Análise Exploratória de Dados

Igor Rocha, Isaac Lima, João Rupp, Valcírio Francisco

2021.2

Adaptando slide de

Murillo Almeida dos Santos Torres 2021.1

Associação na estatística é o estudo de uma relação entre duas variáveis.

Este tipo de operação é útil para aplicações como:

- Possibilidade de estudar uma através da outra;
- Tentar prever os valores de uma através da outra;

As técnicas de associação são:

- Covariância;
- Correlação linear simples.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

6

O termo **Covariância** no ramo da probabilidade e estatística está relacionado à medida da variabilidade conjunta entre duas variáveis aleatórias. Por exemplo, tomemos duas variáveis X e Y, ao analisarmos, se a maioria dos maiores valores de X corresponde à maioria dos maiores valores de Y, e o mesmo comportamento se aplica à maioria dos menores valores das mesmas, temos que a covariância entre elas é positiva. Caso o comportamento seja contrário, ou seja, os maiores valores de X corresponderem aos menores valores de Y, e vice-versa, temos que a covariância é negativa.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

A fórmula da covariância entre duas variáveis reais aleatórias, X e Y, distribuídas em conjunto e com variância finita é definida como a esperança do produto dos seus desvios a partir dos seus valores individuais. A Esperança Matemática (E) representa o valor esperado de um conjunto de resultados, que equivale à soma dos produtos individuais de valor multiplicada pela probabilidade de ocasião, também conhecida como média.

$$cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$

Executando a distributiva e aplicando a propriedade de linearidade de expectativas, podemos simplificar a fórmula para que a mesma seja o valor esperado do produto de X e Y menos o produto do valor esperado de X e de Y, ficando assim:

$$cov(X, Y) = E[XY] - E[X] E[Y]$$

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

8

Variáveis aleatórias as quais a covariância é **zero** são chamadas de v**ariáveis não correlacionadas**, ou seja, elas não possuem características de linearidade entre si. As unidades de medida de uma covariância **cov(X, Y)** são as de **X** vezes as de **Y**. Em contrapartida, coeficientes de correlação, os quais dependem da covariância são medidas adimensionais de associação linear.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

9

Quando trabalhamos com **variáveis discretas**, ou seja variáveis que entre um valor e outro não existe valor intermediário (i.e., pontos), utilizamos a seguinte fórmula:

$$cov(X, Y) = \sum_{\mathbf{X}} \sum_{\mathbf{Y}} (X - E(X))(Y - E(Y))p(x,y)$$

A covariância padronizada, chama-se **coeficiente de correlação** entre X e Y, o qual denotaremos por $\mathbf{p}(\mathbf{x},\mathbf{y})$.

Desdobramentos

COVARIÂNCIA

CORRELAÇÃO L SIMPLES

REGRESSÃO L SIMPLES

Quando porém as variáveis trabalhadas forem contínuas, ou seja, quando entre dois valores (X_1 e X_2) existirem infinitos valores intermediários (i.e., intervalos), não podemos mais utilizar a fórmula anterior pois agora precisamos de um método capaz de nos dar o resultado de toda uma região, de todo um intervalo, e para isso nós utilizamos integrais definidas como já visto em Cálculo 2:

$$cov(X,Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (X - E(X))(Y - E(Y))f(x,y)dxdy$$

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

11

Se X e Y são variáveis aleatórias independentes, a Cov(X,Y) será igual a 0.

Porém, se a Cov(X,Y) for **igual a 0**, isso **NÃO** significa que as variáveis serão independentes.

CORRELAÇÃO L SIMPLES

REGRESSÃO L SIMPLES

12

Obter uma covariância positiva significa, na prática, que as duas variáveis têm o **mesmo comportamento**, ou seja, quando uma delas aumenta, a segunda também aumentará e quando uma delas diminui a outra também se comporta da mesma forma.

Isto fará com que a maior parte das observações recaiam no 1° e 3° quadrante, demonstrando portanto um relacionamento positivo entre as variáveis.

CORRELAÇÃO L SIMPLES

REGRESSÃO L SIMPLES

13

Para quaisquer variáveis aleatórias **X, Y, Z** e uma constante **c**, temos:

$$Cov(X,X) = Var(X)$$

 $Cov(X,Y) = Cov(Y,X)$

$$Cov(cX,Y) = cCov(X,Y)$$

$$Cov(X,Y + Z) = Cov(X,Y) + Cov(X,Z)$$

CORRELAÇÃO L SIMPLES

REGRESSÃO L SIMPLES

14

Na **ausência** da distribuição de probabilidade, podemos trabalhar com uma **amostra** da população, assim:

$$cov(X,Y) = \sum_{i} \frac{(Xi - \overline{X})(Yi - \overline{Y})}{n-1}$$

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

10

Consideremos duas variáveis aleatórias:

- M: rendimento acadêmico em matemática;
- L: rendimento acadêmico em línguas

Rendimento acadêmico:

$$\Sigma M = 480$$
 $\Sigma L = 400$ $L = 50$

Obs:	01	02	03	04	05	06	07	08
M:	36	80	50	58	72	60	56	68
L:	35	65	60	39	48	44	48	61

CORRELAÇÃO L SIMPLES

DECDESSÃO I SIMPLES

Obs	М	L	m = [M - E(M)]	I = [L - E(L)]	m*l
01	36	35	-24	-15	360
02	80	65	20	15	300
03	50	60	-10	10	-100
04	58	39	-2	-11	22
05	72	48	12	-2	-24
06	60	44	0	-6	0
07	56	48	-4	-2	8
08	68	61	8	11	88

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

$$Cov(M,L) = \sum_{n=1}^{\infty} \frac{(Mi - \overline{M})(Li - \overline{L})}{7} = \frac{654}{7} = 93,43$$

Como possuem comportamentos semelhantes, ou seja, quando uma variável aumenta a outra também aumenta e o mesmo acontece para quando uma diminui, a maior parte das observações recairão nos 1º e 3º quadrantes.

Consequentemente, a maior parte dos produtos (m.l) serão positivos, bem como sua soma (Σml) , demonstrando um relacionamento positivo entre M e L.

Correlação Linear Simples

Introdução

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

19

O termo correlação significa **relação** em dois sentidos (co + relação), na **estatística**, a verificação da existência e do grau de relação entre as variáveis é o objeto de estudo da correlação.

Relação entre duas variáveis

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

20

Para expressar numericamente o quanto as duas variáveis tendem a mudar juntas, utilizamos o coeficiente de correlação. O coeficiente descreve a força e a direção da relação. Para calcular o coeficiente de uma correlação entre duas variáveis, podemos recorrer a dois métodos já solidificados, sendo eles:

- Pearson
- Spearman

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLE

A correlação de **Pearson** avalia a relação linear entre duas variáveis quantitativas.

Exemplo: Avaliar a quantidade de fertilizante e número de sementes Germinadas.

Já a correlação de **Spearman** avalia a relação monotônica entre duas variáveis contínuas ou ordinais. Em uma relação monotônica, as variáveis tendem a mudar juntas mas não necessariamente a uma taxa constante. A correlação de **Spearman** é muito usada para avaliar relações envolvendo variáveis ordinais.

Exemplo: Avaliar indivíduos com enxaqueca de respectivas idades correlacionando com a intensidade da sua dor (leve, moderado, forte, muito forte).

CORRELAÇÃO L. SIMPLES

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

$$ho_{xy} = rac{Cov(x,y)}{\sigma_x \sigma_y}, \sigma_x \sigma_y > 0$$

$$\rho_{xy} = \frac{Cov(X,Y) = E[(X - E(X))(Y - E(Y))] = E(XY) - E(X)E(Y)}{Cov(x,y)}$$

$$Var(y) = \sum (y - E(Y))^{2}P(y) = [E(Y^{2}) - (E(Y))^{2}]$$

$$Var(x) = \sum (x - E(X))^{2}P(x) = [E(X^{2}) - (E(X))^{2}]$$

Fórmula Coeficiente de Pearson para Amostra

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

$$r = \frac{\sum (x - \bar{x}) \cdot (y - \bar{y})}{\sqrt{\left[\sum (x - \bar{x})^{2}\right] \cdot \left[\sum (y - \bar{y})^{2}\right]}}$$

$$r = \frac{n \cdot \sum x \cdot y - (\sum x) \cdot (\sum y)}{\sqrt{n \cdot \sum x^{2} - (\sum x)^{2} \cdot \sqrt{n \cdot \sum y^{2} - (\sum y)^{2}}}}$$

$$r = \frac{\sum x \cdot y - \frac{(\sum x) \cdot (\sum y)}{n}}{\sqrt{\left[\sum x^{2} - \frac{(\sum x)^{2}}{n}\right] \cdot \left[\sum y^{2} - \frac{(\sum y)^{2}}{n}\right]}}$$

Interpretando os resultados

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

O coeficiente de correlação *r* linear é um número puro que varia de -1 a +1 e sua interpretação dependerá do valor numérico e do sinal, como segue:

Coeficiente de Correlação	Correlação		
r = 1	Perfeito Positivo		
0.8 <= r < 1	Forte Positiva*		
0.5 <= r < 0.8	Moderado Positiva*		
0.1 <= r < 0.5	Fraca Positiva*		
0 <= r < 0.1	Íntima Positiva*		
r = 0	Nula		
-0.1 <= r < 0	Íntima Negativa*		
-0.5 <= r < -0.1	Fraca Negativa*		
-0.8 <= r < -0.5	Moderado Negativa*		
-1 <= r < -0.8	Forte Negativa*		
r = -1	Perfeito Negativo*		

CORRELAÇÃO L. SIMPLES

DECDESSÃO I SIMDLES

26

Os pares de valores das duas variáveis na correlação poderão ser colocados num diagrama cartesiano chamado "diagrama de dispersão". A vantagem de construir um diagrama de dispersão está em que, muitas vezes sua simples observação já nos dá uma idéia bastante boa de como as duas variáveis se relacionam.

Correlação positiva e forte

$$r = 0.984$$

Correlação negativa e forte

$$r = -0.819$$

Diagrama de Dispersão

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

Correlação nula

$$r = 0$$

Correlação fraca, quase nula

$$r = 0,0068$$

CORRELAÇÃO L. SIMPLES

REGRESSÃO I SIMPLES

28

Correlação positiva e perfeita

$$r = 1$$

Correlação negativa e perfeita

$$r = -1$$

Vamos por em prática!

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

Região	Taxa de Mortalidade Infantil (X)	Taxa de Analfabetismo (Y)	X*Y	X²	Υ2
Norte	18,1	9,1	164,71	327,61	82,81
Nordeste	17,5	16,2	283,5	306,25	262,44
Centro-Oeste	14,8	5,7	84,36	219,04	32,49
Sudeste	10,7	4,3	46,01	114,49	18,49
Sul	9,7	4,1	39,77	94,09	16,81
Somatório	70,8	39,4	618,35	1061,48	413,04
(Somatório) ²				1.126.740	170.602

$$r = \frac{\sum_{x,y} - \frac{(\sum x) \cdot (\sum y)}{n}}{\sqrt{\left[\sum_{x^2} - \frac{(\sum x)^2}{n}\right] \cdot \left[\sum_{y^2} - \frac{(\sum y)^2}{n}\right]}}$$

$$r = \frac{618,35 - \frac{70,8 \cdot 39,4}{5}}{\sqrt{\left[1061,48 - \frac{1126740}{5}\right] \cdot \left[413,04 - \frac{170602}{5}\right]}}$$

$$r = \frac{60.446}{5}$$

$$r = 0.7773424$$

Gráfico de Dispersão

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L SIMPLES

Coeficiente de Correlação	Correlação		
0,5 <= r < 0,8	Moderado Positiva		

r = 0.7773424

Regressão Linear Simples

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

32

A **Regressão Linear Simples**, é uma metodologia estatística que utiliza a relação entre duas ou mais variáveis quantitativa de forma que uma variável pode ser predita a partir de outra ou outras.

O modelo de regressão é um dos métodos estatísticos mais usados para investigar a relação entre variáveis.

ORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

33

Exemplo ilustrativo de regressão linear simples. A safra do milho em função de doses crescentes de adubo nitrogenado aplicado em cobertura.

Aplicação

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

34

A análise de correlação é indicada para estudar o grau de associação linear entre variáveis aleatórias. Ou seja, essa técnica é empregada, especificamente, para se avaliar o grau de covariação entre duas variáveis aleatórias: se uma variável aleatória Y1 aumenta, o que acontece com uma outra variável aleatória Y2?

Aumenta, diminui ou não altera?

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

35

Na análise de regressão uma **resposta unilateral** é esperada: alterações em X (fator quantitativo) podem implicar em alterações em Y, mas alterações em Y não resultam em alterações em X.

Quando se deseja verificar a existência de alguma relação estatística entre uma ou mais variáveis fixas, independentes, sobre uma variável aleatória, denominada dependente, utiliza-se a análise de regressão.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

36

Para exemplificar, vamos considerar que conduzimos um experimento submetendo plantas de milho a doses crescentes de nitrogênio.

Naturalmente, a produção será dependente da quantidade aplicada desse fertilizante, X. (unilateralidade)

Assim, o fertilizante nitrogenado aplicado é a variável independente, e cada uma das quantidades aplicadas são seus níveis, xi $(10 \rightarrow 70 \text{ kg ha}^{-1})$.

Cada variável mensurada na cultura do milho, sujeita a influência dos níveis xi da variável independente, é chamada "variável dependente" ou "fator resposta".

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Poderia-se medir, por exemplo, o número de espigas por planta (Y1), a altura média das plantas (Y2), o peso de 1.000 grãos (Y3), o teor de proteínas dos grãos (Y4), o teor de gordura dos grãos (Y5), etc.

Como a aplicação do fertilizante não depende da safra, designamos-lá "variável independente" ou "regressor".

Podemos estudar via análise de regressão o efeito da variável, neste caso, fixa, independente, X (dose de nitrogênio), sobre as variáveis aleatórias, ou dependentes, Yi (produção de matéria seca, teor de proteínas dos grãos, teor de gordura dos grãos, etc.). Diz-se regressão de Y sobre X.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Se grafarmos a safra, Y, decorrente das diversas aplicações, X, de nitrogênio, poderemos observar uma dispersão análoga a figura ao lado.

A aplicação de nitrogênio afeta a safra.

Podemos, por meio de uma equação, relacionando X e Y, descrever como afeta.

Estimar uma equação é geometricamente equivalente a ajustar uma curva àqueles dados dispersos, isto é, a "regressão de Y sobre X".

Esta equação será útil como descrição breve e precisa de predizer a safra Y para qualquer quantidade X de nitrogênio.

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

Vamos considerar um estudo sobre a influência do nitrogênio aplicado em cobertura sobre a safra do milho.

Suponhamos que só dispomos de recursos para fazer sete observações experimentais.

X	Y Safra	
Nitrogênio kg ha ⁻¹	kg ha ⁻¹	
10	1.000	
20	2.300	
30	2.600	
40	3.900	
50	5.400	
60	5.800	
70	6.600	

Figura 13 - Dados e reta ajustada a olho aos dados apresentados da Safra em função do Nitrogênio

O pesquisador fixa então sete valores de X (sete níveis do regressor), fazendo apenas uma observação Y (fator resposta), em cada caso, tal como se vê na figura acima.

