Questão 10

Introdução

Em uma amostra de 71 coelhos europeus da espécia Oryctolagus Cuniculuse, se mediu o peso da lente ocular seca (em mg) e a idade do animal (em dias). Temos como objetivo explicar o peso da lente em função da idade. Para isso ajustaremos dois modelos, onde a variável resposta é o peso da lente a a explicativa a ideia. Ajustaremos um modelo normal não linear homocedástico e iremos comparar seu resultado com o ajuste de um modelo linear normal homocedástico com transformação da variável explicativa. Para mais informação sobre o ajuste e diagnóstico desse modelos veja Azevedo (2019). Todas as análises serão feitas com auxílio computacional do R.

Análise Descritiva

Pelo gráfico de dispersão, figura 1, podemos observar um relação positiva entre o peso e a idade. Está relação porém aparente não ser linear, sendo melhor ajustada por uma função logarítmica ou por uma razão.

Análise Inferencial

O modelo linear foi ajustado segundo o métodos dos mínimos quadrados ordinários e o modelo não linear foi ajusta segundo o método interativo de Gauss-Newton. Seja Y_i o peso da lente ocular do i-ésimo coelhos temos dois modelos.

Modelo linear:

$$Y_i = \beta_0 + \beta_1 log x_i + \varepsilon_i$$

Onde ε_i é a parte aleatória, x_i é a idade do i-ésimo coelho, β_0 é o peso esperado da lente ocular do coelho quando a idade é igual a 1 e β_1 é o incremente esperado no peso quando $log x_i$ aumenta em uma unidade. Porém esse modelo é problemático quando temos $x_i \leq 1$, resultando em valores negativos do peso.

• Modelo linear:

$$Y_i = \frac{\phi_0 * x_i}{\phi_1 + x_i} + \varepsilon_i$$

Onde ε_i é a parte aleatória, x_i é a idade do i-ésimo coelho, porém por causa da forma da equação perdemos a interpretação dos parâmetros ϕ_0 e ϕ_1 .

Os resultados dos ajustes dos modelos podem ser vistos nas tabelas 1 e 2. Todos os parâmetros foram considerados significativos. Como notamos o modelo linear com transformação na variável apresenta problemas para valores pequeno de x_i

Tabela 1: Estimativa para os parâmetros do modelo não linear

Termo	Estimativa	Erro Padrão	IC (95%)	Estatística t	p-valor
$\phi_0 \\ \phi_1$	295,746 168,382		[286,341 ; 305,152] [154,623 ; 182,14]	- ,	< 0.001 < 0.001

Figura 1: Gráfico de dispersão do peso pela idade.

Tabela 2: Estimativa para os parâmetros do modelo linear com transformação.

Termo	Estimativa	Erro Padrão	IC (95%)	Estatística t	p-valor
β_0	-169,137	6,851	[-182,565 ; -155,71]	-24,689	< 0.001
β_1	62,167	1,327	[59,567 ; 64,768]	46,854	< 0.001

Como podemos observar pela figura 2 o modelo não linear pareceu se ajustar melhor aos dados. Pela análises de resíduos nas figuras 3 e 4 as suposições de normalidade dos dados e de homoscedasticidade não parecem corretas. No gráfico dos resíduos pelos valores ajustados vemos um aumento na variância, que indica heterocedasticidade. Os gráficos quantis-quantis e histogramas dos resíduos mostram uma assimetria, que indica não normalidade. Porém no quesito de normalidade o modelo não linear se aproxima muito mais de uma normal que o linear. Para as medidas de ajusto do modelo, vistas na tabela 3, o modelo não linear resultou em melhores valores, que indica um melhor ajuste.

Conclusão

O modelo não linear quebrou algumas suposições mas se ajustou melhor aos dados que a alternativa linear. Uma sugestão seria ajustar um modelo não normal, com algum distribuição que comportasse melhor essa variância. A partir desse modelo podemo concluir que existe uma relação positiva entre o peso da lente ocular do coelho e sua idade. Porém ela não é linear e conforme o coelho envelhece a variação na idade resulta em uma menor variação no peso.

Figura 2: Gráfico de dispersão do peso pela idade com os valores preditos. Modelo linear em azul e não linear em vermelho

Figura 3: Gráfico de resíduos para o modelo não linear

Figura 4: Gráfico de resíduos para o modelo linear

Tabela 3: Medidas de comparação do modelo.

	Linear	Não Linear
AIC	552,0755	506,8978
BIC	558,8635	513,6858
AICc	552,2520	507,0743
SABIC	548,3003	503,1226
HQCIC	551,8751	506,6974
-2log.lik	546,0755	500,8978

Referências

Azevedo, C. L. N (2019). Notas de aula sobre Análise de regressão, http://www.ime.unicamp.br/~cnaber/Material_ME613_1S_ 2019.htm

Paula, G. A. (2013). Modelos de regressão com apoio computacional, versão pré-eliminar, https://www.ime.usp.br/~giapaula/texto_2013.pdf