林轩田《机器学习基石》课程笔记6 -- Theory of Generalization

作者: 红色石头 公众号: Al有道 (id: redstonewill)

上一节课,我们主要探讨了当M的数值大小对机器学习的影响。如果M很大,那么就不能保证机器学习有很好的泛化能力,所以问题转换为验证M有限,即最好是按照多项式成长。然后通过引入了成长函数 $m_H(N)$ 和dichotomy以及break point的概念,提出2D perceptrons的成长函数 $m_H(N)$ 是多项式级别的猜想。这就是本节课将要深入探讨和证明的内容。

— Restriction of Break Point

我们先回顾一下上节课的内容,四种成长函数与break point的关系:

• positive rays: $m_{\mathcal{H}}(N) = N + 1$ • $m_{\mathcal{H}}(N) = 3 < 2^2$: break point at 2

• positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ • $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1$ • $m_{\mathcal{H}}(N) = 7 < 2^3$: break point at 3

• convex sets: $m_{\mathcal{H}}(N) = 2^N$ • $m_{\mathcal{H}}(N) = 2^N$ always: no break point

• 2D perceptrons: $m_{\mathcal{H}}(N) < 2^N$ in some cases

• $m_{\mathcal{H}}(N) < 2^N$ in some cases

下面引入一个例子,如果k=2,那么当N取不同值的时候,计算其成长函数 $m_H(N)$ 是多少。很明显,当N=1时, $m_H(N)$ =2,当N=2时,由break point为2可知,任意两点都不能被shattered(shatter的意思是对N个点,能够分解为 2^N 种dichotomies); $m_H(N)$ 最大值只能是3;当N=3时,简单绘图分析可得其 $m_H(N)=4$,即最多只有4种dichotomies。

what 'must be true' when minimum break point k = 2

- N = 1: every $m_{\mathcal{H}}(N) = 2$ by definition
- N = 2: every m_H(N) < 4 by definition (so maximum possible = 3)
- N = 3: maximum possible = 4 ≪ 2³
- —break point k restricts maximum possible $m_{\mathcal{H}}(N)$ a lot for N > k

所以,我们发现当N>k时,break point限制了 $m_H(N)$ 值的大小,也就是说影响成长函数 $m_H(N)$ 的因素主要有两个:

- 抽样数据集N
- break point k (这个变量确定了假设的类型)

那么,如果给定N和k,能够证明其 $m_H(N)$ 的最大值的上界是多项式的,则根据霍夫丁不等式,就能用 $m_H(N)$ 代替M,得到机器学习是可行的。所以,证明 $m_H(N)$ 的上界是poly(N),是我们的目标。

idea: $m_{\mathcal{H}}(N)$

 \leq maximum possible $m_{\mathcal{H}}(N)$ given k

 $\leq poly(N)$

二、Bounding Function: Basic Cases

现在,我们引入一个新的函数:bounding function,B(N,k)。Bound Function指的是当break point为k的时候,成长函数 $m_H(N)$ 可能的最大值。也就是说B(N,k)是 $m_H(N)$ 的上界,对应 $m_H(N)$ 最多有多少种dichotomy。那么,我们新的目标就是证明:

$$B(N,k) \leq poly(N)$$

这里值得一提的是,B(N,k)的引入不考虑是1D postive intrervals问题还是2D perceptrons问题,而只关心成长函数的上界是多少,从而简化了问题的复杂度。

bounding function B(N, k):

maximum possible $m_{\mathcal{H}}(N)$ when break point = k

- combinatorial quantity: maximum number of length-N vectors with (o, x) while 'no shatter' any length-k subvectors
- irrelevant of the details of H
 e.g. B(N, 3) bounds both
 - positive intervals (k = 3)
 - 1D perceptrons (k = 3)

求解B(N,k)的过程十分巧妙:

- 当k=1时, B(N,1)恒为1。
- 当N < k时,根据break point的定义,很容易得到 $B(N,k)=2^N$ 。
- 当N = k时,此时N是第一次出现不能被shatter的值,所以最多只能有 $\mathbf{2}^N-\mathbf{1}$ 个 dichotomies,则 $B(N,k)=\mathbf{2}^N-\mathbf{1}$ 。

					k			
	B(N, k)	1	2	3	4	5	6	
	1	1	2	2	2	2	2	
	2	1	3	4	4	4	4	
	3	1	4	7	8	8	8	
Ν	4	1			15	16	16	
	5	1				31	32	
	6	1					63	
	÷	:						$\gamma_{i,j}$

到此, bounding function的表格已经填了一半了, 对于最常见的N>k的情况比较复杂, 推导过程下一小节再详细介绍。

三、Bounding Function: Inductive Cases

N > k的情况较为复杂, 下面给出推导过程:

以B(4,3)为例,首先想着能否构建B(4,3)与B(3,x)之间的关系。

首先,把B(4,3)所有情况写下来,共有11组。也就是说再加一种dichotomy,任意三点都能被shattered,11是极限。

	X ₁	\mathbf{x}_2	x ₃	\mathbf{x}_4
01	0	0	0	0
02	×	0	0	0
03	0	×	0	0
04	0	0	×	0
05	0	0	0	×
06	×	×	0	×
07	×	0	×	0
80	×	0	0	×
09	0	×	×	0
10	0	×	0	×
11	0	0	×	×

对这11种dichotomy分组,目前分成两组,分别是orange和purple,orange的特点是,x1,x2和x3是一致的,x4不同并成对,例如1和5,2和8等,purple则是单一的,x1,x2,x3都不同,如6,7,9三组。

	X 1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4		X 1	\mathbf{x}_2	\mathbf{x}_3	X ₄
01	0	0	0	0	01	0	0	0	0
02	×	0	0	0	05	0	0	0	×
03	0	×	0	0	02	×	0	0	0
04	0	0	×	0	08	×	0	0	×
05	0	0	0	×	→ 03	0	×	0	0
06	×	×	0	×	10	0	×	0	×
07	×	0	×	0	04	0	0	×	0
08	×	0	0	×	11	0	0	×	×
09	0	×	×	0	06	×	×	0	×
10	0	×	0	×	07	×	0	×	0
11	0	0	×	×	09	0	×	×	0

orange: pair; purple: single

将Orange去掉x4后去重得到4个不同的vector并成为 α ,相应的purple为 β 。那么 $B(4,3)=2\alpha+\beta$,这个是直接转化。紧接着,由定义,B(4,3)是不能允许任意三点 shatter的,所以由 α 和 β 构成的所有三点组合也不能shatter(alpha经过去重),即 $\alpha+\beta\leq B(3,3)$ 。

另一方面,由于 α 中x4是成对存在的,且 α 是不能被任意三点shatter的,则能推导出 α 是不能被任意两点shatter的。这是因为,如果 α 是不能被任意两点shatter,而x4又是成对存在的,那么x1、x2、x3、x4组成的 α 必然能被三个点shatter。这就违背了条件的设定。这个地方的推导非常巧妙,也解释了为什么会这样分组。此处得到的结论是 $\alpha \leq B(3,2)$

由此得出B(4,3)与B(3,x)的关系为:

$$B(4,3) = 2\alpha + \beta$$

$$\alpha + \beta \leq B(3,3)$$

$$\alpha \leq B(3,2)$$

$$\Rightarrow B(4,3) \leq B(3,3) + B(3,2)$$

最后,推导出一般公式为:

$$B(N,k) = 2\alpha + \beta$$

$$\alpha + \beta \leq B(N-1,k)$$

$$\alpha \leq B(N-1,k-1)$$

$$\Rightarrow B(N,k) \leq B(N-1,k) + B(N-1,k-1)$$

根据推导公式,下表给出B(N,K)值

						k			
		B(N, k)	1	2	3	4		5	6
·		1	1	2	2	2		2	2
		2	1	3	4	4		4	4
		3	1	4	7	8		8	8
	Ν	4	1	≤ 5	11	1	5	16	16
		5	1	≤ 6	≤ 16	_ <	26	31	32
		6	1	≤ 7	≤ 22	≤	42	≤ 57	63

根据递推公式,推导出B(N,K)满足下列不等式:

$$B(N, k) \le \sum_{i=0}^{k-1} {N \choose i}$$
highest term N^{k-1}

上述不等式的右边是最高阶为k-1的N多项式,也就是说成长函数 $m_H(N)$ 的上界 B(N,K)的上界满足多项式分布poly(N),这就是我们想要得到的结果。

得到了 $m_H(N)$ 的上界B(N,K)的上界满足多项式分布poly(N)后,我们回过头来看看之前介绍的几种类型它们的 $m_H(N)$ 与break point的关系:

• positive rays:
$$m_{\mathcal{H}}(N) = N + 1 \le N + 1$$

• $\infty \times m_{\mathcal{H}}(2) = 3 < 2^2$: break point at 2
• positive intervals: $m_{\mathcal{H}}(N) = \frac{1}{2}N^2 + \frac{1}{2}N + 1 \le \frac{1}{2}N^2 + \frac{1}{2}N + 1$
• $\infty \times m_{\mathcal{H}}(3) = 7 < 2^3$: break point at 3
• 2D perceptrons: $m_{\mathcal{H}}(N) = ? \le \frac{1}{6}N^3 + \frac{5}{6}N + 1$
 $\times \stackrel{\circ}{\circ} \times m_{\mathcal{H}}(4) = 14 < 2^4$: break point at 4

我们得到的结论是,对于2D perceptrons,break point为k=4, $m_H(N)$ 的上界是 N^{k-1} 。推广一下,也就是说,如果能找到一个模型的break point,且是有限大的,那么就能推断出其成长函数 $m_H(N)$ 有界。

四、A Pictorial Proof

我们已经知道了成长函数的上界是 $\operatorname{poly}(\mathsf{N})$ 的,下一步,如果能将 $m_H(N)$ 代替M,代入到Hoffding不等式中,就能得到 $E_{out} \approx E_{in}$ 的结论:

want:
$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big| E_{\text{in}}(h) - E_{\text{out}}(h) \big| > \epsilon \Big] \leq 2 \quad m_{\mathcal{H}}(N) \cdot \exp\left(-2 - \epsilon^2 N\right)$$

实际上并不是简单的替换就可以了,正确的表达式为:

actually, when
$$N$$
 large enough,
$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } \big| E_{\text{in}}(h) - E_{\text{out}}(h) \big| > \epsilon \Big] \leq 2 \cdot 2m_{\mathcal{H}}(2N) \cdot \exp\left(-2 \cdot \frac{1}{16}\epsilon^2 N\right)$$

该推导的证明比较复杂,我们可以简单概括为三个步骤来证明:

Step 1: Replace E_{out} by E'_{in}

$$\frac{1}{2}\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big]$$

$$\leq \mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E'_{\text{in}}(h)| > \frac{\epsilon}{2}\Big]$$

- E_{in}(h) finitely many, E_{out}(h) infinitely many —replace the evil E_{out} first
- how? sample verification set D' of size N to calculate E'_{in}
- BAD h of E_{in} E_{out} $\stackrel{\text{probably}}{\Longrightarrow}$ BAD h of $E_{\text{in}} - E'_{\text{in}}$

evil E_{out} removed by verification with 'ghost data'

Step 2: Decompose \mathcal{H} by Kind

BAD
$$\leq 2\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E'_{\text{in}}(h)| > \frac{\epsilon}{2}\Big]$$

 $\leq 2m_{\mathcal{H}}(2N)\mathbb{P}\Big[\text{fixed } h \text{ s.t. } |E_{\text{in}}(h) - E'_{\text{in}}(h)| > \frac{\epsilon}{2}\Big]$

- E_{in} with D, E'_{in} with D' —now $m_{\mathcal{H}}$ comes to play
- how? infinite H becomes $|\mathcal{H}(\mathbf{x}_1,\ldots,\mathbf{x}_N,\mathbf{x}_1',\ldots,\mathbf{x}_N')|$ kinds
- union bound on $m_{\mathcal{H}}(2N)$ kinds

(c) Now

use $m_{\mathcal{H}}(2N)$ to calculate BAD-overlap properly

Step 3: Use Hoeffding without Replacement

BAD
$$\leq 2m_{\mathcal{H}}(2N)\mathbb{P}\Big[\text{fixed }h\text{ s.t. }\big|E_{\text{in}}(h)-E'_{\text{in}}(h)\big|>\frac{\epsilon}{2}\Big]$$

 $\leq 2m_{\mathcal{H}}(2N)\cdot 2\exp\Big(-2\Big(\frac{\epsilon}{4}\Big)^2N\Big)$

- consider bin of 2N examples, choose N for $E_{\rm in}$, leave others for $E_{\rm in}'$ $|E_{\rm in}-E_{\rm in}'|>\frac{\epsilon}{2}\Leftrightarrow \left|E_{\rm in}-\frac{E_{\rm in}+E_{\rm in}'}{2}\right|>\frac{\epsilon}{4}$
- so? just 'smaller bin', 'smaller ϵ ', and Hoeffding without replacement

use Hoeffding after zooming to fixed h

这部分内容,我也只能听个大概内容,对具体的证明过程有兴趣的童鞋可以自行研究 一下,研究的结果记得告诉一下我哦。

最终,我们通过引入成长函数 m_H ,得到了一个新的不等式,称为Vapnik-Chervonenkis(VC) bound:

Vapnik-Chervonenkis (VC) bound:

$$\mathbb{P}\Big[\exists h \in \mathcal{H} \text{ s.t. } |E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon\Big]$$

$$\leq 4m_{\mathcal{H}}(2N) \exp\left(-\frac{1}{8}\epsilon^2 N\right)$$

对于2D perceptrons,它的break point是4,那么成长函数 $m_H(N)=O(N^3)$ 。所以,我们可以说2D perceptrons是可以进行机器学习的,只要找到hypothesis能让 $E_{in}pprox 0$,就能保证 $E_{in}pprox E_{out}$ 。

五、总结

本节课我们主要介绍了只要存在break point,那么其成长函数 $m_H(N)$ 就满足 poly(N)。推导过程是先引入 $m_H(N)$ 的上界B(N,k),B(N,k)的上界是N的k-1阶多项

式,从而得到 $m_H(N)$ 的上界就是N的k-1阶多项式。然后,我们通过简单的三步证明,将 $m_H(N)$ 代入了Hoffding不等式中,推导出了Vapnik-Chervonenkis(VC)bound,最终证明了只要break point存在,那么机器学习就是可行的。

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。