Importing "stock_market_data.csv"

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA

# Load the dataset
data = pd.read_csv('stock_market_data.csv')

# Preview the data
print("Original Data:")
data.head()
```

→ Original Data:

	Date	0pen	High	Low	Close	Volume	Ticker	Daily_Change	PercentageChange	
0	2020-01-02 00:00:00-05:00	71.721026	72.776606	71.466820	72.716080	135480400	AAPL	0.995053	1.387394	11.
1	2020-01-03 00:00:00-05:00	71.941328	72.771745	71.783962	72.009117	146322800	AAPL	0.067789	0.094228	
2	2020-01-06 00:00:00-05:00	71.127873	72.621654	70.876083	72.582916	118387200	AAPL	1.455043	2.045672	
3	2020-01-07 00:00:00-05:00	72.592601	72.849231	72.021238	72.241554	108872000	AAPL	-0.351047	-0.483585	
4	2020-01-08 00:00:00-05:00	71.943751	73.706271	71.943751	73.403641	132079200	AAPL	1.459889	2.029209	

Next steps: Generate code with data View recommended plots New interactive sheet

data.info()

```
cclass 'pandas.core.frame.DataFrame'>
RangeIndex: 12770 entries, 0 to 12769
Data columns (total 9 columns):
# Column Non-Null Count Dtype
-----
0 Date 12770 non-null object
1 Open 12770 non-null float60
```

 1
 Open
 12770 non-null
 float64

 2
 High
 12770 non-null
 float64

 3
 Low
 12770 non-null
 float64

 4
 Close
 12770 non-null
 float64

 5
 Volume
 12770 non-null
 int64

 6
 Ticker
 12770 non-null
 object

 7
 Daily_Change
 12770 non-null
 float64

 8
 PercentageChange
 12770 non-null
 float64

dtypes: float64(6), int64(1), object(2)

memory usage: 898.0+ KB

data.describe()

		0pen	High	Low	Close	Volume	Daily_Change	PercentageChange
	count	12770.000000	12770.000000	12770.000000	12770.000000	1.277000e+04	12770.000000	12770.000000
	mean	204.904713	207.872366	201.892925	204.928753	8.944684e+07	0.024039	0.051338
	std	144.454432	146.183162	142.646392	144.448858	1.415215e+08	4.759927	2.203755
	min	4.984596	5.229715	4.500834	4.892426	1.144000e+06	-50.033356	-15.206961
	25%	114.588469	116.556723	112.730003	114.270868	1.872388e+07	-1.740005	-1.107405
	50%	170.933771	173.146500	168.683550	171.000000	4.078850e+07	0.050003	0.050615
	75%	251.811650	255.319725	248.242954	251.953011	8.537245e+07	1.872762	1.206521
	max	998.030029	999.000000	970.010010	984.859985	1.543911e+09	55.030029	15.780256

data

	Date	0pen	High	Low	Close	Volume	Ticker	Daily_Change	PercentageChange	Profit_Category
0	2020-01- 02 00:00:00- 05:00	71.721026	72.776606	71.466820	72.716080	135480400	AAPL	0.995053	1.387394	Moderate Profit
1	2020-01- 03 00:00:00- 05:00	71.941328	72.771745	71.783962	72.009117	146322800	AAPL	0.067789	0.094228	Moderate Profit
2	2020-01- 06 00:00:00- 05:00	71.127873	72.621654	70.876083	72.582916	118387200	AAPL	1.455043	2.045672	Moderate Profit
3	2020-01- 07 00:00:00- 05:00	72.592601	72.849231	72.021238	72.241554	108872000	AAPL	-0.351047	-0.483585	Loss
4	2020-01- 08	71.943751	73.706271	71.943751	73.403641	132079200	AAPL	1.459889	2.029209	Moderate Profit

Keep only numeric columns numeric_data = data.select_dtypes(include=[np.number])

print("Numeric Data:") numeric_data

Numeric Data:

	Open	High	Low	Close	Volume	Daily_Change	PercentageChange	
0	71.721026	72.776606	71.466820	72.716080	135480400	0.995053	1.387394	11.
1	71.941328	72.771745	71.783962	72.009117	146322800	0.067789	0.094228	+/
2	71.127873	72.621654	70.876083	72.582916	118387200	1.455043	2.045672	
3	72.592601	72.849231	72.021238	72.241554	108872000	-0.351047	-0.483585	
4	71.943751	73.706271	71.943751	73.403641	132079200	1.459889	2.029209	
12765	176.000000	180.429993	174.369995	176.059998	9304200	0.059998	0.034090	
12766	175.550003	178.179993	174.399994	175.160004	7148600	-0.389999	-0.222159	
12767	181.309998	188.479996	174.020004	177.779999	22768900	-3.529999	-1.946941	
12768	179.130005	182.550003	170.649994	173.660004	12263500	-5.470001	-3.053649	
12769	174.589996	179.940002	173.720001	179.529999	6996300	4.940002	2.829488	
12770 rc	ws × 7 colum	ns						

Next steps: (Generate code with numeric_data) (View recommended plots) (New interactive sheet

Normalize the data using StandardScaler scaler = StandardScaler()

scaled_data = scaler.fit_transform(numeric_data)

pd.DataFrame(scaled_data, columns=numeric_data.columns).head()

*		0pen	High	Low	Close	Volume	Daily_Change	PercentageChange	
	0	-0.922013	-0.924190	-0.914367	-0.915326	0.325289	0.204006	0.606287	11.
	1	-0.920488	-0.924223	-0.912144	-0.920221	0.401905	0.009192	0.019463	
	2	-0.926120	-0.925250	-0.918509	-0.916248	0.204502	0.300647	0.905006	
	3	-0.915979	-0.923693	-0.910481	-0.918612	0.137265	-0.078804	-0.242742	
	4	-0.920471	-0.917830	-0.911024	-0.910566	0.301255	0.301666	0.897536	
	1								

PCA with 2 components pca_2d = PCA(n_components=2)

data_pca_2d = pca_2d.fit_transform(scaled_data)

explained_var_2d = pca_2d.explained_variance_ratio_.sum() * 100

```
print(f"2D PCA retains {explained_var_2d:.2f}% of the variance")

# Plot 2D projection
plt.figure(figsize=(8, 6))
plt.scatter(data_pca_2d[:, 0], data_pca_2d[:, 1], alpha=0.5,c='blue')
plt.title('2D PCA Projection')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.grid(True)
plt.show()
```

 \Rightarrow 2D PCA retains 86.56% of the variance


```
# PCA with 3 components
pca_3d = PCA(n_components=3)
data_pca_3d = pca_3d.fit_transform(scaled_data)
explained_var_3d = pca_3d.explained_variance_ratio_.sum() * 100
print(f"3D PCA retains {explained_var_3d:.2f}% of the variance")

# Plot 3D projection
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
ax.scatter(data_pca_3d[:, 0], data_pca_3d[:, 1], data_pca_3d[:, 2], alpha=0.5,c='blue')
ax.set_title('3D PCA Projection')
ax.set_xlabel('PC 1')
ax.set_ylabel('PC 2')
ax.set_zlabel('PC 3')
plt.show()
```

⇒ 3D PCA retains 97.19% of the variance

3D PCA Projection


```
# Calculate the number of components to retain at least 95% variance
pca_full = PCA().fit(scaled_data)
# Explained variance ratio
explained_variance_ratio = pca_full.explained_variance_ratio_
\# Cumulative explained variance
cumulative_variance = np.cumsum(explained_variance_ratio)
# Plot explained variance
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.bar(range(1, len(explained_variance_ratio) + 1), explained_variance_ratio)
plt.xlabel('Principal Component')
plt.ylabel('Explained Variance Ratio')
plt.title('Explained Variance Ratio per Principal Component')
# Plot cumulative explained variance
plt.subplot(1, 2, 2)
\verb|plt.plot(range(1, len(cumulative\_variance) + 1), cumulative\_variance, marker='o')|\\
plt.xlabel('Number of Components')
plt.ylabel('Cumulative Explained Variance')
plt.title('Cumulative Explained Variance')
plt.axhline(y=0.95,\ color='r',\ linestyle='--',\ label='95\%\ Threshold')\ \ \#\ Add\ 95\%\ threshold\ linestyle='--',\ label='95\%\ Threshold')
plt.legend()
plt.tight_layout()
plt.show()
```



