Universität des Saarlandes Fakultät für Mathematik und Informatik Fachrichtung Mathematik

Prof. Dr. Roland Speicher Dr. Tobias Mai

Präsenzübungen zur Vorlesung Höhere Mathematik für Ingenieure I Wintersemester 2020/21

Blatt 4 A

Lösungshinweise

Aufgabe 1: Verwenden Sie **nur** die algebraischen Axiome (d. h. die Körperaxiome), um für alle $x, y \in \mathbb{R}$ die folgenden Aussagen zu zeigen:

(a)
$$x \cdot y = 0 \implies (x = 0) \lor (y = 0)$$
.

Hinweis: Nehmen Sie an, dass $x \neq 0$, und folgern Sie y = 0 oder umgekehrt.

(b)
$$-x = (-1) \cdot x$$
.

(c)
$$-(-x) = x$$
.

Lösung:

(a) Sei $x \neq 0$. Dann besitzt x das multiplikative Inverse x^{-1} und es folgt

$$y = y \cdot 1 = y \cdot (x \cdot x^{-1}) = (y \cdot x) \cdot x^{-1} = 0 \cdot x^{-1} = 0,$$

wobei wir im dritten Schritt das Assoziativgesetz der Multiplikation und im letzten Schritt die aus der Vorlesung bekannte Tatsache $0 \cdot x = 0$ für alle $x \in \mathbb{R}$ verwendet haben.

(b) Es gilt

$$x + (-1) \cdot x = 1 \cdot x + (-1) \cdot x = (1 + (-1)) \cdot x = 0 \cdot x = 0.$$

(c) Es gilt

$$(-x) + (-(-x)) \stackrel{(ii)}{=} (-x) + (-1) \cdot (-x) = (1 + (-1)) \cdot (-x) = 0 \cdot (-x) = 0.$$

Aufgabe 2: Verwenden Sie **nur** die algebraischen Axiome und die Anordnungsaxiome, um für alle $x, y \in \mathbb{R}$ die folgenden Regeln für das Rechnen mit Ungleichungen zu beweisen:

(a)
$$(x \le y) \land (u \le v) \implies x + u \le y + v$$
.

(b)
$$0 < x \le y \implies \frac{1}{x} \ge \frac{1}{y}$$
.

(c)
$$(0 \le x \le y) \land (0 \le u \le v) \implies x \cdot u \le y \cdot v$$
.

Lösung:

(a) Zweimaliges Ausnutzen der Verträglichkeit von \leq mit der Addition auf \mathbb{R} liefert

$$x + u \le y + u \le y + v$$

und damit die Behauptung.

(b) Zunächst stellen wir fest, dass wegen x>0 auch $x^{-1}>0$ gelten muss. Da insbesondere $x\neq 0$, ist x invertierbar, sodass x^{-1} tatsächlich existiert. Weil x^{-1} damit ebenfalls invertierbar ist, gilt $x^{-1}\neq 0$, d. h. es können nur die beiden Fälle $x^{-1}<0$ oder $x^{-1}>0$ eintreten. Wäre nun $x^{-1}<0$, dann könnten wir daraus aufgrund der Verträglichkeit von < mit der Multiplikation auf $\mathbb R$ und wegen x>0 folgern, dass

$$1 = x^{-1}x < 0 \cdot x = 0.$$

Letzteres wiederum würde -1 > 0 implizieren und somit, unter erneuter Ausnutzung der Verträglichkeit von < mit der Multiplikation auf \mathbb{R} , den Widerspruch

$$-1 = 1 \cdot (-1) < 0 \cdot (-1) = 0$$

liefern; man beachte, dass -1 > 0 und -1 < 0 nicht gleichzeitig wahr sein können. Folglich muss $x^{-1} > 0$ gelten, wie behauptet.

Wegen der Transitivität von > implizieren x > 0 und y > x, dass y > 0 gilt. Deshalb können wir das obige Argument auch auf y anwenden und schließen, dass y ebenfalls invertierbar sein muss mit $y^{-1} > 0$.

Aus $x \leq y$ folgern wir somit aufgrund der Verträglichkeit von \leq mit der Multiplikation auf \mathbb{R} , dass $1 = x \cdot x^{-1} \leq y \cdot x^{-1}$, und daraus schließlich, dass

$$y^{-1} = y^{-1} \cdot 1 \le y^{-1} \cdot (y \cdot x^{-1}) = (y^{-1} \cdot y) \cdot x^{-1} = 1 \cdot x^{-1} = x^{-1}.$$

(c) Zweimaliges Ausnutzen der Verträglichkeit von \leq mit der Multiplikation auf \mathbb{R} ergibt

$$x \cdot u < y \cdot u < y \cdot v$$

und damit die Behauptung.

Aufgabe 3: Berechnen Sie für $x \in \mathbb{R}$ die Lösungsmengen der folgenden Ungleichungen:

(a)
$$3|x-2| > 9$$

(b)
$$\frac{5}{5x-1} < \frac{3}{3x+1}$$

(c)
$$-3|x-4|+6 > -7+2x$$

(d)
$$|x^2 - 3x + 2| < |x + 2|$$

Lösung:

(a) Wir haben

$$3|x-2| > 9 \iff |x-2| > 3$$

$$\iff (x-2>3) \lor (x-2<-3)$$

$$\iff (x>5) \lor (x<-1)$$

$$\iff x \in \mathbb{R} \setminus [-1,5]$$

und somit die Lösungsmenge $\mathbb{L} = \mathbb{R} \setminus [-1, 5] = (-\infty, -1) \cup (5, \infty)$.

(b) Für $x \in \mathbb{R} \setminus \{-\frac{1}{3}, \frac{1}{5}\}$ rechnen wir nach, dass

$$\frac{3}{3x+1} - \frac{5}{5x-1} = \frac{3(5x-1) - 5(3x+1)}{(3x+1)(5x-1)} = -\frac{8}{(3x+1)(5x-1)}.$$

Die Ungleichung ist für $x \in \mathbb{R} \setminus \{-\frac{1}{3}, \frac{1}{5}\}$ also genau dann erfüllt, wenn (3x+1)(5x-1) < 0 gilt; dies wiederum ist genau dann der Fall, wenn

$$((3x+1<0) \land (5x-1>0)) \lor ((3x+1>0) \land (5x-1<0)),$$

d.h. wenn

$$\left(x < -\frac{1}{3} \land x > \frac{1}{5}\right) \lor \left(x > -\frac{1}{3} \land x < \frac{1}{5}\right),$$

d. h. wenn $x \in (-\frac{1}{3}, \frac{1}{5})$. Die Lösungsmenge der Ungleichung ist also $\mathbb{L} = (-\frac{1}{3}, \frac{1}{5})$.

(c) Wir betrachten zunächst den Fall $x \ge 4$, dann ist -3|x-4|+6 > -7+2x äquivalent zu der Ungleichung

$$-3(x-4) + 6 > -7 + 2x,$$

aus der wir durch Äquivalenzumformungen 5 > x erhalten. Für die Lösungsmenge \mathbb{L} der Ungleichung gilt somit $\mathbb{L} \cap [4, \infty) = [4, 5)$. Nun betrachten wir den Fall x < 4. Dann ist -3|x-4|+6>-7+2x äquivalent zu der Ungleichung

$$3(x-4)+6 > -7+2x$$

aus der wir durch Äquivalenzumformungen x > -1 erhalten. Für die Lösungsmenge \mathbb{L} der Ungleichung gilt somit $\mathbb{L} \cap (-\infty, 4) = (-1, 4)$. Zusammenfassend ergibt sich daher

$$\mathbb{L} = (\mathbb{L} \cap [4, \infty)) \cup (\mathbb{L} \cap (-\infty, 4)) = [4, 5) \cup (-1, 4) = (-1, 5).$$

(d) Es ist $x^2 - 3x + 2 = (x - 1)(x - 2)$, sodass die gegebene Ungleichung geschrieben werden kann als

$$|x-1||x-2| < |x+2|$$
.

Wir betrachten nun die Teilintervalle $(-\infty, -2]$, (-2, 1], (1, 2] und $(2, \infty)$. Ist $x \in (-\infty, 2]$, so ist die Ungleichung äquivalent zu

$$(x-1)(x-2) < -(x+2)$$
 \iff $x^2 - 2x + 4 < 0$
 \iff $(x-1)^2 + 3 < 0$,

was offensichtlich nicht erfüllbar ist, d. h. $\mathbb{L} \cap (-\infty, -2] = \emptyset$. Ist $x \in (-2, 1]$, so ist die Ungleichung äquivalent zu

$$(x-1)(x-2) < x+2 \iff x^2 - 4x < 0$$

$$\iff (x-2)^2 < 4$$

$$\iff -2 < x-2 < 2$$

$$\iff 0 < x < 4.$$

sodass $\mathbb{L} \cap (-2, 1] = (0, 1]$.

Ist $x \in (1,2]$, so ist die Ungleichung äquivalent zu

$$-(x-1)(x-2) < x+2 \iff -x^2 + 2x - 4 < 0$$

$$\iff x^2 - 2x + 4 > 0$$

$$\iff (x-1)^2 + 3 > 0,$$

was offensichtlich für alle $x \in (1, 2]$ gilt, d. h. $\mathbb{L} \cap (1, 2] = (1, 2]$. Ist schließlich $x \in (2, \infty)$, so sehen wir, dass die Ungleichung äquivalent ist zu

$$(x-1)(x-2) < x+2.$$

Wie im bereits diskutierten Fall $x \in (-2,1]$ sehen wir, dass

$$(x-1)(x-2) < x+2 \iff 0 < x < 4,$$

d. h. wir haben $\mathbb{L} \cap (2, \infty) = (2, 4)$.

Zusammenfassend ergibt sich deshalb, dass

$$\mathbb{L} = \emptyset \cup (0,1] \cup (1,2] \cup (2,4) = (0,4).$$