Week 2 Quiz

Q1.

A maze-solving search problem differs from a tic-tac-toe search problem in the following way(s):

Q2.

Consider the following game tree, what are the values of nodes E and A?

A.
$$E = 4$$
, $A = 9$

B.
$$E = 5, A = 8$$

C.
$$E = 5$$
, $A = 10$

D.
$$E = 4$$
, $A = 10$

Q3.

Use the minimax algorithm to compute the missing values A, B, and G.

A.
$$A = -6$$
, $B = 8$, $G = 8$

B.
$$A = 5$$
, $B = 3$, $G = 3$

C.
$$A = -6$$
, $B = 3$, $G = -3$

Q4.

If we run the alpha-beta pruning algorithm on the same tree (shown below), what are the nodes that will not be visited:

$$C. -6, -1, 8, 0$$

Q5.

For a general game tree, are there any cases that the AlphaBeta algorithm gives a different value at the root node than the Minimax algorithm?

- A. Yes, and I can prove it.
- B. Yes, but I can't prove it.
- C. No

Q6.

Which of the following is true about the minimax algorithm and alpha-beta: