# 머신러닝실습

머신러닝 기반 빅데이터 엔지니어링 과정 빅데이터 X Campus (단국대학교) 2018.08 데이터사이언스 학과 이성신 석사과정

#### 주요 단계



- 큰 그림 그려보기
- 데이터를 구하기
- 데이터로부터 통찰을 얻기 위해 탐색하고 시각화하기
- 머신러닝 알고리즘을 위해 데이터를 준비
- 모델을 선택하고 훈련
- 모델을 상세하게 조정
- 솔루션을 제시
- 시스템을 론칭하고 모니터링하며 유지 보수하기

### 공개 데이터셋 종류



- 공개 데이터 저장소
  - UC 얼바인 머신러닝 저장소: <a href="http://archive.ics.uci.edu/ml/">http://archive.ics.uci.edu/ml/</a>
  - 캐글 데이터셋: http://www.kaggle.com/datasets
  - 아마존 AWS 데이터셋: http://aws.amazon.com/ko/datasets
- 메타 포털(공개 데이터 저장소가 나열되어 있음)
  - http://dataportals.org/
  - http://opendatamonitor.eu/
  - http://quandl.com
- 인기 있는 공개 데이터 저장소가 나열되어 있는 다른 페이지
  - 위키백과 머신러닝 데이터셋 목록: https://goo.gl/SJHN2k
  - Quora.com 질문: <a href="http://goo.gl/zDR78y">http://goo.gl/zDR78y</a>
  - 데이터셋 서브레딧: http://www.reddit.com/r/datasets

#### 데이터 분석



- statLib 저장소에 있는 캘리포니아 주택가격 데이터셋을 사용하여 데이 터를 분석
- 간단한 함수를 만들어서 데이터셋을 다운로드
- 함수를 만들어서 데이터셋을 다운로드 할 경우 데이터가 정기적으로 변경되면 최근 데이터가 필요할 때마다 스크립트를 실행하면 되니 유 용함!!
- 또는 데이터를 내려받는 일을 자동화하면 여러 기기에 데이터셋을 설 치해야 할 때도 편리

# 데이터 다운로드



- Fetch\_housing\_data()를 호출하면 코드를 실행하는 작업공간에 datasets/housing 디렉터리를 만듬
- Housing.tgz 파일을 내려받고 같은 디렉터리에 압축을 풀어 housing.csv 파일을 만듬

#### 데이터 다운로드

```
import os
import tarfile
from six.moves import urllib

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
        os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz")
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
    housing_tgz.close()
```

fetch\_housing\_data()

# 데이터 다운로드



- Fetch\_housing\_data()를 호출하면 코드를 실행하는 작업공간에 datasets/housing 디렉터리를 만듬
- Housing.tgz 파일을 내려받고 같은 디렉터리에 압축을 풀어 housing.csv
   파일을 만듬
   PC > 바탕화면 > aug\_lectures > 20180813\_examples > d



### 데이터 다운로드



- 다운로드가 안될경우
- 강의자료실에서 20180813\_실습 자료를 다운로드 후 >> datasets >> housing.csv 데이터셋 위치를 HOUSING\_PATH 에다가 입력

#### if not download:

1 HOUSING\_PATH = r'C:\Users\user\Desktop\aug\_lectures\20180813\_examples\datasets'

### 데이터 읽어오기



- Pandas 를 사용하여 데이터를 읽어오기
- 데이터를 읽는 부분도 함수로 만들기
  - load\_housing\_data()
- 이 함수는 모든 데이터를 담은 pandas의 DataFrame 객체를 반환

#### 데이터 읽어오기

```
import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path = os.path.join(housing_path, "housing.csv")
    return pd.read_csv(csv_path)

housing = load_housing_data()
housing.head()
```



• DataFame의 head() 메서드를 사용해서 처음 다섯 행을 확인

housing = load\_housing\_data()
housing.head()

|   | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_ho |
|---|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|-----------|
| 0 | -122.23   | 37.88    | 41.0               | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        |           |
| 1 | -122.22   | 37.86    | 21.0               | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        |           |
| 2 | -122.24   | 37.85    | 52.0               | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        |           |
| 3 | -122.25   | 37.85    | 52.0               | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        |           |
| 4 | -122.25   | 37.85    | 52.0               | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        |           |
| 4 |           |          |                    |             |                |            |            |               | <b>+</b>  |

- 각 행은 하나의 구역을 의미함
- 특성(column)은 longitude, latitude, housing\_median\_age, total\_rooms, total\_bedrooms, population, households, median\_income, median\_house\_value, ocean\_proximity 등 10개가 존재



• DataFrame의 info 메서드는 데이터에 대한 간략한 설명과 특히 전체 행수, 각 특성의 데이터 타입과 null이 아닌 값의 개수를 확인 할 수 있음

```
housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                      20640 non-null float64
latitude
                      20640 non-null float64
housing_median_age
                      20640 non-null float64
                    --20640 non-null float64
total_rooms
                      20433 non-null float64
total bedrooms
                      -20640 non-null float64
population
households
                      20640 non-null float64
                      20640 non-null float64
median_income
                      20640 non-null float64
median_house_value
                      20640 non-null object
ocean_proximity
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
```

total\_bedrooms 특성은 20433 개만 값이 존재. 207개의 구역 은 값이 없는것을 의미(null)



• DataFrame의 info 메서드는 데이터에 대한 간략한 설명과 특히 전체 행수, 각 특성의 데이터 타입과 null이 아닌 값의 개수를 확인 할 수 있음

```
housing.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                    20640 non-null float64
latitude
                    20640 non-null float64
housing_median_age
                    20640 non-null float64
                    20640 non-null float64
total_rooms
                    20433 non-null float64
total bedrooms
                    20640 non-null float64
population
                    20640 non-null float64
households
                    20640 non-null float64
median_income
median house value
                    20640 non-null float64
ocean_proximity
                    20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
                                            ocean proximity 필드만 빼고
                                            모든 특성은 float64형(숫자형)
```



• head() 함수를 사용해서 확인해봤을때 열의 값이 반복되는 것으로 보아 서 이 특성은 아마도 범주형(categorical) 일 것임.

| ısing_me                                                                                                                | edian_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value | ocean_proximity |
|-------------------------------------------------------------------------------------------------------------------------|-----------|-------------|----------------|------------|------------|---------------|--------------------|-----------------|
|                                                                                                                         | 41.0      | 880.0       | 129.0          | 322.0      | 126.0      | 8.3252        | 452600.0           | NEAR BAY        |
|                                                                                                                         | 21.0      | 7099.0      | 1106.0         | 2401.0     | 1138.0     | 8.3014        | 358500.0           | NEAR BAY        |
|                                                                                                                         | 52.0      | 1467.0      | 190.0          | 496.0      | 177.0      | 7.2574        | 352100.0           | NEAR BAY        |
|                                                                                                                         | 52.0      | 1274.0      | 235.0          | 558.0      | 219.0      | 5.6431        | 341300.0           | NEAR BAY        |
|                                                                                                                         | 52.0      | 1627.0      | 280.0          | 565.0      | 259.0      | 3.8462        | 342200.0           | NEAR BAY        |
| 4                                                                                                                       |           |             |                |            |            |               |                    |                 |
| housing.info()                                                                                                          |           |             |                |            |            |               |                    |                 |
| <class 'pandas.core.frame.dataframe'=""> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 10 columns):</class> |           |             |                |            |            |               |                    |                 |



• 어떤 카테고리가 있고 각 카테고리마다 얼마나 많은 구역이 있는지 value\_counts()메서드로 확인

```
housing["ocean_proximity"].value_counts()

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean_proximity, dtype: int64
```



• describe() 메서드를 사용하여 숫자형 특성의 요약 정보를 확인

|       | longitude    | latitude     | housing_median_age | total_rooms  | total_bedrooms | population   | households   | median_i |
|-------|--------------|--------------|--------------------|--------------|----------------|--------------|--------------|----------|
| count | 20640.000000 | 20640.000000 | 20640.000000       | 20640.000000 | 20433.000000   | 20640.000000 | 20640.000000 | 20640.0  |
| mean  | -119.569704  | 35.631861    | 28.639486          | 2635.763081  | 537.870553     | 1425.476744  | 499.539680   | 3.1      |
| std   | 2.003532     | 2.135952     | 12.585558          | 2181.615252  | 421.385070     | 1132.462122  | 382.329753   | 1.8      |
| min   | -124.350000  | 32.540000    | 1.000000           | 2.000000     | 1.000000       | 3.000000     | 1.000000     | 0.4      |
| 25%   | -121.800000  | 33.930000    | 18.000000          | 1447.750000  | 296.000000     | 787.000000   | 280.000000   | 2.       |
| 50%   | -118.490000  | 34.260000    | 29.000000          | 2127.000000  | 435.000000     | 1166.000000  | 409.000000   | 3.4      |
| 75%   | -118.010000  | 37.710000    | 37.000000          | 3148.000000  | 647.000000     | 1725.000000  | 605.000000   | 4.3      |
| max   | -114.310000  | 41.950000    | 52.000000          | 39320.000000 | 6445.000000    | 35682.000000 | 6082.000000  | 15.0     |
|       | 배브의          |              |                    |              |                |              |              | <b>+</b> |

### 히스토그램 그려보기



- 데이터의 형태를 빠르게 검토하는 다른 방법은 각 숫자형 특성을 히스 토그램으로 그려보는 것
- 특성마다 따로 히스토그램을 그릴 수도 있고 전체 데이터셋에 대해 hist() 메서드를 호출하면 모든 숫자형 특성에 대한 히스토그램을 출력

#### 히스토그램 그려보기



### 히스토그램 그려보기



- 데이터의 형태를 빠르게 검토하는 다른 방법은 각 숫자형 특성을 히스 토그램으로 그려보는 것
- 특성마다 따로 히스토그램을 그릴 수도 있고 전체 데이터셋에 대해 hist() 메서드를 호출하면 모든 숫자형 특성에 대한 히스토그램을 출력

#### 히스토그램 그려보기

| 이름                            | 수정한 날짜        | 유형               | 크기      |
|-------------------------------|---------------|------------------|---------|
| .ipynb_checkpoints            | 2018-08-13 오전 | 파일 폴더            |         |
| datasets                      | 2018-08-13 오전 | 파일 폴더            |         |
| 활 20180813_실습자료.pptx          | 2018-08-13 오전 | Microsoft PowerP | 1,195KB |
| 📄 20180813_실습코드.ipynb         | 2018-08-13 오전 | IPYNB 파일         | 75KB    |
| attribute_histogram_plots.png | 2018-08-13 오전 | PNG 파일           | 62KB    |
| 파이쩐기초_20180813실습.pptx         | 2018-08-07 오후 | Microsoft PowerP | 137KB   |

# 히스토그램 그려보기







- 임의의 난수를 발생하여 특정 %만큼 분리하기
- 이 방법 외에 사이킷런에 train\_test\_split() 또는 StraightKFold() 함수를 사용해서 만들 수 있음 (이 방법을 더 선호)





- 임의의 난수를 발생하여 특정 %만큼 분리하기
- 이 방법 외에 사이킷런에 train\_test\_split() 또는 StraightKFold() 함수를 사용해서 만들 수 있음 (이 방법을 더 선호)

```
# 일관된 출력을 위해 유사난수 초기화
np.random.seed(42)

import numpy as np

# 에시를 위해서 만든 것입니다. 사이킷런에는 train_test_split() 할수가 있습니다.
def split_train_test(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]

train_set, test_set = split_train_test(housing, 0.2)
print(len(train_set), "train +", len(test_set), "test")

16512 train + 4128 test
```

전체 데이터셋중 20%만큼 테스트 데이터셋으로 분리



- 사이킷런 함수를 사용한 학습과 테스트 데이터세트 만들기
- 무작위 샘플링 방식: train\_test\_split
  - Random seed 는 train\_test\_split 함수의 option으로 입력가능

```
from sklearn.model_selection import train_test_split
train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)
```

test\_set.head()

|       | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|-------|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 20046 | -119.01   | 36.06    | 25.0               | 1505.0      | NaN            | 1392.0     | 359.0      | 1.6812        |
| 3024  | -119.46   | 35.14    | 30.0               | 2943.0      | NaN            | 1565.0     | 584.0      | 2.5313        |
| 15663 | -122.44   | 37.80    | 52.0               | 3830.0      | NaN            | 1310.0     | 963.0      | 3.4801        |
| 20484 | -118.72   | 34.28    | 17.0               | 3051.0      | NaN            | 1705.0     | 495.0      | 5.7376        |
| 9814  | -121.93   | 36.62    | 34.0               | 2351.0      | NaN            | 1063.0     | 428.0      | 3.7250        |
| 4     |           |          |                    |             |                |            |            |               |



- BUT!! train\_test\_split 함수는 데이터셋이 충분히 크면 상관없지만 데이터가 작을 경우 문제가 생깁니다.
- 예를 들어 전체 인구를 대표할 수 있는 1,000명을 선택하여 설문조사를 한다고 할때, 전체 인구의 51.3%가 여성이고 48.7%가 남성이라면, 잘 구 성된 설문조사는 샘플에서도 이 비율을 유지해야합니다.
- 즉 여성은 513명, 남성은 487명이어야 하는데, 이를 계층적 샘플링 (Stratified sampling) 이라고 합니다.
- 기본 무작위 샘플링을 사용하면 49%보다 적거나 54%보다 많은 여성이 테스트 세트에 들어갈 확률이 12%이기 때문에 설문조사 결과를 크게 편향시키게 될 수 있습니다.



- 이제부터는...!
- 여러분이 부동산 회사에 막 고용된 데이터 과학자라고 가정하고 데이 터셋을 분석해봅시다.
- 부동산 전문가가 중간 소득이 중간 주택 가격을 예측하는 데 매우 중요 하다고 이야기해주었다고 가정해봅시다.
- 이 경우 테스트 세트가 전체 데이터셋에 있는 여러 소득 카테고리를 잘 대표해야 합니다.



- 중간 소득이 연속적인 숫자형 특성이므로 소득에 대한 카테고리 특성을 만들어야 합니다.
- 중간 소득 대부분은 \$20,000~\$50,000 사이에 모여 있지만 일부는 \$60,000를 넘기도 합니다.
- 계층별로 데이터셋에는 충분한 샘플 수가 있어야 합니다. 그렇지 않으면 계층의 중요도를 추정하는데 편향이 발생할 것입니다.
- 이 말은 너무 많은 계층으로 나누면 안된다는 뜻이고 각 계층이 충분히 커야 합니다.



 다음 코드는 중간 소득을 1.5로 나누고(소득의 카테고리 수를 제한하기 위해), ceil 함수를 사용하여 반올림해서 소득 카테고리 특성을 만들고 (이산적인 카테고리를 만들기 위해), 5보다 큰 카테고리를 5로 합칩니다.

```
# 소득 카테고리 개수를 제한하기 위해 1.5로 나눕니다.
housing["income_cat"] = np.ceil(housing["median_income"] / 1.5)
# 5 이상은 5로 레이블합니다.
housing["income_cat"].where(housing["income_cat"] < 5, 5.0. inplace=True)
housing["income cat"].value counts()
3.0
      7236
2.0
      6581
4.0
      3639
5.0
      2362
1.0
       822
Name: income cat. dtvpe: int64
```



• 이 소득 카테고리 히스토그램을 만들어서 확인해봅시다!

```
housing["income_cat"].hist()
save_fig('income_category_hist')
```





- 이제 소득 카테고리를 기반으로 계층 샘플링을 할 준비가 되었습니다.
- 사이킷런의 StratifiedShuffleSplit() 함수를 사용하여 계층 샘플링을 합니다.

```
from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]
```



 전체 데이터셋과 계층 샘플링으로 만든 테스트 세트에서 소득 카테고 리 비율을 비교해봅시다.

```
from sklearn.model_selection import train_test_split
def income_cat_proportions(data):
    return data["income_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
    "Overall": income_cat_proportions(housing),
    "Stratified": income_cat_proportions(strat_test_set),
    "Random": income_cat_proportions(test_set),
}).sort_index()

compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100

compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100

compare_props
```



- 계층 샘플링을 사용해서 만든 테스트 세트가 전체 데이터셋에 있는 소 득 카테고리의 비율과 거의 같습니다.
- 반면 일반 무작위 샘플링으로 만든 테스트 세트는 비율이 많이 달라졌습니다.

|     | Overall  | Random   | Stratified | Rand. %error | Strat. %error |
|-----|----------|----------|------------|--------------|---------------|
| 1.0 | 0.039826 | 0.040213 | 0.039729   | 0.973236     | -0.243309     |
| 2.0 | 0.318847 | 0.324370 | 0.318798   | 1.732260     | -0.015195     |
| 3.0 | 0.350581 | 0.358527 | 0.350533   | 2.266446     | -0.013820     |
| 4.0 | 0.176308 | 0.167393 | 0.176357   | -5.056334    | 0.027480      |
| 5.0 | 0.114438 | 0.109496 | 0.114583   | -4.318374    | 0.127011      |



• 이제 income\_cat 특성을 삭제해서 데이터를 원래 상태로 되돌립시다!

```
for set_ in (strat_train_set, strat_test_set):
    set_.drop("income_cat", axis=1, inplace=True)
```



- 지금까지는 다뤄야할 데이터의 종류를 파악하기 위해 데이터를 간단하 게 살펴보았습니다. 이제 조금 더 깊이 파악해보겠습니다.
- 먼저 테스트 세트를 떼어놓고 훈련 세트에 대해서만 탐색을 하겠습니다.
- 훈련 세트를 손상시키지 않기 위해 복사본을 만들어서 사용합니다.

housing = strat\_train\_set.copy()



 지리정보(위도와 경도)가 있으니 모든 구역을 산점도로 만들어서 데이 터를 시각화 해봅시다.

```
1 ax = housing.plot(kind="scatter", x="longitude", y="latitude")
2 ax.set(xlabel='longitude', ylabel='latitude')
3 plt.savefig("bad_visualization_plot")
```





• 이 그림에서 특정 패턴을 찾기 힘들기 때문에 alpha 옵션을 0.1로 주어서 데이터 포인트가 밀집된 영역을 잘 표시해보기.

```
1 ax = housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.1)
2 ax.set(xlabel='longitude', ylabel='latitude')
3 plt.savefig("better_visualization_plot")
```





- 이제 주택가격을 나타내 보겠습니다.
- 원의 반지름은 구역의 인구를 나타내고(매개변수 s), 색깔은 가격을 나타냅니다.(매개변수 c).
- 여기에서는 미리 정의된 컬러맵 중 파란색(낮은 가격)에서 빨간색(높은 가격)까지 범위를 가지는 jet을 사용합니다. (매개변수 cmap)



```
housing.plot(kind="scatter", x="longitude", y="latitude",
    s=housing['population']/100, label="population",
    c="median_house_value", cmap=plt.get_cmap("jet"),
    colorbar=True, alpha=0.4, figsize=(10,7),
)
plt.legend()
save_fig("housing_prices_scatterplot")
plt.show()
```

Saving figure housing\_prices\_scatterplot





- 데이터셋이 너무 크지 않으므로 모든 특성 간의 표준 상관계수(standard correlation coefficient, 피어슨의 r 이라고도 부름)를 corr() 메서드를 이용 해서 쉽게 계산해보기
- 상관관계의 범위는 -1부터 1까지.
- 1에 가까우면 강한 양의 상관관계를 가진다는 뜻

```
corr_matrix = housing.corr()
corr matrix["median house value"].sort values(ascending=False)
median_house_value
                      1.000000
                     0.687160
median_income
                     0.135097
total_rooms
housing_median_age
                     0.114110
households.
                     0.064506
total_bedrooms
                   0.047689
population
                    -0.026920
                    -0.047432
longitude
                     -0.142724
latitude
Name: median_house_value, dtype: float64
```



- 특성 사이의 상관관계를 확인하는 다른 방법은 숫자형 특성 사이에 산점도를 그려주는 pandas의 scatter\_matrix 함수를 사용하는 것
- 아래 예시는 중간 주택 가격과 상관관계가 높아 보이는 특성 몇 개만 나 타낸 그림

```
from pandas.tools.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms", "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(11, 8))
save_fig("scatter_matrix_plot")
plt.show()
```

# 데이터 시각화





## 데이터 시각화



• 중간 주택 가격(median\_house\_value)을 예측하는 데 가장 유용할 것 같은 특성은 중간 소득(median\_income)이므로 상관관계 산점도를 확대해 보겠습니다.

```
housing.plot(kind="scatter", x="median_income", y="median_house_value",
alpha=0.1)
plt.axis([0, 16, 0, 550000])
plt.savefig("income_vs_house_value_scatterplot")
```



## 실험



- 머신러닝 알고리즘용 데이터를 실제로 준비하기 전에 마지막으로 해볼
   수 있는 것은 여러 특성의 조합을 시도해보는 것
- 예를 들어 특정 구역의 방 개수는 얼마나 많은 가구수가 있는지 모른다 면 그다지 유용하지 않음.
- 진짜 필요한 것은 가구당 방의 개수!!
- 유의미한 데이터셋을 만들어봅시다.

## 실험



• 새로운 bedrooms\_per\_room 특성은 전체 방 개수나 침대 개수보다 중간 주택 가격과의 상관관계가 훨씬 높습니다!!

```
housing["rooms_per_household"] = housing["total_rooms"] / housing["population"]
housing["bedrooms_per_room"] = housing["total_bedrooms"] / housing["total_rooms"]
housing["population_per_household"] = housing["population"] / housing["households"]
corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)
median_house_value
                            1.000000
median_income
                            0.687160
rooms_per_household
                            0.199429
total_rooms
                            0.135097
                            0.114110
housing_median_age
                            0.064506
households.
total_bedrooms
                            0.047689
population_per_household
                           -0.021985
                           -0.026920
population
longitude
                           -0.047432
latitude
                           -0.142724
                           -0.259984
bedrooms_per_room
Name: median_house_value, dtype: float64
```

## 데이터 시각화



• page 38과는 다른 형태의 데이터셋

```
housing.plot(kind="scatter", x="rooms_per_household", y="median_house_value", alpha=0.2)
plt.axis([0, 5, 0, 520000])
plt.show()
```



