

Laboratorio di Elettronica

Marco Aglietta – Ernesto Migliore

aglietta@to.infn.it

migliore@to.infn.it

CFU 6 - A.A. 2021/22 Corso di laurea in Fisica

Il Transistor (point contact --- BJT)

Bardeen, Brattain e Schokley. Bell Labs. 1947 -1948

Nobel Fisica 1956

Transistor BJT (Bipolar Junction Transistor)

Base molto sottile (pochi micron). Emitter piu' intensamente drogato

Senza tensioni esterne applicate le barriere di potenziale che si formano alle giunzioni ('Potenziali di contatto V_0 ' pochi decimi di Volts) impediscono ulteriori spostamenti delle cariche elettriche (I=0)

$$I_{\text{Diffusione}} = I_{\text{Deriva}}$$

Quando la giunzione di emettitore e' polarizzata **direttamente** e quella di collettore e' polarizzata **inversamente** si dice che il transistor e' nella regione **ATTIVA**

npn → principalmente corrente di elettroni

pnp → principalmente corrente di lacune

Le correnti del transistor sono considerate positive quando sono entranti nel dispositivo.

Quando la giunzione di emettitore e' polarizzata **direttamente** e quella di collettore e' polarizzata **inversamente** si dice che il transistor e' nella regione **ATTIVA**.

Configurazione a BASE COMUNE → la base e' condivisa tra il circuito di ingresso e quello di uscita.

Correnti in un transistor BJT pnp

La giunzione di emettitore e' polarizzata direttamente. Le lacune dall'emitter (drogato intensamente) diffondono nella base mentre gli elettroni (molti meno) dalla base passano nell 'emitter . I_{nE} piccola rispetto I_{pE} è ok tanto gli elettroni non contribuiscono alla corrente di collettore

$$\mathbf{I}_{\mathbf{E}} = \mathbf{I}_{\mathbf{p}\mathbf{E}} + \mathbf{I}_{\mathbf{n}\mathbf{E}} \qquad \qquad \mathbf{I}_{\mathbf{E}} > 0$$

La base e' sottile \rightarrow pochissime ricombinazioni \rightarrow quasi \overline{tu} tte le lacune arrivano sulla giunzione J_C polarizzata inversamente dove vengono raccolte al collettore: corrente I_{pC}

D'altra parte se consideriamo per un momento nulla la polarizzazione sull'emitter, avremo comunque una corrente di collettore dovuta alla corrente di saturazione inversa della giunzione di collettore polarizzata inversamente (il verso di

 I_{co} e' scelto convenzionalmente concorde ad I_{c})

In definitiva

$$I_{C} = I_{CO} - I_{pC} = I_{CO} - \alpha I_{E}$$

$$I_B+I_E+I_C=0 \rightarrow I_B=-(I_E+I_C) \rightarrow I_B<0$$
 piccola

Quantita positiva piccola

α e' detto "Guadagno in Corrente per Grandi Segnali" della configurazione a BASE COMUNE. Il suo valore varia tra 0.90 e 0.998

$$I_{C} = I_{CO} - I_{pC} = I_{CO} - \alpha I_{E}$$

Questa equazione vale quando il transistor opera nella **REGIONE ATTIVA** (J_E polarizzata direttamente, J_C inversamente.). In questo caso la corrente di collettore dipende solo da quella di emettitore mentre e' praticamente indipendente dalla tensione di collettore.

La generalizzazione della equazione precedente si ottiene considerando le diverse polarizzazioni della giunzione di collettore J_C . Sostituiamo pertanto I_{CO} con l'espressione completa della relazione tensione – corrente di un diodo

$$I_{D} = I_{0} (e^{V/V_{T}} - 1) \qquad I_{0} \rightarrow -I_{CO} \quad e \quad V \rightarrow V_{CB} = V_{C}$$

Otteniamo in questo modo l'espressione completa della corrente di collettore Ic in funzione del valore della corrente di emitter I_E e della tensione di collettore V_C

$$\mathbf{I}_{\mathbf{C}} = -\alpha \mathbf{I}_{\mathbf{E}} - \mathbf{I}_{\mathbf{CO}} (\mathbf{e}^{\mathbf{V}_{\mathbf{C}}/\mathbf{V}_{\mathbf{T}}} - 1)$$

Per Vc (V_{CB}) negativo e grande rispetto a V_T si ritorna alla 1)

 $I_C(V_{CB}, I_E) \rightarrow CARATTERISTICA DI USCITA a base comune$

CARATTERISTICA DI USCITA a base comune

Configurazione a BASE COMUNE.

