ADABOOST

Ensemble learning

- Stacking
 - Voting
 - Training a post classifier
- Bagging
 - Well known: Random forest
 - Mentioned before
- Boosting
 - Well known: AdaBoost (Adaptive Boosting)
 - Build a strong classifier from many weak classifiers

 Given the following 1-D example (not linearly separable)

x =	0	1	2	3	4	5	6	7	8	9
d =	1	1	1	-1	-1	-1	1	1	1	-1

□ 1st classifier

X =	0	1	2	3	4	5	6	7	8	9
h1 =	1	1	1	-1	-1	-1	-1	-1	-1	-1

□ 2nd classifier

X =	0	1	2	3	4	5	6	7	8	9
h2 =	1	1	1	1	1	1	1	1	1	-1

□ 3rd classifier

X =	0	1	2	3	4	5	6	7	8	9
h3 =	-1	-1	-1	-1	-1	-1	1	1	1	1

Perform majority vote

X=	0	1	2	3	4	5	6	7	8	9
h1 =	1	1	1	-1	-1	-1	-1	-1	-1	-1
h2 =	1	1	1	1	1	1	1	1	1	-1
h3 =	-1	-1	-1	-1	-1	-1	1	1	1	1
H=	1	1	1	-1	-1	-1	1	1	1	-1

All samples are correctly classified

- Although each classifier is a linear weak classifier (i.e., low accuracy), combined classifier is a strong nonlinear classifier
- Explain why (where do we introduce nonlinearity?)
- AdaBoost follows the same idea, but with weighted sum instead of voting

- Symbol definition
 - \square Samples $x_1, ..., x_n \in \mathbb{R}^p$
 - \square Desired output $d_1, \dots, d_n \in \{-1, +1\}$
 - □ Initial weights $w_{1,1}, \dots, w_{n,1}$ set to $\frac{1}{n}$ (note: 2nd index is time)
 - Weak classifiers $h: x_k \to \{-1, +1\}$

- □ For t = 1 ... T
 - lacksquare Find and save weak classifier $h_t(x)$ minimize

$$\epsilon_t = \sum_{k=1}^n w_{k,t} \ell(h_t(\mathbf{x}_k) \neq d_k)$$

(Note: ϵ_t sometimes could be very small)

- □ Update $\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
- □ Update weights: $w_{k,t+1} \leftarrow w_{k,t} \exp(-\alpha_t h_t(\mathbf{x}_k) d_k)$
- □ For k = 1 ...n: $H(\mathbf{x}_k) = \text{sign}((\sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)))$
- Stop condition: (1) No error on classifying training data

Or (2) Upper limit of iterations reached

- Two classifiers in use
 - Use current weak classifier $h_t(\mathbf{x}_k)$ to update weights $w_{k,t+1} \leftarrow w_{k,t} \exp(-\alpha_t h_t(\mathbf{x}_k) d_k)$
 - Use combined strong classifier $H(x_k)$ to check error samples (but cannot be used for weights updating)

$$H(\mathbf{x}_k) = \operatorname{sign}\left(\sum_{z=1}^t \alpha_z h_z(\mathbf{x}_k)\right) == d_k?$$

□ For classification after training, use

$$H(\mathbf{x}) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$$

- There are several variations on AdaBoost
- The version given here is from Machine Learning in Action (a good book for engineers)
- You can compare this algorithm with the one in textbook (original AdaBoost.M1)

AdaBoost

- AdaBoost has solid theories behind it, but not to be mentioned here
- Some key points in algorithm
 - Weak classifier (should not be too strong)
 - Best decision for weighted error in weak classifier
 - Numerical issues (could be bad)
 - Very sensitive to noise and outliers

In the algorithm, we need to search over all possible combinations of parameters to find optimal weighted error

$$\epsilon_t = \sum_{k=1}^n w_{k,t} \ell(h_t(\mathbf{x}_k) \neq y_k)$$

- Not easy with many classifiers (such as SVM)
- One widely used classifier is decision stump:
 making a decision on one feature only

Decision stump example (from wiki)

An example of a decision stump that discriminates between two of three classes of Iris flower data set: *Iris versicolor* and *Iris virginica*. The petal width is in centimetres. This particular stump achieves 94%

- \square To find ϵ_t , we need to check all possible threshold values for all features
- Consider the following small example:
 - \square P1 = (1, 2.1), C = +1
 - \square P2 = (2, 1.1), C = +1
 - \square P3 = (1.3 1) ,C = -1
 - \square P4 = (1, 1), C = -1
 - \square P5 = (2, 1), C = +1

- □ For 1st feature, we need to check (for example)
- Threshold = $\{0.9, 1.1, 1.4, 2.1\}$ (other values OK, too)
- □ For 2nd feature, we need to check
- Threshold = $\{0.9, 1.05, 1.2, 2.2\}$
- $\hfill\Box$ We also need to know if $h(x_k)>0$ means C=1 or C=-1
- \square Finally, pick the threshold with lowest ϵ_t

- □ For example, we set thr = 1.4 in 1st feature: if 1st feature > thr, C = 1, else C = -1
- \square We have only one error in 1st iteration (t = 1)
- □ Therefore, $\epsilon_1 = 0.2$, $\alpha_1 = 0.6931$, $\mathbf{w}_{:,1} = [0.5, 0.125, 0.125, 0.125, 0.125]^T$
- We can do more steps with same approach

XOR experiment

- Use 100 samples in XOR as training samples:
- □ If (feature 1) * (feature 2) > 0 then C = 1, else C = -1
- Feature 1 and 2 are random numbers
- No error in training set at around 400 iterations (i.e., 400 weak classifiers)

Using AdaBoost

- Keep in mind: AdaBoost is very sensitive to noise and outliers (i.e., training samples with wrong classification)
- Need to use weak classifiers for best performance
- Theories show that AdaBoost also widens the "margin" as SVM does