# ROBOTIRÁNYÍTÁS

6. előadás A rendszer kimeneti válasza, rendszerválasz és alaptagok

Dr. habil. Kovács Levente egyetemi docens

kovacs.levente@nik.uni-obuda.hu

Dr. Haidegger Tamás egyetemi adjunktus

haidegger@irob.uni-obuda.hu











# Az előadás témája és célja

Ebben az előadásban megismerkedünk azokkal a legfontosabb fogalmakkal, melyek a rendszerválasz időtartománybeli jellemzéséhez szükségesek. Szó lesz ezeknek a fogalmaknak a jelentőségéről, és arról, hogyan következtethetünk a szabályzás minőségére az általuk definiált mérőszámok segítségével. Definiáljuk a dinamikus rendszerek lehetséges állapotait és a stabilitást.

Az előadás második részében gyakorlati példákon keresztül mutatjuk be, hogyan számítható a rendszerválasz időtartományban, a rendszer operátortartományban megadott átviteli függvényének és a rendszer bemenetének ismeretében. Bemutatjuk, hogyan alkalmazható a részlettörtekre bontás a rendszerválasz meghatározásánál, és az inverz Laplacetranszformáció alkalmazásánál módjáról is szó lesz.

Az előadás harmadik részében bemutatjuk azokat az alaptagokat, melyek egy valós, lineáris, dinamikus rendszer leírásában leggyakrabban előfordulnak, a tagok fizikai jelentését és átviteli függvényét tárgyaljuk. Szó lesz az alaptagok hatásvázlatban való elhelyezéséről, a hatásvázlat egyszerűsítéséről és az eredő átviteli függvény kiszámításáról.

Az előadás célja, hogy a hallgatók megismerjék, hogyan lehetséges egy irányítási rendszer leírásába a rendszer bemenetét integrálni, hogyan kapcsolhatók egyes rendszerek, és az eredő rendszer milyen matematikai struktúrával írható le.

# Kulcsszavak

Rendszerválasz, végérték, statikus hiba, túllövés, holtidő, felfutási idő, szabályozási idő, dinamikus hibasáv, nyugalmi helyzet, gerjesztett rendszer, stabilis rendszer, labilis rendszer, állandósult állapot, rendszerválasz időfüggvénye, Hurwitz-kritérium, alaptagok, soros kapcsolás, párhuzamos kapcsolás, visszacsatolás, hatásvázlat-egyszerűsítés

# Tartalomjegyzék

| 1. A rendszer viselkedése                                    | 4  |
|--------------------------------------------------------------|----|
| 1.1. A rendszer ugrásválaszának értelmezése                  | 4  |
| 1.2. A rendszer állapotának leírása: definíciók              | 5  |
| 2. A rendszerválasz becslése                                 | 6  |
| 2.1. A Laplace-transzformáció és részlettörtekre való bontás | 6  |
| 2.2. Az impulzusválasz időfüggvénye                          | 7  |
| 2.3. Az egységugrás-válasz időfüggvénye                      | 8  |
| 3. A rendszer átviteli függvényének vizsgálata               | 9  |
| 3.1. A Hurwitz-kritérium                                     | 9  |
| 3.2. Alaptagok                                               | 10 |
| 3.3. Alaptagok kapcsolása                                    | 11 |

## 1. A rendszer viselkedése

#### 1.1. A rendszer ugrásválaszának értelmezése

Egy dinamikus rendszer viselkedéséről és a szabályzás milyenségéről a rendszer ugrásválasza (átmeneti függvénye) ad információt.

Az átmeneti függvény vizsgálata két alapesetben lehet hasznunkra:

1. Egy rendszer dinamikai jellemzőinek, felépítésének becslése



2. Egy szabályozott rendszer esetében, a szabályozás időtartománybeli jellemzőinek (minőségének) ellenőrzése



Egy általános kéttárolós rendszer tipikus átmeneti függvénye az 1. ábrán látható.



1. ábra: Egy általános kéttárolós rendszer tipikus átmeneti függvénye

#### Az 1. ábra alapján a következő alapfogalmakat vezethetjük be:

Kovács – Haidegger: Robotirányítás

*Végérték*: az átmeneti függvény értéke  $t \rightarrow \infty$  esetében

Statikus hiba: az átmeneti függvény végértékének előjeles eltérése a bemenetre adott egységugrás értékétől

*Túllövés*: az átmeneti függvény első maximumának értékének eltérése a végértéktől. Százalékban adjuk meg:

$$\Delta v = \frac{v(T_M) - v_{\infty}}{v_{\infty}} \tag{1}$$

 $T_H$  Holtidő: az az időtartam, melynek el kell telnie, hogy a bemenet hatása megjelenjen a kimeneten.

 $T_R$  Felfutási idő: a végérték 10%-ának és 90%-ának felvétele között eltelt idő

 $T_M$  Az átmeneti függvény első maximumának eléréséhez szükséges idő

 $T_{2\%}$  Szabályozási idő: az az időtartam, amely után a rendszerválasz nem lép ki a végérték  $\pm$  2%-s hibasávjából

#### 1.2. A rendszer állapotának leírása: definíciók

Ahhoz, hogy egy rendszer állapotát egyértelműen meghatározzuk, a rendszer viselkedése alapján célszerű néhány általános definíciót bevezetni.

#### Mozgásállapot

Adott egy  $\dot{\mathbf{x}}(t) = f(\mathbf{x}, t)$  alakban felírható dinamikus rendszer.

A rendszer nyugalmi állapotban van, ha a valamennyi állapotváltozójának mozgása megszűnik, azaz  $\dot{\mathbf{x}}(t)=\mathbf{0}.$ 

A nyugalmi helyzetből kitérített, majd magára hagyott rendszer mozgását a rendszer saját mozgásának nevezzük.

Ha a nyugalmi helyzetből a rendszert egy időfüggő bemenő jel hatására térítjük ki, gerjesztett mozgásról beszélünk.

#### Stabilitás

A nyugalmi helyzetből kitérített rendszer akkor *stabilis*, ha saját mozgása során visszatér nyugalmi helyzetébe vagy annak közeli környezetébe. *Pl. Matematikai inga* 

A nyugalmi helyzetből kitérített rendszer akkor *labilis*, ha saját mozgása során nem tér vissza nyugalmi helyzetébe vagy annak közeli környezetébe. *Pl. Inverz inga* 

Kovács - Haidegger: Robotirányítás

Állandósult állapot: a rendszer viselkedése  $t \to \infty$  esetén. Nem feltétlenül jelent nyugalmi állapotot (pl. harmonikus gerjesztés). Az állandósult állapot meghatározására a Laplace végérték tétel alkalmazható:

$$y_{t\to\infty} = \lim_{s\to 0} s \cdot W(s) \cdot U(s)$$
 (2)

W(s): a rendszer átviteli függvénye

U(s): a rendszer bemenetének Laplace-transzformáltja

Példa: állandósult állapot számítása

Ha  $W(s) = \frac{3}{2+s}$ , a rendszer átmeneti függvénye állandósult állapotban:

$$y_{t\to\infty} = \lim_{s\to 0} s \cdot \frac{3}{2+s} \cdot \frac{1}{s} = \lim_{s\to 0} \frac{3}{2+s} = \frac{3}{2}$$
 (3)

#### 2. A rendszerválasz becslése

#### 2.1. A Laplace-transzformáció és részlettörtekre való bontás

Az előző előadás anyagában láthattuk, hogyan alakíthatóak át az időtartománybeli differenciálegyenletek algebrai egyenletekké a Laplace-transzformáció segítségével. Hasonlóképpel, megfelelő alakra hozva az operátortartománybeli kifejezéseket, az inverz Laplace-transzformáció segítségével meghatározható a rendszer időbeli lefutása.

Az inverz Laplace-transzformáció könnyen elvégezhető részlettörtekre bontással is, amennyiben a transzformált függvény az operátortartományban racionális törtfüggvény, azaz számlálója és nevezője valós együtthatójú polinom s-ben.

Ha a tört Y(s) nevezője D(s) szorzatalakos formában van, akkor a törtet felbontjuk olyan részlettörtek összegére, melyeknek nevezője az eredeti tört egy-egy szorzatát tartalmazza:

$$Y(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s-p_1)(s-p_2)\cdots(s-p_n)} = \frac{r_1}{s-p_1} + \frac{r_2}{s-p_2} + \cdots + \frac{r_n}{s-p_n}$$
(4)

A részlettörtek számlálóit az alábbi összefüggés segítségével számítjuk:

$$r_{n} = \left[ \left( s - p_{n} \right) \frac{N(s)}{D(s)} \right]_{s = p_{n}} \tag{5}$$

#### 2.2. Az impulzusválasz időfüggvénye

Az impulzusválasz időfüggvényének számítását a következő példán keresztül mutatjuk be.

*Példa*: Számítsuk ki az alábbi átviteli függvénnyel megadott rendszer impulzusválaszának időfüggvényét:

$$W(s) = \frac{50}{(s^2 + 7s + 10)(s + 10)} \tag{6}$$

A megoldáshoz a kimeneti jel Laplace transzformáltjának részlettörtekre bontásával jutunk. Először azonban nézzük meg a bementi jel Laplace transzformáltját:

$$u(t) = \delta(t) \to U(s) = 1 \tag{7}$$

Az átviteli függvény definícióját átrendezve a kimenetre következő kifejezés adódik:

$$Y(s) = W(s) \cdot U(s) = \frac{50}{(s^2 + 7s + 10)(s + 10)} \cdot 1$$
(8)

A nevezőből az egyik pólus számítás nélkül is meghatározható:  $p_1 = -10$ . A másik két pólus a másodfokú egyenlet megoldóképletéből származtatható:  $s^2 + 72 + 10 = 0 \rightarrow p_2 = -5$ ,  $p_3 = -2$ 

A kimenetre adódó kifejezés operator tartományban tehát felírható a következő szorzatos alakban:

$$Y(s) = \frac{50}{(s+2)(s+5)(s+10)} \tag{9}$$

A részlettörtekre bontáshoz felhasználjuk az (5) egyenletet, így:

$$r_{1} = \left[ (s+10) \frac{50}{(s+2)(s+5)(s+10)} \right]_{s=-10} = 1.25$$
(10)

$$r_2 = \left[ (s+5) \frac{50}{(s+2)(s+5)(s+10)} \right]_{s=-5} = -3.33$$
 (11)

$$r_3 = \left[ (s+2) \frac{50}{(s+2)(s+5)(s+10)} \right]_{s=-2} = 2.08$$
 (12)

A kiszámított értékek segítségével a kimenet Laplace-transzformáltja felírható részlettörtek összegeként:

Kovács - Haidegger: Robotirányítás

$$Y(s) = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \frac{r_3}{s - p_3} = \frac{1.25}{s + 10} + \frac{-3.33}{s + 5} + \frac{2.08}{s + 2}$$
 (13)

A kimenet időtartománybeli felírásához inverz Laplace-transzformációra van szükség:

$$y(t) = \mathcal{L}^{-1}\left\{Y(s)\right\} \tag{14}$$

A nevezetes függvények Laplace-transzformáltjának táblázatából kiolvasható, hogy

$$\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{at} \tag{15}$$

Ezt felhasználva az összeg minden tagjára, a kimenet alakja időtartományban a következőképpen írható fel:

$$y(t) = 1.25e^{-10t} - 3.33e^{-5t} + 2.08e^{-2t}.$$
 (16)

## 2.3. Az egységugrás-válasz időfüggvénye

Az impulzusválasz-függvényhez hasonlóan számítható a rendszer egységugrás-bemenetre adott válasza időtartományban.

Példa: Számítsuk ki a (6) egyenletben feltüntetett átviteli függvénnyel megadott rendszer egységugrás-válaszának időfüggvényét!

A megoldáshoz itt is a kimeneti jel Laplace transzformáltjának részlettörtekre bontásával jutunk, melyhez először szükség van a bemeneti jel Laplace-transzformáltjának meghatározásához:

$$u(t) = 1(t) \rightarrow U(s) = \frac{1}{s} \tag{17}$$

Hasonlóan az előző példához, a kimenet alakja operátortartományban a következő alakban írható fel:

$$Y(s) = W(s) \cdot U(s) = \frac{50}{(s^2 + 7s + 10)(s + 10)} \cdot \frac{1}{s}$$
(18)

Látható, hogy egy új pólus is megjelenik a rendszerben, így a négy pólus a következőképpen alakul:  $p_1=-10,\ p_2=-5,\ p_3=-2,\ p_4=0$  .

Kovács – Haidegger: Robotirányítás

$$r_{1} = \left[ (s+10) \frac{50}{(s+2)(s+5)(s+10)s} \right]_{s=-10} = -0.26$$
(19)

$$r_2 = \left[ (s+5) \frac{50}{(s+2)(s+5)(s+10)s} \right]_{s=-5} = 0.67$$
 (20)

$$r_3 = \left[ (s+2) \frac{50}{(s+2)(s+5)(s+10)s} \right]_{s=-2} = -1.04$$
 (21)

$$r_4 = \left[ s \frac{50}{(s+2)(s+5)(s+10)s} \right]_{s=0} = 0.5$$
 (22)

Operátortartományban a kimenet a következőképpen írható fel részlettörtekre bontás után:

$$Y(s) = \frac{r_1}{s - p_1} + \frac{r_2}{s - p_2} + \frac{r_3}{s - p_3} + \frac{r_4}{s - p_4} = \frac{-0.26}{s + 10} + \frac{0.67}{s + 5} + \frac{-1.04}{s + 2} + \frac{0.5}{s}$$
(23)

Ugyancsak a Laplace-transzformációs táblázatot felhasználva, a rendszer kimenete időtartományban a következő:

$$y(t) = -0.26e^{-10t} + 0.67e^{-5t} - 1.04e^{-2t} + 0.5.$$
 (24)

## 3. A rendszer átviteli függvényének vizsgálata

#### 3.1. A Hurwitz-kritérium

A Hurwitz-kritérium telesülése a lineáris rendszerek stabilitásának szükséges és elégséges feltétele. A szabályozástechnikában zárt szabályzási rendszerekre alkalmazzák a rendszer átviteli függvényének ismeretében:

$$W(s) = \frac{Y(s)}{U(s)} = \frac{W_0(s)}{1 + W_0(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0}$$
(25)

 $a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$  a rendszer *karakterisztikus polinomja*.

A rendszer stabilitásához a következő kritériumoknak együttesen kell teljesülniük:

$$a_i > 0 i = 1 \dots n (26)$$

$$H_i > 0 \qquad \qquad i = 1 \dots n \tag{27}$$

 $H_i$  a H Hurwitz-mátrixhoz tartozó, főátló menti aldeterminánsokat jelöli, melyek a következőképpen számítandók:

2. ábra: A Hurwitz-determináns és az aldeterminánsok számítása

## 3.2. Alaptagok

A valós rendszerek átviteli függvényét általában felírhatjuk ún. *alaptagok* szorzataként, mely a rendszerek valós mechanikai/elektromos/mágneses stb. viselkedésének a következménye. Ezek a tagok nullad-, első- és másodrendű rendszereket írnak le.

