## CC Lectures 7-8-9

Compiled for: 7th Sem, CE, DDU

Compiled by: Niyati J. Buch

## **Topics Covered**

#### Moore Machine

- Count the occurrences of "01"
- Count the occurrences of "aab"
- Find 1's complement of a binary number
- Count the occurrences of 1101 (non-overlapping)
- Count the occurrences of 1101 (overlapping)
- Replace first 1 with 0 for every substring starting with 1

#### Mealy Machine

- Count the occurrences of "01"
- Find 1's complement of a binary number
- Count the occurrences of "aab"
- Count the occurrences of "01\*0"

# **Topics Covered**

- Convert the given Moore machine to Mealy machine
  - <u>Ex 1</u>
- Convert the given Mealy machine to Moore machine
  - <u>Ex 1</u>
  - <u>Ex 2</u>
- Construct Moore machine and Mealy machine
  - <u>Ex 1</u>
  - Ex 2

## Mealy Machine and Moore Machine

- A **Mealy machine** is a finite-state machine whose output values are determined both by its current state and the current inputs.
- A **Mealy machine** is a deterministic finite-state transducer: for each state and input, at most one transition is possible.
- A **Moore machine** is a finite-state machine whose current output values are determined only by its current state.
- Like other finite state machines, in Moore machines, the input typically influences the next state.
- Thus the input may indirectly influence subsequent outputs, but not the current or immediate output.

## Moore Machine

- Basically a Moore machine is just a FA with two extras.
  - It has 2alphabets- an input and output alphabet.
  - 2. It has an output letter associated with each state.
    - The machine writes the appropriate output letter as it enters each state.



3 states are required for the smallest input 01



The Moore machine will print 1 as output when 01 is found.

It will print 0 for any other transition.











| INPUT  | STATE   | OUTPUT  |
|--------|---------|---------|
| 10101  | AABCBC  | 000101  |
| 00010  | ABBBCB  | 000010  |
| 110011 | AAABBCA | 0000010 |



4 states are required for the smallest input aab



The Moore machine will print 1 as output when **aab** is found.

It will print 0 for any other transition.













| INPUT     | STATE      | OUTPUT     |
|-----------|------------|------------|
| aab       | ABCD       | 0001       |
| abaababbb | ABABCDBAAA | 0000010000 |
| aabaabab  | ABCDBCDBA  | 000100100  |

Start state A



Two more states are required.



Two more states are required.













For input 1101, 5 states are required.



For input 1101, 5 states are required.

















| INPUT     | STATE      | OUTPUT     |
|-----------|------------|------------|
| 011011101 | AABCDEBCDE | 0000010001 |
| 01101101  | AABCDEBAB  | 000001000  |



For input 1101, 5 states are required.



For input 1101, 5 states are required.

















| INPUT     | STATE      | OUTPUT     |
|-----------|------------|------------|
| 011011101 | AABCDECCDE | 0000010001 |
| 01101101  | AABCDECDE  | 000001001  |

```
e.g.
i/p 0111001 \rightarrow 0111001
o/p 0011000
i/p 0001001110 \rightarrow 0001001110
o/p 0000000110
i/p 111010110 \rightarrow 111010110
o/p 011000010
```

So, for every 1 in input after a 1, output is 1.

For 1 in input after a 0, output is 1.

And, for every 0 in input, output is 0.

A substring starting with 1 can be either 11 or 10.

$$11 \rightarrow 01$$
 and  $10 \rightarrow 00$ 



A substring starting with 1 can be either 11 or 10.

$$11 \rightarrow 01$$
 and  $10 \rightarrow 00$ 



Any 1's following a 1 will remain 1.



Any 0's will remain 0.



Any 0's will remain 0.





```
i/p0111001i/p0001001110i/p111010110\rightarrow0111001\rightarrow0001001110\rightarrow111010110o/p0011000o/p0000000110o/p011000010
```

# Mealy Machine

- A Mealy machine is a finite-state machine whose output values are determined both by its current state and the current inputs.
- The state diagram for a Mealy machine associates an output value with each transition edge, in contrast to the state diagram for a Moore machine, which associates an output value with each state.

















| INPUT  | STATE   | OUTPUT |
|--------|---------|--------|
| 010101 | ABCBCBC | bababa |
| 001001 | ABBCBBC | bbabba |
| 1001   | AABBC   | bbba   |



Construct a Mealy Machine that produces the 1's complement of any binary input string.



Construct a Mealy Machine that produces the 1's complement of any binary input string.



Construct a Mealy Machine that produces the 1's complement of any binary input string.



| INPUT  | OUTPUT |
|--------|--------|
| 010101 | 101010 |
| 001001 | 110110 |
| 1001   | 0110   |



Moore Machine



Moore Machine → Mealy Machine



Moore Machine → Mealy Machine





Mealy Machine



| INPUT    | OUTPUT   |
|----------|----------|
| aab      | 001      |
| aaab     | 0001     |
| aababaab | 00100001 |

First, constructing Moore machine. Taking 3 states for smallest input 00



Constructing Moore machine.



Constructing Moore machine. Completing remaining edges.



Constructing Moore machine. Completing remaining edges.



Constructing Moore machine. Completing remaining edges.



Assuming overlapping is allowed.

Constructing Moore machine. Completing remaining edges.



#### Moore machine











#### Mealy Machine







































































Construct a Moore Machine and a Mealy Machine that counts the occurrences of the sequence 01 or 10 in any input strings over {0,1}

## Moore Machine: Count strings 01 or 10



## Mealy Machine: Count strings 01 or 10



Construct a Moore Machine and a Mealy Machine that counts the occurrences of the sequence 010\*1 in any input strings over {0,1}

## Moore Machine: Count strings 010\*1



| INPUT    | STATE     | OUTPUT    |
|----------|-----------|-----------|
| 01001    | ABCCD     | 00001     |
| 01010101 | ABCCDBCCD | 000010001 |
| 0110101  | ABCDBCCD  | 00010001  |

#### Mealy Machine: Count strings 010\*1



| INPUT    | OUTPUT   |
|----------|----------|
| 01001    | 00001    |
| 01010101 | 00010001 |
| 0110101  | 0010001  |