

Arquitetura de Software

Unidade 5 - Arquitetura Cliente Servidor

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecido.freitas@online.uscs.edu.br aparecidovfreitas@gmail.com

Bibliografia

Camadas

- Vimos na unidade anterior, a Arquitetura em Camadas;
- Na arquitetura em camadas, uma camada é uma coleção logicamente separada de funcionalidades que tem um papel específico dentro do software;
- Cada camada tem responsabilidades únicas e opera em um nível de abstração diferente.

Arquitetura em Camadas

Arquitetura em Camadas

Arquitetura em Camadas

- Lembrando...
- O objetivo é separar as preocupações do software de modo que as partes relacionadas a aspectos distintos da aplicação (como interface de usuário, lógica de negócios, acesso a dados, etc.) estejam isoladas umas das outras;
- Isso facilita a manutenção e a escalabilidade, pois as mudanças em uma camada têm impacto mínimo ou nenhum sobre as outras.

Em uma arquitetura de camadas, como pode ser feita a comunicação entre as camadas?

Comunicação entre Camadas

- Na arquitetura de camadas, a comunicação entre as camadas é geralmente realizada de forma estruturada e organizada;
- Existem várias técnicas e padrões para implementar essa comunicação, incluindo:
 - ✓ Interface de Programação de Aplicações (API), por exemplo, chamadas JDBC a um servidor de Banco de Dados implementado um nó da rede;
 - ✓ Chamadas de Função ou Método: As camadas podem se comunicar diretamente, chamando funções ou métodos fornecidos por outras camadas;
 - ✓ Mensageria;
 - ✓ Eventos;
 - ✓ Web Services.

Arquitetura em Camadas (Cliente Servidor)

Em uma aplicação desenvolvida com arquitetura em camadas, caso a camada de acesso à dados seja efetivada por meio de chamadas de biblioteca, através de uma rede, para se conectar a um servidor de banco de dados, a arquitetura também é denominada Cliente Servidor.

Arquitetura Cliente-Servidor

A arquitetura cliente-servidor é um modelo de design de software onde tarefas e cargas de trabalho são distribuídas entre provedores de recursos ou serviços, conhecidos como servidores, e solicitantes de serviços, chamados clientes.

Arquitetura Cliente-Servidor

A arquitetura cliente-servidor é um modelo de design de software onde tarefas e cargas de trabalho são distribuídas entre provedores de recursos ou serviços, conhecidos como servidores, e solicitantes de serviços, chamados clientes.

Servidor

- O Servidor: Imagine um restaurante. O servidor é como a cozinha, onde a comida (neste caso, os dados ou serviços) é preparada;
- No mundo da tecnologia, um servidor é um sistema de computador ou um programa que está configurado para fornecer recursos, dados, serviços ou programas para outros computadores, conhecidos como clientes, sob demanda;

 Exemplos comuns de servidores incluem servidores web, servidores de e-mail e servidores de banco de dados.

Cliente

- O Cliente: Continuando com a analogia do restaurante, o cliente é a pessoa que pede a comida;
- Em termos de computação, um cliente é um programa de computador ou dispositivo que solicita serviços ou recursos ao servidor;
- Por exemplo, quando você usa um navegador para acessar uma página da web, o navegador é o cliente que solicita as páginas web ao servidor.

Como funciona?

- Quando um cliente precisa de um recurso ou serviço, ele envia uma solicitação ao servidor;
- O servidor, após receber a solicitação, processa-a e retorna a resposta ou o recurso solicitado ao cliente;
- Por exemplo, ao acessar um site, seu navegador (cliente) envia uma solicitação ao servidor que hospeda o site. O servidor processa esta solicitação e envia de volta os dados da página da web, que o navegador exibe.

Vantagens

- Esta arquitetura tem várias vantagens. Ela permite a centralização de dados e recursos, o que facilita a manutenção e a atualização;
- Além disso, a distribuição de tarefas pode melhorar a eficiência e escalabilidade, pois os servidores podem atender a muitos clientes ao mesmo tempo.

Exemplos no Dia-a-Dia

Exemplos comuns de aplicações cliente-servidor incluem navegação na web (navegador como cliente, servidor web como servidor), e-mail (aplicativo de e-mail como cliente, servidor de e-mail como servidor), e muitas aplicações móveis que se conectam a servidores na internet para buscar informações.

Portanto, a arquitetura Cliente-Servidor é uma maneira fundamental de organizar e distribuir tarefas e recursos em sistemas de computação, tornando-a uma das arquiteturas mais comuns e

importantes no mundo da tecnologia.

Exemplo de uma aplicação console desenvolvida em Java com a Arquitetura Cliente-Servidor


```
var now = new Date();
var hours = now.getHours();
var minutes = now.getHinutes();
var seconds = now.getSeconds();

var ampm = "am";
var colon = '<IMG SRC="images/colon.gif">';

nour colon = '<IMG SRC="
```


Código Java, com arquitetura Cliente-Servidor, que acessa um servidor de Banco de Dados MySQL que mantém uma lista com 10 perguntas sobre as capitais de diferentes países;

A aplicação, **via console**, envia a pergunta e o usuário digita a resposta e envia para o programa. No final do **quiz**, são mostradas as respostas corretas, erradas e a nota do usuário (de 0 a 10). A aplicação é **Cliente-Servidor** uma vez que a aplicação faz requisições ao Servidor de Banco de Dados para checar a veracidade da resposta do usuário.

Para se escrever a aplicação **Cliente-Servidor** para se empregar um banco de dados **MySQL**, será necessário realizar-se algumas etapas:

- Criar uma tabela MySQL para armazenar as informações;
- Modificar a aplicação para conectar-se ao banco de dados e buscar as informações;
- Incluir manualmente o driver MySQL na aplicação.

Criar uma tabela MySQL para armazenar as informações;

```
CREATE DATABASE IF NOT EXISTS quiz_capitais;
USE quiz_capitais;
CREATE TABLE capitais (
    pais VARCHAR(100) PRIMARY KEY,
    capital VARCHAR(100) NOT NULL
);
INSERT INTO capitais (pais, capital) VALUES ('Brasil', 'Brasília');
INSERT INTO capitais (pais, capital) VALUES ('França', 'Paris');
-- Adicione os outros países e capitais aqui
```


Iniciando o Servidor de Banco de Dados

Acessando o Servidor com Workbench

Acessando o Servidor com Workbench

Acessando o Servidor com Cliente MySQL

```
×
XAMPP for Windows - mysql X
Setting environment for using XAMPP for Windows.
apare@PC1-CIDO c:\xampp
# mysql -uroot -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \q.
Your MariaDB connection id is 11
Server version: 10.4.28-MariaDB mariadb.org binary distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
MariaDB [(none)]> use quiz_capitais;
Database changed
MariaDB [quiz_capitais]> describe capitais;
                         | Null | Key | Default | Extra
 Field
          | Type
          | varchar(100) |
 PAIS
                                        NULL
 CAPITAL | varchar(100) | NO
                                        NULL
2 rows in set (0.009 sec)
MariaDB [quiz_capitais]>
```


Inserindo dados no Banco de Dados

```
USE QUIZ_CAPITAIS;
  3 •
         INSERT INTO CAPITAIS (PAIS, CAPITAL) VALUES
         ("Brasil", "Brasília"),
  5
         ("França", "Paris"),
         ("Japão", "Tóquio"),
         ("Alemanha", "Berlim"),
  8
         ("Canadá", "Ottawa"),
  9
         ("Índia", "Nova Délhi"),
 10
         ("Rússia", "Moscou"),
 11
         ("Austrália", "Canberra"),
 12
        ("Argentina", "Buenos Aires"),
 13
         ("Egito", "Cairo");
 14
 15
        select * from capitais;
Result Grid
                                            Edit: 🚄 🖶 🖶 Export/Import: 📳
             Filter Rows:
   PAIS
             CAPITAL
  Alemanha
            Berlim
  Argentina
            Buenos Aires
  Austrália
            Canberra
  Brasil
            Brasília
  Canadá
            Ottawa
            Cairo
  Egito
  França
            Paris
  Índia
            Nova Délhi
  Japão
            Tóguio
  Rússia
            Moscou
```


Inserindo dados no Banco de Dados

```
×
XAMPP for Windows - mysql X
MariaDB [quiz_capitais]> describe capitais;
 Field
                           Null | Key | Default | Extra
           varchar(100)
  PAIS
                                  PRI
                                        NULL
 CAPITAL | varchar(100) |
                                        NULL
2 rows in set (0.009 sec)
MariaDB [quiz_capitais]> select * from capitais;
 PAIS
               CAPITAL
               Berlim
 Alemanha
 Argentina | Buenos Aires
 Austr|ília | Canberra
 Brasil
             | Bras | lia
 Canad -í
               Ottawa
 Egito
             | Cairo
 Fran -°a
              | Paris
 -ìndia
              | Nova D|-@lhi
 Jap -úo
              | T⊦|quio
 R-||ssia
                Moscou
10 rows in set (0.000 sec)
MariaDB [quiz_capitais]>
```


