Universidad Nacional de Río Negro Int. Partículas, Astrofísica & Cosmología - 2019

- Unidad O2 Astrofísica: cálido y frío
- Clase U02 C03
- Fecha 09 Oct 2019
- Cont Estrellas 2
- Cátedra Asorey
- Web https://asoreyh.github.io/unrn-ipac/

Contenidos: un viaje en el tiempo

Nuestra fuente de energía

Es cómodo medir las cosas en términos solares

• Masa Solar: $M_{Sol} = 1.989 \times 10^{30} \text{ kg} \simeq 1000 \text{ M}_{J\text{úpiter}} \simeq 333000 \text{ M}_{Tierra}$

Radio Solar:

$$R_{Sol} = 6.96 \times 10^8 \text{ m} = 696000 \text{ km}$$

Luminosidad Solar:

$$L_{Sol} = 3.83 \times 10^{26} \text{ W}$$

Alto:

1 segundo de energía liberada en el Sol equivale a 800000 años de consumo humano (2013)

Se observa que para estrellas, B-V → T

- Índice B-V
 - m_B=magnitud en el canal
 B
 - m_V=magnitud en el canalV

$$(B-V) = m_B - m_V$$

(Recordar que m es logarítmica)

$$T = 4600 \left(\frac{1}{0.92(B-V)+1.7} + \frac{1}{0.92(B-V)+0.62} \right) K$$
Asorey IPAC 2019 UO2CO3

Oct 09, 2019

¡Podemos clasificarlas!

A B C... por temperatura superficial

O B A F G K M RNS

- Oh Be A Fine Girl and Kiss Me Right Now Sweet
- Oh Besame Amor, Fasinadora Gitana, Kilómetros Median Rompiendo Nuestros Sueños

Clasificación espectral

Luminosidad → Masa

- Si: (0.1 < Masa Estelar < 50) masas solares:
 L es proporcional a la M⁴
- Nota: En general, Ma, con a entre 3 y 4 (~ masa)

Radio Estelar

• Veamos.... $(T_B/T_S)^4$

$$R_{\rm B} = 1026 R_{\rm Sol}$$

Betelgeuse es una supergigante roja

mas turninoso que petetguese

Pero...

$$L_B / L_S = [(4\pi R_B^2) \sigma T_B^4]/[(4\pi R_S^2) \sigma T_S^4]$$
135000 = $(R_B / R_S)^2 (T_B / T_S)^4$
135000 = $(R_B / R_S)^2 / 7.8$
1.053x106 = $(R_B / R_S)^2$

Dijimos que la masa define todo

В

0

Surface temperature ranges for different stellar classes^[134]

Class	Temperature	Sample star
0	33,000 K or more	Zeta Ophiuchi
В	10,500–30,000 K	Rigel
А	7,500–10,000 K	Altair
F	6,000-7,200 K	Procyon A
G	5,500–6,000 K	Sun
K	4,000–5,250 K	Epsilon Indi
М	2,600–3,850 K	Proxima Centauri

19 UO2CO3

Secuencia principal

 Estrellas que están en su fase normal de quema de combustible:

$H \rightarrow He$

- 90% del tiempo de vida las estrellas permanecen en este estadio
- Metalicidad: contenido de elementos más masivos que el Helio

Secuencia principal → OBAFGKM

Oct 09, 2019

REFERENCE GUIDE 001 STAR SPECTRAL CLASSES

http://21space.info/

Dark Blue 28.000 - 50.000 K Ionized Atoms, especially helium Example: Mintaka (O1-3III)

Yellow 5.000 - 6.000 K Ionized calcium, both neutral and ionized metals Example: Sol (G2V)

SPECTRAL CLASS B

Blue 10,000 - 28,000 K Neutral helium, some hydrogen Alpha Eridani A (B3V-IV)

Orange 3,500 - 5,000 K Neutral Metals Alpha Centauri B (K0-3V) SPECTRAL CLASS K

SPECTRAL CLASS A

Light Blue 7,500 - 10,000 K Strong hydrogen, some ionized metals Sirius A (A0-1V)

Red 2,500 - 3,500 K Ionized atoms, especially helium Wolf 359 (M5-8V)

SPECTRAL CLASS F

White 6,000 - 7,500 K Hydrogen and ionized metals, calcium and iron Procyon A (F5V-IV)

Non-Main Sequence Types Class W: Wolf-Rayet Star Up to 70,000 K Carbon, nitrogen, or oxygen Gamma Velorum A (WC)

Class L: Dwarf Star 1,300 - 2,000 K Metal hydrides and alkali metals VW Hyi

Class T: Methane Dwarf 700 - 1,000 K Methane Epsilon Indi Ba Class Y: Ammonia Dwarf <700 K Ammonia

Not yet observed Class C: Carbon Class S: Zirconium Oxide Classes MS and SC

Class D: Dwarf

Otros tipos de estrellas

- W: Wolf-Rayet
 - Estrellas masivas (>20M_s)
 - Excesivamente calientes

- Los nuevos: L, T, Y
 - L: Enanas frías o subestrellas, temperaturas 1300K<T<2400K
 - T: Enanas marrones
 (subestrellas, sin fusión H)
 con prominencia de
 metano y 500K < T <
 1300K
 - Y: enanas marrones ultra frías (superplanetas?) c/amoníaco y T<600K, y 10<M/M_{lúp}<90

ηCarinae: Una binaria a punto caramelo

Estructura de una estrella típica (Sol)

Barrera Coulombiana

Recordar, para dos cargas eléctricas puntuales,

$$U(r) = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r} \rightarrow U_{pp}(r) = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r}$$

- Poniendo valores:
 r ~ 1.2 fm
 U_{pp}(r) ~ 1 MeV
- E ~ $3/2 k T \rightarrow$ iii T ~ $2x10^{10} K !!!$

Sistemas compuestos y potencial nuclear

En general, para dos núcleos AXz y AYz, entonces

$$U_{XY}(r) = \left(\frac{e^2}{4\pi\epsilon_0}\right) \left(\frac{Z_X Z_Y}{A_X^{1/3} + A_Y^{1/3}}\right) \frac{1}{r} \rightarrow U_{XY}(r) \approx 1.44 \left(\frac{Z_X Z_Y}{A_X^{1/3} + A_Y^{1/3}}\right) \frac{1}{r} MeV$$

Barrera de Coulomb.
 Por ej., 12C + 4He:

A distancias cortas, el potencial nuclear es atractivo!

Efecto túnel → Pico de Gamow (1928)

En estrellas como el Sol

- La temperatura central es 10 MK < T < 20 MK
- El tiempo de reacción es ~ 109 años!!
- Hay tanto hidrógeno que el ritmo de reacción es sostenible (volveremos....)

Energías de ligaduras

Proceso de fusión

Dos núcleos se fusionan liberando energía:

$$A_{X}X_{Z_{X}} + A_{Y}Y_{Z_{Y}} \rightarrow A_{X} + A_{Y}T_{Z_{X}} + Q$$

Por ejemplo:

3
He₂+ 4 He₂→ 7 Be₄+Q
 12 C₆+ 1 H₁→ 13 N₇+Q

• Y entonces, la energía liberada será

$$Q = m_{reactivos} - m_{productos} c^2$$

Energía liberada en un proceso de fusión

_7/35

Energía liberada en un proceso de fusión

• Entonces:

$$Q = B_{productos} - \sum_{reactivos} B_{reactivos}$$

- Los valores de B(A,Z) pueden obtenerse de tablas
- Ver por ejemplo:

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html también en Google play!:

https://play.google.com/store/apps/details?id=iaea.nds.nuclides

 Tener en cuenta que en la mayoría de las tablas se reporta la energía de ligadura por nucleón, es decir, B/A

La cadena protón protón (pp chain)

Fusión: Producción neta

$$4 H^1 \rightarrow He^4 + 2 e^+ + 2 v_e + Energía$$

Masa inicial: 1.003 x 10⁻²⁶ kg Masa final: 0.991 x 10⁻²⁶ kg

~ 26,7 MeV por reacción

La conservación de energía implica

Para el Sol:

$$L=3.846\times10^{26}$$
 J/s y sabiendo que $E_1=26.73$ MeV

$$L=nE_1 \rightarrow n = \frac{L}{E_1} \simeq 9 \times 10^{37} \text{ reacciones/s}$$

Conversión de masa en energía: 4.000.000 toneladas/seg

En estrellas más masivas, además.... ciclo CNO

- Ciclo CNO (Carbono, Nitrógeno, Oxígeno)
- Usa el CNO como "catalizador"
- La reacción neta convierte
 4 p → He + neutrinos + Q,
 al igual que la cadena pp
- Libera la misma cantidad de energía neta por reacción (26.73 MeV)