Cardinality Encodings for Graph Optimization Problems

Alexey Ignatiev^{1,2}, Antonio Morgado¹, and Joao Marques-Silva¹

August 23, 2017

¹ LASIGE, FC, University of Lisbon, Portugal

² ISDCT SB RAS, Irkutsk, Russia

Definitions

given a *propositional* formula in CNF,

given a *propositional* formula in CNF, decide whether or not it is **satisfiable**

given a *propositional* formula in CNF, decide whether or not it is **satisfiable**

Example

$$\mathcal{F}_1 = (x_1) \wedge (\neg x_1 \vee \neg x_2)$$

given a *propositional* formula in CNF, decide whether or not it is **satisfiable**

Example

$$\mathcal{F}_1 = (x_1) \wedge (\neg x_1 \vee \neg x_2)$$
 — satisfiable

given a *propositional* formula in CNF, decide whether or not it is **satisfiable**

Example

$$\mathcal{F}_1 = (x_1) \wedge (\neg x_1 \vee \neg x_2)$$
 — satisfiable $\mathcal{F}_2 = (x_1) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_2)$

given a *propositional* formula in CNF, decide whether or not it is **satisfiable**

Example

$$\mathcal{F}_1 = (x_1) \wedge (\neg x_1 \vee \neg x_2)$$
 — satisfiable $\mathcal{F}_2 = (x_1) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_2)$ — unsatisfiable

clique of size 2

clique of size 3

maximum clique of size 5

independent set of size 2

vertex cover of size 5

maximum independent set of size 3

minimum vertex cover of size 4

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{aligned} \left(\neg x_1 \lor \neg x_6 \right) \left(\neg x_1 \lor \neg x_7 \right) \\ \left(\neg x_2 \lor \neg x_6 \right) \left(\neg x_2 \lor \neg x_7 \right) \\ \left(\neg x_4 \lor \neg x_6 \right) \left(\neg x_4 \lor \neg x_7 \right) \\ \left(\neg x_6 \lor \neg x_7 \right) \end{aligned} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{aligned} \left(\neg X_1 \lor \neg X_6 \right) \left(\neg X_1 \lor \neg X_7 \right) \\ \left(\neg X_2 \lor \neg X_6 \right) \left(\neg X_2 \lor \neg X_7 \right) \\ \left(\neg X_4 \lor \neg X_6 \right) \left(\neg X_4 \lor \neg X_7 \right) \\ \left(\neg X_6 \lor \neg X_7 \right) \end{aligned} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{aligned} \left(\neg X_1 \lor \neg X_6 \right) \left(\neg X_1 \lor \neg X_7 \right) \\ \left(\neg X_2 \lor \neg X_6 \right) \left(\neg X_2 \lor \neg X_7 \right) \\ \left(\neg X_4 \lor \neg X_6 \right) \left(\neg X_4 \lor \neg X_7 \right) \\ \left(\neg X_6 \lor \neg X_7 \right) \end{aligned} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{aligned} \left(\neg X_1 \lor \neg X_6 \right) \left(\neg X_1 \lor \neg X_7 \right) \\ \left(\neg X_2 \lor \neg X_6 \right) \left(\neg X_2 \lor \neg X_7 \right) \\ \left(\neg X_4 \lor \neg X_6 \right) \left(\neg X_4 \lor \neg X_7 \right) \\ \left(\neg X_6 \lor \neg X_7 \right) \end{aligned} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{array}{l} \left(\neg X_1 \lor \neg X_6 \right) \left(\neg X_1 \lor \neg X_7 \right) \\ \left(\neg X_2 \lor \neg X_6 \right) \left(\neg X_2 \lor \neg X_7 \right) \\ \left(\neg X_4 \lor \neg X_6 \right) \left(\neg X_4 \lor \neg X_7 \right) \\ \left(\neg X_6 \lor \neg X_7 \right) \end{array} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

construct
$$\mathcal{F} = \langle \mathcal{H}, \mathcal{S} \rangle$$
 s.t.
$$\begin{cases} \mathcal{H} & \triangleq \{(\neg x_u \lor \neg x_v) \mid (u, v) \in E^C\} \\ \mathcal{S} & \triangleq \{(x_u) \mid v \in V\} \end{cases}$$

$$\mathcal{H} = \left\{ \begin{aligned} \left(\neg x_1 \lor \neg x_6 \right) \left(\neg x_1 \lor \neg x_7 \right) \\ \left(\neg x_2 \lor \neg x_6 \right) \left(\neg x_2 \lor \neg x_7 \right) \\ \left(\neg x_4 \lor \neg x_6 \right) \left(\neg x_4 \lor \neg x_7 \right) \\ \left(\neg x_6 \lor \neg x_7 \right) \end{aligned} \right\}$$

$$S = \left\{ \begin{array}{l} (x_1) (x_2) (x_3) \\ (x_4) (x_5) (x_6) \\ (x_7) \end{array} \right\}$$

solve \mathcal{F} with MaxSAT

¹http://networkrepository.com

for ca-dblp-2012¹,
$$|V| = 317\,080$$
 and $|E| = 1\,049\,867$

¹http://networkrepository.com

for ca-dblp-2012¹,

$$|V| = 317\,080$$
 and $|E| = 1\,049\,867$

$$\boxed{\mathcal{H}} = |E^{C}| = 50\,268\,654\,793!$$

¹http://networkrepository.com

for ca-dblp-2012¹,

$$|V| = 317\,080$$
 and $|E| = 1\,049\,867$

$$|\mathcal{H}| = |E^C| = 50\,268\,654\,793!$$

impossible to solve and hard to represent

¹http://networkrepository.com

Edge cover by cliques

$$G = (V, E)$$

 $T \subseteq V - \text{a clique of } G$
 $(U \subseteq V - \text{a clique of } G^c)$

Edge cover by cliques

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

$$G = (V, E)$$

 $T \subseteq V - \text{a clique of } G$
 $(U \subseteq V - \text{a clique of } G^{C})$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_5, x_6)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_3 , x_7) AtMost1(x_5 , x_6)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_3, x_6)

AtMost1(x_3 , x_7) AtMost1(x_5 , x_6)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_3, x_6) AtMost1(x_3, x_7) AtMost1(x_5, x_6) AtMost1(x_5, x_7) AtMost1(x_1, x_2, x_3, x_4, x_5)

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_3, x_6) AtMost1(x_3, x_7) AtMost1(x_5, x_6) AtMost1(x_5, x_7) AtMost1(x_1, x_2, x_3, x_4, x_5)

pairwise encoding!

$$G = (V, E)$$

$$T \subseteq V - \text{a clique of } G$$

$$(U \subseteq V - \text{a clique of } G^{C})$$

 $|\mathcal{H}|$ grows with T^2 (or U^2) (hidden pairwise encoding)

AtMost1(x_3 , x_6) AtMost1(x_3 , x_7) AtMost1(x_5 , x_6)

AtMost1(x_5, x_7)

AtMost1(x_1, x_2, x_3, x_4, x_5)

pairwise encoding!

given
$$G = (V, E)$$
,

given G = (V, E), is there a clique of size K?

given G = (V, E), is there a clique of size K?

$$\sum_{u \in V} x_u = K \tag{1}$$

given G = (V, E), is there a clique of size K?

$$\sum_{u \in V} x_u = K \tag{1}$$

$$X_u \to \left(\sum_{v \in Adj(u)} X_v = K - 1\right)$$
 (2)

filter vertices u based on degree Deg(u)

filter vertices u based on degree Deg(u)

 $\forall u \in V \text{ s.t. } \mathsf{Deg}(u) < K-1 : (\neg x_u)$

filter vertices u based on degree Deg(u)

 $\forall u \in V \text{ s.t. } Deg(u) < K-1: (\neg x_u)$

$$\sum_{u \in V \land \mathsf{Deg}(u) > K-1} X_u = K$$

filter vertices u based on degree Deg(u)

 $\forall u \in V \text{ s.t. } Deg(u) < K - 1: (\neg x_u)$

$$\sum_{u \in V \land \mathsf{Deg}(u) \ge K-1} x_u = K$$

$$X_u \to \left(\sum_{v \in Adj(u) \land Deg(v) \ge K-1} X_v = K-1\right)$$

Experimental results

· Novel SAT-based approach — SATClq

- · Novel SAT-based approach SATClq
 - \cdot implemented in Python

- Novel SAT-based approach SATClq
 - · implemented in Python
 - supports MiniSat 2.2, Glucose 3.0, lingeling, etc.

