Graph Games & Communication Complexity

Reference: arXiv:2406.02199 [1].

Pierre Botteron (Toulouse & Ottawa)

Moritz Weber (Saarbrücken)

Pisa, Monday, March 10, 2025

and

Motivation

Goal

Have an information-based description of quantum correlations (Q).

Idea

- Take a larger set than Q: the non-signalling correlations (NS).
- Consider an information-based principle: Communication Complexity (CC).
- Prove that quantum correlations satisfy this principle, and that post-quantum correlations $(\mathcal{NS} \setminus \mathcal{Q})$ violate it.

Open Question

What are all non-signalling correlations that violate the principle of CC?

— *Part* 1—

Background

CHSH Game & Nonlocal Boxes

Win at CHSH $\iff a \oplus b = x y$.

- Deterministic Strategies.
 → max P(win) = 75%.
- Classical Strategies (\mathcal{L}). $\rightarrow \max \mathbb{P}(\min) = 75\%$.
- Quantum Strategies (Q). $\rightsquigarrow \max \mathbb{P}(\text{win}) = \cos^2(\frac{\pi}{9}) \approx 85\%.$
- Non-signalling Strategies (\mathcal{NS}). \rightarrow max $\mathbb{P}(\text{win}) = 100\%$.

PR box

1. Background 000

Graph Isomorphism Game

— *Part* 2—

Definition of the Graph Isomorphism Game

Alice and Bob receive a vertex from a graph G:

and they answer a vertex from a graph \mathcal{H} :

They win the game if and only if:

- $g_A = g_B \Rightarrow h_A = h_B$;
- $g_A \sim g_B \Rightarrow h_A \sim h_B$:
- $g_A \not\simeq g_B \Rightarrow h_A \not\simeq h_B$.

Claim

We can use a perfect strategy for this game to generate a PR box.

Proof. Let $x, y \in \{0, 1\}$. We want to generate $a, b \in \{0, 1\}$ such that $a \oplus b = x y$.

Theorem 1 (B.–Weber**)**

If $\operatorname{diam}(\mathcal{G}) \geqslant 2$ and if $\mathcal{H} = \mathcal{K}_n \sqcup \mathcal{K}_m$ where $\mathcal{K}_n, \mathcal{K}_m$ are complete graphs, then from any perfect strategy for the isomorphism game of $(\mathcal{G}, \mathcal{H})$, one can generate a PR box.

Theorem 2 (B.-Weber)

Let $\mathcal{G}\cong_{ns}\mathcal{H}$ such that $\operatorname{diam}(\mathcal{G})\geqslant 2$ and \mathcal{H} is not connected. Assume "some symmetry" in a common equitable partition of $(\mathcal{G},\mathcal{H})$. Then *there exists* a perfect strategy for the isomorphism game of $(\mathcal{G},\mathcal{H})$ that generates a PR box.

Theorem 3 (B.-Weber)

Let $\mathcal G$ and $\mathcal H$ be like in Thm 2. Assume moreover that $\mathcal H$ is strongly transitive and regular. Then *every* perfect strategy for the isom. game of $(\mathcal G,\mathcal H)$ generates a PR box.

Collapse of Communication Complexity

Win \iff a = f(X, Y).

Def. We say that a nonlocal box P *collapses CC* if $\exists q > 1/2$ such that $\forall n \in \mathbb{N}, \ \forall f : \{0,1\}^{2n} \rightarrow \{0,1\}, \ \text{and} \ \forall X,Y \in \{0,1\}^n, \ \text{we have:}$

$$\mathbb{P}(a = f(X, Y) | X, Y, P) \geqslant q.$$

Fact (van Dam)

The PR box collapses CC.

Corollary (B.-Weber)

The perfect strategies presented in Thms 1,2,3 for the isomorphism game of $(\mathcal{G},\mathcal{H})$ collapse CC.

