Chapter 2 Subgroups and Quotients

Negative results: under what conditions we cannot have expander families.

1. Coverings and Quotients

Definition 2.1 Graph Homomorphism

- 1. Graph X with V, E, another graph X' with V', E'. A graph homomorphism between X and X' is a pair of maps $\phi_V : V \to V'$ and $\phi_E : E \to E'$, where whenever $e \in E$ has endpoints $a, b \in V$ and $\phi_E(e)$ has endpoints $a', b' \in V'$, then $\phi_V(\{a, b\}) = \{a', b'\}$.
- 2. Usually write ϕ for two homomorphisms.
- 3. If both ϕ_V and ϕ_E are bijective, then ϕ is an isomorphism.
- 4. For vertex v of graph X, let E_v be the set of edges incident to v. E_v is a set, we regard multiple edges as distinct elements. With homomorphism ϕ , E_v is mapped to $E_{\phi(v)}$.

Definition 2.2 Covering

Homomorphism $\phi: X \to Y$, and v is a vertex of X.

- 1. ϕ is bijective at v, if the map from E_v to $E_{\phi(v)}$ induced by ϕ is bijective.
- 2. ϕ is locally bijective, if ϕ is bijective at every vertex of X.
- 3. ϕ is a covering from X to Y, if ϕ is locally bijective and ϕ maps the vertex set of X surjectively onto the vertex set of Y.
- 4. We say X covers Y if such a covering ϕ exists.

Example

Figure 2.1 *X* (the left graph) covers *Y* (the right graph)

Covering $\phi:\phi(v_1)=\phi(v_4)=w_1,\,\phi(v_2)=\phi(v_3)=w_2,\,\phi(v_5)=\phi(v_6)=w_3.$

Lemma 2.3 Properties of covering

- 1. If X covers Y, then X is d-regular iff Y is d-regular.
- 2. If X covers Y and X is connected, then Y is connected.

Proof:

- 1. Immediately follows from bijection between E_v and $E_{\phi(v)}.$
- 2. Let w_1, w_2 be two vertices of Y. Since ϕ is a surjective map of vertex set from X to Y, there exists v_1, v_2 of X s.t. $\phi(v_1) = w_1, \phi(v_2) = w_2$. Since X is connected, there is a walk from v_1 to v_2 using edges e_1, e_2, \ldots, e_n . Then the edges $\phi(e_1), \ldots, \phi(e_n)$ is also a walk in Y from w_1 to w_2 since ϕ is a homomorphism.

Definition 2.4 Fibre

Covering $\phi: X \to Y$, w is a vertex of Y.

Then the fibre of ϕ at w, $\phi^{-1}(w)$, is the set of all vertices v of X s.t. $\phi(v)=w$.

Remark

i.e. the preimgae of w in X. Note ϕ is surjective for vertices.

Lemma 2.5 For connected graphs, all fibres have same size

Covering $\phi: X o Y$.

If Y is connected (equivalently, X is connected), then $|\phi^{-1}(w_1)|=|\phi^{-1}(w_2)|$ for all vertices w_1,w_2 of Y.

Proof

- Induction on $dist(w_1,w_2)$, which is finite since Y is connected.
- We first show this is true for adjacent w_1, w_2 .
- Let m be the number of edges between w_1, w_2 . Clearly m>0.
- The number of edges between a vertex in $\phi^{-1}(w_1)$ and a vertex in $\phi^{-1}(w_2)$ is $m \cdot |\phi^{-1}(w_1)|$. (Fix a vertex in $\phi^{-1}(w_1)$, then considering vertices in $\phi^{-1}(w_2)$)
- ullet Reverse the roles of w_1 and w_2 , the number is $m \cdot |\phi^{-1}(w_2)|$. (Fix a vertex in $\phi^{-1}(w_2)$, then considering vertices in $\phi^{-1}(w_1)$)
- $\quad \text{Hence } |\phi^{-1}(w_1)| = |\phi^{-1}(w_2)|.$
- The fibre of a vertex that is j distance away has the same size as the fibre of a vertex that is j+1 distance away, since we can always consider the last step in the walk connecting two vertices. Inductive steps done.

Lemma 2.6

If X and Y are finite graphs s.t X covers Y, then $h(X) \leq h(Y)$.

Proof

- If Y is not connected, then by contrapositive of Lemma 2.3, so as X. All 0, done.
- Suppose Y is connected.
- Let S be a set of vertices of Y s.t. $h(Y) = \frac{|\partial S|}{|S|}$ and $|S| \leq \frac{1}{2}|Y|$.

$$\phi^{-1}(S) = \{v \in V_X \, | \, \phi(v) \in S\}$$

- Let w be an arbitrary vertex of Y, $a = |\phi^{-1}(w)|$.
- $\bullet \ \ \text{By Lemma 2.5, } |\phi^{-1}(S)|=a|S|, \text{ and } |X|=a|Y|.$
- Thus $|\phi^{-1}(S)| = a|S| \leq \frac{a}{2}|Y| = \frac{1}{2}|X|$, which makes a proper set to be considered for isoperimetric constant.
- * Also, $|\partial[\phi^{-1}(S)]| = a|\partial S|$. Every edge in ∂S has exactly a preimage in X (a vertices collapsed into one vertex in Y, somehow similar to Lemma 2.5).
- Honco

$$h(X) \leq rac{|\partial [\phi^{-1}(S)]|}{|\phi^{-1}(S)|} = rac{a|\partial S|}{a|S|} = h(Y)$$

Definition 2.7 Coset Graph

Group G, Γ symmetric in G, $H \leq G$. Define the coset graph $Cos(H \backslash G, \Gamma)$ as:

- 1. vertex set: $H \backslash G$, set of right cosets of H in G
- 2. multiplicity between Hx and Hy: number of γ in Γ , counted with multiplicity, s.t. $Hx=Hy\gamma$.

Remark

- 1. $Cos(H \backslash G, \Gamma)$ is $|\Gamma|$ -regular.
- 2. G/H : left cosets; $G \backslash H$: right cosets.
- $3. \text{ If } H \triangleleft G \text{, then } G/H = G \backslash H \text{, and we have quotient group } G/H. \text{ The map } G \rightarrow G/H \text{ by } a \mapsto aH \text{ is the canonical homomorphism.}$
- 4. If $H \triangleleft G$, then $Cos(H \backslash G, \Gamma) = Cay(G/H, \overline{\Gamma})$, where $\overline{\Gamma} = \{ \gamma H \mid \gamma \in \Gamma \}$ is the image of Γ under the canonical homomorphism. Proof is just checking edge set and vertex set.

Lemma 2.8

Group G, $H \leq G$, Γ symmetric in G.

- 1. $Cay(G,\Gamma)$ covers $Cos(H\backslash G,\Gamma)$.
- 2. $h(Cay(G,\Gamma)) \leq h(Cos(H \backslash G,\Gamma))$

Proof

- $* \ \ \text{For} \ g \in G, \gamma \in \Gamma, \ \text{denote by} \ e(g,\gamma) \ \text{the edge in} \ Cay(G,\Gamma) \ \text{between} \ g \ \text{and} \ g\gamma \ \text{induced by} \ \gamma, \ \text{denote by} \ e(Hg,\gamma) \ \text{the edge in} \ Cos(H \setminus G,\Gamma) \ \text{between} \ Hg \ \text{and} \ Hg\gamma \ \text{induced by} \ \gamma.$
- $\bullet \ \, \phi: Cay(G,\Gamma) \to Cos(H\backslash G,\Gamma) \text{, by } g \mapsto Hg, \, e(g,\gamma) \mapsto e(Hg,\gamma). \text{ Suffice to show } \phi \text{ is a covering.}$
- Surjective: trivial
- Injective: The number of edges must be the same. (handwritten graph)
- (2) immediately follows from (1) and Lemma 2.6.

Definition 2.9 Sequence of Quotients

 $\{G_n\}, \{Q_n\} \text{ are sequences of finite groups. We say } \{G_n\} \text{ admits } \{Q_n\} \text{ as a sequence of quotients, if for each } n \text{ there exists } H_n \triangleleft G_n \text{ s.t. } G_n/H_n \cong Q_n \text{ admits } \{Q_n\} \text{ and the following properties of the exists } H_n \triangleleft G_n \text{ s.t. } G_n/H_n \cong Q_n \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ admits } \{Q_n\} \text{ and the following properties } G_n \text{ admits } \{Q_n\} \text{ adm$

Definition 2.10 Yields an expander family

 $\{G_n\}$ is a sequence of finite groups. We say $\{G_n\}$ yields an expander family, if for some positive integer d, there exists a sequence $\{\Gamma_n\}$ where for each n, Γ_n is symmetric in G_n with $|\Gamma_n|=d$, so the sequence $\{Cay(G_n,\Gamma_n)\}$ is an expander family.

Proposition 2.11 Quotients Non-expansion Principle

 $\{G_n\}$ is a sequence of finite groups. Suppose $\{G_n\}$ admits $\{Q_n\}$ as a sequence of quotients. If $\{Q_n\}$ does not yield an expander family, then $\{G_n\}$ does not yield an expander family.

Proof

- $\ \, \text{Suppose not true. There exists a positive integer} \, d \, \text{s.t. for each} \, n, \text{there is a} \, \Gamma_n \, \text{symmetric in} \, G_n \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{is an expander family} \, \text{s.t.} \, Cay(G_n, \Gamma_n) \, \text{s.$
- Let $\overline{\Gamma_n}$ be the image of Γ_n under the canonical homomorphism.
- $\quad \text{ Then } Cos(H_n \backslash G_n, \Gamma_n) = Cay(G_n / H_n, \overline{\Gamma_n}) \text{ has isoperimetric constants larger than } Cay(G_n, \Gamma_n), \text{ hence } \{Cay(Q_n, \overline{\Gamma_n})\} \text{ is an expander family.}$

Remark:

- We can develop this principle with left cosets only. I doubt this formulation in book is designed as a comparison with next section.
- Next target is to restate the result with eigenvalues.

Definition 2.12 Pullback

 $\hbox{Homomorphism $\phi:X\to Y$. Let $f\in L^2(Y)$.}$

Define $f^* \in L^2(X)$ by $f^* = f \circ \phi$. We say f^* is the pullback of f via ϕ .

Lemma 2.13

X covers Y. Let A, \tilde{A} be the adjacency operators of Y, X, respectively. Let $f \in L^2(Y)$. Then

$$(Af)^* = \tilde{A}f^*$$

Proof

- v be an arbitrary vertex of X, and E_v is the set of all edges incident to v.
- If e is an edge in Y incident to v, let e(v) denote the other vertex incident to e.
- Similarly, use \tilde{e} for edges in X.
- Then, we can reformulate adjacency operator as

$$Af(v) = \sum_{e \in E(v)} f(e(v))$$

• Then, interpreting definitions of pullback and adjacency operator in different order

$$\begin{split} (Af)^*(v) &= (Af)(\phi(v)) = \sum_{e \in E_{\phi(v)}} f(e(\phi(v))) \\ (\tilde{A}f^*)(v) &= \sum_{\tilde{e} \in E_v} f^*(\tilde{e}(v)) = \sum_{\tilde{e} \in E_v} f(\phi(\tilde{e}(v))) \end{split}$$

* Since ϕ is a covering, incidence is preserved, thus $e(\phi(v)) = \phi(\bar{e}(v))$ i.e. vertices connected to $\phi(v)$ by e in Y, is the same as the map of vertices connected to v by e in X.

Lemma 2.14

X covers Y. Then every eigenvalue of Y is an eigenvalue of X

Proof

• Let A, \tilde{A} be the adjacency operators of Y, X, respectively.

- Let μ be an eigenvalue of A with corresponding eigenfunction f. Then

$$\tilde{A}f^*=(Af)^*=(\mu f)^*=\mu f^*$$

Proposition 2.15

d-regular graphs X and Y, and X covers Y. Then $\lambda_1(X) \geq \lambda_1(Y)$.

Proof

- $\lambda_0 = d$ for both X and Y.
- Possibly $\lambda_1(X)$ is not an eigenvalue of Y.

Remark

- 1. Idea: the quality of a graph is no better than that of any graph it covers. The covered graph is generally smaller, and it is more difficult to maintain the quality when graph becomes larger.
- 2. Another proof for Quotients Non-expansion Principle
 - $\bullet \ \ \mathsf{Fact:} \ Cay(G_n,\Gamma_n) \ \mathsf{covers} \ Cay(G_n/H_n,\overline{\Gamma_n}) = Cay(Q_n,\overline{\Gamma_n}).$
 - Assumption: $\{Q_n\}$ not expander.
 - Then $\{d-\lambda_1(Q_n)\} o 0$ for any d. (for any possible Γ_n , same for below)
 - Then $\{d-\lambda_1(G_n)\}\to 0$ for any d, since $\lambda_1(Q_n)\le \lambda_1(G_n)$ for any n.
 - Then $\{G_n\}$ not expander.

2. Subgroups and Schreier Generators

Definition 2.16 Set of Transversals

- 1. Finite group G, $H \le G$. Let $T \subset G$ s.t. T contains exactly one element from each right coset of H in G. Then T is a set of transversals for H in G.
- 2. Denote \overline{x} the unique element of T s.t. $Hx = H\overline{x}$.

Lemma 2.17

Let G, H, and T be defined as above. Then:

- 1. For all $x \in G$, there exists a unique $h \in H$ s.t. $x = h\overline{x}$.
- 2. For all $h \in H$, $a \in G$, we have $\overline{ha} = \overline{a}$.
- 3. For all $a, b \in G$, we have $\overline{\overline{ab}} = \overline{ab}$.
- 4. For all $t \in T$, we have $\overline{t} = t$.

Proof:

- 1. $h=x(\overline{x})^{-1}$, and there is only one \overline{x} corresponding x, hence h is unique.
- 2. $H\overline{ha} = Hha = Ha = H\overline{a}$, second equality by definition of right coset.
- $3.\ \overline{a}=h^{-1}a \text{ for some } h\in H \text{, thus } \overline{a}=h'a \text{ for some } h'\in H \text{, since } H\leq G. \text{ Then, } \overline{\overline{ab}}=\overline{h'ab}=\overline{ab} \text{, last equality by (2)}.$
- $4.\ \overline{t}=ht\ \text{for some}\ h\in H\ \text{(same as (3)), thus}\ \overline{t}\in Ht.\ \text{Since}\ t\in Ht,\ \overline{t}=t\ \text{since}\ T\ \text{contains only one element from each right coset}\ of\ H.$

Remark

- 1. Following (1), we can decompose G with H and T, s.t. every $g \in G$, g = ht for some $h \in H$ and $t \in T$. Also, $t = \overline{g}$, $h = g(\overline{g})^{-1}$.
- 2. For $t, \gamma \in G$, we introduce the notation

$$\widehat{(t,\gamma)}=t\gamma(\overline{t\gamma})^{-1}$$

Following (1), exists a unique $h \in H$ s.t. $t\gamma = h\overline{t\gamma}$. Notice that $(\widehat{t,\gamma}) = t\gamma(\overline{t\gamma})^{-1} = h$, hence $(\widehat{t,\gamma})$ is an element of H, and $t\gamma = (\widehat{t,\gamma})\overline{t\gamma}$ is the unique expression of $t\gamma$ in the form of $h\overline{t\gamma}$.

3. Rigorously speaking we need redefine concepts like function, bijection, "set" multiplication etc. since we are dealing with multiset. I omit these details. Anyway the guiding principle is to pretend it is still a set and count the multiplicity (essentially not that different).

Definition 2.18 Schreier Generators

Let $G,\,H,\,T,$ be defined as in Def 2.16. $\Gamma\in G,$ define

$$\hat{\Gamma} = \{\widehat{(t,\gamma)} \,|\, (t,\gamma) \in T \times \Gamma\}$$

- 1. $\hat{\Gamma}$ is the set of Schreier generators for H in G with respect to Γ .
- 2. $|\hat{\Gamma}| = [G:H] \cdot |\Gamma|$, where [G:H] means the number of right cosets generated by H, and clearly |T| = [G:H]

Lemma 2.19

G, H, T as Def 2.16.

- 1. If $\Gamma \in G$, then $\hat{\Gamma} \in H$.
- 2. If Γ symmetric in G, then $\hat{\Gamma}$ symmetric in H.

Proof:

- 1. Let $t \in T, \gamma \in \Gamma, x = t\gamma$.
 - By Lemma 2.17, $x = h\overline{x}$ for a unique $h \in H$, so $\widehat{(t,\gamma)} = h$.
- 2. Define map $\phi: T \times \Gamma \to T \times \Gamma$, by $\phi(t, \gamma) = (\overline{t\gamma}, \gamma^{-1})$.
 - Last equality by Lemma 2.17, we have

$$(\phi \circ \phi)(t,\gamma) = \phi(\overline{t\gamma},\gamma^{-1}) = (\overline{\overline{t\gamma}\gamma^{-1}},\gamma) = (t,\gamma)$$

Inverse of ϕ is just itself, bijective.

Again by Lemma 2.17

$$\left(\widehat{(t,\gamma)}\right)^{-1} = \overline{t\gamma}\gamma^{-1}t^{-1} = \overline{t\gamma}\gamma^{-1}(\overline{t\overline{\gamma}\gamma^{-1}})^{-1} = \widehat{\phi(t,\gamma)}$$

Because ϕ is bijective, $\widehat{(t,\gamma)}^{-1}$ has same multiplicity in $\widehat{\Gamma}$ as $\widehat{(t,\gamma)}$.

Remark

 $\text{If } \textit{Cay}(G,\Gamma) \text{ is an undirected graph, then } \textit{Cay}(H,\hat{\Gamma}) \text{ is also an undirected graph.} \textit{Following Chapter 1, we can consider an undirected graph as two (overlapping) directed graph.} \\$

Example:

Figure 2.6 On the left, $Cay(H, \hat{\Gamma})$; on the right, $Cay(G, \Gamma)$

- $G=D_3=\{1,r,r^2,s,sr,sr^2\},\, H=\{1,r,r^2\},\, \Gamma=\{s,sr\}.$
- Right cosets of H in G are H and $Hs = \{s, sr, sr^2\}$.
- Let $T=\{1,s\}$, and T is indeed a set of transversals for H in G.
- By collapsing edges horizontally, we get from right to left (e.g. sr collapsing to r^2). The collapsed edge (two directed edge) becomes two (directed) loops.
- ${\color{black} \bullet}$ This collapsing can be described by a surjective map, $G \rightarrow H,$ by $ht \mapsto h.$
- Denote by $e(g,\gamma)$ each directed edge in $Cay(G,\Gamma)$ from g to $g\gamma$.

Lemma 2.20

Map [set of directed edges in $Cay(G,\Gamma)$] \to [set of directed edges in $Cay(H,\hat{\Gamma})$], by

$$e(ht,\gamma) o e(h,\widehat{(t,\gamma)})$$

is bijective.

Proof

- · Surjective is trivial.
- Injective: same as Lemma 2.8 (how about a formal proof?)

Lemma 2.21

G,H,T as Def 2.16. Γ symmetric in G. Then

$$h(Cay(G,\Gamma)) \leq \frac{h(Cay(H,\hat{\Gamma}))}{[G:H]}$$

Remark:

The actual result used in Proposition 2.24 is $h(Cay(G,\Gamma)) \leq h(Cay(H,\hat{\Gamma}))$, which is an obvious implication of Lemma 2.21.

Proof:

- Let $S\subset H$, s.t. $|S|\leq \frac{1}{2}|H|$ and $\frac{|\partial S|}{|S|}=h(Cay(H,\hat{\Gamma})).$
- Let $\tilde{S}=\{ht\,|\,h\in S,\,t\in T\}$, so $|\tilde{S}|=|S|\cdot|T|$, and |T|=[G:H]
- Then

$$|\tilde{S}|=|S|\cdot|T|\leq\frac{1}{2}|H|\cdot|T|=\frac{1}{2}|G|$$

Note

$$\begin{split} g\gamma \in \tilde{S} &\iff (ht)\gamma \in \tilde{S} \\ &\iff ht\gamma (\overline{ht\gamma})^{-1} \in S \\ &\iff ht\gamma (\overline{t\gamma})^{-1} \in S \\ &\iff h\widehat{(t,\gamma)} \in S \end{split}$$

First line: decomposition of g in G. Second line: $g\gamma = h't'$ since $g\gamma \in G$, and $h' = (g\gamma)(\overline{g\gamma})^{-1}$, which lies in S by definition of \widetilde{S} . Third line: by (4) of Lemma 2.17. Last line: definition.

