$11a_{311} \ (K11a_{311})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{39} - u^{38} + \dots + 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 39 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{39} - u^{38} + \dots + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 3u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + 3u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} + 5u^{6} + 7u^{4} + 2u^{2} + 1 \\ -u^{8} - 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{7} - 9u^{15} - 31u^{13} - 50u^{11} - 37u^{9} - 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{4} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{7} - 9u^{15} - 31u^{13} - 50u^{11} - 37u^{9} - 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{17} - 9u^{15} - 31u^{13} - 50u^{11} - 37u^{9} - 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{17} - 9u^{15} - 31u^{13} - 50u^{11} - 37u^{9} - 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{17} - 9u^{15} - 31u^{13} - 50u^{11} - 37u^{9} - 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{27} - 15u^{25} + \cdots - 3u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \\ -u^{27} - 15u^{25} + \cdots - 3u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u^{7} + 18u^{5} + 4u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{17} + 10u^{15} + 39u^{13} + 74u^{11} + 71u^{9} + 38u$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{38} + 4u^{37} + \cdots 16u^2 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$u^{39} + u^{38} + \dots + 2u + 1$
c_3	$u^{39} - 9u^{38} + \dots - 112u + 17$
c_4, c_5, c_9 c_{10}	$u^{39} + u^{38} + \dots + 2u + 1$
c ₇	$u^{39} - u^{38} + \dots - 2u^2 + 1$
c_{8}, c_{11}	$u^{39} + 7u^{38} + \dots + 120u + 17$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$y^{39} + 35y^{38} + \dots + 4y - 1$
c_3	$y^{39} + 7y^{38} + \dots - 2076y - 289$
c_4, c_5, c_9 c_{10}	$y^{39} + 43y^{38} + \dots + 4y - 1$
<i>C</i> ₇	$y^{39} - y^{38} + \dots + 4y - 1$
c_8, c_{11}	$y^{39} + 23y^{38} + \dots + 3588y - 289$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.574160 + 0.594650I	2.26953 - 9.16193I	-4.31482 + 8.21466I
u = 0.574160 - 0.594650I	2.26953 + 9.16193I	-4.31482 - 8.21466I
u = -0.568267 + 0.567303I	-2.96795 + 5.55181I	-9.25872 - 7.70638I
u = -0.568267 - 0.567303I	-2.96795 - 5.55181I	-9.25872 + 7.70638I
u = -0.131849 + 0.785677I	6.72383 + 4.04302I	1.83134 - 4.62679I
u = -0.131849 - 0.785677I	6.72383 - 4.04302I	1.83134 + 4.62679I
u = -0.436022 + 0.604817I	4.84305 + 1.02619I	-1.08808 - 3.88143I
u = -0.436022 - 0.604817I	4.84305 - 1.02619I	-1.08808 + 3.88143I
u = 0.538839 + 0.511805I	-1.18645 - 1.89478I	-6.62379 + 3.07678I
u = 0.538839 - 0.511805I	-1.18645 + 1.89478I	-6.62379 - 3.07678I
u = 0.560794 + 0.470702I	-1.29404 - 1.89422I	-7.65532 + 4.23095I
u = 0.560794 - 0.470702I	-1.29404 + 1.89422I	-7.65532 - 4.23095I
u = -0.584786 + 0.399530I	-3.45995 - 1.60136I	-11.19941 + 0.98974I
u = -0.584786 - 0.399530I	-3.45995 + 1.60136I	-11.19941 - 0.98974I
u = 0.604755 + 0.364312I	1.59535 + 5.13986I	-6.25494 - 2.11218I
u = 0.604755 - 0.364312I	1.59535 - 5.13986I	-6.25494 + 2.11218I
u = 0.101809 + 0.665055I	1.37394 - 1.42753I	-1.59581 + 5.78078I
u = 0.101809 - 0.665055I	1.37394 + 1.42753I	-1.59581 - 5.78078I
u = 0.11689 + 1.44352I	7.31578 + 2.67288I	0
u = 0.11689 - 1.44352I	7.31578 - 2.67288I	0
u = -0.13315 + 1.47390I	2.59124 + 0.84756I	0
u = -0.13315 - 1.47390I	2.59124 - 0.84756I	0
u = -0.474394 + 0.165911I	3.63716 + 2.05070I	-5.79681 - 3.19622I
u = -0.474394 - 0.165911I	3.63716 - 2.05070I	-5.79681 + 3.19622I
u = 0.15150 + 1.50620I	5.20817 - 4.40207I	0
u = 0.15150 - 1.50620I	5.20817 + 4.40207I	0
u = 0.15186 + 1.53774I	5.65303 - 4.34476I	0
u = 0.15186 - 1.53774I	5.65303 + 4.34476I	0
u = -0.16892 + 1.55091I	4.08876 + 8.22597I	0
u = -0.16892 - 1.55091I	4.08876 - 8.22597I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.12882 + 1.56443I	12.14090 + 3.09884I	0
u = -0.12882 - 1.56443I	12.14090 - 3.09884I	0
u = 0.17317 + 1.56134I	9.4648 - 11.8941I	0
u = 0.17317 - 1.56134I	9.4648 + 11.8941I	0
u = 0.01653 + 1.57431I	8.97845 - 1.78659I	0
u = 0.01653 - 1.57431I	8.97845 + 1.78659I	0
u = -0.02567 + 1.59721I	14.7937 + 4.5566I	0
u = -0.02567 - 1.59721I	14.7937 - 4.5566I	0
u = 0.323111	-0.690035	-14.8490

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$u^{39} + u^{38} + \dots + 2u + 1$
c_3	$u^{39} - 9u^{38} + \dots - 112u + 17$
c_4, c_5, c_9 c_{10}	$u^{39} + u^{38} + \dots + 2u + 1$
c_7	$u^{39} - u^{38} + \dots - 2u^2 + 1$
c_8, c_{11}	$u^{39} + 7u^{38} + \dots + 120u + 17$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6	$y^{39} + 35y^{38} + \dots + 4y - 1$
c_3	$y^{39} + 7y^{38} + \dots - 2076y - 289$
c_4, c_5, c_9 c_{10}	$y^{39} + 43y^{38} + \dots + 4y - 1$
c_7	$y^{39} - y^{38} + \dots + 4y - 1$
c_8, c_{11}	$y^{39} + 23y^{38} + \dots + 3588y - 289$