

Presented by Kesler Science

Speed Graph D S a n C Time

Motion Graphing

Speed Graphs

- A typical speed graph will have distance or position on the y-axis and time on the x-axis.
- Graphs help make motion easier to picture and understand.
- Lines represent an object in motion or speed.

Constant Speed

- When the <u>speed</u> of an object remains the same, it does not increase or decrease.
- d/t (distance/time)
- 60/60 = 1 km/minute
- 40/40 = 1 km/minute

No Speed/Stopped

An object is at rest.

Ex. - Stopping at McDonalds for lunch.

• Time changes but distance stays the same.

Looking at a Distance-Time graph, how would you be able to tell if an object is moving at a constant speed or not moving?

Distance vs. Time Distance (km) 20 30 40 50 60 Time (min)

Motion Graphing

Velocity

- Velocity is speed in a given direction.
- Line A is moving away from point 0 (the origin).
- Line B is moving back to point 0 (the origin).

Distance vs. Time Graph

Motion Graphing

Acceleration

 Change in speed or velocity over a specific amount of time.

A curved line.

• The steeper the incline the faster the acceleration.

Acceleration Graphs

- A typical acceleration graph will have speed or velocity on the y-axis and time on the x-axis.
- Lines represent an object's acceleration or velocity.

What is the unit for velocity? What is the unit for time?

Constant Velocity

- When the <u>velocity</u> of an object remains the same, its rate of change does not increase or decrease.
- 10m/s at time 1sec.
- 10m/s at time 2 sec.

Velocity = 10m/s

Constant Acceleration

- Acceleration is constant at any point on the line.
 - •4m/s² at 1sec.
 - •4 m/s^2 at 2 sec.

• The steeper the slope, the greater the acceleration.

Increasing Acceleration

Curved line indicates the acceleration is **not** constant.

EX. - A car starts moving slowly and gradually increases its speed.

 The steeper the line, the greater the rate of acceleration.

