HW4 online

Started: 7 Apr at 15:29

Quiz instructions

READ THESE INSTRUCTIONS FIRST

- 1. Answer all questions.
- 2. You only have **one** attempt, so do not submit until you're done. You are free to leave the page and resume at a later time. (Your progress will be saved automatically.)
- 3. All answers should be numerical (see subsequent instructions for important formatting rules) or MCQ or T/F. For example, you should write 2 (without the quotes) instead of two.
- 4. If a numerical answer is an integer, you must write it as an integer instead of a fraction. For example, you must write 2 instead of 2.0 or 6/3.
- 5. If a numerical answer is a rational number which is not an integer, you must write it in reduced form. For example, you must write -3/2 instead of -6/4 or -1 1/2 or -1.5.
- 6. If you think a numerical answer is irrational or complex, you probably made a mistake.

Question 1					1 pts
Given that $m{A}$ and $m{P}$ are matrices such that $m{P}^{-1}m{A}m{P}=$ rank of $m{A}$?	$\begin{pmatrix} 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	0 0 0 0	0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 3 \end{pmatrix}$, what is the

	Question 2	1 pts
	If $m{A}$ is an orthogonal matrix and $m{c}$ is a scalar, then $m{c}m{A}$ is orthogonal.	
	○ True	
	False	
_		

Question 3	1 pts
If $m{A}$, $m{B}$, $m{C}$ are orthogonal matrices of the same size	, then $oldsymbol{ABC}$ is orthogonal.
True	
○ False	
Question 4	1 pts
If ${f 0}$ is the only eigenvalue of ${m A}$, then ${m A}={m 0}$.	
○ True	
False	
Question 5	1 pts
Let $m{A}$ be a matrix. If $m{u}$ and $m{v}$ are eigenvectors of $m{A}$,	then $oldsymbol{u} + oldsymbol{v}$ is an eigenvector of $oldsymbol{A}$.
○ True	
False	
Question 6	1 pts
Let $m{A}$ be a matrix. Every two distinct eigenvectors of	$oldsymbol{A}$ are linearly independent.

False	
Question 7	1 pts
Every symmetric matrix is diagonalizable.	
True	
○ False	
Question 8	1 pts
Every invertible matrix is diagonalizable.	
○ True	
False	
Question 9	1 pts
If $m{A}$ is a diagonalizable matrix, then $m{A^T}$ is diagonalizable.	
True	
○ False	
Question 10	1 pts
If $oldsymbol{A}$ is a diagonalizable matrix, then $oldsymbol{A}^2$ is diagonalizable.	

Irue				
○ False				
Question 11	1 pts			
If $m{A}$ and $m{B}$ are orthogonally diagonalizable matrices with the same size orthogonally diagonalizable.	e, then $oldsymbol{AB}$ is			
○ True				
False				
Question 12	1 pts			
For each $m imes n$ matrix $m{A}$ and each $b \in \mathbb{R}^m$, the set of all least squares solutions to the linear system $m{Ax} = m{b}$ forms a subspace of \mathbb{R}^n .				
	es solutions to the			
	es solutions to the			
linear system $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$ forms a subspace of \mathbb{R}^n .	es solutions to the			
linear system $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ forms a subspace of \mathbb{R}^n .	es solutions to the			
linear system $oldsymbol{A} oldsymbol{x} = oldsymbol{b}$ forms a subspace of \mathbb{R}^n .	es solutions to the 1 pts			
linear system ${m A}{m x}={m b}$ forms a subspace of ${\mathbb R}^n$. ${footnote{\circ}}$ True ${footnote{\circ}}$ False	1 pts			

Question 14 1 pts

Let
$$m{A} = egin{pmatrix} 1 & 1 & 0 \\ -2 & -1 & 2 \\ -1 & 1 & 0 \\ 2 & -2 & 0 \end{pmatrix}$$
 and $m{b} = egin{pmatrix} -2 \\ 3 \\ -3 \\ 2 \end{pmatrix}$. The system $m{A}m{x} = m{b}$ has a unique least squares solution $m{u}$. It is: (

Question 15	1 pts
In the context of the previous question, compute the "least square error" $ m{b}-m{Au} ^2$:

Saved at 16:26

Submit quiz