2.3 Domínios de integridade e corpos

Vamos supor que A é um anel não nulo, isto é $A \neq \{0\}$. Sendo assim, $1 \neq 0$ e A tem pelo menos dois elementos.

Definição 2.3.1. Seja A um anel não nulo. Um elemento $a \neq 0$ de A diz-se um divisor de zero se existe um elemento $b \neq 0$ em A tal que ab = 0 ou ba = 0.

Definição 2.3.2. Um domínio de integridade é um anel A comutativo não nulo que não admite divisores de zero, isto é, para quaisquer $a, b \in A$, ab = 0 implica a = 0 ou b = 0.

Exemplos 2.3.3. (i) \mathbb{Z} , \mathbb{Q} e \mathbb{R} são domínios de integridade.

- (ii) \mathbb{Z}_4 não é um domínio de integridade. [2] é um divisor de zero em \mathbb{Z}_4 pois [2]·[2] = [0].
- (iii) Qualquer subanel de um domínio de integridade é um domínio de integridade.

Proposição 2.3.4. Sejam A um domínio de integridade, $a \in A \setminus \{0\}$ e $b, c \in A$. Então $ab = ac \Rightarrow b = c$ e $ba = ca \Rightarrow b = c$.

Demonstração: Como A é comutativo, basta mostrar a primeira implicação. Se ab = ac, então a(b-c) = ab - ac = 0. Como $a \neq 0$, b-c = 0. Logo b = c.

Definição 2.3.5. Um ideal I de um anel A diz-se primo se $I \neq A$ e se para quaisquer dois elementos $a, b \in A$, $ab \in I$ implica $a \in I$ ou $b \in I$.

Exemplos 2.3.6. (i) Um anel comutativo não nulo é um domínio de integridade se e só se $\{0\}$ é um ideal primo.

(ii) Para $n \geq 1$, $n\mathbb{Z}$ é um ideal primo de \mathbb{Z} se e só se n é primo.

Proposição 2.3.7. Sejam A um anel comutativo e $I \neq A$ um ideal de A. Então I é primo se e só se A/I é um domínio de integridade.

Demonstração: Suponhamos primeiramente que I é primo. Como A é comutativo, A/I é comutativo também. Como $I \neq A$, o anel A/I é não nulo. Sejam $a, b \in I$ tais que (a+I)(b+I) = ab + I = I. Então $ab \in I$ e portanto $a \in I$ ou $b \in I$. Logo a+I=I ou b+I=I. Segue-se que A/I é um domínio de integridade.

Suponhamos inversamente que A/I é um domínio de integridade. Sejam $a, b \in A$ tais que $ab \in I$. Então (a+I)(b+I) = ab+I = I, pelo que a+I = I ou b+I = I. Segue-se que $a \in I$ ou $b \in I$ e então que I é primo.

Corolário 2.3.8. \mathbb{Z}_n é um domínio de integridade se e só se n é primo.

Definição 2.3.9. Um anel comutativo A não nulo é um corpo se todo o elemento $a \in A$ não nulo é invertível (relativamente à multiplicação).

Exemplos 2.3.10. (i) \mathbb{Q} , \mathbb{R} , \mathbb{C} são corpos.

(ii) \mathbb{Z} não é um corpo.

Proposição 2.3.11. Qualquer corpo é um domínio de integridade.

Demonstração: Sejam K um corpo e $a,b \in K$ tais que ab=0 e $a\neq 0$. Então $b=a^{-1}ab=a^{-1}0=0$. Como K é comutativo e não nulo, podemos concluir que K é um domínio de integridade.

Proposição 2.3.12. \mathbb{Z}_n é um corpo se e só se n é primo.

Demonstração: Se n não é primo, \mathbb{Z}_n não é um anel de integridade, pelo que não é um corpo. Se n é primo, \mathbb{Z}_n é comutativo e não nulo e segue-se do Exercício que qualquer elemento não nulo de \mathbb{Z}_n é invertível. Consequentemente, \mathbb{Z}_n é um corpo.

Observação 2.3.13. Num corpo K, os únicos ideais são os ideais principais $(0) = \{0\}$ e (1) = K. Com efeito, se $I \neq \{0\}$ é um ideal de K e $x \in I \setminus \{0\}$, então $1 = x^{-1}x \in I$, pelo que I = K.

Definição 2.3.14. Um ideal I de um anel A diz-se maximal se $I \neq A$ e se para qualquer ideal J de A, $I \subseteq J \neq A \Rightarrow J = I$.

Proposição 2.3.15. Sejam A um anel comutativo $e I \neq A$ um ideal. Então I é maximal se e só se A/I é um corpo.

Demonstração: Suponhamos primeiramente que I é maximal. Seja $a \in A \setminus I$. Então (a) + I é um ideal de A que contém I como subconjunto próprio. Como I é maximal, (a) + I = A. Logo existem $b \in A$ e $x \in I$ tais que 1 = ab + x. Tem-se (a + I)(b + I) = ab + I = ab + x + I = 1 + I, pelo que a + I é uma unidade de A/I. Para qualquer $x \in A$, $(x + I)I = I \neq 1 + I$, pelo que I não é invertível em A/I. Segue-se que A/I é um corpo. Suponhamos agora que A/I é um corpo. Seja I um ideal de I tal que $I \subseteq I \neq I$. Seja I existe I existence I existe I existence I existe

Corolário 2.3.16. Qualquer ideal maximal de um anel é primo.

Proposição 2.3.17. Seja A um domínio de integridade. Uma relação de equivalência $em\ A \times (A \setminus \{0\})$ é dada por $(a,b) \sim (x,y) \Leftrightarrow ay = xb$. Se $(a,b) \sim (x,y)$ e $(c,d) \sim (u,v)$, $então\ (ad+cb,bd) \sim (xv+uy,yv)$ e $(ac,bd) \sim (xu,yv)$.

Demonstração: É óbvio que a relação \sim é reflexiva e simétrica. Sejam $(a,b), (x,y), (u,v) \in A \times (A \setminus \{0\})$ tais que $(a,b) \sim (x,y)$ e $(x,y) \sim (u,v)$. Então ay = xb e xv = uy. Logo avy = ayv = xbv = bxv = buy. Como $y \neq 0$, obtém-se av = bu = ub, ou seja, $(a,b) \sim (u,v)$. Logo \sim é transitiva e então uma relação de equivalência.

Suponhamos agora que $(a,b) \sim (x,y)$ e $(c,d) \sim (u,v)$. Então (ad+cb)yv = adyv + cbyv = aydv + cvby = xbdv + udby = xvbd + uybd = (xv + uy)bd. Logo $(ad+cb,bd) \sim (xv + uy,yv)$. Tem-se acyv = aycv = xbud = xubd e então $(ac,bd) \sim (xu,yv)$.

Definição 2.3.18. Seja A um domínio de integridade e \sim a relação de equivalência em $A \times (A \setminus \{0\})$ dada por $(a,b) \sim (x,y) \Leftrightarrow ay = xb$. A classe de equivalência de um par $(a,b) \in A \times (A \setminus \{0\})$ é a fracção $\frac{a}{b}$. Pela proposição precedente podemos definir a adição e a multiplicação de fracções por

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$
 e $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$.

O corpo de fracções de A, Frac(A), é o conjunto das fracções $\frac{a}{b}$ $(a,b\in A,b\neq 0)$ munido da adição e da multiplicação de fracções.

Exemplo 2.3.19. $Frac(\mathbb{Z}) = \mathbb{Q}$.

Definição 2.3.20. Seja A um anel. A característica de A é definida por

$$car(A) = \begin{cases} 0, & \text{se } |1| = \infty, \\ |1|, & \text{caso contrário.} \end{cases}$$

Exemplos 2.3.21. Tem-se $car(\mathbb{Z}) = car(\mathbb{Q}) = car(\mathbb{R}) = 0$ e $car(\mathbb{Z}_n) = n$.

Notas 2.3.22. (i) Num anel A de característica n tem-se na=0 para todo o $a \in A$. Com efeito, para qualquer $a \in A$, na=n(1a)=(n1)a=0a=0.

(ii) Sejam A um anel e $f: \mathbb{Z} \to A$ o homomorfismo de anéis dado por $f(n) = n \cdot 1$. Note-se que f é o único homomorfismo de anéis de \mathbb{Z} para A. Tem-se $\operatorname{car}(A) = n$ se e só se $\operatorname{Ker}(f) = n\mathbb{Z}$. Segue-se que a característica de A é o único número natural n tal que A contém um subanel isomorfo a $\mathbb{Z}/n\mathbb{Z}$.

Proposição 2.3.23. A característica de um domínio de integridade é ou 0 ou um número primo.

Demonstração: Seja A um domínio de integridade com $\operatorname{car}(A) \neq 0$. Então o elemento 1 de A tem ordem finita e $\operatorname{car}(A) = |1|$. Sejam $1 \leq k \leq l \leq |1|$ inteiros tais que kl = |1|. Então $k1 \cdot l1 = kl1 = |1|1 = 0$, pelo que k1 = 0 ou l1 = 0. Segue-se que l = |1| e k = 1. Logo $\operatorname{car}(A) = |1|$ é um número primo.

Nota 2.3.24. Existe uma múltiplicação com a qual o grupo $\mathbb{Z}_2 \times \mathbb{Z}_2$ é um corpo. Este corpo tem característica 2 e 4 elementos. Note-se que para qualquer número primo p e qualquer número natural $n \geq 1$, existe um corpo \mathbb{F}_{p^n} de característica p com p^n elementos e este corpo é único a menos de isomorfismo. Além disso, qualquer corpo finito é isomorfo a um dos corpos \mathbb{F}_{p^n} .

2.4 Divisibilidade num domínio de integridade

Definição 2.4.1. Seja A um domínio de integridade e sejam $a, b \in A$. Diz-se que a divide b (escreve-se a|b) se existir $q \in A$ tal que a = bq. Diz-se que a e b são associados se a|b e b|a.

Notas 2.4.2. (i) Tem-se: $a|b \Leftrightarrow b \in (a) \Leftrightarrow (a) \subset (a)$.

- (ii) Os elementos a e b são associados se e só se (a) = (b). Mostra-se também que a e b são associados se e só se existir $u \in A$ invertível tal que b = au.
- (iii) Qualquer elemento $a \in A$ divide 0 pois $0 = 0 \cdot a$ mas não é um divisor de zero no sentido da definição 2.3.1 pois, sendo A um domínio de integridade, não existe $q \neq 0$ tal que 0 = aq.

Definição 2.4.3. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível.

- p é dito primo se, para todos os $a, b \in A$, $p|ab \Rightarrow p|a$ ou p|b.
- p é dito irredutível se, para todos os $a, b \in A, p = ab \Rightarrow a$ é invertível ou b é invertível .

Nota 2.4.4. São duas noções que estendem a noção usual de primo nos inteiros. Em particular, $p \in \mathbb{Z}$ é primo/irredutível se e só se |p| é um natural primo no sentido usual.

Proposição 2.4.5. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível. Se p é primo então p é irredutível.

Demonstração: Sejam $a, b \in A$ tais que p = ab. Como $p \neq 0$, temos $a \neq 0$ e $b \neq 0$. Como p = ab, podemos dizer que p|ab (pois $ab = 1 \cdot p$) e, como p é primo, temos p|a ou p|b. Se p|a, então existe $q \in A$ tal que a = pq. Como p = ab, obtemos a = abq e a(1 - bq) = 0. Como $a \neq 0$ e A é um domínio de integridade, obtemos 1 - bq = 0. Logo bq = 1 e, sendo A comutativo, podemos concluir que b é invertível. Da mesma forma, se $b \neq 0$, obtemos que a é invertível. Em todos os casos, obtemos a invertível ou b invertível e podemos concluir que a é irredutível.

Proposição 2.4.6. Seja A um domínio de integridade e seja $p \in A$ um elemento não nulo, não invertível. Considere o ideal (p) de A gerado por p. Tem-se

- (i) p é primo se e só se (p) é primo.
- (ii) Se (p) é maximal então p é irredutível.

Demonstração: Como p é não invertível tem-se $(p) \neq A$. A alínea (i) segue imediatamente das definições de elemento e ideal primo. Como um ideal maximal e sempre primo, a alínea (ii) segue da alínea (i) e da proposição anterior.

Não é verdade em geral que um elemento irredutível seja um elemento primo (ver Folha 6 - Ex 9). No entanto, existem classes de anéis em que isto é verdade.

Definição 2.4.7. Seja A um domínio de integridade. Diz-se que A é um domínio de fatorização única se

- (E) Para todo o $a \in A$ não nulo e não invertível, existem p_1, \ldots, p_n elementos irredutíveis de A tais que $a = p_1 \cdots p_n$.
- (U) Esta decomposição é única a menos da ordem e de fatores invertíveis. Isto é, se $p_1 \cdots p_n = q_1 \cdots q_m$ onde os p_i e q_j $(1 \le i \le n, 1 \le j \le m)$ são irredutíveis, então n = m e existe uma permutação $\sigma \in S_n$ tal que, para todo o $i \in \{1, \dots, n\}$, p_i e $q_{\sigma(i)}$ são associados.

Exemplos de domínios de fatorização única são \mathbb{Z} (através da decomposição de um natural em naturais primos) e anéis de polinómios.

Proposição 2.4.8. Seja A um domínio de fatorização única e seja $p \in A$ um elemento não nulo não invertível. Se p é irredutível então p é primo.

Demonstração: Sejam $a, b \in A$ tais que p|ab. Queremos ver que p|a ou p|b. Como p|ab existe $q \in A$ tal que ab = pq. Em primeiro lugar, analisemos alguns casos particulares. Se a = 0 temos $a = 0 \cdot p$ pelo que p|a. Se a é invertível, temos $b = a^{-1}pq$ pelo que p|b. Da mesma forma, se b = 0, tem-se p|b e, se b é invertível, tem-se p|a. Se q = 0 tem-se a = 0 ou a = 0 pelo que a = 0 que

$$p_1 \cdots p_n \cdot p_1' \cdots p_m' = p \cdot p_1'' \cdots p_l''.$$

Pela unicidade da decomposição em irredutíveis, p é associado a um dos p_i (neste caso p|a) ou a um dos p'_j (neste caso p|b). Em todos os casos p|a ou p|b e podemos concluir que p é primo.

Definição 2.4.9. Um domínio de integridade A diz-se um domínio de ideais principais se todos os ideais de A são principais.

Exemplos 2.4.10. (i) Qualquer corpo é um domínio de ideais principais.

(ii) \mathbb{Z} é um domínio de ideais principais.

Proposição 2.4.11. Seja A um domínio de ideais principais e seja $p \in A$ um elemento não nulo, não invertível. Se p é irredutível então (p) é maximal.

Demonstração: Como p não é invertível, $(p) \neq A$. Seja J um ideal de A tal que $(p) \subset J$. Queremos mostrar que J = (p) ou J = A. Como A é um domínio de ideais principais, existe $a \in A$ tal que J = (a). De $(p) \subset (a)$ deduzimos que $p \in (a)$ e que existe $b \in A$ tal que p = ab. Como p é irredutível, a é invertível ou b é invertível. Se a é invertível temos J = (a) = A. Se b é invertível, p e a são associados e consequentemente J = (a) = (p). Podemos concluir que (p) é maximal.

Corolário 2.4.12. Sejam A um domínio de ideais principais e seja $p \in A$ um elemento não nulo, não invertível. São equivalentes:

- (i) $p \in \text{primo}$;
- (ii) p é irredutível;
- (iii) (p) é maximal;
- (iv) (p) é primo.

Por fim, pode se estabelecer o seguinte resultado:

Teorema 2.4.13. Seja A um anel. Se A é um domínio de ideais principais então A é um domínio de fatorização única.