

第5讲 移动IP技术

计算学部 2021年10月28日

- □ 为什么需要移动IP
- □ 移动IP的概念
- □ 移动IPV4

提出问题

定义问题

解决问题

1. 计算机通过无线上网

实际上没有移动的概念!

2. 将笔记本从办公室移动到宿舍、食堂、咖啡厅

用户是移动的,但在移动期间不需要保持连接!

3. 坐在移动的火车或汽车上访问Internet

用户处于绝对移动的环境中!

- 口以人为本(人的惰性)— 不用重配置
- □通信的持续— 不能中断通信
- □无所不在— 无论何时、何地、与任何人都可以无约束的通信

□Internet 地址级别

第一级: 域名 (DNS Address)

第二级: IP 地址 (IP Address)

第三级: MAC地址 (MAC Address)

主机位置无关标识: www.hit.edu.cn

主机逻辑位置: 202.118.239.46

网络接口硬件地址: 00 a4 24 4a 8f 00

- □Internet 路由机制: 到某一目的地的IP包,将被路由转发到宣告了该地址前缀可达性的路由器
- □现有**Internet**路由规则
 - 1. 路由器以网络前缀形式的路由宣告
 - 2. 路由器根据路由宣告构造路由表
 - 3. 单IP包的转发基于目的地址与路由表项前缀的匹配
- 一旦配有固定IP地址的移动主机移出原有接入路由器的作用范围,则该移动主机进入了Internet 路由盲区

nternet路由机制解决不了移动问题

How to solver?

- □两个术语: 就移动节点而言, 其所在网络分为两种类型
 - ■家乡链路(网络)(*Home Link*): 具有与移动节点固定IP地址子网前 缀一样的网络前缀的网络
 - ■外地链路(网络)(Foreign Link):任何不是家乡链路(网络)的网络,每一个外地链路(网络)有一个自己的网络前缀
- □移动 IP的问题领域
 - ■在现有Internet路由机制下,移动节点在Internet上的移动过程中不用 更改 IP 地址,能够与网络上另一对端节点进行持续通信

□支持移动的网络

- ■任何时候、任何地点都能提供可靠的Internet访问
- ■移动对网络应用和高层协议是透明的

□移动需求

■移动性: 越来越多用户要求Internet能支持移动性

■透明性: 移动对于*IP*上层协议来说都是透明的

■易使用:不需要用户的操作或仅需要简单操作

■路由:移动应该与所有路由协议兼容并能优化路由

■安全:移动不应该降低Internet的安全性

无移动

移动性逐渐增加

1. 不移动的移动设备

使用不变AP接入

2. 低速移动的移动设备

使用DHCP与网络连接的移动用户

3. 高速移动的移动设备

穿越多个AP,同时保持当前连接的移动用户

高移动

可否借用DHCP技术?

RFC2131: DHCP (动态主机配置协议: Dynamic Host Configuration Protocol)

DHCP允许自动配置,但自动配置要受管理员的控制

- □主要用于简化联网计算机的安装和维护
- □允许计算机快速、动态获取IP地址
- \square 任何时候,连到网络上的新计算机均与DHCP服务器联系,并申请一个地址
- □服务器从管理员指定的地址中选择一个地址,并将它分配给该计算机

- □DHCP能解决临时上网问题
- □DHCP能有效管理IP地址空间
- □DHCP不能进行移动管理
 - □IP地址的每次改变不为人知
 - □当移动节点在两个子网之间漫游时,由于其*IP*地址变化,将导致移动节点无法与其他用户通信

□为什么不可以使移动节点在网络间移动时自动改变*IP* 地址?

□对传输层的影响

- ■TCP是Internet上使用最多的传输层协议之一,移动解决方案必须能支持它
- ■TCP是面向连接的协议。一个TCP连接由四元组标识:

(源IP地址,源端口,目的IP地址,目的端口)

在一个连接的生命周期中,四个元素不能改变,否则连接终止,通信中断

- □通信对端可以接收吗?
 - ■移动节点不断更换IP地址,通信对端如何找到它?
 - **■***DNS*行吗?
- □移动节点的*DNS*域名在移动过程中保持不变,而域名到*IP*地址的映射在移动过程中不断更新
 - ■DNS的查询与更新量将急剧上升
 - ■DNS更新存在安全问题

- □采用DDNS (动态DNS) 技术行吗?
 - ■动态更新DNS的资源记录 (RR)
- □无法解决移动管理问题
 - ■延迟大,不适应频繁移动
 - ■当移动的节点数目增多时可能造成域名系统的不一致

心是无法实现!

- □移动 (Mobility) 与漫游 (Nomadicity)
 - □移动:移动节点占有一个固定IP地址,在移动过程中,已有通信不必中断
 - □漫游:漫游节点不必有固定*IP*地址。当漫游节点改变接入点(*point-of-attachment*)时,它必须中断已有所有的通信。在获得新的地址后,漫游节点再以新地址发起连接

- □特定主机路由(Host-Specific Routes)?
 - ■何谓特定主机路由?

特定主机路由是对特定的目的主机指明的一个路由

■如何解决问题?

当移动主机移动到另一接入点时,网络其他部分到它的路由使用特定主机路由

公新演之業大學 HARBIN INSTITUTE OF TECHNOLOGY

特定主机路由

- □这个解决办法好吗?
 - ■评判标准1:需要的额外的特定主机路由的数量多少!而这又取决于:
 - (1) 移动节点的数量
 - (2) 每一个移动节点移动之后,相应特定主机路由必须传播的最小节点集
 - (3) 移动节点切换接入点的频率
 - ■评判标准2: 健壮性如何?
 - ■评判标准3:安全吗?

- 1. 将来可能有无数的移动节点
 - ■笔记本电脑
 - ■移动电话
 - ■你还能想出什么来吗?

2. 需要非常多的特定主机路由

■对每一个移动到外地链路的移动节点来说,至少需要在家乡链路到外地链路途 经的所有路由器添加一条特定主机路由

3. 移动节点切换接入点的频率

- ■移动节点切换接入点的频率是比较快的
- ■移动节点切换接入点一次,需要大量路由节点增加或是删除相应特定主机路由

4. 健壮性

- ■最小路由器集合
 - ●从家乡链路到外地链路之间所有路由器
- ■单故障点: 最小集合中的每一个路由器
 - ●一旦它们中的任何一个出现故障,去往该移动节点的通信将中断
 - ●这与Internet路由的健壮性不符
- ■巨大的移动节点群
 - ●移动节点切换接入点过程中增加或删除大量特定主机路由
 - ●网络不稳定

5. 安全?

- 特定主机路由的更新需要认证
- 这不是特定主机路由的错

特定主机路由方案不适合移动问题的解决!

蜂窝数据网、802.11?

□链路层技术不足以解决移动问题

- ■链路层技术只在单一介质类型中提供移动支持
- ■每一种介质类型有一种特定的移动解决方案
- ■移动节点在不同介质之间切换时,移动节点可能得不到移动服务
- ■导致了移动服务的地域限制

- □Internet上的每个节点都有网络层
- □网络层负责将分组路由到合适的位置
- □移动性面向整个Internet,改变物理介质应该对应用透明

因此, 网络层解决方案对全部应用来说是全局解决方案!

移动了一网络层的解决之道

- □ 为什么需要移动IP
- □ 移动IP的概念
- □ 移动IPV4

提出问题

定义问题

解决问题

- □移动节点在改变接入点之后能继续与其他节点通信
- □移动节点只要与接入点连接就能用原来的IP地址通信
- □移动节点能与不具有移动IP功能的其他节点通信
- □移动节点不应该比其他节点的安全性差

- □移动IP具有扩展性、可靠性和安全性
- □移动IP与传输介质无关
- □移动IP与现有Internet 协议兼容,并能与不具有移动IP的主机进行正常通信

国际互联网工程任务组 (IETF) 草案:

□*RFC2002*: 定义了移动*IP*协议

□RFC2003/2004/1701: 定义了移动IP的隧道技术

□*RFC2005*: 定义了移动*IP* 的应用

 $\square RFC2006$: 定义了移动 IP 的管理信息库MIB

移动节点MN (Mobile Node)

从一个网络链路切换到另一个网络链路

移动节点的"永久家乡"

移动IP实体与术语

永久地址 (Permanent Address):

移动节点MN在家乡网络中的地址

缀的链路,是移动节点MN在家乡

网络时的链路

转交地址(Care-of-Address): 移动节点MN在外地网络中的地址

外地链路(Foreign Link): 与移动节点MN家乡地址网络前缀不同的链路

- □每个移动节点(MN)有两个IP地址
 - ■一个固定的家乡地址 (用来标识该节点)
 - ■一个可变的转交地址(CoA) (用来转发数据报)

转交地址(Care-Of Address)

- \square 所有发送给移动节点MN的数据报通过隧道投递给CoA,CoA是隧道的出口
- 口共享式*CoA*
 - □外地代理转交地址
 - □从外地代理获得的一个IP地址
 - □外地代理是隧道的出口
- □专用CoA
 - □配置转交地址(Co-located CoA)
 - □通过地址分配机制为移动节点分配的IP地址
 - □移动节点是隧道的出口

◆ 可节约IPV4地址

- ◆ 不再需要外地代理
- ◆ 增加了地址需求负担

- □ 为什么需要移动IP
- □ 移动IP的概念
- □ 移动IPV4

提出问题

定义问题

解决问题

- 1.代理发现 (Agent Discovery)
- 2.注册 (Registration)
- 3.分组路由
- 4.注销

- (1) 移动代理(*HA*或*FA*) 通过代理通告消息告诉*MN*移动代理的存在, *MN*也可以通过当前访问网络发送代理请求获得代理通告消息。*MN*接收到代理通告消息后,可以确定它是在家乡网络还是外地网络上,如果在家乡网络,其操作与固定主机一样;如果是从其它注册的网络回到家乡网络,将通过和家乡代理交换"注销请求"和"注销应答"消息在家乡代理上进行注销
- (2) 如果MN发现它已经移动到了一个外地网络,它将获得该外地网络上的一个转交地址(CoA),这个转交地址CoA或者来自FA的通告,或者由DHCP确定,前者称为外地代理转交地址($Foreign\ Agent\ CoA$),后者称为配置转交地址($Co-located\ CoA$)

移动IPV4的通信流程(续)

- (3) 移动到外地网络上的MN随后与家乡代理交换<mark>注册请求和注册应答消息</mark>,注册它的转交地址CoA
- (4) HA 截获发往MN家乡地址的数据分组
- (5) HA通过隧道把截获的数据分组发送到MN的转交地址CoA
- (6) 隧道的输出端点(FA或者MN本身)收到的报文进行拆封后,交给MN
- (7) MN发出的报文通过标准IP路由机制被路由到目标节点,不需要经过HA

□MN移动到外地链路后是如何通信的

□HA和FA均会周期性地广播代理通告消息(Agent Advertisements)

- □MN检查代理通告Agent Advertisement消息,判断自己连接在家乡链路还是外地链路
- \Box 如果MN从外地链路移回家乡链路,则必须通知HA取消先前的注册信息
- 口连接在外地链路上的MN在FA的Agent Advertisement消息中得到CoA

□MN向HA注册其CoA

- □Internet上其他主机向MN发送的数据报将被Internet路由到MN的HA
- \square_{HA} 将MN的数据包以隧道方式传送,隧道的出口地址为先前注册的MN的CoA
- $\Box FA$ 抽取出隧道包中的原始数据报,并将其转发给MN

□MN发送给CN的数据报经由正常的Internet路由到达CN

□MN移动到外地链路之后,除非使用特定主机路由等一些特别手段,现有的 Internet 路由机制不可能将发送到MN家乡地址的数据报转发给MN

路由盲区!

□由前面讨论,特定主机路由方案不可行,于是,移动IP使用隧道技术!

转发给外地代理FA

移动IP的移动管理概念模式

等节点CN

第一步: 通告/代理发现 (Agent Discovery)

- □MN通过收到的代理通告消息确定其接入点或IP地址
 - (1) 确定连接的链路
 - (2) 检测是否改变了接入点
 - (3) 如果连接到一个外地网络则获得一个CoA
 - (4) 允许向代理发送代理请求消息
 - (5) Agent discovery消息由ICMP (Internet Control Message Protocol)报文 承载

第二步: 注册转交地址 (Registration)

 $\square MN$ 请求FA为其服务,并向HA报告新CoA

(1) 用注册消息向HA注册和解除注册

(2) 注册消息由*UDP*报文承载

注意: CoA 必须是通过常规IP路由可传递数据报的地址

第三步: 隧道 (完成路由) 转发数据报

- □移动IP把数据报隧道给离开家乡网络的MN
- □在隧道的入口点进行封装
- □在隧道的出口点进行拆封

使*MN*进行移动检测,判断其在家乡网络还是在外地网络,或者从一个外地网络移动到另一个外地网络

162.105.203.0/24

- □ *FA*的作用:
 - 为MN生成CoA
 - 通告其HA
 - 可由MN自己担任

166.111.4.0/24

- ①MN进入外地网络后与FA 取得联系
- ②FA与HA联系"这个移动节点现在在我这里"

- □定义了代理通告和代理请求两个消息(基于ICMP 路由发现机制)
- □移动代理(HA/FA)定期发送代理通告消息通告自己的存在
- □MN通过代理请求消息请求代理
- 口移动代理(HA/FA)用代理通告作为MN的代理请求响应消息

代理发现机制——工作过程

- □当*MN*从一个无线网段移动到另一个无线网段时,如何确定其新接入点或者*IP*地址?
- □通过代理发现, *MN*可以确定自己 连接在家乡网络还是外地网络,可 以确定是否已经改变了接入点
- □一旦MN获得一个新CoA便立即进入注册过程

ICMP路由器通告消息

RFC1256: ICMP路由发现消息

RFC3220: IPV4的移动支持

□ICMP的Code字段明确指示移动代理的作用:

(1) Code=0, 作为常规路由器, 不与MN关联

(2) Code=16, 作为FA, 此时必须把MN发送的数据

报路由给默认路由器

IP header(20 bytes)

ICMP Router Advertisement

Agent Advertisement

advertisement

Type(9)	Code(0)	Checksum	
#addr.	Addr.size	lifetime	
Router addr1			
Preference level1			
Router addr2			
Preference level2			

solicitation

Type (10)	Code(0)	Checksum	
Reserved			

□广播代理通告消息的代理特性由标志位(Type)描述

标志位Type	标志含义	标志位Type	标志含义
R	必须注册	M	允许最小封装
В	代理忙	G	允许GRE封装
Н	家乡代理	r	接收时忽略
F	外地代理	Т	支持逆向隧道

愿意接收注册请求的最长时间

初始化后发送的通告计数

Type (16)	length	Sequence	e number
Registration lifetime		RBHFMGrT	reserved
CoA1			
CoA2			

- □与ICMP 路由器请求报文格式相同
- □MN通过该消息发现自己所处的位置和所在网络的移动代理
- □连续三次请求未获得代理反馈通告,则以指数后退算法延迟重发代理请求消息

IP header(20 bytes)

Agent Solicitation

- □任何不能被链路层协议发现的移动代理必须发送代理通告消息
- □所有移动代理都应该响应发送到224.0.0.1的代理请求消息
- □移动代理必须限制它广播或者组播通告消息的速度,连续3次没有获得响应必须后退再次发送的时间
- □代理可配置成只在响应代理请求消息时才发送代理通告消息

□发送代理请求

- ■在未收到代理通告及未通过其他方法获得CoA时,MN应发送代理请求
- ■MN必须限制发送代理请求的速度(按二进制指数后退算法)

□处理代理通告

- ■MN必须处理收到的代理通告,区分出代理通告消息和ICMP路由器通告消息
- ■如果通告地址多于一个,则取出第一个地址开始注册
- ■MN收到R位(表示必须注册)的通告后,即使已经获得可配置CoA,也必须向FA注册

□移动检测

- ■如果MN在生存期(lifetime)内没有收到来自同一个代理的通告,则可假设自己已 失去了和这个代理的连接
- ■如果收到了另一个代理的通告,则立即尝试连接该新代理,否则*MN*应该去发现新的移动代理

□回到家乡

■当MN收到来自其HA的通告时可确信自己返回家乡,应该向HA注销

□序号处理

■如果MN从注册的FA相继收到两个"通告",其中第二个序号值小于第一个,且在 $0\sim255$ 之内,则MN应该再次进行注册

- $\square MN$ 到达新的网络后,通过注册过程将自己的可达信息通知HA,注册过程涉及MN、FA和HA,MN与HA交换注册报文,在HA上创建或修改"移动绑定",使HA在规定的生存期内保持MN的家乡地址与CoA的关联性
- □通过注册可以达到以下目的
 - (1) 使MN获得FA的转交服务
 - (2) 使HA知道MN当前的转交地址
 - (3) HA实时更新即将过期的MN的注册信息,或注销回到家乡的MN

162.105.203.0/24

- □ FA的作用:
 - 为MN生成CoA
 - 通告其HA
 - 可由MN自己担任

- 166.111.4.0/24
- ①MN进入外地网络后与FA 取得联系
- ②FA与HA联系"这个移动节点现在在我这里"

□如果移动节点使用外地代理*CoA*

□如果移动节点使用配置CoA

• Lifetime

□如果移动节点回到了家乡网络,则必须在家乡 链路上进行注册 (注销其移动绑定信息)

① MN向HA发送Registration消息 (通过UDP报文)

- \square_{HA} 创建一个移动绑定,将MN的家乡地址和当前CoA绑定在一起,并设置生存期
- □MN在此绑定信息超时之前必须续订

标志位Type	标志含义	标志位Type	标志含义
S	同时绑定	G	使用GRE封装
В	请求广播报文	r	保留
D	自己拆封	Т	请求逆向隧道
M	使用最小封装	r	保留

Type (1)	SBDMGrTx	lifetime	
Home address			
Home Agent			
COA			
identification			
Extensions			

- □如果MN不知道HA地址,就向家乡网络广播注册消息
- \Box 每个有效HA均给予响应,MN采用某个有效HA的地址发起注册请求
- □HA和FA类似于本地和外地数据库
 - ■一次有效的注册,HA为MN创建一个条目-相当于本地数据库中的一条记录
 - $●{MN}$ 的CoA、标识字段和此次注册的生存期}
 - ■每个FA维护一个访问列表-相当于外地数据库中的一条记录
 - ● $\{MN$ 链路层地址、MN的家乡地址、UDP注册源port、HA的IP地址、标识字段、注册生存期、当前或未处理注册的剩余生存期 $\}$

- □HA返回注册应答表明注册是否成功
 - \square 如果MN通过FA注册,则该应答消息由FA转发
 - □注册请求可被拒绝

Code0: 注册成功

Code1: 注册成功但不支持

多个同时绑定

□ 没有足够的资源
□ HA不可达
□ 太多的同时绑定
□ 注册标识不匹配
□ 认证失败等

Type (3)	Code	lifetime	
Home address			
Home Agent			
identification			
Extensions			

注册—请求/应答消息的传递

□注册请求和注册应答消息通过UDP报文传输

■*Port*: 434

■Data: 注册请求/应答

■UDP 开销小,在无线环境下性能优于TCP

RFC768: 用户数据报协议

IP header (20 bytes)

UDP message

Registration request/reply

- □MN需要进行网络掩码的配置
- □只要检测到连接网络发生变化就发起注册
- □发送注册请求
 - ■IP源地址为CoA/家乡地址
 - ■*IP*目的地址
 - ●FA的地址/224.0.0.1
 - ●*HA*的地址/子网广播地址
- □处理注册应答
 - □接受(外地/家乡)/拒绝

- $\Box FA$ 在MN和HA之间中继注册请求,并且如果提供CoA,还要为MN拆封数据分组
- □FA的配置表和注册表
 - ■维护MN的访问表
- □FA对注册请求的处理
 - ■有效性检查
 - ■转发请求到*HA*
- □接收注册应答
 - ■有效性检查
 - ■转发应答到MN

- □ MN的家乡地址
- □ UDP源端口号
- □ HA地址
- □ 标识字段
- □ 请求的注册生存期
- **□**

- □*HA*从*MN*接收注册请求,更新自己关于该*MN*的移动绑定记录,并为每个请求 启动一个应答作为响应。
 - ■*HA*的配置表和注册表
 - ■*HA*对注册请求的处理
 - ●HA接受MN请求
 - ●更新对于该MN的绑定信息
 - ■发送注册应答

The End!