course: CSC 135-01 - Computing Theory and Programming Languages

instructor: Ted Krovetz

related_notes: <u>2022-02-22</u>

Topic: Regular Expressions

W08.2 | Tuesday, February 22, 2022 | 09:01 AM

Announcements

- 1. Midterm 2022-02-26 covers though current homework
 - 1. Homework 01 03
- 2. Laptop midterm 2022-03-01
- 3. Written midterm 2022-03-03 Do not expect to take the whole exam
- 4. More info <u>2022-02-23</u>. Q+A Thursday

Notes

Regular Expressions (RE)

Every regular expressions represents a set of strings. All the strings share a pattern specified by the RE

- A lot of programming languages utilize regular expressions
- Used for pattern matching on strings

Regular operations on sets

- If A and B are sets of strings
 - $A + B = A \cup B = \{s \mid s \in A \text{ or } s \in B\}$
 - $\bullet \ \ AB = \{st|\ s\in\ A\ and\ t\in B\}$
 - $A^* = \{x\} \cup \{s \mid s \in A\} \cup \{s_1s_2 \mid s_1, s_2 \in A\} \cup \dots$
 - ullet x is the "empty string" length zero string

Regular Expression Definition

Every RE represents a set of strings.

RE SET

RE		SET	
λ	represents	λ	Atomic RE
a		a	Atomic RE

if R_1 and R_2 are RE representing sets ${\bf A}$ and ${\bf B}$

RE		SET	Precedence
R_1+R_2	represents	A + B	*
R_1R_2		AB	CONCATENATION
R_1^*		A^*	+ (OR)

Use parentheses for graphing

Examples

What set do the following represent?

- 1. Turn atomic RE's into sets
- 2. Use set operations to convert into a single set
 - 1. *
 - 2. Concatenation
 - 3. + (**OR**): Breaks bigger patterns into sub-patterns

Example: ab+ba

- 1. ab + ba
- 2. $\{a\} \{b\} + \{b\} \{a\}$
- $3. \{ab\} + \{ba\}$
- **4.** $\{ab, ba\}$

Example: $a(ba)^{\star}b$

1.

Example: $\{a^n | n \ is \ even\}$

 a^n : short hand to say a for n number of times

 $\{a^n|\ n\ is\ even\}$ = λ , aa , aaaa

Example: $\{a^n|\ n\ is\ odd\}$

 $\{a^n|\ n\ is\ even\} = \{a,\ aaa,\ aaaaa,\ \dots\}$