This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In the Specification:

Please amend the paragraph starting at page 6, line 17, as follows:

More preferably, in the case that β/π is n or n+ ½ (n is an integer) and $\alpha = \Delta n \cdot d\pi/\Theta \lambda$... (equation 1) and $\beta = \Theta \cdot (1+\alpha^2)$ $\beta = \Theta \cdot (1+\alpha^2)^{1/2}$... (equation 2) in which Θ is a known twist angle of the liquid crystal layer, a reasonable value of β/π is found from wavelength λ when a polarizing plane of the reflected light is maintained, the twist angle Θ , and the equations 1 and 2, and a relation between the wavelength and $\Delta n \cdot d$ is found by a calculation from the obtained value of β/π .

Please amend the paragraph starting at page 8, line 26, as follows:

More preferably, in the case that β/π is n or n+ ½ (n is an integer) and $\alpha = \Delta n \cdot d\pi/\Theta \lambda$... (equation 1) and $\beta = \Theta \cdot (1+\alpha^2)$ $\beta = \Theta \cdot (1+\alpha^2)^{1/2}$... (equation 2) in which Θ is a known twist angle of the liquid crystal layer, a reasonable value of β/π is found from wavelength λ when a polarizing plane of the reflected light is maintained, the twist angle Θ , and the equations 1 and 2, and a relation between the wavelength and $\Delta n \cdot d$ is found by a calculation from the obtained value of β/π .

In the Drawings:

Please amend Fig. 1 as shown in red on the accompanying drawing by extending the light beam 9 to the light receiving means 4.