0	Plan	1008	Teel	molo	91	O. [1	1,12]			S	ngi	Ju			[Fign	ve]	
		n-ty									4						
		0×10			•												
		5	dry	· ! : (D this	1 <i>0</i> ×	ides		Z 900	d s	; - Sil	2 in	terfo	ve			
					D thi												
	3	phe							-								
	<i>)</i> ,													26	.40- 51-	/	
			pho	tores	ist	→	have	len T	->	mas	k, U	e. 'V	→	pohyr deve	neriza el o p	e o (,	
	ſĿ														,		
	4.	etc	•			1 1											
			ba	ke-	→ e:	tch-	ۍ د	trip	awo	ry							
	1.	diff	Lusio	1	l io	n in	rplow	ntati	ON .								
	6.	me	talliz	zati	or) -		ohm	ic a	mteu	ets .	de in	terce	me	ction	18		
			phys	sical	/che	emico	xl	+	iont	& i	boek	>	lon	—te anne	mpero	cture	2
			vapo	or d	eposi-l	tion	•		CO	ntac	t		4	anne	al		
0	Crs	1.stel	l G	XOW	h	1 [3]	7	C	alcu	lotion	n: 1	Γ20.	212	2,34	.7		
		The															
		n/	ور د	ادام	,	400t-		Mosco	S tru	nau	e (CI	w)					
		4 0	wan	yous p	ci O	ysia	1 pu	Mer	See	d h	older	-(0	W)	•			
			,		_	0 5			lan	aml	bient	(0)	1150/				
		(2) (dopo	ent:	B	& P	To	r 5				1		Cs			
		36	equihi	birm	n se	gseg	ation	1 co	effic	cient	Ko:	K1	= 7	Ci			
		@ (dopi	ng a	listri.	butio	: אכ	Cs =	=k.C	° (1-	Ma)~ ′		nifor			
			ko c	->	Co	` ;	ko:	>1 —	> (s	l ;	ko.	= -	→ u	nifor	m		

	3.	the	rno	1 0	xicla-	tion	2.[6]									
						tions											
						m : i:		Mger	1	8 W	et o	cidat	: מט	in v	vater	VOP	דט
	J.	Str						70									
						redro	d										
								e.g. q	uaxt	z)	<i>Ga</i>	morp	hous	2	. [13,	14]	
0	Kine	etics	of	Gy	owti	h 7	2. [N]	Ca	font	ation	n : .	2. [29	7-33]		
	1.	the	*	F, =	$D\frac{d}{dt}$	<u>C</u> ≃	DLC	5-(5) ×)	F_=	KCs						
						Fi=			F	= <u>X</u>	DCo +(D	(x)					
	2.	oxi	de	thic	kness	; ; ×	$\zeta = \frac{D}{\chi}$	-[J	H2C.	X2/1/1 DC1	v) -	.1]	(-	V= 10	67-215 200	de) C	?
		a	Smo	- الله	た: メ	$\leq \frac{C_0}{C}$	x 1++	て)	(2	lar	ie t	/: X ≧	<u> </u>	Colt-	+ T)		
	3.	A	= 꽃	2	B=2	DG C1	BA	$=\frac{L_0}{C}$	<u>k</u>	×2+	A×=	=BCi	ナナレ	\ \ \{-	t = <u>do</u>	+Ad	<u>,</u>
						COT			-		1)					O	
														1 00	iento	ution)
		8	pora	sboli	c ro	xte	cons					•	_				
			,											d 0	rient	ation	1
0	lmi	nvit	ru F	Reclis	trib	ution	1					,	7				•
												3.[11.12	J-	+3]		
		FxI	00874	Y0:	J										- 5		
	•	0 9	perfo	mo	nle	Sred red	sohu Jistv	tior atio	ו רעל								
						1th	ATIA Q	hone	+								

1. medium-current ion implantor 6.[7]	
2 ion distribution: Gaussian	
3. ion stopping SO transfer its energy to the target muclei	
	ud
The of electrons around the target's atoms	
$\frac{dE}{dx} = S_n(E) + S_e(E)$	
4 ion channeling -> the exponential tail	
minimized techniques { O blocking amosphous layer	
Omisorientation of the waters	
3 pre-damage the water	
5 implant damage 6. [49] heavy & light ions	
6 annealing	
* Epitaxial Growth Schemical vagor deposition (CVD)	
(molecular beam epitaxy (MBE)	
1. CVD 7.[7]	
Ovapor-phase epitaxy (VPE)	
0 { at atmospheric pressure (APCVD)	
(at low pressure (LPCVD)	
Chorizontal Chorizontal	
1) Srisceptors [horizontal] 7. [1]	
(barrel	
2. MBE 7.[18]	
O molecular impingement rate $S = P(2\pi m kT)^{-\frac{1}{2}}$	
_ _ _ _ _ _ _ _ _ _	

