

cs4341 Digital Logic & Computer Design

Lecture Notes 3

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Signed Numbers

- > To carry out the various arithmetic operations, we need numbers as positive or negative.
- In sign-magnitude notation, the MSB is reserved to represent the number sign. 0 represents plus sign and 1 represents minus sign
- ▶ the 1's complement of N is obtained by reversing each bit in N (o becomes 1, and 1 becomes 0).
- \triangleright If N consists of n-bits then, 1's complement of $N = (2^n 1) N$

Review: 2's Complement Representation

- Used in most computers today
- ➤ Definition: given a binary number N, the 2's complement of N =1's complement + 1

starting value	$00100100_2 = +36$			
step1: reverse the bits (1's complement)	110110112			
step 2: add 1 to the value from step 1	+ 1 ₂			
sum = 2's complement representation	11011100 ₂ = -36			

Review: 2's Complement Representation

- Another way to obtain the 2's complement: Starting at the least significant 1:
- Leave all the 0s to its right unchanged
- > Complement all the bits to its left

```
Binary Value

= 00100 1 00

2's Complement

= 11011 1 00
```

Ranges for Unsigned and Signed Numbers

- For n-bit unsigned integers: Range is 0 to $(2^n 1)$
- For *n*-bit signed integers: Range is -2^{n-1} to $(2^{n-1} 1)$:
 - \triangleright Positive range: 0 to $(2^{n-1} 1)$
 - \triangleright Negative range: -2^{n-1} to -1

Note: in 2's Complement, there is only one zero: 2's complement of o = o

Unsigned and Signed Values

➤ Positive numbers:

➤ Signed value = Unsigned value

➤ Negative numbers:

> To obtain the signed value, we assign a negative weight to MSB and add to the rest of the bit values.

$$N = b_{n-1} \times (-2^{n-1}) + b_{n-2} \times 2^{n-2} + \dots + b_0 \times 2^0$$

Example

Find the numerical value of signed number (10110100)₂

- \triangleright Value = -128 + 32 + 16 + 4 = -76
- If we store this number in 16-bit memory instead, would the numerical value change?

Example

Find the signed and unsigned ranges in 4-bit binary representation

- \triangleright Unsigned: 0000_2 to $1111_2 = 0_{10} 15_{10}$
- ➤ Signed (using 2's Complement):
 - \triangleright Positive Range: 0000₂ (0₁₀) to 0111₂ (+7₁₀)
 - \triangleright Negative Range: 1000_2 (-8₁₀) to 1111_2 (-1₁₀)

Ranges for Unsigned and Signed Numbers

8-bit Binary value	Unsigned value	Signed value	
00000000	0	0	
0000001	1	+1	
00000010	2	+2	
01111110	126	+126	
01111111	127	+127	
10000000	128	-128	
10000001	129	-127	
11111110	254	-2	
11111111	255	-1	

Binary Addition

Start with the least significant bit (rightmost bit):

- > Add each pair of bits
- > Include the carry in the addition, if present

> Discard the carry if it exceeds the available maximum number size

(overflow)

carry		1	1	1	1				
	0	0	1	1	0	1	1	0	(54)
+	0	0	0	1	1	1	0	1	(29)
	0	1	0	1	0	0	1	1	(83)
bit position:	7	6	5	4	3	2	1	0	

Binary Subtraction

Start with the least significant bit (rightmost bit):

- ➤ Subtract each pair of bits
- > Include the carry in the subtraction, if present

Binary Subtraction using 2's Complement

- ➤ When subtracting A B, convert B to its 2's complement
- >Add A to (2's complement of B)

2's Complement Addition with Overflow

- ➤ If the addition result overflows the +ve range within the binary number size, it gives an incorrect answer
- Example: add 4_{10} + 5_{10} using 4-bit 2's complement numbers

$$(0100)_2 + (0101)_2 = (1001)_2 = (-7)_{10}$$

- ➤ Solution: Sign Extension
- ➤ When a two's complement number is extended to more bits, the sign bit must be copied into the most significant bit positions. This process is called sign extension.

Sign Extension

- ➤ Step 1: Move the number into the lower-significant bits
- >Step 2: Fill the remaining higher bits with the sign bit
- Example: sign-extend 10110011₂ to 16 bits

```
10110011_2 = -77
11111111
10110011 = -7
```

Binary Logic and Gates

- > Binary variables: take on one of two values (0, 1)
- > Logical operators: operate on binary values and variables
- ➤ Basic operators: AND, OR, NOT
- ➤ Boolean algebra: A useful mathematical system for specifying and transforming logic functions.
- ➤ Boolean algebra is the foundation of digital design

Logical Operators

- *➤AND*: is denoted by:
 - \triangleright X AND Y = X.Y = XY
- ➤ OR: is denoted by:
 - \rightarrow X OR Y = X+Y
- ➤ *NOT*: is denoted by:
 - \triangleright NOT $X = \sim X = X' = \overline{X}$

Conjunction (AND) vs Disjunction (OR)

Basic Operator Definitions

> Operations are defined on the values "0" and "1" for each operator:

```
AND OR NOT

0.0 \ 0 \ 0+0 \ 0
0.1 \ 0 \ 0+1 \ 1
1.0 \ 0 \ 1+0 \ 1
1.1 \ 1 \ 1+1 \ 1
```

Truth Table

- ➤ Truth table is a tabular listing of the values of a function for ALL possible combinations of values on its arguments
- Truth table is a useful tool to study the behavior of any Boolean function

Basic Logic Gates and Truth Table

Logic gates are simple digital circuit that implements the logical operators

Other Logic Gates

The following other logic gates are useful in optimizing complex circuit designs

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

X	Υ	Z
0	0	1
0	1	0
1	0	0
1	1	0

X	Υ	Z
0	0	0
0	1	1
1	0	1
1	1	0

Multiple Variables & Mixed Gates

- > Studying the behavior of multiple variables and mixed gates follows different simplification techniques.
- > This is possible using Boolean algebra postulates and rules.
- ➤ In general, you need to:
 - > represent all input combinations
 - > segment the design (Boolean expression) into simple gates
 - combine the results to find the final circuit behavior

Example

 \triangleright Evaluate the following logic function: $F(X, Y, Z) = XY + \overline{Y}Z$

X	Υ	Z	XY	Y	ΖŸ	$XY + Z\overline{Y}$
0	0	0	0	1	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	0	1	0	0
1	0	1	0	1	1	1
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Waveform Behavior View

To Do List

- ➤ Review lecture notes
- ➤ Study 1.1 1.5
- ➤ Read 1.6
- ➤ Solve practice problems from chapter 1