平成29年春 ネットワーク 無線LANにおけるデータの送信

問4 無線 LAN におけるデータの送信(ネットワーク)

(H29 春·FE 午後問 4)

【解答】

[設問1] a-ウ, b-ア

[設問2] c-ア

[設問3] イ

【解説】

無線 LAN は、IEEE 802.11 シリーズとして定義されたデータリンク層の通信プロトコルである。有線 LAN と同様、伝送路を流れるデータはフレームと呼ばれる。

なお、基本情報技術者試験のレベルを越えるが、無線 LAN (IEEE 802.11) のフレームは、管理フレーム、制御フレーム、データフレームの三つに大きく分類され、さらに細分化すると表 A のようになる。

表 A 無線 LAN (IEEE 802.11) の代表的なフレーム

フレームの分類	フレームの種類	説明
管理フレーム	Beacon フレーム	ネットワーク情報を知らせるフレーム
	Association Request フレーム	接続を要求するフレーム
	Association Response フレーム	Association Request に対する応答フレーム
	Disassociation フレーム	通信の切断を行うフレーム
制御フレーム	Ack フレーム	データを正常に受信したことを確認す るフレーム
	Block Ack Request フレーム	確認フレーム(Block Ack)を要求す るフレーム
	Block Ack フレーム	複数のフレームに対する確認フレーム をまとめたもの
データフレーム		データを入れるフレーム

無線 LAN ではアクセス制御方式として CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance; 搬送波感知多重アクセス/衝突回避) 方式を採用している。これはフレームの衝突を検知するのではなく回避する方式で、CSMA/CA 方式には ACK 制御方式と RTS/CTS 制御方式の二つが規格化されている。本間では ACK 制御方式を使った通信について問われている。

なお、RTS/CTS 制御方式とは、データの送信前にデータを送ってもよいかどうかの問合せを行い (Request to Send)、データの送信許可を得て (Clear to Send)、データを送信する制御方式である。

[設問1]

データフレーム送信の大まかな流れは、問題文の(1)~(7)と図1に示されている。

・空欄 a:問題文に記述されている条件を次に示す。

一つのデータフレームに格納できる最大データ長:1,460 バイト

データフレーム送信時間:248マイクロ秒

ACK フレームの送信時間:24マイクロ秒

W1 の平均:101.5 マイクロ秒

W2:16マイクロ秒

これらの条件の下、データ送信速度の最大を計算する。なお、「物理層の通信速度が 54M ビット/秒」と与えられているが、ここでは使用しない。

一つのデータフレームに格納できるデータ量は次のようになる。

1,460 バイト=1,460×8=11,680 ビット

(3)~(6)に掛かる時間は次のようになる。

248+24+101.5+16=389.5 マイクロ秒

データ送信速度=データ量÷掛かる時間 として計算する。

11,680÷389.5=29.987……(ビット/マイクロ秒)

29.987×1,000,000(ビット/秒)=29.987(M ビット/秒)

=30(M ビット/秒)

したがって, (ウ) の「30」が入る。

・空欄 b:「①機器 A だけが機器 C に対して 1M バイトのデータ送信処理を行ったときと、②機器 A と機器 B のそれぞれが機器 C に対して、それぞれ 1M バイトのデータの送信処理を同時に開始したとき」について、掛かる時間を比較する。①に比べて②では、機器 A もしくは機器 B が機器 C にデータを送信しているときにもう一方の機器は待機する必要がある。このことは、(2)に記述されている。したがって、掛かる時間は、平均的には「①の方が短い」ため、(ア)が入る。

[設問2]

無線 LAN の物理層の通信速度は、機器間の距離や障害物の有無などによって変化する。この場合の通信速度や待機時間の比較に関する空欄を埋める。

- ・空欄 c1:「機器 A と機器 C の間の物理層の通信速度は 54M ビット/秒のまま」で、「機器 B と機器 C の間の物理層の通信速度が 54M ビット/秒から 24M ビット/秒になった」ときについて考える。
 - ア:「機器 A が,機器 B によるフレーム送信終了まで待機する時間が長くなる」 という記述は正しい。
 - イ:他の機器がフレームを送信していない場合に W1 だけ待機するため、「待機する回数」は変わらない。誤った記述である。
 - ウ:機器Aと機器Cの間の物理層の通信速度は,機器Bと機器Cの間の物理

層の通信速度より相対的に速いものの,機器 B と機器 C の間の物理層の通信速度が遅くなっただけである。このため「機器 B と機器 C の間の物理層の通信速度と比べて向上する」という表現があいまいであり,正しい記述という判断はできない。

- エ:機器 B と機器 C の間の物理層の通信速度が遅くなっても、「機器 A と機器 C の間の物理層の通信速度は 54M ビット/秒のままである」ので、正しい記述である。
- オ:問題文には「W1 は W2 を超えるように毎回決められるランダムな値」とある。その平均は機器 B と機器 C の間の物理層の通信速度と無関係であり、機器 B の W1 が長くなることはなく、機器 A の通信が優先されることはな

い。誤った記述である。

- カ:送信されるデータは 1M バイトであり,機器 B と機器 C の間の物理層の通信速度が変化しても送信されるデータの量は 1M バイトで変わらない。正しい記述である。
- ・空欄 c2:機器 A から機器 C へのデータ送信速度の変化が空欄となっている。機器 B と機器 C の間の物理層の通信速度が低下することによって,機器 A がデータ を送信する際の待機時間が長くなり,機器 A から機器 C へのデータ送信速度は「低下する」。

これらをまとめると、(ア)が正しい。

「設間3]

[データ送信速度を向上させる工夫]のうち、伝送効率の向上に寄与するものを選ぶ。

(I): 一つのデータフレームに対して一つの ACK を返していたものを,「複数のデータフレームに対応する一つの ACK を返すことによって, ACK フレームの個数を削減」させ, データフレームをより多く伝送することができるようになるため, 伝送効率は向上する (図 A)。

図A (I)の例

(II):「複数のデータフレームをまとめて送信する」例を図 B に示す。 複数のデータフレームをまとめて送信することによって,(3)W1 待機や(6)W2 待機,ACK フレーム送信の回数を減らすことができ,データフレームに格納され て伝送されるデータ量は多くなる。このため伝送効率は向上する。

図B (Ⅱ)の例

(III):「物理層の通信速度を向上させる」と、設問文にある伝送効率の式(データ送信速度÷物理層の通信速度)の除数が大きくなるため、伝送効率は低下する。

このように、(I) と(II) が伝送効率の向上に寄与するので、(イ) が正しい。