# This Page Is Inserted by IFW Operations and is not a part of the Official Record

### BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

## IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.



#### [12] 发明专利申请公开说明书

B24

[21] 申请号 93100115.3

[51] Int.Cl<sup>5</sup>

C12P 21 / 02

(43) 公开日 1993年7月14日

1221申读日 93.2.6

[71]申请人 北京中化生物技术研究所

地址 100850 北京市海淀区太平路 27号

[72]发明人 赵春华 唐佩弦 王嘉堃

174]专利代理机构 北京师范学院专利事务所 代现人 林 强

C12N 15/64 C12N 15/66 C12N 15/70 A61K 37/42

THE BRITISH LIBRARY

17 SEP 1993

SCIENCE REFERENCE AND INFORMATION SERVICE

说明书页数: 5

3 透页图铜

|54||发明名称 白介素 6~白介素 2 融合蛋白及共酮法 和用途

#### [57]接要

本发明公开了一种具有抗癌性能白介素 6 活性及白介素 2 活性的融合蛋白,通过优化转译起始序列,合成 IL6、IL2 功能区上、下游引物及中间接头一对寡核苷酸,将天然终止密码于 TAG 换成大肠杆菌偏性密码于 TAA, PCR 扩增获得 IL-6、中阀接头、IL-2 基因 片段,经酶 切、连接 重组 至表达 载件 PBV220,诱导高效表达,分离包插件。变性、复性获得具有 IL2、IL6 双活性融合蛋白。它较 IL6、IL2 单因子或双因子联合在多领域的研究有更多的生物学效应。

<02>

- 1、一种白介素(一白介素)的融合蛋白, 其特征在于是由白介素(一中间接头一白介素)多肽序列组成, 分子量为16-38[[。
- 2、根据权利要求! 所述的融合蛋白, 其特征在于所述中间接 头序列的长度为! 5 — 45 b f 0 1 1 。
- 引、根据权利要求1 和2 的融合蛋白, 其特征在于所述的中间 接头是由天门冬酰胺、丝氨酸、甘氨酸、苏氨酸、丙氨酸所组成。
  - 4、根据权利要求1的融合蛋白,其特征在于含有图1111序列。
- 短点 根据权利要求!的融合蛋白,其特征在于含有图! Blak 序列相应的氨基酸序列。
- 6、一种白介素6一白介素2融合蛋白的制备方法。 其特征在于
  - (1) 白介索6 功能区基因的克隆
  - (?) 中间接头与白介索? 功能区基因的克隆
  - (引)融合蛋白的表达载体187220进行表达
  - (4) 大肠杆菌的高效表达融合蛋白
  - (5) 纯化, 经分子筛凝胶过滤及高压液相而获得纯品
- <sup>1</sup>、根据权利要求! 的融白蛋白,可应用于免设调节抗癌、抗 淋巴瘤的药剂。

#### 白介素。一白介素。融合蛋白及其制法和用途

本发明涉及一种具有功能蛋白的白介素 6(11-6) 一白介素 2(11-2)融合蛋白及其制法和用途,特别涉及具有免疫调节抗癌、淋巴瘤等功能的白介素6一白介素2融合蛋白及采用生物高技术制备方法。

以往研究表明。[11-2]是由「细胞分泌的一种细胞因子,具有广泛的免疫活性、临床应用可使25-30%的淋巴瘤、肾癌、 黑色素瘤病员达到治愈或有效。结肠癌及非何杰金氏淋巴病也有较好疗效,而且可增强免疫力,提高抗心型肝炎病毒免疫力。[1-6是继11-2]等细胞因子后又一具有明显抗癌活性的生物免疫调节剂。属参与造血、免疫的多功能因子,其特点为抗肿瘤活性高,毒性作用小。新近实验证实,[1-6可诱导的[1]《活性也可互接作用于杀伤细胞,促进其功能分化。[[a:1an RC, etil, f:co, lall lead, Sci, [[SA, [987, 84, 1629]] [[Skada letal, ] ] 1110001, 1988, 141, 1543] 这些都是[[-2]、[[-6]融合蛋白的报道。

