

CS665: Advanced Data Mining

Lecture#15: SVD-1
U Kang
KAIST

Outline

▶ □ Motivation
 □ Definition - properties
 □ Interpretation
 □ Complexity
 □ Conclusion

- problem #1: text LSI: find 'concepts'
- problem #2: compression / dim. reduction

problem #1: text - LSI: find 'concepts'

term	data	information	retrieval	brain	lung
document					
CS TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CS-TR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

Customer-product, for recommendation system

problem #2: compress / reduce dimensionality

Problem - specs

- $\sim 10**6$ rows; $\sim 10**3$ columns; no updates;
- random access to any cell(s); small error: OK

day	Wa	Th	Fr	Sa.	Sц
customor	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHT Inc.	1	1	1	0	0
KLM Co.	8	ð	ŏ	0	0
Smith	0	0	0	2	2
Johnson	0	0	0	8	8
Thompson	0	0	0	1	1

Outline

- **Motivation**
- **→** □ Definition properties
 - ☐ Interpretation
 - ☐ Complexity
 - ☐ Conclusion

(reminder: matrix multiplication)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \mathbf{x} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ \end{bmatrix}$$

 3×2 2×1

U Kang (2015) 11 CS665

(reminder: matrix multiplication)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \times 2 \end{bmatrix}$$

(reminder: matrix multiplication)

(reminder: matrix multiplication)

(reminder: matrix multiplication)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \times \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}$$

$$\mathbf{A}_{[\mathbf{n} \times \mathbf{m}]} = \mathbf{U}_{[\mathbf{n} \times \mathbf{r}]} \mathbf{\Lambda}_{[\mathbf{r} \times \mathbf{r}]} (\mathbf{V}_{[\mathbf{m} \times \mathbf{r}]})^{\mathrm{T}}$$

- A: n x m matrix (eg., n documents, m terms)
- U: n x r matrix (n documents, r concepts)
- Λ: r x r diagonal matrix (strength of each 'con cept') (r : rank of the matrix)
- V: m x r matrix (m terms, r concepts)

$$\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \Lambda_{[r \times r]} (\mathbf{V}_{[m \times r]})^{\top}$$

SVD - Properties

THEOREM [Press+92]: always possible to decomp ose matrix \mathbf{A} into $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{T}$, where

- **U**, **A**, **V**: unique (*)
- U, V: column orthonormal (ie., columns are unit v ectors, orthogonal to each other)
 - $\mathbf{U}^{\mathrm{T}} \mathbf{U} = \mathbf{I}; \mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{I} (\mathbf{I}; identity matrix)$
- Λ: singular are positive, and sorted in decreasing order

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

retrieval

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

Outline

- **Motivation**
- **☑** Definition properties
- **→ □** Interpretation
 - #1: documents/terms/concepts
 - #2: dim. reduction
 - #3: picking non-zero, rectangular clusters
 - ☐ Complexity
 - ☐ Conclusion

'documents', 'terms' and 'concepts':

- U: document-to-concept similarity matrix
- V: term-to-concept sim. matrix
- Λ: its diagonal elements: 'strength' of each con cept

'documents', 'terms' and 'concepts':

Q: if A is the document-to-term matrix, what is A^T A?

A:

 $Q: A A^T$?

A:

'documents', 'terms' and 'concepts':

Q: if A is the document-to-term matrix, what is $A^T A$?

A: term-to-term ([m x m]) similarity matrix

 $Q: \mathbf{A} \mathbf{A}^{T}$?

A: document-to-document ([n x n]) similarity ma trix

SVD properties

• V are the eigenvectors of the *covariance matrix* $\mathbf{A}^{T}\mathbf{A}$

• U are the eigenvectors of the Gram (inner-product) matrix $\mathbf{A}\mathbf{A}^{\mathrm{T}}$

Further reading:

- 1. Ian T. Jolliffe, *Principal Component Analysis* (2nd ed), Springer, 2002.
- 2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

best axis to project on: ('best' = min sum of sq uares of projection errors)

\mathbf{day}	We	\mathbf{Th}	Fr	5a	Su
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	ว์	0	0
\mathbf{Smith}	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \frac{\text{v1}}{\text{v1}}$$

■ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

variance ('spread') on the v1 axis

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ example:
 - $lue{U}$ U Λ gives the coordinates of the points in the projection axis

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- More details
- Q: how exactly is dim. reduction done?

- More details
- Q: how exactly is dim. reduction done?
- A: set the smallest singular values to zero:

```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}
```



```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix}
```



```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix}
```



```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0.18 \\ 0.36 \\ 0.18 \\ 0.90 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 9.64 \\ \end{bmatrix} \times \begin{bmatrix} 9.64 \\ \end{bmatrix}
```


Exactly equivalent:

'spectral decomposition' of the matrix:

Exactly equivalent:

'spectral decomposition' of the matrix:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} \lambda_1 & \emptyset \\ \lambda_2 & \lambda_2 \end{bmatrix} \times \begin{bmatrix} \lambda_1 & \emptyset \\ \lambda_2 & \lambda_2 \end{bmatrix} \times \begin{bmatrix} \lambda_1 & \emptyset \\ \lambda_2 & \lambda_2 \end{bmatrix}$$

Exactly equivalent:

'spectral decomposition' of the matrix:

Exactly equivalent:

'spectral decomposition' of the matrix:

approximation / dim. reduction: by keeping the first few terms (Q: how many?)

A (heuristic - [Fukunaga]): keep 80-90% of 'energy' (= sum of squares of λ_i 's)

Pictorially: matrix form of SVD

■ Best rank-k approximation in L2

Pictorially: matrix form of SVD

□ Best rank-k approximation in L2

finds non-zero clusters in a data matrix

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

finds non-zero clusters in a data matrix

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ \hline 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27 \end{bmatrix} \times \begin{bmatrix} 9.64 & 0 \\ 0 & 5.29 \end{bmatrix} \times \begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0.71 & 0.71 \end{bmatrix}$$

- finds non-zero clusters in a data matrix =
- 'communities' (bi-partite cores, here)

	•	1 2		0	Row 1	Col 1
1	1 5	1	0	0	Row 4	Col 3
$\frac{0}{0}$	0	$\frac{0}{0}$	2	$\frac{3}{2}$	Row 5	Col 4
0	0	0	1	3 1	Row 7	COI 4

- Excercise: find the SVD, 'by inspection'!
- Q: rank = ??

 \blacksquare A: rank = 2 (2 linearly independent rows/cols)

 \blacksquare A: rank = 2 (2 linearly independent rows/cols)

column vectors: are orthogonal - but not unit v ectors:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/\operatorname{sqrt}(3) & 0 \\ 1/\operatorname{sqrt}(3) & 0 \\ 0 & 1/\operatorname{sqrt}(2) \\ 0 & 1/\operatorname{sqrt}(2) \end{bmatrix} \times \begin{bmatrix} ?? & 0 \\ 0 & ?? \end{bmatrix} \times \begin{bmatrix} 1/\operatorname{sqrt}(3) & 1/\operatorname{sqrt}(3) & 0 \\ 0 & 0 & 0 & 1/\operatorname{sqrt}(3) & 1/\operatorname{sqrt}(3) & 0 \\ 0 & 0 & 0 & 1/\operatorname{sqrt}(2) & 1/\operatorname{sqrt}(2) \end{bmatrix}$$

and the singular values are:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/\operatorname{sqrt}(3) & 0 \\ 1/\operatorname{sqrt}(3) & 0 \\ 0 & 1/\operatorname{sqrt}(2) \\ 0 & 1/\operatorname{sqrt}(2) \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \times$$

• Q: How to check we are correct?

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/\operatorname{sqrt}(3) & 0 \\ 1/\operatorname{sqrt}(3) & 0 \\ 0 & 1/\operatorname{sqrt}(2) \\ 0 & 1/\operatorname{sqrt}(2) \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \times \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix} \times$$

- A: SVD properties:
 - matrix product should give back matrix **A**
 - matrix U should be column-orthonormal, i.e., columns should be unit vectors, orthogonal to each other
 - same for matrix V
 - \Box matrix Λ should be diagonal, with positive values

Outline

- **Motivation**
- **☑** Definition properties
- **☑** Interpretation
- **→** □ Complexity
 - ☐ Conclusion

SVD - Complexity

- O(n * m * m) or O(n * n * m) (whichever is l ess)
- less work, if we just want singular values
- or if we want first *k* singular vectors
- or if the matrix is sparse [Berry]
- Implemented: in any linear algebra package (L INPACK, matlab, Splus/R, mathematica ...)
 - Hadoop Implementation: HEigen [Kang+ PAKDD 2011]

Outline

- **Motivation**
- **☑** Definition properties
- **☑** Interpretation
- Complexity
- **→** □ Conclusion

SVD - conclusions so far

- SVD: $A = U \Lambda V^T$: unique (*)
- U: document-to-concept similarities
- V: term-to-concept similarities
- lack Λ : strength of each concept
- dim. reduction: keep the first few strongest sin gular values (80-90% of 'energy')
- SVD: picks up linear correlations
- SVD: picks up non-zero clusters

References

- Berry, Michael: http://www.cs.utk.edu/~lsi/
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Press, W. H., S. A. Teukolsky, et al. (1992). Nume rical Recipes in C, Cambridge University Press.