```
eigenvalues = pca_full.explained_variance_
# Get the top three eigenvalues
top_three_eigenvalues = eigenvalues[:3]
# Print the top three eigenvalues
print("Top three eigenvalues:", top_three_eigenvalues)

Top three eigenvalues: [4.25575302 1.80369308 0.74410938]
```

Clustering

```
#Reduced 3D pca data
df_cluster = data_pca_3d
# Finding the optimal K using the silhouette method
silhouette_scores = {}
for k in range(2, 6):
    kmeans = KMeans(n_clusters=k, random_state=42, n_init=10)
    cluster_labels = kmeans.fit_predict(df_cluster)
    silhouette_scores[k] = silhouette_score(df_cluster, cluster_labels)
silhouette_scores
→ {2: 0.47887121053535353,
       3: 0.44109592046218216,
       4: 0.3057366879085549,
       5: 0.3319351912529001}
optimal_k = max(silhouette_scores, key=silhouette_scores.get)
print(f"Optimal number of clusters for KMeans: {optimal_k}")
# Plot the Silhouette Scores for different K values
plt.figure(figsize=(8, 5))
plt.plot(list(silhouette_scores.keys()), list(silhouette_scores.values()), marker='o', linestyle='-')
plt.xlabel("Number of Clusters (K)")
plt.ylabel("Silhouette Score")
\verb|plt.title("Silhouette Scores for Different K in K-Means")|\\
plt.xticks(list(silhouette_scores.keys()))
plt.grid(True)
plt.show()
```

Optimal number of clusters for KMeans: 2

0.475 0.450 0.425 0.375 0.350 0.300 2 3 Number of Clusters (K)

```
# Applying KMeans with optimal K
kmeans_final = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
df_kmeans_labels = kmeans_final.fit_predict(df_cluster)
# Get the centroids in the PCA-reduced space
centroids_pca_space = kmeans_final.cluster_centers_
# Use pca_3d for inverse_transform
centroids_original_space = pca_3d.inverse_transform(centroids_pca_space)
# Print the centroids in the PCA-reduced space
print("Centroids in PCA-reduced space:")
print(centroids_pca_space)
 Centroids in PCA-reduced space:
             [[-0.80013832 -0.00668016 -0.0975436 ]
               [ 3.30833228  0.02762048  0.40331358]]
print("\nCentroids in original feature space:")
print(centroids_original_space)
             Centroids in original feature space:
             [[-3.98369022e-01 -3.98467105e-01 -3.98311706e-01 -3.98398159e-01
                    1.22181395e-01 -4.17759802e-04 2.24254615e-03]
               from sklearn.cluster import KMeans
# Applying KMeans with optimal K
kmeans_final = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
df_kmeans_labels = kmeans_final.fit_predict(df_cluster)
# Get centroids
centroids = kmeans_final.cluster_centers_
# Plot KMeans Clustering in 2D
plt.figure(figsize=(8, 6))
plt.scatter(df_cluster[:, 0], df_cluster[:, 1], c=df_kmeans_labels, cmap='viridis', alpha=0.7)
\verb|plt.scatter| (centroids[:, 0], centroids[:, 1], marker='x', s=200, c='red', label='Centroids') # Plot centroids[:, 1], marker='x', s=200, c='red', label='Centroids') # Plot centroids[:, 1], marker='x', s=200, c='red', label='Centroids[:, 1], marker='x', s=200, c='red', label='x', s=200, c='red', s=200, c='red', label='x', s=200, c='red', label='x', s=200, c='red', label='x', s=200, c='red
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.title(f"K-Means \ Clustering \ (K=\{optimal\_k\})")
plt.legend() # Show legend to identify centroids
plt.show()
```


✓ DBSCAN

 $\overline{\Rightarrow}$

