Cuarta Parte: Clase 5 – VFA – *Lookup Tables* 2

Optimización Dinámica - ICS

Mathias Klapp

Desafíos de AVI

- 1. ¿Cómo calibar el paso α_n del suavizamiento exponencial?
- 2. Como fue presentado, no garantiza convergencia al Q óptimo
- 3. Aceleración de ajuste (puede ser lento calibrando)
 - Backward-pass
- 3. Mantiene la maldición de decisiones y la de estados
 - Agregación del espacio de estados.
 - Heuristicas de decisión
- 4. ¿Problemas con estados continuos o una grilla muy fina?
 - Dynamic look-up table.

- Backward-pass
- Agregación de estados
- Dynamic look-up tables

Algoritmo AVI (version estándar)

- 1. Iniciar: $n \leftarrow 1$, $\bar{Q}_t^0(y_t)$ para todo $t \vee y_t$
- 2. Mientras $n \leq N$:
 - a. Iniciar corrida: $s_1^n \leftarrow s_1$
 - b. Para cada t = 1, ..., T:

Optimizar:

$$x_{t}^{n} \leftarrow \underset{x \in \mathbb{X}_{t}(s_{t}^{n}, x)}{\operatorname{argmax}} \{r_{t}(s_{t}^{n}, x) + \bar{Q}_{t}^{n-1}(y_{t}(s_{t}^{n}, x))\},\$$

$$y_{t}^{n} \leftarrow y_{t}(s_{t}^{n}, x_{t}^{n}),\$$

$$q_{t}^{n} \leftarrow r_{t}(s_{t}^{n}, x_{t}^{n}) + \bar{Q}_{t}^{n-1}(y_{t}^{n}).$$

Actualizar Q:

$$\bar{Q}_{t-1}^{n}(y_{t-1}^{n}) \leftarrow (1 - \alpha_n)\bar{Q}_{t-1}^{n-1}(y_{t-1}^{n}) + \alpha_n q_t^n$$

Simular transición a próximo estado:

$$s_{t+1}^n \leftarrow f(y_t^n, \omega_t^n)$$

c. n = n + 1

c, n - n

Optimización determinística

Estadística

Simulación

3. Retornar $ar{Q}_t^N$

AVI equipado con backward-pass

AVI puede ser lento y local para renovar sus estimaciones.

Consideremos la recalibración en la corrida n y etapa t: $\bar{Q}_{t-1}^n(y_{t-1}^n) \leftarrow (1-\alpha_n)\bar{Q}_{t-1}^{n-1}(y_{t-1}^n) + \alpha_n q_t^n$

La aproximación del estado de post-decisión y_{t-1}^n no se propaga a etapas anteriores (``hacia atrás'') y require de varias iteraciones para afectar el *value-to-go* de las etapas k < t.

Arreglo: backpropagation through time. Hacer actualización 'hacia atrás' por la trayectoria simulada hasta t=1.

Algoritmo AVI equipado con backward-pass

- 1. Iniciar: $n \leftarrow 1$, $\bar{Q}_t^0(y_t)$ para todo $t \vee y_t$
- 2. Mientras $n \leq N$:
 - a. Iniciar corrida: $s_1^n \leftarrow s_1$
 - b. Forward-pass: Para cada t = 1, ..., T:

$$x_t^n \leftarrow \underset{x \in \mathbb{X}_t(s_t^n)}{\operatorname{argmax}} \{r_t(s_t^n, x) + \bar{Q}_t^{n-1}(y_t(s_t^n, x))\},$$

$$y_t^n \leftarrow y_t(s_t^n, x_t^n),$$

$$s_{t+1}^n \leftarrow f(y_t^n, \omega_t^n).$$

c. Backward-pass:

$$\begin{array}{l} q_{T+1}^n = 0 \\ \text{Para cada } t = T, T-1 \dots, 2 \\ q_t^n \leftarrow r_t(s_t^n, x_t^n) + q_{t+1}^n \\ \bar{Q}_{t-1}^n(y_{t-1}^n) \leftarrow (1-\alpha_n) \bar{Q}_{t-1}^{n-1}(y_{t-1}^n) + \alpha_n q_t^n \\ \text{d. } n = n+1 \end{array}$$

3. Retornar $ar{Q}_t^N$

- Backward-pass
- Agregación de estados
- Dynamic look-up tables

Si hay maldición de estados, se requiere un número explosivo de simulaciones para recorrerlos todos varias veces y hacer estadística.

Arreglo: Estimar \bar{Q} sobre **super-estados** que representen varios estados de similar value-to-go.

Pasos:

- 1. Definir una función $G_t: \mathbb{Y}_t \to \mathbb{G}_t$ que mapea cada estado de postdecisión a un espacio de super-estados con $|\mathbb{G}_t| \ll |\mathbb{Y}_t|$ estados postdecisión.
- 2. Luego, estimar valor $Q_t^G(g_t)$ para cada super-estado $g_t \in \mathbb{G}_t$.

Ejemplo: Gestión de recursos móviles:

Posibles agregaciones:

Aggregation Level	Location	Fleet Type	Domicile	Size of State Space
0	Sub-region	Fleet	Region	$400 \times 5 \times 100 = 200,000$
1	Region	Fleet	Region	$100 \times 5 \times 100 = 50,000$
2	Region	Fleet	Zone	$100 \times 5 \times 10 = 5{,}000$
3	Region	Fleet	_	$100 \times 5 \times 1 = 500$
4	Zone	_	_	$10 \times 1 \times 1 = 10$

Referencia: Warren Powell

Ejemplo: TIC-TAC-TOE (Gato)

- El tablero posee $3^9 = 19,683$ estados.
- Uno decide las X. El juego del contrincante (O) se modela como una transición estocástica a otro estado dependiente del estado de postdecisión.
- Se calibra Q mediante simulación (``jugando'').
- Problema: Hay simetría. Estos 2 estados poseen mismo value-to-go:

Una forma de agregación a 30 estado

- : $x \in \{0,1\}$: si centro está ocupado por X.
- $y \in \{0,1,2,3,4\}$: # de X en celdas esquina.
- $z \in \{0,1, \ge 2\}$: cantidad de opciones para hacer 3 en línea.

Agregación:

$$G(y) = \begin{cases} A & y \in \{1,2,3\} \\ B & y \in \{4,5,6,7\} \\ C & y \in \{8,9,10\} \\ D & y \in \{11,12,13,14\} \end{cases}$$

Algoritmo AVI + agregación de estados

- 1. Iniciar: $n \leftarrow 1$, $ar{Q}_t^{G,0}$ para todo t y g_t
- 2. Mientras $n \leq N$:
 - a. Iniciar estado inicial $s_1^n \leftarrow s_1$
 - b. Para cada t = 1, ..., T:
 - $x_t^n \leftarrow \underset{x \in \mathbb{X}_t(s_t^n)}{\operatorname{argmax}} \{ r_t(s_t^n, x) + \overline{Q}_t^{G, n-1}(G_t(y_t(s_t^n, x))) \},$
 - $y_t^n \leftarrow y_t(s_t^n, x_t^n)$,
 - $g_t^n \leftarrow G_t(y_t^n)$,
 - $q_t^n \leftarrow r_t(s_t^n, x_t^n) + \overline{Q}_t^{G, n-1}(g_t^n).$
 - $\bar{Q}_{t-1}^{G,n}(g_{t-1}^n) \leftarrow (1-\alpha_n)\bar{Q}_{t-1}^{G,n-1}(g_{t-1}^n) + \alpha_n q_t^n$
 - $s_{t+1}^n \leftarrow f(y_t^n, \omega_t^n)$
 - c. n++
- 3. Retornar $\bar{Q}_t^{\mathrm{G},N}$

Ejecución posterior:

• Una vez estimada la aproximación $ar{Q}_t^{
m G}(g_t)$ se puede ejecutar el MDP.

