Cosmic Whispers Programación creativa aplicada a la creación de música generativa

Hugo Villanueva Duque

ÍNDICE

- 1. Motivación
- 2. Planteamiento del proyecto
- 3. Primer concepto
- 4. Proceso de Desarrollo
- 5. Tecnologías utilizadas
- 6. Diseño
- 7. Demostración
- 8. Implementación
- 9. Conclusiones
- 10. Bibliografía

Motivación

Conocer la Programación creativa

Combinar conocimientos musicales con informáticos

Explorar la creación de música

Implementarlo de forma estética

Planteamiento del proyecto

- Disciplinas:
 - Programación Creativa
 - Programación de Audio
 - · Programación de Aplicaciones Web
- Investigación:
 - · ¿Diseño?
 - ¿Librerías adecuadas?
 - · ¿Integración?
- Progreso: Perseverancia con las librerías
 - · Incorporación de nuevas funcionalidades

Desarrollo iterativo

Primer concepto:

Generador musical inspirado en el movimiento de los astros

- Búsqueda de nuevos patrones musicales:
 - Cada astro tiene asociada una nota
 - Cada nota suena según la posición de otros astros
 - > Se simulan físicas de movimiento
- Más astros

 Más entropía musical

Proceso de Desarrollo

Versión	Implementaciones añadidas
0.1	Puntos blancos que se mueven por el espacio, que crean
	conexiones al estar cerca
0.2	Los puntos tienen ahora color aleatorio al crearlos
0.3	Cada punto emite una nota al ser creado, dicha nota es
	asociada aleatoriamente en la creación, usando un
	sintetizador creado en Tone.js
0.4	Se implementa la lógica de generadores.
1.0	Se implementa la opción de selección de notas en la parte
	inferior de la pantalla, y la interfaz GUI para control de
	variables, junto con las escalas. La aplicación ya cumple su
	cometido principal original
1.1	Se implementa el Theremin. Mejoras estéticas
1.2	Se implementa el Sound Design Panel, y los Offset para los
	generatos
1.3	Se implementa el fondo animado
1.4	Arreglo de bugs. Mejoras estéticas y organización de los
	archivos

Desarrollo iterativo

p5.js

- Estándar de programación creativa
- Dibujo de geometría
- Control de eventos
- Input en navegador
- Simulación de físicas

Tone.js

- Sintetizador:
 - > Generación de onda
 - Diseño de sonido
 - > Efectos
- Control de tiempo y ritmo

```
.oscillator
                                          .envelope
{Tone.OmniOscillator}
                                {Tone.AmplitudeEnvelope}
CONSTRUCTOR
new Tone.Synth ( [ options ] )
                the options available for the synth see defaults
   options
                TYPE: Object
                OPTIONAL
DEFAULTS
  oscillator : {
     type : triangle
                                                      Triangle
```

dat.GUI

- Control de variables en tiempo real
- Diseño propio de UI
- Implementación simple
- Ligero y eficiente

HTML + CSS

- Lienzo para JS
- Menús estáticos
- Iframes para paneles
- Usado durante los estudios

Generación de notas

Una nota no es más que un oscilador configurado a una frecuencia determinada

Equal-tempered						
Note	Hz					
C	523.25					
В	493.88					
Bb/A#	466.16					
Α	440.00					
Ab/G#	415.30					
G	392.00					
Gb/F#	369.99					
F	349.23					
Е	329.62					
$E^b/D^\#$	311.13					
D	293.66					
Db/C#	277.18					
С	261.63					

Generación de sonido


```
Synth = new Tone.Synth({
   oscillator: {
     type: "sine",
   envelope: {
     attack: 0.2,
     decay: 0.2,
     sustain: 0.5,
     release: 15,
}}).toDestination();
```

Notas musicales

Generadores

- La órbita reproduce los nodos
- 8 tiempos disponibles
- 3 tipos de generadores
 - Octava baja
 - Octava media
 - Octava alta

Escalas

- Conjunto de notas a utilizar
- Sensaciones diferentes

DO	RE	МІ	FA	so	LA	TI	DO	RE	МІ	\overline{FA}	so	Γ
1	2	3	4	5	6	7	1	2	3	4	5	l
C	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{A}	В	C	D	\mathbf{E}	\mathbf{F}	\mathbf{G}	

Escala Mayor (Do M)

Do	Re	Mi	Fa	Sol	La	Si	Do
0	2	4	5	7	9	11	12

Escala Menor (Do m)

Do	Re	Mi b	Fa	Sol	La b	Si b	Do
0	2	3	5	7	8	10	12

Escala Pentatónica

```
        Do
        Re
        Mi
        Sol
        La
        Do

        0
        2
        4
        7
        9
        12
```

```
const scales = {
    Major: [0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23],
    Natural_Minor: [0, 2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22],
```

