Experimental study of ECRIS beam current oscillations

O. Tarvainen, V. Toivanen, H. Koivisto, J. Komppula, T. Kalvas University of Jyväskylä

C. M. Lyneis, M. Strohmeier Lawrence Berkeley National Laboratory

Content

- Stability of ECRIS beams
- Experimental setup and data analysis
- Results
- Discussion the origin of beam current oscillations

Stability of ECRIS beams

- Stability is especially important for
- High power accelerators
- Medical applications
- Industrial applications
- Different types of stability
- Long-term droop / increase of the current
- Rapid oscillations in ~ kHz range

Stability of ECRIS beams

presumably driven by plasma mechanisms This work focuses on the rapid oscillations

Previous work

Magnetic field topology

Geller's book

T.A. Antaya and S. Gammino, Rev. Sci. Instrum., 65 (5), (1994), p. 1723.

Biased disc

G. S. Taki, P. R. Sarma, A. G. Drentje, T. Nakagawa, P. K. Ray and R. K. Bhandari, High Energ. Phys. Nuc., Vol. 31, Supp. I, (2007), p. 170.

Gasdynamic ECRIS

A. Sidorov et al. in this workshop

Plenty of anecdotal information

"I know the old LBL ECR could play whale songs by amplifying the signal from a collimator and messing with the first stage" - C. Lyneis

Content

- Stability of ECRIS beams
- Experimental setup and data analysis
- Results
- Discussion the origin of beam current oscillations

Experimental setup

- Data taken on VENUS at LBNL and 14 GHz A-ECR at JYFL
- Oxygen plasmas

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Data analysis

Discrete Fourier Transform (DFT) to frequency domain

UNIVERSITY OF JYVÄSKYLÄ

Online data analysis with LabView

are filtered and averaged during conventional tuning procedure Beam current oscillations at frequencies on the order of kHz

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Content

- Stability of ECRIS beams
- Experimental setup and data analysis
- Results
- Discussion the origin of beam current oscillations

frequencies and amplitudes Range of oscillation

[%] əbulilqmA

abutilqmA

[%]

Microwave power

UNIVERSITY OF JYVÄSKYLÄ

Biased disc voltage

Double frequency heating

Instability frequency [Hz] / Beam current [A]

UNIVERSITY OF JYVÄSKYLÄ JYVÄSKYLÄN YLIOPISTO

Magnetic field

O ⁶⁺ amplitude [%]	7.5	2.2	12.1	3.8	3.1
$R_{inj}/R_{\rm ext}/R_{\rm rad}$	3.4 / 2.3 / 2.0	5.3 / 3.3 / 3.5	4.2 / 2.0 / 2.2	3.7 / 1.7 / 2.2	4.3 / 2.0 / 2.7
Description	VENUS 1.7 kW / 18 GHz	VENUS "high-B" 2 kW / 18 GHz	JYFL A-ECR 300 W / 14 GHz	JYFL A-ECR 300 W / 14 GHz	JYFL A-ECR 300 W / 11.5 GHz

Content

- Stability of ECRIS beams
- Experimental setup and data analysis
- Results
- Discussion the origin of beam current oscillations

Where do the beam current oscillations come from?

- Plasma
- Kinetic instabilities
- MHD instabilities
- Plasma beam boundary (meniscus)
- Potential fluctuations
- Beam line
- Charon
- Fluctuating space charge compensation
- Envir
- Barra pear DF

Plasma effect?

Kinetic plasma instabilities

UNIVERSITY OF JYVÄSKYLÄ Kinetic (cyclotron) instabilities are observed in afterglow rackylän yliopisto plasma – see the poster by I. Izotov et al.

MHD-instabilities

- Driven by the topology of the magnetic field
- Effectively supressed in minimum-B in comparison to simple mirror machines
- Condition for suppressing MHD-instabilities

$$\partial B/\partial r \ge 0$$

when *particle pressure << magnetic pressure* Magnetohydrodynamically "quiet" plasma

MHD-instabilities

UNIVERSITY OF JYVÄSKYLÄ

True minimum-B: ARC-ECRIS

Further diagnostics

- Sector Faraday Cup
- Bremsstrahlung emission (scintillation detector)
- Plasma-microwave coupling
- Bias disc current
- Escaping electron flux

Stay tuned!

Thank You!