Ingresso $(I_E, V_{EB}) \rightarrow diodo$

Uscita $(I_C, V_{CB}) \rightarrow I_C = -\alpha I_E - I_{CO} (e^{V_{CB}/V_T} - 1)$

Configurazione a EMITTER COMUNE.

Piu' interessante e molto piu' utillizzata e' la configurazione ad EMITTER COMUNE dove l'emitter e' condiviso tra il circuito di ingresso e quello di uscita. Utilizziamo questa volta un un transistor tipo **n p n** (tutte le correnti con segno invertito)

In questa configurazione siamo interessati a trovare l'espressione della corrente di collettore (uscita) in funzione della tensione di collettore V_{CE} e della corrente di base (in ingresso).

Nella regione attiva abbiamo visto che vale la relazione approssimata

$$I_C = I_{CO} - \alpha I_E$$

Essendo poi

$$I_E = - (I_C + I_B)$$

sostituendo si ha:

$$I_C = I_{CO} + \alpha (I_C + I_B) \Rightarrow I_C (1-\alpha) = \alpha I_B + I_{CO} \Rightarrow I_C = \frac{\alpha}{(1-\alpha)} I_B + \frac{I_{CO}}{(1-\alpha)}$$

Se si pone:
$$\frac{\alpha}{(1-\alpha)} = \beta$$
 si ottiene infine

$$\alpha = 0.995 \Rightarrow \beta = \frac{0.995}{0.005} \sim 200$$

$$I_{C} = \beta I_{B} + (1+\beta) I_{CO}$$

Solitamente $I_B >> I_{CO}$ per cui nella regione attiva $I_C = \beta I_B$

FUNZIONA DA AMPLIFICATORE

$$I_{C}(V_{CE},I_{B})$$

Regione attiva

Configurazione a EMITTER COMUNE.

Ingresso $(I_B, V_{BE}) \rightarrow diodo$

Uscita $(I_C, V_{CE}) \rightarrow I_C = \beta I_B + (1 + \beta) I_{CO}$

 $I_{C} \sim \beta I_{B} \sim h_{FE} I_{B}$

Per fare funzionare il transistor come amplificatore bisogna portare il suo punto di lavoro nella regione attiva (meglio se al centro della medesima),

Considerando il cicuito in uscita abbiamo:

$$V_{CC} - R_C I_C - V_{CE} = 0$$

 $I_C = -V_{CE}/R_C + V_{CC}/R_C$ retta di carico

$$I_{C} = 0 \rightarrow V_{CE} = V_{CC}$$

$$V_{CE} = 0 \rightarrow I_{C} = V_{CC} / R_{C}$$

Con questa retta di carico il transistor lavora nella regione attiva se la corrente di base varia tra circa $20\mu A$ e $90\mu A$ (punti Q e Q)

Nella regione attiva J_E e' polarizzata direttamente $\rightarrow V_{BE} \sim 0.7V$ Per il punto Q' abbiamo:

$$I_B 90\mu A \rightarrow I_C = h_{FE} I_B \sim 200 I_B \sim 18 \text{mA} \rightarrow R_C I_C = 9V$$

$$V_{CE}=1V \rightarrow V_{CB}=V_{CE}-V_{BE}=0.3V$$

 \rightarrow J_C e' ancora polarizzata inversamente

Configurazione a EMITTER COMUNE.

