1

DMRG calculations of π -conjugated oligomers within the Pariser-Parr-Pople model

Abstract

- 1 Introduction
- 2 Theory
- 3 Results and discussion

In this section we present the results of PPP-DMRG calculations for various π -conjugated oligomers. The DMRG-SCF calculations were done using the CHEMPS2 code developed by Wouters et~al.[18] These are compared with the FCI, QCI and MRSDCI energies wherever applicable.

3.1 Trans-polyacetylene (t-PA)

Polyene	State	QCI	FCI	DMRG
	$^{1}A_{g}1$	-12.458343	-12.458780	-12.458780
t-PA3	$^{3}B_{u}1$	-10.277544	-10.277544	-10.277544
	$^{1}B_{u}1$	-7.442250	-7.442250	-7.442250
	$^{1}A_{g}1$	-16.870505	-16.872655	-16.872655
t-PA4	$^{3}B_{u}1$	-14.961765	-14.963297	-14.963297
	$^{1}B_{u}1$	-12.344219	-12.344720	-12.344720
	$^{1}A_{g}1$	-21.282937	-21.288916	-21.288916
t-PA5	$^{3}B_{u}1$	-19.535982	-19.545397	-19.545397
	$^{1}B_{u}1$	-17.087380	-	-17.096594
	$^{1}A_{g}1$	-25.693448	-25.706021	-25.706021
t-PA6	$^{3}B_{u}1$	-24.044655	-24.070730	-24.070730
	$^{1}B_{u}1$	-21.833261	-	-21.893976
	$^{1}A_{g}1$	-30.101084		-30.33384
t-PA7	$^{3}B_{u}1$	-28.507653	-	-28.560342
	$^{1}B_{u}1$	-26.480342		-26.593011
	$^{1}A_{g}1$	-34.505365		-34.538917
t-PA8	$^{3}B_{u}1$	-32.936230	-	-33.015621
	$^{1}B_{u}1$	-31.039913		-31.205700
	$^{1}A_{g}1$	-38.906042		-38.949195
t-PA9	$^{3}B_{u}1$	-37.337582	_	-37.435080
	$^{1}B_{u}1$	-35.531428		-35.732269

Table 1: Calculated energies of t-PA singlet and triplet states using standard parameters $\,$

3.2 Polyacenes

Acene	State	QCI	FCI	DMRG
	$^{1}A_{q}1$	-21.231665	-21.245326	-21.245326
	$1A_q^g$	-16.778122	-16.879752	-16.879752
	$^{1}A_{q}^{3}$	-16.132909	-16.230828	-16.230828
	$^{1}B_{3u}1$	-17.973619	-18.027494	-18.027494
	$^{1}B_{3u}2$	-15.914066	-15.945570	-15.945570
	$^{1}B_{3u}3$	-15.494116	-15.578208	-15.578207
	$^{-1}B_{2u}1$	-16.725197	-16.731789	-16.733495
	$^{1}B_{2u}2$	-15.098515	-15.126994	-15.131767
	$^{1}B_{2u}3$	-14.552948	-14.685479	-14.689363
	$^{-1}B_{1g}1$	-16.399262	-16.468476	-16.468475
Acene - 2 (scr)	$^{1}B_{1g}^{2}$	-15.383603	-15.496246	-15.496246
	$^{1}B_{1g}3$	-14.852170	-14.879300	-14.879300
	$^{3}B_{3u}1$	-17.876041	-17.917925	-17.917925
	$^{3}B_{3u}2$	-16.442217	-16.462533	-16.462533
	$^{3}B_{3u}3$	-15.952453	-16.037961	-16.037961
	$^{3}B_{2u}1$	-19.118211	-19.132710	-19.140764
	$^{3}B_{2u}2$	-17.429214	-17.477969	-17.491411
	$^{3}B_{2u}3$	-15.625677	-15.689570	-15.696835
	$^{3}B_{1g}1$	-17.926667	-17.969360	-17.969360
	$^{3}B_{1g}2$	-16.366059	-16.454480	-16.454480
	$^{3}B_{1g}3$	-15.608042	-15.631783	-15.631782

