Лекция 07.02.22

Note 1

62fhe59ca984f5h820ad1041f1eh840

$$f(x) = p(x) + o((x - a)^n),$$

$$f(a) = p(a),$$

 $\mathbb R$ называется $\mathbb R^n$ многочленом Тейлора функции f порядка n в точке $a.\mathbb R$

Note 2

738279ec323b45e29a170a4e41b4bce0

Note 3

8f605243b193465799ba06e1576d171

В чём ключевая идея доказательства единственности многочлена Тейлора?

Пусть коэффициент r_m при $(x-a)^m$ — первый ненулевой коэффициент в многочлене p-q. Тогда

$$\frac{p-q}{(x-a)^m} \xrightarrow[x\to a]{} r_m,$$

но при этом

$$\frac{p-q}{(x-a)^m} = o((x-a)^{n-m}) \underset{x \to a}{\longrightarrow} 0 \implies r_m = 0.$$

Note 4

f4110a9b63c640be96d810d835d0d1fd

 $\{\{can}$ Многочлен Тейлора функции f порядка n в точке $a_{\{\}}$ обозначается $\{\{can}T_{a,n}f_{a,n}\}$

«((сз::Формула Тейлора для многочленов))»

Пусть $p-\{\{c2\}\}$ многочлен степени не более $n.\}\}$ Тогда $\{\{c1\}\}$

$$p(x) = \sum_{k=0}^{n} \frac{p^{(k)}(a)}{k!} (x - a)^{k}.$$

Note 6

97c12315facb454e987cb94fae99be75

$$|f(x)|_{x=a} \stackrel{\text{def}}{=} \{\{\text{cal}: f(a).\}\}$$

Note 7

cf7e5ab30b564c139557fd0a940f8204

$$\left. \left((x-a)^k \right)^{(n)} \right|_{x=a} = \left\{ \begin{bmatrix} 0, & n \neq k, \\ n!, & n = k. \end{bmatrix} \right\}$$

Note 8

9b6c61f4867142bea860ca4d00c07174

В чем основная идея доказательства истинности формулы Тейлора для многочленов?

Записать p(x) с неопределенными коэффициентами и вычислить $p^{(k)}(a)$ для $k=0,1,2,\ldots,n$.

Note 9

7597b782ce5f4e92998cc6445ce6f40e

«((сз.: Свойство п раз дифференцируемой функции))»

Пусть {{c2::} $f:D\subset\mathbb{R} o\mathbb{R},a\in D$ и

$$f(a) = f'(a) = \dots = f^{(n)}(a) = 0.$$

 $\{ f(x) = o((x-a)^n), x \to a. \} \}$

«Определение o-малого в терминах ε, δ .»

Пусть $f,g:D\subset\mathbb{R} o\mathbb{R},$ a — предельная точка D. Тогда

$$\begin{split} f(x) &= o(g(x)), \quad x \to a \iff \\ &\iff \\ &\text{for } \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \cap \dot{V}_\delta(a) \quad |f(x)| \leqslant \varepsilon |g(x)|. \end{split}$$

Note 11

b7ddf1bbcdf84c769dd7b409e5be494d

Какой метод используется в доказательстве свойства n-раз дифференцируемой функции?

Индукция по n.

Note 12

f04179797fd64614827341d42561634

Какова основная идея в доказательстве свойства n-раз дифференцируемой функции (базовый случай)?

Подставить f(a) = f'(a) = 0 в определение дифференцируемости.

Note 13

7a10e93958724ee6b93bc1637a13773f

Каков первый шаг в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

Заметить, что из индукционного предположения

$$f'(x) = o((x-a)^n)$$

и расписать это равенство в терминах $\varepsilon, \delta.$

Какие ограничения накладываются на δ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

 $V_{\delta}(a) \cap D$ есть невырожденный промежуток.

Note 15

2506d5781f234e13a94358880699831a

Почему в доказательстве свойства n-раз дифференцируемой функции (индукционный переход) мы можем сказать, что $\exists \delta>0$ такой, что $V_\delta(a)\cap D$ есть невырожденный отрезок?

По определению дифференцируемости функции.

Note 16

3ed2cdbb8b444ce991d587d9ed279ed

В чем ключевая идея доказательства свойства n-раз дифференцируемой функции (индукционный переход)?

Выразить $f(x) = f'(c) \cdot (x-a)$ по симметричной формуле конечных приращений и показать, что $|f'(c)| < \varepsilon |x-a|^n$.

Note 17

a08796d96ad841bd91a8e7daaab1857d

Откуда следует, что $|f'(c)| < \varepsilon |x-a|^n$ в доказательстве свойства n-раз дифференцируемой функции (индукционный переход)?

$$|c-a| < \delta \implies |f'(c)| < \varepsilon |c-a|^n < \varepsilon |x-a|^n$$

Note 18

957fd9747bd84545bd6b1cca723d72ba

Пусть
$$f:D\subset\mathbb{R} o\mathbb{R},a\in D,n\in\mathbb{N}$$
, ((c2): $f(a)=0,$
$$f'(x)=o((x-a)^n),\quad x o a.$$

Тогда
$$f(x)=\{\{c: o((x-a)^{n+1}), x o a.\}\}$$

«{{сз::Формула Тейлора-Пеано}}»

Пусть $\{(c2::f:D\subset R\to\mathbb{R}\ {\tt и}\ f\ n$ раз дифференцируема в точке $a.:\}$ Тогда $\{(c1::]$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + o((x - a)^{n}).$$

}

Note 1

bf65c72c3374838aacaa626da8a3a4d

Каков первый шаг в доказательстве истинности формулы Тейлора-Пеано?

Обозначить через p(x) многочлен в формуле:

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k}}_{p(x)} + o((x-a)^{n}).$$

Note 2

6f41684761ec41308bf9f95619ec1849

Чему для $k\leqslant n$ равна $p^{(k)}(a)$ в доказательстве истинности формулы Тейлора-Пеано?

$$p^{(k)}(a) = f^{(k)}(a).$$

Note 3

72455c0671414c80aca4c9ef2ba63d44

В чем основная идея доказательства истинности формулы Тейлора-Пеано?

По свойству n раз дифференцируемой функции $f(x)-p(x)=o((x-a)^n).$

Note 4

db6e4a55afed4c5d95a38869cf9d2e00

Что позволяет применить свойство n раз дифференцируемой функции в доказательстве формулы Тейлора-Пеано?

$$\forall k \leqslant n \quad (f(x) - p(x))^{(k)} \Big|_{x=a} = 0$$

$$\text{(c2::}\Delta_{a,b}\text{)}\text{)}\overset{\text{def}}{=}\text{(c1::}\begin{cases} [a,b], & a\leqslant b,\\ [b,a], & a\geqslant b. \end{cases}$$

Note 6

9755fb6343494fa9b0034b4542e518d3

$$\text{Col}([a,b]) \stackrel{ ext{def}}{=} \text{Col}([a,b], \quad a < b, \ (b,a), \quad a > b. \text{Col}([b,a])$$

Note 7

dbb25fcd6e834aa2ae54ec6ddc0c6787

$$\{\text{(c2::}R_{a,n}f\}\} \stackrel{\mathrm{def}}{=} \{\text{(c1::}f - T_{a,n}f\}\}$$

Note 8

0d92b12a18f34554a0251578aa811b7f

««сз::Формула Тейлора-Лагранжа))»

Пусть $f:D\subset\mathbb{R}\to\mathbb{R},\quad a,x\in\mathbb{R},a\neq x,\quad \text{пост} f\in C^n(\Delta_{a,x}),$ $f^{(n)}$ дифференцируема на $\widetilde{\Delta}_{a,x}$. Тогда пайдется $c\in\widetilde{\Delta}_{a,x}$, для которой

$$f(x) = T_{a,n}f(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

}}

Note 9

f9314b4b0e184f52826c8f740c873e21

При n=0 формула Тейлора-Лагранжа эквивалентна (кактеореме Лагранжа).

Note 10

5fe508cfd3c445c4b15093e8d2c8c504

В чем основная идея доказательства истинности формулы Тейлора-Лагранжа?

Вычислить производную функции $F(t) = R_{t,n} f(x)$ и найти точку c по теореме Коши.

Для каких t определяется функция F(t) в доказательстве истинности формулы Тейлора-Лагранжа?

$$t \in \Delta_{a,x}$$
.

Note 12

a4f7e43161cc4c9fb58ac7a250610c50

Для каких t вычисляется F'(t) в доказательстве истинности формулы Тейлора-Лагранжа?

$$t \in \widetilde{\Delta}_{a,x}$$
.

Note 13

/3e4df5e1b074010a95ee5dbe0458338

К каким функциям применяется теорема Коши в доказательстве истинности формулы Тейлора-Лагранжа?

К
$$F(t)$$
 и $\varphi(t) = (x - t)^{n+1}$.

Note 14

b1d63dae062e4a438ceb891f94a33e96

К каким точкам применяется теорема Коши в доказательстве истинности формулы Тейлора-Лагранжа?

К границам отрезка $\Delta_{a,x}$.

Note 15

b8f3f99b66794d59b6fa546eb06d7fb3

Какое неявное условие позволяет применить теорему коши к функциям F(t) и $\varphi(t)$ с точках a и x в доказательстве истинности формулы Тейлора-Лагранжа?

$$F(x) = 0, \quad \varphi(x) = 0.$$

По формуле Тейлора-Пиано при $x \to 0$

$$\text{(c2::} e^x \text{)} = \text{(c1::} \sum_{k=0}^n \frac{x^k}{k!} + o(x^n). \text{)}$$

Note 17

70a13102af174271b95762b24e6b1169

По формуле Тейлора-Пиано при $x \to 0$

$$\sup_{k=0}^n (-1)^k rac{x^{2k+1}}{(2k+1)!} + o(x^{2n+2}) .$$

Note 18

0c528f645b0741ef90f268989f7701eb

По формуле Тейлора-Пиано при $x \to 0$

$$\langle \langle (c2::\cos x) \rangle = \langle (c1:::\sum_{k=0}^{n} (-1)^k rac{x^{2k}}{(2k)!} + oig(x^{2n+1}ig) \, .
angle \langle (c2::\cos x) \rangle$$

Note 19

90ff22c33f67493fae3fa800e93905f4

По формуле Тейлора-Пиано при $x \to 0$

$$\lim_{k \to 1} \ln(1+x) = \lim_{k \to 1} (-1)^{k-1} rac{x^k}{k} + o(x^n) \, .$$

Note 20

aaf8ef38d3bb409baf7c7fcc1df14f48

 $\{ (c) \}$ Обобщённый биномиальный коэффициент $\}$ задаётся формулой

$$C_{\alpha}^{k} = \{(\operatorname{cl}: \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!})\}, \quad \alpha \in \{(\operatorname{cl}: \mathbb{R})\}.$$

По формуле Тейлора-Пиано при $x \to 0$

$$\min\{(1+x)^{lpha}\}=\min\sum_{k=0}^{n}C_{lpha}^{k}x^{k}+o(x^{n})$$
 . (1)

Note 22

eb36b5f5a2b04e44b4d5b13d2278ff40

Формулу Тейлора-Пеано для $(1+x)^{\alpha}$ называют (клажением).

