Tutorial: Row and Column Operations

Notation and Terminology

Notation: Unit Basis Vectors

Throughout this tutorial, suppose $n \in \mathbb{N}$ is fixed. Let I be the $n \times n$ identity matrix and denote by \mathbf{e}_j its jth column, i.e.,

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_n \end{bmatrix}.$$

That is,

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \cdots, \quad \mathbf{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Notation: Concatenation

Let $A \in \mathbb{R}^{n \times n}$. We can view it as a concatenation of its rows or columns as visualized below.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \\ \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{\alpha}_1^{\mathrm{T}} & \boldsymbol{\alpha}_2^{\mathrm{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\alpha}_n^{\mathrm{T}} & \boldsymbol{\alpha}_n^{\mathrm{T}} \end{bmatrix}$$

Basic Row and Column Operations

Row or Column Extraction

A row or a column of ${\cal A}$ can be extracted using columns of ${\cal I}$.

Operation	Mathematics	MATLAB
extract the i th row of A	$\mathbf{e}_i^{\mathrm{T}} A$	A(i,:)
extract the j th column of A	$A\mathbf{e}_j$	A(:,j)
extract the (i,j) entry of \boldsymbol{A}	$\mathbf{e}_i^{\mathrm{T}} A \mathbf{e}_j$	A(i,j)

Elementary Permutation Matrices

Definition 1 (Elementary Permutation Matrix)

For $i,j\in\mathbb{N}[1,n]$ distinct, denote by P(i,j) the $n\times n$ matrix obtained by interchanging the ith and jth rows of the $n\times n$ identity matrix. Such matrices are called *elementary permutation matrices*.

Example. (n=4)

$$P(1,2) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad P(1,3) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \cdots$$

Notable Properties.

•
$$P(i,j) = P(j,i)$$

•
$$P(i,j)^2 = I$$

Row or Column Interchange

Elementary permutation matrices are useful in interchanging rows or columns.

Operation	Mathematics	MATLAB
$oldsymbol{lpha}_i^{ ext{T}} \leftrightarrow oldsymbol{lpha}_j^{ ext{T}}$		A([i,j],:)=A([j,i],:)
$\mathbf{a}_i \leftrightarrow \mathbf{a}_j$	AP(i,j)	A(:,[i,j])=A(:,[j,i])

Permutation Matrices

Definition 2 (Permutation Matrix)

A permutation matrix $P \in \mathbb{R}^{n \times n}$ is a square matrix obtained from the same-sized identity matrix by re-ordering of rows.

Notable Properties.

- $P^{\mathrm{T}} = P^{-1}$
- A product of elementary permutation matrices is a permutation matrix.

Row and Column Operations. For any $A \in \mathbb{R}^{n \times n}$,

- *PA* permutes the rows of *A*.
- *AP* permutes the columns of *A*.

Row or Column Rearrangement

Question

Let $A \in \mathbb{R}^{6 \times 6}$, and suppose that it is stored in MATLAB. Rearrange rows of A by moving 1st to 2nd, 2nd to 3rd, 3rd to 5th, 4th to 6th, 5th to 4th, and 6th to 1st, that is,

$\boxed{ \qquad \alpha_1^{\rm T} }$	$\boldsymbol{\alpha}_{6}^{\mathrm{T}}$
$\boldsymbol{\alpha}_2^{\mathrm{T}}$	$\boldsymbol{\alpha}_1^{\mathrm{T}}$
$\boldsymbol{\alpha}_3^{\mathrm{T}}$	$\boldsymbol{\alpha}_2^{\mathrm{T}}$
$\boldsymbol{\alpha}_{4}^{\mathrm{T}}$	$\boldsymbol{\alpha}_5^{\mathrm{T}}$
$\boldsymbol{\alpha}_5^{\mathrm{T}}$	$\boldsymbol{\alpha}_3^{\mathrm{T}}$
$oxed{lpha_6^{ m T}}$	$oxed{lpha_4^{ m T}}$

Row or Column Rearrangement

Solution.

• Mathematically: PA where

MATLAB:

```
A = A([6 \ 1 \ 2 \ 5 \ 3 \ 4], :) % short for A([1 \ 2 \ 3 \ 4 \ 5 \ 6], :) = A([6 \ 1 \ 2 \ 5 \ 3 \ 4], :)
```

Gaussian Transformation Matrices

Elementary Row Operation and GTM

Let $1 \leq j < i \leq n$.

• The row operation $R_i \to R_i + cR_j$ on $A \in \mathbb{R}^{n \times n}$, for some $c \in \mathbb{R}$, can be emulated by a matrix multiplication¹

$$(I + c \mathbf{e}_i \mathbf{e}_j^{\mathrm{T}}) A.$$

• In the context of Gaussian elimination, the operation of introducing zeros below the jth diagonal entry can be done via

$$\underbrace{\left(I + \sum_{i=j+1}^{n} c_{i,j} \mathbf{e}_{i} \mathbf{e}_{j}^{\mathrm{T}}\right) A, \quad 1 \leqslant j < n.}_{=G_{j}}$$

The matrix G_i is called a Gaussian transformation matrix (GTM).

¹Many linear algebra texts refer to the matrix in parentheses as an *elementary matrix*.

Elementary Row Operation and GTM (cont')

• To emulate $(I+c\mathbf{e}_i\mathbf{e}_j^{\mathrm{T}})A$ in MATLAB:

$$A(i,:) = A(i,:) + c*A(j,:);$$

To emulate

$$G_j A = (I + \sum_{i=j+1}^n c_{i,j} \mathbf{e}_i \mathbf{e}_j^{\mathrm{T}}) A$$

in MATLAB:

```
for i = j+1:n
    c = ....
    A(i,:) = A(i,:) + C*A(j,:);
end
```

This can be done without using a loop.

Analytical Properties of GTM

- GTMs are unit lower triangular matrices.
- The product of GTMs is another unit lower triangular matrix.
- The inverse of a GTM is also a unit lower triangular matrix.