SC1004 Part 2

Lectured by Prof Guan Cuntai (teaching materials by Prof Chng Eng Siong)

Email: ctguan@ntu.edu.sg

Quiz 2 and Exam:

1. Quiz 2

- Coverage: Ch 6,7,8

- Time/Date: Week 13, last lecture time (10:30-11.20am, 17th April

2024)

2. Final Exam

- Coverage : Ch 6, 7, 8 (Q3 & Q4)

- Date/Time: 2 May 2024 (Thursday), 1.00-3.00pm

(Ch 9 will not be tested)

Syllabus for Part 2

Chapte r	Topics	Week (Lecture)	Week (Tut)
6	Orthogonality	8-9	9-10
7	Least Squares	9-10	10-11
8	EigenValue and Eigenvectors	11-12	12-13
9	Singular Value Decomposition (SVD)	13	

Table 1: schedule

Online Video learning Schedule

https://www.youtube.com/channel/UCBzG5jg3huxiPkCt-Serrjw

Week	Part	Topic	Notes
8	6.1.1-6.2.3	Orthogonality, Normalization, Dot-Product, Inequalities,	Lecture 1: 6.1.1 - 6.1.3 Lecture 2: 6.1.4 - 6.2.3
9	6.2.4-6.3.2	Orthogonal/Orthonormal Sets, Basis, Gram Schmidt and QR Decomposition	Lecture 3: 6.2.4 Lecture 4: 6.2.5 – 6.3.2
10	7.1.1-7.2.1	Least Squares and Normal Eqn, Projection Matrix, Applications	Lecture 5: 7.1.1 – 7.1.3 Lecture 6: 7.1.4 – 7.2.1
11	8.1.1-8.1.2	Eigenvectors, Eigen-values, Characteristics Eqn	Lecture 7: 8.1.1 Lecture 8: 8.1.2
12	8.1.3-8.1.5	Diagonalisation, Power of A, Change of basis	Lecture 9: 8.1.3 Lecture 10: 8.1.4 – 8.1.5
13	9.1.1-9.2	Introduction to SVD and PCA (Not examined in quiz/exam)	Lecture 11: 9.1.1 – 9.2 Lecture 12: Quiz 2

How will we conduct the course?

- 1) Before the lectures, watch the videos according to the schedule in Table 1
 - You can watch past years zoom video recordings at https://www.youtube.com/@linearalgebra1884/playlists?view=50&sort=dd&shelf_id=2

- 2) During lecture hours
 - We will summarize the lectures and highlight the key points
 - Q&A.

References

Linear Algebra and Its Applications by David Lay, Steven Lay, Judi McDonald

3Blue1Brown on YouTube

Essence of linear algebra preview

https://www.youtube.com/playlist?list=PLZ HQObOWTQDPD3MizzM2xVFitgF8hE_ab Lecture (Week 11)

(Chapter 8.1.1-8.1.2)

<u>Key points – Overview of Chapter 8</u>

- Week 11
 - Eigenvalues and eigenvectors
 - Definition and explanations
 - Find eigenvectors given an eigenvalue
 - Eigenspace
 - Find eigenvalues
- Week 12
 - Diagonalization
 - Motivation of diagonalization
 - Using eigenvalues and eigenvectors to diagonalize a matrix
 - Calculation of the power of a matrix
 - Coordinate system and change of basis
 - Understanding the concept of changing basis

Key points – 8.1.1 Eigenvalue & Eigenvector

Definition

- o For a $n \times n$ square matrix A: if $Ax = \lambda x$, then
 - (λ)s an eigenvalue of matrix A

Each A has up to n eigenvalues

Example:

o
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, if u and v are the eigenvectors?

o
$$A\mathbf{u} = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \end{bmatrix} \neq \lambda \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \lambda \mathbf{u}$$
. So, \mathbf{u} is not an eigenvector

o
$$Av = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 2 v$$
, $\lambda = 2$. So, v is an eigenvector

- o Geometric interpretation of eigenvector and eigenvalue: transformed vector by A is the scaling of the vector scaled by eigenvalue λ .
- In linear algebra, knowing which vectors have their directions unchanged by a given linear transformation is important. The eigenvectors and eigenvalues of a transformation serve to characterize it. They play important roles in all the areas where linear algebra is applied, from geology to quantum mechanics.

 Note: eigenvalue/eigenvector is one of the most important concept in linear algebra, with many applications. We will learn two applications later: diagonalize a matrix, Principal Component Analysis (PCA).

FIGURE 1 Effects of multiplication by A.

The word eigenvalue comes from the German Eigenwert which means "proper or characteristic value."

<u>Key points – 8.1.1 Find Eigenvectors</u>

- How to find the eigenvectors given an eigenvalue (we will learn how to find eigenvalues later)
 - General formula: $Ax = \lambda x$ \rightarrow $Ax \lambda x = 0$ \rightarrow $(A \lambda I)x = 0$
 - So, the eigenvector is the non-zero solution of above equation.

$$A_{\underline{\chi}} = 0$$

- Example: $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ has an eigenvalue of $\boxed{7}$.
 - $\circ (A-7I)x=\mathbf{0}$
 - $\circ \left(\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} \right) x = \mathbf{0} \Rightarrow \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} x = \mathbf{0} \Rightarrow \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$
 - $\circ \ \ \text{Using row reduction:} \begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} -6 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 - \circ where x_2 is a free variable.
 - \circ There are infinite eigenvectors corresponding to $\lambda = 7$.

FIGURE 2 Eigenspaces for $\lambda = -4$ and $\lambda = 7$.

Therefore, eigenvector corresponding to $\lambda=7$ is not a single vector. The entire line spanned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are eigenvectors!

Key points – 8.1.1 Find Eigenvectors (2)

• Example: $A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$ has another eigenvalue of 4.

$$\circ (A + 4I)x = 0$$

$$\circ \left(\begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \right) x = \mathbf{0} \implies \begin{bmatrix} 5 & 6 \\ 5 & 6 \end{bmatrix} x = \mathbf{0} \implies \begin{bmatrix} 5 & 6 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{0}$$

- \circ Using row reduction: $\begin{bmatrix} 5 & 6 & 0 \\ 5 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 5 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 5 & 6 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
- We get $5x_1 + 6x_2 = 0$ → $x_1 = -\frac{6}{5}x_2$

o solution is
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -\frac{6}{5}x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -\frac{6}{5} \\ 1 \end{bmatrix} = x_2 \begin{bmatrix} 6 \\ -5 \end{bmatrix}$$

- \circ where x_2 is a free variable.
- \circ There are infinite eigenvectors corresponding to $\lambda = -4$.

FIGURE 2 Eigenspaces for $\lambda = -4$ and $\lambda = 7$.

Key points — 8.1.1 Eigenspace

- Definition: for an $n \times n$ square matrix A
 - The set of all solutions of $(A \lambda I)x = 0$ is the null space of matrix $A \lambda I = \{0, x\}$
 - o This set is a subspace in \mathbb{R}^n , called an eigenspace of A corresponding to λ (Note: x is in \mathbb{R}^n).
- Recall the eigenvectors for $\lambda = -4$ and $\lambda = 7$

FIGURE 2 Eigenspaces for $\lambda = -4$ and $\lambda = 7$.

Key points – 8.1.1 Eigenspace (2).

• Example:
$$A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
, $\lambda = 2$

$$Ax=1x$$

• From
$$A - \lambda I = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix}$$

- Row deduction: $\begin{bmatrix} 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \\ 2 & -1 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- We find: $2x_1 x_2 + 6x_3 = 0$, $x_1 = \frac{1}{2}x_2 3x_3$

FIGURE 3 A acts as a dilation on the eigenspace.

• Eigenvectors are:
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_2 \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} = x_2 \boldsymbol{a}_1 + x_3 \boldsymbol{a}_2$$
, where $\boldsymbol{a}_1 = \begin{bmatrix} 1/2 \\ 1 \\ 0 \end{bmatrix}$, $\boldsymbol{a}_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$. \boldsymbol{a}_1 and \boldsymbol{a}_2 are independent!

