Particle spectrograph

Wave operator and propagator

$$S == \iiint (\phi \mathcal{J} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \frac{1}{2}\beta \partial_{\alpha}\phi \partial^{\alpha}\phi + \frac{1}{8}\alpha (12 \partial_{\alpha}\partial^{\alpha}\phi - 6 \partial_{\alpha}\phi \partial^{\alpha}\phi - 4 \partial_{\alpha}h^{\beta}_{\beta}\partial^{\alpha}\phi + 4 \partial^{\alpha}\phi \partial_{\beta}h^{\beta}_{\alpha} - 4 \partial_{\beta}\partial_{\alpha}h^{\alpha\beta} + 4 \partial^{\alpha}\phi \partial_{\beta}h^{\alpha}_{\alpha} - 2 \partial_{\beta}h^{\alpha}_{\alpha} \partial_{\alpha}h^{\beta}_{\alpha} - 2 \partial_{\beta}h^{\alpha}_{\alpha} \partial_{\alpha}h^{\beta}_{\beta} - 2 \partial_{\beta}h^{\alpha}_{\alpha} \partial_{\alpha}\partial_{\beta}h^{\beta}_{\beta} + 2 \partial_{\beta}h^{\alpha}\partial_{\alpha}\phi \partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}\partial_{\beta}h^{\beta}_{\alpha} - 2 \partial^{\alpha}\partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}\partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}\partial_{\alpha}h^{\beta}_{\beta} + 4 \partial^{\alpha}\partial_{\beta}h^{\alpha}_{\alpha} \partial_{\alpha}\partial_{\alpha}h^{\beta}_{\beta} + 2 \partial^{\alpha}\partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}\partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha}h^{\alpha\beta} \partial_{\alpha}h^{\alpha}h^{\alpha} \partial_{\alpha}h$$

-7A	4							
Spin-parity form Covariant form Multiplicities		#1 0+h+ 0+h+ 0+h+ 0+p+				$0^{+1}\mathcal{T} 0^{+2}\mathcal{T} 0^{+}\mathcal{J}$		
$ \begin{array}{ll} ^{\#2} \\ 0^+ \mathcal{T} == 0 & \partial_\beta \partial_\alpha \mathcal{T}^{\alpha\beta} == 0 \end{array} $	1	1 4 V			0^{+1}	$\frac{6\alpha - 4\beta}{\alpha\beta^{\frac{2}{k}}}$	0	$-\frac{2\sqrt{3}}{\beta k}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	√3 α R	0	4 4	0+11 #2 ⇒ 0+ T †	0	0	0
Total expected gauge generators: 4		0	0	0	${}^{0}_{+}{}^{*}_{2}{}^{*}_{0}{}^{+}_{0}\mathcal{I}^{\dagger}$	$-\frac{2\sqrt{3}}{\beta \not k}$	0	$\frac{2}{\beta \cancel{k}}$
$ \begin{array}{cccc} & & & & & & \\ & & & & & & \\ & & & & $		$\frac{1}{4} \left(-3 \alpha + 2 \beta \right) k^2$	0	$-\frac{1}{4}\sqrt{3}\alpha$	$ \begin{array}{c} $	#2 #1 2 ⁺ <i>Ταβ</i>	¹ h † α,	$2^{+} h\alpha\beta$ $\frac{\alpha k}{8}$

Massive and massless spectra

Unitarity conditions