Credit Card Fraud Detection

Introduction to Machine Learning (STA S380)

Group 10

- Ammar Mustufa
- •Shirley Liu
- •Navya Singhal
- Sankeerth Viswanadhuni

Introduction

About the data set

Credit card transaction dataset containing legitimate and fraud transactions* (Jan 2019 - Dec 2020)

Problem Statement

Design a method to identify and flag potential fraud transactions

Data preparation

Data cleaning and feature engineering (if reqd.) for building a predictive model

Classification techniques

Random forest, boosting, and bagging

About the dataset

- 129,000 data points with 30 variables
- Y variable : is_fraud (1 / 0)
- Predictors Available: Txn. Amount, Age, Txn. Time Stamp, Category, DOB, Category, Longitude, Latitude etc.

About the dataset

- Avg. transaction amount for a fraudulent transaction is \$524 vs legitimate transactions is \$68
- Fraudulent transactions are concentrated b/w \$10-1200 range
- Legitimate transactions are spread across till \$10K

Feature Engineering

- Only 0.5% are fraudulent transactions
- Most default happens at midnight
- More default on online shopping and grocery

Categorize our data

Feature Engineering

Variable 1 - Category of Txn. Hour

- Extracted from Transaction timestamps
- 90% of the fraudulent transactions happen between 10 pm 3 am
- Categorize into 2 buckets (Fraud Hour / Not Fraud Hour)

Variable 2 - Category of transaction

- 15 categories of transactions in total
- 45% of the fraudulent transactions are in 2 categories (online Shopping & grocery pos)
- Categorize into 3 buckets (High / Medium / Low Fraud)

Variable Selection

- Final predictors used for the analysis based on predictive quality and EDA
- Predictors used (6 in total) Txn. Amount, Age, Txn. Hour, Txn. Day, Txn. Hour category, Txn. Type category

Classification - Model Selection

Model #1 - Gradient Boosting

Model #1 - Gradient Boosting

There is a trade-off between TPR and FPR

Different threshold can apply to different business objectives

Model #1 – Gradient Boosting

Model #2 - Random Forest

Var Importance

No pre-processing

Resampling: Cross-Validated (10 fold)

Summary of sample sizes: 93361, 93362, 93361, 93362, 93361, ...

Resampling results across tuning parameters:

mtry	Accuracy	Карра	AUC_ROC	TPR	FPR	logLoss
3	0.9976864	0.7547335	0.9958556	0.6207104	1.163542e-04	0.007036978
4	0.9982359	0.8208410	0.9969377	0.7055738	5.817806e-05	0.005042502
5					6.787362e-05	
6	0.9993734	0.9428801	0.9962174	0.9051366	7.756918e-05	0.004319694

Accuracy was used to select the optimal model using the one SE rule.

The final value used for the model was mtry = 6.

Cross-Validated (10 fold) Confusion Matrix

(entries are percentual average cell counts across resamples)

Top predictors are the same as the boosting - different relative order $% \left(1\right) =\left(1\right) \left(1\right) \left($

Model #2 - Random Forest

Higher AUC than boosting model
Similar trade-off between precision and recall

Model #2 – Random Forest

Model Validation Using Test Data

Test Validation - ROC curve

Gradient Boosting

Random Forest

Very similar AUC to make a definite decision!!

Test Validation - Calibration plots

Similar trend on visual inspection as they align with the actual outcome line!!

Conclusion - Model Selection

Metric	Model #1 Gradient Boosting	Model #2 Random Forest	
ROC AUC	0.98	0.96	
Accuracy	96.5%	98.2%	
Sensitivity (TPR)	90.0%	83.3%	
FPR (1 - Specificity)	3.4%	1.75%	
Precision	13.1%	21.9%	
Log loss	0.011	0.019	

Values based on the optimal threshold found using Youden's J during the training stage

Which metric to choose?

- High recall rate To avoid incorrect classification of fraud transaction as legitimate
- Minimize false positive To avoid flagging legitimate transactions as fraudulent and disrupt regular business
- Highest ROC AUC To minimize the risk of fraud while maintaining customer satisfaction (by reducing false negatives)

Cost Analysis for Fraud Detection Models

Assumptions:

- Total Transactions (N): 1,000,000
- Fraud Prevalence (P_F): 0.5% (as per the data set)
- Cost of a False Positive (C_{FP}): \$50 <- Incl. operational costs for manual review, and potential loss of future business
- Cost of a False Negative (C_{FN}): \$1,000. <- Incl. direct financial loss, potential regulatory fines, and reputational damagex

Model	TPR	FPR
Model #1 - Gradient Boosting	90.0%	3.4%
Model #2 - Random Forest	83.3%	1.75%

Values based on the optimal threshold found using Youden's J during the training stage

Model #1 - Boosting

- False Positives Cost = FPR * $(1 P_E)$ *N*C_{FP} = \$1,693,500
- False Negatives Cost = (1 TPR)*P_F*N*C_{FN} = \$500,000
- Total Cost = **\$2,193,500**

Model #2 - Random Forest

- False Positives Cost = FPR * $(1 P_F)*N*C_{FP} = $869,125$
- False Negatives Cost = $(1 TPR) * P_F * N * C_{FN} = $835,000$
- Total Cost = \$1,704,125

Verdict

Model #2 is significantly more cost-effective.

Higher false positive rate in Model #1 results in substantially higher costs.

Scope for further improvement

- Employ under sampling techniques to ensure that the model does not favor solely the majority class and prevent overfitting
- Further scope for feature engineering to simplify the model
 - Transaction frequency Using the time gap between the transactions as a predictor
 - Geolocation data Using the distance between merchant and cardholder as a predictor
- Perform a detailed cost analysis with different threshold (instead of Youden's J)
 - Lower threshold Ensures high TPR for sending alerts about potentially fraudulent activity
 - Higher threshold Ensures high precision for immediately blocking the card

Questions

Appendix 1.1 - About the dataset

- Gender Wise Split is identical in both Fraudulent and Legitimate Transactions
- Consistent Fraud Activity across all the days of the week

Appendix 1.2 - TPR/FPR comparison (on training data)

FPR is very low across all thresholds - similar to the trend in boosting

Might need to pick different threshold as per the business use case