Sayısal Sistemler-H10CD2

Durum Tabloları, Durum Diyagramları, Durum Denklemleri

Dr. Meriç Çetin

versiyon091224

Bu derste öğreneceklerimiz

5 Synchronous Sequential Logic

5.1	Introduction	190
5.2	Sequential Circuits	190
5.3	Storage Elements: Latches	193
5.4	Storage Elements: Flip-Flops	196
5.5	Analysis of Clocked Sequential Circuits	204
5.6	Synthesizable HDL Models of Sequential Circuits	217
5.7	State Reduction and Assignment	231
5.8	Design Procedure	236

Flip-Flop Devrelerinde

- Ardışık lojik devre analizi yapmak için
 - Durum geçiş tablosu,
 - Durum diyagramı,
 - Durum denklemi
- gibi gösterim ve ifadeler kullanılmaktadır.
- Lojik devre tasarımı sırasında, flip flop durumlarında gerekli değişmeyi sağlayacak giriş değişkenlerini belirlemek önemlidir.
- Bunun için doğruluk tablolarından faydalanılır.

Flip-flop doğruluk tabloları

GİRİ	ŞLER	ÇIKIŞ		
S R		$Q_{(t+1)}$		
0	0	$Q_{(t)}$		
0	1	0		
1	0	1		
1	1	Kullanılmaz		

GİRİŞ	ÇIKIŞ
D	$Q_{(t+1)}$
0	0
1	1

GİRİ	ŞLER	ÇIKIŞ		
J K		$Q_{(t+1)}$		
0	0	$Q_{(t)}$		
0	1	0		
1	0	1		
1	1	$\overline{oldsymbol{Q}_{(t)}}$		

GiRiŞ	ÇIKIŞ
Т	$Q_{(t+1)}$
0	$Q_{(t)}$
1	$\overline{oldsymbol{Q}_{(t)}}$

Flip-flop durum geçiş tabloları

DURUM G	EÇİŞLERİ	GİRİŞLER			
$Q_{(t)}$	$Q_{(t+1)}$	S	R		
0	0	0	Х		
0	1	1	0		
1	0	0	1		
1	1	Х	0		

S=0, R=0 veya S=0, R=1

S=0, R=0 veya S=1, R=0

RS FF Durum Geçiş Tablosu

DURUM G	GİRİŞ	
$Q_{(t)}$	$Q_{(t+1)}$	D
0	0	0
0	1	1
1	0	0
1	1	1

D FF Durum Geçiş Tablosu

DURUM G	EÇİŞLERİ	GiRi	GİRİŞLER		
$Q_{(t)} = Q_{(t+1)}$		J	к		
0	0	0	Х		
0	1	1	Х		
1	0	Х	1		
1	1	Х	0		

S=0, R=0 veya S=0, R=1 S=1, R=0 veya S=1, R=1 S=0, R=1 veya S=1, R=1 S=0, R=0 veya S=1, R=0

JK FF Durum Geçiş Tablosu

DURUM G	GİRİŞ	
$Q_{(t)}$	Т	
0	0	0
0	1	1
1	0	1
1	1	0

T FF Durum Geçiş Tablosu

Flip-Flop Devrelerinde

- Ardışık lojik devre analizi yapmak için
 - Durum geçiş tablosu,
 - Durum diyagramı,
 - Durum denklemi
- gibi gösterim ve ifadeler kullanılmaktadır.
- Lojik devre tasarımı sırasında, flip flop durumlarında gerekli değişmeyi sağlayacak giriş değişkenlerini belirlemek önemlidir.
- Bunun için doğruluk tablolarından faydalanılır.

Durum Diyagramları

- Durum geçiş tablosunda gösterilen ifadeler durum diyagramlarında da grafiksel olarak gösterilebilirler.
- Bu diyagramlarda daire içinde gösterilen değerler önceki durumları/durum değiştirmeleri veya durum geçişlerini gösterirler.
- Direk çizgi (/) ile birbirine bağlanan dairelerde ikili (binary) sayılar « / » ile ayrılmıştır.
 - Bunlardan 1. ifade giriş değerini, 2. ifade ise çıkış değerini temsil eder.
 - Örneğin «1/0» ise giriş x=1, çıkış y=0 anlamındadır.

Durum Diyagramları

- Gösterim şekli hariç durum tablosu ile durum diyagramları arasında bir fark yoktur.
- Durum tabloları basitçe verilen lojik devreden çıkarılabilir.
- Bunun yanında durum diyagramlarındaki değişmeler de durum tablolarından direkt olarak elde edilebilir.
- Durum diyagramları ardışık lojik devre tasarımının ilk adımını oluşturur.