## 머신러닝 알고리즘을 위한 데이터 준비



- 머신러닝 알고리즘을 위한 데이터를 만드는 함수를 정의
- 함수로 정의해야 하는 이유
  - 어떤 데이터셋에 대해서도 데이터 변환을 손쉽게 반복할 수 있음
  - 향후 프로젝트에 사용할 수 있는 변환 라이브러리를 점진적으로 구축하게 됨
  - 실제 시스템에서 알고리즘에 새 데이터를 주입하기 전에 변환시키는 데 이 함수를 사용할 수 있음
  - 여러 가지 데이터 변환을 쉽게 시도해볼 수 있고 어떤 조합이 가장 좋은지 확인하는 데 편리함

## 머신러닝 알고리즘을 위한 데이터 준비



- 훈련 세트로 복원하고(strat\_train\_set을 다시한번 복사)
- 예측 변수와 타깃 값에 같은 변형을 적용하지 않기 위해 예측 변수와 레이블을 분리
  - drop() 함수는 데이터 복사본을 만들며 start\_train\_set에는 영향을 주지 않음

```
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
```



• 머신러닝 알고리즘에 사용되는 데이터는 누락된 값을 처리하고 사용해 야 하기때문에, DataFrame의 dropna(), drop(), fillna() 메서드를 이용해서 간단하게 처리.

• dropna() 함수 사용

housing\_copy.dropna(subset=["total\_bedrooms"]) # option 1

|       | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|-------|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 18086 | -122.05   | 37.31    | 25.0               | 4111.0      | 538.0          | 1585.0     | 568.0      | 9.2298        |
| 16718 | -120.66   | 35.49    | 17.0               | 4422.0      | 945.0          | 2307.0     | 885.0      | 2.8285        |
| 13600 | -117.25   | 34.16    | 37.0               | 1709.0      | 278.0          | 744.0      | 274.0      | 3.7188        |
| 4     |           |          |                    |             |                |            |            |               |



### • drop() 함수사용

```
housing_copy = housing.copy().iloc[21:24]
housing_copy.drop("total_bedrooms", axis=1) # option 2
```

|       | longitude | latitude | housing_median_age | total_rooms | population | households | median_income | ocean_proximity |
|-------|-----------|----------|--------------------|-------------|------------|------------|---------------|-----------------|
| 18086 | -122.05   | 37.31    | 25.0               | 4111.0      | 1585.0     | 568.0      | 9.2298        | <1H OCEAN       |
| 16718 | -120.66   | 35.49    | 17.0               | 4422.0      | 2307.0     | 885.0      | 2.8285        | <1H OCEAN       |
| 13600 | -117.25   | 34.16    | 37.0               | 1709.0      | 744.0      | 274.0      | 3.7188        | INLAND          |

### • fillna() 함수 사용

```
housing_copy = housing.copy().iloc[21:24]
median = housing_copy["total_bedrooms"].median()
housing_copy["total_bedrooms"].fillna(median, inplace=True) # option 3
housing_copy
```

|       | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|-------|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 18086 | -122.05   | 37.31    | 25.0               | 4111.0      | 538.0          | 1585.0     | 568.0      | 9.2298        |
| 16718 | -120.66   | 35.49    | 17.0               | 4422.0      | 945.0          | 2307.0     | 885.0      | 2.8285        |
| 13600 | -117.25   | 34.16    | 37.0               | 1709.0      | 278.0          | 744.0      | 274.0      | 3.7188        |



- 사이킷런의 Imputer는 누락된 값을 손쉽게 다루도록 해줌
- 누락된 값을 특성의 중간값으로 대체한다고 지정하여 Imputer의 객체 를 생성
- 텍스트 특성인 ocean\_proximity를 제외한 모든 수치형 특성에 대해 imputer를 적용함
- imputer 객체의 fit() 메서드를 사용해 훈련 데이터에 적용

```
from sklearn.preprocessing import Imputer

imputer = Imputer(strategy='median')
housing_num = housing.drop("ocean_proximity", axis=1)
imputer.fit(housing_num)
X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns)
housing_tr.iloc[21:24]
```

|    | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|----|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 21 | -122.05   | 37.31    | 25.0               | 4111.0      | 538.0          | 1585.0     | 568.0      | 9.2298        |
| 22 | -120.66   | 35.49    | 17.0               | 4422.0      | 945.0          | 2307.0     | 885.0      | 2.8285        |
| 23 | -117.25   | 34.16    | 37.0               | 1709.0      | 278.0          | 744.0      | 274.0      | 3.7188        |



- 사이킷런의 Imputer는 누락된 값을 손쉽게 다루도록 해줌
- 누락된 값을 특성의 중간값으로 대체한다고 지정하여 Imputer의 객체 를 생성
- 텍스트 특성인 ocean\_proximity를 제외한 모든 수치형 특성에 대해 imputer를 적용함
- imputer 객체의 fit() 메서드를 사용해 훈련 데이터에 적용

```
from sklearn.preprocessing import Imputer

imputer = Imputer(strategy='median')
housing_num = housing_drop("ocean_proximity", axis=1)
-imputer-fit(housing_num)
X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns)
housing_tr.iloc[21:24]
```

imputer의 transform 메서드의 반환결과 는 numpy 이기 때문에 이를 pandas 의 DataFrame 형태로 되돌리기

|    | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|----|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 21 | -122.05   | 37.31    | 25.0               | 4111.0      | 538.0          | 1585.0     | 568.0      | 9.2298        |
| 22 | -120.66   | 35.49    | 17.0               | 4422.0      | 945.0          | 2307.0     | 885.0      | 2.8285        |
| 23 | -117.25   | 34.16    | 37.0               | 1709.0      | 278.0          | 744.0      | 274.0      | 3.7188        |



- 사이킷런의 Imputer는 누락된 값을 손쉽게 다루도록 해줌
- 누락된 값을 특성의 중간값으로 대체한다고 지정하여 Imputer의 객체 를 생성
- 텍스트 특성인 ocean\_proximity를 제외한 모든 수치형 특성에 대해 imputer를 적용함
- imputer 객체의 fit() 메서드를 사용해 훈련 데이터에 적용

```
from sklearn.preprocessing import Imputer

imputer = Imputer(strategy='median')
housing_num = housing.drop("ocean_proximity", axis=1)
imputer.fit(housing_num)

X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns)
housing_tr.iloc[21:24]
```

|    | longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income |
|----|-----------|----------|--------------------|-------------|----------------|------------|------------|---------------|
| 21 | -122.05   | 37.31    | 25.0               | 4111.0      | 538.0          | 1585.0     | 568.0      | 9.2298        |
| 22 | -120.66   | 35.49    | 17.0               | 4422.0      | 945.0          | 2307.0     | 885.0      | 2.8285        |
| 23 | -117.25   | 34.16    | 37.0               | 1709.0      | 278.0          | 744.0      | 274.0      | 3.7188        |

## 텍스트와 범주형 특성 다루기



- 대부분의 머신러닝 알고리즘은 숫자형 데이터를 다루므로 이 카테고리를 텍스트에서 숫자로 바꾸도록 하겠습니다.
- 사이킷런에서 LabelEncoder함수를 사용하여 텍스트형 데이터를 숫자형으로 바꿔보겠습니다.

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
housing_cat = housing["ocean_proximity"]
housing_cat_encoded = encoder.fit_transform(housing_cat)
housing_cat_encoded
array([0, 0, 4, ..., 1, 0, 3])

print(encoder.classes_)
['<IH OCEAN' 'INLAND' 'ISLAND' 'NEAR BAY' 'NEAR OCEAN']</pre>
```

## 원-핫 인코딩



- 이 표현 방식의 문제는 머신러닝 알고리즘이 가까이 있는 두 값이 떨어져 있는 두 값보다 더 비슷하다고 생각한다는 점
- 예를 들어서 카테고리 0과 1보다 카테고리 0과 4가 더 비슷
- 이러한 문제는 일반적으로 카테고리별 이진 특성을 만들어서 해결
- 카테고리가 <1H OCEAN 일때는 한 특성이 1이고 그외 특성은 0, 카테고 리가 INLAND 일 때는 다른 한 특성이 1이되고 그 외 특성은 0으로
- 한 특성만 1이고(핫) 나머지는 0이므로 이를 원-핫 인코딩(one-hot encoding)이라고 부름

### 원-핫 인코딩



• 사이킷런은 숫자로 된 범주형 값을 원-핫 벡터로 바꿔주는 OneHotEncoder를 제공함

## 특성 스케일링



- 데이터에 적용할 가장 중요한 변환 중 하나가 특성 스케일링(feature scaling) 입니다.
- 모든 특성의 범위를 같도록 만들어주는 방법으로 min-max 스케일링(정 규화라고도 불림) 과 표준화(standardization)가 널리 사용됩니다.
- min-max 스케일링은 0~1 범위에 들도록 값을 이동하고 스케일을 조정 하면 됨.
- 사이킷런에는 이에 해당하는 MinMaxScaler 함수를 제공
  - 0~1 사이를 원하지 않는다면 feature\_range 매개변수로 범위를 변경할 수 있음

## 특성 스케일링



- 표준화는 데이터에서 먼저 평균을 뺀 후 표준편차로 나누어 결과 분포 의 분산이 1이 되도록 함.
- min-max 스케일링과는 달리 표준화는 범위의 상한과 하한이 없어 어떤 알고리즘에서는 문제가 될 수 있음.( 신경망에서는 종종 입력값의 범위 를 0~1사이로 기대함)
- 그러나 표준화는 이상치에 영향을 덜 받음
- 사이킷런에서는 표준화를 위한 StandardScaler 함수를 제공

## 변환 파이프라인



- 앞서 보았듯이 변환 단계가 많으며 정확한 순서대로 실행되어야 합니다.
- 다행히 사이킷런에는 연속된 변환을 순서대로 처리할 수 있도록 도와 주는 Pipeline 클래스가 있습니다.

## 변환 파이프라인



### 수치 전처리를 위한 파이프라인 만들기

```
from sklearn.pipeline import Pipeline
    from sklearn.preprocessing import StandardScaler
    num pipeline = Pipeline([
            ('imputer', Imputer(strategy="median")),
            ('attribs_adder', CombinedAttributesAdder()),
            ('std scaler', StandardScaler()).
        1)
 q
10 | housing_num_tr = num_pipeline.fit_transform(housing num)
    housing_num_tr
array([[-1.15604281. 0.77194962. 0.74333089. .... -0.31205452.
       -0.08649871, 0.15531753],
      [-1.17602483, 0.6596948 , -1.1653172 , ..., 0.21768338,
       -0.03353391, -0.83628902],
      [ 1.18684903, -1.34218285, 0.18664186, ..., -0.46531516,
       -0.09240499, 0.4222004],
      [ 1.58648943, -0.72478134, -1.56295222, ..., 0.3469342 ,
       -0.03055414, -0.52177644],
      [ 0.78221312, -0.85106801, 0.18664186, .... 0.02499488.
        0.06150916, -0.30340741],
      [-1.43579109, 0.99645926, 1.85670895, ..., -0.22852947,
       -0.09586294. 0.1018056711)
```

## ColumnTransformer를 이용한 방법



#### housing prepared

1 housing\_prepared.shape

(16512, 16)



### • 선형회귀모델

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(housing_prepared, housing_labels)
LinearRegression(copy_X=True, fit_intercept=True, n_iobs=1, normalize=False)
# let's try the full pipeline on a few training instances
some_data = housing.iloc[:5]
some_labels = housing_labels.iloc[:5]
some_data_prepared = preparation_pipeline.transform(some_data)
print("Predictions: t", lin_reg.predict(some_data_prepared))
print("Labels:\text{\text{\text{t}}\text{\text{t}}", list(some_labels))
Predictions:
                  [ 210644,60459286 317768,80697211 210956,43331178
                                                                           59218, 98886849
  189747.558498791
                  [286600.0, 340600.0, 196900.0, 46300.0, 254500.0]
Labels:
```



### • RMSE측정

```
from sklearn.metrics import mean_squared_error

housing_predictions = lin_reg.predict(housing_prepared)
lin_mse = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse
```

68628.198198489219

- 대부분 구역의 중간 주택 가격은 \$120,000~\$ 265,000사이인데, 예측 오차가 \$68,628인것은 매우 만족스럽지 못한 결과
- 이는 모델이 훈련 데이터에 과소적합된 사례



• 결정트리 + 선형회귀 모델

```
from sklearn.tree import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels, housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse
```

- rmse 가 0? 이것은 모델이 데이터에 너무 심하게 과대적합된 것
- 모델이 론칭할 준비가 되기 전까지 테스트 세트는 사용하지 않으려 하므로 훈련 세트의 일부분으로 훈련을 하고 다른 일부분은 모델 검증에 사용해야 합니다. >> 교차검증

## 교차검증



- 사이킷런의 교차검증 함수를 사용
- 훈련 세트를 폴드(fold)라 불리는 10개의 서브셋으로 무작위로 분할
- 그런 다음 결정트리 모델을 10번 훈련하고 평가하는데, 매번 다른 폴드를 선택해 평가에 사용하고 나머지 9개 폴드는 훈련에 사용
- 10개의 평가점수가 담긴 배열이 결과가 됨



- 결정트리가 이전보다는 좋아보이지 않음 ㅠㅠ
- 교차검증으로 모델의 성능을 추정하는것 뿐만 아니라 이 추정이 얼마 나 정확한지(즉 표준편차)를 측정할 수 있음.
- 결정트리 점수가 대략 71.379 +- 2,458 사이



### • 선형회귀 모델의 점수 계산

Scores: [ 66760.97371572 66962.61914244 70349.94853401 74757.02629506

68031.13388938 71193.84183426 64968.13706527 68261.95557897

71527.64217874 67665.10082067]

Mean: 69047.8379055

Standard deviation: 2735.51074287



- 랜덤 포레스트 회귀모델
  - 랜덤 포레스트와 선형회귀 모델을 모아서 하나의 모델을 만듬
  - = 앙상블 학습이라고 하며, 머신러닝 알고리즘의 성능을 극대화하는 방법 중 하나

```
from sklearn.ensemble import RandomForestRegressor

forest_reg = RandomForestRegressor()
  forest_reg.fit(housing_prepared, housing_labels)
  housing_predictions = forest_reg.predict(housing_prepared)
  forest_mse = mean_squared_error(housing_labels, housing_predictions)
  forest_rmse = np.sqrt(forest_mse)
  forest_rmse
```

22252, 738943108321



• 랜덤 포레스트 회귀의 점수 계산

```
from sklearn.model_selection import cross_val_score
forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,
                                scoring="neg_mean_squared_error", cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
display scores(forest rmse scores)
Scores: [ 52869.23106834 49189.93801195 51726.73647871 54995.98190463
 50979,93079904 55978,43765914 52283,7609046 51001,92227546
 54447, 35786983 53389, 944222831
Mean: 52686.3241195
Standard deviation: 1971.26547795.
scores = cross_val_score(lin_reg, housing_prepared, housing_labels, scoring="neg_mean_squared_error", cv=10)
pd.Series(np.sart(-scores)).describe()
            10.000000
count
        69047, 837905
mean
        2883.481504
std
        64968.137065
min
        67138.239562
25%
50%
        68146.544734
75%
      70982.868509
        74757.026295
max
dtype: float64
```



- 그리드 탐색
  - 만족할 만한 하이퍼파라미터 조합을 찾을 때까지 수동으로 하이퍼파라미 터를 조정하는 것
  - 하지만 이는 매우 지루한 작업이고 많은 경우의 수를 탐색하기에는 시간이 부족
  - 대신 사이킷런의 GridSearchCV를 사용하면 좋음
  - 탐색하고자 하는 하이퍼파라미터와 시도해볼 값을 지정하기만 하면 됨
- 다음 코드는 RandomForestRegressor에 대한 최적의 하이퍼파라미터 좋 바을 탐색함



- param\_grid 설정에 따라 사이킷런이 첫번째 dict()에 있는 n\_estimators 와 max\_features 하이퍼파라미터의 조합인 3x4 = 12개를 평가
- 그 다음 두번째 dict()에 있는 하이퍼파라미터의 조합인 2x3=6 개를 시도
- 하지만 두번째는 bootstrap 하이퍼파라미터를 True가아니라 False로 설 정
- 모든 파라미터를 합하면 18개 조합을 탐색하고, 각각 모델을 5번 훈련 시킴(5번의 교차검증을 사용하기 때문, cv=5)
  - 다시 말해서 전체 훈련 횟수는 18x5=90이 됨

# 모델세부튜닝(꽤시간걸림.....)



```
from sklearn.model selection import GridSearchCV
param_grid = [
        {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},
        {'bootstrap': [False], 'n estimators': [3, 10], 'max features': [2, 3, 4]},
forest_reg = RandomForestRegressor()
grid search = GridSearchCV(forest reg. param grid, cv=5, scoring='neg mean squared error')
grid search.fit(housing prepared, housing labels)
GridSearchCV(cv=5, error_score='raise',
       estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
           max features='auto', max leaf nodes=None.
           min_impurity_split=1e-07, min_samples_leaf=1,
           min samples split=2, min weight fraction leaf=0.0.
           n_estimators=10, n_jobs=1, oob_score=False, random_state=None,
           verbose=0. warm start=False).
       fit_params={}, iid=True, n_jobs=1,
       param_grid=[{'max_features': [2, 4, 6, 8], 'n_estimators': [3, 10, 30]}, {'bootstrap': [False], 'max_feature
s': [2, 3, 4], 'n_estimators': [3, 10]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring='neg mean squared error', verbose=0)
```



• 훈련 시간은 꽤 오래 걸리지만, 다음과 같이 최적의 조합, 최적의 추정 기를 얻을수 있음



• 각 하이퍼파라미터 별 평가 점수도 확인 가능

```
cvres = grid_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print(np.sqrt(-mean_score), params)
64912.0351358 {'max_features': 2, 'n_estimators': 3}
55535,2786524 {'max features': 2, 'n estimators': 10}
52940.2696165 {'max_features': 2, 'n_estimators': 30}
60384.0908354 {'max_features': 4, 'n_estimators': 3}
52709.9199934 {'max_features': 4, 'n_estimators': 10}
50503.5985321 {'max_features': 4, 'n_estimators': 30}
59058.1153485 {'max_features': 6, 'n_estimators': 3}
52172,0292957 {'max_features': 6, 'n_estimators': 10}
49958,9555932 {'max_features': 6, 'n_estimators': 30}
59122,260006 {'max_features': 8, 'n_estimators': 3}
52441.5896087 {'max_features': 8, 'n_estimators': 10}
50041.4899416 {'max_features': 8, 'n_estimators': 30}
62371,1221202 {'bootstrap': False, 'max_features': 2, 'n_estimators': 3}
54572.2557534 {'bootstrap': False, 'max_features': 2, 'n_estimators': 10}
59634.0533132 {'bootstrap': False, 'max_features': 3, 'n_estimators': 3}
52456,0883904 {'bootstrap': False, 'max_features': 3, 'n_estimators': 10}
58825,665239 {'bootstrap': False, 'max_features': 4, 'n_estimators': 3}
52012.9945396 {'bootstrap': False, 'max_features': 4, 'n_estimators': 10}
```



- 랜덤 탐색
  - 그리드 탐색 방법은 이전 예제와 같이 비교적 적은 수의 조합을 탐구할 때 괜찮습니다.
  - 하지만 하이퍼파라미터 탐색 공간이 커지면 RandomizedSearchCV를 사용하는 편이 더 좋습니다.
  - RandomizedSearchCV는 GridSearchCV와 거의 같은 방식으로 사용하지만 가능한 모든 조합을 시도하는 대신 각 반복마다 하이퍼파라미터에 임의의 수를 대입하여 지정한 횟수만큼 평가합니다.
    - 이 방법의 장점은 랜덤 탐색을 1,000회 반복하도록 실행하면 하이퍼파라미터 마다 각기 다른 1,000개의 값을 탐색합니다.
    - 단순히 반복 횟수를 조절하는 것만으로 하이퍼파라미터 탐색에 투입할 컴퓨팅 자원을 제어할 수 있습니다.

# 모델 세부 튜닝(이건 시간이 더걸림....ㅠ)



```
from sklearn.model selection import RandomizedSearchCV
from scipy.stats import randint
param_distribs = {
        'n estimators': randint(low=1, high=200).
        'max_features': randint(low=1, high=8),
forest_reg = RandomForestRegressor()
rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
                                n iter=10, cv=5, scoring='neg mean squared error')
rnd_search.fit(housing_prepared, housing_labels)
RandomizedSearchCV(cv=5, error_score='raise',
          estimator=RandomForestRegressor(bootstrap=True, criterion='mse', max depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_split=1e-07, min_samples_leaf=1,
           min_samples_split=2, min_weight_fraction_leaf=0.0,
           n_estimators=10, n_iobs=1, oob_score=False, random_state=None,
           verbose=0, warm_start=False).
          fit_params={}, iid=True, n_iter=10, n_iobs=1,
          param_distributions={'max_features': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fd4fe486470
>, 'n_estimators': <scipy.stats._distn_infrastructure.rv_frozen object at 0x7fd4fe486cc0>},
          pre_dispatch='2*n_iobs', random_state=None, refit=True,
          return_train_score=True, scoring='neg_mean_squared_error',
          verbose=0)
```



```
cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print(np.sqrt(-mean_score), params)

50239.6442738 {'max_features': 3, 'n_estimators': 121}
50307.8432326 {'max_features': 3, 'n_estimators': 187}
49185.0150532 {'max_features': 6, 'n_estimators': 88}
49133.3305418 {'max_features': 5, 'n_estimators': 137}
49021.6318804 {'max_features': 7, 'n_estimators': 197}
49636.8878839 {'max_features': 6, 'n_estimators': 39}
52273.457854 {'max_features': 2, 'n_estimators': 50}
54413.8506712 {'max_features': 1, 'n_estimators': 184}
51953.3364641 {'max_features': 2, 'n_estimators': 71}
49174.1414792 {'max_features': 6, 'n_estimators': 140}
```