FIG.1

GGATCCCTGCTCCAGCAGCTGCAAGGTGCAAGAAGAAGAAGATCCCAGGGAGGAAAATGTG	120
M C	2
CTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCCTATCTGTCTTATGTTCAAGCAGT	180
WRPLCRFLWLWSYLSYV <u>QA</u> V	22
GCCTATCCAGAAAGTCCAGGATGACACCAAAACCCTCATCAAGACCATTGTCACCAGGAT	240
PIQKVQDDTKTLIKTIVTRI	42
CAATGACATTTCACACACGCAGTCGGTATCCGCCAAGCAGAGGGTCACTGGCTTGGACTT	300
N D I S H T Q S V S A K Q R V T G L D F	62
CATTCCTGGGCTTCACCCCATTCTGAGTTTGTCCAAGATGGACCAGACTCTGGCAGTCTA	360
I P G L H P I L S L S K M D Q T L A V Y	82
TCAACAGGTCCTCACCAGCCTGCCTTCCCAAAATGTGCTGCAGATAGCCAATGACCTGGA	420
Q Q V L T S L P S Q N V L Q I A N D L E	102
GAATCTCCGAGACCTCCTCCATCTGCTGGCCTTCTCCAAGAGCTGCTCCCTGCCTCAGAC	480
N L R D L L H L L A F S K S C S L P Q T	122
CAGTGGCCTGCAGAAGCCAGAGAGCCTGGATGGCGTCCTGGAAGCCTCACTCTACTCCAC	540
S G L O K P E S L D G V L E A S L Y S T	142
AGAGGTGGTGGCTTTGAGCAGGCTGCAGGGCTCTCTGCAGGACATTCTTCAACAGTTGGA	600
E V V A L S R L Q G S L Q D I L Q Q L D	162
TGTTAGCCCTGAATGCTGAAGTTTCAAAGGCCACCAGGCTCCCAAGAATCATGTAGAGGG	660
V S P E C *	167
AAGAAACCTTGGCTTCCAGGGGTCTTCAGGAGAAGAGAGCCATGTGCACACATCCATC	720
TCATTTCTCCCCTCCTGTAGACCACCCATCCAAAGGCATGACTCCACAATGCTTGACTC	780
AAGTTATCCACACAACTTCATGAGCACAAGGAGGGGCCAGCCTGCAGAGGGGACTCTCAC	840
CTAGTTCTTCAGCAAGTAGAGATAAGAGCCATCCCATCC	900
GGGTACATGTTCCTCCGTGGGTACACGCTTCGCTGCGCCCAGGAGGGTGAGGTAGGGA	960
TGGGTAGAGCCTTTGGGCTGTCTCAGAGTCTTTGGGAGCACCGTGAAGGCTGCATCCACA	1020
CACAGCTGGAAACTCCCAAGCACCACGATGGAAGCACTTATTTAT	1080
TATTTTGGATGGATCTGAAGCAAGGCATCAGCTTTTTCAGGCTTTGGGGGTCAGCCAGGA	1140
TGAGGAAGGCTCCTGGGGTGCTGCTTTCAATCCTATTGATGGGTCTGCCCGAGGCAAACC	1200
TAATTTTTGAGTGACTGGAAGGAAGGTTGGGATCTTCCAAACAAGAGTCTATGCAGGTAG	1260
CGCTCAAGATTGACCTCTGGTGACTGGTTTTGTTTCTATTGTGACTGAC	1320
ACGTTTGCAGCGGCATTGCCGGGAGCATAGGCTAGGTTATTATCAAAAGCAGATGAATTT	1380
TGTCAAGTGTAATATGTATCTATGTGCACCTGAGGGTAGAGGATGTGTTAGAGGGAGG	1440
GAAGGATCCGGAAGTGTTCTCTGAATTACATATGTGTGGTAGGCTTTTCTGAAAGGGTGA	1500
GGCATTTTCTTACCTCTGTGGCCACATAGTGTGGCTTTGTGAAAAGGACAAAGGAGTTGA	1560
CTCTTTCCGGAACATTTGGAGTGTACCAGGCACCCTTGGAGGGGCTAAAGCTACAGGCCT	1620
TTTGTTGGCATATTGCTGAGCTCAGGGAGTGAGGGCCCCACATTTGAGACAGTGAGCCCC	1680
AAGAAAAGGGTCCCTGGTGTAGATCTCCAAGGTTGTCCAGGGTTGATCTCACAATGCGTT	1740
TCTTAAGCAGGTAGACGTTTGCATGCCAATATGTGGTTCTCATCTGATTGGTTCATCCAA	1800
AGTAGAACCCTGTCTCCCACCCATTCTGTGGGGAGTTTTGTTCCAGTGGGAATGAGAAAT	1860
CACTTAGCAGATGGTCCTGAGCCCTGGGCCAGCACTGCTGAGGAAGTGCCAGGGCCCCAG	1920
GCCAGGCTGCCAGAATTGCCCTTCGGGCTGGAGGATGAACAAAGGGGCTTGGGTTTTTCC	1980
ATCACCCCTGCACCCTATGTCACCATCAAACTGGGGGGCAGATCAGTGAGAGGACACTTG	2040
ATGGAAAGCAATACACTTTAAGACTGAGCACAGTTTCGTGCTCAGCTCTGTCTG	2100
TGAGCTAGAGAAGCTCACCACATACATATAAAAATCAGAGGCTCATGTCCCTGTGGTTAG	2160
ACCCTACTCGCGGCGGTGTACTCCACCACAGCAGCACCGCACCGCTGGAAGTACAGTGCT	2220
GTCTTCAACAGGTGTGAAAGAACCTGAGCTGAGGGTGACAGTGCCCAGGGGAACCCTGCT	2280
TGCAGTCTATTGCATTTACATACCGCATTTCAGGGCACATTAGCATCCACTCCTATGGTA	2340
GCACACTGTTGACAATAGGACAAGGGATAGGGGTTGACTATCCCTTATCCAAAATGCTTG	2400
GGACTAGAAGAGTTTTGGATTTTAGAGTCTTTTCAGGCATAGGTATATTTGAGTATATAT	2460
AAAATGAGATATCTTGGGGATGGGGCCCAAGTATAAACATGAAGTTCATTTATATTTCAT	2520
AATACCGTATAGACACTGCTTGAAGTGTAGTTTTATACAGTGTTTTAAATAACGTTGTAT	2580
GCATGAAAGACGTTTTTACAGCATGAACCTGTCTACTCATGCCAGCACTCAAAAACCTTG	2640
GGGTTTTGGAGCAGTTTGGATCTTGGGTTTTCTGTTAAGAGATGGTTAGCTTATACCTAA	2700
AACCATAATGGCAAACAGGCTGCAGGACCAGACTGGATCCTCAGCCCTGAAGTGTGCCCT	2760
TCCAGCCAGGTCATACCCTGTGGAGGTGAGCGGGATCAGGTTTTGTGGTGCTAAGAGAGG	2820
AGTTGGAGGTAGATTTTGGAGGATCTGAGGGC	2852

