

Markscheme

November 2019

Physics

Standard level

Paper 3

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from http://www.ibo.org/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse http://www.ibo.org/fr/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: http://www.ibo.org/es/contact-the-ib/media-inquiries/for-publishers/guidance-for-third-party-publishers-and-providers/how-to-apply-for-a-license.

Subject Details: Physics SL Paper 3 Markscheme

Candidates are required to answer all questions in Section A and all questions from one option in Section B. Maximum total = 35 marks.

- **1.** Each row in the "Question" column relates to the smallest subpart of the question.
- **2.** The maximum mark for each question subpart is indicated in the "Total" column.
- **3.** Each marking point in the "Answers" column is shown by means of a tick (✓) at the end of the marking point.
- **4.** A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- **5.** An alternative wording is indicated in the "Answers" column by a slash (/). Either wording can be accepted.
- **6.** An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- **8.** Words inside chevrons **« »** in the "Answers" column are not necessary to gain the mark.
- **9.** Words that are <u>underlined</u> are essential for the mark.
- **10.** The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- **12.** Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script. "ECF acceptable" will be displayed in the "Notes" column.
- 14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.

Section A

C	uestion	Answers	Notes	Total
1.	а	a straight line cannot be drawn through all error bars <i>OR</i> the graph/line of best fit is /curved/not straight/parabolic etc. <i>OR</i> graph has increasing/variable gradient ✓	Do not allow "a line cannot be drawn through all error bars" without specifying "straight".	1
1.	b	$V = 1.15 \text{ m/s}^{-1} \text{ and } \Delta V = 0.05 \text{ m/s}^{-1} $ $\frac{0.05}{1.15} = 0.04 $	Accept 4 %	2

Q	uestion	Answers	Notes	Total
1.	С	use of 2 correct points on the line with $\Delta v^2 > 2$ b in range 0.012 to 0.013 $s^3 \text{m}^{-2}$		3
1.	d	$a_{\text{max}} = 2.101 \text{ «s} * \pm 0.001 \text{ «s} * \textbf{AND} \ a_{\text{min}} = 2.095 \text{ «s} * \pm 0.001 \text{ «s} * \checkmark$ $\frac{2.101 - 2.095}{2} = 0.003 \text{ «s} * \checkmark$		2

C	Questi	on	Answers	Notes	Total
2.	а	i	evidence of use of ρ = given gradient \times wire area OR substitution of values from a single data point with wire area \checkmark $\rho = \mathbf{c} = 6.30 \times \pi \times \left(\frac{0.500 \times 10^{-3}}{2}\right)^2 = \mathbf{n} \cdot 1.24 \times 10^{-6} \mathbf{c} \cdot \Omega \mathbf{m} \mathbf{n} \mathbf{c}$	Check POT is correct. MP2 must be correct to exactly 3 s.f.	2
2.	а	ii	measurement should be performed at a constant temperature <i>OR</i> resistance of wire changes with temperature ✓ series resistance prevents the wire from overheating <i>OR</i> reduces power dissipated in the wire ✓ by reducing voltage across/current through the wire ✓		3
2.	b		ANY straight line going through the origin if extrapolated ✓ ANY straight line below existing line with smaller gradient ✓		2

Section B

Option A — Relativity

C	Questi	on	Answers	Notes	Total
3.	а		laws of physics are the same for all observers OR laws of physics are the same in all «inertial» frames ✓	OWTTE	1
3.	b	i	magnetic √		1
3.	b	ii	<pre> «from 3a» force must still be repulsive for P there is no magnetic force AND force is electric/electrostatic OR since P is at rest the force is electric/electrostatic ✓</pre>		2
3.	b	iii	protons and electrons in the wire move with different velocities «relative to P» <i>OR</i> speed of electrons is greater ✓ «for P» the density of protons and electrons in wire will be different «due to length contraction» <i>OR</i> «for P» the wire appears to have negative charge «due to length contraction» ✓ «hence electric force arises»	Do not award mark for mention of length contraction without details.	2

	Questi	on	Answers	Notes	Total
3.	b	iv	$u' = \frac{0.80 + 0.30}{1 + 0.80 \times 0.30} c \checkmark$ $= 0.89c \checkmark$	Accept 0.89c if all negative values used. Accept – 0.89c even though speed is required.	2

4.	а	i	<i>γ</i> = 1.09 ✓	
			$L_{A} = \frac{2.0}{1.09} = 1.8 \text{ km}$	2
4.	а	ii	ALTERNATIVE 1 time = $\frac{1.8 \times 10^3}{1.2 \times 10^8}$ \(\square\) 1.5 \times 10^{-5} \(\text{s.s.} \) \(\square\) ALTERNATIVE 2 $t_{\text{B}} = \frac{2 \times 10^3}{1.2 \times 10^8} = 1.66 \times 10^{-5} (\text{s.s.}) $	2
			$t_{A} = \frac{t_{B}}{\gamma} = 1.5 \times 10^{-5} \text{ (s)} \checkmark$	

C	Question		Answers	Notes	Total
4.	b		$L_{\rm B}$ is the length/measurement «by observer B» made in the reference frame in which the bridge is at rest \checkmark	Idea of rest frame or frame in which bridge is not moving is required.	1
4.	С	i	ct / km 1	Line must be 1 square below Y, allow ±0.5 square. Allow line drawn without a ruler.	
			x' axis drawn with correct gradient of 0.4 ✓		1

4. c ii	2

C	Question	Answers	Notes	Total
4.	c iii	ct / km ct' x' 1 2 3 x / km	Allow lines drawn without a ruler.	2
		light worldlines at 45° from X AND Y intersecting the worldline <i>ct'</i> ✓ so light from lamp X is observed first ✓	Do not allow MP2 without supporting argument or correct diagram.	

Question	Answers	Notes	Total
	ALTERNATIVE 1 $\Delta t' = 1.09 \times \left(0 - \frac{0.4 \times 2.0 \times 10^{3}}{3.0 \times 10^{8}}\right) \checkmark$ $= (-)^{2} 2.9 \times 10^{-6} (s)^{4} \checkmark$		
e re (equating spacetime intervals between X and Y relies on realization that $\Delta x' = \gamma(\Delta x - 0)$ eg: $(c\Delta t')^2 - (1.09 \times 2000)^2 = 0^2 - 2000^2 \checkmark$ $\Delta t' = \text{$\epsilon$} \frac{\sqrt{(1.09 \times 2000)^2 - 2000^2}}{3.0 \times 10^8} = \text{ϵ} \pm 2.9 \times 10^{-6} \times s \times \frac{\pm}{3.0 \times 10^8} \frac{\pm}{3.0 \times 10^8} = \text{$\empirical} $		2

Option B — Engineering physics

C	uesti	on	Answers	Notes	Total
5.	а		zero √		1
5.	b	i	«change in» angular momentum ✓	Allow angular impulse.	1
5.	b	ii	use of $L = I\omega$ = area under graph = 1.80 «kg m² s⁻¹» \checkmark rearranges «to give ω = area/I» 1.80 = 0.5×5.00×0.060²× ω \checkmark «to get ω = 200 rad s⁻¹»		2
5.	b	iii	$\frac{0.40}{0.012} = 33.3 \text{N} \checkmark$		1
5.	С	i	translational equilibrium is when the sum of all the forces on a body is zero ✓ rotational equilibrium is when the sum of all the torques on a body is zero ✓		2
5.	С	ii	ALTERNATIVE 1 0 = 200 ² + 2×α×2π×8000 ✓ α = «-» 0.398 «rad s ⁻² » ✓ torque = αI = 0.398×(0.5×5.00×0.060 ²) = 3.58×10 ⁻³ «N m» ✓ ALTERNATIVE 2 change in kinetic energy = «-» 0.5×(0.5×5.00×0.060 ²)×200 ² = «-» 180 «J» ✓ identifies work done = change in KE ✓ torque = $\frac{W}{\theta}$ = $\frac{180}{2\pi \times 8000}$ = 3.58×10 ⁻³ «N m» ✓		3

C	Questic	on	Answers	Notes	Total
6.	а	i	$P_{\rm B} = \frac{250 \times 10^3}{1.5^{\frac{5}{3}}} \text{ « from } P_{\rm B} (1.5 V_{\rm A})^{\frac{5}{3}} = 250 \times 10^3 \times V_{\rm A}^{\frac{5}{3}} \text{ » } \checkmark$		2
			= 127 kPa √		
6.	а	ii	$\mathbf{< 127 \times 10^3 \times 1.5} \ V_A = 250 \times 10^3 \ V_C \ \mathbf{> }$		4
			1.31 ✓		1
6.	b	i	ALTERNATIVE 1 work done $ΔW = «-» 250 × 10^3 × 1.5 × 10^{-3} = «-» 375 «J» ✓ change in internal energy ΔU = \frac{3}{2} × 0.300 × 8.31 × (-150) = «-» 561 «J» OR ΔU = \frac{3}{2} PΔV = \frac{3}{2} × 375 = «-» 563 «J» ✓ thermal energy removed ΔQ = 375 + 561 = 936 «J» OR ΔQ = 375 + 563 = 938 «J» ✓ ALTERNATIVE 2 ΔQ = «nCpΔT = » \frac{5}{2} × nRT ✓ thermal energy removed ΔQ = 0.300 × 2.5 × 8.31 × 150 ✓ = 935 «J» ✓$		3

C	Questi	on	Answers	Notes	Total
6.	b	ii	ALTERNATIVE 1 «from (b)(i)» ΔQ is negative ✓ $\Delta S = \frac{\Delta Q}{T} \text{AND so } \Delta S \text{ is negative } \checkmark$ ALTERNATIVE 2 T and/or V decreases ✓ less disorder/more order «so S decreases» ✓ ALTERNATIVE 3 T decreases ✓ $\Delta S = K \times \ln\left(\frac{T2}{T1}\right) < 0 \checkmark$	Answer given, look for a valid reason that S decreases.	2
6.	b	iii	not violated ✓ the entropy of the surroundings must have increased OR the overall entropy of the system and the surroundings is the same or increased ✓		2

Option C — Imaging

	Questi	ion	Answers	Notes	Total
7.	а	i	correctly draws any 2 of the 4 conventional rays from the object tip ✓ correctly extends reflections to form virtual upright image I in approximate position shown ✓	No ECF for incorrect rays in MP1. Award [0] for rays of converging lens or diverging mirror.	2
7.	а	ii	1.5 ✓	For "correct" image position in (a)(i) allow 1.3 to 1.7	1

C	Questi	ion	Answers	Notes	Total
7.	а	iii	Any two of: virtual OR upright OR larger than the object ✓		1
7.	b	i	A R B P Circular" wave front through P: symmetric about the principal axis AND of greater radius than B ✓		1
7.	b	ii	red and blue wave fronts have different curvature/radius OR red and blue waves are refracted differently/have different speeds ✓ so different colors have different foci/do not focus to one point OR so image is multi-coloured/blurred ✓	MP1 is for the reason for the aberration, MP2 is for the effect.	2

	Question		on	Answers	Notes	Total
7	· .	b		mention combination of converging and diverging lenses ✓ of different refractive index/material ✓	Achromatic doublet is in the question, so no marks for mentioning this.	2

8.	а	«the final» image is formed at the near point of the eye ✓		1
8.	b	«image is virtual so» $v = -24$ «cm» ✓ $\frac{1}{u} = \frac{1}{3.0} + \frac{1}{24}$ » so $u = 2.7$ «cm» ✓		2
8.	C	$M_{\rm e} = \frac{v}{u} = \frac{24}{2.66} = 9.0$ AND $M_{\rm o} = \frac{70}{9.0} = 7.8$ \checkmark $v_{\rm o} = 2.0 \times 7.8 = 15.6$ «cm» \checkmark « $\frac{1}{f} = \frac{1}{2} + \frac{1}{16}$ » so $f_{\rm o} = 1.8$ «cm» \checkmark	MP1 allow $M_e = \frac{D}{f} + 1 = 9$	3

Q	Question		Answers	Notes	Total
9.	а		fibres have broader bandwidth than cables ✓ therefore can carry multiple signals simultaneously ✓		2
9.	b	i	absorption/scattering of light <i>OR</i> impurities in the «glass core of the» fibre ✓		1
9.	b	ii	attenuation = $10 \log (2 \times 10^{-4}) = -37 \text{ «dB » } \checkmark$ amplification required after $\frac{37}{0.4} = 92 \text{ or } 93 \text{ «km» } \checkmark$	Allow ECF from mp1 for wrong dB value.(eg: 42 km if % symbol ignored).	2

Option D — Astrophysics

Q	Question		Answers	Notes	Total
10.	а		stars in a cluster are gravitationally bound <i>OR</i> in constellation are not ✓ stars in a cluster are the same/similar age <i>OR</i> in constellation are not ✓ stars in a cluster are close in space/the same distance away <i>OR</i> in constellation are not ✓ stars in a cluster originate from same gas cloud <i>OR</i> in constellation do not ✓ stars in a cluster-appear much closer in night sky than in a constellation ✓	Take care to reward only 1 comment from a given marking point for MP1 to MP5.	2 max
10.	b	i		Answer 6000 K is given in the question. Answer must be to at least 2 s.f. OR correct working.	1
10.	b	ii	wfrom $b \propto L \propto R^2 T^4$ wrong realization that $R^2 \propto \frac{b}{T^4}$ wfor binary stars which are same distance aways \checkmark $\frac{R_A}{R_B} = \sqrt{\frac{\left(\frac{1.1 \times 10^{-9}}{5.4 \times 10^{-11}}\right)}{\left(\frac{5900}{4100}\right)^4}} \checkmark$ $\frac{R_A}{R_B} = 2.2 \checkmark$	Award [2] for answer 0.46 from inverted ratio.	3

Q	Question		Answers	Notes Total	tal
10.	b	iii	«use of $L = 4\pi d^2 b$ » $L = 4\pi \times (1.8 \times 10^{17})^2 \times 1.1 \times 10^{-9} \text{ (w)} = 4.48 \times 10^{26} \text{ W)} \text{ √}$ $L = 1.2 L_{\odot} \text{ √}$	2	<u> </u>
10.	С	i	$\begin{array}{c} 1000000L_{\odot} \\ 1000L_{\odot} \\ \hline \\ 1000L_{\odot} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1	

	uesti		Answers	Notes	Total
10.	С	ii	main sequence star OR type F or G star ✓		1
10.	С	iii	$\frac{M}{M_{\odot}} = 1.2^{\frac{1}{3.5}} = 1.05 \checkmark$		1
10.	С	iv	mass of the «remnant» star < 1.4 M_{\odot} <i>OR</i> Chandrasekhar limit <i>OR</i> mass <i>OR</i> luminosity similar to the Sun \checkmark the final stage is white dwarf \checkmark		2

Q	uesti	on	Answers	Notes	Total
11.	а	i	spectra of galaxies are redshifted «compared to spectra on Earth» redshift/longer wavelength implies galaxies recede/ move away from us OR redshift is interpreted as cosmological expansion of space «hence universe expands»	Universe expansion is given, so no mark for repeating this. Do not accept answers based on CMB radiation.	2
11.	а	ii	ALTERNATIVE 1 $z = \frac{392 - 122}{122} = 2.21 \checkmark$ $\frac{R}{R_0} = \text{ < } 2.21 + 1 = \text{ > } 3.21 \checkmark$ ALTERNATIVE 2 $\frac{R}{R_0} = \frac{392}{122} \checkmark$ $= 3.21 \checkmark$		2
11.	b	i	$H = \frac{70 \times 10^{3}}{(10^{6} \times 3.26 \times 9.46 \times 10^{15})} = 2.27 \times 10^{-18} \text{ « s}^{-1} \text{ » } \checkmark$ $T = \frac{1}{2.27 \times 10^{-18}} = 2.44 \times 10^{17} \text{ s } \checkmark$		2
11.	b	ii	because estimate assumes the «present» constant rate of expansion \checkmark it is unlikely that the expansion rate of the universe was ever constant \checkmark there is uncertainty in the value of H_0	OWTTE	1 max