• Then:

$$\begin{split} |\partial \tilde{S}| &= |\{e(g,\gamma): g \in \tilde{S}, \gamma \in \Gamma, g\gamma \not\in \tilde{S}\}| \\ &= |\{e(ht,\gamma): h \in S, t \in T, \gamma \in \Gamma, ht\gamma \not\in \tilde{S}\}| \\ &= |\{e(h,\widehat{(t,\gamma)}): h \in S, t \in T, \gamma \in \Gamma, ht\gamma \not\in \tilde{S}\}| \\ &= |\{e(h,\widehat{(t,\gamma)}): h \in S, t \in T, \gamma \in \Gamma, h\widehat{(t,\gamma)} \not\in S\}| \\ &= |\partial S| \end{split}$$

First line is the definition of boundary set in $Cay(G,\Gamma)$, edges which has one endpoint not in \tilde{S} , second line decomposes g, third line by the bijection map between $e(ht,\gamma)$ and $e(h,\widehat{(t,\gamma)})$, fourth line by last point, last line is again definition of boundary in $Cay(H,\tilde{\Gamma})$.

Thus,

$$h(Cay(G,\Gamma)) \leq \frac{|\partial \tilde{S}|}{|\tilde{S}|} = \frac{|\partial S|}{|S| \cdot [G:H]} = \frac{h(Cay(H,\tilde{\Gamma}))}{[G:H]}$$

Corollary 2.22 Schreier Subgroup Lemma

If Γ generates G, then $\hat{\Gamma}$ generates H.

Proof

- $\bullet \ \ \Gamma \ {\rm generates} \ G$
- then $\operatorname{\it Cay}(G,\Gamma)$ is connected (Prop 1.9)
- then $h(Cay(G,\Gamma))>0$, (properties of isoperimetric constant)
- then $h(Cay(H,\hat{\Gamma}))>0$, (Lemma 2.21)
- then $\operatorname{\it Cay}(H,\hat{\Gamma})$ is connected (properties of isoperimetric constant)

• then $\hat{\Gamma}$ generates H.

Remark:

The converse is false. Counterexample

Definition 2.23 Bounded-index sequence of subgroups

 $\{G_n\}$ and $\{H_n\}$ are sequences of finite groups. We say that $\{G_n\}$ admits $\{H_n\}$ as a bounded-index sequence of subgroups, if $H_n \leq G_n$ for all n, and the sequence $\{[G_n:H_n]\}$ is bounded.

Proposition 2.24 Subgroups Nonexpansion Principle

 $\{G_n\}$ be a sequence of finite groups. Suppose that $\{G_n\}$ admits $\{H_n\}$ as a bounded-index sequence of subgroups. If $\{H_n\}$ does not yield an expander family, so does $\{G_n\}$.

Proof:

- $\text{ Suppose not true. Then, there exists a positive } d \text{ and } \Gamma_n \text{ symmetric in } G_n \text{ with } |\Gamma_n| = d \text{ for all } n, \text{ s.t. } \{Cay(G_n,\Gamma_n)\} \text{ is an expander family, and } h(Cay(G_n,\Gamma_n)) \geq \epsilon \text{ for some } \epsilon > 0.$
- Since $\{[G_n:H_n]\}$ is bounded, exist M s.t. $[G_n:H_n]\leq M$ for all n.
- Let T_n be a set of transversals for H_n in G_n for each n.
- Let

$$\Lambda_n = \widehat{\Gamma_n} \cup \{(M - [G_n:H_n])d \cdot e_n\}$$

where \cdot means the set contains $(M-[G_n:H_n])d$ copies of identity e_n of group G_n . So Λ_n is essentially the set of Schreier generators and the union is just modifying multiplicity of e_n s.t. $|\Lambda_n|=[G_n:H_n]\cdot |\Gamma_n|+(M-[G_n:H_n])d=M\cdot d$, since $|\Gamma_n|=d$.

- After modification:
 - $cay(H_n,\Lambda_n)$ has same vertex set as $Cay(H_n,\widehat{\Gamma_n})$, and their edge sets are the same expect for additional loops in $Cay(H_n,\Lambda_n)$. So they have the same isoperimetric constant.
 - $\{Cay(H_n,\Lambda_n)\}\$ is now a sequence of Md-regular graphs, since $|\Lambda_n|$ has a fixed size. We don't have this for $|\widehat{\Gamma_n}|$, so $\{Cay(H_n,\widehat{\Gamma_n})\}$ do not fulfil the precondition of expander family.
- Then by Lemma 2.21

$$h(Cay(H_n, \Lambda_n)) = h(Cay(H_n, \widehat{\Gamma_n})) \ge h((Cay(G_n, \Gamma_n))) \ge \epsilon$$

for all n. Thus $\{Cay(H_n,\Lambda_n)\}$ is an expander family

Lemma 2.25

G,H,T as Def 2.16. Γ symmetric in G. Then

$$\lambda_1(Cay(G,\Gamma)) \geq rac{\lambda_1(Cay(H,\hat{\Gamma}))}{[G:H]}$$

Proof

- A_G, A_H are adjacency operators of Cay(G, Γ), Cay(H, Γ), respectively.
- * $\lambda_H = \lambda_1(Cay(H, \hat{\Gamma})), f \in L_0^2(H, \mathbb{R})$, and is an eigenfunction of λ_H . Such an eigenfunction must exist, since f_0 as a constant 1 function must be an orthogonal eigenfunction (corresponding to the "constant" part of an orthogonal eigen basis), thus every other orthogonal eigenfunction must fall in $f \in L_0^2(H, \mathbb{R})$, since the definition of this space only requires functions to be orthogonal with f_0 .
- $\bullet \ \ \text{ Define } \tilde{f} \in L^2(G) \ \text{ by } \tilde{f}(ht) = f(h) \ \text{ for all } h \in H, t \in T. \ \text{ Due to the decomposition of every } g \in G, \ \tilde{f} \ \text{ is well-defined}.$
- Note $ilde{f} \in L^2_0(G,\mathbb{R})$, since

$$\sum_{g \in G} ilde{f}(g) = \sum_{t \in T} \sum_{h \in T} h \in H ilde{f}(ht) = \sum_{t \in T} \sum_{h \in H} f(h) = 0$$

By Rayleigh-Ritz

$$\lambda_1(Cay(G,\Gamma)) \geq rac{\langle A_G ilde{f}, ilde{f}
angle}{\langle ilde{f}, ilde{f}
angle}$$

Denominator:

$$\begin{split} \langle \tilde{f}, \tilde{f} \rangle &= \sum_{g \in G} \tilde{f}(g)^2 \\ &= \sum_{t \in T} \sum_{h \in H} \tilde{f}(ht)^2 \\ &= \sum_{t \in T} \sum_{h \in H} f(h)^2 \\ &= \sum_{t \in T} \langle f, f \rangle \\ &= [G:H] \langle f, f \rangle \end{split}$$

All by definitions.

- Consider $ht\gamma$ as an element of G, then $ht\gamma=h't'$, and $h'=(ht\gamma)(\overline{ht\gamma})^{-1},\ \tilde{f}(h't')=f(h')$
- Thus, $\widetilde{f}(ht\gamma)=f(ht\gamma(\overline{ht\gamma})^{-1})=f(h\widehat{(t,\gamma)})$ (last equation same as proof of Lemma 2.21)
- Numerator:

$$\begin{split} \langle A_G \widetilde{f}, \widetilde{f} \rangle &= \sum_{g \in G} A_G \widetilde{f}(g) \cdot \widetilde{f}(g) \\ &= \sum_{g \in G} \sum_{\gamma \in \Gamma} \widetilde{f}(g\gamma) \cdot \widetilde{f}(g) \\ &= \sum_{h \in H} \sum_{t \in T} \sum_{\gamma \in \Gamma} \widetilde{f}(ht\gamma) \cdot \widetilde{f}(ht) \\ &= \sum_{h \in H} \sum_{t \in T} \sum_{\gamma \in \Gamma} f(h(\widehat{t,\gamma})) \cdot f(h) \\ &= \sum_{h \in H} (A_H f)(h) \cdot \overline{f}(h) \\ &= \langle A_H f, f \rangle \\ &= \lambda_H \langle f, f \rangle \end{split}$$

Note f is a real function, thus $f = \overline{f}$. Else by definition

Hence

$$\lambda_1(Cay(G,\Gamma)) \geq \frac{\lambda_H \langle f,f \rangle}{[G:H] \langle f,f \rangle} = \frac{\lambda_1(Cay(H,\hat{\Gamma}))}{[G:H]}$$

Remark:

- 1. Another common presentation of Lemma 2.25 is with normalised adjacency operators. Normalised = largest eigenvalue is 1. In this way, the adjacency matrix is related to a random walk on X, with each entry being a transition probability.
- 2. Another proof for Subgroups Non-expansion Principle: