Taylor Larrecter
Dr. Collins
PHYS 262
HWI

Variable	Best Estimente	Probable Range		
Position, x	53.3	53.1 +0 53.5 (cm)		
Velocity, v	-13.5	-14.0 to -13.0 (cm/s)		
Acceleration, ou	93	90 to 96 (cm/s²)		

f = 0.2 cm f = -0.5 cm/s $f = 3 \text{ cm/s}^2$

a.)
$$\chi = 3.323 \pm 1.4 \, \text{mm}$$

$$X = 3.3 \pm 1.4 \text{ mm}$$

C.)
$$\lambda = 5.33 \times 10^{-7} \pm 3.21 \times 10^{-9} \text{m}$$

d.) (=0.000,000,538 ± 0.000,000,03 mm

2.12

Trial No.	Acceleration a (m/82)	Expected Acceleration 95in O(N/52)	Discrepancies	Uncertownty
1	2.04 ± 0.04	2.36 ±0.1	-0.32	± 0.14
2	3.58 ± 0.06	3.88 ± 0.08	-0.30	±0.14
3	4.32 ± 0.08	4.57±0.05	-0.25	± 0.13
4	4.85 ± 0.09	5.05±0.04	-0.20	±0.13
5	5.53 ± 0.01	5.72 ± 0.03	-0.19	±0.13

The discrepancies do not lie in the range of the uncertainty so we cannot say a is given by going

Since the data is close to or going through the error bors, this is consistent with the Claim.

2.23

L = 2 cm L = 2 cm C = 0.02 cm

The meterstick connot make this

Meter Stick: $Sl: \frac{1mm}{2} = 0.5mm$ Microscope: $Sl: \frac{0.1mm}{2} = 0.05mm$

The microscope can make this

0.250/0

2.27

x = 6.1234 F.u = 2%

6.1234.60.02) = 0.122468 1 sig Fig 0.1

6.1 ± 0.1 , 2 sig Figs

b.) y=1.1234 F.u= 20%

1.1234.0.02=0.022468

1.12 ± 0.02, 3 Sig Figs

a.) a= 11.5 ± 0.2cm b= 25.4 ± 0.2s q=ab

abest . best = 11.5 · 25.4 = 292.1 cm·s

uncertainty in a: $\frac{0a}{\alpha_{bot}} = \frac{0.7}{11.5} = 0.017391 = 1.739\%$

Uncertainty in b: $\frac{Jb}{b_{\text{test}}} = \frac{0.2}{25.4} = 0.007874 = 0.7874 \%$

absolute wicertainty: 1.739% + 0.7874% = 2.526%

292.1 x 0.025 = 7.3 = uncertainty

9 = 292 ± 7 cm·s

b.) a= 5.0m = 7% b= 3.0N = 1%

abest . bbest = 15 NM

uncertainty in a: $\frac{\int a}{a \text{ best}} = \frac{0.35}{5.0} = 0.07 = 7\%$

7% of 5.0 = 0.35

we retainty in b: $\frac{\int b}{bbest} = \frac{0.03}{3.0} = 0.01 = 100$

1% of 3.0 = 0.03

Obsolute uncertainty: 0.07 + 0.01 = 0.08 = 8%

15 N . 0.08 = 1.2 = uncertainty

9= 15 ± 1.2 N·m