แบบฝึกหัดปฏิบัติการคาบที่ 9: Structure

ชื่อ-นามสกุล.......6404062610499........ วันที่...29...เดือน......มีนาคม......พ.ศ. 2565 Section......3.......

1. จุดในระนาบสามารถที่จะแสดงได้โดยการใช้ระบบ Coordinate x และ y

ดังนั้นเราสามารถเขียนจุดในระนาบได้โดยการใช้ตัวแปรแบบโครงสร้างที่มีสองฟิลด์ดังแสดงด้านล่าง

typedef struc

{

int x;

int y;

}POINT

จงเขียนโปรแกรมเพื่อทำการรับค่าข้อมูลแบบโครงสร้างของจุด (POINT)

แล้วทำการเรียกฟังก์ชันเพื่อทำการคำนวณหาระยะทางระหว่างจุดสองสุดโดยการใช้ระยะทางแบบยูคลิเดียน ซึ่งมีนิยามการทำงานดังนี้

Dist (Point1, Point 2) = sqrt((Point1.x - Point2.x)^2+ (Point1.y - Point2.y)^2) หลังจากนั้นให้เรียกฟังก์ชันเพื่อระบุว่าจุดทั้งสองอยู่ Quadrant ที่เท่าไหร่

ข้อมูลอินพุท

บรรทัดแรกเป็นจำนวนจุด n (1<=n<=100)

n บรรทัดถัดไปเป็นตำแหน่งของจุดในพิกัด x และ y (-1000<x, y<1000)

ข้อมูลเอาท์พุท

n บรรทัดแรกเป็นผลลัพธ์ของ Quadrant มีค่าตั้งแต่ 1- 4

บรรทัดสุดท้ายเป็นผลลัพธ์ของระยะทาง

อินพุท	เอาท์พุท
2	4
2 -2	1
2 2	4

ชื่อ-นามสกุล......หิรัญ สุขสมรัตน์......รหัสประจำตัวนักศึกษา.......6404062610499.....

วันที่ 29 เดือน มีนาคม พ.ศ. 2565

ตอนเรียน Lab ที่.....3......

```
#include<stdio.h>
#include<math.h>
                                               2
2 -2
2 2
4
]struct point{
    int x;
    int y;
void cal(struct point [], int);
                                                4.00
int main()
3 {
                                               Process returned 0 (0x0) execution time: 4.781 s
    int n;
                                                Press any key to continue.
    scanf ("%d", &n);
    struct point points[n];
    for(int i=0 ; i<n ; i++)</pre>
3
        scanf("%d %d", &points[i].x, &points[i].y);
    cal(points,n);
void cal(struct point abc[], int n){
    float k;
    for(int i=0 ; i<n ;i++)</pre>
        if (abc[i].x > 0 && abc[i].y > 0){
            printf("1\n");
        }else if (abc[i].x < 0 & abc[i].y > 0){
            printf("2\n");
        }else if (abc[i].x < 0 & abc[i].y < 0){
            printf("3\n");
        }else if (abc[i].x > 0 & abc[i].y < 0){
            printf("4\n");
    for(int i=0;i<n;i++) {</pre>
        for(int j=i+1 ; j<n ; j++)
            k=sqrt(pow(abc[j].x-abc[i].x,2)+pow(abc[j].y-abc[i].y,2));
            printf("%.2f\n",k);
```

2. Structure ชื่อ vector3D เป็นเวกเตอร์สามมิติ มีสมาชิกเป็นเลขทศนิยมสามตัวคือ: X, Y, Z จงเขียนโปรแกรมเพื่อรับค่าทั้งสามตัวของเวกเตอร์ จากนั้นคำนวณความยาวของเวกเตอร์โดยใช้ฟังก์ชัน FindLength ความยาวของเว็กเตอร์คำนวณได้จาก l=sqrt(X²+Y²+Z²)

ข้อมูลอินพุท

บรรทัดแรกเป็นจำนวนจุด n (1<=n<=100) บรรทัดถัดไปเป็นตำแหน่งของจุดในพิกัด x และ y และ z (-1000<x, y, z<1000)

ข้อมูลเอาท์พุท

บรรทัดสุดท้ายเป็นผลลัพธ์

อินพุท	เอาท์พุท
1	2.39
0.5 1.2 2.0	

```
#include<stdio.h>
                                 0.5 1.2 2.0
#include<math.h>
                                 2.39
struct vector3D{
                                                           execution time: 8.397 s
                                 Process returned 0 (0x0)
    float x;
                                 Press any key to continue.
    float y;
    float z;
};
void cal(struct vector3D [], int);
int main()
    int n;
    scanf ("%d", &n);
    struct vector3D vector[n];
    for(int i=0 ; i<n ; i++)</pre>
        scanf("%f %f %f",&vector[i].x, &vector[i].y, &vector[i].z);
    cal(vector, n);
void cal(struct vector3D abc[], int n){
    float k;
    for(int i=0 ; i<n ; i++)</pre>
        k=sqrt(pow(abc[i].x,2)+pow(abc[i].y,2)+pow(abc[i].z,2));
        printf("%.2f\n", k);
}
```

ชื่อ-นามสกุล......หิรัญ สุขสมรัตน์.......พ.ศ. 2565 ตอนเรียน Lab ที่.....3.....

