TD 1 - MST2 - ENSIIE

23 février 2018

Exercice 1 - Loi de l'échantillon, modèle position-échelle

Soit g une densité par rapport à la mesure de Lebesgue sur \mathbb{R} . On note $\theta = (\mu, \sigma) \in \Theta = \mathbb{R} \times \mathbb{R}^+$.

1. Soit $(Z_1, Z_2, ..., Z_n)$ n var. aléatoires réelles indépendantes et de même loi, ayant une densité g par rapport à la mesure de Lebesgue sur \mathbb{R} . Montrer que pour tout $(\mu, \sigma) \in \Theta$, la loi du vecteur aléatoire

$$X = (\mu + \sigma Z_1, \dots \mu + \sigma Z_n)$$

a une densité $p_{n,\theta}$ par rapport à la mesure de Lebesgue sur \mathbb{R}^n que l'on déterminera.

Il est d'usage d'appeler μ le paramètre de translation et σ le paramètre d'échelle. Le modèle statistique $\mathcal{M} = \{p_{1,\theta}, \theta \in \mathbb{R} \times \mathbb{R}^+\}$ est souvent appelé modèle "position-échelle".

- 2. On considère le vecteur X de \mathbb{R}^n . Montrer que les n variables définies par les coordonnées X_i de v.a.r X sont indépendantes et de même loi.
- 3. Exprimer la fonction de répartition $F_i(x) = P\left(X_i \leq x\right)$ en fonction de G, fonction de répartition associée à la densité g.
- 4. Si on suppose que g est la densité d'une loi normale centrée réduite, quelle est la loi du vecteur aléatoire X? Dans ce cas là, à quoi correspondent les paramètres μ et σ ?

Exercice 2 - Calcul de loi - Estimation du support d'une distribution

Soit U une v.a uniforme sur [a,b] et soit U_1,\ldots,U_n un échantillon (i.i.d). On suppose que a < b sont inconnus.

- 1. Ecrire la fonction de répartition de U (sur \mathbb{R}).
- 2. Déterminer la loi de $Y = -\frac{\log U}{\lambda}$, avec $\lambda > 0$.
- 3. Soit $M = \max_i U_i$ et $N = \min_i U_i$. Ecrire les fonctions de répartition de M et N. En déduire leurs densités (par rapport à la mesure de Lebesgue).
- 4. En déduire les espérances E[M] et E[N]? Comment feriez vous pour estimer les valeurs a et b à partir d'un échantillon (U_1, \ldots, U_n) ?

Exercice 3 - Calcul de densités et changement de mesure

Soit X_1, \ldots, X_n un échantillon (i.i.d) de même loi que X. Donner la densité des échantillons suivant relativement à la mesure de référence μ_{ref}

- 1. Idem si i $X \sim N(\mu, \Sigma)$ vecteur gaussien dans \mathbb{R}^d . Donner la densité de l'échantillon par rapport à la mesure produit de Lebesgue sur \mathbb{R}^d , $\mu_{ref}(d\mathbf{x}) = d\mathbf{x}_1 d\mathbf{x}_2 \dots d\mathbf{x}_n$ ($d\mathbf{x}_i$ mesure de Lebesgue dans \mathbb{R}^d).
- 2. Si $X \sim B(1,p)$ (Bernoulli de paramètre p), donner la densité de l'échantillon $f_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n)$ par rapport à la mesure discrète $\delta_0 + \delta_1$ sur $\{0,1\}$. (on rappelle que δ_x est la mesure de Dirac en $x \in \{0,1\}$).
- 3. Soit X variable aléatoire réelle ayant une loi normale $N(\mu,1)$ ($\mu \in \mathbb{R}$). Donner sa densité relativement à la mesure gaussienne $\mu_{N(0,1)}(dx) = (2\pi)^{-1/2} \exp\left(-\frac{x^2}{2}\right)$.
- 4. Soit X une v.a. de densité $f_X(x) = \exp(-x) 1_{[0,+\infty[}(x)$ relativement à la mesure de Lebesgue sur $\mathbb R$ (Loi exponentielle de paramètre 1 on appelle $\mu_X(dx)$ la mesure de probabilité définie sur $\mathbb R$ correspondante). Pour $\theta > 0$, quelle est la densité f_Y de la v.a. $Y = X \theta$ relativement à la mesure de Lebesgue sur $\mathbb R$? On note $\mu_Y(dx)$ la mesure de probabilité sur $\mathbb R$ correspondante. Quelle est la densité $\tilde f_Y$ de Y par rapport à la mesure $\mu_X(dx)$? Quelle est la densité $\tilde f_X(x)$ de X par rapport à la mesure $\mu_Y(dx)$?

Exercice 4 - Plusieurs représentations de la loi d'une v.a.

Soit X une variable aléatoire réelle, et soit $F(x) = P(X \le x)$ la fonction de répartition et $Q(u) = \inf_{x \in \mathbb{R}} \{x | F(x) > u\}$ la fonction quantile.

- 1. Rappeler le domaine de définition de F et Q et les valeurs possibles. Quelles sont les propriétés de F? Est ce que F est toujours continue ? Et Q ?
- 2. On suppose que F et Q sont continues. Quelle est la loi de variable U = Q(X)?
- 3. En déduire que pour toute fonction continue bornée h, alors

$$E_F[h(X)] = \int_0^1 h(Q(u)) du$$

4. On suppose que $X \ge 0$. Montrer que

$$E_F[X] = \int_0^{+\infty} P(X \ge t) dt$$

Pour cela on appliquera le théorème de Fubini en faisant apparaître une double intégration.

5. On suppose toujours que X est une v.a.r positive (par exemple, cela représente le temps d'attente du RER D à Juvisy). On suppose toujours que F est continue. Pour tout temps t, calculer la limite

$$\lim_{h>0,h\longrightarrow 0}\frac{P\left(X\in\left]t,t+h\right]\left|X>t\right.\right)}{h}$$

On appelle "taux de hasard" ou "risque instantané" cette limite, souvent notée $\lambda_X(t), t \geq 0$.

- 6. Montrez que $\lambda_X(t)$ permet de caractériser complètement la loi de X (indication: montrer que l'on peut déduire la densité).
- 7. Calculer $\lambda_X(t)$ pour une variable aléatoire de Weibull de densité sur \mathbb{R} $f(x;a) = ax^{a-1} \exp(-x^a) 1_{[0,+\infty[}(x)$. Quelle est l'influence du paramètre a? Pourquoi appelle-t-on la loi exponentielle une loi sans mémoire?