Statistics Cheatsheet

Hongyi Guo*

October 21, 2020

1 Probabilty & Distribution

Definition 1 (Population). The entire group of individuals about which we want to learn something about.

Definition 2 (Sample). Subset of the population from which the information is actually obtained.

Definition 3 (Statistics). A numerical characteristic of the sample, a random variable.

Remark 4. Remarks on the difference between samples and population.

- (a) Population mean $\mu = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- (b) Population variance $\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \mu)^2$.
- (c) Sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
- (d) Sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$.

Definition 5 (SD, SE). SD is the standard deviation, while SE is the standard deviation of the sampling distribution, e.g., $SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$, $SE(\bar{X}) = \frac{\hat{\sigma}}{\sqrt{n}} = \frac{s}{n}$.

Definition 6 (Cdf, pmf, pdf). Let X be an r.v., then its *cumulative distribution function* (cdf) is defined by $F_X(x)$, where

$$F_X(x) = \mathbb{P}_X((-\infty, x]) = \mathbb{P}(X \le x).$$

For a discrete r.v. X, the probability mass function (pmf) of X is given by $p_X(x) = \mathbb{P}[X = x]$, for $x \in \mathcal{D}$. For a continuous r.v. X, the probability density function is given by $f_X(s) = \frac{\mathrm{d}}{\mathrm{d}x} F_X(s)$.

^{*}Northwestern University; hongyiguo2025@u.northwestern.edu

Definition 7 (Support). The support of a r.v. X is the points x in the space of X that $p_X(x) > 0$ (discrete r.v.) or $f_X(x) > 0$ (continuous r.v.).

Definition 8 (Point).

Remark 9. The cdf, pmf/pdf, mle of various distributions.

Name	Support	$\mathrm{pmf}/\mathrm{pdf}$	Mean	Variance	MLE	Fisher
Bernouli	(0,1)	$f(x;p) = \begin{cases} p: & x = 1 \\ 1 - p: & x = 0 \end{cases}$	p	p(1-p)	$\widehat{p} = \bar{x}$	$\frac{1}{p(1-p)}$
Uniform	[a,b]	$f(x;p) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 : & o.w. \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\widehat{b} = \min\{x_1, x_2, \dots\}$ $\widehat{a} = \max\{x_1, x_2, \dots\}$	-
Normal	$(-\infty,\infty)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}$	μ	σ	$\widehat{\mu} = \bar{x}$ $\widehat{\sigma} = \sum_{i=1}^{n} (x_i - \bar{x})^2$	$\left[\begin{array}{cc} \frac{1}{\sigma^2} & 0\\ 0 & \frac{2}{\sigma^2} \end{array}\right]$

2 Finding Point Estimators and Test Statistics

2.1 Point estimator

Definition 10 (Point estimates). Based on the data sample, come up with the best single guess $\widehat{\theta}$ for the unknown true parameter θ .

Definition 11 (Bias, Var). As follows,

$$\operatorname{Bias}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta}] - \theta, \quad \operatorname{Var}(\widehat{\theta}) = \mathbb{E}[\widehat{\theta} - \mathbb{E}[\widehat{\theta}]]^2.$$

Definition 12 (Consistent). $\widehat{\theta}$ is consistent if for any $\epsilon > 0$, $\lim_{n \to \infty} \mathbb{P}\{|\widehat{\theta} - \theta| \ge \epsilon\} = 0$.

2.2 Pivitol

Theorem 13. The CI of $\bar{X} - \bar{Y}$ is

2.3 MLE

Definition 14 (Likelihood). Likelihood function $L(\theta; \mathbf{x}) \equiv f(\mathbf{x}; \theta)$ is a function of θ for fixed \mathbf{x} . It's often simpler to maximize log-likelihood: $\ell(\theta; \mathbf{x}) \equiv \log(L(\theta; \mathbf{x}))$. When i.i.d.,

$$L(\boldsymbol{\theta}; \mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta})$$
$$\ell(\boldsymbol{\theta}; \mathbf{x}) = \log \left(\prod_{i=1}^{n} f(x_i; \boldsymbol{\theta}) \right) = \sum_{i=1}^{n} \log(f(x_i; \boldsymbol{\theta})).$$

Remark 15. For normal distribution,

$$L(\boldsymbol{\theta}; \mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i=1}^{n} f(x_i; \boldsymbol{\theta}) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2\right\}.$$

Definition 16 (MLE Principle). Choose estimator of θ to maximize $L(\theta; \mathbf{x})$: $\hat{\theta} \equiv \operatorname{argmax}_{\theta} L(\theta; \mathbf{x})$.

