Class 8: Breast Cancer Mini-Project

Andres Vasquez (PID: A16278181)

About

Today's lab we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin

Data Import

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names = 1)
head(wisc.df)</pre>
```

	diagnosis ra	adius_mean	texture_mean	perimeter_mean	area_mean		
842302	М	17.99	10.38	122.80	1001.0		
842517	М	20.57	17.77	132.90	1326.0		
84300903	М	19.69	21.25	130.00	1203.0		
84348301	М	11.42	20.38	77.58	386.1		
84358402	М	20.29	14.34	135.10	1297.0		
843786	М	12.45	15.70	82.57	477.1		
	smoothness_m	nean compac	tness_mean c	oncavity_mean c	oncave.poi	nts_mean	
842302	0.11	.840	0.27760	0.3001		0.14710	
842517	0.08	3474	0.07864	0.0869		0.07017	
84300903	0.10	960	0.15990	0.1974		0.12790	
84348301	0.14	<u>1</u> 250	0.28390	0.2414		0.10520	
84358402	0.10	0030	0.13280	0.1980		0.10430	
843786	0.12	2780	0.17000	0.1578		0.08089	
symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se							
842302	0.241	19	0.078	71 1.0950	0.9053	8.589	

842517	0.1812		0.05667	0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438
843786	0.2087		0.07613	0.3345	0.8902	2.217
	area_se smoothne	ess_se compa	actness_se	concavity_se	concave.po	ints_se
842302	153.40 0.0	006399	0.04904	0.05373		0.01587
842517	74.08 0.0	005225	0.01308	0.01860		0.01340
84300903	94.03 0.0	006150	0.04006	0.03832		0.02058
84348301	27.23 0.0	009110	0.07458	0.05661		0.01867
84358402	94.44 0.0	011490	0.02461	0.05688		0.01885
843786	27.19 0.0	007510	0.03345	0.03672		0.01137
	symmetry_se frac	ctal_dimens:	ion_se radi	ius_worst text	ture_worst	
842302	0.03003	0.0	006193	25.38	17.33	
842517	0.01389	0.0	003532	24.99	23.41	
84300903	0.02250	0.0	004571	23.57	25.53	
84348301	0.05963	0.0	009208	14.91	26.50	
84358402	0.01756	0.0	005115	22.54	16.67	
843786	0.02165	0.0	005082	15.47	23.75	
	perimeter_worst	area_worst	smoothness	s_worst compa	ctness_wors	t
842302	184.60	2019.0		0.1622	0.665	6
842517	158.80	1956.0		0.1238	0.186	6
84300903	152.50	1709.0		0.1444	0.424	.5
84348301	98.87	567.7		0.2098	0.866	3
84358402	152.20	1575.0		0.1374	0.205	0
843786	103.40	741.6		0.1791	0.524	.9
	concavity_worst	concave.po	ints_worst	symmetry_wors	st	
842302	0.7119		0.2654	0.460	01	
842517	0.2416		0.1860	0.27	50	
84300903	0.4504		0.2430	0.36	13	
84348301	0.6869		0.2575	0.663	38	
84358402	0.4000		0.1625	0.236	64	
843786	0.5355		0.1741	0.398	35	
	fractal_dimension	on_worst				
842302		0.11890				
842517		0.08902				
84300903		0.08758				
84348301		0.17300				
84358402		0.07678				
843786		0.12440				

How many patients are in this dataset?

```
nrow(wisc.df)
[1] 569
 Q1. How many observations are in this dataset?
wisc.data <- wisc.df[, -1]</pre>
ncol(wisc.data)
[1] 30
 Q2. How many of the observations have a malignant diagnosis?
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
diagnosis
[75] В М В М М В В В М М В М М В В В М В В М М В В В М М В В В М В В М В В
[112] B B B B B B M M M B M M B B B M M B M B M M B M M B B M B B B B B M B
[556] B B B B B B B M M M M M B
Levels: B M
table(diagnosis)
diagnosis
В
 Μ
357 212
```

Q3. How many variables/features in the data are suffixed with _mean?

Initial Analysis

Before analysis I want to take out the expert diagnosis column (aka the answer) from our dataset

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean text	ture_mean	perimet	er_mean	area_	mean sı	noothr	ness_mean
842302	17.99	10.38		122.80	10	01.0		0.11840
842517	20.57	17.77		132.90	13	26.0		0.08474
84300903	19.69	21.25		130.00	12	03.0		0.10960
84348301	11.42	20.38		77.58	3	86.1		0.14250
84358402	20.29	14.34		135.10	12	97.0		0.10030
843786	12.45	15.70		82.57	4	77.1		0.12780
	compactness_mean	n concavi	ty_mean	concave.	point	s_mean	symme	etry_mean
842302	0.27760)	0.3001		0	.14710		0.2419
842517	0.07864	1	0.0869		0	.07017		0.1812
84300903	0.15990)	0.1974		0	.12790		0.2069
84348301	0.28390)	0.2414		0	.10520		0.2597
84358402	0.13280)	0.1980		0	.10430		0.1809
843786	0.17000)	0.1578		0	.08089		0.2087
	fractal_dimension	on_mean ra	adius_se	texture	e_se p	erimet	er_se	area_se
842302	(0.07871	1.0950	0.9	9053	8	3.589	153.40
842517	(0.05667	0.5435	0.7	7339	;	3.398	74.08
84300903	(0.05999	0.7456	0.7	7869	4	4.585	94.03
84348301	(0.09744	0.4956	1.1	1560	;	3.445	27.23

84358402		0.05883	0.7572			5.438	
843786		0.07613	0.3345			2.217	
	smoothness_se	-		*	concave.po		
842302	0.006399	0.049		0.05373		0.015	
842517	0.005225	0.013		0.01860		0.013	
84300903		0.040		0.03832		0.020	
84348301		0.074		0.05661		0.018	
84358402		0.024		0.05688		0.018	
843786	0.007510	0.03		0.03672		0.011	
	symmetry_se fr	_	_	-		_	
842302	0.03003		.006193		.38	17.	
842517	0.01389		.003532		. 99	23.	
84300903			.004571		.57	25.	
84348301			.009208		.91	26.	
84358402			.005115		.54	16.	
843786	0.02165		.005082		. 47	23.	
	perimeter_wors				_	ess_w	orst
842302	184.6			0.162			6656
842517	158.8			0.123		0.	1866
84300903				0.144			4245
84348301				0.209			8663
84358402			0	0.137			2050
843786	103.4	0 741.6	6	0.179	1	0.	5249
	concavity_wors	_		•	try_worst		
842302	0.711			2654	0.4601		
842517	0.241	6		1860	0.2750		
84300903				2430	0.3613		
84348301				2575	0.6638		
84358402				1625	0.2364		
843786	0.535		0.1	1741	0.3985		
	fractal_dimens	_					
842302		0.11890					
842517		0.08902					
84300903		0.08758					
84348301		0.17300					
84358402		0.07678					
843786		0.12440					

Clustering

We can try kmeans() clustering first

```
km <- kmeans(wisc.data, center = 2)</pre>
  table(km$cluster)
      2
131 438
Cross table
  table(km$cluster, diagnosis)
   diagnosis
      В
          Μ
      1 130
  2 356 82
  table(diagnosis)
diagnosis
  В
      Μ
357 212
Let's try hclust(). The key input required for hclust() is a distance matrix as produced by
the dist() function.
```

hc <- hclust(dist(wisc.data))</pre>

plot(hc)

I can make a tree life figure (dendrogram)

Cluster Dendrogram

dist(wisc.data)
hclust (*, "complete")

grps <- cutree(hc, k=2)
table(grps)</pre>

grps 1 2 549 20

PCA

Do we need to scale the data?

We can look at the sd of each column (original variable)

round(apply(wisc.data,2, sd))

```
0
                                                                         0
fractal_dimension_mean
                                       radius_se
                                                                texture_se
                                                                         1
          perimeter_se
                                         area_se
                                                             smoothness_se
                      2
                                               45
                                                                         0
                                    concavity_se
        compactness_se
                                                        concave.points_se
           symmetry_se
                            fractal_dimension_se
                                                              radius_worst
                      0
                                                0
                                                                         5
         texture_worst
                                 perimeter_worst
                                                                area_worst
                      6
                                               34
                                                                       569
      smoothness_worst
                               compactness_worst
                                                          concavity_worst
  concave.points_worst
                                  symmetry_worst fractal_dimension_worst
```

Yes, we need to scale. We will runprcomp() with scale = T

```
wisc.pr <- prcomp(wisc.data, scale = T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                           PC19
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                         PC24
                                                 PC25
                                                                  PC27
                                  PC23
                                                          PC26
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion
                       1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2, etc)

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)
ggplot(res) + aes(PC1, PC2, col = diagnosis) + geom_point() + theme_bw()</pre>
```


Combining Methods

Clustering on PCA results

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method = "ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector I need to "cut" the tree with the ${\tt cutree}$ () function

How many patients in each group?

Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC vairables

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                 PC6
                                                                            PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                     0.8193031
            PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                               PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                          PC19
                                                                     PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
```

```
[2,] 0.1299153
               0.1448061 -0.40509706
                                       0.06565549
                                                   0.25591230 -0.4289500
           PC21
                      PC22
                                 PC23
                                            PC24
                                                        PC25
                                                                      PC26
     0.1228233 0.09358453 0.08347651
                                       0.1223396
[1,]
                                                  0.02124121
                                                              0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
             PC27
                         PC28
                                      PC29
                                                   PC30
     0.220199544 -0.02946023 -0.015620933
                                            0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
  plot(res$PC1,res$PC2, col = grps)
  points(npc[,1], npc[,2], col = "navy", pch = 16, cex = 2.5)
  text(npc[,1], npc[,2], c(1,2), col="white")
```


Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new vairables (PCs) that capture the ost variance from the original variables in your datasets. - dimensionality reducition method