CAPE Unit 1 Pure Mathematics June 2014 Solutions

© Russell Bell

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form by means of electronic, mechanical, photocopying, recording or otherwise without the written permission of the copyright holder.

© Russell Bell

CAPE Unit 1 Pure Mathematics June 2014 – Solutions

© Russell Bell

a	р	q	r	$p \rightarrow q$	$r \rightarrow q$	$(p \to q) \land (r \to q)$
•	Т	Т	Т	Т	Т	Т
	Т	Τ	F	Т	Τ	Τ
	Т	F	Τ	F	F	F
	Т	F	F	F	Т	F
	F	Τ	Τ	Т	Т	Τ
	F	Τ	F	Т	Т	Τ
	F	F	T	Т	F	F
	F	F	F	Т	Т	Τ

[5 marks]

b. Given
$$y \oplus x = y^3 + x^3 + ay^2 + ax^2 - 5y - 5x + 16$$
, $a \in \mathbb{N}$; $x, y \in \mathbb{R}^+$

i. To state, with reason, if \bigoplus is commutative

$$y \oplus x = (y^3 + x^3) + a(y^2 + x^2) - 5(y + x) + 16$$

$$x \oplus y = (x^3 + y^3) + a(x^2 + y^2) - 5(x + y) + 16$$

$$x^2$$
, y^2 , x^3 , $y^3 \in \mathbb{R}^+$ since multiplication is closed in \mathbb{R}^+

$$y^3 + x^3 = x^3 + y^3$$
 since addition is commutative in \mathbb{R}^+
 $y^2 + x^2 = x^2 + y^2$ since addition is commutative in \mathbb{R}^+

$$y + x = y + x$$
 since addition is commutative in \mathbb{R}^+

$$\therefore (y^3 + x^3) + a(y^2 + x^2) - 5(y + x) + 16 = (x^3 + y^3) + a(x^2 + y^2) - 5(x + y) + 16$$

$$y \oplus x = x \oplus y$$

Therefore \bigoplus is commutative.

[3 marks]

ii. Given
$$f(x) = 2 \oplus x$$

 $(x-1)$ is a factor of $f(x)$

To find:

a. the value of *a*.

$$f(x) = 2 \oplus x = 2^3 + x^3 + a(2)^2 + ax^2 - 5(2) - 5x + 16$$

= 8 + x³ + 4a + ax² - 10 - 5x + 16
= x³ + ax² - 5x + 4a + 14

Since (x - 1) is a factor:

$$x^3 + ax^2 - 5x + 4a + 14 \equiv (x - 1)(Q)$$

Let x = 1

$$1 + a - 5 + 4a + 14 = 0$$

$$5a + 10 = 0$$

$$a = -2$$

[4 marks]

1

b. To factorize
$$f(x)$$
 completely

-5x = -6x - Bx

$$f(x) = x^3 - 2x^2 - 5x - 8 + 14$$

$$= x^3 - 2x^2 - 5x + 6$$

$$\therefore x^3 - 2x^2 - 5x + 6 \equiv (x - 1)(Ax^2 + Bx + C)$$
From inspection $A = 1, C = -6$

 $x^3 - 2x^2 - 5x + 6 \equiv (x - 1)(x^2 + Bx - 6)$

Equating the terms in *x* on both sides of the equation:

$$-5 = -6 - B$$

$$B = -1$$

$$\therefore x^3 - 2x^2 - 5x + 6 \equiv (x - 1)(x^2 - x - 6)$$

$$\therefore x^3 - 2x^2 - 5x + 6 \equiv (x - 1)(x + 2)(x - 3)$$
[3 marks]

To use math induction to prove that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n}{2}(4n^2 - 1)$ c.

Let P(n) be the proposition that $1^2 + 3^2 + 5^2 + \dots + (2n - 1)^2 = \frac{n}{3}(4n^2 - 1)$

Testing P(1)

LHS =
$$1^2 = 1$$

RHS = $\frac{1}{3}(4(1)^2 - 1) = 1$
 \therefore LHS = RHS and $P(1)$ is true

Assume that
$$P(k)$$
 is true

$$\therefore 1^2 + 3^2 + 5^2 + \dots + (2k-1)^2 = \frac{k}{3}(4k^2 - 1) \dots \dots (1)$$

Show that c; that is, if the proposition is true for n = k, it must be true for n = k + 1

$$P(k+1)$$

$$P(k+1):$$

$$1^{2} + 3^{2} + 5^{2} + \dots + (2k-1)^{2} + [2(k+1) - 1]^{2} = \frac{k+1}{3} (4(k+1)^{2} - 1) \dots (2)$$

$$\frac{k}{3} (4k^{2} - 1) + [2(k+1) - 1]^{2} = \frac{k+1}{3} [4(k^{2} + 2k + 1) - 1]$$

$$\frac{k}{3} (4k^{2} - 1) + (2k+1)^{2} = \frac{k+1}{3} [4k^{2} + 8k + 4 - 1]$$

$$\frac{k(4k^{2} - 1)}{3} + \frac{3(2k+1)^{2}}{3} = \frac{4k^{3} + 8k^{2} + 3k + 4k^{2} + 8k + 3}{3}$$

$$\frac{4k^{3} - k + 3(4k^{2} + 4k + 1)}{3} = \frac{4k^{3} + 12k^{2} + 11k + 3}{3}$$

$$\frac{4k^{3} - k + 12k^{2} + 12k + 3}{3} = \frac{4k^{3} + 12k^{2} + 11k + 3}{3}$$

$$\frac{4k^{3} + 12k^{2} + 11k + 3}{3} = \frac{4k^{3} + 12k^{2} + 11k + 3}{3}$$

$$\frac{4k^{3} + 12k^{2} + 11k + 3}{3} = \frac{4k^{3} + 12k^{2} + 11k + 3}{3}$$

Therefore $P(k) \Rightarrow P(k+1)$

That is, if the proposition is true for n = k it must be true for n = k + 1.

Since
$$P(1)$$
 is true, and $P(k) \Rightarrow P(k+1)$ then $P(n)$ is true $\forall n \in \mathbb{Z}^+$
Hence, $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n}{3}(4n^2 - 1)$ [10 marks]

2. a. Given:
$$f(x) = 2x^2 + 1$$

$$g(x) = \sqrt{\frac{x-1}{2}}$$

where $1 \le x \le \infty$, $x \in \mathbb{R}$

i. To determine, in terms of x,

a.
$$f^2(x)$$

$$f^2(x) = 2(2x^2 + 1)^2 + 1$$

[3 marks]

b.

$$f[g(x)] = 2\left(\sqrt{\frac{x-1}{2}}\right)^2 + 1 = 2\left(\frac{x-1}{2}\right) + 1 = x$$
 [3 marks]

f and g are inverses of each other since fg(x) = x

[1 mark]

b. Given that
$$a^3 + b^3 + 3a^2b = 5ab^2$$

To show that
$$3\log\left(\frac{a+b}{2}\right) = \log a + 2\log b$$

$$a^3 + b^3 + 3a^2b = 5ab^2$$

$$a^3 + b^3 + 3a^2b + 3ab^2 = 5ab^2 + 3ab^2$$

$$(a+b)^3 = 8ab^2$$

$$\frac{(a+b)^3}{8} = ab^2$$

$$\frac{(a+b)^3}{8} = ab^2$$
$$\left(\frac{a+b}{2}\right)^3 = ab^2$$

$$\left(\frac{1}{2}\right) = ab^2$$

$$\log\left(\frac{a+b}{2}\right)^3 = \log(ab^2)$$

$$3\log\left(\frac{a+b}{2}\right) = \log a + 2\log b$$

[5 marks]

c. i. To solve
$$e^x + \frac{1}{e^x} - 2 = 0$$

let
$$y = e^x$$

by substitution:
$$y + \frac{1}{y} - 2 = 0$$

Multiplying both sides of the equation by y:

$$y^2 - 2y + 1 = 0$$

$$(y-1)(y-1)=0$$

$$\nu = 1$$

$$\therefore e^x = 1$$

[4 marks]

$$x = 0$$

ii. To solve $\log_2(x + 1) - \log_2(3x + 1) = 2$

$$\log_2(x+1) - \log_2(3x+1) = 2$$

$$\log_2 \frac{x+1}{3x+1} = 2$$

Changing to index form

$$2^2 = \frac{x+1}{3x+1}$$

$$4(3x + 1) = x + 1$$

$$12x - x = -3$$

$$x = -\frac{3}{11}$$

[4 marks]

d. To show that:
$$\frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{2}+1}{\sqrt{2}-1} = 10$$

$$\frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{\left(\sqrt{3}-1\right)^2 + \left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}$$

$$= \frac{3-2\sqrt{3}+1+3+2\sqrt{3}+1}{2}$$

$$= 4$$

$$\frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{2}+1}{\sqrt{2}-1} = \frac{\left(\sqrt{2}-1\right)^2 + \left(\sqrt{2}+1\right)^2}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}$$
$$= \frac{2-2\sqrt{2}+1+2+2\sqrt{2}+1}{1}$$
$$= 6$$

$$\therefore \frac{\sqrt{3}-1}{\sqrt{3}+1} + \frac{\sqrt{3}+1}{\sqrt{3}-1} + \frac{\sqrt{2}-1}{\sqrt{2}+1} + \frac{\sqrt{2}+1}{\sqrt{2}-1} = 4+6 = 10$$
 [5 marks]

3. (a) (i) To prove:
$$\frac{\cot y - \cot x}{\cot x + \cot y} = \frac{\sin(x - y)}{\sin(x + y)}$$

$$LHS = \frac{\frac{\cos y}{\sin y} - \frac{\cos x}{\sin x}}{\frac{\sin y}{\sin x}} = \frac{\frac{\sin x \cos y - \sin y \cos x}{\sin x \sin y}}{\frac{\sin y \cos x - \sin x \cos y}{\sin x \sin y}}$$

$$\equiv \frac{\frac{\sin x \cos y - \sin y \cos x}{\sin x \sin y}}{\frac{\sin x \sin y}{\sin y \cos x - \sin x \cos y}}$$

$$\equiv \frac{\sin(x - y)}{\sin(x + y)} \text{ (4 marks)}$$

(ii) Hence or otherwise to solve:

$$\frac{\cot y - \cot x}{\cot x + \cot y} = 1 \qquad 0 \le y \le 2\pi$$
when $\sin x = \frac{1}{2} \qquad 0 \le x \le \frac{\pi}{2}$

Note to student: $\sin x = \frac{1}{2} \Rightarrow \cos x = \frac{\sqrt{3}}{2}$ $\frac{\cot y - \cot x}{\cot x + \cot y} \equiv \frac{\sin(x - y)}{\sin(x + y)}$

$$\equiv \frac{\sin x \cos y - \sin y \cos x}{\sin x \cos y + \sin y \cos x}$$

$$\equiv \frac{\frac{1}{2} \cos y - \frac{\sqrt{3}}{2} \sin y}{\frac{1}{2} \cos y + \frac{\sqrt{3}}{2} \sin y}$$

$$\therefore \frac{\frac{1}{2} \cos y - \frac{\sqrt{3}}{2} \sin y}{\frac{1}{2} \cos y + \frac{\sqrt{3}}{2} \sin y} = 1$$

$$\frac{1}{2} \cos y - \frac{\sqrt{3}}{2} \sin y = \frac{1}{2} \cos y + \frac{\sqrt{3}}{2} \sin y$$

$$0 = 2 \frac{\sqrt{3}}{2} \sin y$$

$$0 = \sqrt{3} \sin y$$

$$\sin y = 0^{\circ} \quad 0 \le y \le 2\pi$$

$$\therefore y = 0, \pi, 2\pi$$

(8 marks)

3. (b) (i) To express $f(\theta) = 3\sin 2\theta + 4\cos 2\theta$ in the form $r\sin(2\theta + \alpha)$ where r > 0 and $0 < \alpha < \frac{\pi}{2}$

Note: $a \sin x + b \cos x = R \sin (x + \alpha)$ where $R = \sqrt{a^2 + b^2}$ and $\tan \alpha = \frac{b}{a}$

$$\therefore r = \sqrt{3^2 + 4^2} = 5$$

$$\tan \alpha = \frac{4}{3}$$

 $\alpha = 53.1^{\circ}$ to 1 decimal place, or

 $\alpha = 0.927$ radians to 3 significant figures

Note: Generally, you should give your answer in the measure they used for the range. Since the question used radians, it might be better to give your answer in radians

Hence, $3 \sin 2\theta + 4 \cos 2\theta = 5 \sin(2\theta + 0.927)$

(4 marks)

(ii) Hence or otherwise, to determine the value of θ for $0 \le \theta \le 2\pi$ radians at which $f(\theta)$ is a minimum.

Note: $f(\theta)$ is a minimum when $\sin(2\theta + 0.927) = -1$

$$\sin(2\theta + 0.927) = -1$$

$$2\theta + 0.927 = \frac{3\pi}{2}$$

$$\theta = \left(\frac{3\pi}{2} - 0.927\right) \div 2$$

 $\theta = 1.89$ radians to 2 decimal places (

(4 marks)

(b) To determine the maximum and minimum values of $\frac{1}{7-f(\theta)}$

Note; The maximum value of $f(\theta)$ occurs when $\sin(2\theta + 0.927) = 1$

Therefore the maximum value of $f(\theta)$ is 5(1) = 5

Similarly, the minimum value of $f(\theta)$ occurs when $\sin(2\theta + 0.927) = -1$

Therefore the minimum value of $f(\theta)$ is 5(-1) = -5

That is, $-5 \le f(\theta) \le 5$

The maximum and minimum values of $\frac{1}{7-f(\theta)}$ depend on these two values of $f(\theta)$

Substituting 5 and -5 for $f(\theta)$ in $\frac{1}{7-f(\theta)}$:

$$\frac{1}{7-5} = \frac{1}{2}$$

$$\frac{1}{7 - -5} = \frac{1}{12}$$

Hence the maximum and minimum values of $\frac{1}{7-f(\theta)}$ are $\frac{1}{2}$ and $\frac{1}{12}$ respectively. (5 marks)

4. (a) Given: L_1 and L_2 are diameters of a circle C

Equation of L_1 : x - y + 1 = 0

Equation of L_2 : x + y - 5 = 0

(i) To show: The coordinates of the centre of the circle (where L_1 and L_2 meet is (2,3)

Solving simultaneously

Adding both equations 2x - 4 = 0

$$x = 2$$

Substituting in : x - y + 1 = 0

$$2 - y + 1 = 0$$

$$y = 3$$

Therefore the centre is (2,3)

(3 marks)

(ii) Given further A, B are endpoints of L_1 , with A(1,2) and L_1 and L_2 bisect each other. To determine the coordinates of B

Let B be (x, y). Then

$$\frac{x+1}{2} = 2 \implies x = 3$$

$$\frac{x+1}{2} = 2 \implies x = 3$$

$$\frac{y+2}{2} = 3 \implies y = 4$$

Therefore B has coordinates (3,4)

(3 marks)

(3 marks)

Given further that a point moves such that its distance from C(2,3) is always $\sqrt{2}$ units. (iii) To determine the locus of p

The locus of P is a circle centre (2,3) and radius $\sqrt{2}$.

The equation of the circle is: $(x-2)^2 + (y-3)^2 = 2$

4. Given: Parametric equations of a curve, S are (b)

$$x = \frac{1}{1+t}, \ y = \frac{t}{1-t^2}$$

To determine the Cartesian equation of S.

$$x = \frac{1}{1+t}$$
 Given

Multiplying both sides of the equation by (1 + t)

$$(1+t)x = (1+t)\frac{1}{1+t}$$

$$x + tx = 1$$

$$tx = 1 - x$$

$$t = \frac{1-x}{x}$$

Substituting this in $y = \frac{t}{1-t^2}$

$$y = \frac{\frac{1-x}{x}}{1-\left(\frac{1-x}{x}\right)^2}$$

$$y = \frac{\frac{1-x}{x}}{\frac{x^2 - (1-x)^2}{x^2}}$$

$$y = \frac{\frac{1-x}{x}}{\frac{x^2 - 1 + 2x - x^2}{x^2}} = \frac{1-x}{x} \div \frac{x^2 - 1 + 2x - x^2}{x^2}$$

$$y = \frac{1-x}{x} \times \frac{x^2}{2x - 1}$$

$$y = \frac{x(1-x)}{2x - 1}$$
or, $2xy - y - x + x^2 = 0$

$$x^2 - x + 2xy - y = 0$$
(6 marks)

- 4. (c) Given: P(3,-2,1), $Q(-1,\lambda,5)$, R(2,1,-4) are the vertices of a triangle
 - (i) To express \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RP} in the form $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ} = \begin{pmatrix} -3\\2\\-1 \end{pmatrix} + \begin{pmatrix} -1\\\lambda\\5 \end{pmatrix} = \begin{pmatrix} -4\\2+\lambda\\4 \end{pmatrix} = -4\mathbf{i} + (2+\lambda)\mathbf{j} + 4\mathbf{k}$ $\overrightarrow{QR} = \overrightarrow{QO} + \overrightarrow{OR} = \begin{pmatrix} 1\\-\lambda\\-5 \end{pmatrix} + \begin{pmatrix} 2\\1\\-4 \end{pmatrix} = \begin{pmatrix} 3\\1-\lambda\\-9 \end{pmatrix} = 3\mathbf{i} + (1-\lambda)\mathbf{j} 9\mathbf{k}$ $\overrightarrow{RP} = \overrightarrow{RO} + \overrightarrow{OP} = \begin{pmatrix} -2\\-1\\4 \end{pmatrix} + \begin{pmatrix} 3\\-2\\1\\-4 \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} = \mathbf{i} 3\mathbf{j} + 5\mathbf{k}$ (4 marks)
 - (ii) Hence, find λ , given triangle PQR is a right angled triangle with PQ the hypotenuse. Note: The right angle is at R since PQ is the hypotenuse

$$\overrightarrow{RP} \cdot \overrightarrow{RQ} = 0$$

$$\overrightarrow{RQ} = \overrightarrow{RO} + \overrightarrow{OQ} = \begin{pmatrix} -2 \\ -1 \\ 4 \end{pmatrix} + \begin{pmatrix} -1 \\ \lambda \\ 5 \end{pmatrix} = \begin{pmatrix} -3 \\ \lambda - 1 \\ 9 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ \lambda - 1 \\ 9 \end{pmatrix} = -3 - 3\lambda + 3 + 45 = 0$$

$$-3\lambda = -45$$

$$\lambda = 15$$
(6 marks)

5. (a) Given:
$$f(x) = \begin{cases} ax + 2 & x < 3 \\ ax^2 & x \ge 3 \end{cases}$$

 $a=\frac{1}{2}$

(i) To find the value of
$$a$$
 if $f(x)$ is continuous at $x = 3$

$$\lim_{x \to 3^{+}} f(x) = (a)(3^{2})$$

$$= 9a$$

$$\lim_{x \to 3^{-}} f(x) = (a)(3) + 2$$

$$= 3a + 2$$
If $f(x)$ is continuous at $x = 3$ then
$$9a = 3a + 2$$

(ii) Given
$$g(x) = \frac{x^2+2}{bx^2+x+4}$$
, and $\lim_{x\to 1} 2g(x) = \lim_{x\to 0} g(x)$
To find: the value of b

To find: the value of
$$b$$

$$\lim_{x \to 1} 2g(x) = 2 \lim_{x \to 1} g(x)$$

$$\lim_{x \to 1} 2g(x) = 2 \left[\frac{1^2 + 2}{b(1^2) + 1 + 4} \right]$$

$$\lim_{x \to 1} 2g(x) = 2 \left[\frac{3}{b + 5} \right]$$

$$\lim_{x \to 1} 2g(x) = \frac{6}{b + 5}$$

$$\lim_{x \to 0} g(x) = \frac{0^2 + 2}{b(0^2) + 0 + 4}$$

$$\lim_{x \to 0} g(x) = \frac{2}{4} = \frac{1}{2}$$

$$\lim_{x \to 0} g(x) = \frac{0^2 + 2}{b(0^2) + 0 + 4}$$
$$\lim_{x \to 0} g(x) = \frac{2}{4} = \frac{1}{2}$$

$$\therefore \frac{6}{b+5} = \frac{1}{2}$$

$$b+5 = 12$$

$$b = 7$$
(5 marks)

(4 marks)

(b) Given
$$y = \frac{1}{\sqrt{x}}$$

To find $\frac{dy}{dx}$ from first principles

$$\frac{dy}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x) = \frac{1}{\sqrt{x}}$$

$$f(x+h) = \frac{1}{\sqrt{x+h}}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h}$$

$$= \lim_{h \to 0} \frac{\sqrt{x}}{\sqrt{x+h}\sqrt{x}} - \frac{\sqrt{x+h}}{\sqrt{x+h}\sqrt{x}}$$

$$= \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{(x+h)\sqrt{x}}} \cdot \frac{\sqrt{x} + \sqrt{x+h}}{\sqrt{x} + \sqrt{x+h}}$$

$$= \lim_{h \to 0} \frac{x - (x+h)}{h(\sqrt{x+h}\sqrt{x}) \cdot (\sqrt{x} + \sqrt{x+h})}$$

$$= \lim_{h \to 0} \frac{-h}{h(\sqrt{x+h}\sqrt{x}) \cdot (\sqrt{x} + \sqrt{x+h})}$$

$$= \lim_{h \to 0} \frac{-1}{(\sqrt{x+h}\sqrt{x}) \cdot (\sqrt{x} + \sqrt{x+h})}$$

$$= \frac{-1}{x(2\sqrt{x})}$$

$$= -\frac{1}{2} \cdot \frac{1}{x\sqrt{x}} = -\frac{1}{2x^{\frac{3}{2}}}$$

$$= -\frac{1}{2} x^{-\frac{3}{2}}$$

Note: If
$$y = x^{-\frac{1}{2}}$$
 $\frac{dy}{dx} = -\frac{1}{2}x^{-\frac{3}{2}}$ (8 marks)

(ii) Given:
$$y = \frac{x}{\sqrt{1+x}}$$

To find: $\frac{dy}{dx}$

$$\frac{dy}{dx} = \frac{\sqrt{1+x}(1) - (x)(\frac{1}{2})(1+x)^{-\frac{1}{2}}}{1+x}$$

$$\frac{dy}{dx} = \frac{\sqrt{1+x} - \frac{1}{2}x(\frac{1}{\sqrt{1+x}})}{1+x}$$

$$\frac{dy}{dx} = \frac{\frac{\sqrt{1+x}\sqrt{1+x}}{\sqrt{1+x}} - \frac{\frac{1}{2}x}{\sqrt{1+x}}}{1+x}$$

$$\frac{dy}{dx} = \frac{1+x-\frac{1}{2}x}{\sqrt{1+x}} \cdot \frac{1}{1+x}$$

$$\frac{dy}{dx} = \frac{1+\frac{1}{2}x}{(1+x)^{\frac{3}{2}}}$$

(c) Given: $x = \cos \theta$ $y = \sin \theta$

To find: $\frac{dy}{dx}$ in terms of θ

$$\frac{dy}{d\theta} = \cos \theta$$

$$\frac{dx}{d\theta} = -\sin \theta$$

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}}$$

$$\frac{dy}{dx} = \frac{\cos \theta}{-\sin \theta}$$

$$\frac{dy}{dx} = -\cot \theta$$

(4 marks)

(4 marks)

Given: Curve passes through the point (-1, -4)6. (a)

$$\frac{dy}{dx} = 3x^2 - 4x + 1$$

- To find (i)
 - (a) the equation of the curve

$$y = \int \frac{dy}{dx} dx = \int (3x^2 - 4x + 1) dx$$
$$y = x^3 - 2x^2 + x + c$$

When
$$x = -1$$
, $y = -4$; substituting
 $-4 = (-1)^3 - 2(-1)^2 + (-1) + c$
 $-4 = -1 - 2 - 1 + c$
 $c = 0$
 $\therefore y = x^3 - 2x^2 + x$

(b) the coordinates of the stationary points and the nature of the stationary

(4 marks)

At a stationary point $\frac{dy}{dx} = 0$

$$\therefore 3x^2 - 4x + 1 = 0$$

$$3x^{2} - 4x + 1 = 0$$

$$(3x - 1)(x - 1) = 0$$

$$x = \frac{1}{3}, 1$$

$$x = \frac{1}{3}, 1$$

When
$$x = \frac{1}{3}$$
, $y = \left(\frac{1}{3}\right)^3 - 2\left(\frac{1}{3}\right)^2 + \frac{1}{3}$
$$y = \frac{1}{27} - \frac{2}{9} + \frac{1}{3} = \frac{4}{27}$$

When
$$x = 1$$
, $y = (1)^3 - 2(1)^2 + 1$
 $y = 1 - 2 + 1 = 0$

When x=1, $y=(1)^3-2(1)^2+1$ y=1-2+1=0 Hence the coordinates of the stationary points are $\left(\frac{1}{3},\frac{4}{27}\right)$ and (1,0)

From inspection $\left(\frac{1}{3}, \frac{4}{27}\right)$ is the maximum since it has the higher y coordinate and (1,0) the minimum.

$$Or, \frac{d^2y}{dx^2} = 6x - 4$$

When x = 1, $\frac{d^2y}{dx^2} = 6(1) - 4 = 2$ hence, this point is a minimum. Thus $\left(\frac{1}{2}, \frac{4}{27}\right)$ is a maximum. (8 marks) (ii) To sketch the curve showing the stationary points and the intercepts

Note: the y intercept is 0 since the equation of the curve is $y = x^3 - 2x^2 + x$ (when x = 0, y = 0.)

Finding the x-intercepts

$$x^3 - 2x^2 + x = 0$$

$$x(x^2 - 2x + 1) = 0$$

$$x(x-1)(x-1)=0$$

Thus the x-intercepts are 0 and 1.

Note: Since there are two equal roots at x = 1, then the *x*-axis is a tangent to this point

- (b) Given: The equation of a curve is $f(x) = 2x\sqrt{1+x^2}$
 - (i) To evaluate $\int_0^3 f(x) dx$

$$\int_0^3 f(x) dx = \int_0^3 2x \sqrt{1 + x^2} dx$$

Let
$$u = 1 + x^2$$

$$\frac{du}{dx} = 2x$$

$$du = 2x dx$$

When
$$x = 3$$
, $u = 1 + 3^2 = 10$

When
$$x = 0$$
, $u = 1 + 0^2 = 1$

$$\therefore \int_0^3 2x \sqrt{1 + x^2} dx = \int_1^{10} u^{\frac{1}{2}} du$$

$$\int_{1}^{10} u^{\frac{1}{2}} du = \left[\frac{2}{3} u^{\frac{3}{2}}\right]_{1}^{10}$$

$$= \left[\frac{2}{3} (10)^{\frac{3}{2}}\right] - \left[\frac{2}{3} (1)^{\frac{3}{2}}\right]$$

$$= \frac{2}{3} \left(\left(\sqrt{10}\right)^{3} - 1\right)$$

$$= 20.4 \text{ to 3 significant figures.}$$
(5 marks)

(ii) To find the volume when f(x) is rotated about the x-axis between the limits x = 0 and x = 2.

Note;
$$V = \int_a^b \pi y^2 dx$$

$$y^2 = [f(x)]^2 = \left[2x\sqrt{1+x^2}\right]^2$$

$$y^2 = 4x^2(1+x^2) = 4x^2 + 4x^4$$

$$\therefore V = \int_0^2 \pi (4x^2 + 4x^4) \, dx$$

$$V = 4\pi \int_0^2 (x^2 + x^4) dx$$

$$V = 4\pi \left[\frac{x^3}{3} + \frac{x^5}{5} \right]_0^2$$

$$V = 4\pi \left[\left(\frac{8}{3} + \frac{32}{5} \right) - \left(\frac{0}{3} + \frac{0}{4} \right) \right]$$

$$V = 4\pi \left[\frac{40}{15} + \frac{96}{15} \right]$$

$$V = 4\pi \left(\frac{136}{15}\right)$$

$$V = \frac{544}{15}\pi \text{ unit}^3$$

(4 marks)