• Política de decisión con agregación de estados toma decisión en etapa t y estado s_t mediante:

$$d_t^{VFA}(s_t) \in \underset{x \in \mathbb{X}_t(s_t)}{\operatorname{argmax}} \{ r_t(s_t, x) + \overline{Q}_t^{\mathsf{G}} \big(G_t(y_t(s_t, x)) \big) \}$$

, donde $ar{Q}_t^{\mathrm{G}}ig(G_t(y_t)ig)$ aproxima a $Q_t(y_t)$.

 Nota: El paso de simulación no se ve afectado por la agregación de estados (solo la calibración y la optimización).

Agregación multicapa

Básicamente, trabajar con dos o más niveles de agregación a la vez.

 G_t^1 : nivel agregado

 G_t^2 : nivel más desagragdo

Luego estimar:

$$Q_t(y_t) \approx \beta_n \bar{Q}^{G^1}(G_t^1(y_t)) + (1 - \beta_n) \bar{Q}^{G^2}(G_t^2(y_t))$$

• Ir reduciendo el peso del nivel más agregado a medida que se aprende más de $\it Q$.

- Backward-pass
- Agregación de estados
- Dynamic look-up tables

Dynamic Look-up table: (Ulmer et al., 2017)

- Es una regla dinámica de agregación de estados.
- Permite trabajar con espacios de estado continuos o grillas discretas muy finas.
- Busca particionar la tabla desagregando estados a medida que los datos lo sugieren en función de la variabilidad observada de la estimación.

Agendamiento dinámico de visitas (Ulmer, 2018)

- Técnico visita clientes durante un día. Tiempos de viaje y servicio conocidos.
- Solicitud del servicio es dinámica.
- **Efecto:** Cada vez que técnico se despide de un cliente ya atendido, revisa el sistema y aparecen nuevas peticiones de servicio.

Acción:

- Aceptar o rechazar cada petición de forma inmediata. Si acepta, la debe visitar, congestiona su agenda.
- 2. Podría reconfigurar su futura ruta todavía no ejecutada.
- Objetivo: maximizar # de servicios.

Dinámica del sistema, pre y post decisión

Estado de post-decisión en tiempo $t \in [0, T]$:

- Posición actual $j \in N$
- $\rho = \{j, p_1, p_2, ..., p_i, ..., c\}$: ruta desde j que cubre pendientes hasta nodo terminal (c).

Agregación trabajada:

$$Q_t(j,\rho) \approx Q_t^G(b)$$

• $b(\rho) = T - t - \bar{d}(\rho)$: Presupuesto de tiempo libre a futuro.

Calibración de Dynamic Lookup Table:

 \mathcal{A}_{20} After 10,000 Simulation Runs

JOURNAL HOME ARTICLES IN ADVANCE CURRENT ISSUE ARCHIVES \lor ABOUT \lor

SUBMIT

Home > Transportation Science > Vol. 52, No. 1 >

Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests

Marlin W. Ulmer 📵, Dirk C. Mattfeld, Felix Köster

Published Online: 24 Mar 2017 | https://doi.org/10.1287/trsc.2016.0719

VFA con *Lookup* table

Ventaja:

- Reduce esfuerzo online. Solo requiere resolver el problema de decisión.
- Proactivo, feedforward basado en entrenamiento.
- Explota viejos conocidos: simulación computacional, ajuste estadístico y optimización determinística.

Desventaja:

- Depende del problema, de los datos y de la estimación de partida.
- Entrenamiento puede ser caro y largo.
- No más allá de las 4 o 5 dimensiones en el espacio de estados.
- No explota estructura del value-to-go.
- Overfitting.

Recomendación del Chef:

- Cuando no hay indicios de estructura predecible.
- Cuando hace sentido agregar el estado original.
- Para decisiones rápidas, cuando el cálculo *online* es caro.

Próxima clase: Aproximación paramétrica

Cuarta Parte: Clase 5 – VFA – *Lookup Tables* 2

Optimización Dinámica - ICS

Mathias Klapp