GGTTG	CAAGGCCCAA	GAAGCCCA	-TCCTGGGAA	GGAAAATGCA	50
TTGGGGAACC	CTGTG-CGGA	TTCTTGTGGC	TTTGGCCCTA	TCTTTTCTAT	100
GTCCAAGCTG	TGCCCATCCA	AAAAGTCCAA	GATGACACCA	AAACCCTCAT	150
CAAGACAATT	GTCACCAGGA	TCAATGACAT	TTCACACACG	CAGTCAGTCT	200
CCTCCAAACA	GAAAGTCACC	GGTTTGGACT	TCATTCCTGG	GCTCCACCCC	250
ATCCTGACCT	TATCCAAGAT	GGACCAGACA	CTGGCAGTCT	ACCAACAGAT	300
CCTCACCAGT	ATGCCTTCCA	GAAACGTGAT	CCAAATATCC	AACGACCTGG	350
AGAACCTCCG	GGATCTTCTT	CACGTGCTGG	CCTTCTCTAA	GAGCTGCCAC	400
TTGCCCTGGG	CCAGTGGCCT	GGAGACCTTG	GACAGCCTGG	GGGGTGTCCT	450
GGAAGCTTCA	GGCTACTCCA	CAGAGGTGGT	GGCCCTGAGC	AGGCTGCAGG	500
GGTCTCTGCA	GGACATGCTG	TGGCAGCTGG	ACCTCAGCCC	TGGGTGCTGA	550
GGCCTTGAAG	GTCACTCTTC	CTGCAAGGAC	T-ACGTTAAG	GGAAGGAACT	600
CTGGTTTCCA	GGTATCTCCA	GGATTGAAGA	GCATTGCATG	GACACCCCTT	650
ATCCAGGACT	CTGTCAATTT	CCCTGACTCC	TCTAAGCCAC	TCTTCCAAAG	700
G					701