❖ Baixando Driver JDBC – Maria DB

PRODUCTS SERVICES PRICING RESOURCES

KITOWIEUGE Dase CO

Knowledge Base » Server & Client Software » Client Libraries » Application Programming Interfaces » Java Connector » About MariaDB Connector/J

Home

Open Questions

MariaDB Server

MariaDB MaxScale

MariaDB ColumnStore

Connectors

Source
Flag as Spam /
Inappropriate

Translate

Created

About MariaDB Connector/J

The most recent Stable (GA) release of MariaDB Connector/J is:

MariaDB Connector/J 3.3.2

Download MariaDB Connector/J

MariaDB Connector/J is used to connect applications developed in Java to MariaDB and MySQL databases using the standard JDBC API. The library is LGPL licensed.

Date	Release	Status	Min. Java Compat.	Release Notes	Changelog
19 Dec 2023	3.3.2	Stable (GA)	Java 8	Release Notes	Changelog
29 Nov 2023	3.3.1	Stable (GA)	Java 8	Release Notes	Changelog
25 Aug 2023	3.2.0	Stable (GA)	Java 8	Release Notes	Changelog
08 Nov 2023	2.7.11	Stable (GA)	Java 8	Release Notes	Changelog

Baixando Driver JDBC – Maria DB

USCS LEMBERGADE BESTO CAETAND DO SUR

Arquitetura Cliente Servidor – Exemplo

Configuração do Driver num Projeto Java com Eclipse

1. Baixar o Driver JDBC do MariaDB:

Primeiro, você precisa baixar o driver JDBC do MariaDB. Isso pode ser feito a partir do site oficial do MariaDB ou de repositórios como o Maven.

2. Adicionar o Driver ao seu Projeto:

- Abra o Eclipse e o seu projeto Java.
- Clique com o botão direito no projeto e selecione "Properties".
- No painel esquerdo, clique em "Java Build Path".
- Vá para a aba "Libraries" e clique no botão "Add External JARs...".
- Selecione o arquivo JAR do driver JDBC que você baixou e clique em "Open".

Configuração do Driver num Projeto Java com Eclipse

3. Configurar a Conexão:

- No seu código Java, você precisará configurar a conexão com o banco de dados MariaDB. Isso inclui especificar a URL de conexão, o nome de usuário e a senha.
- Aqui está um exemplo de como você pode fazer isso:

```
java

String url = "jdbc:mariadb://localhost:3306/seuBancoDeDados";
String user = "seuUsuario";
String password = "suaSenha";

Connection con = DriverManager.getConnection(url, user, password);
```

Não se esqueça de tratar exceções, como `SQLException`.

Configuração do Driver num Projeto Java com Eclipse

4. Desenvolver seu Código:

 Agora você pode começar a escrever seu código para interagir com o banco de dados MariaDB usando JDBC.

Isso inclui criar `Statement` ou `PreparedStatement`, executar consultas SQL e

processar os resultados.

Configuração do Driver num Projeto Java com Eclipse

Testar a Conexão:

- Depois de escrever o código, execute o aplicativo para testar a conexão com o banco de dados.
- Se houver algum problema, verifique a URL de conexão, nome de usuário, senha e a configuração do driver JDBC.

Lembre-se de que esses passos são genéricos e podem variar um pouco dependendo da versão do Eclipse e do driver JDBC do MariaDB que você está usando. Se você encontrar problemas específicos, é útil consultar a documentação do MariaDB e do Eclipse para obter mais detalhes.

