Congruencias

1 Congruencias módulo m

Definición 1.1. Dados los enteros a, b y m, se dice que a es congruente con b módulo m y se escribe $a \equiv b \pmod{m}$ (ó $a \equiv_m b$ ó $a \equiv b \pmod{m}$) si y sólo si m|a-b, es decir, existe $k \in Z$ tal que a-b=k.m

Ejemplo 1.2. $4 \equiv 10$ (3) pues 3|4-10, ya que existe -2 tal que $4-10=-6=-2\cdot 3$

Proposición 1.3. La relación de congruencia módulo m es una relación de equivalencia

Demotración: Para mostrar que la congruencia es una relación de equivalencia tenemos que probar que es reflexiva, simétrica y transitiva.

Tenemos: a es congruente con b módulo m, ó $a \equiv_m b$ si y sólo si m|a-b, entonces,

- \equiv_m es reflexiva ya que para a entero vale que m|a-a pues a-a=0.m
- \equiv_m es simétrica.

Supongamos que $a \equiv_m b$, entonces m divide a a-b y existe k entero tal que a-b=k.m, luego existe -k tal que b-a=-(a-b)=-(k.m)=(-k).m y por lo tanto m|b-a y $b\equiv_m a$

• \equiv_m es transitiva: esto es, si $a \equiv_m b$ y $b \equiv_m c$ entonces $a \equiv_m c$ Supongamos que $a \equiv_m b$ entonces m|a-b, existe k entero tal que a-b=km,

por otro lado $b \equiv_m c$ entonces m|b-c, existe h entero tal que b-c=hm,

luego a-c=a+(-b+b)-c=(a-b)+(b-c)=km+hm=(k+h)m, y existe un entero t=k+h tal que a-c=tm y así m divide a a-c y de esa forma tenemos que $a\equiv_m c$ como queríamos probar.

Por ser la congruencia una relación de equivalencia en \mathbb{Z} , determina una partición del conjunto de los números enteros en clases de equivalencia que se denominan clases de congruencia módulo m.

La clase de congruencia módulo m de un número x será el conjunto $\overline{x} = \{y \in \mathbb{Z} : y \equiv_m x\}$

Observación 1.4. Dos números enteros pertenecen a la misma clase de equivalencia si y sólo si son congruentes módulo m.

Supongamos que a y b pertenecen a la "clase del x", entonces $a \equiv_m x y b \equiv_m x$. Como la congruencia es una relación simétrica y transitiva tenemos que $a \equiv_m b$.

Por otro lado, si $a \equiv_m b$ es claro que ambos pertenecen a la misma clase de equivalencia.

Supongamos que $x \equiv_m y$, sabemos que esto equivale a decir que existe k entero tal que x - y = km, entonces podemos escribir x = km + y.

Como antes dijimos que dos enteros son congruentes si pertenecen a la misma clase podemos con ésto describir las clases de la siguiente forma:

$$\overline{x} = \{y : y \equiv_m x\} = \{y : x = km + y\} = \{y : y = x + k'm\} = \{y : y = x, y = x + 1, y = x + 2....\}$$

Todo entero es congruente módulo m con su resto en la división por m

Ejemplos 1.5. 1. Sabemos que $x \equiv_3 y$ si y sólo si $x - y = k \cdot 3$.

Ahora tomemos por ejemplo al 2, como $y \equiv_3 2$ es lo mismo que $y-2=k\cdot 3$ entonces vale $y=k\cdot 3+2$ (todos los puntos de "esa recta")

$$\bar{2} = \{ y \in Z : y \equiv_3 2 \} = \{ 2, 5, 8, 11, \dots \}$$

2. Veamos la congruencia módulo 2, esto es $x \equiv_2 y$ si y sólo si $x - y = 2 \cdot m$ Tomemos al 1, Como $1 \equiv y(2)$ es lo mismo que $y - 1 = k \cdot 2$ entonces vale $y = k \cdot 2 + 1$

$$\bar{1} = \{ y \in Z : 1 \equiv_2 y \} = \{ 1, 3, 5, 7, 9, 11, \dots \}$$

 $\bar{0} = \{ y \in Z : 0 \equiv_2 y \} = \{ 0, 2, 4, 6, 8, 10, \dots \}$

Luego,
$$Z/\equiv_2 = \{\bar{0}, \bar{1}\}$$

"Partimos" el conjunto de los números enteros en dos clases, la del $\bar{0}$ y la del $\bar{1}$, es decir, los números que tienen resto 0 cuando se los divide por 2, o resto 1. Esto es, **los números pares y los impares**.

Proposición 1.6. Dos enteros son congruentes módulo m si y sólo si los respectivos restos en su división por m son iguales.

Demostración:

Supongamos que x e y son dos enteros congruentes módulo m y probemos que tienen el mismo resto en la división por m.

Por el algoritmo de la división, existen (y son únicos) cociente y resto enteros tales que:

$$x = k_1 m + r_1 \text{ con } 0 \le r_1 < m$$

$$y = k_2 m + r_2 \text{ con } 0 \le r_2 < m$$
 (Observemos que $|r_1 - r_2| < m$)

Luego,
$$x - y = (k_1 m + r_1) - (k_2 m + r_2) = (k_1 m - k_2 m) + (r_1 - r_2) = (k_1 - k_2)m + (r_1 - r_2)$$

Y como $x \equiv_m y$, existe un entero k tal que x - y = km, concluimos que debe ser $r_1 - r_2 = 0$ y por lo tanto $r_1 = r_2$.

Ahora supongamos que los restos en la división por m coinciden y veremos que $x \equiv_m y$.

