Unabhängigkeit: Zwei Ereignisse A, B heissen unabhängig $A \perp B$, wenn $\mathbb{P}[B \mid A] = \mathbb{P}[B]$ gilt. $\Rightarrow \mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$

Wahrscheinlichkeit

Inhaltsverzeichnis

Wahrscheinlichkeit	1	W.1	Wahrscheinlichkeiten	
W.1 Wahrscheinlichkeiten	1	W.1.1	Ereignisraum, Grundraum	
W.1.1 Ereignisraum, Grundraum	1 1 1	Ereignisraum: Der <i>Ereignisraum</i> oder <i>Grundraum</i> Ω ist die Menge aller möglichen Ereignisse eines Zufallexperiments. Die		
W.2 Zufallsvariablen in \mathbb{R} W.2.1 Verteilungsfunktion	2 2		$e \ \omega \in \Omega$ heissen <i>Elementarereignisse</i> .	
W.2.2 Diskrete Zufallsvariablen	2	Ereignis	s: Ein <i>Ereignis</i> $A \subseteq \Omega$ ist eine Teilmenge von Ω .	
W.2.3 Stetige Zufallsvariablen	2 2 2 2		se aller beobachtbaren Ereignisse \mathcal{F} ist eine Teilmenge nzmenge $\mathcal{P}(\Omega)$ von Ω .	
W.3 Wichtige Verteilungen	3	W.1.2	${\bf Wahrscheinlichkeitsmass}$	
W.3.1 Diskrete Verteilungen	$\frac{3}{4}$		heinlichkeitsmass: Ein $Wahrscheinlichkeitsmass$ \mathbb{P}	
W.4 Zufallsvariablen in \mathbb{R}^n W.4.1 Gemeinsame Verteilungen	5 5 5	i: $\mathbb{P}[\Omega]$ ii: $\mathbb{P}[A]$	≥ 0 für alle $A \in \mathcal{F}$.	
W.4.3 Bedingte Verteilung	5	111: $\mathbb{P}[\bigcup_{i}]$	$\sum_{i=1}^{\infty} A_i = \sum_{i=1}^{\infty} \mathbb{P}[A_i] \text{ falls } A_i \cap A_j = \emptyset \text{ für } i \neq j.$	
W.4.4 Unabhängigkeit	5 5	i: $\mathbb{P}[A^{\mathcal{C}}]$	Axiomen i bis iii folgen direkt die Rechenregeln: $\mathbb{Z}[X] = 1 - \mathbb{P}[X][X]$	
W.5 Funktionen von Zufallsvariablen W.5.1 Transformationen	6	ii: ℙ[∅] iii: <i>A</i> ⊂	$= 0.$ $B \Rightarrow \mathbb{P}[A] \le \mathbb{P}[B].$	
W.5.2 Funktionen	6	iv: $\mathbb{P}[A]$		
W.6.1 Coots described 7 bloss	6	V. [D]	$= \mathbb{I}\left[D \cap A\right] + \mathbb{I}\left[D \cap A\right]$	
W.6.1 Gesetz der grossen Zahlen	6 6 7		e Räume: Für endliche Räume $\Omega = \{\omega_1, \dots, \omega_n\}$ $ =\sum_{w_i \in A} \mathbb{P}[w_i]$	
W.6.4 Monte Carlo Integration			-Raum: Im Laplace-Raum sind alle Ereignisse gleich	
Statistik	7	wanrscne	$einlich: P[A] = \frac{ A }{ \Omega }$	
S.1 Grundlagen	7	W.1.3	Bedingte Wahrscheinlichkeit	
S.2 Schätzer	7			
S.2.1 Momenten-Methode	8 8 8		e Wahrscheinlichkeit: Für Ereignisse A, B mit ist die bedingte Wahrscheinlichkeit definiert durch:	
S.3 Tests	9		$\mathbb{P}[B \mid A] := rac{\mathbb{P}[A \cap B]}{\mathbb{P}[A]}$	
S.3.1 Grundlagen	9 9 9	Es folgt	die Multiplikationsregel: $\mathbb{P}[A \cap B] = \mathbb{P}[B \mid A]\mathbb{P}[A]$	
S.3.4 Zweistichprobentest	9	Satz (T	otale Wahrscheinlichkeit): Sei $A_{1 < i < n}$ eine Par-	
S.4 Konfidenzbereiche	10	titionieru	ng von Ω , dann gilt für ein beliebiges Ereignis B :	
Anhang	10		$\mathbb{P}[B] = \sum_{i=1}^{n} \mathbb{P}[B \mid A_i] \mathbb{P}[A_i]$	
A.1 Kombinatorik	10		i=1	
A.2 Reihen und Integrale	10	Satz (Fo	ormel von Bayes): Sei A_1, \ldots, A_n eine Partitionie-	
${\bf A.3~Verteilungs-/Momentenerzeugende} \\ {\bf Funktionen}$	10	rung von	Ω mit $\mathbb{P}[A_i] > 0$ für alle i und B ein Ereignis mit , dann gilt für jedes k :	
		$\mathbb{P}[A]$	$_{k} \mid B] = \frac{\mathbb{P}[B \mid A_{k}]\mathbb{P}[A_{k}]}{\mathbb{P}[B]} = \frac{\mathbb{P}[B \mid A_{k}]\mathbb{P}[A_{k}]}{\sum_{i=1}^{n} \mathbb{P}[B \mid A_{i}]\mathbb{P}[A_{i}]}$	

W.2 Zufallsvariablen in \mathbb{R}

Zufallsvariable: Eine (reelwertige) *Zufallsvariable* X auf Ω ist eine Funktion $X: \Omega \to \mathcal{W}(X) \subseteq \mathbb{R}$. Jedes Elementarereignis ω wird auf eine Zahl $X(\omega)$ abgebildet.

Verteilung: Das stochastische Verhalten einer Zufallsvariablen X wird durch ihre *Verteilung* $\mu_X: \mathbb{R} \to [0,1]$ beschrieben

$$\mu_X(B) := \mathbb{P}[X \in B] := \mathbb{P}[\{\omega \mid X(\omega) \in B\}] \quad \text{für } B \subseteq \mathbb{R}.$$

Hinweis: Jedes Wahrscheinlichkeitsmass μ_X erfüllt:

- 1. $\mu_X(B) \geq 0$ für alle $B \subseteq \mathbb{R}$
- 2. $\mu_X(\mathcal{W}(X)) = \mu_X(\mathbb{R}) = 1$

W.2.1 Verteilungsfunktion

Verteilungsfunktion: Die *Verteilungsfunktion* einer Zufallsvariable X ist die Abbildung $F_X : \mathbb{R} \to [0, 1],$

$$F_X(t) := \mathbb{P}[X \le t] = \mu_X(-\infty, t)$$

Hinweis: F_X hat folgende Eigenschaften:

i: $a \leq b \Rightarrow F_X(a) \leq F_X(b)$ (monoton wachsend).

ii: $\lim_{t \to u, t > u} F_X(t) = F_X(u)$ (rechtsstetig).

iii: $\lim_{t \to -\infty} F_X(t) = 0$ und $\lim_{t \to \infty} F_X(t) = 1$.

W.2.2 Diskrete Zufallsvariablen

Eine Zufallsvariable X heisst diskret, falls Ω und somit auch $\mathcal{W}(X) = \{x_1, x_2 \ldots\}$ endlich oder abzählbar ist.

Gewichtsfunktion: Die Gewichtsfunktion $p_X : \mathbb{R} \to [0, 1]$ ist definiert als

$$p_X(x) := \left\{ \begin{array}{ll} \mathbb{P}[X=x] & \text{für } x \in \mathcal{W}(X) \\ 0 & \text{sonst} \end{array} \right.$$

Somit lässt sich die diskrete Verteilung μ_X berechnen:

$$\mu_X(B) = P[X \in B] = \sum_{x_i \in B} p_X(x_i)$$

W.2.3 Stetige Zufallsvariablen

Eine Zufallsvariable X heisst stetig, falls Ω und somit auch $\mathcal{W}(X)$ überabzählbar ist. Deswegen ist $\mathbb{P}[X=x]$ immer gleich null; es wird eine andere Definition benötigt.

Dichte: Die *Dichte* $f_X : \mathbb{R} \to [0, \infty)$ ist gegeben durch

$$F_X(x) = \int_{-\infty}^x f_X(s) ds$$
 für alle $x \in \mathbb{R}$.

Somit lässt sich die stetige Verteilung μ_X berechnen:

$$\mu_X(B) = P[X \in B] = \int_B f_X(x) ds$$

Hinweis: Es gilt $\frac{d}{dt}F_X(t) = f_X(t)$ falls f_X an der Stelle t stetig ist.

W.2.4 Erwartungswert und Momente

Erwartungswert: Sofern die Reihe / das Integral konvergiert, ist der Erwartungswert von X definiert als

$$\mathbb{E}[X] := \sum_{x_i \in \mathcal{W}(X)} x_i p_X(x_i) \quad \text{bzw.} \quad \mathbb{E}[X] := \int_{-\infty}^{\infty} x f_X(x) dx$$

Hinweis: Es gelten folgende Rechenregeln

- i: $\mathbb{E}[a] = a$
- ii: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
- iii: $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$, falls $X \perp Y$
- iv: $\mathbb{E}[X] \leq \mathbb{E}[Y] \Leftrightarrow X \leq Y \ (Monotonie)$

Satz (4.1): Für eine Zufallsvariable X und Y = g(X) gilt:

$$\mathbb{E}[Y] = \sum_{x_i \in \mathcal{W}(X)} y_i p_X(x_i) \quad \text{bzw.} \quad \mathbb{E}[Y] = \int_{-\infty}^{\infty} y f_X(x) dx$$

p-tes Moment: Für eine Zufallsvariable X und $p \in \mathbb{R}^+$ gilt:

- Das p-te absolute Moment $M_p := \mathbb{E}[|X|^p] \leq \infty$
- Das p-te Moment $m_p := \mathbb{E}[X^{\hat{p}}] < \infty$

Nach Satz 4.1 ist das p-te Moment, sofern existent:

$$m_p = \sum_{x_i \in \mathcal{W}(X)} x_i^p p_X(x_i)$$
 bzw. $m_p = \int_{-\infty}^{\infty} x^p f_X(x) dx$

Momentenerzeugende Funktion: $\mathcal{M}_X(t) := \mathbb{E}[e^{tX}]$

W.2.5 Varianz und Standardabweichung

Varianz: Sei X eine Zufallsvariable mit $\mathbb{E}[X^2] < \infty$. Die Varianz von X ist definiert als

$$Var[X] := \mathbb{E}\left[(X - \mathbb{E}(X))^2 \right] = \mathbb{E}[X^2] - \mathbb{E}[X]^2.$$

Nach Satz 4.1 ist die Varianz einer stetigen Zufallsvariable X:

$$Var[X] = \int_{-\infty}^{\infty} (x - \mathbb{E}[X])^2 f_X(x) dx$$

Hinweis: Es gelten folgende Rechenregeln

- i: Var[a] = 0
- ii: $Var[a + bX] = b^2 Var[X]$
- iii: $\operatorname{Var}[aX + bY] = a^2 \operatorname{Var}[X] + 2ab \operatorname{Cov}[X, Y] + b^2 \operatorname{Var}[Y]$

Standardabweichung: Die *Standardabweichung* einer Zufallsvariable X ist $\sigma_X := \sqrt{\operatorname{Var}[X]}$.

W.2.6 Kovarianz und Korrelation

Kovarianz: Seien X und Y Zufallsvariablen mit $\mathbb{E}[X^2] < \infty$ und $\mathbb{E}[Y^2] < \infty$, dann ist die *Kovarianz* von X und Y gegeben

$$\operatorname{Cov}[X,Y] := \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$$

Hinweis: Die Kovarianz ist ein Skalarprodukt:

- i: Cov[X, Y + aZ] = Cov[X, Y] + aCov[X, Z] (bilinear)
- ii: Cov[X, Y] = Cov[Y, X]. (symmetrisch)
- iii: $\operatorname{Cov}[X, X] = \operatorname{Var}[X] \ge 0$, $\operatorname{Cov}[X, X] = 0 \Leftrightarrow X = a$ $\operatorname{Cov}[X, a] = 0$ für alle $a \in \mathbb{R}$. (positiv definit)
- $\Rightarrow \operatorname{Cov}[X,Y]^2 \leq \operatorname{Var}[X]\operatorname{Var}[Y]$ (Cauchy-Schwarz)

Korrelation: Seien X und Y Zufallsvariablen, dann gilt

$$\operatorname{Corr}[X, Y] := \frac{\operatorname{Cov}[X, Y]}{\sqrt{\operatorname{Var}[X]}\sqrt{\operatorname{Var}[Y]}}$$

Hinweis: Die Korrelation misst die Stärke und Richtung der $linearen\ Abhängigkeit\ zweier\ Zufallsvariablen\ X\ und\ Y:$

$$Corr[X, Y] = \pm 1 \Leftrightarrow \exists a \in \mathbb{R}, b > 0 : Y = a \pm bX$$

unkorreliert: Ist Corr[X, Y] = 0 und somit Cov[X, Y] = 0, dann heissen X und Y unkorreliert.

W.3 Wichtige Verteilungen

W.3.1 Diskrete Verteilungen

W.3.1.1 Diskrete Gleichverteilung

Eine diskret gleichverteilte Zufallsvariable $X \sim \mathcal{U}_T$ nimmt alle Werte im Wertebereich $\mathcal{W}(X) = \{x_1, \dots, x_n\} := T$ mit gleicher Wahrscheinlichkeit an:

$$p_X(x_i) = \frac{1}{n} \quad \text{für } i \in \{1, \dots, n\}$$

Beispiel (Würfeln): Die Zufallsvariable X gibt die Augenzahl bei einem Würfelwurf an. $W = \{1, 2, 3, 4, 5, 6\}, n = 6.$

W.3.1.2 Bernoulli-Verteilung

Eine bernoulli-verteilte Zufallsvariable $X \sim Be(p)$ mit $p \in [0,1]$ nimmt die Werte 0 und 1 mit Wahrscheinlichkeiten

$$p_X(1) = p$$
 und $p_X(0) = 1 - p$

an. Eine alternative Schreibweise ist

$$p_X(x) = \begin{cases} p^x (1-p)^{1-x} & x \in \{0,1\} \\ 0 & \text{sonst.} \end{cases}$$

Erwartungswert : pVarianz : p(1-p)

Beispiel (Münzwurf): Ein fairer Münzwurf ist bernoulliverteilt mit Parameter $p = \frac{1}{2}$. Für einen Parameter $p \neq \frac{1}{2}$ wäre der Münzwurf unfair.

W.3.1.3 Binomialverteilung

Die Gewichtsfunktion p_X einer binomial-verteilten Zufallsvariable $X \sim Bin(n,p)$ mit Parameter $n \in \mathbb{N}$ und $p \in [0,1]$ ist

$$p_x(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 für $k \in \{0, ..., n\}$

Erwartungswert : np

Varianz : np(1-p)

X ist die Anzahl der Erfolge k bei n unabhängigen Wiederholungen eines Bernoulli-Experiments.

W.3.1.4 Geometrische Verteilung

Die Gewichtsfunktion p_X einer geometrisch-gleichverteilten Zufallsvariable $X \sim Geom(p)$ mit Parameter $p \in [0,1]$ ist

$$p_X(k) = p(1-p)^{k-1}$$
 für $k \in \{1, 2, ...\}$

Erwartungswert : $\frac{1}{p}$ Varianz : $\frac{1}{p^2}(1-p)$

Beispiel (Wartezeit): Die Geometrische Verteilung ist die Wahrscheinlichkeitsverteilung der Anzahl X Bernoulli-Versuche, die notwendig sind, um den ersten Erfolg zu erzielen.

W.3.1.5 Negativbinomiale Verteilung

Die Gewichtsfunktion p_X einer negativ-binomial-verteilten Zufallsvariable X mit Parameter $r \in \mathbb{N}$ und $p \in [0, 1]$ ist

$$p_X(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}$$
 für $k \in \{r, r+1, \ldots\}$

Erwartungswert : $\frac{r}{p}$ Varianz : $\frac{r}{p^2}(1-p)$

X entspricht der Wartezeit auf den r-ten Erfolg. Es gibt $\binom{k-1}{r-1}$ möglichkeiten für r-1 Erfolge bei k-1 Versuchen; der r-te Erfolg tritt ja beim k-ten Versuch ein.

W.3.1.6 Hypergeometrische Verteilung

Die Gewichtsfunktion p_X einer hypergeometrisch-verteilten Zufallsvariable X mit Parameter $r,n,m\in\mathbb{N},$ wobei $r,m\leq n,$ ist

$$p_X(k) = \frac{\binom{r}{k} \binom{n-r}{m-k}}{\binom{n}{m}} \quad \text{für } k \in \{0, \dots, \min\{r, m\}\}$$

Erwartungswert : $m\frac{r}{n}$ Varianz : $m\frac{r}{n}(1-\frac{r}{n})\frac{n-m}{n-1}$

In einer Urne befinden sich n Gegenstände. Davon sind r Gegenstände vom Typ A und n-r vom Typ B. Es werden m Gegenstände ohne Zurücklegen gezogen. X beschreibt die Wahrscheinlichkeitsverteilung für die Anzahl k der Gegenstände vom Typ A in der Stichprobe.

Beispiel (Lotto): Anzahl Zahlen n=45, richtige Zahlen r=6, meine Zahlen m=6. Die Wahrscheinlichkeit für 4 Richtige ist $p_X(4) \approx 0.00136$.

W.3.1.7 Poisson Verteilung

Die Gewichtsfunktion p_X einer Poisson-verteilten Zufallsvariable $X \sim \mathcal{P}(\lambda)$ mit Parameter λ ist gegeben durch

$$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 für $k \in \{0, 1, \ldots\}$

Erwartungswert : λ Varianz : λ

Die Poisson-Verteilung eignet sich zur Modellierung von seltenen Ereignissen, wie z.B. Versicherungsschäden.

Faustregel: Ab $np^2 \leq 0.05$ ist $Bin(n,p) \stackrel{\text{approx.}}{\approx} \mathcal{P}(\lambda), \lambda = np$

W.3.2 Stetige Verteilungen

W.3.2.1 Stetige Gleichverteilung

Die Dichte f_X und Verteilungsfunktion F_X einer stetigen und gleichverteilten Zufallsvariable $X \sim \mathcal{U}(a,b)$ mit Parameter $a,b \in \mathbb{R}$ wobei a < b sind gegeben durch

$$f_X(t) = \frac{1}{b-a} \mathbb{1}_{t \in [a,b]}$$

$$F_X(t) = \begin{cases} \frac{t-a}{b-a} & \mathbb{1}_{t \in [a,b]} \\ 1 & \text{für } t > b \end{cases}$$

Erwartungswert : $\frac{1}{2}(a+b)$ Varianz : $\frac{1}{12}(a-b)^2$

Beispiel: Zufällige Wahl eines Punktes aus [a, b]

W.3.2.2 Exponentialverteilung

Die Dichte f_X und Verteilungsfunktion F_X einer exponentialverteilten Zufallsvariable $X \sim Exp(\lambda)$ mit Parameter $\lambda > 0$ sind

$$f_X(t) = \lambda e^{-\lambda t} \mathbb{1}_{t \ge 0}$$

$$F_X(t) = 1 - e^{-\lambda t} \mathbb{1}_{t>0}$$

Erwartungswert : $\frac{1}{\lambda}$ Varianz : $\frac{1}{\lambda^2}$

Beispiel (Lebensdauer): Die Exponentialverteilung ist eine typische Lebensdauerverteilung. So ist beispielsweise die Lebensdauer von elektronischen Bauelementen häufig annähernd exponentialverteilt.

W.3.2.3 Normalverteilung

Die Dichte f_X einer normalverteilten Zufallsvariable $X \sim \mathcal{N}(\mu, \sigma^2)$ mit Parameter $\mu \in \mathbb{R}$ und $\sigma^2 > 0$ ist gegeben durch

$$f_X(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

Für die Verteilungsfunktion F_X existiert kein geschlossener Ausdruck. Deshalb werden die Werte der Verteilungsfunktion $\Phi(t)$ der $Standard-Normalverteilung \mathcal{N}(0,1)$ tabelliert. Für allgemeine Normalverteilungen berechnet man dann

$$F_X(t) = \mathbb{P}[X \le t] = \mathbb{P}\left[\frac{X - \mu}{\sigma} \le \frac{t - \mu}{\sigma}\right] = \Phi\left(\frac{t - \mu}{\sigma}\right).$$

Erwartungswert : μ Varianz : σ^2

Beispiel: Streuung von Messwerten um den Mittelwert.

W.3.2.4 Gamma-Verteilung

Die Dichte f_Z einer Zufallsvariablen $Z \sim Ga(\alpha, \lambda)$ mit $\alpha > 0, \lambda > 0$ ist gegeben durch

$$f(z) = \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} z^{\alpha - 1} e^{-\lambda z} \cdot \mathbb{1}_{x > 0}$$

Erwartungswert : $\frac{\alpha}{\lambda}$ Varianz : $\frac{\alpha}{\lambda^2}$

Gammafunktion: $\Gamma(z)$ ist die Erweiterung der Fakultät auf reele und komplexe Argumente $\Gamma(z+1)=z\cdot\Gamma(z),\quad \Gamma(1)=1$

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt, \qquad \text{für } z \in \mathbb{C}, Re(z) > 0$$

Speziell gilt für $\Gamma(n)=(n-1)!$ für $n\in\mathbb{N}$ und $\Gamma(1/2)=\sqrt{\pi}$

Hinweis: Die Gamma-Verteilung ist eine Verallgemeinerung der Exponentialverteilung: $Ga(1, \lambda) \Leftrightarrow Exp(\lambda)$

W.3.2.5 Chiquadrat-Verteilung

Die Dichte f_Y einer χ^2_n -verteilten Zufallsvariablen $Y\sim\chi^2_n$ mit n Freiheitsgraden, ist gegeben durch

$$f_Y(y) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} y^{\frac{n}{2}-1} e^{-\frac{1}{2}y} \cdot \mathbb{1}_{x \ge 0}$$

Erwartungswert : nVarianz : 2n

Die χ_n^2 -Verteilung mit
n Freiheitsgraden beschreibt die Verteilung der Summe $Y = \sum_{i=0}^n X_i^2$, für X_i i.i.d $\mathcal{N}(0,1)$

Hinweis: Die χ_n^2 -Verteilung ist ein Spezialfall der Gamma-Verteilung: $Ga(\frac{n}{2},\frac{1}{2}) \Leftrightarrow \chi_n^2$ und somit auch $\chi_2^2 \Leftrightarrow Exp(\frac{1}{2})$

W.3.2.6 t-Verteilung

Die Dichte f_Z einer t_n -verteilten Zufallsvariablen $Z\sim t_n$ mit n>0 Freiheitsgraden, ist gegeben durch:

$$f_Z(z) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} \left(1 + \frac{z^2}{n}\right)^{-\frac{n+1}{2}}$$

Erwartungswert : 0 für n > 1Varianz : $\frac{n}{n-1}$ für n > 2

Die t-Verteilung mit
n Freiheitsgraden beschreibt die Verteilung von $Z=\frac{X}{\sqrt{\frac{1}{n}Y}},$ für
 $X\perp Y,~X\sim\mathcal{N}(0,1)$ und $Y\sim\chi^2_n$

Hinweis: Für n=1 ist die t-Verteilung eine *Cauchy-Verteilung*, und für $n \to \infty$ erhält man die $\mathcal{N}(0,1)$ -Verteilung

W.3.2.7 Cauchy-Verteilung

Die Cauchy-Verteilung ist die t-Verteilung mit einem Freiheitsgrad: Erwartungswert und Varianz sind nicht definiert. Für X,Y Cauchy-verteilt, ist $\frac{X+Y}{2}$ auch Cauchy-verteilt.

$$f(x) = \frac{1}{\pi} \frac{1}{1 + (x - \mu)^2}$$

W.4Zufallsvariablen in \mathbb{R}^n

Verteilung: Das stochastische Verhalten einer Zufallsvariablen $X = (X_1, \dots, X_n)$ über **einem** Wahrscheinlichkeitsraum wird durch ihre Verteilung beschrieben. $\mu_X : \mathbb{R}^n \to [0,1]$

$$\mu_X(B) := \mathbb{P}[(X_1, \dots, X_n) \in B]$$

:= $P[\{\omega \mid (X_1(\omega), \dots, X_n(\omega)) \in B\}]$ für $B \subseteq \mathbb{R}^n$

Hinweis: Jedes Wahrscheinlichkeitsmass μ_X erfüllt:

- 1. $\mu_X(B) \geq 0$ für alle $B \subseteq \mathbb{R}^n$
- 2. $\mu_X(\mathcal{W}(X)) = \mu_X(\mathbb{R}^n) = 1$

W.4.1Gemeinsame Verteilungen

Gemeinsame Verteilung: Die gemeinsame Verteilungsfunktion ist die Abbildung $F_X: \mathbb{R}^n \to [0,1],$

$$F_X(t_1, \dots, t_n) := \mathbb{P}[X_1 \le t_1, \dots, X_n \le t_n]$$

:= $\mu_X((-\infty, t_1] \times \dots \times (-\infty, t_n])$

Gemeinsame Gewichtsfunktion: Im diskreten Fall ist die gemeinsame Gewichtungsfunktion $p_X: \mathbb{R}^n \to [0,1]$ definiert:

$$p_X(x_1,\ldots,x_n) := \mathbb{P}[X_1 = x_1,\ldots,X_n = x_n]$$

Somit lässt sich die diskrete Verteilung μ_X berechnen:

$$\mu_X(B) = \sum_{(x_1, \dots, x_n)_i \in B} p_X((x_1, \dots, x_n)_i)$$

Gemeinsame Dichte: Im stetigen Fall ist die gemeinsame Dichte $f_X: \mathbb{R}^n \to [0, \infty)$ definiert, falls für alle $t_i \in \mathbb{R}$ gilt

$$F_X(t_1,\ldots,t_n) = \int_{-\infty}^{t_1} \ldots \int_{-\infty}^{t_n} f_X(x_1,\ldots,x_n) \mathrm{d}x_n \ldots \mathrm{d}x_1$$

Somit lässt sich die stetige Verteilung μ_X berechnen:

$$\mu_X(B) = \int_{(t_1, \dots, t_n) \in B} f_X(t_1, \dots, t_n) d\mu$$

Hinweis: $f_X(t_1,\ldots,t_n) = \frac{\partial^n}{\partial t_1\cdots\partial t_n}F(t_1,\ldots,t_n)$

W.4.2Randverteilungen

Randverteilung: Seien X und Y Zufallsvariablen mit gemeinsamer Verteilungsfunktion $F_{X,Y}$, dann ist die Randverteilung $F_X: \mathbb{R} \to [0,1]$ von X definiert durch

$$F_X(x) := \mathbb{P}[X \le x] = \mathbb{P}[X \le x, Y < \infty] = \lim_{y \to \infty} F_{X,Y}(x, y).$$

Randgewichtsfunktion: Für zwei diskrete Zufallsvariablen X und Y mit gemeinsamer Gewichtsfunktion $p_{X,Y}(x,y)$ ist die Gewichtsfunktion der Randverteilung von X gegeben:

$$p_X(x) = \mathbb{P}[X = x] = \sum_j \mathbb{P}[X = x, Y = y_j] = \sum_j p_{X,Y}(x, y_j).$$

Randdichte: Für zwei stetige Zufallsvariablen X und Y mit gemeinsamer Dichte $f_{X,Y}(x,y)$ ist die Randdichte (Dichtefunktion der Randverteilung) von X gegeben durch

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy.$$

W.4.3Bedingte Verteilung

Bedingte Gewichtsfunktion: Seien X und Y diskrete Zufallsvariablen mit gemeinsamer Gewichtsfunktion $p_{X,Y}(x,y)$, dann ist die bedingte Gewichtsfunktion $p_{X|Y}(x \mid y)$ von X gegeben Y definiert durch

$$p_{X|Y}(x \mid y) := \mathbb{P}[X = x \mid Y = y] = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

falls $p_Y(y) > 0$ und 0 falls $p_Y(y) = 0$.

Bedingte Dichte: Für zwei stetige Zufallsvariablen X und Y mit gemeinsamer Dichte $f_{X,Y}(x,y)$ ist die bedingte Dichte $f_{X|Y}$ von X gegeben Y definiert durch

$$f_{X|Y}(x \mid y) := \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

falls $f_Y(y) > 0$ und 0 falls $f_Y(y) = 0$

W.4.4 Unabhängigkeit

Unabhängigkeit: Die Zufallsvariablen X_1, \ldots, X_n heissen unabhängig, falls gilt:

$$F(x_1,\ldots,x_n) = \prod_{i=1}^n F_{X_i}(x_i)$$

Hinweis: Es gelten folgende Rechenregeln:

- i: $p(x_1,...,x_n) = \prod p_{X_i}(x_i)$
- ii: $f(x_1,\ldots,x_n)=\prod f_{X_i}(x_i)$
- iii: $\mathcal{M}_{(X_1,\ldots,X_n)}(t_1,\ldots,t_n) = \prod \mathcal{M}_{X_i}(t_i)$ iv: $Y_i = f_i(X_i)$ sind für beliebige f_i unabhängig

i.i.d Annahme: Die Abkürzung i.i.d. kommt vom Englischen independent and identically distributed.

Hinweis: Es gelten die Implikationen: unabhängig ⇒ paarweise unabhängig ⇒ unkorreliert

W.4.5Erwartungswert und Varianz

Hinweis: Der Erwartungswert einer *n*-dimensionalen Verteilung wird als n-Tupel der Erwartungswerte aller Randverteilungen $\mathbb{E}[X_i]$ angegeben.

Satz (4.2): Für den Erwartungswert $\mathbb{E}[Y]$ einer Funktion $Y := g(X_1, \dots, X_n)$ der Zufallsvariablen X_1, \dots, X_n gilt

$$\mathbb{E}[Y] = \sum_{x_1, \dots, x_n} g(x_1, \dots, x_n) p(x_1, \dots, x_n)$$

$$\mathbb{E}[Y] = \int \dots \int_{\mathbb{R}^n} g(x_1, \dots, x_n) f(x_1, \dots, x_n) dx_n \dots dx_1.$$

Hinweis: Es gelten folgende Rechenregeln:

- i: $\mathbb{E}[a + \sum_{i=1}^{n} b_i X_i] = a + \sum_{i=1}^{n} b_i \mathbb{E}[X_i]$

- ii: $\mathbb{E}[\prod_{i=1}^{n} X_i] = \prod_{i=1}^{n} X_i \mathbb{E}[X_i] \Leftrightarrow X_i$ unabhängig iii: $\operatorname{Var}[a + \sum_{i=1}^{n} b_i X_i] = \sum_{i=1}^{n} b_i^2 \operatorname{Var}[X_i]$, für X_i unabhängig iv: $\operatorname{Cov}[a + \sum_{i=1}^{n} b_i X_i, c + \sum_{j=1}^{m} d_j Y_j]$ $= \sum_{i=1}^{n} \sum_{j=1}^{m} b_i d_j \operatorname{Cov}[X_i, Y_j]$

W.5 Funktionen von Zufallsvariablen

W.5.1 Transformationen

Satz: Sei X eine stetige Zufallsvariable mit Dichte f_X und $f_X(t)=0$ für $t\notin I\subseteq\mathbb{R}$. Sei $g:\mathbb{R}\to\mathbb{R}$ stetig differenzierbar und streng monoton auf I mit Umkehrfunktion g^{-1} . Dann hat die Zufallsvariable Y:=g(X) die Dichte

$$f_Y = \begin{cases} f_X(g^{-1}(t)) \left| \frac{\mathrm{d}}{\mathrm{d}t} g^{-1}(t) \right| & \text{für } t \in \{g(x) \mid x \in I\} \\ 0 & \text{sonst} \end{cases}$$

Beispiel (Lineare Transformation): Aus Y := aX + b mit $a > 0, b \in \mathbb{R}$ folgt

$$F_Y(t) = \mathbb{P}[aX + b \le t] = \mathbb{P}\left[X \le \frac{t-b}{a}\right] = F_X\left(\frac{t-b}{a}\right)$$
$$\Rightarrow f_Y(t) = \frac{\mathrm{d}}{\mathrm{d}t}F_Y(t) = \frac{1}{a}f_X\left(\frac{t-b}{a}\right).$$

Beispiel (Nichtlineare Transformation): $Y := X^2$

$$F_Y(t) = \mathbb{P}[X^2 \le t] = \mathbb{P}\left[-\sqrt{t} \le X \le \sqrt{t}\right] = F_X\left(\sqrt{t}\right) - F_X\left(-\sqrt{t}\right)$$
$$\Rightarrow f_Y(t) = \frac{\mathrm{d}}{\mathrm{d}t}F_Y(t) = \frac{f_X\left(\sqrt{t}\right) + f_X\left(-\sqrt{t}\right)}{2\sqrt{t}}$$

W.5.1.1 Simulation von Verteilungen

Satz: Sei F eine stetige und streng monoton wachsende Verteilungsfunktion mit Umkehrfunktion F^{-1} . Ist $X \sim \mathcal{U}(0,1)$ und $Y := F^{-1}(X)$, so hat Y die Verteilungsfunktion F.

Beispiel: Um die Verteilung $Exp(\lambda)$ zu simulieren bestimmt man zu der Verteilungsfunktion $F(t) = 1 - e^{-\lambda t}$ für $t \ge 0$ die Inverse $F^{-1}(t) = -\frac{\log(1-t)}{\lambda}$. Mit $U \sim \mathcal{U}(0,1)$ erhält man

$$X:=F^{-1}(U)=-\frac{\log(1-U)}{\lambda}\sim Exp(\lambda).$$

W.5.2 Funktionen

Ausgehend von der Zufallsvariablen $X = (X_1, ..., X_n)$ kann mit einer Funktion $g : \mathbb{R}^n \to \mathbb{R}$ eine neue Zufallsvariable $Y = g(X_1, ..., X_n)$ bilden. Für die Verteilung μ_Y bedeutet dies:

$$\mu_Y(B) = \mu_X(\{\vec{x} \in \mathbb{R}^n \mid g(\vec{x}) \in B\})$$

Danach versuchen wir die rechte Seite auszurechnen, indem wir die genauere Struktur der Transformation g ausnutzen:

Beispiel (Summe): Für die stetige/diskrete Dichte der Summe Z = X + Y zweier Zufallsvariablen X, Y gilt somit:

$$p_{Z}(z) \qquad F_{Z}(z)$$

$$= \mu_{Z}(\{z\}) \qquad = \mu_{Z}(\{z\})$$

$$= \mu_{X,Y}(\{(x,y) \mid x+y=z\}) \qquad = \mu_{X,Y}(\{(x,y) \mid x+y\leq z\})$$

$$= \sum_{\substack{(x_{i},y_{i}) \\ y_{i}=z-x_{i}}} p_{X,Y}(x_{i},y_{i}) \qquad = \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x,y) dy dx$$

$$= \sum_{x_{i}} p_{X,Y}(x_{i},z-x_{i}) \qquad \stackrel{v=x+y}{=} \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(x,v-x) dx dx$$

$$\Rightarrow f_Z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) \mathrm{d}x.$$

W.5.2.1 Spezielle Funktionen

Wichtige Spezialfälle sind die Summe $S_n = \sum_{i=1}^n X_i$ und das arithmetische Mittel $\overline{X}_n = \frac{S_n}{n}$ für X_i unabhängig.

