Cassandra Uebel und Tim Jaschek

21.01.2016

- 1 Motivation
- 2 Mercer's Theorem
- 3 Karhunen Loève Theorem
- 4 Vorteile der Zerlegung
- 5 Quellen

Motivation

Ziel: Dann gibt es für X_t die folgende Darstellung als Reihe:

$$X_t = \sum_{n=1}^{\infty} Z_n \psi_n(t)$$

für gewisse Zufallsvariablen $(Z_n)_{n\in\mathbb{N}}$ und eine Orthonormalbasis $\{\psi_n:n\in\mathbb{N}\}$ von $L^2(D)$.

Betrachtung der Thematik erstmals von Damodar Dharmananda Kosambi

Dennoch: Bekannt als Karhunen-Loeve-Theorem

Betrachtung der Thematik erstmals von Damodar Dharmananda Kosambi

Dennoch: Bekannt als Karhunen-Loeve-Theorem

- - finnischer Herkunft
 - 1947 Doktorarbeit auf Deutsch
 - **1945** Veröffentlichung des Theorems

\hookrightarrow Michel Loeve:

Motivation

- israelisch-jüdische Herkunft
- Student unter Levy
- Inhaftierungslager
- Professor in Barkley
- 1948 Veröffentlichung des Theorems

Definition

Sei X ein normierter Raum, $A \subseteq X$ heißt **relativ kompakt** in X, falls \bar{A} kompakt in X ist.

Definition

Sei X ein normierter Raum, $A \subseteq X$ heißt **relativ kompakt** in X, falls \bar{A} kompakt in X ist.

Definition

Seien X, Y normierte Räume. Eine Abbildung A: $X \to Y$ heißt linearer Operator, falls sie linear ist. Wir schreiben Ax := A(x).

Definition

Sei X ein normierter Raum, $A \subseteq X$ heißt **relativ kompakt** in X, falls \bar{A} kompakt in X ist.

Definition

Seien X, Y normierte Räume. Eine Abbildung A: $X \to Y$ heißt linearer Operator, falls sie linear ist. Wir schreiben Ax := A(x).

Definition

Gilt zudem für alle beschränkte Mengen $E \subseteq X$, dass A(E) relativ kompakt in Y ist, dann bezeichnen wir diesen Operator als **kompakt**.

Definition

Wir bezeichnen die Funktion $\kappa: D \times D \to \mathbb{R}$ als einen Hilbert-Schmidt-Kern, falls:

$$\int_{D}\int_{D}|\kappa(x,y)|^{2}dxdy<\infty$$

Definition

Wir bezeichnen die Funktion $\kappa: D \times D \to \mathbb{R}$ als einen Hilbert-Schmidt-Kern, falls:

$$\int_{D} \int_{D} |\kappa(x,y)|^{2} dx dy < \infty$$

Definiere den Integraloperator T_{κ} auf $L^2(D)$ durch $T_{\kappa}: u \mapsto T_{\kappa}u$ für $u \in L^2(D)$:

$$[T_{\kappa}u](x) = \int_{D} \kappa(x, y)u(y)dy$$

Definiere den Integraloperator T_{κ} auf $L^2(D)$ durch $T_{\kappa}: u \mapsto T_{\kappa}u$ für $u \in L^2(D)$:

$$[T_{\kappa}u](x) = \int_{D} \kappa(x,y)u(y)dy$$

Lemma

Der oben definierte Integraloperator T_{κ} mit zugehörigen Hilbert-Schmidt-Kern $\kappa \in L^2(D \times D)$ ist linear, beschränkt und kompakt.

Solch ein Integraloperator wird als Hilbert-Schmidt-Operator bezeichnet.

$T_{\kappa_{\times}}$ ist linear.

 I_{κ_X} ist linear

Beweis: Seien $f, g \in L^2(D)$ und $\lambda \in \mathbb{R}$. Dann gilt:

$$T_{\kappa}(\lambda f + g) = \int_{D} \kappa(s, \cdot)(\lambda f(s) + g(s))ds$$
$$= \lambda \int_{D} \kappa(s, \cdot)f(s)ds + \int_{D} \kappa(s, \cdot)g(s)ds$$
$$= \lambda T_{\kappa}f + T_{\kappa}g$$

Definiere den Integraloperator K auf $L^2(D)$ durch $K: u \mapsto Ku$ für $u \in L^2(D)$

$$[T_{\kappa}u](x) = \int_{D} \kappa(x,y)u(y)dy$$

Beweis:

- \blacksquare T_{κ} ist linear. $\sqrt{}$
- \blacksquare T_{κ} ist beschränkt.