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Erro ou a falta de ajustamento é definido como a distância vertical entre o valor observado (real) Yi e o valor ajustado (predito) \hat{Y}_i na reta, isto é, $(Y_i - \hat{Y}_i)$:

Erro típico no ajustamento de uma reta.

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

42

O método mais comumente utilizado para se ajustar uma reta aos pontos dispersos é o que minimiza a soma de quadrados dos erros:

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

Conhecido como critério dos "mínimos quadrados" ou "mínimos quadrados dos erros". Sua justificativa inclui as seguintes observações:

- O quadrado elimina o problema do sinal, pois torna positivos todos os erros.
- A álgebra dos mínimos quadrados é de manejo relativamente fácil.

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

43

Passo extra que facilita o cálculo futuro:

- Ajustando uma reta:
 - Estágio 1: Exprimir X em termos de desvios a contar de sua média, isto é, definir uma nova variável x (minúsculo), tal que:

$$x = X - \overline{X}$$

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Observa-se que o eixo Y foi deslocado para a direita, de 0 a \overline{X} .

O novo valor x torna-se positivo, ou negativo, conforme X esteja a direita ou à esquerda de \overline{X} . Não há modificação nos valores de Y. O intercepto α difere do intercepto original, α 0, mas o coeficiente angular, permanece o mesmo.

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

45

Medir X como desvio a contar de X simplifica os cálculos porque a soma dos novos valores x é igual a zero, isto é:

$$\sum x_i = 0 \qquad \qquad \therefore \qquad \sum x_i = \sum (X_i - \overline{X}) = \sum X_i - n\overline{X} = n\overline{X} - n\overline{X} = 0$$

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Estágio 2: Ajustar a reta:

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

Devemos ajustar a reta aos dados, escolhendo valores para α e β, que satisfaçam o

critério dos mínimos quadrados. Ou seja, escolher valores de α e β que minimizem

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 Equação 01

Cada valor ajustado Ŷi estará sobre a reta estimada:

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta}x_i$$
 Equação 02

Assim, estamos diante da seguinte situação: devemos encontrar os valores α e β de modo a minimizar a soma de quadrados dos erros.

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

48

Visualização gráfica:

https://phet.colorado.edu/sims/html/least-squares-regression/latest/least-squares-regression_en.html

COVARIÂNCIA

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

49

Considerando as Equações 01 e 02, isto pode ser expresso algebricamente como:

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Equação 01

$$\hat{Y}_i = \hat{\alpha} + \hat{\beta} x_i$$

Equação 02

$$S(\hat{\alpha}, \hat{\beta}) = \sum_{i} \left(Y_i - (\hat{\alpha} + \hat{\beta} x_i) \right)^2 = \sum_{i} \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2$$

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

Uma possível técnica é fornecida pelo cálculo. A minimização de $S(\alpha, \beta)$ exige a anulação simultânea de suas derivadas parciais:

Igualando a zero a derivada parcial em relação a α:

$$\frac{\partial}{\partial \hat{\alpha}} \sum_{i} \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2 = \sum_{i} 2(-1) \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^4 = 0$$

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

51

Dividindo ambos os termos por (-2) e reagrupando:

$$\sum Y_i - n\hat{\alpha} - \hat{\beta} \sum x_i = 0 \qquad \therefore \qquad \sum x_i = 0$$

$$\sum Y_i - n\hat{\alpha} - 0 = 0$$

$$\sum Y_i - n\hat{\alpha} = 0$$

$$n\hat{\alpha} = \sum Y_i$$

$$\hat{\alpha} = \frac{\sum Y_i}{n} = \overline{Y}$$

Assim, a estimativa de mínimos quadrados para â é simplesmente o valor médio de Y.