Remark 17. S^2 is an unbiased estimator of σ^2 . S is a biased estimator of σ . $\widehat{\sigma}$ is an unbiased estimator of σ .

Assumption 18 (Regularity assumptions). These assumptions are

- i) The pdf's are distinct for different θ ;
- ii) The pdf's have common support for all θ ;
- iii) θ_0 is in the interior of Ω .

Theorem 19 (Rao-Cramer Lower Bound). Let X_1, \ldots, X_n be i.i.d. with common pdf $f(x; \theta)$ for $\theta \in \Omega$. Assume that the regularity conditions hold. Let $Y = u(X_1, X_2, \ldots, X_n)$ be a statistic with mean $E(Y) = E[u(X_1, X_2, \ldots, X_n)] = k(\theta)$. Then

$$\operatorname{Var}(Y) \ge \frac{[k'(\theta)]^2}{nI(\theta)}.$$

2.4 Method of Moments

Lemma 20 (Shannon's Lemma). Uniqueness.

3 Find confidence regions and critical regions

Definition 21 (CR). For each $\theta_0 \in \Omega$, let $C(\theta_0) \subset \mathbb{R}^n$ denote the critical region for a size- α test of $H_0: \theta = \theta_0$ and a suitable H_1 , and for each \mathbf{x} ,

$$R(\mathbf{x}) \equiv \{ \boldsymbol{\theta}_0 : \mathbf{x} \notin C(\boldsymbol{\theta}_0) \} \subset \mathbb{R}^p.$$

Then $R(\mathbf{x})$ is a $1 - \alpha$ confidence region for $\boldsymbol{\theta}$.

Remark 22 (CR). A few remarks on CR.

1. CI is for scalar θ . CR is for p > 1 dimensional θ .

2. When adopting pivotal quantities to find CRs, in the scalar case, one-sided intervals are unique, but two-sided are not. Taking the shortest length interval is equivalent to requiring that θ has constant likelihood on the boundary. In p > 1 case, taking a minimum-volumn CR is equivalent to requiring that θ has constant likelihood on the boundary.

3.1 Asymptotic distribution

Definition 23 (Score function). The score function is defined as

$$\mathbf{S}(\boldsymbol{\theta}) \equiv \nabla \log f(x; \boldsymbol{\theta}) \equiv \left[\frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_1}{f(x; \boldsymbol{\theta})}, \frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_2}{f(x; \boldsymbol{\theta})}, \dots, \frac{\partial f(x; \boldsymbol{\theta}) / \partial \theta_p}{f(x; \boldsymbol{\theta})} \right]^{\top}$$

Definition 24 (Fisher Information, Hessian Matrix). The fisher information is defined as

$$\mathbf{I}(\boldsymbol{\theta}) \equiv -\mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2 \log(f(X; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^2} \right] = \mathbb{E}_{\boldsymbol{\theta}} \left[\left(\frac{\partial \log f(X; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right) \left(\frac{\partial \log f(X; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \right)^\top \right] = \operatorname{Cov}_{\boldsymbol{\theta}} [\nabla \log f(X; \boldsymbol{\theta})] \geq 0.$$

The Hessian matrix is defined as

$$\mathbf{H}(\boldsymbol{\theta}) \equiv \mathbb{E}_{\boldsymbol{\theta}} \left[\frac{\partial^2 \log(f(X; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta}^2} \right] = -\mathbf{I}(\boldsymbol{\theta}).$$

Remark 25. Fisher information relates to how accurately we can identify θ . $\mathbf{I}(\theta)$ is inversely proportional to the variance of the MLE.

Theorem 26. Let X_1, \ldots, X_n be iid. with pdf $f(x; \boldsymbol{\theta})$ for $\boldsymbol{\theta} \in \Omega$. Assume the regularity conditions hold. Then

- 1. The likelihood function $\frac{\partial}{\partial \theta} l(\theta) = \mathbf{0}$ has a solution $\widehat{\theta}_n$ s.t. $\widehat{\theta}_n \xrightarrow{P} \theta$.
- 2. For any sequence which satisfies (1),

$$\widehat{\boldsymbol{\theta}}_n \xrightarrow{D} N_p\left(\boldsymbol{\theta}, \frac{\mathbf{I}^{-1}(\boldsymbol{\theta})}{n}\right).$$

Theorem 27. Let g be a transformation $g(\theta) = (g_1(\theta), \dots, g_k(\theta))^{\top}$ s.t. $1 \leq k \leq p$ and that the $k \times p$ matrix of a partial derivatives $\mathbf{B} = \begin{bmatrix} \frac{\partial g_i}{\partial \theta_j} \end{bmatrix}$, $i = 1, \dots, k, \ j = 1, \dots, p$ has continuous elements and does not vanish in a neighborhood of θ . Let $\widehat{\boldsymbol{\eta}} = g(\widehat{\boldsymbol{\theta}})$. Then $\widehat{\boldsymbol{\eta}}$ is the mle of $\boldsymbol{\eta} = g(\theta)$, and

$$\widehat{\boldsymbol{\eta}} \xrightarrow{D} N_k \left(\boldsymbol{\eta}, \frac{\boldsymbol{B} \mathbf{I}^{-1}(\boldsymbol{\theta}) \boldsymbol{B}^{\top}}{n} \right).$$

Hence, $\mathbf{I}(\boldsymbol{\eta}) = [\boldsymbol{B}\mathbf{I}^{-1}(\boldsymbol{\theta})\boldsymbol{B}^{\top}].$

Remark 28. If expectation is tractable, take it. Substitute $\hat{\mathbf{I}} = \mathbf{I}(\hat{\boldsymbol{\theta}})$ for $\mathbf{I}(\boldsymbol{\theta}_0)$ if needed. Otherwise calculate observed Fisher info matrix.

Theorem 29 (Find approximate CRs or hyp tests). Individual normal CI on θ_j :

$$\widehat{\theta}_j \xrightarrow{D} N\left(\theta_j, \frac{[\mathbf{I}^{-1}(\boldsymbol{\theta})]_{j,j}}{n}\right).$$

Then, $SD(\widehat{\theta}_j) = \sqrt{\frac{[\mathbf{I}^{-1}(\boldsymbol{\theta})]_{j,j}}{n}}, SE(\widehat{\theta}_j) = \sqrt{\frac{[\widehat{\mathbf{I}}^{-1}]_{j,j}}{n}}, \text{ the approx. } 1 - \alpha \text{ CI is } \theta_j \in \widehat{\theta}_j \pm z_{\alpha/2}SE(\widehat{\theta}_j).$

Theorem 30 (Find joint χ^2 CR on $\boldsymbol{\theta}$). With the construction $[\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}]^{\top}[n\mathbf{I}(\boldsymbol{\theta})][\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}] \xrightarrow{D} \chi_p^2$, an approx. $1 - \alpha$ joint CR is

$$\left\{\boldsymbol{\theta}: [\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}]^{\top} [n\widehat{\mathbf{I}}] [\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}] \leq \chi_{p,\alpha}^2 \right\}.$$

The CR is an ellipsoid centered at $\hat{\theta}$.

Remark 31. A few remarks:

- 1. If $\mathbf{X} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $(\mathbf{X} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} \boldsymbol{\mu}) \sim \chi_k^2$.
- 2. Assume Σ has orthonormal eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots$ and eigenvalues $\lambda_1, \lambda_2, \dots$, and let $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k]$ and $\mathbf{D} = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_k\}$. Then $\Sigma = \mathbf{V}\mathbf{D}\mathbf{V}^{\top} = [\mathbf{V}\mathbf{D}^{1/2}][\mathbf{V}\mathbf{D}^{1/2}]^{\top} = \mathbf{A}\mathbf{A}^{\top}$.

3.2 Critical Regions from Asymptotic Dist.

Theorem 32. Assume that

- 1. $X_i: 1=1,2,\ldots,n$ i.i.d., $X \sim f(x; \boldsymbol{\theta}), n \to \infty$, same regularity conditions as for asymptotic distribution of MLE.
- 2. $\omega_0 = \{ \boldsymbol{\theta} \in \Omega : g_i(\boldsymbol{\theta}) = a_i, i = 1, 2, ..., q \}$ for some set of $q \leq p$ smooth independent functions $g_i(\cdot)$ and constants a_i , and ω_0 is in the interior of Ω . (ω_0 is a p-q dimensional manifold)
- 3. $\widehat{\boldsymbol{\theta}}_0$ and $\widehat{\boldsymbol{\theta}}$ in the LRT are consistent MLE solutions.

Then, when H_0 is true:

$$-2\log\Lambda(\mathbf{X}) \xrightarrow{D} \chi_q^2$$
.

We reject H_0 if $-2 \log \Lambda(\mathbf{X}) > \chi_{q,\alpha}^2$, i.e., reject H_0 if $\Lambda(\mathbf{X}) < c$ with $c = \exp\left\{\frac{-\chi_{q,\alpha}^2}{2}\right\}$.

Remark 33. Test with asymptotic distribution can better control α -risk.