

Incremental Learning for 'more challenging' systems

Sander Vandenhaute

advisor: Veronique Van Speybroeck

activated processes are everywhere

nanoporous materials

collective variable:

pore volume

perovskites

collective variable:

strain tensor

zeolite catalysis

collective variable:

coordination numbers

the key challenge: data generation!

first principles MD is demonstrably inefficient

"incremental learning"

interleave training with short (multiple-walker) sampling

isobutene <> carbenium ion <> surface alkoxide

isobutene <> carbenium ion <> surface alkoxide

incremental learning for multiple materials?

transferability towards 'unseen' combinations!

example: mechanical properties

... exploit automatic differentiation!

$$C_{ij} \sim \left(\frac{\partial^2 U}{\partial \epsilon_i \partial \epsilon_j} \right)_{\substack{ ext{optimized positions}}}$$

$$C \sim H_{\epsilon\epsilon} - H_{\epsilon r} H_{rr}^{-1} H_{\epsilon r}^T$$

extended hessian:

achieves double precision!

can we easily predict transferability?

analyze final output layer!

contains all the information necessary to predict the atomic energy, in a low-dimensional space! (d~10)

thank you!

Veronique Van Speybroeck

Massimo Bocus
Pieter Dobbelaere
Simon DeKeyser
Tom Braeckevelt
Maarten Cools-Ceuppens
Sven M. J. Rogge
Toon Verstraelen