本发明的目的是提供一种白介素(一白介素)融合蛋白。 本发明的另一目的是提供一种采用生物高技术来题备白介素 6一白介索? 融合蛋白的制备方法。

本发明的又一目的是提供采用白介素 1 一白介素 2 融合蛋白作为高效的抗癌药物。

本发明的目的是通过下述的方法实现的。

我们通过优化转译起始序列,合成11-6功能区上、下游引物,中间接头一对寡核苷酸,11-2下游引物,将天然终止密码子116换成大肠杆菌偏性密码子111,PCB扩增获得11-6,11-2、功能区片段,经纯化后酶切,连接重组至表达载体FBV22C,诱导表达、分离纯化包涵体,变性复性获得具有11-2、11-6双活性融合蛋白。

11-6-11-2融合蛋白较II-6、II-2单因子或双因子联合 意更多生物学效应。

图1 为11-6-11-2 融合蛋白011 序列图, 破基(1)。

图2 为融合蛋白表达载体构造图。其中1 是 『『[19-112. 1 是 『 『 『 』 』 3 是 『 『 』 』 3 是 『 『 』 』 4 是 『 『 』 』 1 [ ] 』 』 1 [ ] 』 1 [ ] 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 是 『 』 2 [ ] 』 2 [ ] 是 『 』 2 [ ] 』 3 [ ] 』 3 [ ] 』 3 [ ] 』 4 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』 5 [ ] 』

下面结合附图对本实施例作详细说明。

图1, 11-6-11-2融合蛋白由11-6序列(11A序列1-5411; )中间接头(11A序列541-585bp)11-2序列(586-990bp)接头15-45bp不等。可由甘、苏、丙、丝及天门冬酰胺组成。11-2。11

級

一6 指与天然因子实质上一致,可与相应配基结合, 转导生物信息引起生物活性,并可与相应抗体进行反应。

一、儿一小功能区基因克隆。

二、中间接头与儿一?功能区基因克隆。

我们将天然终止密码子[AC换成大肠杆菌偏性密码子[AA,中间接头为内侧[2bp互补的一对寡核苷酸,其中]'端寡核苷酸[7bp与11-25'端互补。5'端寡核苷酸5' AI[AI AIC ICC G

CGT TCT CCA CCT 13'. 3'端塞核苷 GA GGC GGC GGT **酸5' ACCICC ACI** CGA GCC ACC TCC TGA ACC 100 100 GC3'。II-2功能区下游引物导入Baabl 酶切位点引物为5'CCC TEA GGT CAG TGT3' CA TCC TTA A 在最适条件下中 间接头由一对塞核苷酸自身退火, 延伸产生, 利用5′ 端塞核苷 酸及11-2下游引物,以11-2及中间接头为双模板, 108基因重 组获得约15000 11-12及接头共同片段,该片段上游含有11:01 陌 切位点, (图10 kl 序列535 - 540 碱基(bp), 经纯化后8 a 1 kl 酶切与 Barkl/Sral双酶切PUC19裁体重组、获得阳性克隆FUC19-IL2。

三、融合蛋白表达载体构造。

图1显示FBV220为表达载体,由温度诱导抑制子基因CIBS7ts,FR与FL串联启动子,SD序列后面紧跟多克隆位点依次为 EccRl、PazEl。将FUC19—112质粒纯化,EccRl/BazEl双酒解消化,回收1—12片段(在近EccRl端含有Rdel至Ecorl小片段FEC多克隆基因区),与Bazhl/eccrl 双商切ClF去磷酸化PBV220载体重组,酶切鉴定获得FBV—112重组质粒。继而纯化该质粒,Eccrl 及Vicel 双商切除去小片段,将保留的载体及I12片段与Ecorl/Ndel 双酶切FCC19—116的I1—6功能区片段重组,由此获得融合蛋白表达载体FBV—116—112。

