Value-Based Reinforcement Learning

Action-Value Functions

Discounted Return

Definition: Discounted return (cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^3 R_{t+3} + \cdots$$

- The return depends on actions A_t , A_{t+1} , A_{t+2} , \cdots and states S_t , S_{t+1} , S_{t+2} , \cdots
- Actions are random: $\mathbb{P}[A = a \mid S = s] = \pi(a \mid s)$. (Policy function.)
- States are random: $\mathbb{P}[S' = s' | S = s, A = a] = p(s' | s, a)$. (State transition.)

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$U_t = R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \gamma^7 R_{t+7} + \dots$$

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

Definition: Optimal action-value function.

- $Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$
- Whatever policy function π is used, the result of taking a_t at state s_t cannot be better than $Q^*(s_t, a_t)$.

Deep Q-Network (DQN)

Approximate the Q Function

Goal: Win the game (\approx maximize the total reward.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$.

Challenge: We do not know $Q^*(s, a)$.

- Solution: Deep Q Network (DQN)
- Use neural network $Q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q^*(s, \mathbf{a})$.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Question: Based on the predictions, what should be the action?

Apply DQN to Play Game

Temporal Difference (TD) Learning

Reference

- 1. Sutton and others: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation. In NIPS, 2008.
- 2. Sutton and others: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *ICML*, 2009.

Example

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial a(\mathbf{w})}{\partial \mathbf{w}}.$
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \mid_{\mathbf{w} d\mathbf{w}}$.

Example

- I want to drive from NYC to Atlanta (via DC).
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived at DC?

Temporal Difference (TD) Learning

Model's estimate:

NYC to Atlanta: 1000 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 600 minutes (estimate).

Temporal Difference (TD) Learning

- Model's estimate: $Q(\mathbf{w}) = 1000$ minutes.
- Updated estimate: 300 + 600 = 900 minutes.

- TD target y = 900 is a more reliable estimate than 1000.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (1000 900) \cdot \frac{\partial a(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \mid_{\mathbf{w} d\mathbf{w}}$.

Why does TD learning work?

- Model's estimates:
 - NYC to Atlanta: 1000 minutes.
 - DC to Atlanta: 600 minutes.
 - → NYC to DC: 400 minutes.
- Ground truth:
 - NYC to DC: 300 minutes.
- TD error: $\delta = 400 300 = 100$

TD Learning for DQN

• In the "driving time" example, we have the equation:

In deep reinforcement learning:

$$Q(s_t, a_t; \mathbf{w}) \approx r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w}).$$

Definition of discounted return:

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \gamma^s \cdot R_{t+s} + \cdots$$

$$= \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot R_{t+s} + \cdots)$$

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+7} + \gamma^4 \cdot R_{t+s} + \cdots$$

 $= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+7} + \gamma^3 \cdot R_{t+s} + \cdots)$
 $= U_{t+1}$

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+7} + \gamma^4 \cdot R_{t+s} + \cdots$$

 $= R_t + \gamma \cdot (R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+7} + \gamma^3 \cdot R_{t+s} + \cdots)$
 $= U_{t+1}$

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$ is an estimate of U_t .
- DQN's output, $Q(s_{t+1}, a_{t+1}; \mathbf{w})$ is an estimate of U_{t+1} .
- Thus, $Q(s_t, a_t; \mathbf{w}) \approx \mathbb{E}[R_t + \gamma \cdot Q(s_{t+1}, A_{t+1}; \mathbf{w})].$ estimate of U_t estimate of U_{t+1}

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

TD learning for DQN:

- DQN's output, $Q(s_t, a_t; \mathbf{w})$ is an estimate of U_t .
- DQN's output, $Q(s_{t+1}, a_{t+1}; w)$ is an estimate of U_{t+1} .

Train DQN using TD learning

- Prediction: $Q(s_t, a_t; \mathbf{w}_t)$.
- TD target:

$$y_t = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$$
$$= r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t).$$

- Loss: $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Summary

Value-Based Reinforcement Learning

Definition: Optimal action-value function.

•
$$Q^*(s_t, \mathbf{a}_t) = \max_{\pi} \mathbb{E}\left[U_t | S_t = s_t, A_t = \mathbf{a}_t\right].$$

DQN: Approximate $Q^*(s, a)$ using a neural network (DQN).

- Q(s, a; w) is a neural network parameterized by w.
- Input: observed state s.
- Output: scores for all the action $a \in P$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d} = \frac{\partial \ a\ (s_t, \mathbf{a}\ ; \mathbf{w})}{\partial \ \mathbf{w}} \mid_{\mathbf{wd}\ \mathbf{w}}$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state $S_t = S_t$ and perform action $A_t = a_t$.
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d} = \frac{\partial \mathbf{a} (s_t, a; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} d \mathbf{w}}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y}_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.

Policy-Based Reinforcement Learning

Policy Function Approximation

Policy Function $\pi(a|s)$

- Policy function $\pi(a|s)$ is a probability density function (PDF).
- It takes state s as input.
- It output the probabilities for all the actions, e.g.,

$$\pi(\text{left}|s) = 0.2,$$
 $\pi(\text{right}|s) = 0.1,$
 $\pi(\text{up}|s) = 0.3.$

• Randomly sample action α random drawn from the distribution.

Can we directly learn a policy function $\pi(a|s)$?

- If there are only a few states and actions, then yes, we can.
- Draw a table (matrix) and learn the entries.
- What if there are too many (or infinite) states or actions?

	Action a_1	Action a_2	Action a_3	Action a_4	•••
State s_1					
State s ₂					
State s ₃					
:					

Policy Network $\pi(a|s;\theta)$

Policy network: Use a neural net to approximate $\pi(a|s)$.

- Use policy network $\pi(a|s;\theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Policy Network $\pi(a|s;\theta)$

- $^{\bullet} \sum_{a \in A} \pi(a|s;\theta) = 1.$
- Here, $P = \{\text{"left", "right", "up"}\}$ is the set all actions.
- That is why we use softmax activation.

State-Value Function Approximation

Action-Value Function

loginition: Discounted return.

•
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$$

loginition: Action-value function.

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[U_t | S_t = s_t, A_t = a_t\right].$$

The expectation is taken w.r.t. actions A_{t+1} , A_{t+2} , A_{t+3} , ... and states S_{t+1} , S_{t+2} , S_{t+3} ,

State-Value Function

loginition: Discounted return.

• $U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot R_{t+3} + \cdots$

loginition: Action-value function.

• $Q_{\pi}(s_t, \mathbf{a}_t) = \mathbf{E}\left[U_t | S_t = s_t, \mathbf{A}_t = \mathbf{a}_t\right].$

loginition: State-value function.

•
$$V_{\pi}(s_t) = \mathrm{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Integrate out action $A \sim \pi(\cdot | s_t)$.

Policy-Based Reinforcement Learning

loginition: State-value function.

•
$$V_{\pi}(s_t) = \mathcal{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$$

Approximate state-value function.

• Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t;\theta)$.

Policy-Based Reinforcement Learning

loginition: State-value function.

• $V_{\pi}(s_t) = \mathcal{E}_{\mathbf{A}} \left[Q_{\pi}(s_t, \mathbf{A}) \right] = \sum_{\mathbf{a}} \pi(\mathbf{a}|s_t) \cdot Q_{\pi}(s_t, \mathbf{a}).$

Approximate state-value function.

- Approximate policy function $\pi(a|s_t)$ by policy network $\pi(a|s_t;\theta)$.
- Approximate value function $V_{\pi}(s_t)$ by:

$$V(s_t; \theta) = \sum_{a} \pi(a|s_t; \theta) \cdot Q_{\pi}(s_t, a).$$

Policy-Based Reinforcement Learning

loginition: Approximate state-value function.

• $V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$.

Policy-based learning: Learn θ that maximizes $J(\theta) = E_S[V(S; \theta)]$.

How to improve θ ? Policy gradient ascent!

- Observe state s.
- Update policy by: $\theta \leftarrow \theta + \beta \cdot \frac{\partial V(s;\theta)}{\partial \theta}$.

Policy gradient

Reference

• Sutton and others: Policy gradient methods for reinforcement learning with function approximation. In NIPS, 2000.

loginition: Approximate state-value function.

•
$$V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$$
.

$$\frac{\partial V(s;\theta)}{\partial \theta} = \frac{\partial \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$

$$= \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$
Push derivative inside the summation

loginition: Approximate state-value function.

