Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт О выполнении задания №2

Скрябин Глеб 323 группа

Оглавление

1.	ОПИСАНИЕ ЗАДАЧИ	2
2.	ОПИСАНИЕ АЛГОРИТМА ПРОГРАММЫ	2
3.	РЕЗУЛЬТАТЫ И ИХ СРАВНЕНИЕ С 1 ЗАДАЧЕЙ	3
4.	ГРАФИКИ	

1. Описание задачи

Требуется написать программу с использованием MPI для решения системы линейных уравнений Ax=b методом отражений. После чего сравнить результаты работы этой программы с аналогичной ей OpenMP версией в 1 задаче.

2. Описание алгоритма программы

- 1. Приведение матрицы к верхнему треугольному виду методом отражений, это занимает n-I шагов, так как матрица имеет размер $n \times n$.
- 2. Обратный ход методом Гаусса.

В программе время разложение матрицы и время решения методом Гаусса замеряется при помощи функции $MPI_Wtime()$, записывая время до операции и после. Для проверки корректности работы программы в каждом опыте также измерялась норма невязки и норма разницы между полученным и точным решениями. Так как за время запусков данные параметры не превышали значения le-5 и le-7 соответственно, можно считать, что результаты не имеют ошибок.

Тестирование программы выполнялось на вычислительной системе Polus. Компиляция проводилась командой mpicc -std=c99 -Wall -Werror -O0 -lm main.c -o main. Постановка задачи в очередь проводилась через планировщик IBM Spectrum LSF командой bsub < . $/task_2$ _job.lsf. Содержание файла $task_2$ _job.lsf имело вид:

```
#BSUB -n 2 -q short
#BSUB -W 00:15
#BSUB -o "my_job.%J.1000.2.out"
#BSUB -e "my_job.%J.1000.2.err"
mpiexec ./main 1000 slae_1000
```

Исследования проводились для матриц размером 300×300 , 1000×1000 , 3000×3000 и 6000×6000 . Для распараллеливания программы использовались 2, 4, 8 и 16 MPI процессов.

3. Результаты запусков с МРІ и сравнение с ОрепМР

Таблица 1: MPI, size = 300

Процессов	1	2	4	8	16
T1	0.193762	0.109231	0.085510	0.049090	0.028511
T2	0.000723	0.001931	0.001886	0.002535	0.004042
Точность	2.45834e-10	2.44325e-10	2.44061e-10	2.44376e-10	2.43886e-10
Невязка	3.45281e-08	3.55584e-08	3.08252e-08	3.19954e-08	3.40443e-08

Таблица 2: OpenMP, size = 300

Процессов	1	2	4	8	16
T1	0.033730	0.026611	0.025046	0.039173	0.058580
T2	0.000450	0.001148	0.001337	0.001683	0.001977
Точность	3.55926e-11	2.23861e-11	1.08301e-11	2.2636e-11	1.77584e-11
Невязка	1.6159e-09	1.34051e-09	1.23619e-09	1.27843e-09	1.22325e-09

Таблица 3: MPI, size = 1000

Процессов	1	2	4	8	16
T1	5.694374	2.815397	1.458355	0.866591	0.450640
T2	0.006032	0.005274	0.004522	0.004574	0.006022
Точность	1.02887e-09	1.02981e-09	1.02716e-09	1.02799e-09	1.02828e-09
Невязка	3.43642e-07	4.69996e-07	3.59495e-07	3.64917e-07	3.53927e-07

Таблица 4: OpenMP, size = 1000

Процессов	1	2	4	8	16
T1	0.977665	0.502424	0.346307	0.327805	0.247614
T2	0.002773	0.003717	0.004954	0.006473	0.006288
Точность	7.19072e-10	7.37132e-09	1.21028e-10	1.73273e-09	1.82449e-09
Невязка	9.68902e-09	8.10843e-09	7.84952e-09	7.4893e-09	7.56072e-09

Таблица 5: MPI, size = 3000

Процессов	1	2	4	8	16
T1	161.538832	81.367632	39.317774	18.894153	13.958114
T2	0.054597	0.033993	0.022001	0.014680	0.014292
Точность	2.46135e-07	2.46133e-07	2.46132e-07	2.46134e-07	2.46135e-07
Невязка	6.26343e-06	4.27688e-06	3.87863e-06	4.07698e-06	4.17445e-06

Таблица 6: OpenMP, size = 3000

Процессов	1	2	4	8	16
T1	27.651724	14.135834	7.762235	4.753887	4.916452
T2	0.012756	0.017123	0.016439	0.017782	0.019941
Точность	2.43248e-09	1.57075e-09	1.56599e-09	1.79622e-09	1.69117e-09
Невязка	4.94688e-08	4.39756e-08	4.16076e-08	4.02889e-08	4.01092e-08

Таблица 7: MPI, size = 6000

Процессов	1	2	4	8	16
T1	1847.856087	672.554880	344.871686	161.839014	110.443389
T2	0.248574	0.114143	0.073912	0.040847	0.037611
Точность	3.33568e-07	3.33571e-07	3.33562e-07	3.33558e-07	3.3356e-07
Невязка	1.21281e-05	1.10485e-05	1.0723e-05	1.08635e-05	1.08567e-05

Таблица 8: OpenMP, size = 6000

Процессов	1	2	4	8	16
T1	824.271903	420.837544	206.452682	177.388909	69.545985
T2	0.040524	0.041154	0.036481	0.039391	0.051820
Точность	6.78865e-10	3.31087e-09	2.75693e-09	1.32591e-09	1.97213e-09
Невязка	1.44236e-07	1.27406e-07	1.21465e-07	1.17146e-07	1.16274e-07

4. Графики

Рис. 1: Т1 – время приведения к треугольному виду (логарифмический график)

Рис. 2: Т2 – время обратного хода Гаусса (логарифмический график)

Рис. 3: Ускорение

Рис. 4: Эффективность