- A cricket ball of mass 150 g has an initial velocity $\mathbf{u} = (3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \,\mathrm{m \, s^{-1}}$ and a final velocity $\mathbf{v} = -(3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}) \,\mathrm{m \, s^{-1}}$ after being hit. The change in momentum (final momentum-initial momentum) is (in kg m s¹) (a) zero
 - (b) $-(0.45\hat{\mathbf{i}} + 0.6\hat{\mathbf{j}})$
 - (c) $-(0.9\hat{\mathbf{i}} + 1.2\hat{\mathbf{j}})$
 - (d) $-5(\hat{\mathbf{i}} + \hat{\mathbf{j}})$.
- **5.4** In the previous problem (5.3), the magnitude of the momentum transferred during the hit is
 - (a) Zero (b) 0.75 kg m s^{-1} (c) 1.5 kg m s^{-1} (d) 14 kg m s^{-1} .

6.12 Which of the diagrams shown in Fig. 6.6 most closely shows the variation in kinetic energy of the earth as it moves once around the sun in its elliptical orbit?

- 6 28 A raindran of mass 1 00 a falling from a height of 1 km 1
- **6.38** A raindrop of mass 1.00 g falling from a height of 1 km hits the ground with a speed of 50 m s⁻¹. Calculate
 - (a) the loss of P.E. of the drop.
 - (b) the gain in K.E. of the drop.
 - (c) Is the gain in K.E. equal to loss of P.E.? If not why.
 - (c) 15 the Sami III 11.2. equal to 1005 of 1.2.. If not

Take $q = 10 \text{ m s}^{-2}$

6.47 Two identical steel cubes (masses 50g, side 1cm) collide head-on face to face with a speed of 10cm/s each. Find the maximum compression of each. Young's modulus for steel = $Y = 2 \times 10^{11} \text{ N/m}^2$.