Példa:

$$W(s) = \frac{12s^2 + 8s + 1}{s^4 + 5s^3 + 7s^2 + 2s} = 0.5 \cdot \frac{1}{s} \cdot \frac{1}{0.5s + 1} \cdot (2s + 1) \cdot (6s + 1) \cdot \frac{1}{1 + 3s + s^2}$$
 (28)

Az egyes tagok jellemzése azok *amplitúdó*- és *fázismenetével* történik. Általánosságban elmondható, hogy egy komplex dinamikus rendszer viselkedését jól közelíthetjük, ha az alaptagok egyéni viselkedéséből, mint alkotóelemekből becsüljük a teljes rendszert (Bodediagram).

A következőben bemutatjuk ezeket az alaptagokat.

Arányos tag: konstans szorzóként jelenik meg az átviteli függvényben.

$$W(s) = p \tag{29}$$

Egyenes arányosságot jelöl, pl. Newton II. törvénye:  $F = m \cdot a$ ,  $W(s) = \frac{a}{F} = \frac{1}{m}$ 

Egytárolós tag: egy energiatárolóval rendelkezik, mely rendszerint egy állapotváltozó deriválását jelenti.

Arányos integrátor:

$$W(s) = \frac{1}{1 + Ts} \tag{30}$$

Arányos deriváló tag:

$$W(s) = 1 + Ts \tag{31}$$

Kovács - Haidegger: Robotirányítás

Példa egytárolós tagra: RL-rezgőkör.

$$\frac{di(t)}{dt} = -\frac{R}{L}i(t) + \frac{1}{L}V_{be}(t), \quad sI(s) = -\frac{R}{L}I(s) + \frac{1}{L}V_{be}(s)$$
 (32)

$$W(s) = \frac{I(s)}{V_{be}(s)} = \frac{\frac{1}{L}}{\frac{R}{L}s + 1}$$
 (33)

Ideális integráló tag:

$$W(s) = \frac{1}{Ts} \tag{34}$$

Ideális deriváló tag:

$$W(s) = Ts \tag{35}$$

Az ideális tagok általában állapotváltozók közti integráló/deriváló kapcsolatot jelentenek.

Például viszkózus csillapítás:  $F_b = b \frac{\mathrm{d}v}{\mathrm{d}t}$ ,  $W(s) = \frac{F_b}{v} = bs$ 

Kéttárolós tag

A rendszer tehetetlenségét jelöli. Általános alakja:

$$W(s) = \frac{1}{T^2 s^2 + 2\xi T s + 1} \tag{36}$$

Például ilyen tömeg-rugó-csillapítás modell:

$$m\ddot{x} + b\dot{x} + kx = F \tag{37}$$

$$W(s) = \frac{X(s)}{F(s)} = \frac{1}{ms^2 + bs + k} = \frac{\frac{1}{k}}{\frac{k}{m}s^2 + \frac{b}{k}s + 1}$$
(38)

## 3.3. Alaptagok kapcsolása

A szabályozókör tagjainak kapcsolása a hatásláncon belül meghatározza az eredő átviteli függvényt. Ilyenek a *soros* kapcsolás, a *párhuzamos* kapcsolás, illetve a pozitív vagy negatív visszacsatolás.

Soros kapcsolás: az egymással sorosan összekapcsolt tagok összeszorzódnak



3. ábra: Alaptagok soros kapcsolása

$$W(s) = W_1(s)W_2(s) (39)$$

Párhuzamos kapcsolás: az egymással párhuzamosan összekapcsolt tagok összeadódnak.



4. ábra: Alaptagok párhuzamos kapcsolása

$$W(s) = W_1(s) + W_2(s) (40)$$

Visszacsatolás: visszacsatolásnak nevezzük, ha a szabályozókörön belül egy jelet közvetlenül vagy egy visszacsatolt tagon keresztül visszavezetünk a hatáslánc egy korábbi pontjába, hurkot képezve. A kanonikus szabályozókörben ezt negatív visszacsatolással érjük el.