Note 23

c766c427b7e44be8a2e40e872ec7dd2b

$$C_{-1}^k = \{ (-1)^k. \}$$

Note 24

82717b22134b4f66b014c17df3ba337c

По формуле Тейлора-Пиано при $x \to 0$

$$\{(c^2:(1+x)^{-1})\} = \{(c^1:\sum_{k=0}^n (-1)^k x^k + o(x^n).)\}$$

Note 25

7d3d35d9fcb344458f0d82ed7b2d940f

Пусть $\{ (case)$ функция f удовлетворяет условиям для разложения по формуле Тейлора-Лагранжа. $\{ (case) \}$

$$\forall t \in \widetilde{\Delta}_{a,x} \quad |f^{(n+1)}(t)| \leqslant M,$$

 $\}\} \ TO \ \{ \{\text{c1::}$

$$|R_{a,n}f(x)| \le \frac{M|x-a|^{n+1}}{(n+1)!}.$$

}}

Семинар 17.02.22

Note 1

05fh49aahf444h3daf73947c33hf8f10

$$\int x^n\;dx=\ker\frac{x^{n+1}}{n+1}+C_{\mathrm{H}},\quad (\ker x=-1_{\mathrm{H}}).$$

Note 2

3eae90c7fe9944e6a9d07784205f0d1d

$$\int \exp \frac{1}{x} dx = \exp \ln |x| + C dx.$$

Note 3

af533d11b4c2421baaad26c4fca61b2a

$$\int \exp \frac{1}{1-x^2} \mathrm{d} x = \det \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C \mathrm{d} .$$

Note 4

8939h90686dc43ae81c37c01fa728294

$$\int \exp \frac{1}{\sqrt{x^2 \pm 1}} dx = \exp |\ln |x + \sqrt{x^2 \pm 1}| + C dx.$$

Note 5

edb57ab590834e5db5946311b9910393

$$\int rac{1}{\sqrt{\left(\left| \left| \left| i
ight| x^{2} \pm 1
ight|
ight)}} \, dx = \ln \left| x + \sqrt{\left(\left| \left| \left| i
ight| x^{2} \pm 1
ight|
ight)}
ight| + C.$$

Note 6

709b5fa5f404426ea7b67b17dc16f830

$$\int a^x \, dx = \{ \operatorname{cir} \frac{a^x}{\ln a} + C \}.$$

Лекция 18.02.22

Note 1

55402bf36144a31b5a60075656b3fb4

Пусть $\{\!(c4)\!:\!f\in C\langle A,B\rangle$ и дифференцируема на $(A,B)_{\cdot}\}$ Тогда

• {{c2::}}
$$f \nearrow$$
 Ha $\langle A,B \rangle$ } {{c3::} \iff } {{c1::}} $f'(x) \geqslant 0 \quad \forall x \in (A,B)$.}}

Note 2

h69e8hd92104c0ah3h235de95941521

Каков основной шаг в доказательстве критерия возрастания функции на промежутке (необходимость)?

Показать, что произвольное разностное отношение неотрицательно.

Note 3

7d9850f850c2465aa217f34c4dbd1a66

Каков основной шаг в доказательстве критерия возрастания функции на промежутке (достаточность)?

Выразить для a < b разность f(b) - f(a) через формулу конечных приращений.

Note 4

63e919dff3ba4ea282cb06d25b445300

Пусть (к-4:: $f \in C\langle A,B \rangle$ и дифференцируема на (A,B).)) Тогда

• {{c2::}} // на
$$\langle A,B \rangle$$
}} {{c3::} \Longleftrightarrow } {{c1::}} $f'(x)>0 \quad \forall x\in (A,B).$ }

Note 5

0e1b8bb37eca4c29af2ca084fcedc196

Каков основной шаг в доказательстве достаточного условия строгого возрастания функции на промежутке?

Выразить для a < b разность f(b) - f(a) через формулу конечных приращений.

Пусть $\{ca: f \in C\langle A, B \rangle$ и дифференцируема на (A, B). $\}$ Тогда

• {{c2::}} постоянна на $\langle A,B \rangle$ }} {{c3::}} \iff } {{c1::}} $f'(x)=0 \quad \forall x \in (A,B)$,}

Note 7

b036d705ddbe49b6814f53a6ad2b93f9

Каков основной шаг в доказательстве критерия постоянства функции на промежутке (достаточность)?

Выразить для произвольных a и b разность f(b) - f(a) через формулу конечных приращений.

Note 8

2dfd421d331745a0a8b2da63493d1b4f

Пусть (каз $f,g\in C[A,B)$ и дифференцируемы на (A,B).)) Тогда Если (каз f(A)=g(A) и

$$f'(x) > g'(x) \quad \forall x \in (A, B),$$

}} TO {{c1::

$$f(x) > g(x) \quad \forall x \in (A, B).$$

Note 9

e2c4b9fb4f4147a3bf25e2ab97a3e24f

Пусть (каза $f,g\in C\langle A,B]$ и дифференцируемы на (A,B).) Тогда если (казаf(B)=g(B) и

$$f'(x) < g'(x) \quad \forall x \in (A, B),$$

}} TO {{c1::

$$f(x) > g(x) \quad \forall x \in \langle A, B \rangle.$$

Note 10

0f2a5e13f0a2495388e631ac0b4776aa

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in D$. Тогда точка a называется (казыточкой максимума функции f ,)) если (казы

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) \leqslant f(a).$$

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in D$. Тогда точка a называется ([c2:: точкой строгого максимума функции f,)] если ([c1::

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) < f(a).$$

Note 12

0c2db077ea274453a5c14d982fe1c571

Пусть $f:D\subset\mathbb{R} o\mathbb{R},a\in D.$ Тогда точка a называется (сезночкой минимума функции f,)) если (сезночкой минимума функции f).

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) \geqslant f(a).$$

Note 13

3bc6223309d34118a582302414c9632e

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}, a\in D.$ Тогда точка a называется (сесточкой строгого минимума функции f,) если (сесточкой строгого минимума функции f

$$\exists \delta > 0 \quad \forall x \in \dot{V}_{\delta}(a) \cap D \quad f(x) > f(a).$$

Note 14

a1e964e24fc6456ca0a297c008405c34

Если ((с2)-точка a является точкой минимума или максимума функции f_*) то a называется ((с1)-точкой экстремума f_*)

Note 15

98f3cebf02ca464ab3cf9e94355caaa2

«([сз::Необходимое условие экстремума]]»

Пусть (са: $f:\langle A,B\rangle\to\mathbb{R}, a\in(A,B), f$ дифференцируема в точке a.)) Тогда (са: если a является точкой экстремума f, то f'(a)=0.)

Note 16

acfe 3357868e 41809070b 12ea 6034081

Каков основной шаг в доказательстве необходимого условия экстремума?

Применить теорему Ферма к $f|_{[a-\delta,a+\delta]}$ для δ из определения экстремума.

Note 17

96502706cad4449ab9ac44074765a384

Точка a называется (кольстационарной точкой функции f,)) если (кольстания)

$$f'(a) = 0.$$

Note 18

99ca6c71ff484416941c4e10086ca6e

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда поточка $a\in (A,B)$ называется постической точкой, если поточкой a стационарна для f, либо f не дифференцируема в точке a.

Note 19

40f1ebf761e14f5ba885b2276d64dae

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда все педаточки экстремума f, принадлежащие (A,B), лежат в пемат в пематожестве её критических точек.

Note 20

e8adcc7d8b474840907e72b38014fcdc

Пусть $f \in C[a,b]$. Тогда

$$\{(a,b)\} = \{(a,b)\} = \{(a,b)\}$$

где C- «селиножество критических точек f.»

Note 21

909932c22cec4a5fb5d8cfb506e7dbfb

Пусть (казе $f:\langle A,B
angle o\mathbb{R},\,a\in(A,B),\,f$ непрерывна в точке a и дифференцируема на $\dot{V}_\delta(a),\,\delta>0$.)) Если (казе

$$\operatorname{sgn} f'(x) = \operatorname{sgn}(a - x) \quad \forall x \in \dot{V}_{\delta}(a),$$

 $_{
m I}$ то {{c2::} a — точка строго максимума $f._{
m I}$

Пусть $f:\langle A,B \rangle \to \mathbb{R},\, a\in (A,B),\, f$ непрерывна в точке a и дифференцируема на $\dot{V}_\delta(a),\, \delta>0.$ Если (кака

$$\operatorname{sgn} f'(x) = \operatorname{sgn}(x - a) \quad \forall x \in \dot{V}_{\delta}(a),$$

 $\}\}$ то {{c2::a- точка строго минимума f.}

Лекция 21.02.22

Note 1

4d119e495cf043019ed8ee01f9a7957a

Пусть (кезе $f:\langle A,B \rangle o \mathbb{R}, a\in (A,B), f''$ определена в точке a, f'(a)=0.)) Тогда если (кезе f''(a)>0,)) то (кезе a — точка строгого минимума f.))

Note 2

f8b71055f7eb427f8226b47df9ed1e05

Пусть $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), f''$ определена в точке a, f'(a)=0. Тогда если (ст. f''(a)<0,)) то (с2. a — точка строгого максимума f.)

Note 3

5e0ea19ce2b043c693e2cbc7752fcaf

Каков первый шаг в доказательстве достаточного условия экстремума в терминах f''?

Выразить f(x)-f(a) по формуле Тейлора-Пиано с

$$o((x-a)^2).$$

Note 4

3124302c512c44bfac961f48e231e1c

В чем основная идея доказательства достаточного условия экстремума в терминах f''?

Вынести в формуле Тейлора-Пиано $\frac{f''(a)}{2}(x-a)^2$ за скобки, далее по теореме о стабилизации функции.

Note 5

bb068aa42bfe43deb084eaa739cd08c6

Пусть {{c4::} $f:\langle A,B
angle
ightarrow\mathbb{R},a\in(A,B)$,}} {{c3::}

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0,$$

 $f^{(n)}(a) \neq 0.$

 \mathbb{R} Тогда если \mathbb{R}^{2n} нечётно, \mathbb{R} то \mathbb{R}^{d} не имеет экстремума в точке $a.\mathbb{R}$

Пусть $f: \langle A, B \rangle \to \mathbb{R}, a \in (A, B),$

$$f'(a) = f''(a) = \dots = f^{(n-1)}(a) = 0,$$

 $f^{(n)}(a) \neq 0.$

Тогда если $\{e^2 = n \text{ чётно}, \}$ $\{e^2 = n \text{ четно}, \}$ $\{e^2 = n \text{ verno}, \}$ $\{e^2 = n \text{ vern$

Note 7

d2426d6723fd4c20966bd4397dce3eb3

«{{сз::Теорема Дарбу}}»

Пусть (с2::f дифференцируема на $\langle A,B \rangle$, $a,b \in \langle A,B \rangle$,

$$f'(a) < 0, \quad f'(b) > 0.$$

 $\}$ Тогда $\{c:\exists c\in(a,b)\quad f'(c)=0.\}$

Note 8

3152412fd6f41e984fc4a4e96521633

В чем основная идея доказательства теоремы Дарбу?

По теореме Вейерштрасса существует точка минимума *с*, далее по теореме Ферма.

Note 9

b0b7d5c649bf4839bde1e90102df6405

Что позволяет применить теорему Ферма в доказательстве теоремы Дарбу?

c — внутренняя точка отрезка [a,b].

Note 10

d480b573cf054a67a6bf5596881b0afb

Как в доказательстве теорему Дарбу показать, что c не лежит на границе [a,b]?

Расписать f'(a) через правосторонний предел и показать, что a — не локальный минимум. Аналогично для b.

Пусть (сз.: f дифференцируема на $\langle A,B\rangle$.) Если (сг.:

$$f'(x) \neq 0 \quad \forall x \in \langle A, B \rangle,$$

 $\}$ то {{cl::} f строго монотонна на $\langle A,B
angle$.}}

Note 12

e29cdd0f22c346cab64fe288db3fbdb8

В чем основная идея доказательства следствия о монотонности функции с ненулевой производной?

Доказать от противного, что f' не меняет знак на $\langle A, B \rangle$. Далее по достаточному условию строгой монотонности.

Note 13

9fc77ac828a342f885c48ee472c09734

«Педа:Следствие из теоремы Дарбу о сохранении промежутка.

 $\{\{a,B\}\}$. Тогда $f'(\langle A,B\rangle)$ — промежуток, $\{a,B\}$

Note 14

56d20a83493a46d1ac834fec9f4ebdet

В чем основная идея доказательства следствия из теоремы Дарбу о сохранении промежутка?

Показать, что для любых $a,b \in \langle A,B \rangle$

$$[f'(a), f'(b)] \subset f'(\langle A, B \rangle).$$

Note 15

0cd99b9f1fae4d1aadfac35788f440c6

Какое упрощение принимается (для определённости) для точек $a,b\in \langle A,B\rangle$ в доказательстве следствия из теоремы Дарбу о сохранении промежутка?

$$f'(a) \leqslant f'(b)$$
.

Note 16

9ee92cbcb63b46e78fe63b31bbf7f924

Как в доказательстве следствия из теоремы Дарбу о сохранении промежутка показать, что

$$\forall y \in (f'(a), f'(b)) \quad y \in f(\langle A, B \rangle)?$$

Применить теорему Дарбу к функции

$$F(x) = f(x) - y \cdot x$$

в точках a и b.

Note 17

3c1144d31e264164b099479d41f9abe3

«اادع:: Следствие из теоремы Дарбу о скачках производной.

Пусть f дифференцируема на $\langle A,B\rangle$. Тогда функция f' не имеет скачков на $\langle A,B\rangle$.

Note 18

f94b4bdf90b14fa0a4256a492cf742a5

В чем основная идея доказательства следствия из теоремы Дарбу о скачках производной?

Допустить противное и показать, что $\inf f'|_{[a,a+\delta)}$ — не промежуток.

Note 19

933fb7290ce844da8f84c48835915d5c

Какие допущения принимаются (для определённости) в доказательстве следствия из теоремы Дарбу о скачках производной?

f имеет скачёк справа в точке $a \in \langle A, B \rangle$ и

$$L := \lim_{x \to a^+} f'(x) < f'(a).$$

Как выбирается δ в доказательстве следствия из теоремы Дарбу о скачках производной?

Так, что для некоторого $y \in (L, f'(a))$

$$f'(x) < y \quad \forall x \in (a, a + \delta).$$

Note 21

027449ca442a449786b58ca872e4aff2

{{es: Функция $f:\langle A,B\rangle
ightarrow \mathbb{R}}$ называется {{es: выпуклой на $\langle A,B
angle ,$ } если {{es: }}

$$\forall a, b \in \langle A, B \rangle, \lambda \in (0, 1)$$
$$f(\lambda a + (1 - \lambda)b) \leqslant \lambda f(a) + (1 - \lambda)f(b).$$

Note 22

0073407c9c4f473cb4759784548208bd

$$\forall a, b \in \langle A, B \rangle, \lambda \in (0, 1)$$
$$f(\lambda a + (1 - \lambda)b) < \lambda f(a) + (1 - \lambda)f(b).$$

Note 23

a0e64a51b1ac405c9e5806d135c272da

«кез:Критерий» келестрогой выпуклости f на $\langle A,B \rangle$ »

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Тогда правносильный следующие утверждения.

- $\{\{c1:: f \text{ строго выпукла на } \langle A,B \rangle.\}\}$
- {{c2.}} $\forall a,b,c \in \langle A,B \rangle, a < c < b$ справедливо неравенство

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(c)}{b - c}.$$

(из леммы о трёх хордах)

«{{с4::Лемма о трёх хордах}}»

Пусть $f:\langle A,B\rangle\to\mathbb{R}$. Тогда подравносильны следующие утверждения.

- $\{\{c\}: f \text{ строго выпукла на } \langle A, B \rangle.\}\}$
- $\{(c2), \forall a,b,c \in \langle A,B \rangle, a < c < b \}$ справедливы неравенства

$$\frac{f(c) - f(a)}{c - a} < \frac{f(b) - f(a)}{b - a} < \frac{f(b) - f(c)}{b - c}.$$

Note 25

Каким образом доказываются критерий строгой выпуклости и лемма о трёх хордах?

Строится цепочка импликаций

$$(1) \implies (2) \implies (3) \implies (1).$$

- (1) строгая выпуклость f, (2) неравенство из леммы о трёх хордах.
 - (3) неравенство из критерия выпуклости,

Note 26

В чём основная идея доказательства критерия строгой выпуклости из леммы о трёх хордах (достаточность)?

Положить $c = \lambda a + (1 - \lambda)b$ и отсюда выразить c - a и

В чем основная идея доказательства леммы о трёх хордах (необходимость)?

Положить в определении выпуклости

$$\lambda = \frac{b - c}{b - a}.$$

Лекция 25.02.22

Note 1

0abcc31a29c74496883c555de61b5af7

Пусть ([c3:: $f:\langle A,B\rangle \to \mathbb{R}, a\in\langle A,B\rangle$

$$F(x) := \frac{f(x) - f(a)}{x - a}.$$

Тогда если $\{\{c2::f$ выпукла на $\langle A,B \rangle$, $\}$ то $\{\{c1::f\}\}$

$$F \nearrow$$
 на $\langle A, B \rangle \setminus \{a\}$.

Note 2

6658c8d28bde461584886f85aacf497

Пусть {{c3::}} $f:\langle A,B
angle
ightarrow\mathbb{R}$, $a\in\langle A,B
angle$

$$F(x) := \frac{f(x) - f(a)}{x - a}.$$

Тогда если $\{\{c2::f$ строго выпукла на $\langle A,B\rangle,\}\}$ то $\{\{c1::f\}\}$

$$F \nearrow \nearrow$$
 на $\langle A, B \rangle \setminus \{a\}$.

Note 3

d547aa237c104089813102cd73487563

Пусть $f:\langle A,B\rangle\to\mathbb{R},\,a\in\langle A,B\rangle,\,f$ выпукла на $\langle A,B\rangle.$ Откуда следует возрастание функции $F(x)=\frac{f(x)-f(a)}{x-a}$?

Из леммы о трёх хордах.

Note 4

0bb5876454d448878db0853372d90fe7

Пусть ([c3:: f выпукла на $\langle A,B \rangle$,)) {[c2:: $a \in \langle A,B \rangle$.]} Тогда ([c1::

$$\exists f'_{+}(a) \in [-\infty, +\infty).$$

24

Пусть (c3::f выпукла на $\langle A,B \rangle$,)) {{c2:: $a \in (A,B \rangle .}}$ Тогда {{c1::

$$\exists f'_{-}(a) \in (-\infty, +\infty].$$

}}

Note 6

1ea150313caa4817b9f27c00d5c8e6d8

Откуда следует существование односторонних производных у выпуклой фукнции?

Из теоремы о пределе монотонной функции для

$$F(x) = \frac{f(x) - f(a)}{x - a}.$$

Note 7

2e664465fdc5410ca8b72059cfe627b

Пусть (све f выпукла на $\langle A,B \rangle$,)) (све $a \in (A,B)$.)) Тогда (све $f'_+(a)$ и $f'_-(a)$ конечны и $f'_-(a) \leqslant f'_+(a)$.)

Note 8

82fe965871ac446facad207a4f246b18

Пусть f выпукла на $\langle A,B\rangle,$ $a\in (A,B).$ Откуда следует, что $f'_-(a)\leqslant f'_+(a)$?

Из теоремы о предельном переходе в неравенстве.

Note 9

eb64f07db3d3434197d40b0980a78e66

Если функция f выпукла на $\langle A,B \rangle$, то она пепрерывна на (A,B).

Note 10

9390116052df401f8413ffb225259a9d

Пусть f выпукла на $\langle A, B \rangle$. Откуда следует, что она непрерывна на (A, B)?

Из существования конечных односторонних производных f в любой точке (A,B).

Note 11

9f16939e7619449e9fe1d75a7aae2e87

Пусть $\{(a, B) \to \mathbb{R}, a \in \langle A, B \rangle.\}$ $\{(a, B) \in A, B \in$

$$f(x) \geqslant g(x) \quad \forall x \in \langle A, B \rangle.$$

Note 12

7b835ae738654ba5a0921df5133181e

Пусть $f:\langle A,B\rangle\to\mathbb{R},\ a\in\langle A,B\rangle$. «се:Прямая y=g(x)» называется (се:строго опорной для функции в точке a,) если (се:она проходит через точку (a,f(a)) и

$$f(x) > g(x) \quad \forall x \in \langle A, B \rangle \setminus \{a\}.$$

Note 13

fedf 029d 618e 48d dabe 81280b 131b 72b

Пусть $\{(a, B) \to \mathbb{R}, f \}$ выпукла на (A, B), $a \in (A, B)$, прямая ℓ задаётся $\{(a, B)\}$ прямая ℓ задаётся $\{(a, B)\}$ задаётся $\{(a, B)\}$ прямая ℓ задаётся $\{(a, B)\}$ задаётся $\{(a, B)\}$ на прямая ℓ задаётся $\{(a, B)\}$ на прямая $\{(a, B)\}$

$$y = f(a) + k(x - a).$$

Тогда прямая ℓ является (спопорной для функции f в точке a) (светогда и только тогда, когда) (светогда и ℓ).

Note 14

ceccffa4cbe4c8d8330451f4f53876c

Пусть ((с4:) $f:\langle A,B\rangle \to \mathbb{R},\ f$ строго выпукла на $\langle A,B\rangle,\ a\in (A,B)$,)) прямая ℓ задаётся уравнением

$$y = f(a) + k(x - a).$$

Тогда прямая ℓ является (състрого опорной для функции f в точке a) (състогда и только тогда, когда) (съст $k \in [f'_-(a), f'_+(a)]$.

Пусть $f:\langle A,B\rangle\to\mathbb{R},\, f$ выпукла на $\langle A,B\rangle,\, a\in(A,B).$ Как показать, что если прямая y=f(a)+k(x-a) является опорной для f, то $k\in[f'_-(a),f'_+(a)]$?

Представить f(x) - f(a) как

$$f'_{\pm}(a)(x-a) + o(x-a), \quad x \to a^{\pm}$$

и вычесть из обоих частей равенства k(x-a).

Note 16

9ab922ea4b1f422c855c9dc14925580a

Пусть $f:\langle A,B\rangle\to\mathbb{R},\, f$ выпукла на $\langle A,B\rangle,\, a\in(A,B)$. Как показать, что прямая y=f(a)+k(x-a) является опорной для f, если $k\in[f'_-(a),f'_+(a)]$?

Для $x \in (a,B)$ имеем $F(x)(x-a) \geqslant f'_+(a)(x-a)$, где

$$F(x) = \frac{f(x) - f(a)}{x - a}.$$

Аналогично для $x \in \langle A, a \rangle$.

Note 17

f8f5608de51344b89b749bf6fb673e89

Пусть $f:\langle A,B \rangle \to \mathbb{R}$. Если ((сде) в каждой точке (A,B) функция f имеет опорную прямую,)) то ((сде) она выпукла на $\langle A,B \rangle$.

(в терминах опорных прямых)

Note 18

0a5cbb4429524954af423e27fe0c32bc

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Если ((са) в каждой точке (A,B) функция f имеет строго опорную прямую,)) то ((са) она строго выпукла на $\langle A,B\rangle$.))

(в терминах опорных прямых)

Пусть $f:\langle A,B\rangle \to \mathbb{R}$. Если в каждой точке $a\in (A,B)$ функция f имеет опорную прямую, то она выпукла на $\langle A,B\rangle$. В чем основная идея доказательства?

Показать, что для любых x < a < y из $\langle A, B \rangle$ выполняется критерий выпуклости из леммы о трёх хордах.

Note 1

cc9492d0h4f4c4a8e6h1688ee26ed5e

В чем геометрический смысл $T_{a,1}f(x)$?

График $T_{a,1}f(x)$ — это касательная к функции f в точке a.

Note 2

570272578ee74dd988ea80f9e95cbc6f

«Связь ((с2::выпуклости функции)) с её касательными»

Пусть $\{(c4:f:\langle A,B\rangle\to\mathbb{R},\ f\$ дифференцируема на $(A,B).\}\}$ Тогда $\{(c2:\phi)$ ункция f выпукла на $\langle A,B\rangle\}\}$ $\{(c3:Tогда\ и\ только\ тогда, когда\}\}$

$$\forall a \in (A, B), \quad x \in \langle A, B \rangle$$

 $f(x) \geqslant T_{a,1} f(x).$

Note 3

32700c2a93204435b3f66db20ea03bf7

«Связь ((с2::выпуклости функции)) с её касательными»

Пусть $\{(A,B) \to \mathbb{R}, f \}$ дифференцируема на $\{A,B\}$. $\{A,B\}$ Тогда $\{(A,B), \{(A,B)\}\}$ $\{(A,B), \{(A,B), \{(A,B)\}\}\}$ $\{(A,B), \{(A,B), \{(A,B)\}\}\}$ $\{(A,B), \{(A,B), \{(A,B), \{(A,B)\}\}\}$ $\{(A,B), \{(A,B), \{($

$$\forall a \in (A, B), x \in \langle A, B \rangle \setminus \{a\}$$
$$f(x) > T_{a,1}f(x).$$

Note 4

76ff105d143e49dea8fe8db2b74ee9ff

В чем основная идея доказательства теоремы о связи выпуклости функции с её касательными (необходимость)?

f дифференцируема в любой точке $(A, B) \implies$ касательная совпадает с опорной прямой.

В чем основная идея доказательства теоремы о связи выпуклости функции с её касательными (достаточность)?

Из условия f имеет опорную прямую в каждой точке (A,B).

Note 6

3b6d6467bd5144febe2b52fd934c971a

Пусть $\{e^{3}:f:(A,+\infty)\to\mathbb{R}$ имеет при $x\to+\infty$ асимптоту y=kx+b. $\}$ Тогда если $\{e^{2}:f$ выпукла на $(A,+\infty)$, $\}$ то $\{e^{1}:f:a=1\}$

$$f(x) \geqslant kx + b \quad \forall x \in (A, +\infty).$$

Note 7

e766cccf8cdf4765b58203bef624439

Пусть $\{e^{3}:f:(A,+\infty)\to\mathbb{R}$ имеет при $x\to+\infty$ асимптоту y=kx+b. $\|$ Тогда если $\{e^{2}:f$ строго выпукла на $(A,+\infty)$, $\|$ то

$$f(x) > kx + b \quad \forall x \in (A, +\infty).$$

Note 8

7046fd62e87e44c7a6dc18f4e94f7bd8

Пусть $f:(A,+\infty)\to\mathbb{R}$ имеет при $x\to+\infty$ асимптоту y=kx+b. Тогда если f строго выпукла на $(A,+\infty)$, то

$$f(x) > kx + b \quad \forall x \in (A, +\infty).$$

В чем основная идея доказательства?

