Задача 99-1 [NP-Complectness] Самый длинный путь

Задан граф G=(V,E) и положительное число $K \leq |V|$. Имеется ли в G простой путь (то есть путь, не проходящий дважды ни через одну вершину), состоящий не менее чем из K рёбер?

Решение.

Так как длина гамильтонова пути равна |V|-1 (проходит по всем вершинам единожды, а также включает каждое из рёбер не более одного раза), то при нахождении гамильтонова пути решаем поставленную задачу для K=|V|-1. То есть известная задача UHamPath суть частный случай предложенной, следовательно, предложенная NP-сложна.

Рассматриваемая задача принадлежит NP, так как для заданного графа G=(V,E) сертификат имеет вид последовательности, состоящей из вершин множества $V'\subset V$, образующих простой путь, |V'|=K+1, где K — количество рёбер в искомом простом пути. В алгоритме верификации проверяется, что в эту последовательность каждая вершина из V' входит единожды и что каждая пара воследовательных вершин соединена ребров. Подобная проверка выполняется за полиномиальное время.

Из того, что UHamPath \leq_P LongestPath и что LongestPaht $\in NP$, следует NP-полнота предложенной задачи LongestPath.

Задача 100-10 [NP-Complectness]

НЕЭКВИВАЛЕНТНОСТЬ РЕГУЛЯРНЫХ ВЫРАЖЕНИЙ, НЕ СОДЕРЖАЩИХ ЗВЁЗДОЧЕК

Заданы два не содержащие звёздочек регулярных выражения E_1 и E_2 в конечном алфавите Σ . Такое выражение определяется следующим образом:

- 1. любой символ σ алфавита Σ есть не содержащее звёздочек регулярное выражение,
- 2. если e_1 и e_2 два не содержащие звёздочек регулярных выражения, то и слова e_1e_2 и $(e_1 \lor e_2)$ также не содержащие звёздочек регулярные выражения.

Верно ли, что E_1 и E_2 представляют различные языки в алфавите Σ ? (Язык, представляемый символом $\sigma \in \Sigma$, если $\{\sigma\}$, а если e_1 и e_2 представляют соответственно языки L_1 и L_2 , то e_1e_2 представляет язык $\{xy: x \in L_1, y \in L_2\}$, а $(e_1 \vee e_2)$ представляет язык $L_1 \cup L_2$.)

Задача 7 [NP-ISSUES]

Так как задача о трёхмерном сочетании является NP-полной, естественно ожидать, что аналогичная задача о четырёхмерном сочетании будет хотя бы не менее сложной. Определим четырехмерное сочетание следующим образом: для заданных множеств W, X, Y и Z, каждое из которых имеет размер n, и набора C упорядоченных четверок в форме (w_i, x_j, y_k, z_l) существуют ли n четверок из C, среди которых никакие два не имеют общих элементов?

Докажите, что задача о четырехмерном сочетании является NP-полной.

Решение. (не оттуда, не туда) Пусть есть 4-дольный граф G(V, E) на 4n вершинах (в каждой доли n вершин), в котором можно выделить m подграфов K_4 . Далее отождествим каждую 4-клику, у которой нет двух вершин из одной доли, с новой вершиной, таким образом получим новый граф G'. Новые две вершины инцидентны тогда и только тогда, когда у подграфов, с которыми они были отождествлены, пересечение множеств вершин не пусто.

Если в таком новом графе G' существует независимое множество вершин мощности n, то существует и решение у нашей задачи, потому что выделив n вершин в G', не имеющих общих ребер, выделили n 4-клик исходного графа G, у которых нет общих элементов и у которых по одной вершине в каждой из четырёх доль в силу проведенного ранее отождествления. А значит, нашли решение исходной задачи. Если же независимого множества можности n не существует, то какие бы n 4-клик с вершинами в попарно различных долях ни были бы выбраны в исходном графе, какое-то из попарных пересечений множеств вершин не пусто, так как соответствующее множество вершин в G' не является независимым. По решению полученной задачи о поиске независимого множества в графе G' легко восстановить разбиение исходного множества на четверки, элементы которых принадлежат попарно различным долям, а также нет общих.

Задача 16 [NP-ISSUES]

Рассмотрим задачу характеристики множества по размерам его пересечений с другими множествами. Имеется конечное множество U размера n, а также набор A_1, \ldots, A_m подмножеств U. Также заданы числа c_1, \ldots, c_m . Вопрос звучит так: существует ли такое множество $X \subset U$, что для всех $i = 1, 2, \ldots, m$ мощность $X \cap A_i$ равна c_i ? Назовем его задачей выведения пересечений с входными данными U, $\{A_i\}$ и $\{c_i\}$. Докажите, что задача выведения пересечений является NP-полной.

Решение.

Рассмотрим задачу HITTING SET: дано множество $A = \{A_i\}_{i=\overline{1,m}}$ подмножеств множества U и число $k \in \mathbb{Z}^+$, существует ли такое подмножество $X \subset U$, что $|X| \leq k$ и что для любого $i=\overline{1,m}$ выполнено $|A_i \cap X|=1$?

Лемма. Задача HITTING SET NP-полна.

Чтобы доказать, что принадлежность классу NP, необходимо доказать, что существует верификатор такой, что при наличии действительного сертификата c его можно проверить за полиномиальное время. Пусть имеется верификатор для HITTINGSET, который для входа (U,A,k,c), где U — множество, а A — множество подмножеств $U,k\in\mathbb{Z}^+$, переводит сертификат в некоторое множество, проверяет, что это множество действительно подмножество множества U, что его мощность не превышает k, что для каждого подмножества $A_i\in A$ выполнено $|A_i\cap X|=1$. Все перечисленные операции могут быть проверены за время, полиномиально зависящее от входных параметров. Таким образом, задача НІТТІNG SET лежит в NP.

Для доказательства, что HITTING SET является NP полной, необходимо доказать, что уже известная NP-полная задача полиномиально сводима к HITTING SET. Возьмём известную NP-полную задачу VERTEXCOVER, которая говорит существует или нет вершинное покрытие мощности k. Пусть умеем решать задачу VERTEXCOVER для входных (G,k), где G — некоторый граф, $k \in \mathbb{Z}^+$. Пусть множество вершин графа G суть множество U исходной задачи, а каждое ребро — подмножество мощности 2, содержащее элементы, соответствующие вершинам, которым оно инцидентно. Если в исходной задаче существует вершинное покрытие мощности k, то для каждого ребра выбрано ровно по одной вершине, ему инцидентной, что в терминах задачи HITTINGSET значит, что для каждого двухэлементного подмножества в множестве X ровно один из элементов. В противном случае, если не нашлось вершинного покрытия мощности k, то для какого-либо ребра нельзя выбрать лишь одну из вершин, а, следовательно, для двухэлементного множества выбрать один элемент ему принадлежащий, который будет в множестве X.

Теперь задача HITTINGSET для входа (U,A,X,k) суть частный случай исходной задачи для (U,A,X,C,k), где $C=\{c_i\}_{i=\overline{1,m}}, \forall\, i\, c_i=1.$ Следовательно, исходная задача NP-сложна. Тем не менее, задача лежит в NP, так как сертификат может быть проверен за полиномиальное время.