F₊ from KsPiPi vs 4Pi and KIPiPi vs 4Pi

11/12/2014 Claire Prouve

KsPiPi vs 4Pi – peaking bkg

Peaking bkg: KsPiPi vs KsPiPi $B_i^{peak} = B_{tot}^{peak} \cdot a_i^{peak}$

- total number of peaking bkg events from generic MC: 18.45 ± 1.13
- Percentage of peaking bkg events in bin i from data: apply KsPiPi-Selection cut on 4Pi side
 BUT: potential bias in distribution due to difference in Ks-Veto and Ks-Selection

KsPiPi vs KsPiPi MC reconstructed as KsPiPi vs 4Pi

- ⇒ Determine the effect of different cuts using KsPiPi vs KsPiPi signal MC (280000 events)
- ⇒ Weight a_ipeak accordingly

Figure 1.1: Distribution of $K_s^0\pi\pi$ vs $K_s^0\pi\pi$ events over the bins determined by using $K_s^0\pi\pi$ vs $K_s^0\pi\pi$ MC. Blue: Ks-Selection cut of FS>2, red: Ks-Veto cut of FS<0 as is used in the data sample.

KsPiPi vs 4Pi – peaking bkg

Peaking bkg: KsPiPi vs KsPiPi $B_i^{peak} = B_{tot}^{peak} \cdot a_i^{peak}$

- total number of peaking bkg events from generic MC: 18.45 ± 1.13
- Percentage of peaking bkg events in bin i from data: apply KsPiPi-Selection cut on 4Pi side
 BUT: potential bias in distribution due to difference in Ks-Veto and Ks-Selection

bin i	B_i^{peak}	$\mid ext{old } B_i^{peak} \mid$	bin i	B_i^{peak}	old B_i^{peak}	
1 2	2.43 ± 0.54 0.74 ± 0.29	2.44 ± 0.52 0.86 ± 0.32	-1 -2	$1.84 \pm 0.46 \\ 0.93 \pm 0.34$	2.4 ± 0.52 0.86 ± 0.32	All differences within
3 4 5 6 7 8	1.29 ± 0.46 0.53 ± 0.28 1.28 ± 0.40 0.56 ± 0.26 1.59 ± 0.51 2.38 ± 0.60	1.10 ± 0.36 0.49 ± 0.24 1.34 ± 0.39 0.61 ± 0.27 1.34 ± 0.39 2.08 ± 0.48	-3 -4 -5 -6 -7 -8	0.95 ± 0.38 0.15 ± 0.15 1.52 ± 0.44 0.86 ± 0.32	1.10 ± 0.36 0.49 ± 0.24 1.34 ± 0.39 0.61 ± 0.27 1.34 ± 0.39	uncertainties anyway

Table 1.4: Number of peaking background events per bin in the data sample before efficiency correction.

KsPiPi vs 4Pi - efficiency

KsPiPi vs 4Pi signal selection efficiency now determined from **KsPiPi vs 4Pi signal MC alone** 260k events generated

bin	ϵ [%]	bin	$\epsilon \ [\ \%]$
1	15.93 ± 0.17	-1	16.32 ± 0.18
2	16.05 ± 0.30	-2	15.83 ± 0.29
3	18.31 ± 0.42	-3	18.27 ± 0.42
4	16.95 ± 0.42	-4	17.52 ± 0.43
5	16.13 ± 0.28	-5	16.67 ± 0.28
6	17.26 ± 0.37	-6	16.79 ± 0.36
7	15.64 ± 0.34	-7	16.75 ± 0.35
8	16.68 ± 0.28	-8	16.69 ± 0.28

Table 1.7: Signal efficiency per bin.

Efficiencies from K3Pi vs 4Pi 250k events

Bin	3	σ
0	0.158604	0.000797
1	0.157600	0.001382
2	0.157509	0.002351
3	0.163625	0.003198
4	0.172690	0.003451
5	0.156697	0.002179
6	0.152732	0.002730
7	0.156512	0.002698
8	0.160328	0.002188

KsPiPi vs 4Pi - T_i

T_i: fraction yield of flavour tagged KsPiPi events per bin K'_i given by arXiv:1401.1904 contain first order effects of mixing (which are not present at

CLEO)

$$K_i' = T_i + \sqrt{T_i T_{-i}} (y c_i + x s_i)$$

x, y: latest HFAG results (x = $(0.63 \pm 0.19)\%$, y = $(0.75 \pm 0.12)\%$)

=> fit for T_i , using Gaussian constraints on c_i , x and y and demanding sum T_i =1

New values w/o mixing:

bin T_i bin | 0.0781 ± 0.0014 1 0.1695 ± 0.0053 -1 0.0873 ± 0.0012 -2 0.0186 ± 0.0002 0.0723 ± 0.0020 0.0201 ± 0.0003 0.0258 ± 0.0011 0.0161 ± 0.0015 5 0.0889 ± 0.0024 0.0523 ± 0.0013 -5 0.0589 ± 0.0011 0.0147 ± 0.0003 0.1252 ± 0.0018 0.0132 ± 0.0004 0.0270 ± 0.0010 8 0.1320 ± 0.0021 -8

Old values with mixing:

Bin	K_i'	Bin	K_i'
1	0.1701 ± 0.0014	-1	0.0786 ± 0.0013
2	0.0875 ± 0.0012	-2	0.0187 ± 0.0002
3	0.0726 ± 0.0021	-3	0.0198 ± 0.0003
4	0.0257 ± 0.0011	-4	0.0159 ± 0.0016
5	0.0883 ± 0.0027	-5	0.0519 ± 0.0013
6	0.0587 ± 0.0011	-6	0.0147 ± 0.0003
7	0.1249 ± 0.0019	-7	0.0135 ± 0.0004
8	0.1320 ± 0.0023	-8	0.0273 ± 0.0010

KsPiPi vs 4Pi - Mi

bin	$M_i + M_{-i}$
1 + -1	184.691 ± 38.7358
2 + -2	119.295 ± 29.6759
3 + -3	98.5683 ± 25.332
4 + -4	61.8512 ± 20.2901
5 + -5	333.006 ± 47.1659
6 + -6	126.458 ± 28.8478
7 + -7	164.885 ± 34.0446
8 + -8	221.777 ± 39.1979

Table 1.8: $M_i + M_{-i}$

KIPiPi vs 4Pi

Plan for raw signal yield: cut on MissMassSq and fit to $M_{bc}(D)$

signal shape: fixed from signal MC peaking bkg shape: same as signal number of peaking bkg events: ...?

What about the 'everything else' events that seem to be peaking in M_{bc} too?

F,

For now: assume only peaking bkg is KsPiPi vs KlPiPi

- \Rightarrow Raw KlPiPi vs 4Pi yields from fits to M_{bc} in each bin
- ⇒ Signal efficiency from KIPiPi vs 4Pi Signal MC

⇒ Fit F₊ for KsPiPi vs 4Pi and KlPiPi vs 4Pi simultaneously (leaving both norm. terms free)

