Redes Privadas NAT & NAPT

Redes e Serviços

Licenciatura em Engenharia Informática DETI-UA

NAT (Network Address Translation) e NAPT (Network Address Port Translation)

- NAT faz a tradução entre endereços privados e públicos
- NAPT para além dos endereços, faz a tradução entre números de porto UDP ou TCP
- As associações entre endereços públicos e privados podem ser estáticas ou dinâmicas
- É necessário processar também as mensagens dos protocolos de aplicação que passam endereços IP e números de porto UDP ou TCP (é o caso do FTP)

Associações NAT

- Associação estática:
 - a correspondência entre endereço NAT e endereço público é configurada estaticamente no router NAT
 - permite que as sessões possam ser iniciadas nos dois sentidos
- Associação dinâmica:
 - a correspondência entre endereço NAT e endereço público é feita automaticamente quando o primeiro pacote chega ao router NAT:

Blocos de endereços NAT

Prefixo	Endereço mais baixo	Endereço mais alto				
10.0.0.0/8	10.0.0.0	10.255.255.255				
172.16.0.0/12	172.16.0.0	172.31.255.255				
192.168.0.0/16	192.168.0.0	192.168.255.255				
169.254.0.0/16	169.254.0.0	169.254.255.255				

- Os endereços NAT são endereços privados
- Os pacotes para estes destinos não são encaminhados na rede pública

Exemplos – NAT (I)

- Router configurado com associação dinâmica de endereços
- Endereços IP públicos usados:
 - 216.100.100.2 e 216.100.100.3 para associações NAT
 - 216.100.100.1 para a interface do router

Exemplos – NAT (II)

Ping de 10.0.0.13 para 216.100.100.11:

Exp4Rl_a.cap : 1/8 Ethe		_ IX				
No. Sta. Source Address	Dest Address	Layer	Summary		Len	Rel. Time
□ 1 0k 10.0.0.13	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:07.40
□ 2 Ok 216.100.100.11	10.0.0.13	ICMP	Type=Echo	Reply,	78	0:00:07.41
□30k 10.0.0.13	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:08.42
□ 4 Ok 216.100.100.11	10.0.0.13	ICMP	Type=Echo	Reply,	78	0:00:08.42
□50k 10.0.0.13	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:09.42
□ 6 Ok 216.100.100.11	10.0.0.13	ICMP	Type=Echo	Reply,	78	0:00:09.43
□7 Ok 10.0.0.13	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:10.43
□ 8 0k 216.100.100.11	10.0.0.13	ICMP	Type=Echo	Reply,	78	0:00:10.43

rede privada

rede pública

Exemplos - NAT (III)

Ping de 10.0.0.12 para 216.100.100.11:

Exp4RI_b.cap : 1/8 Ethernet packets							_O×
No. S	Sta. Source Address	Dest Address	Layer	Summary		Len	Rel. Time
	k 10.0.0.12	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:05.64
□ 2 0	k 216.100.100.11	10.0.0.12	ICMP	Type=Echo	Reply,	78	0:00:05.65
□30	k 10.0.0.12	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:06.64
	k 216.100.100.11	10.0.0.12	ICMP	Type=Echo	Reply,	78	0:00:06.64
□ 5 0	0k 10.0.0.12	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:07.64
□ 6 0	k 216.100.100.11	10.0.0.12	ICMP	Type=Echo	Reply,	78	0:00:07.65
□ 7 0	k 10.0.0.12	216.100.100.11	ICMP	Type=Echo	Request	78	0:00:08.65
□8	k 216.100.100.11	10.0.0.12	ICMP	Type=Echo	Reply,	78	0:00:08.65

10.0.0.13

rede privada

rede pública

Exemplos - NAT (IV)

Router Rede privada Rede pública 10.0.0.0 216.100.100.0 eht0 eth1 10.0.0.12 216.100.100.11 10.0.0.1 216.100.100.1 216.100.100.2 216.100.100.3

Ping de 10.0.0.11 para 216.100.100.11:

10.0.0.13

rede privada

- A estação 10.0.0.11 não consegue aceder à rede pública porque todos os endereços disponíveis foram previamente associados
- As associações têm um tempo de vida (timeout) máximo de inactividade ao fim do qual são anuladas

Exemplos – NAPT (I)

- Estação D configurada com um servidor FTP activo
- Endereços IP públicos usados:
 - 216.100.100.2 para associações NAPT
 - 216.100.100.1 para a interface do router

Exemplos – NAPT (II)

Acesso das estações B e A ao servidor FTP na estação D:

rede privada

rede pública

Exemplos – NAPT (III)

Acesso das estações B e A ao servidor FTP na estação D:


```
Router#show ip nat translation verbose
Pro Inside global
                       Inside local
                                          Outside local
                                                             Outside global
tcp 216.100.100.2:1032 10.0.0.12:1032
                                          216.100.100.11:21
                                                             216,100,100,11:21
    create 00:00:35, use 00:00:24, left 23:59:35,
    flags:
extended, use count: 0
tcp 216.100.100.2:1033 10.0.0.11:1033
                                          216.100.100.11:21 216.100.100.11:21
    create 00:00:12, use 00:00:06, left 23:59:53,
    flags:
extended, use count: 0
```

- Neste caso, não é necessário traduzir os números de porto origem porque eles são diferentes
 - A estação B usou o número de porto 1032
 - A estação A usou o número de porto 1033

Exemplos – NAPT (IV)

Segundo acesso da estação B a servidor FTP na estação D:

Exp6RE_c2.cap: 1/11 Ethernet packets _ 🗆 × Sta. Source Address Dest Address Laver Summarv □ 1 0k 216.100.100.2 216.100.100.11 TCP 1024->File -□ 2 0k 216.100.100.11 216.100.100.2 TCP File Transf □ 3 Ok 216.100.100.2 216.100.100.11 TCP 1024->File: 4 Ok 216.100.100.11 216.100.100.2 FTP 220 Serv-U 1024->File |□ 5|0k|216.100.100.2 |216.100.100.11|TCP □ 6 Ok 216.100.100.2 216.100.100.11 FTP USER anonyr □ 7 Ok 216.100.100.11 216.100.100.2 FTP 331 User na -

rede pública


```
Router#show ip nat translation verbose
Pro Inside global
                                                              Outside global
                                          Outside local
tcp 216.100.100.2:1024 10.0.0.12:1033
                                          216.100.100.11:21 216.100.100.11:21
    create 00:00:49, use 00:00:42, left 23:59:17,
   flags:
extended, use count: 0
tcp 216.100.100.2:1032 10.0.0.12:1032
                                          216.100.100.11:21 216.100.100.11:21
    create 00:02:42, use 00:02:31, left 23:57:28,
    flags:
extended, use count: 0
tcp 216.100.100.2:1033 10.0.0.11:1033
                                          216.100.100.11:21 216.100.100.11:21
   create 00:02:18, use 00:02:13, left 23:57:46,
   flags:
extended, use count: 0
```

A opção verbose permite mostrar o instante de criação e o instante da última utilização de cada entrada da tabela de tradução.

 Neste caso, é necessário traduzir o número de porto 1033 pois este número é presentemente usado numa ligação TCP anterior

Exemplos – NAPT (V)


```
□ F Internet Protocol
   🚨 Version(MSB 4 bits): 4
                                                                             Tradução de endereços IP no
   Header length(LSB 4 bits): 5 (32-bit word)
 ➡ Service type: Precd=Routine, Delay=Normal, Thrput=Normal, Reli=Normal
                                                                             interior de pacotes FTP:
   Total length: 61 (Octets)
   🚨 Fragment ID: 14595
 Flags: Do not fragment, Last fragment, Offset=0 (0x00)
   🚨 Time to live: 128 seconds/hops

■ ETHER-II: 00-D0-58-A9-3E-38 ==> 00-60-97-D4-9F-9A

   IP protocol type: TCP (0x06)
   冯 Checksum: 0x7B3D
                                                          F Internet Protocol
   IP address 10.0.0.11 ->216.100.100.11
                                                              🚨 Version(MSB 4 bits): 4
                                                              🚨 Header length(LSB 4 bits): 5 (32-bit word)
   🚨 No option
                                                            🕳 🚨 Service type: Precd=Routine, Delay=Normal, Thrput=Normal, Reli=Normal
# TCP: 1036->File Transfer (Control),S=82367,A=171360,W=86
                                                              Total length: 65 (Octets)
🖻 📒 File Transfer Protocol
   PORT 10,0,0,11,4,13
                                                              🚨 Fragment ID: 14595
 BSliced Packet( Data Length = 75)
                                                            ⊕ → Flags: Do not fragment, Last fragment, Offset=0 (0x00)
                                                              🚨 Time to live: 127 seconds/hops
                    rede privada
                                                              IP protocol type: TCP (0x06)
                                                              🚨 Checksum: 0x49DD
```

- No option

🖻 📒 File Transfer Protocol

PORT 216,100,100,2,4,13 👺 Sliced Packet(Data Length = 79)

rede pública

IP address 216.100.100.2 ->216.100.100.11

TCP: 1036->File Transfer (Control),S=82367,A=171360,W=8610