Two-Photon Double Ionization of H₂

X. Guan and K. Bartschat (Drake U.), L. Koesterke (TACC), B.I. Schneider (NSF)

Goal: Resolve large discrepancies in previous calculations of this fundamental process.

Steps taken: 1) Optimized existing FEDVR code for Stampede

2) Sampled parameter space (photon energy, pulse duration) with about

100 runs (3000 cores and 10-20 hours of wallclock time each)

Findings: Discrepancies are due to surprisingly strong dependence of theoretical predictions on laser parameters and (previously unresolved) effect of autoionizing states.

Broad Impact: These calculations support/explain very expensive FEL experiments.

Sample Results for Electron Probability Distribution

Photoelectron Momentum Distribution for Ar Ionization in Strong Electromagnetic Field

H⁺₂ Ionization in strong, ultrafast electromagnetic field

2-Photon Double Ionization in He: Approching the Sequential Threshold