Sustainable Smart City Assistant using IBM Granite

TEAM MEMBERS:

Krishnameera.M

Madhuvathani.I

Niranjana.T

Pooja.P

1. Introduction

Sustainable smart cities aim to combine technology, data, and intelligent systems to improve the quality of life, reduce environmental impact, and ensure efficient resource management. A Smart City Assistant powered by IBM Granite (Large Language Model) can act as a conversational AI that helps citizens, administrators, and planners make informed, sustainable choices.

2. Objectives

- To integrate Al-driven assistance for sustainable urban living.
- To leverage IBM Granite for natural language understanding and interaction.
- To promote eco-friendly practices and efficient city resource management.
- To provide real-time support for citizens and city authorities.

3. Role of IBM Granite

- ➤ IBM Granite is a family of foundation models optimized for enterprise use cases. Its strengths:
- Scalable AI: Handles large-scale city data and conversations.
- Natural Language Interaction: Citizens can interact in multiple languages.
- Customizable & Secure: Tailored for urban governance with enterprise-grade security.

Sustainability Insights: Supports predictive analysis for energy, transport, and waste.

4. Features of the Smart City Assistant

- Energy Management: Suggests energy-saving measures, monitors renewable energy usage.
- Sustainable Transport: Guides citizens to use public transport, EV charging stations, and bike-sharing.
- Waste Management: Provides schedules for recycling, waste segregation tips, and alerts.
- Water Conservation: Educates on water-saving practices, monitors leakages.
- Citizen Engagement: Responds to queries about city services, emergency alerts, and green initiatives.
- Data-Driven Decisions: Assists city planners with AI powered recommendations for sustainable growth.

5. Architecture

- > Front-End: Chatbot interface (mobile app, web, voice assistant).
- ➤ Core AI Engine: IBM Granite model handling natural language processing and reasoning.
- ➤ Data Integration: Real-time IoT sensors (traffic, energy, pollution, weather).
- Backend Systems: Cloud infrastructure with IBM watsonx, databases, and APIs for smart city services.

6. Benefits

- Reduces carbon footprint by promoting eco-friendly practices.
- Enhances citizen satisfaction with personalized assistance.
- Improves efficiency in energy, transport, and wasten management.
- Enables data-driven policies for city administration.
- Builds a resilient and sustainable urban ecosystem.

7. Use Case Scenarios

A citizen asks: "Where is the nearest EV charging station?" \rightarrow Assistant provides real-time directions.

A planner asks: "How can we reduce peak energy consumption?" → Assistant suggests demand-response strategies.

A resident asks: "What are today's recycling pickup schedules?" → Assistant responds instantly.

8. Future Scope

- > Integration with digital twins for city planning.
- ➤ Multilingual support for inclusivity.
- ➤ Al-driven sustainability reports for city councils.
- Expansion to climate change adaptation strategies
- Information and communication technology (ICT)

Information and communication technology includes an array of data-related technologies. The capture, storage, retrieval, processing, display, representation, presentation, organization, management, security, transfer and interchange of data and information.

Internet of Things (IoT)

The Internet of Things (IoT) refers to a network of physical devices, vehicles, appliances and other physical objects that are embedded with sensors, software and network connectivity.

9. Project images

```
!pip install transformers torch gradio PyPDF2 -q
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import PyPDF2
import io
# Load model and tokenizer
model_name = "ibm-granite/granite-3.2-2b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
   model_name,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    device_map="auto" if torch.cuda.is_available() else None
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
def generate_response(prompt, max_length=1024):
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
    if torch.cuda.is_available():
       inputs = {k: v.to(model.device) for k, v in inputs.items()}
```



```
† Create Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# Eco Assistant & Policy Analyzer")
    with gr.Tabs():
        with gr.TabItem("Eco Tips Generator"):
            with gr.Row():
                with gr.Column():
                    keywords_input = gr.Textbox(
                        label="Environmental Problem/Keywords",
                        placeholder="e.g., plastic, solar, water waste, energy saving...",
                        lines=3
                    generate_tips_btn = gr.Button("Generate Eco Tips")
                with gr.Column():
                    tips_output = gr.Textbox(label="Sustainable Living Tips", lines=15)
            generate_tips_btn.click(eco_tips_generator, inputs=keywords_input, outputs=tips_output)
        with gr.TabItem("Policy Summarization"):
            with gr.Row():
                with gr.Column():
                    pdf_upload = gr.File(label="Upload Policy PDF", file_types=[".pdf"])
                    policy_text_input = gr.Textbox(
                        label="Or paste policy text here",
                        placeholder="Paste policy document text...",
```


10. Conclusion

A Sustainable Smart City Assistant powered by IBM Granite combines the power of AI, IoT, and sustainable practices to create a smarter, greener, and more livable urban environment. By empowering citizens and city authorities, it contributes to achieving SDG goals and ensures a future-ready urban ecosystem.

THANK YOU