Configurations of points and topology of real line arrangements

Juan VIU-Sos

(joint work with Benoît Guerville-Ballé)

Congreso bienal de la RSME 2017, Zaragoza

Contents

- Introduction
 - Line arrangements: geometry and combinatorics
 - Zariski pairs
 - ullet The linking \mathcal{I} -invariant
- (t, m)-configurations of points
 - Configurations of points
 - Combinatorics and dual arrangement
- Topology of line arrangements and configurations
 - Chamber weight and invariance
 - New real complexified Zariski pairs
 - Other properties of the new Zariki pair

ne arrangements: geometry and combinatori ıriski pairs ne linking ${\cal I}$ -invariant

Part I

Introduction

Line arrangements: geometry and combinatorics

What is a LINE ARRANGEMENT?

Definition

A (complex) line arrangement A is a finite collection of distinct lines $\{D_0, D_1, \dots, D_n\}$ in $\mathbb{C}P^2$.

Line arrangements: geometry and combinatorics

What is a LINE ARRANGEMENT?

Definition

A (complex) line arrangement A is a finite collection of distinct lines $\{D_0, D_1, \dots, D_n\}$ in $\mathbb{C}P^2$.

Definition

 $\mathcal A$ is *complexified real* if there exists a system of coordinates of $\mathbb CP^2$ such that any $D\in\mathcal A$ is defined by a $\mathbb R$ -linear form.

•
$$Q_A = \prod_{D \in A} \alpha_D$$
, where α_D linear form such that $D = \alpha_D^{-1}(0)$.

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

"Simple" case of reducible algebraic plane curves:

- $Q_A = \prod_{D \in A} \alpha_D$, where α_D linear form such that $D = \alpha_D^{-1}(0)$.
- Sing(A): intersection points \leadsto local topology \simeq multiplicity.
- The COMBINATORICS contains a lot of information & simple to express : incidence graph Γ_A .

$$\{ \{D_1, D_2, D_3\} \}$$

 $\Gamma_{\mathcal{A}}$

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple (A_1, A_2) with $\Gamma_{A_1} \sim \Gamma_{A_2}$ but $(\mathbb{C}P^2, A_1) \not\sim (\mathbb{C}P^2, A_2)$.

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple $(\mathcal{A}_1,\mathcal{A}_2)$ with $\Gamma_{\mathcal{A}_1}\sim\Gamma_{\mathcal{A}_2}$ but $(\mathbb{C}P^2,\mathcal{A}_1)\not\sim(\mathbb{C}P^2,\mathcal{A}_2)$.

•
$$\pi_1(\mathbb{C}P^2 \setminus \mathcal{A})$$

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple $(\mathcal{A}_1,\mathcal{A}_2)$ with $\Gamma_{\mathcal{A}_1}\sim\Gamma_{\mathcal{A}_2}$ but $(\mathbb{C}P^2,\mathcal{A}_1)\not\sim(\mathbb{C}P^2,\mathcal{A}_2)$.

INVARIANTS:

• $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}) \rightsquigarrow$ "Wirtinger-like" finite presentations.

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple $(\mathcal{A}_1,\mathcal{A}_2)$ with $\Gamma_{\mathcal{A}_1}\sim\Gamma_{\mathcal{A}_2}$ but $(\mathbb{C}P^2,\mathcal{A}_1)\not\sim(\mathbb{C}P^2,\mathcal{A}_2)$.

- $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}) \leadsto$ "Wirtinger-like" finite presentations.
- $H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \simeq \langle \mathfrak{m}_0, \dots, \mathfrak{m}_n \mid \mathfrak{m}_0 + \dots + \mathfrak{m}_n = 0 \rangle \simeq \mathbb{Z}^n$, where $\{\mathfrak{m}_i\}_i$ meridians of \mathcal{A}

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple $(\mathcal{A}_1,\mathcal{A}_2)$ with $\Gamma_{\mathcal{A}_1}\sim\Gamma_{\mathcal{A}_2}$ but $(\mathbb{C}P^2,\mathcal{A}_1)\not\sim(\mathbb{C}P^2,\mathcal{A}_2)$.

- $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}) \leadsto$ "Wirtinger-like" finite presentations.
- $H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \simeq \langle \mathfrak{m}_0, \dots, \mathfrak{m}_n \mid \mathfrak{m}_0 + \dots + \mathfrak{m}_n = 0 \rangle \simeq \mathbb{Z}^n$, where $\{\mathfrak{m}_i\}_i$ meridians of $\mathcal{A}_{\hookrightarrow}$ $(H_1$ is combinatorially determined!)

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple (A_1, A_2) with $\Gamma_{A_1} \sim \Gamma_{A_2}$ but $(\mathbb{C}P^2, A_1) \not\sim (\mathbb{C}P^2, A_2)$.

- $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}) \leadsto$ "Wirtinger-like" finite presentations.
- $H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \simeq \langle \mathfrak{m}_0, \dots, \mathfrak{m}_n \mid \mathfrak{m}_0 + \dots + \mathfrak{m}_n = 0 \rangle \simeq \mathbb{Z}^n$, where $\{\mathfrak{m}_i\}_i$ meridians of $\mathcal{A} \leadsto (H_1 \text{ is combinatorially determined!})$
- Characteristic varieties, twisted cohomologies, topology of the Milnor fiber

TOPOLOGY OF A: homeomorphism type of the pair $(\mathbb{C}P^2, A)$.

Definition

A Zariski pair is a couple $(\mathcal{A}_1,\mathcal{A}_2)$ with $\Gamma_{\mathcal{A}_1}\sim\Gamma_{\mathcal{A}_2}$ but $(\mathbb{C}P^2,\mathcal{A}_1)\not\sim(\mathbb{C}P^2,\mathcal{A}_2)$.

