

$\Sigma \mp y \Rightarrow \top y$	- w = 0			
Ty:	W			
(2) T(os	E) = 1A)			
103				
ΣF _t => F ₁ +	F22 - T2 = 0			
	$= F_1 + F_{22}$			
Ta	$= \frac{Kq^2}{2L^2 \int \ln^2 \theta} +$	$\frac{\sqrt{2}}{2} \frac{k9^2}{4L^2 \sin^2 \theta}$		
2	$= \frac{Kg^2}{2L^2 \sin^2 \theta} +$	2 4L2 Sin20		
J2 T (,,, Δ	= K9 ² +	JZ Kq ²		
V 2 1 3,11()	L ² Sin ² O	4LZSinZO		
VZTSINO	$= \frac{Kq^2}{1^2 \sin^2\theta} \left(1 + \frac{1}{2} \right)$	\(\sigma\)		
	12 Sin20 2 +	4)		
TSINO	$= \frac{kq^2}{L^2 \sin^2 \theta} \left(\frac{1}{\sqrt{z}} + \frac{1}{\sqrt{z}} \right)$	$\frac{\sqrt{z}}{\sqrt{z}}$		
	T, 2 in, A (1 2	12.4/		
(3) TSIND	$= \frac{Kq^2}{L^2 \sin^2 \theta} \left(\frac{\sqrt{2}}{2} + \frac{1}{2} \right)$	1)		
Entonos, el sister				
(1) TSin0 =	$= \frac{kq^2}{L^2 \sin^2 \theta} \left(\frac{\sqrt{2}}{2} + \frac{1}{4} \right)$)) Vemo	s que (1) y	(2) son la misma el sistema se reduce a:
(2) T(os0 =				
	$= \frac{Kq^2}{L^2 \sin^2 \theta} \left(\frac{\sqrt{2}}{2} + \frac{1}{2} \right)$	1 TS	$\ln \Theta = \frac{kq^2}{L^2 \sin^2 \Theta}$	$\frac{\sqrt{2}}{2} + \frac{1}{4}$
	$\frac{1}{2}$ Sin ² θ $\frac{2}{2}$	a)) TO	osO = W	

(1) $TSIn\Theta = \frac{kq^2}{L^2 sin^2 \Theta} \left(\frac{\sqrt{2}}{2} \right)$	$+\frac{1}{4}$
(2) $T(os\theta = W)$	
Resolviendo, obtenen	nos:
$\frac{(1)}{(2)} \Rightarrow TSin\Theta =$	$\frac{kq^2}{\sqrt{2}+1}$
T	$los\Theta = W$
⇒ Sin ⊖	kg ² / [2 1]
(080)	$\frac{kq^2}{L^2 \sin^2 \theta \cdot w} \left(\frac{\sqrt{2}}{2} + \frac{1}{4} \right)$
Sin³⊖ _	$\kappa q^2 / \sqrt{2}, 1$
(9x0)	$\frac{\mathcal{K}\mathcal{Q}^2}{L^2\mathcal{W}}\left(\frac{\sqrt{2}}{2} + \frac{1}{4}\right)$
/ SIn30 \2	$\frac{\left(\sqrt{2} + \frac{1}{2}\right)^2}{L^2 w} \left(\frac{\sqrt{2}}{2} + \frac{1}{4}\right)^2$
(620)	$L^2 W \left(\begin{array}{cc} 2 & 4 \end{array} \right)$
(Ine D	k ² 44 /Jz 11 ²
(osiB	$\frac{\mathcal{K}^2 4^4}{L^4 \mathcal{W}^2} \left(\frac{\sqrt{2}}{2} + \frac{1}{4} \right)^2$
Sin6 0	K ² 9° /52 , 1\ ²
1-Sin ² ++++++++++++++++++++++++++++++++++++	$\frac{\mathcal{K}^2 \mathcal{L}^4}{\mathcal{L}^4 \mathcal{W}^2} \left(\frac{\mathcal{J}_2}{2} + \frac{1}{4} \right)^2$
SIN6 → 1	$L - \sin^2 \Theta \left(\frac{K^2 4^2}{L^4 w^2} \left(\frac{\sqrt{2}}{2} + \frac{1}{4} \right)^2 \right)$
	$(14 w^2 (2 4))$
Jing 0 =	$\frac{k^{2}q^{4}}{L^{4}\omega^{2}}\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{4}\right)^{2}-\int_{1}n^{2}\Theta\left(\frac{k^{2}q^{4}}{L^{4}\omega^{2}}\left(\frac{\sqrt{2}}{2}+\frac{1}{4}\right)^{2}\right)$
(,	10/ k ² 4 ⁴ / G
ZINOA + 7	$Im^{2}\theta\left(\frac{K^{2}4^{4}}{L^{4}\omega^{2}}\left(\frac{\sqrt{z}}{2}+\frac{1}{4}\right)^{2}\right) - \left[\frac{K^{2}4^{4}}{L^{4}\omega^{2}}\left(\frac{q}{16}+\frac{\sqrt{z}}{4}\right)^{2}\right] = 0$
2)	$C = \frac{k^2 4^4}{14 w^2} \left(\frac{5^2}{2} + \frac{1}{4} \right)^2$, entonæs:
(60	
7IN +	$C \sin^2 \Theta - C = 0$

(, ,	aho	WΛΩ	a	uΩ	•	(1)	= 1'	14 (N										
Si s	UDD	WIOL	7			a	- 2) N /	10-1	⁴ C.									
						7	_ F	5 100	10										
						2		7 101											
Ento	λη (O	١	ohti	DAAD I	1406														
Cric	عي ۱۰۱ر ع	<i>,</i>	UĐ I I		V (US .														
	Г																		
	ı	ZIN	βĐ	+	C :	Sin	2€) –	· C		=	0							
	L																		
Dov	ıdo	:																	
				4	,		.7												
	\mathcal{C}	= _	Κ,	47	15	<u>;</u> +	1												
			T4 1	w'	/ '	_	۱)												
	(= (9 ×1	(O ⁹)	(3)	(10	.4) ⁴ 2	<i></i> ,	Γ2	1	1	2							
		·	(5 ⁴)(114	.6)	2	-	2	T -	1/								
								\											
	C	=	0.1	07	32	2													