Introduction to SAS Vectors and Matrices

Lecture 2

August 31, 2005 Multivariate Analysis

Lecture #2 - 8/31/2005 Slide 1 of 55

Today's Lecture

Overview
Today's Lecture
Introduction to SAS
Matrix Algebra
Algebra
Vector Definitions
Matrix Properties
Advanced Topics
Wrapping Up

■ Introduction to SAS.

■ Vectors and Matrices (Supplement 2A - augmented with SAS *proc iml*).

Lecture #2 - 8/31/2005 Slide 2 of 55

SAS

■ To start SAS, on a Windows PC, go to Start...All Programs...The SAS System...The SAS System for Windows V8.

Lecture #2 - 8/31/2005 Slide 3 of 55

Main Program Window

■ The SAS program looks like this (some helpful commands are shown with the arrows):

Lecture #2 - 8/31/2005 Slide 4 of 55

SAS Editor

Overview Introduction to SAS Main Program Window SAS Editor SAS Code First SAS Program ● Run SAS Data Libraries SAS Procedures Matrix Algebra Algebra Vector Definitions Matrix Properties Advanced Topics Wrapping Up

- To run SAS you must create a file of SAS code, which the SAS processor reads and uses to run the program.
- Simply type your SAS code into the Program Editor window.
- For our example today, we will create (and save to) a new SAS code file, so to do that be sure to have your curser inside of the editor window and go to File...Save...
- SAS code files usually end with the extension *.sas.

Lecture #2 - 8/31/2005 Slide 5 of 55

SAS Code Basics

Overview Introduction to SAS Main Program Window SAS Editor SAS Code First SAS Program ● Run SAS Data Libraries SAS Procedures

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- For use in day-to-day statistical applications, SAS code consists of two components:
 - Data steps (where data input usually happens.
 - Proc steps (where statistical analyses usually happen.
- General exceptions to these rules exist.
- All statements terminate with a semicolon (this is usually where errors can occur).
- Commented code can begin with:
 - An asterisk (*) for single lines terminated with a semicolon.
 - /* for multiple lines, terminated with an ending */.
- Enough talk...how about an example? Type the following into the SAS Editor:

Lecture #2 - 8/31/2005 Slide 6 of 55

First SAS Program

```
title 'First SAS Program';
data example1;
input id gender $ age;
cards;
1 F 23
2 M 20
3 F 18
4 F .
5 M 19
6 M 21
7 M 25
8 F 24
9 F 20
10 M 22
proc print;
var id gender age;
run;
```

Lecture #2 - 8/31/2005 Slide 7 of 55

First SAS Program

Notice the color scheme of the SAS Enhanced Editor (note: if you do not see color, do not panic, you may not have the Enhanced Editor installed).

```
Editor - Untitled1 -
   title 'First SAS Program';
  data example1;
   input id gender $ age;
   cards;
   1 F 23
   2 M 20
   3 F 18
   4 F .
   5 M 19
   6 M 21
   8 F 24
   9 F 20
   10 M 22
 proc print;
   var id Gender age;
   run;
```

- Items in light blue are command words (like "input" or "var".
- Items in dark blue are procedural words (like "proc," "data," or "run").

Overview

Introduction to SAS

- Main Program Window
- SAS Editor
- SAS Code

First SAS Program

- Run
- SAS Data Libraries
- SAS Procedures

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

Lecture #2 - 8/31/2005 Slide 8 of 55

Run the SAS Program

Overview

Introduction to SAS

Main Program Window

SAS Editor
SAS Code
First SAS Program
Run
SAS Data Libraries
SAS Procedures

Matrix Algebra

- To run the program you just entered, press the running man icon at the center of the top of the SAS main program.
- Once you press the "run" button, the log window will become active, giving you information about the program as it executes.
- In this window you will see errors (in red), or warnings (in green I think).
- As multivariate progresses, you will become aware of instances where warnings will be present because of problems in your analysis.
- Also now appearing is a new window called output...this is where the output of the procedure that was just run is displayed.

Advanced Topics

Vector Definitions

Matrix Properties

Algebra

Wrapping Up

Lecture #2 - 8/31/2005 Slide 9 of 55

SAS Data Libraries

Overview

Introduction to SAS

Main Program Window
SAS Editor
SAS Code
First SAS Program
Run
SAS Data Libraries
SAS Procedures

Matrix Algebra

Algebra

Matrix Properties

Advanced Topics

Wrapping Up

- The data set you just entered is now part of a SAS data library that can be referenced at any point during the remainder of the program.
- The default SAS data library is called "work," and can be accessed by clicking through the explorer window on the left hand side of the program.
- Double click on Libraries...Work...Example1 and you will see the data displayed in a grid.
- To familiarize you with SAS, here are some handouts (also available on the BlackBoard Site)...

Lecture #2 - 8/31/2005 Slide 10 of 55

SAS Procedures

- The bulk of the statistical work done in SAS is through procedure statements.
- Proc statements follow a flexible syntax that typically has the following:

```
proc -statement_name- data=-data_name- [options];
var [included variables];
[options];
run;
```

■ The names and options are all found in the SAS manual, which is freely (shhh) available online at:

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/main.htm

Lecture #2 - 8/31/2005 Slide 11 of 55

SAS Procedures Example

■ Using the Example1 data set, type the following into the editor:

```
proc sort data=example1;
by gender;
run;

proc univariate data=example1 plots;
by gender;
var age;
run;
```

■ The univariate procedure produces univariate statistics, the manual entry can be at found:

http://www.id.unizh.ch/software/unix/statmath/sas/sasdoc/proc/z0146802.htm

Lecture #2 - 8/31/2005 Slide 12 of 55

Matrix Introduction

Overview

Matrix Algebra

Introduction to SAS

Introduction

- Why?
- Definitions
- Matrix Computing
- Proc IML Basics
- Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- Imagine you are interested in studying the cultural differences in student achievement in high school.
- Your study gets IRB approval and you work hard to get parental approval.
- You go into school and collect data using many different instruments.
- You then input the data into your favorite stat package, like SAS (or MS Excel).
- How do you think the data is stored?

Lecture #2 - 8/31/2005 Slide 13 of 55

Why Learn Matrix Algebra?

Overview

Introduction to SAS

Matrix Algebra

Introduction

Why?

- Definitions
- Matrix Computing
- Proc IML Basics
- Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Nearly all multivariate techniques are founded in matrix algebra.
- Often times when statistics break down, the cause of the failure can be traced through matrix procedures.
- If you are trying to apply a new method, most of the technical statistical literature uses matrix algebra assuming a basic to advanced knowledge of matrices - you may need to read these articles.
- Have you seen:
 - \bullet (X'X)⁻¹X'y?
 - $\Lambda\Phi\Lambda' + \Psi$?
 - $\bullet \ \mathbf{F}_{1}\mathbf{F}_{2}\mathbf{F}_{3}\mathbf{L}\mathbf{F}_{3}^{-1}\mathbf{F}_{2}^{-1}\mathbf{P}(\mathbf{F}_{2}^{-1})'(\mathbf{F}_{3}^{-1})'\mathbf{L}'\mathbf{F}_{3}'\mathbf{F}_{2}'\mathbf{F}_{1}' + \mathbf{U}^{2}?$
- Warning: using matrix algebra lingo is a great way to end conversations or break up parties.

Definitions

Overview

Introduction to SAS

Matrix Algebra

Introduction

Why?

Definitions

Matrix Computing

Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ We begin this class with some general definitions (from dictionary.com):

Matrix:

- 1. A rectangular array of numeric or algebraic quantities subject to mathematical operations.
- 2. The substrate on or within which a fungus grows.

◆ Algebra:

- 1. A branch of mathematics in which symbols, usually letters of the alphabet, represent numbers or members of a specified set and are used to represent quantities and to express general relationships that hold for all members of the set.
- 2. A set together with a pair of binary operations defined on the set. Usually, the set and the operations include an identity element, and the operations are commutative or associative.

Lecture #2 - 8/31/2005 Slide 15 of 55

Proc IML

Overview

Introduction to SAS

Matrix Algebra

Introduction

Why?

Definitions

Matrix Computing

Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- To help demonstrate the topics we will discuss today, I will be showing examples in SAS proc iml.
- The Interactive Matrix Language (IML) is a scientific computing package in SAS that typically used for complicated statistical routines.
- Of course, other matrix programs exist for many statistical applications MATLAB is very useful.
- SPSS and SAS both have matrix computing capabilities, but (in my opinion) neither are as efficient, as user friendly, or as flexible as MATLAB.
 - ◆ It is better to leave most of the statistical computing to the computer scientists.

Lecture #2 - 8/31/2005 Slide 16 of 55

Proc IML Basics

Overview

Introduction to SAS

Matrix Algebra

Introduction

- Definitions
- Matrix Computing

Proc IML Basics

Matrices

Algebra

• Why?

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- Proc IML is a proc step in SAS that runs without needing to use a preliminary data step.
- To use IML, make sure the following are placed in a SAS code file.

```
proc iml;
reset print;
quit;
```

- The "reset print;" line makes every result get printed in the output window.
- The IML code will go between the "reset print;" and the "quit;"

Lecture #2 - 8/31/2005 Slide 17 of 55

Matrices

Overview

Introduction to SAS

Matrix Algebra

- Introduction
- Why?
- Definitions
- Matrix Computing
- Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Away from the definition, a matrix is simply a rectangular way of storing data.
- Matrices can have unlimited dimensions, however for our purposes, all matrices will be in two dimensions:
 - ◆ Rows
 - Columns
- Matrices are symbolized by **boldface** font in text, usually with capital letters.

$$\mathbf{A} = \left[\begin{array}{ccc} 4 & 7 & 5 \\ 6 & 6 & 3 \end{array} \right]$$

Vectors

Overview
Introduction to SAS
Matrix Algebra
● Introduction
● Why?
Definitions
Matrix Computing
● Proc IML Basics
Matrices
Algebra
Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- A vector is a matrix where one dimension is equal to size one.
 - Column vector: A column vector is a matrix of size $r \times 1$.
 - Row vector: A row vector is a matrix of size $1 \times c$.
- Vectors allow for geometric representations of matrices.
- The Pearson correlation coefficient is a function of the angle between vectors.
- Much of the statistical theory underlying linear models (ANOVA-type) can be conceptualized by projections of vectors (think of the dependent variable Y as a column vector).
- Vectors are typically symbolized by **boldface** font in text, usually with lowercase letters.

Lecture #2 - 8/31/2005 Slide 19 of 55

Scalars

Overview

Introduction to SAS

Matrix Algebra

- Introduction
- Why?
- Definitions
- Matrix Computing
- Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- \blacksquare A scalar is a matrix of size 1×1 .
- Scalars can be thought of as any single value.
- The difficult concept to get used to is seeing a number as a matrix:

$$A = \left[2.759 \right]$$

Matrix Elements

Overview

Introduction to SAS

Matrix Algebra

- Introduction
- Why?
- Definitions
- Matrix Computing
- Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- A matrix is composed of a set of elements, each denoted it's row and column position within the matrix.
- For a matrix **A** of size $r \times c$, each element is denoted by:

$$a_{ij}$$

- The first subscript is the index for the rows: i = 1, ..., r.
- ◆ The second subscript is the index for the columns:

$$j=1,\ldots,c$$
.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1c} \\ a_{21} & a_{22} & \dots & a_{1c} \\ \vdots & \vdots & \vdots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rc} \end{bmatrix}$$

Transpose

Overview

Introduction to SAS

Matrix Algebra

- Introduction
- Why?
- Definitions
- Matrix Computing
- Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- The transpose of a matrix is simply the switching of the indices for rows and columns.
- An element a_{ij} in the original matrix (in the i^{th} row and j^{th} column) would be a_{ji} in the transposed matrix (in the j^{th} row and the i^{th} column).
- If the original matrix was of size $i \times j$ the transposed matrix would be of size $j \times i$.

$$\mathbf{A} = \left[\begin{array}{ccc} 4 & 7 & 5 \\ 6 & 6 & 3 \end{array} \right]$$

$$\mathbf{A}' = \left[\begin{array}{cc} 4 & 6 \\ 7 & 6 \\ 5 & 3 \end{array} \right]$$

Types of Matrices

Overview

Introduction to SAS

Matrix Algebra

- Introduction
- Why?
- Definitions
- Matrix Computing
- Proc IML Basics

Matrices

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Square Matrix: A matrix that as the same number of rows and columns.
 - Correlation and covariance matrices are examples of square matrices.
- Diagonal Matrix: A diagonal matrix is a square matrix with non-zero elements down the diagonal and zero values for the off-diagonal elements.

$$\mathbf{A} = \begin{bmatrix} 2.759 & 0 & 0 \\ 0 & 1.643 & 0 \\ 0 & 0 & 0.879 \end{bmatrix}$$

- Symmetric Matrix: A symmetric matrix is a square matrix where $a_{ij} = a_{ji}$ for all elements in i and j.
 - Correlation/covariance and distance matrices are examples of symmetric matrices.

Algebraic Operations

Overview Introduction to SAS Matrix Algebra Algebra Algebra Addition Subtraction Multiplication Identity Zero "Division" Singular Matrices **Vector Definitions** Matrix Properties **Advanced Topics** Wrapping Up

- As mentioned in the definition at the beginning of class, algebra is simply a set of math that defines basic operations.
 - ◆ Identity
 - ◆ Zero
 - Addition
 - Subtraction
 - Multiplication
 - Division
- Matrix algebra is simply the use of these operations with matrices.

Lecture #2 - 8/31/2005 Slide 24 of 55

Matrix Addition

Overview
Introduction to SAS
Matrix Algebra
Algebra
● Algebra
Addition
Subtraction
Multiplication
■ Identity
● Zero
● "Division"
Singular Matrices
Vector Definitions
Matrix Properties
Advanced Topics

Wrapping Up

- Matrix addition is very much like scalar addition, the only constraint is that the two matrices must be of the same size (same number of rows and columns).
- The resulting matrix contains elements that are simply the result of adding two scalars.

Lecture #2 - 8/31/2005 Slide 25 of 55

Matrix Addition

Overview

Introduction to SAS

Matrix Algebra

Algebra

Algebra

Addition

- Subtraction
- Multiplication
- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

$$\mathbf{A} = \left[egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \ a_{41} & a_{42} \end{array}
ight]$$

$$\mathbf{B} = \left[egin{array}{ccc} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \ b_{41} & b_{42} \end{array}
ight]$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \\ a_{31} + b_{31} & a_{32} + b_{32} \\ a_{41} + b_{41} & a_{42} + b_{42} \end{bmatrix}$$

IML Addition

Overview

Introduction to SAS

Matrix Algebra

Algebra

Algebra

Addition

- Subtraction
- Multiplication
- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

```
proc iml;
reset print;

A={10 15, 11 9, 1 -6};
B={5 2, 1 0, 10 7};
C=A+B;

quit;
```

Lecture #2 - 8/31/2005 Slide 27 of 55

Matrix Subtraction

Overview
Introduction to SAS
Matrix Algebra
Algebra
◆ Algebra
Addition
Subtraction
Multiplication
Identity
● Zero
• "Division"
Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- Matrix subtraction is identical to matrix addition, with the exception that all elements of the new matrix are the subtracted elements of the previous matrices.
- Again, the only constraint is that the two matrices must be of the same size (same number of rows and columns).
- The resulting matrix contains elements that are simply the result of subtracting two scalars.

Lecture #2 - 8/31/2005 Slide 28 of 55

Matrix Subtraction

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition

Subtraction

- Multiplication
- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

$$\mathbf{A} = \left[egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \ a_{31} & a_{32} \ a_{41} & a_{42} \end{array}
ight]$$

$$\mathbf{B} = \left[egin{array}{ccc} b_{11} & b_{12} \ b_{21} & b_{22} \ b_{31} & b_{32} \ b_{41} & b_{42} \end{array}
ight]$$

$$\mathbf{A} - \mathbf{B} = \begin{bmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \\ a_{31} - b_{31} & a_{32} - b_{32} \\ a_{41} - b_{41} & a_{42} - b_{42} \end{bmatrix}$$

IML Subtraction

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition

Subtraction

- Multiplication
- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

```
proc iml;
reset print;

A={10 15, 11 9, 1 -6};
B={5 2, 1 0, 10 7};
C=A-B;

quit;
```

Lecture #2 - 8/31/2005 Slide 30 of 55

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

- Unlike matrix addition and subtraction, matrix multiplication is much more complicated.
- Matrix multiplication results in a new matrix that can be of differing size from either of the two original matrices.
- Matrix multiplication is defined only for matrices where the number of columns of the first matrix is equal to the number of rows of the second matrix.
- The resulting matrix as the same number of rows as the first matrix, and the same number of columns as the second matrix.

$$\begin{array}{cccc} \mathbf{A} & \mathbf{B} & = & \mathbf{C} \\ (r \times \mathbf{c}) & (\mathbf{c} \times k) & & (r \times k) \end{array}$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23} \end{bmatrix}$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{B} = \left[egin{array}{ccc} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \end{array}
ight]$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23} \end{bmatrix}$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$$

$$\mathbf{B} = \left[egin{array}{cccc} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \end{array}
ight]$$

$$\mathbf{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\ a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\ a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23} \end{bmatrix}$$

IML Multiplication

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

```
proc iml;
reset print;

A={10 15, 11 9, 1 -6};
B={5 2, 1 0, 10 7};
C=A*T(B);
D=T(B)*(A);

quit;
```

Lecture #2 - 8/31/2005 Slide 33 of 55

Multiplication and Summation

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

Identity

"Division"

- Zero
- ---
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ Because of the additive nature induced by matrix multiplication, many statistical formulas that use:

$$\sum$$

can be expressed by matrix notation.

- For instance, consider a single variable X_i , with i = 1, ..., N observations.
- Putting the set of observations into the column vector \mathbf{X} , of size $N \times 1$, we can show that:

$$\sum_{i=1}^{N} X^2 = \mathbf{X}' \ \mathbf{X}$$

Matrix Multiplication by Scalar

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction

Multiplication

- Identity
- Zero "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

- Recall that a scalar is simply a matrix of size (1×1) .
- Matrix multiplication by a scalar causes all elements of the matrix to be multiplied by the scalar.
- The resulting matrix has all elements multiplied by the scalar.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \end{bmatrix} \quad s \times \mathbf{A} = \begin{bmatrix} s \times a_{11} & s \times a_{12} \\ s \times a_{21} & s \times a_{22} \\ s \times a_{31} & s \times a_{32} \\ s \times a_{41} & s \times a_{42} \end{bmatrix}$$

Identity Matrix

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction
- Multiplication

Identity

- Zero
- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ The identity matrix is defined as a matrix that when multiplied with another matrix produces that original matrix:

$$AI = A$$

$$IA = A$$

■ The identity matrix is simply a square matrix that has all off-diagonal elements equal to zero, and all diagonal elements equal to one.

$$\mathbf{I}_{(3\times3)} = \left| \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right|$$

Zero Matrix

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction
- Multiplication
- Identity

Zero

- "Division"
- Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ The zero matrix is defined as a matrix that when multiplied with another matrix produces the matrix:

$$A0 = 0$$

$$0 A = 0$$

■ The zero matrix is simply a square matrix that has all elements equal to zero.

$$\mathbf{0}_{(3\times3)} = \left| \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right|$$

Matrix "Division": The Inverse

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction
- Multiplication
- Identity
- Zero

"Division"

Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ Recall from basic math that:

$$\frac{a}{b} = \frac{1}{b}a = b^{-1}a$$

■ And that:

$$\frac{a}{a}=1$$

■ Matrix inverses are just like division in basic math.

The Inverse

Overview

Introduction to SAS

Matrix Algebra

Algebra

- Algebra
- Addition
- Subtraction
- Multiplication
- Identity
- Zero

"Division"

Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

■ For a square matrix, an inverse matrix is simply the matrix that when pre-multiplied with another matrix produces the identity matrix:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$$

- Matrix inverse calculation is complicated and unnecessary since computers are much more efficient at finding inverses of matrices.
- One point of emphasis: just like in regular division, division by zero is undefined.
- By analogy not all matrices can be inverted.

Singular Matrices

Overview

Introduction to SAS

Matrix Algebra

Algebra

Algebra

Addition

Subtraction

Multiplication

Identity
Zero

"Division"

Singular Matrices

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

- A matrix that cannot be inverted is called a *singular* matrix.
- In statistics, common causes of singular matrices are found by linear dependence among the rows or columns of a square matrix.
- Linear dependence can be cause by combinations of variables, or by variables with extreme correlations (either near 1.00 or -1.00).

