Полезные конструкции Spark в реализациях на Scala и Python

Содержание

1	Полезные ресурсы по Spark	2
2	Общие сведения	2
3	Управление зависимостями проекта с помощью build.sbt	3
4	Начало работы со Spark	4
5	Пример использования группировки и аггрегации на Scala	7
6	Создание Spark DataFrame на основе списка	8
7	Создание Spark DataFrame на основе объекта RDD	8
8	Создание Spark DataFrame на основе схемы StructType()	9
9	Создание Spark DataFrame на основе pandas	9
10	Зарегистрировать пользовательскую функцию	9
11	Фильтрация и агрегация	10
12	Сводная информация	10
13	Оконные функции в контексте SQL и Spark DataFrame	11
14	Работа с файловой системой Databricks	17
15	Приемы работы с библиотекой Breeze	18
16	Spark ML Pipelines	19
17	Запросы к DataFrame с помощью методов и SQL	21
18	Случайный лес в Spark	22
19	Экстремальный градиентный бустинг с XGboost4j	23
20	Распределенное глубокое обучение с Elephas	25
21	Оптимизация гиперпараметров и AutoML	25

22 Apache Zookeeper	26		
22.1 Общие сведения	26		
22.2 Установка и запуск Zookeeper	26		
23 Apache Kafka	28		
23.1 Установка и запуск Kafka	28		
24 Apache HBase			
24.1 Установка и запуск	28		
25 Пакетная и потоковая обработка данных	29		
26 Приемы работы со Spark в Apache Zeppelin	30		
Список литературы	31		

1. Полезные ресурсы по Spark

Очень крутая книга $The\ Internals\ of\ Spark\ SQL$ по внутреннему устройству Spark от Jacek Laskowski. GitHub-репозиторий книги.

 Официальная документация по ML https://spark.apache.org/docs/1.2.2/ml-guide.html.

 Официальная документация по MLlib https://spark.apache.org/docs/latest/ml-guide.html.

 Официальная документация по sbt https://www.scala-sbt.org/1.x/docs/sbt-by-example.

 html.

2. Общие сведения

Apache Spark — это универсальная и высокопроизводительная кластерная вычислительная платформа [1]. Благодаря разнопрофильным инструментам для аналитической обработки данных, **Apache Spark** активно используется в системах интернета вещей на стороне IoT-платформы, а также в различных бизнес-приложениях, в т.ч. на базе методов машинного обучения.

Арасhe Spark позиционируется как средство потоковой обработки больших данных в реальном времени. Однако, это не совсем так: в отличие, например, от Apache Kafka или Apache Storm, фреймворк Apache Spark разбивает непрерывный поток данных на набор *микро-пакетов*. Поэтому возможны некотрые временные задержки порядка секунды. Официальная документация утверждает, что это не оказывает большого влияния на приложения, поскольку в большинстве случаев аналитика больших данных выполняется не непрерывно, а с довольно большим шагом около пары минут.

Однако, если все же временная задержка обработки данных (latency) – это критичный момент для приложения, то Apache Spark Streaming не подойдет и стоит рассмотреть альтернативу в виде Apache Kafka Streams¹ (задержка не более 1 миллисекунды) или фреймворков потоковой обработки больших данных Apache Storm, Apache Flink и Apache Samza.

 $^{^1}$ Арасhe Kafka Streams — это клиентская библиотека для разработки распределенных потоковых приложений и микросервисов, в которых входные и выходные данные хранятся в кластерах Kafka. Поддерживает только Java и Scala

В отличие от классического MapReduce², реализованном в **Apache Hadoop**, **Spark** не записывает промежуточные данные на диск, а размещает их в оперативной памяти. Поэтому сервера, на которых развернут **Spark**, требуют большого объема оперативной памяти. Это в свою очередь ведет к удорожанию кластера.

Spark вращается вокруг концепции ycmoйчивого pacnpedeлeнного набора данных (Resilient Distributed Dataset, RDD) https://spark.apache.org/docs/latest/rdd-programming-guide.html, который представляет собой отказоустойчивый набор элементов, с которыми можно работать na-раллельно.

Существует два способа создать RDD:

- о распараллеливание существующего набора данных,
- на основе набора данных внешней системы хранения, такой как общая файловая система, HDFS, HBase или на основании любого другого источника, который поддерживает Hadoop.

Moдуль pyspark.sql.SparkSession является базовой «точкой входа» для работы с DataFrame и SQL. Класс SparkSession может использоваться для работы с объектом DataFrame, регистрации его как таблицы, выполнения SQL-запросов, кеширования таблиц и чтения parquet-файлов:

3. Управление зависимостями проекта с помощью build.sbt

При работе со Scala-проектом с помощью sbt или IntelliJ IDEA версия языка определяется параметром scalaVersion в файле сборки build.sbt, например

```
scalaVersion := "2.12.12"
...
```

Остается только при запуске сессии в REPL набрать sbt console (а не scala), чтобы загрузить указанную версию Scala и все зависимости проекта.

В файл сборки build.sbt следует добавить следующие строки

Пример файла build.sbt

```
name := "SparkML"

version := "1.0"

scalaVersion := "2.12.12"

libraryDependencies ++= Seq(
```

²Модель распределенных вычислений

```
"org.apache.spark" %% "spark-sql" % "3.0.1" % "provided",
"org.apache.spark" % "spark-mllib_2.12" % "3.0.1" % "provided" // в строке используется один
"%"!!!
)
```

Для того чтобы sbt работал корректно, требуется разместить AppFileName.scala и build.sbt следующим образом:

- о файл build.sbt должен лежать в корне проекта,
- о a scala-скрипт по пути ≡ src rmain rscala AppFileName.scala.

Теперь можно упаковать приложение

```
sbt package
```

В поддиректории project проекта будет файл с версией sbt

project/build.properties

```
sbt.version = 1.3.13
```

Там же можно расположить файл с описанием плагинов для sbt

project/plugins.sbt

```
addSbtPlugin("org.scalameta" % "sbt-scalafmt" % "2.4.0")
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.14.10")
```

В корне проекта можно расположить конфигурационный файл для scalafmt

.scalafmt

```
version = "2.6.4"
align.preset = more // For pretty alignent
maxColumn = 100 // For my wide 30" display
```

Для запуска scala-приложения используется spark-submit

```
spark-submit \
--class "AppFileName" \
--master local \
target/scala-2.12/app-file-name_2.12-1.0.jar
```

4. Начало работы со Spark

Отправной точкой является SparkSession – создание распределенной системы для исполнения будущих вычислений

```
import org.apache.spark.sql.SparkSession
import spark.implicits._ // важный импорт; здесь много синтаксического сахара
val spark = SparkSession.builder()
    .appName("Example app")
    .master("local[*]")
    .getOrCreate()
```

Примеры использования Spark в ML можно найти здесь https://github.com/apache/spark/tree/master/examples/src/main/scala/org/apache/spark/examples/ml

Meтод .master(...) (или .setMaster(...) в конфигурации SparkContext) указывает, где нужно выполнить вычисления. Например,

```
.master("yarn") // выполнение на кластере Hadoop
.master("local") // выполнение локально на машине
```

У Spark есть 3 разных API:

- RDD API,
- DataFrame API (он же SQL API): не типизирован,
- DataSet API (только для Scala! В Python это не имеет смысла): Scala-вский DataSet по сути представляет собой коллекцию экземпляров строк определенного типа (то есть это типизированный DataFrame); и поэтому, когда мы применяемнапример, метод filter, то он применяется к каждой строке.

Различаются они в основном тем, в каком виде представлены *распределенные коллекции* при вычислениях. На низком уровне все эти формы представления коллекций являются RDD.

Paботу со Spark можно вести и через spark-shell (для Scala) или через pyspark (для Python). Для реальных проектов требуется создать проект определенной структуры, например, так

```
sbt new MrPowers/spark-sbt.g8
```

а затем импортировать его в ItelliJ IDEA.

Затем нужно будет собрать проект в jar-файл, перенести этот файл на кластер и запустить spark-submit с полученным jar-файлом.

SparkContext – это предшественник SparkSession и используется для работы с RDD

Scala

```
val conf = new SparkConf().setAppName(appName)
val sc = new SparkContext(conf)
```

Python

```
conf = SparkConf().setAppName(appName)
sc = SparkContext(conf=conf)
```

Сейчас к SparkContext напрямую обращаться не нужно. Лучше сразу создать SparkSession, а затем если вдруг возникнет необходимость из-под сессии вызывать контекст.

При построении DAG есть два типа операций:

- Transformations описание вычислений (map, filter, groupByKey etc.),
- Actions действия, запускающие расчеты (reduce, collect, take etc.).

Без *действий* вычисления не запускаются! Чтобы Spark каждый раз не вычислял весь граф заново, можно сказать sc.textFile("...").cache().

Прочитать файлы (с заголовком) с локальной файловой системы в DataFrame можно так

Scala

Аналогично на Python

Python

```
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName("test").master("local[*]").getOrCreate()

df = spark.read.option("header", True).csv("/Users/leor.finkelberg/Python_projects/file.csv")
```

Для того, чтобы типы полей файлов распознавались при загрузке можно использовать опцию inferSchema

Результат будет таким

```
dataCsv.printSchema
root
|-- fieldname1: integer (nullable = true)
|-- fieldname2: double (nullable = true)
...
```

Можно передать сразу несколько пар с помощью options через ассоциативный массив

```
val df = spark.read.options(Map("delimiter"->",", "header"->"true")).csv("file.csv")
```

К слову, можно считать все csv-файлы из директории просто указав путь к ней

```
val collect_csv = spark.read.csv("folder_with_csv")
```

Аналогичным образом можно записать результат вычислений в файл

```
df.write.option("header", true).csv("from_spark.csv") // в текущей директории будет создана дир ектория (!) from_spark_csv, в которой будет лежать сsv-файл // или df.write.options(Map("header"->"true", "delimiter"->",")).csv("from_spark_again.csv")
```

Дополнительно можно управлять поведением с помощью класса SaveMode

```
import org.apache.spark.sql.SaveMode

df.write.mode(SaveMode.Overwrite).csv("file.csv")

df.write.mode(SaveMode.ErrorIfExists).csv("file.csv")
...
```

В Spark лучше передавать НЕ csv-файлы (НЕ следует использовать!), а Parquet/ORC (наилучший вариант). Для потоковой обработки (или для случаев, когда не получается работать с колоночными данными) лучше использовать Avro вместо JSON.

Для того чтобы результаты вычислений, представленных в виде большого числа маленьких файлов, сохранить в виде одного относительно большого нужно провести репартиционирование

```
// hdfs не любит мелкие файлы!
df.repartition(1).write.parquet("hdfs:///parquet-files/") // сжимаем до 1 партиции
```

Можно провести партицирование папками

```
df.write.partitionBy("year", "month").parquet("hdfs:///parquet-files/")
```

Для запуска приложения на кластере используется spark-submit

```
export HADOOP_CONF_DIR=...
./bin/spark-submit \
    --class org.apache.spark.examples.SparkPi \
    --master yarn \
    --deploy-mode cluster \
    --executor-memory 20G \
    --num-executors 50 \
    /path/to/examples.jar 1000
```

Здесь 1000 – это аргумент, который попадет в наше приложение.

Найти скрипт spark-submit можно, например, здесь € HOME • Anaconda3 • Lib • site-packages • pyspark • bin.

Основные аргументы spark-submit:

- --driver-cores/--executor-cores количество ядер для каждого из элементов приложения (на контейнер!); executors выполняются в отдельных контейнерах; сколько будет контейнеров зависит от YARN,
- --driver-memory/--executor-memory количество памяти для каждого из элементов приложения (на контейнер!),
- --queue очередь в YARN, в которой будет выполняться приложение,
- --num-executors количество executors (может быть динамическим)

Spark-приложение упаковывается в uber-jar (жирный jar), содержащий необходимые зависимости. Его можно располагать как на локальной файловой системе, так и на HDFS.

Такой jar можно собрать командой (нужен плагин sbt-assembly)

```
sbt assembly
```

Если хочется тащить с собой лишние зависимости, есть три варианта:

- --jars указание пути к дополнительным jar-файлам,
- --packages подключение зависимости из удаленных репозиториев (см. https://spark-packages.org/); полезно скорее для интерактивных приложений

```
--packages datastax:spark-cassandra-connector_2.11:2.0.7
```

• CLASSPATH – переменная окружения, в которой можно указать дополнительные jar-файлы.

Есть два режима деплоя приложения:

- o client драйвер запускается локально, executors на кластере,
- о cluster драйвер, как и executors, запускается на кластере.

5. Пример использования группировки и аггрегации на Scala

Пример подсчета слов в файле

Не самый удачный вариант

```
> val lines = spark.read.text("file_name.txt")
> val linesMap = lines.flatMap(_.mkString.split(" ")).map((_, 1))
// после этой операции имена стольцов будут иметь вид "_1", "_2" и т.д.
// чтобы переименовать стольцы придется воспользоваться следующей конструкцией
> val renameCols = Map("_1" -> "Language", "_2" -> "Numbers")
> val linesMapRen = linesMap
.select(linesMap.columns.map(c => col(c)
```

```
.as(renameCols.getOrElse(c, c))): _*)
> val wordCounts = linesMapRen.groupBy("Language").agg(sum("Counts"))
> wordCounts.show
```

Тоже самое одним запросом с фильтрацией по числу слов

```
linesMap
   .select(
    linesMap.columns.map(
        c => col(c).as(renameCols.getOrElse(c, c))
    ): _* // обязательно распоковать
)
   .groupBy("Language")
   .agg(sum("Counts"))
   .where($"sum(Counts)" === 2)
   .show
```

К слову, переименовать столбцы в объекте DataFrame можно и проще

```
val df = ... // "_1", "_2", "_3"
val dfRenamed = df.toDF("newName1", "newName2", "newName3")
```

6. Создание Spark DataFrame на основе списка

Создание объекта Spark DataFrame на основе списка

7. Создание Spark DataFrame на основе объекта RDD

Создание объекта DataFrame на основе объекта RDD

8. Создание Spark DataFrame на основе схемы StructType()

Создание объекта DataFrame на основе схемы

9. Создание Spark DataFrame на основе pandas

Создание объекта Spark DataFrame на основе pandas DataFrame

```
In[]: data = pd.read_csv('file.csv')
In[]: df_spark = spark.createDataFrame(data).collect()
```

Использование SQL-запросов с объектами Spark DataFrame

```
In[]: type(df) # pyspark.sql.dataframe.DataFrame
In[]: df.collect()
Out[]:
# [Row(url='url1', ts='2018-08-15 00:00:00', service='tw', delta=1),
# Row(url='url1', ts='2018-08-15 00:05:00', service='tw', delta=3),
# Row(url='url1', ts='2018-08-15 00:11:00', service='tw', delta=1),
 Row(url='url2', ts='2018-08-15 00:26:00', service='fb', delta=13)]
In[]: df.createOrReplaceTempView('social_delta_tab') # создать временную таблицу
                                                      # с именем 'social_delta_tab'
In[]: sql_result = spark.sql('''
                       SELECT url, service, sum(delta) AS summa
                       FROM social_delta_tab
                       GROUP BY url, service
In[]: sql_result.collect() # pesynamam SQL-sanpoca
Out[]:
[Row(url='url1', service='fb', summa=360),
Row(url='url2', service='tw', summa=1200),
Row(url='url2', service='fb', summa=38),
 Row(url='url1', service='tw', summa=59)]
```

10. Зарегистрировать пользовательскую функцию

Зарегистрировать пользовательскую функцию

```
In[]: power_2 = spark.udf.register('power_2', lambda x: x**2)
In[]: spark.sql("SELECT power_2(11)").collect() # [Row(power_2(11)='121')]
```

```
In[]: from pyspark.sql.types import IntegerType
In[]: stringLength = spark.udf.register('stringLength', lambda x: len(x), IntegerType())
In[]: spark.sql("SELECT stringLength('test')").collect() # [Row(stringLength(test)=4)]
```

11. Фильтрация и агрегация

Конструкция запроса Spark очень похожа на конструкцию pandas

Пример агрегации в PySpark с помощью SQL-запроса

```
In[]: spark.sql('''
       SELECT gender,
             usertype,
             max(tripduration)
       FROM data
       GROUP BY gender, usertype
       ORDER BY gender
    ''').show()
Out[]:
+----+
|gender| usertype|max(tripduration)|
+----+
    0| Customer| 126180|
                     342|
40339|
    0|Subscriber|
   1|Subscriber|
    2|Subscriber|
                      15905
```

B pandas решение этой задачи может быть записано в виде

```
In[]: (data.groupby(['gender', 'usertype']).
                                   agg(np.
   max))
Out[]:
                 tripduration
gender usertype
     Customer
                       126180
      Subscriber
                        342
      Subscriber
                        40339
1
2
      Subscriber
                       15905
```

12. Сводная информация

```
In[]: df_spark.describe(['url']).show()
Out[]:
+----+
|summary| url|
+----+
| count| 30|
| mean|null|
| stddev|null|
| min|url1|
| max|url2|
+----+
```

13. Оконные функции в контексте SQL и Spark DataFrame

Spark SQL поддерживает три вида оконных функций (см. табл. 1):

- о ранжирующие,
- аналитические,
- \circ агрегатные (любую агрегатную функцию можно использовать в качестве оконной функции)

Чтобы использовать оконную функцию, следует указать, что функция должна использоваться как *оконная* одним из следующих способов:

- о добавить ключевое слово OVER после функции поддерживаемой SQL, например, AVG(revenue) OVER (...) или
- ∘ вызвать метод over, например, rank().over(...).

Итак, функция «помечена» как оконная. Теперь можно определить спецификацию окна. Спецификация окна включает три части:

- спецификация секционирования (группировка строк): определяет какие строки будут входить в одну группу,
- \circ спецификация сортировки: определяет в каком порядке будут располагаться строки в группе,
- спецификация фрейма: определяет какие стоки будут включены в фрейм для текущей строки, основываясь на их положении относительно текущей строки.

	контекст SQL	DataFrame API
Ранжирующие функции	rank	rank
	dense_rank	denseRank
	percent_rank	percentRank
	ntile	ntile
	row_number	rowNumber
Аналитические функции	cume_dist	cumeDist
	first_value	firstValue
	last_value	lastValue

Таблица 1. Ранжирующие и аналитические функции **PySpark**

В контексте SQL ключевые слова PARTITION BY и ORDER BY используются для определения групп в $cneuu\phiu\kappa auuu$ cekuuohuposahus и $cneuu\phiu\kappa auuu$ copmuposku, соответственно

lag

lag

lead

³Например, AVG, SUM, COUNT и пр.

```
OVER (PARTITION BY ... ORDER BY ...)
```

В контексте DataFrame API оконную функцию можно объявить следующим образом

```
from pyspark.sql.window import Window
windowSpec = Window.partitionBy(...).orderBy(...)
```

Дополнительно требуется определить:

- о начальную границу фрейма,
- о конечную границу фрейма,
- о тип фрейма.

Существует пять типов границ:

- о UNBOUNDED PRECEDING: первая строка в группе,
- UNBOUNDED FOLLOWING: последняя строка в группе,
- CURRENT ROW: текущая строка,
- o <value> PRECEDING: ,
- o <value> FOLLOWING.

Различают два типа фреймов:

- строковый фрейм ROWframe: базируется на физическом смещении относительно текущей строки. Если в качестве границы используется CURRENT ROW, то это означает, что речь идет о текущей строке. <value> PRECEDING и <value> FOLLOWING указывают число строк до и после текущей строки, соответственно.
- диапазонный фрейм RANGEframe: базируется на логическом смещении относительно положения текущей строки.

Visual representation of frame ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

	-	category revenue
Current input row ->	Bendable Foldable Ultra thin Thin	Cell phone 3000 Cell phone 3000 <- 1 PRECEDING

Paccмотрим работу RANGEframe. Рассмотрим пример. В этом примере сортировка проводится по «revenue», в качестве начальной границы используется в 2000 PRECEDING, в качестве конечной границы - 1000 FOLLOWING.

В контексте SQL этот фрейм определяется как

```
RANGE BETWEEN 2000 PRECEDING AND 1000 FOLLOWING
```

Границы фрейма вычисляются следующим образом: [current revenue value - 2000; current revenue value + 1000], т.е. границы фрейма пересчитываются в зависимости от текущего значения строки в столбце «revenue»

Visual representation of frame
RANGE BETWEEN 2000 PRECEDING AND 1000 FOLLOWING
(ordering expression: revenue)

```
# 1 step
                   poduct | category | revenue
Current input row -> Bendable | Cell phone | 3000 <-- revenue range [3000-2000=1000;
   3000+1000=4000]
                   Foldable | Cell phone | 3000 <--
                   Ultra thin | Cell phone | 5000
                   Thin | Cell phone | 6000
                   Very thin | Cell phone | 6000
# 2 step
                   poduct | category | revenue
                   Bendable | Cell phone | 3000 <-- revenue range [3000-2000=1000;
   3000+1000=4000]
Current input row -> Foldable | Cell phone | 3000 <--
                   Ultra thin | Cell phone | 5000
                   Thin | Cell phone | 6000
                   Very thin | Cell phone | 6000
# 3 step
                   poduct | category | revenue
                   Bendable | Cell phone | 3000 <-- revenue range [5000-2000=3000;
   5000+1000=6000]
                   Foldable | Cell phone | 3000 <--
Current input row -> Ultra thin | Cell phone | 5000 <--
                   Thin | Cell phone | 6000 <--
                   Very thin | Cell phone | 6000 <--
# 4 step
                   poduct | category | revenue
                    -----+----+-----
                   Bendable | Cell phone | 3000
                   Foldable | Cell phone | 3000
                   Ultra thin | Cell phone | 5000 <-- revenue range [6000-2000=4000;
   6000+1000=7000]
Current input row -> Thin | Cell phone | 6000 <--
                   Very thin | Cell phone | 6000 <--
# 5 step
                   poduct
                            | category | revenue
                   -----+-----+-----
                   Bendable | Cell phone | 3000
                   Foldable | Cell phone | 3000
                   Ultra thin | Cell phone | 5000 <-- revenue range [6000-2000=4000;
   6000+1000=7000]
                   Thin
                             | Cell phone | 6000 <--
Current input row -> Very thin | Cell phone | 6000 <--
```

Итак, чтобы определить спецификацию окна в контексте SQL используется конструкция

```
OVER (PARTITION BY ... ORDER BY ... frame_type BETWEEN start AND end)
```

где frame_type может быть либо ROWS (ROWframe), либо RANGE (RANGEframe); start может принимать одно из следующих значений UNBOUNDED PRECEDING, CURRENT ROW, <value> PRECEDING и <value> FOLLOWING; end может принимать UNBOUNDED FOLLOWING, CURRENT ROW, <value> PRECEDING и <value> FOLLOWING.

