Essays in Reputation Games

Gökmen Öz

June 1, 2023

Outline

- ► Chapter 2: A Dynamic Setup
- ► Chapter 3: Empirical Research
- ► Chapter 1: A Static Setup

Chapter 2: A Dynamic Setup Sustainable Reputations With A Biased Review Platform

Motivation

► A long-run player and a sequence of short-run players play the following game repeatedly:

► Highest ever payoff to P1 is 1.5.

Max/Sup payoff to P1	no censoring	censoring
no reputation effect	1	1
reputation effect	1	1.5

- Previous literature: Censoring helps the normal type P1 in the incomplete information game by yielding almost a payoff of 1.5.
- ▶ This paper: To show: $\lambda>0$ is a prior belief that P1 is committed to $H\Rightarrow\sup(\text{payoff to normal P1})=\frac{1.5-\lambda}{1-\lambda}>1.5$

► Why $\frac{1.5-\lambda}{1-\lambda}$?

Motivation

▶ The best ever average payoff to P1 is 1.5 and in such equilibria P2 always buys:

$$\lambda + (1 - \lambda)\bar{V} = 1.5.$$

which yields
$$\bar{V} = \frac{1.5 - \lambda}{1 - \lambda}$$
.

- ► There are 2 actions available for each player, $a_1 \in A_1 = \{H, L\}$ and $a_2 \in A_2 = \{B, N\}$.
- Prior to time t=0, nature chooses a type that is either commitment or normal for the long-run player: $w \in \Omega = \{c, n\}.$
- ▶ Let $\lambda = 1/3$ denote the probability that the long-run player is a commitment type ($\bar{V} = 1.75$).
- ightharpoonup Commitment type always takes action H.

- ▶ Short-run players do not observe the past play and stage-game payoffs, but observe a review score $s \in S = \{1, ..., K\}$ announced by a review platform.
- A review platform R observes past actions and announces a public review score s from a finite set $S = \{1, ..., K\}$:

$$\blacksquare R = (S, \Delta(S), P : A_1^{\infty} \times S^{\infty} \to S).$$

► Players move simultaneously.

Theorem

To show:

```
For any \lambda>0 and u<\bar{V}; there exists a \bar{K} such that for all K>\bar{K}, there exists a \bar{\delta} such that for all \delta>\bar{\delta}, there is an R and a PBE where the payoff to the normal type of the long-run player is at least u after every history.
```

Step 1: Constructing a transition rule $P(a_1, s)$.

p_d, p_r, p_u	s=1	$s \in \{2,, K-1\}$	s = K
$a_1 = H$	NA, 5/12, 7/12	1/6, 1/6, 4/6	1/6, 5/6, NA
$a_1 = L$	NA, 5/12, 7/12	1/6, 5/6, 0	1/6, 5/6, NA

Step 2: Equilibrium Strategies

- ▶ Let $\sigma_1(s)$ denote the probability that P1 plays H at score s.
- ▶ Let $\sigma_2(s)$ denote the probability that P2 plays B at score s.
- ▶ Punishment phase (s = 1): $(\sigma_1(1), \sigma_2(1)) = (0, 0)$.
- ► Reputation building phase $(s \in \{2, ..., K-1\})$: $(\sigma_1(s), \sigma_2(s)) = (\frac{0.5 \lambda(s)}{1 \lambda(s)}, 1)$ where

$$\lambda(s) = \frac{\lambda \pi_c(s)}{\lambda \pi_c(s) + (1 - \lambda)\pi_n(s)}$$

where π_c and π_n are the steady-states induced by P, σ_1 .

► Reputation exploitation phase (s = K): $(\sigma_1(K), \sigma_2(K)) = (0, 1)$.