Ingresso $(I_B, V_{BE}) \rightarrow diodo$

Uscita $(I_C, V_{CE}) \rightarrow I_C = \beta I_B + (1 + \beta) I_{CO}$

Collector-emitter voltage V_{CE} , V

anche J_C e' polarizzata direttamente

Se invece I_B diminuisce il punto di lavoro si sposta ad arrivare all'interdizione. Q""

Il transistor BJT come interruttore

Viene fatto lavorare in commutazione tra la zona di **saturazione** (interruttore chiuso) e quella di **interdizione** (interruttore aperto) $h_{\rm FE} = 200$

Saturazione $I_B > I_C/h_{FE}$ $(V_{in} = +5V)$ $V_{CE} \sim 0.2V \rightarrow I_C = 4.8 \text{ mA}$ 4.8mA/200=24μA $I_B = \frac{5 - 0.8}{10000} = 420 \mu A >> I_C/200$

Nelle applicazioni veloci, quando si utilizza il transistor come interruttore, assumono importanza i tempi di commutazione del dispositivo. Si distinguno un tempo di commutazione diretta \mathbf{t}_{ON} (turn-on time) necessario per passare da uno stato iniziale interdetto alla conduzione , ed un tempo di commutazione inverso \mathbf{t}_{OFF} (turn-off time) necessario per annullare la corrente di saturazione e ritornare allo stato interdetto.

 t_d = tempo impiegato dalla giunzione di emettitore per polarizzarsi direttamente (I_C al 10%)

 t_r = tempo impiegato da I_C per arrivare al 90% del valore di saturazione

 $\mathbf{t_s}$ = tempo necessario per eliminare l'eccesso di portatori minoritari nella base

 t_f = tempo necessario perche I_C passi dal 90% al 10%

P2N2222A

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) (Continued)

						-	
Characteristic		Symbol	Min	Max	Unit		
SWITCHING CHARACTERISTICS							
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = -2.0 Vdc, I _C = 150 mAdc, I _{B1} = 15 mAdc) (Figure 1) (V _{CC} = 30 Vdc, I _C = 150 mAdc, I _{B1} = I _{B2} = 15 mAdc) (Figure 2)	ta	-	10	ns		
Rise Time		t _r	-	25	ns]	Il passaggio da ON a OFF e' molto piu'
Storage Time		to	-	225	ns		
Fall Time		t _f	-	60	ns	a (
	•	•		•	•	ler	ito

SWITCHING TIME EQUIVALENT TEST CIRCUITS

Figure 1. Turn-On Time

Figure 2. Turn-Off Time

Figure 3. DC Current Gain

Amplificazione di un segnale sinusoidale nella regione attiva

Essendo il segnale simmetrico rispetto al valore nullo, il punto di lavoro Q_0 (per $v_S=0$) deve essere posto al centro della regione lineare quindi al centro della retta di carico $\Rightarrow V_{CE} \sim 5V \ (V_{CC}=10V), I_C \sim 10mA$

Vcc -
$$I_CR_C$$
 - V_{CE} = 0 Retta di carico
 R_C = 500Ω \rightarrow I_C = 10mA
 I_R = I_C/h_{EE} = 50μA

La retta di polarizzazione della base quando $\mathbf{v_S} = \mathbf{0}$

$$V_{BB} - I_B R_B - V_{BE} = 0$$

permette di scegliere il valore di $\boldsymbol{R}_{B}~$ in funzione di \boldsymbol{V}_{BB}

$$\mathbf{R}_{\mathbf{B}} = (\mathbf{V}_{\mathbf{BB}} - \mathbf{V}_{\mathbf{BE}})/\mathbf{I}_{\mathbf{B}}$$

Se $\mathbf{V}_{\mathbf{BB}} = 2\mathbf{V} \longrightarrow \mathbf{R}_{\mathbf{B}} = \mathbf{1.3/5} \ \mathbf{10^{-5}} = \mathbf{26} \ \mathbf{K}\Omega$
 $(\mathbf{V}_{\mathbf{BE}} = 0.7 \ \mathbf{V})$

Nel circuito di ingressso alla tensione di polarizzazione V_{BB} si somma il segnale sinusoidale da amplificare. La retta di polarizzazione calcolata per $v_S = 0$ traslera' parallelamente a se stessa ed il punto di lavoro oscillera' tra gli estremi Q_1 e Q_2

 $I_B[\mu A]$ I valori della corrente di base relativi ai punti Q_1 e Q_2 li riportiamo ora sulle caratteristiche di uscita per valutare l'amplificazione. 65 **50** 50 **35** $I_B = 200 \,\mu\text{A}$ $_{|}I_{C}[mA]$ 40 Collector current I_C , mA **13** 160 10 30 7 $V_{CE}[V]$ 20 80 3- $=65\mu A$ 6.5 10 40 7- I_{CEO} 5 0 3.5 2 4 0 6 8 10 Collector-emitter voltage V_{CE} , V ~ 60 50mV

L'approssimazione che dato un segnale in ingressso sinusoidale anche la corrente in ingressso ed i segnali in uscita lo siano, vale solo per segnali molto piccoli. Allora la caratteristica di ingresso puo' essere considerata rettilinea e quella di uscita formata da rette parallele equispaziate per uguali incrementi di $I_{\rm B}$

Modello del BJT per piccoli segnali.

Nella zona di funzionamento lineare del BJT, la determinazione della amplificazione di corrente e tensione, si puo' effettuare, piu' praticamente, in via analitica utilizzando il modello a parametri ibridi per piccoli segnali.

Nel caso della configurazione ad emitter comune il circuito equivalente del transistor e' il seguente.

In questo caso i parametri ibridi sono: (calcolati intorno al punto di lavoro)

$$h_{ie} = \frac{\Delta v_{be}}{\Delta i_b} \Big|_{V_{ce}}$$
 (rappresenta la resistenza differenziale della giunzione J_E). Resistenza di ingresso. $h_{ie} = 100\Omega - 10K\Omega$
 $h_{re} = \frac{\Delta v_{be}}{\Delta v_{ce}} \Big|_{I_b}$ Amplificazione inversa di tensione $h_{re} = 10^{-3} - 10^{-4}$
 $h_{fe} = \frac{\Delta i_c}{\Delta i_b} \Big|_{V_{ce}}$ Amplificazione di corrente $h_{fe} = 10 - 1000$ Il valore dei paramibidri dipende dal problem $h_{oe} = \frac{\Delta i_c}{\Delta v_{ce}} \Big|_{I_b}$ Conduttanza di uscita con ingresso a vuoto. $1/h_{oe} \sim 40k\Omega$

Il valore dei parametri ibidri dipende dal punto di lavoro. Nelle specifiche di un BJT sono forniti dei grafici

Caratteristica di ingresso npn 2N2222A

Abbiamo una famiglia di curve infatti I_B non dipende solo da V_{BE} , come sarebbe in un diodo, ma anche da V_{CE} (Effetto Early : cresce polarizzazione inversa \rightarrow cresce la regione di svuotamento su $J_C \rightarrow$ si restringe la base \rightarrow minore ricombinazione nella base \rightarrow a parita' di V_{BE} la corrente di collettore aumenta: (e quella di base diminuisce) cresce α .

$$h_{ie} = \frac{\Delta v_{be}}{\Delta i_b} \bigg|_{V_{ce}} \qquad h_{ie} = \frac{\mathbf{V_{BE2} - V_{BE1}}}{\mathbf{I_{B2} - I_{B1}}} \bigg|_{V_{CE} = 5V}$$

$$25\text{mV}/25\mu\text{A} = 1\text{K}\Omega$$

Caratteristica di uscita npn 2N2222A

$$h_{fe} = \frac{\Delta i_c}{\Delta i_b} \bigg|_{V_{ce}}$$

$$h_{fe} = \frac{\mathbf{i_{c2} - i_{c1}}}{\mathbf{i_{b2} - i_{b1}}} \bigg|_{V_{ce} = 4V}$$