•
$$V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$$
.

•
$$\frac{\partial V(s;\theta)}{\partial \theta} = \frac{\partial \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$

$$= \sum_{a} \frac{\partial \pi(a|s;\theta) \cdot Q_{\pi}(s,a)}{\partial \theta}$$

$$= \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$
Pretend Q_{π} is independent of θ . (It may not be true.)

loginition: Approximate state-value function.

• $V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$.

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$${}^{\bullet} \frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

Policy Gradient: Form 1

loginition: Approximate state-value function.

• $V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$.

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

loginition: Approximate state-value function.

• $V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$.

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.

•
$$\rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$

loginition: Approximate state-value function.

• $V(s;\theta) = \sum_{a} \pi(a|s;\theta) \cdot Q_{\pi}(s,a)$.

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

• Chain rule:
$$\frac{\partial \log[\pi(\theta)]}{\partial \theta} = \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$
.

•
$$\rightarrow \pi(\theta) \cdot \frac{\partial \log[\pi(\theta)]}{\partial \theta} = \pi(\theta) \cdot \frac{1}{\pi(\theta)} \cdot \frac{\partial \pi(\theta)}{\partial \theta}$$

loginition: Approximate state-value function.

•
$$V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$$
.

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \underbrace{\begin{pmatrix} \partial \log \pi(a|s;\theta) \\ \partial \theta \end{pmatrix}} \cdot Q_{\pi}(s,a)$$

$$= E_{A} \left[\underbrace{\begin{pmatrix} \partial \log \pi(A|s;\theta) \\ \partial \theta \end{pmatrix}} \cdot Q_{\pi}(s,A) \right].$$

The expectation is taken w.r.t. the random variable $A \sim \pi(\cdot | s; \theta)$.

loginition: Approximate state-value function.

• $V(s; \theta) = \sum_{a} \pi(a|s; \theta) \cdot Q_{\pi}(s, a)$.

Policy gradient: Derivative of $V(s; \theta)$ w.r.t. θ .

$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s;\theta) \cdot \underbrace{\frac{\partial \log \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)}_{\partial \theta} \cdot Q_{\pi}(s,a)$$

$$= E_{A} \left[\underbrace{\frac{\partial \log \pi(A|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,A)}_{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$
Policy Gradient: Form 2

Note: This derivation is over-simplified and not rigorous.

Two forms of policy gradient:

• Form 1:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \sum_{a} \frac{\partial \pi(a|s;\theta)}{\partial \theta} \cdot Q_{\pi}(s,a)$$
.

• Form 2:
$$\frac{\partial V(s;\theta)}{\partial \theta} = \mathbb{E}_{A \sim \pi(\cdot|s;\theta)} \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot Q_{\pi}(s,A) \right].$$

Calculate Policy Gradient

Policy Gradient:
$$\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{\boldsymbol{A} \sim \pi(\cdot | s; \boldsymbol{\theta})} \left[\frac{\partial \log \pi(\boldsymbol{A} | s, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, \boldsymbol{A}) \right].$$

1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.

Calculate Policy Gradient

Policy Gradient:
$$\frac{\partial V(s; \mathbf{\theta})}{\partial \mathbf{\theta}} = \mathbb{E}_{\mathbf{A} \sim \pi(\cdot | s; \mathbf{\theta})} \left[\frac{\partial \log \pi(\mathbf{A} | s, \mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \mathbf{A}) \right].$$

- 1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- By the definition of **g**, E_A[**g**(A, θ)] = ^{∂ V(s;θ)}/_{∂ θ}.
 g(â, θ) is an unbiased estimate of ^{∂ V(s;θ)}/_{∂ θ}.

Calculate Policy Gradient

Policy Gradient:
$$\frac{\partial V(s; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = \mathbb{E}_{\boldsymbol{A} \sim \pi(\cdot | s; \boldsymbol{\theta})} \left[\frac{\partial \log \pi(\boldsymbol{A} | s, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \cdot Q_{\pi}(s, \boldsymbol{A}) \right].$$

- 1. Randomly sample an action \hat{a} according to $\pi(\cdot | s; \theta)$.
- 2. Calculate $\mathbf{g}(\hat{\mathbf{a}}, \mathbf{\theta}) = \frac{\partial \log \pi(\hat{\mathbf{a}}|s;\mathbf{\theta})}{\partial \mathbf{\theta}} \cdot Q_{\pi}(s, \hat{\mathbf{a}}).$
- 3. Use $\mathbf{g}(\hat{a}, \boldsymbol{\theta})$ as an approximation to the policy gradient $\frac{\partial V(s;\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}$.

Update policy network using policy gradient

Algorithm

Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 1: REINFORCE.

Play the game to the end and generate the trajectory:

$$S_1, a_1, r_1, S_2, a_2, r_2, \cdots, S_T, a_T, r_T.$$

- Compute the discounted return $u_t = \sum_{k=t}^T \gamma^{k-t} r_k$, for all t.
- Since $Q_{\pi}(s_t, a_t) = \mathbb{E}[U_t]$, we can use u_t to approximate $Q_{\pi}(s_t, a_t)$.
- \rightarrow Use $q_t = u_t$.

Algorithm

- 1. Observe the state s
- 2. Randomly sample action a_t according to π .
- Compute $q_t \approx Q_{\pi}(s_t, a_t)$ (some estimate). How?

Option 2: Approximate Q_{π} using a neural network.

• This leads to the actor-critic method.

Summary

Policy-Based Learning

- If a good policy function π is known, the agent can be controlled by the policy: randomly sample $a_t \sim \pi(\cdot | s_t)$.
- Approximate policy function $\pi(a|s)$ by policy network $\pi(a|s;\theta)$.
- Learn the policy network by policy gradient algorithm.
- Policy gradient algorithm learn θ that maximizes $D_S[V(S;\theta)]$.

Value-Based Methods Actor-Critic Methods

Policy-Based Methods

Value Network and Policy Network

State-Value Function Approximation

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a) \approx \sum_{a} \pi(a|s;\theta) \cdot q(s,a;\mathbf{w}).$

Policy network (actor):

- Use neural net $\pi(a|s;\theta)$ to approximate $\pi(a|s)$.
- θ : trainable parameters of the neural net.

Value network (critic):

- Use neural net $q(s, \mathbf{a}; \mathbf{w})$ to approximate $Q_{\pi}(s, \mathbf{a})$.
- w : trainable parameters of the neural net.

Policy Network (Actor): $\pi(a|s;\theta)$

- Input: state s, e.g., a screenshot of Super Mario.
- Output: probability distribution over the actions.
- Let P be the set all actions, e.g., $P = \{\text{"left", "right", "up"}\}$.
- $\sum_{a \in P} \pi(a|s;\theta) = 1$. (That is why we use softmax activation.)

Value Network (Critic): q(s, a; w)

- Inputs: state s.
- Output: action-values of all the actions.

Value Network (Critic): q(s, a; w)

- Inputs: state s.
- Output: action-values of all the actions.

policy network (actor)

value network (critic)

Train the Neural Networks

Train the networks

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w}).$

Training: Update the parameters θ and \mathbf{w} .

Train the networks

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w}).$

Training: Update the parameters θ and \mathbf{w} .

- Update policy network $\pi(a|s;\theta)$ to increase the state-value $V(s;\theta,\mathbf{w})$.
 - Actor gradually performs better.
 - Supervision is purely from the value network (critic).
- Update value network q(s, a; w) to better estimate the return.
 - Critic's judgement becomes more accurate.
 - Supervision is purely from the rewards.

Train the networks

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w}).$

Training: Update the parameters θ and \mathbf{w} .

- 1. Observe the state s_t .
- 2. Randomly sample action a_t according to $\pi(\cdot | s_t; \theta_t)$.
- 3. Perform a_t and observe new state s_{t+1} and reward r_t .
- 4. Update w (in value network) using temporal difference (TD).
- 5. Update θ (in policy network) using policy gradient.

Update value network q using TD

- Compute $q(s_t, \mathbf{a}_t; \mathbf{w}_t)$ and $q(s_{t+1}, \mathbf{a}_{t+1}; \mathbf{w}_t)$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w}_t)$.
- Loss: $L(\mathbf{w}) = \frac{1}{2} [q(s_t, \mathbf{a}_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}|_{\mathbf{w} = \mathbf{w}_t}$

Update policy network π using policy gradient

Definition: State-value function approximated using neural networks.