Sustainable Reputations With A Biased Review Platform Step 3: Upward drift

▶ Minimizing $\pi_n(1)$:

$$\pi_n(s+1)p_d = \pi_n(s)p_u$$

$$p_d = \frac{1}{6}$$

$$p_u = \frac{2}{3}\sigma_1(s)$$

$$\Rightarrow \pi_n(s+1)\frac{1}{6} = \pi_n(s)\frac{2}{3}\sigma_1(s)$$

$$\sigma_1(s) > 0.25 \Rightarrow \pi_n(s+1) > \pi_n(s)$$

Step 4: Perturbing P for $\delta < 1$

$$\begin{split} V(s) &= 1 - \delta + \delta \Big[\frac{2}{3} V(s+1) + \frac{1}{6} V(s) + \frac{1}{6} V(s-1) \Big] \\ &= (1 - \delta) 2 + \delta \Big[\frac{5}{6} V(s) + \frac{1}{6} V(s-1) \Big] \end{split}$$

implies $V(s+1)-V(s)=\frac{1.5(1-\delta)}{\delta}$ and V(s)=1.75, that is a contradiction.

Perturb P as

$$p_d(s) = p_d(s) + \epsilon_s$$
$$p_r(s) = p_r(s) - \epsilon_s$$
$$\gamma = \gamma - \epsilon_1$$

where
$$\epsilon_s = \frac{(K-s)(1-\delta)}{\delta}$$
.

Step 4: Perturbing P for $\delta < 1$

Plugging in the perturbed transition probabilities, we find:

$$V(s+1) - V(s) = 1.5 \frac{1 - \delta}{\delta}$$

$$\Rightarrow V(s) = 1.75 - \frac{1.5(K - s)(1 - \delta)}{\delta}$$

Step 5: Checking if $(\sigma_1(s), \sigma_2(s))$ are optimal.

- ▶ Given V(s), $\sigma_1(s)$ is optimal.
- ▶ Given $\sigma_1(s)$ and $\lambda(s)$, $\sigma_2(s)$ is optimal.
- ► To check: $\lambda(K) = 0.5$
 - The general representation of P is

$$p_u(H) = \frac{1}{\eta} \quad p_u(L) = 0 \quad p_d(s) = \frac{\eta - 1}{2\eta} + \epsilon_s$$

- \blacksquare $\eta > 1$ for P to be well-defined.
- \blacksquare $\eta < 2$ for the upward drift to exist.
- Consider $\eta = 1$, $\eta = 2$ and use Intermediate Value Theorem.

Sustainable Reputations With A Biased Review Platform Step 6: Equilibrium properties.

 \triangleright An asymptotic closed-form solution for η can be found:

$$\lim V(s,\eta) = \bar{V}$$

$$\lim \left\{ 2 - 0.5(\eta - 1) - \frac{1.5(K - s)(1 - \delta)}{\delta} \right\} = 1.75$$

$$2 - 0.5(\eta - 1) = 1.75$$

Step 6: Equilibrium properties.

$$\blacktriangleright \ \frac{\pi_c(K)}{\pi_c(K-1)} \approx 4, \ \frac{\pi_n(K)}{\pi_n(K-1)} \approx 4\sigma_1(K-1) \ \text{and} \ \frac{\pi_c(K)}{\pi_n(K)} = 2.$$

ightharpoonup The posterior at any score s is

$$\lambda(s) \approx 0.5^{K-s+1}$$

► $\arg\min_{s \in \{2,...,K-1\}} \sigma_1(s) = K - 1$:

$$\sigma_1(K-1) = \frac{0.5 - \lambda(K-1)}{1 - \lambda(K-1)}$$

$$\approx \frac{0.5 - 0.25}{1 - 0.25}$$

$$\approx \frac{1}{3} > 0.25$$

Sustainable Reputations With A Biased Review Platform Step 7: Initial periods.

- ▶ We have constructed a review platform and found an equilibrium strategy profile for the long-run, that is if the game had started at $-\infty$.
- ► However, the beliefs will never hit the steady-states.
- ▶ Therefore, our equilibrium profile $(\sigma_1(s), \sigma_2(s))$ will not work.

Sustainable Reputations With A Biased Review Platform Step 7: Initial periods.

