

Objective of this assignment:

• To get you familiar with developing and implementing TCP or UDP sockets.

What you need to do:

- I. Implement a simple TCP Client-Server application
- 2. Implement a simple UDP Client-Server application
- 3. Collect and analyze round trip time measurements for each of the above applications.

Objective:

The objective is to implement a client-server application using a safe method: start from a simple **working** code for the client and the server. You must slowly and carefully *bend* (modify) little by little the client and server alternatively until you achieve your ultimate goal. You must bend and expand each piece alternatively like the way a black-smith forges iron. From time to time save your working client and server such that you can roll-back to the latest working code in case of problems.

For this programming assignment, you are advised to start from the simple echo client and server to implement a very simple application.

Part I: TCP "Reverse" Client-Server

Implement the following Client-Server application that will use two programs: a client program myFirstTCPClient.java and myFirstTCPServer.java

a) Client: myFirstTCPClient.java

This program must take two **command arguments**: a hostname H and a port number P. The hostname H is a name or a decimal dotted-quad IP address of the server Sv. The port number P is any valid port number where the server Sv is binds to.

This program must:

- I) Create a TCP client socket connected with the server Sv running on the machine with hostname (or IP address) h bound to Port number P.
 - 2) Repeatedly perform the following actions:
 - i) Prompt the user to enter a sentence S
 - ii) Send the sentence S to the server Sv
 - iii) Receive the response from the server
 - iv) Measure the duration between the time when the sentence S was sent and the time a response was received
 - v) Display the following information: the message received and the time expressed in milliseconds.
 - vi) Collect the round trip time.

To implement the client myFirstTCPClient.java, you should consider start with the program *TCPEchoClient.java* (provided on Canvas with this programming assignment). Do not forget to change the name of the class inside the program *TCPEchoClient.java*.

b) Server: myFirstTCPServer.java

This program must take one argument: a port number P. The port number P is any valid port number.

This program must:

- 1) Create a TCP server socket
- 2) Wait for a client to connect, receive a message, display it with the IP address and port # of the client, "reverse" the message, display the reversed message, and echo back the "reversed" message. Reversing a sentence means to spell it backward. Reversing the sentence "Hello World!" yields "!dlroW olleH".

To implement the server myFirstTCPServer.java, you should consider start with the program *TCPEchoServer.java* (provided on Canvas with this programming assignment). Do not forget to change the name of the class inside the program *TCPEchoServer.java*.

Part II: UDP "Reverse" Client-Server

Repeat Part I using **UDP** sockets. Call the client and server programs myFirstUDPClient.java and myFirstUDPServer.java, respectively.

To implement the server (respectively, client) myFirstUDPServer.java (respectively, myFirstUDPClient.java), you should consider start with the program *UDPEchoServer.java* (respectively, *UDPEchoClienTimeout.java*) (provided on Canvas with this programming assignment). Do not forget to change the name of the class inside the program.

Data collection and analysis

For each application (UPD and TCP), report separately the min, average, and max round trip time.

Report

- Write a report that will report your results. The report should not exceed half a page.
- In addition, your report must contain the following information:
 - o whether the programs work or not (this must be just ONE sentence)
 - o the directions to compile and execute your program

What you need to turn in:

- Electronic copy of your source programs (separately standalone)
- Electronic copy of the report (including your answers) (standalone). Submit the file as a Microsoft Word or PDF file.

Grading

- 1) TCP client is worth 20% if it works well: communicates with YOUR server.
- 2) TCP client is worth 5% extra if it works well with a working server from any of your classmates.

All other server and clients (TCP server, UDP client, and UDP server) will be graded the same as the TCP client (20% + 5%).