Esercitazioni su Scheduling della CPU

• Esercizio 1

Si considerino cinque processi caratterizzati dai seguenti tempi di esecuzione (in millisecondi) e priorità date esternamente (un codice di priorità più piccolo indica una priorità più alta):

Processo no.	Tempo di esecuzione	Priorità
P_1	10	3
P_2	1	1
P_3	2	3
P_4	1	4
P_5	5	2

I processi usano solo la CPU ed arrivano tutti al tempo 0 nell'ordine P_1 , P_2 , P_3 , P_4 , P_5 . Si illustri quale risulta l'ordine di esecuzione nel caso delle politiche SJF ed a priorità. Si calcoli il tempo di attesa medio nei due casi.

Solutione

Scheduling a Priorita'

$$t_a(SJF) = \frac{9+0+2+1+4}{5} = 3.2$$

$$t_a(Pr)$$
 = $\frac{6+0+16+18+1}{5} = 8.2$

Si consideri il seguente insieme di processi:

processo	tempo di arrivo	$CPU-burst\ (millisec.)$
A	0	3
B	2	6
C	4	4
D	6	5
E	8	2

Si calcoli il tempo medio di attesa ed il tempo medio di turnaround, nel caso di scheduling FCFS, RR con quanti di tempo 1 e 4 e SJF non preemptive.

Solutione

Si supponga che tre clienti arrivino ad una stazione di servizio per richiedere un servizio, il cui tempo (espresso in minuti primi) è noto a priori.

cliente	ora di arrivo	tempo di servizio (minuti)
P	10.00	8'
Q	10.05	4'
R	10.07	1'

Tenendo presente i dati sopra riportati, nell'ipotesi che la stazione di servizio alle ore 10.00 sia libera, rispondere alle seguenti domande:

- 1. Qual è il tempo medio di turnaround (tempo medio trascorso dal cliente nel sistema, comprensivo del tempo trascorso in coda e del tempo di servizio) se adottiamo una politica di schedulazione FCFS?
- 2. Qual è il tempo medio di turnaround se adottiamo una politica di schedulazione SJF non preemptive?
- 3. Qual è il tempo medio di turnaround se adottiamo una politica di schedulazione SJF preemptive?

Solutione

1. Nel caso FCFS si ha:

$$t_r(FCFS) = \frac{(8-0) + (12-5) + (13-7)}{3} = 7$$
 minuti

2. Nel caso SJF non preemptive si ha:

$$t_r(SJF_{np}) = \frac{(8-0) + (9-7) + (13-5)}{3} = 6$$
 minuti

3. Per la successione di processi descritta l'algoritmo SJF preemptive si comporta in maniera identica alla versione senza prelazione.

3

Si consideri un insieme di cinque processi P_1 , P_2 , P_3 , P_4 , P_5 con i seguenti tempi di arrivo e tempi di esecuzione in millisecondi:

processo	tempo di arrivo	tempo di esecuzione
P_1	0	17
P_2	5	5
P_3	10	10
P_4	7	9
P_5	11	7

Assegnare l'insieme di processi ad un processore in base alla politica Round Robin considerando un quanto di tempo di 4 millisecondi. Calcolare il valor medio del tempo di attesa ed il valor medio del tempo di turnaround dei processi.

Soluzione

$$t_a = \frac{29 + 19 + 28 + 29 + 26}{5} = 26.2 \text{ msec}$$

$$t_{tr} = \frac{46 + 24 + 38 + 38 + 33}{5} = 35.8 \text{ msec}$$

Si consideri un insieme di cinque processi P_1 , P_2 , P_3 , P_4 , P_5 con i seguenti tempi di arrivo e tempi di esecuzione in millisecondi:

processo	tempo di arrivo	tempo di esecuzione
P_1	0	20
P_2	8	5
P_3	3	12
P_4	10	6
P_5	7	8

Assegnare l'insieme di processi ad un processore in base alla politica Shortest Job First preemptive e calcolare il valor medio del tempo di attesa e di turnaround.

Solutione

$$t_a = \frac{31+0+11+3+19}{5} = 12.8 \text{ msec}$$

$$t_{tr} = \frac{51 + 5 + 23 + 9 + 27}{5} = 23 \text{ msec}$$

Esercizi da svolgere

1. Si considerino 4 processi caratterizzati dai seguenti tempi di arrivo nella coda READY e relativi CPU-burst:

Processo no.	Tempo arrivo	CPU-burst
P_0	0	10
P_1	2	6
P_2	3	5
P_3	5	6

I processi sono gestiti con tecnica SJF con preemption. Se ne descriva la modalità di esecuzione e si calcoli il tempo medio di turnaround.

2. Si consideri il seguente insieme di processi, per i quali il CPU-burst è espresso in millisecondi:

Processo no.	CPU-burst
P_1	10
P_2	2
P_3	4
P_4	2
P_5	7

I processi sono arrivati nell'ordine P_1 , P_2 , P_3 , P_4 , P_5 , tutti al tempo 0. Si descriva come verranno eseguiti e si calcoli il tempo medio di turnaround nel caso di una gestione Round Robin con quanto uguale ad 1 ms.

3. Si considerino 5 processi caratterizzati dai seguenti tempi di arrivo nella coda READY e relativi CPU-burst:

Processo no.	Tempo arrivo	CPU-burst
P_0	0	3
P_1	2	12
P_2	3	6
P_3	5	4
P_4	6	6

I processi sono gestiti con tecnica SJF con preemption (o tecnica SRTF). Se ne descriva la modalità di esecuzione e si calcoli il tempo medio di turnaround e il tempo medio di attesa.

Si calcolino gli stessi tempi medi (con gli stessi dati per i processi) nel caso di tecnica SJF non preemptive.