Professora: Daniela O. H. Suzuki

UNIVERSIDADE FEDERAL DE SANTA CATARINA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CURSO DE ENGENHARIA ELETRÔNICA EEL7013 – Laboratório de Transdutores 2016/1

AULA 01 – INSTRUMENTOS DE MEDIDAS

1. Medidas com Multímetros Digitais

Os multímetros digitais permitem realizar medições rápidas e fáceis de resistências, tensões e correntes. O valor medido é diretamente apresentado como uma série de dígitos legíveis, possuem funcionalidades automáticas como: posicionamento da vírgula, detecção da polaridade e, frequentemente, busca e mudança da escala de medida.

A mudança automática de escala permite ao multímetro realizar medições sempre com a resolução otimizada, sem a intervenção do operador, quaisquer que forem as circunstâncias. Além disso, apresentam uma grande resistência de entrada (10^8 a $10^{12}\Omega$). Esta resistência praticamente eliminar a influência do aparelho de medida no valor obtido na medição.

1.1. Símbolos

Figura 1 - Símbolo voltímetro ideal.

Figura 2 - Símbolo amperímetro ideal.

1.2 Cuidados nas medições !!

Figura 5 – Circuito para cálculo.

Para o circuito da Figura 5, dados os valores de R_1 =500 Ω e R_2 =1 $k\Omega$. Calcule para o Caso 1: I_1 , I_2 , I_x , V_1 , V_2 , V_3 e V_x . Caso 1, dica: utilize I_x = I_1 + I_2 e I_x =12/(1k+ R_{eq}), R_{eq} =[(R_1 . R_2)/(R_1 + R_2)], V_1 = V_2 =(12. R_{eq})/(R_{eq} +1k). Lembrar que 1k=1.10³=1000.

2. Medidas com Osciloscópios

A seguir apresentaremos as principais medidas que podem ser realizadas com o osciloscópio, lendo o valor diretamente na tela.

2.1 Período e frequência

A Figura 6 mostra um exemplo de medição de período e frequência de um sinal periódico (que se repete no tempo). Neste caso, a forma de onda se repete três vezes em um segundo, ou seja, leva 1/3 de segundo para completar um ciclo, o que corresponde ao período. A frequência é o inverso do período, assim a onda mostrada nessa figura tem frequência de 3 Hz (3 ciclos por segundo).

<u>Importante</u>: para se medir o período (e a frequência) de uma onda em um osciloscópio, deve-se estar atento à escala de tempo que está sendo utilizada, para saber a medida de tempo correspondente a cada divisão horizontal do gráfico mostrado na tela.

Figura 6 – A) Período e frequência de uma onda. B) Exemplo de uma curva no osciloscópio.

2.2 Amplitude de um sinal

A amplitude dos sinais mostrados por um osciloscópio pode ser determinada diretamente. Para isso, basta observar a escala do eixo vertical do osciloscópio, quando um determinado sinal está sendo mostrado em função do tempo. Deve-se contar o número de divisões e multiplicar pela escala que está sendo utilizada.

Exemplo, na Figura 6 B) a senóide tem amplitude de 3*2 V=6 V e período de 4*500 ms=2 s, isto é frequência de ½ s=0,5 Hz.

2.3 Diferença de fase (defasagem)

A diferença de fase entre duas formas de onda senoidais pode ser determinada por uma simples regra de três, conforme mostrado na Figura 7.

Sabe-se da trigonometria que a função senoidal pode ser mapeada em uma circunferência (360 graus). Então, a cada ciclo completo da senóide, tem-se que 360 graus foram completados. Quanto duas senóides (de mesmo período) são analisadas simultaneamente em um osciloscópio, a diferença entre as duas quanto ao tempo em que elas cruzam o eixo horizontal é uma informação importante, sendo chamada de "defasagem" entre as duas ondas. A medida da defasagem "X" (em graus) é determinada observando-se os tempos T e T/4, na tela do osciloscópio, e fazendo-se a regra de três mostrada na Figura 7. No caso mostrado, a onda de menor amplitude está atrasada 90 graus em relação à de amplitude maior.

Figura 7 – Defasagem entre ondas.

Importante: conexão das ponteiras para medir dois sinais simultâneos.

Quando utilizamos o osciloscópio para a medição simultânea de duas grandezas simultâneas (dois canais), devemos tomar cuidado com a conexão das referências (terras) das duas ponteiras. Internamente, o osciloscópio irá conectar as duas referências (garras pretas).

Assim, se deve sempre tomar o cuidado de se *ligar os dois terras no mesmo ponto do circuito*. Caso contrário, o osciloscópio irá conectar internamente dois pontos distintos do circuito. A Figura 8 apresenta dois exemplos de ligação para exemplificar a ligação errônea e a correta.

Figura 8 – Medições com as duas ponteiras de osciloscópio.

Professora: Daniela O. H. Suzuki

3. Parte Experimental

3.1 Multímetro digital

- a) Meça o valor dos resistores R₁ e R₂ com o multímetro;
- b) Monte o circuito elétrico da Figura 5;
- c) Meça as tensões V_1 , V_2 e V_x ;
 - * Verifique se o multímetro está selecionado para medir <u>tensões</u> e coloque-o em <u>paralelo</u> com os terminais a serem medidos.
- d) Meça as correntes I_1 , I_2 e I_x ;
 - * Verifique se o multímetro está selecionado para medir <u>correntes</u> e coloque-o em <u>série</u> na linha onde a corrente passa.
- e) Compare os valores teóricos e experimentais. Você observou alguma diferença? Se sim, porque ela ocorreu?

3.2 Osciloscópio

Figura 9 – Circuito a ser montado.

- a) Utilize o gerador de funções com amplitude de 5 V de pico, ou seja, 10 V pico a pico, frequência de 1k Hz e offset (Vcc) de 5 V;
- b) Esboce as formas de ondas observadas de V_x , com acoplamento CC e $C\Delta$
 - * Não esqueça de anotar as escalas de amplitude e tempo.
- c) Remova o nível CC do gerador de funções. Qual o valor da defasagem entre as ondas V_{CA} e V_x ?

Professora: Daniela O. H. Suzuki

Equipe		Aula:01	Data:/	/
Nome:				
.1 Multím	etro V _{FONTE} :	•••••		
	Caso 1		Caso 2	
Medidas	Valor teórico	Valor medido	Valor teórico	Valor medido
R_1				
R_2				
V_1				
V_2				
V_x				
\mathbf{I}_1				
I_2				
I_x				
	s:			
.2 Oscilos	rónio			
.2 Osciloso	c <mark>ópio</mark> Acoplamento AC		Acoplame	
	_			nto DC
Escala	Acoplamento AC		Acoplame	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
Escala	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:
	Acoplamento AC a de amplitude:		Acoplamer Escala de amplitu	nto DC ude:

EEL7013 – Laboratório de Transdutores – Aula 01

Defasagem: