

Classical & Statistical Thermodynamics PH2610 Problem Sheet 1

Hand in solutions to questions on this Problem Sheet to the Submission Box by the deadline stated on Moodle.

Heat engines & the second law

- 1. A scientist applies to a research council for a grant to develop a high-performance engine. She claims that it will extract 5 kJ of heat per cycle from a reservoir at T = 400 K, reject 3.5 kJ of heat per cycle to a reservoir at T = 300 K, and do 1.5 kJ of work per cycle on the surroundings. Would you recommend funding?
- 2. A refrigerator is to freeze 150 g of water at 0 °C in one minute, the ambient temperature being 20 °C. Calculate in Watts the minimum motor power required. [The specific latent heat of fusion of water is 333 kJ kg⁻¹.]
- 3. A building is to be maintained at some internal temperature T_1 by a heat pump operating between this temperature and the lower ambient temperature T_2 . The rate of heat loss from the building is proportional to the temperature difference $T_1 T_2$ and is given by

$$\frac{dQ}{dt} = c(T_1 - T_2)$$

where the constant c = 0.8 kW K⁻¹. Given that the heat pump is driven by a 2 kW motor, calculate the lowest external temperature at which the interior can be maintained at 20 °C.