Условие:

Образует ли линейное пространство заданное множество, в котором определены суммы любым двух элементов \vec{a} и \vec{b} в произведение любого \vec{a} элемента на любое число $\alpha \in R$?

Вариант 14: множество всех диагональных матриц $\vec{a} = (a_{ij}), \vec{b} = (b_{ij})$ размеров $n \times n$. Сумма $(a_{ij}) \cdot (b_{ij})$, произведение $\alpha \cdot a_{ij}$.

Решение:

- 1) Линейное пространство должно удовлетворять следующим требованиям:
 - а. V непустое множество векторов
 - b. F множество скаляров
 - с. Определена операция сложения векторов
 - d. Определена операция умножения вектора на число
 - е. Заданные операции должны удовлетворять векторного аксиомам пространства (коммутативность и ассоциативность сложения, существование нейтрального элемента, ассоциативность умножения вектора на скаляр, дистрибутивность унитарность, умножения относительно сложения скляров и векторов)
- 2) Проверка на линейное пространство:
 - а. Множество диагональных матриц не пусто
 - b. Множество скаляров не пусто
 - с. Операция сложения векторов задана: $(a_{ij}) \cdot (b_{ij})$
 - d. Определена операция умножения вектора на скаляр из R: $\alpha \cdot a_{ii}$