Evolutionary Learning of Policies for MCTS Simulations

James Pettit, David Helmbold

University of California, Santa Cruz jpettit@soe.ucsc.edu

July 2012

Motivation

- Outting and connecting games are hard
- Computer Go Next Al Grand Challenge
- Monte Carlo techniques promising
- Tuning policies difficult
- Solution: use evolution and self-play to learn better policies

The Game of Hex - Good for AI

- 2 player, perfect information
- Easy to program
- Clear-cut winning condition
- Large problem space
- Solved for boards up to 7x7
- Common sizes: 11x11, 13x13

- Connect opposing sides
- Cut opponents connections

- Connect opposing sides
- Cut opponents connections

- Connect opposing sides
- Cut opponents connections

- Connect opposing sides
- Cut opponents connections

Pettit, Helmbold (UCSC)

- Connect opposing sides
- Cut opponents connections

- Connect opposing sides
- Cut opponents connections

- Connect opposing sides
- Cut opponents connections

Tree Search

- Game tree grows exponentially
 - Hex on a general board is PSPACE-complete
- No effective position evaluation heuristic
 - ▶ Previous champion until 2006, (Six, used circuit simulation
- Limited opportunities for provable pruning
 - ▶ Current champion, MoHex, does lots of this

Monte Carlo Tree Search

- Grow tree dynamically
- Use random playouts to estimate minimax value
- In the limit, converges to true minimax value
- Simple idea, remarkably successful
- Computationally expensive

Monte Carlo Tree Search - Overview

- Select using win/loss statistics, traverse tree to a leaf
- **Playout** from selected position, *randomly* play out game until final position
- *Update* using results of playout, update win/loss statistics

Monte Carlo Tree Search - Playout Policies

- Playout policy a critical part of overall performance
- We examine 4 different policies:
 - ► Default uniform random
 - Uniform Local play in local neighborhood first
 - Uniform Local with Tekuki (Play-Away) possibly play in local neighborhood first
 - ► Local Pattern Weighted stochastic, weighted local neighborhood

Weighting the Playout Policy

- Use patterns to weight moves
- Weight moves local to last-played move
- If local area is filled, use default policy

Example Encoding

Encod	ing									
		vertex:	color	n/a	5	4	3	2	1	0
Empty: Black:			1		00	00	10	01	10	01
White:		bit:	31	12-30	10-11	8-9	6-7	4-5	2-3	0-1
Off:	11									
		0b00000	0000	90000	00000	00000	00010	00110	901 =	= 102

- Fast lookup table mapping pattern to weight
- Plenty of unused space in upper bits for storing extra info

Monte Carlo Tree Search - Playout Policy

- Execution time is critical
- Requires deep insight to develop weights, then careful and expensive testing to verify improvement
- Naively "improving" the strength of the playout policy can hurt overall performance
 - Subtle interaction between selection, update, and playout
 - Example: fully deterministic policy equivalent to an evaluation function
- We want a technique to learn weights automatically

Evolutionary Learning

- Idea: Evolve playout policy
- Policy = set of all possible local patterns + weights for those patterns
- Individual policies compete via self-play to propagate
- Best individuals are selected for reproduction
- Mutation/recombination operates on individual's pattern weights
- Individuals play complete games against each other using complete MCTS system

Evolution

- Init
 - Generate n individuals (population)
- Each Generation
 - Evaluate fitness
 - Rank by fitness
 - **③** Select top c individuals, c < n
 - Recombine individuals into n new children
 - Mutate children

Results of learning after training on 7x7)

Figure: Trained on 7x7 board

	opponent			
player	default	uniform local	uniform local (tenuki)	
uniform local	70.50%			
uniform local (tenuki)	61.00%	50.00%		
learned	90.00%	84.00%	86.00%	

- All-play-all tournament of the 4 policy variants.
- Each element is the percent win-rate of the row variant versus the column variant.
- 200 games per pair.

Generalization to Different Board Sizes

	defaı	ılt	uniform local		
	11×11	13×13	11×11	13×13	
learned	92.5 %	94 %	88.5%	85%	

Figure: Trained on 7x7 board

	default	uniform local
learned	90.00%	84.00%

Results versus MoHex

	MoHex on 7x7
default	11.75%
uniform local	26%
learned	42%

	MoHex on 11x11	Relative CPU
default	0.5%	100%
uniform local	0.0%	107%
learned	11%	122%

- MoHex, the current world-champion, uses lots of expert and domain-specific knowledge
- Good results on small board
- Dramatic improvement for modest overhead

Conclusion

- Computer Hex/Go present a huge problem space
- MCTS is an effective technique to navigate that space
- Shown we can automatically learn to guide MCTS to play computer Hex better
- Future work apply results to different games
- Source code available at https://github.com/etherealmachine/hivemind

Conclusion

Thank you for the time Questions?