В контексте DataFrame API используется следующий шаблон

```
In[]: windowSpec = Window.partitionBy(...).orderBy(...)
In[]: windowSpec.rowsBetween(start, end) # dar ROW frame
In[]: windowSpec.rangeBetween(start, end) # dar RANGE frame
```

Рассмотрим другой пример

```
In[]: from pyspark.sql.functions import pandas_udf, PandasUDFType
In[]: from pyspark.sql import Window
In[]: df = spark.createDataFrame(
              [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],
              ('id', 'v')
In[]: @pandas_udf('double', PandasUDFType.GROUPED_AGG)
     def mean_udf(v):
         return v.mean()
# оконное преобразование
In[]: w = Window.partitionBy('id').rowsBetween(Window.unboundedPerceding, Window.
   unboundedFollowing)
In[]: df.withColumn('mean_v', mean_udf(df['v']).over(w)).show()
Out[]:
+---+
| id| v|mean_v|
+---+
| 1| 1.0| 1.5|
| 1| 2.0| 1.5|
| 2| 3.0| 6.0|
| 2| 5.0| 6.0|
| 2|10.0| 6.0|
+---+---+
```

Построить кумулятивную сумму для каждой группы PARTITION BY (первый элемент столбца delta используется в качестве первого элемента нового столбца total, затем первый элемент столбца delta суммируется со вторым элементом этого же столбца, а результат записывается как второй элемент столбца total и т.д.)

```
In[]: df = spark.createDataFrame(pd.read_csv('social_delta.csv'))
In[]: df.createOrReplaceTempView('social_del_tab')
In[]: spark.sql('''
       SELECT *,
          sum(delta) OVER (PARTITION BY url, service ORDER BY ts) AS total
       FROM social_del_tab
     ''').show(3)
Out[]:
+---+----+
                 ts|service|delta|total|
+----+
|url1|2018-08-15 00:00:00| fb| 5| 5| # <- 5
|url1|2018-08-15 00:05:00| fb| 15| 20| # <- 5 + 15 = 20
|url1|2018-08-15 00:11:00|
                       fb| 11| 31| # <- 20 + 11 = 31
only showing top 3 rows
```

Вычислить скользящее среднее для каждой группы PARTITION BY

Вычислить скользящее среднее для каждой группы, включая записи, которые отстоят от текущей записи на «5 мин назад»

```
In[]: df = spark.createDataFrame(pd.read_csv('social_totals.csv', parse_dates=['ts']))
In[]: df.createOrReplaceTempView('df')
In[]: spark.sql('''
           SELECT *, AVG(total) OVER (PARTITION BY url, service ORDER BY ts
                RANGE BETWEEN INTERVAL 5 MINUTES PRECEDING AND CURRENT ROW) AS total_aug5min
           FROM df
      ''').show(3)
Out[]:
+---+----+
                        ts|service|total|total_avg5min|
|url1|2018-08-15 00:00:00| fb| 5| |url1|2018-08-15 00:05:00| fb| 20| |url1|2018-08-15 00:11:00| fb| 31| |url1|2018-08-15 00:18:00| fb| 45| |url1|2018-08-15 00:21:00| fb| 59| |url1|2018-08-15 00:30:00| fb| 67|
                                                        5.0| # <- 5
                                                      12.5| # <- (5 + 20)/2 = 12.5 (5 мин)
                                                    | 12.5 | # < - (5 + 20)/2 

| 31.0 | # < - 31 (6 \text{ Muh}) 

| 45.0 | # < - 45 (7 \text{ Muh}) 
                                                     52.0 | # <- (45 + 59)/2 = 52 (3 мин)
                                                     67.0
+----+--------------------------+
only showing top 6 rows
```

Ту же задачу в pandas можно решить следующим образом

Пусть задан объект PySpark DataFrame

```
In[]: productRevenue.show()
In[]: productRevenue = spark.createDataFrame([
                           ('Thin', 'Cell phone', 6000),
                           ('Normal', 'Tablet', 1500),
                           ('Mini', 'Tablet', 5500),
                                                               product| category|
                           ('Ultra thin', 'Cell phone',
                                                                revenue
   5000),
                                                             +----+----
                           ('Very thin', 'Cell phone',
   6000),
                                                                  Thin | Cell phone |
                           ('Big', 'Tablet', 2500),
                                                                6000 l
                           ('Bendable', 'Cell phone',
                                                                Normal
                                                                            Tablet|
   3000),
                                                                1500
                           ('Foldable', 'Cell phone',
                                                                   Minil
                                                                            Tablet
   3000),
                                                                5500|
                           ('Pro', 'Tablet', 4500),
                                                             |Ultra thin|Cell phone|
                           ('Pro2', 'Tablet', 6500)],
                                                                5000|
                           ['product', 'category', '
                                                             | Very thin | Cell phone |
   revenue']
                                                                6000|
                                                                    Bigl
                                                                            Tablet
                                                                2500
                                                             | Bendable|Cell phone|
                                                                30001
                                                             | Foldable|Cell phone|
                                                                3000
                                                                    Pro|
                                                                            Tablet|
                                                                4500|
                                                                   Pro2|
                                                                            Tablet|
                                                                6500|
```

Требуется выявить первые два наименования наиболее дорогих продуктов из групп «Cell phone» и «Tablet».

Решение этой задачи на основе оконных функций может выглядеть следующим образом

```
In[]: productRevenue.createOrReplaceTempView('prod_rev')
In[]: spark.sql('''
        SELECT
            product,
            category,
            revenue
        FROM (
            SELECT
               dense_rank() OVER (PARTITION BY category ORDER BY revenue DESC) AS rank
            FROM prod_rev)
        WHERE rank <= 2'').show()</pre>
Out[]:
+----+
 product| category|revenue|
 -----+
     Thin|Cell phone| 6000|
                            # <- first group
| Very thin|Cell phone| 6000|
|Ultra thin|Cell phone| 5000|
     Pro2|
           Tablet| 6500|
                            # <- second group
            Tablet | 5500|
     Mini|
 -----+
```

To есть к каждой найденной группе применяется функция dense_rank с помощью PARTITION BY выполняется группировка по столбцу «category». Внутри группа упорядочивается по убыванию (ORDER BY) по столбцу «revenue».

