

Design and Analysis of Computer Algorithms **Growth of Functions**

Growth of Functions

- \bullet As algorithm runs, the ${\it running\ time}$ grows in terms of the input size. The running time
 - varies for different inputs of the same size
 - is affected by the hardware and software environment
 - increases with the input size
 - can be studied by experiments
- Changing the hardware/ software environment
 - affects the running time of algorithm by a constant factor, but
 - does NOT alter the growth rate of the running time.
- We are interested in characterizing the **growth rate** of running time as **a function of the input size**.
- The characterized function is the *time complexity* of the algorithm.

Asymptotic Notations - Big "oh"

Suppose that f and g are two nonnegative functions.

Definition (Big "oh")

f(n) = O(g(n)) iff. there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

- Examples
 - 3n + 2 = O(n) as $3n + 2 \le 4n$ for $n \ge 2$
 - $10n^2 + 4n + 2 = O(n^2)$ as $10n^2 + 4n + 2 \le 11n^2$ for $n \ge 5$

Big "oh"

- Some classes of functions
 - O(1): _____constant
 - O(*n*): _____linear
 - $O(n^2)$: ____quadratic
 - O(*n*³): _____cubic
 - O(2ⁿ): _____exponential
 - $O(\log n)$: _____logarithmic
- f(n) = O(g(n)) states that g(n) is an **asymptotic upper bound** of f(n), so, $n = O(n^2)$.
- g(n) should be as small as one can come up with.
- · Check by yourself

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = O(n^m)$.

Asymptotic Notations - Big Omega

Suppose that f and g are two nonnegative functions.

Definition (**Big-Omega**)

 $f(n) = \Omega(g(n))$ iff. there exist positive constants c and n_0 such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

- Examples
 - $3n + 2 = \Omega(n)$ as $3n + 2 \ge 3n$ for $n \ge 1$
 - $10n^2 + 4n + 2 = \Omega(n^2)$ as $10n^2 + 4n + 2 \ge 10n^2$ for $n \ge 1$

Big Omega

- Some classes of functions
 - $\Omega(1)$: _____constant
 - $\Omega(n)$: _____linear
 - $\Omega(n^2)$: _____quadratic
 - $\Omega(n^3)$: ____cubic
 - $\Omega(2^n)$: _____exponential
 - $\Omega(\log n)$: _____logarithmic
- $f(n) = \Omega(g(n))$ states that g(n) is an **asymptotic lower bound** on f(n), so, $n^2 = \Omega(n)$.
- g(n) should be as large as one can come up with.
- Check by yourself

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = \Omega(n^m)$.

Asymptotic Notations - Big Theta

Suppose that f and g are two nonnegative functions.

Definition (*Big-Theta*)

 $f(n) = \Theta(g(n))$ iff. there exist positive constants c_1 , c_2 , and n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

- Examples
 - $3n + 2 = \Theta(n)$ as $3n \le 3n + 2 \le 4n$ for $n \ge 2$
 - $10 \log n + 4 = \Theta(\log n)$

Big Theta

- Some classes of functions
 - $\Theta(1)$: _____constant
 - $\Theta(n)$: _____linear
 - $\Theta(n^2)$: ____quadratic
 - $\Theta(n^3)$: ____cubic
 - $\Theta(2^n)$: ____exponential
 - $\Theta(\log n)$: _____logarithmic
- g(n) should have the same growth rate with f(n) and vice versa.
- · Check by yourself

Theorem

If
$$f(n) = a_m n^m + \cdots + a_1 n + a_0$$
, then $f(n) = \Theta(n^m)$, where $a_m > 0$.

Asymptotic Notations - Little "oh"

Suppose that f and g are two nonnegative functions.

Definition (*Little "oh"*)

$$f(n) = o(g(n))$$
 iff.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

Definition (alternative way)

f(n) = o(g(n)) iff. for any positive constant c, there exists a constant n_0 such that $0 \le f(n) < c \cdot g(n)$ for all $n \ge n_0$.

- Examples
 - $3n + 2 = o(n^2)$ as $\lim_{n \to \infty} \frac{3n+2}{n^2} = 0$.
 - $3n+2=o(n\log n)$ as $\lim_{n\to\infty}\frac{3n+2}{n\log n}=0$.

