第2章, 绥小生规划.

2.1.利止:设入,y为区域中任意而点,及E[0,门,则有 リス(x-%)+(1-又)(y-y7%)川=又川x-%川+(1-以川4%)| 三 XY+(1-以)Y属于放区域,所以该区域程で集。

2.2.证明:

生时, 先记二角形加球内任务、点形表为三顶点的凸组合,设三顶5为X1,从以, 不妨取一极5X1,1位一条与任务5X的连线XX1,并延发支于X2,X3 连线:上一点2'. 因X'是X2,X3上点, 数可用线性组合表形:

X'=U1X2+1/2X3, U1+1/2=1, 1/2X O(U1, 1/2X)

X1=dx4+(1-d)x3 0<d<1

又X是X/与X,连线上点,故:

 $x = \lambda x' + (+\lambda)x_1$ of $\lambda \in I$

ル格 X'代入上式中得到:

 $X = \lambda \left[dX_2 + (HA) X_3 \cdot \right] + \left[(HA) \cdot \dot{X}_1 \right]$

= A dx2 + A(1-d) X3 + (+A) X21

→ 3 U1= x7 · U2=(1-x) U3=7(1-d)

贝」X=U1X2+U2X1+U3X3.

3 光ル:=1,0とUiと1.

见了对任意 = 帕形内一点, X 可表示为三个极点的凸组合 ~

文 经上的多数形可看作有限个产品形的并集

则对任意,参约形内一点, X司表示为其极点的13组合.

下面考虑,凸多面体下内点X,

取任一极点,放为取火,伤效一条与火的穿线XX1,并延校T的一个面上任意一点Xo,由上述过程、Xo可表示为其面上的移点的凸组合,

XX目XILISODO 类似地:XP表示为Xo与Xi的凸组合。

肚盆过程:以可表动:

其中岩水1.

证毕.

- 2.3.1企明:设任意顶点X,与区域内任意而点升减。 苦X不为极点,则从, 3de(0,1). X1,在eD· 使得X=以为+Cl-d)在成立。 因为《ECO11》,由平面内线性组合知识, X以,然在为和82维线之间。 显然,正为形量的顶点不满足为=d为(+C+d)为2。 则其顶点为极点。
- 2.4. 证明: 按 x=(x1, x2)… xm) 及 y=(y1, y2… yn) TeHt.

 PP a1x1+ax2 t m+anxn ≥ b.

 a1 y1 ta2 y2 t m+dnyn > b.

 又 t t de [0,1] 有

 dx + Cl-d) y= [dx1+(l-d) y1, m, dxn+(l-d) yn] T,

 a1 [dx1+(l-d) y1] + m+an [dxn+cl-d) yn]

 = d(a1x1+m+anxn) + ·(l-d)·(a1y1+m+anyn)

 ≥ db+(l-d) b

 = b

 即点、 dx+(l-d) y ∈ H[†]
- 2.5 (1)解: Pf(1)={+e})=G(x). P(1G(x)足正定的. 例+(x1,x1)是严格凸函数.

所以Ht是凸集.

- (2)解: D独为=(20 0-6行) 则G(A)是正定的。 则G(Y)私) 定严格凸匹(数)。
 - (3)解: P²h(x) = (2 1 0) 1 4 0 0 2) 则 h(x, x, x,)是距的, 则 h(x, x, x,)是严格凸函数,

2.6江日月:

必要性: 若fa)是RT上的凸函数,则脏消:

母対レかりらん"

 $f(\pm x + \pm y) \leq \pm f(y) + \pm f(x)$

又 (又ナイハンの有ナ(ハイ)=ハナイイ)・

NH (2(2×+54))

则f(x+y)=f(z(=x+=y))=2f(=x+=y)

 $\leq 2\left(\frac{1}{2}f(y)+\frac{1}{2}f(x)\right)$ = f(y)+f(x)· /义/要/维得证。

· 充分性: 按 f(x+y) ≤ f(y)+f(x).

令7=dm, y=(I-d)n,其中m,nERn

 $RIf(dm+(rd)n) \leq f(dm) + f(rd)n)$

= df(m) + (Fd)f(n).

由定义:f(X)是kn上的凸函数. 充分性得证.

2.7.证明:设有和加都是局部大区小点,并且打扩充。

若f(孔)>f(在),对YNEZ+,

 $f(x_1) > (1-h) f(x_1) + h f(x_2) > f((1-h)x_1 + h f(x_2))$

行分yn=(1-六)水+片f(X2), 显然にかyn=X1,但

f(Y)<f(M), 与f(M)为局部未及小点矛盾。

因此((()) > f();

同理f(X))<f(Y2),

那么有 f(X1)=f(X2).

易得在定义域内外然有f(n)>f(h).

因此局部极小点也必然是全整体极小点。

2.8证明: 提示: 已经调出的变量检验值: 小理, 如果下边出了证明入则会使得目标函数的值向非期望的。 变化, 即查回转换前自分值.

- 2.9解: (1) 引入松弛变量 次5, 76=0.

 R以上进线性规划机标准型为:

 Miny = 37, +2 /2 + 1/3 1/4,

 Sit. X1-21/2+3/3-1/4+1/5=15,

 281+1/2-1/3+21/4-1/6=6,

 X1, …, 84, 85, 16=0;

用了加持了3分十五位7十二(0,0),f*=0、

(2) .

(3) 如·(1)中的国:

在有无穷多最优解满足:·2×1+3×1=12.

2.12、解:化外标准型:

 $m \cdot 1 \cdot 2 = 2x_1 + 3x_2 + 4x_3 + 7x_4$ $s \cdot t \cdot 2x_1 + 3x_2 - x_3 - 4x_4 = 8$, $x_1 + 2x_2 + 6x_3 - 7x_4 = 3$, $x_1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 3$

基本解文の不表

2.13解:

(1)引入松弛发星化方标准型:

min $3 \times 1 + 2 \times 2 + 2 \times 3 = 2 \times 4$, $5. \pm . \quad \chi_{1} = 2 \times 2 + 3 \times 3 = 2 \times 4 + 2 \times 5 = 15$, $2 \times 1 + 2 \times 2 = 2 \times 4 + 2 \times 6 = 10$, $2 \times 1 + 2 \times 4 = 2 \times 6 = 20$;

用单纯升结本最优解, 过程如7,专中(·)元素为主元、

$C_{\mathbf{i}}$		3	2 1 -1 0 0	0,
CB B E	5	Pi	P2 P3 P4 P5 P6.	02.
OPs.	15	1	-23-110	4
0 P6 1	0	2	1-1 (2) 0	5.
Zi		3	2 1-100	
CB B	6	Pi	P2 P3 P4 P5 P6	
0 8	10	2	- 2 5 0 1 1 2	
-1 P4	5	1	$\frac{1}{2}$ $-\frac{1}{2}$ 1 0 1	
bj	1	4	5 1 0 0 2	

所以最优解的 /*=(4-2-3-0,0,0,5,2007.

原问题最优解为X*=(X*, Xx*, Xx*, Xx*)*=(0,0,0,5)** 最优值为f*=-5.

(2)科·西林和伊里,

用单纯形表上解,过程好了。表现元素为主元

(2)解:用单纯形结花解,过程如7,表中(1)元素为主己

	<i>C</i> 1	W. N. C.	,			_	-			7	7
	Cj			1 1	' (2 (0	0			1
CB	В	6.	P,	P2 1	B F	4	P5	Po		Θi.	
1	Pı	5	l	0	O	-1	0	-2		_	
1	P2	3	0	1	0 ((2)	-3	1		ماريا بہارہ	l
1	P3	5	0	0	1	2	-5	6		5/2	
	δ_{j}		0	O	0	-3	8	3			1
CB	В	Ь	19	P2	Pz	P4	- P.	5	P6.		
1	Pı	13	1			C	2 -		3/2		
0	P4	3/2	0	1	0		-	3	7		
1	P3	2	0	-		Č) -	-7			
	δ_{j}		0	3	C) ()	ヹ	<u>B</u> 2		I

所以最优的 X*=(是,0,2,差,0,0) T 原问 超最优的 X*=(是,0,2,差,0,0) T 最优值的 f*= 1 1 2.

