

PROPOSAL TUGAS AKHIR PERANCANGAN DAN REALISASI ANTENA MIKROSTRIP PATCH RECTANGULAR ARRAY DENGAN SLOT PADA FREKUENSI 2,6 GHz UNTUK APLIKASI LONG TERM EVOLUTION (LTE)

BIDANG KEGIATAN: TUGAS AKHIR PROGRAM STUDI D-IV TEKNIK TELEKOMUNIKASI

Diusulkan oleh: Annisa Triyansusan; 151344004; 2015

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Perancangan dan Realisasi Antena

Mikrostrip Patch Rectangular Array dengan Slot pada Frekuensi 2,6 GHz untuk Aplikasi Long Term Evolution

(LTE)

2. Bidang Kegiatan : Tugas Akhir Program Studi DIV

Teknik Telekomunikasi

3. Pengusul

a. Nama Lengkap : Annisa Triyansusan

b. NIM : 151344004 c. Jurusan : Teknik Elektro

d. Universitas/Institut/Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Jalan Raya Pangalengan No. 384,

Kab. Bandung 40377

f. Nomor Tel/ HP : 081223501486

g. Alamat Email : annisayansusan@gmail.com

4. Dosen Pendamping

a. Nama Lengkap dan Gelar : Sanam Herlambang SST., MT.

b. NIDN : 0005115703

c. Alamat Rumah : Jl. Mesin No. 61 Perumahan Polban

Bandung

d. Nomor Tel/ HP : 081321439913

5. Biaya Kegiatan Total

a. Dana pribadi : Rp 2.087.000,-

b. Sumber lain :-

6. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 29 Januari 2019

Menyetujui,

Dosen Pendamping, Ketua Pelaksana Kegiatan,

Malinde

(Sanam Herlambang, S.ST., M.T.)

NIDN. 0005115703

(Annisa Triyansusan) NIM. 151344004

DAFTAR ISI

PENGE	SAHAAN PROPOSAL TUGAS AKHIRi	i
BAB I I	PENDAHULUAN4	1
BAB II	TINJAUAN PUSTAKA6	5
BAB III	METODE PELAKSANAAN8	3
3.1.	Perancangan 8	3
3.2.	Realisasi)
3.3.	Pengujian 10)
3.4.	Analisis)
3.5.	Evaluasi)
BAB IV	⁷ 11	l
BIAYA	DAN JADWAL KEGIATAN11	
4.1.	Anggaran Biaya	
4.2 Ja	adwal Kegiatan11	l
DAFTA	R PUSTAKA12	2
LAMPI	RAN-LAMPIRAN13	3
Lamp	piran 1. Biodata Pengusul dan Dosen Pembimbing 13	3
Lamp	piran 2. Justifikasi Anggaran Kegiatan17	7
Lamp	piran <mark>3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas</mark> . 19)
Lam	oiran 4. Gambaran Teknologi vang Hendak Diharapkan20)

BAB I PENDAHULUAN

1.1. Latar Belakang Masalah

Telekomunikasi data mobile saat ini sangat diminati oleh masyarakat karena mudah untuk diakses. Untuk mengimbangi kebutuhan tersebut, maka diperlukan teknologi yang baru. Salah satu nya, yaitu dikembangkannya teknologi 3G menjadi teknologi 4G. Jaringan 4G ini dibuat dengan tujuan untuk memberikan kenyamanan, kecepatan dari generasi sebelumnya dalam mengakses data internet. Frekuensi yang di pakai yaitu 2,6 GHz. Sekarang ini setelah infrastruktur dan jaringan komunikasi telah memadai, teknologi 4G lebih dibutuhkan oleh masyarakat karena performanya yang lebih baik dari teknologi sebelumnya. Namun jaringan 4G belum tersedia di seluruh daerah di Indonesia seperti di kabupaten atau di kota kecil, dikarenakan proses instalasi antena pemancar yang sulit, sehingga sinyal 4G nya pun susah tertangkap.

Komunikasi nirkabel ini menggunakan gelombang radio sebagai media transmisinya. Maka dari itu, dibutuhkan sebuah alat atau perangkat yang dapat mengirim sinyal gelombang radio sebagai *transmitter* dan juga menangkap gelombang tersebut sebagai *receiver*. Untuk dapat memfasilitasi kebutuhan akan teknologi telekomunikasi yang berkembang saat ini diperlukan perangkat antena yang mampu melakukan penerimaan sinyal di beberapa frekuensi kerja yang berbeda. Untuk menunjang kebutuhan tersebut diperlukan suatu antena yang dapat mendukung komunikasi tanpa kabel tersebut. Salah satu jenis antena yang saat ini banyak digunakan untuk komunikasi tanpa kabel adalah antena mikrostrip. Antena mikrostrip merupakan antena yang banyak dikembangkan dalam berbagai aplikasi karena antena mikrostrip dapat digunakan untuk perangkat telekomunikasi yang sekarang ini sangat memperhatikan bentuk dan ukuran. Antena mikrostrip juga memiliki fitur yang menarik seperti, profil rendah, fleksibel, ringan, ukuran kecil, dan dapat dibuat untuk bekerja di banyak frekuensi.

Beberapa literatur yang telah didapatkan antara lain Perancangan dan Realisasi Antena Mikrostrip Patch Persegi Panjang dengan U Slot dan Proximity Coupled untuk WiFi 5,5 GHz (Septayadi, 2018), Perancangan dan Implementasi Antena Mikrostrip Slot Rectangular Array untuk Aplikasi GPS (Pontoan, 2011), Studi Perancangan Slot untuk Mereduksi Ukuran Antena Mikrostrip Patch Segi Empat pada Frekuensi 924 MHz (Darwanda, 2017), Peracangan dan Analisis Kinerja Antena Mikrostrip dengan Patch Segiempat pada Frekuensi 2,3 GHz untuk Aplikasi Nano Satelit dengan Teknik Miniaturisasi Antena (Ramadhani, 2017), dan Rancang Bangun Antena Mikrostrip Metode Planar Array 4 Elemen Patch Sebagai Penguat Sinyal WiFi (Darmawan, 2016).

Pada perancangan ini, penulis akan merancang dan merealisasikan antena mikrostrip patch rectangular array dengan slot pada frekuensi 2,6 GHz untuk

aplikasi Long Term Evolution atau disingkat dengan LTE. Untuk melakukan perancangan digunakan software CST Microwave Studio untuk melakukan simulasi.

1.2. Perumusan Masalah

- 1. Bagaimana cara merancang dan merealisasikan antena mikrostrip slot rectangular pada frekuensi 2,6 GHz untuk aplikasi LTE?
- 2. Bagaimana pengukuran dimensi dalam perancangan antena ini?
- 3. Bagaimana pengaruh antena mikrostrip yang di beri slot?
- 4. Bagaimana perbandingan hasil simulasi dan pengujian dari pengukuran antena yang telah dibuat?

1.3. Tujuan

Adapun tujuan dalam perancangan ini, yaitu:

- 1. Melakukan perhitungan dimensi antena mikrostrip patch rectangular array dengan slot pada frekuensi 2,6 GHz untuk aplikasi LTE.
- 2. Dapat mereduksi ukuran antena mikrostrip dengan adanya slot pada patch.
- 3. Melakukan simulasi dan menguji hasil perancangan antena mikrostrip menggunakan software CST Microwave Studio.
- 4. Melakukan pencetakan antena mikrostrip slot pada PCB sesuai dengan hasil simulasi yang dilakukan.
- 5. Mengukur parameter yang telah ditentukan dan melakukan perbandingan hasil simulasi dan pengukuran dari hasil yang didapatkan.

1.4. Kegunaan Produk

- 1. Dapat mengetahui pengaruh pemberian slot pada antena mikrostrip rectangular array.
- 2. Antena yang telah di rancang dapat digunakan sebagai antena penerima pada frekuensi 2,6 GHz untuk aplikasi LTE.
- 3. Hasil simulasi dan pengukuran dapat dijadikan acuan agar penelitian yang selanjutnya dapat memiliki hasil yang lebih baik.

1.5. Luaran

- 1. Purwarupa antena mikrostrip yang akan dibuat pada frekuensi kerja antena berada pada 2,6 GHz.
- 2. Medapatkan pengukuran parameter yang telah ditentukan berupa frekuensi kerja 2,6 GHz, VSWR \leq 2, gain \geq 5 dBi, bandwidth 100 MHz, dan return loss \geq 10 dB..
- 3. Didapatkan hasil dari perhitungan dan pengukuran yang sesuai.

