Probabilistic classifiers

CE-477: Machine Learning - CS-828: Theory of Machine Learning Sharif University of Technology Fall 2024

Fatemeh Seyyedsalehi

Topics

- Probabilistic approach
 - Bayes decision theory
 - Generative models
 - Gaussian Bayes classifier
 - Naïve Bayes
 - Discriminative models
 - Logistic regression

Classification problem: probabilistic view

Each feature as a random variable

Class label also as a random variable

- We observe the feature values for a random sample and we intend to find its class label
 - \triangleright Evidence: feature vector x
 - Query: class label

Definitions

- Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(\mathcal{C}_k)$

```
p(x): pdf of feature vector x (p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k))
```

 $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k

 $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule

K = 2

If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2

$$p(error|\mathbf{x}) = \begin{cases} p(C_2|\mathbf{x}) & \text{if we decide } C_1 \\ P(C_1|\mathbf{x}) & \text{if we decide } C_2 \end{cases}$$

▶ If we use Bayes decision rule:

$$P(error|\mathbf{x}) = \min\{P(\mathcal{C}_1|\mathbf{x}), P(\mathcal{C}_2|\mathbf{x})\}\$$

Using Bayes rule, for each x, P(error|x) is as small as possible and thus this rule minimizes the probability of error

Optimal classifier

The optimal decision is the one that minimizes the expected number of mistakes

We show that Bayes classifier is an optimal classifier

Bayes decision rule Minimizing misclassification rate

K=2

- ▶ Decision regions: $\mathcal{R}_k = \{x | \alpha(x) = k\}$
 - All points in \mathcal{R}_k are assigned to class \mathcal{C}_k

$$p(error) = E_{x,y}[I(\alpha(x) \neq y)]$$

$$= p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$$

$$= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) dx$$

$$= \int_{\mathcal{R}_1} p(\mathcal{C}_2|x)p(x) dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1|x)p(x) dx$$

Choose class with highest $p(C_k|x)$ as $\alpha(x)$

Bayes minimum error

Bayes minimum error classifier:

$$\min_{\alpha(.)} E_{x,y}[I(\alpha(x) \neq y)]$$
 Zero-one loss

If we know the probabilities in advance then the above optimization problem will be solved easily.

$$\alpha(\mathbf{x}) = \operatorname*{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$$

In practice, we can estimate p(y|x) based on a set of training samples $\mathcal D$

Bayes theorem

Bayes' theorem

- Posterior probability: $p(C_k|x)$
- Likelihood or class conditional probability: $p(x|\mathcal{C}_k)$
- Prior probability: $p(\mathcal{C}_k)$

p(x): pdf of feature vector x ($p(x) = \sum_{k=1}^{K} p(x|\mathcal{C}_k)p(\mathcal{C}_k)$) $p(x|\mathcal{C}_k)$: pdf of feature vector x for samples of class \mathcal{C}_k $p(\mathcal{C}_k)$: probability of the label be \mathcal{C}_k

Bayes decision rule: example

▶ Bayes decision: Choose the class with highest $p(C_k|x)$

Bayesian decision rule

If $P(C_1|x) > P(C_2|x)$ decide C_1 otherwise decide C_2 Equivalent

If
$$\frac{p(x|\mathcal{C}_1)P(\mathcal{C}_1)}{p(x)} > \frac{p(x|\mathcal{C}_2)P(\mathcal{C}_2)}{p(x)}$$
 decide \mathcal{C}_1 otherwise decide \mathcal{C}_2 Equivalent

If $p(x|\mathcal{C}_1)P(\mathcal{C}_1) > p(x|\mathcal{C}_2)P(\mathcal{C}_2)$ decide \mathcal{C}_1 otherwise decide \mathcal{C}_2

Bayes decision rule: example

▶ Bayes decision: Choose the class with highest $p(C_k|x)$

Bayes Classier

Simple Bayes classifier: estimate posterior probability of each class

- What should the decision criterion be?
 - ightharpoonup Choose class with highest $p(\mathcal{C}_k|\mathbf{x})$
- ▶ The optimal decision is the one that minimizes the expected number of mistakes

white blood cell count

- ▶ Doctor has a prior p(y = 1) = 0.2
 - Prior: In the absence of any observation, what do I know about the probability of the classes?
- A patient comes in with white blood cell count x
- ▶ Does the patient have diabetes p(y = 1|x)?
 - given a new observation, we still need to compute the posterior

$$p(x = 40|y = 0)P(y = 0) > p(x = 40|y = 1)P(y = 1)$$

Estimate probability densities from data

If we assume Gaussian distributions for p(x|y=0) and p(x|y=1)

Recall that for samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a Gaussian distribution, the MLE estimates will be

$$\mu = \frac{1}{N} \sum_{n=1}^{N} x^{(n)}$$

$$\sigma^{2} = \frac{1}{N} \sum_{n=1}^{N} (x^{(n)} - \mu)^{2}$$

Add a second observation: Plasma glucose value

Generative approach for this example

Multivariate Gaussian distributions for $p(x|\mathcal{C}_k)$:

$$p(\mathbf{x}|\mathbf{y} = k) = \frac{1}{(2\pi)^{d/2} |\Sigma_k|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\mathbf{x} - \boldsymbol{\mu}_k)\}$$

$$k = 1,2$$

- Prior distribution p(y):
 - $p(y = 1) = \pi, \quad p(y = 0) = 1 \pi$

MLE for multivariate Gaussian

For samples $\{x^{(1)}, ..., x^{(N)}\}$, if we assume a multivariate Gaussian distribution, the MLE estimates will be:

$$\mu = \frac{\sum_{n=1}^{N} \mathbf{x}^{(n)}}{N}$$

$$\Sigma = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}^{(n)} - \boldsymbol{\mu}) (\mathbf{x}^{(n)} - \boldsymbol{\mu})^{T}$$

Generative approach: example

 $y \in \{0,1\}$

Maximum likelihood estimation $(D = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N})$:

$$\pi = \frac{N_1}{N}$$

$$\mu_1 = \frac{\sum_{n=1}^{N} y^{(n)} x^{(n)}}{N_1}, \, \mu_2 = \frac{\sum_{n=1}^{N} (1 - y^{(n)}) x^{(n)}}{N_2}$$

$$\Sigma_1 = \frac{1}{N_1} \sum_{n=1}^{N} y^{(n)} (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$\Sigma_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - y^{(n)}) (x^{(n)} - \mu) (x^{(n)} - \mu)^T$$

$$N_1 = \sum_{n=1}^N y^{(n)}$$

$$N_2 = N - N_1$$

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$

= \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})

Decision boundary for Gaussian Bayes classifier

$$p(\mathcal{C}_1|\mathbf{x}) = p(\mathcal{C}_2|\mathbf{x})$$

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})}$$

$$\ln p(\mathcal{C}_1|\mathbf{x}) = \ln p(\mathcal{C}_2|\mathbf{x})$$

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) - \ln p(\mathbf{x})$$

= \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2) - \ln p(\mathbf{x})

$$\ln p(\mathbf{x}|\mathcal{C}_1) + \ln p(\mathcal{C}_1) = \ln p(\mathbf{x}|\mathcal{C}_2) + \ln p(\mathcal{C}_2)$$

$$\ln p(\mathbf{x}|\mathcal{C}_k)$$

$$= -\frac{d}{2}\ln 2\pi - \frac{1}{2}\ln \left|\boldsymbol{\Sigma}_k\right| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k)$$

Decision boundary

Continued in the next session...