Open system Interconnection (OSI)

Networking: Routing

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

November 1, 2020

Routing Algorithms

- Routing algorithms are meant for determining the routing of packets in a node.
- Routing algorithms are classified as-

Distance Vector Routing Algorithm

- Distance Vector Routing is a dynamic routing algorithm.
 - It works in the following steps-

Step-01:

- Each router prepares its routing table.
- By their local knowledge.
- Each router knows about-
- All the routers present in the network
- Distance to its neighboring routers Step-02:
- Each router exchanges its distance vector with its neighboring routers.
- Each router prepares a new routing table using the distance vectors it has obtained from its neighbors.
- This step is repeated for (n-2) times if there are n routers in the network.
- After this, routing tables converge / become stable.

Distance Vector Routing Example

- Consider a network where
 - There is a network consisting of 4 routers.
 - The weights are mentioned on the edges.
 - Weights could be distances or costs or delays.
 Step-01:
 - Each router prepares its routing table using its local knowledge.
 - Routing table prepared by each router is shown below-
 - At Router A

Destination	Distance	Next Hop
А	0	А
В	2	В
С	00	-
D	1	D

• At Router B-

At Router C-

Destination	Distance	Next Hop
А	2	А
В	0	В
С	3	С
D	7	D

Destination	Distance	Next Hop
А	00	_
В	3	В
С	0	С
D	11	D

At Router D-

Destination	Distance	Next Hop
А	1	А
В	7	В
С	11	С
D	0	D

• Step-02:

- Each router exchanges its distance vector obtained in Step-01 with its neighbors.
- After exchanging the distance vectors, each router prepares a new routing table.

At Router A

- Router A receives distance vectors from its neighbors B and D.
- Router A prepares a new routing table as-

From B	From D
2	1
0	7
3	11
7	0

estination	Distance	Next hop
Α	0	Α
В		
С		
D		

 $Cost(A \rightarrow B) = 2$ $Cost(A \rightarrow D) = 1$

New Routing Table at Router A

- Cost of reaching destination B from router $A=\min\ 2+0$, 1+7=2 via B.
- Cost of reaching destination C from router $A = min \ 2+3$, 1+11 = 5 via B.
- Cost of reaching destination D from router $A=\min\ 2+7$, 1+0 via D.

Explanation For Destination B

- Router A can reach the destination router B via its neighbor B or neighbor D.
- It chooses the path which gives the minimum cost.
 - Cost of reaching router B from router A via neighbor B = Cost (AB) + Cost (BB)= 2+0=2
 - Cost of reaching router B from router A via neighbor D = Cost (AD) + Cost (DB) = 1 + 7 = 8
 - Since the cost is minimum via neighbor B, so router A chooses the path via B.
 - It creates an entry (2, B) for destination B in its new routing table.
 - Similarly, we calculate the shortest path distance to each destination router at every router.
- Thus, the new routing table at router A is-

Destination	Distance	Next Hop
А	0	А
В	2	В
С	5	В
D	1	D

At Router B

- Router B receives distance vectors from its neighbors A, C and D.
- Router B prepares a new routing table as-
 - Oost of reaching destination A from router B = min $\ 2{+}0$, $3{+}\infty$, $7{+}1 = 2$ via A.
 - Oost of reaching destination C from router B = min $\ 2+$, 3+0 , 7+11 = 3 via C.
 - Cost of reaching destination D from router B = min $\ 2+1$, $\ 3+11$, $\ 7+0 = 3$ via A.
- Thus, the new routing table at router B is-

From A	From C	From D
0	∞	1
2	3	7
∞	0	11
1	11	0

Destination	Distance	Next hop
Α		
В	0	В
С		
D		

Destination	Distance	Next Hop
А	2	А
В	0	В
С	3	С
D	3	A

New Routing Table at Router

At Router C

- Router C receives distance vectors from its neighbors B and D.
- Router C prepares a new routing table as-
 - Cost of reaching destination A from router C = min 3+2 , 11+1 = 5 via B.
 - \bullet Cost of reaching destination B from router C = min $\ 3+0$, $11+7\ =3$ via B.
 - Osst of reaching destination D from router C = min $\,3+7$, $\,11+0\,=\,10$ via B.
- Thus, the new routing table at router C is-

From B	From D
2	1
0	7
3	11
7	0
ot (C . B) = 2	Coot (C . D) =

Destination	Distance	Next hop
Α		
В		
С	0	С
D		

Destination	Distance	Next Hop
А	5	В
В	3	В
С	0	С
D	10	В

New Routing Table at Router C

At Router D

- Router D receives distance vectors from its neighbors A, B and C.
- Router D prepares a new routing table as-
 - Cost of reaching destination A from router $D=\min \ 1+0$, 7+2 , 11+ = 1 via A
 - Cost of reaching destination B from router D = min $\ 1+2$, 7+0 , 11+3=3 via A.
 - Ocst of reaching destination C from router D = min $\ 1+\infty$, 7+3 , $\ 11+0 = 10$ via B.
- Thus, the new routing table at router D is-

From A	From B	From C
0	2	∞
2	0	3
-00	3	0
1	7	11
	04/0 01-7	0

Destination	Distance	Next hop
Α		
В		
С		
D	0	D

Destination	Distance	Next Hop
А	1	А
В	3	А
С	10	В
D	0	D

Step-03:

- Each router exchanges its distance vector obtained in Step-02 with its neighboring routers.
- After exchanging the distance vectors, each router prepares a new routing table.

At Router A-

- Router A receives distance vectors from its neighbors B and D.
- Router A prepares a new routing table as-
 - Cost of reaching destination B from router A = min 2+0 , 1+3=2 via B.
 - Cost of reaching destination C from router A = min $\ 2+3$, 1+10 = 5 via B.
 - \bullet Cost of reaching destination D from router A = min $\ 2+3$, $1+0 \ = 1$ via D.

From B	From D
2	1
0	3
3	10
3	0
st(A→B) = 2	Cost(A→D) =

Destination	Distance	Next hop
Α	0	Α
В		
С		
D		

Destination	Distance	Next Hop	
А	0	А	
В	2	В	
С	5	В	=
D	1	D	ÿ

New Routing Table at Router A

At Router B

- Router B receives distance vectors from its neighbors A, C and D.
- Router B prepares a new routing table as-
 - Cost of reaching destination A from router $B = min \ 2+0$, 3+5 , 3+1 = 2 via A.
 - Cost of reaching destination C from router B = min $\ 2+5$, 3+0 , 3+10 = 3 via C.
 - Oost of reaching destination D from router B = min $\ 2+1$, $\ 3+10$, $\ 3+0 = 3$ via A.
- Thus, the new routing table at router B is-

From A	From C	From D
0	5	1
2	3	3
5	0	10
1	10	0
ost (B→A) = 2	Cost (B→C) = 3	Cost (B→D) = 3

Destination	Distance	Next hop
Α		
В	0	В
С		
D		

	Destination	Distance	Next Hop
р	A	2	А
\dashv	В	0	В
\Box	С	3	С
	D	3	А

New Routing Table at Router B

Co

At Router C

- Router C receives distance vectors from its neighbors B and D.
- Router C prepares a new routing table as-
 - Oost of reaching destination A from router C = min $\ 3+2$, 10+1 = 5 via B.
 - \bullet Cost of reaching destination B from router C = min $\,3{+}0$, $10{+}3\,\,=3\,$ via B.
 - \bullet Cost of reaching destination D from router C = min $\ 3+3$, $10+0 \ = 6$ via B.
- Thus, the new routing table at router C is-

From B	From D
2	1
0	3
3	10
3	0
et (C . P) = 3	Cost (C , D) =

Destination	Distance	Next hop
Α		
В		
С	0	С
D		

Destination	Distance	Next Hop
А	5	В
В	3	В
С	0	С
D	6	В

New Routing Table at Router C

At Router D

- Router D receives distance vectors from its neighbors A, B and C.
- Router D prepares a new routing table as-
 - Cost of reaching destination A from router D = min $\ 1+0$, 3+2 , 10+5 = 1 via A.
 - Cost of reaching destination B from router D = min $\ 1+2$, 3+0 , 10+3=3 via A.
 - Oost of reaching destination C from router D = min $\ 1+5$, 3+3 , 10+0 = 6 via A
- Thus, the new routing table at router D is-

From A	From B	From C
0 2 5 1 Cost (D→A) = 1	2 0 3 3 3 Cost (D→B) = 3	5 3 0 10 Cost (D-C) = 1

Destination	Distance	Next hop
Α		
В		
С		
D	0	D

Destination	Distance	Next Hop
А	1	А
В	3	А
С	6	А
D	0	D

• These will be the final routing tables at each router.

Identifying Unused Links

- After routing tables converge (becomes stable),
 - Some of the links connecting the routers may never be used.
 - In the above example, we can identify the unused links as-
 - The value of next hop in the final routing table of router A suggests that only edges AB and AD are used.
 - The value of next hop in the final routing table of router B suggests that only edges BA and BC are used.
 - The value of next hop in the final routing table of router C suggests that only edge CB is used.
 - The value of next hop in the final routing table of router D suggests that only edge DA is used.
 - Thus, edges BD and CD are never used

November 1, 2020

Point to Note

- Note-01: In distance vector routing
 - Only distance vectors are exchanged.
 - Next hopvalues are not exchanged.
 - This is because it results in exchanging the large amount of data which consumes more bandwidth.
- Note-02:While preparing a new routing table-
 - A router takes into consideration only the distance vectors it has obtained from its neighboring routers.
 - It does not take into consideration its old routing table.
- Note-03: The algorithm is called so because-
 - It involves exchanging of distance vectors between the routers.
 - Distance vector is nothing but an array of distances.
- Note-04:
 - The algorithm keeps on repeating periodically and never stops. This is to update the shortest path in case any link goes down or topology changes.

Point to Note Cont...

Note-05:

- Routing tables are prepared total (n-1) times if there are n routers in the given network.
- This is because shortest path between any 2 nodes contains at most n-1 edges if there are n nodes in the graph.
- Note-06:
 - Distance Vector Routing suffers from count to infinity problem.
 - Distance Vector Routing uses UDP at transport layer.

November 1, 2020

Thank You

