P1H06300D8 650V GaN HEMT

VBV = 650 V $I_{DS}(25^{\circ}C) = 10 A$ $R_{DS(on)} = 300 mΩ$

GaN HEMT P1H06300D8 650V GaN Enhancement Mode Power Transistor

Features

- Ultra Fast Switching
- No Reverse-Recovery Charge
- Capable of Reverse Conduction
- Low Gate Charge, Low Output Charge

Standards Benefits

- Improves System Efficiency
- Improves Power Density
- Enable Higher Operating Frequency
- System Cost Reduction Savings

Gate	5		
Source	2, 3, 4, TAB		
Drain	1, 6, 7, 8		

Application

- Consumer SMPS
- High Density Chargers Based on the Half-Bridge Topology
- Totem Pole PFC, High Frequency LLC and Flyback

Order Information

Part number	Package	Marking
P1H06300D8	DFN 8 X 8	P1H06300D8

Contents

Features	 1
Standards Benefits·····	
Application	 1
Order Information	 1
Contents	 2
1. Maximum Ratings·····	 3
2. Electrical Characteristics	
3. Thermal Characteristics	
4. Typical Performance·····	 5
5. Package Outlines	 7
6. Part Naming Rules······	 8

1. Maximum Ratings

At T_J=25 °C, unless specified otherwise

Parameter	Symbol	Value	Unit	Test Conditions
Drain - Source Voltage	V_{DSmax}	650	V	V _{GS} = 0 V
Gate - Source Voltage (Dynamic)	V_{GSmax}	-20 / +10	V	AC (F >1 Hz)
Gate - Source Voltage (Static)	V_{GSop}	-8/ +6	V	Static
Continuous Drain Current	I _D	10 6	A	V_{GS} = 6 V, T_{C} = 25 °C V_{GS} = 6 V, T_{C} = 100 °C
Power Dissipation	P _{tot}	55.5	W	T _C =25°C
Operating Junction Temperature	Tı	-55 To +150	°C	
Storage Temperature	T _{stg}	-55 To +150	°C	

2. Electrical Characteristics

At T_J=25°C, unless specified otherwise

B	Complete I	Values					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test condition	
Breakdown Voltage	V _{BV}	650	/	/	V	V _{GS} =0V	
Threshold Voltage	V_{TH}	/	1.3	/	V	V_{DS} =5V, I_{DS} =1mA	
On-state Resistance	R _{DS(on)}	230	240	300	mΩ	V _{GS} =6V, I _{DS} =5A	
Drain-Source leakage current	I _{DSS}	/	15	200	nA	V _{GS} =0V, V _{DS} =650V	
Gate leakage current	I _{GSS}	/	4.9	16.9	μΑ	V _{GS} =6V, V _{DS} =0V	
Input Capacitance	C _{ISS}	/	66.8	/	pF		
Output Capacitance	C _{oss}	/	27.3	/	pF	V _{DS} = 400 V	
Reverse Transfer Capacitance	C _{RSS}	/	0.7	/	рF	$V_{GS} = 0 \text{ V, f} = 1 \text{MHz}$	
Total Gate Charge	Q_{G}	/	3.1	/	nC		
Gate-to-Source Charge	Q_{GS}	/	0.46	/	nC	V _{DS} = 400 V	
Gate-to-Drain Charge	Q_{GD}	/	1.7	/	nC	$V_{GS} = 6V$	
Output Charge	Q _{OSS}	/	3.1	/	nC	$V_{DS} = 400 \text{ V}$ $V_{GS} = 6\text{V}, f = 1\text{MHz}$	
Reverse Recovery Charge	Q_{RR}	/	0	/			
Output Capacitance Stored Energy	E _{OSS}	/	0.44	/	μЈ	V DS = 400 V V GS = 0 V, f = 1MHz	

3. Thermal Characteristics

Parameter	Symbol	Va	lue	Unit	Test
Parameter	Symbol	Тур.	Max.	Onit	Conditions
Thermal Resistance	D	,	2.25		
from Junction to Case	$R_{\theta JC}$	/	2.25	°C /\ A /	
Thermal Resistance	D	,	CO	°C/W	
from Junction to Case	$R_{ heta JA}$	/	60		

4. Typical Performance

At T_J=25°C, unless specified otherwise

Fig.1 Output Characteristics TJ= 25°C

Fig.3 On-Resistance For Various Gate Voltage

Fig.2 Output Characteristics TJ= 150°C

Fig.4 Gate Charge Characteristics

Fig.5 Capacitances vs. Drain-Source Voltage

Fig.6 Output Capacitor Stored Energy

Fig.7 Reverse Conduction Characteristics

Fig.9 Transfer Characteristic for Various Junction Temperatures

5. Package Outlines

Fig.11 DFN 8X8 side view and dimensions (mm)

6. Part Naming Rules

Code	Р	1	Н	06	300	D8	
DESC	PNJ	1 Gen1 2 Gen2 3 Gen3 	D SiC SBD M SiC MOS H GaN HMET	01 100 V Rated Votage 06 650 V Rated Votage 12 1200 V Rated Votage 17 1700 V Rated Votage 33 3300 V Rated Votage 	010 I $_F$: 10 A SBD 100 I $_F$: 100 A SBD 010 RDS(on): 10 m Ω MOS and HMET 100 RDS(on): 3000 m Ω MOS and HMET 3K0 RDS(on): 3000 m Ω MOS and HMET	T2/3 TO220-2/3L K2/3/4 TO247-2/3/4L F2/3 TO220F-2/3L E2/3 TO252-2/3L S4 SOT227 D5 DFN 5*6 D8 DFN 8*8 Q8 QFN D7 P2PAK-7L BD Bare Die BT Bare Die on Tape FW Finished Wafer	