Class 4: Subgroups, Additive Integer Group and Its Subgroup - 2022/09/19

Class 4: Subgroups, Additive Integer Group and Its Subgroup - 2022/09/19

Group Cont.

Order

Notation of composition in groups

Examples of Groups

Cycle

Definition

Example

Compute

Propositions

Exercise

Subgroups

Wish

Definition

Examples

Proposition

Proof:

Example

Group Cont.

Order

<u>Definition:</u> The <u>order</u> of a group G is the number of element G has, denoted by |G|.

- If $|G| < \infty$, we say G is a finite group.
- ullet Otherwise G is an infinite group

Notation of composition in groups

If we write the composition of a group is a multiplicative way, we have:

$$k>0, \qquad g^k=\underbrace{g*g*\ldots g}_{ ext{k-copies}}, \ g^{-k}=\underbrace{g^{-1}*g^{-1}\ldots g^{-1}}_{ ext{k-copies}} \ k=0, \qquad g^0=1$$

Note:

$$g^k \cdot g^l = g^{k+l}$$

Examples of Groups

1. $G=\{\pm 1\}$, composition is multiplication.

|G|=2. Finite group.

$$(+1) \cdot (+1) = +1$$

 $(+1) \cdot (-1) = -1$
 $(-1) \cdot (+1) = -1$
 $(-1) \cdot (-1) = +1$

• Since it's a finite group, we can use the multiplication table to show the results.

"

Multiplication Table

- "Multiplication Table" for a finite group is a way to express the result of all the compositions for this group.
- $\bullet \quad \text{Example: } G \text{ is a finite group, } G = \{1, g_1, g_2, \dots, g_{n-1}\}$

• In particular, for $G=\{\pm 1\}$ we just defined,

	+1	-1
+1	+1	-1
-1	-1	+1

The trivial group,

	1
1	1

2. Klein Four Group

"

Named after the mathematician Klein

- $K_4 = \{1, a, b, c\}$
- Law of composition is given by the table:

	1	а	b	С
1	1	a	b	С
a	а	1	С	b
b	b	С	1	a
С	С	b	a	1

- Note:
 - $|K_4| = 4$
 - $lacksquare orall x \in K_4, \ x^{-1} = x$
- ullet Associativity: It was checked that $(xy)z=x(yz), \ orall x,y,z\in K_4.$
 - $4^3 = 64$ cases
- \circ K_4 is an abelian group.

66

A finite group G is Abelian \iff its multiplication table is symmetric along diagonal

3. Symmetric Groups S_n

"

First group in math history

- Recall:
 - $X = \{1, 2, 3, \dots, n\}.$
 - S_n is the groups of all bijections (permutations) on X.
 - with function composition
- Problem: We don't have a good way to describe the elements (functions)
 - We can use cycle

Definition

- A <u>cycle</u> $(a_1 \ a_2 \dots a_k)$, where $a_1, a_2, \dots a_k$ are distinct elements in $\{1, 2, \dots, n\}$, is an element in S_n that sends $a_1 \mapsto a_2, a_2 \mapsto a_3, \dots, a_{k-1} \mapsto a_k, \ a_k \mapsto a_{k+1}$, while fixing the remaining numbers.
- A cycle $(a_1 \ a_2 \dots a_k)$ is called a <u>k-cycle</u>

Example

- $\sigma = (1 \ 2 \ 3) \in S_5$
- $\sigma:\{1,2,3,4,5\} o \{1,2,3,4,5\}$
- $\sigma(1) = 2$, $\sigma(2) = 3$, $\sigma(3) = 1$

"

NOTE:
$$(1 \ 2 \ 3) = (2 \ 3 \ 1) = (3 \ 1 \ 2)$$

Not every elements are cycles as the permutations do not always work in a cyclic way

But cycle is enough to describe small groups

- $S_1 = \{id\}$
- $S_2 = \{id, (1\ 2)\}$
- $S_3 = \{id, (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$
- $|S_n| = n!$

Compute

• (12)(13) = ?

"

Each of the cycles is a bijective function. Here, we are composing a pair of functions

 $f_1\circ f_2(x)=f_1(f_2(x))$, so $(1\ 3)$ should be calculated first

$$f(1) = 3, f(2) = 1, f(3) = 2$$

Therefore, $(1\ 2)(1\ 3) = (1\ 3\ 2)$

• Fun facts

$$(12)^2 = (13)^2 = (23)^2 = id$$

$$\circ$$
 $(123)(132) = id$

- ullet S_3 is non-Abelian, and it's the <u>smallest non-Abelian group</u>
- Note: not all permutations are cycles.
 - For example, in S_4 :
 - $\circ \ \ \sigma(1) = 2, \sigma(2) = 1, \sigma(3) = 4, \sigma(4) = 3,$
 - We can write it as the composition of two cycles
 - $\sigma = (1\ 2)(3\ 4)$

Propositions

- 1. (Will prove later) Each element of S_n can be written as a product of <u>disjoint cycles</u>, in a unique way up to reordering of these cycles
 - o Disjoint cycles: $(a_1 \ldots a_k)(b_1 \ldots b_m)$ are disjoint if $a_1 \ldots a_k, b_1 \ldots b_m$ are all distinct numbers
- 2. Two disjoint cycles commute
 - $\circ (a_1 \ldots a_k)(b_1 \ldots b_m) = (b_1 \ldots b_m)(a_1 \ldots a_k)$

Exercise

ullet List all the 24 elements in S_4 , ad product of disjoint cycles

Subgroups

Wish

• Given a group G, we want to study a subset of G that is also a group with the same composition as that of G.

Definition

- A subset of a group $G, H \subseteq G$, is a <u>subgroup</u> of G if:
 - 1. Closure: $\forall h_1, h_2 \in H$, $h_1h_2 \in H$
 - 2. Identity: $1 \in H$
 - lacksquare It's the same identity as in G
 - 3. Inverse: $\forall h \in H, h^{-1} \in H$
- ullet In other words, it's a smaller subset lives inside of G and use the same composition, and it's still a group

Examples

- For any G, it has two "uninteresting" subgroups,
 - \circ G
 - (1)
 - \circ They coincide when $G=\{1\}$

- $G=(\mathbb{R},+)$, then $H=\mathbb{Z}$ is a subgroup
 - ullet $\forall k_1,k_2\in\mathbb{Z},k_1+k_2\in\mathbb{Z}$
 - \circ $0 \in \mathbb{Z}$
 - $\circ \quad \forall k \in \mathbb{Z}, -k \in \mathbb{Z}$
- For $S_n, \ H=\{\sigma\in S_n|\sigma(n)=n\}$
 - $\circ \hspace{0.2cm} H$ consists of all the functions that fixes the last element n
 - \circ Then H is a subgroup of S_n
 - \circ Actually, H can be regarded as a copy of S_{n-1}

Proposition

• H is a nonempty subset of a group G satisfying that $\forall a,b \in H, a^{-1}b \in H$. Then H is a subgroup of G.

- Proof:

- $H \neq \emptyset, \exists h \in H$. then $1 = h^{-1}h \in H$ (a = h, b = h)
- $\forall h \in H, h^{-1} = h^{-1}1 \in H \ (a = h, b = 1)$
- $\forall h_1, h_2 \in H, h_1h_2 = (h_1^{-1})^{-1}h_2 \in H \ (a = h_1^{-1}, b = h_2)$

Example

- ullet Recall: We defined $GL_n(\mathbb{R})$ General Linear Group
 - $GL_n(\mathbb{R})$ consists of all $n \times n$ invertible real-matrices.
 - Composition is multiplication
- Let $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) | det(A) = 1\}$
- Then $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$ called <u>Special Linear Group</u>
- Proof:
 - $\circ \ \ \forall A,b \in SL_n(\mathbb{R}),$
 - $det(A^{-1}B) = det(A^{-1})det(B) = det(A)^{-1}det(B) = 1$ $\Rightarrow A^{-1}B \in SL_n(\mathbb{R})$
 - \circ So by the prop., $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$