Asymptotic Notations - Little omega

Suppose that f and g are two nonnegative functions.

Definition (*Little "omega"*)

$$f(n) = \omega(g(n))$$
 iff.

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=0.$$

Definition (alternative way)

 $f(n) = \omega(g(n))$ iff. for any positive constant c, there exists a constant $n_0 > 0$ such that $0 \le c \cdot g(n) < f(n)$ for all $n \ge n_0$.

About Asymptotic Notations

- Note that the coefficients in all the g(n)'s should be 1.
 - Discussing the growth of functions
 - Notations representing the rate of growth
 - Comparing functions (algorithms)
- Note:
 - Worst case analysis using O() and related to the upper bound
 - **Best case** analysis using $\Omega()$ and related to the lower bound
- **Asymptotic complexity** can be determined quite easily without determining the exact step count.
- Need practice and experience to quickly determine the asymptotic complexity for an algorithm.

Analysis of Insertion Sort

Insertion-Sort(A)		time	asym.
1	for $j = 2$ to A. length	n	O(n)
2	key = A[i]	n-1	O(n)
3	// Insert $A[i]$ into the sorted sequence $A[1i-1]$.	n-1	O(n)
4	i = i - 1	n-1	O(n)
5	while $i > 0$ and $A[i] > key$	$\sum_{i=2}^{n} t_i$	$O(n^2)$
6	A[i+1] = A[i]	$\sum_{i=2}^{n} (t_i - 1)$	$O(n^2)$
7	i = i - 1	$\sum_{i=2}^{n} (t_j-1)$	$O(n^2)$
8	A[i+1] = key	n-1	O(n)
overall			$O(n^2)$

- The best-case time complexity is O(n).
- Time complexity for the worst-case is $O(n^2)$.

Asymptotic Notations - Properties

Transitivity

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then $f(n) = \Theta(h(n))$
- applied to all the notations

Reflexivity

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$

Symmetry

• $f(n) = \Theta(g(n))$ iff. $g(n) = \Theta(f(n))$

• Transpose symmetry

- f(n) = O(g(n)) iff. $g(n) = \Omega(f(n))$
- f(n) = o(g(n)) iff. $g(n) = \omega(f(n))$

Example - Permutation

```
PERMUTATION (A, k, n)
   if k == n // Output permutation
        for i = 1 to n
             Print A[i]
   else /\!\!/ A[k..n] has more than one permutation.
        // Generate these recursively.
        for i = k to n
5
6
             t = A[k]; A[k] = A[i]; A[i] = t;
             // All permutations of A[k+1..n]
             PERMUTATION(A, k + 1, n);
8
             t = A[k]; A[k] = A[i]; A[i] = t;
```


Deriving Running Time for Permutation

- Let T(k, n) denote the running time.
- Line 1-3 takes $\Theta(n)$.
- In Line 4-8, since there are n-k+1 iterations, and each iteration take $\mathcal{T}(k+1,n)+1$ time, the running time is

$$T(k,n) = \Theta((n-k+1) \times (T(k+1,n)+1))$$

= $\Theta((n-k+1) \times T(k+1,n))$

• The overall running time for n elements as k = 1 is

$$T(1,n) = n \times T(2,n)$$

$$= n \times ((n-1) \times T(3,n))$$

$$= n \times (n-1) \times \cdots \times 2 \times T(n,n)$$

$$= n \times (n-1) \times \cdots \times 2 \times n$$

$$= n! \times n$$

Practical Complexities (1)

- The *complexity function* can be used to compare two programs *P* and *Q* which perform the same task.
- Suppose P is $\Theta(n)$ and Q is $\Theta(n^2)$, P is faster than Q asymptotically.
- \bullet Be aware of the "sufficient large n" in the definitions of asymptotic functions.
- For P and Q above, when n is small, Q might be faster than P since
 - The input size *n* is small
 - P has large low order terms

Practical Complexities (2)

- It would be better to look the complexity function in "class fashion". *i.e.* linear order as one class, constant order as a class, etc.
- The utility of programs with exponential complexity is limited to small *n*.
- Programs having a complexity of high-degree polynomial are also of limited utility