F2114/2114L 1024 x 4 Static RAM

MOS Memory Products

Description

The F2114 is a 4096-bit static Random Access Memory (RAM) organized as 1024 words of four bits each. Since the operation of the F2114 is entirely static, there is no clocking or refreshing required. It operates from a single +5 V supply and is directly a TTL compatible at all inputs and outputs including the four bidirectional data I/O pins.

It is designed for memory applications in which static operation, large bit-capacity, and simple interfacing are important design considerations.

The F2114 is manufactured using Fairchild's n-channel silicon gate Isoplanar process. The innovative use of polysilicon resistors in the static memory cell permits a high bit packing density and insures low-power characteristics. It is available in a standard plastic or ceramic 18-pin dual in-line package.

- 1024 x 4-BIT ORGANIZATION
- SINGLE +5 V SUPPLY
- COMPLETELY STATIC—NO CLOCKS OR REFRESH
- TOTALLY TTL COMPATIBLE
- COMMON DATA I/O PINS WITH 3-STATE CAPABILITY
- IDENTICAL CYCLE AND ACCESS TIMES
- LOW POWER (2114L)

Pin Names

A₀-A₉ Address Inputs

CS Chip Select (Active LOW)
WE Write Enable (Active LOW)

DQ1-DQ4 Data Input/Output

V_{CC} +5 V Power Supply GND Ground

Absolute Maximum Ratings

Voltage at Any Pin with Respect

to GND -0.5 V to +7.0 V
Operating Temperature (Ambient) 0°C to +70°C
Storage Temperature (Ambient) -55°C to +150°C
Power Dissipation 1 W

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions exceeding those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability.

Logic Symbol

V_{CC} = Pin 18 GND = Pin 9

Connection Diagram 18-Pin DIP

(Top View)

Package	Outline	Order Code	
Ceramic DIP	8D	D	_
Plastic DIP	8J	P	

Block Diagram

Functional Description

The F2114, organized as 1024 words by four bits, is controlled by the Chip Select (CS), Write Enable (WE) and the ten address inputs. When CS goes HIGH the memory becomes deselected; the bidirectional input/output pins become high impedance, and the WE input is ignored. Therefore no read or write operations may occur. This feature allows the DQ pins to be OR-tied directly to a data bus. When the memory is selected (CS LOW), and the WE pin is in the HIGH state, the 4-bit word stored at the memory location specified by the address inputs is gated through to the DQ pins after a delay equal to the access time. If the WE is forced LOW, then the DQ pins become HIGH impedance inputs so that an externally supplied data word may be placed on them.

All inputs and bidirectional DQ pins are directly TTL compatible with data always being read out in the same polarity as it was written (i.e., not inverted).

Truth Table

cs	X High Z L H	Comments	
Н	Х	High Z	Chip Deselected
L	L	Н	Write "1"
L	L	L	Write "0"
L	Н	Data	Read

DC Electrical Requirements and Characteristics T_A = 0 to 70°C, V_{CC} = 5.0 V \pm 5%, all voltages are with respect to ground, Note 1

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
VIH	Input HIGH Voltage	2.0		Vcc	v	
VIL	Input LOW Voltage	-0.5		0.8	V	
V _{OH}	Output HIGH Voltage	2.4		Vcc	V	I _{OUT} = -1.2 mA
V _{OL}	Output LOW Voltage	0		0.4	V	I _{OUT} = 3.2 mA
los	Output Short-Circuit Current, Note 2			65	mA	V _{OUT} = 0 V
	Average V _{CC} Supply Current F2114L2, F2114L3, F2114L			70	mA	V _{CC} = 5.25 V, T _A = 0°C,
lcc	Output LOW Voltage Output Short-Circuit Current, Note 2 Average V _{CC} Supply Current			100	mA	V _{IN} = 5.25 V, I/O current = 0 mA
IN	Input Leakage Current			10	μΑ	V _{IN} = 0 to 5.25 V
lpa	I/O Leakage Current	-10		10	μΑ	$\overline{\text{CS}}$ = 2.0 V, V _{I/O} = 0.4 V to V _{CC}
CIN	Input Capacitance			5.0	ρF	T _A = 25°C, f = 1.0 MHz V _{IN} = 0 V
CDQ	I/O Capacitance			5.0	pF	T _A = 25°C, f = 1.0 MHz V _{I/O} = 0 V

AC Electrical Requirements And Characteristics $T_A = 0$ °C to 70 °C, $V_{CC} = 5.0 \text{ V} \pm 5\%$, Notes 1 and 3

Symbol	Characteristic	F2114L-2 F2114-2		F2114L-3 F2114-3		F2114L F2114			
		Min	Max	Min	Max	Min	Max	Unit	Note
tcyc	Read or Write Cycle Time	200		300		450		ns	
tACC	Read Access Time		200		300	1	450	ns	
tco	CS LOW to Output Valid Delay		70		100		100	ns	
tcsx	CS LOW to Output Active Delay	20		20		20		ns	
todh	Output Data Hold Time After Address	50		50		50		ns	
toff	Output Buffer Turn-Off Delay from CS	0	60	0	80	0	100	ns	
taw	Address to Write Set-up Time	0		0		0	<u> </u>	ns	<u> </u>
twp	WE Pulse Width	120		150	1	200		ns	+
twR	Write Recovery Time	0		0		0	1	ns	
t _{DS}	Input Data Set-up Time	120	1	150		200	 	ns	+
t _{DH}	Input Data Hold Time	0		0	1	0	+	ns	

Notes

- 1. Test Note: The F2114 employs a self starting oscillator and a charge pump which require a start-up time of 500 μ s after V_{CC} reaches at least 4.75 V.
- 2. Duration not to exceed 30 seconds.

 AC Characteristic Test Conditions: Input Levels
Input Rise and Fall Times

Input Rise and Fall Times
Input and Output Timing Levels
Output Load

0.8 to 2.0 V 10 ns 1.5 V 1 TTL Gate, and CL = 100 pF

Read Mode Timing Diagram, Note 1

Write Mode Timing Diagram

Notes

- 1. WE must remain HIGH during READ cycles.
- twp is measured from the falling edge of either S or WE (whichever is the last to go LOW) to the rising edge of either S or WE (whichever is the first to go HIGH).