CODING STRATEGIES IN BAKER'S GAME

STEVEN CLONTZ

Abstract. TODO

2

Abstract. TODO Let $f^{\leftarrow}(y) = \{x \in A : f(x) = y\}.$ **Proposition 1.** There exists a function $f: \mathbb{R} \to \mathbb{R}^{<\omega}$ such that for each $s \in \mathbb{R}^{<\omega}$, $f^{\leftarrow}(s)$ is dense in \mathbb{R} . *Proof.* Noting that $|\mathbb{R}^{<\omega}| = |\mathbb{R}| = \mathfrak{c}$, we recall that \mathbb{R} may be partitioned into \mathfrak{c} many parts, each dense in \mathbb{R} (e.g., the equivalence classes of $x \sim y$ iff $x - y \in \mathbb{Q}$). We may then let f assign each equivalence class to a distinct sequence in $\mathbb{R}^{<\omega}$. \square (We thank Lynne Yengulalp for suggesting the partition result that greatly simplified the preceding proof.) 10 **Theorem 2.** II $\uparrow G(W)$ if and only if II $\uparrow_{code} G(W)$. information strategy for II, and let f be given by Prop 1. First, we choose 14 $\tau(\langle a_0 \rangle) \in (a_0, \sigma(\langle a_0 \rangle)) \cap f^{\leftarrow}(\langle a_0 \rangle)$ that is, we guarantee $a_0 < \tau(\langle a_0 \rangle) < \sigma(\langle a_0 \rangle)$ and $f(\tau(\langle a_0 \rangle)) = \langle a_0 \rangle$. Given b_n, a_{n+1} , define $b'_n = \min(b_n, \sigma(f(b_n) \cap \langle a_{n+1} \rangle))$, noting $a_{n+1} < b'_n$. Now 16 17 $\tau(\langle b_n, a_{n+1} \rangle) \in (a_{n+1}, b') \cap f^{\leftarrow}(f(b_n) \cap \langle a_{n+1} \rangle)$ that is, we guarantee $a_{n+1} < \tau(\langle b_n, a_{n+1} \rangle) < b'_n \le b_n$ and $f(\tau(\langle b_n, a_{n+1} \rangle)) =$ 18 $f(b_n) \cap \langle a_{n+1} \rangle$. Then τ defines a coding strategy for II; suppose it is defeated by I choosing a_n during round n. Then if b_n is the move designated by τ for player II during round n, that is, 22 $b_0 = \tau(\langle a_0 \rangle)$ and $b_{n+1} = \tau(\langle b_n, a_{n+1} \rangle)$, we have $f(b_n) = \langle a_0, \dots, a_n \rangle$. First, we see that $a_0 < a_1 < \tau(\langle a_0 \rangle) < \sigma(\langle a_0 \rangle)$ And finally, we see that 25

 $2010\ Mathematics\ Subject\ Classification.\ 54D20,\ 54D45,\ 91A44.$

Key words and phrases. Selection principle, selection game, limited information strategies.

 $a_{n+1} < a_{n+2} < \tau(\langle b_n, a_{n+1} \rangle) < b'_n \le \sigma(f(b_n) \cap \langle a_{n+1} \rangle) = \sigma(\langle a_0, \dots, a_{n+1} \rangle)$ Therefore we have shown that a_n is also a legal move against the perfect infor-

mation strategy σ each round, and therefore σ is also not a winning strategy.

- DEPARTMENT OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF SOUTH ALABAMA, MO-
- 29 BILE, AL 36688
- 30 Email address: sclontz@southalabama.edu