(3)・解:引入松田 地変量 私, 省, 人工 変量 省, 并取M 足的 取M = 10. 将上述问题 改写成新规划问题:
minf (x) = -10 打 - 5 12 - 2 13 + 6 14 才 開 打 、
St. · S 打 + 3 12 + 13 + 14 = 9
- S 打 + 6 12 + 15 13 + 16 = 15
2 打 + 打 + 打 - 打 + 打 = 3
オハット 20 ナ
用単純 形表 计算, 过程 如下.

Cj	-10	-5	-2	6	0	0	10	
CB B b	.ρ,	P2	P3	P4	Ps	P6	P1 :	Oi.
0 Ps 9 0 Pc 15 10 Pr 3	5 -5 (2)	9	·1 15 1	0 0 -1	·1 0 0	0 1 0	0	9/4 - 3/2
Zi Ce B b	-30 · P1	-15 P2	-12 P3	16 P4	0 Ps	0 P6	0	2
CB B 6 0 P5 452 10 P1 322	0 1	12 112 112	37357 17	74 52 52 12	000	0	1 5 Z 1 Z	
$\mathcal{E}_{\mathbf{j}}$	0	0	3	1	0	Ó	15	

新线域规划问题的最优解为(差,0,0,0,差,些)T 原线性规划的最优解 不=(差,0,0,0,差)T 最优角值 F=-6.

(4).解:31.7松弛变量 75, 76, 再定 74=74-74, 人工变量 79. 耳如1=10 则上述规划的事本示性型为改新规划问题。 min·3为+2分2+73-74+74+10分9。 5.t. 为-2为2+73-74+74+75=15 2为1+分2-为+244-244节为6=10 3 34-74+71=2 为4-74+78=2。

1, 11 13 20, 74, 74 20 x5 ... 18 20 . 1920 .

用单纯形表计算,过程如下.

CB 6	3 2 1 -1 ·1 · 0 · 0 · 0 · 10 · P. P2 P3 P4 P4 P5 P5 P67 P88 Pag	Oi
035	1-21-1110000	_
10 7 10	2 1 12 20 1 00 1	5
0 h 2	000(1)-100100	2
082	000-1100010	-
8j	-17-8 11 -21 21 0 10 0 0 0	
C8 86	P1 P2 P3 P4 P4 P5 P6 P7 P8 P9	
0 Ps 7	1 -2 1 0 1 0 0 0 0	7
10 Pg 6	10 4 20 1	3
-1 12	, 610 000	_
0 P8 4	00000000110	_
8j	-17-8-110000102100	
CB B b	P. P2 P3 P4 P4" P5 P6 P7 P8 P9	
0 Ps 4	0 - 5 3 0 0 1 1	
3 P1 3	1 2 10 0 0 1 1 0 1	
142	001-100102	
0 P8 4	0000000110	
\mathcal{Z}_{j}	の立至・ののの至4のの・	
		

新规划问题最优解为·(3,0,0,2,0,4,0,0,4,0)T

「就以问题最优解》(3,0,0,2)

· 最优值 代 = 17

(5)解:引引松子碰量为4,分,则上就规料划化 对标准型:

> min $-\chi_1 - \chi_2 - \chi_3$. s.t. $2\chi_1 + \chi_2 + 2\chi_3 + \chi_4 = 2$. $4\chi_1 + 2\chi_2 + \chi_3 + \chi_5 = 2$. $\chi_1, \dots, \chi_5 \ge 0$.

用单纯形表计算,过程女工:

Cj	-1	-1	-1	0	0	\ \alpha_1
Ca B b	P,	P.	B	P4	Ps	Θi
0 142	2	•1	2	1	O	1
082	(4)	2	1	0	1	12
Bj		-	-1	0	0	
0 R 1	O	0	(₹)	1	-12	W/W
一月之	1		· 4	0	4	2
Bj	0	-날	-3	.0	中	
기 명출	0	0	1	. O	-3	-
-1 P1 =	I	(토)	0	-6	5	3
3.	0	-5	0		士	1
一月月音	0	0	1	3	- 1	1
一月	2.	1	Ò	12 23 13	1	
δ_j	1	0	0	3	<u>2</u>	

新问题最优解为(0, 言, 音, 0, 0)「 原的超最优解为外=(0, 至,至)「 最优解剂十二号.

(6)解:引入松引也变量·为,好,好为,其中孙=外-省 则上边规则化为标准型,

min -3/1-2/2

s.t. · 11 -3 12 + 173 = 6 一打+32+45=6 对在各种种为500· 用单纯 砂巷计算, 过程如下:

c_{j}	-3 -2 0 0 0 0	T-
CB B b	P. P	toi.
0 B 6	1 -3 1 .0 0 0	6
D P4 4	(i) 2 0 1 7 0 1 3 0 0 0 1	4
Bj	-3 -2 0 0 0 0	
0 B 2	0 -51 -1 (1) 0	2
-3 P, 4	0 5 0 1 -1 0	-
<u> </u>	0 4 0 3 -3 0	
0 P# 2 -3 P, 6	0 -5 1 -1 1 0	-
0 B 12	0 0 1 0 0 0	
bj	0 -11 2	
	0 -11 3 0 0 0	

由表中的当62 =-11时,所对证的Q值都不大于O、则原问题无最优解、

2.14:解:由题意,,设生产A,,A2名为,和万辆,截

则原题化为如下数学模型

min -8000x1 - 5000x2

S.t. 57,+372 ≤ 500

100/1 +160/2 =20000

·881+482 < 900

礼, 2≥0

用作团选, 水解、水垢图:

可行过的 图中阴影部 机的新鱼类

 $2 \times 1 = -\frac{8}{5} \times 1 + \frac{2}{5000} \cdot \nabla f(x)^T = (-8000, -5000)^T$

则当等值纤过A时有

最优解 *(40,100) T

最优值件=820000元

215解:设A,丝产B, B2,B3名为 22 的件。 则A2生产B, B2 B3名70分,50分,20分子。 原规划问题有如下数学村英型。

min - x, - 2 - 73 + 560 .

5.t, 31-12-73+300 5.t, 31+31+33=8031+231+333>130

> N < 70 Y2 ≤ 50

Y3 ≤20

孔,… 孙 20 且才軽娄爻. 31入松弛健如 好 省 行 78, 红变量狗,取用=10.

原沟野化为如下积为门里面。

 $min - \chi_1 - \chi_2 - \chi_3 + 10\chi_q + 560$ $s.t. \quad \chi_1 + \chi_2 + \chi_3 + \chi_4 = 80$ $\chi_1 + 2\chi_2 + 3\chi_3 - \chi_5 + \chi_q = 130$ $\chi_1 + \chi_6 = 70$ $\chi_2 + \chi_1 = 50$ $\chi_3 + \chi_8 = 20$

单纯形表#解: 过程如后图:

可得此的 超最优解为 / = (50,10,20,0,0,20,40) [10,0]]
则原问题最优解为 / = (50,10,20).

