Universidad de concepcion

FACULTAD DE CIENCIAS FISÍCAS Y MATEMATICAS

Laboratorio 1

 $Proyecto\ laboratorio\ termodinamica$

Autores: Martina Contreras, Noemí De la peña, Benjamín Opazo.

> Profesor: Claudio Alonso Faúndez Araya

> > Carrera: Ciencias fisícas

Ayudantes: Arelly Nunez y Anahis Verana

Septiembre 2022

Índice

1. Introdución

En el presente documento contiene series de datos obtenidos en la simulación de laboratorio. Los priencipales objetivos de este proyecto son:

- Comprobar usando la simulación, las leves de gases ideales.
- Obtener modelos gráficos y matemáticos que relacionen las magnitudes termodinámicas presión, volumen y temperatura.

2. Marco Teórico

3. Materiales

- Recipiente con gas.
- Pistón
- Terómetro.
- Barómetro.
- Regularizador de temperatura.
- Bomba de moleculas.

4. Procedimiento

- 1. Para la primera simulación, se trabajará a una temperatura constante de 300K y un número de partículas pesadas n = 50. Luego se variará el ancho del recipiente (15nm, 13nm, 11nm, 9nm, 7nm y 5nm). Después se registrá cada valor de presión obtenido de la simulación, para cada uno de los anchos respectivos. Una vez terminada la primera recolección de datos, se repetirá la simulación para partículas pesadas y ligeras, ocupando temperaturas constantes de 300K y 600K, y n = 50, n = 100, n = 150 para cada caso.
- 2. Para la segunda simulación, se trabajará con un número de partículas pesadas n = 50, y una temperatura inicial de 300K. La presión en este caso estará oscilando entre 5,4atm y 6,3atm aproximadamente, debemos hacerla constante en alguno de estos valores, donde el recipiente inicial mide 10nm. Luego, variamos la temperatura con el regulador y debemos fijarnos que ocurre en las siguientes temperaturas: 150K, 225K, 375K y 450K, registrando los datos de las variaciones del ancho del recipiente.
- 3. Repetiremos la simulación anterior con un n = 150, una temperatura inicial de 300K, el recipiente tendrá un ancho inicial de 10nm, la presión estará oscilando entre 17,1atm y 17,9atm, aproximadamente, la haremos constante en alguno de estos valores. Volvemos a variar la temperatura entre 150K, 225K, 375K y 450K. Registre los datos de las variaciones del ancho del recipiente en cada una de las temperaturas dadas. Grafique la relación eligiendo los datos de temperatura y volumen adecuados para los ejes x (temperatura) e y (volumen) para que su función modele los datos lo más próximo posible al experimento.
- 4. Por último, volvemos a realizar la simulación con un n = 250, una temperatura inicial de 300K, el recipiente tendra un ancho inicial de 10nm, la presión estará oscilando entre 28,8atm y 29,6atm, aproximadamente, la haremos constante en alguno de estos valores. Volvemos a variar la temperatura entre 150K, 225K, 375K y 450K.

n (mol)	T = 300K	T = 600K	
50	[3.4 - 4.4], 15	[7.3 - 8.2], 15	P atm, L nm
	[4.0 - 5.0], 13	[8.6 - 9.5], 13	P atm, L nm
	[4.8 - 5.8], 11	[10.2 - 11.1], 11	P atm, L nm
	[6.0 - 7.0], 9	[12.5 - 13.4], 9	P atm, L nm
	[7.9 - 8.8], 7	[16.2 - 17.1], 7	P atm, L nm
	[11.2 - 12.1], 5	[22.9 - 23.8], 5	P atm, L nm
100	[7.3 - 8.2], 15	[15.1 - 16.0], 15	P atm, L nm
	[8.5 - 9.4], 13	[17.5 - 18.4], 13	P atm, L nm
	[10.2 - 11.1], 11	[20.9 - 21.7], 11	P atm, L nm
	[12.5 - 13.4], 9	[25.6 - 26.4], 9	P atm, L nm
	[16.3 - 17.2], 7	[32.9 - 33.7], 7	P atm, L nm
	[22.9 - 23.8] , 5	[46.3 - 47.1], 5	P atm, L nm
150	[11.2 - 12.1], 15	[22.9 - 23.8], 15	P atm, L nm
	[13.1 - 14.0], 13	[26.4 - 27.3], 13	P atm, L nm
	[15.5 - 16.3], 11	[31.4 - 32.2], 11	P atm, L nm
	[19.1 - 19.9], 9	[38.7 - 39.5], 9	P atm, L nm
	[24.7 - 25.5], 7	[49.4 - 50.1], 7	P atm, L nm
	[34.6 - 35.3], 5	[69.8 - 70.4], 5	P atm, L nm

Cuadro 1: Datos para partículas pesadas.

5. Resultados

n (mol)	T = 300K	T = 600K	
50	[3.7 - 4.9], 15	[7.6 - 8.1], 15	P atm, L nm
	[4.1 - 4.9], 13	[8.6 - 9.4], 13	P atm, L nm
	[4.9 - 5.8], 11	[10.2 - 11.0], 11	P atm, L nm
	[6.2 - 6.9], 9	[12.7 - 13.3, 9	P atm, L nm
	[7.8 - 8.5], 7	[16.6 - 17.0], 7	P atm, L nm
	[11.0 - 12.1], 5	[23.0 - 23.7], 5	P atm, L nm
100	[7.6 - 8.2], 15	[15.2 - 15.9], 15	P atm, L nm
	[8.5 - 9.4], 13	[17.6 - 18.3], 13	P atm, L nm
	[10.4 - 11.0], 11	[20.9 - 21.6], 11	P atm, L nm
	[12.6 - 13.1], 9	[25.5 - 26.3], 9	P atm, L nm
	[16.5 - 17.1], 7	[33.1 - 33.9], 7	P atm, L nm
	[22.9 - 23.7] , 5	[46.3 - 47.0], 5	P atm, L nm
150	[11.5 - 12.1], 15	[23.0 - 23.7], 15	P atm, L nm
	[13.1 - 13.6], 13	[26.5 - 27.3], 13	P atm, L nm
	[15.7 - 16.2], 11	[31.5 - 32.2], 11	P atm, L nm
	[19.1 - 19.7], 9	[38.5 - 39.1], 9	P atm, L nm
	[24.9 - 25.6], 7	[49.4 - 50.5], 7	P atm, L nm
	[34.7 - 35.3], 5	[69.8 - 70.3], 5	P atm, L nm

Cuadro 2: Datos para partículas ligeras.

n (mol)	P atm	T Kelvin, L nm
50		150, 5.0
	5.8	225, 7.5
		375, 12.5
		450, 15
100		150, 5.0
	17.5	225, 7.5
		375, 12.5
		450, 15
150		150, 5.0
	29.2	225, 7.5
		375, 12.5
		450, 15

Cuadro 3: Variación del ancho, con respecto a la temperatura, manteniendo P cte.