$$

Доказательство. База:
$$Fib_0 = S_0 = 1, Fib_1 = S_1 = 1$$
. Формулу перехода уже доказали.

Получили оценку снизу на размер дерева Фибоначчи ранга $n: S_n \geq \frac{1}{\sqrt{5}} \varphi^n$, где $\varphi = \frac{1+\sqrt{5}}{2}$. И поняли, почему куча называется именно Фибоначчиевой.

11.3.2. Завершение доказательства

Фибоначчиева куча – список деревьев. Эти деревья **не являются Фибоначчиевыми** по нашему определению. Но размер дерева ранга k не меньше S_k .

Покажем, что новые деревья, которые мы получаем по ходу операций Normalize и DecreaseKey не меньше Фибоначчиевых.

 $\forall v$ дети v, отсортированные по рангу, обозначим x_i , i = 0..k-1, $rank(x_i) \leq rank(x_{i+1})$. Будем параллельно по индукции доказывать два факта:

- 1. Размер поддерева ранга k не меньше S_k .
- 2. \forall корня $v \quad rank(x_i) \geq i$.

То есть, ранг детей поэлементно не меньше рангов детей биномиального дерева.

Про размеры: когда v было корнем, его дети были не меньше детей биномиального дерева того же ранга, до тех пор, пока ранг v не поменяется, у v удалят не более одного сына, поэтому дети v будут не меньше детей фибоначчиевого дерева того же ранга.

Теперь рассмотрим ситуации, когда ранг меняется.

Переход #1: v становится корнем. Детей v на момент, когда v в предыдущий раз было корнем, обозначим x_i . Новые дети x_i' появились удалением из x_i одного или двух детей. $x_i' \ge x_i \ge i$

Переход #2: Join объединяет два дерева ранга k. Раньше у корня i-й ребёнок был ранга хотя бы i для i=0..k-1. Теперь мы добавили ему ребёнка ранга ровно k, отсортируем детей по рангу, теперь $\forall i=0..k \quad rank(x_i) \geq i$.

Лекция #12: Динамическое программирование

9 ноября

12.1. Базовые понятия

"Метод динамического программирования" будем кратко называть "динамикой". Познакомимся с этим методом через простой пример.

12.1.1. Условие задачи

У нас есть число 1, за ход можно заменить его на любое из x + 1, x + 7, 2x, 3x. За какое минимальное число ходов мы можем получить n?

12.1.2. Динамика назад

f[x] — минимальное число ходов, чтобы получить число x. Тогда $f[x] = \min(f[x-1], f[x-7], f[\frac{x}{2}], f[\frac{x}{3}])$, причём запрещены переходы в не натуральные числа. При этом мы знаем, что f[1] = 0, получается решение:

```
1 vector < int > f (n + 1, 0);
2 f[1] = 0; // бесполезная строчка, просто подчеркнём факт
3 for (int i = 2; i <= n; i++) {
4 f[i] = f[i - 1] + 1;
5 if (i - 7 >= 1) f[i] = min(f[i], f[i - 7] + 1);
6 if (i % 2 == 0) f[i] = min(f[i], f[i / 2] + 1);
7 if (i % 3 == 0) f[i] = min(f[i], f[i / 3] + 1);
8 }
```

Когда мы считаем значение f[x], для всех y < x уже посчитано f[y], поэтому f[x] посчитается верно. Важно, что мы не пытаемся думать, что выгоднее сделать "вычесть 7" или "поделить на 2", мы честно перебираем все возможные ходы и выбираем оптимум. Введём операцию relax — улучшение ответа. Далее мы будем использовать во всех "динамиках".

```
void relax( int &a, int b ) { a = min(a, b); }

vector<int> f(n + 1, 0);

for (int i = 2; i <= n; i++) {
   int r = f[i - 1];
   if (i - 7 >= 1) relax(r, f[i - 7]);
   if (i % 2 == 0) relax(r, f[i / 2]);
   if (i % 3 == 0) relax(r, f[i / 3]);

f[i] = r + 1;
}
```

Операция relax именно улучшает ответ,

в зависимости от задачи или минимизирует его, или максимизирует.

Введём основные понятия

- 1. f[x] функция динамики
- $2. \ x$ состояние динамики
- 3. f[1] = 0 база динамики
- 4. $x \to x + 1, x + 7, 2x, 3x$ переходы динамики

Исходная задача – посчитать f[n].

Чтобы её решить, мы сводим её к подзадачам такого же вида меньшего размера – посчитать для всех $1 \le i < n$, тогда сможем посчитать и f[n]. Важно, что для каждой подзадачи (для каждого x) мы считаем значение f[x] ровно 1 раз. Время работы $\Theta(n)$.

12.1.3. Динамика вперёд

Решим ту же самую задачу тем же самым методом, но пойдём в другую сторону.

```
Void relax( int &a, int b ) { a = min(a, b); }

vector<int> f(3 * n, INT_MAX); // 3 * n - чтобы меньше if-ов писать

f[1] = 0;

for (int i = 1; i < n; i++) {
   int F = f[i] + 1;
   relax(f[i + 1], F);
   relax(f[i + 7], F);
   relax(f[2 * i], F);
   relax(f[3 * i], F);
}
```

Для данной задачи код получился немного проще (убрали if-ы).

В общем случае нужно помнить про оба способа, выбирать более удобный.

Суть не поменялась: для каждого x будет верно $f[x] = \min(f[x-1], f[x-7], f[\frac{x}{2}], f[\frac{x}{2}]).$

• Интуиция для динамики вперёд и назад.

 $Hasa\partial$: посчитали f[x] через уже посчитанные подзадачи. $Bnep\ddot{e}\partial$: если f[x] верно посчитано, мы можем обновить ответы для $f[x+1], f[x+7], \ldots$

12.1.4. Ленивая динамика

Это рекурсивный способ писать динамику назад, вычисляя значение только для тех состояний, которые действительно нужно посчитать.

```
vector < int > f(n + 1, -1);
   int calc(int x) {
3
    int &r = f[x]; // результат вычисления f[x]
    if (r != -1) return r; // функция уже посчитана
    if (r == 1) return r = 0; // база динамики
     r = calc(x - 1);
     if (i - 7 >= 1) relax(r, calc(x - 7)); // стандартная ошибка: написать f[x-7]
7
     if (i \% 2 == 0) relax(r, calc(x / 2));
     if (i \% 3 == 0) relax(r, calc(x / 3));
10
     // теперь r=f[x] верно посчитан, в следующий раз для x сразу вернём уже посчитанный f[x]
11
     return ++r;
12 | }
```

Для данной задачи этот код будет работать дольше, чем обычная "динамика назад циклом for", так как переберёт те же состояния с бoльшей константой (рекурсия хуже цикла).

Тем не менее представим, что переходы были бы $x \to 2x + 1, 2x + 7, 3x + 2, 3x + 10$. Тогда, например, ленивая динамика точно не зайдёт в состояния $\left[\frac{n}{2}..n\right)$, а если посчитать точно будет вообще работать за $\mathcal{O}(\log n)$. Чтобы она корректно работала для n порядка 10^{18} нужно лишь vector<int> f(n + 1, -1); заменить на map<long long, int> f;.

12.2. Ещё один пример

Вам дана матрица с непроходимыми клетками. В некоторых клетках лежат монетки разной ценности. За один ход можно сместиться вверх или вправо. Рассмотрим все пути из левой-нижней клетки в верхнюю-правую.

- (а) Нужно найти число таких путей.
- (b) Нужно найти путь, сумма ценностей монет на котором максимальна/минимальна.

Решим задачу динамикой назад:

$$cnt[x,y] = \begin{cases} cnt[x-1,y] + cnt[x,y-1] & \text{если клетка проходима} \\ 0 & \text{если клетка не проходима} \end{cases}$$

$$f[x,y] = \begin{cases} max(f[x-1,y],f[x,y-1]) + value[x,y] & \text{если клетка проходима} \\ -\infty & \text{если клетка не проходима} \end{cases}$$

$$\Gamma_{\text{де } cnt}[x,y] - \text{количество путей из } (0,0) \text{ в } (x,y),$$

$$f[x,y] - \text{вес максимального пути из } (0,0) \text{ в } (x,y),$$

Решим задачу динамикой вперёд:

value[x,y] – ценность монеты в клетке (x,y).

```
cnt <-- 0, f <-- -\infty; // нейтральные значения
   cnt[0,0] = 1, f[0,0] = 0; // база
   for (int x = 0; x < width; x++)
     for (int y = 0; y < height; y++) {
4
       if (клетка не проходима) continue;
5
6
       cnt[x+1,y] += cnt[x,y];
7
       cnt[x,y+1] += cnt[x,y];
       f[x,y] += value[x,y];
8
9
       relax(f[x+1,y], f[x,y]);
10
       relax(f[x,y+1], f[x,y]);
11
```

Ещё больше способов писать динамику.

Можно считать cnt[x,y] – число путей из (0,0) в (x,y). Это мы сейчас и делаем. А можно считать cnt'[x,y] – число путей из (x,y) в (width-1,height-1).

12.3. Восстановление ответа

Посмотрим на задачу про матрицу и максимальный путь. Нас могут попросить найти только вес пути, а могут попросить найти и сам путь, то есть, "восстановить ответ".

• Первый способ. Обратные ссылки.

Будем хранить p[x,y] – из какого направления мы пришли в клетку (x,y). 0 – слева, 1 – снизу. Функцию релаксации ответа нужно теперь переписать следующим образом:

```
void relax(int x, int y, int F, int P) {
  if (f[x,y] < F)
    f[x,y] = F, p[x,y] = P;
}</pre>
```

Чтобы восстановить путь, пройдём по обратным ссылкам от конца пути до его начала:

```
1 void outputPath() {
2   for (int x = width-1, y = height-1; !(x == 0 && y == 0); p[x,y] ? y-- : x--)
3   print(x, y);
4 }
```

• Второй способ. Не хранить обратные ссылки.

Заметим, что чтобы понять, куда нам идти назад из клетки (x,y), достаточно повторить то, что делает динамика назад, понять, как получилось значение f[x,y]:

```
1 if (x > 0 && f[x,y] == f[x-1,y] + 1) // f[x,y] получилось из f[x-1,y] x--; else y--;
```

Второму способу нужно меньше памяти, но обычно он требует больше строк кода.

• Оптимизации по памяти

Если нам не нужно восстанавливать путь, заметим, что достаточно хранить только две строки динамики — f[x], f[x+1], где f[x] уже посчитана, а f[x+1] мы сейчас вычисляем. Напомним, решение за $\Theta(n^2)$ времени и $\Theta(n)$ памяти (в отличии от $\Theta(n^2)$ памяти) попадёт в кеш и будет работать значительно быстрее.

12.4. Графовая интерпретация

Рассмотрим граф, в котором вершины — состояния динамики, ориентированные рёбра — переходы динамики ($a \to b$ обозначает переход из a в b). Тогда мы только что решали задачи поиска пути из s (начальное состояние) в t (конечное состояние), минимального/максимального веса пути, а так же научились считать количество путей из s в t.

Утверждение 12.4.1. Любой задаче динамики соответствует ацикличный граф.

При этому динамика вперёд перебирала исходящие из v рёбра, а динамика назад перебирала входящие в v рёбра. Верно и обратное:

 $Утверждение\ 12.4.2.\ Для\ любого\ ацикличного\ графа и выделенных вершин <math>s,\ t$ мы умеем искать min/max путь из s в t и считать количество путей из s в t, используя ленивую динамику.

Почему именно ленивую?

В произвольном графе мы не знаем, в каком порядке вычислять функцию для состояния. Но знаем, чтобы посчитать f[v], достаточно знать значение динамики для начал всех входящих в v рёбер.

Почему только на ацикличном?

Пусть есть ориентированный цикл $a_1 \to a_2 \to \cdots \to a_k \to a_1$. Пусть мы хотим посчитать значение функции в вершине a_1 , для этого нужно знать значение в вершине a_k , для этого в a_{k-1} , и так далее до a_1 . Получили, чтобы посчитать значение в a_1 , нужно его знать заранее.

Для произвольного ацикличного графа из V вершин и E рёбер динамика будет работать за $\mathcal{O}(V+E)$. При этом будут посещены лишь достижимые по обратным рёбрам из t вершины.

12.5. Checklist

Вы придумываете решение задачи, используя метод динамического программирования, или даже собираетесь писать код. Чтобы придумать решение, нужно увидеть некоторый процесс, например "мы идём слева направо, снизу вверх по матрице". После этого, чтобы получилось корректное решение нужно увидеть

- 1. Состояние динамики (процесса) мы стоим в клетке (x, y)
- 2. Переходы динамики сделать шаг вправо или вверх
- 3. Начальное состояние динамики стоим в клетке (0,0)
- 4. Как ответ к исходной задаче выражается через посчитанную динамику (конечное состояние). В данном случае всё просто, ответ находится в f[width-1, height-1]
- 5. Порядок перебора состояний: если мы пишем динамику назад, то при обработке состояния (x, y) должны быть уже посчитаны (x-1, y) и (x, y-1). Всегда можно писать лениво, но цикл **for** быстрее рекурсии.
- 6. Если нужно восстановить ответ, не забыть подумать, как это делать.

12.6. Рюкзак

12.6.1. Формулировка задачи

Нам дано n предметов с натуральными весами $a_0, a_1, \ldots, a_{n-1}$. Требуется выбрать подмножество предметов суммарного веса ровно S.

- 1. Задача NP-трудна, если решить её за $\mathcal{O}(poly(n))$, получите 1 000 000\$.
- 2. Простое переборное решение рекурсией за 2^{n} .
- 3. \exists решение за $2^{n/2}$ (meet in middle)

12.6.2. Решение динамикой

Будем рассматривать предметы по одному в порядке $0, 1, 2, \dots$

Каждый из них будем или брать в подмножество-ответ, или не брать.

Состояние: перебрав первые i предметов, мы набрали вес x

Функция: $is[i,x] \Leftrightarrow$ мы могли выбрать подмножество веса x из первых i предметов

Начальное состояние: (0,0)

Ответ на задачу: содержится в is[n, S]

Переходы: $\begin{cases} [i,x] \to [i+1,x] & \text{(не брать)} \\ [i,x] \to [i+1,x+a_i] & \text{(берём в ответ)} \end{cases}$

```
bool is[n+1][2S+1] <-- 0; // пусть a[i] <= S, запаса 2S хватит
is[0,0] = 1;
for (int i = 0; i < n; i++)
for (int j = 0; j <= S; j++)
if (is[i][j])
is[i+1][j] = is[i+1][j+a[i]] = 1;
// Answer = is[n][S]
```

Время работы $\Theta(nS)$, память $\Theta(nS)$.

12.6.3. Оптимизируем память

Мы уже знаем, что, если не нужно восстанавливать ответ, то достаточно хранить лишь две строки динамики is[i], is[i+1], в задаче о рюкзаке можно хранить лишь одну строку динамики:

Код 12.6.1. Рюкзак с линейной памятью

```
1 bool is[S+1] <-- 0;
is[0] = 1;
3 for (int i = 0; i < n; i++)
4 for (int j = S - a[i]; j >= 0; j--) // поменяли направление, важно
if (is[j])
is[j + a[i]] = 1;
7 // Answer = is[S]
```

Путь к пониманию кода состоит из двух шагов.

(a) $is[i,x] = 1 \Rightarrow is[i+1,x] = 1$. Единицы остаются, если мы умели набирать вес i, как подмножество из i предметов, то как подмножество из i+1 предмета набрать, конечно, тоже сможем. (б) После шага j часть массива is[j...S] содержит значения строки i+1, а часть массива is[0...j-1] ещё не менялась и содержит значения строки i.

12.6.4. Добавляем bitset

bitset — массив бит. Им можно пользоваться, как обычным массивом. С другой стороны с bitset можно делать все логические операции |, &, $\hat{}$, «, как с целыми числами. Целое число можно рассматривать, как bitset из 64 бит, a bitset из n бит устроен, как массив $\lceil \frac{n}{64} \rceil$ целых чисел. Для асимптотик введём обозначения \mathbf{w} от $\mathbf{word_size}$ (размер машинного слова). Тогда наш код можно реализовать ещё короче и быстрее.

```
1 bitset<S+1> is;

2 is [0] = 1;

3 for (int i = 0; i < n; i++)

4 is |= is << w[i]; // выполняется за \mathcal{O}(\frac{S}{w})
```

Заметим, что мы делали ранее ровно указанную операцию над битовыми массивами. Время работы $\mathcal{O}(\frac{nS}{w})$, то есть, в 64 раза меньше, чем раньше.

12.6.5. Восстановление ответа с линейной памятью

Модифицируем код 12.6.1, чтобы была возможность восстанавливать ответ.

```
int last[S+1] <-- -1;
last[0] = 0;
for (int i = 0; i < n; i++)
for (int j = S - a[i]; j >= 0; j--)
if (last[j] != -1 && last[j + a[i]] == -1)
last[j + a[i]] = i;
// Answer = (last[S] == -1 ? NO : YES)
```

И собственно восстановление ответа.

```
1 for (int w = S; w > 0; w -= a[last[w]])
2 print(last[w]); // индекс взятого в ответ предмета
```

Почему это работает?

Заметим, что когда мы присваиваем last[j+a[i]] = i, верно, что на пути по обратным ссылкам из j: last[j], last[j-a[last[j]]], ... все элементы строго меньше i.

12.7. Квадратичные динамики

Def 12.7.1. Подпоследовательностью последовательности a_1, a_2, \ldots, a_n будем называть $a_{i_1}, a_{i_2}, \dots, a_{i_k} : 1 \le i_1 < i_2 < \dots < i_k \le n$

Задача НОП (LCS). Поиск наибольшей общей подпоследовательности.

Даны две последовательности a и b, найти c, являющуюся подпоследовательностью и a, и bтакую, что $len(c) \to \max$. Например, для последовательностей (1, 3, 10, 2, 7) и (3, 5, 1, 2, 7, 11, 12)возможными ответами являются (3, 2, 7) и (1, 2, 7).

Решение за $\mathcal{O}(nm)$

f[i,j] – длина НОП для префиксов a[1..i] и b[1..j].

Ответ содержится в f[n, m], где n и m – длины последовательностей.

Посмотрим на последние элементы префиксов a[i] и b[j].

Или мы один из них не возьмём в ответ, или возьмём оба. Делаем переходы:

$$f[i,j] = \max egin{cases} f[i-1,j] \\ f[i,j-1] \\ f[i-1,j-1]+1, \ ext{ если } a_i = b_j \end{cases}$$

Время работы $\Theta(n^2)$, количество памяти $\Theta(n^2)$

Задача НВП (LIS). Поиск наибольшей возрастающей подпоследовательности.

Дана последовательность a, найти возрастающую подпоследовательность a: длина \to max.

Например, для последовательности (5, 3, 3, 1, 7, 8, 1) возможным ответом является (3, 7, 8).

Решение за $\mathcal{O}(n^2)$

f[i] – длина НВП, заканчивающейся ровно в i-м элементе.

Ответ содержится в $\max(f[1], f[2], \ldots, f[n])$, где n – длина последовательности. Пересчёт: $f[i] = 1 + \max_{j < i, a_j < a_i} f[j]$, максимум пустого множества равен нулю. Время работы $\Theta(n^2)$, количество памяти $\Theta(n)$.

Расстояние Левенштейна. Оно же "редакционное расстояние".

Дана строка s и операции INS, DEL, REPL – добавление, удаление, замена одного символа.

Минимальным числом операций нужно получить строку t.

Например, чтобы из строки STUDENT получить строку POSUDA,

можно добавить зелёное (2), удалить красное (3), заменить синее (1), итого 6 операций.

Решение за $\mathcal{O}(nm)$

При решении задачи вместо добавлений в s будем удалять из t. Нужно сделать s и t равными. f[i,j] – редакционное расстояние между префиксами s[1..i] и t[1..j]

$$f[i,j] = \min egin{cases} f[i-1,j]+1 & ext{удаление из } s \ f[i,j-1]+1 & ext{удаление из } t \ f[i-1,j-1]+w & ext{если } s_i=t_j, ext{ то } w=0, ext{ иначе } w=1 \end{cases}$$

Ответ содержится в f[n, m], где n и m – длины строк.

Восстановление ответа.

Заметим, что пользуясь стандартными методами из раздела "восстановление ответа", мы можем найти не только число, но и восстановить сами общую последовательность, возрастающую последовательность и последовательность операций для редакционного расстояния.

12.8. Оптимизация памяти для НОП

Рассмотрим алгоритм для НОП. Если нам не требуется восстановление ответа, можно хранить только две строки динамики, памяти будет $\Theta(n)$. Восстанавливать ответ мы пока умеем только за $\Theta(n^2)$ памяти, давайте улучшать.

12.8.1. Храним биты

Можно хранить не f[i,j], а разность соседних df[i,j] = f[i,j] - f[i,j-1], она или 0, или 1. Храним $\Theta(nm)$ бит = $\Theta(\frac{nm}{w})$ машинных слов. Этого достаточно, чтобы восстановить ответ: мы умеем восстанавливать путь, храня только f, чтобы сделать 1 шаг назад в этом пути, достаточно знать 2 строки f[], восстановим их за $\mathcal{O}(m)$, сделаем шаг.

12.8.2. Алгоритм Хиршберга (по wiki)

Пусть мы ищем НОП (LCS) для последовательностей a[0..n) и b[0..m).

Обозначим $n' = \lfloor \frac{n}{2} \rfloor$. Разделим задачу на подзадачи посчитать НОП на подотрезках $[0..n') \times [0..j)$ и $[n'..n) \times [j..m)$. Как выбрать оптимальное i? Для этого насчитаем две квадратные динамики: $f[i,j] - \text{HO}\Pi$ для первых i символов a и первых j символов b и $g[i,j] - \text{HO}\Pi$ для последних i символов a и последних j символов b.

Нас интересуют только последние строки – f[n'] и g[n-n'], поэтому при вычислении можно хранить лишь две последние строки, $\mathcal{O}(m)$ памяти. Выберем $i : f[n',j] + g[n-n',m-j] = \max$, сделаем два рекурсивных вызова, которые восстановят нам половинки ответа.

12.8.3. Оценка времени работы Хиршберга

Заметим, что глубина рекурсии равна $[\log_2 n]$, поскольку n делится пополам.

<u>Lm</u> 12.8.1. Память $\Theta(m + \log n)$

Доказательство. Для вычисления f и g мы используем $\Theta(m)$ памяти, для стека рекурсии $\Theta(\log n)$ памяти.

$\underline{\mathbf{Lm}}$ 12.8.2. Время работы $\Theta(nm)$

Доказательство. Глубина рекурсии $\mathcal{O}(\log n)$.

Суммарный размер подзадач на i-м уровне рекурсии = m. Например, на 2-м уровне это i+(m-i)=m. Значит $Time \leq nm+\lceil \frac{n}{2}\rceil m+\lceil \frac{n}{4}\rceil m+\cdots \leq 4nm$.

Подведём итог проделаной работы:

Теорема 12.8.3.

 $\overline{\text{Мы умее}}$ м искать НОП с восстановлением ответа за $\Theta(nm)$ времени, $\Theta(m+\log n)$ памяти.

Алгоритм полностью описан в wiki.

12.8.4. Алгоритм Хиршберга (улучшенный)

Пусть мы ищем НОП (LCS) для последовательностей a[0..n) и b[0..m).

Пишем обычную динамику $lcs[i,j] = \langle$ длина НОП для a[0..i), b[0..j), ссылка назад \rangle . Будем хранить только две последние строки динамики. Если раньше ссылку из i-й строки мы хранили или на i-ю, или на (i-1)-ю, теперь для восстановления ответа будем для строк $\left[\frac{n}{2}..n\right)$ хранить ссылку на то место, где мы были в строке номер $\frac{n}{2}$.

ТООО: здесь очень нужна картинка.

```
def relax(i, j, pair, add):
2
     pair.first += add
3
     lcs[i,j] = min(lcs[i,j], pair)
4
5
   def solve(n, a, m, b):
6
     if n <= 2 or m <= 2:
7
       return naive_lcs(n, a, m, b) # запустили наивное решение
8
9
     # нужно хранить только 2 последние строчки lcs
10
     lcs[] <-- -INF, lcs[0,0] = 0; # инициализация
     for i = 0..n-1:
11
12
       for j = 0..m-1:
13
         relax(i, j, lcs[i,j-1], 0)
14
         relax(i, j, lcs[i-1,j], 0)
15
         if (i > 0 \text{ and } j > 0 \text{ and } a[i-1] == b[j-1]):
16
            relax(i, j, lcs[i-1,j-1], 1)
17
         if (i == n/2):
18
            lcs[i,j].second = j # самое важное, сохранили, где мы были в n/2-й строке
19
20
     # нашли клетку, через которую точно проходит последовательность-ответ
21
     i, j = n/2, lcs[n,m].second;
     return solve(i, a, j, b) + solve(n-i, a+i, m-j, b+j)
```

Заметим, что и глубина рекурсия, и ширина, и размеры всех подзадач будут такими же, как в доказательстве $12.8.3 \Rightarrow$ оценки те же.

Теорема 12.8.4.

Новый алгоритм ищет НОП с восстановлением ответа за $\Theta(nm)$ времени, $\Theta(m + \log n)$ памяти.

12.8.5. Область применение идеи Хиршберга

Данным алгоритмом (иногда достаточно простой версии, иногда нужна вторая) можно восстановить ответ без ухудшения времени работы для огромного класса задач. Например

- 1. Рюкзак со стоимостями
- 2. Расстояние Левенштейна
- 3. "Задача о погрузке кораблей", которую мы обсудим на следующей паре
- 4. "Задача о серверах", которую мы обсудим на следующей паре

Лекция #13: Динамическое программирование

16 ноября

13.1. bitset

bitset – структура для хранения N бит.

w — сокращение от word size

```
1 bitset <N > a, b; // N - константа; в C++, к сожалению, размер bitset-а должен быть константой 2 x = a[i], a[j] = y; // \mathcal{O}(1) - операции с массивом 3 a = b | (a << 100), a &= b; // \mathcal{O}(\frac{N}{w}) - битовые операции
```

13.1.1. Рюкзак

Применим новую идею к задаче о рюкзаке:

```
1 bitset <S+1> is;
2 is [0] = 1; // изначально умеет получать пустым множеством суммарный вес 0
3 for (int i = 0; i < n; i++)
4 is |= is << a[i]; // если is[w] было 1, теперь is[w + a[i]] тоже 1
```

13.2. НВП за $\mathcal{O}(n \log n)$

Пусть дана последовательность a_1, a_2, \ldots, a_n .

Код 13.2.1. Алгоритм поиска НВП за $\mathcal{O}(n \log n)$

```
1 x[] <-- inf
2 x[0] = -inf, answer = 0;
3 for (int i = 0; i < n; i++) {
4   int j = lower_bound(x, x + n, a[i]) - x;
5   x[j] = a[i], answer = max(answer, j);
6 }</pre>
```

Попробуем понять не только сам код, но и как его можно придумать, собрать из стандартных низкоуровневых идей оптимизации динамики.

Для начало рассмотрим процесс: идём слева направо, некоторые число берём в ответ (НВП), не которые не берём. Состояние этого процесса можно описать (k, len, i) — мы рассмотрели первые k чисел, из них len взяли в ответ, последнее взятое равно i. У нас есть два перехода $(k, len, i) \to (k+1, len, i)$, и, если $a_k > a_i$, можно сделать переход $(k, len, i) \to (k+1, len+1, k)$

Обычная идея преобразования "процесс \to решение динамикой" – максимизировать len[k,i]. Но можно сделать i[k,len] и минимизировать конец выбранной последовательности x[i] (x[k,len]). Пойдём вторым путём, поймём, как вычислять x[k,len] быстрее чем $\mathcal{O}(n^2)$.

<u>Lm</u> 13.2.2. $\forall k, len \ x[k, len] \le x[k, len + 1]$

Доказательство. Если была последовательность длины len+1, выкинем из неё любой элемент, получим длину len. ■

Обозначим $x_k[len] = x[k, len]$ – т.е. x_k – одномерный массив, строка массива x.

<u>Lm</u> 13.2.3. В реализации 13.2.1 строка 5 преобразует x_i в x_{i+1}

Доказательство. При переходе от x_i к x_{i+1} , мы пытаемся дописать элемент a_i ко всем существующим возрастающим подпоследовательностям, из 13.2.2 получаем, что приписать можно только к x[0..j), где j посчитано в строке 4. Заметим, что $\forall k < j-1$ к x[k] дописывать бесполезно, так как x[k+1] < a[i]. Допишем к x[j-1], получим, что x[j] уменьшилось до a_i .

Восстановление ответа: кроме значения x[j] будем также помнить позицию xp[j], тогда:

Насчитали таким образом ссылки prev на предыдущий элемент последовательности.

13.3. Задача про погрузку кораблей

Дан склад грузов, массив a_1, a_2, \ldots, a_n . Есть бесконечное множество кораблей размера S. При погрузке должно выполняться $\sum a_i \leq S$. Грузим корабли по одному, погруженный корабль сразу уплывает. Погрузчик может брать только самый левый/правый груз из массива. $3a\partial a ua$: минимизировать число кораблей, использованное для перевозки грузов.

Представим себе процесс погрузки: k кораблей уже погружено полностью, на складе остался отрезок грузов [L,R]. Состояние такого процесса описывается (k,L,R). В будущем будем использовать круглые скобки для описания состояния процесса и квадратные для состояния динамики. Такое видение процесса даёт нам динамику $k[L,R] \to \min$. Переходы:

$$(k,L,R) \to (k+1,L',R'),$$
 при этом $sum[L..L') + sum(R'..R] \le S$

Состояний n^2 , время работы $\mathcal{O}(n^4)$.

13.3.1. Измельчение перехода

Идея оптимизации динамики в таких случаях — "измельчить переход". Сейчас переход — "погрузить корабль с нуля целиком", новый переход будет "погрузить один предмет на текущий корабль или закончить его погрузку". Итак, пусть w — суммарный размер грузов в текущем корабле. Переходы:

$$\begin{cases} (k,w,L,R) \to (k,w+a_L,L+1,R) & \text{погрузить самый левый, если } w+a_L \leq S \\ (k,w,L,R) \to (k,w+a_R,L,R-1) & \text{погрузить самый правый, если } w+a_R \leq S \\ (k,w,L,R) \to (k+1,0,L,R) & \text{начать погрузку следующего корабля} \end{cases}$$

Что выбрать за состояние динамики, что за функцию?

 $0 \le k, L, R \le n, 0 \le w \le S$, выбираем $w[k, L, R] \to min$, поскольку w не ограничена через n. Минимизируем, так как при прочих равных выгодно иметь максимально пустой корабль. Получили больше состояний, но всего 3 перехода: n^3 состояний, время работы $\mathcal{O}(n^3)$.

13.3.2. Использование пары, как функции динамики

Можно сделать ещё лучше: $\langle k, w \rangle [L, R]$.

Минимизировать сперва k, при равенстве k минимизировать w.

Теперь мы сохраняем не все состояния процесса, а из пар $\langle k_1, w_1 \rangle \leq \langle k_2, w_2 \rangle$ только $\langle k_1, w_1 \rangle$.

Действительно, если $k_1 = k_2$, то выгодно оставить пару с меньшим w, а если $k_1 < k_2$, то можно отправить корабль $\langle k_1, w_1 \rangle \to \langle k_1 + 1, 0 \rangle \le \langle k_2, w_2 \rangle$ $(k_1 + 1 \le k_2, 0 \le w_2)$. К сожалению, переход

 $(k, w, L, R) \rightarrow (k+1, 0, L, R)$ теперь является петлёй.

Динамике же на вход нужен граф без циклов. Поэтому делаем так:

$$(k, w, L, R) \to \begin{cases} (k, w + a_L, L + 1, R) & \text{если } w + a_L \leq S \\ (k + 1, a_L, L + 1, R) & \text{если } w + a_L > S \end{cases}$$
 Итог: $\mathcal{O}(n^2)$ времени, $\mathcal{O}(n^2)$ памяти.

Заметим, что без восстановления ответа можно хранить только две строки, $\mathcal{O}(n)$ памяти, а при восстановлении ответа применим алгоритм Хиршберга, что даёт также $\mathcal{O}(n)$ памяти.

13.4. Рекуррентные соотношения

Def 13.4.1. Линейное рекуррентное соотношение: даны f_0, f_1, \dots, f_{k-1} , известно $f_n = f_{n-1}a_1 +$ $f_{n-2}a_2 + \dots f_{n-k}a_k + b$

Задача: даны $f_0, \ldots, f_{k-1}; a_1, \ldots, a_k; b$, найти f_n .

Очевидно решение динамикой за $\mathcal{O}(nk)$.

Научимся решать быстрее сперва для простейшего случая – числа Фибоначчи.

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \cdot \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$$

Напомним, как работает умножение матриц: строка левой умножается скалярно на столбец правой. То есть, первое равенство читается как $(F_n = 1 \cdot F_{n-1} + 1 \cdot F_{n-2}) \wedge (F_{n-1} = 1 \cdot F_{n-1} + 0 \cdot F_{n-2})$

Lm 13.4.2. Возведение в степень можно сделать за $\mathcal{O}(\log n)$

Доказательство. Пусть определена ассоциативная операция $a\circ b,\ a^n=\underbrace{a\circ a\circ \cdots \circ a}_n$ тогда: $a^{2k}=(a^k)^2 \quad \wedge \quad a^{2k+1}=(a^k)^2\circ a \quad \wedge \quad a^1=a$

$$a^{2k} = (a^k)^2 \wedge a^{2k+1} = (a^k)^2 \circ a \wedge a^1 = a$$

Итог: рекурсивная процедура возведения в степень n, делающую не более $2 \log n$ операций \circ . Следствие 13.4.3.

 F_n можно посчитать за $\mathcal{O}(\log n)$ арифметических операций с числами порядка F_n .

 F_n можно посчитать по модулю P за $\mathcal{O}(\log n)$ арифметических операций с числами порядка P. Вернёмся к общему случаю, нужно увидеть возведение матрицы в степень.

Теорема 13.4.4. Существует решение за $\mathcal{O}(k^3 \log n)$

Доказательство.

$$\begin{pmatrix} f_{n+k+1} \\ f_{n+k} \\ f_{n+k-1} \\ \vdots \\ f_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_{k-1} & a_k & b \\ 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} f_{n+k} \\ f_{n+k-1} \\ f_{n+k-2} \\ \vdots \\ f_n \\ 1 \end{pmatrix} = A \cdot V$$

В общем случае иногда выгодно $\mathcal{O}(nk)$, иногда $\mathcal{O}(k^3 \log n)$. \exists решение за $\mathcal{O}(k \log k \log n)$

$13.4.1. \ \Pi$ ути в графе

Def 13.4.5. Матрица смежности C графа $G: C_{ij}$ – есть ли ребро между (i,j) в G.

Задача: найти количество путей из s в t длины ровно k.

Решение динамикой за $\mathcal{O}(kn^2)$: f[k,v] – количество путей из s в v длины ровно k.

Пересчёт $f[k,v] = \sum_i f[k-1,i] \cdot C_{i,v} \Rightarrow f_k = C \cdot f_{k-1} = C^k f_0.$

Подсчёт f[k,t] в лоб будет работать за $\mathcal{O}(kn^2)$, с быстрого помощью возведения матрицы в степень за $\mathcal{O}(n^3 \log k)$, так как одно умножение матриц работает за n^3 .

13.5. Задача о почтовых отделениях

На прямой расположены города в координатах x_1, x_2, \ldots, x_n , население городов w_1, w_2, \ldots, w_n $(w_i > 0)$. Нужно в каких-то k из этих городов $i_1, i_2, \dots i_k$ открыть почтовые отделения, минимизиируя при этом суммарное расстояние по всем людям до ближайшего почтового отделения: $\sum_{i} w_{i} \min_{t} |x_{k} - x_{i_{t}}|.$

Lm 13.5.1. Задачу можно переформулировать в виде "разбить n городов на k отрезков и на каждом из отрезков выбрать центр"

Доказательство. Отрезки $x_k \to x_{i_t}$ или имеют общий конец i_t , или не пересекаются, иначе можно уменьшить сумму.

Оптимальный центр для отрезка [l,r] будем обозначать m[l,r]. Стоимость отрезка cost(l,r). Теперь задача в выборе таких $p_1 = 1, p_2, p_3, \dots, p_{k+1} = n : \sum_{i=1,k} cost(p_i, p_{i+1}) \to \min$

Lm 13.5.2.
$$m[l,r] = \min i$$
: $\sum_{j \in [l,i]} w_j \ge \sum_{j \in (i,r]} w_j$

Доказательство. Задача с практики.

Lm 13.5.3. Зная m[l,r], можно посчитать cost(l,r) за $\mathcal{O}(1)$

Доказательство. Обозначим
$$m=m[l,r].$$

$$\sum_{i=l..r} w_i |x_i-x_m| = \sum_{i=l..m} w_i (x_m-x_i) + \sum_{i=m..r} w_i (x_i-x_m) = x_m (\sum_{i=l..m} w_i - \sum_{i=m..r} w_i) - \sum_{i=l..m} x_i w_i + \sum_{i=m..r} x_i w_i$$

Получили четыре суммы на отрезках, каждая считается через префиксные суммы.

Lm 13.5.4. m[l,r] < m[l,r+1]

Следствие 13.5.5. $\forall left$ можно насчитать m[left,x] для всех x двумя указателями за $\mathcal{O}(n)$

```
int i = left;
  for (int r = left; r <= n; r++) {</pre>
3
    while (sum(left, i) < sum(i + 1, r))
      i++;
5
    m[left, r] = i;
```

Пусть f[k, n] – стоимость разбиения первых n городов на k отрезков.

Пусть последним k-м отрезков выгодно брать отрезок $(p_{k,n}, n]$.

Тогда $f[k,n] = f[k-1, p_{k,n}] + cost(p_{k,n}+1, n)$

Теорема 13.5.6. Задача про почтовые отделения решение динамикой за $\mathcal{O}(n^2k)$

Доказательство. Сперва за $\mathcal{O}(n^2)$ предподсчитали все m[l,r], затем за $\mathcal{O}(n^2k)$ f[k,n]

13.6. Оптимизация Кнута

Предположим, что $p_{k-1,n} \leq p_{k,n} \leq p_{k,n+1}$, тогда в решении можно перебирать $p_{k,n}$ не от 0 до n-1, а между $p_{k-1,n}$ и $p_{k,n+1}$. Получаем:

```
// обнулили f[] и p[]
2
   for (int k = 2; k <= K; k++) // порядок перебора состояний следует из неравенств
3
     for (int n = N; n >= k; n--) // порядок перебора состояний следует из неравенств
       for (int i = p[k-1, n]; i \le p[k, n+1]; i++) { // уже посчитаны
5
6
          int tmp = f[k-1, i] + cost(i+1, n);
7
         if (tmp < f[k, n])</pre>
8
            f[k, n] = tmp, p[k, n] = i;
9
       }
10
```

Теорема 13.6.1. Описанное решение работает $\mathcal{O}(n^2)$

Доказательство. $Time = \sum_{n,k} (p_{k,n+1} - p_{k-1,n})$. Заметим, что все кроме n+k слагаемые присутствуют в сумме и с +, и с -, значит, сократятся $\Rightarrow Time \leq (n+k)n = \mathcal{O}(n^2)$.

Теперь докажем корректность $p_{k-1,n} \leq p_{k,n} \leq p_{k,n+1}$. Заметим сразу, что не для всех возможных оптимальных ответов это неравенство верно, но если уже фиксированы любые $p_{k-1,n}$ и $p_{k,n+1}$, дающие оптимальный ответ, то $\exists p_{k,n}$, удовлетворяющее обоим неравенствам и дающее оптимальный ответ $f_{k,n}$.

<u>Lm</u> 13.6.2. $\forall p_{k,n} \, \exists p_{k,n+1} \geq p_{k,n}$ такое, что ответ для $f_{k,n+1}$ оптимален.

Доказательство. Рассмотрим оптимальные решения задач [k, n] и [k, n+1].

Центр последнего отрезка, $m[p_{k,n}+1,n]$, обозначим $q_{k,n}$.

Центр последнего отрезка, $m[p_{k,n+1}+1,n]$, обозначим $q_{k,n+1}$.

Доказывать будем от противного, то есть, $p_{k,n+1} < p_{k,n}$.

Рассмотрим четыре разбиения:

- 1. Оптимальное для [k, n]
- 2. Копия 1, в последний отрезок добавили точку n+1.
- 3. Оптимальное для [k, n+1]
- 4. Копия 3, из последнего отрезка убрали точку n+1.

Функции f от разбиений обозначим f_1, f_2, f_3, f_4 . От противного имеем $f_3 < f_2$. Чтобы прийти к противоречию достаточно получить $f_4 < f_1$ (противоречит с тем, что f_1 оптимально).

• Случай #1: $q_{k,n} \ge q_{k,n+1}$. Пусть 2-е разбиение имеет центр $q_{k,n}$, а 4-е центр $q_{k,n+1}$.

При $f_1 \to f_2$ функция увеличилась на $w_{n+1}(x_{n+1} - x_{q_{k,n}})$.

При $f_3 \to f_4$ функция уменьшилась на $w_{n+1}(x_{n+1} - x_{q_{k,n+1}})$.

 $q_{k,n} \ge q_{k,n+1} \Rightarrow$ уменьшилась хотя бы на столько же, на сколько увеличилась $f_3 < f_2 \Rightarrow f_4 < f_1$.

• Случай #2: $q_{k,n} < q_{k,n+1}$. Пусть 2-е разбиение имеет центр $q_{k,n+1}$, а 4-е центр $q_{k,n}$.

Напомним что $p_{k,n+1} < p_{k,n} \le q_{k,n} < q_{k,n+1}$.

Обозначим $f_{23} = f_2 - f_3, f_{14} = f_1 - f_4$. Докажем $0 < f_{23} \le f_{14}$. Первое уже есть, нужно второе. Доказываем $f_{14} - f_{23} \ge 0$. При вычитании сократится всё кроме последнего отрезка.

В последнем отрезке сократится всё кроме расстояний для точек $[p_{k,n+1}, p_{k,n})$.

Множество точек в f_{14} и f_{23} одно и то же, а расстояния считаются до $q_{k,n}$ и $q_{k,n+1}$ соответственно. Заметим, что расстояние до $q_{k,n+1}$ больше и берётся со знаком минус $\Rightarrow f_{14} - f_{23} \ge 0$.

<u>Lm</u> 13.6.3. $\forall p_{k,n} \exists p_{k-1,n} \leq p_{k,n}$ такое, что ответ для $f_{k-1,n}$ оптимален.

Доказательство. ТООО

13.7. Оптимизация методом "разделяй и властвуй"

Пусть мы уже насчитали строку динамики f[k-1], то есть, знаем f[k-1,x] для всех x. Найдём строку p_k методом разделяй и властвуй, через неё за $\mathcal{O}(n)$ посчитаем за $\mathcal{O}(n)$ f[k].

Уже доказали 13.6.2 $\forall n \ p_{k,n} \leq p_{k,n+1}$.

Напишем функцию, которая считает $p_{k,n}$ для всех $n \in [l,r]$, зная, что $L \le p_{k,n} \le R$.

```
1 void go(int l, int r, int L, int R) {
2   if (l > r) return; // пустой отрезок
3   int m = (l + r) / 2;
4   Найдём p[k,m] в лоб за \mathcal{O}(R-L+1)
5   go(l, m - 1, L, p[k, m]);
6   go(m + 1, r, p[k, m], R);
7 }
8 go(1, n, 1, n); // посчитать всю строку p[k]
```

Теорема 13.7.1. Время работы пересчёта $f[k-1] \to p_k$ всего лишь $\mathcal{O}(n \log n)$

Доказательство. Глубина рекурсии не более $\log n$ (длина отрезка уменьшается в 2 раза). На каждом уровне рекурсии выполняются подзадачи $(L_1, R_1), (L_2, R_2), \dots (L_k, R_k)$. Заметим $L_1 = 1, R_i = L_{i+1}, R_k = n \Rightarrow$ время работы $= \sum (R_i - L_i + 1) = (n-1) + k \le 2n = \mathcal{O}(n)$

13.8. Стресс тестирование

TODO

Лекция #14: Динамическое программирование

23 ноября

14.1. Динамика по подотрезкам

Рассмотрим динамику по подотрезкам. Например,

задачу о произведении матриц, которую, кстати, в 1981-м Hu & Shing решили за $\mathcal{O}(n \log n)$. Решение динамикой: насчитать $f_{l,r}$, стоимость произведения отрезка матриц [l,r]

$$f_{l,r} = \min_{m \in [l,r)} (f_{l,m} + f_{m+1,r} + a_l a_{m+1} a_r)$$

Заметим, что всё ещё можно рассмотреть ацикличный граф на вершинах [l,r], который соответствует нашему решению. Но задача, которую мы решаем, уже не выражается в терминах "поиск пути" или "количество путей" в нашем графе. Верным остаётся лишь то, что ответ в вершине [l,r] можно выразить через ответы для подзадач, то есть, для соседей вершины [l,r].

14.2. Комбинаторика

Дан комбинаторный объект, например, перестановка. Научимся по объекту получать его номер в лексикографическом порядке и наоборот по номеру объекту восстанавливать объект.

Например, есть 6 перестановок из трёх элементов, лексикографически их можно упорядочить как вектора: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1). Номер перестановки (3,1,2)-5. Цель — научиться быстро переходить между номером объекта и самим объектом.

Зачем это может быть нужно?

- (а) Закодировать перестановку минимальным числом бит, сохранить на диск
- (b) Использовать номер, как индекс массива, если состоянием динамики является перестановка

ullet Объект o номер (перестановки)

На примере перестановок изучим общий алгоритм.

Нужно посчитать количество перестановок лексикографически меньших p.

 $\{a_1, a_2, \dots, a_n\} < \{p_1, p_2, \dots, p_n\} \Leftrightarrow \exists k \colon a_1 = p_1, a_2 = p_2, \dots a_{k-1} = p_{k-1}, a_k < p_k$. Переберём k и a_{k-1} , после этого к ответу нужно прибавить количество способов закончить префикс a_1, \dots, a_k , для перестановок это (n-k)!. Здесь a_k может быть любым числом, не равным $a_1, \dots a_{k-1}$.

```
1 vector < bool > was (n + 1);
2 int result = 0;
3 for (int k = 1; k <= n; k++) {
4   was [p[k]] = true;
5   for (int j = 1; j < p[k]; j++)
6   if (!was[j])
7   result += factorial[n - k];
8 }</pre>
```

Время работы $\mathcal{O}(n^2)$. Для перестановок существует алгоритм за $\mathcal{O}(n \log n)$, наша цель — лишь продемонстрировать общую схему.

ullet Объект o номер (правильные скобочные последовательности)

Пусть у нас один тип скобок и '(' < ')'. Ищем количество ПСП, меньших s, |s| = n. Переберём k, если $s_k =$ ')', попытаемся заменить, на '('. Сколько способов закончить, зависит только от

k и текущего баланса b, разности числа открывающих и закрывающих скобок в s[1..k)+, (,... Предподсчитаем динамику dp[k,b]- число способов закончить. База: dp[n,0]=1.

$$dp[k,b] = dp[k+1,b+1] + (b=0?0:dp[k+1,b-1])$$

```
int balance = 0, result = 0;
for (int k = 0; k < n; k++) {
   if (s[k] == ')')
   result += dp[k, balance + 1]
   balance += (s[k] == '(' ? 1 : -1);
}</pre>
```

Время работы алгоритма $\mathcal{O}(n)$, время предподсчёта – $\mathcal{O}(n^2)$.

ullet Номер o объект (перестановки)

Чтобы получить по лексикографическом номеру k сам объект, нужно строить его слева направо. Переберём, что стоит на первом месте в перестановке. Пусть стоит d, сколько способов продолжить перестановку? (n-1)! способов. Если $k \leq (n-1)!$, то нужно ставить минимальную цифру, иначе уменьшить k на (n-1)! и попробовать поставить следующую...

```
vector < bool > was(n + 1);
2
   for (int i = 1; i <= n; i++)
3
     for (int d = 1;; d++) {
       if (was[d])
4
5
          continue:
6
       if (k <= factorial[n - i]) {</pre>
7
         p[i] = d, was[d] = 1;
8
         break;
9
10
       k -= factorial[n - i]; // пропускаем столько перестановок
11
```

Время работы $\mathcal{O}(n^2)$. Для перестановок есть алгоритм за $\mathcal{O}(n \log n)$.

ullet Номер o объект (правильные скобочные последовательности)

Действуем по той же схеме: пытаемся на первую позицию поставить сперва '(', затем ')'. Разница лишь в том, что чтобы найти "число способов дополнить префикс до правильной скобочной последовательности", нужно пользоваться предподсчитанной динамикой dp[i,balance].

```
int balance = 0;
for (int i = 0; i < n; i++)
    if (k <= dp[i + 1][balance + 1])
    s[i] = '(', balance++;
    else {
        k -= dp[i + 1][balance + 1]; // пропускаем столько последовательностей
        s[i] = ')', balance--;
    }
}</pre>
```

14.3. Работа с множествами

Существует биекция между подмножествами n-элементного множества $X=\{0,1,2,\dots n-1\}$ и целыми числами от 0 до 2^n-1 . $f\colon A\to \sum_{x\in A}2^x$. Таким образом множество можно использовать, как индекс массива.

<u>Lm</u> 14.3.1. $A \subseteq B \Rightarrow f(A) \leq f(B)$

С множествами, закодированными числами, многое можно делать за время одной арифметической операции. Для того

```
(1 \ll n) - 1
               Всё n-элементное множество X
(A \gg i) \& 1
               Проверить наличие i-го элемента в множестве
               Добавить i-й элемент
A | (1 « i)
A & ~(1 « i)
               Удалить i-й элемент
A ^ (1 « i)
               Добавить/удалить i-й элемент, был \Rightarrow удалить, не был \Rightarrow добавить
A & B
               Пересечение
               Объединение
A | B
               Дополнение
X & ~B
A & ~B
               Разность
(A \& B) = B
               Проверить, является ли A подмножеством B
```

14.4. Динамика по подмножествам

Теперь решим несколько простых задач.

• Число бит в множестве.

```
1 for (int A = 1; A < (1 << n); A++)
2 bit_cnt[A] = bit_cnt[A >> 1] + (A & 1);
```

Заметим, что аналогичный результат можно было получить простым перебором:

```
void go(int i, int A, int result) {
   if (i == n) {
      bit_cnt[A] = result;
      return;
   }
   go(i + 1, A, result);
   go(i + 1, A | (1 << i), result + 1);
}
go(0, 0, 0);</pre>
```

Здесь i – номер элемента, A – набранное множество, result – его размер.

• Сумма в множестве.

Пусть i-й элемент множества имеет вес w_i , задача: $\forall A$ найти найти сумму весов $s[A] = \sum_{x \in A} w_x$. Рекурсивное решение почти не поменяется:

```
1 go(i + 1, A | (1 << i), result + w[i])
```

В решении динамикой, чтобы насчитать s[A], достаточно знать любой единичный бит числа A. Научимся поддерживать старший бит числа, обозначим его bit.

```
bit = 0;
for (int A = 1; A < (1 << n); A++) {
   if (A == 1 << (bit + 1)) bit++;
   s[A] = s[A ^ (1 << bit)] + w[bit];
}</pre>
```

14.5. Гамильтоновы путь и цикл

Def 14.5.1. Гамильтонов путь – путь, проходящий по всем вершинам ровно по одному разу. Будем искать гамильтонов путь динамическим программированием. Состояние процесса: мы уже построили часть пути. Что нам нужно знать, чтобы продолжить строить путь? Множество A каких вершин мы уже проходили (чтобы не пройти второй раз), и в какой вершине v мы закончили путь (чтобы продолжать ровно из неё). Хранить будем 1, если такое состояние достижимо, и 0 иначе. Пусть g[a,b] — есть ли ребро из b в a, n — число вершин в графе, тогда:

```
1
  for (int i = 0; i < n; i++)</pre>
    is[1 << i, i] = 1; // База: <math>A = \{i\}, путь из одной вершины
2
  for (int A = 0; A < (1 << n); A++)
3
    for (int v = 0; v < n; v++)
4
5
       if (is[A, v])
         for (int x = 0; x < n; x++) // Переберём следующую вершину
6
7
           if (x \notin A \&\& g[x, v])
8
              is[A | (1 << x), x] = 1;
```

Время работы $\mathcal{O}(2^n n^2)$, память $\mathcal{O}(2^n n)$ машинных слов.

• Оптимизируем память.

Строка динамики is[A] состоит из n бит, её можно хранить, как одно машинное слово. Физический смысл тогда будет такой:

ends[A] – множество вершин, на которые может заканчиваться путь, проходящий по A.

• Оптимизируем время.

Теперь можно убрать из нашего кода перебор вершины v, за $\mathcal{O}(1)$ проверяя, есть ли общий элемент у g[x] и ends[A]:

```
1 for (int i = 0; i < n; i++)
2 ends[1 << i] = 1 << i;
3 for (int A = 0; A < (1 << n); A++)
4 for (int x = 0; x < n; x++) // Переберём следующую вершину
5 if (x ∉ A && g[x] ∩ ends[A] ≠ ∅)
6 ends[A | (1 << x)] |= 1 << x;
```

Время работы $\mathcal{O}(2^n n)$, память $\mathcal{O}(2^n)$ машинных слов.

Предполагается, что с числами порядка n все арифметические операции происходят за $\mathcal{O}(1)$.

14.6. Вершинная покраска

• Задача: покрасить вершины графа в минимальное число цветов так, чтобы соседние вершины имели различные цвета.

Сразу заметим, что вершины одного цвета образуют так называемое "независимое множество": между вершинами одного цвета попарно нет рёбер.

Можно за $\mathcal{O}(2^n n^2)$ предподсчитать для каждого множества A величину is[A]: является ли оно независимым. На практике мы научимся это делать даже быстрее, за $\mathcal{O}(2^n)$.

Решим задачу динамикой: f[A] – минимальное число цветов, чтобы покрасить вершины A.

• Решение за $\mathcal{O}(4^n)$

Переберём $A, B: A \subset B \land is[B \setminus A]$. B называется надмножеством A.

Динамика вперёд: переход $A \to B$.

```
1 for A=0..2^n-1
2    for B=0..2^n-1
3        if A ⊂ B and is[B \ A]
4        relax(f[B], f[A] + 1)
```

Время работы очевидно.

14.7. Вершинная покраска: решение за $\mathcal{O}(3^n)$

• Перебор надмножеств

Научимся быстрее перебирать все надмножества A. Можно просто взять все n-|A| элементов, которые не лежат в A и перебрать из $2^{n-|A|}$ подмножеств. Можно проще, не выделяя отдельно эти n-|A| элементов.

```
for (A = 0; A < 2^n; A++)
for (B = A; B < 2^n; B++, B |= A)
   if is[B \ A]
   relax(f[B], f[A] + 1)</pre>
```

Благодаря "В | = A", понятно, что мы перебираем именно надмножества A. Почему мы переберём все? Мы знаем, что если бы мы выделили те n-|A| элементов, то перебирать нужно было бы все целые число от 0 до $2^{n-|A|}-1$ в порядке возрастания. Следующее число получается операцией "+1", которая меняет младший 0 на 1, а хвост из единиц на нули. Ровно это сделает наша операция "+1", разница лишь в том, что биты нашего числа идут вперемешку с "единицами множества A". Пример (красным выделены биты A):

```
1101011111Число B1101100000Число B+11101101001Число (B+1) \mid A
```

Теорема 14.7.1. Время работы 3^n

Доказательство. Когда множества A и B зафиксированы, каждый элемент находится в одном из трёх состояний: лежит в A, лежит в $B \setminus A$, лежит в дополнении B. Всего 3^n вариантов. ■

```
Доказательство. Другой способ доказать теорему. Мы считаем \sum_A 2^{n-|A|} = \sum_C 2^{|C|} = \sum_k \binom{n}{k} 2^k = (1+2)^n = 3^n
```

• Перебор подмножеств

Можно было бы наоборот перебирать $A \subset B$ по данному B.

```
1 for (B = 0; B < 2^n; B++)
2 for (C = B; C > 0; C--, C &= B) // все непустые подмножества В
3 if is[C]
4 relax(f[B], f[B \ C] + 1)
```

Заметим некое сходство: операцией "С--" я перехожу к предыдущему подмножеству, операцией "С &= В" я гарантирую, что в каждый момент времени C – всё ещё подмножество. Суммарная время работы также $\mathcal{O}(3^n)$. Важная тонкость: мы перебираем все подмножества кроме пустого.

Лекция #15: Динамическое программирование

30 ноября

15.1. Вершинная покраска: решение за $\mathcal{O}(2.44^n)$

Def 15.1.1. *Независимое множество* A *называется максимальным по включению,* $ecnu \ \forall x \notin A \ A \cup \{x\}$ – не независимо.

Теорема 15.1.2. \forall графа из n вершин количество максимальных по включению множеств не более $3^{\frac{n}{3}} \approx 1.44^n$.

Доказательство. Рассмотрим алгоритм, перебирающий все максимальный по включению независимые множества. Возможно, некоторые множества он переберёт несколько раз, но каждое хотя бы один раз. Пусть v – вершина минимальной степени, x – степень v Если в максимальном по включению множеств отсутствует v, должен присутствовать один из x её соседей \Rightarrow Одна из x+1 вершин (v и её соседи) точно лежит в ответе.

```
void solve(choosedVertices, graph) {
1
2
     if (graph is empty) {
3
       print(choosedVertices) // нашли множество
4
5
    v = vertex of minimal degree
6
    x = degree[v]
     solve(choosedVertices + v, graph \ {v, neighbors[v]})
8
9
     for (u : neighbors[v])
10
       solve(choosedVertices + u, graph \ {u, neighbors[u]})
11 }
```

<u>Lm</u> 15.1.3. Строка с **print** вызовется $\mathcal{O}(1.44^n)$

Поскольку $\forall u \in neighbors[v] \ degree[u] \geq degree[v] = x$ имеем время работы $T(n) \leq (x+1)T(n-(x+1)) \leq (x+1)^{\frac{n}{x+1}}.$

Чтобы максимизировать эту величину, нужно продифференцировать по x, найти 0...

Опустим эту техническую часть, производная имеет один корень в точке x+1=e=2.71828... Но x – степень, поэтому x+1 целое \Rightarrow максимум или в x+1=2, или в x+1=3.

Получаем $2^{\frac{n}{2}} \approx 1.41^n$, $3^{\frac{n}{3}} \approx 1.44^n \Rightarrow T(n) \le 3^{n/3} \approx 1.44^n$.

\bullet Алгоритм за 2.44^n

Мы умеем за 3^n перебирать A и B – независимые подмножества графа $G \setminus A$, будем перебирать не все независимые, а только максимальные по включению.

Теорема 15.1.4. Время работы 2.44^n

Доказательство.
$$\sum_A 1.44^{n-|A|} = \sum_C 1.44^{|C|} = \sum_k \binom{n}{k} 1.44^k = (1+1.44)^n = 2.44^n$$

15.2. Set cover

Задача: дано $U = \{1, 2, \dots, n\}, A_1, A_2, \dots A_m \subseteq U$, выбрать минимальное число множеств, покрывающих U, то есть, $I: (\bigcup_{i \in I} A_i = U) \land (|I| \to \min)$. Взвешенная версия: у i-го множества есть положительный вес w_i , минимизировать $\sum_{i \in I} w_i$. Задача похожа на "рюкзак на подмножествах", её иногда так и называют. Решать её будем также.

Решение за $\mathcal{O}(2^n m)$.

Динамика f[B] – минимальное число множеств из A_i , дающих в объединении B.

База: f[0] = 0. Переход: $relax(f[B \cup A_i], f[B] + 1)$.

Память $\mathcal{O}(2^n)$ (число состояний), времени $2^n m$ – по m переходов из каждого состояния.

15.3. Bit reverse

Ещё одна простая задача: развернуть битовую запись числа.

Сделать предподсчёт за $\mathcal{O}(2^n)$ для всех n битовых чисел.

Например $00010110 \rightarrow 01101000$ при n=8. Решение заключается в том, что если откинуть младший бит числа, то reverse остальных битов мы уже знаем, итак:

```
1 reverse[0] = 0;
2 for (int x = 1; x < (1 << n); x++)
3 reverse[x] = reverse[x >> 1] + ((x & 1) << (n - 1)).</pre>
```

Задача, как задача. Понадобится нам, когда будет проходить FFT.

15.4. Meet in the middle

15.4.1. Количество клик в графе за $\mathcal{O}(2^{n/2})$

Сперва напишем рекурсивное решение за $\mathcal{O}(2^n)$.

Перебираем по очереди вершины и каждую или берём, или не берём.

```
int countCliques( int A ) {
  if (A == 0)
    return 1;
  int i = lower_bit(A), result = 0;
  return countCliques(i + 1, A ^ (1 << i)) + countCliques(i + 1, A & g[i]);
}
print(countCliques(2<sup>n</sup> - 1));
```

Здесь A – множество вершин, которые мы ещё можем добавить в клику.

g[i] – множество соседей вершины A.

Функцию lower_bit можно реализовать за $\mathcal{O}(1)$ (см. практику). Ещё можно сделать i параметром динамики, так как оно только увеличивается, и пересчитывать методом:

```
while (!((A >> i) & 1)) i++;
```

У нас есть код, работающий за $\mathcal{O}(2^n)$. Код является перебором. В любой перебор можно добавить запоминание (мем**ои**зацию). Перебор превратится при этом в "ленивую динамику".

```
int countCliques( int A ) {
   if (A == 0)
     return 1;
   if (f[A] != 0) return f[A];
   int i = lower_bit(A), result = 0;
   return f[A] = countCliques(i + 1, A ^ (1 << i)) + countCliques(i + 1, A & g[i]);
}
print(countCliques(2<sup>n</sup> - 1));
```

Мы реализовали естественную идею "если уже вычисляли значение функции от A, зачем считать ещё раз? можно просто запомнить результат". От применения такой оптимизации асимптотика времени работы точно не ухудшилась, константа времени работы могла увеличиться.

Теорема 15.4.1. Перебор с запоминанием countCliques работает за $\mathcal{O}(2^{n/2})$

Доказательство. Рассмотрим первый момент, когда $i \geq \frac{n}{2}$. К этому моменту глубина рекурсии не более $\frac{n}{2}$, соответственно ширина ветвления рекурсии на такой глубине не более $2^{n/2}$.

Теперь воспользуемся запоминанием. К моменту $i \geq \frac{n}{2}$ множество A содержит только какие-то из старших $\frac{n}{2}$ бит, то есть, есть всего $2^{n/2}$ возможных A.

Для каждого из них мы посчитаем значение функции один раз, итого $\mathcal{O}(2^{n/2})$.

• Meet in the middle.

В доказательстве отчётливо прослеживается идея "разделения на две фазы".

Запишем то же решение иначе: разобьём n вершин на два множества – A и B по $\frac{n}{2}$ вершин.

Для всех $2^{n/2}$ подмножеств $B_0 \subseteq B$ за $\mathcal{O}(2^{n/2})$ предподсчитаем countCliques [B₀].

Можно тем же перебором, можно нерекурсивно, как в задаче с практики.

Теперь будем перебирать подмножество вершин $A_0 \subseteq A$, посчитаем множество соседей в B:

 $N = \bigcap_{x \in B_0} g[x]$, добавим к ответу уже посчитанное значение countCliques[N].

Сравним реализации на основе идеи "meet in the middle" и перебора с запоминанием:

- "meet in the middle" использует массив countCliques[], рекурсивный перебор использует хеш-таблицу f[].
- "meet in the middle" работает $\Theta(2^{n/2})$, а рекурсивный перебор $\mathcal{O}(2^{n/2})$, что часто гораздо меньше. Чтобы интуитивно это понять, примените рекурсивный перебор к сильно разреженному графу, заметьте, как быстро уменьшается A.

15.4.2. Рюкзак за $\mathcal{O}(2^{n/2}n)$

Решим версию задачи о рюкзаке со стоимостями:

"унести в рюкзаке размера W вещи суммарной максимальной стоимости". Всего n вещей. Разобьём их произвольным образом на две группы по $\frac{n}{2}$ вещей.

В каждой группе есть $2^{n/2}$ подмножеств, мы можем для каждого такого подмножества насчитать за $\mathcal{O}(2^{n/2})$ его вес и стоимость (или рекурсия, или динамика).

Получили два массива пар $\langle w_1, cost_1 \rangle$ [], $\langle w_2, cost_2 \rangle$ [].

Переберём, что мы возьмём из первой группы, зафиксировали $\langle w_1, cost_1 \rangle [i]$.

Из второй группы теперь можно взять любую пару, что $w_2[j] \leq W - w_1[i]$.

Среди таких хотим максимизировать $cost_2[j]$.

Заранее отсортируем массив $\langle w_2, cost_2 \rangle$ [] по w_2 и насчитаем все максимумы на префиксах.

Алгоритм 15.4.2. Алгоритм за $\mathcal{O}(2^{n/2}n)$

Можно вместо бинпоиска отсортировать оба массива и воспользоваться методом двух указателей, что лучше, так как $\mathcal{O}(sort+n)$ иногда меньше чем $\mathcal{O}(n\log n)$ (сортировки Count, Bucket, Kirkpatrick).

Общая схема meet-in-the-middle – разделить задачу на две части. Другая похожая схема "идти к решению задачи с двух концов". В такой интерпретации можно говорить, что алгоритм Хиршберга – тоже пример идеи meet-in-the-middle.

15.5. Динамика по скошенному профилю

Решим задачу про покрытие доминошками: есть доска с дырками размера $w \times h$. Сколько способов замостить её доминошками (фигуры 1×2) так, чтобы каждая не дырка была покрыта ровно один раз? Для начала напишем рекурсивный перебор, который берёт первую непокрытую клетку и пытается её покрыть. Если перебирать клетки сверху вниз, а в одной строке слева направо, то есть всего два способа покрыть текущую клетку.


```
1
   int go( int x, int y ) {
2
     if (x == w) x = 0, y++;
3
     if (y == h) return 1;
     if (!empty[y][x]) return go(x + 1, y);
5
     int result = 0;
     if (y + 1 < h && empty[y + 1][x]) {</pre>
6
       empty[y + 1][x] = empty[y][x] = 0; // поставили вертикальную доминошку
7
8
       result += go(x + 1, y);
9
       empty[y + 1][x] = empty[y][x] = 1; // убрали за собой
10
11
     return result;
12 | }
```

go (x, y) вместо того, чтобы каждый раз искать с нуля первую непокрытую клетку помнит "всё, что выше-левее (x,y) мы уже покрыли". Возвращает функция go число способов докрасить всё до конца. empty — глобальный массив, ячейка пуста \Leftrightarrow там нет ни дырки, ни доминошки. Время работы данной функции не более $2^{\text{число доминошек}} \leq 2^{wh/2}$. Давайте теперь, как и задаче про клики добавим к нашему перебору запоминание. Что есть состояние перебора? Вся матрица. Получаем следующий код:

```
vector < vector < bool >> empty;
2 | map < vector < vector < bool >> , int > m; // запоминание
   int go( int x, int y ) {
3
     if (x == w) x = 0, y++;
4
5
     if (y == h) return 1;
     if (!empty[y][x]) return go(x + 1, y);
6
7
     if (m.count(empty)) return m[empty];
8
     int result = &m[empty];
9
     if (y + 1 < h \&\& empty[y + 1][x]) {
10
       empty[y + 1][x] = empty[y][x] = 0; // поставили вертикальную доминошку
11
       result += go(x + 1, y);
12
       empty[y + 1][x] = empty[y][x] = 1; // убрали за собой
13
14
     return result;
15 | }
```

Теорема 15.5.1. Количество состояний динамики $\mathcal{O}(2^w hw)$.

Доказательство. Когда мы находимся в клетке (x, y). Что мы можем сказать про покрытость остальных? Все клетки вышелевее (x, y) точно **not empty**. А все ниже-правее? Какие-то могли быть задеты уже поставленными доминошками, но не более чем на одну "изломанную строку" снизу от (x, y). Кроме этих w все клетки находятся в исходном состоянии.

Лекция #16: Графы и поиск в глубину

7 декабря

16.1. Опеределения

TODO

16.2. Хранение графа

TODO

16.3. Поиск в глубину

TODO

16.4. Топологическая сортировка

TODO

16.5. Компоненты сильной связности

TODO