AV (first part) & STATES: sample exam 1

1 State space modeling and Kalman filter implementation

In the plane (x, z), a mobile robot moves along the straight line z = 0.

Its abscissa at discrete time n is x[n].

At time n = 1, x[1] = 0 for sure.

To locate the robot, a headlight is available at known position (x_H, z_H) .

We measure the angle $\theta[n] \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ as represented on the figure.

In the sequel, we will use the observation $Y[n] = \tan \theta[n]$.

- a) Using simple geometry, give the natural estimation of X[n] in function of Y[n], x_H and z_H .
- b) If Y[n] includes a zero-mean noise W[n] with variance r, what is the variance of the estimator?

In the sequel, in order to improve the localization, we had a new information: the robot has an almost constant velocity, so that the distance browsed between time n and time n+1 is a known constant D plus a zero-mean noise V[n] with variance q. We have to build a state space representation of the system with state X[n] and output Y[n], in order to apply the Kalman filter.

- c) Use the previous question to obtain the observation equation (that is Y[n] from X[n]).
- d) Write the state equation (that is X[n+1] from X[n]).
- e) Propose a value for the initial prediction $\hat{\mathbf{x}}^{[0]}[1]$ and its variance $P^{[0]}[1]$.
- f) Give the update equations of the Kalman filter $(\hat{\mathbf{x}}^{|n}[n] \text{ and } P^{|n}[n] \text{ in function of } \hat{\mathbf{x}}^{|n-1}[n], P^{|n-1}[n], r, x_H, z_H \text{ and the new observation } \mathbf{y}[n]).$
- g) Give the prediction equations $(\hat{\mathbf{X}}^{|n}[n+1])$ and $P^{|n}[n+1]$ in function of $\hat{\mathbf{X}}^{|n}[n]$, $P^{|n}[n]$, D and Q.
- h) The headlight is out of order $(r = +\infty)$. Give $\hat{\mathbf{x}}^{|n|}[n]$ and $P^{|n|}[n]$ in function of n, D and q.
- i) The speed varies a lot from its nominal value $(q=+\infty)$. Give $\hat{\mathbf{X}}^{|n}[n]$ and $P^{|n}[n]$ in function of $\mathbf{Y}[n]$, r, $x_{\mathbf{H}}$, $z_{\mathbf{H}}$.

2 Probability and estimation (Poisson distribution)

A discrete random variable T is Poisson-distributed with parameter X if its probability mass function writes:

$$\operatorname{Prob}\left(\mathbf{T} = t \mid \mathbf{X}\right) = e^{-\mathbf{X}} \frac{\mathbf{X}^{t}}{t!} \quad \forall t \in \mathbb{N}$$

Reminder: $e^x = \sum_{t=0}^{+\infty} \frac{x^t}{t!}$.

- a) What is the mean value of $T \mid X$.
- b) What is the variance of T | X (trick: first calculate E(T(T-1) | X)).
- c) $\vec{\mathbf{T}} = (\mathbf{T}_1, \dots, \mathbf{T}_n)$ is a vector of n random variables independent and identically distributed given \mathbf{X} , each of them is Poisson-distributed with parameter \mathbf{X} . Write the log-likelihood $L_{\vec{t}}(\mathbf{X}) = \ln \operatorname{Prob} \left(\vec{\mathbf{T}} = \vec{t} \mid \mathbf{X}\right)$, for all $\vec{t} = (t_1, \dots, t_n)$.
- d) Give the maximum likelihood estimation $\hat{x}(\vec{T})$.