## Problème. Polynômes de Legendre.

Partie A. Une famille de polynômes scindés. (CCP PC 2018)

- 1.  $L_0 = 1$ .  $L_1 = \frac{1}{2}(X^2 - 1)' = X$ .
- 2. (a)  $U_n$  est un polynôme de degré 2n, unitaire, donc  $U_n^{(2n)}$  est un polynôme de degré  $\deg U_n 2n = 0$ : c'est un polynôme constant:

$$U_{2n}^{(2n)} = (X^{2n})^{(2n)} = (2n)(2n-1)\cdots 3\cdot 2\cdot 1.$$

On a

$$U_n^{(2n)} = (2n)!$$
 et  $\forall k > 2n, \ U_n^{(k)} = 0.$ 

(b) Le polynôme  $U_n$  s'écrit

$$U_n = X^{2n} + V_n$$
, avec  $\deg V_n < 2n$ .

$$U_n^{(n)} = (2n)(2n-1)\cdots(2n-(n-1))X^n + V_n^{(n)} = \frac{(2n)!}{n!}X^n + V_n^{(n)}, \quad \text{avec deg } V_n^{(n)} < n.$$

Puisque  $L_n = \frac{1}{2^n n!} U_n^{(n)}$ , on a  $\left[ \frac{\deg(L_n) = n}{\deg(L_n)} \right]$  le coefficient dominant de  $L_n$  est  $\frac{(2n)!}{2^n (n!)!^2}$ .

Or 
$$\frac{(2n)!}{(n!)^2} = \binom{2n}{n}$$
. Donc, le coefficient dominant de  $L_n$  est :  $\frac{\binom{2n}{n}}{2^n}$ 

- 3. (a) Soit  $(a, b) \in \mathbb{R}^2$ , a < b. Soit f une fonction continue sur [a, b], dérivable sur ]a, b[ telle que f(a) = f(b), alors il existe  $c \in ]a, b[$  tel que f'(c) = 0.
  - (b) Soit  $n \in \mathbb{N}^*$ ,

$$U_n = (X^2 - 1)^n = ((X - 1)(X + 1))^n = (X - 1)^n (X + 1)^n.$$

La polynôme  $U_n$  a deux racines, (-1) et 1, toutes deux de multiplicité n.

Donc (-1) et 1 sont deux racines de multiplicité (n-1) de  $U'_n$ .

En outre, la fonction polynômiale associée à  $U_n$  est continue sur [-1,1], dérivable sur ]-1,1[, et  $U_n(-1)=U_n(1)=0$ , donc il existe  $\alpha \in ]-1,1[$  tel que  $U'_n(\alpha)=0$ .

Les nombres -1 et 1 sont des racines de multiplicité n-1 et  $\alpha \in ]-1,1[$  a une multiplicité au moins 1. En comptant les multiplicités on obtient donc au moins 2(n-1)+1=2n-1 racines. Or,  $\deg U'_n=2n-1$  donc  $U'_n$  est scindé :

$$U'_n = \lambda (X-1)^{n-1} (X+1)^{n-1} (X-\alpha).$$

- où  $\lambda$  est une constante non nulle. On ne nous demande pas de calculer sa valeur mais ce n'est pas compliqué,  $\lambda$  est le coefficient dominant de  $U'_n$ , c'est donc 2n.
- (c) Soit  $n \geq 2$ . Soit  $k \in [1, n-1]$ . On suppose qu'il existe des réels  $\alpha_1, \ldots, \alpha_k$  deux à deux distincts dans [-1, 1] et un réel  $\mu$  tels que

$$U_n^{(k)} = \mu(X-1)^{n-k}(X+1)^{n-k}(X-\alpha_1)\cdots(X-\alpha_k).$$

Tout d'abord, comme (-1) et 1 sont des racines de multiplicité n de  $U_n$ , ce sont des racines de multiplicité n - (k+1) de  $U_n^{(k+1)}$ .

Soit  $l \in [1, k-1]$ , la fonction  $U_n^{(k)}$  est continue sur  $[\alpha_l, \alpha_{l+1}]$  et dérivable sur  $[\alpha_l, \alpha_{l+1}[$ . En outre,  $U_n^{(k)}(\alpha_l) = U_n^{(k)}(\alpha_{l+1})$ , donc il existe  $\beta_{l+1} \in ]\alpha_l, \alpha_{l+1}[$  tel que  $U_n^{(k+1)}(\beta_l) = 0$ .

De même, la fonction  $U_n^{(k)}$  est continue sur  $[-1, \alpha_1]$  et dérivable sur  $]-1, \alpha_1[$ . En outre,  $U_n^{(k)}(-1) = U_n^{(k)}(\alpha_1)$ , donc il existe  $\beta_1 \in ]-1, \alpha_1[$  tel que  $U_n^{(k+1)}(\beta_1) = 0$ .

on peut faire le même raisonnement sur  $[\alpha_k, 1]$  pour montrer qu'il existe  $\beta_{k+1} \in ]\alpha_k, 1[$  tel que  $U_n^{(k+1)}(\beta_{k+1}) = 0.$ 

Enfin, on a  $\beta_1 < \alpha_1 < \beta_2 < \alpha_2 < ... < \beta_k < \alpha_k < \beta_{k+1}$  donc les réels  $\beta_1,...,\beta_{k+1}$  sont distincts deux à deux.

Ainsi, il existe  $Q \in \mathbb{R}[X]$  tel que :

$$U_n^{(k+1)} = (X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1})Q.$$

Or, les degrés de  $U_n^{(k+1)}$  d'une part, et de  $(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1})$  d'autre part sont tous les deux égaux à 2n-(k+1), donc  $\deg(Q)=0$ .

Il existe donc  $\nu \in \mathbb{R}^*$  tel que :

$$U_n^{(k+1)} = \nu(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1}).$$

(d) D'après le principe de récurrence, il existe  $\gamma_1,\cdots,\gamma_n$  dans ] -1,1[ deux à deux distincts et  $\mu$  dans  $\mathbb{R}^*$  tels que :

$$L_n = \mu(X - \gamma_1) \cdots (X - \gamma_n).$$

Le polynôme  $L_n$  est scindé à racines simples, toutes dans ]-1,1[.

**Partie B.** Évaluation de  $L_n$  en 1 et en -1.

1. 
$$\forall k \in [0, n] \quad ((X+1)^n)^{(k)} = \frac{n!}{(n-k)!} (X+1)^{n-k}$$
.

2. Les fonctions  $x \mapsto (x-1)^n$  et  $x \mapsto (x+1)^n$  sont polyomiales donc de classe  $\mathcal{C}^{\infty}$  sur  $\mathbb{R}$ . En confondant polynômes et fonctions polynomiales, la formule de Leibniz amène

$$L_{n} = \frac{1}{2^{n} n!} \left( (X+1)^{n} (X-1)^{n} \right)^{n} = \frac{1}{2^{n} n!} \sum_{k=0}^{n} \binom{n}{k} \left( (X+1)^{n} \right)^{(k)} \left( (X-1)^{n} \right)^{(n-k)}$$

$$= \frac{1}{2^{n} \cancel{\varkappa}!} \sum_{k=0}^{n} \binom{n}{k} \frac{n!}{(n-k)!} (X+1)^{n-k} \frac{\cancel{\varkappa}!}{k!} (X-1)^{k}$$

$$= \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k}^{2} (X+1)^{n-k} (X-1)^{k}.$$

3. 
$$L_n(1) = \frac{1}{2^n} \binom{n}{0}^2 (1+1)^n = 1$$
 et  $L_n(-1) = (-1)^n$ .

**Partie C.** Calcul des nombres  $\langle L_n, L_m \rangle$ .

1. (a) (\*) Soit n non nul, et  $k \in [0, n-1]$ . Supposons  $\mathcal{P}(k)$ . Alors:

$$\langle U_n^{(n)}, U_m^{(m)} \rangle = \langle U_n^{(n-k)}, U_m^{(m+k)} \rangle$$

Par intégration par parties, en dérivant  $U_m^{(m+k)}$  et en intégrant  $U_n^{(n-k)}$  on obtient :

$$\langle U_n^{(n)}, U_m^{(m)} \rangle = (-1)^k \left[ U_m^{(m+k)} U_n^{(n-k-1)} \right]_{-1}^1 - (-1)^k \int_{-1}^1 U_n^{(n-k-1)}(t) U_m^{(m+k+1)}(t) dt.$$

Or, si  $k \in [0, n-1]$ ,  $n-k-1 \in [0, n-1]$ , donc  $U_n^{(n-k-1)}(-1) = 0 = U_n^{(n-k-1)}(1)$ , (rappelons que -1 et 1 sont racines de  $U_n$  de multiplicité n chacune) donc :

$$\langle U_n^{(n)}, U_m^{(m)} \rangle = (-1)^{k+1} \int_{-1}^1 U_n^{(n-k-1)}(t) U_m^{(m+k+1)}(t) dt.$$