Lecture #2 - 8/31/2005 Slide 40 of 55

Linear Combinations

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Linear Combinations

- Linear Dependencies
- Vector Length
- Inner Product
- Angle Between Vectors
- Vector Projections

Matrix Properties

Advanced Topics

Wrapping Up

Vectors can be combined by adding multiples:

$$\mathbf{y} = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_k \mathbf{x}_k$$

- The resulting vector, **y**, is called a linear combination.
- \blacksquare All for k vectors, the set of all possible linear combinations is called their span.

Linear Dependencies

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Linear Combinations

Linear Dependencies

- Vector Length
- Inner Product
- Angle Between Vectors
- Vector Projections

Matrix Properties

Advanced Topics

- A set of vectors are said to be linearly dependent if a_1, a_2, \ldots, a_k exist, and:
 - $\bullet \ a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \ldots + a_k \mathbf{x}_k = 0.$
 - a_1, a_2, \ldots, a_k are not all zero.
- Such linear dependencies occur when a linear combination is added to the vector set.
- Matrices comprised of a set of linearly dependent vectors are singular.
- A set of linearly independent vectors forms what is called a basis for the vector space.
- Any vector in the vector space can then be expressed as a linear combination of the basis vectors.

Vector Length

■ The length of a vector emanating from the origin is given by the Pythagorean formula:

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

- Linear Combinations
- Linear Dependencies

Vector Length

- Inner Product
- Angle Between Vectors
- Vector Projections

Matrix Properties

Advanced Topics

Wrapping Up

$$L_{\mathbf{X}} = \sqrt{x_1^2 + x_2^2 + \ldots + x_k^2}$$

Lecture #2 - 8/31/2005

Inner Product

■ The inner (or dot) product of two vectors **x** and **y** is the sum of element-by-element multiplication:

$$\mathbf{x}'\mathbf{y} = x_1y_1 + x_2y_2 + \ldots + x_ky_k$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

- Linear Combinations
- Linear Dependencies
- Vector Length

Inner Product

- Angle Between Vectors
- Vector Projections

Matrix Properties

Advanced Topics

Vector Angle

■ The angle formed between two vectors **x** and **y** is

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

- Linear Combinations
- Linear Dependencies
- Vector Length
- Inner Product

Angle Between Vectors

Vector Projections

Matrix Properties

Advanced Topics

$$cos(\theta) = \frac{\mathbf{x}'\mathbf{y}}{\sqrt{\mathbf{x}'\mathbf{x}}\sqrt{\mathbf{y}'\mathbf{y}}}$$

- If $\mathbf{x}'\mathbf{y} = 0$, vectors \mathbf{x} and \mathbf{y} are perpendicular, as noted by $\mathbf{x} \perp \mathbf{y}$
- All basis vectors are perpendicular.

Vector Projections

■ The projection of a vector **x** onto a vector **y** is given by:

Overview

Matrix Algebra

Algebra

Vector Definitions

Introduction to SAS

- Linear Combinations
- Linear Dependencies
- Vector Length
- Inner Product
- Angle Between Vectors

Vector Projections

Matrix Properties

Advanced Topics

Wrapping Up

$$rac{\mathbf{x}'\mathbf{y}}{L^2_{\mathbf{y}}}$$
y

- Through such projections, a set of linear independent vectors can be created from any set of vectors.
- One process used to create such vectors is through the Gram-Schmidt Process.

Lecture #2 - 8/31/2005 Slide 46 of 55

Matrix Properties

The following are some algebraic properties of matrices:

$$\blacksquare$$
 $(A + B) + C = A + (B + C)$ - Associative

$$\blacksquare$$
 A + B = B + A - Commutative

$$\mathbf{E} c(\mathbf{A} + \mathbf{B}) = c\mathbf{A} + c\mathbf{B}$$
 - Distributive

$$\blacksquare (c+d)\mathbf{A} = c\mathbf{A} + d\mathbf{A}$$

$$\blacksquare (\mathbf{A} + \mathbf{B})' = \mathbf{A}' + \mathbf{B}'$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Matrix Properties

