Name	Centre/Index No
School	Signature

545/3 CHEMISTRY (PRACTICAL) Paper 3 July/August 2017 2hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Certificate of Education

CHEMISTRY PRACTICAL

Paper 3

2hours

INSTRUCTIONS TO CANDIDATES.

- Answer both questions. All answers must be written in the spaces provided in this booklet.
- You are **not** allowed to use any reference books (i.e text books or handouts on qualitative analysis etc).
- All working must be clearly shown.
- Mathematical tables and silent non-programmable scientific calculators may be used.

For Examiner's use only				
Q.1	Q.2	Total		

You as	re provided with the following:			
BA_1	which is solution containing 0.1 moles of an acid $H_n X$ per litre of solution.			
BA_2	which is a solution prepared by d	issolving 1.95g of sodiun	n hydroxide in	
	500cm ³ of distilled water.			
	You are required to determine the	basicity of the acid (valu	e of n in H_nX).	
Proce	dure			
Pipette	e accurately 20cm ³ (or 25cm ³) of BA ₂	2 into a clean conical flask	ζ.	
Add 2	to 3 drops of phenolphthalein indica	tor and titrate with BA ₁ fr	om the burette.	
Record	d your results in table below.			
Repea	t the titration until you obtain consist	ent results.		
Result	ts:			
	ne of pipette used	cm ³	(2½ marks)	
	r r			
Final	burette reading (cm ³)			
Initia	l burette reading (cm ³)			
IIIIII	r burette reading (em)			
X 7 1	CD 4 3			
Volui	me of BA ₁ used (cm ³)			
Values	s used to calculated average volume of	of BA ₁ used.	(1½ marks)	
	ge volume of BA_1 used.		(02 marks)	

Questions:

Qui	.suons.		
a)	Calc	ulate the;	
	i)	molarity of BA ₂ . (Na = 23, O = 16, H = 1)	(2½ mark)
	ii)	number of moles of BA_2 that reacted.	(01 mark)
	iii)	number of moles of BA ₁ that reacted.	(01 mark)
iv) mole ratio of BA ₁ : B ₂		mole ratio of BA_1 : BA_2 ; hence determine the value of n in H_n 2	X. (1½ marks)
b)	Write	e the equation of reaction between BA_1 and BA_2 .	(1½ marks)

2. You are provided with substance T, which contains two cations and one anion. You are required to identify the cations and the anion in T and identify any gas or gases that may be evolved.

Record your observations and deduc	(16½ marks)	
TESTS	OBSERVATIONS	DEDUCTIONS
a) Heat two spatula endfuls of T in a		
dry clean test tube until there is no		
further change.		
b) To the residue in (a) above, add		
5cm ³ of dilute nitric acid and warn	n	
to dissolve.		
c) To 5cm ³ of the solution in (b)		
above, add excess ammonia		
solution, shake well and filter.		
Keep both the filtrate and residue.		
d) To 2cm ³ of the filtrate, add dilute		
hydrochloric acid drop wise until t	he	
solution is just acidic.		
Divide the acidic solution into two		
portions.		
i) To the first portion, add sodium		
hydroxide solution drop wise until		
in excess.		
ii) To the second portion, add ammon	iia	
solution drop wise until in excess.		
e) To the residue, add dilute nitric aci	id	
drop wise until it just dissolves.		
Divide the resultant solution into		
three parts.		
i) To the first part, add sodium		
hydroxide solution drop wise until		
in excess.		
ii) To the second part, add 5 drops of		
hydrochloric acid and warm.		
iii) Use the third part to carry out a tes	t	
of your own to confirm the cation		
present.		
f) To one spatula endful of T, add		
drops of dilute nitric acid.		
g) Identify the;		
i) cations in T:	and	
ii) anion in T:		