

算法笔记

algorithm note

作者: LHesperus

组织: UESTC

时间: 2019.09.29-September 30, 2019

版本: 1.00

目 录

1	数论	算法	1
	1.1	最大公约数	1
	1.2	扩展欧几里得算法	1
	1.3	求解模线性方程	2
	1.4	快速幂	3

github:LHesperus

第1章 数论算法

1.1 最大公约数

两个不同时为 0 的数 a 与 b 的最大公因数是同时整除它们的两个最大的数,记为 gcd(a,b),同时,如果 gcd(a,b) = 1,我们称它们互素。

O(log(N)) 欧几里得算法/辗转相除法: $gcd(m, n) = gcd(n, m \mod n)$

递归不会栈溢出: gcd 函数的递归层数不会超过 4.785lgN + 1.6723, $N = \max(a, b)$, 让 gcd 递归最多层的是 $gcd(F_n, F_{n-1})$, F_n 是 Fibonacci 数。

1.2 扩展欧几里得算法

应用:

- 求解不定方程 (如 99x + 78b = 6 的整数解);
- 求解模线性方程(线性同余方程);
- 求解模的逆元;

1.2.1 表 是理 thub: L Hesperus

若 a 和 b 是整数,方程 ax+by=d 有整数解当且 当 gcd(a,b) | d。例如,方程 3x+6y=2 就不存在整数解,方程 3x+6y=3 存在(无数多个)整数解,其中一个是 x=1, y=0。

这个定理给我们了一个判定形如 ax+by=d 的方程是否有整数解的方法,但是它并没有告诉我们如何求解。求解这样的方程是扩展欧几里得算法的内容。

1.2.2 同余

 $a = b \pmod{p}$:a, b 模 p 后的余数相同。

若

$$\begin{cases} a1 = b1(\mod p) \\ a2 = b2(\mod p) \end{cases}$$

则:

$$\begin{cases} a1 \pm a2 = b1 \pm b2 (\mod p) \\ a1 \cdot a2 = b1 \cdot b2 (\mod p) \end{cases}$$

例 1.1 求关于 x 的同余方程 $ax = 1 \pmod{b}$ 的最小正整数解。其中 $0 \le a, b \le 2 < 10^9$,并且保证该方程有解。

如果上述同余方程被满足的话,一定存在整数 y 使得 ax = 1 + by,这样我们可以直接利用扩展欧几里得算法得出一个解。至于最小正整数解也是可以很容易就计算得出,因为在 $1 \le x \le b$ 中这个方程有唯一解。

1.2.3 乘法逆元

如果 $ax = 1 \pmod{p}$, 且 gcd(a, p) = 1 (a 与 p 互质),则称 a 关于模 p 的乘法逆元为 x。在同余意义下,加减法和乘法都和普通的运算没什么区别,但是唯独"除法"有一些区别:当没有逆元时无法进行"除法"!

如 $15 \times 2 = 20 \times 2 \pmod{10}$

但 15 ≠ 20(mod 10) 因为在模 10 意义下, 2 是没有乘法逆元的。

1.3 求解模线性方程

1.4 快速幂

github:LHesperus

参考文献

github:LHesperus