Radio Frequency Exposure Report

On Behalf of

Graupner GmbH & Co. KG.

FCC ID: ZKZ-MC-16

Product Description: Computer System Graupner/SJ HoTT

Model No.: MC-16

Supplementary Model: N/A

Prepared for: Graupner GmbH & Co. KG.

Henriettenstr. 94-96 D-73230 Kirchheim/Teck GERMANY

Prepared by: **Bontek Compliance Testing Laboratory Ltd**

1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East

Road, Nanshan, Shenzhen, China

Tel: 86-755-86337020

Fax: 86-755-86337028

BCT12KR-2055E-2 Report No.: **Issue Date:**

December 9, 2012 November 9~December 9, 2012

Tested by:

Reviewed by:

Approved by:

Test Date:

TABLE OF CONTENTS

1 - GENERAL INFORMATION	3
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 OBJECTIVE	
1.3 GENERAL DESCRIPTION OF TEST	4
1.4 HUMAN EXPOSURE ASSESSMENT RESULTS	

Report No.: BCT12KR-2055E-2 Page 2 of 5

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Applicant:	Graupner GmbH & Co. KG	
Address of Applicant:	Henriettenstr. 94-96 D-73230 Kirchheim/Teck GERMANY	
Manufacturer:	SJ TECHNOLOGY(SHENZHEN) CO.,LTD	
Address of Manufacturer:	F6, 1 BLDG, A AREA, YINTIANXIFA INDUSTRIAL AREA, XIXIANG TOWN, BAOAN DISTRICT SHENZHEN, GUANGDONG PROVINCE, CHINA	

General Description of E.U.T

Items	Description	
EUT Description:	Computer System Graupner/SJ HoTT	
Model No.:	MC-16	
Trade Name:	НоТТ	
Supplementary Model:	N/A	
Frequency Band:	2404.056 MHz ~ 2474.025 MHz	
Channel Spacing:	1 MHz	
Number of Channels:	70	
Type of Modulation:	FHSS	
Antenna Type:	Built-in Antenna	
Rated Voltage:	Intput: 4.2VDC 0.8A	
Adapter description:	Model: N/A	
	Input: N/A	
	Output: N/A	

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Objective

The objective of the following report is used to demonstrate that EUT operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the relative provisions of FCC 47CFR Part 1.1307

Report No.: BCT12KR-2055E-2 Page 3 of 5

1.3 General Description of Test

Items	Description
EUT Frequency band	 ☐ FHSS: 2.400GHz ~ 2.483GHz ☐ WLAN: 2.400GHz ~ 2.483GHz ☐ WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz ☐ WLAN: 5.745GHz ~ 5825GHz ☐ Others:
Device category	☐Portable (<20cm separation) ☐Mobile (>20cm separation) ☐Others
Exposure classification	☐ Occupational/Controlled exposure (S = 5mW/cm2) ☐ General Population/Uncontrolled exposure (S=1mW/cm²) ☐ Others:
Antenna diversity	Single antenna ☐Multiple antennas: ☐Tx diversity ☐Rx diversity ☐Tx/Rx diversity
Max. output power	19.89dBm (0.0975W)
Antenna gain (Max)	0 dBi (Numeric gain:1)
Evaluation applied	
Note:	

- 1. The maximum output power is 19.65dBm (0.0923W) at 2404MHz (with 10 numeric antenna gain.)
- 2. For mobile or fixed location transmitters, no SAR consideration applied. The minimum separation generally be used is at least 20 cm, even if the calculations indicate that the MPE distance would be lesser.

1.4 Human Exposure Assessment Results

Calculation

Given
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$

Where E = Field Strength in Volts / meter

P = Power in Watts G=Numeric antenna gain d=Distance in meters

S=Power Density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = 100 * d(m)$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power Density in mW/cm^2$

EUT parameter (data from the separate report)	
Given $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$	Where G: numerical gain of transmitting antenna; TP: Transmitted power in watt; d: distance from the transmitting antenna in meter
Max average output power in Watt (TP)	19.89dBm (0.0975W)
Antenna gain (G)	0 dBi (Numeric gain: 1)
Minimum distance in meter (d) (from transmitting structure to the human body)	20cm (0.2m)

Yields

E =24.42V/m S=0.1581mW/cm²

Conclusion:

S=0.1836mW/cm2 is significant lower than the 1mW/cm2

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW / cm2 even if the calculation indicates that the power density would be larger.)