Definiere den Integraloperator K auf $L^2(D)$ durch $K: u \mapsto Ku$ für $u \in L^2(D)$

$$[T_{\kappa}u](x) = \int_{D} \kappa(x,y)u(y)dy$$

Beweis:

- lacksquare T_{κ} ist linear. $\sqrt{}$
- lacksquare T_{κ} ist beschränkt. $\sqrt{}$
- T_κ ist kompakt.

$$[T_{\kappa}u](x) = \int_{D} \kappa(x,y)u(y)dy$$

Beweis:

Motivation

- \blacksquare T_{κ} ist linear. $\sqrt{}$
- T_{κ} ist beschränkt. $\sqrt{}$
- \blacksquare T_{κ} ist kompakt. $\sqrt{}$

Falls A linearer Operator ist, macht es Sinn nach Eigenvektoren und Eigenwerten im Sinne der Linearen Algebra zu fragen.

Definition

Sei X ein normierte Raum und $A \in \mathcal{L}(X,X)$ ein linearer Operator. $\psi \in X \setminus \{0\}$ heißt **Eigenvektor** oder auch **Eigenfunktion** zum **Eigenwert** λ von A, falls gilt:

$$A\psi = \lambda\psi$$

Beachte, dass $\dim(X)$ auch ∞ seien kann. Dies wird in unserem Setting auch der Fall sein.

Spektral Theorie kompakter selbstadjungierter Operatoren

Sei X ein normierter Raum, $A \in \mathcal{L}(X,X)$. Definiere:

Resolvente:

$$\rho(A) = \{\lambda \in \mathbb{C} : \ker(\lambda - A) = \{0\}, \operatorname{im}(\lambda - A) = X\}$$

Spektrum:

$$\sigma(A) = \mathbb{C} \setminus \rho(A)$$

Punktspektrum:

$$\sigma_p(A) = \{\lambda \in \mathbb{C} : ker(\lambda - A) \neq \{0\}\}$$

Stetiges Spektrum:

$$\sigma_c(A) = \left\{ \lambda \in \mathbb{C} : \frac{\ker(\lambda - A) = \{0\}}{\operatorname{im}(\lambda - A) \neq X, \operatorname{im}(\lambda - A) = X} \right\}$$

Residuenspektrum:

$$\sigma_r(A) = \{\lambda \in \mathbb{C} : \ker(\lambda - A) = \{0\}, \overline{\operatorname{im}(\lambda - A)} \neq X\}$$

Sei $(H, <\cdot, \cdot>)$ ein Hilbertraum. $T: H \to H$ ein linearer Operator. T heißt selbstadjungiert, falls für alle $u, v \in H$:

$$< Tu, v > = < u, Tv >$$

Falls T ein Hilbert- Schmidt Operator auf $L^2(D)$ mit zugehörigem Kern κ ist, so gilt: T ist selbstadjungiert $\Leftrightarrow \kappa$ ist symmetrisch

Beweis:

$$< T_{\kappa}u, v> = \int_{D} \int_{D} \kappa(y, x)u(y)dyv(x)dx$$

 $< u, T_{\kappa}v> = \int_{D} \int_{D} \kappa(x, y)v(x)dxu(y)dy$

Spektral Theorie

Spektral Theorem

Sei H ein Hilbertraum und $T: H \to H$ ein kompakter, selbstadjungierter Operator. Dann hat H eine Orthonormalbasis $\{\psi_n: n \in \mathbb{N}\}$ aus Eigenvektoren von T zu den zugehörigen Eigenwerten λ_i . Es gilt:

- $\forall i \in \mathbb{N} : \lambda_i \in \mathbb{R}$ mit Null als einzigem Häufungspunkt
- Eigenräume zu verschiedenen Eigenwerten sind orthogonal
- Eigenräume zu von Null verschiedenen Eigenwerten sind endlich dimensional.

Mercer's Theorem Karhunen Loève Theorem Vorteile der Zerlegung

Spektral Theorie

Spektral Theorem

Sei H ein Hilbertraum und $T: H \to H$ ein kompakter, selbstadjungierter Operator. Dann hat H eine Orthonormalbasis $\{\psi_n: n\in\mathbb{N}\}$ aus Eigenvektoren von T zu den zugehörigen Eigenwerten λ_i . Es gilt:

- $\forall i \in \mathbb{N} : \lambda_i \in \mathbb{R}$ mit Null als einzigem Häufungspunkt
- Eigenräume zu verschiedenen Eigenwerten sind orthogonal
- Eigenräume zu von Null verschiedenen Eigenwerten sind endlich dimensional.