— *Part* 3—

Vertex Distance Game

Alice and Bob receive a vertex from a graph G:

and they answer a vertex from a graph \mathcal{H} :

Let $D \in \mathbb{N}$. They win the game if and only if:

$$d(h_A, h_B) = \left\{ egin{array}{ll} d(g_A, g_B) & ext{if } d(g_A, g_B) \leqslant D \,, \\ > D & ext{otherwise} \,. \end{array}
ight.$$

If they win for all g_A , g_B , we denote $\mathcal{G} \cong^D \mathcal{H}$.

$$\cdots \Rightarrow \mathcal{G} \cong^{D=2} \mathcal{H} \Rightarrow \mathcal{G} \cong^{D=1} \mathcal{H} \Rightarrow \mathcal{G} \cong^{D=0} \mathcal{H}.$$

Particular Cases

- D=0: Graph Bisynchronous Game.
- D=1: Graph Isomorphism Game.
- $\blacksquare D = diam(\mathcal{H})$:

3. Vertex Distance Game

000000

$$d(h_A, h_B) = \left\{ egin{array}{ll} d(g_A, g_B) & ext{if } d(g_A, g_B) \ & ext{s diam}(\mathcal{H}), \ & ext{otherwise}. \end{array}
ight.$$

Rmk: If $\mathcal{G} \cong^D \mathcal{H}$, then $|V(\mathcal{G})| = |V(\mathcal{H})|$.

12 / 20

Classical and Quantum Strategies

Perfect classical (resp. quantum) strategies for the vertex distance game ($D \ge 1$) coincide with the ones for the graph isomorphism game (D = 1):

Theorem 5 (B.-Weber)

Let $D \geqslant 1$. The following are equivalent:

- $\mathcal{G}\cong^{D}\mathcal{H};$
- $=\mathcal{G}\cong\mathcal{H};$

the latter being equivalent to¹:

- \exists perm. matrix P s.t. $A_{\mathcal{G}}P = PA_{\mathcal{H}}$;
- \blacksquare $\forall \mathcal{K}$, # $\mathsf{Hom}(\mathcal{K}, \mathcal{G}) = \#$ $\mathsf{Hom}(\mathcal{K}, \mathcal{H})$;
- $\blacksquare \forall \mathcal{K}, \# \mathsf{Hom}(\mathcal{G}, \mathcal{K}) = \# \mathsf{Hom}(\mathcal{H}, \mathcal{K}).$

Theorem 6 (B.-Weber)

Let $D \ge 1$. The following are equivalent:

- $\mathcal{G}\cong^{D}_{a}\mathcal{H};$
- $\blacksquare \mathcal{G} \cong_q \mathcal{H};$

the latter being equivalent to²:

- ∃ quantum permutation matrix P s.t. $A_GP = PA_H$;
- $\forall \mathcal{K}$ planar, $\#\text{Hom}(\mathcal{K}, \mathcal{G}) = \#\text{Hom}(\mathcal{K}, \mathcal{H})$.

¹ [Lovász'67], [Chaudhuri–Vardi'93]; ² [Lupini–Mančinska–Roberson'20], [Mančinska–Roberson'20].

Recall. $\mathcal{G} \cong_{frac} \mathcal{H} \iff \exists P$ bistochastic s.t. $A_{\mathcal{G}}P = PA_{\mathcal{H}}$, where $A_{\mathcal{G}}$ is the adjacency matrix, with coefficient 1 for adjacent vertices, and coefficient 0 otherwise.

Def. $\mathcal{G} \cong_{frac}^{D} \mathcal{H} \iff \exists P \text{ bistochastic s.t.}$ $A_{\mathcal{G}}^{(t)}P = PA_{\mathcal{H}}^{(t)}$ for all $t \leqslant D$, where $A_{\mathcal{G}}^{(t)}$ is the matrix with coefficient 1 for vertices at distance t, and coefficient 0 otherwise.

