

TP n°1 : Circuits logiques

I. Demi-additionneur

Un demi additionneur est un circuit combinatoire qui permet de réaliser l'addition de deux bits figurés par les variables P_0 et Q_0 . Le résultat de l'addition est la variable \sum_0 et éventuellement une retenue C (Carry).

FIGURE 1 - 1

• Réaliser un demi-additionneur composé uniquement de portes NAND . Compléter le schéma du circuit d'addition représenté en figure 2-1).

FIGURE 2 - 1

 Noter les valeurs de sortie de l'ensemble des opérateurs pour les valeurs d'entrée indiquées par le tableau ci-dessous.

Nombres à additionner		Sorties des portes				Total	
Po	Q ₀	D1	D2	D3	D4	Σο	CI
0	0						
0	1						
1	0						
1	1						

FIGURE 3 - 1

- Relier chaque sortie à une diode électroluminescente. Vérifier l'exactitude du circuit et du tableau (Figure 3-1)
- Le demi-additionneur peut être également réalisé avec seulement deux portes. Compléter le circuit représenté en (Figure 4 -1) et vérifier le circuit avec le DIGIBOARD 2

FIGURE 4-1

II. Additionneur complet à 1 bit

- Réaliser un additionneur complet à 1 bit avec des éléments ET, OU et NON.
- Compléter le tableau représenté en figure 5-1

P ₁	Q ₁	CI	Σ	СО
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

FIGURE 5-1

 \bullet Elaborer les équations minimisées pour la somme \sum et la retenue CO à l'aide des diagrammes de Karnaugh (figures 6 et 7)

Σ		P_1Q_1				
		00	01	11	10	
G	0					
CI	1					

$$\Sigma = \dots$$

со		P_1Q_1				
		00	01	11	10	
- CI	0					
CI	1					

co =

FIGURE 6 – Table de Karnaugh pour \sum

FIGURE 7 – Table de Karnaugh pour CO

• Compléter le circuit représenté en figure 8 et vérifier son fonctionnement à l'aide du DIGIBOARD 2.

FIGURE 8 - 1

III. Comparateur de nombres binaires

Un comparateur binaire est un circuit numérique qui permet de comparer deux mots binaires généralement notés P et Q.

Développer dans cet exercice un circuit pour comparer deux nombres binaires de 2 bits. Lorsque les nombres sont inégaux, le circuit doit effectuer une comparaison par plus grande ou plus petite.

III.1 Exécution:

- Compléter la table de vérité de la figure 9 et écrire les équations de fonction $S_S,\,S_e$ et $S_i.$
- Réaliser le circuit du comparateur à deux bits
- Vérifier le fonctionnement du circuit à l'aide du DIGIBOARD 2.

Entrées				Sorties			
Nombre P		Nombre Q		P>Q	P=Q	P <q< th=""></q<>	
P_1	Po	$Q_{\rm i}$	Q_0				
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

FIGURE 9 - Table de rérité