Assignment 2: Multiple Regression Analysis

Keith G. Williams

800690755

Tuesday, June 1, 2015

Completed as part of DSBA 6201, SUM 1, 2015

The Data Set

The "Boston Housing" dataset recorded properties of 506 housing zones in the Greater Boston area. Typically, one is interested in predicting MEDV (median home value) based on other attributes.

Here is a list of attribute information:

- 1. CRIM: per capita crime rate by town
- 2. $\mathbb{Z}N$: proportion of residential land zoned for lots over 25,000 ft^2
- 3. INDUS: proportion of non-retail business acres per town
- 4. CHAS: Charles River dummy variable (=1 if tract bounds river; 0 otherwise)
- 5.NOX: nitric oxides concentration (parts per 10 million)
- 6. RM: average number of rooms per dwelling
- 7. AGE: proportion of owner-occupied units built prior to 1940
- 8. DIS: weighted distances to five Boston employment centers
- 9. RAD: index of accessibility to radial highways
- 10. TAX: full-value property-tax rate per \$10,000
- 11. PTRATIO: pupil-teacher ratio by town
- 12. LSTAT: % lower status of the population
- 13. MEDV: median value of owner-occupied homes in \$1000's

Pre-processing

MEDV has somewhat longish tail and is not so normally distributed, so we will take the log transform, and then predict LMEDV instead.

Histogram of MEDV

PROC SQL;

```
CREATE TABLE WORK.QUERY FOR BOSTON HOUSING AS
SELECT t1.CRIM,
       t1.ZN,
       t1.INDUS,
       t1.CHAS,
       t1.NOX,
       t1.RM,
       t1.AGE,
       t1.DIS,
       t1.RAD,
       t1.TAX,
       t1.PTRATIO,
       t1.LSTAT,
       t1.MEDV,
       /* LMEDV */
         (LOG(t1.MEDV)) AS LMEDV
   FROM WORK. 'BOSTON HOUSING'n t1;
```

QUIT;

Histogram of log(MEDV)

Questions

1. Please perform the multicollinearity diagnosis based on the VIF calculation results. Do we need to drop any variables that might have multicollinearity concerns?

The REG Procedure Model: Linear_Regression_Model Dependent Variable: LMEDV

Number of Observations Read506 Number of Observations Used506

Analysis of Variance								
			Mean					
Source	DF	Squares	Square	F Value	Pr > F			
Model	12	66.09326	5.50777	148.51	<.0001			
Error	493	18.28323	0.03709					
Corrected Total	505	84.37649						

Root MSE 0.19258R-Square0.7833 Dependent Mean3.03451Adj R-Sq0.7780 Coeff Var 6.34620

	Parameter Estimates							
		Parameter	Standard			Variance		
Variable	DF	Estimate	Errort	Value	Pr > t	Inflation		
Intercept	1	4.33112	0.19812	21.86	<.0001	0		
CRIM	1	-0.01087	0.00132	-8.20	<.0001	1.76749		
ZN	1	0.001200	.00055706	2.15	0.0322	2.29846		
INDUS	1	0.00215	0.00249	0.86	0.3887	3.98718		
CHAS	1	0.10769	0.03492	3.08	0.0022	1.07117		
NOX	1	-0.82243	0.15458	-5.32	<.0001	4.36909		
RM	1	0.08409	0.01687	4.99	<.0001	1.91253		
AGE	1	0.000340230	.00053500	0.64	0.5251	3.08823		
DIS	1	-0.04976	0.00809	-6.15	<.0001	3.95404		
RAD	1	0.01353	0.00269	5.04	<.0001	7.44530		
TAX	1-	0.000641200	.00015256	-4.20	<.0001	9.00216		
PTRATIO	1	-0.03760	0.00531	-7.09	<.0001	1.79706		
LSTAT	1	-0.03025	0.00203	-14.88	<.0001	2.87078		

The TAX variable has a high variance inflation factor, and can be seen to be highly correlated with RAD; since this violates the assumption of no multicollinearity, it will be removed from the model.

