Lecture 1: General Overview

08:10 AM Thu, Sep 25 2025

0.1 Introduction

Let $E \neq \emptyset$ a set.

A binary operation \cdot on E is any map from $E \times E$ into E,

$$(\cdot): \quad E \times E \quad \longrightarrow \quad E$$

$$(x,y) \longmapsto x \cdot y$$

Let $A \subset E$, we say A is a stable by (·)if (·) is also a Binary Operation on A,

$$(\cdot_A): A \times A \longrightarrow A$$

$$(x,y) \longmapsto x \cdot_A y = x \cdot y$$

Definition 0.1.1 (Group) : Let $G \neq \emptyset$ a set with a Binary Operation (*), we say that G is a group if :

1. (*) is associative, if:

$$\forall x, y, z \in G: \quad (x * y) * z = x * (y * z)$$

2. (*) admits a netural elements if:

$$\exists e \in G, \forall x \in G: \quad x * e = e * x = x$$

3.

$$\forall x \in G, \exists x' \in G: \quad x * x' = x' * x = e$$

if (*) is commutative i.e.:

$$\forall x, y \in G: \quad x * y = y * x$$

then G is called an Abelian Group.

<u>Notation:</u> We denote (*) by (\cdot) if its multiplicative, and (+) if its additive.

0.1. INTRODUCTION

Lecture 1: General Overview

Proposition 0.1.1: Let (G, \cdot) be a group. then:

- 1. The Neutral Element is uniuge.
- 2. The inverse is unique
- 3.

$$\forall x, y \in G: (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

4.

$$\forall x, y, z \in G:$$

$$\begin{cases} xy = xz \\ yx = zx \end{cases} \implies \begin{cases} y = z \\ y = z \end{cases}$$

Proof. 1. Let $e_1, e_2 \in G$ be a Neutral Element, then:

$$e_1 = e_1 \cdot e_2 = e_2$$

2. let $x \in G$ and $x_1, x_2 \in G$ be its inverses, then:

$$x_1 = x_1 \cdot e = x_1 \cdot (x \cdot x_2) = (x_1 \cdot x) \cdot x_2 = e \cdot x_2 = x_2$$

3. Let $x, y' \in G$. then:

$$(x \cdot y) \cdot (x \cdot y)^{-1} = e \implies y \cdot (x \cdot y)^{-1} = x^{-1}$$
$$\implies (x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

Exercise

Let (G, \cdot) be a group and $x_1, x_2, \ldots, x_n \in G$. then:

•
$$(x_1 \cdots x_n)^{-1} = x_n^{-1} \cdots x_1^{-1}$$

•
$$(x_1^{-1})^{-1} = x_1$$

Definition 0.1.2 : Let (G, \cdot) be a group, $n \in \mathbb{Z}$ and $x \in G$, define

$$x^{n} = \begin{cases} x \cdot x \cdots x \\ e \\ x^{-1} \cdot x^{-1} \cdots x^{-1} \end{cases} \implies \begin{cases} if \ n \ge 1 \\ if \ n = 0 \\ if \ n \le -1 \end{cases}$$

Example:

- 1. $(Z, +), (\mathbb{Q}^*, \cdot), (\mathbb{R}, +), (\mathbb{C}^*, \cdot)$
- 2. The set $\mathcal{F}(\mathbb{R}, \mathbb{R})$ with addition of maps is an Abelian Group, with the null map as Neutral Element
- 3. The set S_n of all bijection of $\{1, \ldots, n\}$ with composition of maps is a group

Definition 0.1.3 (Sub Group) : Let (G, \cdot) be a group and $H \subset G$ we say that H is a Subgroup of G if (H, \cdot) is a gorup

Proposition 0.1.2:

Let (G,\cdot) a group and $H\subset G$. then H is a Subgroup of G if and only if:

- 1. $H \neq \emptyset$
- $2. \ \forall x, y \in H: \ x \cdot y \in H$
- 3. $\forall x \in H: x^{-1} \in H$

<u>Remark</u>: The conditions (2) and (3) are equivalent to:

$$\forall x, y \in H: x^{-1} \cdot y \in H$$

Proof.

$$\forall x, y \in H : x^{-1} \cdot y \in H \implies \begin{cases} \forall x, y \in H : x \cdot y \in H \\ \forall x \in H : x^{-1} \in H \end{cases}$$

<u>Notation</u>: if H is a Subgroup of G, we denote

$$H \leq G$$

if $H \leq G$ with $H \neq G$, we call H a proper Subgroup of G and we write H < G

Exercise

Let (G, \cdot) be a group, then the set:

$$Z(G) = \{ x \in G : gx = xg, \forall g \in G \}$$

1. Prove that $Z(G) = G \iff G$ is an abelian group.

Proof. 1.

$$(\Longrightarrow)$$

Suppose that G is an Abelian Group.

Let $x \in G$ and let $g \in G$, since G is an Abelian group, then gx = xg. then $x \in Z(G)$, then Z(G) = G

$$(\Leftarrow)$$

Suppose that Z(G) = G, let $x, y \in G$. then $x, y \in Z(G)$. so $\forall g \in G$:

$$\begin{cases} xg = gx \\ yg = gy \end{cases}$$

so for g = y, we get xy = yx so G is an abelian group

- 2. Let $G \leq (\mathbb{Z}, +)$.
 - if $G = \{0\}$. then $G = 0\mathbb{Z}$.
 - if $G \neq \{0\}$, then $\exists m \in G$ with $m \neq 0$, without loss of generality. suppose m > 0, so $G \cap \mathbb{N} \neq \emptyset$, so $n = \min G \cap \mathbb{N}$, let $x \in n\mathbb{Z}$. then $x = kn, k \in \mathbb{Z}$, so $x \in G$. hence $n\mathbb{Z} \subset G$. Let $x \in G$, so $\exists q, r \in \mathbb{Z}$, $0 \leq r \leq n-1$ such that x = qn + r. so $r = x qn \in G$, if $r \neq 0$ then:

$$\begin{cases} r < n \\ r = G \cap \mathbb{N} \end{cases} \implies \begin{cases} r < n \\ n = \min G \cap \mathbb{N} \le r, \text{ is a contradiction} \end{cases}$$

so
$$x = qn \in n\mathbb{Z}$$
, so $G \subset n\mathbb{Z}$

Proposition 0.1.3 : Let $H, K \leq G$, with G is a group. then:

$$H \cap K \leq G$$

Proof. Since $e \in H$ and $e \in K$, then $e \in H \cap K \neq \emptyset$.

Let $x, y \in H \cap K$, then:

$$\begin{cases} x, y \in H \\ x, y \in K \end{cases} \implies \begin{cases} x^{-1}, y \in H \\ x^{-1}, y \in K \end{cases} \implies \begin{cases} x^{-1} \cdot y \in H \\ x^{-1} \cdot y \in K \end{cases} \implies x^{-1} \cdot y \in H \cap K$$

Proposition 0.1.4: Let $\{H_i\}_{i\in I}$ be a family of Subgroup of a group G, then:

$$\bigcap_{i \in I} H_i \le G$$

<u>Remark</u>: $H \cup K$ is not always a Subgroup of G.

Proposition 0.1.5 : Let
$$H, K \leq G$$
, Then $H \cup K \leq G \iff \begin{cases} H \subset K \\ K \subset H \end{cases}$

Lecture 2

08:17 AM Thu, Oct 02 2025

Definition 0.1.4: Let G be a group and $A \subset G$, The group spanned by A is the intersection of all SG of G containing A, i.e.:

$$\langle A \rangle = \bigcap_{H \le G, A \subset H} H$$

Proposition 0.1.6: $\langle A \rangle$ is the smallest SG of G containing A

Proof.
$$\langle A \rangle \leq G$$

$$\begin{cases} e \in H, \forall H \leq G \implies \bigcap_{H \leq G} H \neq \emptyset \\ \forall x, y \in \langle A \rangle : \quad x, y \in H, \forall H \leq G \text{ and } A \subset H \end{cases}$$

so $xy^{-1} \in H, \forall H \le G \text{ and } A \subset H$

so
$$xy^{-1} \in \bigcap_{H \le G, A \subset H} H$$

Let $B \leq G$ such that $A \subset B$.

since

$$\bigcap_{H \le G, A \subset G} H \subset B, \quad \text{so } \langle A \rangle \subset B$$

so $\langle A \rangle$ is the smallest SG of G containing A

Proposition 0.1.7: Let G be a group and $A \subset G$ such that $A \neq \emptyset$. Then:

$$\langle A \rangle := \left\{ x_1^{k_1} x_2^{k_2} \dots x_n^{k_n} : \quad n \in \mathbb{N}, x_i \in A, k_i = \pm 1, i \in \{1, \dots, n\} \right\}$$

In particular if $A = \{a\}$, then by definition:

$$\langle A \rangle = \langle a \rangle = \{ a^k : k \in \mathbb{Z} \}$$

Definition 0.1.5: Let G be a group and $A \subset G$, we say:

- 1. A span G if $G = \langle A \rangle$
- 2. G is of finite type if $G = \langle A \rangle$ and A is finite.
- 3. G is cyclic if $G = \langle a \rangle, a \in G$
- 4. G is a finite group if $|G| < \infty$, in this case we call |G| the order of G.
- 5. The order of $x \in G$ is $|\langle x \rangle|$

Example:

- 1. $(\mathbb{Z}, +)$ is cyclic. Indeed, $\mathbb{Z} = \langle 1 \rangle = \{n \cdot 1 : n \in \mathbb{Z}\}$ or with -1.
- 2. $(n\mathbb{Z}, +)$ is cyclic. Since $n\mathbb{Z} = \langle n \rangle = \{k \cdot n : k \in \mathbb{Z}\}$
- 3. $\left(\frac{\mathbb{Z}}{6},+\right)$ is cyclic. Since

$$\frac{\mathbb{Z}}{6\mathbb{Z}} = \langle \overline{1} \rangle = \{ n \cdot \overline{1} : n \in \{0, 1, \dots, 5\} \}$$

$$=\langle \overline{5} \rangle = \{ n \cdot \overline{5} : n \in \{0, 1, \dots, 5\} \}$$

Proposition 0.1.8: Any cylic group is Abelian.

0.1. INTRODUCTION

Lecture 2

Proof. Let $G = \langle a \rangle = \{a^k : k \in \mathbb{Z}\}$, we define:

 $HK = \{hk: h \in H, k \in K\}$

PRODUCT OF SG:

Let G be a group and $H, K \leq G$, we define

 $HK = \{hk: h \in H, k \in K\}$

<u>Remark:</u> $H, K \subset HK$

Proposition 0.1.9:

$$HK \le G \implies HK = KH$$

Proof. (\Longrightarrow) since $HK \leq G$, then $HK \neq \emptyset$, let $x \in HK$. So x = hk where $h, k \in H, K$. since it's a subgroup then, $x^{-1} = k^{-1}h^{-1} \in HK$, so $HK \subset KH$, let $x \in KH$. then x = kh where $k, h \in K, H$ so $x^{-1} = h^{-1}k^{-1} \in HK$. Since $HK \leq G$ then $x \in HK$ so:

$$KH \subset HK$$

Proposition 0.1.10: if $HK \leq G$, then HK is the smallest SG of G containing H and K thats so:

$$HK = \langle H \cup K \rangle$$

Proof. Set

$$L = \left\{ x_1^{k_1} \cdot \ldots \cdot x_n^{k_n} : n \in \mathbb{N}, x_i \in H \cup K, k_i = \pm 1 \right\}$$
$$= \langle H \cup K \rangle$$

Let $x \in HK$, then $x = hk \in L$. so $HK \subset L$, since $H, K \subset HK$. then $H \cup K \subset HK$, since $HK \leq G$, then $\langle H \cup K \rangle \subset HK$ (see definition):

$$HK = \langle H \cup K \rangle$$

0.2 Quotient Group

Exercise

Let $H \leq G$, G is a group and let $x, y \in G$. Show that:

1.
$$xH = H \iff x \in H$$

$$2. \ x^{-1}y \in H \iff y \in xH$$

3.
$$H^{-1} = H$$
 with $H^{-1} = \{h^{-1}: h \in H\}$

Proof.

$$x \in H \implies H \subset xH$$

$$h \in H \implies h = xx^{-1}h = x(x^{-1}h) \in xH$$

- Let $H \leq G$, define on G the binary operations R_q and R_d by:

$$\forall x, y \in G : \begin{cases} x \mathcal{R}_g y \iff x^{-1} y \in H \\ x \mathcal{R}_d y \iff y x^{-1} \in H \end{cases}$$

we can show that \mathcal{R}_g and \mathcal{R}_d are equivalence relations, (reflexive, symmetric, transition) let $x \in G$. that left class of x by \mathcal{R}_g is:

$$\overline{x} = \{ y \in G : x \mathcal{R}_q y \}$$

$$= \{ y \in G : x^{-1}y \in H \} = \{ y \in G : y \in xH \} = xH$$

Similarly, the right class of x is:

$$\overline{x}^d = \{ y \in G : x \mathcal{R}_d y \} = H x$$

QUOTIENT OF G BY \mathcal{R}_g AND \mathcal{R}_d :

By definition:

$$\frac{G}{\mathcal{R}_{y}} = \left\{ \overline{x}^{2} : x \in G \right\} = \left\{ xH : x \in G \right\} \stackrel{\text{def}}{=} \left(\frac{G}{H} \right)_{a}$$

where:

$$\frac{G}{\mathcal{R}_d} = \left\{ \overline{x}^d : x \in G \right\} = \left\{ Hx : \quad x \in G \right\} \stackrel{\text{def}}{=} \left(\frac{G}{H} \right)_d$$

Proposition 0.2.1: $\left(\frac{G}{H}\right)_g$ and $\left(\frac{G}{H}\right)_d$ are partition of G.

