João Victor Sousa

Título do seu TCC

João Victor Sousa

Título do seu TCC

Trabalho apresentado ao Curso de Y da Universidade X como requisito parcial para obtenção do título de Bacharel.

Universidade Estadual de Santa Cruz
 Curso de Graduação em Ciênca da Computação

Orientador: Otacílio José Pereira

Ilhéus - Bahia 2025

Resumo

Escreva aqui o resumo do seu trabalho. Inclua objetivos, metodologia, resultados e conclusões.

Palavras-chave: palavra1. palavra2. palavra3.

Sumário

Sumário .		3
1	INTRODUÇÃO	5
2	FUNDAMENTAÇÃO TEÓRICA	6
2.1	ECG	6
2.1.1	O funcionamento do coração	6
2.1.2	Tipos de arritmia	6
2.1.3	O batimento cardíaco	6
2.1.4	O que é ECG?	7
3	METODOLOGIA	8
3.1	Particionamento dos dados e classes	8
3.2	Métricas	9
3.3	Tipos de redes usadas	l 1
3.4	Pré-processamento e entrada para os modelos	l 1
3.5	Desafios e estratégias	2
3.6	Arquiteturas	13
4	RESULTADOS E DISCUSSÕES	5
4.1	Resultados do modelo GRU	5
5	CONCLUSÃO	21
	REFERÊNCIAS	22

Lista de Siglas

AUC Area Under Curve

RNN Redes Neurais Recorrentes

CNN Redes Neurais Convolucionais

LSTM Long Short-Term Memory

AAMI Association for the Advancement of Medical Instrumentation

GRU Gated Unit Recurrent

ECG Eletrocardiograma

TP Verdadeiro Positivo

FP Falso Positivo

TN Verdadeiro Negativo

FN Falso Negativo

1 Introdução

Texto da introdução.

2 Fundamentação Teórica

2.1 ECG

2.1.1 O funcionamento do coração

O coração é um órgão muscular composto por quatro câmaras que se contraem em sequência regular, bombeando o sangue de forma eficiente (CASCINO; SHEA, 2025). As contrações são controladas por correntes elétricas que percorrem o coração com precisão e velocidade regulada.

O processo inicia no nódulo sinoatrial, localizado no átrio direito, que funciona como marcapasso natural do coração. A frequência cardíaca é determinada pela frequência de disparos desse nódulo, sendo modulada pelo sistema nervoso autônomo e por hormônios presentes na corrente sanguínea (CASCINO; SHEA, 2025). O sistema nervoso simpático aumenta a frequência cardíaca, enquanto o parassimpático, por meio do nervo vago, a reduz. Hormônios como a epinefrina (adrenalina) e norepinefrina (noradrenalina), produzidos pelo sistema simpático, também elevam a frequência cardíaca. Além disso, o hormônio tireoidiano liberado pela glândula da tireoide exerce influência na frequência cardíaca.

Em repouso, a frequência cardíaca em adultos varia entre 60 e 100 batimentos por minuto, sendo geralmente mais baixa em indivíduos jovens e em bom condicionamento físico (CASCINO; SHEA, 2025).

2.1.2 Tipos de arritmia

As arritmias podem ser classificadas de forma simplificada em três tipos principais:

- Taquicardia: frequência excessivamente rápida;
- Bradicardia: frequência excessivamente lenta;
- Irregular: quando os impulsos percorrem o coração por vias irregulares.

2.1.3 O batimento cardíaco

O batimento cardíaco inicia-se no nódulo sinoatrial, cuja corrente elétrica atravessa o átrio direito e, em seguida, o átrio esquerdo, promovendo sua contração. O sangue é então impulsionado dos átrios para os ventrículos. A corrente elétrica passa pelo nódulo atrioventricular, único ponto de conexão entre átrios e ventrículos, que retarda o impulso, garantindo enchimento completo dos ventrículos.

Em seguida, o impulso segue pelo feixe de His, que se divide em ramos para conduzir a corrente a cada ventrículo, permitindo sua ativação uniforme e subsequente contração, bombeando o sangue para o corpo (CASCINO; SHEA, 2025).

2.1.4 O que é ECG?

Segundo Cascino e Shea (CASCINO; SHEA, 2025), o eletrocardiograma (ECG) é um exame não invasivo que registra a atividade elétrica do coração. Ele é realizado pela colocação de eletrodos na pele do paciente, geralmente 12, chamados de derivações. Esses eletrodos registram tanto a direção quanto a magnitude da corrente elétrica.

O registro resultante gera uma onda que reflete a atividade elétrica do coração. Cada etapa do ciclo cardíaco é representada na morfologia do traçado: a onda **P** corresponde à ativação dos átrios, o complexo **QRS** à ativação dos ventrículos e a onda **T** ao processo de repolarização ventricular.

O ECG é uma ferramenta fundamental no diagnóstico de problemas cardíacos, permitindo identificar, por exemplo, episódios de infarto do miocárdio, oferta insuficiente de sangue e oxigênio ao coração (isquemia), hipertrofia das paredes cardíacas e diferentes tipos de arritmias.

3 Metodologia

Primeiramente, foi necessário definir qual banco de dados seria utilizado para o treinamento e a validação. Optou-se pelo MIT-BIH Arrhythmia Database (MOODY; MARK, 2005), recomendado pela AAMI. O banco é composto por 58 registros de eletrocardiograma (ECG), cada um com 30 minutos de duração. Os 23 primeiros registros foram selecionados aleatoriamente a partir de um conjunto de 4000 gravações de 24 horas realizadas em pacientes ambulatoriais do Beth Israel Deaconess Medical Center. Os 25 registros restantes foram escolhidos de modo a incluir arritmias raras, mas clinicamente significativas.

Uma característica importante desse banco é a anotação de cada batimento cardíaco em torno do complexo R, realizada por três cardiologistas independentes.

3.1 Particionamento dos dados e classes

Os dados foram particionados seguindo a estratégia inter-paciente proposta por Chazel et al. (apud Silva et al. (2025)), na qual batimentos de um mesmo paciente não podem aparecer simultaneamente nos conjuntos de treinamento e validação. O objetivo é garantir a capacidade de generalização do modelo para diferentes pacientes. Além disso, conforme recomendado pela AAMI, registros de pacientes com marcapasso foram excluídos.

Os registros 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215, 220, 223 e 230 são normalmente chamados de DS1. Os demais (100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233 e 234) de DS2.

De acordo com a AAMI (apud Silva et al. (2025)), são definidas cinco classes de arritmia: N, SVEB, VEB, F e Q, correspondentes a batimento normal, batimento supraventricular ectópico, batimento ventricular ectópico, fusão de batimento ventricular e normal e batimento não classificado, respectivamente. A Tabela 1 apresenta a distribuição dessas classes no conjunto de dados.

Tabela 1 – Particionamento inter-paciente proposto por Chazel et al.

Conjunto	N	SVEB	VEB	F	Q	Total
DS1	45 866	944	3 788	415	8	51 021
DS2	44 259	1 837	3 221	388	7	49 712
Total	90 125	2 781	7 009	803	15	100 733

Fonte: Adaptado de Silva et al. (2025).

O conjunto DS1 foi então subdividido em treinamento e validação por meio de validação cruzada, inicialmente com duas partições (dois *folds*) e, posteriormente, com cinco partições (cinco *folds*) nos modelos finais.

Considerando o desbalanceamento dos dados e visando maior simplicidade, adotouse a classificação binária; onde a classe positiva corresponde a arritmia ventricular e a negativa ao batimento normal.

A arritmia ventricular é o tipo arrítmico mais prevalente no MIT-BIH e apresenta uma morfologia marcante.

3.2 Métricas

As métricas utilizadas para avaliar o desempenho dos modelos foram: sensibilidade, precisão, acurácia, F1-score e AUC (Area Under the Curve).

A sensibilidade representa a capacidade do modelo em identificar corretamente as classes positivas, isto é, os batimentos arrítmicos. Sua equação é dada por:

$$Sensibilidade = \frac{TP}{TP + FN} \tag{3.1}$$

em que TP são os verdadeiros positivos e FN os falsos negativos.

A precisão, por sua vez, indica a proporção de batimentos classificados como arrítmicos que realmente pertencem a essa classe:

$$Precisão = \frac{TP}{TP + FP}$$
 (3.2)

onde FP representa os falsos positivos. Precisão e sensibilidade estão relacionadas por um trade-off. No contexto médico, prioriza-se elevada sensibilidade, ainda que à custa de menor precisão, uma vez que falsos negativos são mais prejudiciais que falsos positivos.

O $\it{F1-score}$ é a média harmônica entre precisão e sensibilidade, buscando um equilíbrio entre ambas:

$$F1\text{-}score = \frac{2 \cdot \operatorname{Precisão} \cdot \operatorname{Sensibilidade}}{\operatorname{Precisão} + \operatorname{Sensibilidade}}$$
(3.3)

A acurácia corresponde ao acerto global do modelo, considerando tanto as classes positivas quanto as negativas:

$$Acurácia = \frac{TP + TN}{TP + TN + FP + FN}$$
(3.4)

A AUC mede a capacidade do modelo em separar as classes positivas das negativas, variando entre 0 e 1. Valores próximos de 1 indicam separação perfeita, enquanto 0,5 corresponde a um modelo com desempenho equivalente ao acaso.

Essa métrica é calculada a partir da área sob a curva ROC, ilustrada na Figura 1.

Figura 1 – Exemplo de curva ROC: comparação entre modelo aleatório e modelo com bom desempenho.

Já a curva PR, Precisão vs Recall, ilustrada abaixo:

Figura 2 – Curva Precision–Recall genérica .

Na figura 2 representa uma curva PR genérica, a curva mostra a precisão em função do recall. Como ilustrado, conforme aumenta-se o recall, há uma diminuição da precisão e vice-versa; representado o trade-off. O AP é a área do gráfico; quanto maior, melhor. Um modelo aleatório teria um AP igual a frequência da classe positiva.

A matriz de confusão, por fim, fornece uma representação tabular dos acertos e erros do modelo, como exemplificado na Tabela 2.

Tabela 2 – Exemplo de matriz de confusão binária

Classe Verdadeira	Classe Predita				
Classe Verdadella	Positiva	Negativa			
Positiva	TP	FN			
Negativa	FP	TN			

Fonte: Elaborado pelo autor.

Essas métricas em conjunto permitem avaliar não apenas a proporção global de acertos, mas também a capacidade do modelo em detectar corretamente arritmias, aspecto essencial em aplicações médicas.

3.3 Tipos de redes usadas

Inicialmente, foram escolhidas redes neurais recorrentes (RNNs) e seus subtipos, como LSTM e GRU. Segundo James et al. (2023), esse tipo de rede apresenta grande potencial para lidar com dados sequenciais, como no processamento de linguagem natural, previsão de preços e outros tipos de séries temporais. Como o componente temporal é relevante para o diagnóstico das arritmias, optou-se por esse tipo de modelo.

Além das RNNs, foram utilizadas redes neurais convolucionais (CNNs), conhecidas por sua habilidade em reconhecer padrões em diferentes domínios James et al. (2023). Em particular, CNNs unidimensionais (1D-CNNs) têm se mostrado eficazes na análise de sinais fisiológicos, sendo amplamente aplicadas à classificação de ECG (NAROTAMO et al., 2024).

A motivação para essa combinação está na complementaridade entre os modelos: enquanto as RNNs são eficazes na captura de dependências temporais, as CNNs se destacam na identificação de características morfológicas do sinal.

3.4 Pré-processamento e entrada para os modelos

Os sinais de ECG foram segmentados em batimentos individuais utilizando a biblioteca NeuroKit2 (MAKOWSKI et al., 2021).

O objetivo do trabalho é a classificação de batimentos cardíacos em duas classes: normais e arritmia ventricular. Para isso, os modelos recebem uma sequência de batimentos e realizam a classificação do último batimento da sequência. Cada sequência é composta exclusivamente por batimentos de um único paciente.

Tanto as CNNs quanto as RNNs recebem como entrada uma matriz tridimensional com a seguinte estrutura: (tamanho do batch, tamanho da sequência, número de features).

Para otimização do processo de treinamento, foram utilizados os mecanismos de early stopping e reduce on plateau, responsáveis por limitar o número de épocas e ajustar dinamicamente a taxa de aprendizagem, respectivamente.

3.5 Desafios e estratégias

O banco MIT-BIH apresenta desafios consideráveis para a classificação de arritmias, com 48 pacientes, cada um com 30 minutos de gravação em condições reais. Três problemas principais precisam ser superados: escassez de dados individuais, presença de ruído e desbalanceamento das classes, conforme mostrado na Tabela 1.

A estratégia de classificação binária ajuda parcialmente a lidar com o desbalanceamento, pois o modelo, em vez de identificar cinco classes diferentes, precisa classificar apenas duas.

Outra dificuldade está na própria arritmia. Certos tipos apresentam sinais muito parecidos ou praticamente idênticos aos normais, diferenciando-se apenas pelo ritmo. Outros possuem morfologias bem distintas no ECG. Inicialmente, foram utilizadas RNNs, mas os modelos apresentaram dificuldades de generalização, evidenciadas pela diferença entre desempenho em treino e teste.

Para contornar essa limitação, foram incorporadas CNNs, permitindo que as RNNs se concentrassem na captura de padrões temporais, enquanto as CNNs extraem as características morfológicas do ECG.

Além disso, a estratégia de divisão inter-paciente dificulta a tarefa, pois o modelo recebe no conjunto de validação sinais de pacientes diferentes, simulando um cenário clínico mais realista. Para atingir bons resultados nesse conjunto, o modelo precisa aprender padrões gerais, independentes das variações individuais de cada paciente.

É importante frisar que a adoção desta estratégia torna os resultados mais aplicáveis a cenários clínicos gerais, e que a não utilização dela em outros trabalhos não invalida seus resultados; apenas limita a sua aplicabilidade nesse cenário.

O uso de engenharia de *features* também pode auxiliar os modelos. Embora redes profundas sejam capazes de aprender automaticamente representações a partir dos dados brutos, a inclusão de *features* pode ser especialmente útil em cenários com dados limitados.

Os detalhes das features utilizadas neste trabalho são apresentados na Seção 3.6.

3.6 Arquiteturas

Foram testadas dois tipos de arquiteturas, uma é o uso de RNNs puras e a outra é uma arquitetura híbrida com CNNs.

A primeira arquitetura de pura é composta por três camadas de GRUs com 256 unidades ocultas. Essa arquitetura foi utilizada em Narotamo et al. (2024), obtendo o melhor desempenho. A diferença é que nesse trabalho, além da rede receber o sinal do ECG, ela também recebeu os intervalos RRs pré e pós:

Figura 3 – Arquitetura híbrida CNN+GRU.

A segunda rede é uma híbrida de CNN com GRU:

Figura 4 – Arquitetura híbrida CNN+GRU.

O bloco de CNN precisou ser aplicado em cada batimento dentro da sequência. Trata-se de duas camadas de CNN com 32 e 64 filtros respectivamente e cada uma seguida por uma camada de batch normalization e global max pooling para evitar sobre ajuste e reduzir as features respectivamente.

Enquanto que a rede da figura 3 recebeu o ECG concatenado com as *features*, a rede híbrida as recebeu separadas, sendo conectadas após o processamento das CNNs.

4 Resultados e discussões

4.1 Resultados do modelo GRU

A seguir, os resultados alcançados pelo modelo descrita em 3, proposta por (NA-ROTAMO et al., 2024):

rabeia ,	o –	nes	surtad	os ac	GRU) (1 v	vs.	V,) 1	.ia v	аппаçа

Métrica	Média	Desvio Padrão
Precisão	0.8515	0.1825
Recall	0.8039	0.0795
F1- $Score$	0.8060	0.0760
Acurácia	0.9640	0.0278

Na tabela 3, tem-se as métricas médias com seus respectvios desvio padrão na cross-validação de cinco folds. Os resultados indicam que o modelo achou aproximadamente 80% dos casos positivos, com um desvio padrão relativamente baixo, indicando boa estabilidade. Além disso, a precisão do modelo foi maior que seu recall, indicando um perfil mais conservador na classificação.