้ที่ร้านสะดวกซื้อแห่งหนึ่งเมื่อทำการรับเงินจากลูกค้าจะทำการแยกเงินแต่ละราคาใส่ไว้ที่ช่องเก็บเงินที่ประกอบด้วยชนิดของเ งินแต่ละราคา คือ 1000, 500, 100, 50, 20, 10, และ 1 บาท

จงเขียนโปรแกรมเพื่อที่จะรับจำนวนเงินจากลูกค้าเพื่อส่งไปยังฟังก์ชันที่ทำหน้าที่คำนวณหาจำนวนเงินแต่ละชนิดราคาหลังจา กนั้นคืนค่าตัวแปรโครงสร้างที่ประกอบด้วยช่องเก็บเงินแต่ละชนิดราคา คือ 1000, 500, 100, 50, 20, 10, และ 1 บาท ตามลำดับ

ข้อมูลอินพุท

3

บรรทัดแรกเป็นจำนวนเงินจากลูกค้า (0<=a<=1000000)

ข้อมูลเอาท์พุท

บรรทัดสุดท้ายเป็นผลลัพธ์โครงสร้างที่ประกอบด้วยช่องเก็บเงินแต่ละชนิดราคา คือ 1000, 500, 100, 50, 20, 10, และ 1

อินพุท	เอาท์พุท
1751	1 1 2 1 0 0 1

```
#include<stdio.h>
typedef struct{
   int m1000 ;
    int m500 ;
   int m100 ;
    int m50 ;
   int m20 ;
   int m10 :
                                        1121001
   int m1 ;
                                                                          execution time: 13.828 s
                                        Process returned 0 (0x0)
}Cash;
Cash cal(int money1 , Cash cash1){
                                        Press any key to continue.
   cash1.m1000 = money1/1000;
   money1 = money1%1000;
   cash1.m500 = money1/500;
   money1 = money1 \% 500;
   cash1.m100 = money1/100;
   money1 = money1 \% 100;
   cash1.m50 = money1/50;
   money1 = money1%50;
   cash1.m20 = money1/20;
   money1 = money1%20;
   cash1.m10 = money1/10;
   money1 = money1%10;
   cash1.m1 = money1/1;
   money1 = money1%1;
    return cash1
int main(){
   Cash income ;
    int money ;
    scanf("%d", &money);
    income = cal(money,income);
   printf("%d %d %d %d %d %d %d %d",income.m1000,income.m500,income.m100,income.m50,income.m20,income.m10,income.m1);
```

ชื่อ-นามสกุล	.หิรัญ สุขสมรัตน์	รหัสประ	จำตัวนักศึกษา	.6404062610499
วันที่29เดือน	ıมีนาคม	พ.ศ. 2565	ตอนเรียน Lab ที่	.3

4. ในไพ่สำรับหนึ่งประกอบด้วย face values และ suits

โดยที่ face values ประกอบด้วย A, 2, 3, 4, 5, 6, 7, 8, 9, J, Q, K

ส่วน suits ประกอบด้วย โพธิ์ดำ (Spade) 🗭

โพธิ์แดง หรือหัวใจ (Heart) 🛡

ข้าวหลามตัด (Diamond) 🕈 ดอกจิก (Club) 🗣

จงเขียนโปรแกรมเพื่อกำหนดโครงสร้างของไพ่(Deck) ที่ประกอบไปด้วย faces และ suits หลังจากนั้นผู้ใช้กำหนดรายละเอียดของไพ่ตามจำนวนที่ผู้ใช้กำหนด หลังจากนั้นให้โปรแกรมทำการเรียงลำดับไพ่ทั้ง n ใบดังกล่าวจากน้อยไปหามาก แสดงผลพร้อมทั้งหาค่าผลรวมของไพ่ที่ป้อนเข้ามา

ข้อมูลอินพุท

บรรทัดแรกเป็นจำนวนไพ่ทั้ง n ใบ (1<=n<=52) n บรรทัดต่อไปแสดงรายละเอียดของไพ่ตามที่ผู้ใช้กำหนด

ข้อมูลเอาท์พุท

บรรทัดต่อไปแสดงการเรียงลำดับไพ่ทั้ง n ใบดังกล่าวจากน้อยไปหามาก บรรทัดสุดท้ายแสดงผลรวมของไพ่ที่ป้อนเข้ามา

อินพุท	เอาท์พุท
3	A-H, 3-C, 7-S
3 C	11
7 S	
АН	

วันที่29 ...เดือนมีนาคมพ.ศ. 2565

ตอนเรียน Lab ที่.....3......

```
#include <stdio.h>
typedef struct
    int facevalues, suits;
                                                       3 C
                                                       7 S
|void cal(card a[],int n,char bl[],char b2[]){
                                                        АН
    int allscore=0, temp, temp1, temp2, temp3;
                                                        A-H,3-C,7-S
    for(int i=1;i<=n;i++) {
                                                        11
        for(int j=i+1;j<=n;j++) {
                                                        Process returned 0 (0x0)
                                                                                      execution time : 10.536 s
             if(a[i].facevalues>a[j].facevalues){
                                                        Press any key to continue.
                 temp=a[i].facevalues;
                 temp2=b1[i];
                 temp3=b2[i];
                 a[i].facevalues=a[j].facevalues;
                bl[i]=bl[j];
                b2[i]=b2[j];
                 a[j].facevalues=temp;
                bl[j]=temp2;
                b2[j]=temp3;
             else if(a[i].facevalues==a[j].facevalues){
                if(a[i].suits>a[j].suits) {
                     templ=a[i].suits;
                     temp3=b2[i];
                     a[i].suits=a[j].suits;
                    b2[i]=b2[j];
                     a[j].suits=templ;
                    b2[j]=temp3;
             }
    for(int i=1;i<=n;i++) {
        if (i==n) {printf("%c-%c",bl[i],b2[i]);}
        else{printf("%c-%c,",b1[i],b2[i]);}
    printf("\n");
    for(int i=1;i<=n;i++) {
        if(a[i].facevalues==11 || a[i].facevalues==12) {allscore=allscore+10;}
        else{allscore=allscore+a[i].facevalues;}
    printf("%d",allscore);
1
int main() {
    int n:
    scanf ("%d", &n);
    card array[n+1];
    char arrayt1[50],arrayt2[50];
    for(int i=1;i<=n;i++) {
        scanf("%s %s",&arraytl[i],&arrayt2[i]);
        if (arraytl[i] == 'A') {array[i].facevalues=1;}
        else if(arraytl[i]=='2'){array[i].facevalues=2;}
        else if(arraytl[i]=='3'){array[i].facevalues=3;}
        else if(arraytl[i]=='4'){array[i].facevalues=4;}
        else if(arraytl[i]=='5'){array[i].facevalues=5;}
        else if(arraytl[i]=='6'){array[i].facevalues=6;}
        else if(arraytl[i]=='7'){array[i].facevalues=7;}
        else if(arraytl[i]=='8'){array[i].facevalues=8;}
        else if(arraytl[i]=='9'){array[i].facevalues=9;}
        else if(arraytl[i]=='J'){array[i].facevalues=10;}
        else if(arraytl[i]=='Q'){array[i].facevalues=11;}
        else if(arraytl[i]=='K'){array[i].facevalues=12;}
        else{array[i].facevalues=0;}
        if (arrayt2[i]=='C') {array[i].suits=1;}
        else if(arrayt2[i]=='D'){array[i].suits=2;}
        else if(arrayt2[i]=='H'){array[i].suits=3;}
        else if(arrayt2[i]=='S'){array[i].suits=4;}
    cal (array, n, arrayt1, arrayt2);
```

ชื่อ-นามสกุล	หิรัญ สุขสมรัตน์	รหัสประ	ะจำตัวนักศึกษา	.6404062610499
วันที่29เดือน	!มีนาคม	พ.ศ. 2565	ตอนเรียน Lab ที่	3

5. โครงสร้างข้อมูลแบบ Stack ประกอบด้วย<mark>ตัวแปร์อาร์เรย์ที่ใช้ในการเก็บค่าของ Stack ขนาด N สมาชิก</mark> และ**ตัวแปร**

Top สำหรับชี้ค่าบนสุดของ Stack โดยตัวแปร Top จะใช้ประกอบการเพิ่มและลบข้อมูลที่อยู่ใน Stack การเพิ่มหรือลบข้อมูลจะทำได้ทีละค่าเฉพาะข้อมูลที่อยู่บนสุดของ Stack ฟังก์ชันพื้นฐานของ Stack คือ

- 1. ฟังก์ชัน Push เป็นฟังก์ชันสำหรับเพิ่มข้อมูลเข้าไปใน stack
- 2. ฟังก์ชัน Pop เป็นฟังก์ชันสำหรับดึงข้อมูลที่อยู่บนสุดออกจาก stack จงเขียนโปรแกรมเพื่อจำลองการทำงานของ Stack โดยเมื่อผู้ใช้ต้องการ Push ให้พิมพ์ P เพื่อเพิ่มข้อมูล และใส่ข้อมูลลงไป เมื่อผู้ใช้ต้องการ Pop ให้พิมพ์ X โดยโปรแกรมจะดึงข้อมูลที่อยู่บนสุดออกมา

ตัวอย่าง

Please select operation: P

Please input data: 20

Please select operation: P

Please input data: 15

Please select operation: P

Please input data: 35

Please select operation: P

Please input data: 10

Please select operation: X

Data is : 10

Please select operation: X

Data is: 35