数学分析 II 习题课讲义 (2025 春)

龚诚欣

gongchengxin@pku.edu.cn

2025年3月6日

目录

1	定积分的基本概念与可积性	2
	1.1 问题	
	1.2 解答	2
	定积分的性质与计算	4
	2.1 问题	
	2.2 解答	4
3	定积分中值定理, 定积分的应用 (1)	6
	3.1 问题	
	3.2 解答	7
4	致谢····································	9

1 定积分的基本概念与可积性

1.1 问题

- 1. $\lim_{n \to +\infty} \frac{a_n}{n^{\alpha}} = 1, \alpha > 0, \ \ \ \ \ \lim_{n \to +\infty} \frac{1}{n^{1+\alpha}} (a_1 + a_2 + \dots + a_n).$
- 2. 设函数 f(x) 在区间 [a,b] 上有界, 试证明 $f(x) \in R[a,b]$ 的充要条件是: $\forall \varepsilon > 0$, $\exists [a,b]$ 上满足以下条件的连续函数 g(x) 和 h(x): (1) $g(x) \leq f(x) \leq h(x)$, $\forall x \in [a,b]$; (2) $\int_{a}^{b} [h(x) g(x)] dx < \varepsilon$.
- 3. 函数 $g(x) \in R[a,b], f(u) \in C[A,B]$, 这里 A,B 分别是 g(x) 在区间 [a,b] 的上下确界. 证明 $f(g(x)) \in R[a,b]$.
- 4. 函数 $f(x) \in R[a, b]$, 证明存在点 $x_0 \in (a, b)$ 使得 f(x) 在 x_0 处连续.
- 5. 函数 $f(x) \in R[a,b]$, 且 $\forall x \in [a,b]$ 有 f(x) > 0. 证明 $\int_a^b f(x) dx > 0$.
- 6. 函数 f(x) 在 \mathbb{R} 上有定义,且在任何有限闭区间上可积. 证明对于任意的 [a,b], $\lim_{h\to 0}\int_a^b [f(x+h)-f(x)]\mathrm{d}x=0$.
- 7. (Hölder 不等式). 非负函数 $f(x), g(x) \in R[a, b], p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 证明 $\int_a^b f(x)g(x) dx \le \left(\int_a^b f^p(x)\right)^{\frac{1}{p}} \left(\int_a^b g^q(x)\right)^{\frac{1}{q}}$. (编者注: 本题实际上是 $||f||_p ||g||_q \ge ||fg||_1$.)

[一个简单应用, 留作思考题] $0 < q \le p \le s \le \infty$, 那么存在 $\theta \in [0,1]$ 使得 $\frac{1}{p} = \frac{\theta}{q} + \frac{1-\theta}{s}$. 证明 $\|f\|_p \le \|f\|_q^{\theta} \|f\|_s^{1-\theta}$.

8. (Minkowski 不等式). 同上题条件, 证明 $\left(\int_{a}^{b} (f+g)^{p}(x) dx\right)^{\frac{1}{p}} \leq \left(\int_{a}^{b} f^{p}(x) dx\right)^{\frac{1}{p}} + \left(\int_{a}^{b} g^{p}(x) dx\right)^{\frac{1}{p}}$. (编者注: 本题实际上是 $||f||_{p} + ||g||_{p} \geq ||f+g||_{p}$, 这表明 L_{p} 空间是赋范线性空间.)

■ 自由选讲.

- 9. f(x) 在 [a,b] 的每一点处的极限都是 0, 证明 $f(x) \in R[a,b]$ 且 $\int_{a}^{b} f(x) dx = 0$.
- 10. 已知 (0,1) 上的单调函数 f(x) 满足 $\lim_{n\to+\infty}\sum_{k=1}^{n-1}\frac{1}{n}f\left(\frac{k}{n}\right)$ 存在,问是否有 $f(x)\in R[0,1]$?
- 11. 计算极限 $\lim_{n \to +\infty} \frac{[1^{\alpha} + 3^{\alpha} + \dots + (2n+1)^{\alpha}]^{\beta+1}}{[2^{\beta} + 4^{\beta} + \dots + (2n)^{\beta}]^{\alpha+1}}.$
- 12. $n \in \mathbb{N}_+, f(x) \in C[a,b], \int_a^b x^k f(x) dx = 0, k = 0, 1, \dots, n$. 证明 f(x) 在 (a,b) 内至少有 n+1 个零点.

1.2 解答

1.
$$\forall \varepsilon > 0, \exists N, \forall n > N, n^{\alpha}(1 - \varepsilon) < a_n < n^{\alpha}(1 + \varepsilon)$$
. 从而当 n 足够大时, $\frac{1}{n^{1+\alpha}}(1^{\alpha} + 2^{\alpha} + \dots + N^{\alpha}) < \varepsilon, \frac{1}{n^{1+\alpha}}(a_1 + a_2 + \dots + a_n)$

$$\cdots + a_N) < \varepsilon, \left| \frac{1}{n^{1+\alpha}} [(a_{N+1} - (N+1)^{\alpha}) + \cdots + (a_n - n^{\alpha})] \right| \le \frac{\varepsilon}{n^{1+\alpha}} [(N+1)^{\alpha} + \cdots + n^{\alpha}] \le \frac{\varepsilon}{n^{1+\alpha}} \sum_{i=1}^n i^{\alpha} = \frac{\varepsilon}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^{\alpha} \le \frac{\varepsilon}{n^{1+\alpha}} \sum_{i=1}^n (a_{N+1} - (N+1)^{\alpha}) + \cdots + a_{N-1} \sum_$$

$$\varepsilon \int_0^1 x^\alpha \mathrm{d}x + \varepsilon = \frac{\varepsilon}{\alpha + 1} + \varepsilon \le 2\varepsilon. \ \ \dot{\boxtimes} \hat{\Xi} \hat{\mathsf{m}} \hat{\mathsf{f}} \left| \frac{1}{n^{1 + \alpha}} \left(\sum_{i = 1}^n a_i - \sum_{i = 1}^n i^\alpha \right) \right| \le 4\varepsilon \\ \Rightarrow \ \ \bar{\mathsf{m}} \hat{\mathsf{M}} \hat{\mathsf{R}} = \lim_{n \to +\infty} \frac{1}{n^{1 + \alpha}} \sum_{i = 1}^n i^\alpha = \frac{1}{\alpha + 1}.$$

