平成29年度学力検査問題

数学

注意

- 1 監督者の開始の合図があるまで、この問題冊子を開かないでください。
- 2 問題は、1ページから7ページまであります。
- 3 解答は、すべて解答用紙の所定の欄に記入してください。
- 4 解答用紙の※印の欄には、何も記入しないでください。
- 5 監督者の終了の合図で筆記用具を置き、解答面を下に向け、広げて 机の上に置いてください。
- 6 解答用紙だけを提出し、問題冊子は持ち帰ってください。

- 1
- 次の(1)~(9)に最も簡単な数または式で答えよ。 ただし、根号を使う場合は $\sqrt{}$ の中を最も小さい整数にすること。
- (1) 13+3×(-6)を計算せよ。
- (2) 3(2a+3)-2(5a+4)を計算せよ。
- (3) a=-3, b=4 のとき, $3a^2-5b$ の値を求めよ。
- (4) $\frac{30}{\sqrt{5}} + \sqrt{20}$ を計算せよ。
- (5) 1次方程式 3x-8=7x+16 を解け。
- (6) 2次方程式 $(x+1)^2 = x+13$ を解け。
- (7) 関数 $y = \frac{2}{3}x^2$ について、x の変域が $-1 \le x \le 3$ のときの y の変域を求めよ。
- (8) 1, 3, 5, 7, 9 のカードが1枚ずつある。この5枚のカードから,同時に2枚のカードを取り出すとき,その2枚のカードにかかれている数の和が10以上になる確率を求めよ。

ただし、どのカードを取り出すことも同様に確からしいものとする。

(9) 右の表は、A中学校とB中学校の生徒を対象に、 携帯電話やスマートフォンの1日あたりの使用時間を 調査し、その結果を度数分布表に整理したもの である。

この表をもとに、A中学校とB中学校の「0時間以上 1時間未満」の階級の相対度数のうち、大きい方の 相対度数を四捨五入して小数第2位まで求めよ。

階級(時間)	度数(人) A中学校 B中学校		
以上 未満 0 ~ 1	60	156	
$\frac{0}{1} \sim 2$	21	48	
$2 \sim 3$	11	27	
$3 \sim 4$	8	12	
$4 \sim 5$	5	9	
計	105	252	

孝さんと花さんの学級では、数学の授業で次の問題が出された。

問題

A商店で、りんご3個を1袋に入れて500円、みかん7個を1袋に入れて400円で売ったところ、りんご3個を入れた袋とみかん7個を入れた袋が合わせて60袋売れ、その売上金額の合計は25900円でした。

りんごとみかんは、それぞれ何個売れたでしょうか。

孝さんは、りんごがx 個、みかんがy 個売れたとし、連立方程式をつくって**問題**を解いた。

花さんは、りんご3個を入れた袋がx袋、みかん7個を入れた袋がy袋売れたとし、連立方程式をつくって問題を解いた。

次の(1)は式で、(2)は指示にしたがって答えよ。

(1) 下の 内は、**問題**を解くために、りんごがx 個、みかんがy 個売れたとして つくった連立方程式である。 **ア** にあてはまるxとyを使った式を答えよ。

(2) りんご3個を入れた袋がx袋、みかん7個を入れた袋がy袋売れたとし、連立方程式をつくって問題を解け。解答は、解く手順にしたがってかき、答の の中には、あてはまる最も簡単な数を記入せよ。

右の**表**は、1から30までの整数を順に並べたものである。

表

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30

 $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ として,bd-acの値について調べた。

$\begin{array}{c cc} a & b \\ \hline & c & d \\ \hline \end{array}$	1 2 8 9	4 5 11 12	15 16 22 23
	$2\times9-1\times8$	5×12-4×11	$16 \times 23 - 15 \times 22$
bd-ac	=10	=16	=38
	=2+8	= 5 + 11	=16+22

これらの結果から、次のように予想した。

予想

bd-acの値は、b+cの値に等しくなる。

予想がいつでも成り立つことを**証明**①のように証明した。

証明①

整数 nを用いて、a=nとすると、b、c、dは nを用いて、

b=n+1, c=n+7, d=n+8と表される。

$$bd-ac = (n+1)(n+8)-n(n+7)$$

$$= n^2 + 9 n + 8 - n^2 - 7 n$$

= $2 n + 8$

$$=(n+1)+(n+7)$$

=b+c

したがって、bd-acの値は、b+cの値に等しくなる。

次の(1)は記号と式で、(2)は指示にしたがって答えよ。

- (1) bd-acの値について、いつでも成り立つことが**予想**のほかにもある。次の**ア** \sim **オ**のうち、正しいことを述べているものを1つ選び、それを示すためには、**証明**①の下線部2n+8をどのように変形すればよいか、変形した式を答えよ。
 - P bd-acの値は、a+bの値に等しくなる。
 - **イ** bd-acの値は、a+cの値に等しくなる。
 - ウ bd-acの値は、a+dの値に等しくなる。
 - エ bd-acの値は、b+dの値に等しくなる。
 - オ bd-acの値は、c+dの値に等しくなる。
- (2) **表**の中で、 7 8 や 14 15 のように並んでいる4つの数を f g と 13 20

するとき、fh-egの値は、f+gの値の5倍に等しくなることの**証明**②を完成せよ。

証明②

整数 nを用いて, e=nとすると, f, g, hは nを用いて,

したがって、fh-egの値は、f+gの値の5倍に等しくなる。

東西に一直線にのびたジョギングコース上に、P地点と、P地点から東に540m離れたQ地点と、Q地点から東に1860m離れたR地点とがある。Aさんは、このジョギングコースを通ってP地点とR地点の間を1往復した。

Aさんは、P地点からQ地点まで一定の速さで9分間歩き、Q地点で立ち止まってストレッチをした後、R地点に向かって分速150mで走った。Aさんは、P地点を出発してから28分後にR地点に着き、すぐにP地点に向かって分速150mで走ったところ、P地点を出発してから44分後に再びP地点に着いた。

下の図は、AさんがP地点を出発してからx分後にP地点からym離れているとするとき、P地点を出発してから再びP地点に着くまでのxとyの関係をグラフに表したものである。 次の(1)~(3)に最も簡単な数で答えよ。

- (1) AさんがP地点を出発してからQ地点に着くまでの歩いた速さは分速何mか求めよ。
- (2) AさんがQ地点からR地点に向かって走り始めたのは、P地点を出発してから何分何秒後か求めよ。
- (3) Bさんは、AさんがP地点を出発した後しばらくして、R地点を出発し、このジョギングコースを通ってP地点まで分速70mの一定の速さで歩いた。

Bさんは、P地点に向かう途中で、R地点に向かって走っているAさんとすれちがい、AさんがP地点を出発してから39分後に、P地点に向かって走っているAさんに追いつかれた。AさんとBさんがすれちがった地点は、P地点から何m離れているか求めよ。

線分ABを直径とする半径5cmの円Oがある。

下の図のように、 \widehat{AB} 上に点 \widehat{CeAC} = \widehat{CB} となるようにとり、点 \widehat{AB} と点 \widehat{CeAD} を結ぶ。点 \widehat{CeAD} を含まない \widehat{AB} 上に点 \widehat{DeAD} =3 \widehat{BD} となるようにとり、点 \widehat{AE} と点 \widehat{DeAD} 、点 \widehat{CE} と点 \widehat{DeAD} をわぞれ結ぶ。点 \widehat{Ae} から線分 \widehat{CD} に垂線をひき、線分 \widehat{CD} との交点を \widehat{EE} とする。

次の(1)は指示にしたがって、(2)は最も簡単な数で答えよ。

- (2) 図において、点Bを通り線分AEと平行な直線と線分AD、CDとの交点をそれぞれ F. Gとするとき、四角形AFGEの面積を求めよ。

図1は,底面 ABCDEF が1辺の長さ4cm である正六角形で,側面がすべて合同な長方形の 六角柱 ABCDEF GHIJ KLを表しており、AG=6cm である。

図2は、図1に示す立体において、点Gと点I、点Hと点J、点Hと点Lをそれぞれ結び、線分GIと線分HJ、HLとの交点をそれぞれP、Qとしたものである。

次の(1)は指示にしたがって、(2)、(3)は最も簡単な数で答えよ。

ただし、根号を使う場合は√ の中を最も小さい整数にすること。

(1) **図1**に示す立体において、次の \mathbf{r} ~ \mathbf{n} のうち、辺BHとねじれの位置にある辺をすべて選び、記号で答えよ。

 ア
 辺BC
 イ
 辺DE
 ウ
 辺AG
 エ
 辺EK

 オ
 辺KL
 カ
 辺GH

- (2) **図2**に示す立体において、三角すいBHPQの体積を求めよ。
- (3) **図1**に示す立体において、点Dと点Kを結び、線分DK上に点Rを△ADRと 四角形BCJGの面積比が1:2となるようにとる。 このとき、線分DRの長さを求めよ。