• $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w}).$

Policy gradient: Derivative of $V(s_t; \theta, \mathbf{w})$ w.r.t. θ .

- Let $\mathbf{g}(\mathbf{a}, \theta) = \frac{\partial \log \pi(\mathbf{a}|s, \theta)}{\partial \theta} \cdot q(s_t, \mathbf{a}; \mathbf{w}).$
- $\frac{\partial V(s;\theta,\mathbf{w}_t)}{\partial \theta} = \mathrm{E}_{A}[\mathbf{g}(A,\theta)].$

Algorithm: Update policy network using stochastic policy gradient.

- Random sampling: $a \sim \pi(\cdot | s_t; \theta_t)$. (Thus $\mathbf{g}(a, \theta)$ is unbiased.)
- Stochastic gradient ascent: $\theta_{t+1} = \theta_t + \beta \cdot \mathbf{g}(\mathbf{a}, \theta_t)$.

policy network (actor)

value network (critic)

Actor-Critic Method: Update Actor

Actor-Critic Method: Update Critic

Summary of Algorithm

- 1. Observe state s_t and randomly sample $a_t \sim \pi(\cdot | s_t; \theta_t)$.
- 2. Perform a_t ; then environment gives new state s_{t+1} and reward r_t .
- 3. Randomly sample $\tilde{a}_{t+1} \sim \pi(\cdot | s_{t+1}; \theta_t)$. (Do not perform $\tilde{a}_{t+1}!$)
- 4. Evaluate value network: $q_t = q(s_t, \mathbf{a}_t; \mathbf{w}_t)$ and $q_{t+1} = q(s_{t+1}, \tilde{\mathbf{a}}_{t+1}; \mathbf{w}_t)$.
- 5. Compute TD error: $\delta_t = q_t (r_t + \gamma \cdot q_{t+1})$.
- 6. Differentiate value network: $\mathbf{d}_{w,t} = \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} |_{\mathbf{w} = \mathbf{w}_t}$.
- 7. Update value network: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \delta_t \cdot \mathbf{d}_{w,t}$.
- 8. Differentiate policy network: $\mathbf{d}_{\theta,t} = \frac{\partial \log \pi(\mathbf{a_t}|s_t,\theta)}{\partial \theta} \big|_{\theta=\theta_t}$.
- 9. Update policy network: $\mathbf{\theta}_{t+1} = \mathbf{\theta}_t + \beta \cdot q_t \cdot \mathbf{d}_{\theta,t}$.

Summary

Policy Network and Value Network

Definition: State-value function.

• $V_{\pi}(s) = \sum_{a} \pi(a|s) \cdot Q_{\pi}(s,a)$.

Definition: function approximation using neural networks.

- Approximate policy function $\pi(a|s)$ by $\pi(a|s;\theta)$ (actor).
- Approximate value function $Q_{\pi}(s, \mathbf{a})$ by $q(s, \mathbf{a}; \mathbf{w})$ (critic).

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

Roles of Actor and Critic

During training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) provides the actor with supervision.

After training

- Agent is controlled by policy network (actor): $a_t \sim \pi(\cdot | s_t; \theta)$.
- Value network q (critic) will not be used.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = E_A \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Training

Update the policy network (actor) by policy gradient.

- Seek to increase state-value: $V(s; \theta, \mathbf{w}) = \sum_{a} \pi(a|s; \theta) \cdot q(s, a; \mathbf{w})$.
- Compute policy gradient: $\frac{\partial V(s;\theta)}{\partial \theta} = D_A \left[\frac{\partial \log \pi(A|s,\theta)}{\partial \theta} \cdot q(s,A;\mathbf{w}) \right].$
- Perform gradient ascent.

Update the value network (critic) by TD learning.

- Predicted action-value: $q_t = q(s_t, \mathbf{a}_t; \mathbf{w})$.
- TD target: $y_t = r_t + \gamma \cdot q(s_{t+1}, a_{t+1}; \mathbf{w})$
- Gradient: $\frac{\partial (q_t y_t)^2 / 2}{\partial \mathbf{w}} = (q_t y_t) \cdot \frac{\partial q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}}$
- Perform gradient descent.

Thank you!