► Choose $\pi^0(K-1) = 1$:

$$\lambda^{1}(K) = \frac{\lambda p_{u}(H)}{\lambda p_{u}(H) + (1 - \lambda)\sigma_{1}(K - 1)p_{u}(H)} = 3/5 > 0.5$$

▶ Choose a large N such that for t < N:

$$\sigma_1^t(s) = 0$$

$$\sigma_2^t(s) = \begin{cases} 1 & if \quad s = K \\ 0 & o.w. \end{cases}$$

Step 7: Initial periods

▶ P is as if P1 is playing $\sigma_1(s)$ for t < N:

$$p_u(L, s) = \frac{2}{3}\sigma_1(s)$$

$$p_r(L, s) = \frac{5}{6} - \frac{2}{3}\sigma_1(s) - \epsilon_s$$

$$p_d(L, s) = \frac{1}{6} + \epsilon_s$$

▶ Time-dependent strategies for $t \ge N$:

$$\sigma_1^t(s) = \frac{0.5 - \lambda^t(s)}{1 - \lambda^t(s)}$$

for $s \in \{2, ..., K-1\}$.

Step 8: Transition with a jump

▶ In fact, P still does not work:

$$V(s+1) - V(s) = 1.5 \frac{1-\delta}{\delta}$$

$$V(1) = \delta \left[\gamma \left(V(1) + 1.5 \frac{1-\delta}{\delta}\right) + (1-\gamma)V(1)\right]$$

$$V(1) = 1.5\gamma << 1.75$$

Step 8: Transition with a jump

- ightharpoonup Given P, the strategies are not optimal.
- Our solution: jump from score 1 to 3:

$$V(1) = 3\gamma \approx 1.75$$

► The key: the effect of the jump on the steady-states is negligible when *K* is large relative to the size of the jump.

Chapter 3: Empirical Research Evidence From Yelp Reviews

- Existing study on fake reviews relies on small data.
- ► The result is simply that better reputation leads to less incentive to produce fake reviews.
- ► This rationale ignores the actions of business owners (reputation exploitation).
- ► The goal of this study is to conduct an empirical analysis on the incentive to produce fake reviews with a scraped data set that is larger in both depth and breadth.

- ▶ 581407 uncensored, 81588 censored reviews.
- ► Some of the features are review length, whether reviewer has a profile picture, number of reviewer's friends, star-rating, average star-rating given by reviewer so far, the duration reviewer has been a member, etc.

Method

$$y_{it}^* = X_{it}\beta + b_i + \tau_t + \epsilon_{it} \tag{1}$$

 y_{it}^* is the number of fake reviews, X_{it} is a covariate matrix, b_i is business effect, and τ_t is time effect.

 y_{it}^* is not observable.

Method

Assumption:

- $ightharpoonup Pr[Filtered|\neg Fake] = a_0$
- $ightharpoonup Pr[Filtered|Fake] = a_0 + a_1$

Then,

$$y_{itk} = \alpha_0 (1 - y_{itk}^*) + (\alpha_0 + \alpha_1) y_{itk}^*$$

$$\sum_{k=1}^{n_{it}} y_{itk} = \sum_{k=1}^{n_{it}} \left[\alpha_0 (1 - y_{itk}^*) + (\alpha_0 + \alpha_1) y_{itk}^* \right]$$

$$y_{it} = \alpha_0 n_{it} + \alpha_1 y_{it}^*$$
(2)

Method

Substituting (1) to (2):

$$y_{it} = \alpha_0 n_{it} + \alpha_1 (X_{it}\beta + b_i + \tau_t + \epsilon_{it})$$
(3)

Within estimator:

$$y_{it} + \bar{y} - \bar{y}_t - \bar{y}_i = \alpha_0 (n_{it} + \bar{n} - \bar{n}_t - \bar{n}_i)$$

$$+ \alpha_1 \beta (X_{it} + \bar{X} - \bar{X}_t - \bar{X}_i)$$

$$+ \epsilon_{it} + \bar{\epsilon} - \bar{\epsilon}_t - \bar{\epsilon}_i$$

$$\ddot{y}_{it} = \alpha_0 \ddot{n}_{it} + \alpha_1 \beta \ddot{X}_{it} + \ddot{\epsilon}_{it}$$
(4)

The effects we see:

Results

- ► Higher rating ⇒ reputation exploitation ⇒ fake reviews next period
- ► Fake reviews (low effort) ⇒ lower rating

Results

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Le Wed, ns:	stars (t+1) OLS east Squares 01 Jan 2020 10:38:52 33672 33666 6 nonrobust	Adj. R-so F-statist Prob (F-s Log-Like	quàred (unc tic: statistic):		1.477	0.00 e+05 e+05
========	coef	std err	t	P> t	[0.025	0.975]	
Review Length Review Count	0.4706 2.444e-06	0.179 6.25e-07 1.82e-05 1.51e-05	2.628 3.912 -104.544	0.009 0.000 0.000 0.000	0.120 1.22e-06 -0.002 -0.000 -0.089	0.822 3.67e-06 -0.002 -0.000 -0.044	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		30553.751 0.000 3.548 92.756	Durbin-Wa Jarque-Ba Prob(JB) Cond. No	era (JB): :	1137	0.057	

Results

OLS Regression Results							
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Le Wed,	Real 5-stars OLS Least Squares Wed, 01 Jan 2020 10:41:24 : 33004 32998		R-squared (uncentered): Adj. R-squared (uncentered): F-statistic:		5	
	coef	std err	t	P> t	[0.025	0.975]	
Total Reviews Fake 5-stars Review Length Friends Review Count Photo	-0.0347 0.0001 6.698e-06	0.005 2.65e-05 4.78e-07	-7.303 3.984 14.010	0.000 0.000 0.000 0.000	-0.044 5.37e-05 5.76e-06	-0.025 0.000 7.63e-06 -0.000	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		9230.628 0.000 -0.429 24.742	Durbin-Wa Jarque-Be Prob(JB): Cond. No.	ra (JB):	65.	1.537 1068.962 0.00 1.34e+04	

Chapter 1: A Static Setup Media Bias Out Of The Blue

Motivation

- ► Previous literature: Media bias originates either from supply or demand, i.e. exogenous asymmetry.
- ► This paper: Media bias can emerge out of the blue.
- How? I define bias over the difference between the numbers of journalists from two opposite political camps.

Environment

- ► A continuum of voters and a media outlet.
- ▶ A binary state of the world: $s \in S = \{L, R\}$.
- ▶ A voter has a belief θ on S where $\theta \sim U[0,1]$.
- ▶ A public signal $\eta \in S$: $Prob(\eta = L|S = L) = Prob(\eta = R|S = R) = \pi \in [0.5, 1].$
- ▶ 2 types of information source (e.g. journalist):
 - \blacksquare One that is strong when S=L: $Prob(\mu=L|S=L)=1$.
 - The other: $Prob(\mu = R|S = R) = 1$.

Actions and Payoffs

A voter takes action α and receives the following payoff:

$$u(\alpha, S) = \begin{cases} 1 \text{ if } \alpha = S \\ 0 \text{ otherwise} \end{cases}$$

Expected payoff with respect to θ without media:

Actions and Payoffs

The media outlet chooses the probabilities of reaching the left-wing and right-wing information sources, σ_L and σ_R , given a budget constraint.

Payoffs and Actions

► If the media report conflicts with the public signal, then the true state has been identified by the media report.

Media	Public	Action
L	R	L
R	L	R
R	R	?
L	L	?

Results

Suppose $\sigma_R > \sigma_L$.

- ightharpoonup The media profit Π is the sum of the dark areas.
- ► The optimal is $(0, \sigma)$ or $(\sigma, 0)$ where $\sigma > 0$ for any non-convex and a set of convex cost functions.

Extension

2 identical media outlets:

Media 1	Media 2	Public	Action
R	L	R	L
R	L	L	R
R	R	L	R
L	R	L	R
L	R	R	L
L	L	R	L
R	R	R	?
L	L	L	?

The optimal is $(\sigma,0),(0,\sigma)$ where σ is bound by the common budget constraint.