Very very very very very very very very long title

A. Kadochnikova¹

¹School of Mathematical Sciences University of Nottingham

date

Outline

- 1 Test section 1
- 2 Figures

Test small title box

This is an example text.

This is an example of a citation [1].

This is a highlighted text for messages and key points.

Lists

This is an example list to demonstrate how to uncover items:

- Item 1
- Item 2
- Item 3

Lists

This is an example list to demonstrate how to uncover items:

- Item 1
- Item 2
- Item 3

Lists

This is an example list to demonstrate how to uncover items:

- Item 1
- Item 2
- Item 3

Tables

This is an example table. Maximum 8 columns in scriptsize font for comfortable view

Step	Terms	C1	C2	C4	C5	C6	AEER(%)
1	$x_{4}x_{4}$	-26.04	-20.99	-10.69	-10.96	-191.78	89.511
2	x_3	75.42	59.58	33	26.06	508.94	8.849
3	x_1x_4	0.62	0.76	0.32	0.48	8.55	0.139
4	x_1x_1	0.01	-0.19	-0.15	-0.22	0.05	0.045
5	x_2	0.71	-0.73	-2.24	-0.66	45.94	0.032
6	x_4	-171.24	-139.22	-69.61	-73.69	-1273.02	0.006
7	c	-233.16	-200.83	-93.74	-119.7	-1805.9	0.308
8	<i>x</i> ₃ <i>x</i> ₄	15.47	12.1	6.36	5.68	110.13	0.093

5/11

Tikz figures

This is an example tikz figure. This is an example reference to a line on the figure •. The best axis size is width=12cm, heigh=7cm for full slide view.

Image import

This is an example of inserting a png.

Experimental studies

Recruitment via chemotaxis

in vivo microscopy on zebrafish larvae

Resolution via reverse migration

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

Random walk models for single cells

RDS models for subcellular species

Experimental studies

Recruitment via chemotaxis

in vivo microscopy on zebrafish larvae

Resolution via reverse migration

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

Random walk models for single cells

RDS models for subcellular species

Experimental studies

Recruitment via chemotaxis

Environment unobserved

Resolution via reverse migration

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

Random walk models for single cells

RDS models for subcellular species

Experimental studies

Recruitment via chemotaxis

Environment unobserved

Random walk or fugetaxis?

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

Random walk models for single cells

RDS models for subcellular species

Experimental studies

Recruitment via chemotaxis

Environment unobserved

Random walk or fugetaxis?

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

RWs do not reflect global environent

RDS models for subcellular species

Experimental studies

Recruitment via chemotaxis

Environment unobserved

Random walk or fugetaxis?

Sensing to motion via subcellular signals

Mathematical models

RDS models for populations

RWs do not reflect global environent

Models not informed by experimental data

Multicolumn environments

Multiple columns can be used anywhere on the slide.

This is column 1.
With centering.
Width defined in absolute values.

This is column 2.
Without centering.
Defined with respect to texwidth.

Followed by normal text separated by vspace.

H. L. Wei, Z. Q. Lang, and S. A. Billings, "Constructing an overall dynamical model [1] for a system with changing design parameter properties," International Journal of Modelling, Identification and Control, vol. 5, no. 2, p. 93, 2008, ISSN: 1746-6172. DOI: 10.1504/IJMIC.2008.022014.

Thank you! Questions?

