

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação

SSC512 Elementos de Lógica Digital

Flip Flop

Prof.Dr. Danilo Spatti

São Carlos - 2020

- Em circuitos combinacionais a saída em um dado instante depende apenas da combinação das entradas neste instante.
- Existem projetos que não podem ser resolvidos com circuitos combinacionais.
- Muitas vezes é necessário conhecer o estado anterior e a sequência anterior para se obter a saída.

 Um modo de classificar os circuitos digitais seria subdividi-los em Circuitos
Combinacionais e Circuitos Sequenciais.

 Combinacionais são aqueles em que as saídas dependem unicamente das entradas, seguem a lógica combinacional e utiliza a álgebra de Boole como ferramenta.

- Nos circuitos sequenciais, as saídas dependem das entradas presentes e também da história das entradas no passado.
- Saídas dependem da sequência de valores lógicos na entrada que conduzem até o presente.
- Apresenta memória e realimentação.

- Astáveis: circuitos sem estados estáveis, mudam constantemente de estado sem a necessidade de estímulos externos.
- Monoestáveis: circuitos com um estado estável, o repouso. Muda de estado com sinal externo, mas volta após algum tempo.
- Biestáveis: circuitos com dois estados estáveis: repouso e ativo, somente mudam de estado com sinal externo. Ex.: flip-flops.

- Também chamados de circuitos Síncronos.
- O momento exato em que a saída pode mudar de estado é determinado por um sinal periódico: clock.
- Geralmente um trem de pulsos de onda quadrada.
- Sensível à nível ou à borda (subida ou descida) do clock.

- Lógica Digital
- A diferença básica entre um latch e um Flip-Flop (FF) é a presença de um sinal de clock.
- A saída de um FF somente se modifica quando uma dada condição do clock acontece, geralmente, borda de subida ou descida do sinal.

8

Não tem versões comerciais, base teórica para outros FF.

S	R	CLK	SAÍDA
0	0	↑	Não Muda
1	0	↑	Q = 1
0	1	↑	Q = 0
1	1	↑	Inválido

S	R	CLK	SAÍDA
0	0	\rightarrow	Não Muda
1	0	\downarrow	Q = 1
0	1	\downarrow	Q = 0
1	1	\downarrow	Inválido

Não tem versões comerciais, base teórica para outros FF.

S	R	CLK	SAÍDA
0	0	↑	Não Muda
1	0	↑	Q = 1
0	1	↑	Q = 0
1	1	↑	Inválido

Tipo JK

Não tem estado inválido e tem modo de comutação

J	K	CLK	SAÍDA
0	0		Não Muda
1	0	↑	Q = 1
0	1	↑	Q = 0
1	1		Comuta

A saída copia a entrada D de acordo com o sinal de clock.

D	CLK SAÍDA	
0	↑	0
1	↑	1

Comuta a saída quando se aplica um pulso de clock.

T	CLK SAÍDA	
0	↑	Mantém
1	↑	Comuta

Geralmente, os FF comerciais possuem entradas assíncronas, como clear (CLR) ou preset (PRE), as quais modificam a saída independente do sinal de CLK.

J	K	CLK	PRE	CLR	Q
0	0	\downarrow	1	1	Não Muda
0	1	\downarrow	1	1	0
1	0	\downarrow	1	1	1
1	1	\downarrow	1	1	Comuta
X	Χ	X	1	1	Não Muda
X	X	X	1	0	Clear assíncrono
X	Χ	X	0	1	Preset assíncrono
X	X	X	0	0	Inválido

spatti@icmc.usp.br

