LIFAMI – TD : Nombres complexes et transformations du plan

Objectifs: Définition d'un nombre complexe

Transformations du plan : translation, homothétie, rotation

En mathématiques, les nombres complexes forment une extension de l'ensemble des nombres réels. Un nombre complexe z se présente en général sous forme algébrique comme une somme.

• z = x + iy, forme algébrique

où x et y sont des nombres réels quelconques et où i (l'unité imaginaire) est un nombre particulier tel que $i^2 = -1$. Le réel x est appelé partie réelle de z et se note Re(z), le réel y est sa partie imaginaire et se note Im(z).

Pour tout couple de réels (x,y) différent du couple (0,0), il existe un réel positif r et une famille d'angles déterminés à un multiple de 2π près tels que $a = r \cos(\theta)$ et $b = r \sin(\theta)$. Tout nombre complexe non nul peut donc s'écrire sous une forme trigonométrique :

- $z = r(\cos(\theta) + i\sin(\theta))$ avec r > 0, forme polaire
- $z = re^{i\theta}$, forme exponentielle

Le réel positif r est appelé le module du complexe z et est noté |z|. Le réel θ est appelé un argument du complexe z et est noté $\arg(z)$.

Dans un plan complexe \mathcal{P} muni d'un repère orthonormé $(O; \vec{u}, \vec{v})$, l'image d'un nombre complexe z = x + iy est le point M de coordonnées (x, y), son image vectorielle est le vecteur \overrightarrow{OM} . Le nombre z est appelé affixe du point M ou du vecteur \overrightarrow{OM} .

Un vecteur V du plan peut donc être représenté en coordonnées cartésiennes par V(x,y) ou par le nombre complexe x + iy. Un nombre complexe peut à la fois représenter un vecteur ou un point P qui n'est autre que le vecteur OP, avec O l'origine.

Les nombres complexes sont super cools!

- 1. Déclarez en C/C++ une structure *Complex* comportant deux champs nommés x et y.
- 2. Ecrivez en C/C++ les fonctions suivantes.

```
Fonction make_complex ( x, y : Reel) \rightarrow Complex
Fonction make_complex_exp ( r, theta : Reel) \rightarrow Complex
```

- 3. Soit le point P et le vecteur V représentés par les complexes p et v suivants :
 - p = x + i.y
 - v = dx + i.dy

L'addition de ces deux complexes p+v = x+dx + i.(y+dy) correspond à la translation du point P par le vecteur V.

En C++ il est possible d'écrire des fonctions particulières entre deux structures pour pouvoir utiliser les symboles +, - et *. Ces fonctions sont dites opérateurs d'addition, de soustraction et de multiplication. Ecrivez en C++ les opérateurs suivants.

```
Fonction operator+( a,b : Complex) → Complex // Algo
Complex operator+(Complex a, Complex b) { ... // C++

Fonction operator-( a,b : Complex) → Complex // Algo
Complex operator-(Complex a, Complex b) { ... // C++

On pourra alors écrire ceci en C++:
Complex a = make_complex(1, 1);
Complex b = make_complex_exp(1, M_PI/2);
Complex c;
c = a+b;
```

4. Soient le point P et λ un réel, l'image P' du produit $\lambda.p$ est définie par la relation $OM'=\lambda.OP$. Cette multiplication d'un nombre complexe par un scalaire s'interprète géométriquement comme une homothétie de centre O et de rapport λ sur le plan complexe.

Soit le triangle ayant pour points A(1,-1), B(0,1), C(-1,-1). Multipliez ces 3 points par le scalaire $\lambda = 2$ (Faites le calcul). Dessinez les deux triangles. Et si $\lambda = 0.5$ ou $\lambda = 0.7$?

