Alex Psomas: Lecture 14.

Events, Conditional Probability, Independence, Bayes' Rule

Alex Psomas: Lecture 14.

Events, Conditional Probability, Independence, Bayes' Rule

- Probability Basics Review
- 2. Conditional Probability
- 3. Independence of Events
- 4. Bayes' Rule

Setup:

Random Experiment.

Setup:

Random Experiment. Flip a fair coin twice.

- Random Experiment. Flip a fair coin twice.
- Probability Space.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.

```
\Omega = \{HH, HT, TH, TT\}
```

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.

```
\Omega = \{HH, HT, TH, TT\}
(Note: Not \Omega = \{H, T\} with two picks!)
```

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.
 Ω = {HH, HT, TH, TT}
 (Note: Not Ω = {H, T} with two picks!)
 - ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - Probability: Pr[ω] for all ω ∈ Ω. $Pr[HH] = \cdots = Pr[TT] = 1/4$ 1. 0 ≤ Pr[ω] ≤ 1.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω.
 Ω = {HH, HT, TH, TT}
 (Note: Not Ω = {H, T} with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.
- Event.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.
- Event. Set of the outcomes.

- Random Experiment. Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ► **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$.
 - 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.
- Event. Set of the outcomes.

Probability is Additive Theorem

Theorem

(a) If events A and B are disjoint,

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$,

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint,

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$,

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

$$Pr[A \cup B] =$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] =$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] +$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] + \sum_{\omega \in B} Pr[\omega]$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] + \sum_{\omega \in B} Pr[\omega] = Pr[A] + Pr[B]$$

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] + \sum_{\omega \in B} Pr[\omega] = Pr[A] + Pr[B]$$

Can I instead say that $|A \cup B| = |A| + |B|$?

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] + \sum_{\omega \in B} Pr[\omega] = Pr[A] + Pr[B]$$

Can I instead say that $|A \cup B| = |A| + |B|$?

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events $A_1, ..., A_n$ are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

$$Pr[A \cup B] = \sum_{\omega \in A \cup B} Pr[\omega] = \sum_{\omega \in A} Pr[\omega] + \sum_{\omega \in B} Pr[\omega] = Pr[A] + Pr[B]$$

Can I instead say that $|A \cup B| = |A| + |B|$? No! We don't know if the sample space is uniform.

Consequences of Additivity

Theorem

Consequences of Additivity

Theorem

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$
;

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$$
 (inclusion-exclusion property)

```
(a) Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];
(inclusion-exclusion property)
```

(b)
$$Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$$

```
(a) Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];

(inclusion-exclusion property)

(b) Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];

(union bound)
```

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ... A_N$ are a partition of Ω ,

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$,

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

Theorem

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$$

(inclusion-exclusion property)

(b)
$$Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$$
 (union bound)

(c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

Proof:

Theorem

- (a) $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B];$ (inclusion-exclusion property)
- (b) $Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$ (union bound)
- (c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

Proof:

(b) is obvious.

Theorem

(a)
$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$$

(inclusion-exclusion property)

(b)
$$Pr[A_1 \cup \cdots \cup A_n] \leq Pr[A_1] + \cdots + Pr[A_n];$$
 (union bound)

(c) If $A_1, ..., A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then

$$Pr[B] = Pr[B \cap A_1] + \cdots + Pr[B \cap A_N].$$
 (law of total probability)

Proof:

(b) is obvious.

See next two slides for (a) and (c).

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Can I instead say that $|A \cup B| = |A| + |B| - |A \cap B|$?

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Can I instead say that $|A \cup B| = |A| + |B| - |A \cap B|$?

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Can I instead say that $|A \cup B| = |A| + |B| - |A \cap B|$? No! We don't know if the sample space is uniform.

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Total probability

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \dots + Pr[A_N \cap B].$$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

 E_1 = 'Red die shows 6';

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6'

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6' $E_1 \cup E_2$ = 'At least one die shows 6'

$$E_1$$
 = 'Red die shows 6'; E_2 = 'Blue die shows 6'
 $E_1 \cup E_2$ = 'At least one die shows 6'
 $Pr[E_1] = \frac{6}{2}$.

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6' $E_1 \cup E_2$ = 'At least one die shows 6'

$$Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36},$$

 E_1 = 'Red die shows 6'; E_2 = 'Blue die shows 6' $E_1 \cup E_2$ = 'At least one die shows 6'

$$Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36}, Pr[E_1 \cup E_2] = \frac{11}{36}.$$

Two coin flips (fair coin).

Two coin flips (fair coin). First flip is heads.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\};$

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Event A =first flip is heads:

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \mbox{ Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}$.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \ \text{Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}.$

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \mbox{ Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: *A*;

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \mbox{ Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Event B = two heads.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \mbox{ Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.

The probability of B given A

Two coin flips (fair coin). First flip is heads. Probability of two heads?

 $\Omega = \{\textit{HH}, \textit{HT}, \textit{TH}, \textit{TT}\}; \mbox{ Uniform probability space}.$

Event A =first flip is heads: $A = \{HH, HT\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.

The probability of B given A is 1/2.

Two coin flips(fair coin).

Two coin flips(fair coin). At least one of the flips is heads.

Two coin flips(fair coin). At least one of the flips is heads.

→ Probability of two heads?

Two coin flips(fair coin). At least one of the flips is heads.

 $\rightarrow \text{Probability of two heads?}$

 $\Omega = \{HH, HT, TH, TT\};$

Two coin flips(fair coin). At least one of the flips is heads.

 $\rightarrow \text{Probability of two heads?}$

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Two coin flips(fair coin). At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A = at least one flip is heads.

Two coin flips(fair coin). At least one of the flips is heads.

 $\rightarrow \text{Probability of two heads?}$

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A = at least one flip is heads. $A = \{HH, HT, TH\}$.

Two coin flips(fair coin). At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

Two coin flips(fair coin). At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A;

Two coin flips(fair coin). At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Two coin flips(fair coin). At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Two coin flips(fair coin). At least one of the flips is heads.

→ Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Event B = two heads.

Two coin flips(fair coin). At least one of the flips is heads.

→ Probability of two heads?

$$\Omega = \{HH, HT, TH, TT\}$$
; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.

Two coin flips(fair coin). At least one of the flips is heads.

→ Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}.$

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads.

The probability of B given A

Two coin flips(fair coin). At least one of the flips is heads.

→ Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}$; uniform.

Event A =at least one flip is heads. $A = \{HH, HT, TH\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads. The probability of B given A is 1/3.

 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$

 $\Omega = \{ \text{Red, Green, Yellow, Blue} \}$

Pr[Red|Red or Green] =

$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\text{Red}|\text{Red or Green}] = \frac{3}{7} =$$

$$\Omega = \{ \text{Red, Green, Yellow, Blue} \}$$

$$Pr[\mathsf{Red}|\mathsf{Red} \ \mathsf{or} \ \mathsf{Green}] = \frac{3}{7} = \frac{Pr[\mathsf{Red} \cap (\mathsf{Red} \ \mathsf{or} \ \mathsf{Green})]}{Pr[\mathsf{Red} \ \mathsf{or} \ \mathsf{Green}]}$$

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$.

Pr[A|B] =

$$Pr[A|B] = \frac{p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$.

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$.

Let $A = \{2,3,4\}, B = \{1,2,3\}.$

Pr[A|B] =

$$Pr[A|B] = \frac{p_2 + p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}$$

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

In *A*!

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

In *A*! In *B*?

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

Definition: The **conditional probability** of *B* given *A* is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Toss a red and a blue die, sum is 4,

Toss a red and a blue die, sum is 4, What is probability that red is 1?

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{3}$$
; versus $Pr[B] = 1/6$.

