Chapitre 33

Groupe Symétrique

Soit p un entier supérieur à 2.

Une permutation γ est appellée un p-cycle s'il existe p éléments distincts $a_1, ..., a_p$ de [1, n] tels que Exemple 1

Soit $\gamma = (a_1, ..., a_p)$ un p-cycle et $\sigma \in S_n$. Montrer que

$$\sigma\gamma\sigma^{-1} = (\sigma(a_1) \ \sigma(a_2) \ \dots \ \sigma(a_p)).$$

Preuve:

Soit $b \in [1, n] \setminus {\sigma(a_1), ..., \sigma(a_p)}$.

Alors $\sigma \gamma \sigma^{-1}(b) = \sigma \gamma(\sigma^{-1}(b)) = \sigma \sigma^{-1}(b) = b \operatorname{car} b \notin \{\sigma(a_1), ..., \sigma(a_p)\} \operatorname{donc} \sigma^{-1}(b) \notin \{a_1, ..., a_p\}$ donc c'est un point fixe de γ .

On a bien que $\sigma \gamma \sigma^{-1}$ et $(\sigma(a_1)...\sigma(a_p))$ sont égaux en tout point.

Soit $j \in [1, p]$. Alors $\sigma \gamma \sigma^{-1}(\sigma(a_j)) = \sigma \gamma(a_j) = \sigma(a_{j+1})$ avec $a_{p+1} := a_1$.

Remarque: Ceci démontre que tous les p-cycles sont conjugués.

Soient $\gamma = (a_1 \dots a_p)$ et $\gamma' = (b_1 \dots b_p)$ deux p-cycles.

Posons $\sigma \in S_n$ telle que : • $\forall j \in [1, p] \ \sigma(a_j) = b_j$.

• Notons $[\![1,n]\!]\setminus\{a_1,...,a_p\}:=\{a_1',...,a_{n-p}'\}$ et $[\![1,n]\!]\setminus\{b_1,...b_p\}:=\{b_1',...,b_{n-p}'\}.$

On pose alors $\forall i \in [1, n-p] \ \sigma(a_i') = b_i'$.

Alors σ est bien une bijection de [1, n] dans lui-même car injective et de même cardinal. On a donc $\gamma' = (b_1 \dots b_p) = (\sigma(a_1) \dots \sigma(a_p)) = \sigma \gamma \sigma^{-1}$ donc γ et γ' sont conjugués.

Exemple 2

Soit $\gamma = (a_1 \dots a_p)$. Déterminer γ^{-1} et γ^p .

La réciproque γ^{-1} :

Preuve:

Si $\gamma(b) = b$ alors $\gamma^{-1}(b) = b$ car c'est un point fixe. Soit $j \in [1, p-1]$, $\gamma(a_j) = a_{j+1}$ donc $a_j = \gamma^{-1}(a_{j+1})$.

Alors $\forall k \in [2, p], \ \gamma^{-1}(a_k) = a_{k-1}, \ \text{et} \ \gamma^{-1}(a_1) = a_p.$

Ainsi, $\gamma^{-1} = (a_p \ a_{p-1} \ \dots \ a_2 \ a_1).$

3. Transpositions

La puissance γ^p :

On a $\gamma = (a, \gamma(a), ..., \gamma^{p-1}(a))$ pour un $a \in [1, n]$. \circ $\gamma^p(a) = \gamma(\gamma^{p-1}(a)) = a.$ \odot Soit $j \in [1, p-1], \gamma^p(\gamma^j(a)) = \gamma^j(\gamma^p(a)) = \gamma^j(a).$

 \odot Soit $b \in [1, n] \setminus \{a, \gamma(a), ..., \gamma^{p-1}(a)\}$, alors $\gamma^p(b) = b$ car point fixe.

Ainsi, $\forall x \in [1, n]$, $\gamma^p(x) = x$ donc $\gamma^p = id$. **Remarque:** On pourrait aussi prouver que $p = \min\{j \in \mathbb{N}^* \mid \gamma^j = \mathrm{id}\}.$

Définition 3 Une permutation τ qui est un 2-cycle est appelé une transposition. Une transposition est donc une permutation de la forme (a,b) où $\{a,b\}$ est une paire de [1,n].

 $\tau^2 = id$ et $\tau^{-1} = \tau$

 $\gamma = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$ ou $\gamma = (a_1 \ a_p)(a_1 \ a_{p-1})...(a_1 \ a_2)$

Si τ est une transposition, alors

Preuve:

Proposition 4

On en déduit que $\tau^{-1} = \tau$.

C'est un 2-cycle donc $\tau^2 = id$.

Proposition 5

Preuve: Notons $\pi = (a_1 \ a_2)(a_2 \ a_3)...(a_{p-1} \ a_p)$. Montrons que $\gamma = \pi$.

Alors $\gamma(b) = \pi(b) = b$.

Soit $\gamma = (a_1 \dots a_p)$. Alors

⊚ Soit
$$j \in [1, p-1]$$
. Alors $\pi(a_j) = [...(a_{j-1} \ a_j)(a_j \ a_{j+1})...](a_j) = [...(a_{j-1} \ a_j)](a_{j+1}) = a_{j+1}$.
⊚ $\pi(a_p) = [(a_1 \ a_2)...(a_{p-1} \ a_p)](a_p) = [(a_1 \ a_2)...(a_{p-2} \ a_{p-1})](a_{p-1}) = ... = a_1$
Donc $\forall x \in [1, n] \ \gamma(x) = \pi(x)$

Remarque: On retrouve que $(1\ 2)(2\ 3) = (1\ 2\ 3)$ et $(2\ 3)(1\ 2) = (3\ 2)(2\ 1) = (3\ 2\ 1) = (1\ 3\ 2)$

 $\odot \text{ Soit } b \in [\![1,n]\!] \setminus \{a_1,...,a_p\}: \ \gamma(b) = b \text{ et } \forall j \in [\![1,p-1]\!], \ (a_j \ a_{j+1})(b) = b \text{ car } b \notin \{a_j,a_{j+1}\}.$

On a
$$(1\ 2)(2\ 3) \neq (2\ 3)(1\ 2)$$
.

Les γ_i commutent et cette décomposition est unique à l'ordre près.

Une relation d'équivalence sur [1, n]. Pour $i, j \in [1, n]$, on note $i \sim j$ si $\exists k \in \mathbb{Z} \mid j = \sigma^k(i)$.

Preuve: Soit $\sigma \in S_n$.

Théorème 6

 \odot Soit $i \in [1, n]$. $i = \sigma^0(i)$ donc $i \sim i$. \odot Soient $i, j \in [1, n] \mid i \sim j$. Alors $\exists k \in \mathbb{Z} \mid j = \sigma^k(i) : i = \sigma^{-k}(j)$ et $j \sim i$. \odot Soient $h, i, j \in [1, n]$ | $h \sim i$ et $i \sim j : \exists k, l \in \mathbb{Z} \mid i = \sigma^k(h)$ et $j = \sigma^l(i)$ donc $j = \sigma^{l+k}(h)$ et $j \sim h$.

Soit $\sigma \in S_n.$ Il existe $\gamma_1,...,\gamma_r$ r cycles à supports disjoints tels que

Il existe alors une partition de
$$[1, n]$$
 en classes d'équivalences.
On fixe $x \in [1, n]$.

 $S: \begin{cases} \mathbb{Z} \to \llbracket 1, n \rrbracket & \text{n'est pas injective.} \\ k \mapsto \sigma^k(x) & \end{cases}$

est trivial.
Soit
$$y \in [x]$$
: $\exists k \in \mathbb{Z} \mid y = \sigma^k(x)$.
Par division euclidienne: $\exists ! (q, r) \in \mathbb{Z}^2 \mid k = qp + r \text{ et } 0 \le r \le p - 1$.

 $\forall j \in [1, r] \exists x_j \in [1, n] \exists p_j \in \mathbb{N}^* \mid A_j = \{x_j, \sigma(x_j), ..., \sigma^{p_j - 1}(x_j)\}.$

 $\circ \sigma^{12} = (\gamma_1^4)^3 (\gamma_2^3)^4 = id$ $\circ \sigma^{666} = (1\ 8)(3\ 5) \operatorname{car} \sigma^{666} = \sigma^{12 \times 55} \sigma^6.$

Exemple 7

Preuve:

Prouvons qu'il existe $p \in \mathbb{N}^*$ tel que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$ On pose $p = \min\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\}$. Cet ensemble est minoré. Il est non-vide car :

On fixe $x \in [1, n]$.

Ainsi, $\exists k, k' \in \mathbb{Z} \mid k < k' \text{ et } \sigma^k(x) = \sigma^{k'}(x) \text{ donc } \sigma^{k'-k}(x) = x.$ Or $k' - k \in \mathbb{N}^*$, donc $\{k \in \mathbb{N}^* \mid \sigma^k(x) = x\} \neq \emptyset$. Il faut montrer que $[x] = \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 4 & 1 & 7 & 8 & 6 & 2 & 3 \end{pmatrix}.$

2. Déterminer σ^4 , σ^{12} et σ^{666} .

1. $\sigma = (1\ 5\ 8\ 3)(2\ 4\ 7)$

1. Décomposer σ en produit de cycles à supports disjoints.

On pose alors
$$\gamma_j = (x_j \ \sigma(x_j) \ ... \ \sigma^{p_j-1}(x_j))$$
, il est clair que $\sigma = \gamma_1 \gamma_2 ... \gamma_r$.

Donc $y = \sigma^k(x) = \sigma^{pq+r}(x) = \sigma^r(\sigma^{pq}(x)) = \sigma^r(x) : y \in \{x, \sigma(x), ..., \sigma^{p-1}(x)\}.$

Notons $A_1, ..., A_r$ les classes d'équivalences non triviales de \sim . On a prouvé que :

1 sur ??