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

52

É preciso também anular a derivada parcial em relação a β:

$$\frac{\partial}{\partial \hat{\beta}} \sum_{i} \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^2 = \sum_{i} 2(-x_i) \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right)^i = 0$$

Dividindo ambos os termos por (-2):

$$\sum x_i \left(Y_i - \hat{\alpha} - \hat{\beta} x_i \right) = 0$$

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

53

Reagrupando:

$$\sum x_i Y_i - \hat{\alpha} \sum x_i - \hat{\beta} \sum x_i^2 = 0 \qquad \therefore \qquad \sum x_i = 0$$

$$\sum x_i Y_i - 0 - \hat{\beta} \sum x_i^2 = 0$$

$$\sum x_i Y_i - \hat{\beta} \sum x_i^2 = 0$$

$$\hat{\beta} \sum x_i^2 = \sum x_i Y_i$$

$$\hat{\beta} = \frac{\sum x_i Y_i}{\sum x_i^2}$$

COVARIÂNCIA

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

54

Para os dados da Figura 13 (Dados e reta ajustada a olho aos dados apresentados da Safra em função do Nitrogênio), α e β acham-se calculados no Quadro 14.1.

Quadro 14.1 - Cálculos dos valores necessários

×	$x = X - \overline{X}$	Y	xY	x ²
	x = X - 40		~ .	^
10	- 30	1.000	- 30.000	900
20	- 20	2.300	- 46.000	400
20 30 40	- 10	2.600	- 26.000	100
40	0	3.900	0	0
50	10	5.400	54.000	100
60	20	5.800	116.000	400
70	30	6.600	198.000	900
$\sum X = 280$ $\overline{X} = \frac{1}{N} \sum X$ $\overline{X} = \frac{280}{7} = 40$	$\sum x = 0$	$\sum Y = 27.600$ $\overline{Y} = \frac{1}{N} \sum \overline{Y}$ $\overline{Y} = \frac{27.600}{7}$ $\overline{Y} = 3.942.86$	$\sum xY = 266.000$	$\sum x^2 = 2.800$

$$\hat{\alpha} = \frac{\sum Y_i}{n} = \overline{Y}$$
 : $\hat{\alpha} = \frac{27.600}{7} = 3.942,86$

$$\hat{\beta} = \frac{\sum x_i Y_i}{\sum x_i^2}$$
 .: $\hat{\beta} = \frac{266,000}{2.800} = 95,00$

$$\hat{Y} = 3.942,86 + 95x$$

Equação 03

COVARIÂNCIA

CORRELAÇÃO L. SIMPLES

REGRESSÃO L. SIMPLES

55

Estágio 3: A regressão pode agora ser transformada para o sistema original de referência:

$$\hat{Y} = 3.942,86 + 95x \qquad \therefore \qquad x = (X - \overline{X})$$

$$\hat{Y} = 3.942,86 + 95(X - \overline{X})$$

$$\hat{Y} = 3.942,86 + 95(X - 40)$$

$$\hat{Y} = 3.942,86 + 95X - 3.800$$

$$\hat{Y} = 142,86 + 95 X$$
 Equação 04

$$\hat{Y} = 3.942,86 + 95x$$
 Equação 03

Comparando as Equações 03 e 04, observa-se que:

- O coeficiente angular da reta de regressão ajustada (β = 95X) permanece inalterado.
- A única diferença é o intercepto, α, onde a reta tangencia o eixo Y.
- O intercepto original foi facilmente obtido.

CORRELAÇÃO L SIMPLES

REGRESSÃO L. SIMPLES

56

Outra alternativa ao cálculo da regressão linear simples:

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})^2$$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 }

Apresentação de Scripts FARIA, José Cláudio. Notas de aulas expandidas – Ilhéus, UESC/DCET, 10 ed. 2009.

LARSON, Ron; FARBER, Betsy. Estatística Aplicada 4ª Edição - São Paulo.

Agradecemos por sua atenção!