What is today's agenda?

Today we are going to learn following things:

- Data Visualization

Visualization

Visualization is the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported.

- Visualization of data is one of the most powerful and appealing techniques for data exploration.
 - Humans have a well developed ability to analyze large amounts of information that is presented visually
 - Can detect general patterns and trends
 - Can detect outliers and unusual patterns

Example: Sea Surface Temperature

- The following shows the Sea Surface Temperature (SST) for July 1982
 - Tens of thousands of data points are summarized in a single figure

Representation

- Is the mapping of information to a visual format
- Data objects, their attributes, and the relationships among data objects are translated into graphical elements such as points, lines, shapes, and colors.
- Example:
 - Objects are often represented as points
 - Their attribute values can be represented as the position of the points or the characteristics of the points, e.g., color, size, and shape
 - If position is used, then the relationships of points, i.e., whether they form groups or a point is an outlier, is easily perceived.

Representation

Arrangement

- Is the placement of visual elements within a display
- Can make a large difference in how easy it is to understand the data
- Example:

	1	2	3	4	5	6
1	0	1	0	1	1	0
2	1	0	1	0	0	1
3	0	1	0	1	1	0
4	1	0	1	0	0	1
5	0	1	0	1	1	0
6	1	0	1	0	0	1
7	0	1	0	1	1	0
8	1	0	1	0	0	1
9	0	1	0	1	1	0

	6	1	3	2	5	4
4	1	1	1	0	0	0
2	1	1	1	0	0	0
6	1	1	1	0	0	0
8	1	1	1	0	0	0
5	0	0	0	1	1	1
3	0	0	0	1	1	1
9	0	0	0	1	1	1
1	0	0	0	1	1	1
7	0	0	0	1	1	1

Data Distribution Shapes

Visualization Techniques: Histograms

- Histogram
 - Usually shows the distribution of values of a single variable
 - Divide the values into bins and show a bar plot of the number of objects in each bin.
 - The height of each bar indicates the number of objects
 - Shape of histogram depends on the number of bins
- Example: Petal Width

Visualization Techniques: Histograms

Two - Dimensional Histograms

- Show the joint distribution of the values of two attributes
- Example: petal width and petal length
 - What does this tell us?

Visualization Techniques: Quartiles

- Percentile: divides the data into hundredths (100 equal parts) P₁, P₂,...,P₉₉
- **Deciles:** divides the data into tenths (10 equal parts)
- Quintiles: divides the data into fifths (5 equal parts)
- Quartiles: divides the data into quarters (4 equal parts) Q₁, Q₂,Q₃

Visualization Techniques: Quartiles

- Five-Number Summary: min, Q_1 , Q_2 , Q_3 , Max
- Interquartile range (IQR):

- Limits of the dataset:
 - Lower limit = Q_1 1.5 x IQR
 - Upper limit = $Q_3 + 1.5 \times IQR$
- Outliers: The objects below the lower limit and above the upper limit are potential outliers.

Find the 5 Number Summary of the following numbers:

3 12 7 40 9 14 18 15 17

Find the 5 Number Summary of the following numbers:

3 12 7 40 9 14 18 15 17

- Step 1: Sort the numbers from lowest to highest

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
- Step 2: Identify the Median

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
- <u>Step 2</u>: Identify the Median

```
3 7 9 12 14 15 17 18 40
```

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
- Step 2: Identify the Median
 - 3 7 9 12 **14** 15 17 18 40
- Step 3: Identify the Smallest and Largest numbers

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
- Step 2: Identify the Median
 - 3 7 9 12 **14** 15 17 18 40
- Step 3: Identify the Smallest and Largest numbers
 - **3** 7 9 12 **14** 15 17 18 **40**

```
3 12 7 40 9 14 18 15 17
```

- Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
- <u>Step 2</u>: Identify the Median
 - 3 7 9 12 **14** 15 17 18 40
- Step 3: Identify the Smallest and Largest numbers
 - **3** 7 9 12 **14** 15 17 18 **40**
- <u>Step 4</u>: Identify the Median between the smallest number and the Median for the entire set of data, and between that Median and the largest number in the set.

- 3 12 7 40 9 14 18 15 17
 - Step 1: Sort the numbers from lowest to highest
 - 3 7 9 12 14 15 17 18 40
 - Step 2: Identify the Median
 - 3 7 9 12 **14** 15 17 18 40
- Step 3: Identify the Smallest and Largest numbers
 - **3** 7 9 12 **14** 15 17 18 **40**
- <u>Step 4</u>: Identify the Median between the smallest number and the Median for the entire set of data, and between that Median and the largest number in the set.
 - 3 7 9 12 14 15 17 18 40

These are the five numbers in the 5 Number Summary

- <u>3</u> 7 <u>9</u> 12 <u>14</u> 15 <u>17</u> 18 <u>40</u>
 - 3 Smallest number in the set
 - 9 Median between the smallest number and the median
 - 14 Median of the entire set
 - 17 Median between the largest number and the median
 - 40 Largest number in the set

42
16
38
50
24
29
41
36
18
4
33
37
24
27
45

42	
16	
38	
50	
24	
29	
41	
36	
18	
4	
33	
33 37	
24	
27	
45	

4
16
18
24
24
27
29
33
36
37
38
41
42
45
50

42
16
38
50
24
29
41
36
18
4
33 37
37
24
27
45

Median 33

A <u>5 Number Summary</u> divides your data into four quarters.

3 7 9

9 12 14

15 17

18

40

InterQuartile Range

- The Lower Quartile (Q1) is the second number in the 5 Number Summary
 - 25% of all the numbers in the set are smaller than Q1

- The Upper Quartile (Q3) is the fourth number in the 5 Number Summary
 - 25% of all the numbers in the set are larger than Q3

InterQuartile Range

- What percent of all the numbers are between Q1 and Q3?
 - 50% of all the numbers are between Q1 and Q3

- This is called the Inter-Quartile Range (IQR)
 - The size of the IQR is the distance between Q1 and Q3
 - o 17 9 = 8

Outlier Detection Using IQR

- To determine if a number is an outlier, multiply the IQR by 1.5
 - $-8 \bullet 1.5 = 12$ where 8 is IQR

An outlier is any number that is 12 less than Q1 or 12 more than Q3

Outlier Detection Using IQR

Visualization Techniques: Box Plots

- Box Plots
 - Invented by J. Tukey
 - Another way of displaying the distribution of data
 - Following figure shows the basic part of a box plot

Example of Box Plots

Box plots can be used to compare attributes

Comparing Data By Box Plots

Visualization Techniques: Scatter Plots

- Scatter plots
 - Attributes values determine the position
 - Two-dimensional scatter plots most common, but can have three-dimensional scatter plots
 - Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
 - It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes
 - ◆ See example on the next slide

Scatter Plot of Iris Attributes

Questions?