Table 2: Acene 2 screened

Acene	State	QCI	FCI	DMRG
	$^{1}A_{g}1$	-24.091644	-24.095718	-24.095718
	$^{1}A_{g}^{^{\prime}}2$	-19.169754	-19.203886	-19.203886
	$^{1}A_{g}3$	-18.396669	-18.425356	-18.425356
	$^{1}B_{3u}1$	-20.471611	-20.484839	-20.484839
	$^{1}B_{3u}2$	-18.100980	-18.110086	-18.110086
	$^{1}B_{3u}3$	-17.785872	-17.811819	-17.811819
	$^{-1}B_{2u}1$	-19.644644	-19.647236	-19.647470
	$^{1}B_{2u}2$	-17.989607	-17.995415	-17.996438
	$^{1}B_{2u}3$	-16.627363	-16.670660	-16.671862
	$^{-1}B_{1g}1$	-18.724095	-18.747290	-18.747290
Acene - 2 (std)	$^{1}B_{1g}2$	-18.271346	-18.277974	-18.277974
	$^{1}B_{1g}3$	-17.479520	-17.523428	-17.523428
	$^{3}B_{3u}1$	-20.356551	-20.366031	-20.366031
	$^{3}B_{3u}2$	-19.331451	-19.335137	-19.335137
	$^{3}B_{3u}3$	-18.165555	-18.187670	-18.187670
	$^{3}B_{2u}1$	-21.561073	-21.565198	-21.567095
	$^{3}B_{2u}2$	-19.791947	-19.804155	-19.807521
	$^{3}B_{2u}3$	-17.820521	-17.836750	-17.838865
	$^{3}B_{1g}1$	-20.344651	-20.356674	-20.356674
	$^{3}B_{1g}2$	-18.627926	-18.655666	-18.655666
	$^{3}B_{1g}3$	-17.962789	-17.969055	-17.969055

Table 3: Acene 2 standard

Acene	State	QCI	FCI	DMRG
	$^{1}A_{g}1$	-30.017779	-30.061883	-30.065992
	$^{1}A_{g}2$	-26.344622	-26.580694	-26.596829
	$^{1}A_{g}3$	-25.562375	-25.785483	-25.808448
	$^{-1}B_{3u}1$	-26.995622	-27.152327	-27.180474
	$^{1}B_{3u}2$	-25.398134	-25.672074	-25.697101
	$^{1}B_{3u}3$	-25.301162	-25.415665	-25.431778
	$^{-1}B_{2u}1$	-26.486676	-26.509510	-26.529015
	$^{1}B_{2u}2$	-25.408516	-25.559938	-25.587811
	$^{1}B_{2u}3$	-24.130369	-24.375672	-24.403091
	$^{-1}B_{1g}1$	-26.045376	-26.196057	-26.217492
Acene-3 (scr)	$^{1}B_{1g}2$	-25.158381	-25.251164	-25.265467
	$^{1}B_{1g}3$	-24.201908	-24.543041	-24.573129
	$^{3}B_{3u}1$	-26.877354	-27.015887	-27.036801
	$^{3}B_{3u}2$	-25.668673	-25.782338	-25.807015
	$^{3}B_{3u}3$	-25.541910	-25.756962	-25.771278
	$^{3}B_{2u}1$	-28.542994	-28.581635	-28.624790
	$^{3}B_{2u}2$	-26.648252	-26.781800	-26.821836
	$^{3}B_{2u}3$	-26.014098	-26.182787	-26.244931
	$^{3}B_{1g}1$	-27.360119	-27.480001	-27.505489
	$^{3}B_{1g}2$	-25.461580	-25.714068	-25.744532
	$^{3}B_{1g}3$	-25.409716	-25.496690	-25.510171

