

CLAIMS

1. (original) A compound of Formula (I)

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

R^1 is selected from the group consisting of

- $C(=O)R^{1a}$, - $S(=O)R^{1a}$, - $S(=O)_2R^{1a}$, - $C(=O)OR^{1a}$,
- $C(=O)NHR^{1a}$, and $C_1\text{-}C_6$ alkyl optionally substituted with R^{1b} ;

R^{1a} is $C_1\text{-}C_6$ alkyl optionally substituted with R^{1b} ;

R^{1b} is independently selected from the group consisting of halogen, - CF_3 , - OCF_3 , - CO_2R^6 , - $C(=O)NR^6R^6$, - $NR^6C(=O)R^6$, - NR^6R^6 , - $NR^6SO_2R^6$, - $C(=O)R^6$, - $S(=O)R^6$, - SO_2R^6 , - $SO_2NR^6R^6$, - SR^6 , - $S(C_1\text{-}C_4$ haloalkyl), - OR^6 , - $O(C_1\text{-}C_4$ haloalkyl), - $(C_3\text{-}C_7)$ cycloalkyl, -imidazole, -thiazole, -oxazole, - $(C_2\text{-}C_6)$ alkenyl, and - $(C_2\text{-}C_6)$ alkynyl;

R^2 is selected from the group consisting of

- $C_1\text{-}C_4$ alkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, and
- $C_3\text{-}C_6$ cycloalkyl in which each group is optionally substituted with halogen, - CF_3 , - OCF_3 , - CH_3 , - CH_2CH_3 , - OCH_3 , - OCH_2CH_3 , or - $(C_3\text{-}C_7)$ cycloalkyl;

R^3 is selected from the group consisting of

C₁-C₄ alkyl, C₂-C₄ alkenyl, and C₂-C₄ alkynyl optionally substituted with R^{3a}, or phenyl optionally substituted with R^{3b};

R^{3a} is selected from the group consisting of R^{3b}, C₃-C₆ cycloalkyl optionally substituted with R^{3b}, phenyl optionally substituted with R^{3b}, and 3,4-methylenedioxyphenyl;

R^{3b} is independently selected at each occurrence from the group consisting of halogen, -NO₂, -CN, -C₁-C₄alkyl, -OH, -OCH₃, -OCH₂CH₃, -CF₃, -OCF₃, -SCF₃, -C(=O)R⁶, -NR⁶C(=O)R⁶, -NR⁶SO₂R⁶, -NR⁶R⁶, -OC(=O)NR⁶R⁶, -NR⁶C(=O)NR⁶R⁶, -C(=O)NR⁶R⁶, -C(=O)OR⁶, -SR⁶, -S(=O)R⁶, -S(=O)₂R⁶, and -S(=O)₂NR⁶R⁶;

R⁴ is selected from the group consisting of C₁-C₄ alkyl, C₂-C₄ alkenyl, and C₂-C₄ alkynyl
optionally substituted with R^{4a};

R^{4a} is selected from R^{4b}, or phenyl optionally substituted with R^{4b};

R^{4b} is selected from the group consisting of halogen, -NO₂, -CN, -NCS, -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH(CH₃)₂, -CF₃, -OCF₃, -SCF₃, -OH, -OCH₃, -OCH₂CH₃, -SH, -SCH₃, -SCH₂CH₃, -CO₂H, -CO₂CH₃, -CO₂CH₂CH₃, -NH₂, -NH(CH₃), -N(CH₃)₂, -C(=O)NH₂, -C(=O)NH(CH₃), -C(=O)N(CH₃)₂, -C(=O)H, -C(=O)CH₃, -NHC(=O)CH₃, and -NHSO₂CH₃;

R⁵ is C₁-C₁₀ alkyl optionally substituted with R^{5a};

R^{5a} is selected from the group consisting of R^{5b}, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, and phenyl optionally substituted with R^{5b};

R^{5b} is selected from the group consisting of R^6 , halogen, -CN, -CF₃, -NO₂, -NCS, -OCF₃, -CO₂H, -C(=O)H, -OR⁶, -NR⁶R⁶, -OC(=O)NR⁶R⁶, -NR⁶C(=O)NR⁶R⁶, -C(=O)NR⁶R⁶, -C(=O)OR⁶, -SR⁶, -S(=O)R⁶, -S(=O)₂R⁶, and -S(=O)₂NR⁶R⁶; and

R^6 is independently selected at each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl and phenyl.

2. (original) The compound of Claim 1 having the Formula (I)

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

R^1 is selected from the group consisting of -C(=O)R^{1a}, -S(=O)R^{1a}, -S(=O)₂R^{1a}, -C(=O)OR^{1a}, and -C(=O)NHR^{1a},

R^{1a} is C₁-C₆ alkyl optionally substituted with R^{1b} ;

R^{1b} is independently selected from the group consisting of halogen, -CF₃, -OCF₃, -CO₂R⁶, -C(=O)NR⁶R⁶, -NR⁶C(=O)R⁶, -NR⁶R⁶, -OR⁶, -(C₃-C₇)cycloalkyl, -imidazole, -thiazole, -oxazole, -(C₂-C₆)alkenyl, and -(C₂-C₆)alkynyl;

R^2 is selected from the group consisting of

C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, and

C₃-C₆ cycloalkyl in which each group is optionally substituted with halogen, -CF₃, -OCF₃, -CH₃, -CH₂CH₃, -OCH₃, -OCH₂CH₃, or C₃-C₇ cycloalkyl;

R³ is C₁-C₄ alkyl optionally substituted with R^{3a};

R^{3a} is selected from the group consisting of R^{3b},

C₃-C₆ cycloalkyl optionally substituted with R^{3b}, phenyl optionally substituted with R^{3b}, and 3,4-methylenedioxyphenyl;

R^{3b} is independently selected at each occurrence from the group consisting of halogen, -NO₂,

- CN, -C₁-C₄alkyl, -OH, -OCH₃, -OCH₂CH₃, -CF₃, -OCF₃, -SCF₃, -C(=O)R⁶,
- NR⁶C(=O)R⁶, -NR⁶SO₂R⁶, -NR⁶R⁶, -OC(=O)NR⁶R⁶, -NR⁶C(=O)NR⁶R⁶,
- C(=O)NR⁶R⁶, -C(=O)OR⁶, -SR⁶, -S(=O)R⁶, -S(=O)₂R⁶, and -S(=O)₂NR⁶R⁶;

R⁴ is C₁-C₄ alkyl optionally substituted with R^{4a};

R^{4a} is R^{4b} or phenyl optionally substituted with R^{4b};

R^{4b} is selected from the group consisting of halogen,

- NO₂, -CN, -NCS, -CH₃, -CH₂CH₃, -CH₂CH₂CH₃, -CH(CH₃)₂, -CF₃, -OCF₃, -SCF₃,
- OH, -OCH₃, -OCH₂CH₃, -SH, -SCH₃, -SCH₂CH₃, -CO₂H, -CO₂CH₃, -CO₂CH₂CH₃,
- NH₂, -NH(CH₃), -N(CH₃)₂, -C(=O)NH₂, -C(=O)NH(CH₃), -C(=O)N(CH₃)₂, -C(=O)H,
- C(=O)CH₃, -NHC(=O)CH₃, and -NHSO₂CH₃;

R⁵ is C₁-C₁₀ alkyl optionally substituted with R^{5a};

R^{5a} is selected from the group consisting of R^{5b},

C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl optionally substituted with R^{5b}, and phenyl optionally substituted with R^{5b};

R^{5b} is selected from the group consisting of R⁶, halogen, -CN, -CF₃, -NO₂, -NCS, -OCF₃, -CO₂H, -C(=O)H, -OR⁶, -NR⁶R⁶, -OC(=O)NR⁶R⁶, -NR⁶C(=O)NR⁶R⁶, -C(=O)NR⁶R⁶, -C(=O)OR⁶, -SR⁶, -S(=O)R⁶, -S(=O)₂R⁶, and -S(=O)₂NR⁶R⁶; and

R^6 is independently selected at each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl and phenyl.

