## CS229: Machine Learning

## Logistic Regression

Xiangliang Zhang

King Abdullah University of Science and Technology



## Logistic Regression

#### Target variable is not quantitative?

Logistic Regression
 target variable is categorical (nominal), e.g., married,
 single, divorced

Ordinal Logistic Regression
 target variable is ordinal, e.g., high, medium, low

#### **Revisit Regression**

#### Target variable t is continuous

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$
 where  $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$ 

#### Then,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$



## Logistic Regression – binary variable

Target variable t is binary  $t \in \{0,1\}$ 

$$p(t \mid x, \mathbf{w}) = Ber(t \mid \mu(x))$$

where  $\mu(x)$  is the parameter of Bernoulli distribution,  $p(t = 1 \mid x)$ .

Define

$$\mu(x) = \text{sigm}(\mathbf{w}^T x)$$

where

$$\operatorname{sigm}(a) = \frac{1}{1 + e^{-a}}$$

Then,

$$p(t \mid x, \mathbf{w}) = Ber(t \mid \text{sigm}(\mathbf{w}^T x))$$

## Logistic Regression – example

apply to graduate school or not



## logit and interpretation

The *odds* 

$$odds = \frac{p(t=1)}{1 - p(t=1)}$$

Logit: the log of the *odds* 

logit(
$$p(t = 1)$$
) = log[ $\frac{p(t = 1)}{1 - p(t = 1)}$ ] = ?

According to the definition of  $\mu(x)$ 

$$logit(p(t=1)) = w_0 + w^T x$$

#### Likelihood

#### Likelihood function

$$L = \prod_{i=1}^{N} \mu_i^{is(t_i=1)} (1 - \mu_i)^{is(t_i=0)}$$

$$= \prod_{i=1}^{N} \mu_i^{t_i} (1 - \mu_i)^{(1-t_i)}$$

The Negative Log-Likelihood (NLL)

$$NLL(\mathbf{w}) = -\sum_{i=1}^{N} [t_i \ln \mu_i + (1 - t_i) \ln(1 - \mu_i)]$$

No closed form solution to w.

## Gradient of NLL(w)

Derivative of NNL on w,

$$\frac{d \ NLL(w)}{d \ w} = -\sum_{i=1}^{N} \left[ \frac{t_i}{\mu_i} + \frac{t_i - 1}{1 - \mu_i} \right] \frac{d\mu_i}{dw}$$

$$\frac{d\mu_i}{dw} = \frac{d(1 + e^{-w^T x_i})^{-1}}{dw} = \mu_i (1 - \mu_i) x_i$$

Then, 
$$\frac{d NLL(\mathbf{w})}{d \mathbf{w}} = \sum_{i=1}^{N} [\mu_i - t_i] x_i$$

### Hessian matrix of NNL(w)

Hessian matrix (second-order partial derivatives)

$$H = \frac{d^{2} NLL(w)}{d w^{2}} = \frac{d \sum_{i=1}^{N} [\mu_{i} - t_{i}] x_{i}}{d w} = \sum_{i=1}^{N} \frac{d\mu_{i}}{dw} x_{i}^{T}$$

$$= \sum_{i=1}^{N} \mu_{i} (1 - \mu_{i}) x_{i} x_{i}^{T}$$

$$= X^{T} S X$$

$$S = \begin{bmatrix} \mu_{i} (1 - \mu_{i}) & \dots & 0 \\ \dots & \ddots & \dots \\ 0 & \dots & \mu_{N} (1 - \mu_{N}) \end{bmatrix}$$

H is positive definite.

Thus NLL(w) is convex, and has a unique global minimum.

#### **Gradient Descent**

Search w\* by

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \eta g^k$$

where

$$g^{k} = \frac{d \ NLL(\mathbf{w}^{k})}{d \ \mathbf{w}^{k}} = \sum_{i=1}^{N} [\mu_{i} - t_{i}] x_{i}$$

#### Prediction

#### Predict the target

$$t = \begin{cases} 1 & \text{if } \mu = \text{sigm}(\mathbf{w}^T x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$



See a Demo

## logit and interpretation

The *odds* 

$$odds = \frac{p(t=1)}{1 - p(t=1)}$$

Logit: the log of the odds

logit(
$$p(t = 1)$$
) = log[ $\frac{p(t = 1)}{1 - p(t = 1)}$ ] = ?

