PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-107346

(43) Date of publication of application: 09.04.2003

(51)Int.Cl.

G02B 15/16 H04N 5/225

(21)Application number: 2001-295515

(71)Applicant: FUJI PHOTO OPTICAL CO LTD

(22)Date of filing: 27.09.2001 (72)

(72)Inventor: MIYANO TAKASHI

(54) ZOOM LENS

(57)Abstract:

PROBLEM TO BE SOLVED: To make the configuration of lens groups moved for back focus adjustment simpler and more compact and also minimize the fluctuation of lens performance involved in back focus adjustment by providing a zoom lens composed of four groups being positive, negative, negative and positive from the object side and forming the fourth group of a front group and a rear group which is composed of one positive lens. SOLUTION: This zoom lens consists of a positive first group I, a negative second group II that is moved at power variation to change power, a negative third group III that is moved at power variation to correct the fluctuation of an image surface involved in power variation, and a positive fourth group IV, wherein the fourth group IV consists of the front group IVa and the rear group IVb composed of one positive lens and adjusts the deviation of an image-formation position when the lens is mounted to a camera by moving the fourth latter group IVb.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-107346 (P2003-107346A)

(43)公開日 平成15年4月9日(2003.4.9)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

G02B 15/16 H04N 5/225 G 0 2 B 15/16

2H087

H 0 4 N 5/225

F 5C022

審査請求 未請求 請求項の数5 OL (全 17 頁)

(21)出願番号

特願2001-295515(P2001-295515)

(71)出願人 000005430

富士写真光機株式会社

埼玉県さいたま市植竹町1丁目324番地

(22)出願日 平

平成13年9月27日(2001.9.27)

(72)発明者 宮野 俊

埼玉県さいたま市植竹町1丁目324番地

富士写真光機株式会社内

(74)代理人 100097984

弁理士 川野 宏

最終頁に続く

(54) 【発明の名称】 ズームレンズ

(57)【要約】

【目的】 物体側より順に正、負、負、正の4群からなるズームレンズとし、第4群を、前群と正レンズ1枚からなる後群とから構成することにより、バックフォーカス調整のために移動するレンズ群の構成が単純かつコンパクトであるとともに、バックフォーカス調整に伴うレンズ性能の変動を極めて小さくする。

【構成】 物体側より順に、正の第1群I、変倍時に移動して変倍を行う負の第2群II、変倍時に移動して変倍に伴う像面の変動を補正する負の第3群III、および正の第4群IVからなり、さらに第4群IVは、前群IVa、および1枚の正レンズからなる後群IVbにより構成され、第4後群IVbの移動によりカメラ取り付け時における結像位置のずれの調整を行う。

【特許請求の範囲】

【請求項1】 物体側より順に、正の屈折力を有する第1レンズ群、変倍時に移動して変倍を行う負の屈折力を有する第2レンズ群、変倍時に移動して変倍に伴う像面の変動を補正する負の屈折力を有する第3レンズ群、および正の屈折力を有する第4レンズ群からなり、前記第4レンズ群は、前群および後群から構成され、前記第4レンズ群の後群は、1枚の正レンズからなり、該正レンズの移動によりカメラ取り付け時における結像位置のずれの調整を行うことを特徴とするズームレンズ。

1

【請求項2】 全系のバックフォーカスをBf、前記第4レンズ群の後群のバックフォーカスをBf4b としたとき、下記条件式(1)を満足することを特徴とする請求項1記載のズームレンズ。

1. $0 < B f_{4b} / B f < 1. 5 \cdot \cdot \cdot (1)$

【請求項3】 短焦点端における開放時のF値をFn、 短焦点端における開放時の中心光束に対する前記第4レ ンズ群の後群の最も像側のレンズ面における光線の高さ をHa、短焦点端における開放時の中心光束に対する前 20 記第4レンズ群の後群の最も物体側のレンズ面における 光線の高さをHbとしたとき、下記条件式(2)を満足 することを特徴とする請求項1または2記載のズームレ ンズ

| Ha-Hb | <0. 02×Bf/Fn ・・・(2) 【請求項4】 前記第4レンズ群の前群は、物体側から 順に、像側に強い屈折力を有する凸面を向けた正レン ズ、両凸レンズ、正レンズと負レンズとの接合レンズ、 物体側に強い屈折力を有する凸面を向けた正レンズ、お よび正レンズと負レンズとの接合レンズからなることを 30 特徴とする請求項1~3のうちのいずれか1項記載のズ ームレンズ。

【請求項5】 前記第1レンズ群は、物体側から順に、 負レンズと正レンズとの接合レンズ、および物体側に凸 面を向けた正のメニスカスレンズからなり、前記第2レ ンズ群は、物体側から順に、負レンズ、負レンズ、およ び物体側に凸面を向けた正のメニスカスレンズからな り、

前記第3レンズ群は、両凹レンズと正レンズとの接合レンズからなることを特徴とする請求項1~4のうちのい 40 ずれか1項記載のズームレンズ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、テレビレンズ用のズームレンズに関し、詳しくはCCTV (ClosedCircuit Television) 用カメラ等のカメラ本体に取り付け可能で、かつバックフォーカス調整を行うことが可能なズームレンズに関する。

[0002]

