Accurate and Personalized Academic Advising "M1 MLDM Internship defense presentation"

Mohammad Poul Doust

Supervisors: Luis Galárraga, Gonzalo Gabriel Méndez

IRISA, INRIA, Universite Rennes 1, 35042 Rennes, France

July 1st, 2019

Overview

- 1 Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- 5 Future Work
- 6 Conclusion

Outline

- 1 Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- Future Work
- 6 Conclusion

Introduction:

- Electrical and Computer Engineering College of ESPOL University in Guayaquil Ecuador.
- Academic history for students from 1978 to 2012.

Goal: Use this data to build a proactive and interpretable Academic Advising System.

Introduction: Dataset

- A total of 8924 records of students grades from different departments.
- Grades are real values in the range [0 10].
- 6 is the passing grade.
- Part of the the data was scrapped (Course's Credit)

Introduction - Academic Advising

- There are selective and mandatory courses
- Some courses are difficult for some student, while easy for others.
- Students usually do not have idea about the nature of future courses
- Simulating student performance for future semesters will help to take proactive actions:
 - Adjust semester load
 - Pay attention to specific courses

Outline

- Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- Future Work
- 6 Conclusion

Related Work - Educational Data Mining

- Educational Data Mining (EDM) is an emerging research field.
- Use Data Mining, Machine Learning and Statistics in educational settings.

• Applications:

- Academic Advising
- Curriculum Design
- Identify academic problems
- Dropout paths identification
- etc...

Related Work

Various studies have been done in the area of Educational Data Mining:

- Mendez et al. [8]: Performs Data driven analysis to find Course Difficulty Estimators and Dropout paths (2014)
- Burman et al. [2]: Psychological features to predict student's performance using SVM (2019)
- Nupur et al. [5]: Predicting GPA using academic history using SVM, Decision Trees (2019)
- Chan et al. [4]: Predicting GPA using Collaborative Filtering (2016)

Our work focuses on predicting grade using academic history along with hand-crafted features

Outline

- Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- Future Work
- 6 Conclusion

Approach - Overview

Approach: Data Pre-Processing

- Data Anonymization
- Data Integration
- Data Cleansing ("Garbage in, Garbage out")
 - Data Consistency
 - Data Integrity
 - Missing Values & Duplication Removal
- Data Transformation (Aggregating).

Approach: Data Pre-Processing - Integration & Cleansing

• Data Integration

StudentID	HighschoolType	GradDate	CourseID	Semester	GRADE
1	Particular	14/12/2006	FIEC04341	l 1S	8,30
1	Particular	14/12/2006	FIEC04358	l 1S	7
41	Fiscal	14/08/2003	FIEC04341	1T	9
41	Fiscal	14/08/2003	ICF00471	l 1S	8,60
120	Nacional	Not Graduate	ICF00471	2T	8,10

• Data Cleansing

StudentID	HighschoolType	$\operatorname{GradDate}$	CourseID	Semester	GRADE
1	Particular	14/12/2006	FIEC04341	1S	8.30
1	Particular	14/12/2006	FIEC04358	1S	7
41	Fiscal	14/08/2003	FIEC04341	1S	9
41	Fiscal	14/08/2003	ICF00471	1S	8.60
120	Fiscal	NA	ICF00471	2S	8.10

Approach: Data Pre-Processing - Data Transformation

• Data Transformation

StudentID	HighschoolType	GradDate	FIEC04341	FIEC04358	ICF00471
1	Particular	14/12/2006	8.30	7	NA
41	Fiscal	14/08/2003	9	NA	8.60
120	Fiscal	NA	NA	NA	8.10

Table 1: Data Transformation Sample

Approach: Features Engineering

Features Engineering involves employing domain knowledge from human expertise to extract meaningful indicators from the raw data [7]:

- Is one of the most fundamental phases
- Affects all the following steps

In this study, several features have been used:

- Repeating Frequency
- 2 Last achieved mark in a course (accounting for non repeaters)
- Semester Load
- Ourse Difficulty Estimators [3]

Approach: Features Engineering - Difficulty Estimators

• Course Difficulty Estimators:

$$\alpha_j = \frac{\sum_i GPA_i^2}{\sum_i (r_{ij} * GPA_i)}$$

$$\beta_j = \frac{\sum_i \left(GPA_i - r_{ij} \right)}{N_s^j}$$

Where:

- GPA_i is the total GPA for student i
- r_{ij} is student's i grade on course j
- N_s^j is the overall number of students enrolled in course j

Approach: Problem and Machine Learning

The main problem is to predict a student grade given previous academic history

- Input: Feature vector illustrates student's previous academic history
- Output: Numerical value represents a prediction for student's grade in future course.

For **Regression** problem:

- Regularized Linear Regression (L2 Norm) has been used for Interpretability and Simplicity.
- Features selection using M5' Algorithm
- Parameter Tuning

Approach: Linear Regression

• Linear Regression:

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2} + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right]$$

$$y^{(i)} = \text{ the real value to predict for instance i}$$

$$h_{\theta}(x^{(i)}) = \text{ the predicted value for instance i}$$

$$\theta_{j} = \text{ the weight for feature j}$$

$$\lambda = \text{ ridge parameter}$$

$$m = \text{ size of dataset}$$

$$n = \text{ size of features set}$$

$$(1)$$

• Example:

$$\begin{array}{l} {\rm Statistics} = (0.09 * {\rm CalculusI}) + (0.2 * {\rm LinearAlgebra}) \\ + (0.15 * {\rm CalculusII}) \text{-} (0.15 * {\rm CountCalclusII}) + (0.07 * \\ {\rm PrevCalculusI}) \text{-} (0.15 * {\rm CountLinearAlgebra}) + (0.07 * {\rm PrevStatistics}) + (0.4 * {\rm IS_REPEATER}) \text{-} (0.01 * \\ {\rm LOAD}) \text{-} (0.07 * {\rm Beta}) \text{-} 4.2 \\ \end{array}$$

Approach: Challenges

Is it better to build one compact unified model, or to have different models for each important course?