A seguir os resultados no treino:

Tabela 4 – Resultados do GRU (N vs. V) no treino

Métrica	Média	Desvio Padrão
Precisão	0.9872	0.0121
Revocação	0.9782	0.0150
F1-Score	0.9827	0.0134
Acurácia	0.9969	0.0024

Pelos resultados da tabela 4, há uma evidência de sobreaguaste; isto é, o modelo apresenta uma falha em sua capacidade de generalização. Durante o treino de um modelo de aprendizado de máquina, busca-se a partir de uma amostra da população estimar uma curva que melhor se encaixa na população. Modelos flexíveis como uma rede neural tem uma grande capacidade de se ajustar a essa amostra e, caso ela seja pequena, por exemplo, o modelo pode acabar aprendendo as particularidades da amostra ao invés de padrões generalizáveis.

No caso do MIT-BIH; o desbalanceamento junto com as diferenças entre os batimentos de cada paciente pode ter causado esse sobre-ajuste.

A seguir, a matriz de confusão no melhor e pior fold respectivamente:

Figura 5 – Matriz de confusão do modelo 3 em seu melhor fold

Pel figura 10, no melhor fold, o modelo achou 96% das arritmias. Porém no pior, como pode ser visto na figura 9, o modelo só conseguiu achar 76% das classes positivas

Figura 6 – Matriz de confusão do modelo 3 em seu pior fold

As duas figuras ilustram como o modelo conseguiu aprender melhor a classe negativa do que a classe positiva; evidenciado pelo fato dele confundir muito menos negativo com positivo do que o contrário. Um resultado esperado devido a essa ser a classe dominante em todos os folds.

A seguir a curva ROC no melhor fold:

Figura 7 – Curva *ROC* modelo 3 em seu melhor fold

Considerando que o baseline, um classificador aleatório, tem um ROC de 0.5, o melhor foi significantemente melhor.

Figura 8 – Curva ROC do modelo 3 em seu melhor fold

No pior fold, 8, o modelo ainda conseguiu manter uma performance satisfatória, com um ROC de 0.87. Entretanto, devido ao desbalanceamento dos conjuntos, o desempenho pode ser melhor analisado com a curva PR:

Figura 9 – Curva precisão vs recall do modelo 3 em seu melhor fold

Nesse gráfico, o baseline não é fixo, mas igual a prevalência da classe positivos. No pior fold, a proporção foi de aproximadamente 9,39%, contrastando com o 49% alcançado pelo modelo. Entretanto, a precisão foi baixa, pelo gráfico, é possível ver que, por exemplo, seria possível ter um recall de 80% porém com uma precisão menor que 60%.

No melhor caso:

Figura 10 – Curva precisão vs recall do modelo 3 em seu melhor fold

Nesse fold, o modelo alcançou um AP de 80%, enquanto que a proporção de casos positivos foi de 13,21%. No melhor caso, entretanto, o modelo para ter 80% de recall, teria que baixar sua precisão para menos de 20%.

Apesar do desbalanceamento, o modelo alcançou resultados satisfatórios, considerando o extremo desbalanceamento do conjunto.

5 Conclusão

Texto da conclusão.

Referências

- CASCINO, T.; SHEA, M. J. *Eletrocardiograma (ECG)*. 2025. MSD Manual de Medicina. Revisado por Jonathan G. Howlett. Disponível em: .
- JAMES, G. et al. An Introduction to Statistical Learning: with applications in Python. Cham: Springer, 2023. Disponível em: https://www.statlearning.com/. Acesso em: 28 ago. 2025.
- MAKOWSKI, D. et al. NeuroKit2: A python toolbox for neurophysiological signal processing. *Behavior Research Methods*, Springer Science and Business Media LLC, v. 53, n. 4, p. 1689–1696, feb 2021. Disponível em: https://doi.org/10.3758%2Fs13428-020-01516-y.
- MOODY, G. B.; MARK, R. G. MIT-BIH Arrhythmia Database. 2005. Disponível em: https://www.physionet.org/physiobank/database/mitdb/. Acesso em: 28 set. 2025.
- NAROTAMO, H. et al. Deep learning for ecg classification: A comparative study of 1d and 2d representations and multimodal fusion approaches. *Biomedical Signal Processing and Control*, Elsevier, 2024.
- SILVA, G. A. L. et al. A Systematic Review of ECG Arrhythmia Classification: Adherence to Standards, Fair Evaluation, and Embedded Feasibility. 2025. ArXiv:2503.07276v1. Acesso em: 28 set. 2025.