Lecture 3 - Discrete Mafematiks

Kori Vernon

July 9, 2020

1 Lists

Definition: A list is an ordered sequence of objects. The order does matter.

1.1 Examples:

- (1) A student club consists of 10 members. They need to elect a vice-president, secretary, and treasurer.
- **Q:** In how many ways can it be done?
- **A:** If repetitions are not allowed, $10 \cdot 9 \cdot 8 \cdot 7$, however, if a person is allowed to be qualified for each position, it would be 10^4 .
- **Q:** If a person is allowed to hold at most two positions?
- A: (10,10,9,9), (9,8,9,10), (10,9,8,7) ... the summation of all permutations of the above arrangements.

2 Permutation

- A **Permutation** is an arrangement of n objects n! in a line, and (n-1)! in a circle.
- If we need to fill in n choose k positions when repetitions are allowed, and we choose out of n objects, there are n^k possibilities.
- When repetitions are not allowed, then, we would use what is known as a "falling factorial." $(n)_k = n \cdot (n-1) \cdot ... \cdot (n-k+1)$.

Note: To find the number of lists of length k out of n possible elements, we would use n^k with repetitions, and $(n)_k$ without repetitions.

2.1 Examples:

- (1) Airports have codes which consists of 3 letters. How many lists are available (if repetition is allowed)
- A: 26³, because repetition is allowed, there are 26 letters in the English alphabet, and there are three spaces.
- (2) A bit string is a list of 0's and 1's. How many length-k bit strings can be made?
- **A:** 2^k , because there are 2 possibilities for every k.
- (3) Anna owns different rings. She wears all three rings, but no two rings on the same finger. She also doesn't wear her rings on her thumbs.
- A: $8 \cdot 7 \cdot 6$. There are 8 possibilities for the first ring, 7 possibilities for the second ring, and 6 possibilities for the third ring.
- (3) How many five-digit numbers are there that do not have consecutive digits that are the same?
- **A:** (9,9,9,9,9)
- (4) A class contains 10 boys and 10 girls. In how many different way can they stand in a line if they must alternate in gender.
- **A:** $2 \cdot (10!)^2$
- (5) In how many ways can 20 books be arranged on a bookshelf?
- A: 20! different ways

3 Factorial

•
$$n! = n \cdot (n-1) \cdot ... \cdot 3 \cdot 2 \cdot 1$$

•
$$(n)_k = n \cdot (n-1) \cdot (n-1) \cdot \dots \cdot (n-k+1)$$

Recall: \sum = sigma is used to calculate the summation.

$$\Pi$$
 = the product. $\Pi_{n=1}^5 a_n = a_1 \cdot a_2 \cdot a_3 \cdot a_4 \cdot a_5$

The product notation of a factorial: $\prod_{k=1}^{n} k = (1)(2)...(n-1)(n)$

Note: The Scottish Mathematician James Stirling found an approximation for the formula n!

$$n! \approx \sqrt{2\pi n} \cdot n^n \cdot e^{-n}$$

n Choose k:

$$\frac{n!}{(n-k)!} = (n)_k$$

Factorion: A number that is equal to the sum of the factorial of its digits. For example, 1! = 1, and 2! = 2, as well as 145! = 1! + 4! + 5!. Initially coined by the author *Clifford A. Pickover*.

Double Fact: Because two is better than one... n!! is the factorial of odd positive integers.

$$5!! = 1 \cdot 3 \cdot 5$$

$$2(n+1)! = \prod_{k=1}^{n} (2k+1)$$

Remark: $n!! \neq (n!)!$

3.1 Examples:

(1) There are 6 different French books, 8 different Russian books, and 5 Spanish books. In how many ways can the different books be arranged in a bookshelf if all books in the same language are together.

A: $6! \cdot 8! \cdot 5! \cdot 3!$ An additional 3! is needed to account for the different ways that all of the books can be arranged.

(2) For n = 30, what is the relative error in the approximation?

$$30! \approx \sqrt{2\pi 30} 30^{30} \cdot e^{-30}$$

$$rel \; err = \frac{|actual - approx|}{|approx|}$$

$$rel \; err = \frac{|2.653 \cdot 10^{32} - 2.645 \cdot 10^{32}|}{|2.645 \cdot 10^{32}|} \cdot 100\% = 0.278\%$$

4 Set

Definition: A set is a repetition-free un-ordered collection of objects. A given object is either a member of a set or not. An object cannot be in a set more than once. There is no order to the members of a set.

IN: In order to indicate that an element is a member of a set, we use \in .

$$-\{x:x\in\mathbb{Z}\}$$

$$-\{x:x\in\mathbb{Z},x\ is\ even\}$$

$$- \{x : x \in \mathbb{Z}, x > 0\}$$

• The number of elements in a set A is denoted by |A|, and it is called the **cardinality** of set A.

$$-|\mathbb{Z}|=\infty$$

$$-A = \{a, b, c\}, \text{ then } |A| = 3$$

• An empty set has no elements inside and the notation is \emptyset . The cardinality of an empty set is $0 \mid \emptyset \mid = 0$.

2

- In order to show that two sets are equal, we must consider sets A and B. To show that A = B, we must show that:
 - 1. Suppose $x \in A \to \text{Therefore } x \in B$
 - 2. Suppose $x \in B \to \text{Therefore } x \in A$

Note: Must show both ways!!!!

SUBSET: In order for a set to be a **Subset**, we indicate that every element in the **Subset** is also in the **Set**. If we have sets A and B, we say that A is a subset of B if every element of A is also in B. Then we write $A \subseteq B$

- **Remark:** \emptyset is a subset of anyset.
- If A = B, then $A \subseteq B$ and $B \subseteq A$

POWERSET: A powerset is a set of all possible subsets of a set A. The notation is in the form 2^A .

- Finding Cardinality of Powerset: 2 to the power of the cardinality of the original set.

4.1 Examples:

(1) Let $E = \{x \in \mathbb{Z} : 2 | x \text{ and } F = \{z \in \mathbb{Z} : z = a + b, where a and b are odd\}$. Show that E = F.

Proof: Let $x \in E$, so there exists an integer $y \in \mathbb{Z}$, such that x = 2y. Let a = 2y + 1, which is an odd integer, and b = -1, which is an odd integer as well. Then $x = (2y + 1) + (-1 = a + b \in F)$, therefore, $x \in F$.

Let $x \in F$. Then x can be decomposed as a+b, where a and b are odd. Let a=2u+1, and b=2u+1, where $u,v\in\mathbb{Z}$. Thus, a+b=(2u+1)+(2v+1)=2u+2v+2=2(u+v+1), where 2|2(u+v+1), therefore x is even, therefore $x\in E$. \square

(2) Given a set $A = \{x, 5, 1\}$, find the power set.

$$\{\emptyset, \{x\}, \{1\}, \{5\}, \{x, 1\}, \{1, 5\}, \{x, 5\}, \{x, 1, 5\}\}$$

Cardinality: $2^{|A|} = 2^3 = 8$