Examenul de bacalaureat national 2016 Proba E. d)

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDUCINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

D. OPTICA Varianta 10

Se consideră: viteza luminii în vid $c = 3 \cdot 10^8 \, \text{m/s}$, constanta Planck $h = 6.6 \cdot 10^{-34} \, \text{J} \cdot \text{s}$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice exprimate prin produsul $h \cdot (v - c \cdot \lambda_0^{-1})$ este:

(3p)

2. În graficul alăturat este reprezentată dependența sinusului unghiului de refracție $(\sin r)$ de sinusul unghiului de incidență $(\sin i)$ la trecerea luminii $\frac{5}{2}$ dintr-un mediu optic transparent 1 într-un mediu optic transparent 2. Valoarea indicelui de refracție relativ al mediului 2 față de mediul 1 este:

3. O radiaţie electromagnetică cu frecvenţa $v = 10^{15} \text{Hz}$ iradiază suprafaţa unui metal. Dacă energia cinetică a fotoelectronilor extraşi este $E_c = 1,5\,\text{eV}$, iar 1 eV = 1,6·10⁻¹⁹ J, atunci lucrul mecanic de extracţie specific metalului este aproximativ egal cu:

a. $1.5 \cdot 10^{-19}$ J

- **b.** $2.4 \cdot 10^{-19} \text{ J}$
- **c.** $4.2 \cdot 10^{-19}$ J
- **d.** $6.6 \cdot 10^{-19}$ J
- 4. Un obiect este așezat în fața unui sistem optic format din trei lentile subțiri alipite. Relația corectă între mărirea liniară transversală β dată de sistemul de lentile și măririle liniare transversale β_1 , β_2 și β_3 date de fiecare dintre cele trei lentile este:

- **a.** $\beta = \beta_1 + \beta_2 + \beta_3$ **b.** $\beta = \beta_1 \cdot \beta_2 \cdot \beta_3$ **c.** $\beta = \frac{\beta_1 + \beta_2 + \beta_3}{3}$ **d.** $\beta = \sqrt[3]{\beta_1 \cdot \beta_2 \cdot \beta_3}$
 - (3p)
- 5. Un obiect este așezat în fața unui sistem optic, perpendicular pe axa optică principală. Mărirea liniară transversală este $\beta = -2$. Imaginea este:
- a. dreaptă si de două ori mai mică decât obiectul
- b. dreaptă și de două ori mai mare decât obiectul
- c. răsturnată și de două ori mai mică decât obiectul
- d. răsturnată si de două ori mai mare decât obiectul.

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

- O lentilă subțire divergentă (L_1) are modulul distanței focale $|f_1| = 20 \,\mathrm{cm}$. La distanța de 60 cm în fața ei se aşază, perpendicular pe axa optică principală, un obiect luminos cu înălţimea de 4cm.
- **a.** Realizați un desen în care să evidențiați construcția grafică a imaginii prin lentila L_1 .
- b. Calculați înălțimea imaginii.
- ${f c.}$ Se formează un sistem optic centrat alipind primei lentile (L_1) o altă lentilă subțire, convergentă (L_2) , având convergența $C_2 = 2 \, \mathrm{m}^{\text{-1}}$. Determinați convergența echivalentă a sistemului optic format.
- ${f d}.$ Se depărtează una de alta cele două lentile L_1 și L_2 până când se constată că orice rază care intră în sistemul optic paralel cu axa optică principală, iese din sistem tot paralel cu axa optică principală. Calculați distanța dintre lentile.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un dispozitiv Young are distanţa între cele doua fante $2\ell = 2 \, \text{mm}$, iar distanţa de la planul fantelor la un ecran așezat paralel cu planul fantelor este D = 80 cm. Se iluminează fantele cu radiație monocromatică cu $\lambda = 625$ nm provenită de la o sursă plasată pe axa de simetrie a sistemului.

- a. Calculați valoarea interfranjei.
- **b.** Ecranul se poziționează la distanța D' = 240 cm față de planul fantelor. Calculați variația relativă a interfranjei.
- **c.** Se umple spaţiul dintre fante şi ecran cu apă. Indicele de refracție al apei este $n_a = \frac{4}{3}$. Calculați valoarea vitezei luminii în apă.
- d. Distanta dintre planul fantelor si ecran rămâne cea stabilită la punctul b. Calculati valoarea interfranjei după introducerea apei în spațiul dintre fante și ecran.