KENDRIYA VIDYALAYA SANGATHAN, DELHI REGION

PRE-BOARD -1 EXAM 2024 -25

CHEMISTRY THEORY (043) SET-1

CLASS: XII

Max. Marks:70

Time: 3 hours

General Instructions:

Read the following instructions carefully.

- (a) There are 33 questions in this question paper with internal choice.
- (b) SECTION A consists of 16 multiple-choice questions carrying 1 mark each.
- (c) SECTION B consists of 5 short answer questions carrying 2 marks each.
- (d) SECTION C consists of 7 short answer questions carrying 3 marks each.
- (e) SECTION D consists of 2 case-based questions carrying 4 marks each.
- (f) SECTION E consists of 3 long answer questions carrying 5 marks each.
- (g) All questions are compulsory.
- (h) Use of log tables and calculators is not allowed.

SECTION-A

QX. Which is the correct IUPAC name for CH3-CH-CH2-Br? (1) CaHS (a) 1-Bromo-2-ethylpropane (b) 1-Bromo-2-ethyl-2-methylethane (c) 1-Bromo-2-methylbutane (d) 2-Methyl-1-bromobutane Q2. The basic character of the transition metal monoxide follows the order (1)a. Cr0 > V0 > Fe0 > Ti0 b. TiO > FeO > VO > CrO c. TiO > VO > CrO > FeO d. VO > CrO > TiO > FeO Q3. An organic compound X on treatment with PCC in dichloromethane gives compound Y. Compound Y reacts with I2 and alkali to form triiodo methane. The compound 'Y' is:

a. CH3CH2OH

b. CH3CH2CHO

c. CH3COCH3

d. CH₃COOH

Q4. Ethyl alcohol can be prepared from Grignard reagent by the reaction of

(1)

a. HCHO

b. RCN

c. R₂CO

d. RCOCI

Q8. Which of the following ion has the electronic configuration is 3d6

(1)

a. Ni3+

b. Mn3+

c. Fe3+

d. Co3+

Q6. Which of the following reactions of glucose can be explained only by its cyclic structure? (1)

- (a) Glucose forms pentaacetate.
- (b) Glucose reacts with hydroxylamine to form an oxime.
- (c) Pentaacetate of glucose does not react with hydroxylamine.
- (d) Glucose is oxidised by nitric acid to gluconic acid.
- Q7. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their:
- a) More extensive association of carboxylic acid via Vander waals force of attraction.
- b) Formation of carboxylate ion.
- c) Formation of Intermoleculating at the Mass 12th CBSE Boards

d) Formation of Intramolecular Hydrogen bonding.

Q8. DNA and RNA contain four bases each. Which of the following bases is not present in RNA?

(a) Adenine

(b) Uracil

Q9. Which of the following reactions is appropriate for converting acetamide to methanamine:

(d) Cytosine

(1)

- (a) Hoffmann bromamide reaction (b) Stephen reduction
- (c) Gabriel phthalimide synthesis (d) Carbylamine reaction

Q10. Which of the following orders of relative strengths of acids is correct? (1)

(a) CICH2COOH > FCH2COOH > BrCH2COOH

(c) Thymine

- (b) CICH2COOH > BrCH2COOH > FCH2COOH
- (c) BrCH2COOH > CICH2COOH > FCH2COOH
- (d) FCH2COOH > CICH2COOH > BrCH2COOH

Mark the correct order of decreasing acid strength of the following compounds. (1)

ASSERTION REASONING QUESTIONS

In the following questions a statement of Assertion (A) followed by a statement of Reason (R) is given. Choose the correct answer out of the following choices.

- (a) Both A and R are correct and R is the correct explanation of A.
- (b) Both A and R are correct but R is not explanation of A.
- (c) Assertion (A) is correct but Reason (R) is incorrect.
- (d) Assertion (A) is incorrect but Reason (R) is correct.

Assertion: Phenols are more reactive towards electrophilic substitution reaction compared to benzene.

Reason: -OH group in phenol increases the electron density in ortho and para position due to +M effect.

Q24. Assertion (A): The half- life for a zero-order reaction is independent of the initial concentration of the reactant (1)

