

Theoretische Informatik

Prof. Dr. Juho Mäkiö

AUTOMATEN MIT &-ÜBERGÄNGEN

Nachweis: DEA < NEA

- 1. DEAA → es gibt äquivalenten NEAA'
- 2. NEAA → es gibt äquivalenten DEAA zu 1.

Da die Eindeutigkeit (Determinismus) eine spezielle Form der Mehrdeutigkeit ist (nur eine Wahl) ist diese Richtung einfach.

A = $(Z, \sum, \delta, z_0, E)$ mit
$Z = \{z_0, z_1, z_2, z_3, z_4\}$
$\Sigma = \{0, 1\}$
δ : s. Automatengraph
$z_0 = z_0$
$E = \{z_2, z_3\}$

	0	1			
z_0	{z ₃ }	{z ₁ }			
$\mathbf{z_1}$	$\{z_1\}$	$\{z_2\}$			
z _{2/E}	$\{z_1\}$	$\{z_2\}$			
z _{3/E}	$\{z_4\}$	$\{z_4\}$			
z ₄	$\{z_4\}$	$\{z_4\}$			
~ immer nur eine Wahl					

 $L(A) = L_{NEA}(A')$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

NEA

- Unterschiede zum DEA
 - Bei einem NEA ist es erlaubt, dass es
 - für ein gegebens Zeichen *a* bei einem Zustand mehrere Übergänge gibt
 - für ein gegebenes Zeichen a bei einem Zustand keinen Übergang für a gibt
 - dass einer oder mehrere Übergänge mit dem leeren Wort ε beschriftet ist.

Fragen?

- Was passiert wenn mehrere Übergänge möglich sind?
- Was passiert, wenn kein Übergang vorhanden ist?
- Was bedeuten ε-Übergänge?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Funktionsweise eines NEA

- Was passiert wenn für das aktuelle Zeichen mehrere Übergänge möglich sind?
 - Der Automat "teilt" sich in mehreren Kopien
 - Jede Kopie folgt einer Möglichkeit
 - Die Kopien zusammen folgen allen Möglicheiten
 - Der Automat akzeptiert ein Wort ω , falls nach dem Lesen von ω eine oder mehrere Kopien einen akzeptierende Zustand erreichen

- Was passiert wenn für das aktuelle Zeichen kein Übergang vorhanden ist?
 - Diese Kopie des Automaten "stirbt"

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Funktionsweise eines NEA

Was bedeuten ε-Übergänge?

- Der Automat "teilt" sich in mehrere Kopien ohne ein Zeichen zu lesen
 - für jeden ε-Übergang eine, und
 - in eine Kopie, die im ursprünglichen Zustand bleibt

Was passiert für den Input x = 1001?

© Prof. Dr. Juho Mäkiö – iuho.maekioe@hs-emden-leer.de

Simulation

- · Initialisierung:
 - Startzustand markieren;
 - alle Zustände markieren, die mit ε-Übergängen erreichbar sind (→die ε-Hülle des Startzustandes).
- Für jedes gelesene Eingabezeichen:
 - Markiere alle Folgezustände unter dem Eingabezeichen;
 - markiere alle Zustände, die mit ε-Übergängen erreichbar sind (also die ε-Hülle dieser Folgezustände).
- Wenn ein Endzustand erreicht wird und das Wort ist vollständig abgearbeitet, hat der Automat das Eingabewort erkannt.

Wird der String x = 1001 akzeptiert?

© Prof. Dr. Juho Mäkiö – iuho.maekioe@hs-emden-leer.de

Nichtdeterminismus als Spiel

Intuitive Interpretation

- Man kann die Übergangsfunktion eines NEA als Spielregeln für ein 1-Personen-Spiel auffassen.
- Ähnlich wie in einem Spiel kann der Spieler oft zwischen mehreren möglichen Zügen wählen
- Der NEA akzeptiert den Input ω , falls es in diesem Spiel eine Folge von Spielzügen gibt, bei der der Spieler nach dem Lesen von ω in einem Endzustand landet.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Wozu brauchen wir NEAs

- Theorem: Zu jedem NEA N gibt es einem DEA M, der die selbe Sprache akzeptiert, d.h. L(N) = L(M).
- Warum dann NEAs?
 - NEAs kann man als eine h\u00f6here Abstraktion von DEAs auffassen.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

- 1

NEA als eine Abstraktion

• Beispiel: Konstruieren Sie einen endlichen Automaten DEA der alle Worte $\omega = \omega_1...\omega_n$ mit $\omega_{n-2} = 1$ akzeptiert (das drittletzte Zeichen ist eine 1)

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

NEA als eine Abstraktion

• Beispiel: Konstruieren Sie einen endlichen Automaten NEA der alle Worte $\omega = \omega_1...\omega_n$ mit $\omega_{n-2} = 1$ akzeptiert (das drittletzte Zeichen ist eine 1)

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Äquivalenz von NEAs und DEAs

- Theorem: Zu jedem NEA N gibt es einen DEA M, der die selbe Sprache akzeptiert, d.h. L(N) = L(M)
- Beweisidee: Sei de NEA N = (Z, Σ, δ, z₀, E) gegeben.
 Wie konstruieren einen DEA M = (Z', Σ, δ', z'₀, E') der den NEA N simuliert, d.h. L(M) = L(N)
- Betrachten zuerst ohne ε-Übergänge.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

8

Was passiert für den Input x = 1001?

 Der Automat M muß sich "merken", welche Kopie des NEA N sich gerade in welchem zustand q ε Z befindet.

© Prof. Dr. Juho Mäkiö – iuho.maekioe@hs-emden-leer.de

Ein einfaches Beispiel

$$L(A) = ?\{\omega 1 \mid \omega \in \{0, 1\}^*\}$$

Konstruktion eines DEA's A' mit L(A') = LNEA(A) - WIE?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Beispiel

A ist NEA (Warum?)

$$L_{NEA}(A) = ? \{0^{n} 1 2^{m}\} \cup \{0^{n} 1 3^{m}\}$$

δ		1	2	3
q_0	{q ₀ }	$\{q_1, q_2\}$	Ø	Ø
			$\{q_1\}$	Ø
q _{1/E} q _{2/E}	Ø	Ø	\varnothing	€ { q ₂}

Rest?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

2.

Beispiel

	δ΄	0	1	2	3
	Ø	Ø	Ø	Ø	Ø
	$\{q_0\}$	{q ₀ }	$\{q_1, q_2\}$	Ø	Ø
	$\{q_{1/E}\}$	Ø	Ø	$\{q_1\}$	Ø
	{q _{2/E} }	Ø	Ø	Ø	{q ₂ }
Х	$\{q_0, q_{1/E}\}$	{q ₀ }	$\{q_1, q_2\}$	$\{q_1\}$	Ø
X	$\{q_0, q_{2/E}\}$	{q ₀ }	$\{q_1, q_2\}$	Ø	$\{q_2\}$
	$\{q_{1/E}, q_{2/E}\}$	Ø	Ø	$\{q_1\}$	$\{q_2\}$
Х	$\{q_0,q_{1/E},q_{2/E}\}$	{q ₀ }	$\{q_1, q_2\}$	$\{q_1\}$	$\{q_2\}$

Tipp: Nicht erreichbare Zustände X gleich weglassen!

Schwer erkennbar

HOCHSCHULE

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

22

Übungsaufgabe

- Geben Sie δ in Tabellenform an.
- Welche Sprache/Wörter akzeptiert/erkennt der NEA A?
- Konstruieren Sie einen DEA A' mit L(A') = L_{NEA} (A).
- Entfernen Sie aus A' nicht erreichbare Zustände
- Geben Sie einen isomorphen DEA mit vereinfachten Zustandsnamen an.

Liversity of Applied Sciences
HOCH SCHULE
FMDFN + I FFR

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Automaten mit ε-Übergängen

Angenommen, man wollte für folgende Sprache einen Automaten (DEA, NEA) beschreiben:

$$\{0^{l} \ 1^{m} \ 2^{n} \ | \ l, \ m, \ n \in \mathbb{N}\}$$

Bisher: Zustandswechsel nur bei Verarbeitung eines Zeichens.

$$\delta(z, a) = \dots$$

Alternative: Zustandswechsel ohne Verarbeitung eines Zeichens: **ε-** Übergang (ε ≙ leeres Wort)

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Automaten mit ε-Übergängen

Bisher: ohne ε-Übergänge

Jetzt:

Damit akzeptiert A folgende Wörter:

012

Der Einfachheit halber werden nur NEA's um ε-Übergänge erweitert...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Automaten mit ε-Übergängen

- NEA/ ε : A = (Z, Σ , δ , z_0 , E)
 - NEA mit ε-Übergängen
 - Entsprechend: -> , ->_a ,
 - (Konfiguration)

Damit wird 00122 von diesem NEA/ɛ erkannt.

© Prof. Dr. Juho Mäkiö - juho.maekioe@hs-emden-leer.de

Aufgabe

Welche Sprache erkennt der folgende NEA/ε?

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Automaten mit ε-Übergängen

• Gegeben ist ein NEA/ ϵ A = (Z, \sum , δ , z₀, E). Bemerke: A = (\sum , Z, δ , z₀, E) auch möglich

$$-L_{NEA/\epsilon}(A) = \{\omega \mid \omega \in \sum^* \text{ und} \\ (z_0, \omega) \rightarrow^* (z, \epsilon) \text{ und } z \in E\}$$

- -->* transitive Hülle von
- $-->_a$ bzw. $->_{\varepsilon}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Aufgabe

Erkennt die Klasse der NEA/ε's "mehr"
 Sprachen als die Klasse der DEA/ NEAs?

Zusammenfassung

Von oben nach unten wird die Beschreibung des Automatens "komfortabler".

Die Menge der akzeptierten Sprachen bleibt gleich (nur reguläre Sprachen).

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

 $L = \{a^n b^m | n, m \ge 0\}$

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

33

Aufgabe

Gegeben sind die folgenden Dominosteine:

Das Dominospiel wird nach den bekannten Regeln gespielt, das heißt es können beispielsweise folgende Ketten gebildet werden:

Hierbei gilt:

- Die Steine dürfen dabei nicht gedreht werden.
- ullet Von jeder Sorte (a,b,\ldots) sind unendlich viele Steine vorhanden.

Konstruieren Sie einen NEA (Automatentabelle oder Automatengraph) über dem Alphabet $\Sigma=\{a,b,c,d,e,f\}$, der diejenigen Wörter erkennt, die "gültigen" Dominoketten entsprechen. Beispiel: da oder ecb.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

34

Lösung

- Jedem Stein a, ..., f wird ein Zustand zugeordnet: $\mathbf{z}_{a},\,\mathbf{z}_{b},\,...,\,\mathbf{z}_{f}$
- Startzustand z₀.

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de

Yes we can...

© Prof. Dr. Juho Mäkiö – juho.maekioe@hs-emden-leer.de