The code for Krylov iterative methods

Introduction

The scipy/sparse/linalg/isolve/ directory include krylov.py (updated and reimplemented iterative.py), tests/test_krylov_poisson.py, tests/test_krylov_conv-diff.py and required tests/data/ directory

- 1. krylov.py: Re-implement Krylov iterative methods.
- 2. test_krylov_poisson.py: Test these Krylov methods for Poisson equations (iterations and CPU time).
- 3. test_krylov_conv-diff.py: Test BiCG, BiCGSTAB and GMRES for convection-diffusion equations.
- 4. data/: Stiffness matrix and right-hand side in linear system obtained by linear finite element method [] on structured mesh (for Poisson equations with homogeneous Dirichlet boundary condition and divergence-free convection-diffusion equations)
 - using P1 element for Poisson and [P1, P1] element for convection-diffusion
- data/poisson_mat_128x128.dat: stiffness matrix obtained by discrete Poisson equations on 128x128 grid (via change nn = 128 in line 30 in benchmark_poisson.py)
- data/poisson_rhs_128x128.dat: right-hand side obtained by discrete Poisson equations on 128x128 grid
- data/poisson_mat_256x256.dat: stiffness matrix obtained by discrete Poisson equations on 256x256 grid
- data/poisson_rhs_256x256.dat: right-hand side obtained by discrete Poisson equations on 256x256 grid
- data/conv-diff_mat_128x128.dat: stiffness matrix obtained by discrete convection-diffusion equations on 128x128 grid (via change nn = 128 in line 28 in benchmark_cd.py)
- data/conv-diff_rhs_128x128.dat: right-hand side obtained by discrete convectiondiffusion equations on 128x128 grid
- data/conv-diff_mat_256x256.dat: stiffness matrix obtained by discrete convectiondiffusion equations on 256x256 grid
- data/conv-diff_rhs_256x256.dat: right-hand side obtained by discrete convection-diffusion equations on 256x256 grid

Running

python3 test_krylov_poisson.py (for Poisson example)

python3 test_krylov_conv-diff.py (for convection-diffusion example)

Numerical Test

Example 1: test_krylov_poisson.py

Poisson equations in $\Omega := [0,1]^2$:

$$-\Delta u = f$$
, in Ω , $u = 0$, on $\partial \Omega$,

where f is determined by constructing the following exact solution sample:

$$u = \sin(2\pi x)\sin(2\pi y) \ u_x = 2\pi\cos(2\pi x)\sin(2\pi y) \ u_y = 2\pi\sin(2\pi x)\cos(2\pi y) \ u_{xx} = -4\pi^2 u \ u_{yy} = u_{xx} \ f = -u_{xx} - u_{yy}$$

Example 2: test_krylov_conv-diff.py

Convection-diffusion equations in $\Omega := [0,1]^2$:

$$egin{aligned} -\Delta oldsymbol{u} + oldsymbol{b} \cdot
abla oldsymbol{u} &= oldsymbol{f}, & ext{in } \Omega \
abla \cdot oldsymbol{u} &= 0, & ext{in } \Omega, \ oldsymbol{u} &= oldsymbol{u}_D, & ext{on } \partial \Omega, \end{aligned}$$

where $\mathbf{u} = [u, v]^T$ is unknown, $\mathbf{b} = [1, 0]^T$. $\mathbf{u}_D = [u_D, v_D]^T$, $\mathbf{f} = [f, g]^T$ are determined by constructing the following exact solution sample:

$$u = \sin(2\pi x)\sin(2\pi y) \ v = \cos(2\pi x)\cos(2\pi y) \ u_x = 2\pi\cos(2\pi x)\sin(2\pi y) \ u_y = 2\pi\sin(2\pi x)\cos(2\pi y) \ v_x = -u_y, \quad v_y = -u_x \ u_{xx} = -4\pi^2 u, \quad u_{yy} = u_{xx} \ v_{xx} = -4\pi^2 v, \quad v_{yy} = v_{xx} \ f = -u_{xx} - u_{yy} + u_x \ g = -v_{xx} - v_{yy} + u_y \ u_D = u|_{\partial\Omega} \ v_D = v|_{\partial\Omega}$$