Обучение с учителем. Байесовский подход

Санкт-Петербургский государственный университет Кафедра статистического моделирования

20 сентября 2025

Теорема Байеса: ядро подхода

Фундаментальное правило обновления убеждений

В байесовском подходе параметры модели heta рассматриваются как случайные величины. Наши знания о них обновляются при поступлении данных D с помощью теоремы Байеса.

$$\underbrace{\frac{p(\theta|D)}{\rho(D|\theta)}}_{\text{Апостериор}} = \underbrace{\frac{\overbrace{p(D|\theta)}^{\Phi.\text{ правдоподобия}}^{\Phi.\text{ правдоподобия}}}_{p(D)} \cdot \underbrace{\overbrace{p(\theta)}^{P(D)}}_{p(D)} = \underbrace{\frac{p(D|\theta) \cdot p(\theta)}{\int p(D|\theta) \cdot p(\theta) d\theta}}_{\Phi.\text{ предельного правдоподобия}}$$

- Априорное распределение $p(\theta)$: наши убеждения о параметрах до получения данных.
- Функция правдоподобия $p(D|\theta)$: вероятность наблюдать данные D при фиксированных параметрах θ .
- Апостериорное распределение $p(\theta|D)$: обновленные убеждения о θ после учета данных.

Сравнение подходов: частотный и байесовский

Частотный подход

- Вероятность это долгосрочная частота события.
- Параметры модели (θ) это фиксированные, неизвестные константы.
- Результат точечные оценки (например, ОМП) и доверительные интервалы для θ .
- Доверительный интервал (например, 95%) означает, что при многократном повторении эксперимента 95% таких интервалов будут содержать истинное значение параметра.

Байесовский подход

- Вероятность это степень уверенности в утверждении.
- Параметры модели (heta) это случайные величины с распределениями.
- ullet Результат апостериорное распределение параметров heta.
- Доверительный интервал (например, 95%) означает, что существует 95%-ая вероятность того, что истинное значение параметра находится в этом интервале.

Теорема Бернштейна-фон Мизеса

Теорема Бернштейна-фон Мизеса

При определенных условиях регулярности, для больших N апостериорное распределение $p(\theta|D)$ сходится к нормальному распределению:

$$p(\theta|D) \approx \mathcal{N}(\theta \mid \hat{\theta}_{\mathsf{MLE}}, [E_N(\hat{\theta}_{\mathsf{MLE}})]^{-1})$$

Следствие:

- Апостериорное распределение становится гауссианой.
- ullet Его центр $\hat{ heta}_{\mathsf{MLE}}$ является состоятельной оценкой истинного значения $heta_0$.
- ullet Его дисперсия (неопределенность) уменьшается с ростом N .
- Апостериорное распределение больше не зависит от выбора априорного при больших N.

Гибридный подход к классификации

Гибридный подход подразумевает, что мы оцениваем параметры правдоподобия (например, среднее и дисперсию для нормального распределения) как точные значения из данных.

Формальный байесовский подход

- Моделирование: Для каждого класса k мы оцениваем плотность вероятности признаков $p(\mathbf{x}|y=k)$ и априорную вероятность класса p(y=k).
- **ОТЕМЬ В В 19 У В**

$$p(y = k|\mathbf{x}) = \frac{p(\mathbf{x}|y = k)p(y = k)}{p(\mathbf{x})}$$

И выбираем класс, который ее максимизирует.

Наивный байесовский классификатор

Ключевое ("наивное") предположение

Признаки $\mathbf{x}=(x_1,x_2,\ldots,x_d)$ условно независимы при заданном классе y=k.

Математически это означает:

$$p(\mathbf{x}|y=k) = p(x_1, \dots, x_d|y=k) = \prod_{j=1}^d p(x_j|y=k)$$

Это предположение резко упрощает задачу. Вместо оценки сложной многомерной плотности $p(\mathbf{x}|y=k)$, нам нужно оценить d одномерных плотностей $p(x_i|y=k)$.

Правило классификации

$$\hat{y} = \arg\max_{k} \left(\log p(y = k) + \sum_{j=1}^{d} \log p(x_j | y = k) \right)$$

Вариации в зависимости от типа данных

Вид классификатора определяется выбором распределения для функции правдоподобия $p(x_j|y=k)$.

Gaussian NB

Данные:

Непрерывные

Модель: $p(x_j|y=k)$

— нормальное распределение $\mathcal{N}(\mu_{jk},\sigma_{jk}^2)$

Пример:

Классификация ирисов по длине и ширине лепестков

Multinomial NB

Данные:

Дискретные (счетчики)

 \bigcap Модель: $p(x_j|y=k)$

 мультиномиальное распределение

Пример:

Классификация текстов. x_j — частота j-го слова в

документе

Bernoulli NB

Данные: Бинарные

(0/1) Модель: $p(x_i|y=k)$

— распределение

Бернулли

Пример: Анализ спама. $x_j = 1$, если j-е слово есть в письме, и 0 иначе

LDA и QDA

Дискриминантный анализ решают задачу классификации, моделируя распределение данных для каждого класса.

Ключевое предположение

Плотность распределения признаков для каждого класса k является многомерным нормальным распределением:

$$p(\mathbf{x}|y=k) \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Для удобства вычислений переходим к логарифму апостериорной вероятности:

$$\hat{y} = \arg\max_{k} \left(\log p(\mathbf{x}|y=k) + \log p(y=k) \right)$$

Подставляя логарифм плотности Гаусса, получаем дискриминантную функцию $\delta_k(\mathbf{x})$:

$$\delta_k(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{\Sigma}_k| - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_k)^T \mathbf{\Sigma}_k^{-1}(\mathbf{x} - \boldsymbol{\mu}_k) + \log \pi_k$$

где $\pi_k = p(y=k)$ — априорная вероятность класса.

Квадратичный дискриминантный анализ (QDA)

Предположение QDA

Каждый класс k имеет собственную матрицу ковариаций $\mathbf{\Sigma}_k$.

Дискриминантная функция $\delta_k(\mathbf{x})$ является квадратичной функцией от \mathbf{x} :

$$\delta_k(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^T \mathbf{\Sigma}_k^{-1} \mathbf{x} + \mathbf{x}^T \mathbf{\Sigma}_k^{-1} \boldsymbol{\mu}_k - \frac{1}{2}\boldsymbol{\mu}_k^T \mathbf{\Sigma}_k^{-1} \boldsymbol{\mu}_k - \frac{1}{2}\log|\mathbf{\Sigma}_k| + \log \pi_k$$

- Условие $\delta_k(\mathbf{x}) = \delta_j(\mathbf{x})$ задает квадратичную разделяющую поверхность (эллипсоид, параболоид, гиперболоид).
- ullet QDA очень гибкий метод, но требует оценки большого числа параметров для каждой матрицы $oldsymbol{\Sigma}_k$, что может привести к переобучению на малых выборках.

Линейный дискриминантный анализ (LDA)

Предположение LDA

Все классы имеют общую матрицу ковариаций $\mathbf{\Sigma}_k = \mathbf{\Sigma}$.

Это упрощение сильно меняет дискриминантную функцию. Член $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x}$ становится одинаковым для всех классов и не влияет на $\arg\max_k$.

Линейная дискриминантная функция

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^T \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k$$

- Это линейная функция от х.
- Разделяющая поверхность $\delta_k(\mathbf{x}) = \delta_j(\mathbf{x})$ является гиперплоскостью.
- LDA более устойчив к переобучению, чем QDA, так как оценивается меньше параметров.

Визуализация разделяющих поверхностей

Рис.: Слева: LDA создает линейные границы. Справа: QDA создает гибкие квадратичные границы, которые лучше разделяют классы с разной формой ковариации.

Байесовское иерархическое моделирование

Полностью байесовский (иерархический) подход к классификации заключается в том, что мы не уверены не только в классе объекта, но и в точных параметрах, описывающих этот класс.

Иерархический аспект таких моделей заключается в том, что мы организуем наши параметры на разных уровнях.

Байесовский аспект заключается в том, что мы корректируем наши представления об этих параметрах на основе наблюдаемых данных.

Структура иерархической модели

Параметры модели сами рассматриваются как случайные величины, взятые из распределения более высокого уровня.

- Уровень 1 (Данные): $x \sim \mathsf{Распределениe}(\theta_k)$
- Уровень 2 (Параметры классов): $\theta_k \sim \mathsf{Распределениe}(\lambda)$
- Уровень 3 (Гиперпараметры): $\lambda \sim$ Гиперприор

Байесовское иерархическое моделирование

Пример: Средние μ_{jk} в гауссовском наивном Байесе

• Вместо того чтобы считать каждое μ_{jk} независимым, мы предполагаем, что все они взяты из общего "материнского" распределения:

$$\mu_{jk} \sim \mathcal{N}(\mu_{j,global}, \sigma_{j,global}^2)$$

• Модель оценивает и μ_{jk} , и общие $\mu_{j,global}, \sigma_{j,global}^2$ одновременно.

Оценка для редкого класса становится компромиссом между его собственными данными и средним по всем классам. Это делает модель гораздо более устойчивой к выбросам.

Байесовская линейная регрессия

Частотная линейная регрессия:

- Модель: $y = \mathbf{w}^T \mathbf{x} + \epsilon$, где $\epsilon \sim N(0, \sigma^2)$.
- Цель: найти точечные оценки коэффициентов β , которые минимизируют сумму квадратов ошибок.
- Результат: вектор коэффициентов \hat{eta} и их доверительные интервалы.

Байесовская линейная регрессия:

- Модель та же, но на параметры ${\bf w}$ и σ^2 задаются априорные распределения, например, ${\bf w} \sim N(0, \alpha^{-1}I).$
- Цель: найти апостериорные распределения для w.
- Результат: полные распределения для каждого коэффициента, которые показывают нашу неуверенность в оценках.

Математическая модель

Предполагаем, что шум аддитивный и гауссовский: $\epsilon \sim \mathcal{N}(0,\sigma^2)$. Тогда функция правдоподобия для одного объекта (\mathbf{x}_i,y_i) имеет вид:

$$p(y_i|\mathbf{x}_i, \mathbf{w}) = \mathcal{N}(y_i|\mathbf{w}^T\mathbf{x}_i, \sigma^2)$$

Для всей выборки $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$: $p(D|\mathbf{w}) = \prod_i \mathcal{N}(y_i|\mathbf{w}^T\mathbf{x}_i, \sigma^2)$.

Априорное распределение

Чтобы избежать переобучения, вводим априорное распределение на веса w. Обычно используется гауссовское распределение с центром в нуле:

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{E})$$

- Параметр α контролирует "разброс" весов. Большое α "стягивает" веса к нулю.
- Это эквивалентно L2-регуляризации в частотном подходе.

Связь с L2-регуляризацией

$$\begin{aligned} \mathbf{w}_{\mathsf{MAP}} &= \arg\max_{\mathbf{w}} p(\mathbf{w}|D) = \arg\max_{\mathbf{w}} \left(\log p(D|\mathbf{w}) + \log p(\mathbf{w})\right) \\ &\log p(D|\mathbf{w}) = \log\prod_{i=1}^{N} \mathcal{N}(y_i|\mathbf{w}^T\mathbf{x}_i, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T\mathbf{x}_i)^2 + \mathsf{const} \end{aligned}$$

$$\begin{split} \log p(\mathbf{w}) &= \log \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \log \left(C \cdot \exp \left(-\frac{1}{2} \mathbf{w}^T (\alpha^{-1}\mathbf{I})^{-1} \mathbf{w} \right) \right) \\ &= -\frac{\alpha}{2} ||\mathbf{w}||_2^2 + \mathsf{const} \end{split}$$

$$\mathbf{w}_{\mathsf{MAP}} = \arg \max_{\mathbf{w}} \left(-\frac{1}{2\sigma^2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \frac{\alpha}{2} ||\mathbf{w}||_2^2 \right)$$
$$= \arg \min_{\mathbf{w}} \left(\sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \sigma^2 \alpha_{\lambda} ||\mathbf{w}||_2^2 \right)$$

Апостериорное распределение и предсказание

Апостериорное распределение для весов

Так как априорное распределение и функция правдоподобия являются гауссовскими, то и апостериорное распределение $p(\mathbf{w}|D)$ тоже будет гауссовским (свойство сопряженности).

$$p(\mathbf{w}|D) \sim \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

где \mathbf{m}_N и $oldsymbol{S}_N$ вычисляются на основе данных.

