Предел числовой последовательности

Определение. Число $A \in \mathbb{R}$ называется пределом числовой последовательности $\{x_n\}$, если для любой окресности V(A) точки A существует такой номер N (выбираемый в зависимости от V(A)), что все члены последовательности, номера которых больше N, содержатся в указанной окрестности точки A.

$$(\lim_{n \to \infty} x_n = A) := \forall V(A) \exists N \in \mathbb{N} \forall n > N(x_n \in V(A))$$

и соответственно

$$(\lim_{n \to \infty} x_n = A) := \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ (|x_n - A| < \varepsilon).$$

Предел функции

Определение. Итак, число A называется пределом функции $f:E\to\mathbb{R}$ при x, стемящемся по множеству E к точке а (предельной для E), если для любой окрестности точки A найдется проколотая окрестность точки а в множестве E, образ которой при отображении $f:E->\mathbb{R}$ содержится в заданной окрестности точки A.

$$(\lim_{E\ni x\to a} f(x)=A):=\forall V_{\mathbb{R}}(A)\ \exists \dot{U}_E(a)\ (f(\dot{U}_E(a))\subset V_{\mathbb{R}}(A))$$

Замечательные пределы

Первый замечательный предел:

$$\lim_{n \to 0} \frac{\sin x}{x} = 1$$

Второй замечательный предел:

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Разложение фукнции в ряд Тейлора

$$P_n(x_0; x) = P_n(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
 (1)

Определение. Алгебраический полином, заданный соотношением (1), называется полиномом Тейлора¹ порядка n функции f(x) в точке x_0 .

Нас будет интересовать величина

$$f(x) - P_n(x_0; x) = r_n(x_0; x)$$
(2)

уклонение полинома $P_n(x)$ от функции f(x), называется часто остатком, точнее, n-м остатком или n-м остаточным членом формулы Тейлора:

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x_0; x)$$
(3)

Также давайте разложим наиболее часто используемые функции по формуле (3):

$$e^{x} = 1 + \frac{1}{1!}x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + O(x^{n} + 1)$$

$$\cos x = 1 - \frac{1}{2!}x^{2} + \frac{1}{4!}x^{4} - \frac{1}{6!}x^{6} + \dots + \frac{(-1)^{k}}{2k!}x^{2k} + O(x^{2k+2})$$

$$\sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots + \frac{(-1)^k}{(2k+1)!}x^{2k+1} + O(x^{2k+3})$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \dots + \frac{(-1)^{n-1}}{n}x^n + O(x^{n+1})$$

 $^{^{1}}$ Б. Тейлор (1685 - 1731) — английский математик

Интеграл Римана

Определение. Функция f называется интегрируемой по Риману на отрезке [a, b], если для нее существует указанный в пункте (5) предел интегральных сумм при $\lambda(P) \to 0$ (т.е. если для нее определен интеграл Римана).

Множество всех функций, интегрируемых по Риману на отрезке [a, b], будет обозначаться через $\Re[a,b]$.

$$\int_{a}^{b} f(x)dx := \lim_{\lambda(P) \to 0} \sum_{i=1}^{n} f(\xi_{i}) \Delta x_{i}$$

Формула Тейлора

Теорема. Если функция $f:U(x)\to\mathbb{R}$ определена и принадлежит классу $C^{(n)}$ $(U(x);\mathbb{R})$ в окрестности $U(x)\subset\mathbb{R}^m$, а отрезок $[\mathbf{x},\ \mathbf{x}+\mathbf{h}]$ полностью содержится в U(x), то имеет место равенство

$$f(x^1+h^1,...,x^m+h^m)-f(x^1,...,x^m)=\sum^{n-1}k=1\frac{1}{k!}(h^1\delta_1+...+h^m\delta_m)^kf(x)+r_{n-1}(x;h),$$
 где
$$r_{n-1}(x;h)=\int_0^1\frac{(1-t)^{n-1}}{(n-1)!}(h^1\delta_1+...+h^m\delta_m)^nf(x+th)dt$$

Интеграл по гладкой поверхности

Определение. (интеграла от k-формы ω по заданной картой $\varphi:I\to S$ гладкой k-мерной поверхности).

$$\int_{S} \omega := \lim_{\lambda(P) \to 0} \sum_{i} \omega(x_{i})(\varepsilon_{1}, ..., \varepsilon_{k}) = \lim_{\lambda(P) \to 0} \sum_{i} (\varphi * \omega)(\tau_{i})(\tau_{1}, ..., \tau_{k}). \tag{4}$$

Если применить это определние к k-форме $f(t)dt^1 \wedge ... \wedge dt^k$ на I (когда φ – тождественное отображение), то очевидно, получим, что:=

$$\int_I f(t)dt^1 \wedge \dots \wedge dt^k = \int_I f(t)dt^1 \dots dt^k.$$
 (5)

Таким образом, из (1) следует, что

$$\int_{S=\varphi(I)} \omega = \int_{I} \varphi \omega,$$

а последний интеграл, как видно из равенства (2), сводится к обычному кратному интегралу от соответствующей форме $\varphi*\omega$ функции f на промежутке I.

Формула Стокса в \mathbb{R}^3

Утверждение. Пусть S – ориентированная кусочно гладкая компатная двумерная поверхность с краем δS , лежаща в области $G \subset \mathbb{R}^{\mathbb{H}}$, в которой задана гладкая 1-форма $\omega = P \ dx + Q \ dy + R \ dz$. Тогда имеет место соотношение

$$\int_{\delta S} P \, dx + Q \, dy + R \, dz = \iint_{S} \left(\frac{\delta R}{\delta y} - \frac{\delta Q}{\delta z} \right) \, dy \wedge dz + \left(\frac{\delta P}{\delta z} - \frac{\delta R}{\delta x} \right) dz \wedge dx + \left(\frac{\delta Q}{\delta x} - \frac{\delta P}{\delta y} \right) dx \wedge dy,$$

где ориентация края δS берется согласованной с ориента
ией поверхности S.