Implicaciones y derivaciones lógicas

- Un argumento lógico consta de una serie de premisas de las que se desprende una conclusión.
- Si siempre que las premisas sean verdaderas, la conclusión es verdadera, se dice que el argumento es válido. De lo contrarío es una falacia.

Ejemplo: Modus ponens

1.	Р
2.	$P \rightarrow Q$
3.	Q

Notación

 Cuando un argumento es válido se usa el símbolo +, para indicar que la conclusión se sigue de las premisas.

Ejemplo:

$$P, P \rightarrow Q \neq Q$$

(Observar que una tautología es un razonamiento lógico válido sin premisas).

Implicaciones y Equivalencias

- Si A→B es una tautología, entonces se dice que A implica lógicamente a B y se representa A⇒B
- Si A↔B es una tautología, entonces A≡B, y las implicaciones A→B, B→A son implicaciones lógicas.

Ejemplos

 Ejemplo 1: Dada la equivalencia (P∨Q)∧(¬P∨Q)≡Q, se desprende que

$$(P \lor Q) \land (\neg P \lor Q) \Rightarrow Q$$

Ejemplo 2: Ley de adición

$$P \Rightarrow (P \vee Q)$$

Ejemplo 3: Ley de simplificación

$$(P \land Q) \Rightarrow P$$

Demostración de validez mediante tabla de verdad

Un argumento lógico es válido, si las premisas implican lógicamente la conclusión

$$A_1,A_2,...,A_n \models C$$

en otras palabras, si la expresión lógica

$$A_1 \wedge A_2 \wedge \ldots \wedge A_n \rightarrow C$$

es una tautología.

Ejemplo: Silogismo hipotético

$$P \rightarrow Q, Q \rightarrow R \models P \rightarrow R$$

Ejemplo: Modus Tollens

1.	$P \rightarrow Q$
2.	¬Q
3.	¬P

Ejemplo: Una falacia

P∨Q
P
Q

Ejemplo: Ley de casos

$$A \rightarrow B$$
, $\neg A \rightarrow B \models B$

Derivaciones o demostraciones

En lugar de construir una tabla de verdad, muchos argumentos son en realidad una secuencia de argumentos compuestos, donde cada argumento es la premisa para el siguiente

Ejemplo

Sea la sentencia:

if X>Max then X=Max

demostrar que después de la ejecución es imposible que X>Max.

Definamos las siguientes proposiciones:

- P: X>Max antes de la ejecución
- Q: X=Max después de la ejecución
- R: X>Max después de la ejecución

Sentencia "if"

- Observar que P→Q es siempre verdadero.
- De forma similar, Q→¬R es siempre verdadero.
- Por lo tanto se puede construir el siguiente silogismo hipotético:

Sentencia "if" (2)

También se tiene la siguiente premisa

$$\neg P \rightarrow \neg R$$

Finalmente, dadas las premisas P→¬R y
¬P→¬R, se puede aplicar la *ley de casos* para obtener

Sistemas de derivaciones

- Dado un conjunto de reglas de inferencia L, una derivación es una lista de implicaciones lógicas obtenidas mediante estas reglas.
- Para la construcción de la derivación se siguen estos pasos en general
- 1) Se parte de una lista vacía.
- 2) Se agregan las premisas iniciales.
- Se agregan las conclusiones obtenidas de las premisas existentes utilizando las reglas de L, hasta llegar a la conclusión.

16

Reglas de inferencia

Ley de combinación	$A,B \models A \land B$
Ley de simplificación	$A \wedge B \models B$ $A \wedge B \models A$
Ley de adición	$A \models A \lor B$ $B \models A \lor B$
Modus ponens	$A, A \rightarrow B \models B$
Modus tollens	$\neg B, A \rightarrow B \models \neg A$
Silogismo hipotético	$A \rightarrow B$, $B \rightarrow C \models A \rightarrow C$
Silogismo disyuntivo	A∨B, ¬A ⊨ B
Ley de casos	$A \rightarrow B$, $\neg A \rightarrow B \models B$
Eliminación de la equivalencia	$A \leftrightarrow B \models A \rightarrow B$ $A \leftrightarrow B \models B \rightarrow A$
Introducción de la equivalencia	$A \rightarrow B$, $B \rightarrow A \models A \leftrightarrow B$
Ley de la inconsistencia	A, ¬A ⊨ B

Teorema de la deducción

- Para demostrar que A→B, se suele utilizar el siguiente argumento:
- 1) Se supone A y se añade A a las premisas.
- 2) Se demuestra B utilizando A si es necesario.
- 3) Se prescinde de A, lo cual significa que A no es necesariamente verdadera, y se escribe A→B.

Ejemplo 1

 Demostrar el silogismo hipotético utilizando derivaciones lógicas

$$A \rightarrow B$$
, $B \rightarrow C \models A \rightarrow C$

Ejemplo 2

Demostrar la ley asociativa

$$A \land (B \land C) \equiv (A \land B) \land C$$

Demostración por contradicción (reductio ad absurdum)

- Se tiene como premisa algún hecho verdadero
- Se quiere demostrar una proposición Q.
- Si se tuviese el condicional P→Q, aplicando modus ponens se concluye Q.
- En muchas situaciones comprobar el condicional P→Q no es sencillo.

Demostración por contradicción

- En su lugar se puede utilizar el siguiente procedimiento:
 - Se asume ¬Q para aplicar TD
 - Se llega a ¬P
 - Por TD se concluye $\neg Q \rightarrow \neg P$
 - Pero además se tiene como premisa: P.
 - Por modus tollens se concluye: Q

Demostración por contradicción: Irracionalidad de raíz de 2

Demostrar:

$$\sqrt{2}$$
 es irracional

Sabemos:

Números racionales son aquellos que se pueden escribir como una fracción irreducible de dos enteros:

p/q

Demostración por contradicción: Existen infinitos primos

- Euclides, cerca del año 300ac probó que existen infinitos números primos en su texto Elementos.
- Este es un resultado fundamental de la Teoría de números, con muchas aplicaciones en informática (e.g. criptografía)
- Existen varias demostraciones, una de las más sencillas es por contradicción:

Asumamos que los números primos son finitos. En ese caso los podemos nombrar:

$$p_1, p_2, ... p_n$$

Sistema de derivaciones válidos y completos

- No debe ser posible demostrar una falacia dentro de un sistema de derivación válido.
- El sistema es completo si es posible demostrar toda conclusión que se derive lógicamente de las premisas.

Teorías, Axiomas, Teoremas

- Una teoría es el conjunto de premisas y conclusiones que se derivan de ellas.
- Las premisas de una teoría se denominan axiomas o postulados.
- Todas las conclusiones que pueden derivarse a partir de los axiomas se denominan teoremas.
 Teoremas intermedios suelen denominarse lemas, y conclusiones posteriores corolarios.

Ejemplo: Geometría euclidiana Postulados de Euclides

- 1) Entre dos puntos se puede trazar un segmento de recta.
- 2)Un segmento de recta se puede extender indefinidamente en ambas direcciones.
- 3) Dado un segmento de recta, se puede trazar un círculo usando el segmento como radio y un extremo como centro.
- 4) Todos los ángulos rectos son congruentes.
- 5)Si dos líneas intersectan una tercera y la suma de los ángulos interiores es menor a dos rectos, entonces las dos lineas eventualmente se intersectan.

Referencia: http://mathworld.wolfram.com/EuclidsPostulates.html

Ejemplo: Teoría de números Axiomas de Peano

- Define los números naturales y sus propiedades.
- Parte de los axiomas de Peano, publicados en 1889.
- Originalmente, son 9 axiomas.