Exercice 1 (Cours)

Donner et prouver le résultat concernant les relations de divisibilité sur \mathbb{R} vues. On considère les deux polynômes suivants. dans \mathbb{C} .

EXERCICE 2 (Cours)

Quels sont les polynômes irréductibles de $\mathbb{R}[X]$? En faire la démonstration.

EXERCICE 3 (Cours)

Rappeler la définition des polynômes interpolateurs de Lagrange, ainsi que leurs propriétés. En faire la démonstration.

Exercice 4

Soient $a, b \in \mathbb{R}$ des réels, et

$$P(X) = X^4 + 2aX^3 + bX^2 + 2X + 1.$$

Pour quelles valeurs de a et b le polynôme P est-il le carré d'un polynôme de $\mathbb{R}[X]$?

Exercice 5

Résoudre les équations suivantes, où l'inconnue est un polynôme $P \in \mathbb{R}[X]$.

1)
$$P(X^2) = (X^2 + 1)P(X)$$
 2) $(P')^2 = 4P$ 3) $P \circ P = P$

Exercice 6

Pour $n \geq 1$, on pose

$$P_n(X) = nX^{n+2} - (4n+1)X^{n+1} + 4(n+1)X^n - 4X^{n-1}.$$

Quel est l'ordre de multiplicité de 2 comme racine de P_n ?

Exercice 7

Soit

$$P(X) = a_n X^n + \dots + a_1 X + a_0$$

un polynôme à coefficients dans \mathbb{Z} , avec $a_n \neq 0$ et $a_0 \neq 0$. On suppose que Padmet une racine rationnelle p/q avec $p \wedge q = 1$.

- 1. Démontrer que $p \mid a_0$ et $q \mid a_n$.
- 2. Le polynôme $P(X) = X^5 2X^2 + 1$ admet-il des racines dans \mathbb{O} ?

Exercice 8

$$P(X) = X^3 - 9X^2 + 26X - 24$$
 $Q(X) = x^3 - 7X^2 + 7X + 15$

Décomposer ces deux polynômes en produits d'irréductibles de $\mathbb{R}[X]$, sachant qu'ils ont une racine commune.

Exercice 9

Décomposer en produits d'irréductibles de $\mathbb{R}[X]$ les polynômes suivants.

1)
$$X^4 + 1$$
 2) $X^8 - 1$ 3) $(X^2 - X + 1)^2 + 1$

Exercice 10

Soit $P \in \mathbb{R}[X]$ un polynôme de degré n ayant n racines réelles distinctes.

- 1. Démontrer que toutes les racines de P' sont réelles. Indication : on pourra étudier la fonction polynomiale \widetilde{P} et utiliser un théorème d'analuse.
- 2. En déduire que le polynôme $P^2 + 1$ n'admet que des racines simples.

Exercice 11

Soit P le polynôme $X^4 - 6X^3 + 9X^2 + 9$.

- 1. Décomposer $X^4 6X^3 + 9X^2$ en produit de facteurs irréductibles dans $\mathbb{R}[X]$.
- 2. En déduire une décomposition de P en produit de facteurs irréductibles dans $\mathbb{C}[X]$, puis dans $\mathbb{R}[X]$.

Exercice 12

Soit $P \in \mathbb{C}[X]$ un polynôme de degré n. On note, pour p < n, u_p la somme des racines de $P^{(p)}$. Démontrer que u_0, \ldots, u_{n-1} forme une progression arithmétique.

Exercice 13

Décomposer en éléments simples les fractions rationnelles suivantes.

1.
$$\frac{1}{X^3 - X}$$
 2. $\frac{X^2 + 2X + 5}{X^2 - 3X - 2}$ 3. $\frac{X^3}{(X - 1)(X - 2)(X - 3)}$ 4. $\frac{2X^2 + 1}{(X^2 - 1)^2}$

Exercice 14

Démontrer qu'il n'existe pas de fraction rationnelle $F \in \mathbb{C}(X)$ telle que $F^2 = X$.