

Einführung - Quantenmechanik

Joachim Ankerhold, Dominik Maile Institut für Komplexe Quantensysteme Universität Ulm & IQST

Demokrit Ist Materie beliebig oft teilbar?

...Die kleinsten Bausteine sind Atome unterschiedlicher Form.

Άτομο σ = unteilbar

...mehr als 2000 Jahre später, München 1874

Studienberatung bei Prof. Philipp v. Jolly: Physik wollen Sie studieren? Davon rate ich ab. In dieser Wissenschaft ist schon alles erforscht, es gilt nur noch einige unbedeutende Lücken zu schließen.

Die Welt der Physik 1874

Teilchen

Wellen

Die Welt der Teilchen – die mechanistische Welt

Isaac Newton, Principia Mathematica. 1687: Bewegungsgesetze materieller Körper

$$\vec{F} = m \vec{a}$$

Materielle Körper bewegen sich unter dem Einfluss von Kräften auf Bahnen, z.B.

- Steine, Bälle,...
- Maschinen
- Kreisel
- Thermodynamik (Statistische Mechanik)

Die Welt der Wellen – die Welt des Lichts

James C. Maxwell

$$c = \lambda \cdot \nu$$

Elektrodynamik, 1864

$$\nabla \times \vec{E} = \frac{\partial \vec{R}}{\partial t}$$

$$\nabla \times \vec{B} = \mu \cdot \vec{I} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

© Wikipedia

Das Lichts des Schwarzen Körpers

Max Planck, 1900

Lichtemission eines glühenden Körpers

Materie gibt Licht ab in Paketen der Energie

$$h \cdot \nu$$

Wirkungsquantum

$$h = 6,64 \dots 10^{-34} \text{ Js}$$

Materielle Objekte = Wellen und Teilchen

Luois De Broglie 1923

$$m \cdot v = \frac{h}{\lambda}$$

Geschwindigkeit Wellenlänge

Tennisball $\lambda \approx 2 \cdot 10^{-34} \mathrm{m}$ Virus $\lambda \approx 10^{-16} \mathrm{m}$ Atom $\lambda \approx 10^{-10} \mathrm{m} = 1 \, \mathrm{nm}$

... Wellenmechanik

Bohr Heisenberg Dirac

Born Schrödinger Jordan Wellenamplitude eines materiellen Objekts

$$\psi(\vec{x},t)$$

Wellengleichung (Schrödinger-Gleichung, 1926)

$$\hat{H}\,\psi=i\hbar\,rac{\partial\psi}{\partial t}$$

$$\hbar=h/2\pi$$

Energie zeitliche Änderung

In a nutshell...Quantenmechanik

- 1. Quanten-Objekte sind Wellen-Teilchen
- 2. Nur Aussagen über Wahrscheinlichkeiten sind möglich
- 3. Quantenobjekte können Interferenzen zeigen ("Superposition klassischer Möglichkeiten")
- 4. Die Art der Messung entscheidet über das Ergebnis

In a nutshell...Quantenmechanik

- 1. Quanten-Objekte sind Wellen-Teilchen
- 2. Nur Aussagen über Wahrscheinlichkeiten sind möglich
- 3. Quantenobjekte können Interferenzen zeigen ("Superposition klassischer Möglichkeiten")
- 4. Die Art der Messung entscheidet über das Ergebnis

Theoretischer Formalismus:

Verknüpfung von Teilchen- und Wellenkonzepten

Verknüpfung von klassischer Mechanik und Statistischer Physik

Quantisierung: Spektrum Wasserstoff

Mehr-Körper-Interferenz: Verschränkung

- Das Ganze ist mehr als die Summer seiner Teile

Nobel Prize 2022

Grundlage der modernen Physik in allen Bereichen

Elementarteilchen: Standardmodell

Konstituenten der Hadronen (Quarks, Gluonen) Leptonen (Elektronen, Myonen etc.)

Atom- und Molekülphysik

Atom- und Molekülbindung, Spektren, Bose-Einstein-Kondensation, ...

Kondensierte Materie

Stabilität, Phasenübergänge, Supraleitung, Quanten-Hall-Effekt, Quasi-Teilchen, Topologie,.....

Kosmologie

Big Bang, Inflationäres Universum, Hawking-Strahlung,...

Quanten – Welt: Stellt herkömmliche Vorstellungen in Frage

- Was ist ein Teilchen?
- ➤ Ist der Zufall integraler Bestandteil der Natur?
- Gibt es Eigenschaften vor einer Messung?
- Warum sehen wir die Quantenphänomene nicht in der Makrowelt?

Quantenphänomene nutzbar machen?

Quanten im 20. Jhd.

Quantisierung Ununterscheidbarkeit

Quanten im 21. Jhd.

Superposition Verschränkung

Informationsverarbeitung mittels Quanten-Bits (Qubits)

CEA Saclay

2002 Quantronium – 1 Qubit (Superpositionen von "0" und "1")

Informationsverarbeitung mittels Quanten-Bits (Qubits)

2002 Quantronium – 1 Qubit

2020 Intel – 49 Qubits - Verschränkung

Anwendungsfelder

Chemie, Pharmazie, Materialwissenschaften

Optimierung und Logistik

Analyse in und Informationen aus großen Datenmengen (QC+KI)

IBM Ehningen

Quanten-Sensorik

Quantensensoren verschieben die Grenzen des technologisch/physikalisch Möglichen

IOT & Lifestyle
Smart Health Sensoren

Mobilität
Sensoren für die Navigation

Gesundheit & Biomedizin

Nachhaltigkeit

Umweltsensoren

Quanten-Sensorik

Sensorik mit "gefangenen" Atomen: Nano-Diamant

Inhalt

- 1. Teilchen und Wellen
- 2. Eindimensionale Potentialmodelle
- 3. Zwei-Zustandssystem
- 4. Prinzipien der Quantenmechanik
- 5. Eindimensionaler harmonischer Oszillator
- 6. Messwerte und Wahrscheinlichkeiten
- 7. Drehimpuls
- 8. Das Wasserstoffatom
- 9. Zeitunabhängige Störungstheorie

Bücher...

- Cohen-Tannoudji, de Gruyter, zwei Bände
- Schwabl, Quantenmechanik
- Grawert, Quantenmechanik
- Sakurai: Modern Quantum Mechanics
- Bronstein

Rahmenbedingungen

- Vier Seminare kleine Gruppen!
- Eine Gruppe für Lehramt Gruppeneinteilung: Moodle Freischaltung heute Abend/morgen früh
- Hausaufgaben: Bis zu zwei Personen, Ausgabe Freitagmittag, Abgabe Donnerstag der Folgewoche bis 18 Uhr
- Zulassung Klausur: 50% bei Einzelabgabe/Zweierabgabe
- Probeklausur um die Mitte des Semesters