Показать, что $f(x) - kx \searrow$. Далее по теореме о пределе монотонной функции.

Note 9

f0e5b2b8f6a74445a42cf0b35e854f39

Пусть $f:(A,+\infty)\to\mathbb{R}$ имеет при $x\to+\infty$ асимптоту y=kx+b и f строго выпукла на $(A,+\infty)$. Как показать, что f(x)-kx ?

По теореме о пределе монотонной функции для

$$F(t) = \frac{f(t) - f(x)}{t - x}.$$

Note 10

4e7cdb6145142c3bb7cc8115035e5ac

«Связь $\{\{c2::$ выпуклости функции $\}$ с f'»

Пусть ((c4): $f\in C\langle A,B\rangle$), f дифференцируема на (A,B).)| Тогда ((c2): f выпукла на $\langle A,B\rangle$)|| ((c3): Тогда и только тогда, когда)|| ((c1): Torда и только тогда)|| ((c1): Torда и тогда)|| ((c1): Torда и тогда)|| ((c1): Torда и тогда)|| ((c1): Torда и тогда)|| ((c1): Tor

$$f'\nearrow$$
 на (A,B) .

Note 11

cfdb1a58f41247169b530e3bc3f5b061

«Связь $\{\{c2::$ выпуклости функции $\}$ с f'»

Пусть $\{(a, b), f$ дифференцируема на (A, B).) Тогда $\{(a, b), f$ строго выпукла на (A, B)) $\{(a, b), f\}$

$$f'\nearrow\nearrow$$
 на (A,B) .

Note 12

8b55ad03aaca4dfcb1ec7ce171dee0ce

В чем основная идея доказательства теоремы о связи выпуклости функции с f' (необходимость)?

Показать, что для x < y

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y)$$

Note 13

b1782e215a3d4a948b9fbddfbaed55d3

В чем основная идея доказательства теоремы о связи выпуклости функции с f' (достаточность)?

Выбрать произвольные a < c < b и применить теорему Лагранжа к [a, c] и [c, b].

Note 14

ldb6c044058c49e68328ad272c648da8

«Связь $\{\{c2::$ выпуклости функции $\}\}$ с f''»

Пусть (164): $f\in C\langle A,B\rangle$, f дважды дифференцируема на (A,B).)) Тогда (162): f выпукла на $\langle A,B\rangle$)) (163): Тогда и только тогда, когда

$$f''(x) \geqslant 0 \quad \forall x \in (A, B).$$

Note 15

d78c1dfaebde4a2e89fdccfb43309163

«Связь $\{\{c2::$ выпуклости функции $\}\}$ с f''»

Пусть (164: $f\in C\langle A,B\rangle$, f дважды дифференцируема на (A,B).)) Тогда (162: f строго выпукла на (A,B), (163: если) (161:

$$f''(x) > 0 \quad \forall x \in (A, B).$$

Note 16

d912e4ab9b6a4459b2f104fabfc198f8

В чем основная идея доказательства теоремы о связи выпуклости функции с f''?

Применить критерий возрастания функции к f^\prime .

Note 17

899c82ffb7094f2e8e4a74da8023fc60

Пусть $\{(ca): f: \langle A,B\rangle \to \mathbb{R}, a\in (A,B).\}$ Точка a называется $\{(ca): f: a\in A,B\}$ точкой перегиба функции f

- $\exists \delta > 0$ такое, что $V_{\delta}(a) \subset (A,B)$ и f имеет разный характер выпуклости на $(a-\delta,a]$ и $[a,a+\delta)$;
- f непрерывна в точке a;
- $\exists f'(a) \in \overline{\mathbb{R}}.$

32

Пусть $f:\langle A,B\rangle \to \mathbb{R}, a\in (A,B), f$ дважды дифференцируема на a. Если прегиба ввляется точкой перегиба f то прегиба f''(a)=0.

Note 19

aca76c8bcbef4e38ad13dd619d48d19d

Является ли нулевая вторая производная достаточным условием перегиба?

Нет, это только необходимое условие.

Note 20

c3615f4ec8d84748bde8c518c9e98375

Пусть (св. $f:\langle A,B\rangle\to\mathbb{R}, a\in(A,B), f$ непрерывна в точке a и имеет в ней производную из $\overline{\mathbb{R}}$.) Тогда если (св. $\exists \delta>0$ такое, что f дважды дифференцируема на $\dot{V}_{\delta}(a)$ и

- либо $\operatorname{sgn} f''(x) = \operatorname{sgn}(a-x) \quad \forall x \in \dot{V}_{\delta}(a),$
- либо $\operatorname{sgn} f''(x) = \operatorname{sgn}(x-a) \quad \forall x \in \dot{V}_\delta(a),$)) то ([c2::a точка перегиба f.))

Семинар 03.03.22

Note 1

55ehf6da8c1489f84fdaeea82dcc793

$$\int_{\mathbb{R}^2} \{ (\operatorname{c2::} \ln x) \} \, dx = \{ (\operatorname{c1::} x \ln x - x) \} + C$$

Note 2

310668af95114f9fbe87673be333fec8

$$\int \exp \frac{1}{\sin x} \mathrm{d}x = \ker \ln \left| \tan \frac{x}{2} \right| \log + C$$

Note 3

898276fe3ef943c49921748d594000c8

$$\int \exp \frac{1}{\cos x} \operatorname{d} x = \det \ln \left| \frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right| \operatorname{d} x + C$$

Note 4

ce3022e62a4f4a6ea2d13195a9f94d31

$$\int_{\mathbb{R}^2} \{ \log \left| \frac{1}{x^2 + a^2} \right| dx = \{ \log \left| \frac{1}{a} \arctan \frac{x}{a} \right| \} + C \quad \left(\{ \log a \neq 0 \} \right)$$

Note 5

8661888336db411a89fed337ad926a76

$$\int \operatorname{dict} \frac{A}{x+a} dx = \operatorname{dict} A \ln |x+a| + C$$

Note 6

2cd6c699811f4760be34715a24b0081f

$$\int_{\mathbb{R}^n} \left\{ \left| \cos \frac{1}{nx + a} \right| \right\} dx = \left\{ \left| \sin \frac{1}{n} \ln \left| x + \frac{a}{n} \right| \right\} \right\} + C \quad \left(\left\{ \left| \cos n \right| \neq 0 \right\} \right)$$

Note 7

b7b778e748574ee8b52225ae5669cbe6

$$\int_{\mathbb{R}^{2n}}\frac{A}{(x+a)^{k}}\mathrm{d}x=\mathrm{deg}(1-\frac{A}{(1-k)(x+a)^{k-1}}\mathrm{d}x+C\quad\left(\mathrm{deg}(k\neq1\mathrm{d}x)\right)$$

$$\int_{\text{(Col.:}} \frac{Mx+N}{x^2+px+q} dx = \\ \frac{M}{2} \ln \left| x^2+px+q \right| + \frac{2N-pM}{2a} \arctan \frac{2x+p}{2a} + C$$

где
$$a^2:=\{(c3): rac{4q-p^2}{4}\}\}, \quad \{(c5): p^2-4q<0.\}\}$$

Note 9

c7fcc3d1ab9443d2855e310bfb0beee8

$$\int_{\mathbb{R}^{2}} \frac{Mx+N}{(x^{2}+px+q)^{k}} dx = \int_{\mathbb{R}^{2}} \frac{N-M\frac{p}{2}}{(t^{2}+a^{2})^{k}} dt + \det \int \frac{Mt}{(t^{2}+a^{2})^{k}} dt + C,$$

где
$$\{(c4::t)\} := \{(c2::x+rac{p}{2},)\}$$
 $\{(c4::a^2)\} := \{(c2::rac{4q-p^2}{4})\}$, $\{(c5::p^2-4q<0.$

Note 10

a3d0cc7201b74c4c9fab9590e7a6c0b2

$$\begin{split} I_k =&: \int_{\mathbb{R}^{d+1}} \frac{1}{(t^2 + a^2)^k} \mathrm{d}t \quad (\mathrm{des}(k > 1, a \neq 0)) \\ I_k =&\; \mathrm{des}(\frac{1}{2(k-1)a^2}) \cdot \left(\mathrm{des}(2k-3)I_{k-1}) + \mathrm{des}(\frac{t}{(t^2 + a^2)^{k-1}}) \right) \end{split}$$

Note 11

972h3ech92a94f62h12e46795945593d

$$\int \exp \frac{Mt}{(t^2+a^2)^k} \, \mathrm{d}t = \det \frac{M}{2(1-k)(t^2+a^2)^{k-1}} + C$$

Лекция 07.03.22

Note 1

8d4e84ad6e1a4cdc91020e2f61878f24

Пусть (каза $f:\langle A,B\rangle \to \mathbb{R}$.) (каза Функции $f:\langle A,B\rangle \to \mathbb{R}$) наызвается (казапервообразной функции f.)) если (казаF дифференцируема на $\langle A,B\rangle$ и

$$F'(x) = f(x) \quad \forall x \in \langle A, B \rangle.$$

Note 2

5/36ab0b/6af/88ab5fa6a2353bd3616

Note 3

ec64c5e7734140f888511699374deaec

Пусть (c4-
$$f,F,G:\langle A,B
angle
ightarrow \mathbb{R},F\in\mathscr{P}_f(\langle A,B
angle)$$
.)) Тогда
$$\mathrm{Res}_G\in\mathscr{P}_f(\langle A,B
angle)$$
))(c3-: \iff)(c1-3 $c\in\mathbb{R}$ $G(x)=F(x)+c$.))

Note 4

e9bbf7b29a8d40b48aad130674b03cc9

Пусть
$$f,F,G:\langle A,B\rangle\to\mathbb{R},F\in\mathscr{P}_f(\langle A,B\rangle).$$
 Тогда
$$G\in\mathscr{P}_f(\langle A,B\rangle)\implies \exists c\in\mathbb{R}\quad G(x)=F(x)+c.$$

В чем основная идея доказательства?

$$(F(x)-G(x))'\equiv 0$$
 на $\langle A,B
angle \implies F(x)-G(x)$ постоянна на $\langle A,B
angle .$

Note 5

64bcacf18cb94a4e9b96e551eff15e5b

Пусть
$$f,F,G:\langle A,B\rangle \to \mathbb{R}, F\in \mathscr{P}_f(\langle A,B\rangle)$$
. Тогда
$$G\in \mathscr{P}_f(\langle A,B\rangle) \iff \exists c\in \mathbb{R} \quad G(x)=F(x)+c.$$

В чем основная идея доказательства?

Тривиально следует из определения первообразной.

Note 6

h196h146568446a2h31a62a77heddd45

Пусть ((c3) $f:\langle A,B \rangle o \mathbb{R}, \quad F \in \mathscr{P}_f(\langle A,B \rangle)$.)) ((c1) Множество функций

 $\{F(x) + c \mid c \in \mathbb{R}\}\$

называется (са неопределённым интегралом f на $\langle A,B\rangle$.)

Note 7

98516b869bc740b9bacfcc5244a89cb0

Пусть (63:: $f:\langle A,B\rangle \to \mathbb{R}$.)) (61::Неопределённый интеграл функции f на $\langle A,B\rangle$)) обозначается (62::

$$\int f(x) dx.$$

Note 8

7581f732c1c44de4bc99eae39e01f4ea

Корректна ли запись

$$\int f(x) \, dx = F(x) + C \quad ?$$

Строго говоря нет, поскольку формально интеграл является множеством, а не функцией, но такая запись удобна на практике.