Пусть теперь требуется вычислить на сколько отличается по стоимости самый дорогой продукт в группе от прочих продуктов из той же группы. Задача может быть решена так

```
In[]: import sys
In[]: from pyspark.sql.window import Window
In[]: import pyspark.sql.functions as func
In[]: df = productRevenue
In[]: windowSpec = (
         Window.partitionBy(df['category']).
                orderBy(df['revenue'].desc()).
                rangeBetween(-sys.maxsize, sys.maxsize))
In[]: revenue_diff = func.max(df['revenue']).over(windowSpec) - df['revenue']
In[]: df.select( # выбрать из объекта df соответствующие столбцы
         df['product'],
         df['category'],
         df['revenue'],
         revenue_diff.alias('revenue_diff') # добавить в вывод этот столбец
     ).show()
Out[]:
  product| category|revenue|revenue_diff|
  -----+----+
| Thin|Cell phone| 6000| 0|
| Very thin|Cell phone| 6000| 0|
|Ultra thin|Cell phone| 5000| 1000|
                                             # <- первая группа
                                   0|
1000|
3000|
| Bendable|Cell phone| 3000|
                                   3000 |
0 |
1000 |
  Foldable|Cell phone| 3000|
              Tablet | 6500|
       Pro2|
                                         0|
                                             # <- emopas rpynna
               Tablet| 5500|
      Mini|
       Pro| Tablet| 4500|
                                      20001
       Big| Tablet| 2500|
                                      4000
    Normal | Tablet | 1500 |
                                      50001
    _____+___+
```

14. Работа с файловой системой Databricks

Databricks https://databricks.com/product/unified-data-analytics-platform — это платформа для анализа больших данных, построенная вокруг Apache Spark. DBFS — распределенная файловая система Databricks.

Работа с файловой системой в рамках платформы Databricks осуществляется через модуль dbutils

```
# вывести список фалов текущей директории
dbutils.fs.ls('dbfs:/FileStore/tables')
# удалить файл из DBFS
dbuitls.fs.rm('dbfs:/FileStore/tables/file_name.csv', True)
```

Записать Spark-объект DataFrame можно записать, к примеру, на DBFS

```
pandas_data = pd.DataFrame({
    'package_name' : ['Ansys', 'Nastran', 'Abaqus', 'LMS Virtual Lab', 'Comsole'],
    'solver_type': ['direct', 'iterative', 'direct', 'iterative', 'iterative'],
    'language': ['IronPython', 'Java', 'C++', 'Python', 'Erlang'],
    'performance': np.abs(10*np.random.RandomState(42).randn(5))
})
data = spark.createDataFrame(pandas_data)
# сохранить объект на DBFS в формает csv
data.write.save('dbfs:/FileStore/tables/data.csv', format='csv')
# прочитать объект
spark.sql('''
    SELECT * FROM csv. 'dbfs:/FileStore/tables/data.csv'
''').show()
# сохранить объект на DBFS в формате parquet
data.write.save('dbfs:/FileStore/tables/cae_packages.parquet', format='parquet')
# прочитать объект
spark.sql('''
   SELECT * FROM parquet.'dbfs:/FileStore/tables/cae_packages.parquet'
''').show()
```

Формат Parquet – это колончный (столбцово-ориентированный) формат хранения данных, который поддерживается системой Hadoop. Он сжимает и кодирует данные, и может работать с вложенными структурами – все это делает его очень эффективным.

К слову, удалить таблицы, находящиеся в оперативной памяти, можно так

```
from pyspark.sql import SQLContext
sqlcont = SQLContext(sc)

for tab in sqlcont.tableName():
    sqlcont.dropTempTable(tab)
```

15. Приемы работы с библиотекой Вгееzе

Математика в Spark, как правило, реализована с помощью Breeze. Библиотека Breeze нераспределенная!!! Предполагается, что Breeze работает над небольшими блоками данных.

Оптимизация в Breeze

```
import breeze.linalg._
import breeze.numerics._
import breeze.optimize.{DiffFunction, LBFGS}

val X = DenseMatrix.rand(2000, 3)
val y = X*DenseVector(0.5, -0.1, 0.2) // yeas

val J = new DiffFunction[DenseVector[Double]] {
    def calculate(w: DenseVector[Double]) = {
        val e = X*w - y
        val loss = sum(e ^:^ 2.0) / (2 * X.rows)
        val grad = (e.t * X) /:/ (2.0 * X.rows)
        (loss, grad.t)
    }
}
```

```
| val optimizer = new LBFGS[DenseVector[Double]]()
| println(optimizer.minimize(J, DenseVector(0.0, 0.0, 0.0)))
| // DenseVector(0.4999998855333594, -0.10000001104504522, 0.20000002605021208) // приближение к
| цели
```

Здесь используется метод L-BFGS. Это алгоритм оптимизации семейства квази-ньютоносвких методов, который аппроксимирует алгоритм Бройдена-Флетчера-Гольфарба-Шанно с учетом ограниченного объема компьютерной памяти. L-BFGS — популярный алгоритм оценки параметров в машинном обучении.

16. Spark ML Pipelines

Различают

- Transformer: принимают на вход данные, возвращает преобразованные данные,
- о Estimator: принимает на вход данные, возвращает Transformer.

Существуют еще Model – это трансформер, который был получен с помощью Estimator.

Эти объекты можно собирать в конвейеры, например: Transformer1 \rightarrow Estimator1 \rightarrow Estimator2.

Сам по себе конвейер является Estimator, т.е. ему можно подать на вход данные. Если в конвейере есть Transformer, то данные будут преобразованы и переданы дальше. Если в конвейере будет Estimator, то данные будут поданы на вход этому Estimator, который вернет Transformer, который в свою очередь будет применен к данным и вернет преобразованные данные.

Пример

```
import org.apache.spark.sql.SparkSession
val spark = SparkSession
              .builder.
              .appName("test")
              .master("local[*]")
              .getOrCreate()
val X = DenseMatrix.rand(10000, 3)
val y = X*DenseVector(0.5, -0.1, 0.2)
val data = DenseMatrix.horzcat(X, y.asDenseMatrix.t)
val df = spark.createDataFrame(
    data(*, ::).iterator // umepamop no cmpoκαμ
        .map(row => (row(0), row(1), row(2), row(3)))
).toDF("x1", "x2", "x3", "y")
df.show(1)
// Вывод
0.9528102359167567 | 0.7292676335740298 | 0.5690442082761085 | 0.5172871962561971 |
only showing top 1 row
```

Подготовка конвейера

```
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.VectorAssembler
```

```
import org.apache.spark.ml.regression.{
 LinearRegression, // модель ML
 LinearRegressionModel // обученная модель ML
val pipeline = new Pipeline().setStages(
 Array( // maccue emanoe
   new VectorAssembler() // трансформер
      .setInputCols(Array("x1", "x2", "x3"))
      .setOutputCol("features"), // (x1, x2, x3) -> features
   new LinearRegerssion().setLabelCol("y") // эстиматор
)
val model = pipeline.fit(df)
val w = model.stages.last
  .asInstanceOf[LinearRegressionModel].coefficients
// w: org.apache.spark.ml.linalq.Vector =
    [0.50000000000163, -0.099999999999984, 0.2000000000000076]
val pred = model.transform(df)
```

Здесь модель линейной регрессии принимает на вход вектор с именем "features" и целевой вектор "y", на который мы указываем с помощью setLabelCol("y").

BAЖНО: здесь model это не линейная регрессия, а конвейер, в котором модель линейной регрессии лежит на последнем этапе.

Metog transform возвращает объект, у которого будет два новых поля (features и prediction). Поле features добавил VectorAssembler, когда собирал данные. Поле prediction очевидно добавила модель в качестве прогноза.

ВАЖНО: если сейчас посмотреть на схему данных **pred**, то она будет выглядеть примерно так

```
root
|-- x1: double (nullable = false)
|-- x2: double (nullable = false)
|-- x3: double (nullable = false)
|-- y: double (nullable = false)
|-- features: vector (nullable = true) # <-- потеряли информацию о природе признакое
|-- pred: double (nullable = false)
```

В глубоких конвейерах могут возникнуть сложности из-за потери информации о природе признаков, например, на этапе построения интерпретации.