According to the definition of  $\mu(x)$ 

$$logit(p(t=1)) = w_0 + w^T x$$

## Multi-class logistic regression

Target variable t has C nominal values (C>2)

$$p(t = c \mid x, \mathbf{W}) = \frac{\exp(\mathbf{w}_{c}^{\mathrm{T}} x)}{\sum_{c'=1}^{C} \exp(\mathbf{w}_{c'}^{\mathrm{T}} x)}$$

where columns of W are  $\mathbf{w}_{c'}^{\mathrm{T}}$ , c' = 1...C

#### Multi-class logistic regression - Likelihood

Let 
$$\mu_{ic} = p(t_i = c \mid x_i, W_i)$$
 and  $t_{ic} = \{0,1\}$  for each  $i$ ,  $\sum_{c=1}^{C} t_{ic} = 1$ 

The likelihood is

$$\prod_{i=1}^{N} \prod_{c=1}^{C} \mu_{ic}^{t_{ic}}$$

The negative log-likelihood (NLL) is

$$NLL(\mathbf{W}) = -\sum_{i=1}^{N} \sum_{c=1}^{C} t_{ic} \log \mu_{ic}$$

$$= -\sum_{i=1}^{N} \left[ \sum_{c=1}^{C} t_{ic} w_{c}^{T} x_{i} - \log \sum_{c'=1}^{C} \exp(w_{c'}^{T} x_{i}) \right]$$

#### Multi-class logistic regression - Gradient

The gradient of NNL(w) w.r.t.  $W_c$ 

$$g(w_c) = \frac{\partial NLL(W)}{\partial w_c}$$

$$= \sum_{i=1}^{N} \left[ \frac{\exp(w_c^T x_i)}{\sum_{c'=1}^{C} \exp(w_{c'}^T x_i)} x_i - t_{ic} x_i \right]$$

$$= \sum_{i=1}^{N} \left[ \mu_{ic} - t_{ic} \right] x_i$$

### Multi-class logistic regression - Hessian

The Hessian matrix has a submatrix (one d\*d block)

$$H_{ck} = \frac{dg(w_c)}{\partial w_k} = \sum_{i=1}^{N} \frac{d\mu_{ic}}{dw_k} x_i^T$$

since 
$$\frac{d\mu_{ic}}{dw_k} = \begin{cases} \mu_{ic}(1 - \mu_{ic})x_i & \text{when } c = k \\ -\mu_{ic}\mu_{ik}x_i & \text{when } c \neq k \end{cases}$$

Then 
$$H_{cc} = \sum_{i=1}^{N} \mu_{ic} (1 - \mu_{ic}) x_i x_i^T$$
  $H_{ck} = \sum_{i=1}^{N} -\mu_{ic} \mu_{ik} x_i x_i^T$ 

$$H = \begin{bmatrix} H_{11} & \cdots & H_{1C} \\ \vdots & \ddots & \vdots \\ H_{C1} & \cdots & H_{CC} \end{bmatrix}$$

# Multi-class logistic regression – learning and prediction

**Learn** by Gradient descent, for each  $W_c$ 

$$\mathbf{w}_{c}^{k+1} = \mathbf{w}_{c}^{k} - \eta g^{k}(\mathbf{w}_{c})$$

where

$$g^{k}(w_{c}) = \sum_{i=1}^{N} [\mu_{ic} - t_{ic}] x_{i}$$

**Predict** the target label for  $X_i$  by

$$t_i = \arg\max_{c} \{\mu_{ic}\} = \arg\max_{c} \{\frac{\exp(\mathbf{w}_{c}^{\mathsf{T}} x_i)}{\sum_{c'=1}^{C} \exp(\mathbf{w}_{c'}^{\mathsf{T}} x_i)}\}$$