Durum diyagramlarına örnek

Durum tablosundan durum diyagramına geçiş

FIGURE 5.15 Example of sequential circuit

Table 5.3Second Form of the State Table

Present		Next State				Output		
	ate	x =	0	<i>x</i> :	= 1	x = 0	x = 1	
Α	В	A	В	Α	В	у	у	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

Durum tablosundan durum diyagramına geçiş

FIGURE 5.15 Example of sequential circuit

Table 5.3 Second Form of the State Table

Present		N	ext	Stat	e	Output		
	ate	x =	0	ж =	= 1	x = 0	<i>x</i> = 1	
Α	В	A	В	Α	В	у	y	
0	0	0	0	0	1	0	0	
0	1	0	0	1	1	1	0	
1	0	0	0	1	0	1	0	
1	1	0	0	1	0	1	0	

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

Durum diyagramından durum tablosuna geçiş

FIGURE 5.15
Example of sequential circuit

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

Durum tablosundan durum diyagramına geçiş

FIGURE 5.15
Example of sequential circuit

Table 5.3 Second Form of the State Table

Present		N	Next State				Output		
	ate	x =	0	х :	= 1	x = 0	x = 1		
A	В	A	В	Α	В	у	у		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

FIGURE 5.16
State diagram of the circuit of Fig. 5.15

Flip-Flop Devrelerinde

- Ardışık lojik devre analizi yapmak için
 - Durum geçiş tablosu,
 - Durum diyagramı,
 - Durum denklemi
- gibi gösterim ve ifadeler kullanılmaktadır.
- Lojik devre tasarımı sırasında, flip flop durumlarında gerekli değişmeyi sağlayacak giriş değişkenlerini belirlemek önemlidir.
- Bunun için doğruluk tablolarından faydalanılır.

Durum Denklemleri

- Durum denklemleri flip-flop'ların durum değiştirmeleri için gerekli şartları belirleyen cebrik ifadelerdir.
- Denklemlerin sol tarafı flip-flop'ların **sonraki durumlarını** (clock pulse sonrası değerlerini) temsil eder.
- Denklemlerin sağ tarafı ise Boolean fonksiyonudur.
- Durum denklemleri direkt durum tablolarından elde edilir.
- Durum tablolarında ilgili flip-flop'ların sonraki durumlarına ilişkin sütunlardan ve çıkış ifadelerinde değeri «1» olan değişkenlere göre Karnaugh haritaları ile sadeleştirmeler yapılır. Flip-flop'ların sonraki durumları bu şekilde hesaplanmış olur.

Durum denklemlerine örnek

State equation for flip-flops A and B

$$A(t+1) = S + R'A$$

A(t+1) = B'x + (B'x)'A

Durum denklemlerine örnek-devam

The state equation for flip-flop A is simplified by means of a map as shown in Fig. 6-17(a). With some algebraic manipulation, the function can be expressed in the following form:

$$A(t+1) = B'x + (B'x)'A$$

If we let Bx' = S and B'x = R, we obtain the relationship:

$$A(t+1) = S + R'A$$

$$B(t+1) = A'x + (Ax')'B$$

The state equation can be derived directly from the logic diagram. From Fig. 6-15, we see that the signal for input S of flip-flop B is generated by the function A' x and the signal for input R by the function Ax'. Substituting S = A' x and R = Ax' into an RS flip-flop characteristic equation given by:

$$B(t+1) = S + R'B$$

Flip-Flop Devrelerinde

- Ardışık lojik devre analizi yapmak için
 - Durum geçiş tablosu,
 - Durum diyagramı,
 - Durum denklemi
- gibi gösterim ve ifadeler kullanılmaktadır.
- Lojik devre tasarımı sırasında, flip flop durumlarında gerekli değişmeyi sağlayacak **giriş değişkenlerini** belirlemek önemlidir.
- Bunun için doğruluk tablolarından faydalanılır.

Flip-Flop Giriş Fonksiyonları

- Ardışık lojik devreler, hafıza elemanları ve mantık kapılarından meydana gelir.
- Flip-flop türü ve onların karakteristik tabloları hafıza elemanlarının lojik özelliklerini belirler.
- Bu kapıların birbiriyle ara bağlantıları bir kombinasyonel devre meydana getirir ve bu devrenin özellikleri de Boolean cebri ile tanımlanır.

Çıkış fonksiyonu için cebrik ifadeler devre çıkış fonksiyonuyla belirlenir.

Flip-Flop Giriş Fonksiyonları-devam

- Örneğin,
- Yandaki devre için flip-flop giriş fonksiyonlarının ifadesi aşağıdaki gibidir.

$$JA = BC' x + B'Cx'$$
$$KA = B + y$$

Flip-Flop Giriş Fonksiyonları-devam

- Başka bir örnek inceleyelim,
- Yandaki devre için flip-flop giriş fonksiyonları ve flip-flop çıkış ifadesi aşağıdaki gibidir.

$$D_A = Ax + Bx$$

$$D_B = A'x$$

$$y = (A + B)x'$$

FIGURE 5.15
Example of sequential circuit

Flip-Flop Giriş Fonksiyonları-devam

- Başka bir örnek inceleyelim,
- Yandaki devre için flip-flop giriş fonksiyonlarının ifadesi aşağıdaki gibidir.

$$J_A = B$$
 $K_A = Bx'$
 $J_B = x'$ $K_B = A'x + Ax' = A \oplus x$

FIGURE 5.18
Sequential circuit with JK flip-flop

Ardışık Lojik Devre Tasarımı

Tasarım prosedürü

- Ardışık lojik devre tasarımı için şu yol takip edilmelidir:
- Devre davranışı tanımlanır.
 - Bu, durum diyagramlarıyla belirlenir.
- Elde edilen değerler durum tablosuna taşınır.
- Gerekli flip-flop sayısı ve flip-flop türü belirlenir.
- Karnaugh veya diğer indirgeme metotları kullanılarak kombinasyonel devre çıkış ve flip-flop giriş denklemleri elde edilir.
- Elde edilen bu sonuçlara göre lojik devre tasarımı yapılır.

Durum İndirgeme

- Ardışık bir devrede flip-flop sayısındaki azalma, durum indirgeme problemi olarak adlandırılır.
- Durum indirgeme algoritmaları, harici giriş-çıkış gereksinimlerini değiştirmeden tutarken, bir durum tablosundaki durumların sayısını azaltmak için prosedürlerle ilgilidir.
- m adet flip-flop 2^m adet durum ürettiğinden, durum sayısındaki bir azalma, flip-flopların sayısında bir azalmaya neden olabilir (veya olmayabilir).
- Flip-flop sayısını azaltmada öngörülemeyen bir etki, bazen eşdeğer devrenin (daha az flip-flop ile) bir sonraki durumunu ve çıkış mantığını gerçekleştirmek için daha fazla kombinasyon kapısı gerektirmesidir.

- Durum indirgeme prosedürünü inceleyeceğimiz bu örnekte, yalnızca girdi-çıktı dizileri önemlidir; iç durumlar yalnızca gerekli dizileri sağlamak için kullanılır.
- Bu nedenle, dairelerin içinde işaretlenen durumlar ikili değerler yerine harf sembolleriyle gösterilmiştir.

state	a	a	b	c	d	e	f	f	g	f	g
input	0	1	0	1	0	1	1	0	1	0	0
output	0	0	0	0	0	1	1	0	1	0	0

FIGURE 5.25 State diagram

• Durum diyagramından durum tablosunu düzenleyelim:

Table 5.6 State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	е	f	0	1	
e	а	f	0	1	
f	g	f	0	1	
g	a	f	0	1	

FIGURE 5.25 State diagram

Table 5.7 *Reducing the State Table*

		Next	State	Output		
Pı	resent State	x = 0	x = 1	x = 0	x = 1	
Т	a	а	b	0	0	
	b	c	d	0	0	
	c	a	d	0	0	
5	d	e	f	0	1	
	e	a	f	0	1	
	f	e	f	0	1	

Table 5.8 *Reduced State Table*

	Next	State	Output		
P	resent State	x = 0	x = 1	x = 0	x = 1
	а	а	b	0	0
	b	c	d	0	0
ľ	c	a	d	0	0
	d	e	d	0	1
	e	a	d	0	1

Nout Chata

• Durum tablosunu inceleyerek, aynı sonraki duruma giden ve her iki giriş kombinasyonu için aynı çıktıya sahip iki mevcut durumu ararız.

Table 5.6 State Table

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
a	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

FIGURE 5.26

Reduced state diagram

Table 5.8 *Reduced State Table*

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

Table 5.6 *State Table*

0/0
0/0 0/0 0
1/0 1/0 0/0 e
0/0 1/1 1/1 FIGURE 5.25
State diagram

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	a	f	0	1	
f	g	f	0	1	
g	а	f	0	1	