Table 4: Acene 3 screened

Acene	State	QCI	FCI	DMRG
	$^{1}A_{g}1$	-33.969952	-33.985884	-33.987035
	$^{1}A_{g}2$	-29.990165	-30.097752	-30.103397
	$^{1}A_{g}3$	-28.910107	-29.011066	-29.019790
	$^{-1}B_{3u}1$	-30.683392	-30.737773	-30.746781
	$^{1}B_{3u}2$	-28.978510	-29.087312	-29.095699
	$^{1}B_{3u}3$	-28.600876	-28.642372	-28.646600
	$^{-1}B_{2u}1$	-30.314013	-30.326309	-30.330848
	$^{1}B_{2u}2$	-28.953764	-29.009430	-29.018437
	$^{1}B_{2u}3$	-28.249695	-28.280688	-28.288341
	$^{-1}B_{1g}1$	-29.609817	-29.672212	-26.217492
Acene-3 (std)	$^{1}B_{1g}2$	-29.151648	-29.184569	-25.265467
	$^{1}B_{1g}3$	-27.651668	-27.717532	-24.573129
	$^{3}B_{3u}1$	-30.533062	-30.578404	-30.585333
	$^{3}B_{3u}2$	-29.632707	-29.658581	-29.662281
	$^{3}B_{3u}3$	-29.024300	-29.108608	-29.118672
	$^{3}B_{2u}1$	-32.240745	-32.256256	-32.269389
	$^{3}B_{2u}2$	-30.273973	-30.318924	-30.332083
	$^{3}B_{2u}3$	-29.505684	-29.563884	-29.584404
	$^{3}B_{1g}1$	-30.988637	-31.034231	-31.042454
	$^{3}B_{1g}2$	-28.951647	-29.055489	-29.066312
	$^{3}B_{1g}3$	-28.919489	-28.952258	-28.955530

Table 5: Acene 3 standard

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-38.748161	-	-38.767953
$^{1}A_{g}2$	-35.639580	_	-35.885093
$^{1}A_{g}3$	-34.826591	-	-34.993326
$^{1}B_{3u}1$	-35.772049	-	-35.969713
$^{1}B_{3u}2$	-34.774138	-	-35.059273
$^{1}B_{3u}3$	-34.305058	-	-34.494806
$^{1}B_{2u}1$	-35.778861	-	-35.812485
$^{1}B_{2u}2$	-34.579035	_	-34.748219
$^{1}B_{2u}3$	-33.635636	-	-33.753580
$^{1}B_{1g}1$	-35.344285	-	-35.501284
$^{1}B_{1g}2$	-34.584524	_	-34.697143
$^{1}B_{1g}3$	-34.106975	-	-34.336882
$^{3}B_{3u}1$	-35.687619	-	-35.720356
$^{3}B_{3u}2$	-34.962464	_	-35.172472

$^{3}B_{3u}3$	-34.566526	-	-34.661172
$^{3}B_{2u}1$	-37.637311	-	-37.681022
$^{3}B_{2u}2$	-35.721548	_	-35.830303
$^{3}B_{2u}3$	-34.689735	-	-34.760396
$^{3}B_{1g}1$	-36.575920	-	-36.654869
$^{3}B_{1g}^{-2}$	-35.223111	_	-35.350745
$^{3}B_{1g}^{3}$	-34.817036	_	-34.894804

