- 1. Which of the following compound proposition is a tautology?
 - A. $\neg (q \to r) \land r \land (p \to q)$
 - B. $\neg (p \lor q) \land (p \lor r)$
 - C. $(p \land q) \rightarrow (p \lor q)$
 - D. $\neg (p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \rightarrow r))$

ANSWER: C

- 2. $\neg (p \lor (\neg p \land q))$ is equivalent to
 - A. $\neg p \land q$
 - B. $\neg p \land \neg q$
 - C. $p \land \neg q$
 - D. $p \wedge q$

ANSWER: B

- 3. _____ can be derived from the premises, $a \to b, c \to b, d \to (a \lor c)$ and d

 - A. b
 - B. c
 - C. d
 - D. a

ANSWER: A

- 4. The negation of the following statement "Some of the students do not keep quiet or the teacher is absent" is
 - A. Q(x)
 - B. $\exists x Q(x)$
 - C. $\forall x Q(x) \land \exists x Q(x)$
 - D. $\forall x Q(x) \wedge T$

ANSWER: D

5. Symbolize the following expressions:

All integers are rational numbers.

Some integers are power of 2.

Therefore some rational numbers are power of 2.

- A. $\forall x(I(x) \to R(x)), \exists x(I(x) \land P(x)) \Rightarrow \exists x(R(x) \land P(x))$
- B. $\forall x (I(x) \land R(x)), \exists x (I(x) \rightarrow P(x)) \Rightarrow \exists x (R(x) \land P(x))$
- C. $\forall x(I(x) \to R(x)), \exists x(I(x) \to P(x)) \Rightarrow \exists x(R(x) \land P(x))$
- D. $\forall x (I(x) \land R(x)), \exists x (I(x) \rightarrow P(x)) \Rightarrow \exists x (R(x) \rightarrow P(x))$

ANSWER: A

- 6. Let $P(n) = n^2 n + 41$ is a prime number then
 - A. P(3) is not true
 - B. P(5) is not true
 - C. P(41) is not true
 - D. P(1) is not true

ANSWER: C