Fuzzy Relation

Definition

- Fuzzy relations are mapping elements of one universe, to those of another universe, Y, through the Cartesian product of two universes. X, Universe X = {1, 2, 3}
- > $R(X, Y) = \{[(x, y), \mu_R(x, y)] \mid (x, y) \in (X \times Y)\}$
- Where the fuzzy relation R has membership function
- $\Rightarrow \mu_R(x, y) = \mu_{AXB}(x, y) = min(\mu_A(x), \mu_B(y))$
- It represents the strength of association between elements of the two sets
- Ex: R = "x is considerably larger than y"
- R (X, Y) = Relation between sets X and Y
- R(x, y) = memebership function for the relation R(X, Y)
- $> R(X, Y) = \{R(x, y) / (x, y) \mid (x, y) \in (X \times Y)\}$

$$R(x, y) = \begin{cases} 0 & \text{for } x \le y \\ (x - y)/(10 - y), & \text{for } y < x \le 11y \\ 1 & \text{fro } x > 11y \end{cases}$$

Cartesian Product

- Let $A_{1'}$, $A_{2'}$,, A_{n} be fuzzy sets in $U_{1'}$, $U_{2'}$, ..., $U_{n'}$ respectively.

 The Cartesian product of $A_{1'}$, $A_{2'}$,, A_{n} is a fuzzy set in the space U_{1} x U_{2} x...x U_{n} with the membership function as: $\mu_{A1 \times A2 \times ... \times An} (X_{1'}, X_{2'}, ..., X_{n}) = \min \left[\mu_{A1} (X_{1}), \mu_{A2} (X_{2}),, \mu_{An} (X_{n}) \right]$
- > So, the Cartesian product of A_1 , A_2 ,, A_n are donated by A_1 X A_2 X.... X A_n

Crisp Relations

- > The relation between any two sets is the Cartesian product of the elements of $A_1 \times A_2 \times \times A_n$
- For X and Y universes $X \times Y = \{(x, y) | x \in X, y \in Y\}$

$$\mu_{x \times y}(x, y) = \begin{cases} 1, & (x, y) \in X \times Y \\ 0, & (x, y) \notin X \times Y \end{cases}$$

> This relation can be represented in a matrix format

Cartesian Product: Example

- \rightarrow Let $A = \{(3, 0.5), (5, 1), (7, 0.6)\}$
- \rightarrow Let $B = \{(3, 1), (5, 0.6)\}$
- > Find the product
- The product is all set of pairs from A and B with the minimum associated memberships
- Ax B = {[(3, 3), min (0.5, 1)], [(5, 3), min(1, 1)], [(7, 3), min(0.6, 1)], [(3, 5), min(0.5, 0.6)], [(5, 5), min(1, 0.6)], [(7, 5), min(0.6, 0.6)]}
 - = {[(3, 3), 0.5], [(5, 3), 1], [(7, 3), 0.6], [(3, 5), 0.5], [(5, 5), 0.6], [(7, 5), 0.6]}

Operations on Fuzzy Relations

- Since the fuzzy relation from X to Y is a fuzzy set in X × Y, then the operations on fuzzy sets can be extended to fuzzy relations. Let R and S be fuzzy relations on the Cartesian space X × Y then:
- $\succ Union: \ \mu_{RUS}(x, y) = \max \left[\mu_{R}(x, y), \mu_{S}(x, y) \right]$
- > Intersection: $\mu_{R\Pi S}(x, y) = \min [\mu_R(x, y), \mu_S(x, y)]$
- > Complement: $\mu_{\overline{R}}(x, y) = 1 \mu_{R}(x, y)$

> Assume two Universes: A = {3, 4, 5} and B = {3, 4, 5, 6, 7}

> This can be expressed as follow:

- This matrix represents the membership grades between elements in X and Y
- $\mu_R(x,y) = \{ [0/(3,3)], [0.11/(3,4)], [0.2/(3,5)], \dots, [0.14/(5,7)] \}$

Fuzzy Relations: Example

> Assume two fuzzy sets: $A = \{0.2/x_1 + 0.5/x_2 + 1/x_3\}$

$$B = \{0.3/y_1 + 0.9/y_2\}$$

Find the fuzzy relation (the Cartesian product)

$$X_{1}$$
 $\begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.5 \\ 0.3 & 0.9 \end{pmatrix}$
 X_{1} $\begin{pmatrix} 0.2 & 0.2 \\ 0.3 & 0.5 \\ 0.3 & 0.9 \end{pmatrix}$

> Consider the fuzzy relation. Express R using the resolution principle

$$ightharpoonup R = R_{0.3} + R_{0.4} + R_{0.5} + R_{0.9}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Composition of Fuzzy Relations

- > Composition of fuzzy relations used to combine fuzzy relations on different product spaces
- Having a fuzzy relation; R (X ×Y) and S (Y ×Z), then Composition is used to determine a relation

 $T(X \times Z)$

- Consider two fuzzy relation; R (X × Y) and S (Y × Z), then a relation T (X × Z), can be expressed as (max-min composition)
 T = R o S
 μ_T(x, z) = max-min [μ_R(x, y), μ_S(y, z)]
 = V [μ_R(x, y) ^ μ_S(y, z)]
- If algebraic product is adopted, then max-product composition is adopted:

$$T = R \circ S$$

$$\mu_T(x, z) = \max \left[\mu_R(x, y) \cdot \mu_S(y, z) \right]$$

$$= V \left[\mu_R(x, y) \cdot \mu_S(y, z) \right]$$

- The max-min composition can be interpreted as indicating the strength of the existence of relation between the elements of X and Z
- > Calculations of (R o S) is almost similar to matrix multiplication
- > Fuzzy relations composition have the same properties of:

