

The Donovan-Wemyss conjecture on compound **Du Val singularities**

An application of the triangulated Auslander-Iyama correspondence

Università degli Studi di Pavia, 24/2/2023

Fernando Muro

Universidad de Sevilla

Du Val singularities¹

They are the isolated surface singularities arising as:

Variety		Functions
\mathbb{C}^2/G	$G\subsetSL(2,\mathbb{C})$ finite	$\mathbb{C}[x,y]^G$

They are classified by ADE Dynkin diagrams:

Equation	Diagram
$x^2 + y^2 + z^{n+1}$	••• $A_n n \geqslant 1$
$x^2 + y^2z + z^{n-1}$	\longrightarrow $D_n n \geqslant 4$
$x^2 + y^3 + z^4$	E_6
$x^2 + y^3 + yz^3$	E_7
$x^2 + y^3 + z^5$	•••• E ₈

¹AKA Kleinian singularities.

Du Val singularities

Compound Du Val singularities

A **cDV** singularity is a hypersurface singularity in \mathbb{C}^4 whose generic hyperplane section is Du Val.

Equivalently, a cDV is of the form Spec(R)

$$R \cong \frac{\mathbb{C}[[x,y,z,t]]}{(f+t\cdot g)}$$

with $\mathbb{C}[x, y, z]/(f)$ Du Val and $g \in \mathbb{C}[x, y, z, t]$ arbitrary.

Unlike Du Val singularities, cDV singularities *are not classified* in terms of invariants.

From now on, we assume that our cDV singularities are isolated.

Contraction algebras

cDV singularities $X = \operatorname{Spec}(R)$ have **minimal models** $f: Y \to X$.

wemyss_2018_flops_clusters_homological established bijections:

Geometry	Algebra
Minimal model	$T \in D^{sg}(R)$ basic maximal rigid
Smooth minimal model	$T \in D^{sg}(R)$ basic $2\mathbb{Z}$ -cluster tilting

Here $D^{sg}(R)$ is the **singularity category** of Spec(R),

$$D^{\operatorname{sg}}(R) = D^{\operatorname{b}}(R)/D^{\operatorname{c}}(R).$$

donovan_wemyss_2016_noncommutative_deformations_flops defined the *contraction algebra* of a minimal model as

$$\Lambda = \mathsf{End}_{\mathcal{D}^{\mathsf{sg}}(R)}(T).$$

Conjecture (donovan_wemyss_2016_noncommutative_deformations_

$$R_1 \cong R_2 \Longleftrightarrow D(\Lambda_1) \simeq D(\Lambda_2).$$

Conjecture (donovan_wemyss_2016_noncommutative_deformations_

Given two isolated cDV singularities R_1 and R_2 with smooth minimal models and associated contraction algebras Λ_1 and Λ_2 ,

$$R_1 \cong R_2 \Longleftrightarrow D(\Lambda_1) \simeq D(\Lambda_2).$$

 ⇒ follows from dugas_2015_construction_derived_equivalent and wemyss_2018_flops_clusters_homological.

Conjecture (donovan_wemyss_2016_noncommutative_deformations_

$$R_1 \cong R_2 \iff D(\Lambda_1) \simeq D(\Lambda_2).$$

- ⇒ follows from dugas_2015_construction_derived_equivalent and wemyss_2018_flops_clusters_homological.
- Contraction algebras compute known invariants (length, Reid width, Gopakumar–Vafa).

Conjecture (donovan_wemyss_2016_noncommutative_deformations_

$$R_1 \cong R_2 \iff D(\Lambda_1) \simeq D(\Lambda_2).$$

- ⇒ follows from dugas_2015_construction_derived_equivalent and wemyss_2018_flops_clusters_homological.
- Contraction algebras compute known invariants (length, Reid width, Gopakumar–Vafa).
- For type A, it follows from reid_1983_minimal_models_canonical.

Conjecture (donovan_wemyss_2016_noncommutative_deformations_

$$R_1 \cong R_2 \Longleftrightarrow D(\Lambda_1) \simeq D(\Lambda_2).$$

- ⇒ follows from dugas_2015_construction_derived_equivalent and wemyss_2018_flops_clusters_homological.
- Contraction algebras compute known invariants (length, Reid width, Gopakumar-Vafa).
- For type A, it follows from reid_1983_minimal_models_canonical.
- For type D, contraction algebras distinguish between some cDV singularities whose other invariants coincide.

$$R_1 \cong R_2 \iff D(\Lambda_1) \simeq D(\Lambda_2).$$

- ⇒ follows from dugas_2015_construction_derived_equivalent and wemyss_2018_flops_clusters_homological.
- Contraction algebras compute known invariants (length, Reid width, Gopakumar–Vafa).
- For type A, it follows from reid_1983_minimal_models_canonical.
- For type *D*, contraction algebras distinguish between some cDV singularities whose other invariants coincide.
- august_2020_finiteness_derived_equivalence: the class of contraction algebras of an isolated cDV singularity form a derived equivalence class. Hence, on the right we can assume

Derived contraction algebras

The **derived contraction algebra** of a minimal model of a cDV is

$$\Lambda^{\mathsf{dg}} = \mathbb{R}\mathsf{End}_{\mathit{D^{\mathsf{sg}}}(R)}(\mathit{T}), \qquad \Lambda = \mathit{H}^{0}(\Lambda^{\mathsf{dg}}), \qquad \mathit{D^{c}}(\Lambda^{\mathsf{dg}}) \simeq \mathit{D^{\mathsf{sg}}}(\mathit{R}).$$

Derived contraction algebras

The **derived contraction algebra** of a minimal model of a cDV is

$$\Lambda^{\mathsf{dg}} = \mathbb{R}\mathsf{End}_{\mathit{D^{\mathsf{sg}}}(R)}(\mathit{T}), \qquad \Lambda = \mathit{H}^{\mathsf{0}}(\Lambda^{\mathsf{dg}}), \qquad \mathit{D^{\mathsf{c}}}(\Lambda^{\mathsf{dg}}) \simeq \mathit{D^{\mathsf{sg}}}(\mathit{R}).$$

Theorem (hua_keller_2021_cluster_categories_rational)

Given isolated cDV singularities R_1 y R_2 with smooth minimal models and associated derived contraction algebras $\Lambda_1^{\rm dg}$ y $\Lambda_2^{\rm dg}$,

$$\Lambda_1^{dg} \simeq \Lambda_2^{dg} \Longrightarrow \textit{R}_1 \stackrel{\sim}{=} \textit{R}_2.$$

Derived contraction algebras

The **derived contraction algebra** of a minimal model of a cDV is

$$\Lambda^{\mathsf{dg}} = \mathbb{R}\mathsf{End}_{\mathit{D^{\mathsf{sg}}(R)}}(\mathit{T}), \qquad \Lambda = \mathit{H}^{\mathsf{0}}(\Lambda^{\mathsf{dg}}), \qquad \mathit{D^{\mathsf{c}}}(\Lambda^{\mathsf{dg}}) \simeq \mathit{D^{\mathsf{sg}}(R)}.$$

Theorem (hua_keller_2021_cluster_categories_rational)

Given isolated cDV singularities R_1 y R_2 with smooth minimal models and associated derived contraction algebras Λ_1^{dg} y Λ_2^{dg} ,

$$\Lambda_1^{dg} \simeq \Lambda_2^{dg} \Longrightarrow \textit{R}_1 \cong \textit{R}_2.$$

The proof uses that Λ^{dg} recovers the **Tyurina algebra**, which classifies hypersurface singularities in a given dimension,

$$HH^{0}(\Lambda^{\mathrm{dg}}) \cong \frac{\mathbb{C}[\![x,y,z,t]\!]}{\left(h,\frac{\partial h}{\partial x},\frac{\partial h}{\partial y},\frac{\partial h}{\partial z},\frac{\partial h}{\partial t}\right)}, \quad R \cong \frac{\mathbb{C}[\![x,y,z,t]\!]}{(h)}, \quad h = f + t \cdot g.$$

Conjecture (Donovan-Wemyss after August and Hua-Keller)

Dadas cDV aisladas R_1 y R_2 con modelos minimales lisos con álgebras de contracción derivadas $\Lambda_1^{\rm dg}$ y $\Lambda_2^{\rm dg}$,

$$\Lambda_1 \simeq \Lambda_2 \Longrightarrow \Lambda_1^{dg} \simeq \Lambda_2^{dg}.$$

Conjecture (Donovan-Wemyss after August and Hua-Keller)

Dadas cDV aisladas R_1 y R_2 con modelos minimales lisos con álgebras de contracción derivadas $\Lambda_1^{\rm dg}$ y $\Lambda_2^{\rm dg}$,

$$\Lambda_1 \simeq \Lambda_2 \Longrightarrow \Lambda_1^{dg} \simeq \Lambda_2^{dg}.$$

Question

Is the derived contraction algebra Λ^{dg} determined by its 0-dimensional cohomology $\Lambda = H^0(\Lambda^{dg})$?

Properties of $D^{sg}(R)$

 buchweitz_2021_maximal_cohenmacaulay_modules: since R is complete local

$$D^{sg}(R) \simeq \underline{CM}(R)$$
.

yoshino_1990_cohenmacaulay_modules_cohenmacaulay: Hom-finite,

$$\dim \operatorname{Hom}(M, N) < \infty$$
.

• MR570778: 2-periodic since Spec(R) is a hypersurface,

$$M \cong M[2]$$
.

• MR0480688: 2-Calabi Yau since dim R = 3,

$$\operatorname{\mathsf{Hom}}(M,N)^{\vee} \cong \operatorname{\mathsf{Hom}}(N,M[2]).$$

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. Ta Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic self-injective finite-dimensional algebra.
 - b. I is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. T a Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic self-injective finite-dimensional algebra.
 - b. I is an invertible Λ -bimodule stably isomorphic to $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. Ta Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting $\Rightarrow \mathcal{T} = \langle c \rangle$.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic self-injective finite-dimensional algebra
 - b. I is an invertible Λ -bimodule stably isomorphic to $\Omega^{d+2}_{\Lambda^e}(\Lambda)$

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. T a Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic self-injective finite-dimensional algebra.
 - b. *I* is an invertible Λ -bimodule stably isomorphic to $\Omega^{d+2}_{\Lambda^e}(\Lambda)$.

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

Let $d \ge 1$ and let k be a perfect field. There are bijective correspondence between:

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. Ta Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting.
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic **self-injective** finite-dimensional algebra.
 - b. I is an *invertible* Λ -bimodule *stably isomorphic to* $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

c, c)

Theorem (muro_2022_enhanced_finite_triangulated, d=1, jasso_muro_2022_triangulated_auslander_iyama in general)

- 1. Quasi-isomorphism classes of DG-algebras A such that:
 - a. $H^0(A)$ is basic and finite-dimensional.
 - b. $A \in D^{c}(A)$ is $d\mathbb{Z}$ -cluster tilting.
- 2. Equivalence classes of pairs (\mathfrak{T}, c) with:
 - a. Ta Hom-finite Karoubian algebraic triangulated category.
 - b. $c \in \mathcal{T}$ basic $d\mathbb{Z}$ -cluster tilting
- 3. Isomorphism classes of pairs (Λ, I) where:
 - a. Λ is a basic **self-injective** finite-dimensional algebra.
 - b. I is an *invertible* Λ -bimodule *stably isomorphic to* $\Omega_{\Lambda^e}^{d+2}(\Lambda)$.

Corollary (Keller 2022)

The Donovan–Wemyss conjecture holds.

Corollary (Keller 2022)

The Donovan–Wemyss conjecture holds.

Proof.

The triangulated Auslander–Iyama correspondence for d=2 associates

$$\Lambda^{dg} \longmapsto (D^{sg}(R), T) \longmapsto (\Lambda, I = \Lambda)$$

since, by 2-periodicity, we have equalities of Λ -bimodules

$$I = \operatorname{Hom}(T[2], T) \cong \operatorname{Hom}(T, T) = \Lambda.$$

Hence, the derived contraction algebra Λ^{dg} is determined by the non-derived contraction algebra Λ .

$d\mathbb{Z}$ -cluster tilting objects

Given Υ Hom-finite, $c \in \Upsilon$ is *d-cluster tilting* if it is basic and

$$add(c) = \{x \in \mathcal{T} \mid \mathcal{T}(x, c[i]) = 0 \ \forall 0 < i < d\}$$
$$= \{x \in \mathcal{T} \mid \mathcal{T}(c[i], x) = 0 \ \forall 0 < i < d\}.$$

Moreover, $c \in \mathcal{T}$ is $d\mathbb{Z}$ -cluster tilting if in addition

$$c[d] \cong c$$
.

$d\mathbb{Z}$ -cluster tilting objects

Given T Hom-finite, $c \in T$ is d-cluster tilting if it is basic and

$$add(c) = \{x \in \mathcal{T} \mid \mathcal{T}(x, c[i]) = 0 \ \forall 0 < i < d\}$$
$$= \{x \in \mathcal{T} \mid \mathcal{T}(c[i], x) = 0 \ \forall 0 < i < d\}.$$

Moreover, $c \in \mathcal{T}$ is $d\mathbb{Z}$ -cluster tilting if in addition

$$c[d] \cong c$$
.

A choice ϕ : $c[d] \cong c$ gives rise to an algebra automorphism

$$\sigma \colon \Lambda = \mathfrak{T}(c,c) \xrightarrow{[d]} \mathfrak{T}(c[d],c[d]) \cong \mathfrak{T}(c,c) = \Lambda, \qquad \lambda \mapsto \varphi(\lambda[d]) \varphi^{-1},$$

well-defined up to inner algebra automorphisms

$$[\sigma] \in \mathsf{Out}(\Lambda) \cong \mathsf{Pic}(\Lambda).$$

The corresponding *invertible* Λ -bimodule is

$$\mathfrak{T}(c[d],c)\cong\Lambda_{\sigma}=(\mathrm{id}_{\Lambda}\otimes\sigma)^*\Lambda.$$

Properties of the contraction algebra

• ∧ is **symmetric**,

$$\Lambda^* = \operatorname{\mathsf{Hom}}(T,T)^* \cong \operatorname{\mathsf{Hom}}(T,T[2]) \cong \operatorname{\mathsf{Hom}}(T,T) = \Lambda.$$

In the smooth case, ∧ is 4-periodic,

$$0 \rightarrow \Lambda \rightarrow P_4 \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow \Lambda \rightarrow 0$$

exact with P_i projective Λ -bimodules.

Formalidad

Una álgebra graduada B es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B \Longrightarrow A_1 \simeq A_2.$$

Formalidad

Una álgebra graduada B es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B \Longrightarrow A_1 \simeq A_2.$$

Theorem (kadeishvili_1988_structure_infty_algebra)

 $HH^{n+2,-n}(B)=0, n>0 \Rightarrow B$ intrínsecamente formal.

Formalidad

Una álgebra graduada *B* es **intrínsecamente formal** si dadas dos DG-álgebras *A*₁, *A*₂,

$$H^*(A_1) \cong H^*(A_2) \cong B \Longrightarrow A_1 \simeq A_2.$$

Theorem (kadeishvili_1988_structure_infty_algebra)

 $HH^{n+2,-n}(B) = 0, n > 0 \Rightarrow B$ intrínsecamente formal.

Theorem (jasso_keller_muro_2023_donovan_wemyss_conjecture)

Los siguientes enunciados son equivalentes:

- 1. $\Lambda[u^{\pm 1}]$ es intrínsecamente formal.
- 2. $\Lambda = \mathbb{C}$.
- 3. $R = \mathbb{C}[[x, y, z, t]]/(xy zt)$.
- 4. $f: Y \rightarrow X$ es el flop de Atiyah.

