CAVERNA e espaços Immersive

EPFL Immersive interação do grupo

N. Wang & R. Boulic

Esboço

- conceitos gerais
- Dois critérios para comparar CAVEs
- configurações diferentes
- ferragens
- CAVE computação
- IIG CAVE
- avanço recente na museologia experimental

conceitos gerais

CAVERNA apoia

- Cave Automatic Virtual Environment

Ideias principais :

- visualização imersiva:
 - Projetar a cena 3D em várias paredes ao redor do usuário

Minimamente invasivo:

- rastreamento de cabeça (boné ou Kinect)
 - Deriva posição dos olhos do usuário para explorar o movimento de paralaxe
- Estereopsia pode ser alcançado com óculos estéreo de luz
 - Ao custo de dobrar as imagens exibidas (por pessoa)

conceitos gerais

- propósitos:
 - Interagindo com <u>complexo</u>
 modelos, estática (arquitetura) ou
 dinamicamente evoluindo ao longo do tempo
 (simulação)...
 - Mais fácil discutir com membros da equipe em torno de você
 - Vários usuários podem compartilhar o espaço envolvente (no maior custo de exibir perspectivas individuais).

Dois critérios para comparar CAVEs

- Campo de visão (FOV):
 - Medido
 horizontalmente
 em graus:

quanto da cena é visível em um dado instante de tempo

[Imagem modificada de CRVM CAVE]

- Campo de respeito (FOR):
 - Medido horizontalmente em% ou em graus:

quantidade de espaço do mundo virtual atualmente em torno do usuário

Diferentes configurações (1: 2)

Diferença entre «Walls» e «CAVE»

© Arnaud Muthelet

ambiente virtual parede

ambiente virtual parede curva

Diferentes configurações (2: 2)

Diferença entre «Walls» e «CAVE»

© Arnaud Muthelet

2-telas ambiente virtual CAVE

© Arnaud Muthelet

ambiente virtual CAVE

configurações diferentes

- problema de espaço:
 - Inicialmente necessária uma superfície muito maior do que a área de trabalho do VR devido à distância de projecção
 - Alto custo (~ 1M \$)

soluções:

- 1. Usando espelho
- 2. Usando projetores de curto alcance
 - Usado para a maioria das soluções modernas (custo dentro 10-50 K \$)

• projecção em perspectiva

Ponto de vista original "natural" desta pintura calçada

Um ponto de vista errado desta pintura calçada de Julian Beever

projecção em perspectiva

- graficamente aproxima em uma região 2D as imagens de uma cena 3D
- aproximar a percepção visual real

Chefe ponto de vista de rastreamento

projecção visor consistentes do ponto de vista subjetiva

A mesma tela vista de um local diferente na caverna aparece distorcida

Vamos definir

volume de frustum específico para CG

E se **p** e projectada no centro, uma função de projecção regular pode ser utilizado (gluPerspective)

caso geral CAVE:

Não mais um padrão central perspectiva

- pe' ponto de vista de projecção pode ser qualquer lugar na tela

Ápice do tronco: o p e

ponto de vista

projeção de p e e os 4 parâmetros do frustum

Uma função de frustum deformação deve ser utilizado (glFrustum)

vista do topo

Symmetric vs. Asymmetric perspectiva

 frustum simétrica, o que significa que ao longo de sua direção vista, eles têm o mesmo campo de visão (FOV) no lado esquerdo e no lado direito

 o perspectiva tronco de cone assimétrico não está orientado (olhar através da janela) Uma matriz Frustum necessária por tela

 o perspectiva assimétrica também pode ser explorada para computar a vistas estéreo esquerdo e direito cujos pontos de vista estão separados pela distância inter-pupilar (IPD)

 Somente a posição da cabeça é importante para frustum assimétrica em CAVE (Orientação não tem mais importância)

 Para a implementação de som, à esquerda e à direita pontos de vista são deduzidas a partir da pelo utilizador único fornecido ponto 3D

CAVE simples com 2 paredes laterais. Observe os 2 pontos de vista paralelo às telas para estereopsia computação

EPFL IIG CAVE

EPFL IIG CAVE

As imagens projectadas a partir de cada projector: imagens fundidas sobre os planos de projeção ideais são deformadas para se adaptarem às telas ligeiramente curvos

Mapeamento para Paredes

1) O uso de uma grade 8x8 regulares => textura para calibração

方

Comparando CAVE and Display Head-Mounted

	4 paredes CAVE	HMD
FOV (graus)	180 ° -200 °	~ 100 °
PARA (graus)	270 °	360%
invasividade	IOW (óculos estéreo)	Alto (+ arame)
rastreamento minimal Apena	s um ponto de vista 3D	Requer orientação cabeça também
O ambiente virtual para partilhar	Mais fácil para discussão da equipe	cortado da verdadeira mundo
custo Computing	HMD_cost x nb_walls	CAVE_cost / nb_walls
Custo total	Ainda muito alta	torna-se acessível

evolução recente Experimental Museologia

(EPFL EMPLUS laboratório do Prof. Sarah Kenderdine)

propósitos:

- preservar sítios arqueológicos de visitantes
- Fornecendo pelo menos uma cópia em escala 1
- Enriquecendo-a com mais conteúdo (informação, modelos 3D e animação)
- Visita pode ser compartilhado por grupos
- estéreo pode não ser necessário para grandes instalações imersivas

evolução recente Experimental Museologia

(EPFL EMPLUS laboratório do Prof. Sarah Kenderdine)

