

Introduction of GEO Grid

Yoshio Tanaka AIST, Japan

What is the GEO Grid?

• The GEO (Global Earth Observation) Grid is aiming at providing an <u>E-Science Infrastructure</u> for worldwide Earth Sciences communities to accelerate GEO sciences based on the concept that relevant data and computation are <u>virtually integrated</u> with a certain access control and ease-of-use interface those are enabled by a set of Grid and Web service technologies.

IT for secure and dynamic federation of distributed resources

Why Grid?

GEO Grid Service Examples

- Satellite data archive and processing
 - ASTER, PALSAR, MODIS, etc.
- Satellite data application
 - Application of Satellite-Field data Integrator (SFI) for aerosol monitoring Description http://fon.geogrid.org/aerosol/
 - SDCP (Science Degree Confluence Project) –Community validation tool for global land-cover & digital elevation models http://eco.geogrid.org/sdcp/
- Hazard information
 - QuiQuake (Quick Estimation System for Earthquake Maps Triggered by Observation Records) http://qq.ghz.geogrid.org/QuakeMap/index.en.html
 - Volcanic Gravity Flow Simulations on Volcanic Area http://volcano.geogrid.org/applications/EnergyCone/
- Geoscience data
 - Geological maps, Active fault data, etc.

Satellite RS & Ground-based

- Benefit of satellite RS:
 - Cheap and rapid over large geographic area
 - Regional coverage and broadly spectral resolution
 - Continuous acquisition of data
 - Archive of historical data
- Limitation of satellite RS:
 - Interference of atmospheric gaseous and particles
 - Absorbing (H₂0, O₃ etc.) and Scattering (mainly by aerosol particles such as dust, ash and smoke)
 - Not direct sample of the phenomenon.
- Ground-based observation:
 - Direct sample of the phenomenon is possible
 - Real-time or Near Real-time observation
 - High temporal resolution
 - Expensive for wide area observation

Synergy of satellite and field data

Flux Tower

Use Case and Research Issues

- Federation of CO₂ Flux data and Satellite data -

Camera

Approach: Linking IT and application

networks

Observation site in Maeklong, Thailand

Data transfer from MKL to Tskuba

36000km

独立行政法人產業技術総合研究所

State of Problems

- There is a lack of comprehensive framework that provides an estimated air temperature map from satellite remote sensing image with ease of use to the end-users.
- Huge amount of effort from user such as
 - Prepare, analyze and process both of datasets to achieve final results.
 - High requirement of user skills and sufficient computer support system.

Traditional Workflow

Satellite Field Integrator (SFI)

- The SFI framework is designed to reduce the onerous tasks of data gathering, manipulating, and processing
 - Supports heterogeneous data formats in both remote sensing and sensor observation data
 - Scalability to handle the increasing number of datasets currently available.
 - Offers a robust, on-demand processing service
- The development is based on various open standards of OGC Web Service specifications such as
 - Web Mapping Service (WMS)
 - Web Coverage Service (WCS)
 - Sensor Observation Service (SOS)
 - Web Processing Service (WPS)

SFI Framework

Prototype System

Various Applications

Field Observation data (Primary production, daily)

MOD09, MOD17a2

- → Vegetation Index (EVI, NDVI)
- \rightarrow GPP

- •The prototype system will done with observation in Japan, Taiwan and Thailand.
- •The success of study will extend sensor network to regional and global FLUX group.

Conclusions

- Comprehensive web-based GIS system framework enabled
 - Based on various open standards of OGC specifications
- Assimilation of sensor observation data and satellite image
 - Wider area, More accuracy, Reasonable cost
- Minimal effort by overcoming the need for
 - Complex workflow, high skills requirement, and expensive facilities
- HPC & Cloud for Geo Science
 - Source: Spatial and Temporal
 - Cost: Disk Space, Network, Processing Power etc.