2001 级物理实验试题(期末)

- 1. tan 45°1′有 位有效数字; 20 lg1585 (20 是准确数字) 有 位有效数字。

- (A) 2位 (B) 3位 (C) 4位 (D) 5位
- 2. 有量程为 7.5v, 1.5 级的电压表和 $\Delta = 1.0\% Nx + 2$ 字, 量程为 20v 的数字电压表测量 某电压, 读数均为 5.08v, 它们的不确定度应分别写成 $u(V) = ____v$ 和_____v。
 - (A) 0.04 (B) 0.05 (C) 0.06 (D) 0.07

- 3. 已知 $f = \ln R$, $R = 36.01 \pm 0.01$, 则 $\frac{u(f)}{f} =$ ______ , 若 $f = \frac{E}{V} 1$, 且 E =

(3.000±0.002) v,
$$V = (2.954 \pm 0.002)$$
 v.则 $f \pm u(f) =$ _____.

4. 铜棒长工度随漫度的变化关系如下表所示。为了用作图法其线膨胀系数,画图最少应当 在 的方格纸一进行;为了把图形充分展开,可把它画在8×16cm 的方格纸上, 这时应取 1 mm 代表______;如果在拟合直线的两头,读出两个点的坐标是

$$(t_1, l_1), (t_2, l_2),$$
则 $a = ____.$ 铜棒长度 $l_t = l_0(1 + at)$.

t / $^{\circ}$ C	10.0	20.0	25.0	30.0	40.0	45.0	50.0
<i>l / mm</i>	2000.36	3000.72	2000.80	2001.07	2001.48	2001.60	2001.80

5. 气体的状态方程 $PV = \frac{M}{u}RT$, M =110g, T =318.15K 的某种气体。已知气体常数

 $R = 8.31 \times 10^{-2} \ pa \cdot L / mol \cdot K$,按逐差法法的计算公式和结果分别是

示。

	i	1	2	3	4	5	6
Γ	P_i /大气压	4.00	5.00	6.00	7.00	8.00	9.00
	V_i/L	25.3	19.8	16.5	14.5	12.4	11.2

6. 双棱镜测波长的计算公式为 $\lambda = \frac{\Delta x \sqrt{bb'}}{S + S'}$, 对实验数据进行处理的计算结果如下表所

$\Delta x = 0.28144mm$	b = 5.9325 mm	b' = 0.7855mm	S = 27.65cm	S' = 75.90cm

$u(\Delta x) = 2.010 \times 10^{-4} mm$	$\Delta_1(b)/b = 0.025$	$\Delta_1(b')/b' = 0.025$	$\Delta_1(S) = 0.5cm$	$\Delta_1(S') = 0.5cm$
	$\Delta_2(b) = 0.005mm$	$\Delta_1(b') = 0.005mm$	$\Delta_s(S) = 0.05cm$	$\Delta_s(S') = 0.05cm$

注: 下标 1 来自自方法误差,下标 2 来自仪器误差。要求:

- (1)给出测量结果的正确表达(包括必要的计算公式)。
- (2) 定量讨论各不确定度的分量中,哪些是主要的,哪些是次要的,哪些是可以忽略的?如果略去次要因素和可以忽略项的贡献,不确定度的计算将怎样简化?结果如何?
- 7. 热敏电阻随温度的变化满足关系 $R_t = Be^{A/T}$,其中 A,B 是待定系数,T 是绝对温度。实验测得 $R_t t$ (摄氏温度)的关系如下表所示。试用一元线性回归方法求出 t = 50 $^{\circ}$ 时的电阻值。不要求提供回归系数的计算公式和数值结果,但必须给出具体的过程说明和其它的计算公式。

t/℃	21.28	28.08	36.07	47.97	56.44	64.95	75.41	81.46	87.79
R_t/Ω	4599.9	3700.0	2865.9	1977.9	1557.9	1224.9	914.90	790.60	670.60