Deep Learning

Recurrent Neural Networks

Syed Irtaza Muzaffar

Everything should be made as simple as possible, but no simpler. Albert Einstein

Understanding Recurrent Neural Networks requires some effort and a correct perspective. Do not expect them to be as simple as linear regression. amic Data RNN Fprop Variations Benefit of Recurrence

Static vs. Dynamic Inputs

- Static signals, such as an image, do not change over time.
 - Ordered with respect to space.
 - Output depends on current input.
- Dynamic signals, such as text, audio, video or stock price change over time.
 - Ordered with respect to time.
 - Output depends on current input as well as past (or even future) inputs.
 - ► Also called *temporal*, *sequential* or *time-series* data.

mic Data RNN Fprop Variations Benefit of Recurrence

Context in Text

The Taj ____ was commissioned by Shah Jahan in 1631, to be built in the memory of ___ wife Mumtaz Mahal, who died on 17 June that year, giving birth to their 14th child, Gauhara Begum. Construction started in 1632, and the mausoleum was completed ___ 1643.

Dynamic Data RNN Fprop Variations Benefit of Recurrence S

Context in Video

Dynamic Data RNN Fprop Variations Benefit of Recurrence

Context in Audio

Time-series Data

A single input will be a series of vectors $x^1, x^2, ..., x^T$.

Input component at time t forward propagated through a network.

Representational Shortcut 1 – Space Folding

Each box represents a layer of neurons.

ynamic Data RNN Fprop Variations Benefit of Recurrence Stab

Recurrent Neural Networks

- A recurrent neural network (RNN) makes hidden state at time t directly dependent on the hidden state at time t-1 and therefore indirectly on all previous times.
- Output \mathbf{y}_t depends on all that the network has already seen so far.

Representational Shortcut 2 - Time Folding

Recurrent Neural Networks

$$\begin{aligned} \mathbf{y}^{(t)} &= f(\widehat{\boldsymbol{W}}^{1}\mathbf{h}^{(t)} + \mathbf{b}_{1}) \\ \mathbf{h}^{(t)} &= \tanh(\underbrace{\boldsymbol{W}}^{0}\mathbf{x}^{(t)} + \underbrace{\boldsymbol{W}}^{11}\mathbf{h}^{(t-1)} + \mathbf{b}_{0}) \end{aligned}$$

Sequence Mappings

imic Data RNN Fprop Variations Benefit of Recurrence

Sequence Mappings

Loss Functions for Sequences

For recurrent nets, loss is between *series* of output and target vectors. That is $\mathcal{L}(\{\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(T)}\}, \{\mathbf{t}^{(1)}, \dots, \mathbf{t}^{(T)}\})$.

Forward propagation in an RNN unfolded in time.

Notice that loss $\mathcal L$ can be computed only after $\mathbf y^{(T)}$ has been computed.

Loss Functions for Sequences

- Loss is not necessarily decomposable.
- In the following, we will assume decomposable loss $\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}(\mathbf{y}^{(t)}, \mathbf{t}^{(t)}).$
- ▶ In both cases, as long as $\frac{\partial L}{\partial \mathbf{y}^{(t)}}$ has been computed, backpropagation can proceed.

Forward Propagation Through Time

Forward propagation in an RNN unfolded in time. Recurrence between hidden states through pre-activation $\mathbf{a}^{(t)}$ is shown in red.

Forward Propagation Through Time

Forward propagation in an RNN unfolded in time. Recurrence between hidden states through pre-activation $\mathbf{a}^{(t)}$ is shown in red.

Notational Clarity

- At layer I, we will denote the pre-activation by \mathbf{a}^{\prime} and activation by \mathbf{h}^{\prime} .
- \triangleright So output layer y will be denoted by \mathbf{h}^{\perp} in an L-layer network.
- Input will be denoted by h⁰.
- \triangleright So forward propagation entails $\mathbf{h}^0 \rightarrow$ $\underline{\mathsf{a}^1 \to \mathsf{h}^1} \cdots \to \underline{\mathsf{a}^{L-1} \to \mathsf{h}^{L-1}} \to \underline{\mathsf{a}^L \to \mathsf{h}^L}.$ laver l-1laver L

 $\mathbf{a}^{1,T} = W^0 \mathbf{h}^{0,T} + W^{11} \mathbf{h}^{1,T-1} + \mathbf{b}^0$

For 2 layer network

$$egin{aligned} \mathbf{h}^{2,T} &= f(\mathbf{a}^{2,T}) \ \mathbf{a}^{2,T} &= W^1 \mathbf{h}^{1,T} + \mathbf{b}^1 \ \mathbf{h}^{1,T} &= anh(\mathbf{a}^{1,T}) \end{aligned}$$

Notational Clarity

namic Data RNN Fprop **Variations** Benefit of Recurrence St

RNN Variations

Step 1: Forward propagation into the future

$$fprop\left(\underbrace{\mathbf{h}^{0}(1),\mathbf{h}^{0}(2),\ldots,\mathbf{h}^{0}(T)}_{\text{input sequence}};\underbrace{\mathbf{h}^{1}_{f}(0)}_{\text{init}},\underbrace{W^{0}_{f},\mathbf{b}^{0}_{f},W^{11}_{f},W^{1}_{f},\mathbf{b}^{1}_{f}}_{\text{parameters}}\right)$$

Step 2: Forward propagation into the past

$$fprop\left(\underbrace{\mathbf{h}^{0}(T),\mathbf{h}^{0}(T-1),\ldots,\mathbf{h}^{0}(1)}_{\text{input sequence}};\underbrace{\mathbf{h}^{1}_{b}(T+1)}_{\text{init}},\underbrace{W^{0}_{b},\mathbf{b}^{0}_{b},W^{11}_{b},W^{1}_{b},\mathbf{b}^{1}_{b}}_{\text{parameters}}\right)$$

Step 3: Fusion of forward and backward hidden states

$$\begin{split} \mathbf{h}^{2(t)} &= \mathsf{tanh}(\mathbf{a}^{2(t)}) \\ \mathbf{a}^{2(t)} &= W_f^1 \mathbf{h}_f^{1(t)} + \mathbf{b}_f^1 + W_b^1 \mathbf{h}_b^{1(t)} + \mathbf{b}_b^1 \end{split}$$

Benefit of Recurrent Architectures

n-bit addition

- Only for *n*-bit numbers
- ► Training set exponential in *n*
- Training errors

- Iterative application to numbers of arbitrary size
- Exact answers

n-bit XOR

- Only for *n*-bit numbers
- Training set exponential in *n*
- Training errors

- ► Iterative application to numbers of arbitrary size
- Exact answer
- Will be 1 for odd number of ones in input.

namic Data RNN Fprop Variations Benefit of Recurrence **Stabilit**y

Stability issues

- Even a 1-hidden layer RNN is a very deep network.
- Viewed in time, an RNN is as deep as the number of time steps.
- Suffers from vanishing gradients.
- ► Also suffers from *exploding gradients*.

Exploding Gradients

- ▶ Consider input $x^{(1)}$ at time 1 and assume linear hidden layer.
- ▶ At time *t*, the RNN carries a term of the form

$$W^{11} \dots W^{11} W^0 \mathbf{x}^{(1)} = (W^{11})^{t-1} W^0 \mathbf{x}^{(1)}$$

which is an *M*-dimensional vector.

- ▶ Magnitude of this vector depends on largest eigenvalue $\lambda_{\sf max}$ of W^{11} .
 - $ightharpoonup \lambda_{\max} > 1 \implies$ magnitude of $\left(W^{11}\right)^{t-1} W^0 \mathbf{x}^{(1)}$ keeps increasing.
 - $ightharpoonup \lambda_{\max} < 1 \implies$ magnitude of $\left(W^{11}\right)^{t-1} W^0 \mathbf{x}^{(1)}$ keeps decreasing.

Exploding Gradients

- Even during forward propagation, depending on the largest eigenvalue of the recurrent weight matrix W^{11} , input at time t
 - is either forgotten very soon,
 - or explodes to very large values.
- ► Similar case for backpropagation.
- ▶ Notice that this has nothing to do with the choice of activation function.
- ► Information will explode or vanish through time.
- Similar behaviour for non-linear neurons.
- ► So, in practice, RNNs do not have long-term memory. Solution: LSTM.

namic Data RNN Fprop Variations Benefit of Recurrence **Stabilit**y

Summary

Dynamic signals that change over time can be modeled by RNNs.

- ► RNNs can represent mappings of one-to-many, many-to-one, many-to-many, and many-to-many delayed sequences.
- Previous hidden layer output influences subsequent output.
- ► Forward propagation is through space as well as time.
- ► Forward propagation can be into the future and/or into the past.
- ► Recurrent connection implies really deep network.
- Information can vanish or even explode through time.