- 1. Wenn $X_i \sim Be(p)$, dann ist $S_n \sim Bin(n, p)$.
- 2. Wenn $X_i \sim Bin(n_i, p)$, dann ist $S_n \sim Bin(\sum n_i, p)$.
- 3. Wenn $X_i \sim \mathcal{P}(\lambda_i)$, dann ist $S_n \sim \mathcal{P}(\sum \lambda_i)$.
- 4. Wenn $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, dann ist $S_n \sim \mathcal{N}(\sum \mu_i, \sum \sigma_i^2)$.
- 5. Wenn $X_i \sim Ga(\alpha_i, \lambda)$, dann ist $S_n \sim Ga(\sum \alpha_i, \lambda)$

Für den Erwartungswert und die Varianz gilt allgemein

$$\mathbb{E}[S_n] = n\mathbb{E}[X_i] \qquad \operatorname{Var}[S_n] = n\operatorname{Var}[X_i]$$

W.6 Grenzwertsätze

W.6.1 Gesetz der grossen Zahlen

Satz (Schwaches GGZ): Für eine Folge $X_1, X_2,...$ von unkorrelierten Zufallsvariablen, die alle den Erwartungswert $\mu = \mathbb{E}[X_i]$ und die Varianz $\text{Var}[X_i] = \sigma^2$ haben, gilt

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \stackrel{n \to \infty}{\longrightarrow} \quad \mu = \mathbb{E}[X_i].$$

Das heisst

$$\mathbb{P}\left[|\overline{X}_n - \mu| > \epsilon\right] \stackrel{n \to \infty}{\longrightarrow} 0 \quad \forall \epsilon > 0.$$

Satz (Starkes GGZ): Für eine Folge X_1, X_2, \ldots unabhängiger Zufallsvariablen, die alle den endlichen Erwartungswert $\mu = \mathbb{E}[X_i]$ haben, gilt

$$\overline{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \stackrel{n \to \infty}{\longrightarrow} \quad \mu = \mathbb{E}[X_i]. \quad \text{P-fastsicher}$$

Das heisst

$$\mathbb{P}\left[\{\omega\in\Omega\mid \overline{X}_n(\omega)\stackrel{n\to\infty}{\longrightarrow}\mu\}\right]=1.$$

W.6.2 Zentraler Grenzwertsatz

Satz (ZGS): Sei X_1, X_2, \ldots eine Folge von i.i.d. Zufallsvariablen mit $\mu = \mathbb{E}[X_i]$ und $\sigma^2 = \text{Var}[X_i]$, dann gilt für die Summe $S_n = \sum_{i=1}^n X_i$

$$\lim_{n \to \infty} \mathbb{P} \left[\frac{S_n - n\mu}{\sigma \sqrt{n}} \le t \right] = \Phi(t) \quad \forall t \in \mathbb{R}$$

wobei Φ die Verteilungsfunktion von $\mathcal{N}(0,1)$ ist.

Hinweis: Die Summe S_n hat Erwartungswert $\mathbb{E}[S_n] = n\mu$ und Varianz $\text{Var}[S_n] = n\sigma^2$. Die Grösse

$$S_n^* := \frac{S_n - n\mu}{\sigma\sqrt{n}} = \frac{S_n - \mathbb{E}[S_n]}{\sqrt{\operatorname{Var}[S_n]}}$$

hat Erwartungswert 0 und Varianz 1. Für grosse n gilt zudem:

$$\begin{array}{ccc} \mathbb{P}[S_n^* \leq x] & \approx & \Phi(x) \\ S_n^* & \sim & \mathcal{N}(0,1) \\ S_n & \stackrel{\text{approx.}}{\sim} & \mathcal{N}(n\mu,n\sigma^2) \end{array}$$

W.6.3 Ungleichungen

Markov: Für eine wachsende Funktion $g: \mathbb{R} \to [0, \infty]$ mit g(c) > 0 für alle c und eine Indikatorvariable I gilt:

$$g(c)I_{\{g(c) \leq g(X)\}} & \leq & g(X) \\ g(c)I_{\{X \geq c\}} & \leq & g(X) \\ g(c)\mathbb{E}(I_{\{X \geq c\}}) & \leq & \mathbb{E}(g(X)) \\ g(c)\mathbb{P}[X \geq c] & \leq & \mathbb{E}(g(X)) \\ \end{bmatrix} \qquad \mathbb{P}[X \geq c] \leq \frac{\mathbb{E}[g(X)]}{g(c)}$$

Chebychev: Sei $X = |Y - \mathbb{E}[Y]|$ und $g(x) = x^2$, dann folgt:

$$\mathbb{P}[|Y - \mathbb{E}[Y]| \geq c] \quad \stackrel{\text{Markov}}{\leq} \quad \frac{\mathbb{E}[|Y - \mathbb{E}[Y]|^2]}{c^2} \quad = \quad \frac{\text{Var}[Y]}{c^2}$$

Chernoff: Seien X_1, \ldots, X_n unabhängig mit $X_i \sim Be(p_i)$. Wir wählen $S_n = \sum X_i$ mit $\mathbb{E}[S_n] = \sum p_i$ und g(c) = exp(ct)

$$\mathbb{P}[S_n \geq c] \overset{\text{Markov}}{\leq} \frac{1}{g(c)} \mathbb{E}[g(S_n)]$$

$$\overset{g(c),S_n}{=} \frac{1}{e^{tc}} \mathbb{E}[exp(t\sum X_i)]$$

$$\overset{X_i \perp X_j}{=} \frac{1}{e^{tc}} \prod \mathbb{E}[e^{tX_i}]$$

$$\overset{\text{Def } \mathbb{E}[X_i]}{=} \frac{1}{e^{tc}} \prod e^{t\cdot 0} (1-p_i) + e^{t\cdot 1} p_i$$

$$\overset{\text{arith.}}{=} \frac{1}{e^{tc}} \prod 1 + p_i(e^t - 1)$$

$$\overset{1+z \leq e^z}{\leq} \frac{1}{e^{tc}} \prod exp(p_i(e^t - 1))$$

$$\overset{\text{arith.}}{=} \frac{1}{e^{tc}} exp(\sum p_i(e^t - 1))$$

$$\overset{\text{erith.}}{=} \frac{1}{e^{tc}} exp(\mathbb{E}[S_n](e^t - 1) - tc)$$

Nun setzen wir $\mathbb{E}[S_n] = \mu_n$, $c = (1\pm\delta)\mu_n$ für $\delta > 0$ und wählen $t = \log(1\pm\delta)$, denn so wird die rechte Seite minimiert.

$$\mathbb{P}[S_n \ge (1 \pm \delta)\mu_n] \quad \le \quad \left(\frac{e^{\pm \delta}}{(1 \pm \delta)^{(1 \pm \delta)}}\right)^{\mu_n}$$

W.6.4 Monte Carlo Integration

Das Integral

$$I := \int_0^1 g(x) dx$$

lässt sich als Erwartungswert auffassen, denn mit einer gleichverteilten Zufallsvariable $U \sim \mathcal{U}(0,1)$ folgt

$$\mathbb{E}[g(U)] = \int_{-\infty}^{\infty} g(x) f_U(x) dx = \int_0^1 g(x) dx.$$

Mit einer Folge von Zufallsvariablen U_1, \ldots, U_n , die unabhängig gleichverteilt $U_i \sim \mathcal{U}(0,1)$ sind, lässt sich das Integral approximieren: Nach dem schwachen Gesetz der grossen Zahlen gilt

$$\overline{g(U_n)} = \frac{1}{n} \sum_{i=1}^n g(U_i) \stackrel{n \to \infty}{\longrightarrow} \mathbb{E}[g(U_1)] = I.$$

Statistik

S.1 Grundlagen

Stichprobe: Die Gesamtheit der Beobachtungen x_1, \ldots, x_n oder der Zufallsvariablen X_1, \ldots, X_n wird *Stichprobe* genannt; die Anzahl n heisst *Stichprobenumfang*.

Hinweis: Man muss immer sauber unterscheiden zwischen den $Daten\ x_1,\ldots,x_n$ (konkrete Zahlen) und dem generierenden $Mechanismus\ X_1,\ldots,X_n$ (Zufallsvariablen auf Ω)

Empirische Verteilungsfunktion: Die empirische Verteilungsfunktion F_n zu den Messdaten x_1, \ldots, x_n ist definiert

$$F_n(y) := \frac{1}{n} |\{x_i \mid x_i \le y\}| = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{x_i \le y}$$

Empirischer Mittelwert: $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$

Empirische Varianz: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$

k-tes Empirisches Moment: $\hat{m}_k := \frac{1}{n} \sum_{i=1}^n X_i^k$

Empirisches Quantil: Das empirische α -Quantil x_{α} teilt die geordneten Daten $y_{(1)} \leq \ldots \leq y_{(n)}$ so, dass der Anteil α unterhalb des empirischen α -Quantils liegt. Index $k = |\alpha n|$

$$x_{\alpha} = y_{(k)} + \alpha \left(y_{(k+1)} - y_{(k)} \right)$$

Empirischer Median: ist definiert als das 0.5-Quantil.

S.2 Schätzer

Modell: Für eine Stichprobe X_1, \ldots, X_n soll ein passendes Modell gefunden werden. Wir haben also einen Parameterraum $\Theta \subseteq \mathbb{R}^m$ und für jedes $\vartheta \in \Theta$ existiert ein Modell \mathbb{P}_{ϑ} .

Die Wahl von ϑ bestimmt also das Wahrscheinlichkeitsmass \mathbb{P}_{ϑ} . Wir wählen nun ein Modell aus, indem wir versuchen die Parameter $\vartheta = (\vartheta_1, \dots, \vartheta_m)$ aufgrund der Stichprobe mit einem $Sch\"{a}tzer\ T = (T_1, \dots, T_m)$ herauszufinden.

Schätzer: Schätzer sind Zufallsvariablen T_j , die eine Berechnungsmethode zur Schätzung der Parameters ϑ_j angeben. Dabei wird nur angenommen, dass die X_i nach dem Modell \mathbb{P}_{ϑ} verteilt sind.

$$T_j = t_j(X_1, \dots, X_n)$$

für eine geeignete Funktion $t_j: \mathbb{R}^n \to \mathbb{R}$.

Schätzwerte: Durch Einsetzen von Daten x_i erhält man Schätzwertwerte $t_j(x_1, \ldots, x_n)$ für ϑ_j .

Erwartungstreu: Ein Schätzer T heisst erwartungstreu für ϑ , falls $\mathbb{E}_{\vartheta}[T] = \vartheta$ (im Mittel wird richtig geschätzt).

mean-squared error: $MSE_{\vartheta}[T] := \mathbb{E}_{\vartheta}[(T - \vartheta)^2]$.

Konsistent: Eine Folge von Schätzern $T^{(n)}, n \in \mathbb{N}$ heisst konsistent für ϑ , falls $T^{(n)}$ für $n \to \infty$ im Modell \mathbb{P}_{ϑ} gegen ϑ konvergiert. Das heisst für jedes $\vartheta \in \Theta$ und $\epsilon > 0$ gilt

$$\lim_{n \to \infty} \mathbb{P}_{\vartheta}[|T^{(n)} - \vartheta| > \epsilon] = 0.$$

S.2.1 Momenten-Methode

Die Parameter ϑ_i der theoretischen Verteilung werden als Funktion der Momente m_k angegeben.

$$\vartheta_j = g_j(m_1, \dots, m_m)$$
 für $j \in \{1, \dots, m\}$

Den Momentenschätzer für $\vartheta = (\vartheta_1, \dots, \vartheta_m)$ erhält man, indem man die Stichprobenmomente in die Funktionen der Momente einsetzt; der Schätzer ist also $T = (T_1, \dots, T_m)$ mit

$$T_i := g_i(\hat{m}_1, \dots, \hat{m}_m)$$
 für $j \in \{1, \dots, m\}$

Beispiel: Gegeben seien n unabhängige Realisierungen x_1, \ldots, x_n einer Zufallsvariablen $X \sim \mathcal{P}(\lambda)$. Es gilt $\mathbb{E}[X] = \lambda$. Für die Funktion g_1 kann also die Idendität gewählt werden. Der Momentenschätzer ist somit

$$\lambda_{\text{MM}} = \hat{m}_1 = \frac{1}{n} \sum_{i=1}^n x_i = \overline{x}.$$

Es gilt aber auch $\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 = \lambda$. Es kann also auch $g_1(m_1, m_2) = m_2 - m_1^2$ gewählt werden. Dadurch erhält man einen anderen Momentenschätzer

$$\lambda_{\text{MM}} = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) - \left(\sum_{i=1}^{n}x_i\right)^2 = \frac{1}{n}\sum_{i=1}^{n}(x_i - \overline{x})^2$$

S.2.2 Maximum-Likelihood

Es wird von Zufallsvariablen X_1, \ldots, X_n ausgegangen, deren gemeinsame Dichte $f(t_1, \ldots, t_n; \vartheta)$ von einem Parameter ϑ abhängt. Die *Likelihood-Funktion* $\mathcal L$ ist gegeben durch

$$\mathcal{L}(x_1,\ldots,x_n;\vartheta)=f(x_1,\ldots,x_n;\vartheta).$$

Anschaulich ist das die Wahrscheinlichkeit¹, dass im Modell \mathbb{P}_{ϑ} die Stichprobe X_1, \ldots, X_n die Werte x_1, \ldots, x_n liefert. Um eine möglichst gute Anpassung des Modells an die Daten zu erreichen, wird der Likelihood-Schätzer als Funktion von ϑ maximiert.

Hinweis: Im diskreten Fall wird lediglich die Dichte f durch die Gewichtsfunktion p ersetzt.

Oft sind die Zufallsvariablen X_i unter \mathbb{P}_{ϑ} i.i.d. mit Dichtefunktion $f(t;\vartheta)$, so dass sich die Likelihood-Funktion vereinfacht zu

$$\mathcal{L}(x_1, \dots, x_n; \vartheta) = \prod_{i=1}^n f(x_i; \vartheta).$$

Aufgrund der Monotonie des Logarithmus kann dann die logarithmierte Likelihood-Funktion verwendet werden, ohne dass sich dadurch das Maximum der Funktion verschiebt.

$$\log \mathcal{L}(x_1, \dots, x_n; \vartheta) = \sum_{i=1}^n \log f(x_i; \vartheta)$$

Beispiel: Gegeben seien n unabhängige Realisierungen x_1, \ldots, x_n einer Zufallsvariable $X \sim Exp(\lambda)$ mit Dichte

 $f(t)=\lambda e^{-\lambda t}\mathbb{1}_{[0,\infty)}(t)$ und unbekanntem Parameter $\lambda.$ Für die Likelihood-Funktion erhält man

INHALTSVERZEICHNIS

$$\mathcal{L}(\lambda) := \mathcal{L}(x_1, \dots, x_n; \lambda) = \prod_{i=1}^n \lambda e^{-\lambda x_i}$$

und durch logarithmieren

$$\log \mathcal{L}(\lambda) = \sum_{i=1}^{n} \log \lambda e^{-\lambda x_i} = n \log \lambda - \lambda \sum_{i=1}^{n} x_i.$$

Zur Bestimmung des Maximums wird die Ableitung nullgesetzt:

$$\frac{\mathrm{d}}{\mathrm{d}\lambda}\log\mathcal{L}(\lambda) = \frac{n}{\lambda} - \sum_{i=1}^{n} x_i \stackrel{!}{=} 0 \quad \Rightarrow \quad \lambda^* = \frac{n}{\sum_{i=1}^{n} x_i}$$

Aus $\frac{\mathrm{d}^2}{\mathrm{d}\lambda^2}\mathcal{L}(\lambda) = -\frac{n}{\lambda^2} < 0$ für $\lambda > 0$ folgt, dass es sich auch tatsächlich um ein Maximum handelt. Der ML-Schätzer T für den unbekannten Parameter λ ist also gegeben durch

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i$$

S.2.3 Verteilungsaussagen

In vielen Situation ist es nützlich oder nötig, die Verteilung eines Schätzers unter \mathbb{P}_{ϑ} (für alle $\vartheta \in \Theta$) zu kennen.

Verteilung: Das stochastische Verhalten eines Schätzers T unter \mathbb{P}_{ϑ} wird durch seine $Verteilung \mu_{T,\vartheta}$ beschrieben

$$\mu_{T,\vartheta}(B) := \mathbb{P}_{\vartheta}[T \in B] \quad \text{für } B \subseteq \Theta.$$

bei Summen: Oft ist ein Schätzer T eine Funktion einer Summe $\sum X_i$, wobei die X_i im Modell \mathbb{P}_{ϑ} i.i.d. sind. Nach dem Zentralen Grenzwertsatz gilt dann für grosse n

$$\sum_{i=1}^{n} X_{i} \stackrel{\text{approx.}}{\sim} \mathcal{N}(n\mu, n\sigma) \qquad \mu = \mathbb{E}_{\vartheta}[X_{i}], \sigma = \text{Var}_{\vartheta}[X_{i}]$$

Satz (7.1): Für $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu, \sigma)$ gilt:

- 1. Sei die Zufallsvariable $U = \frac{\overline{X}_n \mu}{\sigma/\sqrt{n}}$. Aus $\overline{X}_n \sim \mathcal{N}(\mu, \frac{1}{n}\sigma^2)$, folgt $U \sim \mathcal{N}(0, 1)$
- 2. Sei die Zufallsvariable $V=\frac{n-1}{\sigma^2}S^2=\sum_{i=1}^n(\frac{X_i-\overline{X}_n}{\sigma})^2$ und

$$W = \sum_{i} (\frac{X_i - \mu}{\sigma})^2 = \sum_{i} (\frac{X_i - \overline{X}_n}{\sigma} + \frac{X_n - \mu}{\sigma})^2 = V + U^2$$

Da $W \sim \chi_n^2$, $U^2 \sim \chi_1^2$ und $U^2 \perp V$, gilt $V \sim \chi_{n-1}^2$

- 3. Unabhängigkeiten: $\overline{X}_n \perp S^2$ und $U \perp V$ Da $\overline{X}_n \perp (.., X_i - \overline{X}_n, ..)$ und $f(\overline{X}_n) \perp g(.., X_i - \overline{X}_n, ..)$
- 4. Sei die Zufallsvariable $Z = \frac{\overline{X}_n \mu}{S/\sqrt{n}}$. Nun gilt:

$$Z = \frac{\overline{X}_n - \mu}{S/\sqrt{n}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \frac{1}{\frac{1}{\sigma}S} = U \frac{1}{\sqrt{\frac{1}{n-1} \frac{n-1}{\sigma^2} S^2}} = \frac{U}{\sqrt{\frac{1}{n-1} V}}$$

Da $U \sim \mathcal{N}(0,1)$, $V \sim \chi^2_{n-1}$ und $U \perp V$, ist $Z \sim t_{n-1}$ verteilt. Formal werden Schritte 2 und 3 via $\mathcal{M}_X(t)$ bewiesen.