FIG.2

PRO TYR $\mathbb{IL}_{\mathbb{E}}$ ASP LEU MET 9 8 ARG 9 8 LEU LEU LEW ASP ASP SER 9 80 GLY LYS MET Val ARG G G R ASN TMR Ser Ser ASR SER Mis **GLY** ASP) [[E VAL TMR **GLU** Val Leu CYS GLY Tap Lys ARG Lys Tar LEU LEU Ser LEU ALA GLR TMR GLR ILE ASP Val GLR S SER LYS 9 점 퍼] [E Val LYS ILE GLR ASM SER TRP ASP Val GLY 0 6) Le Ser **0**86 GL R SER PKE OLU Glu Leu Cys TMR SER Mis TYR] [E THR ALA IVAL IMR MET LYS GLR LEU ASP VAL Val SER GLN THR GLN GLN ILE Ser **GLY** ALA ILE I Val LEU TYR **GLY** GLN **GLY** Val PR0 Mis LEW Val GLY TRP THR ILE I THR LAG ASM SER SER TKR SER Mis GLR 9 88 LYS MIS ARG LEU ALA ALA GLY CYS TMR MET LEU Ser ASP ASP Ser ASP TRP GLU GLR GLY **8** 3 **6**1 9 106 121 136 151 166

POUSE	MCWRPLCRFL	CRFL WLWSYLSYVO AVPIOKVODD TKTLIKTIVT RINDISHTOS	AVPIOKVODO	TKTLIKTIVT	RINDISHTOS	20
luman	لي	CGFL WLWPYLFYVQ AVPIQKYQDD TKTLIKTIVT RINDISHTQS	AVPIOKVODD	TKTLIKTIVT	RINDISHTOS	
House	VSAKORVTGL * VSSKOKVTGL	VSAKORVTGL DFIPGLHPIL SLSKWÖOTLA VYOOVLTSLP SONVLOIAND * VSSKOKVTGL DFIPGLHPIL TLSKWDOTLA VYOOILTSMP SRNVIOISND	SLSKWDOTLA TLSKWDOTLA	VYQQVLTSLP VYQQILTSMP	SONVLOIAND * SRNVIOISND	100
House	LENLROLLHL	LENLRDLLHL LAFSKSCSLP OTSGLOKPES LDGVLEASLY STEVVALSRL * ** ********************************	OTSGLOKPES ** *** WASGLETLOS	LOGVLEASLY * LGGVLEASGY	Stevvalsrl Stevvalsrl	150
fouse fuman	OGSLODILOO LDVSPEC	LDVSPEC * LDLSPGC				167

F16.4

TYR ILE SER ASP ASP SS S E E D G L G GLR وارو ASP SER ASP ASP LEU MET ARG LEU 9 8 0 8 8 LEU PRO Trep GLN GLN ASM ARG GLY [YS Leu SER LEU Val LEU I LE Thr SER SER ASR SER **GLY** SER Val Val GLU GLU T R R ARG THR ASP ASP LYS leu CYS LEU Val LEU GLR THR ARG SER LEU SER ALA () 저도 GLN ASP ILE Leu LYS SER S S S Val Val Val ASR R ARG G G R PRO I.E LYS ILE E SER OLC Glu GL R Val CYS THR 9 8 GLR GLR ALA P R R 9 8 9 GLU GLU VAL ALA SER ALA LYS His [YR ILE E ALA LYS TMR ILE PRO GLR GLN] [e GL R Val LEU Val SER ASP ARG GLY GLR S E ALA TYR VAL TRP THR TMR GLY TYR Z Z S 0 2 2 LEU VAL SER TMR ASR CYS **S** FB SER LYS Mis ILE SER MET TMR SER P M M M GLR GLR LEU TMR ALA GLY CYS 70 800 76 106 136 **6**1 6 166 121 151 31

k. U L

TYR ASP ILE M ASP ASP SER GLR ASP TRP ere S **GLY 0** 80 ASP P ASP P MET ARG @ 8 @ 88 80 9 8 LEU GLN GLN ASR **GLY** [YS MET LEU VAL ARG Ser GLY ASR TKR S F Val SER Mis SER LEU VAL GLY LEU ASP L As ARG THR CYS T RP TRE LEU LEU LEU GLR [\AS THE LEU S ALA LEU () () () G G ASP P I LE VAL S F] [E LYS Val G F N GLY 9 8 GLN GLN ASS SER Val LYS ILE ASP T RP I E 80 G G R R CYS VAL SER SER OLU Glu T R () 전 전 TAR MET LEU ALA TYR ALA Ris LYS] [e Tar SER T R R GLR I LE Val GLR GLR GLU VAL SER ASP GLY. LEU GLY ALA GLN GLN VAL SER ILE VAL TYR T RP TYR Tar THE P 20 Mis GLY VAL LEU XX S I LE THR ASR 2 2 2 2 2 LYS MIS S SER SER E R R R MET LEU GLR GLR ARG ALA TMR SER () 보 GLY CYS 70 3 **46** 61 76 S 106 136 166 121 151

9. 9. 11.

FIG.8

1 2 3 4 5 6 7

FIG.9

	GTGCAAGAAG 	GIGCAAGAAG AAGAAGAIC <u>C CAGGGCAGGA AAAIGIG</u> CIG GAGACCCCIG CACGIICIIC ITCIICIAGG GICCCGICCI ITTACACGAC CTCIGGGGAC	*20 CAGGGCAGGA GTCCCGTCCT	+30 AAATGTGCTG TTTACACGAC	*40 GAGACCCCTG TTTTGGGGAC
21	TGTCGGGTCC	TGTCGGGTCC NGTGGNTTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC - ?????????	*20 *CTATCTG CACCAGATAGAC	+30 TCTTATGTNC TCTTATGTNC AGAATACANG	*40 AAGCAGTGCC TTCGTCACGG
101	TATCCAGAAA	TATCCAGAAA GTCCAGGATG ACACCAAAAG CCTCATCAAG ACCATTGTCA ATAGGTCTTT CAGGTCCTAC TGTGGTTTTC GGAGTAGTTC TGTAACAGT	÷20 3 ACACCAAAAG 1 TGTGGTTTTC	÷30 cctcatcaag cagagtagttc	*40 ACCATTGTCA TGGTAACAGT
151	NCAGGATCAC ?	*20 *20 *20 *20 *20 *20 *20 *20 *20 *20		÷	4d4d

FIG. 10

FIG.11A

small intestine
stomach
pancreas
lung
testis
heart
spleen
liver

28S —

white fat

brain

18S —

FIG.11B

FIG.12A

FIG.12B

FIG.13

FIG. 14

FIG.15A

BgIII Digests

FIG.15B

FIG.16

I7 promoter primer 69348-1

IT PROMOTER

BGLII AGATCICGATCCCGCGAATTAATACGACTCACTATAGGGGAATTGTGAGCGGATAACAATTCCCCTCTACA

MetglySerSerHisHisHisHisHisKisSerSerGly

Leuvalproarglyserhismetleugluaspproalaalaasnlysalaarglysgluagluleuala <u>Noel</u> Xnol Bamhl Ctgtgccgcgcagccatatgctcgaggatccgctgctaacaaagcccgaaaggaagctgattggct

THROMBIN

BPWI1021 GCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGGTCTTGAGGGGTTTTTTG alaalaThralagluglnEnd

17 terminator primer #69337-1

FIG. 17

FIG.18A

FIG.18B

FIG.19A

FIG.19B

FIG.20A-1

300	GCCAGGCACC	350	ACTCTTTCTG	900°	GGTTAGNGGT	450		900 -	CCTAGGGAAA
290	TTATTGAACG CCTCCTGAAT	340	TITGGATAGC ACAGGGCTCC ACTCTITCTG	980 -	NIGGCCCCCT CIGCTGCTG AGATNCCAGG		SEQUENCE (~1.4	490 1	GENTINCA GGAAGAGGCC ANGNAGAGA AAGGAANTGA CCTAGGGAAA
280	TTATTGAACG	330	TITGGATAGC	99 80 80 80 80 80 80 80 80 80 80 80 80 80	CICCIGCIG	430	GAP OF SEQI	480	ATGTAAGAGA
270	CCAGATAGIC CAAGAACAT	320	TACTEGAAGC TEAGAAGGAT	370	NTGGCCCCCT	420	TARA	073 	GGAAGAGGCC
260	CCAGATAGIC	310	TACTGGAAGC	360	GTTGTTTCTT	410	TCTTAATTCC TAAA-	460	GETTETTER

FIG.20A - 2

GCAGGAATCT	009	GANACAAGGG	650	CAGAGAATGA	002	ATTCCTCCCA	750	GTCAGTCTCC
TGTGGGAAAA	5 9 —	CTGGGTGCAG	640 	GGAGACAGCC	069	TCTGAGAGCG	740	CTNCATAGCA
GAACGGATGG	28 	TGGCAGTCAC	630	GAGGGTGGAA	680	GGCAGAGGGC 3 of 1st	730	CCTCTTCCTC
GAAGTGGAGG	570	CITAGAGGCI	620	AGTGGTGAGG	670 	CCACGGGGAA	720	CATGCTGAGC ACTIGTTCTC CCTCTTCCTC HOB 2G F
ATTGGCCTGG	560	CGGAGACCAG	610	CCTGAGCCAA	099	CCCTCCATGC	710	CATGCTGAGC HOB 2G F
	GAAGTGGAGG GAACGGATGG TGTGGGAAAA	GAAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAA 570 580 590	GAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAA 570 580 590 CTTAGAGGCT TGGCAGTCAC CTGGGTGCAG GANACAA	GAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAA 570 580 590 CITAGAGGCT TGGCAGTCAC CTGGGTGCAG GANACAA 620 630 640	GAGTGGAGG GAACGGATGG TGTGGGAAA GCAGGAA 570	GAGTGGAGG GAACGGATGG TGTGGGAAA GCAGGAA S70	GAGTGGAGG GACGGATGG TGTGGGAAA GCAGGAA S70	GAGTGGAGG GACGGATGG TGTGGGAAAA GCAGGAA 570

FIG.20A -3

GGTGTCCTGG	CAGCCTGGGG	AGACCTTGGA	GCCCTGGGCC AGTGGCCTGG AGACCTTGGA CAGCCTGGGG	GCCCTGGGCC
1000	066	086	070	096
GCIGCCACTT	TTCTCTAAGA	CGTGCTGGCC	AACCICCGGG AICTICTICA CGIGCIGGCC TICTCTAAGA	AACCTCCGGG
950	040 -	086	920	910
CGACCTGGAG	AAATATCCAA	AACGTGATCC	TCACCAGTAT GCCTTCCAGA AACGTGATCC AAATATCCAA CGACCTGGAG	TCACCAGTAT
006	© 6	888	870	098
CAACAGATCC	GGCAGTCTAC	ACCAGACACT	CCTGACCTTA TCCAAGATGG ACCAGACACT GGCAGTCTAC CAACAGATCC	CCTGACCITA
020	0 分裂	@% 83 -	820	© 0 0 0 0 0 0 0 0 0
TCCACCCCAT	ATTCCTGGGC	TTTGGACTIC	TCCAAACAGA AAGTCACCGG TITGGACTIC ATTCCTGGGC	TCCAAACAGA
0-	06%	780	770	760

FIG.20A-4

1050	CTGCAGGGG	1100	GGTGCTGAGG	1150	AGGAACTCTG	1200	ACCCCTTATC	1250	TCCAAAGG
1040	CCCTGAGCAG	1090	CTCAGCCCTG	1140 	CGTTAAGGGA	1190	ATCTCCAGGA TTGAAGAGCA TTGCATGGAC ACCCCTTATC NOB 2G R	1240 	AAGCCACTCT
1030	GAGGTGGTGG	1080	GCAGCTGGAC	1130	GCAAGGACTA	1180	TTGAAGAGCA	1230	TGACTCCTCT
1020	AAGCTTCAGG CTACTCCACA	1070	TCTCTGCAGG ACATGCTGTG GCAGCTGGAC	1120	CCTTGAAGGT CACTCTTCCT	1170 	ATCTCCAGGA HOB 2G R	1220	CAGGACTETE TEATITICE TGACTECTET AAGECACTET
1010	AAGCTTCAGG	1060	TCTCTGCAGG	1110	CCTTGAAGGT	1160	GCTTCCAGGT	1210	CAGGACTCTG

FIG.20A-5

MOUSE OB STRUCTURE

!st ex	1st intr	2nd ex	2nd intr	3rd exon	
	/////////	ATG			TGA
		start			ston

FIG.20B

HUMAN OB STRUCTURE

1st exon	1st intr	2nd exon	
 _ATG			TGA
 start			stop

FIG.20C

FIG.21A

FIG.21B

FIG.21C

Ob	(FOLLOWING THROMBIN	qo	
HIS. TAG THROMBIN CLEAVAGE		GLY · SER · PRO · [
	2 STE-13 SE CLEAVAGE		
A-MF SIG SEQ GLU-ALA	A KEX-2 CLEAVAGE		

FIG.22B

FIG.23A

FIG.23B

FIG.24A

FIG.24B

FIG.24C

FIG.24D

FIG.25A

FIG.25B

FIG.26A

Human ob

Peptide	Mass(Da)	
	Expected	Observed
22-167	16,024	16,024 ± 3
22-75	5936.9	5936.6 ± 1
76-89	1562.7	N.D.
90-167	8434.5	8435.6 ± 1
158-167	1131.9	N.D.

FIG.26 B

FIG.27

FIG.28A

FIG.28B

FIG.28C

FIG.28D

FIG.28E

FIG.28F

FIG.30

FIG.31

1 2 3 4

FIG.32A

FIG.33

FIG.34

FIG. 35A

FIG. 35B