最优值为f*=480·

7.						Character :			-		, ,
(-01	7	<u> </u>	-	0		<u>, c</u>	THE REST CONTRACT	0	10		Oi
CB B b	P.	P2	P3 .	P4			<u></u>	P8	Ė		
O P+80		.!	1	.1	O	-	0	0	0	9	80 130/3
10 19 130	1	2	3	0	7	_	0		ا	,	130/3
0 % 70	1	0	0	0	0	l	0	0	0	,	-
07,50	0	1	0	0	0	0	l	0			
0820	0	0	(ı)	0	Ø	0	ð	1	0		20
3;	71	21	-31	0	10	0	0	0	0		
0 1460	9	ı	0	l	0	0	O	-)		0	60
10 Pg 70	İ	(2)	ö	0	-1	0	0	-3	3	I	ă
08670	Ī	O	0	Ø	0	I	0	0		י ל	35
0 P7 50	0	1	0	0	0	0	1	0	•	כ	50
H P320	0	0	1	0	0	0	0	1		<i>5</i>	-
3;	-11	721	0	0	10	0	0	31	7	<u> </u>	
0 125	(生)	-	The second section 2	1		0	C			÷ ½	50
1 1235	士	1	0	0	-Ť	0	0	-	3_	2, -L	50
	2		0	O	0.	1	0		2,	7	70
08 70	-1-2	0	0	0	上上	-	1	0(1/4)	>	の元の	70
0915		0	Ī	0	2,	0		3	' -	2	-
1320	0				0	0	C	1		0	-
63	- <u>I</u>	0	0	0	<u>ر</u> - ک	, c	3 0	-:	ź	끚	
1P,9	1	0	0	2	1	(2 (9	<u>ئ</u> ا	-1	
7R10	O	1	O	-1		() (2	i	
0820	0	0	0	-2		1 1		`	-1	i	
OP 40	0	0	0	1	1	· c			2		
-18320	0	0	(^	•	() () [_	7	1
	V	Facility was a supply	l .	0	0	Agramatical Science	.,			0	1
$ \mathcal{S}_{j} $	0	0	0	1	0	C	2	2 (2_	10	

2.16. (1)解:设对偶变量为4, 42, 其对偶结性规则为: max, 94,+1142

$$5.t.$$
 $4y_1 + y_2 \le 3$
 $-y_1 + y_2 \le 1$
 $3y_1 - 4y_2 \le -4$
 $y_1 \le 2$
 $-y_2 \le 0$
 $y_1, y_2 \ge 0$

(2)解:设对偶较量为生1,火,其对偶学性规划;

$$max 9 y_1 + 11 y_2$$
.
 $5.t. 4 y_1 + y_2 \le 3$
 $- y_1 + y_2 \le 1$
 $3 y_1 - 4 y_2 \le -4$
 $y_1 \le 2$
 $- y_2 \le 0$
 $y_1 > 0$. $y_1 \ne 0$.

(3)解:设对偶变量为4,5,其对偶线线规划为:

5.t.
$$2y_1 - 2y_2 \le 63$$

 $4y_1 + 3y_2 \le 2$
 $3y_1 - y_2 \le 1$
 $y_1 \cdot y_2 \le 4$

max 64, +341.

Y220, Y对自由变量.

(4)解:设对偶变量为少,少,其对偶线性规划分:

(5)解:设对偶变量 Yi, 红1,2…m, m+1,…m+n、 其、对偶学性规划为:

 $\max \cdot w = \frac{m}{1-1} a_i y_i + \sum_{j=1}^{n} b_j y_{m+j}$

s.t. Yit Ym+j = Cij , j=1,2,...n., i=1,2,...m.

Yi, i=1,2…m,…,mtn 对自由变量.

引入天工变量为5、取加加 2、17解:木<u>勾箍之种 新一种</u>、对原问歷安核和天战时间题。

44-34-45-4-45-4-45-4-45-4-45-4-1-

2、17解:引入人工变量 Ys ,●,并取M=10,将上述问题·改约:

min 0 .3x+12+43+1015 = .

5.t. $\gamma_{1}-3\gamma_{1}+\gamma_{3}=6$ $+\gamma_{1}-3\gamma_{3}-\gamma_{4}+\gamma_{5}=4$.

X1, 111, X5 20 .

雕纸形法摊:

Cj	3	1"	4	()	10		
G B b	P,	1/2	P ₃	P4	Ps		02
3 P1 6	1	-3	1	0	0		_
10 Ps 4	D	(4)	-3	-1	Ĭ		,
<i>Bj</i>	0	-30	31	10	0	\dashv	
3P,9	1	0	÷ 5/4	-34	34	+	± 📆
P2	O	1	子	中	7		
bj	0	0	34	5	15	+	
引 松 本回	そうごろ	120	11/6 21			+-	

则核规划问题最优解为於=(9,1,0,0,0)T 原问题最优解为於=(9,1**%**0,0)T 最优值为什=28、 2.18. ci) 引机磁弛变量将原约模形力:

3 11+4 12+3 13+14=6 2 11-3 12+13+15=-3.

