





#### ESTADÍSTICA DIAPOSITIVAS DE EJEMPLO

Unidad 8 – Series Cronológicas

Ingeniería en Informática

Año 2023

Prof. Juan Pablo Taulamet

### Hotel UNL-ATE

Se dispone de los datos tabulados del número de clientes (en miles) que este hotel ha recibido durante cada estación entre 2010 y 2014.

### Los datos

|      | Verano | Otoño | Invierno | Primavera |
|------|--------|-------|----------|-----------|
| 2010 | 300    | 125   | 325      | 200       |
| 2011 | 250    | 150   | 375      | 175       |
| 2012 | 300    | 200   | 450      | 225       |
| 2013 | 350    | 225   | 460      | 249       |
| 2014 | 362    | 240   | 500      | 282       |

### Situaciones a resolver

Verano Otoño Invierno Primavera

- Use las herramientas disponibles para mejorar la apariencia de la gráfica de la serie y haga un pronóstico para el Verano de 2015.
- > Si el hotel contrata 15 personas en el verano, ¿Cuántos 20 empleados necesitará en el invierno, suponiendo iguales requerimientos de servicio?
- Aislar la tendencia y graficar todas las componentes en forma separada.

| 10         | W             | 0,5      |     |       |  |
|------------|---------------|----------|-----|-------|--|
| 11         | Estación      | Año      | Υ   | S     |  |
| 12         | Verano        | 2010     | 300 | 300   |  |
| 13         | Otoño         | 2010     | 125 | 212,5 |  |
| 14         | Invierno      | 2010     | 325 | 268,8 |  |
| 15         | Primavera     | 2010     | 200 | 234,4 |  |
| 10 .       | \/            | 2011     | 250 | 242,2 |  |
| Si = W * Y | / i + (1 · W) | * S - 1  | 150 | 196,1 |  |
| 3_1 - W    | _             | <b>3</b> | 375 | 285,5 |  |
| S 1 = Y 1  |               |          | 175 | 230,3 |  |
| 2T - 1T    |               |          | 300 | 265,1 |  |
| 21         | Otoño         | 2012     | 200 | 232,6 |  |
| 22         | Invierno      | 2012     | 450 | 341,3 |  |
| 23         | Primavera     | 2012     | 225 | 283,1 |  |
| 24         | Verano        | 2013     | 350 | 316,6 |  |
| 25         | O+≃ -         | 2012     | 225 | 270.0 |  |

| W         | 0,5  |     |       |  |
|-----------|------|-----|-------|--|
| Estación  | Año  | Υ   | S     |  |
| Verano    | 2010 | 300 | 300   |  |
| Otoño     | 2010 | 125 | 212,5 |  |
| Invierno  | 2010 | 325 | 268,8 |  |
| Primavera | 2010 | 200 | 234,4 |  |
| Verano    | 2011 | 250 | 242,2 |  |
| Otoño     | 2011 | 150 | 196,1 |  |
| Invierno  | 2011 | 375 | 285,5 |  |
| Primavera | 2011 | 175 | 230,3 |  |
| Verano    | 2012 | 300 | 265,1 |  |
| Otoño     | 2012 | 200 | 232,6 |  |
| Invierno  | 2012 | 450 | 341,3 |  |
| Primavera | 2012 | 225 | 283,1 |  |
| Verano    | 2013 | 350 | 316,6 |  |
| Otoño     | 2013 | 225 | 270,8 |  |
| Invierno  | 2013 | 460 | 365,4 |  |
| Primavera | 2013 | 249 | 307,2 |  |
| Verano    | 2014 | 362 | 334,6 |  |
| Otoño     | 2014 | 240 | 287,3 |  |
| Invierno  | 2014 | 500 | 393,6 |  |
| Primavera | 2014 | 282 | 337,8 |  |

Pronóstico para el 1<sup>er</sup> trimestre de 2015: 337,8



### Promedio Móvil de Orden 3

|    | A         | В    | C   | U      | E     | F      |
|----|-----------|------|-----|--------|-------|--------|
| 10 |           |      |     |        |       |        |
| 11 | Estación  | Año  | Υ   | PM3    |       |        |
| 12 | Verano    | 2010 | 300 |        |       |        |
| 13 | Otoño     | 2010 | 125 | =avera | ge(C1 | 2:C14) |
| 14 | Invierno  | 2010 | 325 | 216,7  |       |        |
| 15 | Primavera | 2010 | 200 | 258,3  |       |        |
| 16 | Verano    | 2011 | 250 | 200    |       |        |
| 17 | Otoño     | 2011 | 150 | 258,3  |       |        |
| 18 | Invierno  | 2011 | 375 | 233,3  |       |        |
| 19 | Primavera | 2011 | 175 | 283,3  |       |        |
| 20 | Verano    | 2012 | 300 | 225    |       |        |
| 21 | Otoño     | 2012 | 200 | 316,7  |       |        |
| 22 | Invierno  | 2012 | 450 | 291,7  |       |        |
| 23 | Primavera | 2012 | 225 | 341,7  |       |        |
| 24 | Verano    | 2013 | 350 | 266,7  |       |        |
| 25 | Otoño     | 2013 | 225 | 345    |       |        |
| 26 | Invierno  | 2013 | 460 | 311,3  |       |        |

