¿Cuánto espacio en memoria ocupan las tablas de paginación inicial del kernel, definidas en entrypgdir.c? Considerar tanto "page directory" como "page tables". * Nota: tener en cuenta la implementación sin large pages.			
\bigcirc	No ocupa memoria, porque viene con la imagen del kernel		
	Una página (4Kib)		
\bigcirc	Dos páginas (8Kib)		
0	Tres páginas (12Kib)		
_	anto espacio en memoria ocupan las tablas de paginacón inicial del kernel, idas en entrypgdir.c, luego de ser modificado para usar large pages? *		
\bigcirc	No ocupa memoria, porque viene con la imagen del kernel		
•	Una página (4Kib)		
\bigcirc	Dos páginas (8Kib)		
0	Tres páginas (12Kib)		
¿Cuál es la complejidad computacional de page_alloc? * Nota: P es la cantidad de páginas físicas disponibles			
•	O(1)		
\circ	O(P)		
0	O(P^2)		
0	No se puede determinar, porque no sabemos cuánta memoria física hay en primera instancia.		
para	é combinación de flags logra una "page table entry" que sea de sólo lectura kernel y usuario? * asumir PTE_P en todos los casos		
	Ningún flag es necesario, todas las páginas son accesibles con esos permisos por defecto.		

PTE_U
O PTE_U PTE_W
O PTE_U PTE_K
¿Qué combinación de flags logra una "page table entry" que sea de sólo lectura para el usuario, pero de lecto-escritura para el kernel? * Nota: asumir PTE_P en todos los casos
O PTE_U PTE_W
O PTE_W
(PTE_U & !PTE_W) (PTE_K & PTE_W)
No es posible
¿Cuánto tamaño ocupa una "page table entry" en la arquitectura x86 que emplea JOS? * 16 bits 32 bits
40 bits
44 bits
¿Cuántas entradas tiene una "page table" en la arquitectura x86 que emplea JOS?
512
1024 (1Ki)
2048 (2Ki)

	D0017F
\cup	PGSIZE
	PGNUM
\bigcirc	PTX
0	page2pa
Cór	mo se reserva memoria para el arreglo pages? *
\bigcirc	La memoria viene pre-alocada en la imagen del kernel
\bigcirc	Se utiliza page_alloc
•	Se utiliza boot_alloc
\bigcirc	Se utiliza boot_map_region
,Que	é flag hay que marcar y en qué parte cuando se quiere crear una large page?
\bigcirc	Se marca la flag PTE_P en el PDE
\bigcirc	Se marca la flag PTE_P en el PTE
•	Se marca la flag PTE_PS en el PDE
\bigcirc	Se marca la flag PTE_PS en el PTE
	inción page_init debe aumentar el campo pp_ref de cada página que agrega reglo pages: *

¿Por qué las direcciones de cada página (i.e. la primera dirección) tienen siempre los últimos 12 bits en cero? *		
Es una convención		
Es una decisión de JOS		
Es una consecuencia de toda arquitectura de 32 bits		
Es una consecuencia del tamaño de las página		
¿En qué ring se ejecuta el bootloader de JOS? * Nota: recordar que ring 3 es el menos privilegiado, mientras que ring 0 es el más privilegiado		
Ring 3		
Ring 0		
No se ejecuta en ningún ring, todavía no corrió el kernel y no los configuró		
La función boot_map_region no necesita incrementar el pp_ref de cada página que mapea. Esto es porque: *		
Las regiones para las cuales se utiliza, nunca fueron pedidas con page_alloc		
Se realiza después, por fuera de la función		
boot_map_region no opera con páginas		
La MMU verifica los flags de ambas entradas (page directory y page tables) *		
Verdadero		
Falso		

La cantidad de memoria física RAM en una arquitectura x86 de 32 bits son siempre 4 Gb (como máximo), aunque JOS solamente mapee 256 Mb. *

Nota: tener en cuenta el mapa de memoria física

	Verdadero
0	Falso
	números de página de un "page directory" y de las "page tables" son siempre áginas virtuales *
0	Verdadero
•	Falso
¿Cu	ál es el propósito de la TLB? *
0	Permite hacer que las tablas de paginación sean más pequeñas.
0	Reduce los tiempos de acceso a memoria de las instrucciones (i.e. aumenta la velocidad de todo acceso a memoria).
\bigcirc	Contiene los registros utilizados para segmentación (e.g. cs en arquitectura x86).
•	Reduce los tiempos promedio de traducción de direcciones.
¿Qu	é ocurre con las entradas en la TLB al llamar a page_remove? *
0	Nada, porque JOS no configura la TLB
•	La entrada en la TLB correspondiente a la página removida debe ser invalidada manualmente
0	Nada, la entrada en la TLB correspondiente se invalidará sola cuando la MMU intente acceder a esa misma direción
•	mo sabe la MMU donde encontrar el "page directory" para iniciar una ucción de direcciones por paginación? *
0	Siempre va a buscar a un dirección física fija, definida por la arquitectura
0	Se obtiene la página física a partir del registro eip al momento de traducir
	Se obtiene la página física a partir del registro cr3

11/5/22, 20:00	Correo de Facultad de Ingenieria - Universidad de Buenos Aires - FISOP - Parcialito TP1 - 2022a
	Depende del tipo de acceso (e.g. datos, instrucciones, etc), se utilizará el registro de segmento

Crea tu propio formulario de Google Notificar uso inadecuado

correspondiente