Distributivity: $R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$

Associativity: $R \circ (S \circ T) = (R \circ S) \circ T$

Assume the following universes: $X = \{x_1, x_2\}$, $Y = \{y_1, y_2\}$, and $Z = \{z_1, z_2, z_3\}$, with the following fuzzy relations.

$$R = \begin{array}{ccc} x_1 & \begin{bmatrix} 0.7 & 0.5 \\ 0.8 & 0.4 \end{bmatrix} & y_1 \begin{bmatrix} 0.9 & 0.6 & 0.2 \\ 0.1 & 0.7 & 0.5 \end{bmatrix} \\ y_1 & y_2 & z_1 & z_2 & z_3 \end{array}$$

- Find the fuzzy relation between X and Z using the max-min and max-product composition
- > By max-min composition

$$\mu_T(x_1, z_1) = \max[\min(0.7, 0.9), \min(0.5, 0.1)] = 0.7$$

$$\begin{array}{cccc}
x_1 & 0.7 & 0.6 & 0.5 \\
T = x_2 & 0.8 & 0.6 & 0.4 \\
z_1 & z_2 & z_3
\end{array}$$

> By max-product composition

$$\mu_T(x_2, z_2) = \max[(0.8, 0.6), (0.4, 0.7)] = 0.48$$

$$x_1 \begin{vmatrix} 0.63 & 0.42 & 0.25 \\ 0.72 & 0.48 & 0.20 \\ z_1 & z_2 & z_3 \end{vmatrix}$$

Let us consider two kinds of troubles a PC may suffer from, viz., the *system hangs while* running, and the system does not boot. We symbolize the former by h and the later by b and define the set $A = \{h, b\}$ of PC troubles. Two possible causes of these troubles are computer virus (v) and disc crash(c) and they form the set $B = \{c, v\}$ of PC trouble makers. And finally, let the sources of the causes mentioned above are internet (i) and obsolescence (o) and $C = \{i, o\}$ is the set of PC trouble causes. The relation between PC troubles and their causes is expressed by R, a fuzzy relation over $A \times B$. Similarly, S is the fuzzy relation over $B \times C$, i.e., the relation between the causes of troubles and the sources of those causes. The relations R and S in terms of their relation matrices are shown below.

$$R = \begin{matrix} h & 0.7 & 0.2 \\ 0.5 & 0.8 \end{matrix}, \qquad S = \begin{matrix} v & 0.9 & 0.7 \\ c & 0.1 & 0.2 \end{matrix}$$

The relation between PC troubles and their ultimate sources, *i.e.*, between A and C, can be computed on the basis of R and S above as the max—min composition $R \circ S$. The first element of $R \circ S$, expressed as $(R \circ S)(h, i)$ is computed as follows.

```
(R \circ S) (h, i) = max \{min (R (h, v), S (v, i)), min (R (h, c), S (c, i))\}
= max \{min (0.7, 0.9), min (0.2, 0.1)\}
= max \{0.7, 0.1\}
= 0.7
```

The rest of the elements of $R \circ S$ can be found in a similar fashion.

$$(R \circ S) (h, o) = 0.7$$

 $(R \circ S) (b, i) = 0.5$
 $(R \circ S) (b, o) = 0.5$
And finally we get,
 $i \quad o$
 $R \circ S = \begin{pmatrix} 0.7 & 0.7 \\ b & 0.5 & 0.5 \end{pmatrix}$

Let $A = \{\text{Mimi, Bob, Kitty, Jina}\}\$ be a set of four children, $B = \{\text{Tintin, Asterix, Phantom, Mickey}\}\$ be a set of four comic characters, and $C = \{\text{funny, cute, dreamy}\}\$ be a set of three attributes. The fuzzy relations R = x Likes y is defined on $A \times B$ and S = x IS y is defined on $B \times C$ as shown in Table 2.20 and Table 2.21. Find R $^{\circ}$ S.

Table 2.20. Relation matrix for $R = x$ Likes y					
		R ≡ Likes			
	Tintin	Asterix	Phantom	Mickey	
Mimi	0.8	0.5	0.7	0.8	
Bob	0.4	0.9	0.3	0.3	
Kitty	0.6	0.7	0.4	0.9	
Jina	0.3	8.0	0.2	0.5	

Table 2.21.	Relation	matrix	for	S = 1	x IS y
-------------	----------	--------	-----	-------	--------

		$S \equiv IS$		
	funny	cute	dreamy	
Tintin	0.6	0.7	0.3	
Asterix	0.8	0.4	0.2	
Phantom	0.1	0.2	0.1	
Mickey	0.9	0.8	0.3	

Table 2.22. Relation matrix for $R \circ S$

		ROS		
	funny	cute	dreamy	
Mimi	0.8	0.8	0.3	
Bob	0.8	0.4	0.3	
Kitty	0.9	0.8	0.3	
Jina	0.8	0.5	0.3	

It will be Continued....