Laboratorium 11 - Optymalizacja

Jan Sarba, Dariusz Rozmus

09.06.2025

1 Treść zadań

1.1 Zadanie 1

Rozwiąż ponownie problem predykcji typu nowotworu (laboratorium 2), używając metody spadku wzdłuż gradientu (ang. $gradient\ descent$). Stałą uczącą możesz wyznaczyć na podstawie najmniejszej i największej wartości własnej macierzy A^TA . Porównaj uzyskane rozwiązanie z metodą najmniejszych kwadratów, biorąc pod uwagę następujące kryteria:

- Dokładność predykcji na zbiorze testowym
- Teoretyczna złożoność obliczeniowa
- Czas obliczeń.

1.2 Zadanie 2

Należy wyznaczyć najkrótszą ścieżkę robota pomiędzy dwoma punktami $x^{(0)}$ i $x^{(n)}$. Problemem są przeszkody usytuowane na trasie robota, których należy unikać. Zadanie polega na minimalizacji funkcja kosztu, która sprowadza problem nieliniowej optymalizacji z ograniczeniami do problemu nieograniczonej optymalizacji. Macierz $X \in \mathbb{R}^{(n+1)\times 2}$ opisuje ścieżkę złożoną z n+1 punktów $x^{(0)}, x^{(1)}, \dots, x^{(n)}$. Każdy punkt posiada 2 współrzędne, $x^{(i)} \in \mathbb{R}^2$. Punkty początkowy i końcowy ścieżki, $x^{(0)}$ i $x^{(n)}$, są ustalone. Punkty z przeszkodami (punkty o 2 współrzędnych), $r^{(j)}$ dane są w macierzy przeszkód $R \in \mathbb{R}^{k \times 2}$.

W celu optymalizacji ścieżki robota należy użyć metody największego spadku. Funkcja celu użyta do optymalizacji $F(x^{(0)}, x^{(1)}, \dots, x^{(n)})$ zdefiniowana jest jako:

$$F(x^{(0)}, x^{(1)}, \dots, x^{(n)}) = \lambda_1 \sum_{i=0}^{n} \sum_{j=1}^{k} \frac{1}{\epsilon + ||x^{(i)} - r^{(j)}||_2^2} + \lambda_2 \sum_{i=0}^{n-1} ||x^{(i+1)} - x^{(i)}||_2^2$$

Symbole użyte we wzorze mają następujące znaczenie:

- Stałe λ_1 i λ_2 określają wpływ każdego członu wyrażenia na wartość F(X).
 - λ_1 określa wagę składnika zapobiegającego zbytniemu zbliżaniu się do przeszkody.
 - λ_2 określa wagę składnika zapobiegającego tworzeniu bardzo długich ścieżek.
- $\bullet \,\, n$ jest liczbą odcinków, a n+1liczbą punktów na trasie robota.
- $\bullet~k$ jest liczbą przeszkód, których robot musi unikać.
- \bullet Dodanie ϵ w mianowniku zapobiega dzieleniu przez zero.

W zadaniu należy wykonać następujące kroki:

- 1. Wyprowadź wyrażenie na gradient ∇F funkcji celu F względem $x^{(i)}$.
- 2. Opisz matematycznie i zaimplementuj kroki algorytmu największego spadku z przeszukiwaniem liniowym (metoda złotego podziału), który służy do minimalizacji funkcji celu F.
- 3. Znajdź najkrótszą ścieżkę robota przy użyciu zaimplementowanego algorytmu dla zadanych parametrów ($n = 20, k = 50, \lambda_1 = \lambda_2 = 1, \epsilon = 10^{-13}, 400$ iteracji), przeprowadzając obliczenia dla 5 różnych losowych inicjalizacji ścieżki.

2 Argumentacja

2.1 Zadanie 1

Celem zadania jest rozwiązanie problemu najmniejszych kwadratów za pomocą iteracyjnej metody spadku wzdłuż gradientu (Gradient Descent, GD) i porównanie jej z rozwiązaniem analitycznym (poprzez równania normalne), zaimplementowanym w laboratorium 2.