- Here, we have infinite eigenvectors corresponding to $\lambda = 2$.
- The eigenvectors are, in fact, the linear combinations of two independent vectors a_1 and a_2 , which span the subspace (it is called an eigenspace).
- Geometric interpretation: eigenvectors are all the vectors in the eigenspace spanned by a_1 and a_2 . In the eigenspace, each eigenvector will be dilated by λ after applying the transformation A to it.

Key points – 8.1.2 Find Eigenvalues

- Definition: for an $n \times n$ square matrix A
 - o Eigenvalues can be found using the "characteristic equation" by solving a polynomial.
 - \circ From the definition of eigenvectors: $(A \lambda I)x = 0$
 - \circ It has non-zero solutions, so $A \lambda I$ has dependent columns

$$o$$
 det $(A - \lambda I) = 0$ is called "characteristic equation" which is in polynomial form.

• Examples:
$$A_1 = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$

Key points – 8.1.2 Find Eigenvalues: examples

- Examples: $A_1 = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$
- $(1) \quad \det(A_1 \lambda I) = 0 \rightarrow \det\begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} = \det\begin{pmatrix} 3 \lambda & -2 \\ 1 & 1 \end{pmatrix} = 0$ $(3-\lambda)(-\lambda) - (-2) = 0$, $\lambda^2 - 3\lambda + 2 = 0$, $(\lambda - 2)(\lambda - 1) = 0$ So, we found the eigenvalues: $\lambda = 1 \& \lambda = 2$
- $(2) \det(A_2 \lambda I) = 0 \Rightarrow \det(\begin{bmatrix} 1 \lambda & 6 \\ 5 & 2 \lambda \end{bmatrix}) = 0$ $(1-\lambda)(2-\lambda)-30=0, \lambda^2-3\lambda-28=0, (\lambda-7)(\lambda+4)=0$ So, we found the eigenvalues: $\lambda = 7 \& \lambda = -4$
- (3) $\det(A_3 \lambda I) = 0 \implies \det(\begin{bmatrix} 2 \lambda & 3 \\ 3 & -6 \lambda \end{bmatrix}) = 0$ $(2-\lambda)(-6-\lambda)-9=0$, $\lambda^2+4\lambda-21=0$, $(\lambda-3)(\lambda+7)=0$, So, we found the eigenvalues: $\lambda = 3 \& \lambda = -7$

is called characteristic polynomial

Note:

For a 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, its determinant $\det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc$

$$+7)=0$$
, $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{\det(A)}\begin{bmatrix} c & a \\ d \end{bmatrix}$

$$\begin{cases} c & \text{repeat} \\ c & \text{eigenvalue} = 0? \end{cases}$$

Key points – 8.1.2 Find Eigenvalues: Triangular Matrix

Definition:

For any triangular matrix (upper or lower triangle):

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & 0 & a_{33} \end{bmatrix} \text{ or } A = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

o Its characteristic equation $\det(A - \lambda I) = \det\begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ 0 & a_{22} - \lambda & a_{23} \\ 0 & 0 & a_{33} - \lambda \end{bmatrix} = 0,$

Or
$$\det \begin{pmatrix} a_{11} - \lambda & 0 & 0 \\ a_{21} & a_{22} - \lambda & 0 \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} = 0$$

o Becomes: $\det(A - \lambda I) = (a_{1\lambda}, \lambda)(a_{22} - \lambda)(a_{33} - \lambda) = 0$

So, the eigenvalues are: $\lambda = a_{11}$, $\lambda = a_{22}$, $\lambda = a_{33}$, which are the values of the diagonal entries.

<u>Key points – 8.1.2 Eigenvalues: More Examples</u>

$$A = \begin{bmatrix} 3 & 6 & -8 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$

• Eigenvalues for A: 3, 0, 2

X non. zer o

- Explain:
 - O What does an eigenvalue 0 mean?
 - o By definition $(Ax = \lambda x)$ since $\lambda = 0$, we have Ax = 0x = 0
 - o It means A has dependent columns, so we can get non-zero solution for Ax = 0
 - In this case, A is not invertible. \frown A has an eigenvalue of 0.