- Novel SAT-based approach SATClq
 - · implemented in Python
 - supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - Glucose 3.0 used

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - · only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:

1. Cliquer 1.21 2. FMC 3. IncMaxCLQ

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:

1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - · only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository 3. generated by *Benchmark*

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository 3. generated by Benchmark
- · Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository 3. generated by *Benchmark*
- · Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository 3. generated by *Benchmark*
- · Machine configuration:
 - · Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux
 - · 3600s timeout

- Novel SAT-based approach SATClq
 - · implemented in Python
 - · supports MiniSat 2.2, Glucose 3.0, lingeling, etc.
 - · Glucose 3.0 used
 - only SAT solving time
- · Competition:
 - 1. Cliquer 1.21 2. FMC 3. IncMaxCLQ 4. LMC
- · Benchmarks:
 - 1. SNAP 2. Network Repository 3. generated by *Benchmark*
- Machine configuration:
 - Intel Xeon E5-2630 2.60GHz with 64GByte RAM
 - · running Ubuntu Linux
 - · 3600s timeout
 - 10GByte memout

Instance	SATClq	Cliquer	FMC	IncMaxCLQ	LMC
comm-n1000	0.19	0.02	0.05	0.11	0.5
comm-n10000	_	0.99	_	12.33	0.93
ca-AstroPh	0	101.17	0.43	_	0.69
ca-citeseer	0	354.46	0.92	_	1.03
ca-coauthors-dblp	0	_	29.65	_	9.42
ca-CondMat	0	71	0.13	_	0.55
ca-dblp-2010	0	353.85	0.87	_	0.92
ca-dblp-2012	0	_	1.39	_	1.07
ca-HepPh	0	44.61	0.57	_	0.6
ca-HepTh	0	27.84	0.06	_	0.49
ca-MathSciNet	0	-	1.27	-	1.07
ia-email-EU	2.47	7.15	0.08	_	0.49
ia-reality-call	0	3.98	0.03	-	0.44
ia-retweet-pol	1.76	2.35	0.16	_	0.49
ia-wiki-Talk	_	60.48	4.21	-	0.73
rt-pol	1.7	2.39	0.19	-	0.49
rt_barackobama	0	0.46	0.45	6.63	0.46
soc-advogato	0.15	0.25	0.11	4.91	0.49
soc-epinions	_	101.67	0.21	-	0.82
soc-gplus	0.01	2.82	0.45	-	0.47
tech-as-caida2007	0.01	5.26	0.09	-	0.48
tech-internet-as	0.02	12.23	0.45	-	0.52
tech-pgp	3.05	0.71	0.07	-	0.45
tech-WHOIS	_	10.13	_	6.31	0.49
web-arabic-2005	0	151.31	2.43	_	1.57
web-baidu-baike-related	0.94	_	_	-	2.54
web-it-2004	0	_	25.32	-	4.87
web-NotreDame	0	_	3.76	_	1.37
web-sk-2005	0	97.44	0.34	-	0.64
p5sparse1	2.88	1031.15	_	12.17	0.48
p5sparse2+10clq20	1.9	24.42	_	_	0.54
p5sparse3+10clq20	3.62	150.15	_	_	0.58
p6sparse1	48.34	_	_	_	0.53
p6sparse2+10clq20	42.65	_	_	_	0.64
p6sparse3+10clq20	50.88	-	_	-	0.7
Solved (out of 35)	31	26	26	6	35

Instance	SATClq	Cliquer	FMC	IncMaxCLQ	LMC
comm-n1000	0.19	0.02	0.05	0.11	0.5
comm-n10000	_	0.99	_	12.33	0.93
ca-AstroPh	0	101.17	0.43	_	0.69
ca-citeseer	0	354.46	0.92	_	1.03
ca-coauthors-dblp	0	-	29.65	_	9.42
ca-CondMat	0	71	0.13	_	0.55
ca-dblp-2010	0	353.85	0.87	_	0.92
ca-dblp-2012	0	-	1.39	_	1.07
ca-HepPh	0	44.61	0.57	_	0.6
ca-HepTh	0	27.84	0.06	_	0.49
ca-MathSciNet	0	_	1.27	_	1.07
ia-email-EU	2.47	7.15	0.08	_	0.49
ia-reality-call	0	3.98	0.03	_	0.44
ia-retweet-pol	1.76	2.35	0.16	_	0.49
ia-wiki-Talk	_	60.48	4.21	_	0.73
rt-pol	1.7	2.39	0.19	_	0.49
rt barackobama	0	0.46	0.45	6.63	0.46
soc-advogato	0.15	0.25	0.11	4.91	0.49
soc-epinions	_	101.67	0.21	_	0.82
soc-gplus	0.01	2.82	0.45	_	0.47
tech-as-caida2007	0.01	5.26	0.09	_	0.48
tech-internet-as	0.02	12.23	0.45	_	0.52
tech-pgp	3.05	0.71	0.07	_	0.45
tech-WHOIS	_	10.13	_	6.31	0.49
web-arabic-2005	0	151.31	2.43	_	1.57
web-baidu-baike-related	0.94	_	_	_	2.54
web-it-2004	0	_	25.32	_	4.87
web-NotreDame	0	_	3.76	_	1.37
web-sk-2005	0	97.44	0.34	_	0.64
p5sparse1	2.88	1031.15	_	12.17	0.48
p5sparse2+10clg20	1.9	24.42	_	_	0.54
p5sparse3+10clq20	3.62	150.15	_	_	0.58
p6sparse1	48.34	_	_	_	0.53
p6sparse2+10clg20	42.65	_	_	_	0.64
p6sparse3+10clq20	50.88	_	-	-	0.7
Solved (out of 35)	21	26	26	6	25

Instance	SATClq	Cliquer	FMC	IncMaxCLQ	LMC
comm-n1000	0.19	0.02	0.05	0.11	0.5
comm-n10000	_	0.99	_	12.33	0.93
ca-AstroPh	0	101.17	0.43	_	0.69
ca-citeseer	0	354.46	0.92	_	1.03
ca-coauthors-dblp	0	_	29.65	_	9.42
ca-CondMat	0	71	0.13	_	0.55
ca-dblp-2010	0	353.85	0.87	_	0.92
ca-dblp-2012	0	_	1.39	_	1.07
ca-HepPh	0	44.61	0.57	_	0.6
ca-HepTh	0	27.84	0.06	_	0.49
ca-MathSciNet	0	_	1.27	_	1.07
ia-email-EU	2.47	7.15	0.08	_	0.49
ia-reality-call	0	3.98	0.03	_	0.44
ia-retweet-pol	1.76	2.35	0.16	_	0.49
ia-wiki-Talk	_	60.48	4.21	_	0.73
rt-pol	1.7	2.39	0.19	_	0.49
rt barackobama	0	0.46	0.45	6.63	0.46
soc-advogato	0.15	0.25	0.11	4.91	0.49
soc-epinions	_	101.67	0.21	_	0.82
soc-gplus	0.01	2.82	0.45	_	0.47
tech-as-caida2007	0.01	5.26	0.09	_	0.48
tech-internet-as	0.02	12.23	0.45	_	0.52
tech-pgp	3.05	0.71	0.07	_	0.45
tech-WHOIS	_	10.13	_	6.31	0.49
web-arabic-2005	0	151.31	2.43	_	1.57
web-baidu-baike-related	0.94	_	_	_	2.54
web-it-2004	0	_	25.32	_	4.87
web-NotreDame	0	_	3.76	_	1.37
web-sk-2005	0	97.44	0.34	_	0.64
p5sparse1	2.88	1031.15	_	12.17	0.48
p5sparse2+10clg20	1.9	24.42	_	_	0.54
p5sparse3+10clg20	3.62	150.15	_	_	0.58
p6sparse1	48.34	_	_	_	0.53
p6sparse2+10clg20	42.65	_	_	_	0.64
p6sparse3+10clq20	50.88	-	_	-	0.7
Salvad (out of 35)	21	26	26	6	25

