## **Application Gabaix Landier 2008**

## Julie Lenoir - Sciences Po Paris Alfred Galichon - NYU

**Repo**: Dropbox/JulieLenoirScPo/\_GabaixLandier/Application\_Gabaix-Landier07

Readme: /ReadMe.txt

Data generator (all years): Data/dataconst.do

Data: Data/data\_Gabaix\_Landier.csv

R code (solving the model): Gabaix\_Landier\_app.R

Julia code (solving the model): Gabaix\_Landier\_app.jl

## Method

The size of the firm is expressed as:

(7) 
$$S(n) = An^{-\alpha} \Leftrightarrow \log(S(n)) = \log(A) - \alpha \log(n)$$

It is decreasing in n: the 1st firm is the biggest, the 500th firm is the smallest.

The wage is obtained by:

(13) 
$$w(n) = \frac{A^{\gamma}BC}{\alpha\gamma - \beta}n^{-(\alpha\gamma - \beta)}$$

It should also decreasing in n: the 1st CEO being the most competent, we expect him to be matched with the biggest firm. We therefore in a case of Positive Assortative Matching.

To find the optimal wages, we need to estimate A to be able to compute the wage. The other variables are calibrated (see Gabaix Landier (2007) IV.A.

## **Application**

The model is calibrated as following:

$$\gamma = 1$$

$$\alpha = 1$$

$$\beta = \frac{2}{3}$$

$$B = 1$$

$$C = 2.8 \times 10^{-6}$$

Using OLS on equation (7), we obtain<sup>1</sup>:

$$\widehat{\log(A)} = 15.514 \Leftrightarrow \widehat{A} = 5,465,685$$



Using that, we are able to compute w(n). See above<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup>Note that with the regression we also obtain  $\hat{\alpha} = -0.982167$  which is consistent with the Zipf's Law the authors make use of.

<sup>&</sup>lt;sup>2</sup>Graph obtained with Gabaix\_Landier\_app.jl