

François Flandin

Encadré par Pr Sid Touati

Objective

Explore how compilers optimizes programs using several optimizations levels : -00 , -01 , -02 , -03 , -0s .

2 parts to the project

- 1. Compiling 2 programs in C/C++ with each optimization level and compiler to compare performances
- 2. Checking which optimization is enabled for each optimization level and compiler

Experience

Several methods are available on linux

/cpu folder

Navigating the folder can give information about processor's topology, cache levels, number of cpus, cache repartition, etc.

1scpu command

Pas encore fait

other tools

Pas encore fait

Model name: 11th Gen Intel(R) Core(TM) i5-1135G7 @

2.40GHz

Adress size: 39 bits physical, 48 bits virtual

Cache line size: 64 bytes

Cores: 4

Graphical Topology				
Cores	0 4	1 5	2 6	3 7
L1 Cache	48 kB	48 kB	48 kB	48 kB
L2 Cache	1MB	1MB	1MB	1MB
L3 Cache	8 MB			

Table – Computer's topology

Configuration

Computer in a lighweight configuration, avoid OS's optimizations and bloat from other programs or graphical interface.

OS and compilers

OS: Fedora Linux Workstation v40

gcc: version 14.2.1

icx: version 2024.2.1

clang: version 18.1.8

ccomp: version 3.14

Benchmark results

Figure – Evolution of the execution time of the program mat_mult.c as a function of compiler and optimization level.

Figure – Evolution of the execution time of the program mat_mult.c as a function of compiler and optimization level.