TUTORIAL NINE

Memory Organization (Part 2)

- 1. Considering a computer system with a 10-bit logical address. Translate the logical address 1000011011 to the corresponding physical address for the following two cases:
 - a) Assuming paging is used, the page size is 128 bytes and the page table is as given in Figure Q4a.
 - b) Assuming segmentation is used, the maximum segment size that the system can support is 256 bytes, and the segment table is as given in Figure Q4b.

01011
00010
00010
10101
01001
01100
11010
00110

0	00010000	010000000000
1	00001000	100000000000
2	00100000	010011010000
3	00011000	100001100000

Figure Q1a

Figure Q1b

- 2. A paged memory system uses the page size of 1024 bytes. Size of a page table entry is 4 bytes and the logical address space is 2³⁰ bytes.
 - a) What is the size of the page table if single level of paging is used?
 - b) What is the minimum number of levels of page tables needed in this system to ensure that the outmost page table will fit within a single page frame?
 - c) Draw an address translation diagram to show how logical address translation is performed.

Virtual Memory (Part 1)

3. A computer has four page frames. The time of loading, time of last access, and the R bit for each page are as shown below (the times are in clock ticks):

PAGE	LOADED	LAST ACCESS.	Ь
FAGL	LOADED	LAST ACCESS.	<u>LZ</u>
0	126	279	0
1	230	260	0
2	120	272	1
3	160	280	1

- a) Which page will FIFO replace?
- b) Which page will second chance replace?
- c) Which page will LRU replace?

SC2005 Operating Systems

4. For each of the page replacement policies listed below, calculate the number of page faults encountered when referencing the following pages:

 $0\,1\,6\,0\,3\,4\,0\,1\,0\,3\,4\,6\,3\,4$

Assume the availability of 4 empty page frames.

- a) FIFO
- b) CLOCK
- c) LRU