· Topic and Mohivation

· Minimum - home flight for VTOL-Drone

· Push pretform to its limits - to explor full potential

·Use (2505)

Nesuuc

Dd ivey Transportshion

Image

- · Our Approach (Leo)
- · Whit his been done so for
 - · Problem reduced to 2D
 - · Steer towards single point
 - · Fly along small random trajectories
 - Image: Waypoints connected with lines

lot of our	time sport	on	Modeling	0+	Reward:
·	,		O		
Reward					
			~		

·Fly along trajectory -> reward progress in each time Step.

. This term can have singulatiles due to shop edges in trajectory

- o Edding over line progresson Countersofs this

· reward for reading waypoint within contain distance

- · Penelties (Leo)
- · Trzining Strzlegy (Leo)
- · Plots
 - · Pews of goes up: converges dividy after 500 000 seps
 - · Success (zte: how much drones read every waypoint 2/most 100% after 400 000 sps.
 · Success full drones: completion time goes down and converges
 - drow goes fisher

· Video SOW

Drove flies along trajectory,

Changes lotation to read next point,

Drone legins to consect missed points.

o Fist	1/0W 0	(69)			
Sull .	Sline	(leo)			
100K4	SKAS	((())			