- (b) Par linéarité de l'intégrale,  $\langle L_n, L_m \rangle = \frac{1}{2^{n+m}n!m!} \langle U_n^{(n)}, U_m^{(m)} \rangle$ . En appliquant la question précédente pour k=n, on obtient le résultat demandé.
- 2. Supposons n < m, alors :

$$\langle L_n, L_m \rangle = \frac{(-1)^n}{2^{n+m} n! m!} \langle U_n, U_m^{(n+m)} \rangle.$$

Or, comme n < m, on a n + m > 2m et donc  $U_m^{(n+m)} = 0$ . Ainsi,

$$\langle U_n, U_m^{(n+m)} \rangle = \int_{-1}^1 0 dt = 0, \quad \text{donc} \quad \langle L_n, L_m \rangle = 0.$$

Si n > m, alors en utilisant une symétrie claire,  $\langle L_n, L_m \rangle = \langle L_m, L_n \rangle = 0$ 

3. (a) On a démontré en question 2 que  $U_n^{(2n)}$  est un polynôme constant égal à (2n)!.

$$\langle L_n, L_n \rangle = \frac{(-1)^n}{2^{2n}(n!)^2} \langle U_n, U_n^{(2n)} \rangle = \frac{(-1)^n}{2^{2n}(n!)^2} \langle U_n, (2n)! \rangle = \frac{(2n)!}{2^{2n}(n!)^2} \int_{-1}^{1} (-1)^n (t^2 - 1)^n dt.$$

(b) Soit  $k \in \mathbb{N}$ , on veut calculer :  $J_k = \int_{-1}^{1} (1 - t^2)^k dt$ . Une IPP avec  $u(t) = (1 - t^2)$ ,  $u'(t) = -2tk(1 - t^2)^{k-1}$ , v'(t) = 1, v(t) = t.

$$J_k = \left[ (1 - t^2)^k \right]_{-1}^1 + \int_{-1}^1 2kt^2 (1 - t^2)^{k-1} dt$$

$$= 0 + 2k \int_{-1}^1 (t^2 - 1 + 1)(1 - t^2)^{k-1} dt$$

$$= 2k \int_{-1}^1 (t^2 - 1)(1 - t^2)^{k-1} dt + 2k \int_{-1}^1 (1 - t^2)^{k-1} dt$$

$$= -2kJ_k + 2kJ_{k-1}.$$

Donc: 
$$J_k = \frac{2k}{2k+1} J_{k-1}$$
.

(c) Ainsi:

$$J_n = \frac{\prod_{k=1}^n 2k}{\prod_{k=1}^n (2k+1)} J_0 = \frac{2^n \prod_{k=1}^n k \prod_{k=1}^n 2k}{\prod_{k=1}^n k} J_0 = \frac{2^n n! 2^n n!}{(2n+1)!} J_0.$$

Or  $J_0 = 2$ , donc

$$J_n = \frac{2}{2n+1} \frac{(2^n(n!))^2}{(2n)!} \quad \text{puis} \quad \langle L_n, L_n \rangle = \frac{(2n)!}{2^{2n}(n!)^2} (2n!) J_n : \boxed{\langle L_n, L_n \rangle = \frac{2}{2n+1}}$$

## Exercice 1. Convergence linéaire vers le point fixe.

1. On résout l'équation f(x) = x sur  $\mathbb{R}_+^*$ . Soit  $x \in \mathbb{R}_+^*$ . On a

$$f(x) = x \iff \frac{1}{2}\left(x + \frac{a}{x}\right) = x \iff x = \frac{a}{x} \iff x^2 = a \iff x = \sqrt{a}$$

Ceci démontre que f possède un unique point sur  $\mathbb{R}_+^*$  :  $\ell = \sqrt{a}$ 

2. La fonction f est dérivable sur  $\mathbb{R}_+^*$ : pour tout réel strictement positif x, on a  $f'(x) = \frac{1}{2} \left(1 - \frac{a}{x^2}\right)$ . Ceci conduit au tableau de variations ci-dessous :

| x     | $0 \qquad \sqrt{a} \qquad +\infty$ |
|-------|------------------------------------|
| f'(x) | + 0 -                              |
| f     | $+\infty$ $+\infty$ $\sqrt{a}$     |

On obtient que  $f([\sqrt{a}, +\infty[) \subset [\sqrt{a}, +\infty[$  :  $[\sqrt{a}, +\infty[$  est stable par f

- 3. La fonction f est dérivable sur  $\mathbb{R}_+^*$ . Pour  $x \geq \sqrt{a}$ , on a  $0 \leq \frac{a}{x^2} \leq 1$ , puis  $0 \leq f'(x) \leq \sqrt{a}$ . L'inégalité des accroissements finis donne alors que f est  $\frac{1}{2}$ -lipschitzienne sur l'intervalle  $[\sqrt{a}, +\infty[$ .
- 4. La suite u est bien définie car  $u_0 \in [\sqrt{a}, +\infty[$ , qui est stable par f. Soit  $n \in \mathbb{N}$ . On a  $u_{n+1} = f(u_n)$  et  $\sqrt{a} = f(\sqrt{a})$ . Puisque  $u_n$  et  $\sqrt{a}$  appartiennent un intervalle sur lequel f est  $\frac{1}{2}$ -lipschitzienne, on a

$$|u_{n+1} - \sqrt{a}| = |f(u_n) - f(\sqrt{a})| \le \frac{1}{2}|u_n - \sqrt{a}|.$$

Par récurrence, on obtient que

$$\forall n \in \mathbb{N} \quad |u_n - \sqrt{a}| \le \left(\frac{1}{2}\right)^n \cdot |u_0 - \sqrt{a}|.$$

Ceci donne la convergence  $u_n \to \sqrt{a}$  à vitesse linéaire (échelle logarithmique).

5. Si  $u_0 \in ]0, \ell[$ , on a  $u_1 \in [\sqrt{a}, +\infty[$ , puis  $\forall n \in \mathbb{N}^* | u_n - \sqrt{a} | \leq (\frac{1}{2})^{n-1} \cdot |u_1 - \sqrt{a}|$ .

## Exercice 2. Sur la notion générale de convexité.

- 1. Considérons  $(X_i)_{i\in I}$  une famille de parties convexes de  $\mathbb{C}$ , indexées par un ensemble I et montrons que  $\bigcap_{i\in I} X_i$  est convexe. Pour cela, on considère z et z' dans  $\bigcap_{i\in I} X_i$ , ainsi que  $\lambda \in [0,1]$ . Soit  $i\in I$ . Par définition,  $\forall i\in I$   $z\in X_i$  et  $z'\in X_i$ . Pour un  $i\in I$  fixé, puisque z et z' sont des éléments de  $X_i$  et que  $X_i$  est convexe, on a  $(1-\lambda)z+\lambda z'\in X_i$ . On a donc prouvé que  $(1-\lambda)z+\lambda z'\in\bigcap_{i\in I} X_i$ , et donc que  $[z,z']\subset\bigcap_{i\in I} X_i$ .
- 2. L'exemple des disques.

(a)



(b) Soient z et z' deux éléments de  $\mathcal{D}(z_0, r)$  et  $\lambda \in [0, 1]$ Montrons que  $(1 - \lambda)z + \lambda z' \in \mathcal{D}(z_0, r)$ .

$$\begin{aligned} |(1-\lambda)z + \lambda z' - z_0| &= |(1-\lambda)z + \lambda z' - ((1-\lambda)z_0 + \lambda z_0)| \\ &= |(1-\lambda)(z-z_0) + \lambda(z'-z_0)| \\ &\leq (1-\lambda)|z-z_0| + \lambda|z'-z_0| \quad \text{(inégalité triangulaire)} \\ &\leq (1-\lambda)r + \lambda r \quad \text{(car } z \in \mathcal{D}(z_0,r) \text{ et } z' \in \mathcal{D}(z_0,r)) \\ &\leq r \end{aligned}$$

On a bien prouvé que  $\mathcal{D}(z_0,r)$  est convexe

3. On va raisonner par récurrence. La stabilité par barycentre de 1 points est triviale. Quant à celle pour le barycentre de deux points, remarquons qu'il s'agit de la définition. Supposons que X est stable pour le barycentre de n points, où  $n \in \mathbb{N}^*$ . Considérons  $(x_1, \ldots, x_{n+1}) \in X^{n+1}$  ainsi que n+1 réels positifs  $\lambda_1, \ldots, \lambda_{n+1}$  de

somme 1. On décompose d'abord le barycentre de n+1 points comme suit :

$$\sum_{i=1}^{n+1} \lambda_i z_i = \sum_{i=1}^n \lambda_i z_i + \lambda_{n+1} z_{n+1} = (1 - \lambda_{n+1}) \sum_{i=1}^n \mu_i z_i + \lambda_{n+1} z_{n+1},$$

ceci en supposant  $1 - \lambda_{n+1} \neq 0^*$  et en posant  $\forall i \in [1, n] \quad \mu_i = \frac{\lambda_i}{1 - \lambda_{n+1}}$ .

Le nombre complexe  $\sum_{i=1}^{n} \mu_i z_i$  est un barycentre de n éléments de X. En effet, les  $\mu_i$  sont positifs (puisque les  $\lambda_i$  le sont et que  $\lambda_{n+1} \leq 1$ ) et somment à 1:  $\sum_{i=1}^{n} \mu_i = \frac{1-\lambda_{n+1}}{1-\lambda_{n+1}} = 1$ . Puisque X a été supposé stable pour le barycentre de n éléments, on a  $\sum_{i=1}^{n} \mu_i z_i \in X$ . Puisqu'on a aussi  $z_{n+1} \in X$  et que X est convexe, on a

$$(1 - \lambda_{n+1}) \sum_{i=1}^{n} \mu_i z_i + \lambda_{n+1} z_{n+1} \in X$$
, soit  $\sum_{i=1}^{n+1} \lambda_i z_i \in X$ .

\* Reste à traiter le cas où  $1 - \lambda_{n+1} = 0$ . On a alors  $\sum_{i=1}^{n} \lambda_i = 0$ , ce qui implique (puisque les  $\lambda_i$  sont positifs) que  $\lambda_1 = \cdots = \lambda_n = 0$ .

Dans ce cas, on a donc  $\sum_{i=1}^{n+1} \lambda_i z_i = 1 \cdot z_{n+1} \in X$ . Ceci achève de prouver que X est stable par barycentre de n+1 éléments.

On en déduit par récurrence que X contient les barycentres de ses éléments.

## 4. L'exemple des demi-plans.

(a)



(b) Soient A=(x,y) et B=(x',y') deux éléments de H, et  $\lambda \in [0,1]$ . Par définition de H, on a

$$ax + by \ge c$$
 et  $ax' + by' \ge c$ .

On multiplie la première inégalité par  $(1-\lambda)$  (positif) et la seconde par  $\lambda$  (positif) : on obtient

$$(1 - \lambda)ax + (1 - \lambda)by \ge (1 - \lambda)c$$
 et  $\lambda ax' + \lambda by' \ge \lambda c$ .

Sommons: on obtient

$$a((1-\lambda)x + \lambda x') + b((1-\lambda)y + \lambda y) \ge c.$$

Ceci prouve que  $(1 - \lambda)(x, y) + \lambda(x', y') \in H$ : on a démontré que  $[A, B] \subset H$ .

5. Épigraphe d'une fonction convexe.

(a)



(b) Supposons que f est une fonction convexe sur I. Considérons deux points A=(x,y) et B=(x',y') de l'ensemble  $\mathcal{E}(f)$ . Par définition  $y\geq f(x)$  et  $y'\geq f(x')$ . On multiplie la première inégalité par  $(1-\lambda)$  et la seconde par  $\lambda$  (tous deux positifs) avant de sommer : on obtient

$$(1 - \lambda)y + \lambda y' \ge (1 - \lambda)f(x) + \lambda f(x').$$

Or, par convexité de f, on a  $(1-\lambda)f(x)+\lambda f(x')\geq f((1-\lambda)x+\lambda x')$ . Par transitivité,

$$(1-\lambda)y + \lambda y' \ge f((1-\lambda)x + \lambda x')$$
 c'est-à-dire  $((1-\lambda)x + \lambda x', (1-\lambda)y + \lambda y') \in \mathcal{E}(f)$ .

On a démontré que  $[A, B] \subset \mathcal{E}(f)$ , et établi que  $\mathcal{E}(f)$  est une partie convexe de  $\mathbb{R}^2$ .

(c) Le demi-plan  $H=\{(x,y)\in\mathbb{R}^2\mid ax+by\geq c\}$  est (dans le cas où b>0) l'épigraphe de la fonction affine (donc convexe)  $x\mapsto\frac{c}{b}-\frac{a}{b}x$ .