Generalidades importantes.
Procesos autorregresivos
Función de autoccorelación simple
Funcion de autocorrelación parcial

Autocorrelación Parcial.

N.Pérez-Medina

FING - UACH

Series de tiempo

Catedrático: M. C. Erick N. Grijalva

21 de marzo de 2025

- Generalidades importantes.
- Procesos autorregresivos
 - ullet Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

- Generalidades importantes.
- Procesos autorregresivos
 - Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- 4 Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

Generalidades importantes.
Procesos autorregresivos
Función de autoccorelación simple
Funcion de autocorrelación parcial
Gracias

Definición

Los **Modelos autorregresivos (AR)** son un tipo básico de *modelos de procesos estacionarios*.

Generalidades importantes.
Procesos autorregresivos
Función de autoccorelación simple
Funcion de autocorrelación parcial
Gracias.

Definición

Los **Modelos autorregresivos (AR)** son un tipo básico de *modelos de procesos estacionarios.*^a

^aSeries de tiempo cuyas *propiedades estadísticas* (media, varianza y autocorrelación) se mantienen **constantes** en el tiempo.

Generalidades importantes.
Procesos autorregresivos
Función de autoccorelación simple
Funcion de autocorrelación parcial
Gracias.

Premisa general.

Los valores actuales dependen *en cierta medida* de valores previos.

- Función de autocovarianza
- Función de autocorrelación

- Función de autocovarianza: mide la relación entre valores de la serie en distintos momentos del tiempo.
- Función de autocorrelación

- Función de autocovarianza: mide la relación entre valores de la serie en distintos momentos del tiempo.
- Función de autocorrelación: normaliza la autocovarianza para expresar la relación en términos de correlación, facilitando su interpretación.

En resumen.

Premisa general.

Los valores actuales dependen *en cierta medida* de valores previos.

- Función de autocovarianza: mide la relación entre valores de la serie en distintos momentos del tiempo.
- Función de autocorrelación: normaliza la autocovarianza para expresar la relación en términos de correlación, facilitando su interpretación.

Generalidades importantes.
Procesos autorregresivos
Función de autoccorelación simple
Funcion de autocorrelación parcial
Gracias.

Observación

Ambas funciones *extienden* los conceptos clásicos de covarianza y correlación.

Pero

En lugar de aplicarse entre dos variables diferentes, estamos modelando la relación lineal entre valores pasados y presentes.

- Generalidades importantes
- Procesos autorregresivos
 - Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- 4 Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

AR(1)

Definición

Diremos que una serie sigue un *Proceso autoregresivo de primer orden*, si su variabilidad puede describirse a través de:

$$z_t = c + \phi z_{t-1} + a_t \tag{1}$$

$$con -1 < \phi < 1$$

- c: Captura el efecto de la media en la serie.
- φ: Coeficiente que determina la influencia de los valores pasados en el valor presente.
- a_t: Término de ruido blanco

AR(2)

Definición

Diremos que una serie sigue un *Proceso autoregresivo de segundo orden*, si su variabilidad puede describirse a través de:

$$z_t = c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + a_t \tag{2}$$

- c: Captura el efecto de la media en la serie.
- ϕ_1 y ϕ_2 : Coeficientes que determinan la influencia de los valores pasados en el valor presente.
- a_t: Término de **ruido blanco**

AR(p)

Definición

Diremos que una serie sigue un *Proceso autoregresivo de orden p*, si su variabilidad puede describirse a través de:

$$z_t = c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$$
 (3)

- c: Captura el efecto de la media en la serie.
- ϕ_p : Coeficientes que determinan la influencia de los valores pasados en el valor presente.
- a_t: Término de ruido blanco

Para hacerlo más elegante.

Tomamos la esperanza de ambos lados.

$$E[z_t] = E[c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t]$$

Usando la propiedad lineal de la esperanza.

$$E[z_t] = E[c] + \phi_1 E[z_{t-1}] + \phi_2 E[z_{t-2}] + \dots + \phi_p E[z_{t-p}] + E[a_t]$$

Hay que tomar en cuenta que

Como a_t es **ruido blanco** tenemos que:

$$E[a_t] = 0 (4)$$

Dado que la serie es **estacionaria** tenemos que:

$$E[z_t] = E[z_{t-1}] + E[z_{t-2}] + \dots + E[z_{t-p}] = \mu$$
 (5)

Para hacerlo más elegante.