В Spark есть свой собственный тип векторов и матриц (это не то же самое, что векторы и матрицы Breeze)

- o Vector:
 - DenseVector.
 - SparsVector
- o Matrix
 - DenseMatrix.
 - SparseMatrix (CSC)

Ectь метод **compressed**, который в зависимости от структуры вектора/матрицы принимает решение о том, в каком виде имеет смысл хранить данные (в полносвязанном или в разреженном).

Для сложных преобразований можно превратить spark-вектор/матрицу в breeze-вектор/матрицу с помощью asBreeze.

Извлечение атрибутов

```
import org.apache.spark.ml.attribute.AttributeGroup

AttributeGroup.fromStructField(pred.schema("features"))
    .attributes.get.foreach(println)

// Bbieod
{"type": "numeric", "idx":0, "name": "x1"}
{"type": "numeric", "idx":1, "name": "x2"}
{"type": "numeric", "idx":2, "name": "x3"}
```

Для модульного тестирования используется ScalaTest https://www.scalatest.org/user_guide.

17. Запросы к DataFrame с помощью методов и SQL

Пример запроса к объекту DataFrame с использованием методов

Scala

```
> val df = spark.read.option("header", "true").csv("file_name.csv")
> df.show(3)
//+-----+
//|state/region| ages|year|population|
//+-----+
         AL/under18/2012/ 1117489/
//1
         AL| total|2012| 4817528|
//1
                        1130966|
         AL/under18/2010/
//1
//+-----+
//only showing top 3 rows
> df.select($"ages", $"year").filter(
 $"year" > 2010 && $"state/region" === "AL"
).orderBy($"year").show
```

Тот же самый запрос, но с использованием SQL

Scala

```
> df.createOrReplaceTempView("state_population")
spark.sql(
   "SELECT ages, year FROM state_population WHERE year > 2010 and 'state/region' = \"AL\" ORDER
   BY 2;"
).show
```

B pandas этот запрос выглядел был так

Python

```
> df = pd.read_csv("file_name.csv", header=0)
> df[["ages", "year"]][
        (df["year"] > 2010) & (df["state/region"] == "AL")
].sort_values("year")
```

Или так

Python

```
df.query(
    "year > 2010 & 'state/region' == 'AL'"
)[["ages", "year"]].sort_values("year")
```

Еще пример с использованием эквивалента конструкции CASE WHEN

Scala

Или, используя SQL

Scala

```
spark.sql(
  "SELECT
    ages,
    CASE WHEN (ages = \"under18\") THEN 0
        WHEN (ages = \"total\") THEN 1
        ELSE 2 END AS encodedCol,
    year
    FROM state_population
    WHERE year > 2010 and 'state/region' = \"AL\"
    ORDER BY 3;"
).show
```

18. Случайный лес в Spark

Пример решения задачи с использованием алгоритма случайного леса на платформе Spark

Случайный лес

```
import org.apache.spark.mllib.tree.RandomForest
import org.apache.spark.mllib.tree.cofiguration.Strategy
import org.apache.spark.mllib.util.MLUtils
// Загузка и парсинг данных
val data = MLUtils.loadLibSVMFile(sc, "data.txt")
// Разбиение множества данных на обучение и тест
val splits = data.randomSplit(Array(0.7, 0.3))
val (trainginData, testData) = (splits(0), splits(1))
// Обучение модели
val treeStrategy = Strategy.defaultStrategy("Classification")
val numTrees = 200
val featureSubsetStrategy = "auto"
val model = RandomForest.trainClassifier(
   trainingData,
   treeStrategy,
   numTrees,
   featureSubsetStrategy,
    seed = 12345
```

```
// Проверка на тестовом наборе

val testErr = testData.map{
   point => {
      val prediction = model.prediction(point.features)
      if (point.label == prediction) 1.0 else 0.0
   }
}.mean()
println(testErr)
println(model.toDebugString)
```

19. Экстремальный градиентный бустинг с XGboost4j

Подробности в https://xgboost.readthedocs.io/en/latest/jvm/.

Tонкая настройка XGboost4j для Spark: https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j_spark_tutorial.html

Пример решения задачи с помощью алгоритма экстремального градиентного бустинга

```
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.ml.features.StringIndexer
import org.apache.spark.ml.feature.VectorAssembler
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val spark = SparkSession.builder().getOrCreate()
val schema = new StructType(Array(
                   StructField("sepal length", DoubleType, true),
                   StructField("sepal width", DoubleType, true),
                   StructField("petal length", DoubleType, true),
                   StructField("petal width", DoubleType, true),
                   StructField("class", StringType, true)
))
val rawInput = spark.read.schema(schema).csv("input_path")
val stringIndexer = new StringIndexer().
                           setInputCol("class").
                           setOutputCol("classIndex").fit(rawInput)
val labelTransformed = stringIndexer.transform(rawInput).drop("class")
val vectorAssembler = new VectorAssembler().
                             setInputCols(Array(
                               "sepal length",
                               "sepal width",
                               "petal length",
                               "petal width"
                            )).setOutputCol("feature")
val xgbInput = vectorAssembler.transform(labelTransformer).select("features", "classIndex") // n
    одготовленный набор (Х, у)
// Тренировка
val xgbParam = Map(
                  "eta" -> 0.1f,
                  "max_depth" \rightarrow 2,
                  "objectiv" -> "multi:softprob",
                  "num_class" -> 3,
                  "num_round" -> 100,
                  "num_workers" -> 2
val xgbClassifier = new XGBoostClassifier(xgbParam).
                          setFeaturesCol("features").
```

```
setLabelCol("classIndex")
val xgbClassificationModel = xgbClassifier.fit(xgbInput)
```

Пример использования XGboost4j для решения задачи регрессии

```
import ml.dmlc.xgboost4j.scala.spark.{XGBoostRegressionModel, XGBoostRegressor} // стандартный
import org.apache.spark.ml.evaluation.{RegressionEvaluator}
import org.apache.spark.ml.tuning.ParamGridBuilder
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{FloatType, IntegerType, StructField, StructType}
import ml.dmlc.xgboost4j.scala.spark.rapids.CrossValidator // XGBoost4j Rapids: можно использова
    ть для повышения производительности с помощью GPU
val trainParquetPath = "/data/taxi/parquet/train"
val evalParquetPath = "/data/taxi/parquet/eval"
val labelColName = "fare_amount"
val schema =
  StructType(Array(
    StructField("vendor_id", FloatType),
    StructField("passenger_count", FloatType),
    StructField(labelColName, FloatType),
    StructField("is_weekend", FloatType)
))
val spark = SparkSession.builder().appName("taxi-gpu-cv").getOrCreate()
val trainDs = spark.read.parquet(trainParquetPath)
val featureNames = schema.filter(_.name != lableColName).map(_.name)
val regressionParam = Map(
    "learning_rate" -> 0.5,
    "max_depth" -> 8,
    "subsample" \rightarrow 0.8,
    "gamma" -> 1,
    "num_round" -> 100,
    "tree_method" -> "gpu_hist"
val regressor = new XGBoostRegrossor(regressorParam).
                      setLabelCol(labelColName). // целевая переменная
                      setFeaturesCols(featureNames) // признаки
val paramGrid = new ParamGridBuilder().
                      addGrid(regressor.maxDepth, Array(3, 10)).
                      addGrid(regressor.eta, Array(0.2, 0.6)).
                      build()
val evaluator = new RegressionEvaluator().setLabelCol(labelColName)
val cv = new CrossValidator(). // ucnoльзуется RAPIDS для параллелизации
               setEstimator(regressor).
               setEvaluator(evaluator).
               setEstimatorParamMaps(paramGrid).
               setNumFolds(3)
val model = cv.fit(trainDs).bestModel.asInstanceOf[XGBoostRegressionModel]
val transformDs = spark.read.parquet(evalParquetPath)
val df = model.transform(transformDs).cache() // делаем предсказания
df.select("fare_amount", "prediction").show(5)
```

```
//val evaluator = new RegressionEvaluator().setLabelCol(labelColName)
val rmse = evaluator.evaluate(df)
spark.close()
```

20. Распределенное глубокое обучение с Elephas

Elephas https://github.com/maxpumperla/elephas – это распределенная платформа глубокого обучения, построенная на связке «Keras + Spark».