Theorem

(Ramana–Scheinerman–Ullman 1994, Atserias–Mančinska–Roberson–et.al. 2019)

The following are equivalent:

- $\mathcal{G} \cong_{ns} \mathcal{H}.$
- $\mathcal{G}\cong_{\mathsf{frac}}\mathcal{H}_{\cdot\cdot}$

Theorem 7 (B.-Weber)

Let $D \ge 0$. The following are equivalent:

- $\mathcal{G}\cong_{ns}^{D}\mathcal{H}.$
- $\mathcal{G}\cong^{D}_{frac}\mathcal{H}.$

Strict Implications

As opposed to classical and quantum strategies, perfect \mathcal{NS} strategies do not coincide between the isomorphism game (D=1) and the distance game $(D \ge 2)$:

Application of Vertex Distance to CC

Theorem 8 (B.-Weber)

If $\operatorname{diam}(\mathcal{G}) > \operatorname{diam}(\mathcal{H}) \geqslant D \geqslant 1$ and if \mathcal{H} admits exactly two connected components, then any perfect \mathcal{NS} -strategy for the D-distance game collapses CC.

Theorem 9 (B.-Weber)

Let $\mathcal{G}\cong_{\mathit{ns}}\mathcal{H}$ such that $1\leqslant D< \mathsf{diam}(\mathcal{G})$ and \mathcal{H} is not connected. Assume "some symmetry" in a common equitable partition of $(\mathcal{G},\mathcal{H})$. Then *there exists* a perfect strategy for the D-distance game of $(\mathcal{G},\mathcal{H})$ that collapses CC.

(Other results are presented in the article.)

No-Cloning Game

No-Cloning Game

B.-Broadbent-Culf-Nechita-Pellegrini-Rochette, arXiv:2410.23064 (2024) [6]

(Images generated by AI: Hotpot)

No-Cloning Game

B.-Broadbent-Culf-Nechita-Pellegrini-Rochette, arXiv:2410.23064 (2024) [6]

- Rule: The malicious team (P, B, C) wins iff. $m_B = m_C = m$.
- Open Question (Broadbent–Lord'20): Find $(m, k) \mapsto \rho_{m,k}$ that is correct and that reduces the malicious winning probability arbitrarily close to the prob. of randomly guessing, *i.e.* 1/2.
- **Result:** We present a scheme $(m,k)\mapsto \rho_{m,k}$ that reduces the malicious winning probability to 5/8 at most, and conjecture that this upper bound can be lowered to 1/2 with the same protocol.

Thank you!

Bibliography

- P. Botteron and M. Weber, "Communication complexity of graph isomorphism, coloring, and distance games," 2024. arXiv:2406.02199.
- [2] M. V. Ramana, E. R. Scheinerman, and D. Ullman, "Fractional isomorphism of graphs," 1994.
- [3] A. Atserias, L. Mancinska, D. E. Roberson, R. Samal, S. Severini, and A. Varvitsiotis, "Quantum and non-signalling graph isomorphisms," *Journal of Combinatorial Theory, Series B*, vol. 136, pp. 289–328, 2019.
- [4] P. Botteron, A. Broadbent, and M.-O. Proulx, "Extending the known region of nonlocal boxes that collapse communication complexity," *Phys. Rev. Lett.*, vol. 132, p. 070201, Feb 2024.
- [5] P. Botteron, A. Broadbent, R. Chhaibi, I. Nechita, and C. Pellegrini, "Algebra of Nonlocal Boxes and the Collapse of Communication Complexity," *Quantum*, vol. 8, p. 1402, July 2024.

- [6] P. Botteron, A. Broadbent, E. Culf, I. Nechita, C. Pellegrini, and D. Rochette, "Towards unconditional uncloneable encryption," 2024.
- P. J. Cameron, A. Montanaro, M. W. Newman,
 S. Severini, and A. Winter, "On the quantum chromatic number of a graph," 2006.
- [8] M. Lupini, L. Mancinska, and D. E. Roberson, "Nonlocal games and quantum permutation groups," *Journal of Functional Analysis*, vol. 279, no. 5, p. 108592, 2020.
- [9] L. Lovász, "Operations with structures," 1967.
- [10] S. Chaudhuri and M. Y. Vardi, "Optimization of real conjunctive queries," 1993.
- [11] L. Mancinska and D. E. Roberson, "Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs," 2020.
- [12] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, "Limit on nonlocality in any world in which communication complexity is not trivial," *Phys. Rev. Lett.*, vol. 96, p. 250401, 06 2006.