Probability

→ Probability (Study & unutainity)

Random Experiment

- It is a process
for which outcome
cannot be predicted
with certainity.

Example 7

R.E + Tossing a coin

Sample Space

This a set of

all possible outcome

of a 'RANDOM

EXPERIMENT'.

Example 7

S-S = SH, T }

Erent

T+ is a subset

g a 'SAMPLE

SPACE!

Example

Event - Getting a Head

-> Probability ->

P(Event) = No. of foromable Outcomes [Event]

Total no. of Outcomes [Sample Space]

→ Exampa-1:

 $R \in \rightarrow Tossing 2 coins$

S.S → { HH, HT, TH, TT }

Event J.

A: Getting at least 1 Head

A -> & HH, MT, TH }

P(A) = 3/4

→ Exampe-2:

R.E - Rolling a dice

S.S → {1, 2, 3, 4, 5, 6}

Evert]

R: Getting a Prime no.

B → {2,3,5}

P(B) = 3/6

-> In case of two on more events -

Event A & B

Mosqinal
Probability
i.e. P(A)
& P(B)

Joint Probability i.e PCAGB)

Conditional Probability ie P(A|B)

Next use will see how to compute these probabilities with the help of 'FREQUENCY TABLE'.

Consider this binary classification data set:

 Day
 Outlook
 Temperature
 Humidity
 Wind
 PlayTennis

 D1
 Sunny
 Hot
 High
 Weak
 No

Frequency Table

For Outlook vs PlayTennis

Joint .

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Marginal Prob >

$$P(Outlook = Surmy) = \frac{5}{14}$$

Joint Prob -

Conditional Prob →

P(outlook = Sunny | PlayTennis = Yes) =
$$\frac{P(A \cap B)}{P(B)}$$

= $\frac{2/14}{9/14} = \frac{2}{9}$

Bayes Theorem ->

$$Acc^n$$
 to Conditional Prob $\rightarrow P(A|B) = P(A \cap B) - 1$

$$P(B|A) = P(B \cap A)$$

$$P(B|A) = P(ANB)$$
 $P(A)$

Independent Events 7

If given events A & B Osa know to be independent:

$$P(A|B) = P(A)$$