TD 1 - CONSTRUCTION DE N ET ÉCRITURE DES NOMBRES ENTIERS

1 La construction de l'ensemble des entiers

Exercice 1. Soit S l'application successeur définie sur \mathbb{N} et à valeurs dans \mathbb{N} . Montrer à l'aide du principe de récurrence que pour tout $n \in \mathbb{N}$, $S(n) \neq n$.

Exercice 2.

- 1. Soit E un sous-ensemble infini de \mathbb{N} . Montrer que E est dénombrable.
- 2. Montrer que l'ensemble des nombres premiers est dénombrable.

Indication. Pour la question 1, on pourra construire une bijection de $\mathbb N$ dans E de manière explicite.

Exercice 3. On considère la définition ensembliste de Von Neumann des entiers.

- 1. Montrer que pour tout entier n non nul, $\emptyset \in n$.
- 2. En déduire que pour tout entier n non nul, n > 0.

Indication. Pour la question 1, on pourra effectuer une démonstration par récurrence.

Exercice 4. Montrer que l'application [0+] est l'identité sur \mathbb{N} .

Indication. On pourra effectuer une démonstration par récurrence.

Exercice 5. Soient a, b et c des entiers tels que $b \le c \le a$. En utilisant la définition de la différence de deux entiers et les propriétés de l'addition, montrer que :

$$a - b = (a - c) + (c - b).$$

Exercice 6. Soient a, b et c des entiers tels que $c \le b \le a$. En utilisant la définition de la différence de deux entiers et les propriétés de l'addition, montrer que :

$$a - (b - c) = (a - b) + c.$$

Exercice 7. Soient a et b deux entiers avec b non nul. On considère la suite $(a_n)_{n\in\mathbb{N}}$ définie par $a_0=a$ et :

$$a_{n+1} = \begin{cases} a_n - b & \text{si } a_n > b; \\ b - a_n & \text{si } a_n \le b. \end{cases}$$

Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est périodique à partir d'un certain rang.

Indication. On pourra d'abord travailler sur des exemples afin d'en déduire une méthode pour démontrer ce résultat.

Exercice 8. Soit a un entier non nul et soient m, n des entiers. Montrer que $a^{m+n} = a^m \times a^n$.

2 Numération de position

Exercice 9. Dans le système en base 10, calculer le produit du nombre 123456789 par 9p où p est un nombre compris entre 1 et 9.

Exercice 10. En base supérieure à 10, on utilisera dans l'ordre les lettres grecques $\alpha, \beta, \gamma, \delta, \ldots$ comme chiffres au-delà de 9.

- 1. Convertir en base 10 les nombres suivantes $(234)_5$, $(11001000110)_2$, $(\alpha\alpha\beta)_{12}$, $(111)_3$, $(38\alpha)_{11}$.
- 2. Le nombre 794 est écrit en base 10. Le convertir en bases 2, 4, 7 et 12.
- 3. Convertir $(\alpha 8\beta)_{12}$ en base 4.

Exercice 11. Les nombres entiers sont écrits dans une base b avec $b \ge 2$.

- 1. En supposant que le premier chiffre à gauche est non nul, quels sont les plus petits nombres écrits avec deux chiffres ? trois chiffres ? n chiffres ?
- 2. Quels sont les plus grands nombres écrits avec deux chiffres? trois chiffres? n chiffres?

- 3. En supposant que le premier chiffre à gauche est non nul, combien y-a-t-il de nombres écrits avec deux chiffres? trois chiffres? n chiffres?
- 4. Que donnent les résultats des questions précédentes si on choisit b = 10? b = 2? b = 12? (on donnera les résultats en base 10).

Exercice 12.

- 1. Soit b un entier tel que $b \ge 2$. Dans quel système de numération a-t-on $(32)_b \times (14)_b = (438)_b$? Dans quel système de numération a-t-on $(27)_b \times (25)_b = (708)_b$?
- 2. Soient x, y et z des entiers compris entre 0 et 6. Trouver les nombres qui s'écrivent (xyz) en base 7 et (zyx) en base 11.
- 3. Dans le système en base 12, un nombre s'écrit $(xyz)_{12}$. Dans le système en base b (avec b entier tel que $b \ge 2$) ce même nombre s'écrit $(xyz0)_b$. Quel est le nombre et quelle est la nouvelle base?

Indication. Pour la question 3, on pourra établir la décomposition dans la base 12 et la décomposition dans la base b de l'entier recherché, puis déterminer un encadrement de l'entier recherché afin d'en déduire les valeurs possibles de b, puis les valeurs possibles de l'entier.

Exercice 13. Soit n un entier compris entre 100 et 999. Calculer le produit de 7n par 143.

Indication. On pourra utiliser l'associativité de la multiplication et écrire n sous la forme $(abc)_{10}$ avec a, b et c des entiers compris entre 0 et g et

Exercice 14. Soit b un entier tel que $b \ge 2$. Soit n un entier tel que $0 \le n < b$. Montrer que le nombre :

$$(123...(n-1)n(n-1)...321)_b$$

est un carré.

Indication. À l'aide d'exemples pour de petites valeurs de n et pour b=10, on pourra déterminer une écriture en base b du nombre dont le carré est $(123...(n-1)n(n-1)...321)_b$ puis démontrer ce résultat.

Exercice 15. Soit b un entier tel que $b \ge 2$. Soient a et a' deux entiers qui s'écrivent en base b de la façon suivante :

$$a = (a_n a_{n-1} \dots a_1 a_0)_b$$
 et $a' = (a'_m a'_{m-1} \dots a'_1 a'_0)_b$

avec n, m des entiers, $\forall k \in \llbracket 0, n \rrbracket, a_k \in \llbracket 0, b-1 \rrbracket$ et $a_n \neq 0$ et $\forall k \in \llbracket 0, m \rrbracket, a_k' \in \llbracket 0, b-1 \rrbracket$ et $a_m' \neq 0$. On suppose que a et a' sont distincts.

- 1. Soit p le plus grand entier tel que $a_p \neq a_p'$. Montrer que si $a_p > a_p'$ alors a > a'. Puis montrer que si $a_p < a_p'$ alors a < a'.
- 2. Montrer que si n > m, alors a > a'.

Remarque 1. Cet exercice nous permet de constater que l'écriture des entiers dans une base b permet de comparer facilement ces entiers.