Project 1

Network Modelling Subgroup

Motivation

• Define modelling and simulation cases for:

- Validating new component models
- Validating/benchmarking new network designs
- Benchmarking control strategies

Efforts so far

- Definition and simulation of one single simple case
 - > to establish common ground
- 16 buildings with same load, radial network layout
- Simulated pipe models:
 - Plug-flow
 - Dynamic pipe
 - Dimosim

Automatic model generation

• Felix: pipe dimensioning, insulation sizing

Index	Beginning Node	Ending Node	Length [m]	Inner Diameter [m]	Insulation Thickness [m]	Peak Load [kW]	Total pressure loss [Pa/m]	U-value [W/mK]
Θ	SimpleDistrict_1	е	12	0.025	0.11	19.3473	3093.16	0.035
1	SimpleDistrict_4	е	12	0.025	0.11	19.3473	3093.16	0.035
2	SimpleDistrict_13	h	12	0.02	0.11	19.3473	9515.79	0.035
3	g	h	24	0.05	0.14	116.084	5538.45	0.035
4	SimpleDistrict_10	с	12	0.02	0.11	19.3473	9515.79	0.035
5	h	i	36	0.05	0.14	154.778	14392	0.035
6	SimpleDistrict_3	a	12	0.025	0.11	19.3473	3093.16	0.035
7	С	d	24	0.05	0.14	116.084	5538.45	0.035
8	SimpleDistrict_2	a	12	0.025	0.11	19.3473	3093.16	0.035
9	SimpleDistrict_8	f	12	0.02	0.11	19.3473	9515.79	0.035
10	SimpleDistrict_7	f	12	0.02	0.11	19.3473	9515.79	0.035
11	SimpleDistrict_15	d	12	0.02	0.11	19.3473	9515.79	0.035
12	f	g	24	0.04	0.125	77.3891	7921.77	0.035
13	d	i	36	0.05	0.14	154.778	14392	0.035

• Michael: layout, sizing, model generation

Automated model generation and simplification for district heating and cooling networks

Michael Mans¹ Tobias Blacha¹ Peter Remmen¹ Dirk Müller¹

¹Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen University, Germany, mmans@eonerc.rwth-aachen.de

Results

Heating losses

Numerical issues

Encountered difficulties

- Model behavior strongly dependent on solver
- Model behavior strongly dependent on control strategies
 - Bypass mass flow rate
 - Supply temperature
 - Temperature difference
- > Need for very precise case description, even more for future cases

First exercise – Next steps

- Further documentation and improved description of the exercise by including (e.g.):
 - Pipe roughness
 - Solvers (for Dymola / Modelica users)
 - Refactor the models
 - Integrate the models into the ibpsa-modelica?
- Further comparison of the models:
 - Temperatures at different substations
 - Changing supply temperature

Network Modelling Subgroup – Next steps

- Diverse heat demand:
 - Integration of other building types
 - Change in network Layout

New little more complex and not symmetric layout

Integration of multiple renewable energy sources

 We need to rethink what we want to accomplish for that and what kind of investigations are making sense in that case