Realidade Virtual

Introdução à VRML (Virtual Reality Modeling Language)

Introdução à VRML (Virtual Reality Modeling Language)

Introdução à VRML (Virtual Reality Modeling Language)

Web3D Consortium

- Organização de desenvolvimento de padrões internacional, sem fins lucrativos, financiada por membros
- Desenvolvendo especificações ISO livres de royalties para 3D Nossos padrões: X3D e HANIM
- Comunidade de tecnólogos, empresas e artistas
- Membros: Academia, Indústria, Governo e Profissionais

Web3D Consortium -Jornada

Web3D Consortium

- Evolução tecnológica 3D baseadas em Web3D abertas
- ✓ Simulações 3D / VR
- Incentiva as empresas e a indústria a usar padrões X3D abertos

Introdução - VRML

- A VRML (Virtual Reality Modeling Language) é uma linguagem de marcação utilizada para criar ambientes virtuais interativos em 3D.
- Ela permite a representação de objetos tridimensionais e suas características, bem como a definição de interações e comportamentos dentro desses ambientes.

- VRML Virtual Reality Modelling Language
- No final da década de 80, Tim Berners-Lee criou a World Wide Web, adicionando inovações à Internet em termos de conectividade e de interface.
- A linguagem foi inspirada no HTML (Hypertext Markup Language) e compartilha algumas semelhanças em termos de sintaxe e estrutura.

- VRML Virtual Reality Modelling Language
- Em 1992, surgiu a biblioteca gráfica Inventor da Silicon Graphics, para permitir que programadores desenvolvem, com rapidez, programas gráficos 3D interativos, baseados nos conceitos de cena e na descrição de objetos.

- VRML Virtual Reality Modelling Language
- Em maio de 1994, em Genebra, na 1ª Conferência da World Wide Web, o grupo de discussão de realidade virtual decidiu desenvolver uma linguagem de descrição de cena que pudesse ser usada na Web.

- VRML Virtual Reality Modelling Language
- Em outubro de 1994, na 2ª Conferência da World Wide Web, foi decidida a adoção de um formato baseado no metafile do Open Inventor, com modificações para sua utilização em rede.

- VRML Virtual Reality Modelling Language
- Em maio de 1995, a especificação da VRML 1.0 foi completada, permitindo a criação de cenas estáticas. Em janeiro de 1996 foi lançada a versão 1.0c, corrigindo alguns problemas.

- VRML Virtual Reality Modelling Language
- Em março de 1996, o VAG decidiu por larga maioria adotar esta proposta como ponto de partida para VRML 2.0
- ✓ Em 1997 iniciou-se um esforço para apresentar a especificação à International Standards Organization (ISO).
- Evolução do VRML --> X3D (VRML + XML)

VRML

VRML pode representar:

- objetos 3D estáticos;
- objetos 3D animados;
- objetos multimídia;
- ✓ links (para texto, sons, imagens, etc.);

Browser VRML

VRML é uma linguagem interpretada

- ✔ Requer um Browser que geralmente é um plugin
- Os arquivos .wrl podem ser carregados localmente ou pela internet

Sugestão - 2023:

- https://github.com/create3000/x_ite
- https://www.web3d.org/news-story/cobweb-now-xite
- https://exemplo-rv-rml.glitch.me

Biblioteca - X_ITE

- X_ITE é uma biblioteca JavaScript 3D e usa WebGL para renderização 3D.
- Podemos publicar projetos X3D e VRML em uma página HTML5 com X_ITE que funciona com navegadores da Web sem instalação prévia do plug-in.
- ✓ Isso oferece aos autores X3D a capacidade de exibir conteúdo em 3D, usando a tecnologia gráfica WebGL 3D.

Fonte: https://create3000.github.io/x_ite/

Biblioteca - X_ITE

- ✓ O X3D é um formato de arquivo de padrões abertos e sem royalties ratificados pela ISO e arquitetura em tempo de execução para representar e comunicar cenas e objetos 3D especificados pelo Web 3D Consortium.
- O X3D evoluiu desde o início como a Linguagem de Modelagem de Realidade Virtual (VRML) para o padrão ISO X3D consideravelmente mais maduro e refinado.

Fonte: https://create3000.github.io/x_ite/

- Para exibir sua cena VRML em uma página HTML5, primeiro salve sua cena como arquivo VRML.
- Crie um arquivo com a extensão .wrl.

