Naive and DPLL algorithms

I have implemented the naive and DPLL algorithms in three languages :

- · OCamL: clearly the fastest
- Python: the slowest (not surprisingly)
- Cython: when it comes to performance, Cython is quite tricky

OCamL

I used the Set data structure : to quote the OCamL documentation :

The implementation [of Sets] uses balanced binary trees, and is therefore reasonably efficient: insertion and membership take time logarithmic in the size of the set, for instance.

The CNF clauses are nothing else than a set of integer sets (the clauses), which is convenient, given that the order doesn't matter, by commutativity.

How to use it

```
cd src
./OCamL/DPLL ./Examples/test6.txt
# The hardest examples (far too much for Python) were placed in the "Difficult" folder
./OCamL ./Difficult/test4.txt
```

Python (3.5/3.6)

I tried to stick with the pythonic way to implement such a recursive algorithm as much as possible (although I did resort to functools assets such as reduce and map (which are anything but pythonic)), especially by making an extensive use of iterators.

How to use it

```
cd src
python ./Python/DPLL.py ./Examples/test6.txt
```

Cython

It would be far too long to gat into the details: if the situation had to be described in one word, I finally managed to compile to pyx file in an executable with the following commands:

```
cython --embed -o DPLL_compiled.c DPLL.pyx

gcc -v -0s -I /Users/younessekaddar/.pyenv/versions/3.6.0/include/python3.6m -L /Library/Frameworks/Python.framework/Versions/3.6/lib -o DPLL_compiled DPLL_compiled.c -lpython3.6 -lpthread -lm -lutil -ldl
```

(which are obviously only suited for my particular case)

How to use it

```
cd src
./Cython/DPLL_compiled ./Examples/test6.txt
```

Concerning the choose function (which chooses the next literal before a recursive call), I tried two different implementations :

• by randomly picking a literal amongst the available ones

- by taking the "next" one:
 - o in the iterator, for Python/Cython
 - with the choose function of the Set module for OCamL

But the randomized approach was so bad (5 to 6 time slower) that I gave it up.

```
def choose(clauses, choice = 'default'):
    if choice == 'random':
        return choice(tuple(reduce(set.union, clauses, set())))
    else:
        return next(iter(clauses[0]))
```

Logic games

Logic games have been implemented as Python classes with regards to their outer structure, but the actual SAT solving process resorts to the OCamL DPLL algorithm, through the subprocess Python library.

The inheritance relation between the used classes is depicted in the following graph:

Here is a brief overview of theses classes.

Grid

It is the main class from which the different logic games inherit.

Once an instance of a given game has been translated into CNF clauses, *via* the generate_file method, the show method resorts to the OCamL DPLL algorithm so as to translate any satisfiable truth valuation back into a game grid.

The following classes share a similar structure, which is underlain by three key methods:

- generate_file: actually translates an instance of the problem into CNF clauses (the ouput format follows the DIMACS format conventions)
- generate_grid : given a truth valuation, creates the corresponding grid to be displayed with matplotlib
- decode_literals (static method): given an integer literal (appearing in the CNF DIMACS format), translates it back into a tuple that is about to be properly interpreted in the matplotlib graph

Latin Squares

The literals are triplets (k, i, j), given that :

```
(k, i, j) is true \iff the variable k is in position (i, j)
```

Besides, (k,i,j) corresponds to the literal number $k imes (n^2) + i imes n + j + 1$

NB: It's a little detail, but it bugged me bit at the beginning:

when it comes to encoding and decoding literals, as such operations are carried out multiple times, one might be tempted to use a dictionary (for which setting and getting items has a constant average time cost), but it turns out that the overhead time cost don't turn out to be that advantageous:

```
# Latin Square
# With a dictionary
>>> timeit 100000 from latin_square import LatinSquare; LatinSquare(5, 4)
0.001320116535720008 seconds on average for 100000 iterations

# Without any dictionary, by computing the literal number each time (provided the value of n**2 is stored)
>>> timeit 100000 from latin_square import LatinSquare; LatinSquare(5, 4)
0.0012361194491600327 seconds on average for 100000 iterations.
```

```
\# (k,i,j) is true iff the variable k is in position (i,j)
# (k,i,j) corresponds to the literal number k*(n**2) + i*n + j + 1
for k in range(n):
             for i in range(n):
                          not_two_in_one_row = ''
                           for j in range(n):
                                        output_str += str(k*n\_squared + i*n + j + 1) + ' '
                                        for j2 in range(j):
                                                     not\_two\_in\_one\_row += '-' + str(k*n\_squared+i*n+j2+1) + '-' + str(k*n\_squared+i*n+j+1) + '0 n'
                           output_str += '0\n'
                           output_str += not_two_in_one_row
for k in range(n):
             for j in range(n):
                          not_two_in_one_col = ''
                          for i in range(n):
                                        output_str += str(k*n_squared+i*n+j+1) + ' '
                                        for i2 in range(i):
                                                     not\_two\_in\_one\_col += '-' + str(k*n\_squared+i2*n+j+1) + '-' + str(k*n\_squared+i*n+j+1) + '0 n' + str(k*n\_squared+i2*n+j+1) + '-' + str(k*n\_s
                           output_str += '0\n'
                           output_str += not_two_in_one_col
for i in range(n):
             for j in range(n):
                          for k in range(n):
                                        output_str += str(k*n_squared+i*n+j+1) + ' '
                          output_str += '0\n'
self.outputs.append(output_str)
```

VS:

```
# (k,i,j) is true iff the variable k is in position (i,j)
# (k,i,j) corresponds to the literal number k*(n**2) + i*n + j + 1
d = \{\}
count = 1
for k in range(n):
    for i in range(n):
        not_two_in_one_row = ''
        for j in range(n):
            d[(k,i,j)] = count
            output_str += str(count) + ' '
            count +=1
            for j2 in range(j):
                not\_two\_in\_one\_row += '-' + str(d[(k,i,j2)]) + '-' + str(count) + '0\n'
        output_str += '0\n'
        output_str += not_two_in_one_row
for k in range(n):
    for j in range(n):
        not_two_in_one_col = ''
        for i in range(n):
            output_str += str(d[(k,i,j)]) + ' '
            for i2 in range(i):
                not_two_in_one_col += '-' + str(d[(k,i2,j)]) + '-' + str(d[(k,i,j)]) + '0 n'
        output_str += '0\n'
        output_str += not_two_in_one_col
for i in range(n):
    for j in range(n):
        for k in range(n):
            output_str += str(d[(k,i,j)]) + ' '
        output_str += '0\n'
self.outputs.append(output_str)
```

As a result, I didn't store the interpretations of the literals for the other game classes either.

Sudoku

Same literals as the LatinSquare, but with additional block-related constraints.

On top of the other methods, the random method generates a randomly partially filled Sudoku grid.

```
# Sudoku(size_of_grid, random=number_of_fixed_coefficients, solvable=necessarily_solvable_or_not)
M = Sudoku(9, random=37, solvable=False)
# M.show()
N = Sudoku(9, random=27, solvable=True)
N.show()
```

The random generation is twofold:

- if the solvable parameter is set to True : the randomly generated grid is guaranteed to be solvable, insofar as it is build out of a totally filled random Sudoku grid.
- if the solvable parameter is set to False : the randomly generated grid is indeed a partial Sudoku grid, but may not be solvable.

Picross

Let n (resp. m) be the number of rows (resp. columns).

The literals fall into two categories:

- the cell-related literals, in the form of couples (i,j)
- the block-related ones, in the form of triplets (k,i,j)

(i,j) is true \iff the cell in position (i,j) is colored

(k, i, j) is true \iff the *i*-th block of the *k*-th sequence (that is, line or column) starts from the *j*-th position.

The former are associated with the literals

$$1 \leq i imes \max(n,m) + j \leq \max(n,m)^2$$

the latter with the literals

$$\max(n,m)^2 + 1 \leq \max(n,m)^2 + k \times (m+n)^2 + i \times (m+n) + j + 1 \leq (m+n)^3 + \max(n,m)^2 + 1$$

Moreover:

- for each sequence (i.e row or column), the i-th block is somewhere
- for each sequence, the i-th block is at one position at most
- · each cell of each block is colored
- · each colored cell is in one block of its row
- · each colored cell is in one block of its column
- → I also implemented a verbose mode to trace back the literals more conveniently in the DIMACS generated file.
- → An instance can also be initialized by providing the URL of a "picross" file in the **CWD format**.