【従来の技術】一般に、テレビカメラにおけるマウント 50 基づく値、および第4レンズ後群IVbを像側へ1mm移

のフランジバック寸法は、同一規格の機種であっても個々に相違している。このため、テレビカメラにレンズを取り付けた際には、テレビカメラの撮像面とレンズの結像面とを一致させるためのバックフォーカス調整を行わなければならない。このバックフォーカス調整は、レンズ群を構成するレンズの一部を移動して、結像位置を調整することにより行っている。

【0003】<従来例1>この点、3色分解プリズムを有する放送用テレビカメラ等に用いられるズームレンズ (以下、従来例1と称する)においては、レンズ系内にほぼアフォーカルな部分を設けるとともに、結像位置調整のために移動するレンズ群も複雑に構成されているため、収差補正を十分に行うことができ、結像位置を調整するためにレンズを移動させた場合であっても、レンズ性能の変化は少ない。

【0004】この従来例1に係るズームレンズのレンズ 構成を図17に示す。従来例1に係るズームレンズは、 図17に示すように、物体側から順に、第1レンズL1 ~第5レンズL5 からなる第1レンズ群I、第6レンズ L6 ~第9レンズL5 からなる第2レンズ群II、第10 レンズL10 と第11レンズL11 からなる第3レンズ 群III、および第12レンズL12 ~第21レンズL 21 からなる第4レンズ群IVにより構成され、さらに第4レンズ群IVは、第12レンズL12 ~第15レンズL 15 からなる第4レンズ前群IVaと、第16レンズL 16 ~第21レンズL21 からなる第4レンズ後群IVb により構成されている。

【0005】また、第4レンズ前群IVaの物体側には絞り1が配設されており、第4レンズ後群IVbとCCDからなる撮像素子3との間に3色分解プリズム4およびフィルタ2が配設されている。なお、撮像素子3と3色分解プリズム4およびフィルタ2は、テレビカメラ本体側に配設されている。また、図17において、Xは光軸を示す。

【0006】また、下記表1に、従来例1に係るズームレンズにおける、各レンズ面の曲率半径R(mm)、各レンズの中心厚および各レンズ間の空気間隔D(mm)、各レンズのe線における、屈折率N。およびアッベ数v。の各値を示す。なお、表1中の各数字は、物体側からの順番を表すものである(表3において同じ)。さらに、下記表2に、従来例1に係るズームレンズのWIDE端およびTELE端における焦点距離、Fno、表1中の*印を付したレンズ間の空気間隔、全系のバックフォーカスBf、第4レンズ後群IVbのバックフォーカスBf、第4レンズ後群IVbの最も像側のレンズ面(R $_{30}$)における光線の高さHa、中心光束に対する第4レンズ後群IVbの最も物体側のレンズ面(R $_{30}$)における光線の高さHb、HaとHbの差、BfとFnoとの比に基づく値、および第4レンズ後群IVbを像側へ1mm移

10

動した場合のピント移動量の各値を示す。なお、従来例 1に係るズームレンズの画面サイズは、φ11.0(2 /3インチサイズ)となっている。

[0007]

【表1】

従来例1

T	R	D	N.	ν.
1	-167.933	2506	1.81264	25.2
2	205.525	5.917		
3	90	8.182	1. 43496	94.6
4	-123.571	0.116		
5	284.452	7.902	1.43496	94.6
6	-212.171	7.497		
7	124.045	9.502	1.57098	70.9
8	-302.956	0.116		
9	64.461	6.206	1.82016	46.4
10	130.958	*1		
11	54.496	0.771	1.83932	36.9
12	14.181	6.852		
13	-61.901	0.771	1.83945	42.5
14	40.862	1.368		
15	25.631	4.732	1.85501	23.7
18	-49.180	0.665	4 =====	40.0
17	-32.185	0.771	1.77620	49.3
18	79.600	*2	4 750 10	F0.4
19	-27.304	0.771	1.75843	52.1
20	41.837	2.390 *3	1.85501	23.7
21	60 (##1)	*3 1.706		
22	(校り)		1.52033	58.7
23	213.835	4,828 0.116	1.52033	90.7
24	-34.837		1.59143	61.0
25	153.522	3.267	1.09 143	01.0
26	-2088.371 51.765	0.118 7.016	1.52033	58.7
27	-36.176	1.205	1.80810	46.3
28		32,938	1.00010	40.3
29	-518.539 49.070	4.655	1.51825	63.9
30	-82.602	4.655 0.116	1.01020	03.0
31 32	-82.602 34.236	6.180	1.48914	70.2
		1.253	1.83945	42.5
33 34	-41.312 21.220	3.442	1.63845	42.3
-	31.261	8.163	1.51825	63.9
35	-22.118	1.205	1.83945	42.5
36	-22.116 -94.916	D.116	1.03543	42.5
37 38	-94.916 84.626	6.426	1.48914	70.2
	84.626 -26.108	10.665	1.40914	70.2
39		33.000	1.58565	46.2
40	00		1.51825	40.2 63.9
41	60	13.200	1.31023	03.8
42	00			

[0008] 【表 2】

従来例1

画面サイズ **Ø11.0**

(m) (m) / (/ / / / / / / / / / / / / / / / /			
	WIDE端	TELE端	
焦点距離	8	160	
開放F値	1.65	2.56	
*1	0.944	54.595	
*2	55.218	7.177	
*3	6.514	0.905	
Bf	40.171		
Bf _{4b}	40.036		
Bf _{4b} /Bf	0.9	97	
Ha	15.	649	
НЬ	15.409		
Ha-Hb	0.24		
0.02xBf/Fn	0.487		
ピント移動量	1		

【0009】図19は、従来例1に係るズームレンズの WIDE端における球面収差および非点収差を示す収差 図であり、上段に設計値に対応する収差図を示し、下段 に結像位置を調整するために第4レンズ後群IVbを像側 へ1mm移動した場合の収差図を示す。なお、各非点収 20 差図には、サジタル像面およびタンジェンシャル像面に おける各収差が示されている。

【0010】図19から明らかなように、従来例1に係 るズームレンズでは、設計値と、結像位置を調整するた めに第4レンズ後群IVbを像側へ1mm移動した状態と を比較すると、球面収差および非点収差に大きな変化は なく、設計値に対してレンズ性能の変化が極めて小さい ことが分かる。

【0011】<従来例2>上述した従来例1に係るズー ムレンズに対して、CCTV等のように単板のテレビカ 30 メラに使用されるズームレンズ(以下、従来例2と称す る)は、バックフォーカス調整のために移動されるレン ズ群が単純かつコンパクトとなっており、バックフォー カス調整に伴うレンズ性能の変化を避けることができな

【0012】この従来例2に係るズームレンズのレンズ 構成を図18に示す。従来例2に係るズームレンズは、 図18に示すように、物体側から順に、第1レンズL1 と第2レンズL2からなる第1レンズ群I、第3レンズ L。~第6レンズL。からなる第2レンズ群II、第7レ 40 ンズL, からなる第3レンズ群III、および第8レンズ L。~第14レンズL14 からなる第4レンズ群IVによ り構成され、さらに第4レンズ群IVは、第8レンズL® ~第11レンズLii からなる第4レンズ前群IVaと、 第12レンズL12 ~第14レンズL14 からなる第4 レンズ後群IVbにより構成されている。

【0013】また、第4レンズ前群IVa中に絞り1が配 設されており、第4レンズ後群IVbとCCDからなる撮 像素子3との間にフィルタ2が配設されている。なお、 撮像素子3とフィルタ2は、テレビカメラ本体側に配設 50 されている。また、図18において、Xは光軸を示す。

【0014】また、下記表3に、従来例2に係るズームレンズにおける、各レンズ面の曲率半径R(mm)、各レンズの中心厚および各レンズ間の空気間隔D(mm)、各レンズのe線における、屈折率N。およびアッベ数 ν 。の各値を示す。さらに、下記表4に、従来例2に係るズームレンズのWIDE端およびTELE端における焦点距離、Fno、表3中の*印を付したレンズ間の空気間隔、全系のバックフォーカスBf、第4レンズ後群IVbのバックフォーカスBf 4 。、Bf 4 とBf 4 6

との比、中心光束に対する第4レンズ後群IVbの最も像*10

*側のレンズ面(R_{27})における光線の高さHa、中心 光束に対する第4レンズ後群IVbの最も物体側のレンズ 面(R_{22})における光線の高さHb、HaとHbの 差、BfとFnoとの比に基づく値、および第4レンズ 後群IVbを像側へ1mm移動した場合のピント移動量の 各値を示す。なお、従来例2に係るズームレンズの画面 サイズは、 ϕ 11.0(2/3インチサイズ)となって いる。

[0015]

【表3】

従来例2

面	R	D	N.	ν.
1	101,143	1.739	1.79191	25.5
2	47.046	8.790	1.59143	61.0
3	-127.845	0.098		
4	36.375	4.883	1.59143	61.0
5	74.271	*1		
6	100.186	0.801	1.72341	50.1
7	17.576	4.835		
8	-21.703	0.801	1.72341	50.1
9	19.417	3.780	1.81262	25.3
10	-237.680	*2		
11	-33.107	0.801	1.72794	37.7
12	-334.076	*3		
13	112.912	5.411	1.70558	40.9
14	-30.760	1.807		
15	(絞り)	1.660		
16	50.604	4.542	1.62508	52.8
17	-75.801	2.149		
18	-27.512	1.465	1.81262	25.3
19	-152.164	0.098		
20	24.115	5.762	1.64128	55.2
21	-320.217	12.736		
22	-62.407	1.270	1.81262	25.3
23	17.953	1.465		
24	46.397	3.907	1.64128	55.2
25	-25.769	0.098		
26	16.223	3.125	1.62409	36.1
27	72.764	12.320		
28	00	5.000	1.51824	63.9
29	00			

【0016】 【表4】

従来例2

画面サイズ Ø11.0

Ψ11.0		
WIDE端	TELE端	
12.5	75	
1.65	1.66	
1.221	30.571	
28.675	3.127	
4.288	0.485	
15.613		
50.163		
3.2	13	
8.8	199	
5.744		
3.255		
0.189		
0.375		
	WIDE端 12.5 1.65 1.221 28.675 4.288 15. 50. 3.2 8.5 5.7	

