ZAD 1.

moze potem

ZAD 2.

$$f \left[\left. x_{0} \,,\, x_{1} \,,\, \ldots \,,\, x_{k} \, \right] \,=\, \frac{f \left[\left. x_{1} \,,\, x_{2} \,,\, \ldots \,,\, x_{k} \, \right] \,-\, f \left[\left. x_{0} \,,\, x_{1} \,,\, \ldots \,,\, x_{k-1} \, \right] \right.}{x_{k} \,-\, x_{0}}$$

DIVIDED DIFFERENCE

ZAD 4.

Х	-2	-1	0	1	2	3
p(x)	31	5	1	1	11	61

Bedziemy uzywac wzoru interpolacyjnego Newtona, czyli potrzebujemy roznicy dzielonej y: