

CONEXIONES BASICAS

CONEXIONES BASICAS - CISTAL DE CUARZO

Modo	Frecuencia	C1, C2		
LP	32 KHz	33pF		
L	200 KHz	15pF		
XT	200 KHz	47-68 pF 15 pF		
	1 MHz			
	4 MHz	15 pF		
HS	4 MHz	15 pF		
	8 MHz	15-33 pF		
	20 MHz	15-33 pF		

CONEXIONES BASICAS - RESONADOR CERAMICO

Modo	Frecuencia	C1, C2
XT	455 KHz	68-100 pF
	2 MHz	15-68 pF
	4 MHz	15-68 pF
HS	8 MHz	10-68 pF
	16 MHz	10-22 pF

CONEXIONES BASICAS - OSCILADOR EXTERNO

CONEXIONES BASICAS - OCILADOR RC

CONEXIONES BASICAS- PULSADORES

s por un rebote de contacto. El rebote de contacto es un roblema común en los interruptores mecánicos

CONEXIONES BASICAS- PULSADORES

El rebote de contacto es un problema común en los interruptores mecánicos, producido por la inercia, elasticidad e imperfecciones mecánicas de los componentes del interruptor.

El rebote produce rápidas pulsaciones en la señal de salida del interruptor en lugar de tener una clara transición entre estados. Para los microcontroladores esto es un problema por su velocidad de respuesta, produciendo mal interpretación de los estados del interruptor.

CONEXIONES BASICAS- PULSADORES

CONEXIONES BASICAS- RELE

CONEXIONES BASICAS-LED

CONEXIONES BASICAS- SIETE SEGMENTOS

CONEXIONES BASICAS- SIETE SEGMENTOS

DÍGITOS A VISUALIZAR	SEGME	SEGMENTOS DEL VI SUALIZADOR								
	dp	а	b	С	d	е	f	g		
0	0	1	1	1	1	1	1	0		
1	0	0	1	1	0	0	0	0		
2	0	1	1	0	1	1	0	1		
3	0	1	1	1	1	0	0	1		
4	0	0	1	1	0	0	1	1		
5	0	1	0	1	1	0	1	1		
6	0	1	0	1	1	1	1	1		
7	0	1	1	1	0	0	0	0		
8	0	1	1	1	1	1	1	1		
9	0	1	1	1	1	0	1	1		

CONEXIONES BASICAS- SIETE SEGMENTOS

4 visualizadores de cátodo común de Bajo consumo

CONEXIONES BASICAS- OPTOACOPLADORES

CONEXIONES BASICAS-LCD 16X2

CONEXIONES BASICAS-LCD 16X2

Memoria DDRAM

La memoria DDRAM se utiliza para almacenar los caracteres a visualizar. Tiene una capacidad de almacenar 80 caracteres. Algunas localidades de memoria están directamente conectadas a los caracteres en el visualizador.

Memoria DDRAM

CONEXIONES BASICAS- LCD 16X2

Memoria CGROM

La memoria CGROM contiene un mapa estándar de todos los caracteres que se pueden visualizar en la pantalla. A cada carácter se le asigna una localidad de memoria. Las direcciones de las localidades de memoria CGROM corresponden a los caracteres ASCII. Ver imagen.

CONEXIONES BASICAS- LCD 16X2

Memoria CGRAM

La pantalla LCD puede visualizar símbolos definidos por el usuario. Esto puede ser cualquier símbolo de 5×8 píxeles. La memoria RAM denominada CGRAM es de 64 bytes.

Los registros de memoria son de 8 bits de anchura, pero sólo se utilizan 5 bits más bajos. Un uno lógico (1) en cada registro representa un punto oscurecido, mientras que 8 localidades agrupados representan un carácter. Ver figura MemoriaCGRAM.

CONEXIONES BASICAS- LCD 16X2

