

Programação Linear - definição matricial Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

3 de novembro de 2020

Programação Linear - definição matricial

antes

O algoritmo simplex foi implementado usando quadros.

Guião

- As operações realizadas podem ser descritas usando matrizes.
- A definição matricial das operações oferece uma nova perspectiva, que permite conceber operações mais complexas, como:
- mudar directamente de um quadro inicial para qualquer outro quadro final, efectuando simultaneamente um conjunto dos pivôs; ou
- implementar uma forma matricial do algoritmo simplex, muito mais eficiente do que a resolução usando quadros.

depois

• A definição matricial será usada em análise de sensibilidade.

Conteúdo

- Sistema de equações e soluções básicas
- Operação matricial de mudança de base
- Forma matricial do algoritmo simplex

Problema de PL e representação matricial

Gera	ıl	Exemplo				
max cx Ax · x ≥	+ <i>Is</i> = <i>b</i>	max $30x_1 + 20x_2 + 10x_3$ suj. $1x_1 + 1x_2 + 2x_3 + s_1 = 40$ $2x_1 + 2x_2 + 1x_3 + s_2 = 150$ $2x_1 + 1x_2 + s_3 = 20$ $x_1, x_2, x_3 \ge 0$				
A	<i>I b</i> 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Sistema de equações e soluções básicas

 Dada uma qualquer escolha de variáveis básicas, o problema $\max z = cx$, suj. a $Ax = b, x \ge 0$ é equivalente a:

max
$$z = c_B x_B + c_N x_N$$

suj. a $Bx_B + Nx_N = b$
 $x_B, x_N \ge 0$

• em que o vector de variáveis x é partido em dois subvectores:

 $x_B \in \mathbb{R}^{m \times 1}_+$: subvector de x com as variáveis básicas, $x_M \in \mathbb{R}^{(n-m)\times 1}$: subvector de x com as variáveis não-básicas,

• o vector de custos c é partido em dois subvectores:

 $c_B \in \mathbb{R}^{1 \times m}$: subvector de c com os custos das variáveis básicas. $c_N \in \mathbb{R}^{1 \times (n-m)}$: subvector de c com os custos das variáveis não-básicas

• a matriz A é partida em duas submatrizes:

 $B \in \mathbb{R}^{m \times m}$: submatriz de A das variáveis básicas (não-singular), $M \in \mathbb{R}^{m \times (n-m)}$

: submatriz de A das variáveis não-básicas.

Resolve-se o sistema de equações em ordem a x_B ...

• pré-multiplicando o sistema de equações por B^{-1} :

$$\begin{array}{rcl} B^{-1}(Bx_B + Nx_N) & = & B^{-1}b \\ x_B + B^{-1}Nx_N & = & B^{-1}b \\ x_B & = & B^{-1}b - B^{-1}Nx_N \end{array}$$

• Substituindo x_B na função objectivo, obtém-se:

$$z = c_B x_B + c_N x_N = = c_B (B^{-1}b - B^{-1}Nx_N) + c_N x_N = = c_B B^{-1}b + (c_N - c_B B^{-1}N)x_N$$

Quando $\widetilde{x}_N = 0$, a solução do sistema de equações é a solução básica \widetilde{x} :

$$\bullet \quad \widetilde{x} \quad = \quad \left(\begin{array}{c} \widetilde{x}_B \\ \widetilde{x}_N \end{array}\right) = \left(\begin{array}{c} B^{-1}b \\ 0 \end{array}\right)$$

- que tem um valor de função objectivo $\tilde{z} = c_B B^{-1} b = c_B \tilde{x}_B$
- Se $\widetilde{x}_B \ge 0$ então \widetilde{x} é uma solução básica admissível.

Exemplo 1: um pivô ...

• para uma base adjacente, entrando x_1 na base, e saindo s_3 ,

		x_1						
<i>s</i> ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

• equivale a resolver o sistema de equações em ordem às variáveis básicas s_1, s_2 e x_1 ; as matrizes B, N e os vectores c_B e c_N são:

$$B = \begin{bmatrix} s_1 & s_2 & x_1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \qquad N = \begin{bmatrix} x_2 & x_3 & s_3 \\ 1 & 2 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 0 & 0 & 30 \end{bmatrix} \qquad c_N = \begin{bmatrix} 20 & 10 & 0 \end{bmatrix}$$

• Notar que as colunas da matriz B e do vector c_B estão ordenadas na mesma sequência das variáveis básicas no quadro seguinte.

