مجازىسازى قطعى كاركردهاى شبكه

پرهام الوانی

۶ دی ۱۳۹۹

دانشکده مهندسی کامپیوتر دکتر بهادر بخشی

🕦 مجازیسازی کارکردهای شبکه

🕦 مجازیسازی کارکردهای شبکه

🕜 شبکههای قطعی

- 🕦 مجازیسازی کارکردهای شبکه
 - 🔐 شبکههای قطعی
 - 🕝 مرور ادبیات

- 🕦 مجازیسازی کارکردهای شبکه
 - \Upsilon شبکههای قطعی
 - 🕝 مرور ادبیات
 - ۴ مسالهی پیشنهادی

- 🕦 مجازیسازی کارکردهای شبکه
 - ۳ شبکههای قطعی
 - ۳ مرور ادبیات
 - ۴ مسالهی پیشنهادی

۱. مجازیسازی کارکردهای شبکه

- ◄ یک سرویس شبکه به صورت تعدادی کارکرد مشخص که ترافیک با <mark>ترتیب مشخصی</mark> از آن ها عبور میکند، تعریف میشود.
- ◄ کارکردهای شبکه به صورت سختافزار و نرمافزار اختصاصی تهیه شده از سازندگان مختلف استفاده میشوند.
- ◄ کارکردها باید در مکان مناسب در شبکه قرار گیرند و ترافیک به سمت آنها هدایت شود.

شبکه های سنتی

- ◄ افزایش نیازمندی به سرویسهای متنوع با عمرکوتاه و نرخ بالای ترافیک
 - خریداری، انبارداری و استقرار سختافزارهای اختصاصی
 - افزایش هزینههای خرید، آموزش و انبارداری
 - كاهش فضاى فيزيكى
 - سربار آموزش کارکنان
 - محدودیت نوآوری در سختافزار و سرویس

Network Functions Virtualization مجازیسازی کارکردهای شبکه

- ◄ ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند.
- ◄ کارکردها به صورت سختافزاری به یکدیگر متصل هستند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت میشود.
- ◄ نیاز به تغییر همبندی سریع و یا مکان کارکردها برای سرویسدهی بهتر
 - استقرار و تغییر ترتیب کارکردها دشوار است
 - امکان رخدادن خطاهای متعدد

Service Function Chaining زنجیرهسازی کارکرد سرویس

▶ مجازیسازی کارکردهای شبکه

- اواخر سال ۲۰۱۲، FTSI NFV ISG توسط هفت اپراتور جهانی شبکه تأسیس شد.
 - اکنون بیش از ۲۵۰ سازمان با آن همکاری میکنند.
- اجرأی کارکردها بر روی سرورهای استاندارد با توان بالا به
 - وسیله مجازیسازی کارکردها
 - کاهش نیاز به تجهیزات سختافزاری خاص منظوره
 - اشتراک گذاری منابع بین کارکردها
 - کاهش هزینههای تجهیزات و مصرف انرژی از طریق تجمیع کارکردها

<u>معماری پی</u>شنهادی

- ▶ زنجیرهسازی کارکرد سرویس
- امکان تعریف زنجیره کارکردها به صورت پویا و بدون تغییر در زیرساخت فیزیکی
 - قابل اجرا بر بستر شبکههای سنتی یا نرمافزار بنیان
 - RFC 7665 •

معماري پيشنهادي

- [۵] ◀
- ◄ زنجيرههاي مرتب تمام
- ▶ زنجیرههای مرتب جزئی

شکل ۱: زنجیرههای مرتب جزئی و کامل

معماري پيشنهادي

شکل ۲: معماری سطح بالای مجازیسازی کارکردهای شبکه

معماري پيشنهادي

- ◄ NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
 - ▼ VNFM مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد.

تخصيص منابع

- ◄ جایگذاری کارکردهای مجازی شبکه به همراه مسیریابی ترافیک VPTR: VNF Placement and Traffic Routing
 - ▶ جایگذاری کارکردهای مجازی شبکه

VNFP: VNF Placement

◄ مسيريابي ترافيک

TRR: Traffic Routing

▶ بازاستقرار و تثبیت کارکردهای مجازی شبکه

VRC: VNF Redeployment and Consolidation

اهداف

- ◄ هزينه
- مسالهی پایهای در بحث تخصیص منابع
- وجود جواب با برآورده شدن محدودیتهای نودها و لینکها
 - NP-Hard
 - ▶ کیفیت سرویس
 - تاخير
 - انتشار
 - انتقال
 - صف
 - یردازش
 - دسترسی پذیری