The following are more algebraic properties of matrices:

$$\blacksquare c(AB) = (cA)B$$

$$\blacksquare$$
 A(BC) = (AB)C

$$\blacksquare A(B+C) = AB + AC$$

$$lacksquare$$
 $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$

$$\blacksquare$$
 $(AB)' = B'A'$

■ For \mathbf{x}_j such that $\mathbf{A}\mathbf{x}_j$ is defined:

$$ullet \sum_{j=1}^n \mathbf{A} \mathbf{x}_j = \mathbf{A} \sum_{j=1}^n \mathbf{x}_j$$

$$lack \sum_{j=1}^n (\mathbf{A}\mathbf{x}_j)(\mathbf{A}\mathbf{x}_j)' = \mathbf{A}\left(\sum_{j=1}^n \mathbf{x}_j\mathbf{x}_j'\right)\mathbf{A}'$$

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Advanced Matrix Functions/Operations

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Advanced Topics

- Determinants
- Orthogonality
- Eigenspaces
- Decompositions

Wrapping Up

- We end our matrix discussion with some advanced topics.
- All of these topics are related to multivariate analyses.
- None of these will seem too straight forward today, but next week we will use some of these results to demonstrate properties of sample statistics.

Lecture #2 - 8/31/2005 Slide 49 of 55

Matrix Determinants

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Advanced Topics

Determinants

- Orthogonality
- Eigenspaces
- Decompositions

Wrapping Up

A square matrix can be characterized by a scalar value called a determinant.

$$\det \mathbf{A} = |\mathbf{A}|$$

- Much like the matrix inverse, calculation of the determinant is very complicated and tedious, and is best left to computers.
- What can be learned from determinants is if a matrix is singular.
- Matrices with determinants that are greater than zero are said to be "positive definite," a byproduct of which is that a positive matrix is non-singular.

Lecture #2 - 8/31/2005 Slide 50 of 55

Matrix Orthogonality

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Advanced Topics
- Determinants

Orthogonality

- Eigenspaces
- Decompositions

Wrapping Up

■ A square matrix (A) is said to be *orthogonal* if:

$$AA' = A'A = I$$

- Orthogonal matrices are characterized by two properties:
 - 1. The product of all row vector multiples is the zero matrix (perpendicular vectors).
 - 2. For each row vector, the sum of all elements is one.

Eigenvalues and Eigenvectors

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Advanced Topics
- Determinants
- Orthogonality

Eigenspaces

Decompositions

Wrapping Up

A square matrix can be decomposed into a set of eigenvalues and eigenvectors.

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$$

- From a statistical standpoint:
 - Principal components are comprised of linear combination of a set of variables weighed by the eigenvectors.
 - ◆ The eigenvalues represent the proportion of variance accounted for by specific principal components.
 - ◆ Each principal component is orthogonal to the next, producing a set of uncorrelated variables that may be used for regression purposes.

Spectral Decompositions

■ Imagine that a matrix **A** is of size $k \times k$.

- A then has:
 - k eigenvalues: λ_i , $i = 1, \ldots, k$.
 - k eigenvectors: \mathbf{e}_i , $i = 1, \dots, k$ (each of size $k \times 1$.
- A can be expressed by:

$$\mathbf{A} = \sum_{i=1}^k \lambda_i \mathbf{e}_i \mathbf{e}_i'$$

- This expression is called the *Spectral Decomposition*, where
 A is decomposed into k parts.
- One can find \mathbf{A}^{-1} by taking $\frac{1}{\lambda}$ in the spectral decomposition.

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

- Advanced Topics
- Determinants
- Orthogonality
- Eigenspaces

Decompositions

Final Thought

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

Final Thought

Next Class

- The SAS learning curve is small, but once you have the basics, all you need is the manual and you can do almost anything.
- Proc IML is useful for matrices, but probably not so useful to you.

- Matrix algebra makes the technical things in life easier.
- The applications of matrices will be demonstrated throughout the rest of this course.

Lecture #2 - 8/31/2005 Slide 54 of 55

Next Time

Overview

Introduction to SAS

Matrix Algebra

Algebra

Vector Definitions

Matrix Properties

Advanced Topics

Wrapping Up

Final Thought

Next Class

- Applications of matrix algebra in statistics (Chapter 2 section six and on).
- Geometric implications of multivariate descriptive statistics (more applications).

Lecture #2 - 8/31/2005 Slide 55 of 55