B is more likely given A.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6};$$

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$$
; versus $Pr[B] = \frac{1}{6}$.

Toss a red and a blue die, sum is 7, what is probability that red is 1?

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$$
; versus $Pr[B] = \frac{1}{6}$.

Observing A does not change your mind about the likelihood of B.

Suppose I toss 3 balls into 3 bins.

Suppose I toss 3 balls into 3 bins.

A ="1st bin empty";

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty."

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

Pr[B]

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] =$$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] =$$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B]$

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] =$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$$

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$
 $Pr[A|B]$

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$
 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$\begin{aligned} & Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27} \\ & Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27} \\ & Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \end{aligned}$$

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty''; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$
 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8$; vs. $Pr[A] = \frac{8}{27}$.

Suppose I toss 3 balls into 3 bins.

A = ``1st bin empty"'; B = ``2nd bin empty.'' What is <math>Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

$$(3, 2, 3)$$

$$(1, 1, 2)$$

$$(3, 2, 2)$$

 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

$$\begin{split} & Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27} \\ & Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27} \\ & Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } Pr[A] = \frac{8}{27}. \end{split}$$

A is less likely given B:

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

$$Pr[B] = Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = Pr[\{1,3\}^3] = \frac{8}{27}$$

 $Pr[A \cap B] = Pr[(3,3,3)] = \frac{1}{27}$
 $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8$; vs. $Pr[A] = \frac{8}{27}$.

A is less likely given B: If second bin is empty the first is more likely to have balls in it.

Gambler's fallacy.

Flip a fair coin 51 times.

Gambler's fallacy.

Flip a fair coin 51 times. A = "first 50 flips are heads"

Flip a fair coin 51 times.

A = "first 50 flips are heads"

B = "the 51st is heads"

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51 st is heads"Pr[B|A]?

```
Flip a fair coin 51 times.

A = "first 50 flips are heads"

B = "the 51st is heads"

Pr[B|A]?

A = \{HH \cdots HT, HH \cdots HH\}
```

```
Flip a fair coin 51 times.

A = "first 50 flips are heads"

B = "the 51st is heads"

Pr[B|A]?

A = \{HH \cdots HT, HH \cdots HH\}

B \cap A = \{HH \cdots HH\}
```

```
Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A]? A = \{HH \cdots HT, HH \cdots HH\} B \cap A = \{HH \cdots HH\} Uniform probability space.
```

```
Flip a fair coin 51 times. A = \text{"first } 50 \text{ flips are heads"} B = \text{"the } 51 \text{st is heads"} Pr[B|A] ? A = \{HH \cdots HT, HH \cdots HH\} B \cap A = \{HH \cdots HH\} Uniform probability space. Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.
```

Same as Pr[B].

```
Flip a fair coin 51 times. A = \text{"first } 50 \text{ flips are heads"} B = \text{"the } 51 \text{st is heads"} Pr[B|A] ? A = \{HH \cdots HT, HH \cdots HH\} B \cap A = \{HH \cdots HH\} Uniform probability space. Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.
```

```
Flip a fair coin 51 times. A = \text{"first } 50 \text{ flips are heads"} B = \text{"the } 51 \text{st is heads"} Pr[B|A] ? A = \{HH \cdots HT, HH \cdots HH\} B \cap A = \{HH \cdots HH\} Uniform probability space.
```

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

Recall the definition:

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

= $Pr[A \cap B]Pr[C|A \cap B]$

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof:

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction. Assume the result is true for *n*.

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction. Assume the result is true for n. (It holds for n = 2.)

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for n = 2.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$

= $Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for n = 2.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$

$$= Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$$

$$= Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n],$$

Theorem Product Rule

Let A_1, A_2, \dots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for n = 2.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$

$$= Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$$

$$= Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n],$$

so that the result holds for n+1.

An example.

An example.

Random experiment: Pick a person at random.

An example.