BAB II TINJAUAN PUSTAKA

Antena mikrostrip merupakan antena yang paling populer digunakan untuk komunikasi karena keunggulan-keunggulan yang dimilikinya. Antena mikrostrip memiliki berbagai macam jenis, sehingga banyak orang ingin membuat antena dengan jenis yang berbeda-beda hingga mendapatkan hasil dari parameter-parameter antena yang optimal. Apalagi antena mikrostrip yang telah banyak dirancang dan direalisasikan dengan frekuensi, bentuk, jumlah elemen, dan jenis substrat nya yang menjadi pembeda. Namun, terdapat kekurangan berupa bandwidth yang dihasilkan sempit dan keterbatasan dalam gain

Adapun beberapa literatur yang dapat dijadikan pendukung dalam perancangan antena mikrostrip. Pemberian U slot pada patch antena merupakan salah satu cara untuk memperbesar nilai bandwidth. Selain pemberian U slot, teknik pencatuan yang digunakan menggunakan proximity coupled juga dapat meningkatkan nilai bandwidth dan gain dari antena tersebut (Septayadi, 2018). Hasil pengukuran yang didapatkan dari fabrikasi pada antena 5,5 GHz dengan U slot dan proximity coupled, yaitu VSWR 1,1, bandwidth 230 MHz, return loss - 25,82 dB, gain 3,97 dBi, polarisasi ellips, dan pola radiasi unidireksional. Pada perancangan ini, bentuk polarisasi seharusnya sirkular sedangkan yang didapatkan saat pengukuran yaitu polarisasi ellips. Hal tersebut terjadi karena pengukuran yang kurang ideal.

Adapun perancangan sebuah antena mikrostrip susunan (*array*) 2 elemen dengan slot *rectangular* yang disusun sebanyak 10 buah untuk setiap *patch* nya dan dapat bekerja pada frekuensi GPS 1575,42 MHz serta menghasilkan pola radiasi *unidirectional*. Alasan utama digunakannya antena mikrostrip susunan (*array*) dan penggunaan slot adalah untuk meningkatkan gain dan efisiensi antena. Pada dasarnya semakin banyak jumlah elemen yang disusun maka gain antena akan semakin besar (Pontoan, 2011). Hasil pengukuran yang diperoleh, yaitu VSWR ≤ 1,3 dan gain 5,6 dBi. Namun, gain yang diperoleh belum memenuhi spesifikasi yang ditentukan, yaitu ≥ 6 dBi. Ini disebabkan karena patch pada dasarnya berfungsi untuk meradiasikan gelombang elektromagnetik sehingga jika dimensi slot diperbesar atau jumlah slot diperbanyak, akan mengurangi permukaan patch, sehingga gelombang yang diradiasikan melemah, mengakibatkan gain yang semakin menurun.

Selain memperbesar nilai bandwidth pada antena mikrostrip, penggunaan slot pada patch antena mikrostrip dapat mereduksi ukuran antena mikrostrip (Darwanda, 2017). Pada perancangan antena mikrostrip patch segiempat akan diberikan slot pada patchnya dan akan di rotasi sehingga mendapatkan posisi slot yang dapat menghasilkan nilai dari spesifikasi yang diinginkan. Rotasi pada *slot*, yaitu dengan menggeser –geser letak *slot* secara vertical, horizontal, dan plus

terhadap sumbu Y dan sumbu X diantara *patchnya*. Slot atau celah sangat berpengaruh untuk mereduksi ukuran patch antena, terbukti dari hasil simulasi, yang mana pada awalnya ukuran patchnya 99mm, namun setelah di beri slot ukuran patchnya berkurang menjadi 90mm. Selain itu, besar kecilnya ukuran *slot* sangat berpengaruh pada hasil reduksinya.

Dalam mereduksi ukuran antena mikrostrip, ada pula penelitian yakni perancangan antena mikrostrip untuk aplikasi nano satelit dengan bentuk akhir produk yang akan mengalami penyusutan dimensi atau dikenal dengan teknik miniaturisasi (Ramadhani, 2017). Teknik yang dilakukan berupa pemberian celah pada *patch* segiempat untuk frekuensi kerja 2,3 – 2,4 GHz. Hasil yang diperoleh yaitu gain sebesar 11,23 dB, VSWR 1,383, dan return loss -15,875. Adapun pola radiasi bersifat unidireksional dan polarisasi eliptikal.

Untuk mengatasi penurunan gain pada perancangan antena maka antena yang di rancang disusun manjadi beberapa patch mikrostrip rectangular. Patch antena juga disusun secara planar diharapkan dapat lebih mudah dalam menentukan pola radiasi antena (Darmawan, 2016). Antena yang di rancang juga harus memenuhi spesifikasi parameter yang telah ditentukan, yaitu nilai VSWR (Voltage Standing Wave Ratio), retuen loss, bandwidth, dan gain agar memiliki antena dengan performa yang baik. Pada perancangan ini, antena mikrostrip disusun dengan 4 patch rectangular untuk mendapatkan gain ≥ 3 dBi. Dari hasil pengujian didapatkan nilai return loss sebesar 14,37 dB, VSWR 1,47, dan gain 3,5091 dB.

BAB III METODE PELAKSANAAN

3.1. Perancangan

Dalam perancangan dan realisasi antena mikrostrip patch rectangular array dengan slot pada frekuensi 2,6 GHz untuk aplikasi (LTE) terdiri dari beberapa tahapan sebagai berikut:

• Penentuan spesifikasi substrat, dimana bahan yang akan digunakan pada penelitian ini adalah epoxy FR-4 dengan karakteristik sebagai berikut:

 Permitivitas relative (εr)
 4,3

 Permeabilitas relative (μr)
 1

 Ketebalan dielektrik
 1,6 mm

 Loss tangent
 0,012

Tabel 3.1 Karakteristik Substrat

• Penentuan spesifikasi antena yang akan di rancang dan di analisa dengan memerhatikan spesifikasi berikut:

Spesifikasi	Nilai
Frekuensi kerja	2,6 GHz
VSWR	≤ 2
Gain	≥ 5 dBi
Bandwidth	≥ 100 MHz
Return Loss	≥ 10 dB
Pola radiasi	Unidireksional
Polarisasi	Circular

Tabel 3.2 Spesifikasi Antena

• Melakukan perhitungan dimensi antena sesuai spesifikasi yang telah ditentukan. Setelah didapatkan hasil perhitungan dapat dilanjutkan dengan melakukan simulasi pada software CST Studio Microwave. Pada proses simulasi ini dilakukan dengan beberapa tahap, yaitu perancangan antena mikrostrip 1 elemen tanpa slot dan dengan slot. Pengujian pengaruh slot akan dilakukan di beberapa tempat dan akan dilakukan penambahan slot agar dapat mengetahui pengaruh penempatan slot tersebut. Hasil dari penggunaan slot

akan dilakukan analisa dengan membandingkan hasil yang diperoleh saat simulasi sehingga dapat mengetahui penempatan slot yang dengan peningkatan parameter yang baik.

Gambar 3.1 (a) Dimensi Antena Tanpa Slot dan

(b) Dimensi Antena dengan Slot

 Setelah diketahui penempatan dan jumlah slot yang akan digunakan dalam perancangan antena, maka dapat dilanjutkan dengan melaukan simulasi penambahan elemen. Dengan penambahan elemen diharapkan dapat meningkatkan nilai-nilai parameter dari spesifikasi yang telah ditentukan. Sehingga didapatkan hasil yang maksimal dalam perancangan dan realisasi antena mikrostrip

Gambar 3. 2 Antena Mikrostrip Slot dengan 2 Elemen

- Hasil perancangan dari proses simulasi dapat dilanjutkan dengan melakukan proses implementasi. Desain antena saat simulasi akan di cetak pada substrat yang telah ditentukan, yaitu epoxy FR-4.
- Melakukan pengukuran dan pengujian antena yang telah di cetak. Hasil yang didapatkan dari hasil pengukuran akan dibandingkan dengan hasil simulasi yang kemudian dapat di analisa.
- Tahap selanjutnya adalah evaluasi dan analisis dari hasil perbandingan antara pengukuran dan simulasi. Hasil perancangan, simulasi, dan pengukuran kemudian dituliskan dalam laporan tugas akhir.

3.2. Realisasi

Dalam melakukan perancangan diperlukan melakukan perhitungan antena yang akan direalisasikan dan melakukan simulasi menggunakan software CST Microwave Studio 2018. Setelah mendapatkan hasil yang sesuai saat simulasi, maka dapat dilanjutkan dengan melakukan pencetakan desain antena pada PCB epoxy FR-4. Setelah proses pencetakan pada PCB selesai, maka akan di pasang saluran transmisi yang akan menghubungkan antena denga alat ukur agar dapat dilakukan pengukuran spesifikasi antena.

3.3. Pengujian

Pada tahap ini akan dilakukan pengujian terhadap PCB dengan cara mengukur antena yang telah dibuat apakah sesuai dengan hasil yang didapatkan saat simulasi sehingga antena dapat digunakan sebagai antena penerima sinyal 4G LTE. Saat melakukan pengukuran dan pencetakan PCB diharapkan hasil pengukuran dapat sesuai dengan hasil yang didapatkan saat simulasi.

