You can access these slides on the course Github: https://github.com/natrask/ENM1050

ENGR 1050 Intro to Scientific Computation

Lecture 06 – Classes and Solving Equations

Prof. Nat Trask

Mechanical Engineering & Applied Mechanics

University of Pennsylvania

Last time: solving ODEs

- We showed how we can use functions to encapsulate concepts, allowing us to write code at a higher level
- In last Wed class, we showed how to use a function to write a numerical ODE solver for an arbitrary problem by encapsulating the right hand side of the ODE
- In the HW due today, we needed to solve an optimization problem with an ODE solver embedded inside it.
- Encapsulating lets us split the optimization and ODE solve tasks

https://pythonnumericalmethods.studentorg.berkeley.edu/notebooks/chapter22.03-The-Euler-Method.html

Last time: libraries for ODEs

- For smooth RHS problems we can use scipy
- Always develop a unit test to confirm the correctness of your implementation
- Take a look at the course github for some more information


```
# Use SciPy to solve the skydiver problem

from scipy.integrate import odeint
import numpy as np
import matplotlib.pyplot as plt

alpha = -9.81 # acceleration due to gravity
beta = 0.01 # drag coefficient

def dydt(y, t):
    # Code to return RHS of ODE
    dy1dt = y[1]
    dy2dt = alpha + beta * y[1]**2
    return [dy1dt, dy2dt]

# Initial conditions
y0 = [1.0, 0.0]
t = np.linspace(0, 10, 25)
sol = odeint(dydt, y0, t)

Python
```

Next couple weeks

- Last piece of python today!
- Building animations and interactive code
- Setting up your own environment life beyond Jupyter notebooks!
- Next HW will be out Wed and due 10/9 (week from Wed, 2 more days)

Next couple weeks

- Last building block of python today!
- To come: Building animations and interactive apps
- Setting up your own environment life beyond Jupyter notebooks!
- Next HW will be out Wed and due 10/9 (week from Wed, 2 more days)
- We will be planning our quiz the following Monday (10/14)
 - Don't stress!
 - Designed to make sure:
 - You've learned the basics of Python
 - You're prepared to move forward with project-based work as the class progresses
 - There will be no computers used.
 - To prepare:
 - Make sure you have completed all in-class exercises
 - Make sure you are familiar with basic syntax (without autocomplete to help you)
 - Make sure you understand concepts (encapsulation, unit tests, style)
 - No need to memorize math all formulas/definitions will be provided
 - Read python tutorial to get alternative explanations.
 - Office hours! Office hours!

TodayClasses and Linear Systems of Equations

The governing equations of electrical circuits

Don't worry! You don't need to have taken circuits, we'll just give you equations to solve

Kirchoffs current law

Ohms law

Currents Entering the Node Equals Currents Leaving the Node

$$\sum_{ ext{j touching i}} I_{ij} = 0$$

$$V = i R$$

Statics, circuits, and graphs

• Match voltage drop.

$$V_1 = V$$
$$V_2 = 0$$

• Ohm's law along each branch.

$$I_1 = \frac{1}{R_1} \left(V_2 - V_1 \right)$$

$$I_2 = \frac{1}{R_2} \left(V_2 - V_1 \right)$$

• Kirchoff's current law.

$$I_{total} = I_1 + I_2$$

We will take this and build it up to solver bigger resistor networks that can't be solved by hand

Electrical circuits

This is how you will learn to solve these kinds of equations in later classes. We will take this formula as a unit test to reproduce the total current.

Kirchhoff's Current Law (KCL) Statement:

$$I_{total} = I_1 + I_2$$

Ohm's Law for each resistor:

$$I_1 = \frac{V}{R_1}$$
$$I_2 = \frac{V}{R_2}$$

Substitute Ohm's Law into KCL:

$$I_{total} = \frac{V}{R_1} + \frac{V}{R_2}$$

Factor out the voltage V:

$$I_{total} = V\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

Alternatively, solve for the equivalent resistance R_{eq} :

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

Express the total current in terms of the equivalent resistance:

$$I_{total} = \frac{V}{R_{eq}}$$

A more complicated circuit (todays exercise)

• Match voltage drop.

$$V_1 = V$$
$$V_2 = 0$$

• Kirchoff's current law.

$$I_1 + I_2 = I_3 + I_4 + I_5$$

• Ohm's law along each branch.

$$I_1 = \frac{1}{R_1} \left(V_2 - V_1 \right)$$

$$I_2 = \frac{1}{R_2} \left(V_2 - V_1 \right)$$

$$I_3 = \frac{1}{R_3} \left(V_3 - V_2 \right)$$

$$I_4 = \frac{1}{R_4} \left(V_3 - V_2 \right)$$

$$I_5 = \frac{1}{R_5} \left(V_3 - V_2 \right)$$

• Total current.

$$I_{total} = I_1 + I_2$$

Not just electrical circuits! Structural mechanics

Not just electrical circuits! Heat transfer

Not just electrical circuits! Hydraulic circuits

Thermodynamics and control volumes

You'll learn how to derive all of these kinds of models if you take thermodynamics

This week Solving these classes of problems on a computer

Two ingredients
Graphs
Linear Solvers

Graphs

An object consisting of:

- Nodes/vertices
- Edges (+ direction)

The direction can be encoded in an adjacency matrix

For a given row:

If there's an edge pointing out Add 1 to neighbors column

Adjacency Matrix

Solving systems of equations with linear algebra

$$3x_1 + 2x_2 + 7x_3 = 1
9x_1 + 2x_2 + 8x_3 = 10
2x_1 + 17x_2 + 9x_3 = 6$$

$$\begin{bmatrix}
3 & 2 & 7 \\
9 & 2 & 8 \\
2 & 17 & 9
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
1 \\
10 \\
6
\end{bmatrix}$$

We'll learn more about linear algebra later.

For now, we can use the code to the right as a way to solve linear systems.

```
import numpy as np
# Define the coefficient matrix
A = np.array([
    [3, 2, 7],
    [9, 2, 8],
    [2, 17, 9]
b = np.array([1, 10, 6])
x = np.linalg.solve(A, b)
# Print the solution
print("Solution:", x)
                                                 Python
```

Ex1: Convert this into a matrix equation.

• Match voltage drop.

$$V_1 = V$$
$$V_2 = 0$$

• Kirchoff's current law.

$$I_1 + I_2 = I_3 + I_4 + I_5$$

• Ohm's law along each branch.

$$I_{1} = \frac{1}{R_{1}} (V_{2} - V_{1})$$

$$I_{2} = \frac{1}{R_{2}} (V_{2} - V_{1})$$

$$I_{3} = \frac{1}{R_{3}} (V_{3} - V_{2})$$

$$I_4 = \frac{1}{R_4} \left(V_3 - V_2 \right)$$

$$I_5 = \frac{1}{R_5} \left(V_3 - V_2 \right)$$

• Total current.

$$I_{total} = I_1 + I_2$$

Ex1: Convert this into a matrix equation.

• Match voltage drop.

$$V_1 = V$$
$$V_2 = 0$$

• Kirchoff's current law.

$$I_1 + I_2 = I_3 + I_4 + I_5$$

• Ohm's law along each branch.

$$I_1 = \frac{1}{R_1} \left(V_2 - V_1 \right)$$

$$I_2 = \frac{1}{R_2} \left(V_2 - V_1 \right)$$

$$I_3 = \frac{1}{R_2} \left(V_3 - V_2 \right)$$

$$I_4 = \frac{1}{R_4} \left(V_3 - V_2 \right)$$

$$I_5 = \frac{1}{R_5} \left(V_3 - V_2 \right)$$

• Total current.

$$I_{total} = I_1 + I_2$$

The Last Piece of Python...

Last time

Functions: Generalization, Maintenance and Encapsulation

Why use functions? Generalization

Same code can be used more than once with parameters to allow for differences

```
BEFORE
```

```
diameter_large = 2.54 * 1.65
print('Large ball: ', diameter_large, 'cm')

diameter_med = 2.54 * 1.01
print('Medium ball: ', diameter_med, 'cm')

diameter_small = 2.54 + 0.46 ← have made
print('Small ball: ', diameter_small, 'cm')
```

```
AFTER
```

```
def print_as_cm(inches, name):
    cm = 2.54 * inches
    print(name, ':', cm, 'cm')

print_as_cm(1.65, 'Large ball')
print_as_cm(1.01, 'Medium ball')
print_as_cm(0.46, 'Small ball')
```

Why use functions? Maintenance

Much easier to make changes

BEFORE

```
FTFR
```

```
diameter_large = 2.54 * 1.65
print('Large ball: ', diameter_large, 'cm')

diameter_med = 2.54 * 1.01
print('Medium ball: ', diameter_med, 'cm')

diameter_small = 2.54 + 0.46
print('Small ball: ', diameter_small, 'cm')
```

```
def print_as_cm(inches, name):
    cm = 2.54 * inches
    print(name, ':', cm, cm')

print_as_cm(1.65, 'Large ball')
print_as_cm(1.01, 'Medium ball')
print_as_cm(0.46, 'Small ball')
Can change to
'centimeter'
with only one
change
```

Why use functions? Encapsulation

Much easier to debug!

BEFORE

```
VETER
```

```
diameter_large = 2.54 * 1.65
print('Large ball: ', diameter_large, 'cm')

diameter_med = 2.54 * 1.01
print('Medium ball: ', diameter_med, 'cm')

diameter_small = 2.54 + 0.46
print('Small ball: ', diameter_small, 'cm')

What are we doing here?
```

```
def print_as_cm(inches, name):
    cm = 2.54 * inches
    print(name, ':', cm, 'cm')

print_as_cm(1.65, 'Large ball')
print_as_cm(1.01, 'Medium ball')
print_as_cm(0.46, 'small ball')
Oh, printing as
    centimeters!
```

Introducing classes

A class is a Python object which encapsulates a collection of functions and variables to help structure and organize your code.

```
Ex:
```

```
class MyClass:
    """A simple example class"""
    i = 12345

    def f():
        return 'hello world'
```

Diagram of a class – simplest setting


```
class · MyClass:
····"""A·simple·example·class"""
····i·=·12345
····def·f():
····
···return·"hello·world"
                                         Python
    print(MyClass.i)
    MyClass.f()

√ ♦ 0.0s

                      Python
 12345
 'hello world'
```

Polymorphism: Instantiation and self

```
class className:
    classvar1 = value # all members of class share this
    classvarN = value # all members of class share this
    def __init__(self, input1, ..., inputN):
      self.var1 = input1 # specialized var
      self.varN = inputN # specialized var
    def myfunc(self, func_input):
      <statement>
```

Diagram of a class – inheritance

Pet1 = Pet('Fido','Dog')

Pet2 = Pet('Goldie','Fish')

Pet1.PetAnimal()

Good boy Fido, have a treat!

Pet2.PetAnimal()

> My hand got wet trying to pet Goldie.

Inheritance

Person1 = Friend('Bob',25,False)

Person2 = Coworker('Nancy',26,True)

Person1.Tell_ overly_personal_story()

Wow that was embarrassing, but funny!

Person2. Tell_overly_personal_story()

Error: Undefined, why would you do that?

Coworker

Has_cool_desk

Share_report()

Syntax

```
def __init__(self, name, age, breed):
   self.age = age
                                                                        Specify parent class
   self.breed = breed
def whatKindofAnimal():
                                                                        Specify how to initialize
def bark(self):
                                                                        parent variables
   return f"{self.name} says woof!"
def get info(self):
   return f"Name: {self.name}, Age: {self.age}, Breed. {self.breed}"
  class WorkingDog(Dog):
      def __init__(self, name, age, breed, job):
          super(). init_ (name, age, breed)
          self.job = job
      def do_job(self):
          return f"{self.name} is doing their job: {self.job}"
 working dog = WorkingDog("Max", 4, "German Shepherd", "Police Dog")
  print(working_dog.bark())
  print(working dog.get info())
  print(working_dog.do_job())
```

Python

In-Class 09: Classes and linear solvers

Do this with a partner.

Turn in as a pair on Canvas.

Tips for pair programming:

- Switch off who is typing.
- The person who is not typing should:
 - Make comments or suggest potential solutions
 - Be "devil's advocate": what are potential issues with what is being typed
 - Suggest other things to explore

At-Home: Next assignment will be released Wed.