Пример

```
from pyspark import SparkContext, SparkConf
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.optimizers import SGD
from elephas.utils.rdd_utils import to_simple_rdd
from elephas.spark_model import SparkModel
conf = SparkConf().setAppName("Elephas_App").setMaster("local[8]")
sc = SparkContext(conf = conf)
model = Sequential()
model.add(Dense(128, input_dim=784))
model.add(Activation("relu"))
model.add(Dropout(0.2))
model.add(Dense(128))
model.add(Activation("relu"))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation("softmax"))
model.compile(loss="category_crossentropy", optimizer=SGD())
# RDD-nodxod
rdd = to_simple_rdd(sc, x_train, y_train)
spark_model = SparkModel(model, frequency="epoch")
spark_model.fit(rdd, epochs=20, batch_size=32, verbose=0, validation_split=0.1)
# DataFrame-подход. Лучше так!!!
df = to_data_frame(sc, x_train, y_train, categorical=True)
test_df = to_data_frame(sc, x_test, y_test, categorical=True)
estimator = ElephasEstimator(model, epochs=epochs, batch_size=batch_size, frequency="batch",
    categorical=True, nb_classes=nb_classes)
fitted_model = estimator.fit(df)
```

21. Оптимизация гиперпараметров и AutoML

Есть интересное расширение для **Spark** ML под именем **PravdaML**. Это расширение добавляет гибкости в вопросах организации потока данных, повышает коэффициент утилизации ресурсов и улучшения масштабирования ML.

22. Apache Zookeeper

22.1. Общие сведения

Арасhe Zookeeper – это сервис распределенной координации – централизованная служба для поддержки информации о конфигурации, обеспечения распределенной синхронизации и предоставления групповых служб. Все эти виды услуг используются в той или иной форме распределенными приложениями.

В конце сеанса следует:

- Остановить продюсер, консамер с помощью Ctrl-C,
- о Остановить Kafka с помощью Ctrl-C,
- Остановить ZooKeeper с помощью Ctrl-C.

Основные свойства Zookeeper:

- о пространство ключей образует дерево (иерархию, подобную файловой системе),
- значения могут содержаться в любом узле иерархии, а не только в листьях (как если бы файлы одновременно были бы и каталогами), узел иерархии называется znode,
- между клиентом и сервером двунаправленная связь, следовательно, клиент может подписываться как изменение конкретного значения или части иерархии,
- возможно создать временную пару ключ/значение, которая существует, пока клиент, ее создавший, подключен к серверу,
- о все данные должны помещаться в память,
- о устойчивость к смерти некритического количества узлов кластера.

22.2. Установка и запуск Zookeeper

Чтобы установить Zookeeper на MacOS следует с официального сайта проекта скачать tarapxив https://www.apache.org/dyn/closer.lua/zookeeper/zookeeper-3.6.2/apache-zookeeper-3. 6.2-bin.tar.gz и распаковать его, например, в поддиректорию zookeeper домашней директории

```
tar -xvzf apache-zookeeper-3.6.2-bin &&\
mv apache-zookeeper-3.6.2 zookeeper-3.6.2
```

Затем нужно в конфигурационном файле командной оболочки .bashrc, .zshrc создать переменную окружения ${\tt ZOOKEEPER_HOME}$

```
~/.zshrc
```

```
export ZOOKEEPER_HOME="/Users/leor.finkelberg/zookeeper/zookeeper-3.6.2/bin"
export PATH="$ZOOKEEPER_HOME:${PATH}"
```

Kpome того необходимо переименовать файл zoo_sample.cfg в zoo.cfg, а затем заменить значение по умолчанию параметра dataDir на следующее https://zookeeper.apache.org/doc/current/zookeeperStarted.html

```
~/zookeeper/zookeeper-3.6.2/conf
```

```
# каталог data должен существовать, иначе Zookeeper не сможет запустить сервер dataDir=~/zookeeper/zookeeper-3.6.2/data
```

Остальные два параметра минимальной конфигурации – tickTime и clientPort – оставим без изменений.

Теперь можно запустить ZooKeeper

```
zkServer.sh start
```

Описанные выше шаги запускают ZooKeeper в автономном режиме. В этом случае не поддерживается репликация и если процесс упадет, то служба выйдет из строя. Такой схемы достаточно для большинства ситуаций, но все же, если требуется запустить ZooKeeper с поддержкой репликации, то следует ознакомиться с https://zookeeper.apache.org/doc/current/zookeeperStarted.html#sc_RunningReplicatedZooKeeper.

Далее устанавливаем соединение с ZooKeeper

```
zkCli.sh -server 127.0.0.1:2181
```

Теперь нужно подготовить запуск Apache Kafka. Предварительно бинарные файлы можно скачать здесь https://kafka.apache.org/downloads.

Перед запуском Kafka следует указать куда будут писаться логи. Сделать это можно, изменив значение параметра log.dirs в файле server.properties

~/kafka/kafka_2.13-2.7.0/config/server.properties

```
log.dirs=~/kafka/kafka_2.13-2.7.0/kafka-logs
```

и здесь же правим файл zookeeper.properties

~/kafka/kafka 2.13-2.7.0/config/zookeeper.properties

```
dataDir=~/kafka/kafka_2.13-2.7.0/zookeeper-data
```

A вот теперь можно запускать kafka-сессию

```
./kafka-server-start.sh ~/kafka/kafka_2.13-2.7.0/config/server.properties
```

Для создания топика используем следующий сценарий командной оболочки

```
./kafka-topics.sh --create --topic quickstart-events --bootstrap-server localhost:9092 # Created topic quickstart-events.
```

Посмотреть описание топика можно следующим образом

```
./kafka-topics.sh --describe --topic quickstart-events --bootstrap-server localhost:9092
```

Клиент Kafka общается с брокерами сообщений через сеть для записи (или чтения) событий. Получив сообщение брокеры будут хранить его так долго, как это нужно. Запустим клиент продюсера, чтобы записать в топик несколько событий

```
# запись некоторых событий в топик
./kafka-console-producer.sh --topic quickstart-events --bootstrap-server localhost:9092
>This is my first event
>This is my second events
>^C% # Ctrl-C
```

Теперь можно открыть еще один терминал и прочитать переданные в топик события

```
# чмение собымий из молика
./kafka-console-consumer.sh --topic quickstart-events --from-beginning --bootstrap-server
localhost:9092
# Ctrl-C
```

Остановить ZooKeeper можно так

```
zkServer.sh stop
```

23. Apache Kafka

23.1. Установка и запуск Каfka

BAЖHO: перед запуском Kafka следует запустить ZooKeeper (см. 22.2).

