62)

Int. Cl.:

B 23/04 B 02/18

Deutsche Kl:

49 h, 1/04 50 c, 17/40

(I)

Offenlegungsschrift 2121769

Aktenzeichen:

P 21 21 769.6

Anmeldetag:

3. Mai 1971

22

2

Offenlegungstag: 30. Dezember 1971

Ausstellungspriorität:

30

Unionspriorität

3

Datum:

18. Mai 1970

33 Land:

Sowjetunion

3) Aktenzeichen:

1430756

6

Verfahren und Vorrichtung zum Zerkleinern von vorzugsweise

6

Zusatz zu:

Bezeichnung:

62

Ausscheidung aus:

(71)

_

Anmelder ·

Wostotschnij nautschno-issledowatelskij Gornorudnij institut UdSSR,

Nowokusnezk (Sowjetunion)

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

elektrisch leitenden Stoffen

Vertreter gem. § 16 PatG:

Zellentin, L., Dipl.-Chem.; Luyken, R., Dipl.-Phys.; Patentanwälte,

6700 Ludwigshafen und 8000 München

7

66)

Als Erfinder benannt:

Kassir, Gennadij A.; Temnikow, Ewgenij M.; Umrilow, Nikolaj F.;

Nowokusnezk; Kurenkow, Iwan I., Moskau;

Luk'jantschikow, Wjatscheslaw; Gur'janow, Wiktor A.;

Iwaschkin, Wasilij A.; Serow, German W.; Nowokusnezk (Sowjetunion)

Rechercheantrag gemäß § 28 a PatG ist gestellt

DT-PS 146 610

DL-PS 75 374 veröff. 12. 8. 70

DT-AS 1 016 537

GB-PS 1 067 795

DT-AS 1 135 736

DT-AS 1 298 394

DT-AS 1 218 855

GB-PS 1 225 499 veröff. 17. 3. 71

DT-AS 1 298 394

US-PS 3 115 569

DT-AS 1 299 209

DT-AS 1 218 855

GB-PS 1 021 786

D1-A5 1 218 83

FR-PS 1 423 592

GB-PS 924 202 FR-PS 1 309 538

BE-PS 659 375

Vostočnyj Naučno-Issledovatel'skij Gornorudnyj Institut UdSSR Novokuzneck/UdSSR

Mai 1971P 37 248/1RZ/Br

VERFAHREN UND VORRICHTUNG ZUM ZERKLEINERN VON VORZUGSWEISE ELEKTRISCH LEITENDEN STOFFEN

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Zerkleinern von vorzugsweise elektrisch leitenden Stoffen und kann im Erzbergbau, in der Schleifmittelindustrie, in der Lack- und Farbenindustrie, in der Pulvermetallurgie und anderen Industriezweigen verwendet werden.

Bekannt ist ein Verfahren zum Zerkleinern von elektrisch leitenden Stoffen, das darin besteht, daß zwischen zwei in eine isolierende Flüssigkeit, die die

Teilchen des zu zerkleinernden Stoffes eingetauchte Elektroden pulsierender elektrischer Strom geleitet wird.

Hierbei dient der zu zerkleinernde Stoff als leitendes Medium, während die isolierende Flüssigkeit von einem elektri-

schen Funken durchschlagen wird.

Die Vorrichtung zur Durchführung dieses Verfahrens besteht aus einer Elektroden enthaltenden mit isolierender Flüssigkeit und mit Körnern des zu zerkleinernden Stoffes gefüllten Reaktionskammer (

DT-P51298394)

Die bekannte Technologie für die Zerkleinerung von Metallen und anderen elektrisch leitenden Stoffen gehört zum Elektroerosionsverfahren. Das Wesen dieses Verfahrens besteht in der örtlichen Erhitzung der Mikrovolumen der zu zerkleinernden Makroteilchen (Körner) an den Einführungsstellen der elektrischen Funken in Teilchen, im Abreißen der Tropfen des geschmolzenen Materials und deren Erstarrung in der isolierenden Flüssigkeit. Die Energie des Stromimpulses wird bei dem beschriebenen Verfahren nicht nur für die Nutzarbeit zur Bildung von feindispersen Teilchen, sondern auch für die hauptsächlich mit dem Durchschlag und der Erhitzung der isolierenden Flüssigkeit in den schen den Stoffteilchen verbundenen Verluste verbraucht. Die erwähnten Verluste können einen beträchtlichen mit der Impulsenergie vergleichbaren Wert betragen. Somit ist die Durchführung des bekannten Verfahrens mit erhöhtem spezifischem Stromverbrauch (je Tonne Fertigpulver) verbunden.