Metoda spadku wzdłuż gradientu

Problem minimalizacji błędu średniokwadratowego sprowadza się do znalezienia wektora wag w, który minimalizuje funkcję kosztu:

$$J(w) = ||Aw - b||_2^2$$

Gradient tej funkcji względem w wynosi:

$$\nabla J(w) = 2A^T(Aw - b)$$

Algorytm GD aktualizuje wagi w w kolejnych krokach, poruszając się w kierunku przeciwnym do gradientu:

$$w_{k+1} = w_k - \alpha \nabla J(w_k)$$

gdzie α to stała uczaca (learning rate).

Wybór stałej uczącej

Kluczowym elementem metody jest dobór stałej uczącej α . Zbyt duża wartość może prowadzić do dywergencji, a zbyt mała do bardzo wolnej zbieżności. Dla problemów kwadratowych, jak ten, optymalną stałą uczącą można wyznaczyć na podstawie wartości własnych macierzy Hessego, która wynosi $2A^TA$. Zgodnie z treścią zadania, stała α została wyznaczona jako:

$$\alpha = \frac{1}{\lambda_{max}(A^T A) + \lambda_{min}(A^T A)}$$

gdzie λ_{max} i λ_{min} to odpowiednio największa i najmniejsza wartość własna macierzy A^TA . Taki wybór α gwarantuje zbieżność algorytmu.

Implementacja

Proces implementacji obejmował następujące kroki:

- 1. Przygotowanie macierzy cech A oraz wektora docelowego b dla modelu liniowego (30 cech) i kwadratowego (14 cech).
- 2. Obliczenie macierzy A^TA dla obu modeli.
- 3. Wyznaczenie wartości własnych macierzy A^TA i obliczenie stałej uczącej α .

4. Zaimplementowanie pętli algorytmu GD, inicjalizując wektor wag w zerami i aktualizując go w każdej iteracji, aż do osiągnięcia zbieżności (mała zmiana normy wektora wag) lub maksymalnej liczby iteracji.

Listing 1: Implementacja algorytmu spadku wzdłuż gradientu.

2.2 Zadanie 2

Celem zadania jest znalezienie optymalnej ścieżki robota, minimalizując zadaną funkcję kosztu F(X). Problem ten został rozwiązany przy użyciu metody największego spadku z przeszukiwaniem liniowym.

Gradient funkcji celu

Pierwszym krokiem jest analityczne wyznaczenie gradientu funkcji celu F. Ze względu na liniowość operatora gradientu, możemy rozbić funkcję celu na dwa składniki i obliczyć ich gradienty osobno. Zdefiniujmy:

- Funkcję kary za bliskość przeszkód: $F_{obs}(X) = \sum_{i=0}^n \sum_{j=1}^k \frac{1}{\epsilon + \|x^{(i)} r^{(j)}\|_2^2}$
- Funkcję kary za długość ścieżki: $F_{len}(X) = \sum_{i=0}^{n-1} \|x^{(i+1)} x^{(i)}\|_2^2$

Całkowita funkcja kosztu to $F(X) = \lambda_1 F_{obs}(X) + \lambda_2 F_{len}(X)$. Szukamy jej gradientu względem współrzędnych *i*-tego punktu na ścieżce, $x^{(i)}$ (dla $i \in \{1, ..., n-1\}$, gdyż punkty krańcowe są stałe).

Gradient składnika F_{obs} względem $x^{(i)}$: Tylko te składniki sumy, które zawierają $x^{(i)}$, mają niezerową pochodną.

$$\nabla_{x^{(i)}} F_{obs}(X) = \nabla_{x^{(i)}} \left(\sum_{j=1}^{k} \frac{1}{\epsilon + \|x^{(i)} - r^{(j)}\|_{2}^{2}} \right) = \sum_{j=1}^{k} \frac{-2(x^{(i)} - r^{(j)})}{(\epsilon + \|x^{(i)} - r^{(j)}\|_{2}^{2})^{2}}$$

Gradient składnika F_{len} względem $x^{(i)}$: W tym przypadku niezerowy wkład wnoszą tylko dwa człony sumy: $\|x^{(i)} - x^{(i-1)}\|_2^2$ oraz $\|x^{(i+1)} - x^{(i)}\|_2^2$.

$$\nabla_{x^{(i)}} F_{len}(X) = \nabla_{x^{(i)}} \left(\|x^{(i)} - x^{(i-1)}\|_2^2 + \|x^{(i+1)} - x^{(i)}\|_2^2 \right)$$
$$= 2(x^{(i)} - x^{(i-1)}) - 2(x^{(i+1)} - x^{(i)}) = 2(2x^{(i)} - x^{(i-1)} - x^{(i+1)})$$

Ostatecznie, pełny gradient funkcji F względem $x^{(i)}$ wynosi:

$$\nabla_{r(i)}F(X) = \lambda_1 \nabla_{r(i)}F_{obs}(X) + \lambda_2 \nabla_{r(i)}F_{len}(X)$$

```
# Obliczenie gradientu dla jednego punktu wewnetrznego x_i

diffs_obs = path[i, :] - obstacles
denom = (epsilon + np.sum(diffs_obs ** 2, axis=1)) ** 2
grad_obs = -2 * lambda1 * np.sum(diffs_obs / denom[:, np.
newaxis], axis=0)

grad_len = 2 * lambda2 * (2 * path[i, :] - path[i-1, :] - path[i+1, :])

grad[i, :] = grad_obs + grad_len
```

Listing 2: Implementacja obliczania gradientu funkcji celu F dla jednego punktu.

Algorytm optymalizacyjny

Zastosowano algorytm największego spadku (gradient descent). W każdej iteracji k cała ścieżka X (czyli macierz współrzędnych wszystkich punktów $x^{(i)}$) jest aktualizowana:

$$X_{k+1} = X_k - \alpha_k \nabla F(X_k)$$

Wektor $\nabla F(X_k)$ zawiera gradienty obliczone dla każdego punktu wewnętrznego $x^{(i)}$.

Przeszukiwanie liniowe - Metoda Złotego Podziału

Współczynnik kroku α_k nie jest stały, lecz jest dynamicznie dobierany w każdej iteracji za pomocą metody przeszukiwania liniowego. Zgodnie z treścią zadania, użyto metody złotego podziału (golden section search). Metoda ta służy do znalezienia minimum funkcji jednej zmiennej $f(\alpha) = F(X_k - \alpha \nabla F(X_k))$ w zadanym przedziale [a, b]. Działa ona poprzez iteracyjne zawężanie przedziału poszukiwań, aż do osiągnięcia zadanej tolerancji. W implementacji przyjęto stały początkowy przedział poszukiwań [0, 0.1].

Listing 3: Główna pętla algorytmu optymalizacyjnego z przeszukiwaniem liniowym.

3 Wyniki

3.1 Zadanie 1

Poniżej zestawiono wyniki uzyskane za pomocą metody spadku gradientu (GD) oraz, dla porównania, wyniki z metod analitycznych (Least Squares, LS) z poprzedniego laboratorium.

Tabela 1: Porównanie wyników metod dla modeli liniowego i kwadratowego.

Model	Metoda	Dokładność (Accuracy)	Czas obliczeń [s]
Liniowy	LS (Równania Normalne)	0.9691	0.00010
Liniowy	LS (SVD)	0.9691	0.00744
Liniowy	LS (Ridge)	0.9768	0.00004
Liniowy	Gradient Descent (GD)	0.9154	0.08540
Kwadratowy	LS (Równania Normalne)	0.9228	0.00063
Kwadratowy	Gradient Descent (GD)	0.7692	0.00010

Analiza wyników

- Najwyższą dokładność (97.7%) osiągnęła analityczna metoda najmniejszych kwadratów z regularyzacją Ridge dla modelu liniowego. Standardowe równania normalne oraz SVD dla modelu liniowego dały bardzo dobrą, identyczną dokładność (96.9%). Metoda spadku gradientu dla modelu liniowego osiągnęła zauważalnie niższy, choć wciąż przyzwoity wynik (91.5%). Model kwadratowy w każdej wersji okazał się gorszy, a jego implementacja za pomocą GD całkowicie zawiodła.
- Metody analityczne (LS, Ridge) są ekstremalnie szybkie dla tego rozmiaru problemu, z czasami rzędu setnych części milisekundy. Metoda oparta na SVD jest wolniejsza o rząd wielkości. Najwolniejsza okazała się metoda spadku gradientu dla modelu liniowego (ok. 85 ms), co wynika z jej iteracyjnego charakteru. Paradoksalnie, GD dla modelu kwadratowego zakończyło się niemal natychmiast, ale było to spowodowane brakiem postępu w optymalizacji.

3.2 Zadanie 2

Algorytm optymalizacji ścieżki został uruchomiony dla 5 różnych losowych inicjalizacji punktów wewnętrznych. Poniższy wykres przedstawia uzyskane rezultaty.

Rysunek 1: Wyniki optymalizacji ścieżki. **Po lewej:** Najlepsza znaleziona ścieżka (o najniższym koszcie końcowym) spośród 5 losowych inicjalizacji. **Po prawej:** Zmiana wartości funkcji kosztu F w kolejnych iteracjach dla każdej z 5 inicjalizacji (w skali logarytmicznej).

4 Wnioski

Zadanie 1:

- Dla analizowanego problemu, analityczna metoda najmniejszych kwadratów (zwłaszcza z regularyzacją Ridge) jest zdecydowanie lepszym wyborem. Oferuje najwyższą dokładność przy znikomym koszcie obliczeniowym. Iteracyjna metoda spadku gradientu, mimo że teoretycznie prowadzi do tego samego rozwiązania, w praktyce jest znacznie wolniejsza i osiąga gorszą dokładność.
- Wyniki, zwłaszcza dla modelu kwadratowego, dobitnie pokazują wrażliwość metody GD na złe uwarunkowanie problemu. Dodanie cech wielomianowych wprowadziło silną współliniowość, co doprowadziło do bardzo dużej liczby uwarunkowania macierzy A^TA. Skutkowało to wyborem ekstremalnie małej stałej uczącej, co uniemożliwiło algorytmowi efektywną optymalizację i doprowadziło do całkowitej porażki.
- W przypadku problemów regresji liniowej z małą i umiarkowaną liczbą cech, metody analityczne (LS, SVD, Ridge) są preferowane. Są szybkie, proste w implementacji i dają dokładne rozwiązanie bez potrzeby strojenia hiperparametrów, takich jak stała ucząca. Metody iteracyjne, takie jak GD, są niezbędne w scenariuszach z ogromną liczbą cech (gdzie A^TA nie zmieściłoby się w pamięci lub jej odwrócenie byłoby zbyt kosztowne) lub w kontekstach uczenia online.

Zadanie 2:

- Zaimplementowany algorytm największego spadku z przeszukiwaniem liniowym (metodą złotego podziału) okazał się skuteczny w minimalizacji złożonej, nieliniowej funkcji kosztu. Wykresy pokazują, że algorytm konsekwentnie redukuje wartość funkcji kosztu, co prowadzi do znalezienia ścieżki, która unika przeszkód i jednocześnie nie jest nadmiernie długa. Jednocześnie, zyski szybko maleją.
- Wyniki uzyskane dla pięciu różnych losowych inicjalizacji pokazują, że końcowy
 koszt i kształt ścieżki zależą od punktu startowego optymalizacji, choć w tym
 przypadku różnica nie jest szczególnie znacząca.

5 Bibliografia

• prof. Heath M. T. – CS 450—numerical analysis, Chapter 6