FYS-STK4155 Project 2

Bendik Steinsvåg Dalen & Gabriel Sigurd Cabrera

November 1, 2019

Abstract

Introduction

Data

The Franke Function

The first dataset will be given by the *Franke function*, which is defined as follows:

$$f(x,y) = \frac{3}{4} \exp\left(-\frac{(9x-2)^2}{4} - \frac{(9y-2)^2}{4}\right)$$

$$+ \frac{3}{4} \exp\left(-\frac{9x+1}{49} - \frac{9y+1}{10}\right)$$

$$+ \frac{1}{2} \exp\left(-\frac{(9x-7)^2}{4} - \frac{(9y-3)^2}{4}\right)$$

$$- \frac{1}{5} \exp\left(-(9x-4)^2 - (9y-7)^2\right)$$

We will be solving the Franke function for $100\ x$ -values and $100\ y$ -values in the range [0,1], leaving us with a grid containing a total of $10000\ xy$ coordinate pairs. This leaves us with the values plotted in Figure 1.

Figure 1: The *Franke function* for x and y values ranging from zero to one.

In addition, we will also be adding $Gaussian\ noise$ to each value f(x,y), such that we are left with values as seen in Figure 2.

Figure 2: The *Franke function* for x and y values ranging from zero to one, with a Gaussian noise N(0, 0.01)

Credit Card Data

TBD

Method

Mean Squared Error

To get a measure of success with respect to the implemented method and parameters, we can calculate the mean difference in the squares of each measured output y_i and their respective predicted outputs \hat{y}_i :

$$MSE(\mathbf{y}, \hat{\mathbf{y}}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = \mathbb{E}\left[(\mathbf{y} - \hat{\mathbf{y}})^2 \right]$$

The lower the MSE, the closer the polynomial approximation is to the original dataset. If it is too low, however, we run the risk of overfitting our dataset, which is not desireable either – fortunately, this not an issue within the scope of this report.

R² Score

Another measure of success is the *coefficient of determina*tion, colloquially known as the R^2 score, is given by the following expression:

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y}_{i})^{2}}$$

The closer \mathbb{R}^2 is to one, the closer the polynomial approximation is to the input/output dataset, although a perfect score can once again arise due to overfitting just as in the case of the MSE.

Results

Discussion

Conclusion