O caminho para a cena X3D é especificado no src atributo do elemento < x3d-canvas >

Fonte: https://create3000.github.io/x_ite/

```
<html>
  <head>
   <meta charset="utf-8"/>
    <link rel="stylesheet" type="text/css" href="https://create3000.github.io/code/x_ite/latest/dist/x_ite.css"/>
    <script type="text/javascript" src="https://create3000.github.io/code/x ite/latest/dist/x ite.min.js"></script>
    <style>
     X3DCanvas {
     width: 768px;
     height: 432px;
   </style>
 </head>
  <body>
   <X3DCanvas src="arquivo.wrl" </X3DCanvas>
 </body>
</html>
```

```
<!DOCTYPE html>
<html>
 <head>
    <meta charset="utf-8">
    <script src="https://create3000.github.io/code/x_ite/latest/x_ite.min.js"></script>
    <style>
   x3d-canvas
   width: 768px;
    height: 132px;
   </style>
 </head>
 <body>
   <x3d-canvas src="forma.wrl"></x3d-canvas>
 </body>
</html>
```

```
<!DOCTYPE html>
  <html>
  <head>
   <meta charset="utf-8"/>
    <script src="x_ite.min.js"></script>
    <!-- <script src="https://create3000.github.io/code/x_ite/latest/x_ite.min.js"></script> -->
    <style>
   x3d-canvas {
    width: 1000px;
    height: 563px;
   </style>
  </head>
  <body>
   <x3d-canvas src="arquivo.wrl">
     Aula de Realidade Virtual!
    </x3d-canvas>
    Unemat - 15/08/2023
  </body>
</html>
```

Visão Geral do VRML

Visão Geral do VRML

✓ Um arquivo VRML é um documento de texto com extensão ".wrl".

A estrutura básica é composta por nós (nodes) e campos (fields).

- Os nós representam objetos ou elementos 3D.
- Os campos armazenam informações sobre esses objetos.

VRML descreve "mundos" (worlds) usando uma cena gráfica hierárquica.

- Entidades na cena são chamados "nós" (nodes).
- ✓ VRML 2.0 define 54 tipos de nós:
 - Primitivas geométricas
 - ✔ Propriedades de aparência, som
 - Agrupamento de nós

VRML descreve "mundos" (worlds) usando uma cena gráfica hierárquica.

Nós e Hierarquia

- Em VRML, os nós formam uma hierarquia que define a estrutura da cena.
- Os nós podem conter outros nós como filhos, criando relações de pais e filhos.
- ✓ Isso permite a organização e composição complexa de cenas 3D.

Nó (Node)

- ✓ É o componente fundamental de uma cena em VRML.
- Descrevem o conteúdo das cenas (formas, luzes, sons, etc.
- < <tipo_nodo> { conjunto de <campo> <valor> }
- Um campo descreve os atributos de um nodo
 - ✓ Nome do campo (height, radius, coordIndex, etc.)

```
#VRML V2.0 utf8
Shape {
    appearance Appearance {
        material Material {
            diffuseColor 1 0 0
      geometry Box {
       size 1 1 1
```

```
#VRML V2.0 utf8
Shape {
    geometry Box {
       size 1 1 1
    appearance Appearance {
        material Material {
            diffuseColor 1 0 0
```

- ✓ #VRML V2.0 utf8: Indica a versão do VRML sendo usada.
- Shape: Define o objeto 3D.
- ✓ appearance Appearance: Define as propriedades visuais do objeto.
- material Material: Define as características do material do objeto.
- diffuseColor: Define a cor difusa do material (no exemplo, vermelho).
- ✓ geometry Box: Define a geometria do objeto como um cubo.
- ✓ size: Define o tamanho do cubo nos eixos x, y e z.

Estrutura Básica do VRML

Elementos-chave incluem

- ✓ Shape
- Appearance
- ✓ Material
- ✓ Geometry
- ✓ etc

```
Shape {
    appearance Appearance {
        material Material {
            diffuseColor 1 0 0
    geometry Box {}
```

Geometrias e Formas Básicas

VRML suporta várias formas básicas como caixas, esferas, cones, cilindros, etc.

Geometry

- ✓ Box
- ✓ Sphere
- ✓ Cone
- ✓ Cylinder

```
Shape {
    geometry Box {
        size 1 1 1
```

Aparência e Materiais

A parência define as propriedades visuais do objeto.

Material define propriedades como:

- ✓ COL
- ✓ transparência
- ✓ brilho.

```
Shape {
    appearance Appearance {
        material Material {
            diffuseColor 0 0 1
            transparency 0.2
    geometry Sphere {}
```

Hierarquia de Transformação

Transform permite mover, girar e dimensionar objetos.

Transformações são aninhadas para formar uma hierarquia.

```
Transform {
    translation 0 0 -2
    children [
        Shape {
            geometry Sphere {}
```

Nó (Node)

- Pode ser definido como abstrações dos objetos e conceitos do mundo real, por exemplo, esfera, cubos, luzes e descrição de materiais.
- Os nodes contém campos e eventos.