メンマの、シ=1,·115.

计算过程如7:

Ci	3	2		-4	0	
CB B 6	Pi	Pa	ß	P4	Ps	
-4 P4 6	3	4	3	1	0	
o Ps -3	2	(-3)	I	0	1	
3;	12	18	13	0	0	
Bi /aij (aija)	-	76	~	-	_	
-4 P4 2	달	0	13	1	¥3	
2 P2 1	-3	1	-1	0	- 1	
<i>3</i> ;	24	0	19	0	б	\neg

(2) 引入松子世变量·为4 分 石净原门盛饮新门题:

max -5/1-1/2-3/3

min 5/1+2 +3/3

Sit. $2x_1 - 3x_2 + 2x_3 + x_4 = 9$ $x_1 - x_2 + 2x_3 + x_5 = 6$ $4x_1 + x_2 + x_3 + x_6 = -3$

计算过程如右图:

Gi	5	1	3	0	0	0
CB B B	P,	Pi	B	P4	Ps	B
0 P4 9	2	-3	2	1	0	0
0 Ps 6	1	-1	2	0	1	0
0 % -3	4)	1	0	0	1
				-		

脚中知的=3时,对征的Q3j都大于拿于O.则原践无同行解。

2.19. 证明: 参考定理 2.8.4:

酚 F, 牙分别为(I).(II)的利利解,所以有 $\lambda \lambda \hat{y}^{T} \hat{b} \leq \hat{y}^{T} (A \hat{x}) = (\hat{y}^{T} A) \hat{x} \leq C^{T} \hat{x}$ BP: CTX > 9% 证毕,

2.20·证明:由对偶性定理有:

Z*=4*T6 又因有(工)问题有最优值,则以有最优解, 且(I)问题的对偶问题有最有解,设为以 刚 s*= Y**T(btd) 又YX是最优解, 刚成有 YET(btd) zYT(btd) 全yT=yxT. Ry 4x T(btd) z y*T (btd) . 3 由() (3) (3) (4): 5* = 42*7(b+d) = 4*7(b+d) = 4x16 + 4x17d = Z* + y*Td. スリZ*+ 417 d = 5*

2.21.(1)投原问题为(PO)问题,解与(PO)对证的学性问题的最优解 最优值为: 不三(书,7), 至=7 min = -3/1+1

(P1) Sit. 381-282≤3 511+1/2 210 2ガナガンミラ, ガミ N 220.

(P2) . & min Z=-3/1 +/2 S.t. 3×1-2×2≤3 51,+43, 210 2x1+12=5 X1212 X1, X2 70 .

证学.

分别解这两个纤维和划子问题,得(PI)的最优解、最优值为

$$\bar{X}_1 = (1, \frac{5}{4})^T, Z_1 = -\frac{7}{4}$$

(P2) 免最优解、最优值》:

私

因为不理整数解,所以将(P1)分判为两个子问题。

(PB) $5.t. 31-21 \le 3$ $51+41 \ge 10$ $21+11 \le 5.$ $1 \le 11$ $1 \le 11$ $1 \le 11$

11 1220.

(P13) 无最新解,(P14)的最优解,最优值为:

叫了

74'=(1,2)T, Z4=-4

かりれるの .

- ·原问题的最优解 *=(1,2)下,最优值 Z*=-4
- (2). 设原问题为 (PO), 解且Po)对益的绊性问题的最优解,最优值为 \(\overline{7}=(\overline{7}+,0), Z=(\overline{7}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overline{1}-\overline{1}+,\overline{1}-\overlin

min $z = -x_1 + x_2$ (Poi) s.t. $\cdot 14x_1 + 9x_2 \le 51$ $-6x_1 + 3x_2 \le 1$ $x_1 \le 4$.

min z = -1/1 + 31. (Po) 's.t. $1+3/1+9/1 \le 5/1 - 6/1+3/1 \le 1/1 \ge 5$ $1/1 \ge 5$

(Ph)的最优解,最优值为(4,0)=3,, 云=-4.

(P2)无砂行解.

则原问题最优解料=(4,0)7.最优值2*=-4