Table 6: Acene 4 screened

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-43.803425	-	-43.819633
$^{1}A_{g}2$	-40.480116	_	-40.630868
$^{1}A_{g}3$	-39.508265	_	-39.605234
$^{1}B_{3u}1$	-40.644521	-	-40.741480
$^{1}B_{3u}2$	-39.628651	_	-39.770199
$^{1}B_{3u}3$	-38.804072	_	-38.883044
$^{1}B_{2u}1$	-40.645184	-	-40.664837
$^{1}B_{2u}2$	-39.328619	_	-39.404653
$^{1}B_{2u}3$	-38.767262	_	-38.812704
$^{1}B_{1g}1$	-40.111234	-	-40.202885
$^{1}B_{1g}2$	-39.629159	_	-39.676013
$^{1}B_{1g}3$	-38.885183	_	-39.003470
$^{1}B_{3u}1$	-40.518340	-	-40.540541
$^{1}B_{3u}2$	-39.700907	_	-39.696836
$^{1}B_{3u}3$	-39.654635	_	-39.804141
$^{1}B_{2u}1$	-42.548638	-	-42.568540
$^{1}B_{2u}2$	-40.553948	_	-40.594250
$^{1}B_{2u}3$	-39.306952	-	-39.338007
$^{1}B_{1g}1$	-41.443346	-	-41.483672
$^{1}B_{1g}2$	-40.070842	-	-40.126336
$^{1}B_{1g}3$	-39.480470	_	-39.516228

Table 7: Acene 4 standard

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-47.439448	-	-47.348891
$^{1}A_{g}2$	-44.699563	_	-44.910479
$^{1}A_{g}^{3}$	-43.786253	_	-43.820491
$^{1}B_{3u}1$	-44.418602	_	-44.466110
$^{1}B_{3u}2$	-43.895384	_	-44.053536
$^{1}B_{3u}3$	-43.085336	-	-43.261614
$^{1}B_{2u}1$	-44.793029	-	-44.850664
$^{1}B_{2u}2$	-43.625762	_	-43.612817
$^{1}B_{2u}3$	-42.810721	-	-42.849819
$^{-1}B_{1g}1$	-44.378307	-	-44.385828
$^{1}B_{1g}2$	-43.706349	_	-43.800611
$^{1}B_{1g}^{3}$	-42.958385	-	-42.990826
$^{3}B_{3u}1$	-44.495259	-	-44.458399
$^{3}B_{3u}2$	-43.962115	_	-43.922352

$^{3}B_{3u}3$	-43.279726	_	-43.364010
$^{3}B_{2u}1$	-46.509518	-	-46.496906
$^{3}B_{2u}2$	-44.741928	_	-44.685572
$^{3}B_{2u}3$	-43.804759	-	-43.694951
$^{3}B_{1g}1$	-45.572786	-	-45.520103
$^{3}B_{1g}2$	-44.053453	-	-43.928040
$^{3}B_{1g}^{3}$	-43.911375	_	-44.020286

Table 8: Acene 5 screened

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-53.613853	-	-53.580862
$^{1}A_{g}2$	-50.726761	_	-50.774226
$^{1}A_{g}3$	-49.776017	-	-49.685725
$^{1}B_{3u}1$	-50.471239	-	-50.541516
$^{1}B_{3u}2$	-49.985687	_	-50.110487
$^{1}B_{3u}3$	-48.926640	_	-48.898681
$^{1}B_{2u}1$	-50.754803	-	-50.736054
$^{1}B_{2u}2$	-49.604837	_	-49.640102
$^{1}B_{2u}3$	-49.062026	_	-49.049947
$^{1}B_{1g}1$	-50.314501	-	-50.381751
$^{1}B_{1g}^{2}$	-49.866741	_	-49.875926
$^{1}B_{1g}3$	-48.929835	_	-48.990156
$^{3}B_{3u}1$	-50.522623	-	-50.508332
$^{3}B_{3u}2$	-49.965294	_	-49.989021
$^{3}B_{3u}3$	-49.526575	_	-49.543904
$^{3}B_{2u}1$	-52.625715	-	-52.598700
$^{3}B_{2u}2$	-50.828884	_	-50.788176
$^{3}B_{2u}3$	-49.839179	_	-49.761629
$^{3}B_{1g}1$	-51.664316	-	-51.654214
$^{3}B_{1g}^{3}2$	-50.106987	_	-50.083823
$^{3}B_{1g}^{3}$	-49.740003	_	-49.739688