- We have around 2097 different courses in the data
- 4800 different students
- Many courses have low enrolment rate

Building one model (data matrix 4800 x 2097) would be challenging!.

- Large # Features (Curse of Dimensionality)
- 2 Average courses Load is 5 (Sparsity)
- Sparsity might cause Bias.
- Redundant features (2097 grades to predict one grade!)
- Heterogeneous Data (Different departments, students)
- Need Complex model (not interpretable)

Approach: Case Studies

We split the data into different self-contained case studies.

- Different in size
- Different in nature
- Each one will be evaluated separately

Based on the results, we will explore the possibility of building Unified model.

Approach: Case Studies

Case Study	Courses	Dataset Size
A - Algorithms Analysis	Programming Fundamentals, Data Structure and Discrete Mathematics	87
B - Statistics I	Multivariable Calculus, Linear Algebra, Differential Calculus and Integral Calculus	654
C - Statistics II (Non-Repeaters ¹)	Calculus I, Calculus II and Linear Algebra	938
D - Statistics II (Repeaters ²)	Calculus I, Calculus II and Linear Algebra	566
E - Statistics II (All)	Calculus I, Calculus II and Linear Algebra	1503
F - Analysis of Electrical Networks	Calculus I, Calculus II, Calculus III, Linear Algebra, Physics I and Physics II	974

¹Students who never took target course before

²Students who took the course before

Outline

- Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- Future Work
- 6 Conclusion

Results

Results

• Using 10-fold Cross Validation for evaluating

Case Study	MAE RMSE
A - Algorithms Analysis	0.6653 0.7912
B - Statistics I	0.6268 0.831
C - Statistics II (Non-Repeaters)	0.5657 0.8082
D - Statistics II (Repeaters)	0.5464 0.7402
E - Statistics II (All)	0.5453 0.7795
F - Analysis of Electrical Networks	0.7275 0.9238

Outline

- Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- 5 Future Work
- 6 Conclusion

Future Works

- New Features:
 - Fine-Grained: Difficulty by Professor, Years and Department
 - Other Difficulty Indicators: Skewness
- Unified Model: Dimensionality Reduction to represent courses in term of latent features.
- Student's general performance as features by clustering courses (Mathematics, Humanity,.) or department. (Domain Knowledge)

Future Work - Dimensionality Reduction [8]

Outline

- Introduction
- 2 Related Work
- 3 Approach
- 4 Results and Evaluation
- 5 Future Work
- 6 Conclusion

Conclusion

- We were able to predict student grade with low error rate in all experiments (encouraging enough to be deployed).
- The method is robust (low deviation in all results between different case studies)
- Provides interpretable information.
- Features:
 - Non-academic features had low impact on the performance
 - Academic history is efficient indicators for the performance
 - Introduced features reduced RMSE by 23%, and MAE by 16%

Questions?

Approach - Features Selection (M5' Algorithm)

- M5' is tree-based features selection algorithm [1]
- Removes the attribute with the least impurity factor (Standard Deviation Reduction) and evaluates the model each time.
- Quality increased then the attribute is removed.
- This process is repeated until all remaining attributes are important for model quality

Evaluation - 10-fold Cross Validation

- The evaluations is done using repeated 10-fold cross validation method [6].
- Dataset is divided into 10 equal-sized groups.
- Each time, one group is considered as a testing set while the remaining are used for training a model.
- This process is repeated 10 times and a separate model is trained and evaluated each time.
- The final evaluation would be the average of evaluation for the 10 models.

Future Work - Skewness [8]

• Evaluate Skewness for a course a difficulty measure (The more Negative, The more difficult)

- Francisco Azuaje. "Witten IH, Frank E: Data Mining: Practical Machine Learning Tools and Techniques 2nd edition". In: BioMedical Engineering OnLine 5.1 (Sept. 2006), p. 51. ISSN: 1475-925X. DOI: 10.1186/1475-925X-5-51. URL: https://doi.org/10.1186/1475-925X-5-51.
- Iti Burman and Subhranil Som. "Predicting Students Academic Performance Using Support Vector Machine". In: 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE. 2019, pp. 756–759.
- Jonathan P Caulkins, Patrick D Larkey and Jifa Wei. "Adjusting GPA to reflect course difficulty". In: (1996).
 - Pei-Chann Chang, Cheng-Hui Lin and Meng-Hui Chen. "A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems". In: *Algorithms* 9.3 (2016), p. 47.

- Nupur Chauhan et al. "Prediction of Student's Performance Using Machine Learning". In: Available at SSRN 3370802 (2019).
- Jerome Friedman, Trevor Hastie and Robert Tibshirani. *The elements of statistical learning*. Vol. 1. 10. Springer series in statistics New York, 2001.
- Isabelle Guyon et al. Feature extraction: foundations and applications. Vol. 207. Springer, 2008.
 - Gonzalo Mendez et al. "Curricular design analysis: a data-driven perspective". In: *Journal of Learning Analytics* 1.3 (2014), pp. 84–119.