Apache Kafka – брокер сообщений, работающий поверх сервиса Apache Zookeeper.

Простая схема: создается топик (тема), в которую будут отправляться сообщения от продюсеров, и на которую смогут подписаться консьюмеры, чтобы их получать.

24. Apache HBase

HBase – распределенная нереляционная (столбцово-ориентирования) база данных формата «ключ-значение».

24.1. Установка и запуск

Подробности, связанные с установкой различных режимах (автономном, распределенном и т.д.) можно узнать на странице https://hbase.apache.org/book.html.

Cкачать tar-apхив можно здесь https://www.apache.org/dyn/closer.lua/hbase/2.4.0/hbase-2.4.0-bin.tar.gz

```
curl -0 https://apache-mirror.rbc.ru/pub/apache/hbase/2.4.0/hbase-2.4.0-bin.tar.gz
```

Теперь следует распоковать архив

```
tar -xvzf hbase-2.4.0...
```

перейти в директорию **⋒**hbase-2.4.0 и задать путь до java в файле hbase-env.sh, раскоментировав нужную строку

conf/hbase-env.sh

```
export JAVA_HOME=/usr/local/Cellar/openjdk/15.0.1
```

В конфигурационном файле команданой оболочки удобно задать переменные окружения для Java и HBase

~/.zshrc

```
# for HBase
export JAVA_HOME="/usr/local/Cellar/openjdk/15.0.1"
export PATH="${PATH}:/Users/leor.finkelberg/hbase/hbase-2.4.0/bin"
```

Диреткорию размещения java на MacOS X следует искать с помощью менеджера пакетов brew

```
brew list java # /usr/local/Cellar/openjdk/15.0.1/bin/java
```

BAЖНО: обновить java, можно скачав соответствующую версию с ресурса https://www.oracle.com/java/technologies/javase-jdk15-downloads.html.

Запустить HBase можно с помощью сценария командной оболочки из 🕿 bin/

```
start-hbase.sh
```

Подключиться к запущенному экземпляру можно так

```
hbase shell
```

Для того чтобы убедиться, что процесс HMaster запущен можно воспользоваться утилитой jps.

Бывает удобно следить за работой приложения с помощью Web-интерфейса, доступного на http://localhost:16010.

Закончить сессию можно с помощью команды quit. Затем нужно остановить НВаяе

stop-hbase.sh

25. Пакетная и потоковая обработка данных

Пакетная обработка – обработка всего за раз без взаимодействия с конечным пользователем. Задача выполняется однократно или по расписанию, тригеру и пр.

Инструменты пакетной обработки:

- Spark стандарт в этой области,
- ∘ Flink псевдо-batch,
- Hive когда знаешь только SQL.

Инструменты потоковой обработки:

- Spark Streaming микробатчи,
- ∘ Flink реальный стириминг,
- Kafka Streams Карра-архитектура.

Apache Kafka – это быстрая, масштабируемая, надежная и отказоустойчивая система обмена сообщениями по механизму публикация-подписка. Еще можно сказать, что Kafka это распределенная потоковая платформа.

Если упрощенно, то Kafka предназначена для организации обмена сообщениями и результатами работы между микросервисами приложения.

Kafka работает с другими распределенными фреймверками как Spark, Samza, Flink для анализа и визуализации потоковых данных в реальном времени. Kafka хорошо интегрируется с ML фреймверками для решения ML/AI задач на потоках.

Основные определения:

- Producer сервис, отправляющий сообщение,
- Consumer сервис, получающий данные,
- Broker один узел Kafka,
- Торіс логическая очередь,
- Partition физическая часть очереди.

Обычно взаимодействие Kafka и Spark Streaming устроено следующим образом:

- исходные данные записываются в топики Apache Kafka,
- приложение Spark Streaming считывает нужные данные и обрабатывает их согласно бизнеслогике,
- полученные результаты приложение Spark Streaming отправляет в место назначения новый топик Apache Kafka, озеро данных на базе Hadoop HDFS, аналитическую СУБД (HBase, Hive, Greenplum etc.) или BI-систему.

Топик состоит из партиций. Партиция упорядоченная и неизменяемая последовательность сообщений.

Семантика доставки:

- At most once (максимум один раз) сообщения могут потеряны, но никогда не будут доставлены повторно (не будет дубликатов),
- At least once (минимум один раз) сообщения никогда не теряются, но могут быть доставлены повторно (возможны дубликаты),
- Exactly once (строго один раз) это то, чего на самом деле хотят люди; каждое сообщение доставляется только один раз.

Концепция и основные компоненты потоковой обработки

- Structured Streaming передача не материализует всю таблицу сразу,
- Spark Streaming (Dstream) предоставляет абстракцию высокого уровня, называемую дискретным потоком или DStream, которая представляет непрерывный поток данных. DStream последовательность RDD.

Триггеры в Spark Streaming:

- Unspecified (по умолчанию) если параметр триггера не указан явно, то по умолчанию запрос будет выполняться в режиме micro-batch, в котором микропакеты будут сгенерированы, как только предыдущий микропакет завершит обработку,
- Fixed interval micro-batches запрос будет выполнятся в режиме микропакетов, в котором микропакеты будут запускаться через указанные пользователем интервалы,
- One-time micro-batch запрос будет выполнять только один микропакет для обработки всех доступных данных, а затем остановится самостоятельно,
- Continuous with fixed checkpoint interval (экспериментально) запрос будет выполняться в новом режиме непрерывной обработки с малой задержкой.

Интеграция Kafka в Spark Streaming:

- Write Ahead Logs (WAL) для Каfkа это гарантирует, что никакие данные, полученные из любых надежных источников данных (т.е. транзакционных источников, таких как Flume, Каfka и Kinesis), не будут потеряны из-за сбоев. Даже для ненадежных (т.е. нетранзакционных) иточников, таких как простые старые сокеты, это сводит к минимуму потерю данных.
- Direct API для Каfkа это позволяет обрабатывать каждую запись Каfkа ровно один раз, несмотря на сбои, без использования журналов предварительной записи. Это делает конвейеры Spark Streaming + Kafka более эффективными, обеспечивая гарантию отказоусточивости.

26. Приемы работы со Spark в Apache Zeppelin

Apache Zeppelin http://zeppelin.apache.org/download.html — это многофункциональная интерактивная оболочка, которая позволяет выполнять запросы к различным источникам данных, обрабатывать и визуализировать результаты, а самое главное «из коробки» поддерживает Spark. Близкий аналог Jupyter Notebook, но Zeppelin больше ориентирован на работу с базами данных. Он использует концепцию «интерпретаторов» — плагинов, которые обеспечивают бекенд для какого-либо языка и/или БД.

Проще всего запустить Zeppelin с помощью Docker

```
docker run -p 8080:8080 --rm --name zeppelin apache/zeppelin:0.9.0

# usu mak
docker run -p 8080:8080 --rm \
-v $(pwd)/logs:/logs \
-v $(pwd)/notebook:/notebook \
```

```
-e ZEPPELIN_LOG_DIR='/logs' \
-e ZEPPELIN_NOTEBOOK_DIR='/notebook' \
--name zeppelin apache/zeppelin:0.9.0
```

Страница Zeppelin будет доступна в браузере localhost:8080.

Подробное руководство по работе с Apache Zeppelin можно найти по адресу https://docs.arenadata.io/aaw/Zeppelin/index.html.

Список литературы

1. Kapay X., Конвински Э., Венделл П., Захария М. Изучаем Spark: молниеносный анализ данных. – М.: ДМК Пресс, 2015. – 304 с.