Atom: Low-Bit Quantization for Efficient and Accurate LLM Serving

Yilong Zhao, **Chien-Yu Lin**, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy, Tianqi Chen, Baris Kasikci

MLSys, 2024 Santa Clara, CA

Challenges for LLM Serving

Large memory usage

Large Model weights

LLM size and accelerator memory

Large KV Cache

KV Cache size for Llama-65B

Challenges for LLM Serving

Low compute utilization

Max Batch Size for Llama-65B

(With 4xA100 80GB)

Seqlen	512	1024	2048	4096
Max Batch	160	80	40	20

GPU Performance w/ Batch

Challenges for LLM Serving

Low compute utilization

Background: What is Quantization?

- Map data to a lower resolution
- Reduce #bits to store each element

$$\mathbf{x}_{\text{int}} = \text{clamp}\left(\left\lfloor \frac{\mathbf{x}}{s} \right\rceil; -2^{b-1}, 2^{b-1} - 1\right)$$

Background: What is Quantization?

- Map data to a lower resolution
- Reduce #bits to store each element

$$\hat{\mathbf{x}} = s \mathbf{x}_{int}$$

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedup from reducing memory loading
- Dequantize weights to high-bit for computation

#Bit/Model	FP16	INT8	INT4
Mistral-7B	16G	8G	4G
Llama2-70B	140G	70G	35G
GPT3.5-175B	330G	165G	83G

LLM Sizes in different precision

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedup from reducing memory loading
- Dequantize weights to high-bit for computation

#Bit/Model	FP16	INT8	INT4
Mistral-7B	16G	8G	4G
Llama2-70B	140G	70G	35G
GPT3.5-175B	330G	165G	83G

LLM Sizes in different precision

Weight-Activation Quantization

- Use efficient low-bit arithmetic for computation
- Cont. increasing throughput when batch is larger
- Prior works can not maintain accuracy at 4bit

Roofline model with different precision 8

Quantization Type

Weight-only Quantization

- Mainstream methods (AWQ, QMoE, GPTQ, SqueezeLLM, QUIP...)
- Speedu
- Dequant

#Bit/N

Weight-Activation Quantization

- Use efficient low-bit arithmetic for computation
- Cont. increasing throughput when batch is larger

Atom

Maintaining LLM accuracy at W4A4 with a n-system co-design

Mistra	ing and the sound of	&1521==41655=6146555150884664466	ization
Llama2-70B	140G	70G	35G
GPT3.5-175B	330G	165G	83G

LLM Sizes in different precision

Roofline model with different precision 9

at 4-

LLM Quantization Challenges: Outliers

- Few activation channels are consistently larger than others
- Outliers ruin quantization accuracy

Activations sampled from Llama-7B

LLM Quantization Challenges: Outliers

- Few activation channels are consistently larger than others
- Outliers ruin quantization accuracy

Reorder-Based Mixed Precision

- Keep outlier channels in INT8, quantize others to INT4
- Reorder outlier channels for regular memory accessing
- Hide activation reordering overhead in previous layer

Activations after Reordering

Reorder weights for accurate GEMM

Llama-7B WikiText2 Perplexity with Mixed-Precision

Llama-7B Perplexity with Mixed-Precision

Llama-7B Perplexity with Fine-Grained Group Quant.

Overheads of Group Quantization

- Partial sum between groups can not be accumulated directly
- To accumulate: (1) dequantize partial sum to FP16 and (2) sum up in FP16
- We design a specialized GPU kernel to handle GEMM with group quant
- We fuse low-bit and high-bit GEMM in one kernel

KV Cache Quantization

- KV Cache: caching key and value data for self-attention layer to save computation
- KV Cache is relatively easy to quant: a simple 4-bit RTN can maintain accuracy
- Mixed-precision, reordering, group quantization can still be applied to KV Cache

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

V data from Llama-7B

Evaluation

Accuracy Evaluation Setup

• LLMs: Llama, Llama2, Mixtral-8x7B

Baselines: SmoothQuant[1], OmniQuant[2], QLLM[3]

Group size: 128

• Outliers: 128

Calibration: 128 samples from WikiText2

• Perplexity eval: WikiText2, PTB, C4

• Zero-shot accuracy eval: six common sense tasks from Im-evaluation-harness[4]

^[1] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

^[2] OmniQuant: Omnidirectionally Calibrated Quantization for Large Language Models, ICLR 2024

^[3] QLLM: Accurate and Efficient Low-Bitwidth Quantization for Large Language Models, ICLR 2024

^[4] https://github.com/EleutherAl/Im-evaluation-harness

Zero-Shot Accuracy of LLaMA-65B

- At W4A4, Atom is able to maintain accuracy with only a 1.47% drop
- Atom's accuracy at W3A3 is even better than prior works at W4A4

Llama	#Bits	Method	Zero-shot Accuracy ↑							
Liailia #Dits	Memod	PIQA	ARC-e	ARC-c	BoolQ	HellaSwag	Winogrande	Avg.	-	
	FP16	_	80.79	58.71	46.24	82.29	80.72	77.50	71.04	Baseline
		SmoothQuant	60.72	38.80	30.29	57.61	36.81	53.43	46.28	-24.76%
	33 74 A 4	OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22	-11.82%
65B W4A4	QLLM	73.56	52.06	39.68	_	70.94	62.90	59.83	-11.21%	
	Atom	80.41	58.12	45.22	82.02	79.10	72.53	69.57	-1.47%	
W3A3	SmoothQuant	49.56	26.64	29.10	42.97	26.05	51.14	37.58		
	WSAS	Atom	75.84	51.43	41.30	74.07	72.22	64.33	63.20	

Zero-Shot Accuracy of LLaMA-65B

- At W4A4, Atom is able to maintain accuracy with only a 1.47% drop
- Atom's accuracy at W3A3 is even better than prior works at W4A4

Llama	#Bits	Method	Zero-shot Accuracy ↑					•		
Liailia #Dits IV	Memod	PIQA	ARC-e	ARC-c	BoolQ	HellaSwag	Winogrande	Avg.	-	
	FP16	_	80.79	58.71	46.24	82.29	80.72	77.50	71.04	Baseline
65B W4A4		SmoothQuant	60.72	38.80	30.29	57.61	36.81	53.43	46.28	-24.76%
	XX 7.4.A.4	OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22	-11.82%
	W4A4	QLLM	73.56	52.06	39.68	-	70.94	62.90	59.83	-11.21%
		Atom	80.41	58.12	45.22	82.02	79.10	72.53	69.57	-1.47%
W3A3	W/2 A 2	SmoothQuant	49.56	26.64	29.10	42.97	26.05	51.14	37.58	•
	W3A3	Atom	75.84	51.43	41.30	74.07	72.22	64.33	63.20	-7.84%

Perplexity of Llama2 & Mixtral on WikiText2

- Atom is able to main accuracy across models (Llama2, Mixtral)
- Atom can be used with FP4 quantization

Efficiency Evaluation Setup

- Kernel: W4A4-G128_W8A8-O128
- Benchmark: Llama-7B
- Baseline: FP16, W4A16 (AWQ[1]), W8A8 (SmoothQuant[2])
- Workload: ShareGPT[3]
- Evaluate on RTX 4090 24GB
- Integrate into Punica[4] for end-to-end performance evaluation
- Use FlashInfer[5] as self-attention kernel and add 4-bit kernel support

^[1] AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration, MLSys 2024

^[2] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

^[3] ShareGPT, https://sharegpt.com/

^[4] Punica: Multi-Tenant LoRA Serving, MLSys 2024

^[5] FlashInfer, https://github.com/flashinfer-ai/flashinfer

GEMM Throughput & Self-Attention Latency

- For GEMM when B=256, Atom is 3.4x and 1.9x better than FP16 and W8A8
- For Self-attn when B=128, Atom is 3.5x and 1.8x faster than FP16 and W8A8

Shape: Bsz x 4096 x 4096

Self-attention

FP16

Sequence length: 1024

End-to-End Throughput & Latency

- Atom can boost throughput for up to 7.7x while maintaining a low latency
- Why gains are more than 4x for FP16 and 2x for W8A8?

Ans: Atom is able to run at a larger batch size

Conclusions

 Atom is an accurate and efficient low-bit weight-activation quantization for LLMs

 Atom uses (1) reorder-based mixed-precision, (2) fine-grained group quantization and (3) specialized GPU kernel

 Atom can boost end-to-end throughput for up to 7.7x while maintaining accuracy at W4A4

Atom: Low-Bit Quantization for Efficient and Accurate LLM Serving

Thank you!

Backup

Atom's Workflow

- Reordering and quantization are fused into LayerNorm
- De-quantization is fused into GEMM and Self-Attention kernel

Atom's Workflow for a Singe Decoder Block

Ablation on Quantization Techniques

Table 4. Ablation study on different quantization techniques used in Atom. The model used in this table is Llama-7B.

Quantization method	WikiText2 PPL↓
FP16 baseline	5.68
W4A4 RTN	2315.52
+ Keeping 128 outliers in FP16	11.34 (2304.2↓)
+ Quantizing outliers to INT8	11.39 (0.05\(\dagger)\)
+ Group size 128	6.22 (5.17↓)
+ Clipping	6.13 (0.091)
+ GPTQ	6.04 (0.09↓)
+ Quantizing KV-cache to INT4	6.16 (0.12†)

Ablation on Reordering

Batch	16	32	64	128	256
Naive	47.58	47.25	46.74	47.64	48.14
Reorder	31.49	31.76	32.11	32.9	36.42
Speedup	33.8%	32.8%	31.3%	30.9%	24.35%