00 Meta Al

Exploring Plain Vision Transformer Backbones for Object Detection

Code & models

Yanghao Li, Hanzi Mao, Ross Girshick*, and Kaiming He*

Meta Al

Overview

ViTDet: Detectors with *plain*, *non-hierarchical* backbone

- <u>Goal</u>: Decouple detection-specific designs from general backbone
- How: Two Minimal adaptations on ViT for detection

plain backbone, w/ simple feature pyramid

Simple Feature Pyramid

Feature pyramid on a plain backbone

- FPN-like
- Simple feature pyramid (w/o FPN)

hierarchical backbone, w/ FPN

Strongest feature is from last feature map

Simple feature pyramid is sufficient

	ViT-B		ViT-L	
pyramid design	AP^{box}	AP ^{mask}	AP^{box}	AP ^{mask}
no feature pyramid	47.8	42.5	51.2	45.4
(a) FPN, 4-stage	50.3 (+2.5)	44.9 (+2.4)	54.4 (+3.2)	48.4 (+3.0)
(b) FPN, last-map	50.9 (+3.1)	45.3 (+2.8)	54.6 (+3.4)	48.5 (+3.1)
(c) simple feature pyramid	51.2 (+3.4)	45.5 (+3.0)	54.6 (+3.4)	48.6 (+3.2)

Backbone adaptation

Self-attention has high complexity for high-resolution Ours: Window attention + a few propagation blocks

- Simple non-overlapping window attention
- Propagation blocks
 - Global propagation
- Convolution propagation

Backbone adaptation schemes

prop. strategy	APbox	AP ^{mask}
none	52.9	47.2
4 global blocks	54.6 (+1.7)	48.6 (+1.4)
4 conv blocks	54.8 (+1.9)	48.8 (+1.6)
shifted win.	54.0 (+1.1)	47.9 (+0.7)

Global/Conv propagation is

better than "shifted win"

All propagation strategies
work

Convolution block types

prop. conv

bottleneck

basic

AP^{mask}

47.2

54.3 (+1.4) 48.3 (+1.1)

54.8 (+1.9) **48.8** (+1.6)

54.6 (+1.7) 48.6 (+1.4)

Practical performance

prop. strategy	APbox	# params	train mem	test time
none	52.9	$1.00 \times (331M)$	$1.00 \times (14.6G)$	1.00× (88ms)
4 conv (bottleneck)	54.6 (+1.7)	1.04×	1.05×	1.04×
4 global	54.6 (+1.7)	$1.00 \times$	$1.39 \times$	$1.16 \times$
24 global	55.1 (+2.2)	$1.00 \times$	$3.34 \times^{\dagger}$	$1.86 \times$

Conv prop.: <5% increase for mem/time and 4% more #param

Global prop. : No increase for model size

Results

Pre-training Strategies for ViTs

	ViT-B		ViT-L	
pre-train	AP ^{box}	AP ^{mask}	AP ^{box}	AP ^{mask}
none (random init.)	48.1	42.6	50.0	44.2
IN-1K, supervised	47.6 (-0.5)	42.4 (-0.2)	49.6 (-0.4)	43.8 (-0.4)
IN-21K, supervised	47.8 (-0.3)	42.6 (+0.0)	50.6 (+0.6)	44.8 (+0.6)
IN-1K, MAE	51.2 (+3.1)	45.5 (+2.9)	54.6 (+4.6)	48.6 (+4.4)

ViTDet enables *easy use* of powerful **MAE** pre-training

- ViTDet has better scale behavior
 - ViT-H is +2.6 better than MViTv2-H