Random experiment: Pick a person at random.

Event A: the person has lung cancer.

An example.

Random experiment: Pick a person at random.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

An example.

Random experiment: Pick a person at random.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

$$Pr[A|B] = 1.17 \times Pr[A].$$

An example.

Random experiment: Pick a person at random.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

Smoking increases the probability of lung cancer by 17%.

An example.

Random experiment: Pick a person at random.

Event A: the person has lung cancer. Event B: the person is a heavy smoker.

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

 $\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

Lung cancer increases the probability of smoking by 17%.

Correlation

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- ▶ Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking.

Correlation

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- ▶ Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

Tesla owners are more likely to be rich.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses.

Events A and B are positively correlated if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- ► Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Proving causality is generally difficult.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

➤ A and B may be positively correlated because they have a common cause.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

Some difficulties:

➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.)

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A.

Proving causality is generally difficult. One has to eliminate external causes of correlation and be able to test the cause/effect relationship (e.g., randomized clinical trials).

- ➤ A and B may be positively correlated because they have a common cause. (E.g., being a rabbit.)
- If B precedes A, then B is more likely to be the cause. (E.g., smoking.) However, they could have a common cause that induces B before A. (E.g., smart, CS70, Tesla.)

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Assume that Ω is the union of the disjoint sets A_1, \dots, A_N .

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$$

Definition: Two events A and B are **independent** if

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

When rolling two dice, A = sum is 7 and B = red die is 1 are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

When rolling two dice, A = sum is 7 and B = red die is 1 are independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events A and B are independent if and only if

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed:

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed:
$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$
, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A]$$

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair',

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] =

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6,$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] = 1/2$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know
$$P[B|A] = 1/2$$
, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$
Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] =$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know
$$P[B|A] = 1/2$$
, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$
Now,

$$Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B] = Pr[A]Pr[B|A] + Pr[\overline{A}]Pr[B|\overline{A}]$$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55.$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$$A =$$
 'coin is fair', $B =$ 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= $(1/2)(1/2) + (1/2)0.6 = 0.55$.

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is you coin loaded? A picture:

A picture:

fair coin A1/2

1/2

0.6 \bar{A} loaded coin

A picture:

fair coin A1/2

1/2

0.6 \bar{A} loaded coin

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that A and B occur and n := 100(1/2)(0.6) are such that \bar{A} and B occur.

A picture:

fair coin A 1/2 0.6 Aheads

loaded coin

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that A and B occur and n := 100(1/2)(0.6) are such that \bar{A} and B occur.

Thus, among the m+n situations where B occurred, there are m where A occurred.

A picture:

fair coin A1/2

1/2

0.6 \overline{A} loaded coin

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that A and B occur and n := 100(1/2)(0.6) are such that \bar{A} and B occur.

Thus, among the m+n situations where B occurred, there are m where A occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

$$Pr[Flu|High Fever] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1}$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

Using Bayes' rule, we find

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$\textit{Pr}[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

Using Bayes' rule, we find

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

These are the posterior probabilities.

Using Bayes' rule, we find

$$Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58$$

$$Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}$$

$$\textit{Pr}[\textit{Other}|\textit{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Portrait used of Bayes in a 1936 book, [1] but it is doubtful whether the portrait is actually of him. [2] No earlier portrait or claimed portrait survives.

Born c. 1701

Died

London, England 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England

Residence Tunbridge Wells, Kent, England

Nationality English

Known for Bayes' theorem

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Let's watch TV!!

Let's watch TV!!

Random Experiment: Pick a random male.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ► $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ▶ $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ightharpoonup Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ► $Pr[B|\overline{A}] = 0.10$ (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Using Bayes' rule, we find

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10}$$

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. !!!!

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. !!!!

Events, Conditional Probability, Independence, Bayes' Rule

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- ▶ Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$.

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

- ▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.
- Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

$$Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability$$
.

All these are possible:

$$Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].$$