2. 必要性:
$$f(x) \in R[a,b] \Rightarrow \forall \varepsilon > 0, \exists$$
 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \omega_i(x_i - x_{i-1}) < \frac{\varepsilon}{2} \Rightarrow \exists$ 阶梯函数

$$s_1(x), s_2(x)$$
 满足 $s_1(x) \le f(x) \le s_2(x)$ 且 $\int_a^b [s_2(x) - s_1(x)] dx < \frac{\varepsilon}{2} \Rightarrow \exists$ 连续函数 $g(x), h(x)$ 满足 $g(x) \le f(x) \le h(x)$ 且 $\int_a^b [h(x) - g(x)] < \varepsilon$.

充分性:
$$g(x)$$
 连续, $\int_a^b [h(x) - g(x)] dx < \frac{\varepsilon}{4} \Rightarrow \exists$ 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{i=1}^n \sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\}(x_i - x_i)$

$$|x_{i-1}| < \frac{\varepsilon}{2}$$
 且 $\sum_{i=1}^n w_i^g(x_i - x_{i-1}) < \frac{\varepsilon}{2}$. 在此分割下, $\sum_{i=1}^n w_i^f(x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_{i-1}, x_i]} g(x) \right] (x_i - x_{i-1}) \le \sum_{i=1}^n \left[\sup_{x \in [x_{i-1}, x_i]} h(x) - \inf_{x \in [x_i, x_i]} g(x) \right] (x_i - x_{i-1})$

$$\sum_{i=1}^{n} \left[\sup_{x \in [x_{i-1}, x_i]} \{h(x) - g(x)\} + w_i^g \right] (x_i - x_{i-1}) \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

3. 用 Lebesgue 定理显然. 如不用 Lebesgue 定理, 则 $\forall \delta > 0, \exists \tau > 0$ s.t. $\forall |x - x'| < \tau, |f(x) - f(x')| < \delta$. 从而 $\forall \varepsilon > 0$, \exists 分割 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ s.t. $\sum_{w^g > \tau} (x_i - x_{i-1}) < \varepsilon$. 因为 $\{[x_{i-1}, x_i] : w_i^{f \circ g} > \delta\} \subset \{[x_{i-1}, x_i] : w_i^g > \tau\}$, 从

而
$$\sum_{w_i^{f \circ g} > \delta} (x_i - x_{i-1}) \le \sum_{w_i^g > \tau} (x_i - x_{i-1}) < \varepsilon, \, \mathbb{P} f \circ g \, 可积.$$

4. 由 $f(x) \in R[a,b]$ 知存在 $[a_1,b_1] \subset (a,b)$,使得 $w^f_{[a_1,b_1]} < 1$. 同样的道理,由 $f(x) \in R[a_1,b_1]$ 知存在 $[a_2,b_2] \subset (a_1,b_1)$ 使得 $w^f_{[a_2,b_2]} < \frac{1}{2}$. 依此类推,存在一系列闭区间套满足于 $w^f_{[a_n,b_n]} < \frac{1}{n}$,只需取 $x_0 \in \cap_{n=1}^{+\infty} [a_n,b_n]$ 即可.

5. 由 4 题知存在连续点 $x_0 \in (a,b)$, 因此 $\exists \delta > 0$ s.t. $\forall x \in [x_0 - \delta, x_0 + \delta] \subset [a,b]$, $f(x) > \frac{f(x_0)}{2}$. 从而 $\int_a^b f(x) dx \ge \int_{x_0 - \delta}^{x_0 + \delta} f(x) dx \ge f(x_0) \delta > 0$.

6. $\forall \varepsilon > 0$,存在连续函数 g(x) 满足 $\int_{a-1}^{b+1} |f(x) - g(x)| dx < \frac{\varepsilon}{3}$. 因此

$$\begin{split} \left| \int_{a}^{b} [f(x+h) - f(x)] \mathrm{d}x \right| &\leq \left| \int_{a}^{b} [f(x+h) - g(x+h)] \mathrm{d}x \right| + \left| \int_{a}^{b} [g(x+h) - g(x)] \mathrm{d}x \right| + \left| \int_{a}^{b} [g(x) - f(x)] \mathrm{d}x \right| \\ &\leq 2 \int_{a-1}^{b+1} |f(x) - g(x)| \mathrm{d}x + \int_{a}^{b} |g(x+h) - g(x)| \mathrm{d}x. \end{split}$$

由一致连续性知 $\exists H>0$ s.t. $\forall x,x'\in[a-1,b+1], |x-x'|< H, |g(x)-g(x')|<\frac{\varepsilon}{3(b-a)}$. 取 h< H 知 RHS $<\varepsilon$. 这意味着原极限为 0.

