1. Guess the value of the following limits:

(a)
$$\lim_{s\to 5} s - 3$$
 2, be cause 5-3 = 2

(b)
$$\lim_{u\to -2} u^2 - \cos(\pi u)$$
 3, because $(-2)^2 - (05(\pi(-2)) = 4 - 1 = 3$

(c)
$$\lim_{v\to 4} \frac{v+3}{4v-2}$$
 $\frac{1}{2}$, be cause $\frac{4+3}{4\cdot 4-2} = \frac{7}{14} = \frac{1}{2}$ (here it's important that the denom. is \pm 0)

2. Sketch the graph of a function f that satisfies all of the following: $\lim_{x \to -3^-} f(x) = 2$, $\lim_{x \to -3^+} f(x) = 2$, $\lim_{x \to 1^-} f(x) = 4$, $\lim_{x \to 1^+} f(x) = -1, \ f(-3) = 4, \ f(1) = -1.$

3. Determine the following infinite limits:

(a)
$$\lim_{s \to 1^{-}} \frac{s^2 - 4}{s - 1} + \infty$$
, b/c $\frac{5^2 - 4}{5 - 1} \approx \frac{-3}{\text{something small & reg.}}$

when s is close to I but less than I

(b)
$$\lim_{u\to 3^+} \frac{u^2 - 2u - 8}{u^2 - 6u + 9} - \infty$$
, $\frac{1}{5}$ $\frac{u^2 - 2u - 8}{u^2 - 6u + 9} = \frac{u^2 - 2u - 8}{(u - 3)^2}$

(c)
$$\lim_{t\to 9^-} \frac{\sqrt{t}}{(t-9)^3}$$
 — ∞ something small of pos. close to (similar reasoning to (b))

$$(\mathrm{d}) \lim_{\theta \to \pi^+} \frac{\theta - 4}{\sin(\theta)} + \infty \qquad \Big(\text{ Similar reasoning } + \text{ (as} \Big)$$

- 4. Consider the function $f(x) = \frac{2x-3}{(x-2)(x+4)}$
 - (a) Find all the vertical asymptotes of f.

Find all the vertical asymptotes of
$$f$$
.
 $\lim_{x\to 2^+} f(x) = \infty$ $\lim_{x\to 2^+} f(x) = \infty$ (check this)

So the long) vertical asymptotes are
$$X=2$$
 and $X=-4$.

(b) Compute $\lim_{x \to 2^+} f(x)$, $\lim_{x \to 2^-} f(x)$, $\lim_{x \to -4^+} f(x)$, and $\lim_{x \to -4^-} f(x)$.

$$\lim_{x\to z^+} f(x) = \infty$$
 $\lim_{x\to z^+} f(x) = -\infty$

$$\lim_{x\to -4^+} f(x) = \infty$$
, $\lim_{x\to -4^-} f(x) = -\infty$

- 5. Consider the function $f(x) = \tan\left(\frac{1}{x}\right)$.
 - (a) Show that f(x) = 0 for $x = \frac{1}{\pi}, \frac{1}{2\pi}, \frac{1}{3\pi}, \dots$

If k is an integer, then
$$\sin(k\pi) = 0$$
 and $\cos(k\pi) = \pm 1$

So
$$tan\left(\frac{1}{k\pi}\right) = tan(k\pi) = \frac{sin(k\pi)}{cos(k\pi)} = 0$$
.

(b) Show that f(x) = 1 for $x = \frac{4}{\pi}, \frac{4}{5\pi}, \frac{4}{9\pi}, \dots$

If k is an integer, then
$$\sin(\frac{\pi}{4} + k\pi) = \cos(\frac{\pi}{4} + k\pi)$$
, so $\tan(\frac{\pi}{4} + k\pi) = \tan(\frac{\pi}{4} + k\pi) = 1$.

(c) What can you conclude about $\lim_{x\to 0^+} \tan\left(\frac{1}{x}\right)$?