5. Un changement d'échelle (*Scale* en anglais) se fait par rapport à un centre C de coordonnée (Cx,Cy). Ecrivez les deux fonctions suivantes :

```
Complex operator*(float lambda, Complex b) // C++ qui multiplie un scalaire à un complexe.
```

Complex scale (Complex p, float cx, float cy, float lambda) // C++ qui effectue l'homothétie de centre (cx,cy) d'un facteur lambda. Pour cela il faut placer le point/complexe p dans le repère ayant pour origine (cx,cy), faire l'homothétie donc la multiplication, puis replacer le point dans le repère O.

- 6. Soit M un point représenté par le complexe p et z un complexe de norme un et d'argument θ (donc $z=e^{i\theta}$), l'image M' du produit p.z est définie par les relations :
 - OM' = OM
 - l'angle (OM,OM') = θ

La multiplication d'un nombre complexe quelconque par un autre complexe de module un et d'angle θ s'interprète géométriquement comme une rotation de centre O (l'origine) et d'angle θ .

- 7. Soit le triangle ayant pour points A(1,-1), B(0,1), C(-1,-1). Multipliez ces 3 points par le complexe $r = e^{i\theta}$ avec $\theta = \pi/2$. Dessinez les deux triangles.
- 8. Ecrivez les deux fonctions suivantes.

Complex operator* (Complex a, Complex b) // C++ qui multiplie deux complexes ensemble.

Complex rotate (Complex p, float cx, float cy, float theta_deg) // C++ qui effectue la rotation de centre (cx,cy) d'un angle theta_deg. Pour cela il faut placer le point/complexe p dans le repère ayant pour origine (cx,cy), faire la rotation donc la multiplication, puis replacer le point dans le repère O.

Saturne, ca tourne!

9. Nous allons afficher un système solaire simplifié comportant 3 planètes en plus du soleil : mars, la terre et la lune. Chaque planète est représentée par un nombre complexe représentant sa position.

Une représentation du système solaire : le soleil en jaune, mars en rouge, la terre en bleu et la lune en gris.

Définissez la structure *SolarSystem* et écrivez les 3 fonctions suivantes.

Procédure init (ss : donnée-résultat SolarSystem) qui initialise la position du soleil au centre de la fenêtre et les 3 planètes alignées.

```
Procédure draw(ss : donnée SoloarSystem) qui affiche avec 4 couleurs différentes les 4 astres.
```

```
Procédure update (ss : donnée-résultat SolarSystem) qui met à jour la position des 3 planètes de façon à ce que mars, la terre et la lune tournent autour du soleil et la lune tourne autour de la terre. Pour cela utilisez la procédure rotate.
```

Les polygones sont des petis lyonnais polis ! (ahahah ...)

Un polygone à N cotés comporte N sommets qui seront représentés par un point/Complex.

- 10. Définissez la structure *Polygon* comportant un entier indiquant le nombre de sommets et un tableau de *Complex* de taille MAX.
- 11. Ecrivez la procédure qui ajoute un sommet au polygone *p*.

 Proc polygon add(p : donnée-résultat Polygon ; px, py : Réel)
- 12. Ecrivez la procédure qui affiche le polygone en utilisant la fonction *line*.

 Proc polygon draw(p: donnée Polygon)
- 13. Ecrivez le sous-programme qui calcule le centre de gravité d'un polygone.
- 14. Ecrivez le sous-programme qui déplace un polygone de (dx,dy).
- 15. Ecrivez la procédure qui applique l'homothétie de centre (cx,cy) et de facteur *lambda* au polygone *p*.

```
Proc polygon_scale(p : donnée-résultat Polygon ; cx,cy : Réel ;
lambda : Réel)
```

16. Ecrivez la procédure qui fait tourner le polygone *p* d'un angle *theta* par rapport au centre (cx,cy).

```
Proc polygon_rotate(p : donnée-résultat Polygon ; cx,cy : Réel ;
theta : Réel)
```

17. Ecrivez les sous-programmes qui modifient le polygone *p* de manière à en faire le symétrique par rapport à X et Y. Il faut le recentrer au milieu de la fenêtre

Rotation et changement d'échelle d'un polygone avec des nombres complexes