Instance	SATClq	Cliquer	FMC	IncMaxCLQ	LMC
comm-n1000	0.19	0.02	0.05	0.11	0.5
comm-n10000	_	0.99	_	12.33	0.93
ca-AstroPh	0	101.17	0.43	_	0.69
ca-citeseer	0	354.46	0.92	-	1.03
ca-coauthors-dblp	0	_	29.65	_	9.42
ca-CondMat	0	71	0.13	_	0.55
ca-dblp-2010	0	353.85	0.87	_	0.92
ca-dblp-2012	0	_	1.39	-	1.07
ca-HepPh	0	44.61	0.57	_	0.6
ca-HepTh	0	27.84	0.06	_	0.49
ca-MathSciNet	0	_	1.27	_	1.07
ia-email-EU	2.47	7.15	0.08	_	0.49
ia-reality-call	0	3.98	0.03	_	0.44
ia-retweet-pol	1.76	2.35	0.16	_	0.49
ia-wiki-Talk	_	60.48	4.21	_	0.73
rt-pol	1.7	2.39	0.19	_	0.49
rt_barackobama	0	0.46	0.45	6.63	0.46
soc-advogato	0.15	0.25	0.11	4.91	0.49
soc-epinions	_	101.67	0.21	_	0.82
soc-gplus	0.01	2.82	0.45	_	0.47
tech-as-caida2007	0.01	5.26	0.09	_	0.48
tech-internet-as	0.02	12.23	0.45	_	0.52
tech-pgp	3.05	0.71	0.07	_	0.45
tech-WHOIS	_	10.13	_	6.31	0.49
web-arabic-2005	0	151.31	2.43	_	1.57
web-baidu-baike-related	0.94	_	_	_	2.54
web-it-2004	0	_	25.32	_	4.87
web-NotreDame	0	_	3.76	_	1.37
web-sk-2005	0	97.44	0.34	_	0.64
p5sparse1	2.88	1031.15	_	12.17	0.48
p5sparse2+10clq20	1.9	24.42	_	_	0.54
p5sparse3+10clq20	3.62	150.15	_	_	0.58
p6sparse1	48.34	_	_	_	0.53
p6sparse2+10clg20	42.65	_	_	_	0.64
p6sparse3+10clq20	50.88	-	-	-	0.7
Solved (out of 35)	31	26	26	6	35

Instance	SATClq	Cliquer	FMC	IncMaxCLQ	LMC
comm-n1000	0.19	0.02	0.05	0.11	0.5
comm-n10000	_	0.99	_	12.33	0.93
ca-AstroPh	0	101.17	0.43	_	0.69
ca-citeseer	0	354.46	0.92	_	1.03
ca-coauthors-dblp	0	_	29.65	_	9.42
ca-CondMat	0	71	0.13	_	0.55
ca-dblp-2010	0	353.85	0.87	_	0.92
ca-dblp-2012	0	_	1.39	_	1.07
ca-HepPh	0	44.61	0.57	_	0.6
ca-HepTh	0	27.84	0.06	_	0.49
ca-MathSciNet	0	_	1.27	_	1.07
ia-email-EU	2.47	7.15	0.08	_	0.49
ia-reality-call	0	3.98	0.03	_	0.44
ia-retweet-pol	1.76	2.35	0.16	_	0.49
ia-wiki-Talk	_	60.48	4.21	_	0.73
rt-pol	1.7	2.39	0.19	_	0.49
rt barackobama	0	0.46	0.45	6.63	0.46
soc-advogato	0.15	0.25	0.11	4.91	0.49
soc-epinions	_	101.67	0.21	_	0.82
soc-gplus	0.01	2.82	0.45	_	0.47
tech-as-caida2007	0.01	5.26	0.09	_	0.48
tech-internet-as	0.02	12.23	0.45	_	0.52
tech-pgp	3.05	0.71	0.07	_	0.45
tech-WHOIS	_	10.13	_	6.31	0.49
web-arabic-2005	0	151.31	2.43	_	1.57
web-baidu-baike-related	0.94	_	_	_	2.54
web-it-2004	0	_	25.32	_	4.87
web-NotreDame	0	_	3.76	_	1.37
web-sk-2005	0	97.44	0.34	_	0.64
p5sparse1	2.88	1031.15	_	12.17	0.48
p5sparse2+10clq20	1.9	24.42	_	_	0.54
p5sparse3+10clq20	3.62	150.15	_	_	0.58
p6sparse1	48.34	_	_	_	0.53
p6sparse2+10clq20	42.65	_	_	_	0.64
p6sparse3+10clq20	50.88	-	-	-	0.7
Solved (out of 35)	21	26	26	6	25

• source of inefficiency in propositional encodings of graph optimization problems

- source of inefficiency in propositional encodings of graph optimization problems
 - hidden pairwise encodings

- source of inefficiency in propositional encodings of graph optimization problems
 - hidden pairwise encodings
- novel encoding for MaxClique
 - no need to analyze complement graphs
 - applying SAT to large sparse graphs

- source of inefficiency in propositional encodings of graph optimization problems
 - hidden pairwise encodings
- novel encoding for MaxClique
 - no need to analyze complement graphs
 - applying SAT to large sparse graphs

breaking symmetries?

- source of inefficiency in propositional encodings of graph optimization problems
 - hidden pairwise encodings
- novel encoding for MaxClique
 - no need to analyze complement graphs
 - applying SAT to large sparse graphs

- breaking symmetries?
- enumeration problems?