The CWD format

```
number_of_rows
number_of_columns
rows
columns
```

```
e.g:
 10
 5
 2
 2 1
 1 1
 1 1
 1 1
 1 1
 1 2
 2
 2 1
 2 1 3
 7
 1 3
 2 1
```

Benchmarks

benchmark.py

This file aims at comparing the performances of the OCamL, Python and Cython DPLL algorithms on the files located in the ./Example folder.

benchmarks.sh

This bash script creates a file, the content of which is the following markdown table, comparing the performances of the OCamL, Python and Cython DPLL algorithms on the files located in the ./Example folder.

```
#!/bin/bash
files=./Examples/*
output=time.txt
echo "||0CamL|Cython|Python">$output
echo "-|-|-|-">>$output
for f in $files
do
    echo "Processing $f file..."
    ocaml="$( TIMEFORMAT='%lU';time ( ./OCamL/DPLL $f ) 2>&1 1>/dev/null )"
    cython="$( TIMEFORMAT='%lU';time ( ./Cython/DPLL_compiled $f ) 2>&1 1>/dev/null )"
    python="$( TIMEFORMAT='%lU';time ( python ./Python/DPLL.py $f ) 2>&1 1>/dev/null )"
    echo "${f#$files}|$ocaml|$cython|$python">>$output
done
```

How to use it

```
cd src
chmod +x ./benchmarks.sh
./benchmarks.sh
```

	OCamL	Cython	Python
latin_square_3.txt	0m0.006s	0m0.093s	0m0.155s
latin_square_4.txt	0m0.019s	0m0.126s	0m0.215s
latin_square_9.txt	0m0.916s	0m6.290s	0m7.101s
picross_10_10_1B0A7J8GFE0I947QOP210BVVZGHGSK.txt	0m0.067s	0m0.152s	0m0.279s
picross_10_20_YSCI430K89C3PPAY5MY0Z4XBYFG5OOFO95M0D6X50CZKPET9VH.txt	0m0.367s	0m1.038s	0m1.175s
picross_10_5_2S0MZ3SE45E68E661.txt	0m0.173s	0m0.217s	0m0.307s
picross_15_15_3BWYQ1KSBSMP2YHH4LWN87XBA6CXMHTNO3IYP.txt	0m0.327s	0m1.009s	0m1.286s
picross_5_5_EGJL3MLF.txt	0m0.007s	0m0.050s	0m0.140s
picross_8_8_JRF431YX10EVG1R.txt	0m0.120s	0m0.160s	0m0.256s
picross_9_5_9JT4G0T57YGWP22H.txt	0m0.113s	0m0.108s	0m0.226s
picross_9_8_EJ8UN1C2M2O4TG5R.txt	0m0.148s	0m0.299s	0m0.493s
sudoku_4.txt	0m0.016s	0m0.126s	0m0.263s
sudoku_4_1ZYLI8KVPC.txt	0m0.013s	0m0.075s	0m0.197s
sudoku_4_TXL8PXIXU1.txt	0m0.006s	0m0.055s	0m0.140s
sudoku_6.txt	0m0.013s	0m0.068s	0m0.153s
sudoku_9_1GX4FPP2MXTZ34Z5G06EWWQV7IK2BZVALK6TY0FISVNGVC5051C.txt	0m0.063s	0m0.260s	0m0.401s
sudoku_9_3VQXKC2ZBJLXQ48PJHH3LAMW08H6DZ8MUTGE6RDZ1JHUPFIA02YU.txt	0m0.968s	0m5.804s	0m6.245s
sudoku_9_42Y4WY8HTNMCE6XGGQS30JYQT2W6XF2ZS5Y81PMBQNGH2CUA1AA8.txt	0m0.107s	0m0.382s	0m0.542s
sudoku_9_492NPRN1HIOX0LM1WLI7140DWV76XFPXB6B3DZTR840HFR2D91JC.txt	0m0.199s	0m0.469s	0m0.375s
sudoku_9_662DTRFIQ3L1OSCWZH75GUQKFNZ3U7DY17KRZ73AW1BM7GSB27O.txt	0m12.665s	0m45.010s	0m48.086s
sudoku_9_CM2TXPZ68TCLEUQZV8PFGY3YTB4DC99N4JA3IKR0OJWKI49649Y.txt	0m0.077s	0m0.298s	0m0.366s
sudoku_9_D1HB6ZSYIO1PR55T1G9Z5904BZI1WWH91OX0MESBO5WD6FKP99DW.txt	0m0.069s	0m0.280s	0m0.367s