Außerdem wird nach diesem Verfahren das Material bis

zum pulverförmigen Zustand (0,05-3

die Teilchen des zerkleinerten Materials von sphärischer Form

sind. Die Gewinnung von Materialien mit Teilchen größerer Körnung sowie mit splitterförmigen Teilchen gestattet dieses Verfahren nicht.

Bei der Zerkleinerung einiger elektrisch leitenden Materialien, beispielsweise Magnetit, ist eine unerwünschte Überzerkleinerung desselben möglich.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren zum Zerkleinern von vorzugsweise elektrisch leitenden Stoffen unter Anwendung solcher Vorbereitungsoperationen vor der Einwirkung des elektrischen Impulsstromes auf den zu zerkleinernden Stoff, sowie eine Vorrichtung zur Durchführung dieses Verfahrens mit solcher konstruktiven Ausführung der Elektroden zu schaffen, die es gestatten den spezifischen Stromverbrauch zu reduzieren und ein zerkleinertes Material von gewünschter Korngröße und Form zu erhalten.

Die gestellte Aufgabe wird dadurch gelöst, daß bei dem Zerkleinern von vorzugsweise elektrisch leitenden Stoffen durch Einwirkung eines elektrischen Impulsstromes das zu zerkleinernde Material gemäß der Erfindung vor der Einwirkung des elektrischen Impulsstromes zu einem Strom geformt wird, den man in die Elektrodenwirkungszone zum Dispergieren des Materials leitet.

Beim Zerkleinern von harten Stoffen ist es zweckmäßig <>
vor der Formung zu einem Strom (diese) zu schmelzen bzw.
einen Brei aus dem zu zerkleinernden Stoff und der isolierenden Flüssigkeit zu bilden.

Es <> das Dispergieren der meisten Stoffe (ist zweckmäßig) in einem kompressiblen Medium vorzunehmen.

Die Dauer der Stromimpulse kann man durch Induktivität des Entladungskreises ohne Änderung der Impulsenergie ändern.

Bei der Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, die eine Reaktionskammer mit in dieser untergebrachten Elektroden enthält, ist gemäß der Erfindung wenigstens eine Elektrode hohl ausgeführt, um die Formung
des zerkleinernden Stoffes zu einem Strom und Förderung dessen in den durch die Hohlelektrode und die geerdete Elektrode gebildeten Raum zu gewährleisten.

Die Hohlelektrode kann in der Reaktionskammer höhenverstellbar angeordnet werden.

Zweckmäßigerweise wird um jede Elektrode eine starre Abschirmung, die den Elektrodenræum abdeckt, vorgesehen.

Nachslehend Veinige Begriffe, die das Wesen der Erfindung erläuangeführt.
tern, Bekanntlich fließt der elektrische Impulsstrom bei der
Einwirkung auf das zu zerkleinernde Material in dem aus dem
Impulsgenerator, den Zuleitungen und dem Arbeitsabstand
zwischen den Elektroden bestehenden Entladungskreis. Jeder
Bestandteil des Entladungskreises verfügt über inneren Widerstand, der mit R₁, R₂, und R₃ bezeichnet werden soll. Hier-

bei ist R₁ - der Generatorwiderstand, R₂ - der Widerstand der Zuleitungen und R₃ - der Widerstand des Arbeitsraumes. Es liegt auf der Hand, daß der Wirkungsgrad 7 des Entladungskreises, der die in dem zwischen den Elektroden verschiedenen Potentials eingeschlossenen Arbeitsraum ausgelöste Energie (und somit die spezifischen Energieverluste) kennzeichnet, durch das Verhältnis

$$h = \frac{R_3}{R_1 + R_2 + R_3}$$

bestimmt wird.

Bei konstantem Wert von R₁ und R₂ ist also der Wirkungsgrad des Entladungskreises dem Widerstand des Arbeitsraumes direkt proportional. Seinerseits ist letzterer von den Impulsparametern und den Formierungsbedingungen des Entladungskanals abhängig.

Es ist nun festgestellt, daß bei der Formierung des Entladungskanals zwischen zwei in eine isolierende Flüssigkeit,

eingetauchte Elektroden der Widerstand des Arbeitsraumes einen geringen Wert aufweist. Bei ähnlichen Impulsparametern bedingt die Formierung des Entladungskanals für eine Breiströmung des zu zerkleinernden Materials und der isolierenden Flüssigkeit einen um eine Größenordnung größeren Arbeitsraum als im vorhergehenden Falle. Diese Erscheinung wird dadurch

erklart, daß die Strömung einen beträchtlich geringeren Querschnitt hat und in dieser erheblich weniger die Elektroden schließende kur2 Stromkanäle gebildet werden.

Somit ruft die Formung des zu zerkleinernden Stoffes zu einer Strömung, die man in die Elektrodenwirkungszone zum Dispergieren leitet, einen positiven Effekt hervor, der in der Reduzierung des spezifischen Stromverbrauches besteht.

Die Schmelzströmung des zu zerkleinernden Materials weist wegen der ungeordneten Hochtemperaturbewegung der Moleküle wie auch die Breiströmung einen hohen Widerstand auf, was einen niedrigen Stromverbrauch kennzeichnet. In dieser Verbindung sei bemerkt, daß die Benutzung der Schmelzströmung zum Dispergieren von Stoffen, besonders Metallen und Legierungen (betrachtlich) den positiven Effekt verstärkt. Die Stoffzerkleinerung nach diesem Verfahren ist wie vorstehend erwähnt letzten Endes mit einer Zerschmelzung des gesamten zwischen den Elektroden eingeschlossenen Material-volumens verbunden, wovon augenscheinlich die sphärische Form des gesamten zerkleinerten Materials zeugt, sowie mit einem Kraftaufwand beim Abreißen der zerschmolzenen Tropfen von den Makroteilchen vertunden. Aus dem vorstehend Gasagten geht hervor, daß tei der Durchführung des bekannten Verfahrens ein Teil der Energie dazu verbraucht wird, die Temperatur der festen Teilchen auf die Schmelztemperatur zu: bringen.

Wie bekannt werden die Metalle und Legierungen hauptsachlich nach dem metallurgischen Verfahren - durch Schmelzen in verschiedenartigen Ofen erhalten. Deshalb ist es zweckmäßig diese Schmelze zum Dispergieren nach dem erfindungsgemäßen Verfahren zu benutzen. In diesem Falle wird die Energie für die Störung der Kontinuität der Strömung, d.h. für das Dispergieren verbraucht und wird nicht für die Erhitzung des Materials bis zur Schmelztemperatur aufgewandt.

Ein wesentliches kennzeichnendes Merkmal der Erfindung ist, daß das Dispergieren des Materials in einem kompressiblen Medium, beispielsweise in Gas erfolgt. Die Erscheinung die das Fließen des Impulsstromes durch die Schmelzströmung begleiten, bestehen in der Störung der Strömungskontinuität, in der Entstehung einer Stoßwelle und in dem Auseinanderfliegen der gebildeten Tröpfchen mit einer Geschwindigkeit von über 100 m/sec. Beim Stoßen gegen ein starres Hindernis in Form der Reaktionskammerwandung bzw. der speziellen Abschirmungen des Elektrodenraumes werden die Tropfen zusätzlich zerstört.

Durch Anderung der Parameter des auf die Schmelzströmung wirkenden Impulses sowie des Juerschnittes der Strömung und deren Länge läßt sich ein zerkleinertes Material verschiedener Korngröße gewinnen. Durch Regeln der Kühlung der auseinanderfliegenden Tropfen und des Abstandes vom Strömungskanal zur Abschirmung kann erreicht werden, daß die Teilchen gegen die Abschirmung entweder im flüssigen oder im festen Zustand stoßen, demzufolge man zerkleinerte Teilchen entweder von sphärischer oder von splitterartiger Form erhalten kann.

Bei der Einwirkung des elektrischen Impulses auf die Breiströmung findet ein Durchschlag der mit der isolierenden Flüssigkeit gefüllten Räume zwischen den Teilchen des zu zerkleinernden Stoffes und ein Kurzschluß der Elektroden durch den Entladungskanal, der vom Impulsstrom durchflossen wird, statt. Der Entladungskanal führt über einen Teil des zu zerkleinernden Materials und über die isolierende Flüssigkeit zwischen den Teilchen desselben. Die Teilchen, die vom Impulsstrom durchflossen werden, erhitzen sich auf eine Temperatur, bei welcher eine Wärmeexplosion und in gewissem Maße eine Sublimation derselben stattfindet.

Die Produkte der Warmeexplosion stellen feindisperse
Teilchen von sphärischer Form dar. Außerdem bildet sich in
der den Entladungskanal umgebenden isolierenden Flussigkeit
ein sich schnell ausdehnender Dampfgasraum und es entsteht
eine Stoßwelle. Die Stoßwelle zerkleinert einm Teil des in unmittelbarer Nähe von dem Entladungskanal befindlichen Materials, wobei Teilchen von ungeordneter Form gebildet werden.
Die durch die Warmeexplosion und die Stoßwelle zerkleinerten
Teilchen sowie auch die nicht zerkleinerten Teilchen in der
Strömung zwischen den Elektroden beginnen sich in alle Richtungen vom Entladungskanal zu bewegen. Es ist bereits festgestellt, daß die Bewegungsgeschwindigkeit der Teilchen von
der Einführungsgeschwindigkeit der Energie in den Entladungskanal abhängt und einen Wert von etwa 200-250 m/sec er-

reichen. Die Hartstoffteilchen werden beim Aufprallen auf die starre Abschirmung zerstört und das zerkleinerte Material nimmt Splitterform an. Das Verhältnis der durch die Warmeexplosion und die Stoßwelle zerkleinerten Teilchen und der beim Aufprallen auf die starre Abschirmung erhaltenen Teilchen hängt, wie Versuche gezeigt haben, von der Dauers des Stromimpulses bei gleichbleibender Energie desselben ab. Indem man die Impulsdauer auf einen gewissen Wert durch Einführen einer Induktivität in den Entladungskreis erhöht, erhält man bis 70% abgerundeter Teilchen. Bei Verringerung der Impulsdauer durch Verminderung der Induktivität des Entladungskreises wird seine Zerreißwirkung erhöht und bei bestimmter Dauer erhält man bis 100% Teilchen in Splitterform.

Die Möglichkeit Teilchen von verschiedener Korngröße bei der Einwirkung des Impulsstromes auf die Breiströmung des zerkleinermen Stoffes zu gewinnen, wird an der Arbeits-weise der Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens gezeigt.

Der Zerkleinerungsmechanismus von elektrisch nichtleitenden Stoffen besteht in folgendem. Der Entladungskanal wird in diesem Falle für die flüssige Komponente der Breiströmung gebildet, demzufolge in der Flüssigkeit eine Stoßwelle entsteht. Durch Einwirkung der Stoßwelle werden die in unmittelbarer Nähe vom Entladungskanal befindlichen festen Teilchen zerkleinert. Die in einer größeren Entfernung von dem Entladungskanal befindlichen Teilchen werden durch

die Stoßwelle infolge deren Dämpfung nicht zerstört, erhalten jedoch eine Bewegungsgeschwindigkeit, die zum Entstehen von Zerstörungsspannungen in diesen beim Aufprallen auf die starre Abschirmung ausreichen kann. Da in diesem Falle eine mechanische Zerstörung der Teilchen stattfindet, so hat das zerkleinerte Material die Form von Splittern.

Zur Erlauterung der Erfindung sind der Beschreibung Zeichnungen eines konkreten Ausführungsbeispiels der Vorrichtung zum Zerkleinern von Stoffen beigegeben. Es zeigen:

Fig. 1 - die erfindungsgemäße Vorrichtung, Längsschnitt durch die Elektroden;

Fig. 2 - Schnitt II-II in Fig. 1.

Die in den Zeichnungen wiedergegebene Vorrichtung besteht aus einer von dem Gehäuse 2, mit dem schrägen Boden 3, der in einen Auslaufstutzen 4 übergeht, und dem elektrisch isolierenden Deckel 5 gebildeten Reaktionskammer 1 (Fig. 1 und 2) mit in dieser untergebrachten höhenverstellbaren Elektroden 6. Im Innern der Reaktionskammer 1 sind starre Abschirmungen 7 angeordnet, die den Raum 8 zwischen den Hohlelektroden 6 und geerdeten Elektroden 9, die Paare bilden, abdecken.

Die Abschirmung, 7 und die geerdeten Elektroden 9 sind in der Reaktionskammer 7 mit Hilfe von Horizontalkreuzstücken 10 und Streben 11 angeordnet, wobei sowohl die Abschirmungen 7 als auch die geerdeten Elektroden auswechselbar sind.

Die Arheitsweise der Vorrichtung am Beispiel eines Elektrodenpaares besteht in folgendem.

Den zerkleinermen Stoff leitet man in die Hohlelektrode 6 (Fig. 1), wo er zu einer Strömung geformt wird. Die aus
der Hohlelektrode ausgehende Strömung gelangt in den Elektrodenraum 8 und erreicht die geerdete Elektrode 9. Beim Erreichen der geerdeten Elektrode 9 wirkt auf die Strömung ein
Stromimpuls ein. Dank der Wärmeexplosion des Materials und
der Entstehung von Stoßwellen dispergiert die Strömung und
die zerkleinerten und nicht zerkleinerten Teilchen prallen
mit noher Geschwindigkeit auf die starre Abschirmung 7 auf,
wobei sie zusätzlich zerkleinert werden. Alle Zerkleinerungsprodukte fallen durch Öffnungen (nicht mitgezeichnet) im
horizontalkreuzstück 10 (Fig. 2) auf den Schrägboden 3 und
werden aus der Reaktionskammer 1 über den Auslaufstutzen entfernt.

Nachstehend seien konkrete Avsführungsbeispiele des erfindungsgemäßen Verfahrens betrachtet.

beispiel 1.

Eine Legierung, bestehend aus Eisen (85%) und Silizium (15%), deren Pulver mit einer Korngröße bis 0,10 mm und mit sphärischer Teilchenform als Schwerstoff beim Aufbereiten von schweren Suspensionen zur Anreicherung von Bodenschätzen verwendet, schmilzt man in einem Elektroschmelzofen. Die Schmelze gießt man durch die Hohlelektrode 6 (Fig. 1) von 2 mm

Durchmesser ein. Beim Erreichen der geerdeten Elektrode 9 wirkt auf die Schmelzströmung ein Stromimpuls mit einer Leistung von etwa 50 MW ein. Der Strom dispergiert unter Bildung von hauptsachlich sphärischen Teilchen mit einer Korngröße bis 0,1 mm, die über den Auslaufstutzen 4 in den Sammbler bzw. zur Klassifizierung geleitet werden. Zur Verhinderung einer Oxidierung des zerkleinerten Materials füllt man die Reaktionskammer 1 mit Edelgas, bespielsweise Argon. Der zweckmäßigste Arbeitszustand der Vorrichtung ist derjenige, bei dem die zum Kurzschließen des Elektrodenraumes durch die Strömung erforderliche Zeit dem Impuls-Pause-Verhaltnis der Stromimpulse gleich ist.

Beispiel 2.