Note 9

ad021cd0f9bd4d9ca316d3574a3b67a4

Пусть $f: \langle A, B \rangle \to \mathbb{R}$ и f имеет первообразную на $\langle A, B \rangle$.

$$\left(\int f(x)\ dx\right)' \stackrel{\text{def}}{=} \{\{\text{clif}(x).\}\}$$

Note 10

a2f17fea47484277b1a9d9349fbea7f

Пусть $f,g:\langle A,B\rangle \to \mathbb{R}, \quad F\in \mathscr{P}_f(\langle A,B\rangle), G\in \mathscr{P}_g(\langle A,B\rangle).$ $\int f(x)\ dx + \int g(x)\ dx \stackrel{\mathrm{def}}{=} \mathrm{def}\left\{F(x) + H(x) + C \mid C\in \mathbb{R}\right\}.$

Пусть $f:\langle A,B\rangle \to \mathbb{R}$ и f имеет первообразную на $\langle A,B\rangle$, $\lambda\in\mathbb{R}.$

$$\lambda \int f(x) \ dx \stackrel{ ext{def}}{=} \{ \langle a \rangle \{ \lambda F(x) + C \mid C \in \mathbb{R} \} . \}$$

Note 12

3fb6e723afb54981be16c06cf2bfb210

Из (кантеоремы Дарбу), следует, что если (казаf имеет первообразную на промежутке $\langle A,B \rangle$,)) то (казаf не имеет скачков на $\langle A,B \rangle$))

Note 13

c586c7317d247a3be4f7b50373a0d4

Является ли непрерывность функции f на промежутке необходимым условием для существования у неё первообразной?

Нет, поскольку f может иметь точки разрыва второго рода.

Note 14

ca 1243 ec 222 b 444 0903 a 1f 5a 22a 53b 16

«Достаточное условие существования первообразной»

 $\{\{c\}\}$ Если f непрерывна на $\langle A,B \rangle$, то f имеет первообразную на $\langle A,B \rangle$,

Лекция 11.03.22

Note 1

8d01db3371424aba05a1002ffa2ad4da

Пусть (сан $f:E\subset\mathbb{R}\to\mathbb{R}$) (сан Функция $F:E\to\mathbb{R}$) называется (сан первообразной f на множестве E,) если (сан F дифференцируема на E и F'(x)=f(x) для любого $x\in E$.)

Note 2

36222511f224d049fc0a1fc0c465aa

Интеграл $\int f(x)dx$ называется первообразную, если первообразную,

Note 3

937d08196fed4fea9d424dfd802f1c8

Пусть $f,g:\langle A,B\rangle\to\mathbb{R}$ имеют на $\langle A,B\rangle$ первообразную. Тогда для любых $\alpha,\beta\in\mathbb{R}\setminus\{0\}$

$$\int \left(\alpha f(x) + \beta g(x)\right) \ dx = \operatorname{def} \alpha \int f(x) \ dx + \beta \int g(x) \ dx.$$

Note 4

2f7dd89b9a244dacbf41650571c4f13c

Как доказать свойство линейности неопределённого интеграла?

По определению интеграла и первообразной.

Note 5

26b34c9a101f488aaed5ddee4ddd43d

«««з:: Теорема о замене переменной в неопределённом интеграле»

Пусть $\{(c2:f:\langle A,B\rangle\to\mathbb{R},\,F\in\mathscr{P}_f(\langle A,B\rangle),\,\varphi:\langle C,D\rangle\to\langle A,B\rangle$ и φ дифференцируема на $\langle C,D\rangle$.) Тогда $\{(c1:g)\in A,B\}$

$$\int f(\varphi(x)) \cdot \varphi'(x) \, dx = F(\varphi(x)) + C.$$

}}

Как доказать теорему о замене переменной в неопределённом интеграле?

По определению интеграла и первообразной.

Note 7

cf45cd81236549efb89f81fcce13349f

Пусть (са $f:\langle A,B\rangle \to \mathbb{R},\ \varphi:\langle C,D\rangle \to \langle A,B\rangle$ и φ дифференцируема на $\langle A,B\rangle$ и обратима.) Тогда если (ст G — первообразная функции $(f\circ\varphi)\cdot\varphi'$,) то

$$f(x) = \int f(x) \ dx = f(x) \ dx + C.$$

Note 8

f1d541a0c135409c8aef89920ad254e8

««сз::Формула интегрирования по частяму»

Пусть ([c2:: $f,g\in C^1$ ($\langle A,B
angle$).)] Тогда ([c1::

$$\int f(x)g'(x) dx = f(x)g(x) - \int g(x)f'(x) dx.$$

Note 9

e2df459e1699495f980cdddacc633f6f

В чем основная идея доказательства основной формулы интегрирования по частям?

$$(uv)' = u'v + uv' \implies uv = \int vu' dx + \int uv' dx.$$

Лекция 18.03.22

Note 1

ae4062806eca4ddd9b9f4afa5197e8e5

Note 2

e8574dd4be844dd3a30f41aa822525cb

$$\{ \{ \mathrm{c2::}[a:b] \} \stackrel{\mathrm{def}}{=} \{ \{ \mathrm{c1::}[a,b] \cap \mathbb{Z}. \} \}$$

Note 3

c4e15a9924f5453cbaa5673cf84f62f5

Пусть $\{can}[a,b]$ – невырожденный отрезок. $\}$ $\{can}$ Набор точек

$$\{x_k\}_{k=0}^n: \quad a = x_0 < \dots < x_n = b.$$

 $_{
m B}$ называется {{c2::}pазбиением отрезка [a,b].}

Note 4

e301682aa933430591e748e6973a1843

Пусть [a,b] — невырожденный отрезок. (с.::Множество всех разбиений отрезка [a,b]) обозначается (с2::T[a,b].)

Note 5

6f5e8266e0b44eeebba980ac5d8c6112

Пусть $\{x_k\}_{k=0}^n$ — некоторое разбиение отрезка [a,b]. Тогда

$$\{\{c2::\Delta x_k\}\} \stackrel{\text{def}}{=} \{\{c1::x_{k+1} - x_k.\}\}$$

Note 6

22701dee44544e9092fe48e0e077273a

Пусть $au = \{x_k\}_{k=0}^n$ — некоторое разбиение отрезка [a,b]. (кличина

$$\max \{\Delta x_k\}$$

 $\}$ называется {{e2::pангом разбиения au.}}

Note 7

7c1e8de0a92a44b897b789c2e84da964

Пусть $au=\{x_k\}_{k=0}^n$ — некоторое разбиение отрезка [a,b]. (казабиения au) обозначается (каза $\lambda_{ au}$.))

Пусть $au=\{x_k\}_{k=0}^n$ — некоторое разбиение отрезка [a,b]. ((c)) Набор точек $\{\xi_k\}_{k=0}^{n-1}$ таких, что $\xi_k\in[x_k,x_{k+1}]$)) называется ((с2)) оснащением разбиения au.))

Note 9

5e83015672844d94a0a89355f7af372e

Пусть $\{(a,b],\xi$ — некоторое разбиение отрезка $[a,b],\xi$ — оснащение разбиения τ . $\}$ Тогда $\{(a,b],\}$ называется $\{(a,b],\}$ называется $\{(a,b],\}$ и называется $\{(a,b],\}$

Note 10

974eeb7d70c24d318e71abd3d9a95f3f

Пусть [a,b] — невырожденный отрезок. (сы:Множество всех оснащённых разбиений отрезка [a,b]) обозначается (са:T'[a,b].

Note 11

ef2c57fbd464435c9896c8e8f24db8b5

Пусть (каз $f:[a,b] \to \mathbb{R}, \ \ (au,\xi)=(\{x_k\}\,,\{\xi_k\})$ — оснащённое разбиение [a,b].) (каз Сумма

$$\sum_{k=0}^{n-1} f(\xi_k) \Delta x_k$$

 $_{\|}$ называется $_{\|cz\|}$ интегральной суммой функции f, отвечающей оснащённому разбиению $(\tau,\xi)._{\|}$

Note 12

f4adab8132d7489fb5594271853a86c7

Интегральные суммы так же называют (ст. суммами Римана.

Note 13

c14685fee7ff492d9e5452c059f94fb

$$\sigma_{\tau}(f,\xi)$$
.

}}

Пусть $\{(ca):f:[a,b]\to\mathbb{R},\ I\in\mathbb{R}.\}\}$ Число I называют $\{(ca):p$ пределом интегральных сумм функции f при ранге разбиения, стремящемся к нулю, $\{(ca):f:a,b\}$ если $\{(ca):f:a,b\}$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall (\tau, \xi) : \lambda_{\tau} < \delta \quad |\sigma_{\tau}(f, \xi) - I| < \varepsilon,$$

где (au, ξ) — оснащённое разбиение отрезка [a,b].

(определение в терминах (ε, δ))

Note 15

ed766ec774814eba83502c9dd75a2e49

 $\{\{can}$ Предел интегральных сумм функции f при ранге разбиения стремящемся к нулю $\{can}$ обозначается $\{\{can}\}$

$$\lim_{\lambda_{\tau}\to 0}\sigma_{\tau}(f,\xi)\quad \text{или}\quad \lim_{\lambda\to 0}\sigma.$$

Note 16

46f5a6ad385a4386813c6f707bd08927

Пусть $f:[a,b] \to \mathbb{R}, \ I \in \mathbb{R}$. Число I называют пределом интегральных сумм функции f при ранге разбиения, стремящемся к нулю, если польдля любой последовательности оснащённых разбиений $\{(\tau_j,\xi_j)\}_{j=1}^\infty$ такой, что $\lambda_{\tau_j} \underset{j \to \infty}{\longrightarrow} 0$,

$$\sigma_{\tau_j}(f,\xi_j) \xrightarrow[j\to\infty]{} I.$$

(определение в терминах последовательностей)

Note 1

e25a48aad5c048c3b2d3b7e2d9af0b98

Алгоритм взятия интеграла вида

$$\int \frac{Mx + N}{\sqrt{ax^2 + bx + c}} \, dx.$$

Выделить полный квадрат под радикалом и почленно поделить числитель на знаменатель.

Note 2

79c04c292b2a4aeb8fb583ccc7916c2a

Алгоритм взятия интеграла вида

$$\int (Mx+N)\left(\sqrt{ax^2+bx+c}\right) dx.$$

Выделить полный квадрат под радикалом и затем внести его в скобки.

Note 3

30fa84062ed64fdabc405fa09e0c6148

Алгоритм взятия интеграла вида

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} \, dx, \quad \text{где } P_n \in \mathbb{R}[x]_n.$$

Представить ответ в виде

$$Q_{n-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{1}{\sqrt{ax^2 + bx + c}} dx,$$

продифференцировать левую и правую часть равенства и найти неизвестные коэффициенты в $Q_{n-1}(x)$ и λ из полученного соотношения.

Note 4

15f51247a7d04b4fb445ea745f418ca4

$$\int \{ \left| \frac{1}{\sqrt{x^2 + px + q}} \right| dx = \left| \left| \frac{1}{2} + \sqrt{x^2 + px + q} \right| \right| + C.$$

$$\int_{\mathbb{R}^2} \frac{1}{\sqrt{-x^2+px+q}} \| \, dx = \lim \arcsin \frac{2x-p}{2a} \| + C,$$
 где $a:=(2\pi\sqrt{\frac{4q+p^2}{4}})$.

Лекция 21.03.22

Note 1

679c0a0615d44749bc685cda9a47b233

Пусть ((c3): $f:[a,b] \to \mathbb{R}$.)) f называется ((c2: интегрируемой по Риману на [a,b],)) если ((c1): существует $\lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f,\xi)$.))

Note 2

d6b62c8f08a842b2829447ab45a27e8c

Пусть $\{[c3::f:[a,b]
ightarrow \mathbb{R}$ интегрируема по Риману на [a,b]. $\}$ Тогда $\{[c2::$

$$\lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f, \xi)$$

 $\|$ называется $\| (a) \|$ определённым интегралом Римана от функции f по отрезку [a,b].

Note 3

7dc12d32c0ce407f87be1d7c51d0b1b3

 $\int_a^b f$ или $\int_a^b f(x) dx$.

}}

Note 4

e5e082ef6db649858cc60a662cb312b

В выражении

$$\int_{a}^{b} f$$

 $\{\{c2::$ числа $a,b\}\}$ называют $\{\{c1::$ пределами интегрирования. $\}\}$

Note 5

44bd096f622b475f908006fcf8e8842

В выражении

$$\int_{a}^{b} f$$

 $\{\{cz: функцию \ f\}\}$ называют $\{\{ct: подынтегральной функцией.\}\}$

Пусть [a,b] — невырожденный отрезок. ((с):Множество всех функций интегрируемых по Риману на [a,b]) обозначается ((с2:: $\mathcal{R}[a,b]$.))

Note 7

1294b085870d432eae003c1159bbcb60

Пусть (казі $f:[a,b] o\mathbb{R},\ au=\{x_k\}_{k=0}^n$ — разбиение отрезка [a,b].)) Тогда (казісумма

$$\sum_{k=0}^{n-1} M_k \Delta x_k$$
, где $M_k := \sup f([x_k, x_{k+1}])$,

 \parallel называется \parallel верхней интегральной суммой Дарбу, отвечающей разбиению au .

Note 8

8807ccc652554a53aa9f97a7ee09ad9

Пусть $f:[a,b] \to \mathbb{R}, au \in T[a,b]$. (ст.: Верхняя интегральная сумма Дарбу функции f, отвечающая разбиению τ ,)) обозначается (сс.:

$$S_{\tau}(f)$$
.

}}

Note 9

220907a5d6e248b78f987af0d058e64c

Пусть (каз: $f:[a,b] \to \mathbb{R}, au = \{x_k\}_{k=0}^n$ — разбиение отрезка [a,b].)) Тогда (казесумма

$$\sum_{k=0}^{n-1} m_k \Delta x_k, \quad$$
 где $m_k := \inf f([x_k, x_{k+1}]),$

 $_{
m II}$ называется $_{
m II}$ называется $_{
m III}$ называется $_{
m IIII}$ называется $_{
m III}$ называетс

Пусть $f:[a,b] \to \mathbb{R}, au \in T[a,b]$. (ст.:Нижняя интегральная сумма Дарбу функции f, отвечающая разбиению τ ,)) обозначается ((с2))

$$s_{\tau}(f)$$
.

}}

Note 11

189f37e44f0a45048e5cb16973582e14

Пусть $\{(a,b] \to \mathbb{R}, \tau$ — разбиение [a,b].}} Тогда $\{(a,b] = T$ ограничена сверху $\}$ $\{(a,b) = T$ огда и только тогда, когда $\}$ $\{(a,b) = T$ конечна.

Note 12

083512018d304036a80002a9df45af7

Пусть $\{(a,b] \to \mathbb{R}, \tau$ — разбиение [a,b].}} Тогда $\{(a,b] \in T$ ограничена снизу $\{(a,b] \in T$ огда и только тогда, когда $\{(a,b] \in T\}$ конечна.

Note 13

1c8af1c02f864877bddd4971a256a30e

Пусть $f:[a,b]\to\mathbb{R}, au$ — разбиение [a,b]. Как $S_{ au}(f)$ выражается через суммы Римана?

$$S_{\tau}(f) = \sup \{ \sigma_{\tau}(f, \xi) \mid \forall \xi \}$$

Note 14

7958d85410954f6280755a33f7hff6fh

Пусть $f:[a,b]\to\mathbb{R},\, \tau$ — разбиение [a,b]. Как $s_{\tau}(f)$ выражается через суммы Римана?

$$s_{\tau}(f) = \inf \{ \sigma_{\tau}(f, \xi) \mid \forall \xi \}$$

Note 15

53ffcba153934fda879e5241f8e85387

Пусть $f:[a,b] \to \mathbb{R},$ τ — разбиение [a,b]. Как, в общих чертах, доказать, что $S_{\tau}(f)=\sup{\{\sigma_{\tau}(f,\xi)\mid \forall \xi\}}?$

Представить
$$\{\sigma_{\tau}(f,\xi)\mid \forall \xi\}$$
 как сумму множеств
$$\Delta x_k\cdot f([x_k,x_{k+1}]).$$

Note 16

153749996f00487b9b845f66318e9f7c

Пусть
$$\{(c^2):f:[a,b] o\mathbb{R},\ au, ilde{ au}-$$
 два разбиения $[a,b],\ au\subset ilde{ au}.$ $\}$ Тогда $\{(c^1):S_{ au}(f)\leqslant S_{ au}(f),\ s_{ ilde{ au}}(f)\geqslant s_{ au}(f).$

33

Лекция 25.03.22

Note 1

a23a2495841f4894a31b489127b41054

Пусть $f:[a,b]\to\mathbb{R}$. Как связаны $s_{\tau_1}(f)$ и $S_{\tau_2}(f)$ для произвольных разбиений τ_1,τ_2 отрезка [a,b]?

$$s_{\tau_1}(f) \leqslant S_{\tau_2}(f)$$

Note 2

84c295b304a64dd3a80a791f82958c91

Верно ли, что каждая нижняя сумма Дарбу функции f не превосходит каждой верхней суммы Дарбу этой же функции даже для разных разбиений отрезка?

Да.
$$s_{ au_1}(f)\leqslant S_{ au_2}(f)$$
 для любых au_1, au_2

Note 3

b7fac4e6a3324160adefc29c06d73479

Каждая нижняя сумма Дарбу не превосходит каждой верхней суммы Дарбу. В чем основная идея доказательства?

Для $\tau_1 = \tau_2$ утверждение тривиально. В ином случае рассмотреть суммы Дарбу для разбиения $\tau = \tau_1 \cup \tau_2$.

Note 4

be394bd9e8e2456284b7c108e7e973f8

Существует ли ограниченная на отрезке функция, неинтегрируемая на нём?

Да. Например, функция Дирихле.

Note 5

3b28a2ca07d44ea38f8d2df0ce9f396f

Существует ли интегрируемая на отрезке функция, неограниченная на нём?

Нет. Любая интегрируемая на отрезке функция ограничена на нём

Note 6

c6120328fd3e40a48f6d7e69fce29c9d

Как показать, что любая интегрируемая на отрезке функция ограничена на нём?

Если допустить, что f не ограниченна, то $\forall \tau$ имеем $S_{\tau}(f)=\sup\left\{\sigma_{\tau}(f,\xi)\right\}=+\infty$, а значит

$$\nexists \lim_{\lambda_{\tau} \to 0} \sigma_{\tau}(f, \xi).$$

Note 7

e5921a1f2caa4ed583198b136ce6b34c

Пусть $f:[a,b] o\mathbb{R}$. Величина ({c1::

$$\inf \left\{ S_{\tau}(f) \mid \forall \tau \right\}$$

 $_{
m II}$ называется $_{
m II}$ верхним интегралом Дарбу функции $f._{
m II}$

Note 8

fcfb0f775cac40c9a18563576c086827

Пусть $f:[a,b] \to \mathbb{R}$. (ст. Верхний интеграл Дарбу функции f) обычно обозначатся (сег. I^* .)

Note 9

304c0f4c87fe44cb922eeaf557997d02

Пусть $f:[a,b] o\mathbb{R}$. Величина ({c1::

$$\sup \left\{ s_{\tau}(f) \mid \forall \tau \right\}$$

 \parallel называется \parallel санижним интегралом Дарбу функции f.

Note 10

bd7f75d9e429454599a993144985b2dc

Пусть $f:[a,b] \to \mathbb{R}$. ((с.::Нижний интеграл Дарбу функции f)) обычно обозначатся ((с.:: I_* .))

«({сз::Критерий)} {(с2::интегрируемости функции)}»

Пусть $\{(c4:f:[a,b] o \mathbb{R}.)\}$ Тогда $\{(c2:f\in\mathcal{R}\:[a,b])\}$ $\{(c3:T)$ огда и только тогда, когда $\{(c1:a,b]\}$

$$S_{\tau}(f) - s_{\tau}(f) \xrightarrow{\lambda_t \to 0} 0.$$

Note 12

68b782b8c09040dfa994ede932b748b

$$\begin{array}{c} \text{(C2::} S_{\tau}(f) - s_{\tau}(f) \underset{\lambda_{\tau} \to 0}{\longrightarrow} 0 \\ \\ \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \tau : \lambda_{\tau} < \delta \\ \\ S_{\tau}(f) - s_{\tau}(f) < \varepsilon. \end{array}$$

(в терминах ε , δ)

Note 13

6a94745f7ac74ef7a5be1b0a6128e303

В чем ключевая идея доказательства критерия интегрируемости функции (необходимость)?

По определению sup и inf

$$I - \varepsilon \leqslant s_{\tau}(f), \quad S_{\tau}(f) \leqslant I + \varepsilon.$$

Note 14

53f49c34063149d892ad1eb1015abebd

В чем ключевая идея доказательства критерия интегрируемости функции (достаточность)?

$$s_{\tau}(f) \leqslant I_* \leqslant I^* \leqslant S_{\tau}(f),$$

 $s_{\tau}(f) \leqslant \sigma_{\tau}(f, \xi) \leqslant S_{\tau}(f).$

для любого оснащённого разбиения (au, ξ) отрезка [a, b].

Пусть $f:[a,b] \to \mathbb{R}$, $f \in \mathcal{R}[a,b]$. Как соотносятся I^* , I_* и $\int_a^b f?$

$$I_* = I^* = \int_a^b f.$$

Note 16

1e7ec80a8e8f4caf87b70493394d837;

Пусть $f:[a,b]\to\mathbb{R}$. Как для произвольного разбиения τ соотносятся $s_{\tau}(f)$, $S_{\tau}(f)$ и $\int_a^b f?$

$$s_{\tau}(f) \leqslant \int_{a}^{b} f \leqslant S_{\tau}(f).$$

Note 17

c1ca9a97a9a948e685e22801cc7e1ee

Если $f \in \mathcal{R}[a,b]$, то

$$\lim_{\lambda_{ au} o 0} S_{ au}(f) = \{\{cander \int_a^b f.\}\}$$

Note 18

6a890ec9b5384ed2944133d968407712

Как показать, что

$$f \in \mathcal{R}[a,b] \implies \lim_{\lambda_{\tau} \to 0} S_{\tau}(f) = \int_{a}^{b} f$$
?

Тривиально следует из критерия интегрируемости и неравенства

$$s_{\tau}(f) \leqslant \int_{a}^{b} f \leqslant S_{\tau}(f).$$

Если $f \in \mathcal{R}[a,b]$, то

$$\lim_{\lambda_ au o 0} s_ au(f) = \{\{c: \int_a^b f.\}\}$$

Note 20

f274e2ec8d6648a383184e816782dedf

Пусть {{c3::}} $f:D\subset\mathbb{R} o\mathbb{R}$.}} {{c1::Величина

$$\sup \left\{ f(x) - f(\hat{x}) \mid x, \hat{x} \in D \right\}$$

 \mathbb{R} называется (сажолебанием функции f на множестве D.)

Note 21

73304f993f94da7ab2f56d20b074752

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}$. (кл.:Колебание функции f на множестве D)) обозначается (колебание функции f).))

Note 22

0a7ceb7d5f804209a506b41349ce11c9

Пусть $f:D\subset\mathbb{R}\to\mathbb{R}$. Тогда

$$ext{ (C2.7} \omega(f) ext{ (C1.7} \sup f(D) - \inf f(D). ext{ (B TEPMUHAX SUP } f, \inf f) }$$

Note 23

ec97e108f2394602934c87c2f28f2a39

Пусть
$$f:[a,b] o\mathbb{R},\; au=\{x_k\}_{k=0}^n$$
 — разбиение $[a,b]$. Тогда
$$\ker\omega_k(f)=\ker\omega_k(f)$$

Note 24

649783b3a0c14571bdbbb8caba0d07a3

Пусть
$$f:[a,b] o\mathbb{R},\; au=\{x_k\}_{k=0}^n$$
 — разбиение $[a,b]$. Тогда
$$S_{ au}(f)-s_{ au}(f)=\sup_{k=0}^{n-1}\omega_k(f)\Delta x_k.$$

(в терминах $\omega_k(f)$)

Пусть $f:[a,b] \to \mathbb{R}$. Тогда

$$\{\{c2::\lim_{\lambda_{ au} o 0}S_{ au}(f)\}\}=\{\{c1::I^*\}\}.$$

(в терминах предела при $\lambda_{\, au}\,
ightarrow\,0)$

Note 26

79915436f5b44d41a053bf8c0bf9e3ac

Пусть $f:[a,b] o \mathbb{R}$. Тогда

$$\{\{c2:: \lim_{\lambda_{ au} o 0} s_{ au}(f)\}\} = \{\{c1:: I_*\}\}.$$

(в терминах предела при $\lambda_{\, au}\,
ightarrow\,0)$

Note 27

180307492ee647ac8b1bb30c91dcfb0d

«сз::Критерий» «с4::Дарбу» «с2::интегрируемости функции

Пусть $f:[a,b] o \mathbb{R}$. Тогда

 $\{\{c2::f\in\mathcal{R}\ [a,b]\}\}$ $\{\{c3::f \ orpahuчeha\ ha\ [a,b]\ и\ I_*=I^*.\}\}$

Note 28

4fec9ca16e3d4d6a8ee9ac0f388eb31c

 $\{ \{c3:: Критерий\} \} \{ \{c4:: Римана\} \} \} \{ \{c2:: интегрируемости функции \} \}$

Пусть $f:[a,b] o \mathbb{R}$. Тогда

$$\text{(c2:} f \in \mathcal{R}\left[a,b\right]\text{)} \text{ (c3::} \iff \text{)} \text{ (c1::} \forall \varepsilon > 0 \quad \exists \tau \quad S_{\tau}(f) - s_{\tau}(f) < \varepsilon.\text{)}$$

Note 29

8ba2a0bdc9754111b4f3eae4493a895d

Существует ли непрерывная на отрезке функция, неинтегрируемая на этом отрезке?