7. WLOG $\left(\int_a^b f^p(x) dx\right)^{\frac{1}{p}} = \left(\int_a^b g^q(x) dx\right)^{\frac{1}{q}} = 1$, 则原命题的结论可改写为 $\int_a^b f(x)g(x) dx \le 1$. 由 $\ln x$ 的凹性,我们有 $\alpha \ln a + (1-\alpha) \ln b \le \ln(\alpha a + (1-\alpha)b) \Leftrightarrow a^{\alpha}b^{1-\alpha} \le \alpha a + (1-\alpha)b$. 令 $\alpha = \frac{1}{p}, 1-\alpha = \frac{1}{a}, a = x^p, b = y^q \Rightarrow xy \le 1$

 $\frac{x^p}{p} + \frac{y^q}{q} \Rightarrow \int_a^b f(x)g(x)\mathrm{d}x \le \int_a^b \left(\frac{f(x)^p}{p} + \frac{g(x)^q}{q}\right)\mathrm{d}x = \frac{1}{p} + \frac{1}{q} = 1.$

(编者注:本题也可将积分离散化后使用离散版本的 Hölder 不等式.)

8. 由 Hölder 不等式,
$$\int_{a}^{b} (f+g)^{p} dx = \int_{a}^{b} (f+g)^{p-1} f dx + \int_{a}^{b} (f+g)^{p-1} g dx \le \left(\int_{a}^{b} (f+g)^{(p-1)q} dx \right)^{\frac{1}{q}} \left(\int_{a}^{b} f^{p} dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} (f+g)^{(p-1)q} dx \right)^{\frac{1}{q}} \left(\int_{a}^{b} g^{p} dx \right)^{\frac{1}{p}} = \left(\int_{a}^{b} (f+g)^{p} dx \right)^{\frac{1}{q}} \left(\left(\int_{a}^{b} f^{p} dx \right)^{\frac{1}{p}} + \left(\int_{a}^{b} g^{p} dx \right)^{\frac{1}{p}} \right).$$
 消去 $\left(\int_{a}^{b} (f+g)^{p} dx \right)^{\frac{1}{q}}$

(编者注: 本题也可将积分离散化后使用离散版本的 Minkowski 不等式.)

9. 由聚点原理知有界性,即 $|f(x)| \leq M$. 其次 $\forall \varepsilon > 0$, $\forall x \in [a,b]$, $\exists \delta_x > 0$, s.t. $\omega_{U_0(x,\delta_x)} < \varepsilon$. 开覆盖 $\cup_{x \in [a,b]} (x - \delta_x, x + \delta_x) \supset [a,b]$, 因此存在两两无包含关系的有限子覆盖 $\cup_{i=1}^n (x_i - \delta_i, x_i + \delta_i) \supset [a,b]$. 不妨设 $a \leq x_1 < \dots < x_n \leq b$. 取分割点 $y_0 = a, y_{3i+1} = x_i - \frac{\varepsilon}{4nM}, y_{3i+2} = x_i + \frac{\varepsilon}{4nM}, y_{3i+3} \in (x_i - \delta_i, x_i + \delta_i) \cap (x_{i+1} - \delta_{i+1}, x_i + \delta_{i+1}), y_{3n} = b, i = 1, 2, \dots, n-1$.

对此分割, $\sum_{i=1}^{3n} \omega_i \Delta x_i < \varepsilon(b-a+1),$ 因此有可积性. 由于 $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx \le \sum_{i=1}^{3n} \int_{y_{i-1}}^{y_i} |f(x)| dx \le \varepsilon(b-a+1),$

由 ε 的任意性知 $\int_a^b f(x) dx = 0$.

10. 考虑
$$f(x) = \tan\left(\pi x - \frac{\pi}{2}\right)$$
. $\lim_{n \to +\infty} \sum_{k=1}^{n-1} \frac{1}{n} f\left(\frac{k}{n}\right) = 0$, 但是 $\int_{0}^{1} f(x) dx$ 不存在.

11.
$$\mathbb{R} \vec{\pi} = 2^{\alpha - \beta} \frac{\left[\frac{2}{n} \left(\frac{1}{n}\right)^{\alpha} + \frac{2}{n} \left(\frac{3}{n}\right)^{\alpha} + \dots + \frac{2}{n} \left(\frac{2n+1}{n}\right)^{\alpha}\right]^{\beta+1}}{\left[\frac{2}{n} \left(\frac{2}{n}\right)^{\beta} + \frac{2}{n} \left(\frac{4}{n}\right)^{\beta} + \dots + \frac{2}{n} \left(\frac{2n}{n}\right)^{\beta}\right]^{\alpha+1}} \xrightarrow{\widehat{\mathbb{R}} \mathcal{R} \to \widehat{\mathbb{R}}} 2^{\alpha - \beta} \frac{\left(\int_{0}^{2} x^{\alpha} dx\right)^{\beta+1}}{\left(\int_{0}^{2} x^{\beta} dx\right)^{\alpha+1}} = 2^{\alpha - \beta} \frac{(\beta + 1)^{\alpha+1}}{(\alpha + 1)^{\beta+1}}.$$

12.
$$\int_a^b f(x) dx = 0 \Rightarrow$$
 存在至少 1 个零点, 记为 x_1 . $\int_a^b (x - x_1) f(x) dx = 0 \Rightarrow$ 存在至少 2 个零点, 记另一个为 x_2 . 依此类推, $\int_a^b \left[\prod_{i=1}^n (x - x_i) \right] f(x) dx = 0 \Rightarrow$ 存在至少 $n + 1$ 个零点.

定积分的性质与计算 2

2.1 问题

1. $f(x) \in C[-1,1]$, iEH $\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1-x^2)^n f(x) dx}{\int_{-1}^{1} (1-x^2)^n dx} = f(0)$.

2. (Riemann-Lebesgue 引理). 设函数 f(x), g(x) 在 \mathbb{R} 上有定义且内闭可积, g(x+T)=g(x), 证明

$$\lim_{n \to +\infty} \int_a^b f(x)g(nx) \mathrm{d}x = \int_a^b f(x) \mathrm{d}x \frac{1}{T} \int_0^T g(x) \mathrm{d}x.$$

3. 设函数
$$f(x) \in C^1[a,b]$$
 且 $f(a) = f(b) = 0$,证明: (1) $\int_a^b x f(x) f'(x) dx = -\frac{1}{2} \int_a^b f^2(x) dx$; (2) 若 $\int_a^b f^2(x) dx = 1$, 则 $\int_a^b [f'(x)]^2 dx \int_a^b [x f(x)]^2 dx \ge \frac{1}{4}$.

