

Workbook: Iterative deepening search

Albert Sanchis
Jorge Civera

Departament de Sistemes Informàtics i Computació

Learning objectives

- ▶ To describe iterative deepening search.
- To draw the trees of iterative deepening search.
- ▶ To apply iterative deepening search to a well-known problem
- ► To analyze the quality of iterative deepening search.

Problem: Shortest path between two points

Shortest path from Arad to Bucarest [1]:

Actions(Arad) = {Move(Sibiu), Move(Timisoara), Move(Zerind)}.

Iterative deepening search [2]

```
IDS(G,s) // Iterative deepening search
 for m = 0, 1, 2, ...: if (r = \mathsf{DFS}(G, s, m)) \neq \mathsf{NULL}: return r
DFS(G, s', m) // Depth-first search with maximum depth of m
                                    // Open: search frontier-stack
 O = InitStack(s')
 while not EmptyStack(O):
                                // selection LIFO (Last in, first out)
   s = Pop(O)
   if Goal(s) return s
                                                   // solution found!
   if Depth(s) < m:
                                     // maximum depth not reached
                                           // generation: n child of s
    forall (s,n) \in Adjacents(G,s):
      Push(O, n)
                                             // n added to the stack
  return NULL
                                                 // no solution found
```

► Question 1: Write a trace of the IDS algorithm applied to the problem of finding the shortest path from Arad to Bucarest.

With m=0

O	s
{Arad (d=0)}	_
{}	Arad (d=0)

O	s
{Arad (d=0)}	_
{Sibiu (d=1), Timisoara (d=1), Zerind (d=1)}	Arad (d=0)
{Timisoara (d=1), Zerind (d=1)}	Sibiu (d=1)
{Zerind (d=1)}	Timisoara (d=1)
{}	Zerind (d=1)

O	s
{Arad (d=0)}	_
{Sibiu (d=1), Timisoara (d=1), Zerind (d=1)}	Arad (d=0)
{Arad (d=2), Fagaras (d=2), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind	Sibiu (d=1)
(d=1)	
{Fagaras (d=2), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	Arad (d=2)
{Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	Fagaras (d=2)
{Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	Oradea (d=2)
{Timisoara (d=1), Zerind (d=1)}	Rimnicu (d=2)
{Arad (d=2), Lugoj (d=2), Zerind (d=1)}	Timisoara (d=1)
{Lugoj (d=2), Zerind (d=1)}	Arad (d=2)
{Zerind (d=1)}	Lugoj (d=2)
{Arad (d=2), Oradea (d=2)}	Zerind (d=1)
{Oradea (d=2)}	Arad (d=2)
{}	Oradea (d=2)

O	s
{Arad (d=0)}	_
{Sibiu (d=1), Timisoara (d=1), Zerind (d=1)}	Arad (d=0)
{Arad (d=2), Fagaras (d=2), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind	Sibiu (d=1)
(d=1)	
{Sibiu (d=3), Timisoara (d=3), Zerind (d=3), Fagaras (d=2), Oradea (d=2),	Arad (d=2)
Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	
{Timisoara (d=3), Zerind (d=3), Fagaras (d=2), Oradea (d=2), Rimnicu(d=2),	Sibiu (d=3)
Timisoara (d=1), Zerind (d=1)}	
{Zerind (d=3), Fagaras (d=2), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1),	Timisoara (d=3)
Zerind (d=1)}	
{Fagaras (d=2), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	Zerind (d=3)
{Bucharest (d=3), Sibiu (d=3), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1),	Fagaras (d=2)
Zerind (d=1)}	
{Sibiu (d=3), Oradea (d=2), Rimnicu(d=2), Timisoara (d=1), Zerind (d=1)}	Bucharest (d=3)

▶ Question 2: Draw the search tree as a result of applying the IDS algorithm to the problem of finding the shortest path from Arad to Bucarest with maximum depth m=3.

With
$$m=0$$

With
$$m=1$$

- Question 3: Does the IDS algorithm find a solution? Yes
- ► Question 4: If the answer is "Yes":

 - ▶ What the number of iterations depends on? On the depth at which the shortest solution in terms of number of actions (movements) is found
 - ▶ What is the solution found? The solution path is: Arad, Sibiu, Fagaras, Bucharest
 - ▶ What is the cost of this solution? 450
 - ▶ Is this the solution of minimum cost? No, because there is an alternative solution with lower cost of 418: Arad, Sibiu, Rimnicu, Pitesti, Bucharest
 - ▶ What type of solution is found by the IDS algorithm? The IDS algorithm finds the shortest (shallowest) solution of the tree search in terms of number of actions (movements)

References

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. *Artificial Intelligence*, 1985.