Otra vez usando el algoritmo de la división existen k_1, k_2, r enteros tales que :

$$x = k_1 m + r$$

$$y = k_2 m + r$$

Así,
$$x - y = (k_1m + r) - (k_2m + r) = (k_1m - k_2m) + (r - r) = (k_1 - k_2)m = km$$

mostrando que m|x-y y por lo tanto, $x \equiv_m y$.

Todo entero es congruente con su resto en la división por m, entonces para cualquier entero x existe un resto r en la división por m y tenemos $x \equiv_m r$

También sabemos que dos enteros congruentes pertenecen a la misma clase de equivalencia, y por lo tanto las clases serán iguales, $\bar{x} = \bar{r}$.

Por las propiedades y características de la división entera, tenemos que hay m posibles restos en la división por m. Estos son, $0, \ldots, m-1$.

De esta forma vemos que habrá m clases de equivalencia o congruencia.

Teorema 1.7. Sea $m \in N$, $Zm = Z_m = Z/\equiv_m$, el conjunto cociente, tiene m clases de equivalencias.

2 Aritmética en Zm

Dado $m \in \mathbb{Z}$, definiremos la suma y el producto entre los elementos de \mathbb{Z}_m , es decir entre las clases de equivalencia módulo m.

Esta definición no dependerá del representante elegido y así podremos sumar y multiplicar clases de equivalencias y el resultado será un representante de la misma clase (es decir, las operaciones estarán bien definidas).

La relación de congruencia es compatible con la suma y el producto.

Dado $a, b, c, d \in \mathbb{Z}$ tales que $a \equiv_m b$ y $c \equiv_m d$. Entonces se cumple que:

- $a+c \equiv_m b+d$
- $a \cdot c \equiv_m b \cdot d$

Probemos la compatibilidad:

Sabemos que a-b=km y c-d=hm por ser congruentes módulo m por hipótesis general. Sumando ambos miembros: $\underbrace{(a-b)+(c-d)}_{(a+c)-(b+d)}=km+hm=\underbrace{(k+h)}_{\in Z}m$

Con lo cual queda demostrado que m|(a+c)-(b+d) y por lo tanto $a+c\equiv_m b+d$

Ahora veamos que el producto está bien definido. Al igual que con la suma tenemos que a-b=km y c-d=hm y queremos llegar a ac-bd=rm ya que esto significa que m divide a la diferencia ac-bd y por lo tanto $ac\equiv_m bd$

Multipliquemos ambos miembros de a-b=km por c, ca-cb=ckm, y ambos miembros de c-d=hm por b, bc-bd=bhm

Sumando adecuadamente y utilizando las propiedades conmutativa y asociativa del producto de enteros nos queda:

$$\underbrace{(ca-cb)+(bc-bd)}_{ac-bd}=ckm+bhm=\underbrace{(ck+bh)}_{\in Z}m$$

2.1 Operaciones en Zm

Ya vimos que la suma y el producto son compatibles con la congruencia módulo m, ahora podemos definir las operaciones entre clases y basando esa definición en la suma y producto de enteros heredará varias propiedades.

Suma:
$$\overline{x} + \overline{y} = \overline{x+y}$$

La suma tiene las siguientes propiedades:

- Asociatividad
- Conmutatividad
- Existencia del neutro
- Todo elemento tiene opuesto

Producto:
$$\overline{x} \cdot \overline{y} = \overline{x \cdot y}$$

El producto tiene las siguientes propiedades:

- Asociatividad
- Conmutatividad
- Existencia del neutro
- El producto se distribuye en la suma

Repetimos que éstas propiedades son válidas gracias a la definición de las operaciones entre clases basadas en la suma y el producto de enteros.

Veamos, como ejemplo solamente, que vale la propiedad distributiva del producto en la suma:

Queremos probar que : $\overline{x} \cdot (\overline{y} + \overline{z}) = \overline{x} \cdot \overline{y} + \overline{x} \cdot \overline{z}$,

$$\overline{x}\cdot(\overline{y}+\overline{z})=\overline{x}\cdot(\overline{y+z})=\overline{x\cdot(y+z)}=\overline{xy+xz}=\overline{xy}+\overline{xz}=\overline{x}\cdot\overline{y}+\overline{x}\cdot\overline{z}$$

Igual a lo que ocurre en \mathbb{Z} , no todos los elementos tendrán opuesto para el producto.

Elementos invertibles o unidades en Zm

Definición 2.1. Dado $a \in Z_m$, decimos que a es **invertible** (o divisor de la unidad), si: existe $c \in Z_m$ tal que $a \cdot c = 1$

Teorema 2.2. Sea $a \in \mathbb{Z}_m$, a es invertible si y sólo si (a, m) = 1

Definición 2.3. Dado $a \in Z_m$ no nulo, decimos que a es **divisor de 0** si: existe $b \in Z_m$, $\neq 0$ tal que $a \cdot b = 0$

Teorema 2.4. Dado $a \in Z_m$, a es invertible si y sólo si a NO es divisor de 0

Tablas de operaciones

Sea $Z_3=\left\{ \bar{0},\bar{1},\bar{2}\right\}$. Veamos las tablas de la suma y el producto:

+	Ō	1	$\overline{2}$
$\bar{0}$	$\bar{0}$	1	$\overline{2}$
1	1	$\overline{2}$	Ō
$\overline{2}$	$\overline{2}$	Ō	1

*	$\bar{0}$	1	$\overline{2}$
$\bar{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$
1	$\bar{0}$	1	$\overline{2}$
$\overline{2}$	$\bar{0}$	$\overline{2}$	1

Es fácil ver desde la tabla que el opuesto del $\bar{1}$ es el $\bar{2}$, (y obviamente el opuesto del $\bar{2}$ es el $\bar{1}$), el inverso del $\bar{2}$ es el mismo; y que dos más dos es uno y no cuatro...