[CTT451] - [Nhập môn Thị giác Máy tính] Tháng 4/2013

CANNY EDGE DETECTION

Bộ môn TGMT và KH Rô-bốt Khoa Công nghệ thông tin ĐH Khoa học tự nhiên TP HCM

MỤC LỤC

ΜŲ	C L U C	J
1	Thuật toán Phát hiện cạnh Canny	
	Cài đặt thuật toán phát hiện cạnh bằng OpenCV	
	Bài tâp	
	liêu tham khảo	

1 Thuật toán Phát hiện cạnh Canny

Bước 1: Giảm nhiễu

Thông thường để giảm nhiễu sử dụng các bộ lọc làm mờ. Có thể sử dụng bộ lọc Gaussian để tích chập với ảnh:

	2	4	5	4	2
	4	9	12	9	4
$\frac{1}{159} *$	5	12	15	12	5
	4	9	12	9	4
	2	4	5	4	2

Bước 2: Tính độ lớn và góc của Gradient

Tính đạo hàm $D_x(x,y)$ và $D_y(x,y)$ theo chiều x và y của ảnh. Một số bộ lọc như: Roberts, Prewitt, Sobel.

Bộ lọc Sobel 3x3:

-1	0	1
-2	0	2
-1	0	1

1	2	1
0	0	0
-1	-2	-1

Độ lớn Gradient:

$$D = \sqrt{D_x^2(x, y) + D_y^2(x, y)}$$

Góc Gradient:

$$\theta = \arctan\left(\frac{D_x(x,y)}{D_y(x,y)}\right)$$

Tính θ ' bằng cách làm tròn từ góc θ vào một trong bốn hướng: 0^0 , 45^0 , 90^0 , 135^0 .

Bước 3: chặn không cực đại (Non-Maximum Surpression)

Bước này chỉ giữ lại những pixel thuộc cạnh mà có độ lớn gradient lớn nhất

Xem xét 3 pixel trong vùng 3×3 xung quanh pixel (x,y):

```
- Nếu \theta(x, y) = 0^0 thì (x+1, y), (x, y) và (x-1, y) được xem xét.
```

- Nếu $\theta(x, y) = 90^{\circ}$ thì (x, y+1), (x, y) và (x, y-1).
- Nếu $\theta(x, y) = 45^{\circ}$ thì (x+1, y+1), (x, y) và (x-1, y-1).
- Nếu $\theta(x, y) = 135^{0}$ thì (x-1, y+1), (x, y) và (x+1, y-1).

Nếu pixel (x, y) có gradient lớn nhất của 3 pixel xem xét thì pixel đó là canh.

Buốc 4: Ngưỡng Hysteresis (Hysteresis Thresholding)

Hysteresis sử dụng 2 ngưỡng, ngưỡng t_{high} và t_{low} . Pixel mà có độ lớn gradient D < t_{low} thì được loại ngay lập tức. Những pixel $t_{low} < D < t_{high}$ được giữ lại nếu là một cạnh liên tục với những pixel có độ lớn gradient $D > t_{high}$.

2 Cài đặt thuật toán phát hiện cạnh bằng OpenCV

Xây dựng class Canny như sau:

```
class Canny
protected:
  IplImage *_srcImg, *_destImg;
  int width, height;
  int _lowThreshold, _maxThreshold;
public:
  Canny(int low, int max)
  {
       srcImg = NULL;
```

```
_destImg = NULL;
       lowThreshold = low;
       maxThreshold = max;
  }
  int CannyEdgeDetection(char *path);
};
Hàm CannyEdgedetection:
int Canny::CannyEdgeDetection(char *path)
  srcImg = cvLoadImage(path);
  if( srcImg == NULL)
       return 0;
  cvNamedWindow("Image");
  cvShowImage("Image", _srcImg);
  IplImage *grayImg, *blurImg;
  grayImg = cvCreateImage(cvGetSize( srcImg), IPL DEPTH 8U, 1);
  cvCvtColor(_srcImg, grayImg, CV_BGR2GRAY);
  cvNamedWindow("Gray Image");
  cvShowImage("Gray Image", grayImg);
  blurImg = cvCreateImage(cvGetSize( srcImg), IPL DEPTH 8U, 1);
  cvSmooth(grayImg, blurImg, CV GAUSSIAN, 5, 5);
  cvNamedWindow("Blur Image");
  cvShowImage("Blur Image", blurImg);
  destImg = cvCreateImage(cvGetSize( srcImg), IPL DEPTH 8U, 1);
  cvCanny(blurImg, _destImg, _lowThreshold, _maxThreshold, 3);
  cvNamedWindow("Canny Edge Detection");
  cvShowImage("Canny Edge Detection", destImg);
  return 1;
}
```


3 Bài tập

Viết chương trình phát hiện biên cạnh dựa vào thuật toán Canny như trong mục 1.

Tài liệu tham khảo

[1] Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.