1. Gebhard Boeckle's lectures

1.1. Galois representations and congruences. We first discuss profinite groups. Let G be a topological group.

Theorem 1. The following are equivalent:

- (a) G is compact, Hausdorff, and totally disconnected.
- (b) G is compact, and admits a neighborhood basis of the identity by open normal subgroups.
- (c) There is a directed poset I and an inverse system (G_i) of finite (discrete) groups such that $G = \varprojlim_I G_i$.

We say that G is *profinite* if the above conditions hold. The topology on $\varprojlim G_i$ is that obtained by regarding it as a closed subgroup of the product $\prod G_i$. Constructions:

- (a) If G is discrete, then we equip it with the profinite topology $G^{\mathrm{pf}} := \varprojlim G/N$, where N runs over the finite index subgroups.
- (b) If $G = \lim_{i \to \infty} G_i$ is profinite, then
 - (i) The abelianization is given by

$$G^{ab} = G/\overline{[G,G]} = \lim_{i \to \infty} G_i^{ab},$$

and in particular, is profinite.

(ii) For H finite, write H_p for its maximal p-group quotient. Then

$$G_p = \underline{\lim}(G_i)_p$$

is a pro-p-group (and in particular, profinite).

(iii) If $N \leq G$ is closed and normal, then G/N is profinite.

Example 2. (a) Let F be a field. Set $G_F := \operatorname{Aut}_F(F^{\text{sep}}) = \operatorname{Gal}(F^{\text{sep}}/F)$ profinite. Define the poset

$$\mathcal{I}_F := \{ L \subseteq F^{\text{sep}} : L \supseteq F \text{ finite Galois}, \subseteq \} .$$

Then

$$G_F \xrightarrow{\cong} \varprojlim_{L \in \mathcal{I}_F} \operatorname{Gal}(L/F).$$

(b) Let $F' \subseteq F^{\text{sep}}$ be a normal extension of F. Then $G_{F'} \leq G_F$ is closed and normal. We may thus write

$$\operatorname{Gal}(F'/F) \cong G_F/G_{F'} = \lim_{\substack{L \in \mathcal{I}_F, \\ L \subseteq F'}} \operatorname{Gal}(L/F).$$

(c) Let \mathbb{N} denote the natural numbers, ordered by divisibility. Then

$$\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n = \prod_p \mathbb{Z}_p,$$

where the last step is the Chinese remainder theorem. We sometimes need a slight modification:

$$\hat{\mathbb{Z}}^{(p)} = \varprojlim_{p \nmid n} \mathbb{Z}/n = \prod_{\ell \text{ prime}, \ell \neq p} \mathbb{Z}_{\ell}.$$

Let's fix some notation:

(1) Let K be a number field, \mathcal{O}_K its ring of integers. Let $\operatorname{Pl}_K = \operatorname{Pl}_K^\infty \sqcup \operatorname{Pl}_K^{\operatorname{fin}}$ denote the set of places v of K. Let v be a finite place. We may then attach to it a maximal ideal \mathfrak{q}_v of \mathcal{O}_K , giving a bijection

$$\operatorname{Pl}_K^{\operatorname{fin}} \leftrightarrow \operatorname{Max}(\mathcal{O}_K).$$

We may form the residue field $k_v := \mathcal{O}_K/\mathfrak{q}_v$. We denote q_v for the cardinality of k_v . We write $\operatorname{char}(v)$ for the characteristic of k_v . We denote by $\mathcal{O}_v = \varprojlim \mathcal{O}/\mathfrak{q}_v^n$, with fraction field K_v . Also, we have a short exact sequence

$$1 \to I_v \to G_v := \operatorname{Gal}_{K_v} \to \operatorname{Gal}_{k_v} \to 1.$$

A topological generator for Gal_{k_v} is given by

$$\operatorname{Fr}_v: \alpha \mapsto \alpha^{q_v}.$$

We denote by $\operatorname{Frob}_v \in G_v$ some lift of Fr_v .

We write $S_{\infty} := \operatorname{Pl}_{K}^{\infty}$ for the set of archimedean places, so that $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in S_{\infty}} K_{v}$. For a rational prime p, we write S_{p} for the set of places v of K such that $v \mid p$.

(2) We also need some local analogues for $E \supseteq \mathbb{Q}_p$ a p-adic field. i++i

References