Seminar 5

1. Determinati A' pentru multimile

a)
$$A = \left\{ \frac{1}{2^n} \middle| n \in \mathbb{N} \right\}$$

b) $A = \mathbb{Q}$

$$\overrightarrow{b}$$
) $A = \mathbb{Q}$

c)
$$A = (0,1) \setminus \mathbb{Q}$$

2. Verificati daca functiile urmatoare isi ating valorile extreme si determinati aceste valori

a)
$$f: (-1,1) \to \mathbb{R}$$
 $f(x) = \ln \frac{1-x}{1+x}$

a)
$$f: (-1,1) \to \mathbb{R}$$
 $f(x) = \ln \frac{1-x}{1+x}$
b) $f: [0,1] \to \mathbb{R}$ $f(x) = \begin{cases} \frac{1}{2}, x = 0 \\ x, x \in (0,1] \end{cases}$
c) $f: [-1,1] \to \mathbb{R}$ $f(x) = x\sqrt{1-x^2}$

c)
$$f: [-1, 1] \to \mathbb{R}$$
 $f(x) = x\sqrt{1 - x^2}$

d)
$$f: [-1, 1] \to \mathbb{R}$$
 $f(x) = |x| (1 - x)$

3. (caracterizarea monotoniei cu ajutorul derivatei) Fie $f:(a,b)\to\mathbb{R}$ o functie derivabila pe intervalul (a, b). Au loc afirmatiile

a) f este crescatoare pe
$$(a,b) \iff f'(x) \ge 0, \forall x \in (a,b)$$

b) f este decrescatoare pe
$$(a,b) \iff f'(x) \leq 0, \forall x \in (a,b)$$

c) Daca
$$f'(x) > 0, \forall x \in (a, b) \implies$$
 f este strict crescatoare pe (a, b)

d) Daca
$$f'(x) < 0, \forall x \in (a, b) \implies$$
 f este strict descrescatoare pe (a, b)

In general, reciprocele afirmatiilor c) si d) nu sunt adevarate. Justificati.

- 4. Determinati punctele de optim local ale functiilor de la exercitiul 2.
- 5. Calculati limițele

a)
$$\lim_{x\to 0} \frac{e^{-(1+x)^{\frac{1}{x}}}}{x}$$

a)
$$\lim_{x\to 0} \frac{e^{-(1+x)\frac{1}{x}}}{x}$$

b) $\lim_{x\to 0} \frac{x^{\alpha}}{e^x}$, $\alpha \in \mathbb{R}$