Nom: TMaths Groupe 1

Devoir surveillé nº9 : autour du ln

Exercice 1 — 15 minutes —

/3

Résoudre les équations suivantes après avoir trouvé l'intervalle de validité des calculs :

1.
$$ln(2x-1) + ln(x+1) = ln(4x+1)$$

2.
$$\ln(2x^2 + x - 1) = \ln(4x + 1)$$

Exercice 2 — 15 minutes —

/3

1.
$$8(\ln x)^2 - 13\ln x + 5 = 0$$

2.
$$8e^{2x} - 13e^x + 5 = 0$$

Exercice 3 — 5 minutes —

/2

Déterminer, par le calcul, le plus entier naturel n tel que $1-0, 6^n \ge 0, 99$.

Exercice 4 — 10 minutes —

/2

Faire le tableau de signes de la fonction f définie sur $]0; +\infty[$ par :

$$f(x) = \frac{3 - \ln(x)}{r^3}.$$

Exercice 5 — 55 minutes —

/10

On considère la fonction f définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = x + \ln x$$
.

On nomme Γ sa courbe représentative dans un repère orthogonal $\left(O, \stackrel{\rightarrow}{\imath}, \stackrel{\rightarrow}{\jmath}\right)$ du plan.

- 1. a. Déterminer les limites de la fonction f en 0 et en $+\infty$.
 - **b.** Montrer que la fonction f est strictement croissante sur l'intervalle $]0; +\infty[$.
- **2.** a. Montrer que, pour tout entier naturel n, l'équation f(x) = n admet une unique solution dans]0; $+\infty[$.

On note α_n cette solution, on a donc : pour tout entier naturel n, $\alpha_n + \ln \alpha_n = n$.

b. Dans le repère page 2, on a tracé Γ dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

Placer les nombres α_0 , α_1 , α_2 , α_3 , α_4 et α_5 sur l'axe des abscisses en laissant apparents les traits de construction.

c. Démontrer que $\alpha_1 = 1$.

d. Démontrer que la suite (α_n) est strictement croissante.

3. a. Déterminer une équation de la tangente Δ à la courbe Γ au point A d'abscisse 1.

b. i. Démontrer que f est concave sur $]0; +\infty[$.

ii. En déduire la position de la courbe Γ par rapport à Δ .

c. Tracer Δ sur le graphique.

d. Démontrer que, pour tout entier naturel n non nul, $\frac{n+1}{2} \leqslant \alpha_n$.

4. Calculer la limite de la suite (α_n) .

