2 Integrals de línia

- 1. Trobeu l'equació cartesiana de les següents corbes parametritzades. Representeu les corbes i determineu-ne l'orientació.
 - (a) $\gamma(t) = (t 1, t^3), t \in \mathbb{R}$.
- (c) $\gamma(t) = (a\cos t, b\sin t), t \in [0, 2\pi], a, b > 0.$
- (b) $\gamma(t) = (t 1, t(t + 4)), t \in \mathbb{R}.$
- (d) $\gamma(t) = (-a \cosh t, b \sinh t), t \in \mathbb{R}, a, b > 0$
- 2. Calculeu la longitud de les corbes següents:
 - (a) Circumferència $\gamma(\theta) = (a\cos\theta, a\sin\theta), \theta \in [0, 2\pi).$
 - (b) Corba $\gamma(t) = (e^t \cos t, e^t \sin t)$, des de t = 0 fins a t = 4.
 - (c) Corba $x(t) = \ln \sqrt{1+t^2}$, $y(t) = \arctan t$, des de t = 0 fins a t = 1.
 - (d) Corba $\gamma(t) = (t^2/2, (6t+9)^{3/2}/9), t \in [0,4].$
 - (e) Corba $y = \ln \cos x$, des de $x = \pi/6$ fins a $x = \pi/4$.
 - (f) $8y^3 = 27x^2$, des de x = 0 fins a x = 1.
 - (g) $y = \frac{x^2}{2} \frac{\ln x}{4}$, des de x = 1 fins a x = e. Indicació: Expresseu $1 + \left(x \frac{1}{4x}\right)^2$ com un quadrat.
- 3. Calculeu la integral de línia del camp $f(x,y)=xy^2$ al llarg de les circumferències d'equacions $x^2+y^2=1$ i $x^2+6x+y^2=0$.
- 4. (a) Calculeu la integral de línia del camp escalar f(x,y) = 2xy al llarg del primer quadrant de l'el·lipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$, des del punt (3,0) fins al (0,2).
 - (b) Calculeu la integral de f(x, y, z) = xyz al llarg de la corba $\{x^2 y^2 = 9, z = 6\}$, entre els punts (5, -4, 6) i (5, 4, 6).
- 5. Una tanca circular, centrada a l'origen i de radi 1, té alçada h(x,y) = |x| + |y|. Calculeu-ne l'àrea.
- 6. Calculeu la massa d'un filferro de densitat lineal $f(x, y, z) = \frac{1}{\sqrt{2}}xy + y z$, definit per les equacions $\{y = x, z = \frac{x^2}{\sqrt{2}}\}$, des del punt (0, 0, 0) fins al punt $(1, 1, \sqrt{2}/2)$.
- 7. Calculeu la càrrega total que té un filferro que segueix la corba $y = x^2$ des del punt (0,0) al punt (2,4), si la densitat de càrrega en cada punt ve donada per f(x,y) = x.
- 8. Calculeu les integrals de línia del camp vectorial donat sobre les corbes indicades.
 - (a) $\mathbf{F}(x,y) = (x^2 2xy, y^2 2xy)$ al llarg de la paràbola $y = x^2$ des del punt (-2,4) fins al punt (1,1).
 - (b) $\mathbf{F}(x,y,z) = (x,y,xz-y)$ sobre el segment de recta des del punt (0,0,0) fins al punt (1,2,4).
- 9. Donat el camp vectorial $\mathbf{F}(x,y) = \left(\frac{x+y}{x^2+y^2}, \frac{x+y}{x^2+y^2}\right)$, calculeu la integral de línia de \mathbf{F} al llarg de la circumferència $x^2+y^2=a^2$ recorreguda en sentit positiu.
- 10. Calculeu la integral de línia del camp $\mathbf{F}(x,y) = \left(\frac{x}{\sqrt{1+x^2+y^2}}, \frac{y}{\sqrt{1+x^2+y^2}}\right)$ sobre el quart d'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ des del punt (a,0) fins al punt (0,b), en el primer quadrant.
- 11. Calculeu el treball realitzat per una força proporcional al vector dirigit cap a l'origen, sobre les corbes següents:
 - (a) El·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, al primer quadrant, des del punt (a,0) fins al punt (0,b).

- (b) Hipèrbola $\frac{x^2}{16} \frac{y^2}{4} = 1$, entre els punts (-4,0) i (-5,-3/2).
- (c) Quart d'el·lipse $x^2 + 4x + 4y^2 = 0$, del punt (0,0) al punt (-2,-1).
- 12. Calculeu la integral $\int yz\,dx + xz\,dy + xy\,dz$ al llarg de l'hèlix definida per $\gamma(t) = (a\cos t,\,a\sin t,\,kt)$, entre els punts (a,0,0) i $(a,0,2k\pi)$.
- 13. Calculeu $\int_{(1,1)}^{(4,2)} (x+y) dx + (y-x) dy$ al llarg de les corbes següents:
 - (a) La paràbola $y^2 = x$.
 - (b) Una recta.
 - (c) Els segments des de (1,1) a (1,2) i des de (1,2) a (4,2).
 - (d) La corba definida per $x = 2t^2 + t + 1$, $y = t^2 + 1$.
- 14. Utilitzeu el Teorema fonamental del càlcul per a integrals de línia per calcular:
 - (a) $\int_C y \, dx + x \, dy$, on C és l'arc de circumferència, al primer quadrant, que va de (1,0) a (0,1).
 - (b) $\int_C (y+z) dx + (z+x) dy + (x+y) dz$, on C és el segment que uneix els punts (1,1,1) i (2,2,2).
- 15. Calculeu la integral $\int (2x y + 4) dx + (5y + 3x 6) dy$ sobre les corbes següents, i comproveu que es compleix el teorema de Green.
 - (a) El triangle de vèrtexs (0,0), (3,0) i (3,2).
 - (b) La circumferència de radi 4 centrada a l'origen.
- 16. Comproveu que es compleix el Teorema de Green sobre el quadrat de vèrtexs (0,0), (2,0), (2,2) i (0,2) amb el camp vectorial $\mathbf{F}(x,y) = (x^2 xy^3, y^2 2xy)$.
- 17. Utilitzeu el teorema de Green per tal de calcular:
 - (a) L'àrea del quadrilàter determinat pels punts (0,0), (5,1), (4,5) i (0,3).
 - (b) La integral de línia del camp $\mathbf{F}(x,y) = (-y,x)$ al llarg de la cardioide d'equació $r = 1 + \cos \theta$, recorreguda en sentit antihorari.
 - (c) La integral de línia del camp $\mathbf{F}(x,y) = (e^x \sin y y, e^x \cos y 1)$ al llarg de la corba $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = x, \ y \geq 0\}$, recorreguda en sentit antihorari.
- 18. Sigui C la corba tancada descrita pel parell de gràfiques $\begin{cases} y = \sin x \\ y = 2\sin x \end{cases}$, amb $x \in [0, \pi]$, orientada en sentit positiu. Calculeu la integral $\int_C (1+y^2) \, dx + y \, dy$ directament i utilitzant el Teorema de Green.
- 19. Sigui C la corba tancada i orientada positivament descrita de la manera següent: el segment y=0 entre x=1 i x=2, l'arc $y=\sqrt{4-x^2}$ en el primer quadrant, el segment x=0 entre y=2 i y=1, l'arc $y=\sqrt{1-x^2}$ en el primer quadrant.

Calculeu la integral $\int_C \frac{x}{x^2+y^2} dx - \frac{y}{x^2+y^2} dy$ directament i utilitzant el Teorema de Green.

20. Demostreu que les integrals següents són independents del camí i calculeu-les.

(a)
$$\int_{(1,0)}^{(2,1)} (2xy - y^4 + 3)dx + (x^2 - 4xy^3)dy$$

- (b) $\int_C \mathbf{f} \cdot d\mathbf{l}$, amb $\mathbf{f} = (e^{y^2} \cos x, 2ye^{y^2} \sin x)$, i $C = \{(x, y) \mid y = \sin x\}$ des de (0, 0) fins a $(\pi, 0)$.
- (c) $\int_C \frac{x dx + y dy}{\sqrt{x^2 + y^2}}$, on C és el quart d'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ situat en el primer quadrant, i orientat des de (a, 0) fins a (0, b).
- 21. Considereu el camp $\mathbf{F}(x,y)=(10x^4-2xy^3,-3x^2y^2)$. És conservatiu? Trobeu la integral de \mathbf{F} des del punt (0,0) al punt (2,1) al llarg de la corba $x^4-6xy^3=4y^2$.
- 22. Comproveu si els camps següents són conservatius a \mathbb{R}^2 :

(a)
$$\mathbf{F}(x,y) = (3x^2y, x^3 + 1)$$
 (b) $\mathbf{F}(x,y) = (xy^2, x^3y)$ (c) $\mathbf{F}(x,y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right)$ (d) $\mathbf{F}(x,y) = \left(\frac{-x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$

- 23. Sigui $C \subset \mathbb{R}^2$ una corba tancada que limita una regió R simplement connexa i $\mathbf{F} : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ un camp vectorial de classe \mathcal{C}^1 .
 - (a) Com ha de ser **F** per tal que $\oint_C \mathbf{F} \cdot d\mathbf{l}$ sigui l'àrea de R? Comproveu que $\mathbf{F}(x,y) = \frac{1}{2}(-y,x)$ ho satisfà.
 - (b) Apliqueu-ho per calcular l'àrea tancada per l'el·lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Solucions

19. $2 \ln 2$

20. (a) 5 21. 60 (b) 0 (c) b - a

23. (a) Cal que $\mathbf{F} = (P, Q)$ satisfaci $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$ (c) πab

22. (a) Sí (b) No (c) No

1. (a)
$$y=(x+1)^3$$
 (b) $y=x^2+6x+5$ (c) $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ (c) $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1, x<0$.
2. (a) $2\pi a$ unitats. (b) $\sqrt{2}(e^4-1)$ unitats. (c) $\ln(1+\sqrt{2})$ unitats. (d) 20 unitats. (e) $\frac{1}{2}\ln\left(1+\frac{2\sqrt{2}}{3}\right)=\ln\left(\frac{\sqrt{2}+1}{\sqrt{3}}\right)$ unitats. (f) $2^{3/2}-1$ unitats. (g) $(2e^2-1)/4$ unitats. 3. 0 i -81π 4. (a) $76/5$ (b) 0 5. 8 6. $(4-\sqrt{2})/3$ unitats de massa. 7. $(17^{3/2}-1)/12$ unitats de càrrega. 8. (a) $-369/10$ (b) $23/6$ 9. 0 10. $\sqrt{1+b^2}-\sqrt{1+a^2}$ 11. (a) $\frac{k}{2}(a^2-b^2)$, amb $k>0$ (b) $-\frac{45k}{8}$, amb $k>0$ (c) $-\frac{5k}{2}$, amb $k>0$ 12. 0 13. (a) $34/3$ (b) 11 (c) 14 (d) $32/3$ 14. (a) 0 (b) 9 15. (a) 12 (b) 64π 16. 8 17. (a) $33/2$ (b) 3π (c) $\frac{\pi}{8}$ 18. $-3\pi/2$