

Betriebssysteme (BS) Zusammenfassung und Ausblick

http://ess.cs.tu-dortmund.de/DE/Teaching/SS2017/BS/

Olaf Spinczyk

olaf.spinczyk@tu-dortmund.de http://ess.cs.tu-dortmund.de/~os

AG Eingebettete Systemsoftware Informatik 12, TU Dortmund

- Anwendungsbereiche für Betriebssysteme
 - Vielfalt der Anforderungen
 - Adaptive Systemsoftware
- Evaluationsergebnisse
- Ausblick
 - Lehrveranstaltung über Betriebssysteme
 - Klausur

- Anwendungsbereiche für Betriebssysteme
 - Vielfalt der Anforderungen
 - Adaptive Systemsoftware
- Evaluationsergebnisse
- Ausblick
 - Lehrveranstaltung über Betriebssysteme
 - Klausur

Vielfalt in der Systemsoftware

High Performance Computing

→ Minimale Kommunikationslatenzen

Arbeitsplatzsysteme

→ Intuitive Benutzeroberfläche

Sichere Systeme

→ Zugriffsschutz

Echtzeitsysteme

→ Vorhersagbares Zeitverhalten

Eingebettete und automotive Systeme

→ Minimaler Speicherplatzbedarf

Virtuelle Systeme

→ Paravirtualisierung

Application **Application Server JVM**

LiquidVM OS

Hypervisor Hardware

Die Eier legende Wollmilchsau

- Ein Vielzweckbetriebssystem ist für den wahrscheinlichsten Fall (den Normalfall) optimiert
- In allen Fällen, die von der künstlich definierten Norm abweichen, fallen Kosten an
- Auch ungenutzte Funktionen haben einen Preis
 - Laufzeitverbrauch durch unnötige Fallunterscheidungen
 - Speicherplatzbedarf
 - erhöhte Startzeiten
 - Verschlechterung der cache-hit Raten
- Besonders problematisch sind Eigenschaften, die sich auf viele Systemfunktionen auswirken
 - Linux-Kern: grep EPERM liefert mehr als 1200 Treffer!

Alternative: Adaptive Systemsoftware

- Ziel: feingranulare statische Konfigurierbarkeit
 - → Anpassbarkeit an unterschiedlichste Anwendungen
 - → Ressourceneinsparung gegenüber Vielzwecksystemen
 - Wiederverwendung und damit höhere Produktivität im Vergleich zu Individuallösungen

Herausforderungen:

- Beherrschung der Variantenvielfalt
 - Analyse und Modellierung der Variabilität
- Minimierung der Modulabhängigkeiten, "Plug&Play"
 - Systementwurf
- Geeignete Sprachmittel für die Programmierung
 - Generizität und Wiederverwendung vs. Effizienz
- Werkzeugunterstützung
 - Techniken zur Konfigurierung

- Anwendungsbereiche für Betriebssysteme
 - Vielfalt der Anforderungen
 - Adaptive Systemsoftware
- Evaluationsergebnisse
- Ausblick
 - Lehrveranstaltung über Betriebssysteme
 - Klausur

Evaluationsergebnisse

... findet man auf der Webseite zu BS

- Gesamtergebnis: gut (2.01)
 - Für eine Pflichtveranstaltung normal
 - Minimal besser als im Vorjahr
- Tendenzen im Vergleich zu den letzten Jahren
 - Bewertung der Vorlesung 1.95 → 1.82
 - Bewertung der Übung 2.07 → 1.96
- Auffälligkeiten (negativ)
 - Vorbereitung auf den Beruf → nur 2.5
 - Schwierigkeitsgrad/Aufwand der Übungen 5.68/5.91 → 6.63/6.64
- Auffälligkeiten (positiv)
 - Übungsleiter kompetent u. gut vorbereitet \rightarrow 1.65

Evaluationsergebnisse (2)

