RC and RL Circuits (First-order)

Types of Circuit Excitation

Steady-state Excitation

Steady-State Excitation (DC Steady-State)

Sinusoidal (Single-Frequency) Excitation →AC Steady-State

Transient Excitation

OR

First-Order Circuits

- A circuit that contains only sources, resistors and an inductor is called an *RL circuit*.
- A circuit that contains only sources, resistors and a capacitor is called an *RC circuit*.
- RL and RC circuits are called first-order circuits because their voltages and currents are described by first-order differential equations.

Review Concept

- In steady state, an inductor behaves like a short circuit
- In steady state, a capacitor behaves like an open circuit

Review Concept

• The *natural response* of an RL or RC circuit is its behavior (*i.e.*, current and voltage) when stored energy in the inductor or capacitor is released to the resistive part of the network (containing no independent sources).

• The *step response* of an RL or RC circuit is its behavior when a voltage or current source **step** is applied to the circuit, or immediately after a switch state is changed.

RC Circuits

Capacitors and Stored Charge

- Electrons keep on moving around and around a circuit contributing a current flow.
- Current doesn't really "flow through" a capacitor. No electrons can go through an insulator (ideal condition).
- But, we say that current flows through a capacitor. What we mean is that positive charge collects on one plate and leaves the other.
- A capacitor stores energy in the form of electrical charge.
- When a capacitor stores charge, it has non-zero voltage. In this case, we say the capacitor is "charged". A capacitor with zero voltage has no charge differential, and we say it is "discharged".

Capacitors in circuits

- A circuit with capacitors can be analyzed by using KVL and KCL, nodal analysis, and other similar techniques.
- The voltage across the capacitor is related to the current through it by a differential equation instead of simple Ohm's law.

$$i = C \frac{dV}{dt}$$

CAPACITORS

capacitance is analyzed by

$$i = C \frac{dV}{dt}$$
 So $\frac{dV}{dt} = \frac{i}{C}$

Charging a Capacitor with a constant current

$$\frac{dv(t)}{dt} = \frac{I}{C}$$

Integrating both sides,

$$\int_{0}^{t} \frac{dv(t)}{dt} dt = \int_{0}^{t} \frac{I}{C} dt$$

$$v(t) = \int_{0}^{t} \frac{I}{C} dt = \frac{I \times t}{C}$$

Charging a Capacitor with a constant voltage

Discharging a Capacitor through a resistor

$$\frac{dv(t)}{dt} = -\frac{i(t)}{C} = -\frac{v(t)}{RC}$$

This is an elementary differential equation, whose solution is the exponential:

$$v(t) = V_0 e^{-t/\tau} \qquad \text{Since:} \qquad \frac{\mathrm{d}}{\mathrm{d}t} e^{-t/\tau} = -\frac{1}{\tau} e^{-t/\tau}$$

and
$$i(t) = \frac{V_o}{R} e^{-t/RC}$$

Capacitor charging and discharging

Time Constant τ

Analogy of time constant (discharging)

-At $t = \tau$, the voltage has reduced to 1/e (~0.37) of its initial value. Time constant corresponds to the frequency at which the output signal power drops to half the value it has at low frequencies (determines bandwidth)

-At $t = 5\tau$, the voltage has reduced to less than 1% of its initial value.

 $\tau = RC$ (sec)

Analogy of *time constant (charging)*

- At $t = \tau$, the voltage has increased to 1-(1/e) (~0.63) of its final value.
- At $t = 5\tau$, the voltage has reduced to more than 99% of its final value.

Practical Insight

$$V_{out}(t) = V_{in} + (V_{out}(0) - V_{in})e^{-t/(RC)}$$

- V_{out}(t) starts at V_{out}(0) and goes to V_{in} asymptotically.
- The difference between the two values decays exponentially.
- The rate of convergence depends on RC. The bigger RC is, the slower the convergence.

Time Constant (again)

$$V_{out}(t) = V_{in} + (V_{out}(0) - V_{in})e^{-t/(RC)}$$

- The value RC is called the time constant.
- After 1 time constant has passed (t = RC), the above works out to:

$$V_{out}(t) = 0.63 V_{in} + 0.37 V_{out}(0)$$

- So after 1 time constant, V_{out}(t) has completed 63% of its transition, with 37% left to go.
- After 2 time constants, only 0.37² left to go.

Transient vs. Steady-State

- When V_{in} does not match up with V_{out}, due to an abrupt change in V_{in} for example, V_{out} will begin its transient period where it exponentially decays to the value of V_{in}.
- After a while, V_{out} will be close to V_{in} and be nearly constant. We call this steady-state.
- In steady state, the current through the capacitor is (approx) zero. The capacitor behaves like an open circuit in steady-state.
- $I = C dV_{out}/dt$, and V_{out} is constant in steady-state.

Wave shaping circuits

Low pass filter (RC first order)

At low frequencies, ω is small and the voltage gain is approximately 1.

| voltage gain | =
$$\frac{1}{\sqrt{1 + (\omega CR)^2}}$$

At high frequencies, the magnitude of $\omega \textit{CR}$ becomes more significant and the gain of the network decreases.

When the value of ωCR is equal to 1, this gives: | voltage gain | = $\frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$

Since power gain is proportional to the square of the voltage gain, this is half of power gain (or a fall of 3 dB) compared with the gain at high frequencies.

The frequency, in which the power gain half of the maximum value, is called **cut-off frequency** of the circuit.

Phasor diagrams of the gain at different frequencies.

Gain and phase responses (or Bode diagram) for the low-pass *RC* network.

High pass filter (RC first order)

At high frequencies, ω is large and the voltage gain is approximately 1.

At lower frequencies $1/\omega CR$ becomes more significant and the gain of the network decreases.

| voltage gain | =
$$\frac{1}{\sqrt{1^2 + \left(\frac{1}{\omega CR}\right)^2}}$$

The frequency where the value of $1/\omega CR$ is equal to 1, the voltage gain amplitude is:

| voltage gain | =
$$\frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$$

Since power gain is proportional to the square of the voltage gain, this is half of power gain (or a fall of 3 dB) compared with the gain at high frequencies.

The frequency, in which the power gain half of the maximum value, is called **cut-off frequency** of the circuit.

RL Circuits

Natural Response of an RL Circuit

• Consider the following circuit, for which the switch is closed for t < 0, and then opened at t = 0:

Notation:

0⁻ is used to denote the time just prior to switching

0+ is used to denote the time immediately after switching

• The current flowing in the inductor at $t = 0^-$ is I_o

Solving for the Current ($t \ge 0$)

• For t > 0, the circuit reduces to

Applying KVL to the LR circuit yields first-order D.E.:

• Solution: $i(t) = i(0)e^{-(R/L)t} = I_0e^{-(R/L)t}$

Solving for the Voltage (t > 0)

Note that the voltage changes abruptly (step response):

$$v(0^{-}) = 0$$

for
$$t > 0$$
, $v(t) = iR = I_o R e^{-(R/L)t}$
 $\Rightarrow v(0^+) = I_o R$

Time Constant τ

In the example, we found that

$$i(t) = I_o e^{-(R/L)t}$$
 and $v(t) = I_o R e^{-(R/L)t}$

• Time constant
$$\tau = \frac{L}{R}$$
 (sec)

- At $t = \tau$, the current has reduced to 1/e (~0.37) of its initial value.
- At $t = 5\tau$, the current has reduced to less than 1% of its initial value.

Low pass Filter (LR)

At low frequencies, $\boldsymbol{\omega}$ is small and the voltage gain is approximately 1.

At high frequencies, the magnitude of $\omega L/R$ becomes more significant and the gain of the network decreases.

| voltage gain | = $\frac{1}{\sqrt{1 + \left(\omega \frac{L}{R}\right)^2}}$

When the value of $\omega L/R$ is equal to 1, this gives $|\text{voltage gain}| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$

This situation corresponds to a cut-off frequency.

High pass Filter (LR)

At high frequencies, $\boldsymbol{\omega}$ is large and the voltage gain is approximately 1.

At low frequencies, the magnitude of $R/\omega L$ becomes more significant and the gain of the network decreases.

$$|\text{voltage gain}| = \frac{1}{\sqrt{1 + \left(\frac{R}{\omega L}\right)^2}}$$

When the value of $R/\omega L$ is equal to 1, this gives: $|\text{voltage gain}| = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$

This situation corresponds to a cut-off frequency.

RLC first order filter (band-pass & band stop)

The combination of inductors and capacitors allows the production of filters with a very sharp cut-off. Simple LC filters can be produced using the series and parallel resonant circuits.

$$f_0 = \frac{1}{2\pi\sqrt{LC}}$$

Natural Response Summary

RL Circuit

 Inductor current cannot change instantaneously

$$i(0^-) = i(0^+)$$

$$i(t) = i(0)e^{-t/\tau}$$

• time constant $\tau = \frac{L}{}$

RC Circuit

Capacitor voltage cannot change instantaneously

$$v(0^-) = v(0^+)$$

$$v(0^{-}) = v(0^{+})$$

 $v(t) = v(0)e^{-t/\tau}$

time constant $\tau = RC$