Pizzaseminar zur Kategorientheorie

Lösung zum 2. Übungsblatt

Aufgabe 1:

a) Zu zeigen: Es gibt Morphismen $X \to X$ und $X \to 1$, mit denen X ein Produkt von X und 1 ist.

Wähle als Morphismen $\mathrm{id}_X:X\to X$ und den (da 1 terminales Objekt ist) eindeutig bestimmten Morphismus $!:X\to 1$. Nun muss für jedes Möchtegern-Produkt P mit den Morphismen $f:P\to X$ und $g:P\to 1$ genau ein Morphismus $h:P\to X$ existieren, sodass folgendes Diagramm kommutiert:

Existenz von h:

Setze h := f. Es gilt also $\mathrm{id}_X \circ h = h = f$. (Das linke Dreieck kommutiert.) Und da $! \circ h$ und g zwei Morphismen $P \to 1$ sind (und 1 terminal ist), gilt auch $! \circ h = g$. (Das rechte Dreieck kommutiert.)

Eindeutigkeit von h:

Für jedes $h: P \to X$, das das Diagramm kommutieren lässt, gilt: $\mathrm{id}_X \circ h = f$. Es folgt also sofort h = f.

b) Die duale Aussage lautet:

Besitzt C ein initiales Objekt 0, so gilt

$$X \coprod 0 \cong X$$
.

(Xkann mit den Morphismen $\mathrm{id}_X:X\to X$ und $!:0\to X$ als Koprodukt von X und 0 dienen.)