Lab Course Machine Learning Exercise Sheet 5

Report

Data Cleaning and Pre-Processing:

A snapshot of head.

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5

To further clean and standardize the data following steps were performed:

- 1- Dropping rows with NA values using built in "dropna" function.
- 2- Checking the presence of any categorical variable using "colUnique" function.
- 3- Replacing categorical variables to numeric using "dummy" function which converts any non-numeric value to numeric one.
- 4- Normalizing all the columns using "normalize" function.
- 5- Shuffling the data with respect to rows with "shuffleit" function.
- 6- Separating the data into training and test data which are 80% and 20% of total data respectively.

Exercise 1: Regularization

Following hyperparameters were used:

```
Step size (\alpha) = \left[9\times10^{-4}, 9\times10^{-5}, 9\times10^{-6}\right]
Regularization Constant (\lambda) = \left[0.1, 0.475, 0.85\right]
Batch size = 50
```

Mini-BGD function

```
def mbgd(x,y,beta,alpha,imax,epsilon,batches,lamb,xtest,ytest):
   r,c=x.shape
   betaold=beta
   betanew=np.zeros(c)
   rmsetest=np.zeros(imax)
   rmsetrain=np.zeros(imax)
# Epoch Loop
   for itr in range(imax):
# batch loop
       for re in range(int(r/batches)):
            betanew=beta-alpha*derivative(x.iloc[re*batches:(re+1)*batches]
                                           ,y.iloc[re*batches:(re+1)*batches],beta,lamb)
            beta=betanew
# Convergance condition
            if (abs(lossfunc(x,y,betanew)-lossfunc(x,y,betaold)))<epsilon:</pre>
                    rmsetrain[itr]=rmse(x,y,betanew)
                    rmsetest[itr]=rmse(xtest,ytest,betanew)
                    return betanew, rmsetrain, rmsetest, itr
        rmsetrain[itr]=rmse(x,y,betanew)
        rmsetest[itr]=rmse(xtest,ytest,betanew)
        betaold=betanew
    return betanew,rmsetrain,rmsetest,itr
```

Functions associated to this function are:

- "derivative"
- "rmse"
- "lossfunc"

Fixed step size was used for all minimizations to reduce the computing load and time.

Step size (
$$\alpha$$
) = $[9 \times 10^{-4}, 9 \times 10^{-5}, 9 \times 10^{-6}]$

Regularization Constant (
$$\lambda$$
) = [0.1, 0.475, 0.85]

Using regularization constant and step size following 9 combinations were used:

combination 1: $\begin{bmatrix} 0.1 & 9 \times 10^{-4} \end{bmatrix}$

combination 2: $[0.475, 9 \times 10^{-4}]$

combination 3: $[0.85, 9 \times 10^{-4}]$

combination 4: $[0.1, 9 \times 10^{-5}]$

combination 5: $[0.475, 9 \times 10^{-5}]$

combination 6: $[0.85, 9 \times 10^{-5}]$

combination 7: $[0.1, 9 \times 10^{-6}]$

combination 8: $[0.475, 9 \times 10^{-6}]$

combination 9: $[0.85, 9 \times 10^{-6}]$

Plot of Test data RMSE and Train data RMSE achieved on each step follow:

Note: Since most of the plots had different variance hence it was not visually pleasing to draw these two against same y-axis.

Combination 1:

Combination 2:

Combination 3:

Combination 4:

Combination 5:

Combination 6:

Combination 7:

Combination 8:

Combination 9:

Exercise 2: Hyper Parameter Tuning and Cross-Validation

Continuing with the previous exercise, k-fold cross-validation for model selection was performed. All the hyperparameter were same as pervious exercise plus a new variable K was introduced. Its value was 5.

```
error=np.zeros(k*len(lamb)*len(stepsize))
counter=0
#loop to vary the value of regularization constant
for lam in range(len(lamb)):
#loop to vary the value of stepsize
   for alp in range(len(stepsize)):
#loop to perform k-fold operation
       for x in range(k):
#separating training and validation data
           ktrain,kvalid=separate(train,k,x+1)
#further separating x and y from training and validation data
           kxtrain,kytrain=sepxy(ktrain,ytopre)
           kxvalid,kyvalid=sepxy(kvalid,ytopre)
#mini-Bactch Gradient descent
           r,c=kxtrain.shape
           beta=np.zeros(c)
           betaPre=mbgd(kxtrain,kytrain,beta,stepsize[alp],imax,epsilon,batchsize,lamb[lam])
#RMSE collection. Tested on validatoin data.
           error[counter]=rmse(kxvalid,kyvalid,betaPre)
           counter=counter+1
```

3d line plot and scatter plot of each combination against respective RMSE value when tested on validation data follows:

After availing RMSE tested on validation data of each combination of hyper parameters following were found to perform the best:

```
Best RMSE tested on validation data = 0.662684250555
best combination of hyper parameter: Lambda = 8.5 Step Size = 0.09
```

After using these hyperparameter to train the training data we get following RMSE of training and test data.

And according to this model our minimum RMSE are following:

```
Best Training data RMSE = 0.805835426055
Best Test data RMSE = 0.808468492828
```

If we compare these two graphs with all the 9 plots of the previous exercise it becomes obvious that these parameters are one of the few combinations which provides minimum values.