

Regressão Linear Múltipla

Prof. Ricardo Sovat
sovat@ifsp.edu.br
Prof. Samuel Martins (Samuka)
samuel.martins@ifsp.edu.br

Equação da Reta: Exemplos

Regressão Linear Simples

escalar dependente dependente
$$h(x_1) = \hat{y} = b_0 + b_1 * x$$
modelo linear (hipótese) intercepto variável intercepto variável independente independente dependente independente inclinação da reta

Equação da Reta: Exemplos

Regressão Linear Simples

Regressão Linear Múltipla

Regressão Linear

Visualizando VD e duas VI

variável dependente

observações

Lucro (\$)	P&D (\$)	Marketing (\$)
191792.06	162597.70	443898.53
191050.39	153441.51	407934.54
192261.83	165349.20	471784.10
•••	•••	•••

$$h(x) = \hat{y} = b_0 + b_1 * x_1 + b_2 * x_2$$

Visualizando VD e duas VI

variável dependente

observações

Lucro (\$)	P&D (\$)	Marketing (\$)
191792.06	162597.70	443898.53
191050.39	153441.51	407934.54
192261.83	165349.20	471784.10
•••	•••	•••

$$h(x) = \hat{y} = b_0 + b_1 * x_1 + b_2 * x_2$$

Dummy Variables

Dummy Variables

variável dependente

	Lucro (\$)	P&D (\$)	Administração (\$)	Marketing (\$)	California	Florida	New York
	191792.06	162597.70	151377.59	443898.53	1	0	0
•	191050.39	153441.51	101145.55	407934.54	0	1	0
	192261.83	165349.20	136897.80	471784.10	0	0	1
	•••	•••	•••	•••	•••	•••	•••
$h(x) = \hat{y} = b_0 + b_1 * x_1 + b_2 * x_2 + b_3 * x_3 + b_4 * x_4 + b_5 * x_5 + b_6 * x_6$ $\begin{array}{c} \text{Modelo linear} \\ \text{(hipótese)} \end{array}$							

Dummy Variable Trap

- Incluir variáveis categóricas em Regressão Linear, usando **Dummy Variables**, é uma maneira poderosa de incluir dados nãonuméricos ao modelo de regressão.
- Entretanto, isso pode causar a **Dummy Variable Trap**
 - Variáveis Independentes são multi-colineares: duas ou mais variáveis são altamente correlacionadas
 - New York = 1 California Florida

	Lucro (\$)	P&D (\$)	Administração (\$)	Marketing (\$)	California	Florida	New York
}	191792.06	162597.70	151377.59	443898.53	1	0	0
) }	191050.39	153441.51	101145.55	407934.54	0	1	0
	192261.83	165349.20	136897.80	471784.10	0	0	1
)		•••	•••	•••	•••	•••	•••

Dummy Variable Trap

variável dependente

	variaver dependence			11005		
	Lucro (\$)	P&D (\$)	Administração (\$)	Marketing (\$)	Florida	New York
SS	191792.06	162597.70	151377.59	443898.53	0	0
vaçõe	191050.39	153441.51	101145.55	407934.54	1	0
observações	192261.83	165349.20	136897.80	471784.10	0	1
0	•••	•••	•••	•••	• • •	• • •
	vetor "Lucro"		Coefi Hip	$b_3 * x_3 + k$ cientes do perplano gressão)	$b_4 * x_4 +$	$b_5 * x_5$

Intepretação dos Coeficientes

Como escolher os melhores atributos para construir o modelo

- 1. All-in
- 2. Backward Elimination
- 3. Forward Selection
- 4. Bidirectional Elimination
- 5. Score Comparison