4. f(x), g(x) 在 [0,1] 上非负连续. (1) 若 $f^2(t) \le 1 + 2 \int_0^t f(s) ds$, 证明 $f(t) \le 1 + t$. (2) 若 $f(t) \le K + \int_0^t f(s) g(s) ds$, 其中 $K \ge 0$ 是常数, 证明 $f(1) \le K \exp\left(\int_0^1 g(s) ds\right)$.

5. 试构造 $f(x) \in D[0,1]$ 但 $f'(x) \notin R[0,1]$ 的例子. 如果额外加上 f'(x) 有界条件呢?

6. 试构造可积函数 f 和连续函数 g 使得 $f \circ g$ 不可积. 如果额外要求 g 是 C^{∞} 函数呢?

7. 设函数 $f(x), g(x) \in R[a, b]$, 记 $\Delta : a = x_0 < x_1 < \dots < x_n = b$ 为 [a, b] 的一个分割, $\lambda(\Delta) = \max_{1 \le i \le n} \{ \Delta x_i = x_i - x_{i-1} \}$.

任取
$$\xi_i, \eta_i \in [x_{i-1}, x_i]$$
, 证明 $\lim_{\lambda(\Delta) \to 0} \sum_{i=1}^n f(\xi_i) g(\eta_i) \Delta x_i = \int_a^b f(x) g(x) dx$.

8.
$$f(x) \in C[a,b]$$
, 且 $\exists \delta > 0, M > 0$, s.t. $\forall [\alpha, \beta] \subset [a,b]$ 成立 $\left| \int_{\alpha}^{\beta} f(x) dx \right| \leq M(\beta - \alpha)^{1+\delta}$. 证明 $f(x) \equiv 0$.

9. f(x) 在 \mathbb{R} 上有定义且内闭可积,且 f(x+y) = f(x) + f(y). 证明 f(x) = xf(1).

10. 求积分
$$I = \int_0^{\frac{\pi}{2}} \sin x \ln \sin x dx$$
.

11. 求积分
$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2 nx}{\sin x} dx$$
, 并求极限 $\lim_{n \to +\infty} \frac{I_n}{\ln n}$.
12. 求积分 $I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$.

12. 求积分
$$I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx$$
.

2.2 解答

1. 往证
$$\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1-x^2)^n [f(x) - f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} = 0.$$

设 $\max_{x \in [-1,1]} |f(x)| \leq M$. 由连续性知 $\forall \varepsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in (-\delta, \delta), \, |f(x) - f(0)| < \varepsilon.$

注意到

$$\frac{\int_{-1}^{1} (1-x^2)^n f(x) dx}{\int_{-1}^{1} (1-x^2)^n dx} = \frac{\int_{-\delta}^{\delta} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} + \frac{\int_{-1}^{-\delta} (1-x^2)^n [f(x)-f(0)] dx}{\int_{-1}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n [f(x)-f(0)] dx}{\int_{\delta}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n [f(x)-f(0)] dx}{\int_{\delta}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n [f(x)-f(0)] dx}{\int_{\delta}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n dx}{\int_{\delta}^{1} (1-x^2)^n dx} + \frac{\int_{\delta}^{1} (1-x^2)^n$$

其中,
$$|I_1| \le \frac{\int_{-\delta}^{\delta} (1 - x^2)^n \varepsilon dx}{\int_{-1}^{1} (1 - x^2)^n dx} \le \varepsilon$$
,

$$|I_2| \le 2M \frac{\int_{-1}^{-\delta} (1-x^2)^n \varepsilon dx}{\int_{-1}^{1} (1-x^2)^n dx} \le 2M \frac{(1-\delta)(1-\delta^2)^n}{\int_{-\frac{\delta}{\delta}}^{\frac{\delta}{2}} (1-x^2)^n dx} \le 2M (1-\delta) \frac{(1-\delta^2)^n}{\delta(1-\frac{\delta^2}{4})^n} = 2M \frac{1-\delta}{\delta} \left(\frac{4-4\delta^2}{4-\delta^2}\right)^n.$$

由于 $\frac{4-4\delta^2}{4-\delta^2}$ < 1, 从而可取足够大的 n 使得 $|I_2|$ < ε . 类似放缩 I_3 . 此时 $|I_1+I_2+I_3|$ < 3ε .

2. WLOG 设
$$\int_0^T g(x) dx = 0$$
, 否则考虑 $h(x) = g(x) - \frac{1}{T} \int_0^T g(x) dx$.

$$\forall \varepsilon > 0,$$
 存在阶梯函数 $s_{\varepsilon}(x) = \begin{cases} C_1 & a = x_0 \leq x < x_1 \\ C_2 & x_1 \leq x < x_2 \\ \dots & \\ C_m & x_{m-1} \leq x \leq x_m = b \end{cases}$ 使得
$$\int_a^b |f(x) - s_{\varepsilon}(x)| \mathrm{d}x < \varepsilon.$$
 设 $M = \sup_{x \in [0,T]} |g(x)|.$ 则

$$\left| \int_{a}^{b} f(x)g(nx) dx \right| = \left| \int_{a}^{b} (f(x) - s_{\varepsilon}(x))g(nx) dx + \int_{a}^{b} s_{\varepsilon}(x)g(nx) dx \right|$$

$$\leq \int_{a}^{b} |f(x) - s_{\varepsilon}(x)|g(nx) dx + \left| \sum_{i=1}^{m} C_{i} \int_{x_{i-1}}^{x_{i}} g(nx) dx \right|$$

$$\leq M\varepsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i} \int_{nx_{i-1}}^{nx_{i}} g(x) dx \leq M\varepsilon + \frac{1}{n} \sum_{i=1}^{m} C_{i} MT.$$

其中最后一个等式利用了 $\int_0^T g(x)\mathrm{d}x = 0, \text{ 这也意味着} \int_c^d g(x)\mathrm{d}x = \int_c^{c+T} g(x)\mathrm{d}x + \int_{c+T}^{c+2T} g(x)\mathrm{d}x + \cdots + \int_{c+kT}^d g(x)\mathrm{d}x$ (设 $c+kT \le d < c+(k+1)T$) $= \int_{c+kT}^d g(x)\mathrm{d}x \le MT,$ 对于 $\forall c,d \in \mathbb{R}.$

选择一个足够大的 n, 使得 $\frac{1}{n}\sum_{i=1}^{m}C_{i}MT<\varepsilon$. 从而 $\left|\int_{a}^{b}f(x)g(nx)\mathrm{d}x\right|\leq (M+1)\varepsilon$. 由极限定义立得结论.

3. (1) 由分部积分,

$$\int_a^b x f(x) f'(x) dx = x f^2(x) \Big|_a^b - \int_a^b f(x) [x f(x)]' dx = - \int_a^b f^2(x) dx - \int_a^b x f(x) f'(x) dx$$

$$\Rightarrow \int_a^b x f(x) f'(x) dx = -\frac{1}{2} \int_a^b f^2(x) dx.$$

(2) 由 Cauchy 不等式立得。

4. (1) 原条件等价于
$$\frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}} \le 1$$
 两边积分 $\int_0^x \frac{f(t)}{\sqrt{1+2\int_0^t f(s)\mathrm{d}s}} \mathrm{d}t \le \int_0^x 1\mathrm{d}t$ 原函数 $\sqrt{1+2\int_0^t f(s)\mathrm{d}s} \Big|_0^x \le x \Rightarrow \sqrt{1+2\int_0^x f(s)\mathrm{d}s} \le 1+x \Rightarrow f(x) \le \sqrt{1+2\int_0^x f(s)\mathrm{d}s} \le 1+x.$
(2) 注意到

$$\left[\int_0^t f(s)g(s)\mathrm{d}s \exp\left(-\int_0^t g(s)\mathrm{d}s\right) \right]' = f(t)g(t) \exp\left(-\int_0^t g(s)\mathrm{d}s\right) - g(t) \int_0^t f(s)g(s)\mathrm{d}s \exp\left(-\int_0^t g(s)\mathrm{d}s\right) \\ \leq Kg(t) \exp\left(-\int_0^t g(s)\mathrm{d}s\right) = \left[K - K \exp\left(-\int_0^t g(s)\mathrm{d}s\right)\right]',$$

两边积分得到

$$\int_0^1 f(s)g(s)\mathrm{d} s \exp\left(-\int_0^1 g(s)\mathrm{d} s\right) \leq K - K \exp\left(-\int_0^1 g(s)\mathrm{d} s\right) \Rightarrow f(1) \leq K + K \int_0^1 f(s)g(s)\mathrm{d} s \leq K \exp\left(\int_0^1 g(s)\mathrm{d} s\right).$$

(请大家在积分时注意从相同起点开始积分, 这里补上常数 K 也是为了保证两边在 t=0 处都取 0. 这个题有微分方程背景, 可以先看懂答案, 再试图理解.)

5. 可以验证
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 $\in D[0,1]$, 但 $f'(x) = \begin{cases} 2x \sin \frac{1}{x^2} - \frac{2}{x} \cos \frac{1}{x^2}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 $[0,1]$ 上无界. 若额外有 $f'(x)$ 有界, 可参考 Volterra's function.

6. 设 \mathcal{C} 是 fat cantor set. 考虑 $f(x) = \begin{cases} 0, & x < 1 \\ 1, & x = 1 \end{cases}$, $g(x) = 1 - \operatorname{dist}(x, \mathcal{C})$, 但 $f(g(x)) = 1_{x \in \mathcal{C}}$ 在正测集 \mathcal{C} 上不连续. 若额外有 $g(x) \in C^{\infty}$, 可使用光滑版本的 Urysohn 引理.

8. 不妨设
$$\exists x_0$$
 s.t. $f(x_0) > 0$. 由连续性, $\exists \kappa > 0$, s.t. $\forall x \in (x_0 - \kappa, x_0 + \kappa), f(x) > \frac{f(x_0)}{2}$. 从而 $\forall [\alpha, \beta] \subset (x_0 - \kappa, x_0 + \kappa),$ 成立 $\left| \int_{\alpha}^{\beta} f(x) dx \right| > \frac{f(x_0)}{2} (\beta - \alpha) > M(\beta - \alpha)^{1+\delta} ($ 最后一个大于号成立只需令 $\beta - \alpha < \left(\frac{f(x_0)}{2M}\right)^{\frac{1}{\delta}}),$ 矛盾.

9. 只需证明对无理数点成立. 考察
$$\alpha \in \mathbb{R} \setminus \mathbb{Q}$$
. 由有理数点的稠密性, $\int_0^\alpha f(x) \mathrm{d}x = \frac{\alpha^2}{2} f(1)$. 由集合 $\{q\alpha: q \in \mathbb{Q}\}$ 的稠密性且 $f(q\alpha) = qf(\alpha)$, $\int_0^\alpha f(x) \mathrm{d}x = f(\alpha) \frac{\alpha}{2}$. 因此 $f(\alpha) \frac{\alpha}{2} = \frac{\alpha^2}{2} f(1) \Rightarrow f(\alpha) = \alpha f(1)$.

10.
$$I = \int_0^{\frac{\pi}{2}} \ln \sin x d(1 - \cos x) \stackrel{\text{分解积分}}{=} (1 - \cos x) \ln \sin x \Big|_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} (1 - \cos x) d(\ln \sin x) = -\int_0^{\frac{\pi}{2}} (1 - \cos x) \frac{\cos x}{\sin x} dx = -\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{1 + \cos x} dx = \int_0^{\frac{\pi}{2}} \left(-\sin x + \frac{\sin x}{1 + \cos x} \right) dx = \left[\cos x - \ln(1 + \cos x) \right] \Big|_0^{\frac{\pi}{2}} = \ln 2 - 1.$$
11. 利用三角函数公式。

$$\begin{split} I_n &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos(2nx)}{2\sin x} \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]\cos 2x + \sin[(2n-2)x]\sin 2x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x](1 - 2\sin^2 x) + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= \int_0^{\frac{\pi}{2}} \frac{1 - \cos[(2n-2)x]}{2\sin x} \mathrm{d}x + \int_0^{\frac{\pi}{2}} \frac{2\sin^2 x \cos[(2n-2)x] + 2\sin[(2n-2)x]\sin x \cos x}{2\sin x} \mathrm{d}x \\ &= I_{n-1} + \int_0^{\frac{\pi}{2}} \sin x \cos[(2n-2)x] + \sin[(2n-2)x]\cos x \mathrm{d}x = I_{n-1} + \int_0^{\frac{\pi}{2}} \sin(2n-1)x \mathrm{d}x \\ &= I_{n-1} - \frac{1}{2n-1} \cos[(2n-1)x] \Big|_0^{\frac{\pi}{2}} = I_{n-1} + \frac{1}{2n-1}. \end{split}$$

曲于
$$I_1 = 1$$
, 因此 $I_n = \sum_{i=1}^n \frac{1}{2i-1}$, 从而 $\lim_{n \to +\infty} \frac{I_n}{\ln n} = \lim_{n \to +\infty} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} - \lim_{n \to +\infty} \frac{1}{2} \frac{\sum_{i=1}^n \frac{1}{i}}{\ln n} = \frac{1}{2}$.
12. $I = \int_{-\frac{\pi}{4}}^0 \frac{\cos^2 x}{1 + e^{-x}} dx + \int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_0^{\frac{\pi}{4}} \frac{\cos^2(-x)}{1 + e^x} dx + \int_0^{\frac{\pi}{4}} \frac{\cos^2 x}{1 + e^{-x}} dx = \int_0^{\frac{\pi}{4}} \cos^2 x dx = \frac{\pi}{8} + \frac{1}{4}$.

3 定积分中值定理, 定积分的应用 (1)

3.1 问题

- 1. 证明对于 $\forall x > 0$, 存在唯一的 ξ_x 使得 $\int_0^x e^{t^2} dt = x e^{\xi_x^2}$ 成立, 并求 $\lim_{x \to +\infty} \frac{\xi_x}{x}$.
- 2. 证明 $\left| \int_{a}^{b} \sin x^{2} dx \right| \leq \frac{1}{a},$ 其中 0 < a < b.
- 3. 函数 $f(x) \in D[0,1]$, 且 $f(1) = 2 \int_0^{\frac{1}{2}} e^{1-x} f(x) dx$. 证明存在 $\xi \in (0,1)$ 使得 $f(\xi) = f'(\xi)$.
- 4. 求由下列曲线所围成的平面图形的面积: (1) $y^2 = x^2(1-x^2)$; (2) $y^2 = x, x^2 + y^2 = 1$ (在第一、四象限的部分).
- 自由选讲.
- 5. f(x) 在 $(0, +\infty)$ 上是凸函数. 证明 $f(x) \in R[0, x], \forall x \in (0, +\infty), 且 <math>F(x) = \frac{1}{x} \int_{0}^{x} f(t) dt$ 也是 $(0, +\infty)$ 上的凸函数.
- 6. $f(x) \in C(\mathbb{R})$, 定义 $g(x) = f(x) \int_0^x f(t) dt$. 证明若 g(x) 单调递减, 则 $f(x) \equiv 0$.
- 7. $f(x) \in R[0,1], 0 < m \le f(x) \le M$, 求证 $\int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \le \frac{(m+M)^2}{4mM}$. (编者注: 本题比较 tricky.) 8. f(x) 在 \mathbb{R} 上有定义且内闭可积, f(x+y) = f(x) + f(y) + xy(x+y), 求 f(x).
- 9. 求积分 $I = \int_{0}^{1} \frac{\ln(1+x)}{1+x^2} dx$.

10. 求积分
$$I = \int_0^{\frac{\pi}{2}} \frac{1}{1 + \tan^{2025} x} dx$$
.

11.
$$f(x)$$
 在 $[a,b]$ 上单调递增, 证明 $\int_a^b x f(x) dx \ge \frac{a+b}{2} \int_a^b f(x) dx$.

12.
$$f(x) \in C[a,b]$$
, 且任意 $g(x) \in C[a,b]$ 满足 $g(a) = g(b) = 0$ 都有 $\int_a^b f(x)g(x)dx = 0$, 证明 $f(x) \equiv 0$.

13. (Dirichlet 判别法). 设
$$f(x)$$
 在 $(a, +\infty)$ 上单调, $\lim_{x \to +\infty} f(x) = 0$. $\forall A \ge a, g(x) \in R[a, A]$ 且 $\left| \int_a^A g(x) dx \right| \le M$ 恒成立. 证明极限 $\lim_{A \to +\infty} \int_a^A f(x)g(x) dx$ 存在.

 J_a 14. 试求由拋物线 $y^2 = 2x$ 与过其焦点的弦所围的图形面积的最小值.

