Информация о продукте

RENOLIN Xtreme Temp

Гидравлические и смазочные масла с противоизносными свойствами, высоким индексом вязкости и стабильностью к сдвигу

Описание

Серия масел RENOLIN Xtreme Temp разработана для гидравлических систем, работающих в широком диапазоне температур. Высокий индекс вязкости и повышенная стабильность к сдвигу гарантируют малую вязкость и хорошую текучесть масла при низких температурах пуска. При высоких рабочих температурах стабильный индекс вязкости обеспечивает более высокую вязкость и более прочную смазывающую пленку по сравнению со стандартными гидравлическими маслами класса HLP. Серия RENOLIN Xtreme Temp основана на специально подобранных полусинтетических базовых маслах в сочетании с присадками, повышающими индекс вязкости (загустителями). Эти полимеры обеспечивают устойчивый к сдвигу индекс вязкости - малую вязкость при низких температурах и достаточно высокую - при высоких. При использовании RENOLIN Xtreme Temp снижаются энергетические затраты на пуск системы при низкой температуре и повышается стабильность смазочной пленки - при высокой. В результате может быть снижен износ гидравлических насосов и моторов. Использование RENOLIN Xtreme Temp позволит получить масляную пленку большей толщины при повышенных температурах и лучшую стабильность при высоком давлении, что снижает износ и уменьшает утечки в системе. Комбинация базовых масел со специально подобранными присадками гарантирует улучшение низкотемпературных свойств по сравнению с обычными высокоиндексными маслами. При этом полимерные загустители, используемые в RENOLIN Xtreme Temp, отличаются чрезвычайно высокой стабильностью к сдвигу.

При использовании обычных высокоиндексных загущенных масел уже после небольшого времени работы может наблюдаться снижение вязкости и индекса вязкости, обусловленное разрушением полимерных цепей загустителя. Это происходит практически сразу при использовании низкокачественных загустителей при высоких скоростях сдвига, высоких давлениях в клапанах, насосах и подшипниках и негативно сказывается на свойствах гидравлической жидкости.

Эти явления подтверждаются практическим опытом использования низкокачественных загущенных гидравлических жидкостей. Уменьшение вязкости и выход ее за пределы рекомендованного класса ISO может приводить к повышенному износу насосного оборудования.

Macлa RENOLIN Xtreme Temp разрабатывались в тесном сотрудничестве с ведущими международными производителями передвижных гидравлических систем и компонентов для них. Полученная в результате комбинация полусинтетических базовых масел и высококачественных присадок полностью соответствует или претребования восходит этих производителей. Высокотемпературная и гидролитическая стабильность сочетаются с прекрасными противоизносными свойствами жидкости. Снижение индекса вязкости в результате сдвига заметно сокращено. Рабочие характеристики RENOLIN Xtreme Temp изучались, как в лаборатории, так и в реальных условиях в высоконагруженной горнодобывающей технике, работающей в экстремальных условиях. Испытания подтвердили прекрасные характеристики новой серии масел. Потери от сдвига стандартных загущенных масел при испытании на четырехшариковой машине (новое требование в соответствии с DIN 51 524-3 2006 г.) обычно составляют 20-40 %, тогда как для RENOLIN Xtreme Temp потери не превышают 15 %, что превосходит требования пользователей гидравлических систем.

Сочетание полусинтетического базового масла с присадками, обладающими синергетическим эффектом, также повышает срок службы масла при высоких температурных нагрузках и препятствует образованию продуктов старения масла.

Страница **1** из **3** / 11.2020

Информация о продукте

RENOLIN Xtreme Temp

Гидравлические и смазочные масла с противоизносными свойствами, высоким индексом вязкости и стабильностью к сдвигу

Применение

Деэмульгирующие гидравлические и смазочные масла рекомендуются для всех видов применения в мобильных гидравлических системах. Они имеют широкий интервал рабочих температур, превосходят требования стандарта DIN 51 524-3 (2006 г.) к высокоиндексным маслам класса HVLP и отличаются высокой стабильностью к сдвигу.

RENOLIN Xtreme Temp особенно рекомендуются для случаев, когда требуется малая вязкость при низких температурах пуска в сочетании с высокой прочностью масляной пленки при высокой температуре. Благодаря использованию полусинтетических базовых масел RENOLIN Xtreme Temp отличаются повышенным сроком службы.

Преимущества

- Прекрасная стабильность к сдвигу
- Отличные вязкостно-температурные свойства
- Высокий индекс вязкости
- Хорошие низкотемпературные свойства
- Низкое пенообразование
- Быстрое отделение воздуха
- Высокая стойкость к старению
- Надежная защита от коррозии
- Очень хорошие противоизносные свойства
- Широкий интервал рабочих температур
- Специально подобранные полусинтетические базовые масла.

Спецификации

Macлa серии RENOLIN Xtreme Тетр выполняют или превосходят требования следующих спецификаций:

- DIN 51524-3 (2006): HVLP
- ISO 6743-4: HV
- Denison HF0 T6H20C: гибридные насосы
- Terev
- Vickers 35VQ-25 / V104-C: лопастные насосы
- US Steel 127, 136
- Cincinnati Milacron P68, P69, P70
- Bosch Rexroth RDE 90245

Информация о продукте

RENOLIN Xtreme Temp

Гидравлические и смазочные масла с противоизносными свойствами, высоким индексом вязкости и стабильностью к сдвигу

Типовые характеристики:

Параметр	Единица	Значение				Метод
		32	46	68*	100*	
ISO VG		32	46	68	100	
Кин. вязкость						
При – 20 °C		1000	2040	4800	9000	
При 0 °C	MM ² /C	220	400	660	1100	DIN EN ISO 3104
При 40 °C		32	46	70	100	
При 100 °C		6,9	8,9	11,8	14,5	
Индекс вязкости		180	180	165	150	DIN ISO 2909
Плотность 15 °C	кг/м ³	845	853	856	863	DIN 51 757
Т. вспышки, ОТ	°C	216	230	254	250	DIN ISO 2592
Т. застывания	°C	-46	-40	-39	-36	DIN ISO 3016
Число нейтрализации	мгКОН/г	0,5	0,5	0,5	0,5	DIN 51 558
Антипенные свойства,						
I: 24°C	мл	30/0	20/0	0/0	0/0	ASTM D 892
II: 93.5°C		20/0	10/0	10/0	20/0	
III: 24°C после II		30/0	20/0	0/0	0/0	
Отд. воздуха, 50 °C	МИН	4	5	5	-	DIN ISO 9120
Коррозия стали	баллы	0-A	0-A	0-A	0-A	DIN ISO 7120
		0-B	0-B	0-B	0-B	
FZG A/8.3/90	ступень нагрузки	11	11	11	11	DIN ISO 14635-1
Стабильность к сдвигу на ЧШМ (после 20 часов испытания)	%	< 10	< 10	< 10	< 10	DIN 51 350-6

^{* -} доступны по запросу