A_{∞} -álgebras

Una **A-algebra** $(A, m_1, m_2, m_3, \dots)$ es un espacio vectorial graduado A equipado con operaciones de grado 2 - n

$$m_n: A \otimes \stackrel{n}{\cdots} \otimes A \longrightarrow A$$
,

tales que:

- (A, m_1) es un complejo, $m_1^2 = 0$;
- $ab = m_2(a, b)$ satisface la regla de Leibniz resp. $d = m_1$,

$$d(ab) = d(a)b + (-1)^{|a|}ad(b);$$

- el producto m₂ es asociativo salvo homotopía m₃;
- ...

En particular $H^*(A)$ es un álgebra graduada.

A_{∞} -algebras

Modelos minimales

El **modelo minimal** de una DG-álgebra A con $H^*(A)$ concentrada en grado par es

$$(H^*(A), 0, m_2, 0, m_4, 0, m_6, ...).$$

El **producto de Massey universal (UMP)** de A es

$$\{m_4\} \in HH^{4,-2}(H^*(A)).$$

Recordemos que el complejo de Hochschild está dado por

$$C^n(B) = \operatorname{Hom}(B \otimes \stackrel{n}{\cdots} \otimes B, B).$$

Álgebras de Massey

Un **álgebra de Massey** (B, m) es un álgebra graduada B concentrada en grados pares equipada con

$$m \in HH^{4,-2}(B), \qquad \frac{1}{2}[m,m] = 0.$$

El álgebra de Massey de una DG-álgebra A con $H^*(A)$ concentrada en grados pares es

$$(H^*(A), \{m_4\}).$$

La **cohomología de Hochschild** de un álgebra de Massey

$$HH^*(B, m)$$

es la cohomología del complejo

$$(HH^*(B), [m, -]).$$

Un álgebra de Massey (B, m) es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B, \quad \{m_4^{A_1}\} = \{m_4^{A_2}\} = m \quad \Longrightarrow \quad A_1 \simeq A_2.$$

Un álgebra de Massey (B, m) es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B, \quad \{m_4^{A_1}\} = \{m_4^{A_2}\} = m \quad \Longrightarrow \quad A_1 \simeq A_2.$$

Theorem (jasso_muro_2022_triangulated_auslander_iyama)

1. $HH^{n+2,-n}(B,m)=0, n>2 \Rightarrow (B,m)$ intrinsecamente formal.

Un álgebra de Massey (B, m) es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B, \quad \{m_4^{A_1}\} = \{m_4^{A_2}\} = m \implies A_1 \simeq A_2.$$

Theorem (jasso_muro_2022_triangulated_auslander_iyama)

- 1. $HH^{n+2,-n}(B,m)=0, n>2 \Rightarrow (B,m)$ intrínsecamente formal.
- 2. El álgebra de Massey ($\Lambda[u^{\pm 1}]$, $\{m_4^{\Lambda^{\rm dg}}\}$) de un álgebra de contracción derivada $\Lambda^{\rm dg}$ satisface **??**.

Un álgebra de Massey (B, m) es **intrínsecamente formal** si dadas dos DG-álgebras A_1, A_2 ,

$$H^*(A_1) \cong H^*(A_2) \cong B, \quad \{m_4^{A_1}\} = \{m_4^{A_2}\} = m \implies A_1 \simeq A_2.$$

Theorem (jasso_muro_2022_triangulated_auslander_iyama)

- 1. $HH^{n+2,-n}(B,m)=0, n>2 \Rightarrow (B,m)$ intrínsecamente formal.
- 2. El álgebra de Massey ($\Lambda[u^{\pm 1}]$, { $m_4^{\Lambda^{\rm dg}}$ }) de un álgebra de contracción derivada $\Lambda^{\rm dg}$ satisface **??**.
- 3. Los UMP $\{m_4\} \in HH^{4,-2}(\Lambda[u^{\pm 1}])$ asociados a álgebras de contracción derivadas Λ^{dg} forman una $\mathrm{Aut}(\Lambda[u^{\pm 1}])$ -órbita.

Bibliografía I