$\begin{array}{c} {\rm MSO202A~COMPLEX~ANALYSIS} \\ {\rm Assignment~4} \end{array}$

Exercise Problems:

- 1. Verify Cauchy's theorem for $f(z) = z^2$ over the boundary of the square with vertices 1 + i, -1 + i, -1 i and 1 i, counterclockwise.
- 2. Use ML-inequality to prove the following:
 - (a) $\left| \int_{\gamma} \frac{1}{1+z^2} dz \right| \leq \frac{\pi}{3}$, γ is the arc of |z| = 2 from 2 to 2i.
 - (b) $\left| \int_{\gamma} (1+z^2) dz \right| \leq \pi R(R^2+1)$, γ is the semicircular arc of |z| = R.
- 3. By parametrizing the curve or otherwise, evaluate:
 - (a) $\int_C \tan z \, dz$, where C is the circle |z| = 1 oriented counter -clockwise.
 - (b) $\int_C \operatorname{Re} \, z^2 \, dz$, C is the circle |z|=1 oriented counter -clockwise.
 - (c) $\int_C e^{4z} dz$, C is the shortest path from 8-3i to $8-(3+\pi)i$.
- 4. Use Cauchy's integral formula to find all simple closed curves C for which the following holds:

(a)
$$\int_C \frac{1}{z} dz = 0$$
, (b) $\int_C \frac{e^{1/z}}{z^2 + 9} dz = 0$.

- 5. Integrate $\frac{z^2}{z^4-1}$ counter-clockwise around the circle (a)|z+1|=1 (b) |z+i|=1.
- 6. Integrate the functions counter-clockwise on the unit circle |z|=1: $(a)\frac{z^3}{2z-i}$ (b) $\frac{\cosh 3z}{2z}$ (c) $\frac{z^3\sin z}{3z-1}$.
- 7. Let Γ denote the positively (counter-clockwise) oriented boundary of the square whose sides lie on the lines $x=\pm 2$ and $y=\pm 2$. Using Cauchy's integral formula, evaluate the following integrals:

(a)
$$\int_{\Gamma} \frac{\cos z}{z(z^2 + 8)} dz$$
 (b) $\int_{\Gamma} \frac{z}{2z + 1} dz$.

Problem for Tutorial:

- 8. Let C be the positively oriented circle |z|=3. If $f(w)=\int_C \frac{2z^2-z-2}{z-w}\,dz$, $|w|\neq 3$, then show that $f(2)=8i\pi$. What is f(w), if |w|>3?
- 9. Use Cauchy's integral formula to find closed contours C in complex plane satisfying

1

(a)
$$\int_C \text{Log}(z) dz = 0$$
 (b) $\int_C \frac{\cos z}{z^6 - z^2} dz = 0$.

10. Using Cauchy's integral formula, integrate counterclockwise:

$$\oint_C \frac{\text{Ln }(z+1)}{z^2+1} dz, \quad C: |z-2i| = 2.$$