

Lila Salhi, PhD Adrien Carton, M.Sc.

About us

Lila Naouelle Salhi, PhD.

Doctorante en biochimie, Analyse des données génomiques et transcriptomiques

Lila.salhi@gmail.com

in www.linkedin.com/in/lsalhi/

github.com/LilaSal

Adrien Carton de Wiart, M.Sc.

Master en bio-ingenierie, j'ai suivi plusieurs formations complémentaires en sciences des données.

M Adriencdw@gmail.com

in www.linkedin.com/in/adrien-carton-de-wiart/

github.com/adriencdw

1. UN PEU DE THEORIE

2. OBJECTIFS

3. IDENTIFICATION DE CRH

4. CRH A TRAVERS LES TISSUS

L'épigénétique et la régulation des genes

Amplificateurs: régions non codante

Régulation génétique : Les amplificateurs changent de tissus en tissus, régulant l'expression génétique

ABC score: classifie la connexion de l'amplificateur sur un promoteur en fonction de la <u>force de liaison</u> et de la <u>fréquence de contact</u>

Les CRHs (Cis-regulatory hub)

L. Mangnier et al (2021). Cis-Regulatory Hubs: a new 3D Model of Complex Disease Genetics with an Application to Schizophrenia

Objectif du projet

Identifier les CRHs dans différentes lignées de cellules cancéreuses chez l'homme :

- 1. Déterminer le niveau de conservation des CRHs
- 2. Caractériser les CRHs fortement spécifiques aux tissus

Jeux de données et méthodologie

concaténation

> 5 tableaux : différentes lignées cellulaires

	./:		_ \ \ /				
	chr	start	end	TargetGene	activity	hic_contact	ABC_Score
0	chr1	4845108	4846160	Mrpl15	13.6615	32.6398	0.0826
1	chr1	4792015	4793701	Mrpl15	22.1066	66.2838	0.2715

➤ Identifier les amplificateurs (chromosome + positions)

 Construire les réseaux avec le logiciel networkx et calculer le nombre de CRHs

3. Identification des CRHs

3. CRHs a deux composants à travers les tissus

4. CRHs a deux composants contre tous les CRHs

Les amplificateurs des CRHs à deux composants ne sont pas conservés entre lignées cellulaires

Le chevauchement

Trouver les amplificateurs qui se chevauchent

Chromosome 12

Plusieurs CRHs communs aux lignees

K562: leucémie

LNCaP: cancer de la prostate

liver: cancer du foie

NCCIT: carcinome embryonnaire pluripotent **GM12878:** lymphoblastoïde (lymphocyte B)

Les CRH communs pour les cinq tissus

Quelques CRHs présents dans les cinq tissus

Conclusion

- Un seul CRH de faible complexité conservé entre deux tissus (Approche stricte)
- 415 CRHs identiques, conservé entre cinq tissus (Approche flexible)
- · La spécificité des CRHs aux tissus est proportionnelle à leur complexité

L'utilisation du score ABC permettra d'identifier les CRHs qui influencent la régulation des gènes et les phénotypes des différents lignées cellulaires

Mentor: Loic Mangnier

Thank you

Partenaires et collaborateurs du défi des 100 jours de Ran.Données 2022

