Data Exploration

Visualize the original image.

Visualize the hog features.

Feature Extraction

There are 3 features, hog, color histogram and spatial bins.

At first, I think use shape-based feature hog is enough, but when I test the classifer on the test images, there are false positives in the lane line. So I decide to use the hog and color histogram.

The reason of not use spatial bins feature is to make predicting faster.

I choose YCrCb for the hog. Because from the hog features visualization above, I think hog with YCrCb can detect edges well.

The parameters I use:

- * orient = 9
- * pix_per_cell = 8
- * cell_per_block = 2
- * hog_channel = 'ALL'

I think 20 degree is precise enough for this task, so I choose orient=9. pix_per_celll=8 and cell_per_block=2 is just as usual.

I tried if I use only one channel, the svc accuracy on training set is below 0.95. And above 0.98 when use 3 channels together.

Training

I use sklearn LinearSVC classifier.

Before training, I use StandardScaler to normalize the combined-features.

Predicting

When Predicting, there are 2 important parameters:

- * scales = [1, 1.5]
- * cells_per_step = 1

Use scales = [1, 1.5] cause I when car is big, it scale it to a small size.

Use cells_per_step = 1 cause I think when cells_per_step>=2 the sliding window algorithm may offen lose 16 pixels information, and made the rectangle not stable.

And for decrese false positives, I use heat map and thresholding tricks.

Problems

Now the car's border is not very stable, and I want to know the industry standard and method for solving this problem. And the algorithm cannot recognize small cars now, I know more scales will do that but it maybe cause more false positives.