ROOT TEST

HIDENORI SHINOHARA

1. Absolute Convergence

Example 1.1.

- Does $\sum_{i=1}^{\infty} \left(\frac{-1}{3}\right)^n$ converge? Yes, geometric. Does $\sum_{i=1}^{\infty} \left| \left(\frac{-1}{3}\right)^n \right|$ converge?

$$\sum_{i=1}^{\infty} \left| \left(\frac{-1}{3} \right)^n \right| = \left| \frac{-1}{3} \right| + \left| \left(\frac{-1}{3} \right)^2 \right| + \left| \left(\frac{-1}{3} \right)^3 \right| + \cdots$$
$$= \frac{1}{3} + \left(\frac{1}{3} \right)^2 + \left(\frac{1}{3} \right)^2 + \cdots$$
$$= \sum_{i=1}^{\infty} \left(\frac{1}{3} \right)^n.$$

- Yes, geometric.

 Does $\sum_{i=1}^{\infty} \frac{(-1)^n}{n}$ converge? Yes, geometric.

 Does $\sum_{i=1}^{\infty} \left| \frac{(-1)^n}{n} \right|$ converge?

$$\sum_{i=1}^{\infty} \left| \frac{(-1)^n}{3} \right| = \left| \frac{-1}{1} \right| + \left| \frac{(-1)^2}{2} \right| + \left| \frac{(-1)^3}{3} \right| + \cdots$$
$$= \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots$$
$$= \sum_{i=1}^{\infty} \frac{1}{n}.$$

No, harmonic.

Definition 1.2. $\sum a_n$ is called absolutely convergent if $\sum |a_n|$ is convergent.

Example 1.3.

- $\sum_{i=1}^{\infty} \left(\frac{-1}{3}\right)^n$ converges and absolutely converges. $\sum_{i=1}^{\infty} \frac{(-1)^n}{n}$ converges, but does not absolutely converge.

Remark 1.4. Absolutely convergent \implies Convergence. However, the converse is not always true. (See the example above.)

1

2. Root Test

Example 2.1.

- Does $\sum_{i=1}^{\infty} \left(\frac{2}{3}\right)^n$ converge? Yes, geometric. Does $\sum_{i=1}^{\infty} \left(\frac{2}{3n-2}\right)^n$ converge? $(n=1) \implies \frac{2}{3\cdot 1-2} = 2$. $(n=2) \implies \left(\frac{2}{3\cdot 2-2}\right)^2 = \frac{1}{4}$. $(n=3) \implies \left(\frac{2}{3\cdot 3-2}\right)^3 = \frac{8}{343}$.

$$-(n=1) \implies \frac{2}{3\cdot 1-2} = 2.$$

$$-(n=2) \implies (\frac{2}{3\cdot 2-2})^2 = \frac{1}{4}.$$

This doesn't look like a geometric series. How can we tell the convergence?

Remark 2.2. But $\sum_{i=1}^{\infty} (\frac{2}{3n-2})^n$ looks a bit like a geometric series! Recall: $\sum (\text{something})^n$ converges when |something| < 1. If we were to do the same thing, we would want to check $\left|\frac{2}{3n-2}\right|$. This wouldn't make much sense because this would depend on the value of n. It turns out that we need to take the limit $n \to \infty$.

Theorem 2.3. Let $L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$.

- $L < 1 \implies absolute \ convergence$.
- $L > 1 \implies divergent$.
- $L = 1 \implies inconclusive$.

Exercise.

- $\sum_{n=1}^{\infty} (\frac{3n+1}{4-2n})^n$. Diverges since L = 9/4. $\sum_{n=4}^{\infty} [\frac{(-5)^{1+2n}}{2^{5n-3}}]^n$. Absolutely converges since L = 25/32.

Exercise. (Midterm problems) Check if the following sequence absolutely converges or diverges.

- A: $\sum_{n=1}^{\infty} \frac{n^{1-3n}}{4^{2n}}$. B: $\sum_{n=1}^{\infty} \frac{5+2^{2n}3^n}{10^n}$. C: $\sum_{n=1}^{\infty} (\frac{5n-3n^3}{7n^3})^n$. D: $\sum_{n=1}^{\infty} (\frac{1}{2n})^n$.