Configuração do Driver num Projeto Java com Eclipse

Configuração do Driver num Projeto Java com Eclipse

Configuração do Driver num Projeto Java com Eclipse


```
package br.uscs;
import java.sql.*;
import java.util.Scanner;
public class Quiz Capitais 4 {
    public static void main(String[] args) {
        String url = "jdbc:mysql://localhost:3306/quiz capitais";
        String user = "root";
        String password = "";
        int score = 0;
        try (Connection conn = DriverManager.getConnection(url, user, password);
                Statement stmt = conn.createStatement();
                ResultSet rs = stmt.executeQuery("SELECT pais, capital FROM capitais")) {
```



```
Scanner scanner = new Scanner(System.in);
while (rs.next()) {
    String pais = rs.getString("pais");
    String capital = rs.getString("capital");
    System.out.println("Qual é a capital do país " + pais + "?");
    String respostaUsuario = scanner.nextLine();
    if (respostaUsuario.trim().equalsIgnoreCase(capital)) {
        System.out.println("Correto!");
        score++;
    } else {
        System.out.println("Errado! A resposta correta é: " + capital);
scanner.close();
```



```
private static Integer getRowCount(Statement stmt) throws SQLException {
    try (ResultSet rs = stmt.executeQuery("SELECT COUNT(*) FROM capitais")) {
        if (rs.next()) {
            return rs.getInt(1);
        } else {
            return 0;
        }
    }
}
```


Projeto Java com Eclipse

```
20
 21
                                Scanner scanner = new Scanner(System.in);
 22
 23
                               while (rs.next()) {
🦹 Problems 🏿 @ Javadoc 📵 Declaration 📮 Console 💢
Quiz_Capitais_4 [Java Application] C:\Program Files\Java\jre-1.8\bin\javaw.exe (17 de jan de 2024 12:30:43)
```

Qual é a capital do país Alemanha?

Berlim

Correto!

Qual é a capital do país Argentina?

O arquitetura do Projeto que acabamos de desenvolver é Cliente-Servidor?

A arquitetura cliente-servidor é caracterizada pela divisão de responsabilidades entre dois tipos de entidades: o cliente, que solicita serviços ou recursos, e o servidor, que fornece esses serviços ou recursos. Vamos analisar seu código sob essa perspectiva:

1. Cliente (Aplicação Java):

- Seu código Java atua como o cliente. Ele é responsável por solicitar informações (como dados de países e capitais) e por enviar essas solicitações ao servidor (o banco de dados MySQL).
- O cliente (sua aplicação Java) também processa as respostas recebidas do servidor, implementando a lógica do quiz e interagindo com o usuário através do terminal.

2. Servidor (Banco de Dados MySQL):

- O servidor no contexto da sua aplicação é o MySQL, um sistema de gerenciamento de banco de dados.
- O servidor é responsável por armazenar os dados (neste caso, informações sobre países e capitais) e processar as solicitações enviadas pelo cliente. Ele executa as consultas SQL recebidas e retorna os resultados ao cliente.

Comunicação entre Cliente e Servidor:

- A comunicação entre o cliente (sua aplicação Java) e o servidor (MySQL) ocorre através do protocolo JDBC (Java Database Connectivity).
- O cliente envia comandos SQL ao servidor, e o servidor retorna os resultados dessas consultas. Esse fluxo de solicitação e resposta é uma característica fundamental da arquitetura cliente-servidor.

4. Independência e Interação:

 O cliente e o servidor são independentes um do outro, embora interajam para completar tarefas. O cliente pode ser modificado sem alterar o servidor, desde que a interface de comunicação (neste caso, as consultas SQL) permaneça consistente.

Em resumo, a arquitetura do seu código é classificada como cliente-servidor porque envolve uma aplicação cliente (o programa Java) que solicita e recebe dados de um servidor (o banco de dados MySQL). Essa separação de responsabilidades e a comunicação entre cliente e servidor são características fundamentais dessa arquitetura.


```
1  var now = new Date();
2  var hours = now.getHours();
3  var minutes = now.getHours();
4  var seconds = now.getSeconds();

6  var ampm = "am";
7  var colon = '<IMG SRC="images/colon.gif">';
8  9  if (hours = 12) {
10     ampm = "pm";
11     hours = hours = 12;
12  }
13  if (hours = 0) hours = "0" + hours;
16  if (hours = 10) minutes = "0" + minutes;
17  else hours = hours + '';
18  if (minutes = 10) minutes = "0" + minutes;
20  else minutes = minutes + '';
21  if (seconds = 10) seconds = "0" + seconds;
23  else seconds = seconds + '';
```

Código **Java**, com arquitetura **monolítica**, que cria uma lista com **10 perguntas** sobre as capitais de diferentes países;

A aplicação, via console, envia a pergunta e o usuário digita a resposta e envia para o programa. No final do quiz, são mostradas as respostas corretas, erradas e a nota do usuário (de 0 a 10). A aplicação é monolítica uma vez que qualquer alteração irá requerer recompilação de todo o código;

Reescreva o código desenvolvido na **Tarefa 4_01** e implemente a aplicação com o emprego de Arquitetura Cliente Servidor (3 Camadas).

O arquitetura do Projeto que acabamos de desenvolver pode também ser considerada como Monolítica ????

Aplicação também ser considerada Monolítica?

Sim, a arquitetura do código que você forneceu pode ser considerada monolítica. Em uma arquitetura monolítica, componentes de software, como a interface do usuário, o código de negócios, e o acesso a dados, são combinados em um único programa a partir de um único ponto de execução. Vamos analisar o seu código sob essa

perspectiva:

Unidade 5 – Arquitetura Cliente Servidor

A aplicação também ser considerada Monolítica?

1. Código de Negócios e Acesso a Dados Juntos:

Seu código contém tanto a lógica de negócios (o quiz e o cálculo da pontuação) quanto o acesso direto ao banco de dados (executando consultas SQL e processando os resultados).

2. Execução em Um Único Processo:

Tudo é executado como parte de um único processo (um único programa Java), o que é uma característica típica de uma aplicação monolítica.

A aplicação também ser considerada Monolítica?

Falta de Modularização:

Em arquiteturas mais modernas, como microserviços, diferentes aspectos da aplicação (como interface do usuário, lógica de negócios, e acesso a dados) seriam separados em diferentes serviços ou módulos. No seu código, esses aspectos estão todos misturados.

Simplicidade de Desenvolvimento e Implantação:

Um benefício de uma arquitetura monolítica é a simplicidade. É mais fácil de desenvolver, testar, implantar e executar, especialmente para aplicações menores ou mais simples, como parece ser o caso aqui.

Arquitetura

Arquitetura
Monolítica

Interface do usuário

Lógica de negócios

Camada de acesso a dados

BD

A aplicação também ser considerada Monolítica?

5. Escalabilidade e Manutenção:

Enquanto a arquitetura monolítica é simples, ela pode se tornar difícil de manter e escalar à medida que a aplicação cresce. Cada mudança, por menor que seja, requer a construção e implantação do aplicativo inteiro.

Em resumo, sua aplicação pode ser classificada como monolítica devido à sua estrutura integrada e execução em um único processo. Esta abordagem é comum para aplicações menores e mais simples, mas pode apresentar desafios à medida que a aplicação cresce e se torna mais complexa.

UI

Application logic

Data access

Database

Então, posso dizer que a arquitetura do Exemplo é tanto Cliente-Servidor quanto Monolítica?

Então, posso dizer que a arquitetura do Exemplo é tanto Cliente-Servidor quanto Monolítica ?

Sim, você pode considerar que a arquitetura da sua aplicação é tanto monolítica quanto cliente-servidor. Esses dois termos descrevem aspectos diferentes de uma aplicação:

1. Monolítica:

- Este termo descreve como os componentes da aplicação são organizados e como eles interagem entre si.
- Em uma arquitetura monolítica, a lógica de negócios, a interface do usuário, e o acesso a dados estão todos integrados em uma única unidade de software.
- Isso significa que a aplicação é desenvolvida, implantada, e escalada como um todo.

Então, posso dizer que a arquitetura do Exemplo é tanto Cliente-Servidor quanto Monolítica?

Cliente-Servidor:

- Este termo descreve a relação entre as diferentes partes da aplicação em termos de como elas se comunicam e interagem.
- Em uma arquitetura cliente-servidor, a aplicação é dividida em clientes e servidores, que comunicam-se uns com os outros através de uma rede.
- O servidor geralmente gerencia recursos e serviços, como acesso a um banco de dados, enquanto o cliente interage com o usuário final (por exemplo, através de uma interface gráfica).

Então, posso dizer que a arquitetura do Exemplo é tanto Cliente-Servidor quanto Monolítica?

No seu caso, a aplicação Java que você desenvolveu é monolítica porque combina várias funcionalidades em um único software. Ao mesmo tempo, ela segue o modelo cliente-servidor porque interage com um servidor de banco de dados (MySQL, neste caso). O seu código Java age como o cliente, enviando solicitações de consulta ao servidor MySQL, que responde com os dados solicitados.

Portanto, é correto dizer que sua aplicação tem uma arquitetura monolítica implementada em um ambiente cliente-servidor.