Exemplo 2: vários pivôs simultaneamente ...

• para uma base não adjacente, que vamos resolver com detalhe.

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
-s ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>5</i> 3	0	2	1	2 1 0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

• Para resolver o sistema de equações em ordem às variáveis básicas x_3, s_2 e x_2 , as matrizes B, N e os vectores c_B e c_N são:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad N = \begin{bmatrix} x_1 & s_1 & s_3 \\ 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix} \qquad c_N = \begin{bmatrix} 30 & 0 & 0 \end{bmatrix}$$

• De novo, as colunas da matriz B e do vector c_B estão ordenadas na sequência pretendida para as variáveis básicas no quadro final.

Exemplo 2: cálculo de B^{-1} e $c_B B^{-1}$

• A matriz B^{-1} e o vector $c_B B^{-1}$ aparecem várias vezes nos cálculos:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$
 $c_B B^{-1} = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix}$

Perspectiva

ullet A matriz B^{-1} pode ser vista como a matriz que guarda informação sobre todos os pivôs efectuados para fazer entrar na base as variáveis básicas pretendidas.

Exemplo 2: cálculo da solução, determinando \tilde{x}_B

$$\begin{aligned} x_B &= & B^{-1}b & - & B^{-1}N \ x_N \\ \begin{bmatrix} x_3 \\ s_2 \\ x_2 \end{bmatrix} &= & \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} - & \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix} \\ \begin{bmatrix} x_3 \\ s_2 \\ x_2 \end{bmatrix} &= & \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} & - & \begin{bmatrix} -1/2 & 1/2 & -1/2 \\ -3/2 & -1/2 & -3/2 \\ 2 & 0 & 1 \end{bmatrix} * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix} \end{aligned}$$

- A solução é admissível: \widetilde{x}_B têm coordenadas não-negativas.
- Os valores das variáveis básicas são: $\widetilde{x}_B = (x_3, s_2, x_2)^{\top} = (10, 100, 20)^{\top}$
- Os valores das vars não-básicas são: $\widetilde{x}_N = (x_1, s_1, s_3)^\top = (0, 0, 0)^\top$
- $\widetilde{x} = (x_1, x_2, x_3, s_1, s_2, s_3)^{\top} = (0, 20, 10, 0, 100, 0)^{\top}$

Exemplo 2: cálculo do valor da solução, \tilde{z}

$$z = c_B B^{-1} \quad b \quad + (c_N - c_B B^{-1} N) x_N$$

$$z = \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix} + \begin{bmatrix} 30 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 5 & 0 & 15 \end{bmatrix} * \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 1 \end{bmatrix}) * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix} =$$

$$z = 500 \quad + \begin{bmatrix} -5 & -5 & -15 \end{bmatrix} * \begin{bmatrix} x_1 \\ s_1 \\ s_3 \end{bmatrix} =$$

- O valor da função objectivo da solução obtida, \tilde{z} , é 500.
- A solução também é óptima para o problema de maximização (dado que $z = 500 5x_1 5s_1 15s_3$).

Exemplo 2: o quadro inicial e o quadro final

 A informação dos diapositivos anteriores pode ser usada para construir o quadro final, reordenando as colunas.

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
	<i>s</i> ₁	0	1	1	2	1	0	0	40
quadro inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0

quadro final

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
X3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

Motivação

- De seguida vamos representar estas operações matriciais no quadro simplex.
- Iremos usá-las em Análise de sensibilidade, também designada por Análise pós-optimização.
- Nesse contexto, dispomos do quadro inicial e do quadro óptimo, e
- podemos estudar os efeitos que uma alteração de dados no quadro inicial tem sobre o quadro óptimo,
- usando a matriz que opera a mudança directa do quadro inicial para o quadro óptimo.

Operação matricial de mudança de base - i

No quadro simplex inicial, o sistema de equações:

$$Ax + Is = [A \mid I] * [x \mid s]^{\top} = b$$

está resolvido em ordem às variáveis s.

- Para obter um quadro simplex final em que as variáveis básicas sejam as variáveis do conjunto x_B , temos de identificar:
 - a matriz B, que é a submatriz de $[A \mid I]$ com as colunas das variáveis básicas do conjunto x_B , e
 - ullet o vector c_B , com os coeficientes do vector c das mesmas variáveis.

A matriz que opera a mudança do quadro inicial para o final é:

Operação matricial de mudança de base - ii

Prova:

- No quadro simplex final, as variáveis básicas são as pretendidas, porque:
 - a matriz identidade / aparece nas posições da matriz B, e
 - o vector nulo aparece na linha da função objectivo.

$$\begin{bmatrix} B^{-1} & \widetilde{0} \\ c_B B^{-1} & 1 \end{bmatrix} * \begin{bmatrix} B \\ -c_B \end{bmatrix} = \begin{bmatrix} I \\ \widetilde{0} \end{bmatrix}$$

 A regra de multiplicação de matrizes partidas (em submatrizes) é semelhante à da multiplicação de matrizes.

Operação matricial de mudança de base - iii

 O Quadro Final obtém-se pré-multiplicando o Quadro Inicial pela matriz que opera a mudança de base:

B^{-1}	õ	*	А	1	Ь	=
$c_B B^{-1}$	1		-с	Õ	0	
		=	$B^{-1}A$	B^{-1}	$B^{-1}b$	
			$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$	

 Nota: tal como vimos no diapositivo anterior, nas posições que a matriz B ocupa no Quadro Inicial, aparecem as colunas da matriz identidade no Quadro Final.

O mesmo Exemplo 2

Dado o Quadro Inicial:

	Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
s 3	0	2	1 2 1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0

• para resolver o sistema de equações em ordem às variáveis básicas x_3, s_2 e x_2 , as matrizes B, N e os vectores c_B e c_N são:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} \qquad B^{-1} = \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B B^{-1} = 5 0 15$$

Exemplo 2

							Z	x_1	<i>X</i> 2	<i>X</i> 3	s_1	<i>s</i> ₂	s 3		
1/2	2	0	-1/2	0	*	<i>s</i> ₁	0	1	1	2	1	0	0	40	=
-1/2	2	1	-3/2	0		<i>s</i> ₂	0	2	2	1	0	1	0	150	
()	0	1	0		s 3	0	2	1	0	0	0	1	20	
ĺ	5	0	15	1		Z	1	-30	-20	-10	0	0	0	0	
							Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃		
					=	X3	0	-1/2	0	1	1/2	0	-1/2	10	
						<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100	
						<i>X</i> ₂	0	2	1	0	0	0	1	20	
						Z	1	5	0	0	5	0	15	500	
					*										
		B	-1	õ					Α			1		Ь	

 $\begin{array}{c|c}
B^{-1} & \widetilde{0} \\
\hline
c_B B^{-1} & 1
\end{array}$

=

A	1	Ь
-с	õ	0
$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

Notas

- No exemplo, o quadro final é a solução óptima, porque eu escolhi as variáveis básicas que sabia de antemão serem as da solução óptima.
- No caso geral, quando se escolhe um conjunto de variáveis básicas:
 - se algum elemento do vector B⁻¹b for negativo, obtém-se um vértice não-admissível;
 - se algum elemento dos vectores $c_B B^{-1}$ ou $c_B B^{-1} A c$ for negativo, obtém-se um vértice que não é óptimo (prob. de maximização).
- No contexto de análise de sensibilidade, a matriz B^{-1} e o vector $c_B B^{-1}$ aparecem no quadro óptimo, permitindo construir a matriz que opera a mudança de base.
- Está portanto disponível toda a informação necessária para recalcular o quadro óptimo para determinar os efeitos de uma alteração, no quadro inicial, de um elemento dos vectores b ou c.

Forma matricial do algoritmo simplex

Ideia chave:

- Cada matriz B^{-1} está associada a uma base (*i.e.*, quadro simplex).
- O algoritmo é implementado actualizando apenas a matriz B^{-1} ,
- porque a matriz B^{-1} e as matrizes do quadro inicial (A, b, c) são suficientes para calcular todos os elementos do quadro simplex.

Mas não é preciso calculá-los todos. Para determinar o elemento pivô,

- só é preciso calcular a linha da função objectivo, para identificar a coluna pivô, e
- a coluna do lado direito e a coluna pivô, para identificar a linha pivô.
- Não é necessário calcular nenhuma das outras colunas.

Algoritmo simplex primal na forma matricial

- /* Calcular custos reduzidos das variáveis não-básicas */ Calcular $c_B B^{-1} A_j c_j$, $\forall j$
- ② /* Testar optimalidade (prob. de maximização) */ Se $c_B B^{-1} A_j - c_j \ge 0, \forall j$, a solução é óptima. Senão,
- /* Seleccionar coluna pivô k */

$$k = \operatorname*{argmin}_{j \in N} \left\{ c_B B^{-1} A_j - c_j \right\}$$

- Calcular coluna pivô, $B^{-1}A_k$
- \bullet Se todos os elementos de $B^{-1}A_k \le 0$, a solução é ilimitada. Senão,
- **1** Calcular coluna do lado direito, $B^{-1}b$, e seleccionar linha pivô p

$$p = \arg\min_{i} \{ (B^{-1}b)_{i} / (B^{-1}A_{k})_{i} \}.$$

• Actualizar a matriz B^{-1} , e voltar ao passo 1.

Designam-se por *Custos reduzidos* de uma variável os elementos do vector $-(c-c_BB^{-1}A)$. Os coeficientes de custo inicial são reduzidos de uma quantidade $c_BB^{-1}A$. Notar que c_BB^{-1} é um caso particular quando A_j é uma coluna das variáveis de folga.

Implementação: alguns pormenores

Adicionalmente

- A matriz A é tipicamente uma matriz dispersa (esparsa). A percentagem de elementos não-zero de A pode ser 2% ou 5%.
- Há estruturas de dados para representar matrizes dispersas que permitem grandes economias de espaço.
- A multiplicação de matrizes dispersas só envolve os cálculos com os elementos diferentes de 0.
- A matriz B⁻¹ é guardada como o produto de uma matriz triangular inferior (lower) e uma matriz triangular superior (upper), i.e., uma factorização LU.
- Isso permite a sua actualização eficiente em cada pivô.
- Os solvers de programação linear usam a forma matricial.

Conclusão

- Uma matriz é apenas uma forma de representar e condensar informação.
- Mas a definição matricial oferece uma nova perspectiva das operações efectuadas no método simplex, o que permite ver a forma de realizar operações mais complexas, como a mudança entre bases não adjacentes;
- também permite conceber uma implementação do algoritmo simplex na forma matricial com grandes economias de cálculo, que possibilita a resolução de problemas de muito grande dimensão.

Apêndice

Exemplo: a base B e o sistema de equações original

$$\begin{bmatrix}
2 & 0 & 1 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{bmatrix} * \begin{bmatrix}
x_3 \\
s_2 \\
x_2
\end{bmatrix} = \begin{bmatrix}
120 \\
80 \\
30
\end{bmatrix} - \begin{bmatrix}
1 & 1 & 0 \\
2 & 0 & 0 \\
2 & 0 & 1
\end{bmatrix} * \begin{bmatrix}
x_1 \\
s_1 \\
s_3
\end{bmatrix}$$

Coordenadas de um vector na base B

- Qualquer vector de um espaço vectorial pode ser representado como uma combinação linear dos vectores da base.
- Exemplo: os elementos do vector $B^{-1}b$ são as coordenadas do vector b em relação à base $B = \{\vec{v}_1, \vec{v}_2, ..., \vec{v}_m\}$.

 $b = 10 \vec{v}_1 + 100 \vec{v}_2 + 20 \vec{v}_3$

• ou seja, é a solução $x_B = B^{-1}b = (x_3, s_2, x_2)^{\top} = (10, 100, 20)^{\top}$.

Custos reduzidos de uma variável

$B^{-1}A$	B^{-1}	$B^{-1}b$
$c_B B^{-1} A - c$	$c_B B^{-1}$	$c_B B^{-1} b$

Definição

- Os coeficientes da linha da função objectivo relativos às variáveis de decisão são iguais a $-(c-c_BB^{-1}A)$.
- Os valores dos elementos do vector custo inicial s\u00e3o reduzidos de uma quantidade c_BB⁻¹A.

Operações com matrizes: exemplos

Soma de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 5+12 \\ 15+24 \end{bmatrix} = \begin{bmatrix} 17 \\ 39 \end{bmatrix}$$

Multiplicação de matrizes:

$$\begin{bmatrix} 1 & 2 \end{bmatrix} * \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 3+10 & 4+12 \end{bmatrix} = \begin{bmatrix} 13 & 16 \end{bmatrix}$$

Fim