

Relazione attività di laboratorio

Esercitazione 1

- Corso di Fondamenti delle Misurazione -
 - Ingegneria Informatica e dell'Automazione -

A cura di: Laura Loperfino Andrea Lops Teresa Pantone Paolo Rotolo

Prof. Ing. Filippo Attivissimo 29/11/2018

1 Calcoli

Per poter calcolare le incertezze richieste abbiamo usato le seguenti formule:

1.1 Incertezza sulla resistenza R

In primo luogo, è stata effettuata la misura della resistenza tramite il multimetro Agilent 34401:

Figure 1: Multimetro in misura

Per il calcolo dell'incertezza relativa alla resistenza si consulta la seguente tabella (Figure~2) delle specifiche relative al multimetro Agilent~34401:

Accuracy Specifications ± (% of reading + % of range)1

Function	Range ³	Frequency, etc.	24 hour ² 23 ± 1 °C	90 day 23 ± 5 °C	1 year 23 ± 5 °C	Temperature coefficient 0 - 18 °C 28 - 55 °C
Resistance ⁷	100.0000 Ω	1 mA current source	0.0030 + 0.0030	0.008 + 0.004	0.010 + 0.004	0.0006 + 0.0005
	1.000000 kΩ	1 mA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	10.00000 kΩ	100 μA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	100.0000 kΩ	10 μA	0.0020 + 0.0005	0.008 + 0.001	0.010 + 0.001	0.0006 + 0.0001
	1.000000 MΩ	5.0 μA	0.002 + 0.001	0.008 + 0.001	0.010 + 0.001	0.0010 + 0.0002
	10.00000 MΩ	500 nA	0.015 + 0.001	0.020 + 0.001	0.040 + 0.001	0.0030 + 0.0004
	100.0000 MΩ	500 nA II 10 MΩ	0.300 + 0.010	0.800 + 0.001	0.800 + 0.001	0.1500 + 0.0002

Figure 2: Tabella di accuratezza del multimetro

Il valore della resistenza letto sul multimetro è 9.8887 k Ω . Si sceglie il range appropriato per la misura (10 kOhm) e si leggono i valori di incertezza di lettura e di fondo scala.

$$U_R = [\pm 0.010\% rdg \pm 0.001\% FSO] \tag{1}$$

$$R = 9.8887 \pm 0.0010 k\Omega$$

1.2 Incertezza sui tempi

Per calcolare l'incertezza sulle misure è necessario conoscere le specifiche di performance dell'Oscilloscopio HP54603B. Si prende come riferimento il sistema orizzontale, ovvero quello riferito al tempo, avendo appurato che tali misure si riferiscano ad esso.

Figure 3: Oscilloscopio

Di seguito sono riportati i calcoli relativi all'incertezza che verranno illustrati solo per la prima misura in quanto sono gli stessi che verranno utilizzati per le misure successive.

1.2.1 Tempo di salita con sonda non compensata

Per calcolare l'incertezza in questo caso si fa riferimento al valore cursor accuracy presente nel datasheet dell'oscilloscopio (Figure 4), riferito all'asse dei tempi:

$$U_t = [\pm 0.01\% rdg \pm 0.2\% FSO \pm 200ps] \tag{2}$$

Si noti che per poter calcolare l'incertezza si necessita del valore di fondo scala ottenuto moltiplicando l'impostazione di guadagno per il numero di divisioni.

8.1 Oscilloscopio serie HP 5460X (no banco n. 7 in laboratorio)

Performance Characteristics

Vertical System

Accuracy¹ ±1.9% (HP 54600B, HP 54601B, and HP 54602B) ±2.4% (HP 54603B)

Verniers¹ Fully calibrated, accuracy about ±3.5%

Cursor accuracy $^{1, 2, 3}$

Single cursor accuracy vertical accuracy $\pm 1.2\%$ of full scale $\pm 0.5\%$ of position value (HP 54602B at <10 mV/div: vertical accuracy $\pm 2.4\%$ of full scale $\pm 0.5\%$ of position value)

Dual cursor accuracy vertical accuracy ±0.4% of full scale

Performance Characteristics

Horizontal System

Accuracy ±0.01% ±0.2% of full scale ±200 ps

Vernier Accuracy ±0.05%

Horizontal resolution 100 ps

Cursor accuracy^{1,2} (Δt and $1/\Delta t$) $\pm 0.01\% \pm 0.2\%$ of full scale ± 200 ps

Figure 4: Datasheet oscilloscopio HP54603B

Nel caso del tempo di salita con la sonda non compensata, l'impostazione di guadagno verticale/base dei tempi è $10.0V/2.0\mu$ s. Il numero di divisioni è 10, quindi:

$$FS = 2.0\mu s * 10 = 20\mu s \tag{3}$$

Quindi si ricava l'incertezza:

$$t_r = 5.50\mu s \pm (+0,00055\mu s + 0,04\mu s + 200ps) \tag{4}$$

Per rendere più elegante la scrittura del risultato senza intaccarne la validità, si decide di approssimarlo alla seconda cifra decimale.

$$t_r = 5.50 \pm 0,04\mu s \tag{5}$$

1.2.2 Tempo di discesa con sonda non compensata

$$t_f = 5.70\mu s \pm (+0,00057\mu s + 0,04\mu s + 200ps) \tag{6}$$

Arrotondando:

$$t_f = 5.70 \pm 0,04\mu s \tag{7}$$

1.2.3 Tempo di salita con sonda compensata 10x

$$t_{r_{10x}} = 975ns \pm (+0,0975ns + 10ns + 200ps) \tag{8}$$

Arrotondando:

$$t_{r_{10x}} = 975 \pm 10ns \tag{9}$$

1.2.4 Tempo di salita con sonda non compensata e inserzione di una resistenza

$$t_{r_R} = 7.11\mu s \pm (+0,00071\mu s + 0,04\mu s + 200ps) \tag{10}$$

Arrotondando:

$$t_{r_R} = 7.11 \pm 0,04\mu s \tag{11}$$

1.2.5 Tempo di salita con sonda compensata 10x e inserzione di una resistenza

$$t_{r_{R_{10x}}} = 1300ns \pm (+0, 13ns + 10ns + 200ps)$$
 (12)

Arrotondando:

$$t_{r_{R_{10r}}} = 1300 \pm 10ns \tag{13}$$

1.2.6 Periodo segnale sinusoidale

$$T_s = 1000\mu s \pm (+0.1\mu s + 4\mu s + 200ps) \tag{14}$$

Arrotondando:

$$T_s = 1000 \pm 4\mu s \tag{15}$$

1.2.7 Frequenza segnale sinusoidale

Per quanto riguarda l'incertezza della frequenza, il calcolo è banale in quanto si ricorre alla stessa incertezza relativa al periodo del segnale sinusoidale con diversa unità di misura(Hz)

$$f_s = 1000 \pm 4Hz$$
 (16)

1.3 Capacità sistema sonda non compensata, resistenza e oscilloscopio

Diversamente dalle altre misure, il calcolo della capacità è una misura indiretta, essendo:

$$C = \frac{t_{r_R}}{R * ln(9)} \tag{17}$$

Quindi:

$$C = \frac{7.1}{9.9 * ln(9)} \left[\frac{\mu s}{k\Omega}\right] = 0.325 nF \tag{18}$$

Essendo una misura indiretta l'incertezza totale è data dalla somma delle derivate parziali delle componenti:

$$U_{tot} = \sum_{i=1}^{N} \left| \frac{df}{dy_i} \right| U_i \tag{19}$$

Quindi l'incertezza:

$$U_C = \frac{d\frac{t_{r_R}}{R*ln(9)}}{dt_{r_R}} U_{t_{r_R}} + \frac{d\frac{t_{r_R}}{R*ln(9)}}{dR} U_R$$
 (20)

Quindi:

$$U_C = 0.046 * 0.041 + \frac{3.227}{9.9^2} * 0.001 = 0.002nF$$
 (21)

In conclusione:

$$C = 0.325 \pm 0.002nF \tag{22}$$

1.3.1 Capacità sistema sonda compensata 10x, resistenza e oscilloscopio

Si evita la rindondanza dei calcoli presenti precedentemente e si provvede ad eseguire il calcolo

$$C_{10x} = \frac{1300}{9.9 * ln(9)} \left[\frac{ns}{k\Omega} \right] = 59.688pF \tag{23}$$

Quindi l'incertezza:

$$U_{C_{10x}} = 0.046 * 10.13 + \frac{590.909}{9.9^2} * 0.001 = 0.472pF$$
 (24)

Quindi in conclusione:

$$C_{10x} = 59.7 \pm 0.5pF \tag{25}$$

1.4 Tensione picco-picco segnale sinusoidale

Per quanto riguarda la misura della tensione picco-picco del segnale sinusoidale, si si fa riferimento la dual cursor accuracy (Figure 4):

$$U_{V_{p-p_s}} = [\pm 2.4\% rdg \pm 0.4\% FSO]$$
 (26)

Quindi:

$$V_{p-p_s} = 3.938V \pm 0.0945V \pm 0.032V \tag{27}$$

Arrotondando:

$$V_{p-p_s} = 3.94 \pm 0.13V \tag{28}$$