Lawrence Livermore National Laboratory

ZFS on Linux for Lustre SC10

November 16, 2010

Brian Behlendorf, Christopher Morrone

ZFS Overview

- Developed by Sun (now Oracle) on Solaris
- Combined filesystem, logical volume manager, RAID
- Copy-on-write
- Built-in data integrity
- Intelligent scrubbing and resilvering
- Very large filesystem limits

Lustre Overview

- Massively parallel distributed file system
- Major Components
 - Metadata Server (MDS)
 - Servers Metadata Target (MDT)
 - Object Storage Servers (OSS)
 - -Server Objects Storage Targets (OST)
 - Clients

LLNL's Reasons for porting ZFS

- Lustre servers currently use ext4 (ldiskfs)
 - Random writes bound by disk IOPS rate, not disk bandwidth
 - OST size limits
 - fsck time is unacceptable
 - Expensive hardware required to make disks reliable
- Late 2011 requirement:
 - 50PB, 512GB/s 1 TB/s
 - At a price we can afford

ZFS's Benefits

- COW sequentializes random writes
 - No longer bound by drive IOPS
- Single volume size limit of 16 EiB
- Zero fsck time. On-line data integrity and error handling
- Expensive RAID controllers are unnecessary

Solaris Porting Layer Linux/ZFS Glue

Licensing Issues

CDDL = Common Development and Distribution License GPL = (Gnu) General Public License

ZFS and Lustre Components

Ported by LLNL

Beta Port by KQInfotech

Under Development by Oracle

Proposed OSS Hardware

- "Scalable Unit" is 1½ racks
- 10x 4U disk enclosure (40U total)
 - 60 disks in each enclosure
- 8x 2U Linux server nodes (20U total)

SAS Link Count

SAS Links from first two OSSs

Each pair of OSS split ¼ of disks. OSS can serve as failover for partner.

Each OSS sees 150 drives, uses 75

Each OSS has 7 10-disk zpools 70 disks each for normal use

5 disks left over for each OSS SSDs - ZIL? L2ARC?

Prototype ZFS/Lustre Filesystem

ZFS Performance Comparison

- Same number of drives
- SATA vs SAS disk
- RAID-Z2 vs RAID-6
- Write Performance is Limited by the ZFS Port
- Read Performance is Limited by Lustre/CPU
- ZFS is unoptimized, this can all be improved!

Single Node Write Performance

- Random 1MiB writes, from 128 threads, to 4096 objects
- 60 MiB/s per disk for small pools (10 disks)
- Limited by taskq when scaled up
- This is fixable

Single Node Read Performance

ZPIOS Read Performance

- Random 1MiB reads, from 128 threads, to 4096 objects
- Prefetch disabled
- Scales very well
- 50-60 MiB/s per disk even for large pools
- >90% CPU utilization when using 70 disks
- Can be optimized

40

Total Disks (10 per vdev)

50

60

70

30

10

More Information

- ZFS & SPL
 - http://zfsonlinux.org
 - Mailing Lists
 - Download software
 - Documentation
- Lustre support for ZFS (a.k.a., "KDMU branch")
 - LLNL testing internally
 - Publicly available late 2011

OSS SSU

- 8 Linux hosts
- 10 60-bay SAS enclosures
- 560 2TB SATA drive
- 40 SSDs (ZIL, L2ARC)
- 8 QDR Infiniband adapters
- 8 dual-port 10-GigE adapters

