

ECE 802, Electric Motor Control

Dual-Fed Induction Generators for Wind Power

Power Coefficient

 $C_{p}(\lambda,\beta)$ - ratio of power from a wind turbine to the power available in the wind

 β - pitch angle (rad)

 λ - tip speed ratio

$$\lambda = \frac{\omega_{rmt}R}{v_{w}}$$

 ω_{rmt} - speed of the wind turbine (rad/s) R - radius of the wind turbine (m) v_w - wind velocity (m/s)

Betz limit: $C_p \le 59.3\%$

A. Petersson, Analysis, *Modeling and Control of Doubly-Fed Induction Generators for Wind Turbines*, Ph.D. Dissertation, Chalmers University of Technology, Sweden, 2005.

Example Wind Turbine

Wind turbine		Induction generator		Power network	
Rated capacity	3.6 MW	Prated	3.6 MW	r_{l1}	0.14
Cut-in wind speed	3.5 m/s	V _{s,rated}	4.16 kV	x_{l1}	0.8
Cut-out wind speed	27 m/s	r_s	0.0079	r_{l2}	0.14
Rated wind speed	14 m/s	r_r	0.025	x_{l2}	0.8
Number of blades	3	L_{ls}	0.07939	Z_L	0.7+ <i>j</i> 1.5
Rotor diameter	104 m	L_{lr}	0.40		
Swept area	8495 m ²	L_m	4.4		
Rotor speed	8.5-15.3 rpm	pf	- 0.9 ~ +0.9		

$$RPM := \frac{2 \cdot \pi \cdot rad}{min}$$

$$R := \frac{104 \cdot m}{2}$$

$$\omega_{rmt_min} := 8.5 \cdot RPM$$

$$\omega_{rmt_max} := 15.3 \cdot RPM$$

$$v_{w_min} := 3.5 \cdot \frac{m}{s}$$

$$v_{w_max} := 27 \cdot \frac{m}{s}$$

$$\lambda_{min} := \frac{\omega_{rmt_min} \cdot R}{v_{w_max}}$$

$$\lambda_{max} := \frac{\omega_{rmt_max} \cdot R}{v_{w_max}}$$

W. Qiao, G.K. Venayagamoorthy, and R.G. Harley, "Real-Time Implementation of a STATCOM on a Wind Farm Equipped With Doubly Fed Induction Generators," *IEEE Transactions on Industry Applications*, volume 45, number 1, pages 98-107, January/February 2009.

Power Versus Rotational Speed

constant pitch angle β

$$P_{m} = \frac{1}{2} C_{p} (\lambda, \beta) \pi \rho R^{2} v_{w}^{3}$$

$$P_{opt} = K_{opt} \omega_{rm}^2$$

- command P_{opt} from the wind turbine drive
- limit command to rated power
- above rated speed, use pitch angle to regulate speed

R. Pena, J.C. Clare, and G.M Asher, "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation," *IEE Proceedings - Electric Power Applications*, volume 143, Issue 3, pages 231-241, May 1996.

Wind Power System Diagrams

Wind Turbine Diagram

Wind Power Basics

Amount of energy harvested from the wind is express as a power coefficient which depends on the tip speed ratio and blade pitch angle

According to theory, the power coefficient is limited to 59.3%

Given the specific power coefficient curves for a particular wind turbine, the commanded power from the turbine drive can be set to the maximum power available for a given wind speed

DFIG System

dual fed induction generator (DFIG) or wound-rotor induction machine (WRIM)

Symmetrical Induction Machines (Chapter 4)

voltage equations

$$v_{abcs} = r_s i_{abcs} + p \lambda_{abcs}$$

$$v_{abcr} = r_r i_{abcr} + p \lambda_{abcr}$$

typically wye connected windings

IM *q-d* Equivalent Circuit (Synchronous Reference Frame)

IM Stator Side Equations

steady-state, synchronous reference frame

$$egin{align} V_{qs}^{\ e} &= r_s I_{qs}^{\ e} + \omega_e \lambda_{ds}^{\ e} & \lambda_{qs}^{\ e} &= L_{ss} I_{qs}^{\ e} + L'_{lr} I'_{qr}^{\ e} \ V_{ds}^{\ e} &= r_s I_{ds}^{\ e} - \omega_e \lambda_{qs}^{\ e} & \lambda_{ds}^{\ e} &= L_{ss} I_{ds}^{\ e} + L'_{lr} I'_{dr}^{\ e} \ \end{array}$$

substitute flux linkage equations into voltage equations

$$V_{qs}^{e} = r_{s}I_{qs}^{e} + \omega_{e}L_{ss}I_{ds}^{e} + \omega_{e}L'_{lr}I'_{dr}^{e}$$

$$V_{ds}^{e} = r_{s}I_{ds}^{e} - \omega_{e}L_{ss}I_{qs}^{e} - \omega_{e}L'_{lr}I'_{qr}^{e}$$

solve for stator currents

$$\begin{bmatrix} I_{qs}^{e} \\ I_{ds}^{e} \end{bmatrix} = \begin{bmatrix} r_{s} & \omega_{e} L_{ss} \\ -\omega_{e} L_{ss} & r_{s} \end{bmatrix}^{-1} \begin{bmatrix} V_{qs}^{e} - \omega_{e} L_{M} I_{dr}^{e} \\ V_{ds}^{e} + \omega_{e} L_{M} I_{qr}^{e} \end{bmatrix}$$

Stator Currents in Terms of Rotor Currents

in the synchronous reference frame $V_{qs}^{e}=\sqrt{2}\,V_{s}$ $V_{ds}^{e}=0$ assuming that $\omega_{e}L_{ss}>>r_{s}$

Stator Side Power

stator power

$$P_{s} = -\frac{3}{2} \left(V_{qs}^{e} I_{qs}^{e} + V_{ds}^{e} I_{ds}^{e} \right) = -\frac{3}{2} \sqrt{2} V_{s} I_{qs}^{e}$$

$$Q_{s} = -\frac{3}{2} \left(V_{qs}^{e} I_{ds}^{e} - V_{ds}^{e} I_{qs}^{e} \right) = -\frac{3}{2} \sqrt{2} V_{s} I_{ds}^{e}$$

in terms of rotor currents

$$P_s \approx \frac{3}{2} \frac{\sqrt{2} V_s L_M}{L_{ss}} I_{qr}^{e}$$

$$Q_s \approx \frac{3}{2} \frac{\sqrt{2} V_s L_M}{L_{ss}} I_{dr}^{e} - \frac{3V_s^2}{\omega_e L_{ss}}$$

Note: stator real power can be controlled by *q*-axis rotor current in the synchronous reference frame. Stator reactive power is controlled by *d*-axis rotor current.

IM Rotor Side Converter (RSC) Control

Flux Linkage Calculations

$$\lambda'_{qr}^{e^*} = L'_{rr}i'_{qr}^{e^*} + L_{M}i_{qs}^{e^*}$$
 $\lambda'_{dr}^{e^*} = L'_{rr}i'_{dr}^{e^*} + L_{M}i_{ds}^{e^*}$
 $i_{qs}^{e^*} = -\frac{L_{M}}{L_{ss}}i'_{qr}^{e^*}$
 $i_{ds}^{e^*} = \frac{\sqrt{2}V_{s}}{\omega_{s}L_{ss}} - \frac{L_{M}}{L_{ss}}i'_{dr}^{e^*}$

IM Rotor Converter Control

W. Qiao, G.K. Venayagamoorthy, and R.G. Harley, "Real-Time Implementation of a STATCOM on a Wind Farm Equipped With Doubly Fed Induction Generators," *IEEE Transactions on Industry Applications*, volume 45, number 1, pages 98-107, January/February 2009.

IM Rotor Converter Control

R. Pena, J.C. Clare, and G.M Asher, "Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation," *IEE Proceedings - Electric Power Applications*, volume 143, Issue 3, pages 231-241, May 1996.

Grid Side Converter (GSC) Control

• reactive power can also be controlled through the *d*-axis current

Example using 2250hp Machine from Book

WRIM induction machine

$$r_{c} := 0.029 \Omega$$

$$P := 4$$

$$r_s^{} := 0.029\,\Omega$$
 $P := 4$ $r_r' := 0.022\cdot\Omega$

$$L_{ls} := 600 \cdot \mu H$$

$$L_{ls} := 600 \cdot \mu H$$
 $L_{M} := 34.6 \, mH$ $L'_{lr} := 600 \cdot \mu H$

$$L'_{lr} := 600 \cdot \mu H$$

$$\omega_e := 2 \cdot \pi \cdot 60 \cdot Hz$$

$$V_{S} := \frac{2300 \cdot V}{\sqrt{3}}$$

$$L_{ss} := L_{ls} + L_{M}$$

$$L'_{rr} := L'_{lr} + L_{M}$$

commanded stator power and rotor currents

$$P_{s \text{ star}} := 1.6 \text{ MW}$$

$$P_{s star} := 1.6 \,\mathrm{MW}$$
 $Q_{s star} := 0 \cdot \mathrm{MVAR}$

$$I'_{qre} := \frac{2}{3} \cdot \frac{L_{ss}}{\sqrt{2} \cdot V_s \cdot L_M} \cdot P_{s_star}$$

$$I'_{dre} := \frac{2}{3} \cdot \frac{L_{ss}}{L_{M}} \cdot \frac{Q_{s_star}}{\sqrt{2} \cdot V_{s}} + \frac{\sqrt{2} \cdot V_{s}}{\omega_{e} \cdot L_{M}}$$

actual stator power

$$V_{qse} := \sqrt{2} \cdot V_{s}$$

$$V_{dse} := 0 \cdot V$$

$$\begin{pmatrix} I_{qse} \\ I_{dse} \end{pmatrix} := \begin{pmatrix} r_s & \omega_e \cdot L_{ss} \\ -\omega_e \cdot L_{ss} & r_s \end{pmatrix}^{-1} \cdot \begin{pmatrix} \sqrt{2} \cdot V_s - \omega_e \cdot L_M \cdot I'_{dre} \\ \omega_e \cdot L_M \cdot I'_{qre} \end{pmatrix}$$

$$P_s := -\frac{3}{2} \cdot \left(V_{qse} \cdot I_{qse} + V_{dse} \cdot I_{dse} \right)$$

$$Q_{s} := -\frac{3}{2} \cdot \left(V_{qse} \cdot I_{dse} - V_{dse} \cdot I_{qse} \right)$$

rotor power as a funciton of speed

$$\begin{split} &\lambda'_{qre} \coloneqq L'_{rr'}I'_{qre} + L_{M'}I_{qse} \\ &\lambda'_{dre} \coloneqq L'_{rr'}I'_{dre} + L_{M'}I_{dse} \\ &V'_{qre} \Big(\omega_r\Big) \coloneqq r'_{r'}I'_{qre} + \Big(\omega_e - \omega_r\Big) \cdot \lambda'_{dre} \\ &V'_{dre} \Big(\omega_r\Big) \coloneqq r'_{r'}I'_{dre} - \Big(\omega_e - \omega_r\Big) \cdot \lambda'_{qre} \\ &V'_{dre} \Big(\omega_r\Big) \coloneqq -\frac{3}{2} \cdot \Big(V'_{qre} \Big(\omega_r\Big) \cdot I'_{qre} + V'_{dre} \Big(\omega_r\Big) \cdot I'_{dre}\Big) \\ &Q_r \Big(\omega_r\Big) \coloneqq -\frac{3}{2} \cdot \Big(V'_{qre} \Big(\omega_r\Big) \cdot I'_{dre} - V'_{dre} \Big(\omega_r\Big) \cdot I'_{qre}\Big) \\ &\omega_r \coloneqq 0 \cdot \frac{rad}{s} \cdot 1 \cdot \frac{rad}{s} \dots 2 \cdot \omega_e \end{split}$$

Stator and Rotor Power Versus Speed

rotor speed range based on rotor power constraints

$$P_{r \text{ min}} := -0.3 \cdot |P_{s}|$$

$$P_{r \text{ max}} := 0.3 \cdot |P_{s}|$$

$$\omega_{guess} := \omega_{e}$$

$$\omega_{r_min} := root[(P_r(\omega_{guess}) - P_{r_min}), \omega_{guess}]$$

$$\omega_{r_{max}} := root[(P_r(\omega_{guess}) - P_{r_{max}}), \omega_{guess}]$$

$$\omega_{\text{rm}} := \frac{2}{P} \cdot \omega_{\text{r}}$$

$$\omega_{\text{rm_max}} = \frac{2}{P} \cdot \omega_{\text{r_max}}$$

Simulated DFIG with Step in Commanded Power

Example 30kW Machine with Wind Data

DFIG for Wind Power Applications

Stator real and reactive power can be controlled using the synchronous reference frame *q*- and *d*-axis rotor currents respectively

Grid side converter used to regulate the capacitor voltage

Typically the rotor power converter size is limited which leads to a practical limit on the speed range