Tomamos la esperanza de ambos lados.

$$E[z_t] = E[c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t]$$

Usando la propiedad lineal de la esperanza.

$$E[z_t] = E[c] + \phi_1 E[z_{t-1}] + \phi_2 E[z_{t-2}] + \dots + \phi_p E[z_{t-p}] + E[a_t]$$

Tomando en cuenta (4) y (5)

$$\mu = c + \phi_1 \mu + \phi_2 \mu + \dots + \phi_p \mu$$

luego

$$c = \mu(1 - \phi_1 - \phi_2 - \cdots - \phi_p)$$

Volviendo a nuestra definición

$$z_t = c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$$

Volviendo a nuestra definición

$$z_t = c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$$

Aplicando
$$\tilde{z_t} = z_t - \mu$$

$$\tilde{z}_t + \mu = c + \mu + \phi_1(\tilde{z}_{t-1} + \mu) + \phi_2(\tilde{z}_{t-2} + \mu) + \dots + \phi_p(\tilde{z}_{t-p} + \mu) + a_t$$

Volviendo a nuestra definición

$$z_t = c + \phi_1 z_{t-1} + \phi_2 z_{t-2} + \dots + \phi_p z_{t-p} + a_t$$

Aplicando $\tilde{z_t} = z_t - \mu$

$$\tilde{z}_t + \mu = c + \mu + \phi_1(\tilde{z}_{t-1} + \mu) + \phi_2(\tilde{z}_{t-2} + \mu) + \dots + \phi_p(\tilde{z}_{t-p} + \mu) + a_t$$

Reagrupando términos

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-2} + \dots + \phi_p \tilde{z}_{t-p} + a_t + c - \mu (1 - \phi_1 - \phi_2 - \dots - \phi_p)$$

Recordando (6)

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-2} + \dots + \phi_p \tilde{z}_{t-p} + a_t \tag{7}$$

AR(p)

Definición

Diremos que una serie sigue un *Proceso autoregresivo de orden p*, si su variabilidad puede describirse a través de:

$$\tilde{z}_t = \phi_1 \tilde{z}_{t-1} + \phi_2 \tilde{z}_{t-2} + \dots + \phi_p \tilde{z}_{t-p} + a_t$$

- $\bullet \ \tilde{z_t} = z_t \mu$
- ϕ_p : Coeficientes que determinan la influencia de los valores pasados en el valor presente.
- a_t: Término de ruido blanco

- Generalidades importantes
- Procesos autorregresivos
 - Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- 4 Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

¿Qué hace?

Mide qué tan parecido es z_t con z_{t-k} para distintos rezagos k.

¿Qué desventajas presenta?

Esas medidas consideran tanto relaciones **directas** como **indirectas**.

Eso quiere decir...

Si z_t está fuertemente correlacionado con z_{t-1} y z_{t-1} también está correlacionado con z_{t-2} , entonces z_t y z_{t-2} pueden aparecer como correlacionados, aunque no haya una relación directa entre ellos.

- Generalidades importantes.
- Procesos autorregresivos
 - Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- 4 Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

¿Qué hace?

Mide qué tan parecido es z_t con z_{t-k} eliminando la influencia de los rezagos intermedios.

¿Qué ventajas presenta?

- Si el modelo real es AR(2), la PACF será significativa solo en los rezagos 1 y 2, y cercana a 0 para k > 2.
- En cambio, la ACF podría mostrar una correlación decreciente incluso para rezagos más grandes, porque incluye influencias indirectas.

Con 3 sencillos pasos

Para calcular la **ACP** entre un instante $\overline{z_t}$ y uno z_{t-k}

- **1** Regresión de \tilde{z}_t contra sus valores intermedios
- 2 Regresión de \tilde{z}_{t-k} contra sus valores intermedios
- Correlación entre u y v

1. Regresión de \tilde{z}_t contra sus valores intermedios

Aplicando regresión encontraremos

$$\tilde{z}_t = \beta_1 \tilde{z}_{t-1} + \beta_2 \tilde{z}_{t-2} + \dots + \beta_{k-1} \tilde{z}_{t-k} + u_t$$

¿Qué representa u_t ?

La parte de $\tilde{z_t}$ que no está explicada por los valores intermedios.

2. Regresión de \tilde{z}_{t-k} contra sus valores intermedios

Aplicando regresión encontraremos

$$\tilde{\mathbf{z}}_{t-k} = \gamma_1 \tilde{\mathbf{z}}_{t-1} + \gamma_2 \tilde{\mathbf{z}}_{t-2} + \dots + \gamma_{k-1} \tilde{\mathbf{z}}_{t-k+1} + \mathbf{v}_t$$

¿Qué representa v_t ?

La parte de \tilde{z}_{t-k} que no está explicada por los valores intermedios.

Correlación entre u y v

Tomando en cuenta lo anterior

La correlación entre u y v mide **únicamente** la relación directa entre \tilde{z}_t y \tilde{z}_{t-k} , **eliminando la influencia de los valores intermedios**.

$$\rho = Corr(u_t, v_t) \tag{8}$$

 ρ es precisamente la autocorrelación parcial en el rezago k.

Idea gráfica (1/2)

Idea gráfica (2/2)

- Generalidades importantes
- Procesos autorregresivos
 - Proceso autorregresivo de primer orden AR(1)
 - Proceso autorregresivo de segundo orden AR(2)
 - Proceso autoregresivo general AR(p)
- 3 Función de autoccorelación simple
- 4 Funcion de autocorrelación parcial
 - ¿Qué hace?
 - ¿Cómo lo hace?

Por su atención:

Gracias y bonito vierneeees

