ZAVRŠNI ISPIT IZ VJEROJATNOSTI I STATISTIKE 20.06.2008.

1. (3 boda)

Uzorak $x_1, x_2,...,x_n$ izvučen je iz populacije koja ima Rayleighovu razdiobu s gustoćom

 $f(x) = 2\lambda^2 x e^{-\lambda^2 x^2}, \ x > 0.$

Pomoću kriterija najveće izglednosti odredite procjenu za parametar λ .

2. (4 boda)

Iz populacije koja se podvrgava normalnoj razdiobi izvučen je sljedeći uzorak:

- a) Izračunajte točkaste procjene za očekivanje i disperziju.
- **b)** Izračunajte 90% interval za očekivanje i 90% dvostrani interval za disperziju.

3. (3 boda)

Na izlaznoj anketi od 200 glasača za kandidata X glasalo je 112 glasača.

- a) Odredite 95% interval pouzdanosti za postotak glasova za tog kandidata.
 - b) S kojom vjerojatnošću će taj kandidat biti izabran?
- c) Koliko velik uzorak treba biti da bi taj izbor bio siguran uz nivo značajnosti $\alpha = 0.05$?

4. (4 boda)

Proizvođač tvrdi da je određena dimenzija nekog proizvoda 35 mm. Mjerenjem 20 slučajno odabranih proizvoda dobiveni su sljedeći rezultati

dimenzije	34.8	34.9	35	35.1	35.3
broj proizvoda	2	3	4	6	5

Uz nivo značajnosti $\alpha = 0.05$ testirate hipotezu $H_0...\mu = 35$ prema alternativnoj hipotezi $H_1...\mu \neq 35$, pri čemu se pretpostavlja da je promatrana dimenzija X slučajna varijabla normalne razdiobe $\mathcal{N}(\mu, \sigma^2)$, uz σ^2 nepoznat.

5. (3 boda)

Testiranje znanja iz jednog predmeta 30 učenika jednog razreda i 40 učenika drugog razreda dalo je prosječan broj bodova $a_1 = 74$ sa standardnim odstupanjem $\sigma_1 = 8$ za prvu grupu, odnosno $a_2 = 77$ sa standardnim odstupanjem $\sigma_2 = 7$ za drugu. Postoji li bitna razlika u bodovima među učenicima ovih razreda uz nivo značajnosti $\alpha = 0.05$?

6. (4 boda)

190 puta je bačeno 5 igraćih kocaka i pri tome je bilježen broj X pojavljivanja "šestice":

x_j	0	1	2	3	4	5
n_{j}	75	77	30	6	1	1

Uz koji nivo značajnosti α se može tvrditi da se X ravna po binomnom zakonu s parametrima $n=5,\ p=\frac{1}{6}$?

PITANJA IZ CJELOKUPNOG GRADIVA

7. (3 boda)

Četiri strijelca gađaju istu metu. Vjerojatnosti njihovih pogodaka redom su 0.4, 0.6, 0.7, 0.8.

- a) Kolika je vjerojatnost da će meta biti pogođena?
- **b)** Ako je meta pogođena s točno 3 metka, kolika je vjerojatnost da je promašio četvrti strijelac?

8. (3 boda)

Neka je $f(x) = C(3 - x), x \in (0, 3).$

- a) Odredite C.
- **b)** Izračunajte $P\{X < 1\}$.
- c) Izračunajte očekivanje E(X).

9. (5 bodova)

- a) Iskažite svojstvo "odsudstva pamćenja" eksponencijalne razdiobe.
- b) Dokažite to svojstvo.
- **c)** Izračunajte očekivanje eksponencijalne razdiobe bez korištenja Laplaceovog transformata.

10. (**3** boda)

Baca se kocka. Slučajna varijabla X poprima vrijednost koja je dva puta veća od broja okrenutog na kocki , dok slučajna varijabla Y poprima vrijednost 1 kad je broj okrenut na kocki neparan, a vrijednost 3 kad je okrenuti broj paran. Odredite zakon razdiobe i disperziju diskretne slučajne varijable Z = X + Y.

Ispit se piše 150 minuta. Dozvoljena je upotreba kalkulatora i knjige N. Elezović: "Statistika i procesi".