$$h_{fe} = \frac{17\text{mA}}{80\mu\text{A}} = 212 \left| V_{ce} = 4V \right|$$

Dato il basso valore di h_{re} e dato che molto spesso il carico ha un valore ohmico piccolo tale che $h_{oe}R_L<0.1$, in molte applicazioni pratiche e' possibile utilizzare un modello ridotto con i soli parametri ibridi h_{ie} ed h_{fe} Nel caso della configurazione ad emettitore comune il modello (semplificato) che si utilizza e' il seguente:

$$h_{ie} = V_{be}/I_b$$
 ~1 ÷ 2K Ω

$$\mathbf{q}_{fe} = \mathbf{I}_c / \mathbf{I}_b \qquad 50 \div 200$$

Configurazione ad emitter comune

$$A_I = I_I / I_b = -I_c / I_b = -h_{fe}$$

$$R_i = V_i / I_b = V_{RE} / I_b = h_{ie}$$

$$A_{V} = V_{o} / V_{i} = I_{L}R_{L} / I_{b}R_{i} = A_{I}(R_{L}/R_{i}) = -h_{fe}(R_{L}/R_{i})$$

$$\mathbf{R_o} = \infty \ (\mathbf{V_s} = \mathbf{0} \rightarrow \mathbf{I_b} = \mathbf{0} \rightarrow \mathbf{I_c} = \mathbf{0})$$

Applico ai morsetti di uscita (aperti) una tensione V.

Posto quindi $V_s = 0$ trovo $I_c = 0$. Allora $R_o = V/0 = \infty$

Il conto esatto porta a h_{oe} - $h_{fe}h_{re}/(h_{ie}+R_s) \sim 50K\Omega$

$$\mathbf{R_i}$$
 media $(1 \div K\Omega)$

 ${f R_o}$ medio elevata (decine di K Ω)

 A_I elevata, A_v elevata

Configurazione a collettore comune (inseguitore di emettitore)

$$A_I = I_L / I_b = -I_e / I_b = (h_{fe} I_b + I_b) / I_b = 1 + h_{fe}$$

$$R_{i} = V_{i}/I_{b} = V_{BC}/I_{b} = [(h_{fe}I_{b} + I_{b})R_{L} + h_{ie}I_{b}]/I_{b}$$
$$= h_{ie} + (1 + h_{fe})R_{L}$$

$$\begin{aligned} A_{V} &= V_{o} / V_{i} = I_{L} R_{L} / I_{b} R_{i} = & A_{I} (R_{L} / R_{i}) = (1 + h_{fe}) (R_{L} / R_{i}) \\ &= (1 + h_{fe}) [R_{L} / (h_{ie} + (1 + h_{fe}) R_{L})] \sim & 1 \end{aligned}$$

$$R_o = V/I = (h_{ie} + R_s)/(1 + h_{fe})$$

Applico ai morsetti di uscita (aperti) una tensione V.

Avendo posto Vs = 0 avro' $I_b = -V/(h_{ie} + R_s)$ e quindi

$$I = V/(h_{ie}+R_s) + h_{fe}(V/(h_{ie}+R_s)) = V(1+h_{fe})/(h_{ie}+R_s)$$

 $\mathbf{R_i}$ molto elevata (centinaia di $\mathrm{K}\Omega$)

 $\mathbf{R}_{\mathbf{o}}$ molto bassa (decine di Ω)

 $\mathbf{A_I}$ elevata, $\mathbf{A_V} \sim 1$

E' utilizzato come stadio 'cuscinetto ' per operare una trasformazione di resistenze (da valori elevati a valori bassi) con un amplificazione di tensione prossima ad 1

I parametri caratteristici ($\mathbf{h_{fe}}$, $\mathbf{h_{ie}}$...) variano molto da un transistor ad un altro \rightarrow difficolta' nella produzione in serie, nelle riparazioni/sostituzioni. Variano anche con la temperatura e con l'invecchiamento del componente.

Configurazione ad emitter comune con resistenza sull'emitter