四、大肠杆菌高效表达融合蛋白。

将上述阳性克隆,制备过夜培养物,再以11接种量种于含多种微量元素11。11 培养基中,11 C振摇约1小时116111达到1.1-1.6 转移至12 C诱导1一1小时,常规收菌、裂解、515—116E电泳,用薄层扫描仪测得表达蛋白占菌体总蛋白321,蛋白带的分子量为16—1111,与理论计算分子量相符。融合蛋白氨基酸序列与图11116序列相应氨基酸一致。

五、活性测定。

六、纯化

在变性条件下将包涵体经分子筛凝胶过滤后, 收集主译复性 后再经反相疏水柱纯化, 获得51左右的纯品。

本发明的优点是

- 1、116~112融合蛋的抗癌抗淋巴瘤效果比单独的116或112好。
  - 2、本制备方法精确可靠,产品纯度高。

| t   | AIGGAACAIT   | TOTAGARADA   | 100000000           |
|-----|--------------|--------------|---------------------|
| 31  | CACAGACAGC   | CACTCACCIC   | TTCAGAACGA          |
| 61  | ATTGACAAAC   | AAATICEETA   | CAICCICEAC          |
| 91  | CCCATCICAG   | CCCTGACAAA   | CCACACATET          |
| 121 | AACAAGAGTA   | ACATETETEA   | AACCACCAAA          |
| 151 | CAGGCACTGG   | ERSARRASAS   | CCIGAACCII          |
| 181 | CCAAAGATEG   | CICARRAGE    | TEERICCIIC          |
| 211 | CAATCIGGAT   | ICAATGACCA   | CACTICECTE          |
| 241 | GTGAAAATCA   | TCACTECICT   | ITTECACTIT          |
| 271 | CACCTATACE   | TACACTACCT   | CCACAACACA          |
| 301 | TTICACACTA   | GIGAGGAACA   | A C C A C A C C I   |
| 331 | GICCACATGA   | CIACAAAACT   | SEDDIEBIDD          |
| 361 | TICCTCCAEA . | 44446¢C447   | EBRICIAGEI          |
| 301 | 6231616639   | 11111111111  | 186080881           |
| 421 | SCLAGCCIGC   | TEACGAAGET   | 06360003630         |
| 451 | ARCCAGIGGC   | TECAGGACAT   | IKSTSKKSKS          |
| 481 | CICATICICC   | ARTITIBADADA | e e a e i i c c i è |
| 511 | 222221283    | IGAEGECICT   | TEGECATAIG          |

| 541        | DODDAADDOOT | GT TOTGGGGG  | TOGAGGTTOA   |
|------------|-------------|--------------|--------------|
| <b>571</b> | GGAGGTGG0T  | COLOPPEDAD D | ACTTGAAGTT   |
| 602        | AAPAAADATO  | AAGAGAGGTA   | CAAGTGGAGG   |
| 632        | ATTTACTGCT  | GGATTTAGAG   | ATGATTTTGA   |
| 662        | ATGGAATTAA  | CAATTAGAAG   | AATOOOAAAO   |
| 692        | TOACCAGGAT  | GC TCACATTT  | AAGTTTTAGA   |
| 722        | TGCCCAAGAA  | GGCGAGAGAA   | CTGAAAGATO   |
| 752        | TTGAGTGTGT  | AGAAGAAGAA   | OT CAAAGGTG  |
| 782        | TGGAGGAAGT  | GOTAAATTTA   | GOT CAAAG CA |
| 812        | ADATTTOA    | CTTAAGACCC   | AGGGAGTTAA   |
| 842        | TOAGCAATAT  | CAACGTAATA   | GTTCTGGAAC   |
| 872        | TAAAGGGATO  | T GAAAGAAGA  | TTOATGTGTG   |
| 902        | AATATGOTGA  | TGAGAGAGGA   | ACCATTGTAG   |
| 932        | AATTTOTGAA  | OAGATGGATT   | ACCITTTGTC   |
| 962        | AAAGCATCAT  | OT CAACACTG  | ACCTGATÁA    |

图 1

3.6



10

. . .