The AC circuit below has $\omega=W_1$ and is in steady state. The phasor diagram shows the phasors of v_S and i_S . You are given the angle a, and vector lengths $|\mathbf{I_S}|=A_1$ and $|\mathbf{V_S}|=A_2\sqrt{b}$. The diagram is not necessarily drawn to scale (but $\mathbf{V_S}$ is along the imaginary axis). The element in the center (rectangular box) is either an inductor or a capacitor but you are not told which.

- a. At what time does v_R reach its maximum value? Enter $k=t_0\cdot\frac{12}{\pi}$, where t_0 is the first time that the maximum is reached, for $t_0\geq 0$. (Hint: convert a to radians first)
- b. We select the mystery element such that $|I_a|$ is minimized (note that this is the current through the voltage source). What is the mystery element type (enter 1 for capacitor, 2 for inductor)? What is its value X (i.e., either the capacitance or the inductance value, in F or H respectively)?

(b) KCL (D) A: Is = 18+2A

If the mystery elevent is a capacitor or inductor: Is is perferbleulan to Vs

Let's look at different options

J_b

te. M

Ibl Zis

smallest Ju

 $cos(-\alpha) = \frac{|J_b|}{|J_s|} \Rightarrow cos(\frac{T}{6}) = \frac{\sqrt{3}}{2} = \frac{|J_b|}{2}$

 $|J_b| = \sqrt{3}$ on the real axis => $J_b = \sqrt{3}$

also: $V_s = Z$, $I_b \Rightarrow Z = \frac{V_s}{I_b} = \frac{10\sqrt{3}}{\sqrt{3}}j = 10j$

This must be an induction: $Z = J\omega L = 10J$ $\Rightarrow \omega L = 10 \Rightarrow L = \frac{10J}{X = 5}$