Key points – 8.1.2 Eigenvalues: More Examples (2)

•
$$B = \begin{bmatrix} 4 & 0 & 0 \\ -2 & 11 & 0 \\ 5 & 3 & 4 \end{bmatrix}_{3 \times 3}$$

• Eigenvalues for
$$B$$
: 11,4 (4 repeated twice)
$$\frac{d}{dx}(A-x)(4-\lambda)(1/-\lambda)(4-\lambda)$$
• Explain:
$$= (4-\lambda)(1/-\lambda)$$

- - $\circ \lambda = 4$ repeated twice, we denote the number of repetitions as algebraic multiplicity.
 - o algebraic multiplicity will be discussed in 8.1.3 to determine if a matrix can be diagonalized.

Key points – 8.1.2 Spectrum of a matrix

- \circ For an $n \times n$ square matrix A
- \circ The set of eigenvalues $(\lambda_1, \lambda_2, \dots, \lambda_{N_{\lambda}})$ is called a spectrum of A.
- o The characteristic equation is:

$$P(\lambda) = (\lambda - \lambda_1)^{n_1} (\lambda - \lambda_2)^{n_2} \cdots (\lambda - \lambda_{N_{\lambda}})^{n_{N_{\lambda}}} = 0.$$

$$\sum_{i=1}^{N_{\lambda}} n_i = n$$

- o For each eigenvalue λ_i , there is a corresponding EigenSpace $E(\lambda_i)$
- o n_i is the number of repetitions of the i^{th} eigenvalues λ_i , also called algebraic multiplicity.

D λ: ≤n distmet

2 each 2. ~ Cipentyale

3) $\lambda = 0 \sim A$ is not inventble

4 money of 7=6, An inventible

6 2, -. dy ~ Vr ... Vr indep

<u>Key points – Independence of Eigenvectors</u> <u>Corresponding to Eigenvalues</u>

Definition:

o If v_1, v_2, \dots, v_r are eigenvectors corresponding to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$ of an $n \times n$ matrix A, then v_1, v_2, \dots, v_r are linearly independent.

Explain

- o Assume $\{v_1, v_2, \dots, v_r\}$ is linearly dependent.
- \circ Since v_i is nonzero, so, one of the vectors in the set is a linear combination of the preceding vectors which are independent.

$$\boldsymbol{v}_{p+1} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_p \boldsymbol{v}_p$$

Multiplying both sides by A, we obtain

$$Av_{p+1} = c_1 Av_1 + c_2 Av_2 + \dots + c_p Av_p$$
 (use $Av_i = \lambda_i v_i$) $\rightarrow \lambda_{p+1} v_{p+1} = c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 + \dots + c_p \lambda_p v_p$

- $\text{o Multiply } \lambda_{p+1} \text{ to both sides of } \boldsymbol{v}_{p+1} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_p \boldsymbol{v}_p \implies \lambda_{p+1} \boldsymbol{v}_{p+1} = c_1 \lambda_{p+1} \boldsymbol{v}_1 + c_2 \lambda_{p+1} \boldsymbol{v}_2 + \dots + c_p \lambda_{p+1} \boldsymbol{v}_p$
- o Subtract above two equations, we get $c_1(\lambda_1 \lambda_{p+1})v_1 + c_2(\lambda_2 \lambda_{p+1})v_2 + \cdots + c_p(\lambda_p \lambda_{p+1})v_p = 0$
 - Since $\{v_1, v_2, \dots, v_r\}$ is linearly independent, the weights must be zero.
 - But $\lambda_i \lambda_{p+1} \neq 0$ as the eigenvalues are distinct
 - Hence $c_i = 0$ (for $i = 1, \dots, p$) → $v_{p+1} = 0$, which contradicts with non-zero eigenvectors.
- o So, v_1, v_2, \dots, v_r must be linearly independent.

End