Нет. Любая непрерывная на отрезке функция интегрируема на этом отрезке.

Note 30

da9a4e99c01a42a4a8c5bccf8e3d24f7

Как, в общих чертах, доказать, что любая непрерывная на отрезке функция интегрируема на нём?

Из теоремы Кантора получить равномерную непрерывность и далее по теореме Вейерштрасса оценить для $\lambda_{ au} < \delta$ величину $\omega(f|_{[x_k,x_{k+1}]})$.

Note 31

cb2eb65d72554cea90a47503d1d97474

Существует ли монотонная на отрезке функция, неинтегрируемая на этом отрезке?

Heт. Любая монотонная на отрезке функция интегрируема на этом отрезке.

Note 32

7a4501cbb6414feaaf12589452716ae

Как, в общих чертах, доказать, что любая монотонная на отрезке функция интегрируема на этом отрезке?

Для определённости f \nearrow . Для произвольного ε взять

$$\delta = \frac{\varepsilon}{f(b) - f(a)}.$$

Далее по критерию интегрируемости в терминах колебаний.

Семинар 24.03.22

Note 1

Интегалы вида

$$\int \exp \frac{Mx+N}{(x-\alpha)^k \sqrt{ax^2+bx+c}} \| \, dx$$

берутся с помощью (са::замены

$$t := \frac{1}{x - \alpha}$$
.

Note 2

Интегралы вида ({с2::

$$\int R(x, \sqrt{ax^2 + bx + c}) \, dx,$$

где R — рациональная функция, берутся с помощью «сіл подстановок Эйлера.

Note 3

Каковы условия для применения каждой из подстановок Эйлера?

- 1. a>0; 2. c>0; 3. ax^2+bx+c приводим над $\mathbb R$.

Note 4

f0d585d86f5542a088764032d1d2eef8

Замена переменной в подстановке Эйлера для a>0.

$$\sqrt{ax^2 + bx + c} = \pm x\sqrt{a} \pm t$$

Note 5

leh88f39c10241c1a11c805h799d8ae2

Замена переменной в подстановке Эйлера для c>0.

$$\sqrt{ax^2 + bx + c} = \pm \sqrt{c} \pm xt$$

Note 6

9df1ed5f198d4793bc9ff466bc983224

Замена переменной в подстановке Эйлера для приводимого $ax^2 + bx + c$.

$$\sqrt{ax^2 + bx + c} = \pm t(x - x_1),$$

где x_1 — корень $ax^2 + bx + c$.

Лекция 01.04.22

Note 1

60ff32d5ed7347ae8036518373a5bc61

Пусть $\{(c): f, \tilde{f}: [a,b] \to \mathbb{R}, \ f \in \mathcal{R}[a,b], \ T \subset [a,b], \ |T| < \aleph_0.\}\}$ Если $\{(c): f \in \mathcal{R}[a,b], \ T \in \mathcal{R}[a,b$

$$\forall x \in [a, b] \setminus T \quad f(x) = \tilde{f}(x),$$

}} то {{c2::} $ilde{f} \in \mathcal{R}[a,b]$ и $\int_a^b f = \int_a^b ilde{f}.$ }}

Note 2

30e9c514h2a7470hh6370c764380a14h

Каков первый шаг доказательства того, что изменение значений функции $f \in \mathcal{R}[a,b]$ в конечном числе точек не влияет на интегрируемость?

Показать, что f и \tilde{f} ограничены по модулю некоторыми значениями A и $\tilde{A} \in \mathbb{R}$.

Note 3

9f281cfda3464766a189207f5029d7ed

В чем ключевая идея доказательства того, что изменение значений функции $f \in \mathcal{R}[a,b]$ в конечном числе точек не влияет на интегрируемость?

Разность интегральных сумм f и \tilde{f} ограничена по модулю значением $2m(A+\tilde{A})\lambda_{\tau} \underset{\lambda_{\tau} \to 0}{\longrightarrow} 0.$

Note 4

94c3dcad5bc247568a21704cb1d05f72

Пусть {{c2::}} $f \in \mathcal{R}[a,b]$, $[\alpha,\beta] \subset [a,b]$.}} Тогда {{c1::}}

$$f|_{[\alpha,\beta]} \in \mathcal{R}[\alpha,\beta].$$

Note 5

385f602d08114dd30630000f76dbb7ai

Пусть $f \in \mathcal{R}[a,b]$, $[\alpha,\beta] \subset [a,b]$. Тогда $f|_{[\alpha,\beta]} \in \mathcal{R}[\alpha,\beta]$. В чем ключевая идея доказательства?

Если
$$au_0\in T[lpha,eta], au\in T[a,b], au_0\subset au$$
, то
$$S_{ au_0}-s_{ au_0}\leqslant S_{ au}-s_{ au}.$$

Note 6

e426e669ae545b8ad6d128a5870373e

Пусть (казі $f:[a,b] o \mathbb{R}, c\in (a,b)$.)) Тогда если (казі

$$f|_{[a,c]} \in \mathcal{R}[a,c] \quad \land \quad f|_{[c,b]} \in \mathcal{R}[c,b],$$

)} to {{c2::} $f \in \mathcal{R}[a,b]$.}}

Note 7

c8c134e6d7c442c3a7214585d20c41ac

Пусть $f:[a,b] o \mathbb{R},$ $c \in (a,b)$. Тогда если

$$f|_{[a,c]} \in \mathcal{R}[a,c] \quad \land \quad f|_{[c,b]} \in \mathcal{R}[c,b],$$

то $f \in \mathcal{R}[a,b]$.

В чем ключевая идея доказательства?

$$S_{\tau} - s_{\tau} \leqslant S_{\tau_1} - s_{\tau_1} + S_{\tau_2} - s_{\tau_2} + \omega(f) \cdot \lambda_{\tau},$$

 $\tau \in T[a, b], \quad \tau' = \tau \cup \{c\},$
 $\tau_1 = \tau' \cap [a, c], \quad \tau_2 = \tau' \cap [c, a].$

Note 8

ccba27d6a29c468f8a60fbd0f106fec4

Пусть $\{(a,b] \to \mathbb{R}.\}$ Функция f называется $\{(a,b] \to \mathbb{R}.\}$ непрерывной, $\{(a,b] \to \mathbb{R}.\}$ если $\{(a,b] \to \mathbb{R}.\}$ от или конечно, и все её разрывы суть разрывы первого рода.

Note 9

86f712cafa53498fa3b282915340635

Пусть $f:[a,b] \to \mathbb{R}$. Если f кусочно непрерывна на [a,b], то $\{[a,b], b\}$

Как показать, что кусочно непрерывная функция $f:[a,b] \to \mathbb{R}$ интегрируема на [a,b]?

Показать, что она интегрируема на каждом из непрерывных «кусков».

Note 11

682bfc21e35a489ebc7df5514e1d4690

Пусть $E\subset\mathbb{R}$. Говорят, что педамножество E имеет нулевую меру, если педаля любого $\varepsilon>0$ множество E можно заключить в не более чем счётное объединение интервалов, суммарная длина которых меньше ε .

Note 12

3be97c537ee44236bfc5f8bae48390e3

«((с3::Критерий)) {(с4::Лебега)} {(с2::интегрируемости функции))»

Пусть ((с5): $f:[a,b]\to\mathbb{R}$.)) Тогда ((с2): $f\in\mathcal{R}[a,b]$)) ((с3): тогда и только тогда, когда)) ((с1): f ограничена на [a,b] и множество точек разрыва f имеет нулевую меру.))

Note 13

1b3f6df593ba44b6b9558ee83720dd7e

Пусть $f,g\in\mathcal{R}[a,b], lpha\in\mathbb{R}.$ Тогда

$$\{\{c1:: f+g\}\}, \ \{\{c1:: fg,\}\} \ \{\{c1:: \alpha f\}\}, \ \{\{c1:: |f|\}\} \in \mathcal{R}[a,b].$$

Note 14

275d09f8b4c9445992ecc4f02cd9f6ba

Пусть $f,g \in \mathcal{R}[a,b]$. Тогда

$$\inf_{x \in [a,b]} |g(x)| > 0 \implies \text{ for } \frac{f}{g} \in \mathcal{R}[a,b]. \text{ for$$

Пусть $f, g \in \mathcal{R}[a, b]$. Тогда $f + g \in \mathcal{R}[a, b]$. В чем основная идея доказательства?

Тривиально следует из определения предела интегральных сумм в терминах последовательностей.

Note 16

909d22f843c9421598278c307e29edb5

Пусть $f, g \in \mathcal{R}[a, b]$. Тогда $fg \in \mathcal{R}[a, b]$. В чем основная идея доказательства?

Дать верхнюю оценку для $\omega_k(f\cdot g)$ через $\omega_k(f),\omega_k(g)$ и верхние границы f и g.

Note 17

aad31d4599b94b8f8ee128bfbfec825

Пусть $f \in \mathcal{R}[a,b], \alpha \in \mathbb{R}$. Тогда $\alpha f \in \mathcal{R}[a,b]$. В чем основная идея доказательства?

Частный случай произведения двух функций.

Note 18

76538508e5574126a26e4dbf06fe4160

Пусть $f \in \mathcal{R}[a,b]$. Тогда $|f| \in \mathcal{R}[a,b]$. В чем основная идея доказательства?

$$|f| = f \cdot \operatorname{sgn} f \in \mathcal{R}[a, b].$$

Note 19

dea0bdf999ae4306b554167c63eeb231

Как показать, что sgn интегрируем?

Показать, что sng кусочно непрерывен.

Пусть $f,g\in\mathcal{R}[a,b]$. Тогда

$$\inf_{x \in [a,b]} |g(x)| > 0 \implies \frac{f}{g} \in \mathcal{R}[a,b].$$

В чем основная идея доказательства?

Представить $\frac{f}{g}$ как произведение функций $f \cdot \frac{1}{g} \in \mathcal{R}[a,b].$

Note 21

8dcb53c3642547a5bec77126b490908c

Пусть $f \in \mathcal{R}[a,b]$. Тогда

$$\inf_{x \in [a,b]} |f(x)| > 0 \implies \frac{1}{f} \in \mathcal{R}[a,b].$$

В чем основная идея доказательства?

Оценить $\omega_k(1/g)$ сверху через $\omega_k(g)$ и $\inf_{x\in[a,b]}|f(x)|.$

Лекция 04.04.22

Note 1

40ffb14c933540e0a82a0f491c2ea946

Интегрируема ли функция Дирихле χ на произвольном невырожденном отрезке?

Нет.

Note 2

488460418hc246fe90907796c4dh58he

Пусть [a,b] — невырожденный отрезок, χ — функция Дирихле. Как показать, что $\chi \notin \mathcal{R}[a,b]$?

 $\omega(\chi|_{[lpha,eta]})=1$ для любого отрезка $[lpha,eta]\subset [a,b].$

Note 3

fdad8aea720d4949805e6d411e4d9cdt

Интегрируема ли функция Римана ψ на произвольном промежутке [a,b]?

Да.

Note 4

c7099fd03a894c53b8c80146045e9127

Пусть [a,b] — невырожденный отрезок, ψ — функция Римана.

$$\int_a^b \psi = \{\{\text{c1::} 0.\}\}$$

Note 5

6350173ae50b44d8ac481bc4e58df52a

Пусть [a,b] — невырожденный отрезок, ψ — функция Римана. В чём ключевая идея доказательства того, что $\psi \in \mathcal{R}[a,b]$?

Показать, что множество

$$A = \left\{ \frac{p}{q} \in \mathbb{Q} \cap [a, b] \mid q \leqslant N \right\}$$

конечно.

Пусть [a,b] — невырожденный отрезок, ψ — функция Римана. Как выбирается N в доказательстве того, что $\psi \in \mathcal{R}[a,b]$?

Так, что $\frac{1}{N} < \varepsilon$.

Note 7

e897ef9db02f489f8f78e18c71f5ee40

Пусть [a,b] — невырожденный отрезок, ψ — функция Римана. Как выбирается δ в доказательстве того, что $\psi \in \mathcal{R}[a,b]$?

$$\delta = \frac{\varepsilon}{|A|}.$$

Note 8

aa4eaee1713d444292a6cdb20f5d2bed

Пусть [a,b] — невырожденный отрезок, ψ — функция Римана. Какой критерий интегрируемости используется в доказательстве того, что $\psi \in \mathcal{R}[a,b]$?

Критерий в терминах $S_{\tau} - s_{\tau}$.