### Promedio Móvil de Orden 3



### Promedio Móvil de Orden 3

| 11 | Estación  | Año  | Υ   | PM3   |  |
|----|-----------|------|-----|-------|--|
| 12 | Verano    | 2010 | 300 |       |  |
| 13 | Otoño     | 2010 | 125 | 250   |  |
| 14 | Invierno  | 2010 | 325 | 216,7 |  |
| 15 | Primavera | 2010 | 200 | 258,3 |  |
| 16 | Verano    | 2011 | 250 | 200   |  |
| 17 | Otoño     | 2011 | 150 | 258,3 |  |
| 18 | Invierno  | 2011 | 375 | 233,3 |  |
| 19 | Primavera | 2011 | 175 | 283,3 |  |
| 20 | Verano    | 2012 | 300 | 225   |  |
| 21 | Otoño     | 2012 | 200 | 316,7 |  |
| 22 | Invierno  | 2012 | 450 | 291,7 |  |
| 23 | Primavera | 2012 | 225 | 341,7 |  |
| 24 | Verano    | 2013 | 350 | 266,7 |  |
| 25 | Otoño     | 2013 | 225 | 345   |  |
| 26 | Invierno  | 2013 | 460 | 311,3 |  |
| 27 | Primavera | 2013 | 249 | 357   |  |
| 28 | Verano    | 2014 | 362 | 283,7 |  |
| 29 | Otoño     | 2014 | 240 | 367,3 |  |
| 30 | Invierno  | 2014 | 500 | 340,7 |  |
| 31 | Primavera | 2014 | 282 |       |  |
| 32 |           |      |     |       |  |

Se perdieron 2 datos (N-1)

### Situaciones a resolver

Verano Otoño Invierno Primavera

- Use las herramientas disponibles para mejorar la apariencia de la gráfica de la serie y haga un pronóstico para el Verano de 2015.
- Si el hotel contrata 15 personas en el verano, 2012 Cuántos 3 empleados 20 necesitará 5 en el invierno, suponiendo iguales requerimientos de servicio?
- Aislar la tendencia y graficar todas las componentes en forma separada.

### Cálculo del Indice Estacional

#### Promedio Móvil de Orden 4

| Estación  | Año  | Χ  | Xc  | Υ   | PM4    | PM4C      |
|-----------|------|----|-----|-----|--------|-----------|
| Verano    | 2010 | 1  | -19 | 300 |        |           |
| Otoño     | 2010 | 2  | -17 | 125 |        |           |
| Invierno  | 2010 | 3  | -15 | 325 | =avera | age(E8:E1 |
| Primavera | 2010 | 4  | -13 | 200 | 225    | 228,125   |
| Verano    | 2011 | 5  | -11 | 250 | 231,3  | 237,5     |
| Otoño     | 2011 | 6  | -9  | 150 | 243,8  | 240,625   |
| Invierno  | 2011 | 7  | -7  | 375 | 237,5  | 243,75    |
| Primavera | 2011 | 8  | -5  | 175 | 250    | 256,25    |
| Verano    | 2012 | 9  | -3  | 300 | 262,5  | 271,875   |
| Otoño     | 2012 | 10 | -1  | 200 | 281,3  | 287,5     |
| Invierno  | 2012 | 11 | 1   | 450 | 293,8  | 300       |
| Primavera | 2012 | 12 | 3   | 225 | 306,3  | 309,375   |
| Verano    | 2013 | 13 | 5   | 350 | 312,5  | 313,75    |
| Otoño     | 2013 | 14 | 7   | 225 | 315    | 318       |
| Invierno  | 2013 | 15 | a   | 460 | 221    | 222 5     |

### ¿Cómo codificar X?

Para calcular la variable X codificada, cargamos los datos y utilizamos la siguiente fórmula:

x<sub>i</sub> = Numeramos los períodos

$$x_{c} = (x_{i} - \overline{x}) * 2$$

## Obteniendo X<sub>c</sub>

**CODIF:** 

2\*(C8-average(C\$8:C\$27))

|    | Α         | В    | С  | D   | E   |  |
|----|-----------|------|----|-----|-----|--|
| 7  | Estación  | Año  | X  | Хc  | Y   |  |
| 8  | Verano    | 2010 | 1  | -19 | 300 |  |
| 9  | Otoño     | 2010 | 2  | -17 | 125 |  |
| 10 | Invierno  | 2010 | 3  | -15 | 325 |  |
| 11 | Primavera | 2010 | 4  | -13 | 200 |  |
| 12 | Verano    | 2011 | 5  | -11 | 250 |  |
| 13 | Otoño     | 2011 | 6  | -9  | 150 |  |
| 14 | Invierno  | 2011 | 7  | -7  | 375 |  |
| 15 | Primavera | 2011 | 8  | -5  | 175 |  |
| 16 | Verano    | 2012 | 9  | -3  | 300 |  |
| 17 | Otoño     | 2012 | 10 | -1  | 200 |  |
| 18 | Invierno  | 2012 | 11 | 1   | 450 |  |
| 19 | Primavera | 2012 | 12 | 3   | 225 |  |
| 20 | Verano    | 2013 | 13 | 5   | 350 |  |
| 21 | Otoño     | 2013 | 14 | 7   | 225 |  |

### Cálculo del Indice Estacional

#### Promedio Móvil de Orden 4

#### **CENTRADO**

| A         | В    |   | D   | E   | r     | u       | Н          |
|-----------|------|---|-----|-----|-------|---------|------------|
| Estación  | Año  | Χ | Хс  | Υ   | PM4   | PM4C    | Y/PM4C = 1 |
| Verano    | 2010 | 1 | -19 | 300 |       |         |            |
| Otoño     | 2010 | 2 | -17 | 125 |       |         |            |
| Invierno  | 2010 | 3 | -15 | 325 | 237,5 | =averag | e(F10:F11) |
| Primavera | 2010 | 4 | -13 | 200 | 225   | 228,125 | 0,8        |

### Cálculo del Indice Estacional Y/PMO4C = E

| Estación  | Año  | X  | Xc  | Υ   | PM4   | PM4C    | Y/PM4C = E |
|-----------|------|----|-----|-----|-------|---------|------------|
| Verano    | 2010 | 1  | -19 | 300 |       |         |            |
| Otoño     | 2010 | 2  | -17 | 125 |       |         |            |
| Invierno  | 2010 | 3  | -15 | 325 | 237,5 | 231,25  | 1,41       |
| Primavera | 2010 | 4  | -13 | 200 | 225   | 228,125 | 0,88       |
| Verano    | 2011 | 5  | -11 | 250 | 231,3 | 237,5   | 1,05       |
| Otoño     | 2011 | 6  | -9  | 150 | 243,8 | 240,625 | 0,62       |
| Invierno  | 2011 | 7  | -7  | 375 | 237,5 | 243,75  | 1,54       |
| Primavera | 2011 | 8  | -5  | 175 | 250   | 256,25  | 0,68       |
| Verano    | 2012 | 9  | -3  | 300 | 262,5 | 271,875 | 1,10       |
| Otoño     | 2012 | 10 | -1  | 200 | 281,3 | 287,5   | 0,70       |
| Invierno  | 2012 | 11 | 1   | 450 | 293,8 | 300     | 1,50       |
| Primavera | 2012 | 12 | 3   | 225 | 306,3 | 309,375 | 0,73       |
| Verano    | 2013 | 13 | 5   | 350 | 312,5 | 313,75  | 1,12       |
| Otoño     | 2013 | 14 | 7   | 225 | 315   | 318     | 0,71       |
| Invierno  | 2013 | 15 | 9   | 460 | 321   | 322,5   | 1,43       |
| Primavera | 2013 | 16 | 11  | 249 | 324   | 325,875 | 0,76       |
| Verano    | 2014 | 17 | 13  | 362 | 327,8 | 332,75  | 1,09       |
| Otoño     | 2014 | 18 | 15  | 240 | 337,8 | 341,875 | 0,70       |
| Invierno  | 2014 | 19 | 17  | 500 | 346   |         |            |
| Primavera | 2014 | 20 | 19  | 282 |       |         |            |

### Cálculo del Indice Estacional

|           | 2010 | 2011 | 2012 | 2013 | 2014 | Mediana | IE   |  |
|-----------|------|------|------|------|------|---------|------|--|
| Verano    |      | 1,05 | 1,10 | 1,12 | 1,09 | 1,10    | 1,09 |  |
| Otoño     |      | 0,62 | 0,70 | 0,71 | 0,70 | 0,70    | 0,70 |  |
| Invierno  | 1,41 | 1,54 | 1,50 | 1,43 |      | 1,46    | 1,46 |  |
| Primavera | 0,88 | 0,68 | 0,73 | 0,76 |      | 0,75    | 0,75 |  |
|           |      |      |      |      | Sum  | 4,00    | 4,00 |  |
|           |      |      |      |      | FC   | 1,00    |      |  |

### Cálculo del Indice Estacional

|           | 2010 | 2011 | 2012 | 2013 | 2014 | Mediana | IE   |
|-----------|------|------|------|------|------|---------|------|
| Verano    |      | 1,05 | 1,10 | 1,12 | 1,09 | 1,10    | 1,09 |
| Otoño     |      | 0,62 | 0,70 | 0,71 | 0,70 | 0,70    | 0,70 |
| Invierno  | 1,41 | 1,54 | 1,50 | 1,43 |      | 1,46    | 1,46 |
| Primavera | 0,88 | 0,68 | 0,73 | 0,76 |      | 0,75    | 0,75 |
|           |      |      |      |      | Sum  | 4,00    | 4,00 |
|           |      |      |      |      | FC   | 1,00    |      |

**Verano (1,09).....15 empleados** 

Invierno (1,46).....X

### Situaciones a resolver

Verano Otoño Invierno Primavera

- Use las herramientas disponibles para mejorar la apariencia de la gráfica de la serie y haga un pronóstico para el Verano de 2015.
- Si el hotel contrata 15 personas en el verano, ¿Cuántos 20 empleados necesitará en el invierno, suponiendo iguales requerimientos de servicio?
- Aislar la tendencia y graficar por separado con las variaciones Cíclicas e Irregulares.

### Ubicamos los IE

| Estación  | Año  | Χ  | Хc  | Υ   | PM4   | PM4C    | Y/PM4C = E | I.E. |
|-----------|------|----|-----|-----|-------|---------|------------|------|
| Verano    | 2010 | 1  | -19 | 300 |       |         |            | 1,09 |
| Otoño     | 2010 | 2  | -17 | 125 |       |         |            | 0,70 |
| Invierno  | 2010 | 3  | -15 | 325 | 237,5 | 231,25  | 1,41       | 1,46 |
| Primavera | 2010 | 4  | -13 | 200 | 225   | 228,125 | 0,88       | 0,75 |
| Verano    | 2011 | 5  | -11 | 250 | 231,3 | 237,5   | 1,05       | 1,09 |
| Otoño     | 2011 | 6  | -9  | 150 | 243,8 | 240,625 | 0,62       | 0,70 |
| Invierno  | 2011 | 7  | -7  | 375 | 237,5 | 243,75  | 1,54       | 1,46 |
| Primavera | 2011 | 8  | -5  | 175 | 250   | 256,25  | 0,68       | 0,75 |
| Verano    | 2012 | 9  | -3  | 300 | 262,5 | 271,875 | 1,10       | 1,09 |
| Otoño     | 2012 | 10 | -1  | 200 | 281,3 | 287,5   | 0,70       | 0,70 |
| Invierno  | 2012 | 11 | 1   | 450 | 293,8 | 300     | 1,50       | 1,46 |
| Primavera | 2012 | 12 | 3   | 225 | 306,3 | 309,375 | 0,73       | 0,75 |
| Verano    | 2013 | 13 | 5   | 350 | 312,5 | 313,75  | 1,12       | 1,09 |
| Otoño     | 2013 | 14 | 7   | 225 | 315   | 318     | 0,71       | 0,70 |
| Invierno  | 2013 | 15 | 9   | 460 | 321   | 322,5   | 1,43       | 1,46 |
| Primavera | 2013 | 16 | 11  | 249 | 324   | 325,875 | 0,76       | 0,75 |
| Verano    | 2014 | 17 | 13  | 362 | 327,8 | 332,75  | 1,09       | 1,09 |
| Otoño     | 2014 | 18 | 15  | 240 | 337,8 | 341,875 | 0,70       | 0,70 |
| Invierno  | 2014 | 19 | 17  | 500 | 346   |         |            | 1,46 |
| Primavera | 2014 | 20 | 19  | 282 |       |         |            | 0,75 |

### Eliminamos IE

Y desestacionalizada

| Xc  | Υ   | PM4   | PM4C    | Y/PM4C = E | I.E. | Yd = Y/I.E. |
|-----|-----|-------|---------|------------|------|-------------|
| -19 | 300 |       |         |            | 1,09 | 274,03      |
| -17 | 125 |       |         |            | 0,70 | 179,02      |
| -15 | 325 | 237,5 | 231,25  | 1,41       | 1,46 | 222,31      |
| -13 | 200 | 225   | 228,125 | 0,88       | 0,75 | 268,44      |
| -11 | 250 | 231,3 | 237,5   | 1,05       | 1,09 | 228,36      |
| -9  | 150 | 243,8 | 240,625 | 0,62       | 0,70 | 214,82      |
| -7  |     | 237,5 | 243,75  | 1,54       | 1,46 | 256,51      |
| -5  | 175 | 250   | 256,25  | 0,68       | 0,75 | 234,88      |
| -3  | 300 | 262,5 | 271,875 | 1,10       | 1,09 | 274,03      |
| -1  | 200 | 281,3 | 287,5   | 0,70       | 0,70 | 286,43      |
| 1   | 450 | 293,8 | 300     | 1,50       | 1,46 | 307,81      |
| 3   | 225 | 306,3 | 309,375 | 0,73       | 0,75 | 301,99      |
| 5   | 350 | 312,5 | 313,75  | 1,12       | 1,09 | 319,71      |
| 7   | 225 | 315   | 318     | 0,71       | 0,70 | 322,24      |
| 9   | 460 | 321   | 322,5   | 1,43       | 1,46 | 314,65      |
| 11  | 249 | 324   | 325,875 | 0,76       | 0,75 | 334,20      |
| 13  | 362 | 327,8 | 332,75  | 1,09       | 1,09 | 330,67      |
| 15  | 240 | 337,8 | 341,875 | 0,70       | 0,70 | 343,72      |
| 17  | 500 | 346   |         |            | 1,46 | 342,01      |
| 19  | 282 |       |         |            | 0,75 | 378,49      |

# Estimamos la tendencia a partir de la Y<sub>d</sub>



# Aislamos la tendencia a partir de la Y<sub>d</sub>

| Хc |            | Υ   | PM4   | PM4C    | Y/PM4C = E | I.E. | $Yd = Y/I.E_{\bullet}$ | Yd^ = T                             |
|----|------------|-----|-------|---------|------------|------|------------------------|-------------------------------------|
|    | -19        | 300 |       |         |            | 1,09 | 274,03                 | =3,92403* <mark>D12</mark> +286,716 |
|    | -17        | 125 |       |         |            | 0,70 | 179,02                 | 220,01                              |
|    | -15        | 325 | 237,5 | 231,25  | 1,41       | 1,46 | 222,31                 | 227,86                              |
|    | -13        | 200 | 225   | 228,125 | 0,88       | 0,75 | 268,44                 | 235,70                              |
|    | -11        | 250 | 231,3 | 237,5   | 1,05       | 1,09 | 228,36                 | 243,55                              |
|    | -9         | 150 | 243,8 | 240,625 |            | ^ 7^ | 21122                  | 051.40                              |
|    | <b>-</b> 7 | 375 | 237,5 | 243,75  | 1,!        |      |                        |                                     |
|    | -5         | 175 | 250   | 256,25  | 0,(        | v =  | 3.9240                 | 03x + 286,716                       |
|    | -3         | 300 | 262,5 | 271,875 | 1,:        | _    | = 0,798                |                                     |
|    | -1         | 200 | 281,3 | 287,5   | 0,         | L',  | 0,750                  | 3337                                |
|    | 1          | 450 | 293,8 | 300     | 1,!        |      |                        |                                     |
|    | 3          | 225 | 306,3 | 309,375 | 0,73       | 0,75 | 301,99                 | 298,49                              |
|    | 5          | 350 | 312,5 | 313,75  | 1,12       | 1,09 | 319,71                 | 306,34                              |
|    | 7          | 225 | 315   | 318     | 0,71       | 0,70 | 322,24                 | 314,18                              |
|    | 9          | 460 | 321   | 322,5   | 1,43       | 1,46 | 314,65                 | 322,03                              |
|    | 11         | 249 | 324   | 325,875 | 0,76       | 0,75 | 334,20                 | 329,88                              |
|    | 13         | 362 | 327,8 | 332,75  | 1,09       | 1,09 | 330,67                 | 337,73                              |
|    | 15         | 240 | 337,8 | 341,875 | 0,70       | 0,70 | 343,72                 | 345,58                              |
|    | 17         | 500 | 346   |         |            | 1,46 | 342,01                 | 353,42                              |

## Eliminamos la tendencia obteniendo CI

| I.E. | Yd = Y/I.E. | Yd^ = T | Yd/T=C*I |
|------|-------------|---------|----------|
| 1,09 | 274,03      | 212,16  | 1,29     |
| 0,70 | 179,02      | 220,01  | 0,81     |
| 1,46 | 222,31      | 227,86  | 0,98     |
| 0,75 | 268,44      | 235,70  | 1,14     |
| 1,09 | 228,36      | 243,55  | 0,94     |
| 0,70 | 214,82      | 251,40  | 0,85     |
| 1,46 | 256,51      | 259,25  | 0,99     |
| 0,75 | 234,88      | 267,10  | 0,88     |
| 1,09 | 274,03      | 274,94  | 1,00     |
| 0,70 | 286,43      | 282,79  | 1,01     |
| 1,46 | 307,81      | 290,64  | 1,06     |
| 0,75 | 301,99      | 298,49  | 1,01     |
| 1,09 | 319,71      | 306,34  | 1,04     |
| 0,70 | 322,24      | 314,18  | 1,03     |
| 1,46 | 314,65      | 322,03  | 0,98     |
| 0,75 | 334,20      | 329,88  | 1,01     |
| 1,09 | 330,67      | 337,73  | 0,98     |
| 0,70 | 343,72      | 345,58  | 0,99     |
| 1,46 | 342,01      | 353,42  | 0,97     |
| 0,75 | 378,49      | 361,27  | 1,05     |

### **Graficamos CI**





### Ej. Teoría de Susana

- ▶ El Departamento de Comercio de los Estados Unidos publica información sobre fabricación. En estas cifras se incluyen los datos de envíos mensuales para la industria de envases y cajas de cartón que se presenta en la tabla que sigue correspondientes a 6 años. Las cifras de envío se dan en millones de dólares.
- Use los datos para analizar los efectos de la estacionalidad, la tendencia y el ciclo.
- Piense e intercambie con sus pares y profesores en como usar este análisis en la toma de decisiones

### **DATOS**

| Mes              | Envios | Mes              | Envios |
|------------------|--------|------------------|--------|
| January (year 1) | 1,891  | January (year 4) | 2,336  |
| February         | 1,986  | February         | 2,474  |
| March            | 1,987  | March            | 2,546  |
| April            | 1,987  | April            | 2,566  |
| May              | 2,000  | May              | 2,473  |
| June             | 2,082  | June             | 2,572  |
| July             | 1,878  | July             | 2,336  |
| August           | 2,074  | August           | 2,518  |
| September        | 2,086  | September        | 2,454  |
| October          | 2,045  | October          | 2,559  |
| November         | 1,945  | November         | 2,384  |
| December         |        | December         |        |
| December         | 1,861  |                  | 2,305  |
| Mes              | Envíos | Mes              | Envíos |
| January (year 2) | 1,936  | January (year 5) | 2,389  |
| February         | 2,104  | February         | 2,463  |
| March            | 2,126  | March            | 2,522  |
| April            | 2,131  | April            | 2,417  |
| May              | 2,163  | May              | 2,468  |
| June             | 2,346  | June             | 2,492  |
| July             | 2,109  | July             | 2,304  |
| August           | 2,211  | August           | 2,511  |
| September        | 2,268  | September        | 2,494  |
| October          | 2,285  | October          | 2,530  |
|                  |        | November         |        |
| November         | 2,107  |                  | 2,381  |
| December         | 2,077  | December         | 2,211  |
| Mes              | Envíos | Mes              | Envios |
| January (year 3) | 2,183  | January (year 6) | 2,377  |
| February         | 2,230  | February         | 2,381  |
| March            | 2,222  | March            | 2,268  |
| April            | 2,319  | April            | 2,407  |
| May              | 2,369  | May              | 2,367  |
| June             | 2,529  | June             | 2,446  |
| July             | 2,267  | July             | 2,341  |
| August           | 2,457  | August           | 2,491  |
|                  |        |                  |        |
| September        | 2,524  | September        | 2,452  |
| October          | 2,502  | October          | 2,561  |
| November         | 2,314  | November         | 2,377  |
| December         | 2,277  | December         | 2,277  |

### Propuesta en GNUmeric

- Cargar los datos
- Codificar X
- Suavizar la serie
  - Promedios Móviles
  - Suavizado Exponencial
- Estudiar la estacionalidad
- > Estudiar la tendencia
- Graficar las componentes
- Realizar una predicción

### ¿Cómo codificar X?

Para calcular la variable X codificada, cargamos los datos y utilizamos la siguiente fórmula:

x<sub>i</sub> = Numeramos los períodos

$$x_{c} = (x_{i} - \overline{x}) * 2$$

### Codificar X

| Α   | В   | С      | D | E )                | F | G | Н                  |
|-----|-----|--------|---|--------------------|---|---|--------------------|
| Año | Mes | Envíos |   |                    |   | X | X <sub>codif</sub> |
| 1   | 1   | 1981   |   | X <sub>media</sub> |   | 1 | -71                |
| 1   | 2   | 1986   |   | 36,5               |   | 2 | -69                |
| 1   | 3   | 1987   |   |                    |   | 3 | -67                |
| 1   | 4   | 1987   |   | Datos              |   | 4 | -65                |
| 1   | 5   | 2000   |   | Mensuales          |   | 5 | -63                |

### Codificar X

| A   | В      | С      | D  | E                     | F | G   | Н            |
|-----|--------|--------|----|-----------------------|---|-----|--------------|
| Año | Mes    | Envíos |    |                       |   | X   | XX           |
| 1   | 1      | 1981   |    | Χ <sub>med:</sub> _35 |   | -3  | 2277<br>2336 |
| 1   | 2      | ]800   | +- | 36                    |   | 1   | 2474         |
|     | ero te | mpora  | 1  | 37                    |   | 3 4 | -65          |
| Ce  | nuo    | I      |    | isuales               |   | 5   | -63          |

### Suavizado por promedios móviles

|    | A                  | В                | С                |
|----|--------------------|------------------|------------------|
| 1  | X <sub>codif</sub> | Y <sub>obs</sub> | PM12             |
| 2  | -71                | 1981             |                  |
| 3  | -69                | 1986             | 6                |
| 4  | -67                | 1987             | 6<br>datos —     |
| 5  | -65                | 1987             | perdidos         |
| 6  | -63                | 2000             | perdidos         |
| 7  | -61                | 2082             |                  |
| 8  | -59                | 1878             | =average(B2:B13) |
| 9  | -57                | 2074             | 1988,92          |
| 10 | -55                | 2086             | 1998,75          |
| 11 | -53                | 2045             | 2010,33          |
| 12 | -51                | 1945             | 2022,33          |
| 13 | -49                | 1861             | 2035,92          |

### Otros órdenes

| X <sub>codif</sub> | Y <sub>obs</sub> | PM12              | PM6      | PM3            |
|--------------------|------------------|-------------------|----------|----------------|
| -71                | 1981             |                   | 3        | 1 dato perdido |
| -69                | 1986             |                   | datos    | 1984,67        |
| -67                | 1987             | 6<br>datas        | perdidos | 1986,67        |
| -65                | 1987             | datos<br>perdidos | 2003,83  | 1991,33        |
| -63                | 2000             |                   | 1986,67  | 2023,00        |
| -61                | 2082             |                   | 2001,33  | 1986,67        |
| -59                | 1878             | 1992,67           | 2017,83  | 2011,33        |
| -57                | 2074             | 1988,92           | 2027,50  | 2012,67        |
| -55                | 2086             | 1998,75           | 2018,33  | 2068,33        |
| -53                | 2045             | 2010,33           | 1981,50  | 2025,33        |
| -51                | 1945             | 2022,33           | 1991,17  | 1950,33        |
| , a                |                  |                   |          |                |

### Datos que se pierden: n-1

| X <sub>codif</sub> | Y <sub>obs</sub> | PM12              | PM6      | PM3            |
|--------------------|------------------|-------------------|----------|----------------|
| -71                | 1981             |                   | 3        | 1 dato perdido |
| -69                | 1986             |                   | datos    | 1984,67        |
| -67                | 1987             | 6<br>datas        | perdidos | 1986,67        |
| -65                | 1987             | datos<br>perdidos | 2003,83  | 1991,33        |
| -63                | 2000             |                   | 1986,67  | 2023,00        |
| -61                | 2082             |                   | 2001,33  | 1986,67        |
| -59                | 1878             | 1992,67           | 2017,83  | 2011,33        |
| -57                | 2074             | 1988,92           | 2027,50  | 2012,67        |
| -55                | 2086             | 1998,75           | 2018,33  | 2068,33        |
| -53                | 2045             | 2010,33           | 1981,50  | 2025,33        |
| -51                | 1945             | 2022,33           | 1991,17  | 1950,33        |
| II                 |                  |                   | L        |                |

## Datos que se pierden: n-1 (Al principio y al final)

| X <sub>codif</sub> | Y <sub>obs</sub> | PM12                   | PM6      | РМЗ            |
|--------------------|------------------|------------------------|----------|----------------|
| -71                | 1981             |                        | 3        | 1 dato perdido |
| -69                | 1986             | 6<br>datos<br>perdidos | datos    | 1984,67        |
| -67                | 1987             |                        | perdidos | 1986,67        |
| -65                | 1987             |                        | 2003,83  | 1991,33        |
| -63                | 2000             |                        | 1986,67  | 2023,00        |
| -61                | 2082             |                        | 2001,33  | 1986,67        |
| -59                | 1878             | 1992,67                | 2017,83  | 2011,33        |
| -57                | 2074             | 1988,92                | 2027,50  | 2012,67        |

- - -

| 55 | 2407 | 2387,67  | 2374,33  | 2347,33        |
|----|------|----------|----------|----------------|
| 57 | 2367 | 2390,25  | 2368,33  | 2406,67        |
| 59 | 2446 | 2389,92  | 2386,67  | 2384,67        |
| 61 | 2341 | 2395,42  | 2417,33  | 2426,00        |
| 63 | 2491 |          | 2443,00  | 2428,00        |
| 65 | 2452 | 5        | 2444,67  | 2501,33        |
| 67 | 2561 | datos    | 2416,50  | 2463,33        |
| 69 | 2377 | perdidos | 2 datos  | 2405,00        |
| 71 | 2277 |          | perdidos | 1 dato perdido |

### El impacto del orden



| A                  | В                | С              |        |
|--------------------|------------------|----------------|--------|
| X <sub>codif</sub> | Y <sub>obs</sub> | SE ω=0,1       |        |
| -71                | 1981             | 1981,00        | 1      |
| -69                | 1986             | 1981,50        | _ 1    |
| -67                | 1987             | =\$B4*0,1+C3*( | 1-0,1) |
| -65                | 1987             | 1982,55        | 1      |
| -63                | 2000             | 1984,29        | 1      |
| -61                | 2082             | 1994,06        | 2      |

### Diferentes Omegas

| v                  | v                |          |          | 1        |
|--------------------|------------------|----------|----------|----------|
| X <sub>codif</sub> | Y <sub>obs</sub> | SE ω=0,1 | SE ω=0,5 | SE ω=0,9 |
| -71                | 1981             | 1981,00  | 1981,00  | 1981,00  |
| -69                | 1986             | 1981,50  | 1983,50  | 1985,50  |
| -67                | 1987             | 1982,05  | 1985,25  | 1986,85  |
| -65                | 1987             | 1982,55  | 1986,13  | 1986,98  |
| -63                | 2000             | 1984,29  | 1993,06  | 1998,70  |
| -61                | 2082             | 1994,06  | 2037,53  | 2073,67  |
| -59                | 1878             | 1982,46  | 1957,77  | 1897,57  |
| -57                | 2074             | 1991,61  | 2015,88  | 2056,36  |
| -55                | 2086             | 2001,05  | 2050,94  | 2083,04  |

### El impacto del valor de Omega



### Analizando la Estacionalidad

|                    | X  | X <sub>codif</sub> | Y <sub>obs</sub> | PM12                   | PM12 <sub>c</sub>      | E =<br>Y <sub>obs</sub> / PM12 <sub>c</sub> |
|--------------------|----|--------------------|------------------|------------------------|------------------------|---------------------------------------------|
| X <sub>media</sub> | 1  | -71                | 1981             | 6<br>datos<br>perdidos | 6<br>datos<br>perdidos | 6<br>datos<br>perdidos                      |
| 36,5               | 2  | -69                | 1986             |                        |                        |                                             |
|                    | 3  | -67                | 1987             |                        |                        |                                             |
| Datos              | 4  | -65                | 1987             |                        |                        |                                             |
| Mensuales          | 5  | -63                | 2000             |                        |                        |                                             |
|                    | 6  | -61                | 2082             |                        |                        |                                             |
| Períodos           | 7  | -59                | 1878             | 1992,67                | 1990,79                | =18/K8                                      |
| por año            | 8  | -57                | 2074             | 1988,92                | 1993,83                | 1,04                                        |
| 12                 | 9  | -55                | 2086             | 1998,75                | 2004,54                | 1,04                                        |
|                    | 10 | -53                | 2045             | 2010,33                | 2016,33                | 1,01                                        |
|                    | 11 | -51                | 1945             | 2022,33                | 2029,13                | 0,96                                        |
|                    | 12 | -49                | 1861             | 2035,92                | 2046,92                | 0,93                                        |

### Cálculo del Índice Estacional

| Estacionalidad |    | Años       |      |      |      |      |                        |         |       |
|----------------|----|------------|------|------|------|------|------------------------|---------|-------|
|                |    | 1          | 2    | 3    | 4    | 5    | 6                      | Mediana | I.E.  |
|                | 1  |            | 0,94 | 0,97 | 0,96 | 0,98 | 0,99                   | 0,97    | 0,    |
|                | 2  |            | 1,01 | 0,98 | 1,01 | 1,01 | 1,00                   | 1,01    | 1     |
|                | 3  | 6<br>datos | 1,01 | 0,97 | 1,04 | 1,03 | 0,95                   | 1,01    | 1     |
|                | 4  | perdidos   | 1,01 | 1,01 | 1,05 | 0,99 | 1,01                   | 1,01    | 1     |
|                | 5  |            | 1,02 | 1,02 | 1,01 | 1,01 | 0,99                   | 1,01    | 1     |
| Meses          | 6  |            | 1,09 | 1,08 | 1,05 | 1,02 | 1,02                   | 1,05    | 1     |
| Σ              | 7  | 0,94       | 0,97 | 0,96 | 0,95 | 0,95 | 6<br>datos<br>perdidos | 0,95    | 0     |
|                | 8  | 1,04       | 1,01 | 1,04 | 1,02 | 1,03 |                        | 1,03    | 1     |
|                | 9  | 1,04       | 1,04 | 1,05 | 1,00 | 1,03 |                        | 1,04    | 1     |
|                | 10 | 1,01       | 1,04 | 1,03 | 1,04 | 1,05 |                        | 1,04    | 1     |
|                | 11 | 0,96       | 0,95 | 0,95 | 0,97 | 0,99 |                        | 0,96    | 0     |
|                | 12 | 0,91       | 0,93 | 0,93 | 0,94 | 0,92 |                        | 0,93    | 0     |
|                |    |            |      |      |      |      | Suma                   | 12,0035 | 12,00 |
|                |    |            |      |      |      |      | FC                     | 0,99970 |       |

### Eliminamos IE

Y desestacionalizada

| x  | x <sub>codif</sub> | Y <sub>obs</sub> | PM12                   | PM12 <sub>c</sub>      | E =<br>Y <sub>obs</sub> / PM12 <sub>c</sub> | I.E. | Y <sub>d</sub> =<br>Y <sub>obs / I. E.</sub> |
|----|--------------------|------------------|------------------------|------------------------|---------------------------------------------|------|----------------------------------------------|
| 1  | -71                | 1981             | 6<br>datos<br>perdidos | 6<br>datos<br>perdidos | 6<br>datos<br>perdidos                      | 0,97 | 2041,50                                      |
| 2  | -69                | 1986             |                        |                        |                                             | 1,01 | 1967,82                                      |
| 3  | -67                | 1987             |                        |                        |                                             | 1,01 | 1959,70                                      |
| 4  | -65                | 1987             |                        |                        |                                             | 1,01 | 1972,69                                      |
| 5  | -63                | 2000             |                        |                        |                                             | 1,01 | 1977,72                                      |
| 6  | -61                | 2082             |                        |                        |                                             | 1,05 | 1991,18                                      |
| 7  | -59                | 1878             | 1992,67                | 1990,79                | 0,94                                        | 0,95 | 1980,25                                      |
| 8  | -57                | 2074             | 1988,92                | 1993,83                | 1,04                                        | 1,03 | 2005,55                                      |
| 9  | -55                | 2086             | 1998,75                | 2004,54                | 1,04                                        | 1,04 | 2015,16                                      |
| 10 | -53                | 2045             | 2010,33                | 2016,33                | 1,01                                        | 1,04 | 1971,45                                      |
| 11 | -51                | 1945             | 2022,33                | 2029,13                | 0,96                                        | 0,96 | 2029,72                                      |
| 12 | -49                | 1861             | 2035,92                | 2046,92                | 0,91                                        | 0,93 | 2002,97                                      |
| 13 | -47                | 1936             | 2057,92                | 2067,54                | 0,94                                        | 0,97 | 1995,12                                      |

### **Archivo GNUmeric**

Para visualizar la resolución completa de este ejemplo de las Diapositivas de Susana, se encuentra disponible el archivo GNUmeric en Estadilandia:

**Archivo GNUmeric** 

