

UCD School of Mathematics and Statistics

STAT40840: Data programming with SAS Laura Kirwan

Lecture 8

Lecture 8: Analysing Data

Objectives – 8.1

- Use SAS procedures to summarise data numerically
- Use SAS procedures to summarise data graphically

- descriptive statistics based on moments (including skewness and kurtosis), quantiles or percentiles (such as the median), frequency tables, and extreme values
- histograms that optionally can be fitted with probability density curves for various distributions and with kernel density estimates
- cumulative distribution function plots (cdf plots). Optionally, these can be superimposed with probability distribution curves for various distributions.

- quantile-quantile plots (Q-Q plots), probability plots, and probability-probability plots (P-P plots). These plots facilitate the comparison of a data distribution with various theoretical distributions.
- goodness-of-fit tests for a variety of distributions including the normal
- the ability to inset summary statistics on plots

- the ability to analyse data sets with a frequency variable
- the ability to create output data sets containing summary statistics, histogram intervals, and parameters of fitted curves

Scenario

We will use the bodyweight dataset (from assignment1).

We will use the UNIVARIATE procedure to summarise the dataset and check for outliers.

Numerical descriptive statistics.

```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```



```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```

Moments					
N	176	Sum Weights	176		
Mean	2218.53448	Sum Observations	390462.068		
Std Deviation	667.066134	Variance	444977.227		
Skewness	0.82012438	Kurtosis	0.72050898		
Uncorrected SS	944124575	Corrected SS	77871014.8		
Coeff Variation	30.0678732	Std Error Mean	50.2820018		

www.ucd.ie/mathstat

```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```

Basic Statistical Measures					
Location		Variability	Variability		
Mean	2218.534	Std Deviation	667.06613		
Median	2149.905	Variance	444977		
Mode	•	Range	3521		
		Interquartile Range	833.84928		


```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```

Tests for Location: Mu0=0						
Test	Statistic		p Value			
Student's t	t	44.12184	Pr > t	<.0001		
Sign	M	88	Pr >= M	<.0001		
Signed Rank	S	7788	Pr >= S	<.0001		

run;

- Quantiles (Definition 5)				
Quantile	Estimate			
100% Max	4580.79			
99%	4311.06			
95%	3493.39			
90%	3175.00			
75% Q3	2561.61			
50% Median	2149.90			
25% Q1	1727.76			
10%	1430.50			
5%	1326.31			
1%	1071.71			
0% Min	1059.51			


```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```

Extreme Observations					
Lowest		Highest	Highest		
Value	Obs	Value	Obs		
1059.51	23	3709.19	137		
1071.71	8	3930.66	129		
1087.08	205	3999.04	29		
1114.40	217	4311.06	122		
1209.17	207	4580.79	132		


```
proc univariate data=work.bodyweight;
    var Bodyweight0 Energy_Intake0
        Bodyweight6 Energy_Intake6;
run;
```

Missing Values					
Missing Count Value	Count	Percent Of	Percent Of		
		All Obs	Missing Obs		
	44	20.00	100.00		

ODS

Use the output delivery system (ODS) to select the output that you wish to print.

```
ods trace on;
proc univariate data=work.bodyweight;
   var Bodyweight0 Energy_Intake0
Bodyweight6 Energy_Intake6;
run;
ods trace off;
```

L8_D2.sas

ods trace produces a list of output tables in the log

ODS

- *Output Added:
- -----
- Name: Moments
- Name: BasicMeasures
- Name: TestsForLocation
- Name: Quantiles
- Name: ExtremeObs;

L8_D2.sas

ODS

We use the ods to select the output that we want

```
ods select Moments ExtremeObs;
proc univariate data=work.bodyweight;
   var Bodyweight0 Energy_Intake0
Bodyweight6 Energy_Intake6;
run;
```

L8 D2.sas

Exercise 1

Run the code in L8_E1.sas. Does it run correctly? Why / why not?

```
ods select Moments ExtremeObs;
proc univariate data=work.bodyweight noprint;
    var Bodyweight0 Energy_Intake0
Bodyweight6 Energy_Intake6;
run;
```


Exercise 1 - solution

Run the code in L8_E1.sas. Does it run correctly? Why / why not?

```
ods select Moments ExtremeObs;
proc univariate data=work.bodyweight noprint;
    var Bodyweight0 Energy_Intake0
Bodyweight6 Energy_Intake6;
run;
```

Output is not created with the noprint option.

WARNING: Output 'ExtremeObs' was not created. Make sure that the output object name, label, or path is spelled correctly. Also, verify that the appropriate procedure options are used to produce the requested output object. For example, verify that the NOPRINT option is not used.

Frequency data

```
ods select Frequencies;
proc univariate data=work.bodyweight1 freq;
  var gender;
run;
```

L8_D3.sas

Frequency data

```
ods select Frequencies;
proc univariate data=work.bodyweight1 freq;
  var gender;
run;
```

The UNIVARIATE Procedure

Variable: Gender

Frequency Counts					
Value	Count	Count Percents			
		Cell	Cum		
0	101	45.9	45.9		
1	119	54.1	100.0		

L8_D3.sas

Grouping descriptive statistics

```
proc sort data=work.bodyweight1;
    by gender;
run;

proc univariate data=work.bodyweight1;
    by gender;
    var bodyweight0;
run;
```

L8 D4.sas

Grouping descriptive statistics

```
proc univariate data=work.bodyweight1;
    by gender;
    var bodyweight0;
run;
```

We get separate tables for males and females

------ Gender=1 ------

The UNIVARIATE Procedure Variable: Bodyweight0

Moments

N	119	Sum Weights	119
Mean	68.4033613	Sum Observations	8140
Std Deviation	12.5152919	Variance	156.632531
Skewness	1.14582501	Kurtosis	1.87374681
Uncorrected SS	575286	Corrected SS	18482.6387
Coeff Variation	18.2963112	Std Error Mean	1.14727493

L8 D4.sas

Saving summary statistics using OUT= output dataset

```
proc univariate data=work.bodyweight1;
    var bodyweight0;
    output out=work.means mean=m_weight0;
run;
```

L8 D5.sas

Saving summary statistics using OUT= output dataset

```
proc univariate data=work.bodyweight1;
    var bodyweight0;
    output out=work.means mean=m_weight0;
run;
```

A dataset called work.means is created with one variable and one observation

Obs	m_weight0
1	75.4218

L8_D5.sas

Saving summary statistics using ods output

```
ods output Moments=work.Moments;
proc univariate data=work.bodyweight1;
    var bodyweight0;
run;
```

L8 D5.sas

Saving summary statistics using ods output

```
ods output Moments=work.Moments;
proc univariate data=work.bodyweight1;
    var bodyweight0;
run;
```

A dataset called work.moments is created

0bs	VarName	Label1	cValue1	nValue1 I	Label2	cValue2	nValue2	
1	Bodyweight0		220		Sum Weights	220	220.000000	
2	Bodyweight0	Mean	75.4218182	75.421818	Sum Observations	16592.8	16593	
3	Bodyweight0	Std Deviation	14.7023987	14.702399	Variance	216.160526	216.160526	L8_D5.sas
4	Bodyweight0	Skewness	0.62738205	0.627382	Kurtosis	0.24931139	0.249311	L0_D3.5a5
5	Bodyweight0	Uncorrected SS	1298798.3	1298798	Corrected SS	47339.1553	47339	
6	Bodyweight0	Coeff Variation	19.4935617	19.493562	Std Error Mean	0.99123552	0.991236	

Computing Confidence Limits for the Mean, Standard Deviation, and Variance

```
proc univariate data=work.bodyweight1
cibasic;
   var bodyweight0;
run;
```

L8_D6.sas

Computing Confidence Limits for the Mean, Standard Deviation, and Variance

```
proc univariate data=work.bodyweight1
cibasic;
   var bodyweight0;
run;
```

Basic Confidence Limits Assuming Normality					
Parameter Estimate 95% Confidence Limits					
Mean	75.42182	73.46824	77.37540		
Std Deviation	14.70240	13.44497	16.22133		
Variance	216.16053	180.76710	263.13147		

L8 D6.sas

Graphical descriptive statistics: creating a histogram

```
proc univariate data=work.bodyweight1 noprint;
    histogram bodyweight0;
run;
```

Suppresses automatic printing of tables

L8_D7.sas

Graphical descriptive statistics: creating a histogram

univariate data=work.bodyweight1 noprint; histogram bodyweight0; run; Distribution of Bodyweight0 25 20 15 10 5 L8 D7.sas 88 48 56 64 72 96 104 112 120 Bodyweight0

Comparing groups: creating a comparative histogram

```
proc univariate data=work.bodyweight1 noprint;
    class gender;
    histogram bodyweight0 ;
run;
```

L8 D7.sas

Comparing groups: creating a comparative histogram

L8_D7.sas

UCD SCHOOL OF WATHERNATICS AND STATISTICS

Adding a normal curve to a histogram

```
proc univariate data=work.bodyweight1 noprint;
   histogram bodyweight0/ normal;
   inset n normal(ksdpval) / pos = ne;
run;
```

L8 D7.sas

Adding a normal curve to a histogram

L8_D7.sas

Producing a Q-Q plot

```
proc univariate data=work.bodyweight1 noprint
normal;
    qqplot bodyweight0 / normal;
run;
```

L8 D8.sas

UNIVARIATE procedure

Producing a Q-Q plot

L8_D8.sas

UNIVARIATE procedure

Adding a distribution reference line to a Q-Q plot

```
proc univariate data=work.bodyweight1 normal noprint;
    qqplot bodyweight0 / normal (mu=est sigma=est);
run;
```

est option means SAS will estimate the mean and variance from the data. You can specify particular values to test

L8_D8.sas

UNIVARIATE procedure

Adding a distribution reference line to a Q-Q plot

L8_D8.sas

Lecture 8: Analysing Data

Objectives – 8.2

- Use a SAS procedure to assess correlations
- Use a SAS procedure to conduct a regression analysis

Calculating a correlation coefficient

```
proc corr data=work.bodyweight1;
    var Bodyweight0 Age;
run;
```

L8 D9.sas

Calculating a correlation coefficient

```
proc corr data=work.bodyweight1;
    var Bodyweight0 Age;
run;
```

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
Bodyweight0	220	75.42182	14.70240	16593	45.00000	120.00000
Age	220	43.34091	13.79025	9535	18.00000	72.00000

Pearson Correlation Coefficients, N = 220Prob > |r| under HO: Rho=0

Bodyweight0	Bodyweight0 1.00000	Age 0.27696
, 3		<.0001
Age	0.27696	1.00000
	< 0001	

UCD School of Mathematics and Statistics

L8 D9.sas

Producing a scatterplot matrix

```
ods graphics on;
proc corr data=work.bodyweight1 nomiss
plots=matrix(histogram);
  var Age Bodyweight0 Energy_Intake0
Bodyweight6 Energy_Intake6;
run;
ods graphics off;
```

L8 D10.sas

L8_D10.sas

UCD School of Mathematics and

Computing partial correlations

```
proc corr data=work.bodyweight1;
    var Bodyweight0 Energy_Intake0;
    Partial age;
run;
```

L8 D11.sas

Computing partial correlations

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
Age Bodyweight0	219 219	43.37443 75.35525	13.81285 14.70281	9499 16503	18.00000 45.00000	72.00000 120.00000
Energy_Intake0	219	2631	758.64564	576145	1338	5900

Pearson Partial Correlation Coefficients, N = 219Prob > |r| under HO: Partial Rho=0

	Bodyweight0	Energy_ Intake0
Bodyweight0	1.00000	0.29422 <.0001
Energy_Intake0	0.29422 <.0001	1.00000

L8_D11.sas

Fitting a linear regression

```
ods graphics on;
proc reg data=work.bodyweight1;
   model bodyweight0 = age energy_intake0;
run;
```

L8 D12.sas

Fitting a linear regression - estimates

L8_D12.sas

```
ods graphics on;
proc reg data=work.bodyweight1;
   model bodyweight0 = age energy_intake0;
run;
```

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	1	47.15293	4.53098	10.41	<.0001	
Age	1	0.31753	0.06658	4.77	<.0001	
Energy_Intake0	1	0.00548	0.00121	4.52	<.0001	

Fitting a linear regression - diagnostics

L8_D12.sas

UCD School of Mathematics and

Saving residuals and predicted values in output dataset

```
ods graphics on;
proc reg data=work.bodyweight1;
   model bodyweight0 = age energy_intake0;
   output out=pred r=r p=p;
run;
```

L8 D12.sas

