Wastewater Impact Assessment Tool V1. Science and Methods

Content

1.	Global Indicators	4
	1.1 Population	5
	1.2Water Quantity	5
	1.2.1 Water availability	6
	1.2.2 Water demand	8
	1.2.3 Water scarcity ratios	<u>S</u>
	1.2.4 Groundwater	11
	1.2.5 Flood risk	11
	1.2.6 Drought risk	13
	1.3 Water quality	13
	1.4 Reputational risk	
2.	Impact assessment	17
	2. 1 Pollution impact	
	2.1.1 Effluent toxicity level	
	2.1.1 Pollution load to the environment	
	2.1.3 Treatment efficiency	
	2.2 Freshwater impact	
	2.3 GHG emissions	
	Total emissions	
	3. Indicators for external reporting	
4	Industry inputs	
т.	4.1 Industry typology	
	4.2 Industry estimated pollution values	
	4.3 Wastewater treatment plants estimated pollutants removal values	
	4.4 Other estimated values	
_	References	
J.	NCICI CI ICC3	40

1. Global Indicators

The global indicators are intended to report on the status of water security issues at the global level. These indicators are classified in 4 different groups, the first one is the population indicator, which is used to observe how the population is distributed in the world. The next group is water quantity, in which there are all the indicators related to water quantity (available water, ratios of availability and demand, risk of flooding or drought ...). The third major group is water quality, in this group we find indicators that report the quality of water. Finally, the reputational risk indicator reports on the risk that a company has in establishing itself in a country of damaging its reputation.

Population Population Water Quality Water availability Water supply Flow accumulation Stream flow Seasonal variability Interannual variability Water demand Water demand Water scarcity ratios Water stress Water depletion Aridity index Groundwater Groundwater table decline Flood risk Riverine flood risk Coastal flood risk Drought risk Drought risk Water quality **Coastal Eutrophication Potential** Surface Water Pharmaceutical Pollution

Coastal Pharmaceutical Pollution	
Unimproved/ No drinking water	
Unimproved/ No sanitation	
Reputational risk	
Peak RepRisk Country ESG Risk Index	

1.1 Population

The population indicator indicates the number of inhabitants in each region. The objective of this indicator is to inform about the number of people that can be affected by an industry in a region if it has a negative impact on the quality or quantity of water.

Name	Population
Sub-group	Population
Spatial resolution	60 X 60 arc minute cells
Temporal resolution	5 years
Temporal range	2000 - 2020
Source	CEISIN
Description	Data set whit the current world population and a 2030 BAU future scenario projection. (<i>Documentation</i> » <i>Gridded Population of the World (GPW), v4 SEDAC,</i> n.d.)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

1.2Water Quantity

Quantity indicators report on issues related to water quantity. There are 4 different subgroups related to water quantity. The first one Water availability informs about what is the quantity of water we find at a point, calculated in different ways and with different sources of information, in this subgroup are also the indicators that show the variability of quantity. The second subgroup is water demand, which informs about the demand of water for different uses. The third group links the availability and demand indicators to create ratios of availability/demand that indicate the water scarcity levels. The groundwater group indicates the status of the aquifers. Finally, the flood and drought indicators indicate the risk in each zone of being impacted by a flood or drought period and which population is going to be affected by it.

1.2.1 Water availability

Name	Water supply
Sub-group	Water availability
Spatial resolution	5 X 5 arc minute cells
Temporal resolution	Annual
Temporal range	1960 -2014
Source	Aqueduct
Description	Water supply is the amount of water available in one point, it takes in count the up-stream consumptive use and the flow accumulated upstream. It does not take in count groundwater resources. The units used are mm/year, each mm is one litre of water in one square meter of surface, to calculate the available water in an area it is necessary to multiply the value of mm/year by the number of square meters that have the area (Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0, n.d.)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

Name	Flow accumulation
Sub-group	Water availability
Spatial resolution	3,75 X 3,75 arc minute cells
Temporal resolution	Annual
Temporal range	2019
Source	Global Fate
Description	Flow accumulation indicates the amount of water accumulated at each point as the sum of all points upstream. It counts the run-off values from High-resolution fields of global runoff combining observed river discharge and simulated water balances. (Acuña et al., 2020)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

Name	Stream flow
Sub-group	Water availability
Spatial resolution	30 X 30 arc minute cells
Temporal resolution	Annual
Temporal range	2000 - 2016

Source	WaterGap2.2d
Description	Stream flow is the volume of water flowing in one point, it considers the extraction of water for irrigation, livestock, domestic uses, manufacturing process and thermal power. The source of these indicator is the WaterGapv2.2.d, global hydrological model that quantifies human use of groundwater and surface water as well as water flows and water storage and thus water resources on all land areas of the Earth. Stream flow has a spatial resolution of 0,50 X 0,50 grid cells (55km X 55km at the Equator) (Müller Schmied et al., 2021). To calculate the stream flow, we use the 2000 - 2016 monthly data to calculate the mean value. To create the 2030 BAU future scenario values we did a lineal progression with the data from the WaterGap.
Used for	Calculus metrics that are related to the amount of water available.

Name	Seasonal variability
Sub-group	Water availability
Spatial resolution	5 X 5 arc minute cells
Temporal resolution	Annual
Temporal range	1960 - 2014
Source	Aqueduct
Description	Seasonal variability measures the average within-year variability of
	available water supply, including both renewable surface and
	groundwater supplies. Higher values indicate wider variations of
	available supply within a year. (Hofste et al., n.d.)
Equation	$seasonal\ variability = \frac{SD_{[jandec]}Q_m}{mean_{[jandec]}Q_m}$
	SD: Standard deviation
	Q_m : Average available water per month
Risk categories	• <0,33 Low
	• 0,33 – 0,66 Low – medium
	• 0,66 – 1,00 Midium – High
	 1,00 – 1,33 High >1,33 Extremely high
	, ,
	(Aqueduct_Global_Maps_2.1-Constructing_Decicion- Relevant_Global_Water_Risk_Indicators_final_0, n.d.)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

Name	Interannual variability
------	-------------------------

Sub-group	Water availability
Spatial resolution	5 X 5 arc minute cells
Temporal resolution	Annual
Temporal range	1960 - 2014
Source	Aqueduct
Description	Interannual variability measures the average between year variability of available water supply, including both renewable surface and groundwater supplies. Higher values indicate wider variations in available supply from year to year. Interannual, or between year, variability is defined as the coefficient of variation (CV) of available water for each sub-basin. The CV is the standard deviation (SD) of the available water, divided by the mean. (Hofste et al., n.d.)
Equation	$interannual\ variability = rac{SD_{[19602014]}Q_m}{mean_{[19602014]}Q_m}$ $SD: Standard\ deviation$
	Q_m : Average available water per month
Risk categories	 <0,25 Low 0,25 – 0,50 Low – Medium 0,50 – 0,75 Medium – high 0,75 – 1,00 High >1,00 Extremely high (Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0, n.d.)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

1.2.2 Water demand

The water demand indicator provides information on the water demand at each point.

Name	Water demand
Sub-group	Water demand
Spatial resolution	5 X 5 arc minute cells
Temporal resolution	Annual
Temporal range	1960 - 2014
Source	Aqueduct
Description	Water demand measures the amount of water that is withdrawn at each point for domestic, agricultural, or industrial use.
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

1.2.3 Water scarcity ratios

This subgroup of indicators relates water demand or consumption to the amount of water available. Some of these are more focused on human actions and others are more focused on water consumption by vegetation.

	L
Name	Water stress
Sub-group	Water scarcity ratios
Spatial resolution	5 X 5 arc minute cells
Temporal resolution	Annual
Temporal range	1960 - 2014
Source	Aqueduct
Description	Baseline water stress measures the ratio of total water withdrawals to available renewable surface and groundwater supplies. Water withdrawals include domestic, industrial, irrigation, and livestock consumptive and nonconsumptive uses. Available renewable water supplies include the impact of upstream consumptive water users and large dams on downstream water availability. Higher values indicate more competition among users. (Hofste et al., n.d.)
Equation	$WS = rac{GrossWaterWithdrawal}{AvailableWater-NetwaterWithdrawal}$
Risk categories	 <10% Low 10 – 20% Low – medium 20 – 40% Medium – high 40 – 80% High >80% Extremely high Sub-basins classified as "arid and low water use" (Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0, n.d.)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

Name	Vater depletion	
Sub-group	Water scarcity ratios	
Spatial resolution	(5 arc minute cells	
Temporal resolution	Annual	
Temporal range	1960 - 2014	
Source	Aqueduct	

Description	Baseline water depletion measures the ratio of total water consumption to available renewable water supplies. Total water consumption includes domestic, industrial, irrigation, and livestock consumptive uses. Available renewable water supplies include the impact of upstream consumptive water users and large dams on downstream water availability. Higher values indicate larger impact on the local water supply and decreased water availability for downstream users.			
Equation	$WD = rac{Net\ Water\ Withdrawal}{Available\ Water\ - Net\ water\ Withdrawal}$			
Risk categories	 <5% Low 5 - 25% Low - medium 25 - 50% Medium - high 50 - 75% High >75% Extremely high Sub-basins classified as "arid and low water use" (Brauman et al., 2016) 			
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.			

Name	Aridity index		
Sub-group	Water scarcity ratios		
Spatial resolution	30 X 30 arc seconds cells		
Temporal resolution	Annual		
Temporal range	1970 - 2000		
Source	(Zomer et al., 2008)		
Description	The second version of the Global Aridity Index (Zomer et al., 2008)is a global climate data for the 1970-2000 period, related to evapotranspiration processes and rainfall deficit for potential vegetative growth, based on the implementation of a Penman-Montieth Reference Evapotranspiration (ETO) equation. It provides information about the potential availability of water in regions with low water demand, thus they are used to better account for deserts and other arid areas in the risk assessment. Aridity is usually expressed as a generalized function of precipitation, temperature and potential evapo-transpiration. An Aridity Index can be used to quantify precipitation availability over atmospheric water demand.(WWF Water Risk Filter Methodology Documentation, 2021)		
Risk categories	 >0,65 Humid 0,5 - 0,65 Dry sub-humid 0,2 - 0,5 Semi-arid 0,03 - 0,20 Arid <0,03 Hyper-arid 		

	(Middletor	n & Thomas, 1	992)			
Used for		information e; no metric u		•		•

1.2.4 Groundwater

In this group of indicators there is only one indicator, Groundwater table decline, which serves to see what the trend of the amount of water in the groundwater aquifers is, and whether it is decreasing or increasing.

Name	Groundwater table decline			
Sub-group	Groundwater			
Spatial resolution	5 X 5 arc minute cells			
Temporal resolution	Annual			
Temporal range	1960 - 2014			
Source	Aqueduct			
Description	Groundwater table decline measures the average decline of the groundwater table as the average change for the period of study (1990–2014). The result is expressed in centimetres per year (cm/yr). Higher values indicate higher levels of unsustainable groundwater withdrawals. (Hofste et al., n.d.)			
Risk categories	 <0cm/y Low 0 - 2cm/y Low-medium 2 - 4 cm/y Medium-high 4 - 8 cm/y High >8 cm/y Extremely high 			
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.			

1.2.5 Flood risk

Flood indicators serve to show the number of people who may be affected by flooding, not only taking into account the frequency of flooding but also exposure and vulnerability.

Name	Riverine flood risk
Sub-group	Flood risk
Spatial resolution	30 X 30 arc minute cells
Temporal resolution	Annual
Temporal range	2010
Source	Aqueduct

Description	Riverine flood risk measures the percentage of population expected to be affected by riverine flooding in an average year, accounting for existing flood-protection standards. Flood risk is assessed using hazard (inundation caused by river overflow), exposure (population in flood zone), and vulnerability. The existing level of flood protection is also incorporated into the risk calculation. It is important to note that this indicator represents flood risk not in terms of maximum possible impact but rather as average annual impact. The impacts from infrequent, extreme flood years are averaged with more common, less newsworthy flood years to produce the "expected annual affected population." Higher values indicate that a greater proportion of the population is expected to be impacted by riverine floods on average. (Hofste et al., n.d.)			
Risk categories	 0 to 1 in 1.000 1 in 1.000 to 2 in 1.000 2 in 1.000 to 6 in 1.000 6 in 1.000 to 1 in 100 More than 1 in 100 	Low Low – medium Medium – high High Extremely high		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.			

Name	Coastal flood risk
Sub-group	Flood risk
Spatial resolution	30 X 30 arc minute cells
Temporal resolution	Annual
Temporal range	2010
Source	Aqueduct
Description	Coastal flood risk measures the percentage of the population expected to be affected by coastal flooding in an average year, accounting for existing flood protection standards. Flood risk is assessed using hazard (inundation caused by storm surge), exposure (population in flood zone), and vulnerability. The existing level of flood protection is also incorporated into the risk calculation. It is important to note that this indicator represents flood risk not in terms of maximum possible impact but rather as average annual impact. The impacts from infrequent, extreme flood years are averaged with more common, less newsworthy flood years to produce the "expected annual affected population." Higher values indicate that a greater proportion of the population is expected to be impacted by coastal floods on average. (Hofste et al., n.d.)
Risk categories	 0 to 9 in 1.000.000 9 in 1.000.000 to 7 in 100.000 Low – medium 7 in 100.000 to 3 in 10.000 Medium – high 3 in 10.000 to 2 in 1000 High More than 2 in 1000 Extremely high

Used for	Providing	information	about	the	global	indicator	is	merely
	informativ	e; no metric u	ses this	indica	itor to ca	alculate imp	oact	

1.2.6 Drought risk

Drought risk indicators show the number of people who may be affected by a period of drought, not only considering the frequency of droughts but also the exposure and vulnerability of the population affected.

Name	Drought risk		
Sub-group	Drought risk		
Spatial resolution	5 X 5 arc minute cells		
Temporal resolution	Annual		
Temporal range	2000 - 2014		
Source	Aqueduct		
Description	Drought risk measures where droughts are likely to occur, the population and assets exposed, and the vulnerability of the population and assets to adverse effects. Higher values indicate higher risk of drought. (Hofste et al., n.d.)		
Risk categories	 0,0 - 0,2 0,2 - 0,4 0,4 - 0,6 Medium 0,6 - 0,8 0,8 - 1,0 (Carrão et al., 2016) 		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.		

1.3 Water quality

Water quality indicators indicate the state of the water and whether it is heavily polluted or not, as well as what percentage of people have access to treated water and the percentage of people using pit latrines without a slab or platform or directly disposing human waste in fields.

Name	Coastal Eutrophication Potential
Sub-group	Water quality
Spatial resolution	30 X 30 arc second cells
Temporal resolution	Annual
Temporal range	2000
Source	Aqueduct

Description	Coastal eutrophication potential (CEP) measures the potential for riverine loadings of nitrogen (N), phosphorus (P), and silica (Si) to stimulate harmful algal blooms in coastal waters. The CEP indicator is a useful metric to map where anthropogenic activities produce enough point-source and nonpoint-source pollution to potentially degrade the environment. When N and P are discharged in excess over Si with respect to diatoms, a major type of algae, undesirable algal species often develop. The stimulation of algae leading to large blooms may in turn result in eutrophication and hypoxia (excessive biological growth and decomposition that reduces oxygen available to other organisms). It is therefore possible to assess the potential for coastal eutrophication from a river's N, P, and Si loading. Higher values indicate higher levels of excess nutrients with respect to silica, creating more favourable conditions for harmful algal growth and eutrophication in coastal waters downstream. (Hofste et al., n.d.)
Risk categories	 <-5 Low -5-0 Low - medium 0-1 Medium - high 1-5 High >5 Extremely high (The Open Ocean Status and Trends SUMMARY FOR POLICY MAKERS International Hydrological Programme, 2016)
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.

Name	Surface Water Pharmaceutical Pollution		
Sub-group	Water quality		
Spatial resolution	3,75 X 3,75 arc minute cells		
Temporal resolution	Annual		
Temporal range	2011 - 2013		
Source	Global Fate		
Description	Surface Water Pharmaceutical Pollution Indicates the concentration of the Diclofenac on the rivers from domestic uses, it takes in count the population consumption, the in-stream attenuation, excretion, and the removal at sanitation facilities. (Acuña et al., 2020)		
Risk categories	 0 > 0 - 10 10 - 30 30 - 100 > 100 (Acuña et al., 2020) 	Null Low - medium Medium - high High Extremely high	

Name	Coastal Pharmaceutical Pollution
------	----------------------------------

Sub-group	Water quality		
Spatial resolution	3,75 X 3,75 arc minute cells		
Temporal resolution	Annual		
Temporal range	2011 - 2013		
Source	Global Fate		
Description	Coastal Pharmaceutical Pollution Indicates the amount of Diclofenac exported by the rivers to the ocean.(Acuña et al., 2020)		
Risk categories	 < 10 Null 10 - 50 Low - medium 50 - 1.000 Medium - high 1.000 - 100.000 High > 100.000 Extremely high (Acuña et al., 2020) 		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.		

Name	Unimproved/ no drinking water		
Sub-group	Water quality		
	, ,		
Spatial resolution	Country (rural/urban)		
Temporal resolution	Annual		
Temporal range	2015		
Source	WHO & UNICEF		
Description	Unimproved/no drinking water reflects the percentage of the population collecting drinking water from an unprotected dug well or spring, or directly from a river, dam, lake, pond, stream, canal, or irrigation canal (WHO & UNICEF, 2017). Specifically, the indicator aligns with the unimproved and surface water categories of the Joint Monitoring Programme (JMP)—the lowest tiers of drinking water services. Higher values indicate areas where people have less access to safe drinking water supplies. (Hofste et al., n.d.)		
Risk categories	 <2,5% Low 2,5 - 5,0% Low - medium 5,0% - 10,0% Medium - high 10,0 - 20,0% High >20,0% Extremely high (Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0, n.d.) 		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.		

Name	Unimproved/ no sanitation		
Sub-group	Water quality		
Spatial resolution	Country (rural/urban)		
Temporal resolution	Annual		
Temporal range	2015		
Source	WHO & UNICEF		
Description	Unimproved/no sanitation reflects the percentage of the population using pit latrines without a slab or platform, hanging/bucket latrines, or directly disposing human waste in fields, forests, bushes, open bodies of water, beaches, other open spaces, or with solid waste.(WHO & UNICEF, 2017) Specifically, the indicator aligns with JMP's unimproved and open defecation categories— the lowest tier of sanitation services. Higher values indicate areas where people have less access to improved sanitation services. (Hofste et al., n.d.)		
Risk categories	 <2,5% Low 2,5 - 5,0% Low - medium 5,0% - 10,0% Medium - high 10,0 - 20,0% High >20,0% Extremely high (Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0, n.d.) 		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.		

1.4 Reputational risk

Reputational risk indicators represent stakeholders' and local communities' perceptions on whether companies conduct business sustainably or responsibly with respect to water.