اهميت تاخير

- ◄ كيفيت سرويس انتها به انتها يك زنجيره در واقع معيار كارآيى است كه توسط كاربران احساس مىشود.
 - ◄ ظهور اینترنت اشیا و شبکههای نسل پنجم
 - Tactile Internet •
 - شبکههای باتاخیر بسیار کم

مدلسازی تاخیر

- ◄ برای محاسبه تاخیر نیاز به مدلسازی میباشد.
- ◄ مىتوان تاخير را ثابت فرض كرده يا آن را به صورت معين در نظر گرفت.
 - ◄ تاخير تصادفي
 - تئوری صف: حالت میانه را پیدا میکند.
 - Network Calculus •

- مجازیسازی کارکردهای شبکه
 - \Upsilon شبکههای قطعی
 - 🕝 مرور ادبیات
 - ۴ مسالهی پیشنهادی

۲. شبکههای قطعی

مقدمه

- ◄ حضور کاربردهای بلادرنگ بسیار حساس به تاخیر و خرابی
- مهاجرت از شبکههای خاصمنظوره به شبکههای IP
 - تاخیر قطعی در مقابل تاخیر احتمالی
 - ▶ عدم قطعیت ذاتی شبکههای فعلی
 - الگوريتمهاي زمانبندي
 - ازدحام
 - خرابی
 - .
 - ▶ نیاز به ایجاد قطعیت در معماری شبکه

شبکهسازی حساس به زمان (Time Sensitive Networking)

- ◄ کارگروه IEEE 802.1 TSN
 - ◄ تمركز بر لايه پيوند داده
- ◄ جریان TSN: یک ارتباط شبکهای تکیخشی یا چندیخشی از یک ایستگاه انتهابی به یک ایستگاه انتهابی دیگر
 - Flow Concept
 - Flow Synchronization
 - Flow Management
 - Flow Control
 - Flow Integrity

شبکهسازی قطعی (Deterministic Networking)

- ◄ کارگروه IETF DetNet
 - ▶ تمرکز بر لایه شبکه
- ▶ جریانهای DetNet بر اساس کلاسهای کیفیت سرویس مشخص میشوند.
 - ◄ اهداف
 - کران معین برای تاخیر
 - كران معين تغييرات تاخير
 - کمترین میزان از دست رفتن بسته

معماري شبكهسازي قطعي

- ▶ کیفیت سرویس در شبکههای قطعی:
- کران بالا و پایین برای تاخیر انتها به انتها از مبدا به مقصد،
 تغییرات تاخیر کراندار، ارسال زماندار
 - نسبت از دست رفتن بستهها تحت فرضهای مختلف
 - کران بالا برای بستههای خارج از ترتیب
 - ◄ تنها دغدغه در شبكهسازي قطعي بدترين حالتها ميباشند.
 - ◄ اینجا حالتهای میانگین و ... از اهمیت کمی برخوردار هستند.
 - ▶ تکنیکهای برآورده ساختن نیازمندیهای کیفیت سرویس
 - تخصيص منابع
 - حفاظت از سرویس
 - مسیرهای صریح

معماري شبكهسازي قطعي

- ◄ تخصيص منابع
- بدست آوردن کیفیت سرویس با از بین بردن یا کاهش اثر از دست رفتن بستهها در اثر ازدحام
 - كاهش تغييرات تاخير
- ◄ حافظت از سرویس با تحمل یا از بین بردن از دست رفتن بستهها در
 اثر خرابی تجهیزات
 - ارسال به ترتیب بستهها
 - تكرار بستهها
 - کد کردن بستهها
- ◄ مسیرهای صریح در اثر تغییرات بلافلاصه تغییر نمیکند و تلاش میکند
 تا حد امکان تغییر نکند.

معماري شبكهسازي قطعي

```
packets going
                               packets coming
 v down the stack v
                                 up the stack
       Source
                                  Destination
 Service sub-layer:
                              Service sub-layer:
 Packet sequencing
                            Duplicate elimination
  Flow replication
                                  Flow merging
  Packet encoding
                               Packet decoding
Forwarding sub-layer:
                            Forwarding sub-layer:
Resource allocation
                             Resource allocation
   Explicit routes
                               Explicit routes
   Lower layers
                                Lower layers
```

شکل ۳: معماری یشته شبکههای قطعی

آشنایی با Network Calculus

$$(R \cup +\infty, \wedge, +)$$
 دیود

- ▶ جمع تبدیل به محاسبهی infimum میشود.
 - ▶ ضرب به جمع تبدیل میشود.

$$(3 \land 4) + 5 = (3+5) \land (4+5) = 8 \land 9 = 8$$

▶ پیچیش کمینه - جمع

$$(f \otimes g)(t) = \int_0^t f(t-s)g(s)ds$$

منحنی ورودی، جریان R با $\alpha(.)$ محدود شده است.

$$R(t) - R(s) \le \alpha(t-s)$$

ابر با A^* برابر با A^* برابر با A^* برابر با A^* برابر با A^*

$$R^* > R \otimes b$$

مجازیسازی کارکردهای شبکه

- ۳ شبکههای قطعی
 - 🕝 مرور ادبیات
- ۴ مسالهی پیشنهادی

۳. مرور ادبیات

مرجع [۱]

- ◄ مسالهی زمانبندی سرویسهای شبکه
- ◄ سرویسهای شبکه در قالب تعداد کارکرد مجازی با عمرمحدود
- ▶ کارکردهای مجازی شبکه به صورت store-and-foward عمل میکنند.
 - ◄ تاخير انتقال و تاخير پردازش
- ◄ این مقاله محدودیت پردازش برای نودها و ظرفیت برای لینکها را در نظر گرفته است.
- ◄ کارکردها میتوانند میزان جریان عبوری را تغییر دهند. مثلا دیوار آتش مىتواند بستەھا را عبور ندھد.

- ▶ ارائهی یک چهارچوب مدیریتی براساس مدل تاخیر ارائه شده
 - ◄ تاخير پردازش برای تعداد مشخصی نمونه از کارکرد
 - ◄ دستهبندی کارکردها
 - وابسته به اندازه بسته (exponential)
 - مستقل از اندازه بسته (deterministic)

مرجع [۴]

- ◄ تاخير انتقال و تاخير پردازش
- ◄ در نظر گرفتن زنجیرههای مرتب جزئی و تاثیر آنها بر تاخیر
- ▼ قطعه قطعه کردن زنجیرههای مرتب جزئی برای تبدیل آنها به تعدادی زنجیره مرتب کامل

مرجع [۳]

- ◄ تاخير انتقال ثابت در نظر گرفته شده است.
- ◄ زنجیرهها نیازمندی تاخیر انتها به انتها دارند.
 - ◄ مسالهی بهینهسازی چند دورهای
 - ◄ به اشتراک گذاری نمونهها
 - ▶ گسترش عرضی و طولی
- ◄ عدم توانایی در نظر گرفتن همه این شرایط در مسالهی بهینهسازی

- مجازیسازی کارکردهای شبکه
 - \Upsilon شبکههای قطعی
 - 🕝 مرور ادبیات
 - ۴ مسالهی پیشنهادی

۴. مسالهی پیشنهادی

مسالەي پيشنهادي

- ◄ نیازمندیهای شبکههای قطعی
- ◄ كران بالاي پارامترهاي غيرقطعي
 - ◄ مجازيسازي كاركردهاي شبكه

مسالهي پيشنهادي

جایگذاری زنجیرههایی با کارکردهای قطعی در زیرساخت مجازیسازی شبکه

- [1] Long Qu, Chadi Assi, and Khaled Shaban. "Delay-Aware Scheduling and Resource Optimization With Network Function Virtualization". In: IEEE Transactions on Communications 64.9 (Sept. 2016), pp. 3746-3758. DOI: 10.1109/tcomm.2016.2580150. URL: https://doi.org/10.1109/tcomm.2016.2580150.
- [2] Qing Li et al. "Quokka: Latency-Aware Middlebox Scheduling with dynamic resource allocation". In: Journal of Network and Computer Applications 78 (Jan. 2017), pp. 253–266. DOI: 10.1016/j.jnca.2016.10.021. URL: https://doi.org/10.1016/j.jnca.2016.10.021.

- [3] Meitian Huang et al. "Maximizing Throughput of Delay-Sensitive NFV-Enabled Request Admissions via Virtualized Network Function Placement". In: IEEE Transactions on Cloud Computing (2019), pp. 1–1. DOI: 10.1109/tcc.2019.2915835. URL: https://doi.org/10.1109/tcc.2019.2915835.
- [4] Song Yang et al. "Delay-Sensitive and Availability-Aware Virtual Network Function Scheduling for NFV". In: IEEE Transactions on Services Computing (2019), pp. 1–1. DOI: 10.1109/tsc.2019.2927339. URL: https://doi.org/10.1109/tsc.2019.2927339.

[5] Song Yang et al. "Recent Advances of Resource Allocation in Network Function Virtualization". In: IEEE Transactions on Parallel and Distributed Systems 32.2 (Feb. 2021), pp. 295-314. DOI: 10.1109/tpds.2020.3017001. URL: https://doi.org/10.1109/tpds.2020.3017001.