Physics 3410 Sample Exam 2 2016 April 11, 2014

- Turn off your cell phone NOW, if you have one, and put it away. Avoid the appearance of impropriety.
- This is a closed-book exam. You may use two sheets of notes (two-sided) and your own calculator (not a cell phone or other wireless device, and not shared with another student).
- This test contains 17 questions and 72 points. The point value of each question may be found in a little box, like so: 3.
- If any question seems ambiguous, ask me about it. Raise your hand (and maybe clear your throat if I'm not looking) and I will come to you; please remain seated.
- Partial credit is available *everywhere*; when in doubt, explain your reasoning. If you need more room to write, use the back of a sheet, but tell me that you are continuing on the back. Show your work.
- In the event that I have to make a correction or clarification to the exam, I will announce
 it and write it on the board; if I do so, you are responsible for taking these corrections into
 account.
- Look out for *emphasized* and **bolded** words; they are usually important.
- Make sure that all answers that need units, get units.
- Please use the little blank (______) for your answers, where provided. If there is no blank, please box or circle your final answer.
- When you're done, place the exam in the appropriate pile, and leave quietly; please do not stand outside the doors talking about the exam.

$$k = 1.38 \times 10^{-23} \,\mathrm{J/K}$$

$$dU = T dS - P dV + \mu dN \qquad dF = -S dT - P dV + \mu dN dH = T dS + V dP + \mu dN \qquad dG = -S dT + V dP + \mu dN$$

Good luck!

1. This graph shows the entropy of a system as a function of its energy. There are two copies of the system next to each other, one with energy U_A and one with energy U_B .

- (a) _____ If the systems are put into contact, heat will flow A) from A to B (A is "hotter")
 - B) from B to A (B is "hotter")
- 3 (b) _____ These systems have
 - A) negative temperature
 - B) negative heat capacity
 - C) neither of these

3 2. ____ A system absorbs 50 J of heat, and its temperature drops by 1 K. This system has A) negative temperature B) negative heat capacity C) neither of these

3. _____ 150 J of heat flows out of a thermal reservoir at temperature $T=300\,\mathrm{K}$. Find the change ΔS in the reservoir's entropy.

$$\frac{300K}{Q} = 150J$$

2 4. By what process can a system decrease in entropy? (And I don't mean "by increasing the entropy somewhere else").

5. Consider this process of an ideal gas on a PV diagram.
3 (a) This process is A) constant-volume B) isobaric C) isothermal
3 (b) During this process, A) work flows into the system B) work flows out of the system C) no work is involved
3 (c) During this process, A) heat flows into the system B) heat flows out of the system C) no heat is involved
6. Answer the following true/false questions about an adiabatic process. Feel free to explain you
answer.
1 (a) An adiabatic process is never quasistatic.
1 (b) An adiabatic process does not change a system's entropy.
1 (c) During an adiabatic process, no heat flows into or out of the system.

 $oxed{1}$ (d) _____ An adiabatic process is relatively slow.

- 7. This figure shows a heat engine operating between two reservoirs.
- (a) What is its efficiency?

 $\boxed{3}$ (b) How much heat Q_{out} flows into the cold reservoir?

 $\boxed{2}$ (c) If this is a Carnot engine, what is the temperature T_H of the hot reservoir?

8. _____ This figure shows a cyclic process on a PV diagram. The net work of flow during this cycle is

- 3 9. _____ When a liter of a certain fuel burns, its internal energy decreases by 80 J ($\Delta U = -80 \,\mathrm{J}$) and its Helmholtz free energy F decreases by 50 J ($\Delta F = -50$ J). How much work could be done on the environment by burning this liter of fuel?

- **A)** 0J **B)** 30J **C)** 50J **D)** 80J

3 10. A system at standard temperature and pressure (300 K, 10^5 Pa) expands from $2\,\mathrm{m}^3$ to $2.1\,\mathrm{m}^3$. What is the change in the Helmholtz free energy ΔF ? The temperature and pressure remain constant throughout the expansion.

- 3 11. When you burn wood, its enthalpy
 A) increases B) stays the same C) decreases
- 3 12. I slowly expand a gas in contact with a thermal reservoir. Write the derivative (in the form $\left(\frac{\partial A}{\partial B}\right)_C$) you would use to find the change in the system's entropy.

13. Consider the new thermodynamic potential $\Phi = F - \mu N$, which has the thermodynamic identity

$$d\Phi = -S \, dT - P \, dV - N \, d\mu$$

 $\boxed{3}$ (a) What are the natural variables of Φ ? _____

$$\boxed{3}$$
 (b) Find $\left(\frac{\partial \Phi}{\partial \mu}\right)_{T,V}$.

 $\boxed{3}$ (c) Find a derivative which is equal to this one, using a Maxwell relation related to Φ .

$$\left(\frac{\partial S}{\partial \mu}\right)_{T \ V} =$$

- 2 14. At -10° C at standard pressure, ice has a ... Gibbs free energy than liquid water.

 A) higher B) lower
- 2 15. When does the Gibbs free energy of ice equal the Gibbs free energy of liquid water?

- 16. This graph shows the Gibbs free energy of two crystal structures (called "blue" and "gold") of toledium, as a function of pressure.
- 3 (a) At which pressure is blue to ledium more stable? A) P_A B) P_B

 $\boxed{3}$ 17. In the van der Waals model of an ideal gas, $\left(P+a\frac{N^2}{V^2}\right)(V-Nb)=NkT$. Explain what the quantity Nb describes in physical terms.