- Einzelmeinungen:
 - "C-Programmierung wird in der Vorlesung gar nicht erklärt! Aber danach kommen riesige Programmieraufgaben, die nur dazu gut sind, Studierende zu quälen. Sie müssen vier mal so leicht sein, wie jetzt!!!"
 - "Bücher nicht mehr als PDF vorhanden/erhältlich!"
 - "Man könnte für einige Aspekte wichtige Anwendungen in der Realität darstellen."
 - "Man könnte mehr darauf achten, motivierte Tutoren einzustellen. Durch die Lösung scrollen, egal wie einfach sie ist, ist nicht das beste zum lernen" / "Hendrik bester Mann!"
 - "[Bildchen von einem Hasen] ...Tippt das ab!"
- ESS-Kummerkasten (→ BS Webseite)
 - Für alle, die uns noch mehr sagen wollen

- Anwendungsbereiche für Betriebssysteme
 - Vielfalt der Anforderungen
 - Adaptive Systemsoftware
- Evaluationsergebnisse
- Ausblick
 - Lehrveranstaltung über Betriebssysteme
 - Klausur

LVs der Arbeitsgruppe ESS

- Bachelor Fachprojekt
 - FP-SWA "Software im Automobil" (WS)
 - Praktische Durchführung einer SW-Entwicklung für Autos
- Bachelor-Arbeit

(immer!)

- Master-Basis
 - SUS "Software ubiquitärer Systeme" (SS)
 - Basisveranstaltung für "Eingebettete und Verteilte Systeme"
 - Ein vertikaler Streifzug durch die Systemsoftware ubiquitärer Systeme
- Master-Vertiefung
 - BSB "Betriebssystembau" (WS)
 - Vertiefung im Bereich der Betriebssysteme
 - Bau eines eigenen PC Betriebssystems im Rahmen der Übung
 - ESS-Seminar (WS aber nicht jedes)
 - Zuletzt "Fehlertoleranz und Echtzeit"

Leistungsnachweise

- Informatik-Bachelor
 - Klausur am 14.8.2017, Nebentermin 26.9.2017
 - Studienleistungen für BS werden bis morgen weitergeleitet.
 - Anmeldefrist für 14.8. wird um ein paar Tage verschoben: 4.8.2017
 - Details gibt es rechtzeitig vorher auf der BS-Webseite.
- Lehramt (4 Credit Points)
 - Klausur zum selben Zeitpunkt, aber anderer Inhalt
 - keine Fragen zu "Sicherheit" und "Multiprozessorsysteme"
 - Details gibt es rechtzeitig vorher auf der BS-Webseite.
- Andere Studiengänge oder spezielle Fragen zur Prüfung?
 - Mail an Hendrik Borghorst (hendrik.borghorst@tu-dortmund.de)
 - Angabe von Name, Matrikelnummer und Studiengang nicht vergessen

Klausurvorbereitung

Mix aus Fragen zum Vorlesungsstoff <u>und Übungsthemen</u>

- Probeklausur
 - In den Tafelübungen dieser Woche!
- Inhalt der Folien lernen
 - Klassifizieren: Was muss ich lernen? Was muss ich begreifen?
- Übungsaufgaben verstehen, C und UNIX "können"
 - ASSESS System bleibt mindestens bis zur Klausur offen
 - Bei Fragen zur Korrektur melden
 - Am besten die Aufgaben noch einmal lösen
 - Optionale Zusatzaufgaben bearbeiten
- Beispielaufgaben lösen (→ BS Homepage)
 - "Last Chance Test" und Musterlösung
 - Probeklausuren mit Besprechungsfolien
- Literatur zur Lehrveranstaltung durchlesen

Literatur: Standardwerke

Operating System Concepts. von Abraham Silberschatz, Peter Galvin, und Greg Gagne

Modern Operating Systems 2/e. von Andrew S. Tanenbaum

Operating Systems.: Internals and Design Principles. von William Stallings