Pearson Correlation Coefficients, N = 506 Prob > r under H0: Rho=0						
	RAD	TAX				
	1.00000	0.91023				
RAD		<.0001				
	0.91023	1.00000				
TAX	<.0001					

- 2. Please run the linear regression analyses.
- Use the stepwise model selection approach to determine the final model. Drop variables based on their significance.
- Report summary output for each step, including ANOVA, \mathbb{R}^2 , and parameter estimates.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: LMEDV

Number of Observations Read506 Number of Observations Used506

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	11	65.43814	5.94892	155.18	<.0001		
Error	494	18.93835	0.03834				
Corrected Total50584.37649							

Root MSE 0.19580 R-Square 0.7755 Dependent Mean3.03451 Adj R-Sq 0.7706 Coeff Var 6.45236

		Par	ameter Estim	nates		
		Parameter	Standard			Variance
Variable	DF	Estimate	Error	t Value	Pr > t	Inflation
Intercept	1	4.24264	0.20029	21.18	<.0001	0
CRIM	1	-0.01082	0.00135	-8.03	<.0001	1.76735
ZN	1	0.00067450	0.00055212	1.22	0.2224	2.18417
INDUS	1	-0.00245	0.00228	-1.08	0.2822	3.21795
CHAS	1	0.12571	0.03523	3.57	0.0004	1.05502
NOX	1	-0.87235	0.15670	-5.57	<.0001	4.34330
RM	1	0.08919	0.01710	5.21	<.0001	1.90264
AGE	1	0.00027655	0.00054373	0.51	0.6112	3.08576
DIS	1	-0.05044	0.00823	-6.13	<.0001	3.95244
RAD	1	0.00459	0.00167	2.75	0.0061	2.77221
PTRATIO	1	-0.03926	0.00538	-7.30	<.0001	1.78705
LSTAT	1	-0.03015	0.00207	-14.59	<.0001	2.87041

AGE has the highest p-value at p = 0.61, so it will be dropped.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: LMEDV

Number of Observations Read506 Number of Observations Used506

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	10	65.42823	6.54282	170.92	<.0001		
Error	495	18.94827	0.03828				
Corrected T	otal505	84.37649					

Root MSE 0.19565R-Square0.7754 Dependent Mean3.03451Adj R-Sq0.7709 Coeff Var 6.44753

	Parameter Estimates								
		Parameter	Standard		D. 10	Variance			
Variable	DF	Estimate	Error	: Value	Pr > t	Inflation			
Intercept	1	4.23589	0.19970	21.21	<.0001	0			
CRIM	1	-0.01082	0.00135	-8.04	<.0001	1.76731			
ZN	10	0.000641680	0.00054792	1.17	0.2421	2.15434			
INDUS	1	-0.00244	0.00228	-1.07	0.2847	3.21743			
CHAS	1	0.12663	0.03516	3.60	0.0003	1.05226			
NOX	1	-0.85125	0.15100	-5.64	<.0001	4.03899			
RM	1	0.09093	0.01675	5.43	<.0001	1.82640			
DIS	1	-0.05167	0.00786	-6.57	<.0001	3.61317			
RAD	1	0.00450	0.00166	2.72	0.0068	2.74684			
PTRATIO	1	-0.03903	0.00536	-7.29	<.0001	1.77476			
LSTAT	1	-0.02980	0.00195	-15.31	<.0001	2.54673			

INDUS has the next highest p-value at p = 0.28, so it will be dropped.

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: LMEDV

Number of Observations Read506 Number of Observations Used506

Analysis of Variance							
			Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	9	65.38432	7.26492	189.73	<.0001		
Error	496	18.99218	0.03829				
Corrected Total	505	84.37649					

Root MSE 0.19568R-Square0.7749 Dependent Mean3.03451Adj R-Sq0.7708 Coeff Var 6.44848

	Parameter Estimates							
		Parameter	Standard			Variance		
Variable	DF	Estimate	Errort	Value	Pr > t	Inflation		
Intercept	1	4.24137	0.19966	21.24	<.0001	0		
CRIM	1	-0.01076	0.00134	-8.00	<.0001	1.76426		
<mark>ZN</mark>	10	0.000648530	0.00054797	1.18	0.2372	2.15405		
CHAS	1	0.12459	0.03512	3.55	0.0004	1.04919		
NOX	1	-0.90820	0.14135	-6.43	<.0001	3.53822		
RM	1	0.09335	0.01660	5.62	<.0001	1.79324		
DIS	1	-0.04966	0.00763	-6.51	<.0001	3.40711		
RAD	1	0.00428	0.00164	2.60	0.0096	2.70103		
PTRATIO	1	-0.04008	0.00527	-7.61	<.0001	1.71584		
LSTAT	1	-0.03000	0.00194	-15.49	<.0001	2.52325		

zn has the next highest p-value at p = 0.24, and is the final predictor above the $\alpha = 0.05$ threshold, so it will be dropped to produce the final model.

Final model

Linear Regression Results

The REG Procedure
Model: Linear_Regression_Model
Dependent Variable: LMEDV

Number of Observations Read506 Number of Observations Used506

Analysis of Variance							
		Sum of	Mean				
Source	DF	Squares	Square	F Value	Pr > F		
Model	8	65.33068	8.16634	213.10	<.0001		
Error	497	19.04581	0.03832				
Corrected T	otal505	84.37649					

Root MSE 0.19576 R-Square 0.7743 Dependent Mean3.03451 Adj R-Sq 0.7706 Coeff Var 6.45108

Parameter Estimates									
	Parameter Standard								
Variable	DF	Estimate	Errort	Value	Pr > t				
Intercept	1	4.25599	0.19936	21.35	<.0001				
CRIM	1	-0.01062	0.00134	-7.93	<.0001				
CHAS	1	0.12379	0.03512	3.52	0.0005				
NOX	1	-0.91847	0.14114	-6.51	<.0001				
RM	1	0.09583	0.01647	5.82	<.0001				
DIS	1	-0.04521	0.00664	-6.80	<.0001				
RAD	1	0.00453	0.00163	2.78	0.0057				
PTRATIO	1	-0.04209	0.00499	-8.44	<.0001				
LSTAT	1	-0.02997	0.00194	-15.47	<.0001				

LMEDV = 4.26 - 0.011 * CRIM + 0.124 * CHAS - 0.918 * NOX + 0.096 * RM - 0.045 * DIS + 0.004 * RAD - 0.042 * PTRATIO - 0.030 * LSTAT + e

Interpretation of Coefficients:

The natural log of median home value (\$1000) changes by the estimated coefficient for each predictor for each unit change in that predictor, while all other predictors are held constant.

CRIM:

The log median home value (\$1000) decreases on average by 0.011 ± 0.003 for each unit increase in the per capita crime rate, while all other predictors are held constant.

CHAS:

The log median home value (\$1000) is on average 0.124 \pm 0.069 higher for homes that bound the Charles River versus those that don't, while all other predictors are held constant.

NOX:

The log median home value (\$1000) decreases on average by 0.918 \pm 0.277 for each parts per 10 million increase in nitric oxide concentration, while all other predictors are held constant.

RM:

The log median home value (\$1000) increases on average by 0.096 ± 0.032 for each 1 room increase in the average number of rooms per dwelling, while all other predictors are held constant.

DIS:

The log median home value (\$1000) decreases on average by 0.045 ± 0.013 for each 1 unit increase in the weighted distances to five Boston employment centers, while all other predictors are held constant.

RAD:

The log median home value (\$1000) increases on average by 0.004 ± 0.003 for each 1 unit increase in the index of accessibility to radial highways, while all other predictors are held constant.

PTRATIO:

The log median home value (\$1000) decreases on average by 0.042 \pm 0.010 for each 1 pupil increase in the pupil-teacher ratio, while all other predictors are held constant.

LSTAT:

The log median home value (\$1000) decreases on average by 0.030 ± 0.004 for each 1% increase in the percent lower status of the population, while all other predictors are held constant.

The 95% confidence interval for each coefficient is calculated by obtaining the 0.975 t-quantile on 497 degrees of freedom multiplied by the standard error for that coefficient. This value is added and subtracted from the fitted value at each X_i to get the upper and lower bounds.

Finally the R^2 value of 0.77 means that 77% of the variance in the data is explained by the model.