Name	Peak RepRisk Country ESG Risk Index	
Sub-group	Reputational risk	
Spatial resolution	Country	
Temporal resolution	Annual	
Temporal range	2016 - 2018	
Source	RepRisk	
Description	The Peak RepRisk country ESG risk index quantifies business conduct risk exposure related to environmental, social, and governance (ESG) issues in the corresponding country. The index provides insights into potential financial, reputational, and compliance risks, such as human rights violations and environmental destruction. The peak value equals the highest level of the index in each country over the last two	

	years. The higher the value, the higher the risk exposure.(Hofste et al., n.d.) For more information on how this index is calculated, you can consult the methodology on the RepRisk website. (RepRisk RepRisk Methodology Overview, n.d.)		
Risk categories	 <25% 25 – 50%		
Used for	Providing information about the global indicator is merely informative; no metric uses this indicator to calculate impact.		

2. Impact assessment

The calculation of the impact of the industry is done from a series of calculations or metrics quantifying the impact by considering different factors, some of which are more focused on water quality and the impact on the ecosystem and others are more focused on the amount of water or the emission of greenhouse gases.

2. 1 Pollution impact

The following metrics calculate the impact of pollutants on the river. there are 3 main groups of metrics, those related to industrial effluent, those related to the impact on the ecosystem and those dealing with the efficiency of water treatment. The list of pollutants measured to calculus

the impact are COD, Total Nitrogen, Total phosphor, and some of the Priority Pollutants (PP), the PP can threaten human health or ecosystems. The list of the 33 priority substances was composed by the European Commission with a panel of experts in the field of chemistry and maritime pollution, delegates of the member states and European firms and the European Environment Agency. The table above show which PP those the ecosystem impact metrics consider. (*Priority Substances - Water - Environment - European Commission*, n.d.)

PP Name
1,2-Dichloroethane
Cadmium
Hexachloro-benzene
Mercury
Lead
Nickel
C10-13 Chloroalkanes
Hexachloro-butadiene
Nonylpheno
Tetrachloro-ethylene
Trichloro-ethylene

2.1.1 Effluent toxicity level

Name	Toxic units in the effluent
Description	Toxic units in the effluent aims to calculus haw toxic is industry effluent for the ecosystem. To calculate the ecotoxicity potential, we have used the PP concentrations values from which in 24h cause the deaths or lack of movement of 50% of <i>Daphnia magna</i> individuals. These values (EC50) have been extracted from different studies compiled into two different databases, the ECOTOX Knowledgebase from the United States Environmental Protection Agency (<i>ECOTOX Home</i> , n.d.) and from the NORMAN Ecotoxicology Database. (<i>NORMAN Ecotoxicology Database</i> , n.d.) This metric has no impact categories because it calculates with respect to the industry effluent and not with respect to the water body.
Equation	

$$EC_{toxPP} = \frac{PP_{effl}}{W_{effl}} \cdot \frac{1}{EC50_{PP}}$$

Where:

 EC_{toxPP} : ecotoxicity potential of one PP

 $\ensuremath{\mathsf{PP}_{\mathsf{effl}}}\xspace$: load of the PP in the effluent

 W_{effl} : amount of water discharged to the water body

 $EC50_{PP}$: Values of EC50 from the databases

Table of EC50 values

PP name	Scientific name	Duration (h)	Endpoint	Effect	Concentration (μg/L)	Source Freitag et a
1,2-Dichloroethane	Daphnia magna	24	EC50	immobile	150000	(Freitag et al., 1994)
Cadmium	Daphnia magna	24	EC50	mortality	9,5	(Kim et al., 2017)
Hexachloro-benzene	Daphnia magna	24	EC50	Immobile	30	(Calamari D et al., 1983)
Mercury	Daphnia magna	24	EC50	mortality	1,4	(Kim et al., 2017)
Lead	Daphnia magna	24	EC50	mortality	440	(Kim et al., 2017)
Nickel	Daphnia magna	24	EC50	immobile	1000	(Haley & Kurnas, 1993)
C10-13 Chloroalkanes	Daphnia magna	24	EC50	mortality	65000	(Freitag et al., 1994)
Hexachloro- butadiene	Daphnia magna	24	EC50	immobile	500	(Knie et al., 1983)
Nonylphenol	Daphnia magna	24	EC50	immobile	150	(Brennan et al., 2006)
Tetrachloro- ethylene	Daphnia magna	24	EC50	immobile	3200	(Bringmann & Kuehn, 1982)
Trichloroethylene	Daphnia magna	24	EC50	Immobile	76000	(Bazin et al., 1987)

Name	Average concentration of the pollutants in the effluent (whit respect to EQS)
Description	The Environmental Quality Standards (EQS) are the limits approved by the
	EU's Water Framework Directive. The directive sets environmental quality
	standards for priority pollutants (PP) and eight other pollutants. These

substances include the metals cadmium, lead, mercury and nickel, and their compounds; benzene; polyaromatic hydrocarbons (PAH); and several pesticides. Several of these priority substances are classed as hazardous. Each PP has a maximum allowable concentration (MAC) for inland surface waters. The metric of impact is a ratio between the EQS concentration limits and the industry effluent concentration, higher values indicate a higher impact.(*Priority Substances - Water - Environment - European Commission*, n.d.)

This metric has no impact categories because it calculates with respect to the industry effluent and not with respect to the water body.

Equation

$$EEQSI_{PP} = \frac{PP_{effl}}{W_{effl}} \cdot \frac{1}{EQS_{PP}}$$

Where:

 $EEQSI_{PP}$: Concentration of a given PP in the effluent compared to its maxmum allowable concentration in the EU's Water Framework directive

 PP_{effl} : load of the PP in the effluent

 W_{effl} : amount of water discharged to the water body

 $\mathit{EQS}_\mathit{PP} \colon \mathsf{Maximum}$ allowable concentration of a PP in the EU's Water

Framework directive

Table of EQS values

PP Name	EQS [mg/I]
1,2-Dichloroethane	0,01
Cadmium	0,001
Hexachloro-benzene	0,0005
Mercury	0,00007
Lead	0,0072
Nickel	0,02
C10-13 Chloroalkanes	0,0014
Hexachloro-butadiene	0,0006

Nonylpheno	0,002
Tetrachloro-ethylene	0,01
Trichloro-ethylene	0,01

(Priority Substances - Water - Environment - European Commission, n.d.)

2.1.1 Pollution load to the environment

Name	Increase in the concentration of the pollutant in the receiving water body
Description	Increase in the concentration of the pollutant in the receiving water body is a calculous of the increment of the industry pollutants on the receiving water, it calculous what are the final concentration on the river will be supposing the receiving water has a concentration of 0. The delta load is calculated for COD, Total Nitrogen, Total phosphor, and the PP and it used to calculus the Increase in toxic units in the receiving water body after discharge and Increase of the average concentration of the pollutants in the receiving water body after discharge (whit respect to EQS). This metric is not an impact metric per se but rather a necessary calculation to calculate the next two metrics.
Equation	
	$Delta = \frac{PP_{effl}}{W_a + W_{effl} - W_w}$
	Where:
	Delta: Increase in the concentration of pollutant in the receiving water
	body
	PP_{effl} : load of the PP in the effluent
	W_a : amount of water available on the river, which is extracted from the stream flow global indicator.
	W_{effl} : amount of water that the industry discharge on the river
	W_W : amount of water withdrawn from the river

Name	Increase in toxic units in the receiving water body after discharge
Description	Toxic units in the receiving water body indicates if the concentration after the effluent discharge on the water body exceed the EC50, supposing the receiving water has a concentration of 0. These metric does not calculus values for COD, TN, TP, just for PP.
Equation	

	$Delta_ecotox_{PP} = \frac{D_{PP}}{EC50_{PP}}$	
	Where:	
	$Delta_ecotox_{PP}$: Increase i the PP	n TU in the receiving water body caused by
	$Delta_ecotox_{PP}$: $delta$ load of	f a PP
	$EC50_{PP}$: Value of EC50 from	the databases for PP
Impact	• >2	Very high impact
categories	• 1-2	High impact
	• 1-0,2	Medium impact
	• < 0,2	Low impact
	The impact categories have be	een established by a panel of ICRA experts.

Name	Ingresses of the average concentration of the nellutants in the receiving water	
Name	Increase of the average concentration of the pollutants in the receiving water	
	body after discharge (whit respect to EQS)	
Description	Final concentration in the receiving water body with respect to EQS indicates	
	if the concentration after the effluent discharge on the water body exceed	
	the Environmental Quality Standards, supposing the receiving water has a	
	concentration of 0. These metric does not calculus values for COD, TN, TP, just	
	for PP.	
Equation	$DeltaEQS_{PP} = \frac{D_{PP}}{EQS_{PP}}$	
	EQS_{PP}	
	Where:	
	$DeltaEQS_{PP}$: Increase of the concentration of a PP in the receiving	
	water body (with respect to the maxmum allowable concentration in	
	the EU's Water Framework directive)	
	, ,	
	D_{PP} : delta load of a PP	
	EQS_{PP} : Maximum allowable concentration of a PP in the EU's Water	
	Framework directive	
Lucyant		
Impact	• > 2 Very high impact	
categories	• 1-2 High impact	
	• 1 – 0,2 Medium impact	
	• < 0,2 Low impact	
	The impact categories have been established by a panel of ICRA experts.	

Name	Eutrophication potential

Description	Eutrophication potential (EP) is defined as the potential to cause over-
	fertilization of water and soil, which can result in increased growth of
	biomass. It will always have positive values; higher values indicate higher
	impact. It converts the pollutants to PO4 equivalent to calculus the total
	Eutrophication potential.

Tables of PO4 equivalent

Pollutants	Kg pollutant	Kg PO4 eq
Ammonia	1	0,35
Ammonium, ion	1	0,33
COD, Chemical Oxygen Demand	1	0,022
Nitrate	1	0,1
Nitric acid	1	0,1
Nitrite	1	0,1
Nitrogen	1	0,42
Nitrogen oxides	1	0,13
Nitrogen, total	1	0,42
Phosphate	1	1
Phosphoric acid	1	0,97
Phosphorus	1	3,06
Phosphorus pentoxide	1	1,34
Phosphorus, total	1	3,06

 $(\textit{CML-IA Characterisation Factors - Leiden University,} \ \text{n.d.})$

2.1.3 Treatment efficiency

Name	Average percentage of treatment efficiency (compared to WWTP influent)
Description	This metric indicates what is the percentage of pollutant load that the WWTP eliminates from the industry water.
Equation	$Eff_P = rac{P_{infl} - P_{effl}}{P_{infl}} \cdot 100$ Where:

	Eff_P : percent	Eff_P : percentage of treatment efficiency of p (compared to WWTP influent)	
	P_{infl} : load of P in the influent		
	P_{effl} : load of	P in the efflue	nt
Impact	•	> 25	Very high impact
categories	•	25 – 50	High impact
	•	50 – 75	Medium impact
	•	< 75	Low impact
	The impact categories have been established by a panel of ICRA experts.		

Name	Average percentage of treatment efficiency (compared to industry influent)
Description	This metric indicates whether there is an improvement in water quality due to its use by the industry. When the water that goes back to the river is cleaner than the one that the industry extracts from the rivers the value of the ITE is bigger than 100.
Equation	$Eff_P = \frac{P_{effl}}{P_{industry}} \cdot 100$ Where: $Eff_P : \text{percentage of treatment efficiency (compared to industry influent) of a pollutant}$ $P_{effl} : \text{load of a pollutant in the effluent of the WWTP}$ $P_{industry} : \text{load of a pollutant in the influent of the industry}$
Impact	• > 100 Impact
categories	• < 100 Positive impact
	The impact categories have been established by a panel of ICRA experts.

2.2 Freshwater impact

Name	Dilution factor
Description	The dilution factor (DF) can be defined as the ratio between receiving water body flow to total industrial wastewater effluent generated within a
	catchment. Higher values indicate less impact on the river.
Equation	
	$DF = \frac{W_a + W_{effl} - W_w}{W_{effl}}$

	Where:		
	W_a : amount of water available on the river, which is extracted from the stream flow global indicator.		
	W_{effl} : amount of water that the industry discharge on the river		
	W_W : a mount of water withdrawn from the river		
Impact	• >100 Low impact		
categories	 10 – 100 Medium impact 1 – 10 High impact <2 Very high impact 		
	(Rice & Westerho, 2017)		

Name	Recycled water factor	
Descriptio n	respect the water discharged by WWTP effluent and to external	tage of the reused water used by the industry industry (to direct discharge, onsite industry WWTP effluent). Values that may have this larger its value the more efficient the water
Equation	that leaves the industry	water used by the industry respect the water dustry reuses/recycles from the WWTP. /TP influent
Impact	• 0-2 \	/ery high impact
categories		High impact
		Medium impact
		ow impact
	The impact categories have been	n established by a panel of ICRA experts.

Name	Treated water factor

Description			between the water remaining after the industry hat is treated in the WWTP.
Equation			
	$TWF = \frac{1}{OV}$	$\frac{W_t}{WWTP_i + EWV}$	$\overline{WTP_i + DD}^{X100}$
	Where:		
	TWF: ratio be the water tha		ter remaining after the industry consumption a
	W_t : amount o	f water used by	y the industry that is treated in a WWTP
	OWWTP _i : On:	site industrial	WWTP influent
	<i>EWWTP_i</i> : Ext	ernal WWTP i	nfluent
	DD: Directly o	lischarged wat	cer
Impact	•	> 25	Very high impact
categories	•	25 – 50	High impact
	•	50 – 75	Medium impact
	•	< 75	
	The impact ca	tegories have b	een established by a panel of ICRA experts.

Name	Consumption available ratio (level of water stress)		
Description	This metric is calculated from the relationship between the amount of water withdrawn by the industry and the amount of water available and multiplied by 100. It indicates the percentage of the available water withdrawn by the industry's consumption. This metric may have values ranging from 0, to a value greater than 100, indicating that the demand for water is higher than the available.		
Equation			
	$LWS = \frac{W_w}{W_a} \cdot 100$		
	Where:		
	LWS: the relationship between the amount of water withdrawn by the indiand the amount of water available		
	W_a : amount of water available on the river, which is extracted from the stream flow global indicator.		
	W_W : amount of water withdrawn from the river		
Impact	• 0 – 2 Very high impact		
categories	• 2 – 5 High impact		

•	5 – 20	Medium impact
•	+ 20	Low impact
The in	npact categorie	s have been established by a panel of ICRA experts.

Name	Specific water consumption
Description	Specific water consumption is a metric that indicates what is the amount of water from the water body needed to produce a tone of product manufactured in the industry. Higher values indicate higher water demand.
Equation	$SWC = \frac{T_{ppi}}{W_w}$ Where: SWC : Specific water consumption T_{PPI} : Tons of product produced by the industry W_W : amount of water withdrawn from the river

2.3 Carbon impact

This metric indicates the GHG emissions from the industry. It counts the amount of CO2 equivalent that is produced during the water treatment, water discharge, the emissions from sludge management and the emissions from biogas. It will always have positive values; higher values indicate higher impact. The methodology to calculus the global warming potential is from the Energy Performance and Carbon Emissions Assessment and Monitoring Tool (ECAM). (Sanitation Treatment, n.d.)

Name	Indirect emissions from electricity consumption (IEFEC)
Equation	$\texttt{IEFEC} = convkwh \cdot nrgcons \cdot W_t$
	Where:
	convkwk: Emission factor for grid electricity
	nrgcons: Electricity consumed from the grid for wastewater treatment per cubic meter treated
	W_t : Amount of water treated

Name	Emissions from fuel engines (EFFE)
------	------------------------------------

Description	Direct CO2 emitted from on-site engines in wastewater stages based upon
	sum of CO2, CH4 and N2O emission from stationary combustion
Equation	
	$ECO_2 = \frac{V \cdot FD_{CO_2} \cdot NCV_{CO_2} \cdot EF_{CO_2}}{1000}$
	$EN_{2}O = \frac{V \cdot FD_{N_{2}O} \cdot NCV_{N_{2}O} \cdot EF_{N_{2}O} \cdot EQ_{N_{2}O}}{1000}$
	$ECH_4 = \frac{V \cdot FD_{CH_4} \cdot NCV_{CH_4} \cdot EF_{CH_4} \cdot EQ_{CH_4}}{1000}$
	$EFFE = ECO_2 + ECH_4 + EN_2O$
	Where:
	V: Volume of fuel consumed
	EQ_{N_2O} : Conversion of N2O emissions to CO2 equivalent emissions (298 kgCO2eq/kgN2O)
	EQ_{CH_4} : Conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO2eq/kgCH4)

Table of equation values

Fuel type	EFCH4 (kg/TJ)	EFN2O (kg/TJ)	EFCO2 (kg/TJ)	FD (kg/L)	NCV (TJ/Gg)
Diesel	3	0,6	74100	0,84	43
Gasoline/Petrol	3	0,6	69300	0,74	44,3
Natural Gas	10	0,1	56100	0,75	48

(Wagner & Walsh, n.d.)

Name	Emissions from treatment (EFT)
Equation	
	$CH_4 = (bodinfl - bodslud) \cdot CH_4 efactre \cdot CH_4 eq$
	$N_2O = (tninfl) \cdot N_2Oefactre \cdot NtoN_2O \cdot N_2Oeq$
	$EFT = CH_4 + N_2O$

	Where:
	bodinfl: influent COD load
	bodslud: COD removed as sludge
	CH4efactre: CH4 emission factor
	$\it CH_4eq:$ conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO2eq/kgCH4)
	tninfl: Total Nitrogen load in the influent
	N_2Oef actre : N2O emission factor
	$NtoN_2O$: N2O-N to N2O conversion factor (1.57 gN2O/gN2O-N)
	$N_2 Oeq$: conversion of N2O to CO2 equivalent emissions (298 kgCO2eq/kgN2O)
	(Deborah Bartram et al., 2019)
- 1	

Name	Sludge composted
Description	Amount of CO2eq emissions due to sludge composted
Equation	$TVS = \frac{slucompTVS}{100}$ $Ncont = \frac{slucompNcont}{100}$
	If emissions are treated, or piles covered: $CH_4 = 0$
	Else:
	$CH4 = sludgemass \cdot TVS \cdot TVStoOC \cdot upEF \cdot OCtoCH_4 \cdot ctCH_4eq$
	If ratio $CN > 30$: $N_2O = 0$
	Else if: solid content of compost > 55 : $N_2O = O$
	Else:
	$N_2O = sludgemass \cdot Ncont \cdot lowCNEF \cdot ctNtoN_2O4428 \cdot ctN_2Oeq$
	$CO_2SC = CH_4 + N_2O$
	Where:
	sludgemass : Amount of sludge that is sent to composting (dry weight)
	slucompTVS: Total Volatile Solids (TVS) content of sludge composted (% of dry weight).
	TVStoOC : Organic Carbon content in Volatile Solids (0,56 gOC/gVS)
	upEF : CH4 emission factor for uncovered pile (fraction of initial C in solids)

	$OCtoCH_4$: Organic C to CH4 conversion factor (=16/12 gCH ₄ /gOC)
	$ctCH_4eq$: Conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO2eq/kgCH4)
	slucompNcont: N content of sludge stored (% of dry weight)
	lowCNEF : N2O emission factor for low C:N ratio
	${ m ctNto}N_2O4428$: N2O-N to N2O conversion factor (44/28 gN2O/gN2O-N)
	ctN_2Oeq : Conversion of N2O emissions to CO2 equivalent emissions (298 kgCO2eq/kgN2O)
	${\it CO}_2{\it SC}$: Amount of CO2eq emissions due to sludge composted
Source	Section 12.8 "Composting", Beam page 147 (page 169 in PDF)

Name	Sludge incineration
Description	Amount of CO2eq emissions due to sludge incineration
Equation	$CH_4 = (4.85e - 5) \cdot sludgemass \cdot ctCH_{4eq}$
	If $Tf < 1023$: $Tf = 1023$ $n = \frac{161,3 - 0,14 \cdot Tf}{100}$ If $n < 0$: $n = 0$
	$N_2O = sludgemass \cdot Ncont \cdot n \cdot ctN_2Oeq$
	If SNCR is used: $N_2O = 1.2 \cdot sludgemass \cdot Ncont \cdot n \cdot ctN_2Oeq$
	$CO_2SI = CH_4 + N_2O$ Where:
	sludgemass : Amount of sludge that is sent to incineration (dry weight)
	$ctCH_{4eq}$: Conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO $_2$ eq/kgCH $_4$)
	Ncont : N content of sludge incinerated (% of dry weight)
	Tf: Average highest temperature of combustion achieved in a Fluidized Bed incinerator
	ctN_2Oeq : Conversion of N2O emissions to CO2 equivalent emissions (298 kgCO2eq/kgN2O)
	${\it CO}_2{\it SI}$: Amount of CO2eq emissions due to sludge incineration
Source	Section 12.10 "Combustion (Incineration)", Beam, page 161

Name	Land application of sludge
Description	Amount of CO2eq emissions due to land application of sludge
Equation	$TVS = rac{slucompTVS}{100}$ $Ncont = rac{slulaNcont}{100}$ $Ccontent = sludgemass \cdot TVS \cdot TVStoOC$
	$Ncontent = sludgemass \cdot Ncont$
	$ratioCN = \frac{Ccontent}{Ncontent}$
	$If \ ratioCN > 30: N_2O = 0$
	Else if biosolids are $> 80\%$:
	$N_2O = 0.5 \cdot sludgemass \cdot Ncont \cdot EF \cdot ctNtoN_2O4428 \cdot ctN_2Oeq$
	Else:
	$N_2O = sludgemass \cdot Ncont \cdot EF \cdot ctNtoN_2O4428 \cdot ctN_2Oeq$
	$CO_2LA = N_2O$
	Where:
	sludgemass : Amount of sludge that is sent to land application (dry weight)
	TVStoOC: Organic Carbon content in Volatile Solids (0,56 gOC/gVS)
	slulaNcont: N content of sludge sent to land application (% of dry weight)
	SlucompTVS: Total Volatile Solids (TVS) content of sludge composted (% of dry weight).
	$\it EF$: Amount of Nitrogen converted to N2O
	$ctNtoN_2O4428$: N2O-N to N2O conversion factor (=44/28 gN ₂ O/gN ₂ O-N)
	ctN2Oeq: Conversion of N2O emissions to CO2 equivalent emissions (298 kgCO $_2$ eq/kgN $_2$ O)
	${\it CO}_2{\it LA}$: Amount of CO2eq emissions due to land application of sludge
Source	Section 12.11 "Land application", Beam page 166

Name	Landfilling of sludge

Description	Fugitive methane emissions from biosolids decomposition in the landfill during the first 3 years after placement, and N2O emissions from landfilled biosolids
Equation	$TVS = \frac{slucompTVS}{100}$ $CH_4gas = \frac{slulfCH_4ingas}{100}$ $DOCf = \frac{slulfDOCf}{100}$
	$dc3ry = \frac{slulfdecomp3yr}{100} \qquad Ncont = \frac{slulfNcont}{100}$
	$CH_4 = sludgemass \cdot TVS \cdot TVS to OC \cdot un \cdot OC to CH_4 \cdot CH_4 gas \cdot DOC f$ $\cdot dc3yr \cdot MCF \cdot ctCH_4 eq$
	$N_2O = sludgemass \cdot Ncont \cdot lowCNEF \cdot NtoN_2O \cdot ctN_2Oeq$
	$CO_2LFS = CH_4 + N_2O$
	Where:
	sludgemass: Amount of sludge that is sent to landfilling (dry weight)
	slucompTVS: Total Volatile Solids (TVS) content of sludge composted (% of dry weight)
	TVStoOC: Organic Carbon content in Volatile Solids (0,56gOC/gVS)
	un: Model uncertainty factor
	$OCtoCH_4$: Organic C to CH4 conversion factor (=16/12 gCH ₄ /gOC)
	$slulfCH_4ingas:CH4$ in landfill gas
	slulf DOCf: Decomposable organic fraction of raw wastewater solids
	slulf decomp3yr: Percentage decomposed in first 3 years of the decomposable organic fraction of raw wastewater solids.
	MCF: Methane correction for anaerobic managed landfills
	$ctCH_4eq$: Conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO $_2$ eq/kgCH $_4$)
	slulf Ncont: N content of sludge sent to landfilling (% of dry weight)
	lowCNEF: N2O emission factor for low C:N ratio
	$NtoN_2O$: N2O-N to N2O conversion factor (=44/28 gN ₂ O/gN ₂ O-N)
	ctN_2Oeq : Conversion of N2O emissions to CO2 equivalent emissions (298 kgCO2eq/kgN2O)
	CO_2LFS : Amount of CO_2 eq due to Landfilling of sludge

Source	Section 12.9 "Landfill disposal", page 153, Beam methodology document

Name	Sludge stockpiling
Description	Amount of CO2eq emissions due to sludge stockpiling
Equation	$lifespan_int = \lfloor lifespan \rfloor$
	$lifespan_dec = lifespan_lifespan_dec$
	$rate_{CH4}(i) = egin{cases} sludgemass \cdot 0.2 \cdot 10^{-3} & ext{if } i < 1 \ sludgemass \cdot 2 \cdot 10^{-3} & ext{if } 1 <= i < 3 \ sludgemass \cdot 9.8 \cdot 10^{-3} & ext{if } 3 <= i < 20 \ 0 & ext{if } i >= 20 \end{cases}$
	$rate_{N2O}(i) = egin{cases} sludgemass \cdot 60 \cdot 10^{-3} & ext{if } i < 1 \ sludgemass \cdot 26.8 \cdot 10^{-3} & ext{if } 1 <= i < 3 \ sludgemass \cdot 17.4 \cdot 10^{-3} & ext{if } 3 <= i < 20 \ 0 & ext{if } i >= 20 \end{cases}$
	$rate_{CO2}(i) = egin{cases} sludgemass \cdot 30.1 \cdot 10^{-3} & ext{if } i < 1 \ sludgemass \cdot 30.5 \cdot 10^{-3} & ext{if } 1 <= i < 3 \ sludgemass \cdot 10.1 \cdot 10^{-3} & ext{if } 3 <= i < 20 \ 0 & ext{if } i >= 20 \end{cases}$
	$CH_4 = lifespan_dec \cdot rate_{CH4}(lifespan_int) + \sum_{i=0}^{lifespan_int-1} rate_{CH4}(i)$
	$N_2O = lifespan_dec \cdot rate_{N2O}(lifespan_int) + \sum_{i=0}^{lifespan_int-1} rate_{N2O}(i)$
	$CO_2 = lifespan_dec \cdot rate_{CO2}(lifespan_int) + \sum_{i=0}^{lifespan_int-1} rate_{CO2}(i)$
	$CO_2SP = CH_4 + N_2O + CO_2$
	Where:
	sludgemass: Amount of sludge that is stockpiled (dry weight)
	lifespan: Expected timespan than the biosolid stockpile (BSP) will be emitting GHGs
	${\it CO}_2{\it SP}$: Amount of CO2eq emissions due to sludge composted
Source	Majumder, R., Livesley, S., Gregory, D., & Arndt, S. (2014, 05 15). Biosolids stockpiles are a significant point source for greenhouse gas emissions. Journal of Environmental Management, 143, pp. 34-43.

Name	Sludge storage

Description	Amount of CO2eq emissions related to sludge storage
Equation	$TVS = \frac{slustoTVS}{100} FCH_4 = \frac{slustoFCH_4}{100} CH_4EF = \frac{slustoEF}{100}$ $CH_4potential = sludgemass \cdot TVS \cdot TVStoOC \cdot OCtoCH_4 \cdot FCH_4$ $CH_4 = CH_4potencial \cdot CH_4EF \cdot ctCH_4eq$ $CO_2SS = CH_4$
	Where: sludgemass: Amount of sludge that is stored prior to disposal slustoEF: Emission factor due to storage slustoTVS: Total Volatile Solids (TVS) content of sludge stored (% of dry weight).
	slustoFCH ₄ : CH4 potential factor TVStoOC: Organic Carbon content in Volatile Solids (0,56gOC/gVS) $OCtoCH_4$: Organic C to CH4 conversion factor (=16/12 gCH ₄ /gOC) $ctCH_4eq$: Conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO ₂ eq/kgCH ₄) CO_2SS : Amount of CO ₂ eq due to sludge storage
Source	(ECAM V3, n.d.)

