Appendix A

Linear algebra and numerical techniques

A. 1	Matrix	decompositions
	A.1.1	Singular value decomposition
	A.1.2	Eigenvalue decomposition
	A.1.3	QR factorization
	A.1.4	Cholesky factorization
A.2	Linear	least squares
	A.2.1	Total least squares
A.3	Non-li	near least squares
A.4	Direct	sparse matrix techniques
	A.4.1	Variable reordering
A.5	Iterativ	re techniques
	A.5.1	Conjugate gradient
	A.5.2	Preconditioning
	A.5.3	Multigrid

In this appendix, we introduce some elements of linear algebra and numerical techniques that are used elsewhere in the book. We start with some basic decompositions in matrix algebra, including the singular value decomposition (SVD), eigenvalue decompositions, and other matrix decompositions (factorizations). Next, we look at the problem of linear least squares, which can be solved using either the QR decomposition or normal equations. This is followed by non-linear least squares, which arise when the measurement equations are not linear in the unknowns or when robust error functions are used. Such problems require iteration to find a solution. Next, we look at direct solution (factorization) techniques for sparse problems, where the ordering of the variables may have a large influence on the computation and memory requirements. Finally, we discuss iterative techniques for solving large linear (or linearized) least squares problems. Good general references for much of this material include books by Björck (1996), Golub and Van Loan (1996), Trefethen and Bau (1997), Meyer (2000), Nocedal and Wright (2006), Björck and Dahlquist (2010), and Deisenroth, Faisal, and Ong (2020) and the collection of matrix formulas compiled by (Petersen and Pedersen 2012).

A note on vector and matrix indexing. To be consistent with the rest of the book and with the general usage in the computer science and computer vision communities, I adopt a 0-based indexing scheme for vector and matrix element indexing. Please note that most mathematical textbooks and papers use 1-based indexing, so you need to be aware of the differences when you read this book.

A.1 Matrix decompositions

To better understand the structure of matrices and more stably perform operations such as inversion and system solving, a number of decompositions (or factorizations) can be used. In this section, we review singular value decomposition (SVD), eigenvalue decomposition, QR factorization, and Cholesky factorization.

A.1.1 Singular value decomposition

One of the most useful decompositions in matrix algebra is the *singular value decomposition* (SVD), which states that any real-valued $m \times n$ matrix **A** can be written as

$$\mathbf{A}_{m \times n} = \mathbf{U}_{m \times p} \mathbf{\Sigma}_{p \times p} \mathbf{V}_{p \times n}^{T}$$

$$= \begin{bmatrix} \mathbf{u}_{0} & \cdots & \mathbf{u}_{p-1} \end{bmatrix} \begin{bmatrix} \sigma_{0} & & \\ & \ddots & \\ & & \sigma_{p-1} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{0}^{T} \\ \cdots \\ \mathbf{v}_{p-1}^{T} \end{bmatrix},$$
(A.1)

where $p = \min(m, n)$. The matrices **U** and **V** are orthonormal, i.e., $\mathbf{U}^T \mathbf{U} = \mathbf{I}$ and $\mathbf{V}^T \mathbf{V} = \mathbf{I}$, and so are their column vectors,

$$\mathbf{u}_i \cdot \mathbf{u}_j = \mathbf{v}_i \cdot \mathbf{v}_j = \delta_{ij}. \tag{A.2}$$

The singular values are all non-negative and can be ordered in decreasing order

$$\sigma_0 \ge \sigma_1 \ge \dots \ge \sigma_{p-1} \ge 0. \tag{A.3}$$

A geometric intuition for the SVD of a matrix A can be obtained by re-writing $A = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$ in (A.1) as

$$\mathbf{AV} = \mathbf{U}\mathbf{\Sigma}$$
 or $\mathbf{Av}_j = \sigma_j \mathbf{u}_j$. (A.4)

This formula says that the matrix **A** takes any basis vector \mathbf{v}_j and maps it to a direction \mathbf{u}_j with length σ_j , as shown in Figure A.1

If only the first r singular values are positive, the matrix ${\bf A}$ is of $rank \ r$ and the index p in the SVD decomposition (A.1) can be replaced by r. (In other words, we can drop the last p-r columns of ${\bf U}$ and ${\bf V}$.)

An important property of the singular value decomposition of a matrix (also true for the eigenvalue decomposition of a real symmetric non-negative definite matrix) is that if we truncate the expansion

$$\mathbf{A} = \sum_{j=0}^{t} \sigma_j \mathbf{u}_j \mathbf{v}_j^T, \tag{A.5}$$

we obtain the best possible least squares approximation to the original matrix \mathbf{A} . This is used both in eigenface-based face recognition systems (Section 5.2.3) and in the separable approximation of convolution kernels (3.21).

Figure A.1 The action of a matrix \mathbf{A} can be visualized by thinking of the domain as being spanned by a set of orthonormal vectors \mathbf{v}_j , each of which is transformed to a new orthogonal vector \mathbf{u}_j with a length σ_j . When \mathbf{A} is interpreted as a covariance matrix and its eigenvalue decomposition is performed, each of the \mathbf{u}_j axes denote a principal direction (component) and each σ_j denotes one standard deviation along that direction.

A.1.2 Eigenvalue decomposition

If the matrix C is symmetric (m = n), it can be written as an eigenvalue decomposition,

$$\mathbf{C} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{T} = \begin{bmatrix} \mathbf{u}_{0} & \cdots & \mathbf{u}_{n-1} \end{bmatrix} \begin{bmatrix} \lambda_{0} & & \\ & \ddots & \\ & & \lambda_{n-1} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{0}^{T} & \\ & \ddots \\ & & \mathbf{u}_{n-1}^{T} \end{bmatrix}$$
$$= \sum_{i=0}^{n-1} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T}. \tag{A.6}$$

(The eigenvector matrix \mathbf{U} is sometimes written as $\mathbf{\Phi}$ and the eigenvectors \mathbf{u} as ϕ .) In this case, the eigenvalues

$$\lambda_0 \ge \lambda_1 \ge \dots \ge \lambda_{n-1} \tag{A.7}$$

can be both positive and negative.²

A special case of the symmetric matrix \mathbf{C} occurs when it is constructed as the sum of a number of outer products

$$\mathbf{C} = \sum_{i} \mathbf{a}_{i} \mathbf{a}_{i}^{T} = \mathbf{A} \mathbf{A}^{T}, \tag{A.8}$$

which often occurs when solving least squares problems (Appendix A.2), where the matrix $\bf A$ consists of all the $\bf a_i$ column vectors stacked side-by-side. In this case, we are guaranteed that

¹In this appendix, we denote symmetric matrices using C and general rectangular matrices using A.

²Eigenvalue decompositions can be computed for non-symmetric matrices, but the eigenvalues and eigenvectors can have complex entries in that case.

all of the eigenvalues λ_i are non-negative. The associated matrix C is positive semi-definite

$$\mathbf{x}^T \mathbf{C} \mathbf{x} \ge 0, \quad \forall \mathbf{x}. \tag{A.9}$$

If the matrix C is of full rank, the eigenvalues are all positive and the matrix is called *symmetric positive definite* (SPD).

Symmetric positive semi-definite matrices also arise in the statistical analysis of data, as they represent the *covariance* of a set of $\{x_i\}$ points around their mean \bar{x} ,

$$\mathbf{C} = \frac{1}{n} \sum_{i} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T.$$
 (A.10)

In this case, performing the eigenvalue decomposition is known as *principal component analysis* (PCA), because it models the principal directions (and magnitudes) of variation of the point distribution around their mean, as shown in Section 7.3.1, Section 5.2.3 (5.41), and Appendix B.1 (B.10). Figure A.1 shows how the principal components of the covariance matrix \mathbf{C} denote the principal axes \mathbf{u}_j of the uncertainty ellipsoid corresponding to this point distribution and how the $\sigma_j = \sqrt{\lambda_j}$ denote the standard deviations along each axis.

The eigenvalues and eigenvectors of ${\bf C}$ and the singular values and singular vectors of ${\bf A}$ are closely related. Given

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T,\tag{A.11}$$

we get

$$\mathbf{C} = \mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T\mathbf{V}\mathbf{\Sigma}\mathbf{U}^T = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T. \tag{A.12}$$

From this, we see that $\lambda_i = \sigma_i^2$ and that the left singular vectors of **A** are the eigenvectors of **C**.

This relationship gives us an efficient method for computing the eigenvalue decomposition of large matrices that are rank deficient, such as the scatter matrices observed in computing eigenfaces (Section 5.2.3). Observe that the covariance matrix \mathbf{C} in (5.41) is exactly the same as \mathbf{C} in (A.8). Note also that the individual difference-from-mean images $\mathbf{a}_i = \mathbf{x}_i - \bar{\mathbf{x}}$ are long vectors of length P (the number of pixels in the image), while the total number of exemplars N (the number of faces in the training database) is much smaller. Instead of forming $\mathbf{C} = \mathbf{A}\mathbf{A}^T$, which is $P \times P$, we form the matrix

$$\hat{\mathbf{C}} = \mathbf{A}^T \mathbf{A},\tag{A.13}$$

which is $N \times N$. (This involves taking the dot product between every pair of difference images \mathbf{a}_i and \mathbf{a}_j .) The eigenvalues of $\hat{\mathbf{C}}$ are the squared singular values of \mathbf{A} , namely $\mathbf{\Sigma}^2$, and are hence also the eigenvalues of \mathbf{C} . The eigenvectors of $\hat{\mathbf{C}}$ are the right singular vectors

 ${\bf V}$ of ${\bf A}$, from which the desired eigenfaces ${\bf U}$, which are the left singular vectors of ${\bf A}$, can be computed as

$$\mathbf{U} = \mathbf{A}\mathbf{V}\mathbf{\Sigma}^{-1}.\tag{A.14}$$

This final step is essentially computing the eigenfaces as linear combinations of the difference images (Turk and Pentland 1991). If you have access to a high-quality linear algebra package such as LAPACK, routines for efficiently computing a small number of the left singular vectors and singular values of rectangular matrices such as $\bf A$ are usually provided (Appendix C.2). However, if storing all of the images in memory is prohibitive, the construction of $\hat{\bf C}$ in (A.13) can be used instead.

How can eigenvalue and singular value decompositions actually be computed? Notice that an eigenvector is defined by the equation

$$\lambda_i \mathbf{u}_i = \mathbf{C} \mathbf{u}_i \quad \text{or} \quad (\lambda_i \mathbf{I} - \mathbf{C}) \mathbf{u}_i = 0.$$
 (A.15)

(This can be derived from (A.6) by post-multiplying both sides by \mathbf{u}_i .) Because the latter equation is *homogeneous*, i.e., it has a zero right-hand-side, it can only have a non-zero (non-trivial) solution for \mathbf{u}_i if the system is rank deficient, i.e.,

$$|(\lambda \mathbf{I} - \mathbf{C})| = 0. \tag{A.16}$$

Evaluating this determinant yields a *characteristic* polynomial equation in λ , which can be solved for small problems, e.g., 2×2 or 3×3 matrices, in closed form.

For larger matrices, iterative algorithms that first reduce the matrix C to a real symmetric tridiagonal form using orthogonal transforms and then perform QR iterations are normally used (Golub and Van Loan 1996; Trefethen and Bau 1997; Björck and Dahlquist 2010). As these techniques are rather involved, it is best to use a linear algebra package such as LAPACK (Anderson, Bai *et al.* 1999)—see Appendix C.2.

Factorization with missing data requires different kinds of iterative algorithms, which often involve either hallucinating the missing terms or minimizing some weighted reconstruction metric, which is intrinsically much more challenging than regular factorization. This area has been widely studied in computer vision (Shum, Ikeuchi, and Reddy 1995; De la Torre and Black 2003; Huynh, Hartley, and Heyden 2003; Buchanan and Fitzgibbon 2005; Gross, Matthews, and Baker 2006; Torresani, Hertzmann, and Bregler 2008) and is sometimes called *generalized PCA*. However, this term is also sometimes used to denote algebraic subspace clustering techniques, which is the subject of the monograph by Vidal, Ma, and Sastry (2016).

A.1.3 QR factorization

A widely used technique for stably solving poorly conditioned least squares problems (Björck 1996), and the basis of more complex algorithms, such as computing the SVD and eigenvalue decompositions, is the QR factorization,

$$\mathbf{A} = \mathbf{QR},\tag{A.17}$$

where \mathbf{Q} is an *orthonormal* (or *unitary*) matrix $\mathbf{Q}\mathbf{Q}^T = \mathbf{I}$ and \mathbf{R} is upper triangular.³ In computer vision, QR can be used to convert a camera matrix into a rotation matrix and an upper-triangular calibration matrix (11.13) and also in various self-calibration algorithms (Section 11.3.4). The most common algorithms for computing QR decompositions (modified Gram–Schmidt, Householder transformations, and Givens rotations) are described by Golub and Van Loan (1996), Trefethen and Bau (1997), and Björck and Dahlquist (2010) and are also found in LAPACK. Unlike the SVD and eigenvalue decompositions, QR factorization does not require iteration and can be computed exactly in $O(MN^2 + N^3)$ operations, where M is the number of rows and N is the number of columns (for a tall matrix).

A.1.4 Cholesky factorization

Cholesky factorization can be applied to any symmetric positive definite matrix C to convert it into a product of symmetric lower and upper triangular matrices,

$$\mathbf{C} = \mathbf{L}\mathbf{L}^T = \mathbf{R}^T \mathbf{R},\tag{A.18}$$

where \mathbf{L} is a lower-triangular matrix and \mathbf{R} is an upper-triangular matrix. Unlike Gaussian elimination, which may require pivoting (row and column reordering) or may become unstable (sensitive to roundoff errors or reordering), Cholesky factorization remains stable for positive definite matrices, such as those that arise from normal equations in least squares problems (Appendix A.2). Because of the form of (A.18), the matrices \mathbf{L} and \mathbf{R} are sometimes called *matrix square roots*.⁴

The algorithm to compute an upper triangular Cholesky decomposition of \mathbf{C} is a straightforward symmetric generalization of Gaussian elimination and is based on the decomposition

³The term "R" comes from the German name for the lower–upper (LU) decomposition, which is LR for "links" and "rechts" (left and right of the diagonal).

 $^{^4}$ In fact, there exists a whole family of matrix square roots. Any matrix of the form \mathbf{LQ} or \mathbf{QR} , where \mathbf{Q} is a unitary matrix, is a square root of \mathbf{C} .

procedure
$$Cholesky(\mathbf{C}, \mathbf{R})$$
:
$$\mathbf{R} = \mathbf{C}$$
for $i = 0 \dots n-1$

$$\mathbf{for} \ j = i+1 \dots n-1$$

$$\mathbf{R}_{j,j:n-1} = \mathbf{R}_{j,j:n-1} - r_{ij}r_{ii}^{-1}\mathbf{R}_{i,j:n-1}$$

$$\mathbf{R}_{i,i:n-1} = r_{ii}^{-1/2}\mathbf{R}_{i,i:n-1}$$

Algorithm A.1 Cholesky decomposition of the matrix C into its upper triangular form R.

(Björck 1996; Golub and Van Loan 1996)

$$\mathbf{C} = \begin{bmatrix} \gamma & \mathbf{c}^T \\ \mathbf{c} & \mathbf{C}_{11} \end{bmatrix} \tag{A.19}$$

$$= \begin{bmatrix} \gamma^{1/2} & \mathbf{0}^T \\ \mathbf{c} \gamma^{-1/2} & \mathbf{I} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0}^T \\ \mathbf{0} & \mathbf{C}_{11} - \mathbf{c} \gamma^{-1} \mathbf{c}^T \end{bmatrix} \begin{bmatrix} \gamma^{1/2} & \gamma^{-1/2} \mathbf{c}^T \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$
(A.20)

$$=\mathbf{R}_0^T \mathbf{C}_1 \mathbf{R}_0,\tag{A.21}$$

which, through recursion, can be turned into

$$\mathbf{C} = \mathbf{R}_0^T \dots \mathbf{R}_{n-1}^T \mathbf{R}_{n-1} \dots \mathbf{R}_0 = \mathbf{R}^T \mathbf{R}. \tag{A.22}$$

Algorithm A.1 provides a more procedural definition, which can store the upper-triangular matrix \mathbf{R} in the same space as \mathbf{C} , if desired. The total operation count for Cholesky factorization is $O(N^3)$ for a dense matrix but can be significantly lower for sparse matrices with low fill-in (Appendix A.4).

Note that Cholesky decomposition can also be applied to block-structured matrices, where the term γ in (A.19) is now a square block sub-matrix and \mathbf{c} is a rectangular matrix (Golub and Van Loan 1996). The computation of square roots can be avoided by leaving the γ on the diagonal of the middle factor in (A.20), which results in the $\mathbf{C} = \mathbf{LDL}^T$ factorization, where \mathbf{D} is a diagonal matrix. However, as square roots are relatively fast on modern computers, this is not worth the bother and Cholesky factorization is usually preferred.

A.2 Linear least squares

Least squares fitting problems are pervasive in computer vision. For example, the alignment of images based on matching feature points involves the minimization of a squared distance objective function (8.2),

$$E_{LS} = \sum_{i} \|\mathbf{r}_i\|^2 = \sum_{i} \|\mathbf{f}(\mathbf{x}_i; \mathbf{p}) - \mathbf{x}_i'\|^2, \tag{A.23}$$

where

$$\mathbf{r}_i = \mathbf{x}_i' - \mathbf{f}(\mathbf{x}_i; \mathbf{p}) = \hat{\mathbf{x}}_i' - \tilde{\mathbf{x}}_i' \tag{A.24}$$

is the *residual* between the measured location $\hat{\mathbf{x}}_i'$ and its corresponding current *predicted* location $\tilde{\mathbf{x}}_i' = \mathbf{f}(\mathbf{x}_i; \mathbf{p})$. More complex versions of least squares problems, such as large-scale structure from motion (Section 11.4.2), may involve the minimization of functions of thousands of variables. Even problems such as image filtering (Section 3.4.1) and regularization (Section 4.2) may involve the minimization of sums of squared errors.

Figure A.2a shows an example of a simple least squares line fitting problem, where the quantities being estimated are the line equation parameters (m, b). When the sampled vertical values y_i are assumed to be noisy versions of points on the line y = mx + b, the optimal estimates for (m, b) can be found by minimizing the squared vertical residuals

$$E_{\text{VLS}} = \sum_{i} |y_i - (mx_i + b)|^2.$$
 (A.25)

Note that the function being fitted need not itself be linear to use linear least squares. All that is required is that the function be linear in the unknown parameters. For example, polynomial fitting can be written as

$$E_{\text{PLS}} = \sum_{i} |y_i - (\sum_{j=0}^{p} a_j x_i^j)|^2, \tag{A.26}$$

while sinusoid fitting with unknown amplitude A and phase ϕ (but known frequency f) can be written as

$$E_{\text{SLS}} = \sum_{i} |y_i - A\sin(2\pi f x_i + \phi)|^2 = \sum_{i} |y_i - (B\sin 2\pi f x_i + C\cos 2\pi f x_i)|^2, \text{ (A.27)}$$

which is linear in (B, C).

In general, it is more common to denote the unknown parameters using \mathbf{x} and to write the general form of linear least squares as⁵

$$E_{\text{LLS}} = \sum_{i} |\mathbf{a}_{i} \mathbf{x} - b_{i}|^{2} = ||\mathbf{A} \mathbf{x} - \mathbf{b}||^{2}.$$
 (A.28)

⁵Be extra careful in interpreting the variable names here. In the 2D line-fitting example, x is used to denote the horizontal axis, but in the general least squares problem, $\mathbf{x} = (m, b)$ denotes the unknown parameter vector.

Figure A.2 Least squares regression. (a) The line y = mx + b is fitted to the four noisy data points, $\{(x_i, y_i)\}$, denoted by \times , by minimizing the squared vertical residuals between the data points and the line, $\sum_i \|y_i - (mx_i + b)\|^2$. (b) When the measurements $\{(x_i, y_i)\}$ are assumed to have noise in all directions, the sum of orthogonal squared distances to the line $\sum_i \|ax_i + by_i + c\|^2$ is minimized using total least squares.

Expanding the above equation gives us

$$E_{\text{LLS}} = \mathbf{x}^T (\mathbf{A}^T \mathbf{A}) \mathbf{x} - 2\mathbf{x}^T (\mathbf{A}^T \mathbf{b}) + ||\mathbf{b}||^2, \tag{A.29}$$

whose minimum value for x can be found by solving the associated *normal equations* (Björck 1996; Golub and Van Loan 1996)

$$(\mathbf{A}^T \mathbf{A}) \mathbf{x} = \mathbf{A}^T \mathbf{b}. \tag{A.30}$$

The preferred way to solve the normal equations is to use Cholesky factorization. Let

$$\mathbf{C} = \mathbf{A}^T \mathbf{A} = \mathbf{R}^T \mathbf{R},\tag{A.31}$$

where R is the upper-triangular Cholesky factor of the Hessian C, and

$$\mathbf{d} = \mathbf{A}^T \mathbf{b}.\tag{A.32}$$

After factorization, the solution for x can be obtained as

$$\mathbf{R}^T \mathbf{z} = \mathbf{d}, \qquad \mathbf{R} \mathbf{x} = \mathbf{z}, \tag{A.33}$$

which involves the solution of two triangular systems, i.e., forward and backward substitution (Björck 1996).

In cases where the least squares problem is numerically poorly conditioned (which should generally be avoided by adding sufficient regularization or prior knowledge about the parameters (Appendix A.3)), it is possible to use QR factorization or SVD directly on the matrix

A (Björck 1996; Golub and Van Loan 1996; Trefethen and Bau 1997; Nocedal and Wright 2006; Björck and Dahlquist 2010), e.g.,

$$\mathbf{A}\mathbf{x} = \mathbf{Q}\mathbf{R}\mathbf{x} = \mathbf{b} \longrightarrow \mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{b}.$$
 (A.34)

Note that the upper triangular matrices \mathbf{R} produced by the Cholesky factorization of $\mathbf{C} = \mathbf{A}^T \mathbf{A}$ and the QR factorization of \mathbf{A} are the same, but that solving (A.34) is generally more stable (less sensitive to roundoff error) but slower (by a constant factor).

A.2.1 Total least squares

In some problems, e.g., when performing geometric line fitting in 2D images or 3D plane fitting to point cloud data, instead of having measurement error along one particular axis, the measured points have uncertainty in all directions, which is known as the *errors-in-variables* model (Van Huffel and Lemmerling 2002; Matei and Meer 2006). In this case, it makes more sense to minimize a set of homogeneous squared errors of the form

$$E_{\text{TLS}} = \sum_{i} (\mathbf{a}_{i} \mathbf{x})^{2} = \|\mathbf{A}\mathbf{x}\|^{2}, \tag{A.35}$$

which is known as *total least squares* (TLS) (Van Huffel and Vandewalle 1991; Björck 1996; Golub and Van Loan 1996; Van Huffel and Lemmerling 2002).

The above error metric has a trivial minimum solution at $\mathbf{x} = 0$ and is, in fact, homogeneous in \mathbf{x} . For this reason, we augment this minimization problem with the requirement that $\|\mathbf{x}\|^2 = 1$. which results in the eigenvalue problem

$$\mathbf{x} = \arg\min_{\mathbf{x}} \mathbf{x}^T (\mathbf{A}^T \mathbf{A}) \mathbf{x}$$
 such that $\|\mathbf{x}\|^2 = 1$. (A.36)

The value of \mathbf{x} that minimizes this constrained problem is the eigenvector associated with the smallest eigenvalue of $\mathbf{A}^T \mathbf{A}$. This is the same as the last right singular vector of \mathbf{A} , because

$$\mathbf{A} = \mathbf{U}\mathbf{\Sigma}\mathbf{V}^T,\tag{A.37}$$

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^T, \tag{A.38}$$

$$\mathbf{A}^T \mathbf{A} \mathbf{v}_k = \sigma_k^2 \mathbf{v}_k, \tag{A.39}$$

which is minimized by selecting the smallest σ_k value.

Figure A.2b shows a line-fitting problem where, in this case, the measurement errors are assumed to be isotropic in (x, y). The solution for the best line equation ax + by + c = 0 is found by minimizing

$$E_{\text{TLS-2D}} = \sum_{i} (ax_i + by_i + c)^2,$$
 (A.40)

i.e., finding the eigenvector associated with the smallest eigenvalue of

$$\mathbf{C} = \mathbf{A}^T \mathbf{A} = \sum_{i} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix} \begin{bmatrix} x_i & y_i & 1 \end{bmatrix}.$$
 (A.41)

Notice, however, that minimizing $\sum_i (\mathbf{a}_i \mathbf{x})^2$ in (A.35) is only statistically optimal (Appendix B.1) if all of the measured terms in the \mathbf{a}_i , e.g., the $(x_i, y_i, 1)$ measurements, have equal noise. This is definitely not the case in the line-fitting example of Figure A.2b (A.40), as the 1 values are noise-free. To mitigate this, we first subtract the mean x and y values from all the measured points

$$\hat{x}_i = x_i - \bar{x} \tag{A.42}$$

$$\hat{y}_i = y_i - \bar{y} \tag{A.43}$$

and then fit the 2D line equation $a(x - \bar{x}) + b(y - \bar{y}) = 0$ by minimizing

$$E_{\text{TLS-2Dm}} = \sum_{i} (a\hat{x}_i + b\hat{y}_i)^2.$$
 (A.44)

The more general case where each individual measurement component can have different noise level, as is the case in estimating essential and fundamental matrices (Section 11.3), is called the *heteroscedastic* errors-in-variable (HEIV) model and is discussed by Matei and Meer (2006).

A.3 Non-linear least squares

In many vision problems, such as structure from motion, the least squares problem formulated in (A.23) involves functions $\mathbf{f}(\mathbf{x}_i; \mathbf{p})$ that are *not* linear in the unknown parameters \mathbf{p} . This problem is known as *non-linear least squares* or *non-linear regression* (Björck 1996; Madsen, Nielsen, and Tingleff 2004; Nocedal and Wright 2006). It is usually solved by iteratively relinearizing (A.23) around the current estimate of \mathbf{p} using the gradient derivative (Jacobian) $\mathbf{J} = \partial \mathbf{f}/\partial \mathbf{p}$ and computing an incremental improvement $\Delta \mathbf{p}$.

As shown in Equations (8.13–8.17), this results in

$$E_{\text{NLS}}(\Delta \mathbf{p}) = \sum_{i} \|\mathbf{f}(\mathbf{x}_{i}; \mathbf{p} + \Delta \mathbf{p}) - \mathbf{x}'_{i}\|^{2}$$
(A.45)

$$\approx \sum_{i} \|\mathbf{J}(\mathbf{x}_{i}; \mathbf{p}) \Delta \mathbf{p} - \mathbf{r}_{i}\|^{2}, \tag{A.46}$$

⁶Again, be careful with the variable names here. The measurement equation is $\mathbf{a}_i = (x_i, y_i, 1)$ and the unknown parameters are $\mathbf{x} = (a, b, c)$.

where the Jacobians $\mathbf{J}(\mathbf{x}_i; \mathbf{p})$ and residual vectors \mathbf{r}_i play the same role in forming the normal equations as \mathbf{a}_i and b_i in (A.28).

Because the above approximation only holds near a local minimum or for small values of $\Delta \mathbf{p}$, the update $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$ may not always decrease the summed square residual error (A.45). One way to mitigate this problem is to take a smaller step,

$$\mathbf{p} \leftarrow \mathbf{p} + \alpha \Delta \mathbf{p}, \qquad 0 < \alpha \le 1.$$
 (A.47)

A simple way to determine a reasonable value of α is to start with 1 and successively halve the value, which is a simple form of *line search* (Al-Baali and Fletcher 1986; Björck 1996; Nocedal and Wright 2006).

Another approach to ensuring a downhill step in error is to add a diagonal damping term to the approximate Hessian

$$\mathbf{C} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i}) \mathbf{J}(\mathbf{x}_{i}), \tag{A.48}$$

i.e., to solve

$$[\mathbf{C} + \lambda \operatorname{diag}(\mathbf{C})]\Delta \mathbf{p} = \mathbf{d}, \tag{A.49}$$

where

$$\mathbf{d} = \sum_{i} \mathbf{J}^{T}(\mathbf{x}_{i})\mathbf{r}_{i},\tag{A.50}$$

which is called a *damped Gauss–Newton* method. The damping parameter λ is increased if the squared residual is not decreasing as fast as expected, i.e., as predicted by (A.46), and is decreased if the expected decrease is obtained (Madsen, Nielsen, and Tingleff 2004). The combination of the Newton (first-order Taylor series) approximation (A.46) and the adaptive damping parameter λ is commonly known as the Levenberg–Marquardt algorithm (Levenberg 1944; Marquardt 1963) and is an example of more general *trust region methods*, which are discussed in more detail in Björck (1996), Conn, Gould, and Toint (2000), Madsen, Nielsen, and Tingleff (2004), and Nocedal and Wright (2006).

When the initial solution is far away from its quadratic region of convergence around a local minimum, *large residual methods*, e.g., *Newton-type methods*, which add a second-order term to the Taylor series expansion in (A.46), may converge faster. Quasi-Newton methods such as BFGS, which require only gradient evaluations, can also be useful if memory size is an issue. Such techniques are discussed in textbooks and papers on numerical optimization (Toint 1987; Björck 1996; Conn, Gould, and Toint 2000; Nocedal and Wright 2006).

A.4 Direct sparse matrix techniques

Many optimization problems in computer vision, such as bundle adjustment (Szeliski and Kang 1994; Triggs, McLauchlan *et al.* 1999; Hartley and Zisserman 2004; Snavely, Seitz, and Szeliski 2008b; Agarwal, Snavely *et al.* 2009) have Jacobian and (approximate) Hessian matrices that are extremely sparse (Section 11.4.3). For example, Figure 11.16a shows the *bipartite* model typical of structure from motion problems, in which most points are only observed by a subset of the cameras, which results in the sparsity patterns for the Jacobian and Hessian shown in Figure 11.16b–c.

Whenever the Hessian matrix is sparse enough, it is more efficient to use sparse Cholesky factorization instead of regular Cholesky factorization. In such sparse direct techniques, the Hessian matrix **C** and its associated Cholesky factor **R** are stored in *compressed form*, in which the amount of storage is proportional to the number of (potentially) non-zero entries (Björck 1996; Davis 2006).⁷ Algorithms for computing the non-zero elements in **C** and **R** from the sparsity pattern of the Jacobian matrix **J** are given by Björck (1996, Section 6.4), and algorithms for computing the numerical Cholesky and QR decompositions (once the sparsity pattern has been computed and storage allocated) are discussed by Björck (1996, Section 6.5). More recent publications on direct sparse techniques which discuss supernodal and multifrontal algorithms for large sparse systems include Davis (2006) and Davis, Rajamanickam, and Sid-Lakhdar (2016).

A.4.1 Variable reordering

The key to efficiently solving sparse problems using direct (non-iterative) techniques is to determine an efficient *ordering* for the variables, which reduces the amount of *fill-in*, i.e., the number of non-zero entries in **R** that were zero in the original **C** matrix. We have already seen in Section 11.4.3 how storing the more numerous 3D point parameters before the camera parameters and using the Schur complement (11.68) results in a more efficient algorithm. Similarly, sorting parameters by time in video-based reconstruction problems usually results in lower fill-in. Furthermore, any problem whose adjacency graph (the graph corresponding to the sparsity pattern) is a tree can be solved in linear time with an appropriate reordering of the variables (putting all the children before their parents). All of these are examples of good reordering techniques.

⁷For example, you can store a list of (i, j, c_{ij}) triples. One example of such a scheme is *compressed sparse* row (CSR) storage. An alternative storage method called *skyline*, which stores adjacent vertical spans of non-zero elements (Bathe 2007), is sometimes used in finite element analysis. Banded systems such as snakes (7.27) can store just the non-zero band elements (Björck 1996, Section 6.2) and can be solved in $O(nb^2)$, where n is the number of variables and b is the bandwidth.

procedure SparseCholeskySolve(C, d):

- 1. Determine symbolically the structure of C, i.e., the adjacency graph.
- 2. (Optional) Compute a reordering for the variables, taking into account any block structure inherent in the problem.
- 3. Determine the fill-in pattern for \mathbf{R} and allocate the compressed storage for \mathbf{R} as well as storage for the permuted right-hand side $\hat{\mathbf{d}}$.
- 4. Copy the elements of C and d into R and \hat{d} , permuting the values according to the computed ordering.
- 5. Perform the numerical factorization of R using Algorithm A.1.
- 6. Solve the factored system (A.33), i.e.,

$$\mathbf{R}^T \mathbf{z} = \hat{\mathbf{d}}, \qquad \mathbf{R} \mathbf{x} = \mathbf{z}.$$

7. Return the solution x, after undoing the permutation.

Algorithm A.2 Sparse least squares using a sparse Cholesky decomposition of the matrix C.

In the general case of unstructured data, there are many heuristics available to find good reorderings (Björck 1996; Davis 2006).⁸ For general adjacency (sparsity) graphs, *minimum degree orderings* generally produce good results. For planar graphs, which often arise on image or spline grids (Section 9.2.2), *nested dissection*, which recursively splits the graph into two equal halves along a *frontier* (or boundary) of small size, generally works well. Such *domain decomposition* (or *multi-frontal*) techniques also enable the use of parallel processing, as independent sub-graphs can be processed in parallel on separate processors (Davis 2011).

The overall set of steps used to perform the direct solution of sparse least squares problems is summarized in Algorithm A.2, which is a modified version of Algorithm 6.6.1 by Björck (1996, Section 6.6)). If a series of related least squares problems is being solved, as is the case in iterative non-linear least squares (Appendix A.3), steps 1–3 can be performed ahead of time and reused for each new invocation with different \mathbf{C} and \mathbf{d} values. When the problem is block-structured, as is the case in structure from motion where point (structure) variables have dense 3×3 sub-entries in \mathbf{C} and cameras have 6×6 (or larger) entries, the cost of performing

⁸Finding the optimal reordering with minimal fill-in is provably NP-hard.

the reordering computation is small compared to the actual numerical factorization, which can benefit from block-structured matrix operations (Golub and Van Loan 1996). It is also possible to apply sparse reordering and multifrontal techniques to QR factorization (Davis 2011), which may be preferable when the least squares problems are poorly conditioned.

A.5 Iterative techniques

When problems become large, the amount of memory required to store the Hessian matrix C and its factor R, and the amount of time it takes to compute the factorization, can become prohibitively large, especially when there are large amounts of fill-in. This is often the case with image processing problems defined on pixel grids, because, even with the optimal reordering (nested dissection) the amount of fill can still be large.

A preferable approach to solving such linear systems is to use iterative techniques, which compute a series of estimates that converge to the final solution, e.g., by taking a series of downhill steps in an energy function such as (A.29).

A large number of iterative techniques have been developed over the years, including such well-known algorithms as successive overrelaxation and multi-grid. These are described in specialized textbooks on iterative solution techniques (Axelsson 1996; Saad 2003) as well as in more general books on numerical linear algebra and least squares techniques (Björck 1996; Golub and Van Loan 1996; Trefethen and Bau 1997; Nocedal and Wright 2006; Björck and Dahlquist 2010).

A.5.1 Conjugate gradient

The iterative solution technique that often performs best is conjugate gradient descent, which takes a series of downhill steps that are *conjugate* to each other with respect to the \mathbf{C} matrix, i.e., if the \mathbf{u} and \mathbf{v} descent directions satisfy $\mathbf{u}^T \mathbf{C} \mathbf{v} = 0$. In practice, conjugate gradient descent outperforms other kinds of gradient descent algorithm because its convergence rate is proportional to the square root of the *condition number* of \mathbf{C} instead of the condition number itself. Shewchuk (1994) provides a nice introduction to this topic, with clear intuitive explanations of the reasoning behind the conjugate gradient algorithm and its performance.

Algorithm A.3 describes the conjugate gradient algorithm and its related least squares counterpart, which can be used when the original set of least squares linear equations is available in the form of $\mathbf{A}\mathbf{x} = \mathbf{b}$ (A.28). While it is easy to convince yourself that the two

⁹The condition number $\kappa(\mathbf{C})$ is the ratio of the largest and smallest eigenvalues of \mathbf{C} . The actual convergence rate depends on the clustering of the eigenvalues, as discussed in the references cited in this section.

ConjugateGradient($\mathbf{C}, \mathbf{d}, \mathbf{x}_0$)

1.
$$\mathbf{r}_0 = \mathbf{d} - \mathbf{C} \mathbf{x}_0$$

2.
$$\mathbf{p}_0 = \mathbf{r}_0$$

3. **for**
$$k = 0...$$

4.
$$\mathbf{w}_k = \mathbf{C}\mathbf{p}_k$$

5.
$$\alpha_k = \|\mathbf{r}_k\|^2/(\mathbf{p}_k \cdot \mathbf{w}_k)$$

6.
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

7.
$$\mathbf{r}_{k+1} = \mathbf{r}_k - \alpha_k \mathbf{w}_k$$

8.

9.
$$\beta_{k+1} = \|\mathbf{r}_{k+1}\|^2 / \|\mathbf{r}_k\|^2$$

10.
$$\mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \beta_{k+1} \mathbf{p}_k$$

ConjugateGradientLS($\mathbf{A}, \mathbf{b}, \mathbf{x}_0$)

1.
$$\mathbf{q}_0 = \mathbf{b} - \mathbf{A}\mathbf{x}_0, \quad \mathbf{r}_0 = \mathbf{A}^T\mathbf{q}_0$$

2.
$$\mathbf{p}_0 = \mathbf{r}_0$$

3. **for**
$$k = 0...$$

4.
$$\mathbf{v}_k = \mathbf{A}\mathbf{p}_k$$

5.
$$\alpha_k = \|\mathbf{r}_k\|^2 / \|\mathbf{v}_k\|^2$$

6.
$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

7.
$$\mathbf{q}_{k+1} = \mathbf{q}_k - \alpha_k \mathbf{v}_k$$

8.
$$\mathbf{r}_{k+1} = \mathbf{A}^T \mathbf{q}_{k+1}$$

9.
$$\beta_{k+1} = \|\mathbf{r}_{k+1}\|^2 / \|\mathbf{r}_k\|^2$$

10.
$$\mathbf{p}_{k+1} = \mathbf{r}_{k+1} + \beta_{k+1} \mathbf{p}_k$$

Algorithm A.3 Conjugate gradient and conjugate gradient least squares algorithms. The algorithms are described in more detail in the text, but in brief, they choose descent directions \mathbf{p}_k that are conjugate to each other with respect to \mathbf{C} by computing a factor β by which to discount the previous search direction \mathbf{p}_{k-1} . They then find the optimal step size α and take a downhill step by an amount $\alpha_k \mathbf{p}_k$.

forms are mathematically equivalent, the least squares form is preferable if rounding errors start to affect the results because of poor conditioning. It may also be preferable if, due to the sparsity structure of A, multiplies with the original A matrix are faster or more space efficient than multiplies with C.

The conjugate gradient algorithm starts by computing the current residual $\mathbf{r}_0 = \mathbf{d} - \mathbf{C}\mathbf{x}_0$, which is the direction of steepest descent of the energy function (A.28). It sets the original descent direction $\mathbf{p}_0 = \mathbf{r}_0$. Next, it multiplies the descent direction by the quadratic form (Hessian) matrix \mathbf{C} and combines this with the residual to estimate the optimal step size α_k . The solution vector \mathbf{x}_k and the residual vector \mathbf{r}_k are then updated using this step size. (Notice how the least squares variant of the conjugate gradient algorithm splits the multiplication by the $\mathbf{C} = \mathbf{A}^T \mathbf{A}$ matrix across steps 4 and 8.) Finally, a new search direction is calculated by first computing a factor β as the ratio of current to previous residual magnitudes. The

new search direction \mathbf{p}_{k+1} is then set to the residual plus β times the old search direction \mathbf{p}_k , which keeps the directions conjugate with respect to \mathbf{C} .

It turns out that conjugate gradient descent can also be directly applied to non-quadratic energy functions, e.g., those arising from non-linear least squares (Appendix A.3). Instead of explicitly forming a local quadratic approximation C and then computing residuals r_k , non-linear conjugate gradient descent computes the gradient of the energy function E (A.45) directly inside each iteration and uses it to set the search direction (Nocedal and Wright 2006). Because the quadratic approximation to the energy function may not exist or may be inaccurate, line search is often used to determine the step size α_k . Furthermore, to compensate for errors in finding the true function minimum, alternative formulas for β_{k+1} , such as Polak–Ribière,

$$\beta_{k+1} = \frac{\nabla E(\mathbf{x}_{k+1})[\nabla E(\mathbf{x}_{k+1}) - \nabla E(\mathbf{x}_k)]}{\|\nabla E(\mathbf{x}_k)\|^2}$$
(A.51)

are often used (Nocedal and Wright 2006).

A.5.2 Preconditioning

As we mentioned previously, the rate of convergence of the conjugate gradient algorithm is governed in large part by the condition number $\kappa(\mathbf{C})$. Its effectiveness can therefore be increased dramatically by reducing this number, e.g., by rescaling elements in \mathbf{x} , which corresponds to rescaling rows and columns in \mathbf{C} .

In general, preconditioning is usually thought of as a change of basis from the vector \mathbf{x} to a new vector

$$\hat{x} = \mathbf{S}\mathbf{x}.\tag{A.52}$$

The corresponding linear system being solved then becomes

$$\mathbf{A}\mathbf{S}^{-1}\hat{x} = \mathbf{S}^{-1}\mathbf{b} \qquad \text{or} \qquad \hat{\mathbf{A}}\hat{x} = \hat{\mathbf{b}},\tag{A.53}$$

with a corresponding least squares energy (A.29) of the form

$$E_{\text{PLS}} = \hat{x}^T (\mathbf{S}^{-T} \mathbf{C} \mathbf{S}^{-1}) \hat{x} - 2\hat{x}^T (\mathbf{S}^{-T} \mathbf{d}) + ||\hat{\mathbf{b}}||^2.$$
 (A.54)

The actual preconditioned matrix $\hat{\mathbf{C}} = \mathbf{S}^{-T}\mathbf{C}\mathbf{S}^{-1}$ is usually not explicitly computed. Instead, Algorithm A.3 is extended to insert \mathbf{S}^{-T} and \mathbf{S}^{T} operations at the appropriate places (Björck 1996; Golub and Van Loan 1996; Trefethen and Bau 1997; Saad 2003; Nocedal and Wright 2006).

A good preconditioner **S** is easy and cheap to compute, but is also a decent approximation to a square root of **C**, so that $\kappa(\mathbf{S}^{-T}\mathbf{C}\mathbf{S}^{-1})$ is closer to 1. The simplest such choice is the

square root of the diagonal matrix $\mathbf{S} = \mathbf{D}^{1/2}$, with $\mathbf{D} = \operatorname{diag}(\mathbf{C})$. This has the advantage that any scalar change in variables (e.g., using radians instead of degrees for angular measurements) has no effect on the range of convergence of the iterative technique. For problems that are naturally block-structured, e.g., for structure from motion, where 3D point positions or 6D camera poses are being estimated, a block diagonal preconditioner is often a good choice.

A wide variety of more sophisticated preconditioners have been developed over the years (Björck 1996; Golub and Van Loan 1996; Trefethen and Bau 1997; Saad 2003; Nocedal and Wright 2006), many of which can be directly applied to problems in computer vision (Byröd and Åström 2009; Agarwal, Snavely *et al.* 2010; Jeong, Nistér *et al.* 2012). Some of these are based on an *incomplete Cholesky* factorization of C, i.e., one in which the amount of fill-in in R is strictly limited, e.g., to just the original non-zero elements in C.¹⁰ Other preconditioners are based on a sparsified, e.g., tree-based or clustered, approximation to C (Koutis 2007; Koutis and Miller 2008; Grady 2008; Koutis, Miller, and Tolliver 2009), as these are known to have efficient inversion properties.

For grid-based image-processing applications, *parallel* or *hierarchical* preconditioners often perform extremely well (Yserentant 1986; Szeliski 1990b; Pentland 1994; Saad 2003; Szeliski 2006b; Krishnan and Szeliski 2011; Krishnan, Fattal, and Szeliski 2013). These approaches use a change of basis transformation S that resembles the pyramidal or wavelet representations discussed in Section 3.5, and are hence amenable to parallel and GPU-based implementations (Figure 3.35b). Coarser elements in the new representation quickly converge to the low-frequency components in the solution, while finer-level elements encode the higher-frequency components. Some of the relationships between hierarchical preconditioners, incomplete Cholesky factorization, and multigrid techniques are explored by Saad (2003) and Szeliski (2006b), Krishnan and Szeliski (2011), and Krishnan, Fattal, and Szeliski (2013).

A.5.3 Multigrid

One other class of iterative techniques widely used in computer vision is *multigrid* techniques (Briggs, Henson, and McCormick 2000; Trottenberg, Oosterlee, and Schuller 2000), which have been applied to problems such as surface interpolation (Terzopoulos 1986a), optical flow (Terzopoulos 1986a; Bruhn, Weickert *et al.* 2006), high dynamic range tone mapping (Fattal, Lischinski, and Werman 2002), colorization (Levin, Lischinski, and Weiss 2004), natural image matting (Levin, Lischinski, and Weiss 2008), and segmentation (Grady 2008).

 $^{^{10}}$ If a complete Cholesky factorization $\mathbf{C} = \mathbf{R}^T \mathbf{R}$ is used, we get $\hat{\mathbf{C}} = \mathbf{R}^{-T} \mathbf{C} \mathbf{R}^{-1} = \mathbf{I}$ and all iterative algorithms converge in a single step, thereby obviating the need to use them, but the complete factorization is often too expensive. Note that incomplete factorization can also benefit from reordering.

The main idea behind multigrid is to form coarser (lower-resolution) versions of the problems and use them to compute the low-frequency components of the solution. However, unlike simple coarse-to-fine techniques, which use the coarse solutions to initialize the fine solution, multigrid techniques only *correct* the low-frequency component of the current solution and use multiple rounds of coarsening and refinement (in what are often called "V" and "W" patterns of motion across the pyramid) to obtain rapid convergence.

On certain simple homogeneous problems (such as solving Poisson equations), multigrid techniques can achieve optimal performance, i.e., computation times linear in the number of variables. However, for more inhomogeneous problems or problems on irregular grids, variants on these techniques, such as *algebraic multigrid* (AMG) approaches, which look at the structure of **C** to derive coarse level problems, may be preferable. Saad (2003) has a nice discussion of the relationship between multigrid and parallel preconditioners and on the relative merits of using multigrid or conjugate gradient approaches.

Appendix B

Bayesian modeling and inference

B.1	Estimation theory	1
B.2	Maximum likelihood estimation and least squares	13
B.3	Robust statistics	15
B.4	Prior models and Bayesian inference	18
B.5	Markov random fields	19
B.6	Uncertainty estimation (error analysis)	52

As you may have noticed, the following problem commonly recurs in computer vision applications. Given a number of measurements (images, feature positions, etc.), estimate the values of some unknown structure or parameters (camera positions, object shape, etc.). These kinds of problems are in general called inverse problems because they involve estimating unknown model parameters instead of simulating the forward formation equations. 1 Computer graphics is a classic forward modeling problem (given some objects, cameras, and lighting, simulate the images that would result), while computer vision problems are usually of the inverse kind (given one or more images, recover the scene that gave rise to these images).

Given an instance of an inverse problem, there are, in general, several ways to proceed. For instance, through clever (or sometimes straightforward) algebraic manipulation, a closed form solution for the unknowns can sometimes be derived. Consider, for example, the *camera* matrix calibration problem (Section 11.2.1): given an image of a calibration pattern consisting of known 3D point positions, compute the 3×4 camera matrix P that maps these points onto the image plane.

In more detail, we can write this problem as (11.11–11.12)

$$x_i = \frac{p_{00}X_i + p_{01}Y_i + p_{02}Z_i + p_{03}}{p_{20}X_i + p_{21}Y_i + p_{22}Z_i + p_{23}}$$
(B.1)

$$x_{i} = \frac{p_{00}X_{i} + p_{01}Y_{i} + p_{02}Z_{i} + p_{03}}{p_{20}X_{i} + p_{21}Y_{i} + p_{22}Z_{i} + p_{23}}$$

$$y_{i} = \frac{p_{10}X_{i} + p_{11}Y_{i} + p_{12}Z_{i} + p_{13}}{p_{20}X_{i} + p_{21}Y_{i} + p_{22}Z_{i} + p_{23}},$$
(B.2)

where (x_i, y_i) is the feature position of the *i*th point measured in the image plane, (X_i, Y_i, Z_i) is the corresponding 3D point position, and the p_{ij} are the unknown entries of the camera matrix P. Moving the denominator over to the left-hand side, we end up with a set of simultaneous linear equations,

$$x_i(p_{20}X_i + p_{21}Y_i + p_{22}Z_i + p_{23}) = p_{00}X_i + p_{01}Y_i + p_{02}Z_i + p_{03},$$
 (B.3)

$$y_i(p_{20}X_i + p_{21}Y_i + p_{22}Z_i + p_{23}) = p_{10}X_i + p_{11}Y_i + p_{12}Z_i + p_{13},$$
 (B.4)

which we can solve using linear least squares (Appendix A.2) to obtain an estimate of P.

The question then arises: Is this set of equations the right ones to be solving? If the measurements are totally noise-free or we do not care about getting the best possible answer, then the answer is yes. However, in general, we cannot be sure that we have a reasonable algorithm unless we make a model of the likely sources of error and devise an algorithm that performs as well as possible given these potential errors.

In the rest of this appendix, we provide a brief tutorial on the fundamentals of Bayesian modeling and inference. We start with estimation theory (how to build forward models

¹ As we saw in Chapters 4 and 5, these problems are called *regression problems*, because we are trying to estimate a continuous quantity from noisy inputs, as opposed to a discrete classification task (Bishop 2006).

that account for noise) and show how to model likelihoods under Gaussian noise. We then show how when the measurements are linear, these result in least squares regression. In Appendix B.3, we review robust estimation techniques designed to deal with measurement outliers (gross errors). Appendices B.4 and B.5 discuss Bayesian prior models and Markov random fields, which are compact local priors suitable for image processing. We also describe a number of widely used *inference* algorithms for finding good solutions to MRF problems. Finally, Appendix B.6 describes how we can model the posterior *uncertainty* in our estimates.

B.1 Estimation theory

The study of inverse inference problems from noisy data is often called *estimation theory* (Gelb 1974), and its extension to problems where we explicitly choose a loss function is called *statistical decision theory* (Berger 1993; MacKay 2003; Bishop 2006; Robert 2007; Hastie, Tibshirani, and Friedman 2009; Murphy 2012; Deisenroth, Faisal, and Ong 2020). We first start by writing down the forward process that leads from our unknowns (and knowns) to a set of noise-corrupted measurements. We then devise an algorithm that will give us an estimate (or set of estimates) that are both insensitive to the noise (as best they can be) and also quantify the reliability of these estimates. In this Appendix, I provide a very condensed overview of this topic, including an introduction to basic probability and Bayesian inference. Much more detailed and informative treatment can be found in the books by Bishop (2006), Hastie, Tibshirani, and Friedman (2009), and (Murphy 2012) and Deisenroth, Faisal, and Ong (2020)).

The perspective projection equations above are just a particular instance of a more general set of *measurement equations*,

$$\mathbf{y}_i = \mathbf{f}_i(\mathbf{x}) + \mathbf{n}_i. \tag{B.5}$$

Here, the y_i are the noise-corrupted *measurements*, e.g., (x_i, y_i) in Equations (B.1–B.2) and x is the unknown *state vector*.²

Each measurement comes with its associated *measurement model* $\mathbf{f}_i(\mathbf{x})$, which maps the unknown into that particular measurement. Note that the use of the $\mathbf{f}_i(\mathbf{x})$ form makes it straightforward to have measurements of different dimensions, which becomes useful when we start adding in prior information (Appendix B.4).

Each measurement is also contaminated with some noise \mathbf{n}_i . In Equation (B.7) we specify that \mathbf{n}_i is a zero-mean normal (Gaussian) random variable with a covariance matrix Σ_i . In general, the noise need not be Gaussian and, in fact, it is usually prudent to assume that some

²In the Kalman filtering literature (Gelb 1974), it is more common to use **z** instead of **y** to denote measurements.

measurements may be outliers. However, we defer this discussion to Appendix B.3, after we have explored the simpler Gaussian noise case more fully. We also assume that the noise vectors \mathbf{n}_i are independent. In the case where they are not (e.g., when some constant gain or offset contaminates all of the pixels in a given image), we can add this effect as a *nuisance* parameter to our state vector \mathbf{x} and later estimate its value (and discard it, if so desired).

Likelihood for multivariate Gaussian noise

Given all of the noisy measurements $\mathbf{y} = \{\mathbf{y}_i\}$, we would like to infer a probability distribution on the unknown \mathbf{x} vector. We can write the *likelihood* of having observed the $\{\mathbf{y}_i\}$ given a particular value of \mathbf{x} as

$$L = p(\mathbf{y}|\mathbf{x}) = \prod_{i} p(\mathbf{y}_{i}|\mathbf{x}) = \prod_{i} p(\mathbf{y}_{i}|\mathbf{f}_{i}(\mathbf{x})) = \prod_{i} p(\mathbf{n}_{i}).$$
(B.6)

When each noise vector \mathbf{n}_i is a multivariate Gaussian with covariance Σ_i ,

$$\mathbf{n}_i \sim \mathcal{N}(0, \mathbf{\Sigma}_i),$$
 (B.7)

we can write this likelihood as

$$L = \prod_{i} |2\pi \mathbf{\Sigma}_{i}|^{-1/2} \exp\left(-\frac{1}{2}(\mathbf{y}_{i} - \mathbf{f}_{i}(\mathbf{x}))^{T} \mathbf{\Sigma}_{i}^{-1}(\mathbf{y}_{i} - \mathbf{f}_{i}(\mathbf{x}))\right)$$

$$= \prod_{i} |2\pi \mathbf{\Sigma}_{i}|^{-1/2} \exp\left(-\frac{1}{2} \|\mathbf{y}_{i} - \mathbf{f}_{i}(\mathbf{x})\|_{\mathbf{\Sigma}_{i}^{-1}}^{2}\right),$$
(B.8)

where the matrix norm $\|\mathbf{x}\|_{\mathbf{A}}^2$ is a shorthand notation for $\mathbf{x}^T \mathbf{A} \mathbf{x}$.

The norm $\|\mathbf{y}_i - \overline{\mathbf{y}}_i\|_{\mathbf{\Sigma}_i^{-1}}$ is often called the *Mahalanobis distance*, which we introduced in (5.32), and is used to measure the distance between a measurement and the mean of a multivariate Gaussian distribution (Bishop 2006, Section 2.3; Hartley and Zisserman 2004, Appendix 2). Contours of equal Mahalanobis distance are equi-probability contours (Figure 5.9). Note that when the measurement covariance is isotropic (the same in all directions), i.e., when $\mathbf{\Sigma}_i = \sigma_i^2 \mathbf{I}$, the likelihood can be written as

$$L = \prod_{i} (2\pi\sigma_i^2)^{-N_i/2} \exp\left(-\frac{1}{2\sigma_i^2} \|\mathbf{y}_i - \mathbf{f}_i(\mathbf{x})\|^2\right), \tag{B.9}$$

where N_i is the length of the *i*th measurement vector \mathbf{y}_i .

We can more easily visualize the structure of the covariance matrix and the corresponding Mahalanobis distance if we first perform an *eigenvalue* or *principal component* analysis (PCA) of the covariance matrix (A.6),

$$\Sigma_i = \Phi \operatorname{diag}(\lambda_0 \dots \lambda_{N-1}) \Phi^T.$$
 (B.10)

Equal-probability contours of the corresponding multi-variate Gaussian, which are also equidistance contours in the Mahalanobis distance (Figure 5.19), are multi-dimensional ellipsoids whose axis directions are given by the columns of Φ (the *eigenvectors*) and whose lengths are given by the $\sigma_j = \sqrt{\lambda_j}$ (Figure A.1).

It is usually more convenient to work with the negative log likelihood, which we can think of as a *cost* or *energy*

$$E = -\log L = \frac{1}{2} \sum_{i} (\mathbf{y}_i - \mathbf{f}_i(\mathbf{x}))^T \mathbf{\Sigma}_i^{-1} (\mathbf{y}_i - \mathbf{f}_i(\mathbf{x})) + k$$
 (B.11)

$$= \frac{1}{2} \sum_{i} \|\mathbf{y}_{i} - \mathbf{f}_{i}(\mathbf{x})\|_{\mathbf{\Sigma}_{i}^{-1}}^{2} + k,$$
 (B.12)

where $k = \sum_{i} \log |2\pi \Sigma_{i}|$ is a constant that depends on the measurement variances, but is independent of \mathbf{x} .

Notice that the inverse covariance $C_i = \Sigma_i^{-1}$ plays the role of a *weight* on each of the measurement error *residuals*, i.e., the difference between the contaminated measurement y_i and its uncontaminated (predicted) value $f_i(x)$. In fact, the inverse covariance is often called the (Fisher) *information matrix* (Bishop 2006), because it tells us how much information is contained in a given measurement, i.e., how well it constrains the final estimate. We can also think of this matrix as denoting the amount of *confidence* to associate with each measurement (hence the letter C).

In this formulation, it is quite acceptable for some information matrices to be singular (of degenerate rank) or even zero (if the measurement is missing altogether). Rank-deficient measurements often occur, for example, when using a line feature or edge to measure a 3D edge-like feature, as its exact position along the edge is unknown (or of infinite or extremely large variance) (Section 9.1.3).

To make the distinction between the noise contaminated measurement and its expected value for a particular setting of \mathbf{x} more explicit, we adopt the notation $\tilde{\mathbf{y}}$ for the former (think of the tilde as the approximate or noisy value) and $\hat{\mathbf{y}} = \mathbf{f}_i(\mathbf{x})$ for the latter (think of the hat as the predicted or expected value). We can then write the negative log likelihood as

$$E = -\log L = \frac{1}{2} \sum_{i} \|\tilde{\mathbf{y}}_{i} - \hat{\mathbf{y}}_{i}\|_{\mathbf{\Sigma}_{i}^{-1}}^{2} + k.$$
 (B.13)

B.2 Maximum likelihood estimation and least squares

Now that we have presented the likelihood and log likelihood functions, how can we find the optimal value for our state estimate x? One plausible choice might be to select the value of x

that maximizes $L = p(\mathbf{y}|\mathbf{x})$. In fact, in the absence of any prior model for \mathbf{x} (Appendix B.4), we have

$$L = p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}, \mathbf{x}) = p(\mathbf{x}|\mathbf{y}). \tag{B.14}$$

Therefore, choosing the value of x that maximizes the likelihood is equivalent to choosing the maximum of our probability density estimate for x.

When might this be a good idea? If the data (measurements) constrain the possible values of \mathbf{x} so that they all cluster tightly around one value (e.g., if the distribution $p(\mathbf{x}|\mathbf{y})$ is a unimodal Gaussian), the maximum likelihood estimate is the optimal one in that it is both unbiased and has the least possible variance. In many other cases, e.g., if a single estimate is all that is required, it is still often the best estimate.³

However, if the probability is multi-modal, i.e., it has several local minima in the log likelihood, much more care may be required. In particular, it might be necessary to defer certain decisions (such as the ultimate position of an object being tracked) until more measurements have been taken. The CONDENSATION algorithm presented in Section 7.3.1 is one possible method for modeling and updating such multi-modal distributions but is just one example of more general *particle filtering* and *Markov Chain Monte Carlo* (MCMC) techniques (Andrieu, de Freitas *et al.* 2003; Bishop 2006; Koller and Friedman 2009).

Another possible way to choose the best estimate is to maximize the *expected utility* (or, conversely, to minimize the expected risk or loss) associated with obtaining the correct estimate, i.e., by minimizing

$$E_{\text{loss}}(\mathbf{x}, \mathbf{y}) = \int l(\mathbf{x} - \mathbf{z}) p(\mathbf{z}|\mathbf{y}) d\mathbf{z}.$$
 (B.15)

For example, if a robot wants to avoid hitting a wall at all costs, the loss function will be high whenever the estimate underestimates the true distance to the wall. When $l(\mathbf{x}-\mathbf{y}) = \delta(\mathbf{x}-\mathbf{y})$, we obtain the maximum likelihood estimate, whereas when $l(\mathbf{x}-\mathbf{y}) = \|\mathbf{x}-\mathbf{y}\|^2$, we obtain the mean square error (MSE) or expected value estimate. The explicit modeling of a utility or loss function is what characterizes statistical decision theory (Berger 1993; MacKay 2003; Bishop 2006; Robert 2007; Hastie, Tibshirani, and Friedman 2009; Murphy 2012; Deisenroth, Faisal, and Ong 2020) and the minimization of expected risk (in machine learning) is called *empirical risk minimization*, which we discussed in Section 5.1, Equation (5.1).

How do we find the maximum likelihood estimate? If the measurement noise is Gaussian, we can minimize the quadratic objective function (B.13). This becomes even simpler if the

³According to the Gauss-Markov theorem, least squares produces the best linear unbiased estimator (BLUE) for a linear measurement model regardless of the actual noise distribution, assuming that the noise is zero mean and uncorrelated.

B.3 Robust statistics 945

measurement equations are linear, i.e.,

$$\mathbf{f}_i(\mathbf{x}) = \mathbf{H}_i \mathbf{x},\tag{B.16}$$

where **H** is the *measurement matrix* relating unknown state variables \mathbf{x} to measurements $\tilde{\mathbf{y}}$. In this case, (B.13) becomes

$$E = \sum_{i} \|\tilde{\mathbf{y}}_{i} - \mathbf{H}_{i}\mathbf{x}\|_{\mathbf{\Sigma}_{i}^{-1}} = \sum_{i} (\tilde{\mathbf{y}}_{i} - \mathbf{H}_{i}\mathbf{x})^{T} \mathbf{C}_{i} (\tilde{\mathbf{y}}_{i} - \mathbf{H}_{i}\mathbf{x}),$$
(B.17)

which is a simple quadratic form in \mathbf{x} , which can be solved using linear least squares (Appendix A.2) to obtain the minimum energy (maximum likelihood) solution

$$\mathbf{x} = \left(\sum_{i} \mathbf{H}_{i}^{T} \mathbf{C}_{i} \mathbf{H}_{i}\right)^{-1} \left(\sum_{i} \mathbf{H}_{i}^{T} \mathbf{C}_{i} \tilde{\mathbf{y}}_{i}\right)$$
(B.18)

with a corresponding posterior covariance of

$$\Sigma = \mathbf{C}^{-1} = \left(\sum_{i} \mathbf{H}_{i}^{T} \mathbf{C}_{i} \mathbf{H}_{i}\right)^{-1}.$$
 (B.19)

When $\mathbf{H}_i = \mathbf{I}$, i.e., when we are just taking an average of covariance-weighted measurements, we obtain the even simpler formula

$$\mathbf{x} = \left(\sum_{i} \mathbf{C}_{i}\right)^{-1} \left(\sum_{i} \mathbf{C}_{i} \tilde{\mathbf{y}}_{i}\right), \tag{B.20}$$

which is a simple information-weighted mean, with a final covariance (uncertainty) of $\Sigma = (\sum_i \mathbf{C}_i)^{-1}$.

When the measurements are non-linear, the system must be solved iteratively using non-linear least squares (Appendix A.3). In this case, we can compute a *Cramer–Rao lower bound* (CRLB) on the posterior covariance using the same covariance formula as before (B.19) except that we use the Jacobians $J(\mathbf{x}_i; \mathbf{p})$ from (A.46) are used instead of the measurement matrices H_i .

B.3 Robust statistics

In Appendix B.1, we assumed that the noise being added to each measurement (B.5) was multivariate Gaussian (B.7). This is an appropriate model if the noise is the result of lots of tiny errors being added together, e.g., from thermal noise in a silicon imager. In most cases,

however, measurements can be contaminated with larger *outliers*, i.e., gross failures in the measurement process. Examples of such outliers include bad feature matches (Section 8.1.4), occlusions in stereo matching (Chapter 12), and discontinuities in an otherwise smooth image, depth map, or label image (Sections 4.2.1 and 4.3).

In such cases, it makes more sense to model the measurement noise with a long-tailed *contaminated* noise model, such as a Laplacian. The negative log likelihood in this case, rather than being quadratic in the measurement residuals (B.12–B.17), has a slower growth in the penalty function to account for the increased likelihood of large errors.

This formulation of the inference problem is called an *M-estimator* in the robust statistics literature (Huber 1981; Hampel, Ronchetti *et al.* 1986; Black and Rangarajan 1996; Stewart 1999; Barron 2019) and involves applying a robust penalty function $\rho(r)$ to the residuals

$$E_{\text{RLS}}(\Delta \mathbf{p}) = \sum_{i} \rho(\|\mathbf{r}_i\|)$$
 (B.21)

instead of squaring them. Over the years, a variety of robust loss functions have been developed, as discussed in the above references. Recently, Barron (2019) unified a number of these under a two-parameter loss function, which we introduced in Section 4.1.3. This loss function, shown in Figure 4.7, can be written as

$$\rho(x; \alpha, c) = \frac{|\alpha - 2|}{2} \left(\left(\frac{(x/c)^2}{|\alpha - 2|} + 1 \right)^{\alpha/2} - 1 \right), \tag{B.22}$$

where α is a shape parameter that controls the robustness of the loss and c>0 is a scale parameter that controls the size of the loss's quadratic bowl near x=0. In his paper, Barron (2019) discusses how both parameters can be determined at run time by maximizing the likelihood (or equivalently, minimizing the negative log-likelihood) of the given residuals, making such an algorithm self-tuning to a wide variety of noise levels and outlier distributions.

As we mentioned in Section 8.1.4, we can take the derivative of this function with respect to the unknown parameters \mathbf{p} we are estimating and set it to 0,

$$\sum_{i} \psi(\|\mathbf{r}_{i}\|) \frac{\partial \|\mathbf{r}_{i}\|}{\partial \mathbf{p}} = \sum_{i} \frac{\psi(\|\mathbf{r}_{i}\|)}{\|\mathbf{r}_{i}\|} \mathbf{r}_{i}^{T} \frac{\partial \mathbf{r}_{i}}{\partial \mathbf{p}} = 0,$$
(B.23)

where $\psi(r) = \rho'(r)$ is the derivative of ρ and is called the *influence function*. If we introduce a weight function, $w(r) = \Psi(r)/r$, we observe that finding the stationary point of (B.21) using (B.23) is equivalent to minimizing the *iteratively re-weighted least squares* (IRLS) problem

$$E_{\text{IRLS}} = \sum_{i} w(\|\mathbf{r}_i\|) \|\mathbf{r}_i\|^2, \tag{B.24}$$

B.3 Robust statistics 947

where the $w(\|\mathbf{r}_i\|)$ play the same local weighting role as $\mathbf{C}_i = \mathbf{\Sigma}_i^{-1}$ in (B.12). Black and Anandan (1996) describe a variety of robust penalty functions and their corresponding influence and weighting function.

The IRLS algorithm alternates between computing the influence functions $w(\|\mathbf{r}_i\|)$ and solving the resulting weighted least squares problem (with fixed w values). Alternative incremental robust least squares algorithms can be found in the work of Sawhney and Ayer (1996), Black and Anandan (1996), Black and Rangarajan (1996), and Baker, Gross $et\ al.$ (2003) and textbooks and tutorials on robust statistics (Huber 1981; Hampel, Ronchetti $et\ al.$ 1986; Rousseeuw and Leroy 1987; Stewart 1999). It is also possible to apply general optimization techniques (Appendix A.3) directly to the non-linear cost function given in Equation (B.24), which may sometimes have better convergence properties.

Most robust penalty functions involve a scale parameter, which should typically be set to the variance (or standard deviation, depending on the formulation) of the non-contaminated (inlier) noise. Estimating such noise levels directly from the measurements or their residuals, however, can be problematic, as such estimates themselves become contaminated by outliers. The robust statistics literature contains a variety of techniques to estimate such parameters. One of the simplest and most effective is the *median absolute deviation* (MAD),

$$MAD = \operatorname{med}_{i} \|\mathbf{r}_{i}\|, \tag{B.25}$$

which, when multiplied by 1.4, provides a robust estimate of the standard deviation of the inlier noise process.

As mentioned in Section 8.1.4, it is often better to start iterative non-linear minimization techniques, such as IRLS, in the vicinity of a good solution by first randomly selecting small subsets of measurements until a good set of inliers is found. The best known of these techniques is RANdom SAmple Consensus (RANSAC) (Fischler and Bolles 1981), although even better variants such as Preemptive RANSAC (Nistér 2003), PROgressive SAmple Consensus (PROSAC) (Chum and Matas 2005), USAC (Raguram, Chum *et al.* 2012), and Latent RANSAC (Korman and Litman 2018) have since been developed. The paper by Raguram, Chum *et al.* (2012) provides a nice experimental comparison of most of these techniques.

Additional variants on RANSAC include MLESAC (Torr and Zisserman 2000), DSAC (Brachmann, Krull *et al.* 2017), Graph-Cut RANSAC (Barath and Matas 2018), MAGSAC (Barath, Matas, and Noskova 2019), and ESAC (Brachmann and Rother 2019). The MAGSAC++ paper by Barath, Noskova *et al.* (2020) compares many of these variants. Yang, Antonante *et al.* (2020) claim that using a robust penalty function with a decreasing outlier parameter, i.e., *graduated non-convexity* (Blake and Zisserman 1987; Barron 2019), can outperform RANSAC in many geometric correspondence and pose estimation problems.

B.4 Prior models and Bayesian inference

While maximum likelihood estimation can often lead to good solutions, in some cases the range of possible solutions consistent with the measurements is too large to be useful. For example, consider the problem of image denoising (Section 3.4.2). If we estimate each pixel separately based on just its noisy version, we cannot make any progress, as there are a large number of values that could lead to each noisy measurement.⁴ Instead, we need to rely on typical properties of images, e.g., that they tend to be piecewise smooth (Section 4.2.1).

The propensity of images to be piecewise smooth can be encoded in a *prior distribution* $p(\mathbf{x})$, which measures the likelihood of an image being a natural image. Statistical models where we construct or estimate a prior distribution over the unknowns we are trying to recover are known as *generative models*. As the prior distribution is known, we can *generate* random samples and see if they conform to our expected appearance or distribution, although sometimes the sampling process may itself involve a lot of computation. For example, to encode piecewise smoothness, we can use a *Markov random field* model (4.38 and B.29) whose negative log likelihood is proportional to a robustified measure of image smoothness (gradient magnitudes).

Prior models need not be restricted to image processing applications. For example, we may have some external knowledge about the rough dimensions of an object being scanned, the focal length of a lens being calibrated, or the likelihood that a particular object might appear in an image. All of these are examples of prior distributions or probabilities and they can be used to produce more reliable estimates.

As we have already seen in (4.33), Bayes' rule states that a *posterior* distribution $p(\mathbf{x}|\mathbf{y})$ over the unknowns \mathbf{x} given the measurements \mathbf{y} can be obtained by multiplying the measurement likelihood $p(\mathbf{y}|\mathbf{x})$ by the prior distribution $p(\mathbf{x})$ and normalizing,

$$p(\mathbf{x}|\mathbf{y}) = \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{p(\mathbf{y})},$$
 (B.26)

where $p(\mathbf{y}) = \int_{\mathbf{x}} p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$ is a normalizing constant used to make the $p(\mathbf{x}|\mathbf{y})$ distribution proper (integrate to 1). Taking the negative logarithm of both sides of Equation (B.26), we get

$$-\log p(\mathbf{x}|\mathbf{y}) = -\log p(\mathbf{y}|\mathbf{x}) - \log p(\mathbf{x}) + \log p(\mathbf{y}), \tag{B.27}$$

which is the *negative posterior log likelihood*. It is common to drop the constant $\log p(\mathbf{y})$ because its value does not matter during energy minimization. However, if the prior distribution $p(\mathbf{x})$ depends on some unknown parameters, we may wish to keep $\log p(\mathbf{y})$ in order to compute the most likely value of these parameters using *Occam's razor*, i.e., by maximizing the

⁴In fact, the maximum likelihood estimate is just the noisy image itself.

likelihood of the observations, or to select the correct number of free parameters using *model* selection (Torr 2002; Bishop 2006; Robert 2007; Hastie, Tibshirani, and Friedman 2009).

To find the most likely ($maximum\ a\ posteriori$ or MAP) solution x given some measurements y, we simply minimize this negative log likelihood, which can also be thought of as an energy,

$$E(\mathbf{x}, \mathbf{y}) = E_d(\mathbf{x}, \mathbf{y}) + E_p(\mathbf{x}). \tag{B.28}$$

The first term $E_d(\mathbf{x}, \mathbf{y})$ is the *data energy* or *data penalty* and measures the negative log likelihood that the measurements \mathbf{y} were observed given the unknown state \mathbf{x} . The second term $E_p(\mathbf{x})$ is the *prior energy* and it plays a role analogous to the smoothness energy in regularization. Note that the MAP estimate may not always be desirable, because it selects the "peak" in the posterior distribution rather than some more stable statistic such as MSE—see the discussion in Appendix B.2 about loss functions and decision theory.

B.5 Markov random fields

Markov random fields (Blake, Kohli, and Rother 2011) are the most popular types of prior model for gridded image-like data, which include not only regular natural images (Section 4.3) but also two-dimensional fields such as optical flow (Chapter 9) or depth maps (Chapter 12), as well as binary fields, such as segmentations (Section 4.3.2).⁵

As we discussed in Section 4.3, the prior probability $p(\mathbf{x})$ for a Markov random field is a *Gibbs* or *Boltzmann distribution*, whose negative log likelihood (according to the Hammersley–Clifford Theorem) can be written as a sum of pairwise *interaction potentials*,

$$E_{P}(\mathbf{x}) = \sum_{\{(i,j),(k,l)\} \in \mathcal{N}} V_{i,j,k,l}(f(i,j), f(k,l)),$$
(B.29)

where $\mathcal{N}(i,j)$ denotes the *neighbors* of pixel (i,j). In the more general case, MRFs can also contain unary potentials, as well as *higher-order potentials* defined over larger cardinality *cliques* (Kindermann and Snell 1980; Geman and Geman 1984; Bishop 2006; Potetz and Lee 2008; Kohli, Kumar, and Torr 2009; Kohli, Ladický, and Torr 2009; Rother, Kohli *et al.* 2009; Alahari, Kohli, and Torr 2010). They can also contain *line processes*, i.e., additional binary variables that mediate discontinuities between adjacent elements (Geman and Geman 1984). Black and Rangarajan (1996) show how independent line process variables can be eliminated and incorporated into regular MRFs using robust pairwise penalty functions.

⁵Alternative formulations include power spectra (Section 3.4.1) and non-local means (Buades, Coll, and Morel 2008). Many people would argue that deep neural networks provide *learned* priors over the output distributions, although these are not strictly Bayesian priors that can be additively combined with measurements in a log likelihood domain.

The most commonly used neighborhood in Markov random field modeling is the \mathcal{N}_4 neighborhood, where each pixel in the field f(i,j) interacts only with its immediate neighbors; Figure 4.12 shows such an \mathcal{N}_4 MRF. The $s_x(i,j)$ and $s_y(i,j)$ black boxes denote arbitrary interaction potentials between adjacent nodes in the random field and the w(i,j) denote the elemental data penalty terms in E_d (B.28). These square nodes can also be interpreted as factors in a factor graph version of the undirected graphical model (Bishop 2006; Wainwright and Jordan 2008; Koller and Friedman 2009; Dellaert and Kaess 2017; Dellaert 2021), which is another name for interaction potentials. (Strictly speaking, the factors are improper probability functions whose product is the un-normalized posterior distribution.)

More complex and higher-dimensional interaction models and neighborhoods are also possible. For example, 2D grids can be enhanced with the addition of diagonal connections (an \mathcal{N}_8 neighborhood) or even larger numbers of pairwise terms (Boykov and Kolmogorov 2003; Rother, Kolmogorov *et al.* 2007). 3D grids can be used to compute globally optimal segmentations in 3D volumetric medical images (Boykov and Funka-Lea 2006) (Section 6.4.1). Higher-order cliques can also be used to develop more sophisticated models (Potetz and Lee 2008; Kohli, Ladický, and Torr 2009; Kohli, Kumar, and Torr 2009).

One of the biggest challenges in using MRF models is to develop efficient *inference algo-rithms* that will find low-energy solutions (Veksler 1999; Boykov, Veksler, and Zabih 2001; Kohli 2007; Kumar 2008). Over the years, a large variety of such algorithms have been developed, including simulated annealing, graph cuts, and loopy belief propagation. The choice of inference technique can greatly affect the overall performance of a vision system. For example, most of the top-performing algorithms on the Middlebury Stereo Evaluation page use either belief propagation or graph cuts.

The first edition of this book (Szeliski 2010, Appendix B.5) had more detailed explanations of the most widely used MRF inference techniques, including gradient descent and simulated annealing, dynamic programming, belief propagation, graph cuts, and linear programming, which are a subset of the methods evaluated by Kappes, Andres *et al.* (2015) and shown in Figure B.1. However, since MRFs have now largely been replaced with deep neural networks in most applications, I have omitted these descriptions from this new edition. Instead, interested readers should look in the first edition and also the book on advanced MRF techniques by Blake, Kohli, and Rother (2011). Experimental comparisons, along with test datasets and reference software, can be found in the papers by Szeliski, Zabih *et al.* (2008)⁶ and Kappes, Andres *et al.* (2015).⁷

⁶https://vision.middlebury.edu/MRF.

⁷http://hciweb2.iwr.uni-heidelberg.de/opengm

Figure B.1 Schematic taxonomy of the inference methods evaluated in the benchmark study by Kappes, Andres et al. (2015) © 2015 Springer.

B.6 Uncertainty estimation (error analysis)

In addition to computing the most likely estimate, many applications require an estimate for the *uncertainty* in this estimate.⁸ The most general way to do this is to compute a complete probability distribution over all of the unknowns, but this is generally intractable. The one special case where it is easy to obtain a simple description for this distribution is linear estimation problems with Gaussian noise, where the joint energy function (negative log likelihood of the posterior estimate) is a quadratic. In this case, the posterior distribution is a multi-variate Gaussian and its covariance Σ can be computed directly from the inverse of the noise-weighted problem Hessian, as shown in (B.19. (Another name for the inverse covariance matrix, which is equal to the Hessian in such simple cases, is the *information matrix*.)

Even here, however, the full covariance matrix may be too large to compute and store. For example, in large structure from motion problems, a large sparse Hessian normally results in a full dense covariance matrix. In such cases, it is often considered acceptable to report only the variance in the estimated quantities or simple covariance estimates on individual parameters, such as 3D point positions or camera pose estimates (Szeliski 1990a). More insight into the problem, e.g., the dominant *modes* of uncertainty, can be obtained using eigenvalue analysis (Szeliski and Kang 1997).

For problems where the posterior energy is non-quadratic, e.g., in non-linear or robustified least squares, it is still often possible to obtain an estimate of the Hessian in the vicinity of the optimal solution. In this case, the *Cramer–Rao lower bound* on the uncertainty (covariance) can be computed as the inverse of the Hessian. Another way of saying this is that while the local Hessian can underestimate how "wide" the energy function can be, the covariance can never be smaller than the estimate based on this local quadratic approximation. It is also possible to estimate a different kind of uncertainty (min-marginal energies) in general MRFs where the MAP inference is performed using graph cuts (Kohli and Torr 2008).

While many computer vision applications ignore uncertainty modeling, it is often useful to compute these estimates just to get an intuitive feeling for the reliability of the estimates. Certain applications, such as Kalman filtering, require the computation of this uncertainty (either explicitly as posterior covariances or implicitly as inverse covariances) to optimally integrate new measurements with previously computed estimates (Dickmanns and Graefe 1988; Matthies, Kanade, and Szeliski 1989; Szeliski 1989).

⁸This is particularly true of classic photogrammetry applications, where the reporting of precision is almost always considered mandatory (Förstner 2005).

Appendix C

Supplementary material

C .1	Datasets and benchmarks	954
C.2	Software	961
C.3	Slides and lectures	970

In this final appendix, I summarize some of the supplementary materials that may be useful to students, instructors, and researchers. The book's website at https://szeliski.org/Book contains updated lists of related courses, so please check there as well.

C.1 Datasets and benchmarks

As I mentioned in the introduction, one of the keys to developing reliable vision algorithms is to test your procedures on challenging and representative datasets. When ground truth or other people's results are available, such test can be even more informative (and quantitative).

Over the years, a large number of datasets have been developed for testing and evaluating computer vision algorithms, e.g., Middlebury stereo (Scharstein and Szeliski 2002), PASCAL (Everingham, Van Gool *et al.* 2010), ImageNet (Russakovsky, Deng *et al.* 2015), KITTI (Geiger, Lenz, and Urtasun 2012), Sintel (Butler, Wulff *et al.* 2012), and COCO (Lin, Maire *et al.* 2014).

Many of these datasets come with associated benchmarks where the results (and often pointers to code) for the latest algorithms can be found. I have already mentioned (and in some cases tabulated) many of these datasets in previous chapters of the book. In this appendix, I provide a summary of these datasets. You can also find older, less frequently used datasets in the first edition of this book (Szeliski 2010, Appendix C.1) and an up-to-date list on VisionBib.Com (http://datasets.visionbib.com), which has been curated and maintained by Keith Price since 1994.

Below, I list some of the more popular datasets, grouped by the book chapters to which they most closely correspond.

Chapter 2: Image formation

- CUReT: Columbia-Utrecht Reflectance and Texture Database, https://www1.cs.columbia. edu/CAVE/software/curet (Dana, van Ginneken et al. 1999).
- Middlebury Color Datasets: registered color images taken by different cameras to study how they transform gamuts and colors, https://vision.middlebury.edu/color/data (Chakrabarti, Scharstein, and Zickler 2009).

Chapter 4: Model fitting and optimization

Middlebury test datasets for evaluating MRF minimization/inference algorithms, https://vision.middlebury.edu/MRF/results (Szeliski, Zabih et al. 2008).

• The OpenGM2 library and benchmarks for discrete factor graph models, http://hciweb2. iwr.uni-heidelberg.de/opengm (Kappes, Andres *et al.* 2015).

Chapter 5: Deep learning

- Small-scale datasets suitable for training a simple CNN as a useful teaching tool:¹ MNIST (LeCun, Cortes, and Burges 1998), CIFAR-100 (Krizhevsky 2009), and Fashion MNIST (Xiao, Rasul, and Vollgraf 2017).
- PyTorch TorchVision provides a great way to easily download some of the popular computer vision datasets, https://pytorch.org/vision/stable/datasets.html. TensorFlow also provides similar support with TensorFlow Datasets, https://www.tensorflow.org/ datasets.
- Widely used recognition, detection, and segmentation datasets and benchmarks, as listed in Tables 6.1–6.4; separate datasets for other tasks such as image enhancement, motion estimation, and stereo, are discussed in later sections.

Chapter 6: Recognition

- The face recognition and detection datasets listed in Table 6.1 and Masi, Wu *et al.* (2018).
- The Caltech pedestrian detection benchmark (Dollár, Belongie, and Perona 2010) and person detection subtasks in datasets such as KITTI, http://www.cvlibs.net/datasets/kitti (Geiger, Lenz, and Urtasun 2012) and Cityscapes, https://www.cityscapes-dataset.com (Cordts, Omran *et al.* 2016)
- Table 6.2 lists datasets and benchmarks for image classification, general object detection, and segmentation. Two recent workshops that highlight the latest results on these datasets are the Robust Vision Challenge Zendel *et al.* (2020) (see Table C.1) and the COCO + LVIS Joint Recognition Challenge Kirillov, Lin *et al.* (2020).
- Datasets and benchmarks for fine-grained category recognition can be found at the CVPR Workshop on Fine-Grained Visual Categorization, https://sites.google.com/view/fgvc8 as well as some of the papers on this topic discussed in Section 6.2.2.
- Table 6.3 lists some datasets for video understanding and action recognition.

¹See, e.g., https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.

Table 6.4 lists some widely used datasets for vision and language research, which includes image captioning, dense annotation, visual question answering, and visual dialog.

Chapter 7: Feature detection and matching

- The HPatches dataset and benchmark (Balntas, Lenc *et al.* 2020) is often used to evaluate new feature detectors and descriptors.
- The Image Matching Benchmark (Jin, Mishkin *et al.* 2021) is also widely used and has associated workshops.
- Visual localization datasets such as Aachen Day-Night (Sattler, Maddern *et al.* 2018) are also often used.
- Pointers to datasets for evaluating instance retrieval algorithms can be found in Zheng, Yang, and Tian (2018).
- Non-semantic image segmentation (splitting an image into "reasonable pieces" without labeling their content) is not widely studied any more. Pointers to classic datasets such as the Berkeley Segmentation Dataset and Benchmark (Martin, Fowlkes *et al.* 2001) can be found in the first edition of this book (Szeliski 2010, Appendix C.1).

Chapter 9: Motion estimation

- The Middlebury optical flow evaluation website, https://vision.middlebury.edu/flow (Baker, Scharstein *et al.* 2011) continues to be used for evaluation, since it contains a variety of short real-world sequences.
- Most optical flow algorithms are evaluated on the Sintel dataset, http://sintel.is.tue. mpg.de (Butler, Wulff *et al.* 2012), since it contains both training and test subsets and an active leaderboard, although the videos are stylized computer animations.
- Many algorithms also train and test on the KITTI flow benchmark (Geiger, Lenz, and Urtasun 2012), although it only contains videos acquired from a driving vehicle. The computer-generated sequences in the VIsual PERception (VIPER) benchmark (Richter, Hayder, and Koltun 2017) also contain driving sequences. Mayer, Ilg et al. (2018, Table 1) tabulates widely-used datasets for optical flow and depth estimation and shows some sample images in Figure 1.

- A comparison of flow algorithm performance across different datasets (listed in Table C.1) can be found in the Robust Vision Challenge workshop (http://www.robustvision. net).
- For video object segmentation, the Densely Annotated VIdeo Segmentation (DAVIS) dataset Pont-Tuset, Perazzi *et al.* (2017) contains a set of widely-used evaluation video clips with ground-truth segmentation data. There is also a newer, larger, dataset called YouTube-VOS (Xu, Yang *et al.* 2018) with its own associated set of challenges and leaderboards.
- Datasets for video object tracking (VOT) and multiple object tracking (MOT) can be found at the associated workshops (Kristan, Leonardis *et al.* 2020; Dendorfer, Ošep *et al.* 2021). A wider range of objects to track can be found in the Track Any Object (TAO) dataset by Dave, Khurana *et al.* (2020).

Chapter 10: Computational photography

- The High Dynamic Range radiance maps captured by Debevec and Malik (1997) at https://www.debevec.org/Research/HDR are still the go-to place to find high-quality HDR images.
- The RealSR real-world super-resolution dataset developed by Cai, Zeng *et al.* (2019) can be used to train and test SR algorithms on real imaging degradations. This dataset forms the basis for the NTIRE challenges on real image super-resolution (Cai, Gu *et al.* 2019), which provide empirical comparisons of recent deep network-based algorithms.
- The latest benchmark for comparing image denoising algorithms, the NTIRE 2020
 Challenge on Real Image Denoising (Abdelhamed, Afifi et al. 2020), is based on a
 smartphone image denoising dataset (SIDD) (Abdelhamed, Lin, and Brown 2018) cre ated by averaging sets of real-world noisy images.
- Thea alpha matting evaluation website, http://alphamatting.com (Rhemann, Rother *et al.* 2009) provides a standard set of test images and a leaderboard.
- The video matting dataset at https://videomatting.com (Erofeev, Gitman *et al.* 2015) provides stop-motion animation videos created by carefully hand-matting each frame.
- Lin, Ryabtsev *et al.* (2021) describe a high-resolution real-time video matting system along with two new video and image matting datasets.
- The AIM 2020 Workshop and Challenges on image inpainting (Ntavelis, Romero *et al.* 2020a) provides datasets for evaluating such algorithms.

Chapter 11: Structure from motion and SLAM

- The Benchmark for 6DOF Object Pose (BOP) developed by Hodaň, Michel *et al.* (2018) has results from the recent challenge and workshop at https://bop.felk.cvut.cz/challenges/bop-challenge-2020 and http://cmp.felk.cvut.cz/sixd/workshop_2020.
- The Long-Term Visual Localization Benchmark, https://www.visuallocalization.net, includes datasets such as Aachen Day-Night (Sattler, Maddern et al. 2018) and InLoc (Taira, Okutomi et al. 2018) along with an associated set of challenges and workshop held at ECCV 2020.
- The 1DSfM collection of landmark images created by Wilson and Snavely (2014) (https://www.cs.cornell.edu/projects/1dsfm), which is an extension of the Photo Tourism dataset created by Snavely, Seitz, and Szeliski (2008a), is widely used to test large-scale structure from motion algorithms. The poses provided with this dataset, which were obtained using the software in Wilson and Snavely (2014), are generally considered as "ground truth" when testing more efficient algorithms, although they have never been geo-registered. The ETH3D, https://www.eth3d.net (Schöps, Schönberger et al. 2017) and Tanks and Temples, https://www.tanksandtemples.org (Knapitsch, Park et al. 2017) datasets are also occasionally used.
- Some widely used benchmarks for SLAM systems include a benchmark for RGB-D SLAM systems (Sturm, Engelhard *et al.* 2012), the KITTI Visual Odometry / SLAM benchmark (Geiger, Lenz *et al.* 2013), the synthetic ICL-NUIM dataset (Handa, Whelan *et al.* 2014), the TUM monoVO dataset (Engel, Usenko, and Cremers 2016), the EuRoC MAV dataset (Burri, Nikolic *et al.* 2016), the ETH3D SLAM benchmark (Schöps, Sattler, and Pollefeys 2019a), and the GSLAM general SLAM framework and benchmark (Zhao, Xu *et al.* 2019). Many of these are surveyed and categorized in the paper by Ye, Zhao, and Vela (2019), which was presented at the ICRA 2019 Workshop on Dataset Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR, https://sites.google.com/view/icra-2019-workshop/home.

Chapter 12: Depth estimation

• The most widely used datasets and benchmarks for two-frame and multi-view stereo are listed in Tables 12.1 and C.1. Among these, Middlebury stereo, KITTI, and ETH3D maintain active leaderboards tabulating the performance of two-frame stereo algorithms. For multi-view stereo, ETH3D and Tanks and Temples have leaderboards, and DTU is widely used and self-reported in papers.

	Stereo	Flow	Depth	Obj. Det.	Semantic	Instance	Panoptic
ADE20K ¹					X		
$COCO^2$				X	X	X	X
Cityscapes ³					X	X	X
$ETH3D^4$	X						
HD1K ⁵		X					
KITTI ⁶	X	X	X		X	X	X
MVD^7				X	X	X	X
Middlebury ⁸	X	X					
MPI Sintel ⁹		X	X				
Objects365 ¹⁰				X			
OID^{11}				X		X	
rabbitai ¹²			X				
ScanNet ¹³					X	X	
VIPER ¹⁴		X	X		X	X	X
WildDash ¹⁵					X	X	X

¹ http://sceneparsing.csail.mit.edu (Zhou, Zhao et al. 2019)

Table C.1 The list of seven challenges (one per column) in the Robust Vision Challenge 2020 (http://www.robustvision.net) along with the datasets and benchmarks that are included in each challenge.

² http://cocodataset.org (Lin, Maire et al. 2014)

³ https://www.cityscapes-dataset.com (Cordts, Omran *et al.* 2016)

⁴ https://www.eth3d.net (Schöps, Schönberger *et al.* 2017)

⁵ http://hci-benchmark.org (Kondermann, Nair et al. 2016)

⁶ http://www.cvlibs.net/datasets/kitti (Menze and Geiger 2015)

⁷ http://mapillary.com/dataset/vistas (Neuhold, Ollmann *et al.* 2017)

⁸ http://vision.middlebury.edu (Scharstein, Hirschmüller et al. 2014)

⁹ http://sintel.is.tue.mpg.de (Butler, Wulff *et al.* 2012)

¹⁰ https://www.objects365.org (Shao, Li et al. 2019)

¹¹ https://storage.googleapis.com/openimages/web/index.html (Kuznetsova, Rom et al. 2020)

¹² https://rabbitai.de/benchmark (Schilling, Gutsche *et al.* 2020)

¹³ http://kaldir.vc.in.tum.de/scannet_benchmark (Dai, Chang et al. 2017)

¹⁴ https://playing-for-benchmarks.org (Richter, Hayder, and Koltun 2017)

¹⁵ https://www.wilddash.cc (Zendel, Honauer et al. 2018)

- Many algorithms that train and test on the same dataset (e.g., KITTI) do not perform as well when tested on different datasets (Zendel *et al.* 2020). Song, Yang *et al.* (2021) discuss this issue and domain adaptation techniques that can reduce this problem.
- KeystoneDepth has a large set of rectified historical image pairs, but without ground truth depth (Luo, Kong *et al.* 2020).
- For monocular depth inference, many algorithms train and test on the KITTI outdoor driving image sequences. The MiDaS system developed by Ranftl, Lasinger *et al.* (2020) federates a number of monocular depth inference datasets and also adds thousands of stereo image pairs from 3D movies for training, validation, and testing.

Chapter 13: 3D reconstruction

- The DiLiGenT photometric stereo dataset provides images taken under calibrated directional lighting and objects with general reflectance along with ground truth shapes (Shi, Mo et al. 2019). It also provides a taxonomy and evaluation of photometric stereo methods for general non-Lambertian materials and unknown lighting.
- NYU3D (Silberman, Hoiem et al. 2012) and ScanNet (Dai, Chang et al. 2017) were some of the early 3D indoor scene datasets used to study 3D reconstruction and range fusion algorithms. More recent algorithms such as Chabra, Lenssen et al. (2020) or Weder, Schonberger et al. (2021) use some combination of 3D Scenes (Zhou and Koltun 2013), ICL-NUIM (Handa, Whelan et al. 2014), ShapeNet (Chang, Funkhouser et al. 2015), and Tanks and Temples (Knapitsch, Park et al. 2017). Reviews of RGB-D datasets can be found in Firman (2016) and Zollhöfer, Stotko et al. (2018).
- Over the years, a number of 3D human body and motion datasets have been captured, including HumanEva (Sigal, Balan, and Black 2010), MPI FAUST (Bogo, Romero *et al.* 2014), Panoptic Studio (Joo, Simon *et al.* 2019), EHF (Pavlakos, Choutas *et al.* 2019), AMASS (Mahmood, Ghorbani *et al.* 2019), and 3D Poses in the Wild (3DPW) (von Marcard, Henschel *et al.* 2018).²
- In parallel with these datasets, 3D human body models and fitting algorithms have been developed, including SCAPE (Anguelov, Srinivasan *et al.* 2005), BlendSCAPE (Hirshberg, Loper *et al.* 2012). SMPL (Loper, Mahmood *et al.* 2015), MANO (Joo, Simon, and Sheikh 2018), SMPL-X (Pavlakos, Choutas *et al.* 2019), VIBE (Kocabas,

²Additional datasets can be found on the MPI Perceiving Systems https://ps.is.mpg.de/code and Virtual Humans group https://virtualhumans.mpi-inf.mpg.de/software.html web pages.

Athanasiou, and Black 2020), ExPose (Choutas, Pavlakos *et al.* 2020), STAR (Osman, Bolkart, and Black 2020), Learned Gradient Descent (Song, Chen, and Hilliges 2020), and FrankMoCap (Rong, Shiratori, and Joo 2020). These are described in more detail in Section 13.6.4.

Chapter 14: Image-based rendering

- The original Photo Tourism dataset created by Snavely, Seitz, and Szeliski (2008a) was extended by Wilson and Snavely (2014) to the much larger 1DSfM collection of landmark images at https://www.cs.cornell.edu/projects/1dsfm.
- The Stanford Light Field Archive, http://lightfield.stanford.edu (Wilburn, Joshi *et al.* 2005) and the 4D Light Field Dataset, https://lightfield-analysis.uni-konstanz.de (Honauer, Johannsen *et al.* 2016) both provide high-quality light fields for research and projects.
- The Virtual Viewpoint Video multi-viewpoint video with per-frame depth maps, https://www.microsoft.com/en-us/research/group/interactive-visual-media/#!downloads (Zitnick, Kang et al. 2004) continues to be widely used for research into 3D and multi-view video compression. Newer multi-view video datasets include Facebook Surround 360, https://github.com/facebook/Surround360 (Parra Pozo, Toksvig et al. 2019) and Deep View Video https://augmentedperception.github.io/deepviewvideo (Broxton, Flynn et al. 2020).
- Most of the recent Neural Rendering papers discussed in Section 14.6 either provide their own multi-view datasets or re-use datasets from previously published papers.

C.2 Software

Since the publication of the first edition of this book, when high quality open source computer vision software was still scarce, the last decade has seen an explosion in such software. Most research papers today come with open source software implementation, often tested on well-known datasets. The web site Papers with Code (https://paperswithcode.com) lists many of the latest machine learning research papers along with pointers to their implementations.

When getting started in computer vision, many students either dive into using and extending such code, or work through tutorials on deep learning frameworks such as PyTorch (https://pytorch.org/tutorials) or TensorFlow (https://www.tensorflow.org/tutorials). The Dive into Deep Learning book and web site (Zhang, Lipton *et al.* 2021) has associated Python

Notebooks, based on the Apache MXNet machine learning framework, which can be downloaded and run as students are working through the material.

For "classic" computer vision algorithms not based on deep learning, one of the best sources continues to be the Open Source Computer Vision (OpenCV) library (https://opencv. org), which was originally developed by Gary Bradski and his colleagues at Intel (Bradsky and Kaehler 2008; Kaehler and Bradski 2017). The library has more than 2500 optimized algorithms, which includes both classic and state-of-the-art computer vision and machine learning algorithms, with C++, Python, Java and MATLAB interfaces.

For most of my research career, I did my software development in C++, since I liked its run-time efficiency, strong type checking, and object-oriented framework. In the last few years, however, I've shifted to Python. Having an interactive environment that does not require re-compilation and linking is a big plus. Even better, the NumPy (https://numpy.org/) multidimensional array (tensor) library, when used in the right way, introduces developers to array-based (matrix) arithmetic and (hopefully) dissuades them from writing pixel-iteration loops that are slow to write and error-prone. A big advantage of writing in this fashion is that it maps closely to the abstractions used in the deep learning frameworks such as PyTorch and TensorFlow. It also often results in highly optimized code that can be run on both CPUs and GPUs with minimal changes.³

In the rest of this section, I list some additional software packages and libraries that students may find useful. You can also find pointers to older (currently less used) software packages in the first edition of this book (Szeliski 2010, Appendix C.2).

Chapter 3: Image processing

- Before diving into OpenCV, I would encourage you to write some simple image processing functions in NumPy using the built-in multidimensional array notation. It's fine to use OpenCV for image input/output and to use Matplotlib for visualization. There are also other high-level packages for image processing, such as scikit-image and PIL/Pillow. A more recently developed computer vision library is MMCV (https://openmmlab.com/codebase#MMCV).
- As a warm-up exercise, before diving into machine learning but after doing the basic PyTorch or TensorFlow tutorials, try porting your NumPy code into one of these languages.
- Another language that supports array-level functional programming is Halide (https://halide-lang.org) (Ragan-Kelley, Barnes et al. 2013), which provides optimized com-

³See, e.g., https://cupy.dev or https://devopedia.org/numpy.

pilation onto a large number of targets, including CPUs, GPUs, mobile processors, and DSPs such as the Qualcomm Hexagon.

- For wavelets, PyWavelets (https://pywavelets.readthedocs.io) has a nice extensive set
 of variants.
- I have always found it helpful to have an image viewer where I can quickly flip between aligned images to look for differences, which show up much better than when viewing images side-by-side.

Chapter 4: Model fitting and optimization

- Scikit-learn (https://scikit-learn.org) implements a number of algorithms for regression,
 i.e., scattered data interpolation.
- OpenGM (http://hciweb2.iwr.uni-heidelberg.de/opengm) is a C++ template library for discrete factor graph models and distributive operations on these models. It includes state-of-the-art optimization and inference algorithms beyond message passing.

Chapter 5: Deep learning

- Scikit-learn (https://scikit-learn.org) includes a large number of traditional machine learning algorithms and tutorials. Glassner (2018, Chapter 15) has a nice review of these algorithms along with some exercises.
- Over the last decade, a large number of deep learning software frameworks and programming language extensions have been developed. The Wikipedia entry on deep learning software lists over twenty such frameworks.⁴
- The Dive into Deep Learning book (Zhang, Lipton *et al.* 2021) and associated course (Smola and Li 2019) use MXNet for all the examples in the text, but they have recently released PyTorch and TensorFlow code samples as well. Stanford's CS231n (Li, Johnson, and Yeung 2019) and Johnson (2020) include a lecture on the fundamentals of PyTorch and TensorFlow.
- Some classes also use simplified frameworks that require the students to implement more components, such as the Educational Framework (EDF) developed by McAllester (2020) and used in Geiger (2021).

⁴https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software

- PyTorch (https://pytorch.org) and TensorFlow (https://www.tensorflow.org) are currently the most widely used deep learning frameworks. Compared to NumPy, they enable much faster numerical computing by leveraging a GPU.
- Tensor Processing Units (TPUs) are specialized hardware optimized specifically for deep learning and can offer speed improvements over GPUs. TPUs are only available through Google Cloud. While they are still less popular than GPUs, many of the new papers using TPUs find it most effective to use JAX (https://github.com/google/jax).
- Even though deep learning frameworks provide some support for image augmentation, the imgaug library (https://github.com/aleju/imgaug) provides a much wider range of augmentation possibilities.
- VISSL (https://vissl.ai) is an extendable self-supervised learning framework written in PyTorch. It provides many benchmarks, model implementations, and weights.
- Google Colab (https://colab.research.google.com) is often used as a free cloud computing platform for the assignments in computer vision courses that can benefit from a GPU. It provides access to a GPU and memory to download datasets. The programming environment uses Jupyter interactive notebooks, which makes code easy to share and reproduce.
- Kaggle (https://www.kaggle.com), a Google subsidiary, provides a platform to compete with your own models on many popular computer vision datasets. The vast majority of winning models now using deep learning, with many of the challenges providing lively discussions about how different people attempted the problem and explored the data.
- Variants of the LeNet-5 architecture (Figure 5.33) are commonly used as the first convolutional neural network introduced in courses and tutorials on the subject.⁵ Although the MNIST dataset (LeCun, Cortes, and Burges 1998) originally used to train LeNet-5 is still sometimes used, it is more common to use the more challenging CIFAR-10 (Krizhevsky 2009) or Fashion MNIST (Xiao, Rasul, and Vollgraf 2017).
- Andrej Karpathy provides a useful guide for training neural networks at https://karpathy.github.io/2019/04/25/recipe, which may help avoid common issues.
- A great way to experiment with various CNN architectures is to download pre-trained models from a *model zoo* such as the TorchVision library (https://github.com/pytorch/ vision). If you look in the torchvision/models folder, you will find implementations

⁵See, e.g., https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html.

of AlexNet, VGG, GoogleNet, Inception, ResNet, DenseNet, MobileNet, and ShuffleNet, along with other models for classification, object detection, and image segmentation. Even more recent models can be found in the PyTorch Image Models library (timm), https://github.com/rwightman/pytorch-image-models. Similar collections of pre-trained models exist for other languages, e.g., https://www.tensorflow.org/lite/models for efficient (mobile) TensorFlow models.

- In addition to software frameworks and libraries, deep learning code development usually benefits from good visualization libraries such as TensorBoard (https://www.tensorflow.org/tensorboard) and Visdom (https://github.com/fossasia/visdom). A great way to get some intuition on how deep networks update the weights and carve out a solution space during training is to play with the interactive visualization at https://playground.tensorflow.org, as shown in Figure 5.32. OpenAI also recently released a great interactive tool called Microscope (https://microscope.openai.com/models), which allows people to visualize the significance of every neuron in a network.
- The PyTorch3D library (https://github.com/facebookresearch/pytorch3d) provides representations and functions to process 3D volumes and 3D meshes using deep neural networks.

Chapter 6: Recognition

- For large-scale similarity search and clustering, the GPU-enabled Faiss library (https://github.com/facebookresearch/faiss) developed by Johnson, Douze, and Jégou (2021) can scale to very large datasets.
- There are many open-source frameworks such as Classy Vision (https://classyvision.
 ai), TensorFlow Core (https://www.tensorflow.org/tutorials/images/classification), and
 MMClassification (https://openmmlab.com) for training and fine tuning image and video
 classification models. You can also upload your images to the Computer Vision Explorer (https://vision-explorer.allenai.org) to see how well popular computer vision
 models perform on them.
- Open-source frameworks for training and fine-tuning object detectors include the TensorFlow Object Detection API (https://github.com/tensorflow/models/tree/master/research/object_detection), PyTorch's Detectron2 (https://github.com/facebookresearch/detectron2), and OpenMMLab's MMDetection (https://openmmlab.com/codebase#MMDetection) (Chen, Wang et al. 2019).

⁶Additional interactive demonstrations can be found at https://cs.stanford.edu/people/karpathy/convnetjs.

- Detectron2 also includes semantic and panoptic segmentation, which can also be found in TensorFlow Core (https://www.tensorflow.org/tutorials/images/segmentation) and many other libraries.
- OpenPose (Cao, Hidalgo et al. 2019) and DensePose (Güler, Neverova, and Kokkinos 2018) are two popular software packages for determining "stick figure" and dense pixel-labeled 3D pose from 2D images.
- Pointers to software for more specialized tasks such as face detection and recognition, pedestrian detection, video understanding, and vision and language can usually be found alongside the latest papers discussed in Chapter 6.

Chapter 7: Feature detection and matching

- Implementations of many of the "classic" feature detectors and descriptors can be found in the OpenCV Features2D class and sub-classes.
- Implementations of newer DNN-based detectors and descriptors can be found associated with the papers discussed in Chapter 7 and the datasets discussed in Appendix C.1.

Chapter 9: Motion estimation

The leaderboards (evaluation results) for the Middlebury (https://vision.middlebury.
 edu/flow/eval/results/results-e1.php), Sintel (http://sintel.is.tue.mpg.de/results), and KITTI
 (http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow) datasets contain pointers to the latest optical flow papers and code.

Chapter 10: Computational photography

Pointers to papers and algorithms for a variety of computational photography tasks such
as super-resolution, image denoising, image and video matting, and inpainting can be
found at the benchmarks and workshops associated with these topics, as discussed in
Chapter 10 and the list of datasets in Appendix C.1.

Chapter 11: Structure from motion and SLAM

OpenCV implements a number of widely used camera calibration and pose estimation algorithm in the calib3d module, as does OpenGV (https://laurentkneip.github.io/opengv) (Kneip and Furgale 2014) and OpenMVG (https://github.com/openMVG/openMVG) (Moulon, Monasse et al. 2016).

You can find an experimental comparison of a number of RANSAC variants at https://opencv.org/evaluating-opencvs-new-ransacs/.

- A large number of open-source bundle adjustment algorithms designed to handle unordered photo collections have been developed over the years, including:
 - SBA: sparse bundle adjustment (https://www.ics.forth.gr/~lourakis/sba) (Lourakis and Argyros 2009).
 - Simple sparse bundle adjustment (SSBA) (https://github.com/chzach/SSBA).
 - Bundler, structure from motion for unordered image collections (https://phototour. cs.washington.edu/bundler) (Snavely, Seitz, and Szeliski 2006).
 - The Ceres Solver for bundle adjustment and general non-linear least squares (http://ceres-solver.org).
 - MCBA (Multicore Bundle Adjustment) (https://grail.cs.washington.edu/projects/mcba) (Wu, Agarwal *et al.* 2011).
 - Visual SfM (http://ccwu.me/vsfm), which wraps a GUI around several reconstruction algorithms (Wu, Agarwal et al. 2011; Wu 2013).
 - MVE (https://www.gcc.tu-darmstadt.de/home/proj/mve), a complete SfM pipeline with densification, meshing, and texturing (Fuhrmann, Langguth et al. 2015).
 - The Theia global structure from motion library (http://www.theia-sfm.org) (Sweeney, Hollerer, and Turk 2015).
 - OpenMVG (Open Multiple View Geometry) https://github.com/openMVG/openMVG (Moulon, Monasse *et al.* 2016).
 - COLMAP (https://github.com/colmap/colmap), which includes both a large-scale structure from motion system (Schönberger and Frahm 2016) and a multi-view stereo pipeline (Schönberger, Zheng et al. 2016).
 - Square Root Bundle Adjustment (https://vision.in.tum.de/research/vslam/rootba)
 (Demmel, Sommer *et al.* 2021).

Among these, COLMAP appears to be the most often used today in other research projects, e.g., for image-based rendering systems.

- Popular open-source packages for Simultaneous Localization and Mapping (SLAM) and Visual Odometry (VO or VIO) include
 - LSD-SLAM (large-scale direct SLAM) (Engel, Schöps, and Cremers 2014),

- ORB-SLAM (Mur-Artal, Montiel, and Tardos 2015) and ORB-SLAM2 (Mur-Artal and Tardós 2017),
- SVO (semi-direct visual odometry) (Forster, Zhang et al. 2017),
- GTSAM (Dellaert and Kaess 2017; Dellaert 2021),
- DSO (direct sparse odometry) (Engel, Koltun, and Cremers 2018),
- BAD SLAM (bundle adjusted direct RGB-D SLAM) (Schöps, Sattler, and Pollefeys 2019a), and
- GSLAM (a general SLAM framework and benchmark) (Zhao, Xu et al. 2019).
- There are also highly-optimized SLAM/VIO libraries available on mobile platforms, such as iOS (ARKit), Android (ARCore), and Facebook (Spark AR Studio), designed for easy integration into mobile augmented reality applications.

Chapter 12: Stereo correspondence

- Open-source software for the latest stereo matching, multi-view, and monocular depth inference algorithms usually accompanies recently published papers. Lists of the most recent and best performing algorithms can be found on the leaderboards associated with the most popular benchmarks such as Middlebury, KITTI, ETH3D, and Tanks and Temples, which are discussed in Appendix C.1 and Tables 12.1 and C.1. algorithm
- Both MVE (https://www.gcc.tu-darmstadt.de/home/proj/mve) (Fuhrmann, Langguth *et al.* 2015) and COLMAP (https://github.com/colmap/colmap) (Schönberger, Zheng *et al.* 2016) provide complete 3D reconstruction pipelines that include structure from motion, multi-view stereo densification, mesh generation, and texturing. A review of earlier packages can be found in Furukawa and Hernández (2015).
- A number of high-quality commercial photogrammetry packages such as CapturingReality, ContextCapture, Metashape, and Pix4D, which grew out of computer vision research labs, provide similar functionality.⁷

Chapter 13: 3D reconstruction

• The Scanalyze package (https://graphics.stanford.edu/software/scanalyze) developed at the Stanford Graphics lab contains a number of algorithms for aligning, registering, and fusing range images and 3D meshes.

 $^{^7} See \ also \ https://peterfalkingham.com/2020/07/10/free-and-commercial-photogrammetry-software-review-2020 \ and \ https://all3dp.com/1/best-photogrammetry-software.$

 Open3D (http://www.open3d.org) is a more recent package with similar registration and volumetric merging capabilities (Zhou, Park, and Koltun 2018).

- MeshLab (https://www.meshlab.net) is a widely used package for processing, editing, and viewing 3D triangular meshes (Cignoni, Callieri et al. 2008).
- X3D is an XML-based format for representing 3D geometry and is an updated version
 of the original VRML (.wrl) format. A number of high-quality interactive viewers can
 be found on the web.
- The Point Cloud Library (PCL) at https://pointclouds.org is a library for point cloud processing and includes functions for feature detection, registration, segmentation, and visualization.
- As mentioned previously, both MVE and COLMAP have functions to generate 3D texture-mapped meshes (Fuhrmann, Langguth *et al.* 2015; Schönberger, Zheng *et al.* 2016).
- Canvas (https://canvas.io) is a phone-based 3D capture app that merges depth data from the phone's lidar sensor to produce complete textured 3D meshes.

Chapter 14: Image-based rendering

• As with other areas of computer vision, most recently published image-based rendering and neural rendering papers now come with open source implementations.

Appendix A: Linear algebra and numerical techniques

- The first edition of this book (Szeliski 2010, Appendix C.2) lists a number of widely
 used linear algebra and non-linear least squares packages such as BLAS, LAPACK,
 ATLAS, MKL, MINPACK, PARADISO, TAUCS, HSL, and ITSOL. Most of these
 are now integrated into larger packages such as Python's NumPy and GPU machine
 learning frameworks such as PyTorch and TensorFlow.
- If you are interested in sparse linear least squares solvers, it is worth looking at SuiteSparse (https://people.engr.tamu.edu/davis/suitesparse.html), since it contains a wide range
 of algorithms and associated publications (Davis 2006, 2011).

Appendix B: Bayesian modeling and inference

- The Middlebury benchmark for MRF minimization, https://vision.middlebury.edu/MRF/code, contains implementations of basic MRF inference algorithms (Szeliski, Zabih et al. 2008).
- The OpenGM2 library and benchmarks for discrete factor graph models, http://hciweb2.
 iwr.uni-heidelberg.de/opengm, contains a more extensive and up-to-date set of algorithms. (Kappes, Andres et al. 2015).

C.3 Slides and lectures

While there are no official slide sets to go with this book, its content largely parallels that of the courses I have co-taught at the University of Washington, https://www.cs.washington.edu/education/courses/cse576.

Related computer vision and deep learning classes include:

- Noah Snavely's Introduction to Computer Vision class at Cornell Tech, https://www.cs.cornell.edu/courses/cs5670/2021sp/
- Alyosha Efros' Intro to Computer Vision and Computational Photography class at Berkeley https://inst.eecs.berkeley.edu/~cs194-26/fa20.
- David Fouhey's and Justin Johnson's Computer Vision class at the University of Michigan, https://web.eecs.umich.edu/~justincj/teaching/eecs442.
- Bill Freeman, Antonio Torralba, and Phillip Isola's Advances in Computer Vision class at MIT http://6.869.csail.mit.edu/sp21.
- Justin Johnson's Deep Learning for Computer Vision class at the University of Michigan, https://web.eecs.umich.edu/~justincj/teaching/eecs498.
- Yann LeCun and Alfredo Canziani's Deep Learning class at NYU, https://atcold.github. io/NYU-DLSP21.
- UC Berkeley's class on Deep Unsupervised Learning, https://sites.google.com/view/berkeley-cs294-158-sp20.

You can find a more comprehensive list of such courses on the book's web site, https://szeliski.org/Book/default.htm#Slides.

There are also some great online lectures series, including:

C.3 Slides and lectures 971

• The 2004 UW-MSR Course on Vision Algorithms, http://www.cs.washington.edu/education/courses/cse577/04sp/index.htm.

- The 2020-2021 TUM AI Guest Lecture Series, https://niessner.github.io/TUM-AI-Lecture-Series.
- The 2020-2021 3DGV virtual seminar series on Geometry Processing and 3D Computer Vision, https://3dgv.github.io.

- Aafaq, N., Mian, A., Liu, W., Gilani, S. Z., and Shah, M. (2019). Video description: A survey of methods, datasets, and evaluation metrics. ACM Computing Surveys, 52(6):1–37.
- Abbeel, P. (2019). University of California at Berkeley CS 287 class: Advanced robotics. Slides and video recordings available at https://people.eecs.berkeley.edu/~pabbeel/cs287-fa19.
- Abdel-Hakim, A. E. and Farag, A. A. (2006). CSIFT: A SIFT descriptor with color invariant characteristics. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1978–1983.
- Abdelhamed, A., Lin, S., and Brown, M. S. (2018). A high-quality denoising dataset for smartphone cameras. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Abdelhamed, A., Afifi, M., Timofte, R., and Brown, M. S. (2020). NTIRE 2020 challenge on real image denoising: Dataset, methods and results. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.
- Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., and Vijayanarasimhan, S. (2016). YouTube-8M: A large-scale video classification benchmark. *arXiv* preprint arXiv:1609.08675.
- Abuolaim, A. and Brown, M. S. (2020). Defocus deblurring using dual-pixel data. In *European Conference on Computer Vision (ECCV)*.
- Ackerman, E. (2019). Skydio's new drone is smaller, even smarter, and (almost) affordable. *IEEE Spectrum*. https://spectrum.ieee.org/automaton/robotics/drones/skydios-new-drone-is-smaller-even-smarter-and-almost-affordable.
- Ackerman, E. (2020). Covariant uses simple robot and gigantic neural net to automate ware-house picking. *IEEE Spectrum*. https://spectrum.ieee.org/automaton/robotics/industrial-robots/covariant-ai-gigantic-neural-network-to-automate-warehouse-picking.
- Ackermann, J. and Goesele, M. (2015). A survey of photometric stereo techniques. *Foundations and Trends*® *in Computer Graphics and Vision*, 9(3-4):149–254.
- Ackermann, J., Langguth, F., Fuhrmann, S., and Goesele, M. (2012). Photometric stereo for outdoor webcams. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann Machines. *Cognitive Science*, 9:147–169.
- Adam, A., Rivlin, E., and Shimshoni, I. (2006). Robust fragments-based tracking using the integral histogram. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 798–805.
- Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D. E., Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek, J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K., Horowitz, M., and Levoy, M. (2010). The Frankencamera: An experimental platform for computational photography. ACM Transactions on Graphics, 29(4):29.
- Adams, A., Baek, J., and Davis, M. A. (2010). Fast high-dimensional filtering using the permutohedral lattice. In *Computer Graphics Forum (Eurographics)*, pp. 753–762.
- Adelson, E. H. and Bergen, J. (1991). The plenoptic function and the elements of early vision. In *Computational Models of Visual Processing*, pp. 3–20.
- Adiv, G. (1989). Inherent ambiguities in recovering 3-D motion and structure from a noisy flow field. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11(5):477–490.
- Agarwal, A. and Triggs, B. (2006). Recovering 3D human pose from monocular images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(1):44–58.
- Agarwal, S., Snavely, N., Seitz, S. M., and Szeliski, R. (2010). Bundle adjustment in the large. In *European Conference on Computer Vision (ECCV)*, pp. 29–42.
- Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. (2009). Building Rome in a day. In *IEEE International Conference on Computer Vision (ICCV)*.
- Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S. M., and Szeliski, R. (2010). Reconstructing Rome. *Computer*, 43(6):40–47.
- Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., and Szeliski, R. (2011). Building Rome in a day. *Communications of the ACM*, 54(10):105–112.
- Agarwala, A. (2007). Efficient gradient-domain compositing using quadtrees. *ACM Transactions on Graphics*, 26(3).
- Agarwala, A., Hertzmann, A., Seitz, S., and Salesin, D. (2004). Keyframe-based tracking for rotoscoping and animation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 23(3):584–591.
- Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., and Szeliski, R. (2006). Photographing long scenes with multi-viewpoint panoramas. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 25(3):853–861.
- Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D. H., and Cohen, M. F. (2004). Interactive digital photomontage. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 23(3):292–300.
- Agarwala, A., Zheng, K. C., Pal, C., Agrawala, M., Cohen, M., Curless, B., Salesin, D., and Szeliski, R. (2005). Panoramic video textures. ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3):821–827.

Aggarwal, J. K. and Cai, Q. (1999). Human motion analysis: A review. *Computer Vision and Image Understanding*, 73(3):428–440.

- Aggarwal, J. K. and Nandhakumar, N. (1988). On the computation of motion from sequences of images—a review. *Proceedings of the IEEE*, 76(8):917–935.
- Aggarwal, J. K. and Ryoo, M. S. (2011). Human activity analysis: A review. *ACM Computing Surveys*, 43(3):1–43.
- Agin, G. J. and Binford, T. O. (1976). Computer description of curved objects. *IEEE Transactions on Computers*, C-25(4):439–449.
- Agrawal, A., Batra, D., Parikh, D., and Kembhavi, A. (2018). Don't just assume; look and answer: Overcoming priors for visual question answering. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. *IEEE Transactions on Signal Processing*, 54(11):4311–4322.
- Ahmadi, A. and Patras, I. (2016). Unsupervised convolutional neural networks for motion estimation. In 2016 IEEE International Conference on Image Processing (ICIP), pp. 1629–1633.
- Ahonen, T., Hadid, A., and Pietikäinen, M. (2006). Face description with local binary patterns: Application to face recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(12):2037–2041.
- Aittala, M., Weyrich, T., and Lehtinen, J. (2015). Two-shot SVBRDF capture for stationary materials. *ACM Transactions On Graphics (Proc. SIGGRAPH)*, 34(4):110–1.
- Akenine-Möller, T. and Haines, E. (2002). *Real-Time Rendering*. A K Peters, Wellesley, Massachusetts, 2nd edition.
- Aksoy, Y., Kim, C., Kellnhofer, P., Paris, S., Elgharib, M., Pollefeys, M., and Matusik, W. (2018).
 A dataset of flash and ambient illumination pairs from the crowd. In *European Conference on Computer Vision (ECCV)*.
- Al-Baali, M. and Fletcher, R. (1986). An efficient line search for nonlinear least squares. *Journal Journal of Optimization Theory and Applications*, 48(3):359–377.
- Alahari, K., Kohli, P., and Torr, P. (2010). Dynamic hybrid algorithms for MAP inference in discrete MRFs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(10):1846–1857.
- Alahi, A., Ortiz, R., and Vandergheynst, P. (2012). Freak: Fast retina keypoint. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Albl, C., Kukelova, Z., Larsson, V., Polic, M., Pajdla, T., and Schindler, K. (2020). From two rolling shutters to one global shutter. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Alcantarilla, P. F., Bartoli, A., and Davison, A. J. (2012). KAZE features. In *European Conference on Computer Vision (ECCV)*, pp. 214–227.

- Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast explicit diffusion for accelerated features in nonlinear scale spaces. In *British Machine Vision Conference (BMVC)*.
- Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. (2003). Computing and rendering point set surfaces. *IEEE Transactions on Visualization and Computer Graphics*, 9(1):3–15.
- Alexe, B., Deselaers, T., and Ferrari, V. (2012). Measuring the objectness of image windows. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(11):2189–2202.
- Aliaga, D. G., Funkhouser, T., Yanovsky, D., and Carlbom, I. (2003). Sea of images. *IEEE Computer Graphics and Applications*, 23(6):22–30.
- Allen, B., Curless, B., and Popović, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):587–594.
- Allgower, E. L. and Georg, K. (2003). *Introduction to Numerical Continuation Methods*. Society for Industrial and Applied Mathematics.
- Aloimonos, J. (1990). Perspective approximations. Image and Vision Computing, 8:177–192.
- Alpert, S., Galun, M., Basri, R., and Brandt, A. (2007). Image segmentation by probabilistic bottomup aggregation and cue integration. In *IEEE Computer Society Conference on Computer Vision* and Pattern Recognition (CVPR).
- Alter, F., Matsushita, Y., and Tang, X. (2006). An intensity similarity measure in low-light conditions. In *European Conference on Computer Vision (ECCV)*, pp. 267–280.
- Alvarez, L., Weickert, J., and Sánchez, J. (2000). Reliable estimation of dense optical flow fields with large displacements. *International Journal of Computer Vision*, 39(1):41–56.
- Alwassel, H., Mahajan, D., Korbar, B., Torresani, L., Ghanem, B., and Tran, D. (2020). Self-supervised learning by cross-modal audio-video clustering. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Amidror, I. (2002). Scattered data interpolation methods for electronic imaging systems: a survey. *Journal of Electronic Imaging*, 11(2):157–76.
- Anandan, P. (1984). Computing dense displacement fields with confidence measures in scenes containing occlusion. In *Image Understanding Workshop*, pp. 236–246.
- Anandan, P. (1989). A computational framework and an algorithm for the measurement of visual motion. *International Journal of Computer Vision*, 2(3):283–310.
- Anandan, P. and Irani, M. (2002). Factorization with uncertainty. *International Journal of Computer Vision*, 49(2–3):101–116.
- Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J. W., Dongarra, J. J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. C. (1999). *LAPACK Users' Guide*. Society for Industrial and Applied Mathematics, 3rd edition.
- Anderson, P., Fernando, B., Johnson, M., and Gould, S. (2016). SPICE: Semantic propositional image caption evaluation. In *European Conference on Computer Vision (ECCV)*, pp. 382–398.

Anderson, P., He, X., Buehler, C., Teney, D., Johnson, M., Gould, S., and Zhang, L. (2018). Bottomup and top-down attention for image captioning and visual question answering. In *IEEE Confer*ence on Computer Vision and Pattern Recognition (CVPR).

- Anderson, R., Gallup, D., Barron, J. T., Kontkanen, J., Snavely, N., Hernández, C., Agarwal, S., and Seitz, S. M. (2016). Jump: virtual reality video. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 35(6):198.
- Andersson, P., Nilsson, J., Akenine-Möller, T., Oskarsson, M., Åström, K., and Fairchild, M. D. (2020). FLIP: A difference evaluator for alternating images. *Proceedings of the ACM on Computer Graphics and Interactive Techniques (High-Performance Graphics)*, 3(2):15.
- Andoni, A. and Indyk, P. (2006). Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In *IEEE Symposium on Foundations of Computer Science (FOCS)*, pp. 459– 468.
- Andreopoulos, A. and Tsotsos, J. K. (2013). 50 years of object recognition: Directions forward. *Computer Vision and Image Understanding*, 117(8):827–891.
- Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I. (2003). An introduction to MCMC for machine learning. *Machine Learning*, 50(1–2):5–43.
- Andriluka, M., Roth, S., and Schiele, B. (2008). People-tracking-by-detection and people-detection-by-tracking. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Andriluka, M., Roth, S., and Schiele, B. (2009). Pictorial structures revisited: People detection and articulated pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Andriluka, M., Roth, S., and Schiele, B. (2010). Monocular 3D pose estimation and tracking by detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Andriluka, M., Pishchulin, L., Gehler, P., and Schiele, B. (2014). 2D human pose estimation: New benchmark and state of the art analysis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. (2005). SCAPE: Shape completion and animation of people. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):408–416.
- Anjyo, K., Lewis, J. P., and Pighin, F. (2014). Scattered data interpolation for computer graphics. In *ACM SIGGRAPH Course Notes*.
- Ansar, A., Castano, A., and Matthies, L. (2004). Enhanced real-time stereo using bilateral filtering. In *International Symposium on 3D Data Processing*, *Visualization*, and *Transmission (3DPVT)*.
- Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. (2015). VQA: Visual question answering. In *IEEE International Conference on Computer Vision (ICCV)*.

- Antone, M. and Teller, S. (2002). Scalable extrinsic calibration of omni-directional image networks. *International Journal of Computer Vision*, 49(2–3):143–174.
- Antunes, M. and Barreto, J. P. (2013). A global approach for the detection of vanishing points and mutually orthogonal vanishing directions. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Anwar, S., Khan, S., and Barnes, N. (2020). A deep journey into super-resolution: A survey. *ACM Computing Surveys*, 53(3):60.
- Arandjelović, R. and Zisserman, A. (2012). Three things everyone should know to improve object retrieval. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Arandjelovic, R. and Zisserman, A. (2018). Objects that sound. In *European Conference on Computer Vision (ECCV)*.
- Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. (2016). NetVLAD: CNN architecture for weakly supervised place recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Araujo, A., Norris, W., and Sim, J. (2019). Computing receptive fields of convolutional neural networks. *Distill*, 4(11):e21.
- Arbeláez, P., Maire, M., Fowlkes, C., and Malik, J. (2011). Contour detection and hierarchical image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(5):898–916.
- Argyriou, V. and Vlachos, T. (2003). Estimation of sub-pixel motion using gradient cross-correlation. *Electronic Letters*, 39(13):980–982.
- Arikan, O. and Forsyth, D. A. (2002). Interactive motion generation from examples. ACM Transactions on Graphics, 21(3):483–490.
- Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In *International Conference on Machine Learning (ICML)*, pp. 214–223.
- Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., and Schmid, C. (2021). ViViT: A video vision transformer. *arXiv preprint arXiv:2103.15691*.
- Arnold, R. D. (1983). Automated Stereo Perception. Technical Report AIM-351, Artificial Intelligence Laboratory, Stanford University.
- Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. (1998). An optimal algorithm for approximate nearest neighbor searching in fixed dimensions. *Journal of the ACM*, 45(6):891–923.
- Asano, Y. M., Rupprecht, C., and Vedaldi, A. (2020). Self-labelling via simultaneous clustering and representation learning. In *International Conference on Learning Representations (ICLR)*.
- Ashdown, I. (1993). Near-field photometry: A new approach. Journal of the Illuminating Engineering Society, 22(1):163–180.
- Atkinson, K. B. (1996). *Close Range Photogrammetry and Machine Vision*. Whittles Publishing, Scotland, UK.

Attal, B., Ling, S., Gokaslan, A., Richardt, C., and Tompkin, J. (2020). MatryODShka: Real-time 6dof video view synthesis using multi-sphere images. In *European Conference on Computer Vision (ECCV)*.

- Aubry, M., Paris, S., Hasinoff, S. W., Kautz, J., and Durand, F. (2014). Fast local Laplacian filters: Theory and applications. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 33(5):167.
- Aurich, V. and Weule, J. (1995). Non-linear Gaussian filters performing edge preserving diffusion. In *DAGM Symposium*, pp. 538–545.
- Averbuch-Elor, H., Cohen-Or, D., Kopf, J., and Cohen, M. F. (2017). Bringing portraits to life. *Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):196.
- Avidan, S. (2001). Support vector tracking. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 283–290.
- Avidan, S., Baker, S., and Shan, Y. (2010). Special issue on Internet Vision. *Proceedings of the IEEE*, 98(8):1367–1369.
- Axelsson, O. (1996). Iterative Solution Methods. Cambridge University Press, Cambridge.
- Ayache, N. (1989). Vision Stéréoscopique et Perception Multisensorielle. InterEditions, Paris.
- Azarbayejani, A. and Pentland, A. P. (1995). Recursive estimation of motion, structure, and focal length. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(6):562–575.
- Azuma, R. T., Baillot, Y., Behringer, R., Feiner, S. K., Julier, S., and MacIntyre, B. (2001). Recent advances in augmented reality. *IEEE Computer Graphics and Applications*, 21(6):34–47.
- Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. *arXiv preprint* arXiv:1607.06450.
- Baak, A., Mueller, M., Bharaj, G., Seidel, H.-P., and Theobalt, C. (2011). A data-driven approach for real-time full body pose reconstruction from a depth camera. In *International Conference on Computer Vision (ICCV)*.
- Baatz, G., Saurer, O., Köser, K., and Pollefeys, M. (2012). Large scale visual geo-localization of images in mountainous terrain. In *European Conference on Computer Vision (ECCV)*, pp. 517–530.
- Bab-Hadiashar, A. and Suter, D. (1998a). Robust optic flow computation. *International Journal of Computer Vision*, 29(1):59–77.
- Bab-Hadiashar, A. and Suter, D. (1998b). Robust total least squares based optic flow computation. In *Asian Conference on Computer Vision (ACCV)*, pp. 566–573.
- Babenko, A. and Lempitsky, V. (2015a). Aggregating local deep features for image retrieval. In *IEEE International Conference on Computer Vision (ICCV)*.
- Babenko, A. and Lempitsky, V. (2015b). The inverted multi-index. *IEEE transactions on pattern analysis and machine intelligence*, 37(6):1247–1260.
- Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Baskurt, A. (2011). Sequential deep learning for human action recognition. In *International Workshop on Human Behavior Understanding*, pp. 29–39.

- Badra, F., Qumsieh, A., and Dudek, G. (1998). Rotation and zooming in image mosaicing. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 50–55.
- Bae, S., Paris, S., and Durand, F. (2006). Two-scale tone management for photographic look. *ACM Transactions on Graphics*, 25(3):637–645.
- Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison Wesley.
- Bai, X. and Sapiro, G. (2009). Geodesic matting: A framework for fast interactive image and video segmentation and matting. *International Journal of Computer Vision*, 82(2):113–132.
- Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. *IEEE Robotics & Automation Magazine*, 13(3):108–117.
- Bajcsy, R. and Kovacic, S. (1989). Multiresolution elastic matching. *Computer Vision, Graphics, and Image Processing*, 46(1):1–21.
- Baker, H. H. (1977). Three-dimensional modeling. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 649–655.
- Baker, H. H. (1989). Building surfaces of evolution: The weaving wall. *International Journal of Computer Vision*, 3(1):50–71.
- Baker, H. H. and Binford, T. O. (1981). Depth from edge and intensity based stereo. In *IJCAI*, pp. 631–636.
- Baker, H. H. and Bolles, R. C. (1989). Generalizing epipolar-plane image analysis on the spatiotemporal surface. *International Journal of Computer Vision*, 3(1):33–49.
- Baker, S. and Kanade, T. (2002). Limits on super-resolution and how to break them. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(9):1167–1183.
- Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A unifying framework: Part 1: The quantity approximated, the warp update rule, and the gradient descent approximation. *Interna*tional Journal of Computer Vision, 56(3):221–255.
- Baker, S. and Nayar, S. (1999). A theory of single-viewpoint catadioptric image formation. *International Journal of Computer Vision*, 5(2):175–196.
- Baker, S. and Nayar, S. K. (2001). Single viewpoint catadioptric cameras. In Benosman, R. and Kang, S. B. (eds), *Panoramic Vision: Sensors, Theory, and Applications*, pp. 39–71, Springer, New York.
- Baker, S., Gross, R., and Matthews, I. (2003). *Lucas-Kanade 20 Years On: A Unifying Framework: Part 3*. Technical Report CMU-RI-TR-03-35, The Robotics Institute, Carnegie Mellon University.
- Baker, S., Gross, R., and Matthews, I. (2004). *Lucas-Kanade 20 Years On: A Unifying Framework: Part 4*. Technical Report CMU-RI-TR-04-14, The Robotics Institute, Carnegie Mellon University.
- Baker, S., Szeliski, R., and Anandan, P. (1998). A layered approach to stereo reconstruction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 434–441.
- Baker, S., Bennett, E., Kang, S. B., and Szeliski, R. (2010). Removing rolling shutter wobble. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Baker, S., Gross, R., Ishikawa, T., and Matthews, I. (2003). Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report CMU-RI-TR-03-01, The Robotics Institute, Carnegie Mellon University.

- Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., and Szeliski, R. (2009). A Database and Evaluation Methodology for Optical Flow. Technical Report MSR-TR-2009-179, Microsoft Research.
- Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M. J., and Szeliski, R. (2011). A database and evaluation methodology for optical flow. *International Journal of Computer Vision*, 92(1):1–31.
- Bălan, A. O. and Black, M. J. (2008). The naked truth: Estimating body shape under clothing. In *European Conference on Computer Vision (ECCV)*, pp. 15–29.
- Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary patterns. *Pattern Recognition*, 13(2):111–122.
- Ballas, N., Yao, L., Pal, C., and Courville, A. (2016). Delving deeper into convolutional networks for learning video representations. In *International Conference on Learning Representations (ICLR)*.
- Balntas, V., Li, S., and Prisacariu, V. (2018). RelocNet: Continuous metric learning relocalisation using neural nets. In *European Conference on Computer Vision (ECCV)*.
- Balntas, V., Riba, E., Ponsa, D., and Mikolajczyk, K. (2016). Learning local feature descriptors with triplets and shallow convolutional neural networks. In *British Machine Vision Conference* (*BMVC*), p. 3.
- Balntas, V., Lenc, K., Vedaldi, A., Tuytelaars, T., Matas, J., and Mikolajczyk, K. (2020). HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(11):2825–2841.
- Bamji, C. S., O'Connor, P., Elkhatib, T., Mehta, S., Thompson, B., Prather, L. A., Snow, D., Akkaya, O. C., Daniel, A., Payne, A. D., Perry, T., Fenton, M., and Chan, V.-H. (2014). A 0.13 μ m CMOS system-on-chip for a 512 \times 424 time-of-flight image sensor with multi-frequency photodemodulation up to 130 MHz and 2 GS/s ADC. *IEEE Journal of Solid-State Circuits*, 50(1):303–319.
- Banerjee, S. and Lavie, A. (2005). METEOR: An automatic metric for mt evaluation with improved correlation with human judgments. In *Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization*, pp. 65–72.
- Banno, A., Masuda, T., Oishi, T., and Ikeuchi, K. (2008). Flying laser range sensor for large-scale site-modeling and its applications in Bayon digital archival project. *International Journal of Computer Vision*, 78(2–3):207–222.
- Bansal, A., Vo, M., Sheikh, Y., Ramanan, D., and Narasimhan, S. (2020). 4D visualization of dynamic events from unconstrained multi-view videos. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Banterle, F., Artusi, A., Debattista, K., and Chalmers, A. (2017). *Advanced high dynamic range imaging*. CRC Press.

- Bar-Joseph, Z., El-Yaniv, R., Lischinski, D., and Werman, M. (2001). Texture mixing and texture movie synthesis using statistical learning. *IEEE Transactions on Visualization and Computer Graphics*, 7(2):120–135.
- Bar-Shalom, Y. and Fortmann, T. E. (1988). Tracking and data association. Academic Press, Boston.
- Barash, D. (2002). A fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(6):844–847.
- Barash, D. and Comaniciu, D. (2004). A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. *Image and Vision Computing*, 22(1):73–81.
- Barath, D. and Matas, J. (2018). Graph-cut RANSAC. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Barath, D., Matas, J., and Noskova, J. (2019). MAGSAC: Marginalizing sample consensus. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Barath, D., Noskova, J., Ivashechkin, M., and Matas, J. (2020). MAGSAC++, a fast, reliable and accurate robust estimator. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Barkans, A. C. (1997). High quality rendering using the Talisman architecture. In *Eurographics Workshop on Graphics Hardware*.
- Barnard, S. T. (1989). Stochastic stereo matching over scale. *International Journal of Computer Vision*, 3(1):17–32.
- Barnard, S. T. and Fischler, M. A. (1982). Computational stereo. Computing Surveys, 14(4):553–572.
- Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. (2009). PatchMatch: A randomized correspondence algorithm for structural image editing. *ACM Transactions on Graphics*, 28(3):24.
- Barnes, C., Jacobs, D. E., Sanders, J., Goldman, D. B., Rusinkiewicz, S., Finkelstein, A., and Agrawala, M. (2008). Video puppetry: A performative interface for cutout animation. ACM Transactions on Graphics, 27(5):124.
- Barreto, J. P. and Daniilidis, K. (2005). Fundamental matrix for cameras with radial distortion. In *International Conference on Computer Vision (ICCV)*, pp. 625–632.
- Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow techniques. *International Journal of Computer Vision*, 12(1):43–77.
- Barron, J. T. (2019). A general and adaptive robust loss function. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Barron, J. T. and Malik, J. (2012). Shape, albedo, and illumination from a single image of an unknown object. In *IEEE Computer Society Conference on Computer Vision and Pattern Recogni*tion (CVPR).
- Barron, J. T. and Poole, B. (2016). The fast bilateral solver. In *European Conference on Computer Vision (ECCV)*.

Barron, J. T., Adams, A., Shih, Y., and Hernandez, C. (2015). Fast bilateral-space stereo for synthetic defocus. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., and Srinivasan, P. P. (2021). Mip-NeRF: A multiscale representation for anti-aliasing neural radiance fields. *arXiv preprint arXiv:2103.13415*.
- Barroso-Laguna, A., Riba, E., Ponsa, D., and Mikolajczyk, K. (2019). Key.Net: Keypoint detection by handcrafted and learned CNN filters. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Barrow, H. G. and Tenenbaum, J. M. (1981). Computational vision. *Proceedings of the IEEE*, 69(5):572–595.
- Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1987). *An Introduction to Splines for use in Computer Graphics and Geometric Modeling*. Morgan Kaufmann Publishers, Los Altos.
- Bartoli, A. (2003). Towards gauge invariant bundle adjustment: A solution based on gauge dependent damping. In *International Conference on Computer Vision (ICCV)*, pp. 760–765.
- Bartoli, A. and Sturm, P. (2003). Multiple-view structure and motion from line correspondences. In *International Conference on Computer Vision (ICCV)*, pp. 207–212.
- Bartoli, A., Coquerelle, M., and Sturm, P. (2004). A framework for pencil-of-points structure-from-motion. In *European Conference on Computer Vision (ECCV)*, pp. 28–40.
- Bascle, B., Blake, A., and Zisserman, A. (1996). Motion deblurring and super-resolution from an image sequence. In *European Conference on Computer Vision (ECCV)*, pp. 573–582.
- Bathe, K.-J. (2007). Finite Element Procedures. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
- Batsos, K. and Mordohai, P. (2018). RecResNet: A recurrent residual CNN architecture for disparity map enhancement. In *International Conference on 3D Vision (3DV)*, pp. 238–247.
- Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba, A. (2017). Network dissection: Quantifying interpretability of deep visual representations. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J.-Y., and Torralba, A. (2019). Semantic photo manipulation with a generative image prior. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):59:1–59:11.
- Baudisch, P., Tan, D., Steedly, D., Rudolph, E., Uyttendaele, M., Pal, C., and Szeliski, R. (2006). An exploration of user interface designs for real-time panoramic photography. *Australian Journal of Information Systems*, 13(2).
- Baumberg, A. (2000). Reliable feature matching across widely separated views. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 774–781.
- Baumberg, A. M. and Hogg, D. C. (1996). Generating spatiotemporal models from examples. *Image and Vision Computing*, 14(8):525–532.
- Baumgart, B. G. (1974). *Geometric Modeling for Computer Vision*. Technical Report AIM-249, Artificial Intelligence Laboratory, Stanford University.

- Bay, H., Ferrari, V., and Van Gool, L. (2005). Wide-baseline stereo matching with line segments. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 329–336.
- Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (SURF). *Computer Vision and Image Understanding*, 110:346–359.
- Bayer, B. E. (1976). Color imaging array. US Patent No. 3,971,065.
- Bazin, J.-C., Seo, Y. D., Demonceaux, C., Vasseur, P., Ikeuchi, K., Kweon, I. S., and Pollefeys, M. (2012). Globally optimal line clustering and vanishing point estimation in Manhattan world. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
- Beardsley, P., Torr, P., and Zisserman, A. (1996). 3D model acquisition from extended image sequences. In *European Conference on Computer Vision (ECCV)*, pp. 683–695.
- Beare, R. (2006). A locally constrained watershed transform. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(7):1063–1074.
- Becker, S. and Bove, V. M. (1995). Semiautomatic 3-D model extraction from uncalibrated 2-D camera views. In *SPIE Vol. 2410, Visual Data Exploration and Analysis II*, pp. 447–461.
- Behl, A., Paschalidou, D., Donne, S., and Geiger, A. (2019). PointFlowNet: Learning representations for rigid motion estimation from point clouds. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Behl, A., Hosseini Jafari, O., Karthik Mustikovela, S., Abu Alhaija, H., Rother, C., and Geiger, A. (2017). Bounding boxes, segmentations and object coordinates: How important is recognition for 3D scene flow estimation in autonomous driving scenarios? In *IEEE International Conference on Computer Vision (ICCV)*.
- Beier, T. and Neely, S. (1992). Feature-based image metamorphosis. *Computer Graphics (SIG-GRAPH)*, 26(2):35–42.
- Beis, J. S. and Lowe, D. G. (1999). Indexing without invariants in 3D object recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(10):1000–1015.
- Belhumeur, P. N. (1996). A Bayesian approach to binocular stereopsis. *International Journal of Computer Vision*, 19(3):237–260.
- Belhumeur, P. N., Hespanha, J. P., and Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):711–720.
- Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. *Neural Computation*, 15(6):1373–1396.
- Bell, S. and Bala, K. (2015). Learning visual similarity for product design with convolutional neural networks. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 34(4):98.
- Bell, S., Liu, Y., Alsheikh, S., Tang, Y., Pizzi, E., Henning, M., Singh, K., Parkhi, O., and Borisyuk, F. (2020). GrokNet: Unified computer vision model trunk and embeddings for commerce. In

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA.

- Bellavia, F. and Colombo, C. (2020). Is there anything new to say about SIFT matching? *International Journal of Computer Vision*, 128(7):1847–1866.
- Belongie, S. and Malik, J. (1998). Finding boundaries in natural images: a new method using point descriptors and area completion. In *European Conference on Computer Vision (ECCV)*, pp. 751–766.
- Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition using shape contexts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(4):509–522.
- Belongie, S., Fowlkes, C., Chung, F., and Malik, J. (2002). Spectral partitioning with indefinite kernels using the Nyström extension. In *European Conference on Computer Vision (ECCV)*, pp. 531–543.
- Bemana, M., Myszkowski, K., Seidel, H.-P., and Ritschel, T. (2020). X-Fields: Implicit neural view-, light- and time-image interpolation. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 39(6).
- Ben-Shabat, Y. and Gould, S. (2020). DeepFit: 3D surface fitting via neural network weighted least squares. In *European Conference on Computer Vision (ECCV)*.
- Benfold, B. and Reid, I. (2011). Stable multi-target tracking in real-time surveillance video. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Bengio, Y. (2009). Learning deep architectures for AI. *Foundations and Trends*® *in Machine Learning*, 2(1):1–127.
- Bengio, Y., LeCun, Y., and Hinton, G. (2021). Deep learning for AI. *Communications of the ACM*, 64(7):58–65.
- Bengio, Y., Paiement, J.-F., Vincent, P., Delalleau, O., Roux, N. L., and Ouimet, M. (2004). Out-of-Sample extensions for LLE, Isomap, MDS, Eigenmaps, and spectral clustering. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 177–184.
- Bennett, E., Uyttendaele, M., Zitnick, C. L., Szeliski, R., and Kang, S. B. (2006). Video and image Bayesian demosaicing with a two color image prior. In *European Conference on Computer Vision* (*ECCV*), pp. 508–521.
- Benosman, R. and Kang, S. B. (eds). (2001). *Panoramic Vision: Sensors, Theory, and Applications*, Springer, New York.
- Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992). Hierarchical model-based motion estimation. In *European Conference on Computer Vision (ECCV)*, pp. 237–252.
- Bergen, J. R., Burt, P. J., Hingorani, R., and Peleg, S. (1992). A three-frame algorithm for estimating two-component image motion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(9):886–896.
- Berger, J. O. (1993). Statistical Decision Theory and Bayesian Analysis. Springer, New York, 2nd edition.

- Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guennebaud, G., Levine, J. A., Sharf, A., and Silva, C. T. (2017). A survey of surface reconstruction from point clouds. *Computer Graphics Forum*, 36(1):301–329.
- Bergmann, P., Meinhardt, T., and Leal-Taixé, L. (2019). Tracking without bells and whistles. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Berman, M., Jégou, H., Vedaldi, A., Kokkinos, I., and Douze, M. (2019). MultiGrain: a unified image embedding for classes and instances. *arXiv* preprint arXiv:1902.05509.
- Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (2000). Image inpainting. In *ACM SIG-GRAPH Conference Proceedings*, pp. 417–424.
- Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. (2003). Simultaneous structure and texture image inpainting. *IEEE Transactions on Image Processing*, 12(8):882–889.
- Bertero, M., Poggio, T. A., and Torre, V. (1988). Ill-posed problems in early vision. *Proceedings of the IEEE*, 76(8):869–889.
- Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., and Torr, P. H. S. (2016a). Staple: Complementary learners for real-time tracking. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., and Torr, P. H. S. (2016b). Fully-convolutional Siamese networks for object tracking. In *European Conference on Computer Vision* (*ECCV*), pp. 850–865.
- Besag, J. (1986). On the statistical analysis of dirty pictures. *Journal of the Royal Statistical Society B*, 48(3):259–302.
- Besl, P. (1989). Active optical range imaging sensors. In Sanz, J. L. (ed.), *Advances in Machine Vision*, chapter 1, pp. 1–63, Springer-Verlag.
- Besl, P. J. and Jain, R. C. (1985). Three-dimensional object recognition. *Computing Surveys*, 17(1):75–145.
- Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):239–256.
- Betrisey, C., Blinn, J. F., Dresevic, B., Hill, B., Hitchcock, G., Keely, B., Mitchell, D. P., Platt, J. C., and Whitted, T. (2000). Displaced filtering for patterned displays. In *Society for Information Display Symposium*,, pp. 296–299.
- Beymer, D. (1996). Feature correspondence by interleaving shape and texture computations. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 921–928.
- Bhat, D. N. and Nayar, S. K. (1998). Ordinal measures for image correspondence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(4):415–423.
- Bi, S., Xu, Z., Sunkavalli, K., Kriegman, D., and Ramamoorthi, R. (2020a). Deep 3D capture: Geometry and reflectance from sparse multi-view images. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Bi, S., Xu, Z., Sunkavalli, K., Hašan, M., Hold-Geoffroy, Y., Kriegman, D., and Ramamoorthi, R. (2020b). Deep reflectance volumes: Relightable reconstructions from multi-view photometric images. In *European Conference on Computer Vision (ECCV)*.

- Bi, S., Xu, Z., Srinivasan, P., Mildenhall, B., Sunkavalli, K., Hašan, M., Hold-Geoffroy, Y., Kriegman, D., and Ramamoorthi, R. (2020c). Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824.
- Bickel, B., Botsch, M., Angst, R., Matusik, W., Otaduy, M., Pfister, H., and Gross, M. (2007). Multiscale capture of facial geometry and motion. *ACM Transactions on Graphics*, 26(3).
- Bilen, H. and Vedaldi, A. (2016). Weakly supervised deep detection networks. In *IEEE Conference* on Computer Vision and Pattern Recognition (CVPR).
- Billinghurst, M., Clark, A., and Lee, G. (2015). A survey of augmented reality. *Foundations and Trends*® *in Human-Computer Interaction*, 8(2–3):73–272.
- Billinghurst, M., Kato, H., and Poupyrev, I. (2001). The MagicBook: a transitional AR interface. *Computers & Graphics*, 25:745–753.
- Bimber, O. (2006). Computational photography—the next big step. Computer, 39(8):28–29.
- Birchfield, S. and Tomasi, C. (1998). A pixel dissimilarity measure that is insensitive to image sampling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(4):401–406.
- Birchfield, S. and Tomasi, C. (1999). Depth discontinuities by pixel-to-pixel stereo. *International Journal of Computer Vision*, 35(3):269–293.
- Birchfield, S. T., Natarajan, B., and Tomasi, C. (2007). Correspondence as energy-based segmentation. *Image and Vision Computing*, 25(8):1329–1340.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York, NY.
- Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., and Nayar, S. K. (2008). Face swapping: Automatically replacing faces in photographs. *ACM Transactions on Graphics*, 27(3):39.
- Björck, A. (1996). *Numerical Methods for Least Squares Problems*. Society for Industrial and Applied Mathematics.
- Björck, A. and Dahlquist, G. (2010). *Numerical Methods in Scientific Computing*. Volume II, Society for Industrial and Applied Mathematics.
- Bjorck, N., Gomes, C. P., Selman, B., and Weinberger, K. Q. (2018). Understanding batch normalization. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 7694–7705.
- Black, M., Yacoob, Y., Jepson, A. D., and Fleet, D. J. (1997). Learning parameterized models of image motion. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 561–567.
- Black, M. J. and Anandan, P. (1993). A framework for the robust estimation of optic flow. In International Conference on Computer Vision (ICCV), pp. 231–236.
- Black, M. J. and Anandan, P. (1996). The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. *Computer Vision and Image Understanding*, 63(1):75–104.

- Black, M. J. and Jepson, A. D. (1996). Estimating optical flow in segmented images using variable-order parametric models with local deformations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(10):972–986.
- Black, M. J. and Jepson, A. D. (1998). EigenTracking: robust matching and tracking of articulated objects using a view-based representation. *International Journal of Computer Vision*, 26(1):63–84.
- Black, M. J. and Rangarajan, A. (1996). On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. *International Journal of Computer Vision*, 19(1):57–91.
- Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. (1998). Robust anisotropic diffusion. *IEEE Transactions on Image Processing*, 7(3):421–432.
- Blake, A. and Isard, M. (1998). Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer Verlag, London.
- Blake, A. and Zisserman, A. (1987). Visual Reconstruction. MIT Press, Cambridge, Massachusetts.
- Blake, A., Curwen, R., and Zisserman, A. (1993). A framework for spatio-temporal control in the tracking of visual contour. *International Journal of Computer Vision*, 11(2):127–145.
- Blake, A., Kohli, P., and Rother, C. (eds). (2011). *Markov Random Fields for Vision and Image Processing*, MIT Press.
- Blake, A., Zisserman, A., and Knowles, G. (1985). Surface descriptions from stereo and shading. Image and Vision Computing, 3(4):183–191.
- Blake, A., Rother, C., Brown, M., Perez, P., and Torr, P. (2004). Interactive image segmentation using an adaptive GMMRF model. In *European Conference on Computer Vision (ECCV)*, pp. 428–441.
- Blanco, J.-L. (2019). A tutorial on SE(3) transformation parameterizations and on-manifold optimization. Technical Report, University of Malaga.
- Blanz, V. and Vetter, T. (1999). A morphable model for the synthesis of 3D faces. In *ACM SIG-GRAPH Conference Proceedings*, pp. 187–194.
- Blanz, V. and Vetter, T. (2003). Face recognition based on fitting a 3D morphable model. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(9):1063–1074.
- Bleyer, M. and Chambon, S. (2010). Does color really help in dense stereo matching? In *International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT)*.
- Bleyer, M., Rhemann, C., and Rother, C. (2011). PatchMatch stereo stereo matching with slanted support windows. In *British Machine Vision Conference (BMVC)*.
- Bleyer, M., Gelautz, M., Rother, C., and Rhemann, C. (2009). A stereo approach that handles the matting problem via image warping. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Blinn, J. (1998). Dirty Pixels. Morgan Kaufmann Publishers, San Francisco.

Blinn, J. F. (1994a). Jim Blinn's corner: Compositing, part 1: Theory. *IEEE Computer Graphics and Applications*, 14(5):83–87.

- Blinn, J. F. (1994b). Jim Blinn's corner: Compositing, part 2: Practice. *IEEE Computer Graphics and Applications*, 14(6):78–82.
- Blinn, J. F. and Newell, M. E. (1976). Texture and reflection in computer generated images. *Communications of the ACM*, 19(10):542–547.
- Bloem, P. (2019). Transformers from scratch. http://peterbloem.nl/blog/transformers.
- Blostein, D. and Ahuja, N. (1987). Shape from texture: Integrating texture-element extraction and surface estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11(12):1233–1251.
- Bobick, A. F. (1997). Movement, activity and action: the role of knowledge in the perception of motion. *Proceedings of the Royal Society of London*, B 352:1257–1265.
- Bobick, A. F. and Intille, S. S. (1999). Large occlusion stereo. *International Journal of Computer Vision*, 33(3):181–200.
- Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. *arXiv preprint arXiv:2004.10934*.
- Boden, M. A. (2006). *Mind As Machine: A History of Cognitive Science*. Oxford University Press, Oxford, England.
- Bogart, R. G. (1991). View correlation. In Arvo, J. (ed.), *Graphics Gems II*, pp. 181–190, Academic Press, Boston.
- Bogo, F., Romero, J., Loper, M., and Black, M. J. (2014). FAUST: Dataset and evaluation for 3D mesh registration. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., and Black, M. J. (2016). Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In *European Conference on Computer Vision*, pp. 561–578.
- Boiman, O., Shechtman, E., and Irani, M. (2008). In defense of nearest-neighbor based image classification. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Boissonat, J.-D. (1984). Representing 2D and 3D shapes with the Delaunay triangulation. In *International Conference on Pattern Recognition (ICPR)*, pp. 745–748.
- Bolles, R. C., Baker, H. H., and Hannah, M. J. (1993). The JISCT stereo evaluation. In *Image Understanding Workshop*, pp. 263–274.
- Bolles, R. C., Baker, H. H., and Marimont, D. H. (1987). Epipolar-plane image analysis: An approach to determining structure from motion. *International Journal of Computer Vision*, 1:7–55.
- Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11(6):567–585.
- Borenstein, E. and Ullman, S. (2008). Combined top-down/bottom-up segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(12):2109–2125.

- Borgefors, G. (1986). Distance transformations in digital images. *Computer Vision, Graphics and Image Processing*, 34(3):227–248.
- Boss, M., Jampani, V., Kim, K., Lensch, H. P., and Kautz, J. (2020). Two-shot spatially-varying BRDF and shape estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Boss, M., Braun, R., Jampani, V., Barron, J. T., Liu, C., and Lensch, H. (2020). NeRD: Neural reflectance decomposition from image collections. *arXiv preprint arXiv:2012.03918*.
- Bouchard, G. and Triggs, B. (2005). Hierarchical part-based visual object categorization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 709–714.
- Bougnoux, S. (1998). From projective to Euclidean space under any practical situation, a criticism of self-calibration. In *International Conference on Computer Vision (ICCV)*, pp. 790–798.
- Bouguet, J.-Y. and Perona, P. (1999). 3D photography using shadows in dual-space geometry. *International Journal of Computer Vision*, 35(2):129–149.
- Boult, T. E. and Kender, J. R. (1986). Visual surface reconstruction using sparse depth data. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 68–76.
- Bourdev, L. and Malik, J. (2009). Poselets: Body part detectors trained using 3D human pose annotations. In *International Conference on Computer Vision (ICCV)*.
- Bovik, A. (ed.). (2000). Handbook of Image and Video Processing, Academic Press, San Diego.
- Bowyer, K. W., Kranenburg, C., and Dougherty, S. (2001). Edge detector evaluation using empirical ROC curves. *Computer Vision and Image Understanding*, 84(1):77–103.
- Boyer, E. and Berger, M. O. (1997). 3D surface reconstruction using occluding contours. *International Journal of Computer Vision*, 22(3):219–233.
- Boykov, Y. and Funka-Lea, G. (2006). Graph cuts and efficient N-D image segmentation. *International Journal of Computer Vision*, 70(2):109–131.
- Boykov, Y. and Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In *International Conference on Computer Vision (ICCV)*, pp. 105–112.
- Boykov, Y. and Kolmogorov, V. (2003). Computing geodesics and minimal surfaces via graph cuts. In *International Conference on Computer Vision (ICCV)*, pp. 26–33.
- Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(9):1124–1137.
- Boykov, Y. and Kolmogorov, V. (2011). Basic graph cut algorithms. In Blake, A., Kohli, P., and Rother, C. (eds), *Markov Random Fields for Vision and Image Processing*, pp. 31–50, MIT Press.
- Boykov, Y., Veksler, O., and Zabih, R. (1998). A variable window approach to early vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(12):1283–1294.
- Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(11):1222–1239.

Božič, A., Zollhöfer, M., Theobalt, C., and Nießner, M. (2020). DeepDeform: Learning non-rigid RGB-D reconstruction with semi-supervised data. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Božič, A., Palafox, P., Zollhöfer, M., Dai, J. T. A., and Nießner, M. (2021). Neural deformation graphs for globally-consistent non-rigid reconstruction. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Božič, A., Palafox, P., Zollhöfer, M., Dai, A., Thies, J., and Nießner, M. (2020). Neural non-rigid tracking. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Bracewell, R. N. (1986). *The Fourier Transform and its Applications*. McGraw-Hill, New York, 2nd edition.
- Brachmann, E. and Rother, C. (2018). Learning less is more 6d camera localization via 3D surface regression. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Brachmann, E. and Rother, C. (2019). Expert sample consensus applied to camera re-localization. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Brachmann, E., Michel, F., Krull, A., Yang, M. Y., Gumhold, S., and Rother, C. (2016). Uncertainty-driven 6d pose estimation of objects and scenes from a single RGB image. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and Rother, C. (2017). DSAC differentiable RANSAC for camera localization. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Bradsky, G. and Kaehler, A. (2008). *Learning OpenCV: Computer Vision with the OpenCV Library*. O'Reilly, Sebastopol, CA.
- Brandt, A. (1986). Algebraic multigrid theory: The symmetric case. *Applied Mathematics and Computation*, 19(1–4):23–56.
- Bregler, C. and Malik, J. (1998). Tracking people with twists and exponential maps. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 8–15.
- Bregler, C., Covell, M., and Slaney, M. (1997). Video rewrite: Driving visual speech with audio. In *ACM SIGGRAPH Conference Proceedings*, pp. 353–360.
- Bregler, C., Malik, J., and Pullen, K. (2004). Twist based acquisition and tracking of animal and human kinematics. *International Journal of Computer Vision*, 56(3):179–194.
- Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). *Classification and regression trees*. CRC Press.
- Brejcha, J., Lukáč, M., Hold-Geoffroy, Y., Wang, O., and Čadík, M. (2020). LandscapeAR: Large scale outdoor augmented reality by matching photographs with terrain models using learned descriptors. In *European Conference on Computer Vision (ECCV)*.
- Breu, H., Gil, J., Kirkpatrick, D., and Werman, M. (1995). Linear time Euclidean distance transform algorithms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(5):529–533.

- Brice, C. R. and Fennema, C. L. (1970). Scene analysis using regions. *Artificial Intelligence*, 1(3–4):205–226.
- Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000). *A Multigrid Tutorial*. Society for Industrial and Applied Mathematics, Philadelphia, 2nd edition.
- Brillaut-O'Mahoney, B. (1991). New method for vanishing point detection. *Computer Vision, Graphics, and Image Processing*, 54(2):289–300.
- Brinkmann, R. (2008). *The Art and Science of Digital Compositing*. Morgan Kaufmann Publishers, San Francisco, 2nd edition.
- Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale GAN training for high fidelity natural image synthesis. In *International Conference on Learning Representations (ICLR)*.
- Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verification using a "siamese" time delay neural network. In *Advances in Neural Information Processing Systems* (*NeurIPS*), pp. 737–744.
- Brooks, R. A. (1981). Symbolic reasoning among 3-D models and 2-D images. *Artificial Intelligence*, 17:285–348.
- Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., and Barron, J. T. (2019). Unprocessing images for learned raw denoising. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Brown, A., Xie, W., Kalogeiton, V., and Zisserman, A. (2020). Smooth-AP: Smoothing the path towards large-scale image retrieval. In *European Conference on Computer Vision (ECCV)*.
- Brown, D. C. (1966). Decentering distortion of lenses. *Photogrammetric Engineering and Remote Sensing*, 32(3):444–462.
- Brown, D. C. (1971). Close-range camera calibration. *Photogrammetric Engineering*, 37(8):855–866.
- Brown, L. G. (1992). A survey of image registration techniques. Computing Surveys, 24(4):325-376.
- Brown, M. and Lowe, D. (2002). Invariant features from interest point groups. In *British Machine Vision Conference*, pp. 656–665.
- Brown, M. and Lowe, D. (2005). Unsupervised 3D object recognition and reconstruction in unordered datasets. In *International Conference on 3D Imaging and Modelling*, pp. 1218–1225.
- Brown, M. and Lowe, D. (2007). Automatic panoramic image stitching using invariant features. *International Journal of Computer Vision*, 74(1):59–73.
- Brown, M., Hartley, R., and Nistér, D. (2007). Minimal solutions for panoramic stitching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Brown, M., Hua, G., and Winder, S. (2011). Discriminative learning of local image descriptors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(1):43–57.
- Brown, M., Szeliski, R., and Winder, S. (2004). *Multi-Image Matching Using Multi-Scale Oriented Patches*. Technical Report MSR-TR-2004-133, Microsoft Research.

Brown, M., Szeliski, R., and Winder, S. (2005). Multi-image matching using multi-scale oriented patches. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 510–517.

- Brown, M. S. (2019). ICCV 2019 tutorial on understanding color and the in-camera image processing pipeline for computer vision. https://www.eecs.yorku.ca/~mbrown/ICCV2019_Brown.html.
- Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(8):993–1008.
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A. et al. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
- Brox, T. and Malik, J. (2010a). Large displacement optical flow: descriptor matching in variational motion estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(3):500–513.
- Brox, T. and Malik, J. (2010b). Object segmentation by long term analysis of point trajectories. In *European Conference on Computer Vision (ECCV)*, pp. 282–295.
- Brox, T., Bregler, C., and Malik, J. (2009). Large displacement optical flow. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Brox, T., Bruhn, A., Papenberg, N., and Weickert, J. (2004). High accuracy optical flow estimation based on a theory for warping. In *European Conference on Computer Vision (ECCV)*, pp. 25–36.
- Broxton, M., Flynn, J., Overbeck, R., Erickson, D., Hedman, P., DuVall, M., Dourgarian, J., Busch, J., Whalen, M., and Debevec, P. (2020). Immersive light field video with a layered mesh representation. In *ACM Transactions on Graphics (Proc. SIGGRAPH)*, pp. 86:1–86:15.
- Brubaker, S. C., Wu, J., Sun, J., Mullin, M. D., and Rehg, J. M. (2008). On the design of cascades of boosted ensembles for face detection. *International Journal of Computer Vision*, 77(1–3):65–86.
- Bruhn, A., Weickert, J., and Schnörr, C. (2005). Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. *International Journal of Computer Vision*, 61(3):211–231.
- Bruhn, A., Weickert, J., Kohlberger, T., and Schnörr, C. (2006). A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. *International Journal of Computer Vision*, 70(3):257–277.
- Buades, A., Coll, B., and Morel, J.-M. (2005a). A non-local algorithm for image denoising. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 60–65.
- Buades, A., Coll, B., and Morel, J.-M. (2005b). A review of image denoising algorithms, with a new one. *Multiscale Modeling and Simulation*, 4(2):490–530.
- Buades, A., Coll, B., and Morel, J.-M. (2008). Nonlocal image and movie denoising. *International Journal of Computer Vision*, 76(2):123–139.
- Buccigrossi, R. W. and Simoncelli, E. P. (1999). Image compression via joint statistical characterization in the wavelet domain. *IEEE Transactions on Image Processing*, 8(12):1688–1701.

- Buchanan, A. and Fitzgibbon, A. (2005). Damped Newton algorithms for matrix factorization with missing data. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 316–322.
- Bucilă, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In *ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 535–541.
- Buck, I., Finkelstein, A., Jacobs, C., Klein, A., Salesin, D. H., Seims, J., Szeliski, R., and Toyama, K. (2000). Performance-driven hand-drawn animation. In *Symposium on Non Photorealistic Animation and Rendering*, pp. 101–108.
- Buehler, C., Bosse, M., McMillan, L., Gortler, S. J., and Cohen, M. F. (2001). Unstructured Lumigraph rendering. In *ACM SIGGRAPH Conference Proceedings*, pp. 425–432.
- Bugayevskiy, L. M. and Snyder, J. P. (1995). Map Projections: A Reference Manual. CRC Press.
- Bulatov, Y. (2018). Fitting larger networks into memory. https://medium.com/tensorflow/fitting-larger-networks-into-memory-583e3c758ff9.
- Burger, H. C., Schuler, C. J., and Harmeling, S. (2012). Image denoising: Can plain neural networks compete with BM3D? In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Burger, W. and Burge, M. J. (2008). *Digital Image Processing: An Algorithmic Introduction Using Java*. Springer, New York, NY.
- Burger, W. and Burge, M. J. (2009). *Principles of Digital Image Processing*. Springer, New York, NY.
- Burl, M. C., Weber, M., and Perona, P. (1998). A probabilistic approach to object recognition using local photometry and global geometry. In *European Conference on Computer Vision (ECCV)*, pp. 628–641.
- Burnes, A. (2020). NVIDIA DLSS 2.0: A big leap in AI rendering. https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering.
- Burns, J. B., Hanson, A. R., and Riseman, E. M. (1986). Extracting straight lines. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-8(4):425–455.
- Burns, P. D. and Williams, D. (1999). Using slanted edge analysis for color registration measurement. In *IS&T PICS Conference*, pp. 51–53.
- Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M. W., and Siegwart, R. (2016). The EuRoC micro aerial vehicle datasets. *International Journal of Robotics Research*, 35(10):1157–1163.
- Burt, P. J. and Adelson, E. H. (1983a). The Laplacian pyramid as a compact image code. *IEEE Transactions on Communications*, COM-31(4):532–540.
- Burt, P. J. and Adelson, E. H. (1983b). A multiresolution spline with applications to image mosaics. *ACM Transactions on Graphics*, 2(4):217–236.
- Burt, P. J. and Kolczynski, R. J. (1993). Enhanced image capture through fusion. In *International Conference on Computer Vision (ICCV)*, pp. 173–182.

Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic open source movie for optical flow evaluation. In *European Conference on Computer Vision (ECCV)*, pp. 611–625.

- Byröd, M. and Åström, K. (2009). Bundle adjustment using conjugate gradients with multiscale preconditioning. In *British Machine Vision Conference (BMVC)*.
- Cabral, B. K. (2016). Introducing Facebook Surround 360: An open, high-quality 3D-360 video capture system. https://engineering.fb.com/video-engineering/introducing-facebook-surround-360-an-open-high-quality-3d-360-video-capture-system.
- Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., and Leonard, J. J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. *IEEE Transactions on Robotics*, 32(6):1309–1332.
- Caelles, S., Maninis, K.-K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., and Van Gool, L. (2017). One-shot video object segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Caelles, S., Pont-Tuset, J., Perazzi, F., Montes, A., Maninis, K.-K., and Van Gool, L. (2019). The 2019 DAVIS challenge on VOS: Unsupervised multi-object segmentation. arXiv preprint arXiv:1905.00737.
- Caelles, S., Montes, A., Maninis, K.-K., Chen, Y., Van Gool, L., Perazzi, F., and Pont-Tuset, J. (2018). The 2018 DAVIS challenge on video object segmentation. *arXiv* preprint *arXiv*:1803.00557.
- Cai, D., He, X., Hu, Y., Han, J., and Huang, T. (2007). Learning a spatially smooth subspace for face recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cai, J., Gu, S., Timofte, R., and Zhang, L. (2019). NTIRE 2019 challenge on real image superresolution: Methods and results. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR) Workshops.
- Cai, J., Zeng, H., Yong, H., Cao, Z., and Zhang, L. (2019). Toward real-world single image super-resolution: A new benchmark and a new model. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). BRIEF: Binary robust independent elementary features. In *European Conference on Computer Vision (ECCV)*, pp. 778–792.
- Cammarata, N., Carter, S., Goh, G., Olah, C., Petrov, M., and Schubert, L. (2020). Thread: Circuits. *Distill*, 5(3):e24.
- Campisi, P. and Egiazarian, K. (2017). Blind image deconvolution: theory and applications. CRC Press.
- Can, A., Stewart, C., Roysam, B., and Tanenbaum, H. (2002). A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(3):347–364.
- Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698.

- Canziani, A., Culurciello, E., and Paszke, A. (2017). Evaluation of neural network architectures for embedded systems. In *IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 1–4.
- Cao, B., Araujo, A., and Sim, J. (2020). Unifying deep local and global features for image search. In *European Conference on Computer Vision (ECCV)*.
- Cao, X., Waechter, M., Shi, B., Gao, Y., Zheng, B., and Matsushita, Y. (2020). Stereoscopic flash and no-flash photography for shape and albedo recovery. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cao, Z., Simon, T., Wei, S.-E., and Sheikh, Y. (2017). Realtime multi-person 2D pose estimation using part affinity fields. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cao, Z., Yin, Q., Tang, X., and Sun, J. (2010). Face recognition with learning-based descriptor. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., and Sheikh, Y. (2019). OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(1):172–186.
- Capel, D. (2004). *Image Mosaicing and Super-resolution*. *Distinguished Dissertation Series, British Computer Society*, Springer-Verlag.
- Capel, D. and Zisserman, A. (1998). Automated mosaicing with super-resolution zoom. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 885–891.
- Capel, D. and Zisserman, A. (2000). Super-resolution enhancement of text image sequences. In *International Conference on Pattern Recognition (ICPR)*, pp. 600–605.
- Capel, D. and Zisserman, A. (2003). Computer vision applied to super resolution. *IEEE Signal Processing Magazine*, 20(3):75–86.
- Capel, D. P. (2001). Super-resolution and Image Mosaicing. Ph.D. thesis, University of Oxford.
- Caprile, B. and Torre, V. (1990). Using vanishing points for camera calibration. *International Journal of Computer Vision*, 4(2):127–139.
- Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020). End-to-end object detection with transformers. In *European Conference on Computer Vision (ECCV)*.
- Carlone, L., Tron, R., Daniilidis, K., and Dellaert, F. (2015). Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization. In *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 4597–4604.
- Carneiro, G. and Jepson, A. (2005). The distinctiveness, detectability, and robustness of local image features. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 296–301.
- Carneiro, G. and Lowe, D. (2006). Sparse flexible models of local features. In *European Conference on Computer Vision (ECCV)*, pp. 29–43.
- Carnevali, P., Coletti, L., and Patarnello, S. (1985). Image processing by simulated annealing. *IBM Journal of Research and Development*, 29(6):569–579.

Caron, M., Bojanowski, P., Joulin, A., and Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In *European Conference on Computer Vision (ECCV)*.

- Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Carranza, J., Theobalt, C., Magnor, M. A., and Seidel, H.-P. (2003). Free-viewpoint video of human actors. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):569–577.
- Carreira, J. and Zisserman, A. (2017). Quo vadis, action recognition? a new model and the kinetics dataset. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Carroll, R., Agarwala, A., and Agrawala, M. (2010). Image warps for artistic perspective manipulation. *ACM Transactions on Graphics*, 29(4):127.
- Carroll, R., Agrawala, M., and Agarwala, A. (2009). Optimizing content-preserving projections for wide-angle images. *ACM Transactions on Graphics*, 28(3):43.
- Caselles, V., Kimmel, R., and Sapiro, G. (1997). Geodesic active contours. *International Journal of Computer Vision*, 21(1):61–79.
- Catmull, E. and Smith, A. R. (1980). 3-D transformations of images in scanline order. *Computer Graphics (SIGGRAPH)*, 14(3):279–285.
- Celniker, G. and Gossard, D. (1991). Deformable curve and surface finite-elements for free-form shape design. *Computer Graphics (SIGGRAPH)*, 25(4):257–266.
- Chabra, R., Straub, J., Sweeney, C., Newcombe, R., and Fuchs, H. (2019). StereoDRNet: Dilated residual stereonet. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chabra, R., Lenssen, J. E., Ilg, E., Schmidt, T., Straub, J., Lovegrove, S., and Newcombe, R. (2020).
 Deep local shapes: Learning local SDF priors for detailed 3D reconstruction. In *European Conference on Computer Vision (ECCV)*.
- Chakrabarti, A., Scharstein, D., and Zickler, T. (2009). An empirical camera model for internet color vision. In *British Machine Vision Conference (BMVC)*.
- Cham, T. J. and Cipolla, R. (1998). A statistical framework for long-range feature matching in uncalibrated image mosaicing. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 442–447.
- Cham, T.-J. and Rehg, J. M. (1999). A multiple hypothesis approach to figure tracking. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 239–245.
- Chambolle, A. (2004). An algorithm for total variation minimization and applications. *Journal of Mathematical Imaging and Vision*, 20(1–2):89–97.
- Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of Mathematical Imaging and Vision*, 40(1):120–145.
- Champleboux, G., Lavallée, S., Sautot, P., and Cinquin, P. (1992a). Accurate calibration of cameras and range imaging sensors, the NPBS method. In *IEEE International Conference on Robotics and*

- Automation, pp. 1552-1558.
- Champleboux, G., Lavallée, S., Szeliski, R., and Brunie, L. (1992b). From accurate range imaging sensor calibration to accurate model-based 3-D object localization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 83–89.
- Chan, A. B. and Vasconcelos, N. (2009). Layered dynamic textures. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(10):1862–1879.
- Chan, C., Ginosar, S., Zhou, T., and Efros, A. A. (2019). Everybody dance now. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Chan, T. F. and Shen, J. J. (2005). *Image processing and analysis: variational, PDE, wavelet, and stochastic methods.* SIAM.
- Chan, T. F. and Vese, L. A. (2001). Active contours without edges. *IEEE Transactions on Image Processing*, 10(2):266–277.
- Chan, T. F., Osher, S., and Shen, J. (2001). The digital TV filter and nonlinear denoising. *IEEE Transactions on Image Processing*, 10(2):231–241.
- Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015). ShapeNet: An information-rich 3D model repository. *arXiv preprint arXiv:1512.03012*.
- Chang, J.-R. and Chen, Y.-S. (2018). Pyramid stereo matching network. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chang, M. M., Tekalp, A. M., and Sezan, M. I. (1997). Simultaneous motion estimation and segmentation. *IEEE Transactions on Image Processing*, 6(9):1326–1333.
- Chang, Y., Hu, C., Feris, R., and Turk, M. (2006). Manifold based analysis of facial expression. Image and Vision Computing, 24(6):605–614.
- Chang, Y.-L., Liu, Z. Y., Lee, K.-Y., and Hsu, W. (2019). Free-form video inpainting with 3D gated convolution and temporal PatchGAN. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Charniak, E. (2019). Introduction to Deep Learning. MIT Press.
- Chatterjee, A. and Govindu, V. M. (2013). Efficient and robust large-scale rotation averaging. In *International Conference on Computer Vision (ICCV)*.
- Chatterjee, P., Joshi, N., Kang, S. B., and Matsushita, Y. (2011). Noise suppression in low-light images through joint denoising and demosaicing. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chaudhuri, S. (2001). Super-Resolution Imaging. Springer.
- Chaudhuri, S. and Rajagopalan, A. N. (1999). Depth from Defocus: A Real Aperture Imaging Approach. Springer.
- Chaurasia, G., Duchene, S., Sorkine-Hornung, O., and Drettakis, G. (2013). Depth synthesis and local warps for plausible image-based navigation. *ACM Transactions on Graphics (ToG)*, 32(3):1–12.

Chaurasia, G., Nieuwoudt, A., Ichim, A.-E., Szeliski, R., and Sorkine-Hornung, A. (2020).
Passthrough+: Real-time stereoscopic view synthesis for mobile mixed reality. *Proceedings of the ACM on Computer Graphics and Interactive Techniques*, 3(1):7.

- Cheeseman, P., Kanefsky, B., Hanson, R., and Stutz, J. (1993). Super-Resolved Surface Reconstruction From Multiple Images. Technical Report FIA-93-02, NASA Ames Research Center, Artificial Intelligence Branch.
- Chellappa, R., Wilson, C., and Sirohey, S. (1995). Human and machine recognition of faces: A survey. *Proceedings of the IEEE*, 83(5):705–740.
- Chellappa, R., Sankaranarayanan, A. C., Veeraraghavan, A., and Turaga, P. (2010). Statistical methods and models for video-based tracking, modeling, and recognition. *Foundations and Trends*® *in Signal Processing*, 3(1–2):1–151.
- Chen, B., Neubert, B., Ofek, E., Deussen, O., and Cohen, M. F. (2009). Integrated videos and maps for driving directions. In *ACM Symposium on User Interface Software and Technology (UIST)*, pp. 223–232, New York, NY, USA.
- Chen, C., Chen, Q., Xu, J., and Koltun, V. (2018). Learning to see in the dark. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chen, C.-Y. and Klette, R. (1999). Image stitching comparisons and new techniques. In *Computer Analysis of Images and Patterns (CAIP)*, pp. 615–622.
- Chen, G., Han, K., Shi, B., Matsushita, Y., and Wong, K.-Y. K. (2019). Self-calibrating deep photometric stereo networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chen, G., Waechter, M., Shi, B., Wong, K.-Y. K., and Matsushita, Y. (2020). What is learned in deep uncalibrated photometric stereo? In *European Conference on Computer Vision (ECCV)*.
- Chen, J. and Chen, B. (2008). Architectural modeling from sparsely scanned range data. *International Journal of Computer Vision*, 78(2–3):223–236.
- Chen, J., Paris, S., and Durand, F. (2007). Real-time edge-aware image processing with the bilateral grid. *ACM Transactions on Graphics*, 26(3).
- Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019). Hybrid task cascade for instance segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C. C., and Lin, D. (2019). MMDetection: Open MMLab detection toolbox and benchmark. *arXiv preprint arXiv:1906.07155*.
- Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L. (2018). DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(4):834–848.

- Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018). Encoder-decoder with atrous separable convolution for semantic image segmentation. In *European Conference on Computer Vision (ECCV)*, pp. 833–851.
- Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., and Sutskever, I. (2020). Generative pretraining from pixels. In *International Conference on Machine Learning (ICML)*, pp. 1691–1703.
- Chen, Q. and Koltun, V. (2017). Photographic image synthesis with cascaded refinement networks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Chen, Q., Xu, J., and Koltun, V. (2017). Fast image processing with fully-convolutional networks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Chen, S. and Williams, L. (1993). View interpolation for image synthesis. In *ACM SIGGRAPH Conference Proceedings*, pp. 279–288.
- Chen, S. E. (1995). QuickTime VR an image-based approach to virtual environment navigation. In *ACM SIGGRAPH Conference Proceedings*, pp. 29–38.
- Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning of visual representations. In *International Conference on Machine Learning (ICML)*, pp. 1597–1607.
- Chen, T., Xu, B., Zhang, C., and Guestrin, C. (2016). Training deep nets with sublinear memory cost. *arXiv* preprint arXiv:1604.06174.
- Chen, W., Fu, Z., Yang, D., and Deng, J. (2016). Single-image depth perception in the wild. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 730–738.
- Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chen, X. and Lawrence Zitnick, C. (2015). Mind's eye: A recurrent visual representation for image caption generation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chen, X., Fan, H., Girshick, R., and He, K. (2020). Improved baselines with momentum contrastive learning. *arXiv preprint arXiv:2003.04297*.
- Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. (2016). InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 2172–2180.
- Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S., Dollár, P., and Zitnick, C. L. (2015). Microsoft COCO captions: Data collection and evaluation server. *arXiv* preprint arXiv:1504.00325.
- Chen, Y. and Medioni, G. (1992). Object modeling by registration of multiple range images. *Image and Vision Computing*, 10(3):145–155.
- Chen, Y. and Pock, T. (2016). Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(6):1256–1272.

Chen, Y., Pont-Tuset, J., Montes, A., and Van Gool, L. (2018). Blazingly fast video object segmentation with pixel-wise metric learning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Chen, Z. and Zhang, H. (2019). Learning implicit fields for generative shape modeling. In *IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR).
- Chen, Z., Nobuhara, S., and Nishino, K. (2020). Invertible neural BRDF for object inverse rendering. In *European Conference on Computer Vision (ECCV)*.
- Cheng, B., Girshick, R., Dollar, P., Berg, A. C., and Kirillov, A. (2021). Boundary IoU: Improving object-centric image segmentation evaluation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cheng, J., Tsai, Y.-H., Wang, S., and Yang, M.-H. (2017). SegFlow: Joint learning for video object segmentation and optical flow. In *IEEE International Conference on Computer Vision (ICCV)*.
- Cheng, J., Tsai, Y.-H., Hung, W.-C., Wang, S., and Yang, M.-H. (2018). Fast and accurate online video object segmentation via tracking parts. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cheng, L., Vishwanathan, S. V. N., and Zhang, X. (2008). Consistent image analogies using semisupervised learning. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cheng, M.-M., Zhang, Z., Lin, W.-Y., and Torr, P. (2014). BING: Binarized normed gradients for objectness estimation at 300fps. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cheng, X., Zhong, Y., Harandi, M., Dai, Y., Chang, X., Li, H., Drummond, T., and Ge, Z. (2020). Hierarchical neural architecture search for deep stereo matching. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Cheng, Y. (1995). Mean shift, mode seeking, and clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(8):790–799.
- Cheng, Y. (2020). CVPR 2020 tutorial on text-to-image generation. https://rohit497.github.io/ Recent-Advances-in-Vision-and-Language-Research.
- Chiang, M.-C. and Boult, T. E. (1996). Efficient image warping and super-resolution. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 56–61.
- Cho, T. S., Avidan, S., and Freeman, W. T. (2010). A probabilistic image jigsaw puzzle solver. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cho, T. S., Paris, S., Freeman, B., and Horn, B. (2011). Blur kernel estimation using the radon transform. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cho, T. S., Joshi, N., Zitnick, C. L., Kang, S. B., Szeliski, R., and Freeman, W. T. (2012). Image restoration by matching gradient distributions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(4):683–694.

- Choi, I., Gallo, O., Troccoli, A., Kim, M. H., and Kautz, J. (2019). Extreme view synthesis. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Choi, M., Choi, J., Baik, S., Kim, T. H., and Lee, K. M. (2020). Scene-adaptive video frame interpolation via meta-learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for multiple domains. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo, J. (2018). StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chokshi, N. (2019). Facial recognition's many controversies, from stadium surveillance to racist software. *New York Times*.
- Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively, with application to face verification. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 539–546.
- Chou, P. B. and Brown, C. M. (1990). The theory and practice of Bayesian image labeling. *International Journal of Computer Vision*, 4(3):185–210.
- Choudhary, T., Mishra, V., Goswami, A., and Sarangapani, J. (2020). A comprehensive survey on model compression and acceleration. *Artificial Intelligence Review*, (53):5113–5155.
- Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., and Black, M. J. (2020). Monocular expressive body regression through body-driven attention. In *European Conference on Computer Vision* (*ECCV*).
- Choy, C. B., Xu, D., Gwak, J., Chen, K., and Savarese, S. (2016). 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction. In *European Conference on Computer Vision* (*ECCV*), pp. 628–644.
- Christensen, G., Joshi, S., and Miller, M. (1997). Volumetric transformation of brain anatomy. *IEEE Transactions on Medical Imaging*, 16(6):864–877.
- Christy, S. and Horaud, R. (1996). Euclidean shape and motion from multiple perspective views by affine iterations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(11):1098–1104.
- Chu, H., Ma, S., la Torre, F. D., Fidler, S., and Sheikh, Y. (2020). Expressive telepresence via modular codec avatars. In *European Conference on Computer Vision (ECCV)*.
- Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. (2001). A Bayesian approach to digital matting. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 264–271.
- Chuang, Y.-Y., Agarwala, A., Curless, B., Salesin, D. H., and Szeliski, R. (2002). Video matting of complex scenes. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):243–248.

Chuang, Y.-Y., Goldman, D. B., Curless, B., Salesin, D. H., and Szeliski, R. (2003). Shadow matting. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):494–500.

- Chuang, Y.-Y., Goldman, D. B., Zheng, K. C., Curless, B., Salesin, D. H., and Szeliski, R. (2005). Animating pictures with stochastic motion textures. ACM Transactions on Graphics (Proc. SIG-GRAPH), 24(3):853–860.
- Chuang, Y.-Y., Zongker, D., Hindorff, J., Curless, B., Salesin, D. H., and Szeliski, R. (2000). Environment matting extensions: Towards higher accuracy and real-time capture. In *ACM SIGGRAPH Conference Proceedings*, pp. 121–130.
- Chui, C. K. (1992). Wavelet Analysis and Its Applications. Academic Press, New York.
- Chum, O. and Matas, J. (2005). Matching with PROSAC—progressive sample consensus. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 220–226.
- Chum, O. and Matas, J. (2010a). Large-scale discovery of spatially related images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(2):371–377.
- Chum, O. and Matas, J. (2010b). Unsupervised discovery of co-occurrence in sparse high dimensional data. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chum, O. and Zisserman, A. (2007). An exemplar model for learning object classes. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Chum, O., Philbin, J., and Zisserman, A. (2008). Near duplicate image detection: min-hash and tf-idf weighting. In *British Machine Vision Conference (BMVC)*.
- Chum, O., Werner, T., and Matas, J. (2005). Two-view geometry estimation unaffected by a dominant plane. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 772–779.
- Chum, O., Philbin, J., Sivic, J., Isard, M., and Zisserman, A. (2007). Total recall: Automatic query expansion with a generative feature model for object retrieval. In *International Conference on Computer Vision (ICCV)*.
- Chung, J. S. and Zisserman, A. (2016). Out of time: automated lip sync in the wild. In *Asian Conference on Computer Vision (ACCV) Workshops*, pp. 251–263.
- Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G. (2008). Mesh-Lab: an Open-Source Mesh Processing Tool. In *Eurographics Italian Chapter Conference*.
- Cipolla, R. and Blake, A. (1990). The dynamic analysis of apparent contours. In *International Conference on Computer Vision (ICCV)*, pp. 616–623.
- Cipolla, R. and Blake, A. (1992). Surface shape from the deformation of apparent contours. *International Journal of Computer Vision*, 9(2):83–112.
- Cipolla, R. and Giblin, P. (2000). *Visual Motion of Curves and Surfaces*. Cambridge University Press, Cambridge.
- Cipolla, R., Drummond, T., and Robertson, D. P. (1999). Camera calibration from vanishing points in images of architectural scenes. In *British Machine Vision Conference (BMVC)*.

- Claus, D. and Fitzgibbon, A. (2005). A rational function lens distortion model for general cameras. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 213–219.
- Claus, M. and van Gemert, J. (2019). ViDeNN: Deep blind video denoising. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)*.
- Clevert, D.-A., Unterthiner, T., and Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (ELUs). *arXiv preprint arXiv:1511.07289*.
- Clowes, M. B. (1971). On seeing things. Artificial Intelligence, 2:79–116.
- Cohen, L. D. and Cohen, I. (1993). Finite-element methods for active contour models and balloons for 2-D and 3-D images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(11):1131–1147.
- Cohen, M. and Wallace, J. (1993). Radiosity and Realistic Image Synthesis. Morgan Kaufmann.
- Cohen, M. F. and Szeliski, R. (2006). The Moment Camera. Computer, 39(8):40–45.
- Collins, R. T. (1996). A space-sweep approach to true multi-image matching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 358–363.
- Collins, R. T. and Liu, Y. (2003). On-line selection of discriminative tracking features. In *International Conference on Computer Vision (ICCV)*, pp. 346–352.
- Collins, R. T. and Weiss, R. S. (1990). Vanishing point calculation as a statistical inference on the unit sphere. In *International Conference on Computer Vision (ICCV)*, pp. 400–403.
- Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(5):603–619.
- Conn, A. R., Gould, N. I. M., and Toint, P. L. (2000). *Trust-Region Methods*. Society for Industrial and Applied Mathematics, Philadephia.
- Cook, R. L. and Torrance, K. E. (1982). A reflectance model for computer graphics. ACM Transactions on Graphics, 1(1):7–24.
- Coorg, S. and Teller, S. (2000). Spherical mosaics with quaternions and dense correlation. *International Journal of Computer Vision*, 37(3):259–273.
- Cootes, T., Edwards, G. J., and Taylor, C. J. (2001). Active appearance models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(6):681–685.
- Cootes, T., Cooper, D., Taylor, C., and Graham, J. (1995). Active shape models—their training and application. *Computer Vision and Image Understanding*, 61(1):38–59.
- Cootes, T., Taylor, C., Lanitis, A., Cooper, D., and Graham, J. (1993). Building and using flexible models incorporating grey-level information. In *International Conference on Computer Vision* (ICCV), pp. 242–246.
- Cootes, T. F. and Taylor, C. J. (2001). Statistical models of appearance for medical image analysis and computer vision. In *Medical Imaging*.
- Coquillart, S. (1990). Extended free-form deformations: A sculpturing tool for 3D geometric modeling. *Computer Graphics (SIGGRAPH)*, 24(4):187–196.

Cordonnier, J.-B., Loukas, A., and Jaggi, M. (2019). On the relationship between self-attention and convolutional layers. *arXiv preprint arXiv:1911.03584*.

- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The Cityscapes dataset for semantic urban scene understanding. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cormen, T. H. (2001). Introduction to Algorithms. MIT Press, Cambridge, Massachusetts.
- Cornelis, N., Leibe, B., Cornelis, K., and Van Gool, L. (2008). 3D urban scene modeling integrating recognition and reconstruction. *International Journal of Computer Vision*, 78(2–3):121–141.
- Corso, J. and Hager, G. (2005). Coherent regions for concise and stable image description. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 184–190.
- Costeira, J. and Kanade, T. (1995). A multi-body factorization method for motion analysis. In *International Conference on Computer Vision (ICCV)*, pp. 1071–1076.
- Costen, N., Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1999). Simultaneous extraction of functional face subspaces. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 492–497.
- Coughlan, J. M. and Yuille, A. L. (1999). Manhattan world: Compass direction from a single image by Bayesian inference. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 941–947.
- Couprie, C., Grady, L., Najman, L., and Talbot, H. (2009). Power watersheds: A new image segmentation framework extending graph cuts, random walker and optimal spanning forest. In *International Conference on Computer Vision (ICCV)*.
- Cour, T., Bénézit, F., and Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1123–1130.
- Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. *IEEE Transactions on Information Theory*, 13(1):21–27.
- Cox, I. J. (1994). A maximum likelihood N-camera stereo algorithm. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 733–739.
- Cox, I. J., Roy, S., and Hingorani, S. L. (1995). Dynamic histogram warping of image pairs for constant image brightness. In *IEEE International Conference on Image Processing (ICIP)*, pp. 366–369.
- Cox, I. J., Hingorani, S. L., Rao, S. B., and Maggs, B. M. (1996). A maximum likelihood stereo algorithm. *Computer Vision and Image Understanding*, 63(3):542–567.
- Crandall, D. and Huttenlocher, D. (2007). Composite models of objects and scenes for category recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Crandall, D., Felzenszwalb, P., and Huttenlocher, D. (2005). Spatial priors for part-based recognition using statistical models. In *IEEE Computer Society Conference on Computer Vision and Pattern*

- Recognition (CVPR), pp. 10-17.
- Crandall, D., Backstrom, L., Huttenlocher, D., and Kleinberg, J. (2009). Mapping the world's photos. In *International World Wide Web Conference*, pp. 761–770.
- Crandall, D. J. and Huttenlocher, D. P. (2006). Weakly supervised learning of part-based spatial models for visual object recognition. In *European Conference on Computer Vision (ECCV)*, pp. 16–29.
- Crane, R. (1997). A Simplified Approach to Image Processing. Prentice Hall, Upper Saddle River, NJ.
- Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation. *Numerische Mathematik*, 31:377–403.
- Cremers, D. (2007). Nonlinear dynamical shape priors for level set segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cremers, D. and Soatto, S. (2005). Motion competition: A variational framework for piecewise parametric motion segmentation. *International Journal of Computer Vision*, 62(3):249–265.
- Cremers, D., Rousson, M., and Deriche, R. (2007). A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. *International Journal of Computer Vision*, 72(2):195–215.
- Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A. (2018). Generative adversarial networks: An overview. *IEEE Signal Processing Magazine*, 35(1):53–65.
- Crevier, D. (1993). AI: The Tumultuous Search for Artificial Intelligence. BasicBooks, New York, NY.
- Criminisi, A. and Shotton, J. (2013). *Decision forests for computer vision and medical image analysis*. Springer.
- Criminisi, A., Pérez, P., and Toyama, K. (2004). Region filling and object removal by exemplar-based inpainting. *IEEE Transactions on Image Processing*, 13(9):1200–1212.
- Criminisi, A., Reid, I., and Zisserman, A. (2000). Single view metrology. *International Journal of Computer Vision*, 40(2):123–148.
- Criminisi, A., Sharp, T., and Blake, A. (2008). GeoS: Geodesic image segmentation. In *European Conference on Computer Vision (ECCV)*, pp. 99–112.
- Criminisi, A., Shotton, J., and Konukoglu, E. (2012). Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. *Foundations and Trends® in Computer Graphics and Vision*, 7(2–3):81–227.
- Criminisi, A., Cross, G., Blake, A., and Kolmogorov, V. (2006). Bilayer segmentation of live video. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 53–60.
- Criminisi, A., Shotton, J., Blake, A., and Torr, P. (2003). Gaze manipulation for one-to-one teleconferencing. In *International Conference on Computer Vision (ICCV)*, pp. 191–198.

Criminisi, A., Kang, S. B., Swaminathan, R., Szeliski, R., and Anandan, P. (2005). Extracting layers and analyzing their specular properties using epipolar-plane-image analysis. *Computer Vision and Image Understanding*, 97(1):51–85.

- Criminisi, A., Shotton, J., Blake, A., Rother, C., and Torr, P. H. S. (2007). Efficient dense stereo with occlusion by four-state dynamic programming. *International Journal of Computer Vision*, 71(1):89–110.
- Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., and Siddiqui, K. (2013). Regression forests for efficient anatomy detection and localization in computed tomography scans. *Medical Image Analysis*, 17(8):1293–1303.
- Cross, G. (2019). Fully autonomous flying robots in the wild challenges and opportunities. Keynote talk at the ICRA 2019 Workshop on Algorithms And Architectures For Learning In-The-Loop Systems In Autonomous Flight, https://ieee-aerialrobotics-uavs.org/wp-content/uploads/2019/06/ICRA-workshop-talk-skydio.pdf.
- Crow, F. C. (1984). Summed-area table for texture mapping. *Computer Graphics (SIGGRAPH)*, 18(3):207–212.
- Crowley, J. L. and Stern, R. M. (1984). Fast computation of the difference of low-pass transform. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 6(2):212–222.
- Csurka, G., Dance, C. R., Perronnin, F., and Willamowski, J. (2006). Generic visual categorization using weak geometry. In Ponce, J., Hebert, M., Schmid, C., and Zisserman, A. (eds), *Toward Category-Level Object Recognition*, pp. 207–224, Springer, New York.
- Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization with bags of keypoints. In *ECCV International Workshop on Statistical Learning in Computer Vision*.
- Cui, J., Yang, Q., Wen, F., Wu, Q., Zhang, C., Van Gool, L., and Tang, X. (2008). Transductive object cutout. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Cui, Z. and Tan, P. (2015). Global structure-from-motion by similarity averaging. In *IEEE International Conference on Computer Vision (ICCV)*.
- Curless, B. (1999). From range scans to 3D models. Computer Graphics, 33(4):38-41.
- Curless, B. and Levoy, M. (1995). Better optical triangulation through spacetime analysis. In *International Conference on Computer Vision (ICCV)*, pp. 987–994.
- Curless, B. and Levoy, M. (1996). A volumetric method for building complex models from range images. In *ACM SIGGRAPH Conference Proceedings*, pp. 303–312.
- Cutler, R. and Davis, L. S. (2000). Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):781–796.
- Czolbe, S., Krause, O., Cox, I., and Igel, C. (2020). A loss function for generative neural networks based on Watson's perceptual model. In *Advances in Neural Information Processing Systems* (*NeurIPS*).

- Čech, J. and Šára, R. (2007). Efficient sampling of disparity space for fast and accurate matching. In Towards Benchmarking Automated Calibration, Orientation and Surface Reconstruction from Images (BenCOS).
- Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. *IEEE Transactions on Image Processing*, 16(8):2080– 2095.
- Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., and Theobalt, C. (2017). BundleFusion: Real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. *ACM Transactions on Graphics*, 36(4):76a.
- Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017). ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dai, J., He, K., and Sun, J. (2015). Convolutional feature masking for joint object and stuff segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic segmentation via multi-task network cascades. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dai, Z., Cai, B., Lin, Y., and Chen, J. (2020). UP-DETR: Unsupervised pre-training for object detection with transformers. *arXiv* preprint *arXiv*:2011.09094.
- Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 886–893.
- Dalal, N., Triggs, B., and Schmid, C. (2006). Human detection using oriented histograms of flow and appearance. In *European Conference on Computer Vision (ECCV)*, pp. 428–441.
- Damen, D., Doughty, H., Maria Farinella, G., Fidler, S., Furnari, A., Kazakos, E., Moltisanti, D., Munro, J., Perrett, T., Price, W., and Wray, M. (2018). Scaling egocentric vision: The EPIC-KITCHENS dataset. In *European Conference on Computer Vision (ECCV)*.
- Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. (1999). Reflectance and texture of real world surfaces. *ACM Transactions on Graphics*, 18(1):1–34.
- Danelljan, M., Robinson, A., Khan, F. S., and Felsberg, M. (2016). Beyond correlation filters: Learning continuous convolution operators for visual tracking. In *European Conference on Computer Vision*, pp. 472–488.
- Danielsson, P. E. (1980). Euclidean distance mapping. *Computer Graphics and Image Processing*, 14(3):227–248.
- Darrell, T. and Pentland, A. (1991). Robust estimation of a multi-layered motion representation. In *IEEE Workshop on Visual Motion*, pp. 173–178.
- Darrell, T. and Pentland, A. (1995). Cooperative robust estimation using layers of support. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(5):474–487.
- Darrell, T. and Simoncelli, E. (1993). "Nulling" filters and the separation of transparent motion. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*,

- pp. 738-739.
- Darrell, T., Gordon, G., Harville, M., and Woodfill, J. (2000). Integrated person tracking using stereo, color, and pattern detection. *International Journal of Computer Vision*, 37(2):175–185.
- Darrell, T., Baker, H., Crow, F., Gordon, G., and Woodfill, J. (1997). Magic morphin mirror: face-sensitive distortion and exaggeration. In *ACM SIGGRAPH Visual Proceedings*.
- Das, A., Kottur, S., Gupta, K., Singh, A., Yadav, D., Moura, J. M. F., Parikh, D., and Batra, D. (2017). Visual dialog. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Datta, R., Joshi, D., Li, J., and Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age. *ACM Computing Surveys*, 40(2):5.
- Daugman, J. (2004). How iris recognition works. *IEEE Transactions on Circuits and Systems for Video Technology*, 14(1):21–30.
- Dave, A., Khurana, T., Tokmakov, P., Schmid, C., and Ramanan, D. (2020). TAO: A large-scale benchmark for tracking any object. In *European Conference on Computer Vision (ECCV)*.
- David, P., DeMenthon, D., Duraiswami, R., and Samet, H. (2004). SoftPOSIT: Simultaneous pose and correspondence determination. *International Journal of Computer Vision*, 59(3):259–284.
- Davies, E. R. (2017). *Computer vision: principles, algorithms, applications, learning*. Academic Press, 5th edition.
- Davis, J. (1998). Mosaics of scenes with moving objects. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 354–360.
- Davis, J., Ramamoorthi, R., and Rusinkiewicz, S. (2003). Spacetime stereo: A unifying framework for depth from triangulation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 359–366.
- Davis, J., Nahab, D., Ramamoorthi, R., and Rusinkiewicz, S. (2005). Spacetime stereo: A unifying framework for depth from triangulation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(2):296–302.
- Davis, L. (1975). A survey of edge detection techniques. *Computer Graphics and Image Processing*, 4(3):248–270.
- Davis, T. A. (2006). Direct Methods for Sparse Linear Systems. SIAM.
- Davis, T. A. (2011). SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR factorization. *ACM Transactions on Mathematical Software*, 38(1):8:1–8:22.
- Davis, T. A., Rajamanickam, S., and Sid-Lakhdar, W. M. (2016). A survey of direct methods for sparse linear systems. *Acta Numerica*, 25:383–566.
- Davison, A., Reid, I., Molton, N. D., and Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(6):1052–1067.
- de Agapito, L., Hayman, E., and Reid, I. (2001). Self-calibration of rotating and zooming cameras. *International Journal of Computer Vision*, 45(2):107–127.
- de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. (2008). Performance capture from sparse multi-view video. *ACM Transactions on Graphics*, 27(3):98.

- de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2006). *Computational Geometry: Algorithms and Applications*. Springer, New York, NY, 3rd edition.
- de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). *Computational Geometry: Algorithms and Applications*. Springer-Verlag.
- De Bonet, J. (1997). Multiresolution sampling procedure for analysis and synthesis of texture images. In *ACM SIGGRAPH Conference Proceedings*, pp. 361–368.
- De Bonet, J. S. and Viola, P. (1999). Poxels: Probabilistic voxelized volume reconstruction. In *International Conference on Computer Vision (ICCV)*, pp. 418–425.
- De Castro, E. and Morandi, C. (1987). Registration of translated and rotated images using finite Fourier transforms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-9(5):700–703.
- De la Torre, F. and Black, M. J. (2003). A framework for robust subspace learning. *International Journal of Computer Vision*, 54(1/2/3):117–142.
- de Sande, K. V., Uijlings, J., Gevers, T., and Smeulders, A. (2011). Segmentation as selective search for object recognition. In *International Conference on Computer Vision (ICCV)*.
- Debevec, P. (1998). Rendering synthetic objects into real scenes: Bridging traditional and image-based graphics with global illumination and high dynamic range photography. In *ACM SIG-GRAPH Conference Proceedings*, pp. 189–198.
- Debevec, P. (2006). Virtual cinematography: Relighting through computation. *Computer*, 39(8):57–65.
- Debevec, P., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., and Sagar, M. (2000). Acquiring the reflectance field of a human face. In *ACM SIGGRAPH Conference Proceedings*, pp. 145–156.
- Debevec, P., Wenger, A., Tchou, C., Gardner, A., Waese, J., and Hawkins, T. (2002). A lighting reproduction approach to live-action compositing. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):547–556.
- Debevec, P. E. (1999). Image-based modeling and lighting. *Computer Graphics*, 33(4):46–50.
- Debevec, P. E. and Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In *ACM SIGGRAPH Conference Proceedings*, pp. 369–378.
- Debevec, P. E., Taylor, C. J., and Malik, J. (1996). Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In ACM SIGGRAPH Conference Proceedings, pp. 11–20.
- Debevec, P. E., Yu, Y., and Borshukov, G. D. (1998). Efficient view-dependent image-based rendering with projective texture-mapping. In *Eurographics Rendering Workshop*, pp. 105–116.
- DeCarlo, D. and Santella, A. (2002). Stylization and abstraction of photographs. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):769–776.
- DeCarlo, D., Metaxas, D., and Stone, M. (1998). An anthropometric face model using variational techniques. In *ACM SIGGRAPH Conference Proceedings*, pp. 67–74.

Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020). *Mathematics for Machine Learning*. Cambridge University Press. https://mml-book.github.io.

- Delingette, H., Hebert, M., and Ikeuichi, K. (1992). Shape representation and image segmentation using deformable surfaces. *Image and Vision Computing*, 10(3):132–144.
- Dellaert, F. (2021). Factor graphs: Exploiting structure in robotics. *Annual Review of Control, Robotics, and Autonomous Systems*, 4(1):141–166.
- Dellaert, F. and Collins, R. (1999). Fast image-based tracking by selective pixel integration. In *ICCV Workshop on Frame-Rate Vision*, pp. 1–22.
- Dellaert, F. and Kaess, M. (2017). Factor graphs for robot perception. *Foundations and Trends*® *in Robotics*, 6(1-2):1–139.
- Dellaert, F. and Yen-Chen, L. (2021). Neural volume rendering: NeRF and beyond. *arXiv preprint arXiv:2101.05204*. See also https://dellaert.github.io/NeRF.
- Dellaert, F., Rosen, D. M., Wu, J., Mahony, R., and Carlone, L. (2020). Shonan rotation averaging: Global optimality by surfing so(p)(n). In *European Conference on Computer Vision (ECCV)*.
- DeMenthon, D. I. and Davis, L. S. (1995). Model-based object pose in 25 lines of code. *International Journal of Computer Vision*, 15(1–2):123–141.
- Demmel, N., Sommer, C., Cremers, D., and Usenko, V. (2021). Square root bundle adjustment for large-scale reconstruction. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dempster, A., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society B*, 39(1):1–38.
- Dendorfer, P., Ošep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., and Leal-Taixé, L. (2021). MOTChallenge: A benchmark for single-camera multiple target tracking. *International Journal of Computer Vision*, 129(4):845–881.
- Deng, J., Guo, J., Xue, N., and Zafeiriou, S. (2019). ArcFace: Additive angular margin loss for deep face recognition. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Deng, J., Guo, J., Liu, T., Gong, M., and Zafeiriou, S. (2020a). Sub-center ArcFace: Boosting face recognition by large-scale noisy web faces. In *European Conference on Computer Vision (ECCV)*.
- Deng, J., Guo, J., Ververas, E., Kotsia, I., and Zafeiriou, S. (2020b). RetinaFace: Single-shot multi-level face localisation in the wild. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 248–255.
- Denis, P., Elder, J. H., and Estrada, F. J. (2008). Efficient edge-based methods for estimating Manhattan frames in urban imagery. In *European Conference on Computer Vision (ECCV)*, pp. 197–210.
- Denton, E., Chintala, S., Szlam, A., and Fergus, R. (2015). Deep generative image models using a Laplacian pyramid of adversarial networks. In *Advances in Neural Information Processing*

- Systems (NeurIPS).
- Deriche, R. (1987). Using Canny's criteria to derive a recursively implemented optimal edge detector. *International Journal of Computer Vision*, 1(2):167–187.
- Deriche, R. (1990). Fast algorithms for low-level vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(1):78–87.
- Deselaers, T., Alexe, B., and Ferrari, V. (2012). Weakly supervised localization and learning with generic knowledge. *International Journal of Computer Vision*, 100(3):275–293.
- Desmaison, A., Bunel, R., Kohli, P., Torr, P. H. S., and Kumar, M. P. (2016). Efficient continuous relaxations for dense CRF. In *European Conference on Computer Vision (ECCV)*, pp. 818–833.
- DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018). SuperPoint: Self-supervised interest point detection and description. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 224–236.
- Deutscher, J. and Reid, I. (2005). Articulated body motion capture by stochastic search. *International Journal of Computer Vision*, 61(2):185–205.
- Deutscher, J., Blake, A., and Reid, I. (2000). Articulated body motion capture by annealed particle filtering. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 126–133.
- Dev, P. (1974). Segmentation Processes in Visual Perception: A Cooperative Neural Model. COINS Technical Report 74C-5, University of Massachusetts at Amherst.
- Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. *arXiv* preprint arXiv:1810.04805.
- Devlin, J., Gupta, S., Girshick, R., Mitchell, M., and Zitnick, C. L. (2015). Exploring nearest neighbor approaches for image captioning. *arXiv* preprint arXiv:1505.04467.
- Dhond, U. R. and Aggarwal, J. K. (1989). Structure from stereo—a review. *IEEE Transactions on Systems, Man, and Cybernetics*, 19(6):1489–1510.
- Dick, A., Torr, P. H. S., and Cipolla, R. (2004). Modelling and interpretation of architecture from several images. *International Journal of Computer Vision*, 60(2):111–134.
- Dickinson, S., Leonardis, A., Schiele, B., and Tarr, M. J. (eds). (2007). *Object Categorization: Computer and Human Vision Perspectives*, Cambridge University Press, New York.
- Dickmanns, E. D. and Graefe, V. (1988). Dynamic monocular machine vision. *Machine Vision and Applications*, 1:223–240.
- Dickmanns, E. D. and Mysliwetz, B. D. (1992). Recursive 3-D road and relative ego-state recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):199–213.
- Diebel, J. (2006). *Representing Attitude: Euler Angles, Quaternions, and Rotation Vectors*. Technical Report, Stanford University.
- Diebel, J. R., Thrun, S., and Brünig, M. (2006). A Bayesian method for probable surface reconstruction and decimation. *ACM Transactions on Graphics*, 25(1).

Dimitrijevic, M., Lepetit, V., and Fua, P. (2006). Human body pose detection using Bayesian spatiotemporal templates. *Computer Vision and Image Understanding*, 104(2–3):127–139.

- Ding, C. and Tao, D. (2018). Trunk-branch ensemble convolutional neural networks for video-based face recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(4):1002–1014.
- Ding, M., Wang, Z., Sun, J., Shi, J., and Luo, P. (2019). CamNet: Coarse-to-fine retrieval for camera re-localization. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Dinh, H. Q., Turk, G., and Slabaugh, G. (2002). Reconstructing surfaces by volumetric regularization using radial basis functions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(10):1358–1371.
- Divvala, S., Hoiem, D., Hays, J., Efros, A. A., and Hebert, M. (2009). An empirical study of context in object detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dodgson, N. A. (1992). *Image Resampling*. Technical Report TR261, Wolfson College and Computer Laboratory, University of Cambridge.
- Dodgson, N. A., Floater, M. S., and Sabin, M. A. (2005). *Advances in Multiresolution for Geometric Modelling*. Springer.
- Doersch, C., Gupta, A., and Efros, A. A. (2015). Unsupervised visual representation learning by context prediction. In *IEEE International Conference on Computer Vision (ICCV)*.
- Dollár, P. and Zitnick, C. L. (2015). Fast edge detection using structured forests. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37(8):1558–1570.
- Dollár, P., Appel, R., and Kienzle, W. (2012). Crosstalk cascades for frame-rate pedestrian detection. In *European Conference on Computer Vision (ECCV)*, pp. 645–659.
- Dollár, P., Belongie, S., and Perona, P. (2010). The fastest pedestrian detector in the West. In *British Machine Vision Conference (BMVC)*.
- Dollár, P., Appel, R., Belongie, S., and Perona, P. (2014). Fast feature pyramids for object detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(8):1532–1545.
- Dollár, P., Tu, Z., Perona, P., and Belongie, S. (2009). Integral channel features. In *British Machine Vision Conference*.
- Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2009). Pedestrian detection: A benchmark. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Dollár, P., Wojek, C., Schiele, B., and Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(4):743–761.
- Donahue, J., Hendricks, L. A., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., and Darrell, T. (2015). Long-term recurrent convolutional networks for visual recognition and description. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2014). DeCAF: A deep convolutional activation feature for generic visual recognition. In *International Conference*

- on Machine Learning (ICML), pp. 647-655.
- Dong, C., Loy, C. C., He, K., and Tang, X. (2016). Image super-resolution using deep convolutional networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(2):295–307.
- Donoho, D. L. and Grimes, C. (2003). Hessian Eigenmaps: Locally linear embedding techniques for high-dimensional data. *Proceedings of the National Academy of Sciences*, 100(10):5591–5596.
- Doretto, G. and Soatto, S. (2006). Dynamic shape and appearance models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(12):2006–2019.
- Doretto, G., Chiuso, A., Wu, Y. N., and Soatto, S. (2003). Dynamic textures. *International Journal of Computer Vision*, 51(2):91–109.
- Dorsey, J., Rushmeier, H., and Sillion, F. (2007). *Digital Modeling of Material Appearance*. Morgan Kaufmann, San Francisco.
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations (ICLR)*. arXiv preprint arXiv:2010.11929.
- Dosovitskiy, A. and Brox, T. (2016). Generating images with perceptual similarity metrics based on deep networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 658–666.
- Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., van der Smagt, P., Cremers, D., and Brox, T. (2015). FlowNet: Learning optical flow with convolutional networks. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 2758–2766.
- Dou, M., Davidson, P., Fanello, S. R., Khamis, S., Kowdle, A., Rhemann, C., Tankovich, V., and Izadi, S. (2017). Motion2Fusion: Real-time volumetric performance capture. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):1–16.
- Douglas, D. H. and Peucker, T. K. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. *The Canadian Cartographer*, 10(2):112–122.
- Drori, I., Cohen-Or, D., and Yeshurun, H. (2003). Fragment-based image completion. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):303–312.
- Drory, A., Haubold, C., Avidan, S., and Hamprecht, F. A. (2014). Semi-global matching: a principled derivation in terms of message passing. In *German Conference on Pattern Recognition (GCPR)*, pp. 43–53.
- Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model globally, match locally: Efficient and robust 3D object recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Duan, K., Parikh, D., Crandall, D., and Grauman, K. (2012). Discovering localized attributes for fine-grained recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Duchêne, S., Riant, C., Chaurasia, G., Lopez-Moreno, J., Laffont, P.-Y., Popov, S., Bousseau, A., and Drettakis, G. (2015). Multi-view intrinsic images of outdoors scenes with an application to relighting. *ACM Transactions on Graphics (Proc. SIGGRAPH)*.

- Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. *Journal of Machine Learning Research*, 12(7).
- Duda, R. O. and Hart, P. E. (1972). Use of the Hough transform to detect lines and curves in pictures. *Communications of the ACM*, 15(1):11–15.
- Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. John Wiley & Sons, New York, 2nd edition.
- Dufaux, F., Le Callet, P., Mantiuk, R., and Mrak, M. (2016). *High dynamic range video: from acquisition, to display and applications.* Academic Press.
- Duggal, S., Wang, S., Ma, W.-C., Hu, R., and Urtasun, R. (2019). DeepPruner: Learning efficient stereo matching via differentiable PatchMatch. In *International Conference on Computer Vision (ICCV)*.
- Dumoulin, V. and Visin, F. (2016). A guide to convolution arithmetic for deep learning. *arXiv* preprint arXiv:1603.07285.
- Dumoulin, V., Shlens, J., and Kudlur, M. (2017). A learned representation for artistic style. In *International Conference on Learning Representations (ICLR)*.
- Dupuis, P. and Oliensis, J. (1994). An optimal control formulation and related numerical methods for a problem in shape reconstruction. *Annals of Applied Probability*, 4(2):287–346.
- Dupuy, J. and Jakob, W. (2018). An adaptive parameterization for efficient material acquisition and rendering. *ACM Transactions on Graphics*, 37(6):Article 274.
- Durand, F. and Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range images. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):257–266.
- Durand, F. and Szeliski, R. (2007). Computational photography. *IEEE Computer Graphics and Applications*, 27(2):21–22. Guest Editors' Introduction to Special Issue.
- Durbin, R. and Willshaw, D. (1987). An analogue approach to the traveling salesman problem using an elastic net method. *Nature*, 326:689–691.
- Durbin, R., Szeliski, R., and Yuille, A. (1989). An analysis of the elastic net approach to the travelling salesman problem. *Neural Computation*, 1(3):348–358.
- Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part I. *IEEE Robotics & Automation Magazine*, 13(2):99–110.
- Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., and Sattler, T. (2019). D2-Net: A trainable CNN for joint description and detection of local features. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Duygulu, P., Barnard, K., de Freitas, J. F. G., and Forsyth, D. A. (2002). Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In *European Conference on Computer Vision*, pp. 97–112.

- Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. (1995). Multiresolution analysis of arbitrary meshes. In *ACM SIGGRAPH Conference Proceedings*, pp. 173–182.
- Eden, A., Uyttendaele, M., and Szeliski, R. (2006). Seamless image stitching of scenes with large motions and exposure differences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2498–2505.
- Efros, A. A. and Freeman, W. T. (2001). Image quilting for texture synthesis and transfer. In *ACM SIGGRAPH Conference Proceedings*, pp. 341–346.
- Efros, A. A. and Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In *International Conference on Computer Vision (ICCV)*, pp. 1033–1038.
- Efros, A. A., Berg, A. C., Mori, G., and Malik, J. (2003). Recognizing action at a distance. In *International Conference on Computer Vision (ICCV)*, pp. 726–733.
- Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhöfer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., and Vetter, T. (2020). 3D morphable face models—past, present, and future. *ACM Transactions on Graphics*, 39(5):157.
- Ehrlich, M., Lim, S.-N., Davis, L., and Shrivastava, A. (2020). Quantization guided JPEG artifact correction. In *European Conference on Computer Vision (ECCV)*.
- Eigen, D. and Fergus, R. (2015). Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In *IEEE International Conference on Computer Vision (ICCV)*.
- Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In *Advances in Neural Information Processing Systems (NeurIPS)*, p. 2366–2374.
- Eisemann, E. and Durand, F. (2004). Flash photography enhancement via intrinsic relighting. *ACM Transactions on Graphics*, 23(3):673–678.
- Eisert, P., Steinbach, E., and Girod, B. (2000). Automatic reconstruction of stationary 3-D objects from multiple uncalibrated camera views. *IEEE Transactions on Circuits and Systems for Video Technology*, 10(2):261–277.
- Eisert, P., Wiegand, T., and Girod, B. (2000). Model-aided coding: a new approach to incorporate facial animation into motion-compensated video coding. *IEEE Transactions on Circuits and Systems for Video Technology*, 10(3):344–358.
- Ekman, P. and Friesen, W. V. (1978). *Facial Action Coding System: A Technique for the Measurement of Facial Movement*. Consulting Psychologists Press, Palo Alto, CA.
- El-Melegy, M. and Farag, A. (2003). Nonmetric lens distortion calibration: Closed-form solutions, robust estimation and model selection. In *International Conference on Computer Vision (ICCV)*, pp. 554–559.
- Elder, J. H. (1999). Are edges incomplete? International Journal of Computer Vision, 34(2/3):97– 122.

Elder, J. H. and Goldberg, R. M. (2001). Image editing in the contour domain. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(3):291–296.

- Elder, J. H. and Zucker, S. W. (1998). Local scale control for edge detection and blur estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(7):699–716.
- Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: A survey. *Journal of Machine Learning Research*, 20(55):1–21.
- Engel, J., Koltun, V., and Cremers, D. (2018). Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3):611–625.
- Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-scale direct monocular SLAM. In *European Conference on Computer Vision (ECCV)*, pp. 834–849.
- Engel, J., Usenko, V., and Cremers, D. (2016). A photometrically calibrated benchmark for monocular visual odometry. *arXiv preprint arXiv:1607.02555*.
- Engels, C., Stewénius, H., and Nistér, D. (2006). Bundle adjustment rules. In *Photogrammetric Computer Vision (PCV)*.
- Engl, H. W., Hanke, M., and Neubauer, A. (1996). *Regularization of Inverse Problems*. Kluwer Academic Publishers, Dordrecht.
- Enqvist, O., Josephson, K., and Kahl, F. (2009). Optimal correspondences from pairwise constraints. In *International Conference on Computer Vision (ICCV)*.
- Erofeev, M., Gitman, Y., Vatolin, D., Fedorov, A., and Wang, J. (2015). Perceptually motivated benchmark for video matting. In *British Machine Vision Conference (BMVC)*, pp. 99.1–99.12.
- Esser, P., Rombach, R., and Ommer, B. (2020). Taming transformers for high-resolution image synthesis. *arXiv preprint arXiv:2012.09841*.
- Estrada, F. J. and Jepson, A. D. (2009). Benchmarking image segmentation algorithms. *International Journal of Computer Vision*, 85(2):167–181.
- Evangelidis, G. D. and Psarakis, E. Z. (2008). Parametric image alignment using enhanced correlation coefficient maximization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(10):1858–1865.
- Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2010). The PASCAL visual object classes (VOC) challenge. *International Journal of Computer Vision*, 88(2):147–168.
- Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2015). The PASCAL visual object classes challenge: A retrospective. *International Journal of Computer Vision*, 111(1):98–136.
- Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., and Song, D. (2018). Robust physical-world attacks on deep learning visual classification. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ezzat, T., Geiger, G., and Poggio, T. (2002). Trainable videorealistic speech animation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):388–398.

- Fabbri, R., Costa, L. D. F., Torelli, J. C., and Bruno, O. M. (2008). 2D Euclidean distance transform algorithms: A comparative survey. *ACM Computing Surveys*, 40(1):2.
- Fairchild, M. D. (2013). Color Appearance Models. Wiley, 3rd edition.
- Fan, H., Su, H., and Guibas, L. J. (2017). A point set generation network for 3D object reconstruction from a single image. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fan, H., Zhou, Y., Li, A., Gao, S., Li, J., and Guo, Y. (2020). Visual localization using semantic segmentation and depth prediction. *arXiv* preprint arXiv:2005.11922.
- Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., and Feichtenhofer, C. (2021). Multiscale vision transformers. *arXiv preprint arXiv:2104.11227*.
- Fanello, S. R., Rhemann, C., Tankovich, V., Kowdle, A., Escolano, S. O., Kim, D., and Izadi, S. (2016). HyperDepth: Learning depth from structured light without matching. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fanello, S. R., Valentin, J., Rhemann, C., Kowdle, A., Tankovich, V., Davidson, P., and Izadi, S. (2017a). UltraStereo: Efficient learning-based matching for active stereo systems. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fanello, S. R., Valentin, J., Kowdle, A., Rhemann, C., Tankovich, V., Ciliberto, C., Davidson, P., and Izadi, S. (2017b). Low compute and fully parallel computer vision with HashMatch. In *IEEE International Conference on Computer Vision (ICCV)*.
- Fang, H., Gupta, S., Iandola, F., Srivastava, R. K., Deng, L., Dollár, P., Gao, J., He, X., Mitchell, M., Platt, J. C., Zitnick, C. L., and Zweig, G. (2015). From captions to visual concepts and back. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (Proc. SIGGRAPH), 27(3):67.
- Farenzena, M., Fusiello, A., and Gherardi, R. (2009). Structure-and-motion pipeline on a hierarchical cluster tree. In *IEEE International Workshop on 3D Digital Imaging and Modeling (3DIM)*.
- Farhadi, A., Hejrati, M., Sadeghi, M. A., Young, P., Rashtchian, C., Hockenmaier, J., and Forsyth, D. (2010). Every picture tells a story: Generating sentences from images. In *European Conference on Computer Vision (ECCV)*, pp. 15–29.
- Farin, G. (1992). From conics to NURBS: A tutorial and survey. *IEEE Computer Graphics and Applications*, 12(5):78–86.
- Farin, G. E. (2002). *Curves and Surfaces for CAGD: A Practical Guide*. Academic Press, Boston, Massachusetts, 5th edition.
- Fattal, R. (2007). Image upsampling via imposed edge statistics. *ACM Transactions on Graphics*, 26(3).
- Fattal, R. (2009). Edge-avoiding wavelets and their applications. *ACM Transactions on Graphics*, 28(3):22.

Fattal, R., Lischinski, D., and Werman, M. (2002). Gradient domain high dynamic range compression. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):249–256.

- Faugeras, O. (1993). *Three-dimensional computer vision: A geometric viewpoint*. MIT Press, Cambridge, Massachusetts.
- Faugeras, O. and Keriven, R. (1998). Variational principles, surface evolution, PDEs, level set methods, and the stereo problem. *IEEE Transactions on Image Processing*, 7(3):336–344.
- Faugeras, O. and Luong, Q.-T. (2001). The Geometry of Multiple Images. MIT Press, Cambridge, MA.
- Faugeras, O. D. (1992). What can be seen in three dimensions with an uncalibrated stereo rig? In *European Conference on Computer Vision (ECCV)*, pp. 563–578.
- Faugeras, O. D. and Hebert, M. (1987). The representation, recognition and positioning of 3-D shapes from range data. In Kanade, T. (ed.), *Three-Dimensional Machine Vision*, pp. 301–353, Kluwer Academic Publishers, Boston.
- Faugeras, O. D., Luong, Q.-T., and Maybank, S. J. (1992). Camera self-calibration: Theory and experiments. In *European Conference on Computer Vision (ECCV)*, pp. 321–334.
- Favaro, P. and Soatto, S. (2006). 3-D Shape Estimation and Image Restoration: Exploiting Defocus and Motion-Blur. Springer.
- Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861-874.
- Fei-Fei, L. and Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 524–531.
- Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot learning of object categories. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(4):594–611.
- Fei-Fei, L., Fergus, R., and Torralba, A. (2009). ICCV 2009 short course on recognizing and learning object categories. In *International Conference on Computer Vision (ICCV)*. https://people.csail.mit.edu/torralba/shortCourseRLOC.
- Feichtenhofer, C. (2020). X3D: Expanding architectures for efficient video recognition. In *IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR).
- Feichtenhofer, C., Pinz, A., and Wildes, R. P. (2017). Temporal residual networks for dynamic scene recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Feichtenhofer, C., Pinz, A., and Zisserman, A. (2016). Convolutional two-stream network fusion for video action recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Feichtenhofer, C., Fan, H., Malik, J., and He, K. (2019). Slowfast networks for video recognition. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Feichtenhofer, C., Fan, H., Xiong, B., Girshick, R., and He, K. (2021). A large-scale study on unsupervised spatiotemporal representation learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Feilner, M., Van De Ville, D., and Unser, M. (2005). An orthogonal family of quincunx wavelets with continuously adjustable order. *IEEE Transactions on Image Processing*, 14(4):499–520.
- Feiner, S. K. (2002). Augmented reality: A new way of seeing. Scientific American, 286(4):48-55.
- Feldmar, J. and Ayache, N. (1996). Rigid, affine, and locally affine registration of free-form surfaces. *International Journal of Computer Vision*, 18(2):99–119.
- Felzenszwalb, P., McAllester, D., and Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. *International Journal of Computer Vision*, 59(2):167–181.
- Felzenszwalb, P. F. and Huttenlocher, D. P. (2005). Pictorial structures for object recognition. *International Journal of Computer Vision*, 61(1):55–79.
- Felzenszwalb, P. F. and Huttenlocher, D. P. (2012). Distance transforms of sampled functions. *Theory of Computing*, 8(1):415–428.
- Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and Ramanan, D. (2010). Object detection with discriminatively trained part-based models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(9):1627–1645.
- Ferencz, A., Learned-Miller, E. G., and Malik, J. (2008). Learning to locate informative features for visual identification. *International Journal of Computer Vision*, 77(1–3):3–24.
- Fergus, R. (2007). Combined segmentation and recognition. In *CVPR Short Course on Recognizing and Learning Object Categories*. https://people.csail.mit.edu/torralba/shortCourseRLOC.
- Fergus, R. (2009). Classical methods for object recognition. In *ICCV* 2009 Short Course on Recognizing and Learning Object Categories. https://people.csail.mit.edu/torralba/shortCourseRLOC.
- Fergus, R., Perona, P., and Zisserman, A. (2004). A visual category filter for Google images. In *European Conference on Computer Vision (ECCV)*, pp. 242–256.
- Fergus, R., Perona, P., and Zisserman, A. (2005). A sparse object category model for efficient learning and exhaustive recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 380–387.
- Fergus, R., Perona, P., and Zisserman, A. (2007). Weakly supervised scale-invariant learning of models for visual recognition. *International Journal of Computer Vision*, 71(3):273–303.
- Fergus, R., Weiss, Y., and Torralba, A. (2009). Semi-supervised learning in gigantic image collections. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 522–530.
- Fergus, R., Fei-Fei, L., Perona, P., and Zisserman, A. (2005). Learning object categories from Google's image search. In *International Conference on Computer Vision (ICCV)*, pp. 1816–1823.
- Fergus, R., Singh, B., Hertzmann, A., Roweis, S. T., and Freeman, W. T. (2006). Removing camera shake from a single photograph. *ACM Transactions on Graphics*, 25(3):787–794.

Ferrari, V., Marin-Jimenez, M. J., and Zisserman, A. (2008). Progressive search space reduction for human pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Ferrari, V., Tuytelaars, T., and Van Gool, L. (2006a). Object detection by contour segment networks. In *European Conference on Computer Vision (ECCV)*, pp. 14–28.
- Ferrari, V., Tuytelaars, T., and Van Gool, L. (2006b). Simultaneous object recognition and segmentation from single or multiple model views. *International Journal of Computer Vision*, 67(2):159–188.
- Finkelstein, A. and Salesin, D. H. (1994). Multiresolution curves. In *ACM SIGGRAPH Conference Proceedings*, pp. 261–268.
- Firestone, C. and Scholl, B. J. (2016). Cognition does not affect perception: Evaluating the evidence for "top-down" effects. *Behavioral and Brain Sciences*, 39:E229.
- Firman, M. (2016). RGBD datasets: Past, present and future. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.
- Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM*, 24(6):381–395.
- Fischler, M. A. and Elschlager, R. A. (1973). The representation and matching of pictorial structures. *IEEE Transactions on Computers*, 22(1):67–92.
- Fischler, M. A. and Firschein, O. (1987). *Readings in Computer Vision*. Morgan Kaufmann Publishers, Inc., Los Altos.
- Fischler, M. A., Firschein, O., Barnard, S. T., Fua, P. V., and Leclerc, Y. (1989). *The Vision Problem: Exploiting Parallel Computation*. Technical Note 458, SRI International, Menlo Park.
- Fitzgibbon, A. W. and Zisserman, A. (1998). Automatic camera recovery for closed and open image sequences. In *European Conference on Computer Vision (ECCV)*, pp. 311–326.
- Fitzgibbon, A. W., Cross, G., and Zisserman, A. (1998). Automatic 3D model construction for turntable sequences. In *European Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE)*, pp. 155–170.
- Fleet, D. and Jepson, A. (1990). Computation of component image velocity from local phase information. *International Journal of Computer Vision*, 5(1):77–104.
- Fleuret, F. and Geman, D. (2001). Coarse-to-fine face detection. *International Journal of Computer Vision*, 41(1/2):85–107.
- Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., and Yanker, P. (1995). Query by image and video content: The QBIC system. *Computer*, 28(9):23–32.
- Floater, M. S. and Hormann, K. (2005). Surface parameterization: a tutorial and survey. In Dodgson, Neil A.and Floater, M. S. and Sabin, M. A. (eds), Advances in Multiresolution for Geometric Modelling, pp. 157–186, Springer.

- Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R., Snavely, N., and Tucker, R. (2019). DeepView: View synthesis with learned gradient descent. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fontaine, R. (2015). The state-of-the-art of mainstream cmos image sensors. In *Proceedings of the International Image Sensors Workshop*, pp. 6–12.
- Forssén, P.-E. and Ringaby, E. (2010). Rectifying rolling shutter video from hand-held devices. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Forster, C., Carlone, L., Dellaert, F., and Scaramuzza, D. (2016). On-manifold preintegration for real-time visual–inertial odometry. *IEEE Transactions on Robotics*, 33(1):1–21.
- Forster, C., Zhang, Z., Gassner, M., Werlberger, M., and Scaramuzza, D. (2017). SVO: Semidirect visual odometry for monocular and multicamera systems. *IEEE Transactions on Robotics*, 33(2):249–265.
- Förstner, W. (1986). A feature-based correspondence algorithm for image matching. *Intl. Arch. Photogrammetry & Remote Sensing*, 26(3):150–166.
- Förstner, W. (2005). Uncertainty and projective geometry. In Bayro-Corrochano, E. (ed.), *Handbook of Geometric Computing*, pp. 493–534, Springer, New York.
- Forsyth, D. and Ponce, J. (2003). *Computer Vision: A Modern Approach*. Prentice Hall, Upper Saddle River, NJ.
- Forsyth, D. and Ponce, J. (2011). Computer Vision: A Modern Approach. Pearson, 2nd edition.
- Forsyth, D. A., Arikan, O., Ikemoto, L., O'Brien, J., and Ramanan, D. (2006). Computational studies of human motion: Part 1, tracking and motion synthesis. *Foundations and Trends® in Computer Graphics and Computer Vision*, 1(2/3):77–254.
- Fossati, A., Dimitrijevic, M., Lepetit, V., and Fua, P. (2007). Bridging the gap between detection and tracking for 3D monocular video-based motion capture. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fournier, A., Fussel, D., and Carpenter, L. (1982). Computer rendering of stochastic models. *Communications of the ACM*, 25(6):371–384.
- Fragkiadaki, K., Zhang, G., and Shi, J. (2012). Video segmentation by tracing discontinuities in a trajectory embedding. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., and Pollefeys, M. (2010). Building Rome on a cloudless day. In *European Conference on Computer Vision (ECCV)*, pp. 368–381.
- Frahm, J.-M. and Koch, R. (2003). Camera calibration with known rotation. In *International Conference on Computer Vision (ICCV)*, pp. 1418–1425.
- Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations (ICLR)*.
- Freeman, M. (2008). Mastering HDR Photography. Amphoto Books, New York.

Freeman, W. T. (1992). *Steerable Filters and Local Analysis of Image Structure*. Ph.D. thesis, Massachusetts Institute of Technology.

- Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(9):891–906.
- Freeman, W. T., Jones, T. R., and Pasztor, E. C. (2002). Example-based super-resolution. *IEEE Computer Graphics and Applications*, 22(2):56–65.
- Freeman, W. T., Pasztor, E. C., and Carmichael, O. T. (2000). Learning low-level vision. *International Journal of Computer Vision*, 40(1):25–47.
- Fried, O., Tewari, A., Zollhöfer, M., Finkelstein, A., Shechtman, E., Goldman, D. B., Genova, K., Jin, Z., Theobalt, C., and Agrawala, M. (2019). Text-based editing of talking-head video. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):68:1–68:14.
- Fried, O., Shechtman, E., Goldman, D. B., and Finkelstein, A. (2016). Perspective-aware manipulation of portrait photos. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 35(4):1–10.
- Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best matches in logarithmic expected time. *ACM Transactions on Mathematical Software*, 3(3):209–226.
- Frisby, J. P. and Stone, J. V. (2010). Seeing: The computational approach to biological vision. MIT Press, 2nd edition.
- Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R. (2000). Adaptively sampled distance fields: A general representation of shape for computer graphics. In ACM SIGGRAPH Conference Proceedings, pp. 249–254.
- Frome, A., Singer, Y., Sha, F., and Malik, J. (2007). Learning globally-consistent local distance functions for shape-based image retrieval and classification. In *International Conference on Computer Vision (ICCV)*.
- Fu, Y., Yan, Q., Yang, L., Liao, J., and Xiao, C. (2018). Texture mapping for 3D reconstruction with RGB-D sensor. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fua, P. (1993). A parallel stereo algorithm that produces dense depth maps and preserves image features. *Machine Vision and Applications*, 6(1):35–49.
- Fua, P. and Leclerc, Y. G. (1995). Object-centered surface reconstruction: Combining multi-image stereo and shading. *International Journal of Computer Vision*, 16(1):35–56.
- Fua, P. and Sander, P. (1992). Segmenting unstructured 3D points into surfaces. In *European Conference on Computer Vision (ECCV)*, pp. 676–680.
- Fuentes-Pacheco, J., Ruiz-Ascencio, J., and Rendón-Mancha, J. M. (2015). Visual simultaneous localization and mapping: a survey. *Artificial Intelligence Review*, 43(1):55–81.
- Fuh, C.-S. and Maragos, P. (1991). Motion displacement estimation using an affine model for image matching. *Optical Engineering*, 30(7):881–887.
- Fuhrmann, S. and Goesele, M. (2011). Fusion of depth maps with multiple scales. In *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*.

- Fuhrmann, S. and Goesele, M. (2014). Floating scale surface reconstruction. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 33(4):46.
- Fuhrmann, S., Langguth, F., Moehrle, N., Waechter, M., and Goesele, M. (2015). MVE an image-based reconstruction environment. *Computers & Graphics*, 53:44–53.
- Fukunaga, K. and Hostetler, L. D. (1975). The estimation of the gradient of a density function, with applications in pattern recognition. *IEEE Transactions on Information Theory*, 21:32–40.
- Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, 36(4):193–202.
- Fuoli, D., Huang, Z., Danelljan, M., and Timofte, R. (2020). NTIRE 2020 challenge on video quality mapping: Methods and results. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.
- Furukawa, Y. and Hernández, C. (2015). Multi-view stereo: A tutorial. *Foundations and Trends® in Computer Graphics and Vision*, 9(1-2):1–148.
- Furukawa, Y. and Ponce, J. (2008). Dense 3D motion capture from synchronized video streams. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Furukawa, Y. and Ponce, J. (2009). Carved visual hulls for image-based modeling. *International Journal of Computer Vision*, 81(1):53–67.
- Furukawa, Y. and Ponce, J. (2010). Accurate, dense, and robust multi-view stereopsis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(8):1362–1376.
- Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2009a). Manhattan-world stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1422–1429.
- Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2009b). Reconstructing building interiors from images. In *IEEE International Conference on Computer Vision (ICCV)*.
- Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. (2010). Towards internet-scale multiview stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Fusiello, A., Roberto, V., and Trucco, E. (1997). Efficient stereo with multiple windowing. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 858–863.
- Fusiello, A., Trucco, E., and Verri, A. (2000). A compact algorithm for rectification of stereo pairs. *Machine Vision and Applications*, 12(1):16–22.
- Gårding, J. (1992). Shape from texture for smooth curved surfaces in perspective projection. *Journal of Mathematical Imaging and Vision*, 2:329–352.
- Gai, J. and Kang, S. B. (2009). Matte-based restoration of vintage video. *IEEE Transactions on Image Processing*, 18:2185–2197.
- Gal, R., Wexler, Y., Ofek, E., Hoppe, H., and Cohen-Or, D. (2010). Seamless montage for texturing models. In *Eurographics*.

Galleguillos, C. and Belongie, S. (2010). Context based object categorization: A critical survey. *Computer Vision and Image Understanding*, 114(6):712–722.

- Gallo, O., Troccoli, A., Jampani, V., Szeliski, R., Wiles, O., Tucker, R., Chaurasia, G., Kalantari, N., Srinivasan, P., and Yoon, J. S. (2020). CVPR 2020 tutorial on novel view synthesis: From depth-based warping to multi-plane images and beyond. https://nvlabs.github.io/nvs-tutorial-cvpr2020.
- Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010). Piecewise planar and non-planar stereo for urban scene reconstruction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gallup, D., Frahm, J.-M., Mordohai, P., and Pollefeys, M. (2008). Variable baseline/resolution stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gamble, E. and Poggio, T. (1987). Visual integration and detection of discontinuities: the key role of intensity edges. A. I. Memo 970, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
- Gammeter, S., Bossard, L., Quack, T., and Van Gool, L. (2009). I know what you did last summer: Object-level auto-annotation of holiday snaps. In *International Conference on Computer Vision* (ICCV).
- Gan, Z. (2020). CVPR 2020 tutorial on visual question answering and visual reasoning. https://rohit497.github.io/Recent-Advances-in-Vision-and-Language-Research.
- Gan, Z., Yu, L., Cheng, Y., Zhou, L., Li, L., Chen, Y.-C., Liu, J., and He, X. (2020). CVPR 2020 tutorial on recent advances in vision-and-language research. https://rohit497.github.io/ Recent-Advances-in-Vision-and-Language-Research.
- Gao, C., Saraf, A., Huang, J.-B., and Kopf, J. (2020). Flow-edge guided video completion. In *European Conference on Computer Vision (ECCV)*.
- Gao, W., Chen, Y., Wang, R., Shan, S., and Jiang, D. (2003). Learning and synthesizing MPEG-4 compatible 3-D face animation from video sequence. *IEEE Transactions on Circuits and Systems for Video Technology*, 13(11):1119–1128.
- Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete solution classification for the perspective-three-point problem. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(8):930–943.
- Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J., and Valentin, J. (2021). FastNeRF: High-fidelity neural rendering at 200fps. *arXiv preprint arXiv:2103.10380*.
- Garg, R., Wadhwa, N., Ansari, S., and Barron, J. T. (2019). Learning single camera depth estimation using dual-pixels. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Gatys, L., Ecker, A. S., and Bethge, M. (2015). Texture synthesis using convolutional neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 262–270.
- Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Gavrila, D. M. (1999). The visual analysis of human movement: A survey. *Computer Vision and Image Understanding*, 73(1):82–98.
- Gavrila, D. M. and Davis, L. S. (1996). 3D model-based tracking of humans in action: A multi-view approach. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 73–80.
- Gavrila, D. M. and Philomin, V. (1999). Real-time object detection for smart vehicles. In *International Conference on Computer Vision (ICCV)*, pp. 87–93.
- Gecer, B., Ploumpis, S., Kotsia, I., and Zafeiriou, S. (2019). GANFIT: Generative adversarial network fitting for high fidelity 3D face reconstruction. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gehrig, S. K., Eberli, F., and Meyer, T. (2009). A real-time low-power stereo vision engine using semi-global matching. In *International Conference on Computer Vision Systems*, pp. 134–143.
- Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional sequence to sequence learning. In *International Conference on Machine Learning (ICML)*, pp. 1243–1252.
- Geiger, A. (2021). University of Tübingen ML-4103 course: Deep learning. Slides and lecture notes available at https://uni-tuebingen.de/de/203146.
- Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for autonomous driving? The KITTI vision benchmark suite. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics: The KITTI dataset. *International Journal of Robotics Research*, 32(11):1231–1237.
- Geiger, D. and Girosi, F. (1991). Parallel and deterministic algorithms for MRFs: Surface reconstruction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(5):401–412.
- Geiger, D., Ladendorf, B., and Yuille, A. (1992). Occlusions and binocular stereo. In *European Conference on Computer Vision (ECCV)*, pp. 425–433.
- Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., and Wichmann, F. A. (2020). Shortcut learning in deep neural networks. *Nature Machine Intelligence*, 2(11):665–673.
- Gelb, A. (ed.). (1974). Applied Optimal Estimation. MIT Press, Cambridge, Massachusetts.
- Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-6(6):721–741.
- Gennert, M. A. (1988). Brightness-based stereo matching. In *International Conference on Computer Vision (ICCV)*, pp. 139–143.
- Germain, H., Bourmaud, G., and Lepetit, V. (2020). S2DNet: Learning image features for accurate sparse-to-dense matching. In *European Conference on Computer Vision (ECCV)*.
- Gershun, A. (1939). The light field. Journal of Mathematics and Physics, XVIII:51–151.
- Gevers, T., van de Weijer, J., and Stokman, H. (2006). Color feature detection. In Lukac, R. and Plataniotis, K. N. (eds), *Color Image Processing: Methods and Applications*, CRC Press.

Gharbi, M., Chaurasia, G., Paris, S., and Durand, F. (2016). Deep joint demosaicking and denoising. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 35(6):191.

- Ghosh, A., Kumar, H., and Sastry, P. S. (2017). Robust loss functions under label noise for deep neural networks. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 1919–1925.
- Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., and Schölkopf, B. (2019). From variational to deterministic autoencoders. *arXiv preprint arXiv:1903.12436*.
- Giblin, P. and Weiss, R. (1987). Reconstruction of surfaces from profiles. In *International Conference on Computer Vision (ICCV)*, pp. 136–144.
- Gidaris, S. and Komodakis, N. (2017). Detect, replace, refine: Deep structured prediction for pixel wise labeling. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representation learning by predicting image rotations. In *International Conference on Learning Representations (ICLR)*.
- Gidaris, S., Bursuc, A., Komodakis, N., Perez, P., and Cord, M. (2020). Learning representations by predicting bags of visual words. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gilbert, C. D. and Li, W. (2013). Top-down influences on visual processing. *Nature Reviews Neuro-science*, 14(5):350–363.
- Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search in high dimensions via hashing. In *International Conference on Very Large Data Bases (VLDB)*, pp. 518–529.
- Girdhar, R., Fouhey, D. F., Rodriguez, M., and Gupta, A. (2016). Learning a predictable and generative vector representation for objects. In *European Conference on Computer Vision (ECCV)*, pp. 484–499.
- Girod, B., Greiner, G., and Niemann, H. (eds). (2000). *Principles of 3D Image Analysis and Synthesis*, Kluwer, Boston.
- Girshick, R. (2015). Fast R-CNN. In IEEE International Conference on Computer Vision (ICCV).
- Girshick, R., Kirillov, A., Wu, Y., Feichtenhofer, C., Fan, H., Gkioxari, G., Johnson, J., Ravi, N., Dollár, P., Lo, W.-Y., and Xie, S. (2020). CVPR 2020 tutorial on visual recognition for images, video, and 3D. https://s9xie.github.io/Tutorials/CVPR2020.
- Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2015). Region-based convolutional networks for accurate object detection and segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(1):142–158.
- Gkioxari, G., Malik, J., and Johnson, J. (2019). Mesh R-CNN. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Gkioxari, G., Girshick, R., Dollár, P., and He, K. (2018). Detecting and recognizing human-object interactions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Glassner, A. (2018). *Deep Learning: From Basics to Practice*. The Imaginary Institute. https://www.glassner.com/portfolio/deep-learning-from-basics-to-practice.
- Glassner, A. (2021). *Deep Learning: A Visual Approach*. no starch press. https://nostarch.com/deep-learning-visual-approach.
- Glassner, A. S. (1995). *Principles of Digital Image Synthesis*. Morgan Kaufmann Publishers, San Francisco.
- Gleicher, M. (1995). Image snapping. In ACM SIGGRAPH Conference Proceedings, pp. 183–190.
- Gleicher, M. and Witkin, A. (1992). Through-the-lens camera control. *Computer Graphics (SIG-GRAPH)*, 26(2):331–340.
- Glocker, B., Komodakis, N., Tziritas, G., Navab, N., and Paragios, N. (2008). Dense image registration through MRFs and efficient linear programming. *Medical Image Analysis*, 12(6):731–741.
- Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., and Navab, N. (2008). Optical flow estimation with uncertainties through dynamic MRFs. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In *International Conference on Artificial Intelligence and Statistics*, pp. 249–256.
- Gluckman, J. (2006a). Higher order image pyramids. In *European Conference on Computer Vision* (*ECCV*), pp. 308–320.
- Gluckman, J. (2006b). Scale variant image pyramids. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1069–1075.
- Godard, C., Mac Aodha, O., and Brostow, G. J. (2017). Unsupervised monocular depth estimation with left-right consistency. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Godard, C., Matzen, K., and Uyttendaele, M. (2018). Deep burst denoising. In *European Conference on Computer Vision (ECCV)*.
- Goesele, M., Curless, B., and Seitz, S. (2006). Multi-view stereo revisited. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2402–2409.
- Goesele, M., Fuchs, C., and Seidel, H.-P. (2003). Accuracy of 3D range scanners by measurement of the slanted edge modulation transfer function. In *International Conference on 3-D Digital Imaging and Modeling*.
- Goesele, M., Snavely, N., Curless, B., Hoppe, H., and Seitz, S. M. (2007). Multi-view stereo for community photo collections. In *International Conference on Computer Vision (ICCV)*.
- Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D., and Szeliski, R. (2010). Ambient point clouds for view interpolation. ACM Transactions on Graphics (Proc. SIGGRAPH), 29(4):95.
- Goh, G., Cammarata, N., Voss, C., Carter, S., Petrov, M., Schubert, L., Radford, A., and Olah, C. (2021). Multimodal neurons in artificial neural networks. *Distill*. https://distill.pub/2021/multimodal-neurons.

Gold, S., Rangarajan, A., Lu, C., Pappu, S., and Mjolsness, E. (1998). New algorithms for 2D and 3D point matching: Pose estimation and correspondence. *Pattern Recognition*, 31(8):1019–1031.

- Goldberg, A. V. and Tarjan, R. E. (1988). A new approach to the maximum-flow problem. *Journal of the ACMD*, 35(4):921–940.
- Goldman, D. B. (2010). Vignette and exposure calibration and compensation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(12).
- Golovinskiy, A., Matusik, W., ster, H. P., Rusinkiewicz, S., and Funkhouser, T. (2006). A statistical model for synthesis of detailed facial geometry. ACM Transactions on Graphics, 25(3):1025– 1034.
- Golub, G. and Van Loan, C. F. (1996). *Matrix Computation*. The John Hopkins University Press, Baltimore and London, 3rd edition.
- Gomes, J. and Velho, L. (1997). Image Processing for Computer Graphics. Springer-Verlag, New York.
- Gomes, J., Darsa, L., Costa, B., and Velho, L. (1999). *Warping and Morphing of Graphical Objects*. Morgan Kaufmann Publishers, San Francisco.
- Gómez, R. (2018). Understanding categorical cross-entropy loss, binary cross-entropy loss, softmax loss, logistic loss, focal loss and all those confusing names. https://gombru.github.io/2018/05/23/cross_entropy_loss.
- Gómez, R. (2019). Understanding ranking loss, contrastive loss, margin loss, triplet loss, hinge loss and all those confusing names. https://gombru.github.io/2019/04/03/ranking_loss.
- Gong, M., Yang, R., Wang, L., and Gong, M. (2007). A performance study on different cost aggregation approaches used in realtime stereo matching. *International Journal of Computer Vision*, 75(2):283–296.
- Gonzalez, R. C. and Woods, R. E. (2017). *Digital Image Processing*. Prentice-Hall, Upper Saddle River, NJ, 4th edition.
- Gooch, B. and Gooch, A. (2001). Non-Photorealistic Rendering. A K Peters, Ltd, Natick, Massachusetts.
- Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and action. *Trends in Neurosciences*, 15(1):20–25.
- Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. *arXiv preprint arXiv:1701.00160*.
- Goodfellow, I., Isola, P., Park, T., Zhu, J.-Y., Arora, S., Denton, E., Rosca, M., Liu, M.-Y., Hoffman, J., Wang, X., Ermon, S., Vondrick, C., and Efros, A. A. (2018). CVPR 2018 tutorial on GANs. https://sites.google.com/view/cvpr2018tutorialongans.
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep Learning*. MIT Press. https://www.deeplearningbook.org.
- Goodfellow, I., Shlens, J., and Szegedy, C. (2015). Explaining and harnessing adversarial examples. In *International Conference on Learning Representations (ICLR)*.