5. ábra: Alaptagok visszacsatolása

Kovács – Haidegger: Robotirányítás

Példa: hatásvázlat egyszerűsítése

Adott a 6. ábrán látható hatásvázlat. Határozzuk meg  $W(s) = \frac{Y(s)}{U(s)}$  eredő átviteli függvényt!



6. ábra: Az eredeti rendszer hatásvázlata

A hatásvázlat egyszerűsítése részletekben történik, az alaptagok összevonásával a soros és párhuzamos kapcsolás, illetve a visszacsatolt tagok eredőjének számításához használt egyenlettel. Elsőként a párhuzamosan kapcsolt tagokat vonjuk össze (7. ábra és (40)).

$$W_1(s) = 5 + \frac{10}{s+1} = \frac{5s+15}{s+1} = 5\frac{s+3}{s+1}$$
(40)

A következő lépésben az egymással sorosan kapcsolt tagokat vonjuk össze, azaz szorozzuk őket össze (8. ábra és 41).

$$W_2(s) = \frac{2}{s} \cdot 5 \cdot \frac{s+3}{s+1} \cdot \frac{1}{s+3} = \frac{10}{s(s+1)}$$
 (41)

Végül, a visszacsatolt rendszert egyetlen átviteli függvénnyé alakítjuk (9. ábra és (42)).



7. ábra: Párhuzamosan kapcsolt tagok összevonása



8. ábra: Sorosan kapcsolt tagok összevonása



9. ábra: A visszacsatolt rendszer egyszerűsítése

$$W(s) = \frac{\frac{10}{s(s+1)}}{1+4\frac{10}{s(s+1)}} = \frac{10}{s^2+s+40}$$
 (42)

A (42) egyenlet tehát a rendszer eredő átviteli függvénye, melyet a hatásvázlat részletekben történő egyszerűsítésével határoztunk meg.

# Az előadás összefoglalása

Ebben az előadásban bemutattuk, milyen jellemzőkkel jellemezhető egy rendszer átmeneti függvénye, és hogy ezek a jellemzők hogyan kapcsolódnak a szabályozás minőségéhez. Láthattuk, hogyan számítható egy rendszer kimenetének időfüggvénye a rendszer és a bemeneti jel függvényében, mely a kurzus következő előadásaiban felmerülő példafeladatokban gyakran visszatérő módszer lesz. A hatásvázlat egyszerűsítése és az alaptagok kapcsolása a szabályozótervezés egyik fontos lépése. Mint ahogyan azt ebben az előadásban is láthattuk, a rendszer elemeinek átviteli függvénnyel való leírása lehetővé teszi az elemek egyetlen komplex hatásvázlatban való egyesítését, mely az irányítástechnikában a rendszerek leggyakrabban alkalmazott leírása.

## Ellenőrző kérdések

- 1. Milyen értékekkel jellemezhető egy kéttárolós rendszer átmeneti függvénye? Mi ezeknek a jellemzőknek a fizikai tartalma?
- 2. Mit jelent, ha egy rendszer nyugalmi állapotban van, mi a saját mozgás és gerjesztett mozgás, és mikor beszélünk állandósult állapotról?
- 3. Hogyan számítató egy rendszer időtartománybeli lefutása adott bemenetre? Hogyan változik a rendszerválasz, ha a példákban szereplő rendszerre egységsebességugrás vagy harmonikus gerjesztést kapcsolunk?
- 4. Mi a Hurwitz-kritérium? Hogyan alakul a Hurwitz-determináns első-, másod-, harmad- és negyedrendű rendszerek esetén?
- 5. Hogyan egyszerűsíthető a hatásvázlat sorosan és párhuzamosan kapcsolt tagok esetén? Mi lenne az átviteli függvény pozitív visszacsatolás esetén?