线性代数

王丹阳

2020/7/22

目录

第一章	线性方程组	2
第二章	向量空间	3
2.1	预备知识-域	3

第一章 线性方程组

线性方程组是高等代数研究问题的起点 由对 n 元线性方程组的高斯消元法求解引入矩阵及其相关基本概念

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{s1}x_1 + \dots + a_{sn}x_n = b_s \end{cases}$$

第二章 向量空间

2.1 预备知识-域

运算说白了就由运算对象按照一定的运算法则生成运算结果。这样就很容易用映射来给出运算的数学定义

定义 2.1.1 对于非空集合 X,Y, 我们称映射 $\varphi: X \to Y$ 为从 X 到 Y 的一元运算, 当 X = Y 时, 称 φ 是定义在 X 上的一元 (代数)运算

定义 2.1.2 对于非空集合 X,Y,Z, 我们称映射 $\varphi: X\times Y\to Z$ 为从 $X\times Y$ 到 Z 的二元运算,当 X=Y=Z 时,称 φ 是定义在 X 上的二元(代数)运算

类似地可定义 n 元代数运算强调几个点:

- φ 只是一个抽象的运算符号,可以是任何东西,但数学中常用 $+,\cdot,*$ 等表示二元运算符
- 运算符的位置有前缀、中缀、后缀三种。常用的是中缀,例如将 $\circ(x,y)$ 写成 $\circ xy, x\circ y, xy\circ$
- 对于定义在非空集合 X 上的一个运算 *, 其封闭性显然已蕴含在定义中

在集合之上定义了运算之后,这种运算就赋予了集合元素之间一种代数结构,例如在 N之上定义了加法之后,就有 1+3=4,这就在这三个元素之间形成了结构

定义 2.1.3 设 * 是定义在非空集合 S 上的一个运算,则称二元组 (S,*) 为一个 (f) 有一个代数运算的)代数系

类似的,可以定义含更多个运算的代数系 对于含一个二元代数运算的代数系,我们关注该运算的交换律和结合律

定义 2.1.4 (交换律、结合律) 设 (X,*) 是一个代数系,* 是二元运算

- 若 $\forall a,b \in X$, 恒有 a*b=b*a, 则称 * 满足结合律
- 若 $\forall a, b, c \in X$, 恒有 (a*b)*c = a*(b*c),则称 * 满足结合律 同样的,二元代数运算的单位元素,以及由此引入的逆元素的概念同样很重要

第二章 向量空间 4

定义 2.1.5 (单位元素、逆元素) 设 (S,*) 是一个代数系,* 是二元运算

• $\exists e \in S$, 使得 $\forall a \in S$, 恒成立 e*a = a*e = a, 则称 e 为 * 的单位元素(也叫幺元,其中幺有数目中的一的含义)。类似地可以定义左单位元素和右单位元素的概念。

• 若 $\forall a \in S \exists b \in S$, 使得 a * b = b * a = e 则称 $b \neq a$ 在运算 e 下的逆元。

当一个代数系有两个二元代数运算时,这两个运算的交互能否满足分配律是我们关注的

定义 2.1.6 设 (S,*,+) 是一个代数系,*,+ 是二元运算,若 $\forall a,b,c \in S$,恒有 a*(b+c) = a*b+a*c,则称 * 对 + 满足左分配律,类似地可以定义右分配律,左右分配律都满足则称 * 对 + 满足分配律

有了上面的准备,我们可以着手定义域

定义 2.1.7 设 $(S,+,\cdot)$ 是一个代数系统, $+,\cdot$ 是二元运算(不妨分别称之为加法和乘法),则 $(S,+,\cdot)$ 是一个域当且仅当满足以下五个条件:

- 1. +,·满足交换律
- 2. +,·满足结合律
- 3. + . · 有单位元(不妨分别记作 0, 1)
- 4. $\forall x \in S$, 存在加法逆元; $x \neq 0$ 时, 存在乘法逆元
- 5. · 对 + 有分配律

进一步地,不妨将 a 的加法逆元记为 -a, 乘法逆元记为 a^{-1} ,将减法 - 和除法 ÷ 分别 定义为

$$a - b = a + (-b); a \div b = a \cdot b^{-1}$$

定理 2.1.1 由 a 是 -a 的加法逆元, 是 a^{-1} 的乘法逆元立即可得

- a = -(-a)
- $a = (a^{-1})^{-1}$

定理 2.1.2 (消去律) $(F, +, \cdot)$ 是一个域, $\forall a, b \in F$, 有

- <math><math> $a \cdot b = a \cdot c$ 且 $a \neq 0$, 则 b = c

推论 2.1.1 域中的单位元、逆元都唯一

定理 2.1.3 $(F, +, \cdot)$ 是一个域, $\forall a, b \in F$, 有

第二章 向量空间 5

- $a \cdot 0 = 0$
- $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$
- $(-a) \cdot (-b) = a \cdot b$

推论 2.1.2 域中的加法单位元没有乘法逆元