Consensus Number

魏恒峰

hfwei@nju.edu.cn

2017年12月14日

Definition (Consensus Number)

The **consensus number** for X is the largest n for which X solves n-thread consensus.

If no largest n exists, the consensus number is said to be infinite.

Lemma (Y Implements X)

Theorem (Consensus Number as ...)

in the following, main results (table)

beautiful ideas and proofs

What is a Protocol \mathcal{P} ?

Protocol

 $P = \{All \text{ executions of this protocol}\}$

Execution

$$e = \sigma_0 \xrightarrow{o_1} \sigma_1 \xrightarrow{o_2} \cdots \xrightarrow{o_{n-1}} \sigma_n$$

State

 σ_i : states of individual threads + states of shared objects

Operation

 o_i : method calls to a shared object

Modeling \mathcal{P} as a Computation "Tree" (Binary Consensus for 2 Threads)

Theorem (Bivalent Initial State)

Every 2-thread binary consensus protocol has a bivalent initial state.

Theorem (Bivalent Initial State)

Every 2-thread binary consensus protocol has a bivalent initial state.

$$(A,B,O):(0,0,*)\quad (1,1,*)\quad (0,1,*)\quad (1,0,*)$$

Theorem (Bivalent Initial State)

Every 2-thread binary consensus protocol has a bivalent initial state.

$$(A,B,O):(0,0,*)$$
 $(1,1,*)$ $(0,1,*)$ $(1,0,*)$

Lemma (Bivalent Initial State)

Every n-thread (binary) consensus protocol has a bivalent initial state.

Lemma (Bivalent Initial State)

Every n-thread (binary) consensus protocol has a bivalent initial state.

Theorem (Existence of Critical States)

Every wait-free consensus protocol has a critical state.

Lemma (Bivalent Initial State)

Every n-thread (binary) consensus protocol has a bivalent initial state.

Theorem (Existence of Critical States)

Every wait-free consensus protocol has a critical state.

Proof.

fig here.

Thank You!