3. (original) The compound of Claim 2 having the Formula (I)

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

R^1 is selected from the group consisting of $-\text{C}(=\text{O})\text{R}^{1a}$, $-\text{S}(=\text{O})\text{R}^{1a}$, $-\text{S}(=\text{O})_2\text{R}^{1a}$, $-\text{C}(=\text{O})\text{OR}^{1a}$, and $-\text{C}(=\text{O})\text{NHR}^{1a}$;

R^{1a} is C₁-C₆ alkyl optionally substituted with R^{1b} ;

R^{1b} is independently selected from the group consisting of halogen, -CF₃, -OCF₃, -CO₂R₆, -C(=O)NR₆R₆, -NR₆C(=O)R₆, -NR₆R₆, -OR₆, -(C₃-C₇)cycloalkyl, -imidazole, -thiazole, -oxazole, -(C₂-C₆)alkenyl, and -(C₂-C₆)alkynyl;

R^2 is selected from the group consisting of

C₁-C₄ alkyl, C₂-C₄ alkenyl, C₂-C₄ alkynyl, and

C₃-C₆ cycloalkyl in which each group is optionally substituted with halogen, -CF₃, -OCF₃, -CH₃, -CH₂CH₃, -OCH₃, -OCH₂CH₃, and C₃-C₇ cycloalkyl;

R^3 is C₁-C₄ alkyl optionally substituted with R^{3a} ;

R^{3a} is selected from the group consisting of R^{3b}, C₃-C₆ cycloalkyl optionally substituted with R^{3b}, phenyl optionally substituted with R^{3b}, and 3,4-methylenedioxyphenyl;

R^{3b} is independently selected at each occurrence from the group consisting of halogen, $-NO_2$,

$-CN$, $-(C_1\text{-}C_4)\text{alkyl}$, $-CF_3$, $-OH$, $-OCH_3$, $-OCH_2CH_3$, OCF_3 , $-SCF_3$, $-C(=O)R^6$,
 $-NR^6C(=O)R^6$, $-NR^6SO_2R^6$, $-NR^6R^6$, $-OC(=O)NR^6R^6$, $-NR^6C(=O)NR^6R^6$,
 $-C(=O)NR^6R^6$, $-C(=O)OR^6$, $-SR^6$, $-S(=O)R^6$, $-S(=O)_2R^6$, and $-S(=O)_2NR^6R^6$;

R^4 is $C_1\text{-}C_4$ alkyl substituted with R^{4a} ;

R^{4a} is selected from the group consisting of

R^{4b} is selected from the group consisting of F, Cl, Br, $-CH_3$, $-CH_2CH_3$, $-CF_3$, $-OCF_3$, $-SCF_3$,
 $-OH$, $-OCH_3$, $-SH$, $-SCH_3$, $-CO_2H$, $-CO_2CH_3$, $-NH_2$, $-NH(CH_3)$, $-N(CH_3)_2$, $-C(=O)NH_2$,
 $-C(=O)CH_3$, and $-NHC(=O)CH_3$;

R^5 is $C_1\text{-}C_{10}$ alkyl optionally substituted with R^{5a} ;

R^{5a} is selected from the group consisting of

R^{5b} ,

$C_3\text{-}C_8$ cycloalkyl optionally substituted with R^{5b} ,

$C_2\text{-}C_6$ alkynyl optionally substituted with R^{5b} , and

phenyl optionally substituted with R^{5b} ;

R^{5b} is selected from the group consisting of R^6 , halogen, $-CN$, $-CF_3$, $-NO_2$, $-OCF_3$,
 $-CO_2H$, $-C(=O)H$, $-OR^6$, $-NR^6R^6$, $-OC(=O)NR^6R^6$, $-NR^6C(=O)NR^6R^6$, $-C(=O)NR^6R^6$,
 $-C(=O)OR^6$, $-SR^6$, $-S(=O)R^6$, $-S(=O)_2R^6$, and $-S(=O)_2NR^6R^6$; and

R^6 is independently selected at each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl and phenyl.

4. (original) The compound of Claim 3 having the Formula (I)

or a stereoisomer; or a pharmaceutically acceptable salt thereof, wherein

R^1 is selected from the group consisting of -C(=O)R^{1a}, -S(=O)R^{1a}, -S(=O)₂R^{1a}, -C(=O)OR^{1a}, and
 $-C(=O)NHR^{1a}$;

R^{1a} is C₁-C₆ alkyl optionally substituted with R^{1b};

R^{1b} is independently selected from the group consisting of halogen, -CF₃, -OCF₃, -NR₆R₆, -OR₆, -(C₃-C₇)cycloalkyl, -imidazole, thiazole, and oxazole;

R^2 is selected from the group consisting of C₁-C₄ alkyl optionally substituted with halogen, -CF₃, -OCH₃, -OCH₂CH₃, or C₃-C₇ cycloalkyl;

R^3 is C₁-C₄ alkyl optionally substituted with R^{3a};

R^{3a} is selected from the group consisting of phenyl optionally substituted with R^{3b}, and 3,4-methylenedioxophenyl;

R^{3b} is independently selected at each occurrence from the group consisting of F, Cl, R⁶, -CF₃, OH, -OCH₃, -OCH₂CH₃, and -NR⁶R⁶;

R^4 is C₁-C₄ alkyl substituted with R^{4a} ;

R^{4a} is selected from the group consisting of

R^{4b} is selected from the group consisting of F, Cl, Br, -CH₃, -CF₃, -OH, -OCH₃, -NH₂, -NH(CH₃), and -N(CH₃)₂;

R^5 is C₁-C₂ alkyl optionally substituted with R^{5a} ;

R^{5a} is selected from the group consisting of R^{5b} ,

C₃-C₄ cycloalkyl optionally substituted with R^{5b} , alkynyl, and phenyl optionally substituted with R^{5b} ;

R^{5b} is selected from the group consisting of R^6 , F, Cl, -CN, -OR⁶, and -NR⁶R⁶; and

R^6 is independently selected at each occurrence from the group consisting of hydrogen, C₁-C₆ alkyl and phenyl.

5. (original) The stereoisomer compound of Claim 4 having the Formula (Ia)

or a pharmaceutically acceptable salt thereof.

6. (original) The compound of Claim 1 of selected from the group consisting of
(2S)-2-(3(S)-Acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-Acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-Acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-(2(S)-amino-5-carboxypentanoylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-(2-methoxy-acetylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-propionylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-ethoxycarbonylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-methoxycarbonylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-ethylureido-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-(3-hydroxypropionylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-(4-hydroxybutyrylamino)-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-(isobutyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-methoxy-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-chloro-benzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(propargylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3,5-difluorobenzylamino)-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-((3-trifluoromethylbenzyl)amino)-propyl]-4-phenyl-butyramide;

2-(3(S)-Acethylamino-3(S)-isobutyl-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-benzylamino-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-((S)-sec-butyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-2-hydroxy-3-(3-fluoro,5-(trifluoromethyl)benzylamino)-propyl]-4-phenyl-butyramide;
2-(3(S)-Acetylamino-3(S)-isobutyl-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-benzyl-3-(2-cyanoethylamino)-2-hydroxy-propyl]-4-phenyl-butyramide;
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(2-methoxyphenyl)-butyramide;
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3,4-methylenedioxophenyl)-butyramide;
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3-fluorophenyl)-butyramide;
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(4-fluorophenyl)-butyramide;
and
(2S)-2-(3(S)-acetylamino-3-(cyclopropylmethyl)-2-oxo-pyrrolidin-1-yl)-N-[(1S, 2R)-1-(3,5-difluorobenzyl)-2-hydroxy-3-(3-methoxybenzylamino)-propyl]-4-(3-methoxyphenyl)-butyramide;
or a pharmaceutically acceptable salt thereof.

7. (original) A pharmaceutical composition for the treatment of disorders responsive to the inhibition of β -amyloid peptide production comprising a therapeutically effective amount of a compound of claim 1 in association with a pharmaceutically acceptable carrier or diluent.

8. (withdrawn) A method for the treatment of disorders responsive to the inhibition of β -amyloid peptide production in a mammal in need thereof, which comprises administering to said mammal a therapeutically effective amount of a compound of claim 1.

9. (withdrawn) A method of of claim 8 wherein said disorder is Alzheimer's Disease, cerebral amyloid angiopathy and Down's Syndrome.