https://t.me/Class12thCBSE_Boards

N201+ → 2NO2 + 1/2 C		reaction:		
)2			
t/s	0	300	600	
[N ₂ O ₅] / molL ⁻¹	1.6 × 10 ⁻²	0.8×10 ⁻²	0.4×10-2	
i) Show that it follow	ws a first order read	ction.		(2)
ii) Calculate the half	-life.			(1)
(Given log 2= 0.3010	0; log4 =0.6021)			
Q25. (a) Using E ⁰ valu prevent corrosion.	ies of X and Y give	en below, predict wh	ich is better for (1)	coating the surface of iron to
Given E ⁰ x ²⁺ /x	$= -2.36V$, $E^0Y^{2+}/Y = -$	$0.14V$, $E^0_{Fe^{2+}/Fe} = -0.4$	4V	
(b) Predict whether t	he following reaction	on would occur spont	aneously at 298 I	K. (2)
$Co(s) + Fe^{2+}$	(aq) → Co 2+ + Fe(s)			
Given [Co 2+]	$= 1.0M [Fe^{2+}] = 1.0$	M		
E^0 $Fe^{2+}/Fe =$	-0.44V			
		OR		
Q25 (a) Iron does not	rust even if the Zir	nc coating is broken is	a galvanized Iro	n pipe but rusting occurs much
Q25 (a) Iron does not	rust even if the Zir g over iron is broke	nc coating is broken is en. Explain.		n pipe but rusting occurs much
Q25 (a) Iron does not faster if the tin coatin	rust even if the Zir g over iron is broke the following cell re	nc coating is broken is en. Explain. eaction occurs:		
Q28 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag +(aq) →	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s)	nc coating is broken is en. Explain. eaction occurs:	(1)	
Q28 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag *(aq) > (i) Is the direction of	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr	nc coating is broken is en. Explain. eaction occurs: E ^o cell = + 1.56 V	(1) ver to zinc?	(2)
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag *(aq) → (i) Is the direction of (ii) How will concents	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a	nc coating is broken is en. Explain. eaction occurs: Eocell = + 1.56 V om zinc to silver or sil and Ag+ ions be affecte	(1) ver to zinc? d when the cell fo	(2)
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag *(aq) → (i) Is the direction of (ii) How will concents	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a	nc coating is broken is en. Explain. eaction occurs: E°cell = + 1.56 V fom zinc to silver or sil and Ag+ ions be affected ism of Hydration of Et	(1) ver to zinc? d when the cell fo	(2)
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag +(aq) → (i) Is the direction of (ii) How will concentrate Q26 (i) Write the acid	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a d catalysed mechani	nc coating is broken is en. Explain. eaction occurs: E°cell = + 1.56 V fom zinc to silver or sil and Ag+ ions be affected ism of Hydration of Et	(1) ver to zinc? d when the cell fo	(2) unctions?
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag +(aq) → (i) Is the direction of (ii) How will concentrate (ii) Write the acid (ii) Write the equation Q27. Arrange the following (i) Ethanal, Propagator	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a d catalysed mechani on of the nitration of owing:	nc coating is broken is en. Explain. eaction occurs: E ⁰ cell = + 1.56 V fom zinc to silver or sil and Ag+ ions be affected ism of Hydration of Ether fanisole.	(1) ver to zinc? d when the cell fi	(2)
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag +(aq) → (i) Is the direction of (ii) How will concents Q26 (i) Write the acid (ii) Write the equatio Q27. Arrange the following (i) Ethanal, Proparate reaction) (ii) Why does benze	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a d catalysed mechani on of the nitration of owing: nal, Butanal, Butar	nc coating is broken is en. Explain. eaction occurs: E°cell = + 1.56 V rom zinc to silver or silver of Etherapy of Hydration of Etherapy or silver or silver or entire or ent	ver to zinc? d when the cell for the ne. er of reactivity	(2) unctions? 3(1) towards nucleophilic addition
Q25 (a) Iron does not faster if the tin coating (b) In a galvanic cell, Zn(s) + 2Ag *(aq) → (i) Is the direction of (ii) How will concents Q26 (i) Write the acid (ii) Write the equatio Q27. Arrange the following (i) Ethanal, Proparate reaction) (ii) Why does benze	trust even if the Zir g over iron is broke the following cell re Zn ²⁺ (aq) + 2Ag (s) flow of electrons fr ration of Zn ²⁺ ions a d catalysed mechani on of the nitration of owing: nal, Butanal, Butar	nc coating is broken is en. Explain. eaction occurs: E°cell = + 1.56 V com zinc to silver or	ver to zinc? d when the cell for the ne. er of reactivity	(2) unctions? 3(1) towards nucleophilic addition

https://t.me/Class12thCBSE_Boards

Q28. Answer the following:

a) What is meant by a peptide linkage?

b) What are essential and non-essential amino acids in human food?

(iii) Write the products formed and name of the reaction: when benzaldehyde reacts with Conc. NaOH/H $_2$ O

OR

3(1)

c) State one difference between Fibrous protein and Globular protein.

SECTION D. (4 MARKS EACH)

Q29. Ravi set up an experiment to find resistance of aqueous KCl solution for different concentrations at 298K using a conductivity cell connected to a wheat-stone bridge. He fed the Wheatstone bridge with the A.C. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from null

point he also calculated the conductivity k and molar conductivity \(\lambda \text{m} \) and recorded his readings in tabular form.

S.No.	Conc.(M)	K (S cm-1)	Λm (S cm2mol-1)
	1.00	111.3 x 10-3	111.3
1.	1.00		120.0
2.	0.10	12.9 x 10-3	129.0
	1.41 ×10-3	141.0	
3.	0.01	1,41 ×10 0	

Answer the following questions:

(i) If Ravi had used HCl instead of KCl then would you e	have to be more or less than those per
and a fuel than would you e	xpect the $\Lambda_{\rm m}$ values to be more of rest
(i) If Ravi had used HCl instead of KCl then would you	(1)
(i) it is a sentration Justify	(2)
KCl for a given concentration. Justify.	(1)

(ii) Why does conductivity decrease with dilution?

(1)

OR

(ii) How does molar conductivity varies with dilution for strong and weak electrolytes. (1)

(iii) If Λ^0_m KCl is 150.0 S cm² mol⁻¹, calculate the degree of dissociation of 0.01 M KCl. (2)

030. Read the passage given below and answer the following questions:

To explain bonding in coordination compound various theories were proposed. One of the important theory was valence bond theory. According to that, the central metal ion in the complex makes available a number of empty orbitals for the formation of coordination bonds with suitable ligands. The appropriate atomic orbital of the metal hybridized to give a set of equivalent orbitals of definite geometry.

The d-orbitals involved in the hybridization may be either inner d-orbitals i.e., (n-1)d or outer d-orbitals i.e., nd.

a) Write the formula for the complex: Pentaamminenitrito-O-Cobalt (III) ion and also write coordination no of central metal atom in linkage isomer of above complex. (2)(1)

OR

b) What is meant by chelate effect?

b) Explain that $[Co(NH_3)_5Cl]SO_4$ and $[Co(NH_3)_5SO_4]Cl$ are ionization isomers. (1)

c) [Fe $(H_2O)_6$]³⁺ is strongly paramagnetic whereas [Fe(CN)₆]³⁻ is weakly paramagnetic. Explain.

Section E (5 MARKS EACH)

Q31. (i) State Raoult's law for the solution containing volatile component. (1)

(ii) Two liquid A & B are having boiling point 140°C & 180°C respectively. Identify which liquid will have a higher vapour pressure at 100°C.

(iii)) Why a person suffering from hi	igh blood pressure is adv	vice to take mir	imum quantity (1)	of common	salt.
(iv)	Calculate the freezing point of mass of MgBr ₂ = 184 g mol ⁻¹ ,			g of MgBr2 in 2	200g of wate	er (Molar
	1 100-4					
	y 🤌	OR				
Q31	. (i) Why is increase in tempera	ature observed on mixin	g chloroform a	nd acetone. (1)		
	Define Azeotropes. What type o				ılts law.	
	Calculate the molarity of 9.8 % s of $H_2SO_4 = 98$ g/mol).	(w/w) solution of H ₂ SC)4 if the density	of the solution (2)	is 1.02 g/m	ıl. (Molar
032	(a) Transition elements genera	ally form coloured comp	ounds. Why?	(1)		
(b)	Generally, there is an increase i	n density of elements fr			r (Z = 29) in	the first
	series of transition elements. W	/hy?	(1)			
	Transition elements and their of Explain.	compounds are generall	y found to be g (1)	ood catalysts in	chemical r	eactions.
(d)	Complete the following chemica	al equations:		(2)		
	(i) MnO_4 (aq) + S_2O_3	²⁻ (aq) + H ₂ O (l) →				
	(ii) $Cr_2O_7^{2-}$ (aq) + Fe ²⁺	(aq) + H+(aq) →				
		OR				
obta	(a) When chromite ore FeCr ₂ O ined which on acidification wit KCl forms an orange coloured o	th dilute sulphuric acid	gives a compo			
Writ	e the formulae of (A), (B) & (C).			(3)		
	Why enthalpy of atomization o Vhy transition elements form al		high?	(1+1)		
Q23.	Account for the following:			5(1)		
(i)	Aniline does not undergo Frie	del-Crafts reaction.				
(ii)	pKb of methylamine is less that					
,	Aniline on nitration gives cons		a product along	with ortho and	l nara	
	C ₆ H ₅ NH ₂ + CHCl ₃ + alc. KOH		product along	, with or the unit	. para	
(A)	$C_6H_5N_2Cl + H_3PO_2 + H_2O$	0.0				
(*)	C6115142C1 + 1131 O2 + 1120	dra				
with	a). Three isomeric amines A, B benzene sulphonyl chloride for ene sulphonyl chloride forms a ene sulphonyl	and C have the molecula	soluble in NaC ble in NaOH an	OH. Compound	B on reaction	on with
b). A	rrange the following in the orde	r of given property indic	ated:	(1+1)		
	2H5NH2, (C2H5)2 NH, (C2H5)3N	(Decreasing basic stren		solution)		
	niline, p - Toluidine & p nitro An	iline (Increasing pKb va	lue)			
*****				*********		
	https://t	.me/Class12thCl	SSE_Boar	as		