Shape node

- ✔ As formas são os blocos de construção de um mundo VRML
- Um nodo Shape constrói uma forma

```
#VRML V2.0 utf8

#HIERARQUIA - ESTRUTURA
Shape
{
    geometry Box
    {
        size 1 5 7
    }
    }
}
```

Hierarquia de Nós

Cada nodo pode conter outros nodos na sua especificação.

```
Shape

Appearance

Material

Cylinder
```

```
#VRML V2.0 utf8
# Uma esfera vermelha é definida

Shape {
  geometry Sphere {
  }
  appearance Appearance {
    material Material {
    diffuseColor 1 0 0
    }
  }
}
```


Conceitos

Visão Geral do VRML


```
#VRML V2.0 utf8
# Uma esfera vermelha é definida

Shape {
  geometry Sphere {
  }
  appearance Appearance {
    material Material {
    diffuseColor 1 0 0
    }
  }
}
```

```
#VRML V2.0 utf8
Shape {
          appearance Appearance {
               material Material {
                diffuseColor 0 1 0
                shininess .5
        }
}

geometry Cylinder {
    radius 2
    height 6
    side TRUE
    top TRUE
    bottom TRUE
}
```

Geometry node

- Um nodo de geometria descreve a forma ou estrutura
- ✓ Formas primitivas tipos: Box,Cone, Cylinder, Sphere, Text

Appearance node

- Como padrão todos as formas possuem a cor branca.
- O nodo Appearance permite controlar a cor e a textura de uma forma
- ✔ Possui 3 campos: material, texture e textureTransform

Appearance node

- O nodo appearance é representado pelos tipos Appearance, FontStyle, ImageTexture, Material, MovieTexture, PixelTexture e TextureTransform.
- Seu objetivo é controlar a aparência "renderizada" dos nodos geométricos (objetos) as quais estão relacionados.

Campo material

- O campo material tem como valor um nodo Material
- ✓ Um nodo Material controla:
 - As cores das formas
 - O brilho das formas

```
#VRML V2.0 utf8
Shape {
         appearance Appearance {
            material Material {
                diffuseColor 0 1 0
                shininess .5
          }
}
```

Tabela de cores RGB

COR	RED	GREEN	BLUE
Branco	1.0	1.0	1.0
Roxo	1.0	0.0	1.0
Amarelo	1.0	1.0	0.0
Celeste	0.0	1.0	1.0
Marrom	0.5	0.2	0.0

Tabela de cores com brilho

Descrição	ambientIntensity	diffuseColor	specularColor	shininess
Alumínio	0.30	0.30 0.30 0.50	0.70 0.70 0.80	0.10
Cobre	0.26	0.30 0.11 0.00	0.75 0.33 0.00	80.0
Ouro	0.40	0.22 0.15 0.00	0.71 0.70 0.56	0.16
Púrpura Me	tálico 0.17	0.10 0.03 0.22	0.64 0.00 0.98	0.20
Roxo Metál	ico 0.15	0.27 0.00 0.00	0.61 0.13 0.18	0.20
Azul Plástic	o 0.10	0.20 0.20 0.71	0.83 0.83 0.83	0.12

Children node

- São nodos nos quais vários nodos filhos são agrupados e estes são afetados pelas transformações feitas no nodo pai.
- Serve para criar uma hierarquia de transformações que são herdadas de pai para filho.

Conceitos

Visão Geral do VRML

Arquitetura de Eventos

Mecanismo de geração de eventos permite que os nós da cena se comuniquem entre si.

Conceitos

Visão Geral do VRML

- ✓ Sensores
- Sensores são as primitivas básicas de animação e interação com o usuário.

Scripts e Interpoladores

- Interpoladores são scripts embutidos que executam animações
- Scripts permitem ao autor da cena definir comportamentos arbitrários, usando qualquer linguagem suportada.

Encapsulamento e Reuso

Geometria, propriedades, animações ou comportamento podem ser encapsulados separadamente ou junto da cena.

- ✔ Permite a definição de um novo tipo de nó a partir da combinação de tipos existentes de nós.
 - ✓ Biblioteca de objetos 3D

TORI, Romero; KIRNER, Claudio; SISCOUTTO, Robson Augusto. Fundamentos e tecnologia de realidade virtual e aumentada. Porto Alegre: Editora SBC, 2006.

Continua

Conceitos

- Arquivos VRML têm extensão .wrl (world)
- Cabeçalho (obrigatório)
- ✓ Cena
 - Definição dos objetos gráficos
 - Contém os nós (nodes) que descrevem objetos e suas propriedades
 - Objetos podem ter geometria hierarquicamente agrupada


```
#VRML V2.0 utf8
#HIERARQUIA - ESTRUTURA
 Shape
        geometry Box
             size 1 5 7
```

```
• • •
Transform
   children
     Shape
        geometry Box
             size 1 5 10
```

Dúvidas?