- Goodfellow, I., Papernot, N., Huang, S., Duan, R., Abbeel, P., and Clark, J. (2017). Attacking machine learning with adversarial examples. *OpenAI Blog.* https://openai.com/blog/adversarial-example-research.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 2672–2680.
- Gordo, A., Almazán, J., Revaud, J., and Larlus, D. (2017). End-to-end learning of deep visual representations for image retrieval. *International Journal of Computer Vision*, 124(2):237–254.
- Gordo, A., Perronnin, F., Gong, Y., and Lazebnik, S. (2013). Asymmetric distances for binary embeddings. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(1):33–47.
- Gordon, I. and Lowe, D. G. (2006). What and where: 3D object recognition with accurate pose. In Ponce, J., Hebert, M., Schmid, C., and Zisserman, A. (eds), *Toward Category-Level Object Recognition*, pp. 67–82, Springer, New York.
- Gorelick, L., Blank, M., Shechtman, E., Irani, M., and Basri, R. (2007). Actions as space-time shapes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(12):2247–2253.
- Gortler, S. J. and Cohen, M. F. (1995). Hierarchical and variational geometric modeling with wavelets. In *Symposium on Interactive 3D Graphics*, pp. 35–43.
- Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. (1996). The Lumigraph. In *ACM SIGGRAPH Conference Proceedings*, pp. 43–54.
- Goshtasby, A. (1989). Correction of image deformation from lens distortion using Bézier patches. *Computer Vision, Graphics, and Image Processing*, 47(4):385–394.
- Goshtasby, A. (2005). 2-D and 3-D Image Registration. Wiley, New York.
- Gotchev, A. and Rosenhahn, B. (eds). (2009). *Proceedings of the 3DTV Conference: The True Vision—Capture, Transmission and Display of 3D Video*, IEEE Computer Society Press.
- Govindu, V. M. (2001). Combining two-view constraints for motion estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 684–691.
- Govindu, V. M. (2004). Lie-algebraic averaging for globally consistent motion estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 684–691.
- Govindu, V. M. (2006). Revisiting the brightness constraint: Probabilistic formulation and algorithms. In *European Conference on Computer Vision (ECCV)*, pp. 177–188.
- Goyal, P., Mahajan, D., Gupta, A., and Misra, I. (2019). Scaling and benchmarking self-supervised visual representation learning. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He, K. (2017). Accurate, large minibatch SGD: Training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677.
- Goyal, R., Kahou, E. S., Michalski, V., Materzyńska, J., Westphal, S., Kim, H., Haenel, V., Fruend, I., Yianilos, P., Müller-Freitag, M., Hoppe, F., Thurau, C., Bax, I., and Memisevic, R. (2017). The

"something something" video database for learning and evaluating visual common sense. In *IEEE International Conference on Computer Vision (ICCV)*.

- Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., and Parikh, D. (2017). Making the V in VQA matter: Elevating the role of image understanding in visual question answering. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Grady, L. (2006). Random walks for image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(11):1768–1783.
- Grady, L. (2008). A lattice-preserving multigrid method for solving the inhomogeneous Poisson equations used in image analysis. In *European Conference on Computer Vision (ECCV)*, pp. 252–264.
- Grady, L. and Ali, S. (2008). Fast approximate random walker segmentation using eigenvector precomputation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR).
- Grady, L. and Alvino, C. (2008). Reformulating and optimizing the Mumford–Shah functional on a graph a faster, lower energy solution. In *European Conference on Computer Vision (ECCV)*, pp. 248–261.
- Grauman, K. and Darrell, T. (2005). Efficient image matching with distributions of local invariant features. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 627–634.
- Grauman, K. and Darrell, T. (2007a). Pyramid match hashing: Sub-linear time indexing over partial correspondences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Grauman, K. and Darrell, T. (2007b). The pyramid match kernel: Efficient learning with sets of features. *Journal of Machine Learning Research*, 8:725–760.
- Grauman, K., Shakhnarovich, G., and Darrell, T. (2003). Inferring 3D structure with a statistical image-based shape model. In *International Conference on Computer Vision (ICCV)*, pp. 641–648.
- Greene, N. (1986). Environment mapping and other applications of world projections. *IEEE Computer Graphics and Applications*, 6(11):21–29.
- Greene, N. and Heckbert, P. (1986). Creating raster Omnimax images from multiple perspective views using the elliptical weighted average filter. *IEEE Computer Graphics and Applications*, 6(6):21–27.
- Greig, D., Porteous, B., and Seheult, A. (1989). Exact maximum a posteriori estimation for binary images. *Journal of the Royal Statistical Society, Series B*, 51(2):271–279.
- Gremban, K. D., Thorpe, C. E., and Kanade, T. (1988). Geometric camera calibration using systems of linear equations. In *IEEE International Conference on Robotics and Automation*, pp. 562–567.
- Griewank, A. and Walther, A. (2000). Algorithm 799: revolve: an implementation of checkpointing

- for the reverse or adjoint mode of computational differentiation. ACM Transactions on Mathematical Software, 26(1):19–45.
- Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot, B., Kavukcuoglu, K., Munos, R., and Valko, M. (2020). Bootstrap your own latent a new approach to self-supervised learning. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Grimson, W. E. L. (1983). An implementation of a computational theory of visual surface interpolation. *Computer Vision, Graphics, and Image Processing*, 22:39–69.
- Grimson, W. E. L. (1985). Computational experiments with a feature based stereo algorithm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-7(1):17–34.
- Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., and Randall, G. (2008). LSD: A fast line segment detector with a false detection control. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(4):722–732.
- Gross, R., Matthews, I., and Baker, S. (2006). Active appearance models with occlusion. *Image and Vision Computing*, 24(6):593–604.
- Gross, R., Shi, J., and Cohn, J. F. (2005). Quo vadis face recognition? In *IEEE Workshop on Empirical Evaluation Methods in Computer Vision*.
- Gross, R., Baker, S., Matthews, I., and Kanade, T. (2005). Face recognition across pose and illumination. In Li, S. Z. and Jain, A. K. (eds), *Handbook of Face Recognition*, Springer.
- Gross, R., Sweeney, L., De la Torre, F., and Baker, S. (2008). Semi-supervised learning of multi-factor models for face de-identification. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker, S. (2010). Multi-PIE. *Image and Vision Computing*, 28(5):807–813.
- Grossberg, M. D. and Nayar, S. K. (2001). A general imaging model and a method for finding its parameters. In *International Conference on Computer Vision (ICCV)*, pp. 108–115.
- Grossberg, M. D. and Nayar, S. K. (2004). Modeling the space of camera response functions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(10):1272–1282.
- Grosse, R. and Ba, J. (2019). University of Toronto csc 421/2516: Neural networks and deep learning. Slides and notes available at https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019.
- Groueix, T., Fisher, M., Kim, V. G., Russell, B. C., and Aubry, M. (2018). A papier-mâché approach to learning 3D surface generation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Grundmann, M., Kwatra, V., and Essa, I. (2011). Auto-directed video stabilization with robust L1 optimal camera paths. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Grundmann, M., Kwatra, V., Castro, D., and Essa, I. (2012). Calibration-free rolling shutter removal. In *International Conference on Computational Photography (ICCP)*, pp. 1–8.

Gu, C., Sun, C., Ross, D. A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan, S., Toderici, G., Ricco, S., Sukthankar, R., Schmid, C., and Malik, J. (2018). AVA: A video dataset of spatiotemporally localized atomic visual actions. In *IEEE Conference on Computer Vision and Pattern* Recognition (CVPR).

- Gu, C., Lim, J., Arbelaez, P., and Malik, J. (2009). Recognition using regions. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., and Chen, T. (2018). Recent advances in convolutional neural networks. *Pattern Recognition*, 77:354–377.
- Gu, S. and Timofte, R. (2019). A brief review of image denoising algorithms and beyond. In Escalera, S., Ayache, S., Wan, J., Madadi, M., Güçlü, U., and Baró, X. (eds), *Inpainting and Denoising Challenges*, pp. 1–21, Springer.
- Gu, S., Zhang, L., Zuo, W., and Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry images. *ACM Transactions on Graphics*, 21(3):355–361.
- Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., and Tan, P. (2020). Cascade cost volume for high-resolution multi-view stereo and stereo matching. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Guan, P., Weiss, A., Bălan, A. O., and Black, M. J. (2009). Estimating human shape and pose from a single image. In *International Conference on Computer Vision (ICCV)*.
- Guennebaud, G. and Gross, M. (2007). Algebraic point set surfaces. *ACM Transactions on Graphics*, 26(3).
- Guennebaud, G., Germann, M., and Gross, M. (2008). Dynamic sampling and rendering of algebraic point set surfaces. *Computer Graphics Forum*, 27(2):653–662.
- Guenter, B., Grimm, C., Wood, D., Malvar, H., and Pighin, F. (1998). Making faces. In *ACM SIGGRAPH Conference Proceedings*, pp. 55–66.
- Guillard, B., Remelli, E., and Fua, P. (2020). UCLID-Net: Single view reconstruction in object space. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Guizzo, E. (2008). Kiva systems: Three engineers, hundreds of robots, one warehouse. *IEEE Spectrum*, 45(7):26–34.
- Gulbins, J. and Gulbins, R. (2009). *Photographic Multishot Techniques: High Dynamic Range, Super-Resolution, Extended Depth of Field, Stitching*. Rocky Nook.
- Güler, R. A., Neverova, N., and Kokkinos, I. (2018). DensePose: Dense human pose estimation in the wild. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural networks. In *International Conference on Machine Learning (ICML)*, pp. 1321–1330.

- Guo, Y., Wang, H., Hu, Q., Liu, H., Liu, L., and Bennamoun, M. (2020). Deep learning for 3D point clouds: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Gupta, A., Dollár, P., and Girshick, R. (2019). LVIS: A dataset for large vocabulary instance segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Gupta, S. and Malik, J. (2015). Visual semantic role labeling. arXiv preprint arXiv:1505.04474.
- Habermann, M., Xu, W., Zollhöefer, M., Pons-Moll, G., and Theobalt, C. (2019). LiveCap: Real-time human performance capture from monocular video. ACM Transactions On Graphics (Proc. SIGGRAPH), 38(2):1–17.
- Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invariant mapping. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 1735–1742.
- Haefner, B., Ye, Z., Gao, M., Wu, T., Queau, Y., and Cremers, D. (2019). Variational uncalibrated photometric stereo under general lighting. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Hagelskjær, F. and Buch, A. G. (2020). PointVoteNet: Accurate object detection and 6 DOF pose estimation in point clouds. In 2020 IEEE International Conference on Image Processing (ICIP), pp. 2641–2645.
- Hager, G. D. and Belhumeur, P. N. (1998). Efficient region tracking with parametric models of geometry and illumination. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(10):1025–1039.
- Hall, D., Dayoub, F., Skinner, J., Zhang, H., Miller, D., Corke, P., Carneiro, G., Angelova, A., and Sünderhauf, N. (2020). Probabilistic object detection: Definition and evaluation. In *IEEE Winter Conference on Applications of Computer Vision (WACV)*, pp. 1031–1040.
- Hall, R. (1989). *Illumination and Color in Computer Generated Imagery*. Springer-Verlag, New York.
- Haller, I. and Nedevschi, S. (2012). Design of interpolation functions for subpixel-accuracy stereovision systems. *IEEE Transactions on Image Processing*, 21(2):889–898.
- Haller, M., Billinghurst, M., and Thomas, B. (2007). *Emerging Technologies of Augmented Reality: Interfaces and Design.* IGI Publishing.
- Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). *Robust Statistics: The Approach Based on Influence Functions*. Wiley, New York.
- Han, F. and Zhu, S.-C. (2005). Bottom-up/top-down image parsing by attribute graph grammar. In *International Conference on Computer Vision (ICCV)*, pp. 1778–1785.
- Han, J., Shao, L., Xu, D., and Shotton, J. (2013). Enhanced computer vision with Microsoft Kinect sensor: A review. *IEEE Transactions on Cybernetics*, 43(5):1318–1334.
- Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Zhang1, Y., and Tao, D. (2020). A survey on visual transformer. *arXiv preprint arXiv:2012.12556*.

Han, S., Mao, H., and Dally, W. J. (2016). Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding. In *International Conference on Learning Representations (ICLR)*.

- Han, X.-F., Laga, H., and Bennamoun, M. (2021). Image-based 3D object reconstruction: State-of-the-art and trends in the deep learning era. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(5):1578–1604.
- Handa, A., Whelan, T., McDonald, J., and Davison, A. J. (2014). A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1524–1531.
- Häne, C., Zach, C., Cohen, A., Angst, R., and Pollefeys, M. (2013). Joint 3D scene reconstruction and class segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hanna, K. J. (1991). Direct multi-resolution estimation of ego-motion and structure from motion. In *IEEE Workshop on Visual Motion*, pp. 156–162.
- Hannah, M. J. (1974). *Computer Matching of Areas in Stereo Images*. Ph.D. thesis, Stanford University.
- Hannah, M. J. (1988). Test results from SRI's stereo system. In *Image Understanding Workshop*, pp. 740–744.
- Hansard, M., Lee, S., Choi, O., and Horaud, R. P. (2012). *Time-of-flight cameras: principles, methods and applications*. Springer Science & Business Media.
- Hansen, M., Anandan, P., Dana, K., van der Wal, G., and Burt, P. (1994). Real-time scene stabilization and mosaic construction. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 54–62.
- Hanson, A. R. and Riseman, E. M. (eds). (1978). Computer Vision Systems, Academic Press, New York.
- Haralick, R. M. and Shapiro, L. G. (1985). Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29(1):100–132.
- Haralick, R. M. and Shapiro, L. G. (1992). Computer and Robot Vision. Addison-Wesley, Reading, MA.
- Haralick, R. M., Lee, C.-N., Ottenberg, K., and Nölle, M. (1994). Review and analysis of solutions of the three point perspective pose estimation problem. *International Journal of Computer Vision*, 13(3):331–356.
- Hardie, R. C., Barnard, K. J., and Armstrong, E. E. (1997). Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. *IEEE Transactions on Image Processing*, 6(12):1621–1633.
- Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M.-M., Hicks, S. L., and Torr, P. H. S. (2015).
 Struck: Structured output tracking with kernels. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(10):2096–2109.

- Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. (2014). Simultaneous detection and segmentation. In *European Conference on Computer Vision (ECCV)*, pp. 297–312.
- Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J. (2015). Hypercolumns for object segmentation and fine-grained localization. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Haritaoglu, I., Harwood, D., and Davis, L. S. (2000). W⁴: Real-time surveillance of people and their activities. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(8):809–830.
- Harker, M. and O'Leary, P. (2008). Least squares surface reconstruction from measured gradient fields. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Härkönen, E., Hertzmann, A., Lehtinen, J., and Paris, S. (2020). GANSpace: Discovering interpretable gan controls. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Harris, C. and Stephens, M. J. (1988). A combined corner and edge detector. In Alvey Vision Conference, pp. 147–152.
- Hartley, R. and Kang, S. B. (2007). Parameter-free radial distortion correction with center of distortion estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(8):1309–1321.
- Hartley, R., Gupta, R., and Chang, T. (1992). Estimation of relative camera positions for uncalibrated cameras. In *European Conference on Computer Vision (ECCV)*, pp. 579–587.
- Hartley, R., Trumpf, J., Dai, Y., and Li, H. (2013). Rotation averaging. *International Journal of Computer Vision*, 103(3):267–305.
- Hartley, R. I. (1994a). Projective reconstruction and invariants from multiple images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(10):1036–1041.
- Hartley, R. I. (1994b). Self-calibration from multiple views of a rotating camera. In *European Conference on Computer Vision (ECCV)*, pp. 471–478.
- Hartley, R. I. (1997a). In defense of the 8-point algorithm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(6):580–593.
- Hartley, R. I. (1997b). Self-calibration of stationary cameras. *International Journal of Computer Vision*, 22(1):5–23.
- Hartley, R. I. (1998). Chirality. International Journal of Computer Vision, 26(1):41-61.
- Hartley, R. I. and Kang, S. B. (2005). Parameter-free radial distortion correction with centre of distortion estimation. In *International Conference on Computer Vision (ICCV)*, pp. 1834–1841.
- Hartley, R. I. and Sturm, P. (1997). Triangulation. *Computer Vision and Image Understanding*, 68(2):146–157.
- Hartley, R. I. and Zisserman, A. (2004). *Multiple View Geometry in Computer Vision*. Cambridge University Press, Cambridge, UK, 2nd edition.
- Hartley, R. I., Hayman, E., de Agapito, L., and Reid, I. (2000). Camera calibration and the search for infinity. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 510–517.

Hasinoff, S. W. and Kutulakos, K. N. (2011). Light-efficient photography. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(11):2203–2214.

- Hasinoff, S. W., Durand, F., and Freeman, W. T. (2010). Noise-optimal capture for high dynamic range photography. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hasinoff, S. W., Kang, S. B., and Szeliski, R. (2006). Boundary matting for view synthesis. *Computer Vision and Image Understanding*, 103(1):22–32.
- Hasinoff, S. W., Kutulakos, K. N., Durand, F., and Freeman, W. T. (2009). Time-constrained photography. In *International Conference on Computer Vision (ICCV)*.
- Hasinoff, S. W., Sharlet, D., Geiss, R., Adams, A., Barron, J. T., Kainz, F., Chen, J., and Levoy, M. (2016). Burst photography for high dynamic range and low-light imaging on mobile cameras. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 35(6):192:1–192:12.
- Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., and Schmid, C. (2019).
 Learning joint reconstruction of hands and manipulated objects. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hastie, T., Tibshirani, R., and Friedman, J. (2009). *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer, New York, 2nd edition.
- Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and Larochelle, H. (2017). Brain tumor segmentation with deep neural networks. *Medical Image Analysis*, 35:18–31.
- Hayes, B. (2008). Computational photography. American Scientist, 96:94-99.
- Hays, J. and Efros, A. A. (2007). Scene completion using millions of photographs. *ACM Transactions on Graphics*, 26(3).
- Hays, J., Leordeanu, M., Efros, A. A., and Liu, Y. (2006). Discovering texture regularity as a higher-order correspondence problem. In *European Conference on Computer Vision (ECCV)*, pp. 522–535.
- He, K., Girshick, R., and Dollár, P. (2019). Rethinking imagenet pre-training. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- He, K., Sun, J., and Tang, X. (2013). Guided image filtering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(6):1397–1409.
- He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask R-CNN. In *IEEE International Conference on Computer Vision (ICCV)*.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *IEEE International Conference on Computer Vision (ICCV)*.
- He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37(9):1904–1916.

- He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks. In *European Conference on Computer Vision*, pp. 630–645.
- He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- He, L., Ren, X., Gao, Q., Zhao, X., Yao, B., and Chao, Y. (2017). The connected-component labeling problem: A review of state-of-the-art algorithms. *Pattern Recognition*, 70:25–43.
- He, L.-W. and Zhang, Z. (2005). Real-time whiteboard capture and processing using a video camera for teleconferencing. In *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, pp. 1113–1116.
- He, M., Liao, J., Sander, P. V., and Hoppe, H. (2017). Gigapixel panorama video loops. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 37(1):1–15.
- He, X., Zemel, R. S., and Carreira-Perpiñán, M. A. (2004). Multiscale conditional random fields for image labeling. In *IEEE Computer Society Conference on Computer Vision and Pattern Recogni*tion (CVPR), pp. 695–702.
- He, X., Zemel, R. S., and Ray, D. (2006). Learning and incorporating top-down cues in image segmentation. In *European Conference on Computer Vision (ECCV)*, pp. 338–351.
- Healey, G. E. and Kondepudy, R. (1994). Radiometric CCD camera calibration and noise estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(3):267–276.
- Healey, G. E. and Shafer, S. A. (1992). Color. Physics-Based Vision: Principles and Practice, Jones & Bartlett, Cambridge, MA.
- Heath, M. D., Sarkar, S., Sanocki, T., and Bowyer, K. W. (1998). Comparison of edge detectors. *Computer Vision and Image Understanding*, 69(1):38–54.
- Hebb, D. O. (1949). *The organization of behavior: a neuropsychological theory*. John Wiley & Sons Inc.
- Hebert, M. (2000). Active and passive range sensing for robotics. In *IEEE International Conference on Robotics and Automation*, pp. 102–110.
- Hecht, E. (2015). Optics. Pearson Addison Wesley, Reading, MA, 5th edition.
- Heckbert, P. (1986). Survey of texture mapping. *IEEE Computer Graphics and Applications*, 6(11):56–67.
- Heckbert, P. (1989). Fundamentals of Texture Mapping and Image Warping. Master's thesis, The University of California at Berkeley.
- Hedborg, J., Forssén, P.-E., Felsberg, M., and Ringaby, E. (2012). Rolling shutter bundle adjustment. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hedman, P. and Kopf, J. (2018). Instant 3D photography. ACM Transactions on Graphics (Proc. SIGGRAPH), 37(4):101.

Hedman, P., Alsisan, S., Szeliski, R., and Kopf, J. (2017). Casual 3D photography. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):234.

- Hedman, P., Ritschel, T., Drettakis, G., and Brostow, G. (2016). Scalable inside-out image-based rendering. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 35(6):1–11.
- Hedman, P., Srinivasan, P. P., Mildenhall, B., Barron, J. T., and Debevec, P. (2021). Baking neural radiance fields for real-time view synthesis. *arXiv* preprint arXiv:2103.14645.
- Hedman, P., Philip, J., Price, T., Frahm, J.-M., Drettakis, G., and Brostow, G. (2018). Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 37(6):257.
- Heeger, D. J. (1988). Optical flow using spatiotemporal filters. *International Journal of Computer Vision*, 1(1):279–302.
- Heeger, D. J. and Bergen, J. R. (1995). Pyramid-based texture analysis/synthesis. In ACM SIG-GRAPH Conference Proceedings, pp. 229–238.
- Heinly, J., Dunn, E., and Frahm, J.-M. (2014). Correcting for duplicate scene structure in sparse 3D reconstruction. In *European Conference on Computer Vision*, pp. 780–795.
- Heinly, J., Schönberger, J. L., Dunn, E., and Frahm, J.-M. (2015). Reconstructing the world* in six days *(as captured by the Yahoo 100 million image dataset). In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Heisele, B., Serre, T., and Poggio, T. (2007). A component-based framework for face detection and identification. *International Journal of Computer Vision*, 74(2):167–181.
- Heisele, B., Ho, P., Wu, J., and Poggio, T. (2003). Face recognition: component-based versus global approaches. *Computer Vision and Image Understanding*, 91(1–2):6–21.
- Hendrycks, D., Basart, S., Mu, N., Kadavath, S., Wang, F., Dorundo, E., Desai, R., Zhu, T., Parajuli, S., Guo, M., Song, D., Steinhardt, J., and Gilmer, J. (2020). The many faces of robustness: A critical analysis of out-of-distribution generalization. *arXiv* preprint arXiv:2006.16241.
- Hendrycks, D., Zhao, K., Basart, S., Steinhardt, J., and Song, D. (2021). Natural adversarial examples. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Henriques, J. F., Caseiro, R., Martins, P., and Batista, J. (2014). High-speed tracking with kernelized correlation filters. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 37(3):583–596.
- Herley, C. (2005). Automatic occlusion removal from minimum number of images. In *International Conference on Image Processing (ICIP)*, pp. 1046–1049–16.
- Hernández, C. and Schmitt, F. (2004). Silhouette and stereo fusion for 3D object modeling. *Computer Vision and Image Understanding*, 96(3):367–392.
- Hernández, C. and Vogiatzis, G. (2010). Self-calibrating a real-time monocular 3d facial capture system. In *International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT)*.

- Hernández, C., Vogiatzis, G., and Cipolla, R. (2008). Multiview photometric stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(3):548–554.
- Hernandez, C., Vogiatzis, G., Brostow, G. J., Stenger, B., and Cipolla, R. (2007). Non-rigid photometric stereo with colored lights. In *International Conference on Computer Vision (ICCV)*.
- Herrmann, C., Wang, C., Strong Bowen, R., Keyder, E., and Zabih, R. (2018a). Object-centered image stitching. In *European Conference on Computer Vision (ECCV)*.
- Herrmann, C., Wang, C., Strong Bowen, R., Keyder, E., Krainin, M., Liu, C., and Zabih, R. (2018b). Robust image stitching with multiple registrations. In *European Conference on Computer Vision* (*ECCV*).
- Hershberger, J. and Snoeyink, J. (1992). Speeding Up the Douglas-Peucker Line-Simplification Algorithm. Technical Report TR-92-07, Computer Science Department, The University of British Columbia.
- Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. (2001). Image analogies. In *ACM SIGGRAPH Conference Proceedings*, pp. 327–340.
- Hidalgo, G., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., and Sheikh, Y. (2019). Single-network whole-body pose estimation. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Hiep, V. H., Keriven, R., Pons, J.-P., and Labatut, P. (2009). Towards high-resolution large-scale multi-view stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recog*nition (CVPR).
- Hillman, P., Hannah, J., and Renshaw, D. (2001). Alpha channel estimation in high resolution images and image sequences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1063–1068.
- Hilton, A., Fua, P., and Ronfard, R. (2006). Modeling people: Vision-based understanding of a person's shape, appearance, movement, and behaviour. *Computer Vision and Image Understanding*, 104(2–3):87–89.
- Hilton, A., Stoddart, A. J., Illingworth, J., and Windeatt, T. (1996). Reliable surface reconstruction from multiple range images. In *European Conference on Computer Vision (ECCV)*, pp. 117–126.
- Hinckley, K., Sinclair, M., Hanson, E., Szeliski, R., and Conway, M. (1999). The VideoMouse: a camera-based multi-degree-of-freedom input device. In *ACM Symposium on User Interface Software and Technology (UIST)*, pp. 103–112.
- Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., and Lepetit, V. (2008). Online learning of patch perspective rectification for efficient object detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hinton, G. (2012). Neural networks for machine learning lecture 6e. rmsprop: Divide the gradient by a running average of its recent magnitude. https://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf.
- Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., and Kingsbury, B. (2012). Deep neural networks for acoustic modeling in speech recognition.

- IEEE Signal Processing Magazine, 29.
- Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. *arXiv* preprint arXiv:1503.02531.
- Hinton, G. E. (1977). Relaxation and its Role in Vision. Ph.D. thesis, University of Edinburgh.
- Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. *Science*, 313(5786):504–507.
- Hinton, G. E. and Zemel, R. S. (1994). Autoencoders, minimum description length and helmholtz free energy. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 3–10.
- Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(2):328–341.
- Hirschmüller, H. and Scharstein, D. (2009). Evaluation of stereo matching costs on images with radiometric differences. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(9):1582–1599.
- Hirshberg, D. A., Loper, M., Rachlin, E., and Black, M. J. (2012). Coregistration: Simultaneous alignment and modeling of articulated 3D shape. In *European Conference on Computer Vision* (*ECCV*), pp. 242–255.
- Hjaltason, G. R. and Samet, H. (2003). Index-driven similarity search in metric spaces. ACM Transactions on Database Systems, 28(4):517–580.
- Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. *Neural Computation*, 9(8):1735–1780.
- Hodaň, T., Michel, F., Brachmann, E., Kehl, W., GlentBuch, A., Kraft, D., Drost, B., Vidal, J., Ihrke, S., Zabulis, X., Sahin, C., Manhardt, F., Tombari, F., Kim, T.-K., Matas, J., and Rother, C. (2018).BOP: Benchmark for 6D object pose estimation. In *European Conference on Computer Vision* (ECCV).
- Hoffer, E., Banner, R., Golan, I., and Soudry, D. (2018). Norm matters: efficient and accurate normalization schemes in deep networks. In *Advances in Neural Information Processing Systems* (NeurIPS), pp. 2160–2170.
- Hofinger, M., Rota Bulò, S., Porzi, L., Knapitsch, A., Pock, T., and Kontschieder, P. (2020). Improving optical flow on a pyramid level. In *European Conference on Computer Vision (ECCV)*.
- Hofmann, T. (1999). Probabilistic latent semantic indexing. In *ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 50–57.
- Hogg, D. (1983). Model-based vision: A program to see a walking person. *Image and Vision Computing*, 1(1):5–20.
- Hoiem, D., Efros, A. A., and Hebert, M. (2005a). Automatic photo pop-up. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):577–584.
- Hoiem, D., Efros, A. A., and Hebert, M. (2005b). Geometric context from a single image. In *International Conference on Computer Vision (ICCV)*, pp. 654–661.

- Hoiem, D., Efros, A. A., and Hebert, M. (2008). Putting objects in perspective. *International Journal of Computer Vision*, 80(1):3–15.
- Hoiem, D., Rother, C., and Winn, J. (2007). 3D LayoutCRF for multi-view object class recognition and segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Holynski, A., Curless, B., Seitz, S. M., and Szeliski, R. (2021). Animating pictures with Eulerian motion fields. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Holynski, A., Geraghty, D., Frahm, J.-M., Sweeney, C., and Szeliski, R. (2020). Reducing drift in structure from motion using extended features. In *International Conference on 3D Vision (3DV)*, pp. 51–60.
- Honauer, K., Johannsen, O., Kondermann, D., and Goldluecke, B. (2016). A dataset and evaluation methodology for depth estimation on 4D light fields. In *Asian Conference on Computer Vision*, pp. 19–34.
- Hoover, A., Jean-Baptiste, G., Jiang, X., Flynn, P. J., Bunke, H., Goldgof, D. B., Bowyer, K., Eggert,
 D. W., Fitzgibbon, A., and Fisher, R. B. (1996). An experimental comparison of range image segmentation algorithms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(7):673–689.
- Hoppe, H. (1996). Progressive meshes. In ACM SIGGRAPH Conference Proceedings, pp. 99–108.
- Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. (1992). Surface reconstruction from unorganized points. *Computer Graphics (SIGGRAPH)*, 26(2):71–78.
- Horn, B. K. P. (1974). Determining lightness from an image. Computer Graphics and Image Processing, 3(1):277–299.
- Horn, B. K. P. (1975). Obtaining shape from shading information. In Winston, P. H. (ed.), *The Psychology of Computer Vision*, pp. 115–155, McGraw-Hill, New York.
- Horn, B. K. P. (1977). Understanding image intensities. Artificial Intelligence, 8(2):201–231.
- Horn, B. K. P. (1986). Robot Vision. MIT Press, Cambridge, Massachusetts.
- Horn, B. K. P. (1987). Closed-form solution of absolute orientation using unit quaternions. *Journal of the Optical Society of America A*, 4(4):629–642.
- Horn, B. K. P. (1990). Height and gradient from shading. *International Journal of Computer Vision*, 5(1):37–75.
- Horn, B. K. P. and Brooks, M. J. (1986). The variational approach to shape from shading. *Computer Vision, Graphics, and Image Processing*, 33:174–208.
- Horn, B. K. P. and Brooks, M. J. (eds). (1989). Shape from Shading, MIT Press, Cambridge, Massachusetts.
- Horn, B. K. P. and Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17:185–203.
- Horn, B. K. P. and Weldon Jr., E. J. (1988). Direct methods for recovering motion. *International Journal of Computer Vision*, 2(1):51–76.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013). OctoMap: an efficient probabilistic 3D mapping framework based on octrees. *Autonomous Robots*, 34(3):189–206.

- Horowitz, S. L. and Pavlidis, T. (1976). Picture segmentation by a tree traversal algorithm. *Journal of the ACM*, 23(2):368–388.
- Horry, Y., Anjyo, K.-I., and Arai, K. (1997). Tour into the picture: Using a spidery mesh interface to make animation from a single image. In *ACM SIGGRAPH Conference Proceedings*, pp. 225–232.
- Hosni, A., Rhemann, C., Bleyer, M., Rother, C., and Gelautz, M. (2013). Fast cost-volume filtering for visual correspondence and beyond. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(2):504–511.
- Hough, P. V. C. (1962). Method and means for recognizing complex patterns. U.S. Patent, 3,069,654.
- Houghton, J. (2013). Finding the no-parallax point. https://www.johnhpanos.com/epcalib.htm.
- Houhou, N., Thiran, J.-P., and Bresson, X. (2008). Fast texture segmentation using the shape operator and active contour. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., and Adam, H. (2017). MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
- Howe, N. R., Leventon, M. E., and Freeman, W. T. (2000). Bayesian reconstruction of 3D human motion from single-camera video. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Hsieh, Y. C., McKeown, D., and Perlant, F. P. (1992). Performance evaluation of scene registration and stereo matching for cartographic feature extraction. *IEEE Transactions on Pattern Analysis* and Machine Intelligence, 14(2):214–238.
- Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hu, W., Tan, T., Wang, L., and Maybank, S. (2004). A survey on visual surveillance of object motion and behaviors. *IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews*, 34(3):334–352.
- Hu, X. and Mordohai, P. (2012). A quantitative evaluation of confidence measures for stereo vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(11):2121–2133.
- Hu, Y., Fua, P., Wang, W., and Salzmann, M. (2020). Single-stage 6D object pose estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hu, Y., Hugonot, J., Fua, P., and Salzmann, M. (2019). Segmentation-driven 6d object pose estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hua, G., Brown, M., and Winder, S. (2007). Discriminant embedding for local image descriptors. In *International Conference on Computer Vision (ICCV)*.
- Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolutional networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. Technical Report 07-49, University of Massachusetts, Amherst.
- Huang, H.-P., Tseng, H.-Y., Lee, H.-Y., and Huang, J.-B. (2020). Semantic view synthesis. In *European Conference on Computer Vision (ECCV)*.
- Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S., and Murphy, K. (2017). Speed/accuracy trade-offs for modern convolutional object detectors. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Huang, J., Dai, A., Guibas, L. J., and Nießner, M. (2017). 3DLite: Towards commodity 3D scanning for content creation. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):203.
- Huang, J., Zhou, Y., Funkhouser, T., and Guibas, L. J. (2019). FrameNet: Learning local canonical frames of 3D surfaces from a single RGB image. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Huang, J., Zhu, Z., Guo, F., and Huang, G. (2020). The devil is in the details: Delving into unbiased data processing for human pose estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Huang, K., Wang, Y., Zhou, Z., Ding, T., Gao, S., and Ma, Y. (2018). Learning to parse wireframes in images of man-made environments. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Huang, P.-H., Matzen, K., Kopf, J., Ahuja, N., and Huang, J.-B. (2018). DeepMVS: Learning multiview stereopsis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Huang, S., Qin, F., Xiong, P., Ding, N., He, Y., and Liu, X. (2020). TP-LSD: Tri-points based line segment detector. In *European Conference on Computer Vision (ECCV)*.
- Huang, T. S. (1981). Image Sequence Analysis. Springer-Verlag, Berlin, Heidelberg.
- Huang, X. and Belongie, S. (2017). Arbitrary style transfer in real-time with adaptive instance normalization. In *IEEE International Conference on Computer Vision (ICCV)*.
- Huang, X., Liu, M.-Y., Belongie, S., and Kautz, J. (2018). Multimodal unsupervised image-to-image translation. In *European Conference on Computer Vision (ECCV)*.
- Huang, Y., Shen, P., Tai, Y., Li, S., Liu, X., Li, J., Huang, F., and Ji, R. (2020). Improving face recognition from hard samples via distribution distillation loss. In *European Conference on Computer Vision (ECCV)*.
- Huang, Z., Zeng, Z., Liu, B., Fu, D., and Fu, J. (2020). Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. *arXiv preprint arXiv:2004.00849*.
- Huber, P. J. (1981). Robust Statistics. John Wiley & Sons, New York.
- Hudson, D. A. and Manning, C. D. (2019). GQA: A new dataset for real-world visual reasoning and compositional question answering. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Hudson, D. A. and Zitnick, C. L. (2021). Generative adversarial transformers. *arXiv preprint arXiv:2103.01209*.

- Huffman, D. A. (1971). Impossible objects and nonsense sentences. *Machine Intelligence*, 8:295–323.
- Hughes, J. F., van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S. K., and Akeley, K. (2013). Computer graphics: principles and practice (3rd ed.). Addison-Wesley Professional, Boston, MA, USA.
- Huguet, F. and Devernay, F. (2007). A variational method for scene flow estimation from stereo sequences. In *International Conference on Computer Vision (ICCV)*.
- Hui, T.-W. and Loy, C. C. (2020). LiteFlowNet3: Resolving correspondence ambiguity for more accurate optical flow estimation. In *European Conference on Computer Vision (ECCV)*.
- Hui, T.-W., Tang, X., and Loy, C. C. (2021). A lightweight optical flow CNN revisiting data fidelity and regularization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(8):2555–2569.
- Hur, J. and Roth, S. (2017). MirrorFlow: Exploiting symmetries in joint optical flow and occlusion estimation. In *IEEE International Conference on Computer Vision (ICCV)*.
- Hur, J. and Roth, S. (2019). Iterative residual refinement for joint optical flow and occlusion estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Hur, J. and Roth, S. (2020). Optical flow estimation in the deep learning age. In Noceti, N., Sciutti, A., and Rea, F. (eds), *Modelling Human Motion*, pp. 119–140, Springer.
- Huttenlocher, D. P., Klanderman, G., and Rucklidge, W. (1993). Comparing images using the Hausdorff distance. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(9):850–863.
- Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). *Automated machine learning: methods, systems, challenges*. Springer Nature.
- Huynh, D. Q., Hartley, R., and Heyden, A. (2003). Outlier correcton in image sequences for the affine camera. In *International Conference on Computer Vision (ICCV)*, pp. 585–590.
- Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K. (2016). SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and; 0.5 MB model size. arXiv preprint arXiv:1602.07360.
- Iddan, G. J. and Yahav, G. (2001). 3D imaging in the studio (and elsewhere...). In *Three-Dimensional Image Capture and Applications IV*, pp. 48–55.
- Igarashi, T., Nishino, K., and Nayar, S. (2007). The appearance of human skin: A survey. *Foundations and Trends® in Computer Graphics and Computer Vision*, 3(1):1–95.
- Ikeuchi, K. (1981). Shape from regular patterns. Artificial Intelligence, 22(1):49–75.
- Ikeuchi, K. and Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17:141–184.
- Ikeuchi, K. and Miyazaki, D. (eds). (2007). *Digitally Archiving Cultural Objects*, Springer, Boston, MA.

- Ikeuchi, K. and Sato, Y. (eds). (2001). Modeling From Reality, Kluwer Academic Publishers, Boston.
- Ikeuchi, K., Matsushita, Y., Sagawa, R., Kawasaki, H., Mukaigawa, Y., Furukawa, R., and Miyazaki, D. (2020). *Active Lighting and Its Application for Computer Vision*. Springer.
- Ilg, E., Saikia, T., Keuper, M., and Brox, T. (2018). Occlusions, motion and depth boundaries with a generic network for disparity, optical flow or scene flow estimation. In *European Conference on Computer Vision (ECCV)*, pp. 626–643.
- Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and Brox, T. (2017). Flownet 2.0: Evolution of optical flow estimation with deep networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ilg, E., Çiçek, O., Galesso, S., Klein, A., Makansi, O., Hutter, F., and Brox, T. (2018). Uncertainty estimates and multi-hypotheses networks for optical flow. In *European Conference on Computer Vision (ECCV)*.
- Illingworth, J. and Kittler, J. (1988). A survey of the Hough transform. *Computer Vision, Graphics, and Image Processing*, 44:87–116.
- Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A. (2019). Adversarial examples are not bugs, they are features. In *NeurIPS*.
- Innmann, M., Zollhöfer, M., Nießner, M., Theobalt, C., and Stamminger, M. (2016). VolumeDeform: Real-time volumetric non-rigid reconstruction. In *European Conference on Computer Vision (ECCV)*, pp. 362–379.
- Intille, S. S. and Bobick, A. F. (1994). Disparity-space images and large occlusion stereo. In *European Conference on Computer Vision (ECCV)*.
- Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167.
- Irani, M. and Anandan, P. (1998). Video indexing based on mosaic representations. *Proceedings of the IEEE*, 86(5):905–921.
- Irani, M. and Anandan, P. (1999). About direct methods. In *International Workshop on Vision Algorithms*, pp. 267–277.
- Irani, M. and Peleg, S. (1991). Improving resolution by image registration. *Graphical Models and Image Processing*, 53(3):231–239.
- Irani, M., Hsu, S., and Anandan, P. (1995). Video compression using mosaic representations. *Signal Processing: Image Communication*, 7:529–552.
- Irani, M., Rousso, B., and Peleg, S. (1994). Computing occluding and transparent motions. *International Journal of Computer Vision*, 12(1):5–16.
- Irani, M., Rousso, B., and Peleg, S. (1997). Recovery of ego-motion using image stabilization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(3):268–272.
- Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H. (2009). From structure-from-motion point clouds to fast location recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Isaksen, A., McMillan, L., and Gortler, S. J. (2000). Dynamically reparameterized light fields. In *ACM SIGGRAPH Conference Proceedings*, pp. 297–306.

- Isard, M. and Blake, A. (1998). CONDENSATION—conditional density propagation for visual tracking. *International Journal of Computer Vision*, 29(1):5–28.
- Ishiguro, H., Yamamoto, M., and Tsuji, S. (1992). Omni-directional stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):257–262.
- Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(10):1333–1336.
- Isidoro, J. and Sclaroff, S. (2003). Stochastic refinement of the visual hull to satisfy photometric and silhouette consistency constraints. In *International Conference on Computer Vision (ICCV)*, pp. 1335–1342.
- Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., and Tian, Q. (2020). Video super-resolution with recurrent structure-detail network. In *European Conference on Computer Vision (ECCV)*.
- Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ivanchenko, V., Shen, H., and Coughlan, J. (2009). Elevation-based stereo implemented in real-time on a GPU. In *IEEE Workshop on Applications of Computer Vision (WACV)*.
- Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., and Davison, A. (2011). KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In ACM Symposium on User Interface Software and Technology (UIST), pp. 559–568.
- Jacob, P., Picard, D., Histace, A., and Klein, E. (2019). Metric learning with HORDE: High-order regularizer for deep embeddings. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Jacobs, C. E., Finkelstein, A., and Salesin, D. H. (1995). Fast multiresolution image querying. In ACM SIGGRAPH Conference Proceedings, pp. 277–286.
- Jacquet, B., Hane, C., Koser, K., and Pollefeys, M. (2013). Real-world normal map capture for nearly flat reflective surfaces. In *International Conference on Computer Vision (ICCV)*.
- Jähne, B. (1997). Digital Image Processing. Springer-Verlag, Berlin.
- Jain, A. K. and Dubes, R. C. (1988). Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs, New Jersey.
- Jain, A. K., Bolle, R. M., and Pankanti, S. (eds). (1999). Biometrics: Personal Identification in Networked Society, Kluwer.
- Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37.
- Jain, A. K., Topchy, A., Law, M. H. C., and Buhmann, J. M. (2004). Landscape of clustering algorithms. In *International Conference on Pattern Recognition (ICPR)*, pp. 260–263.

- Jain, D. S., Xiong, B., and Grauman, K. (2017). FusionSeg: Learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Janai, J., Güney, F., Behl, A., and Geiger, A. (2020). Computer vision for autonomous vehicles: Problems, datasets and state of the art. *Foundations and Trends® in Computer Graphics and Vision*, 12(1–3):1–308.
- Janai, J., Guney, F., Ranjan, A., Black, M., and Geiger, A. (2018). Unsupervised learning of multi-frame optical flow with occlusions. In *European Conference on Computer Vision (ECCV)*.
- Jancosek, M. and Pajdla, T. (2011). Robust, accurate and weakly-supported-surfaces preserving multi-view reconstruction. In *IEEE Computer Society Conference on Computer Vision and Pat*tern Recognition (CVPR).
- Jayaraman, D., Sha, F., and Grauman, K. (2014). Decorrelating semantic visual attributes by resisting the urge to share. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jégou, H., Douze, M., and Schmid, C. (2008). Hamming embedding and weak geometric consistency for large scale image search. In *European Conference on Computer Vision (ECCV)*, pp. 304–317.
- Jegou, H., Douze, M., and Schmid, C. (2009). On the burstiness of visual elements. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jégou, H., Douze, M., and Schmid, C. (2010). Product quantization for nearest neighbor search. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(1):117–128.
- Jégou, H., Harzallah, H., and Schmid, C. (2007). A contextual dissimilarity measure for accurate and efficient image search. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., and Schmid, C. (2012). Aggregating local image descriptors into compact codes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(9):1704–1716.
- Jenkin, M. R. M., Jepson, A. D., and Tsotsos, J. K. (1991). Techniques for disparity measurement. CVGIP: Image Understanding, 53(1):14–30.
- Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. (2001). A practical model for subsurface light transport. In *ACM SIGGRAPH Conference Proceedings*, pp. 511–518.
- Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., and Aanaes, H. (2014). Large scale multi-view stereopsis evaluation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jeong, Y., Nistér, D., Steedly, D., Szeliski, R., and Kweon, I.-S. (2010). Pushing the envelope of modern methods for bundle adjustment. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jeong, Y., Nistér, D., Steedly, D., Szeliski, R., and Kweon, I.-S. (2012). Pushing the envelope of modern methods for bundle adjustment. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(8):1605–1617.

Ji, D., Dunn, E., and Frahm, J.-M. (2014). 3D reconstruction of dynamic textures in crowd sourced data. In *European Conference on Computer Vision*, pp. 143–158.

- Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3D convolutional neural networks for human action recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(1):221–231.
- Ji, X., Henriques, J. F., and Vedaldi, A. (2019). Invariant information clustering for unsupervised image classification and segmentation. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Jia, J. and Tang, C.-K. (2003). Image registration with global and local luminance alignment. In *International Conference on Computer Vision (ICCV)*, pp. 156–163.
- Jia, J., Sun, J., Tang, C.-K., and Shum, H.-Y. (2006). Drag-and-drop pasting. *ACM Transactions on Graphics*, 25(3):631–636.
- Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding. In *ACM International Conference on Multimedia*, pp. 675–678.
- Jiang, C. M., Sud, A., Makadia, A., Huang, J., Nießner, M., and Funkhouser, T. (2020). Local implicit grid representations for 3D scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jiang, H., Misra, I., Rohrbach, M., Learned-Miller, E., and Chen, X. (2020). In defense of grid features for visual question answering. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jiang, H., Sun, D., Jampani, V., Lv, Z., Learned-Miller, E., and Kautz, J. (2019). SENSE: A shared encoder network for scene-flow estimation. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Jiang, H., Sun, D., Jampani, V., Yang, M.-H., Learned-Miller, E., and Kautz, J. (2018). Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jiang, N., Cui, Z., and Tan, P. (2013). A global linear method for camera pose registration. In *International Conference on Computer Vision (ICCV)*.
- Jiang, S., Lu, Y., Li, H., and Hartley, R. (2021). Learning optical flow from a few matches. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Jiang, S., Campbell, D., Lu, Y., Li, H., and Hartley, R. (2021). Learning to estimate hidden motions with global motion aggregation. *arXiv* preprint arXiv:2104.02409.
- Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., and Yi, K. M. (2021). COTR: Correspondence transformer for matching across images. *arXiv preprint arXiv:2103.14167*.
- Jiang, Y., Chang, S., and Wang, Z. (2021). TransGAN: Two transformers can make one strong GAN. *arXiv preprint arXiv:2102.07074*.
- Jiang, Z., Wong, T.-T., and Bao, H. (2003). Practical super-resolution from dynamic video sequences.
 In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),

- pp. 549-554.
- Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., and Qu, R. (2019). A survey of deep learning-based object detection. *IEEE Access*, 7:128837–128868.
- Jin, Q., Facciolo, G., and Morel, J.-M. (2020). A review of an old dilemma: Demosaicking first, or denoising first? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)* Workshops.
- Jin, Y., Mishkin, D., Mishchuk, A., Matas, J., Fua, P., Yi, K. M., and Trulls, E. (2021). Image matching across wide baselines: From paper to practice. *International Journal of Computer Vision*, 129(2):517–547.
- Jing, L. and Tian, Y. (2020). Self-supervised visual feature learning with deep neural networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, (accepted).
- Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(5):433–448.
- Johnson, A. E. and Kang, S. B. (1997). Registration and integration of textured 3-D data. In *International Conference on Recent Advances in 3-D Digital Imaging and Modeling*, pp. 234–241.
- Johnson, J. (2020). University of Michigan EECS 498-007 / 598-005 course: Deep learning for computer vision. Slides available on the Schedule page of https://web.eecs.umich.edu/~justincj/ teaching/eecs498.
- Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In *European Conference on Computer Vision*, pp. 694–711.
- Johnson, J., Douze, M., and Jégou, H. (2021). Billion-scale similarity search with GPUs. *IEEE Transactions on Big Data*, 7(3):535–547.
- Johnson, J., Gupta, A., and Fei-Fei, L. (2018). Image generation from scene graphs. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Johnson, J., Karpathy, A., and Fei-Fei, L. (2016). DenseCap: Fully convolutional localization networks for dense captioning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Johnson, S. and Everingham, M. (2011). Learning effective human pose estimation from inaccurate annotation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR).
- Jojic, N. and Frey, B. J. (2001). Learning flexible sprites in video layers. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 199–206.
- Jones, D. G. and Malik, J. (1992). A computational framework for determining stereo correspondence from a set of linear spatial filters. In *European Conference on Computer Vision (ECCV)*, pp. 397–410.
- Jonschkowski, R., Stone, A., Barron, J. T., Gordon, A., Konolige, K., and Angelova, A. (2020). What matters in unsupervised optical flow. In *European Conference on Computer Vision (ECCV)*.

Joo, H., Simon, T., Li, X., Liu, H., Tan, L., Gui, L., Banerjee, S., Godisart, T. S., Nabbe, B., Matthews, I., Kanade, T., Nobuhara, S., and Sheikh, Y. (2019). Panoptic studio: A massively multiview system for social interaction capture. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(1):190–204.

- Joo, H., Neverova, N., and Vedaldi, A. (2020). Exemplar fine-tuning for 3D human pose fitting towards in-the-wild 3D human pose estimation. *arXiv* preprint arXiv:2004.03686.
- Joo, H., Simon, T., and Sheikh, Y. (2018). Total capture: A 3D deformation model for tracking faces, hands, and bodies. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Joo, H., Liu, H., Tan, L., Gui, L., Nabbe, B., Matthews, I., Kanade, T., Nobuhara, S., and Sheikh, Y. (2015). Panoptic studio: A massively multiview system for social motion capture. In *IEEE International Conference on Computer Vision (ICCV)*.
- Joshi, N., Matusik, W., and Avidan, S. (2006). Natural video matting using camera arrays. *ACM Transactions on Graphics*, 25(3):779–786.
- Joshi, N., Szeliski, R., and Kriegman, D. J. (2008). PSF estimation using sharp edge prediction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Joshi, N., Kang, S. B., Zitnick, C. L., and Szeliski, R. (2010). Image deblurring using inertial measurement sensors. ACM Transactions on Graphics (Proc. SIGGRAPH), 29(3):30.
- Joshi, N., Zitnick, C. L., Szeliski, R., and Kriegman, D. J. (2009). Image deblurring and denoising using color priors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Joshi, N., Mehta, S., Drucker, S., Stollnitz, E., Hoppe, H., Uyttendaele, M., and Cohen, M. (2012).
 Cliplets: juxtaposing still and dynamic imagery. In ACM Symposium on User Interface Software and Technology (UIST), pp. 251–260.
- Ju, S. X., Black, M. J., and Jepson, A. D. (1996). Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 307–314.
- Ju, S. X., Black, M. J., and Yacoob, Y. (1996). Cardboard people: a parameterized model of articulated image motion. In *International Conference on Automatic Face and Gesture Recognition*, pp. 38–44.
- Jung, S., Hwang, S., Shin, H., and Shim, D. H. (2018). Perception, guidance, and navigation for indoor autonomous drone racing using deep learning. *IEEE Robotics and Automation Letters*, 3(3):2539–2544.
- Jurie, F. and Dhome, M. (2002). Hyperplane approximation for template matching. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(7):996–1000.
- Kadir, T., Zisserman, A., and Brady, M. (2004). An affine invariant salient region detector. In *European Conference on Computer Vision (ECCV)*, pp. 228–241.
- Kaehler, A. and Bradski, G. (2017). *Learning OpenCV 3: Computer Vision in C++ with the OpenCV Library*. O'Reilly Media.

- Kaess, M., Ranganathan, A., and Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6):1365–1378.
- Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree. *International Journal of Robotics Research*, 31(2):216–235.
- Kaftory, R., Schechner, Y., and Zeevi, Y. (2007). Variational distance-dependent image restoration. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kahl, F. and Hartley, R. (2008). Multiple-view geometry under the l_{∞} -norm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(11):1603–1617.
- Kakadiaris, I. and Metaxas, D. (2000). Model-based estimation of 3D human motion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(12):1453–1459.
- Kalantari, N. K. and Ramamoorthi, R. (2017). Deep high dynamic range imaging of dynamic scenes. *ACM Transactions On Graphics (Proc. SIGGRAPH)*, 36(4):144–1.
- Kalantari, N. K., Wang, T.-C., and Ramamoorthi, R. (2016). Learning-based view synthesis for light field cameras. *ACM Transactions on Graphics (TOG)*, 35(6):1–10.
- Kambhamettu, C., Goldgof, D., He, M., and Laskov, P. (2003). 3d nonrigid motion analysis under small deformations. *Image and Vision Computing*, 21(3):229–245.
- Kambhamettu, C., Goldgof, D. B., Terzopoulos, D., and Huang, T. S. (1994). Nonrigid motion analysis. In *Handbook of Pattern Recognition and Image Processing: Computer Vision, Volume* 2, pp. 405–430, Academic Press.
- Kaminsky, R. S., Snavely, N., Seitz, S. M., and Szeliski, R. (2009). Alignment of 3D point clouds to overhead images. In *Second IEEE Workshop on Internet Vision*.
- Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A. V., Criminisi, A., Rueckert, D., and Glocker, B. (2016). DeepMedic for brain tumor segmentation. In *International MICCAI Brainlesion Workshop*, pp. 138–149.
- Kamnitsas, K., Ledig, C., Newcombe, V. F. J., Simpson, J. P., Kane, A. D., Menon, D. K., Rueckert, D., and Glocker, B. (2017). Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. *Medical Image Analysis*, 36:61–78.
- Kamvar, S. D., Klein, D., and Manning, C. D. (2002). Interpreting and extending classical agglomerative clustering algorithms using a model-based approach. In *International Conference on Machine Learning*, pp. 283–290.
- Kanade, T. (1977). Computer Recognition of Human Faces. Birkhauser, Basel.
- Kanade, T. (1980). A theory of the origami world. Artificial Intelligence, 13:279-311.
- Kanade, T. (ed.). (1987). Three-Dimensional Machine Vision, Kluwer Academic Publishers, Boston.
- Kanade, T. (1994). Development of a video-rate stereo machine. In *Image Understanding Workshop*, pp. 549–557.

Kanade, T. and Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(9):920–932.

- Kanade, T., Rander, P. W., and Narayanan, P. J. (1997). Virtualized reality: constructing virtual worlds from real scenes. *IEEE MultiMedia Magazine*, 4(1):34–47.
- Kanade, T., Yoshida, A., Oda, K., Kano, H., and Tanaka, M. (1996). A stereo machine for videorate dense depth mapping and its new applications. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 196–202.
- Kanatani, K. (1998). Geometric information criterion for model selection. *International Journal of Computer Vision*, 26(3):171–189.
- Kanatani, K. and Matsunaga, C. (2000). Closed-form expression for focal lengths from the fundamental matrix. In Asian Conference on Computer Vision (ACCV), pp. 128–133.
- Kanatani, K. and Morris, D. D. (2001). Gauges and gauge transformations for uncertainty description of geometric structure with indeterminacy. *IEEE Transactions on Information Theory*, 47(5):2017–2028.
- Kang, J., Jo, Y., Oh, S. W., Vajda, P., and Kim, S. J. (2020). Deep space-time video upsampling networks. In *European Conference on Computer Vision (ECCV)*.
- Kang, S. B. (1998). Depth Painting for Image-based Rendering Applications. Technical Report, Compaq Computer Corporation, Cambridge Research Lab.
- Kang, S. B. (1999). A survey of image-based rendering techniques. In *Videometrics VI*, pp. 2–16.
- Kang, S. B. (2001). Radial distortion snakes. IEICE Trans. Inf. & Syst., E84-D(12):1603-1611.
- Kang, S. B. and Jones, M. (2002). Appearance-based structure from motion using linear classes of 3-D models. *International Journal of Computer Vision*, 49(1):5–22.
- Kang, S. B. and Szeliski, R. (1997). 3-D scene data recovery using omnidirectional multibaseline stereo. *International Journal of Computer Vision*, 25(2):167–183.
- Kang, S. B. and Szeliski, R. (2004). Extracting view-dependent depth maps from a collection of images. *International Journal of Computer Vision*, 58(2):139–163.
- Kang, S. B. and Weiss, R. (1997). Characterization of errors in compositing panoramic images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 103–109.
- Kang, S. B. and Weiss, R. (1999). Characterization of errors in compositing panoramic images. Computer Vision and Image Understanding, 73(2):269–280.
- Kang, S. B. and Weiss, R. (2000). Can we calibrate a camera using an image of a flat, textureless Lambertian surface? In *European Conference on Computer Vision (ECCV)*, pp. 640–653.
- Kang, S. B., Szeliski, R., and Anandan, P. (2000). The geometry-image representation tradeoff for rendering. In *International Conference on Image Processing (ICIP)*, pp. 13–16.

- Kang, S. B., Szeliski, R., and Chai, J. (2001). Handling occlusions in dense multi-view stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 103–110.
- Kang, S. B., Szeliski, R., and Shum, H.-Y. (1997). A parallel feature tracker for extended image sequences. *Computer Vision and Image Understanding*, 67(3):296–310.
- Kang, S. B., Szeliski, R., and Uyttendaele, M. (2004). *Seamless Stitching using Multi-Perspective Plane Sweep*. Technical Report MSR-TR-2004-48, Microsoft Research.
- Kang, S. B., Li, Y., Tong, X., and Shum, H.-Y. (2006). Image-based rendering. *Foundations and Trends® in Computer Graphics and Computer Vision*, 2(3):173–258.
- Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. (2003). High dynamic range video. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):319–325.
- Kang, S. B., Webb, J., Zitnick, L., and Kanade, T. (1995). A multibaseline stereo system with active illumination and real-time image acquisition. In *International Conference on Computer Vision* (ICCV), pp. 88–93.
- Kannala, J., Rahtu, E., Brandt, S. S., and Heikkila, J. (2008). Object recognition and segmentation by non-rigid quasi-dense matching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kappeler, A., Yoo, S., Dai, Q., and Katsaggelos, A. K. (2016). Video super-resolution with convolutional neural networks. *IEEE Transactions on Computational Imaging*, 2(2):109–122.
- Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., and Rother, C. (2015). A comparative study of modern inference techniques for structured discrete energy minimization problems. *International Journal of Computer Vision*, 115(3):211–252. Code and benchmark at http://hciweb2.iwr.uni-heidelberg.de/opengm/index.php?l0=benchmark.
- Karaimer, H. C. and Brown, M. S. (2016). A software platform for manipulating the camera imaging pipeline. In *European Conference on Computer Vision*, pp. 429–444. https://karaimer.github.io/camera-pipeline.
- Karpathy, A. and Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Karpathy, A., Joulin, A., and Fei-Fei, L. F. (2014). Deep fragment embeddings for bidirectional image sentence mapping. In Advances in Neural Information Processing Systems (NeurIPS), pp. 1889– 1897.
- Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In *IEEE Conference on Computer Vision* and Pattern Recognition (CVPR).
- Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for generative adversarial networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of gans for improved quality, stability, and variation. In *International Conference on Learning Representations (ICLR)*.

- Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020). Analyzing and improving the image quality of StyleGAN. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kass, M. (1988). Linear image features in stereopsis. *International Journal of Computer Vision*, 1(4):357–368.
- Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes: Active contour models. *International Journal of Computer Vision*, 1(4):321–331.
- Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., and Tachibana, K. (2000). Virtual object manipulation on a table-top AR environment. In *International Symposium on Augmented Reality* (ISAR).
- Kato, H., Beker, D., Morariu, M., Ando, T., Matsuoka, T., Kehl, W., and Gaidon, A. (2020). Differentiable rendering: A survey. *arXiv preprint arXiv:2006.12057*.
- Kaucic, R., Hartley, R. I., and Dano, N. (2001). Plane-based projective reconstruction. In *International Conference on Computer Vision (ICCV)*, pp. 420–427.
- Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Hoboken.
- Kaufmann, E., Gehrig, M., Foehn, P., Ranftl, R., Dosovitskiy, A., Koltun, V., and Scaramuzza, D. (2019). Beauty and the beast: Optimal methods meet learning for drone racing. In *International Conference on Robotics and Automation (ICRA)*, pp. 690–696.
- Kazhdan, M. and Hoppe, H. (2013). Screened Poisson surface reconstruction. *ACM Transactions on Graphics (ToG)*, 32(3):29.
- Kazhdan, M., Bolitho, M., and Hoppe, H. (2006). Poisson surface reconstruction. In *Eurographics Symposium on Geometry Processing*, pp. 61–70.
- Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: a more distinctive representation for local image descriptors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR), pp. 506–513.
- Kehl, R. and Van Gool, L. (2006). Markerless tracking of complex human motions from multiple views. *Computer Vision and Image Understanding*, 104(2–3):190–209.
- Kellnhofer, P., Jebe, L. C., Jones, A., Spicer, R., Pulli, K., and Wetzstein, G. (2021). Neural Lumigraph rendering. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kemelmacher-Shlizerman, I., Seitz, S. M., Miller, D., and Brossard, E. (2016). The MegaFace benchmark: 1 million faces for recognition at scale. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kendall, A. and Cipolla, R. (2017). Geometric loss functions for camera pose regression with deep learning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Kendall, A., Grimes, M., and Cipolla, R. (2015). PoseNet: A convolutional network for real-time 6-dof camera relocalization. In *IEEE International Conference on Computer Vision (ICCV)*.
- Kendall, A., Martirosyan, H., Dasgupta, S., and Henry, P. (2017). End-to-end learning of geometry and context for deep stereo regression. In *International Conference on Computer Vision (ICCV)*, pp. 66–75.
- Kenney, C., Zuliani, M., and Manjunath, B. (2005). An axiomatic approach to corner detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 191–197.
- Keren, D., Peleg, S., and Brada, R. (1988). Image sequence enhancement using sub-pixel displacements. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 742–746.
- Khamis, S., Fanello, S., Rhemann, C., Kowdle, A., Valentin, J., and Izadi, S. (2018). StereoNet: Guided hierarchical refinement for real-time edge-aware depth prediction. In *European Conference on Computer Vision (ECCV)*.
- Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S., and Shah, M. (2021). Transformers in vision: A survey. *arXiv preprint arXiv:2101.01169*.
- Khan, Z., Balch, T., and Dellaert, F. (2005). MCMC-based particle filtering for tracking a variable number of interacting targets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(11):1805–1819.
- Khoreva, A., Benenson, R., Hosang, J., Hein, M., and Schiele, B. (2017). Simple does it: Weakly supervised instance and semantic segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Khoreva, A., Benenson, R., Ilg, E., Brox, T., and Schiele, B. (2019). Lucid data dreaming for video object segmentation. *International Journal of Computer Vision*, 127(9):1175–1197.
- Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. H. (2013). Scene reconstruction from high spatio-angular resolution light fields. ACM Transactions on Graphics (Proc. SIGGRAPH), 32(4).
- Kim, H., Garrido, P., Tewari, A., Xu, W., Thies, J., Nießner, M., Pérez, P., Richardt, C., Zollhöfer, M., and Theobalt, C. (2018). Deep video portraits. ACM Transactions on Graphics (Proc. SIGGRAPH), 37(4):163.
- Kim, H. J., Dunn, E., and Frahm, J.-M. (2017). Learned contextual feature reweighting for image geo-localization. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kim, H.-J., Lee, J. S., and Yang, H.-S. (2007). Human action recognition using a modified convolutional neural network. In *International Symposium on Neural Networks*, pp. 715–723.
- Kim, J., Kolmogorov, V., and Zabih, R. (2003). Visual correspondence using energy minimization and mutual information. In *International Conference on Computer Vision (ICCV)*, pp. 1033–1040.
- Kim, S. J., Lin, H. T., Lu, Z., Süsstrunk, S., Lin, S., and Brown, M. S. (2012). A new in-camera imaging model for color computer vision and its application. *IEEE Transactions on Pattern Analysis*

- and Machine Intelligence, 34(12):2289-2302.
- Kim, T., Cha, M., Kim, H., Lee, J. K., and Kim, J. (2017). Learning to discover cross-domain relations with generative adversarial networks. In *International Conference on Machine Learning (ICML)*, pp. 1857–1865.
- Kimmel, R. (1999). Demosaicing: image reconstruction from color CCD samples. *IEEE Transactions on Image Processing*, 8(9):1221–1228.
- Kimura, S., Shinbo, T., Yamaguchi, H., Kawamura, E., and Nakano, K. (1999). A convolver-based real-time stereo machine (SAZAN). In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 457–463.
- Kindermann, R. and Snell, J. L. (1980). *Markov Random Fields and Their Applications*. American Mathematical Society.
- King, D. (1997). The Commissar Vanishes. Henry Holt and Company.
- Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In *International Conference on Learning Representations (ICLR)*.
- Kingma, D. P. and Welling, M. (2013). Auto-encoding variational Bayes. *arXiv preprint* arXiv:1312.6114.
- Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. *Foundations and Trends*® *in Machine Learning*, 12(4):307–392.
- Kirby, M. and Sirovich, L. (1990). Application of the Karhunen-Loeve procedure for the characterization of human faces. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(1):103-108.
- Kirillov, A., Lin, T.-Y., Cui, Y., Ronchi, M. R., Neverova, N., Khalidov, V., Girshick, R., Dollar, P., Gupta, A., and Girshick, R. (2020). COCO + LVIS joint recognition challenge. In European Conference on Computer Vision (ECCV) Workshops. https://cocodataset.org/workshop/coco-lvis-eccv-2020.html.
- Kirillov, A., Girshick, R., He, K., and Dollár, P. (2019). Panoptic feature pyramid networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kirillov, A., He, K., Girshick, R., Rother, C., and Dollár, P. (2019). Panoptic segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kirkpatrick, S., Gelatt, C. D. J., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220:671–680.
- Kirovski, D., Jojic, N., and Jancke, G. (2004). Tamper-resistant biometric IDs. In *ISSE 2004 Securing Electronic Business Processes: Highlights of the Information Security Solutions Europe 2004 Conference*, pp. 160–175.
- Kittler, J. and Föglein, J. (1984). Contextual classification of multispectral pixel data. *Image and Vision Computing*, 2(1):13–29.
- Klare, B. F., Klein, B., Taborsky, E., Blanton, A., Cheney, J., Allen, K., Grother, P., Mah, A., and Jain, A. K. (2015). Pushing the frontiers of unconstrained face detection and recognition: IARPA

- Janus Benchmark A. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- Klaus, A., Sormann, M., and Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In *International Conference on Pattern Recognition (ICPR)*, pp. 15–18.
- Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In *International Symposium on Mixed and Augmented Reality (ISMAR)*.
- Klein, G. and Murray, D. (2008). Improving the agility of keyframe-based SLAM. In *European Conference on Computer Vision (ECCV)*, pp. 802–815.
- Klein, G. and Murray, D. (2009). Parallel tracking and mapping on a camera phone. In *International Symposium on Mixed and Augmented Reality (ISMAR)*.
- Klein, S., Staring, M., and Pluim, J. P. W. (2007). Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. *IEEE Transactions on Image Processing*, 16(12):2879–2890.
- Klingensmith, M., Dryanovski, I., Srinivasa, S. S., and Xiao, J. (2015). Chisel: Real time large scale 3D reconstruction onboard a mobile device using spatially-hashed signed distance fields. In *Robotics: Science and Systems*.
- Klingner, B., Martin, D., and Roseborough, J. (2013). Street view motion-from-structure-from-motion. In *International Conference on Computer Vision (ICCV)*.
- Klinker, G. J. (1993). A Physical Approach to Color Image Understanding. A K Peters, Wellesley, Massachusetts.
- Klinker, G. J., Shafer, S. A., and Kanade, T. (1990). A physical approach to color image understanding. *International Journal of Computer Vision*, 4(1):7–38.
- Kluger, F., Ackermann, H., Yang, M. Y., and Rosenhahn, B. (2017). Deep learning for vanishing point detection using an inverse gnomonic projection. In *German Conference on Pattern Recognition*, pp. 17–28.
- Knapitsch, A., Park, J., Zhou, Q.-Y., and Koltun, V. (2017). Tanks and temples: Benchmarking large-scale scene reconstruction. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 36(4).
- Kneip, L. and Furgale, P. (2014). OpenGV: A unified and generalized approach to real-time calibrated geometric vision. In *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 1–8.
- Knöbelreiter, P. and Pock, T. (2019). Learned collaborative stereo refinement. In *German Conference on Pattern Recognition (GCPR)*, pp. 3–17.
- Knöbelreiter, P., Reinbacher, C., Shekhovtsov, A., and Pock, T. (2017). End-to-end training of hybrid CNN-CRF models for stereo. In *IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 1456–1465.
- Knopp, J., Sivic, J., and Pajdla, T. (2010). Avoiding confusing features in place recognition. In *European Conference on Computer Vision (ECCV)*, pp. 748–761.
- Kocabas, M., Athanasiou, N., and Black, M. J. (2020). VIBE: Video inference for human body pose and shape estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition*

(CVPR).

Koch, R., Pollefeys, M., and Van Gool, L. J. (2000). Realistic surface reconstruction of 3D scenes from uncalibrated image sequences. *Journal Visualization and Computer Animation*, 11:115–127.

- Koenderink, J. J. (1990). Solid Shape. MIT Press, Cambridge, Massachusetts.
- Koethe, U. (2003). Integrated edge and junction detection with the boundary tensor. In *International Conference on Computer Vision (ICCV)*, pp. 424–431.
- Kohler, J., Daneshmand, H., Lucchi, A., Hofmann, T., Zhou, M., and Neymeyr, K. (2019). Exponential convergence rates for batch normalization: The power of length-direction decoupling in non-convex optimization. In *Proceedings of Machine Learning Research*, pp. 806–815.
- Kohli, P. (2007). Minimizing Dynamic and Higher Order Energy Functions using Graph Cuts. Ph.D. thesis, Oxford Brookes University.
- Kohli, P. and Torr, P. H. S. (2007). Dynamic graph cuts for efficient inference in markov random fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(12):2079–2088.
- Kohli, P. and Torr, P. H. S. (2008). Measuring uncertainty in graph cut solutions. *Computer Vision and Image Understanding*, 112(1):30–38.
- Kohli, P., Kumar, M. P., and Torr, P. H. S. (2009). \mathcal{P}^3 & beyond: Move making algorithms for solving higher order functions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(9):1645–1656.
- Kohli, P., Ladický, L., and Torr, P. H. S. (2009). Robust higher order potentials for enforcing label consistency. *International Journal of Computer Vision*, 82(3):302–324.
- Kokaram, A. (2004). On missing data treatment for degraded video and film archives: a survey and a new Bayesian approach. *IEEE Transactions on Image Processing*, 13(3):397–415.
- Kolesnikov, A., Zhai, X., and Beyer, L. (2019). Revisiting self-supervised visual representation learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby, N. (2020). Big transfer (BiT): General visual representation learning. In *European Conference on Computer Vision (ECCV)*.
- Kolev, K. and Cremers, D. (2008). Integration of multiview stereo and silhouettes via convex functionals on convex domains. In *European Conference on Computer Vision (ECCV)*, pp. 752–765.
- Kolev, K. and Cremers, D. (2009). Continuous ratio optimization via convex relaxation with applications to multiview 3D reconstruction. In *IEEE Computer Society Conference on Computer Vision* and Pattern Recognition (CVPR).
- Kolev, K., Klodt, M., Brox, T., and Cremers, D. (2009). Continuous global optimization in multiview 3D reconstruction. *International Journal of Computer Vision*, 84(1):80–96.
- Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge, Massachusetts.

- Kolmogorov, V. and Boykov, Y. (2005). What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In *International Conference on Computer Vision (ICCV)*, pp. 564–571.
- Kolmogorov, V. and Zabih, R. (2002). Multi-camera scene reconstruction via graph cuts. In *European Conference on Computer Vision (ECCV)*, pp. 82–96.
- Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized via graph cuts? *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(2):147–159.
- Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., and Rother, C. (2006). Probabilistic fusion of stereo with color and contrast for bi-layer segmentation. *IEEE Transactions on Pattern Analysis* and Machine Intelligence, 28(9):1480–1492.
- Komodakis, N. and Tziritas, G. (2007). Image completion using efficient belief propagation via priority scheduling and dynamic pruning. *IEEE Transactions on Image Processing*, 29(11):2649–2661.
- Komodakis, N., Tziritas, G., and Paragios, N. (2008). Performance vs computational efficiency for optimizing single and dynamic MRFs: Setting the state of the art with primal dual strategies. *Computer Vision and Image Understanding*, 112(1):14–29.
- Kondermann, D., Nair, R., Honauer, K., Krispin, K., Andrulis, J., Brock, A., Gussefeld, B., Rahimimoghaddam, M., Hofmann, S., Brenner, C., and Jahne, B. (2016). The HCI benchmark suite: Stereo and flow ground truth with uncertainties for urban autonomous driving. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.
- Konolige, K. (1997). Small vision systems: Hardware and implementation. In *International Symposium on Robotics Research*, pp. 203–212.
- Kononenko, D. and Lempitsky, V. (2015). Learning to look up: Realtime monocular gaze correction using machine learning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kopf, J. (2016). 360 video stabilization. *Transactions on Graphics (Proc. SIGGRAPH Asia)*, 35(6):195.
- Kopf, J., Alsisan, S., Ge, F., Chong, Y., Matzen, K., Quigley, O., Patterson, J., Tirado, J., Wu, S., and Cohen, M. F. (2019). Practical 3D photography. In CVPR Workshop on Computer Vision for Augmented and Virtual Reality.
- Kopf, J., Matzen, K., Alsisan, S., Quigley, O., Ge, F., Chong, Y., Patterson, J., Frahm, J.-M., Wu, S., Yu, M., Zhang, P., He, Z., Vajda, P., Saraf, A., and Cohen, M. (2020). One shot 3D photography. ACM Transactions on Graphics (Proc. SIGGRAPH), 39(4):76.
- Kopf, J., Cohen, M., and Szeliski, R. (2014). First-person hyperlapse videos. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 33(4):63.
- Kopf, J., Rong, X., and Huang, J.-B. (2021). Robust consistent video depth estimation. In *IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR).

Kopf, J., Chen, B., Szeliski, R., and Cohen, M. F. (2010). Street slide: Browsing street level imagery. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 29(4):96.

- Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. (2007). Joint bilateral upsampling. *ACM Transactions on Graphics*, 26(3).
- Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. F. (2007). Capturing and viewing gigapixel images. *ACM Transactions on Graphics*, 26(3).
- Kopf, J., Langguth, F., Scharstein, D., Szeliski, R., and Goesele, M. (2013). Image-based rendering in the gradient domain. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 32(6):199.
- Kopf, J., Lischinski, D., Deussen, O., Cohen-Or, D., and Cohen, M. (2009). Locally adapted projections to reduce panorama distortions. *Computer Graphics Forum (EGSR)*, 28(4).
- Korman, S. and Litman, R. (2018). Latent RANSAC. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., and Bischof, H. (2012). Large scale metric learning from equivalence constraints. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Košecká, J. and Zhang, W. (2005). Extraction, matching and pose recovery based on dominant rectangular structures. *Computer Vision and Image Understanding*, 100(3):174–293.
- Kotovenko, D., Sanakoyeu, A., Lang, S., and Ommer, B. (2019). Content and style disentanglement for artistic style transfer. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Koutis, I. (2007). *Combinatorial and algebraic tools for optimal multilevel algorithms*. Ph.D. thesis, Carnegie Mellon University. Technical Report CMU-CS-07-131.
- Koutis, I. and Miller, G. L. (2008). Graph partitioning into isolated, high conductance clusters: theory, computation and applications to preconditioning. In *Symposium on Parallel Algorithms and Architectures*, pp. 137–145.
- Koutis, I., Miller, G. L., and Tolliver, D. (2009). Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing. In *International Symposium on Visual Computing (ISVC)*.
- Kovar, L., Gleicher, M., and Pighin, F. (2002). Motion graphs. *ACM Transactions on Graphics*, 21(3):473–482.
- Kovashka, A., Russakovsky, O., Fei-Fei, L., and Grauman, K. (2016). Crowdsourcing in computer vision. *Foundations and Trends® in Computer Graphics and Vision*, 10(3):177–243.
- Krähenbühl, P. and Koltun, V. (2011). Efficient inference in fully connected CRFs with Gaussian edge potentials. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 109–117.
- Krähenbühl, P. and Koltun, V. (2013). Parameter learning and convergent inference for dense random fields. In *International Conference on Machine Learning (ICML)*, pp. 513–521.
- Krähenbühl, P., Doersch, C., Donahue, J., and Darrell, T. (2016). Data-dependent initializations of convolutional neural networks. In *International Conference on Learning Representations (ICLR)*.

- Kraus, K. (1997). Photogrammetry. Dümmler, Bonn.
- Krause, J., Jin, H., Yang, J., and Fei-Fei, L. (2015). Fine-grained recognition without part annotations. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S., Kalantidis, Y., Li, L.-J., Shamma, D. A., Bernstein, M. S., and Fei-Fei, L. (2017). Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International Journal of Computer Vision*, 123(1):32–73.
- Krishnan, D. and Fergus, R. (2009). Fast image deconvolution using hyper-Laplacian priors. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Krishnan, D. and Szeliski, R. (2011). Multigrid and multilevel preconditioners for computational photography. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 30(6):177.
- Krishnan, D., Fattal, R., and Szeliski, R. (2013). Efficient preconditioning of Laplacian matrices for computer graphics. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 32(4):142.
- Kristan, M., Leonardis, A., Matas, J., Felsberg, M. *et al.* (2020). The eighth visual object tracking VOT2020 challenge results. In *European Conference on Computer Vision (ECCV) Workshops*.
- Kristan, M., Matas, J., Leonardis, A., Vojir, T., Pflugfelder, R., Fernandez, G., Nebehay, G., Porikli, F., and Čehovin, L. (2016). A novel performance evaluation methodology for single-target trackers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(11):2137–2155.
- Krizhevsky, A. (2009). *Learning multiple layers of features from tiny images*. Master's thesis, University of Toronto.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1097–1105.
- Kroeger, T., Timofte, R., Dai, D., and Van Gool, L. (2016). Fast optical flow using dense inverse search. In *European Conference on Computer Vision*, pp. 471–488.
- Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 29(1):1–27.
- Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical method. *Psychometrika*, 29(2):115–129.
- Kubota, T. (2019). Stanford's robotics legacy. *Stanford News*. https://news.stanford.edu/2019/01/16/stanfords-robotics-legacy.
- Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., and Serre, T. (2011). HMDB: A large video database for human motion recognition. In *International Conference on Computer Vision (ICCV)*.
- Kuglin, C. D. and Hines, D. C. (1975). The phase correlation image alignment method. In *IEEE Conference on Cybernetics and Society*, pp. 163–165.
- Kuhn, A., Hirschmüller, H., Scharstein, D., and Mayer, H. (2017). A TV prior for high-quality scalable multi-view stereo reconstruction. *International Journal of Computer Vision*, 124(1):2–17.

Kuhn, A., Sormann, C., Rossi, M., Erdler, O., and Fraundorfer, F. (2020). DeepC-MVS: Deep confidence prediction for multi-view stereo reconstruction. In *International Conference on 3D Vision (3DV)*, pp. 404–413.

- Kukelova, Z., Albl, C., Sugimoto, A., and Pajdla, T. (2018). Linear solution to the minimal absolute pose rolling shutter problem. In *Asian Conference on Computer Vision*, pp. 265–280.
- Kukelova, Z., Albl, C., Sugimoto, A., Schindler, K., and Pajdla, T. (2020). Minimal rolling shutter absolute pose with unknown focal length and radial distortion. In *European Conference on Computer Vision (ECCV)*.
- Kulis, B. (2013). Metric learning: A survey. Foundations and Trends® in Machine Learning, 5(4):287–364.
- Kulis, B. and Grauman, K. (2009). Kernelized locality-sensitive hashing for scalable image search. In *International Conference on Computer Vision (ICCV)*.
- Kulkarni, G., Premraj, V., Ordonez, V., Dhar, S., Li, S., Choi, Y., Berg, A. C., and Berg, T. L. (2013). BabyTalk: Understanding and generating simple image descriptions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(12):2891–2903.
- Kumar, M., Weissenborn, D., and Kalchbrenner, N. (2021). Colorization transformer. *arXiv preprint arXiv:*2102.04432.
- Kumar, M. P. (2008). *Combinatorial and Convex Optimization for Probabilistic Models in Computer Vision*. Ph.D. thesis, Oxford Brookes University.
- Kumar, M. P. and Torr, P. H. S. (2006). Fast memory-efficient generalized belief propagation. In *European Conference on Computer Vision (ECCV)*, pp. 451–463.
- Kumar, M. P., Torr, P. H. S., and Zisserman, A. (2008). Learning layered motion segmentations of video. *International Journal of Computer Vision*, 76(3):301–319.
- Kumar, M. P., Veksler, O., and Torr, P. H. S. (2011). Improved moves for truncated convex models. *Journal of Machine Learning Research*, 12:31–67.
- Kumar, M. P., Zisserman, A., and Torr, P. H. (2009). Efficient discriminative learning of parts-based models. In *International Conference on Computer Vision (ICCV)*.
- Kumar, R., Anandan, P., and Hanna, K. (1994). Direct recovery of shape from multiple views: A parallax based approach. In *International Conference on Pattern Recognition (ICPR)*, pp. 685–688.
- Kumar, R., Anandan, P., Irani, M., Bergen, J., and Hanna, K. (1995). Representation of scenes from collections of images. In *IEEE Workshop on Representations of Visual Scenes*, pp. 10–17.
- Kumar, S. and Hebert, M. (2003). Discriminative random fields: A discriminative framework for contextual interaction in classification. In *International Conference on Computer Vision (ICCV)*, pp. 1150–1157.
- Kumar, S. and Hebert, M. (2006). Discriminative random fields. *International Journal of Computer Vision*, 68(2):179–202.

- Kumawat, S., Verma, M., Nakashima, Y., and Raman, S. (2021). Depthwise spatio-temporal STFT convolutional neural networks for human action recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, ():1–1.
- Kundur, D. and Hatzinakos, D. (1996). Blind image deconvolution. *IEEE Signal Processing Magazine*, 13(3):43–64.
- Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z. (2019). DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., and Matas, J. (2018). DeblurGAN: Blind motion deblurring using conditional adversarial networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Kurakin, A., Goodfellow, I., and Bengio, S. (2016). Adversarial examples in the physical world. *arXiv preprint arXiv:1607.02533*.
- Kushal, A., Self, B., Furukawa, Y., Gallup, D., Hernández, C., Curless, B., and Seitz, S. M. (2012). Photo tours. In *International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission (3DIMPVT)*, pp. 57–64.
- Kuster, C., Popa, T., Bazin, J.-C., Gotsman, C., and Gross, M. (2012). Gaze correction for home video conferencing. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 31(6):174.
- Kutulakos, K. N. (2000). Approximate N-view stereo. In *European Conference on Computer Vision* (*ECCV*), pp. 67–83.
- Kutulakos, K. N. and Seitz, S. M. (2000). A theory of shape by space carving. *International Journal of Computer Vision*, 38(3):199–218.
- Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., and Ferrari, V. (2020). The open images dataset V4: Unified image classification, object detection, and visual relationship detection at scale. *International Journal of Computer Vision*.
- Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. (2005). Texture optimization for example-based synthesis. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(5):795–802.
- Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. (2003). Graphcut textures: Image and video synthesis using graph cuts. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):277–286.
- Kybic, J. and Unser, M. (2003). Fast parametric elastic image registration. *IEEE Transactions on Image Processing*, 12(11):1427–1442.
- Labatut, P., Pons, J.-P., and Keriven, R. (2007). Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. In *International Conference on Computer Vision (ICCV)*.
- Labbé, Y., Carpentier, J., Aubry, M., and Sivic, J. (2020). CosyPose: Consistent multi-view multi-object 6d pose estimation. In *European Conference on Computer Vision (ECCV)*.
- Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In *International Conference on Machine Learning*.

Lafortune, E. P. F., Foo, S.-C., Torrance, K. E., and Greenberg, D. P. (1997). Non-linear approximation of reflectance functions. In *ACM SIGGRAPH Conference Proceedings*, pp. 117–126.

- Laga, H., Jospin, L. V., Boussaid, F., and Bennamoun, M. (2020). A survey on deep learning techniques for stereo-based depth estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Lai, S.-H. and Vemuri, B. C. (1997). Physically based adaptive preconditioning for early vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(6):594–607.
- Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338.
- Lalonde, J.-F., Hoiem, D., Efros, A. A., Rother, C., Winn, J., and Criminisi, A. (2007). Photo clip art. *ACM Transactions on Graphics*, 26(3).
- Lampert, C., Nickisch, H., and Harmeling, S. (2009). Learning to detect unseen object classes by between-class attribute transfer. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lampert, C. H. (2008). Kernel methods in computer vision. *Foundations and Trends® in Computer Graphics and Computer Vision*, 4(3):193–285.
- Lampert, C. H., Blaschko, M. B., and Hofmann, T. (2008). Beyond sliding windows: Object localization by efficient subwindow search. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lampert, C. H., Nickisch, H., and Harmeling, S. (2014). Attribute-based classification for zero-shot visual object categorization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(3):453–465.
- Langer, M. S. and Zucker, S. W. (1994). Shape from shading on a cloudy day. *Journal Optical Society America*, A, 11(2):467–478.
- Lanitis, A., Taylor, C. J., and Cootes, T. F. (1997). Automatic interpretation and coding of face images using flexible models. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):742–756.
- Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B. (2008). Learning realistic human actions from movies. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR).
- Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., and Müller, K.-R. (2019). Unmasking Clever Hans predictors and assessing what machines really learn. *Nature Communications*, 10(1):1–8.
- Larson, G. W. (1998). LogLuv encoding for full-gamut, high-dynamic range images. *Journal of Graphics Tools*, 3(1):15–31.
- Larson, G. W., Rushmeier, H., and Piatko, C. (1997). A visibility matching tone reproduction operator for high dynamic range scenes. *IEEE Transactions on Visualization and Computer Graphics*, 3(4):291–306.

- Laurentini, A. (1994). The visual hull concept for silhouette-based image understanding. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(2):150–162.
- Lavallée, S. and Szeliski, R. (1995). Recovering the position and orientation of free-form objects from image contours using 3-D distance maps. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(4):378–390.
- Laveau, S. and Faugeras, O. D. (1994). 3-D scene representation as a collection of images. In International Conference on Pattern Recognition (ICPR), pp. 689–691.
- Lazebnik, S., Schmid, C., and Ponce, J. (2005). A sparse texture representation using local affine regions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(8):1265–1278.
- Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2169–2176.
- Le Gall, D. (1991). MPEG: A video compression standard for multimedia applications. *Communications of the ACM*, 34(4):46–58.
- Leal-Taixé, L. and Nießner, M. (2020). TUM IN2364: Advanced deep learning for computer vision (ADL4CV). Slides available at https://dvl.in.tum.de/teaching/adl4cv-ss20.
- Leal-Taixé, L. and Nießner, M. (2021). TUM IN2346: Introduction to deep learning (I2DL). Slides and videos available at https://niessner.github.io/I2DL.
- Leal-Taixé, L., Milan, A., Reid, I., Roth, S., and Schindler, K. (2015). MOTChallenge 2015: Towards a benchmark for multi-target tracking. *arXiv preprint arXiv:1504.01942*. arXiv: 1504.01942.
- Learned-Miller, E., Huang, G. B., RoyChowdhury, A., Li, H., and Hua, G. (2016). Labeled faces in the wild: A survey. In *Advances in Face Detection and Facial Image Analysis*, pp. 189–248.
- Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. *International Journal of Computer Vision*, 3(1):73–102.
- LeCun, Y. and Bengio, Y. (2020). The future is self-supervised. In *International Conference on Learning Representations (ICLR)*. Keynote talk online at https://iclr.cc/virtual_2020/speaker_7. html.
- LeCun, Y. and Canziani, A. (2020). NYU DS-GA 1008 course: Deep learning. Video and slides available at https://atcold.github.io/pytorch-Deep-Learning.
- LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. *Nature*, 521(7553):436–444.
- LeCun, Y., Cortes, C., and Burges, C. J. C. (1998). The MNIST database. http://yann.lecun.com/exdb/mnist.
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, 86(11):2278–2324.
- Lee, A. W. F., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. (1998). MAPS: Multiresolution adaptive parameterization of surfaces. In *ACM SIGGRAPH Conference Proceedings*, pp. 95–104.

Lee, D., Ryu, S., Yeon, S., Lee, Y., Kim, D., Han, C., Cabon, Y., Weinzaepfel, P., Guerin, N., Csurka, G., and Humenberger, M. (2021). Large-scale localization datasets in crowded indoor spaces. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Lee, H., Kim, T., Chung, T.-y., Pak, D., Ban, Y., and Lee, S. (2020). AdaCoF: Adaptive collaboration of flows for video frame interpolation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lee, J., Chai, J., Reitsma, P. S. A., Hodgins, J. K., and Pollard, N. S. (2002). Interactive control of avatars animated with human motion data. *ACM Transactions on Graphics*, 21(3):491–500.
- Lee, J. A. and Verleysen, M. (2007). Nonlinear dimensionality reduction. Springer.
- Lee, J. H., Ha, H., Dong, Y., Tong, X., and Kim, M. H. (2020). TextureFusion: High-quality texture acquisition for real-time RGB-D scanning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lee, K.-Y. and Sim, J.-Y. (2020). Warping residual based image stitching for large parallax. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lee, M.-C., Chen, W.-G., Lin, C.-L. B., Gu, C., Markoc, T., Zabinsky, S. I., and Szeliski, R. (1997). A layered video object coding system using sprite and affine motion model. *IEEE Transactions on Circuits and Systems for Video Technology*, 7(1):130–145.
- Lee, M. E. and Redner, R. A. (1990). A note on the use of nonlinear filtering in computer graphics. *IEEE Computer Graphics and Applications*, 10(3):23–29.
- Lee, M. W. and Cohen, I. (2006). A model-based approach for estimating human 3D poses in static images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(6):905–916.
- Lee, S., Wolberg, G., and Shin, S. Y. (1997). Data interpolation using multilevel b-splines. *IEEE Transactions on Visualization and Computer Graphics*, 3(3):228–244.
- Lee, S., Wolberg, G., Chwa, K.-Y., and Shin, S. Y. (1996). Image metamorphosis with scattered feature constraints. *IEEE Transactions on Visualization and Computer Graphics*, 2(4):337–354.
- Lee, Y. D., Terzopoulos, D., and Waters, K. (1995). Realistic facial modeling for animation. In *ACM SIGGRAPH Conference Proceedings*, pp. 55–62.
- Lee, Y. J. and Grauman, K. (2010). Object-graphs for context-aware category discovery. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lee, Y. J., Kim, J., and Grauman, K. (2011). Key-segments for video object segmentation. In *International Conference on Computer Vision (ICCV)*.
- Lee, Y. J., Zitnick, C. L., and Cohen, M. F. (2011). ShadowDraw: real-time user guidance for freehand drawing. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 30(4):1–10.
- Lei, C. and Yang, Y.-H. (2009). Optical flow estimation on coarse-to-fine region-trees using discrete optimization. In *International Conference on Computer Vision (ICCV)*.
- Leibe, B., Leonardis, A., and Schiele, B. (2008). Robust object detection with interleaved categorization and segmentation. *International Journal of Computer Vision*, 77(1–3):259–289.

- Leibe, B., Seemann, E., and Schiele, B. (2005). Pedestrian detection in crowded scenes. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 878–885.
- Lempitsky, V. and Boykov, Y. (2007). Global optimization for shape fitting. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lempitsky, V. and Ivanov, D. (2007). Seamless mosaicing of image-based texture maps. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lempitsky, V., Blake, A., and Rother, C. (2008). Image segmentation by branch-and-mincut. In *European Conference on Computer Vision (ECCV)*, pp. 15–29.
- Lempitsky, V., Roth, S., and Rother, C. (2008). FlowFusion: Discrete-continuous optimization for optical flow estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lempitsky, V., Rother, C., and Blake, A. (2007). LogCut efficient graph cut optimization for Markov random fields. In *International Conference on Computer Vision (ICCV)*.
- Lenc, K. and Vedaldi, A. (2016). Learning covariant feature detectors. In *European Conference on Computer Vision (ECCV)*, pp. 100–117.
- Lengyel, J. and Snyder, J. (1997). Rendering with coherent layers. In *ACM SIGGRAPH Conference Proceedings*, pp. 233–242.
- Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. (2003). Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics, 22(2):234–257.
- Leonardis, A., Jaklič, A., and Solina, F. (1997). Superquadrics for segmenting and modeling range data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(11):1289–1295.
- Lepetit, V. and Fua, P. (2005). Monocular model-based 3D tracking of rigid objects. *Foundations and Trends*® *in Computer Graphics and Computer Vision*, 1(1).
- Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(9):1465–1479.
- Lepetit, V., Pilet, J., and Fua, P. (2004). Point matching as a classification problem for fast and robust object pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 244–250.
- Lepetit, V., Pilet, J., and Fua, P. (2006). Keypoint recognition using randomized trees. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(9):1465–1479.
- Leung, T. K., Burl, M. C., and Perona, P. (1995). Finding faces in cluttered scenes using random labeled graph matching. In *International Conference on Computer Vision (ICCV)*, pp. 637–644.
- Leutenegger, S., Chli, M., and Siegwart, R. (2011). BRISK: Binary robust invariant scalable keypoints. In *International Conference on Computer Vision (ICCV)*.
- Levenberg, K. (1944). A method for the solution of certain problems in least squares. *Quarterly of Applied Mathematics*, 2:164–168.

Levin, A. (2006). Blind motion deblurring using image statistics. In *Advances in Neural Information Processing Systems (NeurIPS)*.

- Levin, A. and Szeliski, R. (2004). Visual odometry and map correlation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 611–618.
- Levin, A. and Szeliski, R. (2006). Motion Uncertainty and Field of View. Technical Report MSR-TR-2006-37, Microsoft Research.
- Levin, A. and Weiss, Y. (2007). User assisted separation of reflections from a single image using a sparsity prior. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(9):1647–1654.
- Levin, A., Acha, A. R., and Lischinski, D. (2008). Spectral matting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(10):1699–1712.
- Levin, A., Lischinski, D., and Weiss, Y. (2004). Colorization using optimization. *ACM Transactions on Graphics*, 23(3):689–694.
- Levin, A., Lischinski, D., and Weiss, Y. (2008). A closed form solution to natural image matting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(2):228–242.
- Levin, A., Zomet, A., and Weiss, Y. (2004). Separating reflections from a single image using local features. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 306–313.
- Levin, A., Fergus, R., Durand, F., and Freeman, W. T. (2007). Image and depth from a conventional camera with a coded aperture. *ACM Transactions on Graphics*, 26(3).
- Levin, A., Weiss, Y., Durand, F., and Freeman, B. (2009). Understanding and evaluating blind deconvolution algorithms. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Levin, A., Weiss, Y., Durand, F., and Freeman, B. (2011). Understanding blind deconvolution algorithms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(12):2354–2367.
- Levin, A., Zomet, A., Peleg, S., and Weiss, Y. (2004). Seamless image stitching in the gradient domain. In *European Conference on Computer Vision (ECCV)*, pp. 377–389.
- Levoy, M. (1988). Display of surfaces from volume data. *IEEE Computer Graphics and Applications*, 8(3):29–37.
- Levoy, M. (2006). Light fields and computational imaging. Computer, 39(8):46-55.
- Levoy, M. (2010). Digital photography Stanford CS 178. https://graphics.stanford.edu/courses/cs178-10.
- Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. (2000). The digital Michelangelo project: 3D scanning of large statues. In ACM SIGGRAPH Conference Proceedings, pp. 131–144.
- Levoy, M. and Hanrahan, P. (1996). Light field rendering. In ACM SIGGRAPH Conference Proceedings, pp. 31–42.

- Levoy, M. and Whitted, T. (1985). *The Use of Points as a Display Primitive*. Technical Report 85-022, University of North Carolina at Chapel Hill.
- Levoy, M., Ng, R., Adams, A., Footer, M., and Horowitz, M. (2006). Light field microscopy. *ACM Transactions on Graphics*, 25(3):924–934.
- Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., and Bolas, M. (2004). Synthetic aperture confocal imaging. *ACM Transactions on Graphics*, 23(3):825–834.
- Lew, M. S., Sebe, N., Djeraba, C., and Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. *ACM Transactions on Multimedia Computing, Communications and Applications*, 2(1):1–19.
- Leyvand, T., Cohen-Or, D., Dror, G., and Lischinski, D. (2008). Data-driven enhancement of facial attractiveness. *ACM Transactions on Graphics*, 27(3):38.
- Lhuillier, M. and Quan, L. (2002). Match propagation for image-based modeling and rendering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(8):1140–1146.
- Lhuillier, M. and Quan, L. (2005). A quasi-dense approach to surface reconstruction from uncalibrated images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(3):418–433.
- Li, A., Thotakuri, M., Ross, D. A., Carreira, J., Vostrikov, A., and Zisserman, A. (2020). The AVA-Kinetics localized human actions video dataset. *arXiv* preprint arXiv:2005.00214.
- Li, B., Qi, X., Lukasiewicz, T., and Torr, P. H. S. (2019). Controllable text-to-image generation. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Li, F.-F., Johnson, J., and Yeung, S. (2019). Stanford CS231n course: Convolutional neural networks for visual recognition. Slides available on the Detailed Syllabus page of http://cs231n.stanford.edu, with course notes at https://cs231n.github.io.
- Li, H. and Hartley, R. (2007). The 3D–3D registration problem revisited. In *International Conference on Computer Vision (ICCV)*.
- Li, H., Lin, Z., Shen, X., Brandt, J., and Hua, G. (2015). A convolutional neural network cascade for face detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. (2018). Visualizing the loss landscape of neural nets. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Li, H., Yao, J., Bazin, J.-C., Lu, X., Xing, Y., and Liu, K. (2018). A monocular SLAM system leveraging structural regularity in Manhattan world. In *IEEE International Conference on Robotics and Automation (ICRA)*, pp. 2518–2525.
- Li, H., Kim, P., Zhao, J., Joo, K., Cai, Z., Liu, Z., and Liu, Y.-H. (2020). Globally optimal and efficient vanishing point estimation in Atlanta world. In *European Conference on Computer Vision* (*ECCV*).
- Li, J. and Zhang, Y. (2013). Learning SURF cascade for fast and accurate object detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, J., Robles-Kelly, A., You, S., and Matsushita, Y. (2019). Learning to minify photometric stereo. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Li, K., Wang, S., Zhang, X., Xu, Y., Xu, W., and Tu, Z. (2021). Pose recognition with cascade transformers. *arXiv* preprint *arXiv*:2104.06976.

- Li, L., Yu, X., Zhang, S., Zhao, X., and Zhang, L. (2017). 3d cost aggregation with multiple minimum spanning trees for stereo matching. *Applied Optics*, 56(12):3411–3420.
- Li, M. and Mourikis, A. I. (2013). High-precision, consistent EKF-based visual-inertial odometry. *International Journal of Robotics Research*, 32(6):690–711.
- Li, S. (1995). Markov Random Field Modeling in Computer Vision. Springer-Verlag.
- Li, S. and Deng, W. (2020). Deep facial expression recognition: A survey. *IEEE Transactions on Affective Computing*.
- Li, S., Yao, Y., Fang, T., and Quan, L. (2018). Reconstructing thin structures of manifold surfaces by integrating spatial curves. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, S. Z. and Jain, A. K. (eds). (2005). Handbook of Face Recognition, Springer.
- Li, W., Tao, X., Guo, T., Qi, L., Lu, J., and Jia, J. (2020). MuCAN: Multi-correspondence aggregation network for video super-resolution. In *European Conference on Computer Vision (ECCV)*.
- Li, X., Yin, X., Li, C., Zhang, P., Hu, X., Zhang, L., Wang, L., Hu, H., Dong, L., Wei, F., Choi, Y., and Gao, J. (2020). Oscar: Object-semantics aligned pre-training for vision-language tasks. In *European Conference on Computer Vision (ECCV)*.
- Li, X., Gunturk, B., and Zhang, L. (2008). Image demosaicing: A systematic survey. In *Visual Communications and Image Processing*, p. 68221J.
- Li, X., Wu, C., Zach, C., Lazebnik, S., and Frahm, J.-M. (2008). Modeling and recognition of landmark image collections using iconic scene graphs. In *European Conference on Computer Vision (ECCV)*, pp. 427–440.
- Li, X., Zhang, Y., Liu, C., Shuai, B., Zhu, Y., Brattoli, B., Chen, H., Marsic, I., and Tighe, J. (2021). VidTr: Video transformer without convolutions. *arXiv preprint arXiv:2104.11746*.
- Li, Y. and Huttenlocher, D. P. (2008). Learning for optical flow using stochastic optimization. In *European Conference on Computer Vision (ECCV)*, pp. 379–391.
- Li, Y., Crandall, D. J., and Huttenlocher, D. P. (2009). Landmark classification in large-scale image collections. In *International Conference on Computer Vision (ICCV)*.
- Li, Y., Snavely, N., and Huttenlocher, D. P. (2010). Location recognition using prioritized feature matching. In *European Conference on Computer Vision (ECCV)*, pp. 791–804.
- Li, Y., Wang, T., and Shum, H.-Y. (2002). Motion texture: a two-level statistical model for character motion synthesis. *ACM Transactions on Graphics*, 21(3):465–472.
- Li, Y., Shum, H.-Y., Tang, C.-K., and Szeliski, R. (2004). Stereo reconstruction from multiperspective panoramas. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(1):44–62.
- Li, Y., Snavely, N., Huttenlocher, D., and Fua, P. (2012). Worldwide pose estimation using 3D point clouds. In *European Conference on Computer Vision (ECCV)*, pp. 15–29.

- Li, Y., Sun, J., Tang, C.-K., and Shum, H.-Y. (2004). Lazy snapping. *ACM Transactions on Graphics* (*Proc. SIGGRAPH*), 23(3):303–308.
- Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. (2017). Fully convolutional instance-aware semantic segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, Z. and Snavely, N. (2018). MegaDepth: Learning single-view depth prediction from internet photos. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, Z., Sunkavalli, K., and Chandraker, M. (2018). Materials for masses: SVBRDF acquisition with a single mobile phone image. In *European Conference on Computer Vision (ECCV)*.
- Li, Z., Niklaus, S., Snavely, N., and Wang, O. (2021). Neural scene flow fields for space-time view synthesis of dynamic scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, Z., Xian, W., Davis, A., and Snavely, N. (2020). Crowdsampling the plenoptic function. In *European Conference on Computer Vision (ECCV)*.
- Li, Z., Shafiei, M., Ramamoorthi, R., Sunkavalli, K., and Chandraker, M. (2020). Inverse rendering for complex indoor scenes: Shape, spatially-varying lighting and SVBRDF from a single image. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Li, Z., Xu, Z., Ramamoorthi, R., Sunkavalli, K., and Chandraker, M. (2018). Learning to reconstruct shape and spatially-varying reflectance from a single image. *ACM Transactions on Graphics* (*Proc. SIGGRAPH Asia*), 37(6):269.
- Li, Z., Dekel, T., Cole, F., Tucker, R., Snavely, N., Liu, C., and Freeman, W. T. (2019). Learning the depths of moving people by watching frozen people. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Liang, L., Xiao, R., Wen, F., and Sun, J. (2008). Face alignment via component-based discriminative search. In *European Conference on Computer Vision (ECCV)*, pp. 72–85.
- Liang, L., Liu, C., Xu, Y.-Q., Guo, B., and Shum, H.-Y. (2001). Real-time texture synthesis by patch-based sampling. *ACM Transactions on Graphics*, 20(3):127–150.
- Liang, Z., Feng, Y., Guo, Y., Liu, H., Chen, W., Qiao, L., Zhou, L., and Zhang, J. (2018). Learning for disparity estimation through feature constancy. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2811–2820.
- Liao, J., Finch, M., and Hoppe, H. (2015). Fast computation of seamless video loops. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 34(6):1–10.
- Liao, Z., Joshi, N., and Hoppe, H. (2013). Automated video looping with progressive dynamism. *ACM Transactions on Graphics (ToG)*, 32(4):1–10.
- Liba, O., Murthy, K., Tsai, Y.-T., Brooks, T., Xue, T., Karnad, N., He, Q., Barron, J. T., Sharlet, D., Geiss, R., Hasinoff, S. W., Pritch, Y., and Levoy, M. (2019). Handheld mobile photography in very low light. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 38(6):164:1–164:16.
- Liebowitz, D. and Zisserman, A. (1998). Metric rectification for perspective images of planes. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*,

- pp. 482–488.
- Lim, H., Sinha, S. N., Cohen, M. F., and Uyttendaele, M. (2012). Real-time image-based 6-DOF localization in large-scale environments. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lim, J. J., Zitnick, C. L., and Dollár, P. (2013). Sketch tokens: A learned mid-level representation for contour and object detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lim, J. J., Arbeláez, P., Gu, C., and Malik, J. (2009). Context by region ancestry. In *International Conference on Computer Vision (ICCV)*.
- Lin, C.-C., Pankanti, S. U., Natesan Ramamurthy, K., and Aravkin, A. Y. (2015). Adaptive as-natural-as-possible image stitching. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Lin, C.-Y. (2004). ROUGE: A package for automatic evaluation of summaries. In *Text Summarization Branches Out*, pp. 74–81.
- Lin, D., Kapoor, A., Hua, G., and Baker, S. (2010). Joint people, event, and location recognition in personal photo collections using cross-domain context. In *European Conference on Computer Vision (ECCV)*, pp. 243–256.
- Lin, K., Jiang, N., Cheong, L.-F., Do, M., and Lu, J. (2016). SEAGULL: Seam-guided local alignment for parallax-tolerant image stitching. In *European Conference on Computer Vision (ECCV)*, pp. 370–385.
- Lin, K.-E., Xu, Z., Mildenhall, B., Srinivasan, P. P., Hold-Geoffroy, Y., DiVerdi, S., Sun, Q., Sunkavalli, K., and Ramamoorthi, R. (2020). Deep multi depth panoramas for view synthesis. In European Conference on Computer Vision (ECCV).
- Lin, S., Ryabtsev, A., Sengupta, S., Curless, B. L., Seitz, S. M., and Kemelmacher-Shlizerman, I. (2021). Real-time high-resolution background matting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection. In *IEEE International Conference on Computer Vision (ICCV)*.
- Lin, T.-Y., Dollár, P., Girshick, R., He, K., Hariharan, B., and Belongie, S. (2017). Feature pyramid networks for object detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In *European Conference on Computer Vision*, pp. 740–755.
- Lin, W.-C., Hays, J., Wu, C., Kwatra, V., and Liu, Y. (2006). Quantitative evaluation of near regular texture synthesis algorithms. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 427–434.

- Lin, Y., Pintea, S. L., and van Gemert, J. C. (2020). Deep Hough-transform line priors. In *European Conference on Computer Vision (ECCV)*.
- Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(3):234–254.
- Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention. *International Journal of Computer Vision*, 11(3):283–318.
- Lindeberg, T. (1994). Scale-space theory: A basic tool for analysing structures at different scales. *Journal of Applied Statistics*, 21(2):224–270.
- Lindeberg, T. (1998a). Edge detection and ridge detection with automatic scale selection. *International Journal of Computer Vision*, 30(2):116–154.
- Lindeberg, T. (1998b). Feature detection with automatic scale selection. *International Journal of Computer Vision*, 30(2):79–116.
- Lindeberg, T. and Gårding, J. (1997). Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure. *Image and Vision Computing*, 15(6):415–434.
- Lippman, A. (1980). Movie maps: An application of the optical videodisc to computer graphics. *Computer Graphics (SIGGRAPH)*, 14(3):32–43.
- Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. (2006). Interactive local adjustment of tonal values. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 25(3):646–653.
- Littlefield, R. (2006). Theory of the "no-parallax" point in panorama photography. https://www.janrik.net/PanoPostings/NoParallaxPoint/TheoryOfTheNoParallaxPoint.pdf.
- Litvinov, A. and Schechner, Y. Y. (2005). Radiometric framework for image mosaicking. *Journal of the Optical Society of America A*, 22(5):839–848.
- Litwiller, D. (2005). CMOS vs. CCD: Maturing technologies, maturing markets. *Photonics Spectra*, (8):54–59.
- Litwinowicz, P. (1997). Processing images and video for an impressionist effect. In *ACM SIGGRAPH Conference Proceedings*, pp. 407–414.
- Litwinowicz, P. and Williams, L. (1994). Animating images with drawings. In *ACM SIGGRAPH Conference Proceedings*, pp. 409–412.
- Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K. (2018). Progressive neural architecture search. In *European Conference on Computer Vision (ECCV)*.
- Liu, C. and Freeman, W. T. (2010). A high-quality video denoising algorithm based on reliable motion estimation. In *European Conference on Computer Vision (ECCV)*, pp. 706–719.
- Liu, C. and Sun, D. (2013). On Bayesian adaptive video super resolution. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(2):346–360.

Liu, C., Yuen, J., and Torralba, A. (2009). Nonparametric scene parsing: Label transfer via dense scene alignment. In *IEEE Computer Society Conference on Computer Vision and Pattern Recog*nition (CVPR).

- Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L., and Freeman, W. T. (2008). Automatic estimation and removal of noise from a single image. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(2):299–314.
- Liu, C., Dollár, P., He, K., Girshick, R., Yuille, A., and Xie, S. (2020). Are labels necessary for neural architecture search? In *European Conference on Computer Vision (ECCV)*.
- Liu, F., Gleicher, M., Jin, H., and Agarwala, A. (2009). Content-preserving warps for 3D video stabilization. *ACM Transactions on Graphics*, 28(3):44.
- Liu, F., Gleicher, M., Wang, J., Jin, H., and Agarwala, A. (2011). Subspace video stabilization. *ACM Transactions on Graphics*, 30(1):Article 4.
- Liu, G., Reda, F. A., Shih, K. J., Wang, T.-C., Tao, A., and Catanzaro, B. (2018). Image inpainting for irregular holes using partial convolutions. In *European Conference on Computer Vision (ECCV)*.
- Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In *International Conference on Learning Representations (ICLR)*.
- Liu, H., Dai, Z., So, D. R., and Le, Q. V. (2021). Pay attention to MLPs. *arXiv preprint arXiv:2105.08050*.
- Liu, L., Gu, J., Lin, K. Z., Chua, T.-S., and Theobalt, C. (2020). Neural sparse voxel fields. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Liu, L., Chen, N., Ceylan, D., Theobalt, C., Wang, W., and Mitra, N. J. (2018). CurveFusion: Reconstructing thin structures from RGBD sequences. ACM Transactions on Graphics (Proc. SIGGRAPH), 37(6):218.
- Liu, M.-Y., Breuel, T., and Kautz, J. (2017). Unsupervised image-to-image translation networks. In *Advances in neural information processing systems (NeurIPS)*, pp. 700–708.
- Liu, S., Yuan, L., Tan, P., and Sun, J. (2013). Bundled camera paths for video stabilization. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 32(4):78.
- Liu, S., Qi, L., Qin, H., Shi, J., and Jia, J. (2018). Path aggregation network for instance segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. C. (2016). SSD: Single shot multibox detector. In *European Conference on Computer Vision (ECCV)*, pp. 21–37.
- Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. *arXiv* preprint *arXiv*:1907.11692.
- Liu, Y., Collins, R. T., and Tsin, Y. (2004). A computational model for periodic pattern perception based on frieze and wallpaper groups. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(3):354–371.

- Liu, Y., Lin, W.-C., and Hays, J. (2004). Near-regular texture analysis and manipulation. *ACM Transactions on Graphics*, 23(3):368–376.
- Liu, Y.-L., Lai, W.-S., Yang, M.-H., Chuang, Y.-Y., and Huang, J.-B. (2020a). Learning to see through obstructions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Liu, Y.-L., Lai, W.-S., Chen, Y.-S., Kao, Y.-L., Yang, M.-H., Chuang, Y.-Y., and Huang, J.-B. (2020b). Single-image HDR reconstruction by learning to reverse the camera pipeline. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Liu, Z., Yuan, L., Tang, X., Uyttendaele, M., and Sun, J. (2014). Fast burst images denoising. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 33(6):1–9.
- Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. *arXiv preprint arXiv:2103.14030*.
- Livingstone, M. (2008). Vision and Art: The Biology of Seeing. Abrams, New York.
- Lobay, A. and Forsyth, D. A. (2006). Shape from texture without boundaries. *International Journal of Computer Vision*, 67(1):71–91.
- Logothetis, F., Mecca, R., and Cipolla, R. (2019). A differential volumetric approach to multi-view photometric stereo. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Lombardi, S., Saragih, J., Simon, T., and Sheikh, Y. (2018). Deep appearance models for face rendering. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 37(4):68.
- Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., and Sheikh, Y. (2019). Neural volumes: Learning dynamic renderable volumes from images. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):65.
- Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Longere, P., Delahunt, P. B., Zhang, X., and Brainard, D. H. (2002). Perceptual assessment of demosaicing algorithm performance. *Proceedings of the IEEE*, 90(1):123–132.
- Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. *Nature*, 293:133–135.
- Loop, C. and Zhang, Z. (1999). Computing rectifying homographies for stereo vision. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 125–131.
- Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., and Black, M. J. (2015). SMPL: A skinned multi-person linear model. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 34(6):1–16.
- Lorensen, W. E. and Cline, H. E. (1987). Marching cubes: A high resolution 3D surface construction algorithm. *Computer Graphics (SIGGRAPH)*, 21(4):163–169.
- Lorusso, A., Eggert, D., and Fisher, R. B. (1995). A comparison of four algorithms for estimating 3-D rigid transformations. In *British Machine Vision Conference (BMVC)*, pp. 237–246.
- Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In *International Conference on Learning Representations (ICLR)*.

Lourakis, M. I. A. and Argyros, A. A. (2009). SBA: A software package for generic sparse bundle adjustment. *ACM Transactions on Mathematical Software*, 36(1):2.

- Lowe, D. G. (1988). Organization of smooth image curves at multiple scales. In *International Conference on Computer Vision (ICCV)*, pp. 558–567.
- Lowe, D. G. (1989). Organization of smooth image curves at multiple scales. *International Journal of Computer Vision*, 3(2):119–130.
- Lowe, D. G. (1999). Object recognition from local scale-invariant features. In *International Conference on Computer Vision (ICCV)*, pp. 1150–1157.
- Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. *International Journal of Computer Vision*, 60(2):91–110.
- Lowel, S. and Singer, W. (1992). Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity. *Science*, 255(5041):209–212.
- Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., and Milford, M. J. (2015). Visual place recognition: A survey. *IEEE Transactions on Robotics*, 32(1):1–19.
- Lu, E., Cole, F., Dekel, T., Zisserman, A., Freeman, W. T., and Rubinstein, M. (2021). Omnimatte: Associating objects and their effects in video. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). ViLBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 13–23.
- Lu, J., Xiong, C., Parikh, D., and Socher, R. (2017). Knowing when to look: Adaptive attention via a visual sentinel for image captioning. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lu, J., Yang, J., Batra, D., and Parikh, D. (2018). Neural baby talk. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lu, W.-L., Ting, J.-A., Little, J. J., and Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(7):1704–1716.
- Lucas, B. D. and Kanade, T. (1981). An iterative image registration technique with an application in stereo vision. In *International Joint Conference on Artificial Intelligence (IJCAI)*, pp. 674–679.
- Luo, K., Guan, T., Ju, L., Huang, H., and Luo, Y. (2019). P-MVSNet: Learning patch-wise matching confidence aggregation for multi-view stereo. In *IEEE/CVF International Conference on Com*puter Vision (ICCV).
- Luo, W., Schwing, A., and Urtasun, R. (2016). Efficient deep learning for stereo matching. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 5695–5703.
- Luo, W., Li, Y., Urtasun, R., and Zemel, R. (2016). Understanding the effective receptive field in deep convolutional neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4898–4906.

- Luo, W., Xing, J., Milan, A., Zhang, X., Liu, W., and Kim, T.-K. (2021). Multiple object tracking: A literature review. *Artificial Intelligence*, 293:103448.
- Luo, X., Huang, J.-B., Szeliski, R., Matzen, K., and Kopf, J. (2020). Consistent video depth estimation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 39(4):71.
- Luo, X., Kong, Y., Lawrence, J., Martin-Brualla, R., and Seitz, S. (2020). KeystoneDepth: History in 3D. In *International Conference on 3D Vision (3DV)*, pp. 463–472.
- Luo, Z., Shen, T., Zhou, L., Zhang, J., Yao, Y., Li, S., Fang, T., and Quan, L. (2019). ContextDesc: Local descriptor augmentation with cross-modality context. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Luo, Z., Shen, T., Zhou, L., Zhu, S., Zhang, R., Yao, Y., Fang, T., and Quan, L. (2018). GeoDesc: Learning local descriptors by integrating geometry constraints. In *European Conference on Computer Vision (ECCV)*.
- Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Li, S., Fang, T., and Quan, L. (2020). ASLFeat: Learning local features of accurate shape and localization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Luong, Q.-T. and Faugeras, O. D. (1996). The fundamental matrix: Theory, algorithms, and stability analysis. *International Journal of Computer Vision*, 17(1):43–75.
- Luong, Q.-T. and Viéville, T. (1996). Canonical representations for the geometries of multiple projective views. *Computer Vision and Image Understanding*, 64(2):193–229.
- Lyu, S. and Simoncelli, E. (2008). Nonlinear image representation using divisive normalization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Lyu, S. and Simoncelli, E. (2009). Modeling multiscale subbands of photographic images with fields of Gaussian scale mixtures. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(4):693–706.
- Ma, L., Lin, Z., Barnes, C., Efros, A. A., and Lu, J. (2020). Unselfie: Translating selfies to neutral-pose portraits in the wild. In *European Conference on Computer Vision (ECCV)*.
- Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). ShuffleNet V2: Practical guidelines for efficient CNN architecture design. In *European Conference on Computer Vision (ECCV)*.
- Ma, W.-C., Wang, S., Hu, R., Xiong, Y., and Urtasun, R. (2019). Deep rigid instance scene flow. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. (2007). Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In *Eurographics Symposium on Rendering*.
- Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M., Ouhyoung, M., and Debevec, P. (2008). Facial performance synthesis using deformation-driven polynomial displacement maps. ACM Transactions on Graphics, 27(5):121.
- Ma, Y., Derksen, H., Hong, W., and Wright, J. (2007). Segmentation of multivariate mixed data via lossy data coding and compression. *IEEE Transactions on Pattern Analysis and Machine*

- Intelligence, 29(9):1546-1562.
- Ma, Y., Soatto, S., Kosecká, J., and Sastry, S. S. (2012). An Invitation to 3-D Vision: From Images to Geometric Models. Springer.
- MacDonald, L. (ed.). (2006). Digital Heritage: Applying Digital Imaging to Cultural Heritage, Butterworth-Heinemann.
- MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge, UK.
- Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations* (*ICLR*).
- Madsen, K., Nielsen, H. B., and Tingleff, O. (2004). Methods for non-linear least squares problems. Informatics and Mathematical Modelling, Technical University of Denmark (DTU).
- Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P. (1997). Multimodality image registration by maximization of mutual information. *IEEE Transactions on Medical Imaging*, 16(2):187–198.
- Maggioni, M., Boracchi, G., Foi, A., and Egiazarian, K. (2012). Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms. *IEEE Transactions on Image Processing*, 21(9):3952–3966.
- Magnor, M. (2005). Video-Based Rendering. A. K. Peters, Wellesley, MA.
- Magnor, M. and Girod, B. (2000). Data compression for light-field rendering. *IEEE Transactions on Circuits and Systems for Video Technology*, 10(3):338–343.
- Magnor, M., Ramanathan, P., and Girod, B. (2003). Multi-view coding for image-based rendering using 3-D scene geometry. *IEEE Transactions on Circuits and Systems for Video Technology*, 13(11):1092–1106.
- Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. (2009). Moving gradients: A path-based method for plausible image interpolation. *ACM Transactions on Graphics*, 28(3):42.
- Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., and van der Maaten, L. (2018). Exploring the limits of weakly supervised pretraining. In *European Conference on Computer Vision (ECCV)*.
- Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., and Black, M. J. (2019). AMASS: Archive of motion capture as surface shapes. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Maimone, M., Cheng, Y., and Matthies, L. (2007). Two years of visual odometry on the Mars exploration rovers. *Journal of Field Robotics*, 24(3).
- Maire, M., Arbelaez, P., Fowlkes, C., and Malik, J. (2008). Using contours to detect and localize junctions in natural images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Maitre, M., Shinagawa, Y., and Do, M. N. (2008). Symmetric multi-view stereo reconstruction from planar camera arrays. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Maji, S. and Berg, A. C. (2009). Max-margin additive classifiers for detection. In *International Conference on Computer Vision (ICCV)*.
- Malik, J. and Rosenholtz, R. (1997). Computing local surface orientation and shape from texture for curved surfaces. *International Journal of Computer Vision*, 23(2):149–168.
- Malik, J., Belongie, S., Leung, T., and Shi, J. (2001). Contour and texture analysis for image segmentation. *International Journal of Computer Vision*, 43(1):7–27.
- Malisiewicz, T. and Efros, A. A. (2008). Recognition by association via learning per-exemplar distances. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Malladi, R., Sethian, J. A., and Vemuri, B. C. (1995). Shape modeling with front propagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(2):158–176.
- Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-11(7):674–693.
- Malvar, H. S. (1990). Lapped transforms for efficient transform/subband coding. *IEEE Transactions on Acoustics, Speech, and Signal Processing*, 38(6):969–978.
- Malvar, H. S. (1998). Biorthogonal and nonuniform lapped transforms for transform coding with reduced blocking and ringing artifacts. *IEEE Transactions on Signal Processing*, 46(4):1043–1053.
- Malvar, H. S. (2000). Fast progressive image coding without wavelets. In *IEEE Data Compressions Conference*, pp. 243–252.
- Malvar, H. S., He, L.-W., and Cutler, R. (2004). High-quality linear interpolation for demosaicing of Bayer-patterned color images. In *IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, pp. 485–488.
- Mancini, T. A. and Wolff, L. B. (1992). 3D shape and light source location from depth and reflectance.
 In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 707–709.
- Manjunathi, B. S. and Ma, W. Y. (1996). Texture features for browsing and retrieval of image data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(8):837–842.
- Mann, S. and Picard, R. W. (1994). Virtual bellows: Constructing high-quality images from video. In *First IEEE International Conference on Image Processing (ICIP)*, pp. 363–367.
- Mann, S. and Picard, R. W. (1995). On being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures. In *IS&T's Annual Conference*, pp. 422–428, Washington, D. C.
- Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval. Cambridge University Press.

Mansimov, E., Parisotto, E., Ba, J. L., and Salakhutdinov, R. (2016). Generating images from captions with attention. In *International Conference on Learning Representations (ICLR)*.

- Marcus, G. (2020). The next decade in AI: four steps towards robust artificial intelligence. *arXiv* preprint arXiv:2002.06177.
- Marpe, D., Schwarz, H., and Wiegand, T. (2003). Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. *IEEE Transactions on Circuits and Systems for Video Technology*, 13(7):620–636.
- Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. *Journal of the Society for Industrial and Applied Mathematics*, 11(2):431–441.
- Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman, San Francisco.
- Marr, D. and Hildreth, E. (1980). Theory of edge detection. *Proceedings of the Royal Society of London*, B 207:187–217.
- Marr, D. and Nishihara, H. K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. *Proc. Roy. Soc. London, B*, 200:269–294.
- Marr, D. and Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194:283-287.
- Marr, D. C. and Poggio, T. (1979). A computational theory of human stereo vision. *Proceedings of the Royal Society of London*, B 204:301–328.
- Marroquin, J., Mitter, S., and Poggio, T. (1987). Probabilistic solution of ill-posed problems in computational vision. *Journal of the American Statistical Association*, 82(397):76–89.
- Marroquin, J. L. (1983). *Design of Cooperative Networks*. Working Paper 253, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
- Marschner, S. and Shirley, P. (2015). *Fundamentals of computer graphics*. A K Peters/CRC Press, 4th edition.
- Marschner, S. R., Westin, S. H., Lafortune, E. P. F., and Torrance, K. E. (2000). Image-based bidirectional reflectance distribution function measurement. *Applied Optics*, 39(16):2592–2600.
- Marszalek, M., Laptev, I., and Schmid, C. (2009). Actions in context. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Martin, D., Fowlkes, C., and Malik, J. (2004). Learning to detect natural image boundaries using local brightness, color, and texture cues. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(5):530–549.
- Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In *International Conference on Computer Vision (ICCV)*, pp. 416–423.
- Martin, W. N. and Aggarwal, J. K. (1983). Volumetric description of objects from multiple views. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-5(2):150–158.
- Martin-Brualla, R., Pandey, R., Yang, S., Pidlypenskyi, P., Taylor, J., Valentin, J., Khamis, S., Davidson, P., Tkach, A., Lincoln, P., Kowdle, A., Rhemann, C., Goldman, D. B., Keskin, C., Seitz, S.,

- Izadi, S., and Fanello, S. (2018). LookinGood: Enhancing performance capture with real-time neural re-rendering. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 37(6):255.
- Martin-Brualla, R., Pandey, R., Bouaziz, S., Brown, M., and Goldman, D. B. (2020). GeLaTO: Generative latent textured objects. In *European Conference on Computer Vision (ECCV)*.
- Martin-Brualla, R., Radwan, N., Sajjadi, M. S. M., Barron, J. T., Dosovitskiy, A., and Duckworth,
 D. (2021). NeRF in the wild: Neural radiance fields for unconstrained photo collections. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Martinec, D. and Pajdla, T. (2007). Robust rotation and translation estimation in multiview reconstruction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Masi, I., Wu, Y., Hassner, T., and Natarajan, P. (2018). Deep face recognition: A survey. In *Conference on Graphics, Patterns and Images (SIBGRAPI)*, pp. 471–478.
- Massey, M. and Bender, W. (1996). Salient stills: Process and practice. *IBM Systems Journal*, 35(3&4):557–573.
- Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004). Robust wide baseline stereo from maximally stable extremal regions. *Image and Vision Computing*, 22(10):761–767.
- Matei, B. C. and Meer, P. (2006). Estimation of nonlinear errors-in-variables models for computer vision applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(10):1537–1552.
- Mathias, M., Benenson, R., Pedersoli, M., and Van Gool, L. (2014). Face detection without bells and whistles. In *European Conference on Computer Vision*, pp. 720–735.
- Matsushita, Y. and Lin, S. (2007a). A probabilistic intensity similarity measure based on noise distributions. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Matsushita, Y. and Lin, S. (2007b). Radiometric calibration from noise distributions. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Matsushita, Y., Ofek, E., Ge, W., Tang, X., and Shum, H.-Y. (2006). Full-frame video stabilization with motion inpainting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(7):1150–1163.
- Matthews, I. and Baker, S. (2004). Active appearance models revisited. *International Journal of Computer Vision*, 60(2):135–164.
- Matthews, I., Xiao, J., and Baker, S. (2007). 2D vs. 3D deformable face models: Representational power, construction, and real-time fitting. *International Journal of Computer Vision*, 75(1):93–113.
- Matthies, L., Kanade, T., and Szeliski, R. (1989). Kalman filter-based algorithms for estimating depth from image sequences. *International Journal of Computer Vision*, 3(3):209–236.
- Maturana, D. and Scherer, S. (2015). VoxNet: A 3D convolutional neural network for real-time object recognition. In EEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

- pp. 922-928.
- Matusik, W., Buehler, C., and McMillan, L. (2001). Polyhedral visual hulls for real-time rendering. In *Eurographics Workshop on Rendering Techniques*, pp. 115–126.
- Matusik, W., Pfister, H., Brand, M., and McMillan, L. (2003). A data-driven reflectance model. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):759–769.
- Matusik, W., Buehler, C., Raskar, R., Gortler, S. J., and McMillan, L. (2000). Image-based visual hulls. In *ACM SIGGRAPH Conference Proceedings*, pp. 369–374.
- Matzen, K., Cohen, M., Evans, B., Kopf, J., and Szeliski, R. (2017). Low-cost 360 stereo photography and video capture. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 36(4):148.
- Mayer, N., Ilg, E., Fischer, P., Hazirbas, C., Cremers, D., Dosovitskiy, A., and Brox, T. (2018). What makes good synthetic training data for learning disparity and optical flow estimation? *International Journal of Computer Vision*, 126(9):942–960.
- Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., and Brox, T. (2016). A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4040–4048.
- Mayhew, J. E. W. and Frisby, J. P. (1980). The computation of binocular edges. *Perception*, 9:69–87.
- Maze, B., Adams, J., Duncan, J. A., Kalka, N., Miller, T., Otto, C., Jain, A. K., Niggel, W. T., Anderson, J., Cheney, J., and Grother, P. (2018). IARPA Janus Benchmark C: Face dataset and protocol. In *International Conference on Biometrics (ICB)*, pp. 158–165.
- Mazumdar, A., Alaghi, A., Barron, J. T., Gallup, D., Ceze, L., Oskin, M., and Seitz, S. M. (2017).
 A hardware-friendly bilateral solver for real-time virtual reality video. In *Proceedings of High Performance Graphics*, p. 13.
- McAllester, D. (2020). TTIC 31230: Fundamentals of deep learning. Slides available at https://mcallester.github.io/ttic-31230/Fall2020.
- McCamy, C. S., Marcus, H., and Davidson, J. G. (1976). A color-rendition chart. *Journal of Applied Photogrammetric Engineering*, 2(3):95–99.
- McCane, B., Novins, K., Crannitch, D., and Galvin, B. (2001). On benchmarking optical flow. *Computer Vision and Image Understanding*, 84(1):126–143.
- McClelland, J. L., Rumelhart, D. E., and PDP Research Group. (1987). Parallel distributed processing. Volume 2, MIT Press.
- McGuire, M., Matusik, W., Pfister, H., Hughes, J. F., and Durand, F. (2005). Defocus video matting. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):567–576.
- McInerney, T. and Terzopoulos, D. (1993). A finite element model for 3D shape reconstruction and nonrigid motion tracking. In *International Conference on Computer Vision (ICCV)*, pp. 518–523.
- McInerney, T. and Terzopoulos, D. (1996). Deformable models in medical image analysis: A survey. *Medical Image Analysis*, 1(2):91–108.
- McInerney, T. and Terzopoulos, D. (1999). Topology adaptive deformable surfaces for medical image volume segmentation. *IEEE Transactions on Medical Imaging*, 18(10):840–850.

- McInerney, T. and Terzopoulos, D. (2000). T-snakes: Topology adaptive snakes. *Medical Image Analysis*, 4:73–91.
- McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform manifold approximation and projection for dimension reduction. *arXiv preprint arXiv:1802.03426*.
- McLauchlan, P. F. (2000). A batch/recursive algorithm for 3D scene reconstruction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 738–743.
- McLauchlan, P. F. and Jaenicke, A. (2002). Image mosaicing using sequential bundle adjustment. *Image and Vision Computing*, 20(9–10):751–759.
- McLean, G. F. and Kotturi, D. (1995). Vanishing point detection by line clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(11):1090–1095.
- McMillan, L. and Bishop, G. (1995). Plenoptic modeling: An image-based rendering system. In *ACM SIGGRAPH Conference Proceedings*, pp. 39–46.
- McMillan, L. and Gortler, S. (1999). Image-based rendering: A new interface between computer vision and computer graphics. *Computer Graphics*, 33(4):61–64.
- McQueen, J., Meila, M., VanderPlas, J., and Zhang, Z. (2016). megaman: Manifold learning with millions of points. *arXiv preprint arXiv:1603.02763*.
- Meehan, J. (1990). Panoramic Photography. Watson-Guptill.
- Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H., Shafiei, M., Seidel, H.-P., Xu, W., Casas, D., and Theobalt, C. (2017). VNect: Real-time 3D human pose estimation with a single RGB camera. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 36(4):1–14.
- Mehta, S., Rastegari, M., Shapiro, L., and Hajishirzi, H. (2019). ESPNetv2: A light-weight, power efficient, and general purpose convolutional neural network. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., and Hajishirzi, H. (2018). ESPNet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In *European Conference on Computer Vision (ECCV)*.
- Mei, X. and Ling, H. (2009). Robust visual tracking using 11 minimization. In *International Conference on Computer Vision (ICCV)*.
- Meilă, M. and Shi, J. (2000). Learning segmentation by random walks. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Meilă, M. and Shi, J. (2001). A random walks view of spectral segmentation. In *Workshop on Artificial Intelligence and Statistics*, pp. 177–182.
- Meinhardt, T. and Leal-Taixé, L. (2020). Make one-shot video object segmentation efficient again. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 10607–10619.
- Meinhardt, T., Kirillov, A., Leal-Taixé, L., and Feichtenhofer, C. (2021). TrackFormer: Multi-object tracking with transformers. *arXiv preprint arXiv:2101.02702*.
- Meister, S., Hur, J., and Roth, S. (2018). UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. In *AAAI Conference on Artificial Intelligence (AAAI)*.

Meka, A., Haene, C., Pandey, R., Zollhöfer, M., Fanello, S., Fyffe, G., Kowdle, A., Yu, X., Busch, J., Dourgarian, J., Denny, P., Bouaziz, S., Lincoln, P., Whalen, M., Harvey, G., Taylor, J., Izadi, S., Tagliasacchi, A., Debevec, P., Theobalt, C., Valentin, J., and Rhemann, C. (2019). Deep reflectance fields: High-quality facial reflectance field inference from color gradient illumination. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4).

- Melekhov, I., Ylioinas, J., Kannala, J., and Rahtu, E. (2017). Relative camera pose estimation using convolutional neural networks. In *International Conference on Advanced Concepts for Intelligent Vision Systems (ACIVS)*, pp. 675–687.
- Meltzer, J. and Soatto, S. (2008). Edge descriptors for robust wide-baseline correspondence. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mémin, E. and Pérez, P. (2002). Hierarchical estimation and segmentation of dense motion fields. International Journal of Computer Vision, 44(2):129–155.
- Menet, S., Saint-Marc, P., and Medioni, G. (1990a). Active contour models: overview, implementation and applications. In *IEEE International Conference on Systems, Man and Cybernetics*, pp. 194–199.
- Menet, S., Saint-Marc, P., and Medioni, G. (1990b). B-snakes: implementation and applications to stereo. In *Image Understanding Workshop*, pp. 720–726.
- Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., and Van Gool, L. (2019). Practical full resolution learned lossless image compression. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Menze, M. and Geiger, A. (2015). Object scene flow for autonomous vehicles. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mertens, T., Kautz, J., and Reeth, F. V. (2007). Exposure fusion. In *Pacific Graphics*, pp. 382–390.
- Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., and Geiger, A. (2019). Occupancy networks: Learning 3D reconstruction in function space. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Meshry, M., Goldman, D. B., Khamis, S., Hoppe, H., Pandey, R., Snavely, N., and Martin-Brualla, R. (2019). Neural rerendering in the wild. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Metaxas, D. and Terzopoulos, D. (2002). Dynamic deformation of solid primitives with constraints. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):309–312.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equations of state calculations by fast computing machines. *Journal of Chemical Physics*, 21:1087–1091.
- Meyer, C. D. (2000). *Matrix Analysis and Applied Linear Algebra*. Society for Industrial and Applied Mathematics, Philadephia.
- Meyer, Y. (1993). *Wavelets: Algorithms and Applications*. Society for Industrial and Applied Mathematics, Philadephia.

- Micusik, B. and Wildenauer, H. (2017). Plane refined structure from motion. In *Scandinavian Conference on Image Analysis*, pp. 29–40.
- Mičušík, B. and Košecká, J. (2009). Piecewise planar city 3D modeling from street view panoramic sequences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mičušik, B., Wildenauer, H., and Košecká, J. (2008). Detection and matching of rectilinear structures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mihajlovic, M., Weder, S., Pollefeys, M., and Oswald, M. R. (2021). DeepSurfels: Learning online appearance fusion. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mikolajczyk, K. and Schmid, C. (2004). Scale & affine invariant interest point detectors. *International Journal of Computer Vision*, 60(1):63–86.
- Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(10):1615–1630.
- Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004). Human detection based on a probabilistic assembly of robust part detectors. In *European Conference on Computer Vision (ECCV)*, pp. 69–82.
- Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., and Van Gool, L. J. (2005). A comparison of affine region detectors. *International Journal of Computer Vision*, 65(1–2):43–72.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. *arXiv* preprint arXiv:1310.4546.
- Mikulik, A., Perdoch, M., Chum, O., and Matas, J. (2013). Learning vocabularies over a fine quantization. *International Journal of Computer Vision*, 103:163–175.
- Mildenhall, B., Barron, J. T., Chen, J., Sharlet, D., Ng, R., and Carroll, R. (2018). Burst denoising with kernel prediction networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020).
 NeRF: Representing scenes as neural radiance fields for view synthesis. In *European Conference on Computer Vision (ECCV)*.
- Mildenhall, B., Srinivasan, P. P., Ortiz-Cayon, R., Kalantari, N. K., Ramamoorthi, R., Ng, R., and Kar, A. (2019). Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 38(4):29:1–29:14.
- Milgram, D. L. (1975). Computer methods for creating photomosaics. *IEEE Transactions on Computers*, C-24(11):1113–1119.
- Milgram, D. L. (1977). Adaptive techniques for photomosaicking. *IEEE Transactions on Computers*, C-26(11):1175–1180.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. *arXiv preprint* arXiv:1411.1784.

- Mishchuk, A., Mishkin, D., Radenović, F., and Matas, J. (2017). Working hard to know your neighbor's margins: Local descriptor learning loss. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 4826–4837.
- Mishkin, D. (2021). WxBS: Relaunching challenging benchmark for image matching. https://ducha-aiki.github.io/wide-baseline-stereo-blog/2021/07/30/Reviving-WxBS-benchmark.html.
- Mishkin, D. and Matas, J. (2016). All you need is a good init. In *International Conference on Learning Representations (ICLR)*.
- Mishkin, D., Matas, J., and Perdoch, M. (2015). MODS: Fast and robust method for two-view matching. *Computer Vision and Image Understanding*, 141:81–93.
- Mishkin, D., Radenovic, F., and Matas, J. (2018). Repeatability is not enough: Learning affine regions via discriminability. In *European Conference on Computer Vision (ECCV)*.
- Misra, I. and Maaten, L. v. d. (2020). Self-supervised learning of pretext-invariant representations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Misra, I., Zitnick, C. L., and Hebert, M. (2016). Shuffle and learn: unsupervised learning using temporal order verification. In *European Conference on Computer Vision (ECCV)*, pp. 527–544.
- Mitiche, A. and Bouthemy, P. (1996). Computation and analysis of image motion: A synopsis of current problems and methods. *International Journal of Computer Vision*, 19(1):29–55.
- Mitsunaga, T. and Nayar, S. K. (1999). Radiometric self-calibration. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 374–380.
- Mittal, A. and Davis, L. S. (2003). M₂ tracker: A multi-view approach to segmenting and tracking people in a cluttered scene. *International Journal of Computer Vision*, 51(3):189–203.
- Mittal, A., Moorthy, A. K., and Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. *IEEE Transactions on Image Processing*, 21(12):4695–4708.
- Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. *arXiv preprint arXiv:1802.05957*.
- Moeslund, T. B. and Granum, E. (2001). A survey of computer vision-based human motion capture. *Computer Vision and Image Understanding*, 81(3):231–268.
- Moeslund, T. B., Hilton, A., and Krüger, V. (2006). A survey of advances in vision-based human motion capture and analysis. *Computer Vision and Image Understanding*, 104(2–3):90–126.
- Moezzi, S., Katkere, A., Kuramura, D., and Jain, R. (1996). Reality modeling and visualization from multiple video sequences. *IEEE Computer Graphics and Applications*, 16(6):58–63.
- Mogadala, A., Kalimuthu, M., and Klakow, D. (2021). Trends in integration of vision and language research: A survey of tasks, datasets, and methods. *Journal of Artificial Intelligence Research*, 71:1183–1317.
- Moghaddam, B. and Pentland, A. (1997). Probabilistic visual learning for object representation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):696–710.

- Moghaddam, B., Jebara, T., and Pentland, A. (2000). Bayesian face recognition. *Pattern Recognition*, 33(11):1771–1782.
- Mohan, A., Papageorgiou, C., and Poggio, T. (2001). Example-based object detection in images by components. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(4):349–361.
- Möller, K. D. (1988). Optics. University Science Books, Mill Valley, CA.
- Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D. *et al.* (2008). Junior: The Stanford entry in the Urban Challenge. *Journal of Field Robotics*, 25(9):569–597.
- Moon, G., Shiratori, T., and Lee, K. M. (2020). DeepHandMesh: A weakly-supervised deep encoder-decoder framework for high-fidelity hand mesh modeling. In *European Conference on Computer Vision (ECCV)*.
- Moon, G., Yu, S.-I., Wen, H., Shiratori, T., and Lee, K. M. (2020). InterHand2.6M: A dataset and baseline for 3D interacting hand pose estimation from a single RGB image. In *European Conference on Computer Vision (ECCV)*.
- Moon, P. and Spencer, D. E. (1981). The Photic Field. MIT Press, Cambridge, Massachusetts.
- Moons, T., Van Gool, L., and Vergauwen, M. (2010). 3D reconstruction from multiple images. Foundations and Trends® in Computer Graphics and Computer Vision, 4(4).
- Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016). DeepFool: A simple and accurate method to fool deep neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Moosmann, F., Nowak, E., and Jurie, F. (2008). Randomized clustering forests for image classification. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(9):1632–1646.
- Moravec, H. (1983). The Stanford cart and the CMU rover. *Proceedings of the IEEE*, 71(7):872–884.
- Moravec, H. P. (1980). *Obstacle avoidance and navigation in the real world by a seeing robot rover*. Ph.D. thesis, Stanford University Department of Computer Science.
- Moravec, H. P. (1983). The Stanford Cart and the CMU Rover. *Proceedings of the IEEE*, 71(7):872–884.
- Mordvintsev, A., Olah, C., and Tyka, M. (2015). Inceptionism: Going deeper into neural networks. *Google AI Blog.* https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.
- Moreno-Noguer, F., Lepetit, V., and Fua, P. (2007). Accurate non-iterative O(n) solution to the PnP problem. In *International Conference on Computer Vision (ICCV)*.
- Mori, G. (2005). Guiding model search using segmentation. In *International Conference on Computer Vision (ICCV)*, pp. 1417–1423.
- Mori, G., Ren, X., Efros, A., and Malik, J. (2004). Recovering human body configurations: Combining segmentation and recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 326–333.
- Morimoto, C. and Chellappa, R. (1997). Fast 3D stabilization and mosaic construction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 660–665.

Morita, T. and Kanade, T. (1997). A sequential factorization method for recovering shape and motion from image streams. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(8):858–867.

- Morris, D. D. and Kanade, T. (1998). A unified factorization algorithm for points, line segments and planes with uncertainty models. In *International Conference on Computer Vision (ICCV)*, pp. 696–702.
- Morrone, M. and Burr, D. (1988). Feature detection in human vision: A phase dependent energy model. *Proceedings of the Royal Society of London B*, 235:221–245.
- Mortensen, E. N. (1999). Vision-assisted image editing. Computer Graphics, 33(4):55-57.
- Mortensen, E. N. and Barrett, W. A. (1995). Intelligent scissors for image composition. In *ACM SIGGRAPH Conference Proceedings*, pp. 191–198.
- Mortensen, E. N. and Barrett, W. A. (1998). Interactive segmentation with intelligent scissors. *Graphical Models and Image Processing*, 60(5):349–384.
- Mortensen, E. N. and Barrett, W. A. (1999). Toboggan-based intelligent scissors with a four parameter edge model. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 452–458.
- Moulon, P., Monasse, P., and Marlet, R. (2013). Global fusion of relative motions for robust, accurate and scalable structure from motion. In *International Conference on Computer Vision (ICCV)*.
- Moulon, P., Monasse, P., Perrot, R., and Marlet, R. (2016). OpenMVG: Open multiple view geometry. In *International Workshop on Reproducible Research in Pattern Recognition*, pp. 60–74.
- Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint Kalman filter for vision-aided inertial navigation. In *IEEE International Conference on Robotics and Automation*, pp. 3565– 3572.
- Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., Sridhar, S., Casas, D., and Theobalt, C. (2018).
 GANerated hands for real-time 3D hand tracking from monocular RGB. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Mueller, P., Zeng, G., Wonka, P., and Van Gool, L. (2007). Image-based procedural modeling of facades. *ACM Transactions on Graphics*, 26(3).
- Mühlich, M. and Mester, R. (1998). The role of total least squares in motion analysis. In *European Conference on Computer Vision (ECCV)*, pp. 305–321.
- Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic algorithm configuration. In *International Conference on Computer Vision Theory and Applications (VISAPP)*.
- Muja, M. and Lowe, D. G. (2014). Scalable nearest neighbor algorithms for high dimensional data. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(11):2227–2240.
- Mukherjee, D., Wu, Q. M. J., and Wang, G. (2015). A comparative experimental study of image feature detectors and descriptors. *Machine Vision and Applications*, 26(4):443–466.
- Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise smooth functions and variational problems. *Comm. Pure Appl. Math.*, XLII(5):577–685.

- Mundy, J. L. (2006). Object recognition in the geometric era: A retrospective. In Ponce, J., Hebert, M., Schmid, C., and Zisserman, A. (eds), *Toward Category-Level Object Recognition*, pp. 3–28, Springer, New York.
- Mundy, J. L. and Zisserman, A. (eds). (1992). *Geometric Invariance in Computer Vision*. MIT Press, Cambridge, Massachusetts.
- Mur-Artal, R. and Tardós, J. D. (2017). ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras. *IEEE Transactions on Robotics*, 33(5):1255–1262.
- Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monocular SLAM system. *IEEE Transactions on Robotics*, 31(5):1147–1163.
- Murase, H. and Nayar, S. K. (1995). Visual learning and recognition of 3-D objects from appearance. *International Journal of Computer Vision*, 14(1):5–24.
- Murphy, E. P. (2005). A Testing Procedure to Characterize Color and Spatial Quality of Digital Cameras Used to Image Cultural Heritage. Master's thesis, Rochester Institute of Technology.
- Murphy, K., Torralba, A., and Freeman, W. T. (2003). Using the forest to see the trees: A graphical model relating features, objects, and scenes. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT Press.
- Murphy-Chutorian, E. and Trivedi, M. M. (2009). Head pose estimation in computer vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(4):607–626.
- Murray, R. M., Li, Z. X., and Sastry, S. S. (1994). A Mathematical Introduction to Robotic Manipulation. CRC Press.
- Musgrave, K., Belongie, S., and Lim, S.-N. (2020). A metric learning reality check. In *European Conference on Computer Vision (ECCV)*.
- Mutch, J. and Lowe, D. G. (2008). Object class recognition and localization using sparse features with limited receptive fields. *International Journal of Computer Vision*, 80(1):45–57.
- Myszkowski, K., Mantiuk, R., and Krawczyk, G. (2008). High dynamic range video. *Synthesis Lectures on Computer Graphics and Animation*, 1(1):1–158.
- Nagel, H. H. (1986). Image sequences—ten (octal) years—from phenomenology towards a theoretical foundation. In *International Conference on Pattern Recognition (ICPR)*, pp. 1174–1185.
- Nagel, H.-H. and Enkelmann, W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-8(5):565–593.
- Nah, S., Hyun Kim, T., and Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Nah, S., Timofte, R., Gu, S., Baik, S., Hong, S., Moon, G., Son, S., and Mu Lee, K. (2019). NTIRE 2019 challenge on video super-resolution: Methods and results. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines. In *International Conference on Machine Learning (ICML)*, pp. 807–814.

- Nakamura, Y., Matsuura, T., Satoh, K., and Ohta, Y. (1996). Occlusion detectable stereo—occlusion patterns in camera matrix. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 371–378.
- Nakao, T., Kashitani, A., and Kaneyoshi, A. (1998). Scanning a document with a small camera attached to a mouse. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 63–68.
- Nalwa, V. S. (1987). Edge-detector resolution improvement by image interpolation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-9(3):446–451.
- Nalwa, V. S. (1993). A Guided Tour of Computer Vision. Addison-Wesley, Reading, MA.
- Nalwa, V. S. and Binford, T. O. (1986). On detecting edges. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-8(6):699–714.
- Nam, S., Hwang, Y., Matsushita, Y., and Kim, S. J. (2016). A holistic approach to cross-channel image noise modeling and its application to image denoising. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Nandoriya, A., Elgharib, M., Kim, C., Hefeeda, M., and Matusik, W. (2017). Video reflection removal through spatio-temporal optimization. In *IEEE International Conference on Computer Vision* (*ICCV*).
- Narasimhan, S. G. and Nayar, S. K. (2005). Enhancing resolution along multiple imaging dimensions using assorted pixels. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(4):518–530.
- Narayanan, P., Rander, P., and Kanade, T. (1998). Constructing virtual worlds using dense stereo. In *International Conference on Computer Vision (ICCV)*, pp. 3–10.
- Nayar, S., Watanabe, M., and Noguchi, M. (1995). Real-time focus range sensor. In *International Conference on Computer Vision (ICCV)*, pp. 995–1001.
- Nayar, S. K. (2006). Computational cameras: Redefining the image. Computer, 39(8):30–38.
- Nayar, S. K. and Branzoi, V. (2003). Adaptive dynamic range imaging: Optical control of pixel exposures over space and time. In *International Conference on Computer Vision (ICCV)*, pp. 1168–1175.
- Nayar, S. K. and Mitsunaga, T. (2000). High dynamic range imaging: Spatially varying pixel exposures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 472–479.
- Nayar, S. K. and Nakagawa, Y. (1994). Shape from focus. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(8):824–831.
- Nayar, S. K., Ikeuchi, K., and Kanade, T. (1991). Shape from interreflections. *International Journal of Computer Vision*, 6(3):173–195.
- Nayar, S. K., Watanabe, M., and Noguchi, M. (1996). Real-time focus range sensor. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(12):1186–1198.

- Nazeri, K., Ng, E., Joseph, T., Qureshi, F., and Ebrahimi, M. (2019). EdgeConnect: Structure guided image inpainting using edge prediction. In *IEEE International Conference on Computer Vision* (ICCV) Workshops.
- Nech, A. and Kemelmacher-Shlizerman, I. (2017). Level playing field for million scale face recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Negahdaripour, S. (1998). Revised definition of optical flow: Integration of radiometric and geometric cues for dynamic scene analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(9):961–979.
- Nehab, D. and Hoppe, H. (2014). A fresh look at generalized sampling. *Foundations and Trends® in Computer Graphics and Vision*, 8(1):1–84.
- Nehab, D., Rusinkiewicz, S., Davis, J., and Ramamoorthi, R. (2005). Efficiently combining positions and normals for precise 3d geometry. ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3):536–543.
- Nene, S. and Nayar, S. K. (1997). A simple algorithm for nearest neighbor search in high dimensions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(9):989–1003.
- Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, Department of Computer Science, Columbia University.
- Neoral, M., Šochman, J., and Matas, J. (2018). Continual occlusion and optical flow estimation. In *Asian Conference on Computer Vision*, pp. 159–174.
- Netravali, A. and Robbins, J. (1979). Motion-compensated television coding: Part 1. *Bell System Tech.*, 58(3):631–670.
- Neuhold, G., Ollmann, T., Rota Bulo, S., and Kontschieder, P. (2017). The mapillary vistas dataset for semantic understanding of street scenes. In *IEEE International Conference on Computer Vision (ICCV)*.
- Nevatia, R. (1977). A color edge detector and its use in scene segmentation. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-7(11):820–826.
- Nevatia, R. and Binford, T. (1977). Description and recognition of curved objects. Artificial Intelligence, 8:77–98.
- Newcombe, R., Lovegrove, S., and Davison, A. (2011). DTAM: Dense tracking and mapping in real-time. In *International Conference on Computer Vision (ICCV)*.
- Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. W. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In *IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR)*, pp. 127–136.
- Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).

Newell, A. and Deng, J. (2020). How useful is self-supervised pretraining for visual tasks? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 849–854.
- Ng, R. (2005). Fourier slice photography. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):735–744.
- Ng, R., Levoy, M., Bréedif, M., Duval, G., Horowitz, M., and Hanrahan, P. (2005). *Light Field Photography with a Hand-held Plenoptic Camera*. Technical Report CSTR 2005-02, Stanford University.
- Ng, T., Balntas, V., Tian, Y., and Mikolajczyk, K. (2020). SOLAR: Second-order loss and attention for image retrieval. In *European Conference on Computer Vision (ECCV)*.
- Ng, Y.-H. J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., and Toderici, G. (2015). Beyond short snippets: Deep networks for video classification. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Nguyen, A., Yosinski, J., and Clune, J. (2016). Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. In *ICML Visualization* for Deep Learning Workshop.
- Nguyen, M. H., Torresani, L., la Torre, F. D., and Rother, C. (2009). Weakly supervised discriminative localization and classification: A joint learning process. In *International Conference on Computer Vision (ICCV)*.
- Nielsen, M., Florack, L. M. J., and Deriche, R. (1997). Regularization, scale-space, and edge-detection filters. *Journal of Mathematical Imaging and Vision*, 7(4):291–307.
- Nielsen, M. A. (2015). *Neural Networks and Deep Learning*. Volume 25, Determination Press San Francisco, CA.
- Nielson, G. M. (1993). Scattered data modeling. *IEEE Computer Graphics and Applications*, 13(1):60–70.
- Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A. (2019). Occupancy flow: 4d reconstruction by learning particle dynamics. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Niemeyer, M., Mescheder, L., Oechsle, M., and Geiger, A. (2020). Differentiable volumetric rendering: Learning implicit 3D representations without 3D supervision. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. (2013). Real-time 3D reconstruction at scale using voxel hashing. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 32(6).

- Niklaus, S. and Liu, F. (2018). Context-aware synthesis for video frame interpolation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Niklaus, S. and Liu, F. (2020). Softmax splatting for video frame interpolation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Niklaus, S., Mai, L., and Liu, F. (2017). Video frame interpolation via adaptive convolution. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Niklaus, S., Mai, L., Yang, J., and Liu, F. (2019). 3D Ken Burns effect from a single image. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia*, 38(6):184:1–184:15.
- Nilsback, M.-E. and Zisserman, A. (2006). A visual vocabulary for flower classification. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1447–1454.
- Nir, T., Bruckstein, A. M., and Kimmel, R. (2008). Over-parameterized variational optical flow. *International Journal of Computer Vision*, 76(2):205–216.
- Nishihara, H. K. (1984). Practical real-time imaging stereo matcher. OptEng, 23(5):536–545.
- Nistér, D. (2003). Preemptive RANSAC for live structure and motion estimation. In *International Conference on Computer Vision (ICCV)*, pp. 199–206.
- Nistér, D. (2004). An efficient solution to the five-point relative pose problem. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(6):756–777.
- Nistér, D. and Stewénius, H. (2006). Scalable recognition with a vocabulary tree. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2161–2168.
- Nistér, D. and Stewénius, H. (2008). Linear time maximally stable extremal regions. In *European Conference on Computer Vision (ECCV)*, pp. 183–196.
- Nistér, D., Naroditsky, O., and Bergen, J. (2006). Visual odometry for ground vehicle applications. *Journal of Field Robotics*, 23(1):3–20.
- Noborio, H., Fukada, S., and Arimoto, S. (1988). Construction of the octree approximating threedimensional objects by using multiple views. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-10(6):769–782.
- Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York, 2nd edition.
- Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution network for semantic segmentation. In *IEEE International Conference on Computer Vision (ICCV)*.
- Noh, H., Araujo, A., Sim, J., Weyand, T., and Han, B. (2017). Large-scale image retrieval with attentive deep local features. In *IEEE International Conference on Computer Vision (ICCV)*.
- Nomura, Y., Zhang, L., and Nayar, S. K. (2007). Scene collages and flexible camera arrays. In *Eurographics Symposium on Rendering*.
- Nordström, N. (1990). Biased anisotropic diffusion: A unified regularization and diffusion approach to edge detection. *Image and Vision Computing*, 8(4):318–327.
- Noroozi, M. and Favaro, P. (2016). Unsupervised learning of visual representations by solving jigsaw puzzles. In *European Conference on Computer Vision*, pp. 69–84.

Novotny, D., Larlus, D., and Vedaldi, A. (2017). AnchorNet: A weakly supervised network to learn geometry-sensitive features for semantic matching. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Nowozin, S. and Lampert, C. H. (2011). Structured learning and prediction in computer vision. *Foundations and Trends® in Computer Graphics and Vision*, 6(3–4):185–365.
- Ntavelis, E., Romero, A., Bigdeli, S., Timofte, R. *et al.* (2020a). AIM 2020 challenge on image extreme inpainting. In *European Conference on Computer Vision (ECCV) Workshops*.
- Ntavelis, E., Romero, A., Kastanis, I., Van Gool, L., and Timofte, R. (2020b). SESAME: Semantic editing of scenes by adding, manipulating or erasing objects. In *European Conference on Computer Vision (ECCV)*.
- Obdržálek, S. and Matas, J. (2006). Object recognition using local affine frames on maximally stable extremal regions. In Ponce, J., Hebert, M., Schmid, C., and Zisserman, A. (eds), *Toward Category-Level Object Recognition*, pp. 83–104, Springer, New York.
- Oberweger, M., Rad, M., and Lepetit, V. (2018). Making deep heatmaps robust to partial occlusions for 3D object pose estimation. In *European Conference on Computer Vision (ECCV)*.
- O'Brian, M. (2019). As robots take over warehousing, workers pushed to adapt. *Associated Press*. https://apnews.com/article/056b44f5bfff11208847aa9768f10757.
- Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., and Geiger, A. (2019). Texture fields: Learning texture representations in function space. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Oh, B. M., Chen, M., Dorsey, J., and Durand, F. (2001). Image-based modeling and photo editing. In *ACM SIGGRAPH Conference Proceedings*, pp. 433–442.
- Oh, T.-H., Joo, K., Joshi, N., Wang, B., So Kweon, I., and Bing Kang, S. (2017). Personalized cinemagraphs using semantic understanding and collaborative learning. In *IEEE International Conference on Computer Vision (ICCV)*.
- Ohlander, R., Price, K., and Reddy, D. R. (1978). Picture segmentation using a recursive region splitting method. *Computer Graphics and Image Processing*, 8(3):313–333.
- Ohta, Y. and Kanade, T. (1985). Stereo by intra- and inter-scanline search using dynamic programming. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-7(2):139–154.
- Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., and Seidel, H.-P. (2003). Multi-level partition of unity implicits. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 22(3):463–470.
- Okutomi, M. and Kanade, T. (1992). A locally adaptive window for signal matching. *International Journal of Computer Vision*, 7(2):143–162.
- Okutomi, M. and Kanade, T. (1993). A multiple baseline stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(4):353–363.
- Okutomi, M. and Kanade, T. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(9):920–932.

- Olah, C., Mordvintsev, A., and Schubert, L. (2017). Feature visualization. *Distill*. https://distill.pub/2017/feature-visualization.
- Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K., and Mordvintsev, A. (2018). The building blocks of interpretability. *Distill*. https://distill.pub/2018/building-blocks.
- Oliensis, J. (2005). The least-squares error for structure from infinitesimal motion. *International Journal of Computer Vision*, 61(3):259–299.
- Oliensis, J. and Hartley, R. (2007). Iterative extensions of the Sturm/Triggs algorithm: Convergence and nonconvergence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(12):2217–2233.
- Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: a holistic representation of the spatial envelope. *International Journal of Computer Vision*, 42(3):145–175.
- Oliva, A. and Torralba, A. (2007). The role of context in object recognition. *Trends in Cognitive Sciences*, 11(12):520–527.
- Omer, I. and Werman, M. (2004). Color lines: Image specific color representation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 946–953.
- Ong, E.-J., Micilotta, A. S., Bowden, R., and Hilton, A. (2006). Viewpoint invariant exemplar-based 3D human tracking. *Computer Vision and Image Understanding*, 104(2–3):178–189.
- Ono, Y., Trulls, E., Fua, P., and Yi, K. M. (2018). LF-Net: learning local features from images. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 6234–6244.
- Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*.
- Opelt, A., Pinz, A., and Zisserman, A. (2006). A boundary-fragment-model for object detection. In *European Conference on Computer Vision (ECCV)*, pp. 575–588.
- OpenGL-ARB. (1997). OpenGL Reference Manual: The Official Reference Document to OpenGL, Version 1.1. Addison-Wesley, Reading, MA, 2nd edition.
- Oppenheim, A. V. and Schafer, A. S. (1996). *Signals and Systems*. Prentice Hall, Englewood Cliffs, New Jersey, 2nd edition.
- Oppenheim, A. V., Schafer, R. W., and Buck, J. R. (1999). *Discrete-Time Signal Processing*. Prentice Hall, Englewood Cliffs, New Jersey, 2nd edition.
- Ordonez, V., Kulkarni, G., and Berg, T. L. (2011). Im2Text: Describing images using 1 million captioned photographs. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1143–1151.
- Oren, M. and Nayar, S. (1997). A theory of specular surface geometry. *International Journal of Computer Vision*, 24(2):105–124.
- O'Rourke, J. and Badler, N. I. (1980). Model-based image analysis of human motion using constraint propagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2(6):522–536.
- Osher, S. and Paragios, N. (eds). (2003). *Geometric Level Set Methods in Imaging, Vision, and Graphics*, Springer.

Osman, A. A. A., Bolkart, T., and Black, M. J. (2020). STAR: Sparse trained articulated human body regressor. In *European Conference on Computer Vision (ECCV)*.

- Osman Ulusoy, A., Black, M. J., and Geiger, A. (2017). Semantic multi-view stereo: Jointly estimating objects and voxels. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Osuna, E., Freund, R., and Girosi, F. (1997). Training support vector machines: An application to face detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 130–136.
- O'Toole, A. J., Jiang, F., Roark, D., and Abdi, H. (2006). Predicting human face recognition. In Zhao, W.-Y. and Chellappa, R. (eds), *Face Processing: Advanced Methods and Models*, Elsevier.
- O'Toole, A. J., Phillips, P. J., Jiang, F., Ayyad, J., Pénard, N., and Abdi, H. (2009). Face recognition algorithms surpass humans matching faces over changes in illumination. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(9):1642–1646.
- Ott, M., Lewis, J. P., and Cox, I. J. (1993). Teleconferencing eye contact using a virtual camera. In *INTERACT and CHI Conference Companion on Human Factors in Computing Systems*, pp. 109–110.
- Otte, M. and Nagel, H.-H. (1994). Optical flow estimation: advances and comparisons. In *European Conference on Computer Vision (ECCV)*, pp. 51–60.
- Ouyang, W. and Wang, X. (2013). Joint deep learning for pedestrian detection. In *International Conference on Computer Vision (ICCV)*.
- Ovide, S. (2020). A case for banning facial recognition. New York Times.
- Owens, A. and Efros, A. A. (2018). Audio-visual scene analysis with self-supervised multisensory features. In *European Conference on Computer Vision (ECCV)*.
- Oztireli, C., Guennebaud, G., and Gross, M. (2008). Feature preserving point set surfaces. *Computer Graphics Forum*, 28(2):493–501.
- Özuysal, M., Calonder, M., Lepetit, V., and Fua, P. (2010). Fast keypoint recognition using random ferns. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(3):448–461.
- Özyeşil, O. and Singer, A. (2015). Robust camera location estimation by convex programming. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Özyeşil, O., Voroninski, V., Basri, R., and Singer, A. (2017). A survey of structure from motion. *Acta Numerica*, 26:305–364.
- Paglieroni, D. W. (1992). Distance transforms: Properties and machine vision applications. *Graphical Models and Image Processing*, 54(1):56–74.
- Pal, C., Szeliski, R., Uyttendaele, M., and Jojic, N. (2004). Probability models for high dynamic range imaging. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 173–180.
- Pal, C. J., Weinman, J. J., Tran, L. C., and Scharstein, D. (2012). On learning conditional random fields for stereo. *International Journal of Computer Vision*, 99(3):319–337.

- Palmer, S. E. (1999). Vision Science: Photons to Phenomenology. The MIT Press, Cambridge, Massachusetts.
- Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. *IEEE Transactions on Knowledge and Data Engineering*, 22(10):1345–1359.
- Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., and Zheng, Y. (2019). Recent progress on generative adversarial networks (GANs): A survey. *IEEE Access*, 7:36322–36333.
- Pandey, R., Tkach, A., Yang, S., Pidlypenskyi, P., Taylor, J., Martin-Brualla, R., Tagliasacchi, A., Papandreou, G., Davidson, P., Keskin, C., Izadi, S., and Fanello, S. (2019). Volumetric capture of humans with a single RGBD camera via semi-parametric learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Pang, J., Sun, W., Ren, J., Yang, C., and Yan, Q. (2017). Cascade residual learning: A two-stage convolutional neural network for stereo matching. In *International Conference on Computer Vision (ICCV) Workshops*.
- Papageorgiou, C. and Poggio, T. (2000). A trainable system for object detection. *International Journal of Computer Vision*, 38(1):15–33.
- Papazoglou, A. and Ferrari, V. (2013). Fast object segmentation in unconstrained video. In *International Conference on Computer Vision (ICCV)*.
- Papenberg, N., Bruhn, A., Brox, T., Didas, S., and Weickert, J. (2006). Highly accurate optic flow computation with theoretically justified warping. *International Journal of Computer Vision*, 67(2):141–158.
- Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R. *et al.* (2018). CleverHans v2.1.0: Adversarial examples library. *arXiv preprint arXiv:1610.00768*.
- Papert, S. (1966). *The Summer Vision Project*. Technical Report AIM-100, Artificial Intelligence Group, Massachusetts Institute of Technology. https://hdl.handle.net/1721.1/6125.
- Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). BLEU: a method for automatic evaluation of machine translation. In *Annual Meeting of the Association for Computational Linguistics* (*ACL*), pp. 311–318.
- Paragios, N. and Deriche, R. (2000). Geodesic active contours and level sets for the detection and tracking of moving objects. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(3):266–280.
- Paragios, N. and Sgallari, F. (2009). Special issue on scale space and variational methods in computer vision. *International Journal of Computer Vision*, 84(2).
- Paragios, N., Faugeras, O. D., Chan, T., and Schnörr, C. (eds). (2005). *International Workshop on Variational, Geometric, and Level Set Methods in Computer Vision (VLSM)*, Springer.
- Parikh, D. and Grauman, K. (2011). Relative attributes. In *International Conference on Computer Vision (ICCV)*.
- Paris, S. and Durand, F. (2007). A topological approach to hierarchical segmentation using mean shift. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Paris, S. and Durand, F. (2009). A fast approximation of the bilateral filter using a signal processing approach. *International Journal of Computer Vision*, 81(1):24–52.

- Paris, S., Hasinoff, S. W., and Kautz, J. (2011). Local Laplacian filters: Edge-aware image processing with a laplacian pyramid. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 30(4):68.
- Paris, S., Kornprobst, P., Tumblin, J., and Durand, F. (2008). Bilateral filtering: Theory and applications. Foundations and Trends® in Computer Graphics and Computer Vision, 4(1):1–73.
- Park, H. and Lee, K. M. (2017). Look wider to match image patches with convolutional neural networks. *IEEE Signal Processing Letters*, 24(12):1788–1792.
- Park, J., Ko, K., Lee, C., and Kim, C.-S. (2020). BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. In *European Conference on Computer Vision (ECCV)*.
- Park, J., Sinha, S. N., Matsushita, Y., Tai, Y.-W., and Kweon, I. S. (2017). Robust multiview photometric stereo using planar mesh parameterization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(8):1591–1604.
- Park, J. J., Holynski, A., and Seitz, S. M. (2020). Seeing the world in a bag of chips. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Park, J. J., Newcombe, R., and Seitz, S. (2018). Surface light field fusion. In *International Conference* on 3D Vision (3DV), pp. 12–21.
- Park, J. J., Florence, P., Straub, J., Newcombe, R., and Lovegrove, S. (2019). DeepSDF: Learning continuous signed distance functions for shape representation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Park, K., Sinha, U., Barron, J. T., Bouaziz, S., Goldman, D. B., Seitz, S. M., and Martin-Brualla, R. (2020). Deformable neural radiance fields. *arXiv* preprint arXiv:2011.12948.
- Park, K., Sinha, U., Hedman, P., Barron, J. T., Bouaziz, S., Goldman, D. B., Martin-Brualla, R., and Seitz, S. M. (2021). HyperNeRF: A higher-dimensional representation for topologically varying neural radiance fields. *arXiv* preprint arXiv:2106.13228.
- Park, M., Brocklehurst, K., Collins, R. T., and Liu, Y. (2009). Deformed lattice detection in real-world images using mean-shift belief propagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(10):1804–1816.
- Park, S. C., Park, M. K., and Kang, M. G. (2003). Super-resolution image reconstruction: A technical overview. *IEEE Signal Processing Magazine*, 20:21–36.
- Park, T., Liu, M.-Y., Wang, T.-C., and Zhu, J.-Y. (2019). Semantic image synthesis with spatially-adaptive normalization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Park, T., Zhu, J.-Y., Wang, O., Lu, J., Shechtman, E., Efros, A. A., and Zhang, R. (2020). Swapping autoencoder for deep image manipulation. In *Advances in Neural Information Processing Systems* (*NeurIPS*).
- Parke, F. I. and Waters, K. (1996). Computer Facial Animation. A K Peters, Wellesley, Massachusetts.

- Parker, J. A., Kenyon, R. V., and Troxel, D. E. (1983). Comparison of interpolating methods for image resampling. *IEEE Transactions on Medical Imaging*, MI-2(1):31–39.
- Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep face recognition. In *British Machine Vision Conference*, p. 6.
- Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. B. (2012). Cats and dogs. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., and Tran, D. (2018). Image transformer. In *International Conference on Machine Learning (ICML)*, pp. 4055–4064.
- Parra Pozo, A., Toksvig, M., Filiba Schrager, T., Hsu, J., Mathur, U., Sorkine-Hornung, A., Szeliski, R., and Cabral, B. (2019). An integrated 6DoF video camera and system design. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 38(6):216.
- Pathak, D., Krahenbuhl, P., and Darrell, T. (2015). Constrained convolutional neural networks for weakly supervised segmentation. In *IEEE International Conference on Computer Vision (ICCV)*.
- Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Patrick, M., Asano, Y. M., Fong, R., Henriques, J. F., Zweig, G., and Vedaldi, A. (2020). Multi-modal self-supervision from generalized data transformations. *arXiv* preprint *arXiv*:2003.04298.
- Patron-Perez, A., Lovegrove, S., and Sibley, G. (2015). A spline-based trajectory representation for sensor fusion and rolling shutter cameras. *International Journal of Computer Vision*, 113(3):208– 219.
- Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. (1998). A multiscale model of adaptation and spatial vision for realistic image display. In ACM SIGGRAPH Conference Proceedings, pp. 287–298.
- Pauly, M., Keiser, R., Kobbelt, L. P., and Gross, M. (2003). Shape modeling with point-sampled geometry. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):641–650.
- Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H., and Guibas, L. J. (2008). Discovering structural regularity in 3D geometry. *ACM Transactions on Graphics*, 27(3):43.
- Pautrat, R., Larsson, V., Oswald, M. R., and Pollefeys, M. (2020). Online invariance selection for local feature descriptors. In *European Conference on Computer Vision (ECCV)*.
- Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A. A., Tzionas, D., and Black, M. J. (2019). Expressive body capture: 3D hands, face, and body from a single image. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Pavlidis, T. (1977). Structural Pattern Recognition. Springer-Verlag, Berlin; New York.
- Pavlidis, T. and Liow, Y.-T. (1990). Integrating region growing and edge detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(3):225–233.
- Pavlović, V., Sharma, R., and Huang, T. S. (1997). Visual interpretation of hand gestures for human-computer interaction: A review. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,

- 19(7):677–695.
- Paysan, P., Knothe, R., Amberg, B., Romdhani, S., and Vetter, T. (2009). A 3D face model for pose and illumination invariant face recognition. In *IEEE International Conference on Advanced Video and Signal Based Surveillance*, pp. 296–301.
- Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers, Los Altos.
- Peleg, R., Ben-Ezra, M., and Pritch, Y. (2001). Omnistereo: Panoramic stereo imaging. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(3):279–290.
- Peleg, S. (1981). Elimination of seams from photomosaics. *Computer Vision, Graphics, and Image Processing*, 16(1):1206–1210.
- Peleg, S. and Herman, J. (1997). Panoramic mosaics by manifold projection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 338–343.
- Peleg, S. and Rav-Acha, A. (2006). Lucas-Kanade without iterative warping. In *International Conference on Image Processing (ICIP)*, pp. 1097–1100.
- Peleg, S., Rousso, B., Rav-Acha, A., and Zomet, A. (2000). Mosaicing on adaptive manifolds. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(10):1144–1154.
- Penev, P. and Atick, J. (1996). Local feature analysis: A general statistical theory for object representation. *Network Computation and Neural Systems*, 7:477–500.
- Peng, S., Liu, Y., Huang, Q., Zhou, X., and Bao, H. (2019). PVNet: Pixel-wise voting network for 6DoF pose estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., and Geiger, A. (2020). Convolutional occupancy networks. In *European Conference on Computer Vision (ECCV)*.
- Peng, S., Jiang, W., Pi, H., Li, X., Bao, H., and Zhou, X. (2020). Deep snake for real-time instance segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Peng, S., Zhang, Y., Xu, Y., Wang, Q., Shuai, Q., Bao, H., and Zhou, X. (2021). Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Penner, E. and Zhang, L. (2017). Soft 3D reconstruction for view synthesis. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):1–11.
- Pentland, A. P. (1984). Local shading analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-6(2):170–179.
- Pentland, A. P. (1986). Perceptual organization and the representation of natural form. *Artificial Intelligence*, 28(3):293–331.
- Pentland, A. P. (1987). A new sense for depth of field. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-9(4):523–531.
- Pentland, A. P. (1994). Interpolation using wavelet bases. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(4):410–414.

- Perazzi, F., Wang, O., Gross, M., and Sorkine-Hornung, A. (2015). Fully connected object proposals for video segmentation. In *IEEE International Conference on Computer Vision (ICCV)*.
- Perazzi, F., Khoreva, A., Benenson, R., Schiele, B., and Sorkine-Hornung, A. (2017). Learning video object segmentation from static images. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., and Sorkine-Hornung, A. (2016). A benchmark dataset and evaluation methodology for video object segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Pérez, P., Blake, A., and Gangnet, M. (2001). JetStream: Probabilistic contour extraction with particles. In *International Conference on Computer Vision (ICCV)*, pp. 524–531.
- Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. *ACM Transactions on Graphics* (*Proc. SIGGRAPH*), 22(3):313–318.
- Perona, P. (1995). Deformable kernels for early vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(5):488–499.
- Perona, P. and Malik, J. (1990a). Detecting and localizing edges composed of steps, peaks and roofs. In *International Conference on Computer Vision (ICCV)*, pp. 52–57.
- Perona, P. and Malik, J. (1990b). Scale space and edge detection using anisotropic diffusion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(7):629–639.
- Perreault, S. and Hébert, P. (2007). Median filtering in constant time. *IEEE Transactions on Image Processing*, 16(9):2389–2394.
- Persson, M. and Nordberg, K. (2018). Lambda twist: An accurate fast robust perspective three point (P3P) solver. In *European Conference on Computer Vision (ECCV)*.
- Peters, J. and Reif, U. (2008). Subdivision Surfaces. Springer.
- Petersen, K. B. and Pedersen, M. S. (2012). The matrix cookbook.
- Petschnigg, G., Agrawala, M., Hoppe, H., Szeliski, R., Cohen, M., and Toyama, K. (2004). Digital photography with flash and no-flash image pairs. *ACM Transactions on Graphics (Proc. SIG-GRAPH)*, 23(3):664–672.
- Pfister, H., Zwicker, M., van Baar, J., and Gross, M. (2000). Surfels: Surface elements as rendering primitives. In *ACM SIGGRAPH Conference Proceedings*, pp. 335–342.
- Pflugfelder, R. (2008). *Self-calibrating Cameras in Video Surveillance*. Ph.D. thesis, Graz University of Technology.
- Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). Efficient neural architecture search via parameter sharing. In *International Conference on Machine Learning (ICML)*.
- Philbin, J. and Zisserman, A. (2008). Object mining using a matching graph on very large image collections. In *Indian Conference on Computer Vision, Graphics and Image Processing*.
- Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A. (2007). Object retrieval with large vocabularies and fast spatial matching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Philbin, J., Chum, O., Sivic, J., Isard, M., and Zisserman, A. (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Philip, J., Gharbi, M., Zhou, T., Efros, A. A., and Drettakis, G. (2019). Multi-view relighting using a geometry-aware network. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 38(4):78:1–78:14.
- Phillips, P. J., Moon, H., Rizvi, S. A., and Rauss, P. J. (2000). The FERET evaluation methodology for face recognition algorithms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(10):1090–1104.
- Phillips, P. J., Scruggs, W. T., O'Toole, A. J., Flynn, P. J., Bowyer, K. W., Schott, C. L., and Sharpe, M. (2010). FRVT 2006 and ICE 2006 large-scale experimental results. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(5):831–846.
- Phong, B. T. (1975). Illumination for computer generated pictures. *Communications of the ACM*, 18(6):311–317.
- Pickup, L. C. (2007). Machine Learning in Multi-frame Image Super-resolution. Ph.D. thesis, University of Oxford.
- Pickup, L. C. and Zisserman, A. (2009). Automatic retrieval of visual continuity errors in movies. In *ACM International Conference on Image and Video Retrieval*.
- Pickup, L. C., Capel, D. P., Roberts, S. J., and Zisserman, A. (2007). Overcoming registration uncertainty in image super-resolution: Maximize or marginalize? *EURASIP Journal on Advances* in Signal Processing, 2010(Article ID 23565).
- Pickup, L. C., Capel, D. P., Roberts, S. J., and Zisserman, A. (2009). Bayesian methods for image super-resolution. *The Computer Journal*, 52.
- Pighin, F., Szeliski, R., and Salesin, D. H. (2002). Modeling and animating realistic faces from images. *International Journal of Computer Vision*, 50(2):143–169.
- Pighin, F., Hecker, J., Lischinski, D., Salesin, D. H., and Szeliski, R. (1998). Synthesizing realistic facial expressions from photographs. In *ACM SIGGRAPH Conference Proceedings*, pp. 75–84.
- Pilet, J., Lepetit, V., and Fua, P. (2008). Fast non-rigid surface detection, registration, and realistic augmentation. *International Journal of Computer Vision*, 76(2).
- Pinheiro, P. O., Lin, T.-Y., Collobert, R., and Dollár, P. (2016). Learning to refine object segments. In *European Conference on Computer Vision (ECCV)*, pp. 75–91.
- Pintore, G., Mura, C., Ganovelli, F., Fuentes-Perez, L., Pajarola, R., and Gobbetti, E. (2020). State-of-the-art in automatic 3D reconstruction of structured indoor environments. In *Computer Graphics Forum*, pp. 667–699.
- Pinz, A. (2005). Object categorization. Foundations and Trends® in Computer Graphics and Computer Vision, 1(4):255–353.
- Pion, N., Humenberger, M., Csurka, G., Cabon, Y., and Sattler, T. (2020). Benchmarking image retrieval for visual localization. In *International Conference on 3D Vision (3DV)*, pp. 483–494.

- Pishchulin, L., Andriluka, M., Gehler, P., and Schiele, B. (2013). Poselet conditioned pictorial structures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler, P. V., and Schiele, B. (2016). DeepCut: Joint subset partition and labeling for multi person pose estimation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., Romeny, B. T. H., and Zimmerman, J. B. (1987). Adaptive histogram equalization and its variations. *Computer Vision, Graphics, and Image Processing*, 39(3):355–368.
- Platel, B., Balmachnova, E., Florack, L., and ter Haar Romeny, B. (2006). Top-points as interest points for image matching. In *European Conference on Computer Vision (ECCV)*, pp. 418–429.
- Platt, J. (1989). Fast training of support vector machines using sequential minimal optimization, pp. 185–208. MIT Press.
- Platt, J. (2000a). Probabilities for support vector machines. In *Advances in Large Margin Classifiers*, pp. 61–74.
- Platt, J. C. (2000b). Optimal filtering for patterned displays. *IEEE Signal Processing Letters*, 7(7):179–180.
- Plötz, T. and Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C., Hockenmaier, J., and Lazebnik, S. (2017). Flickr30k Entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. *International Journal of Computer Vision*, 123(1):74–93.
- Pock, T., Schoenemann, T., Graber, G., Bischof, H., and Cremers, D. (2008). A convex formulation of continuous multi-label problems. In *European Conference on Computer Vision (ECCV)*, pp. 792–805.
- Poelman, C. J. and Kanade, T. (1997). A paraperspective factorization method for shape and motion recovery. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(3):206–218.
- Poggi, M., Tosi, F., Batsos, K., Mordohai, P., and Mattoccia, S. (2021). On the synergies between machine learning and binocular stereo for depth estimation from images: a survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, (accepted)().
- Poggi, M., Kim, S., Tosi, F., Kim, S., Aleotti, F., Min, D., Sohn, K., and Mattoccia, S. (2021). On the confidence of stereo matching in a deep-learning era: a quantitative evaluation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Poggio, T., Little, J., Gamble, E., Gillet, W., Geiger, D., Weinshall, D., Villalba, M., Larson, N., Cass, T., Bülthoff, H., Drumheller, M., Oppenheimer, P., Yang, W., and Hurlbert, A. (1988). The MIT vision machine. In *Image Understanding Workshop*, pp. 177–198.
- Poggio, T. and Koch, C. (1985). Ill-posed problems in early vision: from computational theory to analogue networks. *Proceedings of the Royal Society of London*, B 226:303–323.

Poggio, T., Gamble, E., and Little, J. (1988). Parallel integration of vision modules. *Science*, 242(4877):436–440.

- Poggio, T., Torre, V., and Koch, C. (1985). Computational vision and regularization theory. *Nature*, 317(6035):314–319.
- Polana, R. and Nelson, R. C. (1997). Detection and recognition of periodic, nonrigid motion. *International Journal of Computer Vision*, 23(3):261–282.
- Pollard, S. B., Mayhew, J. E. W., and Frisby, J. P. (1985). PMF: A stereo correspondence algorithm using a disparity gradient limit. *Perception*, 14:449–470.
- Pollefeys, M., Nistér, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.-J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewénius, H., Yang, R., Welch, G., and Towles, H. (2008). Detailed real-time urban 3D reconstruction from video. *International Journal of Computer Vision*, 78(2–3):143–167.
- Pollefeys, M. and Van Gool, L. (2002). From images to 3D models. *Communications of the ACM*, 45(7):50–55.
- Pollefeys, M., Koch, R., and Van Gool, L. (1999). Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. *International Journal of Computer Vision*, 32(1):7–25.
- Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., and Koch, R. (2004). Visual modeling with a hand-held camera. *International Journal of Computer Vision*, 59(3):207–232.
- Pomerleau, D. A. (1989). ALVINN: An autonomous land vehicle in a neural network. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 305–313.
- Pomerleau, F., Colas, F., and Siegwart, R. (2015). A review of point cloud registration algorithms for mobile robotics. *Foundations and Trends*® *in Robotics*, 4(1):1–104.
- Ponce, J., Hebert, M., Schmid, C., and Zisserman, A. (eds). (2006). *Toward Category-Level Object Recognition*, Springer, New York.
- Pons, J.-P., Keriven, R., and Faugeras, O. (2005). Modelling dynamic scenes by registering multiview image sequences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 822–827.
- Pons, J.-P., Keriven, R., and Faugeras, O. (2007). Multi-view stereo reconstruction and scene flow estimation with a global image-based matching score. *International Journal of Computer Vision*, 72(2):179–193.
- Pont-Tuset, J., Arbeláez, P., Barron, J. T., Marques, F., and Malik, J. (2017). Multiscale combinatorial grouping for image segmentation and object proposal generation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(1):128–140.
- Pont-Tuset, J., Perazzi, F., Caelles, S., Arbeláez, P., Sorkine-Hornung, A., and Van Gool, L. (2017). The 2017 DAVIS challenge on video object segmentation. *arXiv* preprint arXiv:1704.00675.

- Poppe, R. (2010). A survey on vision-based human action recognition. *Image and Vision Computing*, 28(6):976–990.
- Porter, T. and Duff, T. (1984). Compositing digital images. *Computer Graphics (SIGGRAPH)*, 18(3):253–259.
- Portilla, J. and Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of complex wavelet coefficients. *International Journal of Computer Vision*, 40(1):49–71.
- Portilla, J., Strela, V., Wainwright, M., and Simoncelli, E. P. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. *IEEE Transactions on Image Processing*, 12(11):1338–1351.
- Potetz, B. and Lee, T. S. (2008). Efficient belief propagation for higher-order cliques using linear constraint nodes. *Computer Vision and Image Understanding*, 112(1):39–54.
- Potmesil, M. (1987). Generating octree models of 3D objects from their silhouettes in a sequence of images. *Computer Vision, Graphics, and Image Processing*, 40:1–29.
- Pratt, W. K. (2007). Digital Image Processing. Wiley-Interscience, Hoboken, NJ, 4th edition.
- Prazdny, K. (1985). Detection of binocular disparities. Biological Cybernetics, 52:93–99.
- Preparata, F. P. and Shamos, M. I. (1985). *Computational Geometry: An Introduction*. Academic Press, New York.
- Prince, S. J. D. (2012). *Computer vision: models, learning, and inference*. Cambridge University Press.
- Pritchett, P. and Zisserman, A. (1998). Wide baseline stereo matching. In *International Conference on Computer Vision (ICCV)*, pp. 754–760.
- Proesmans, M., Van Gool, L., and Defoort, F. (1998). Reading between the lines a method for extracting dynamic 3D with texture. In *International Conference on Computer Vision (ICCV)*, pp. 1081–1086.
- Prusinkiewicz, P. and Lindenmayer, A. (1996). The algorithmic beauty of plants. Springer.
- Pullen, K. and Bregler, C. (2002). Motion capture assisted animation: texturing and synthesis. ACM Transactions on Graphics, 21(3):501–508.
- Pulli, K. (1999). Multiview registration for large datasets. In *International Conference on 3D Digital Imaging and Modeling (3DIM)*, pp. 160–168.
- Pulli, K., Abi-Rached, H., Duchamp, T., Shapiro, L., and Stuetzle, W. (1998). Acquisition and visualization of colored 3D objects. In *International Conference on Pattern Recognition (ICPR)*, pp. 11–15.
- Pumarola, A., Corona, E., Pons-Moll, G., and Moreno-Noguer, F. (2021). D-NeRF: Neural radiance fields for dynamic scenes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR).
- Punnappurath, A. and Brown, M. S. (2019). Reflection removal using a dual-pixel sensor. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). PointNet: Deep learning on point sets for 3D classification and segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Qiao, S., Wang, H., Liu, C., Shen, W., and Yuille, A. (2019a). Micro-batch training with batch-channel normalization and weight standardization. *arXiv* preprint arXiv:1903.10520.
- Qiao, S., Wang, H., Liu, C., Shen, W., and Yuille, A. (2019b). Rethinking normalization and elimination singularity in neural networks. *arXiv preprint arXiv:1911.09738*.
- Qin, Y., Frosst, N., Raffel, C., Cottrell, G., and Hinton, G. (2020a). Deflecting adversarial attacks. *arXiv* preprint *arXiv*:2002.07405.
- Qin, Y., Frosst, N., Sabour, S., Raffel, C., Cottrell, G., and Hinton, G. (2020b). Detecting and diagnosing adversarial images with class-conditional capsule reconstructions. In *International Conference on Learning Representations (ICLR)*.
- Quack, T., Leibe, B., and Van Gool, L. (2008). World-scale mining of objects and events from community photo collections. In *Conference on Image and Video Retrieval*, pp. 47–56.
- Quam, L. H. (1984). Hierarchical warp stereo. In *Image Understanding Workshop*, pp. 149–155.
- Quan, L. and Lan, Z. (1999). Linear N-point camera pose determination. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(8):774–780.
- Quan, L. and Mohr, R. (1989). Determining perspective structures using hierarchical Hough transform. *Pattern Recognition Letters*, 9(4):279–286.
- Rabe, C., Müller, T., Wedel, A., and Franke, U. (2010). Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In *European Conference on Computer Vision* (*ECCV*), pp. 582–595.
- Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., and Belongie, S. (2007). Objects in context. In *International Conference on Computer Vision (ICCV)*.
- Rademacher, P. and Bishop, G. (1998). Multiple-center-of-projection images. In *ACM SIGGRAPH Conference Proceedings*, pp. 199–206.
- Radenović, F., Tolias, G., and Chum, O. (2019). Fine-tuning CNN image retrieval with no human annotation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(7):1655–1668.
- Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., and Chum, O. (2018). Revisiting Oxford and Paris: Large-scale image retrieval benchmarking. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Radenović, F., Schönberger, J. L., Ji, D., Frahm, J.-M., Chum, O., and Matas, J. (2016). From dusk till dawn: Modeling in the dark. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020.

- Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434. presented at ICLR 2016.
- Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollár, P. (2020). Designing network design spaces. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amarasinghe, S. (2013). Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In *ACM SIGPLAN Notices*, pp. 519–530.
- Raginsky, M. and Lazebnik, S. (2009). Locality-sensitive binary codes from shift-invariant kernels. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Raguram, R., Wu, C., Frahm, J.-M., and Lazebnik, S. (2011). Modeling and recognition of land-mark image collections using iconic scene graphs. *International Journal of Computer Vision*, 95(3):213–239.
- Raguram, R., Chum, O., Pollefeys, M., Matas, J., and Frahm, J.-M. (2012). USAC: a universal framework for random sample consensus. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):2022–2038.
- Raman, S. and Chaudhuri, S. (2007). A matte-less, variational approach to automatic scene compositing. In *International Conference on Computer Vision (ICCV)*.
- Raman, S. and Chaudhuri, S. (2009). Bilateral filter based compositing for variable exposure photography. In *Eurographics*.
- Ramanan, D. and Baker, S. (2009). Local distance functions: A taxonomy, new algorithms, and an evaluation. In *International Conference on Computer Vision (ICCV)*.
- Ramanan, D., Forsyth, D., and Zisserman, A. (2005). Strike a pose: Tracking people by finding stylized poses. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 271–278.
- Ramanarayanan, G. and Bala, K. (2007). Constrained texture synthesis via energy minimization. *IEEE Transactions on Visualization and Computer Graphics*, 13(1):167–178.
- Ramer, U. (1972). An iterative procedure for the polygonal approximation of plane curves. *Computer Graphics and Image Processing*, 1(3):244–256.
- Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. (2021). Zero-shot text-to-image generation. *arXiv preprint arXiv:2102.12092*. Blog at https://openai.com/blog/dall-e.
- Ramnath, K., Koterba, S., Xiao, J., Hu, C., Matthews, I., Baker, S., Cohn, J., and Kanade, T. (2008).
 Multi-view AAM fitting and construction. *International Journal of Computer Vision*, 76(2):183–204.
- Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., and Koltun, V. (2020). Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, (accepted).

Ranjan, A. and Black, M. J. (2017). Optical flow estimation using a spatial pyramid network. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Raskar, R. and Tumblin, J. (2010). Computational Photography: Mastering New Techniques for Lenses, Lighting, and Sensors. A K Peters, Wellesley, Massachusetts.
- Raskar, R., Tan, K.-H., Feris, R., Yu, J., and Turk, M. (2004). Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging. *ACM Transactions on Graphics*, 23(3):679–688.
- Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. (2016). XNOR-Net: Imagenet classification using binary convolutional neural networks. In *European Conference on Computer Vision*, pp. 525–542.
- Rav-Acha, A., Kohli, P., Fitzgibbon, A., and Rother, C. (2008). Unwrap mosaics: A new representation for video editing. *ACM Transactions on Graphics*, 27(3):17.
- Rav-Acha, A., Pritch, Y., Lischinski, D., and Peleg, S. (2005). Dynamosaics: Video mosaics with non-chronological time. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 58–65.
- Rawat, W. and Wang, Z. (2017). Deep convolutional neural networks for image classification: A comprehensive review. *Neural Computation*, 29(9):2352–2449.
- Ray, S. F. (2002). Applied Photographic Optics. Focal Press, Oxford, 3rd edition.
- Razavi, A., van den Oord, A., and Vinyals, O. (2019). Generating diverse high-fidelity images with VQ-VAE-2. *arXiv preprint arXiv:1906.00446*.
- Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. (2019). Do ImageNet classifiers generalize to ImageNet? In *International Conference on Machine Learning (ICML)*, pp. 5389–5400.
- Redmon, J. and Farhadi, A. (2017). YOLO9000: Better, faster, stronger. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Redmon, J. and Farhadi, A. (2018). YOLOv3: An incremental improvement. *arXiv preprint* arXiv:1804.02767.
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016). Generative adversarial text to image synthesis. In *International Conference on Machine Learning (ICML)*, pp. 1060–1069.
- Rehg, J. and Kanade, T. (1994). Visual tracking of high DOF articulated structures: an application to human hand tracking. In *European Conference on Computer Vision (ECCV)*, pp. 35–46.
- Rehg, J. and Witkin, A. (1991). Visual tracking with deformation models. In *IEEE International Conference on Robotics and Automation*, pp. 844–850.
- Rehg, J., Morris, D. D., and Kanade, T. (2003). Ambiguities in visual tracking of articulated objects using two- and three-dimensional models. *International Journal of Robotics Research*, 22(6):393–418.

- Reichenbach, S. E., Park, S. K., and Narayanswamy, R. (1991). Characterizing digital image acquisition devices. *Optical Engineering*, 30(2):170–177.
- Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. (2002). Photographic tone reproduction for digital images. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 21(3):267–276.
- Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., and Myszkowski, K. (2010). *High dynamic range imaging: acquisition, display, and image-based lighting*. Morgan Kaufmann, 2nd edition.
- Reiser, C., Peng, S., Liao, Y., and Geiger, A. (2021). KiloNeRF: Speeding up neural radiance fields with thousands of tiny mlps. *arXiv* preprint arXiv:2103.13744.
- Reitmayr, G. and Drummond, T. W. (2006). Going out: robust model-based tracking for outdoor augmented reality. In *IEEE/ACM International Symposium on Mixed and Augmented Reality* (*ISMAR*), pp. 109–118.
- Remelli, E., Lukoianov, A., Richter, S., Guillard, B., Bagautdinov, T., Baque, P., and Fua, P. (2020). MeshSDF: Differentiable iso-surface extraction. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 22468–22478.
- Ren, J. (2020). Awesome self-supervised learning. online bibliography at https://github.com/jason718/awesome-self-supervised-learning.
- Ren, M., Zeng, W., Yang, B., and Urtasun, R. (2018). Learning to reweight examples for robust deep learning. *arXiv preprint arXiv:1803.09050*.
- Ren, S., Cao, X., Wei, Y., and Sun, J. (2014). Face alignment at 3000 fps via regressing local binary features. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 91–99.
- Ren, Y., Yu, X., Zhang, R., Li, T. H., Liu, S., and Li, G. (2019). StructureFlow: Image inpainting via structure-aware appearance flow. In *IEEE International Conference on Computer Vision (ICCV)*.
- Ren, Z., Gallo, O., Sun, D., Yang, M.-H., Sudderth, E., and Kautz, J. (2019). A fusion approach for multi-frame optical flow estimation. In *IEEE Winter Conference on Applications of Computer Vision (WACV)*, pp. 2077–2086.
- Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid, C. (2015). EpicFlow: Edge-preserving interpolation of correspondences for optical flow. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Revaud, J., Weinzaepfel, P., Souza, C. D., and Humenberger, M. (2019). R2D2: repeatable and reliable detector and descriptor. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In *International Conference on Machine Learning (ICML)*, pp. 1278–1286.

- Rhemann, C., Rother, C., and Gelautz, M. (2008). Improving color modeling for alpha matting. In *British Machine Vision Conference (BMVC)*.
- Rhemann, C., Rother, C., Rav-Acha, A., and Sharp, T. (2008). High resolution matting via interactive trimap segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rhemann, C., Rother, C., Wang, J., Gelautz, M., Kohli, P., and Rott, P. (2009). A perceptually motivated online benchmark for image matting. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Richardson, I. E. G. (2003). H.264 and MPEG-4 Video Compression: Video Coding for Next Generation Multimedia. Wiley.
- Richardt, C., Pritch, Y., Zimmer, H., and Sorkine-Hornung, A. (2013). Megastereo: Constructing high-resolution stereo panoramas. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Richter, S. R. and Roth, S. (2018). Matryoshka networks: Predicting 3D geometry via nested shape layers. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Richter, S. R., Hayder, Z., and Koltun, V. (2017). Playing for benchmarks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Riegler, G. and Koltun, V. (2020a). Free view synthesis. In European Conference on Computer Vision (ECCV).
- Riegler, G. and Koltun, V. (2020b). Stable view synthesis. arXiv preprint arXiv:2011.07233.
- Rioul, O. and Vetterli, M. (1991). Wavelets and signal processing. *IEEE Signal Processing Magazine*, 8(4):14–38.
- Rioux, M. and Bird, T. (1993). White laser, synced scan. *IEEE Computer Graphics and Applications*, 13(3):15–17.
- Rioux, M., Bechthold, G., Taylor, D., and Duggan, M. (1987). Design of a large depth of view three-dimensional camera for robot vision. *Optical Engineering*, 26(12):1245–1250.
- Rippel, O. and Bourdev, L. (2017). Real-time adaptive image compression. In *International Conference on Machine Learning (ICML)*, p. 2922–2930.
- Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, A. G., and Bourdev, L. (2019). Learned video compression. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Riseman, E. M. and Arbib, M. A. (1977). Computational techniques in the visual segmentation of static scenes. *Computer Graphics and Image Processing*, 6(3):221–276.
- Ritter, G. X. and Wilson, J. N. (2000). *Handbook of Computer Vision Algorithms in Image Algebra*. CRC Press, Boca Raton, 2nd edition.

- Robert, C. P. (2007). *The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation*. Springer-Verlag, New York.
- Roberts, L. G. (1965). Machine perception of three-dimensional solids. In Tippett, J. T., Borkowitz,
 D. A., Clapp, L. C., Koester, C. J., and Vanderburgh Jr., A. (eds), *Optical and Electro-Optical Information Processing*, pp. 159–197, MIT Press, Cambridge, Massachusetts.
- Roberts, R., Sinha, S. N., Szeliski, R., and Steedly, D. (2011). Structure from motion for scenes with large duplicate structures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3137–3144.
- Robertson, D. and Cipolla, R. (2004). An image-based system for urban navigation. In *British Machine Vision Conference*, pp. 656–665.
- Robertson, D. P. and Cipolla, R. (2002). Building architectural models from many views using map constraints. In *European Conference on Computer Vision (ECCV)*, pp. 155–169.
- Robertson, D. P. and Cipolla, R. (2009). Architectural modelling. In Varga, M. (ed.), *Practical Image Processing and Computer Vision*, John Wiley.
- Robertson, N. and Reid, I. (2006). A general method for human activity recognition in video. *Computer Vision and Image Understanding*, 104(2–3):232–248.
- Roble, D. (1999). Vision in film and special effects. Computer Graphics, 33(4):58-60.
- Roble, D. and Zafar, N. B. (2009). Don't trust your eyes: cutting-edge visual effects. *Computer*, 42(7):35–41.
- Rodriguez, M., Ahmed, J., and Shah, M. (2008). Action MACH: A spatio-temporal maximum average correlation height filter for action recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rodríguez, R. G., Vazquez-Corral, J., and Bertalmío, M. (2019). Issues with common assumptions about the camera pipeline and their impact in HDR imaging from multiple exposures. *SIAM Journal on Imaging Sciences*, 12(4):1627–1642.
- Rogez, G., Rihan, J., Ramalingam, S., Orrite, C., and Torr, P. H. S. (2008). Randomized trees for human pose detection. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rogmans, S., Lu, J., Bekaert, P., and Lafruit, G. (2009). Real-time stereo-based views synthesis algorithms: A unified framework and evaluation on commodity GPUs. *Signal Processing: Image Communication*, 24:49–64.
- Rohr, K. (1994). Towards model-based recognition of human movements in image sequences. *Computer Vision, Graphics, and Image Processing*, 59(1):94–115.
- Román, A. and Lensch, H. P. A. (2006). Automatic multiperspective images. In *Eurographics Symposium on Rendering*, pp. 83–92.
- Román, A., Garg, G., and Levoy, M. (2004). Interactive design of multi-perspective images for visualizing urban landscapes. In *IEEE Visualization*, pp. 537–544.

Romdhani, S. and Vetter, T. (2003). Efficient, robust and accurate fitting of a 3D morphable model. In *International Conference on Computer Vision (ICCV)*, pp. 59–66.

- Romdhani, S., Torr, P. H. S., Schölkopf, B., and Blake, A. (2001). Computationally efficient face detection. In *International Conference on Computer Vision (ICCV)*, pp. 695–700.
- Romero, J., Tzionas, D., and Black, M. J. (2017). Embodied hands: Modeling and capturing hands and bodies together. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 36(6):1–17.
- Rong, X., Demandolx, D., Matzen, K., Chatterjee, P., and Tian, Y. (2020). Burst denoising via temporally shifted wavelet transforms. In *European Conference on Computer Vision (ECCV)*.
- Rong, Y., Shiratori, T., and Joo, H. (2020). FrankMocap: Fast monocular 3D hand and body motion capture by regression and integration. *arXiv preprint arXiv:2008.08324*.
- Ronneberger, O., Fischer, P., and Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In *International Conference on Medical Image Computing and Computer-Assisted Intervention MICCAI*, pp. 234–241.
- Rosales, R. and Sclaroff, S. (2000). Inferring body pose without tracking body parts. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 721–727.
- Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):386.
- Rosenfeld, A. (1980). Quadtrees and pyramids for pattern recognition and image processing. In *International Conference on Pattern Recognition (ICPR)*, pp. 802–809.
- Rosenfeld, A. (ed.). (1984). Multiresolution Image Processing and Analysis, Springer-Verlag, New York.
- Rosenfeld, A. and Davis, L. S. (1979). Image segmentation and image models. *Proceedings of the IEEE*, 67(5):764–772.
- Rosenfeld, A. and Kak, A. C. (1976). Digital Picture Processing. Academic Press, New York.
- Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in digital picture processing. *Journal of the ACM*, 13(4):471–494.
- Rosenfeld, A., Hummel, R. A., and Zucker, S. W. (1976). Scene labeling by relaxation operations. *IEEE Transactions on Systems, Man, and Cybernetics*, SMC-6:420–433.
- Ross, D. A., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). Incremental learning for robust visual tracking. *International Journal of Computer Vision*, 77(1-3):125–141.
- Rosten, E. and Drummond, T. (2005). Fusing points and lines for high performance tracking. In *International Conference on Computer Vision (ICCV)*, pp. 1508–1515.
- Rosten, E., Porter, R., and Drummond, T. (2010). Faster and better: A machine learning approach to corner detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(1):105–119.
- Roth, S. and Black, M. J. (2007a). On the spatial statistics of optical flow. *International Journal of Computer Vision*, 74(1):33–50.

- Roth, S. and Black, M. J. (2007b). Steerable random fields. In *International Conference on Computer Vision (ICCV)*.
- Roth, S. and Black, M. J. (2009). Fields of experts. *International Journal of Computer Vision*, 82(2):205–229.
- Rother, C. (2002). A new approach for vanishing point detection in architectural environments. *Image and Vision Computing*, 20(9–10):647–656.
- Rother, C. (2003). Linear multi-view reconstruction of points, lines, planes and cameras using a reference plane. In *International Conference on Computer Vision (ICCV)*, pp. 1210–1217.
- Rother, C. and Carlsson, S. (2002). Linear multi view reconstruction and camera recovery using a reference plane. *International Journal of Computer Vision*, 49(2/3):117–141.
- Rother, C., Kolmogorov, V., and Blake, A. (2004). "GrabCut"—interactive foreground extraction using iterated graph cuts. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 23(3):309–314.
- Rother, C., Kohli, P., Feng, W., and Jia, J. (2009). Minimizing sparse higher order energy functions of discrete variables. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M. (2007). Optimizing binary MRFs via extended roof duality. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Rothganger, F., Lazebnik, S., Schmid, C., and Ponce, J. (2006). 3D object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. *International Journal of Computer Vision*, 66(3):231–259.
- Rousseeuw, P. J. (1984). Least median of squares regression. *Journal of the American Statistical Association*, 79:871–880.
- Rousseeuw, P. J. and Leroy, A. M. (1987). *Robust Regression and Outlier Detection*. Wiley, New York.
- Rousson, M. and Paragios, N. (2008). Prior knowledge, level set representations, and visual grouping. *International Journal of Computer Vision*, 76(3):231–243.
- Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. *science*, 290(5500):2323–2326.
- Rowland, D. A. and Perrett, D. I. (1995). Manipulating facial appearance through shape and color. *IEEE Computer Graphics and Applications*, 15(5):70–76.
- Rowley, H. A., Baluja, S., and Kanade, T. (1998). Neural network-based face detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(1):23–38.
- Roy, S. and Cox, I. J. (1998). A maximum-flow formulation of the N-camera stereo correspondence problem. In *International Conference on Computer Vision (ICCV)*, pp. 492–499.
- Rozenfeld, S., Shimshoni, I., and Lindenbaum, M. (2011). Dense mirroring surface recovery from 1d homographies and sparse correspondences. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(2):325–327.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB: an efficient alternative to SIFT or SURF. In *International Conference on Computer Vision (ICCV)*.

- Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. *Physica D: Nonlinear Phenomena*, 60(1–4):259–268.
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning internal representations by error propagation. In Rumelhart, D. E., McClelland, J. L., and the PDP research group (eds), *Parallel Distributed Processing: Explorations in the Microstructure of Cognition*, pp. 318–362, Bradford Books, Cambridge, Massachusetts.
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning internal representations by error propagation. *Nature*, 323:533–536.
- Rusinkiewicz, S. (2019). A symmetric objective function for ICP. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):85:1–85:7.
- Rusinkiewicz, S. and Levoy, M. (2000). QSplat: A multiresolution point rendering system for large meshes. In *ACM SIGGRAPH Conference Proceedings*, pp. 343–352.
- Rusinkiewicz, S., Hall-Holt, O., and Levoy, M. (2002). Real-time 3D model acquisition. *ACM Transactions on Graphics*, 21(3):438–446.
- Russ, J. C. (2007). The Image Processing Handbook. CRC Press, Boca Raton, 5th edition.
- Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). ImageNet large scale visual recognition challenge. *International Journal of Computer Vision*, 115(3):211–252.
- Russell, B., Efros, A., Sivic, J., Freeman, W., and Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1605–1612.
- Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). LabelMe: A database and web-based tool for image annotation. *International Journal of Computer Vision*, 77(1–3):157–173.
- Russell, B. C., Torralba, A., Liu, C., Fergus, R., and Freeman, W. T. (2007). Object recognition by scene alignment. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Ruzon, M. A. and Tomasi, C. (2000). Alpha estimation in natural images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18–25.
- Ruzon, M. A. and Tomasi, C. (2001). Edge, junction, and corner detection using color distributions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(11):1281–1295.
- Ryan, T. W., Gray, R. T., and Hunt, B. R. (1980). Prediction of correlation errors in stereo-pair images. *Optical Engineering*, 19(3):312–322.
- Saad, Y. (2003). *Iterative Methods for Sparse Linear Systems*. Society for Industrial and Applied Mathematics, 2nd edition.
- Saikia, T., Marrakchi, Y., Zela, A., Hutter, F., and Brox, T. (2019). AutoDispNet: Improving disparity estimation with AutoML. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.

- Saint-Marc, P., Chen, J. S., and Medioni, G. (1991). Adaptive smoothing: A general tool for early vision. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(6):514–529.
- Saito, H. and Kanade, T. (1999). Shape reconstruction in projective grid space from large number of images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 49–54.
- Saito, S., Simon, T., Saragih, J., and Joo, H. (2020). PIFuHD: Multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., and Li, H. (2019). PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Salakhutdinov, R. and Hinton, G. (2009). Deep boltzmann machines. In *Artificial Intelligence and Statistics*, pp. 448–455.
- Salimans, T. and Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. In *Advances in Neural Information Processing Systems* (*NeurIPS*), pp. 901–909.
- Salzmann, M. and Fua, P. (2010). Deformable surface 3d reconstruction from monocular images. Synthesis Lectures on Computer Vision, 2(1):1–113.
- Samano, N., Zhou, M., and Calway, A. (2020). You are here: Geolocation by embedding maps and images. In *European Conference on Computer Vision (ECCV)*.
- Samet, H. (1989). *The Design and Analysis of Spatial Data Structures*. Addison-Wesley, Reading, Massachusetts.
- Sander, P. T. and Zucker, S. W. (1990). Inferring surface trace and differential structure from 3-D images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(9):833–854.
- Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sang, S. and Chandraker, M. (2020). Single-shot neural relighting and SVBRDF estimation. In *European Conference on Computer Vision (ECCV)*.
- Santo, H., Waechter, M., and Matsushita, Y. (2020). Deep near-light photometric stereo for spatially varying reflectances. In *European Conference on Computer Vision (ECCV)*.
- Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization help optimization? In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 2483–2493.
- Sapiro, G. (2001). Geometric Partial Differential Equations and Image Analysis. Cambridge University Press.
- Sapp, B. and Taskar, B. (2013). MODEC: Multimodal decomposable models for human pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

Sarlin, P.-E., Unagar, A., Larsson, M., Germain, H., Toft, C., Larsson, V., Pollefeys, M., Lepetit, V., Hammarstrand, L., Kahl, F., and Sattler, T. (2021). Back to the feature: Learning robust camera localization from pixels to pose. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Sarlin, P.-E., Cadena, C., Siegwart, R., and Dymczyk, M. (2019). From coarse to fine: Robust hierarchical localization at large scale. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich, A. (2020). SuperGlue: Learning feature matching with graph neural networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sato, Y. and Ikeuchi, K. (1996). Reflectance analysis for 3D computer graphics model generation. *Graphical Models and Image Processing*, 58(5):437–451.
- Sato, Y., Wheeler, M., and Ikeuchi, K. (1997). Object shape and reflectance modeling from observation. In *ACM SIGGRAPH Conference Proceedings*, pp. 379–387.
- Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., and Pajdla, T. (2018). Benchmarking 6DOF outdoor visual localization in changing conditions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sattler, T., Leibe, B., and Kobbelt, L. (2011). Fast image-based localization using direct 2D-to-3D matching. In *International Conference on Computer Vision (ICCV)*.
- Sattler, T., Leibe, B., and Kobbelt, L. (2017). Efficient & effective prioritized matching for large-scale image-based localization. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 39(9):1744–1756.
- Sattler, T., Havlena, M., Schindler, K., and Pollefeys, M. (2016). Large-scale location recognition and the geometric burstiness problem. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sattler, T., Zhou, Q., Pollefeys, M., and Leal-Taixé, L. (2019). Understanding the limitations of CNN-based absolute camera pose regression. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Savarese, S., Chen, M., and Perona, P. (2005). Local shape from mirror reflections. *International Journal of Computer Vision*, 64(1):31–67.
- Savarese, S., Andreetto, M., Rushmeier, H. E., Bernardini, F., and Perona, P. (2007). 3D reconstruction by shadow carving: Theory and practical evaluation. *International Journal of Computer Vision*, 71(3):305–336.
- Sawhney, H. S. (1994). Simplifying motion and structure analysis using planar parallax and image warping. In *International Conference on Pattern Recognition (ICPR)*, pp. 403–408.
- Sawhney, H. S. and Ayer, S. (1996). Compact representation of videos through dominant multiple

- motion estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(8):814–830.
- Sawhney, H. S. and Hanson, A. R. (1991). Identification and 3D description of 'shallow' environmental structure over a sequence of images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 179–185.
- Sawhney, H. S. and Kumar, R. (1999). True multi-image alignment and its application to mosaicing and lens distortion correction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(3):235–243.
- Sawhney, H. S., Kumar, R., Gendel, G., Bergen, J., Dixon, D., and Paragano, V. (1998). VideoBrush: Experiences with consumer video mosaicing. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 56–62.
- Sawhney, H. S., Arpa, A., Kumar, R., Samarasekera, S., Aggarwal, M., Hsu, S., Nister, D., and Hanna, K. (2002). Video flashlights: real time rendering of multiple videos for immersive model visualization. In *Eurographics Workshop on Rendering*, pp. 157–168.
- Saxena, A., Sun, M., and Ng, A. Y. (2009). Make3D: Learning 3D scene structure from a single still image. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(5):824–840.
- Schaffalitzky, F. and Zisserman, A. (2000). Planar grouping for automatic detection of vanishing lines and points. *Image and Vision Computing*, 18:647–658.
- Schaffalitzky, F. and Zisserman, A. (2002). Multi-view matching for unordered image sets, or "How do I organize my holiday snaps?". In *European Conference on Computer Vision (ECCV)*, pp. 414–431.
- Scharr, H., Black, M. J., and Haussecker, H. W. (2003). Image statistics and anisotropic diffusion. In *International Conference on Computer Vision (ICCV)*, pp. 840–847.
- Scharstein, D. (1994). Matching images by comparing their gradient fields. In *International Conference on Pattern Recognition (ICPR)*, pp. 572–575.
- Scharstein, D. (1999). View Synthesis Using Stereo Vision. Volume 1583, Springer-Verlag.
- Scharstein, D. and Szeliski, R. (1998). Stereo matching with nonlinear diffusion. *International Journal of Computer Vision*, 28(2):155–174.
- Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. *International Journal of Computer Vision*, 47(1):7–42.
- Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 195–202.
- Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., and Westling, P. (2014). High-resolution stereo datasets with subpixel-accurate ground truth. In *German Conference on Pattern Recognition*, pp. 31–42.
- Schechner, Y. Y., Nayar, S. K., and Belhumeur, P. N. (2009). Multiplexing for optimal lighting. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(8):1339–1354.

Schilling, H., Gutsche, M., Brock, A., Spath, D., Rother, C., and Krispin, K. (2020). Mind the gap
a benchmark for dense depth prediction beyond lidar. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*.

- Schindler, G. and Dellaert, F. (2004). Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schindler, G., Brown, M., and Szeliski, R. (2007). City-scale location recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schindler, G., Krishnamurthy, P., Lublinerman, R., Liu, Y., and Dellaert, F. (2008). Detecting and matching repeated patterns for automatic geo-tagging in urban environments. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schmid, C. and Mohr, R. (1997). Local grayvalue invariants for image retrieval. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(5):530–534.
- Schmid, C. and Zisserman, A. (1997). Automatic line matching across views. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 666–671.
- Schmid, C., Mohr, R., and Bauckhage, C. (2000). Evaluation of interest point detectors. *International Journal of Computer Vision*, 37(2):151–172.
- Schmidt, U. and Roth, S. (2014). Shrinkage fields for effective image restoration. In *IEEE Conference* on Computer Vision and Pattern Recognition (CVPR).
- Schmitt, C., Donne, S., Riegler, G., Koltun, V., and Geiger, A. (2020). On joint estimation of pose, geometry and svBRDF from a handheld scanner. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schneiderman, H. and Kanade, T. (2004). Object detection using the statistics of parts. *International Journal of Computer Vision*, 56(3):151–177.
- Schödl, A. and Essa, I. (2002). Controlled animation of video sprites. In *ACM Symposium on Computater Animation*.
- Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. (2000). Video textures. In *ACM SIGGRAPH Conference Proceedings*, pp. 489–498.
- Schoenemann, T. and Cremers, D. (2008). High resolution motion layer decomposition using dualspace graph cuts. In *IEEE Computer Society Conference on Computer Vision and Pattern Recog*nition (CVPR).
- Schölkopf, B. and Smola, A. J. (2001). *Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond.* MIT Press.
- Schönberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schönberger, J. L., Sinha, S. N., and Pollefeys, M. (2018). Learning to fuse proposals from multiple scanline optimizations in semi-global matching. In *European Conference on Computer Vision* (*ECCV*).

- Schönberger, J. L., Zheng, E., Pollefeys, M., and Frahm, J.-M. (2016). Pixelwise view selection for unstructured multi-view stereo. In *European Conference on Computer Vision (ECCV)*.
- Schöps, T., Sattler, T., and Pollefeys, M. (2020). SurfelMeshing: Online surfel-based mesh reconstruction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(10):2494–2507.
- Schöps, T., Sattler, T., and Pollefeys, M. (2019a). BAD SLAM: Bundle adjusted direct RGB-D slam. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schöps, T., Sattler, T., and Pollefeys, M. (2019b). SurfelMeshing: Online surfel-based mesh reconstruction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(10):2494–2507.
- Schöps, T., Schönberger, J. L., Galliani, S., Sattler, T., Schindler, K., Pollefeys, M., and Geiger, A. (2017). A multi-view stereo benchmark with high-resolution images and multi-camera videos. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schröder, P. and Sweldens, W. (1995). Spherical wavelets: Efficiently representing functions on the sphere. In *ACM SIGGRAPH Conference Proceedings*, pp. 161–172.
- Schroff, F., Kalenichenko, D., and Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Schubert, D., Demmel, N., Usenko, V., Stuckler, J., and Cremers, D. (2018). Direct sparse odometry with rolling shutter. In *European Conference on Computer Vision (ECCV)*.
- Schubert, D., Goll, T., Demmel, N., Usenko, V., Stückler, J., and Cremers, D. (2018). The TUM VI benchmark for evaluating visual-inertial odometry. In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 1680–1687.
- Schüldt, C., Laptev, I., and Caputo, B. (2004). Recognizing human actions: a local SVM approach. In *International Conference on Pattern Recognition (ICPR)*, pp. 32–36.
- Schuler, C. J., Hirsch, M., Harmeling, S., and Schölkopf, B. (2016). Learning to deblur. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(7):1439–1451.
- Schultz, R. R. and Stevenson, R. L. (1996). Extraction of high-resolution frames from video sequences. *IEEE Transactions on Image Processing*, 5(6):996–1011.
- Se, S., Lowe, D., and Little, J. (2002). Global localization using distinctive visual features. In *IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 226–231.
- Sebastian, T. B. and Kimia, B. B. (2005). Curves vs. skeletons in object recognition. *Signal Processing*, 85(2):246–263.
- Sederberg, T. W. and Parry, S. R. (1986). Free-form deformations of solid geometric models. Computer Graphics (SIGGRAPH), 20(4):151–160.
- Sederberg, T. W., Gao, P., Wang, G., and Mu, H. (1993). 2D shape blending: An intrinsic solution to the vertex path problem. In *ACM SIGGRAPH Conference Proceedings*, pp. 15–18.
- Seitz, P. (1989). Using local orientation information as image primitive for robust object recognition. In SPIE Vol. 1199, Visual Communications and Image Processing IV, pp. 1630–1639.
- Seitz, S. (2001). The space of all stereo images. In *International Conference on Computer Vision* (*ICCV*), pp. 26–33.

Seitz, S. and Szeliski, R. (1999). Applications of computer vision to computer graphics. *Computer Graphics*, 33(4):35–37. Guest Editors' introduction to the Special Issue.

- Seitz, S., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A comparison and evaluation of multi-view stereo reconstruction algorithms. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 519–526.
- Seitz, S. M. and Baker, S. (2009). Filter flow. In *International Conference on Computer Vision* (ICCV).
- Seitz, S. M. and Dyer, C. M. (1996). View morphing. In *ACM SIGGRAPH Conference Proceedings*, pp. 21–30.
- Seitz, S. M. and Dyer, C. M. (1997). Photorealistic scene reconstruction by voxel coloring. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1067–1073.
- Seitz, S. M. and Dyer, C. M. (1999). Photorealistic scene reconstruction by voxel coloring. *International Journal of Computer Vision*, 35(2):151–173.
- Seitz, S. M. and Dyer, C. R. (1997). View invariant analysis of cyclic motion. *International Journal of Computer Vision*, 25(3):231–251.
- Sejnowski, T. J. (2018). The deep learning revolution. MIT Press.
- Seki, A. and Pollefeys, M. (2017). Sgm-nets: Semi-global matching with neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In *IEEE International Conference on Computer Vision (ICCV)*.
- Sen, P., Kalantari, N. K., Yaesoubi, M., Darabi, S., Goldman, D. B., and Shechtman, E. (2012). Robust patch-based HDR reconstruction of dynamic scenes. ACM Transactions On Graphics (Proc. SIGGRAPH), 31(6):203–1.
- Sengupta, S., Jayaram, V., Curless, B., Seitz, S. M., and Kemelmacher-Shlizerman, I. (2020). Background matting: The world is your green screen. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words with subword units. *arXiv preprint arXiv:1508.07909*.
- Sermanet, P., Kavukcuoglu, K., Chintala, S., and Lecun, Y. (2013). Pedestrian detection with unsupervised multi-stage feature learning. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press, New York.
- Serra, J. and Vincent, L. (1992). An overview of morphological filtering. *Circuits, Systems and Signal Processing*, 11(1):47–108.
- Serrano, A., Kim, I., Chen, Z., DiVerdi, S., Gutierrez, D., Hertzmann, A., and Masia, B. (2019). Motion parallax for 360 RGBD video. *IEEE Transactions on Visualization and Computer Graphics*,

- 25(5):1817-1827.
- Serre, T., Wolf, L., and Poggio, T. (2005). Object recognition with features inspired by visual cortex. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 994–1000.
- Sethian, J. (1999). *Level Set Methods and Fast Marching Methods*. Cambridge University Press, Cambridge, 2nd edition.
- Sevilla-Lara, L., Sun, D., Jampani, V., and Black, M. J. (2016). Optical flow with semantic segmentation and localized layers. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Shade, J., Gortler, S., He, L., and Szeliski, R. (1998). Layered depth images. In *ACM SIGGRAPH Conference Proceedings*, pp. 231–242.
- Shade, J., Lischinski, D., Salesin, D., DeRose, T., and Snyder, J. (1996). Hierarchical images caching for accelerated walkthroughs of complex environments. In ACM SIGGRAPH Conference Proceedings, pp. 75–82.
- Shafer, S. A. (1985). Using color to separate reflection components. Color Research and Applications, 10(4):210–218.
- Shafer, S. A., Healey, G., and Wolff, L. (1992). *Physics-Based Vision: Principles and Practice*. Jones & Bartlett, Cambridge, MA.
- Shafique, K. and Shah, M. (2005). A noniterative greedy algorithm for multiframe point correspondence. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(1):51–65.
- Shah, J. (1993). A nonlinear diffusion model for discontinuous disparity and half-occlusion in stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 34–40.
- Shaham, T. R., Dekel, T., and Michaeli, T. (2019). SinGAN: Learning a generative model from a single natural image. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Shakhnarovich, G., Darrell, T., and Indyk, P. (eds). (2006). *Nearest-Neighbor Methods in Learning and Vision: Theory and Practice*, MIT Press.
- Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fast pose estimation with parameter-sensitive hashing. In *International Conference on Computer Vision (ICCV)*, pp. 750–757.
- Shan, C., Gong, S., and McOwan, P. W. (2009). Facial expression recognition based on local binary patterns: A comprehensive study. *Image and Vision Computing*, 27(6):803–816.
- Shan, D., Geng, J., Shu, M., and Fouhey, D. F. (2020). Understanding human hands in contact at internet scale. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shan, Q., Adams, R., Curless, B., Furukawa, Y., and Seitz, S. M. (2013). The visual Turing test for scene reconstruction. In *International Conference on 3D Vision*, pp. 25–32.
- Shan, Q., Wu, C., Curless, B., Furukawa, Y., Hernández, C., and Seitz, S. M. (2014). Accurate geo-registration by ground-to-aerial image matching. In *International Conference on 3D Vision*, pp. 525–532.

Shan, Y., Liu, Z., and Zhang, Z. (2001). Model-based bundle adjustment with application to face modeling. In *International Conference on Computer Vision (ICCV)*, pp. 644–641.

- Shane, J. (2019). You Look Like a Thing and I Love You: How Artificial Intelligence Works and why It's Making the World a Weirder Place. Voracious.
- Shao, S., Li, Z., Zhang, T., Peng, C., Yu, G., Zhang, X., Li, J., and Sun, J. (2019). Objects365: A large-scale, high-quality dataset for object detection. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Sharif Razavian, A., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 806–813.
- Sharma, P., Ding, N., Goodman, S., and Soricut, R. (2018). Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 2556–2565.
- Sharon, E., Galun, M., Sharon, D., Basri, R., and Brandt, A. (2006). Hierarchy and adaptivity in segmenting visual scenes. *Nature*, 442(7104):810–813.
- Sharp, T., Keskin, C., Robertson, D., Taylor, J., Shotton, J., Kim, D., Rhemann, C., Leichter, I., Vinnikov, A., Wei, Y., Freedman, D., Kohli, P., Krupka, E., Fitzgibbon, A., and Izadi, S. (2015). Accurate, robust, and flexible real-time hand tracking. In ACM Conference on Human Factors in Computing Systems, pp. 3633–3642.
- Shashua, A. and Toelg, S. (1997). The quadric reference surface: Theory and applications. *International Journal of Computer Vision*, 23(2):185–198.
- Shashua, A. and Wexler, Y. (2001). Q-warping: Direct computation of quadratic reference surfaces. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(8):920–925.
- Shaw, D. and Barnes, N. (2006). Perspective rectangle detection. In *ECCV Workshop on Applications of Computer Vision*.
- Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Unpublished manuscript, available on author's homepage (https://www.cs.berkeley.edu/~jrs). An earlier version appeared as a Carnegie Mellon University Technical Report, CMU-CS-94-125.
- Shi, B., Mo, Z., Wu, Z., Duan, D., Yeung, S.-K., and Tan, P. (2019). A benchmark dataset and evaluation for non-Lambertian and uncalibrated photometric stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(2):271–284.
- Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 8(22):888–905.
- Shi, J. and Tomasi, C. (1994). Good features to track. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 593–600.
- Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Shih, M.-L., Su, S.-Y., Kopf, J., and Huang, J.-B. (2020). 3D photography using context-aware layered depth inpainting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shimizu, M. and Okutomi, M. (2001). Precise sub-pixel estimation on area-based matching. In *International Conference on Computer Vision (ICCV)*, pp. 90–97.
- Shin, C., Jeon, H.-G., Yoon, Y., So Kweon, I., and Joo Kim, S. (2018). EPINET: A fully-convolutional neural network using epipolar geometry for depth from light field images. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shizawa, M. and Mase, K. (1991). A unified computational theory of motion transparency and motion boundaries based on eigenenergy analysis. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 289–295.
- Shlezinger, M. I. (1968). The interaction of learning and self-organization in pattern recognition. *Kibernetica*, 4(2):66–71.
- Shocher, A., Gandelsman, Y., Mosseri, I., Yarom, M., Irani, M., Freeman, W. T., and Dekel, T. (2020).
 Semantic pyramid for image generation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shoemake, K. (1985). Animating rotation with quaternion curves. *Computer Graphics (SIGGRAPH)*, 19(3):245–254.
- Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook, M., Finocchio, M., Moore, R., Kohli, P., Criminisi, A., Kipman, A., and Blake, A. (2013). Efficient human pose estimation from single depth images. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(12):2821–2840.
- Shotton, J., Blake, A., and Cipolla, R. (2005). Contour-based learning for object detection. In *International Conference on Computer Vision (ICCV)*, pp. 503–510.
- Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic texton forests for image categorization and segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recogni*tion (CVPR).
- Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2009). Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling appearance, shape and context. *International Journal of Computer Vision*, 81(1):2–23.
- Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., and Fitzgibbon, A. (2013). Scene coordinate regression forests for camera relocalization in RGB-D images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., and Blake, A. (2011). Real-time human pose recognition in parts from single depth images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Shrivastava, A., Hudson, D., Murahari, V., Das, A., Kottur, S., Batra, D., Parikh, D., and Agrawal, A. (2020). CVPR 2020 visual question answering and dialog workshop. https://visualqa.org/

workshop.html.

Shufelt, J. (1999). Performance evaluation and analysis of vanishing point detection techniques. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(3):282–288.

- Shum, H.-Y. and He, L.-W. (1999). Rendering with concentric mosaics. In ACM SIGGRAPH Conference Proceedings, pp. 299–306.
- Shum, H.-Y. and Szeliski, R. (1999). Stereo reconstruction from multiperspective panoramas. In *International Conference on Computer Vision (ICCV)*, pp. 14–21.
- Shum, H.-Y. and Szeliski, R. (2000). Construction of panoramic mosaics with global and local alignment. *International Journal of Computer Vision*, 36(2):101–130. Erratum published July 2002, 48(2):151–152.
- Shum, H.-Y., Chan, S.-C., and Kang, S. B. (2007). *Image-Based Rendering*. Springer, New York, NY.
- Shum, H.-Y., Han, M., and Szeliski, R. (1998). Interactive construction of 3D models from panoramic mosaics. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 427–433.
- Shum, H.-Y., Ikeuchi, K., and Reddy, R. (1995). Principal component analysis with missing data and its application to polyhedral modeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 17(9):854–867.
- Shum, H.-Y., Kang, S. B., and Chan, S.-C. (2003). Survey of image-based representations and compression techniques. *IEEE Transactions on Circuits and Systems for Video Technology*, 13(11):1020–1037.
- Shum, H.-Y., Wang, L., Chai, J.-X., and Tong, X. (2002). Rendering by manifold hopping. *International Journal of Computer Vision*, 50(2):185–201.
- Shum, H.-Y., Sun, J., Yamazaki, S., Li, Y., and Tang, C.-K. (2004). Pop-up light field: An interactive image-based modeling and rendering system. *ACM Transactions on Graphics*, 23(2):143–162.
- Sibley, D., Mei, C., Reid, I. D., and Newman, P. (2009). Adaptive relative bundle adjustment. In *Robotics: Science and Systems*, p. 33.
- Sibley, G., Mei, C., Reid, I., and Newman, P. (2010). Vast-scale outdoor navigation using adaptive relative bundle adjustment. *International Journal of Robotics Research*, 29(8):958–980.
- Sidenbladh, H. and Black, M. J. (2003). Learning the statistics of people in images and video. *International Journal of Computer Vision*, 54(1):189–209.
- Sidenbladh, H., Black, M. J., and Fleet, D. J. (2000). Stochastic tracking of 3D human figures using 2D image motion. In *European Conference on Computer Vision (ECCV)*, pp. 702–718.
- Sigal, L. and Black, M. (2006a). Measure locally, reason globally: Occlusion-sensitive articulated pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recog*nition (CVPR), pp. 2041–2048.
- Sigal, L. and Black, M. J. (2006b). Predicting 3D people from 2D pictures. In *AMDO 2006 IV Conference on Articulated Motion and Deformable Objects*, pp. 185–195.

- Sigal, L., Balan, A., and Black, M. J. (2010). HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. *International Journal of Computer Vision*, 87(1–2):4–27.
- Sigal, L., Bhatia, S., Roth, S., Black, M. J., and Isard, M. (2004). Tracking loose-limbed people. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 421–428.
- Sigurdsson, G. A., Varol, G., Wang, X., Farhadi, A., Laptev, I., and Gupta, A. (2016). Hollywood in homes: Crowdsourcing data collection for activity understanding. In *European Conference on Computer Vision*, pp. 510–526.
- Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012). Indoor segmentation and support inference from RGBD images. In *European Conference on Computer Vision (ECCV)*, pp. 746–760.
- Sillion, F. and Puech, C. (1994). Radiosity and Global Illumination. Morgan Kaufmann.
- Silpa-Anan, C. and Hartley, R. (2008). Optimised kd-trees for fast image descriptor matching. In *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 1–8.
- Sim, T., Baker, S., and Bsat, M. (2003). The CMU pose, illumination, and expression database. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(12):1615–1618.
- Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional neural networks applied to visual document analysis. In *International Conference on Document Analysis and Recognition (ICDAR)*, pp. 958–962.
- Simard, P. Y., Bottou, L., Haffner, P., and Cun, Y. L. (1998). Boxlets: a fast convolution algorithm for signal processing and neural networks. In *Advances in Neural Information Processing Systems* (*NeurIPS*), pp. 571–577.
- Simon, I. and Seitz, S. M. (2008). Scene segmentation using the wisdom of crowds. In *European Conference on Computer Vision (ECCV)*, pp. 541–553.
- Simon, I., Snavely, N., and Seitz, S. M. (2007). Scene summarization for online image collections. In *International Conference on Computer Vision (ICCV)*.
- Simoncelli, E. P. (1999). Bayesian denoising of visual images in the wavelet domain. In Müller, P. and Vidakovic, B. (eds), *Bayesian Inference in Wavelet Based Models*, pp. 291–308, Springer-Verlag, New York.
- Simoncelli, E. P. and Adelson, E. H. (1990a). Non-separable extensions of quadrature mirror filters to multiple dimensions. *Proceedings of the IEEE*, 78(4):652–664.
- Simoncelli, E. P. and Adelson, E. H. (1990b). Subband transforms. In Woods, J. (ed.), *Subband Coding*, pp. 143–191, Kluwer Academic Press, Norwell, MA.
- Simoncelli, E. P., Adelson, E. H., and Heeger, D. J. (1991). Probability distributions of optic flow. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 310–315.
- Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992). Shiftable multiscale transforms. *IEEE Transactions on Information Theory*, 38(3):587–607.

Simonyan, K. and Zisserman, A. (2014a). Two-stream convolutional networks for action recognition in videos. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 568–576.

- Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for large-scale image recognition. *arXiv preprint arXiv:1409.1556*.
- Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. *arXiv* preprint arXiv:1312.6034.
- Singaraju, D., Grady, L., and Vidal, R. (2008). Interactive image segmentation via minimization of quadratic energies on directed graphs. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Singaraju, D., Rother, C., and Rhemann, C. (2009). New appearance models for natural image matting. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Singaraju, D., Grady, L., Sinop, A. K., and Vidal, R. (2011). Continuous-valued MRF for image segmentation. In Blake, A., Kohli, P., and Rother, C. (eds), *Markov Random Fields for Vision and Image Processing*, pp. 127–142, MIT Press.
- Singh, K. K., Mahajan, D., Grauman, K., Lee, Y. J., Feiszli, M., and Ghadiyaram, D. (2020). Don't judge an object by its context: Learning to overcome contextual bias. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sinha, P., Balas, B., Ostrovsky, Y., and Russell, R. (2006). Face recognition by humans: Nineteen results all computer vision researchers should know about. *Proceedings of the IEEE*, 94(11):1948–1962.
- Sinha, S. N. and Pollefeys, M. (2005). Multi-view reconstruction using photo-consistency and exact silhouette constraints: A maximum-flow formulation. In *International Conference on Computer Vision (ICCV)*, pp. 349–356.
- Sinha, S. N., Scharstein, D., and Szeliski, R. (2014). Efficient high-resolution stereo matching using local plane sweeps. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sinha, S. N., Steedly, D., and Szeliski, R. (2009). Piecewise planar stereo for image-based rendering. In *IEEE International Conference on Computer Vision (ICCV)*, pp. 1881–1888.
- Sinha, S. N., Steedly, D., and Szeliski, R. (2010). A multi-stage linear approach to structure from motion. In ECCV Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual Environments.
- Sinha, S. N., Kopf, J., Goesele, M., Scharstein, D., and Szeliski, R. (2012). Image-based rendering for scenes with reflections. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 31(4):100.
- Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. (2008). Interactive 3D architectural modeling from unordered photo collections. *ACM Transactions on Graphics (Proc. SIGGRAPH Asia)*, 27(5):159.

- Sinop, A. K. and Grady, L. (2007). A seeded image segmentation framework unifying graph cuts and random walker which yields a new algorithm. In *International Conference on Computer Vision (ICCV)*.
- Sitzmann, V., Zollhöfer, M., and Wetzstein, G. (2019). Scene representation networks: Continuous 3D-structure-aware neural scene representations. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1119–1130.
- Sitzmann, V., Chan, E. R., Tucker, R., Snavely, N., and Wetzstein, G. (2020). MetaSDF: Meta-learning signed distance functions. In *Advances in Neural Information Processing Systems* (NeurIPS).
- Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., and Wetzstein, G. (2020). Implicit neural representations with periodic activation functions. In *Advances in Neural Information Pro*cessing Systems (NeurIPS).
- Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., and Zollhöfer, M. (2019). DeepVoxels: Learning persistent 3D feature embeddings. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sivic, J. and Zisserman, A. (2003). Video Google: A text retrieval approach to object matching in videos. In *International Conference on Computer Vision (ICCV)*, pp. 1470–1477.
- Sivic, J. and Zisserman, A. (2009). Efficient visual search of videos cast as text retrieval. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(4):591–606.
- Sivic, J., Zitnick, C. L., and Szeliski, R. (2006). Finding people in repeated shots of the same scene. In *British Machine Vision Conference (BMVC)*, pp. 909–918.
- Sivic, J., Russell, B., Zisserman, A., Freeman, W. T., and Efros, A. A. (2008). Unsupervised discovery of visual object class hierarchies. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Slabaugh, G. G., Culbertson, W. B., Slabaugh, T. G., Culbertson, B., Malzbender, T., and Stevens, M. (2004). Methods for volumetric reconstruction of visual scenes. *International Journal of Computer Vision*, 57(3):179–199.
- Slama, C. C. (ed.). (1980). *Manual of Photogrammetry*. American Society of Photogrammetry, Falls Church, Virginia, 4th edition.
- Smelyanskiy, V. N., Cheeseman, P., Maluf, D. A., and Morris, R. D. (2000). Bayesian super-resolved surface reconstruction from images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 375–382.
- Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and Jain, R. C. (2000). Content-based image retrieval at the end of the early years. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(12):477–490.
- Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., and Shah, M. (2014).
 Visual tracking: An experimental survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(7):1442–1468.

Sminchisescu, C. and Triggs, B. (2001). Covariance scaled sampling for monocular 3D body tracking. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 447–454.

- Sminchisescu, C., Kanaujia, A., and Metaxas, D. (2006). Conditional models for contextual human motion recognition. *Computer Vision and Image Understanding*, 104(2–3):210–220.
- Sminchisescu, C., Kanaujia, A., Li, Z., and Metaxas, D. (2005). Discriminative density propagation for 3D human motion estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 390–397.
- Smith, A. R. and Blinn, J. F. (1996). Blue screen matting. In ACM SIGGRAPH Conference Proceedings, pp. 259–268.
- Smith, B. M., Zhang, L., Jin, H., and Agarwala, A. (2009). Light field video stabilization. In *International Conference on Computer Vision (ICCV)*.
- Smith, S. M. and Brady, J. M. (1997). SUSAN—a new approach to low level image processing. *International Journal of Computer Vision*, 23(1):45–78.
- Smola, A. and Li, M. (2019). Berkeley stat 157 course (spring 2019): Introduction to deep learning. Slides and Jupyter notebooks available at https://courses.d2l.ai/berkeley-stat-157.
- Smolic, A. and Kauff, P. (2005). Interactive 3-D video representation and coding technologies. *Proceedings of the IEEE*, 93(1):98–110.
- Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3D. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 25(3):835–846.
- Snavely, N., Seitz, S. M., and Szeliski, R. (2008a). Modeling the world from internet photo collections. *International Journal of Computer Vision*, 80(2):189–210.
- Snavely, N., Seitz, S. M., and Szeliski, R. (2008b). Skeletal graphs for efficient structure from motion. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Snavely, N., Garg, R., Seitz, S. M., and Szeliski, R. (2008). Finding paths through the world's photos. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 27(3).
- Snavely, N., Simon, I., Goesele, M., Szeliski, R., and Seitz, S. M. (2010). Scene reconstruction and visualization from community photo collections. *Proceedings of the IEEE*, 98(8):1370–1390.
- Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objective. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1857–1865.
- Sohoni, N. S., Aberger, C. R., Leszczynski, M., Zhang, J., and Ré, C. (2019). Low-memory neural network training: A technical report. https://web.stanford.edu/~nims/low_memory_training.pdf.
- Soille, P. (2006). Morphological image compositing. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(5):673–683.
- Solà, J., Deray, J., and Atchuthan, D. (2019). A micro lie theory for state estimation in robotics. *arXiv* preprint arXiv:1812.01537.

- Solina, F. and Bajcsy, R. (1990). Recovery of parametric models from range images: The case for superquadrics with global deformations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(2):131–147.
- Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep metric learning via lifted structured feature embedding. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Song, J., Chen, X., and Hilliges, O. (2020). Human body model fitting by learned gradient descent. In *European Conference on Computer Vision (ECCV)*.
- Song, X., Zhao, X., Fang, L., Hu, H., and Yu, Y. (2020). EdgeStereo: An effective multi-task learning network for stereo matching and edge detection. *International Journal of Computer Vision*, 128(4):910–930.
- Song, X., Yang, G., Zhu, X., Zhou, H., Wang, Z., and Shi, J. (2021). AdaStereo: A simple and efficient approach for adaptive stereo matching. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Soomro, K., Zamir, A. R., and Shah, M. (2012). *UCF101: A dataset of 101 human actions classes from videos in the wild*. Technical Report CRCV-TR-12-01, University of Central Florida.
- Sotiras, A., Davatzikos, C., and Paragios, N. (2013). Deformable medical image registration: A survey. *IEEE Transactions on Medical Imaging*, 32(7):1153–1190.
- Soucy, M. and Laurendeau, D. (1992). Multi-resolution surface modeling from multiple range views. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 348–353.
- Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striving for simplicity: The all convolutional net. In *ICLR* (workshop track).
- Spurr, A., Iqbal, U., Molchanov, P., Hilliges, O., and Kautz, J. (2020). Weakly supervised 3D hand pose estimation via biomechanical constraints. In *European Conference on Computer Vision (ECCV)*.
- Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., and Vaswani, A. (2021). Bottleneck transformers for visual recognition. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Srinivasan, P. P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., and Barron, J. T. (2021). NeRV: Neural reflectance and visibility fields for relighting and view synthesis. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Srinivasan, P. P., Tucker, R., Barron, J. T., Ramamoorthi, R., Ng, R., and Snavely, N. (2019). Pushing the boundaries of view extrapolation with multiplane images. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Srinivasan, S., Chellappa, R., Veeraraghavan, A., and Aggarwal, G. (2005). Electronic image stabilization and mosaicking algorithms. In Bovik, A. (ed.), *Handbook of Image and Video Processing*, Academic Press.

Srivasan, P., Liang, P., and Hackwood, S. (1990). Computational geometric methods in volumetric intersections for 3D reconstruction. *Pattern Recognition*, 23(8):843–857.

- Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015). Unsupervised learning of video representations using LSTMs. In *International Conference on Machine Learning (ICML)*, pp. 843–852.
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(1):1929–1958.
- Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2012). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. *Neural Networks*, 32:323–332.
- Stamos, I., Liu, L., Chen, C., Wolberg, G., Yu, G., and Zokai, S. (2008). Integrating automated range registration with multiview geometry for the photorealistic modeling of large-scale scenes. *International Journal of Computer Vision*, 78(2–3):237–260.
- Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. *IEEE Transactions on Image Processing*, 9(5):889–896.
- Stauffer, C. and Grimson, W. (1999). Adaptive background mixture models for real-time tracking. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 246–252.
- Steedly, D. and Essa, I. (2001). Propagation of innovative information in non-linear least-squares structure from motion. In *International Conference on Computer Vision (ICCV)*, pp. 223–229.
- Steedly, D., Essa, I., and Dellaert, F. (2003). Spectral partitioning for structure from motion. In *International Conference on Computer Vision (ICCV)*, pp. 996–1003.
- Steedly, D., Pal, C., and Szeliski, R. (2005). Efficiently registering video into panoramic mosaics. In *International Conference on Computer Vision (ICCV)*, pp. 1300–1307.
- Steele, R. and Jaynes, C. (2005). Feature uncertainty arising from covariant image noise. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1063–1070.
- Steele, R. M. and Jaynes, C. (2006). Overconstrained linear estimation of radial distortion and multiview geometry. In *European Conference on Computer Vision (ECCV)*, pp. 253–264.
- Stein, A., Hoiem, D., and Hebert, M. (2007). Learning to extract object boundaries using motion cues. In *International Conference on Computer Vision (ICCV)*.
- Stein, F. and Medioni, G. (1992). Structural indexing: Efficient 3-D object recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):125–145.
- Stein, G. (1995). Accurate internal camera calibration using rotation, with analysis of sources of error. In *International Conference on Computer Vision (ICCV)*, pp. 230–236.
- Stein, G. (1997). Lens distortion calibration using point correspondences. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 602–608.
- S. Stein, (2020).See what iPhone 12 Pro's new lidar feature with 3D-scanning https://www.cnet.com/news/ do this app. c—net.

- what-lidar-feature-apple-iphone-12-pro-can-do-3d-scanning-app-canvas.
- Stenborg, E., Sattler, T., and Hammarstrand, L. (2020). Using image sequences for long-term visual localization. In *International Conference on 3D Vision (3DV)*, pp. 938–948.
- Stenger, B., Thayananthan, A., Torr, P. H. S., and Cipolla, R. (2006). Model-based hand tracking using a hierarchical bayesian filter. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(9):1372–1384.
- Stewart, C. V. (1999). Robust parameter estimation in computer vision. SIAM Reviews, 41(3):513–537.
- Stiller, C. and Konrad, J. (1999). Estimating motion in image sequences: A tutorial on modeling and computation of 2D motion. *IEEE Signal Processing Magazine*, 16(4):70–91.
- Stollnitz, E. J., DeRose, T. D., and Salesin, D. H. (1996). Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann, San Francisco.
- Strang, G. (1988). *Linear Algebra and its Applications*. Harcourt, Brace, Jovanovich, Publishers, San Diego, 3rd edition.
- Strang, G. (1989). Wavelets and dilation equations: A brief introduction. SIAM Reviews, 31(4):614–627.
- Strecha, C., Tuytelaars, T., and Van Gool, L. (2003). Dense matching of multiple wide-baseline views. In *International Conference on Computer Vision (ICCV)*, pp. 1194–1201.
- Strecha, C., von Hansen, W., Van Gool, L., Fua, P., and Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Stühmer, J., Nowozin, S., Fitzgibbon, A., Szeliski, R., Perry, T., Acharya, S., Cremers, D., and Shotton, J. (2015). Model-based tracking at 300Hz using raw time-of-flight observations. In *IEEE International Conference on Computer Vision (ICCV)*.
- Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark for the evaluation of RGB-D SLAM systems. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 573–580.
- Sturm, P. (2005). Multi-view geometry for general camera models. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 206–212.
- Sturm, P. and Ramalingam, S. (2004). A generic concept for camera calibration. In *European Conference on Computer Vision (ECCV)*, pp. 1–13.
- Sturm, P. and Triggs, W. (1996). A factorization based algorithm for multi-image projective structure and motion. In *European Conference on Computer Vision (ECCV)*, pp. 709–720.
- Su, N. M. and Crandall, D. J. (2021). The affective growth of computer vision. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Su, X. and Zhang, Q. (2010). Dynamic 3-d shape measurement method: a review. *Optics and Lasers in Engineering*, 48(2):191–204.

Subramanya, A. and Talukdar, P. P. (2014). Graph-based semi-supervised learning. *Synthesis Lectures on Artificial Intelligence and Machine Learning*, 8(4):1–125.

- Sudderth, E. B., Torralba, A., Freeman, W. T., and Willsky, A. S. (2008). Describing visual scenes using transformed objects and parts. *International Journal of Computer Vision*, 77(1–3):291–330.
- Sullivan, G. J., Ohm, J.-R., Han, W.-J., and Wiegand, T. (2012). Overview of the high efficiency video coding (hevc) standard. *IEEE Transactions on Circuits and Systems for Video Technology*, 22(12):1649–1668.
- Sullivan, S. and Ponce, J. (1998). Automatic model construction and pose estimation from photographs using triangular splines. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(10):1091–1096.
- Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable effectiveness of data in deep learning era. In *IEEE International Conference on Computer Vision (ICCV)*.
- Sun, C., Myers, A., Vondrick, C., Murphy, K., and Schmid, C. (2019). VideoBERT: A joint model for video and language representation learning. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Sun, D., Liu, C., and Pfister, H. (2014). Local layering for joint motion estimation and occlusion detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, D., Roth, S., and Black, M. J. (2010). Secrets of optical flow estimation and their principles. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, D., Roth, S., and Black, M. J. (2014). A quantitative analysis of current practices in optical flow estimation and the principles behind them. *International Journal of Computer Vision*, 106(2):115–137.
- Sun, D., Sudderth, E. B., and Black, M. J. (2012). Layered segmentation and optical flow estimation over time. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, D., Sudderth, E. B., and Pfister, H. (2015). Layered RGBD scene flow estimation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, D., Roth, S., Lewis, J. P., and Black, M. J. (2008). Learning optical flow. In *European Conference on Computer Vision (ECCV)*, pp. 83–97.
- Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2018). PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Sun, D., Yang, X., Liu, M.-Y., and Kautz, J. (2019). Models matter, so does training: An empirical study of CNNs for optical flow estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 42(6):1408–1423.
- Sun, D., Wulff, J., Sudderth, E. B., Pfister, H., and Black, M. J. (2013). A fully-connected layered model of foreground and background flow. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Sun, D., Vlasic, D., Herrmann, C., Jampani, V., Krainin, M., Chang, H., Zabih, R., Freeman, W. T., and Liu, C. (2021). AutoFlow: Learning a better training set for optical flow. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, J., Zheng, N., and Shum, H. (2003). Stereo matching using belief propagation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 25(7):787–800.
- Sun, J., Cao, W., Xu, Z., and Ponce, J. (2015). Learning a convolutional neural network for non-uniform motion blur removal. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. (2004). Poisson matting. *ACM Transactions on Graphics* (*Proc. SIGGRAPH*), 23(3):315–321.
- Sun, J., Li, Y., Kang, S. B., and Shum, H.-Y. (2006). Flash matting. *ACM Transactions on Graphics*, 25(3):772–778.
- Sun, J., Yuan, L., Jia, J., and Shum, H.-Y. (2004). Image completion with structure propagation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):861–868.
- Sun, J., Shen, Z., Wang, Y., Bao, H., and Zhou, X. (2021). LoFTR: Detector-free local feature matching with transformers. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, T., Barron, J. T., Tsai, Y.-T., Xu, Z., Yu, X., Fyffe, G., Rhemann, C., Busch, J., Debevec, P., and Ramamoorthi, R. (2019). Single image portrait relighting. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 38(4):79.
- Sun, X., Xie, Y., Luo, P., and Wang, L. (2017). A dataset for benchmarking image-based localization. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Sun, Y., Tzeng, E., Darrell, T., and Efros, A. A. (2019). Unsupervised domain adaptation through self-supervision. *arXiv* preprint *arXiv*:1909.11825.
- Sung, K.-K. and Poggio, T. (1998). Example-based learning for view-based human face detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(1):39–51.
- Sutherland, I. E. (1974). Three-dimensional data input by tablet. *Proceedings of the IEEE*, 62(4):453–461.
- Sutton, R. (2019). The bitter lesson. http://www.incompleteideas.net/IncIdeas/BitterLesson.html.
- Svoboda, J., Anoosheh, A., Osendorfer, C., and Masci, J. (2020). Two-stage peer-regularized feature recombination for arbitrary image style transfer. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Swain, M. J. and Ballard, D. H. (1991). Color indexing. *International Journal of Computer Vision*, 7(1):11–32.
- Swaminathan, R., Kang, S. B., Szeliski, R., Criminisi, A., and Nayar, S. K. (2002). On the motion and appearance of specularities in image sequences. In *European Conference on Computer Vision (ECCV)*, pp. 508–523.

Sweeney, C., Hollerer, T., and Turk, M. (2015). Theia: A fast and scalable structure-from-motion library. In *ACM International Conference on Multimedia*, pp. 693–696.

- Sweeney, C., Kneip, L., Hollerer, T., and Turk, M. (2015). Computing similarity transformations from only image correspondences. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Sweldens, W. (1996). Wavelets and the lifting scheme: A 5 minute tour. Z. Angew. Math. Mech., 76 (Suppl. 2):41–44.
- Sweldens, W. (1997). The lifting scheme: A construction of second generation wavelets. *SIAM J. Math. Anal.*, 29(2):511–546.
- Swendsen, R. H. and Wang, J.-S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. *Physical Review Letters*, 58(2):86–88.
- Sze, V., Chen, Y., Yang, T., and Emer, J. S. (2017). Efficient processing of deep neural networks: A tutorial and survey. *Proceedings of the IEEE*, 105(12):2295–2329.
- Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A. (2017). Inception-v4, Inception-ResNet and the impact of residual connections on learning. In *Thirty-first AAAI Conference on Artificial Intelligence*.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2013). Intriguing properties of neural networks. *arXiv preprint arXiv:1312.6199*.
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Szeliski, R. (1989). *Bayesian Modeling of Uncertainty in Low-Level Vision*. Kluwer Academic Publishers, Boston.
- Szeliski, R. (1990a). Bayesian modeling of uncertainty in low-level vision. *International Journal of Computer Vision*, 5(3):271–301.
- Szeliski, R. (1990b). Fast surface interpolation using hierarchical basis functions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 12(6):513–528.
- Szeliski, R. (1991a). Fast shape from shading. CVGIP: Image Understanding, 53(2):129–153.
- Szeliski, R. (1991b). Shape from rotation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 625–630.
- Szeliski, R. (1993). Rapid octree construction from image sequences. *CVGIP: Image Understanding*, 58(1):23–32.
- Szeliski, R. (1994). Image mosaicing for tele-reality applications. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 44–53.

- Szeliski, R. (1996). Video mosaics for virtual environments. *IEEE Computer Graphics and Applications*, 16(2):22–30.
- Szeliski, R. (1999a). A multi-view approach to motion and stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 157–163.
- Szeliski, R. (1999b). Prediction error as a quality metric for motion and stereo. In *International Conference on Computer Vision (ICCV)*, pp. 781–788.
- Szeliski, R. (2005). ICCV2005 computer vision contest. Originally hosted at http://research. microsoft.com/iccv2005/Contest/ and now archived at https://szeliski.org/ICCV_2005_Contest/.
- Szeliski, R. (2006a). Image alignment and stitching: A tutorial. *Foundations and Trends® in Computer Graphics and Computer Vision*, 2(1):1–104.
- Szeliski, R. (2006b). Locally adapted hierarchical basis preconditioning. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 25(3):1135–1143.
- Szeliski, R. (2010). *Computer Vision: Algorithms and Applications*. Springer, New York, 1st edition. A free PDF version can be found at https://szeliski.org/Book/1stEdition.htm.
- Szeliski, R. and Coughlan, J. (1997). Spline-based image registration. *International Journal of Computer Vision*, 22(3):199–218.
- Szeliski, R. and Golland, P. (1999). Stereo matching with transparency and matting. *International Journal of Computer Vision*, 32(1):45–61. Special Issue for Marr Prize papers.
- Szeliski, R. and Hinton, G. (1985). Solving random-dot stereograms using the heat equation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 284–288.
- Szeliski, R. and Ito, M. R. (1986). New Hermite cubic interpolator for two-dimensional curve generation. *IEE Proceedings E*, 133(6):341–347.
- Szeliski, R. and Kang, S. B. (1994). Recovering 3D shape and motion from image streams using nonlinear least squares. *Journal of Visual Communication and Image Representation*, 5(1):10–28.
- Szeliski, R. and Kang, S. B. (1995). Direct methods for visual scene reconstruction. In *IEEE Work-shop on Representations of Visual Scenes*, pp. 26–33.
- Szeliski, R. and Kang, S. B. (1997). Shape ambiguities in structure from motion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(5):506–512.
- Szeliski, R. and Lavallée, S. (1996). Matching 3-D anatomical surfaces with non-rigid deformations using octree-splines. *International Journal of Computer Vision*, 18(2):171–186.
- Szeliski, R. and Scharstein, D. (2004). Sampling the disparity space image. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(3):419–425.
- Szeliski, R. and Shum, H.-Y. (1996). Motion estimation with quadtree splines. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(12):1199–1210.
- Szeliski, R. and Shum, H.-Y. (1997). Creating full view panoramic image mosaics and environment maps. In *ACM SIGGRAPH Conference Proceedings*, pp. 251–258.
- Szeliski, R. and Tonnesen, D. (1992). Surface modeling with oriented particle systems. *Computer Graphics (SIGGRAPH)*, 26(2):185–194.

Szeliski, R. and Torr, P. (1998). Geometrically constrained structure from motion: Points on planes. In European Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE), pp. 171–186.

- Szeliski, R. and Weiss, R. (1998). Robust shape recovery from occluding contours using a linear smoother. *International Journal of Computer Vision*, 28(1):27–44.
- Szeliski, R., Avidan, S., and Anandan, P. (2000). Layer extraction from multiple images containing reflections and transparency. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 246–253.
- Szeliski, R., Tonnesen, D., and Terzopoulos, D. (1993a). Curvature and continuity control in particle-based surface models. In *SPIE Vol. 2031, Geometric Methods in Computer Vision II*, pp. 172–181.
- Szeliski, R., Tonnesen, D., and Terzopoulos, D. (1993b). Modeling surfaces of arbitrary topology with dynamic particles. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 82–87.
- Szeliski, R., Uyttendaele, M., and Steedly, D. (2008). *Fast Poisson Blending using Multi-Splines*. Technical Report MSR-TR-2008-58, Microsoft Research.
- Szeliski, R., Winder, S., and Uyttendaele, M. (2010). *High-quality multi-pass image resampling*. Technical Report MSR-TR-2010-10, Microsoft Research.
- Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. (2008). A comparative study of energy minimization methods for Markov random fields with smoothness-based priors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(6):1068–1080.
- Szummer, M. and Picard, R. W. (1996). Temporal texture modeling. In *IEEE International Conference on Image Processing (ICIP)*, pp. 823–826.
- Tabb, M. and Ahuja, N. (1997). Multiscale image segmentation by integrated edge and region detection. *IEEE Transactions on Image Processing*, 6(5):642–655.
- Taguchi, Y., Wilburn, B., and Zitnick, C. L. (2008). Stereo reconstruction with mixed pixels using adaptive over-segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Taheri, O., Ghorbani, N., Black, M. J., and Tzionas, D. (2020). GRAB: A dataset of whole-body human grasping of objects. In *European Conference on Computer Vision (ECCV)*.
- Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). DeepFace: Closing the gap to human-level performance in face verification. In *IEEE Conference on Computer Vision and Pattern Recogni*tion (CVPR).
- Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., and Torii, A. (2018).
 InLoc: Indoor visual localization with dense matching and view synthesis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Taira, H., Rocco, I., Sedlar, J., Okutomi, M., Sivic, J., Pajdla, T., Sattler, T., and Torii, A. (2019). Is this the right place? Geometric-semantic pose verification for indoor visual localization. In

- IEEE/CVF International Conference on Computer Vision (ICCV).
- Takamatsu, J., Matsushita, Y., and Ikeuchi, K. (2008). Estimating radiometric response functions from image noise variance. In *European Conference on Computer Vision (ECCV)*, pp. 623–637.
- Takeda, H., Farsiu, S., and Milanfar, P. (2007). Kernel regression for image processing and reconstruction. *IEEE Transactions on Image Processing*, 16(2):349–366.
- Takikawa, T., Litalien, J., Yin, K., Kreis, K., Loop, C., Nowrouzezahrai, D., Jacobson, A., McGuire, M., and Fidler, S. (2021). Neural geometric level of detail: Real-time rendering with implicit 3D shapes. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Talebi, H. and Milanfar, P. (2018). NIMA: Neural image assessment. *IEEE Transactions on Image Processing*, 27(8):3998–4011.
- Tam, G. K. L., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin, R. R., Sun, X.-F., and Rosin, P. L. (2012). Registration of 3D point clouds and meshes: A survey from rigid to nonrigid. *IEEE Transactions on Visualization and Computer Graphics*, 19(7):1199–1217.
- Tan, M. and Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In *International Conference on Machine Learning (ICML)*.
- Tan, M. and Le, Q. V. (2021). EfficientNetV2: Smaller models and faster training. *arXiv preprint* arXiv:2104.00298.
- Tan, M., Pang, R., and Le, Q. V. (2020). EfficientDet: Scalable and efficient object detection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tanaka, M. and Okutomi, M. (2008). Locally adaptive learning for translation-variant MRF image priors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tancik, M., Mildenhall, B., Wang, T., Schmidt, D., Srinivasan, P. P., Barron, J. T., and Ng, R. (2021). Learned initializations for optimizing coordinate-based neural representations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tancik, M., Srinivasan, P. P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J. T., and Ng, R. (2020). Fourier features let networks learn high frequency functions in low dimensional domains. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Tang, D., Dou, M., Lincoln, P., Davidson, P., Guo, K., Taylor, J., Fanello, S., Keskin, C., Kowdle, A., Bouaziz, S., Izadi, S., and Tagliasacchi, A. (2018). Real-time compression and streaming of 4D performances. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 37(6):256.
- Tang, D., Singh, S., Chou, P. A., Hane, C., Dou, M., Fanello, S., Taylor, J., Davidson, P., Guleryuz, O. G., Zhang, Y., Izadi, S., Tagliasacchi, A., Bouaziz, S., and Keskin, C. (2020). Deep implicit volume compression. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tang, Y., Borisyuk, F., Malreddy, S., Li, Y., Liu, Y., and Kirshner, S. (2019). MSURU: Large scale

e-commerce image classification with weakly supervised search data. In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2518–2526.

- Taniai, T., Matsushita, Y., Sato, Y., and Naemura, T. (2018). Continuous 3D label stereo matching using local expansion moves. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(11):2725–2739.
- Tankovich, V., Hane, C., Zhang, Y., Kowdle, A., Fanello, S., and Bouaziz, S. (2021). HITNet: Hierarchical iterative tile refinement network for real-time stereo matching. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tao, H., Sawhney, H. S., and Kumar, R. (2001). A global matching framework for stereo computation. In *International Conference on Computer Vision (ICCV)*, pp. 532–539.
- Tao, X., Gao, H., Liao, R., Wang, J., and Jia, J. (2017). Detail-revealing deep video super-resolution. In IEEE International Conference on Computer Vision (ICCV).
- Tao, X., Gao, H., Shen, X., Wang, J., and Jia, J. (2018). Scale-recurrent network for deep image deblurring. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tappen, M. F. (2007). Utilizing variational optimization to learn Markov random fields. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tappen, M. F. and Freeman, W. T. (2003). Comparison of graph cuts with belief propagation for stereo, using identical MRF parameters. In *International Conference on Computer Vision (ICCV)*, pp. 900–907.
- Tappen, M. F., Freeman, W. T., and Adelson, E. H. (2005). Recovering intrinsic images from a single image. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(9):1459–1472.
- Tappen, M. F., Russell, B. C., and Freeman, W. T. (2003). Exploiting the sparse derivative prior for super-resolution and image demosaicing. In *International Workshop on Statistical and Computa*tional Theories of Vision.
- Tappen, M. F., Liu, C., Freeman, W., and Adelson, E. (2007). Learning Gaussian conditional random fields for low-level vision. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tardif, J.-P. (2009). Non-iterative approach for fast and accurate vanishing point detection. In *International Conference on Computer Vision (ICCV)*.
- Tardif, J.-P., Sturm, P., and Roy, S. (2007). Plane-based self-calibration of radial distortion. In International Conference on Computer Vision (ICCV).
- Tardif, J.-P., Sturm, P., Trudeau, M., and Roy, S. (2009). Calibration of cameras with radially symmetric distortion. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(9):1552–1566.
- Tariq, T., Tursun, O. T., Kim, M., and Didyk, P. (2020). Why are deep representations good perceptual quality features? In *European Conference on Computer Vision (ECCV)*.
- Tassano, M., Delon, J., and Veit, T. (2019). DVDnet: A fast network for deep video denoising. In *IEEE International Conference on Image Processing (ICIP)*, pp. 1805–1809.

- Tassano, M., Delon, J., and Veit, T. (2020). FastDVDnet: Towards real-time deep video denoising without flow estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tatarchenko, M., Dosovitskiy, A., and Brox, T. (2017). Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs. In *IEEE International Conference on Computer Vision (ICCV)*.
- Tatarchenko, M., Richter, S. R., Ranftl, R., Li, Z., Koltun, V., and Brox, T. (2019). What do single-view 3D reconstruction networks learn? In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Taubin, G. (1995). Curve and surface smoothing without shrinkage. In *International Conference on Computer Vision (ICCV)*, pp. 852–857.
- Taubman, D. S. and Marcellin, M. W. (2002). JPEG2000: Standard for interactive imaging. Proceedings of the IEEE, 90(8):1336–1357.
- Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. (2020). Efficient transformers: A survey. *arXiv* preprint arXiv:2009.06732.
- Taylor, C. J. (2003). Surface reconstruction from feature based stereo. In *International Conference on Computer Vision (ICCV)*, pp. 184–190.
- Taylor, C. J., Debevec, P. E., and Malik, J. (1996). Reconstructing polyhedral models of architectural scenes from photographs. In *European Conference on Computer Vision (ECCV)*, pp. 659–668.
- Taylor, C. J., Kriegman, D. J., and Anandan, P. (1991). Structure and motion in two dimensions from multiple images: A least squares approach. In *IEEE Workshop on Visual Motion*, pp. 242–248.
- Taylor, J., Bordeaux, L., Cashman, T., Corish, B., Keskin, C., Sharp, T., Soto, E., Sweeney, D., Valentin, J., Luff, B., Topalian, A., Wood, E., Khamis, S., Kohli, P., Izadi, S., Banks, R., Fitzgibbon, A., and Shotton, J. (2016). Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Transactions on Graphics (Proc. SIGGRAPH), 35(4):Article 143.
- Taylor, J., Shotton, J., Sharp, T., and Fitzgibbon, A. (2012). The Vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Taylor, P. (2009). Text-to-Speech Synthesis. Cambridge University Press, Cambridge.
- Tech, G., Chen, Y., Müller, K., Ohm, J.-R., Vetro, A., and Wang, Y.-K. (2015). Overview of the multiview and 3D extensions of high efficiency video coding. *IEEE Transactions on Circuits and Systems for Video Technology*, 26(1):35–49.
- Teed, Z. and Deng, J. (2020a). DeepV2D: Video to depth with differentiable structure from motion. In *International Conference on Learning Representations (ICLR)*.
- Teed, Z. and Deng, J. (2020b). RAFT: Recurrent all-pairs field transforms for optical flow. In *European Conference on Computer Vision (ECCV)*.

Tek, K. and Kimia, B. B. (2003). Symmetry maps of free-form curve segments via wave propagation. *International Journal of Computer Vision*, 54(1–3):35–81.

- Tekalp, M. (1995). Digital Video Processing. Prentice Hall, Upper Saddle River, NJ.
- Telea, A. (2004). An image inpainting technique based on fast marching method. *Journal of Graphics Tools*, 9(1):23–34.
- Teller, S., Antone, M., Bodnar, Z., Bosse, M., Coorg, S., Jethwa, M., and Master, N. (2003). Calibrated, registered images of an extended urban area. *International Journal of Computer Vision*, 53(1):93–107.
- Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. *science*, 290(5500):2319–2323.
- Teodosio, L. and Bender, W. (1993). Salient video stills: Content and context preserved. In ACM Multimedia, pp. 39–46.
- Terzakis, G. and Lourakis, M. (2020). A consistently fast and globally optimal solution to the perspective-n-point problem. In *European Conference on Computer Vision (ECCV)*.
- Terzopoulos, D. (1983). Multilevel computational processes for visual surface reconstruction. *Computer Vision, Graphics, and Image Processing*, 24:52–96.
- Terzopoulos, D. (1986a). Image analysis using multigrid relaxation methods. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-8(2):129–139.
- Terzopoulos, D. (1986b). Regularization of inverse visual problems involving discontinuities. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-8(4):413–424.
- Terzopoulos, D. (1988). The computation of visible-surface representations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, PAMI-10(4):417–438.
- Terzopoulos, D. (1999). Visual modeling for computer animation: Graphics with a vision. *Computer Graphics*, 33(4):42–45.
- Terzopoulos, D. and Fleischer, K. (1988). Deformable models. *The Visual Computer*, 4(6):306–331.
- Terzopoulos, D. and Metaxas, D. (1991). Dynamic 3D models with local and global deformations: Deformable superquadrics. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(7):703–714.
- Terzopoulos, D. and Szeliski, R. (1992). Tracking with Kalman snakes. In Blake, A. and Yuille, A. L. (eds), *Active Vision*, pp. 3–20, MIT Press, Cambridge, Massachusetts.
- Terzopoulos, D. and Waters, K. (1990). Analysis of facial images using physical and anatomical models. In *International Conference on Computer Vision (ICCV)*, pp. 727–732.
- Terzopoulos, D. and Witkin, A. (1988). Physically-based models with rigid and deformable components. *IEEE Computer Graphics and Applications*, 8(6):41–51.
- Terzopoulos, D., Witkin, A., and Kass, M. (1987). Symmetry-seeking models and 3D object reconstruction. *International Journal of Computer Vision*, 1(3):211–221.
- Terzopoulos, D., Witkin, A., and Kass, M. (1988). Constraints on deformable models: Recovering 3D shape and nonrigid motion. *Artificial Intelligence*, 36(1):91–123.

- Tewari, A., Zollhöfer, M., Zhu, J.-Y., Park, T., Thies, J., Theobalt, C., Shysheya, A., Sitzmann, V., Meshry, M., Mildenhall, B., Xu, Z., Philip, J., Meka, A., Fanello, S., Pandey, R. K., Lombardi, S., and Fried, O. (2020). CVPR 2020 tutorial on neural rendering. https://www.neuralrender.com.
- Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragi, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein, G., Zhu, J.-Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., and Zollhöfer, M. (2020). State of the art on neural rendering. *Computer Graphics Forum (Eurographics)*, 39(2).
- Thayananthan, A., Iwasaki, M., and Cipolla, R. (2008). Principled fusion of high-level model and low-level cues for motion segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Thies, J., Zollhöfer, M., and Nießner, M. (2019). Deferred neural rendering: Image synthesis using neural textures. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 38(4):66.
- Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., and Nießner, M. (2016). Face2Face: Real-time face capture and reenactment of RGB videos. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., and Nießner, M. (2018). HeadOn: Real-time reenactment of human portrait videos. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 37(4):164.
- Thirthala, S. and Pollefeys, M. (2005). The radial trifocal tensor: A tool for calibrating the radial distortion of wide-angle cameras. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 321–328.
- Thomee, B., Shamma, D. A., Friedland, G., Elizalde, B., Ni, K., Poland, D., Borth, D., and Li, L.-J. (2016). YFCC100M: The new data in multimedia research. *Communications of the ACM*, 59(2):64–73.
- Thorpe, C., Hebert, M. H., Kanade, T., and Shafer, S. A. (1988). Vision and navigation for the Carnegie-Mellon Navlab. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 10(3):362–373.
- Thrun, S., Burgard, W., and Fox, D. (2005). *Probabilistic Robotics*. The MIT Press, Cambridge, Massachusetts.
- Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A. *et al.* (2006). Stanley: the robot that won the DARPA Grand Challenge. *Journal of Field Robotics*, 23(9):661–692.
- Tian, Q. and Huhns, M. N. (1986). Algorithms for subpixel registration. *Computer Vision, Graphics, and Image Processing*, 35:220–233.
- Tian, Y., Chen, X., and Ganguli, S. (2021). Understanding self-supervised learning dynamics without contrastive pairs. In *International Conference on Machine Learning (ICML)*.
- Tian, Y., Fan, B., and Wu, F. (2017). L2-Net: Deep learning of discriminative patch descriptor in Euclidean space. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Tian, Y., Luo, P., Wang, X., and Tang, X. (2015). Deep learning strong parts for pedestrian detection. In *IEEE International Conference on Computer Vision (ICCV)*.

- Tian, Y., Balntas, V., Ng, T., Barroso-Laguna, A., Demiris, Y., and Mikolajczyk, K. (2020). D2D: Keypoint extraction with describe to detect approach. In *Asian Conference on Computer Vision* (ACCV).
- Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., and Balntas, V. (2019). SOSNet: Second order similarity regularization for local descriptor learning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statisti-* cal Society: Series B (Methodological), 58(1):267–288.
- Tighe, J. and Lazebnik, S. (2013). Finding things: Image parsing with regions and per-exemplar detectors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tikhonov, A. N. and Arsenin, V. Y. (1977). *Solutions of Ill-Posed Problems*. V. H. Winston, Washington, D. C.
- Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. (2011). A versatile HDR video production system. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 30(4).
- Toint, P. L. (1987). On large scale nonlinear least squares calculations. SIAM J. Sci. Stat. Comput., 8(3):416–435.
- Tola, E., Lepetit, V., and Fua, P. (2010). DAISY: An efficient dense descriptor applied to wide-baseline stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(5):815–830.
- Tolias, G., Jenicek, T., and Chum, O. (2020). Learning and aggregating deep local descriptors for instance-level recognition. In *European Conference on Computer Vision (ECCV)*.
- Tolias, G., Sicre, R., and Jégou, H. (2016). Particular object retrieval with integral max-pooling of CNN activations. In *International Conference on Learning Representations (ICLR)*.
- Tolliver, D. and Miller, G. (2006). Graph partitioning by spectral rounding: Applications in image segmentation and clustering. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1053–1060.
- Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J., Lucic, M., and Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP architecture for vision. arXiv preprint arXiv:2105.01601.
- Tomasi, C. and Kanade, T. (1992). Shape and motion from image streams under orthography: A factorization method. *International Journal of Computer Vision*, 9(2):137–154.
- Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In *International Conference on Computer Vision (ICCV)*, pp. 839–846.
- Tombari, F., Mattoccia, S., and Di Stefano, L. (2007). Segmentation-based adaptive support for accurate stereo correspondence. In *Pacific-Rim Symposium on Image and Video Technology*.

- Tombari, F., Mattoccia, S., Di Stefano, L., and Addimanda, E. (2008). Classification and evaluation of cost aggregation methods for stereo correspondence. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tommasini, T., Fusiello, A., Trucco, E., and Roberto, V. (1998). Making good features track better. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 178–183.
- Tompson, J., Jain, A., LeCun, Y., and Bregler, C. (2014). Joint training of a convolutional network and a graphical model for human pose estimation. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1799–1807.
- Tonioni, A., Tosi, F., Poggi, M., Mattoccia, S., and di Stefano, L. (2019). Real-time self-adaptive deep stereo. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 195–204.
- Torborg, J. and Kajiya, J. T. (1996). Talisman: Commodity realtime 3D graphics for the PC. In *ACM SIGGRAPH Conference Proceedings*, pp. 353–363.
- Torii, A., Sivic, J., Pajdla, T., and Okutomi, M. (2013). Visual place recognition with repetitive structures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR).
- Torii, A., Arandjelović, R., Sivic, J., Okutomi, M., and Pajdla, T. (2018). 24/7 place recognition by view synthesis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(2):257–271.
- Torr, P. (2002). Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. *International Journal of Computer Vision*, 50(1):35–61.
- Torr, P. H. S. and Fitzgibbon, A. W. (2004). Invariant fitting of two view geometry. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 26(5):648–650.
- Torr, P. H. S. and Murray, D. (1997). The development and comparison of robust methods for estimating the fundamental matrix. *International Journal of Computer Vision*, 24(3):271–300.
- Torr, P. H. S. and Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating image geometry. *Computer Vision and Image Understanding*, 78(1):138–156.
- Torr, P. H. S., Szeliski, R., and Anandan, P. (1999). An integrated Bayesian approach to layer extraction from image sequences. In *International Conference on Computer Vision (ICCV)*, pp. 983–990.
- Torr, P. H. S., Szeliski, R., and Anandan, P. (2001). An integrated Bayesian approach to layer extraction from image sequences. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 23(3):297–303.
- Torralba, A. (2003). Contextual priming for object detection. *International Journal of Computer Vision*, 53(2):169–191.
- Torralba, A. (2007). Classifier-based methods. In *CVPR Short Course on Recognizing and Learning Object Categories*. https://people.csail.mit.edu/torralba/shortCourseRLOC.
- Torralba, A. (2008). Object recognition and scene understanding. MIT Course 6.870, http://people.csail.mit.edu/torralba/courses/6.870/6.870.recognition.htm.

Torralba, A. and Efros, A. (2011). Unbiased look at dataset bias. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Torralba, A., Freeman, W. T., and Fergus, R. (2008). 80 million tiny images: a large dataset for non-parametric object and scene recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(11):1958–1970.
- Torralba, A., Murphy, K. P., and Freeman, W. T. (2004). Contextual models for object detection using boosted random fields. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Torralba, A., Weiss, Y., and Fergus, R. (2008). Small codes and large databases of images for object recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Torralba, A., Murphy, K. P., Freeman, W. T., and Rubin, M. A. (2003). Context-based vision system for place and object recognition. In *International Conference on Computer Vision (ICCV)*, pp. 273–280.
- Torrance, K. E. and Sparrow, E. M. (1967). Theory for off-specular reflection from roughened surfaces. *Journal of the Optical Society of America A*, 57(9):1105–1114.
- Torresani, L. (2014). Weakly Supervised Learning, pp. 883-885. Springer, Boston, MA.
- Torresani, L., Hertzmann, A., and Bregler, C. (2008). Non-rigid structure-from-motion: Estimating shape and motion with hierarchical priors. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 30(5):878–892.
- Toshev, A. and Szegedy, C. (2014). DeepPose: Human pose estimation via deep neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tosi, F., Liao, Y., Schmitt, C., and Geiger, A. (2021). SMD-Nets: Stereo mixture density networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Joulin, A., Synnaeve, G., Verbeek, J., and Jégou, H. (2021). ResMLP: Feedforward networks for image classification with data-efficient training. *arXiv* preprint arXiv:2105.03404.
- Touvron, H., Sablayrolles, A., Douze, M., Cord, M., and Jégou, H. (2020). Grafit: Learning fine-grained image representations with coarse labels. *arXiv preprint arXiv:2011.12982*.
- Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. (2020). Training data-efficient image transformers & distillation through attention. *arXiv* preprint arXiv:2012.12877.
- Toyama, K. (1998). Prolegomena for Robust Face Tracking. Technical Report MSR-TR-98-65, Microsoft Research.
- Toyama, K., Krumm, J., Brumitt, B., and Meyers, B. (1999). Wallflower: Principles and practice of background maintenance. In *International Conference on Computer Vision (ICCV)*, pp. 255–261.
- Tran, D., Wang, H., Torresani, L., and Feiszli, M. (2019). Video classification with channel-separated convolutional networks. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). Learning spatiotemporal features with 3D convolutional networks. In *IEEE International Conference on Computer Vision*

(ICCV).

- Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., and Paluri, M. (2018). A closer look at spatiotemporal convolutions for action recognition. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Trefethen, L. N. and Bau, D. (1997). Numerical Linear Algebra. SIAM.
- Treisman, A. (1985). Preattentive processing in vision. *Computer Vision, Graphics, and Image Processing*, 31(2):156–177.
- Triggs, B. (1996). Factorization methods for projective structure and motion. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 845–851.
- Triggs, B. (2004). Detecting keypoints with stable position, orientation, and scale under illumination changes. In *European Conference on Computer Vision (ECCV)*, pp. 100–113.
- Triggs, B., Zisserman, A., and Szeliski, R. (eds). (2000). *Vision Algorithms: Theory and Practice*, Springer, Berlin. International Workshop on Vision Algorithms, Corfu, Greece, September 1999.
- Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle adjustment a modern synthesis. In *International Workshop on Vision Algorithms*, pp. 298–372.
- Trobin, W., Pock, T., Cremers, D., and Bischof, H. (2008). Continuous energy minimization via repeated binary fusion. In *European Conference on Computer Vision (ECCV)*, pp. 677–690.
- Troccoli, A. and Allen, P. (2008). Building illumination coherent 3D models of large-scale outdoor scenes. *International Journal of Computer Vision*, 78(2–3):261–280.
- Trottenberg, U., Oosterlee, C. W., and Schuller, A. (2000). Multigrid. Academic Press.
- Trucco, E. and Verri, A. (1998). *Introductory Techniques for 3-D Computer Vision*. Prentice Hall, Upper Saddle River, NJ.
- Truong, P., Danelljan, M., Van Gool, L., and Timofte, R. (2021). Learning accurate dense correspondences and when to trust them. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tsai, P. S. and Shah, M. (1994). Shape from shading using linear approximation. *Image and Vision Computing*, 12:487–498.
- Tsai, R. Y. (1987). A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. *IEEE Journal of Robotics and Automation*, RA-3(4):323–344.
- Tschumperlé, D. (2006). Curvature-preserving regularization of multi-valued images using PDEs. In *European Conference on Computer Vision (ECCV)*, pp. 295–307.
- Tschumperlé, D. and Deriche, R. (2005). Vector-valued image regularization with PDEs: A common framework for different applications. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27:506–517.
- Tseng, E., Yu, F., Yang, Y., Mannan, F., Arnaud, K. S., Nowrouzezahrai, D., Lalonde, J.-F., and Heide, F. (2019). Hyperparameter optimization in black-box image processing using differentiable proxies. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 38(4):27:1–27:14.

Tsin, Y., Kang, S. B., and Szeliski, R. (2006). Stereo matching with linear superposition of layers. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(2):290–301.

- Tsin, Y., Ramesh, V., and Kanade, T. (2001). Statistical calibration of CCD imaging process. In *International Conference on Computer Vision (ICCV)*, pp. 480–487.
- Tu, Z., Chen, X., Yuille, A. L., and Zhu, S.-C. (2005). Image parsing: Unifying segmentation, detection, and recognition. *International Journal of Computer Vision*, 63(2):113–140.
- Tucker, R. and Snavely, N. (2020). Single-view view synthesis with multiplane images. In *IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR).
- Tulsiani, S., Gupta, S., Fouhey, D. F., Efros, A. A., and Malik, J. (2018). Factoring shape, pose, and layout from the 2D image of a 3D scene. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Tumblin, J. and Rushmeier, H. E. (1993). Tone reproduction for realistic images. *IEEE Computer Graphics and Applications*, 13(6):42–48.
- Tumblin, J. and Turk, G. (1999). LCIS: A boundary hierarchy for detail-preserving contrast reduction. In *ACM SIGGRAPH Conference Proceedings*, pp. 83–90.
- Tumblin, J., Agrawal, A., and Raskar, R. (2005). Why I want a gradient camera. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 103–110.
- Turcot, P. and Lowe, D. G. (2009). Better matching with fewer features: The selection of useful features in large database recognition problems. In *ICCV Workshop on Emergent Issues in Large Amounts of Visual Data (WS-LAVD)*.
- Turk, G. and Levoy, M. (1994). Zippered polygonal meshes from range images. In *ACM SIGGRAPH Conference Proceedings*, pp. 311–318.
- Turk, G. and O'Brien, J. (2002). Modelling with implicit surfaces that interpolate. *ACM Transactions on Graphics*, 21(4):855–873.
- Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. *Journal of Cognitive Neuroscience*, 3(1):71–86.
- Tuytelaars, T. and Mikolajczyk, K. (2008). Local invariant feature detectors: A survey. *Foundations and Trends® in Computer Graphics and Computer Vision*, 3(3):177–280.
- Tuytelaars, T. and Van Gool, L. (2004). Matching widely separated views based on affine invariant regions. *International Journal of Computer Vision*, 59(1):61–85.
- Tuytelaars, T., Van Gool, L., and Proesmans, M. (1997). The cascaded Hough transform. In *International Conference on Image Processing (ICIP)*, pp. 736–739.
- Uijlings, J. R. R., Van De Sande, K. E. A., Gevers, T., and Smeulders, A. W. M. (2013). Selective search for object recognition. *International Journal of Computer Vision*, 104(2):154–171.
- Ullman, S. (1979). The interpretation of structure from motion. *Proceedings of the Royal Society of London*, B-203:405–426.

- Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Unnikrishnan, R., Pantofaru, C., and Hebert, M. (2007). Toward objective evaluation of image segmentation algorithms. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(6):828–944.
- Unser, M. (1999). Splines: A perfect fit for signal and image processing. *IEEE Signal Processing Magazine*, 16(6):22–38.
- Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R. *et al.* (2008). Autonomous driving in urban environments: Boss and the urban challenge. *Journal of Field Robotics*, 25(8):425–466.
- Urtasun, R., Fleet, D. J., and Fua, P. (2006). Temporal motion models for monocular and multiview 3D human body tracking. *Computer Vision and Image Understanding*, 104(2–3):157–177.
- Uyttendaele, M., Eden, A., and Szeliski, R. (2001). Eliminating ghosting and exposure artifacts in image mosaics. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 509–516.
- Uyttendaele, M., Criminisi, A., Kang, S. B., Winder, S., Hartley, R., and Szeliski, R. (2004). Image-based interactive exploration of real-world environments. *IEEE Computer Graphics and Applications*, 24(3):52–63.
- Vaillant, R. and Faugeras, O. D. (1992). Using extremal boundaries for 3-D object modeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 14(2):157–173.
- Vaish, V., Szeliski, R., Zitnick, C. L., Kang, S. B., and Levoy, M. (2006). Reconstructing occluded surfaces using synthetic apertures: Shape from focus vs. shape from stereo. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2331–2338.
- Valentin, J., Kowdle, A., Barron, J. T., Wadhwa, N., Dzitsiuk, M., Schoenberg, M., Verma, V., Csaszar, A., Turner, E., Dryanovski, I., Afonso, J., Pascoal, J., Tsotsos, K., Leung, M., Schmidt, M., Guleryuz, O., Khamis, S., Tankovitch, V., Fanello, S., Izadi, S., and Rhemann, C. (2018). Depth from motion for smartphone AR. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 37(6):193:1–193:19.
- van de Weijer, J. and Schmid, C. (2006). Coloring local feature extraction. In *European Conference* on *Computer Vision (ECCV)*, pp. 334–348.
- van den Hengel, A., Dick, A., Thormählen, T., Ward, B., and Torr, P. H. S. (2007). VideoTrace: Rapid interactive scene modeling from video. *ACM Transactions on Graphics*, 26(3).
- van den Oord, A., Vinyals, O., and Kavukcuoglu, K. (2017). Neural discrete representation learning. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- van den Oord, A., Kalchbrenner, N., Espeholt, L., kavukcuoglu, k., Vinyals, O., and Graves, A. (2016). Conditional image generation with PixelCNN decoders. In *Advances in Neural Information Processing Systems (NeurIPS)*.

van der Maaten, L. (2014). Accelerating t-SNE using tree-based algorithms. *Journal of Machine Learning Research*, 15(1):3221–3245.

- van der Maaten, L. and Hinton, G. (2008). Visualizing data using t-SNE. *Journal of Machine Learning Research*, 9(Nov):2579–2605.
- van Dijk, T. and de Croon, G. (2019). How do neural networks see depth in single images? In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Van Horn, G., Branson, S., Farrell, R., Haber, S., Barry, J., Ipeirotis, P., Perona, P., and Belongie, S. (2015). Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Van Horn, G., Mac Aodha, O., Song, Y., Cui, Y., Sun, C., Shepard, A., Adam, H., Perona, P., and Belongie, S. (2018). The iNaturalist species classification and detection dataset. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Van Huffel, S. and Lemmerling, P. (eds). (2002). *Total Least Squares and Errors-in-Variables Modeling*, Springer.
- Van Huffel, S. and Vandewalle, J. (1991). *The Total Least Squares Problem: Computational Aspects and Analysis*. Society for Industrial and Applied Mathematics, Philadephia.
- van Ouwerkerk, J. D. (2006). Image super-resolution survey. *Image and Vision Computing*, 24(10):1039–1052.
- Varol, G., Laptev, I., and Schmid, C. (2017). Long-term temporal convolutions for action recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 40(6):1510–1517.
- Vasconcelos, N. (2007). From pixels to semantic spaces: Advances in content-based image retrieval. *Computer*, 40(7):20–26.
- Vasilescu, M. A. O. and Terzopoulos, D. (2007). Multilinear (tensor) image synthesis, analysis, and recognition. *IEEE Signal Processing Magazine*, 24(6):118–123.
- Vaswani, A., Huang, A., and Manning, C. (2019). Stanford CS224n course: Natural language processing with deep learning. Video and slides available at https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/index.html#schedule.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 5998–6008.
- Vedantam, R., Lawrence Zitnick, C., and Parikh, D. (2015). CIDEr: Consensus-based image description evaluation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Vedula, S., Baker, S., and Kanade, T. (2005). Image-based spatio-temporal modeling and view interpolation of dynamic events. *ACM Transactions on Graphics*, 24(2):240–261.
- Vedula, S., Baker, S., Rander, P., Collins, R., and Kanade, T. (2005). Three-dimensional scene flow. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(3):475–480.

- Veksler, O. (1999). *Efficient Graph-based Energy Minimization Methods in Computer Vision*. Ph.D. thesis, Cornell University.
- Veksler, O. (2001). Stereo matching by compact windows via minimum ratio cycle. In *International Conference on Computer Vision (ICCV)*, pp. 540–547.
- Veksler, O. (2003). Fast variable window for stereo correspondence using integral images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 556–561.
- Veksler, O. (2005). Stereo correspondence by dynamic programming on a tree. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 384–390.
- Verbin, D. and Zickler, T. (2020). Toward a universal model for shape from texture. In *IEEE/CVF* Conference on Computer Vision and Pattern Recognition (CVPR).
- Vergauwen, M. and Van Gool, L. (2006). Web-based 3D reconstruction service. *Machine Vision and Applications*, 17(2):321–329.
- Vetter, T. and Poggio, T. (1997). Linear object classes and image synthesis from a single example image. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):733–742.
- Viazovetskyi, Y., Ivashkin, V., and Kashin, E. (2020). Stylegan2 distillation for feed-forward image manipulation. In *European Conference on Computer Vision (ECCV)*.
- Vicente, S., Kolmogorov, V., and Rother, C. (2008). Graph cut based image segmentation with connectivity priors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Vidal, J., Lin, C.-Y., Lladó, X., and Martí, R. (2018). A method for 6d pose estimation of free-form rigid objects using point pair features on range data. *Sensors*, 18(8):2678.
- Vidal, R., Ma, Y., and Sastry, S. S. (2016). Generalized Principal Component Analysis. Springer.
- Viéville, T. and Faugeras, O. D. (1990). Feedforward recovery of motion and structure from a sequence of 2D-lines matches. In *International Conference on Computer Vision (ICCV)*, pp. 517–520.
- Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(6):583–596.
- Vineet, V., Warrell, J., and Torr, P. H. S. (2014). Filter-based mean-field inference for random fields with higher-order terms and product label-spaces. *International Journal of Computer Vision*, 110(3):290–307.
- Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015). Show and tell: A neural image caption generator. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Viola, P. and Wells III, W. (1997). Alignment by maximization of mutual information. *International Journal of Computer Vision*, 24(2):137–154.
- Viola, P., Jones, M. J., and Snow, D. (2003). Detecting pedestrians using patterns of motion and appearance. In *International Conference on Computer Vision (ICCV)*, pp. 734–741.

Viola, P. A. and Jones, M. J. (2004). Robust real-time face detection. *International Journal of Computer Vision*, 57(2):137–154.

- Vlasic, D., Baran, I., Matusik, W., and Popović, J. (2008). Articulated mesh animation from multiview silhouettes. *ACM Transactions on Graphics*, 27(3):97.
- Vlasic, D., Brand, M., Pfister, H., and Popović, J. (2005). Face transfer with multilinear models. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):426–433.
- Vogel, C., Schindler, K., and Roth, S. (2015). 3D scene flow estimation with a piecewise rigid scene model. *International Journal of Computer Vision*, 115(1):1–28.
- Vogiatzis, G., Torr, P., and Cipolla, R. (2005). Multi-view stereo via volumetric graph-cuts. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 391–398.
- Vogiatzis, G., Hernández, C., Torr, P., and Cipolla, R. (2007). Multi-view stereo via volumetric graphcuts and occlusion robust photo-consistency. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(12):2241–2246.
- Voigtlaender, P., Krause, M., Ošep, A., Luiten, J., Sekar, B. B. G., Geiger, A., and Leibe, B. (2019). MOTS: Multi-object tracking and segmentation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- von Marcard, T., Henschel, R., Black, M. J., Rosenhahn, B., and Pons-Moll, G. (2018). Recovering accurate 3D human pose in the wild using IMUs and a moving camera. In *European Conference on Computer Vision (ECCV)*.
- Vondrick, C., Shrivastava, A., Fathi, A., Guadarrama, S., and Murphy, K. (2018). Tracking emerges by colorizing videos. In *European Conference on Computer Vision (ECCV)*.
- Vu, H., Labatut, P., Pons, J., and Keriven, R. (2012). High accuracy and visibility-consistent dense multiview stereo. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(5):889–901.
- Wadhwa, N., Garg, R., Jacobs, D. E., Feldman, B. E., Kanazawa, N., Carroll, R., Movshovitz-Attias, Y., Barron, J. T., Pritch, Y., and Levoy, M. (2018). Synthetic depth-of-field with a single-camera mobile phone. ACM Transactions on Graphics (Proc. SIGGRAPH), 37(4):Article 64.
- Waechter, M., Moehrle, N., and Goesele, M. (2014). Let there be color! Large-scale texturing of 3D reconstructions. In *European Conference on Computer Vision*, pp. 836–850.
- Waechter, M., Beljan, M., Fuhrmann, S., Moehrle, N., Kopf, J., and Goesele, M. (2017). Virtual rephotography: Novel view prediction error for 3D reconstruction. *ACM Transactions on Graphics*, 36(1):8:1–8:11.
- Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., and Schmalstieg, D. (2008). Pose tracking from natural features on mobile phones. In *IEEE/ACM International Symposium on Mixed and Augmented Reality (ISMAR)*, pp. 125–134.
- Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). *The Caltech-UCSD Birds-200-2011 Dataset*. Technical Report CNS-TR-2011-001, California Institute of Technology.

- Wahba, G. and Wendelberger, J. (1980). Some new mathematical methods for variational objective analysis using splines and cross validation. *Monthly Weather Review*, 108:1122–1143.
- Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. *Foundations and Trends*® *in Machine Learning*, 1(1–2):1–305.
- Waithe, P. and Ferrie, F. (1991). From uncertainty to visual exploration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 13(10):1038–1049.
- Walker, E. L. and Herman, M. (1988). Geometric reasoning for constructing 3D scene descriptions from images. *Artificial Intelligence*, 37:275–290.
- Wallace, G. K. (1991). The JPEG still picture compression standard. *Communications of the ACM*, 34(4):30–44.
- Wallace, J. R., Cohen, M. F., and Greenberg, D. P. (1987). A two-pass solution to the rendering equation: A synthesis of ray tracing and radiosity methods. *Computer Graphics (SIGGRAPH)*, 21(4):311–320.
- Wallace, R., Stentz, A., Thorpe, C., Moravec, H., Whittaker, W., and Kanade, T. (1985). First results in robot road-following. In *International Joint Conference on Artificial Intelligence (IJCAI)*.
- Waltz, D. L. (1975). Understanding line drawings of scenes with shadows. In Winston, P. H. (ed.), *The Psychology of Computer Vision*, McGraw-Hill, New York.
- Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen, K., Vajda, P., and Gonzalez, J. E. (2020). FBNetV2: Differentiable neural architecture search for spatial and channel dimensions. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wandell, B. A. (1995). *Foundations of Vision*. Sinauer Associates. https://foundationsofvision.stanford.edu.
- Wang, F., Galliani, S., Vogel, C., Speciale, P., and Pollefeys, M. (2021). PatchmatchNet: Learned multi-view patchmatch stereo. In *IEEE/CVF Conference on Computer Vision and Pattern Recog*nition (CVPR).
- Wang, H. and Oliensis, J. (2010). Shape matching by segmentation averaging. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 32(4):619–635.
- Wang, H. and Schmid, C. (2013). Action recognition with improved trajectories. In *International Conference on Computer Vision (ICCV)*.
- Wang, H., Ge, S., Lipton, Z., and Xing, E. P. (2019). Learning robust global representations by penalizing local predictive power. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 10506–10518.
- Wang, H., Li, Y., Wang, Y., Hu, H., and Yang, M.-H. (2020). Collaborative distillation for ultraresolution universal style transfer. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., and Xiao, B. (2020). Deep high-resolution representation learning for visual recognition.

- IEEE Transactions on Pattern Analysis and Machine Intelligence, (accepted).
- Wang, J. and Cohen, M. F. (2005). An iterative optimization approach for unified image segmentation and matting. In *International Conference on Computer Vision (ICCV)*.
- Wang, J. and Cohen, M. F. (2007a). Optimized color sampling for robust matting. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, J. and Cohen, M. F. (2007b). Simultaneous matting and compositing. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, J. and Cohen, M. F. (2009). Image and video matting: A survey. *Foundations and Trends® in Computer Graphics and Computer Vision*, 3(2).
- Wang, J., Agrawala, M., and Cohen, M. F. (2007). Soft scissors: An interactive tool for realtime high quality matting. *ACM Transactions on Graphics*, 26(3).
- Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F. (2005). Interactive video cutout. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):585–594.
- Wang, J. Y. A. and Adelson, E. H. (1994). Representing moving images with layers. *IEEE Transactions on Image Processing*, 3(5):625–638.
- Wang, L., Kang, S. B., Szeliski, R., and Shum, H.-Y. (2001). Optimal texture map reconstruction from multiple views. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 347–354.
- Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., and Van Gool, L. (2019). Temporal segment networks for action recognition in videos. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(11):2740–2755.
- Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., and Jiang, Y.-G. (2018). Pixel2Mesh: Generating 3D mesh models from single RGB images. In *European Conference on Computer Vision (ECCV)*.
- Wang, P., Liu, L., Chen, N., Chu, H.-K., Theobalt, C., and Wang, W. (2020). Vid2Curve: Simultaneous camera motion estimation and thin structure reconstruction from an RGB video. ACM Transactions on Graphics (Proc. SIGGRAPH), 39(4).
- Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., and Wang, W. (2021). NeuS: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv* preprint *arXiv*:2106.10689.
- Wang, P., Shen, X., Russell, B., Cohen, S., Price, B., and Yuille, A. L. (2016). SURGE: Surface regularized geometry estimation from a single image. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 172–180.
- Wang, Q., Zhou, X., Hariharan, B., and Snavely, N. (2020). Learning feature descriptors using camera pose supervision. In *European Conference on Computer Vision (ECCV)*.
- Wang, Q., Zhang, L., Bertinetto, L., Hu, W., and Torr, P. H. (2019). Fast online object tracking and segmentation: A unifying approach. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Wang, Q., Wang, Z., Genova, K., Srinivasan, P. P., Zhou, H., Barron, J. T., Martin-Brualla, R., Snavely, N., and Funkhouser, T. (2021). IBRNet: Learning multi-view image-based rendering. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
- Wang, R., Geraghty, D., Matzen, K., Szeliski, R., and Frahm, J.-M. (2020). VPLNet: Deep single view normal estimation with vanishing points and lines. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, S., Fidler, S., and Urtasun, R. (2015). Lost shopping! monocular localization in large indoor spaces. In *IEEE International Conference on Computer Vision (ICCV)*.
- Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J., and Catanzaro, B. (2018). Video-to-video synthesis. In *Conference on Neural Information Processing Systems (NeurIPS)*.
- Wang, W., Shen, J., and Porikli, F. (2015). Saliency-aware geodesic video object segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, X., Girshick, R., Gupta, A., and He, K. (2018). Non-local neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wang, Y. and Zhu, S.-C. (2003). Modeling textured motion: Particle, wave and sketch. In *International Conference on Computer Vision (ICCV)*, pp. 213–220.
- Wang, Y., Curless, B. L., and Seitz, S. M. (2020). People as scene probes. In *European Conference on Computer Vision (ECCV)*.
- Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M., and Solomon, J. M. (2019). Dynamic graph CNN for learning on point clouds. *ACM Transactions On Graphics*, 38(5):146.
- Wang, Z., Bovik, A. C., and Simoncelli, E. P. (2005). Structural approaches to image quality assessment. In Bovik, A. C. (ed.), *Handbook of Image and Video Processing*, pp. 961–974, Elsevier Academic Press.
- Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612.
- Wang, Z.-F. and Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wanner, S. and Goldluecke, B. (2014). Variational light field analysis for disparity estimation and super-resolution. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 36(3):606–619.
- Ward, G. (1992). Measuring and modeling anisotropic reflection. *Computer Graphics (SIGGRAPH)*, 26(4):265–272.
- Ward, G. (1994). The radiance lighting simulation and rendering system. In *ACM SIGGRAPH Conference Proceedings*, pp. 459–472.
- Ward, G. (2003). Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures. *Journal of Graphics Tools*, 8(2):17–30.

Ward, G. (2004). High dynamic range image encodings. http://www.anyhere.com/gward/hdrenc/hdr_encodings.html.

- Ware, C., Arthur, K., and Booth, K. S. (1993). Fish tank virtual reality. In INTERCHI, pp. 37-42.
- Warren, J. and Weimer, H. (2001). Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann.
- Watanabe, M. and Nayar, S. K. (1998). Rational filters for passive depth from defocus. *International Journal of Computer Vision*, 27(3):203–225.
- Watt, A. (1995). 3D Computer Graphics. Addison-Wesley, Harlow, England, 3rd edition.
- Weber, J. and Malik, J. (1995). Robust computation of optical flow in a multi-scale differential framework. *International Journal of Computer Vision*, 14(1):67–81.
- Weber, M., Welling, M., and Perona, P. (2000). Unsupervised learning of models for recognition. In *European Conference on Computer Vision (ECCV)*, pp. 18–32.
- Wedel, A., Cremers, D., Pock, T., and Bischof, H. (2009). Structure- and motion-adaptive regularization for high accuracy optic flow. In *International Conference on Computer Vision (ICCV)*.
- Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., and Cremers, D. (2011). Stereoscopic scene flow computation for 3D motion understanding. *International Journal of Computer Vision*, 95(1):29–51.
- Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., and Cremers, D. (2008). Efficient dense scene flow from sparse or dense stereo data. In *European Conference on Computer Vision (ECCV)*, pp. 739–751.
- Weder, S., Schonberger, J., Pollefeys, M., and Oswald, M. R. (2020). RoutedFusion: Learning realtime depth map fusion. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR).
- Weder, S., Schonberger, J. L., Pollefeys, M., and Oswald, M. R. (2021). NeuralFusion: Online depth fusion in latent space. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wei, C. Y. and Quan, L. (2004). Region-based progressive stereo matching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 106–113.
- Wei, D., Lim, J. J., Zisserman, A., and Freeman, W. T. (2018). Learning and using the arrow of time. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wei, L.-Y. and Levoy, M. (2000). Fast texture synthesis using tree-structured vector quantization. In *ACM SIGGRAPH Conference Proceedings*, pp. 479–488.
- Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. (2009). State of the art in example-based texture synthesis. In *Eurographics 2009 State of the Art Reports*, pp. 93–117.
- Wei, S.-E., Saragih, J., Simon, T., Harley, A. W., Lombardi, S., Perdoch, M., Hypes, A., Wang, D., Badino, H., and Sheikh, Y. (2019). VR facial animation via multiview image translation. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):67.

- Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y. (2016). Convolutional pose machines. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Weickert, J. (1998). Anisotropic Diffusion in Image Processing. Tuebner, Stuttgart.
- Weickert, J., ter Haar Romeny, B. M., and Viergever, M. A. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. *IEEE Transactions on Image Processing*, 7(3):398–410.
- Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor classification. *Journal of Machine Learning Research*, 10(2).
- Weinhaus, F. M. and Devarajan, V. (1997). Texture mapping 3d models of real-world scenes. *ACM Computing Surveys (CSUR)*, 29(4):325–365.
- Weinland, D., Ronfard, R., and Boyer, E. (2006). Free viewpoint action recognition using motion history volumes. *Computer Vision and Image Understanding*, 104(2–3):249–257.
- Weinland, D., Ronfard, R., and Boyer, E. (2011). A survey of vision-based methods for action representation, segmentation and recognition. *Computer Vision and Image Understanding*, 115(2):224–241.
- Weinzaepfel, P., Revaud, J., Harchaoui, Z., and Schmid, C. (2013). DeepFlow: Large displacement optical flow with deep matching. In *International Conference on Computer Vision (ICCV)*.
- Weise, T., Bouaziz, S., Li, H., and Pauly, M. (2011). Realtime performance-based facial animation. *ACM Transactions On Graphics (Proc. SIGGRAPH)*, 30(4):1–10.
- Weiss, Y. (1997). Smoothness in layers: Motion segmentation using nonparametric mixture estimation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 520–526.
- Weiss, Y. (1999). Segmentation using eigenvectors: A unifying view. In *International Conference on Computer Vision (ICCV)*, pp. 975–982.
- Weiss, Y. (2001). Deriving intrinsic images from image sequences. In *International Conference on Computer Vision (ICCV)*, pp. 7–14.
- Weiss, Y. and Adelson, E. H. (1996). A unified mixture framework for motion segmentation: Incorporating spatial coherence and estimating the number of models. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 321–326.
- Weiss, Y. and Freeman, B. (2007). What makes a good model of natural images? In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral hashing. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Wells, III, W. M. (1986). Efficient synthesis of Gaussian filters by cascaded uniform filters. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 8(2):234–239.
- Wendland, H. (2004). Scattered data approximation. Cambridge University Press.
- Weng, C.-Y., Curless, B., and Kemelmacher-Shlizerman, I. (2020). Vid2Actor: Free-viewpoint animatable person synthesis from video in the wild. *arXiv preprint arXiv:2012.12884*.

Weng, J., Ahuja, N., and Huang, T. S. (1993). Optimal motion and structure estimation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 15(9):864–884.

- Weng, L. (2019). Self-supervised representation learning. *lilianweng.github.io/lil-log*. https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html.
- Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., and Debevec, P. (2005). Performance relighting and reflectance transformation with time-multiplexed illumination. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 24(3):756–764.
- Werlberger, M., Pock, T., and Bischof, H. (2010). Motion estimation with non-local total variation regularization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Werlberger, M., Trobin, W., Pock, T., Bischof, H., Wedel, A., and Cremers, D. (2009). Anisotropic Huber-L1 optical flow. In *British Machine Vision Conference (BMVC)*.
- Werner, T. and Zisserman, A. (2002). New techniques for automated architectural reconstruction from photographs. In *European Conference on Computer Vision (ECCV)*, pp. 541–555.
- Westin, S. H., Arvo, J. R., and Torrance, K. E. (1992). Predicting reflectance functions from complex surfaces. *Computer Graphics (SIGGRAPH)*, 26(4):255–264.
- Weston, J., Bengio, S., and Usunier, N. (2011). WSABIE: Scaling up to large vocabulary image annotation. In *International Joint Conference on Artificial Intelligence (IJCAI)*, p. 2764–2770.
- Westover, L. (1989). Interactive volume rendering. In Workshop on Volume Visualization, pp. 9-16.
- Wexler, Y., Fitzgibbon, A., and Zisserman, A. (2002). Bayesian estimation of layers from multiple images. In *European Conference on Computer Vision (ECCV)*, pp. 487–501.
- Wexler, Y., Shechtman, E., and Irani, M. (2007). Space-time completion of video. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(3):463–476.
- Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jansen, H. W., and Gross, M. (2006). Analysis of human faces using a measurement-based skin reflectance model. *ACM Transactions on Graphics*, 25(3):1013–1024.
- Weyrich, T., Lawrence, J., Lensch, H. P. A., Rusinkiewicz, S., and Zickler, T. (2009). Principles of appearance acquisition and representation. *Foundations and Trends® in Computer Graphics and Computer Vision*, 4(2):75–191.
- Wheeler, M. D., Sato, Y., and Ikeuchi, K. (1998). Consensus surfaces for modeling 3D objects from multiple range images. In *International Conference on Computer Vision (ICCV)*, pp. 917–924.
- Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J., and Leutenegger, S. (2016). Elastic-Fusion: Real-time dense SLAM and light source estimation. *International Journal of Robotics Research*, 35(14):1697–1716.
- Whelan, T., Goesele, M., Lovegrove, S. J., Straub, J., Green, S., Szeliski, R., Butterfield, S., Verma, S., and Newcombe, R. (2018). Reconstructing scenes with mirror and glass surfaces. ACM Transactions on Graphics (Proc. SIGGRAPH), 37(4):102.

- White, R. and Forsyth, D. (2006). Combining cues: Shape from shading and texture. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1809–1816.
- White, R., Crane, K., and Forsyth, D. A. (2007). Capturing and animating occluded cloth. *ACM Transactions on Graphics*, 26(3).
- Wickramasinghe, U., Fua, P., and Knott, G. (2021). Deep active surface models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Widrow, B. and Hoff, M. E. (1960). *Adaptive switching circuits*. Technical Report, Stanford Univ Ca Stanford Electronics Labs.
- Wiejak, J. S., Buxton, H., and Buxton, B. F. (1985). Convolution with separable masks for early image processing. *Computer Vision, Graphics, and Image Processing*, 32(3):279–290.
- Wightman, R. (2021). PyTorch image models. https://github.com/rwightman/pytorch-image-models.
- Wilburn, B., Xu, H., and Matsushita, Y. (2008). Radiometric calibration using temporal irradiance mixtures. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams, A., Horowitz, M., and Levoy, M. (2005). High performance imaging using large camera arrays. ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3):765–776.
- Wilczkowiak, M., Brostow, G. J., Tordoff, B., and Cipolla, R. (2005). Hole filling through photomontage. In *British Machine Vision Conference (BMVC)*, pp. 492–501.
- Wiles, O., Gkioxari, G., Szeliski, R., and Johnson, J. (2020). SynSin: End-to-end view synthesis from a single image. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Williams, D. and Burns, P. D. (2001). Diagnostics for digital capture using MTF. In *IS&T PICS Conference*, pp. 227–232.
- Williams, L. (1983). Pyramidal parametrics. Computer Graphics (SIGGRAPH), 17(3):1–11.
- Williams, L. (1990). Performace driven facial animation. *Computer Graphics (SIGGRAPH)*, 24(4):235–242.
- Williams, O., Blake, A., and Cipolla, R. (2003). A sparse probabilistic learning algorithm for real-time tracking. In *International Conference on Computer Vision (ICCV)*, pp. 353–360.
- Williams, T. L. (1999). *The Optical Transfer Function of Imaging Systems*. Institute of Physics Publishing, London.
- Wilson, K. and Snavely, N. (2013). Network principles for SfM: Disambiguating repeated structures with local context. In *International Conference on Computer Vision (ICCV)*.
- Wilson, K. and Snavely, N. (2014). Robust global translations with 1DSfM. In *European Conference on Computer Vision*, pp. 61–75.
- Wilson, K. and Wehrwein, S. (2020). Visualizing spectral bundle adjustment uncertainty. In *International Conference on 3D Vision (3DV)*, pp. 663–671.

Winder, S. and Brown, M. (2007). Learning local image descriptors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Wingfield, N. (2019). Inside Amazon Go, a store of the future. New York Times. Jan 21.
- Winkenbach, G. and Salesin, D. H. (1994). Computer-generated pen-and-ink illustration. In *ACM SIGGRAPH Conference Proceedings*, pp. 91–100, Orlando, Florida.
- Winn, J. and Shotton, J. (2006). The layout consistent random field for recognizing and segmenting partially occluded objects. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 37–44.
- Winnemöller, H., Olsen, S. C., and Gooch, B. (2006). Real-time video abstraction. *ACM Transactions on Graphics*, 25(3):1221–1226.
- Winston, P. H. (ed.). (1975). The Psychology of Computer Vision, McGraw-Hill, New York.
- Wiskott, L., Fellous, J.-M., Krüger, N., and von der Malsburg, C. (1997). Face recognition by elastic bunch graph matching. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):775–779.
- Witkin, A. (1981). Recovering surface shape and orientation from texture. *Artificial Intelligence*, 17(1–3):17–45.
- Witkin, A. (1983). Scale-space filtering. In *International Joint Conference on Artificial Intelligence* (*IJCAI*), pp. 1019–1022.
- Witkin, A., Terzopoulos, D., and Kass, M. (1986). Signal matching through scale space. In *National Conference on Artificial Intelligence (AAAI)*, pp. 714–719.
- Witkin, A., Terzopoulos, D., and Kass, M. (1987). Signal matching through scale space. *International Journal of Computer Vision*, 1:133–144.
- Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., and Suwajanakorn, S. (2021). NeX: Real-time view synthesis with neural basis expansion. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wolberg, G. (1990). Digital Image Warping. IEEE Computer Society Press, Los Alamitos.
- Wolberg, G. and Pavlidis, T. (1985). Restoration of binary images using stochastic relaxation with annealing. *Pattern Recognition Letters*, 3:375–388.
- Wolf, L., Hassner, T., and Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wolff, L. B., Shafer, S. A., and Healey, G. E. (eds). (1992a). *Radiometry. Physics-Based Vision: Principles and Practice*, Jones & Bartlett, Cambridge, MA.
- Wolff, L. B., Shafer, S. A., and Healey, G. E. (eds). (1992b). *Shape Recovery. Physics-Based Vision: Principles and Practice*, Jones & Bartlett, Cambridge, MA.
- Wood, D. N., Finkelstein, A., Hughes, J. F., Thayer, C. E., and Salesin, D. H. (1997). Multiperspective panoramas for cel animation. In *ACM SIGGRAPH Conference Proceedings*, pp. 243–250.

- Wood, D. N., Azuma, D. I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D. H., and Stuetzle, W. (2000). Surface light fields for 3D photography. In ACM SIGGRAPH Conference Proceedings, pp. 287–296.
- Woodford, O., Reid, I., Torr, P. H., and Fitzgibbon, A. (2008). Global stereo reconstruction under second order smoothness priors. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Woodham, R. J. (1981). Analysing images of curved surfaces. Artificial Intelligence, 17:117–140.
- Woodham, R. J. (1994). Gradient and curvature from photometric stereo including local confidence estimation. *Journal of the Optical Society of America*, A, 11:3050–3068.
- Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland, A. P. (1997). Pfinder: Real-time tracking of the human body. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 19(7):780–785.
- Wright, S. (2006). Digital Compositing for Film and Video. Focal Press, 2nd edition.
- Wronski, B., Garcia-Dorado, I., Ernst, M., Kelly, D., Krainin, M., Liang, C.-K., Levoy, M., and Milanfar, P. (2019). Handheld multi-frame super-resolution. ACM Transactions on Graphics (Proc. SIGGRAPH), 38(4):28:1–28:18.
- Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. (2019). FBNet: Hardware-aware efficient ConvNet design via differentiable neural architecture search. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, C. (2013). Towards linear-time incremental structure from motion. In *International Conference* on 3D Vision (3DV).
- Wu, C., Frahm, J.-M., and Pollefeys, M. (2010). Detecting large repetitive structures with salient boundaries. In *European Conference on Computer Vision (ECCV)*, pp. 142–155.
- Wu, C., Agarwal, S., Curless, B., and Seitz, S. (2011). Multicore bundle adjustment. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, C., Liu, Y., Dai, Q., and Wilburn, B. (2010). Fusing multiview and photometric stereo for 3D reconstruction under uncalibrated illumination. *IEEE Transactions on Visualization and Computer Graphics*, 17(8):1082–1095.
- Wu, C., Clipp, B., Li, X., Frahm, J.-M., and Pollefeys, M. (2008). 3D model matching with viewpoint-invariant patches (VIP). In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. (2017). Sampling matters in deep embedding learning. In *IEEE International Conference on Computer Vision (ICCV)*.
- Wu, C.-Y., Girshick, R., He, K., Feichtenhofer, C., and Krahenbuhl, P. (2020). A multigrid method for efficiently training video models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, C.-Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., and Girshick, R. (2019). Long-term feature banks for detailed video understanding. In *IEEE/CVF Conference on Computer Vision*

- and Pattern Recognition (CVPR).
- Wu, G., Masia, B., Jarabo, A., Zhang, Y., Wang, L., Dai, Q., Chai, T., and Liu, Y. (2017). Light field image processing: An overview. *IEEE Journal of Selected Topics in Signal Processing*, 11(7):926–954.
- Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L., and Zhang, L. (2021). CvT: Introducing convolutions to vision transformers. *arXiv* preprint arXiv:2103.15808.
- Wu, Y. and He, K. (2018). Group normalization. In European Conference on Computer Vision (ECCV).
- Wu, Y., Lim, J., and Yang, M.-H. (2013). Online object tracking: A benchmark. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. (2018). Unsupervised feature learning via non-parametric instance discrimination. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., and Xiao, J. (2015). 3D ShapeNets: A deep representation for volumetric shapes. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wug Oh, S., Lee, J.-Y., Sunkavalli, K., and Joo Kim, S. (2018). Fast video object segmentation by reference-guided mask propagation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wulff, J. and Black, M. J. (2015). Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Wyszecki, G. and Stiles, W. S. (2000). *Color Science: Concepts and Methods, Quantitative Data and Formulae*. John Wiley & Sons, New York, 2nd edition.
- Xia, X., Zhang, M., Xue, T., Sun, Z., Fang, H., Kulis, B., and Chen, J. (2020). Joint bilateral learning for real-time universal photorealistic style transfer. In *European Conference on Computer Vision* (*ECCV*).
- Xian, K., Shen, C., Cao, Z., Lu, H., Xiao, Y., Li, R., and Luo, Z. (2018). Monocular relative depth perception with web stereo data supervision. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xian, W., Huang, J.-B., Kopf, J., and Kim, C. (2021). Space-time neural irradiance fields for free-viewpoint video. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2019). Zero-shot learning—a comprehensive evaluation of the good, the bad and the ugly. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(9):2251–2265.
- Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2018). PoseCNN: A convolutional neural network for 6D object pose estimation in cluttered scenes. *Robotics: Science and Systems (RSS)*.
- Xiao, F., Lee, Y. J., Grauman, K., Malik, J., and Feichtenhofer, C. (2020). Audiovisual SlowFast networks for video recognition. *arXiv* preprint arXiv:2001.08740.

- Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. *arXiv* preprint arXiv:1708.07747.
- Xiao, J. and Shah, M. (2003). Two-frame wide baseline matching. In *International Conference on Computer Vision (ICCV)*, pp. 603–609.
- Xiao, J. and Shah, M. (2005). Motion layer extraction in the presence of occlusion using graph cuts. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 27(10):1644–1659.
- Xiao, T., Liu, Y., Zhou, B., Jiang, Y., and Sun, J. (2018). Unified perceptual parsing for scene understanding. In *European Conference on Computer Vision (ECCV)*.
- Xiaofeng, R. and Bo, L. (2012). Discriminatively trained sparse code gradients for contour detection. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 584–592.
- Xie, C., Tan, M., Gong, B., Wang, J., Yuille, A. L., and Le, Q. V. (2020). Adversarial examples improve image recognition. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. (2020). Self-training with noisy student improves imagenet classification. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xie, S., Girshick, R., Kirillov, A., Wu, Y., Feichtenhofer, C., Fan, H., Gkioxari, G., Johnson, J., Ravi, N., Dollár, P., and Lo, W.-Y. (2019). ICCV 2019 tutorial on visual recognition for images, video, and 3D. https://alexander-kirillov.github.io/tutorials/visual-recognition-iccv19.
- Xie, S., Girshick, R., Kirillov, A., Wu, Y., Feichtenhofer, C., Fan, H., Gkioxari, G., Johnson, J., Ravi, N., Dollár, P., and Lo, W.-Y. (2020). ECCV 2020 tutorial on visual recognition for images, video, and 3D. https://s9xie.github.io/Tutorials/ECCV2020.
- Xie, S. and Tu, Z. (2015). Holistically-nested edge detection. In *IEEE International Conference on Computer Vision (ICCV)*.
- Xie, S., Kirillov, A., Girshick, R., and He, K. (2019). Exploring randomly wired neural networks for image recognition. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations for deep neural networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xiong, Y. and Turkowski, K. (1997). Creating image-based VR using a self-calibrating fisheye lens. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 237–243.
- Xiong, Y. and Turkowski, K. (1998). Registration, calibration and blending in creating high quality panoramas. In *IEEE Workshop on Applications of Computer Vision (WACV)*, pp. 69–74.
- Xu, H., Bazavan, E. G., Zanfir, A., Freeman, W. T., Sukthankar, R., and Sminchisescu, C. (2020). GHUM & GHUML: Generative 3D human shape and articulated pose models. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xu, J., Ranftl, R., and Koltun, V. (2017). Accurate optical flow via direct cost volume processing. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In *International Conference on Machine Learning (ICML)*, pp. 2048–2057.

- Xu, L., Chen, J., and Jia, J. (2008). A segmentation based variational model for accurate optical flow estimation. In *European Conference on Computer Vision (ECCV)*, pp. 671–684.
- Xu, N., Price, B., Cohen, S., and Huang, T. (2017). Deep image matting. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xu, N., Yang, L., Fan, Y., Yang, J., Yue, D., Liang, Y., Price, B., Cohen, S., and Huang, T. (2018).
 YouTube-VOS: Sequence-to-sequence video object segmentation. In *European Conference on Computer Vision (ECCV)*.
- Xu, Q., Wang, W., Ceylan, D., Mech, R., and Neumann, U. (2019). DISN: Deep implicit surface network for high-quality single-view 3D reconstruction. In *Advances in Neural Information Pro*cessing Systems (NeurIPS), pp. 492–502.
- Xu, R. and Wunsch, D. C. (2005). Survey of clustering algorithms. *IEEE Transactions on Neural Networks*, 16(3):645–678.
- Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., and He, X. (2018). AttnGAN: Fine-grained text to image generation with attentional generative adversarial networks. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Xue, T., Rubinstein, M., Liu, C., and Freeman, W. T. (2015). A computational approach for obstruction-free photography. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 34(4):79.
- Xue, T., Chen, B., Wu, J., Wei, D., and Freeman, W. T. (2019). Video enhancement with task-oriented flow. *International Journal of Computer Vision*, 127(8):1106–1125.
- Xue, T., Owens, A., Scharstein, D., Goesele, M., and Szeliski, R. (2019). Multi-frame stereo matching with edges, planes, and superpixels. *Image and Vision Computing*, 91:103771.
- Yamins, D. L. K. and DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. *Nature Neuroscience*, 19(3):356–365.
- Yan, H., Liu, Y., and Furukawa, Y. (2017). Turning an urban scene video into a cinemagraph. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yan, J., Wei, Z., Yi, H., Ding, M., Zhang, R., Chen, Y., Wang, G., and Tai, Y.-W. (2020). Dense hybrid recurrent multi-view stereo net with dynamic consistency checking. In *European Conference on Computer Vision (ECCV)*.
- Yan, X., Misra, I., Gupta, A., Ghadiyaram, D., and Mahajan, D. (2020). ClusterFit: Improving generalization of visual representations. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yang, B., Yan, J., Lei, Z., and Li, S. Z. (2014). Aggregate channel features for multi-view face detection. In *IEEE International Joint Conference on Biometrics*, pp. 1–8.
- Yang, C., Lu, X., Lin, Z., Shechtman, E., Wang, O., and Li, H. (2017). High-resolution image inpainting using multi-scale neural patch synthesis. In *IEEE Conference on Computer Vision and*

- Pattern Recognition (CVPR).
- Yang, D., El Gamal, A., Fowler, B., and Tian, H. (1999). A 640x512 CMOS image sensor with ultra-wide dynamic range floating-point pixel level ADC. *IEEE Journal of Solid State Circuits*, 34(12):1821–1834.
- Yang, G., Manela, J., Happold, M., and Ramanan, D. (2019). Hierarchical deep stereo matching on high-resolution images. In *IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 5515–5524.
- Yang, G., Zhao, H., Shi, J., Deng, Z., and Jia, J. (2018). SegStereo: Exploiting semantic information for disparity estimation. In *European Conference on Computer Vision (ECCV)*, pp. 660–676.
- Yang, H., Antonante, P., Tzoumas, V., and Carlone, L. (2020). Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection. *IEEE Robotics and Automation Letters*, 5(2):1127–1134.
- Yang, J., Li, H., Dai, Y., and Tan, R. T. (2016). Robust optical flow estimation of double-layer images under transparency or reflection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yang, J., Mao, W., Alvarez, J. M., and Liu, M. (2020). Cost volume pyramid based depth inference for multi-view stereo. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR).
- Yang, L., Jin, R., Sukthankar, R., and Jurie, F. (2008). Unifying discriminative visual codebook generation with classifier training for object category recognition. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yang, L., Luo, P., Change Loy, C., and Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yang, M.-H., Ahuja, N., and Tabb, M. (2002). Extraction of 2D motion trajectories and its application to hand gesture recognition. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(8):1061–1074.
- Yang, M.-H., Kriegman, D. J., and Ahuja, N. (2002). Detecting faces in images: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 24(1):34–58.
- Yang, Q. (2015). Stereo matching using tree filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4):834–846.
- Yang, Q., Wang, L., Yang, R., Stewénius, H., and Nistér, D. (2009). Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(3):492–504.
- Yang, S. and Scherer, S. (2019). Monocular object and plane SLAM in structured environments. *IEEE Robotics and Automation Letters*, 4(4):3145–3152.
- Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2015). From facial parts responses to face detection: A deep learning approach. In *IEEE International Conference on Computer Vision (ICCV)*.

Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2016). Wider face: A face detection benchmark. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

- Yang, S., Wang, Z., Wang, Z., Xu, N., Liu, J., and Guo, Z. (2019). Controllable artistic text style transfer via shape-matching GAN. In *IEEE/CVF International Conference on Computer Vision* (*ICCV*).
- Yang, T.-Y., Kien Nguyen, D., Heijnen, H., and Balntas, V. (2019). DAME WEB: DynAmic MEan with Whitening Ensemble Binarization for landmark retrieval without human annotation. In *IEEE International Conference on Computer Vision (ICCV) Workshops*.
- Yang, Y. and Ramanan, D. (2011). Articulated pose estimation with flexible mixtures-of-parts. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yang, Y., Yuille, A., and Lu, J. (1993). Local, global, and multilevel stereo matching. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 274–279.
- Yang, Z., He, X., Gao, J., Deng, L., and Smola, A. (2016). Stacked attention networks for image question answering. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yao, B. and Fei-Fei, L. (2012). Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(9):1691–1703.
- Yao, J., Fidler, S., and Urtasun, R. (2012). Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yao, Y., Luo, Z., Li, S., Fang, T., and Quan, L. (2018). MVSNet: Depth inference for unstructured multi-view stereo. In *European Conference on Computer Vision (ECCV)*.
- Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., and Quan, L. (2019). Recurrent mysnet for high-resolution multi-view stereo depth inference. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yao, Y., Luo, Z., Li, S., Zhang, J., Ren, Y., Zhou, L., Fang, T., and Quan, L. (2020). BlendedMVS: A large-scale dataset for generalized multi-view stereo networks. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yaou, M.-H. and Chang, W.-T. (1994). Fast surface interpolation using multiresolution wavelets. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(7):673–689.
- Yariv, L., Kasten, Y., Moran, D., Galun, M., Atzmon, M., Basri, R., and Lipman, Y. (2020). Multiview neural surface reconstruction with implicit lighting and material. In *Advances in Neural Information Processing Systems (NeurIPS)*.
- Yatskar, M., Zettlemoyer, L., and Farhadi, A. (2016). Situation recognition: Visual semantic role labeling for image understanding. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yatziv, L. and Sapiro, G. (2006). Fast image and video colorization using chrominance blending. *IEEE Transactions on Image Processing*, 15(5):1120–1129.

- Ye, W., Zhao, Y., and Vela, P. A. (2019). Characterizing SLAM benchmarks and methods for the robust perception age. *arXiv preprint arXiv:1905.07808*. Presented at the ICRA 2019 Workshop on Dataset Generation and Benchmarking of SLAM Algorithms for Robotics and VR/AR.
- Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2001). Understanding belief propagation and its generalization. In *International Joint Conference on Artificial Intelligence (IJCAI)*.
- Yezzi, A. and Soatto, S. (2003). Stereoscopic segmentation. *International Journal of Computer Vision*, 53(1):31–43.
- Yezzi, A. J., Kichenassamy, S., Kumar, A., Olver, P., and Tannenbaum, A. (1997). A geometric snake model for segmentation of medical imagery. *IEEE Transactions on Medical Imaging*, 16(2):199– 209.
- Yi, K. M., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned invariant feature transform. In *European Conference on Computer Vision*, pp. 467–483.
- Yi, K. M., Verdie, Y., Fua, P., and Lepetit, V. (2016). Learning to assign orientations to feature points. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yi, Z., Zhang, H., Tan, P., and Gong, M. (2017). DualGAN: Unsupervised dual learning for image-to-image translation. In *IEEE International Conference on Computer Vision (ICCV)*.
- Yi, Z., Tang, Q., Azizi, S., Jang, D., and Xu, Z. (2020). Contextual residual aggregation for ultra high-resolution image inpainting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yilmaz, A. and Shah, M. (2006). Matching actions in presence of camera motion. *Computer Vision and Image Understanding*, 104(2–3):221–231.
- Yilmaz, A., Javed, O., and Shah, M. (2006). Object tracking: A survey. *ACM Computing Surveys* (CSUR), 38(4):13.
- Yin, P., Criminisi, A., Winn, J., and Essa, I. (2007). Tree-based classifiers for bilayer video segmentation. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yin, W., Liu, Y., Shen, C., and Yan, Y. (2019). Enforcing geometric constraints of virtual normal for depth prediction. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Yin, Z., Darrell, T., and Yu, F. (2019). Hierarchical discrete distribution decomposition for match density estimation. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6044–6053.
- Yoon, J. S., Kim, K., Gallo, O., Park, H. S., and Kautz, J. (2020). Novel view synthesis of dynamic scenes with globally coherent depths from a monocular camera. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yoon, K.-J. and Kweon, I.-S. (2006). Adaptive support-weight approach for correspondence search. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(4):650–656.
- You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. (2016). Image captioning with semantic attention. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. (2014). From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. *Transactions of the Association for Computational Linguistics*, 2:67–78.

- Yserentant, H. (1986). On the multi-level splitting of finite element spaces. *Numerische Mathematik*, 49:379–412.
- Yu, A., Ye, V., Tancik, M., and Kanazawa, A. (2020). pixelNeRF: Neural radiance fields from one or few images. *arXiv preprint arXiv:2012.02190*.
- Yu, A., Li, R., Tancik, M., Li, H., Ng, R., and Kanazawa, A. (2021). PlenOctrees for real-time rendering of neural radiance fields. *arXiv preprint arXiv:2103.14024*.
- Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions. In *International Conference on Learning Representations (ICLR)*.
- Yu, J. and Ramamoorthi, R. (2018). Selfie video stabilization. In *European Conference on Computer Vision (ECCV)*.
- Yu, J. and Ramamoorthi, R. (2020). Learning video stabilization using optical flow. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yu, J., Ramamoorthi, R., Cheng, K., Sarkis, M., and Bi, N. (2021). Real-time selfie video stabilization. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2018). Generative image inpainting with contextual attention. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2019). Free-form image inpainting with gated convolution. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Yu, L., Chen, Y.-C., and Li, L. (2020). CVPR 2020 tutorial on self-supervised learning for vision-and-language. https://rohit497.github.io/Recent-Advances-in-Vision-and-Language-Research.
- Yu, S. X. and Shi, J. (2003). Multiclass spectral clustering. In *International Conference on Computer Vision (ICCV)*, pp. 313–319.
- Yu, Y. and Malik, J. (1998). Recovering photometric properties of architectural scenes from photographs. In ACM SIGGRAPH Conference Proceedings, pp. 207–218.
- Yu, Y., Debevec, P., Malik, J., and Hawkins, T. (1999). Inverse global illumination: Recovering reflectance models of real scenes from photographs. In ACM SIGGRAPH Conference Proceedings, pp. 215–224.
- Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., and Wu, W. (2021). Incorporating convolution designs into visual transformers. arXiv preprint arXiv:2103.11816.
- Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. (2007). Image deblurring with blurred/noisy image pairs. *ACM Transactions on Graphics*, 26(3).
- Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. (2008). Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Transactions on Graphics, 27(3):74.
- Yuan, L., Wen, F., Liu, C., and Shum, H.-Y. (2004). Synthesizing dynamic texture with closed-loop linear dynamic system. In *European Conference on Computer Vision (ECCV)*, pp. 603–616.

- Yücer, K., Kim, C., Sorkine-Hornung, A., and Sorkine-Hornung, O. (2016). Depth from gradients in dense light fields for object reconstruction. In *International Conference on 3D Vision (3DV)*, pp. 249–257.
- Yücer, K., Sorkine-Hornung, A., Wang, O., and Sorkine-Hornung, O. (2016). Efficient 3D object segmentation from densely sampled light fields with applications to 3D reconstruction. *ACM Transactions on Graphics*, 35(3):22.
- Yuille, A. (1991). Deformable templates for face recognition. *Journal of Cognitive Neuroscience*, 3(1):59–70.
- Yuille, A. and Poggio, T. (1984). A Generalized Ordering Constraint for Stereo Correspondence. A.I. Memo 777, Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
- Yuille, A., Vincent, L., and Geiger, D. (1992). Statistical morphology and Bayesian reconstruction. *Journal of Mathematical Imaging and Vision*, 1(3):223–238.
- Zabih, R. and Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In European Conference on Computer Vision (ECCV), pp. 151–158.
- Zach, C. (2008). Fast and high quality fusion of depth maps. In *International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT)*.
- Zach, C., Klopschitz, M., and Pollefeys, M. (2010). Disambiguating visual relations using loop constraints. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition* (CVPR).
- Zach, C., Pock, T., and Bischof, H. (2007a). A duality based approach for realtime TV-L1 optical flow. In *Pattern Recognition (DAGM)*.
- Zach, C., Pock, T., and Bischof, H. (2007b). A globally optimal algorithm for robust TV-L¹ range image integration. In *International Conference on Computer Vision (ICCV)*.
- Zafeiriou, S., Zhang, C., and Zhang, Z. (2015). A survey on face detection in the wild: past, present and future. *Computer Vision and Image Understanding*, 138:1–24.
- Zaragoza, J., Chin, T.-J., Brown, M. S., and Suter, D. (2013). As-projective-as-possible image stitching with moving dlt. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zebedin, L., Bauer, J., Karner, K., and Bischof, H. (2008). Fusion of feature- and area-based information for urban buildings modeling from aerial imagery. In *European Conference on Computer Vision (ECCV)*, pp. 873–886.
- Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.
- Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In *European Conference on Computer Vision*, pp. 818–833.
- Zellers, R., Bisk, Y., Farhadi, A., and Choi, Y. (2019). From recognition to cognition: Visual commonsense reasoning. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.

Zelnik-Manor, L. and Perona, P. (2007). Automating joiners. In *Symposium on Non Photorealistic Animation and Rendering*.

- Zendel, O. et al. (2020). Robust vision challenge. In European Conference on Computer Vision (ECCV) Workshops. http://www.robustvision.net.
- Zendel, O., Honauer, K., Murschitz, M., Steininger, D., and Fernandez Dominguez, G. (2018). Wild-Dash creating hazard-aware benchmarks. In *European Conference on Computer Vision (ECCV)*.
- Zeng, Y., Fu, J., and Chao, H. (2020). Learning joint spatial-temporal transformations for video inpainting. In *European Conference on Computer Vision*, pp. 528–543.
- Zeng, Y., Fu, J., Chao, H., and Guo, B. (2019). Learning pyramid-context encoder network for high-quality image inpainting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zeng, Y., Lin, Z., Yang, J., Zhang, J., Shechtman, E., and Lu, H. (2020). High-resolution image inpainting with iterative confidence feedback and guided upsampling. arXiv preprint arXiv:2005.11742.
- Zhai, A., Wu, H.-Y., Tzeng, E., Park, D. H., and Rosenberg, C. (2019). Learning a unified embedding for visual search at pinterest. In ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2412–2420.
- Zhai, X., Oliver, A., Kolesnikov, A., and Beyer, L. (2019). S4L: Self-supervised semi-supervised learning. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. (2021). Dive into deep learning. release 0.16.1, latest draft at https://d2l.ai.
- Zhang, C. and Chen, T. (2004). A survey on image-based rendering representation, sampling and compression. *EURASIP Signal Processing: Image Communication*, 19(1):1–28.
- Zhang, F. and Liu, F. (2014). Parallax-tolerant image stitching. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, F., Prisacariu, V. A., Yang, R., and Torr, P. (2019). GA-Net: Guided aggregation net for end-to-end stereo matching. In *IEEE Conference on Computer Vision and Pattern Recognition* (*CVPR*), pp. 185–194.
- Zhang, F., Qi, X., Yang, R., Prisacariu, V., Wah, B., and Torr, P. (2020). Domain-invariant stereo matching networks. In *European Conference on Computer Vision (ECCV)*.
- Zhang, G., Jia, J., Wong, T.-T., and Bao, H. (2008). Recovering consistent video depth maps via bundle optimization. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, H., Dauphin, Y. N., and Ma, T. (2019). Fixup initialization: Residual learning without normalization. In *International Conference on Learning Representations (ICLR)*.
- Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2018). *mixup*: Beyond empirical risk minimization. In *International Conference on Learning Representations (ICLR)*.

- Zhang, H., Dai, Y., Li, H., and Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). Self-attention generative adversarial networks. In *International Conference on Machine Learning (ICML)*, pp. 7354–7363.
- Zhang, H., Sciutto, C., Agrawala, M., and Fatahalian, K. (2021). Vid2Player: Controllable video sprites that behave and appear like professional tennis players. ACM Transactions on Graphics (TOG), 40(3):1–16.
- Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. N. (2017). StackGAN: Text to photo-realistic image synthesis with stacked generative adversarial networks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., and Metaxas, D. N. (2018). StackGAN++: Realistic image synthesis with stacked generative adversarial networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 41(8):1947–1962.
- Zhang, J., McMillan, L., and Yu, J. (2006). Robust tracking and stereo matching under variable illumination. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 871–878.
- Zhang, J., Marszalek, M., Lazebnik, S., and Schmid, C. (2007). Local features and kernels for classification of texture and object categories: a comprehensive study. *International Journal of Computer Vision*, 73(2):213–238.
- Zhang, J., Yao, Y., Li, S., Luo, Z., and Fang, T. (2020). Visibility-aware multi-view stereo network. In *British Machine Vision Conference (BMVC)*.
- Zhang, K., Riegler, G., Snavely, N., and Koltun, V. (2020). NeRF++: Analyzing and improving neural radiance fields. *arXiv preprint arXiv:2010.07492*.
- Zhang, K., Luan, F., Wang, Q., Bala, K., and Snavely, N. (2021). PhySG: Inverse rendering with spherical gaussians for physics-based material editing and relighting. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, K., Zuo, W., Chen, Y., Meng, D., and Zhang, L. (2017). Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising. *IEEE Transactions on Image Processing*, 26(7):3142–3155.
- Zhang, L. and Seitz, S. (2007). Estimating optimal parameters for MRF stereo from a single image pair. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(2):331–342.
- Zhang, L., Curless, B., and Seitz, S. (2003). Spacetime stereo: Shape recovery for dynamic scenes. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 367–374.
- Zhang, L., Dugas-Phocion, G., Samson, J.-S., and Seitz, S. M. (2002). Single view modeling of free-form scenes. *Journal of Visualization and Computer Animation*, 13(4):225–235.

Zhang, L., Lin, L., Liang, X., and He, K. (2016). Is faster R-CNN doing well for pedestrian detection? In *European Conference on Computer Vision*, pp. 443–457.

- Zhang, L., Snavely, N., Curless, B., and Seitz, S. M. (2004). Spacetime faces: High resolution capture for modeling and animation. *ACM Transactions on Graphics*, 23(3):548–558.
- Zhang, N., Donahue, J., Girshick, R., and Darrell, T. (2014). Part-based R-CNNs for fine-grained category detection. In *European Conference on Computer Vision (ECCV)*, pp. 834–849.
- Zhang, R. (2019). Making convolutional networks shift-invariant again. In *International Conference* on Machine Learning (ICML).
- Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization. In *European Conference on Computer Vision*, pp. 649–666.
- Zhang, R., Tsai, P.-S., Cryer, J. E., and Shah, M. (1999). Shape from shading: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 21(8):690–706.
- Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, R., Zhu, J.-Y., Isola, P., Geng, X., Lin, A. S., Yu, T., and Efros, A. A. (2017). Real-time user-guided image colorization with learned deep priors. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 9(4).
- Zhang, S. (2018). High-speed 3D shape measurement with structured light methods: A review. *Optics and Lasers in Engineering*, 106:119–131.
- Zhang, S., Benenson, R., and Schiele, B. (2017). CityPersons: A diverse dataset for pedestrian detection. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhang, W. and Kosecka, J. (2006). Image based localization in urban environments. In *International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT)*, pp. 33–40.
- Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In *IEEE Conference on Computer Vision and Pattern Recog*nition (CVPR).
- Zhang, X. C., Barron, J. T., Tsai, Y.-T., Pandey, R., Zhang, X., Ng, R., and Jacobs, D. E. (2020). Portrait shadow manipulation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 39(4):78.
- Zhang, Y. and Kambhamettu, C. (2003). On 3D scene flow and structure recovery from multiview image sequences. *IEEE Transactions on Systems, Man, and Cybernetics*, 33(4):592–606.
- Zhang, Y., Wadhwa, N., Orts-Escolano, S., Häne, C., Fanello, S., and Garg, R. (2020). Du²Net: Learning depth estimation from dual-cameras and dual-pixels. In *European Conference on Computer Vision (ECCV)*.
- Zhang, Z. (1994). Iterative point matching for registration of free-form curves and surfaces. *International Journal of Computer Vision*, 13(2):119–152.
- Zhang, Z. (1998a). Determining the epipolar geometry and its uncertainty: A review. *International Journal of Computer Vision*, 27(2):161–195.

- Zhang, Z. (1998b). On the optimization criteria used in two-view motion analysis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(7):717–729.
- Zhang, Z. (2000). A flexible new technique for camera calibration. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(11):1330–1334.
- Zhang, Z. (2012). Microsoft Kinect sensor and its effect. *IEEE MultiMedia*, 19(2):4–10.
- Zhang, Z. and He, L.-W. (2007). Whiteboard scanning and image enhancement. *Digital Signal Processing*, 17(2):414–432.
- Zhang, Z. and Shan, Y. (2000). A progressive scheme for stereo matching. In *European Workshop on 3D Structure from Multiple Images of Large-Scale Environments (SMILE)*, pp. 68–85.
- Zhang, Z. and Wang, J. (2007). MLLE: Modified locally linear embedding using multiple weights. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 1593–1600.
- Zhang, Z. and Zha, H. (2004). Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. *SIAM Journal on Scientific Computing*, 26(1):313–338.
- Zhang, Z., Deriche, R., Faugeras, O., and Luong, Q. (1995). A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. *Artificial Intelligence*, 78:87–119.
- Zhang, Z., Li, Z., Bi, N., Zheng, J., Wang, J., Huang, K., Luo, W., Xu, Y., and Gao, S. (2019).
 PPGNet: Learning point-pair graph for line segment detection. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhao, C., Sun, Q., Zhang, C., Tang, Y., and Qian, F. (2020). Monocular depth estimation based on deep learning: An overview. *arXiv* preprint arXiv:2003.06620.
- Zhao, G. and Pietikäinen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 29(6):915–928.
- Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid scene parsing network. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). Face recognition: A literature survey. *ACM Computing Surveys (CSUR)*, 35(4):399–358.
- Zhao, Y., Xu, S., Bu, S., Jiang, H., and Han, P. (2019). GSLAM: A general SLAM framework and benchmark. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Zhao, Y., Huang, Z., Li, T., Chen, W., LeGendre, C., Ren, X., Shapiro, A., and Li, H. (2019). Learning perspective undistortion of portraits. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Zhao, Z.-Q., Zheng, P., Xu, S.-t., and Wu, X. (2019). Object detection with deep learning: A review. *IEEE Transactions on Neural Networks and Learning Systems*, 30(11):3212–3232.
- Zheng, E., Wang, K., Dunn, E., and Frahm, J.-M. (2014). Joint object class sequencing and trajectory triangulation (JOST). In *European Conference on Computer Vision*, pp. 599–614.

Zheng, J. Y. (1994). Acquiring 3-D models from sequences of contours. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 16(2):163–178.

- Zheng, K. C., Kang, S. B., Cohen, M., and Szeliski, R. (2007). Layered depth panoramas. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zheng, L., Yang, Y., and Tian, Q. (2018). SIFT meets CNN: A decade survey of instance retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(5):1224–1244.
- Zheng, N. and Xue, J. (2009). Manifold learning. In *Statistical Learning and Pattern Analysis for Image and Video Processing*, pp. 87–119, Springer, London.
- Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P. H. S., and Zhang, L. (2020). Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. arXiv preprint arXiv:2012.15840.
- Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., and Torr, P. H. S. (2015). Conditional random fields as recurrent neural networks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Zheng, Y., Lin, S., and Kang, S. B. (2006). Single-image vignetting correction. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 461–468.
- Zheng, Y., Yu, J., Kang, S.-B., Lin, S., and Kambhamettu, C. (2008). Single-image vignetting correction using radial gradient symmetry. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zheng, Y., Zhou, X. S., Georgescu, B., Zhou, S. K., and Comaniciu, D. (2006). Example based non-rigid shape detection. In *European Conference on Computer Vision (ECCV)*, pp. 423–436.
- Zheng, Y.-T., Zhao, M., Song, Y., Adam, H., Buddemeier, U., Bissacco, A., Brucher, F., Chua, T.-S., and Neven, H. (2009). Tour the world: building a web-scale landmark recognition engine. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhong, J. and Sclaroff, S. (2003). Segmenting foreground objects from a dynamic, textured background via a robust Kalman filter. In *International Conference on Computer Vision (ICCV)*, pp. 44–50.
- Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2015). Object detectors emerge in deep scene CNNs. In *International Conference on Learning Representations (ICLR)*.
- Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., and Torralba, A. (2019). Semantic understanding of scenes through the ADE20K dataset. *International Journal of Computer Vision*, 127(3):302–321.
- Zhou, C., Lin, S., and Nayar, S. (2009). Coded aperture pairs for depth from defocus. In *International Conference on Computer Vision (ICCV)*.
- Zhou, H., Sattler, T., and Jacobs, D. W. (2016). Evaluating local features for day-night matching. In *European Conference on Computer Vision (ECCV) Workshops*, pp. 724–736.
- Zhou, H., Hadap, S., Sunkavalli, K., and Jacobs, D. W. (2019). Deep single-image portrait relighting. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.

- Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., and Yu, W. (2015). StructSLAM: Visual SLAM with building structure lines. *IEEE Transactions on Vehicular Technology*, 64(4):1364–1375.
- Zhou, L. (2020). CVPR 2020 tutorial on recent advances in visual captioning. https://rohit497.github.io/Recent-Advances-in-Vision-and-Language-Research.
- Zhou, L., Kalantidis, Y., Chen, X., Corso, J. J., and Rohrbach, M. (2019). Grounded video description. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhou, L., Palangi, H., Zhang, L., Hu, H., Corso, J. J., and Gao, J. (2020). Unified vision-language pre-training for image captioning and VQA. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 13041–13049.
- Zhou, Q., Sattler, T., and Leal-Taixé, L. (2021). Patch2Pix: Epipolar-guided pixel-level correspondences. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhou, Q., Sattler, T., Pollefeys, M., and Leal-Taixé, L. (2019). To learn or not to learn: Visual localization from essential matrices. In *IEEE International Conference on Robotics and Automation* (ICRA).
- Zhou, Q.-Y. and Koltun, V. (2013). Dense scene reconstruction with points of interest. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 32(4):112.
- Zhou, Q.-Y. and Koltun, V. (2014). Color map optimization for 3D reconstruction with consumer depth cameras. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 33(4):155.
- Zhou, Q.-Y., Miller, S., and Koltun, V. (2013). Elastic fragments for dense scene reconstruction. In *International Conference on Computer Vision (ICCV)*.
- Zhou, Q.-Y., Park, J., and Koltun, V. (2018). Open3D: A modern library for 3D data processing. *arXiv* preprint arXiv:1801.09847.
- Zhou, T., Brown, M., Snavely, N., and Lowe, D. G. (2017). Unsupervised learning of depth and egomotion from video. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*.
- Zhou, T., Tucker, R., Flynn, J., Fyffe, G., and Snavely, N. (2018). Stereo magnification: Learning view synthesis using multiplane images. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 37(4):65:1–65:12.
- Zhou, X., Koltun, V., and Krähenbühl, P. (2020). Tracking objects as points. In *European Conference on Computer Vision (ECCV)*.
- Zhou, Y., Qi, H., and Ma, Y. (2019). End-to-end wireframe parsing. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Zhou, Y., Qi, H., Huang, J., and Ma, Y. (2019a). NeurVPS: Neural vanishing point scanning via conic convolution. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 866–875.
- Zhou, Y., Qi, H., Zhai, Y., Sun, Q., Chen, Z., Wei, L.-Y., and Ma, Y. (2019b). Learning to reconstruct 3D Manhattan wireframes from a single image. In *IEEE/CVF International Conference on Computer Vision (ICCV)*.
- Zhou, Z., Furukawa, Y., Ma, Y., Gao, S., Liu, C., Zhou, Y., Luo, L., Zheng, J., Zhang, J., and Tang, R. (2020). Holistic scene structures for 3D vision. In *European Conference on Computer Vision*

- (ECCV) Workshops. https://holistic-3d.github.io/eccv20.
- Zhou, Z., Furukawa, Y., and Ma, Y. (2019). ICCV 2019 tutorial on holistic 3D reconstruction: Learning to reconstruct holistic 3D structures from sensorial data. https://holistic-3d.github.io/iccv19.
- Zhou, Z.-H. (2018). A brief introduction to weakly supervised learning. *National Science Review*, 5(1):44–53.
- Zhu, D. and Smith, W. A. P. (2020). Least squares surface reconstruction on arbitrary domains. In *European Conference on Computer Vision (ECCV)*.
- Zhu, J.-Y. (2021). Carnegie Mellon University 16-726 course: Learning-based image synthesis. https://learning-image-synthesis.github.io.
- Zhu, J.-Y., Krähenbühl, P., Shechtman, E., and Efros, A. A. (2016). Generative visual manipulation on the natural image manifold. In *European Conference on Computer Vision (ECCV)*, pp. 597–613.
- Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In *IEEE International Conference on Computer Vision (ICCV)*.
- Zhu, J.-Y., Zhang, R., Pathak, D., Darrell, T., Efros, A. A., Wang, O., and Shechtman, E. (2017). Toward multimodal image-to-image translation. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 465–476.
- Zhu, S.-C. and Mumford, D. (2006). A stochastic grammar of images. *Foundations and Trends® in Computer Graphics and Computer Vision*, 2(4).
- Zhu, S. C. and Yuille, A. L. (1996). Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(9):884–900.
- Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. *Synthesis Lectures on Artificial Intelligence and Machine Learning*, 3(1):1–130.
- Zhu, Y., Li, X., Liu, C., Zolfaghari, M., Xiong, Y., Wu, C., Zhang, Z., Tighe, J., Manmatha, R., and Li, M. (2020). A comprehensive study of deep video action recognition. *arXiv preprint arXiv:2012.06567*.
- Zhu, Z. and Kanade, T. (2008). Modeling and representations of large-scale 3D scenes. *International Journal of Computer Vision*, 78(2–3):119–120.
- Zhuang, B. and Tran, Q.-H. (2020). Image stitching and rectification for hand-held cameras. In *European Conference on Computer Vision (ECCV)*.
- Zhuang, C., Yan, S., Nayebi, A., Schrimpf, M., Frank, M., DiCarlo, J., and Yamins, D. (2020). Unsupervised neural network models of the ventral visual stream. *bioRxiv preprint 2020.06.16.155556*.
- Zickler, T. E., Belhumeur, P. N., and Kriegman, D. J. (2002). Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. *International Journal of Computer Vision*, 49(2):215–227.
- Zimmer, H., Bruhn, A., and Weickert, J. (2011). Optic flow in harmony. *International Journal of Computer Vision*, 93(3):368–388.

- Zimmermann, C. and Brox, T. (2017). Learning to estimate 3D hand pose from single RGB images. In *IEEE International Conference on Computer Vision (ICCV)*.
- Zisserman, A. (2018). Self-supervised learning. Slides from talk given at INRIA, available at https://project.inria.fr/paiss/files/2018/07/zisserman-self-supervised.pdf.
- Zisserman, A., Giblin, P. J., and Blake, A. (1989). The information available to a moving observer from specularities. *Image and Vision Computing*, 7(1):38–42.
- Zitnick, C. L. and Dollár, P. (2014). Edge boxes: Locating object proposals from edges. In *European Conference on Computer Vision*, pp. 391–405.
- Zitnick, C. L. and Kanade, T. (2000). A cooperative algorithm for stereo matching and occlusion detection. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(7):675–684.
- Zitnick, C. L. and Kang, S. B. (2007). Stereo for image-based rendering using image over-segmentation. *International Journal of Computer Vision*, 75(1):49–65.
- Zitnick, C. L., Jojic, N., and Kang, S. B. (2005). Consistent segmentation for optical flow estimation. In *International Conference on Computer Vision (ICCV)*, pp. 1308–1315.
- Zitnick, C. L., Kang, S. B., Uyttendaele, M., Winder, S., and Szeliski, R. (2004). High-quality video view interpolation using a layered representation. *ACM Transactions on Graphics (Proc. SIGGRAPH)*, 23(3):600–608.
- Zitov'aa, B. and Flusser, J. (2003). Image registration methods: A survey. *Image and Vision Computing*, 21:997–1000.
- Zoghlami, I., Faugeras, O., and Deriche, R. (1997). Using geometric corners to build a 2D mosaic from a set of images. In *IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 420–425.
- Zollhöfer, M., Stotko, P., Görlitz, A., Theobalt, C., Nießner, M., Klein, R., and Kolb, A. (2018). State of the art on 3D reconstruction with RGB-D cameras. *Computer Graphics Forum (Eurographics)*, 37(2):625–652.
- Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., and Theobalt, C. (2018). State of the art on monocular 3D face reconstruction, tracking, and applications. *Computer Graphics Forum (Eurographics)*, 37(2):523–550.
- Zongker, D. E., Werner, D. M., Curless, B., and Salesin, D. H. (1999). Environment matting and compositing. In *ACM SIGGRAPH Conference Proceedings*, pp. 205–214.
- Zoph, B. and Le, Q. V. (2017). Neural architecture search with reinforcement learning. In *International Conference on Learning Representations (ICLR)*.
- Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable architectures for scalable image recognition. In *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR).
- Zoran, D. and Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In *International Conference on Computer Vision (ICCV)*.

Zorin, D., Schröder, P., and Sweldens, W. (1996). Interpolating subdivision for meshes with arbitrary topology. In *ACM SIGGRAPH Conference Proceedings*, pp. 189–192.

- Zuo, C., Huang, L., Zhang, M., Chen, Q., and Asundi, A. (2016). Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. *Optics and Lasers in Engineering*, 85:84–103.
- Žbontar, J. and LeCun, Y. (2016). Stereo matching by training a convolutional neural network to compare image patches. *Journal of Machine Learning Research*, 17(65):1–32.

3D Rotations, see Rotations	AlexNet neural network, 299
3D alignment, 513	Algebraic multigrid, 486
absolute orientation, 513, 821	Algorithms
orthogonal Procrustes, 513	testing, viii
3D convolutional neural networks, 317	Aliasing, 84, 616
3D model capture, 854	Alignment, see Image alignment
3D photography, 854, 872, 873	Alpha
3D scanning, 816	opacity, 114
3D video, 893	pre-multiplied, 114
	Alpha matte, 114
Absolute orientation, 513, 821	Ambient illumination, 71
Activation functions, 272	Analog to digital conversion (ADC), 83
rectified linear unit (ReLU), 272	Anisotropic diffusion, 135
sigmoid, 272	Anisotropic filtering, 174
Active appearance model (AAM), 366	Anti-aliasing filter, 85, 616
Active contours, 467	Aperture, 75
Active illumination, 816	Aperture problem, 568
Active rangefinding, 816	Applications, 5
Active shape model (ASM), 366, 471	3D model capture, 854
Active stereo, 819	3D model reconstruction, 725
Activity recognition, 850	3D photography, 854, 872
Adadelta, 290	augmented reality, 697, 739
AdaGrad, 289	automotive safety, 5
Adam optimization algorithm, 290	background replacement, 777
Adaptive smoothing, 135	biometrics, 363
Adversarial examples, 311, 403	colorization, 211
Affine transforms, 41, 45	digit classification, 298
Affinities (segmentation), 489	digital heritage, 824

document scanning, 517	video-based walkthroughs, 896
edge editing, 465	view morphing, 714
facial animation, 839	visual effects, 5
flash photography, 634	whiteboard scanning, 517
frame interpolation, 593	z-keying, 777
gaze correction, 769	Arc length parameterization of a curve, 463
head tracking, 769	Architectural reconstruction, 833
hole filling, 665	Area statistics, 141
image search, 360	mean (centroid), 141
industrial, 7	perimeter, 141
intelligent photo editing, 394	second moment (inertia), 141
Internet photos, 725	Aspect ratio, 57, 59
location recognition, 698	Atrous convolution, 294
machine inspection, 5	Attention, 323
match move, 723	Augmented reality, 550, 697, 739
medical imaging, 5, 390, 577	Auto-calibration, 712
morphing, 177	Autoencoder, 296, 329
mosaic-based video compression, 522	Automatic gain control (AGC), 82
non-photorealistic rendering, 667	Average pooling, 295
Optical character recognition (OCR), 5	Axis/angle representation of rotations, 46
panography, 506	D 1 460
performance-driven animation, 454	B-snake, 469
photo pop-up, 394	B-spline, 176, 469, 473, 477, 578
Photo Tourism, 867	cubic, 150
Photomontage, 544	multilevel, 826
planar pattern tracking, 697	octree, 831 Backbone network, 296
rolling shutter wobble removal, 587	Background plate, 662
rotoscoping, 476	Background subtraction (maintenance), 844
scene completion, 394	Background subtraction (maintenance), 844
scratch removal, 665	gradient checkpointing, 287
segmentation, 227	guided, 308
self-driving vehicles, 5	Backside illumination (back-illuminated) sensor
single view reconstruction, 688	82
style transfer, 669	Backward convolution, 295
synthetic re-focusing, 883	Bag of words (keypoints), 352
tonal adjustment, 119	distance metrics, 353
video denoising, 589	Band-pass filter, 127
video stabilization, 573	Bartlett filter, see Bilinear kernel
video summarization 522	Barycentric coordinates 194

Batch channel normalization, 279	Boosting, 374
Batch normalization, see Deep neural networks	decision stump, 374
Bayer pattern (RGB sensor mosaic), 93	weak learner, 374
demosaicing, 93, 646	Border (boundary) effects, 123, 182
Bayes' rule, 213, 948	Boundary detection, 461
MAP (maximum a posteriori) estimate, 949	Box filter, 125
posterior distribution, 948	Boxlet, 130
Bayesian classification, 243	BRDF, 68
Bayesian modeling, 212, 948	anisotropic, 68
MAP estimate, 213, 949	isotropic, 68
matting, 654	recovery, 852
posterior distribution, 213, 948	spatially varying (SVBRDF), 852
prior distribution, 213, 948	Brightness, 112
uncertainty, 213	Brightness constancy, 3, 558
Belief propagation (BP), 219	constraint, 558, 567, 580
Benchmarks, 954	Bundle adjustment, 717
Bias, 112, 560	
Bias-variance tradeoff, 202	C3D network, 318
Bidirectional Reflectance Distribution Function,	Calibration, see Camera calibration
see BRDF	Calibration matrix, 56
Bilateral filter, 133, 184	Camera calibration, 55, 105
joint, 635	accuracy, 743
range kernel, 134	aliasing, 616
tone mapping, 630	extrinsic, 56, 693
Bilateral solver, 210	intrinsic, 55, 685
Bilinear blending, 118	optical blur, 616, 676
Bilinear kernel, 126	patterns, 685
Biometrics, 363	photometric, 610
Bipartite problem, 720	plumb-line method, 692, 745
Blind image deconvolution, 638	point spread function, 616, 676
Block-based motion estimation	radial distortion, 691
(block matching), 562	radiometric, 611, 621, 674
Blocks world, 12	rotational motion, 689, 743
Blue screen matting, 115, 180, 651	slant edge, 616
Blur kernel, 75	vanishing points, 687
,	vignetting, 615
estimation, 616, 676	Camera matrix, 56, 59
Blur removal, 148, 183	Catadioptric optics, 77
Body color, 70	Category-level recognition, 349
Boltzmann distribution, 214, 949	bag of words, 352

part-based, 354	camera, 92
surveys, 410	demosaicing, 93, 646
CCD, 80	fringing, 646
blooming, 80	hue, saturation, value (HSV), 97
Central difference, 126	L*a*b*, 90
Chain rule	L*u*v*, 91, 259, 487
as used in backpropagation, 284	primaries, 88
Chained transformations, 696, 718	profile, 613
Chamfer matching, 139	ratios, 98
Channel-separated convolution, 294	RGB, 89
Characteristic function, 141, 474, 824, 831	transform, 112
Characteristic polynomial, 924	twist, 94, 113
cheirality, 703, 708	XYZ, 89
Cholesky factorization, 925	YIQ, 96
algorithm, 926	YUV, 96
incomplete, 937	Color filter array (CFA), 93, 646
sparse, 933	Color line model, 657
Chromatic aberration, 77, 746	ColorChecker chart, 613
Chromaticity coordinates, 90	Colorization, 211
CIE L*a*b*, see Color	Compositing, 113, 178, 180
CIE L*u*v*, see Color	image stitching, 536
CIE XYZ, see Color	opacity, 114
Circle of confusion, 75	over operator, 114
CLAHE, see Histogram equalization	surface, 536
Classification, 237, 239	transparency, 114
Bayesian, 243	Compression, 98
CLIP, 315, 403	Computational photography, 607
Closing, 138	active illumination, 636
Clustering, 257	flash and non-flash, 634
agglomerative, 258, 485	high dynamic range, 620
cluster analysis, 483, 494	references, 610, 671
divisive, 258, 484	tone mapping, 627
CMOS, 80	Concentric mosaic, 523, 882
CNN stereo matching costs, 779	CONDENSATION, 472
Co-vector, 42	Condition number, 934
Coefficient matrix, 208	Conditional batch normalization, 279
Collineation, 45	Conditional generative adversarial network, 33
Color, 87	Conditional random field (CRF), 222, 388, 771
balance, 94, 104, 180	dense, 225

fully connected, 225	Hough transform, 479
Confidence calibration, 280	image stitching, 536
Confusion matrix (table), 441	Curve
Conic section, 37	arc length parameterization, 463
Conjugate gradient descent (CG), 934	evolution, 464
algorithm, 935	matching, 464
non-linear, 936	smoothing, 464
preconditioned, 936	Cylindrical coordinates, 523
Connected components, 141	
Constellation model, 356	DALL·E, 331
Content-based image retrieval (CBIR), 360, 448	Data energy (term), 214, 949
Content-preserving warps, 533, 575	Data fitting
Continuation method, 210	robust, 202
Contour	Data interpolation, 194
arc length parameterization, 463	Dataset augmentation, <i>see</i> Deep neural networks
chain code, 463	Dataset bias, 312
detection, 461	Datasets and test databases, 954
matching, 464, 498	Decimation, 153
smoothing, 464	Decimation kernels
Contrast, 112	bicubic, 154
Contrastive (metric) learning, 315	binomial, 153, 155
Contrastive loss, 281, 282	QMF, 154 windowed sinc, 153
Controlled-continuity spline, 205	Decision theory, 240
Convolution, 120	Decision trees and random forests, 254
kernel, 120	Deconvolution network, 308
mask, 120	Deep learning, 237, 268
superposition, 120	courses, 336
Convolutional neural networks	history, 336
1×1 convolutions, 293	layers, 270
Convolutional neural networks (CNNs), 291	surveys, 336
Coring, 157, 186	textbooks, 336
Correlation, 120, 561	Deep neural networks, 268
windowed, 564	3D, 317
Correspondence map, 571	3D point clouds and meshes, 320
Cramer–Rao lower bound, 513, 569, 952	activation functions, 272
Cross-entropy loss, 249, 280	adversarial examples, 311
multi-class, 249	AlexNet, 299
Cross-validation, 201	architectures, 299
Cube map	attention, 322

backbone, 296	stochastic gradient descent (SGD), 287
backbone (trunk), 312	training, 287
backpropagation, 284	transformer, 322
batch normalization, 276	U-Net, 298
bottleneck, 296	VGG, 300
channels, 291	visualization, 307
convolutional neural networks, 291	weight initialization, 283
dataset augmentation, 275	weight sharing, 293
deconvolution, 308	weights, 270
dropout, 276	Delaunay triangulation, 194
efficient (mobile) networks, 303	Demosaicing (Bayer), 93, 646
feature maps, 291	Denoising
fine-tuning, 312	image, 644
fully convolutional, 296	video, 589
generative adversarial networks (GANs),	Dense captioning, 405
331	Dense conditional random field (CRF), 225
GoogLeNet, 300	Depth estimation
group normalization, 279	monocular, 796
He initialization, 283	Depth from defocus, 814
head (branches), 312	Depth map, see Disparity map
instance normalization, 278	Depth of field, 75, 103
layer normalization, 278	Depth recovery, see Stereo
learning rate, 288, 339	deep networks, 778
loss functions, 280	multi-view, 781
LSTMs, 321	Depthwise convolution, 294
minibatch stochastic gradient descent, 288	DETR, 327
model zoo, 304	Di-chromatic reflection model, 73
momentum, 289	Difference matting (keying), 115, 181, 652, 844
neural architecture search (NAS), 305	Difference of Gaussians (DoG), 158
optimization, 287	Difference of low-pass (DOLP), 159
pre-training, 312	Diffuse reflection, 70
recurrent networks (RNNs), 321	Diffusion
regularization, 274	anisotropic, 135
ResNet, 302	Digital camera, 79
sequence modeling, 321	color, 92
size and efficiency, 305	color filter array (CFA), 93
solvers, 287	compression, 98
spatio-temporal, 321	Dilation, 138
stereo matching 778	Dimensionality reduction

non-linear embeddings, 265	Downstream task, 313
Direct current (DC), 100	Dropout, see Deep neural networks
Direct linear transform (DLT), 693	DSAC, see RANSAC
Direct sparse matrix techniques, 932	Dynamic programming (DP), 774
Directional derivative, 127	monotonicity, 775
selectivity, 129	ordering constraint, 775
Discrete cosine transform (DCT), 98, 147	scanline optimization, 775
Discrete Fourier transform (DFT), 144	Dynamic snake, 471
Discriminant analysis	Dynamic texture, 891
Fisher, 247	
linear, 247	Edge detection, 456, 496
quadratic, 247	boundary detection, 461
Discriminative models	Canny, 457
decision trees and random forests, 254	chain code, 463
deep neural networks, 268	color, 460
feedforward networks, 268, 269, 274	Difference of Gaussian, 458
logistic regression, 248	edgel (edge element), 458
support vector machines, 250	hysteresis, 463
Discriminative random field (DRF), 223	Laplacian of Gaussian, 458
Disparity, 54, 756	linking, 461, 497
Disparity map, 757	marching cubes, 458
geometric consistency, 784	scale selection, 459
multiple, 784	steerable filter, 458
Disparity space image (DSI), 757	zero crossing, 458
generalized, 759	Eigenface, 262
Displaced frame difference (DFD), 558	Eigenvalue decomposition, 262, 470, 922
Displacement field, 176	Eigenvector, 922
Distance from face space (DFFS), 263	Elastic deformations, 577
Distance in face space (DIFS), 263	image registration, 577
Distance map, see Distance transform	Ellistical variables average (EWA) 172
Distance transform, 139	Elliptical weighted average (EWA), 173
Euclidean, 140	Empirical risk minimization, 240
image stitching, 540	Energy functions
Manhattan (city block), 139	regular, 217
signed, 140	sub-modular, 217
Domain (of a function), 111	Energy-based models, 191, 204
	Environment map, 67, 880
Domain adaptation, 313 Domain scaling law, 172	Environment matte, 883
-	Epipolar constraint, 704
Downsampling, see Decimation	Epipolar geometry, 704, 753

pure rotation, 709	cascade of classifiers, 375
pure translation, 708	clustering and PCA, 373
Epipolar line, 754	neural networks, 373
Epipolar plane, 754, 761	support vector machines, 374
image (EPI), 782, 877	Face modeling, 838
Epipolar volume, 877	Face recognition, 363
Epipole, 705, 754	active appearance model, 366
Erosion, 138	eigenface, 262
Error rates	elastic bunch graph matching, 365
accuracy (ACC), 443	local binary patterns (LBP), 411
false negative (FN), 441	local feature analysis, 365
false positive (FP), 441	Face transfer, 888
positive predictive value (PPV), 443	Facial expression recognition, 365
precision, 443	Facial motion capture, 838, 843, 888
recall, 443	Factor graph, 214, 215, 736, 949
ROC curve, 443	Factorization, 15, 715
true negative (TN), 441	missing data, 716
true positive (TP), 441	projective, 716
Errors-in-variable model, 528, 929	Fast Fourier transform (FFT), 144
heteroscedastic, 930	Fast marching method (FMM), 474
ESAC, see RANSAC	Feature descriptor, 434, 495
Essential matrix, 704	bias and gain normalization, 435
5-point algorithm, 707	GLOH, 436
eight-point algorithm, 705	patch, 435
re-normalization, 706	PCA-SIFT, 436
seven-point algorithm, 706	performance (evaluation), 437
twisted pair, 708	quantization, 352, 447
Estimation theory, 941	RootSIFT, 436
Euclidean transformation, 40, 44	SIFT, 435
Euler angles, 45	steerable filter, 437
Expectation maximization (EM), 261	Feature detection, 419, 422, 495
Exponential twist, 47	Adaptive non-maximal suppression, 426
Exposure bracketing, 621	affine invariance, 431
Exposure value (EV), 76, 611	auto-correlation, 422
F-number (stop), 75, 104	Förstner, 425
F-score, 381, 443	Harris, 425
F-theta lens, 64	Laplacian of Gaussian, 429
Face detection, 371	MSER, 432
boosting 374	region, 433

rotation invariance, 430 moving average, 125 scale invariance, 428 non-linear, 132 Feature maps in deep neural networks, 291 separable, 124, 182 Feature matching, 419, 441, 496 steerable, 128, 183, 184 densification, 448 Filter coefficients, 120 efficiency, 445 Filter kernel, see Kernel error rates, 441 Finding faces, see Face detection hashing, 445 Fine-grained category recognition, 359 indexing structure, 445 Fine-tuning deep neural networks, 312 k-d trees, 446 Finite element analysis, 207 locality sensitive hashing, 446 stiffness matrix, 208 nearest neighbor, 443 Finite impulse response (FIR) filter, 120, 130 strategy, 441 Fisher discriminant analysis, 247
Feature maps in deep neural networks, 291 Feature matching, 419, 441, 496 densification, 448 efficiency, 445 error rates, 441 hashing, 445 indexing structure, 445 k-d trees, 446 nearest neighbor, 443 separable, 124, 182 steerable, 128, 183, 184 Filter coefficients, 120 Filter kernel, see Kernel Finding faces, see Face detection Fine-grained category recognition, 359 Fine-tuning deep neural networks, 312 Finite element analysis, 207 stiffness matrix, 208 Finite impulse response (FIR) filter, 120, 130
Feature matching, 419, 441, 496 densification, 448 efficiency, 445 error rates, 441 hashing, 445 indexing structure, 445 k-d trees, 446 nearest neighbor, 443 steerable, 128, 183, 184 Filter coefficients, 120 Filter kernel, see Kernel Finding faces, see Face detection Fine-grained category recognition, 359 Fine-tuning deep neural networks, 312 Finite element analysis, 207 stiffness matrix, 208 Finite impulse response (FIR) filter, 120, 130
densification, 448 efficiency, 445 efficiency, 445 error rates, 441 hashing, 445 indexing structure, 445 k-d trees, 446 nearest neighbor, 443 Filter coefficients, 120 Filter kernel, see Kernel Finding faces, see Face detection Fine-grained category recognition, 359 Fine-tuning deep neural networks, 312 Finite element analysis, 207 stiffness matrix, 208 Finite impulse response (FIR) filter, 120, 130
efficiency, 445 error rates, 441 Finding faces, see Face detection hashing, 445 Fine-grained category recognition, 359 indexing structure, 445 Fine-tuning deep neural networks, 312 k-d trees, 446 Finite element analysis, 207 locality sensitive hashing, 446 nearest neighbor, 443 Finite impulse response (FIR) filter, 120, 130
error rates, 441 hashing, 445 indexing structure, 445 k-d trees, 446 locality sensitive hashing, 446 nearest neighbor, 443 Finding faces, see Face detection Fine-grained category recognition, 359 Fine-tuning deep neural networks, 312 Finite element analysis, 207 stiffness matrix, 208 Finite impulse response (FIR) filter, 120, 130
hashing, 445 indexing structure, 445 k-d trees, 446 locality sensitive hashing, 446 nearest neighbor, 443 Fine-grained category recognition, 359 Fine-tuning deep neural networks, 312 Finite element analysis, 207 stiffness matrix, 208 Finite impulse response (FIR) filter, 120, 130
indexing structure, 445 k-d trees, 446 Finite element analysis, 207 locality sensitive hashing, 446 nearest neighbor, 443 Finite element analysis, 208 Finite impulse response (FIR) filter, 120, 130
k-d trees, 446 Finite element analysis, 207 locality sensitive hashing, 446 stiffness matrix, 208 nearest neighbor, 443 Finite impulse response (FIR) filter, 120, 130
locality sensitive hashing, 446 stiffness matrix, 208 nearest neighbor, 443 Finite impulse response (FIR) filter, 120, 130
nearest neighbor, 443 Finite impulse response (FIR) filter, 120, 130
strategy, 441 Fisher discriminant analysis, 247
verification, 447 Fisher information matrix, 505, 513, 943, 952
Feature tracking, 452, 496 Fisheye lens, 64
affine, 452 Flash and non-flash merging, 634
learning, 453 Flash matting, 661
Feature tracks, 715, 725 Flip-book animation, 549
Feature-based alignment, 503 Flying spot scanner, 818
2D, 503 Focal length, 57, 58, 74
3D, 513 Focus, 75
iterative, 507 shape-from, 814, 857
Jacobian, 504 Focus of expansion (FOE), 708
least squares, 504 Form factor, 74
match verification, 348 Forward mapping, see Forward warping
RANSAC, 511 Forward warping, 169, 187
robust, 510 Fourier transform, 142, 184
Field of Experts (FoE), 219 discrete, 144
Fill factor, 82 magnitude (gain), 143
Fill-in, 720, 932 phase (shift), 143
Filter power spectrum, 146
adaptive, 135 two-dimensional, 146
band-pass, 127 Fourier-based motion estimation, 563
bilateral, 133, 184 Frame interpolation, 593
directional derivative, 127 Free-viewpoint video, 893, 895
edge-preserving, 133, 135 Fully connected (FC) layer, 272
guided, 136, 184 Fully connected conditional random field (CRF),
Laplacian of Gaussian, 127 225

Fully convolutional network, 296	normal vectors, 36, 38
Fundamental matrix, 711	planes, 38
estimation, see Essential matrix	points, 36, 37
Fundamental radiometric relation, 79	Geometric transformations
	2D, 40, 168
Gain, 112, 560	3D, 43
Gamma, 112	3D perspective, 45
Gamma correction, 94, 104	3D rotations, 45
Gap closing (image stitching), 520	affine, 41, 45
Garbage matte, 662	bilinear, 43
Gated convolution, 294	calibration matrix, 56
Gaussian kernel, 126	collineation, 45
Gaussian Markov random field (GMRF), 218,	Euclidean, 40, 44
224, 639	forward warping, 169, 187
Gaussian mixture model, 468, 472	hierarchy, 41
color model, 653	homography, 41, 45, 62, 517
expectation maximization (EM), 261	inverse warping, 170
mixing coefficient, 261	perspective, 41
Gaussian mixture models, 259	projections, 51
Gaussian pyramid, 155	projective, 41
Gaussian scale mixtures (GSM), 219	rigid body, 40, 44
Gaussians mixture model	- ·
soft assignment, 261	scaled rotation, 41, 45
Gaze correction, 769	similarity, 41, 45
Geman–McClure function, 559	translation, 40, 44
Generalized cylinders, 12, 820, 826	Geometry image, 828
Generalized mean pooling (GeM), 295	Gesture recognition, 843
Generative adversarial networks (GANs), 331	Gibbs distribution, 214, 949
conditional, 333	Gimbal lock, 45
discriminator, 331	Gist (of a scene), 358, 394
generator, 331	Global illumination, 73
Generative models, 193, 212, 243, 328, 948	GooLeNet neural network, 300
probabilistic generative classification, 243	Gradient checkpointing, 287
Geodesic active contour, 474	Gradient location-orientation histogram (GLOH)
Geodesic distance (segmentation), 230	436
Geometric image formation, 36	Graduated non-convexity (GNC), 209
Geometric lens aberrations, 76	Graph cuts
Geometric primitives, 36	MRF inference, 216
homogeneous coordinates, 36	normalized cuts, 489
lines, 36, 38	Graph-based segmentation, 486

Graphical models, 212, 214, 355	History of computer vision, 10
Grassfire transform, 140, 465, 540	Hole filling, 665
Ground control points, 514, 707	Holistic 3D reconstruction, 836
Group normalization, 279	Homogeneous coordinates, 36, 703
Guided image filter, 136, 184	Homography, 41, 62, 517
	Hough transform, 478
Hammersley–Clifford theorem, 214, 949	cascaded, 480
Hand tracking, 846	cube map, 479
Harris corner detector, see Feature detection	generalized, 478
HDR imaging, see High dynamic range (HDR)	Human activity recognition, 397
imaging	Human body shape modeling, 847
He initialization rule for neural network weights,	Human motion tracking, 843
283	activity recognition, 850
Head tracking, 769	adaptive shape modeling, 847
active appearance model (AAM), 366	background subtraction, 844
Helmholtz reciprocity, 68	flow-based, 845
Hessian, 208, 426, 505, 508, 513, 567, 571, 928	initialization, 844
eigenvalues, 569	kinematic models, 845
image, 568, 581	particle filtering, 847
inverse, 513, 569	probabilistic models, 847
local, 579, 580	Hyper-Laplacian, 210, 218, 219
patch-based, 572	Hyperlapse videos, 899
rank-deficient, 724	Hyperparameters, 202, 290
reduced motion, 720	
sparse, 720, 747, 932	Ideal points, 36
Heteroscedastic, 505, 930	Ill-conditioned problems, 197
Hidden Markov model (HMM), 891	Ill-posed (ill-conditioned) problems, 204
Hierarchical motion estimation, 562	Illusions, 3
High dynamic range (HDR) imaging, 620	Image alignment
formats, 627	feature-based, 503, 760
tone mapping, 627	intensity-based, 558
video, 625	Image analogies, 667
Highest confidence first (HCF), 216	Image blending
Hilbert transform pair, 129	feathering, 540
Hinge loss, 253	GIST, 547
Hinton diagrams, 308	gradient domain, 545
Histogram equalization, 115, 181	image stitching, 538
locally adaptive, 117, 182	Poisson, 545
Histogram intersection, 353	pyramid, 165, 545
Histogram of oriented gradients (HOG), 376	Image center, 57

Image classification, 349	homography, 517
Image compositing, see Compositing	motion models, 516
Image compression, 98	panography, 506
Image decimation, 153	parallax removal, 531
Image deconvolution, see Blur removal	photogrammetry, 514
Image denoising, 183, 644	pixel selection, 538
Image filtering, see Filter	planar perspective motion, 516
Image formation	recognizing panoramas, 533
geometric, 36	rotational motion, 519
photometric, 66	seam selection, 541
Image gradient, 127, 136, 566	spherical, 524
constraint, 207	up vector selection, 529
Image interpolation, 150	Image Transformer, 326
Image matting, 650, 678	Image warping, 168, 186, 563
Image processing, 109	Image-based modeling, 865
textbooks, 109, 178, 230	Image-based rendering, 596, 861
Image pyramid, 149, 184	concentric mosaic, 882
Image quality assessment, 149	environment matte, 883
Image resampling, 168, 184	impostors, 869
test images, 184	layered depth image, 868
Image restoration, 148	layers, 869
blur removal, 148, 183	light field, 875
deblocking, 233	Lumigraph, 875
denoising, 148, 183	modeling vs. rendering continuum, 886
noise removal, 188	multiplane image (MPI), 871
Image sensing, see Sensing	reflections, 872
Image statistics, 141	sprites, 869
Image stitching, 514	surface light field, 880
automatic, 533	unstructured Lumigraph, 879
bundle adjustment, 527	view interpolation, 863
compositing, 536	view-dependent texture maps, 865
coordinate transformations, 537	Image-based visual hull, 795
cube map, 536	Image-to-image translation, 333
cylindrical, 523, 551	Implicit surface, 831
deghosting, 532, 541, 552	Impostors, see Sprites
exposure compensation, 547	Impulse response, 120
feathering, 540	Inception module, 300
gap closing, 520	Incremental refinement
global alignment, 526	motion estimation, 562, 566

Incremental rotation, 50	Inverse mapping, see Inverse warping
Indexing structure, 445	Inverse problems, 3, 204
Indicator function, 831	Inverse warping, 170
Inductive spatial locality bias, 323	ISO setting, 82
Industrial applications, 7	Isomap, 265
Infinite impulse response (IIR) filter, 130	Iterated conditional modes (ICM), 216
Influence function, 210, 510, 946	Iterative back projection (IBP), 638
Information criteria (BIC, AIC), 202	Iterative closest point (ICP), 468, 514, 821
Information matrix, 505, 513, 724, 943, 952	Iterative feature-based alignment, 507
Inpainting, 665	Iterative sparse matrix techniques, 934
Instance normalization, 278	conjugate gradient, 934
Instance recognition, 346	Iteratively reweighted least squares, 250
geometric alignment, 348	(IRLS), 510, 570, 696, 947
inverted index, 448	Iteratively reweighted least squares (IRLS), 202
large-scale, 448	
match verification, 348	Jacobian, 504, 566, 696, 718, 930, 931
query expansion, 450	image, 568
stop list, 449	motion, 571
visual words, 449	sparse, 720, 747, 932
Integrability constraint, 811	Joint bilateral filter, 635
Integral image, 129	Joint domain (feature space), 489
Integrating sphere, 611	K-d trees, 446
Intelligent scissors, 473	K-means, 259
Interaction potential, 214, 215, 949	K-nearest neighbors (kNN), 241
Interactive computer vision, 854	Kalman snakes, 471
Interactive segmentation, 227	Kanade–Lucas–Tomasi (KLT) tracker, 453
International Color Consortium (ICC), 613	Karhunen–Loève transform, 147, 262
Internet photos, 725	Kernel, 125
Interpolation, 150	bilinear, 126
scattered data, 194	Gaussian, 126
Interpolation kernels	low-pass, 126
bicubic, 152	Sobel operator, 126
bilinear, 150	unsharp mask, 126
binomial, 150	Kernel basis function, 206
sinc, 152	Kernel density estimation, 198
spline, 152	Kernel functions, 196
Intrinsic camera calibration, 685	Kernel methods, 196
Intrinsic images, 12	Kernel regression, 196, 198, 252
Inverse kinematics (IK), 845	Keypoint detection, see Feature detection

KinectFusion, 822	Learning rate, see Deep neural networks
Kinematic model (chain), 845	Least median of squares (LMS), 511
Kruppa equations, 713	Least squares
	iterative solvers, 695, 934
L*a*b*, see Color	linear, 102, 504, 513, 558, 922, 927, 940,
L*u*v*, see Color	944
L_1 norm, 210, 559, 581, 831	non-linear, 507, 695, 703, 930, 945
L_{∞} norm, 722	robust, see Robust least squares
Lambertian reflection, 70	sparse, 719, 933
Laplacian Eigenmaps, 265	total, 929
Laplacian matting, 659	weighted, 212, 505, 634, 637
Laplacian of Gaussian (LoG) filter, 127	LeNet-5, 291
Laplacian pyramid, 157	Lens
blending, 165, 185, 545	compound, 77
perfect reconstruction, 157	nodal point, 77
Lasso (least absolute shrinkage and selection op-	thin, 74
erator), 197	Lens distortions, 63
Latent Dirichlet process (LDP), 357	calibration, 691
Layered depth image (LDI), 868	decentering, 64
Layered depth panorama, 882	_
Layered motion estimation, 589	radial, 63
reflections, 594	spline-based, 65
transparent, 594	tangential, 64
Layers in image-based rendering, 869	Lens law, 74
Layout consistent random field, 387	Level of detail (LOD), 827
Learning, 237	Level sets, 474, 475
classification, 239	fast marching method, 474
nearest neighbors, 241	geodesic active contour, 474
contrastive (metric), 315	Levenberg–Marquardt, 508, 724, 748, 931, 967
deep neural networks, 268	Lidar (Light Detection and Ranging), 816
regression, 239	Lifting, see Wavelets
self-supervised, 312	Light field
semi-supervised, 266, 314	higher dimensional, 885
student-teacher, 316	light slab, 877
supervised, 237, 239	ray space, 878
test phase, 239	rendering, 875
training phase, 239	surface, 880
unsupervised, 237, 257	Lightness, 91
weak, 314	Line at infinity, 36
weakly supervised 268	Line detection 477

Hough transform, 478	Loopy belief propagation (LBP), 219
RANSAC, 480	Loss function, 280
simplification, 477, 499	ArcFace, 282
successive approximation, 477, 499	contrastive, 281
Line equation, 36, 38	cross-entropy, 280
Line fitting, 102	perceptual, 281
uncertainty, 499	triplet, 282
Line hull, see Visual hull	Low-pass filter, 126
Line labeling, 12	sinc, 126
Line process, 231, 771, 949	Lumigraph, 875
Line segment detector (LSD), 481	unstructured, 879
Line spread function (LSF), 617	Luminance, 89
Line support regions, 480	Lumisphere, 880
Line-based structure from motion, 731	M .:
Linear algebra, 919	M-estimator, 202, 510, 558, 946
least squares, 927	Machine learning, see Learning
matrix decompositions, 920	textbooks, 336
references, 920	Machine learning models
Linear blend, 112	discriminative vs. generative, 248
Linear discriminant analysis (LDA), 247	MAGSAC, see RANSAC
Linear filtering, 119	Mahalanobis distance, 261, 264, 942
Linear operator, 112	Manhattan world, 732
superposition, 112	Manifold learning, 265
Linear shift invariant (LSI) filter, 122	Manifold mosaic, 541, 909
Live-wire, 473	Markov chain Monte Carlo (MCMC), 944 Markov random field, 212, 949
Local distance functions, 265	cliques, 215, 949
Local Laplacian, 159, 186	directed edges, 229
Local Linear Embedding (LLE), 265	flux, 229
Local operator, 119	inference, see MRF inference
Locality sensitive hashing (LSH), 446	layout consistent, 387
Localization, 698	learning parameters, 213
Locally adaptive histogram equalization, 118	line process, 231, 771, 949
Location recognition, 698	neighborhood, 215, 949
Log likelihood, 244	order, 215, 950
Log odds, 245	random walker, 230
Logistic regression, 246, 248	stereo matching, 771
Logistic sigmoid function (curve), 245	Marr's framework, 13
Logit, 245	computational theory, 13
Long short-term memory (LSTM), 321	hardware implementation, 13

representations and algorithms, 13	Median filter, 132
Masked convolution, 294	Medical image registration, 577
Match move, 723	Medical image segmentation, 390
Matrix decompositions, 920	Membrane, 205
Cholesky, 925	Mesh-based warping, 175, 186
eigenvalue (ED), 922	Metamer, 89
QR, 925	Metric learning, 265
singular value (SVD), 921	Metric tree, 447
square root, 925	Minibatch stochastic gradient descent), 288
Matte reflection, 70	MIP-mapping, 172
Matting, 113, 115, 650, 678	trilinear, 173
alpha matte, 114	Mixture of Gaussians, see Gaussian mixture
Bayesian, 654	model
blue screen, 115, 180, 651	MLESAC, see RANSAC
difference, 115, 181, 652, 844	Model selection, 202, 516, 949
flash, 661	Model zoo, see Deep neural networks
GrabCut, 657	Model-based reconstruction, 833
Laplacian, 658	architecture, 833
natural, 653	heads and faces, 838
optimization-based, 656	human body, 843
Poisson, 657	Model-based stereo, 834, 866
shadow, 661	Models
smoke, 661	Bayesian, 212, 948
triangulation, 652, 662	forward, 3
trimap, 653	physically based, 15
two screen, 652	physics-based, 3
video, 662	probabilistic, 3
Max pooling, 295	Modulation transfer function (MTF), 86, 617
Maximally stable extremal region (MSER), 432	Momentum, see Deep neural networks
Maximum a posteriori (MAP) estimate, 213, 949	Monocular depth estimation, 796
Maximum margin classifier, 251	Morphable model
Mean absolute difference (MAD), 764	body, 847
Mean average precision, 443	face, 839, 888
Mean shift, 487	multidimensional, 888
Mean square error (MSE), 100, 764	Morphing, 177, 187, 864, 865
Measurement equation (model), 702, 941	3D body, 847
Measurement model, see Bayesian model	3D face, 840
Medial axis transform (MAT), 140	automated, 604
Median absolute deviation (MAD) 559	facial feature 888

feature-based, 177, 187	Motion stereo, 784
flow-based, 604	Moving least squares (MLS), 830
video textures, 891	MRF inference, 216, 950
view morphing, 865, 911	alpha expansion, 219
Morphological operator, 138	belief propagation, 219
Morphology, 138	expansion move, 219
Mosaic, see Image stitching	graph cuts, 216
Mosaics	highest confidence first, 216
motion models, 516	iterated conditional modes, 216
video compression, 522	loopy belief propagation, 219
whiteboard and document scanning, 517	simulated annealing, 216
Motion compensated video compression, 562, 600	stochastic gradient descent, 216
Motion compensation, 100	swap move (alpha-beta), 219
Motion estimation, 557	Multi-frame motion estimation, 587
affine, 570	Multi-layer perceptron (MLP), 272
aperture problem, 568	Multi-pass transforms, 174
compositional, 572	Multi-perspective panoramas, 523, 882
Fourier-based, 563	Multi-perspective plane sweep (MPPS), 531
frame interpolation, 593	Multi-view stereo, 781
hierarchical, 562	epipolar plane image, 782
incremental refinement, 566	evaluation, 794
layered, 589	initialization requirements, 794
learning, 573, 581	point clouds, 788
linear appearance variation, 569	reconstruction algorithm, 792
optical flow, 578	scene representation, 788
parametric, 570	shape priors, 792
patch-based, 558, 571	silhouettes, 794
phase correlation, 565	space carving, 793
quadtree spline-based, 577	spatio-temporally shiftable window, 783
reflections, 595	taxonomy, 787
rolling shutter, 587	visibility, 791
spline-based, 575	volumetric, 786, 789
translational, 558	voxel coloring, 793
transparent, 594	Multidimensional scaling (MDS), 265
uncertainty modeling, 569	Multigrid, 937
Motion field, 571	algebraic (AMG), 486, 938
Motion models	Multinomial logistic regression objective, 249
learned, 573	Multiplane image (MPI), 871
Motion segmentation, 605	Multiple hypothesis tracking, 472

Multiple object tracking, 600	Non-linear least squares
Multiple-center-of-projection images, 523, 882,	seeLeast squares, 507
909	Non-maximal suppression, see Feature detection
Multiresolution representation, 154	Non-parametric density modeling, 487
Mutual information, 561, 578	Non-photorealistic rendering (NPR), 667
	Normal equations, 505, 567, 928, 931
Naïve Bayes, 245	Normal map (geometry image), 828
Natural image matting, 653	Normal vector, 38
Nearest neighbor, 241	Normalized cross-correlation (NCC), 561, 602,
distance ratio (NNDR), 444	764
matching, see Feature matching	Normalized cuts, 489
Negative posterior log likelihood, 213, 943, 948	intervening contour, 491
Neighborhood operator, 119, 131	Normalized device coordinates (NDC), 54, 59
Neural architecture search (NAS), 305	Normalized exponential, 244
Neural network	Normalized sum of squared differences
backbone, 304	(NSSD), 561
backpropagation, 269	Norms
branches, 304	L_1 , 210, 559, 581, 831
confidence calibration, 280	L_{∞} , 722
fine tuning, 304	Novel view synthesis (NVS), 864
for face detection, 373	Nyquist rate/frequency, 85
head(s), 304	
pre-trained, 304	Object detection, 370
trunk, 304	car, 376, 411
Neural network pooling	face, 371
average, 295	part-based, 377
generalized mean (GeM), 295	pedestrian, 369, 376
max, 295	Object tracking, 598
unpooling, 295	Object-centered projection, 62
Neural rendering, 899	Obstruction-free photography, 596
depth images and layers, 902	Occluding contours, 760
implicit functions using MLPs, 903	Octree reconstruction, 795
texture mapped meshes and models, 900	Octree spline, 578
voxel grids, 903	Omnidirectional vision systeghyms, 896
Neural textures, 902	One-hot encoding, 249
Nodal point, 77, 519	Opacity, 114
Noise (sensor), 83, 614	OpenGV, 710, 966
Noise level function (NLF), 83, 104, 614, 675	Opening, 138
Noise removal, see (enoising)148, 188	Operator linearity, 112
Non-linear filter, 132, 179	Optic flow, see Optical flow

Optical flow, 578	Pairwise alignment, 503
anisotropic smoothness, 581	Panography, 506, 549
benchmarks and datasets, 583	Panorama, see Image stitching
coarse-to-fine, 583	Panorama with depth, 523, 759, 882
combinatorial optimization, 583	Para-perspective projection, 53
constraint equation, 567	Parallel tracking and mapping (PTAM), 739
deep learning, 584	Parameter sensitive hashing, 446
evaluation, 583	Parametric motion estimation, 570
fusion move, 583	Parametric surface, 826
global and local, 580	Parametric transformation, 168, 186
Large displacement, 581	Part-based recognition, 354
Markov random field, 583	constellation model, 356
multi-frame, 587	Partial convolution, 294
neural networks, 584	Particle filtering, 472, 847, 944
normal flow, 568	Partition function, 249
patch-based, 579	Parzen window, 198
region-based, 592	Patch-based motion estimation, 558
regularization, 580	PatchMatch, 664
robust regularization, 581	PatchMatch Stereo, 773
smoothness, 580	Peak signal-to-noise Ratio (PSNR), 100, 148
task-oriented, 586	Pedestrian detection, 376
total variation, 581	Penumbra, 66
variational, 581	Perceptual loss, 149, 281, 671
Optical illusions, 3	Perceptual similarity metrics, 148, 281
Optical transfer function (OTF), 86, 616	Performance-driven animation, 454, 842, 888
Optical triangulation, 816	Perspective n-point problem (PnP), 694
Optics, 74	Perspective projection, 53
chromatic aberration, 77	Perspective transform (2D), 41
Seidel aberrations, 76	Phase correlation, 565, 602
vignetting, 78, 676	Phong shading, 71
Optimal motion estimation, 717	Photo pop-up, 394
Oriented particles (points), 829	Photo Tourism, 867
Orthogonal Procrustes, 513	Photo-mosaic, 514
Orthographic projection, 51	
Osculating circle, 761	Photoconsistency, 757, 791
Over operator, 114	Photometric image formation, 66
Overfitting, 199, 242	calibration, 610
Overview, 22	global illumination, 73
Padding 123 182	lighting, 66
E300000 1/3 1A/	ODDICS 14

radiosity, 73	RGB-D data, 821
reflectance, 67	Power spectrum, 146
shading, 71	Pre-training deep neural networks, 312
Photometric stereo, 811	Precision, see Error rates
Photometry, 66	mean average, 443
Photomontage, 544	Preconditioning, 936
Physically based models, 15	Pretext task, 313
Physics-based vision, 16	Principal component analysis (PCA), 262, 373
Pictorial structures, 12, 19, 354	470, 923, 942
Pixel transform, 111	face modeling, 838
Plücker coordinates, 39	generalized, 924
Planar pattern tracking, 697	missing data, 716, 924
Plane at infinity, 38	Principal point, see Image center
Plane equation, 38	Prior energy (term), 214, 949
Plane plus parallax, 60, 576, 591, 757, 870	Prior model, see Bayesian model
Plane sweep, 757, 801	Probabilistic generative classification, 243
Plane-based structure from motion, 733	Profile curves, 760
Plenoptic function, 876	Progressive mesh (PM), 827
Plenoptic modeling, 865	Projections
Plumb-line calibration method, 692, 745	object-centered, 62
Point distribution model, 470	orthographic, 51
Point operator, 109	para-perspective, 53
Point process, 109	perspective, 53
Point spread function (PSF), 85	Projective (uncalibrated) reconstruction, 710
estimation, 616, 676	Projective depth, 61, 757
Point-based representations, 829	Projective disparity, 61, 757
Points at infinity, 36	Projective space, 36
Poisson	PROSAC (PROgressive SAmple Consensus), 511
blending, 545	PSNR, see Peak signal-to-noise ratio
equations, 831	Pull-push algorithm, 195
matting, 657	Pyramid, 149, 184
noise, 83	blending, 165, 185
surface reconstruction, 831	Gaussian, 155
Polar coordinates, 37	half-octave, 159
Polar projection, 64, 526	Laplacian, 157
Polyphase filter, 150	motion estimation, 562
Pop-out effect, 4	octave, 155
Pose estimation, 693	radial frequency implementation, 165
iterative 695	steerable 165

Pyramid match kernel, 353	Range sensing (rangefinding), 816
	coded pattern, 817
QR factorization, 925	light stripe, 816
Quadratic discriminant analysis, 247	shadow stripe, 817, 858
Quadratic form, 208	spacetime stereo, 820
Quadrature mirror filter (QMF), 154	stereo, 819
Quadric equation, 37, 39	texture pattern (checkerboard), 818
Quadtree spline	time of flight, 818
motion estimation, 577	Ranking loss, 281, 315
restricted, 577	RANSAC
Quaternions, 48	inliers, 511
antipodal, 48	preemptive, 511
multiplication, 49	progressive (PROSAC), 511
Query by image content (QBIC), 360	RANSAC (RANdom SAmple Consensus), 480,
Query expansion, 450	511, 707, 947
Quincunx sampling, 159	RAW image format, 83
D 1: 11 ' C (' 17/ 10/ 20/ 92/	Ray space (light field), 878
Radial basis function, 176, 196, 206, 826	Ray tracing, 73
Radial distortion, 63	Rayleigh quotient, 490
barrel, 63	Recall, see Error rates
calibration, 691	Receiver Operating Characteristic
parameters, 63	area under the curve (AUC), 443
pincushion, 63	mean average precision, 443
Radiance map, 624	ROC curve, 443, 495
Radiometric image formation, 66	Recognition, 343
Radiometric response function, 611	category (class), 349
Radiometry, 66	color similarity, 360
Radiosity, 74 Random forests, 254	context, 356
Random valker, 230	contour-based, 410
Range (of a function), 111	face, 363
Range data, see Range scan	instance, 346
Range image, see Range scan	part-based, 354
Range scan	scene understanding, 356
alignment, 821, 858	semantic segmentation, 387
large scenes, 824	shape context, 410
merging, 821	Rectangle detection, 483
registration, 821, 858	Rectification, 755, 800
segmentation, 821	standard rectified geometry, 756
volumetric, 824	Rectified linear unit (ReLU), 272

Recurrent neural networks (RNNs), 321	inliers, 511
Recursive filter, 130	loss function, 202
Reference plane, 61	M-estimator, 202, 510, 558, 946
Reflectance, 67	Rodrigues' formula, 47
Reflectance map, 809	Rolling shutter wobble removal, 587
Reflectance modeling, 851	Root mean square error (RMS), 100, 560
Reflection	Rotations, 45
di-chromatic, 73	Euler angles, 45
diffuse, 70	axis/angle, 46
specular, 71	exponential twist, 47
Reflection layers, 594, 872	incremental, 50
Region merging and splitting, 258, 485	interpolation, 50
Registration, see Image Alignment	quaternions, 48
feature-based, 503	Rodrigues' formula, 47
intensity-based, 558	
medical image, 577	Sampling, 84
Regression, 194, 237, 239	Scale invariant feature transform (SIFT), 435
Regularization, 197, 204, 576	Scale-space, 14, 127, 158, 475
neural network, 274	Scatter matrix, 262
robust, 209	Scattered data approximation, 194
weight decay, 274	overfitting, 199 underfitting, 199
Regularization parameter, 206	Scattered data interpolation, 176, 194
Residual error, 202, 504, 510, 511, 558, 567, 571,	Scene completion, 394
580, 581, 702, 718, 927, 935	Scene flow, 785, 893
Residual network (ResNet), 302	Scene understanding, 356
RGB (red green blue), see Color	gist, 358, 394
Ridge regression, 197	Schur complement, 720, 932
Rigid body transformation, 40, 44	Scratch removal, 665
Risk minimization, 240	Seam selection in image stitching, 541
RMSProp, 290	Second-order cone programming (SOCP), 722
Robust data fitting, 202	Seed and grow
Robust error metric, see Robust penalty function	stereo, 760
Robust least squares, 482, 510, 558, 946	structure from motion, 726
iteratively reweighted, 510, 570, 696, 947	Segmentation
Robust loss function, 202	active contours, 467
Robust penalty function, 209, 558, 569, 638, 759,	affinities, 489
764, 765, 771, 947	binary MRF, 216, 227
Robust regularization, 209	CONDENSATION, 472
Robust statistics, 559, 945	connected components, 141

energy-based, 227	Sensing, 79
Gaussian mixture model, 259	aliasing, 84, 616
geodesic active contour, 474	color, 87
geodesic distance, 230	color balance, 94
GrabCut, 228, 657	gamma, 94
graph cuts, 227	pipeline, 80, 612
graph-based, 486	sampling, 84
hierarchical, 485, 486	sampling pitch, 81
intelligent scissors, 473	Sensor noise, 83, 614
joint feature space, 489	amplifier, 83
k-means, 259	dark current, 83
level sets, 474	fixed pattern, 83
mean shift, 487	shot noise, 83
medical image, 390	Separable filtering, 124, 182
merging, 258, 485	Sequential minimal optimization (SMO), 253
minimum description length (MDL), 227	Shading, 71
Mumford-Shah, 227	equation, 70
non-parametric, 487	shape-from, 809
normalized cuts, 489	Shadow matting, 661
probabilistic aggregation, 486	Shape context, 410, 465
random walker, 230	Shape from
snakes, 467	focus, 814, 857
splitting, 258, 484	photometric stereo, 811
stereo matching, 775	profiles, 760
thresholding, 138	shading, 809
tobogganing, 474, 485	silhouettes, 794
watershed, 485	specularities, 814
weighted aggregation (SWA), 491	stereo, 749
Seidel aberrations, 76	texture, 814
Self-attention, 324	Shape parameters, 366, 470
Self-calibration, 712	Shape-from-X, 14
bundle adjustment, 714	focus, 14
Kruppa equations, 713	photometric stereo, 14
Self-supervised learning, 312	shading, 14
Semantic image synthesis, 333	texture, 14
Semantic segmentation, 387	Shift invariance, 122
Semi-global matching (SGM), 775, 779	Shiftable multi-scale transform, 165
Semi-supervised learning, 266, 314	Shutter speed, 81
transductive vs. inductive 268	Siamese network 282

Sigmoid activation function, 272	Space carving
Sigmoid function, 245	multi-view stereo, 793
Signed distance function, 474, 821, 822, 829, 831	Spacetime stereo, 820
Silhouette-based reconstruction, 794	Sparse flexible model, 355
octree, 795	Sparse matrices, 932
visual hull, 794	compressed sparse row (CSR), 932
Similarity metrics	skyline storage, 932
perceptual, 148	Sparse methods
Similarity metrics (perceptual), 148	direct, 932
Similarity transform, 41, 45	iterative, 934
Simulated annealing, 216	Spatial pyramid matching, 353
Simultaneous localization and mapping (SLAM),	Spatially varying bidirectional reflectance distri-
734	bution function (SVBRDF), 853
Sinc filter	Spectral (weight) normalization, 279
interpolation, 152	Spectral response function, 92
low-pass, 126	Spectral sensitivity, 92
windowed, 152	Specular flow, 814
Singe image depth estimation, 796	Specular reflection, 71
Single view metrology, 688, 744	Spherical coordinates, 38, 479, 524
Singular value decomposition (SVD), 921	Spherical linear interpolation, 50
Skeletal set, 722, 727	Spin image, 821
Skeleton, 140, 465	Splatting, see Forward warping, 195
Skew, 56, 57	volumetric, 829
Slant edge calibration, 616	Spline, 195
Slippery spring, 469	controlled continuity, 205
SlowFast neural network architecture, 319	octree, 578
Smoke matting, 661	quadtree, 577
Smoothness constraint, 206	tensor product, 195
Smoothness penalty, 206	thin plate, 205
Snakes, 467	Spline-based motion estimation, 575
ballooning, 467	Splining images, see Laplacian pyramid blending
dynamic, 471	Sprites
internal energy, 467	image-based rendering, 869
Kalman, 471	motion estimation, 589
shape priors, 470	video, 891
slippery spring, 469	video compression, 522
Soft assignment, 261	with depth, 870
Softmax function, 244, 249	Statistical decision theory, 941, 944
Software, 961	Statistical models: discriminative vs. generative,

Steerable filter, 128, 183, 184 Steerable pyramid, 165 Steerable pyramid, 165 Steerable random field, 218 Stereo, 749 aggregation methods, 767, 802 coarse-to-fine, 773 cooperative algorithms, 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 staxnomy, 753, 762 semi-global matching (SGM), 775, 779 shiftable window, 783 support region, 766 support region, 766 staxnomy, 753, 762 sum of absolute differences (SSD), 558, 602, 764 staxnomy, 753, 762 window-based, 766, 802 winner-take-all (WTA), 768 Sterceo-based head tracking, 769 Stiffness matrix, 208 Stitching, see Image stitching Sterceo-based head tracking, 769 Stiffness matrix, 208 Stitching, see Image stitching Sterchoased tracking, 769 Stitcheng, see Image stitching Structural Similarity (SSIM) index, 148 Structur	248	uncertainty, 769
Steerable random field, 218 Stereo, 749 aggregation methods, 767, 802 coarse-to-fine, 773 cooperative algorithms, 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766 sub-pixel refinement, 768 support region, 766 Stereo-based head tracking, 769 Stiffness matrix, 208 Stitching, see Image stitching Stochastic gradient descent (SGD), 216, 287 Stitchlang, see Image Stitching Stitching, see Image Stitching Stochastic gradient descent (SGD), 216, 287 Structural Similarity (SSIM) index, 148 Structural Similarity (SSIM) index, 148 Structural Form motion, 684 bas-relief ambiguity, 723, 724 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 711, 733 projective factorization, 716 seed and grow, 726 seel and grow, 726 seel and grow, 726 seel and grow, 725 two-frame, 703 uncertainty, 723 student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	Steerable filter, 128, 183, 184	window-based, 766, 802
Stereo, 749 aggregation methods, 767, 802 coarse-to-fine, 773 cooperative algorithms. 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 760 scanline optimization, 775 seed and grow, 760 segmentation-based, 766 sub-pixel refinement, 768 support region, 766 sub-pixel refinement, 768 support region, 766 stricts of stricts and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	Steerable pyramid, 165	winner-take-all (WTA), 768
aggregation methods, 767, 802 coarse-to-fine, 773 cooperative algorithms, 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 support region, 766 sub-pixel refinement, 768 support region, 766 sub-pixel refinement, 768 support region, 766 Structural Similarity (SSIM) index, 148 Structural Similarity (SSIM) index 148 struc	Steerable random field, 218	Stereo-based head tracking, 769
coarse-to-fine, 773 cooperative algorithms, 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 gibbal optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 support region, 766 sub-pixel refinement, 768 support region, 766 sub-pixel refinement, 768 support region, 766 Structural Similarity (SSIM) index, 148 Structural Similarity, 723, 724 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	Stereo, 749	Stiffness matrix, 208
cooperative algorithms, 772 correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 760 segmentation-based, 766, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 support region, 766 support region, 766 support region, 766 structural Similarity (SSIM) index, 148 structural Similarity (pash description, 684 bas-relief ambiguity, 723, 724 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 featu	aggregation methods, 767, 802	Stitching, see Image stitching
correspondence, 751 curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 support region, 766 structural Similarity (SSIM) index, 148 structural Similarity from motion, 684 bas-relief ambiguity, 723, 724 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	coarse-to-fine, 773	Stochastic gradient descent (SGD), 216, 287
curve-based, 760 deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 Structure from motion, 684 bas-relief ambiguity, 723, 724 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	cooperative algorithms, 772	Strided convolution, 294
deep networks, 778 dense correspondence, 762 depth map, 751 dynamic programming, 774 edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 sed and grint, 723 sund adjustment, 717 bundle adjustment, 717 constrained, 731 bundle adjustment, 717 constrained, 731 bundle adjustment, 717 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 feature tracks, 725 iterative factorization, 716 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 seed and grow, 726 seed and grow, 726 subdivision in 112 subar-tacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	correspondence, 751	Structural Similarity (SSIM) index, 148
dense correspondence, 762 depth map, 751 depth map, 751 dynamic programming, 774 edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766 semiglobal matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 sed and giustment, 717 constrained, 731 factorization, 715 feature tracks, 725 feature factorization, 716 seed and grow, 726 seleading, 715 seed an	curve-based, 760	Structure from motion, 684
depth map, 751 dynamic programming, 774 edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 scanline optimization, 766 support region, 766 constrained, 731 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	deep networks, 778	bas-relief ambiguity, 723, 724
dynamic programming, 774 edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 factorization, 715 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 seed and grow, 726 seed and grow, 726 sub-pixel refinement, 768 support region, 766 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 sel and grow, 726 sublet learning, 316 Style transfer, 669 Style transfer, 669 Sub-pixel refinement, 768 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	dense correspondence, 762	bundle adjustment, 717
edge-based, 760 epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 scanline optimization, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 feature tracks, 725 iterative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 seed and grow, 726 seed and grow, 726 seed and grow, 726 stelf-calibration, 712 seed and grow, 723 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	depth map, 751	constrained, 731
epipolar geometry, 753 feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 scamline optimization, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 stile trative factorization, 716 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 projective factorization, 715 seed and grow, 726 seed and grow, 726 seed and grow, 726 subf-calibration, 712 sheltal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	dynamic programming, 774	factorization, 715
feature-based, 760 global optimization, 771, 802 graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 line-based, 731 multi-frame, 715 orthographic, 715 plane-based, 717, 733 plane-based, 716 seed and grow, 726 seed and grow, 726 seed and grow, 726 seed and grow, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	edge-based, 760	feature tracks, 725
global optimization, 771, 802 graph cut, 772 layers, 777 plane-based, 717, 733 projective factorization, 716 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 support region, 766 sun of squared differences (SAD), 558, 602, 764 support region, 766 sun or squared differences (SSD), 558, 602, 764 support region, 766 surface, 424	epipolar geometry, 753	iterative factorization, 716
graph cut, 772 layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 sound methods, 715 plane-based, 717, 733 projective factorization, 716 seed and grow, 726 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	feature-based, 760	line-based, 731
layers, 777 local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 seed and grow, 766 sparse correspondence, 766 sub-pixel refinement, 768 support region, 766 seed and grow, 726 seed and grow, 722 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Style transfer, 669 Sub-modular energy functions, 217 subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	global optimization, 771, 802	multi-frame, 715
local methods, 766 model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 seed and grow, 726 self-calibration, 716 seed and grow, 726 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	graph cut, 772	orthographic, 715
model-based, 834, 866 multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 self-calibration, 712 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	layers, 777	plane-based, 717, 733
multi-view, 781 non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 subport region, 766 self-calibration, 712 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	local methods, 766	projective factorization, 716
non-parametric similarity measures, 764 photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 sia and gain, 560 Fourier-based computation, 564 sub-pixel refinement, 768 support region, 766 skeletal set, 722, 727 two-frame, 703 uncertainty, 723 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	model-based, 834, 866	seed and grow, 726
photoconsistency, 757 plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 spacetime, 820 sparse correspondence, 760 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 sub-pixel refinement, 768 surface, 424	multi-view, 781	self-calibration, 712
plane sweep, 757, 801 rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 subcontact training, 316 Student-teacher learning, 316 Style transfer, 669 Sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 sub-pixel refinement, 768 support region, 766 surface, 424	non-parametric similarity measures, 764	skeletal set, 722, 727
rectification, 755, 800 region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	photoconsistency, 757	two-frame, 703
region-based, 766 scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 sub-pixel refinement, 768 support region, 766 support region, 766 support region, 766 sub-modular energy functions, 217 Sub-modular energy functions, 217 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 spacetime, 820 Fourier-based computation, 564 normalized, 561 surface, 424	plane sweep, 757, 801	uncertainty, 723
scanline optimization, 775 seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-modular energy functions, 217 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	rectification, 755, 800	Student-teacher learning, 316
seed and grow, 760 segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 Subdivision surface, 827 subdivision connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	region-based, 766	Style transfer, 669
segmentation-based, 766, 775 semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 sub-division connectivity, 827 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	scanline optimization, 775	Sub-modular energy functions, 217
semi-global matching (SGM), 775, 779 shiftable window, 783 similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 Subspace learning, 265 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	seed and grow, 760	Subdivision surface, 827
shiftable window, 783 Sum of absolute differences (SAD), 558, 602, 764 similarity measure, 764 Sum of squared differences (SSD), 558, 602, 764 spacetime, 820 sparse correspondence, 760 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 Sum of absolute differences (SAD), 558, 602, 764 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	segmentation-based, 766, 775	subdivision connectivity, 827
similarity measure, 764 spacetime, 820 sparse correspondence, 760 sub-pixel refinement, 768 support region, 766 Sum of squared differences (SSD), 558, 602, 764 bias and gain, 560 Fourier-based computation, 564 normalized, 561 surface, 424	semi-global matching (SGM), 775, 779	Subspace learning, 265
spacetime, 820 bias and gain, 560 sparse correspondence, 760 Fourier-based computation, 564 sub-pixel refinement, 768 normalized, 561 support region, 766 surface, 424	shiftable window, 783	Sum of absolute differences (SAD), 558, 602, 764
sparse correspondence, 760 Fourier-based computation, 564 sub-pixel refinement, 768 normalized, 561 support region, 766 surface, 424	similarity measure, 764	Sum of squared differences (SSD), 558, 602, 764
sub-pixel refinement, 768 normalized, 561 support region, 766 surface, 424	-	_
support region, 766 surface, 424	sparse correspondence, 760	Fourier-based computation, 564
	-	
taxonomy, 753, 762 weighted, 559		,
	taxonomy, 753, 762	weighted, 559

windowed, 559	Texture mapping
Sum of sum of squared differences (SSSD), 781	anisotropic filtering, 174
Summed area table, 129	MIP-mapping, 172
Super-resolution, 637, 677	multi-pass, 174
example-based, 639	trilinear interpolation, 173
faces, 640	Texture synthesis, 663, 679
hallucination, 639	by numbers, 668
prior, 639	hole filling, 665
video, 643	image quilting, 664
Superposition principle, 112	non-parametric, 664
Superquadric, 831	transfer, 667
Supervised learning, 237, 239	Texture, shape-from, 814
SuperVision neural network, 299	Thin lens, 74
Support vector machine (SVM), 250, 374, 377	Thin-plate spline, 205
Support vectors, 252	Thresholding, 138
Surface element (surfel), 829	Through-the-lens camera control, 697, 723
Surface interpolation, 826	Tobogganing, 474, 485
Surface light field, 880	Tonal adjustment, 119, 181, 182
Surface representations, 825	Tone mapping, 627
non-parametric, 827	adaptive, 628
parametric, 826	bilateral filter, 630
point-based, 829	global, 627
simplification, 827	gradient domain, 630
splines, 827	halos, 628
subdivision surface, 827	interactive, 632
symmetry-seeking, 826	local, 628
triangle mesh, 827	scale selection, 632
Surface simplification, 827	Total least squares (TLS), 570, 929
t-distributed Stochastic Neighbor Embedding (t-	Total variation, 210, 581, 831
SNE), 265	Tracking
Telecentric lens, 51, 815	feature, 452
Temporal derivative, 567, 580	head, 769
Temporal texture, 891	human motion, 843
Testing algorithms, viii	multiple hypothesis, 472
TextonBoost, 387	multiple object, 600
Texture addressing mode, 124	object, 598
Texture map	planar pattern, 697
recovery, 850	PTAM, 739
view-dependent, 851, 865	Training error, 201

Transfer learning, 305, 313	Variable reordering, 932
Transformers, 322	minimum degree, 932
Translational motion estimation, 558	multi-frontal, 932
bias and gain, 560	nested dissection, 932
Transparency, 114	Variable state dimension filter (VSDF), 721
Transposed convolution, 295	Variational autoencoder (VAE), 329
Travelling salesman problem (TSP), 468	Variational method, 205
Tri-chromatic sensing, 88	Variational methods, 204
Tri-stimulus values, 88, 93	VGG neural network, 300
Triangular irregular network (TIN), 194	Video compression
Triangulation, 701	motion compensated, 562
planar, 194	Video compression (coding), 600
Trilinear interpolation, see MIP-mapping	Video denoising, 589
Trimap (matting), 653	Video matting, 662
Triplet loss, 282	Video object segmentation, 597
Truncated signed distance function (TSDF), 822,	Video objects (coding), 589
829	Video segmentation, 597
Trust region method, 931	Video sprites, 891
Two-dimensional Fourier transform, 146	Video stabilization, 573, 603
	Video super-resolution, 643
U-Net, 298	Video texture, 889
Uncertainty	Video understanding, 396
correspondence, 505	Video-based animation, 888
modeling, 512, 952	Video-based rendering, 887
weighting, 505	3D video, 893
Underfitting, 199, 242	animating pictures, 892
Unpooling, 295	sprites, 891
Unsharp mask, 126	video texture, 889
Unsupervised learning, 237, 257	virtual viewpoint video, 893
clustering, 257	walkthroughs, 896
principal component analysis, 262	View correlation, 723
Upsampling, see Interpolation	View interpolation, 714, 863, 910
Validation error, 201	View morphing, 714, 865, 891
Validation set, 201	View-dependent texture maps, 865
Vanishing point	Vignetting, 78, 560, 615, 676
detection, 481, 500	mechanical, 79
Hough, 482	natural, 78
modeling, 834	Virtual viewpoint video, 893
uncertainty, 500	Vision Transformer, 326

```
Visual hull, 794
                                                   White balance, 94, 104
     image-based, 795
                                                   Wiener filter, 146
Visual illusions, 3
                                                   Wire removal, 665
Visual localization, 698
                                                   Wrapping mode, 124
Visual object tracking, 598
                                                   XYZ, see Color
Visual odometry, 734
Visual place recognition, 698
                                                   Zippering, 821
Visual search, 360
Visual similarity (search), 360
Visual words, 352, 447, 449
Visual-inertial odometry, 736
Vocabulary tree, 447
Volumetric 3D reconstruction, 786
Volumetric performance capture, 895
Volumetric range image processing (VRIP), 822
Volumetric representations, 830
Voronoi diagram, 541
Voxel coloring multi-view stereo, 793
VQ-VAE, 330
Watershed, 485, 487
     basins, 485, 487
     oriented, 485
Wavelets, 159, 186
     compression, 186
     lifting, 162
     overcomplete, 160, 165
     second generation, 164
     self-inverting, 165
     tight frame, 160
     weighted, 164
Weak learning, 314
Weakly supervised learning, 268
Weaving wall, 761
Weight decay, 197, 274
Weight initialization, see Deep neural networks
Weight sharing, 293
Weight standardization, 279
Weighted least squares (WLS), 212, 632
Weighted prediction (bias and gain), 560
```