Teilchen der gleichen Legierung wie im Beispiel 1 mit einer Korngröße von 2,5± 0,10 mm, die nichtkonditionell bei der Granulation der Schmelze sind, mischt man mit der isolierenden Flüssigkeit zusammen und fördert mit einer Pumpe in die Hohlelektrode 6 von 6 mm Durchmesser. Beim Erreichen der geerdeten Elektrode wirkt auf die aus der Hohlelektrode 6 herausfließende Breiströmung ein Stromimpuls mit einer Energie von etwa 1200 J. Das zerkleinerte Material gelangt über den Auslaufstutzen zur Klassifizierung. Das konditionelle Produkt mit einer Korngröße bis 0,10 mm wird zum Trocknen und das nichtkonditionelle Produkt zum Nachzerkleinern transportiert. Hierbei wird die Einhaltung der gleichen Bedingun-

zweckmäßigen Arbeitszustandes wie im Beispiel 1 gewünscht.
Bei der Formierung des Stromimpulses mit einer Induktivität
von 1 bis 3 µ II enthält das zerkleinerte Produkt 90%
Teilchen von Splitterform, wahrend es bei der Formierung desselben mit einer Induktivität von 120 µ H bis 60-70% Teilchen von sphärischer Form mit einer Korngröße bis 63 µm enthalt.

Eine übermäßige Zerkleinerung des Materials liegt praktisch nicht vor, da bei der erfindungsgemäßen Vorrichtung das durch die vorhergehende Entladung zerkleinerte Material aus der Zerkleinerungszone bis zur nächstfolgenden Entladung restlos entfernt wird. Als isolierende Flüssigkeit sind auf bekannte Art verflüssigte Gase, beispielsweise Stickstoff und Argon, oder Kohlenwasserstoffe oder auch Wasser empfehlenswert.

Beispiel 3.

Grünsiliziumkarbid, dessen Teilchen in der Schleifmittelindustrie verwendet werden, zerkleinert man nach der im
Beispiel2beschriebenen Technologie auf die gleiche Korngröße.
Die Teilchen sind von Splitterform, jedoch ist diese Form
der isometrischen nah.

RZ/Br

-14-

PATENTANSPRÜCHE:

leitenden Stoffen durch Einwirkung eines elektrisch leitenden Stoffen durch Einwirkung eines elektrischen Stromimpulses, dadurch gekennzeich - net, daß man vor der Einwirkung des elektrischen Stromes auf das zu zerkleinernde Material dieses zu einer Strömung formt, die man in die Elektrodenwirkungszone zum Dispergieren des Materials leitet.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeich net, daß man bei der Zerkleinerung von
 Hartstoffen diese vor der Formung zu einer Strömung zerschmilzt.
- 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man bei der Zerkleinerung von
 Hartstoffen die Strömung als Brei aus den zerkleinerten
 Stoffteilchen und der isolierenden Flüssigkeit bildet.
- 4. Verfahren nach Anspruch 1, 2 bzw. 3, dadurch gekennzeich net, daß das Dispergieren des Materials in einem kompressiblen Medium erfolgt.
- 5. Verfahren nach Anspruch 1, 2, 3 bzw. 4, da durch gekennzeichnet, daß die elektrischen Stromimpulse eine Dauer von 5 bis 1000 p sechaben.
- 6. Verfahren nach Anspruch 5, da durch gekennzeichnet, daß man die Dauer der elektrischen

Stromimpulse durch die Induktivität des Entladungskreises ohne Änderung der Impulsenergie ändert.

7. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1,2 oder 3 mit einer Reaktionskammer mit in dieser untergebrachten Elektroden da - durch geken nzeichne tah net, daß zumindest eine Elektrode (6) hohl ausgeführt ist, um die Formung des zu zerkleinernden Laterials zu einem Strom und Zuführung

in den durch die Hohlelektrode (6) und die geerdete Elektrode (9) gebildeten Elektrodenraum (8) zu gewährleisten.

- 8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß die Hohlelektrode (6) in der Reaktionskammer (1) höhenverstellbar angeordnet ist.
- 9. Vorrichtung nach Anspruch 7 und 8, da durch gekennzeich net, daß in der Reaktionskammer (1) um jede Hohlelektrode (6) ein starrer Schirm (7), der den Elektrodenraum (8) abdeckt, untergebracht ist.

//6 Leerseite

2121769

17-

