Отчёт по лабораторной работе №9

Дисциплина: Архитектура компьютера

Батова Ирина Сергеевна, НММбд-01-22

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Задание для самостоятельной работы	15
4	Выводы	18

Список иллюстраций

2.1	Создание необходимых для работы файлов и каталогов	6
2.2	Ввод программы вывода значений регистра есх	6
2.3	Запуск программы из файла 'lab9-1.asm'	7
2.4	Ввод изменений в файл 'lab9-1.asm'	8
2.5	Запуск программы из файла 'lab9-1.asm' с четным числом	9
2.6	Повторный ввод изменений в файл 'lab9-1.asm'	9
2.7	Запуск измененной программы из файла 'lab9-1.asm'	10
2.8	Создание файла 'lab9-2.asm'	10
2.9	Ввод программы вывода на экран аргументов командной строки	10
	Запуск программы из файла 'lab9-2.asm'	11
2.11	Создание файла 'lab9-3.asm'	11
2.12	Ввод программы вычисления суммы аргументов командной строки	12
	Запуск программы из файла 'lab9-3.asm'	12
	Изменение программы в файле 'lab9-3.asm'	13
2.15	Запуск измененной программы из файла 'lab9-3.asm'	14
3.1	Создание файла 'lab9-4.asm'	15
3.2	Ввод программы из задания самостоятельной работы	16
3.3	Запуск программы из файла 'lab9-4.asm'	17

Список таблиц

1 Цель работы

Приобретение навыков написания программ с использованием циклов и обработкой аргументов командной строки.

2 Выполнение лабораторной работы

1. Для начала работы создаем каталог 'lab09' с помощью команды mkdir, переходим в него (команда cd) и создаем в нем файл 'lab9-1.asm' (рис. 2.1).

```
[isbatova@fedora ~]$ mkdir ~/work/arch-pc/lab09
[isbatova@fedora ~]$ cd ~/work/arch-pc/lab09
[isbatova@fedora lab09]$ touch lab9-1.asm
```

Рис. 2.1: Создание необходимых для работы файлов и каталогов

Далее открываем файл 'lab9-1.asm' и вводим в него листинг 9.1 из лабораторной работы - программу вывода значений регистра есх (рис. 2.2).

Рис. 2.2: Ввод программы вывода значений регистра есх

Создаем исполняемый файл и проверяем его работу (рис. 2.3). Программа работает корректно.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-1.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-1.o -o lab9-1
[isbatova@fedora lab09]$ ./lab9-1
Введите N: 3
3
2
```

Рис. 2.3: Запуск программы из файла 'lab9-1.asm'

После этого вновь открываем файл 'lab9-1.asm' и немного видоизменяем его - в начале цикла вводим строчку "sub ecx,1" (рис. 2.4).

```
1 %include 'in_out.asm'
3 SECTION .data
4
           msg1 db 'Введите N: ',0h
5
6 SECTION .bss
7
          N: resb 10
8
9 SECTION .text
           global _start
10
11
12 _start:
13
           mov eax, msgl
14
           call sprint
15
16
           mov ecx, N
           mov edx,10
17
           call sread
18
19
           mov eax,N
20
21
           call atoi
22
           mov [N],eax
23
24
           mov ecx,[N]
25 label:
26
           sub ecx,1
27
           mov [N],ecx
           mov eax,[N]
28
           call iprintLF
29
           loop label
30
31
           call quit
32
```

Рис. 2.4: Ввод изменений в файл 'lab9-1.asm'

Создаем исполняемый файл и проверяем его работу. Если мы вводим четное число (например, 4), программа выводит нечетные числа 3 и 1 (соответственно, число проходов не соответствует введенному числу) (рис. 2.5).

```
[isbatova@fedora lab09]$ nasm -f elf lab9-1.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-1.o -o lab9-1
[isbatova@fedora lab09]$ ./lab9-1
Введите N: 4
3
1
[isbatova@fedora lab09]$ ]
```

Рис. 2.5: Запуск программы из файла 'lab9-1.asm' с четным числом

Если выводить нечетное число, у нас получается бесконечный цикл.

Поэтому для корректной работы мы будем использовать стек. Вновь открываем файл 'lab9-1.asm' и вводим в начале цикла 'push ecx', а перед командой 'loop' вводим 'pop ecx' (рис. 2.6).

```
1 %include 'in_out.asm'
3 SECTION .data
         msgl db 'Введите N: ',0h
6 SECTION .bss
       N: resb 10
9 SECTION .text
         global _start
10
11
12 _start:
13
         mov eax, msgl
         call sprint
14
15
16
         mov ecx, N
         mov edx,10
17
         call sread
19
20
         mov eax,N
         call atoi
21
         mov [N],eax
22
23
         mov ecx,[N]
24
25 label:
         push ecx
         sub ecx,1
27
         mov [N],ecx
       mov eax,[N]
29
         call iprintLF
30
31 pop ecx
         loop label
32
33
         call quit
```

Рис. 2.6: Повторный ввод изменений в файл 'lab9-1.asm'

Создаем исполняемый файл и проверяем его работу (рис. 2.7). Программа работает корректно и число проходов цикла соответствует введенному числу.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-1.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-1.o -o lab9-1
[isbatova@fedora lab09]$ ./lab9-1
Введите N: 3
2
1
```

Рис. 2.7: Запуск измененной программы из файла 'lab9-1.asm'