- $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A}) \leadsto$ "Wirtinger-like" finite presentations.
- $H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \simeq \langle \mathfrak{m}_0, \dots, \mathfrak{m}_n \mid \mathfrak{m}_0 + \dots + \mathfrak{m}_n = 0 \rangle \simeq \mathbb{Z}^n$, where $\{\mathfrak{m}_i\}_i$ meridians of $\mathcal{A} \leadsto (H_1 \text{ is combinatorially determined!})$
- Characteristic varieties, twisted cohomologies, topology of the Milnor fiber....

- **1** (Rybnikov'98) 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

IN GENERAL: invariants are difficult to compute where n increases (a computer assistant is needed).

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

IN GENERAL: invariants are difficult to compute where n increases (a computer assistant is needed).

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

- A more GEOMETRICAL way to detect Zariski pairs?
- Is $\pi_1(\mathbb{C}P^2 \setminus A)$ combinatorially determined for A real complexified?

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

- A more GEOMETRICAL way to detect Zariski pairs?
- Is $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A})$ combinatorially determined for \mathcal{A} real complexified?
- Could Zarsiki pairs be realized over Q?

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

- A more GEOMETRICAL way to detect Zariski pairs?
- Is $\pi_1(\mathbb{C}P^2 \setminus \mathcal{A})$ combinatorially determined for \mathcal{A} real complexified?
- Could Zarsiki pairs be realized over Q?
- Could the *I*-invariant detect real complexified Zariski pairs?

- **1 (Rybnikov'98)** 13 lines/ $\mathbb{Q}(\zeta_3)$ (LCS, $\neq \pi_1$).
- **(Artal-Cogolludo-Carmona-Marco'05)** 11 lines/ $\mathbb{Q}(\sqrt{5})$ (\neq braid monodromy).
- (Guerville-Ballé'15) 12 lines/ $\mathbb{Q}(\zeta_5)$: "Linking" invariant \mathcal{I} (moreover, $\neq \pi_1$).

- A more GEOMETRICAL way to detect Zariski pairs?
- Is $\pi_1(\mathbb{C}P^2\setminus A)$ combinatorially determined for A real complexified?
- Could Zarsiki pairs be realized over Q?
- ullet Could the \mathcal{I} -invariant detect real complexified Zariski pairs?

Line arrangements: geometry and combinatoric Zariski pairs

The linking \mathcal{I} -invariant

The linking \mathcal{I} -invariant

Introduced by ARTAL, FLORENS and GUERVILLE-BALLÉ in 2014.

Definition

•
$$A = \{D_1, \dots, D_n\}$$
 containing $\{D_1, D_2, D_3\}$ in general position over P_1, P_2, P_3 .

Introduced by ARTAL, FLORENS and GUERVILLE-BALLÉ in 2014.

Definition

- $A = \{D_1, \dots, D_n\}$ containing $\{D_1, D_2, D_3\}$ in general position over P_1, P_2, P_3 .
- $\gamma: S^1 \hookrightarrow D_1 \cup D_2 \cup D_3$ such that $\gamma \cap \operatorname{Sing} A = \{P_1, P_2, P_3\}$

Introduced by ARTAL, FLORENS and GUERVILLE-BALLÉ in 2014.

Definition

- $A = \{D_1, \dots, D_n\}$ containing $\{D_1, D_2, D_3\}$ in general position over P_1, P_2, P_3 .
- $\gamma: \mathcal{S}^1 \hookrightarrow D_1 \cup D_2 \cup D_3$ such that $\gamma \cap \operatorname{Sing} \mathcal{A} = \{P_1, P_2, P_3\}$
- $\xi: H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \to \mathbb{C}^*$ torsion character verifying:

Introduced by ARTAL, FLORENS and GUERVILLE-BALLÉ in 2014.

Definition

- $A = \{D_1, \dots, D_n\}$ containing $\{D_1, D_2, D_3\}$ in general position over P_1, P_2, P_3 .
- $\gamma: \mathcal{S}^1 \hookrightarrow D_1 \cup D_2 \cup D_3$ such that $\gamma \cap \operatorname{Sing} \mathcal{A} = \{P_1, P_2, P_3\}$
- $\xi: H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \to \mathbb{C}^*$ torsion character verifying:
 - $\xi(\mathfrak{m}_D) = 1 \text{ for } D \in \{D_1, D_2, D_3\}.$
 - $\prod_{D\ni P} \xi(\mathfrak{m}_D) = 1, \text{ for any } P \in \operatorname{Sing} \mathcal{A}.$

Introduced by ARTAL, FLORENS and GUERVILLE-BALLÉ in 2014.

Definition

- $A = \{D_1, \dots, D_n\}$ containing $\{D_1, D_2, D_3\}$ in general position over P_1, P_2, P_3 .
- $\gamma: \mathcal{S}^1 \hookrightarrow D_1 \cup D_2 \cup D_3$ such that $\gamma \cap \operatorname{Sing} \mathcal{A} = \{P_1, P_2, P_3\}$
- $\xi: H_1(\mathbb{C}P^2 \setminus \mathcal{A}) \to \mathbb{C}^*$ torsion character verifying:
 - $\xi(\mathfrak{m}_D) = 1 \text{ for } D \in \{D_1, D_2, D_3\}.$
 - $\prod_{D\ni P}\xi(\mathfrak{m}_D)=1, \text{ for any } P\in\operatorname{\mathsf{Sing}}\mathcal{A}.$

If we define $\mathcal{A}_{\gamma}^{c} = \{D_{4}, \dots, D_{n}\}$, note that $\gamma \subset \mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c}$ and $\xi \equiv \tilde{\xi} : H_{1}(\mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c})/\mathrm{Ind}_{\gamma} \to \mathbb{C}^{*}$.

Theorem (Artal-Florens-GB, GB-Meilhan)

The value

$$\mathcal{I}(\mathcal{A}, \gamma, \xi) = \tilde{\xi}[\gamma]$$

is an invariant of the homeomorphism type of $(\mathbb{C}P^2, \mathcal{A})$ respecting the order and the orientation.

The linking $\mathcal{I}\text{-invariant}$

If we define $\mathcal{A}_{\gamma}^{c} = \{D_{4}, \dots, D_{n}\}$, note that $\gamma \subset \mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c}$ and $\xi \equiv \tilde{\xi} : H_{1}(\mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c})/\mathrm{Ind}_{\gamma} \to \mathbb{C}^{*}$.

Theorem (Artal-Florens-GB, GB-Meilhan)

The value

$$\mathcal{I}(\mathcal{A}, \gamma, \xi) = \tilde{\xi}[\gamma]$$

is an invariant of the homeomorphism type of $(\mathbb{C}P^2, \mathcal{A})$ respecting the order and the orientation.

Proposition (Artal-Florens-GB)

If A is complexified real, then

$$\mathcal{I}(\mathcal{A}, \gamma, \xi) \in \{-1, 1\}$$

The linking $\mathcal{I}\text{-invariant}$

If we define $\mathcal{A}_{\gamma}^{c} = \{D_{4}, \dots, D_{n}\}$, note that $\gamma \subset \mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c}$ and $\xi \equiv \tilde{\xi} : H_{1}(\mathbb{C}P^{2} \setminus \mathcal{A}_{\gamma}^{c})/\mathrm{Ind}_{\gamma} \to \mathbb{C}^{*}$.

Theorem (Artal-Florens-GB, GB-Meilhan)

The value

$$\mathcal{I}(\mathcal{A}, \gamma, \xi) = \tilde{\xi}[\gamma]$$

is an invariant of the homeomorphism type of $(\mathbb{C}P^2, \mathcal{A})$ respecting the order and the orientation.

Proposition (Artal-Florens-GB)

If A is complexified real, then

$$\mathcal{I}(\mathcal{A}, \gamma, \xi) \in \{-1, 1\}$$

Part II

Configurations of Points

We take in $\mathbb{R}P^2$:

- $V = \{V_1, \ldots, V_t\}$ vertices,
- $S = \{S_1, \dots, S_n\}$ surrounding-points,
- $\mathcal{L} = \{L = (S, V) \mid S \in \mathcal{S}, V \in \mathcal{V}\}$ collection of lines,

We take in $\mathbb{R}P^2$:

- $V = \{V_1, \ldots, V_t\}$ vertices,
- $S = \{S_1, \ldots, S_n\}$ surrounding-points,
- $\mathcal{L} = \{L = (S, V) \mid S \in \mathcal{S}, V \in \mathcal{V}\}$ collection of lines,
- ullet a weight assignment $\operatorname{pl}: \mathcal{V} \sqcup \mathcal{S} \to \mathbb{Z}_m$.

We take in $\mathbb{R}P^2$:

- $V = \{V_1, \dots, V_t\}$ vertices,
- $S = \{S_1, \ldots, S_n\}$ surrounding-points,
- $\mathcal{L} = \{L = (S, V) \mid S \in \mathcal{S}, V \in \mathcal{V}\}$ collection of lines,
- ullet a weight assignment $\operatorname{\mathsf{pl}}: \mathcal{V} \sqcup \mathcal{S} o \mathbb{Z}_m$.

Definition

The tuple C = (V, S, L, pl) is a (t, m)-configuration if:

- ② $V = pl^{-1}(0)$,
- $\exists \forall L \in \mathcal{L} : \sum_{S \in L} \mathsf{pl}(S) = 0.$

We take in $\mathbb{R}P^2$:

- $V = \{V_1, \dots, V_t\}$ vertices,
- $S = \{S_1, \ldots, S_n\}$ surrounding-points,
- $\mathcal{L} = \{L = (S, V) \mid S \in \mathcal{S}, V \in \mathcal{V}\}$ collection of lines,
- a weight assignment $\mathsf{pl}: \mathcal{V} \sqcup \mathcal{S} \to \mathbb{Z}_m$.

Definition

The tuple C = (V, S, L, pl) is a (t, m)-configuration if:

- ② $V = pl^{-1}(0)$,

A (3,2)-configuration :

$$\mathsf{pl}: (S_1, S_2, S_3, S_4) \mapsto (1, 1, 1, 1) \in \mathbb{Z}_2$$

Definition

A (t, m)-configuration $(\mathcal{V}, \mathcal{S}, \mathcal{L}, pl)$ is:

- uniform if pl is constant over S.
- planar if the projective subspace generated by $\mathcal V$ is the whole $\mathbb RP^2$.

Definition

A (t, m)-configuration $(\mathcal{V}, \mathcal{S}, \mathcal{L}, pl)$ is:

- *uniform* if pl is constant over S.
- planar if the projective subspace generated by $\mathcal V$ is the whole $\mathbb RP^2$.

A planar and uniform (3, 2)-configuration:

$$\mathsf{pl}: (\textit{S}_{1},\textit{S}_{2},\textit{S}_{3},\textit{S}_{4}) \mapsto (1,1,1,1) \in \mathbb{Z}_{2}^{4}$$

A non-planar and non-uniform (3, m)-configuration, $m \ge 3$:

$$\mathsf{pl}: (S_1,\cdots,S_6) \to (\zeta,-\zeta,\zeta,-\zeta,\zeta,-\zeta) \in \mathbb{Z}_m^6$$

A planar and uniform (4,2)-configuration:

COMBINATORICS: (nontrivial) collinearity relations between points $\mathcal{V} \sqcup \mathcal{S}$ in $\mathbb{R}P^2$.

$$\{\{V_1, S_1, S_4\}, \{V_1, S_2, S_3\}, \{V_2, S_1, S_3\}, \{V_2, S_2, S_4\}, \{V_3, S_1, S_2\}, \{V_3, S_3, S_4\}\}.$$

COMBINATORICS: (nontrivial) collinearity relations between points $\mathcal{V} \sqcup \mathcal{S}$ in $\mathbb{R}P^2$.

$$\big\{\,\{V_1,S_1,S_4\},\,\{V_1,S_2,S_3\},\,\{V_2,S_1,S_3\},\,\{V_2,S_2,S_4\},\,\{V_3,S_1,S_2\},\,\{V_3,S_3,S_4\}\,\big\}.$$

Definition

 $\mathcal{C}_1 = (\mathcal{V}_1, \mathcal{S}_1, \mathcal{L}_1, \mathsf{pl}_1)$ and $\mathcal{C}_2 = (\mathcal{V}_2, \mathcal{S}_2, \mathcal{L}_2, \mathsf{pl}_2)$ have the same combinatorics $(\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2)$ if there exists a bijection $\mathcal{V}_1 \sqcup \mathcal{S}_1 \longleftrightarrow \mathcal{V}_2 \sqcup \mathcal{S}_2$ respecting collinearity relations.

Remark

The combinatorics of $\mathcal C$ is not invariant by deformation.

Definition

 $\mathcal{C}_1 = (\mathcal{V}_1, \mathcal{S}_1, \mathcal{L}_1, \mathsf{pl}_1)$ and $\mathcal{C}_2 = (\mathcal{V}_2, \mathcal{S}_2, \mathcal{L}_2, \mathsf{pl}_2)$ have the same combinatorics $(\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2)$ if there exists a bijection $\mathcal{V}_1 \sqcup \mathcal{S}_1 \longleftrightarrow \mathcal{V}_2 \sqcup \mathcal{S}_2$ respecting collinearity relations.

Remark

The combinatorics of C is not invariant by deformation.

Definition

 \mathcal{C} is stable if for any $\phi \in \operatorname{Aut}(\mathcal{V} \sqcup \mathcal{S})$ resp. collinearity, we have $\phi(\mathcal{V}) = \mathcal{V}$.

Definition

 $\mathcal{C}_1 = (\mathcal{V}_1, \mathcal{S}_1, \mathcal{L}_1, \mathsf{pl}_1)$ and $\mathcal{C}_2 = (\mathcal{V}_2, \mathcal{S}_2, \mathcal{L}_2, \mathsf{pl}_2)$ have the same combinatorics $(\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2)$ if there exists a bijection $\mathcal{V}_1 \sqcup \mathcal{S}_1 \longleftrightarrow \mathcal{V}_2 \sqcup \mathcal{S}_2$ respecting collinearity relations.

Remark

The combinatorics of C is not invariant by deformation.

Definition

 \mathcal{C} is stable if for any $\phi \in \operatorname{Aut}(\mathcal{V} \sqcup \mathcal{S})$ resp. collinearity, we have $\phi(\mathcal{V}) = \mathcal{V}$.

$$\left\{ \ \{V_1,S_1,S_4\}, \ \{V_1,S_2,S_3\}, \ \{V_2,S_1,S_3\}, \ \{V_2,S_2,S_4\}, \ \{V_3,S_1,S_2\}, \ \{V_3,S_3,S_4\} \ \right\}$$

This configuration is stable.

We consider dual real plane $\check{\mathbb{R}P}^2 = \{L \mid L \subset \mathbb{R}P^2 \text{ droite}\}.$

DUALITY: natural correspondence (·)* between ℝP² and ŘP²
respecting incidence relations: P ∈ L ← L* ∈ P*.

Definition

Let $C = (V, S, \mathcal{L}, pl)$ be a (t, m)-configuration. We can define a triple $(\mathcal{A}^V, \mathcal{A}^S, \xi)$, where:

- $\bullet \ \mathcal{A}^{\mathcal{V}} = \{V_1^* \otimes \mathbb{C}, \dots, V_t^* \otimes \mathbb{C}\} \ \text{and} \ \mathcal{A}^{\mathcal{S}} = \{S_1^* \otimes \mathbb{C}, \dots, S_n^* \otimes \mathbb{C}\} \ \text{in} \ \mathbb{P}^2_{\mathbb{C}},$
- $\xi: H_1(\mathbb{C}P^2 \setminus \mathcal{A}^{\mathcal{C}}) \to \mathbb{C}^*$ torsion character of $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$ such that

$$\xi(\mathfrak{m}_D)=\mathrm{e}^{2\pi i\,\mathrm{pl}(P)/m}\quad\text{for any }D=P^*\otimes\mathbb{C}\in\mathcal{A}^\mathcal{C}.$$

We consider dual real plane $\check{\mathbb{R}P}^2 = \{L \mid L \subset \mathbb{R}P^2 \text{ droite}\}.$

• DUALITY: natural correspondence $(\cdot)^*$ between $\mathbb{R}P^2$ and $\check{\mathbb{R}P}^2$ respecting incidence relations: $P \in L \iff L^* \in P^*$.

Definition

Let $C = (V, S, \mathcal{L}, pl)$ be a (t, m)-configuration. We can define a triple $(\mathcal{A}^V, \mathcal{A}^S, \xi)$, where:

- $\bullet \ \mathcal{A}^{\mathcal{V}} = \{V_1^* \otimes \mathbb{C}, \dots, V_t^* \otimes \mathbb{C}\} \ \text{and} \ \mathcal{A}^{\mathcal{S}} = \{S_1^* \otimes \mathbb{C}, \dots, S_n^* \otimes \mathbb{C}\} \ \text{in} \ \mathbb{P}^2_{\mathbb{C}},$
- $\xi: H_1(\mathbb{C}P^2 \setminus \mathcal{A}^{\mathcal{C}}) \to \mathbb{C}^*$ torsion character of $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$ such that

$$\xi(\mathfrak{m}_D) = e^{2\pi i\operatorname{pl}(P)/m}$$
 for any $D = P^*\otimes \mathbb{C} \in \mathcal{A}^{\mathcal{C}}$.

NOTATIONS:

- $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$: (real complexified) dual arrangement of \mathcal{C} .
- $P^{\bullet} = P^* \otimes \mathbb{C}$.

NOTATIONS:

- $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$: (real complexified) dual arrangement of \mathcal{C} .
- $P^{\bullet} = P^* \otimes \mathbb{C}$.

NOTATIONS:

- $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$: (real complexified) dual arrangement of \mathcal{C} .
- $P^{\bullet} = P^* \otimes \mathbb{C}$.

Proposition

 \mathcal{C} and $\mathcal{A}^{\mathcal{C}}$ have the same combinatorics, i.e. the map $P \in \mathcal{V} \cup \mathcal{S} \mapsto P^{\bullet} \in \mathcal{A}^{\mathcal{C}}$ respects relations of collinearity and incidence, respectively.

Proposition

Let C be a planar (3, m)-configuration.

Notations:

- $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$: (real complexified) dual arrangement of \mathcal{C} .
- $P^{\bullet} = P^* \otimes \mathbb{C}$.

Proposition

 \mathcal{C} and $\mathcal{A}^{\mathcal{C}}$ have the same combinatorics, i.e. the map $P \in \mathcal{V} \cup \mathcal{S} \mapsto P^{\bullet} \in \mathcal{A}^{\mathcal{C}}$ respects relations of collinearity and incidence, respectively.

Proposition

Let $\mathcal C$ be a planar (3,m)-configuration. Take $\gamma:\mathcal S^1\hookrightarrow\mathcal A^{\mathcal V}\setminus\mathcal A^{\mathcal S}$ such that $\#\gamma^{-1}(\operatorname{Sing}\mathcal A^{\mathcal V})=3$. Then $(\mathcal A^{\mathcal C},\gamma,\xi)$ is a triangular inner-cyclic arrangement.

NOTATIONS:

- $\mathcal{A}^{\mathcal{C}} = \mathcal{A}^{\mathcal{V}} \cup \mathcal{A}^{\mathcal{S}}$: (real complexified) dual arrangement of \mathcal{C} .
- $P^{\bullet} = P^* \otimes \mathbb{C}$.

Proposition

 \mathcal{C} and $\mathcal{A}^{\mathcal{C}}$ have the same combinatorics, i.e. the map $P \in \mathcal{V} \cup \mathcal{S} \mapsto P^{\bullet} \in \mathcal{A}^{\mathcal{C}}$ respects relations of collinearity and incidence, respectively.

Proposition

Let \mathcal{C} be a planar (3, m)-configuration. Take $\gamma: \mathcal{S}^1 \hookrightarrow \mathcal{A}^{\mathcal{V}} \setminus \mathcal{A}^{\mathcal{S}}$ such that $\#\gamma^{-1}(\operatorname{Sing} \mathcal{A}^{\mathcal{V}}) = 3$. Then $(\mathcal{A}^{\mathcal{C}}, \gamma, \xi)$ is a triangular inner-cyclic arrangement.

hamber weight and invariance lew real complexified Zariski pairs Ither properties of the new Zariki pair

Part III

TOPOLOGY OF ARRANGEMENTS AND CONFIGURATIONS

Take C = (V, S, L, pl) a planar (3, m)-configuration: vertices V_1, V_2, V_3 define a partition of $\mathbb{R}P^2$ in 4 chambers

Definition

The *chamber weight* of $\mathcal C$ is the value

$$au(\mathcal{C}) = \sum_{S \in \mathcal{S} \cap \mathsf{ch}_i} \mathsf{pl}(S) \in \mathbb{Z}_m.$$

Take C = (V, S, L, pl) a planar (3, m)-configuration: vertices V_1, V_2, V_3 define a partition of $\mathbb{R}P^2$ in 4 chambers

Definition

The *chamber weight* of C is the value

$$au(\mathcal{C}) = \sum_{S \in \mathcal{S} \cap \mathsf{ch}_i} \mathsf{pl}(S) \in \mathbb{Z}_m.$$

Proposition

 $\tau(\mathcal{C})$ does not depend on the choice of ch_i , and

$$au(\mathcal{C}) = \left\{ egin{array}{ll} [0] & ext{or } [m/2] & ext{, if m even} \\ [0] & ext{, if m odd} \end{array}
ight.$$

Remark

For (3,2)-configurations, $\tau(\mathcal{C})$ is the parity of surrounding-points in each chamber.

Proposition

 $\tau(\mathcal{C})$ does not depend on the choice of ch_i , and

$$au(\mathcal{C}) = \left\{ egin{array}{ll} [0] & \textit{or } [m/2] & \textit{, if } m \textit{ even} \\ [0] & \textit{, if } m \textit{ odd} \end{array} \right.$$

Remark

For (3,2)-configurations, $\tau(\mathcal{C})$ is the parity of surrounding-points in each chamber.

$$\tau(C_1) = 1$$

$$\tau(\mathcal{C}_2)=0$$

Let C = (V, S, L, pl) be a planar (3, m)-configuration.

Theorem (Guerville-Ballé, ____)

 $au(\mathcal{C})$ is an invariant of the ordered topology of the dual arrangement $\mathcal{A}^{\mathcal{C}}$.

Corollary

Moreover, if C is stable and uniform, then $\tau(C)$ is a topological invariant of A^C .

Let C = (V, S, L, pl) be a planar (3, m)-configuration.

Theorem (Guerville-Ballé, ____)

 $\tau(\mathcal{C})$ is an invariant of the ordered topology of the dual arrangement $\mathcal{A}^{\mathcal{C}}$.

Corollary

Moreover, if C is <u>stable and uniform</u>, then $\tau(C)$ is a topological invariant of A^{C} .

IDEA OF THE PROOF: Take the dual triple $(\mathcal{A}^{\mathcal{V}},\mathcal{A}^{\mathcal{S}},\xi)$ associated to \mathcal{C} and $\gamma:\mathcal{S}^1\hookrightarrow\mathcal{A}^{\mathcal{V}}\setminus\mathcal{A}^{\mathcal{S}}$ such that $\#\gamma^{-1}(\operatorname{Sing}\mathcal{A}^{\mathcal{V}})=3$, then

$$\mathcal{I}(\mathcal{A}^{\mathcal{C}}, \gamma, \xi) = e^{2\pi i \tau(\mathcal{C})/m}$$

Let C = (V, S, L, pl) be a planar (3, m)-configuration.

Theorem (Guerville-Ballé, ____)

 $au(\mathcal{C})$ is an invariant of the ordered topology of the dual arrangement $\mathcal{A}^{\mathcal{C}}$.

Corollary

Moreover, if C is <u>stable and uniform</u>, then $\tau(C)$ is a topological invariant of A^{C} .

IDEA OF THE PROOF: Take the dual triple $(\mathcal{A}^{\mathcal{V}},\mathcal{A}^{\mathcal{S}},\xi)$ associated to \mathcal{C} and $\gamma:\mathcal{S}^1\hookrightarrow\mathcal{A}^{\mathcal{V}}\setminus\mathcal{A}^{\mathcal{S}}$ such that $\#\gamma^{-1}(\operatorname{Sing}\mathcal{A}^{\mathcal{V}})=3$, then

$$\mathcal{I}(\mathcal{A}^{\mathcal{C}}, \gamma, \xi) = e^{2\pi i \tau(\mathcal{C})/m}$$

The Zariski pair game

 ${\it QUESTION}: Could be possible to construct Zariski pairs from (3, 2)-configurations?$

ZARISKI GAME IN \mathbb{Z}_2 : Construct two (3,2)-configurations \mathcal{C}_1 and \mathcal{C}_2

① Fix vertices V_1, V_2, V_3 .

 $\label{eq:QUESTION} \mbox{QUESTION}: \mbox{Could be possible to construct Zariski pairs from} \mbox{ } (3,2)\mbox{-configurations}?$

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .

 ${\it QUESTION}: Could$ be possible to construct Zariski pairs from (3, 2)-configurations?

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .
- ③ Any line $L \in \mathcal{L}$ must contain an even number of points $S \in \mathcal{S}$.

 ${\it QUESTION}: Could$ be possible to construct Zariski pairs from (3, 2)-configurations?

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .
- **3** Any line $L \in \mathcal{L}$ must contain an even number of points $S \in \mathcal{S}$.
- ① $C_1 \sim_{\mathsf{comb}} C_2$ and stable.

 ${\it QUESTION}: Could$ be possible to construct Zariski pairs from (3, 2)-configurations?

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .
- **3** Any line $L \in \mathcal{L}$ must contain an even number of points $S \in \mathcal{S}$.
- \circ $\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2$ and stable.
- If the parity of points in the chambers of C_1 and C_2 are different, i.e. $\tau(C_1) \neq \tau(C_2)$we have found a ZARISKI PAIR!

 ${\it QUESTION}: Could$ be possible to construct Zariski pairs from (3, 2)-configurations?

ZARISKI GAME IN \mathbb{Z}_2 : Construct two (3,2)-configurations \mathcal{C}_1 and \mathcal{C}_2

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .
- **3** Any line $L \in \mathcal{L}$ must contain an even number of points $S \in \mathcal{S}$.
- \circ $\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2$ and stable.
- If the parity of points in the chambers of C_1 and C_2 are different, i.e. $\tau(C_1) \neq \tau(C_2)$we have found a ZARISKI PAIR!

Let's play over GEOGEBRA!

 $\label{eq:QUESTION} \mbox{QUESTION}: \mbox{Could be possible to construct Zariski pairs from} \mbox{ } (3,2)\mbox{-configurations}?$

ZARISKI GAME IN \mathbb{Z}_2 : Construct two (3,2)-configurations \mathcal{C}_1 and \mathcal{C}_2

- Fix vertices V_1, V_2, V_3 .
- ② Add points $S \in \mathcal{S}$ together with lines $L \in \mathcal{L}$ joining S with V_1, V_2, V_3 .
- **3** Any line $L \in \mathcal{L}$ must contain an even number of points $S \in \mathcal{S}$.
- \circ $\mathcal{C}_1 \sim_{\mathsf{comb}} \mathcal{C}_2$ and stable.
- If the parity of points in the chambers of C_1 and C_2 are different, i.e. $\tau(C_1) \neq \tau(C_2)$we have found a ZARISKI PAIR!

Let's play over GEOGEBRA!

Take $\alpha, \beta \in \{-1, 1\}$, let $\mathcal{C}_{\alpha, \beta} = (\mathcal{V}, \mathcal{S}_{\alpha, \beta}, \mathcal{L}_{\alpha, \beta}, \mathsf{pl})$ be planar uniform (3, 2)-configurations defined over \mathbb{Q} by:

$$\mathcal{V} = \{V_1, V_2, V_3\}, \quad \mathcal{S}_{\alpha,\beta} = \mathcal{S} \sqcup \mathcal{S}_{\alpha} \sqcup \mathcal{S}_{\beta},$$

$$S = \{S_1, \dots, S_4\}, \quad S_\alpha = \{S_5^\alpha, S_6^\alpha, S_7^\alpha\}, \quad S_\beta = \{S_8^\beta, S_9^\beta, S_{10}^\beta\}$$

Take $\alpha, \beta \in \{-1, 1\}$, let $\mathcal{C}_{\alpha, \beta} = (\mathcal{V}, \mathcal{S}_{\alpha, \beta}, \mathcal{L}_{\alpha, \beta}, \mathsf{pl})$ be planar uniform (3, 2)-configurations defined over \mathbb{Q} by:

$$\mathcal{V} = \{V_1, V_2, V_3\}, \quad \mathcal{S}_{\alpha,\beta} = \mathcal{S} \sqcup \mathcal{S}_{\alpha} \sqcup \mathcal{S}_{\beta},$$

$$S = \{S_1, \ldots, S_4\}, \quad S_{\alpha} = \{S_5^{\alpha}, S_6^{\alpha}, S_7^{\alpha}\}, \quad S_{\beta} = \{S_8^{\beta}, S_9^{\beta}, S_{10}^{\beta}\}.$$

where:

$$V_1=(1:0:0), \quad V_2=(0:1:0), \quad V_3=(0:0:1),$$
 $S_1=(1:1:1), \quad S_2=(4:4:1), \quad S_3=(1:4:1), \quad S_4=(4:1:1),$ $S_5^{\alpha}=(1:4:2\alpha), \quad S_6^{\alpha}=(1:2\alpha:1), \quad S_7^{\alpha}=(\alpha:2:2),$

Take $\alpha, \beta \in \{-1, 1\}$, let $\mathcal{C}_{\alpha, \beta} = (\mathcal{V}, \mathcal{S}_{\alpha, \beta}, \mathcal{L}_{\alpha, \beta}, \mathsf{pl})$ be planar uniform (3, 2)-configurations defined over \mathbb{Q} by:

$$V = \{V_1, V_2, V_3\}, \quad S_{\alpha,\beta} = S \sqcup S_{\alpha} \sqcup S_{\beta},$$

$$S = \{S_1, \ldots, S_4\}, \quad S_{\alpha} = \{S_5^{\alpha}, S_6^{\alpha}, S_7^{\alpha}\}, \quad S_{\beta} = \{S_8^{\beta}, S_9^{\beta}, S_{10}^{\beta}\}.$$

where:

$$V_1 = (1:0:0), \quad V_2 = (0:1:0), \quad V_3 = (0:0:1),$$

$$S_1 = (1:1:1), \quad S_2 = (4:4:1), \quad S_3 = (1:4:1), \quad S_4 = (4:1:1),$$

$$S_5^{\alpha} = (1:4:2\alpha), \quad S_6^{\alpha} = (1:2\alpha:1), \quad S_7^{\alpha} = (\alpha:2:2),$$

$$S_8^\beta = (4:1:2\beta), \quad S_9^\beta = (2\beta:1:1), \quad S_{10}^\beta = (2:\beta:2).$$

Proposition

 $C_{\alpha,\beta} \sim_{comb} C_{\alpha',\beta'}$ and they are also <u>stables</u>.

Denoting by $\mathcal{A}^{\alpha,\beta}$ the dual arrangement of $\mathcal{C}_{\alpha,\beta}$:

Proposition

 $C_{\alpha,\beta} \sim_{comb} C_{\alpha',\beta'}$ and they are also <u>stables</u>.

Denoting by $\mathcal{A}^{\alpha,\beta}$ the dual arrangement of $\mathcal{C}_{\alpha,\beta}$:

Theorem (Guerville-Ballé

Let $\alpha, \alpha', \beta, \beta' \in \{-1, 1\}$ be such that $\alpha\beta \neq \alpha'\beta'$. There is not homeomorphism between $(\mathbb{C}P^2, \mathcal{A}^{\alpha,\beta})$ and $(\mathbb{C}P^2, \mathcal{A}^{\alpha',\beta'})$.

Proposition

 $C_{\alpha,\beta} \sim_{comb} C_{\alpha',\beta'}$ and they are also <u>stables</u>.

Denoting by $\mathcal{A}^{\alpha,\beta}$ the dual arrangement of $\mathcal{C}_{\alpha,\beta}$:

Theorem (Guerville-Ballé, ____)

Let $\alpha, \alpha', \beta, \beta' \in \{-1, 1\}$ be such that $\alpha\beta \neq \alpha'\beta'$. There is not homeomorphism between $(\mathbb{C}P^2, \mathcal{A}^{\alpha,\beta})$ and $(\mathbb{C}P^2, \mathcal{A}^{\alpha',\beta'})$.

Corollary

The couples $(A^{1,1}, A^{-1,1})$, $(A^{1,1}, A^{1,-1})$, $(A^{-1,-1}, A^{-1,1})$, $(A^{-1,-1}, A^{1,-1})$ are complexified real Zariski pairs.

Proposition

 $C_{\alpha,\beta} \sim_{comb} C_{\alpha',\beta'}$ and they are also <u>stables</u>.

Denoting by $\mathcal{A}^{\alpha,\beta}$ the dual arrangement of $\mathcal{C}_{\alpha,\beta}$:

Theorem (Guerville-Ballé, ____)

Let $\alpha, \alpha', \beta, \beta' \in \{-1, 1\}$ be such that $\alpha\beta \neq \alpha'\beta'$. There is not homeomorphism between $(\mathbb{C}P^2, \mathcal{A}^{\alpha,\beta})$ and $(\mathbb{C}P^2, \mathcal{A}^{\alpha',\beta'})$.

Corollary

The couples $(A^{1,1}, A^{-1,1})$, $(A^{1,1}, A^{1,-1})$, $(A^{-1,-1}, A^{-1,1})$, $(A^{-1,-1}, A^{1,-1})$ are complexified real Zariski pairs.

Proof ?....It suffices to count points in a chamber of $\mathcal{C}_{\alpha,\beta}$!

$$\tau(C_{1,1}) = 4 + 3 + 3 \equiv 0 \mod 2$$

$$\tau(C_{1,-1}) = 4 + 3 + 0 \equiv 1 \mod 2$$

Proof ?....It suffices to count points in a chamber of $\mathcal{C}_{\alpha,\beta}$!

$$\tau(C_{1,1}) = 4 + 3 + 3 \equiv 0 \mod 2$$

$$\tau(C_{1,-1}) = 4 + 3 + 0 \equiv 1 \mod 2$$

Moduli space and geometrical characterization

The moduli space Σ_A of an arrangement A of n lines:

$$\Sigma_{\mathcal{A}} = \{\mathcal{B} \in (\mathbb{C}P^2)^n \ | \ \mathcal{B} \sim_{\mathsf{comb}} \mathcal{A}\} / \, \mathsf{PGL}_3(\mathbb{C}).$$

Theorem (Guerville-Ballé, ____

The moduli space Σ of $\mathcal{A}^{\alpha,\beta}$ is formed by two connected components Σ^0 and Σ^1 . Moreover,

① For any (3,2)-configuration C such that $C \sim_{comb} C_{\alpha,\beta}$:

$$\mathcal{A}^{\mathcal{C}} \in \Sigma^{0} \Longleftrightarrow \tau(\mathcal{C}) = 0.$$

Moduli space and geometrical characterization

The moduli space Σ_A of an arrangement A of n lines:

$$\Sigma_{\mathcal{A}} = \{\mathcal{B} \in (\mathbb{C}P^2)^n \ | \ \mathcal{B} \sim_{\mathsf{comb}} \mathcal{A}\} / \, \mathsf{PGL}_3(\mathbb{C}).$$

Theorem (Guerville-Ballé, ____

The moduli space Σ of $\mathcal{A}^{\alpha,\beta}$ is formed by two connected components Σ^0 and Σ^1 . Moreover.

• For any (3,2)-configuration C such that $C \sim_{comb} C_{\alpha,\beta}$:

$$A^{C} \in \Sigma^{0} \Longleftrightarrow \tau(C) = 0.$$

② A complex line arrangement $A \in \Sigma$ belongs to Σ^0 if and only if it contains six lines tangent to a conic.

Moduli space and geometrical characterization

The moduli space Σ_A of an arrangement A of n lines:

$$\Sigma_{\mathcal{A}} = \{\mathcal{B} \in (\mathbb{C}P^2)^n \ | \ \mathcal{B} \sim_{\mathsf{comb}} \mathcal{A}\} / \, \mathsf{PGL}_3(\mathbb{C}).$$

Theorem (Guerville-Ballé, ____

The moduli space Σ of $\mathcal{A}^{\alpha,\beta}$ is formed by two connected components Σ^0 and Σ^1 . Moreover.

• For any (3,2)-configuration C such that $C \sim_{comb} C_{\alpha,\beta}$:

$$A^{C} \in \Sigma^{0} \Longleftrightarrow \tau(C) = 0.$$

② A complex line arrangement $A \in \Sigma$ belongs to Σ^0 if and only if it contains six lines tangent to a conic.

Let
$$G_1 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{1,1})$$
 and $G_2 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{-1,1})$. We compute, using SAGE:

$$G_i = \gamma_1 G_i \triangleright \gamma_2 G_i \triangleright \dots \triangleright \gamma_n G_i \triangleright \gamma_{n+1} G_i \triangleright \dots$$
 (LCS)

where $\gamma_{k+1}G_i = [\gamma_k G_i, G_i]$.

Let $G_1 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{1,1})$ and $G_2 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{-1,1})$. We compute, using SAGE:

$$G_i = \gamma_1 G_i \triangleright \gamma_2 G_i \triangleright \cdots \triangleright \gamma_n G_i \triangleright \gamma_{n+1} G_i \triangleright \cdots$$
 (LCS)

where $\gamma_{k+1}G_i = [\gamma_k G_i, G_i]$.

Theorem

- For any k = 1, 2, 3: $\frac{\gamma_k G_1}{\gamma_{k+1} G_1} \simeq \frac{\gamma_k G_2}{\gamma_{k+1} G_2}$
- $② \ \, \frac{\gamma_4 \, G_1}{\gamma_5 \, G_1} \simeq \mathbb{Z}^{211} \oplus \mathbb{Z}_2 \ \, \text{and} \ \, \frac{\gamma_4 \, G_2}{\gamma_5 \, G_2} \simeq \mathbb{Z}^{211}.$

Let $G_1 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{1,1})$ and $G_2 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{-1,1})$. We compute, using SAGE:

$$G_i = \gamma_1 G_i \triangleright \gamma_2 G_i \triangleright \cdots \triangleright \gamma_n G_i \triangleright \gamma_{n+1} G_i \triangleright \cdots$$
 (LCS)

where $\gamma_{k+1}G_i = [\gamma_k G_i, G_i]$.

Theorem

- For any k = 1, 2, 3: $\frac{\gamma_k G_1}{\gamma_{k+1} G_1} \simeq \frac{\gamma_k G_2}{\gamma_{k+1} G_2}$.
- $② \ \, \tfrac{\gamma_4 \, G_1}{\gamma_5 \, G_1} \simeq \mathbb{Z}^{211} \oplus \mathbb{Z}_2 \ \, \text{and} \ \, \tfrac{\gamma_4 \, G_2}{\gamma_5 \, G_2} \simeq \mathbb{Z}^{211}.$

Corollary

For any $A_0 \in \Sigma^0$ and $A_1 \in \Sigma^1$, we have $\pi_1(\mathbb{C}P^2 \setminus A_0) \not\simeq \pi_1(\mathbb{C}P^2 \setminus A_1)$.

Let $G_1 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{1,1})$ and $G_2 = \pi_1(\mathbb{C}P^2 \setminus \mathcal{A}^{-1,1})$. We compute, using SAGE:

$$G_i = \gamma_1 G_i \triangleright \gamma_2 G_i \triangleright \dots \triangleright \gamma_n G_i \triangleright \gamma_{n+1} G_i \triangleright \dots$$
 (LCS)

where $\gamma_{k+1}G_i = [\gamma_k G_i, G_i]$.

Theorem

- For any k = 1, 2, 3: $\frac{\gamma_k G_1}{\gamma_{k+1} G_1} \simeq \frac{\gamma_k G_2}{\gamma_{k+1} G_2}$.
- $② \ \, \tfrac{\gamma_4 \, G_1}{\gamma_5 \, G_1} \simeq \mathbb{Z}^{211} \oplus \mathbb{Z}_2 \ \, \text{and} \ \, \tfrac{\gamma_4 \, G_2}{\gamma_5 \, G_2} \simeq \mathbb{Z}^{211}.$

Corollary

For any $A_0 \in \Sigma^0$ and $A_1 \in \Sigma^1$, we have $\pi_1(\mathbb{C}P^2 \setminus A_0) \not\simeq \pi_1(\mathbb{C}P^2 \setminus A_1)$.

THANK YOU!