Introducción al Deep Learning

Sesión 4.2: Cierre del curso

Jorge Calvo Zaragoza

Introducción

- El espectro del Deep Learning es muy amplio y crece a diario.
- Este curso pretende ser una breve introducción al Deep Learning, con especial énfasis en el aspecto práctico.
- Vamos a comentar algunos aspectos, paradigmas y arquitecturas que no han tenido cabida en las sesiones anteriores.
- La idea es que esta sesión sirva como punto de partida para que cada uno pueda profundizar en el futuro siguiendo sus intereses propios.

Temas

- Modelos generativos
- Detección de objetos
- Esquema secuencia-a-secuencia
- Aprendizaje por refuerzo
- Meta-aprendizaje
- Turno abierto

Modelos generativos

Redes generativas antagónicas

- Las redes generativas antagónicas (Generative Adversarial Networks, GAN) son un tipo de arquitectura que consta de dos módulos:
 - Generador: trata de generar muestras que confundan al discriminador.
 - Discriminador: trata de distinguir muestras que provienen del generador de aquellas reales.
- La clave en las GAN es que el generador es entrenado conociendo de qué forma debe modificar sus pesos para engañar al discriminador.

Redes generativas antagónicas

Redes generativas antagónicas

Impresionantes resultados en tareas de generación de imágenes

Modelo de difusión

Stable Diffusion

From The Illustrated Stable Diffusion

Stable Diffusion

fly event.

Teddy bears swimming at the Olympics 400m Butter-

A cute corgi lives in a house made out of sushi.

A cute sloth holding a small treasure chest. A bright golden glow is coming from the chest.

- En la parte de redes convolucionales, nos hemos centrado en problemas de clasificación y segmentación.
- Otro problema típico en la literatura de visión por computador es la detección de objetos (object detection).
- La detección se formula como:
 - Entrada: una imagen
 - Salida: Conjunto de "cajas" (bounding boxes)
 - Cada caja identifica la posición y la categoría de un elemento de interés.

- Existen arquitecturas neuronales específicas para detección de objetos (Region-based Convolutional Neural Networks, RCNN).
- Dos paradigmas principales:
 - <u>Enfoques de dos pasos</u>: primero identifican regiones de interés de la imagen y después localizan los objetos dentro de cada una de estas regiones.
 - RCNN, Fast RCNN, Faster RCNN, ...
 - <u>Enfoques de un paso</u>: cada pixel de la imagen convolucionada es el potencial centro de un objeto.
 - You Only Look Once (YOLO), Single Shot Detector (SSD)

Faster RCNN

You Only Look Once (YOLO)

- Para problemas de secuencias muchos-a-muchos (seq2seq).
- Consta de dos subredes:
 - El encoder procesa la entrada elemento a elemento, almacenando en su estado interno una codificación compacta y representativa de la información.
 - Al estado interno de las neuronas del encoder se le llama vector de contexto (context vector).
 - El decoder parte del último vector de contexto y predice, paso a paso, un elemento del dominio de salida.

Traducción automática

Resumen automático de texto

20

Esquema secuencia-a-secuencia: Modelo de atención

- A menudo, la etapa de codificación es muy compleja.
 - El vector de contexto es insuficiente para capturar la información necesaria para toda la etapa de decodificación.
- Para paliar este fenómeno, se utilizan los modelos de atención.
 - Un modelo de atención es una estructura neuronal que complementa el enfoque secuencia a secuencia.
 - En cada paso de decodificación, el modelo de atención asigna un peso a cada uno de los elementos de la etapa de codificación; es decir, ayuda a saber en qué parte de la entrada debe el decodificador poner su atención.

Modelo de atención

Modelo de atención

Transformers

- En la actualidad las redes recurrentes están perdiendo relevancia en favor de la arquitectura Transformer.
- En esta arquitectura, la recurrencia se sustituye por modelos de atención múltiples (multi-head attention) y representaciones de entrada que codifican el orden de los datos de forma implícita (positional encoding).
- El modelo de ChatGPT es una arquitectura de tipo Transformer (GPT).

Transformers

Transformers

- El aprendizaje por refuerzo es un **paradigma** de aprendizaje computacional.
- En lugar de aprender a partir de ejemplos explícitos, el modelo aprende a partir de prueba y error.
- El objetivo del modelo no es acertar una predicción sino conseguir maximizar la suma de las recompensas que obtiene del entorno.
- Las recompensas miden el grado de bondad de las decisiones que va tomando el modelo (llamado agente en este contexto).

• **Objetivo**: maximizar la suma de las recompensas (*r*) en todo un proceso

- El aprendizaje por refuerzo es transversal al Deep Learning pero se ha visto claramente beneficiado por su desempeño.
- En la actualidad, el estado de la cuestión en Reinforcement Learning está gobernado por la combinación de algoritmos de fundamentos clásicos pero que utilizan redes neuronales profundas como
 - Enfoques Q-learning: Deep Q-Networks (DQN).
 - Enfoques Policy Gradients: Deep Deterministic Policy Gradients (DDPG).
 - Enfoques Actor-Critic: Proximal Policy Optimization (PPO), Asynchronous Advantage Actor
 Critic (A3C).

- Las aplicaciones del aprendizaje por refuerzo son numerosas.
- A modo divulgativo se suelen utilizar dos contextos:
 - Robótica
 - Videojuegos
- Una aplicación más *científica* del aprendizaje por refuerzo es que permite entrenar redes neuronales con funciones de pérdida no derivables.

Jugar a Atari

Meta-aprendizaje

Meta-aprendizaje

- En general se asume que:
 - la distribución de entrenamiento y test es la misma,
 - o los datos están disponibles y completos al comenzar el proceso de aprendizaje.
- Meta-aprendizaje: aprender a aprender.
 - Aprendizaje con pocos ejemplos (n-shot learning: zero-shot, one-shot, few-shot)
 - Adaptación al dominio (*Domain Adaptation*)
 - Generalización de dominio (Domain Generalization)
 - Aprendizaje continuo (Continual Learning)

Turno abierto

Introducción al Deep Learning

Sesión 4.2: Cierre del curso

Jorge Calvo Zaragoza

