- Consider three subsets A, B and C of a universal set U. Given that n(U) = 100, n(A) = 35, n(B) = 44, n(C) = 36, $n(A \cap B) = 5$, $n(A \cap C) = 11$, $n(B \cap C) = 8$ and $n(A' \cap B' \cap C') = 7$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- Consider three subsets A, B and C of a universal set U. Given that n(U) = 100, n(A) = 35, n(B) = 44, n(C) = 36, $n(A \cap B) = 5$, $n(A \cap C) = 11$, $n(B \cap C) = 8$ and $n(A' \cap B' \cap C') = 7$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- (i) 3
- (ii) 14
- (iii) 19

- Consider three subsets A, B and C of a universal set U. Given that n(U) = 120, n(A) = 32, n(B) = 42, n(C) = 52, $n(A \cap B) = 8$, $n(A \cap C) = 8$, $n(B \cap C) = 8$ and $n(A' \cap B' \cap C') = 14$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- Consider three subsets A, B and C of a universal set U. Given that n(U) = 120, n(A) = 32, n(B) = 42, n(C) = 52, $n(A \cap B) = 8$, $n(A \cap C) = 8$, $n(B \cap C) = 8$ and $n(A' \cap B' \cap C') = 14$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- (i) 4
- (ii) 12
- (iii) 40

- Consider three subsets A, B and C of a universal set U. Given that n(U) = 100, n(A) = 50, n(B) = 38, n(C) = 32, $n(A \cap B) = 12$, $n(A \cap C) = 16$, $n(B \cap C) = 14$ and $n(A' \cap B' \cap C') = 14$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- Consider three subsets A, B and C of a universal set U. Given that n(U) = 100, n(A) = 50, n(B) = 38, n(C) = 32, $n(A \cap B) = 12$, $n(A \cap C) = 16$, $n(B \cap C) = 14$ and $n(A' \cap B' \cap C') = 14$, find:
 - (i) $n(A \cap B \cap C')$
 - (ii) $n((A \cap B) \cup (A \cap C))$
 - (iii) $n(A' \cap B' \cap C)$

- (i) 4
- (ii) 20
- (iii) 10