I Questions de cours

1 - Exercice 97 banque CCINP:

Soit (X,Y) un couple de variables aléatoires à valeurs dans \mathbb{N}^2 dont la loi est donnée par :

$$\forall (j,k) \in \mathbb{N}^2, \ \mathbb{P}((X,Y) = (j,k)) = \frac{(j+k)(\frac{1}{2})^{j+k}}{ej!k!}$$

- a) Déterminer les lois marginales de X et de Y.
- b) Les variables aléatoires réelles X et Y sont-elles indépendantes?
- c) Montrer que $\mathbb{E}\left(2^{X+Y}\right)$ existe et la calculer.
- 2 Exercice 102 banque CCINP:

Soient $N \in \mathbb{N}^*$, $p \in]0; 1[$ et q = 1 - p.

On considère N variables aléatoires $X_1, X_2, ..., X_N$ définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$, indépendantes et de même loi géométrique de paramètre p.

a) Soient $i \in [1; N]$ et $n \in \mathbb{N}^*$.

Déterminer $\mathbb{P}(X_i \leq n)$, puis $\mathbb{P}(X_i > n)$.

- b) On considère $n \in \mathbb{N}^*$ ainsi que la variable aléatoire Y définie par $Y = \min_{i \in [\![1 : N]\!]} X_i$. Calculer $\mathbb{P}(Y > n)$ puis en déduire $\mathbb{P}(Y \le n)$ et $\mathbb{P}(Y = n)$.
 - c) Reconnaître la loi de Y et en déduire que $\mathbb{E}(Y)$ existe et donner sa valeur.
 - 3 Exercice 108 banque CCINP:

Soient X et Y deux variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs dans \mathbb{N} .

On suppose que la loi du couple (X,Y) est donnée par :

$$\forall (i,j) \in \mathbb{N}^2, \ \mathbb{P}((X=i) \cap (Y=j)) = \frac{1}{e2^{i+1}j!}$$

- a) Déterminer les lois de X et de Y.
- b) Prouver que 1+X suit une loi géométrique et en déduire l'espérance ainsi que la variance de X.
 - c) Déterminer l'espérance et la variance de Y.
 - d) Les variables X et Y sont-elles indépendantes?
 - e) Calculer $\mathbb{P}(X = Y)$.

II Exercices

Exercice 1:

Soit X une variable aléatoire discrète réelle.

On pose, pour $t \in \mathbb{R}$, $\Phi_X(t) = \mathbb{E}\left(e^{itX}\right)$ (la fonction Φ_X est appelée fonction caractéristique de la variable aléatoire X).

- 1 Déterminer Φ_X lorsque X suit la loi $\mathcal{B}(n,p)$ puis lorsque X suit la loi $\mathcal{P}(\lambda)$.
- 2 Montrer que Φ_X est définie et continue sur \mathbb{R} .
- 3 On suppose que X est dans L^2 .

Montrer que Φ_X est de classe \mathcal{C}^2 sur \mathbb{R} et exprimer $\mathbb{E}(X)$ et $\mathrm{Var}(X)$ à l'aide de Φ_X .

4 - On suppose que X est à valeurs dans \mathbb{Z} .

Montrer que:

$$\forall k \in \mathbb{Z}, \ \mathbb{P}(X = k) = \frac{1}{2\pi} \int_0^{2\pi} \Phi_X(t) e^{-itk} dt$$

En déduire que la fonction Φ_X caractérise la loi de X.

Exercice 2:

Soient $X_1, ..., X_n$ des variables aléatoires réelles discrètes, indépendantes, appartenant à L^2 , centrées, ainsi que $a \in \mathbb{R}_+^*$.

On pose, pour tout $i \in [1; n]$:

$$S_i = \sum_{k=1}^i X_k \text{ et } B_i = \left(\bigcap_{k=1}^{i-1} \{|S_k| < a\}\right) \cap \{|S_i| \ge a\}$$

1 - Montrer que, pour tout $i \in [1; n]$, les variables $S_i \mathbbm{1}_{B_i}$ et $S_n - S_i$ sont indépendantes. En déduire que :

$$\mathbb{E}\left(S_n^2 \mathbb{1}_{B_i}\right) = \mathbb{E}\left(S_i^2 \mathbb{1}_{B_i}\right) + \mathbb{E}\left(\left(S_n - S_i\right)^2 \mathbb{1}_{B_i}\right) \ge a^2 \mathbb{P}(B_i)$$

Indication : On pourra commencer par s'intéresser à $\mathbb{E}\left(S_n^2\mathbbm{1}_{B_i}\right) - \mathbb{E}\left(S_i^2\mathbbm{1}_{B_i}\right)$ et utiliser la troisième identité remarquable.

- 2 On pose $C = \left\{ \sup_{i \in [\![1:n]\!]} |S_i| \ge a \right\}$.
 - a) Montrer que $\mathbb{P}(C) = \sum_{i=1}^{n} \mathbb{P}(B_i)$.
 - b) En déduire l'inégalité de Kolmogorov :

$$\mathbb{P}(C) \le \frac{\operatorname{Var}(S_n)}{a^2}$$

Exercice 3:

On dispose de n urnes et de N=na boules, où n et a sont des entiers naturels non nuls. Ces boules sont réparties de façon indépendantes et équiprobable entre les urnes.

On note Y_n la variable aléatoire donnant le nombre d'urnes vides et $S_n = \frac{Y_n}{n}$.

1 - Calculer $\mathbb{E}(S_n)$ et $Var(S_n)$.

Indication : On pourra commencer par écrire Y_n comme une somme.

2 - Montrer :

$$\forall \varepsilon > 0, \ \lim_{n \to +\infty} \mathbb{P}\left(\left|S_n - e^{-a}\right| \ge \varepsilon\right) = 0$$

Exercice 4:

Soit X une variable aléatoire discrète à valeurs dans \mathbb{N}^* telle que pour tout $k\in\mathbb{N},\ \mathbb{P}(X=k)=\frac{\alpha}{k!}.$

- 1 Déterminer α .
- 2 Calculer $\mathbb{E}(X)$ et $\mathbb{E}(X(X-1))$. En déduire la variance ainsi que l'écart-type de X.

Exercice 5:

Soient X une variable aléatoire suivant la loi uniforme sur $\{-1;0;1\}$ et $Y=X^2$.

- 1 Donner la loi de Y.
- 2 X et Y sont-elles indépendantes.
- 3 Calculer la covariance de X et de Y.

Exercice 6:

Soient X et Y deux variables aléatoires indépendantes et à valeurs dans $\mathbb N$ suivant la même loi définie par :

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = \mathbb{P}(Y = k) = pq^k$$

où $p \in]0;1[$ et q = 1 - p.

- 1 Préciser G_{X+Y} la fonction génératrice de X+Y et en déduire la loi de X+Y.
- 2 Pour $n \in \mathbb{N}$, préciser la loi conditionnelle de X sachant que (X+Y=n).