



## Nội dung

- ☐ Giới thiêu
- ☐ Nhắc lại về lý thuyết logic
- ☐ Phép tính quan hệ trên bộ
  - Tuple Relational Calculus (TRC)
- ☐ Phép tính quan hệ trên miền
  - Domain Relational Calculus (DRC)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN



## Nội dung

- ☐ Giới thiệu
- ☐ Nhắc lại về lý thuyết logic
- ☐ Phép tính quan hệ trên bộ
- ☐ Phép tính quan hệ trên miền





# Giới thiệu (tt)

- Ngôn ngữ truy vấn hình thức dựa trên lý thuyết logic do Codd đề nghị năm 1972
- Sử dụng biểu thức logic để định nghĩa hình thức kết quả câu truy vấn
  - Dựa trên lý thuyết logic
  - ☐ Phi thủ tuc
  - □ Rút trích "cái gì" hơn là "làm thế nào"
- ☐ Khả năng diễn đạt tương đương ĐSQH





# Giới thiệu (tt)

- Phân loại
  - Phép tính quan hệ trên bộ
    - Biến thiên trên bộ trong quan hệ
    - SQL (Structured Query Language)
  - Phép tính quan hệ trên miền
    - Biến thiên trên thành phần miền giá trị
    - QBE (Query By Example)
    - DataLog (Database Logic) ???





## Nội dung

- ☐ Giới thiệu
- ☐ Nhắc lại về lý thuyết logic
- ☐ Phép tính quan hệ trên bộ
- ☐ Phép tính quan hệ trên miền

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN



# Nhắc lại về lý thuyết logic

□ Biểu thức logic : phát biểu luôn có giá trị "đúng" hay "sai"
 □ Bây giờ là tháng 8.
 □ 1 > 5 (phát biểu hằng sai)
 □ Các khái niệm :
 □ Biến : đại lượng biến thiên
 □ x, y, z, ...
 □ Phép toán logic
 □ ¬: phủ định, ⇒: kéo theo, ∧: và, ∨: hoặc
 □ Lượng từ
 □ ∃: tồn tại, ∀: với mọi
 □ Công thức: các biểu thức xây dựng dựa trên biểu thức logic



# Nhắc lại về lý thuyết logic

ĐH KHTN

- ☐ Một số ví dụ về công thức logic
  - $\square$  P(t),  $\neg$ P(t), Q(t)
  - $\square \neg P(t) \land Q(t)$
  - $\Box$   $\exists t(P(t))$
  - $\Box$   $\forall$ t(P(t))

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN



## Nội dung

- ☐ Giới thiệu
- Nhắc lại về lý thuyết logic
- □ Phép tính quan hệ trên bộ
- ☐ Phép tính quan hệ trên miền





# Phép tính quan hệ trên bộ

☐ Biểu thức phép tính quan hệ trên bộ có dạng

{ t.A | P(t) }

- □ t là biến bộ
  - Có giá trị là một bộ của quan hệ trong CSDL
  - t.A là giá trị của bộ t tại thuộc tính A
- □ P là công thức có liên quan đến t
  - P(t) có giá trị ĐÚNG hoặc SAI phụ thuộc vào t
- Kết quả trả về là tập các bộ t sao cho P(t) đúng









#### Ví dụ 2

Tìm mã và họ tên giáo viên có lương trên 2000

{ t.MAGV, t.HOTEN | GIAOVIEN (t)  $\land$  t.LUONG > 2000 }

P(t)

- Tập các MAGV và HOTEN của những bộ t sao cho t là một thể hiện của GIAOVIEN và t có giá trị lớn hơn 2000 tại thuộc tính LUONG
- ☐ Kết quả:
- Tìm những bộ t thuộc GIAOVIEN có thuộc tính lương lớn hon 2000
- Lấy ra các giá trị tại thuộc tính MAGV và HOTEN

© Bộ mộn HTTT - Khoa CNTT - Trường ĐH KHTN

12



- □ Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'
  - ☐ Lấy ra những bộ t thuộc GIAOVIEN
  - So sánh t với một bộ s nào đó để tìm ra những giáo viên làm việc ở bộ môn 'Hệ thống thông tin'
  - Lượng từ "tồn tại" của phép toán logic:

 $(\exists t)(P(t))$ 

Tồn tại 1 bộ t sao cho biểu thức P(t) đúng

© Bộ môn HTTT - Khoa CNTT - Trường 13 ĐH KHTN



#### Ví dụ 3

☐ Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

{ t.MAGV | GIAOVIEN(t) ∧



| GIAOVIE | N              |                   |          | Q(s)               |      |   |
|---------|----------------|-------------------|----------|--------------------|------|---|
| MAGV    | HOTEN          | MABM              | BOMON    | (७)                |      |   |
| 1       | Nguyễn Hoài An | HTTT              | MABM     | TENBM              |      |   |
| 2       | Trần Trà Hương | MMT               | HTTT     | Hệ thống thông tin | MAGV |   |
| 3       | Nguyễn Nam Sơn | CNPM              | CNPM     | Công nghệ phần mềm | 1    |   |
| 4       | Lý Hoàng Hà    | HTTT <sup>5</sup> | m MMT    | Mạng máy tính      | 4    | 4 |
|         |                |                   | BITTATIV | 0.0.               |      |   |



☐ Cho biết tên các giáo viên (HOTEN) tham gia đề tài hoặc là trưởng bộ môn

{ t.HOTEN | GIAOVIEN(t) ∧ (

 $(\exists s)(THAMGIADT(s) \land t.MAGV = s.MAGV) \lor$ 

 $(\exists u)(BOMON(u) \land t.MAGV = u.TRUONGBM))$ 

|    | GIAOVIEI | N              |          | THAMGI                                        | ADT |     |  | BOMON |          |    |
|----|----------|----------------|----------|-----------------------------------------------|-----|-----|--|-------|----------|----|
|    | MAGV     | HOTEN          |          | MAGV                                          | MA  | .DT |  | MABM  | TRUONGBM |    |
| t1 | 1        | Nguyễn Hoài An |          | 1                                             | 1   | 1   |  | HTTT  | 1        |    |
| t2 | 2        | Trần Trà Hương | $\vdash$ | 3                                             | 2   | 2   |  | CNPM  | 4        |    |
| t3 | 3        | Nguyễn Nam Sơn |          |                                               |     |     |  | MMT   | null     |    |
| t4 | 4        | Lý Hoàng Hà    | (        | © Bộ môn HTTT - Khoa CNTT - Trường<br>ĐH KHTN |     |     |  | rờng  |          | 15 |
|    |          |                |          |                                               |     |     |  |       |          |    |



#### Ví dụ 5

 Cho biết tên các giáo viên (HOTEN) vừa không tham gia đề tài vừa không chủ nhiệm đề tài

{ t.HOTEN | GIAOVIEN(t)  $\land$  (

- $\neg$  ( $\exists$ s) (THAMGIADT(s)  $\land$  t.MAGV = s.MAGV)  $\land$
- $\neg$  ( $\exists$ u) (DETAI(u)  $\land$  t.MAGV = u.GVCNDT))}

|   | GIAOVIE | N .            |   | THAMGIA | ADT                      |       | DETAI |        |    |
|---|---------|----------------|---|---------|--------------------------|-------|-------|--------|----|
|   | MAGV    | HOTEN          |   | MAGV    | MADT                     |       | MADT  | GVCNDT |    |
| _ | 1       | Nguyễn Hoài An | L | 1       | 1                        |       | 1     | 1      |    |
| _ | 2       | Trần Trà Hương | H | 3       | 2                        |       | 2     | 2      |    |
| _ | 3       | Nguyễn Nam Sơn | L |         |                          |       | 3     | null   |    |
|   | 4       | Lý Hoàng Hà    | ( |         | T - Khoa CNTT<br>ĐH KHTN | - Tru | rờng  |        | 16 |
|   |         |                |   |         |                          | _     |       | •••    |    |



☐ Với mỗi bộ môn của khoa CNTT, cho biết họ tên giáo viên là trưởng bộ môn.

{ s.MABM, t.HOTEN | BOMON(s) \( \times \) GIAOVIEN(t) \( \times \) s.MAKHOA = 'CNTT' \( \times \) s.TRUONGBM = t.MAGV }

| BOMON |        |          |
|-------|--------|----------|
| MABM  | MAKHOA | TRUONGBM |
| HTTT  | CNTT   | 1        |
| CNPM  | CNTT   | 4        |
| MMT   | CNTT   | null     |

| GIAOVIEN |                |      |
|----------|----------------|------|
| MAGV     | HOTEN          | MABM |
| 1        | Nguyễn Hoài An | HTTT |
| 2        | Trần Trà Hương | MMT  |
| 3        | Nguyễn Nam Sơn | CNPM |
| 4        | Lý Hoàng Hà    | CNPM |

| MABM | HOTEN               |                                    |
|------|---------------------|------------------------------------|
| HTTT | Nguyễn Hoài An      |                                    |
| CNPM | Lý Hoàng Hà © Bộ mớ | n HTTT - Khoa CNTT - Tr<br>ĐH KHTN |

17



## Ví dụ 7

 Cho biết tên các giáo viên nữ và tên khoa quản lý giáo viên này

{t.HOTEN, u.TENKHOA | GIAOVIEN(t)  $\land$  KHOA(u)  $\land$  t.PHAI = 'N $\tilde{\mathbf{u}}$ '  $\land$  ( $\exists$ s)(BOMON(s)  $\land$  s.MAKHOA = u.MAKHOA  $\land$  s.MABM = t.MABM) }





- ☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào <u>tất cả</u> các đề tài
  - ☐ Cấu trúc "với mọi" của phép toán logic

 $(\forall t) (P(t))$ 

Mọi bộ t phải làm cho biểu thức P đúng





## Ví dụ 8 (tt)

☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài

{ t.MAGV, t.HOTEN | GIAOVIEN(t)  $\land$ 

 $(\forall s)$ (DETAI(s)  $\land$  ( $\exists u$ )(THAMGIADT(u)  $\land$ 

 $u.MADT = s.MADT \land t.MAGV = u.MAGV)$ 

|    | GIAOVIEN                                                           |                |            | DETAI |       |    | THAMGIA | DT   |  |
|----|--------------------------------------------------------------------|----------------|------------|-------|-------|----|---------|------|--|
|    | MAGV                                                               | HOTEN          |            | MADT  | TENDT |    | MAGV    | MADT |  |
| t1 | 1                                                                  | Nguyễn Hoài An | s1         | 1     |       | u1 | 1       | 1    |  |
| t2 | 2                                                                  | Trần Trà Hương | s2         | 2     |       | u2 | 2       | 2    |  |
| t3 | 3                                                                  | Nguyễn Nam Sơn | <b>s</b> 3 | 3     |       | u3 | 4       | 1    |  |
| t4 | 4                                                                  | Lý Hoàng Hà    |            |       |       | u4 | 4       | 2    |  |
|    | © Bộ môn HTTT - Khoa CNTT - Trườn <b>q<sub>1</sub>5</b><br>ĐH KHTN |                |            |       | 4     | 3  | 20      |      |  |
|    | DA ATIN                                                            |                |            |       |       |    |         | ••   |  |



- ☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm
  - ☐ Cấu trúc "kéo theo" của phép tính logic



Nếu P thì Q





## Ví dụ 9 (tt)

☐ Tìm các giáo viên (MAGV, HOTEN) tham gia vào tất cả các đề tài do giáo viên mã số 2 làm chủ nhiệm

```
{ t.MAGV, t.HOTEN | GIAOVIEN(t) \land

(\foralls)((DETAI(s) \land

s.GVCNDT = 2) \Rightarrow (\existsu(THAMGIADT(u) \land

u.MADT = s.MADT \land

t.MAGV = u.MAGV ))) }
```





# Định nghĩa hình thức

☐ Một công thức truy vấn tổng quát có dạng

{ 
$$t_1.A_i, t_2.A_j, ...t_n.A_k | P(t_1, t_2, ..., t_n)$$
 }

- □ t1, t2, ..., tn là các biến bộ
- Ai, Aj, ..., Ak là các thuộc tính trong các bộ t tương ứng
- P là công thức
  - P là công thức nguyên tố
  - Hoặc được hình thành từ những công thức nguyên tố









# Công thức nguyên tố (tt)

- ☐ Mỗi công thức nguyên tố đều mang giá trị ĐÚNG hoặc SAI
  - Gọi là chân trị của công thức nguyên tố
- Công thức (i)  $t \in R$ 
  - ☐ Chân trị ĐÚNG nếu t là một bộ thuộc R
  - ☐ Chân trị SAI nếu t không thuộc R

| R | Α  | В        | С      |
|---|----|----------|--------|
|   | αα | 10<br>20 | 1<br>1 |

 $t1 = <\alpha, 10, 1>$   $t2 = <\alpha, 20, 2>$ 

t1 ∈ R có chân trị ĐÚNG t2 ∈ R có chân trị SAI





# Công thức nguyên tố (tt)

- $\Box$  Công thức (ii) và (iii)  $t.A \theta s.B$   $t.A \theta c$ 
  - Chân trị tùy thuộc vào việc thay thế giá trị thật sự của bộ vào vị trí biến bộ

| R | A B |    | С |
|---|-----|----|---|
|   | α   | 10 | 1 |
|   | α   | 20 | 1 |

Nếu t là bộ  $<\alpha$ , 10, 1> Thì t.B > 5 có chân trị ĐÚNG (10 > 5)





## Công thức

- Được hình thành từ công thức nguyên tố thông qua các phép toán logic hoặc các lượng từ
  - □ Phủ định ¬ P(t)
  - □ Toán tử và  $P(t) \wedge Q(t)$
  - □ Toán tử hoặc  $P(t) \vee Q(t)$
  - □ Cấu trúc tồn tại  $(\exists t)(P(t))$
  - $\square$  Cấu trúc với mọi  $(\forall t)(P(t))$
  - □ Phép toán kéo theo :  $P(t) \Rightarrow Q(t)$





# Qui tắc

- ☐ (1) Mọi công thức nguyên tố là công thức
- (2) Nếu P là công thức thì
  - □ ¬(P) là công thức
  - (P) là công thức
- ☐ (3) Nếu P1 và P2 là các công thức thì
  - □ P1 ∨ P2 là công thức
  - □ P1 ∧ P2 là công thức
  - P1 ⇒ P2 là công thức





# Qui tắc (tt)

- (4) Nếu P(t) là công thức thì
  - □ ∀t (P(t)) là công thức
    - Chân trị ĐÚNG khi P(t) ĐÚNG với mọi bộ t.
    - Chân trị SAI khi có ít nhất 1 bộ t làm cho P(t) SAI
  - □ ∃t (P(t)) là công thức
    - Chân trị ĐÚNG khi có ít nhất 1 bộ làm cho P(t) ĐÚNG
    - Chân trị SAI khi P(t) SAI với mọi bộ t





# Qui tắc (tt)

- ☐ (5) Nếu P là công thức nguyên tố thì
  - ☐ Các biến bộ t trong P là biến tự do
- ☐ (6) Công thức  $P=P1\land P2$ ,  $P=P1\lor P2$ ,  $P=P1\Longrightarrow P2$ 
  - Sự xuất hiện của biến t trong P là tự do hay kết buộc phụ thuộc vào việc nó là tự do hay kết buộc trong P1, P2



# Một số biến đổi

- $\square$  (iv)  $P \Rightarrow Q = \neg P \lor Q$





### Công thức an toàn

Xét công thức

 $\{ t \mid \neg (GIAOVIEN(t)) \}$ 

- Có rất nhiều bộ t không thuộc quan hệ GIAOVIEN
- ☐ Thâm chí không có trong CSDL
- ☐ Kết quả trả về không xác định
- Một công thức P gọi là an toàn nếu các giá trị trong kết quả đều lấy từ miền giá trị của P
  - Dom(P)
  - ☐ Tập các giá trị được đề cập trong P





# Công thức an toàn (tt)

☐ Ví dụ

 $\{t \mid GIAOVIEN(t) \land t.LUONG > 30000\}$ 

- □ Dom(GIAOVIEN(t)  $\land$  t.LUONG > 30000)
- Là tập các giá trị trong đó
  - Có giá trị trên 3000 tại thuộc tính LUONG
  - Và các giá trị khác tại những thuộc tính còn lại
- Công thức trên là an toàn



# cdio

## Nội dung

- ☐ Giới thiêu
- ☐ Nhắc lại về lý thuyết logic
- ☐ Phép tính quan hệ trên bộ
- □ Phép tính quan hệ trên miền



# Phép tính quan hệ trên miền

☐ Biểu thức phép tính quan hệ trên miền có dạng

$$\{ x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n) \}$$

- □ x1, x2, ..., xn là các biến miền
  - Biến nhận giá trị là một miền giá trị của một thuộc tính
- □ P là công thức theo x1, x2, ..., xn
  - P được hình thành từ những công thức nguyên tố
- Kết quả trả về là tập các giá trị x1, x2, ..., xn sao cho khi các giá tri được thay thế cho các xi thì P đúng





