DGD 9

Q1. Partitions of a Set into Equivalence Classes

Let
$$A = \{-4, -3, -1, 0, 2, 5, 6, 7, 8, 15, 23\}.$$

i. Determine the partition of A into equivalence classes of the equivalence relation $\equiv \pmod{7}$.

$$-4$$
 -3 -1 0 2 5 6 7 8 15 23 remainder 3 4 6 0 2 5 6 0 1 1 2 (mod 7)

partition of A classes (mod7)

paration of 71 into equivalence
$$P = \{\{-4\}, \{-3\}, \{-1, 6\}, \{0, 7\}, \{2, 23\}, \{5\}, \{8, 15\}\}\}$$

ii. Determine the partition of A into equivalence classes of the equivalence relation S given for all $x, y \in A$, $x \mathcal{S} y$ if and only if x + 3y is even.

$$[-4]_g = \{-4,0,2,6,8\}$$
 $[-3]_g = \{-3,-1,5,7,15,23\}$

partition of A into equivalence
$$P = \{\{-4,0,2,6,8\}, \{-3,-1,5,7,15,23\}\}$$

iii. Verify that the relation \mathcal{T} given below is an equivalence relation on A.

$$\mathcal{T} = \left\{ (-4, -4), (-3, -3), (-1, -1), (0, 0), (0, 2), (0, 5), (2, 0), (2, 2), (2, 5), (5, 0), (5, 2), (5, 5), (6, 6), (6, 7), (7, 6), (7, 7), (8, 8), (15, 15), (23, 23) \right\}$$

Give the equivalence classes $[-4]_{\mathcal{T}}$ and $[5]_{\mathcal{T}}$.

$$[-3]_{g} = \{-1\} \quad [6]_{g} = \{6,7\} \quad [8]_{g} = \{8\} \quad [15]_{g} = \{15\} \quad [23]_{g} = \{23\}$$

Determine the partition of A into equivalence classes of \mathcal{T} .

Q2. Another Example of an Equivalence Relation on $\mathbb Z$

Let $\mathcal R$ be a relation on $\mathbb Z$ given by the following rule:

for all $x, y \in \mathbb{Z}$, $x \mathcal{R} y$ if and only if $x \equiv y \pmod{7}$ or $x \equiv -y \pmod{7}$.

i. Prove that $\mathcal R$ is an equivalence relation on $\mathbb Z$.

[reflexive] Let $x \in \mathbb{Z}$. Then $x = x \pmod{7}$ (since $= \pmod{7}$ is reflexive) $\therefore x \not\in \mathbb{R}$ (by the rule for \mathbb{R})

we proved $(x \in \mathbb{Z}) \rightarrow (x \not\in \mathbb{Z})$. R is reflexive.

[symmetric]. Let XIYEZ

Assume XRy (goal: prove yRx)

Then $X \equiv y \pmod{7}$ or $X \equiv -y \pmod{7}$ (by R's rule)

<u>Case 1</u>. If $x \equiv y \pmod{7}$, then $y \equiv x \pmod{7}$ (since $\equiv \pmod{7}$) is symmetric).

Case 2. If $X \equiv -y \pmod{7}$, then $7 \mid (X - (-y)) \pmod{16.2}$

 \Rightarrow X+y=7k for some ReZ

 \Rightarrow y+x=7k :.7|y-(-x)

 $3.y \equiv -x \pmod{7}$ (by Theorem 16.2)

: y Rx (by R's rule)

In both cases, we proved (XRy) -> (YRX) . R is Symmetric.

[transitive] Let x, y, Z ∈ Z

Assume XRy and yRZ. (goal: prove XRZ)

Then $[x=y \pmod{7} \text{ or } x = -y \pmod{7}]$ and $[y=z \pmod{7} \text{ or } y = -z \pmod{7}]$ (by R's rule)

Case 1 Assume $X \equiv y \pmod{7}$ and $y \equiv z \pmod{7}$. Then $X \equiv z \pmod{7}$ (since $\equiv \pmod{7}$ is transitive)

\$\cdot x \partial z \tau \text{in case 1}\$.

Case 2 Assume $X \equiv y \pmod{7}$ and $y \equiv -z \pmod{7}$. Then $X \equiv -z \pmod{7}$ (since $\equiv \pmod{7}$) is transitive) $\therefore XRz \text{ in Case 2}$.

case 3 Assume $X = -y \pmod{7}$ and $y = Z \pmod{7}$. Then 7 (x-(-y)) and 7 (y-Z) (by Theorem 16.2)

Thus x+y=7k and y-z=7l for some integers $k,l\in\mathbb{Z}$.

:. $X-(-Z)=7k-y-(7\ell-y)=7k-7\ell$ $\Rightarrow 7|(x-(-z))$:. X=-Z (mod 7) (by Theorem 16.2):. XRZ in Case 3.

Case 4 Assume $X = -y \pmod{7}$ and $y = -Z \pmod{7}$. Then $7 | (x-(-y)) \pmod{7} | (y-(-z)) | (by Theorem 16.2)$

Thus x+y=7k and y+z=7l for some integers $k,l\in\mathbb{Z}$.

 $\therefore X-Z = 7k-y-(7\ell-y)=7k-7\ell$ $\Rightarrow 7|(X-Z) : X \equiv Z \pmod{7} \text{ (by Theorem 16.2)}$ $\therefore XRZ \text{ in Case 4.}$

We proved (XRy MyRz) → (XRZ) in all four cases. . R is transitive.

Since Ris reflexive, symmetric, and transitive, it is an equivalence relation.

ii. Determine the partition of A (from Q1) into equivalence classes of \mathcal{R} .

remainder -4 -3 -1 0 2 5 6 7 8 15 23 (mod 7) 3 4 6 0 2 5 6 0 1 1 2

negative's remainder 4 3 1 0 -2 -5 -6 -7 -8 -15 -23 (mod 7) 4 3 1 0 5 2 1 0 6 6 5

partition of A into equivalence $P = \{\{-4, -3\}, \{-1, 6, 8, 15\}, \{0, 7\}, \{2, 23, 5\}\}$ classes of R

★ Review previous DGD exercises that were missed and Assignment 2 solutions if time.