ตารางที่ 1-1 ตารางการแปลงลาปลาส

การแปลงลาปลาส $F(s)$	ฟังก์ชันในโดเมนเวลา $f(t)$	
1	ฟังก์ชันอิมพัลส์ 1 หน่วย $\delta(t)$	
$\frac{1}{s}$	ฟังก์ชันขั้นบันได 1 หน่วย $u(t)$	
$\frac{1}{s^2}$	ฟังก์ชันลาดเอียง 1 หน่วย $\mathit{tu}(t)$	
$\frac{n!}{s^{n+1}}$	t^n (n เป็นสมาชิกของจำนวนต็มบวก)	
$\frac{1}{s+\alpha}$	e^{-at}	
$\frac{1}{(s+\alpha)^2}$	$te^{-\alpha t}$	
$\frac{n!}{(s+\alpha)^{n+1}}$	$t^n e^{-lpha}$ (n เป็นสมาชิกของจำนวนต็มบวก)	
$\frac{1}{(s+\alpha)(s+\beta)}$	$rac{1}{eta-lpha}(e^{-lpha t}-e^{-eta t})$ (โดยที่ $lpha eqeta$)	
$\frac{s}{(s+\alpha)(s+\beta)}$	$rac{1}{eta-lpha}(eta e^{-eta t}-lpha e^{-lpha t})$ (โดยที่ $lpha eq eta$)	
$\frac{1}{s(s+\alpha)}$	$\frac{1}{\alpha}(1-e^{-\alpha t})$	
$\frac{1}{s(s+\alpha)^2}$	$\frac{1}{\alpha^2}(1-e^{-\alpha t}-\alpha t e^{-\alpha t})$	
$\frac{1}{s^2(s+\alpha)}$	$\frac{1}{\alpha^2}(\alpha t - 1 + e^{-\alpha t})$	
$\frac{1}{s^2(s+\alpha)^2}$	$\frac{1}{\alpha^2} \left[t - \frac{2}{\alpha} + \left(t + \frac{2}{\alpha} \right) e^{-\alpha t} \right]$	
$\frac{s}{(s+\alpha)^2}$	$(1-\alpha t)e^{-\alpha t}$	
$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin \omega_n t$	
$\frac{s}{s^2 + \omega_n^2}$	$\cos \omega_n t$	
$\frac{\omega_n^2}{s(s^2 + \omega_n^2)}$	$1-\cos\omega_n t$	

ตารางที่ 1-1 (ต่อ) ตารางการแปลงลาปลาส

การแปลงลาปลาส $F(s)$	ฟังก์ชันในโดเมนเวลา $f(t)$
$\frac{\omega_n^2(s+\alpha)}{s^2+\omega_n^2}$	$\left[\omega_{n}\sqrt{lpha^{2}+\omega_{n}^{2}} ight]\!\sin(\omega_{n}t+ heta)$ โดยที่ $ heta= an^{-1}\!\left(rac{\omega_{n}}{lpha} ight)$
$\frac{\omega_n}{(s+\alpha)(s^2+\omega_n^2)}$	$rac{\omega_n}{lpha^2 + \omega_n^2} e^{-lpha t} + rac{1}{\sqrt{lpha^2 + \omega_n^2}} \sin(\omega_n t - heta)$ โดยที่ $ heta = an^{-1} \left(rac{\omega_n}{lpha} ight)$
$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$\left(\frac{\omega_n}{\sqrt{1+\zeta^2}}\right) e^{-\zeta\omega_n t} \sin\!\left[\omega_n \left(\sqrt{1+\zeta^2}\right) t\right]$ โดยที่ $(\zeta<1)$
$\frac{\omega_n^2}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$	$\left(1-\frac{1}{\sqrt{1-\zeta^2}}\right)e^{-\zeta\omega_{s}t}\sin\left[\omega_{n}\left(\sqrt{1-\zeta^2}\right)t+\theta\right]$ โดยที่ $\theta=\cos^{-1}\zeta$ และ $(\zeta<1)$
$\frac{s\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$\left(\frac{-\omega_n^2}{\sqrt{1-\zeta^2}}\right) e^{-\zeta\omega_n t} \sin\!\left[\omega_n \left(\sqrt{1-\zeta^2}\right) t - \theta\right]$ โดยที่ $\theta = \cos^{-1} \zeta$ และ $(\zeta < 1)$
$\frac{\omega_n^2(s+\alpha)}{s^2+2\zeta\omega_n s+\omega_n^2}$	$\omega_n \sqrt{rac{lpha^2 - 2lpha \zeta \omega_n + \omega_n^2}{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin \left[\omega_n \left(\sqrt{1 - \zeta^2} ight) t + heta ight]$ โดยที่ $\theta = an^{-1} rac{\omega_n \sqrt{1 - \zeta^2}}{lpha - \zeta \omega_n}$ และ $(\zeta < 1)$
$\frac{\omega_n^2}{s^2(s^2+2\zeta\omega_n s+\omega_n^2)}$	$\left(t - \frac{2\zeta}{\omega_n} + \frac{1}{\omega_n \sqrt{1 - \zeta^2}}\right) e^{-\zeta \omega_n t} \sin\left[\omega_n \left(\sqrt{1 - \zeta^2}\right) t + \theta\right]$ โดยที่ $\theta = \cos^{-1}(2\zeta^2 - 1)$ และ $(\zeta < 1)$

ตัวอย่างที่ 1-1

จงหาการแปลงลาปลาสของ $f(t) = Ae^{-at}u(t)$

<u>วิธีทำ</u> จากสมการการแปลงลาปลาส (สมการที่ 1-1) จะได้

$$F(s) = \int_0^\infty f(t)e^{-st}dt = \int_0^\infty Ae^{-at}e^{-st}dt$$

$$= A\int_0^\infty e^{-(s+a)t}dt = -\frac{A}{s+a}e^{-(s+a)t}\Big|_{t=0}^\infty = \frac{A}{s+a}$$

ตารางที่ 1-2 ตารางทฤษฎีการแปลงลาปลาส

9	าฤษฎิ		คุณสมบัติ
L[f(t)]	=	$F(s) = \int_{0-}^{\infty} f(t)e^{-st}dt$	Definition
L[kf(t)]	=	kF(s)	Linearity theorem
$L[f_1(t) + f_2(t)]$	=	$F_1(s) + F_2(s)$	Linearity theorem
$L[e^{-at}f(t)]$	=	F(s+a)	Frequency shift theorem
L[f(t-T)]	=	$e^{-sT}F(s)$	Time shift theorem
L[f(at)]	=	$\frac{1}{a}F\left(\frac{s}{a}\right)$	Scaling theorem
$L\left[\frac{df}{dt}\right]$	=	sF(s)-f(0-)	Differentiation theorem
$L\left[\frac{d^2f}{dt^2}\right]$	=	$s^2F(s) - sf(0-) - f(0-)$	Differentiation theorem
$L\bigg[rac{d^nf}{dt^n}\bigg]$	=	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{k-1}(0-)$	Differentiation theorem
$Liggl[\int_{0-}^1 f(au)d auiggr]$	=	$\frac{F(s)}{s}$	Integration theorem
$f(\infty)$	=	$\lim_{s\to 0} sF(s)$	Final value theorem
f(0+)	=	$\lim_{s\to\infty} sF(s)$	Initial value theorem

ตัวอย่างที่ 1-2

จงหาการแปลงกลับลาปลาสของ $F_1(s) = 1/(s+3)^2$

วิธีทำ อาศัยทฤษฎีการเลื่อนความถี่ (Frequency shift theorem) ในตารางที่ 1-2 และการแปลง ลาปลาส f(t)=tu(t) ในตารางที่ 1-1 ได้ว่าการแปลงกลับของ $F(s)=\frac{1}{s^2}$ คือ tu(t) ดังนั้นการแปลง กลับของ $F(s+a)=\frac{1}{(s+a)^2}$ ก็ควรมีค่าเป็น $e^{-at}tu(t)$ ดังนั้นก็ควรจะได้ว่า $f_1(t)=e^{-3t}tu(t)$ นั่นเอง

<u>ตอบ</u>

จากตัวอย่างที่ 1-2 พบว่าการแปลงกลับลาปลาสคือการแปลงสมการฟังก์ชันของโดนเมน s กลับไปอยู่ในรูปสมการฟังก์ชันโดเมนเวลา การแปลงกลับลาปลาสนี้มีประโยชน์อย่างมากในการแก้ สมการอนุพันธ์เพื่อหาฟังก์ชันผลเฉลยในโดเมนเวลา ซึ่งเป็นคำตอบในรูปทั่วไปของสมการอนุพันธ์นั่นเอง