Note 9

ac79fc72aeb440e9a666f8dc2433dcc8

Пусть (каза
$$f:[a,b] o\mathbb{R},g:[c,d] o[a,b]$$
.)) Тогда
$$\text{(каза} f\in C[a,b],\ q\in\mathcal{R}[c,d]$$

Note 10

hc11h9f7a4304f74h4hh3118d30cea22

Пусть $\{ \{c3:: a>b, f\in \mathcal{R}[b,a]. \} \}$ Тогда

$$\{\{c2:: \int_{a}^{b} f_{\}}\} \stackrel{\text{def}}{=} \{\{c1:: -\int_{b}^{a} f_{\cdot}\}\}$$

$$\int_a^a f \stackrel{\text{def}}{=} \{\text{(c1::} 0.)\}$$

Note 12

649acec0ca304bd5bc72134401215095

Пусть $f:[a,a] o \mathbb{R}$. Тогда

$$f \in \mathcal{R}[a,a] \iff_{\text{\{c1::}} \top.\}$$

Note 13

cc427e206f4d435889e87acd827bc5b4

Пусть $f \in \mathcal{R}[a,b]$, $c \in (a,b)$. Тогда

$$\{\{c2:: \int_a^b f_i\} = \{\{c1:: \int_a^c f + \int_c^b f_i\}\}$$

Note 14

f57dd9f306a5429bb89c68b128c0e01f

Пусть $f \in \mathcal{R}[a,b], \alpha \in \mathbb{R}$. Тогда

{{c2::
$$\int_a^b lpha f}$$
} = {{c1:: $lpha \int_a^b f.$ }}

Note 15

5aaf74ed1c3e414cb5b7c501e5970206

Пусть $f,g \in \mathcal{R}[a,b]$. Тогда

$$\text{(c2:}\int_a^b (f\pm g)\text{(}) = \text{(c1:}\int_a^b f\pm \int_a^b g.\text{(})$$

Note 16

d43171cbe636478098887433ff64ea61

Откуда следует линейность интеграла Римана?

Из определения в терминах последовательностей.

Note 17

8db1f43273d041d6b3fbc674270d4f5b

Пусть $f \in \mathcal{R}[a,b]$. Тогда

$$\{\{c2:: f\geqslant 0\}\} \implies \{\{c1:: \int_a^b f\geqslant 0.\}\}$$

Note 18

9778c1f4a58e4df9a9a25064935a647f

Пусть $f,g \in \mathcal{R}[a,b]$. Тогда

$$\{\{c2::f\leqslant g\}\}\implies \{\{c1::\int_a^b f\leqslant \int_a^b g.\}\}$$

Note 19

9ba16cbdf8fb4b65bd032cb56c483a1b

Пусть $f \in \mathcal{R}[a,b]$. Тогда

$$\{\{c2:: \left| \int_a^b f \right| \}\}\{\{c1:: \leq \int_a^b |f|.\}\}$$

Note 20

275d3bae3cfa48e9882d2d2a90ed21b8

Пусть $f \in \mathcal{R}[a,b]$. Тогда

$$\{|c^2|:|f|\leqslant M\in\mathbb{R}\}\implies \{|c^2|:|\int_a^bf\leqslant M(b-a).\}\}$$

Note 21

84dfee5723b34bec8f05c42879c3e85f

Пусть $f \in C[a,b]$. Тогда

$$\langle \{ (c2::f\geqslant 0) \} \wedge \int_a^b f = 0 \implies \langle \{ (c1::f\equiv 0.) \} \rangle$$

Пусть $f \in C[a,b]$. Тогда

$$f \geqslant 0 \land \int_a^b f = 0 \implies f \equiv 0.$$

В чем основная идея доказательства?

От противного; допустить, что $\exists x_0: f(x_0) > 0$ и использовать то, что $\exists \delta: f|_{V_\delta(x_0)} > \frac{f(x_0)}{2}$.

Note 23

03b2fb7149444b2db71b150b49f267a

«{{с4::Теорема Барроу}}»

Пусть (сва $f \in \mathcal{R}[a,b]$ непрерывна в точке $x_0 \in [a,b]$,))

$$arphi(x) = \{ \{ ext{c2::} \int_a^x f. \} \}$$

Тогда (коле φ дифференцируема в точке x_0 и $\varphi'(x_0) = f(x_0)$.))

Note 24

255bf6318be43ee834d6071ed740c89

В чем основная идея доказательстве теоремы Барроу?

Используя непрерывность f представить f(x) как сумму $f(x_0) + \Delta x$ и отсюда оценить $\varphi(x_0 + h) - \varphi(x_0)$.

Note 25

d26fa11d0h1e4d83hh4f4h224h9359a4

Почему в доказательстве теоремы Барроу

$$\Delta x \xrightarrow[x \to x_0]{} 0?$$

$$\Delta x = f(x) - f(x_0) \to 0.$$

В доказательстве теоремы Барроу

$$arphi(x_0-h)-arphi(x_0)=\sup_{x_0}\int_{x_0}^{x_0+h}f(x)\ dx.$$

Note 27

c5dc36411f3a45598a70c9522a651022

В доказательстве теоремы Барроу

$$\int_{x_0}^{x_0+h} f(x_0) \ dx = \text{(conf}(x_0)h.\text{)}$$

Note 28

1cea51f7fd9b4b438856a6ec7f4c1a48

В доказательстве теоремы Барроу

$$\int_{x_0}^{x_0+h} \Delta x \ dx = \text{(coin} o(h).\text{)}$$

Note 29

455761e28fe94191b0bebcfa38fc5b89

Откуда в доказательстве теоремы Барроу следует, что

$$\int_{x_0}^{x_0+h} \Delta x \, dx = o(h)?$$

$$\Delta x \underset{x \to x_0}{\longrightarrow} 0 \stackrel{\text{def}}{\iff} \dots |\Delta x| < \varepsilon.$$

Note 30

1109a435ae7543cf8263f72942677e95

«««з::Первая теорема о среднем интегрального исчисления»

Пусть ((c2:: $f,g\in\mathcal{R}[a,b],g\geqslant 0$ (или $g\leqslant 0$), $m\leqslant f\leqslant M$.)) Тогда

$$\exists \mu \in [m, M]$$
 $\int_a^b fg = \mu \int_a^b g$

}}

В чем основная идея доказательства первой теоремы о среднем интегрального исчисления?

Показать, что

$$m\int_a^b g \leqslant \int_a^b fg \leqslant M\int_a^b g$$

Note 32

bede3b8a7d14462fbd5fcb32d222eb2d

Чему равно μ из первой теоремы о среднем интегрального исчисления ($\int_a^b g = 0$)?

 μ — произвольное значение из [m,M].

Note 33

9137b877b68a4313b09fc0b2e748f6a4

Чему равно μ из первой теоремы о среднем интегрального исчисления ($\int_a^b g \neq 0$)?

$$\mu = \frac{\int_a^b fg}{\int_a^b g}.$$

Лекция 08.04.22

Note 1

156407f3795145ac967eccf82e541fe0

Пусть ((c2:: $f \in C[a,b], g \in \mathcal{R}[a,b], g \geqslant 0$ (или $g \leqslant 0$).) Тогда ((c1::

$$\exists c \in [a, b]$$
 $\int_a^b fg = f(c) \int_a^b g.$

(следствие из {{с3::первой теоремы о среднем}})

Note 2

ba06ad7c7c3c453fa47427d955b922bb

Пусть $\{c2: f \in R[a,b], m \leqslant f \leqslant M.\}$ Тогда $\{c1: a\}$

$$\exists \mu \in [m, M] \quad \int_a^b f = \mu(b - a)$$

(следствие из {{с3::первой теоремы о среднем}})

Note 3

ba06ad7c7c3c453fa47427d955b922bb

Пусть $\{c2::f\in C[a,b].\}\}$ Тогда $\{c1::a\}$

$$\exists c \in [a, b]$$
 $\int_a^b f = f(c) \cdot (b - a)$

(следствие из {{с3::первой теоремы о среднем}})

Note 4

df108f6ef527491996f1a2b6672c17fc

««сз::Формула Ньютона-Лейбница)»

Пусть ((c2:: $f \in \mathcal{R}[a,b]$, $F \in \mathscr{P}_f([a,b])$.)) Тогда ((c1::

$$\int_a^b f = F(b) - F(a).$$

}}

В чем основная идея доказательства формулы Ньютона-Лейбница?

По теореме Лагранжа $\forall \tau \in T[a,b]$ существует оснащение $\{\xi_k\}$ такое, что

$$F(x_{k+1}) - F(x_k) = F'(\xi_k) \Delta x_k.$$

Note 6

82e212c55614bb78548d3b6b7f2fbf2

Пусть $f:[a,b] o \mathbb{R}$. Тогда ((с1::разность

$$f(b) - f(a)$$

у называется (селдвойной подстановкой функции f на [a,b].

Note 7

b7e1b154b8de47bfbc3d2afdf73ef75

Пусть $f:[a,b] o \mathbb{R}$. (c1::Двойная постановка функции f на [a,b]) обозначается (c2::

$$f\Big|_{a}^{b}, f(x)\Big|_{a}^{b}, f(x)\Big|_{x=a}^{b}$$

Note 8

df6dee2f53354eb8ae50cd3a673878a0

Пусть (как $f:[a,b] o \mathbb{R}$ дифференцируема на $[a,b],f'\in\mathcal{R}[a,b].$) Тогда

$$\{\{c2:: \int_a^b f'\}\} = \{\{c1:: f | a.\}\}$$

Пусть $f \in \mathcal{R}[a,b]$, $F \in C[a,b]$, F — первообразная f за исключением конечного числа точек. Тогда

$$\int_{a}^{b} f = F(b) - F(a).$$

(обобщение формулы Ньютона-Лейбница)

Note 10

496225bfd55a484fa6f61e7174af39f4

В чём основная идея доказательства обобщения формулы Ньютона-Лейбница для $F \in \mathscr{P}_f([a,b] \setminus T), \ |T| < \aleph_0.$

Разбить [a, b] на отрезки, во всех внутренних точках которых F' = f.

Note 11

6abc693b3b104008b356cbca06692bd

Пусть $f: \mathcal{R}[a,b], F \in C[a,b], F'|_{(a,b)} = f|_{(a,b)}$. Как показать, что $\int_a^b f = F|_a^b$?

$$\int_{a}^{b} f = \lim_{\varepsilon \to 0^{+}} \int_{a+\varepsilon}^{b-\varepsilon} f.$$

Note 12

6e131dfc6d004e86a827f88367981953

Пусть $f:[a,b] \to \mathbb{R}$. Какова, в общем случае, зависимость между интегрируемостью f и существованием у неё первообразной?

В общем случае прямой зависимости нет.

«««За:Интегрирование по частям для определённого интеграла»

Пусть {{c2::}} f,g дифференцируемы на $[a,b],\ f',g'\in\mathcal{R}[a,b]$.}} Тогда {{c1::}}

$$\int_a^b fg' = fg\big|_a^b - \int_a^b f'g.$$

Note 14

a938ca4e00ae4fffaf1db99f384e1785

В чем основная идея доказательства формулы интегрирования по частям для определённого интеграла?

$$(fg)' = fg' + f'g \in \mathcal{R}[a, b],$$
$$\int_a^b (fg)' = fg|_a^b.$$

Note 15

46828f8f846b4de1a73aed39d5b9d7a0

«пезаЗамена переменной в определённом интегрален»

Пусть ((c2:: $\varphi: [\alpha,\beta] \to [a,b], \varphi$ дифференцируема на $[\alpha,\beta], \varphi' \in \mathcal{R}[\alpha,\beta], f \in C[a,b]$.)) Тогда ((c1::

$$\int_{\alpha}^{\beta} (f \circ \varphi) \varphi' = \int_{\varphi(\alpha)}^{\varphi(\beta)} f$$

Note 16

7d8af4366130490fbb87408d659837e7

В чем основная идея доказательства теоремы о замене переменной в определённом интеграле?

Если
$$F\in \mathscr{P}_f([a,b])$$
, то $F\circ \varphi$ — первообразная функции
$$(f\circ \varphi)\cdot \varphi'.$$

Пусть ({c2::} $f \in \mathcal{R}[-a,a]$, f — чётна.)) Тогда

$$\int_{-a}^a f = \operatorname{del} 2 \int_0^a f. \operatorname{d}$$

Note 18

53ccd4a61cc742818562b58b9bdce5b4

Пусть (${\mathbb R}^2$:: $f \in {\mathcal R}[-a,a]$, f- нечётна.)) Тогда

$$\int_{-a}^{a} f = \text{(c1::0.)}$$