```
from sklearn.cluster import DBSCAN

# Initialize and fit DBSCAN
dbscan = DBSCAN(eps=0.5, min_samples=5)
df_dbscan_labels = dbscan.fit_predict(df_cluster)

plt.figure(figsize=(8, 6))
plt.scatter(df_cluster[:, 0], df_cluster[:, 1], c=df_dbscan_labels, cmap='coolwarm', alpha=0.7)
plt.xlabel("PCA Component 1")
plt.ylabel("PCA Component 2")
plt.title("DBSCAN Clustering")
plt.show()
```



```
import matplotlib.pyplot as plt
import scipy.cluster.hierarchy as sch
import numpy as np
# Mapping of numerical labels to stock tickers
ticker_mapping = {
   1: 'AAPL', 2: 'MSFT', 3: 'GOOGL', 4: 'TSLA', 5: 'AMZN',
    6: 'NVDA', 7: 'META', 8: 'NFLX', 9: 'AMD', 10: 'BA'
# Generate dummy data for clustering
np.random.seed(42)
data = np.random.rand(len(ticker_mapping), 2) # Assume 2D feature space
linkage_matrix = sch.linkage(data, method='ward')
\# Plot dendrogram with meaningful labels
plt.figure(figsize=(12, 6))
dendro = sch.dendrogram(linkage_matrix, labels=[ticker_mapping.get(i+1, i+1) for i in range(len(ticker_mapping))], leaf_rotation=90)
plt.title("Hierarchical Clustering Dendrogram with Stock Names")
plt.xlabel("Stock Names")
plt.ylabel("Distance")
plt.show()
```


Preparing data (converting) for ARM