¹oder zumindest das stetige Pendant zur Wahrscheinlichkeit.

S.3Tests

S.3.1Grundlagen

Ausgangspunkt ist eine Stichprobe X_1, \ldots, X_n in einem Modell \mathbb{P}_{ϑ} mit unbekanntem Parameter $\vartheta \in \Theta$.

Modellklassen: Aufgrund einer Vermutung, wo sich der richtige Parameter ϑ befindet, werden eine Hypothese $\Theta_0 \subseteq \Theta$ und eine Alternative $\Theta_A \subseteq \Theta$ mit $\Theta_0 \cap \Theta_A = \emptyset$ formuliert:

> Hypothese $H_0: \vartheta \in \Theta_0$ Alternative $H_A: \vartheta \in \Theta_A$

Hinweis: Die Hypothese (bzw. Alternative) heisst *einfach*, falls sie nur aus einem einzelnen Wert besteht, z.B. $\Theta_0 = \{\vartheta_0\}$

Test: Eine Interpretation der Übereinstimmung zwischen den Daten x_1, \ldots, x_n und einem vermutetem Modell.

- 1. Entscheidungsregel: $\mathbb{1}_{t(x_1,...,x_n)\in K}$
- 2. Teststatistik: $T = t(X_1, \dots, X_n)$
- 3. Verwerfungsbereich: $K \subseteq \mathbb{R}$

Fehler 1. Art: Die Hypothese wird abgelehnt, obwohl sie richtig ist. Die Wahrscheinlichkeit für einen Fehler 1. Art ist

$$\mathbb{P}_{\vartheta}[T \in K] \quad \text{für } \vartheta \in \Theta_0.$$

Fehler 2. Art: Die Hypothese ϑ wird akzeptiert, obwohl sie falsch ist. Die Wahrscheinlichkeit für einen Fehler 2. Art ist

$$\mathbb{P}_{\vartheta}[T \notin K] = 1 - \mathbb{P}_{\vartheta}[T \in K] \quad \text{für } \vartheta \in \Theta_A.$$

Konstruktion von Tests (T, K)S.3.2

- 1. Wähle eine *Hypothese* Θ_0 (normalerweise $\{\vartheta_0\} = \Theta_0$).
- 2. Wähle ein Signifikanzniveau $\alpha \in (0,1)$. Dadurch werden Fehler 1. Art von α kontrolliert.

$$\sup_{\vartheta \in \Theta_0} \mathbb{P}_{\vartheta}[T \in K] \le \alpha.$$

3. Maximiere die $Macht\ \beta$ des Tests. Dadurch werden Fehler 2. Art minimiert.

$$\beta(\vartheta) := \mathbb{P}_{\vartheta}[T \in K] \quad \text{für } \vartheta \in \Theta_0$$

4. Falls der realisierte Wert $T(\omega)$ im Verwerfungsbereich K_{α} liegt, wird die Nullhypothese auf dem Niveau α verworfen

Hinweis: Die Hypothese zu verwerfen, ist schwieriger. Es wird häufig die Negation der gewünschten Aussage benutzt.

P-Wert: Der P-Wert ist die Wahrscheinlichkeit, dass unter der Nullhypothese H_0 ein zufälliger Versuch mindestens so extrem ausfällt, wie der beobachtete Wert $T(\omega)$

$$\mathbf{p\text{-}Wert} = \left\{ \begin{array}{ll} \mathbb{P}_{\vartheta_0}[T \leq T(\omega)] & \text{für} \quad H_A : \vartheta < \vartheta_0 \\ \mathbb{P}_{\vartheta_0}[T \geq T(\omega)] & \text{für} \quad H_A : \vartheta > \vartheta_0 \end{array} \right.$$

Likelihood-Quotienten Test: Als Teststatistik wird der Likelihood- $Quotient \mathcal{R}$ gewählt,

$$T := \mathcal{R}(x_1, \dots, x_n) := \frac{\sup_{\vartheta \in \Theta_0} \mathcal{L}(x_1, \dots, x_n; \vartheta)}{\sup_{\vartheta \in \Theta_A} \mathcal{L}(x_1, \dots, x_n; \vartheta)}$$

Ist dieser Quotient klein, sind die Beobachtungen im Modell \mathbb{P}_{Θ_A} deutlich wahrscheinlicher als im Modell \mathbb{P}_{Θ_0} . Der Verwerfungsbereich K := [0,c) wird so gewählt, dass der Test das gewünschte Signifikanzniveau einhält.

Satz (Neyman-Pearson): Sind Hypothese und Alternative beide einfach, so ist der Test optimal bzgl. Fehler 1. & 2. Art

S.3.3Einstichprobentests

Neyman-Pearson gibt uns eine Systematische Methode um 'gute' Tests zu konstruieren. Hier ein paar Beispiele:

z-Test: Test für Erwartungswert bei bekannter Varianz σ^2

- 1. Stichproben $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\vartheta, \sigma^2)$ 2. Nullhypothese $H_0: \vartheta = \vartheta_0$ 3. Teststatistik: $T := \frac{\overline{X}_n \vartheta_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$ unter \mathbb{P}_{ϑ_0}
- 4. Signifikanzniveau: wir wählen ein $\alpha \in (0,1)$
- 5. Wir konstruieren den Verwerfungsbereich K_{α}

$$K_{\alpha} = \left\{ \begin{array}{ccc} (-\infty, z_{\alpha}) & \text{für} & H_A : \vartheta < \vartheta_0 \\ (z_{1-\alpha}, \infty) & \text{für} & H_A : \vartheta > \vartheta_0 \\ (-\infty, z_{\alpha/2}) \cup (z_{1-\alpha/2}, \infty) & \text{für} & H_A : \vartheta \neq \vartheta_0 \end{array} \right.$$

6. Falls $T(\omega) \in K_{\alpha}$, wird H_0 auf dem Niveau α verworfen

t-Test: Test für Erwartungswert bei unbekannter Varianz σ^2 Die Varianz S^2 wird geschätzt

- 1. Stichproben $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$
- 2. Nullhypothese $H_0: \mu = \mu_0$ 3. Teststatistik: $T := \frac{\overline{X}_n \mu_0}{S/\sqrt{n}} \sim t_{n-1}$ unter \mathbb{P}_{μ_0}
- 4. Signifikanzniveau: wir wählen ein $\alpha \in (0,1)$
- 5. Wir konstruieren den Verwerfungsbereich K_{α}

$$K_{\alpha} = \left\{ \begin{array}{ccc} (-\infty, t_{n-1,\alpha}) & \text{für } \mu < \mu_0 \\ (t_{n-1,1-\alpha}, \infty) & \text{für } \mu > \mu_0 \\ (-\infty, t_{n-1,\alpha/2}) \cup (t_{n-1,1-\alpha/2}, \infty) & \text{für } \mu \neq \mu_0 \end{array} \right.$$

6. Falls $T(\omega) \in K_{\alpha}$, wird H_0 auf dem Niveau α verworfen

S.3.4Zweistichprobentest

gepaart: Seien $(X_1, Y_1) \dots (X_n, Y_n)$ natürliche Paare von ZV mit $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu_X, \sigma^2)$ und $Y_1, \ldots, Y_n \overset{i.i.d}{\sim} \mathcal{N}(\mu_Y, \sigma^2)$ Dann lässt sich der Test zum Vergleich von μ_X und μ_Y auf eine Stichprobe zurückführen:

$$Z_i := X_i - Y_i \overset{i.i.d}{\sim} \mathcal{N}(\mu_x - \mu_y, 2\sigma^2)$$

ungepaart: Test mit bekannten Varianzen $\sigma_X, \sigma_Y > 0$

1. Stichproben

$$X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), \quad Y_1, \ldots, Y_m \overset{i.i.d}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$$

- 1. Such problem $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu_X, \sigma_X^2), \quad Y_1, \ldots, Y_m \overset{i.i.d}{\sim} \mathcal{N}(\mu_Y, \sigma_Y^2)$ 2. Nullhypothese $H_0: \mu_X \mu_Y = \mu_0$ 3. Teststatistik: $T := \frac{\overline{X}_n \overline{Y}_n \mu_0}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1)$ unter \mathbb{P}_{μ_0}
- 4. Signifikanzniveau: wir wählen ein $\alpha \in (0,1)$
- 5. Wir konstruieren den Verwerfungsbereich K_{α}

$$K_{\alpha} = \begin{cases} (-\infty, z_{\alpha}) & \text{für } \mu_{X} - \mu_{Y} < \mu_{0} \\ (z_{1-\alpha}, \infty) & \text{für } \mu_{X} - \mu_{Y} > \mu_{0} \\ (-\infty, z_{\alpha/2}) \cup (z_{1-\alpha/2}, \infty) & \text{für } \mu_{X} - \mu_{Y} \neq \mu_{0} \end{cases}$$

6. Falls $T(\omega) \in K_{\alpha}$, wird H_0 auf dem Niveau α verworfen

ungepaart: Test bei unbekannter, gleicher Varianz $\sigma > 0$ Die Varianz $S^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$ wird geschätzt

1. Stichproben

$$X_1, \ldots, X_n \stackrel{i.i.d}{\sim} \mathcal{N}(\mu_X, \sigma^2), \quad Y_1, \ldots, Y_m \stackrel{i.i.d}{\sim} \mathcal{N}(\mu_Y, \sigma^2)$$

1. Strenprosen $X_1, \ldots, X_n \overset{i.i.d}{\sim} \mathcal{N}(\mu_X, \sigma^2), \quad Y_1, \ldots, Y_m \overset{i.i.d}{\sim} \mathcal{N}(\mu_Y, \sigma^2)$ 2. Nullhypothese $H_0: \underline{\mu_X} - \underline{\mu_Y} = \mu_0$ 3. Teststatistik: $T := \frac{\overline{X_n} - \overline{Y_n} - \mu_0}{S\sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{n+m-2}$ unter \mathbb{P}_{μ_0}

4. Signifikanzniveau: wir wählen ein $\alpha \in (0,1)$

5. Wir konstruieren den Verwerfungsbereich K_{α}

$$K_{\alpha} = \begin{cases} & (-\infty, t_{n+m-2,\alpha}) & \text{für } \mu_X - \mu_Y < \mu_0 \\ & (t_{n+m-2,1-\alpha}, \infty) & \text{für } \mu_X - \mu_Y > \mu_0 \\ & (-\infty, t_{n+m-2,\alpha/2}) & \text{für } \mu_X - \mu_Y \neq \mu_0 \\ & \cup (t_{n+m-2,1-\alpha/2}, \infty) \end{cases}$$

6. Falls $T(\omega) \in K_{\alpha}$, wird H_0 auf dem Niveau α verworfen

S.4Konfidenzbereiche

Konfidenzbereich: Ein Konfidenzbereich für einen Schäetzwert ϑ von den Stichproben X_1, \ldots, X_n ist eine Menge $C(X_1,\ldots,X_n)\subseteq\Theta$. In den meisten Fällen ist das ein Intervall, dessen Endpunkte von X_1, \ldots, X_n abhängen.

C heisst ein Konfidenzbereich zum Niveau $1-\alpha$, falls gilt

$$1 - \alpha \leq \mathbb{P}_{\vartheta}[\vartheta \in C(X_1, \dots, X_n)]$$
 für alle $\vartheta \in \Theta$

Beispiel: Konfidenzintervall des Stichprobenmittels

Annahme:
$$C(X_1, ..., X_n) = [\vartheta - \delta, \vartheta + \delta]$$

 $1 - \alpha \leq \mathbb{P}_{\vartheta}[|\overline{X}_n - \mu| \leq \delta] \leq \mathbb{P}_{\vartheta}[|\overline{X}_n - \mu| \leq \frac{\delta}{S/\sqrt{n}}]$
Satz $7.1 \Rightarrow \delta = t_{n-1,1-\frac{\alpha}{2}} \cdot \frac{S}{\sqrt{n}}$

Beispiel: Konfidenzintervall der Stichprobenvarianz

$$\begin{split} &1 - \alpha = \mathbb{P}_{\vartheta} \left[\chi_{n-1,\frac{\alpha}{2}}^2 \leq \sigma \leq \chi_{n-1,1-\frac{\alpha}{2}}^2 \right] \\ &= \mathbb{P}_{\vartheta} \left[\frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2} \leq \sigma \leq \frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2} \right] \Rightarrow C = \left[\frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2} \right] \end{split}$$

Anhang

Kombinatorik **A.1**

Ziehen von k Elementen aus einer Menge mit n Elementen

	geordnet	ungeordnet
mit zurücklegen	n^k	$\binom{n+k-1}{k}$
ohne zurücklegen	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

A.2Reihen und Integrale

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=0}^{n} a_{0}q^{k} = a_{0}\frac{1-q^{n+1}}{1-q}$$

$$\sum_{k=0}^{\infty} a_{0}q^{k} = \frac{a_{0}}{1-q}$$

$$\sum_{k=0}^{\infty} \frac{k}{a^{k}} = \frac{a}{(a-1)^{2}}, \qquad |a| > 1$$

$$\sum_{k=0}^{\infty} \frac{x^{k}}{k!} = e^{x}$$

Partielle Integration:

$$\int_{a}^{b} f'(x)g(x)dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f(x)g'(x)dx$$

$$\int_{a}^{b} f(g(x))g'(x)dx \stackrel{t=g(x)}{=} \int_{g(a)}^{g(b)} f(t)dt$$

Bei den folgenden Integralen wurden die Integrationskonstanten weggelassen.

$$\int a \, dx = ax$$

$$\int x^a \, dx = \frac{1}{a+1}x^{a+1}, \qquad a \neq -1$$

$$\int (ax+b)^c \, dx = \frac{1}{a(c+1)}(ax+b)^{c+1}, \qquad c \neq -1$$

$$\int \frac{1}{x} \, dx = \log|x|, \qquad x \neq 0$$

$$\int \frac{1}{ax+b} \, dx = \frac{1}{a}\log|ax+b|$$

$$\int \frac{1}{x^2+a^2} \, dx = \frac{1}{a}\arctan\frac{x}{a}$$

$$\int e^{ax} \, dx = \frac{1}{a}e^{ax}$$

$$\int xe^{ax} \, dx = \frac{e^{ax}}{a^2}(ax-1)$$

$$\int x^2 e^{ax} \, dx = \frac{e^{ax}}{a^2}(ax-1)$$

$$\int \log|x| \, dx = x(\log|x|-1)$$

$$\int \log_a|x| \, dx = x(\log_a|x|-\log_a e)$$

$$\int x^a \log x \, dx = \frac{x^{a+1}}{a+1} \left(\log x - \frac{1}{a+1}\right), \quad a \neq -1, x > 0$$

$$\int \frac{1}{x} \log x \, dx = \frac{1}{2} \log^2 x, \qquad x > 0$$

$$\int \sin(ax+b) \, dx = -\frac{1}{a} \cos(ax+b)$$

$$\int \cos(ax+b) \, dx = \frac{1}{a} \sin(ax+b)$$

$$\int \tan x \, dx = -\log|\cos x|$$

$$\int \frac{1}{\sin x} \, dx = \log|\tan(\frac{x}{2} + \frac{\pi}{4})|$$

$$\int \sin^2 x \, dx = \frac{1}{2}(x - \sin x \cos x)$$

$$\int \cos^2 x \, dx = \frac{1}{2}(x + \sin x \cos x)$$

$$\int \tan^2 x \, dx = \tan x - x$$

$$\int \frac{f'(x)}{f(x)} \, dx = \log|f(x)|$$

A.3Verteilungs-/Momentenerzeugende Funktionen

Verteilung X	$F_X(x)$	$\mathcal{M}_X(t)$
disk. Unif	$\frac{1}{n} \{i \mid k_i \le n\} $	$\frac{e^t - e^{(n+1)t}}{n(1-e^t)}$
Bernoulli	$(1-p)\mathbb{1}_{x\in[0,1]}+\mathbb{1}_{x\in[0,\infty)}$	$1 - p + pe^t$
Binomial	$\sum_{i=0}^{\lfloor n\rfloor} \binom{n}{i} p^i (1-p)^{n-i}$	$(1 - p + pe^t))^n$
Geometrisch	$1 - (1 - p)^{\lfloor x + 1 \rfloor}$	$\frac{pe^t}{1-(1-p)e^t}$
Hypergeom.	$\sum_{i=max(0,m-n)}^{\lfloor x\rfloor} \frac{\binom{r}{i}\binom{n-r}{m-i}}{\binom{n}{m}}$	kompliziert!
Poisson	$\sum_{i=0}^{\lfloor x\rfloor} \frac{\lambda^i}{i!} e^{-\lambda} \\ 1 - e^{-\lambda t} \mathbb{1}_{t>0}$	$exp(\lambda(e^{\lambda}-1)$
Exponential	$1 - e^{-\lambda t} \mathbb{1}_{t \ge 0}$	$\frac{\lambda}{\lambda - t}$ für $t < \lambda$
Normal	$\Phi(x)$, siehe z_{α} -Quantile	$exp(\mu t + \frac{\sigma^2 t^2}{2})$
Gamma	unbestimmtes Integral	$\left(\frac{\lambda}{\lambda-1}\right)^{\alpha}$
Chiquadrat	siehe $\chi_{n,1-\alpha}$ -Quantile	$\frac{1}{(1-2t)^{n/2}}$
t-Vert.	siehe $t_{n,1-\alpha}$ -Quantile	existiert nicht
Cauchy	$\frac{1}{2} + \frac{1}{\pi} \arctan(x - \mu)$	existiert nicht