CS152-Homework3

Hongchen Cao 2019533114

2020.9.25

1

Count the number of pairs, we find that

If
$$d_k("TX") = "TH"$$
 and $d_k("LM") = "IN"$, we have $K = \begin{bmatrix} 4 & 11 \\ 13 & 9 \end{bmatrix}$

Thus, the plaintext="the kingwas in his counting house counting out his money the queue was in the parlour eating bread and honeyz"

$$\begin{aligned} &\Pr(\mathbf{Y} = \mathbf{y}) = \frac{1}{n} \\ &\Pr(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x}) = \frac{1}{n} \\ &\Pr(\mathbf{X} = \mathbf{x} | \mathbf{Y} = \mathbf{y}) = \frac{Pr(\mathbf{Y} = \mathbf{y} | \mathbf{X} = \mathbf{x})}{Pr(\mathbf{Y} = \mathbf{y})} = \frac{\frac{1}{n} \cdot Pr(\mathbf{X} = \mathbf{x})}{\frac{1}{n}} = Pr(\mathbf{X} = \mathbf{x}) \\ &\text{Thus, perfect secrecy.} \end{aligned}$$

$$\begin{split} &\Pr(\mathbf{Y} = 1) = \frac{\alpha}{3} \\ &\Pr(\mathbf{Y} = 2) = \frac{\alpha}{3} \\ &\Pr(\mathbf{Y} = 3) = \frac{\alpha}{3} \\ &\Pr(\mathbf{Y} = 4) = \frac{\beta}{2} \\ &\Pr(\mathbf{Y} = 5) = \frac{\beta}{2} \\ &\text{Then,} \\ &\Pr(\mathbf{X} = \mathbf{a} | \mathbf{Y} = 1) = \frac{Pr(K_1)}{Pr(\mathbf{Y} = 1)} \cdot Pr(\mathbf{X} = a) = \frac{\frac{\alpha}{3}}{\frac{3}{3}} \cdot Pr(\mathbf{X} = a) = Pr(\mathbf{X} = a) \\ &\Pr(\mathbf{X} = \mathbf{a} | \mathbf{Y} = 2) = \frac{Pr(K_2)}{Pr(\mathbf{Y} = 2)} \cdot Pr(\mathbf{X} = a) = \frac{\frac{\alpha}{3}}{\frac{3}{3}} \cdot Pr(\mathbf{X} = a) = Pr(\mathbf{X} = a) \\ &\Pr(\mathbf{X} = \mathbf{a} | \mathbf{Y} = 3) = \frac{Pr(K_3)}{Pr(\mathbf{Y} = 3)} \cdot Pr(\mathbf{X} = a) = \frac{\frac{\alpha}{3}}{\frac{3}{3}} \cdot Pr(\mathbf{X} = a) = Pr(\mathbf{X} = a) \\ &\Pr(\mathbf{X} = \mathbf{a} | \mathbf{Y} = 4) = \frac{Pr(K_4)}{Pr(\mathbf{Y} = 4)} \cdot Pr(\mathbf{X} = a) = \frac{\frac{\beta}{2}}{\frac{\beta}{2}} \cdot Pr(\mathbf{X} = a) = Pr(\mathbf{X} = a) \\ &\Pr(\mathbf{X} = \mathbf{a} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 5)} \cdot Pr(\mathbf{X} = a) = \frac{\frac{\beta}{2}}{\frac{\beta}{2}} \cdot Pr(\mathbf{X} = a) = Pr(\mathbf{X} = a) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 1) = \frac{Pr(K_3)}{Pr(\mathbf{Y} = 1)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\alpha}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 2) = \frac{Pr(K_2)}{Pr(\mathbf{Y} = 3)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\alpha}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 3) = \frac{Pr(K_2)}{Pr(\mathbf{Y} = 3)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\alpha}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 4) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 3)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 4) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 4)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 4)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 5)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 5)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 5)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = 5) = \frac{Pr(K_5)}{Pr(\mathbf{Y} = 5)} \cdot Pr(\mathbf{X} = b) = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot Pr(\mathbf{X} = b) = Pr(\mathbf{X} = b) \\ &\Pr(\mathbf{X} = \mathbf{b} | \mathbf{Y} = \mathbf{b} | \mathbf{b} = \frac{\frac{\beta}{3}}{\frac{\beta}{3}} \cdot$$

4

4.1

	000	001	010	011	100	101	110	111
$K_1 = 000$	000	001	010	011	100	101	110	111
$K_2 = 001$	001	000	011	010	101	100	111	110
$K_3 = 010$	010	011	000	001	110	111	100	101
$K_4 = 011$	011	010	001	000	111	110	101	100
$K_5 = 100$	100	101	110	111	000	001	010	011
$K_6 = 101$	101	100	111	110	001	000	011	010
$K_7 = 110$	110	111	100	101	010	011	000	001
$K_8 = 111$	111	110	101	100	011	010	001	000

4.2

First proof the size of matrix is $2^n \times 2^n$.

Both plaintext and key have n bits, so from the definition we know that matrix must have 2^n rows and 2^n cols.

Then we proof the matrix follows the definition of Latin square.

Let A be the matrix, $\forall i, j, k \in [1, n]$ and $j \neq k$, we have $A_{ij} \neq A_{ik}$ because $in i^{th} row$, $p_j \neq p_k$ and both p_j, p_k encrypted by K_i .

The situation in every col of the matrix is same, which means $\forall i, j, k \in [1, n]$ and $j \neq k$, we have $A_{ji} \neq A_{ki}$.

Thus, we have proved that the encryption matrix of a OTP is a Latin square of order 2^n .