Blue Smoke Team Hardware Project Design

Topology Options

- 1. Three-phase thyristor rectifier (SCR)
- 2. Three-phase diode rectifier + buck converter
- 3. Single-phase thyristor rectifier (SCR)
- 4. Single-Phase Diac-Controlled Triac Rectifer

Option 1: Three-phase Thyristor Rectifier (SCR)

Option 1: Three-phase Thyristor Rectifier (SCR)

Advantages	Disadvantages
 Higher average output voltage attainable 	 Requires firing circuits for six thyristors
 Less ripple compared to single- phase rectifier 	 Firing control must be synchronized with input AC voltage

Option 2: Diode Rectifier + Buck Converter

Option 2: Diode Rectifier + Buck Converter

Advantages	Disadvantages	
 Fast and accurate cor output is possible 	• Requires capacitor & inductor• Many components	

Option 3: Single-phase Thyristor Rectifier (SCR)

Option 3: Single-phase Thyristor Rectifier (SCR)

Advantages	Disadvantages
 Fewer thyristors compared to three-phase (4 vs 6) 	 Available output voltage is less compared to three-phase AC input
	 Still requires firing circuits for four thyristors
	 Firing control must be synchronized with input AC voltage

Single-Phase Diac-Controlled Triac Rectifer

Figure 1. Circuit Diagram from Littlefuse Application Note AN1003

Single-Phase Diac-Controlled Triac Rectifer

Single-Phase Diac-Controlled Triac Rectifer

Advantages	Disadvantages
Circuit is very simple with few componentsSingle control circuit needed	 Introduction of feedback control difficult to incorporate
Onigio dentito di date nodada	

Simulation Results

Simulation Results

Key Component Ratings

Maximum component stress from simulation results

- Triac: $V_{max} = 311 \text{ V}$, $I_{rms} = 17.6 \text{ A}$
- Diode Bridge: V_{max} = 306 V, I_{rms} = 12.5 A (per diode)
- Resistors: All < 1/4 W. (But Littlefuse application note recommends 1/2 W for R_3)
- Capacitors: < 60 V

Project Plan

- Complete bill of material
- Procure components (Direnc.net + Konya Sokak)
- Build prototype
- Test on increasing loads (load bank then motor)
- Troubleshoot & modify prototype as needed
- Once working prototype is obtained, as time allows
 - Consider modifications for feedback in firing circuit
 - Add remaining touches like enclosure, PCB, etc