O Teorema de Hilbert-Schmidt

Uma exploração dos Teoremas Espectrais

Aluno: Lucas Nunes Fernandes Teles Orientadora: Nataliia Goloshchapova

Instituto de Matemática e Estatística - USP

Uma parte fundamental da formação de matemáticos, físicos e engenheiros é o estudo da álgebra linear, que por sua vez é protagonizado pelo estudo de autovetores e autovalores de transformações lineares em $T:\mathbb{C}^n\to\mathbb{C}^n$, ou seja, de matrizes $\mathbb{C}^n\times\mathbb{C}^n$ $(n\in\mathbb{N})$. Dizemos que um vetor $x\in\mathbb{C}^n$ é um **autovetor** se for não-nulo e existir $\lambda\in\mathbb{C}$, chamado de **autovalor**, tal que

$$(T - \lambda I)x = 0.$$

Um dos focos de cursos introdutórios de álgebra linear é expor a vasta utilidade de autovetores e autovalores. A importância do Teorema Espectral reflete esse fato ao simples custo de uma condição a mais, a de T ser **auto-adjunta**. Isto é, de T satisfazer a seguinte condição:

$$\langle x, Ty \rangle = \langle Tx, y \rangle, \quad \forall x, y \in \mathbb{C}^n.$$

Onde $\langle \cdot, \cdot \rangle : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ é um produto interno em \mathbb{C}^n dado por $\langle x, y \rangle = \sum_{k=1}^n x_k \overline{y_k}$, para $x, y \in \mathbb{C}^n$.

Teorema 1 (Teorema Espectral em \mathbb{C}^n [1]). Seja $T:\mathbb{C}^n\to\mathbb{C}^n$ uma transformação linear. T é autoadjunta se, e somente se, T é diagonalizável, isto é, se existe uma **base ortogonal** $x_1,...,x_n$ de \mathbb{C}^n de autovetores de T associados a autovalores $\lambda_1,...,\lambda_n$ **reais**, onde

$$Tx = \sum_{k=1}^{n} \lambda_k \langle x, x_k \rangle x_k, \quad \forall x \in \mathbb{C}^n.$$

2 Espaços de dimensão infinita e o Teorema de Hilbert-Schmidt

Espaços de dimensão infinita são aqueles onde não existe base com finitos vetores. Em espaços normados de dimensão infinita temos a possibilidade para "comportamentos" impossíveis em espaços de dimensão finita. Passando a existir, por exemplo, espaços normados que não são completos e operadores lineares que não são contínuos.

Essa mudança de paradigma nos faz repensar algumas condições assumidas implicitamente. A primeira delas é que trabalhamos em **espaços de Banach**, espaços normados completos. Necessitando da estrutura do produto interno passaremos a assumir que estamos em **espaços de Hilbert**, espaços vetoriais com produto interno completos na norma induzida.

Notação. Adiante X representará um espaço de Banach e H um espaço de Hilbert, em ambos os casos sobre o corpo $\mathbb C$. Além disso, N(T) denotará o núcleo de um operador linear T.

Operadores compactos

Uma equivalência clássica em Análise Funcional é entre um espaço normado ter dimensão finita e sua bola unitária fechada B(0,1) ser compacta.

Essa equivalência esconde uma condição importante para o Teorema Espectral em \mathbb{C}^n , que é a de T ser um operador compacto. Chamamos um operador linear contínuo $T: X \to X$ de **compacto** quando a imagem da bola unitária $T[B_X(0,1)]$ é relativamente compacta $(\overline{T}[B_X(0,1)]$ é compacto).

Como todo operador linear em um espaço de dimensão finita é compacto, não precisamos impor essa condição. Em espaços de dimensão infinita, no entanto, existem operadores lineares que não são compactos.

Quando $T: X \to X$ é um operador linear compacto, identificamos o seguinte propriedade espectral importante [3]:

O conjunto de autovalores de T é enumerável (podendo ser finito) e, quando existem infinitos autovalores, pode ser ordenado como uma sequência de escalares convergindo a origem.

Operadores auto-adjuntos

Como pode ser esperado, para generalizar o Teorema Espectral de \mathbb{C}^n precisaremos de suas hipóteses iniciais. Em particular que T seja auto-adjunto. De forma análoga ao espaço \mathbb{C}^n , para H um espaço de Hilbert, um operador linear contínuo $T:H\to H$ é chamado de **auto-adjunto** se satisfizer

$$\langle x, Ty \rangle = \langle Tx, y \rangle, \quad \forall x, y \in H.$$

Com a estrutura adicional do produto interno e essa simples propriedade, verificamos [2, 3]:

Lema 2. Se $T: H \to H$ é um operador linear autoadjunto, quaisquer dois autovetores correspondentes a autovalores diferentes são ortogonais. Isto é, $N(T - \lambda I) \perp N(T - \mu I)$ quando $\lambda \neq \mu$.

Lema 3. Todo operador linear $T: H \to H$ não-nulo, compacto e auto-adjunto possui um autovalor não-nulo.

Teorema 4 (Hilbert-Schmidt). Se $T: H \to H$ é um operador linear compacto e auto-adjunto e $\{\lambda_j: j \in J\}$ é o conjunto de seus autovalores não-nulos, então

$$H = \left[\bigoplus_{j \in J} N(T - \lambda_j I)\right] \oplus N(T).$$

Demonstração. Pelo Lema 2, os autoespaços $\{N(T-\lambda_j I): j\in J\}$ são subespaços 2-a-2 ortogonais de H. E com isso temos que o subespaço

$$E := \bigoplus_{i \in J} N(T - \lambda_j I)$$

está bem-definido. Pelo teorema da projeção ortogonal podemos escrever: $H=E\oplus E^{\perp}$. Para ver que $E^{\perp}=N(T)$, primeiro notamos que se $x\in E^{\perp}$, para qualquer $x_{\lambda}\in E$ autovetor com autovalor $\lambda\neq 0$,

$$\langle Tx, x_{\lambda} \rangle = \langle x, Tx_{\lambda} \rangle = \lambda \underbrace{\langle x, x_{\lambda} \rangle}_{0} = 0$$

e E^{\perp} é um subespaço invariante. Isto é,

$$x \in E^{\perp} \implies Tx \in E^{\perp}.$$

Com isso, o operador $T|_{E^{\perp}}: E^{\perp} \to E^{\perp}$ está bemdefinido, é compacto e auto-adjunto. Como $T|_{E^{\perp}}$ não pode ter um autovetor com autovalor não-nulo, pelo Lema 3, $T|_{E^{\perp}}=0$ e $E^{\perp}\subseteq N(T)$.

Por fim, basta ver, que para quaisquer $x \in N(T)$ e $y \in E$ com autovalor λ :

$$\langle y, x \rangle = \frac{1}{\lambda} \langle Ty, x \rangle = \frac{1}{\lambda} \langle y, Tx \rangle$$

= $\frac{1}{\lambda} \langle y, 0 \rangle = 0$.

Ou seja, $N(T) \subseteq E^{\perp}$ e $E^{\perp} = N(T)$.

Do teorema anterior recebemos resultado notável.

Corolário 5. Se $T: H \to H$ é um operador linear compacto e auto-adjunto, então H possui uma base ortonormal de autovetores de T.

3 O Teorema Espectral em infinitas dimensões

Em infinitas dimensões precisamos de encontrar uma alternativa às transformações $\langle x, x_k \rangle x_k$ do Teorema 1.

Com este intuito, introduzimos o conceito da projeção ortogonal. Se H é um espaço de Hilbert e E é um subespaço fechado de H, chamamos o operador linear $P:H\to H$ de **projeção ortogonal sobre** E se

- P é idempotente $(P^2 = P)$,
- $\bullet P(H) = E,$
- P é auto-adjunto.

Como o nome sugere, P leva os vetores de H ao seus componentes no subespaço E. Com isso podemos generalizar o Teorema espectral para o caso dos **operadores compactos e auto-adjuntos**:

Teorema 6. Sejam T um operador linear compacto e auto-adjunto em H e $\{\lambda_j: j \in J\}$ o conjunto de autovalores não-nulos de T. Então

$$T = \sum_{j \in J} \lambda_j P_j,$$

onde a série converge em B(H) e P_j são as projeções ortogonais sobre $N(T - \lambda_j I)$ para todo $j \in J$.

Observe que o teorema anterior diz que qualquer operador compacto e auto-adjunto é "diagonalizável".

Caso do operador auto-adjunto arbitrário

Conseguimos um resultado ainda mais geral, de forma a não só eliminar a hipótese de T ser um operador compacto mas também de T ser um operador limitado. De grosso modo, vemos que qualquer operador auto-adjunto é "diagonalizável". Para isso, precisaremos de uma alternativa ao uso de projeções ortogonais P_i no teorema acima.

Para \mathcal{A} uma σ -álgebra sobre Ω e $\operatorname{Proj}(H)$ o conjunto projeções ortogonais $H \mapsto H$, dizemos que $E: \mathcal{A} \to \operatorname{Proj}(H)$ é uma **medida espectral** se

- $E(\Omega) = I$.
- $E(\bigcup_{n=1}^{\infty} M_n) = \sum_{n=1}^{\infty} E(M_n)$ para toda sequência $(M_n)_{n \in \mathbb{N}}$ em \mathcal{A} de subconjuntos 2-a-2 disjuntos de Ω .

Com essa noção temos [4]:

Teorema 7. Para qualquer operador auto-adjunto $T: \mathrm{Dom}(T) \subseteq H \to H$, existe uma medida espectral $E \ em \ \mathcal{B}(\mathbb{R})$ (a σ -álgebra de Borel) tal que

$$T = \int_{\mathbb{R}} \lambda dE(\lambda).$$

Observação. Para um operador compacto e autoadjunto a medida espectral correspondente tem forma: $E(\Lambda) = \sum_{j=1}^{n} P_j$, $\Lambda \in \mathcal{B}(\mathbb{R})$.

Agradecimentos

Agradecemos à FAPESP pelo financiamento deste projeto de Iniciação Científica (processo n° 05997-5), que possibilitou o estudo e preparo do material aqui incluso.

Referências

- [1] Sheldon Axler. *Linear Algebra Done Right*. Springer, 2024.
- [2] César R. De Oliveira. *Introdução à análise funcional*. IMPA, 2018.
- [3] Erwin Kreyszig. Functional Analysis. John Wiley & Sons, 1978.
- [4] Konrad Schmudgen. *Unbounded Self-adjoint Operators on Hilbert Space*. Springer Dordrecht, 2012.