【0017】図20は、従来例2に係るズームレンズの WIDE端における球面収差および非点収差を示す収差 図であり、上段に設計値に対応する収差図を示し、下段 に結像位置を調整するために第4レンズ後群IVbを像側 へ1mm移動した場合の収差図を示す。なお、各非点収 20 差図には、サジタル像面およびタンジェンシャル像面に おける各収差が示されている。

【0018】図20から明らかなように、従来例2に係 るズームレンズでは、設計値と比較して、結像位置を調 整するために第4レンズ後群IVbを像側へ1mm移動さ せた状態における球面収差および非点収差が大幅に劣化 していることが分かる。

[0019]

【発明が解決しようとする課題】上述したように、テレ ビカメラにズームレンズを取り付ける際には、バックフ 30 ことが好ましい。 オーカス調整を行わなければならないが、従来のCCT V等のように単板のテレビカメラに使用されるズームレ ンズは、放送用テレビカメラ等に用いられるズームレン ズと比べ単純かつコンパクトな構成を備えている反面、 バックフォーカス調整を行うことにより、設計通りのレ ンズ性能を発揮できなくなるという問題があった。

【0020】本発明は、上述した事情に鑑み提案された もので、バックフォーカス調整のために移動するレンズ 群の構成が単純かつコンパクトであり、バックフォーカ ス調整を行った場合であってもレンズ性能の変動が極め て小さいズームレンズを提供することを目的とする。

[0021]

【課題を解決するための手段】本発明に係るズームレン ズは、上述した目的を達成するため、物体側より順に、 正の屈折力を有する第1レンズ群、変倍時に移動して変 倍を行う負の屈折力を有する第2レンズ群、変倍時に移 動して変倍に伴う像面の変動を補正する負の屈折力を有 する第3レンズ群、および正の屈折力を有する第4レン ズ群からなり、前記第4レンズ群は、前群および後群か ら構成され、前記第4レンズ群の後群は、1枚の正レン 50 側に凸面を向けた負のメニスカスレンズL4、両凹レン

ズからなり、該正レンズの移動によりカメラ取り付け時 における結像位置のずれの調整を行うことを特徴とする ものである。

【0022】また、全系のバックフォーカスをBf、前 記第4レンズ群の後群のバックフォーカスをBf4bと したとき、下記条件式(1)を満足することが好まし V١,

1. $0 < B f_{4b} / B f < 1. 5 \cdots (1)$

【0023】また、短焦点端における開放時のF値をF 10 n、短焦点端における開放時の中心光束に対する前記第 4 レンズ群の後群の最も像側のレンズ面における光線の 高さをHa、短焦点端における開放時の中心光束に対す る前記第4レンズ群の後群の最も物体側のレンズ面にお ける光線の高さをHbとしたとき、下記条件式 (2) を 満足することが好ましい。

 $|Ha-Hb| < 0.02 \times Bf/Fn \cdot \cdot \cdot (2)$ 【0024】また、前記ズームレンズの構成において、 前記第4レンズ群の前群は、物体側から順に、像側に強 い屈折力を有する凸面を向けた正レンズ、両凸レンズ、 正レンズと負レンズとの接合レンズ、物体側に強い屈折 力を有する凸面を向けた正レンズ、および正レンズと負 レンズとの接合レンズからなることが好ましい。

【0025】また、前記ズームレンズの構成において、 前記第1レンズ群は、物体側から順に、負レンズと正レ ンズとの接合レンズ、および物体側に凸面を向けた正の メニスカスレンズからなり、前記第2レンズ群は、物体 側から順に、負レンズ、負レンズ、および物体側に凸面 を向けた正のメニスカスレンズからなり、前記第3レン ズ群は、両凹レンズと正レンズとの接合レンズからなる

[0026]

【発明の実施の形態】以下、図面に示す具体的な実施例 1~3に基づいて、本発明に係るズームレンズの実施形 態を説明する。

【0027】<実施例1>図1は、本発明の実施例1に 係るズームレンズのレンズ構成図である。

【0028】実施例1に係るズームレンズは、図1に示 すように、物体側から順に、正の屈折力を有する第1レ ンズ群I、変倍時に移動して変倍を行う負の屈折力を有 する第2レンズ群II、変倍時に移動して変倍に伴う像面 の変動を補正する負の屈折力を有する第3レンズ群II I、正の屈折力を有する第4レンズ群IVを配設してな る。さらに、第4レンズ群IVは、第4レンズ前群IVa と、第4レンズ後群IVbとから構成されている。

【0029】第1レンズ群Iは、物体側から順に、物体 側に凸面を向けた負のメニスカスレンズし、と両凸レン ズし2との接合レンズ、および物体側に凸面を向けた正 のメニスカスレンズL₃ からなる。

【0030】第2レンズ群IIは、物体側から順に、物体

ズLs、および物体側に凸面を向けた正のメニスカスレ ンズし。からなる。

【0031】第3レンズ群IIIは、両凹レンズLzと両 凸レンズし。との接合レンズからなる。

【0032】第4レンズ前群IVaは、物体側から順に、 両凸レンズL。、両凸レンズL1。 、両凸レンズL11 と像側に凸面を向けた負のメニスカスレンズ L12 との 接合レンズ、両凸レンズL13 、および両凸レンズL 14 と両凹レンズ L15 との接合レンズからなり、第4 レンズ後群IVbは、1枚の両凸レンズLie からなる。 なお、第9レンズL。は、像側に強い曲率の面を向けて おり、第13レンズL:3は、物体側に強い曲率の面を 向けている。

【0033】また、第4レンズ前群IVaの物体側に絞り 1が配設されており、第4レンズ後群IVbとCCDから なる撮像素子3との間にフィルタ2が配設されている。 なお、撮像素子3とフィルタ2は、テレビカメラ本体側 に配設されている。また、図1において、Xは光軸を示 す。

4 レンズ後群IVbを光軸Xに沿って移動することによ り、テレビカメラの撮像面(撮像素子3)とズームレン ズの結像面とを一致させるためのバックフォーカス調整 を行う。

【0035】また、実施例1に係るズームレンズは、全 系のバックフォーカスをBf、第4レンズ後群IVbのバ ックフォーカスをBf4b としたとき、下記条件式

(1) を満足するように構成されている。 1. $0 < B f_{4b} / B f < 1. 5 \cdot \cdot \cdot (1)$

【0036】この条件式(1)は、全系のバックフォー カスBfと、第4レンズ後群IVbのバックフォーカスB f_{4b} の比を規定値の範囲内とすることにより、バック フォーカス調整を行うために第4レンズ後群IVbを移動 した際に、諸収差の変動を小さく抑えて、設計値に近似 したレンズ性能を発揮させるための条件式である。

【0037】すなわち、条件式(1)において、Bf 4b / Bfの値が下限を下回ると、諸収差を良好に補正 することができなくなり、Bf+b / Bfの値が上限を 上回ると、第4レンズ後群IVbのパワーが強くなり過ぎ て収差変動が大きくなってしまう。

【0038】さらに、実施例1に係るズームレンズは、 短焦点端における開放時のF値をFn、短焦点端におけ る開放時の中心光束に対する第4レンズ後群IVbの最も 像側のレンズ面(R2s)における光線の高さをHa、 短焦点端における開放時の中心光束に対する第4レンズ 後群IVbの最も物体側のレンズ面(R28)における光 線の高さをHbとしたとき、下記条件式(2)を満足す るように構成されている。

 $|Ha-Hb| < 0.02 \times Bf/Fn \cdot \cdot \cdot (2)$ 【0039】この条件式(2)は、第4レンズ後群IVb を構成する正レンズ(両凸レンズし16)において、物 体側および像側の面における光線の高さの差を規定値の 範囲内とすることにより、バックフォーカス調整を行う ために第4レンズ後群IVbを移動した際に、球面収差の 変動を小さく抑えるための条件式である。すなわち、条 件式(2)において、Ha-Hbの絶対値が規定値の範 囲を超えると、球面収差の変動が大きくなり、レンズ性 能が設計値からかけ離れてしまう。

【0040】下記表5に、実施例1に係るズームレンズ 【0034】この実施例1に係るズームレンズでは、第 20 における、各レンズ面の曲率半径R(mm)、各レンズ の中心厚および各レンズ間の空気間隔D(mm)、各レ ンズのe線における、屈折率N。およびアッベ数v。の 各値を示す。なお、表5中の各数字は、物体側からの順 番を表すものである(表7、表9において同じ)。さら に、下記表6に、実施例1に係るズームレンズのWID E端およびTELE端における焦点距離、Fno、表5 中の*印を付したレンズ間の空気間隔、全系のバックフ ォーカスBf、第4レンズ後群IVbのバックフォーカス Bf4b 、BfとBf4b との比、中心光束に対する第 4 レンズ後群IVb の最も像側のレンズ面における光線の 高さHa、中心光束に対する第4レンズ後群IVbの最も 物体側のレンズ面における光線の高さHb、HaとHb の差、BfとFnoとの比に基づく値、および第4レン ズ後群IVbを像側へ1mm移動した場合のピント移動量 の各値を示す。なお、実施例1に係るズームレンズの画 面サイズは、φ16.0(1インチサイズ)となってい

[0041]

【表 5】

40

実施例1

		_		
面	R	Ð	N.	ν.
1	164.503	2.441	1.81264	25.2
2	75.787	10.038	1.62286	60.1
3	-975.027	0.117		
4	73.436	6.396	1.71615	53.7
5	194.680	*1		
6	94.382	1.367	1.77620	49.3
7	16.011	7.417		
8	-69.864	1.172	1.77820	49.3
9	69.864	0.049		
10	29.084	3.799	1.81264	25.2
11	108.952	*2		
12	-35.768	1.172	1.80811	46.3
13	64.907	2.676	1.81264	25.2
14	-346.174	*3		
15	(絞り)	2.607		
16	336.976	5.400	1.62286	60.1
17	-65.101	0.117		
18	143.651	4.560	1.62286	80.1
19	-143.651	0.117		
20	61.422	11.093	1.48914	70.2
21	-37.634	1.562	1.81077	40.7
22	-502.377	1.094		
23	45.077	8.779	1.62286	60.1
24	-87.381	0.137		
25	464.633	4.404	1.48914	70.2
26	-75.953	1.367	1.81077	40.7
27	29.349	12.337		
28	90.467	4.424	1.62286	60.1
29	-90.467	62.212		
30	00	5.000	1.51824	63.9
31	∞			

[0042]

*【表6】

実施例1

画面サイズ	ϕ 16.0		
	WIDE端	TELE端	
焦点距離	16.5	330	
開放F値	2.4	5.18	
*i	0.976	75.701	
*2	72.15	10.509	
*3	17.195	4.112	
Bf	65.505		
Bf _{4b}	71.	934	
Bf ₄₆ /Bf	1.0	98	
Ha	14.	377	
Нb	14.	304	
Ha-Hb	0.073		
0.02xBf/Fn	0.546		
ピント移動量	0.992		

【0043】表6から明らかなように、実施例1に係る ズームレンズは、条件式(1)および条件式(2)を満 足している。

【0044】また、図4~7は、実施例1に係るズーム レンズにおいて物体距離を12mとした場合の収差図で あり、図4にはWIDE端における球面収差および非点 収差の収差図を示してあり、図5にはWIDE端におけ 50 【0045】図4~7から明らかなように、実施例1に

るコマ収差の収差図を示してあり、図6にはTELE端 における球面収差および非点収差の収差の収差図を示し てあり、図7にはTELE端におけるコマ収差の収差図 を示してある。なお、各非点収差図には、サジタル像面 およびタンジェンシャル像面における各収差が示されて いる。

係るズームレンズは、バックフォーカス調整のために移動するレンズ群の構成が単純かつコンパクトでありながら、複雑なレンズ構成を備えた従来例1と同様に、各収差が良好に補正されている。

【0046】<実施例2>実施例2に係るズームレンズは、図2に示すように、実施例1に係るズームレンズとほぼ同様の構成とされているが、第4レンズ群の前群IVaを構成する、第12レンズL12が両凹レンズからなり、第13レンズL13が物体側に強い曲率の凸面を向けた正のメニスカスレンズからなる点が異なっている。【0047】下記表7に、実施例2に係るズームレンズにおける、各レンズ面の曲率半径R(mm)、各レンズの中心厚および各レンズ間の空気間隔D(mm)、各レンズのe線における、屈折率N。およびアッベ数v。の各値を示す。さらに、下記表8に、実施例2に係るズー*

*ムレンズのWIDE端およびTELE端における焦点距離、Fno、表7中の*印を付したレンズ間の空気間隔、全系のバックフォーカスBf、第4レンズ後群IVbのバックフォーカスBf、BfとBf4bとの比、中心光束に対する第4レンズ後群IVbの最も像側のレンズ面(R2p)における光線の高さHa、中心光束に対する第4レンズ後群IVbの最も物体側のレンズ面(R2b)における光線の高さHb、HaとHbの差、BfとFnoとの比に基づく値、および第4レンズ後群IVbを像側へ1mm移動した場合のピント移動量の各値を示す。なお、実施例2に係るズームレンズの画面サイズは、φ11.0(2/3インチサイズ)となっている。【0048】

【表7】

実施例 2

面	R	D	N.	ν.
1	165.822	2.461	1.81264	25.2
2	76.395	10.119	1.62286	60.1
3	-982.844	0.118		
4	74.025	6.447	1.71615	53.7
5	196.241	* 1		
6	95.139	1.378	1.77620	49.3
7	16.139	7.476		
8	-70.424	1.181	1.77620	49.3
9	70.424	0.049		
10	29.317	3.829	1.81264	25.2
11	109.826	*2		
12	-36.055	1.181	1.80810	46.3
13	65.427	2.697	1.81264	25.2
14	-348.950	*3		
15	(絞り)	2.628		
16	691.470	6.506	1.62286	60.1
17	-47.321	0.118		
18	171.620	4.282	1.62286	60.1
19	-171.620	0.118		
20	54.090	10.660	1.48914	70.2
21	-41.450	1.575	1.81077	40.7
22	88.043	0.118		
23	29.741	8.997	1.62286	60.1
24	1148.888	0.138		
25	27.519	8.347	1.48914	70.2
26	-132.735	1.378	1.81077	40.7
27	18.577	10.241		
28	58.787	4.380	1.62286	60.1
29	-58.787	32.131		
30	00	5.000	1.51824	63.9
31	00			

【0049】 【表8】

実施例2

	WIDE端	TELE端	
焦点距離	11.5	230	
開放F値	1.65	3.58	
*1	0.984	76.308	
*2	72.729	10.593	
* 3	17.333	4.145	
Bf	35.423		
Bf ₄₆	46.	507	
Bf ₄₆ /Bf	1.3	13	
Ha	12.	102	
Нь	11.	794	
Ha-Hb	0.308		
0.02xBf/Fn	0.429		
ピント移動量	0.946		

【0050】表8から明らかなように、実施例2に係る ズームレンズは、条件式(1)および条件式(2)を満 足している。

15

【0051】また、図8~11は、実施例2に係るボームレンズにおいて物体距離を12mとした場合の収差図であり、図8にはWIDE端における球面収差および非20点収差の収差図を示してあり、図9にはWIDE端におけるコマ収差の収差図を示してあり、図10にはTELE端における球面収差および非点収差の収差の収差図を示してあり、図11にはTELE端におけるコマ収差の収差図を示してある。なお、各非点収差図には、サジタル像面およびタンジェンシャル像面における各収差が示されている。

【0052】図8~11から明らかなように、実施例2 に係るズームレンズは、バックフォーカス調整のために 移動するレンズ群の構成が単純かつコンパクトでありな 30 がら、複雑なレンズ構成を備えた従来例1と同様に、各 収差が良好に補正されている。

【0053】また、図12は、実施例2に係るズームレンズのWIDE端における球面収差および非点収差を示す収差図であり、上段に設計値に対応する収差図を示し、下段に第4レンズ後群IVbを像側へ1mm移動した場合の収差図を示す。なお、各非点収差図には、サジタル像面およびタンジェンシャル像面における各収差が示されている。

【0054】図12から明らかなように、実施例2に係るズームレンズでは、設計値と、結像位置を調整するために第4レンズ後群IVbを像側へ1mm移動させた状態とを比較すると、球面収差および非点収差に大きな変化はなく、設計値に対してレンズ性能の変化が極めて小さいことが分かる。

16

【0055】また、画面サイズがそれぞれø11.0 (2/3インチサイズ)である実施例2と従来例1とを 比較すると、実施例2では、バックフォーカス調整のた 10 めに移動するレンズ群の構成が単純かつコンパクトであ りながら、複雑なレンズ構成を備えた従来例1と同様 に、バックフォーカス調整に伴うレンズ性能の変化が極 めて小さなものとなっている。

【0056】<実施例3>実施例3に係るズームレンズは、図3に示すように、実施例1に係るズームレンズとほぼ同様の構成とされているが、第4レンズ群の前群IVaを構成する、第9レンズL。が像側に凸面を向けた平凸レンズからなり、第12レンズL。が物体側に強い曲率の凸面を向けた平凸レンズからなる点が異なっている。

【0057】下記表9に、実施例3に係るズームレンズ における、各レンズ面の曲率半径R(mm)、各レンズ の中心厚および各レンズ間の空気間隔D(mm)、各レ ンズのe線における、屈折率N。およびアッベ数v。の 各値を示す。さらに、下記表9に、実施例3に係るズー ムレンズのWIDE端およびTELE端における焦点距 離、Fno、表9中の*印を付したレンズ間の空気間 隔、全系のバックフォーカスBf、第4レンズ後群IVb のバックフォーカスBf4b、Bf2Bf4b との比、 中心光束に対する第4レンズ後群IVbの最も像側のレン ズ面 (R₂,) における光線の高さHa、中心光束に対 する第4レンズ後群IVbの最も物体側のレンズ面(R 28) における光線の高さHb、HaとHbの差、Bf とFnoとの比に基づく値、および第4レンズ後群IVb を像側へ1mm移動した場合のピント移動量の各値を示 す。なお、実施例3に係るズームレンズの画面サイズ は、 ϕ 8.0(1/2インチサイズ)となっている。

[0058]

【表9】

実施例3

	5	_	L ,	.,
面	R	D	N.	ν.
1	158.290	2.349	1.81264	25.2
2	72.924	9.659	1.62286	60.1
3	-938.197	0.113	. =	
4	70.662	6.154	1.71615	53.7
5	187.327	*1		
6	90.817	1.315	1.77820	49.3
7	15.406	7.137		
8	-67.225	1.128	1.77620	49.3
9	67.225	0.047		
10	27.985	3.655	1.81264	25.2
11	104.837	*2		
12	-34.417	1.128	1.80810	46.3
13	82.455	2.575	1.81264	25.2
14	-333.098	*3		
15	(絞り)	2.509		
16	00	7.874	1.62286	60.1
17	-38.838	0.263		
18	136.253	4.557	1.51872	64.0
19	-136.253	0.113		
20	55.611	11.632	1.48914	70.2
21	-32.030	1.503	1.80922	39.3
22	125.415	6.013		
23	27.815	9.518	1.62286	60.1
24	00	0.132		
25	27.019	7.536	1.48914	70.2
26	-169.992	1.503	1.80922	39.3
27	15.559	10.167	•	
28	38.291	4.764	1.62286	60.1
29	-38.291	19.213		
30	00	5.000	1.51824	63.9
31	∞			

【0059】 【表10】

実施例3

画面サイ	イズ	Ø 8.0
凹凹ロンコ	_	W 0.0

(=1 kg / 1 / 1	7		
	WIDE端	TELE端	
焦点距離	8.5	170	
開放F値	1.25	2.77	
*1	0.94	72.842	
*2	69.425	10.112	
*3	16.546	3.956	
Bf	22.507		
Bf₄ь	29.	986	
Bf₄√Bf	1.3	32	
Ha	10.	783	
Нь	10.	557	
Ha-Hb	0.226		
0.02xBf/Fn	0.360		
ピント移動量	0.943		

【0060】表10から明らかなように、実施例3に係るズームレンズは、条件式(1)および条件式(2)を満足している。

【0061】また、図13~16は、実施例3に係るズ 実施例のものに限られる ームレンズにおいて物体距離を12mとした場合の収差 群を構成するレンズの形図であり、図13にはWIDE端における球面収差およ 50 選択することができる。

び非点収差の収差図を示してあり、図14にはWIDE 30 端におけるコマ収差の収差図を示してあり、図15には TELE端における球面収差および非点収差の収差の収差図を示してあり、図16にはTELE端におけるコマ 収差の収差図を示してある。なお、各非点収差図には、サジタル像面およびタンジェンシャル像面における各収差が示されている。

【0062】図13~16から明らかなように、実施例3に係るズームレンズは、バックフォーカス調整のために移動するレンズ群の構成が単純かつコンパクトでありながら、複雑なレンズ構成を備えた従来例1と同様に、

40 各収差が良好に補正されている。

【0063】以上説明したように、各実施例 $1\sim3$ によれば、画面サイズが $\phi16.0(1$ インチサイズ)、 $\phi11.0\phi(2/3$ インチサイズ)、8.0(1/2インチサイズ)のいずれの場合であっても、複雑なレンズ構成を備えた従来例1と同様に、各収差が良好に補正されている。

【0064】なお、本発明のズームレンズとしては上記 実施例のものに限られるものではなく、例えば各レンズ 群を構成するレンズの形状、およびレンズの枚数は適宜 選択することができる。 [0065]

【発明の効果】以上説明したように、本発明のズームレンズによれば、所定の4群レンズ構成とするとともに1枚の正レンズからなる第4レンズ後群を移動させることにより、テレビカメラ等に取り付ける際の結像位置のずれの調整を行うようにしている。これにより、バックフォーカス調整のために移動するレンズ群の構成を単純かつコンパクトなものとしつつ、収差変動を抑制することができる。

19

【0066】また、全系のバックフォーカスと第4レン 10 ズ後群のバックフォーカスの比を規定値の範囲内とし、また第4レンズ後群を構成する正レンズにおいて、物体側および像側のレンズ面における光線の高さの差を規定値の範囲内とすることにより、バックフォーカス調整に伴う諸収差の変動を小さく抑えて、設計値通りのレンズ性能を発揮することができる。

【0067】また、第4レンズ群の前群あるいは第1レンズ群〜第3レンズ群のレンズ構成を規定することにより、簡易な構成のズームレンズとすることができる。

【図面の簡単な説明】

【図1】本発明の実施例1に係るズームレンズのレンズ 構成図

【図2】本発明の実施例2に係るズームレンズのレンズ 構成図

【図3】本発明の実施例3に係るズームレンズのレンズ 構成図

【図4】実施例1に係るズームレンズの球面収差および 非点収差を示す収差図 (WIDE端)

【図5】実施例1に係るズームレンズのコマ収差を示す 収差図(WIDE端)

【図6】実施例1に係るズームレンズの球面収差および 非点収差を示す収差図(TELE端)

【図7】実施例1に係るズームレンズのコマ収差を示す 収差図(TELE端)

【図8】 実施例2に係るズームレンズの球面収差および*

* 非点収差を示す収差図(WIDE端)

【図9】実施例2に係るズームレンズのコマ収差を示す 収差図(WIDE端)

【図10】実施例2に係るズームレンズの球面収差および非点収差を示す収差図(TELE端)

【図11】実施例2に係るズームレンズのコマ収差を示す収差図(TELE端)

【図12】実施例2に係るズームレンズのWIDE端における球面収差および非点収差を示す収差図(設計値およびレンズ群移動後の値)

【図13】実施例3に係るズームレンズの球面収差および非点収差を示す収差図(WIDE端)

【図14】実施例3に係るズームレンズのコマ収差を示す収差図(WIDE端)

【図15】実施例3に係るズームレンズの球面収差および非点収差を示す収差図(TELE端)

【図16】実施例3に係るズームレンズのコマ収差を示 す収差図(TELE端)

【図17】従来例1に係るズームレンズのレンズ構成図

【図18】従来例2に係るズームレンズのレンズ構成図

【図19】従来例1に係るズームレンズのWIDE端における球面収差および非点収差を示す収差図(設計値およびレンズ群移動後の値)

【図20】従来例2に係るズームレンズのWIDE端における球面収差および非点収差を示す収差図(設計値およびレンズ群移動後の値)

【符号の説明】

1 絞り

30

2 フィルタ

3 撮像素子

4 3色分解プリズム

X 光軸

L₁ ~ L₂₁ レンズ

R1~R42 曲率半径

D₁ ~ D₄₁ レンズ間隔

[図4]

[図6]

【図1】

[図2]

【図3】

実施例 3

【図7】

【図8】

【図9】

0.1

非点収差(mm)

-0.1

-0.1

0.1

球面収差(mm)

【図12】

【図11】

0.1

-0.1

0.1

実施例 2 設計値 F/1.65 実施例 2 TELE端 コマ収差(mm) 0,1 $\omega=1.2^{\circ}$ -0.1 0.1 <u>ω</u>=1° -0.1

-0.1

【図17】

従来例 1

【図14】

【図16】

【図18】

従来例 2

【図19】

[図20]

フロントページの続き

F ターム (参考) 2H087 KA03 MA15 MA18 PA12 PA16 PB16 QA02 QA07 QA17 QA41 QA45 RA32 RA43 RA44 SA23 SA27 SA30 SA32 SA63 SA64 SA72 SA75 SB04 SB14 SB23 SB31 SC022 AC54