Table 9: Acene 5 standard

3.3 Poly-para-phenylenes

State	QCI	FCI	DMRG
$1A_g1$	-25.276600	-25.300598	-25.301922
$^{1}A_{g}2$	-20.273411	-20.444224	-20.454111
$^{1}A_{g}3$	-19.389983	-19.524614	-19.531271
$^{1}B_{3u}1$	-20.439358	-20.451774	-20.463531
$^{1}B_{3u}2$	-19.517546	-19.675523	-19.686827
$^{1}B_{3u}3$	-19.101009	-19.164794	-19.172687
$^{1}B_{2u}1$	-21.566103	-21.691953	-21.697363
$^{1}B_{2u}2$	-19.548886	-19.729861	-19.737265
$^{1}B_{2u}3$	-19.504499	-19.573526	-19.577158
$1B_{1g}1$	-21.558152	-21.684369	-21.689813
$ {}^{1}B_{1g}2$	-19.587761	-19.731522	-19.738876

$ {}^{1}B_{1g}3$	-19.547637	-19.652263	-19.655780
$^{3}B_{3u}1$	-22.697690	-22.744708	-22.774956
$^{3}B_{3u}2$	-21.546662	-21.651000	-21.670490
$^{3}B_{3u}3$	-20.262243	-20.417351	-20.437279
$^{3}B_{2u}1$	-21.544172	-21.640695	-21.646954
$^{3}B_{2u}2$	-20.191334	-20.347568	-20.360260
$^{3}B_{2u}3$	-20.091033	-20.140019	-20.143288
$^{3}B_{1g}1$	-21.543044	-21.639962	-21.646144
$^{3}B_{1g}^{2}$	-20.193393	-20.349866	-20.362482
$^{3}B_{1q}3$	-20.076535	-20.125969	-20.129165

Table 10: PPP 2 screened

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-28.760137	-28.767592	-28.767843
$^{1}A_{g}2$	-23.136526	-23.169327	-23.171134
$^{1}A_{g}3$	-23.025073	-23.091050	-23.093474
$^{1}B_{3u}1$	-23.942720	-23.949888	-23.952034
$^{1}B_{3u}2$	-22.551390	-22.574648	-22.578527
$^{1}B_{3u}3$	-22.280368	-22.336187	-22.339850
$^{1}B_{2u}1$	-24.657019	-24.700708	-24.701933
$^{1}B_{2u}2$	-22.225087	-22.299529	-22.301822
$^{1}B_{2u}3$	-22.126667	-22.155062	-22.156559
$^{1}B_{1g}1$	-24.628540	-24.671927	-24.673159
$^{1}B_{1g}2$	-22.481176	-22.506186	-22.507420
$^{1}B_{1g}3$	-22.227387	-22.300490	-22.302733
$^{3}B_{3u}1$	-25.636474	-25.651992	-25.660784
$^{3}B_{3u}2$	-24.618959	-24.653179	-24.658258
$^{3}B_{3u}3$	-23.156156	-23.207588	-23.213357
$^{3}B_{2u}1$	-24.590236	-24.621085	-24.622506
$^{3}B_{2u}2$	-23.472804	-23.487676	-23.488463
$^{3}B_{2u}3$	-23.013011	-23.067811	-23.071959
$^{3}B_{1g}1$	-24.589162	-24.620097	-24.621416
$^{3}B_{1g}2$	-23.434095	-23.449511	-23.450247
$^{3}B_{1g}3$	-23.019234	-23.074266	-23.078284

Table 11: PPP 2 standard

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-38.203416	-	-38.270704
$^{1}A_{g}2$	-33.517632	_	-33.909513
$^{1}A_{g}^{^{\prime}}3$	-32.631245	_	-32.962799
$^{1}B_{3u}1$	-33.917761	_	-34.022909
$^{1}B_{3u}2$	-32.886434	_	-33.287118
$^{1}B_{3u}3$	-32.108854	-	-32.412953
$^{1}B_{2u}1$	-34.392208	-	-34.566265
$^{1}B_{2u}2$	-34.202920	_	-34.773265
$^{1}B_{2u}3$	-32.587193	-	-32.832918
$^{1}B_{1g}1$	-34.155958	-	-34.566200
$^{1}B_{1q}2$	-32.542788	_	-32.833733
$^{1}B_{1g}^{3}$	-32.485042	-	-32.824832
$^{3}B_{3u}1$	-35.687638	-	-35.881183
$^{3}B_{3u}2$	-34.683248	_	-35.058415

$^{3}B_{3u}3$	-34.306740	_	-34.665373
$^{3}B_{2u}1$	-34.395798	-	-34.494016
$^{3}B_{2u}2$	-34.224587	_	-34.701800
$^{3}B_{2u}3$	-33.129854	-	-33.353631
$^{3}B_{1g}1$	-34.182725	-	-34.494144
$^{3}B_{1g}2$	-33.173001	-	-33.217804
$^{3}B_{1q}^{3}$	-32.896993	_	-33.166982

Table 12: PPP 3 screened

State	QCI	FCI	DMRG
$^{1}A_{g}1$	-43.450717	-	-43.471272
$^{1}A_{g}2$	-38.121553	_	-38.276099
$^{1}A_{g}3$	-38.097122	-	-38.244591
$^{1}B_{3u}1$	-39.021531	-	-39.066661
$^{1}B_{3u}2$	-37.734200	_	-37.831553
$^{1}B_{3u}3$	-37.527501	_	-37.683912
$^{1}B_{2u}1$	-39.349500	-	-39.509281
$^{1}B_{2u}2$	-39.194809	_	-39.349549
$^{1}B_{2u}3$	-37.248064	_	-37.384462
$^{1}B_{1g}1$	-39.179264	-	-39.350968
$^{1}B_{1g}^{2}$	-36.996591	_	-37.148503
$^{1}B_{1g}3$	-36.984715	_	-37.089500
$^{3}B_{3u}1$	-40.476097	-	-40.548155
$^{3}B_{3u}2$	-39.573657	_	-39.716053
$^{3}B_{3u}3$	-39.246475	_	-39.389047
$^{3}B_{2u}1$	-39.304023	-	-39.269880
$^{3}B_{2u}2$	-39.170955	_	-39.428875
$^{3}B_{2u}3$	-38.273008	_	-38.361988
$^{3}B_{1g}1$	-39.153565	-	-39.269825
$^{3}B_{1g}^{2}$	-38.076551	_	-38.171140
$^{3}B_{1g}^{3}$	-37.813777	_	-38.031123

Table 13: PPP 3 standard

3.4 Trigonal zigzag graphene nanodisks

System	Parameters	A_1	B_2
		-25.784324	-27.793568
	Screened	-25.366065	-25.786939
TZGND-1 doublet		-24.404038	-24.409357
12GND-1 doublet	Standard	-29.160049	-31.379637
		-28.728226	-29.160574
		-27.792477	-27.635932
		-47.682268	-47.682346
	Screened	-45.908450	-45.907757
TZGND-2 singlet		-45.596365	-45.596343
1 ZGND-2 strigtet		-53.830723	-53.830848
	Standard	-51.876156	-51.876491
		-51.559202	-51.559564
	Screened	-45.922645	-48.201089
		-45.764165	-46.057782
TZCND 2 triplet		-45.441111	-45.841121
TZGND-2 triplet	Standard	-52.021886	-54.359609
		-51.804331	-52.081932
		-51.520589	-51.847026

Table 14: TZGND gound and excited state DMRG energies