Beweis:

Functional Analysis lecture, HU Berlin, WS 15/16, Prof. Perkowski, voraussichtlich in den nächsten Wochen

$$\kappa_X: D \times D \rightarrow \mathbb{R}$$

$$(s,t) \mapsto \kappa_X(s,t) = \mathbb{E}[X_s X_t]$$

Beispiel: Kovarianzfunktion einer Brownschen Bewegung:

$$\kappa_B(s,t)=s\wedge t$$

Integraloperator induziert durch K_X :

$$T_{\kappa_X}: L^2(D) \rightarrow L^2(D)$$

$$f \mapsto T_{\kappa_X}f = \int_D \kappa_X(s,\cdot)f(s)ds$$

$$(\mathcal{T}_{\kappa_{X}}\psi_{n})(t)=\int_{D}\kappa_{X}(s,t)\psi_{n}(s)ds=\lambda_{n}\psi_{n}(t)$$

Wie sehen die **Eigenwerte und Eigenvektoren** von T_{K_x} aus? Dazu löse:

$$\left(T_{\kappa_{X}}\psi_{n}
ight)(t)=\int_{D}\kappa_{X}(s,t)\psi_{n}(s)ds=\lambda_{n}\psi_{n}(t)$$

Am Beispiel der Brownschen Bewegung mit D = [0, 1] erhält man:

$$\psi_n(t) = \sqrt{2} sin\left(\left(n - \frac{1}{2}\right)\pi t\right)$$
$$\lambda_n = \frac{1}{\left(n - \frac{1}{2}\right)^2 \pi^2}$$

 \longrightarrow Tafel

Sei $\kappa: D \times D \to \mathbb{R}$ ein Hilbert- Schmidt Kern. Der induzierte Integral operator T_{κ} heißt positiv, falls für alle $f \in L^2(D)$:

$$\int_{D}\int_{D}\kappa(s,t)f(s)f(t)dsdt\geq0$$

Sei $\kappa: D \times D \to \mathbb{R}$ stetig mit positiv definitem induzierten Hilbert-Schmidt Operator T_{κ} . Seien weiter $\{\lambda_i\}$ und $\{\psi_i\}$ die Eigenwerte und Eigenfunktionen von T_{κ} . Dann gilt für alle $s, t \in D$:

$$\kappa(s,t) = \sum_{n=1}^{\infty} \lambda_n \psi_n(s) \psi_n(t)$$

wobei die obige Reihe absolut und gleichmäßig konvergiert.

Mercer's Theorem

Sei $\kappa: D \times D \to \mathbb{R}$ stetig mit positiv definitem induzierten Hilbert-Schmidt Operator T_{κ} . Seien weiter $\{\lambda_i\}$ und $\{\psi_i\}$ die Eigenwerte und Eigenfunktionen von T_{κ} . Dann gilt für alle $s, t \in D$:

$$\kappa(s,t) = \sum_{n=1}^{\infty} \lambda_n \psi_n(s) \psi_n(t)$$

wobei die obige Reihe absolut und gleichmäßig konvergiert.

Beweis:

Israel Gohberg, Seymour Goldberg und M.A. Kaashoek. Basic classes of linear operators. 2004.

Mercers Theorem - covariance function of Brownian Motion

Mercer's Theorem Karhunen Loève Theorem Vorteile der Zerlegung Que

Mercers Theorem - covariance function of Brownian Motion

Mercers Theorem - covariance function of Brownian Motion

Mercers Theorem - covariance function of Brownian Motion

Mercers Theorem - covariance function of Brownian Motion

Sei $X: D \times \Omega \to \mathbb{R}$ ein stetiger stochastischer Prozess mit $\mathbb{E}[X_t] = 0$ und $X_t \in L^2$ für jedes $t \in D$. Dann gilt für X_t die folgende Darstellung:

$$X_t = \sum_{n=1}^{\infty} Z_n \psi_n(t)$$

Für Zufallsvariablen Z_n mit $\mathbb{E}[Z_n]=0$ und $\mathbb{E}[Z_nZ_m]=\delta_{m,n}\lambda_n$ und eine orthonormale Basis $\{\psi_n|n\in\mathbb{N}\}$ von $L^2(D)$. Diese Reihe konvergiert in L^2 und gleichmäßig und es gilt:

$$Z_n = \int_D X_t \psi_n(t) dt$$

Beweisstrategie:

- i) κ_X ist ein Hilbert-Schmidt Kern $\sqrt{}$
- ii) Herleitung der Darstellung bzgl Orthonormalbasis aus i)

- i) κ_X ist ein Hilbert-Schmidt Kern $\sqrt{}$
- ii) Herleitung der Darstellung bzgl Orthonormalbasis aus i) $\sqrt{}$
- iii) Nachweis der Eigenschaften der einzelnen Komponenten der Reihe

- i) κ_X ist ein Hilbert-Schmidt Kern $\sqrt{}$
- ii) Herleitung der Darstellung bzgl Orthonormalbasis aus i) $\sqrt{}$
- iii) Nachweis der Eigenschaften der einzelnen Komponenten der Reihe \surd
- iv) Konvergenzaussagen

Beweisstrategie:

- i) κ_X ist ein Hilbert-Schmidt Kern $\sqrt{}$
- ii) Herleitung der Darstellung bzgl Orthonormalbasis aus i) $\sqrt{}$
- iii) Nachweis der Eigenschaften der einzelnen Komponenten der Reihe $\sqrt{}$
- iv) Konvergenzaussagen $\sqrt{}$

Sei $B = (B_t)_{t \in [0,1]}$ eine **Brownsche Bewegung**. Dann gilt:

$$B_{t} = \sum_{n=1}^{\infty} Z_{n} \frac{\sqrt{2}}{\left(n - \frac{1}{2}\right)\pi} sin\left(\left(n - \frac{1}{2}\right)\pi t\right)$$

Für $(Z_t)_{t \in [0,1]}$ u.i.v. $\sim \mathcal{N}(0,1)$.

Mean squared error

Definition

Sei $(X_t)_{t\in D}\subseteq L^2$ ein stochastischer Prozess und $(\hat{X}_t)_{t\in D}\subseteq L^2$ eine Approximation von X. Dann heißt:

$$MSE(t) := \mathbb{E}[(X - \hat{X})^2]$$

die mittlere quadratische Abweichung von X_t und \hat{X}_t . Weiter heißt:

$$TMSE = \int_{D} MSE(t)dt$$

die totale mittlere quadratische Abweichung.

Satz

Unter allen Reihendarstellungen bezüglich einer Orthonormalbasis minimiert die Karhunen-Loève Zerlegung TMSE.

Satz

Unter allen Reihendarstellungen bezüglich einer Orthonormalbasis minimiert die Karhunen-Loève Zerlegung TMSE.

Definition

Seien $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ Banachräume über dem selben Körper \mathbb{K} , $U \subseteq X$ und $F: U \to Y$. F heißt Fréchet differenzierbar in $x \in U$ falls $\exists dF(x) \in \mathcal{L}(X, Y)$ so dass:

$$\lim_{\substack{\|u\|_X\to 0\\u\neq 0}}\frac{\parallel F(x+u)-F(x)-dF(X)u\parallel_Y}{\parallel u\parallel_X}=0$$

Falls X sogar ein Hilbertraum ist und $Y = \mathbb{R}$, dann ist $dF(x)u = \langle dF(x), u \rangle$.

Varianz des Prozesses

Für alle $t \in D$ gilt:

$$Var[X_t] = \sum_{k=0}^{\infty} \psi_k^2(t) Var[Z_k] = \sum_{k=1}^{\infty} \lambda_k \psi_k^2(t)$$

Gesamte Varianz des Prozesses:

$$Var[X] := \int_{D} Var[X_t] dt = \sum_{k=1}^{\infty} \lambda_k$$

Varianz der bei $N \in \mathbb{N}$ abgebrochenen Reihe:

$$Var[\hat{X}^{(N)}] = \sum_{k=1}^{N} \lambda_k$$

Betrachte einen diskreten, endlichen Prozess $(X_n)_{n=1,...,N}$:

$$(\mathcal{T}_{\mathcal{K}_X}\psi_n)(t)=\int_D \mathcal{K}_X(s,t)\psi_n(s)ds=\lambda_n\psi_n(t)$$

vereinfacht sich zu:

$$\sum_{i=1}^{N} \Sigma_{ij} \psi_n(i) = \lambda_n \psi_n(j) \quad \Leftrightarrow \quad \Sigma \psi = \lambda \psi$$

Wir müssen also lediglich Eigenwerte und Eigenvektoren von eine $N \times N$ Matrix bestimmen.

...falls noch Zeit ist Animation.

Bücher

- MICHEL LOÈVE, Probability Theory
- ISRAEL GOHBERG, Basic Classes of Linear Operators
- DIRK WERNER, Funktionalanalysis
- AMANN/ ESCHER, Analysis II

Papers

- A. ALEXANDERIAN, North Carolina State University, A brief note on the Karhunen-Loève expansion http://users.ices.utexas.edu/alen/articles/KL.pdf
- LIMIN WANG, LSE, Karhunen-Loeve Expansions and their Applications http://etheses.lse.ac.uk/2950/1/U615901.pdf

Quellen