公開実用 昭和55—1.5469

実用新案登録願(/)

(4,000円)

特許庁長官殿

54. 3. 1 5

昭和 年 月

1-44

考案の名称

考 案 者

東京都港区芝五丁自33番1号日本電気株式会社内

ス ガ ヒ mi 須 賀 寛

奥用新案登録出願人

東京都港区芝五丁目33番1号

(423) 日本電気株式会社

人一代表者

田中忠雄

代 理

〒108-東京都港区芝五丁目33番1号

日本電気株式会社内

(6581) 弁理士 内原

電話 東京 (03) 454-1111(大代表)

添付書類の目録

· 明 細 書 /図 面 /委 任 状

1通 1通 1通

135469

願書副本

1通

京武 (1)

F

1. 考案の名称

光半導体装置用リードフレーム

実用新案登録請求の範囲 2.

ダイポンディング部となる逆円錐台状の凹部底 面に光半導体最子をダイポンディングし酸凹部底 面を上にして樹脂モールドしてなる光半導体装置 に使用するリードフレームにおいて、樹脂モール ド時に前記凹部空間内に溜る空気を抜く通路を凹 部底から外部へ通したことを特 敬とする光半導体 **委置用リードフレーム。**

3. 考案の詳細な説明

本考案は反射銀付光半導体装置用リードフレー ムに関する。

従来、発光ダイオード等の光半導体装置用の反 15 射鏡付リードフレームのダイポンティング部は、 第1図の角視図に示すような逆円錐台状、或いは

5

10

公開実用 昭和8 — 135469

下に凸の放物面を、軸に直角に輪切りにしたよりな凹部に型成されている。以下発光ダイオードを 例にし、又リードフレームの凹部は逆円錐台状を 例にして説明する。

発光ダイオードのダイ(光半導体素子)は、前配逆円維台状凹部(以下単に凹部と略称する)の底面にダイボンディングされる。しかる後、公知のワイヤーボンディング及び樹脂対止を行ない、発光ダイオードが型成される。被発光ダイオードのダイから出る横方向の光は、前配凹部の反射鏡壁1中反射鏡底面2に当って目的とする方向に反射され、見掛け上発光ダイオードの光量が増加し明るく見える。しかし、前記反射銀付発光ダイオード用リードフレームをキャスティングモールド法で樹脂対止する際、前配凹部空間内に気泡が溜り易く、発光ダイオードの信頼度を著しく損なり。

即ち、キャスティングモールド法で樹脂割止する際は、予めキャスティングモールド用金型のキャピティーに液状熱硬化性樹脂を入れ、次いでダイボンディング及びワイヤーポンディングされた

前記反射鏡付発光ダイオード用リードフレームを 前記キャピティーに挿入する。この際、発光ダイ オード用リードフレームの凹部開口が下向きになって挿入される為、歓凹部内の空気は逃げ場所が なく、そのまま凹部内に残り、熱硬化性樹脂が硬 化した際に気泡になる。酸気泡中をワイヤーボン ディングのワイヤーが通ると、酸ワイヤーは切断 し易くなり、発光ダイオードの信頼度を着しく低 下せしめる。

本考案は上配欠点を改善した光半導体装置用リードフレームを提供するものである。

次に図面を参照して本考案の実施例を説明する。

本考案は、第2個の斜視器に示すように反射鏡付発光ダイオード用リードフレームのダイポンディング部となる凹部の反射鏡壁1に、鞍凹部の外側から反射鏡底面2に達する切込み3を1箇所以上入れる。ここで、前記反射鏡付発光ダイオード用リードフレームの凹部隣口を上方に向けた場合、切込み3の凹部の外側の下端は、反射鏡底面2より下方に位置する様に設ける。或いは第3回に示

1

1

公開實用 昭和55-

すように反射鏡底面 2 から凹部の外側に通じる孔 4を1箇所以上設ける。該孔4の凹部の外側の開 口部 5 は、凹部開口を上向きにした際に反射鏡底 面2より下方に位置する様に設ける。

とのようにして形成された第2図或いは第3図 に示した本考案による反射鏡付発光ダイオード用 リードフレームにダイポンディング及びワイヤー ポンディングし(図示せず)、次いで歓リードフ レームの凹部開口を下方に向けて液状の熱硬化性 の樹脂を満たしたキャスティングモールド用金型 10 のキャピィティーに挿入する。との際、凹部内の 空気は、第2図の切込み3、又は第3図の孔4を 通して凹部の外へ逃げ出し、敵凹部内に気泡が滞 留しなくなる。

従って、ワイヤーポンディングのワイヤーが気 泡中を通ることがなくなり、 ワイヤー 切断の原因 が取除かれ、発光ダイオードの信頼度を向上させ るととができる。

上述したところは発光メイオードに付いて説明 したが、反射鏡付きのリードフレームを組込む各 20

15

種の受光素子等でも同様の効果を得られることは 記述する迄もない。

4. 図面の簡単な説明

第1図は従来の反射鏡付リードフレームのダイ ポンディング部を示す斜視図、第2図及び第3図 はそれぞれ本考案による反射鏡付リードフレーム のダイボンディング部を示す斜視図である。 1……反射鏡壁、2……反射鏡底面、3……切込 み、4……孔、5……開孔部。

代理人 弁理士 内 原

至7岁

死 一区

三 **か** 長

代理人 有限上内 原

ğΙ

用となるので 1