Arbres H-équilibrés / arbres AVL

- Définitions
 - \Box déséquilibre(a) = h(g(a)) h(d(a))
 - un arbre a est H-équilibré si pour tous ses sousarbres b, on a :
 - déséquilibre(b) ∈ {-1, 0, 1}
 - un arbre AVL est un arbre de recherche qui est H-équilibré
 - les propriétés et les opérations définies sur les arbres de recherche peuvent s'appliquer aux arbres AVL

Opérations de rotation

- Le problème est d'essayer de rééquilibrer un arbre déséquilibré afin de le ramener à un arbre H-équilibré.
- Cas d'un déséquilibre +2
 - on suppose que les sous-arbres droit et gauche sont H-équilibrés
 - hauteur du sous-arbre gauche supérieure de 2 à la hauteur du sous-arbre droit
 - opération à pratiquer dépend du déséquilibre du sous-arbre gauche qui peut être +1, 0, -1

Déséquilibre +1 sur le fils gauche

- rotation à droite :
 - o' devient la racine de l'arbre
 - Le fils droit de o' devient le fils gauche de o
 - □ o devient le fils droit de o'

Déséquilibre 0 sur le fils gauche

- rotation à droite :
 - o' devient la racine de l'arbre
 - Le fils droit de o' devient le fils gauche de o
 - □ o devient le fils droit de o'

Déséquilibre 0 sur le fils gauche

- Si l'arbre A est un arbre binaire de recherche, le résultat est un arbre binaire de recherche
 - le déséquilibre de l'arbre résultant est de -1
 - arbre H-équilibré dont la hauteur est identique

Déséquilibre -1 sur le fils gauche

Avec m le déséquilibre de o"

- $[m]^+ = \max(0, m)$
- $[m]^{-} = min(0, m)$

- rotation gauche-droite
 - Rotation à gauche sur le fils gauche
 - Rotation à droite sur la racine

Déséquilibre -1 sur le fils gauche

- Si l'arbre A est un arbre binaire de recherche, le résultat est un arbre binaire de recherche
 - le déséquilibre de l'arbre résultant est de 0
 - arbre H-équilibré dont la hauteur est diminuée d'1

Opérations de rééquilibrage

arbre origine	opération	résultat	hauteur
	rotation droite		diminution
	rotation droite	⁻¹ >+1	identique
-1 -1 -1	rotation gauche droite	_+1 < 0 > 0 <	diminution
-1 < +2 \\ 0 \\	rotation gauche droite	_°<°>°	diminution
-1 -1 +2 -	rotation gauche droite	_0 < 0 > -1 <	diminution
⁻² >-1	rotation gauche	_°<^^	diminution
-2>0	rotation gauche	1<_+1	identique
-2 -1 +1	rotation droite gauche		diminution
-2 0 +1	rotation droite gauche	_o<^o>o<	diminution
-2 +1 +1	rotation droite gauche	_0 < 0 > -1 <	diminution

Opération d'ajout

Principe :

- ajout du nœud par l'opération ajouter-f
- rééquilibrage de l'arbre en partant de la feuille et en remontant vers la racine

Complexité :

- complexité au pire en O(log₂n) en nb de comparaisons
- au plus une rotation
- expérimentalement : en moyenne une rotation pour 2 ajouts