3.4. Analisis

Pada tahap ini akan dilakukan penilaian dan analisa apakah antena dapat terealisasi atau tidak terealisasi. Dengan memperhatikan pengukuran dari spesifikasi yang telah ditentukan.

3.5. Evaluasi

Setelah menganalisis hasil antena lalu akan dilakukan evaluasi, yaitu jika target yang diinginkan tidak terpenuhi maka akan dipaparkan kesalahan maupun kekurangan pada setiap bagian dari proses pembuatan antena ini.

BAB IV BIAYA DAN JADWAL KEGIATAN

4.1. Anggaran Biaya

Tabel 1. Ringkasan Anggaran Biaya

No.	Jenis Pengeluaran	Biaya (Rp)
1.	Peralatan penunjang	150.000
2.	Bahan habis pakai	685.000
3.	Perjalanan Seminar ke luar kota	280.000
4.	Lain-lain	972.000
	Jumlah	2.087.000

4.2 Jadwal Kegiatan

No	No Kegiatan			Bulan		
110	Kegiatan	1	2	3	4	5
1.	Studi Literatur					
2.	Spesifikasi dan desain konsep					
3.	Menentukan frekuensi kerja					
4.	Menghitung dimensi					
4.	perancangan antena					
5.	Melakukan simulasi dengan					
J.	CST Microwave Studio					
6.	Pembelian alat dan bahan					
7.	Pencetakan PCB					
8.	Pengukuran dan pengujian					
9.	Pembuatan laporan					

DAFTAR PUSTAKA

- Septayadi, M., dkk, 2018, 'Perancangan dan Realisasi Antena Mikrostrip Patch Persegi Panjang dengan U Slot dan Proximity Coupled untuk WiFi 5,5 GHz', Bandung: Universitas Telkom.
- Pontoan, E., dkk, 2011, 'Perancangan dan Implementasi Antena Mikrostrip Slot Rectangular Array untuk Aplikasi GPS', Bandung: Universitas Telkom.
- Darwanda, Afit, 2017, 'Studi Perancangan Slot untuk Mereduksi Ukuran Antena Mikrostrip Patch Segi Empat pada Frekuensi 924 MHz', Downloaded from Repositori Institusi USU, Univsersitas Sumatera Utara.
- Ramadhani, F., 2017, 'Peracangan dan Analisis Kinerja Antena Mikrostrip dengan Patch Segiempat pada Frekuensi 2,3 GHz untuk Aplikasi Nano Satelit dengan Teknik Miniaturisasi Antena', Bandung: Universitas Telkom.
- Darmawan, D., dkk, 2017, 'Rancang Banfun Antena Mikrostrip Metode Planar Array 4 Elemen Patch sebagai Penguat Sinyal Wi-Fi', Jember: Universitas Jember.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Pengusul dan Dosen Pembimbing A. Identitas Diri Pengusul

1	Nama Lengkap	Annisa Triyansusan
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	151344004
5	Tempat dan Tanggal Lahir	Bandung, 05 Oktober 1997
6	E-mail	annisayansusan@gmail.com
7	Nomor Telepon/HP	081223501486

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Program Pengenalan Kampus (PPKK)	Peserta	2015 di Politeknik Negeri Bandung
2.	ESQ Leadership Training	Peserta	2015 di Politeknik Negeri Bandung
3.	Pelatihan Komputer (Netiquet)	Peserta	2015 di Politeknik Negeri Bandung
4.	Bela Negara	Peserta	2015 di Politeknik Negeri Bandung
5.	Kunjungan Industri 1.0	Peserta	2016 di PT. Indosat
6.	Kunjungan Industri 2.0	Wakil Ketua	2017 di PT. SKKL Indosat
7.	HIMATEL	Anggota	2016-Sekarang

C. Penghargaan Yang Pernah Diterima

No.	Ionis Donahanasan	Pihak Pemberi	Tohun
INO.	Jenis Penghargaan	Penghargaan	Tahun

1	Program Kreativitas Mahasiswa Politeknik	POLBAN	2018
	Negeri Bandung		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Tugas Akhir Program DIV Teknik Telekomunikasi Politeknik Negeri Bandung.

Bandung, 29 Januari 2019 Pengusul,

Annisa Triyansusan

Biodata Dosen Pembimbing

A. Biodata Dosen Pembimbing Identitas Diri

1	Nama Lengkap	Sanam Herlambang, S.ST,.MT.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP/NIDN	0005115703
5	Tempat&Tanggal Lahir	Jakarta, 5 November 1957
6	Alamat E-mail	san_am57@yahoo.com
7	Nomor Telepon/HP	081321439913

B. Riwayat Pendidikan

	S1	D IV	S2
Nama Institusi	Institut Teknologi	Institut Teknologi	Universitas
	Nasional Bandung	Bandung	Gajah Mada
Jurusan	Teknik Elektro	Teknik Elektro	Teknik Elektro
Tahun Lulus	1991	1999	2007

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No.	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Bengkel Elektronika	Wajib	3
2	Praktek Keterampilan Dasar	Wajib	3
	Mekanik		
3	K3	Wajib	2
4	Kapita Selekta	Wajib	2
5	Etika Profesi	Wajib	2

C.2. Penelitian

No.	Judul Penelitian	Penyandang Dana	Tahun
1	Mereduksi Derau pada Citra	UPPM – Dikti	2012
	Menggunakan Teknik Neuro		
	Fuzzy		

C.3. Pengabdian Kepada Masyarakat

No.	Judul Pengabdian kepada Masyarakat	Penyandang Dana	Tahun
1	Gerakan Orang Tua Asuh Polban	Polban	2002

2	Pengawas IOM Polban	Polban	2008
3	Wakil Ketua Satgas Praktikum	Polban	2010
	Mahasiswa Politeknik Indramayu		
4	Pengajar Praktikum Mahasiswa	Polban	2010
	Politeknik Indramayu		
5	Seksi Keamanan RW 01 Desa	Perumahan Dosen	2009
	Sariwangi KBB	Polban	
6	Ketua RT 02 RW 01 Desa	Perumahan Dosen	2011
	Sariwangi KBB	Polban	
7	Pelatihan Aplikasi Intercom via	JTE Polban	2012
	LAN untuk Informasi		
	Siskamling dan Basis Data		
	Lingkungan RT/RW Sekelurahan		
	Gegerkalong Bandung		

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidak-sesuaian dengan kenyataan, saya sanggup menerima sanksi.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Peralatan penunjang

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
HFSS Software	1 Set	150.000	150.000	
	150.000			

2. Bahan Habis Pakai

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
PCB Polos Fiber double layer 20 x 20 cm	Papan PCB	3 Set	90.000	270.000
Casing	Biaya bahan casing	1 set	50.000	50.000
Konektor SMA Female Jack PCB Edge Mount Solder	Komponen alat perakit	10 Buah	2.000	20.000
Kabel Koaksial Komponen penghubung		4 Meter	50.000	200.000
Konektor BNC Komponen penghubung		6 Buah	20.000	120.000
Timah	Komponen penghubung	1 Buah	25.000	25.000
SUB TOTAL (Rp)				685.000

3. Perjalanan

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Perjalanan ke percetakan PCB	Penunjang perjalanan	3 Kali	30.000	90.000
Perjalanan ke toko- toko dibandung	Survey, pencarian, dan pembelian lat dan bahan	5 Kali	30.000	150.000
Parkir	Biaya parkir setiap perjalanan	20 Kali	2.000	40.000
SUB TOTAL (Rp)				

4. Lain-lain

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Kertas HVS A4 80gr	Penyusunan laporan	1 rim	60.000	60.000
Percetakan PCB	Pembuatan alat	4 Kali	200.000	800.000
DVD RW	DVD RW Penyimpanan proposal dan laporan akhir		6.000	12.000
Fotocopy & jilid	Pembuatan proposal dan laporan	2 Lot	50.000	100.000
	972.000			

Lampiran 3. Susunan Organisasi Tim Pelaksana dan Pembagian Tugas

No	Nama/ Nim	Program Studi	Bidang Ilmu	Uraian Tugas
1.	Annisa Triyansusan	D4	Teknik Telekomunikasi	Merancang dan merealisasikan antena mikrostrip U slot rectangular array pada frekuensi 2,6 GHz untuk aplikasi Long Term Evolution (LTE).

Pada ilustrasi sistem diatas, antena pemancar (transmitter) dari tower BTS akan memancarkan sinyal 4G LTE yang bekerja pada frekuensi 2,6 GHz. Lalu sinyal-sinyal tersebut akan ditangkap oleh penerima (receiver), yaitu antena mikrostrip yang telah dibuat dengan frekuensi kerja pada 2,6 GHz. Dengan gain yang telah didapatkan, maka sinyal 4G LTE bisa ditangkap oleh perangkat dengan syarat perangkat sudah dapat menerima sinyal 4G LTE.