Algorithmes et calcul scientifique

Première session 2017

Durée : 2 heures. Aucun document ni machine autorisé.

Barème indicatif sur 20:

exercice 1 = 12 (2-5-5); exercice 2 = 3 (1-2), exercice 3 = 5, qualité de la rédaction $= \pm 1$.

Exercice 1.

- 1. Rappeler les caractéristiques principales des nombres flottants binary64 de la norme IEEE-754.
- 2. Soient x = 1.0, $y = 2.0^{-55}$, $z = 2.0^{-53}$ et $t = 2.0^{-52}$.
 - (a) Justifier que x, y, z et t sont des binary64. Illustrer votre analyse avec un schéma bien choisi.
 - (b) Qu'en-est il de x + y, x + z, et x + t? Bien justifier vos réponses?
 - (c) Ces trois additions sont maintenant effectuées en arithmétique IEEE-754. Quels sont les résultats alors obtenus selon les différents arrondis possibles? Bien justifier vos réponses, et en particulier les cas où la stratégie de l'arrondi pair est appliquée?
- 3. Soit l'algorithme A où on suppose que |a| > |b| et que toutes les quantités numériques sont calculées en binary 64 avec arrondi au plus près (RTN) et stratégie de l'arrondi pair.

```
function [x,y] = A(a,b)

x = a + b

z = x - a

y = b - z

return [x, y]
```

- (a) Soient x=1.0 et $y=2.0^{-55}$. Que calcule ${\tt A}(x,y)$? Justifier votre réponse en détaillant chaque opération de l'algorithme.
- (b) Que permet A pour deux arguments flottants x et y tels que |x| > |y|? Illustrer votre réponses avec les valeurs x, y, z, t de la question 2
- (c) Quelles précautions **d'ordre pratique** doit-on prendre pour que l'implantation et les exécutions de cet algorithme produisent les résultats attendus?

Exercice 2.

On dispose d'un algorithme inverse stable pour résoudre une certaine classe de problèmes. Cet algorithme est exécuté en format binary 32 de l'IEEE-754 avec arrondi au plus près.

- 1. Rappeler la précision de cette arithmétique exprimée comme une puissance de 2 et comme une valeur décimale.
- 2. Que peut-on dire de la précision de la solution calculée dans les cas suivants?
 - (a) Le conditionnement de l'instance du problème est de l'ordre de 10^3 .
 - (b) Le conditionnement de l'instance du problème est de l'ordre de 10^6 .
 - (c) Le conditionnement de l'instance du problème est de l'ordre de 10^9 .

Exercice 3.

1. Trouver la complexité C(n) d'un algorithme récursif de taille n vérifiant pour $k \geq 4$:

$$C(n) \le k \cdot C(n/2) + O(n^2).$$

- 2. Décrire l'algorithme de Strassen et donner sa complexité.
- 3. Décrire ce qu'est le profilage d'un programme.