3.2 解答

1. 第一问由定积分第一中值定理和函数 e^{t^2} 的单调性显然. 其次

$$\lim_{x \to +\infty} \frac{\xi_x}{x} = \lim_{x \to +\infty} \frac{\sqrt{\ln \int_0^x e^{t^2} dt - \ln x}}{x} = \sqrt{\lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} dt - \ln x}{x^2}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{\frac{e^{x^2}}{\int_0^x e^{t^2} dt} - \frac{1}{x}}{2x}}$$

$$= \sqrt{\lim_{x \to +\infty} \frac{xe^{x^2} - \int_0^x e^{t^2} dt}{2x^2 \int_0^x e^{t^2} dt}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{2x^2e^{x^2}}{2x^2e^{x^2} + 4x \int_0^x e^{t^2} dt}}$$

$$= \sqrt{\lim_{x \to +\infty} \frac{xe^{x^2}}{xe^{x^2} + 2 \int_0^x e^{t^2} dt}} \stackrel{\text{L'Hospital}}{=} \sqrt{\lim_{x \to +\infty} \frac{(2x^2 + 1)e^{x^2}}{(2x^2 + 3)e^{x^2}}} = 1.$$

$$2. \left| \int_a^b \sin x^2 \mathrm{d}x \right| \stackrel{t=x^2}{=} \left| \int_{a^2}^{b^2} \frac{\sin t}{2\sqrt{t}} \mathrm{d}t \right|. \text{ 由于 } \frac{1}{\sqrt{t}} \text{ 非负单调递减, 因此由定积分第二中值定理, 原积分} = \frac{1}{2a} \left| \int_{a^2}^\xi \sin t \mathrm{d}t \right| \leq \frac{1}{a}.$$

3. 由定积分第一中值定理, $\exists \xi \in [0, \frac{1}{2}]$, s.t. $f(1) = 2 \int_0^{\frac{1}{2}} e^{1-x} f(x) dx = e^{1-\xi} f(\xi)$, 这也意味着对于函数 $g(x) = e^{-x} f(x)$ 成立 $g(1) = g(\xi)$. 由 Rolle 微分中值定理知存在 $g'(\zeta) = 0 \Rightarrow g'(\zeta) = g(\zeta)$.

4. (1)
$$S = 4 \int_0^1 \sqrt{x^2(1-x^2)} dx \stackrel{x=\sin\theta}{=} 4 \int_0^{\frac{\pi}{2}} \sin\theta \cos^2\theta d\theta = -\frac{4\cos^3\theta}{3} \Big|_0^{\frac{\pi}{2}} = \frac{4}{3}.$$

(2) 先解出交点是
$$\left(\frac{-1+\sqrt{5}}{2}, \sqrt{\frac{-1+\sqrt{5}}{2}}\right)$$
, 然后利用原函数直接计算 $S = 2\int_0^{\frac{-1+\sqrt{5}}{2}} \sqrt{x} dx + 2\int_{\frac{-1+\sqrt{5}}{2}}^1 \sqrt{1-x^2} dx = 1\sqrt{\sqrt{5}-1}$

$$\frac{1}{3} \left(\frac{\sqrt{5} - 1}{2} \right)^{\frac{3}{2}} + \frac{\pi}{2} - \arcsin \frac{\sqrt{5} - 1}{2}.$$

5. 凸函数开区间上连续
$$\Rightarrow$$
 闭区间上可积. 由 $F(x) = \frac{1}{x} \int_0^x f(t) dt = \int_0^x f\left(\frac{t}{x} \cdot x\right) d\frac{t}{x} = \int_0^1 f(ux) du \Rightarrow F\left(\sum_{i=1}^n t_i x_i\right) = \int_0^x f(t) dt$

6. 构造
$$G(x) = \frac{1}{2} \left(\int_0^x f(t) dt \right)^2$$
, $G'(x) = g(x)$ 单调递减, $g(0) = 0$. 因此 $G(x)$ 在 $(0, +\infty)$ 上单调递减, 在 $(-\infty, 0)$ 上

单调递增. 又因为
$$G(0)=0, G(x)\geq 0$$
 恒成立 $\Rightarrow G(x)\equiv 0 \Rightarrow \int_0^x f(t)\mathrm{d}t\equiv 0 \Rightarrow f(x)\equiv 0.$

7. 显然有
$$(M - f(x))$$
 $\left(\frac{1}{f(x)} - \frac{1}{m}\right) \le 0$, 因此 $\int_0^1 (M - f(x)) \left(\frac{1}{f(x)} - \frac{1}{m}\right) dx \le 0 \Leftrightarrow M \int_0^1 \frac{1}{f(x)} dx + \frac{1}{m} \int_0^1 f(x) dx \le 0$

$$1 + \frac{M}{m}$$
. 利用均值不等式, LHS $\geq 2\sqrt{\frac{M}{m}}\sqrt{\int_0^1 f(x) dx} \int_0^1 \frac{1}{f(x)} dx \Rightarrow \int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \leq \frac{(m+M)^2}{4mM}$.

8. 等式左右两边对
$$x$$
 积分,得到 $\int_{y}^{x+y} f(t)dt = \int_{0}^{x} f(t)dt + xf(y) + \frac{x^{3}y}{3} + \frac{x^{2}y^{2}}{2}$. 类似有 $\int_{x}^{x+y} f(t)dt + \int_{0}^{y} f(t)dt + \int_{0}^{x} f(t)$

$$yf(x) + \frac{xy^3}{3} + \frac{x^2y^2}{2}$$
. 两式相减得 $xf(y) + \frac{x^3y}{3} = yf(x) + \frac{xy^3}{3}$, 即是 $\frac{f(x)}{x} - \frac{x^2}{3} = \frac{f(y)}{y} - \frac{y^2}{3}$. 从而 $\frac{f(x)}{x} - \frac{x^3}{3} \equiv C \Rightarrow$

 $f(x) = \frac{x^3}{3} + Cx$. 经验证符合题意.

9. 作代换
$$x = \tan t$$
 得 $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt$. 再作代换 $t = \frac{\pi}{4} - t$ 得 $I = \int_0^{\frac{\pi}{4}} \ln\left(1 + \tan\left(\frac{\pi}{4} - t\right)\right) dt = \frac{\pi}{4} \ln 2 - \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt = \frac{\pi}{4} \ln 2 - I \Rightarrow I = \frac{\pi}{8} \ln 2.$

11. f(x) 单调, 并考虑 $g(x) = x - \frac{a+b}{2}$. 由定积分第二中值定理

$$\int_{a}^{b} \left(x - \frac{a+b}{2} \right) f(x) dx = f(a) \int_{a}^{\xi} \left(x - \frac{a+b}{2} \right) dx + f(b) \int_{\xi}^{b} \left(x - \frac{a+b}{2} \right) dx$$

$$= f(a) \int_{a}^{b} \left(x - \frac{a+b}{2} \right) dx + (f(b) - f(a)) \int_{\xi}^{b} \left(x - \frac{a+b}{2} \right) dx = (f(b) - f(a)) \frac{1}{2} (b - \xi) (\xi - a) \ge 0.$$

12. 用反证法. WLOG 设 $f(x_0) > 0$, 由连续性知 $\exists \delta > 0$ s.t. $\forall x \in (x_0 - \delta, x_0 + \delta) \subset [a, b], f(x) > \frac{f(x_0)}{2}$. 从而定义

$$g(x) = \begin{cases} f(x), & x \in [x_0 - \frac{\delta}{2}, x_0 + \frac{\delta}{2}] \\ 0, & x \in [a, x_0 - \delta] \cup [x_0 + \delta, b], \\ \text{linear, otherwise} \end{cases}$$

此时 $\int_{a}^{b} f(x)g(x)dx \ge \int_{x=\delta}^{x_0+\frac{a}{2}} f^2(x)dx > 0$, 矛盾.

$$13. \ \forall \varepsilon > 0, \exists X > a, \text{s.t.} \forall x \geq X, |f(x)| \leq \frac{\varepsilon}{4M}. \ \text{从而} \ \forall A', A'' \geq X, \left| \int_{A'}^{A''} f(x)g(x) \mathrm{d}x \right|^{\frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \left| f(A') \int_{A'}^{\xi} g(x) \mathrm{d}x + f(A'') \int_{\xi}^{A''} g(x) \mathrm{d}x \right| \leq 2M(|f(A')| + |f(A'')|) \leq \varepsilon. \ \text{然后由柯西收敛定理知极限存在.}$$

14. 设弦方程为
$$x-\frac{1}{2}=ky$$
, 与抛物线交点纵坐标为 y_1,y_2 , 则围成区域的面积 $S=\int_{y_1}^{y_2}\left(ky+\frac{1}{2}-\frac{y^2}{2}\right)\mathrm{d}y=\frac{k}{2}(y_2-y_1)(y_2+y_1)+\frac{1}{2}(y_2-y_1)-\frac{1}{6}(y_2-y_1)(y_2^2+y_1y_2+y_1^2)$. 联立直线与抛物线, 由韦达定理知 $y_1+y_2=2k,y_1y_2=-1$. 则 $S=\frac{2}{3}(k^2+1)^{\frac{3}{2}}$. 因此 $k=0$ 时面积最小,为 $\frac{2}{3}$.

补充 (不要求掌握)

等周问题: 长为 L 的曲线何时围成区域面积最大? 答案: 圆 (一年级小学生皆可猜出). 证明: 设 D 为凸区域 (D 中任意两点连线都在 D 内). 设 Γ : $\begin{cases} x = x(s) \\ y = y(s) \end{cases} \in C^1[0,L],$ 此处选

择 Γ 的弧长为参数,则 $x'(s)^2+y'(s)^2=1$,且 D 的面积为 $A=\int_0^L x\mathrm{d}y=\int_0^L x(s)y'(s)\mathrm{d}s$. 设 $C:\begin{cases}x=\varphi(s)=x(s)\\y=\psi(s)\end{cases}$ 是以 O 为中心,R 为半径的圆,此处选择 Γ 的弧长为参数,则 C 的面

$$\int_0^L \sqrt{(x(s)y'(s) - \psi(s)x'(s))^2} \mathrm{d}s \le \int_0^L \sqrt{(x'(s)^2 + y'(s)^2)(x(s)^2 + \psi(s)^2)} \mathrm{d}s = RL. \text{ 因此成立 } 2\sqrt{A}\sqrt{\pi R^2} \le A + \pi R^2 \le RL \Rightarrow A \le \frac{L^2}{4\pi}. \text{ 其中等号成立当且仅当以上每步相等, 尤其是 } (x(s)y'(s) - \psi(s)x'(s))^2 = (x'(s)^2 + y'(s)^2)(x(s)^2 + \psi(s)^2).$$
用右边减去左边得到 $(x(s)x'(s) + \psi(s)y'(s))^2 = 0$. 由于 $x(s)^2 + \psi(s)^2 = R^2$, 两边求导得 $x(s)x'(s) + \psi(s)\psi'(s) = 0 \Rightarrow \psi'(s) = y'(s), \psi(s) = y(s) + y_0, \text{即 } \Gamma \text{ 方程为 } x^2 + (y - y_0)^2 = R^2, \text{ 圆也!}$

4 致谢

感谢北京大学数学科学学院的王冠香教授和刘培东教授, 他们教会了笔者数学分析的基本知识, 他们的课件和讲义也成为了笔者的重要参考. 感谢选修 2025 春数学分析 II 习题课 9 班的全体同学, 他们提供了很多有意思的做法和反馈.