МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

Лабораторная работа №3 по дисциплине «Методы машинного обучения»

ИСПОЛНИТЕЛЬ:	Сукач Е.А.
группа ИУ5- 23М	подпись
	""2020 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю. Е.
	подпись
	""2020 г.
Москва – 2020 	

Цель лабораторной работы

Изучить способы предварительной обработки данных для дальнейшего формирования моделей.

Задание

Требуется:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных.
- 2. Для выбранного датасета (датасетов) на основе материалов <u>лекции</u> (https://github.com/ugapanyuk/ml_course/blob/master/common/notebooks/missing/h решить следующие задачи:
 - обработку пропусков в данных;
 - кодирование категориальных признаков;
 - масштабирование данных.

Ход выполнения работы

Подключим все необходимые библиотеки и настроим отображение графиков:

```
In [38]:
         import numpy as np
         import pandas as pd
         import seaborn as sns
         import sklearn.impute
         import sklearn.preprocessing
         import matplotlib.pyplot as plt
         # Enable inline plots
         %matplotlib inline
         # Set plot style
         sns.set(style="ticks")
In [40]:
          from sklearn.preprocessing import Normalizer
 In [2]:
         pd.set_option("display.width", 70)
         data = pd.read_csv("/Users/elizavetasukach/Desktop/MachineLearning/
 In [5]:
```

26.05.2020, 00:05 lab3

In [9]: data.dtypes

Out[9]: patient_id int64 global_num float64 object sex float64 birth_year object age country object province object city object disease object infection_case object infection_order float64 infected_by float64 contact_number float64 object symptom_onset_date confirmed_date object released_date object deceased_date object state object dtype: object

In [10]: data.head()

Out[10]:

	patient_id	global_num	sex	birth_year	age	country	province	city	disease
0	1000000001	2.0	male	1964.0	50s	Korea	Seoul	Gangseo- gu	NaN
1	1000000002	5.0	male	1987.0	30s	Korea	Seoul	Jungnang- gu	NaN
2	1000000003	6.0	male	1964.0	50s	Korea	Seoul	Jongno-gu	NaN
3	1000000004	7.0	male	1991.0	20s	Korea	Seoul	Mapo-gu	NaN
4	1000000005	9.0	female	1992.0	20s	Korea	Seoul	Seongbuk- gu	NaN

```
In [6]: data.isnull().sum()
 Out[6]: patient_id
                                   0
         global_num
                                1160
                                  94
         sex
         birth_year
                                 464
         age
                                 105
                                  90
         country
         province
                                   0
                                  76
         city
         disease
                                3110
         infection_case
                                 819
         infection_order
                                3097
         infected_by
                                2393
                                2539
         contact_number
         symptom_onset_date
                                2682
         confirmed_date
         released_date
                                2147
         deceased_date
                                3072
         state
                                   0
         dtype: int64
In [28]: | total_count = data.shape[0]
In [25]: # Удаление колонок, содержащих пустые значения
         data_new_1 = data.dropna(axis=1, how='any')
         (data.shape, data new 1.shape)
Out[25]: ((3128, 18), (3128, 5))
In [26]: # Удаление строк, содержащих пустые значения
         data_new_2 = data.dropna(axis=0, how='any')
          (data.shape, data_new_2.shape)
```

Out[26]: ((3128, 18), (0, 18))

```
In [29]: # Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in data.columns:
    # Количество пустых значений
    temp_null_count = data[data[col].isnull()].shape[0]
    dt = str(data[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt=='int64'):
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0,
        print('Колонка {}. Тип данных {}. Количество пустых значени
```

Колонка birth_year. Тип данных float64. Количество пустых значений 464, 14.83%.

Колонка infection_order. Тип данных float64. Количество пустых значений 3097, 99.01%.

Колонка infected_by. Тип данных float64. Количество пустых значени й 2393, 76.5%.

Колонка contact_number. Тип данных float64. Количество пустых знач ений 2539, 81.17%.

```
In [30]: # Фильтр по колонкам с пропущенными значениями
data_num = data[num_cols]
data_num
```

_			F -	. ~	1	
	ш	1	1 3	м		
u	'u		1 -	טי		

	birth_year	infection_order	infected_by	contact_number
0	1964.0	1.0	NaN	75.0
1	1987.0	1.0	NaN	31.0
2	1964.0	2.0	2.002000e+09	17.0
3	1991.0	1.0	NaN	9.0
4	1992.0	2.0	1.000000e+09	2.0
3123	NaN	NaN	NaN	20.0
3124	NaN	NaN	NaN	23.0
3125	1996.0	NaN	NaN	26.0
3126	NaN	NaN	NaN	25.0
3127	NaN	NaN	NaN	14.0

3128 rows × 4 columns

Самый простой вариант — заполнить пропуски нулями:

```
In [43]: sns.distplot(data['contact_number'].fillna(0));
```


In []: Это приведет к выбросу, поэтому заполним средними значениями

```
In [12]: mean_imp = sklearn.impute.SimpleImputer(strategy="mean")
    mean_rat = mean_imp.fit_transform(data[["global_num"]])
    sns.distplot(mean_rat);
```


Попробуем также медианный рейтинг и самый частый рейтинг:

```
In [13]: med_imp = sklearn.impute.SimpleImputer(strategy="median")
med_rat = med_imp.fit_transform(data[["global_num"]])
sns.distplot(med_rat);
```



```
In [14]: freq_imp = sklearn.impute.SimpleImputer(strategy="most_frequent")
    freq_rat = freq_imp.fit_transform(data[["global_num"]])
    sns.distplot(freq_rat);
```


In [15]: #самый близкий к нормальному распределению – средние значения
data["global_num"] = mean_rat

Кодирование категориальных признаков

Рассмотрим колонку sex :

```
In [16]: types = data["sex"].dropna().astype(str)
types.value_counts()
```

Name: sex, dtype: int64

Выполним кодирование категорий целочисленными значениями:

```
In [18]: le = sklearn.preprocessing.LabelEncoder()
    type_le = le.fit_transform(types)
    print(np.unique(type_le))
    le.inverse_transform(np.unique(type_le))
```

[0 1]

Out[18]: array(['female', 'male'], dtype=object)

Выполним кодирование категорий наборами бинарных значений:

```
In [21]: type_oh = pd.get_dummies(types)
    type_oh.head()
```

Out [21]: female male

0 0 1

1 0 1

2 0 1

3 0 1

4 1 0

```
In [22]: type_oh[type_oh["female"] == 1].head()
```

Out [22]:

	female	male
4	1	0
5	1	0
9	1	0
10	1	0
13	1	0

Масштабирование данных

In []: Для начала попробуем обычное MinMax-масштабирование:

```
In [23]: mm = sklearn.preprocessing.MinMaxScaler()
    sns.distplot(mm.fit_transform(data[["global_num"]]));
```


попробуем и другие варианты, например, масштабирование на основе Z-оценки:

```
In [24]: ss = sklearn.preprocessing.StandardScaler()
    sns.distplot(ss.fit_transform(data[["global_num"]]));
```


Нормализация

```
In [41]: sc3 = Normalizer()
sc3_data = sc3.fit_transform(data[['global_num']])
```


In []: