

Figure 1: Performance of UPGNET and other baselines. X-axis represents ϵ and y-axis represents test accuracy (%).

Figure 2: Comparison of HOA and Residual Connection (RC) (Dataset: Cora, $\epsilon=0.01$). HOA demonstrates significantly better classification accuracy in private graph learning compared to Residual Connection.

Table 1: Hyperparameters and optimization settings for LPGNN.

Hyperparameter	Value Range	Hyperparameter	Value Range
optimal parameter selection	grid search	optimizer	Adam optimizer
privacy budget	$\{0.01, 0.1, 1.0, 2.0, 3.0\}$	learning rate	$\{10^{-3}, 10^{-2}, 10^{-1}, 0\}$
KProp step	$\{0, 2, 4, 6, 8, 16, 32, 64\}$	weight decay	$\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}, 0\}$
GNN	GCN, GraphSAGE, GAT	dropout rate	$\{10^{-3}, 10^{-2}, 10^{-1}, 0\}$

Figure 3: Attack accuracy with varying proportions (η) of neighboring information accessible to the attacker.

Table 2: Specific hyperparameters across different datasets.

Hyperparameter	Cora	CiteSeer	LastFM	Facebook
learning rate	10^{-2}	10^{-2}	10^{-2}	10^{-2}
weight decay	10^{-2}	10^{-2}	10^{-3}	10^{-2}
dropout rate	10^{-1}	10^{-1}	10^{-1}	10^{-1}
KProp step	2	16	4	4

Table 3: Statistics of heterophilic graph datasets.

Dataset	#Classes	#Nodes	#Edges	#Features
Flickr	7	89,250	899,756	500
Reddit	41	232,965	114,615,892	602

Figure 4: Performance comparison of UPGNET and other baselines on Flickr and Reddit (For statistics, please see Table 3). X-axis represents ϵ and y-axis represents accuracy (%). UPGNET exhibits superior performance compared to other baselines.

Table 4: Comparison of our NFR (without HOA) with DROPOUT and GROUP LASSO ($\epsilon=0.01,$ GCN). The values in the table represent accuracy (%). NFR demonstrates significantly better learning utility compared to other regularization approaches.

BASELINE	CORA	CITESEER	LASTFM	FACEBOOK
Dropout	63.4	52.7	61.3	77.6
GROUP LASSO	57.6	50.5	57.1	78.9
OURS	71.3	57.2	67.1	84.9

Figure 5: Effect of HOA vs. SKA on graph learning performance across various steps $K \in \{2, 4, 8, 16, 32, 64\}$. HOA demonstrates its superior denoising capability on heterophilic datasets (Flickr and Reddit).

Figure 6: Comparison of (a) **prior works** and (b) **ours** in the locally private graph learning scenario. The scenario comprises a cloud server and multiple users situated across different clients. Users' sensitive node features \mathbf{x} are perturbed to \mathbf{x}' using LDP before uploading to the cloud server for graph learning. Our approach achieves higher utility by integrating \mathbf{x}' than prior works.

Figure 7: Performance of UPGNET in H-N vs. N-H architectures.