Для нового объекта \mathbf{x}_* предсказание y_* — это не одно число, а целое распределение. Оно получается путем усреднения по всем возможным весам \mathbf{w} с учетом их апостериорной вероятности:

$$p(y_*|\mathbf{x}_*, D) = \int p(y_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|D) d\mathbf{w}$$

Это распределение также является гауссовским. Его среднее — это наше предсказание, а дисперсия — мера нашей неуверенности в этом предсказании.

Вычисление апостериорного распределения

Для вычисления апостериорного распределения $p(\theta|D) \propto p(D|\theta)p(\theta)$ необходимо вычислить знаменатель (функцию предельного правдоподобия):

$$P(D) = \int P(D|\theta)P(\theta)d\theta$$

- Этот интеграл часто является невычислимым аналитически, особенно в моделях с большим числом параметров.
- Существует два основных подхода к решению этой проблемы:
 - Аналитический вывод с использованием сопряженных априорных распределений.
 - **2** Численные методы, такие как методы Монте-Карло по схеме марковских цепей (МСМС).

Аналитический подход: Сопряженные распределения

Определение

Априорное распределение $P(\theta)$ называется сопряженным для функции правдоподобия $P(D|\theta)$, если получаемое апостериорное распределение $P(\theta|D)$ принадлежит тому же семейству распределений, что и априорное.

Вместо сложного интегрирования, весь процесс байесовского обновления сводится к простому вычислению новых параметров по готовым формулам. Это делает вывод быстрым и аналитически разрешимым. Выбор сопряженных пар (Нормальное–Нормальное, Бета–Бернулли, Гамма–Пуассона и т.д.) — это основной способ сделать байесовский анализ вычислительно возможным.

Аналитический подход: Сопряженные распределения

Пример:

• Правдоподобие (Биномиальное): Моделируем k успехов в n испытаниях с вероятностью успеха θ .

$$P(D|\theta) = \text{Bin}(k|n,\theta) \propto \theta^k (1-\theta)^{n-k}$$

• Априорное (Бета): Предполагаем, что θ следует Бета-распределению.

$$P(\theta) = \mathsf{Beta}(\theta|\alpha,\beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

• **Апостериорное (Бета)**: Апостериорное распределение также является Бета-распределением.

$$P(\theta|D) \propto \theta^{k+\alpha-1} (1-\theta)^{n-k+\beta-1} = \mathsf{Beta}(\theta|k+\alpha, n-k+\beta)$$

Численный подход: Методы МСМС

- Идея: Если мы не можем аналитически описать апостериорное распределение, мы можем сгенерировать из него выборку.
- MCMC (Markov Chain Monte Carlo) это алгоритм, строящий марковскую цепь, стационарное распределение которой совпадает с искомым апостериорным распределением $p(\theta|D)$.
- Использование сопряженных априорных распределений удобно, но часто является сильным упрощением.
- Мы хотим использовать более гибкие или более реалистичные априорные распределения, которые не являются сопряженными.
- Модель сложна, и найти сопряженное распределение для всех параметров невозможно.

Численный подход: Методы МСМС

Пример:

- $oldsymbol{0}$ Начинаем со случайного значения параметра $heta_0$.
- 2 На каждой итерации t:
 - Предлагаем нового кандидата θ' из некоторого предложенного распределения $q(\theta'|\theta_{t-1})$.
 - Вычисляем коэффициент принятия $\alpha = \frac{p(\theta'|D)}{p(\theta_{t-1}|D)}$. Так как $p(\theta|D) \propto p(D|\theta)p(\theta)$, нам не нужно знать нормализующую константу.
 - Принимаем кандидата ($\theta_t = \theta'$) с вероятностью $\min(1, \alpha)$, иначе оставляем старое значение ($\theta_t = \theta_{t-1}$).
- ① После достаточного числа итераций полученные значения $\{ \theta_t \}$ будут выборкой из апостериорного распределения.