

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Dataproc Overview

What is Cloud Dataproc?

Next

It's another transfer nation and date processing sen.

Input Data

Hadoop ecosystem:

- Hadoop, Spark, Pig, Hive
- · Lift and shift to GCP

workhouse

Monaged version of hadoup and spark

Custom Code

Monitoring/Health

Dev Integration

Manual Scaling

Job Submission

Google Cloud Connectivity

Deployment

Creation

Dataproc facts:

- On-demand, managed Hadoop and Spark clusters
- Managed, but not no-ops:
 - Must configure cluster, not auto-scaling 4 stall reed
 - Greatly reduces administrative overhead
- Integrates with other Google Cloud services:
 - Separate data from the cluster save costs
- Familiar Hadoop/Spark ecosystem environment:
 - Easy to move existing projects
- Based on Apache Bigtop distribution:
 - Hadoop, Spark, Hive, Pig
- HDFS available (but maybe not optimal)
- Other ecosystem tools can be installed as well via initialization actions such as Kafka, jupyter notebook.

Next

Return to Table of Contents

Dataproc Overview

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Previous

- What is MapReduce?
 - Simple definition:
 Take big data, distribute it to many workers (map)
 - Combine results of many pieces (reduce)
 - Distributed/parallel computing

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Dataproc Overview

Previous

Next

Pricing:

- Standard Compute Engine machine type pricing + managed Dataproc premium
- Premium = \$0.01 per vCPU core/hour

Machine type	Virtual CPUs	Memory	Dataproc
n1-highcpu-2	2	1.80GB	\$0.020
n1-highcpu-4	4	3.60GB	\$0.040
n1-highcpu-8	8	7.20GB	\$0.080
n1-highcpu-16	16	14.40GB	\$0.160
n1-highcpu-32	32	28.80GB	\$0.320
n1-highcpu-64	64	57.60GB	\$0.640

Data Lifecycle Scenario Data Ingest, Transformation, and Analysis

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Dataproc Overview

Previous

exum topic

Identity and Access Management (IAM):

- Project level only (primitive and predefined roles)
- Cloud Dataproc Editor, Viewer, Worker
- Editor Full access to create/delete/edit clusters/jobs/workflows
- Viewer View access only
- Worker Assigned to service accounts:
 - Read/write GCS, write to Cloud Logging

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Configure Dataproc Cluster

Create cluster: (golard comment)

Next

- gcloud dataproc clusters create [cluster_name] --zone [zone_name]
- Configure master node, worker nodes:
 - Master contains YARN resource manager
 - YARN = Yet Another Resource Negotiator

Updating clusters:

- Can only change # workers/preemptible VM's/labels/toggle graceful decommission
- Automatically reshards data for you
- gcloud dataproc clusters update [cluster_name] --num-workers
 [#] --num-preemptible-workers

Return to Table of Contents

Configure Dataproc Cluster

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and **Submit Job**

Migrating and Optimizing for **Google Cloud**

Best Practices for Cluster Performance

Previous

Preemptible VM's on Dataproc:

- **Excellent low-cost worker nodes**
- Dataproc manages the entire leave/join process:
 - No need to configure startup/shutdown scripts
 - Just add PVM's...and that's it
- No assigned disks for HDFS (only disk for caching)
- Want a mix of standard + PVM worker nodes

Access your cluster:

Access via web - 2 options:

• Open firewall ports to your network (8088/9870)
• Use SOCKS proxy - does not expose firewall ports
• OCKS proxy configuration:
• SSH to master **

SOCKS proxy configuration:

- SSH to master to enable port forwarding:
 - gcloud compute ssh master-host-name --project=project-id --zone=master-host-zone -- -D 1080 -N
- Open new terminal window launch web browser with parameters (varies by OS/browser):
 - "/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
 - --proxy-server="socks5://localhost:1080" --host-resolver-rules="MAP * 0.0.0.0, EXCLUDE localhost" --user-data-dir=/tmp/cluster1-m
- **Browse to http://[master]:port:**
 - 8088 Hadoop
 - 9870 HDFS

Using Cloud Shell (must use for each port):

• gcloud compute ssh master-host-name --project=project-id --zone master-host-zone -- -4 -N -L port1:master-host-name:port2 No exam

Use Web Preview to choose port (8088/9870)

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Migrating and Optimizing for Google Cloud

Migrating to Cloud Dataproc

Next

What are we moving/optimizing?

- Data (from HDFS)
- Jobs (pointing to Google Cloud locations)
- Treating clusters as ephemeral (temporary) rather than permanent entities

Install Cloud Storage connector to connect to GCS (Google Cloud Storage).

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Migrating and Optimizing for Google Cloud

Previous

Next

Migration Best Practices:

Move data first (generally Cloud Storage buckets):

- Possible exceptions:
 - Apache HBase data to Bigtable
 - Apache Impala to BigQuery
 - Can still choose to move to GCS if Bigtable/BQ features not needed
- Small-scale experimentation (proof of concept):
 - Use a subset of data to test
- Think of it in terms of ephemeral clusters
- Use GCP tools to optimize and save costs

Return to Table of Contents

Choose a Lesson Previo

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Migrating and Optimizing for Google Cloud

Previous

Next

Optimize for the Cloud ("Lift and Leverage")

Separate storage and compute (cluster):

- Save on costs:
 - No need to keep clusters to keep/access data
- Simplify workloads:
 - No shaping workloads to fit hardware
 - Simplify storage capacity
- HDFS --> Google Cloud Storage
- Hive --> BigQuery
- HBase --> Bigtable

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Migrating and Optimizing for Google Cloud

Previous

exam topic: How to ...

Converting from HDFS to Google Cloud Storage:

- 1. Copy data to GCS:
 - Install connector or copy manually for on-prem
- 2. Update file prefix in scripts:
 - From hdfs:// to gs://
- 3. Use Dataproc, and run against/output to GCS

The end goal should be to eventually move toward a cloud-native and serverless architecture (Dataflow, BigQuery, etc.).

Return to Table of Contents

Choose a Lesson

Dataproc Overview

Configure Dataproc Cluster and Submit Job

Migrating and Optimizing for Google Cloud

Best Practices for Cluster Performance

Best Practices for Cluster Performance

Dataproc Performance Optimization (LLGM) (GCP-specific)

- Keep data close to your cluster
 - Place Dataproc cluster in the same region as storage bucket
- Larger persistent disk = better performance
 - Consider using SSD over HDD slightly higher cost
- Allocate more VM's
 - Use preemptible VM's to save on costs

More VM's will come at a higher cost than larger disks if more disk throughput is needed