#### Ví dụ 1

☐ Cho biết mã và tên giáo viên có lương trên 3000

{ p, q |  $(\exists r)$  (GIAOVIEN(p, q, r, s, t, u, v, x, y, z,m)  $\land$  r > 3000 )) }

**GIAOVIEN**(<u>MAGV</u>, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)





□ Cho biết các giáo viên (MAGV) làm việc ở bộ môn 'Hệ thống thông tin'

```
{p | (\exists \mathbf{m}) (GIAOVIEN(\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}, \mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{m}) \land
(\exists \mathbf{a})(\exists \mathbf{b})(\mathsf{BOMON}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}, \mathbf{j}) \land
\mathbf{b} = \text{`Hệ thống thông tin'} \land \mathbf{a} = \mathbf{m}))}
```

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

BOMON(MABM, TENBM, PHONG, DIENTHOAI, TRUONGBM,

MAKHOA, NGAYNHANGHALG)HTTT - Khoa CNTT - Trường ĐH KHTN





### Ví dụ 3

 Cho biết các giáo viên (MAGV, HOTEN) không có tham gia đề tài nào

```
{p, q | GIAOVIEN(p, q, r, s, t, u, v, x, y, z, m) \land \neg (\existsa) (THAMGIADT(a, b, c, d, e) \land a = p) }
```

GIAOVIEN(MAGV, HOTEN, LUONG, PHAI, NGAYSINH, SONHA, DUONG, QUAN, THANHPHO, GVQLCM, MABM)

THAMGIADT(MAGV, MADT, STT, PHUCAP, KETQUA)

© Bộ môn HTTT - Khoa CNTT - Trường ĐH KHTN



# Công thức nguyên tố

- $\Box$  (i)  $R(x_1, x_2, ..., x_n)$ 
  - xi là biến miền
  - R là quan hệ có n thuộc tính
- $\Box$  (ii)  $x \theta y$ 
  - x, y là các biến miền
  - ☐ Miền giá trị của x và y phải giống nhau
  - $\square$   $\theta$  là các phép so sánh < , > ,  $\leq$  ,  $\geq$  ,  $\neq$  , =
- $\Box$  (iii)  $x \theta c$ 
  - c là hằng số
  - 💶 x là biến miền
  - □ θ là các phép so sánh < , > , ≤ , ≥ , ≠ , = © Bộ môn HTT - khoa CNTT - Trường



### Nhận xét

- Một công thức nguyên tố mang giá trị ĐÚNG hoặc SAI với một tập giá trị cụ thể tương ứng với các biến miền
  - Gọi là chân trị của công thức nguyên tố
- Một số qui tắc và biến đổi tương tự với phép tính quan hệ trên bô





## Công thức an toàn

Xét công thức

 $\{p, r, s \mid \neg GIAOVIEN(p, q, r, s, t, u, v, x, y, z)\}$ 

- Các giá trị trong kết quả trả về không thuộc miền giá trị của biểu thức
- Công thức không an toàn





## Công thức an toàn (tt)

Xét công thức

 $\{x \mid \exists y (R(x,y)) \land \exists z (\neg R(x,z) \land P(x,z))\}$ 

- R là quan hệ có tập các giá trị hữu hạn
- Cũng có 1 tập hữu hạn các giá trị không thuộc R
- Công thức 1: chỉ xem xét các giá trị trong R
- Công thức 2: không thể kiểm tra khi không biết tập giá trị hữu hạn của z





# Công thức an toàn (tt)

☐ Cho biểu thức

$$\{x_1, x_2, ..., x_n \mid P(x_1, x_2, ..., x_n)\}$$

- ☐ Biểu thức trên được gọi là an toàn nếu:
  - Những giá trị xuất hiện trong các bộ của biểu thức phải thuộc về miền giá trị của P
  - Lượng từ  $\exists$ : biểu thức  $\exists x (Q(x))$  đúng khi và chỉ khi xác định được giá trị của x thuộc dom(Q) làm cho Q(x) đúng

© Bộ môn HTTT - Khoa CNTT - Trường

Lượng từ  $\forall$ : biểu thức  $\forall x$  (Q(x)) đúng khi và chỉ khi Q(x) đúng với mọi giá trị của x thuộc dom(Q)