2. Для дальнейшей работы создаем файл 'lab9-2.asm' (рис. 2.8).

```
[isbatova@fedora lab09]$ touch lab9-2.asm
[isbatova@fedora lab09]$ [
```

Рис. 2.8: Создание файла 'lab9-2.asm'

Открываем файл и вводим в него программу из листинга 9.2 - программу вывода на экран аргументов командной строки (рис. 2.9).

```
1 %include 'in_out.asm'
 2
 3 SECTION .text
 4
           global _start
 5
 6 _start:
 7
           pop ecx
8
           pop edx
           sub ecx,1
10 next:
11
           cmp ecx,0
12
           jz _end
13
           pop eax
           call sprintLF
14
15
           loop next
16
17 _end:
           call quit
18
```

Рис. 2.9: Ввод программы вывода на экран аргументов командной строки

Создаем исполняемый файл и проверяем его работу (рис. 2.10). Программой было обработано три аргумента.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-2.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-2.o -o lab9-2
[isbatova@fedora lab09]$ ./lab9-2 1 2 3
1
2
3
[isbatova@fedora lab09]$ [
```

Рис. 2.10: Запуск программы из файла 'lab9-2.asm'

3. Далее нам необходимо создать файл 'lab9-3.asm' (рис. 2.11).

```
[isbatova@fedora lab09]$ touch lab9-3.asm
```

Рис. 2.11: Создание файла 'lab9-3.asm'

После этого открываем файл 'lab9-3.asm' и вводим в него программу из листинга 9.2 - программу вычисления суммы аргументов командной строки (рис. 2.12).

```
%include 'in_out.asm'
SECTION .data
       msg db "Результат: ",0
SECTION .text
        global _start
_start:
        pop ecx
        pop edx
        sub ecx,1
        mov esi,0
next:
        cmp ecx,0h
        jz _end
        pop eax
        call atoi
        add esi,eax
        loop next
_end:
        mov eax,msg
        call sprint
        mov eax,esi
        call iprintLF
        call quit
```

Рис. 2.12: Ввод программы вычисления суммы аргументов командной строки

Создаем исполняемый файл и проверяем его работу (рис. 2.13). Проверяем ответ аналитически и понимаем, что программа работает корректно.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-3.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-3.o -o lab9-3
[isbatova@fedora lab09]$ ./lab9-3 12 13 7 10 5
Результат: 47
[isbatova@fedora lab09]$ []
```

Рис. 2.13: Запуск программы из файла 'lab9-3.asm'

Далее нам надо отредактировать файл так, чтобы аргументы перемножались.

Открываем файл 'lab9-3.asm' и вводим изменения (рис. 2.14).

```
%include 'in_out.asm'
SECTION .data
        msg db "Результат: ",0
SECTION .text
        global _start
_start:
        pop ecx
        pop edx
        sub ecx,1
        mov esi,1
        mov eax,1
next:
        cmp ecx,0
        jz _end
        рор еах
        call atoi
        mov ebx,eax
        mov eax,esi
        mul ebx
        mov esi,eax
        loop next
_end:
        mov eax,msg
        call sprint
        mov eax,esi
        call iprintLF
        call quit
```

Рис. 2.14: Изменение программы в файле 'lab9-3.asm'

Создаем исполняемый файл и проверяем его работу (рис. 2.15). Проверяем ответ аналитически и понимаем, что программа работает корректно.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-3.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-3.o -o lab9-3
[isbatova@fedora lab09]$ ./lab9-3 1 2 3
Результат: 6
```

Рис. 2.15: Запуск измененной программы из файла 'lab9-3.asm'

3 Задание для самостоятельной работы

Для выполнения самостоятельной работы создаем файл 'lab9-4.asm' (рис. 3.1).

```
[isbatova@fedora lab09]$ touch 9-4.asm
[isbatova@fedora lab09]$ []
```

Рис. 3.1: Создание файла 'lab9-4.asm'

У меня вариант 11, поэтому программа написана для f(x)=15x+2 (рис. 3.2).

```
%include 'in_out.asm'
SECTION .data
        primer: DB 'Функция: f(x) = 15x + 2', 0
        rezult: DB 'Результат: ',0
SECTION .text
        global _start
_start:
        mov eax, primer
        call sprintLF
        pop ecx
        pop edx
        sub ecx,1
        mov esi,⊙
next:
        cmp ecx,0h
        jz _end
        pop eax
        call atoi
        mov ebx,15
        mul ebx
        add eax,2
        add esi,eax
        loop next
_end:
        mov eax, rezult
        call sprint
        mov eax,esi
        call iprintLF
        call quit
```

Рис. 3.2: Ввод программы из задания самостоятельной работы

Сохраняем файл, создаем исполняемый файл и проверяем его работу (рис. 3.3).

Проверяем ответ аналитически и понимаем, что программа работает корректно.

```
[isbatova@fedora lab09]$ nasm -f elf lab9-4.asm
[isbatova@fedora lab09]$ ld -m elf_i386 lab9-4.o -o lab9-4
[isbatova@fedora lab09]$ ./lab9-4 1 2 3 4
Функция: f(x)=15x+2
Результат: 158
```

Рис. 3.3: Запуск программы из файла 'lab9-4.asm'

4 Выводы

В данной лабораторной работе мной были приобретены навыки написания программ с использованием циклов и обработкой аргументов командной строки.