A proof is rarely blind deduction from definitions and theorems. Before writing a proof, you must already see in your mind the skeleton joining various parts of the argument. Writing down the technical details is just fleshing out that skeleton.

- 1. Let A and B be sets.
 - (a) Suppose A and B are disjoint (i.e., $A \cap B = \emptyset$) and countable. Prove that $A \cup B$ is countable.
 - (b) Suppose A and B are (not necessarily disjoint but) countable. Prove that $A \cup B$ is countable.
- 2. Let A_0, A_1, A_2, \ldots be countable sets. Recall from Tutorial 3 Problem 9 that for all $n \in \mathbb{Z}_{\geq 0}$,

$$\bigcup_{i=0}^{n} A_i = A_0 \cup A_1 \cup \dots \cup A_n,$$

and for all x,

$$x \in \bigcup_{i=0}^{\infty} A_i$$
 if and only if $x \in A_i$ for some non-negative integer i .

- (a) Prove by induction that $\bigcup_{i=0}^{n} A_i$ is countable for any integer $n \ge 0$.
- (b) Does (a) prove that $\bigcup_{i=0}^{\infty} A_i$ is countable?
- (c) Using the countability of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ from Theorem 8.4.4, or otherwise, prove that $\bigcup_{i=0}^{\infty} A_i$ is countable. (Hint: You may find Tutorial 7 Problem 9 useful.)
- 3.* The set \mathbb{Q} of rational numbers can be defined by $\mathbb{Q} = \{r \in \mathbb{R} : \exists m \in \mathbb{Z} \ \exists n \in \mathbb{Z}^+ \ r = \frac{m}{n}\}.$
 - (a) Consider the following "proof" that \mathbb{Q} is countable.

"Note that $\mathbb{Z} \subseteq \mathbb{Q}$. Since \mathbb{Z} is countable and every subset of a countable set is countable, we know \mathbb{Q} is countable."

What is wrong with this "proof"?

- (b) Using the countability of $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$, or otherwise, prove that \mathbb{Q} is countable. (This is even more surprising than the countability of \mathbb{Z} , since there are infinitely many rational numbers between any two rational numbers.)
- (c) In essence, a set X is countable means we can write $X = \{x_0, x_1, x_2, \ldots\}$. Write \mathbb{Q} in this form.
- 4. Let Y and Z be sets that are countable and infinite. Prove that $Y \times Z$ is countable. (This is a generalization of the fact that $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ is countable.)
- 5. Prove that:
 - (a) if a set X has an uncountable subset, then X is also uncountable;
 - (b)* if A is uncountable and B is countable, then $A \setminus B$ is uncountable.
- 6. It will be shown in the lectures that if X is a finite set, then $\mathcal{P}(X)$ is finite and has cardinality $2^{|X|}$. Use this to prove that a set X has countably many subsets if and only if X is finite.
- 7.* Prove that
 - (a) $\{S \in \mathcal{P}(\{b\}^*) : S \text{ contains exactly 3 strings} \}$ is countable;
 - (b) $\mathcal{P}(\{b\}^*)$ is uncountable.

(Part (a) can be generalized to "there are countably many finite subsets of $\{b\}^*$ ", while part (b) says $\{b\}^*$ has uncountably many subsets. Therefore, the point here is: the uncountability of $\mathcal{P}(\{b\}^*)$ must be from the infinite subsets.)

8.* Let B be a finite subset of an infinite set C. Prove that there are uncountably many countable sets X such that $B \subseteq X \subseteq C$.