

КОНТРОЛЛЕР УПРАВЛЕНИЯ ДОСТУПОМ

Техническая документация

СОДЕРЖАНИЕ

- 1. Общие сведения о контроллере
- 2. Технические характеристики контроллера
- 3. Технические возможности контроллера
- 4. Построение системы контроля доступа на базе контроллера
- 5. Функционирование контроллера
- 6. Обновление программного обеспечения и замена «Мастер-карточек»

1. Общие сведения о контроллере

Контроллер управления доступом «ACL» предназначен для создания системы контроля и управления доступом (далее СКУД) с использованием бесконтактной технологии proximity-карт. Для создания однодверной двусторонней СКУД на базе контроллера управления доступом «ACL», дополнительно необходимо использовать один (два) считывателя proximity-карточек, замок (электромеханический, электромагнитный) и собственно proximity-карточки.

Использование контроллера управления доступом «ACL» позволяет построить полнофункциональную СКУД с низкой себестоимостью.

2. Технические характеристики контроллера

Табл.1.

№ п.п.	Параметр	Значение
1.	Напряжение питания постоянного тока, В	12
2	Потребляемый ток, А	< 0,15
3.	Максимальное коммутируемое переменное/постоянное напряжение, В	120/25
4.	Максимальный коммутируемый переменный/постоянный ток, А	2/2
5.	Минимальное расстояние между считывателями, м	0,5
6.	Сопротивление/мощность оконечного резистора, кОм/Вт	2,2/0,125
7.	Диапазон рабочих температур, С	-20+60
8.	Масса устройства, кг	<0,2

3. Технические возможности контроллера

- максимальное количество пользователей 100;
- поддержка считывателей стандартов WIEGAND-26;
- максимальное количество считывателей в системе 2;
- открытие двери при помощи кнопки с нормально-разомкнутым контактом;
- ведение аппаратной базы пользователей;
- удаление и создание новой аппаратной базы пользователей с помощью «Мастер-карточки N 1 > 1);
- добавление пользователей в существующую аппаратную базу с помощью «Мастер-карточки №2»;
 - замена «Мастер-карточек»;

- контроль состояния двери при применении геркона;
- управление исполнительным устройством с помощью релейного выхода (нормально-замкнутый, нормально-разомкнутый контакты);
- акустическая сигнализация окончания интервала времени отведенного на закрытие двери;
 - световая индикация работоспособности и состояния системы;
- обновление программного обеспечения контроллера при помощи специального адаптера по RS-232.

4. Построение системы контроля доступа на базе контроллера

Вариант построения системы контроля доступа на базе контроллера приведен на рис.1.

Рис.1.

В состав системы изображенной на рис.1 входят: контроллер «ACL», два считывателя, блок питания, геркон, замок (исполнительное устройство) и кнопка охранника. Открытие двери происходит при помощи карточки, зарегистрированной в системе, или кнопкой охранника.

Назначение выводов контроллера показано на рис.2.

Рис.2.

Гле

Supply – выводы для подключения источника питания (полярность значения не имеет);

Gerc – выводы для подключения геркона с оконечным резистором;

12V, *GND*, *BEEP*, *LED*, *D1*, *D0*, *RX* — выводы для подключения считывателя;

Button — выводы для подключения кнопки с нормально-разомкнутым контактом;

Relay – выводы для подключения исполнительного устройства (замка);

В зависимости от типа исполнительного устройства возможны два варианта их подключения к контроллеру.

Если в качестве исполнительного устройства используется электромеханический замок, то он подключается к источнику питания через нормально-разомкнутый контакт реле. При срабатывании реле контакт замыкается и подает питание на соленоид замка.

Если в качестве исполнительного устройства используется электромагнитный замок, то он подключается к источнику питания через нормально-замкнутый контакт реле. При срабатывании реле контакт размыкается и отключает питание от соленоида замка.

Конструкцией контроллера предусмотрено два интервала удержания релейного выхода в активном состоянии. При установке джампера X1 в левое

положение интервал удержания релейного выхода составляет 2 секунды, а при его отсутствии – 6 секунд. На рис.3 изображено левое положение джампера X1.

Рис.3.

Геркон рекомендуется подключать при помощи витой пары с обязательным подключением оконечного резистора 2,2 кОм. Схема подключения показана на рис.4.

При подключении считывателей *следует соблюдать полярность питающего напряжения*. Считыватели рекомендуется монтировать скрытой проводкой на высоте удобной для использования.

При отсутствии необходимости контролировать состояние двери контакты *Gerc* замыкаются через резистор 2,2 кОм.

Внимание! Если в качестве исполнительного устройства используется катушка электрозамка, то параллельно ей надо включить гасящий диод, как показано на рис.5.

5. Функционирование контроллера

При включении питания контроллер «ACL» переходит в режим ожидания (светодиод контроллера засвечивается красным цветом на время 100мс с периодом 1с, то же происходит со светодиодом(ами) считывателя(ей)). Следует отметить, что для очистки и создания новой аппаратной базы пользователей можно использовать любой из подключенных к контроллеру считывателей.

Для удаления и создания новой базы пользователей необходимо выполнить такие действия:

Табл. 3

Действия		Индикация (состояние) контроллера
администратора		
Приподнести	«Мастер-	Светодиод контроллера светится красным цветом (контроллер
карточку	№ 1» κ	очищает аппаратную базу пользователей и ожидает добавление
считывателю.		пользователей).
Приподнести	карточку	Светодиод контроллера кратковременно засвечивается зеленым
пользователя	К	цветом, после чего контроллер готов к принятию следующей
считывателю.		карточки. Если на протяжении 10с к считывателю не будет
		приподнесена следующая карточка пользователя, то контроллер
		записывает аппаратную базу пользователей (на протяжении 2 с
		светодиод контроллера светится зеленым цветом), после чего
		контроллер переходит в состояние ожидания (светодиод светится
		красным цветом на время 100мс с периодом 1с).

Для добавления к существующей базе новых пользователей необходимо выполнить следующие шаги:

Табл.4

Действия	Индикация (состояние) контроллера
администратора	
Приподнести «Мастер-	Светодиод контроллера светится красным цветом (контроллер
карточку №2» к	ожидает добавление пользователей к аппаратной базе
считывателю.	контроллера).

Приподнести карточку	Светодиод контроллера кратковременно засвечивается зеленым
пользователя к	цветом, после чего контроллер готов к принятию следующей
считывателю.	карточки. Если на протяжении 10с к считывателю не будет
	приподнесена следующая карточка пользователя, то контроллер
	записывает аппаратную базу пользователей (на протяжении 2 с
	светодиод контроллера светится зеленым цветом), после чего
	контроллер переходит в состояние ожидания (светодиод светится
	красным цветом на время 100мс с периодом 1с).

Следует отметить, что на время работы контроллера в режиме программирования карточек, доступ по карточкам пользователей запрещен.

Для осуществления прохода используются карточки пользователей или кнопка охранника, использование «Мастер-карточек» с этой целью не допускается.

При считывании зарегистрированной карточки контроллер активирует исполняющее устройство, светодиод светится зеленым цветом. То же самое происходит при нажатии кнопки охранника. По окончании интервала удержания исполняющего устройства в активном состоянии, контроллер деактивирует исполняющее устройство.

Контроллер имеет встроенную систему акустической сигнализации, которая позволяет контролировать состояние двери. Система акустической сигнализации включается:

- если имел место проход зарегистрированного пользователя и по истечении интервала пребывания двери в открытом состоянии (10 секунд) дверь не была закрыта (контролируется герконом);
- если не была применена карточка пользователя и дверь была открыта силой. Система акустической сигнализации выключается закрытием двери или после 30 секунд ее работы.

6. Обновление программного обеспечения и замена «Мастер-карточек»

Обновление программного обеспечения осуществляется при помощи специального адаптера, по интерфейсу RS-232. На рис.6. показано подключение адаптера к контроллеру. После его подключения следует подать питание и запустить на ПК программу «Flasher».

Для замены «Мастер-карточек» следует выключить питание контроллера, установить джампер X1 в правое положение (см. рис.6), включить питание контроллера. При этом светодиод контроллера светится красным цветом контроллер ожидает добавление новых «Мастер-карточек». Приподнести к любому из считывателей одну (если надо заменить только первую «Мастер-карточку») или две (если надо заменить обе «Мастер-карточки») карточки. Порядок следования карточек определяет номер «Мастер-карточки». Затем следует выключить питание контроллера и изъять джампер.

Рис.6.