Name	Truck transport of sludge
Description	Indirect CO2 emitted from sludge transport off-site
Equation	$CO_2 = \frac{vol \cdot fuelFD \cdot fuelNCV \cdot fuelEFCO_2}{100}$ $N_2O = \frac{vol \cdot fuelFD \cdot fuelNCV \cdot fuelEFN_2Oveicles X \cdot ctN_2Oeq}{100}$ $CH_4 = \frac{vol \cdot fuelFD \cdot fuelNCV \cdot fuelEFCH_4Oveicles \cdot ctCH_4Oeq}{100}$ $CO_2TTS = CO_2 + N_2O + CH_4$
	Where:

	V: Volume of fuel consumed
	ctN₂Oeq: Conversion of N2O emissions to CO2 equivalent emissions
	ctCH₄eq: Conversion of CH4 emissions to CO2 equivalent emissions
	CO₂TTS: Amount of CO₂ eq due to truck transport of sludge.
Source	IPCC 2006, Volume 2, Chapter 3: Mobile Combustion, Table 3.2.2 (page 21)

Table of equation values

Fuel type	EFCH4 (kg/TJ)		EFN2O (kg/TJ)		EFCO2 (kg/TJ)	FD	NCV
	engines	vehicles	engines	vehicles	(0,)	(kg/L)	(TJ/Gg)
Diesel	3	3.9	0.6	3.9	74100	0.84	43
Gasoline/Petrol	3	3.8	0.6	1.9	69300	0.74	44.3
Natural Gas	10	92	0.1	0.2	56100	0.75	48

Name	Total emissions from Sludge management			
Description	GHG emissions from sludge management operations (storing, composting,			
	incineration, land application, landfilling, stockpiling and truck transport).			
Equation	$CO_2SM = CO_2SC + CO_2SI + CO_2LA + CO_2LFS + CO_2SP + CO_2SS + CO_2TTS$			
	CO ₂ SM: Total emissions from Sludge management			
	CO ₂ SC: Amount of CO ₂ eq emissions due to sludge composted			
	CO₂SI: Amount of CO₂eq emissions due to sludge incineration			
	CO ₂ LA: Amount of CO ₂ eq emissions due to land application of sludge			
	CO ₂ LFS: Amount of CO ₂ eq due to Landfilling of sludge			
	CO ₂ SP: Amount of CO ₂ eq emissions due to sludge composted			
	CO ₂ SS: Amount of CO ₂ eq emissions related to sludge storage			
	CO_2TTS : Amount of CO_2 eq due to truck transport of sludge.			

Name	Water reuse transport (EFWRT)
Equation	$ECO_2 = \frac{V \cdot FD_{CO_2} \cdot NCV_{CO_2} \cdot EF_{CO_2}}{1000}$
	$ECH_4 = \frac{V \cdot FD_{CH_4} \cdot NCV_{CH_4} \cdot EF_{CH_4} \cdot EQ_{CH_4}}{1000}$
	$EN_2O = \frac{V \cdot FD_{N_2O} \cdot NCV_{N_2O} \cdot EF_{N_2O} \cdot EQ_{N_2O}}{1000}$
	$E_{TOTAL} = ECO_2 + ECH_4 + EN_2O$
	V: Volume of fuel consumed
	EQ_{N_2O} : Conversion of N2O emissions to CO2 equivalent emissions
	EQ_{CH_4} : Conversion of CH4 emissions to CO2 equivalent emissions

Table of equation values

Fuel type	EFCH4 (kg/TJ)	EFN2O (kg/TJ)	EFCO2 (kg/TJ)	FD (kg/L)	NCV (TJ/Gg)
Diesel	3,9	3,9	74100	0,84	43
Gasoline/Petrol	3,8	1,9	69300	0,74	44,3
Natural Gas	92	0,2	56100	0,75	48

(Davies Waldron, 2006)

Name	Emissions from water discharged (EFWD)
Equation	
	$CH_4 = bodeffl \ x \ CH_4 efac dis \ x \ CH_4 eq$
	$N_2O = tneffl x N_2Oefacdis x NtoN_2O x N_2Oeq$
	$DW_e = CH_4 + N_2O$

bodef f l : Effluent COD load
$CH_4efacdis$: CH4 emission factor
CH_4 eq: conversion of CH4 emissions to CO2 equivalent emissions (34 kgCO2eq/kgCH4)
tneffl : Total Nitrogen load in the effluent
$N_2 Oefacdis$: N2O emission factor
$NtoN_2O$: N2O-N to N2O conversion factor (1.57 gN2O/gN2O-N)
N_2 Oeq: conversion of N2O to CO2 equivalent emissions (298 kgCO2eq/kgN2O)

Name	Biogas (anaerobic digestion of sludge)
Description	GHG emissions from biogas
Equation	$biogas_{flared} = \frac{P \cdot V}{R \cdot T} \cdot \frac{biogas_{flared}}{100} \cdot \frac{biog_{CH_4}}{100} \cdot \frac{44}{1000}$
	$biogas_{valorised} = \frac{P \cdot V}{R \cdot T} \cdot \frac{biogas_{val}}{100} \cdot \frac{biog_{CH_4}}{100} \cdot \frac{44}{1000}$
	$biogas_{leaked} = \frac{P \cdot V}{R \cdot T} \cdot \frac{biogas_{leaked}}{100} \cdot \frac{biog_{CH_4}}{100} \cdot \frac{16}{1000}$
	$EFB = biogas_{flared} + biogas_{valorised} + biogas_{leaked}$
	Where:
	P: 1.013 X 10 ⁵ Pa
	V: Volume of biogas produced in the WWTP
	R: 8,31446261815324 J/K.mol
	T: 273,15K
	Biog _{flrared} : Biogas flared (%volume)
	Biog _{CH4} : Percent of the methane content in the produced biogas
	Biog $_{val}$: Biogas valorised in the treatment plant to heat the digesters or the building and/or run a Co-generator to generate heat and electricity
	Biog _{leaked} : Biogas leaked to the atmosphere (%volume)
Source	IPCC 2006, Volume 5, Chapter 4 Biological treatment of solid waste, equation 4.1, page 5

Total emissions

Name	Total emissions
Description	Total emissions of GHG.
	This metric has no impact categories because it is not possible to put a limit
	on the amount of GHG emitted, each company must set its impact categories.
Equation	
	TE = IEFEC + EFFE + EFT + EFB + EFWRT + EFWD + EFSM
	Where:
	IEFEC: Indirect emissions from electricity consumption
	EFFE: Emissions from fuel engines
	EFT: Emissions from treatment
	EFB: Emissions from biogas
	EFWRT: Emissions from water reuse transport
	EFWD: Emissions from water discharged
	EFSM: Emissions from sludge management

3. Indicators for external reporting

there are different pages and methods to calculate the impact of industries, that is why WIAT also gives the values that these pages need to generate these reports. this section explains the different metrics needed and how they are calculated. The two pages are the GRI and CDP Water Security.

GRI (Global Reporting Initiative) is the independent, international organization that helps businesses and other organizations take responsibility for their impacts, by providing them with the global common language to communicate those impacts.

CDP's work with water security motivates companies to disclose and reduce their environmental impacts by using the power of investors and customers. The data CDP collects helps influential decision makers to reduce risk, capitalize on opportunities and drive action towards a more sustainable world. Highlights.

Name	Water withdrawal
Description	Sum of all water drawn from surface water, groundwater, seawater, or a third party for any use over the course of the reporting period. The units for the water withdrawal in GRI is m3/year.
Reporting	Reporting to GRI 303: Water and effluents 2018

Name	Effect of water withdrawal on the water body
Description	Percentage of water withdrawal related to water available.
Equation	Efect of water withdrawal = $\frac{W_w}{W_a} X 100$
	Ww: water withdrawal Wa: water available
Reporting	Reporting to GRI 303: Water 2016

Name	Water recycled and reused
Description	Total volume of water recycled and reused as a percentage of the total water withdrawal.
Equation	Water recycled and reused = $\frac{W_{rr}}{W_w} X 100$
	Wrr: water recycled and reused
	Ww: water withdrawal
Reporting	Reporting to GRI 306: Effluents and waste 2016

Name	Water discharge
Description	Total volume of planned and unplanned water discharges
Reporting	Reporting to GRI 306: Effluents and waste 2016

Name	Effect of water discharge on the water body
Description	Percentage of water discharged to receiving water body.
Equation	Effect of water discharge = $\frac{W_d}{W_a - W_W} X 100$

	Wd: water discharged
	Wa: water available
	Ww: water withdrawal
Reporting	Reporting to GRI 303: Water 2016

Name	Water withdrawal
Description	Amount of water withdrawal from the water body in megalitres/years. (CDP Water Security 2021 Questionnaire, n.d.)
Reporting	Reporting to CDP Water Security 2021 Questionnaire

Name	Water discharge
Description	Amount of water discharged to the water body in megalitres/years. (CDP Water Security 2021 Questionnaire, n.d.)
Reporting	Reporting to CDP Water Security 2021 Questionnaire

Name	Water reused
Description	Amount of water reused by the industry. (CDP Water Security 2021 Questionnaire, n.d.)
Reporting	Reporting to CDP Water Security 2021 Questionnaire

4. Industry inputs

4.1 Industry typology

Some of the values of the industry inputs can be estimated depending on the industry typology. During the advance inputs you can choose what is your industry type, according to the NACE level 2 typology of industries. (EUROPA - Competition - List of NACE Codes, n.d.)

CCAE	NACE_I	ISIC_I	DESCRIPTION
C10	C10	C10	Manufacture of food products
C11	C11	C11	Manufacture of beverages
C12	C12	C12	Manufacture of tobacco products

C13	C13	C13	Manufacture of textiles
C14	C14	C14	Manufacture of wearing apparel
C15	C15	C15	Manufacture of leather and related products
			Manufacture of wood and of products of wood and cork,
C16	C16	C16	except furniture; manufacture of articles of straw and plaiting materials
C17	C17	C17	Manufacture of paper and paper products
C18	C18	C18	Printing and reproduction of recorded media
C19	C19	C19	Manufacture of coke and refined petroleum products
C20	C20	C20	Manufacture of chemicals and chemical products
			Manufacture of basic pharmaceutical products
C21	C21	C21	and pharmaceutical preparations
C22	C22	C22	Manufacture of rubber and plastic products
C23	C23	C23	Manufacture of other non-metallic mineral products
C24	C24	C24	Manufacture of basic metals
			Manufacture of fabricated metal products,
C25	C25	C25	except machinery and equipment
C26	C26	C26	Manufacture of computer, electronic and optical products
C27	C27	C27	Manufacture of electrical equipment
C28	C28	C28	Manufacture of machinery and equipment n.e.c.
C29	C29	C29	Manufacture of motor vehicles, trailers and semi-trailers
C30	C30	C30	Manufacture of other transport equipment
C31	C31	C31	Manufacture of furniture
C32	C32	C32	Other manufacturing
C33	C33	C33	Repair and installation of machinery and equipment

4.2 Industry estimated pollution values

To facilitate user input, some of the contaminants can be estimated by taking into account the type of industry, so if the user does not know some data, it can be estimated based on previous inputs. Those contamination values according to industry are extracted from the report "les substances dangereuses pour les milieu aquatique dans les rejets industriels. (Barré et al., 2016)

	C10	C11	C13	C14	C15	C16	C17
1,2-Dichloroethane μg/L	-	-	-	-	-	-	100,00
Anthracene μg/L	1	ı	ı	ı	-	-	-
Benzene μg/L		•	-	•	0,58	0,37	-
Cadmium μg/L	0,32	0,46	ı	ı	0,89	0,90	1,19
Chloroalkanes μg/L	-	•	-	•	3,35	-	-
Hexachloro-benzene μg/L	1	ı	ı	ı	-	-	-
Hexachloro-butadiene μg/L	-	•	-	•	-	-	-
Mercury μg/L	95,00	0,13	ı	ı	0,20	0,16	0,17
Nickel µg/L	4395,00	15,11	-	•	24,96	8,27	7,55
Nonylpheno μg/L	0,73	1,22	654,55	ı	555,00	1,67	441,50
Lead μg/L	1985,00	12,36	-	-	12,06	11,76	5,36
Tetrachloro-ethylene μg/L	-	-	-	-	156,16	-	100,00

Trichloro-ethylene μg/L	75,00	0,10		-	0,61	0,18	100,00
BOD5 mg/L O2	336,26	231,09	410,10	40,00	-	33,33	366,27
TOC mg/L C	414,29	1	171,67	1	-	-	-
Phosphorus mg/L	26,11	20,45	32,59	10,00	-	10,00	27,53
Nitrogen mg/L N	12,95	1	1	1	-	-	-
Phosphate mg/L	-	-	-	-	-	-	-
Nitrate mg/l N	41,41	95,71	42,73	-	-	-	20,00

	C18	C19	C20	C21	C22
1,2-Dichloroethane μg/L	-	-	647,13	-	-
Anthracene μg/L	-	0,06	0,15	0,02	-
Benzene μg/L	0,37	2,43	47,44		-
Cadmium µg/L	0,60	0,33	0,58	0,73	-
Chloroalkanes µg/L	-	•	8,60		-
Hexachloro-benzene μg/L	-	2,00	0,01	-	-
Hexachloro-butadiene μg/L	-	•	4,94		-
Mercury μg/L	-	105,00	0,19	0,26	-
Nickel μg/L	6,60	8,87	92,76	4,58	-
Nonylpheno μg/L	3,33	1	56760,86	1,26	1000,00
Lead μg/L	3,32	1,22	14,40	3,48	-
Tetrachloro-ethylene μg/L	0,50	95,00	5,16	0,20	-
Trichloro-ethylene μg/L	0,27	•	0,67	0,19	-
BOD5 mg/L O2	750,00	300,00	598,81	559,87	603,10
TOC mg/L C	-	300,00	276,00	250,00	-
Phosphorus mg/L	40,19	30,00	39,81	35,97	35,00
Nitrogen mg/L N	90,00	-	-	-	-
Phosphate mg/L	30,00	90,00	68,00	90,00	10,00
Nitrate mg/l N	10,00	100,00	74,81	-	80,00

	C23	C24	C25	C26	C27	C28
1,2-Dichloroethane μg/L	-	•	-	-	-	-
Anthracene μg/L	0,01	0,02	-	-	-	0,01
Benzene μg/L	-	•	-	-	-	-
Cadmium μg/L	1,31	21,67	-	-	-	10015,00
Chloroalkanes µg/L	-	5,81	-	-	-	5105,00
Hexachloro-benzene μg/L	-	-	-	-	-	-
Hexachloro-butadiene μg/L	-	-	-	-	-	-
Mercury μg/L	33,48	0,18	-	-	-	85,00
Nickel μg/L	18,51	619,92	3854,17	-	2000,00	20,14
Nonylpheno μg/L	0,96	1,06	-	-	-	-
Lead μg/L	339,66	35,68	-	-	-	2212,80
Tetrachloro-ethylene μg/L	-	0,21	-	-	-	-
Trichloro-ethylene μg/L	-	0,34	-	-	-	-
BOD5 mg/L O2	59,04	586,54	641,41	33,33	86,67	328,75
TOC mg/L C	-	-	-	-	-	-

Phosphorus mg/L	11,28	10,00	40,87	10,00	25,71	32,86
Nitrogen mg/L N	18,44	1	70,00	-	1	-
Phosphate mg/L	-	-	-	-	20,00	20,00
Nitrate mg/l N	-	-	89,84	-	-	100,00

	620	62.0	624	622	622
	C29	C30	C31	C32	C33
1,2-Dichloroethane μg/L	-	-	-	-	-
Anthracene μg/L	-	-	-	-	-
Benzene μg/L	-	-	-	-	-
Cadmium μg/L	-	-	-	-	-
Chloroalkanes μg/L	-	-	-	-	-
Hexachloro-benzene μg/L	-	-	-	-	-
Hexachloro-butadiene μg/L	1	1	1	1	-
Mercury μg/L	ı	ı	ı	1	-
Nickel μg/L	-	-	-	-	-
Nonylpheno μg/L	-	-	-	-	-
Lead μg/L	-	-	-	-	-
Tetrachloro-ethylene μg/L	ı	ı	ı	1	-
Trichloro-ethylene μg/L	1	1	1	1	-
BOD5 mg/L O2	563,16	ı	35,00	35,00	40,00
TOC mg/L C	-	-	-	-	-
Phosphorus mg/L	39,25	-	10,00	38,75	10,00
Nitrogen mg/L N	-	-	-	-	-
Phosphate mg/L	30,00	-	-	-	-
Nitrate mg/l N	94,74	-	-	-	-

4.3 Wastewater treatment plants estimated pollutants removal values

For most of the PP the values of the removal percentage depending on the type of WWTP can be estimated to, following the below table results. The values are from a non-published, yet bibliography research done by ICRA.

	WWTP typology				
PP Name	Primary	Secondary	Tertiary		
1,2-Dichloroethane	21,25	58,50	80,00		
Cadmium	21,50	45,50	63,00		
Hexachloro-benzene	-	-	57,25		
Mercury	36,00	16,70	-		
Lead	41,50	53,49	67,75		
Nickel	17,00	50,10	39,00		
C10-13 Chloroalkanes	10,00	40,00	-		
Hexachloro-butadiene	5,00	80,00	-		
Nonylpheno	43,00	79,00	95,00		
Tetrachloro-ethylene	23,50	80,00	94,00		

Trichloro-ethylene	10,00	75,33	94,00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,

4.4 Other estimated values

The rest of the WIAT estimated values have the following values or formulas and sources.

Estimation	Values, explanation, or equation	Used to calculate	Source
Emission	The values estimated for emissions factor	Indirect emissions from	(EIB Project Carbon
factor for grid	for grid electricity comes from the	electricity consumption	Footprint
electricity	European Investment Bank the values of		Methodologies
	the emission factor depend in which		Methodologies for the
	country the industry is located.		Assessment of Project
			GHG Emissions and
			Emission Variations,
			2020)
% Biogas	The value of % of biogas produced	Biogas (anaerobic	(<i>ECAM V3</i> , n.d.)
produced that	that is flared is usually 98.	digestion of sludge)	
is flared			
Biogas leaked	Biogas leaked to the atmosphere (%	Biogas (anaerobic	(<i>ECAM V3</i> , n.d.)
to the	volume) is usually 2.	digestion of sludge)	
atmosphere (%			
volume)			
Biogas	Bval = 100 - Bf - Bs - Bleak	Biogas (anaerobic	(<i>ECAM V3</i> , n.d.)
valorised as		digestion of sludge)	
heat and/or	Bval: biogas valorised as heat or		
electricity	electricity		
	Bs: biogas sold		
	Bf: biogas that is flared		
	Bleak: biogas leaked to the		
	atmosphere		
Biogas sold (%	Bs = 100 - Bf - Bval - Bleak	Biogas (anaerobic	(<i>ECAM V3</i> , n.d.)
volume)	Bs: biogas sold	digestion of sludge)	
	Bf: biogas that is flared		

N ₂ O emission factor for low C:N ratio	Bval: biogas valorised as heat or electricity Bleak: biogas leaked to the atmosphere 1,5%	Sludge composted Landfilling of sludge	(Brown et al., 2008)
CH ₄ emission factor for uncovered pile (factor of initial C in solids)	2,5%	Sludge composted	(Brown et al., 2008)
CO2eq equation rate	0,25	Emissions from fuel engines Emissions from treatment Sludge composted Sludge incineration Land application of sludge Landfilling of sludge Sludge stockpiling Amount of CO2 eq emissions related to sludge storage Emissions from water discharged	(The Biosolids Emissions Assessment Model (BEAM): A Method for Determining Greenhouse Gas Emissions from Canadian Biosolids Management Practices Final Report, 2009)
Average highest temperature of combustion achieved in a	1023	Sludge incineration	(The Biosolids Emissions Assessment Model (BEAM): A Method for Determining Greenhouse Gas

Fluidized Bed			Emissions from
incinerator			Canadian Biosolids
			Management
			Practices Final Report,
			2009)
Uncertainty	0,9	Landfilling of sludge	(CDM: Approved
factor			Baseline and
			Monitoring
			Methodologies for
			Large Scale CDM
			Project Activities, n.d.)
CH ₄ in landfill	50%	Landfilling of sludge	(CLEAN
gas			DEVELOPMENT
			MECHANISM 2008 IN
			BRIEF, n.d.)
Decomposable	80%	Landfilling of sludge	(Bani Shahabadi et
organic			al., 2009)
fraction of raw			
wastewater			
solids			
301103			
Percentage	69,9%	Landfilling of sludge	(CDM: Approved
decomposed			Baseline and
in first 3 years			Monitoring
			Methodologies for
			Large Scale CDM
			Project Activities, n.d.)

5. References

Acuña, V., Bregoli, F., Font, C., Barceló, D., Corominas, L. L., Ginebreda, A., Petrovic, M., Rodríguez-Roda, I., Sabater, S., & Marcé, R. (2020). Management actions to mitigate

- the occurrence of pharmaceuticals in river networks in a global change context. Environment International, 143. https://doi.org/10.1016/j.envint.2020.105993
- Aqueduct_Global_Maps_2.1-Constructing_Decicion-Relevant_Global_Water_Risk_Indicators_final_0. (n.d.).
- Bani Shahabadi, M., Yerushalmi, L., & Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plants. *Water Research*, 43(10), 2679–2687. https://doi.org/10.1016/J.WATRES.2009.02.040
- Barré, H., Gaucher, R., Jouglet, P., & Lepot, B. (2016). LES SUBSTANCES DANGEREUSES

 POUR LE MILIEU AQUATIQUE DANS LES REJETS INDUSTRIELS Action nationale de recherche et de réduction des rejets de substances dangereuses dans l'eau par les installations classées (RSDE)-Seconde phase RESULTATS DE SURVEILLANCE INITIALE RSDE DETAILLES PAR SECTEUR.
- Bazin, C., Chambon, P., Bonnefille, M., & Larbaigt, G. (1987). Compared sensitivity of luminescent marine bacteria (Photobacterium phosphoreum) and Daphnia bioassays. *Sciences de l'eau*, *6*, 403–413.
- Brauman, K. A., Richter, B. D., Postel, S., Malsy, M., & Flörke, M. (2016). Water depletion:
 An improved metric for incorporating seasonal and dry-year water scarcity into
 water risk assessmentsWater depletion: Improved metric for seasonal and dry-year
 water scarcity. *Elementa*, 2016. https://doi.org/10.12952/journal.elementa.000083
- Brennan, S. J., Brougham, C. A., Roche, J. J., & Fogarty, A. M. (2006). Multi-generational effects of four selected environmental oestrogens on Daphnia magna.

 Chemosphere, 64(1), 49–55. https://doi.org/10.1016/j.chemosphere.2005.11.046
- Bringmann, G., & Kuehn, R. (1982). [Results of toxic action of water pollutants on Daphnia magna Straus tested by an improved standardized procedure]. Wasser und Abwasser in Forschung und Praxis, 15(1), 1–6.

 https://heronet.epa.gov/heronet/index.cfm/reference/download/reference_id/188
 04
- Brown, S., Kruger, C., & Subler, S. (2008). Greenhouse Gas Balance for Composting Operations. *Journal of Environmental Quality*, *37*(4), 1396–1410. https://doi.org/10.2134/jeq2007.0453
- Calamari D, Galassi S, Setti F, & Vighi M. (1983). TOXICITY OF SELECTED

 CHLOROBENZENES TO AQUATIC ORGANISMS. In *Chemosphere* (Vol. 12, Issue 2).

- Carrão, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk:

 An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. *Global Environmental Change*, *39*, 108–124.

 https://doi.org/10.1016/j.gloenvcha.2016.04.012
- CDM: Approved Baseline and Monitoring Methodologies for Large Scale CDM Project
 Activities. (n.d.). Retrieved January 19, 2022, from
 https://cdm.unfccc.int/methodologies/PAmethodologies/approved
- CDP Water Security 2021 Questionnaire. (n.d.). www.cdp.net
- CLEAN DEVELOPMENT MECHANISM 2008 IN BRIEF. (n.d.). http://cdm.unfccc.int/Reference/COPMOP/index.html
- CML-IA Characterisation Factors Leiden University. (n.d.). Retrieved December 2, 2021, from https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors
- 'Davies Waldron, C. (2006). Chapter 3 Mobile combustion: Vol. Chapter 3 (IPCC).
- Deborah Bartram, Michael D. Short, Yoshitaka Ebie, Juraj Farkaš, Céline Gueguen, Gregory M. Peters, Nuria Mariana Zanzottera, & M. Karthik. (2019). *Chapter 6:*Wastewater Treatment and Discharge.
- Documentation » Gridded Population of the World (GPW), v4 | SEDAC. (n.d.). Retrieved December 2, 2021, from https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/documentation
- ECAM v3. (n.d.). Retrieved January 10, 2022, from https://ecam.icradev.cat/
- ECOTOX | Home. (n.d.). Retrieved December 2, 2021, from https://cfpub.epa.gov/ecotox/
- EIB Project Carbon Footprint Methodologies Methodologies for the Assessment of Project GHG Emissions and Emission Variations. (2020). https://doi.org/10.2867/401801
- EUROPA Competition List of NACE codes. (n.d.). Retrieved December 9, 2021, from https://ec.europa.eu/competition/mergers/cases/index/nace_all.html
- Freitag, D., Ballhorn, L., Behechti, A., Fischer, K., & Thumm, W. (1994). STRUCTURAL CONFIGURATION AND TOXICITY OF CHLORINATED ALKANES. In *Chemosphere* (Vol. 28, Issue 2).
- Haley, M. v, & Kurnas, C. W. (1993). Aquatic Toxicity and Fate of Nickel-Coated Graphite Fibers, With Comparisons to Iron and Aluminum Coated Glass Fibers. Final Report, June-December 1991. *Gov. Res. Announc. Index(USA)*, 17.

- Hofste, R. W., Kuzma, S., Walker, S., Sutanudjaja, E. H., Bierkens, M. F. P., Kuijper, M. J. M., Sanchez, M. F., van Beek, R., Wada, Y., Rodríguez, S. G., & Reig, P. (n.d.).

 AQUEDUCT 3.0: UPDATED DECISION-RELEVANT GLOBAL WATER RISK INDICATORS. https://www.wri.org/publication/aqueduct-30.
- Kim, H., Yim, B., Bae, C., & Lee, Y. M. (2017). Acute toxicity and antioxidant responses in the water flea Daphnia magna to xenobiotics (cadmium, lead, mercury, bisphenol A, and 4-nonylphenol). *Toxicology and Environmental Health Sciences*, *9*(1), 41–49. https://doi.org/10.1007/s13530-017-0302-8
- Knie, J., Halke, A., Juhnke, I., & Schiller, W. (1983). [Results of studies on chemical substances with four biotests]. *Deutsche Gewaesserkundliche Mitteilungen*, *27*(3), 77–79.
- Middleton, Nick., & Thomas, D. (1992). World atlas of desertification. ix, 69 p.: http://digitallibrary.un.org/record/246740
- Müller Schmied, H., Caceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Asali
 Peiris, T., Popat, E., Theodor Portmann, F., Reinecke, R., Schumacher, M., Shadkam,
 S., Telteu, C. E., Trautmann, T., & Döll, P. (2021). The global water resources and use
 model WaterGAP v2.2d: Model description and evaluation. *Geoscientific Model Development*, 14(2), 1037–1079. https://doi.org/10.5194/gmd-14-1037-2021
- NORMAN Ecotoxicology Database. (n.d.). Retrieved December 2, 2021, from https://www.norman-network.com/nds/ecotox/ecotoxIndex.php
- Priority substances Water Environment European Commission. (n.d.). Retrieved

 December 2, 2021, from https://ec.europa.eu/environment/water/waterdangersub/pri_substances.htm
- RepRisk | RepRisk methodology overview. (n.d.). Retrieved January 28, 2022, from https://www.reprisk.com/news-research/resources/methodology
- Rice, J., & Westerho, P. (2017). High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution. *Nature Geoscience*, *10*(8), 587–591. https://doi.org/10.1038/NGEO2984
- Sanitation Treatment. (n.d.). Retrieved December 2, 2021, from https://ecam.icradev.cat/
- The Biosolids Emissions Assessment Model (BEAM): A Method for Determining

 Greenhouse Gas Emissions from Canadian Biosolids Management Practices Final

 Report. (2009). www.sylvis.com

- The Open Ocean Status and Trends SUMMARY FOR POLICY MAKERS International Hydrological Programme. (2016).
- Wagner, F., & Walsh, M. P. (n.d.). MOBILE COMBUSTION.
- WHO & UNICEF. (2017). Progress on Drinking Water, Sanitation and Hygiene Update and SDG Baselines 2017 Launch version July 12 Main report.

 http://apps.who.int/bookorders.
- WWF Water Risk Filter Methodology Documentation. (2021). https://ceowatermandate.org/terminology/
- Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L. v. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. *Agriculture, Ecosystems and Environment*, 126(1–2), 67–80. https://doi.org/10.1016/j.agee.2008.01.014