Exercise 14.1

- Q.1 In $\triangle ABC$ $\overline{DE} P\overline{BC}$
- (i) If \overline{AD} =1.5cm \overline{BD} =3cm \overline{AE} =1.3cm, then find \overline{CE} $\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$

By substituting the values of \overline{AD} , \overline{BD} and \overline{AE}

$$\frac{1.5}{3} = \frac{1.3}{EC}$$

$$\overline{EC}(1.5)=1.3\times3$$

$$\overline{EC} = \frac{1.3 \times 3}{1.5}$$

$$\overline{EC} = \frac{3.9}{1.5}$$

$$\overline{EC} = 2.6$$
cm

(ii) If $AD = 2.4cm \overline{AE} = 3.2cm$

$$\frac{AD}{AB} = \frac{AE}{AC}$$

$$\overline{AC} = AE + EC$$

$$\overline{AC} = 3.2 + 4.8$$

$$\overline{AC} = 8cm$$

$$\therefore \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

$$\frac{2.4}{AB} = \frac{3.2}{8}$$

$$2.4 \times 8 = (3.2) \overline{AB}$$

$$\frac{19.2}{3.2} = \overline{AB}$$

$$\overline{AB} = 6cm$$

(iii) If
$$\frac{\overline{AD}}{\overline{BD}} = \frac{3}{5}\overline{AC} = 4.8cm$$
 find \overline{AE}

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AC} = \overline{EC} + \overline{AE}$$

$$\overline{AE} = 4.8 - \overline{EC}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AC} - \overline{EC}}{\overline{EC}}$$

$$\frac{3}{5} = \frac{4.8 - \overline{EC}}{\overline{EC}}$$

$$3(\overline{EC}) = 5(4.8 - \overline{EC})$$

$$3(\overline{EC}) = 24 - 5(\overline{EC})$$

$$3(\overline{EC}) + 5(\overline{EC}) = 24$$

$$8(\overline{EC}) = 24$$

$$(\overline{EC}) = \frac{24}{8}$$

$$\overline{EC} = 3cm$$

$$\overline{AE} = \overline{AC} - \overline{EC}$$
$$= 4.8 - 3$$

$$=1.8cm$$

(iv) If
$$\overline{AD} = 2.4 \text{cm} \overline{AE} = 3.2 \text{cm} \overline{DE} = 2 \text{cm} \overline{BC} = 5 \text{cm}$$
. Find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} .

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}}$$

$$\frac{2.4}{\overline{AB}} = \frac{3.2}{\overline{AC}} = \frac{2}{5}$$

$$\frac{2.4}{\overline{AB}} = \frac{2}{5}$$

$$(2.4)5 = 2(AB)$$

$$\frac{12.0}{2} = AB$$

$$\overline{AB} = 6 \text{ cm}$$

$$\frac{3.2}{\overline{AC}} = \frac{2}{5}$$

$$16.0 = 2(AC)$$

$$\frac{16^{8}}{2} = AC$$

$$\frac{3.2}{AC} = \frac{2}{5}$$

$$16.0 = 2(AC)$$

$$\frac{16^{8}}{2} = AC$$

$$\overline{AC} = 8cm$$

$$\overline{DB} = \overline{AB} - \overline{AD}$$

$$\overline{DB} = 6 - 2.4$$

$$\overline{BD} = 3.6 cm$$

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

$$\frac{2.4}{6} = \frac{\overline{AE}}{8}$$

$$\overline{AE} = \frac{2.4}{6} \times 8$$

$$\overline{AE} = \frac{19.2}{6}$$

$$\overline{AE} = 3.2cm$$

$$\overline{CE} = \overline{AC} - \overline{AE}$$

$$\overline{CE} = 8 - 3.2$$

$$\overline{CE} = 4.8cm$$

$$= 4x - 3 \overline{AE} = 8x - 6$$

If $\overline{AD} = 4x - 3$ $\overline{AE} = 8x - 7$

$$\overline{BD} = 3x - 1$$
 and $CE = 5x - 3$ Find the value of x

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

By putting the value of AD, AE, BD and CE

$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

By cross multiplying

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$$

$$4x^2 - 2x - 2 = 0$$

$$2(2x^2 - x - 1) = 0$$

$$2x^2 - 2x + 1x - 1 = \frac{0}{2}$$

$$2x(x-1) + 1(x-1) = 0$$

$$(x-1)(2x+1)=0$$

$$\begin{array}{c}
 x - 1 = 0 \\
 x = 1
 \end{array}$$

$$2x+1=0$$

$$2x = -1$$

$$x = -\frac{1}{2}$$

Distance is not taken in negative it is always in positive so the value of x = 1.

0.2 In ∆ABC is an isosceles triangle ∠A is vertex angle and DE intersects the sides AB and AC as shown in the figure so that

$$\overline{mAD}$$
: $\overline{mDB} = \overline{mAE}$: \overline{mEC}

Prove that $\triangle ADE$ is also an isosceles triangle.

Given:

 $\triangle ABC$ is an isosceles triangle, $\angle A$ is vertex and \overline{DE} intersects the sides \overline{AB} and \overline{AC} .

$$\frac{\overline{\text{mAD}}}{\overline{\text{mBD}}} = \frac{\overline{\text{mAE}}}{\overline{\text{mEC}}}$$
To Prove

$$m\overline{AD} = m\overline{AE}$$

Proof

$$\overline{AD}_{-}\overline{AE}$$

Or
$$\frac{\overline{BD}}{\overline{AD}} = \frac{\overline{EC}}{\overline{AE}}$$

Or
$$\frac{\overline{AD} + \overline{BD}}{\overline{AD}} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}}$$

As we know

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AB} = \overline{AC}$$

$$\overline{AD} = \overline{AE}$$

From this

$$\overline{AB} = \overline{AC}$$

$$\overline{AD} \overline{AE}$$

$$\overline{AD} = \overline{AE}$$

$$\overline{AB} = \overline{AC}$$
 (Given)

ΔABC is equilateral triangle

To prove

To find the angles of ΔADE

Solution:

$$\frac{m\overline{AE}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{AB}}$$

All angles are equal as it is an equilateral triangle which are equal to 60° each

$$\angle A = \angle B = \angle C$$

$$\angle AED = \angle ACB = 60^{\circ}$$

$$\angle A = 60^{\circ}$$

ΔADE is an equilateral triangle

Q.4 Prove that line segment drawn through the midpoint of one side of a triangle and parallel to another side bisect the third side

Given

$$\overline{AD} = \overline{BD}$$

To Prove

$$\overline{AE} = \overline{EC}$$

D

В

E

In AABC

DE||BC

In theorem it is already discussed that

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

As we know $\overline{AD} = \overline{BD}$ or $\overline{BD} = \overline{AD}$

$$\frac{\overline{AD}}{\overline{AD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$I = \frac{\overline{AE}}{\overline{EC}}$$

$$\overline{EC} = \overline{AE}$$

Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side

Given

 ΔABC the midpoint of \overline{AB} and \overline{AC} are L and M respectively

To Prove

$$\overline{LM} || \overline{BC}$$
 and $m \overline{LM} \! = \! \! \frac{1}{2} \overline{BC}$

Join M to L and produce ML to N such that

$$\overline{ML} \cong \overline{LN}$$

Join N to B and in the figure name the angles

 $\angle 1$, $\angle 2$, and $\angle 3$

Proof

Statements	Reasons
ΔBLN ↔ ΔALM	
$\overline{BL} \cong AL$	Given
$\angle 2 = \angle 1$ or $\angle 1 = \angle 2$	Vertical angles
$\overline{NL} = \overline{ML}$	Construction
$\therefore \Delta BLN \cong \Delta ALM$	Corresponding angle of congruent triangles Given
∴∠A =∠3	
And $\overline{NB} \cong \overline{AM}$	
NB AM	
$\overline{ML} = \overline{AM}$	Given
$\overline{NB} \cong \overline{ML}$	
BCMN is parallelogram	
$\therefore \overline{BC} \overline{LM} \text{ or } \overline{BC} \overline{NL}$	
$\overline{BC} \cong \overline{NM}$	(Opposite side of parallelogram BCMN)
$mLM = \frac{1}{2}m\overline{NM}$	(Opposite side of parallelogram)

Hence $m\overline{LM} = \frac{1}{2}m\overline{BC}$
--

Theorem 14.1.3

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given

In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the points D.

To prove

mBD:mDC-mAB:mAC

Construction

Draw a line segment BE||DA to meet CA Produced at E

Reasons

QAD||EB and EC intersect them

 $m\angle 1 = m\angle 2....(i)$

Again AD||EB and AB intersects them

∴ m∠3 = m∠4(ii)

But $m \angle 1 = m \angle 3$

 $m \angle 2 = m \angle 4$

And $\overline{AB} \cong \overline{AE} \text{ or } \overline{AE} \cong \overline{AB}$

Now AD | EB

$$\therefore \frac{m\overline{BD}}{m\overline{DC}} = \frac{m\overline{EA}}{m\overline{AC}}$$

or
$$\frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mAB}}{\overline{mAC}}$$

Thus mBD:mDC=mAB:AC

Construction

Corresponding angles

Alternate angles

Given

From (i) and (ii)

In a Δ , the sides opposite to congruent angles are also congruent

Construction

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

mEA = mAB (proved)

Theorem 14.1.4

If two triangles are similar, then the measures of their corresponding sides are proportional

i.e $\angle A \cong \angle D$, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction

- (I) Suppose that mAB>mDE
- (II) mAB≤mDE

On \overline{AB} take a point L such that $m\overline{AL} = m\overline{DE}$

On \overline{AC} take a point M such that $m\overline{AM} = m\overline{DF}$

Join L and M by the line segment LM

Proof

Proof Statements	Reasons
In ΔALM↔ ΔDEF	Kalania
∠A≅∠D	Given
$\overline{AL} \cong \overline{DE}$	Construction
$\overline{AM} \cong \overline{DF}$	Construction
Thus $\triangle ALM \cong \triangle DEF$	S.A.S Postulate
And $\angle L \cong \angle E$, $\angle M \cong \angle F$	(Corresponding angles of congruent triangles)
Now $\angle E \cong \angle B$ and $\angle F \cong \angle C$	Given
$\therefore \angle L \cong \angle B, \angle M \cong \angle C$	Transitivity of congruence
Thus $\overline{LM} \overline{BC}$	Corresponding angles are equal
Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
Or $\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mDF}}{\overline{mAC}}$ (i)	$m\overline{AL} = m\overline{DE}$ and $m\overline{AM} = m\overline{DF}$ (Construction)
Similarly by intercepting segments on	
BA and BC, we can prove that	
mDE mEF	
$\frac{mBE}{mAB} = \frac{mEF}{mBC}$ (ii)	
Thus $\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mDF}}{\overline{mAC}} = \frac{\overline{mEF}}{\overline{mBC}}$	By (i) and (ii)
Or $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$	By taking reciprocals
If mAB=mDE	
Then in $\triangle ABC \leftrightarrow \triangle DEF$	
(II) If mAB < mDE, it can similarly be	
proved by taking intercepts on the sides of	
ΔDEF	
$\angle A \cong \angle D$	
$\angle B \cong \angle E$	

And $\overline{AB} \cong \overline{DE}$ So $\triangle ABC \cong \triangle DEF$ Thus $\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}} = 1$ Hence the result is true for all the cases.

A.S.A \cong A.S.A \cong A.S.A \cong DF, $\overline{BC} \cong \overline{EF}$

Exercise 14.2

In $\triangle ABC$ as shown in the figure $\stackrel{\square II}{CD}$ bisects $\angle C$ and meets $\stackrel{\square}{AB}$ at $D.m\overline{BD}$ is equal Q.1

$$\frac{\frac{mBD}{mDA}}{\frac{mDA}{6}} = \frac{\frac{mBC}{mCA}}{\frac{mBD}{12}}$$

$$\overline{BD} = \frac{y0^5 \times y0^2}{y2^7} \text{ or } \overline{BD} = \frac{10 \times 6}{12} = \frac{60^5}{y2^7}$$

In ∆ABC shown in the figure CD bisects ∠C. If Q.2 mAC=3, CB=6 and mAB=7 then find mAD and DB

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$\overline{AD} = \overline{AB} - \overline{BD}$$

$$\overline{AD} = 7 - x$$

$$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AC}}{m\overline{CB}}$$

$$\frac{x}{7-x} = \frac{\cancel{z}^1}{\cancel{b}_2}$$

$$\frac{x}{7-x} = \frac{1}{2}$$

$$2x = 7-x$$

$$2x + x = 7$$

$$3x = 7$$

$$x = \frac{7}{3}$$
 or $\overline{AD} = \frac{7}{3}$

$$\overline{AB} = \overline{AD} + \overline{BD}$$

$$7 = \frac{7}{3} + \overline{BD}$$

$$7 - \frac{7}{3} = \overline{BD}$$

$$\frac{21-7}{3} = \overline{BD}$$

$$\overline{BD} = \frac{14}{3}$$

Q.3 Show that in any corresponding of two triangles if two angles of one triangle are congruent to the corresponding angles of the other, then the triangle are similar

Given

ΔABC and Δ DEF

$$\angle B \cong \angle E$$

$$\angle C \cong \angle F$$

To Prove

 $\Delta ABC \cong \Delta DEF$

Proof

Statements	Reasons
$\angle A + \angle B + \angle C = 180^{\circ}$	Sume of three angles of a triangle = 180°
$\angle D + \angle E + \angle F = 180$	
$\angle A \cong \angle D$	
∠B = ∠E	
$\angle C = \angle F$	
Hence Δ ABC \cong Δ DEF	

Q.4 If line segment \overline{AB} and \overline{CD} are intersecting at point X and $\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$ then

show that ΔAXC and ΔBXD are similar

Given

Line segment \overline{AB} and \overline{CD} intersect at X

$$\frac{m\overline{AX}}{m\overline{XB}} = \frac{m\overline{CX}}{m\overline{XD}}$$

To Prove

ΔCXA and ΔDXB are similar

Proof

Statements	Reasons
$\frac{\overline{AX}}{\overline{XB}} = \frac{\overline{CX}}{\overline{XD}}$ $\angle 1 \cong \angle 2$	Given
$\overline{AC} \overline{BD} $	Vertical angles
$\angle A = m\angle B$	
$m\angle C = m\angle D$	Alternate angles
Hence proved the triangle are similar	