CS236 notes

Mark Wang

September 25, 2016

Definitions

Definition 1. Proof by **simple induction** is a method for proving statement

$$\forall n \in \mathbb{N}, P(n)$$

The method of induction consists of 2 steps

BASIS: Prove that P(0) is true, ie. that predicate P(n) holds for n=0.

INDUCTION STEP: Prove that, for each $i \in \mathbb{N}$, if P(i) is true then P(i+1) is also true.

Remark. The assumption that P(i) holds in the induction step of the proof is called the induction hypothesis. Bases case can be non-zero.

Example 1.1. For any $m, n \in \mathbb{N}$ such that $n \neq 0$, there are unique $q, r \in \mathbb{N}$ such that $m = q\dot{n} + r$ and r < n

Remark. Think about 2 cases. either r < n-1 or r = n-1

Example 1.2. We can use an unlimited supply of 4-cent and 7-cent postage stamps to make exactly any amount of postage that is 18 cents or more. Or that $\exists a, b \in \mathbb{N}, i = 4a + 7b$

Remark. Intuitively, try to juggle around value of a, b so that there is an excess of 1-cent, which satisfies for i + 1. In this case prove by cases to make it happen. Otherwise use proof by complete induction which is easier.

Definition 2. a is **divisible** by b if the division of a by b has no remainder.

$$b \mid a : \exists k \in \mathbb{N} : a = bk$$

Remark. Read $b \mid a$ as b divides a

Definition 3. An integer n is **prime** if $n \ge 2$ and the only positive integers that divide n are 1 and itself.

$$\{n \in \mathbb{N} : m \mid n \Rightarrow m = 1 \lor m = 2\}$$

Remark. Prime factorization of a natural number n is a sequence of primes whose product is n

Definition 4. Proof by **complete induction** is a method for proving

$$\forall n \in \mathbb{N}, P(n)$$

BASIS: Prove that P(n) holds for all $n \geq c$

INDUCTION STEP: Prove that, for each natural number i > c, if P(j) holds for all natural numbers j such that $c \le j < i$, then P(i) holds as well.

Remark. It is important to ensure that both $j \geq c$ and j < i

Example 4.1. Any integer $n \geq 2$, has a prime factorization.

Proof. Define the predicate P(n) as follows

P(n): n has a prime factorization

Use complete induction to prove that P(n) holds for all integer $n \geq 2$. Let i be an arbitrary integer such that $i \geq 2$. Assume that P(j) holds for all integers j, such that $2 \leq j < i$. We muts prove that P(i) holds as well. There are two cases

CASE 1: *i* is prime. Then $\langle i \rangle$ is a prime factorization of *i*. Thus P(i) holds.

CASE 2: i is not prime. Thus there is a positive integer a that divides i such that $a \neq 1 \land a \neq i$. Let $b = {}^i/_a$; i.e., $i = a \cdot b$. Since $a \neq i \land a \lneq i$, it follows that a, b are both integers such that $2 \leq a, b \leq i$. Therefore, by the induction hypothesis, P(a) and P(b) both hold. That is, there is a prime factorization of a, say $\langle p_1, p_2, \ldots, p_k \rangle$, and there is a prime factorisation of b, say $\langle q_1, q_2, \ldots, q_l \rangle$. Since $i = a \cdot b$, it is obvious that concatenation of the prime factorisation of a and b, i.e. $\langle p_1, p_2, \ldots, p_k, q_1, q_2, \ldots, q_l \rangle$, is a prime factorisation of i. Therefore, P(i) holds in this case as well. Therefore P(n) holds for all $n \geq 2$

Remark. However, if we know the factorisation of all numbers less than i, then we can easily find a prime factorisation of i: if i is prime, then it is its own prime factorisation, and we are done; if i is not prime, then we can get a prime factorisation of i by concatenating the prime factorisations of two factors (which are smaller than i and therefore whose prime factorisation we know by induction hypothesis).

Example 4.2. Prove that prostage of exactly n cents can be made using only 5-cents and 8-cents stamps

Proof. Define the predicate P(n) as follows

$$P(n): \exists a, b \in \mathbb{N}, n = 5a + 8b$$

Use proof by complete induction to prove P(n) holds for $n \geq 28$. Let i be an arbitrary integer such that $i \geq 28$, and assume that P(j) holds for all j such that $28 \leq j < i$. We

will prove that P(i) holds as well.

CASE 1 or the BASIS: When $28 \le i \le 32$. We can make postage for all of them... Just have to calculate them...

CASE 2 or INDUCTION STEP: When $i \ge 32$. Let j = i - 5 and therefore, by induction hypothesis, P(j) holds. This means that $\exists a, b \in \mathbb{N}, j = 5a + 8b$.

$$\begin{split} i &= j+5 \\ &= 5a+8b+5 \\ &= 5(a+1)+8b \qquad a_1 = a+1, b_1 = b \\ &= 5a_1+8b_1 \qquad a_1, b_1 \in \mathbb{N} \end{split}$$

Therefore, P(i) holds as well.

Remark. In this problem, a set of basis were discussed instead of one. This is to ensure that the choice of j satisfies $j \ge c$, which is required to use induction hypothesis.

Definition 5.

$$\lfloor x \rfloor = \max \{ m \in \mathbb{Z} : m \le x \}$$
$$\lceil x \rceil = \min \{ m \in \mathbb{Z} : m \ge x \}$$