Eigenvalues and Eigenvectors (2)

Ch.23

econMath.namun+2016su@gmail.com

July 26, 2016

6 Markov Processes

Terms

State

In each period t, the system is in one and only one of k states S_1, \dots, S_k .

Definition 1 (Stochastic Process). A <u>stochastic process</u> is a rule which gives the probability of the state i at the period t = n + 1 given the probabilities of all previous states $(t = 1, 2, \dots, n)$

Note: $\mathbf{x}_t = (x_{1,t}, \dots, x_{k,t})$ is the probabilities of all k possible states at time t

Definition 2 (Markov Process). A stochastic process that the probability of state i at t = n + 1 depends only on what state the system was in at t = n is a Markov process.

Note: Markov processes are memoryless.

Markov Processes

Definition 3 (Transition Matrix). M is a transition matrix for stochastic process \mathbf{x}_t if:

$$\mathbf{x}_{t+1} = M\mathbf{x}_t$$

If $\sum_i M_{ij} = 1$ $\forall j$ (i.e., all column sums are 1), this process is a Markov process. Here, nonnegative scalar M_{ij} is <u>transition probabilities</u> that the process will be in state i at t = n + 1 if it is in state j at t = n

If M_{ij} , transition probabilities are fixed and independent of time indices t, this process is time-homogeneous or that M_{ij} are stationary.

Regular Markov Matrix

Definition 4 (Regular Markov Matrix). *M is a regular Markov matrix if:*

- 1. $\sum_{i} M_{ij} = 1 \quad \forall j$
- 2. $M_{ij} \geq 0 \quad \forall i, j$
- 3. $\exists r \in \mathbb{N} \ s.t. \ M^r > 0 \quad \forall i, j$
- 4. Condition 3 hold when r = 1

Th23.15

Theorem 1 (23.15). Let M be a regular Markov matrix. Then,

- 1. 1 is an eigenvalue of M of multiplicity 1 (i.e., 1 is not a repeated root)
- 2. For every other eigenvalue r of M, |r| < 1
- 3. \mathbf{w}_1 , Eigenvector for eigenvalue 1 has strict positive components
- 4. If $\mathbf{v}_1 = \mathbf{w}_1/||\mathbf{w}_1||$, \mathbf{v}_1 is a probability vector and if $\mathbf{x}_{t+1} = M\mathbf{x}_t$,

$$\lim_{n\to\infty}\mathbf{x}_n=\mathbf{v}_1$$

Note: example of non-regular Markov process. If $\exists i$ s.t. $M_{ii} = 1$, This state i is absorbing state. I.e., once process reach state i, this state does not change forever. Therefore, this process will eventually reach one of these states i and then stay there forever.

7 Symmetric Matrices

Symmetric Matrices

Example of Symmetric Matrices in Economics

- (Bordered) Hessians in optimization problem
- Variance-covariance matrices in statistics

Fortunately, symmetric matrices do not have repeated or complex eigenvalues.

Definition 5 (Orthogonal Matrix). A matrix P satisfies the condition $P^{-1} = P^T$, (i.e., $P^TP = I$) is orghogonal matrix.

We can find uncoupled system when A is symmetric.

Properties of Symmetric Matrices

Theorem 2 (23.16). Let $A \in M_k$ and $A^T = A$. Then,

- All k roots of det A rI = 0 are real numbers.
- All corresponding eigenvectors \mathbf{w}_i are orthogonal
- $\exists P \ staisfying:$

- $\mathbf{w}_i s$ are normalized eigenvectors for each eigenvalues r_i : $||\mathbf{w}_i|| = 1 \quad \forall i$

- Matrix $[\mathbf{w}_1 \quad \cdots \quad \mathbf{w}_k]$ is nonsingular
- $-\mathbf{w}_i\mathbf{w}_j = 0 \quad \forall i \neq j \ (orthogonal \ to \ each \ other)$
- $-P^{-1} = P^T$

_

$$P^{-1}AP = P^{T}AP = \begin{pmatrix} r_{1} & 0 & \cdots & 0 \\ 0 & r_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & r_{k} \end{pmatrix}$$

8 Definiteness of Quadratic Forms

Quadratic Forms

Quadratic Forms

Every quadratic form $Q(\mathbf{x})$ can be represented by symmetric matrix A:

$$Q(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} \quad \wedge \quad A^T = A$$

Always, we can find uncoupled system by taking $P^T \mathbf{x} = \begin{bmatrix} \mathbf{w}_1 & \cdots & \mathbf{w}_k \end{bmatrix}^T \mathbf{x}$ when \mathbf{w}_i are corresponding normalized eigenvalues r_1, \dots, r_k . Let the transformed uncoupled system be $\mathbf{y} = P^T \mathbf{x}$. Then,

$$Q(\mathbf{x}) = Q(P\mathbf{y}) = (P\mathbf{y})^T A(P\mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y}$$

Note: \mathbf{y} is a linear chage of coordinates from \mathbf{x} .

Definiteness and Eigenvalues

Theorem 3 (23.17). Let $A^T = A \in M_k$ and r_1, \dots, r_k are eigenvalues of A. Then,

- 1. A is PD $\iff r_i > 0 \quad \forall i$
- 2. A is ND \iff $r_i < 0 \quad \forall i$
- 3. A is $PSD \iff r_i \geq 0 \quad \forall i$
- 4. A is NSD \iff $r_i \leq 0 \quad \forall i$
- 5. A is ID $\iff \exists i, j \quad s.t. \quad r_i < 0 \land r_j > 0$

Theorem 4 (23.18). Let $A^T = A \in M_k$. Then the below statements are equivalent:

- 1. A is PD
- 2. $\exists B \quad s.t. \quad A = B^T B \land \exists B^{-1}$
- 3. $\exists Q \quad s.t. \quad Q^T A Q = I \land \exists Q^{-1}$