Theremin

- Control manual
- Sonido constante, con el ratón
 - Eje horizontal: Tono
 - Eje vertical: Volumen

Panel de Diseño de Sonido

- Control en tiempo real del sintetizador
- Visualización de onda y ADSR
- Para Theremin y Notes

Fondo Interactivo y metrónomo

- Estética neón
- Superposición con imagen fija
- Interactividad: Aceleración

• Metrónomo: 4 parpadeos

Material

Proyecto: https://cosmicwhispers.000webhostapp.com/

Vídeo: https://www.youtube.com/watch?v=mMwEvSCUG-k


```
mirror object to mirror
          mirror_mod.mirror_object
           peration = "MIRROR_X":
           mirror_mod.use_x = True
           mirror_mod.use_y = False
           drror_mod.use_z = False
             operation == "MIRROR_Y"
           lrror_mod.use_x = False
           __mod.use_y = True
           mirror mod use z = False
             operation == "MIRROR Z";
             rror mod.use x = False
             lrror_mod.use_y = False
             rror_mod.use_z = True
             election at the end -add
              ob.select= 1
              er ob.select=1
              ntext.scene.objects.action
              "Selected" + str(modifien
              irror ob.select = 0
Implementación
              vpes.Operator):
               X mirror to the selected
```

rject.mirror_mirror_x"

POP X

Configuración de sintetizador en Tone.js


```
Efectos de sonido
// High Pass Filter
const highpassFilter = new
Tone.Filter({
  type: "highpass",
  frequency: 1000,
  0: 100
 Limpieza de agudos
 // Reverb
const reverb = new Tone.Reverb({
 decay: 2,
 preDelay: 0.01,
 wet: 0.5
 Reverb
```



```
Conexión del pipeline
polySynth
.connect(compressor)
  .connect(reverb)
 .connect(echo)
 .connect(lowpassFilter)
  .connect(highpassFilter)
```

Ejemplo de función p5.js: drawMetronome

```
function drawMetronome() {
   let currentPosition = Tone.Transport.position.split(":");
   let currentBeat = parseInt(currentPosition[1]);
   beatNum = currentBeat;
   let metronomeSize = 50;
   switch (beatNum) {
        case 0:
            fill(255, 0, 0); //red color for the first beat
            break;
        case 1:
            fill(202, 0, 0);
            break;
        case 2:
            fill(155, 0, 0);
            break;
        default:
            fill(102, 0, 0);
   ellipse(width / 2, height / 2, metronomeSize);
```


Función que utiliza funciones de p5, y que recibe variables calculadas por Tone.js

Sistema de archivos

11 archivos de código, 1519 Líneas (excl. librerías)

Conclusiones

Exploración: Nuevos patrones musicales

Dificultades: Integración de librerías entre sí

Herramienta Artística: Nueva herramienta para utilizar como músico

Fusión de disciplinas: Ingeniería informática y música.

Fuentes y Bibliografía

Imágenes y conceptos teóricos

- · Bypeople (n.d.). Tone.js. Recuperado de https://www.bypeople.com/tone-js-music-framework/
- · Sbcode.net. (2019). Dat GUI. Recuperado de https://sbcode.net/threejs/dat-gui/
- p5. (2015). Your First Sketch. Recuperado de https://p5js.org/get-started/
- Ingenierizando. (2021). Ciclo de una Onda. Ingenierizando. Recuperado de: https://www.ingenierizando.com/cinematica/ciclo-de-una-onda/
- Nugent, J. (2020). What is a Synthesizer? Higher Hz. Recuperado de: https://higherhz.com/what-is-synthesizer/
- · Wikipedia. (s.f.). Sonido. Recuperado de: https://es.wikipedia.org/wiki/Sonido
- Forster, J. (2015). How Many Ways Can a Piano Be Out of Tune? Sterling Piano Tuning. Recuperado de: https://www.sterlingpianotuning.com/how-many-ways-can-a-piano-be-out-of-tune/

Fuentes y Bibliografía

Documentación

- Mozilla Developer Network. (s.f.). HTML Documentation. Recuperado de: https://developer.mozilla.org/en-US/docs/Web/HTML
- Mozilla Developer Network. (s.f.). CSS Documentation. Recuperado de: https://developer.mozilla.org/en-US/docs/Web/CSS
- p5.js. (s.f.). p5.js Reference. Recuperado de: https://p5js.org/reference/
- Tone.js. (s.f.). Tone.js Documentation. Recuperado de: https://tonejs.github.io/docs/14.7.77/index.html

Librerías

- Tone.js: https://github.com/Tonejs
- p5: https://github.com/processing/p5.js
- · dat.gui: https://github.com/dataarts/dat.gui

Cosmic Whispers Programación creativa aplicada a la creación de música generativa

Hugo Villanueva Duque