```
data = pd.read_csv('stock_market_data.csv')
data
```

12:02 AM					ι	Jnsupervise	ed.ipynb - C	Colab			
		Dat	e Open	High	Lov	v Clos	se Volu	ume Ticker	Daily_Change	PercentageChange	
0	2020-01-02	2 00:00:00-05:0	0 71.721026	72.776606	71.466820	72.71608	30 1354804	100 AAPL	0.995053	1.387394	11.
1	2020-01-03	3 00:00:00-05:0	0 71.941328	72.771745	71.783962	72.00911	17 1463228	300 AAPL	0.067789	0.094228	+//
2	2020-01-06	8 00:00:00-05:0	0 71.127873	72.621654	70.876083	3 72.58291	16 1183872	200 AAPL	1.455043	2.045672	
3	2020-01-07	7 00:00:00-05:0	0 72.592601	72.849231	72.021238	72.24155	1088720	000 AAPL	-0.351047	-0.483585	
4	2020-01-08	3 00:00:00-05:0	0 71.943751	73.706271	71.94375	73.40364	1320792	200 AAPL	1.459889	2.029209	
12765	2025-01-24	1 00:00:00-05:0	0 176.000000	180.429993	174.369995	176.05999	98 93042	200 BA	0.059998	0.034090	
12766	2025-01-27	7 00:00:00-05:0	0 175.550003	178.179993	174.399994	175.16000	71486	800 BA	-0.389999	-0.222159	
12767	2025-01-28	3 00:00:00-05:0	0 181.309998	188.479996	174.020004	177.77999	99 227689	900 BA	-3.529999	-1.946941	
12768	2025-01-29	9 00:00:00-05:0	0 179.130005	182.550003	170.649994	173.66000)4 122635	500 BA	-5.470001	-3.053649	
12769	2025-01-30	00:00:00-05:0	0 174.589996	179.940002	173.72000	179.52999	99 69963	300 BA	4.940002	2.829488	
12770 rc	ws × 9 colu	mns									
xt steps:		ŀ	data['Daily_Cha pins=[-float('i abels=['Big Dr	nf'), -2, 0, 2	, float('inf						
	Date	0pen	High	Low	Close	Volume	Ticker Da	ily_Change	PercentageCha	nge Price_Change_(Categ
	2020-01-										
0	02 00:00:00- 05:00	71.721026	72.776606	71.466820	72.716080 1	35480400	AAPL	0.995053	1.387	394 S	mall l
1	2020-01- 03 00:00:00- 05:00	71.941328	72.771745	71.783962	72.009117 1	46322800	AAPL	0.067789	0.094	228 S	Small
	2020-01-	74 407070	70.004054	70.070000	70 500040		AADI	4 455040	0.045		· II

71.127873 72.621654 70.876083 72.582916 118387200 1.455043 2.045672 Small Rise 00:00:00-05:00 2020-01-AAPL -0.351047 -0.483585 Small Drop 3 72.592601 72.849231 72.021238 72.241554 108872000 00:00:00-05:00 2020-01-

Next steps: Generate code with data

• View recommended plots New interactive sheet

data

	Date	0pen	High	Low	Close	Volume	Ticker	Daily_Change	PercentageChange	Price_Change_Categor
0	2020-01- 02 00:00:00- 05:00	71.721026	72.776606	71.466820	72.716080	135480400	AAPL	0.995053	1.387394	Small Ris
1	2020-01- 03 00:00:00- 05:00	71.941328	72.771745	71.783962	72.009117	146322800	AAPL	0.067789	0.094228	Small Ri
2	2020-01- 06 00:00:00- 05:00	71.127873	72.621654	70.876083	72.582916	118387200	AAPL	1.455043	2.045672	Small Ri
3	2020-01- 07 00:00:00- 05:00	72.592601	72.849231	72.021238	72.241554	108872000	AAPL	-0.351047	-0.483585	Small Dr
	2020-01-									
4										
a['Trend_St	rrength'] =	bins=[, -5, -2, 0, 2			l Gain',	'Moderate Gain',	'Strong Gain'])	
	Date	0pen	High	Low	Close	Volume	Ticker	Daily_Change	PercentageChange	Price_Change_Catego
0	2020-01- 02 00:00:00- 05:00	71.721026	72.776606	71.466820	72.716080	135480400	AAPL	0.995053	1.387394	Small Ri
1	2020-01- 03 00:00:00- 05:00	71.941328	72.771745	71.783962	72.009117	146322800	AAPL	0.067789	0.094228	Small Ri
2	2020-01- 06 00:00:00- 05:00	71.127873	72.621654	70.876083	72.582916	118387200	AAPL	1.455043	2.045672	Small Ri
3	2020-01- 07 00:00:00- 05:00	72.592601	72.849231	72.021238	72.241554	108872000	AAPL	-0.351047	-0.483585	Small Dr
4	2020-01- 08 00:00:00- 05:00	71.943751	73.706271	71.943751	73.403641	132079200	AAPL	1.459889	2.029209	Small Ri
12765	2025-01- 24 00:00:00- 05:00	176.000000	180.429993	174.369995	176.059998	9304200	ВА	0.059998	0.034090	Small Ri
12766	2025-01- 27 00:00:00- 05:00	175.550003	178.179993	174.399994	175.160004	7148600	ВА	-0.389999	-0.222159	Small Dr
12767	2025-01- 28 00:00:00- 05:00	181.309998	188.479996	174.020004	177.779999	22768900	ВА	-3.529999	-1.946941	Big Dr
4										

 $https://colab.research.google.com/drive/1GzymmUc99zxUyVldrHX_YEc3QubkAlxh\#scrollTo=k_YkHVtZFxKY\&printMode=true$

\overline{z}		Date	Open	High	Low	Close	Volume	Ticker	Daily_Change	PercentageChange	Price_Change_Category
_	0	2020-01- 02 00:00:00- 05:00	71.721026	72.776606	71.466820	72.716080	135480400	AAPL	0.995053	1.387394	Small Rise
	1	2020-01- 03 00:00:00- 05:00	71.941328	72.771745	71.783962	72.009117	146322800	AAPL	0.067789	0.094228	Small Rise
	2	2020-01- 06 00:00:00- 05:00	71.127873	72.621654	70.876083	72.582916	118387200	AAPL	1.455043	2.045672	Small Rise
	3	2020-01- 07 00:00:00- 05:00	72.592601	72.849231	72.021238	72.241554	108872000	AAPL	-0.351047	-0.483585	Small Drop
	4	2020-01- 08 00:00:00- 05:00	71.943751	73.706271	71.943751	73.403641	132079200	AAPL	1.459889	2.029209	Small Rise
1	2765	2025-01- 24 00:00:00- 05:00	176.000000	180.429993	174.369995	176.059998	9304200	ВА	0.059998	0.034090	Small Rise