Aim:

- 1. Logistic Regression
- 2. Differentiate between Linear and Logistic Regression
- 3. Sigmoid Function
- 4. Types of LogisticRegression
- 5. Confusion Matrix Evaluation Metrics

```
Code:
In [7]:
              import numpy as np
           1
              import pandas as pd
In [8]:
              data = pd.read_csv("https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv
              data.head()
Out[8]:
                      zn indus chas
                                                           dis rad tax ptratio
                                                                                    b Istat medv
               crim
                                       nox
                                              rm age
          0.00632
                     18.0
                           2.31
                                   0 0.538 6.575 65.2 4.0900
                                                                   296
                                                                          15.3 396.90
                                                                                       4.98
                                                                                             24.0
            0.02731
                           7.07
                                                                 2 242
                                                                                             21.6
                      0.0
                                   0
                                     0.469 6.421 78.9 4.9671
                                                                          17.8 396.90
                                                                                       9.14
            0.02729
                      0.0
                           7.07
                                   0 0.469
                                            7.185 61.1 4.9671
                                                                 2 242
                                                                          17.8
                                                                               392.83
                                                                                       4.03
                                                                                             34.7
            0.03237
                                   0 0.458 6.998 45.8 6.0622
                                                                 3 222
                      0.0
                           2.18
                                                                          18.7 394.63
                                                                                       2.94
                                                                                             33.4
           0.06905
                      0.0
                           2.18
                                   0 0.458 7.147 54.2 6.0622
                                                                 3 222
                                                                          18.7 396.90 5.33
                                                                                             36.2
In [9]:
              data.tail()
Out[9]:
                 crim
                       zn indus chas
                                         nox
                                                rm
                                                    age
                                                            dis rad
                                                                    tax ptratio
                                                                                     b Istat medv
          501 0.06263
                           11.93
                                                         2.4786
                                                                     273
                                                                                391.99
                                                                                        9.67
                                                                                              22.4
                       0.0
                                       0.573 6.593
                                                   69.1
                                                                           21.0
          502 0.04527 0.0
                           11.93
                                    0 0.573
                                             6.120 76.7 2.2875
                                                                  1
                                                                     273
                                                                           21.0
                                                                                396.90
                                                                                        9.08
                                                                                              20.6
```

```
503 0.06076 0.0
                  11.93
                           0 0.573 6.976 91.0 2.1675
                                                         1
                                                            273
                                                                   21.0 396.90
                                                                                5.64
                                                                                      23.9
504 0.10959 0.0
                  11.93
                           0 0.573 6.794 89.3 2.3889
                                                            273
                                                                   21.0 393.45
                                                                               6.48
                                                                                      22.0
                                                         1
505 0.04741 0.0
                11.93
                           0 0.573 6.030 80.8 2.5050
                                                         1 273
                                                                   21.0 396.90 7.88
                                                                                      11.9
```

```
In [10]:
              print("The shape of the data is: ")
              data.shape
```

The shape of the data is:

Out[10]: (506, 14)

```
In [22]:
          1 print(data.isnull().sum())
```

0 crim 0 zn indus 0 chas a 0 nox rm0 a age dis rad 0 0 tax ptratio 0 0 0 1stat medv dtype: int64

```
In [13]:
          1 X = data.iloc[:,0:13]
          2 y = data.iloc[:,-1]
          3 X
          4 y
Out[13]: 0
                24.0
                21.6
                34.7
         2
                33.4
         4
                36.2
                . . .
         501
                22.4
         502
                20.6
                23.9
         503
         504
                22.0
         505
                11.9
         Name: medv, Length: 506, dtype: float64
In [15]:
         1 from sklearn.model selection import train test split
           2 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,random_state=42)
In [16]:
          1 print(X_train.shape)
           2 print(X_test.shape)
           3 print(y_train.shape)
          4 print(y_test.shape)
         (404, 13)
         (102, 13)
         (404,)
         (102,)
In [17]: 1 from sklearn.linear_model import LinearRegression
In [18]:
          1 from sklearn.preprocessing import StandardScaler
           2 from sklearn.pipeline import make_pipeline
           3 model = make_pipeline(StandardScaler(with_mean=False), LinearRegression())
           4 model.fit(X_train, y_train)
Out[18]:
                                         Pipeline
          Pipeline(steps=[('standardscaler', StandardScaler(with_mean=False)),
                          ('linearregression|', LinearRegression())])
                                      StandardScaler
                             StandardScaler(with_mean=False)
                                    ▼ LinearRegression
                                   LinearRegression()
In [19]:
          1 model.score(X_test,y_test)
Out[19]: 0.668759493535632
```

In [20]: 1 X_test

Out[20]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat
173	0.09178	0.0	4.05	0	0.510	6.416	84.1	2.6463	5	296	16.6	395.50	9.04
274	0.05644	40.0	6.41	1	0.447	6.758	32.9	4.0776	4	254	17.6	396.90	3.53
491	0.10574	0.0	27.74	0	0.609	5.983	98.8	1.8681	4	711	20.1	390.11	18.07
72	0.09164	0.0	10.81	0	0.413	6.065	7.8	5.2873	4	305	19.2	390.91	5.52
452	5.09017	0.0	18.10	0	0.713	6.297	91.8	2.3682	24	666	20.2	385.09	17.27
412	18.81100	0.0	18.10	0	0.597	4.628	100.0	1.5539	24	666	20.2	28.79	34.37
436	14.42080	0.0	18.10	0	0.740	6.461	93.3	2.0026	24	666	20.2	27.49	18.05
411	14.05070	0.0	18.10	0	0.597	6.657	100.0	1.5275	24	666	20.2	35.05	21.22
86	0.05188	0.0	4.49	0	0.449	6.015	45.1	4.4272	3	247	18.5	395.99	12.86
75	0.09512	0.0	12.83	0	0.437	6.286	45.0	4.5026	5	398	18.7	383.23	8.94

102 rows × 13 columns

In [21]: 1 y_test Out[21]: 173 23.6 274 32.4 491 13.6 72 22.8 452 16.1 412 17.9 436 9.6 411 17.2 86 22.5 75 21.4

Name: medv, Length: 102, dtype: float64

Name : Mohan Kadambande

Roll No.: 13212 (TECO-b1)