(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 20 June 2002 (20.06.2002)

PCT

(10) International Publication Number WO 02/47534 A2

(51) International Patent Classification⁷:

A61B

(21) International Application Number: PCT/US01/47576

(22) International Filing Date:

30 November 2001 (30.11.2001)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

09/735,705 12 December 2000 (12.12.2000) US 09/850,716 7 May 2001 (07.05.2001) US 09/897,778 28 June 2001 (28.06.2001) US

(71) Applicant (for all designated States except US): CORIXA CORPORATION [US/US]; 1124 Columbia Street, Suite 200, Seattle, WA 98104 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WANG, Tongtong [US/US]; 8049 N.E. 28th Street, Medina, WA 98039 (US). WANG, Aijun [CN/US]; 3106 213th Place S.E., Issaquah, WA 98029 (US). SKEIKY, Yasir, A.W. [LB/US]; 15106 S.E. 47th Place, Bellevue, WA 98006 (US). LI, Samuel, X. [US/US]; 3608 175th Court N.E., Redmond, WA 98052 (US). KALOS, Michael, D. [US/US]; 8116 Dayton Avenue N., Seattle, WA 98103 (US). HENDERSON, Robert, A. [US/US]; 8904 192nd Street S.W., Edmonds, WA 98026 (US). MCNEILL, Patricia, D. [US/US]; 1333 South 290th Place, Federal Way, WA 98003 (US). FANGER, Neil [US/US]; 3648 Whitman Avenue N., A100, Seattle, WA 98103 (US). RETTER, Marc, W. [US/US]: 33402 N.E. 43rd Place, Carnation, WA 98014 (US). DURHAM, Margarita [US/US]; 3444 36th Avenue W., Seattle, WA 98199 (US). FANGER, Gary, R. [US/US]; 15906 29th Drive S.E., Mill Creek, WA 98012 (US). VEDVICK, Thomas, S. [US/US]; 124 S. 300th Place, Federal Way, WA 98003 (US). CARTER, Darrick [US/US]; 321 Summit Ave. E., Seattle, WA 98102 (US). WATANABE, Yoshihiro [JP/US]; 2266 78th Avenue S.E., Mercer Island, WA 98040 (US). PECKHAM, David, W. [US/US]; 903 9th Avenue, Apt. #31, Seattle, WA 98104 (US). CAI, Feng [US/US]; 5403 N.E. 197th, Lake Forest Park, WA 98155 (US). FOY, Teresa, M. [US/US]; 2104 S. 277th Place, Federal Way, WA 98003 (US).

(74) Agents: CHRISTIANSEN, William, T.; Seed Intellectual Property Law Group PLLC, Suite 6300, 701 Fifth Avenue, Seattle, WA 98104-7092 et al. (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF LUNG CANCER

(57) Abstract: Compositions and methods for the therapy and diagnosis of cancer, particularly lung cancer, are disclosed. Illustrative compositions comprise one or more lung tumor polypeptides, immunogenic portions thereof, polynucleotides that encode such polypeptides, antigen presenting cell that expresses such polypeptides, and T cells that are specific for cells expressing such polypeptides. The disclosed compositions are useful, for example, in the diagnosis, prevention and/or treatment of diseases, particularly lung cancer.

COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF LUNG CANCER

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to therapy and diagnosis of cancer, such as lung cancer. The invention is more specifically related to polypeptides, comprising at least a portion of a lung tumor protein, and to polynucleotides encoding such polypeptides. Such polypeptides and polynucleotides are useful in pharmaceutical compositions, *e.g.*, vaccines, and other compositions for the diagnosis and treatment of lung cancer.

10 BACKGROUND OF THE INVENTION

Field of the Invention

5

20

25

Cancer is a significant health problem throughout the world. Although advances have been made in detection and therapy of cancer, no vaccine or other universally successful method for prevention and/or treatment is currently available.

15 Current therapies, which are generally based on a combination of chemotherapy or

surgery and radiation, continue to prove inadequate in many patients.

Description of Related Art

Lung cancer is the primary cause of cancer death among both men and women in the U.S., with an estimated 172,000 new cases being reported in 1994. The five-year survival rate among all lung cancer patients, regardless of the stage of disease at diagnosis, is only 13%. This contrasts with a five-year survival rate of 46% among cases detected while the disease is still localized. However, only 16% of lung cancers are discovered before the disease has spread.

In spite of considerable research into therapies for these and other cancers, lung cancer remains difficult to diagnose and treat effectively. Accordingly, there is a need in the art for improved methods for detecting and treating such cancers. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

In one aspect, the present invention provides polynucleotide compositions comprising a sequence selected from the group consisting of:

- (a) sequences provided in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- 10 (b) complements of the sequences provided in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (c) sequences consisting of at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 75 and 100 contiguous residues of a sequence provided in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (d) sequences that hybridize to a sequence provided in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 25 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467, under moderate or highly stringent conditions;
- 30 (e) sequences having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to a sequence of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30,

32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467; and

5

10

15

20

25

30

(f) degenerate variants of a sequence provided in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467.

In one preferred embodiment, the polynucleotide compositions of the invention are expressed in at least about 20%, more preferably in at least about 30%, and most preferably in at least about 50% of lung tumors samples tested, at a level that is at least about 2-fold, preferably at least about 5-fold, and most preferably at least about 10-fold higher than that for normal tissues.

The present invention, in another aspect, provides polypeptide compositions comprising an amino acid sequence that is encoded by a polynucleotide sequence described above.

The present invention further provides polypeptide compositions comprising an amino acid sequence selected from the group consisting of sequences recited in SEQ ID NO:152, 155, 156, 165, 166, 169, 170, 172, 174, 176, 226-252, 338-344, 346, 350, 357, 361, 363, 365, 367, 369, 376-382, 387-419, 423, 427, 430, 433, 441, 443, 446, 449, 451-466 and 468-469.

In certain preferred embodiments, the polypeptides and/or polynucleotides of the present invention are immunogenic, *i.e.*, they are capable of eliciting an immune response, particularly a humoral and/or cellular immune response, as further described herein.

The present invention further provides fragments, variants and/or derivatives of the disclosed polypeptide and/or polynucleotide sequences, wherein the fragments, variants and/or derivatives preferably have a level of immunogenic activity

of at least about 50%, preferably at least about 70% and more preferably at least about 90% of the level of immunogenic activity of a polypeptide sequence set forth in SEQ ID NO:152, 155, 156, 165, 166, 169, 170, 172, 174, 176, 226-252, 338-344, 346, 350, 357, 361, 363, 365, 367, 369, 376-382, 387-419, 423, 427, 430, 433, 441, 443, 446, 449 and 451-466, or a polypeptide sequence encoded by a polynucleotide sequence set forth in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467.

5

10

20

25

The present invention further provides polynucleotides that encode a polypeptide described above, expression vectors comprising such polynucleotides and host cells transformed or transfected with such expression vectors.

Within other aspects, the present invention provides pharmaceutical compositions comprising a polypeptide or polynucleotide as described above and a physiologically acceptable carrier.

Within a related aspect of the present invention, the pharmaceutical compositions, e.g., vaccine compositions, are provided for prophylactic or therapeutic applications. Such compositions generally comprise an immunogenic polypeptide or polynucleotide of the invention and an immunostimulant, such as an adjuvant.

The present invention further provides pharmaceutical compositions that comprise: (a) an antibody or antigen-binding fragment thereof that specifically binds to a polypeptide of the present invention, or a fragment thereof; and (b) a physiologically acceptable carrier.

Within further aspects, the present invention provides pharmaceutical compositions comprising: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) a pharmaceutically acceptable carrier or excipient. Illustrative antigen presenting cells include dendritic cells, macrophages, monocytes, fibroblasts and B cells.

Within related aspects, pharmaceutical compositions are provided that comprise: (a) an antigen presenting cell that expresses a polypeptide as described above and (b) an immunostimulant.

The present invention further provides, in other aspects, fusion proteins that comprise at least one polypeptide as described above, as well as polynucleotides encoding such fusion proteins, typically in the form of pharmaceutical compositions, e.g., vaccine compositions, comprising a physiologically acceptable carrier and/or an immunostimulant. The fusions proteins may comprise multiple immunogenic polypeptides or portions/variants thereof, as described herein, and may further comprise one or more polypeptide segments for facilitating the expression, purification and/or immunogenicity of the polypeptide(s).

5

10

15

20

25

30

Within further aspects, the present invention provides methods for stimulating an immune response in a patient, preferably a T cell response in a human patient, comprising administering a pharmaceutical composition described herein. The patient may be afflicted with lung cancer, in which case the methods provide treatment for the disease, or patient considered at risk for such a disease may be treated prophylactically.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient a pharmaceutical composition as recited above. The patient may be afflicted with lung cancer, in which case the methods provide treatment for the disease, or patient considered at risk for such a disease may be treated prophylactically.

The present invention further provides, within other aspects, methods for removing tumor cells from a biological sample, comprising contacting a biological sample with T cells that specifically react with a polypeptide of the present invention, wherein the step of contacting is performed under conditions and for a time sufficient to permit the removal of cells expressing the protein from the sample.

Within related aspects, methods are provided for inhibiting the development of a cancer in a patient, comprising administering to a patient a biological sample treated as described above.

Methods are further provided, within other aspects, for stimulating and/or expanding T cells specific for a polypeptide of the present invention, comprising contacting T cells with one or more of: (i) a polypeptide as described above; (ii) a polynucleotide encoding such a polypeptide; and/or (iii) an antigen presenting cell that expresses such a polypeptide; under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells. Isolated T cell populations comprising T cells prepared as described above are also provided.

Within further aspects, the present invention provides methods for inhibiting the development of a cancer in a patient, comprising administering to a patient an effective amount of a T cell population as described above.

10

15

20

25

30

The present invention further provides methods for inhibiting the development of a cancer in a patient, comprising the steps of: (a) incubating CD4⁺ and/or CD8⁺ T cells isolated from a patient with one or more of: (i) a polypeptide comprising at least an immunogenic portion of polypeptide disclosed herein; (ii) a polynucleotide encoding such a polypeptide; and (iii) an antigen-presenting cell that expressed such a polypeptide; and (b) administering to the patient an effective amount of the proliferated T cells, and thereby inhibiting the development of a cancer in the patient. Proliferated cells may, but need not, be cloned prior to administration to the patient.

Within further aspects, the present invention provides methods for determining the presence or absence of a cancer, preferably a lung cancer, in a patient comprising: (a) contacting a biological sample obtained from a patient with a binding agent that binds to a polypeptide as recited above; (b) detecting in the sample an amount of polypeptide that binds to the binding agent; and (c) comparing the amount of polypeptide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within preferred embodiments, the binding agent is an antibody, more preferably a monoclonal antibody.

The present invention also provides, within other aspects, methods for monitoring the progression of a cancer in a patient. Such methods comprise the steps of: (a) contacting a biological sample obtained from a patient at a first point in time with a binding agent that binds to a polypeptide as recited above; (b) detecting in the

sample an amount of polypeptide that binds to the binding agent; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polypeptide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

5

10

15

20

25

30

The present invention further provides, within other aspects, methods for determining the presence or absence of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a polypeptide of the present invention; (b) detecting in the sample a level of a polynucleotide, preferably mRNA, that hybridizes to the oligonucleotide; and (c) comparing the level of polynucleotide that hybridizes to the oligonucleotide with a predetermined cut-off value, and therefrom determining the presence or absence of a cancer in the patient. Within certain embodiments, the amount of mRNA is detected via polymerase chain reaction using, for example, at least one oligonucleotide primer that hybridizes to a polynucleotide encoding a polypeptide as recited above, or a complement of such a polynucleotide. Within other embodiments, the amount of mRNA is detected using a hybridization technique, employing an oligonucleotide probe that hybridizes to a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide that encodes a polypeptide as recited above, or a complement of such a polynucleotide.

In related aspects, methods are provided for monitoring the progression of a cancer in a patient, comprising the steps of: (a) contacting a biological sample obtained from a patient with an oligonucleotide that hybridizes to a polynucleotide that encodes a polypeptide of the present invention; (b) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; (c) repeating steps (a) and (b) using a biological sample obtained from the patient at a subsequent point in time; and (d) comparing the amount of polynucleotide detected in step (c) with the amount detected in step (b) and therefrom monitoring the progression of the cancer in the patient.

Within further aspects, the present invention provides antibodies, such as monoclonal antibodies, that bind to a polypeptide as described above, as well as

diagnostic kits comprising such antibodies. Diagnostic kits comprising one or more oligonucleotide probes or primers as described above are also provided.

These and other aspects of the present invention will become apparent upon reference to the following detailed description. All references disclosed herein are hereby incorporated by reference in their entirety as if each was incorporated individually.

SEQUENCE IDENTIFIERS

15

SEQ ID NO:1 is the determined cDNA sequence for LST-S1-2

SEQ ID NO:2 is the determined cDNA sequence for LST-S1-28

10 SEQ ID NO:3 is the determined cDNA sequence for LST-S1-90

SEQ ID NO:4 is the determined cDNA sequence for LST-S1-144

SEQ ID NO:5 is the determined cDNA sequence for LST-S1-133

SEQ ID NO:6 is the determined cDNA sequence for LST-S1-169

SEQ ID NO:7 is the determined cDNA sequence for LST-S2-6

SEQ ID NO:8 is the determined cDNA sequence for LST-S2-11

SEQ ID NO:9 is the determined cDNA sequence for LST-S2-17

SEQ ID NO:10 is the determined cDNA sequence for LST-S2-25

SEQ ID NO:11 is the determined cDNA sequence for LST-S2-39

SEQ ID NO:12 is a first determined cDNA sequence for LST-S2-43

20 SEQ ID NO:13 is a second determined cDNA sequence for LST-S2-43

SEQ ID NO:14 is the determined cDNA sequence for LST-S2-65

SEQ ID NO:15 is the determined cDNA sequence for LST-S2-68

SEQ ID NO:16 is the determined cDNA sequence for LST-S2-72

SEQ ID NO:17 is the determined cDNA sequence for LST-S2-74

25 SEQ ID NO:18 is the determined cDNA sequence for LST-S2-103

SEQ ID NO:19 is the determined cDNA sequence for LST-S2-N1-1F

SEQ ID NO:20 is the determined cDNA sequence for LST-S2-N1-2A

SEQ ID NO:21 is the determined cDNA sequence for LST-S2-N1-4H

SEQ ID NO:22 is the determined cDNA sequence for LST-S2-N1-5A

30 SEQ ID NO:23 is the determined cDNA sequence for LST-S2-N1-6B

SEQ ID NO:24 is the determined cDNA sequence for LST-S2-N1-7B SEQ ID NO:25 is the determined cDNA sequence for LST-S2-N1-7H SEQ ID NO:26 is the determined cDNA sequence for LST-S2-N1-8A SEQ ID NO:27 is the determined cDNA sequence for LST-S2-N1-8D 5 SEQ ID NO:28 is the determined cDNA sequence for LST-S2-N1-9A SEQ ID NO:29 is the determined cDNA sequence for LST-S2-N1-9E SEQ ID NO:30 is the determined cDNA sequence for LST-S2-N1-10A SEQ ID NO:31 is the determined cDNA sequence for LST-S2-N1-10G SEQ ID NO:32 is the determined cDNA sequence for LST-S2-N1-11A 10 SEQ ID NO:33 is the determined cDNA sequence for LST-S2-N1-12C SEQ ID NO:34 is the determined cDNA sequence for LST-S2-N1-12E SEQ ID NO:35 is the determined cDNA sequence for LST-S2-B1-3D SEQ ID NO:36 is the determined cDNA sequence for LST-S2-B1-6C SEQ ID NO:37 is the determined cDNA sequence for LST-S2-B1-5D 15 SEQ ID NO:38 is the determined cDNA sequence for LST-S2-B1-5F SEQ ID NO:39 is the determined cDNA sequence for LST-S2-B1-6G SEQ ID NO:40 is the determined cDNA sequence for LST-S2-B1-8A SEQ ID NO:41 is the determined cDNA sequence for LST-S2-B1-8D SEQ ID NO:42 is the determined cDNA sequence for LST-S2-B1-10A 20 SEQ ID NO:43 is the determined cDNA sequence for LST-S2-B1-9B SEQ ID NO:44 is the determined cDNA sequence for LST-S2-B1-9F SEQ ID NO:45 is the determined cDNA sequence for LST-S2-B1-12D SEQ ID NO:46 is the determined cDNA sequence for LST-S2-I2-2B SEQ ID NO:47 is the determined cDNA sequence for LST-S2-I2-5F 25 SEQ ID NO:48 is the determined cDNA sequence for LST-S2-I2-6B SEQ ID NO:49 is the determined cDNA sequence for LST-S2-I2-7F SEQ ID NO:50 is the determined cDNA sequence for LST-S2-I2-8G SEQ ID NO:51 is the determined cDNA sequence for LST-S2-I2-9E SEQ ID NO:52 is the determined cDNA sequence for LST-S2-I2-12B 30 SEQ ID NO:53 is the determined cDNA sequence for LST-S2-H2-2C SEQ ID NO:54 is the determined cDNA sequence for LST-S2-H2-1G

	SEQ ID NO:55 is the determined cDNA sequence for LST-S2-H2-4G
	SEQ ID NO:56 is the determined cDNA sequence for LST-S2-H2-3H
	SEQ ID NO:57 is the determined cDNA sequence for LST-S2-H2-5G
	SEQ ID NO:58 is the determined cDNA sequence for LST-S2-H2-9B
5	SEQ ID NO:59 is the determined cDNA sequence for LST-S2-H2-10H
	SEQ ID NO:60 is the determined cDNA sequence for LST-S2-H2-12D
	SEQ ID NO: 61 is the determined cDNA sequence for LST-S3-2
	SEQ ID NO: 62 is the determined cDNA sequence for LST-S3-4
	SEQ ID NO: 63 is the determined cDNA sequence for LST-S3-7
10	SEQ ID NO: 64 is the determined cDNA sequence for LST-S3-8
	SEQ ID NO: 65 is the determined cDNA sequence for LST-S3-12
	SEQ ID NO: 66 is the determined cDNA sequence for LST-S3-13
	SEQ ID NO: 67 is the determined cDNA sequence for LST-S3-14
	SEQ ID NO: 68 is the determined cDNA sequence for LST-S3-16
15	SEQ ID NO: 69 is the determined cDNA sequence for LST-S3-21
	SEQ ID NO: 70 is the determined cDNA sequence for LST-S3-22
	SEQ ID NO: 71 is the determined cDNA sequence for LST-S1-7
	SEQ ID NO: 72 is the determined cDNA sequence for LST-S1-A-1E
	SEQ ID NO: 73 is the determined cDNA sequence for LST-S1-A-1G
20	SEQ ID NO: 74 is the determined cDNA sequence for LST-S1-A-3E
	SEQ ID NO: 75 is the determined cDNA sequence for LST-S1-A-4E
	SEQ ID NO: 76 is the determined cDNA sequence for LST-S1-A-6D
	SEQ ID NO: 77 is the determined cDNA sequence for LST-S1-A-8D
	SEQ ID NO: 78 is the determined cDNA sequence for LST-S1-A-10A
25	SEQ ID NO: 79 is the determined cDNA sequence for LST-S1-A-10C
	SEQ ID NO: 80 is the determined cDNA sequence for LST-S1-A-9D
	SEQ ID NO: 81 is the determined cDNA sequence for LST-S1-A-10D
	SEQ ID NO: 82 is the determined cDNA sequence for LST-S1-A-9H
	SEQ ID NO: 83 is the determined cDNA sequence for LST-S1-A-11D
30	SEQ ID NO: 84 is the determined cDNA sequence for LST-S1-A-12D
	SEQ ID NO: 85 is the determined cDNA sequence for LST-S1-A-11E

SEQ ID NO: 86 is the determined cDNA sequence for LST-S1-A-12E

SEQ ID NO: 87 is the determined cDNA sequence for L513S (T3).

SEQ ID NO: 88 is the determined cDNA sequence for L513S contig 1.

SEQ ID NO: 89 is a first determined cDNA sequence for L514S.

5 SEQ ID NO: 90 is a second determined cDNA sequence for L514S.

SEQ ID NO: 91 is a first determined cDNA sequence for L516S.

SEQ ID NO: 92 is a second determined cDNA sequence for L516S.

SEQ ID NO: 93 is the determined cDNA sequence for L517S.

SEQ ID NO: 94 is the extended cDNA sequence for LST-S1-169 (also known as

10 L519S).

SEQ ID NO: 95 is a first determined cDNA sequence for L520S.

SEQ ID NO: 96 is a second determined cDNA sequence for L520S.

SEQ ID NO: 97 is a first determined cDNA sequence for L521S.

SEQ ID NO: 98 is a second determined cDNA sequence for L521S.

15 SEQ ID NO: 99 is the determined cDNA sequence for L522S.

SEQ ID NO: 100 is the determined cDNA sequence for L523S.

SEQ ID NO: 101 is the determined cDNA sequence for L524S.

SEQ ID NO: 102 is the determined cDNA sequence for L525S.

SEQ ID NO: 103 is the determined cDNA sequence for L526S.

20 SEO ID NO: 104 is the determined cDNA sequence for L527S.

SEQ ID NO: 105 is the determined cDNA sequence for L528S.

SEQ ID NO: 106 is the determined cDNA sequence for L529S.

SEQ ID NO: 107 is a first determined cDNA sequence for L530S.

SEQ ID NO: 108 is a second determined cDNA sequence for L530S.

25 SEQ ID NO: 109 is the determined full-length cDNA sequence for L531S short form

SEQ ID NO: 110 is the amino acid sequence encoded by SEQ ID NO: 109.

SEQ ID NO: 111 is the determined full-length cDNA sequence for L531S long form

SEQ ID NO: 112 is the amino acid sequence encoded by SEQ ID NO: 111.

SEQ ID NO: 113 is the determined full-length cDNA sequence for L520S.

30 SEQ ID NO: 114 is the amino acid sequence encoded by SEQ ID NO: 113.

SEQ ID NO: 115 is the determined cDNA sequence for contig 1.

- SEQ ID NO: 116 is the determined cDNA sequence for contig 3.
- SEQ ID NO: 117 is the determined cDNA sequence for contig 4.
- SEQ ID NO: 118 is the determined cDNA sequence for contig 5.
- SEQ ID NO: 119 is the determined cDNA sequence for contig 7.
- 5 SEQ ID NO: 120 is the determined cDNA sequence for contig 8.
 - SEQ ID NO: 121 is the determined cDNA sequence for contig 9.
 - SEQ ID NO: 122 is the determined cDNA sequence for contig 10.
 - SEQ ID NO: 123 is the determined cDNA sequence for contig 12.
 - SEQ ID NO: 124 is the determined cDNA sequence for contig 11.
- 10 SEQ ID NO: 125 is the determined cDNA sequence for contig 13 (also known as L761P).
 - SEQ ID NO: 126 is the determined cDNA sequence for contig 15.
 - SEQ ID NO: 127 is the determined cDNA sequence for contig 16.
 - SEQ ID NO: 128 is the determined cDNA sequence for contig 17.
- 15 SEQ ID NO: 129 is the determined cDNA sequence for contig 19.
 - SEQ ID NO: 130 is the determined cDNA sequence for contig 20.
 - SEQ ID NO: 131 is the determined cDNA sequence for contig 22.
 - SEQ ID NO: 132 is the determined cDNA sequence for contig 24.
 - SEQ ID NO: 133 is the determined cDNA sequence for contig 29.
- 20 SEQ ID NO: 134 is the determined cDNA sequence for contig 31.
 - SEQ ID NO: 135 is the determined cDNA sequence for contig 33.
 - SEQ ID NO: 136 is the determined cDNA sequence for contig 38.
 - SEQ ID NO: 137 is the determined cDNA sequence for contig 39.
 - SEQ ID NO: 138 is the determined cDNA sequence for contig 41.
- 25 SEQ ID NO: 139 is the determined cDNA sequence for contig 43.
 - SEQ ID NO: 140 is the determined cDNA sequence for contig 44.
 - SEQ ID NO: 141 is the determined cDNA sequence for contig 45.
 - SEQ ID NO: 142 is the determined cDNA sequence for contig 47.
 - SEQ ID NO: 143 is the determined cDNA sequence for contig 48.
- 30 SEQ ID NO: 144 is the determined cDNA sequence for contig 49.
 - SEQ ID NO: 145 is the determined cDNA sequence for contig 50.

- SEQ ID NO: 146 is the determined cDNA sequence for contig 53.
- SEQ ID NO: 147 is the determined cDNA sequence for contig 54.
- SEQ ID NO: 148 is the determined cDNA sequence for contig 56.
- SEQ ID NO: 149 is the determined cDNA sequence for contig 57.
- 5 SEQ ID NO: 150 is the determined cDNA sequence for contig 58.
 - SEQ ID NO: 151 is the full-length cDNA sequence for L530S.
 - SEQ ID NO: 152 is the amino acid sequence encoded by SEQ ID NO: 151
 - SEQ ID NO: 153 is the full-length cDNA sequence of a first variant of L514S
 - SEQ ID NO: 154 is the full-length cDNA sequence of a second variant of L514S
- 10 SEQ ID NO: 155 is the amino acid sequence encoded by SEQ ID NO: 153.
 - SEQ ID NO: 156 is the amino acid sequence encoded by SEQ ID NO: 154.
 - SEQ ID NO: 157 is the determined cDNA sequence for contig 59.
 - SEQ ID NO: 158 is the full-length cDNA sequence for L763P (also referred to as contig 22).
- 15 SEQ ID NO: 159 is the amino acid sequence encoded by SEQ ID NO: 158.
 - SEQ ID NO: 160 is the full-length cDNA sequence for L762P (also referred to as contig 17).
 - SEQ ID NO: 161 is the amino acid sequence encoded by SEQ ID NO: 160.
 - SEQ ID NO: 162 is the determined cDNA sequence for L515S.
- 20 SEQ ID NO: 163 is the full-length cDNA sequence of a first variant of L524S.
 - SEQ ID NO: 164 is the full-length cDNA sequence of a second variant of L524S.
 - SEQ ID NO: 165 is the amino acid sequence encoded by SEQ ID NO: 163.
 - SEQ ID NO: 166 is the amino acid sequence encoded by SEQ ID NO: 164.
 - SEQ ID NO: 167 is the full-length cDNA sequence of a first variant of L762P.
- 25 SEQ ID NO: 168 is the full-length cDNA sequence of a second variant of L762P.
 - SEQ ID NO: 169 is the amino acid sequence encoded by SEQ ID NO: 167.
 - SEQ ID NO: 170 is the amino acid sequence encoded by SEQ ID NO: 168.
 - SEQ ID NO: 171 is the full-length cDNA sequence for L773P (also referred to as contig 56).
- 30 SEQ ID NO: 172 is the amino acid sequence encoded by SEQ ID NO: 171.
 - SEQ ID NO: 173 is an extended cDNA sequence for L519S.

SEQ ID NO: 174 is the amino acid sequence encoded by SEQ ID NO: 174.

- SEQ ID NO: 175 is the full-length cDNA sequence for L523S.
- SEQ ID NO: 176 is the amino acid sequence encoded by SEQ ID NO: 175.
- SEQ ID NO: 177 is the determined cDNA sequence for LST-sub5-7A.
- 5 SEQ ID NO: 178 is the determined cDNA sequence for LST-sub5-8G.
 - SEQ ID NO: 179 is the determined cDNA sequence for LST-sub5-8H.
 - SEQ ID NO: 180 is the determined cDNA sequence for LST-sub5-10B.
 - SEQ ID NO: 181 is the determined cDNA sequence for LST-sub5-10H.
 - SEQ ID NO: 182 is the determined cDNA sequence for LST-sub5-12B.
- 10 SEQ ID NO: 183 is the determined cDNA sequence for LST-sub5-11C.
 - SEQ ID NO: 184 is the determined cDNA sequence for LST-sub6-1c.
 - SEQ ID NO: 185 is the determined cDNA sequence for LST-sub6-2f.
 - SEQ ID NO: 186 is the determined cDNA sequence for LST-sub6-2G.
 - SEQ ID NO: 187 is the determined cDNA sequence for LST-sub6-4d.
- 15 SEQ ID NO: 188 is the determined cDNA sequence for LST-sub6-4e.
 - SEQ ID NO: 189 is the determined cDNA sequence for LST-sub6-4f.
 - SEQ ID NO: 190 is the determined cDNA sequence for LST-sub6-3h.
 - SEQ ID NO: 191 is the determined cDNA sequence for LST-sub6-5d.
 - SEQ ID NO: 192 is the determined cDNA sequence for LST-sub6-5h.
- 20 SEQ ID NO: 193 is the determined cDNA sequence for LST-sub6-6h.
 - SEQ ID NO: 194 is the determined cDNA sequence for LST-sub6-7a.
 - SEQ ID NO: 195 is the determined cDNA sequence for LST-sub6-8a.
 - SEQ ID NO: 196 is the determined cDNA sequence for LST-sub6-7d.
 - SEQ ID NO: 197 is the determined cDNA sequence for LST-sub6-7e.
- 25 SEQ ID NO: 198 is the determined cDNA sequence for LST-sub6-8e.
 - SEQ ID NO: 199 is the determined cDNA sequence for LST-sub6-7g.
 - SEQ ID NO: 200 is the determined cDNA sequence for LST-sub6-9f.
 - SEQ ID NO: 201 is the determined cDNA sequence for LST-sub6-9h.
 - SEQ ID NO: 202 is the determined cDNA sequence for LST-sub6-11b.
- 30 SEQ ID NO: 203 is the determined cDNA sequence for LST-sub6-11c.
 - SEQ ID NO: 204 is the determined cDNA sequence for LST-sub6-12c.

SEQ ID NO: 205 is the determined cDNA sequence for LST-sub6-12e.

- SEQ ID NO: 206 is the determined cDNA sequence for LST-sub6-12f.
- SEQ ID NO: 207 is the determined cDNA sequence for LST-sub6-11g.
- SEQ ID NO: 208 is the determined cDNA sequence for LST-sub6-12g.
- 5 SEQ ID NO: 209 is the determined cDNA sequence for LST-sub6-12h.
 - SEQ ID NO: 210 is the determined cDNA sequence for LST-sub6-II-1a.
 - SEQ ID NO: 211 is the determined cDNA sequence for LST-sub6-II-2b.
 - SEQ ID NO: 212 is the determined cDNA sequence for LST-sub6-II-2g.
 - SEQ ID NO: 213 is the determined cDNA sequence for LST-sub6-II-1h.
- 0 SEQ ID NO: 214 is the determined cDNA sequence for LST-sub6-II-4a.
 - SEQ ID NO: 215 is the determined cDNA sequence for LST-sub6-II-4b.
 - SEQ ID NO: 216 is the determined cDNA sequence for LST-sub6-II-3e.
 - SEQ ID NO: 217 is the determined cDNA sequence for LST-sub6-II-4f.
 - SEQ ID NO: 218 is the determined cDNA sequence for LST-sub6-II-4g.
- 15 SEQ ID NO: 219 is the determined cDNA sequence for LST-sub6-II-4h.
 - SEQ ID NO: 220 is the determined cDNA sequence for LST-sub6-II-5c.
 - SEQ ID NO: 221 is the determined cDNA sequence for LST-sub6-II-5e.
 - SEQ ID NO: 222 is the determined cDNA sequence for LST-sub6-II-6f.
 - SEQ ID NO: 223 is the determined cDNA sequence for LST-sub6-II-5g.
- 20 SEQ ID NO: 224 is the determined cDNA sequence for LST-sub6-II-6g.
 - SEQ ID NO: 225 is the amino acid sequence for L528S.
 - SEQ ID NO: 226-251 are synthetic peptides derived from L762P.
 - SEQ ID NO: 252 is the expressed amino acid sequence of L514S.
 - SEQ ID NO: 253 is the DNA sequence corresponding to SEQ ID NO: 252.
- 25 SEQ ID NO: 254 is the DNA sequence of a L762P expression construct.
 - SEQ ID NO: 255 is the determined cDNA sequence for clone 23785.
 - SEQ ID NO: 256 is the determined cDNA sequence for clone 23786.
 - SEQ ID NO: 257 is the determined cDNA sequence for clone 23788.
 - SEQ ID NO: 258 is the determined cDNA sequence for clone 23790.
- 30 SEQ ID NO: 259 is the determined cDNA sequence for clone 23793.
 - SEQ ID NO: 260 is the determined cDNA sequence for clone 23794.

SEQ ID NO: 261 is the determined cDNA sequence for clone 23795. SEQ ID NO: 262 is the determined cDNA sequence for clone 23796. SEQ ID NO: 263 is the determined cDNA sequence for clone 23797. SEQ ID NO: 264 is the determined cDNA sequence for clone 23798. 5 SEQ ID NO: 265 is the determined cDNA sequence for clone 23799. SEQ ID NO: 266 is the determined cDNA sequence for clone 23800. SEQ ID NO: 267 is the determined cDNA sequence for clone 23802. SEQ ID NO: 268 is the determined cDNA sequence for clone 23803. SEQ ID NO: 269 is the determined cDNA sequence for clone 23804. 10 SEQ ID NO: 270 is the determined cDNA sequence for clone 23805. SEQ ID NO: 271 is the determined cDNA sequence for clone 23806. SEQ ID NO: 272 is the determined cDNA sequence for clone 23807. SEQ ID NO: 273 is the determined cDNA sequence for clone 23808. SEQ ID NO: 274 is the determined cDNA sequence for clone 23809. 15 SEQ ID NO: 275 is the determined cDNA sequence for clone 23810. SEQ ID NO: 276 is the determined cDNA sequence for clone 23811. SEQ ID NO: 277 is the determined cDNA sequence for clone 23812. SEQ ID NO: 278 is the determined cDNA sequence for clone 23813. SEQ ID NO: 279 is the determined cDNA sequence for clone 23815. 20 SEQ ID NO: 280 is the determined cDNA sequence for clone 25298. SEQ ID NO: 281 is the determined cDNA sequence for clone 25299. SEQ ID NO: 282 is the determined cDNA sequence for clone 25300. SEQ ID NO: 283 is the determined cDNA sequence for clone 25301 SEQ ID NO: 284 is the determined cDNA sequence for clone 25304 25 SEQ ID NO: 285 is the determined cDNA sequence for clone 25309. SEQ ID NO: 286 is the determined cDNA sequence for clone 25312. SEQ ID NO: 287 is the determined cDNA sequence for clone 25317. SEQ ID NO:288 is the determined cDNA sequence for clone 25321. SEQ ID NO:289 is the determined cDNA sequence for clone 25323. 30 SEQ ID NO:290 is the determined cDNA sequence for clone 25327. SEQ ID NO:291 is the determined cDNA sequence for clone 25328.

SEQ ID NO:292 is the determined cDNA sequence for clone 25332. SEQ ID NO:293 is the determined cDNA sequence for clone 25333. SEQ ID NO:294 is the determined cDNA sequence for clone 25336. SEQ ID NO:295 is the determined cDNA sequence for clone 25340. SEQ ID NO:296 is the determined cDNA sequence for clone 25342. 5 SEQ ID NO:297 is the determined cDNA sequence for clone 25356. SEQ ID NO:298 is the determined cDNA sequence for clone 25357. SEQ ID NO:299 is the determined cDNA sequence for clone 25361. SEQ ID NO:300 is the determined cDNA sequence for clone 25363. 10 SEQ ID NO:301 is the determined cDNA sequence for clone 25397. SEQ ID NO:302 is the determined cDNA sequence for clone 25402. SEQ ID NO:303 is the determined cDNA sequence for clone 25403. SEQ ID NO:304 is the determined cDNA sequence for clone 25405. SEQ ID NO:305 is the determined cDNA sequence for clone 25407. 15 SEQ ID NO:306 is the determined cDNA sequence for clone 25409. SEQ ID NO:307 is the determined cDNA sequence for clone 25396. SEQ ID NO:308 is the determined cDNA sequence for clone 25414. SEQ ID NO:309 is the determined cDNA sequence for clone 25410. SEQ ID NO:310 is the determined cDNA sequence for clone 25406. 20 SEQ ID NO:311 is the determined cDNA sequence for clone 25306. SEQ ID NO:312 is the determined cDNA sequence for clone 25362. SEQ ID NO:313 is the determined cDNA sequence for clone 25360. SEQ ID NO:314 is the determined cDNA sequence for clone 25398. SEQ ID NO:315 is the determined cDNA sequence for clone 25355. 25 SEQ ID NO:316 is the determined cDNA sequence for clone 25351. SEQ ID NO:317 is the determined cDNA sequence for clone 25331. SEQ ID NO:318 is the determined cDNA sequence for clone 25338. SEQ ID NO:319 is the determined cDNA sequence for clone 25335. SEQ ID NO:320 is the determined cDNA sequence for clone 25329. 30 SEQ ID NO:321 is the determined cDNA sequence for clone 25324. SEQ ID NO:322 is the determined cDNA sequence for clone 25322.

SEQ ID NO:323 is the determined cDNA sequence for clone 25319.

SEQ ID NO:324 is the determined cDNA sequence for clone 25316.

SEQ ID NO:325 is the determined cDNA sequence for clone 25311.

SEQ ID NO:326 is the determined cDNA sequence for clone 25310.

5 SEQ ID NO:327 is the determined cDNA sequence for clone 25302.

SEQ ID NO:328 is the determined cDNA sequence for clone 25315.

SEQ ID NO:329 is the determined cDNA sequence for clone 25308.

SEQ ID NO:330 is the determined cDNA sequence for clone 25303.

SEQ ID NO:331-337 are the cDNA sequences of isoforms of the p53 tumor suppressor

10 homologue, p63 (also referred to as L530S).

SEQ ID NO:338-344 are the amino acid sequences encoded by SEQ ID NO:331-337, respectively

SEQ ID NO:345 is a second cDNA sequence for the antigen L763P.

SEQ ID NO:346 is the amino acid sequence encoded by the sequence of SEQ ID NO:

15 345.

25

SEQ ID NO:347 is a determined full-length cDNA sequence for L523S.

SEQ ID NO:348 is the amino acid sequence encoded by SEQ ID NO: 347.

SEQ ID NO:349 is the cDNA sequence encoding the N-terminal portion of L773P.

SEQ ID NO:350 is the amino acid sequence of the N-terminal portion of L773P.

20 SEQ ID NO:351 is the DNA sequence for a fusion of Ra12 and the N-terminal portion of L763P.

SEQ ID NO:352 is the amino acid sequence of the fusion of Ra12 and the N-terminal portion of L763P.

SEQ ID NO:353 is the DNA sequence for a fusion of Ra12 and the C-terminal portion of L763P.

SEQ ID NO:354 is the amino acid sequence of the fusion of Ra12 and the C-terminal portion of L763P.

SEQ ID NO:355 is a primer.

SEQ ID NO:356 is a primer.

30 SEQ ID NO:357 is the protein sequence of expressed recombinant L762P.

SEQ ID NO:358 is the DNA sequence of expressed recombinant L762P.

- SEQ ID NO:359 is a primer.
- SEQ ID NO:360 is a primer.
- SEQ ID NO:361 is the protein sequence of expressed recombinant L773P A.
- SEQ ID NO:362 is the DNA sequence of expressed recombinant L773P A.
- 5 SEQ ID NO:363 is an epitope derived from clone L773P polypeptide.
 - SEQ ID NO:364 is a polynucleotide encoding the polypeptide of SEQ ID NO:363.
 - SEQ ID NO:365 is an epitope derived from clone L773P polypeptide.
 - SEQ ID NO:366 is a polynucleotide encoding the polypeptide of SEQ ID NO:365.
 - SEQ ID NO:367 is an epitope consisting of amino acids 571-590 of SEQ ID NO:161,
- 10 clone L762P.
 - SEQ ID NO:368 is the full-length DNA sequence for contig 13 (SEQ ID NO:125), also referred to as L761P.
 - SEQ ID NO:369 is the protein sequence encoded by the DNA sequence of SEQ ID NO:368.
- 15 SEQ ID NO:370 is an L762P DNA sequence from nucleotides 2071-2130.
 - SEQ ID NO:371 is an L762P DNA sequence from nucleotides 1441-1500.
 - SEQ ID NO:372 is an L762P DNA sequence from nucleotides 1936-1955.
 - SEQ ID NO:373 is an L762P DNA sequence from nucleotides 2620-2679.
 - SEQ ID NO:374 is an L762P DNA sequence from nucleotides 1801-1860.
- 20 SEQ ID NO:375 is an L762P DNA sequence from nucleotides 1531-1591.
 - SEQ ID NO:376 is the amino acid sequence of the L762P peptide encoded by SEQ ID NO:373.
 - SEQ ID NO:377 is the amino acid sequence of the L762P peptide encoded by SEQ ID NO:370.
- 25 SEQ ID NO:378 is the amino acid sequence of the L762P peptide encoded by SEQ ID NO:372.
 - SEQ ID NO:379 is the amino acid sequence of the L762P peptide encoded by SEQ ID NO:374.
 - SEQ ID NO:380 is the amino acid sequence of the L762P peptide encoded by SEQ ID
- 30 NO:371.

SEQ ID NO:381 is the amino acid sequence of the L762P peptide encoded by SEQ ID NO:375.

- SEQ ID NO:382 is the amino acid sequence of an epitope of L762P.
- SEQ ID NO:383-386 are PCR primers.
- 5 SEQ ID NO:387-395 are the amino acid sequences of L773P peptides.
 - SEQ ID NO:396-419 are the amino acid sequences of L523S peptides.
 - SEQ ID NO:420 is the determined cDNA sequence for clone #19014.
 - SEQ ID NO:421 is the forward primer PDM-278 for the L514S-13160 coding region.
 - SEQ ID NO:422 is the reverse primer PDM-278 for the L514S-13160 coding region.
- 10 SEQ ID NO:423 is the amino acid sequence for the expressed recombinant L514S.
 - SEQ ID NO:424 is the DNA coding sequence for the recombinant L514S.
 - SEQ ID NO:425 is the forward primer PDM-414 for the L523S coding region.
 - SEQ ID NO:426 is the reverse primer PDM-414 for the L523S coding region.
 - SEQ ID NO:427 is the amino acid sequence for the expressed recombinant L523S.
- 15 SEQ ID NO:428 is the DNA coding sequence for the recombinant L523S.
 - SEQ ID NO:429 is the reverse primer PDM-279 for the L762PA coding region.
 - SEQ ID NO:430 is the amino acid sequence for the expressed recombinant L762PA.
 - SEQ ID NO:431 is the DNA coding sequence for the recombinant L762PA.
 - SEQ ID NO:432 is the reverse primer PDM-300 for the L773P coding region.
- 20 SEQ ID NO:433 is the amino acid sequence of the expressed recombinant L773P.
 - SEQ ID NO:434 is the DNA coding sequence for the recombinant L773P.
 - SEQ ID NO:435 is the forward primer for TCR Valpha8.
 - SEQ ID NO:436 is the reverse primer for TCR Valpha8.
 - SEQ ID NO:437 is the forward primer for TCR Vbeta8.
- 25 SEQ ID NO:438 is the reverse primer for TCR Vbeta8.
 - SEQ ID NO:439 is the TCR Valpha DNA sequence of the TCR clone specific for the lung antigen L762P.
 - SEQ ID NO:440 is the TCR Vbeta DNA sequence of the TCR clone specific for the lung antigen L762P.
- 30 SEQ ID NO:441 is the amino acid sequence of L763 peptide #2684.

SEQ ID NO:442 is the predicted full-length cDNA for the cloned partial sequence of clone L529S (SEQ ID NO:106).

- SEQ ID NO:443 is the deduced amino acid sequence encoded by SEQ ID NO:442.
- SEQ ID NO:444 is the forward primer PDM-734 for the coding region of clone L523S.
- 5 SEQ ID NO:445 is the reverse primer PDM-735 for the coding region of clone L523S.
 - SEQ ID NO:446 is the amino acid sequence for the expressed recombinant L523S.
 - SEQ ID NO:447 is the DNA coding sequence for the recombinant L523S.
 - SEQ ID NO:448 is another forward primer PDM-733 for the coding region of clone L523S.
- 10 SEQ ID NO:449 is the amino acid sequence for a second expressed recombinant L523S.
 - SEQ ID NO:450 is the DNA coding sequence for a second recombinant L523S.
 - SEQ ID NO:451 corresponds to amino acids 86-110, an epitope of L514S-specific in the generation of antibodies.
- SEQ ID NO:452 corresponds to amino acids 21-45, an epitope of L514S-specific in the generation of antibodies.
 - SEQ ID NO:453 corresponds to amino acids 121-135, an epitope of L514S-specific in the generation of antibodies.
 - SEQ ID NO:454 corresponds to amino acids 440-460, an epitope of L523S-specific in the generation of antibodies.
- 20 SEQ ID NO:455 corresponds to amino acids 156-175, an epitope of L523S-specific in the generation of antibodies.
 - SEQ ID NO:456 corresponds to amino acids 326-345, an epitope of L523S-specific in the generation of antibodies.
- SEQ ID NO:457 corresponds to amino acids 40-59, an epitope of L523S-specific in the generation of antibodies.
 - SEQ ID NO:458 corresponds to amino acids 80-99, an epitope of L523S-specific in the generation of antibodies.
 - SEQ ID NO:459 corresponds to amino acids 160-179, an epitope of L523S-specific in the generation of antibodies.
- 30 SEQ ID NO:460 corresponds to amino acids 180-199, an epitope of L523S-specific in the generation of antibodies.

SEQ ID NO:461 corresponds to amino acids 320-339, an epitope of L523S-specific in the generation of antibodies.

- SEQ ID NO:462 corresponds to amino acids 340-359, an epitope of L523S-specific in the generation of antibodies.
- 5 SEQ ID NO:463 corresponds to amino acids 370-389, an epitope of L523S-specific in the generation of antibodies.
 - SEQ ID NO:464 corresponds to amino acids 380-399, an epitope of L523S-specific in the generation of antibodies.
- SEQ ID NO:465 corresponds to amino acids 37-55, an epitope of L523S-recognized by the L523S-specific CTL line 6B1.
 - SEQ ID NO:466 corresponds to amino acids 41-51, the mapped antigenic epitope of L523S-recognized by the L523S-specific CTL line 6B1.
 - SEQ ID NO:467 corresponds to the DNA sequence which encodes SEQ ID NO:466.
 - SEQ ID NO:468 corresponds to the amino acids of peptide 16, 17 of hL523S.
- 15 SEQ ID NO:469 corresponds to the amino acids of peptide 16, 17 of mL523S

DETAILED DESCRIPTION OF THE INVENTION

20

25

30

The present invention is directed generally to compositions and their use in the therapy and diagnosis of cancer, particularly lung cancer. As described further below, illustrative compositions of the present invention include, but are not restricted to, polypeptides, particularly immunogenic polypeptides, polynucleotides encoding such polypeptides, antibodies and other binding agents, antigen presenting cells (APCs) and immune system cells (e.g., T cells).

The practice of the present invention will employ, unless indicated specifically to the contrary, conventional methods of virology, immunology, microbiology, molecular biology and recombinant DNA techniques within the skill of the art, many of which are described below for the purpose of illustration. Such techniques are explained fully in the literature. See, *e.g.*, Sambrook, et al. Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Maniatis et al. Molecular Cloning: A Laboratory Manual (1982); DNA Cloning: A Practical Approach, vol. I & II (D. Glover, ed.); Oligonucleotide Synthesis (N. Gait, ed., 1984); Nucleic Acid

Hybridization (B. Hames & S. Higgins, eds., 1985); Transcription and Translation (B. Hames & S. Higgins, eds., 1984); Animal Cell Culture (R. Freshney, ed., 1986); Perbal, A Practical Guide to Molecular Cloning (1984).

All publications, patents and patent applications cited herein, whether supra or infra, are hereby incorporated by reference in their entirety.

As used in this specification and the appended claims, the singular forms "a," "an" and "the" include plural references unless the content clearly dictates otherwise.

Polypeptide Compositions

5

10

15

20

25

30

As used herein, the term "polypeptide" " is used in its conventional meaning, *i.e.*, as a sequence of amino acids. The polypeptides are not limited to a specific length of the product; thus, peptides, oligopeptides, and proteins are included within the definition of polypeptide, and such terms may be used interchangeably herein unless specifically indicated otherwise. This term also does not refer to or exclude post-expression modifications of the polypeptide, for example, glycosylations, acetylations, phosphorylations and the like, as well as other modifications known in the art, both naturally occurring and non-naturally occurring. A polypeptide may be an entire protein, or a subsequence thereof. Particular polypeptides of interest in the context of this invention are amino acid subsequences comprising epitopes, *i.e.*, antigenic determinants substantially responsible for the immunogenic properties of a polypeptide and being capable of evoking an immune response.

Particularly illustrative polypeptides of the present invention comprise those encoded by a polynucleotide sequence set forth in any one of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467, or a sequence that hybridizes under moderately stringent conditions, or, alternatively, under highly stringent conditions, to a polynucleotide sequence set forth in any one of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29,

30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467. Certain illustrative polypeptides of the invention comprise amino acid sequences as set forth in any one of SEQ ID NO:152, 155, 156, 165, 166, 169, 170, 172, 174, 176, 226-252, 338-344, 346, 350, 357, 361, 363, 365, 367, 369, 376-382, 387-419, 423, 427, 430, 433, 441, 443, 446, 449, 451-466 and 468-469.

5

10

15

20

The polypeptides of the present invention are sometimes herein referred to as lung tumor proteins or lung tumor polypeptides, as an indication that their identification has been based at least in part upon their increased levels of expression in lung tumor samples. Thus, a "lung tumor polypeptide" or "lung tumor protein," refers generally to a polypeptide sequence of the present invention, or a polynucleotide sequence encoding such a polypeptide, that is expressed in a substantial proportion of lung tumor samples, for example preferably greater than about 20%, more preferably greater than about 30%, and most preferably greater than about 50% or more of lung tumor samples tested, at a level that is at least two fold, and preferably at least five fold, greater than the level of expression in normal tissues, as determined using a representative assay provided herein. A lung tumor polypeptide sequence of the invention, based upon its increased level of expression in tumor cells, has particular utility both as a diagnostic marker as well as a therapeutic target, as further described below.

In certain preferred embodiments, the polypeptides of the invention are immunogenic, *i.e.*, they react detectably within an immunoassay (such as an ELISA or T-cell stimulation assay) with antisera and/or T-cells from a patient with lung cancer. Screening for immunogenic activity can be performed using techniques well known to the skilled artisan. For example, such screens can be performed using methods such as those described in Harlow and Lane, *Antibodies: A Laboratory Manual*, Cold Spring Harbor Laboratory, 1988. In one illustrative example, a polypeptide may be immobilized on a solid support and contacted with patient sera to allow binding of

antibodies within the sera to the immobilized polypeptide. Unbound sera may then be removed and bound antibodies detected using, for example, ¹²⁵I-labeled Protein A.

5

10

15

20

25

30

As would be recognized by the skilled artisan, immunogenic portions of the polypeptides disclosed herein are also encompassed by the present invention. An "immunogenic portion," as used herein, is a fragment of an immunogenic polypeptide of the invention that itself is immunologically reactive (*i.e.*, specifically binds) with the B-cells and/or T-cell surface antigen receptors that recognize the polypeptide. Immunogenic portions may generally be identified using well known techniques, such as those summarized in Paul, *Fundamental Immunology*, 3rd ed., 243-247 (Raven Press, 1993) and references cited therein. Such techniques include screening polypeptides for the ability to react with antigen-specific antibodies, antisera and/or T-cell lines or clones. As used herein, antisera and antibodies are "antigen-specific" if they specifically bind to an antigen (*i.e.*, they react with the protein in an ELISA or other immunoassay, and do not react detectably with unrelated proteins). Such antisera and antibodies may be prepared as described herein, and using well-known techniques.

In one preferred embodiment, an immunogenic portion of a polypeptide of the present invention is a portion that reacts with antisera and/or T-cells at a level that is not substantially less than the reactivity of the full-length polypeptide (e.g., in an ELISA and/or T-cell reactivity assay). Preferably, the level of immunogenic activity of the immunogenic portion is at least about 50%, preferably at least about 70% and most preferably greater than about 90% of the immunogenicity for the full-length polypeptide. In some instances, preferred immunogenic portions will be identified that have a level of immunogenic activity greater than that of the corresponding full-length polypeptide, e.g., having greater than about 100% or 150% or more immunogenic activity.

In certain other embodiments, illustrative immunogenic portions may include peptides in which an N-terminal leader sequence and/or transmembrane domain have been deleted. Other illustrative immunogenic portions will contain a small N-and/or C-terminal deletion (e.g., 1-30 amino acids, preferably 5-15 amino acids), relative to the mature protein.

In another embodiment, a polypeptide composition of the invention may also comprise one or more polypeptides that are immunologically reactive with T cells and/or antibodies generated against a polypeptide of the invention, particularly a polypeptide having an amino acid sequence disclosed herein, or to an immunogenic fragment or variant thereof.

5

10

15

20

In another embodiment of the invention, polypeptides are provided that comprise one or more polypeptides that are capable of eliciting T cells and/or antibodies that are immunologically reactive with one or more polypeptides described herein, or one or more polypeptides encoded by contiguous nucleic acid sequences contained in the polynucleotide sequences disclosed herein, or immunogenic fragments or variants thereof, or to one or more nucleic acid sequences which hybridize to one or more of these sequences under conditions of moderate to high stringency.

The present invention, in another aspect, provides polypeptide fragments comprising at least about 5, 10, 15, 20, 25, 50, or 100 contiguous amino acids, or more, including all intermediate lengths, of a polypeptide compositions set forth herein, such as those set forth in SEQ ID NO:152, 155, 156, 165, 166, 169, 170, 172, 174, 176, 226-252, 338-344, 346, 350, 357, 361, 363, 365, 367, 369, 376-382 and 387-419, 441, 443, 446, 449, 451-466 and 468-469, or those encoded by a polynucleotide sequence set forth in a sequence of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467.

In another aspect, the present invention provides variants of the polypeptide compositions described herein. Polypeptide variants generally encompassed by the present invention will typically exhibit at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more identity (determined as described below), along its length, to a polypeptide sequences set forth herein.

In one preferred embodiment, the polypeptide fragments and variants provide by the present invention are immunologically reactive with an antibody and/or T-cell that reacts with a full-length polypeptide specifically set for the herein.

In another preferred embodiment, the polypeptide fragments and variants provided by the present invention exhibit a level of immunogenic activity of at least about 50%, preferably at least about 70%, and most preferably at least about 90% or more of that exhibited by a full-length polypeptide sequence specifically set forth herein.

5

10

15

20

25

30

A polypeptide "variant," as the term is used herein, is a polypeptide that typically differs from a polypeptide specifically disclosed herein in one or more substitutions, deletions, additions and/or insertions. Such variants may be naturally occurring or may be synthetically generated, for example, by modifying one or more of the above polypeptide sequences of the invention and evaluating their immunogenic activity as described herein and/or using any of a number of techniques well known in the art.

For example, certain illustrative variants of the polypeptides of the invention include those in which one or more portions, such as an N-terminal leader sequence or transmembrane domain, have been removed. Other illustrative variants include variants in which a small portion (e.g., 1-30 amino acids, preferably 5-15 amino acids) has been removed from the N- and/or C-terminal of the mature protein.

In many instances, a variant will contain conservative substitutions. A "conservative substitution" is one in which an amino acid is substituted for another amino acid that has similar properties, such that one skilled in the art of peptide chemistry would expect the secondary structure and hydropathic nature of the polypeptide to be substantially unchanged. As described above, modifications may be made in the structure of the polynucleotides and polypeptides of the present invention and still obtain a functional molecule that encodes a variant or derivative polypeptide with desirable characteristics, *e.g.*, with immunogenic characteristics. When it is desired to alter the amino acid sequence of a polypeptide to create an equivalent, or even an improved, immunogenic variant or portion of a polypeptide of the invention,

one skilled in the art will typically change one or more of the codons of the encoding DNA sequence according to Table 1.

For example, certain amino acids may be substituted for other amino acids in a protein structure without appreciable loss of interactive binding capacity with structures such as, for example, antigen-binding regions of antibodies or binding sites on substrate molecules. Since it is the interactive capacity and nature of a protein that defines that protein's biological functional activity, certain amino acid sequence substitutions can be made in a protein sequence, and, of course, its underlying DNA coding sequence, and nevertheless obtain a protein with like properties. It is thus contemplated that various changes may be made in the peptide sequences of the disclosed compositions, or corresponding DNA sequences which encode said peptides without appreciable loss of their biological utility or activity.

5

10

Table 1

Amino Acids			Codons					
Alanine	Ala	A	GCA	GCC	GCG	GCU		
Cysteine	Cys	C	UGC	UGU				
Aspartic acid	Asp	D	GAC	GAU				
Glutamic acid	Glu	E	GAA	GAG				
Phenylalanine	Phe	F	UUC	UUU				
Glycine	Gly	G	GGA	GGC	GGG	GGU		
Histidine	His	H	CAC	CAU				
Isoleucine	Ile	I	AUA	AUC	AUU			
Lysine	Lys	K	AAA	AAG				
Leucine	Leu	L	UUA	UUG	CUA	CUC	CUG	CUU
Methionine	Met	M	AUG					
Asparagine	Asn	N	AAC	AAU				
Proline	Pro	P	CCA	CCC	CCG	CCU		
Glutamine	Gln	Q	CAA	CAG				
Arginine	Arg	R	AGA	AGG	CGA	CGC	CGG	CGU
Serine	Ser	S	AGC	AGU	UCA	UCC	UCG	UCU
Threonine	Thr	T	ACA	ACC	ACG	ACU		
Valine	Val	V	GUA	GUC	GUG	GUU		
Tryptophan	Trp	W	UGG					
Tyrosine	Tyr	Y	UAC	UAU				

In making such changes, the hydropathic index of amino acids may be considered. The importance of the hydropathic amino acid index in conferring interactive biologic function on a protein is generally understood in the art (Kyte and Doolittle, 1982, incorporated herein by reference). It is accepted that the relative hydropathic character of the amino acid contributes to the secondary structure of the resultant protein, which in turn defines the interaction of the protein with other molecules, for example, enzymes, substrates, receptors, DNA, antibodies, antigens, and the like. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics (Kyte and Doolittle, 1982). These values are:

5

10

isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine (-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamate (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

5

10

15

20

25

30

It is known in the art that certain amino acids may be substituted by other amino acids having a similar hydropathic index or score and still result in a protein with similar biological activity, *i.e.* still obtain a biological functionally equivalent protein. In making such changes, the substitution of amino acids whose hydropathic indices are within ±2 is preferred, those within ±1 are particularly preferred, and those within ±0.5 are even more particularly preferred. It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity. U. S. Patent 4,554,101 (specifically incorporated herein by reference in its entirety), states that the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with a biological property of the protein.

As detailed in U. S. Patent 4,554,101, the following hydrophilicity values have been assigned to amino acid residues: arginine (\pm 3.0); lysine (\pm 3.0); aspartate (\pm 3.0 \pm 1); glutamate (\pm 3.0 \pm 1); serine (\pm 0.3); asparagine (\pm 0.2); glutamine (\pm 0.2); glycine (0); threonine (\pm 0.4); proline (\pm 0.5 \pm 1); alanine (\pm 0.5); histidine (\pm 0.5); cysteine (\pm 1.0); methionine (\pm 1.3); valine (\pm 1.5); leucine (\pm 1.8); isoleucine (\pm 1.8); tyrosine (\pm 2.3); phenylalanine (\pm 2.5); tryptophan (\pm 3.4). It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and in particular, an immunologically equivalent protein. In such changes, the substitution of amino acids whose hydrophilicity values are within \pm 2 is preferred, those within \pm 1 are particularly preferred, and those within \pm 0.5 are even more particularly preferred.

As outlined above, amino acid substitutions are generally therefore based on the relative similarity of the amino acid side-chain substituents, for example, their hydrophobicity, hydrophilicity, charge, size, and the like. Exemplary substitutions that take various of the foregoing characteristics into consideration are well known to those of skill in the art and include: arginine and lysine; glutamate and aspartate; serine and threonine; glutamine and asparagine; and valine, leucine and isoleucine.

In addition, any polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetylmethyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

5

10

15

20

25

30

Amino acid substitutions may further be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity and/or the amphipathic nature of the residues. For example, negatively charged amino acids include aspartic acid and glutamic acid; positively charged amino acids include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; and serine, threonine, phenylalanine and tyrosine. Other groups of amino acids that may represent conservative changes include: (1) ala, pro, gly, glu, asp, gln, asn, ser, thr; (2) cys, ser, tyr, thr; (3) val, ile, leu, met, ala, phe; (4) lys, arg, his; and (5) phe, tyr, trp, his. A variant may also, or alternatively, contain non-conservative changes. In a preferred embodiment, variant polypeptides differ from a native sequence by substitution, deletion or addition of five amino acids or fewer. Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the immunogenicity, secondary structure and hydropathic nature of the polypeptide.

As noted above, polypeptides may comprise a signal (or leader) sequence at the N-terminal end of the protein, which co-translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification or identification of the polypeptide (e.g., poly-His), or to enhance binding of the polypeptide to a solid support. For example, a polypeptide may be conjugated to an immunoglobulin Fc region.

When comparing polypeptide sequences, two sequences are said to be "identical" if the sequence of amino acids in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two

sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

5

10

15

20

25

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) *CABIOS 5*:151-153; Myers, E.W. and Muller W. (1988) *CABIOS 4*:11-17; Robinson, E.D. (1971) *Comb. Theor 11*:105; Santou, N. Nes, M. (1987) *Mol. Biol. Evol. 4*:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) *Proc. Natl. Acad., Sci. USA 80*:726-730.

Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) *Add. APL. Math* 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity methods of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci. USA* 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

One preferred example of algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) *Nucl. Acids Res.* 25:3389-3402

and Altschul et al. (1990) *J. Mol. Biol.* 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides and polypeptides of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. For amino acid sequences, a scoring matrix can be used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment.

In one preferred approach, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polypeptide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

Within other illustrative embodiments, a polypeptide may be a fusion polypeptide that comprises multiple polypeptides as described herein, or that comprises at least one polypeptide as described herein and an unrelated sequence, such as a known tumor protein. A fusion partner may, for example, assist in providing T helper epitopes (an immunological fusion partner), preferably T helper epitopes recognized by humans, or may assist in expressing the protein (an expression enhancer) at higher yields than the native recombinant protein. Certain preferred fusion partners are both immunological and expression enhancing fusion partners. Other fusion partners may be selected so as to increase the solubility of the polypeptide or to enable the polypeptide to be targeted to

desired intracellular compartments. Still further fusion partners include affinity tags, which facilitate purification of the polypeptide.

Fusion polypeptides may generally be prepared using standard techniques, including chemical conjugation. Preferably, a fusion polypeptide is expressed as a recombinant polypeptide, allowing the production of increased levels, relative to a non-fused polypeptide, in an expression system. Briefly, DNA sequences encoding the polypeptide components may be assembled separately, and ligated into an appropriate expression vector. The 3' end of the DNA sequence encoding one polypeptide component is ligated, with or without a peptide linker, to the 5' end of a DNA sequence encoding the second polypeptide component so that the reading frames of the sequences are in phase. This permits translation into a single fusion polypeptide that retains the biological activity of both component polypeptides.

5

10

15

20

25

30

A peptide linker sequence may be employed to separate the first and second polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion polypeptide using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that could interact with functional epitopes on the first and second polypeptides; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain Gly, Asn and Ser residues. Other near neutral amino acids, such as Thr and Ala may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers include those disclosed in Maratea et al., Gene 40:39-46, 1985; Murphy et al., Proc. Natl. Acad. Sci. USA 83:8258-8262, 1986; U.S. Patent No. 4,935,233 and U.S. Patent No. 4,751,180. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the first and second polypeptides have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The ligated DNA sequences are operably linked to suitable transcriptional or translational regulatory elements. The regulatory elements

responsible for expression of DNA are located only 5' to the DNA sequence encoding the first polypeptides. Similarly, stop codons required to end translation and transcription termination signals are only present 3' to the DNA sequence encoding the second polypeptide.

The fusion polypeptide can comprise a polypeptide as described herein together with an unrelated immunogenic protein, such as an immunogenic protein capable of eliciting a recall response. Examples of such proteins include tetanus, tuberculosis and hepatitis proteins (see, for example, Stoute et al. New Engl. J. Med., 336:86-91, 1997).

5

10

15

20

25

30

In one preferred embodiment, the immunological fusion partner is derived from a Mycobacterium sp., such as a Mycobacterium tuberculosis-derived Ra12 Ra12 compositions and methods for their use in enhancing the expression and/or immunogenicity of heterologous polynucleotide/polypeptide sequences is described in U.S. Patent Application 60/158,585, the disclosure of which is incorporated herein by reference in its entirety. Briefly, Ra12 refers to a polynucleotide region that is a subsequence of a Mycobacterium tuberculosis MTB32A nucleic acid. MTB32A is a serine protease of 32 KD molecular weight encoded by a gene in virulent and avirulent strains of M. tuberculosis. The nucleotide sequence and amino acid sequence of MTB32A have been described (for example, U.S. Patent Application 60/158,585; see also, Skeiky et al., Infection and Immun. (1999) 67:3998-4007, incorporated herein by reference). C-terminal fragments of the MTB32A coding sequence express at high levels and remain as a soluble polypeptides throughout the purification process. Moreover, Ra12 may enhance the immunogenicity of heterologous immunogenic polypeptides with which it is fused. One preferred Ra12 fusion polypeptide comprises a 14 KD C-terminal fragment corresponding to amino acid residues 192 to 323 of MTB32A.

Other preferred Ra12 polynucleotides generally comprise at least about 15 consecutive nucleotides, at least about 30 nucleotides, at least about 60 nucleotides, at least about 100 nucleotides, at least about 200 nucleotides, or at least about 300 nucleotides that encode a portion of a Ra12 polypeptide.

Ra12 polynucleotides may comprise a native sequence (*i.e.*, an endogenous sequence that encodes a Ra12 polypeptide or a portion thereof) or may comprise a variant of such a sequence. Ra12 polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ra12 polypeptide. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native Ra12 polypeptide or a portion thereof.

Within other preferred embodiments, an immunological fusion partner is derived from protein D, a surface protein of the gram-negative bacterium Haemophilus influenza B (WO 91/18926). Preferably, a protein D derivative comprises approximately the first third of the protein (e.g., the first N-terminal 100-110 amino acids), and a protein D derivative may be lipidated. Within certain preferred embodiments, the first 109 residues of a Lipoprotein D fusion partner is included on the N-terminus to provide the polypeptide with additional exogenous T-cell epitopes and to increase the expression level in E. coli (thus functioning as an expression enhancer). The lipid tail ensures optimal presentation of the antigen to antigen presenting cells. Other fusion partners include the non-structural protein from influenzae virus, NS1 (hemaglutinin). Typically, the N-terminal 81 amino acids are used, although different fragments that include T-helper epitopes may be used.

In another embodiment, the immunological fusion partner is the protein known as LYTA, or a portion thereof (preferably a C-terminal portion). LYTA is derived from *Streptococcus pneumoniae*, which synthesizes an N-acetyl-L-alanine amidase known as amidase LYTA (encoded by the LytA gene; *Gene 43*:265-292, 1986). LYTA is an autolysin that specifically degrades certain bonds in the peptidoglycan backbone. The C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of *E. coli* C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at the amino terminus has been described (*see Biotechnology 10*:795-798,

1992). Within a preferred embodiment, a repeat portion of LYTA may be incorporated into a fusion polypeptide. A repeat portion is found in the C-terminal region starting at residue 178. A particularly preferred repeat portion incorporates residues 188-305.

Yet another illustrative embodiment involves fusion polypeptides, and the polynucleotides encoding them, wherein the fusion partner comprises a targeting signal capable of directing a polypeptide to the endosomal/lysosomal compartment, as described in U.S. Patent No. 5,633,234. An immunogenic polypeptide of the invention, when fused with this targeting signal, will associate more efficiently with MHC class II molecules and thereby provide enhanced in vivo stimulation of CD4⁺ T-cells specific for the polypeptide.

Polypeptides of the invention are prepared using any of a variety of well known synthetic and/or recombinant techniques, the latter of which are further described below. Polypeptides, portions and other variants generally less than about 150 amino acids can be generated by synthetic means, using techniques well known to those of ordinary skill in the art. In one illustrative example, such polypeptides are synthesized using any of the commercially available solid-phase techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain. See Merrifield, J. Am. Chem. Soc. 85:2149-2146, 1963. Equipment for automated synthesis of polypeptides is commercially available from suppliers such as Perkin Elmer/Applied BioSystems Division (Foster City, CA), and may be operated according to the manufacturer's instructions.

In general, polypeptide compositions (including fusion polypeptides) of the invention are isolated. An "isolated" polypeptide is one that is removed from its original environment. For example, a naturally-occurring protein or polypeptide is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are also purified, *e.g.*, are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure.

Polynucleotide Compositions

5

10

15

20

25

30

The present invention, in other aspects, provides polynucleotide compositions. The terms "DNA" and "polynucleotide" are used essentially

interchangeably herein to refer to a DNA molecule that has been isolated free of total genomic DNA of a particular species. "Isolated," as used herein, means that a polynucleotide is substantially away from other coding sequences, and that the DNA molecule does not contain large portions of unrelated coding DNA, such as large chromosomal fragments or other functional genes or polypeptide coding regions. Of course, this refers to the DNA molecule as originally isolated, and does not exclude genes or coding regions later added to the segment by the hand of man.

5

10

15

20

25

30

As will be understood by those skilled in the art, the polynucleotide compositions of this invention can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides, peptides and the like. Such segments may be naturally isolated, or modified synthetically by the hand of man.

As will be also recognized by the skilled artisan, polynucleotides of the invention may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. RNA molecules may include HnRNA molecules, which contain introns and correspond to a DNA molecule in a one-to-one manner, and mRNA molecules, which do not contain introns. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.

Polynucleotides may comprise a native sequence (i.e., an endogenous sequence that encodes a polypeptide/protein of the invention or a portion thereof) or may comprise a sequence that encodes a variant or derivative, preferably and immunogenic variant or derivative, of such a sequence.

Therefore, according to another aspect of the present invention, polynucleotide compositions are provided that comprise some or all of a polynucleotide sequence set forth in any one of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434,

442, 447, 450 and 467, complements of a polynucleotide sequence set forth in any one of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467, and degenerate variants of a polynucleotide sequence set forth in any one of SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467. In certain preferred embodiments, the polynucleotide sequences set forth herein encode immunogenic polypeptides, as described above.

5

10

30

15 In other related embodiments, the present invention provides polynucleotide variants having substantial identity to the sequences disclosed herein in SEQ ID NO:1-3, 6-8, 10-13, 15-27, 29, 30, 32, 34-49, 51, 52, 54, 55, 57-59, 61-69, 71, 73, 74, 77, 78, 80-82, 84, 86-96, 107-109, 111, 113, 125, 127, 128, 129, 131-133, 142, 144, 148-151, 153, 154, 157, 158, 160, 167, 168, 171, 179, 182, 184-186, 188-191, 193, 20 194, 198-207, 209, 210, 213, 214, 217, 220-224, 253-337, 345, 347, 349, 358, 362, 364, 365, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467, for example those comprising at least 70% sequence identity, preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% or higher, sequence identity compared to a polynucleotide sequence of this invention using the methods described herein, (e.g., BLAST analysis using standard parameters, as described below). One skilled in this art 25 will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

Typically, polynucleotide variants will contain one or more substitutions, additions, deletions and/or insertions, preferably such that the immunogenicity of the

polypeptide encoded by the variant polynucleotide is not substantially diminished relative to a polypeptide encoded by a polynucleotide sequence specifically set forth herein). The term "variants" should also be understood to encompasses homologous genes of xenogenic origin.

5

10

15

20

25

30

In additional embodiments, the present invention provides polynucleotide fragments comprising various lengths of contiguous stretches of sequence identical to or complementary to one or more of the sequences disclosed herein. For example, polynucleotides are provided by this invention that comprise at least about 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 300, 400, 500 or 1000 or more contiguous nucleotides of one or more of the sequences disclosed herein as well as all intermediate lengths there between. It will be readily understood that "intermediate lengths", in this context, means any length between the quoted values, such as 16, 17, 18, 19, etc.; 21, 22, 23, etc.; 30, 31, 32, etc.; 50, 51, 52, 53, etc.; 100, 101, 102, 103, etc.; 150, 151, 152, 153, etc.; including all integers through 200-500; 500-1,000, and the like.

In another embodiment of the invention, polynucleotide compositions are provided that are capable of hybridizing under moderate to high stringency conditions to a polynucleotide sequence provided herein, or a fragment thereof, or a complementary sequence thereof. Hybridization techniques are well known in the art of molecular biology. For purposes of illustration, suitable moderately stringent conditions for testing the hybridization of a polynucleotide of this invention with other polynucleotides include prewashing in a solution of 5 X SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50°C-60°C, 5 X SSC, overnight; followed by washing twice at 65°C for 20 minutes with each of 2X, 0.5X and 0.2X SSC containing 0.1% SDS. One skilled in the art will understand that the stringency of hybridization can be readily manipulated, such as by altering the salt content of the hybridization solution and/or the temperature at which the hybridization is performed. For example, in another embodiment, suitable highly stringent hybridization conditions include those described above, with the exception that the temperature of hybridization is increased, *e.g.*, to 60-65°C or 65-70°C.

In certain preferred embodiments, the polynucleotides described above, e.g., polynucleotide variants, fragments and hybridizing sequences, encode polypeptides that are immunologically cross-reactive with a polypeptide sequence specifically set forth herein. In other preferred embodiments, such polynucleotides encode polypeptides that have a level of immunogenic activity of at least about 50%, preferably at least about 70%, and more preferably at least about 90% of that for a polypeptide sequence specifically set forth herein.

5

10

15

20

25

30

The polynucleotides of the present invention, or fragments thereof, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a nucleic acid fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol. For example, illustrative polynucleotide segments with total lengths of about 10,000, about 5000, about 3000, about 2,000, about 1,000, about 500, about 200, about 100, about 50 base pairs in length, and the like, (including all intermediate lengths) are contemplated to be useful in many implementations of this invention.

When comparing polynucleotide sequences, two sequences are said to be "identical" if the sequence of nucleotides in the two sequences is the same when aligned for maximum correspondence, as described below. Comparisons between two sequences are typically performed by comparing the sequences over a comparison window to identify and compare local regions of sequence similarity. A "comparison window" as used herein, refers to a segment of at least about 20 contiguous positions, usually 30 to about 75, 40 to about 50, in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned.

Optimal alignment of sequences for comparison may be conducted using the Megalign program in the Lasergene suite of bioinformatics software (DNASTAR, Inc., Madison, WI), using default parameters. This program embodies several alignment schemes described in the following references: Dayhoff, M.O. (1978) A

model of evolutionary change in proteins – Matrices for detecting distant relationships. In Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, Washington DC Vol. 5, Suppl. 3, pp. 345-358; Hein J. (1990) Unified Approach to Alignment and Phylogenes pp. 626-645 *Methods in Enzymology* vol. 183, Academic Press, Inc., San Diego, CA; Higgins, D.G. and Sharp, P.M. (1989) *CABIOS 5*:151-153; Myers, E.W. and Muller W. (1988) *CABIOS 4*:11-17; Robinson, E.D. (1971) *Comb. Theor 11*:105; Santou, N. Nes, M. (1987) *Mol. Biol. Evol. 4*:406-425; Sneath, P.H.A. and Sokal, R.R. (1973) *Numerical Taxonomy – the Principles and Practice of Numerical Taxonomy*, Freeman Press, San Francisco, CA; Wilbur, W.J. and Lipman, D.J. (1983) *Proc. Natl. Acad., Sci. USA 80*:726-730.

5

10

Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) *Add. APL. Math* 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443, by the search for similarity methods of Pearson and Lipman (1988) 15 *Proc. Natl. Acad. Sci. USA* 85: 2444, by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, WI), or by inspection.

One preferred example of algorithms that are suitable for determining 20 percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389-3402 and Altschul et al. (1990) J. Mol. Biol. 215:403-410, respectively. BLAST and BLAST 2.0 can be used, for example with the parameters described herein, to determine percent sequence identity for the polynucleotides of the invention. Software for performing 25 BLAST analyses is publicly available through the National Center for Biotechnology Information. In one illustrative example, cumulative scores can be calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). Extension of the word hits in each direction are halted when: the cumulative alignment score falls off 30 by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments;

or the end of either sequence is reached. The BLAST algorithm parameters W, T and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915) alignments, (B) of 50, expectation (E) of 10, M=5, N=-4 and a comparison of both strands.

Preferably, the "percentage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) of 20 percent or less, usually 5 to 15 percent, or 10 to 12 percent, as compared to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid bases occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the reference sequence (*i.e.*, the window size) and multiplying the results by 100 to yield the percentage of sequence identity.

10

15

20

25

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many nucleotide sequences that encode a polypeptide as described herein. Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention. Further, alleles of the genes comprising the polynucleotide sequences provided herein are within the scope of the present invention. Alleles are endogenous genes that are altered as a result of one or more mutations, such as deletions, additions and/or substitutions of nucleotides. The resulting mRNA and protein may, but need not, have an altered structure or function. Alleles may be identified using standard techniques (such as hybridization, amplification and/or database sequence comparison).

Therefore, in another embodiment of the invention, a mutagenesis approach, such as site-specific mutagenesis, is employed for the preparation of immunogenic variants and/or derivatives of the polypeptides described herein. By this

approach, specific modifications in a polypeptide sequence can be made through mutagenesis of the underlying polynucleotides that encode them. These techniques provides a straightforward approach to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the polynucleotide.

5

10

15

20

25

30

Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed. Mutations may be employed in a selected polynucleotide sequence to improve, alter, decrease, modify, or otherwise change the properties of the polynucleotide itself, and/or alter the properties, activity, composition, stability, or primary sequence of the encoded polypeptide.

In certain embodiments of the present invention, the inventors contemplate the mutagenesis of the disclosed polynucleotide sequences to alter one or more properties of the encoded polypeptide, such as the immunogenicity of a polypeptide vaccine. The techniques of site-specific mutagenesis are well-known in the art, and are widely used to create variants of both polypeptides and polynucleotides. For example, site-specific mutagenesis is often used to alter a specific portion of a DNA molecule. In such embodiments, a primer comprising typically about 14 to about 25 nucleotides or so in length is employed, with about 5 to about 10 residues on both sides of the junction of the sequence being altered.

As will be appreciated by those of skill in the art, site-specific mutagenesis techniques have often employed a phage vector that exists in both a single stranded and double stranded form. Typical vectors useful in site-directed mutagenesis include vectors such as the M13 phage. These phage are readily commercially-available and their use is generally well-known to those skilled in the art. Double-stranded plasmids are also routinely employed in site directed mutagenesis that eliminates the step of transferring the gene of interest from a plasmid to a phage.

In general, site-directed mutagenesis in accordance herewith is performed by first obtaining a single-stranded vector or melting apart of two strands of a

double-stranded vector that includes within its sequence a DNA sequence that encodes the desired peptide. An oligonucleotide primer bearing the desired mutated sequence is prepared, generally synthetically. This primer is then annealed with the single-stranded vector, and subjected to DNA polymerizing enzymes such as *E. coli* polymerase I Klenow fragment, in order to complete the synthesis of the mutation-bearing strand. Thus, a heteroduplex is formed wherein one strand encodes the original non-mutated sequence and the second strand bears the desired mutation. This heteroduplex vector is then used to transform appropriate cells, such as *E. coli* cells, and clones are selected which include recombinant vectors bearing the mutated sequence arrangement.

The preparation of sequence variants of the selected peptide-encoding DNA segments using site-directed mutagenesis provides a means of producing potentially useful species and is not meant to be limiting as there are other ways in which sequence variants of peptides and the DNA sequences encoding them may be obtained. For example, recombinant vectors encoding the desired peptide sequence may be treated with mutagenic agents, such as hydroxylamine, to obtain sequence variants. Specific details regarding these methods and protocols are found in the teachings of Maloy *et al.*, 1994; Segal, 1976; Prokop and Bajpai, 1991; Kuby, 1994; and Maniatis *et al.*, 1982, each incorporated herein by reference, for that purpose.

As used herein, the term "oligonucleotide directed mutagenesis procedure" refers to template-dependent processes and vector-mediated propagation which result in an increase in the concentration of a specific nucleic acid molecule relative to its initial concentration, or in an increase in the concentration of a detectable signal, such as amplification. As used herein, the term "oligonucleotide directed mutagenesis procedure" is intended to refer to a process that involves the template-dependent extension of a primer molecule. The term template dependent process refers to nucleic acid synthesis of an RNA or a DNA molecule wherein the sequence of the newly synthesized strand of nucleic acid is dictated by the well-known rules of complementary base pairing (see, for example, Watson, 1987). Typically, vector mediated methodologies involve the introduction of the nucleic acid fragment into a DNA or RNA vector, the clonal amplification of the vector, and the recovery of

the amplified nucleic acid fragment. Examples of such methodologies are provided by U. S. Patent No. 4,237,224, specifically incorporated herein by reference in its entirety.

In another approach for the production of polypeptide variants of the present invention, recursive sequence recombination, as described in U.S. Patent No. 5,837,458, may be employed. In this approach, iterative cycles of recombination and screening or selection are performed to "evolve" individual polynucleotide variants of the invention having, for example, enhanced immunogenic activity.

5

10

15

20

25

30

In other embodiments of the present invention, the polynucleotide sequences provided herein can be advantageously used as probes or primers for nucleic acid hybridization. As such, it is contemplated that nucleic acid segments that comprise a sequence region of at least about 15 nucleotide long contiguous sequence that has the same sequence as, or is complementary to, a 15 nucleotide long contiguous sequence disclosed herein will find particular utility. Longer contiguous identical or complementary sequences, *e.g.*, those of about 20, 30, 40, 50, 100, 200, 500, 1000 (including all intermediate lengths) and even up to full length sequences will also be of use in certain embodiments.

The ability of such nucleic acid probes to specifically hybridize to a sequence of interest will enable them to be of use in detecting the presence of complementary sequences in a given sample. However, other uses are also envisioned, such as the use of the sequence information for the preparation of mutant species primers, or primers for use in preparing other genetic constructions.

Polynucleotide molecules having sequence regions consisting of contiguous nucleotide stretches of 10-14, 15-20, 30, 50, or even of 100-200 nucleotides or so (including intermediate lengths as well), identical or complementary to a polynucleotide sequence disclosed herein, are particularly contemplated as hybridization probes for use in, *e.g.*, Southern and Northern blotting. This would allow a gene product, or fragment thereof, to be analyzed, both in diverse cell types and also in various bacterial cells. The total size of fragment, as well as the size of the complementary stretch(es), will ultimately depend on the intended use or application of the particular nucleic acid segment. Smaller fragments will generally find use in hybridization embodiments, wherein the length of the contiguous complementary region

may be varied, such as between about 15 and about 100 nucleotides, but larger contiguous complementarity stretches may be used, according to the length complementary sequences one wishes to detect.

The use of a hybridization probe of about 15-25 nucleotides in length allows the formation of a duplex molecule that is both stable and selective. Molecules having contiguous complementary sequences over stretches greater than 15 bases in length are generally preferred, though, in order to increase stability and selectivity of the hybrid, and thereby improve the quality and degree of specific hybrid molecules obtained. One will generally prefer to design nucleic acid molecules having genecomplementary stretches of 15 to 25 contiguous nucleotides, or even longer where desired.

5

10

15

30

Hybridization probes may be selected from any portion of any of the sequences disclosed herein. All that is required is to review the sequences set forth herein, or to any continuous portion of the sequences, from about 15-25 nucleotides in length up to and including the full length sequence, that one wishes to utilize as a probe or primer. The choice of probe and primer sequences may be governed by various factors. For example, one may wish to employ primers from towards the termini of the total sequence.

Small polynucleotide segments or fragments may be readily prepared by, for example, directly synthesizing the fragment by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer. Also, fragments may be obtained by application of nucleic acid reproduction technology, such as the PCRTM technology of U. S. Patent 4,683,202 (incorporated herein by reference), by introducing selected sequences into recombinant vectors for recombinant production, and by other recombinant DNA techniques generally known to those of skill in the art of molecular biology.

The nucleotide sequences of the invention may be used for their ability to selectively form duplex molecules with complementary stretches of the entire gene or gene fragments of interest. Depending on the application envisioned, one will typically desire to employ varying conditions of hybridization to achieve varying degrees of selectivity of probe towards target sequence. For applications requiring high selectivity,

one will typically desire to employ relatively stringent conditions to form the hybrids, e.g., one will select relatively low salt and/or high temperature conditions, such as provided by a salt concentration of from about 0.02 M to about 0.15 M salt at temperatures of from about 50°C to about 70°C. Such selective conditions tolerate little, if any, mismatch between the probe and the template or target strand, and would be particularly suitable for isolating related sequences.

Of course, for some applications, for example, where one desires to prepare mutants employing a mutant primer strand hybridized to an underlying template, less stringent (reduced stringency) hybridization conditions will typically be needed in order to allow formation of the heteroduplex. In these circumstances, one may desire to employ salt conditions such as those of from about 0.15 M to about 0.9 M salt, at temperatures ranging from about 20°C to about 55°C. Cross-hybridizing species can thereby be readily identified as positively hybridizing signals with respect to control hybridizations. In any case, it is generally appreciated that conditions can be rendered more stringent by the addition of increasing amounts of formamide, which serves to destabilize the hybrid duplex in the same manner as increased temperature. Thus, hybridization conditions can be readily manipulated, and thus will generally be a method of choice depending on the desired results.

10

15

20

25

30

According to another embodiment of the present invention, polynucleotide compositions comprising antisense oligonucleotides are provided. Antisense oligonucleotides have been demonstrated to be effective and targeted inhibitors of protein synthesis, and, consequently, provide a therapeutic approach by which a disease can be treated by inhibiting the synthesis of proteins that contribute to the disease. The efficacy of antisense oligonucleotides for inhibiting protein synthesis is well established. For example, the synthesis of polygalactauronase and the muscarine type 2 acetylcholine receptor are inhibited by antisense oligonucleotides directed to their respective mRNA sequences (U. S. Patent 5,739,119 and U. S. Patent 5,759,829). Further, examples of antisense inhibition have been demonstrated with the nuclear protein cyclin, the multiple drug resistance gene (MDG1), ICAM-1, E-selectin, STK-1, striatal GABA_A receptor and human EGF (Jaskulski *et al.*, Science. 1988 Jun 10;240(4858):1544-6; Vasanthakumar and Ahmed, Cancer Commun. 1989;1(4):225-

32; Peris et al., Brain Res Mol Brain Res. 1998 Jun 15;57(2):310-20; U. S. Patent 5,801,154; U.S. Patent 5,789,573; U. S. Patent 5,718,709 and U.S. Patent 5,610,288). Antisense constructs have also been described that inhibit and can be used to treat a variety of abnormal cellular proliferations, e.g. cancer (U. S. Patent 5,747,470; U. S. Patent 5,591,317 and U. S. Patent 5,783,683).

5

10

15

20

25

30

Therefore, in certain embodiments, the present invention provides oligonucleotide sequences that comprise all, or a portion of, any sequence that is capable of specifically binding to polynucleotide sequence described herein, or a complement thereof. In one embodiment, the antisense oligonucleotides comprise DNA or derivatives thereof. In another embodiment, the oligonucleotides comprise RNA or derivatives thereof. In a third embodiment, the oligonucleotides are modified DNAs comprising a phosphorothicated modified backbone. In a fourth embodiment, the oligonucleotide sequences comprise peptide nucleic acids or derivatives thereof. In each case, preferred compositions comprise a sequence region that is complementary, and more preferably substantially-complementary, and even more preferably, completely complementary to one or more portions of polynucleotides disclosed herein. Selection of antisense compositions specific for a given gene sequence is based upon analysis of the chosen target sequence and determination of secondary structure, T_m, binding energy, and relative stability. Antisense compositions may be selected based upon their relative inability to form dimers, hairpins, or other secondary structures that would reduce or prohibit specific binding to the target mRNA in a host cell. Highly preferred target regions of the mRNA, are those which are at or near the AUG translation initiation codon, and those sequences which are substantially complementary to 5' regions of the mRNA. These secondary structure analyses and target site selection considerations can be performed, for example, using v.4 of the OLIGO primer analysis software and/or the BLASTN 2.0.5 algorithm software (Altschul et al., Nucleic Acids Res. 1997, 25(17):3389-402).

The use of an antisense delivery method employing a short peptide vector, termed MPG (27 residues), is also contemplated. The MPG peptide contains a hydrophobic domain derived from the fusion sequence of HIV gp41 and a hydrophilic domain from the nuclear localization sequence of SV40 T-antigen (Morris *et al.*,

Nucleic Acids Res. 1997 Jul 15;25(14):2730-6). It has been demonstrated that several molecules of the MPG peptide coat the antisense oligonucleotides and can be delivered into cultured mammalian cells in less than 1 hour with relatively high efficiency (90%). Further, the interaction with MPG strongly increases both the stability of the oligonucleotide to nuclease and the ability to cross the plasma membrane.

According to another embodiment of the invention, the polynucleotide compositions described herein are used in the design and preparation of ribozyme molecules for inhibiting expression of the tumor polypeptides and proteins of the present invention in tumor cells. Ribozymes are RNA-protein complexes that cleave nucleic acids in a site-specific fashion. Ribozymes have specific catalytic domains that possess endonuclease activity (Kim and Cech, Proc Natl Acad Sci U S A. 1987 Dec;84(24):8788-92; Forster and Symons, Cell. 1987 Apr 24;49(2):211-20). For example, a large number of ribozymes accelerate phosphoester transfer reactions with a high degree of specificity, often cleaving only one of several phosphoesters in an oligonucleotide substrate (Cech *et al.*, Cell. 1981 Dec;27(3 Pt 2):487-96; Michel and Westhof, J Mol Biol. 1990 Dec 5;216(3):585-610; Reinhold-Hurek and Shub, Nature. 1992 May 14;357(6374):173-6). This specificity has been attributed to the requirement that the substrate bind via specific base-pairing interactions to the internal guide sequence ("IGS") of the ribozyme prior to chemical reaction.

Six basic varieties of naturally-occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds *in trans* (and thus can cleave other RNA molecules) under physiological conditions. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets.

The enzymatic nature of a ribozyme is advantageous over many technologies, such as antisense technology (where a nucleic acid molecule simply binds to a nucleic acid target to block its translation) since the concentration of ribozyme necessary to affect a therapeutic treatment is lower than that of an antisense oligonucleotide. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme. Similar mismatches in antisense molecules do not prevent their action (Woolf *et al.*, Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7305-9). Thus, the specificity of action of a ribozyme is greater than that of an antisense oligonucleotide binding the same RNA site.

5

10

15

20

25

30

The enzymatic nucleic acid molecule may be formed in a hammerhead, hairpin, a hepatitis δ virus, group I intron or RNaseP RNA (in association with an RNA guide sequence) or Neurospora VS RNA motif. Examples of hammerhead motifs are described by Rossi et al. Nucleic Acids Res. 1992 Sep 11;20(17):4559-65. Examples of hairpin motifs are described by Hampel et al. (Eur. Pat. Appl. Publ. No. EP 0360257), Hampel and Tritz, Biochemistry 1989 Jun 13;28(12):4929-33; Hampel et al., Nucleic Acids Res. 1990 Jan 25;18(2):299-304 and U. S. Patent 5,631,359. An example of the hepatitis δ virus motif is described by Perrotta and Been, Biochemistry. 1992 Dec 1;31(47):11843-52; an example of the RNaseP motif is described by Guerrier-Takada et al., Cell. 1983 Dec;35(3 Pt 2):849-57; Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, Cell. 1990 May 18;61(4):685-96; Saville and Collins, Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8826-30; Collins and Olive, Biochemistry. 1993 Mar 23;32(11):2795-9); and an example of the Group I intron is described in (U. S. Patent 4,987,071). All that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an

RNA cleaving activity to the molecule. Thus the ribozyme constructs need not be limited to specific motifs mentioned herein.

Ribozymes may be designed as described in Int. Pat. Appl. Publ. No. WO 93/23569 and Int. Pat. Appl. Publ. No. WO 94/02595, each specifically incorporated herein by reference) and synthesized to be tested *in vitro* and *in vivo*, as described. Such ribozymes can also be optimized for delivery. While specific examples are provided, those in the art will recognize that equivalent RNA targets in other species can be utilized when necessary.

5

10

15

20

25

30

Ribozyme activity can be optimized by altering the length of the ribozyme binding arms, or chemically synthesizing ribozymes with modifications that prevent their degradation by serum ribonucleases (see *e.g.*, Int. Pat. Appl. Publ. No. WO 92/07065; Int. Pat. Appl. Publ. No. WO 93/15187; Int. Pat. Appl. Publ. No. WO 91/03162; Eur. Pat. Appl. Publ. No. 92110298.4; U. S. Patent 5,334,711; and Int. Pat. Appl. Publ. No. WO 94/13688, which describe various chemical modifications that can be made to the sugar moieties of enzymatic RNA molecules), modifications which enhance their efficacy in cells, and removal of stem II bases to shorten RNA synthesis times and reduce chemical requirements.

Sullivan *et al.* (Int. Pat. Appl. Publ. No. WO 94/02595) describes the general methods for delivery of enzymatic RNA molecules. Ribozymes may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, ribozymes may be directly delivered *ex vivo* to cells or tissues with or without the aforementioned vehicles. Alternatively, the RNA/vehicle combination may be locally delivered by direct inhalation, by direct injection or by use of a catheter, infusion pump or stint. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of ribozyme delivery and administration are provided in Int. Pat. Appl. Publ. No. WO

94/02595 and Int. Pat. Appl. Publ. No. WO 93/23569, each specifically incorporated herein by reference.

Another means of accumulating high concentrations of a ribozyme(s) within cells is to incorporate the ribozyme-encoding sequences into a DNA expression vector. Transcription of the ribozyme sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters may also be used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells. Ribozymes expressed from such promoters have been shown to function in mammalian cells. Such transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated vectors), or viral RNA vectors (such as retroviral, semliki forest virus, sindbis virus vectors).

10

15

20

25

30

In another embodiment of the invention, peptide nucleic acids (PNAs) compositions are provided. PNA is a DNA mimic in which the nucleobases are attached to a pseudopeptide backbone (Good and Nielsen, Antisense Nucleic Acid Drug Dev. 1997 7(4) 431-37). PNA is able to be utilized in a number methods that traditionally have used RNA or DNA. Often PNA sequences perform better in techniques than the corresponding RNA or DNA sequences and have utilities that are not inherent to RNA or DNA. A review of PNA including methods of making, characteristics of, and methods of using, is provided by Corey (*Trends Biotechnol* 1997 Jun;15(6):224-9). As such, in certain embodiments, one may prepare PNA sequences that are complementary to one or more portions of the ACE mRNA sequence, and such PNA compositions may be used to regulate, alter, decrease, or reduce the translation of ACE-specific mRNA, and thereby alter the level of ACE activity in a host cell to which such PNA compositions have been administered.

PNAs have 2-aminoethyl-glycine linkages replacing the normal phosphodiester backbone of DNA (Nielsen *et al.*, *Science* 1991 Dec 6;254(5037):1497-

500; Hanvey et al., Science. 1992 Nov 27;258(5087):1481-5; Hyrup and Nielsen, Bioorg Med Chem. 1996 Jan;4(1):5-23). This chemistry has three important consequences: firstly, in contrast to DNA or phosphorothioate oligonucleotides, PNAs are neutral molecules; secondly, PNAs are achiral, which avoids the need to develop a stereoselective synthesis; and thirdly, PNA synthesis uses standard Boc or Fmoc protocols for solid-phase peptide synthesis, although other methods, including a modified Merrifield method, have been used.

5

10

15

20

25

30

PNA monomers or ready-made oligomers are commercially available from PerSeptive Biosystems (Framingham, MA). PNA syntheses by either Boc or Fmoc protocols are straightforward using manual or automated protocols (Norton *et al.*, Bioorg Med Chem. 1995 Apr;3(4):437-45). The manual protocol lends itself to the production of chemically modified PNAs or the simultaneous synthesis of families of closely related PNAs.

As with peptide synthesis, the success of a particular PNA synthesis will depend on the properties of the chosen sequence. For example, while in theory PNAs can incorporate any combination of nucleotide bases, the presence of adjacent purines can lead to deletions of one or more residues in the product. In expectation of this difficulty, it is suggested that, in producing PNAs with adjacent purines, one should repeat the coupling of residues likely to be added inefficiently. This should be followed by the purification of PNAs by reverse-phase high-pressure liquid chromatography, providing yields and purity of product similar to those observed during the synthesis of peptides.

Modifications of PNAs for a given application may be accomplished by coupling amino acids during solid-phase synthesis or by attaching compounds that contain a carboxylic acid group to the exposed N-terminal amine. Alternatively, PNAs can be modified after synthesis by coupling to an introduced lysine or cysteine. The ease with which PNAs can be modified facilitates optimization for better solubility or for specific functional requirements. Once synthesized, the identity of PNAs and their derivatives can be confirmed by mass spectrometry. Several studies have made and utilized modifications of PNAs (for example, Norton *et al.*, Bioorg Med Chem. 1995 Apr;3(4):437-45; Petersen *et al.*, J Pept Sci. 1995 May-Jun;1(3):175-83; Orum *et al.*,

Biotechniques. 1995 Sep;19(3):472-80; Footer *et al.*, Biochemistry. 1996 Aug 20;35(33):10673-9; Griffith *et al.*, Nucleic Acids Res. 1995 Aug 11;23(15):3003-8; Pardridge *et al.*, Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5592-6; Boffa *et al.*, Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1901-5; Gambacorti-Passerini *et al.*, Blood. 1996 Aug 15;88(4):1411-7; Armitage *et al.*, Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12320-5; Seeger *et al.*, Biotechniques. 1997 Sep;23(3):512-7). U.S. Patent No. 5,700,922 discusses PNA-DNA-PNA chimeric molecules and their uses in diagnostics, modulating protein in organisms, and treatment of conditions susceptible to therapeutics.

5

10

15

20

25

30

Methods of characterizing the antisense binding properties of PNAs are discussed in Rose (Anal Chem. 1993 Dec 15;65(24):3545-9) and Jensen *et al.* (Biochemistry. 1997 Apr 22;36(16):5072-7). Rose uses capillary gel electrophoresis to determine binding of PNAs to their complementary oligonucleotide, measuring the relative binding kinetics and stoichiometry. Similar types of measurements were made by Jensen *et al.* using BIAcoreTM technology.

Other applications of PNAs that have been described and will be apparent to the skilled artisan include use in DNA strand invasion, antisense inhibition, mutational analysis, enhancers of transcription, nucleic acid purification, isolation of transcriptionally active genes, blocking of transcription factor binding, genome cleavage, biosensors, *in situ* hybridization, and the like.

Polynucleotide Identification, Characterization and Expression

Polynucleotides compositions of the present invention may be identified, prepared and/or manipulated using any of a variety of well established techniques (see generally, Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989, and other like references). For example, a polynucleotide may be identified, as described in more detail below, by screening a microarray of cDNAs for tumor-associated expression (*i.e.*, expression that is at least two fold greater in a tumor than in normal tissue, as determined using a representative assay provided herein). Such screens may be performed, for example, using the microarray technology of Affymetrix, Inc. (Santa Clara, CA) according to the

manufacturer's instructions (and essentially as described by Schena et al., *Proc. Natl. Acad. Sci. USA 93*:10614-10619, 1996 and Heller et al., *Proc. Natl. Acad. Sci. USA 94*:2150-2155, 1997). Alternatively, polynucleotides may be amplified from cDNA prepared from cells expressing the proteins described herein, such as tumor cells.

5

10

15

20

25

30

Many template dependent processes are available to amplify a target sequences of interest present in a sample. One of the best known amplification methods is the polymerase chain reaction (PCRTM) which is described in detail in U.S. Patent Nos. 4,683,195, 4,683,202 and 4,800,159, each of which is incorporated herein by reference in its entirety. Briefly, in PCRTM, two primer sequences are prepared which are complementary to regions on opposite complementary strands of the target sequence. An excess of deoxynucleoside triphosphates is added to a reaction mixture along with a DNA polymerase (e.g., Tag polymerase). If the target sequence is present in a sample, the primers will bind to the target and the polymerase will cause the primers to be extended along the target sequence by adding on nucleotides. By raising and lowering the temperature of the reaction mixture, the extended primers will dissociate from the target to form reaction products, excess primers will bind to the target and to the reaction product and the process is repeated. Preferably reverse transcription and PCRTM amplification procedure may be performed in order to quantify the amount of mRNA amplified. Polymerase chain reaction methodologies are well known in the art.

Any of a number of other template dependent processes, many of which are variations of the PCR ™ amplification technique, are readily known and available in the art. Illustratively, some such methods include the ligase chain reaction (referred to as LCR), described, for example, in Eur. Pat. Appl. Publ. No. 320,308 and U.S. Patent No. 4,883,750; Qbeta Replicase, described in PCT Intl. Pat. Appl. Publ. No. PCT/US87/00880; Strand Displacement Amplification (SDA) and Repair Chain Reaction (RCR). Still other amplification methods are described in Great Britain Pat. Appl. No. 2 202 328, and in PCT Intl. Pat. Appl. Publ. No. PCT/US89/01025. Other nucleic acid amplification procedures include transcription-based amplification systems (TAS) (PCT Intl. Pat. Appl. Publ. No. WO 88/10315), including nucleic acid sequence based amplification (NASBA) and 3SR. Eur. Pat. Appl. Publ. No. 329,822 describes a

nucleic acid amplification process involving cyclically synthesizing single-stranded RNA ("ssRNA"), ssDNA, and double-stranded DNA (dsDNA). PCT Intl. Pat. Appl. Publ. No. WO 89/06700 describes a nucleic acid sequence amplification scheme based on the hybridization of a promoter/primer sequence to a target single-stranded DNA ("ssDNA") followed by transcription of many RNA copies of the sequence. Other amplification methods such as "RACE" (Frohman, 1990), and "one-sided PCR" (Ohara, 1989) are also well-known to those of skill in the art.

5

10

15

20

25

30

An amplified portion of a polynucleotide of the present invention may be used to isolate a full length gene from a suitable library (e.g., a tumor cDNA library) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences.

For hybridization techniques, a partial sequence may be labeled (*e.g.*, by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library is then generally screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (*see* Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. cDNA clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. The complete sequence may then be determined using standard techniques, which may involve generating a series of deletion clones. The resulting overlapping sequences can then assembled into a single contiguous sequence. A full length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

Alternatively, amplification techniques, such as those described above, can be useful for obtaining a full length coding sequence from a partial cDNA sequence. One such amplification technique is inverse PCR (see Triglia et al., Nucl. Acids Res.

16:8186, 1988), which uses restriction enzymes to generate a fragment in the known region of the gene. The fragment is then circularized by intramolecular ligation and used as a template for PCR with divergent primers derived from the known region. Within an alternative approach, sequences adjacent to a partial sequence may be retrieved by amplification with a primer to a linker sequence and a primer specific to a known region. The amplified sequences are typically subjected to a second round of amplification with the same linker primer and a second primer specific to the known A variation on this procedure, which employs two primers that initiate extension in opposite directions from the known sequence, is described in WO 96/38591. Another such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyA region or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Additional techniques include capture PCR (Lagerstrom et al., PCR Methods Applic. 1:111-19, 1991) and walking PCR (Parker et al., Nucl. Acids. Res. 19:3055-60, 1991). Other methods employing amplification may also be employed to obtain a full length cDNA sequence.

5

10

15

20

25

30

In certain instances, it is possible to obtain a full length cDNA sequence by analysis of sequences provided in an expressed sequence tag (EST) database, such as that available from GenBank. Searches for overlapping ESTs may generally be performed using well known programs (e.g., NCBI BLAST searches), and such ESTs may be used to generate a contiguous full length sequence. Full length DNA sequences may also be obtained by analysis of genomic fragments.

In other embodiments of the invention, polynucleotide sequences or fragments thereof which encode polypeptides of the invention, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of a polypeptide in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express a given polypeptide.

As will be understood by those of skill in the art, it may be advantageous in some instances to produce polypeptide-encoding nucleotide sequences possessing

non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.

5

10

15

20

25

30

Moreover, the polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter polypeptide encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, and/or expression of the gene product. For example, DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. In addition, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, or introduce mutations, and so forth.

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of polypeptide activity, it may be useful to encode a chimeric protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the polypeptide-encoding sequence and the heterologous protein sequence, so that the polypeptide may be cleaved and purified away from the heterologous moiety.

Sequences encoding a desired polypeptide may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 215-223, Horn, T. et al. (1980) *Nucl. Acids Res. Symp. Ser.* 225-232). Alternatively, the protein itself may be produced using chemical methods to synthesize the amino acid sequence of a polypeptide, or a portion thereof. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) *Science 269*:202-204) and automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin Elmer, Palo Alto, CA).

A newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, N.Y.) or other comparable techniques available in the art. The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure). Additionally, the amino acid sequence of a polypeptide, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

5

10

15

20

25

30

In order to express a desired polypeptide, the nucleotide sequences encoding the polypeptide, or functional equivalents, may be inserted into appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include *in vitro* recombinant DNA techniques, synthetic techniques, and *in vivo* genetic recombination. Such techniques are described, for example, in Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley & Sons, New York. N.Y.

A variety of expression vector/host systems may be utilized to contain and express polynucleotide sequences. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

The "control elements" or "regulatory sequences" present in an expression vector are those non-translated regions of the vector--enhancers, promoters, 5' and 3' untranslated regions--which interact with host cellular proteins to carry out

transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the PBLUESCRIPT phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 plasmid (Gibco BRL, Gaithersburg, MD) and the like may be used. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are generally preferred. If it is necessary to generate a cell line that contains multiple copies of the sequence encoding a polypeptide, vectors based on SV40 or EBV may be 10 advantageously used with an appropriate selectable marker.

5

15

20

25

30

In bacterial systems, any of a number of expression vectors may be selected depending upon the use intended for the expressed polypeptide. For example, when large quantities are needed, for example for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifunctional E. coli cloning and expression vectors such as BLUESCRIPT (Stratagene), in which the sequence encoding the polypeptide of interest may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of .beta.galactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEX Vectors (Promega, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.

In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544.

In cases where plant expression vectors are used, the expression of sequences encoding polypeptides may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) *EMBO J. 6*:307-311. Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) *EMBO J. 3*:1671-1680; Broglie, R. et al. (1984) *Science 224*:838-843; and Winter, J. et al. (1991) *Results Probl. Cell Differ. 17*:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).

An insect system may also be used to express a polypeptide of interest. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the polypeptide may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the polypeptide-encoding sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which the polypeptide of interest may be expressed (Engelhard, E. K. et al. (1994) *Proc. Natl. Acad. Sci. 91* :3224-3227).

In mammalian host cells, a number of viral-based expression systems are generally available. For example, in cases where an adenovirus is used as an expression vector, sequences encoding a polypeptide of interest may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptide in infected host cells (Logan, J. and Shenk, T. (1984) *Proc. Natl. Acad. Sci. 81*:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

Specific initiation signals may also be used to achieve more efficient translation of sequences encoding a polypeptide of interest. Such signals include the ATG initiation codon and adjacent sequences. In cases where sequences encoding the polypeptide, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) *Results Probl. Cell Differ. 20*:125-162).

In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation. glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, COS, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.

For long-term, high-yield production of recombinant proteins, stable expression is generally preferred. For example, cell lines which stably express a polynucleotide of interest may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which

successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.

5

10

15

20

25

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1990) Cell 22:817-23) genes which can be employed in tk.sup.- or aprt.sup.- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides, neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if the sequence encoding a polypeptide is inserted within a marker gene sequence, recombinant cells containing sequences can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a polypeptide-encoding sequence under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

Alternatively, host cells that contain and express a desired polynucleotide sequence may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-

RNA hybridizations and protein bioassay or immunoassay techniques which include, for example, membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.

A variety of protocols for detecting and measuring the expression of polynucleotide-encoded products, using either polyclonal or monoclonal antibodies specific for the product are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on a given polypeptide may be preferred for some applications, but a competitive binding assay may also be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul. Minn.) and Maddox, D. E. et al. (1983; *J. Exp. Med. 158*:1211-1216).

10

15

20

25

30

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides include oligolabeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits. Suitable reporter molecules or labels, which may be used include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with a polynucleotide sequence of interest may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides of the invention may be designed to contain signal sequences which direct secretion of the

encoded polypeptide through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join sequences encoding a polypeptide of interest to nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (Invitrogen. San Diego, Calif.) between the purification domain and the encoded polypeptide may be used to facilitate purification. One such expression vector provides for expression of a fusion protein containing a polypeptide of interest and a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot. Exp. Purif. 3:263-281) while the enterokinase cleavage site provides a means for purifying the desired polypeptide from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).

5

10

15

30

In addition to recombinant production methods, polypeptides of the invention, and fragments thereof, may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) *J. Am. Chem. Soc.* 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using Applied Biosystems 431A Peptide Synthesizer (Perkin Elmer). Alternatively, various fragments may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.

Antibody Compositions, Fragments Thereof and Other Binding Agents

According to another aspect, the present invention further provides binding agents, such as antibodies and antigen-binding fragments thereof, that exhibit immunological binding to a tumor polypeptide disclosed herein, or to a portion, variant

or derivative thereof. An antibody, or antigen-binding fragment thereof, is said to "specifically bind," "immunogically bind," and/or is "immunologically reactive" to a polypeptide of the invention if it reacts at a detectable level (within, for example, an ELISA assay) with the polypeptide, and does not react detectably with unrelated polypeptides under similar conditions.

Immunological binding, as used in this context, generally refers to the non-covalent interactions of the type which occur between an immunoglobulin molecule and an antigen for which the immunoglobulin is specific. The strength, or affinity of immunological binding interactions can be expressed in terms of the dissociation constant (K_d) of the interaction, wherein a smaller K_d represents a greater affinity. Immunological binding properties of selected polypeptides can be quantified using methods well known in the art. One such method entails measuring the rates of antigen-binding site/antigen complex formation and dissociation, wherein those rates depend on the concentrations of the complex partners, the affinity of the interaction, and on geometric parameters that equally influence the rate in both directions. Thus, both the "on rate constant" (K_{on}) and the "off rate constant" (K_{off}) can be determined by calculation of the concentrations and the actual rates of association and dissociation. The ratio of K_{off}/K_{on} enables cancellation of all parameters not related to affinity, and is thus equal to the dissociation constant K_d . See, generally, Davies et al. (1990) Annual Rev, Biochem. 59:439-473.

An "antigen-binding site," or "binding portion" of an antibody refers to the part of the immunoglobulin molecule that participates in antigen binding. The antigen binding site is formed by amino acid residues of the N-terminal variable ("V") regions of the heavy ("H") and light ("L") chains. Three highly divergent stretches within the V regions of the heavy and light chains are referred to as "hypervariable regions" which are interposed between more conserved flanking stretches known as "framework regions," or "FRs". Thus the term "FR" refers to amino acid sequences which are naturally found between and adjacent to hypervariable regions in immunoglobulins. In an antibody molecule, the three hypervariable regions of a light chain and the three hypervariable regions of a heavy chain are disposed relative to each other in three dimensional space to form an antigen-binding surface. The antigen-

binding surface is complementary to the three-dimensional surface of a bound antigen, and the three hypervariable regions of each of the heavy and light chains are referred to as "complementarity-determining regions," or "CDRs."

5

10

15

Binding agents may be further capable of differentiating between patients with and without a cancer, such as lung cancer, using the representative assays provided herein. For example, antibodies or other binding agents that bind to a tumor protein will preferably generate a signal indicating the presence of a cancer in at least about 20% of patients with the disease, more preferably at least about 30% of patients. Alternatively, or in addition, the antibody will generate a negative signal indicating the absence of the disease in at least about 90% of individuals without the cancer. To determine whether a binding agent satisfies this requirement, biological samples (e.g., blood, sera, sputum, urine and/or tumor biopsies) from patients with and without a cancer (as determined using standard clinical tests) may be assayed as described herein for the presence of polypeptides that bind to the binding agent. Preferably, a statistically significant number of samples with and without the disease will be assayed. Each binding agent should satisfy the above criteria; however, those of ordinary skill in the art will recognize that binding agents may be used in combination to improve sensitivity.

Any agent that satisfies the above requirements may be a binding agent. 20 For example, a binding agent may be a ribosome, with or without a peptide component, an RNA molecule or a polypeptide. In a preferred embodiment, a binding agent is an antibody or an antigen-binding fragment thereof. Antibodies may be prepared by any of a variety of techniques known to those of ordinary skill in the art. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, antibodies can be produced by cell culture techniques, including the generation 25 of monoclonal antibodies as described herein, or via transfection of antibody genes into suitable bacterial or mammalian cell hosts, in order to allow for the production of recombinant antibodies. In one technique, an immunogen comprising the polypeptide is initially injected into any of a wide variety of mammals (e.g., mice, rats, rabbits, sheep 30 or goats). In this step, the polypeptides of this invention may serve as the immunogen without modification. Alternatively, particularly for relatively short polypeptides, a

superior immune response may be elicited if the polypeptide is joined to a carrier protein, such as bovine serum albumin or keyhole limpet hemocyanin. The immunogen is injected into the animal host, preferably according to a predetermined schedule incorporating one or more booster immunizations, and the animals are bled periodically. Polyclonal antibodies specific for the polypeptide may then be purified from such antisera by, for example, affinity chromatography using the polypeptide coupled to a suitable solid support.

5

10

15

20

25

30

Monoclonal antibodies specific for an antigenic polypeptide of interest may be prepared, for example, using the technique of Kohler and Milstein, Eur. J. Immunol. 6:511-519, 1976, and improvements thereto. Briefly, these methods involve the preparation of immortal cell lines capable of producing antibodies having the desired specificity (i.e., reactivity with the polypeptide of interest). Such cell lines may be produced, for example, from spleen cells obtained from an animal immunized as described above. The spleen cells are then immortalized by, for example, fusion with a myeloma cell fusion partner, preferably one that is syngeneic with the immunized animal. A variety of fusion techniques may be employed. For example, the spleen cells and myeloma cells may be combined with a nonionic detergent for a few minutes and then plated at low density on a selective medium that supports the growth of hybrid cells, but not myeloma cells. A preferred selection technique uses HAT (hypoxanthine, aminopterin, thymidine) selection. After a sufficient time, usually about 1 to 2 weeks, colonies of hybrids are observed. Single colonies are selected and their culture supernatants tested for binding activity against the polypeptide. Hybridomas having high reactivity and specificity are preferred.

Monoclonal antibodies may be isolated from the supernatants of growing hybridoma colonies. In addition, various techniques may be employed to enhance the yield, such as injection of the hybridoma cell line into the peritoneal cavity of a suitable vertebrate host, such as a mouse. Monoclonal antibodies may then be harvested from the ascites fluid or the blood. Contaminants may be removed from the antibodies by conventional techniques, such as chromatography, gel filtration, precipitation, and extraction. The polypeptides of this invention may be used in the purification process in, for example, an affinity chromatography step.

A number of therapeutically useful molecules are known in the art which comprise antigen-binding sites that are capable of exhibiting immunological binding properties of an antibody molecule. The proteolytic enzyme papain preferentially cleaves IgG molecules to yield several fragments, two of which (the "F(ab)" fragments) each comprise a covalent heterodimer that includes an intact antigen-binding site. The enzyme pepsin is able to cleave IgG molecules to provide several fragments, including the "F(ab')₂ " fragment which comprises both antigen-binding sites. An "Fv" fragment can be produced by preferential proteolytic cleavage of an IgM, and on rare occasions IgG or IgA immunoglobulin molecule. Fv fragments are, however, more commonly derived using recombinant techniques known in the art. The Fv fragment includes a non-covalent V_H::V_L heterodimer including an antigen-binding site which retains much of the antigen recognition and binding capabilities of the native antibody molecule. Inbar et al. (1972) Proc. Nat. Acad. Sci. USA 69:2659-2662; Hochman et al. (1976) Biochem 15:2706-2710; and Ehrlich et al. (1980) Biochem 19:4091-4096.

A single chain Fv ("sFv") polypeptide is a covalently linked V_H :: V_L heterodimer which is expressed from a gene fusion including V_H - and V_L -encoding genes linked by a peptide-encoding linker. Huston et al. (1988) Proc. Nat. Acad. Sci. USA 85(16):5879-5883. A number of methods have been described to discern chemical structures for converting the naturally aggregated--but chemically separated--light and heavy polypeptide chains from an antibody V region into an sFv molecule which will fold into a three dimensional structure substantially similar to the structure of an antigen-binding site. See, e.g., U.S. Pat. Nos. 5,091,513 and 5,132,405, to Huston et al.; and U.S. Pat. No. 4,946,778, to Ladner et al.

Each of the above-described molecules includes a heavy chain and a light chain CDR set, respectively interposed between a heavy chain and a light chain FR set which provide support to the CDRS and define the spatial relationship of the CDRs relative to each other. As used herein, the term "CDR set" refers to the three hypervariable regions of a heavy or light chain V region. Proceeding from the N-terminus of a heavy or light chain, these regions are denoted as "CDR1," "CDR2," and "CDR3" respectively. An antigen-binding site, therefore, includes six CDRs, comprising the CDR set from each of a heavy and a light chain V region. A polypeptide

comprising a single CDR, (e.g., a CDR1, CDR2 or CDR3) is referred to herein as a "molecular recognition unit." Crystallographic analysis of a number of antigen-antibody complexes has demonstrated that the amino acid residues of CDRs form extensive contact with bound antigen, wherein the most extensive antigen contact is with the heavy chain CDR3. Thus, the molecular recognition units are primarily responsible for the specificity of an antigen-binding site.

As used herein, the term "FR set" refers to the four flanking amino acid sequences which frame the CDRs of a CDR set of a heavy or light chain V region. Some FR residues may contact bound antigen; however, FRs are primarily responsible for folding the V region into the antigen-binding site, particularly the FR residues directly adjacent to the CDRS. Within FRs, certain amino residues and certain structural features are very highly conserved. In this regard, all V region sequences contain an internal disulfide loop of around 90 amino acid residues. When the V regions fold into a binding-site, the CDRs are displayed as projecting loop motifs which form an antigen-binding surface. It is generally recognized that there are conserved structural regions of FRs which influence the folded shape of the CDR loops into certain "canonical" structures--regardless of the precise CDR amino acid sequence. Further, certain FR residues are known to participate in non-covalent interdomain contacts which stabilize the interaction of the antibody heavy and light chains.

A number of "humanized" antibody molecules comprising an antigenbinding site derived from a non-human immunoglobulin have been described, including chimeric antibodies having rodent V regions and their associated CDRs fused to human constant domains (Winter et al. (1991) Nature 349:293-299; Lobuglio et al. (1989) Proc. Nat. Acad. Sci. USA 86:4220-4224; Shaw et al. (1987) J Immunol. 138:4534-4538; and Brown et al. (1987) Cancer Res. 47:3577-3583), rodent CDRs grafted into a human supporting FR prior to fusion with an appropriate human antibody constant domain (Riechmann et al. (1988) Nature 332:323-327; Verhoeyen et al. (1988) Science 239:1534-1536; and Jones et al. (1986) Nature 321:522-525), and rodent CDRs supported by recombinantly veneered rodent FRs (European Patent Publication No. 519,596, published Dec. 23, 1992). These "humanized" molecules are designed to minimize unwanted immunological response toward rodent antihuman antibody

molecules which limits the duration and effectiveness of therapeutic applications of those moieties in human recipients.

As used herein, the terms "veneered FRs" and "recombinantly veneered FRs" refer to the selective replacement of FR residues from, e.g., a rodent heavy or light chain V region, with human FR residues in order to provide a xenogeneic molecule comprising an antigen-binding site which retains substantially all of the native FR polypeptide folding structure. Veneering techniques are based on the understanding that the ligand binding characteristics of an antigen-binding site are determined primarily by the structure and relative disposition of the heavy and light chain CDR sets within the antigen-binding surface. Davies et al. (1990) Ann. Rev. Biochem. 59:439-473. Thus, antigen binding specificity can be preserved in a humanized antibody only wherein the CDR structures, their interaction with each other, and their interaction with the rest of the V region domains are carefully maintained. By using veneering techniques, exterior (e.g., solvent-accessible) FR residues which are readily encountered by the immune system are selectively replaced with human residues to provide a hybrid molecule that comprises either a weakly immunogenic, or substantially non-immunogenic veneered surface.

The process of veneering makes use of the available sequence data for human antibody variable domains compiled by Kabat et al., in Sequences of Proteins of Immunological Interest, 4th ed., (U.S. Dept. of Health and Human Services, U.S. Government Printing Office, 1987), updates to the Kabat database, and other accessible U.S. and foreign databases (both nucleic acid and protein). Solvent accessibilities of V region amino acids can be deduced from the known three-dimensional structure for human and murine antibody fragments. There are two general steps in veneering a murine antigen-binding site. Initially, the FRs of the variable domains of an antibody molecule of interest are compared with corresponding FR sequences of human variable domains obtained from the above-identified sources. The most homologous human V regions are then compared residue by residue to corresponding murine amino acids. The residues in the murine FR which differ from the human counterpart are replaced by the residues present in the human moiety using recombinant techniques well known in the art. Residue switching is only carried out with moieties which are at least partially

exposed (solvent accessible), and care is exercised in the replacement of amino acid residues which may have a significant effect on the tertiary structure of V region domains, such as proline, glycine and charged amino acids.

5

10

15

20

25

30

In this manner, the resultant "veneered" murine antigen-binding sites are thus designed to retain the murine CDR residues, the residues substantially adjacent to the CDRs, the residues identified as buried or mostly buried (solvent inaccessible), the residues believed to participate in non-covalent (e.g., electrostatic and hydrophobic) contacts between heavy and light chain domains, and the residues from conserved structural regions of the FRs which are believed to influence the "canonical" tertiary structures of the CDR loops. These design criteria are then used to prepare recombinant nucleotide sequences which combine the CDRs of both the heavy and light chain of a murine antigen-binding site into human-appearing FRs that can be used to transfect mammalian cells for the expression of recombinant human antibodies which exhibit the antigen specificity of the murine antibody molecule.

In another embodiment of the invention, monoclonal antibodies of the present invention may be coupled to one or more therapeutic agents. Suitable agents in this regard include radionuclides, differentiation inducers, drugs, toxins, and derivatives thereof. Preferred radionuclides include ⁹⁰Y, ¹²³I, ¹²⁵I, ¹³¹I, ¹⁸⁶Re, ¹⁸⁸Re, ²¹¹At, and ²¹²Bi. Preferred drugs include methotrexate, and pyrimidine and purine analogs. Preferred differentiation inducers include phorbol esters and butyric acid. Preferred toxins include ricin, abrin, diptheria toxin, cholera toxin, gelonin, Pseudomonas exotoxin, Shigella toxin, and pokeweed antiviral protein.

A therapeutic agent may be coupled (e.g., covalently bonded) to a suitable monoclonal antibody either directly or indirectly (e.g., via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulfhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving group (e.g., a halide) on the other.

Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an

antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

5

10

15

20

25

30

It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, IL), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulfhydryl groups or oxidized carbohydrate residues. There are numerous references describing such methodology, *e.g.*, U.S. Patent No. 4,671,958, to Rodwell et al.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group which is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular release of an agent from these linker groups include cleavage by reduction of a disulfide bond (e.g., U.S. Patent No. 4,489,710, to Spitler), by irradiation of a photolabile bond (e.g., U.S. Patent No. 4,625,014, to Senter et al.), by hydrolysis of derivatized amino acid side chains (e.g., U.S. Patent No. 4,638,045, to Kohn et al.), by serum complement-mediated hydrolysis (e.g., U.S. Patent No. 4,569,789, to Blattler et al.).

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers that provide multiple sites for attachment can be used. Alternatively, a carrier can be used.

A carrier may bear the agents in a variety of ways, including covalent bonding either directly or via a linker group. Suitable carriers include proteins such as albumins (e.g., U.S. Patent No. 4,507,234, to Kato et al.), peptides and polysaccharides

such as aminodextran (e.g., U.S. Patent No. 4,699,784, to Shih et al.). A carrier may also bear an agent by noncovalent bonding or by encapsulation, such as within a liposome vesicle (e.g., U.S. Patent Nos. 4,429,008 and 4,873,088). Carriers specific for radionuclide agents include radiohalogenated small molecules and chelating compounds. For example, U.S. Patent No. 4,735,792 discloses representative radiohalogenated small molecules and their synthesis. A radionuclide chelate may be formed from chelating compounds that include those containing nitrogen and sulfur atoms as the donor atoms for binding the metal, or metal oxide, radionuclide. For example, U.S. Patent No. 4,673,562, to Davison et al. discloses representative chelating compounds and their synthesis.

T Cell Compositions

5

10

15

20

25

30

The present invention, in another aspect, provides T cells specific for a tumor polypeptide disclosed herein, or for a variant or derivative thereof. Such cells may generally be prepared *in vitro* or *ex vivo*, using standard procedures. For example, T cells may be isolated from bone marrow, peripheral blood, or a fraction of bone marrow or peripheral blood of a patient, using a commercially available cell separation system, such as the IsolexTM System, available from Nexell Therapeutics, Inc. (Irvine, CA; see also U.S. Patent No. 5,240,856; U.S. Patent No. 5,215,926; WO 89/06280; WO 91/16116 and WO 92/07243). Alternatively, T cells may be derived from related or unrelated humans, non-human mammals, cell lines or cultures.

T cells may be stimulated with a polypeptide, polynucleotide encoding a polypeptide and/or an antigen presenting cell (APC) that expresses such a polypeptide. Such stimulation is performed under conditions and for a time sufficient to permit the generation of T cells that are specific for the polypeptide of interest. Preferably, a tumor polypeptide or polynucleotide of the invention is present within a delivery vehicle, such as a microsphere, to facilitate the generation of specific T cells.

T cells are considered to be specific for a polypeptide of the present invention if the T cells specifically proliferate, secrete cytokines or kill target cells coated with the polypeptide or expressing a gene encoding the polypeptide. T cell specificity may be evaluated using any of a variety of standard techniques. For

example, within a chromium release assay or proliferation assay, a stimulation index of more than two fold increase in lysis and/or proliferation, compared to negative controls, indicates T cell specificity. Such assays may be performed, for example, as described in Chen et al., Cancer Res. 54:1065-1070, 1994. Alternatively, detection of the proliferation of T cells may be accomplished by a variety of known techniques. For example, T cell proliferation can be detected by measuring an increased rate of DNA synthesis (e.g., by pulse-labeling cultures of T cells with tritiated thymidine and measuring the amount of tritiated thymidine incorporated into DNA). Contact with a tumor polypeptide (100 ng/ml - 100 µg/ml, preferably 200 ng/ml - 25 µg/ml) for 3 - 7 days will typically result in at least a two fold increase in proliferation of the T cells. Contact as described above for 2-3 hours should result in activation of the T cells, as measured using standard cytokine assays in which a two fold increase in the level of cytokine release (e.g., TNF or IFN-y) is indicative of T cell activation (see Coligan et al., Current Protocols in Immunology, vol. 1, Wiley Interscience (Greene 1998)). T cells that have been activated in response to a tumor polypeptide, polynucleotide or polypeptide-expressing APC may be CD4⁺ and/or CD8⁺. Tumor polypeptide-specific T cells may be expanded using standard techniques. Within preferred embodiments, the T cells are derived from a patient, a related donor or an unrelated donor, and are administered to the patient following stimulation and expansion.

5

10

15

20

25

For therapeutic purposes, CD4⁺ or CD8⁺ T cells that proliferate in response to a tumor polypeptide, polynucleotide or APC can be expanded in number either *in vitro* or *in vivo*. Proliferation of such T cells *in vitro* may be accomplished in a variety of ways. For example, the T cells can be re-exposed to a tumor polypeptide, or a short peptide corresponding to an immunogenic portion of such a polypeptide, with or without the addition of T cell growth factors, such as interleukin-2, and/or stimulator cells that synthesize a tumor polypeptide. Alternatively, one or more T cells that proliferate in the presence of the tumor polypeptide can be expanded in number by cloning. Methods for cloning cells are well known in the art, and include limiting dilution.

T Cell Receptor Compositions

5

10

15

20

25

30

The T cell receptor (TCR) consists of 2 different, highly variable polypeptide chains, termed the T-cell receptor α and β chains, that are linked by a disulfide bond (Janeway, Travers, Walport. Immunobiology. Fourth Ed., 148-159. Elsevier Science Ltd/Garland Publishing. 1999). The α/β heterodimer complexes with the invariant CD3 chains at the cell membrane. This complex recognizes specific antigenic peptides bound to MHC molecules. The enormous diversity of TCR specificities is generated much like immunoglobulin diversity, through somatic gene rearrangement. The β chain genes contain over 50 variable (V), 2 diversity (D), over 10 joining (J) segments, and 2 constant region segments (C). The α chain genes contain over 70 V segments, and over 60 J segments but no D segments, as well as one C segment. During T cell development in the thymus, the D to J gene rearrangement of the β chain occurs, followed by the V gene segment rearrangement to the DJ. This functional VDJ_{β} exon is transcribed and spliced to join to a C_{β}. For the α chain, a V_{α} gene segment rearranges to a J_{α} gene segment to create the functional exon that is then transcribed and spliced to the C_{α} . Diversity is further increased during the recombination process by the random addition of P and N-nucleotides between the V, D, and J segments of the β chain and between the V and J segments in the α chain (Janeway, Travers, Walport. Immunobiology. Fourth Ed., 98 and 150. Elsevier Science Ltd/Garland Publishing. 1999).

The present invention, in another aspect, provides TCRs specific for a polypeptide disclosed herein, or for a variant or derivative thereof. In accordance with the present invention, polynucleotide and amino acid sequences are provided for the V-J or V-D-J junctional regions or parts thereof for the alpha and beta chains of the T-cell receptor which recognize tumor polypeptides described herein. In general, this aspect of the invention relates to T-cell receptors which recognize or bind tumor polypeptides presented in the context of MHC. In a preferred embodiment the tumor antigens recognized by the T-cell receptors comprise a polypeptide of the present invention. For example, cDNA encoding a TCR specific for a _tumor peptide can be isolated from T cells specific for a tumor polypeptide using standard molecular biological and recombinant DNA techniques.

This invention further includes the T-cell receptors or analogs thereof having substantially the same function or activity as the T-cell receptors of this invention which recognize or bind tumor polypeptides. Such receptors include, but are not limited to, a fragment of the receptor, or a substitution, addition or deletion mutant of a T-cell receptor provided herein. This invention also encompasses polypeptides or peptides that are substantially homologous to the T-cell receptors provided herein or that retain substantially the same activity. The term "analog" includes any protein or polypeptide having an amino acid residue sequence substantially identical to the T-cell receptors provided herein in which one or more residues, preferably no more than 5 residues, more preferably no more than 25 residues have been conservatively substituted with a functionally similar residue and which displays the functional aspects of the T-cell receptor as described herein.

10

15

20

25

The present invention further provides for suitable mammalian host cells, for example, non-specific T cells, that are transfected with a polynucleotide encoding TCRs specific for a polypeptide described herein, thereby rendering the host cell specific for the polypeptide. The α and β chains of the TCR may be contained on separate expression vectors or alternatively, on a single expression vector that also contains an internal ribosome entry site (IRES) for cap-independent translation of the gene downstream of the IRES. Said host cells expressing TCRs specific for the polypeptide may be used, for example, for adoptive immunotherapy of lung cancer as discussed further below.

In further aspects of the present invention, cloned TCRs specific for a polypeptide recited herein may be used in a kit for the diagnosis of lung cancer. For example, the nucleic acid sequence or portions thereof, of tumor-specific TCRs can be used as probes or primers for the detection of expression of the rearranged genes encoding the specific TCR in a biological sample. Therefore, the present invention further provides for an assay for detecting messenger RNA or DNA encoding the TCR specific for a polypeptide.

Pharmaceutical Compositions

5

10

15

20

25

30

In additional embodiments, the present invention concerns formulation of one or more of the polynucleotide, polypeptide, T-cell and/or antibody compositions disclosed herein in pharmaceutically-acceptable carriers for administration to a cell or an animal, either alone, or in combination with one or more other modalities of therapy.

It will be understood that, if desired, a composition as disclosed herein may be administered in combination with other agents as well, such as, e.g., other proteins or polypeptides or various pharmaceutically-active agents. In fact, there is virtually no limit to other components that may also be included, given that the additional agents do not cause a significant adverse effect upon contact with the target cells or host tissues. The compositions may thus be delivered along with various other agents as required in the particular instance. Such compositions may be purified from host cells or other biological sources, or alternatively may be chemically synthesized as described herein. Likewise, such compositions may further comprise substituted or derivatized RNA or DNA compositions.

Therefore, in another aspect of the present invention, pharmaceutical compositions are provided comprising one or more of the polynucleotide, polypeptide, antibody, and/or T-cell compositions described herein in combination with a physiologically acceptable carrier. In certain preferred embodiments, the pharmaceutical compositions of the invention comprise immunogenic polynucleotide and/or polypeptide compositions of the invention for use in prophylactic and theraputic vaccine applications. Vaccine preparation is generally described in, for example, M.F. Powell and M.J. Newman, eds., "Vaccine Design (the subunit and adjuvant approach)," Plenum Press (NY, 1995). Generally, such compositions will comprise one or more polynucleotide and/or polypeptide compositions of the present invention in combination with one or more immunostimulants.

It will be apparent that any of the pharmaceutical compositions described herein can contain pharmaceutically acceptable salts of the polynucleotides and polypeptides of the invention. Such salts can be prepared, for example, from pharmaceutically acceptable non-toxic bases, including organic bases (e.g., salts of

primary, secondary and tertiary amines and basic amino acids) and inorganic bases (e.g., sodium, potassium, lithium, ammonium, calcium and magnesium salts).

5

10

15

20

25

30

In another embodiment, illustrative immunogenic compositions, e.g., vaccine compositions, of the present invention comprise DNA encoding one or more of the polypeptides as described above, such that the polypeptide is generated in situ. As noted above, the polynucleotide may be administered within any of a variety of delivery systems known to those of ordinary skill in the art. Indeed, numerous gene delivery techniques are well known in the art, such as those described by Rolland, Crit. Rev. Therap. Drug Carrier Systems 15:143-198, 1998, and references cited therein. Appropriate polynucleotide expression systems will, of course, contain the necessary regulatory DNA regulatory sequences for expression in a patient (such as a suitable promoter and terminating signal). Alternatively, bacterial delivery systems may involve the administration of a bacterium (such as Bacillus-Calmette-Guerrin) that expresses an immunogenic portion of the polypeptide on its cell surface or secretes such an epitope.

Therefore, in certain embodiments, polynucleotides encoding immunogenic polypeptides described herein are introduced into suitable mammalian host cells for expression using any of a number of known viral-based systems. In one illustrative embodiment, retroviruses provide a convenient and effective platform for gene delivery systems. A selected nucleotide sequence encoding a polypeptide of the present invention can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to a subject. A number of illustrative retroviral systems have been described (e.g., U.S. Pat. No. 5,219,740; Miller and Rosman (1989) BioTechniques 7:980-990; Miller, A. D. (1990) Human Gene Therapy 1:5-14; Scarpa et al. (1991) Virology 180:849-852; Burns et al. (1993) Proc. Natl. Acad. Sci. USA 90:8033-8037; and Boris-Lawrie and Temin (1993) Cur. Opin. Genet. Develop. 3:102-109.

In addition, a number of illustrative adenovirus-based systems have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham (1986) J. Virol. 57:267-274; Bett et al. (1993) J. Virol. 67:5911-5921; Mittereder et al. (1994) Human Gene Therapy 5:717-729; Seth et

al. (1994) J. Virol. 68:933-940; Barr et al. (1994) Gene Therapy 1:51-58; Berkner, K. L. (1988) BioTechniques 6:616-629; and Rich et al. (1993) Human Gene Therapy 4:461-476).

Various adeno-associated virus (AAV) vector systems have also been developed for polynucleotide delivery. AAV vectors can be readily constructed using techniques well known in the art. See, *e.g.*, U.S. Pat. Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 and WO 93/03769; Lebkowski et al. (1988) Molec. Cell. Biol. 8:3988-3996; Vincent et al. (1990) Vaccines 90 (Cold Spring Harbor Laboratory Press); Carter, B. J. (1992) Current Opinion in Biotechnology 3:533-539; Muzyczka, N. (1992) Current Topics in Microbiol. and Immunol. 158:97-129; Kotin, R. M. (1994) Human Gene Therapy 5:793-801; Shelling and Smith (1994) Gene Therapy 1:165-169; and Zhou et al. (1994) J. Exp. Med. 179:1867-1875.

5

10

15

20

25

30

Additional viral vectors useful for delivering the polynucleotides encoding polypeptides of the present invention by gene transfer include those derived from the pox family of viruses, such as vaccinia virus and avian poxvirus. By way of example, vaccinia virus recombinants expressing the novel molecules can be constructed as follows. The DNA encoding a polypeptide is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK). This vector is then used to transfect cells which are simultaneously infected with vaccinia. Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the polypeptide of interest into the viral genome. The resulting TK.sup.(-) recombinant can be selected by culturing the cells in the presence of 5-bromodeoxyuridine and picking viral plaques resistant thereto.

A vaccinia-based infection/transfection system can be conveniently used to provide for inducible, transient expression or coexpression of one or more polypeptides described herein in host cells of an organism. In this particular system, cells are first infected in vitro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays exquisite specificity in that it only transcribes templates bearing T7 promoters. Following infection, cells are transfected with the polynucleotide or polynucleotides of interest, driven by a T7

promoter. The polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the transfected DNA into RNA which is then translated into polypeptide by the host translational machinery. The method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation products. See, *e.g.*, Elroy-Stein and Moss, Proc. Natl. Acad. Sci. USA (1990) 87:6743-6747; Fuerst et al. Proc. Natl. Acad. Sci. USA (1986) 83:8122-8126.

5

10

15

20

25

30

Alternatively, avipoxviruses, such as the fowlpox and canarypox viruses, can also be used to deliver the coding sequences of interest. Recombinant avipox viruses, expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species. The use of an Avipox vector is particularly desirable in human and other mammalian species since members of the Avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells. Methods for producing recombinant Avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, *e.g.*, WO 91/12882; WO 89/03429; and WO 92/03545.

Any of a number of alphavirus vectors can also be used for delivery of polynucleotide compositions of the present invention, such as those vectors described in U.S. Patent Nos. 5,843,723; 6,015,686; 6,008,035 and 6,015,694. Certain vectors based on Venezuelan Equine Encephalitis (VEE) can also be used, illustrative examples of which can be found in U.S. Patent Nos. 5,505,947 and 5,643,576.

Moreover, molecular conjugate vectors, such as the adenovirus chimeric vectors described in Michael et al. J. Biol. Chem. (1993) 268:6866-6869 and Wagner et al. Proc. Natl. Acad. Sci. USA (1992) 89:6099-6103, can also be used for gene delivery under the invention.

Additional illustrative information on these and other known viral-based delivery systems can be found, for example, in Fisher-Hoch et al., *Proc. Natl. Acad. Sci. USA 86*:317-321, 1989; Flexner et al., *Ann. N.Y. Acad. Sci. 569*:86-103, 1989; Flexner et al., *Vaccine 8*:17-21, 1990; U.S. Patent Nos. 4,603,112, 4,769,330, and 5,017,487; WO 89/01973; U.S. Patent No. 4,777,127; GB 2,200,651; EP 0,345,242; WO 91/02805; Berkner, *Biotechniques 6*:616-627, 1988; Rosenfeld et al., *Science*

252:431-434, 1991; Kolls et al., *Proc. Natl. Acad. Sci. USA 91*:215-219, 1994; Kass-Eisler et al., *Proc. Natl. Acad. Sci. USA 90*:11498-11502, 1993; Guzman et al., *Circulation 88*:2838-2848, 1993; and Guzman et al., *Cir. Res. 73*:1202-1207, 1993.

In certain embodiments, a polynucleotide may be integrated into the genome of a target cell. This integration may be in the specific location and orientation *via* homologous recombination (gene replacement) or it may be integrated in a random, non-specific location (gene augmentation). In yet further embodiments, the polynucleotide may be stably maintained in the cell as a separate, episomal segment of DNA. Such polynucleotide segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle. The manner in which the expression construct is delivered to a cell and where in the cell the polynucleotide remains is dependent on the type of expression construct employed.

5

10

15

In another embodiment of the invention, a polynucleotide is administered/delivered as "naked" DNA, for example as described in Ulmer et al., *Science 259*:1745-1749, 1993 and reviewed by Cohen, *Science 259*:1691-1692, 1993. The uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.

In still another embodiment, a composition of the present invention can

be delivered via a particle bombardment approach, many of which have been described.

In one illustrative example, gas-driven particle acceleration can be achieved with devices such as those manufactured by Powderject Pharmaceuticals PLC (Oxford, UK) and Powderject Vaccines Inc. (Madison, WI), some examples of which are described in U.S. Patent Nos. 5,846,796; 6,010,478; 5,865,796; 5,584,807; and EP Patent No. 0500

799. This approach offers a needle-free delivery approach wherein a dry powder formulation of microscopic particles, such as polynucleotide or polypeptide particles, are accelerated to high speed within a helium gas jet generated by a hand held device, propelling the particles into a target tissue of interest.

In a related embodiment, other devices and methods that may be useful for gas-driven needle-less injection of compositions of the present invention include those provided by Bioject, Inc. (Portland, OR), some examples of which are described

in U.S. Patent Nos. 4,790,824; 5,064,413; 5,312,335; 5,383,851; 5,399,163; 5,520,639 and 5,993,412.

5

10

15

20

25

30

· According to another embodiment, the pharmaceutical compositions described herein will comprise one or more immunostimulants in addition to the immunogenic polynucleotide, polypeptide, antibody, T-cell and/or APC compositions of this invention. An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous One preferred type of immunostimulant comprises an adjuvant. adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Within certain embodiments of the invention, the adjuvant composition is preferably one that induces an immune response predominantly of the Th1 type. High levels of Th1-type cytokines (e.g., IFN-γ, TNFα, IL-2 and IL-12) tend to favor the induction of cell mediated immune responses to an administered antigen. In contrast, high levels of Th2-type cytokines (e.g., IL-4, IL-5, IL-6 and IL-10) tend to favor the induction of humoral immune responses. Following application of a vaccine as provided herein, a patient will support an immune response that includes Th1- and Th2-type responses. Within a preferred embodiment, in which a response is predominantly Th1-type, the level of Th1-type cytokines will increase to a greater extent than the level of Th2-type cytokines. The levels of these cytokines may be readily assessed using

standard assays. For a review of the families of cytokines, see Mosmann and Coffman, *Ann. Rev. Immunol.* 7:145-173, 1989.

5

10

15

20

25

30

Certain preferred adjuvants for eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3de-O-acylated monophosphoryl lipid A, together with an aluminum salt. adjuvants are available from Corixa Corporation (Seattle, WA; see, for example, US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA sequences are also described, for example, by Sato et al., Science 273:352, 1996. Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS21 and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA); Escin; Digitonin; or Gypsophila or Chenopodium quinoa saponins. Other preferred formulations include more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, βescin, or digitonin.

Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co-glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilamelar liposome or ISCOM. The saponins may also be formulated with excipients such as Carbopol^R to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.

In one preferred embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL® adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other preferred formulations comprise an oil-in-water emulsion and tocopherol. Another particularly preferred adjuvant formulation employing QS21, 3D-MPL® adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

5

10

15

20

30

Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG and QS21 is disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.

Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzyn®) (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.

Other preferred adjuvants include adjuvant molecules of the general formula

(I): $HO(CH_2CH_2O)_n$ -A-R,

25 wherein, n is 1-50, A is a bond or -C(O)-, R is C_{1-50} alkyl or Phenyl C_{1-50} alkyl.

One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein n is between 1 and 50, preferably 4-24, most preferably 9; the R component is C_{1-50} , preferably C_4 - C_{20} alkyl and most preferably C_{12} alkyl, and A is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene

ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant molecules are described in WO 99/52549.

5

10

15

20

25

30

The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.

According to another embodiment of this invention, an immunogenic composition described herein is delivered to a host via antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs. Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects *per se* and/or to be immunologically compatible with the receiver (*i.e.*, matched HLA haplotype). APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.

Certain preferred embodiments of the present invention use dendritic cells or progenitors thereof as antigen-presenting cells. Dendritic cells are highly potent APCs (Banchereau and Steinman, *Nature 392*:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (*see* Timmerman and Levy, *Ann. Rev. Med. 50*:507-529, 1999). In general, dendritic cells may be identified based on their typical shape (stellate *in situ*, with marked cytoplasmic processes (dendrites) visible *in vitro*), their ability to take up, process and present antigens with high efficiency and their ability to activate naïve T cell responses. Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells *in vivo* or *ex vivo*, and such modified dendritic cells are contemplated by the present invention. As

an alternative to dendritic cells, secreted vesicles antigen-loaded dendritic cells (called exosomes) may be used within a vaccine (*see* Zitvogel et al., *Nature Med.* 4:594-600, 1998).

5

10

15

20

25

30

Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid. For example, dendritic cells may be differentiated *ex vivo* by adding a combination of cytokines such as GM-CSF, IL-4, IL-13 and/or TNFα to cultures of monocytes harvested from peripheral blood. Alternatively, CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNFα, CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.

Dendritic cells are conveniently categorized as "immature" and "mature" cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation. Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fcy receptor and mannose receptor. The mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g., CD40, CD80, CD86 and 4-1BB).

APCs may generally be transfected with a polynucleotide of the invention (or portion or other variant thereof) such that the encoded polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place *ex vivo*, and a pharmaceutical composition comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs *in vivo*. *In vivo* and *ex vivo* transfection of dendritic cells, for example, may generally be performed using any

methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., *Immunology and cell Biology* 75:456-460, 1997. Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lentivirus vectors). Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide.

5

10

15

20

25

30

While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will typically vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, mucosal, intravenous, intracranial, intraperitoneal, subcutaneous and intramuscular administration.

Carriers for use within such pharmaceutical compositions are biocompatible, and may also be biodegradable. In certain embodiments, the formulation preferably provides a relatively constant level of active component release. In other embodiments, however, a more rapid rate of release immediately upon administration may be desired. The formulation of such compositions is well within the level of ordinary skill in the art using known techniques. Illustrative carriers useful in this regard include microparticles of poly(lactide-co-glycolide), polyacrylate, latex, starch, cellulose, dextran and the like. Other illustrative delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross-linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638). The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

In another illustrative embodiment, biodegradable microspheres (*e.g.*, polylactate polyglycolate) are employed as carriers for the compositions of this invention. Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268; 5,075,109; 5,928,647; 5,811,128; 5,820,883; 5,853,763; 5,814,344, 5,407,609 and 5,942,252. Modified hepatitis B core protein carrier systems. such as described in WO/99 40934, and references cited therein, will also be useful for many applications. Another illustrative carrier/delivery system employs a carrier comprising particulate-protein complexes, such as those described in U.S. Patent No. 5,928,647, which are capable of inducing a class I-restricted cytotoxic T lymphocyte responses in a host.

5

10

15

20

25

30

The pharmaceutical compositions of the invention will often further comprise one or more buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives. Alternatively, compositions of the present invention may be formulated as a lyophilizate.

The pharmaceutical compositions described herein may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are typically sealed in such a way to preserve the sterility and stability of the formulation until use. In general, formulations may be stored as suspensions, solutions or emulsions in oily or aqueous vehicles. Alternatively, a pharmaceutical composition may be stored in a freeze-dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.

The development of suitable dosing and treatment regimens for using the particular compositions described herein in a variety of treatment regimens, including e.g., oral, parenteral, intravenous, intranasal, and intramuscular administration and formulation, is well known in the art, some of which are briefly discussed below for general purposes of illustration.

In certain applications, the pharmaceutical compositions disclosed herein may be delivered *via* oral administration to an animal. As such, these compositions may be formulated with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard- or soft-shell gelatin capsule, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet.

5

10

15

20

25

30

The active compounds may even be incorporated with excipients and used in the form of ingestible tablets, buccal tables, troches, capsules, elixirs, suspensions, syrups, wafers, and the like (see, for example, Mathiowitz et al., Nature 1997 Mar 27;386(6623):410-4; Hwang et al., Crit Rev Ther Drug Carrier Syst 1998;15(3):243-84; U. S. Patent 5,641,515; U. S. Patent 5,580,579 and U. S. Patent 5,792,451). Tablets, troches, pills, capsules and the like may also contain any of a variety of additional components, for example, a binder, such as gum tragacanth, acacia, cornstarch, or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; and a sweetening agent, such as sucrose, lactose or saccharin may be added or a flavoring agent, such as peppermint, oil of wintergreen, or cherry flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar, or both. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compounds may be incorporated into sustained-release preparation and formulations.

Typically, these formulations will contain at least about 0.1% of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1 or 2% and about 60% or 70% or more of the weight or volume of the total formulation. Naturally, the amount of active compound(s) in each therapeutically useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated

by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.

For oral administration the compositions of the present invention may alternatively be incorporated with one or more excipients in the form of a mouthwash, dentifrice, buccal tablet, oral spray, or sublingual orally-administered formulation. Alternatively, the active ingredient may be incorporated into an oral solution such as one containing sodium borate, glycerin and potassium bicarbonate, or dispersed in a dentifrice, or added in a therapeutically-effective amount to a composition that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants. Alternatively the compositions may be fashioned into a tablet or solution form that may be placed under the tongue or otherwise dissolved in the mouth.

5

10

15

20

25

30

In certain circumstances it will be desirable to deliver the pharmaceutical compositions disclosed herein parenterally, intravenously, intramuscularly, or even intraperitoneally. Such approaches are well known to the skilled artisan, some of which are further described, for example, in U. S. Patent 5,543,158; U. S. Patent 5,641,515 and U. S. Patent 5,399,363. In certain embodiments, solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations generally will contain a preservative to prevent the growth of microorganisms.

Illustrative pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (for example, see U. S. Patent 5,466,468). In all cases the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils. Proper fluidity may be maintained, for example, by the use of a coating, such as

lecithin, by the maintenance of the required particle size in the case of dispersion and/or by the use of surfactants. The prevention of the action of microorganisms can be facilitated by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

5

10

15

20

25

30

In one embodiment, for parenteral administration in an aqueous solution, the solution should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. These particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. In this connection, a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure. For example, one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences" 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. Moreover, for human administration, preparations will of course preferably meet sterility, pyrogenicity, and the general safety and purity standards as required by FDA Office of Biologics standards.

In another embodiment of the invention, the compositions disclosed herein may be formulated in a neutral or salt form. Illustrative pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be

administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.

The carriers can further comprise any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions. The phrase "pharmaceutically-acceptable" refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.

5

10

15

20

25

30

In certain embodiments, the pharmaceutical compositions may be delivered by intranasal sprays, inhalation, and/or other aerosol delivery vehicles. Methods for delivering genes, nucleic acids, and peptide compositions directly to the lungs *via* nasal aerosol sprays has been described, *e.g.*, in U. S. Patent 5,756,353 and U. S. Patent 5,804,212. Likewise, the delivery of drugs using intranasal microparticle resins (Takenaga *et al.*, J Controlled Release 1998 Mar 2;52(1-2):81-7) and lysophosphatidyl-glycerol compounds (U. S. Patent 5,725,871) are also well-known in the pharmaceutical arts. Likewise, illustrative transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix is described in U. S. Patent 5,780,045.

In certain embodiments, liposomes, nanocapsules, microparticles, lipid particles, vesicles, and the like, are used for the introduction of the compositions of the present invention into suitable host cells/organisms. In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like. Alternatively, compositions of the present invention can be bound, either covalently or non-covalently, to the surface of such carrier vehicles.

The formation and use of liposome and liposome-like preparations as potential drug carriers is generally known to those of skill in the art (see for example, Lasic, Trends Biotechnol 1998 Jul;16(7):307-21; Takakura, Nippon Rinsho 1998 Mar;56(3):691-5; Chandran *et al.*, Indian J Exp Biol. 1997 Aug;35(8):801-9; Margalit,

Crit Rev Ther Drug Carrier Syst. 1995;12(2-3):233-61; U.S. Patent 5,567,434; U.S. Patent 5,552,157; U.S. Patent 5,565,213; U.S. Patent 5,738,868 and U.S. Patent 5,795,587, each specifically incorporated herein by reference in its entirety).

Liposomes have been used successfully with a number of cell types that are normally difficult to transfect by other procedures, including T cell suspensions, primary hepatocyte cultures and PC 12 cells (Renneisen *et al.*, J Biol Chem. 1990 Sep 25;265(27):16337-42; Muller *et al.*, DNA Cell Biol. 1990 Apr;9(3):221-9). In addition, liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, various drugs, radiotherapeutic agents, enzymes, viruses, transcription factors, allosteric effectors and the like, into a variety of cultured cell lines and animals. Furthermore, he use of liposomes does not appear to be associated with autoimmune responses or unacceptable toxicity after systemic delivery.

In certain embodiments, liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs).

Alternatively, in other embodiments, the invention provides for pharmaceutically-acceptable nanocapsule formulations of the compositions of the present invention. Nanocapsules can generally entrap compounds in a stable and reproducible way (see, for example, Quintanar-Guerrero *et al.*, Drug Dev Ind Pharm. 1998 Dec;24(12):1113-28). To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 µm) may be designed using polymers able to be degraded *in vivo*. Such particles can be made as described, for example, by Couvreur *et al.*, Crit Rev Ther Drug Carrier Syst. 1988;5(1):1-20; zur Muhlen *et al.*, Eur J Pharm Biopharm. 1998 Mar;45(2):149-55; Zambaux *et al.* J Controlled Release. 1998 Jan 2;50(1-3):31-40; and U. S. Patent 5,145,684.

Cancer Therapeutic Methods

5

10

15

20

25

30

Immunologic approaches to cancer therapy are based on the recognition that cancer cells can often evade the body's defenses against aberrant or foreign cells and molecules, and that these defenses might be therapeutically stimulated to regain the

lost ground, e.g. pgs. 623-648 in Klein, Immunology (Wiley-Interscience, New York, 1982). Numerous recent observations that various immune effectors can directly or indirectly inhibit growth of tumors has led to renewed interest in this approach to cancer therapy, e.g. Jager, et al., Oncology 2001;60(1):1-7; Renner, et al., Ann Hematol 2000 Dec;79(12):651-9.

5

10

15

20

25

30

Four-basic cell types whose function has been associated with antitumor cell immunity and the elimination of tumor cells from the body are: i) B-lymphocytes which secrete immunoglobulins into the blood plasma for identifying and labeling the nonself invader cells; ii) monocytes which secrete the complement proteins that are responsible for lysing and processing the immunoglobulin-coated target invader cells; iii) natural killer lymphocytes having two mechanisms for the destruction of tumor cells, antibody-dependent cellular cytotoxicity and natural killing; and iv) T-lymphocytes possessing antigen-specific receptors and having the capacity to recognize a tumor cell carrying complementary marker molecules (Schreiber, H., 1989, in Fundamental Immunology (ed). W. E. Paul, pp. 923-955).

Cancer immunotherapy generally focuses on inducing humoral immune responses, cellular immune responses, or both. Moreover, it is well established that induction of CD4⁺ T helper cells is necessary in order to secondarily induce either antibodies or cytotoxic CD8⁺ T cells. Polypeptide antigens that are selective or ideally specific for cancer cells, particularly lung cancer cells, offer a powerful approach for inducing immune responses against lung cancer, and are an important aspect of the present invention.

Therefore, in further aspects of the present invention, the pharmaceutical compositions described herein may be used for the treatment of cancer, particularly for the immunotherapy of lung cancer. Within such methods, the pharmaceutical compositions described herein are administered to a patient, typically a warm-blooded animal, preferably a human. A patient may or may not be afflicted with cancer. Accordingly, the above pharmaceutical compositions may be used to prevent the development of a cancer or to treat a patient afflicted with a cancer. Pharmaceutical compositions and vaccines may be administered either prior to or following surgical removal of primary tumors and/or treatment such as administration of radiotherapy or

conventional chemotherapeutic drugs. As discussed above, administration of the pharmaceutical compositions may be by any suitable method, including administration by intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal, intradermal, anal, vaginal, topical and oral routes.

Within certain embodiments, immunotherapy may be active immunotherapy, in which treatment relies on the *in vivo* stimulation of the endogenous host immune system to react against tumors with the administration of immune response-modifying agents (such as polypeptides and polynucleotides as provided herein).

5

10

15

20

25

30

Within other embodiments, immunotherapy may immunotherapy, in which treatment involves the delivery of agents with established tumor-immune reactivity (such as effector cells or antibodies) that can directly or indirectly mediate antitumor effects and does not necessarily depend on an intact host immune system. Examples of effector cells include T cells as discussed above, T lymphocytes (such as CD8⁺ cytotoxic T lymphocytes and CD4⁺ T-helper tumorinfiltrating lymphocytes), killer cells (such as Natural Killer cells and lymphokineactivated killer cells), B cells and antigen-presenting cells (such as dendritic cells and macrophages) expressing a polypeptide provided herein. T cell receptors and antibody receptors specific for the polypeptides recited herein may be cloned, expressed and transferred into other vectors or effector cells for adoptive immunotherapy. The polypeptides provided herein may also be used to generate antibodies or anti-idiotypic antibodies (as described above and in U.S. Patent No. 4,918,164) for passive immunotherapy.

Monoclonal antibodies may be labeled with any of a variety of labels for desired selective usages in detection, diagnostic assays or therapeutic applications (as described in U.S. Patent Nos. 6,090,365; 6,015,542; 5,843,398; 5,595,721; and 4,708,930, hereby incorporated by reference in their entirety as if each was incorporated individually). In each case, the binding of the labelled monoclonal antibody to the determinant site of the antigen will signal detection or delivery of a particular therapeutic agent to the antigenic determinant on the non-normal cell. A further object

of this invention is to provide the specific monoclonal antibody suitably labelled for achieving such desired selective usages thereof.

Effector cells may generally be obtained in sufficient quantities for adoptive immunotherapy by growth in vitro, as described herein. Culture conditions for expanding single antigen-specific effector cells to several billion in number with retention of antigen recognition in vivo are well known in the art. Such in vitro culture conditions typically use intermittent stimulation with antigen, often in the presence of cytokines (such as IL-2) and non-dividing feeder cells. As noted above, immunoreactive polypeptides as provided herein may be used to rapidly expand antigen-specific T cell cultures in order to generate a sufficient number of cells for immunotherapy. In particular, antigen-presenting cells, such as dendritic, macrophage, monocyte, fibroblast and/or B cells, may be pulsed with immunoreactive polypeptides or transfected with one or more polynucleotides using standard techniques well known For example, antigen-presenting cells can be transfected with a in the art. polynucleotide having a promoter appropriate for increasing expression in a recombinant virus or other expression system. Cultured effector cells for use in therapy must be able to grow and distribute widely, and to survive long term in vivo. Studies have shown that cultured effector cells can be induced to grow in vivo and to survive long term in substantial numbers by repeated stimulation with antigen supplemented with IL-2 (see, for example, Cheever et al., Immunological Reviews 157:177, 1997).

10

15

20

25

30

Alternatively, a vector expressing a polypeptide recited herein may be introduced into antigen presenting cells taken from a patient and clonally propagated *ex vivo* for transplant back into the same patient. Transfected cells may be reintroduced into the patient using any means known in the art, preferably in sterile form by intravenous, intracavitary, intraperitoneal or intratumor administration.

Routes and frequency of administration of the therapeutic compositions described herein, as well as dosage, will vary from individual to individual, and may be readily established using standard techniques. In general, the pharmaceutical compositions and vaccines may be administered by injection (e.g., intracutaneous, intramuscular, intravenous or subcutaneous), intranasally (e.g., by aspiration) or orally. Preferably, between 1 and 10 doses may be administered over a 52 week period.

Preferably, 6 doses are administered, at intervals of 1 month, and booster vaccinations may be given periodically thereafter. Alternate protocols may be appropriate for individual patients. A suitable dose is an amount of a compound that, when administered as described above, is capable of promoting an anti-tumor immune response, and is at least 10-50% above the basal (i.e., untreated) level. Such response can be monitored by measuring the anti-tumor antibodies in a patient or by vaccinedependent generation of cytolytic effector cells capable of killing the patient's tumor cells in vitro. Such vaccines should also be capable of causing an immune response that leads to an improved clinical outcome (e.g., more frequent remissions, complete or partial or longer disease-free survival) in vaccinated patients as compared to non-In general, for pharmaceutical compositions and vaccines vaccinated patients. comprising one or more polypeptides, the amount of each polypeptide present in a dose ranges from about 25 µg to 5 mg per kg of host. Suitable dose sizes will vary with the size of the patient, but will typically range from about 0.1 mL to about 5 mL.

5

10

15

20

25

30

In general, an appropriate dosage and treatment regimen provides the active compound(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit. Such a response can be monitored by establishing an improved clinical outcome (e.g., more frequent remissions, complete or partial, or longer disease-free survival) in treated patients as compared to non-treated patients. Increases in preexisting immune responses to a tumor protein generally correlate with an improved clinical outcome. Such immune responses may generally be evaluated using standard proliferation, cytotoxicity or cytokine assays, which may be performed using samples obtained from a patient before and after treatment.

Cancer Detection and Diagnostic Compositions, Methods and Kits

In general, a cancer may be detected in a patient based on the presence of one or more lung tumor proteins and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, sputum urine and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a cancer such as lung cancer. In addition, such proteins may be useful for the detection of other cancers. The binding agents provided

herein generally permit detection of the level of antigen that binds to the agent in the biological sample.

Polynucleotide primers and probes may be used to detect the level of mRNA encoding a tumor protein, which is also indicative of the presence or absence of a cancer. In general, a tumor sequence should be present at a level that is at least two-fold, preferably three-fold, and more preferably five-fold or higher in tumor tissue than in normal tissue of the same type from which the tumor arose. Expression levels of a particular tumor sequence in tissue types different from that in which the tumor arose are irrelevant in certain diagnostic embodiments since the presence of tumor cells can be confirmed by observation of predetermined differential expression levels, e.g., 2-fold, 5-fold, etc, in tumor tissue to expression levels in normal tissue of the same type.

5

10

15

20

25

30

Other differential expression patterns can be utilized advantageously for diagnostic purposes. For example, in one aspect of the invention, overexpression of a tumor sequence in tumor tissue and normal tissue of the same type, but not in other normal tissue types, e.g. PBMCs, can be exploited diagnostically. In this case, the presence of metastatic tumor cells, for example in a sample taken from the circulation or some other tissue site different from that in which the tumor arose, can be identified and/or confirmed by detecting expression of the tumor sequence in the sample, for example using RT-PCR analysis. In many instances, it will be desired to enrich for tumor cells in the sample of interest, e.g., PBMCs, using cell capture or other like techniques.

There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, 1988. In general, the presence or absence of a cancer in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.

In a preferred embodiment, the assay involves the use of binding agent immobilized on a solid support to bind to and remove the polypeptide from the remainder of the sample. The bound polypeptide may then be detected using a detection

reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti-immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include full length lung tumor proteins and polypeptide portions thereof to which the binding agent binds, as described above.

5

10

15

20

25

30

The solid support may be any material known to those of ordinary skill in the art to which the tumor protein may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass, fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for a suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of a plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about

 $10 \mu g$, and preferably about 100 ng to about $1 \mu g$, is sufficient to immobilize an adequate amount of binding agent.

Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (*see*, *e.g.*, Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).

5

10

15

20

25

30

In certain embodiments, the assay is a two-antibody sandwich assay. This assay may be performed by first contacting an antibody that has been immobilized on a solid support, commonly the well of a microtiter plate, with the sample, such that polypeptides within the sample are allowed to bind to the immobilized antibody. Unbound sample is then removed from the immobilized polypeptide-antibody complexes and a detection reagent (preferably a second antibody capable of binding to a different site on the polypeptide) containing a reporter group is added. The amount of detection reagent that remains bound to the solid support is then determined using a method appropriate for the specific reporter group.

More specifically, once the antibody is immobilized on the support as described above, the remaining protein binding sites on the support are typically blocked. Any suitable blocking agent known to those of ordinary skill in the art, such as bovine serum albumin or Tween 20^{TM} (Sigma Chemical Co., St. Louis, MO). The immobilized antibody is then incubated with the sample, and polypeptide is allowed to bind to the antibody. The sample may be diluted with a suitable diluent, such as phosphate-buffered saline (PBS) prior to incubation. In general, an appropriate contact time (*i.e.*, incubation time) is a period of time that is sufficient to detect the presence of polypeptide within a sample obtained from an individual with lung cancer. Preferably, the contact time is sufficient to achieve a level of binding that is at least about 95% of that achieved at equilibrium between bound and unbound polypeptide. Those of ordinary skill in the art will recognize that the time necessary to achieve equilibrium

may be readily determined by assaying the level of binding that occurs over a period of time. At room temperature, an incubation time of about 30 minutes is generally sufficient.

Unbound sample may then be removed by washing the solid support with an appropriate buffer, such as PBS containing 0.1% Tween 20TM. The second antibody, which contains a reporter group, may then be added to the solid support. Preferred reporter groups include those groups recited above.

5

10

15

20

25

30

The detection reagent is then incubated with the immobilized antibody-polypeptide complex for an amount of time sufficient to detect the bound polypeptide. An appropriate amount of time may generally be determined by assaying the level of binding that occurs over a period of time. Unbound detection reagent is then removed and bound detection reagent is detected using the reporter group. The method employed for detecting the reporter group depends upon the nature of the reporter group. For radioactive groups, scintillation counting or autoradiographic methods are generally appropriate. Spectroscopic methods may be used to detect dyes, luminescent groups and fluorescent groups. Biotin may be detected using avidin, coupled to a different reporter group (commonly a radioactive or fluorescent group or an enzyme). Enzyme reporter groups may generally be detected by the addition of substrate (generally for a specific period of time), followed by spectroscopic or other analysis of the reaction products.

To determine the presence or absence of a cancer, such as lung cancer, the signal detected from the reporter group that remains bound to the solid support is generally compared to a signal that corresponds to a predetermined cut-off value. In one preferred embodiment, the cut-off value for the detection of a cancer is the average mean signal obtained when the immobilized antibody is incubated with samples from patients without the cancer. In general, a sample generating a signal that is three standard deviations above the predetermined cut-off value is considered positive for the cancer. In an alternate preferred embodiment, the cut-off value is determined using a Receiver Operator Curve, according to the method of Sackett et al., *Clinical Epidemiology: A Basic Science for Clinical Medicine*, Little Brown and Co., 1985, p. 106-7. Briefly, in this embodiment, the cut-off value may be determined from a plot

of pairs of true positive rates (*i.e.*, sensitivity) and false positive rates (100%-specificity) that correspond to each possible cut-off value for the diagnostic test result. The cut-off value on the plot that is the closest to the upper left-hand corner (*i.e.*, the value that encloses the largest area) is the most accurate cut-off value, and a sample generating a signal that is higher than the cut-off value determined by this method may be considered positive. Alternatively, the cut-off value may be shifted to the left along the plot, to minimize the false positive rate, or to the right, to minimize the false negative rate. In general, a sample generating a signal that is higher than the cut-off value determined by this method is considered positive for a cancer.

5

10

15

20

25

30

In a related embodiment, the assay is performed in a flow-through or strip test format, wherein the binding agent is immobilized on a membrane, such as nitrocellulose. In the flow-through test, polypeptides within the sample bind to the immobilized binding agent as the sample passes through the membrane. A second, labeled binding agent then binds to the binding agent-polypeptide complex as a solution containing the second binding agent flows through the membrane. The detection of bound second binding agent may then be performed as described above. In the strip test format, one end of the membrane to which binding agent is bound is immersed in a solution containing the sample. The sample migrates along the membrane through a region containing second binding agent and to the area of immobilized binding agent. Concentration of second binding agent at the area of immobilized antibody indicates the presence of a cancer. Typically, the concentration of second binding agent at that site generates a pattern, such as a line, that can be read visually. The absence of such a pattern indicates a negative result. In general, the amount of binding agent immobilized on the membrane is selected to generate a visually discernible pattern when the biological sample contains a level of polypeptide that would be sufficient to generate a positive signal in the two-antibody sandwich assay, in the format discussed above. Preferred binding agents for use in such assays are antibodies and antigen-binding fragments thereof. Preferably, the amount of antibody immobilized on the membrane ranges from about 25 ng to about 1µg, and more preferably from about 50 ng to about 500 ng. Such tests can typically be performed with a very small amount of biological sample.

Of course, numerous other assay protocols exist that are suitable for use with the tumor proteins or binding agents of the present invention. The above descriptions are intended to be exemplary only. For example, it will be apparent to those of ordinary skill in the art that the above protocols may be readily modified to use tumor polypeptides to detect antibodies that bind to such polypeptides in a biological sample. The detection of such tumor protein specific antibodies may correlate with the presence of a cancer.

A cancer may also, or alternatively, be detected based on the presence of T cells that specifically react with a tumor protein in a biological sample. Within certain methods, a biological sample comprising CD4⁺ and/or CD8⁺ T cells isolated from a patient is incubated with a tumor polypeptide, a polynucleotide encoding such a polypeptide and/or an APC that expresses at least an immunogenic portion of such a polypeptide, and the presence or absence of specific activation of the T cells is detected. Suitable biological samples include, but are not limited to, isolated T cells. For example, T cells may be isolated from a patient by routine techniques (such as by Ficoll/Hypaque density gradient centrifugation of peripheral blood lymphocytes). T cells may be incubated in vitro for 2-9 days (typically 4 days) at 37°C with polypeptide (e.g., 5 - 25 μg/ml). It may be desirable to incubate another aliquot of a T cell sample in the absence of tumor polypeptide to serve as a control. For CD4⁺ T cells, activation is preferably detected by evaluating proliferation of the T cells. For CD8+ T cells. activation is preferably detected by evaluating cytolytic activity. A level of proliferation that is at least two fold greater and/or a level of cytolytic activity that is at least 20% greater than in disease-free patients indicates the presence of a cancer in the patient.

10

15

20

25

30

As noted above, a cancer may also, or alternatively, be detected based on the level of mRNA encoding a tumor protein in a biological sample. For example, at least two oligonucleotide primers may be employed in a polymerase chain reaction (PCR) based assay to amplify a portion of a tumor cDNA derived from a biological sample, wherein at least one of the oligonucleotide primers is specific for (*i.e.*, hybridizes to) a polynucleotide encoding the tumor protein. The amplified cDNA is then separated and detected using techniques well known in the art, such as gel electrophoresis.

Similarly, oligonucleotide probes that specifically hybridize to a polynucleotide encoding a tumor protein may be used in a hybridization assay to detect the presence of polynucleotide encoding the tumor protein in a biological sample.

5

10

15

20

25

30

To permit hybridization under assay conditions, oligonucleotide primers and probes should comprise an oligonucleotide sequence that has at least about 60%, preferably at least about 75% and more preferably at least about 90%, identity to a portion of a polynucleotide encoding a tumor protein of the invention that is at least 10 nucleotides, and preferably at least 20 nucleotides, in length. Preferably. oligonucleotide primers and/or probes hybridize to a polynucleotide encoding a polypeptide described herein under moderately stringent conditions, as defined above. Oligonucleotide primers and/or probes which may be usefully employed in the diagnostic methods described herein preferably are at least 10-40 nucleotides in length. In a preferred embodiment, the oligonucleotide primers comprise at least 10 contiguous nucleotides, more preferably at least 15 contiguous nucleotides, of a DNA molecule having a sequence as disclosed herein. Techniques for both PCR based assays and hybridization assays are well known in the art (see, for example, Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51:263, 1987; Erlich ed., PCR Technology, Stockton Press, NY, 1989).

One preferred assay employs RT-PCR, in which PCR is applied in conjunction with reverse transcription. Typically, RNA is extracted from a biological sample, such as biopsy tissue, and is reverse transcribed to produce cDNA molecules. PCR amplification using at least one specific primer generates a cDNA molecule, which may be separated and visualized using, for example, gel electrophoresis. Amplification may be performed on biological samples taken from a test patient and from an individual who is not afflicted with a cancer. The amplification reaction may be performed on several dilutions of cDNA spanning two orders of magnitude. A two-fold or greater increase in expression in several dilutions of the test patient sample as compared to the same dilutions of the non-cancerous sample is typically considered positive.

In another aspect of the present invention, cell capture technologies may be used in conjunction, with, for example, real-time PCR to provide a more sensitive

tool for detection of metastatic cells expressing lung tumor antigens. Detection of lung cancer cells in biological samples, e.g., bone marrow samples, peripheral blood, and small needle aspiration samples is desirable for diagnosis and prognosis in lung cancer patients.

5

10

15

20

25

30

Immunomagnetic beads coated with specific monoclonal antibodies to surface cell markers, or tetrameric antibody complexes, may be used to first enrich or positively select cancer cells in a sample. Various commercially available kits may be used, including Dynabeads® Epithelial Enrich (Dynal Biotech, Oslo, Norway), StemSepTM (StemCell Technologies, Inc., Vancouver, BC), and RosetteSep (StemCell Technologies). A skilled artisan will recognize that other methodologies and kits may also be used to enrich or positively select desired cell populations. Dynabeads® Epithelial Enrich contains magnetic beads coated with mAbs specific for two glycoprotein membrane antigens expressed on normal and neoplastic epithelial tissues. The coated beads may be added to a sample and the sample then applied to a magnet, thereby capturing the cells bound to the beads. The unwanted cells are washed away and the magnetically isolated cells eluted from the beads and used in further analyses.

RosetteSep can be used to enrich cells directly from a blood sample and consists of a cocktail of tetrameric antibodies that targets a variety of unwanted cells and crosslinks them to glycophorin A on red blood cells (RBC) present in the sample, forming rosettes. When centrifuged over Ficoll, targeted cells pellet along with the free RBC. The combination of antibodies in the depletion cocktail determines which cells will be removed and consequently which cells will be recovered. Antibodies that are available include, but are not limited to: CD2, CD3, CD4, CD5, CD8, CD10, CD11b, CD14, CD15, CD16, CD19, CD20, CD24, CD25, CD29, CD33, CD34, CD36, CD38, CD41, CD45, CD45RA, CD45RO, CD56, CD66B, CD66e, HLA-DR, IgE, and TCRαβ.

Additionally, it is contemplated in the present invention that mAbs specific for lung tumor antigens can be generated and used in a similar manner. For example, mAbs that bind to tumor-specific cell surface antigens may be conjugated to magnetic beads, or formulated in a tetrameric antibody complex, and used to enrich or positively select metastatic lung tumor cells from a sample. Once a sample is enriched or positively selected, cells may be lysed and RNA isolated. RNA may then be

subjected to RT-PCR analysis using lung tumor-specific primers in a real-time PCR assay as described herein. One skilled in the art will recognize that enriched or selected populations of cells may be analyzed by other methods (*e.g. in situ* hybridization or flow cytometry).

5

10

15

20

25

30

In another embodiment, the compositions described herein may be used as markers for the progression of cancer. In this embodiment, assays as described above for the diagnosis of a cancer may be performed over time, and the change in the level of reactive polypeptide(s) or polynucleotide(s) evaluated. For example, the assays may be performed every 24-72 hours for a period of 6 months to 1 year, and thereafter performed as needed. In general, a cancer is progressing in those patients in whom the level of polypeptide or polynucleotide detected increases over time. In contrast, the cancer is not progressing when the level of reactive polypeptide or polynucleotide either remains constant or decreases with time.

Certain *in vivo* diagnostic assays may be performed directly on a tumor. One such assay involves contacting tumor cells with a binding agent. The bound binding agent may then be detected directly or indirectly via a reporter group. Such binding agents may also be used in histological applications. Alternatively, polynucleotide probes may be used within such applications.

As noted above, to improve sensitivity, multiple tumor protein markers may be assayed within a given sample. It will be apparent that binding agents specific for different proteins provided herein may be combined within a single assay. Further, multiple primers or probes may be used concurrently. The selection of tumor protein markers may be based on routine experiments to determine combinations that results in optimal sensitivity. In addition, or alternatively, assays for tumor proteins provided herein may be combined with assays for other known tumor antigens.

The present invention further provides kits for use within any of the above diagnostic methods. Such kits typically comprise two or more components necessary for performing a diagnostic assay. Components may be compounds, reagents, containers and/or equipment. For example, one container within a kit may contain a monoclonal antibody or fragment thereof that specifically binds to a tumor protein. Such antibodies or fragments may be provided attached to a support material, as

described above. One or more additional containers may enclose elements, such as reagents or buffers, to be used in the assay. Such kits may also, or alternatively, contain a detection reagent as described above that contains a reporter group suitable for direct or indirect detection of antibody binding.

Alternatively, a kit may be designed to detect the level of mRNA encoding a tumor protein in a biological sample. Such kits generally comprise at least one oligonucleotide probe or primer, as described above, that hybridizes to a polynucleotide encoding a tumor protein. Such an oligonucleotide may be used, for example, within a PCR or hybridization assay. Additional components that may be present within such kits include a second oligonucleotide and/or a diagnostic reagent or container to facilitate the detection of a polynucleotide encoding a tumor protein.

The following examples are offered by way of illustration and not by way of limitation.

EXAMPLES

15 EXAMPLE 1

5

10

25

ISOLATION AND CHARACTERIZATION OF CDNA SEQUENCES ENCODING LUNG TUMOR POLYPEPTIDES

This example illustrates the isolation of cDNA molecules encoding lung tumor-specific polypeptides from lung tumor cDNA libraries.

20 A. ISOLATION OF CDNA SEQUENCES FROM A LUNG SQUAMOUS CELL CARCINOMA LIBRARY

A human lung squamous cell carcinoma cDNA expression library was constructed from poly A⁺ RNA from a pool of two patient tissues using a Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning kit (BRL Life Technologies, Gaithersburg, MD) following the manufacturer's protocol. Specifically, lung carcinoma tissues were homogenized with polytron (Kinematica, Switzerland) and total RNA was extracted using Trizol reagent (BRL Life Technologies) as directed by the manufacturer. The poly A⁺ RNA was then purified using an oligo dT cellulose column as described in

Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 1989. First-strand cDNA was synthesized using the NotI/Oligo-dT18 primer. Double-stranded cDNA was synthesized, ligated with BstXI/EcoRI adaptors (Invitrogen, San Diego, CA) and digested with NotI. Following size fractionation with cDNA size fractionation columns (BRL Life Technologies), the cDNA was ligated into the BstXI/NotI site of pcDNA3.1 (Invitrogen) and transformed into ElectroMax *E. coli* DH10B cells (BRL Life Technologies) by electroporation.

Using the same procedure, a normal human lung cDNA expression library was prepared from a pool of four tissue specimens. The cDNA libraries were characterized by determining the number of independent colonies, the percentage of clones that carried insert, the average insert size and by sequence analysis. The lung squamous cell carcinoma library contained 2.7 x 10⁶ independent colonies, with 100% of clones having an insert and the average insert size being 2100 base pairs. The normal lung cDNA library contained 1.4 x 10⁶ independent colonies, with 90% of clones having inserts and the average insert size being 1800 base pairs. For both libraries, sequence analysis showed that the majority of clones had a full length cDNA sequence and were synthesized from mRNA

10

15

20

25

30

cDNA library subtraction was performed using the above lung squamous cell carcinoma and normal lung cDNA libraries, as described by Hara *et al.* (*Blood*, 84:189-199, 1994) with some modifications. Specifically, a lung squamous cell carcinoma-specific subtracted cDNA library was generated as follows. Normal tissue cDNA library (80 μg) was digested with BamHI and XhoI, followed by a filling-in reaction with DNA polymerase Klenow fragment. After phenol-chloroform extraction and ethanol precipitation, the DNA was dissolved in 133 μl of H₂O, heat-denatured and mixed with 133 μl (133 μg) of Photoprobe biotin (Vector Laboratories, Burlingame, CA). As recommended by the manufacturer, the resulting mixture was irradiated with a 270 W sunlamp on ice for 20 minutes. Additional Photoprobe biotin (67 μl) was added and the biotinylation reaction was repeated. After extraction with butanol five times, the DNA was ethanol-precipitated and dissolved in 23 μl H₂O to form the driver DNA.

To form the tracer DNA, 10 µg lung squamous cell carcinoma cDNA library was digested with NotI and SpeI, phenol chloroform extracted and passed

through Chroma spin-400 columns (Clontech, Palo Alto, CA). Typically, 5 µg of cDNA was recovered after the sizing column. Following ethanol precipitation, the tracer DNA was dissolved in 5 µl H₂O. Tracer DNA was mixed with 15 µl driver DNA and 20 µl of 2 x hybridization buffer (1.5 M NaCl/10 mM EDTA/50 mM HEPES pH 7.5/0.2% sodium dodecyl sulfate), overlaid with mineral oil, and heat-denatured completely. The sample was immediately transferred into a 68 °C water bath and incubated for 20 hours (long hybridization [LH]). The reaction mixture was then subjected to a streptavidin treatment followed by phenol/chloroform extraction. This process was repeated three more times. Subtracted DNA was precipitated, dissolved in 12 µl H₂O, mixed with 8 µl driver DNA and 20 µl of 2 x hybridization buffer, and subjected to a hybridization at 68 °C for 2 hours (short hybridization [SH]). After removal of biotinylated double-stranded DNA, subtracted cDNA was ligated into NotI/SpeI site of chloramphenicol resistant pBCSK⁺ (Stratagene, La Jolla, CA) and transformed into ElectroMax E. coli DH10B cells by electroporation to generate a lung squamous cell carcinoma specific subtracted cDNA library (herein after referred to as "lung subtraction I").

5

10

15

20

25

30

A second lung squamous cell carcinoma specific subtracted cDNA library (referred to as "lung subtraction II") was generated in a similar way to the lung subtraction library I, except that eight frequently recovered genes from lung subtraction I were included in the driver DNA, and 24,000 independent clones were recovered.

To analyze the subtracted cDNA libraries, plasmid DNA was prepared from 320 independent clones, randomly picked from the subtracted lung squamous cell carcinoma specific libraries. Representative cDNA clones were further characterized by DNA sequencing with a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A and/or Model 377 (Foster City, CA). The cDNA sequences for sixty isolated clones are provided in SEQ ID NO: 1-60. These sequences were compared to known sequences in the gene bank using the EMBL and GenBank databases (release 96). No significant homologies were found to the sequences provided in SEQ ID NO: 2, 3, 19, 38 and 46. The sequences of SEQ ID NO: 1, 6-8, 10-13, 15, 17, 18, 20-27, 29, 30, 32, 34-37, 39-45, 47-49, 51, 52, 54, 55 and 57-59 were found to show some homology to previously identified expressed sequence tags (ESTs).

The sequences of SEQ ID NO: 9, 28, 31 and 33 were found to show some homology to previously identified non-human gene sequences and the sequences of SEQ ID NO: 4, 5, 14, 50, 53, 56 and 60 were found to show some homology to gene sequences previously identified in humans.

The subtraction procedure described above was repeated using the above lung squamous cell carcinoma cDNA library as the tracer DNA, and the above normal lung tissue cDNA library and a cDNA library from normal liver and heart (constructed from a pool of one sample of each tissue as described above), plus twenty other cDNA clones that were frequently recovered in lung subtractions I and II, as the driver DNA (lung subtraction III). The normal liver and heart cDNA library contained 1.76 x 10⁶ independent colonies, with 100% of clones having inserts and the average insert size being 1600 base pairs. Ten additional clones were isolated (SEQ ID NO: 61-70). Comparison of these cDNA sequences with those in the gene bank as described above, revealed no significant homologies to the sequences provided in SEQ ID NO: 62 and 67. The sequences of SEQ ID NO: 61, 63-66, 68 and 69 were found to show some homology to previously isolated ESTs and the sequence provided in SEQ ID NO: 70 was found to show some homology to a previously identified rat gene.

In further studies, the subtraction procedure described above was repeated using the above lung squamous cell carcinoma cDNA library as the tracer DNA, and a cDNA library from a pool of normal lung, kidney, colon, pancreas, brain, resting PBMC, heart, skin and esophagus as the driver DNA, with esophagus cDNAs making up one third of the driver material. Since esophagus is enriched in normal epithelial cells, including differentiated squamous cells, this procedure is likely to enrich genes that are tumor specific rather than tissues specific. The cDNA sequences of 48 clones determined in this subtraction are provided in SEQ ID NO: 177-224. The sequences of SEQ ID NO: 177, 178, 180, 181, 183, 187, 192, 195-197, 208, 211, 212, 215, 216, 218 and 219 showed some homology to previously identified genes. The sequences of SEQ ID NO: 179, 182, 184-186, 188-191, 193, 194, 198-207, 209 210, 213, 214, 217, 220 and 224 showed some homology to previously determined ESTs. The sequence of SEQ ID NO: 221-223 showed no homology to any previously determined sequence.

B. ISOLATION OF cDNA SEQUENCES FROM A LUNG ADENOCARCINOMA LIBRARY

5

10

15

20

25

30

A human lung adenocarcinoma cDNA expression library was constructed as described above. The library contained 3.2 x 10⁶ independent colonies, with 100% of clones having an insert and the average insert size being 1500 base pairs. Library subtraction was performed as described above using the normal lung and normal liver and heart cDNA expression libraries described above as the driver DNA. Twenty-six hundred independent clones were recovered.

Initial cDNA sequence analysis from 100 independent clones revealed many ribosomal protein genes. The cDNA sequences for fifteen clones isolated in this subtraction are provided in SEQ ID NO: 71-86. Comparison of these sequences with those in the gene bank as described above revealed no significant homologies to the sequence provided in SEQ ID NO: 84. The sequences of SEQ ID NO: 71, 73, 74, 77, 78 and 80-82 were found to show some homology to previously isolated ESTs, and the sequences of SEQ ID NO: 72, 75, 76, 79, 83 and 85 were found to show some homology to previously identified human genes.

In further studies, a cDNA library (referred to as mets3616A) was constructed from a metastatic lung adenocarcinoma. The determined cDNA sequences of 25 clones sequenced at random from this library are provided in SEQ ID NO: 255-279. The mets3616A cDNA library was subtracted against a cDNA library prepared from a pool of normal lung, liver, pancreas, skin, kidney, brain and resting PBMC. To increase the specificity of the subtraction, the driver was spiked with genes that were determined to be most abundant in the mets3616A cDNA library, such as EF1-alpha, integrin-beta and anticoagulant protein PP4, as well as with cDNAs that were previously found to be differentially expressed in subtracted lung adenocarcinoma cDNA libraries. The determined cDNA sequences of 51 clones isolated from the subtracted library (referred to as mets3616A-S1) are provided in SEQ ID NO: 280-330.

Comparison of the sequences of SEQ ID NO: 255-330 with those in the public databases revealed no significant homologies to the sequences of SEQ ID NO: 255-258, 260, 262-264, 270, 272, 275, 276, 279, 281, 287, 291, 296, 300 and 310. The sequences of SEQ ID NO: 259, 261, 265-269, 271, 273, 274, 277, 278, 282-285, 288-

290, 292, 294, 297-299, 301, 303-309, 313, 314, 316, 320-324 and 326-330 showed some homology to previously identified gene sequences, while the sequences of SEQ ID NO: 280, 286, 293, 302, 310, 312, 315, 317-319 and 325 showed some homology to previously isolated expressed sequence tags (ESTs).

5 EXAMPLE 2

10

15

20

25

DETERMINATION OF TISSUE SPECIFICITY OF LUNG TUMOR POLYPEPTIDES

Using gene specific primers, mRNA expression levels for seven representative lung tumor polypeptides described in Example 1 were examined in a variety of normal and tumor tissues using RT-PCR.

Briefly, total RNA was extracted from a variety of normal and tumor tissues using Trizol reagent as described above. First strand synthesis was carried out using 2 μ g of total RNA with SuperScript II reverse transcriptase (BRL Life Technologies) at 42 0 C for one hour. The cDNA was then amplified by PCR with genespecific primers. To ensure the semi-quantitative nature of the RT-PCR, β -actin was used as an internal control for each of the tissues examined. 1 μ l of 1:30 dilution of cDNA was employed to enable the linear range amplification of the β -actin template and was sensitive enough to reflect the differences in the initial copy numbers. Using these conditions, the β -actin levels were determined for each reverse transcription reaction from each tissue. DNA contamination was minimized by DNase treatment and by assuring a negative PCR result when using first strand cDNA that was prepared without adding reverse transcriptase.

mRNA Expression levels were examined in five different types of tumor tissue (lung squamous cell carcinoma from 3 patients, lung adenocarcinoma, colon tumor from 2 patients, breast tumor and prostate tumor), and thirteen different normal tissues (lung from 4 donors, prostate, brain, kidney, liver, ovary, skeletal muscle, skin, small intestine, stomach, myocardium, retina and testes). Using a 10-fold amount of cDNA, the antigen LST-S1-90 (SEQ ID NO: 3) was found to be expressed at high levels in lung squamous cell carcinoma and in breast tumor, and at low to undetectable levels in the other tissues examined.

5

10

15

20

25

30

The antigen LST-S2-68 (SEQ ID NO: 15) appears to be specific to lung and breast tumor, however, expression was also detected in normal kidney. Antigens LST-S1-169 (SEQ ID NO: 6) and LST-S1-133 (SEQ ID NO: 5) appear to be very abundant in lung tissues (both normal and tumor), with the expression of these two genes being decreased in most of the normal tissues tested. Both LST-S1-169 and LST-S1-133 were also expressed in breast and colon tumors. Antigens LST-S1-6 (SEQ ID NO: 7) and LST-S2-I2-5F (SEQ ID NO: 47) did not show tumor or tissue specific expression, with the expression of LST-S1-28 being rare and only detectable in a few tissues. The antigen LST-S3-7 (SEQ ID NO: 63) showed lung and breast tumor specific expression, with its message only being detected in normal testes when the PCR was performed for 30 cycles. Lower level expression was detected in some normal tissues when the cycle number was increased to 35. Antigen LST-S3-13 (SEO ID NO: 66) was found to be expressed in 3 out of 4 lung tumors, one breast tumor and both colon tumor samples. Its expression in normal tissues was lower compared to tumors, and was only detected in 1 out of 4 normal lung tissues and in normal tissues from kidney, ovary and retina. Expression of antigens LST-S3-4 (SEQ ID NO: 62) and LST-S3-14 (SEQ ID NO: 67) was rare and did not show any tissue or tumor specificity. Consistent with Northern blot analyses, the RT-PCR results on antigen LAT-S1-A-10A (SEQ ID NO: 78) suggested that its expression is high in lung, colon, stomach and small intestine tissues, including lung and colon tumors, whereas its expression was low or undetectable in other tissues.

A total of 2002 cDNA fragments isolated in lung subtractions I, II and III, described above, were colony PCR amplified and their mRNA expression levels in lung tumor, normal lung, and various other normal and tumor tissues were determined using microarray technology (Synteni, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity. Seventeen non-redundant cDNA clones showed over-expression in lung

squamous tumors, with expression in normal tissues tested (lung, skin, lymph node, colon, liver, pancreas, breast, heart, bone marrow, large intestine, kidney, stomach, brain, small intestine, bladder and salivary gland) being either undetectable, or 10-fold less compared to lung squamous tumors. The determined cDNA sequences for the clone L513S are provided in SEQ ID NO: 87 and 88; those for L514S are provided in SEQ ID NO: 89 and 90; those for L516S in SEQ ID NO: 91 and 92; that for L517S in SEQ ID NO: 93; that for L519S in SEQ ID NO: 94; those for L520S in SEQ ID NO: 95 and 96; those for L521S in SEQ ID NO: 97 and 98; that for L522S in SEQ ID NO: 99; that for L523S in SEQ ID NO: 100; that for L524S in SEQ ID NO: 101; that for L525S in SEQ ID NO: 102; that for L526S in SEQ ID NO: 103; that for L527S in SEQ ID NO: 104; that for L528S in SEQ ID NO: 105; that for L529S in SEQ ID NO: 106; and those for L530S in SEQ ID NO: 107 and 108. Additionally, the full-length cDNA sequence for L530S is provided in SEQ ID NO: 151, with the corresponding amino acid sequence being provided in SEQ ID NO: 152. L530S shows homology to a splice variant of a p53 tumor suppressor homologue, p63. The cDNA sequences of 7 known isoforms of p63 are provided in SEQ ID NO: 331-337, with the corresponding amino acid sequences being provided in SEQ ID NO: 338-344, respectively.

5

10

15

20

25

Due to polymorphisms, the clone L531S appears to have two forms. A first determined full-length cDNA sequence for L531S is provided in SEQ ID NO: 109, with the corresponding amino acid sequence being provided in SEQ ID NO: 110. A second determined full-length cDNA sequence for L531S is provided in SEQ ID NO: 111, with the corresponding amino acid sequence being provided in SEQ ID NO: 112. The sequence of SEQ ID NO: 111 is identical to that of SEQ ID NO: 109, except that it contains a 27 bp insertion. Similarly, L514S has two alternatively spliced forms; the first variant cDNA is listed as SEQ ID NO: 153, with the corresponding amino acid sequence being provided in SEQ ID NO: 155. The full-length cDNA for the second variant form of L514S is provided in SEQ ID NO: 154, with the corresponding amino acid sequence being provided in SEQ ID NO: 156.

Full length cloning for L524S (SEQ ID NO: 101) yielded two variants 30 (SEQ ID NO: 163 and 164) with the corresponding amino acid sequences of SEQ ID

NO: 165 and 166, respectively. Both variants have been shown to encode parathyroid hormone-related peptide.

5

10

15

20

25

30

Attempts to isolate the full-length cDNA for L519S, resulted in the isolation of the extended cDNA sequence provided in SEQ ID NO: 173, which contains a potential open reading frame. The amino acid sequence encoded by the sequence of SEQ ID NO: 173 is provided in SEQ ID NO: 174. Additionally, the full-length cDNA sequence for the clone of SEQ ID NO: 100 (known as L523S), a known gene, is provided in SEQ ID NO: 175, with the corresponding amino acid sequence being provided in SEQ ID NO: 176. In further studies, a full-length cDNA sequence for L523S was isolated from a L523S-positive tumor cDNA library by PCR amplification using gene specific primers designed from the sequence of SEQ ID NO: 175. The determined full-length cDNA sequence is provided in SEQ ID NO: 347. The amino acid sequence encoded by this sequence is provided in SEQ ID NO: 348. This protein sequence differs from the previously published protein sequence at two amino acid positions, namely at positions 158 and 410.

Comparison of the sequences of L514S and L531S (SEQ ID NO: 87 and 88, and 109, respectively) with those in the gene bank, as described above, revealed no significant homologies to known sequences. The sequences of L513S, L516S, L517S, L519S, L520S and L530S (SEQ ID NO: 87 and 88, 91 and 92, 93, 94, 95 and 96, 107 and 108, respectively) were found to show some homology to previously identified ESTs. The sequences of L521S, L522S, L523S, L524S, L525S, L526S, L527S, L528S and L529S (SEQ ID NO: 97 and 98, 99, 99, 101, 102, 103, 104, 105, and 106, respectively) were found to represent known genes. The determined full-length cDNA sequence for L520S is provided in SEQ ID NO: 113, with the corresponding amino acid sequence being provided in SEQ ID NO: 114. Subsequent microarray analysis showed L520S to be overexpressed in breast tumors in addition to lung squamous tumors.

Further analysis demonstrated that L529S (SEQ ID NO: 106 and 115), L525S (SEQ ID NO: 102 and 120) and L527S (SEQ ID NO: 104) are cytoskeletal components and potentially squamous cell specific proteins. L529S is connexin 26, a gap junction protein. It was found to be highly expressed in one lung squamous tumor,

referred to as 9688T, and moderately over-expressed in two others. However, lower level expression of connexin 26 is also detectable in normal skin, colon, liver and stomach. The over-expression of connexin 26 in some breast tumors has been reported and a mutated form of L529S may result in over-expression in lung tumors. L525S is plakophilin 1, a desmosomal protein found in plaque-bearing adhering junctions of the skin. Expression levels for L525S mRNA was highly elevated in three out of four lung squamous tumors tested, and in normal skin. L527S has been identified as keratin 6 isoform, type II 58 Kd keratin and cytokeratin 13, and shows over-expression in squamous tumors and low expression in normal skin, breast and colon tissues. Keratin and keratin-related genes have been extensively documented as potential markers for lung cancer including CYFRA2.1 (Pastor, A., et al, *Eur. Respir. J.*, 10:603-609, 1997). L513S (SEQ ID NO: 87 and 88) shows moderate over-expression in several tumor tissues tested, and encodes a protein that was first isolated as a pemphigus vulgaris antigen.

5

10

15

20

25

30

L520S (SEQ ID NO: 95 and 96) and L521S (SEQ ID NO: 97 and 98) are highly expressed in lung squamous tumors, with L520S being up-regulated in normal salivary gland and L521S being over-expressed in normal skin. Both belong to a family of small proline rich proteins and represent markers for fully differentiated squamous cells. L521S has been described as a specific marker for lung squamous tumor (Hu, R., et al, Lung Cancer, 20:25-30, 1998). L515S (SEQ ID NO: 162) encodes IGF-β2 and L516S is an aldose reductase homologue. Both are moderately expressed in lung squamous tumors and in normal colon. Notably, L516S (SEQ ID NO: 91 and 92) is upregulated in metastatic tumors but not primary lung adenocarcinoma, an indication of its potential role in metatasis and a potential prognostic marker. L522S (SEQ ID NO: 99) is moderately over-expressed in lung squamous tumors with minimum expression in normal tissues. L522S has been shown to belong to a class IV alcohol dehydrogenase, ADH7, and its expression profile suggests it is a squamous cell specific antigen. L523S (SEQ ID NO: 100) is moderately over-expressed in lung squamous tumor, human pancreatic cancer cell lines and pancreatic cancer tissues, suggesting this gene may be a shared antigen between pancreatic and lung squamous cell cancer.

5

10

15

20

25

30

L524S (SEQ ID NO: 101) is over-expressed in the majority of squamous tumors tested and is homologous with parathyroid hormone-related peptide (PTHrP), which is best known to cause humoral hypercalcaemia associated with malignant tumors such as leukemia, prostate and breast cancer. It is also believed that PTHrP is most commonly associated with squamous carcinoma of lung and rarely with lung adenocarcinoma (Davidson, L.A., et al, *J. Pathol.*, 178: 398-401, 1996). L528S (SEQ ID NO: 105) is highly over-expressed in two lung squamous tumors with moderate expression in two other squamous tumors, one lung adenocarcinoma and some normal tissues, including skin, lymph nodes, heart, stomach and lung. It encodes the NMB gene that is similar to the precursor of melanocyte specific gene Pmel17, which is reported to be preferentially expressed in low-metastatic potential melanoma cell lines. This suggests that L528S may be a shared antigen in both melanoma and lung squamous cell carcinoma. L526S (SEQ ID NO: 103) was overexpressed in all lung squamous cell tumor tissues tested and has been shown to share homology with a gene (ATM) in which a mutation causes ataxia telangiectasia, a genetic disorder in humans causing a predisposition to cancer, among other symptoms. ATM encodes a protein that activates a p53 mediated cell-cycle checkpoint through direct binding and phosphorylation of the p53 molecule. Approximately 40% of lung cancers are associated with p53 mutations, and it is speculated that over-expression of ATM is a result of compensation for loss of p53 function, but it is unknown whether over-expression is the cause of result of lung squamous cell carcinoma. Additionally, expression of L526S (ATM) is also detected in a metastatic but not lung adenocarcinoma, suggesting a role in metastasis.

Expression of L523S (SEQ ID NO: 175), was examined by real time RT-PCR as described above. In a first study using a panel of lung squamous tumors, L523S was found to be expressed in 4/7 lung squamous tumors, 2/3 head and neck squamous tumors and 2/2 lung adenocarcinomas, with low level expression being observed in skeletal muscle, soft palate and tonsil. In a second study using a lung adenocarcinoma panel, expression of L523S was observed in 4/9 primary adenocarcinomas, 2/2 lung pleural effusions, 1/1 metastatic lung adenocarcinomas and 2/2 lung squamous tumors, with little expression being observed in normal tissues.

Expression of L523S in lung tumors and various normal tissues was also examined by Northern blot analysis, using standard techniques. In a first study, L523S was found to be expressed in a number of lung adenocarcinomas and squamous cell carcinomas, as well as normal tonsil. No expression was observed in normal lung. In a second study using a normal tissue blot (referred to as HB-12) from Clontech, no expression was observed in brain, skeletal muscle, colon, thymus, spleen, kidney, liver, small intestine, lung or PBMC, although there was strong expression in placenta.

EXAMPLE 3

ISOLATION AND CHARACTERIZATION OF LUNG TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

10

15

20

25

Eight hundred and fifty seven clones from a cDNA subtraction library, containing cDNA from a pool of two human lung squamous tumors subtracted against eight normal human tissue cDNAs including lung, PBMC, brain, heart, kidney, liver, pancreas, and skin, (Clontech, Palo Alto, CA) were derived and submitted to a first round of PCR amplification. This library was subjected to a second round of PCR amplification, following the manufacturer's protocol. The resulting cDNA fragments were subcloned into the P7-Adv vector (Clontech, Palo Alto, CA) and transformed into DH5α *E. coli* (Gibco, BRL). DNA was isolated from independent clones and sequenced using a Perkin Elmer/Applied Biosystems Division Automated Sequencer Model 373A.

One hundred and sixty two positive clones were sequenced. Comparison of the DNA sequences of these clones with those in the EMBL and GenBank databases, as described above, revealed no significant homologies to 13 of these clones, hereinafter referred to as Contigs 13, 16, 17, 19, 22, 24, 29, 47, 49, 56-59. The determined cDNA sequences for these clones are provided in SEQ ID NO: 125, 127-129, 131-133, 142, 144, 148-150, and 157, respectively. Contigs 1, 3-5, 7-10, 12, 11, 15, 20, 31, 33, 38, 39, 41, 43, 44, 45, 48, 50, 53, 54 (SEQ ID NO: 115-124, 126, 130, 134-141, 143, 145-147, respectively) were found to show some degree of homology to previously identified DNA sequences. Contig 57 (SEQ ID NO: 149) was found to represent the clone L519S

(SEQ ID NO: 94) disclosed in US. Patent Application No. 09/123,912, filed July 27, 1998. To the best of the inventors' knowledge, none of these sequences have been previously shown to be differentially over-expressed in lung tumors.

mRNA expression levels for representative clones in lung tumor tissues, normal lung tissues (n=4), resting PBMC, salivary gland, heart, stomach, lymph nodes, skeletal muscle, soft palate, small intestine, large intestine, bronchial, bladder, tonsil, kidney, esophagus, bone marrow, colon, adrenal gland, pancreas, and skin (all derived from human) were determined by RT-PCR as described above. Expression levels using microarray technology, as described above, were examined in one sample of each tissue type unless otherwise indicated.

5

10

15

20

25

30

Contig 3 (SEQ ID NO: 116) was found to be highly expressed in all head and neck squamous cell tumors tested (17/17), and expressed in the majority (8/12) of lung squamous tumors, (high expression in 7/12, moderate in 2/12, and low in 2/12), while showing negative expression for 2/4 normal lung tissues and low expression in the remaining two samples. Contig 3 showed moderate expression in skin and soft palate, and lowered expression levels in resting PBMC, large intestine, salivary gland, tonsil, pancreas, esophagus, and colon. Contig 11 (SEQ ID NO: 124) was found to be expressed in all head and neck squamous cell tumors tested (17/17), with high levels of expression being seen in 14/17 tumors, and moderately levels of expression being seen in 3/17 tumors. Additionally, high expression was seen in 3/12 lung squamous tumors and moderate expression in 4/12 lung squamous tumors. Contig 11 was negative for 3/4 normal lung samples, with the remaining sample having only low expression. Contig 11 showed low to moderate reactivity to salivary gland, soft palate, bladder, tonsil, skin, esophagus, and large intestine. Contig 13 (SEQ ID NO: 125) was found to be expressed in all head and neck squamous cell tumors tested (17/17), with high expression in 12/17, and moderate expression in 5/17. Contig 13 was expressed in 7/12 lung squamous tumors, with high expression in 4/12 and moderate expression in three samples. Analysis of normal lung samples showed negative expression for 2/4 and low to moderate expression in the remaining two samples. Contig 13 showed low to moderate reactivity to resting PBMC, salivary gland, bladder, pancreas, tonsil, skin, esophagus, and large intestine, as well as high expression in soft palate. Subsequent

full-length cloning efforts revealed that contig 13 (also known as L761P) maps to the 3' untranslated region of the hSec10p gene. The full-length sequence for this gene is set forth in SEQ ID NO: 368, and encodes the protein set forth in SEQ ID NO: 369.

5

10

15

20

25

30

Contig 16 (SEQ ID NO: 127) was found to be moderately expressed in several head and neck squamous cell tumors (6/17) and one lung squamous tumor, while showing no expression in any normal lung samples tested. Contig 16 showed low reactivity to resting PBMC, large intestine, skin, salivary gland, and soft palate. Contig 17 (SEQ ID NO: 128) was shown to be expressed in all head and neck squamous cell tumors tested (17/17) (highly expressed in 5/17, and moderately expressed in 12/17). Determination of expression levels in lung squamous tumors showed one tumor sample with high expression and 3/12 with moderate levels. Contig 17 was negative for 2/4 normal lung samples, with the remaining samples having only low expression. Additionally, low level expression was found in esophagus and soft palate. Contig 19 (SEQ ID NO: 129) was found to be expressed in most head and neck squamous cell tumors tested (11/17); with two samples having high expression levels, 6/17 showing moderate expression, and low expression being found in 3/17. Testing in lung squamous tumors revealed only moderate expression in 3/12 samples. Expression levels in 2/4 of normal lung samples were negative, the two other samples having only low expression. Contig 19 showed low expression levels in esophagus, resting PBMC, salivary gland, bladder, soft palate and pancreas.

Contig 22 (SEQ ID NO: 131), was shown to be expressed in most head and neck squamous cell tumors tested (13/17) with high expression in four of these samples, moderate expression in 6/17, and low expression in 3/17. Expression levels in lung squamous tumors were found to be moderate to high for 3/12 tissues tested, with negative expression in two normal lung samples and low expression in two other samples (n=4). Contig 22 showed low expression in skin, salivary gland and soft palate. Similarly, Contig 24 (SEQ ID NO: 132) was found to be expressed in most head and neck squamous cell tumors tested (13/17) with high expression in three of these samples, moderate expression in 6/17, and low expression in 4/17. Expression levels in lung squamous tumors were found to be moderate to high for 3/12 tissues tested, with negative expression for three normal lung samples and low expression in one sample

(n=4). Contig 24 showed low expression in skin, salivary gland and soft palate. Contig 29 (SEQ ID NO: 133) was expressed in nearly all head and neck squamous cell tumors tested (16/17): highly expressed in 4/17, moderately expressed in 11/17, with low expression in one sample. Also, it was moderately expressed in 3/12 lung squamous tumors, while being negative for 2/4 normal lung samples. Contig 29 showed low to moderate expression in large intestine, skin, salivary gland, pancreas, tonsil, heart and soft palate. Contig 47 (SEQ ID NO: 142) was expressed in most head and neck squamous cell tumors tested (12/17): moderate expression in 10/17, and low expression in two samples. In lung squamous tumors, it was highly expressed in one sample and moderately expressed in two others (n=13). Contig 47 was negative for 2/4 normal lung samples, with the remaining two samples having moderate expression. Also, Contig 47 showed moderate expression in large intestine, and pancreas, and low expression in skin, salivary gland, soft palate, stomach, bladder, resting PBMC, and tonsil.

10

15

20

25

30

Contig 48 (SEQ ID NO: 143) was expressed in all head and neck squamous cell tumors tested (17/17): highly expressed in 8/17 and moderately expressed in 7/17, with low expression in two samples. Expression levels in lung squamous tumors were high to moderate in three samples (n=13). Contig 48 was negative for one out of four normal lung samples, the remaining showing low or moderate expression. Contig 48 showed moderate expression in soft palate, large intestine, pancreas, and bladder, and low expression in esophagus, salivary gland, resting PBMC, and heart. Contig 49 (SEQ ID NO: 144) was expressed at low to moderate levels in 6/17 head and neck squamous cell tumors tested. Expression levels in lung squamous tumors were moderate in three samples (n=13). Contig 49 was negative for 2/4 normal lung samples, the remaining samples showing low expression. Moderate expression levels in skin, salivary gland, large intestine, pancreas, bladder and resting PBMC were shown, as well as low expression in soft palate, lymph nodes, and tonsil. Contig 56 (SEQ ID NO: 148) was expressed in low to moderate levels in 3/17. head and neck squamous cell tumors tested, and in lung squamous tumors, showing low to moderate levels in three out of thirteen samples. Notably, low expression levels were detected in one adenocarcinoma lung tumor sample (n=2). Contig 56 was negative for

3/4 normal lung samples, and showed moderate expression levels in only large intestine, and low expression in salivary gland, soft palate, pancreas, bladder, and resting PBMC. Contig 58, also known as L769P, (SEQ ID NO: 150) was expressed at moderate levels in 11/17 head and neck squamous cell tumors tested and low expression in one additional sample. Expression in lung squamous tumors showed low to moderate levels in three out of thirteen samples. Contig 58 was negative for 3/4 normal lung samples, with one sample having low expression. Moderate expression levels in skin, large intestine, and resting PBMC were demonstrated, as well as low expression in salivary gland, soft palate, pancreas, and bladder. Contig 59 (SEQ ID NO: 157) was expressed in some head, neck, and lung squamous tumors. Low level expression of Contig 59 was also detected in salivary gland and large intestine.

The full-length cDNA sequence for Contig 22, also referred to as L763P, is provided in SEQ ID NO: 158, with the corresponding amino acid sequence being provided in SEQ ID NO: 159. Real-time RT-PCR analysis of L763P revealed that it is highly expressed in 3/4 lung squamous tumors as well as 4/4 head and neck squamous tumors, with low level expression being observed in normal brain, skin, soft pallet and trachea. Subsequent database searches revealed that the sequence of SEQ ID NO: 158 contains a mutation, resulting in a frameshift in the corresponding protein sequence. A second cDNA sequence for L763P is provided in SEQ ID NO: 345, with the corresponding amino acid sequence being provided in SEQ ID NO: 346. The sequences of SEQ ID NO: 159 and 346 are identical with the exception of the C-terminal 33 amino acids of SEQ ID NO: 159.

The full-length cDNA sequence incorporating Contigs 17, 19, and 24, referred to as L762P, is provided in SEQ ID NO: 160, with the corresponding amino acid sequence being provided in SEQ ID NO: 161. Further analysis of L762P has determined it to be a type I membrane protein and two additional variants have been sequenced. Variant 1 (SEQ ID NO: 167, with the corresponding amino acid sequence in SEQ ID NO: 169) is an alternatively spliced form of SEQ ID NO: 160 resulting in deletion of 503 nucleotides, as well as deletion of a short segment of the expressed protein. Variant 2 (SEQ ID NO: 168, with the corresponding amino acid sequence in SEQ ID NO: 170) has a two nucleotide deletion at the 3' coding region in comparison

to SEQ ID NO: 160, resulting in a secreted form of the expressed protein. Real-time RT-PCR analysis of L762P revealed that is over-expressed in 3/4 lung squamous tumors and 4/4 head & neck tumors, with low level expression being observed in normal skin, soft pallet and trachea.

An epitope of L762P was identified as having the sequence KPGHWTYTLNNTHHSLQALK (SEQ ID NO: 382), which corresponds to amino acids 571-590 of SEQ ID NO:161.

5

10

15

25

The full-length cDNA sequence for contig 56 (SEQ ID NO: 148), also referred to as L773P, is provided in SEQ ID NO: 171, with the amino acid sequence in SEQ ID NO: 172. L773P was found to be identical to dihydroxyl dehydrogenase at the 3' portion of the gene, with divergent 5' sequence. As a result, the 69 N-terminal amino acids are unique. The cDNA sequence encoding the 69 N-terminal amino acids is provided in SEQ ID NO: 349, with the N-terminal amino acid sequence being provided in SEQ ID NO: 350. Real-time PCR revealed that L773P is highly expressed in lung squamous tumor and lung adenocarcinoma, with no detectable expression in normal tissues. Subsequent Northern blot analysis of L773P demonstrated that this transcript is differentially over-expressed in squamous tumors and detected at approximately 1.6 Kb in primary lung tumor tissue and approximately 1.3 Kb in primary head and neck tumor tissue.

Subsequent microarray analysis has shown Contig 58, also referred to as L769S (SEQ ID NO: 150), to be overexpressed in breast tumors in addition to lung squamous tumors.

EXAMPLE 4

ISOLATION AND CHARACTERIZATION OF LUNG TUMOR POLYPEPTIDES BY PCR-BASED SUBTRACTION

Seven hundred and sixty clones from a cDNA subtraction library, containing cDNA from a pool of two human lung primary adenocarcinomas subtracted against a pool of nine normal human tissue cDNAs including skin, colon, lung, esophagus, brain, kidney, spleen, pancreas and liver, (Clontech, Palo Alto, CA) were

derived and submitted to a first round of PCR amplification. This library (referred to as ALT-1) was subjected to a second round of PCR amplification, following the manufacturer's protocol. The expression levels of these 760 cDNA clones in lung tumor, normal lung, and various other normal and tumor tissues, were examined using microarray technology (Incyte, Palo Alto, CA). Briefly, the PCR amplification products were dotted onto slides in an array format, with each product occupying a unique location in the array. mRNA was extracted from the tissue sample to be tested, reverse transcribed, and fluorescent-labeled cDNA probes were generated. The microarrays were probed with the labeled cDNA probes, the slides scanned and fluorescence intensity was measured. This intensity correlates with the hybridization intensity.. A total of 118 clones, of which 55 were unique, were found to be over-expressed in lung tumor tissue, with expression in normal tissues tested (lung, skin, lymph node, colon, liver, pancreas, breast, heart, bone marrow, large intestine, kidney, stomach, brain, small intestine, bladder and salivary gland) being either undetectable, or at significantly lower levels. One of these clones, having the sequence as provided in SEQ ID NO:420 (clone #19014), shows homology to a previously identified clone, L773P. Clone L773P has the full-length cDNA sequence provided in SEQ ID NO:171 and the amino acid sequence provided in SEQ ID NO:172 The isolation of clone #19014 is also described in co-pending U.S. Patent application 09/285,479, filed April 2, 1999.

20

25

10

15

EXAMPLE 5

SYNTHESIS OF POLYPEPTIDES

Polypeptides may be synthesized on a Perkin Elmer/Applied Biosystems Division 430A peptide synthesizer using FMOC chemistry with HPTU (O-Benzotriazole-N,N,N',N'-tetramethyluronium hexafluorophosphate) activation. A Gly-Cys-Gly sequence may be attached to the amino terminus of the peptide to provide a method of conjugation, binding to an immobilized surface, or labeling of the peptide. Cleavage of the peptides from the solid support is carried out using the following cleavage mixture: trifluoroacetic acid:ethanedithiol:thioanisole:water:phenol (40:1:2:2:3). After cleaving for 2 hours, the peptides are precipitated in cold methyl-t-

butyl-ether. The peptide pellets are then dissolved in water containing 0.1% trifluoroacetic acid (TFA) and lyophilized prior to purification by C18 reverse phase HPLC. A gradient of 0%-60% acetonitrile (containing 0.1% TFA) in water (containing 0.1% TFA) may be used to elute the peptides. Following lyophilization of the pure fractions, the peptides are characterized using electrospray or other types of mass spectrometry and by amino acid analysis.

EXAMPLE 6

PREPARATION OF ANTIBODIES AGAINST LUNG CANCER ANTIGENS

Polyclonal antibodies against the lung cancer antigens L514S, L528S, L531S, L523 and L773P (SEQ ID NO: 155, 225, 112, 176 and 171, respectively) were prepared as follows.

Rabbits were immunized with recombinant protein expressed in and purified from *E. coli* as described below. For the initial immunization, 400 µg of antigen combined with muramyl dipeptide (MDP) was injected subcutaneously (S.C.). Animals were boosted S.C. 4 weeks later with 200 µg of antigen mixed with incomplete Freund's Adjuvant (IFA). Subsequent boosts of 100 µg of antigen mixed with IFA were injected S.C. as necessary to induce high antibody titer responses. Serum bleeds from immunized rabbits were tested for antigen-specific reactivity using ELISA assays with purified protein. Polyclonal antibodies against L514S, L528S, L531S, L523S and L773P were affinity purified from high titer polyclonal sera using purified protein attached to a solid support.

15

20

25

Immunohistochemical analysis using polyclonal antibodies against L514S was performed on a panel of 5 lung tumor samples, 5 normal lung tissue samples and normal colon, kidney, liver, brain and bone marrow. Specifically, tissue samples were fixed in formalin solution for 24 hours and embedded in paraffin before being sliced into 10 micron sections. Tissue sections were permeabilized and incubated with antibody for 1 hr. HRP-labeled anti-mouse followed by incubation with DAB chromogen was used to visualize L514S immunoreactivity. L514S was found to be highly expressed in lung tumor tissue with little or no expression being observed in

normal lung, brain or bone marrow. Light staining was observed in colon (epithelial crypt cells positive) and kidney (tubules positive). Staining was seen in normal liver but no mRNA has been detected in this tissue making this result suspect.

Using the same procedure, immunohistochemical analysis using polyclonal antibodies against L528S demonstrated staining in lung tumor and normal lung samples, light staining in colon and kidney, and no staining in liver and heart.

5

10

25

30

Immunohistochemical analysis using polyclonal antibodies against L531S demonstrated staining in lung tumor samples, light membrane staining in most normal lung samples, epithelial staining in colon, tubule staining in kidney, ductal epithelial staining in liver and no staining in heart.

Immunohistochemical analysis using polyclonal antibodies against L523S demonstrated staining in all lung cancer samples tested but no staining in normal lung, kidney, liver, colon, bone marrow or cerebellum.

Generation of polyclonal anti-sera against L762P (SEQ ID NO: 169 and 170) was performed as follows. 400 micrograms of lung antigen was combined with 100 micrograms of muramyldipeptide (MDP). An equal volume of Incomplete Freund's Adjuvant (IFA) was added and then mixed until an emulsion was formed. Rabbits were injected subcutaneously (S.C.). After four weeks the animals were injected S.C. with 200 micrograms of antigen mixed with an equal volume of IFA. Every four weeks animals were boosted with 100 micrograms of antigen. Seven days following each boost the animal was bled. Sera was generated by incubating the blood at 4°C for 12-24 hours followed by centrifugation.

Characterization of polyclonal antisera was carried out as follows. Ninety-six well plates were coated with antigen by incubing with 50 microliters (typically 1 microgram) at 4°C for 20 hrs. 250 microliters of BSA blocking buffer was added to the wells and incubated at room temperature for 2 hrs. Plates were washed 6 times with PBS/0.01% Tween. Rabbit sera was diluted in PBSand 50 microliters of diluted sera was added to each well and incubated at room temperature for 30 min. Plates were washed as described above before addition of 50 microliters of goat antirabbit horse radish peroxidase (HRP) at a 1:10000 dilution and incubation at room temperature for 30 min. Plates were washed as described above and 100µl of TMB

Microwell Peroxidase Substrate was added to each well. Following a 15 minute incubation in the dark at room temperature, the colorimetric reaction was stopped with $100\mu l\ 1N\ H_2SO_4$ and read immediately at 450 nm. Antisera showed strong reactivity to antigen L762P.

Immunohistochemical analysis using polyclonal antibodies against L762P demonstrated staining in all lung cancer samples tested, some light staining in the bronchiole epithelium of normal lung, tubule staining in kidney, light epithelial staining in colon and no staining in heart or liver.

In order to evaluate L773P protein expression in various tissues, immunohistochemistry (IHC) analysis was performed using an affinity purified L773P polyclonal antibody. Briefly, tissue samples were fixed in formalin solution for 12-24 hrs and embedded in paraffin before being sliced into 8 micron sections. Steam heat induced epitope retrieval (SHIER) in 0.1 M sodiuym citrate buffer (pH 6.0) was used for optimal staining conditions. Sections were incubated with 10% serum/PBS for 5 minutes. Primary antibody was added to each section for 25 minutes at indicated concentrations followed by 25 minute incubation with either anti-rabbit or anti-mouse biotinylated antibody. Endogenous peroxidase activitiy was blocked by three 1.5 minute incubations with hydrogen peroxidase. The avidin biotin complex/horse radish peroxidase (ABC/HRP) system was used along with DAB chromogen to visualize L773P expression. Slides were counterstained with hematoxylin to visualize cell nuclei. Using this approach, L773P protein was detected in 6/8 lung tumors, 4/6 normal lung samples (very light staining in some cases), 1/1 kidney samples (very light staining), 0/1 heart samples, 1/1 colon samples (very light staining) and 0/1 liver samples.

25 EXAMPLE 7

5

10

15

20

PEPTIDE PRIMING OF MICE AND PROPAGATION OF CTL LINES

Immunogenic peptides from the lung cancer antigen L762P (SEQ ID NO: 161) for HLA-A2/K^b-restricted CD8+ T cells were identified as follows.

The location of HLA-A2 binding peptides within the lung cancer antigen L762P (SEQ ID NO: 161) was predicted using a computer program which predicts peptides sequences likely to being to HLA-A*0201 by fitting to the known peptide binding motif for HLA-A*0201 (Rupert *et al.* (1993) *Cell 74*:929; Rammensee *et al.* (1995) *Immunogenetics 41*:178-228). A series of 19 synthetic peptides corresponding to a selected subset of the predicted HLA-A*0201 binding peptides was prepared as described above.

5

10

15

20

25

30

Mice expressing the transgene for human HLA A2/K^b (provided by Dr L. Sherman, The Scripps Research Institute, La Jolla, CA) were immunized with the synthetic peptides, as described by Theobald et al., Proc. Natl. Acad. Sci. USA 92:11993-11997, 1995, with the following modifications. Mice were immunized with 50µg of L726P peptide and 120µg of an I-A^b binding peptide derived from hepatitis B virus protein emulsified in incomplete Freund's adjuvant. Three weeks later these mice were sacrificed and single cell suspensions prepared. Cells were then resuspended at 7 x 10⁶ cells/ml in complete media (RPMI-1640; Gibco BRL, Gaithersburg, MD) containing 10% FCS, 2mM Glutamine (Gibco BRL), sodium pyruvate (Gibco BRL), non-essential amino acids (Gibco BRL), 2 x 10⁻⁵ M 2-mercaptoethanol, 50U/ml penicillin and streptomycin, and cultured in the presence of irradiated (3000 rads) L762P peptide- (5µg/ml) and 10mg/ml B₂-microglobulin- (3 µg/ml) LPS blasts (A2 transgenic spleens cells cultured in the presence of 7µg/ml dextran sulfate and 25µg/ml LPS for 3 days). After six days, cells (5 x 10^5 /ml) were restimulated with 2.5 x 10^6 /ml peptide-pulsed irradiated (20,000 rads) EL4A2Kb cells (Sherman et al. Science 258:815-818, 1992) and 5 x 10⁶/ml irradiated (3000 rads) A2/K^b-transgenic spleen feeder cells. Cells were cultured in the presence of 10U/ml IL-2. Cells were restimulated on a weekly basis as described, in preparation for cloning the line.

Peptide-specific cell lines were cloned by limiting dilution analysis with irradiated (20,000 rads) L762P peptide-pulsed EL4 A2Kb tumor cells (1 x 10^4 cells/well) as stimulators and irradiated (3000 rads) A2/K^b-transgenic spleen cells as feeders (5 x 10^5 cells/ well) grown in the presence of 10U/ml IL-2. On day 7, cells were restimulated as before. On day 14, clones that were growing were isolated and maintained in culture.

Cell lines specific for the peptides L762P-87 (SEQ ID NO: 226; corresponding to amino acids 87-95 of SEQ ID NO: 161), L762P-145 (SEQ ID NO: 227; corresponding to amino acids 145-153 of SEQ ID NO: 161), L762P-585 (SEQ ID NO: 228; corresponding to amino acids 585-593 of SEQ ID NO: 161), L762P-425 (SEQ ID NO: 229; corresponding to amino acids 425-433 of SEQ ID NO: 161), L762P(10)-424 (SEQ ID NO: 230; corresponding to amino acids 424-433 of SEQ ID NO: 161) and L762P(10)-458 (SEQ ID NO: 231; corresponding to amino acids 458-467 of SEQ ID NO: 161) demonstrated significantly higher reactivity (as measured by percent specific lysis) against L762P peptide-pulsed EL4-A2/K^b tumor target cells than control peptide-pulsed EL4-A2/K^b tumor target cells.

5

10

20

25

EXAMPLE 8

IDENTIFICATION OF CD4 IMMUNOGENIC T CELL EPITOPES DERIVED FROM THE LUNG CANCER ANTIGEN L762P

CD4 T cell lines specific for the antigen L762P (SEQ ID NO: 161) were generated as follows.

A series of 28 overlapping peptides were synthesized that spanned approximately 50% of the L762P sequence. For priming, peptides were combined into pools of 4-5 peptides, pulsed at 20 micrograms/ml into dendritic cells for 24 hours. The dendritic cells were then washed and mixed with positively selected CD4+ T cells in 96 well U-bottomed plates. Forty cultures were generated for each peptide pool. Cultures were restimulated weekly with fresh dendritic cells loaded with peptide pools. Following a total of 3 stimulation cycles, cells were rested for an additional week and tested for specificity to antigen presenting cells (APC) pulsed with peptide pools using interferon-gamma ELISA and proliferation assays. For these assays, adherent monocytes loaded with either the relevant peptide pool or an irrelevant peptide were used as APC. T cell lines that appeared to specifically recognize L762P peptide pools both by cytokine release and proliferation were identified for each pool. Emphasis was placed on identifying T cells with proliferative responses. T cell lines that demonstrated either both L762P-specific cytokine secretion and proliferation, or strong proliferation

alone were further expanded to be tested for recognition of individual peptides from the pools, as well as for recognition of recombinant L762P. The source of recombinant L762P was *E. coli*, and the material was partially purified and endotoxin positive. These studies employed 10 micrograms of individual peptides, 10 or 2 micrograms of an irrelevant peptide, and 2 or 0.5 micrograms of either L762P protein or an irrelevant, equally impure, *E. coli* generated recombinant protein. Significant interferon-gamma production and CD4 T cell proliferation was induced by a number of L762P-derived peptides in each pool. The amino acid sequences for these peptides are provided in SEQ ID NO: 232-251. These peptides correspond to amino acids 661-680, 676-696, 526-545, 874-893, 811-830, 871-891, 856-875, 826-845, 795-815, 736-755, 706-725, 706-725, 691-710, 601-620, 571-590, 556-575, 616-635, 646-665, 631-650, 541-560 and 586-605, respectively, of SEQ ID NO: 161.

5

10

15

20

25

30

CD4 T cell lines that demonstrated specificity for individual L762Pderived peptides were further expanded by stimulation with the relevant peptide at 10 micrograms/ml. Two weeks post-stimulation, T cell lines were tested using both proliferation and IFN-gamma ELISA assays for recognition of the specific peptide. A number of previously identified T cells continued to demonstrate L762P-peptide specific activity. Each of these lines was further expanded on the relevant peptide and, following two weeks of expansion, tested for specific recognition of the L762P-peptide in titration experiments, as well as for recognition of recombinant E. coli-derived L762P protein. For these experiments, autologous adherent monocytes were pulsed with either the relevant L762P-derived peptide, an irrelevant mammaglobin-derived peptide, recombinant E. coli-derived L762P (approx. 50% pure), or an irrelevant E. coli-derived protein. The majority of T cell lines were found to show low affinity for the relevant peptide, since specific proliferation and IFN-gamma ratios dramatically decreased as L762P peptide was diluted. However, four lines were identified that demonstrated significant activity even at 0.1 micrograms/ml peptide. Each of these lines (referred to as A/D5, D/F5, E/A7 and E/B6) also appeared to specifically proliferate in response to the E. coli-derived L762P protein preparation, but not in response to the irrelevant The amino acid sequences of the L762P-derived peptides protein preparation. recognized by these lines are provided in SEQ ID NO: 234, 249, 236 and 245,

respectively. No protein specific IFN-gamma was detected for any of the lines. Lines A/D5, E/A7 and E/B6 were cloned on autologous adherent monocytes pulsed with the relevant peptide at 0.1 (A/D5 and E/A7) or 1 (D/F5) microgram/ml. Following growth, clones were tested for specificity for the relevant peptide. Numerous clones specific for the relevant peptide were identified for lines A/D5 and E/A7.

EXAMPLE 9

PROTEIN EXPRESSION OF LUNG TUMOR-SPECIFIC ANTIGENS

a) Expression of L514S in E. coli

5

25

The lung tumor antigen L514S (SEQ ID NO: 89) was subcloned into the expression vector pE32b at NcoI and NotI sites, and transformed into *E. coli* using standard techniques. The protein was expressed from residues 3-153 of SEQ ID NO: 89. The expressed amino acid sequence and the corresponding DNA sequence are provided in SEQ ID NO: 252 and 253, respectively.

b) Expression of L762P

Amino acids 32-944 of the lung tumor antigen L762P (SEQ ID NO: 161), with a 6X His Tag, were subcloned into a modified pET28 expression vector, using kanamycin resistance, and transformed into BL21 CodonPlus using standard techniques. Low to moderate levels of expression were observed. The determined DNA sequence of the L762P expression construct is provided in SEQ ID NO: 254.

20 EXAMPLE 10

IDENTIFICATION OF MHC CLASS II RESTRICTING ALLELE FOR L762P PEPTIDE-SPECIFIC RESPONSES

A panel of HLA mismatched antigen presenting cells (APC) were used to identify the MHC class II restricting allele for the L762P-peptide specific responses of CD4 T cell clones derived from lines that recognized L762P peptide and recombinant protein. Clones from two lines, AD-5 and EA-7, were tested as described below. The

Ŀ

AD-5 derived clones were found to be restricted by the HLA-DRB-1101 allele, and an EA-7 derived clone was found to be restricted by the HLA DRB-0701 or DQB1-0202 allele. Identification of the restriction allele allows targeting of vaccine therapies using the defined peptide to individuals that express the relevant class II allele. Knowing the relevant restricting allele will also enable clinical monitoring for responses to the defined peptide since only individuals that express the relevant allele will be monitored.

5

10

15

20

CD4 T cell clones derived from line AD-5 and EA-7 were stimulated on autologous APC pulsed with the specific peptide at $10~\mu g/ml$, and tested for recognition of autologous APC (from donor D72) as well as against a panel of APC partially matched with D72 at class II alleles. Table 2 shows the HLA class typing of the APC tested. Adherent monocytes (generated by 2 hour adherence) from four different donors, referred to as D45, D187, D208, and D326, were used as APC in these experiments. Autologous APC were not included in the experiment. Each of the APC were pulsed with the relevant peptide (5a for AD-5 and 3e for 3A-7) or the irrelevant mammoglobin peptide at $10~\mu g/ml$, and cultures were established for 10,000~T cells and about 20,000~APC/well. As shown in Table 3, specific proliferation and cytokine production could be detected only when partially matched donor cells were used as APC. Based on the MHC typing analysis, these results strongly suggest that the restricting allele for the L762-specific response of the AD-5 derived clones is HLA-DRB-1101 and for the EA-7 derived clone the restricting allele is HLA DRB-0701 or DQB1-0202.

Table 2 - HLA Typing of APC

DONOR	DR	DR	DQ	DQ
D72	B1-1101	B1-0701	B1-0202	B1-0301
D45	-3	-15	B1-0201	B1-0602
D187	-4	-15	-1	-7
D208	B1-1101	B1-0407	-3	-3
D326	B1-0301	B1-0701	B1-0202	B1-0201

Table 3 - L762P Peptide Responses Map to HLA DR Alleles

AD-5 EA-7	G10 G12	γ- IFN		1.1	-	1	6.8
		Prol	10	0.8	0.5	0.8	14.1
		⊬ EN		1.5	1.6	19.6	۶.
		Prol	91	12	1.0	113.6	1.2
	69	۲. EN		1.1	-	16.1	
		Prol	43	1.1	1.0	174.3	0.4
	G8	۲ EN		1.1	-	7.7	1.2
		Prol	45	0.2	6:0	38.0	9.0
	F9	۲E		1.3	1:	14.1	1.1
		Prol	55	1.4	1.2	73.3	0.7
		۲ EN		Ξ	1.2	9.8	1.1
	E	Prol	40	1.6	1.4	45.9	0.3
	E6	γ- IFN		1.1	1.1	6.1	1.1
		Prol	31	1.1	1.0	15.3	0.8
	C11	7- IFN		1.5	1.7	4.6	2
		Prol	24	1.0	1.4	14.6	1.0
	B10 C10	γ- IFN		,	1:1	10	1.4
		Prol	34	3.3	4:1	18.8	0.3
		γ EN		1.2		5.4	-
		Prol	31	5.5	1.3	38	0.3
	A11	γ²- EN		1.7	1.2	13	4
		Prol	46	3.2	4.1	138	0.7
		Donor	DR-0701, -1101, DQ-0202, -7	D45 DR-3, -15, DQ-1, -0201	D187 DR-4, -15, DQ-1, -7	D208 DR-4, -1101, DQ-3	D326 DR-3, -0701, DQ-0202

EXAMPLE 11

FUSION PROTEINS OF N-TERMINAL AND C-TERMINAL PORTIONS OF L763P

In another embodiment, a Mycobacterium tuberculosis-derived polynucleotide, referred to as Ra12, is linked to at least an immunogenic portion of a polynucleotide of this invention. Ra12 compositions and methods for their use in enhancing expression of heterologous polynucleotide sequences are described in U.S. Patent Application 60/158,585, the disclosure of which is incorporated herein by reference in its entirety. Briefly, Ra12 refers to a polynucleotide region that is a subsequence of a Mycobacterium tuberculosis MTB32A nucleic acid. MTB32A is a serine protease of 32 KD molecular weight encoded by a gene in virulent and avirulent strains of M. tuberculosis. The nucleotide sequence and amino acid sequence of MTB32A have been described (for example, U.S. Patent Application 60/158,585; see also, Skeiky et al., Infection and Immun. (1999) 67:3998-4007, incorporated herein by reference). Surprisingly, it was discovered that a 14 KD C-terminal fragment of the MTB32A coding sequence expresses at high levels on its own and remains as a soluble protein throughout the purification process. Moreover, this fragment may enhance the immunogenicity of heterologous antigenic polypeptides with which it is fused. This 14 KD C-terminal fragment of the MTB32A is referred to herein as Ra12 and represents a fragment comprising some or all of amino acid residues 192 to 323 of MTB32A.

Recombinant nucleic acids which encode a fusion polypeptide comprising a Ra12 polypeptide and a heterologous lung tumor polypeptide of interest, can be readily constructed by conventional genetic engineering techniques. Recombinant nucleic acids are constructed so that, preferably, a Ra12 polynucleotide sequence is located 5' to a selected heterologous lung tumor polynucleotide sequence. It may also be appropriate to place a Ra12 polynucleotide sequence 3' to a selected heterologous polynucleotide sequence or to insert a heterologous polynucleotide sequence into a site within a Ra12 polynucleotide sequence.

In addition, any suitable polynucleotide that encodes a Ra12 or a portion or other variant thereof can be used in constructing recombinant fusion polynucleotides comprising Ra12 and one or more lung tumor polynucleotides disclosed herein.

Preferred Ra12 polynucleotides generally comprise at least about 15 consecutive nucleotides, at least about 30 nucleotides, at least about 60 nucleotides, at least about 100 nucleotides, at least about 200 nucleotides, or at least about 300 nucleotides that encode a portion of a Ra12 polypeptide.

Ra12 polynucleotides may comprise a native sequence (*i.e.*, an endogenous sequence that encodes a Ra12 polypeptide or a portion thereof) or may comprise a variant of such a sequence. Ra12 polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions such that the biological activity of the encoded fusion polypeptide is not substantially diminished, relative to a fusion polypeptide comprising a native Ra12 polypeptide. Variants preferably exhibit at least about 70% identity, more preferably at least about 80% identity and most preferably at least about 90% identity to a polynucleotide sequence that encodes a native Ra12 polypeptide or a portion thereof.

Two specific embodiments of fusions between Ra12 and antigens of the present invention are described in this example.

A. N-Terminal Portion of L763P

A fusion protein of full-length Ra12 and the N-terminal portion of L763P (referred to as L763P-N; amino acid residues 1-130 of SEQ ID NO: 159) was expressed as a single recombinant protein in E. coli. The cDNA for the N-terminal portion was obtained by PCR with a cDNA for the full length L763P and primers L763F3 (5' CGGCGAATTCATGGATTGGGGGACGCTGC; SEQ ID NO: 383) and 1763RV3 (5' CGGCCTCGAGTCACCCCTCTATCCGAACCTTCTGC; SEQ ID NO: 384). The PCR product with expected size was recovered from agarose gel, digested with restriction enzymes EcoRI and XhoI, and cloned into the corresponding sites in the expression vector pCRX1. The sequence for the fusion of full-length of Ra12 and L763P-N was confirmed by DNA sequencing. The determined cDNA sequence is provided in SEQ ID NO:351, with the corresponding amino acid sequence being provided in SEQ ID NO:352).

B. C-Terminal Portion of L763P

A fusion protein of full-length Ra12 and the C-terminal portion of L763P (referred to as L763P-C; amino acid residues 100-262 of SEQ ID NO: 159) was expressed as a single recombinant protein in *E. coli*. The cDNA of the C-terminal portion of L763P was obtained by PCR with a cDNA for the full length of L763P and primers L763F4 (5' CGGCGAATTCCACGAACCACTCGCAAGTTCAG; SEQ ID NO: 385) and L763RV4 (5' CGGCTCGAG-TTAGCTTGGGCCTGTGATTGC; SEQ ID NO: 386). The PCR product with expected size was recovered from agarose gel, digested with restriction enzymes EcoRI and XhoI, and cloned into the corresponding sites in the expression vector pCRX1. The sequence for the fusion of full-length Ra12 and L763P-C was confirmed by DNA sequencing. The determined DNA sequence is provided in SEQ ID NO:353, with the corresponding amino acid sequence being provided in SEQ ID NO:354.

The recombinant proteins described in this example are useful for the preparation of vaccines, for antibody therapeutics, and for diagnosis of lung tumors.

EXAMPLE 12

EXPRESSION IN E. COLI OF L762P HIS TAG FUSION PROTEIN

PCR was performed on the L762P coding region with the following primers:

Forward primer starting at amino acid 32.

PDM-278 5'ggagtacagcttcaagacaatggg 3' (SEQ ID NO:355) Tm 57°C.

Reverse primer including natural stop codon after amino acid 920, creating EcoRI site

PDM-280 5'ccatgggaattcattataataattttgttcc 3' (SEQ ID NO:356) TM55°C.

The PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The

correct construct was confirmed by DNA sequence analysis and then transformed into BL21 (DE3) pLys S and BL21 (DE3) CodonPlus RIL expression hosts.

The protein sequence of expressed recombinant L762P is shown in SEQ ID NO:357, and the DNA sequence is shown in SEQ ID NO:358.

EXAMPLE 13

EXPRESSION IN E. COLI OF A L773PA HIS TAG FUSION PROTEIN

The L773PA coding region (encoding amino acids 2-71 of SEQ ID NO: 172) was PCR amplified using the following primers:

Forward primer for L773PA starting at amino acid 2:

PDM-299 5'tggcagcccctcttcttcaagtggc 3' (SEQ ID NO:359) Tm63°C.

Reverse primer for L773PA creating artificial stop codon after amino

acid 70:

PDM-355 5'egecagaatteateaaacaaatetgttageace 3' (SEQ ID NO:360)

Tm62°C.

The resulting PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and transformed into BL21 (DE3) pLys S and BL21 (DE3) CodonPlus RIL expression hosts.

The protein sequence of expressed recombinant L773PA is shown in SEQ ID NO:361, and the DNA sequence is shown in SEQ ID NO:362.

EXAMPLE 14

IDENTIFICATION OF EPITOPES DERIVED FROM LUNG TUMOR SPECIFIC POLYPEPTIDES

A series of peptides from the L773P amino acid sequence (SEQ ID NO: 172) were synthesized and used in *in vitro* priming experiments to generate peptide-specific CD4 T cells. These peptides were 20-mers that overlapped by 15 amino acids and corresponded to amino acids 1-69 of the L773P protein. This region has been demonstrated to be tumor-specific. Following three *in vitro* stimulations, CD4 T cell

lines were identified that produced IFNγ in response to the stimulating peptide but not the control peptide. Some of these T cell lines demonstrated recognition of recombinant L773P and L773PA (tumor-specific region) proteins.

To perform the experiments, a total of eleven 20-mer peptides (SEQ ID NO: 363, 365 and 387-395) overlapping by 15 amino acids and derived from the N-terminal tumor-specific region of L773P (corresponding to amino acids 1-69 of SEQ ID NO:172) were generated by standard procedures. Dendritic cells were derived from PBMC of a normal donor using GMCSF and IL-4 by standard protocol. Purified CD4 T cells were generated from the same donor as the dendritic cells using MACS beads and negative selection of PBMCs. Dendritic cells were pulsed overnight with the individual 20-mer peptides at a concentration of 10 μg/ml. Pulsed dendritic cells were washed and plated at 1 x 10⁴/well of a 96-well U-bottom plates, and purified CD4 cells were added at 1 x 10⁵ well. Cultures were supplemented with 10 ng/ml IL-6 and 5 ng/ml IL-12, and incubated at 37°C. Cultures were re-stimulated as above on a weekly basis using as APC dendritic cells generated and pulsed as above, supplemented with 5 ng/ml IL-7 and 10 μg/ml IL-2. Following 3 *in vitro* stimulation cycles, cell lines (each corresponding to one well) were tested for cytokine production in response to the stimulating peptide vs. an irrelevant peptide.

A small number of individual CD4 T cell lines (9/528) demonstrated cytokine release (IFNγ) in response to the stimulating peptide but not to control peptide. The CD4 T cell lines that demonstrated specific activity were restimulated on the appropriate L773P peptide and reassayed using autologous dendritic cells pulsed with 10 μg/ml of the appropriate L773P peptide, an irrelevant control peptide, recombinant L773P protein (amino acids 2-364, made in *E. coli*), recombinant L773PA (amino acids 2-71, made in *E. coli*), or an appropriate control protein (L3E, made in *E. coli*). Three of the nine lines tested (1-3C, 1-6G, and 4-12B) recognized the appropriate L773P peptide as well as recombinant L773P and L773PA. Four of the lines tested (4-8A, 4-8E, 4-12D, and 4-12E) recognized the appropriate L773P peptide only. Two of the lines tested (5-6F and 9-3B) demonstrated non-specific activity.

These results demonstrate that the peptide sequences MWQPLFFKWLLSCCPGSSQI (amino acids 1-20 of SEQ ID NO: 172; SEQ ID NO:363) and GSSQIAAAASTQPEDDINTQ (amino acids 16-35 of SEQ ID NO: 172;

SEQ ID NO: 365) may represent naturally processed epitopes of L773P, which are capable of stimulating human class II MHC-restricted CD4 T cell responses.

In subsequent studies, the above epitope mapping experiment was repeated using a different donor. Again, some of the resulting T cell lines were found to respond to peptide and recombinant protein. An additional peptide was found to be naturally processed. Specifically, purified CD4 cells were stimulated on a total of eleven 20-mer peptides overlapping by 15 amino acids (SEQ ID NO: 363, 387, 388, 365 and 389-395, respectively). The priming was carried out as described above, except that a peptide concentration of 0.5 ug/mL rather than 10 ug/mL was employed. In the initial screen of the cell lines 9 of the 528 lines released at least a three-fold greater level of IFN-gamma with stimulating peptide vs. control peptide. These 9 lines were restimulated on the appropriate peptide and then tested on dendritic cells pulsed with a titration of appropriate peptide (10 ug/mL, 1 ug/mL and 0.1 ug/mL), and 10 ug/mL of a control peptide. Six of the 9 lines recognized recombinant L773P as well as peptide. The six lines referred to as 1-1E, 1-2E, 1-4H, 1-6A, 1-6G and 2-12B recognized L773PA and the appropriate peptide. These results demonstrate that the peptides of SEQ ID NO: 363 and 387 represent naturally processed epitopes of L773P.

Using the procedures described above, CD4+ T cell responses were generated from PBMC of normal donors using dendritic cells pulsed with overlapping 20-mer peptides (SEQ ID NO: 396-419) spanning the L523S polypeptide sequence (SEQ ID NO: 176). A number of CD4+ T cells demonstrated reactivity with the priming peptides as well as with L523S recombinant protein, with the dominant reactivity of these lines being within the peptides 4, 7 and 21 (SEQ ID NO: 399, 402 and 416; corresponding to amino acids 30-39, 60-79 and 200-219, respectively, of SEQ ID NO: 176).

Epitopes within the scope of the invention include epitopes restricted by other class II MHC molecules. In addition, variants of the peptide can be produced wherein one or more amino acids are altered such that there is no effect on the ability of the peptides to bind to MHC molecules, no effect on their ability to elicit T cell responses, and no effect on the ability of the elicited T cells to recognize recombinant protein.

EXAMPLE 15

SURFACE EXPRESSION OF L762P AND ANTIBODY EPITOPES THEREOF

Rabbits were immunized with full-length histidine-tagged L762P protein Sera was isolated from rabbits and screened for specific generated in E. coli. recognition of L762P in ELISA assays. One polyclonal serum, referred to as 2692L, was identified that specifically recognized recombinant L762P protein. The 2692L anti-L762P polyclonal antibodies were purified from the serum by affinity purification using L762P affinity columns. Although L762P is expressed in a subset of primary lung tumor samples, expression appears to be lost in established lung tumor cell lines. Therefore, to characterize surface expression of L762P, a retrovirus construct that expresses L762P was used to transduce primary human fibroblasts as well as 3 lung tumor cell lines (522-23, HTB, and 343T). Transduced lines were selected and expanded to examine L762P surface expression by FACS analysis. For this analysis, non-transduced and transduced cells were harvested using cell dissociation medium, and incubated with 10-50 micrograms/ml of either affinity purified anti-L762P or irrelevant antisera. Following a 30 minute incubation on ice, cells were washed and incubated with a secondary, FITC conjugated, anti rabbit IgG antibody as above. Cells were washed, resuspended in buffer with Propidium Iodide (PI) and examined by FACS using an Excalibur fluorescence activated cell sorter. For FACS analysis, PI-positive (i.e. dead/permeabilized cells) were excluded. The polyclonal anti-L762P sera specifically recognized and bound to the surface of L762P-transduced cells but not the non-transduced counterparts. These results demonstrate that L762P is localized to the cell surface of both fibroblasts as well as lung tumor cells.

To identify the peptide epitopes recognized by 2692L, an epitope mapping approach was pursued. A series of overlapping 19-21 mers (5 amino acid overlap) was synthesized that spanned the C terminal portion of L762P (amino acids 481-894 of SEQ ID NO: 161). In an initial experiment peptides were tested in pools. Specific reactivity with the L762P antiserum was observed with pools A, B, C, and E. To identify the specific peptides recognized by the antiserum, flat bottom 96 well microtiter plates were coated with individual peptides at 10 microgram/ml for 2 hours at

37 °C. Wells were then aspirated and blocked with phosphate buffered saline containing 5% (w/v) milk for 2 hours at 37 °C, and subsequently washed in PBS containing 0.1% Tween 20 (PBST). Purified rabbit anti-L762P serum 2692L was added at 200 or 20 ng/well to triplicate wells in PBST and incubated overnight at room temperature. This was followed by washing 6 times with PBST and subsequently incubating with HRP-conjugated donkey anti rabbit IgG (H+L)Affinipure F(ab') fragment at 1:2,000 for 60 minutes. Plates were then washed, and incubated in tetramethyl benzidine substrate. Reactions were stopped by the addition of 1N sulfuric acid and plates were read at 450/570 nm using an ELISA plate reader.

The resulting data, presented in Table 4 below, demonstrates that the L762P antisera recognized at least 6 distinct peptide epitopes from the 3' half of L762P.

<u>Table 4</u>
ELISA activity (OD 450-570

Peptide (starting amino	pool	200 ng polyclonal	20 ng polyclonal
acid of L762P)		serum	serum
A (481)	Α	1.76	1.0
B (495)	A	0.14	.06
C (511)	E	0.47	0.18
D (526)	E	0.11	0.09
E (541)	A	0.11	0.04
F (556)	A	0.04	0.02
G (571)	A	0.06	0.02
H (586)	В	0.1	0.03
I (601)	B	0.25	0.06
J (616)	В	0.1	0.03
K (631)	Е	0.1	0.08
L (646)	B	0.28	0.12
M (661)	В	0.14	0.03
N (676)	С	0.12	0.1
O (691)	C	1.1	0.23
P (706)	C	0.1	0.03
Q (721)	C	0.11	0.05
R (736)	Е	0.12	0.04
S (751)	C	0.15	0.06
U (781)	D	0.12	0.06
V (795)	F	0.07	0.05
X (826)	D	0.1	0.03
Y (841)	D	0.17	0.07
Z (856)	D	0.16	0.08
AA (871)	F	0.17	0.05
BB (874)	F	0.14	0.11
No peptide		0.15	0.045

Individual peptides were identified from each of the pools, and additionally a weak reactivity was identified with peptide BB from pool F. The relevant peptide epitopes are summarized in the Table 5 below. The amino acid sequences for peptides BB, O, L, I, A and C are provided in SEQ ID NO: 376-381, respectively, with the corresponding cDNA sequences being provided in SEQ ID NO: 373, 370, 372, 374, 371 and 375, respectively.

Table 5
ELISA activity
(OD 450-570)

Peptide	Nucleotides of L762P	Amino acids of L762P	Sequence	pool	200 ng	20 ng
Α	1441-1500	481-500	SRISSGTGDIFQQHIQLEST	Α	1.76	1.0
С	1531-1590	511-530	KNTVTVDNTVGNDTMFLVTW	Е	0.47	0.18
I	1801-1860	601-620	AVPPATVEAFVERDSLHFPH	В	0.25	0.06
L	1936-1955	646-665	PETGDPVTLRLLDDGAGADV	В	0.28	0.12
0	2071-2130	691-710	VNHSPSISTPAHSIPGSHAMIL	С	1.1	0.23
BB	2620-2679	874-893	LQSAVSNIAQAPLFIPPNSD	F	0.14	0.11
None	-	-	_	-	0.15	0.05

EXAMPLE 16

DETECTION OF ANTIBODIES AGAINST LUNG TUMOR ANTIGENS IN PATIENT SERA

Antibodies specific for the lung tumor antigens L773PA (SEQ ID NO:361), L514S (SEQ ID NO:155 and 156), L523S (SEQ ID NO:176), L762P (SEQ ID NO:161) and L763P (SEQ ID NO:159) were shown to be present in effusion fluid or sera of lung cancer patients but not in normal donors. More specifically, the presence of antibodies against L773PA, L514S, L523S, L762P and L763P in effusion fluid obtained from lung cancer patients and in sera from normal donors was detected by ELISA using recombinant proteins and HRP-conjugated anti-human Ig. Briefly, each protein (100 ng) was coated in 96-well plate at pH 9.5. In parallel, BSA (bovine serum albumin) was also coated as a control protein. The signals ([S], absorbance measured at 405 nm) against BSA ([N]) were determined. The results of these studies are shown in Table 6, wherein - represents [S]/[N] < 2; +/- represents [S]/[N] >2; ++ represents [S]/[N] >3; and +++ represents [S]/[N] >5.

<u>Table 6</u>
Detection of Antibodies Against Lung Tumor Antigens

	L514S	L523S	L762P	L763P	L773PA
Effusion fluid					
#1	+	++	++	-	++
#2	_	-	+/-	1+	+/-
#3	-	-	-	_	+/-
#4	+/-	++	+/-	-	+/-
#5	+/-	+++	+/-	+/-	++
#7	-	+/-	-	_	+/-
#8	_	+++	-	-	++
#10	-		+/-	+/-	-
#11	+/-	++	++	_	++
#12	+++	+/-	-	+/-	+/-
#13	-	+/-	-	-	+/-
#14	-	+++	+/-	+/-	++
#15	+/-	++	+/-	-	++_
#17	_	+/-	-	-	+/-
#18		++	-	-	_
#19	_	+/-	-		+/-
#20	+/-	+/-	+/-	-	+/
Normal sera					
#21	-	+/-	-	-	-
#22 •	-	-	-	-	-
#23	-	-	-	-	+/-
#24	-	+/-	-		-
#25	+/-	+/-	-	-	+/-

Using Western blot analyses, antibodies against L523S were found to be present in 3 out of 4 samples of effusion fluid from lung cancer patients, with no L523S antibodies being detected in the three samples of normal sera tested.

EXAMPLE 17 Expression in *E. Coli* of a L514S His Tag Fusion Protein

PCR was performed on the L514S-13160 coding region with the following primers:

Forward primer PDM-278 $\,$ 5' cacactagtgtccgcgtggcggcctac 3' (SEQ ID NO:421) Tm $\,$ 67°C.

Reverse primer PDM-280 5' catgagaattcatcacatgcccttgaaggctccc 3' (SEQ ID NO:422) TM 66°C.

The PCR conditions were as follows:

10µl 10X Pfu buffer

1.0µl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 66°C for 15 seconds, 72°C for 1 minute with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into BL21 CodonPlus (Stratagene, La Jolla, CA) cells for expression.

The amino acid sequence of expressed recombinant L514S is shown in SEQ ID NO:423, and the DNA coding region sequence is shown in SEQ ID NO:424.

EXAMPLE 18

EXPRESSION IN E. COLI OF A L523S HIS TAG FUSION PROTEIN

PCR was performed on the L523S coding region with the following primers:

Forward primer PDM-414 5' aacaaactgtatatcggaaacctcagcgagaa 3' (SEQ ID NO:425) Tm 62° C.

Reverse primer PDM-415 5' ccatagaattcattacttccgtcttgactgagg 3' (SEQ ID NO:426) TM 62°C.

The PCR conditions were as follows:

10μl 10X Pfu buffer

1.0μl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 62°C for 15 seconds, 72°C for 4 minutes with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into BL21 CodonPlus (Stratagene, La Jolla, CA) cells for expression.

The amino acid sequence of expressed recombinant L523S is shown in SEQ ID NO:427, and the DNA coding region sequence is shown in SEQ ID NO:428.

EXAMPLE 19

EXPRESSION IN E. COLI OF A L762PA HIS TAG FUSION PROTEIN

PCR was performed on the L762PA coding region (L762PA is missing the signal sequence, the C-terminal transmembrane domain and the cytoplasmic tail) with the following primers:

Forward primer PDM-278 5'ggagtacagcttcaagacaatggg 3' (SEQ ID NO:355) Tm 57°C.

Reverse primer PDM-279 5'ccatggaattcattatttcaatataagataatctc 3' (SEQ ID NO:429) TM56°C.

The PCR conditions were as follows:

10μl 10X Pfu buffer

1.0µl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 55°C for 15 seconds, 72°C for 5 minutes with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into BL21 pLys S (Novagen, Madison, WI) cells for expression.

The amino acid sequence of expressed recombinant L762PA is shown in SEQ ID NO:430, and the DNA coding region sequence is shown in SEQ ID NO:431.

EXAMPLE 20

EXPRESSION IN E. COLI OF A L773P HIS TAG FUSION PROTEIN

PCR was performed on the L773P coding region with the following primers:

Forward primer PDM-299 5' tggcagecectettetteaagtgge 3' (SEQ ID NO:359) Tm 63°C.

Reverse primer PDM-300 5' cgcctgctcgagtcattaatattcatcagaaaatgg 3' (SEQ ID NO:432) TM 63°C.

The PCR conditions were as follows:

10µl 10X Pfu buffer

1.0µl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 63°C for 15 seconds, 72°C for 2 minutes 15 seconds with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with EcoRI restriction enzyme, gel purified and then cloned into pPDM His, a modified pET28 vector with a His tag in frame, which had been digested with Eco72I and EcoRI restriction enzymes. The

correct construct was confirmed by DNA sequence analysis and then transformed into BL21 pLys S (Novagen, Madison, WI) and BL21 CodonPlus (Stratagene, La Jolla, CA) cells for expression.

The amino acid sequence of expressed recombinant L773P is shown in SEQ ID NO:433, and the DNA coding region sequence is shown in SEQ ID NO:434.

EXAMPLE 21

CLONING AND SEQUENCING OF A T-CELL RECEPTOR CLONE FOR THE LUNG SPECIFIC ANTIGEN L762P

T cell receptor (TCR) alpha and beta chains from a CD4 T cell clone specific for the lung specific antigen L762P were cloned and sequence. Basically, total mRNA from 2 X 10⁶ cells from CTL clone 4H6 was isolated using Trizol reagent and cDNA was synthesized using Ready-to go kits (Pharmacia). To determine Valpha and Vbeta sequences of this clone, a panel of Valpha and Vbeta subtype specific primers was synthesized and used in RT-PCR reactions with cDNA generated from each of the clones. The RT-PCR reactions demonstrated that each of the clones expressed a common Vbeta sequence that corresponded to the Vbeta8 subfamily and a Valpha sequence that corresponded to the Valpha8 subfamily. To clone the full TCR alpha and beta chains from clone 4H6, primers were designed that spanned the initiator and terminator-coding TCR nucleotides. The primers were as follows:

forward primer for TCR Valpha8 5' ggatccgccgccaccatgacatccattcgagctgta 3' (SEQ ID NO:435; has a BamHI site inserted);

Kozak reverse primer for TCR Valpha8 (antisense) 5' gtcgactcagctggaccacagccgcag 3' (SEQ ID NO:436; has a SalI site inserted plus the TCR alpha constant sequence);

forward primer for TCR Vbeta8 (sense) 5' ggatccgccgccaccatggacctctggaccttctgct 3' (SEQ ID NO:437; has a BamHI site inserted); and

Kozak reverse primer for TCR Vbeta 5' gtcgactcagaaatcctttctcttgac 3' (SEQ ID NO:438; has a Sall site inserted plus the TCR beta constant sequence). Standard 35 cycle RT-PCR reactions were established using the cDNA synthesized from the CTL clone and the above primers utilizing the proofreading thermostable polymerase, PWO (Roche). The resultant PCR band, about 850 bp for Valpha and about 950 for Vbeta, was ligated into a PCR blunt vector (Invitrogen) and transformed into *E. coli. E. coli* transformed with plasmids having full-length alpha and beta chains were identified.. Large scale preparations of the corresponding plasmids were generated, and these plasmids were sequenced. The Valpha sequence (SEQ ID NO:439) was shown by nucleotide sequence alignment to be homologous to Valpha8.1, while the Vbeta sequence (SEQ ID NO:440) was shown by nucleotide sequence alignment to be homologous to Vbeta8.2.

EXAMPLE 22

RECOMBINANT EXPRESSION OF FULL LENGTH L762P IN MAMMALIAN CELLS

Full length L762P cDNA was subcloned into the mammalian expression vectors VR1012 and pCEP4 (Invitrogen). Both expression vectors had previously been modified to contain a FLAG epitope tag. These constructs were transfected into HEK293 and CHL-1 cells (ATCC) using Lipofectamine 2000 reagent (Gibco). Briefly, both the HEK and CHL-1 cells were plated at a density of 100,000 cells/ml in DMEM (Gibco) containing 10% FBS (Hyclone) and grown overnight. The following day, 4µl of Lipofectamine 2000 was added to 100µl of DMEM containing no FBS and incubated for 5 minutes at room temperature. The Lipofectamine/DMEM mixture was then added to 1ug of L762P Flag/pCEP4 or L762P Flag/VR1012 plasmid DNA resuspended in 100µl DMEM and incubated for 15 minutes at room temperature. The Lipofectamine/DNA mix was then added to the HEK293 and CHL-1 cells and incubated for 48-72 hours at 37°C with 7% CO₂. Cells were rinsed with PBS, then collected and pelleted by centrifugation. L672P expression was detected in the transfected HEK293 and CHL-1 cell lysates by Western blot analysis and was detected on the surface of transfected HEK cells by flow cytometry analysis.

For Western blot analysis, whole cell lysates were generated by incubating the cells in Triton-X100 containing lysis buffer for 30 minutes on ice. Lysates were then cleared by centrifugation at 10,000 rpm for 5 minutes at 4°C. Samples were diluted with SDS-PAGE loading buffer containing beta-mercaptoethanol, then boiled for 10 minutes prior to loading the SDS-PAGE gel. The protein was transferred to nitrocellulose and probed using 1 µg/ml purified anti-L762P rabbit polyclonal sera (lot #690/73) or non-diluted anti-L762P mAb 153.20.1 supernatant. Blots were revealed using either goat anti-rabbit Ig coupled to HRP or goat anti-mouse Ig coupled to HRP followed by incubation in ECL substrate.

For flow cytometric analysis, cells were washed further with ice cold staining buffer (PBS+1%BSA +Azide). Next, the cells were incubated for 30 minutes on ice with 10ug/ml of purified anti-L762P polyclonal sera (lot #690/73) or a 1:2 dilution of anti-L762P mAb 153.20.1 supernatant. The cells were washed 3 times with staining buffer and then incubated with a 1:100 dilution of goat anti-rabbit Ig(H+L)-FITC or goat anti-mouse Ig(H+L)-FITC reagent (Southern Biotechnology) for 30 minutes on ice. After 3 washes, the cells were resuspended in staining buffer containing propidium iodide (PI), a vital stain that allows for the exclusion of permeable cells, and analyzed by flow cytometry.

EXAMPLE 23

GENERATION OF POLYCLONAL ANTIBODIES TO LUNG TUMOR ANTIGENS

Three lung antigens, L523S (SEQ ID NO:176), L763P (SEQ ID NO:159) and L763 peptide #2684 (SEQ ID NO:441), were expressed and purified for use in antibody generation.

L523S and L763P were expressed in an *E. coli* recombinant expression system and grown overnight in LB Broth with the appropriate antibiotics at 37°C in a shaking incubator. The next morning, 10 ml of the overnight culture was added to 500 ml of 2x YT with the appropriate antibiotics in a 2L-baffled Erlenmeyer flask. When the optical density of the culture reached 0.4-0.6 at 560 nanometers, the cells were

induced with IPTG (1 mM). Four hours after induction with IPTG, the cells were harvested by centrifugation.

The cells were then washed with phosphate buffered saline and centrifuged again. The supernatant was discarded and the cells were either frozen for future use or immediately processed. Twenty milliliters of lysis buffer was added to the cell pellets and vortexed. To break open the *E. coli* cells, this mixture was then run through a french press at a pressure of 16,000 psi. The cells were then centrifuged again and the supernatant and pellet were checked by SDS-PAGE for the partitioning of the recombinant protein.

For proteins that localized to the cell pellet, the pellet was resuspended in 10 mM Tris pH 8.0, 1% CHAPS and the inclusion body pellet was washed and centrifuged again. This procedure was repeated twice more. The washed inclusion body pellet was solubilized with either 8M urea or 6M guanidine HCl containing 10 mM Tris pH 8.0 plus 10 mM imidazole. The solubilized protein was added to 5 ml of nickel-chelate resin (Qiagen) and incubated for 45 minutes to 1 hour at room temperature with continuous agitation.

After incubation, the resin and protein mixture was poured through a disposable column and the flow through was collected. The column was then washed with 10-20 column volumes of the solubilization buffer. The antigen was then eluted from the column using 8M urea, 10 mM Tris pH 8.0 and 300 mM imidazole and collected in 3 ml fractions. A SDS-PAGE gel was run to determine which fractions to pool for further purification.

As a final purification step, a strong anion exchange resin, in this case Hi-Prep Q (Biorad), was equilibrated with the appropriate buffer and the pooled fractions from above were loaded onto the column. Each antigen was eluted off the column with an increasing salt gradient. Fractions were collected as the column was run and another SDS-PAGE gel was run to determine which fractions from the column to pool.

The pooled fractions were dialyzed against 10 mM Tris pH 8.0. The release criteria were purity as determined by SDS-PAGE or HPLC, concentration as determined by Lowry assay or Amino Acid Analysis, identity as determined by amino

terminal protein sequence, and endotoxin level was determined by the Limulus (LAL) assay. The proteins were then put in vials after filtration through a 0.22-micron filter and the antigens were frozen until needed for immunization.

The L763 peptide #2684 was synthesized and conjugated to KLH and froze until needed for immunization.

The polyclonal antisera were generated using 400 micrograms of each lung antigen combined with 100 micrograms of muramyldipeptide (MDP). An equal volume of Incomplete Freund's Adjuvant (IFA) was added and then mixed and injected subcutaneously (S.C.) into a rabbit. After four weeks, the rabbit was S.C. boosted with 200 micrograms of antigen mixed with an equal volume of IFA. Thereafter the rabbit was I.V. boosted with 100 micrograms of antigen. The animal was bled seven days following each boost. The blood was then incubated at 4°C for 12-24 hours followed by centrifugation to generate the sera.

The polyclonal antisera were characterized using 96 well plates coated with antigen and incubated with 50 microliters (typically 1 microgram/microliter) of the polyclonal antisera at 4°C for 20 hours. Basically, 250 microliters of BSA blocking buffer was added to the wells and incubated at room temperature for 2 hours. Plates were washed 6 times with PBS/0.1% Tween. The rabbit sera were diluted in PBS/0.1% Tween/0.1%BSA. 50 microliters of diluted sera was added to each well and incubated at room temperature for 30 minutes. The plates were washed as described above, and then 50 microliters of goat anti-rabbit horseradish peroxidase (HRP) at a 1:10000 dilution was added and incubated at room temperature for 30 minutes.

The plates were washed as described above, and 100 microliters of TMB Microwell Peroxidase Substrate was added to each well. Following a 15-minute incubation in the dark at room temperature, the colorimetric reaction was stopped with 100 microliters of 1N H₂SO₄ and read immediately at 450 nm. All the polyclonal antibodies showed immunoreactivity to the appropriate antigen. Tables 7-9 show the antibody reactivity of rabbit antisera in serial dilution to the three lung antigens, L523S, L763P and L763 peptide #2684. The first column shows the antibody dilutions. The columns "Pre-immune sera" indicate ELISA data for two experiments using pre-immune sera. These results are averaged in the fourth column. The columns "anti-

L523S, L763P or #2684" indicate ELISA data for two experiments using sera from rabbits immunized as described in this Example, using the respective antigen, referred to as either L523S, L763P or #2684 in the tables.

Table 7

Antibody dilution	Pre- immune sera (1)	Pre- immune sera (2)	Average	Anti- L523S (1)	Anti- L523S (2)	Average
1:1000	0.14	0.14	0.14	2.36	2.37	2.37
1:2000	0.12	0.10	0.11	2.29	2.23	2.26
1:4000	0.10	0.09	0.10	2.11	2.17	2.14
1:8000	0.09	0.09	0.09	1.98	2.00	1.99
1:16000	0.09	0.09	0.09	1.73	1.76	1.75
1:32000	0.09	0.09	0.09	1.35	1.40	1.37
1:64000	0.09	0.11	0.10	0.94	0.98	0.96
1:128000	0.09	0.08	0.08	0.61	0.61	0.61
1:256000	0.08	0.08	0.08	0.38	0.38	0.38
1:512000	0.09	0.08	0.08	0.24	0.25	0.25
1:1024000	0.08	0.08	0.08	0.17	0.17	0.17
1:2048000	0.08	0.08	0.08	0.14	0.13	0.13

Table 8

Antibody dilution	Pre- immune sera (1)	Pre- immune sera (2)	Average	Anti- L763P (1)	Anti- L763P (2)	Average
1:1000	0.09	0.11	0.10	1.97	1.90	1.93
1:2000	0.07	0.07	0.07	1.86	1.84	1.85
1:4000	0.06	0.06	0.06	1.82	1.81	1.81
1:8000	0.06	0.06	0.06	1.83	1.81	1.82
1:16000	0.06	0.05	0.06	1.79	1.74	1.76
1:32000	0.06	0.06	0.06	1.56	1.51	1.53
1:64000	0.06	0.05	0.05	1.35	1.34	1.35
1:128000	0.05	0.05	0.05	1.01	0.98	0.99
1:256000	0.06	0.05	0.05	0.69	0.70	0.70
1:512000	0.06	0.05	0.05	0.47	0.44	0.46
1:1024000	0.06	0.05	0.06	0.27	0.27	0.27
1:2048000	0.05	0.05	0.05	0.16	0.15	0.16

Table 9

Antibody dilution	Pre- immune sera (1)	Pre- immune sera (2)	Average	Anti- #2684 (1)	Anti- #2684 (2)	Average
1:1000	0.07	0.07	0.07	2.10	2.00	2.05
1:2000	0.07	0.06	0.06	1.95	1.96	1.95
1:4000	0.06	0.06	0.06	1.77	1.82	1.79
1:8000	0.06	0.06	0.06	1.79	1.81	1.80
1:16000	0.06	0.06	0.06	1.54	1.50	1.52
1:32000	0.06	0.06	0.06	1.27	1.20	1.24
1:64000	0.06	0.06	0.06	0.85	0.82	0.83
0	0.06	0.06	0.06	0.06	0.06	0.06

Tables 10-12 show the affinity purification of the respective antibodies to the three lung antigens, L523S, L763P and L763 peptide #2684.

Table 10

Antibody	Affinity	Affinity	Average	Affinity	Affinity	Average
conc.	pure	pure		pure	pure	
(µg/ml)	(salt	(salt		(acid	(acid	
[peak)	peak)_		peak)	peak)	
1.0	2.38	2.35	2.36	2.25	2.31	2.28
0.5	2.24	2.22	2.23	2.19	2.18	2.18
0.25	2.05	2.09	2.07	2.01	2.03	2.02
0.13	1.70	1.81	1.75	1.74	1.74	1.74
0.063	1.44	1.44	1.44	1.43	1.38	1.40
0.031	1.05	1.05	1.05	0.99	0.99	0.99
0.016	0.68	0.67	0.68	0.65	0.64	0.64
0.0078	0.43	0.42	0.42	0.39	0.39	0.39
0.0039	0.27	0.26	0.27	0.24	0.26	0.25
0.0020	0.18	0.20	0.19	0.19	0.18	0.19
0.0010	0.13	0.14	0.13	0.13	0.14	0.13
0.00	0.11	0.12	0.11	0.10	0.12	0.11

Table 11

Antibody dilution	Affinity pure	Affinity pure	Average
1:1000	1.64	1.77	1.70
1:2000	1.59	1.76	1.68
1:4000	1.48	1.62	1.55
1:8000	1.35	1.43	1.39
1:16000	1.09	1.19	1.14
1:32000	0.81	0.89	0.85
1:64000	0.55	0.58	0.56
1:128000	0.31	0.35	0.33
1:256000	0.18	0.20	0.19
1:512000	0.11	0.12	0.11
1:1024000	0.07	0.07	0.07
1:2048000	0.06	0.06	0.06

Table 12

Antibody conc. (µg/ml)	Affinity pure	Affinity pure	Average
1.0	2.00	2.02	2.01
0.5	2.01	1.93	1.97
0.25	1.84	1.83	1.84
0.13	1.80	1.83	1.81
0.06	1.39	1.60	1.50
0.03	1.33	1.35	1.34
0.02	0.94	0.93	0.94
0.00	0.06	0.06	0.06

EXAMPLE 24
FULL-LENGTH CDNA SEQUENCE ENCODING L529S

The isolation of a partial sequence (SEQ ID NO:106) for lung antigen L529S was previously provided in Example 2. This partial sequence was used as a query to identify potential full length cDNA and protein sequences by searching against publicly available databases. The predicted full-length cDNA sequence for the isolated

cloned sequence of SEQ ID NO:106 is provided in SEQ ID NO:442. The deduced amino acid sequence of the antigen encoded by SEQ ID NO:442 is provided in SEQ ID NO:443. It was previously disclosed in Example 2 that L529S shows similarity to connexin 26, a gap junction protein.

EXAMPLE 25

EXPRESSION IN MEGATERIUM OF A HISTIDINE TAG-FREE L523S FUSION PROTEIN

PCR was performed on the L523S coding region with the following primers:

Forward primer PDM-734 5' caatcaggcatgcacaacaaactgtatatcggaaac 3' (SEQ ID NO:444) Tm 63°C.

Reverse primer PDM-735 5' cgtcaagatcttcattacttccgtcttgac 3' (SEQ ID NO:445) TM 60° C.

The PCR conditions were as follows:

10μl 10X Pfu buffer

1.0µl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 62°C for 15 seconds, 72°C for 4 minute with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with SphI and BgIII restriction enzymes, gel purified and then cloned into pMEG-3, which had been digested with SphI and BgIII restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into Megaterium cells for expression.

The amino acid sequence of expressed recombinant L523S is shown in SEO ID NO:446, and the DNA coding region sequence is shown in SEQ ID NO:447.

EXAMPLE 26

EXPRESSION IN E. COLI OF A HISTIDINE TAG-FREE L523S FUSION PROTEIN

PCR was performed on the L552S coding region with the following primers:

Forward primer PDM-733 5' cgtactagcatatgaacaaactgtatatcggaaac 3' (SEQ ID NO:448) Tm 64°C.

Reverse primer PDM-415 5' ccatagaattcattacttccgtcttgactgagg 3' (SEQ ID NO:426) TM 62°C.

The PCR conditions were as follows:

10μl 10X Pfu buffer

1.0µl 10mM dNTPs

2.0µl 10µM each primer

83µl sterile water

1.5µl Pfu DNA polymerase (Stratagene, La Jolla, 'CA)

50ηg DNA

96°C for 2 minutes, 96°C for 20 seconds, 62°C for 15 seconds, 72°C for 4 minute with 40 cycles and then 72°C for 4 minutes.

The PCR product was digested with NdeI and EcoRI restriction enzymes, gel purified and then cloned into pPDM, a modified pET28 vector, which had been digested with NdeI and EcoRI restriction enzymes. The correct construct was confirmed by DNA sequence analysis and then transformed into BLR pLys S and HMS 174 pLys S cells for expression.

The amino acid sequence of expressed recombinant L523S is shown in SEQ ID NO:449, and the DNA coding region sequence is shown in SEQ ID NO:450.

EXAMPLE 27

EPITOPE-ANALYSIS OF L514S AND L523S-SPECIFIC ANTIBODIES

Peptides of candidate antigens can be used for the evaluation of antibody responses in both preclinical and clinical studies. These data allow one to further

confirm the antibody response against a certain candidate antigen. Protein-based ELISA with and without competitive peptides and peptide-based ELISA can be used to evaluate these antibody responses. Peptide ELISA is especially useful since it can further exclude the false positive of the antibody titer observed in protein-based ELISA as well as to provide the simplest assay system to test antibody responses to candidate antigens. In this example, data was obtained using both L514S- and L523S-peptides that show that individual cancer patients produce L514S- and L523S-specific antibodies. The L514S-specific antibodies recognize primarily the following epitope of L514S:

aa86-110: LGKEVRDAKITPEAFEKLGFPAAKE (SED ID NO:451).

This epitope is the common epitope in humans. A rabbit antibody specific for L514S recognizes two addition epitopes of L514S:

- (1) aa21-45: KASDGDYYTLAVPMGDVPMDGISVA (SEQ ID NO:452)
- (2) aa121-135: PDRDVNLTHQLNPKVK (SED ID NO:453)

It was further found that the SEQ ID NO:452 is common to both L514S isoforms, L514S-13160 and L514S-13166, whereas the other epitopes, SEQ ID NO:451 and SEQ ID NO:453, are probably specific to the isoform, L514S-13160.

The L523S-specific antibodies recognize primarily the following epitope of L523S:

aa440-460: KIAPAEAPDAKVRMVIITGP (SEQ ID NO:454).

This epitope is the common epitope in humans. A rabbit antibody specific for L523S recognizes two other epitopes:

- (1) aa156-175 PDGAAQQNNNPLQQPRG (SEQ ID NO:455)
- (2) aa326-345: RTITVKGNVETCAKAEEEIM (SED ID NO:456)

In further studies, it was determined by peptide based ELISAs that eight additional epitopes of L523S were recognized by L523S-specific antibodies:

(1) aa40-59	AFVDCPDESWALKAIEALS	(SEQ	ID
NO:457)			
(2) aa80-99:	IRKLQIRNIPPHLQWEVLDS	(SED	ID
NO:458)			
(3) aa160-179:	AQQNPLQQPRGRRGLGQRGS	(SEQ	ID
NO:459)			
(4) aa180-199:	DVHRKENAGAAEKSITILST	(SED	ID
NO:460)			
(5) aa320-339:	LYNPERTITVKGNVETCAKA	(SEQ	ID
NO:461)			
(6) aa340-359:	EEEIMKKIRESYENDIASMN	(SED	ID
NO:462)			
(7) aa370-389:	LNALGLFPPTSGMPPPTSGP	(SEQ	ID
NO:463)			
(8) aa380-399:	KIAPAEAPDAKVRMVIITGP	(SED	ID
NO:464)			

Out of these, six epitopes are common in both lung plural effusion fluid samples and in sera of lung patients. Of these six, SEQ ID NO:459 and SEQ ID NO:463 have no homology to other L523S-family proteins such as IGF-II mRNA-binding proteins 1 and 2. Accordingly, this indicates that these two peptides can be used as an assay system to determine the antibody response to L523S.

EXAMPLE 28

GENERATION OF L523S-SPECIFIC CTL LINES USING IN VITRO WHOLE-GENE PRIMING

To determine if L523S is capable of generating a CD8⁺ T cell immune response, CTLs were generated using *in vitro* whole-gene priming methodologies with tumor antigen-vaccinia infected DC (Yee et al, *The Journal of Immunology*, 157(9):4079-86, 1996), human CTL lines were derived that specifically recognize autologous fibroblasts transduced with the L552S tumor antigen, as determined by interferon-gamma ELISPOT analysis. Specifically, dendritic cells (DC) were

differentiated from Percoll-purified monocytes derived from PBMC of normal human donors by plastic adherence and growing for five days in RPMI medium containing 10% human serum, 50 ng/ml human GM-CSF and 30 ng/ml human IL-4. Following the five days of culture, the DC were infected overnight with a recombinant adenovirus that expresses L523S at a multiplicity of infection (M.O.I) of 33, 66 and 100, and matured overnight by the addition of 2 µg/ml CD40 ligand. The virus was then inactivated by UV irradiation. In order to generate a CTL line, autologous PBMC were isolated and CD8+ T cells were enriched for by the negative selection using magnetic beads conjugated to CD4+, CD14+, CD16+, CD19+, CD34+ and CD56+ cells. CD8+ T cells specific for L523S were established in round bottom 96-well plates using 10,000 L523S expressing DCs and 100,000 CD8+ T cells per well in RPMI supplemented with 10% human serum, 10ng/ml of IL-6 and 5ng/ml of IL-12. The cultures were restimulated every 7-10 days using autologous primary fibroblasts retrovirally transduced with L523S, and the costimulatory molecule CD80 in the presence of IL-2. The cells were also stimulated with IFN-gamma to upregulate MHC Class I. The media was supplemented with 10U/ml of IL-2 at the time of stimulation as well as on days 2 and 5 following stimulation. Following three stimulation cycles, ten L523S specific CD8+ T cell lines were identified using interferon-gamma ELISPOT analysis that specifically produce interferon-gamma when stimulated with the L523S tumor antigen-transduced autologous fibroblasts, but not with a control antigen.

One line, 6B1, was cloned using anti-CD3 and feeder cells. The clones were tested for specificity on L523S-transduced fibroblasts. In addition, using a panel of HLA-mismatched lines transduced with a vector expressing L523S and measuring interferon-gamma production by this CTL line in an ELISPOT assay, it was determined that this clone 6B1.4B8 is restricted by HLA-A0201.

Also using transfected Cos cells, it was shown that clone 6B1.4B8 recognizes Cos cells transfected with pcDNA3 HLA A0201/L523S in an HLA-restricted and antigen specific manner.

An epitope mapping study demonstrated the clone 6B1.4B8 recognizes HLA-A201 LCL loaded with peptide pool 3 (a polypeptide corresponding to amino acid positions 33-59 of L523S.

A peptide pool breakdown study demonstrated that clone 6B1.4B8 recognizes autologous B-LCL loaded with 15-mer peptides from amino acid positions 37-55 of L523S, TGYAFVCPDESWALKAIE (SEQ ID NO:465). A further peptide breakdown study demonstrated that clone 6B1.4B8 recognizes T2 cells loaded with the same 15-mer peptides.

A peptide recognition study demonstrated that clone 6B1.4B8 prefers T2 cells loaded with the peptide FVDCPESWAL (SEQ ID NO:466) which is corresponds to the amino acid sequence at positions 41-51 of L523S and is encoded by the DNA sequence of SEQ ID NO:467.

EXAMPLE 29

L523S EXPRESSION IN OTHER HUMAN CANCERS

It was previously disclosed in Example 2 that L523S is expressed in lung cancers including squamous, adenocarcinoma and small cell carcinoma. To further evaluate the expression profile of this antigen an electronic express profiling was performed. This was done by searching a L523S-specific sequence against a public EST database. Results of this profiling indicate that L523S may also be present in colon adenocarcinomas, prostate adenocarcinomas, CML, AML, Burkitt's Lymphoma, brain tumors, retinoblastomas, ovarian tumors, teratocarcinomas, uterus myosarcomas, germ cell tumors as well as pancreatic and cervical tumor cell lines.

EXAMPLE 30

IMMUNOHISTOCHEMISTRY ANALYSIS OF L523S

In order to determine which tissues express the lung tumor antigen L523S, immunohistochemistry (IHC) analysis was performed on a diverse range of tissue types. Polyclonal antibodies specific for L523S (SEQ ID NO:176) were generated as described in Example 23. IHC was performed essentially as described in Example 6. Briefly, tissue samples were fixed in formalin solution for 12-24 hours and embedded in paraffin before being sliced into 8 micron sections. Steam heat induced epitope

retrieval (SHIER) in 0.1 sodium citrate buffer (pH 6.0) was used for optimal staining conditions. Sections were incubated with 10% serum in PBS for 5 minutes. The primary L523S antibody was added to each section for 25 minutes followed by a 25 minute incubation with anti-rabbit biotinylated antibody. Endogenous peroxidase activity was blocked by three 1.5 minute incubations with hydrogen peroxidase. The avidin biotin complex/ horse radish peroxidase (ABC/HRP) system was used along with DAB chromogen to visualize antigen expression. Slides were counterstained with hematoxylin to visualize the cell nuclei.

IHC analysis of L523S expression revealed that of the lung cancer tissues tested over 90% of tissue samples demonstrated high over-expression of the lung tumor antigen (10/11 adenocaricomas and 8/9 squamous). Of the normal tissues tested, all were negative for expression of L523S, with the exception of weak staining in normal bronchus, testis, liver, and trachea.

EXAMPLE 31

GENERATION AND CHARACTERIZATION OF L762 HUMAN MONOCLONAL

ANTIBODIES

Cell supernatants from hybridoma fusions from the Xenomouse strain of transgenic mice were screened for ability to bind to L762P. All results are shown in Table 13. The primary screen was to test monoclonal supernatants for reactivity to L762P by ELISA analysis using recombinant bacterial expressed protein. We next tested the human supernatants for reactivity to surface expressed L762P by whole cell ELISA using fluorimetry analysis. Specific reactivity of the humab supernatants was confirmed by performing FACS analysis on cells transfected with either an irrelevant plasmid or a plasmid expressing L762P. FI/CFI is the relative fold increase in fluorescence intensity (FI) of the anti-L762P humab primary antibody to irrelevant human primary antibody. FI/CFI/A20 is the relative fold increase in fluorescence intensity (FI) of the anti-L762P mouse monoclonal antibody 153A20.1. FI/CFI/R690 is the relative fold increase in fluorescence intensity (FI) of the anti-L762P

humab primary antibody to irrelevant human primary antibody over the FI of the anti-L762P rabbit polyclonal antibody. FACS VRL762 is the percentage of cells transfected with plasmid expressing L762P that were positive following staining with indicated monoclonal antibody. FACS VR(-) is the percentage of cells transfected with irrelevant plasmid that were positive following staining with indicated monoclonal antibody. ELISA is the O.D. values of the indicated monoclonal antibody to recombinant L762P protein. The shaded rows in Table 13 indicate those antibodies that will be further cloned and characterized.

Table 13: Human Monoclonal Antibodies Against L762P

FI/CFI	H 1/K H 1/A /11	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
4.59	FI/CFI/A20	1.00	171057112702	THES (K()	ELISIA .	2702772020
	1.00	1.00				
		0.11			0.38	
			32.68	7.14		1.93
Appropriate to the second seco			32,00	13.5 1		2,000
						
			41.44	17.90		1.29
				2,7,2,2		*****
			17.82	6.43		1.06
			******	. 07,0		
						1.64
						1.56
			24.83	6.60		1.91
				7077		
					0.36	
15.52	2.71	1,80	27.54	9.54	0.16	0.77
0.92	0.16	0.11			0.16	
					0.42	
3.40	0.59	0.39	21,68	11.36	0.14	2.47
2.32	0.40	0.27			0.38	
	0.14	0.09			0.34	
	0.69	0.46	38.87	13.17	0.33	1.80
	0.22	0.15			0.20	
		0.23			0.26	
	1.91 2.87 1.55 0.14 1.97 0.43 0.54 0.70 2.00 1.62 0.86 1.56 3.32 2.13 0.45 0.60 0.12 15.52 0.92 2.83 3.40	0.51 0.18 1.42 0.49 0.47 0.16 1.50 0.52 1.45 0.50 0.75 0.26 0.89 0.31 3.45 1.20 0.36 0.13 0.26 0.09 0.50 0.17 0.53 0.18 3.12 1.08 1.91 0.66 2.87 1.00 1.55 0.54 0.14 0.05 1.97 0.68 0.43 0.15 0.54 0.19 0.70 0.24 2.00 0.69 1.62 0.56 0.86 0.30 1.56 0.27 3.32 0.58 2.13 0.37 0.45 0.08 0.60 0.10 0.12 0.02 15.52 2.71 0.92 0.16 2.83 </td <td>0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 1.91 0.66 0.42 2.87 1.00 0.63 1.55 0.54 0.34 0.14 0.05 0.03 1.97 0.68 0.43 0.43 0.15 0.09 0.54 0.19 0.12 0.70 0.24 0.15 2.00 0.69 0.44 1.62 0.56 0.35 0.86 0.30 0.19</td> <td>0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 32.68 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 1.91 0.66 0.42 2.87 1.00 0.63 17.82 1.55 0.54 0.34 0.14 0.05 0.03 1.97 0.68 0.43 0.43 0.15 0.09 0.54 0.19 0.12 0.70 0.24 0.15 2.00 0.69 0.44 1.62 0.56 0.35 0.86</td> <td>0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 41.44 17.90 1.91 0.66 0.42 17.82 6.43 1.7.90 1.91 0.66 0.42 17.82 6.43 1.7.90 1.97 0.68 0.43 1.7.82 6.43 1.7.90 1.97 0.68 0.43 1.7.82 6.43 1.7.82 0.54 0.19 0.12 0.09 0.09 0.09 1.00 0.54 0.19 0.12 0.15</td> <td>0.51 0.18 0.11 0.38 1.42 0.49 0.31 0.35 0.47 0.16 0.10 0.07 1.50 0.52 0.33 0.26 1.45 0.50 0.32 0.26 0.75 0.26 0.16 0.24 0.89 0.31 0.19 0.46 3.45 1.20 0.75 32.68 7.14 1.22 0.36 0.13 0.08 0.06 0.23 0.50 0.17 0.11 0.44 1.22 0.50 0.17 0.11 0.44 0.44 0.33 0.18 0.12 0.42 0.12 2.87 1.00 0.63 17.82 6.43 0.13 1.55 0.54 0.34 0.28 0.12 2.87 1.00 0.63 17.82 6.43 0.13 1.55 0.54 0.34 0.28 0.39 0.43 0.15</td>	0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 1.91 0.66 0.42 2.87 1.00 0.63 1.55 0.54 0.34 0.14 0.05 0.03 1.97 0.68 0.43 0.43 0.15 0.09 0.54 0.19 0.12 0.70 0.24 0.15 2.00 0.69 0.44 1.62 0.56 0.35 0.86 0.30 0.19	0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 32.68 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 1.91 0.66 0.42 2.87 1.00 0.63 17.82 1.55 0.54 0.34 0.14 0.05 0.03 1.97 0.68 0.43 0.43 0.15 0.09 0.54 0.19 0.12 0.70 0.24 0.15 2.00 0.69 0.44 1.62 0.56 0.35 0.86	0.51 0.18 0.11 1.42 0.49 0.31 0.47 0.16 0.10 1.50 0.52 0.33 1.45 0.50 0.32 0.75 0.26 0.16 0.89 0.31 0.19 3.45 1.20 0.75 0.36 0.13 0.08 0.26 0.09 0.06 0.50 0.17 0.11 0.53 0.18 0.12 3.12 1.08 0.68 41.44 17.90 1.91 0.66 0.42 17.82 6.43 1.7.90 1.91 0.66 0.42 17.82 6.43 1.7.90 1.97 0.68 0.43 1.7.82 6.43 1.7.90 1.97 0.68 0.43 1.7.82 6.43 1.7.82 0.54 0.19 0.12 0.09 0.09 0.09 1.00 0.54 0.19 0.12 0.15	0.51 0.18 0.11 0.38 1.42 0.49 0.31 0.35 0.47 0.16 0.10 0.07 1.50 0.52 0.33 0.26 1.45 0.50 0.32 0.26 0.75 0.26 0.16 0.24 0.89 0.31 0.19 0.46 3.45 1.20 0.75 32.68 7.14 1.22 0.36 0.13 0.08 0.06 0.23 0.50 0.17 0.11 0.44 1.22 0.50 0.17 0.11 0.44 0.44 0.33 0.18 0.12 0.42 0.12 2.87 1.00 0.63 17.82 6.43 0.13 1.55 0.54 0.34 0.28 0.12 2.87 1.00 0.63 17.82 6.43 0.13 1.55 0.54 0.34 0.28 0.39 0.43 0.15

L762PHumAb	FI/CFI	FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
1.218	2.29	0.40	0.27			0.10	
1.219	0.15	0.03	0.02			0.06	
1.220	0.82	0.14	0.09			0.21	
1.221	2.29	0.40	0.27			0.12	
1.222	0.57	0.10	0.07			0.45	
1.223	0.11	0.02	0.01			0.11	····
1.224	2.08	0.36	0.24			0.25	
1.225	0.95	0.17	0.11			0.22	
1.226	-0.32	-0.06	-0.04			0.06	
R-690	8.62		1.00	72.34	39.83		
M-A20	5.73	1.00		50.23	6.34		
M-A12			67.43	25.15			
M-Irr			7.74	7.35			
R-Irr			30.09	24.80			
H-Irr			25.52	39.14			
R-690	3.20		1.00				
M-A20	2.33	1.00					
1.250	0.15	0.06	0.05			0.28	
1.228	0.38	0.16	0.12			0.08	
1.229	0.39	0.17	0.12			0.44	
1.230	1.78	0.76	0.56			0.13	1.35
1.231	0.42	0.18	0.13			0.47	
1.232	0.34	0.15	0.11			0.25	
1.233	7.07	3.04	2.21	68.84	38.60	0.43	0.75
1.234	2.54	1.09	0.79	33.96	10.94	0.73	1.68
1.235	1.53	0.65	0.48			0.19	1.45
1.236	0.17	0.07	0.05			0.44	
1.237	0.35	0.15	0.11			0.06	
1.238	0.38	0.16	0.12			0.06	
1.239	0.40	0.17	0.13			0.06	
1.240	2.05	0.88	0.64	28.70	7.44	0.33	1.70
1.241	0.41	0.18	0.13			0.41	
1.242	0.52	0.23	0.16		00.40	0.05	
1.243	2.34	1.00	0.73	30.94	28.13	0.16	1.33
1.244	0.94	0.40	0.29			0.23	
1.245	0.37	0.16	0.11	40.05	00.00	0.31	1.01
1.246	2.10	0.90	0.66	13.97	28.92	0.52	1.21
1.247	0.33	0.14	0.10			0.37	ļ
1.248	1.80	0.77	0.56	00.50	10.07	0.76	0.20
1.249	2.77	1.19	0.86	28.76	12.37	1.15	2.38
1.251	0.22	0.09	0.07			0.47	
1.252	1.16	0.27	0.17			0.37	
1.253	0.07	0.02	0.01			0.43	
1.254	2.05	0.48	0.30			0.14	
1.255	0.09	0.02	0.01		 	0.08	
1.256	1.17	0.27	0.17	<u> </u>	ļ	0.13	
1.257	0.42	0.10	0.06	-		0.06	
1.258	0.48 4.82	0.11	0.07	40.24	11.92	0.40	1.78
1.259	1.80	0.42	0.69	40.24	11.74	0.38	1,70
1.260 2.1	2.70	0.42	0.26	-		0.36	1.35
	0.06	0.03	0.39		 	0.14	1.33
2.3			0.01	31.28	11.43	0.37	1.95
	0.70	0.72	0.44	31.40	11,45	0.73	1,70 30
2.5	1.26	0.16	0.10			0.43	1
2.6	0.59	0.29	0.18	-		0.22	
			1.08	45.72	17.57	0.51	1,53
2.9	0.35	*****	0.05	43.14	11.51	0.93	1,00
2.10		0.08	0.05			0.42	1.58
2.11	2.71	0.63	0.39	L		0.00	1.50

L762PHumAb	FI/CFI	FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
2.12	6.04	1.41	0.87	52.50	19.59		1.40
2.13	5.50	1.28	0.79	39.78	15.24		1.39
2.14	0.68	0.16	0.10				
2.15	6.51	1.52	0.94	49.90	15.36		1.72
2.16	4.58	1.07	0.66	28.62	13.02		1.51
2.17	8.10	1.89	1.17	48.76	18.24		3.06
R-690	6.94	1.05	1.00	10.70	10.21		
M-A20	4.28	1.00	1.00	56.40	5.00		
W-A20	4.40	1.00		30.40	3.00		
R-690	4.34	1.65	1.00	·			
M-A20	2.63	1.00	0.61				
2.18	2.29	0.87	0.53			1.27	1.95
2.20	1.85	0.70	0.43			0.52	2.75
2.21	0.09	0.03	0.02			0.40	
2.22	3.26	1.24	0.75	29.4	6.2	1.45	1.8
***************************************	0.31	0.12	0.07	27.4	0.2	0.12	1.0
2.23						0.65	
2.24	1.21	0.46	0.28	100 E. Hall	71	(1.46
2.25	3.47	1.32	0.80	32.5 35.9		1.35	1,46
2.26	4,42	1.00	1.02	35.9	5.5	0.77	1000; (B)
2.27	1.42	0.54	0.33	23.02		0.22	1 4 2
2.28	3.00	1:14	0.69	28.6	5.4	1.21	1.26
2.29	1.41	0.53	0.32			0.58	
2.30	0.42	0.16	0.10			0.43	
2.31	0.09	0.03	0.02		1	0.07	
2.34	1.94	0.74	0.45			1.17	1.23
2.38	1.14	0.43	0.26			0.09	
2.39	2.50	0.95	0.57	28.2	4.8	0.78	1.14
2.40	2.02	0.77	0.46			0.47	0.99
2.41	1.16	0.44	0.27			0.08	
2.42	0.41	0.16	0.09			0.24	
2.46	2.46	0.93	0.57	16.1	4.6	1.07	1.3
2.47	1.83	0.69	0.42		THE STATE OF THE S	0.31	1.54
2.48	2.50	0.95	0.58			1.36	1.76
2.49	0.50	0.19	0.12		———	0.74	
2.50	2.93	1.11	0.68	15.8	4.7	0.52	1.54
2.51	0.13	0.10	0.07	10,0.	70.7	0.30	1,011
	1.11	0.79	0.56	22.1	5	1.14	1.93
2.52				I make the second of the secon	· · · · · · · · · · · · · · · · · · ·	0.58	2.84
2.53	1.87	1.34	0.94	27.0			
2.54		<u> </u>	0.92	15.9	8.5	0.12	2.56
2.55	0.83	0.60	0.42			0.32	
2.58	0.46	0.33	0.23			0.15	
2.60	0.99	0.71	0.50			0.35	200
2.61	2.16	1.54	1.08	30.7	7.9	1.34	2.88
2.62	0.36	0.26	0.18			0.58	
2.63	0.37	0.26	0.18			0.41	
2.64	1.60	1.14	0.80	25.7	6.1	1.39	2.85
2.65	0.63	0.45	0.31			0.16	
2.66	0.08	0.06	0.04			0.06	
2.67	1.34	0.96	0,67	23.3	4.5	1.32	1.34
2.68	0.66	0.47	0.33			0.38	
2.69	2.79	1.99	1.39	46.3	9.7	1.47	1.68
2.73	1.47	1.05	0.73	28.5	7.2	1.04	1.85
2.74	1.99	1.43	1.00	39.5	19.1	1.22	1.69
2.75	1.46	1.04	0.73	25.6	7.5	0.68	1,55
2.75 2.76	1.61	1.15	0.73	27.7	7.7	0.98	1.79
	1.59	1.13	0.79	27.7	4.9	1.11	1.53
2.77					8	1.51	2.64
2.78	1.55	1.11	0.77	13.9			2.04
2.79	0.33	0.24	0.16	10	5.4	0.43	0.05
2.80	1.47	1.05	0.73	15.9	8.8	0.46	0.95
R-690	2.00	1.43	1.00	L			l

L762PHumAb	FI/CFI	FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
M-A20	1.40	1.00	F1/CF1/R020	56.4	5	BERGER	Literivitions
141 1 120	10	1.00		30.1			:
R-690	3.76	3.44	1.00		*** · · · · · · · · · · · · · · · · · ·		
M-A20	1.09	1.00	1.00		4···		<u> </u>
2.81	0.25	0.23	0.07			0.17	144.2.1
2.82	0.44	0.40	0.12	<u> </u>		0.49	
2.83	0.63	0.58	0.17			0.80	
2.84	0.03	0.12	0.04			0.55	
2.85	0.62	0.57	0.16			0.19	
2.86	0.87	0.79	0.23			0.16	
2.87	0.84	0.77	0.23			0.10	
2.89	5,88	5.37	1.56	45.9	37.9	0.07	0.73
2.90	0.23	0.21	0.06	40,0 aggs	37,7 2	0.60	V. / J \$ 3 3 185
2.90	-0.37	-0.34	-0.10			0.43	
2.91	0.59	0.54	0.16			0.43	
	0.28	0.26	0.08			0.14	
2.93							
2.94	0.32	0.29	0.08			0.46	
2.95	0.39	0.36					
2.96 2.97	0.36	0.33	0.10	36.8	14.1	0.26	0.89
	1.26	44.0		36.8	14.1	1.01	0.89
2.98	0.92	0.84	0.24	01.2	01.0	0.84	
2.99	1.38	1.26	0.37	91.2	81.8	0.29	
2.100	0.94	0.86	0.25			1.40	
2.102	0.77	0.70	0.21			0.17	
2.104	1.37	1.25	0.36	10.2	7.4	0.14	
2.105	0.63	0.58	0.17			1.04	
2.106	0.79	0.72	0.21			0.84	
2.107	0.81	0.74	0.22			0.06	
2.109	0.66	1.24	0.32	19.2	6.1	0.45	0.89
2,110	1.58	3,00	0.77	36.4	14.2	0.89	1.11
2.112	0.80	1.52	0.39	28.8	6.4	1.16	1,35
2.113	0.57	1.07	0.27	31.4	10,7	0.66	1.17
2.114	0.52	0.99	0.25			0.32	
2.115	1.02	1.94	0.50	19.9	10.7	0.63	1.13
2.116	0.52	0.98	0.25			0.86	
2.118	0.19	0.36	0.09			0.06	
2.119	0.78	1.48	0.38	20.4	5.3	1.22	-1,16
2.120	0.76	1.44	0.37	21.8	6	1.29	0.97
2.121	1.24	2.36	0.60	28.7	10.7	0.30	1.17
2.122	1.20	2.29	0.58	31.3	8.3	1.13	1,14
2.123	0.67	1.27	0.33	17.7	6.8	0.74	1.27
R-690	2.06	3.91	1.00				
M-A20	0.53	1.00		56.4	5		
R-690	3.51		1.00				
M-A20	2.91	1.00					
1.1	1.05	0.36	0.30			0.16	
1.2	-0.42	-0.14	-0.12			0.40	
1.3	1.04	0.36	0.30			1.31	
1.4	0.77	0.26	0.22			0.43	-
1.5	0.19	0.06	0.05			0.13	
1.6	1.07	0.37	0.30			0.13	
1.7	0.09	0.03	0.03			0.42	0.80
1.8	2.93	1.01	0.83	54.70	45.60	0.59	0.00
			0.83	J7.10	70.00	0.39	
1.9	1.17	0.40				0.93	
1.10	-0.04	-0.02	-0.01			0.08	
1.11	-0.30	-0.10	-0.09				
1.12	0.11	0.04	0.03			0.25	
1.13	1.60	0.55	0.46			0.08	
1.14	0.69	0.24	0.20	ļ		0.13	

L762PHumAb		FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
1.15	0.30	0.10	0.09			0.08	
1.16	1.44	0.49	0.41			0.08	
1.17	-0.31	-0.10	-0.09		Ė	0.36	
1.18	0.05	0.02	0.01			0.17	
1.19	-0.34	-0.12	-0.10			0.29	
1.20	0.84	0.29	0.24			0.45	
1.21	-0.20	-0.07	-0.06			0.28	
1.22	0.14	0.05	0.04			0.06	
1.23	0.14	0.05	0.04			0.08	
1.24	1.02	0.35	0.29			0.16	
1.25	0.27	0.28	0.16			0.20	
1.26	1.06	1.09	0.62			0.31	
1.27	1.07	1.10	0.63			0.96	
1.28	2.14	2.21	1.26	3.60	ND	0.06	0.73
1.29	1.11	1.15	0.65			0.44	1.64
1.30	0.79	0.81	0.46			0.19	
1.31	1.42	1.46	0.84			0.23	1.27
1.32	1.37	1.42	0.81			0.11	1.91
1.33	0.29	0.30	0.17			0.18	1
1.34	1.59	1.64	0.94	37.53	8.98	1.31	2.61
1.35	0.37	0.38	0.21	+ 1:5-5-7 g		0.32	1
1.36	0.70	0.72	0.41		-	0.17	-
1.37	1.21	1.24	0.71		-	0.69	
1.38	0.63	0.65	0.37			0.38	
1.39	0.87	0.90	0.51			0.07	
1.40	0.71	0.73	0.42			0.26	
1.41	1.36	·		43.82	13.65		2.03
	0.64	0.66	0.38	7.43.04	-13,03	1.10	2.03
1.42	0.64	0.00	0.38	-		0.09	
1.43			0.27	-		0.09	
1.44	0.52	0.54	0.31			0.28	<u> </u>
1.45	0.74	0.76				0.13	
1.46	0.81	0.83	0.48				
1.47	0.46	0.47	0.27			0.24	
1.48	0.62	0.63	0.36			0.27	-
R-690	1.70	1.00	1.00			-	
M-A20	0.97	1.00					
···-							
R-690	1.84		1.00			ļ	
M-A20	2.82	1.00	L		<u> </u>		ļ
1.49	0.76	0.27	0.41		<u> </u>	0.14	ļ
1.50	-0.22	-0.08	-0.12			0.36	
1.51	-0.35	-0.12	-0.19			0.45	
1.52	1.84	0.65	1.00	45.74	9.90	1.40	2.44
1 77				- 1			
1.53	1.77	0.63	0.96	42.79	24.70	0.89	
1.53 1.54	1.08	0.38	0.96 0.59	42.79		0.80	
			0.96 0.59 0.44	42.79		0.80 0.35	
1.54	1.08	0.38	0.96 0.59 0.44 0.69			0.80 0.35 0.30	
1.54 1.55	1.08 0.81	0.38 0.29	0.96 0.59 0.44	22.20		0.80 0.35	
1.54 1.55 1.56	1.08 0.81 1.26	0.38 0.29 0.45	0.96 0.59 0.44 0.69		24,70	0.80 0.35 0.30	
1.54 1.55 1.56 1.57	1.08 0.81 1.26 3.26	0.38 0.29 0.45 1.16	0.96 0.59 0.44 0.69 1.77		24,70	0.80 0.35 0.30 1.31	
1.54 1.55 1.56 1.57 1.58 1.59	1.08 0.81 1.26 3.26 0.81	0.38 0.29 0.45 1.16 0.29	0.96 0.59 0.44 0.69 1.77 0.44	22.20	24.70 ND	0.80 0.35 0.30 1.31 0.80	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60	1.08 0.81 1.26 3.26 0.81 2.22	0.38 0.29 0.45 1.16 0.29 0.79	0.96 0.59 0.44 0.69 1.77 0.44 1.21	22.20	24.70 ND	0.80 0.35 0.30 1.31 0.80 1.28	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30	22.20	24.70 ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41	22.20	ND ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75 0.99	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27 0.35	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41 0.54	22.20	ND ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06 0.25 0.12	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75 0.99 3.60	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27 0.35 1.28	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41 0.54 1.96	22.20	ND ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06 0.25 0.12	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75 0.99 3.60 0.32	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27 0.35 1.28 0.11	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41 0.54 1.96 0.18	22.20	ND ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06 0.25 0.12 0.06 0.29	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64 1.65	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75 0.99 3.60 0.32 0.01	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27 0.35 1.28 0.11 0.00	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41 0.54 1.96 0.18 0.00	22.20 24.50 24.89	ND ND 10.25	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06 0.25 0.12 0.06 0.29 0.30	2.69
1.54 1.55 1.56 1.57 1.58 1.59 1.60 1.61 1.62 1.63 1.64	1.08 0.81 1.26 3.26 0.81 2.22 0.55 0.13 0.75 0.99 3.60 0.32	0.38 0.29 0.45 1.16 0.29 0.79 0.19 0.04 0.27 0.35 1.28 0.11	0.96 0.59 0.44 0.69 1.77 0.44 1.21 0.30 0.07 0.41 0.54 1.96 0.18	22.20	ND ND	0.80 0.35 0.30 1.31 0.80 1.28 0.23 0.06 0.25 0.12 0.06 0.29	2.69

L762PHumAb	FI/CFI	FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
1.70	3.66	₹1.30	1.99	24.96	12.00	0.84	2.08
1.71	2.01	0.71	1.09			0.21	
1.72	6.49	2.30	3.53	6.50	ND	0.21	1.89
1.73	19.95	0.28	0.21	3.20	ND	0.31	
1.74	19.33	0.27	0.21	5.50	ND	0.20	
1.75	22.25	0.31	0.24			0.10	
1.76	11.42	0.16	0.12	, ,		0.37	
1.77	-15.90	-0.23	-0.17			0.08	
1.78	-4.60	-0.07	-0.05			0.26	
1.79	18.78	0.27	0.20			0.25	
1.80	35.51	0.50	0.38	9.00	ND	0.71	
1.81	-4.15	-0.06	-0.04			0.33	
1.82	-37.51	-0.53	-0.40			0.17	
1.83	7.11	0.10	0.08			0.08	
1.84	-21.33	-0.30	-0.23			0.06	
1.85	-3.61	-0.05	-0.04			0.13	
1.86	-19.68	-0.28	-0.21			0.06	
1.87	-3.39	-0.05	-0.04			0.30	
1.88	55.61	0.79	0.59	5.50	ND	0.10	1.25
1.89	-6.73	-0.10	-0.07		1	0.17	
1.90	11.18	0.16	0.12		1	0.10	
1.91	-31.50	-0.45	-0.33	 	1	0.13	
1.92	-7.56	-0.11	-0.08		 	0.13	
1.93	-12.37	-0.18	-0.13			0.11	
1.94	49.60	0.70	0.53	14.10	ND	1.39	2.33
1.95	10.68	0.15	0.11	14.10	TUD	0.16	2.55
1.96	144.63	2.05	5.16	63.24	74.75	0.75	0.80
R-690	94.09	1.33	1.00	03.24	1,754.2	30.75	0.00 32-
M-A20	70.64	1.00	1.00		+	+	
WI-AZU	70.04	1.00				+	
R-690	7.59		1.00				
M-A20	5.33	1.00					
1.97	1.47	0.28	0.19			0.37	
1.98	3.69	0.69	0.49	38.67	16.57	0.43	1.69
1.99	4.32	0.81	0.57	38.31	18.76	0.40	1.48
1.100	0.22	0.04	0.03	20,0 2	30,70	0.32	
1.101	2.06	0.39	0.27			0.49	
1.102	0.23	0.04	0.03			0.12	
1.102	0.23	0.04	0.03		_	0.28	
1.103	0.33	0.08	0.04	-		0.08	
	4.19	0.08	0.55	37.19	12.41		2.18
1.105	4.19	0.79	0.56	46.24	30.59	1.21	1.58
1.106	0.15	0.79	0.02	40.44	30.37	0.06	1.50
1.107			0.02			0.31	
1.108	0.08 2.70	0.01	0.01	6.5	6	0.07	
1.109				0.3	0		
1.110	1.02	0.19	0.13			0.35	
1.111	2.55	0.48	0.34	18.6	1.40	0.10	1 7/45
1.112	3.58	0.67	0.47	18.6	4.2	1.25	1,74
1.113	0.37	0.07	0.05		 	0.35	
1.114	-0.06	-0.01	-0.01	·		0.27	
1.115	0.55	0.10	0.07			0.13	-
1.116	2.24	0.42	0.30			0.44	
1.117	0.56	0.10	0.07			0.27	
1.118	0.77	0.14	0.10			0.43	<u> </u>
1.119	0.78	0.15	0.10		<u> </u>	0.41	
1.120	0.73	0.14	0.10			0.58	<u> </u>
1.121	0.21	0.05	0.03			0.40	
1.122	0.11	0.03	0.02			0.29	
1.123	0.41	0.11	0.07			0.07	
1.124	3.66	0.95	0.61	41.27	34.83	0.28	1.85

L762PHumAb	FI/CFI	FI/CFI/A20	FI/CFI/R690	FACSVRL762	FACS VR (-)	ELISA	L762/VR1013
1.125	2.67	0.69	0.44			0.27	1.55
1.126	2.36	0.61	0.39			0.86	1.71
1.127	0.70	0.18	0.12			0.11	
1.128	2.99	0.77	0.50			0.13	1.45
1.129	0.33	0.09	0.06		· · ·	0.39	
1.130	0.40	0.10	0.07			0.18	
1.131	1.45	0.38	0.24	· · · · · · · · · · · · · · · · · · ·		0.52	
1.132	0.33	0.08	0.05			0.25	
1.133	0.17	0.04	0.03			0.24	
1.134	0.86	0.22	0.14			0.15	
1.135	1.75	0.45	0.29		<u> </u>	0.30	
1.136	1.35	0.35	0.00	ļ		0.07	
1.137	2.30	0.59	0.23			0.83	1.30
1.138	0.83	0.39	0.14		 	0.60	1.50
1.139	1.57	0.41	0.26			0.55	
		0.41	0.26			1.28	
1.140	1.40		-0.02	 	-	0.26	1
1.142	-0.10	-0.03					
1.143	1.46	0.38	0.24			0.16	
1.144	2.41	0.62	0.40			0.76	
R-690	6.00	1.00	1.00	76.1	-		
M-A20	3.86	1.00		56.4	5		
R-690	2.58	3.22	1.00				
M-A20	0.80	1.00					
1.145	0.23	0.29	0.09			0.18	
1.146	-0.12	-0.15	-0.05			0.41	
1.147	0.14	0.18	0.06			0.31	
1.148	0.09	0.11	0.03			0.43	
1.149	0.39	0.49	0.15			0.37	
1.150	2.23	2.79	0.87	17.3	5.4	0.70	1.46
1.151	0.13	0.16	0.05			0.29	
1.152	0.55	0.69	0.21			0.33	
1.154	-0.20	-0.25	-0.08			0.41	L
1.155	0.16	0.19	0.06			0.23	<u> </u>
1.156	0.06	0.07	0.02			0.31	
1.158	0.54	0.67	0.21			0.58	
1.159	0.78	0.98	0.30			0.09	
1.160	0.23	0.29	0.09			0.08	
1.162	0.63	0.78	0.24			0.11	
1.163	0.20	0.25	0.08			0.10	
1.164	0.22	0.27	0.08			0.09	
1.166	1,41	1.76	0.55	22.9	5.3	0.52	2.41
1.167	0.32	0.40	0.12			0.08	
1.168	0.88	1.10	0,34	15.9	5.1	0.48	1.90
1.170	0.22	0.42	0.11			0.21	
1.171	0.40	0.76	0.19			0.38	
1.172	0.09	0.17	0.04			0.12	
1.174	0.23	0.43	0.11			0.15	
1.175	0.14	0.26	0.07		 	0.20	
R-690	2.06	3.91	1.00	 		 	
M-A20	0.53	1.00		56.4	5		
for 1.170 to 1.		1 2.00		1 20	1	1	
101 1.170 10 1.							

FI-fluorescence intensity of primary antibody
CFI-fluorescence intensity of human irrelevant primary antibody.

A20-mouse anti-L762P monoclonal antibody

R690-rabbit anti-L762P affinity purified polyclonal antibody

FACS VRL762-percent positive cells from transient transfection of VR1013/L762 expression plasmid

FACS VR(-)-percent positive cells from transient transfection of empty VR1013 expression plasmid

EXAMPLE 32

EPITOPE MAPPING AND PURIFICATION OF HL523S-SPECIFIC ANTIBODIES

This Example describes the purification of L523S antibodies that can distinguish between human and mouse L523S homologs and will likely distinguish between hL523S and hL523S-family members such as hIMP-1 and hIMP-2.

L523S (full-length cDNA and amino acid sequence set forth in SEQ ID NO:347 and 348, respectively) is one of a family of proteins that includes hIMP-1 and hIMP-2. The members of this family of proteins have a high degree of similarity one to the other and are also highly similar between species. Thus, generating antibodies that specifically recognize human L523S (hL523S) and not other members of the protein family in humans or the mouse homologs, has been problematic. However, in order to evaluate preclinical and clinical L523S DNA/Adenoviral vaccines by detecting the protein expression of L523S, human L523S-specific antibodies are critical.

Polyclonal antibodies specific for hL523S were generated as described in Example 23. These antibodies were used to map epitopes. The epitope analysis showed 2 particular peptides of hL523S that were recognized, peptide 16/17 and peptide 32.

The amino acid sequences of both hL523S and mouse L523S (mL523S) peptide 16/17 and peptide 32 were then compared. Peptide 32/33 is identical between hL523S and mL523S. However, as the alignment below indicates, peptide 16/17 has 5 amino acid differences between the human and mouse homologs (underlined).

	hL523S	(16/17)	(SEQ	ID	NO:468):
IPDE	E <u>M</u> AAQQNP <u>LQ</u> Q	PRGRRGLGQR		•	
	mL523S	(16/17)	(SEQ	ID	NO:469):
IPDE	ETAAQQNPSPQ:	LRGRRGPGQR			

Moreover, peptide-based ELISAs showed that peptide 17 is specifically recognized by lung cancer patient sera #197, and a homology search of peptide 17 between human IMP (hIMP) family members shows that there is little similarity in this

region between family members. The hL523S peptide 17 (and 16/17) has less than 50% similarity to hL523S family members such as hIMP-1 and hIMP-2.

Based upon the epitope mapping of L523S-specific antibodies and the data from the homology search, hL523S or mL523S peptide 16/17-conjugated ligands were then used to purify human or mouse L523S-specific antibodies from rabbit polyclonal antibodies generated against hL523S protein as described in Example 23. The data from the antibodies purified by affinity chromatography using ligands conjugated with either hL523S-peptide 16/17 or mL523S-peptide 16/17 suggested that the affinity of antibodies specific to hL523S-peptide 16/17 is much higher than that of antibodies to mL523S-peptide 16/17 since they bind more strongly to hL523S-peptide 16/17 than to mL523S-peptide 16/17. The difference in affinity between the purified antibodies to human and mouse L523S-peptide 16/17 was confirmed by peptide-based ELISA. The antibodies purified by hL523S-peptide 16/17 selectively bind to human L523S-peptide 16/17 but bind much less or not at all to mL523S-peptide 16/17.

In order to further characterize the original polyclonal antibodies and antibodies purified by hL523S-peptide 16/17, immunoblot analysis was conducted using both human lung adenocarcinoma line as a source of hL523S protein and mouse whole body embryo (day 17 gestation) as the source of mL523S protein. This analysis showed that polyclonal antibodies specific for hL523S recognize hL523S protein expressed in the tumor cell line as well as mL523S protein expressed in whole body embryos of day 17 gestation. However, the addition of hL523S peptide 32/33 blocks binding of antibodies to human and mouse L523S proteins. Thus, the crossreactivity of the polyclonal antibodies to mL523S protein is due to the existence of antibodies specific to hL523S peptide 32/33. In marked contrast, the purified antibodies specific to hL523S peptide 16/17 do not bind mL523S protein expressed in mice embryos but do recognize hL523S protein expressed in human lung adenocarcinoma cells. These data confirm the ELISA data using hL523S-peptide 16/17 and mL523S-peptide 16/17 described above.

The amino acid sequence of hL523S peptide 16/17 used to purify the antibodies is about 60-70% similar to that of the mL523S-peptide 16/17 which is not recognized by hL523S-specific antibodies by Western blot analysis and peptide-based ELISA. The hL523S peptide 16/17 has less than 50% similarity to hL523S family

members such as hIMP-1 and hIMP-2. Taken together, these data suggest that it is highly probable that the antibodies purified by hL523S peptide 16/17 described herein will also distinguish hL523S protein from the other hL523S family members.

In summary, antibodies purified with the hL523S peptide 16/17 do not recognize the mouse L523S homolog. The amino acid sequence of peptide 16/17 between hL523S family members is less similar than between human and mouse L523S. Thus, the hL523S-specific antibodies described above can be used to distinguish between human and mouse L523S and between members of the hL523S family of proteins and can therefore be used for the accurate detection of hL523S protein expression in animals and humans.

EXAMPLE 33

IN VIVO IMMUNOGENECITY OF LUNG TUMOR ANTIGEN L523

This example describes two *in vivo* immunogenicity studies to evaluate the vaccination of mice with either an adenovirus containing L523 or with L523 naked DNA followed by a second immunization with an adenovirus containing L523.

The first study involved the immunization of two strains of mice with L523 adenovirus. The C57Bl6 strain of mice is homozygous for HLA-type H-2^b, while strain B6D2(F1) is heterozygous for the HLA-type, H-2^{b/d}. Table 14 describes the initial immunization strategy employed.

Table 14: Immunization with L523 Adenovirus alone: Experimental

Group	Immunization	Strain (4/group)
1	10 ⁸ PFU Ad L523 A	C57BL6
2	10 ⁷ PFU Ad hrGFP A	C57BL6
3	10 ⁸ PFU Ad L523 A	B6D2(F1)
4	10 ⁷ PFU Ad hrGFP A	B6D2(F1)
5	Naïve	C57BL6
6	Naïve	B6D2(F1)

PFU=plaque forming unit; GFP=green fluorescent protein; Ad=adenovirus.

Design

Mice were immunized intradermally with either 10⁸ PFU of L523-adenovirus or 10⁷ PFU of an irrelevant adenovirus (hrGFP). Three weeks following immunization, IgG1 and IgG2a antibody responses to L523 were examined in all groups of mice. Briefly, recombinant full length L523 (rL523) was coated onto ELISA plates and serum, at multiple dilutions, was added to the wells. Following a 60-minute incubation, the serum was washed from the wells and a secondary antibody, either specific for an IgG1 or IgG2a was added to the plates. Both antibodies were directly conjugated to horseradish peroxide (HRP). The levels of L523 antibodies, either IgG1 or IgG2a, were measured in all groups. In the C57BL6 mice, little to no L523-specific antibodies were detected following immunization. However, in the B6D2(F1) strain of mice immunized with L523 adenovirus, both IgG1 and IgG2a L523-specific antibodies were detected at serum dilution as low as 1/1000.

In addition to detecting L523-specific antibodies in the serum, interferon-gamma (IFN- γ) responses were assayed from immune spleen cells following *in vitro* stimulation with rL523 protein. Briefly, spleen cells were harvested from all mice groups and cultured for 3 days in 96-well plates. Culture conditions included, media alone, 1 or 10 μ g/ml of rL523 protein, or 5 μ g/ml of concanavalin A (Con A). After 3 days, the supernatants were harvested and assayed for IFN- γ levels in the supernatants.

Immunization with L523-adenovirus, but not an irrelevant adenovirus, elicited a strong IFN-γ response from the spleen cells which were stimulated with rL523. In general, responses were stronger in the B6D2(F1) mouse strain, as evidenced by both a higher level of IFN-γ production, as well as the fact that stimulation with a lower antigen concentration (1μg/ml) elicited an equally strong response as seen with the higher antigen concentration (10μg/ml).

Finally, T cell proliferation responses were assayed from immune spleen cells by stimulation *in vitro* with rL523 protein. Briefly, spleen cells were cultured for 4 days in 96-well plates with, media alone, 1 or 10µg/ml of rL523 protein, or Con A. The cultures were then pulsed with 3H-thymidine for the final 8 hours of culture. Results are represented as the stimulation index (SI) in the presence of antigen relative to stimulation with media alone. Results were consistent with those obtained in the IFN-y

assay. Immunization with L523-adenovirus, but not an irrelevant adenovirus, elicited a proliferation response in spleen cells stimulated with rL523. A strong SI (average of >20) was observed in spleen cells harvested from the B6D2(F1) mouse strain, with similar levels of proliferation observed at both protein concentrations. Little or no T cell proliferation was observed in the C57BL6 mouse strain.

A second study involved the immunization of two strains of mice initially with L523 naked DNA followed by a second immunization with L523 adenovirus two weeks later. The mice were harvested 3 weeks after the boost. Table 15 describes the immunization regimen of the second study.

Table 15: Immunization with L523 DNA followed by a second immunization with L523-Adenovirus: Experimental Design

Group	Immunization	Strain (4/group)
1	L523 DNA +10 ⁸ PFU Ad L523 A	C57BL6
2	10 ⁸ PFU Ad L523 A	C57BL6
3	Irrelevant DNA + 10 ⁷ PFU Ad hrGFP A	C57BL6
4	10 ⁷ PFU Ad hrGFP A	C57BL6
5	Naïve	C57BL6
6	L523 DNA +10 ⁸ PFU Ad L523 A	B6D2(F1)
7	10 ⁸ PFU Ad L523 A	B6D2(F1)
8	Irrelevant DNA + 10 ⁷ PFU Ad hrGFP A	B6D2(F1)
9	10 ⁷ PFU Ad hrGFP A	B6D2(F1)
10	Naïve	B6D2(F1)

PFU=plaque forming unit; GFP=green fluorescent protein; Ad=adenovirus.

As described in the first study, strong IgG1 and IgG2a antibody responses were observed in B6D2(F1) mice following immunization with L523-adenovirus. Immunizing with L523 DNA appeared to increase the overall L523-specific antibody response compared to responses achieved with immunization with L523-adenovirus alone. C57BL6 mice elicited little or no L523-specific antibody responses following immunization with L523-adenovirus, but were some slightly positive responses were detected in mice immunized with L523 DNA followed by a second immunization with L523-adenovirus.

IFN-γ responses were assayed from immune spleen cells by stimulation *in vitro* with rL523 protein. These results confirm those observed in the initial study demonstrating the immunogenecity of L523 in animals. The results also suggest that initially immunizing the animals with L523 DNA, prior to immunization with L523-adeonvirus, does not significantly increase the CD4 response. As with the initial study, responses appear to be stronger in the B6D2(F1) strain of mice than the C57BL6 strain.

As with the initial study, T cell proliferation responses were assayed from immune spleen cells by stimulation *in vitro* with rL523 protein. The results from using two rounds of immunization are consistent with those obtained from the first study. Immunization with L523 DNA prior to a second round of immunization with L523-adenovirus did not significantly increase the proliferation responses generated in the mice. As with the first study, responses were stronger in the B6D2(F1) mouse strain than in the C57BL6 strain.

The difference in HLA types between the two strains of mice could explain variations in the extent of the immune responses detected. As described above, the C57BL6 strain is homozygous for H-2^b, while the B6D2(F1) is heterozygous for H-2^{b/d}. The increased diversity of the B6D2(F1) strains HLA type allows for a greater number of epitopes derived from the L523 protein to be presented. In this strain, epitopes specific for both H-2^b and H-2^d can be presented, while only H-2^b epitopes can be presented by the C57BL6 strain.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.

CLAIMS

What is Claimed:

1. A method for inducing an immune response in an animal, comprising:

- a) providing a composition comprising a polynucleotide encoding at least an immunogenic portion of a lung carcinoma polynucleotide wherein the polynucleotide has at least 90% identity with SEQ ID NO:347;
 - b) administering said polynucleotide; and
 - c) thereby inducing an immune response in an animal.
- 2. The method of claim 1, wherein said composition further comprises a component selected from the group consisting of a physiologically acceptable carrier or an adjuvant.
- 3. A method according to claim 1, wherein the lung carcinoma polynucleotide is delivered by a viral based delivery system.
- 4. A method according to claim 3, wherein the viral based delivery system is an adenovirus.
- 5. The method of claim 1, wherein the immune response induced is a CD4+ T helper response.
- 6. The method of claim 1, wherein the immune response induced is a CD8+ cytotoxic T lymphocyte response.
- 7. The method of claim 1, wherein the immune response induced is both a CD4+ T helper and CD8+ cytotoxic T cell immune response.

8. An isolated polynucleotide comprising a sequence selected from the group consisting of:

- (a) sequences provided in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (b) complements of the sequences provided in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (c) sequences consisting of at least 10 contiguous residues of a sequence provided in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (d) sequences that hybridize to a sequence provided in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467, under highly stringent conditions;
- (e) sequences having at least 75% identity to a sequence of SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467;
- (f) sequences having at least 90% identity to a sequence of SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467; and
- (g) degenerate variants of a sequence provided in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467.
- 9. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of:
- (a) sequences having at least 90% identity to a polypeptide having an amino acid sequence of any one of the sequences provided in SEQ ID NO:352, 354, 357, 361, 363, 365, 367, 369, 376-382, 387-419, 423, 427, 430, 433, 441, 443, 446, 449, 451-466 and 468-469;
 - (b) sequences encoded by a polynucleotide of claim 8;
- (c) sequences having at least 70% identity to a sequence encoded by a polynucleotide of claim 8; and

WO 02/47534 PCT/US01/47576

(d) sequences having at least 90% identity to a sequence encoded by a polynucleotide of claim 8.

- 10. An expression vector comprising a polynucleotide of claim 8 operably linked to an expression control sequence.
- 11. A host cell transformed or transfected with an expression vector according to claim 10.
- 12. An isolated antibody, or antigen-binding fragment thereof, that specifically binds to a polypeptide of claim 9.
- 13. A method for detecting the presence of a cancer in a patient, comprising the steps of:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with a binding agent that binds to a polypeptide of claim 9;
- (c) detecting in the sample an amount of polypeptide that binds to the binding agent; and
- (d) comparing the amount of polypeptide to a predetermined cut-off value and therefrom determining the presence of a cancer in the patient.
- 14. A fusion protein comprising at least one polypeptide according to claim 9.
- 15. A fusion protein according to claim 14, wherein the fusion protein is selected from the group consisting sequences provided in SEQ ID NO:352, 354, 423, 427, 430 and 433.

WO 02/47534 PCT/US01/47576

16. An oligonucleotide that hybridizes to a sequence recited in SEQ ID NO:351, 353, 358, 362, 364, 366, 368, 370-375, 420, 424, 428, 431, 434, 442, 447, 450 and 467 under highly stringent conditions.

- 17. A method for stimulating and/or expanding T cells specific for a tumor protein, comprising contacting T cells with at least one component selected from the group consisting of:
 - (a) polypeptides according to claim 9;
 - (b) polynucleotides according to claim 8; and
- (c) antigen-presenting cells that express a polynucleotide according to claim 8,

under conditions and for a time sufficient to permit the stimulation and/or expansion of T cells.

- 18. An isolated T cell population, comprising T cells prepared according to the method of claim 17.
- 19. A composition comprising a first component selected from the group consisting of physiologically acceptable carriers and immunostimulants, and a second component selected from the group consisting of:
 - (a) polypeptides according to claim 9;
 - (b) polynucleotides according to claim 8;
 - (c) antibodies according to claim 12;
 - (d) fusion proteins according to claim 14;
 - (e) T cell populations according to claim 18; and
- (f) antigen presenting cells that express a polypeptide according to claim 9.
- 20. A method for stimulating an immune response in a patient, comprising administering to the patient a composition of claim 19.

WO 02/47534 PCT/US01/47576

21. A method for the treatment of a lung cancer in a patient, comprising administering to the patient a composition of claim 19.

- 22. A method for determining the presence of a cancer in a patient, comprising the steps of:
 - (a) obtaining a biological sample from the patient;
- (b) contacting the biological sample with an oligonucleotide according to claim 9;
- (c) detecting in the sample an amount of a polynucleotide that hybridizes to the oligonucleotide; and
- (d) compare the amount of polynucleotide that hybridizes to the oligonucleotide to a predetermined cut-off value, and therefrom determining the presence of the cancer in the patient.
- 23. A diagnostic kit comprising at least one oligonucleotide according to claim 16.
- 24. A diagnostic kit comprising at least one antibody according to claim 12 and a detection reagent, wherein the detection reagent comprises a reporter group.
- 25. A method for the treatment of lung cancer in a patient, comprising the steps of:
- (a) incubating CD4+ and/or CD8+ T cells isolated from a patient with at least one component selected from the group consisting of: (i) polypeptides according to claim 9; (ii) polynucleotides according to claim 8; and (iii) antigen presenting cells that express a polypeptide of claim 9, such that T cell proliferate;
- (b) administering to the patient an effective amount of the proliferated T cells,

and thereby inhibiting the development of a cancer in the patient.

SEQUENCE LISTING

<110> Corixa Corporation Wang, Tongtong Wang, Aijun Skeiky, Yasir A.W. Li, Samual X. Kalos, Michael D. Henderson, Robert A. McNeill, Patricia D. Fanger, Neil Retter, Marc \mbox{W} . Durham, Margarita Fanger, Gary R. Vedvick, Thomas S. Carter, Darrick Watanabe, Yoshihiro Peckman, David W. Cai, Feng Foy, Teresa M.

<120> COMPOSITIONS AND METHODS FOR THE THERAPY AND DIAGNOSIS OF LUNG CANCER

<130> 210121.45503PC

<140> PCT

<141> 2001-11-30

<160> 469

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 315

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> 236, 241

<223> n = A,T,C or G

<400> 1

gcagagacag actggtgtt gaacctggag gtgccaaaaa agccagctgc gggcccagga 60 cagctgccgt gagactcccg atgtcacagg cagtctgtgt ggttacagcg cccctcagtg 120 ttcatctcca gcagagacaa cggaggaggc tcccaccagg acggttctca ttatttatat 180 gttaatatgt ttgtaaactc atgtacagtt ttttttgggg gggaagcaat gggaanggta 240 naaattacaa atagaatcat ttgctgtaat ccttaaatgg caaacggtca ggccacgtga 300 aaaaaaaaaaa aaaaa aaaaa

<210> 2

<211> 380

<212> DNA

```
<213> Homo sapiens
atttaggctt aagattttgt ttacccttgt tactaaggag caaattagta ttaaagtata 60
atatatata acaaatacaa aaagttttga gtggttcagc ttttttattt tttttaatgg 120
cataactttt aacaacactg ctctgtaatg ggttgaactg tggtactcag actgagataa 180
ctgaaatgag tggatgtata gtgttattgc ataattatcc cactatgaag caaagggact 240
ggataaattc ccagtctaga ttattagcct ttgttaacca tcaagcacct agaagaagaa 300
ttattggaaa ttttgtcctc tgtaactggc actttggggt gtgacttatc ttttgccttt 360
gtaaaaaaaa aaaaaaaaaa
<210> 3
<211> 346
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 316, 317, 318, 322, 323, 326, 329, 330, 331, 336, 337, 339,
340, 342, 343
<223> n = A, T, C or G
<400> 3
ttgtaagtat acaattttag aaaggattaa atgttattga tcattttact gaatactgca 60
catcctcacc atacaccatc cactttccaa taacatttaa tcctttctaa aattgtaagt 120
atacaattgt actttctttg gattttcata acaaatatac catagactgt taattttatt 180
gaagtttcct taatggaatg agtcattttt gtcttgtgct tttgaggtta cctttgcttt 240
gacttccaac aatttgatca tatagtgttg agctgtggaa atctttaagt ttattctata 300
gcaataattt ctattnnnag annccnggnn naaaannann annaaa
<210> 4
<211> 372
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 297, 306, 332
<223> n = A, T, C or G
<400> 4
actagtetea ttaeteeaga attatgetet tgtaeetgtg tggetgggtt tettagtegt 60
tggtttggtt tggttttttg aactggtatg tagggtggtt cacagttcta atgtaagcac 120
tetettetee aagttgtget ttgtggggae aateattett tgaacattag agaggaagge 180
agttcaagct gttgaaaaga ctattgctta tttttgtttt taaagaccta cttgacgtca 240
tgtggacagt gcacgtgcct tacgctacat cttgttttct aggaagaagg ggatgcnggg 300
aaggantggg tgctttgtga tggataaaac gnctaaataa cacaccttta cattttgaaa 360
aaaacaaaac aa
                                                                   372
<210> 5
<211> 698
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 8, 345, 422, 430, 433, 436, 438, 472, 481, 486, 515, 521,
536, 549, 553, 556, 557, 559, 568, 593, 597, 605, 611, 613,
```

```
616, 618, 620, 628, 630, 632, 634, 635, 639, 643, 647, 648,
649, 652, 654, 658, 664, 690
<223> n = A,T,C or G
<400> 5
actagtanga tagaaacact gtgtcccgag agtaaggaga gaagctacta ttgattagag 60
cctaacccag gttaactgca agaaqaqqqq qqatactttc aqctttccat gtaactgtat 120
gcataaagcc aatgtagtcc agtttctaag atcatgttcc aagctaactg aatcccactt 180
caatacacac tcatgaactc ctgatggaac aataacaggc ccaaqcctqt qqtatqatqt 240
gcacacttgc tagactcaga aaaaatacta ctctcataaa tgggtgggag tattttgggt 300
gacaacctac tttgcttggc tgagtgaagg aatgatattc atatnttcat ttattccatg 360
gacatttagt tagtgctttt tatataccag gcatgatqct gagtqacact cttqtgtata 420
tntccaaatn ttngtncngt cgctgcacat atctgaaatc ctatattaag antttcccaa 480
natgangtcc ctggtttttc cacgccactt gatcngtcaa ngatctcacc tctgtntgtc 540
ctaaaaccnt ctnctnnang gttagacngg acctctcttc tcccttcccg aanaatnaag 600
tgtgngaaga nancenenen eececetnen tnenneetng eengetnnne enentgtngg 660
gggngccgcc cccgcggggg gacccccccn ttttcccc
                                                                   698
<210> 6
<211> 740
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 82, 406, 426, 434, 462, 536, 551, 558, 563, 567, 582, 584,
592, 638, 651, 660, 664, 673, 675, 697, 706, 711, 715, 716, 717, 723, 724, 725, 733
<223> n = A,T,C or G
actagtcaaa aatgctaaaa taatttggga gaaaatattt tttaagtagt gttatagttt 60
catgittatc tittattatg intigtgaag tigtgictit toactaatta cotatactat 120
gccaatattt ccttatatct atccataaca tttatactac atttgtaaga gaatatgcac 180
gtgaaactta acactttata aggtaaaaat gaggtttcca agatttaata atctgatcaa 240
gttcttgtta tttccaaata gaatggactt ggtctgttaa ggggctaagg gagaagaaga 300
agataaggtt aaaagttgtt aatgaccaaa cattctaaaa gaaatgcaaa aaaaaattta 360
ttttcaagcc ttcgaactat ttaaggaaag caaaatcatt tcctanatgc atatcatttg 420
tgagantttc tcantaatat cctgaatcat tcatttcagc tnaggcttca tgttgactcg 480
atatgtcatc tagggaaagt ctatttcatg gtccaaacct gttgccatag ttggtnaggc 540
tttcctttaa ntgtgaanta ttnacangaa attttctctt tnanagttct tnatagggtt 600
aggggtgtgg gaaaagcttc taacaatctg tagtgttncg tgttatctgt ncagaaccan 660
aatnacggat cgnangaagg actgggtcta tttacangaa cgaatnatct ngttnnntqt 720
gtnnncaact ccngggagcc
<210> 7
<211> 670
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 265, 268, 457, 470, 485, 546, 553, 566, 590, 596, 613, 624,
639, 653, 659, 661
<223> n = A,T,C or G
<400> 7
getggggage teggeatgge ggteeeeget geaqeeatqq qqeeetegqe qttqqqeeaq 60
```

```
ageggeeeeg getegatgge eeegtggtge teagtgagea geggeeegte gegetaegtg 120
cttgggatgc aggagctgtt ccggggccac agcaagaccg cgagttcctg gcgcacagcg 180
ccaaggtgca ctcggtggcc tggagttgcg acgggcgtcg cctacctcgg ggtcttcgac 240
aagacgccac gtcttcttgc tgganaanga ccgttggtca aagaaaacaa ttatcgggga 300
catggggata gtgtggacca ctttgttggc atccaagtaa tcctgaccta tttgttacgg 360
cgtctggaga taaaaccatt cgcatctggg atgtgaggac tacaaaatgc attgccactg 420
tgaacactaa aggggagaac attaatatct qctggantcc tgatgggcan accattgctg 480
tagenacaag gatgatgtgg tgaetttatt gatgeeaaga aacceegtte caaageaaaa 540
aaacanttcc aanttcgaag tcaccnaaat ctcctggaac aatgaacatn aatatnttct 600
tcctgacaat ggnccttggg tgtntcacat cctcagctnc cccaaaactg aancctgtnc 660
natccacccc
                                                                  670
<210> 8
<211> 689
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 253, 335, 410, 428, 448, 458, 466, 479, 480, 482, 483, 485,
488, 491, 492, 495, 499, 500, 502, 503, 512, 516, 524, 525,
526, 527, 530, 540, 546, 550, 581, 593, 594, 601, 606, 609,
610, 620, 621, 622, 628, 641, 646, 656, 673
<223> n = A, T, C or G
<400> 8
actagtatct aggaatgaac agtaaaagag gagcagttgg ctacttgatt acaacagagt 60
aaatgaagta ctggatttgg gaaaacctgg ttttattaga acatatggaa tgaaagccta 120
cacctagcat tgcctactta gccccctgaa ttaacagagc ccaattgaga caaacccctg 180
gcaacaggaa attcaaggga gaaaaagtaa gcaacttggg ctaggatgag ctgactccct 240
tagagcaaag ganagacagc ccccattacc aaataccatt tttqcctqqq qcttqtqcaq 300
ctggcagtgt teetgeecca geatggcace ttatngtttt gatagcaact tegttgaatt 360
ttcaccaact tattacttga aattataata tagcctgtcc gtttgctgtn tccaggctgt 420
gatatatntt cctagtggtt tgactttnaa aataaatnag gtttantttt ctcccccnn 480
enntnetnee nntenetenn ennteecece enetengtee teennnnttn gggggggeen 540
cccccncggn ggaccccct ttggtccctt agtggaggtt natggccct ggnnttatcc 600
nggcentann ttteccegtn nnaaatgntt eccetteea nteeenceae eteaaneegg 660
aagcctaagt ttntaccctg ggggtcccc
<210> 9
<211> 674
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 602, 632, 639, 668
<223> n = A, T, C or G
<400> 9
gtccactctc ctttgagtgt actgtcttac tgtgcactct gtttttcaac tttctagata 60
taaaaaatgc ttgttctata gtggagtaag agctcacaca cccaaggcag caagataact 120
gaaaaaagcg aggctttttt gccaccttgg taaaggccag ttcactgcta tagaactgct 180
ataagcctga agggaagtag ctatgagact ttccattttt cttagttctc ccaataggct 240
ccttcatgga aaaaggcttc ctgtaataat tttcacctaa tgaattagca gtgtgattat 300
ttctgaaata agagacaaat tgggccgcag agtcttcctg tgatttaaaa taaacaaccc 360
aaagttttgt ttggtcttca ccaaaggaca tactctaggg ggtatgttgt tgaagacatt 420
caaaaacatt agctgttctg tctttcaatt tcaagttatt ttggagactg cctccatgtg 480
```

```
agttaattac tttgctctgg aactagcatt attgtcatta tcatcacatt ctgtcatcat 540
catctgaata atattgtgga tttccccctc tgcttgcatc ttcttttgac tcctctggga 600
anaaatgtca aaaaaaaagg tcgatctact cngcaaggnc catctaatca ctgcgctgga 660
aggaccenct geec
<210> 10
<211> 346
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 320, 321, 322, 325, 326, 328, 329, 330, 332, 333, 334, 335,
<223> n = A,T,C or G
<400> 10
actagtctgc tgatagaaag cactatacat cctattgttt ctttctttcc aaaatcagcc 60
ttctgtctgt aacaaaaatg tactttatag agatggagga aaaggtctaa tactacatag 120
ccttaagtgt ttctgtcatt gttcaagtgt attttctgta acagaaacat atttggaatg 180
tttttctttt ccccttataa attgtaattc ctgaaatact gctgctttaa aaagtcccac 240
tgtcagatta tattatctaa caattgaata ttgtaaatat acttgtctta cctctcaata 300
aaagggtact tttctattan nnagnngnnn gnnnnataaa anaaaa
<210> 11
<211> 602
<212> DNA
<213> Homo sapiens
<400> 11
actagtaaaa agcagcattg ccaaataatc cctaattttc cactaaaaat ataatgaaat 60
gatgttaagc tttttgaaaa gtttaggtta aacctactgt tgttagatta atgtatttgt 120
tgcttccctt tatctggaat gtggcattag cttttttatt ttaaccctct ttaattctta 180
ttcaattcca tgacttaagg ttggagagct aaacactggg atttttggat aacagactga 240
cagttttgca taattataat cggcattgta catagaaagg atatggctac cttttgttaa 300
atctgcactt tctaaatatc aaaaaaggga aatgaagtta taaatcaatt tttgtataat 360
ctgtttgaaa catgagtttt atttgcttaa tattagggct ttgccccttt tctgtaagtc 420
tettgggate etgtgtagaa etgtteteat taaacaccaa acagttaagt eeattetetg 480
gtactagcta caaattcggt ttcatattct acttaacaat ttaaataaac tgaaatattt 540
ctagatggtc tacttctgtt catataaaaa caaaacttga tttccaaaaa aaaaaaaaa 600
                                                                   602
<210> 12
<211> 685
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 170, 279, 318, 321, 322, 422, 450, 453, 459, 467, 468, 470,
473, 475, 482, 485, 486, 491, 498, 503, 506, 509, 522, 526,
527, 528, 538, 542, 544, 551, 567, 568, 569, 574, 576, 582,
587, 588, 589, 590, 592, 593, 598, 599, 603, 605, 608
<223> n = A, T, C or G
<221> misc_feature
<222> 633, 634, 635, 644, 646, 648, 651, 655, 660, 662, 663, 672,
674, 675, 682, 683
```

```
<223> n = A,T,C or G
actagtcctg tgaaagtaca actgaaggca gaaagtgtta ggattttgca tctaatgttc 60
attatcatgg tattgatgga cctaagaaaa taaaaattag actaagcccc caaataagct 120
gcatgcattt gtaacatgat tagtagattt gaatatatag atgtagtatn ttgggtatct 180
aggtgtttta tcattatgta aaggaattaa agtaaaggac tttgtagttg tttttattaa 240
atatgcatat agtagagtgc aaaaatatag caaaaatana aactaaaggt agaaaagcat 300
tttagatatg ccttaatnta nnaactgtgc caggtggccc tcggaataga tgccaggcag 360
agaccagtgc ctgggtggtg ceteceettg tetgeeecce tgaaqaactt ceeteacgtg 420
angtagtgcc ctcgtaggtg tcacqtggan tantggganc aggccgnncn gtnanaagaa 480
ancanngtga nagtttcncc gtngangeng aactgteeet gngeennnae geteecanaa 540
cntntccaat ngacaatcga gtttccnnnc tccngnaacc tngccgnnnn cnnqcccnnc 600
cantntgnta acccegegee eggategete tennntegtt etenenenaa ngggnttten 660
cnnccgccgt cncnnccccg cnncc
<210> 13
<211> 694
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 503, 546, 599, 611, 636, 641, 643, 645, 656, 658, 662, 676,
679, 687
<223> n = A, T, C or G
<400> 13
cactagtcac tcattagcgt tttcaatagg gctcttaagt ccagtagatt acgggtagtc 60
agttgacgaa gatctggttt acaagaacta attaaatgtt tcattgcatt tttgtaagaa 120
cagaataatt ttataaaatg tttgtagttt ataattgccg aaaataattt aaagacactt 180
tttctctgtg tgtgcaaatg tgtgtttgtg atccattttt ttttttttt taggacacct 240
gtttactagc tagctttaca atatgccaaa aaaggatttc tccctgaccc catccgtggt 300
teaccetett tteececeat getititigee etagtitata acaaaggaat gatgatgatt 360
taaaaagtag ttctgtatct tcagtatctt ggtcttccag aaccctctgg ttgggaaggg 420
gatcattttt tactggtcat ttccctttgg agtgtactac tttaacagat ggaaagaact 480
cattggccat ggaaacagcc gangtgttgg gagccagcag tgcatggcac cgtccggcat 540
ctggcntgat tggtctggct gccgtcattg tcagcacagt gccatgggac atggggaana 600
ctgactgcac ngccaatggt tttcatgaag aatacngcat ncncngtgat cacgtnancc 660
angacgctat gggggncana gggccanttg cttc
<210> 14
<211> 679
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 29, 68, 83, 87, 94, 104, 117, 142, 145, 151, 187, 201, 211,
226, 229, 239, 241, 245, 252, 255, 259, 303, 309, 359, 387,
400, 441, 446, 461, 492, 504, 505, 512, 525, 527, 533, 574,
592, 609, 610, 618, 620, 626, 627, 633, 639, 645, 654
<223> n = A,T,C or G
<400> 14
cageogeetg catetgtate cagegocang tecegocagt eccagetgeg egegeeece 60
agtecegnae eegtteggee eangetnagt tagneeteae eatneeggte aaaggangea 120
ccaagtgcat caaatacctg engtneggat ntaaattcat ettetggett geegggattg 180
```

```
ctgtccntgc cattggacta nggctccgat ncgactctca gaccanganc atcttcganc 240
naganactaa tnatnattnt tccagcttct acacaggagt ctatattctg atcggatccg 300
geneectent gatgetggtg ggetteetga getgetgegg ggetgtgeaa gagteecant 360
gcatgctggg actgttcttc ggcttcntct tggtgatatn cgccattgaa atacctgcgg 420
ccatctgggg atattccact ncgatnatgt gattaaggaa ntccacggag ttttacaagg 480
acacgtacaa cnacetgaaa acennggatg anceceaceg ggaanenetg aangecatee 540
actatgcgtt gaactgcaat ggtttggctg gggnccttga acaatttaat cncatacatc 600
tggccccann aaaggacntn ctcganncct tcnccgtgna attcngttct gatnccatca 660
cagaagtctc gaacaatcc
<210> 15
<211> 695
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 105, 172, 176, 179, 189, 203, 212, 219, 221, 229, 231, 238,
242, 261, 266, 270, 278, 285, 286, 298, 311, 324, 337, 350,
363, 384, 391, 395, 405, 411, 424, 427, 443, 448, 453, 455,
458, 463, 467, 470, 479, 482, 484, 493, 499, 505, 518
<223> n = A, T, C \text{ or } G
<221> misc feature
<222> 520, 523, 531, 540, 584, 595, 597, 609, 611, 626, 628, 651,
652, 657, 661, 665, 669, 672, 681, 683, 691, 693
<223> n = A, T, C or G
<400> 15
actagtggat aaaggccagg gatgctgctc aacctcctac catgtacagg gacgtctccc 60
cattacaact acccaatccq aagtgtcaac tgtgtcagga ctaanaaacc ctggttttga 120
ttaaaaaagg gcctgaaaaa aggggagcca caaatctgtc tgcttcctca cnttantcnt 180
tggcaaatna gcattetgte tenttggetg engecteane neaaaaaane ngaactenat 240
enggeeeagg aatacatete neaatnaacn aaattganea aggenntggg aaatgeenga 300
tgggattatc ntccgcttgt tgancttcta agtttcnttc ccttcattcn accctgccag 360
conagttctg ttagaaaaat gccngaattc naacnccggt tttcntactc ngaatttaga 420
tetneanaaa etteetggee aenattenaa ttnanggnea egnacanatn eetteeatna 480
ancheacec aentttgana gecangacaa tgaetgentn aantgaagge ntqaaggaan 540
aactttgaaa ggaaaaaaaa ctttgtttcc ggccccttcc aacncttctg tgttnancac 600
tgccttctng naaccctgga agcccngnga cagtgttaca tgttgttcta nnaaacngac 660
ncttnaatnt cnatcttccc nanaacgatt ncncc
                                                                 695
<210> 16
<211> 669
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 299, 354, 483, 555, 571, 573, 577, 642, 651, 662, 667
<223> n = A, T, C or G
<400> 16
ttcccgggcc ccttacactc cacagtcccg gtcccgccat gtcccagaaa caagaagaag 120
agaaccctgc ggaggagacc ggcgaggaga agcaggacac gcaggagaaa gaaggtattc 180
tgcctgagag agctgaagag gcaaagctaa aggccaaata cccaagccta ggacaaaagc 240
ctggaggete egactteete atgaagagae teeagaaagg geaaaagtae tttgaeteng 300
```

```
gagactacaa catggccaaa gccaacatga agaataagca gctgccaagt gcangaccag 360
acaagaacct ggtgactggt gatcacatcc ccaccccaca ggatctgccc agagaaagtc 420
ctcgctcgtc accagcaagc ttgcgggtgg ccaagttgaa tgatgctgcc ggggctctqc 480
canatotgag acgetteect ceetgeecea eeegggteet gtgetggete etgeeettee 540
tgcttttgca gccangggtc aggaagtggc ncnggtngtg gctggaaagc aaaacccttt 600
cctgttggtg tcccacccat ggagcccctg gggcgagccc angaacttga ncctttttgt 660
tntcttncc
<210> 17
<211> 697
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 33, 48, 50, 55, 59, 60, 76, 77, 78, 90, 113, 118, 130, 135, 141, 143, 150, 156, 166, 167, 170, 172, 180, 181, 190, 192,
194, 199, 201, 209, 212, 224, 225, 226, 230, 233, 234, 236, 242, 244, 251, 253, 256, 268, 297, 305, 308, 311, 314
<223> n = A, T, C or G
<221> misc feature
<222> 315, 317, 322, 324, 327, 333, 337, 343, 362, 364, 367, 368,
373, 384, 388, 394, 406, 411, 413, 423, 429, 438, 449, 450,
473, 476, 479, 489, 491, 494, 499, 505, 507, 508, 522, 523,
527, 530, 533, 535, 538, 539, 545, 548, 550, 552, 555
<223> n = A, T, C or G
<221> misc feature
<222> 562, 563, 566, 568, 572, 577, 578, 580, 581, 591, 594, 622,
628, 632, 638, 642, 644, 653, 658, 662, 663, 665, 669, 675,
680, 686, 689
<223> n = A, T, C or G
<400> 17
gcaagatatg gacaactaag tgagaaggta atnototact gctctagntn ctccnggcnn 60
gacgcgctga ggagannnac gctggcccan ctgccggcca cacacgggga tcntggtnat 120
gcctgcccan gggancccca ncnctcggan cccatntcac acccgnnccn tncgcccacn 180
ncetggeten enengeeeng neeagetene gneeceetee geennneten tinnentete 240
enencectee nenacnacet cetaceeneg geteceteee eageeeceee eegeaaneet 300
ccacnacnee ntennenega anencenete genetengee cengeceeet geeceegee 360
cnenacnneg egnteceeg egenegenge eteneceeet eccaenacag neneaceege 420
agneacgene teegecenet gaegeeeenn eeegeegege teacetteat ggneenaeng 480
eccegatene neenetgene geegnenngg egeecegeee enneegngtn eenenegnng 540
eccengengn angengtgeg enneangnee gngeegnnen neacceteeg neeneegeee 600
egecegetgg gggeteegge enegeggnte anteccence entnegecea etnteegnte 660
cnnenetene getengegen egeceneene eccecee
                                                                      697
<210> 18
<211> 670
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 234, 292, 329, 437, 458, 478, 487, 524, 542, 549, 550, 557,
576, 597, 603, 604, 646, 665
<223> n = A, T, C or G
```

```
<400> 18
ctcgtgtgaa gggtgcagta cctaagccgg agcggggtag aggcgggccg gcaccccctt 60
ctgacctcca gtgccgccgg cctcaagatc agacatggcc cagaacttga acgacttggc 120
gggacggctg cccgccgggc cccggggcat gggcacggcc ctgaagctgt tgctgqgggc 180
cggcgccgtg gcctacggtg tgcgcgaatc tgtgttcacc gtggaaggcg ggcncagagc 240
catcttette aateggateg gtggagtgea caggacacta teetgggeeg anggeettea 300
cttcaggatc cttggttcca gtaccccanc atctatgaca ttcgggccag acctcgaaaa 360
aatctcctcc ctacaggctc caaagaccta cagatggtga atatctccct gcgagtgttg 420
tetegaceaa tgeteangaa etteetaaca tgtteeaneg eetaaggget ggaetaenaa 480
gaacgantgt tgccgtccat tgtcacgaag tgctcaagaa tttnggtggc caagttcaat 540
gnceteaenn etgatenece ageggggeea agttaneeet ggttgateee egggganetg 600
acnnaaaagg gccaaggact tcccctcatc ctggataatg tggccntcac aaagctcaac 660
tttanccacc
<210> 19
<211> 606
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 506
<223> n = A, T, C or G
<400> 19
actagtgcca acctcagctc ccaggccagt tctctgaatg tcgaggagtt ccaggatctc 60
tggcctcagt tgtccttggt tattgatggg ggacaaattg gggatggcca gagccccgag 120
tgtcgccttg gctcaactgt ggttgatttg tctgtgcccg gaaagtttgg catcattcgt 180
ccaggctgtg ccctggaaag tactacagcc atcctccaac agaaqtacgg actgctcccc 240
tcacatgcgt cctacctgtg aaactctggg aagcaggaag gcccaagacc tggtgctgga 300
tactatgtgt ctgtccactg acgactgtca aggcctcatt tgcagaggcc accggagcta 360
gggcactagc ctgactttta aggcagtgtg tctttctgag cactgtagac caagcccttg 420
gagetgetgg tttageettg cacetgggga aaggatgtat ttatttgtat tttcatatat 480
cagccaaaag ctgaatggaa aagttnagaa cattcctagg tggccttatt ctaataagtt 540
tettetgtet gttttgtttt teaattgaaa agttattaaa taacagattt agaatetagt 600
gagacc
                                                                   606
<210> 20
<211> 449
<212> DNA
<213> Homo sapiens
<400> 20
actagtaaac aacagcagca gaaacatcag tatcagcagc gtcgccagca ggagaatatg 60
cagogocaga googaggaga accococoto cotqaggagg acctqtocaa actottoaaa 120
ccaccacage egectgeeag gatggacteg etgeteattg eaggeeagat aaacaettae 180
tgccagaaca tcaaggagtt cactgcccaa aacttaggca agctcttcat ggcccaggct 240
cttcaagaat acaacaacta agaaaaggaa gtttccagaa aagaagttaa catgaactct 300
tgaagtcaca ccagggcaac tcttggaaga aatatatttg catattgaaa agcacagagg 360
atttctttag tgtcattgcc gattttggct ataacagtgt ctttctagcc ataataaaat 420
aaaacaaaat cttgactgct tgctcaaaa
                                                                  449
<210> 21
<211> 409
<212> DNA
<213> Homo sapiens
```

```
<400> 21
caatgataaa aggaacaagc tgcctatatg tggaacaaca tggatgcatt tcagaaactt 120
tatgttgagt gaaagaacaa acacggagaa catactatgt ggttctcttt atgtaacatt 180
acagaaataa aaacagaggc aaccaccttt gaggcagtat ggagtgagat agactggaaa 240
aaggaaggaa ggaaactcta cgctgatgga aatgtctgtg tcttcattgg gtggtagtta 300
tgtggggata tacatttgtc aaaatttatt gaactatata ctaaagaact ctqcatttta 360
ttgggatgta aataatacct caattaaaaa gacaaaaaaa aaaaaaaaa
<210> 22
<211> 649
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 263, 353, 610, 635, 646
<223> n = A, T, C or G
<400> 22
acaattttca ttatcttaag cacattgtac atttctacag áacctgtgat tattctcgca 60
tgataaggat ggtacttgca tatggtgaat tactactgtt gacagtttcc gcagaaatcc 120
tatttcagtg gaccaacatt gtggcatggc agcaaatgcc aacattttgt ggaatagcag 180
caaatctaca agagacctg gttggttttt cgttttgttt tctttgttt ttcccccttc 240
tcctgaatca gcagggatgg aangagggta gggaagttat gaattactcc ttccagtagt 300
agctctgaag tgtcacattt aatatcagtt ttttttaaac atgattctag ttnaatgtag 360
aagagagaag aaagaggaag tgttcacttt tttaatacac tgatttagaa atttgatgtc 420
ttatatcagt agttctgagg tattgatagc ttgctttatt tctgccttta cgttgacagt 480
gttgaagcag ggtgaataac taggggcata tatattttt ttttttgtaa gctgtttcat 540
gatgttttct ttggaatttc cggataagtt caggaaaaca tctgcatgtt gttatctagt 600
ctgaagtten tatccatcte attacaacaa aaacneecag aacggnttg
<210> 23
<211> 669
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 642, 661
<223> n = A, T, C or G
<400> 23
actagtgccg tactggctga aatccctgca ggaccaggaa gagaaccagt tcagactttg 60
tactctcagt caccagctct ggaattagat aaattccttg aagatgtcag gaatgggatc 120
tatectetga cageetttgg getgeetegg ceecageage cacageagga ggaggtgaca 180
teacetyteg tycececete tyteaagaet cegacacety aaceagetya gytygagaet 240
cgcaaggtgg tgctgatgca gtgcaacatt gagtcggtgg aggagggagt caaacaccac 300
ctgacacttc tgctgaagtt ggaggacaaa ctgaaccggc acctgagctg tgacctgatg 360
ccaaatgaga atatccccga gttggcggct gagctggtgc agctgggctt cattagtgag 420
gctgaccaga gccggttgac ttctctgcta gaagagactt gaacaagttc aattttgcca 480
ggaacagtac cctcaactca gccgctgtca ccgtctcctc ttagagctca ctcgggccag 540
gccctgatct gcgctgtggc tgtcctggac gtgctgcacc ctctgtcctt cccccagtc 600
agtattacct gtgaagccct tccctccttt attattcagg anggctgggg gggctccttg 660
nttctaacc
<210> 24
```

<211> 442

```
<212> DNA
<213> Homo sapiens
<400> 24
actagtacca tcttgacaga ggatacatgc tcccaaaacg tttgttacca cacttaaaaa 60
tcactgccat cattaagcat cagtttcaaa attatagcca ttcatgattt actttttcca 120
gatgactatc attattctag tcctttgaat ttgtaagggg aaaaaaaaaca aaaacaaaaa 180
cttacgatgc acttttctcc agcacatcag atttcaaatt gaaaattaaa gacatgctat 240
ggtaatgcac ttgctagtac tacacacttt ggtacaacaa aaaacagagg caagaaacaa 300
cggaaagaga aaagccttcc tttgttggcc cttaaactga gtcaagatct gaaatgtaga 360
gatgatctct gacgatacct gtatgttctt attgtgtaaa taaaattgct ggtatgaaat 420
gacctaaaaa aaaaaaaaga aa
<210> 25
<211> 656
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 330, 342, 418, 548, 579, 608
\langle 223 \rangle n = A,T,C or G
<400> 25
tgcaagtacc acacactgtt tgaattttgc acaaaaagtg actgtaggat caggtgatag 60
ccccggaatg tacagtgtct tggtgcacca agatgccttc taaaggctga cataccttgg 120
accetaatgg ggcagagagt atagecetag cecagtggtg acatgaceae tecetttggg 180
aggcctgagg tagaggggag tggtatgtgt tttctcagtg gaagcagcac atgagtgggt 240
gacaggatgt tagataaagg ctctagttag ggtgtcattg tcatttgaga gactgacaca 300
ctcctagcag ctggtaaagg ggtgctggan gccatggagg anctctagaa acattagcat 360
gggctgatct gattacttcc tggcatcccg ctcactttta tgggaagtct tattagangg 420
atgggacagt tttccatatc cttgctgtgg agctctggaa cactctctaa atttccctct 480
attaaaaatc actgccctaa ctacacttcc tccttgaagg aatagaaatg gaactttctc 540
tgacatantt cttggcatgg ggagccagcc acaaatgana atctgaacgt gtccaggttt 600
ctcctganac tcatctacat agaattggtt aaaccctccc ttggaataag gaaaaa
<210> 26
<211> 434
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 395
<223> n = A,T,C or G
<400> 26
actagttcag actgccacgc caaccccaga aaatacccca catgccagaa aagtgaagtc 60
ctaggtgttt ccatctatgt ttcaatctgt ccatctacca ggcctcgcga taaaaacaaa 120
acaaaaaaac gctgccaggt tttagaagca gttctggtct caaaaccatc aggatcctgc 180
caccagggtt cttttgaaat agtaccacat gtaaaaggga atttggcttt cacttcatct 240
aataactgaa ttgtcaggct ttgattgata attgtagaaa taagtagcct tctgttgtgg 300
gaataagtta taatcagtat tcatctcttt gttttttgtc actcttttct ctctaattgt 360
gtcatttgta ctgtttgaaa aatatttctt ctatnaaatt aaactaacct gccttaaaaa 420
aaaaaaaaa aaaa
                                                                   434
<210> 27
```

<211> 654

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 505, 533, 563, 592, 613, 635, 638
<223> n = A, T, C or G
<400> 27
actagtccaa cacagtcaga aacattgttt tgaatcctct gtaaaccaag gcattaatct 60
taataaacca ggatccattt aggtaccact tgatataaaa aggatatcca taatgaatat 120
tttatactgc atcetttaca ttagccacta aatacgttat tgcttgatga agacetttca 180
cagaatccta tggattgcag catttcactt ggctacttca tacccatqcc ttaaaqaqqq 240
gcagtttctc aaaagcagaa acatgccgcc agttctcaag ttttcctcct aactccattt 300
gaatgtaagg gcagctggcc cccaatgtgg ggaggtccga acattttctg aattcccatt 360
ttcttgttcg cggctaaatg acagtttctg tcattactta gattccgatc tttcccaaag 420
gtgttgattt acaaagaggc cagctaatag cagaaatcat gaccctgaaa gaqaqatgaa 480
attcaagctg tgagccaggc agganctcag tatggcaaag gtcttgagaa tengccattt 540
ggtacaaaaa aaattttaaa gcntttatgt tataccatgg aaccatagaa anggcaaggg 600
aattgttaag aanaatttta agtgtccaga cccanaanga aaaaaaaaaa aaaa
<210> 28
<211> 670
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 101, 226, 274, 330, 385, 392, 397, 402, 452, 473, 476, 532,
534, 538, 550, 583, 595, 604, 613, 622, 643, 669
<223> n = A, T, C or G
cgtgtgcaca tactgggagg atttccacag ctgcacggtc acagccctta cggattgcca 60
ggaaggggcg aaagatatgt gggataaact gagaaaagaa nccaaaaacc tcaacatcca 120
aggcagetta ttegaactet geggeagegg caaeggggeg geggggteee tgeteeegge 180
gttcccggtg ctcctggtgt ctctctcggc agctttagcg acctgncttt ccttctgagc 240
gtggggccag ctcccccgc ggcgcccacc cacnctcact ccatgctccc ggaaatcgag 300
aggaagatca ttagttcttt ggggacgttn gtgattctct gtgatgctga aaaacactca 360
tatagggaat gtgggaaatc ctganctctt tnttatntcg tntgatttct tgtgttttat 420
ttgccaaaat gttaccaatc agtgaccaac cnagcacagc caaaaatcgg acntcngctt 480
tagtccgtct tcacacacag aataagaaaa cggcaaaccc accccacttt tnantttnat 540
tattactaan ttttttctgt tgggcaaaag aatctcagga acngccctgg ggccnccgta 600
ctanagttaa ccnagctagt tncatgaaaa atgatgggct ccncctcaat gggaaagcca 660
agaaaaagnc
<210> 29
<211> 551
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 336, 474, 504, 511, 522, 523, 524, 540, 547
\langle 223 \rangle n = A,T,C or G
<400> 29
actagtcctc cacagcctgt gaatccccct agacctttca agcatagtga gcggagaaga 60
```

```
agateteage gtttageeac ettaceeatg cetgatgatt etgtagaaaa ggtttettet 120
ccctctccag ccactgatgg gaaagtattc tccatcagtt ctcaaaatca gcaagaatct 180
tcagtaccag aggtgcctga tgttgcacat ttgccacttg agaagctggg accctgtctc 240
cctcttgact taagtcgtgg ttcagaagtt acagcaccgg tagcctcaga ttcctcttac 300
cgtaatgaat gtcccagggc agaaaaagag gatacncaga tgcttccaaa tccttcttcc 360
aaagcaatag ctgatgggaa gaggagctcc agcagcagca ggaatatcga aaacagaaaa 420
aaaagtgaaa ttgggaagac aaaagctcaa cagcatttgg taaggagaaa aganaagatg 480
aggaaggaag agagaagaga gacnaagatc nctacggacc gnnncggaag aagaagaagn 540
aaaaaanaaa a
                                                                   551
<210> 30
<211> 684
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 545, 570, 606, 657, 684
<223> n = A, T, C or G
<400> 30
actagttcta tctggaaaaa gcccgggttg gaagaagctg tggagagtgc gtgtgcaatg 60
cgagactcat ttcttggaag catccctggc aaaaatgcag ctgagtacaa ggttatcact 120
gtgatagaac ctggactgct ttttgagata atagagatgc tgcagtctga agagacttcc 180
agcacctctc agttgaatga attaatgatg gcttctgagt caactttact ggctcaggaa 240
ccacgagaga tgactgcaga tgtaatcgag cttaaaggga aattcctcat caacttagaa 300
ggtggtgata ttcgtgaaga gtcttcctat aaagtaattg tcatgccgac tacgaaagaa 360
aaatgccccc gttgttggaa gtatacagcg ggagtcttca gatacactgt gtcctcgatg 420
tgcagaagtt gtcagtggga aaatagtatt aacagctcac tcgagcaaga accctcctga 480
cagtactggg ctagaagttt ggatggatta tttacaatat aggaaagaaa gccaagaatt 540
aggtnatqag tqqatqaqta aatqqtqqan qatqqqqaat tcaaatcaqa attatqqaaq 600
aagttnttcc tgttactata gaaaggaatt atgtttattt acatgcagaa aatatanatg 660
tgtggtgtgt accgtggatg gaan
<210> 31
<211> 654
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 326, 582, 651
<223> n = A, T, C or G
<400> 31
gcgcagaaaa ggaaccaata tttcagaaac aagcttaata ggaacagctg cctgtacatc 60
aacatcttct cagaatgacc cagaagttat catcgtggga gctggcgtgc ttggctctgc 120
tttggcagct gtgctttcca gagatggaag aaaggtgaca gtcattgaga gagacttaaa 180
agagcctgac agaatagttg gagaattcct gcagccgggt ggttatcatg ttctcaaaga 240
ccttggtctt ggagatacag tggaaggtct tgatgcccag gttgtaaatg gttacatgat 300
tcatgatcag ggaaagcaaa tcagangttc agattcctta ccctctgtca gaaaacaatc 360
aagtgcagag tggaagagct ttccatcacg gaagattcat catgagtctc cggaaagcag 420
ctatggcaga gcccaatgca aagtttattg aaggtgttgt gttacagtta ttagaggaag 480
atgatgttgt gatgggagtt cagtacaagg ataaagagac tgggagatat caaggaactc 540
catgetecae tgactgttgt tgcagatggg cttttctcca anttcaggaa aagcctggtc 600
tcaataaagt ttctgtatca ctcatttggt tggcttctta tgaagaatgc nccc
```

```
<211> 673
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 376, 545, 627
<223> n = A, T, C or G
<400> 32
actagtgaag aaaaagaaat totgatacgg gacaaaaatg otottcaaaa catcattott 60
tatcacctga caccaggagt tttcattgga aaaggatttg aacctggtgt tactaacatt 120
ttaaagacca cacaaggaag caaaatcttt ctgaaagaag taaatgatac acttctggtg 180
aatgaattga aatcaaaaga atctgacatc atgacaacaa atggtgtaat tcatgttgta 240
gataaactcc tctatccagc agacacacct gttggaaatg atcaactgct ggaaatactt 300
aataaattaa tcaaatacat ccaaattaag tttgttcgtg gtagcacctt caaagaaatc 360
cccgtgactg tctatnagcc aattattaaa aaatacacca aaatcattga tgggagtgcc 420
tgtgggaaat aactgaaaaa gagaccgaga agaacgaatc attacaggtc ctgaaataaa 480
atacctagga tttctactgg aggtggagaa acagaagaac tctgaagaaa ttgttacaag 540
aagangtccc aaggtcacca aattcattga aggtggtgat ggtctttatt tgaagatgaa 600
gaaattaaaa gacgcttcag ggagacnccc catgaaggaa ttgccagcca caaaaaaatt 660
cagggattag aaa
<210> 33
<211> 673
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 325, 419, 452, 532, 538, 542, 571, 600, 616, 651, 653, 672
<223> n = A, T, C or G
<400> 33
actagttatt tactttecte egetteagaa ggttttteag actgagagee taageataet 60
ggatctgttg tttcttttgg gtctcacctc atcagtgtgc atagtggcag aaattataaa 120
gaaggttgaa aggagcaggg aaaagatcca gaagcatgtt agttcgacat catcatcttt 180
tcttgaagta tgatgcatat tgcattattt tatttgcaaa ctaggaattg cagtctgagg 240
atcatttaga agggcaagtt caagaggata tgaagatttg agaacttttt aactattcat 300
tgactaaaaa tgaacattaa tgttnaagac ttaagacttt aacctgctgg cagtcccaaa 360
tgaaattatg caactttgat atcatattcc ttgatttaaa ttgggctttt gtgattgant 420
gaaactttat aaagcatatg gtcagttatt tnattaaaaa ggcaaaacct gaaccacctt 480
ctgcacttaa agaagtctaa cagtacaaat acctatctat cttagatgga tntatttntt 540
tntattttta aatattgtac tatttatggt nggtggggct ttcttactaa tacacaaatn 600
aatttatcat ttcaanggca ttctatttgg gtttagaagt tgattccaag nantgcatat 660
ttcgctactg tnt
<210> 34
<211> 684
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 414, 472, 480, 490, 503, 507, 508, 513, 523, 574, 575, 598,
659, 662, 675
<223> n = A,T,C or G
```

```
<400> 34
actagtttat tcaagaaaag aacttactga ttcctctgtt cctaaagcaa gagtggcagg 60
tgatcagggc tggtgtagca tccggttcct ttagtgcagc taactgcatt tgtcactgat 120
gaccaaggag gaaatcacta agacatttga gaagcagtgg tatgaacgtt cttggacaag 180
ccacagttet gageettaac cetgtagttt geacacaaga acgageteca ceteceette 240
ttcaggagga atctgtgcgg atagattggc tggacttttc aatggttctg ggttgcaagt 300
gggcactgtt atggctgggt atggagcgga cagccccagg aatcagagcc tcagcccggc 360
tgcctggttg gaaggtacag gtgttcagca ccttcggaaa aagggcataa agtngtgggg 420
gacaattete agteeaagaa gaatgeattg accattgetg getatttget tneetagtan 480
gaattggatn catttttgac cangatnntt ctnctatgct ttnttgcaat gaaatcaaat 540
cccgcattat ctacaagtgg tatgaagtcc tgcnnccccc agagaggctg ttcaggcnat 600
gtcttccaag ggcagggtgg gttacaccat tttacctccc ctctcccccc agattatgna 660
cncagaagga atttntttcc tccc
<210> 35
<211> 614
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 17, 20, 152, 223, 267, 287, 304, 306, 316, 319, 321, 355,
365, 382, 391, 407, 419, 428, 434, 464, 467, 477, 480, 495,
499, 505, 515, 516, 522, 524, 527, 542, 547, 549, 567, 572,
576, 578
<223> n = A,T,C or G
<400> 35
actagtccaa cgcgttngcn aatattcccc tggtagccta cttccttacc cccgaatatt 60
ggtaagatcg agcaatggct tcaggacatg ggttctcttc tcctgtgatc attcaagtgc 120
teactgeatg aagactgget tgteteagtg tnteaacete accagggetg tetettggte 180
cacacctcgc tccctgttag tgccgtatga cagcccccat canatgacct tggccaagtc 240
acggtttctc tgtggtcaat gttggtnggc tgattggtgg aaagtanggt ggaccaaagg 300
aagnenegtg ageagneane necagttetg caccageage geeteegtee tactngggtg 360
ttccngtttc tcctggccct gngtgggcta nggcctgatt cgggaanatg cctttgcang 420
gaaggganga taantgggat ctaccaattg attctggcaa aacnatntct aagattnttn 480
tgctttatgt ggganacana tctanctctc atttnntgct gnanatnaca ccctactcgt 540
gntcgancnc gtcttcgatt ttcgganaca cnccantnaa tactggcgtt ctgttgttaa 600
aaaaaaaaa aaaa
                                                                  614
<210> 36
<211> 686
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 222, 224, 237, 264, 285, 548, 551, 628, 643, 645, 665, 674
<223> n = A,T,C or G
<400> 36
gtggctggcc cggttctccg cttctccca tcccctactt tcctccctcc ctccctttcc 60
ctccctcgtc gactgttgct tgctggtcgc agactccctg acccctccct cacccctccc 120
taaccteggt gccaceggat tgcccttctt ttcctgttgc ccagcccage cctagtgtca 180
gggcgggggc ctggagcagc ccgaggcact gcagcagaag ananaaaaga cacgacnaac 240
ctcagctcgc cagtccggtc gctngcttcc cgccgcatgg caatnagaca gacgccgctc 300
acctgctctg ggcacacgcg acccgtggtt gatttggcct tcagtggcat cacccttatg 360
ggtatttctt aatcagcgct tgcaaagatg gttaacctat gctacqccag ggagatacag 420
```

```
gagactggat tggaacattt ttggggtcta aaggtctgtt tggggtgcaa cactgaataa 480
ggatgccacc aaagcagcta cagcagctgc agatttcaca gcccaagtgt gggatgctgt 540
ctcagganat naattgataa cctggctcat aacacattgt caagaatgtg gatttcccca 600
ggatattatt atttgtttac cggggganag gataactgtt tcncntattt taattgaaca 660
aactnaaaca aaanctaagg aaatcc
<210> 37
<211> 681
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 7, 1\overline{0}, 11, 19, 25, 32, 46, 53, 77, 93, 101, 103, 109, 115,
123, 128, 139, 157, 175, 180, 192, 193, 194, 212, 218, 226, 227, 233, 240, 241, 259, 260, 267, 289, 296, 297, 298, 312,
313, 314, 320, 325, 330, 337, 345, 346, 352, 353, 356
<223> n = A,T,C or G
<221> misc feature
<222> 382, 385, 400, 427, 481, 484, 485, 491, 505, 515, 533, 542,
544, 554, 557, 560, 561, 564, 575, 583, 589, 595, 607, 619,
628, 634, 641, 645, 658, 670
<223> n = A, T, C or G
<400> 37
gagacanacn naacgtcang agaanaaaag angcatggaa cacaanccag gcncgatggc 60
caccttccca ccagcancca gcgccccca gcngccccca ngnccggang accangactc 120
cancetgnat caatetgane tetatteetg geceatneet aceteggagg tggangeegn 180
aaaggtcgca cnnncagaga agctgctgcc ancaccancc gccccnnccc tgncgggctn 240
nataggaaac tggtgaccnn gctgcanaat tcatacagga gcacgcgang ggcacnnnct 300
cacactgagt tnnngatgan gcctnaccan ggacctnccc cagcnnattg annacnggac 360
tgcggaggaa ggaagacccc gnacnggatc ctggccggcn tgccaccccc ccacccctag 420
gattatnece ettgactgag tetetgaggg getaceegaa eeegeeteea tteeetaeea 480
natnntgctc natcgggact gacangctgg ggatnggagg ggctatcccc cancatcccc 540
tnanaccaac agenacngan natngggget eccengggte ggngeaacne teetneacce 600
cggcgcnggc cttcggtgnt gtcctccntc aacnaattcc naaanqqcqq qccccccngt 660
ggactcctcn ttgttccctc c
<210> 38
<211> 687
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 3, 3\overline{0}, 132, 151, 203, 226, 228, 233, 252, 264, 279, 306,
308, 320, 340, 347, 380, 407, 429, 437, 440, 445, 448, 491,
559, 567, 586, 589, 593, 596, 603, 605, 606, 609, 626, 639,
655, 674, 682
<223> n = A, T, C or G
<400> 38
canaaaaaa aaaacatggc cgaaaccagn aagctgcgcg atggcgccac ggcccctctt 60
ctcccggcct gtgtccggaa ggtttccctc cgaggcgccc cggctcccgc aagcggagga 120
gagggcggga cntgccgggg ccggagctca naggccctgg ggccgctctg ctctcccgcc 180
ategeaaggg eggegetaac etnaggeete eeegeaaagg teeeenange ggnggeggeg 240
gggggctgtg anaaccgcaa aaanaacgct gggcgcgcng cgaacccgtc caccccgcg 300
```

```
aaggananac ttccacagan gcagcgtttc cacagcccan agccacnttt ctagggtgat 360
gcaccccagt aagttcctgn cggggaagct caccgctgtc aaaaaanctc ttcgctccac 420
cggcgcacna aggggangan ggcangangc tgccgcccgc acaggtcatc tgatcacgtc 480
gecegeceta ntetgetttt gtgaatetee actttgttea acceeaceg eegttetete 540
ctccttgcgc cttcctctna ccttaanaac cagcttcctc tacccnatng tanttnctct 600
genenngtng aaattaatte ggteeneegg aacetettne etgtggeaac tgetnaaaga 660
aactgctgtt ctgnttactg cngtccc
<210> 39
<211> 695
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 300, 401, 423, 429, 431, 437, 443, 448, 454, 466, 492, 515,
523, 524, 536, 538, 541, 552, 561, 566, 581, 583, 619, 635,
636, 641, 649, 661, 694
<223> n = A, T, C or G
<400> 39
actagtctgg cctacaatag tgtgattcat gtaggacttc tttcatcaat tcaaaacccc 60
tagaaaaacg tatacagatt atataagtag ggataagatt tctaacattt ctgggctctc 120
tgacccctgc gctagactgt ggaaagggag tattattata gtatacaaca ctgctgttgc 180
cttattagit ataacatgat aggtqctqaa ttqtgattca caatttaaaa acactgtaat 240
ccaaactttt ttttttaact gtagatcatg catgtgaatg ttaatgttaa tttgttcaan 300
gttgttatgg gtagaaaaa ccacatgcct taaaatttta aaaaqcaqqq cccaaactta 360
ttagtttaaa attaggggta tgtttccagt ttgttattaa ntggttatag ctctgtttag 420
aanaaatcna ngaacangat tingaaanti aagnigacat tattinccag tgactigtta 480
atttgaaatc anacacggca ccttccgttt tggtnctatt ggnntttgaa tccaancngg 540
ntccaaatct tnttggaaac ngtccnttta acttttttac nanatcttat ttttttattt 600
tggaatggcc ctatttaang ttaaaagggg ggggnnccac naccattcnt gaataaaact 660
naatatatat ccttggtccc ccaaaattta aggng
<210> 40
<211> 674
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 403, 428, 432, 507, 530, 543, 580, 583, 591, 604, 608, 621,
624, 626, 639, 672
<223> n = A, T, C or G
<400> 40
actagtagtc agttgggagt ggttgctata ccttgacttc atttatatga atttccactt 60
tattaaataa tagaaaagaa aatcccggtg cttgcagtag agttatagga cattctatgc 120
ttacagaaaa tatagccatg attgaaatca aatagtaaag gctgttctgg ctttttatct 180
tettagetea tettaaataa gtagtaeaet tgggatgeag tgegtetgaa gtgetaatea 240
gttgtaacaa tagcacaaat cgaacttagg atgtgtttct tctcttctgt gtttcgattt 300
tgatcaattc tttaattttg ggaacctata atacagtttt cctattcttg gagataaaaa 360
ttaaatggat cactgatatt taagtcattc tgcttctcat ctnaatattc catattctgt 420
attagganaa antacctccc agcacagccc cctctcaaac cccacccaaa accaagcatt 480
tggaatgagt ctcctttatt tccgaantgt ggatggtata acccatatcn ctccaatttc 540
tgnttgggtt gggtattaat ttqaactqtq catqaaaaqn qqnaatcttt nctttqqqtc 600
aaantttncc ggttaatttg nctngncaaa tccaatttnc tttaagggtg tctttataaa 660
atttgctatt cngg
                                                                   674
```

```
<210> 41
<211> 657
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 243, 247, 251, 261, 267, 272, 298, 312, 315, 421, 432, 434,
501, 524, 569, 594, 607, 650
<223> n = A, T, C or G
<400> 41
qaaacatgca agtaccacac actgtttgaa ttttgcacaa aaagtgactg tagggatcag 60
gtgatagccc cggaatgtac agtgtcttgg tgcaccaaga tgccttctaa aggctgacat 120
accttgggac cctaatgggg cagagagtat agccctagcc cagtqgtgac atgaccactc 180
cctttgggag gctgaagtta aagggaatgg tatgtgtttt ctcatggaag cagcacatga 240
atnggtnaca ngatgttaaa ntaaggntct antttgggtg tcttgtcatt tgaaaaantg 300
acacactcct ancanctggt aaaggggtgc tggaagccat ggaagaactc taaaaacatt 360
agcatgggct gatctgatta cttcctggca tcccgctcac ttttatggga agtcttatta 420
naaggatggg ananttttcc atatccttgc tgttggaact ctggaacact ctctaaattt 480
ccctctatta aaaatcactg nccttactac acttcctcct tganggaata gaaatggacc 540
tttctctgac ttagttcttg gcatggganc cagcccaaat taaaatctga cttntccggt 600
ttctccngaa ctcacctact tgaattggta aaacctcctt tggaattagn aaaaacc
<210> 42
<211> 389
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 179, 317, 320
<223> n = A, T, C \text{ or } G
<400> 42
actagtgctg aggaatgtaa acaagtttgc tgggccttgc gagacttcac caggttgttt 60
cgatagetea cacteetgea etgtgeetgt cacceaggaa tgtetttttt aattagaaga 120
caggaagaaa acaaaaacca gactgtgtcc cacaatcaga aacctccgtt gtggcagang 180
ggccttcacc gccaccaggg tgtcccgcca gacagggaga gactccagcc ttctgaggcc 240
atcctgaaga attcctgttt gggggttgtg aaggaaaatc acccggattt aaaaagatqc 300
tgttgcctgc ccgcgtngtn gggaagggac tggtttcctg gtgaatttct taaaagaaaa 360
atattttaag ttaagaaaaa aaaaaaaaa
                                                                   389
<210> 43
<211> 279
<212> DNA
<213> Homo sapiens
<400> 43
actagtgaca ageteetggt ettgagatgt ettetegtta aggagatggg eettttggag 60
gtaaaggata aaatgaatga gttctgtcat gattcactat tctagaactt gcatgacctt 120
tactgtgtta gctctttgaa tgttcttgaa attttagact ttctttgtaa acaaataata 180
tgtccttatc attgtataaa agctgttatg tgcaacagtg tggagatcct tgtctgattt 240
aataaaatac ttaaacactg aaaaaaaaaa aaaaaaaaa
<210> 44
<211> 449
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 245, 256, 264, 266, 273, 281, 323, 325, 337, 393
<223> n = A,T,C or G
<400> 44
actagtagca tcttttctac aacgttaaaa ttgcagaagt agcttatcat taaaaaacaa 60
caacaacaac aataacaata aatcctaagt gtaaatcagt tattctaccc cctaccaagg 120
atatcageet gttttttece ttttttetee tgggaataat tgtgggette tteecaaatt 180
tetacageet ettteetett eteatgettg agetteeetg tttgcaegea tgegttgtge 240
aagantgggc tgtttngctt ggantneggt cenagtggaa neatgettte cettgttact 300
gttggaagaa actcaaacct tcnancccta ggtgttncca ttttgtcaag tcatcactgt 360
atttttgtac tggcattaac aaaaaaagaa atnaaatatt gttccattaa actttaataa 420
aactttaaaa gggaaaaaaa aaaaaaaaa
<210> 45
<211> 559
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 263
<223> n = A, T, C or G
<400> 45
actagtgtgg gggaatcacg gacacttaaa gtcaatctgc gaaataattc ttttattaca 60
cactcactga agtttttgag tcccagagag ccattctatg tcaaacattc caagtactct 120
ttgagagccc agcattacat caacatgccc gtgcagttca aaccgaagtc cgcaggcaaa 180
tttgaagett tgettgteat teaaacagat gaaggeaaga gtattgetat tegaetaatt 240
ggtgaagctc ttggaaaaaa ttnactagaa tactttttgt gttaagttaa ttacataagt 300
tgtattttgt taactttatc tttctacact acaattatgc ttttgtatat atattttgta 360
tgatggatat ctataattgt agattttgtt tttacaagct aatactgaag actcgactga 420
aatattatgt atctagccca tagtattgta cttaactttt acagggtgaa aaaaaaattc 480
tgtgtttgca ttgattatga tattctgaat aaatatggga atatatttta atgtgggtaa 540
aaaaaaaaa aaaaaggaa
<210> 46
<211> 731
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 270, 467, 477, 502, 635, 660, 671, 688, 695, 697, 725
<223> n = A,T,C or G
<400> 46
actagttcta gtaccatggc tgtcatagat gcaaccatta tattccattt agtttcttcc 60
tcaggttccc taacaattgt ttgaaactga atatatatgt ttatgtatgt gtgtgtgttc 120
actgtcatgt atatggtgta tatgggatgt gtgcagtttt cagttatata tatattcata 180
tatacatatg catatatatg tataatatac atatatacat gcatacactt gtataatata 240
catatatata cacatatatg cacacatatn atcactgagt tccaaagtga gtctttattt 300
ggggcaattg tattctctcc ctctqtctqc tcactqqqcc tttqcaaqac ataqcaattq 360
cttgatttcc tttggataag agtcttatct tcggcactct tgactctagc cttaacttta 420
```

```
gatttctatt ccagaatacc tctcatatct atcttaaaac ctaaganggg taaagangtc 480
ataagattgt agtatgaaag antttgctta gttaaattat atctcaggaa actcattcat 540
ctacaaatta aattgtaaaa tgatggtttg ttgtatctga aaaaatgttt agaacaagaa 600
atgtaactgg gtacctgtta tatcaaagaa cctcnattta ttaagtctcc tcatagccan 660
atccttatat ngccctctct gacctgantt aatananact tgaataatga atagttaatt 720
taggnttggg c
<210> 47
<211> 640
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 5, \overline{28}, 106, 153, 158, 173, 176, 182, 189, 205, 210, 214,
225, 226, 229, 237, 260, 263, 269, 277, 281, 282, 322, 337,
338, 354, 365, 428, 441, 443, 456, 467, 476, 484, 503, 508,
554, 567, 575, 579, 588, 601, 606, 609, 611, 621, 636
<223> n = A, T, C or G
<400> 47
tgcgngccgg tttggccctt ctttgtanga cactttcatc cgccctgaaa tcttcccgat 60
cgttaataac tcctcaggtc cctgcctgca cagggttttt tcttantttg ttgcctaaca 120
gtacaccaaa tgtgacatcc tttcaccaat atngattnct tcataccaca tcntcnatgg 180
anacgactnc aacaattttt tgatnacccn aaanactggg ggctnnaana agtacantct 240
ggagcagcat ggacctgtcn gcnactaang gaacaanagt nntgaacatt tacacaacct 300
ttggtatgtc ttactgaaag anagaaacat gcttctnncc ctagaccacg aggncaaccg 360
caganattgc caatgccaag tccgagcggt tagatcaggt aatacattcc atggatgcat 420
tacatacntt gtccccgaaa nanaagatgc cctaanggct tcttcanact ggtccngaaa 480
acanctacac ctggtgcttg ganaacanac tctttggaag atcatctggc acaagttccc 540
cccagtgggt tttnccttgg cacctanctt accanatena ttcggaance attctttgcc 600
ntggcnttnt nttgggacca ntcttctcac aactgnaccc
<210> 48
<211> 257
<212> DNA
<213> Homo sapiens
<400> 48
actagtatat gaaaatgtaa atatcacttg tgtactcaaa caaaagttgg tcttaagctt 60
ccaccttgag cagccttgga aacctaacct gcctctttta gcataatcac attttctaaa 120
tgattttctt tgttcctgaa aaagtgattt gtattagttt tacatttgtt ttttggaaga 180
ttatatttgt atatgtatca tcataaaata tttaaataaa aagtatcttt agagtgaaaa 240
aaaaaaaaa aaaaaaa
<210> 49
<211> 652
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 410, 428, 496, 571, 647
\langle 223 \rangle n = A,T,C or G
<400> 49
actagttcag atgagtggct gctgaagggg cccccttgtc attttcatta taacccaatt 60
tccacttatt tgaactctta agtcataaat gtataatgac ttatgaatta gcacagttaa 120
```

```
gttgacacta gaaactgccc atttctgtat tacactatca aataggaaac attggaaaga 180
tggggaaaaa aatcttattt taaaatggct tagaaagttt tcagattact ttgaaaattc 240
taaacttctt tetgttteea aaacttgaaa atatgtagat ggactcatge attaagactg 300
ttttcaaagc tttcctcaca tttttaaagt gtgattttcc ttttaatata catatttatt 360
ttctttaaag cagctatatc ccaacccatg actttggaga tatacctatn aaaccaatat 420
aacagcangg ttattgaagc agctttctca aatgttgctt cagatgtgca agttgcaaat 480
tttattgtat ttgtanaata caatttttgt tttaaactgt atttcaatct atttctccaa 540
gatgcttttc atatagagtg aaatatccca ngataactgc ttctgtgtcg tcgcatttga 600
cgcataactg cacaaatgaa cagtgtatac ctcttggttg tgcattnacc cc
<210> 50
<211> 650
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 237, 270, 311, 443, 454, 488, 520, 535, 539, 556, 567, 594,
603, 634
<223> n = A, T, C or G
<400> 50
ttgcgctttg atttttttag ggcttgtgcc ctgtttcact tatagggtct agaatgcttq 60
tgttgagtaa aaaggagatg cccaatattc aaagctqcta aatqttctct ttqccataaa 120
gactccgtgt aactgtgtga acacttggga tttttctcct ctgtcccgag gtcgtcgtct 180
gctttctttt ttgggttctt tctagaagat tgagaaatgc atatgacagg ctgagancac 240
ctccccaaac acacaagctc tcagccacan gcagcttctc cacagcccca gcttcgcaca 300
ggctcctgga nggctgcctg ggggaggcag acatgggagt gccaaggtgg ccagatggtt 360
ccaggactac aatgtettta tttttaactg tttgccactg ctgccctcac ccctgcccgq 420
ctctggagta ccgtctgccc canacaagtg ggantgaaat gggggtgggg gggaacactg 480
attcccantt agggggtgcc taactgaaca gtagggatan aaggtgtgaa cctgngaant 540
gettttataa attatnttee tigttanatt tattitttaa titaatetet qitnaactqc 600
ccngggaaaa ggggaaaaaa aaaaaaaaat tctntttaaa cacatgaaca
<210> 51
<211> 545
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 66, \overline{1}59, 195, 205, 214, 243, 278, 298, 306, 337, 366, 375,
382, 405, 446, 477, 492, 495, 503, 507, 508, 521, 537
<223> n = A, T, C or G
<400> 51
tggcgtgcaa ccagggtagc tgaagtttgg gtctgggact ggagattggc cattaggcct 60
cctganattc cagctccctt ccaccaagcc cagtcttgct acgtggcaca gggcaaacct 120
gactcccttt gggcctcagt ttcccctccc cttcatgana tgaaaagaat actacttttt 180
cttgttggtc taacnttgct ggacncaaag tgtngtcatt attgttgtat tgggtgatgt 240
gtncaaaact gcagaagctc actgcctatg agaggaanta agagagatag tggatganag 300
ggacanaagg agtcattatt tggtatagat ccaccentee caacetttet etecteagte 360
cetgeneete atgtntetgg tntggtgagt cetttgtgce accanceate atgetttgca 420
ttgctgccat cctgggaagg gggtgnatcg tctcacaact tgttgtcatc gtttganatg 480
catgctttct tnatnaaaca aanaaannaa tgtttgacag ngtttaaaat aaaaaanaaa 540
caaaa
                                                                   545
```

```
<211> 678
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 98, 119, 121, 131, 136, 139, 140, 142, 143, 163, 168, 172,
176, 184, 189, 190, 191, 200, 201, 205, 207, 221, 223, 229,
230, 237, 240, 241, 255, 264, 266, 267, 276, 280, 288, 289,
291, 297, 301, 306, 308, 314, 315, 326, 332, 335, 337
<223> n = A, T, C or G
<221> misc feature
<222> 339, 341, 343, 344, 345, 347, 350, 355, 356, 358, 362, 363,.
372, 379, 395, 397, 398, 400, 403, 412, 414, 421, 423, 431,
435, 438, 439, 450, 457, 463, 467, 471, 474, 480, 483, 484,
487, 490, 491, 492, 493, 499, 500, 504, 508, 518, 536
<223> n = A,T,C or G
<221> misc_feature
<222> 538, 549, 551, 552, 554, 556, 557, 562, 563, 567, 571, 572,
576, 579, 590, 592, 595, 598, 606, 609, 613, 620, 622, 624,
626, 631, 634, 638, 641, 647, 654, 660, 661, 674
<223> n = A,T,C or G
<400> 52
actagtagaa gaactttgcc gcttttgtgc ctctcacagg cgcctaaagt cattgccatg 60
ggaggaagac gatttggggg gggaggggg gggggcangg tccgtggggc tttccctant 120
ntateteeat ntecantgnn enntgtegee tetteeeteg tencattnga anttanteee 180
tggnccccnn necetetecn nectnenect coccetecg nenecteenn etttttntan 240
netteceeat eteenteece eetnanngte ecaaeneegn cageaatnne neaettnete 300
neteenence teenneegtt ettetnttet enaentntne nennntneen tgeenntnaa 360
annotetece energeaane gattetetee eteenennan etnteeaete entnettete 420
nenegeteet nttentenne ceaecteten eettegneee cantaenete neeneeettn 480
cgnntcnttn nnntcctcnn accncccncc tcccttcncc cctcttctcc ccqqtntntc 540
tetetecene nnenenneet enneeentee nngegneent tteegeeeen enceneentt 600
cettentene cantecaten entntnecat netneetnee neteacneee getneeceen 660
ntctctttca cacngtcc
<210> 53
<211> 502
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 139, 146, 215, 217, 257, 263, 289, 386, 420, 452, 457, 461,
466, 482, 486
<223> n = A, T, C or G
<400> 53
tgaagateet ggtgtegeea tgggeegeeg eeeegeeegt tgttaceggt attgtaaqaa 60
caageegtae ecaaagtete gettetgeeg aggtgteeet gatgeeaaaa ttegeatttt 120
tgacctgggg cggaaaaang caaaantgga tgagtctccg ctttgtggcc acatggtgtc 180
agatcaatat gagcagctgt cctctgaagc cctgnangct gcccgaattt gtgccaataa 240
gtacatggta aaaagtngtg gcnaagatgc ttccatatcc gggtgcggnt ccaccccttc 300
cacgtcatcc gcatcaacaa gatgttgtcc tgtgctgggg ctgacaggct cccaacaggc 360
atgcgaagtg cctttggaaa acccanggca ctgtggccag ggttcacatt gggccaattn 420
```

```
atcatgttca tccgcaccaa ctgcagaaca angaacntgt naattnaagc cctgcccagg 480
gncaanttca aatttcccgg cc
<210> 54
<211> 494
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 431, 442, 445
<223> n = A,T,C or G
<400> 54
actagtccaa gaaaaatatg cttaatgtat attacaaagg ctttgtatat gttaacctgt 60
tttaatgcca aaagtttgct ttgtccacaa tttccttaag acctcttcag aaagggattt 120
gtttgcctta atgaatactg ttgggaaaaa acacagtata atgagtgaaa agggcagaag 180
caagaaattt ctacatctta gcgactccaa gaagaatgag tatccacatt tagatggcac 240
attatgagga ctttaatctt tccttaaaca caataatgtt ttcttttttc ttttattcac 300
atgatttcta agtatatttt tcatgcagga cagtttttca accttgatgt acagtgactg 360
tgttaaattt ttctttcagt ggcaacctct ataatcttta aaatatggtg agcatcttgt 420
ctgttttgaa ngggatatga cnatnaatct atcagatggg aaatcctgtt tccaagttag 480
aaaaaaaaa aaaa
<210> 55
<211> 606
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 375, 395, 511, 542, 559, 569, 578, 581
<223> n = A,T,C or G
<400> 55
actagtaaaa agcagcattg ccaaataatc cctaattttc cactaaaaat ataatgaaat 60
gatgttaagc tttttgaaaa gtttaggtta aacctactgt tgttagatta atgtatttgt 120
tgcttccctt tatctggaat gtggcattag cttttttatt ttaaccctct ttaattctta 180
ttcaattcca tgacttaagg ttggagagct aaacactggg atttttggat aacagactga 240
cagttttgca taattataat cggcattgta catagaaagg atatggctac cttttgttaa 300
atctgcactt tctaaatatc aaaaaaggga aatgaagtat aaatcaattt ttgtataatc 360
tgtttgaaac atgantttta tttgcttaat attanggctt tgcccttttc tgttagtctc 420
ttgggatcct gtgtaaaact gttctcatta aacaccaaac agttaagtcc attctctggt 480
actagctaca aattccgttt catattctac ntaacaattt aaattaactg aaatatttct 540
anatggtcta cttctgtcnt ataaaaacna aacttgantt nccaaaaaaa aaaaaaaaa 600
aaaaaa
                                                                606
<210> 56
<211> 183
<212> DNA
<213> Homo sapiens
<400> 56
actagtatat ttaaacttac aggcttattt gtaatgtaaa ccaccatttt aatgtactgt 60
aattaacatg gttataatac gtacaatcct tccctcatcc catcacacaa ctttttttgt 120
183
```

```
<210> 57
<211> 622
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 358, 368, 412, 414, 425, 430, 453, 455, 469, 475, 495, 499,
529, 540, 564, 575, 590
<223> n = A, T, C or G
<400> 57
actagtcact actgtcttct ccttgtagct aatcaatcaa tattcttccc ttgcctgtgg 60
gcagtggaga gtgctgctgg gtgtacgctg cacctgccca ctgagttggg gaaagaggat 120
aatcagtgag cactgttctg ctcagagctc ctgatctacc ccaccccta ggatccagga 180
ctgggtcaaa gctgcatgaa accaggccct ggcagcaacc tgggaatggc tggaggtggg 240
agagaacctg acttetettt eceteteeet ecteeaacat tactggaact etateetgtt 300
agggatette tgagettgtt teeetgetgg gtgggacaga agacaaagga gaagggangg 360
totacaanaa gcagcccttc titgtcctct ggggttaatg agcttgacct ananttcatg 420
gaganaccan aagcctctga tttttaattt contnaaatg tttgaagtnt atatntacat 480
atatatattt ctttnaatnt ttgagtcttt gatatgtctt aaaatccant ccctctgccn 540
gaaacctgaa ttaaaaccat gaanaaaaat gtttncctta aagatgttan taattaattg 600
aaacttgaaa aaaaaaaaaa aa
<210> 58
<211> 433
<212> DNA
<213> Homo sapiens
<400> 58
qaacaaattc tqattqqtta tqtaccqtca aaaqacttqa aqaaatttca tqattttqca 60
gtgtggaagc gttgaaaatt gaaagttact gcttttccac ttgctcatat agtaaaggga 120
tcctttcagc tgccagtgtt gaataatgta tcatccagag tgatgttatc tgtgacagtc 180
accagettta agetgaacca ttttatgaat accaaataaa tagacetett gtactgaaaa 240
catatttgtg actttaatcg tgctgcttgg atagaaatat ttttactggt tcttctgaat 300
tgacagtaaa cctgtccatt atgaatggcc tactgttcta ttatttgttt tgacttgaat 360
ttatccacca aagacttcat ttgtgtatca tcaataaagt tgtatgtttc aactgaaaaa 420
aaaaaaaaa aaa
<210> 59
<211> 649
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 22, \overline{190}, 217, 430, 433, 484, 544, 550, 577, 583, 594
<223> n = A,T,C or G
<400> 59
actagttatt atctgacttt enggttataa teattetaat gagtgtgaag tageetetgg 60
tgtcatttgg atttgcattt ctctgatgag tgatgctatc aagcaccttt gctggtgctg 120
ttggccatat gtgtatgttc cctggagaag tgtctgtgct gagccttggc ccacttttta 180
attaggcgtn tgtcttttta ttactgagtt gtaaganttc tttatatatt ctggattcta 240
gaccettate agatacatgg tttqcaaata ttttctccca ttctqtqqqt tqtqttttca 300
ctttatcgat aatgtcctta gacatataat aaatttgtat tttaaaagtg acttgatttg 360
ggctgtgcaa ggtgggctca cgcttgtaat cccagcactt tgggagactg aggtgggtgg 420
atcatatgan gangetagga gttcgaggtc agcctggcca gcatagcgaa aacttgtctc 480
```

```
tacnaaaaat acaaaaatta gtcaggcatg gtggtgcacg tctgtaatac cagcttctca 540
ggangctgan gcacaaggat cacttgaacc ccagaangaa gangttgcag tganctgaag 600
atcatgccag ggcaacaaaa atgagaactt gtttaaaaaa aaaaaaaaa
<210> 60
<211> 423
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 209, 222, 277, 389, 398
<223> n = A, T, C or G
<400> 60
actagttcag gccttccagt tcactgacaa acatggggaa gtgtgcccag ctggctggaa 60
acctggcagt gataccatca agcctgatgt ccaaaagagc aaagaatatt tctccaagca 120
gaagtgagcg ctgggctgtt ttagtgccag gctgcggtgg gcagccatga gaacaaaacc 180
tcttctgtat tttttttc cattagtana acacaagact cngattcagc cgaattgtgg 240
tgtcttacaa ggcagggctt tcctacaggg ggtgganaaa acagcctttc ttcctttggt 300
aggaatggcc tgagttggcg ttgtgggcag gctactggtt tgtatgatgt attagtagag 360
caacccatta atcttttgta gtttgtatna aacttganct gagaccttaa acaaaaaaaa 420
aaa
<210> 61
<211> 423
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 195, 285, 295, 329, 335, 340, 347, 367, 382, 383, 391, 396,
4.18
<223> n = A, T, C or G
<400> 61
cgggactgga atgtaaagtg aagttcggag ctctgagcac gggctcttcc cgccqggtcc 60
caggtctgag tatggctggg agtcgggggc cacaggcctc tagctgtgct gctcaagaag 180
actggatcag ggtanctaca agtggccggg ccttgccttt gggattctac cctgttccta 240
atttggtgtt ggggtgeggg gteeetggee eeetttteea eactneetee eteengaeag 300
caacctccct tggggcaatt gggcctggnt ctccncccgn tgttgcnacc ctttgttggt 360
ttaaggnett taaaaatgtt anntttteee ntgeengggt taaaaaagga aaaaactnaa 420
aaa
                                                                423
<210> 62
<211> 683
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 218, 291, 305, 411, 416, 441, 443, 453, 522, 523, 536, 542,
547, 566, 588, 592, 595, 603, 621, 628, 630, 632, 644, 645,
648, 655, 660, 672, 674, 676, 677, 683
<223> n = A,T,C or G
<400> 62
```

WO 02/47534 PCT/US01/47576 26

```
gctggagagg ggtacggact ttcttggagt tgtcccaggt tggaatgaga ctgaactcaa 60
 gaagagaccc taagagactg gggaatggtt cctgccttca ggaaagtgaa agacgcttag 120
 gctgtcaaca cttaaaggaa gtccccttga agcccagagt ggacagacta gacccattga 180
. tggggccact ggccatggtc cgtggacaag acattccngt gggccatggc acaccggggg 240
 tgtcnttgga ctttcttccc attccctcct ccccaaatgc acttcccctc ctccctctgc 360
 coctcotgtg tttttggaat totgtttocc toaaaattgt taatttttta nttttngacc 420
 atgaacttat gtttggggtc nangttcccc ttnccaatgc atactaatat attaatggtt 480
 atttatttt gaaatatttt ttaatgaact tggaaaaaat tnntggaatt tccttncttc 540
 cnttttnttt gggggggtg ggggntggg ttaaaatttt tttggaancc cnatnggaaa 600
 ttnttacttg gggccccct naaaaaantn anttccaatt cttnnatngc ccctnttccn 660
 ctaaaaaaa ananannaaa aan
 <210> 63
 <211> 731
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> 237, 249, 263, 288, 312, 317, 323, 326, 337, 352, 362, 370,
 377, 400, 411, 414, 434, 436, 446, 457, 473, 486, 497, 498, 502, 512, 531, 546, 554, 563, 565, 566, 588, 597, 608, 611,
 613, 615, 627, 632, 640, 641, 644, 654, 660, 663, 665
 <223> n = A, T, C or G
 <221> misc feature
 <222> 671, 678, 692, 697, 698, 699, 704, 705, 712, 714, 717, 718,
 719, 723, 725, 730, 731
 <223> n = A, T, C or G
 <400> 63
 actagtcata aagggtgtgc gcgtcttcga cgtggcggtc ttggcgccac tgctgcgaga 60
 cccggccctg gacctcaagg tcatccactt ggtgcgtgat ccccgcgcgg tggcgagttc 120
 acggatccgc tcgcgccacg gcctcatccg tgagagccta caggtggtgc gcagccgaga 180
 ccgcgagetc accgcatgcc cttcttggag gccgcgggcc acaagcttgg cgcccanaaa 240
 gaaggegtng ggggcccgca aantaccacg ctctgggcgc tatggaangt cctcttgcaa 300
 taatattggt tnaaaanctg canaanagcc cctgcanccc cctgaactgg gntgcagggc 360
 cncttacctn gtttggntgc ggttacaaag aacctgtttn ggaaaaccct nccnaaaacc 420
 ttccgggaaa attntncaaa tttttnttgg ggaattnttg ggtaaacccc ccnaaaatgg 480
 gaaacntttt tgccctnnaa antaaaccat tnggttccgg gggccccccc ncaaaaccct 540
 tttttntttt tttntgcccc cantnncccc ccggggcccc tttttttngg ggaaaanccc 600
 ccccctncc nanantttta aaagggnggg anaatttttn nttncccccc gggncccccn 660
 ggngntaaaa nggtttcncc cccccgaggg gnggggnnnc ctcnnaaacc cntntcnnna 720
 ccncnttttn n
                                                                   731
 <210> 64
 <211> 313
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> 240
 <223> n = A, T, C or G
 <400> 64
 actagttqtq caaaccacqa ctqaaqaaaq acqaaaaqtq qqaaataact tqcaacqtct 60
```

```
gttagagatg gttgctacac atgttgggtc tgtagagaaa catcttgagg agcagattgc 120
taaagttgat agagaatatg aagaatgcat gtcagaagat ctctcggaaa atattaaaga 180
gattagagat aagtatgaga agaaagctac tctaattaag tcttctgaag aatgaagatn 240
aaatgttgat catgtatata tatccatagt gaataaaatt gtctcagtaa agttgtaaaa 300
aaaaaaaaa aaa
<210> 65
<211> 420
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 400, 402, 403, 404, 405, 406, 409, 411, 412, 414, 415, 416
<223> n = A,T,C or G
<400> 65
actagttccc tggcaggcaa gggcttccaa ctgaggcagt gcatgtgtgg cagagagagg 60
caggaagctg gcagtggcag cttctgtgtc tagggagggg tgtggctccc tccttccctg 120
tctgggaggt tggagggaag aatctaggcc ttagcttgcc ctcctgccac ccttcccctt 180
gtagatactg ccttaacact ccctcctct tcagctqtqq ctgccaccca agccaggttt 240
ctccgtgctc actaatttat ttccaggaaa ggtgtgtgga agacatgagc cgtgtataat 300
atttgtttta acattttcat tgcaaqtatt gaccatcatc cttggttgtg tatcgttgta 360
acacaaatta atqatattaa aaaqcatcca aacaaaqccn annnnnaana nnannngaaa 420
<210> 66
<211> 676
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 328, 454, 505, 555, 586, 612, 636, 641
<223> n = A, T, C or G
<400> 66
actagtttcc tatgatcatt aaactcattc tcagggttaa gaaaggaatg taaatttctg 60
cctcaatttg tacttcatca ataagttttt gaagagtgca gatttttagt caggtcttaa 120
aaataaactc acaaatctgg atgcatttct aaattctgca aatgtttcct ggggtgactt 180
aacaaggaat aatcccacaa tatacctagc tacctaatac atggagctgg ggctcaaccc 240
actgttttta aggatttgcg cttacttgtg gctgaggaaa aataagtagt tccgagggaa 300
qtaqttttta aatqtqaqct tataqatngq aaacaqaata tcaacttaat tatqqaaatt 360
gttagaaacc tgttctcttg ttatctgaat cttgattgca attactattg tactggatag 420
actocagoco attgcaaagt otoagatato ttanotqtqt agttgaatto ottggaaatt 480
ctttttaaga aaaaattgga gtttnaaaga aataaacccc tttgttaaat gaagcttggc 540
tttttggtga aaaanaatca tcccgcaggg cttattgttt aaaaanggaa ttttaagcct 600
ccctggaaaa anttgttaat taaatgggga aaatgntggg naaaaattat ccgttagggt 660
ttaaagggaa aactta
<210> 67
<211> 620
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 419, 493, 519, 568, 605, 610
```

```
<223> n = A, T, C or G
<400> 67
caccattaaa gctgcttacc aagaacttcc ccagcatttt gacttccttg tttgatagct 60
gaattgtgag caggtgatag aagagccttt ctagttgaac atacagataa tttgctgaat 120
acattccatt taatgaaggg gttacatctg ttacgaagct actaagaagg agcaagagca 180
taqqqqaaaa aaatctqatc aqaacqcatc aaactcacat gtgccccctc tactacaaac 240
agattgtagt gctgtggtgg tttattccgt tgtgcagaac ttgcaagctg agtcactaaa 300
cccaaaqaqa qqaaattata qqttaqttaa acattgtaat cccaggaact aagtttaatt 360
cacttttgaa gtgttttgtt ttttattttt ggtttgtctg atttactttg ggggaaaang 420
ctaaaaaaaa aqqqatatca atctctaatt cagtgcccac taaaaagttgt ccctaaaaaag 480
tetttactgg aanttatggg actttttaag etceaggtnt tttggteete caaattaace 540
ttgcatgggc cccttaaaat tgttgaangg cattcctgcc tctaagtttg gggaaaattc 600
ccccnttttn aaaatttgga
<210> 68
<211> 551
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 286, 464, 480, 501, 502, 518, 528, 533, 536, 537, 538, 539,
540, 541, 543, 544, 545, 547, 548, 549
<223> n = A, T, C or G
<400> 68
actagtagct ggtacataat cactgaggag ctatttctta acatgctttt atagaccatg 60
ctaatqctaq accaqtattt aaqqqctaat ctcacacctc cttagctgta agagtctggc 120
ttagaacaga cctctctgtg caataacttg tggccactgg aaatccctgg gccggcattt 180
gtattggggt tgcaatgact cccaagggcc aaaagagtta aaggcacgac tgggatttct 240
tctgagactg tggtgaaact ccttccaagg ctgagggggt cagtangtgc tctgggaggg 300
acteggeace actttgatat teaacaagee acttgaagee caattataaa attgttattt 360
tacagctgat ggaactcaat ttgaaccttc aaaactttgt tagtttatcc tattatattg 420
ttaaacctaa ttacatttgt ctagcattgg atttggttcc tgtngcatat gttttttcn 480
cctatgtgct cccctcccc nnatcttaat ttaaaccnca attttgcnat tcnccnnnnn 540
                                                                   551
nannnannna a
<210> 69
<211> 396
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 235, 310, 323, 381
<223> n = A,T,C or G
<400> 69
cagaaatgga aagcagagtt ttcatttctg tttataaacg tctccaaaca aaaatggaaa 60
gcagagtttt cattaaatcc ttttaccttt ttttttctt ggtaatcccc tcaaataaca 120
gtatgtggga tattgaatgt taaagggata tttttttcta ttatttttat aattgtacaa 180
aattaagcaa atgttaaaag ttttatatgc tttattaatg ttttcaaaag gtatnataca 240
tgtgatacat tttttaagct tcagttgctt gtcttctggt actttctgtt atgggctttt 300
qqqqaqccan aaaccaatct acnatctctt tttqtttqcc aqqacatqca ataaaattta 360
                                                                   396
aaaaataaat aaaaactatt naqaaattga aaaaaa
```

```
<211> 536
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 388, 446, 455
<223> n = A, T, C or G
<400> 70
actagtgcaa aagcaaatat aaacatcgaa aaggcgttcc tcacgttagc tgaagatatc 60
cttcqaaaqa cccctqtaaa aqaqcccaac aqtqaaaatq taqatatcaq caqtqqaqqa 120
ggcgtgacag gctggaagag caaatgctgc tgagcattct cctgttccat cagttgccat 180
ccactacccc gttttctctt cttgctgcaa aataaaccac tctgtccatt tttaactcta 240
aacagatatt tttgtttctc atcttaacta tccaaqccac ctattttatt tgttctttca 300
tctgtgactg cttgctgact ttatcataat tttcttcaaa caaaaaaatg tatagaaaaa 360
tcatgtctgt gacttcattt ttaaatgnta cttgctcagc tcaactgcat ttcagttgtt 420
ttatagtcca gttcttatca acattnaaac ctatngcaat catttcaaat ctattctgca 480
aattgtataa gaataaaagt tagaatttaa caattaaaaa aaaaaaaaa aaaaaa
<210> 71
<211> 865
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 22, 35, 39, 56, 131, 138, 146, 183, 194, 197, 238, 269, 277,
282, 297, 316, 331, 336, 340, 341, 346, 349, 370, 376, 381,
382, 392, 396, 397, 401, 433, 444, 445, 454, 455, 469, 472,
477, 480, 482, 489, 497, 499, 511, 522, 526, 527
<223> n = A, T, C or G
<221> misc feature
<222> 545, 553, 556, 567, 574, 580, 610, 613, 634, 638, 639, 663,
672, 689, 693, 694, 701, 704, 713, 723, 729, 732, 743, 744, 749, 761, 765, 767, 769, 772, 774, 780, 783, 788, 792, 803,
810, 824, 840, 848
<223> n = A, T, C or G
<400> 71
gacaaagcgt taggagaaga anagaggcag ggaanactnc ccaggcacga tggccncctt 60
cccaccagea accagegece eccaccagee eccagegecg gaegacgaag actecateet 120
ggattaatct nacctctntc gcctgnccca ttcctacctc ggaggtggag gccggaaagg 180
tencaceaag aganaanetg etgecaacae caacegeece ageeetggeg ggeacganag 240
gaaactggtg accaatctgc agaattctna gaggaanaag cnaggggccc cgcgctnaga 300
cagagetgga tatgangeca gaccatggae netaeneeen neaatneana egggaetgeg 360
gaagatggan gaccenegae nngateagge engetnneca nececeace cetatgaatt 420
attcccgctg aangaatctc tgannggctt ccannaaagc gcctccccnc cnaacgnaan 480
tncaacatng ggattanang ctgggaactg naaggggcaa ancctnnaat atccccagaa 540
acaanctete cenaanaaac tggggeneet catnggtggn accaactatt aactaaaccg 600
cacgccaagn aantataaaa ggggggcccc tccncggnng accccctttt gtcccttaat 660
ganggttatc enecttgegt accatggtne cennttetgt ntqnatgttt ceneteceet 720
concetaint enageegaac tennatitue eegggggtge natenaning incheetiin 780
ttngttgncc engecettte egneggaach egttteeceg ttantaaegg eacceggggn 840
aagggtgntt ggccccctcc ctccc
                                                                     865
```

```
<211> 560
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 83, 173, 183, 186, 209, 211, 215, 255, 321, 322, 323, 335,
344, 357, 361, 368, 394, 412, 415, 442, 455, 469, 472, 475,
487, 513, 522, 528, 531, 534, 546
<223> n = A, T, C or G
<400> 72
cctggacttg tcttggttcc agaacctgac gacccggcga cggcgacgtc tcttttgact 60
aaaagacagt gtccagtgct ccngcctagg agtctacggg gaccgcctcc cgcgccgcca 120
ccatgcccaa cttctctggc aactggaaaa tcatccgatc ggaaaacttc gangaattgc 180
tenaantget gggggtgaat gtgatgetna ngaanattge tgtggetgea gegteeaage 240
cagcagtgga gatcnaacag gagggagaca ctttctacat caaaacctcc accaccgtgc 300
qcaccacaaa qattaacttc nnnqttqqqq aqqantttqa qqancaaact qtgqatngga 360
ngcctgtnaa aacctggtga aatgggagaa tganaataaa atggtctgtg ancanaaact 420
cctgaaagga gaaggccccc anaactcctg gaccngaaaa actgacccnc cnatngggga 480
actgatnett gaaceetgaa egggegggat ganeettttt tnttgeenee naangggtte 540
tttccntttc cccaaaaaaa
<210> 73
<211> 379
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 8, 17, 18, 21, 26, 29, 30, 32, 53, 56, 67, 71, 81, 102, 104,
111, 112, 114, 119, 122, 124, 125, 134, 144, 146, 189, 190,
214, 215, 219, 220, 235, 237, 246, 280, 288, 302, 310, 313,
319, 322, 343, 353, 354
<223> n = A,T,C or G
<400> 73
ctggggancc ggcggtnngc nccatntcnn gncgcgaagg tggcaataaa aanccnctga 60
aaccgcncaa naaacatgcc naagatatgg acgaggaaga tngngctttc nngnacaanc 120
qnannqaqqa acanaacaaa ctcnanqaqc tctcaaqcta atqccqcqqq qaaqqqqccc 180
ttggccacnn gtggaattaa gaaatctggc aaanngtann tgttccttgt gcctnangag 240
ataagngace etttatttea tetgtattta aacetetetn tteeetgnea taaettettt 300
tnccacgtan agntggaant anttgttgtc ttggactgtt gtncatttta gannaaactt 360
ttgttcaaaa aaaaaataa
<210> 74
<211> 437
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 145, 355
<223> n = A, T, C or G
<400> 74
actagttcag actgccacgc caaccccaga aaatacccca catgccagaa aagtgaagtc 60
ctaggtgttt ccatctatgt ttcaatctgt ccatctacca ggcctcgcga taaaaacaaa 120
```

```
acaaaaaaac gctgccaggt tttanaagca gttctggtct caaaaccatc aggatcctgc 180
caccagggtt cttttgaaat agtaccacat gtaaaaggga atttggcttt cacttcatct 240
aatcactgaa ttgtcaggct ttgattgata attgtagaaa taagtagcct tctgttgtgg 300
quata aqtta taatcaqtat tcatctcttt gttttttgtc actcttttct ctctnattgt 360
gtcatttgta ctgtttgaaa aatatttctt ctataaaatt aaactaacct gccttaaaaa 420
aaaaaaaaa aaaaaaa
<210> 75
<211> 579
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 440, 513, 539, 551
<223> n = A, T, C or G
<400> 75
ctccgtcgcc gccaagatga tgtgcggggc gccctccgcc acgcagccgg ccaccgccga 60
gacccagcac atcgccgacc aggtgaggtc ccagcttgaa gagaaagaaa acaagaagtt 120
ccctgtgttt aaggccgtgt cattcaagag ccaggtggtc gcggggacaa actacttcat 180
caaggtgcac gtcggcgacg aggacttcgt acacctgcga gtgttccaat ctctccctca 240
tgaaaacaag cccttgacct tatctaacta ccagaccaac aaagccaagc atgatgagct 300
gacctatttc tgatcctgac tttggacaag gcccttcagc cagaagactg acaaagtcat 360
cctccgtcta ccagagcgtg cacttgtgat cctaaaataa gcttcatctc cgggctgtgc 420
ccttggggtg gaaggggcan gatctgcact gcttttgcat ttctcttcct aaatttcatt 480
gtgttgattc tttccttcca ataggtgatc ttnattactt tcagaatatt ttccaaatna 540
gatatatttt naaaatcctt aaaaaaaaaa aaaaaaaaa
<210> 76
<211> 666
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 411, 470, 476, 491, 506, 527, 560, 570, 632, 636, 643, 650,
654, 658
<223> n = A, T, C or G
<400> 76
gtttatccta tctctccaac cagattgtca gctccttgag ggcaagagcc acagtatatt 60
tccctgtttc ttccacagtg cctaataata ctgtggaact aggttttaat aattttttaa 120
ttgatgttgt tatgggcagg atggcaacca gaccattgtc tcagagcagg tgctggctct 180
ttcctggcta ctccatgttg gctagcctct ggtaacctct tacttattat cttcaggaca 240
ctcactacag ggaccaggga tgatgcaaca tccttgtctt tttatgacag gatgtttgct 300
cagcttctcc aacaataaaa agcacgtggt aaaacacttg cggatattct ggactgtttt 360
taaaaaatat acagtttacc gaaaatcata ttatcttaca atgaaaagga ntttatagat 420
cagccagtga acaacctttt cccaccatac aaaaattcct tttcccgaan gaaaanggct 480
ttctcaataa ncctcacttt cttaanatct tacaagatag ccccganatc ttatcgaaac 540
tcattttagg caaatatgan ttttattgtn cgttacttgt ttcaaaattt ggtattgtga 600
atatcaatta ccaccccat ctcccatgaa anaaanggga aanggtgaan ttcntaancg 660
cttaaa
                                                                   666
<210> 77
<211> 396
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc feature
\langle 222 \rangle 31, \overline{5}4, 125, 128, 136, 163, 168, 198
<223> n = A, T, C or G
<400> 77
ctgcagcccg ggggatccac taatctacca nggttatttg gcagctaatt ctanatttgg 60
atcattgccc aaagttgcac ttgctggtct cttgggattt ggccttggaa aggtatcata 120
catanganta tgccanaata aattccattt ttttgaaaat canctccntg gggctggttt 180
tggtccacag cataacangc actgcctcct tacctgtgag gaatgcaaaa taaagcatgg 240
attaagtgag aagggagact ctcagccttc agcttcctaa attctgtgtc tgtgactttc 300
gaagtttttt aaacctctga atttgtacac atttaaaatt tcaagtgtac tttaaaataa 360
aatacttcta atgggaacaa aaaaaaaaa aaaaaa
<210> 78
<211> 793
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 309, 492, 563, 657, 660, 703, 708, 710, 711, 732, 740, 748,
758, 762, 765, 787
<223> n = A, T, C or G
<400> 78
gcatcctagc cgccgactca cacaaggcag gtgggtgagg aaatccagag ttgccatgga 60
gaaaattcca gtgtcagcat tcttgctcct tgtggccctc tcctacactc tggccagaga 120
taccacagtc aaacctggag ccaaaaagga cacaaaggac tctcgaccca aactgcccca 180
gaccetetee agaggttggg gtgaccaact catetggact cagacatatg aagaagetet 240
atataaatcc aagacaagca acaaaccctt gatgattatt catcacttgg atgagtgccc 300
acacagtcna gctttaaaga aagtgtttgc tgaaaataaa gaaatccaga aattggcaga 360
gcagtttgtc ctcctcaatc tggtttatga aacaactgac aaacaccttt ctcctgatgg 420
ccagtatgtc ccaggattat gtttgttgac ccatctctga cagttgaagc cgatatcctg 480
ggaagatatt cnaaccgtct ctatgcttac aaactgcaga tacgctctgt tgcttgacac 540
atgaaaaagc tctcaagttg ctnaaaatga attgtaagaa aaaaaatctc cagccttctg 600
tctgtcggct tgaaaattga aaccagaaaa atgtgaaaaa tggctattgt ggaacanatn 660
gacacctgat taggttttgg ttatgttcac cactattttt aanaaaanan nttttaaaat 720
ttggttcaat tntctttttn aaacaatntg tttctacntt gnganctgat ttctaaaaaa 780
aataatnttt ggc
                                                                   793
<210> 79
<211> 456
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 89, 195, 255, 263, 266, 286, 353, 384, 423, 425, 436, 441
<223> n = A,T,C or G
<400> 79
actagtatgg ggtgggaggc cccaccette teccetagge getgttettg etceaaaggg 60
ctccgtggag agggactggc agagctgang ccacctgggg ctggggatcc cactcttctt 120
gcagctgttg agcgcaccta accactggtc atgccccac ccctgctctc cgcacccgct 180
tecteeegae eccangacea ggetaettet ecceteetet tgeeteeete etgeeeetge 240
tgcctctgat cgtangaatt gangantgtc ccgccttgtg gctganaatg gacagtggca 300
```

```
ggggctggaa atgggtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gcncccccc 360
tgcaagaccg agattgaggg aaancatgtc tgctgggtgt gaccatgttt cctctccata 420
aantncccct gtgacnctca naaaaaaaaa aaaaaa
<210> 80
<211> 284
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 283
<223> n = A,T,C or G
<400> 80
ctttgtacct ctagaaaaga taggtattgt gtcatgaaac ttgagtttaa attttatata 60
taaaactaaa agtaatgete actttagcaa cacatactaa aattggaacc atactgagaa 120
gaatagcatg acctccgtgc aaacaggaca agcaaatttg tgatgtgttg attaaaaaga 180
aataaataaa tgtgtatatg tgtaacttgt atgtttatgt ggaatacaga ttgggaaata 240
aaatgtattt cttactgtga aaaaaaaaaa aaaaaaaaa aana
<210> 81
<211> 671
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 388, 505, 600, 603, 615, 642, 644, 660
<223> n = A,T,C or G
<400> 81
gccaccaaca ttccaagcta ccctgggtac ctttgtgcag tagaagctag tgagcatgtg 60
agcaagcggt gtgcacacgg agactcatcg ttataattta ctatctgcca agagtagaaa 120
gaaaggctgg ggatatttgg gttggcttgg ttttgatttt ttgcttgttt gtttgttttg 180
tactaaaaca gtattatctt ttgaatatcg tagggacata agtatataca tgttatccaa 240
tcaaqatqqc taqaatqqtq cctttctqaq tqtctaaaac ttqacacccc tqqtaaatct 300
ttcaacacac ttccactgcc tgcgtaatga agttttgatt catttttaac cactggaatt 360
tttcaatgcc gtcattttca gttagatnat tttgcacttt gagattaaaa tgccatgtct 420
atttgattag tettattttt ttattttae aggettatea gteteaetgt tggetgteat 480
tgtgacaaag tcaaataaac ccccnaggac aacacacagt atgggatcac atattgtttg 540
acattaagct ttggccaaaa aatgttgcat gtgttttacc tcgacttgct aaatcaatan 600
canaaaggct ggctnataat gttggtggtg aaataattaa tnantaacca aaaaaaaaan 660
aaaaaaaaa a
<210> 82
<211> 217
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 35
<223> n = A, T, C or G
ctgcagatgt ttcttgaatg ctttgtcaaa ttaanaaagt taaagtgcaa taatgtttga 60
agacaataag tggtggtgta tcttgtttct aataagataa acttttttgt ctttgcttta 120
```

```
tcttattagg gagttgtatg tcagtgtata aaacatactg tgtggtataa caggcttaat 180
aaattottta aaaggaaaaa aaaaaaaa aaaaaaa
<210> 83
<211> 460
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 104, 118, 172, 401, 422, 423, 444, 449
<223> n = A, T, C or G
<400> 83
cgcgagtggg agcaccagga tctcgggctc ggaacgagac tgcacggatt gttttaagaa 60
aatggcagac aaaccagaca tgggggaaat cgccagcttc gatnaggcca agctgaanaa 120
aacggagacg caggagaaga acaccetgcc gaccaaagag accattgagc angagaagcg 180
gagtgaaatt teetaagate etggaggatt teetaeeeee gteetetteg agaeeeeagt 240
cgtgatgtgg aggaagagcc acctgcaaga tggacacgag ccacaagctg cactgtgaac 300
ctgggcactc cgcgccgatg ccaccggcct gtgggtctct gaagggaccc cccccaatcg 360
gactgccaaa ttctccggtt tgccccggga tattatacaa nattatttgt atgaataatg 420
annataaaac acacctcgtg gcancaaana aaaaaaaaaa
<210> 84
<211> 323
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 70, 138, 178, 197, 228, 242, 244, 287, 311
<223> n = A,T,C or G
<400> 84
tggtggatct tggctctgtg gagctgctgg gacgggatct aaaagactat tctggaagct 60
gtggtccaan gcattttgct ggcttaacgg gtcccggaac aaaggacacc agctctctaa 120
aattgaagtt tacccganat aacaatcttt tgggcagaga tgcctatttt aacaaacncc 180
gtccctgcgc aacaacnaac aatctctggg aaataccggc catqaacntg ctgtctcaat 240
cnancatete tetagetgae egateatate gteceagatt actacanate ataataattg 300
atttcctgta naaaaaaaa aaa
<210> 85
<211> 771
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 63, 426, 471, 497, 521, 554, 583, 586, 606, 609, 615, 652, 686, 691, 694, 695, 706, 713, 730, 732, 743, 751
<223> n = A,T,C or G
<400> 85
aaactgggta ctcaacactg agcagatctg ttctttgagc taaaaaccat gtgctgtacc 60
aanagtttgc tcctggctgc tttgatgtca gtgctgctac tccacctctg cggcgaatca 120
gaagcaagca actttgactg ctgtcttgga tacacagacc gtattcttca tcctaaattt 180
attgtgggct tcacacggca gctggccaat gaaggctgtg acatcaatgc tatcatcttt 240
cacacaaaga aaaagttgtc tgtgtgcgca aatccaaaac agacttgggt gaaatatatt 300
```

```
gtgcgtctcc tcagtaaaaa agtcaagaac atgtaaaaac tgtggctttt ctggaatgga 360
attggacata gcccaagaac agaaagaact tgctggggtt ggaggtttca cttgcacatc 420
atgganggtt tagtgcttat cttatttgtg cctcctggac ttgtccaatt natgaagtta 480
atcatattqc atcatanttt gctttqttta acatcacatt naaattaaac tgtattttat 540
gttatttata gctntaggtt ttctgtgttt aactttttat acnaantttc ctaaactatt 600
ttggtntant gcaanttaaa aattatattt ggggggggaa taaatattgg antttctgca 660
gccacaagct ttttttaaaa aaccantaca nccnngttaa atggtnggtc ccnaatggtt 720
tttgcttttn antagaaaat ttnttagaac natttgaaaa aaaaaaaaaa a
<210> 86
<211> 628
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 162, 249, 266, 348, 407, 427, 488, 518, 545, 566, 569, 597,
598, 611, 617, 621, 624
<223> n = A,T,C or G
<400> 86
actagtttgc tttacatttt tgaaaagtat tatttttgtc caagtgctta tcaactaaac 60
cttgtgttag gtaagaatgg aatttattaa qtgaatcagt gtgaccettc ttgtcataag 120
attatcttaa agctgaagcc aaaatatgct tcaaaagaaa angactttat tgttcattgt 180
agttcataca ttcaaagcat ctgaactgta gtttctatag caagccaatt acatccataa 240
gtggagaang aaatagatta atgtcnaagt atgattggtg gagggagcaa ggttgaagat 300
aatctggggt tgaaattttc tagttttcat tctgtacatt tttagttnga catcagattt 360
gaaatattaa tgtttacctt tcaatgtgtg gtatcagctg gactcantaa cacccctttc 420
ttccctnggg gatggggaat ggattattgg aaaatggaaa gaaaaaagta cttaaagcct 480
tcctttcnca gtttctggct cctaccctac tgatttancc agaataagaa aacattttat 540
catchtctgc tttattccca ttaatnaant tttgatgaat aaatctgctt ttatgcnnac 600
ccaaggaatt nagtggnttc ntcnttgt
<210> 87
<211> 518
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 384, 421, 486
<223> n = A, T, C or G
<400> 87
ttttttattt tttttagaga gtagttcagc ttttatttat aaatttattg cctgttttat 60
tataacaaca ttatactgtt tatggtttaa tacatatggt tcaaaatgta taatacatca 120
agtagtacag ttttaaaatt ttatgcttaa aacaagtttt gtgtaaaaaa tgcagataca 180
ttttacatgg caaatcaatt tttaagtcat cctaaaaatt gattttttt tgaaatttaa 240
aaacacattt aatttcaatt tetetettat ataacettta ttaetatage atggttteea 300
ctacagttta acaatgcagc aaaattccca tttcacggta aattgggttt taagcggcaa 360
ggttaaaatg ctttgaggat cctnaatacc ctttgaactt caaatgaagg ttatggttgt 420
naatttaacc ctcatgccat aagcagaagc acaagtttag ctgcattttg ctctaaactg 480
taaaancgag cccccgttg aaaaagcaaa agggaccc
                                                                   518
<210> 88
<211> 1844
<212> DNA
<213> Homo sapiens
```

```
<400> 88
gagacagtga atcctagtat caaaggattt ttggcctcag aaaaagttgt tgattatttt 60
ggtatttgct aaagcatttt gagctgcttg gaaaaaggga agtagttgca gtagagtttc 180
ttccatcttc ttggtgctgg gaagccatat atgtgtcttt tactcaagct aaggggtata 240
agettatgtg ttgaatttgc tacatctata tttcacatat tctcacaata agaqaatttt 300
gaaatagaaa tatcatagaa catttaagaa agtttagtat aaataatatt ttgtgtgttt 360
taatcccttt gaagggatct atccaaaqaa aatattttac actgagctcc ttcctacacg 420
tctcagtaac agatcctgtg ttagtctttg aaaatagctc attttttaaa tgtcagtgag 480
tagatgtagc atacatatga tgtataatga cgtgtattat gttaacaatg tctgcagatt 540
ttgtaggaat acaaaacatg gcctttttta taagcaaaac gggccaatga ctagaataac 600
acatagggca atctgtgaat atgtattata agcagcattc cagaaaagta gttggtgaaa 660
taattttcaa gtcaaaaagg gatatggaaa gggaattatg agtaacctct atttttaag 720
ccttgctttt aaattaaacg ctacagccat ttaagccttg aggataataa agcttgagag 780
taataatgtt aggttagcaa aggtttagat gtatcacttc atgcatgcta ccatgatagt 840
aatgcagctc ttcgagtcat ttctggtcat tcaagatatt cacccttttg cccatagaaa 900
gcaccctacc tcacctgctt actgacattg tcttagctga tcacaagatc attatcagcc 960
tccattattc cttactgtat ataaaataca gagttttata ttttcctttc ttcgtttttc 1020
accatattca aaacctaaat ttgtttttgc agatggaatg caaagtaatc aagtgttcgt 1080
gctttcacct agaagggtgt ggtcctgaag gaaagaggtc cctaaatatc ccccaccctg 1140
ggtgctcctc cttccctggt accctgacta ccagaagtca ggtgctagag cagctggaga 1200
agtgcagcag cctgtgcttc cacagatggg ggtgctgctg caacaaggct ttcaatgtgc 1260
ccatcttagg gggagaagct agatcctgtg cagcagcctg gtaagtcctg aggaggttcc 1320
attgctcttc ctgctgctgt cctttgcttc tcaacqqqqc tcqctctaca qtctaqaqca 1380
catgcagcta acttgtgcct ctgcttatgc atgagggtta aattaacaac cataaccttc 1440
atttgaagtt caaaggtgta ttcaggatcc tcaaagcatt ttaaccttgc cqcttaaaac 1500
ccaatttacc gtgaaatggg aattttgctg cattgttaaa ctgtagtgga aaccatgcta 1560
tagtaataaa ggttatataa gaqagaaatt gaaattaaat gtgtttttaa atttcaaaaa 1620
aaaatcaatc tttaggatga cttaaaaatt gatttgccat gtaaaatgta tctgcatttt 1680
ttacacaaaa cttgttttaa gcataaaatt ttaaaactgt actacttgat gtattataca 1740
ttttqaacca tatqtattaa accataaaca gtataatgtt gttataataa aacaggcaat 1800
1844
<210> 89
<211> 523
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 288, 352, 369, 398, 475, 511, 513
<223> n = A, T, C or G
<400> 89
ttttttttt ttttttagt caatccacat ttattgatca cttattatgt accaggcact 60
gggataaaga tgactgttag tcactcacag taaggaagaa aactagcaaa taagacgatt 120
acaatatgat gtagaaaatg ctaagccaga gatatagaaa ggtcctattg ggtccttctg 180
teacettgte tttecacate cetaceette acaggeette cetecagett cetgeeceeg 240
ctccccactg cagatcccct gggattttgc ctagagctaa acgagganat gggccccctg 300
gccctggcat gacttgaacc caaccacaga ctgggaaagg gagcctttcg anagtggatc 360
actttgatna gaaaacacat agggaattga agagaaantc cccaaatggc cacccgtgct 420
ggtgctcaag aaaagtttqc aqaatqqata aatqaaqqat caaqqqaatt aatanatqaa 480
taattgaatg gtggctcaat aagaatgact ncnttgaatg acc
<210> 90
<211> 604
<212> DNA
```

```
<213> Homo sapiens
<220>
<221> misc_feature
<222> 563
<223> n = A,T,C or G
<400> 90
ccagtgtggt ggaatgcaaa gattaccccg gaagctttcg agaagctggg attccctgca 60
gcaaaggaaa tagccaatat gtgtcgtttc tatgaaatga agccagaccg agatgtcaat 120
ctcacccacc aactaaatcc caaagtcaaa agcttcagcc agtttatctc agagaaccag 180
gggageette aagggeatgt agaaaateag etgtteagat aggeetetge accaeaage 240
ctctttcctc tctgatcctt ttcctcttta cggcacaaca ttcatgtttg acagaacatg 300
ctggaatgca attgtttgca acaccgaagg atttcctgcg gtcgcctctt cagtaggaag 360
cactgcattg gtgataggac acggtaattt gattcacatt taacttgcta gttagtgata 420
aggggtggta caccitgtitg gtaaaatgag aagcctcgga aacttgggag citcitctc 480
accactaatg gggaggcag attattactg ggatttctcc tggggtgaat taatttcaag 540
ccctaattgc tgaaattccc ctnggcaggc tccagttttc tcaactgcat tgcaaaattc 600
                                                                   604
cccc
<210> 91
<211> 858
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 570, 591, 655, 664, 667, 683, 711, 759, 760, 765, 777, 787,
792, 794, 801, 804, 809, 817, 820
<223> n = A, T, C or G
<400> 91
tttttttttt tttttttta tgattattat tttttttatt gatctttaca tcctcagtgt 60
tggcagagtt tctgatgctt aataaacatt tgttctgatc agataagtgg aaaaaattgt 120
cattteetta tteaageeat gettttetgt gatattetga teetagttga acatacagaa 180
ataaatgtct aaaacagcac ctcgattctc gtctataaca ggactaagtt cactgtgatc 240
ttaaataagc ttggctaaaa tgggacatga gtggaggtag tcacacttca gcgaagaaag 300
agaatctcct gtataatctc accaggagat tcaacgaatt ccaccacact ggactagtgg 360
atcocceggg ctgcaggaat tcgatatcaa gcttatcgat accgtcgacc tcgagggggg 420
gcccggtacc caattcgccc tatagtgagt cgtattacgc gcgctcactg gccgtcgttt 480
tacaacqtcq tqactqqqaa aaccctqqcq ttacccaact taatcqcctt qcaqcacatc 540
cccctttcgc cagctggcgt aatagcgaan agcccgcacc gatcgccctt ncaacagttg 600
cqcaqcctqa atqqcqaatq qqacqcqccc tqtaqcqqcq cattaaaqcq cqqcnqqqtq 660
tggnggntcc cccacgtgac cgntacactt ggcagcgcct tacgccggtc nttcgctttc 720
ttcccttcct ttctcqcacc gttcqccqqq tttccccqnn agctnttaat cqqqqqnctc 780
cctttanggg tncnaattaa nggnttacng gaccttngan cccaaaaact ttgattaggg 840
ggaaggtccc cgaagggg
<210> 92
<211> 585
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 317, 319, 320, 321, 325, 327, 328, 330, 331, 332, 460, 462,
483, 485, 487, 523, 538, 566, 584
<223> n = A, T, C or G
```

```
<400> 92
gttgaatctc ctggtgagat tatacaggag attctctttc ttcgctgaag tgtgactacc 60
tocactcatg toccatttta gocaagetta tttaagatca cagtgaactt agtcctgtta 120
tagacgagaa tcgaggtgct gttttagaca tttatttctg tatgttcaac taggatcaga 180
atatcacaga aaagcatggc ttgaataagg aaatgacaat tttttccact tatctgatca 240
gaacaaatgt ttattaagca tcagaaactc tgccaacact gaggatgtaa agatcaataa 300
aaaaaataat aatcatnann naaanannan nngaagggcg gccgccaccg cggtggaget 360
ccagcttttg ttccctttag tgagggttaa ttgcgcgctt ggcgttaatc atggtcatag 420
ctgtttcctg tgtgaaattg ttatccggct cacaattccn cncaacatac gagccgggaa 480
gentnangtg taaaageetg ggggtgeeta attgagtgag etnacteaca ttaattgngt 540
tgcgctccac ttgcccgctt ttccantccg ggaaacctgt tcgnc
<210> 93
<211> 567
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 82, 158, 230, 232, 253, 266, 267, 268, 269, 270, 271, 272,
273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284,
285, 286, 287, 295, 303, 307, 314, 349, 352, 354, 356, 366,
369, 379, 382, 386, 393, 404, 427, 428, 446, 450, 452
<223> n = A, T, C or G
<221> misc feature
<222> 453, 454, 459, 462, 480, 481, 483, 488, 493, 501, 509, 511,
512, 518, 520, 525, 526, 532, 541, 557
<223> n = A, T, C or G
<400> 93
cggcagtgtt gctgtctgcg tgtccacctt ggaatctggc tgaactggct gggaggacca 60
agactgcggc tggggtgggc anggaaggga accgggggct gctgtgaagg atcttggaac 120
ttccctgtac ccaccttccc cttgcttcat gtttgtanag gaaccttgtg ccggccaagc 180
ccagtttcct tgtgtgatac actaatgtat ttgctttttt tgggaaatan anaaaaatca 240
attaaattgc tantgtttct ttgaannnnn nnnnnnnnn nnnnnnnggg ggggncgccc 300
ceneggngga aacneeceet tttgtteeet ttaattgaaa ggttaattng enenentgge 360
gttaancent gggccaaanc tngttneccg tgntgaaatt gttnateece teecaaatte 420
cccccnncc ttccaaaccc ggaaancctn annntgttna ancccggggg gttgcctaan 480
ngnaattnaa ccnaacccc ntttaaatng nntttgcncn ccacnngccc cnctttccca 540
nttcggggaa aaccctntcc gtgccca
<210> 94
<211> 620
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 169, 171, 222, 472, 528, 559, 599
<223> n = A, T, C or G
<400> 94
actagtcaaa aatgctaaaa taatttggga gaaaatattt tttaagtagt gttatagttt 60
catgtttatc ttttattatg ttttgtgaag ttgtgtcttt tcactaatta cctatactat 120
gccaatattt ccttatatct atccataaca tttatactac atttgtaana naatatgcac 180
gtgaaactta acactttata aggtaaaaat gaggtttcca anatttaata atctgatcaa 240
```

```
gttcttgtta tttccaaata gaatggactt ggtctgttaa gggctaagga gaagaggaag 300
ataaggttaa aagttgttaa tgaccaaaca ttctaaaaga aatgcaaaaa aaaagtttat 360
tttcaagcct tcgaactatt taaggaaagc aaaatcattt cctaaatgca tatcatttgt 420
gagaatttct cattaatatc ctgaatcatt catttcacta aggetcatgt tnactccgat 480
atgtctctaa gaaagtacta tttcatggtc caaacctggt tgccatantt gggtaaaggc 540
tttcccttaa gtgtgaaant atttaaaatg aaattttcct ctttttaaaa attctttana 600
agggttaagg gtgttgggga
                                                                   620
<210> 95
<211> 470
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 61, 67, 79, 89, 106, 213, 271, 281, 330, 354, 387, 432, 448
<223> n = A, T, C or G
ctcgaccttc tctgcacagc ggatgaaccc tgagcagctg aagaccagaa aagccactat 60
nactttntgc ttaattcang agcttacang attcttcaaa gagtqngtcc agcatccttt 120
gaaacatqag ttcttaccag cagaagcaga cctttacccc accacctcag cttcaacagc 180
agcaggtgaa acaacccatc cagcctccac ctnaggaaat atttgttccc acaaccaagg 240
agccatgcca ctcaaaggtt ccacaacctg naaacacaaa nattccagag ccaggctgta 300
ccaaggtccc tgagccaggg ctgtaccaan gtccctgagc caggttgtac caangtccct 360
gagecaggat gtaccaaggt ccctgancca ggttgtccaa ggtccctgag ccaggctaca 420
ccaagggcct gngccaggca gcatcaangt ccctgaccaa ggcttatcaa
<210> 96
<211> 660
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 299, 311, 360, 426, 538, 540, 542, 553, 563, 565, 592, 603,
604, 618, 633, 647, 649, 651, 653
<223> n = A, T, C or G
<400> 96
tttttttttt tttttttt ggaattaaaa gcaatttaat gagggcagag caggaaacat 60
gcatttettt teattegaat etteagatga accetgagea geegaagace agaaaageea 120
tgaagacttt ctgcttaatt caggggctta caggattctt cagagtgtgt gtgaacaaaa 180
gctttatagt acgtattttt aggatacaaa taagagagag actatggctt ggggtgagaa 240
tgtactgatt acaaggtcta cagacaatta agacacagaa acagatggga agagggtgnc 300
cagcatctgg nggttggctt ctcaagggct tgtctgtgca ccaaattact tctgcttggn 360
cttctgctga gctgggcctg gagtgaccgt tgaaggacat ggctctggta cctttgtgta 420
gcctgncaca ggaactttgg tgtatccttg ctcaggaact ttgatggcac ctggctcagg 480
aaacttgatg aagcettggt caagggacct tgatgettge tggetcaggg accttggngn 540
ancetggget canggacett tgnencaace ttggetteaa gggaceettg gnacateetg 600
gennagggae cettgggnee aaccetggge ttnagggaee etttggntne nancettgge 660
<210> 97
<211> 441
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
\langle 222 \rangle 12, \overline{308}
<223> n = A, T, C or G
<400> 97
gggaccatac anagtattcc tetettcaca ccaggaccag ccactgttgc agcatgagtt 60
cccagcagca gaagcagccc tgcatcccac cccctcagct tcagcagcag caggtgaaac 120
agecttgcca gectecaect caggaaccat geatececaa aaccaaggag eeetgeeaec 180
ccaaggtgcc tgagccctgc caccccaaag tgcctgagcc ctgccagccc aaggttccag 240
agccatqcca ccccaaggtg cctgagccct qcccttcaat agtcactcca gcaccagccc 300
agcagaanac caagcagaag taatgtggtc cacagccatg cccttgagga gccggccacc 360
agatgctgaa tcccctatcc cattctgtgt atgagtccca tttgccttgc aattagcatt 420
ctgtctcccc caaaaaaaa a
<210> 98
<211> 600
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 295, 349, 489, 496, 583
<223> n = A, T, C or G
<400> 98
gtatteetet etteacacca ggaccageca etgttgeage atgagtteec ageageagaa 60
gcagccctgc atcccacccc ctcagcttca gcagcagcag gtgaaacagc cttgccagcc 120
tocaceteag gaaceatgea teeceaaaac caaggageee tgecaceeca aggtgeetga 180
gccctgccac cccaaagtgc ctgagccctg ccagcccaag gttccagagc catgccaccc 240
gcagaagtaa tgtggtccac agccatgccc ttgaggagcc ggccaccana tgctgaatcc 360
cctatcccat tctgtgtatg agtcccattt gccttgcaat tagcattctg tctcccccaa 420
aaaagaatgt gctatgaagc tttctttcct acacactctg agtctctgaa tgaagctgaa 480
ggtcttaant acaganctag ttttcagctg ctcagaattc tctgaagaaa agatttaaga 540
tgaaaggcaa atgattcagc tccttattac cccattaaat tcnctttcaa ttccaaaaaa 600
<210> 99
<211> 667
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 345, 562, 635
<223> n = A, T, C or G
<400> 99
actagtgact gagttcctgg caaagaaatt tgacctggac cagttgataa ctcatgtttt 60
accatttaaa aaaatcagtg aaggatttga gctgctcaat tcaggacaaa gcattcgaac 120
ggtcctgacg ttttgagatc caaagtggca ggaggtctgt gttgtcatgg tgaactggag 180
tttctcttgt gagagttccc tcatctgaaa tcatgtatct gtctcacaaa tacaagcata 240
agtagaagat ttgttgaaga catagaaccc ttataaagaa ttattaacct ttataaacat 300
ttaaagtctt gtgagcacct gggaattagt ataataacaa tgttnatatt tttgatttac 360
attttgtaag gctataattg tatcttttaa gaaaacatac cttggatttc tatgttgaaa 420
tggagatttt taagagtttt aaccagctgc tgcagatata ttactcaaaa cagatatagc 480
gtataaagat atagtaaatg catctcctag agtaatattc acttaacaca ttggaaacta 540
```

```
ttatttttta gatttgaata tnaatgttat tttttaaaca cttgttatga gttacttggg 600
attacatttt gaaatcagtt cattccatga tgcanattac tgggattaga ttaagaaaga 660
cggaaaa
<210> 100
<211> 583
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 404, 506, 514, 527, 528, 538, 548, 556, 568, 569
<223> n = A,T,C or G
<400> 100
gttttgtttg taagatgatc acagtcatgt tacactgatc taaaggacat atatataacc 60
ctttaaaaaa aaaatcactg cctcattctt atttcaagat gaatttctat acagactaga 120
tgtttttctg aagatcaatt agacattttg aaaatgattt aaagtgtttt ccttaatgtt 180
ctctgaaaac aagtttcttt tgtagtttta accaaaaaag tgcccttttt gtcactggat 240
tctcctagca ttcatgattt ttttttcata caatgaaatt aaaattgcta aaatcatgga 300
ctggctttct ggttggattt caggtaagat gtgtttaagg ccagagcttt tctcagtatt 360
tgatttttt ccccaatatt tgattttta aaaatataca catnggtgct gcatttatat 420
ctgctggttt aaaattctgt catatttcac ttctagcctt ttagttatgg caaatcatat 480
tttactttta cttaaagcat ttggtnattt ggantatctg gttctannct aaaaaaanta 540
attetatnaa ttgaantttt ggtactenne catatttgga tee
<210> 101
<211> 592
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 218, 497, 502, 533, 544, 546, 548, 550, 555
<223> n = A,T,C or G
<400> 101
gtggagacgt acaaagagca gccgctcaag acacctggga agaaaaagaa aggcaagccc 60
gggaaacgca aggagcagga aaaqaaaaaa cggcgaactc gctctgcctg gttagactct 120
ggagtgactg ggagtgggct agaaggggac cacctgtctg acacctccac aacgtcgctg 180
gagctcgatt cacggaggca ttgaaatttt cagcaganac cttccaagga catattgcag 240
gattctgtaa tagtgaacat atggaaagta ttagaaatat ttattgtctg taaatactgt 300
aaatgcattg gaataaaact gtctccccca ttgctctatg aaactgcaca ttggtcattg 360
tgaatatttt tttttttgcc aaggctaatc caattattat tatcacattt accataattt 420
attttgtcca ttgatgtatt tattttgtaa atgtatcttg gtgctgctga atttctatat 480
tttttgtaca taatgcnttt anatatacct atcaagtttg ttgataaatg acncaatgaa 540
gtgncncnan ttggnggttg aatttaatga atqcctaatt ttattatccc aa
<210> 102
<211> 587
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 91, 131, 256, 263, 332, 392, 400, 403, 461, 496, 497, 499,
510, 511, 518, 519, 539, 554, 560, 576
<223> n = A, T, C or G
```

```
<400> 102
cgtcctaagc acttagacta catcagggaa gaacacagac cacatccctg tcctcatgcg 60
gettatgttt tetggaagaa agtggagaee nagteettgg etttaggget eeeeggetgg 120
gggctgtgca ntccggtcag ggcgggaagg gaaatgcacc gctgcatgtg aacttacagc 180
ccaggeggat geoectteec ttageactae etggeeteet geateceete geeteatgtt 240
cctcccacct tcaaanaatg aanaacccca tgggcccagc cccttgccct ggggaaccaa 300
ggcagcettc caaaactcag gggctgaagc anactattag ggcaggggct gactttgggt 360
gacactgccc attccctctc agggcagctc angtcacccn ggnctcttga acccagcctg 420
ttcctttgaa aaagggcaaa actgaaaagg gcttttccta naaaaagaaa aaccagggaa 480
ctttgccagg gcttcnntnt taccaaaacn ncttctcnng gatttttaat tccccattng 540
gcctccactt accnggggcn atgccccaaa attaanaatt tcccatc
<210> 103
<211> 496
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 2, 17, 66, 74, 82, 119, 164, 166, 172, 200, 203, 228, 232,
271, 273, 415, 423, 445, 446, 473
<223> n = A, T, C or G
<400> 103
anaggactgg coctaentge tetetetegt cetacetate aatgeceaac atggeagaac 60
etgeaneect tggneactge anatggaaac eteteagtgt ettgaeatea ecetaecent 120
geggtgggte tecaceaeaa ceaetttgae tetgtggtee etgnanggtg gntteteetg 180
actggcagga tggaccttan ccnacatatc cctctgttcc ctctgctnag anaaagaatt 240
cccttaacat gatataatcc acccatgcaa ntngctactg gcccagctac catttaccat 300
ttgcctacag aatttcattc agtctacact ttggcattct ctctggcgat agagtgtggc 360
tgggctgacc gcaaaaggtg ccttacacac tggcccccac cctcaaccgt tgacncatca 420
gangettgce teeteettet gattnneece catgttggat atcagggtge tenagggatt 480
ggaaaagaaa caaaac
<210> 104
<211> 575
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 18, 19, 45, 68, 77, 132, 155, 174, 219, 226, 238, 259, 263,
271, 273, 306, 323, 339, 363, 368, 370, 378, 381, 382, 436,
440, 449, 450, 456, 481, 485, 496, 503, 510, 512, 515, 528,
542, 552
<223> n = A, T, C or G
<400> 104
gcacctgctc tcaatconnc totcaccatg atcotccgcc tgcanaaact cotctgccaa 60
ctatggangt ggtttenggg gtggetettg ceaactggga agaageegtg gtgtetetae 120
ctgttcaact cngtttgtgt ctgggggatc aactnggggc tatggaagcg gctnaactgt 180
tgttttggtg gaagggctgg taattggctt tgggaagtng cttatngaag ttggcctngg 240
gaagttgcta ttgaaagtng centggaagt ngntttggtg gggggttttg etggtggeet 300
ttgttnaatt tgggtgcttt gtnaatggcg gcccctcnc ctgggcaatg aaaaaaatca 360
ccnatgcngn aaacctcnac nnaacagcet gggetteeet cacctegaaa aaagttgete 420
ccccccaaa aaaggncaan cccctcaann tggaangttg aaaaaatcct cgaatgggga 480
nccenaaaac aaaaancccc centtteeen gnaanggggg aaatacenee eececaetta 540
```

```
cnaaaaccct tntaaaaaac ccccqggaa aaaaa
                                                                   575
<210> 105
<211> 619
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 260, 527, 560, 564, 566, 585, 599
<223> n = A, T, C or G
<400> 105
cactagtagg atagaaacac tgtgtcccga gagtaaggag agaagctact attgattaga 60
gcctaaccca ggttaactgc aagaagaggc gggatacttt cagctttcca tgtaactgta 120
tgcataaagc caatgtagtc cagtttctaa gatcatgttc caagctaact gaatcccact 180
tcaatacaca ctcatgaact cctgatggaa caataacagg cccaagcctg tggtatgatg 240
tgcacacttg ctagactcan aaaaaatact actctcataa atgggtggga gtattttggt 300
gacaacctac tttgcttggc tgagtgaagg aatgatattc atatattcat ttattccatg 360
gacatttagt tagtgctttt tatataccag gcatgatgct gagtgacact cttgtgtata 420
tttccaaatt tttgtacagt cgctgcacat atttgaaatc atatattaag acttccaaaa 480
aatgaagtcc ctggtttttc atggcaactt gatcagtaaa ggattcncct ctgtttggta 540
cttaaaacat ctactatatn gttnanatga aattcctttt ccccncctcc cgaaaaaana 600
aagtggtggg gaaaaaaaa
                                                                   619
<210> 106
<211> 506
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 8, 21, 31, 32, 58, 75, 89, 96, 99, 103, 122, 126, 147, 150,
158, 195, 210, 212, 219, 226, 246, 248, 249, 255, 258, 261,
263, 265, 275, 304, 317, 321, 331, 337, 340, 358, 371, 377,
380, 396, 450, 491
<223> n = A,T,C or G
<400> 106
cattggtnct ttcatttgct ntggaagtgt nnatctctaa cagtggacaa agttcccngt 60
gccttaaact ctgtnacact tttgggaant gaaaanttng tantatgata ggttattctg 120
angtanagat gttctggata ccattanatn tgcccccngt gtcagaggct catattgtgt 180
tatgtaaatg gtatntcatt cgctactatn antcaattng aaatanggtc tttgggttat 240
gaatantnng cagchcanct nanangctgt ctgtngtatt cattgtggtc atagcacctc 300
acancattgt aacctenate nagtgagaca nactagnaan tteetagtga tggeteanga 360
ttccaaatgg nctcatntcn aatgtttaaa agttanttaa gtgtaagaaa tacagactgg 420
atgttecace aactagtace tgtaatgaen ggeetgteee aacacatete eettttecat 480
gactgtggta ncccgcatcg gaaaaa
<210> 107
<211> 452
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 289, 317, 378
<223> n = A, T, C or G
```

```
<400> 107
gttgagtctg tactaaacag taagatatct caatgaacca taaattcaac tttgtaaaaa 60
tcttttgaag catagataat attgtttggt aaatgtttct tttgtttggt aaatgtttct 120
tttaaagacc ctcctattct ataaaactct gcatgtagag gcttgtttac ctttctctct 180
ctaaggttta caataggagt ggtgatttga aaaatataaa attatgagat tggttttcct 240
gtggcataaa ttgcatcact gtatcatttt cttttttaac cggtaagant ttcagtttgt 300
tggaaagtaa ctgtganaac ccagtttccc gtccatctcc cttaqqqact acccataqaa 360
catgaaaagg tccccacnga agcaagaaga taagtctttc atggctgctg gttgcttaaa 420
ccactttaaa accaaaaaat tccccttgga aa
<210> 108
<211> 502
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 22, 31, 126, 168, 183, 205, 219, 231, 236, 259, 283, 295,
296, 298, 301, 340, 354, 378, 383, 409, 433, 446, 455, 466,
<223> n = A, T, C or G
<400> 108
atcttcttcc cttaattagt tnttatttat ntattaaatt ttattgcatg tcctggcaaa 60
caaaaagaga ttgtagattg gcttctqqct ccccaaaagc ccataacaga aagtaccaca 120
agaccncaac tgaagcttaa aaaatctatc acatgtataa tacctttnga agaacattaa 180
tanagcatat aaaactttta acatntgctt aatgttgtnc aattataaaa ntaatngaaa 240
aaaatgtccc tttaacatnc aatatcccac atagtgttat ttnaggggat taccnngnaa 300
naaaaaaagg gtagaaggga tttaatgaaa actctgcttn ccatttctgt ttanaaacgt 360
ctccagaaca aaaacttntc aantctttca gctaaccgca tttgagctna ggccactcaa 420
aaactccatt agncccactt tctaanggtc tctanagctt actaancctt ttgacccctt 480
accetggnta etcetgeect ca
<210> 109
<211> 1308
<212> DNA
<213> Homo sapiens
<400> 109
acccgaggte tegetaaaat cateatggat teaettggeg eegteageae tegaettggg 60
tttgatcttt tcaaagagct gaagaaaaca aatgatggca acatcttctt ttcccctgtg 120
ggcatcttga ctgcaattgg catggtcctc ctggggaccc gaggagccac cgcttcccag 180
ttggaggagg tgtttcactc tgaaaaagag acgaagagct caagaataaa ggctgaagaa 240
aaagaggtga ttgagaacac agaagcagta catcaacaat tccaaaagtt tttgactgaa 300
ataagcaaac tcactaatga ttatgaactg aacataacca acaggctgtt tggagaaaaa 360
acatacctct tccttcaaaa atacttagat tatgttgaaa aatattatca tgcatctctg 420
gaacctgttg attttgtaaa tgcagccgat gaaagtcgaa agaagattaa ttcctgggtt 480
gaaagcaaaa caaatgaaaa aatcaaggac ttgttcccag atggctctat tagtagctct 540
accaagetgg tgctggtgaa catggtttat tttaaagggc aatgggacag ggagtttaag 600
aaagaaaata ctaaggaaga gaaattttgg atgaataaga gcacaagtaa atctgtacag 660
atgatgacac agagccattc ctttagcttc actttcctgg aggacttgca ggccaaaatt 720
ctagggattc catataaaaa caacgaccta agcatgtttg tgcttctgcc caacgacatc 780
gatggcctgg agaagataat agataaaata agtcctgaga aattggtaga gtggactagt 840
ccagggcata tggaagaaag aaaggtgaat ctgcacttgc cccqqtttga qqtqqaqqac 900
agttacgatc tagaggcggt cctqqctqcc atqqqqatqq qcqatqcctt caqtqaqcac 960
aaagccgact actcgggaat gtcgtcaggc tccgggttgt acgcccagaa gttcctgcac 1020
agttcctttg tggcagtaac tgaggaaggc accgaggctg cagctgccac tggcataggc 1080
```

WO 02/47534 PCT/US01/47576 45

tttactgtca catccgccc aggtcatgaa aatgttcact gcaatcatcc cttcctgttc 1140 ttcatcaggc acaatgaatc caacagcatc ctcttcttcg gcagattttc ttctccttaa 1200 gatgatcgtt gccatggcat tgctgctttt agcaaaaaac aactaccagt gttactcata 1260 tgattatgaa aatcgtccat tcttttaaat ggtggctcac ttgcattt <210> 110 <211> 391 <212> PRT <213> Homo sapiens <400> 110 Met Asp Ser Leu Gly Ala Val Ser Thr Arg Leu Gly Phe Asp Leu Phe 10 Lys Glu Leu Lys Lys Thr Asn Asp Gly Asn Ile Phe Phe Ser Pro Val 2.0 2.5 Gly Ile Leu Thr Ala Ile Gly Met Val Leu Leu Gly Thr Arg Gly Ala 40 Thr Ala Ser Gln Leu Glu Glu Val Phe His Ser Glu Lys Glu Thr Lys 55 Ser Ser Arg Ile Lys Ala Glu Glu Lys Glu Val Ile Glu Asn Thr Glu 70 75 Ala Val His Gln Gln Phe Gln Lys Phe Leu Thr Glu Ile Ser Lys Leu 90 Thr Asn Asp Tyr Glu Leu Asn Ile Thr Asn Arg Leu Phe Gly Glu Lys 100 105 Thr Tyr Leu Phe Leu Gln Lys Tyr Leu Asp Tyr Val Glu Lys Tyr Tyr 115 120 125 His Ala Ser Leu Glu Pro Val Asp Phe Val Asn Ala Ala Asp Glu Ser 135 140 Arg Lys Lys Ile Asn Ser Trp Val Glu Ser Lys Thr Asn Glu Lys Ile 150 155 Lys Asp Leu Phe Pro Asp Gly Ser Ile Ser Ser Ser Thr Lys Leu Val 165 170 Leu Val Asn Met Val Tyr Phe Lys Gly Gln Trp Asp Arg Glu Phe Lys 180 185 Lys Glu Asn Thr Lys Glu Glu Lys Phe Trp Met Asn Lys Ser Thr Ser 195 200 Lys Ser Val Gln Met Met Thr Gln Ser His Ser Phe Ser Phe Thr Phe 215 220 Leu Glu Asp Leu Gln Ala Lys Ile Leu Gly Ile Pro Tyr Lys Asn Asn 230 235 Asp Leu Ser Met Phe Val Leu Leu Pro Asn Asp Ile Asp Gly Leu Glu 245 250 Lys Ile Ile Asp Lys Ile Ser Pro Glu Lys Leu Val Glu Trp Thr Ser 260 265 270 Pro Gly His Met Glu Glu Arg Lys Val Asn Leu His Leu Pro Arg Phe 280 Glu Val Glu Asp Ser Tyr Asp Leu Glu Ala Val Leu Ala Ala Met Gly 295 300 Met Gly Asp Ala Phe Ser Glu His Lys Ala Asp Tyr Ser Gly Met Ser 310 315 Ser Gly Ser Gly Leu Tyr Ala Gln Lys Phe Leu His Ser Ser Phe Val 325 330 Ala Val Thr Glu Glu Gly Thr Glu Ala Ala Ala Thr Gly Ile Gly 340 345 350 Phe Thr Val Thr Ser Ala Pro Gly His Glu Asn Val His Cys Asn His 360 Pro Phe Leu Phe Phe Ile Arg His Asn Glu Ser Asn Ser Ile Leu Phe

WO 02/47534 PCT/US01/47576 46

```
370
                                            380
Phe Gly Arg Phe Ser Ser Pro
<210> 111
<211> 1419
<212> DNA
<213> Homo sapiens
<400> 111
ggagaactat aaattaagga teecagetae ttaattgaet tatgetteet agttegttge 60
ccagccacca ccgtctctcc aaaaacccga ggtctcgcta aaatcatcat ggattcactt 120
ggcgccgtca gcactcgact tgggtttgat cttttcaaag aqctgaaqaa aacaaatgat 180
ggcaacatct tottttcccc tgtgggcatc ttgactgcaa ttggcatggt cctcctgggq 240
accogaggag ccaccgcttc ccagttggag gaggtgtttc actctgaaaa agagacgaag 300
agctcaagaa taaaggctga agaaaaagag gtggtaagaa taaaggctga aggaaaagag 360
attgagaaca cagaagcagt acatcaacaa ttccaaaagt ttttgactga aataagcaaa 420
ctcactaatg attatgaact gaacataacc aacaggctgt ttggagaaaa aacatacctc 480
ttccttcaaa aatacttaga ttatgttgaa aaatattatc atgcatctct ggaacctgtt 540
gattttgtaa atgcagccga tgaaagtcga aagaagatta attcctgggt tgaaagcaaa 600
acaaatgaaa aaatcaagga cttgttccca gatggctcta ttagtagctc taccaagctq 660
gtgctggtga acatggttta ttttaaaggg caatgggaca gggagtttaa gaaagaaaat 720
actaaggaag agaaattttg gatgaataag agcacaagta aatctgtaca gatgatgaca 780
cagagocatt cotttagott cactttoctg gaggacttgc aggocaaaat totagggatt 840
ccatataaaa acaacgacct aagcatgttt gtgcttctgc ccaacgacat cgatggcctg 900
gagaagataa tagataaaat aagtootgag aaattggtag agtggactag tocagggcat 960
atggaagaaa gaaaggtgaa tctgcacttg ccccggtttg aggtggagga cagttacgat 1020
ctagaggcgg teetggetge catggggatg ggegatgeet teagtgagea caaageegae 1080
tactcgggaa tgtcgtcagg ctccgggttg tacgcccaga agttcctgca cagttccttt 1140
gtggcagtaa ctgaggaagg caccgaggct gcagctgcca ctggcatagg ctttactgtc 1200
acateegeee caggicatga aaatgiteac tgeaateate cetteetgit etteateagg 1260
cacaatgaat ccaacagcat cctcttcttc ggcagatttt cttctcctta aqatgatcgt 1320
tgccatggca ttgctgcttt tagcaaaaaa caactaccag tgttactcat atgattatga 1380
aaatcgtcca ttcttttaaa tggtggctca cttgcattt
<210> 112
<211> 400
<212> PRT
<213> Homo sapiens
<400> 112
Met Asp Ser Leu Gly Ala Val Ser Thr Arg Leu Gly Phe Asp Leu Phe
                                    10
Lys Glu Leu Lys Lys Thr Asn Asp Gly Asn Ile Phe Phe Ser Pro Val
                                25
Gly Ile Leu Thr Ala Ile Gly Met Val Leu Leu Gly Thr Arg Gly Ala
                            40
Thr Ala Ser Gln Leu Glu Glu Val Phe His Ser Glu Lys Glu Thr Lys
                        55
Ser Ser Arg Ile Lys Ala Glu Glu Lys Glu Val Val Arg Ile Lys Ala
                    70
Glu Gly Lys Glu Ile Glu Asn Thr Glu Ala Val His Gln Gln Phe Gln
Lys Phe Leu Thr Glu Ile Ser Lys Leu Thr Asn Asp Tyr Glu Leu Asn
                                105
                                                    110
Ile Thr Asn Arg Leu Phe Gly Glu Lys Thr Tyr Leu Phe Leu Gln Lys
                            120
```

```
Tyr Leu Asp Tyr Val Glu Lys Tyr Tyr His Ala Ser Leu Glu Pro Val
                       135
                                          140
Asp Phe Val Asn Ala Ala Asp Glu Ser Arg Lys Lys Ile Asn Ser Trp
                   150
                                       155
Val Glu Ser Lys Thr Asn Glu Lys Ile Lys Asp Leu Phe Pro Asp Gly
               165
                                  170
Ser Ile Ser Ser Ser Thr Lys Leu Val Leu Val Asn Met Val Tyr Phe
                               185 · 190
           180
Lys Gly Gln Trp Asp Arg Glu Phe Lys Lys Glu Asn Thr Lys Glu Glu
                           200
                                               205
Lys Phe Trp Met Asn Lys Ser Thr Ser Lys Ser Val Gln Met Met Thr
                       215
                                           220
Gln Ser His Ser Phe Ser Phe Thr Phe Leu Glu Asp Leu Gln Ala Lys
                   230
                                       235
Ile Leu Gly Ile Pro Tyr Lys Asn Asn Asp Leu Ser Met Phe Val Leu
               245
                                   250
Leu Pro Asn Asp Ile Asp Gly Leu Glu Lys Ile Ile Asp Lys Ile Ser
           260
                               265
Pro Glu Lys Leu Val Glu Trp Thr Ser Pro Gly His Met Glu Glu Arg
                           280
                                               285
Lys Val Asn Leu His Leu Pro Arg Phe Glu Val Glu Asp Ser Tyr Asp
                       295
                                           300
Leu Glu Ala Val Leu Ala Ala Met Gly Met Gly Asp Ala Phe Ser Glu
                   310
                                       315
His Lys Ala Asp Tyr Ser Gly Met Ser Ser Gly Ser Gly Leu Tyr Ala
               325
                                   330
Gln Lys Phe Leu His Ser Ser Phe Val Ala Val Thr Glu Glu Gly Thr
           340
                               345
                                                   350
Glu Ala Ala Ala Thr Gly Ile Gly Phe Thr Val Thr Ser Ala Pro
                           360
                                               365
Gly His Glu Asn Val His Cys Asn His Pro Phe Leu Phe Phe Ile Arg
                       375
                                           380
His Asn Glu Ser Asn Ser Ile Leu Phe Phe Gly Arg Phe Ser Ser Pro
385
                   390
                                       395
```

<210> 113

<211> 957

<212> DNA

<213> Homo sapiens

<400> 113

ctcgaccttc tctgcacagc ggatgaaccc tgagcagctg aagaccagaa aagccactat 60 gactttctgc ttaattcagg agcttacagg attcttcaaa gagtgtgtcc agcatccttt 120 gaaacatgag ttcttaccag cagaagcaga cctttacccc accacctcag cttcaacagc 180 agcaggtgaa acaacccagc cagcctccac ctcaggaaat atttgttccc acaaccaagg 240 agccatgcca ctcaaaggtt ccacaacctg gaaacacaaa gattccaqag ccaqqctgta 300 ccaaggtccc tgagccaggc tgtaccaagg tccctgagcc aggttgtacc aaggtccctg 360 agccaggatg taccaaggtc cctgagccag gttgtaccaa ggtccctgag ccaggctaca 420 ccaaggtccc tgagccaggc agcatcaagg tccctgacca aggettcatc aagtttcctq 480 agccaggtgc catcaaagtt cctgagcaag gatacaccaa agttcctgtg ccaggctaca 540 caaaggtacc agagccatgt cettcaacgg tcactccagg cccagctcag cagaagacca 600 agcagaagta atttggtgca cagacaagcc cttgagaagc caaccaccag atgctggaca 660 coctettece atetgtttet gtgtettaat tgtetgtaga cettgtaate agtacattet 720 caccccaage catagtetet etettatttg tateetaaaa ataeggtaet ataaagettt 780 tgttcacaca cactctgaag aatcctgtaa gcccctgaat taagcagaaa gtcttcatgg 840 cttttctggt cttcggctgc tcagggttca tctgaagatt cgaatgaaaa gaaatgcatg 900

```
<210> 114
<211> 161
<212> PRT
<213> Homo sapiens
<400> 114
Met Ser Ser Tyr Gln Gln Lys Gln Thr Phe Thr Pro Pro Pro Gln Leu
                                    10
Gln Gln Gln Val Lys Gln Pro Ser Gln Pro Pro Pro Gln Glu Ile
            20
                                25
Phe Val Pro Thr Thr Lys Glu Pro Cys His Ser Lys Val Pro Gln Pro
                            40
Gly Asn Thr Lys Ile Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
                        55
                                            60
Gly Cys Thr Lys Val Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
                    70
                                        75
Gly Cys Thr Lys Val Pro Glu Pro Gly Cys Thr Lys Val Pro Glu Pro
Gly Tyr Thr Lys Val Pro Glu Pro Gly Ser Ile Lys Val Pro Asp Gln
                               105
            100
Gly Phe Ile Lys Phe Pro Glu Pro Gly Ala Ile Lys Val Pro Glu Gln
        115
                            120
                                                125
Gly Tyr Thr Lys Val Pro Val Pro Gly Tyr Thr Lys Val Pro Glu Pro
    130
                        135
                                            140
Cys Pro Ser Thr Val Thr Pro Gly Pro Ala Gln Gln Lys Thr Lys Gln
145
                    150
                                        155
Lys
<210> 115
<211> 506
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 8, 21, 31, 32, 58, 75, 89, 96, 99, 103, 122, 126, 147, 150,
158, 195, 210, 212, 219, 226, 246, 248, 249, 255, 258, 261,
263, 265, 275, 304, 317, 321, 331, 337, 340, 358, 371, 377,
380, 396, 450, 491
<223> n = A, T, C or G
<400> 115
cattggtnct ttcatttgct ntggaagtgt nnatctctaa cagtggacaa agttcccngt 60
gccttaaact ctgtnacact tttgggaant gaaaanttng tantatgata ggttattctg 120
angtanagat gttctggata ccattanatn tgcccccngt gtcagaggct catattgtgt 180
tatgtaaatg gtatntcatt cgctactatn antcaattng aaatanggtc tttgggttat 240
gaatantnng cagencanet nanangetgt etgtngtatt cattgtggte atageacete 300
acancattgt aacctenate nagtgagaca nactagnaan tteetagtga tggeteanga 360
ttccaaatgg nctcatntcn aatgtttaaa agttanttaa gtgtaagaaa tacagactgg 420
atgttccacc aactagtacc tgtaatgacn ggcctgtccc aacacatctc ccttttccat 480
                                                                   506
gactgtggta ncccgcatcg gaaaaa
<210> 116
<211> 3079
<212> DNA
```

WO 02/47534 PCT/US01/47576

<213> Homo sapiens

<400> 116

ggatccccgg gtttcctaaa ccccccacag agtcctgccc aggccaaaga gcaaggaaaa 60 ggtcaaaggg cagaaaaaat gctgagttag gaggagctat ggaaggataa acctggcctt 120 aaagaggtca aagtggttta tagggggcgc tgagggcttc ccacattctc tggcctaaac 180 cttgcaggca gatctgccca gtgggctctg ggatagctgt gccttcccta acaaaaaaat 240 tgtgcacaaa aggatgaaac tctattttcc ctctagcaca taaccaagaa tataaggcta 300 cagattgcct ttcccagagg gaaaaccctg cagcaacctg ctgcctggaa aagtgtaaga 360 gcagatcact ggggaatcgt ttgccccccg ctgatggaca gcttccccaa gctccaaggg 420 caggtgetca gcatgtaccg tactgggatg gttgtcaata ctcctggtcc tgtaagagtc 480 ccaggacact gccatgccaa tgcccctca gttcctggca tcctttttgg gctgctcaca 540 qccccaqcct ctatqqtqaa qacatacttq ctaqcaqcqt caccaacttg ttgccaagag 600 atcagtgctc gaaggcaagg ttatttctaa ctgagcagag cctgccagga agaaagcgtt 660 tgcaccccac accactgtgc aggtgtgacc ggtgagctca cagctgcccc ccaggcatgc 720 ccagcccact taatcatcac agctcgacag ctctctcgcc cagcccagtt ctggaaggga 780 taaaaagggg catcaccgtt cctgggtaac agagccacct tctgcgtcct gctgagctct 840 gttctctcca gcacctccca acccactagt gcctggttct cttgctccac caggaacaag 900 ccaccatgtc tcgccagtca agtgtgtctt ccggagcggg gggcagtcgt agcttcagca 960 cegectetge cateaceceg tetgtetece geaceagett caceteegtg teeeggteeg 1020 ggggtggcgg tggtggtggc ttcggcaggg tcagccttgc gggtgcttgt ggagtgggtg 1080 gctatggcag ccggagcctc tacaacctgg ggggctccaa gaggatatcc atcagcacta 1140 gtggtggcag cttcaggaac cggtttggtg ctggtgctgg aggcggctat ggctttggag 1200 gtggtgccgg tagtggattt ggtttcggcg gtggagctgg tggtggcttt gggctcggtg 1260 geggagetgg etttggaggt ggetteggtg geeetggett teetgtetge eeteetggag 1320 gtatecaaga ggteactgte aaccagagte teetgactee ceteaacetg caaategace 1380 ccagcatcca gagggtgagg accgaggagc gcgagcagat caagaccctc aacaataagt 1440 ttgcctcctt catcgacaag gtgcggttcc tggagcagca gaacaaggtt ctggaaacaa 1500 agtggaccct gctgcaggag cagggcacca agactgtgag gcagaacctg gagccgttgt 1560 tegageagta cateaacaac eteaggagge agetggaeag categtgggg gaaeggggee 1620 gcctggactc agagctgaga aacatgcagg acctggtgga agacttcaag aacaagtatg 1680 aggatgaaat caacaagcgt accactgctg agaatgagtt tgtgatgctg aagaaggatg 1740 tagatgctgc ctacatgaac aaggtggagc tggaggccaa ggttgatgca ctgatggatg 1800 agattaactt catgaagatg ttctttgatg cggagctgtc ccagatgcag acgcatgtct 1860 ctgacacctc agtggtcctc tccatggaca acaaccgcaa cctggacctg gatagcatca 1920 tcgctgaggt caaggcccag tatgaggaga ttgccaaccg cagccggaca gaagccgagt 1980 cctggtatca gaccaagtat gaggagctgc agcagacagc tggccggcat ggcgatgacc 2040 tccgcaacac caagcatgag atctctgaga tgaaccggat gatccagagg ctgagagccg 2100 agattgacaa tgtcaagaaa cagtgcgcca atctgcagaa cgccattgcg gatgccgagc 2160 agcgtgggga gctggccctc aaggatgcca ggaacaagct ggccgagctg gaggaggccc 2220 tgcagaaggc caagcaggac atggcccggc tgctgcgtga gtaccaggag ctcatgaaca 2280 ccaagctggc cctggacgtg gagatcgcca cttaccgcaa gctgctggag ggcgaggaat 2340 gcagactcag tggagaagga gttggaccag tcaacatctc tgttgtcaca agcagtgttt 2400 cctctggata tggcagtggc agtggctatg gcggtggcct cggtggaggt cttggcggcg 2460 gcctcggtgg aggtcttgcc ggaggtagca gtggaagcta ctactccagc agcagtgggg 2520 gtgtcggcct aggtggtggg ctcagtgtgg ggggctctgg cttcagtgca agcagtagcc 2580 gagggctggg ggtgggcttt ggcagtggcq ggggtagcag ctccagcgtc aaatttgtct 2640 ccaccacctc ctcctcccqq aagagcttca agagctaaqa acctqctqca agtcactqcc 2700 ttccaagtgc agcaacccag cccatggaga ttgcctcttc taggcagttg ctcaagccat 2760 gttttatcct tttctggaga gtagtctaga ccaagccaat tgcagaacca cattctttgg 2820 ttcccaggag agccccattc ccagccctq gtctcccqtg ccgcagttct atattctgct 2880 tcaaatcagc cttcaggttt cccacagcat ggcccctgct gacacgagaa cccaaagttt 2940 toccaaatot aaatoatoaa aacagaatoo coaccocaat cocaaatttt gttttggtto 3000 taactacctc cagaatgtgt tcaataaaat gttttataat ataagctggt gtgcagaatt 3060 3079 gtttttttt tctacccaa

<210> 117 <211> 6921

50

PCT/US01/47576

<212> DNA <213> Homo sapiens

<400> 117

gaattctgac tgtccactca aaacttctat tccgatcaaa gctatctgtg actacagaca 60 aattgagata accatttaca aagacgatga atgtgttttg gcgaataact ctcatcgtgc 120 taaatggaag gtcattagtc ctactgggaa tgaggctatg gtcccatctg tgtgcttcac 180 cgttcctcca ccaaacaaag aagcggtgga ccttgccaac agaattgagc aacagtatca 240 gaatgtcctg actctttggc atgagtctca cataaacatg aagagtgtag tatcctggca 300 ttatctcatc aatgaaattg atagaattcg agctagcaat gtggcttcaa taaagacaat 360 gctacctggt gaacatcagc aagttctaag taatctacaa tctcgttttg aagattttct 420 qqaaqatagc caqqaatccc aaqtcttttc aqqctcaqat ataacacaac tqqaaaaqqa 480 ggttaatgta tgtaagcagt attatcaaga acttcttaaa tctgcagaaa gagaggagca 540 agaggaatca gtttataatc tctacatctc tgaagttcga aacattagac ttcggttaga 600 gaactgtgaa gatcggctga ttagacagat tcgaactccc ctggaaagag atgatttgca 660 tgaaagtgtg ttcagaatca cagaacagga gaaactaaag aaagagctgg aacgacttaa 720 agatgatttg ggaacaatca caaataagtg tgaggagttt ttcagtcaag cagcagcctc 780 ttcatcagtc cctaccctac gatcagagct taatgtggtc cttcagaaca tgaaccaagt 840 ctattctatg tcttccactt acatagataa gttgaaaact gttaacttgg tgttaaaaaa 900 cactcaaget geagaageee tegtaaaaet etatgaaaet aaaetgtgtg aagaagaage 960 agttataget gacaagaata atattgagaa tetaataagt aetttaaage aatggagate 1020 tgaagtagat gaaaagagac aggtattcca tgccttagag gatgagttgc agaaagctaa 1080 agccatcagt gatgaaatgt ttaaaacgta taaagaacgg gaccttgatt ttgactggca 1140 caaagaaaaa gcagatcaat tagttgaaag gtggcaaaat gttcatgtgc agattgacaa 1200 caggttacgg gacttagagg gcattggcaa atcactgaag tactacagag acacttacca 1260 tcctttagat gattggatcc agcaggttga aactactcag agaaagattc aggaaaatca 1320 gcctgaaaat agtaaaaccc tagccacaca gttgaatcaa cagaagatgc tggtgtccga 1380 aatagaaatg aaacagagca aaatggacga gtgtcaaaaa tatgcagaac agtactcagc 1440 tacagtgaag gactatgaat tacaaacaat gacctaccgg gccatggtag attcacaaca 1500 aaaateteea gtgaaaegee gaagaatgea gagtteagea gateteatta tteaagagtt 1560 catggaccta aggactcgat atactgccct ggtcactctc atgacacaat atattaaatt 1620 tgctggtgat tcattgaaga ggctggaaga ggaggagatt aaaaggtgta aggagacttc 1680 tgaacatggg gcatattcag atctgcttca gcgtcagaag gcaacagtgc ttgagaatag 1740 caaacttaca ggaaagataa gtgagttgga aagaatggta gctgaactaa agaaacaaaa 1800 gtcccgagta gaggaagaac ttccgaaggt cagggaggct gcagaaaatg aattgagaaa 1860 gcagcagaga aatgtagaag atatctctct gcagaagata agggctgaaa gtgaagccaa 1920 gcagtaccgc agggaacttg aaaccattgt gagagagaag gaagccgctg aaagagaact 1980 ggagcgggtg aggcagctca ccatagaggc cgaggctaaa agagctgccg tggaagagaa 2040 cctcctgaat tttcgcaatc agttggagga aaacaccttt accagacgaa cactggaaga 2100 tcatcttaaa agaaaagatt taagtctcaa tgatttggag caacaaaaaa ataaattaat 2160 ggaagaatta agaagaaaga gagacaatga ggaagaactc ttgaagctga taaagcagat 2220 ggaaaaagac cttgcatttc agaaacaggt agcagagaaa cagttgaaag aaaagcagaa 2280 aattgaattg gaagcaagaa gaaaaataac tgaaattcag tatacatgta gagaaaatgc 2340 attgccagtg tgtccgatca cacaggctac atcatgcagg gcagtaacgg gtctccagca 2400 agaacatgac aagcagaaag cagaagaact caaacagcag gtagatgaac taacagctgc 2460 caatagaaag gctgaacaag acatgagaga gctgacatat gaacttaatg ccctccagct 2520 tgaaaaaacg tcatctgagg aaaaggctcg tttgctaaaa gataaactag atgaaacaaa 2580 taatacactc agatgcctta agttggagct ggaaaggaag gatcaggcgg agaaagggta 2640 ttctcaacaa ctcagagagc ttggtaggca attgaatcaa accacaggta aagctgaaga 2700 agccatgcaa gaagctagtg atctcaagaa aataaagcgc aattatcagt tagaattaga 2760 atctcttaat catgaaaaaq qqaaactaca aaqaqaaqta qacaqaatca caaqqqcaca 2820 tgctgtagct gagaagaata ttcagcattt aaattcacaa attcattctt ttcgagatga 2880 gaaagaatta gaaagactac aaatctgcca gagaaaatca gatcatctaa aagaacaatt 2940 tgagaaaagc catgagcagt tqcttcaaaa tatcaaagct qaaaaagaaa ataatgataa 3000 aatccaaagg ctcaatgaag aattggagaa aagtaatgag tgtgcagaga tgctaaaaca 3060 aaaagtagag gagcttacta ggcagaataa tgaaaccaaa ttaatgatgc agagaattca 3120 ggcagaatca gagaatatag ttttagagaa acaaactatc cagcaaagat gtgaagcact 3180 gaaaattcag gcagatggtt ttaaaqatca gctacgcagc acaaatgaac acttgcataa 3240

acagacaaaa acagagcagg attttcaaag aaaaattaaa tgcctagaag aagacctggc 3300 gaaaagtcaa aatttggtaa gtgaatttaa gcaaaagtgt gaccaacaga acattatcat 3360 ccagaatacc aagaaagaag ttagaaatct gaatgcggaa ctgaatgctt ccaaagaaga 3420 gaagcgacgc ggggagcaga aagttcagct acaacaagct caggtgcaag agttaaataa 3480 caggttgaaa aaagtacaag acgaattaca cttaaagacc atagaggagc agatgaccca 3540 cagaaagatg gttctgtttc aggaagaatc tggtaaattc aaacaatcag cagaggagtt 3600 tcggaagaag atggaaaaat taatggagtc caaagtcatc actgaaaatg atatttcagg 3660 cattaggctt gactttgtgt ctcttcaaca agaaaactct agagcccaag aaaatgctaa 3720 gctttgtgaa acaaacatta aagaacttga aagacagctt caacagtatc gtgaacaaat 3780 gcagcaaggg cagcacatgg aagcaaatca ttaccaaaaa tgtcagaaac ttgaggatga 3840 gctgatagcc cagaagcgtg aggttgaaaa cctgaagcaa aaaatggacc aacagatcaa 3900 agagcatgaa catcaattag ttttgctcca gtgtgaaatt caaaaaaaga gcacagccaa 3960 agactgtacc ttcaaaccag attttgagat gacagtgaag gagtgccagc actctggaga 4020 gctgtcctct agaaacactg gacaccttca cccaacaccc agatcccctc tgttgagatg 4080 gactcaagaa ccacagccat tggaagagaa gtggcagcat cgggttgttg aacagatacc 4140 caaagaagtc caattccagc caccaggggc tccactcgag aaagagaaaa gccagcagtg 4200 ttactctgag tacttttctc agacaagcac cgagttacag ataacttttg atgagacaaa 4260 ccccattaca agactgtctg aaattgagaa gataagagac caagccctga acaattctag 4320 accacctgtt aggtatcaag ataacgcatg tgaaatggaa ctggtgaagg ttttgacacc 4380 cttagagata gctaagaaca agcagtatga tatgcataca gaagtcacaa cattaaaaca 4440 agaaaagaac ccagttccca gtgctgaaga atggatgctt gaagggtgca gagcatctgg 4500 tggactcaag aaaggggatt tccttaagaa gggcttagaa ccagagacct tccagaactt 4560 tgatggtgat catgcatgtt cagtcaggga tgatgaattt aaattccaag ggcttaggca 4620 cactgtgact gccaggcagt tggtggaagc taagcttctg gacatgagaa caattgagca 4680 gctgcgactc ggtcttaaga ctgttgaaga agttcagaaa actcttaaca agtttctgac 4740 ctcagcggcc gagagaatca taatagacaa aatggtggct ttggcatttt tagaagctca 4860 ggctgcaaca ggttttataa ttgatcccat ttcaggtcag acatattctg ttgaagatgc 4920 agttettaaa ggagttgttg acceegaatt eagaattagg ettettgagg eagagaagge 4980 agctgtggga tattcttatt cttctaagac attgtcagtg tttcaagcta tggaaaatag 5040 aatgcttgac agacaaaaag gtaaacatat cttggaagcc cagattgcca gtgggggtgt 5100 cattgaccct gtgagaggca ttcgtgttcc tccagaaatt gctctgcagc aggggttgtt 5160 gaataatgcc atcttacagt ttttacatga gccatccagc aacacaagag ttttccctaa 5220 toccaataac aagcaagote tgtattacte agaattactg cgaatgtgtg tatttgatgt 5280 agagteceaa tgetttetgt ttecatttgg ggagaggaae atttecaate teaatgteaa 5340 gaaaacacat agaatttctg tagtagatac taaaacagga tcagaattga ccgtgtatga 5400 ggctttccag agaaacctga ttgagaaaag tatatatctt gaactttcag ggcagcaata 5460 tcagtggaag gaagctatgt tttttgaatc ctatgggcat tcttctcata tgctgactga 5520 tactaaaaca ggattacact tcaatattaa tgaggctata gagcagggaa caattgacaa 5580 agcettggte aaaaagtate aggaaggeet cateacactt acagaacttg etgattettt 5640 gctgagccgg ttagtcccca agaaagattt gcacagtcct gttgcagggt attggctgac 5700 tgctagtggg gaaaggatct ctgtactaaa agcctcccgt agaaatttgg ttgatcggat 5760 tactgccctc cgatgccttg aagcccaagt cagtacaggg ggcataattg atcctcttac 5820 tggcaaaaag taccgggtgg ccgaagcttt gcatagaggc ctggttgatg aggggtttgc 5880 ccagcagctg cgacagtgtg aattagtaat cacagggatt ggccatccca tcactaacaa 5940 aatgatgtca gtggtggaag ctgtgaatgc aaatattata aataaggaaa tgggaatccg 6000 atgtttggaa tttcagtact tgacaggagg gttgatagag ccacaggttc actctcggtt 6060 atcaatagaa gaggctctcc aagtaggtat tatagatgtc ctcattgcca caaaactcaa 6120 agatcaaaag tcatatgtca gaaatataat atgccctcag acaaaaagaa agttgacata 6180 taaagaagcc ttagaaaaag ctgattttga tttccacaca ggacttaaac tgttagaagt 6240 atctgagccc ctgatgacag gaatttctag cctctactat tcttcctaat gggacatgtt 6300 taaataactg tgcaaggggt gatgcaggct ggttcatgcc actttttcag agtatgatga 6360 tateggetae atatgeagte tgtgaattat gtaacatact etatttettg agggetgeaa 6420 attgctaagt gctcaaaata gagtaagttt taaattgaaa attacataag atttaatgcc 6480 cttcaaatgg tttcatttag ccttgagaat ggttttttga aacttggcca cactaaaatg 6540 ttttttttt tttacgtaga atgtgggata aacttgatga actccaagtt cacagtgtca 6600 tttcttcaga actccccttc attgaatagt gatcatttat taaatgataa attgcactcg 6660 ctgaaagagc acgtcatgaa gcaccatgga atcaaagaga aagatataaa ttcgttccca 6720

```
cagcetteaa getgeagtgt tttagattge ttcaaaaaat gaaaaagttt tgeettttte 6780
gatatagtga ccttctttgc atattaaaat gtttaccaca atgtcccatt tctagttaag 6840
tcttcgcact tgaaagctaa cattatgaat attatgtgtt ggaggagggg aaggattttc 6900
ttcattctgt gtattttccg g
                                                                  6921
<210> 118
<211> 946
<212> DNA
<213> Homo sapiens
<400> 118
cttctgactg ggctcaggct gacaggtaga gctcaccatg gcttcttgtg tccttgtccc 60
ctccccatca cagctgtggt gcagtccacc gtctccagtg gctatggcgg tgccagtggt 120
gtcggcagtg gcttaggcct gggtggagga agcagctact cctatggcag tggtcttggc 180
gttggaggtg gcttcagttc cagcagtggc agagccattg ggggtggcct cagctctgtt 240
ggaggcggca gttccaccat caagtacacc accacctcct cctccagcag gaagagctat 300
aagcactaaa gtgcgtctgc tagctctcgg tcccacagtc ctcaggcccc tctctqqctq 360
cagageeete teeteaggtt geetgteete teetggeete eagteteeee tgetgteeea 420
ggtagagctg gggatgaatg cttagtgccc tcacttcttc tctctctc tataccatct 480
gagcacccat tgctcaccat cagatcaacc tctgatttta catcatgatg taatcaccac 540
tggagcttca ctgttactaa attattaatt tcttgcctcc agtgttctat ctctgaggct 600
gagcattata agaaaatgac ctctgctcct tttcattgca gaaaattgcc aggggcttat 660
ttcagaacaa cttccactta ctttccactg gctctcaaac tctctaactt ataagtgttg 720
tgaaccccca cccaggcagt atccatgaaa gcacaagtga ctagtcctat gatgtacaaa 780
gcctgtatct ctgtgatgat ttctgtgctc ttcactgttt gcaattgcta aataaagcag 840
atttataata catatattct tttactttgc cttgctttgg ggccaaagtt ttgggcttaa 900
actttttat ctgataagtg aatagttgtt tttaaaagat aatcta
                                                                  946
<210> 119
<211> 8948
<212> DNA
<213> Homo sapiens
<400> 119
tcaacagccc ctgctccttg ggcccctcca tgccatgccg taatctctcc cacccgacca 60
acaccaacac ccageteega egeageteet etgegeeett geegeeetee gagecacage 120
tttcctcccg ctcctgcccc cggcccgtcg ccgtctccgc gctcgcagcg gcctcgggag 180
ggcccaggta gcgagcagcg acctcgcgag ccttccgcac tcccgcccgg ttccccggcc 240
gtccgcctat cettggcccc ctccgctttc tccgcgccgg cccgcctcgc ttatgcctcg 300
gegetgagee geteteecga ttgecegeeg acatgagetg caacggagge teccaccege 360
ggatcaacac totgggccgc atgatccgcg ccgagtctgg cccggacctg cqctacqaqq 420
tgaccagegg eggegggge accageagga tgtactatte teggegegge gtgateaceg 480
accagaactc ggacggctac tgtcaaaccg gcacgatgtc caggcaccag aaccagaaca 540
ccatccagga gctgctgcag aactgctccg actgcttgat gcgagcagag ctcatcgtgc 600
agcctgaatt gaagtatgga gatggaatac aactgactcg gagtcgagaa ttggatgagt 660
gttttgccca ggccaatgac caaatggaaa tcctcgacag cttgatcaga gagatgcggc 720
agatgggcca gccctgtgat gcttaccaga aaaggcttct tcagctccaa gagcaaatgc 780
gagcccttta taaagccatc agtgtccctc gagtccgcag ggccagctcc aagggtggtg 840
gaggetacae tigicagagi ggeteiggei gggatgagti caccaaacai gicaccagig 900
aatgtttggg gtggatgagg cagcaaaggg cggagatgga catggtggcc tggggtgtgg 960
acctggcctc agtggagcag cacattaaca gccaccgggg catccacaac tccatcggcg 1020
actategetg geagetggae aaaateaaag eegaeetgeg egagaaatet gegatetaee 1080
agttggagga ggagtatgaa aacctgctga aagcgtcctt tgagaggatg gatcacctgc 1140
gacagctgca gaacatcatt caggccacgt ccagggagat catgtggatc aatgactgcg 1200
aggaggagga gctgctgtac gactggagcg acaagaacac caacatcgct cagaaacagg 1260
aggccttctc catacgcatg agtcaactgg aagttaaaga aaaagagctc aataagctga 1320
```

aacaagaaag tgaccaactt gtcctcaatc agcatccagc ttcagacaaa attgaggcct 1380 atatggacac tctgcagacg cagtggagtt ggattcttca gatcaccaag tgcattgatg 1440 ttcatctgaa agaaaatgct gcctactttc agttttttga agaggcgcag tctactgaag 1500 catacctgaa ggggctccag gactccatca ggaagaagta cccctgcgac aagaacatgc 1560 ccctgcagca cctgctggaa cagatcaagg agctggagaa agaacgagag aaaatccttg 1620 aatacaagcg tcaggtgcag aacttggtaa acaagtctaa gaagattgta cagctgaagc 1680 ctcgtaaccc agactacaga agcaataaac ccattattct cagagctctc tgtgactaca 1740 aacaagatca gaaaatcgtg cataaggggg atgagtgtat cctgaaggac aacaacgagc 1800 gcagcaagtg gtacgtgacg ggcccgggag gcgttgacat gcttgttccc tctgtggggc 1860 tgatcatccc tcctccgaac ccactggccg tggacctctc ttgcaagatt gagcagtact 1920 acquaqccat cttqqctctq tqqaaccaqc tctacatcaa catqaaqaqc ctgqtqtcct 1980 ggcactactg catgattgac atagagaaga tcagggccat gacaatcgcc aagctgaaaa 2040 caatgoggca ggaagattac atgaagacga tagoogacct tgagttacat taccaagagt 2100 tcatcagaaa tagccaaggc tcagagatgt ttggagatga tgacaagcgg aaaatacagt 2160 ctcaqttcac cgatgcccaq aaqcattacc agaccctggt cattcagctc cctggctatc 2220 cccagcacca gacagtgacc acaactgaaa tcactcatca tggaacctgc caagatgtca 2280 accataataa agtaattgaa accaacagag aaaatgacaa gcaagaaaca tggatgctga 2340 tggagctgca gaagattcgc aggcagatag agcactgcga gggcaggatg actctcaaaa 2400 acctccctct agcagaccag gggtcttctc accacatcac agtgaaaatt aacgagctta 2460 agagtgtgca gaatgattca caagcaattg ctgaggttct caaccagctt aaagatatgc 2520 ttgccaactt cagaggttct gaaaagtact gctatttaca gaatgaagta tttggactat 2580 ttcagaaact ggaaaatatc aatggtgtta cagatggcta cttaaatagc ttatgcacag 2640 taagggcact gctccaggct attctccaaa cagaagacat gttaaaggtt tatgaagcca 2700 ggctcactga ggaggaaact gtctgcctgg acctggataa agtggaagct taccgctgtg 2760 gactgaagaa aataaaaaat gacttgaact tgaagaagtc gttgttggcc actatgaaga 2820 cagaactaca gaaagcccag cagatccact ctcagacttc acagcagtat ccactttatg 2880 atctggactt gggcaagttc ggtgaaaaag tcacacagct gacagaccgc tggcaaagga 2940 tagataaaca gatcgacttt agattatggg acctggagaa acaaatcaag caattgagga 3000 attategtga taactateag getttetgea agtggeteta tgategtaaa egeegeeagg 3060 attecttaga atecatgaaa tttggagatt ccaacacagt catgeggttt ttgaatgage 3120 agaagaactt gcacagtgaa atatctggca aacgagacaa atcagaggaa gtacaaaaaa 3180 ttgctgaact ttgcgccaat tcaattaagg attatgagct ccagctggcc tcatacacct 3240 caggactgga aactctgctg aacataccta tcaagaggac catgattcag tccccttctg 3300 gggtgattct gcaagaggct gcagatgttc atgctcggta cattgaacta cttacaagat 3360 ctggagacta ttacaggttc ttaagtgaga tgctgaagag tttggaagat ctgaagctga 3420 aaaataccaa gatcgaagtt ttggaagagg agctcagact ggcccgagat gccaactcgg 3480 aaaactgtaa taagaacaaa ttcctggatc agaacctgca gaaataccag gcagagtgtt 3540 cccagttcaa agcgaagctt gcgagcctgg aggagctgaa gagacaggct gagctggatg 3600 ggaagtcggc taagcaaaat ctagacaagt gctacggcca aataaaagaa ctcaatgaga 3660 agatcacccg actgacttat gagattgaag atgaaaagag aagaagaaaa tctgtggaag 3720 acagatttga ccaacagaag aatgactatg accaactgca gaaagcaagg caatgtgaaa 3780 aggagaacct tggttggcag aaattagagt ctgagaaagc catcaaggag aaggagtacg 3840 agattgaaag gttgagggtt ctactgcagg aagaaggcac ccggaagaga gaatatgaaa 3900 atgagetgge aaaggtaaga aaccactata atgaggagat gagtaattta aggaacaagt 3960 atgaaacaga gattaacatt acgaagacca ccatcaagga gatatccatg caaaaagagg 4020 atgattccaa aaatcttaga aaccagcttg atagactttc aagggaaaat cgagatctga 4080 aggatqaaat tqtcaqqctc aatqacaqca tcttqcaggc cactqaqcag cgaaggcgag 4140 ctgaagaaaa cgcccttcag caaaaggcct gtggctctga gataatgcag aagaagcagc 4200 atctggagat agaactgaag caggtcatgc agcagcgctc tgaggacaat gcccggcaca 4260 agcagtcct ggaggaggt gccaagacca ttcaggacaa aaataaggag atcgagagac 4320 tcaaagctga gtttcaggag gaggccaagc gccgctggga atatgaaaat gaactgagta 4380 aggtaagaaa caattatgat gaggagatca ttagcttaaa aaatcagttt gagaccgaga 4440 tcaacatcac caagaccacc atccaccagc tcaccatgca gaaggaagag gataccagtg 4500 gctaccgggc tcagatagac aatctcaccc gagaaaacag gagcttatct gaagaaataa 4560 agaggctgaa gaacactcta acccagacca cagagaatct caggagggtg gaagaagaca 4620 tccaacagca aaaggccact ggctctgagg tgtctcagag gaaacagcag ctggaggttg 4680 agctgagaca agtcactcag atgcgaacag aggagagcgt aagatataag caatctcttg 4740 atgatgctgc caaaaccatc caggataaaa acaaggagat agaaaggtta aaacaactga 4800

tcgacaaaga aacaaatgac cggaaatgcc tggaagatga aaacgcgaga ttacaaaggg 4860 tccagtatga cctgcagaaa gcaaacagta gtgcgacgga gacaataaac aaactgaagg 4920 ttcaggagca agaactgaca cgcctgagga tcgactatga aagggtttcc caggagagga 4980 ctgtgaagga ccaggatatc acgcggttcc agaactctct gaaagagctg cagctgcaga 5040 agcagaaggt ggaagaggag ctgaatcggc tgaagaggac cgcgtcagaa gactcctgca 5100 agaggaagaa gctggaggaa gagctggaag gcatgaggag gtcgctgaag gagcaagcca 5160 tcaaaatcac caacctgacc cagcagctgg agcaggcatc cattgttaag aagaggagtg 5220 aggatgacct ccggcagcag agggacgtgc tggatggcca cctgagggaa aagcagagga 5280 cccaggaaga gctgaggagg ctctcttctg aggtcgaggc cctgaggcgg cagttactcc 5340 aggaacagga aagtgtcaaa caagctcact tgaggaatga gcatttccag aaggcgatag 5400 aagataaaag cagaagctta aatgaaagca aaatagaaat tgagaggctg cagtctctca 5460 cagagaacct gaccaaggag cacttgatgt tagaagaaga actgcggaac ctgaggctgg 5520 agtacgatga cctgaggaga ggacgaagcg aagcggacag tgataaaaat gcaaccatct 5580 tggaactaag gagccagctg cagatcagca acaaccggac cctggaactg caggggctga 5640 ttaatgattt acagagagag agggaaaatt tgagacagga aattgagaaa ttccaaaagc 5700 aggetttaga ggeatetaat aggatteagg aateaaagaa teagtgtaet eaggtggtae 5760 aggaaagaga gagcettetg gtgaaaatca aagteetgga gcaagacaag gcaaggetge 5820 agaggctgga ggatgagctg aatcgtgcaa aatcaactct agaggcagaa accagggtga 5880 aacagcgcct ggagtgtgag aaacagcaaa ttcagaatga cctgaatcag tggaagactc 5940 aatattcccg caaggaggag gctattagga agatagaatc ggaaagagaa aagagtgaga 6000 gagagaagaa cagtcttagg agtgagatcg aaagactcca agcagagatc aagagaattg 6060 aagagaggtg caggcgtaag ctggaggatt ctaccaggga gacacagtca cagttagaaa 6120 cagaacgctc ccgatatcag agggagattg ataaactcag acagcgccca tatgggtccc 6180 ategagagae ceagactgag tgtgagtgga eegttgacae etceaagetg gtgtttgatg 6240 ggctgaggaa gaaggtgaca gcaatgcagc tctatgagtg tcagctgatc gacaaaacaa 6300 ccttggacaa actattgaag gggaagaagt cagtggaaga agttgcttct gaaatccagc 6360 catteetteg gggtgeagga tetategetg gageatetge tteteetaag gaaaaataet 6420 ctttggtaga ggccaagaga aagaaattaa tcagcccaga atccacagtc atgcttctgg 6480 aggcccaggc agctacaggt ggtataattg atccccatcg gaatgagaag ctgactgtcg 6540 acagtgccat agetegggae eteattgaet tegatgaeeg teageagata tatgeageag 6600 aaaaagctat cactggtttt gatgatccat tttcaggcaa gacagtatct gtttcagaag 6660 ccatcaagaa aaatttgatt gatagagaaa ccggaatgcg cctgctggaa gcccagattg 6720 cttcaggggg tgtagtagac cctgtgaaca gtgtcttttt gccaaaagat gtcgccttgg 6780 cccgggggct gattgataga gatttgtatc gatccctgaa tgatccccga gatagtcaga 6840 aaaactttgt ggatccagtc accaaaaaga aggtcagtta cgtgcagctg aaggaacggt 6900 gcagaatcga accacatact ggtctgctct tgctttcagt acagaagaga agcatgtcct 6960 tccaaggaat cagacaacct gtgaccgtca ctgagctagt agattctggt atattgagac 7020 cgtccactgt caatgaactg gaatctggtc agatttctta tgacgaggtt ggtgagagaa 7080 ttaaggactt cctccagggt tcaagctgca tagcaggcat atacaatgag accacaaaac 7140 agaagcttgg catttatgag gccatgaaaa ttggcttagt ccgacctggt actgctctgg 7200 agttgctgga agcccaagca gctactggct ttatagtgga tcctgttagc aacttgaggt 7260 taccagtgga ggaagcctac aagagaggtc tggtgggcat tgagttcaaa gagaagctcc 7320 tgtctgcaga acgagctgtc actgggtata atgatcctga aacaggaaac atcatctctt 7380 tgttccaagc catgaataag gaactcatcg aaaagggcca cggtattcgc ttattagaag 7440 cacagatege aacegggggg atcattgace caaaggagag ceategttta ceagttgaca 7500 tagcatataa gaggggctat ttcaatgagg aactcagtga gattctctca gatccaagtg 7560 atgataccaa aggatttttt gaccccaaca ctgaagaaaa tcttacctat ctgcaactaa 7620 agaaacaggt gcagacatca caaaagaata ccctcaggaa gcgtagagtg gtcatagttg 7740 acccagaaac caataaagaa atgtctgttc aggaggccta caagaagggc ctaattgatt 7800 atgaaacctt caaagaactg tgtgagcagg aatgtgaatg ggaagaaata accatcacgg 7860 gatcagatgg ctccaccagg gtggtcctgg tagatagaaa gacaggcagt cagtatgata 7920 ttcaagatgc tattgacaag ggccttgttg acaggaagtt ctttgatcag taccgatccg 7980 gcagcctcag cctcactcaa tttgctgaca tgatctcctt gaaaaatggt gtcggcacca 8040 gcagcagcat gggcagtggt gtcagcgatg atgtttttag cagctcccga catgaatcag 8100 taagtaagat ttccaccata tccagcgtca ggaatttaac cataaggagc agctcttttt 8160 cagacaccct ggaagaatcg agccccattg cagccatctt tgacacagaa aacctggaga 8220 aaatctccat tacagaaggt atagagcggg gcatcgttga cagcatcacg ggtcagaggc 8280

```
ttctggaggc tcaggcctgc acaggtggca tcatccaccc aaccacgggc cagaagctgt 8340
cacttcagga cgcagtctcc cagggtgtga ttgaccaaga catggccacc agcgtgaagc 8400
ctgctcagaa agccttcata ggcttcgagg gtgtgaaggg aaagaagaag atgtcagcag 8460
cagaggcagt gaaagaaaaa tggctcccgt atgaggctgg ccagcgcttc ctggagttcc 8520
agtacctcac gggaggtctt gttgacccgg aagtgcatgg gaggataagc accgaagaag 8580
ccatccggaa ggggttcata gatggccgcg ccgcacagag gctgcaagac accagcagct 8640
atgccaaaat cctgacctgc cccaaaacca aattaaaaat atcctataag gatgccataa 8700
ategetecat ggtagaagat ateaetggge tgegeettet ggaageegee teegtgtegt 8760
ccaagggett acceageest tacaacatgt etteggetee ggggteeege teeggetees 8820
getegggate tegeteegga tetegeteeg ggteeeggag tgggteeegg agaggaaget 8880
ttgacgccac agggaattct tcctactctt attcctactc atttagcagt agttctattg 8940
ggcactag
<210> 120
<211> 587
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 91, 131, 256, 263, 332, 392, 400, 403, 461, 496, 497, 499,
510, 511, 518, 519, 539, 554, 560, 576
<223> n = A, T, C or G
<400> 120
cgtcctaagc acttagacta catcagggaa gaacacagac cacatccctg tcctcatgcg 60
gcttatgttt tctggaagaa agtggagacc nagtccttgg ctttagggct ccccggctgg 120
gggctgtgca ntccggtcag ggcgggaagg gaaatgcacc gctgcatgtg aacttacagc 180
ccaggeggat gecetteee ttageactae etggeeteet geateceete geeteatgtt 240
cctcccacct tcaaanaatq aanaacccca tqqqcccaqc cccttqccct qqqqaaccaa 300
ggcagccttc caaaactcag gggctgaagc anactattag ggcaggggct gactttgggt 360
gacactgccc attccctctc agggcagctc angtcacccn ggnctcttga acccagcctg 420
ttcctttgaa aaagggcaaa actgaaaagg gcttttccta naaaaagaaa aaccagggaa 480
ctttgccagg gcttcnntnt taccaaaacn ncttctcnng gatttttaat tccccattng 540
gcctccactt accngggcn atgccccaaa attaanaatt tcccatc
<210> 121
<211> 619
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 260, 527, 560, 564, 566, 585, 599
<223> n = A,T,C or G
<400> 121
cactagtagg atagaaacac tgtgtcccqa gagtaaggag agaagctact attgattaga 60
gcctaaccca ggttaactgc aagaagaggc gggatacttt cagctttcca tgtaactgta 120
tgcataaagc caatgtagtc cagtttctaa gatcatgttc caagctaact gaatcccact 180
tcaatacaca ctcatgaact cctgatggaa caataacagg cccaagcctg tggtatgatg 240
tgcacacttg ctagactcan aaaaaatact actctcataa atgggtggga gtattttggt 300
gacaacctac titgcttggc tgagtgaagg aatgatattc atatattcat ttattccatg 360
gacatttagt tagtgctttt tatataccag gcatgatgct gagtgacact cttgtgtata 420
tttccaaatt tttgtacagt cgctgcacat atttgaaatc atatattaag acttccaaaa 480
aatgaagtcc ctggtttttc atggcaactt gatcagtaaa ggattcncct ctgtttggta 540 ...
```

cttaaaacat aagtggtggg		gttnanatga	aattcctttt	cccncctcc	cgaaaaaana	600 619
<210> 122 <211> 1475 <212> DNA <213> Homo	sapiens					
agegeceega tegtgagega taaatggagg caaagaaatt atggteactt ggaactetge tgggectggg atgtgeaggt gaaaaagee ggeeegett eggeeateta teageeettg actacategt ttgaggtgga aegacattge etatacagee tgactgttgt aagteaceae gagacteagg tgagetggga actettace ceeagggag	cctcgccacc ctccaaaggc aacatgtgtg cggagggcag ttaccgagga cactgtcctt gaaacataat gggcctaaag ctcctctcct	cggctcgcgc atgagagccc agcaatgaac tccaacaagt cactgtgaaa aaggccagca cagcaaacgt tactgcagga ccgcttgtcc ccagaagaat gggggggct agcgccacac cgctcaaggc ctacacaagg atccgttcca ccetcgatgt gagaattcta tccaccggg tgtgctgctg gtctgttccc gccctgaagg agtcacacca ccacccgctt agagactggg	tgetggegeg tteateaagt acttetecaa tagataagte ctgacaccat accatgecea accaagacaa aagagtgeat taaaatttea teaceaceat ctgteaceta actgetteat ttaactecaa actacagege aggagggeag ataaegatee cegaetatet agtgteagea acceaeagtg tecaaggeeg acaageegg aggaagagaa tettgetggt	cctgettete tccatcgaac cattcactgg aaaaacctgc gggccggccc cagatctgat ccggaggcga ggtgcatgac gtgtggcaa cgagaaccag cgtgtgtgga tgattaccca cacgcaaggg tgacacgctt gtgtgcgcag ccagtttggc ctatccggag gcccactac gaaaacagat catgactttg cgtctacacg tggcctggcc	tgcgtcctgg tgtgactgtc tgcaactgcc tatgagggga tgcctgccct gctcttcagc ccctggtgct tgcgcagatg aagactctga ccctggtttg ggcagcctca aagaaggagg gagatgaagt gctcaccaca ccatcccgga acaagctgtg cagctgaaga tacggctctg tcctgccagg actggaattg actggaggt	120 180 240 300 360 420 480 540 600 660 720 780 840 900 1020 1140 1200 1260 1320 1380
<210> 123 <211> 2294 <212> DNA <213> Homo	sapiens					
gccaccatga aaaggcagca tgtgtgtcca gggcagcact cgaggaaagg gtccttcagc cataattact ctaaagccgc tctcctccag attattgggg aggcaccggg gtgatcagcg ctgggtcgct ctaatcctac ctgaagatcc	gagccctgct atgaacttca acaagtactt gtgaaataga ccagcactga aaacgtacca gcaggaaccc ttgtccaaga aagaattaaa gagaattcac ggggctctgt ccacacactg caaggcttaa acaaggacta gttccaagga	ctgccgcagc ggcgcgcctg tcaagttcca ctccaacatt taagtcaaaa caccatgggc tgcccacaga agacaaccgg gtgcatggtg atttcagtgt caccatcgag cacctacgtg cttcattgat ctccaacacg cagcgctgac ggcaggtgt cgatccccag	cttctctgcg tcgaactgtg cactggtgca acctgctatg cggccctgcc tctgatgctc aggcgaccct catgactgcg ggccaaaaga aaccagccct tgtggaggca tacccaaaga caaggggaga acgcttgctc gcgcagccat	tectggtegt actgtetaaa actgeecaaa aggggaatgg tgeectggaa tteagetggg ggtgetatgt cagatggaaa etetgaggee ggtttgegge geeteateag aggaggaeta tgaagtttga accacaacga eeeggaetat	gagcgactcc tggaggaaca gaaattcgga tcacttttac ctctgccact cctggggaaa gcaggtgggc aaagccctcc ccgctttaag catctacagg cccttgctgg catcgtctac ggtggaaaac cattgccttg acagaccatc	120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

```
ggaaaagaga attctaccga ctatctctat ccggagcagc tgaaaatgac tgttgtgaag 1080
ctgatttccc accgggagtg tcagcagccc cactactacg gctctgaagt caccaccaaa 1140
atgctgtgtg ctgctgaccc acagtggaaa acagattcct gccagggaga ctcaggggga 1200
ccctcgtct gttccctcca aggccgcatg actttgactg gaattgtgag ctggggccgt 1260
ggatgtgccc tgaaggacaa gccaggcgtc tacacgagag tctcacactt cttaccctgg 1320
atcogcagtc acaccaagga agagaatggc ctggccctct gagggtcccc agggaggaaa 1380
egggeaceae eegetttett getggttget attttgeagt agagteatet ceateagetg 1440
taagaaqaqc tqqqaatata qqctctqcac agatqqattt gcctgtgcca ccaccagggc 1500
qaacqacaat agctttaccc tcaqqcataq qcctqqqtqc tggctgccca gacccctctg 1560
gccaggatgg aggggtggtc ctgactcaac atgttactga ccagcaactt gtctttttct 1620
ggactgaagc ctgcaggagt taaaaagggc agggcatctc ctgtgcatgg gctcgaaggg 1680
agagecaget ecceegaceg gtgggeattt gtgaggeeca tggttgagaa atgaataatt 1740
tcccaattag gaagtgtaag cagctgaggt ctcttgaggg agcttagcca atgtgggagc 1800
agcggtttgg ggagcagaga cactaacgac ttcagggcag ggctctgata ttccatgaat 1860
gtatcaggaa atatatatgt gtgtgtatgt ttgcacactt gtgtgtgggc tgtgagtgta 1920
agtgtgagta agagctggtg tctgattgtt aagtctaaat atttccttaa actgtgtgga 1980
ctgtgatgcc acacagagtg gtctttctgg agaggttata ggtcactcct ggggcctctt 2040
gggtccccca cgtgacagtg cctgggaatg tattattctg cagcatgacc tgtgaccagc 2100
actgtctcag tttcactttc acatagatgt ccctttcttg gccagttatc ccttcctttt 2160
agcctagttc atccaatcct cactgggtgg ggtgaggacc actcctgtac actgaatatt 2220
tatatttcac tatttttatt tatatttttg taattttaaa taaaagtgat caataaaatg 2280
tgatttttct gatg
<210> 124
<211> 956
<212> DNA
<213> Homo sapiens
<400> 124
gatgagttcc gcaccaagtt tgagacagac caggccctgc gcctgagtgt ggaggccgac 60
atcaatqqcc tqcqcaqqqt qctqqatqaq ctqaccctqq ccaqaqccqa cctggagatg 120
cagattgaga aceteaagga ggagetggee tacetgaaga agaaccaega ggaggagatg 180
aacgccctgc gaggccaggt gggtggtgag atcaatgtgg agatggacgc tgccccaggc 240
qtqqacctqa qccqcatcct caacqaqatq cqtqaccaqt atgagaagat ggcagagaag 300
aaccgcaagg atgccgagga ttggttcttc agcaagacag aggaactgaa ccgcgaggtg 360
gccaccaaca gtgagctggt gcagagtggc aagagtgaga tctcggagct ccggcgcacc 420
atgcaggcct tggagataga gctgcagtcc cagctcagca tgaaagcatc cctggagggc 480
aacctggcgg agacagagaa ccgctactgc gtgcagctgt cccagatcca ggggctgatt 540
ggcagcgtgg aggagcagct ggcccagctt cgctgcgaga tggagcagca gaaccaggaa 600
tacaaaatcc tgctggatgt gaagacgcgg ctggagcagg agattgccac ctaccgccgc 660
ctgctggagg gagaggatgc ccacctgact cagtacaaga aagaaccggt gaccacccgt 720
caggtgcgta ccattgtgga agaggtccag gatggcaagg tcatctcctc ccgcgagcag 780
gtccaccaga ccacccgctg aggactcagc taccccggcc ggccacccag gaggcaggga 840
egeageegee ceatetgeee cacagtetee ggeeteteea geeteageee cetgetteag 900
tcccttcccc atgcttcctt gcctgatgac aataaaagct tgttgactca gctatg
                                                                  956
<210> 125
<211> 486
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 16
<223> n = A, T, C or G
<400> 125
aaattatata tagtgnttca gctcccattg tggtgttcat agtcttctag gaacagataa 60
```

```
acttaagtat tcaattcact cttggcattt tttctttaat ataggctttt tagcctattt 120
ttggaaaact gettttette tgagaacett attetgaatg teateaactt taccaaacet 180
tctaagtcca gagctaactt agtactgttt aagttactat tgactgaatt ttcttcattt 240
tctgtttagc cagtgttacc aaggtaagct ggggaatgaa gtataccaac ttctttcaga 300
gcattttagg acattatggc agctttagaa ggctgtcttg tttctagcca agggagagcc 360
agcgcaggtt ttggatacta gagaaagtca tttgcttgta ctattgccat tttagaaagc 420
tctgatgtga attcaaattt tacctctgtt acttaaagcc aacaatttta aggcagtagt 480
tttact
<210> 126
<211> 3552
<212> DNA
<213> Homo sapiens
<400> 126
cggcaggcag gtctcgtctc ggcaccctcc cggcgcccgc gttctcctgg ccctgcccgg 60
catecegatg geogeogetg ggeoceggeg etcegtgege ggageogtet geotgeatet 120
gctgctgacc ctcgtgatct tcagtcgtgc tggtgaagcc tgcaaaaagg tgatacttaa 180
tgtaccttct aaactagagg cagacaaaat aattggcaga gttaatttgg aagagtgctt 240
caggtctgca gacctcatcc ggtcaagtga tcctgatttc agagttctaa atgatgggtc 300
agtgtacaca gccagggctg ttgcgctgtc tgataagaaa agatcattta ccatatggct 360
ttctgacaaa aggaaacaga cacagaaaga ggttactgtg ctgctagaac atcagaagaa 420
ggtatcgaag acaagacaca ctagagaaac tgttctcagg cgtgccaaga ggagatgggc 480
acctattcct tgctctatgc aagagaattc cttgggccct ttcccattgt ttcttcaaca 540
agttgaatct gatgcagcac agaactatac tgtcttctac tcaataagtg gacgtggagt 600
tgataaagaa cctttaaatt tgttttatat agaaagagac actggaaatc tattttgcac 660
teggeetgtg gategtgaag aatatgatgt tittgatttg attgettatg egteaactge 720
agatggatat tcagcagatc tgcccctccc actacccatc agggtagagg atgaaaatga 780
caaccaccct gttttcacag aagcaattta taattttgaa gttttggaaa gtagtagacc 840
tggtactaca gtgggggtgg tttgtgccac agacagagat gaaccggaca caatgcatac 900
gcgcctgaaa tacagcattt tgcagcagac accaaggtca cctgggctct tttctgtgca 960
tcccagcaca ggcgtaatca ccacagtctc tcattatttg gacagagagg ttgtagacaa 1020
gtactcattg ataatgaaag tacaagacat ggatggccag ttttttggat tgataggcac 1080
atcaacttgt atcataacag taacagattc aaatgataat gcacccactt tcagacaaaa 1140
tgcttatgaa gcatttgtag aggaaaatgc attcaatgtg gaaatcttac gaatacctat 1200
agaagataag gatttaatta acactgccaa ttggagagtc aattttacca ttttaaaggg 1260
aaatgaaaat ggacatttca aaatcagcac agacaaagaa actaatgaag gtgttctttc 1320
tgttgtaaag ccactgaatt atgaagaaaa ccgtcaagtg aacctggaaa ttggagtaaa 1380
caatgaagcg ccatttgcta gagatattcc cagagtgaca gccttgaaca gagccttggt 1440
tacagttcat gtgagggatc tggatgaggg gcctgaatgc actcctgcag cccaatatgt 1500
gcggattaaa gaaaacttag cagtggggtc aaagatcaac ggctataagg catatgaccc 1560
cgaaaataga aatggcaatg gtttaaggta caaaaaattg catgatccta aaggttggat 1620
caccattgat gaaatttcag ggtcaatcat aacttccaaa atcctggata gggaggttga 1680
aactcccaaa aatgagttgt ataatattac agtcctggca atagacaaag atgatagatc 1740
atgtactgga acacttgctg tgaacattga agatgtaaat gataatccac cagaaatact 1800
tcaagaatat gtagtcattt gcaaaccaaa aatggggtat accgacattt tagctgttga 1860
tcctgatgaa cctgtccatg gagctccatt ttatttcagt ttgcccaata cttctccaga 1920
aatcagtaga ctgtggagcc tcaccaaagt taatgataca gctgcccgtc tttcatatca 1980
gaaaaatgct ggatttcaag aatataccat tcctattact gtaaaagaca gggccggcca 2040
agctgcaaca aaattattga gagttaatct gtgtgaatgt actcatccaa ctcagtgtcg 2100
tgcgacttca aggagtacag gagtaatact tggaaaatgg gcaatccttg caatattact 2160
gggtatagca ctgctctttt ctgtattgct aactttagta tgtggagttt ttggtgcaac 2220
taaagggaaa cgttttcctg aagatttagc acagcaaaac ttaattatat caaacacaga 2280
agcacctgga gacgatagag tgtgctctgc caatggattt atgacccaaa ctaccaacaa 2340
ctctagccaa ggtttttgtg gtactatggg atcaggaatg aaaaatggag ggcaggaaac 2400
cattgaaatg atgaaaggag gaaaccagac cttggaatcc tgccgggggg ctgggcatca 2460
tcataccctg gactcctgca ggggaggaca cacggaggtg gacaactgca gatacactta 2520
ctcggagtgg cacagtttta ctcaaccccg tctcggtgaa aaattgcatc gatgtaatca 2580
```

```
gaatgaagac cgcatgccat cccaagatta tgtcctcact tataactatg agggaagagg 2640
atctccagct ggttctgtgg gctgctgcag tgaaaagcag gaagaagatg gccttgactt 2700
tttaaataat ttggaaccca aatttattac attagcagaa gcatgcacaa agagataatg 2760
tcacagtgct acaattaggt ctttgtcaga cattctggag gtttccaaaa ataatattgt 2820
aaagttcaat ttcaacatgt atgtatatga tgattttttt ctcaattttg aattatgcta 2880
ctcaccaatt tatattttta aagcaagttg ttgcttatct tttccaaaaa gtgaaaaatg 2940
ttaaaacaga caactggtaa atctcaaact ccaqcactgg aattaaggtc tctaaagcat 3000
ctgctctttt tttttttac agatatttta gtaataaata tgctggataa atattagtcc 3060
aacaatagct aagttatgct aatatcacat tattatgtat tcactttaag tgatagttta 3120
aaaaataaac aagaaatatt gagtatcact atgtgaagaa agttttggaa aagaaacaat 3180
gaagactgaa ttaaattaaa aatgttgcag ctcataaaga attggactca cccctactgc 3240
actaccaaat tcatttgact ttggaggcaa aatgtgttga agtgccctat gaagtagcaa 3300
ttttctatag gaatatagtt ggaaataaat gtgtqtgtgt atattattat taatcaatqc 3360
aatatttaaa tgaaatgaga acaaagagga aaatggtaaa aacttgaaat gaggctgggg 3420
tatagtttgt cctacaatag aaaaaagaga gagcttccta ggcctgggct cttaaatgct 3480
gcattataac tgagtctatg aggaaatagt tcctgtccaa tttgtgtaat ttgtttaaaa 3540
ttgtaaataa at
<210> 127
<211> 754
<212> DNA
<213> Homo sapiens
<400> 127
ttttttttt ttgtcattgt tcattgattt taatgagaaa gctaagagag gaaataagta 60
gcctttcaaa ggtcacacag aagtaagtga cagatccagg attcatatcc aagcattctg 120
gctctagtgt ccatgcttct caaccattat gacccaatat tcaaccaaat caatactgaa 180
ggacacgtga aatgtatccg gtattttact attacaaaca aaaatccaat gaacattctt 240
gaagacatac acaaaaataa tggttacaat agaagttact ggaattgaaa tttttggttca 300
acctatatta aaatgtaagg cttttgatat agctaataga tttttgaaat gatcagtctt 360
aacgtttgta ggggagcaca ctcctgcatq gggaaaaqat tcactqtgaa qcacaqaqca 420
cctttatggt tggatcatct tgtcattaaa gttcaggcgt tatctatcct gtaagtggca 480
gaatcaagac tgcaatatcg cctqcttttc tttttaactc atqttttccc ttgactacac 540
tggtcctcaa agtaaaaccc ctgtgtcagt gtactattca tggaatactc tgcaattata 600
accaccttct aatactttta atacccaatc aaaatttatt atacatatgt atcatagata 660
ctcatctgta aagctgtgct tcaaaatagt gatctcttcc caacattaca atatatatta 720
atgatgtcga acctgcccgg gcggccqctc gaag
                                                                  754
<210> 128
<211> 374
<212> DNA
<213> Homo sapiens
<400> 128
aggttttgat taaaaaggca aatgatttta ttgttcgata atcttttaaa aaaataagag 60
gaaggagtaa aattaaagat gaaagatgat ttttatttcc ttgtgacctc tatatccccc 120
ttcccctgcc cttggtaagt aactcttgat ggagaaagga ttaaagactc ttatttaacc 180
aaaaaacaga gccagctaat catttccaaa ggttagtatc tccctgctga cctcttcttt 240
ggtttaattq aataaaacta tatgttcata tatgtattaa aacaactcag aataacatct 300
tttcttcctt agttaaggca ttataagggc tatactatca tccataataa ccaaggcaat 360
aacttaaaaa gctg
<210> 129
<211> 546
<212> DNA
<213> Homo sapiens
<400> 129
```

```
agtgtgatgg atatctgcag aattcgggct aagcgtggtc gcggcccgag gtctggaact 60
teccageacy tgaaaaggag ecteetgage tgaetegget aaageeeeac tttegeteet 120
cctcatttct gcctactgat ttccttggag cattcatctg aatattaccg tttgctgtgt 180
aacctggtac atacatagca tgactccctg gaatagagtg ggctggggtg cttatgctgg 240
gagagtgatt gacatgcact ttcaagctat atctaccatt tgcagcaaaa gagaaaaaat 300
acctcgagta aattccatca ttttttataa catcagcacc tgctccatca tcaaggagtc 360
tcaqcgtaac aggatctcca gtctctggct caactgtggc agtgacagtg gcattaagaa 420
tgggataaaa tccctgtttc acattggcat aaatcatcac aggatgagga aaatggaggc 480
tgtctctttc cacaaaggct tccacagtgg ctgggggcac agacctgccc gggcggccgc 540
<210> 130
<211> 5156
<212> DNA
<213> Homo sapiens
<400> 130
accaaccgag gcgccgggca gcgacccctg cagcggagac agagactgag cggcccggca 60
ccgccatgcc tgcgctctgg ctgggctgct gcctctgctt gtcgctcctc ctgcccgcag 120
cccgggccac ctccaggagg gaagtctgtg attgcaatgg gaagtccagg cagtgtatct 180
ttgatcggga acttcacaga caaactggta atggattccg ctgcctcaac tgcaatgaca 240
acactgatgg cattcactgc gagaagtgca agaatggctt ttaccggcac agagaaaggg 300
accgctgttt gccctgcaat tgtaactcca aaggttctct tagtgctcga tgtgacaact 360
ccggacggtg cagctgtaaa ccaggtgtga caggagccag atgcgaccga tgtctgccag 420
gettecacat geteaeggat geggggtgea eccaagacea gagaetgeta gaeteeaagt 480
gtgactgtga cccagctggc atcgcagggc cctgtgacgc gggccgctgt gtctgcaagc 540
cagctgtcac tggagaacgc tgtgataggt gtcgatcagg ttactataat ctggatgggg 600
ggaaccctga gggctgtacc cagtgtttct gctatgggca ttcagccagc tgccgcagct 660
ctgcagaata cagtgtccat aagatcacct ctacctttca tcaagatgtt gatggctgga 720
aggetqteca acqaaatqqq teteetqcaa agetecaatq qteacaqeqe catcaaqatq 780
tgtttagetc ageccaaega ctagaccetg tetattttgt ggetcetgec aaatttettg 840
ggaatcaaca ggtgagctat ggtcaaagcc tgtcctttga ctaccgtgtg gacagaggag 900
gcagacacco atotgoccat gatgtgatto tggaaggtgo tggtctacgg atoacagoto 960
ccttgatqcc acttggcaag acactgcctt gtgggctcac caagacttac acattcaggt 1020
taaatgagca tccaagcaat aattggagcc cccagctgag ttactttgag tatcgaaggt 1080
tactgcggaa tctcacagcc ctccgcatcc gagctacata tggagaatac agtactgggt 1140
acattgacaa tgtgaccctg atttcagccc gccctgtctc tggagcccca gcaccctggg 1200
ttgaacagtg tatatgtcct gttgggtaca aggggcaatt ctgccaggat tgtgcttctg 1260
gctacaagag agattcagcg agactggggc cttttggcac ctgtattcct tgtaactgtc 1320
aagggggagg ggcctgtgat ccagacacag gagattgtta ttcaggggat gagaatcctg 1380
acattgagtg tgctgactgc ccaattggtt tctacaacga tccgcacgac ccccgcagct 1440
gcaagccatg tccctgtcat aacgggttca gctgctcagt gatgccggag acggaggagg 1500
tggtgtgcaa taactgccct cccggggtca ccggtgcccg ctgtgagctc tgtgctgatg 1560
gctactttgg ggaccccttt ggtgaacatg gcccagtgag gccttgtcag ccctgtcaat 1620
gcaacaacaa tgtggacccc agtgcctctg ggaattgtga ccggctgaca ggcaggtgtt 1680
tgaaqtqtat ccacaacaca qccgqcatct actgcqacca gtgcaaagca ggctacttcg 1740
gggacccatt ggctcccaac ccagcagaca agtgtcgagc ttgcaactgt aaccccatgg 1800
gctcagagcc tgtaggatgt cgaagtgatg gcacctgtgt ttgcaagcca ggatttggtg 1860
gccccaactg tgagcatgga gcattcagct gtccagcttg ctataatcaa gtgaagattc 1920
agatggatca gtttatgcag cagcttcaga gaatggaggc cctgatttca aaggctcagg 1980
gtggtgatgg agtagtacct gatacagagc tggaaggcag gatgcagcag gctgagcagg 2040
cccttcagga cattctgaga gatgcccaga tttcagaagg tgctagcaga tcccttggtc 2100
tccagttggc caaggtgagg agccaagaga acagctacca gagccgcctg gatgacctca 2160
agatgactgt ggaaagagtt cgggctctgg gaagtcagta ccagaaccga gttcgggata 2220
ctcacagget catcactcag atgcagetga geetggeaga aagtgaaget teettgggaa 2280
acactaacat tectgeetea gaccactaeg tggggeeaaa tggetttaaa agtetggete 2340
aggaggccac aagattagca gaaagccacg ttgagtcagc cagtaacatg gagcaactga 2400
caagggaaac tgaggactat tecaaacaag eecteteact ggtgegeaag geeetgeatg 2460
```

```
aaggagtcgg aagcggaagc ggtagcccgg acggtgctgt ggtgcaaggg cttgtggaaa 2520
aattggagaa aaccaagtcc ctggcccagc agttgacaag ggaggccact caagcggaaa 2580
ttgaagcaga taggtcttat cagcacagtc tccgcctcct ggattcagtg tctcggcttc 2640
agggagtcag tgatcagtcc tttcaggtgg aagaagcaaa gaggatcaaa caaaaagcgg 2700
attcactctc aagcctggta accaggcata tggatgagtt caagcgtaca cagaagaatc 2760
tgggaaactg gaaagaagaa gcacagcagc tcttacagaa tggaaaaagt gggagagaga 2820
aatcagatca gctgctttcc cgtgccaatc ttgctaaaag cagagcacaa gaagcactga 2880
gtatgggcaa tgccactttt tatgaagttg agagcatcct taaaaacctc agagagtttg 2940
acctgcaggt ggacaacaga aaagcagaag ctgaagaagc catgaagaga ctctcctaca 3000
tcagccagaa ggtttcagat gccagtgaca agacccagca agcagaaaga gccctgggga 3060
gcgctgctgc tgatgcacag agggcaaaga atggggccgg ggaggccctg gaaatctcca 3120
gtgagattga acaggagatt gggagtctga acttggaagc caatgtgaca gcagatggag 3180
ccttggccat ggaaaagga ctggcctctc tgaagagtga gatgagggaa gtggaaggag 3240
agctggaaag gaaggagctg gagtttgaca cgaatatgga tgcagtacag atggtgatta 3300
cagaagccca gaaggttgat accagagcca agaacgctgg ggttacaatc caagacacac 3360
tcaacacatt agacggcctc ctgcatctga tggaccagcc tctcagtgta gatgaagagg 3420
ggctggtctt actggagcag aagctttccc gagccaagac ccagatcaac agccaactgc 3480
ggcccatgat gtcagagctg gaagagaggg cacgtcagca gaggggccac ctccatttgc 3540
tggagacaag catagatggg attctggctg atgtgaagaa cttggagaac attagggaca 3600
acctgcccc aggctgctac aatacccagg ctcttgagca acagtgaagc tgccataaat 3660
atttctcaac tgaggttctt gggatacaga tctcagggct cgggagccat gtcatgtgag 3720
cccattcctg atcccatggc caggtggttg tcttattgca ccatactcct tgcttcctga 3840
tgctgggcaa tgaggcagat agcactgggt gtgagaatga tcaaggatct ggaccccaaa 3900
gaatagactg gatggaaaga caaactgcac aggcagatgt ttgcctcata atagtcgtaa 3960
gtggagtcct ggaatttgga caagtgctgt tgggatatag tcaacttatt ctttgagtaa 4020
tgtgactaaa ggaaaaaact ttgactttgc ccaggcatga aattcttcct aatgtcagaa 4080
cagagtgcaa cccagtcaca ctgtggccag taaaatacta ttgcctcata ttgtcctctg 4140
caagettett getgateaga gtteeteeta ettacaaeee agggtgtgaa catgttetee 4200
attttcaagc tggaagaagt gagcagtgtt ggagtgagga cctgtaaggc aggcccattc 4260
agagetatgg tgettgetgg tgeetgeeac etteaagtte tggaeetggg catgaeatee 4320
tttcttttaa tgatgccatg gcaacttaga gattgcattt ttattaaagc atttcctacc 4380
agcaaagcaa atgttgggaa agtatttact ttttcggttt caaagtgata gaaaagtgtg 4440
gcttgggcat tgaaagaggt aaaattctct agatttatta gtcctaattc aatcctactt 4500
ttagaacacc aaaaatgatg cgcatcaatg tattttatct tattttctca atctcctctc 4560
tettteetee acceataata agagaatgtt eetaeteaca etteagetgg gteacateea 4620
tocotocatt catocttoca tocatotto catocattac otocatocat cottocaaca 4680
tatatttatt gagtacctac tgtgtgccag gggctggtgg gacagtggtg acatagtctc 4740
tgccctcata gagttgattg tctagtgagg aagacaagca tttttaaaaa ataaatttaa 4800
acttacaaac tttgtttgtc acaagtggtg tttattgcaa taaccgcttg gtttgcaacc 4860
tctttgctca acagaacata tgttgcaaga ccctcccatg ggggcacttg agttttggca 4920
aggetgacag agetetgggt tgtgcacatt tetttgcatt ceagetgtea etetgtgeet 4980
ttctacaact gattgcaaca gactgttgag ttatgataac accagtggga attgctggag 5040
gaaccagagg cacttccacc ttggctggga agactatggt gctgccttgc ttctgtattt 5100
ccttggattt tcctgaaagt gtttttaaat aaagaacaat tgttagaaaa aaaaaa
                                                                5156
```

```
<210> 131 <211> 671
```

<212> DNA

<213> Homo sapiens

<400> 131

aggtctggag ggcccacagc cggatgtggg acaccgggaa aaagtggtca tagcacacat 60 ttttgcatcc cggttgcagt gtgttgcaga cgaagtcctc ttgctcgtca ccccacactt 120 cctgggcagc caycacgagg atcatgactc ggaaaataaa gatgactgtg atccacacct 180 tcccgatgct ggtggagtgt ttgttgacac ccccgatgaa agtgtgcagc gtcccccaat 240

```
ccattgcgct ggtttatccc tgagtcctgt ttccaacgac tgccagtgtt tcagacccaa 300
agaatgaggg caagatccct ctgcgagggt ttcagacctc cttctcctac cccactggag 360
tgcctagaag ccaatgggtg cacagtgatg atacgaatgt caatctttgc tcggtcagtg 420
aggatgtcgc ctggaatatt caaattgaat tacagatgca tgaagagggc gtacaagtta 480
gaatttttct ttcgccatac agaaattgtt tagccagatc ttctgtactt cttttccttc 540
cctgaccett cctgctcccc aggaagggag gtcagccccg tttgcaaaac acaggatgcc 600
cgtgacaccg gagacaggtc ttcttcaccg acaggaagtg ccttctggtg cctgcacgtt 660
ttaactgcta t
<210> 132
<211> 590
<212> DNA
<213> Homo sapiens
<400> 132
ctgaatggaa aagcttatgg ctctgtgatg atattagtga ccagcggaga tgataagctt 60
cttggcaatt gcttacccac tgtgctcagc agtggttcaa caattcactc cattgccctg 120
ggttcatctg cagccccaaa tctggaggaa ttatcacgtc ttacaggagg tttaaagttc 180
tttgttccag atatatcaaa ctccaatagc atgattgatg ctttcagtag aatttcctct 240
ggaactggag acattttcca gcaacatatt cagcttgaaa gtacaggtga aaatgtcaaa 300
cctcaccatc aattgaaaaa cacagtgact gtggataata ctgtgggcaa cgacactatg 360
tttctagtta cgtggcaggc cagtggtcct cctgagatta tattatttga tcctgatgga 420
cgaaaatact acacaaataa ttttatcacc aatctaactt ttcggacagc tagtctttgg 480
attocaggaa cagctaagcc tgggcactgg acttacaccc tgaacaatac ccatcattct 540
ctgcaagccc tgaaagtgac agtgacctct cgcgcctcca actcagacct
<210> 133
<211> 581
<212> DNA
<213> Homo sapiens
<400> 133
aggtectgte egggggeact gagaacteee tetggaatte ttqqqqqqtq ttqqqqaqaq 60
actgtgggcc tggagataaa acttgtctcc tctaccacca ccctgtaccc tagcctgcac 120
ctgtcctcat ctctgcaaag ttcagcttcc ttccccaggt ctctgtgcac tctgtcttgg 180
atgctctggg gagctcatgg gtggaggagt ctccaccaga gggaggctca ggggactggt 240
tgggccaggg atgaatattt gagggataaa aattgtgtaa gagccaaaga attggtagta 300
gggggagaac agagaggagc tgggctatgg gaaatgattt gaataatgga gctgggaata 360
tggctggata tctggtacta aaaaagggtc tttaagaacc tacttcctaa tctcttcccc 420
aatccaaacc atagctgtct gtccagtgct ctcttcctgc ctccagctct gccccaggct 480
cctcctagac tctgtccctg ggctagggca ggggaggagg gagagcaggg ttgggggaga 540
ggctgaggag agtgtgacat gtggggagag gaccagacct c
<210> 134
<211> 4797
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 135, 501, 4421, 4467, 4468, 4698
<223> n = A, T, C or G
<400> 134
cctgggacca aagtgctgcc cagagctgag ggtcctggag ccacatgaga aggcttctcc 60
ctgtgtacct gtgcagcaca gggtagggtg agtccactca gctgtctagg agaggaccca 120
ggagcagcag agacnegeca agectttaet cataccatat tetgateett ttecagcaaa 180
ttgtggctac taatttgccc cctgaagatc aagatggctc tggggatgac tctgacaact 240
```

tctccggctc aggtgcaggt gaggttgtca tgggggcccc ccccacccaa gacggcaaca 300 ggtcatgcct gggggcagtg gtcaggcagt ctcctgtgtt tactgagcat gtactgagtg 360 caccetgeet geeetgtete cacceagetg getecaaagg geaatgetga ggagaggaat 420 ggggtcgtga gctgctgtta aggagagctc atgcttggag gtgaggtgaa ggctgtgagc 480 tccagaaggc cccagggcgc nctgctgcac gcaggctcat attcactagg aatagcttta 540 ctcactaaga aacctctgga acccccttca gaaggttatt tgactcctga gcctctattt 600 tctcatctgc aaaatgggaa taataccttg acctgataag cttgtggagc tgtaaggcag 660 cacagagcca gctggggtgt agctcttcca tccaagctcc cttccttact tcccctttcc 720 tgtggggact gggggagaga agtccctgag ctggaggtgg tcagggaagc ttcacagagg 780 aggtggctct tgagtggacc tcaggaagag gggtgagaga gctaaggaag gaggctgagg 840 tcatccctgg ggaagtgacc tagcggaggc ctgagagctg caaggtagga tatctgttgt 900 tggaagtgtc tgttgttgga agtggggcc tttttttcag ggagggtggg gccagagaag 960 tgtgtgccct gggataagta ggataaccac agtagttatg cccctaaggg atgcccaccc 1020 cacccctqtq qtcacaqaaa agctttccca ggtggcctag gcacctgtct cgtggctcca 1080 gagacaggct gcacctgaca cacacaatgg aaggacagct ctccttgtcc attttccaag 1140 gagettagee teagetgeet tgteeaggta etageeteee teatageetg agettggeea 1200 gcccaggtgc totggagcct cccccgaccc acccaacaca ctctgcttct ggtcctcccc 1260 acceccace tecceaacae actetgette tggteetgea ggtgetttge aagatateae 1320 cttgtcacag cagaccccct ccacttggaa ggacacgcag ctcctgacgg ctattcccac 1380 gtctccagaa cccaccggcc tggaggctac agctgcctcc acctccaccc tgccggctgg 1440 agaggggccc aaggagggag aggctgtagt cctgccagaa gtggagcctg gcctcaccgc 1500 ccgggagcag gaggccaccc cccgacccag ggagaccaca cagctcccga ccactcatca 1560 ggcctcaacg accacagcca ccacggccca ggagcccgcc acctcccacc cccacaggga 1620 catgcagect ggccaccatg agacctcaac ccctgcagga cccagccaag ctgaccttca 1680 cactccccac acagaggatg gaggtccttc tgccaccgag agggctgctg aggatggage 1740 ctccagtcag ctcccagcag cagagggctc tggggagcag gtgagtggcc tctgcattcc 1800 ttgggaaatt gagtgggttg gtcctaatgc ctggcacttg gcaggcccta cacctgtgcc 1860 ctgcgcgatc tcgtattcct caccaggaag acagggcaca ggggccgcct tcccctaccc 1920 ccagggcctc gcagagcagg acagactaac tatgagatca gagcagaagc acccttaaag 1980 atcacccaaq aqaqqqctcc caaactcaca atccaaactt gcagccctcg tcgaagagtg 2040 aacgttatac cagtcatttt atttatagct tcgtggattt acgcttacac taaatagtct 2100 gctattcata caaaatgtgt gctttgtatc actttttgtg atatccatgc catggtccag 2160 ccagggtccg gagttgatgt ggcaagaagg cctggctttc gggccctgtg cgatcctggt 2220 ttgggtgcat ctgagtgggt ggtggcaaag atcagggagg caggagctgc ttctgggtct 2280 gtagtggagc tggttgctgc tgctggcggt gacctggcca acccaatctg ccctgccct 2340 cccacaggac ttcacctttg aaacctcggg ggagaatacg gctgtagtgg ccgtggagcc 2400 tgaccgccgg aaccagtccc cagtggatca gggggccaccg ggggcctcac agggcctcct 2460 ggacaggaaa gaggtgctgg gaggtgagtt ttctttcagg ggggtagttt ggggtgaatt 2520 gctgctgtgg ggtcagggtg gggctgacca cagccaaggc cactgctttg ggagggtctg 2580 cacgagagee caaggageeg etgagetgag etggeeeegt etacetgeee taggggteat 2640 tgccggagge ctcgtggggc tcatctttgc tgtgtgcctg gtgggtttca tgctgtaccg 2700 catgaagaag aaggacgaag gcagctactc cttggaggag ccgaaacaag ccaacggcgg 2760 ggcctaccag aagcccacca aacaggagga attctatgcc tgacgcggga gccatgcgcc 2820 ccctccgccc tgccactcac taggccccca cttgcctctt ccttgaagaa ctgcaggccc 2880 tggcctcccc tgccaccagg ccacctcccc agcattccag cccctctggt cgctcctgcc 2940 cacggagtcg tgggtgtgct gggagctcca ctctgcttct ctgacttctg cctggagact 3000 tagggcacca ggggtttctc gcataggacc tttccaccac agccagcacc tggcatcgca 3060 ccattctgac tcggtttctc caaactgaag cagcctctcc ccaggtccag ctctggaggg 3120 gagggggatc cgactgcttt ggacctaaat ggcctcatgt ggctggaaga tcctgcgggt 3180 qqqqcttqqq qctcacacac ctqtaqcact tactggtagg accaagcatc ttgggggggt 3240 ggccgctgag tggcagggga caggagtcac tttgtttcgt ggggaggtct aatctagata 3300 tegacttgtt tittgeacatg titteetetag tietttgtte atageceagt agacettgtt 3360 acttetgagg taagttaagt aagttgatte ggtateecee eatettgett eeetaateta 3420 tggtcgggag acagcatcag ggttaagaag acttttttt tttttttaa actaggagaa 3480 ccaaatctgg aagccaaaat gtaggcttag tttgtgtgtt gtctcttgag tttgtcgctc 3540 atgtgtgcaa cagggtatgg actatctgtc tggtggcccc gttctggtgg tctgttggca 3600 ggctggccag tccaggctgc cgtggggccg ccgcctcttt caagcagtcg tgcctgtgtc 3660 catgcgctca gggccatgct gaggcctggg ccgctgccac gttggagaag cccgtgtgag 3720

```
aagtgaatgc tgggactcag ccttcagaca gagaggactg tagggagggc ggcaggggcc 3780
tggagatect cetgeagget caegecegte etectgtgge geegteteea ggggetgett 3840
cctcctggaa attgacgagg ggtgtcttgg gcagagctgg ctctgagcgc ctccatccaa 3900
ggccaggttc tccgttagct cctgtggccc caccctgggc cctgggctgg aatcaggaat 3960
attttccaaa gagtgatagt cttttgcttt tggcaaaact ctacttaatc caatgggttt 4020
ttccctgtac agtagatttt ccaaatgtaa taaactttaa tataaagtag tctgtgaatg 4080
ccactgcctt cgcttcttgc ctctgtgctg tgtgtgacgt gaccggactt ttctgcaaac 4140
accaacatgt tgggaaactt ggctcgaatc tctgtgcctt cgtctttccc atggggaggg 4200
attetggtte cagggteect etgtgtattt gettttttgt tttggetgaa atteteetgg 4260
aggtcggtag gttcagccaa ggttttataa ggctgatgtc aatttctgtg ttgccaagct 4320
ccaagcccat cttctaaatg gcaaaggaag gtggatggcc ccagcacagc ttgacctgag 4380
gctgtggtca cagcggaggt gtggagccga ggcctacccc ncagacacct tggacatcct 4440
cctcccaccc ggctgcagag gccaganncc agcccagggt cctgcactta cttgcttatt 4500
tgacaacgtt tcagcgactc cgttggccac tccgagagtg ggccagtctg tggatcagag 4560
atgcaccacc aagccaaggg aacctgtgtc cggtattcga tactgcgact ttctgcctgg 4620
agtgtatgac tgcacatgac tcgggggtgg ggaaaggggt cggctgacca tgctcatctg 4680
ctggtccgtg ggacggtncc caagccagag gtgggttcat ttgtgtaacg acaataaacg 4740
gtacttgtca tttcgggcaa cggctgctgt ggtggtggtt gagtctcttc ttggcct
<210> 135
<211> 2856
<212> DNA
<213> Homo sapiens
<400> 135
tagtcgcggg tccccgagtg agcacgccag ggagcaggag accaaacgac gggggtcgga 60
gtcagagtcg cagtgggagt ccccggaccg gagcacgagc ctgagcggga gagcgccgct 120
cgcacgcccg tegecacccg egtaccegge geagecagag ceaccagege agegetgeca 180
tggagcccag cagcaagaag ctgacqggtc gcctcatgct ggctgtggga ggagcagtgc 240
ttggctccct gcagtttggc tacaacactg gagtcatcaa tgccccccag aaggtgatcg 300
aggagttcta caaccagaca tgggtccacc gctatgggga gagcatcctg cccaccacgc 360
tcaccacget ctggtccctc tcagtggcca tcttttctgt tgggggcatg attggctcct 420
tetetgtggg cettttegtt aacegetttg geeggeggaa tteaatgetg atgatgaace 480
tgctggcctt cgtgtccgcc gtgctcatgg gcttctcgaa actgggcaag tcctttgaga 540
tgdtgatect gggeegette ateateggtg tgtactgegg eetgaceaea ggettegtge 600
ccatgtatgt gggtgaagtg tcacccacag cctttcgtgg ggccctgggc accctgcacc 660
agetgggeat egtegtegge atecteateg eccaggtgtt eggeetggae tecateatgg 720
gcaacaagga cctgtggccc ctgctgctga gcatcatctt catcccggcc ctgctgcagt 780
gcatcgtgct gcccttctgc cccgagagtc cccgcttcct gctcatcaac cgcaacgagg 840
agaaccgggc caagagtgtg ctaaagaagc tgcgcgggac agctgacgtg acccatgacc 900
tgcaggagat gaaggaagag agtcggcaga tgatgcggga gaagaaggtc accatcctgg 960
agetgtteeg eteccegee tacegeeage ceatecteat egetgtggtg etgeagetgt 1020
cccagcagct gtctggcatc aacgctgtct tctattactc cacgagcatc ttcgagaagg 1080
cgggggtgca gcagcctgtg tatgccacca ttggctccgg tatcgtcaac acggccttca 1140
ctgtcgtgtc gctgtttgtg gtggagcgag caggccggcg gaccctgcac ctcataggcc 1200
tegetggeat ggegggttgt gceatactea tgaccatege getageactg etggageage 1260
taccctggat gtcctatctg agcatcgtgg ccatctttgg ctttgtggcc ttctttgaag 1320
tgggtcctgg ccccatccca tggttcatcg tggctgaact cttcagccag ggtccacgtc 1380
cagctgccat tgccgttgca ggcttctcca actggacctc aaatttcatt gtgggcatgt 1440
gettecagta tgtggageaa etgtgtggte cetaegtett cateatette aetgtgetec 1500
tggttctgtt cttcatcttc acctacttca aagttcctga gactaaaggc cggaccttcg 1560
atgagatege tteeggette eggeagggg gageeageea aagtgataag acaceegagg 1620
agetgtteca teccetgggg getgattece aagtgtgagt egeeecagat caceageeeg 1680
geetgeteec ageageeeta aggatetete aggageaeag geagetggat gagaetteea 1740
aacctgacag atgtcagccg agccgggcct ggggctcctt tctccagcca gcaatgatgt 1800
ccagaagaat attcaggact taacggctcc aggattttaa caaaagcaag actgttgctc 1860
aaatctattc agacaagcaa caggttttat aattttttta ttactgattt tgttattttt 1920
atatcageet gagteteetg tgeecacate ecaggettea ecetgaatgg tteeatgeet 1980
```

```
gagggtggag actaagccct gtcgagacac ttgccttctt cacccagcta atctgtaggg 2040
ctggacctat gtcctaagga cacactaatc gaactatgaa ctacaaagct tctatcccag 2100
gaggtggcta tggccacccg ttctgctggc ctggatctcc ccactctagg ggtcaggctc 2160
cctgagacca gttgggagca ctggagtgca gggaggagag gggaagggcc agtctgggct 2280
gccgggttct agtctccttt gcactgaggg ccacactatt accatgagaa gagggcctgt 2340
gggagcctgc aaactcactg ctcaagaaga catggagact cctgccctgt tgtgtataga 2400
tgcaagatat ttatatatat ttttggttgt caatattaaa tacagacact aagttatagt 2460
atatetggae aagecaactt gtaaatacae caceteacte etgttaetta eetaaacaga 2520
tataaatggc tggtttttag aaacatggtt ttgaaatgct tgtggattga gggtaggagg 2580
tttggatggg agtgagacag aagtaagtgg ggttgcaacc actgcaacgg cttagacttc 2640
gactcaggat ccagtccctt acacgtacct ctcatcagtg tcctcttgct caaaaatctg 2700
tttgatccct gttacccaga gaatatatac attctttatc ttgacattca aggcatttct 2760
atcacatatt tgatagttgg tgttcaaaaa aacactagtt ttgtgccagc cgtgatgctc 2820
aggcttgaaa tcgcattatt ttgaatgtga agggaa
<210> 136
<211> 356
<212> DNA
<213> Homo sapiens
<400> 136
ggtggagcca aatgaagaaa atgaagatga aagagacaga cacctcagtt tttctggatc 60
aggeattgat gatgatgaag attttatete cageaceatt teaaceacae caegggettt 120
tgaccacaca aaacagaacc aggactggac tcagtggaac ccaagccatt caaatccgga 180
agtgctactt cagacaacca caaggatgac tgatgtagac agaaatggca ccactgctta 240
tqaaqqaaac tqqaacccaq aaqcacaccc tcccctcatt caccatqaqc atcatqagga 300
agaagagacc ccacattcta caagcacaat ccaggcaact cctagtagta caacgg
<210> 137
<211> 356
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 254, 264, 279, 281, 290, 328, 342
<223> n = A, T, C or G
<400> 137
gcaggtggag aagacatttt attgttcctg gggtctctgg aggcccattg gtggggctgg 60
gtcactggct gcccccggaa cagggcgctg ctccatggct ctgcttgtgg tagtctgtgg 120
ctatgtctcc cagcaaggac agaaactcag aaaaatcaat cttcttatcc tcattcttgt 180
cctttttctc aaagacatcg gcgaggtaat ttgtgccctt tttacctcgg cccgcgacca 240
cgctaaqqcc aaanttccag acanayqqcc qqgccqgtnc nataggggan cccaacttgg 300
ggacccaaac tetggegegg aaacacangg gcataagett gntteetgtg gggaaa
<210> 138
<211> 353
<212> DNA
<213> Homo sapiens
<400> 138
aggtccagtc ctccacttgg cctgatgaga gtggggagtg gcaagggacg tttctcctgc 60
aatagacact tagatttctc tcttgtggga agaaaccacc tgtccatcca ctgactcttc 120
tacattgatg tggaaattgc tgctgctacc accacctcct gaagaggctt ccctgatgcc 180
aatgccagcc atcttggcat cctggccctc gagcaggctg cggtaagtag cgatctcctg 240
ctccagccgt gtctttatgt caagcagcat cttgtactcc tggttctgag cctccatctc 300
```

```
353
gcatcggagc tcactcagac ctcgsccgsg mssmcgctam gccgaattcc agc
<210> 139
<211> 371
<212> DNA
<213> Homo sapiens
<400> 139
agcgtggtcg cggccgaggt ccatccgaag caagattgca gatggcagtg tgaagagaa 60
agacatattc tacacttcaa agctttggtg caattcccat cgaccagagt tggtccgacc 120
agccttggaa aggtcactga aaaatcttca attggattat gttgacctct accttattca 180
ttttccagtq tctqtaaaqc caqqtqaqqa aqtqatccca aaaqatgaaa atggaaaaat 240
actatttgac acagtggatc tctgtgccac gtgggaggcc gtggagaagt gtaaagatgc 300
aggattggac ctqcccgggc ggccgctcga aagccgaatt ccagcacact ggcggccgtt 360
                                                                  371
actagtggat c
<210> 140
<211> 370
<212> DNA
<213> Homo sapiens
<400> 140
tagogtggtc goggccgagg tocatotoco tttgggaact agggggctgc tggtgggaaa 60
tgggagccag ggcagatgtt gcattccttt gtgtccctgt aaatgtggga ctacaagaag 120
aggagetgee tgagtggtae tttetettee tggtaateet etggeecage eteatggeag 180
aatagaggta tttttaggct atttttgtaa tatggcttct ggtcaaaatc cctgtgtagc 240
tgaattccca agccctgcat tgtacagccc cccactcccc tcaccaccta ataaaggaat 300
agttaacact caaaaaaaaa aaaaaacctg cccgggcggc cgctcgaaag ccgaattcca 360
gcacactggc
<210> 141
<211> 371
<212> DNA
<213> Homo sapiens
<400> 141
tagcgtggtc gcggccgagg tcctctgtgc tgcctgtcac agcccgatgg taccagcgca 60
gggtgtaggc agtgcaggag ccctcatcca gtggcaggga acaggggtca tcactatccc 120
aaggagette agggteetgg tacteeteea cagaataete ggagtattea gagtaeteat 180
catectcagg gggtaccegc tetteeteet etgeatgaga gaegeggage acaggeacag 240
catggagctg ggagccggca gtgtctgcag cataactagg gaggggtcgt gatccagatg 300
cgatgaactg gccctggcag gcacagtgct gactcatctc ttggcgacct gcccgggcgg 360
                                                                   371
ccgctcgaag c
<210> 142
<211> 343
<212> DNA
<213> Homo sapiens
<400> 142
gcgttttgag gccaatggtg taaaaggaaa tatcttcaca taaaaactag atggaagcat 60
tgtcagaaac ctctttgtga tgtttgcttt caactcacag agttgaacat tccttttcat 120
agagcagttt tgaaacactc ttttgtagaa tttgcaagcg gatgattgga tcgctatgag 180
gtcttcattg gaaacgggat acctttacat aaaaactaga cagtagcatt ctcagaaatt 240
tetttgggat gtgggcatte aacceacaga ggagaactte atttgataga geagttttga 300
aacacccttt ttgtagaatc tacaggtgga catttagagt gct
                                                                   343
```

<210> 143

```
<211> 354
<212> DNA
<213> Homo sapiens
<400> 143
aggtctgatg gcagaaaaac tcagactgtc tgcaacttta cagatggtgc attggttcag 60
catcaggagt gggatgggaa ggaaagcaca ataacaagaa aattgaaaga tgggaaatta 120
gtggtggagt gtgtcatgaa caatgtcacc tgtactcgga tctatgaaaa agtagaataa 180
aaattccatc atcactttgg acaggagtta attaagagaa tgaccaagct cagttcaatg 240
agcaaatctc catactgttt ctttctttt tttttcatta ctgtgttcaa ttatctttat 300
cataaacatt ttacatgcag ctatttcaaa gtgtgttgga ttaattagga tcat
<210> 144
<211> 353
<212> DNA
<213> Homo sapiens
<400> 144
ggtcaaggac ctgggggacc cccaggtcca gcagccacat gattctgcag cagacaggga 60
cctagagcac atctggatet cagecccace cctggcaace tgeetgeeta gagaacteec 120
aagatgacag actaagtagg attctgccat ttagaataat tctggtatcc tgggcgttgc 180
gttaagttgc ttaactttca ttctgtctta cgatagtctt cagaggtggg aacagatgaa 240
gaaaccatgc cccagagaag gttaagtgac ttcctcttta tggagccagt gttccaacct 300
aggtttgcct gataccagac ctgtggcccc acctcccatg caggtctctg tgg
<210> 145
<211> 371
<212> DNA
<213> Homo sapiens
<400> 145
caggtctgtc ataaactggt ctggagtttc tgacgactcc ttgttcacca aatgcaccat 60
ttcctgagac ttqctggcct ctccgttgag tccacttggc tttctgtcct ccacagctcc 120
attgccactg ttgatcacta gctttttctt ctgcccacac cttcttcgac tgttgactgc 180
aatgcaaact gcaagaatca aagccaaggc caagagggat gccaagatga tcagccattc 240
tggaatttgg ggtgtcctta taggaccaga ggttgtgttt gctccacctt cttgactccc 300
atgtgagacc tcggccgcga ccacqctaag ccgaattcca gcacactggc ggcccgttac 360
tagtggatcc g
<210> 146
<211> 355
<212> DNA
<213> Homo sapiens
<400> 146
ggtcctccgt cctcttccca gaggtgtcgg ggcttggccc cagcctccat cttcgtctct 60
caggatggcg aqtagcagcg qctccaaggc tgaattcatt gtcggaggga aatataaact 120
ggtacggaag atcgggtctg gctccttcgg ggacatctat ttggcgatca acatcaccaa 180
cggcgaggaa gtggcagtga agctagaatc tcagaaggcc aggcatcccc agttgctgta 240
cgagagcaag ctctataaga ttcttcaagg tggggttggc atcccccaca tacggtggta 300
tggtcaggaa aaagactaca atgtactagt catggatctt ctgggaccta gcctc
<210> 147
<211> 355
<212> DNA
<213> Homo sapiens
<400> 147
```

```
ggtctgttac aaaatgaaga cagacaacac aacatttact ctgtggagat atcctactca 60
tactatgcac gtgctgtgat tttgaacata actcgtccca aaaacttgtc acgatcatcc 120
tgacttttta ggttggctga tccatcaatc ttgcactcaa ctgttacttc tttcccagtg 180
ttgttaggag caaagctgac ctgaacagca accaatggct gtagataccc aacatgcagt 240
tttttcccat aatatgggaa atattttaag tctatcattc cattatgagg ataaactgct 300
acatttggta tatcttcatt ctttgaaaca caatctatcc ttggcactcc ttcag
<210> 148
<211> 369
<212> DNA
<213> Homo sapiens
<400> 148
aggletetet ecceptete etetectqce agecaagtqa agacatgett actteceett 60
caccttcctt catgatgtgg gaagagtgct gcaacccagc cctagccaac accgcatgag 120
agggagtgtg ccgagggctt ctgagaaggt ttctctcaca tctagaaaga agcgcttaag 180
atgtggcagc ccctcttctt caagtggctc ttgtcctgtt gccctgggag ttctcaaatt 240
gctgcagcag cctccatcca gcctgaggat gacatcaata cacagaggaa gaagagtcag 300
gaaaagatga gagaagttac agacteteet gggcgaccec gagagettac catteeteag 360
acttcttca
<210> 149
<211> 620
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 169, 171, 222, 472, 528, 559, 599
<223> n = A, T, C or G
<400> 149
actaqtcaaa aatqctaaaa taatttqqqa qaaaatattt tttaaqtagt gttataqttt 60
catgtttatc ttttattatg ttttgtgaag ttgtgtcttt tcactaatta cctatactat 120
gccaatattt ccttatatct atccataaca tttatactac atttgtaana naatatgcac 180
gtgaaactta acactttata aggtaaaaat gaggtttcca anatttaata atctgatcaa 240
gttcttgtta tttccaaata gaatggactt ggtctgttaa gggctaagga gaagaggaag 300
ataaggttaa aagttgttaa tgaccaaaca ttctaaaaga aatgcaaaaa aaaagtttat 360
tttcaagcct tcgaactatt taaggaaagc aaaatcattt cctaaatgca tatcatttgt 420
qaqaatttct cattaatatc ctgaatcatt catttcacta aggetcatgt tnactccgat 480
atgtctctaa gaaagtacta tttcatggtc caaacctggt tgccatantt gggtaaaggc 540
tttcccttaa gtgtgaaant atttaaaatg aaattttcct ctttttaaaa attctttana 600
                                                                   620
agggttaagg gtgttgggga
<210> 150
<211> 371
<212> DNA
<213> Homo sapiens
<400> 150
ggtccgatca aaacctgcta cctccccaag actttactag tgccgataaa ctttctcaaa 60
gagcaaccag tatcacttcc ctgtttataa aacctctaac catctctttg ttctttgaac 120
atgctgaaaa ccacctggtc tgcatgtatg cccgaatttg yaattctttt ctctcaaatg 180
aaaatttaat tttagggatt catttctata ttttcacata tgtagtatta ttatttcctt 240
atatgtgtaa ggtgaaattt atggtatttg agtgtgcaag aaaatatatt tttaaagctt 300
tcatttttcc cccagtgaat gatttagaat tttttatgta aatatacaga atgtttttc 360
ttacttttat a
```

<400> 151

<210> 151 <211> 4655 <212> DNA <213> Homo sapiens

gggacttgag ttctgttatc ttcttaagta gattcatatt gtaagggtct cggggtgggg 60 gggttggcaa aatcctggag ccagaagaaa ggacagcagc attgatcaat cttacagcta 120 acatgttgta cctggaaaac aatgcccaga ctcaatttag tgagccacag tacacgaacc 180 tggggctcct gaacagcatg gaccagcaga ttcagaacgg ctcctcgtcc accagtccct 240 ataacacaga ccacgcgcag aacagcgtca cggcgcctc gccctacgca cagcccagct 300 ccaccttcga tgctctctct ccatcacccg ccatcccctc caacaccgac tacccaggcc 360 cgcacagttt cgacgtgtcc ttccagcagt cgagcaccgc caagtcggcc acctggacgt 420 attocactga actgaagaaa ctctactgcc aaattgcaaa gacatgcccc atccagatca 480 aggtgatgac cocacctect cagggagetg ttatcegege catgeetgte tacaaaaaaag 540 acgagggaca gattgcccct yctagtcatt tgattcgagt agaggggaac agccatgccc 660 agtatgtaga agateceate acaggaagae agagtgtget ggtacettat gagecaeeee 720 aggttggcac tgaattcacg acagtcttgt acaatttcat gtgtaacagc agttgtgttg 780 gagggatgaa ccgccgtcca attttaatca ttgttactct ggaaaccaga gatgggcaag 840 tectgggeeg aegetgettt gaggeeegga tetgtgettg eecaggaaga gacaggaagg 900 cggatgaaga tagcatcaga aagcagcaag tttcggacag tacaaagaac ggtgatggta 960 cgaagcgccc gtttcgtcag aacacacatg gtatccagat gacatccatc aagaaacgaa 1020 gatccccaga tgatgaactg gtatacttac cagtgagggg ccgtgagact tatgaaatgc 1080 tggtgaagat caaagagtcc ctggaactca tgcagtacct tcttcagcac acaattgaaa 1140 cgtacaggca acagcaacag cagcagcacc agcacttact tcagaaacag acctcaatac 1200 agtctccatc ttcatatggt aacagctccc cacctctgaa caaaatgaac agcatgaaca 1260 agctgccttc tgtgagccag cttatcaacc ctcagcagcg caacgccctc actcctacaa 1320 ccattcctga tggcatggga gccaacattc ccatgatggg cacccacatg ccaatggctg 1380 gagacatgaa tggactcagc cccacccagg cactccctcc cccactctcc atgccatcca 1440 cctcccactg cacacccca cctccgtatc ccacagattg cagcattgtc agtttcttag 1500 cgaggttggg ctgttcatca tgtctggact atttcacgac ccaggggctg accaccatct 1560 atcagattga gcattactcc atggatgatc tggcaagtct gaaaatccct gagcaatttc 1620 gacatgcgat ctggaagggc atcctggacc accggcagct ccacgaattc tcctcccctt 1680 ctcatctcct gcggacccca agcagtgcct ctacagtcag tgtgggctcc agtgagaccc 1740 ggggtgagcg tgttattgat gctgtqcgat tcaccctccg ccaqaccatc tctttcccac 1800 cccgagatga gtggaatgac ttcaactttg acatggatgc tcgccgcaat aagcaacagc 1860 gcatcaaaga ggaggggag tgagcctcac catgtgagct cttcctatcc ctctcctaac 1920 tgccagcccc ctaaaagcac tcctgcttaa tcttcaaagc cttctcccta gctcctcccc 1980 ttcctcttgt ctgatttctt aggggaagga gaagtaagag gcttacttct taccctaacc 2040 atctgacctg gcatctaatt ctgattctgg ctttaagcct tcaaaactat agcttgcaga 2100 actgtagctt gccatggcta ggtagaagtg agcaaaaaag agttgggtgt ctccttaagc 2160 tgcagagatt tctcattgac ttttataaag catgttcacc cttatagtct aagactatat 2220 atataaatgt ataaatatac agtatagatt tttgggtggg gggcattgag tattgtttaa 2280 aatgtaattt aaatgaaaga aaattgagtt gcacttattg accatttttt aatttacttg 2340 ttttggatgg cttgtctata ctccttccct taaggggtat catgtatggt gataggtatc 2400 tagagettaa tgetaeatgt gagtgaegat gatgtaeaga ttettteagt tetttggatt 2460 ctaaatacat gccacatcaa acctttgagt agatccattt ccattgctta ttatgtaggt 2520 aagactgtag atatgtattc ttttctcagt gttggtatat tttatattac tgacatttct 2580 tctagtgatg atggttcacg ttggggtgat ttaatccagt tataagaaga agttcatgtc 2640

caaacgtcct ctttagttt tggttgggaa tgaggaaaat tcttaaaagg cccatagcag 2700 ccagttcaaa aacacccgac gtcatgtatt tgagcatatc agtaacccc ttaaatttaa 2760 taccagatac cttatcttac aatattgatt gggaaaacat ttgctgccat tacagaggta 2820 ttaaaactaa atttcactac tagattgact aactcaaata cacatttgct actgttgtaa 2880 gaattctgat tgatttgatt gggatgaatg ccatctatct agttctaaca gtgaagtttt 2940 actgtctatt aatattcagg gtaaatagga atcattcaga aatgttgagt ctgtactaaa 3000 cagtaagata tctcaatgaa ccataaattc aactttgtaa aaatcttttg aagcatagat 3060 aatattgtt ggtaaatgtt tcttttgttt ggtaaatgtt tcytttaaag accetcctat 3120

```
tctataaaaac tctgcatgta gaggettgtt tacctttctc tctctaaggt ttacaatagg 3180
agtggtgatt tgaaaaatat aaaattatga gattggtttt cctgtggcat aaattgcatc 3240
actgtatcat tttcttttt aaccggtaag agtttcagtt tgttggaaag taactgtgag 3300
aacccagttt cccgtccatc tcccttaggg actacccata gacatgaaag gtccccacag 3360
agcaagagat aagtetttea tggetgetgt tgettaaace aettaaacga agagtteeet 3420
tqaaactttg ggaaaacatg ttaatgacaa tattccagat ctttcagaaa tataacacat 3480
ttttttgcat gcatgcaaat gagctctgaa atcttcccat gcattctggt caagggctgt 3540
cattgcacat aagcttccat titaatttta aagtgcaaaa gggccagcgt ggctctaaaa 3600
ggtaatgtgt ggattgcctc tgaaaagtgt gtatatattt tgtgtgaaat tgcatacttt 3660
gtattttgat tattttttt ttcttcttgg gatagtggga tttccagaac cacacttgaa 3720
acctttttt atcgtttttg tattttcatg aaaataccat ttagtaagaa taccacatca 3780
aataagaaat aatgctacaa ttttaagagg ggagggaagg gaaagttttt tttttatta 3840
tttttttaaa attttgtatg ttaaagagaa tgagtccttg atttcaaagt tttgttgtac 3900
ttaaatqqta ataaqcactg taaacttctg caacaagcat gcagctttgc aaacccatta 3960
aggggaagaa tgaaagctgt tccttggtcc tagtaagaag acaaactgct tcccttactt 4020
tgctgagggt ttgaataaac ctaggacttc cgagctatgt cagtactatt caggtaacac 4080
tagggccttg gaaatccctg tactgtgtct catggatttg gcactagcca aagcgaggca 4140
ccccttactg gcttacctcc tcatggcagc ctactctcct tgagtgtatg agtagccagg 4200
gtaaggggta aaaggatagt aagcatagaa accactagaa agtgggctta atggagttct 4260
tgtggcctca gctcaatgca gttagctgaa gaattgaaaa gtttttgttt ggagacgttt 4320
ataaacagaa atggaaagca gagttttcat taaatccttt tacctttttt ttttcttggt 4380
aatcccctaa aataacagta tgtgggatat tgaatgttaa agggatattt ttttctatta 4440
tttttataat tgtacaaaat taagcaaatg ttaaaagttt tatatgcttt attaatgttt 4500
tcaaaaggta ttatacatgt gatacatttt ttaagcttca gttgcttgtc ttctggtact 4560
ttctgttatg ggcttttggg gagccagaag ccaatctaca atctctttt gtttgccagg 4620
acatgcaata aaatttaaaa aataaataaa aacta
<210> 152
<211> 586
<212> PRT
<213> Homo sapiens
<400> 152
Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln
                                    10
Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn
Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser
                            40
Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Ala
                        55
Leu Ser Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro
                                        75
                    70
His Ser Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala
                85
                                    90
Thr Trp Thr Tyr Ser Thr Glu Leu Lys Lys Leu Tyr Cys Gln Ile Ala
            100
                                105
Lys Thr Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly
                            120
                                                 125
Ala Val Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr
                        135
Glu Val Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn
                    150
                                         155
145
Glu Gly Gln Ile Ala Pro Ser Ser His Leu Ile Arg Val Glu Gly Asn
                                    170
                165
Ser His Ala Gln Tyr Val Glu Asp Pro Ile Thr Gly Arg Gln Ser Val
                                185
```

Leu Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val

```
195
                          200
Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg
               215
                                        220
Arg Pro Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val
                  230
                                     235
Leu Gly Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg
              245
                                 250
Asp Arg Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp
                             265
Ser Thr Lys Asn Gly Asp Gly Thr Lys Arg Pro Phe Arg Gln Asn Thr
                         280
                                           285
His Gly Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp
                     295
                                         300
Glu Leu Val Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu
               310
                                     315
Val Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Leu Gln His
               325
                                 330
Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln Gln His Gln His Leu
           340
                             345
Leu Gln Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser
                         360
Ser Pro Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val
                     375
                               380
Ser Gln Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr
                           395
                 390
Ile Pro Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met
              405
                       410
Pro Met Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro
           420
                 425
Pro Pro Leu Ser Met Pro Ser Thr Ser His Cys Thr Pro Pro Pro
            440
Tyr Pro Thr Asp Cys Ser Ile Val Ser Phe Leu Ala Arg Leu Gly Cys
                      455
Ser Ser Cys Leu Asp Tyr Phe Thr Thr Gln Gly Leu Thr Thr Ile Tyr
                 470
                                    475
Gln Ile Glu His Tyr Ser Met Asp Asp Leu Ala Ser Leu Lys Ile Pro
              485
                               490
Glu Gln Phe Arg His Ala Ile Trp Lys Gly Ile Leu Asp His Arg Gln
                             505
Leu His Glu Phe Ser Ser Pro Ser His Leu Leu Arg Thr Pro Ser Ser
                          520
                                            525
Ala Ser Thr Val Ser Val Gly Ser Ser Glu Thr Arg Gly Glu Arg Val
                      535
                                         540
Ile Asp Ala Val Arg Phe Thr Leu Arg Gln Thr Ile Ser Phe Pro Pro
                  550
                                    555
Arg Asp Glu Trp Asn Asp Phe Asn Phe Asp Met Asp Ala Arg Arg Asn
               565
                       570
Lys Gln Gln Arg Ile Lys Glu Glu Gly Glu
           580
```

<210> 153

<211> 2007

<212> DNA

<213> Homo sapiens

<400> 153

gaattcgtcg ctgctccagg gaaagttctg ttactccact gactctctct tttcctgata 60

```
acatggccag caagaaagta attacagtgt ttggagcaac aggagctcaa ggtggctctg 120
tggccagggc aattttggag agcaaaaaat ttgcagtgag agcagtgacc agggatgtga 180
cttgaccaaa tgccctggag ctccagcgcc ttggagctga ggtggtcaaa ggtgacctga 240
atgataaagc atcggtggac agtgccttaa aaggtgtcta tggggccttc ttggtgacca 300
acttetggga cceteteaac caagataagg aagtgtgteg ggggaagetg gtggcagaet 360
ccgccaagca cctgggtctg aagcacgtgg tgtacagcgg cctggagaac gtcaagcgac 420
tgacggatgg caagctggag gtgccgcact ttgacagcaa gggcgaggtg gaggagtact 480
totggtccat tggcatcccc atgaccagtg tccgcgtggc ggcctacttt gaaaactttc 540
tegeggegtg geggeeegtg aaageetetg atggagatta etacacettg getgtacega 600
tgggagatgt accaatggat ggtatctctg ttgctgatat tggagcagcc gtctctagca 660
tttttaattc tccagaggaa tttttaggca aggccgtggg gctcagtgca gaagcactaa 720
caatacagca atatgctgat gttttgtcca aggctttggg qaaaqaagtc cgaqatgcaa 780
agattacccc ggaagctttc gagaagctqq gattccctqc agcaaaggaa atagccaata 840
tgtgtcgttt ctatgaaatg aagccagacc gagatgtcaa tctcacccac caactaaatc 900
ccaaagtcaa aagcttcagc cagtttatct cagagaacca qqqaqccttc aaqqqcatqt 960
agaaaatcag ctgttcagat aggcetctgc accacacage ctctttcctc tctgatcctt 1020
ttcctcttta cggcacaaca ttcatgttga cagaacatgc tggaatgcaa ttgtttgcaa 1080
caccgaagga tttcctgcgg tcgcctcttc agtaggaagc actgcattgg tgataggaca 1140
cggtaatttg attcacattt aacttgctag ttagtgataa gggtggtaca actgtttggt 1200
aaaatgagaa gcctcggaac ttggagcttc tctcctacca ctaatgggag ggcagattat 1260
actgggattt ctcctgggtg agtaatttca agccctaatg ctgaaattcc cctaggcagc 1320
tccagttttc tcaactgcat tgcaaaattc ccagtgaact tttaagtact tttaacttaa 1380
aaaaatgaac atctttgtag agaattttct ggggaacatg gtgttcaatg aacaagcaca 1440
agcattggaa atgctaaaat tcagttttgc ctcaagattg gaagtttatt ttctgactca 1500
ttcatgaagt catctattga gccaccattc aattattcat ctattaattc cttgatcctt 1560
catttatcca ttctgcaaac ttttcttgag caccagcacg ggtggccatt tgtggacttc 1620
tetteattee tatgtgtttt ettateaaag tgateeacte tegaaagget eettteeagt 1680
ctgtggttgg gttcaagtca tgccagggcc agggggccca tctcctcgtt tagctctagg 1740
caaaatccag gggatctgca gtggggagcg ggggcaggaa gctgqaggga aggcctgtga 1800
agggtaggga tgtggaaaga caaggtgaca gaaggaccca ataggacctt tctatatctc 1860
tggcttagca ttttctacat catattgtaa tcgtcttatt tgctagtttt cttccttact 1920
gtgagtgact aacagtcatc tttatcccag tgcctggtac ataataagtg atcaataaat 1980
gttgattgac taaaaaaaa aaaaaaa
                                                                  2007
<210> 154
<211> 2148
<212> DNA
<213> Homo sapiens
<400> 154
gaattcgtcg ctgctccagg gaaagttctg ttactccact gactctctct tttcctgata 60
acatggccag caagaaagta attacagtgt ttggagcaac aggagctcaa ggtggctctg 120
tggccagggc aattttggag agcaaaaaat ttgcagtgag agcagtgacc agggatgtga 180
cttgaccaaa tgccctggag ctccagcgcc ttggagctga ggtggtcaaa ggtgacctga 240
atgataaagc atcggtggac agtgccttaa aaggggaagc tggtggcaga ctccgccaag 300
cacctgggtc tgaagcacgt ggtgtacagc ggcctggaga acgtcaaqcg actgacggat 360
ggcaagctgg aggtgccgca ctttgacagc aagggcgagg tggaggagta cttctggtcc 420
attggcatcc ccatgaccag tgtccgcgtg gcggcctact ttgaaaactt tctcgcggcg 480
tggcggcccg tgaaagcctc tgatggagat tactacacct tggctgtacc gatgggagat 540
gtaccaatgg atggtatctc tgttgctgat attggagcag ccgtctctag catttttaat 600
tctccagagg aatttttagg caaggccqtq qqqctcagtq cagaagcact aacaatacag 660
caatatgctg atgttttgtc caaggctttg gggaaagaag tccgagatgc aaagactatc 720
tgtgctatag atgaccagaa aacagtggaa gaaggtttca tggaagacgt gggcttgagt 780
tggtccttga gggaacatga ccatgtatag acagaggagg catcaagaag gctggcctgg 840
ctaattctgg aataaacacg acaaaccaga ggcagtacgg gaaggaggca aattctggct 900
ctgcctctat ccttgattac cccggaagct ttcgagaagc tgggattccc tgcagcaaag 960
gaaatagcca atatgtgtcg tttctatgaa atgaagccag accgagatgt caatctcacc 1020
caccaactaa atcccaaagt caaaagcttc agccatttta tctcagagaa ccagggagcc 1080
```

```
ttcaagggca tgtagaaaat cagctgttca gataggcctc tgcaccacac agcctctttc 1140
ctctctgatc cttttcctct ttacggcaca acattcatgt tgacagaaca tgctggaatg 1200
caattgtttg caacaccgaa ggatttcctg cggtcgcctc ttcagtagga agcactgcat 1260
tggtgatagg acacggtaat ttgattcaca tttaacttgc tagttagtga taagggtggt 1320
acaactgttt ggtaaaatga gaagcctcgg aacttggagc ttctctccta ccactaatgg 1380
gagggcagat tatactggga tttctcctgg gtgagtaatt tcaagcccta atgctgaaat 1440
teceetagge ageteeagtt tteteaactg cattgeaaaa tteecagtga aettttaagt 1500
acttttaact taaaaaaatg aacatctttg tagagaattt tctggggaac atggtgttca 1560
atgaacaagc acaagcattg gaaatgctaa aattcagttt tgcctcaaga ttggaagttt 1620
attitctgac tcattcatga agtcatctat tgaqccacca ttcaattatt catctattaa 1680
ttccttgatc cttcatttat ccattctgca aacttttctt gagcaccagc acgggtggcc 1740
atttgtggac ttctcttcat tcctatgtgt tttcttatca aagtgatcca ctctcgaaag 1800
gctcctttcc agtctgtggt tgggttcaag tcatgccagg gccagggggc ccatctcctc 1860
gtttagctct aggcaaaatc caggggatct gcagtgggga gcgggggcag gaagctggag 1920
ggaaggcctg tgaagggtag ggatgtggaa agacaaggtq acaqaaggac ccaataggac 1980
ctttctatat ctctggctta gcattttcta catcatattg taatcgtctt atttgctagt 2040
tttcttcctt actgtgagtg actaacagtc atctttatcc cagtgcctgg tacataataa 2100
gtgatcaata aatgttgatt gactaaatga aaaaaaaaa aaaaaaaa
<210> 155
<211> 153
<212> PRT
<213> Homo sapiens
<400> 155
Met Thr Ser Val Arg Val Ala Ala Tyr Phe Glu Asn Phe Leu Ala Ala
                                    10
Trp Arg Pro Val Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val
                                25
Pro Met Gly Asp Val Pro Met Asp Gly Ile Ser Val Ala Asp Ile Gly
                            40
Ala Ala Val Ser Ser Ile Phe Asn Ser Pro Glu Glu Phe Leu Gly Lys
Ala Val Gly Leu Ser Ala Glu Ala Leu Thr Ile Gln Gln Tyr Ala Asp
                    70
Val Leu Ser Lys Ala Leu Gly Lys Glu Val Arg Asp Ala Lys Ile Thr
Pro Glu Ala Phe Glu Lys Leu Gly Phe Pro Ala Ala Lys Glu Ile Ala
                                105
Asn Met Cys Arg Phe Tyr Glu Met Lys Pro Asp Arg Asp Val Asn Leu
                            120
                                                125
Thr His Gln Leu Asn Pro Lys Val Lys Ser Phe Ser Gln Phe Ile Ser
                        135
Glu Asn Gln Gly Ala Phe Lys Gly Met
145
<210> 156
<211> 128
<212> PRT
<213> Homo sapiens
<400> 156
Met Thr Ser Val Arg Val Ala Ala Tyr Phe Glu Asn Phe Leu Ala Ala
                 5
                                    10
Trp Arg Pro Val Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val
                                2.5
Pro Met Gly Asp Val Pro Met Asp Gly Ile Ser Val Ala Asp Ile Gly
```

```
40
                                                45
Ala Ala Val Ser Ser Ile Phe Asn Ser Pro Glu Glu Phe Leu Gly Lys
                        55
                                            60
Ala Val Gly Leu Ser Ala Glu Ala Leu Thr Ile Gln Gln Tyr Ala Asp
                                        75
                    70
Val Leu Ser Lys Ala Leu Gly Lys Glu Val Arg Asp Ala Lys Thr Ile
                85
                                    90
Cys Ala Ile Asp Asp Gln Lys Thr Val Glu Glu Gly Phe Met Glu Asp
            100
                                105
Val Gly Leu Ser Trp Ser Leu Arg Glu His Asp His Val Ala Gly Ala
        115
                            120
                                                125
<210> 157
<211> 424
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 320, 322
<223> n = A,T,C or G
<400> 157
ctgcagcccg ggggatccac tagtccagtg tggtggaatt cattggtctt tacaagactt 60
ggatacatta cagcagacat ggaaatataa ttttaaaaaa tttctctcca acctccttca 120
aattcagtca ccactgttat attaccttct ccaggaaccc tccagtgggg aaggctgcga 180
tattagattt ccttgtatgc aaagtttttg ttgaaagctg tgctcagagg aggtgagagg 240
agaggaagga gaaaactgca tcataacttt acagaattga atctagagtc ttccccgaaa 300
agcccagaaa cttctctgcn gnatctggct tgtccatctg gtctaaggtg gctgcttctt 360
ccccagccat cgagtcagtt tgtgcccatg aataatacac gacctgctat ttcccatgac 420
tact
<210> 158
<211> 2099
<212> DNA
<213> Homo sapiens
<400> 158
ccgcggttaa aaggcgcagc aggtgggagc cggggccttc acccgaaacc cgacgagagc 60
ccgacagccg gcggcgccg agcccgacct gcctgcccag ccggagcgaa gggcgccgcc 120
ccgcgcagag cccgcgccag ggccgccggc cgcagagcag ttaaaacgtg caggcaccag 180
aaggcacttc ctgtcggtga agaagacctg tctccggtgt cacgggcatc ctgtgtttttg 240
caaacggggc tgacctccct tcctggggag caggaagggt cagggaagga aaagaagtac 300
agaagatctg gctaaacaat ttctgtatgg cgaaagaaaa attctaactt gtacgccctc 360
ttcatgcatc tttaattcaa tttgaatatt ccaggcgaca tcctcactga ccgagcaaag 420
attgacattc gtatcatcac tgtgcaccat tggcttctag gcactccagt ggggtaggag 480
aaggaggtet gaaacceteg cagagggate ttgcceteat tetttgggte tgaaacaetg 540
gcagtcgttg gaaacaggac tcagggataa accagcgcaa tggattgggg gacgctgcac 600
actttcatcg ggggtgtcaa caaacactcc accagcatcg ggaaggtgtg gatcacagtc 660
atctttattt teegagteat gateetegtg gtggetgeee aggaagtgtg gggtgaegag 720
caagaggact tcgtctgcaa cacactgcaa ccgggatgca aaaatgtgtg ctatgaccac 780
tttttcccgg tgtcccacat ccggctgtgg gccctccagc tgatcttcgt ctccacccca 840
gcgctgctgg tggccatgca tgtqgcctac tacaggcacg aaaccactcg caagttcagg 900
cgaggagaga agaggaatga tttcaaagac atagaggaca ttaaaaagca gaaggttcqq 960
atagaggggt cgctgtggtg gacgtacacc agcagcatct ttttccgaat catctttgaa 1020
gcagccttta tgtatgtgtt ttacttcctt tacaatgggt accacctgcc ctgggtgttg 1080
aaatgtggga ttgacccctg ccccaacctt gttgactgct ttatttctag gccaacagag 1140
```

```
aagaccgtgt ttaccatttt tatgatttct gcgtctgtga tttgcatgct gcttaacgtg 1200
gcagagttgt gctacctgct gctgaaagtg tgttttagga gatcaaagag agcacagacg 1260
caaaaaaatc accccaatca tgccctaaag gagagtaagc agaatgaaat gaatgagctg 1320
atttcagata gtggtcaaaa tgcaatcaca ggttcccaag ctaaacattt caaggtaaaa 1380
tgtagctgcg tcataaggag acttctgtct tctccagaag gcaataccaa cctgaaagtt 1440
ccttctgtag cctgaagagt ttgtaaatga ctttcataat aaatagacac ttgagttaac 1500
tttttgtagg atacttgctc cattcataca caacgtaatc aaatatgtgg tccatctctg 1560
aaaacaagag actgcttgac aaaggagcat tgcagtcact ttgacaggtt ccttttaagt 1620
ggactetetg acaaagtggg tactttetga aaatttatat aactgttgtt gataaggaac 1680
atttatccag gaattgatac gtttattagg aaaagatatt tttataggct tggatgtttt 1740
tagttctgac tttgaattta tataaagtat ttttataatg actggtcttc cttacctgga 1800
aaaacatgcg atgttagttt tagaattaca ccacaagtat ctaaatttgg aacttacaaa 1860
gggtctatct tgtaaatatt gttttgcatt gtctgttggc aaatttgtga actgtcatga 1920
tacgcttaag gtggaaagtg ttcattgcac aatatatttt tactgctttc tgaatgtaga 1980
cggaacagtg tggaagcaga aggctttttt aactcatccg tttgccaatc attgcaaaca 2040
actgaaatgt ggatgtgatt gcctcaataa agctcgtccc cattgcttaa aaaaaaaaa 2099
<210> 159
<211> 291
<212> PRT
<213> Homo sapiens
Met Asp Trp Gly Thr Leu His Thr Phe Ile Gly Gly Val Asn Lys His
                                    10
Ser Thr Ser Ile Gly Lys Val Trp Ile Thr Val Ile Phe Ile Phe Arg
            20
                                25
Val Met Ile Leu Val Val Ala Ala Gln Glu Val Trp Gly Asp Glu Gln
                            40
Glu Asp Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Lys Asn Val Cys
                        55
Tyr Asp His Phe Phe Pro Val Ser His Ile Arg Leu Trp Ala Leu Gln
                    70
                                        75
Leu Ile Phe Val Ser Thr Pro Ala Leu Leu Val Ala Met His Val Ala
                                    90
Tyr Tyr Arg His Glu Thr Thr Arg Lys Phe Arg Arg Gly Glu Lys Arg
                                105
Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys Lys Gln Lys Val Arg Ile
                            120
Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser Ile Phe Phe Arg Ile
                        135
                                            140
Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Phe Leu Tyr Asn Gly
                    150
                                        155
Tyr His Leu Pro Trp Val Leu Lys Cys Gly Ile Asp Pro Cys Pro Asn
                165
                                    170
                                                        175
Leu Val Asp Cys Phe Ile Ser Arg Pro Thr Glu Lys Thr Val Phe Thr
            180
                                185
                                                    190
Ile Phe Met Ile Ser Ala Ser Val Ile Cys Met Leu Leu Asn Val Ala
                            200
Glu Leu Cys Tyr Leu Leu Lys Val Cys Phe Arg Arg Ser Lys Arg
                        215
Ala Gln Thr Gln Lys Asn His Pro Asn His Ala Leu Lys Glu Ser Lys
                    230
                                        235
Gln Asn Glu Met Asn Glu Leu Ile Ser Asp Ser Gly Gln Asn Ala Ile
                245
                                    250
Thr Gly Ser Gln Ala Lys His Phe Lys Val Lys Cys Ser Cys Val Ile
                                265
                                                    270
Arg Arg Leu Leu Ser Ser Pro Glu Gly Asn Thr Asn Leu Lys Val Pro
```

76

```
275
                            280
                                                285
Ser Val Ala
    290
<210> 160
<211> 3951
<212> DNA
<213> Homo sapiens
<400> 160
tetgeateea tattgaaaac etgacacaat gtatgeagea ggeteagtgt gagtgaactg 60
gaggettete tacaacatga eccaaaggag cattgeaggt ectatttgea acetgaagtt 120
tgtgactete etggttgeet taagtteaga acteeeatte etgggagetg gagtaeaget 180
tcaagacaat gggtataatg gattgctcat tgcaattaat cctcaggtac ctgagaatca 240
gaacctcatc tcaaacatta aggaaatgat aactgaagct tcattttacc tatttaatgc 300
taccaagaga agagtatttt tcagaaatat aaagatttta atacctgcca catggaaagc 360
taataataac agcaaaataa aacaagaatc atatgaaaag gcaaatgtca tagtgactga 420
ctggtatggg gcacatggag atgatccata caccctacaa tacagagggt gtggaaaaga 480
gggaaaatac attcatttca cacctaattt cctactgaat gataacttaa cagctggcta 540
cggatcacga ggccgagtgt ttgtccatga atgggcccac ctccgttggg gtgtgttcga 600
tgagtataac aatgacaaac ctttctacat aaatgggcaa aatcaaatta aagtgacaag 660
gtgttcatct gacatcacag gcatttttgt gtgtgaaaaa ggtccttgcc cccaagaaaa 720
ctgtattatt agtaagcttt ttaaagaagg atgcaccttt atctacaata gcacccaaaa 780
tgcaactgca tcaataatgt tcatgcaaag tttatcttct gtggttgaat tttgtaatgc 840
aagtacccac aaccaagaag caccaaacct acagaaccag atgtgcagcc tcagaagtgc 900
atgggatgta atcacagact ctgctgactt tcaccacagc tttcccatga acgggactga 960
gcttccacct cctcccacat tctcgcttgt agaggctggt gacaaagtgg tctgtttagt 1020
gctggatgtg tccagcaaga tggcagaggc tgacagactc cttcaactac aacaagccqc 1080
agaattttat ttgatgcaga ttgttgaaat tcataccttc gtgggcattg ccagtttcga 1140
cagcaaagga gagatcagag cccagctaca ccaaattaac agcaatgatg atcgaaagtt 1200
gctggtttca tatctgccca ccactgtatc agctaaaaca gacatcagca tttgttcagg 1260
gcttaagaaa ggatttgagg tggttgaaaa actgaatgga aaagcttatg gctctgtgat 1320
gatattagtg accageggag atgataaget tettggcaat tgettaeeca etgtgeteag 1380
cagtggttca acaattcact ccattgccct gggttcatct gcagccccaa atctggagga 1440
attatcacgt cttacaggag gtttaaagtt ctttgttcca gatatatcaa actccaatag 1500
catgattgat gctttcagta gaatttcctc tggaactgga gacattttcc agcaacatat 1560
tcagcttgaa agtacaggtg aaaatgtcaa acctcaccat caattgaaaa acacagtgac 1620
tgtggataat actgtgggca acgacactat gtttctagtt acgtggcagg ccagtggtcc 1680
tcctgagatt atattatttg atcctgatgg acgaaaatac tacacaaata attttatcac 1740
caatctaact tttcggacag ctagtctttg gattccagga acagctaagc ctgggcactg 1800
gacttacacc ctgaacaata cccatcattc tctgcaagcc ctgaaagtga cagtgacctc 1860
tegegeetee aacteagetg tegeececage caetgtggaa geetttgtgg aaagagacag 1920
cctccatttt cctcatcctg tgatgattta tgccaatgtg aaacagggat tttatcccat 1980
tettaatgee actgteactg ceacagttga geeagagaet ggagateetg ttacgetgag 2040
actccttgat gatggagcag gtgctgatgt tataaaaaat gatggaattt actcgaggta 2100
ttttttctcc tttgctgcaa atggtagata tagcttgaaa gtgcatgtca atcactctcc 2160
cagcataagc accccagccc actctattcc agggagtcat gctatgtatg taccaggtta 2220
cacagcaaac ggtaatattc agatgaatgc tccaaggaaa tcagtaggca gaaatgagga 2280
ggagcgaaag tggggcttta gccgagtcag ctcaggaggc tccttttcag tgctgggagt 2340
tccagctggc ccccaccctg atgtgtttcc accatgcaaa attattgacc tggaagctgt 2400
aaaagtagaa gaggaattga ccctatcttg gacagcacct ggagaagact ttgatcaggg 2460
ccaggctaca agctatgaaa taagaatgag taaaagtcta cagaatatcc aagatgactt 2520
taacaatgct attttagtaa atacatcaaa gcgaaatcct cagcaagctg gcatcaggga 2580
gatatttacg ttctcacccc aaatttccac gaatggacct gaacatcagc caaatggaga 2640
aacacatgaa agccacagaa tttatgttgc aatacgagca atggatagga actccttaca 2700
gtctgctgta tctaacattg cccaggcgcc tctgtttatt ccccccaatt ctgatcctgt 2760
acctgccaga gattatctta tattgaaagg agttttaaca gcaatgggtt tgataggaat 2820
```

```
catttgcctt attatagttg tgacacatca tactttaagc aggaaaaaga gagcagacaa 2880
gaaagagaat ggaacaaaat tattataaat aaatatccaa agtgtcttcc ttcttagata 2940
taagacccat ggccttcgac tacaaaaaca tactaacaaa gtcaaaattaa catcaaaact 3000
gtattaaaat gcattgagtt tttgtacaat acagataaga tttttacatg gtagatcaac 3060
aaattetttt tgggggtaga ttagaaaacc ettacaettt ggetatgaac aaataataaa 3120
aattattott taaagtaatg totttaaagg caaagggaag ggtaaagtog gaccagtgto 3180
aaggaaagtt tgttttattg aggtggaaaa atagccccaa gcagagaaaa ggagggtagg 3240
tctgcattat aactgtctgt gtgaagcaat catttagtta ctttgattaa tttttctttt 3300
ctccttatct gtgcagaaca ggttgcttgt ttacaactga agatcatgct atatttcata 3360
tatgaagccc ctaatgcaaa gctctttacc tcttgctatt ttgttatata tattacagat 3420
gaaatctcac tgctaatgct cagagatctt ttttcactgt aagaggtaac ctttaacaat 3480
atgggtatta cctttgtctc ttcataccgg ttttatqaca aaqqtctatt qaatttattt 3540
gtttgtaagt ttctactccc atcaaagcag ctttttaagt tattgccttg gttattatgg 3600
atgatagtta tagcccttat aatgccttaa ctaaggaaga aaagatgtta ttctgagttt 3660
gttttaatac atatatgaac atatagtttt attcaattaa accaaagaag aggtcagcag 3720
ggagatacta acctttggaa atgattagct ggctctgttt tttggttaaa taagagtctt 3780
taatcctttc tccatcaaga gttacttacc aagggcaggg gaagggggat atagaggtcc 3840
caaggaaata aaaatcatct ttcatcttta attttactcc ttcctcttat ttttttaaaa 3900
gattatcgaa caataaaatc atttgccttt ttaattaaaa acataaaaaa a
<210> 161
<211> 943
<212> PRT
<213> Homo sapiens
<400> 161
Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val
                                    10
Thr Leu Leu Val Ala Leu Ser Ser Glu Leu Pro Phe Leu Gly Ala Gly
            20
                                25
Val Gln Leu Gln Asp Asn Gly Tyr Asn Gly Leu Leu Ile Ala Ile Asn
                            40
Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met
                        55
                                            60
Ile Thr Glu Ala Ser Phe Tyr Leu Phe Asn Ala Thr Lys Arg Arg Val
                    70
                                        75
Phe Phe Arg Asn Ile Lys Ile Leu Ile Pro Ala Thr Trp Lys Ala Asn
Asn Asn Ser Lys Ile Lys Gln Glu Ser Tyr Glu Lys Ala Asn Val Ile
                                105
                                                    110
Val Thr Asp Trp Tyr Gly Ala His Gly Asp Asp Pro Tyr Thr Leu Gln
                            120
                                                125
Tyr Arg Gly Cys Gly Lys Glu Gly Lys Tyr Ile His Phe Thr Pro Asn
                        135
                                            140
Phe Leu Leu Asn Asp Asn Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg
                    150
                                        155
Val Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe Asp Glu
                165
                                    170
                                                         175
Tyr Asn Asn Asp Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Ile Lys
            180
                                185
Val Thr Arg Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cys Glu Lys
                            200
Gly Pro Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Leu Phe Lys Glu
                        215
                                            220
Gly Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Ala Thr Ala Ser Ile
                    230
                                        235
Met Phe Met Gln Ser Leu Ser Ser Val Val Glu Phe Cys Asn Ala Ser
                245
                                    250
```

	Thr	His	Asn	Gln 260	Glu	Ala	Pro	Asn	Leu 265	Gln	Asn	Gln	Met	Cys 270	Ser	Leu
	Arg	Ser	Ala 275	Trp	Asp	Val	Ile	Thr 280	Asp	Ser	Ala	Asp	Phe 285	His	His	Ser
	Phe	Pro 290	Met	Asn	Gly	Thr	Glu 295	Leu	Pro	Pro	Pro	Pro 300	Thr	Phe	Ser	Leu
	305	Glu				310					315					320
		Met			325	_				330					335	
•		Tyr		.340					345					350		
		Phe	355					360	_				365			
		Asn 370					375				_	380				
	385	Ala				390					395			*		400
		Val Val			405			_		410	_	_			415	
		Leu		420					425					430		
		Ala	435		_			440					445	_		
		450 Phe					455			_		460	_	-		-
	465	Arg				470					475					480
		Glu			485			_	_	490					495	
		Val		500					505					510		
		Trp	515		-			520	_		_		525			
		530 Arg					535					540				
	545	Ala				550					555					560
		Thr			565					570					575	
		Thr		580					585					590		
	Ala	Phe	595 Val	Glu	Arg	Asp	Ser	600 Leu	His	Phe	Pro	His	605 Pro	Val	Met	Ile
	Tyr	610 Ala	Asn	Val	Lys	Gln	615 Gly	Phe	Tyr	Pro	Ile	620 Leu	Asn	Ala	Thr	Val
	625 Thr	Ala	Thr	Val	Glu	630 Pro	Glu	Thr	Gly	Asp	635 Pro	Val	Thr	Leu	Arg	640 Leu
	Leu	Asp	Asp		645 Ala	Gly	Ala	Asp		650 Ile	Lys	Asn	Asp	Gly	655 Ile	Tyr
	Ser	Arg		660 Phe	Phe	Ser	Phe		665 Ala	Asn	Gly	Arg		670 Ser	Leu	Lys
	Val	His	675 Val	Asn	His	Ser		680 Ser	Ile	Ser	Thr		685 Ala	His	Ser	Ile
		690 Gly	Ser	His	Ala		695 Tyr	Val	Pro	Gly		700 Thr	Ala	Asn	Gly	
	705					710					715					720

```
Ile Gln Met Asn Ala Pro Arg Lys Ser Val Gly Arg Asn Glu Glu Glu
                                    730
Arg Lys Trp Gly Phe Ser Arg Val Ser Ser Gly Gly Ser Phe Ser Val
                                745
Leu Gly Val Pro Ala Gly Pro His Pro Asp Val Phe Pro Pro Cys Lys
                            760
                                                765
Ile Ile Asp Leu Glu Ala Val Lys Val Glu Glu Glu Leu Thr Leu Ser
                        775
                                            780
Trp Thr Ala Pro Gly Glu Asp Phe Asp Gln Gly Gln Ala Thr Ser Tyr
                    790
                                        795
Glu Ile Arg Met Ser Lys Ser Leu Gln Asn Ile Gln Asp Asp Phe Asn
                805
                                    810
Asn Ala Ile Leu Val Asn Thr Ser Lys Arg Asn Pro Gln Gln Ala Gly
            820
                                825
Ile Arg Glu Ile Phe Thr Phe Ser Pro Gln Ile Ser Thr Asn Gly Pro
                            840
Glu His Gln Pro Asn Gly Glu Thr His Glu Ser His Arg Ile Tyr Val
                        855
                                            860
Ala Ile Arg Ala Met Asp Arg Asn Ser Leu Gln Ser Ala Val Ser Asn
                    870
                                        875
Ile Ala Gln Ala Pro Leu Phe Ile Pro Pro Asn Ser Asp Pro Val Pro
                885
                                    890
Ala Arg Asp Tyr Leu Ile Leu Lys Gly Val Leu Thr Ala Met Gly Leu
            900
                                905
                                                    910
Ile Gly Ile Ile Cys Leu Ile Ile Val Val Thr His His Thr Leu Ser
                            920
Arg Lys Lys Arg Ala Asp Lys Lys Glu Asn Gly Thr Lys Leu Leu
    930
                        935
<210> 162
<211> 498
<212> DNA
<213> Homo sapiens
<400> 162
tggagaacca cgtggacagc accatgaaca tgttgggcgg gggaggcagt gctggccgga 60
agcccctcaa gtcgggtatg aaggagctgg ccgtgttccg ggagaaggtc actgagcagc 120
accggcagat gggcaagggt ggcaagcatc accttggcct ggaggagccc aagaagctgc 180
gaccacccc tgccaggact ccctgccaac aggaactgga ccaggtcctg gagcggatct 240
ccaccatgcg ccttccggat gagcggggcc ctctggagca cctctactcc ctgcacatcc 300
ccaactgtga caagcatggc ctgtacaacc tcaaacagtg gcaagatgtc tctgaacggg 360
cagcgtgggg agtgctggtg tgtgaacccc aacaccggga agctgatcca gggagccccc 420
accatccggg gggaccccga gtgtcatctc ttctacaatg agcagcagga ggctcgcggg 480
gtgcacaccc cagcggat
                                                                   498
<210> 163
<211> 1128
<212> DNA
<213> Homo sapiens
<400> 163
gccacctggc cctcctgatc gacgacacac gcacttgaaa cttgttctca gggtgtgtgg 60
aatcaacttt ccggaagcaa ccagcccacc agaggaggtc ccgagcgcga gcggagacga 120
tgcagcggag actggttcag cagtggagcg tcgcggtgtt cctgctgagc tacgcggtgc 180
cetectgegg gegeteggtg gagggtetea geegeegeet caaaagaget gtgtetgaac 240
atcagetect ccatgacaag gggaagteca tecaagattt aeggegaega ttetteette 300
accatctgat cgcagaaatc cacacagctg aaatcagagc tacctcggag gtgtccccta 360
```

```
actocaagoo ototoccaac acaaagaaco accoogtoog atttgggtot gatgatgagg 420
gcagatacct aactcaggaa actaacaagg tggagacgta caaagagcag ccgctcaaga 480
cacctgggaa gaaaaagaaa ggcaagcccg ggaaacgcaa ggagcaggaa aagaaaaaac 540
ggcgaactcg ctctgcctgg ttagactctg gagtgactgg gagtgggcta gaaggggacc 600
acctgtctga cacctccaca acgtcgctgg agctcgattc acggaggcat tgaaattttc 660
agcagagacc ttccaaggac atattgcagg attctgtaat agtgaacata tggaaagtat 720
tagaaatatt tattgtctgt aaatactgta aatgcattgg aataaaactg tctcccccat 780
tgctctatga aactgcacat tggtcattgt gaatattttt ttttttgcca aggctaatcc 840
aattattatt atcacattta ccataattta ttttgtccat tgatgtattt attttgtaaa 900
tgtatcttgg tgctgctgaa tttctatatt ttttgtaaca taatgcactt tagatataca 960
tatcaagtat gttgataaat gacacaatga agtgtctcta ttttgtggtt gattttaatg 1020
aatgcctaaa tataattatc caaattgatt ttcctttgtg catgtaaaaa taacagtatt 1080
ttaaatttgt aaagaatgtc taataaaata taatctaatt acatcatg
<210> 164
<211> 1310
<212> DNA
<213> Homo sapiens
<400> 164
gggcctggtt cgcaaagaag ctgacttcag agggggaaac tttcttcttt taggaggcgq 60
ttagccctgt tccacgaacc caggagaact gctggccaga ttaattagac attgctatgg 120
gagacgtgta aacacactac ttatcattga tgcatatata aaaccatttt attttcgcta 180
ttatttcaga ggaagcgcct ctgatttgtt tcttttttcc ctttttgctc tttctggctg 240
tgtggtttgg agaaagcaca gttggagtag ccggttgcta aataagtccc gagcgcgagc 300
ggagacgatg cagcggagac tggttcagca gtggagcgtc gcggtgttcc tgctgagcta 360
cgcggtgccc tcctgcgggc gctcggtgga gggtctcagc cgccgcctca aaagagctgt 420
gtctgaacat cagctcctcc atgacaaggg gaagtccatc caagatttac ggcgacgatt 480
cttccttcac catctgatcg cagaaatcca cacagctgaa atcagagcta cctcggaggt 540
gtcccctaac tccaagcct ctcccaacac aaagaaccac cccgtccgat ttgggtctga 600
tgatgagggc agatacctaa ctcaggaaac taacaaggtg gagacgtaca aagagcagcc 660
gctcaagaca cctgggaaga aaaagaaagg caagcccggg aaacgcaagg agcaggaaaa 720
gaaaaaacgg cgaactcgct ctgcctggtt agactctgga gtgactggga gtgggctaga 780
aggggaccac ctgtctgaca cctccacaac gtcgctggag ctcgattcac ggaggcattg 840
aaattttcag cagagacctt ccaaggacat attgcaggat tctgtaatag tgaacatatg 900
gaaagtatta gaaatattta ttgtctgtaa atactgtaaa tgcattggaa taaaactgtc 960
tececeatty etetatgaaa etgeacatty gteattytya atattittit tittgeeaag 1020
gctaatccaa ttattattat cacatttacc ataatttatt ttgtccattg atgtatttat 1080
tttgtaaatg tatcttggtg ctgctgaatt tctatatttt ttgtaacata atgcacttta 1140
gatatacata tcaagtatgt tgataaatga cacaatgaag tgtctctatt ttgtggttga 1200
ttttaatgaa tgcctaaata taattatcca aattgatttt cctttgtgcc cgtaaaaata 1260
acagtatttt aaatttgtaa agaatgtcta ataaaatata atctaattac
<210> 165
<211> 177
<212> PRT
<213> Homo sapiens
<400> 165
Met Gln Arg Arg Leu Val Gln Gln Trp Ser Val Ala Val Phe Leu Leu
                                    10
Ser Tyr Ala Val Pro Ser Cys Gly Arg Ser Val Glu Gly Leu Ser Arg
Arg Leu Lys Arg Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly
Lys Ser Ile Gln Asp Leu Arg Arg Phe Phe Leu His His Leu Ile
Ala Glu Ile His Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro
```

81

70 75 Asn Ser Lys Pro Ser Pro Asn Thr Lys Asn His Pro Val Arg Phe Gly 85 90 Ser Asp Asp Glu Gly Arg Tyr Leu Thr Gln Glu Thr Asn Lys Val Glu 105 Thr Tyr Lys Glu Gln Pro Leu Lys Thr Pro Gly Lys Lys Lys Gly 120 Lys Pro Gly Lys Arg Lys Glu Glu Lys Lys Lys Arg Arg Thr Arg 135 140 Ser Ala Trp Leu Asp Ser Gly Val Thr Gly Ser Gly Leu Glu Gly Asp 150 155 His Leu Ser Asp Thr Ser Thr Thr Ser Leu Glu Leu Asp Ser Arg Arg 165 170 175 His

<210> 166 <211> 177 <212> PRT

<213> Homo sapiens

<400> 166

Met Gln Arg Arg Leu Val Gln Gln Trp Ser Val Ala Val Phe Leu Leu 10 Ser Tyr Ala Val Pro Ser Cys Gly Arg Ser Val Glu Gly Leu Ser Arg 25 Arg Leu Lys Arg Ala Val Ser Glu His Gln Leu Leu His Asp Lys Gly 40 Lys Ser Ile Gln Asp Leu Arg Arg Phe Phe Leu His His Leu Ile 55 Ala Glu Ile His Thr Ala Glu Ile Arg Ala Thr Ser Glu Val Ser Pro 70 75 Asn Ser Lys Pro Ser Pro Asn Thr Lys Asn His Pro Val Arg Phe Gly Ser Asp Asp Glu Gly Arg Tyr Leu Thr Gln Glu Thr Asn Lys Val Glu 105 Thr Tyr Lys Glu Gln Pro Leu Lys Thr Pro Gly Lys Lys Lys Gly 120 125 Lys Pro Gly Lys Arg Lys Glu Gln Glu Lys Lys Lys Arg Arg Thr Arg 135 140 Ser Ala Trp Leu Asp Ser Gly Val Thr Gly Ser Gly Leu Glu Gly Asp 150 155 His Leu Ser Asp Thr Ser Thr Ser Leu Glu Leu Asp Ser Arg Arg 170 165 His

<210> 167

<211> 3362

<212> DNA

<213> Homo sapiens

<400> 167

cacaatgtat gcagcaggct cagtgtgagt gaactggagg cttctctaca acatgaccca 60 aaggagcatt gcaggtccta tttgcaacct gaagtttgtg actctcctgg ttgccttaag 120 ttcagaactc ccattcctgg gagctggagt acagcttcaa gacaatgggt ataatggatt 180

gctcattgca attaatcctc aggtacctga gaatcagaac ctcatctcaa acattaagga 240 aatgataact gaagetteat titaeetatt taatgetaee aagagaagag tattitteag 300 aaatataaag attttaatac ctgccacatg gaaagctaat aataacagca aaataaaaca 360 agaatcatat gaaaaggcaa atgtcatagt gactgactgg tatggggcac atggagatga 420 tccatacacc ctacaataca gagggtgtgg aaaagaggga aaatacattc atttcacacc 480 taatttccta ctgaatgata acttaacagc tggctacgga tcacgaggcc gagtgtttgt 540 ccatgaatgg gcccacctcc gttggggtgt gttcgatgag tataacaatg acaaaccttt 600 ctacataaat gggcaaaatc aaattaaagt gacaaggtgt tcatctgaca tcacaggcat 660 ttttgtgtgt gaaaaaggtc cttgccccca agaaaactgt attattagta agctttttaa 720 agaaggatgc acctttatct acaatagcac ccaaaatgca actgcatcaa taatgttcat 780 gcaaagttta tcttctgtgg ttgaattttg taatgcaagt acccacaacc aagaagcacc 840 aaacctacag aaccagatgt gcagcctcag aagtgcatgg gatgtaatca cagactctgc 900 tgactttcac cacagetttc ccatgaacgg gactgagett ccacetectc ccacattetc 960 gcttgtagag gctggtgaca aagtggtctg tttagtgctg gatgtgtcca gcaagatggc 1020 agaggetgae agacteette aactacaaca ageegeagaa ttttatttga tgeagattgt 1080 tgaaattcat accttcgtgg gcattgccag tttcgacagc aaaggagaga tcagagccca 1140 gctacaccaa attaacagca atgatgatcg aaagttgctg gtttcatatc tgcccaccac 1200 tgtatcagct aaaacagaca tcagcatttg ttcagggctt aagaaaggat ttgaggtggt 1260 tgaaaaactg aatggaaaag cttatggctc tgtgatgata ttagtgacca gcggagatga 1320 taagcttctt ggcaattgct tacccactgt gctcagcagt ggttcaacaa ttcactccat 1380 tgccctgggt tcatctgcag ccccaaatct ggaggaatta tcacgtctta caggaggttt 1440 aaagttettt gtteeagata tateaaaete eaatageatg attgatgett teagtagaat 1500 ttcctctgga actggagaca ttttccagca acatattcag cttgaaagta caggtgaaaa 1560 tgtcaaacct caccatcaat tgaaaaacac agtgactgtg gataatactg tgggcaacga 1620 cactatgttt ctagttacgt ggcaggccag tggtcctcct gagattatat tatttgatcc 1680 tgatggacga aaatactaca caaataattt tatcaccaat ctaacttttc ggacagctag 1740 tctttggatt ccaggaacag ctaagcctgg gcactggact tacaccctga tgtgtttcca 1800 ccatgcaaaa ttattgacct ggaagctgta aaagtagaag aggaattgac cctatcttgg 1860 acagcacctg gagaagactt tgatcagggc caggctacaa gctatgaaat aagaatgagt 1920 aaaagtctac agaatatcca agatgacttt aacaatgcta ttttagtaaa tacatcaaag 1980 cgaaatcctc agcaagctgg catcagggag atatttacgt tctcacccca aatttccacg 2040 aatggacctg aacatcagcc aaatggagaa acacatgaaa gccacagaat ttatgttgca 2100 atacgagcaa tggataggaa ctccttacag tctgctgtat ctaacattgc ccaggcgcct 2160 ctgtttattc cccccaattc tgatcctgta cctgccagag attatcttat attgaaagga 2220 gttttaacag caatgggttt gataggaatc atttgcctta ttatagttgt gacacatcat 2280 actttaagca ggaaaaagag agcagacaag aaagagaatg gaacaaaatt attataaata 2340 aatatccaaa gtgtcttcct tcttagatat aagacccatg gccttcgact acaaaaacat 2400 actaacaaag tcaaattaac atcaaaactg tattaaaatg cattgagttt ttgtacaata 2460 cagataagat tittacatgg tagatcaaca aattettitt gggggtagat tagaaaacce 2520 ttacactttg gctatgaaca aataataaaa attattcttt aaagtaatgt ctttaaaggc 2580 aaagggaagg gtaaagtcgg accagtgtca aggaaagttt gttttattga ggtggaaaaa 2640 tagccccaag cagagaaaag gagggtaggt ctgcattata actgtctgtg tgaagcaatc 2700 atttagttac tttgattaat ttttctttc tccttatctg tgcagaacag gttgcttgtt 2760 tacaactgaa gatcatgcta tatttcatat atgaagcccc taatgcaaag ctctttacct 2820 cttgctattt tgttatatat attacagatg aaatctcact gctaatgctc agagatcttt 2880 tttcactgta agaggtaacc tttaacaata tgggtattac ctttgtctct tcataccggt 2940 tttatgacaa aggtctattg aatttatttg tttgtaagtt tctactccca tcaaagcagc 3000 tttctaagtt attgccttgg ttattatgga tgatagttat agcccttata atgccttaac 3060 taaggaagaa aagatgttat totgagtttg ttttaataca tatatgaaca tatagtttta 3120 ttcaattaaa ccaaagaaga ggtcagcagg gagatactaa cctttggaaa tgattagctg 3180 gctctgtttt ttggttaaat aagagtcttt aatcctttct ccatcaagag ttacttacca 3240 agggcagggg aagggggata tagaggtcac aaggaaataa aaatcatctt tcatctttaa 3300 ttttactcct tcctcttatt tttttaaaag attatcgaac aataaaatca tttgcctttt 3360 tt 3362

<210> 168

<211> 2784

<212> DNA

<213> Homo sapiens

```
<400> 168
tetgeateca tattgaaaac etgacacaat gtatgeagea ggeteagtgt gagtgaactg 60
gaggettete tacaacatga eecaaaggag cattgeaggt eetatttgea acetgaagtt 120
tgtgactctc ctggttgcct taagttcaga actcccattc ctgggagctg gagtacagct 180
tcaagacaat gggtataatg gattgctcat tgcaattaat cctcaggtac ctgagaatca 240
gaacctcatc tcaaacatta aggaaatgat aactgaagct tcattttacc tatttaatgc 300
taccaagaga agagtatttt tcagaaatat aaagatttta atacctgcca catggaaagc 360
taataataac agcaaaataa aacaagaatc atatgaaaag gcaaatgtca tagtgactga 420
ctggtatggg qcacatggag atgatccata caccctacaa tacagagggt gtggaaaaga 480
gggaaaatac attcatttca cacctaattt cctactgaat gataacttaa cagctggcta 540
cggatcacga ggccgagtgt ttgtccatga atgggcccac ctccgttggg gtgtgttcga 600
tgagtataac aatgacaaac ctttctacat aaatgggcaa aatcaaatta aagtgacaag 660
gtgttcatct gacatcacag gcatttttgt gtgtgaaaaa ggtccttgcc cccaagaaaa 720
ctgtattatt agtaagcttt ttaaagaagg atgcaccttt atctacaata gcacccaaaa 780
tgcaactgca tcaataatgt tcatgcaaag tttatcttct gtggttgaat tttgtaatgc 840
aagtacccac aaccaagaag caccaaacct acagaaccag atgtgcagcc tcagaagtgc 900
atgggatgta atcacagact ctgctgactt tcaccacagc tttcccatga acgggactga 960
gcttccacct cctcccacat tctcgcttgt agaggctggt gacaaagtgg tctgtttagt 1020
gctggatgtg tccagcaaga tggcagaggc tgacagactc cttcaactac aacaagccgc 1080
agaattttat ttgatgcaga ttgttgaaat tcataccttc gtgggcattg ccagtttcga 1140
cagcaaagga gagatcagag cccagctaca ccaaattaac agcaatgatg atcgaaagtt 1200
gctggtttca tatctgccca ccactgtatc agctaaaaca gacatcagca tttgttcagg 1260
gcttaagaaa ggatttgagg tggttgaaaa actgaatgga aaagcttatg gctctgtgat 1320
gatattagtg accageggag atgataaget tettggcaat tgettaceca etgtgeteag 1380
cagtggttca acaattcact ccattgccct gggttcatct gcagccccaa atctggagga 1440
attatcacgt cttacaggag gtttaaagtt ctttgttcca gatatatcaa actccaatag 1500
catgattgat gctttcagta gaatttcctc tggaactgga gacattttcc agcaacatat 1560
tcagcttgaa agtacaggtg aaaatgtcaa acctcaccat caattgaaaa acacagtgac 1620
tgtggataat actgtgggca acgacactat gtttctagtt acgtggcagg ccagtggtcc 1680
tcctgagatt atattatttg atcctgatgg acgaaaatac tacacaaata attttatcac 1740
caatctaact tttcggacag ctagtctttg gattccagga acagctaagc ctgggcactg 1800
gacttacacc ctgaacaata cccatcattc tctgcaagcc ctgaaagtga cagtgacctc 1860
tegegeetee aacteagetg tgeeceeage caetgtggaa geetttgtgg aaagagacag 1920
cctccatttt cctcatcctg tgatgattta tgccaatgtg aaacagggat tttatcccat 1980
tettaatgee actgteactg ceacagttga geeagagaet ggagateetg ttaegetgag 2040
actocttgat gatggagcag gtgctgatgt tataaaaaat gatggaattt actogaggta 2100
ttttttctcc tttgctgcaa atggtagata tagcttgaaa gtgcatgtca atcactctcc 2160
cagcataagc accccagccc actctattcc agggagtcat gctatgtatg taccaggtta 2220
cacagcaaac ggtaatattc agatgaatgc tccaaggaaa tcagtaggca gaaatgagga 2280
ggagcgaaag tggggcttta gccgagtcag ctcaggaggc tccttttcag tgctgggagt 2340
tccagctggc ccccacctg atgtgtttcc accatgcaaa attattgacc tggaagctgt 2400
aaatagaaga ggaattgacc ctatcttgga cagcacctgg agaagacttt gatcagggcc 2460
aggetacaag etatgaaata agaatgagta aaagtetaca gaatateeaa gatgaettta 2520
acaatgctat titagtaaat acatcaaagc gaaatcctca gcaagctggc atcagggaga 2580
tatttacgtt ctcaccccaa atttccacga atggacctga acatcagcca aatggagaaa 2640
cacatgaaag ccacagaatt tatgttgcaa tacgagcaat ggataggaac tccttacagt 2700
ctgctgtatc taacattgcc caggcgcctc tgtttattcc ccccaattct gatcctgtac 2760
ctgccagaga ttatcttata ttga
                                                                  2784
<210> 169
<211> 592
```

<212> PRT

<213> Homo sapiens

<400> 169

Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val

1				5					10					15	
Thr	Leu	Leu	Val 20	Ala	Leu	Ser	Ser	Glu 25		Pro	Phe	Leu	Gly 30		Gly
Val	Gln	Leu 35	Gln	Asp	Asn	Gly	Tyr 40	Asn	Gly	Leu	Leu	Ile 45	Ala	Ile	Asn
Pro	Gln 50	Val	Pro	Glu	Asn	Gln 55	Asn	Leu	Ile	Ser	Asn 60	Ile	Lys	Glu	Met
Ile 65	Thr	Glu	Ala	Ser	Phe 70	Tyr	Leu	Phe	Asn	Ala 75	Thr	Lys	Arg	Arg	Val 80
Phe	Phe	Arg	Asn	Ile 85	Lys	Ile	Leu	Ile	Pro 90	Ala	Thr	Trp	Lys	Ala 95	Asn
Asn	Asn	Ser	Lys 100	Ile	Lys	Gln	Glu	Ser 105	Tyr	Glu	Lys	Ala	Asn 110	Val	Ile
Val	Thr	Asp 115	Trp	Tyr	Gly	Ala	His 120	Gly	Asp	Asp	Pro	Tyr 125	Thr	Leu	Gln
Tyr	Arg 130	Gly	Суѕ	Gly	Lys	Glu 135	Gly	Lys	Tyr	Ile	His 140	Phe	Thr	Pro	Asn
Phe 145	Leu	Leu	Asn	Asp	Asn 150	Leu	Thr	Ala	Gly	Tyr 155	Gly	Ser	Arg	Gly	Arg 160
Val	Phe	Val	His	Glu 165	Trp	Ala	His	Leu	Arg 170	Trp	Gly	Val	Phe	Asp 175	Glu
Tyr	Asn	Asn	Asp 180	Lys	Pro	Phe	Tyr	Ile 185	Asn	Gly	Gln	Asn	Gln 190	Ile	Lys
Val	Thr	Arg 195	Cys	Ser	Ser	Asp	Ile 200	Thr	Gly	Ile	Phe	Val 205	Cys	Glu	Lys
Gly	Pro 210	Cys	Pro	Gln	Glu	Asn 215	Cys	Ile	Ile	Ser	Lys 220	Leu	Phe	Lys	Glu
Gly 225	Cys	Thr	Phe	Ile	Tyr 230	Asn	Ser	Thr	Gln	Asn 235	Ala	Thr	Ala	Ser	Ile 240
Met	Phe	Met	Gln	Ser 245	Leu	Ser	Ser	Val	Val 250	Glu	Phe	Cys	Asn	Ala 255	Ser
			260	Glu				265					270		
		275		Asp			280					285			
	290			Gly		295					300				
Val 305	Glu	Ala	Gly	Asp	Lys 310	Val	Val	Суѕ	Leu	Val 315	Leu	Asp	Val	Ser	Ser 320
	,			Ala 325				•	330					335	
			340	Gln				345					350		
Ser	Phe	Asp 355	Ser	Lys	Gly	Glu	Ile 360	Arg	Ala	Gln	Leu	His 365	Gln	Ile	Asn
	370			Arg		375					380				
385				Asp	390					395					400
Glu	Val	Val	Glu	Lys 405	Leu	Asn	Gly	Lys	Ala 410	Tyr	Gly	Ser	Val	Met 415	Ile
Leu	Val	Thr	Ser 420	Gly	Asp	Asp	Lys	Leu 425	Leu	Gly	Asn	Cys	Leu 430	Pro	Thr
Val	Leu	Ser 435	Ser	Gly	Ser	Thr	Ile 440	His	Ser	Ile	Ala	Leu 445	Gly	Ser	Ser
Ala	Ala 450	Pro	Asn	Leu	Glu	Glu 455	Leu	Ser	Arg	Leu	Thr 460	Gly	Gly	Leu	Lys
Phe	Phe	Val	Pro	Asp	Ile	Ser	Asn	Ser	Asn	Ser	Met	Ile	Asp	Ala	Phe

470 475 Ser Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gln Gln His Ile Gln 485 490 Leu Glu Ser Thr Gly Glu Asn Val Lys Pro His His Gln Leu Lys Asn 500 505 Thr Val Thr Val Asp Asn Thr Val Gly Asn Asp Thr Met Phe Leu Val 520 525 Thr Trp Gln Ala Ser Gly Pro Pro Glu Ile Ile Leu Phe Asp Pro Asp 535 540 Gly Arg Lys Tyr Tyr Thr Asn Asn Phe Ile Thr Asn Leu Thr Phe Arg 550 555 Thr Ala Ser Leu Trp Ile Pro Gly Thr Ala Lys Pro Gly His Trp Thr 565 570 Tyr Thr Leu Met Cys Phe His His Ala Lys Leu Leu Thr Trp Lys Leu 580

<210> 170

<211> 791

<212> PRT

<213> Homo sapiens

<400> 170

Met Thr Gln Arg Ser Ile Ala Gly Pro Ile Cys Asn Leu Lys Phe Val 10 Thr Leu Leu Val Ala Leu Ser Ser Glu Leu Pro Phe Leu Gly Ala Gly 25 Val Gln Leu Gln Asp Asn Gly Tyr Asn Gly Leu Leu Ile Ala Ile Asn 40 Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met 55 Ile Thr Glu Ala Ser Phe Tyr Leu Phe Asn Ala Thr Lys Arg Arg Val 70 75 Phe Phe Arg Asn Ile Lys Ile Leu Ile Pro Ala Thr Trp Lys Ala Asn Asn Asn Ser Lys Ile Lys Gln Glu Ser Tyr Glu Lys Ala Asn Val Ile 105 Val Thr Asp Trp Tyr Gly Ala His Gly Asp Asp Pro Tyr Thr Leu Gln 120 Tyr Arg Gly Cys Gly Lys Glu Gly Lys Tyr Ile His Phe Thr Pro Asn 135 Phe Leu Leu Asn Asp Asn Leu Thr Ala Gly Tyr Gly Ser Arg Gly Arg 150 155 Val Phe Val His Glu Trp Ala His Leu Arg Trp Gly Val Phe Asp Glu 170 Tyr Asn Asn Asp Lys Pro Phe Tyr Ile Asn Gly Gln Asn Gln Ile Lys 180 185 Val Thr Arg Cys Ser Ser Asp Ile Thr Gly Ile Phe Val Cys Glu Lys 200 Gly Pro Cys Pro Gln Glu Asn Cys Ile Ile Ser Lys Leu Phe Lys Glu 215 Gly Cys Thr Phe Ile Tyr Asn Ser Thr Gln Asn Ala Thr Ala Ser Ile 230 235 Met Phe Met Gln Ser Leu Ser Ser Val Val Glu Phe Cys Asn Ala Ser 250 245 Thr His Asn Gln Glu Ala Pro Asn Leu Gln Asn Gln Met Cys Ser Leu 265 Arg Ser Ala Trp Asp Val Ile Thr Asp Ser Ala Asp Phe His His Ser

		275					280					285			
Phe	Pro 290	Met	Asn	Gly	Thr	Glu 295	Leu	Pro	Pro	Pro	Pro 300	Thr	Phe	Ser	Ļeu
Val 305	Glu	Ala	Gly	Asp	Lys 310	Val	Val	Cys	Leu	Val 315	Leu	Asp	Val	Ser	Ser 320
Lys	Met	Ala	Glu	Ala 325	Asp	Arg	Leu	Leu	Gln 330	Leu	Gln	Gln	Ala	Ala 335	Glu
Phe	Tyr	Leu	Met 340	Gln	Ile	Val	Glu	Ile 345		Thr	Phe	Val	Gly 350		Ala
Ser	Phe	Asp 355	Ser	Lys	Gly	Glu	Ile 360		Ala	Gln	Leu	His 365		Ile	Asn
Ser	Asn 370		Asp	Arg	rys	Leu 375		Val	Ser	Tyr	Leu 380		Thr	Thr	Val
Ser 385	Ala	ГЛа	Thr	Asp	Ile 390		Ile	Cys	Ser	Gly 395		ГЛЗ	ГÀЗ	Gly	Phe 400
	Val	Val	Glu	Lys 405		Asn	Gly	Lys	Ala 410		Gly	Ser	Val	Met 415	
Leu ·	Val	Thr	Ser 420		Asp	Asp	Lys	Leu 425		Gly	Asn	Cys	Leu 430		Thr
Val	Leu	Ser 435		Gly	Ser	Thr	Ile 440		Ser	Ile	Ala	Leu 445		Ser	Ser
Ala	Ala 450		Asn	Leu	Glu	Glu 455		Ser	Arg	Leu	Thr 460		Gly	Leu	Lys
Phe 465	Phe	Val	Pro	Asp	Ile 470		Asn	Ser	Asn	Ser 475		Ile	Asp	Ala	Phe 480
	Arg	Ile	Ser	Ser 485		Thr	Gly	Asp	Ile 490		Gln	Gln	His	Ile 495	
Leu	Glu	Ser	Thr 500	Gly	Glu	Asn	Val	Lys 505		His	His	Gln	Leu 510		Asn
Thr	Val	Thr 515		Asp	Asn	Thr	Val 520		Asn	Asp	Thr	Met 525		Leu	Val
Thr	Trp 530	Gln	Ala	Ser	Gly	Pro 535		Glu	Ile	Ile	Leu 540		Asp	Pro	Asp
Gly 545	Arg	Lys	Tyr	Tyr	Thr 550	Asn	Asn	Phe	Ile	Thr 555	Asn	Leu	Thr	Phe	Arg 560
Thr	Ala	Ser	Leu	Trp 565	Ile	Pro	Gly	Thr	Ala 570	Lys	Pro	Gly	His	Trp 575	Thr
Tyr	Thr	Leu	Asn 580	Asn	Thr	His	His	Ser 585	Leu	Gln	Ala	Leu	Lys 590	Val	Thr
Val	Thr	Ser 595	Arg	Ala	Ser	Asn	Ser 600	Ala	Val	Pro	Pro	Ala 605	Thr	Val	Glu
Ala	Phe 610	Val	Glu	Arg	Asp	Ser 615		His	Phe	Pro	His 620		Val	Met	Ile
Tyr 625	Ala	Asn	Val	Lys	Gln 630	Gly	Phe	Tyr	Pro	Ile 635		Asn	Ala	Thr	Val 640
Thr	Ala	Thr	Val	Glu 645	Pro	Glu	Thr	Gly	Asp 650	Pro	Val	Thr	Leu	Arg 655	Leu
Leu	Asp	Asp	Gly 660	Ala	Gly	Ala	Asp	Val 665	Ile	Lys	Asn	Asp	Gly 670	Ile	Tyr
Ser	Arg	Tyr 675	Phe	Phe	Ser	Phe	Ala 680	Ala	Asn	Gly	Arg	Tyr 685	Ser	Leu	Lys
Val	His 690	Val	Asn	His	Ser	Pro 695	Ser	Ile	Ser	Thr	Pro 700	Ala	His	Ser	Ile
Pro 705	Gly	Ser	His	Ala	Met 710	Tyr	Val	Pro	Gly	Tyr 715	Thr	Ala	Asn	Gly	Asn 720
Ile	Gln	Met	Asn	Ala 725	Pro	Arg	Lys	Ser	Val 730	Gly	Arg	Asn	Glu	Glu 735	Glu
Arg	Lys	Trp	Gly	Phe	Ser	Arg	Val	Ser	Ser	Gly	Gly	Ser	Phe	Ser	Val

```
740
                                745
Leu Gly Val Pro Ala Gly Pro His Pro Asp Val Phe Pro Pro Cys Lys
                           760
                                               765
Ile Ile Asp Leu Glu Ala Val Asn Arg Arg Gly Ile Asp Pro Ile Leu
                       775
Asp Ser Thr Trp Arg Arg Leu
<210> 171
<211> 1491
<212> DNA
<213> Homo sapiens
<400> 171
cctcctgcca gccaagtgaa gacatgctta cttccccttc accttccttc atgatgtggg 60
aagagtgctg caacccagcc ctaqccaacg ccgcatgaga gggagtgtgc cgagggcttc 120
tgagaaggtt teteteacat etagaaagaa gegettaaga tgtggcagee eetettette 180
aagtggctct tgtcctgttg ccctgggagt tctcaaattg ctgcagcagc ctccacccag 240
cctgaggatg acatcaatac acagaggaag aagagtcagg aaaagatgag agaagttaca 300
gacteteetg ggcgaceecg agagettace attecteaga ettetteaca tggtgetaac 360
agatttgttc ctaaaagtaa agctctagag gccgtcaaat tggcaataga agccgggttc 420
caccatattg attotgcaca tgtttacaat aatgaggagc aggttggact ggccatccga 480
agcaagattg cagatggcag tgtgaagaga gaagacatat tctacacttc aaagctttgg 540
agcaattccc atcgaccaga gttggtccga ccagccttgg aaaggtcact gaaaaatctt 600
caattggact atgttgacct ctatcttatt cattttccag tgtctgtaaa gccaggtgag 660
gaagtgatcc caaaagatga aaatggaaaa atactatttg acacagtgga tctctgtgcc 720
acatgggagg ccatggagaa gtgtaaagat gcaggattgg ccaagtccat cggggtgtcc 780
aacttcaacc acaggetget ggagatgate etcaacaage cagggetcaa gtacaageet 840
gtctgcaacc aggtggaatg tcatccttac ttcaaccaga qaaaactgct ggatttctgc 900
aagtcaaaag acattgttct ggttgcctat agtgctctgg gatcccatcg agaagaacca 960
tgggtggacc cgaactcccc ggtqctcttg qaqqacccag tcctttgtgc cttggcaaaa 1020
aagcacaagc gaaccccagc cetgattgcc etgegetacc agetgcageg tggggttgtg 1080
gtcctggcca agagctacaa tgagcagcgc atcagacaga acgtgcaggt gtttgaattc 1140
cagttgactt cagaggagat gaaagccata gatggcctaa acagaaatgt gcgatatttg 1200
accettgata tttttgetgg ceceectaat tateeatttt etgatgaata ttaaeatgga 1260
gggcattgca tgaggtctgc cagaaggccc tgcgtgtgga tggtgacaca gaggatggct 1320
ctatgctggt gactggacac atcgcctctg gttaaatctc tcctgcttgg cgacttcagt 1380
aagctacagc taagcccatc ggccggaaaa gaaagacaat aattttgttt ttcattttga 1440
<210> 172
<211> 364
<212> PRT
<213> Homo sapiens
<400> 172
Met Trp Gln Pro Leu Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly
                 5
                                   10
Ser Ser Gln Ile Ala Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp Ile
Asn Thr Gln Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val Thr Asp
                           40
Ser Pro Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr Ser Ser His
                        55
                                           60
Gly Ala Asn Arg Phe Val Pro Lys Ser Lys Ala Leu Glu Ala Val Lys
                                       75
Leu Ala Ile Glu Ala Gly Phe His His Ile Asp Ser Ala His Val Tyr
```

```
85
                                    90
Asn Asn Glu Glu Gln Val Gly Leu Ala Ile Arg Ser Lys Ile Ala Asp
            1.00
                                105
                                                     110
Gly Ser Val Lys Arg Glu Asp Ile Phe Tyr Thr Ser Lys Leu Trp Ser
                            120
                                                125
Asn Ser His Arg Pro Glu Leu Val Arg Pro Ala Leu Glu Arg Ser Leu
                                            140
                        135
Lys Asn Leu Gln Leu Asp Tyr Val Asp Leu Tyr Leu Ile His Phe Pro
                    150
                                        155
Val Ser Val Lys Pro Gly Glu Glu Val Ile Pro Lys Asp Glu Asn Gly
                165
                                    170
Lys Ile Leu Phe Asp Thr Val Asp Leu Cys Ala Thr Trp Glu Ala Met
            180
                                185
                                                     190
Glu Lys Cys Lys Asp Ala Gly Leu Ala Lys Ser Ile Gly Val Ser Asn
        195
                            200
Phe Asn His Arg Leu Leu Glu Met Ile Leu Asn Lys Pro Gly Leu Lys
                        215
                                            220
Tyr Lys Pro Val Cys Asn Gln Val Glu Cys His Pro Tyr Phe Asn Gln
                    230
                                        235
Arg Lys Leu Leu Asp Phe Cys Lys Ser Lys Asp Ile Val Leu Val Ala
                245
                                    250
Tyr Ser Ala Leu Gly Ser His Arg Glu Glu Pro Trp Val Asp Pro Asn
                                265
                                                    270
Ser Pro Val Leu Leu Glu Asp Pro Val Leu Cys Ala Leu Ala Lys Lys
                            280
                                                285
His Lys Arg Thr Pro Ala Leu Ile Ala Leu Arg Tyr Gln Leu Gln Arg
                        295
                                            300
Gly Val Val Leu Ala Lys Ser Tyr Asn Glu Gln Arg Ile Arg Gln
                    310
                                        315
Asn Val Gln Val Phe Glu Phe Gln Leu Thr Ser Glu Glu Met Lys Ala
                325
                                    330
Ile Asp Gly Leu Asn Arg Asn Val Arg Tyr Leu Thr Leu Asp Ile Phe
            340
                                345
                                                    350
Ala Gly Pro Pro Asn Tyr Pro Phe Ser Asp Glu Tyr
```

<210> 173

<211> 1988

<212> DNA

<213> Homo sapiens

<400> 173

```
ttttattatg ttttgtgaag ttgtgtcttt tcactaatta cctatactat gccaatattt 960
ccttatatct atccataaca tttatactac atttgtaaga gaatatgcac gtgaaactta 1020
acactttata aggtaaaaat gaggtttcca agatttaata atctgatcaa gttcttgtta 1080
tttccaaata gaatggactt ggtctgttaa gggctaagga gaagaggaag ataaggttaa 1140
aagttgttaa tgaccaaaca ttctaaaaga aatgcaaaaa aaaagtttat tttcaagcct 1200
tcgaactatt taaggaaagc aaaatcattt cctaaatgca tatcatttgt gagaatttct 1260
cattaatatc ctgaatcatt catttcagct aaggetteat gttgactega tatgtcatct 1320
aggaaagtac tatttcatgg tccaaacctg ttgccatagt tggtaaggct ttcctttaag 1380
tgtgaaatat ttagatgaaa ttttctcttt taaagttctt tatagggtta gggtgtggga 1440
aaatgctata ttaataaatc tgtagtgttt tgtgtttata tgttcagaac cagagtagac 1500
tggattgaaa gatggactgg gtctaattta tcatgactga tagatctggt taagttgtgt 1560
agtaaagcat taggagggtc attcytqtca caaaaqtgcc actaaaacag cctcaggaga 1620
ataaatgact tgcttttcta aatctcaggt ttatctgggc tctatcatat agacaggctt 1680
ctgatagttt gcarctgtaa gcagaaacct acatatagtt aaaatcctgg tctttcttgg 1740
taaacagatt ttaaatgtct gatataaaac atgccacagg agaattcggg gatttgagtt 1800
tctctgaata gcatatatat gatgcatcgg ataggtcatt atgatttttt accatttcga 1860
cttacataat gaaaaccaat tcattttaaa tatcagatta ttattttgta agttgtggaa 1920
aaagctaatt gtagttttca ttatgaagtt ttcccaataa accaggtatt ctaaaaaaaa 1980
aaaaaaaa
<210> 174
<211> 238
<212> PRT
<213> Homo sapiens
<400> 174
Gly Ala Ala Ser Pro Arg Pro Leu Arg Phe Cys Gly Gly Ala Arg Ala
                 5
                                    1.0
Arg Arg Pro Leu Ser Ala Val Ala Arg Pro Ala Arg Ser Ser Asp Pro
                                25
Leu Arg Ser Ala Pro Leu Gly Pro Ala Pro Pro Val Asn Met Ile Arg
                            40
Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro Leu Leu Leu
                        55
                                            60
Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly Arg Gly Trp
                    70
                                        75
Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp Trp Lys Cys
                                    90
Ser Gln Glu Gly Gly Ser Gly Ser Tyr Glu Glu Gly Cys Gln Ser
            1.00
                                105
                                                    110
Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala Met Leu Phe Cys
                            120
                                                125
Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe Phe Ala Leu
                        135
                                            140
Cys Gly Pro Gln Met Leu'Val Phe Leu Arg Val Ile Gly Gly Leu Leu
145
                    150
                                        155
                                                             160
Ala Leu Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val
                165
                                    170
                                                        175
Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Pro Ala Val Thr Tyr
                                185
                                                    190
Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile Leu
                            200
Ile Gly Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp
                        215
                                            220
Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala
```

```
<210> 175.
<211> 4181
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 3347, 3502, 3506, 3520, 3538, 3549, 3646, 3940, 3968, 3974,
4036, 4056, 4062, 4080, 4088, 4115
<223> n = A,T,C or G
<400> 175
agacaaggaa aaaacaagcc tcggatctga tttttcactc ctcgttcttg tgcttggttc 120
ttactgtgtt tgtgtatttt aaaggcgaga agacgagggg aacaaaacca gctggatcca 180
tocatcaccg tgggtggttt taatttttcg ttttttctcg ttatttttt ttaaacaacc 240
actetteaca atgaacaaac tgtatategg aaaceteage gagaaegeeg ceceetegga 300
cctagaaagt atcttcaagg acgccaagat cccggtgtcg ggacccttcc tggtgaagac 360
tggctacgcg ttcgtggact gcccggacga gagctgggcc ctcaaggcca tcgaggcgct 420
ttcaggtaaa atagaactgc acgggaaacc catagaagtt gagcactcgg tcccaaaaag 480
gcaaaggatt cggaaacttc agatacgaaa tatcccgcct catttacagt gggaggtgct 540
ggatagttta ctagtccagt atggagtggt ggagagctgt gagcaagtga acactgactc 600
ggaaactgca gttgtaaatg taacctattc cagtaaggac caagctagac aagcactaga 660
caaactgaat ggatttcagt tagagaattt caccttgaaa gtagcctata tccctgatga 720
aatggccgcc cagcaaaacc ccttgcagca gccccgaggt cgccgggggc ttgggcagag 780
gggctcctca aggcaggggt ctccaggatc cqtatccaag cagaaaccat gtgatttgcc 840
totgogootg otgqttocca occaatttgt tggagocato ataggaaaag aaggtgooac 900
catteggaac atcaccaaac agaccaqte taaaategat gtecacegta aagaaaatge 960
gggggctgct gagaagtcga ttactatect etetaeteet gaaggeaeet etgeggettg 1020
taagtctatt ctggagatta tgcataagga agctcaagat ataaaattca cagaagagat 1080
ccccttgaag attttagctc ataataactt tgttggacgt cttattggta aagaaggaag 1140
aaatettaaa aaaattgage aagacacaga cactaaaate acgatatete cattgcagga 1200
attgacgctg tataatccag aacgcactat tacagttaaa ggcaatgttg agacatgtgc 1260
caaagctgag gaggagatca tgaagaaaat cagggagtct tatgaaaatg atattgcttc 1320
tatgaatctt caagcacatt taattcctgg attaaatctg aacgccttgg gtctgttccc 1380
acceacttea gggatgeeac eteceacete agggeeecet teagecatga etecteecta 1440
cccgcagttt gagcaatcag aaacggagac tgttcatcag tttatcccag ctctatcagt 1500
cggtgccatc atcggcaagc agggccagca catcaagcag ctttctcgct ttgctggagc 1560
ttcaattaag attgctccag cggaagcacc agatgctaaa gtgaggatgg tgattatcac 1620
tggaccacca gaggctcagt tcaaggctca gggaagaatt tatggaaaaa ttaaagaaga 1680
aaactttgtt agtcctaaag aagaggtgaa acttgaagct catatcagag tgccatcctt 1740
tgctgctggc agagttattg gaaaaggagg caaaacggtg aatgaacttc agaatttgtc 1800
aagtgcagaa gttgttgtcc ctcgtgacca gacacctgat gagaatgacc aagtggttgt 1860
caaaataact ggtcacttct atgcttgcca ggttgcccag agaaaaattc aggaaattct 1920
gactcaggta aagcagcacc aacaacagaa ggctctgcaa agtggaccac ctcagtcaag 1980
acggaagtaa aggctcagga aacagcccac cacagaggca gatgccaaac caaagacaga 2040
ttgcttaacc aacagatggg cgctgacccc ctatccagaa tcacatgcac aagtttttac 2100
ctagccagtt gtttctgagg accaggcaac ttttgaactc ctgtctctgt gagaatgtat 2160
actttatgct ctctgaaatg tatgacaccc agctttaaaa caaacaaaca aacaaacaaa 2220
aaaagggtgg gggagggagg gaaagagaag agetetgeac tteeetttgt tgtagtetea 2280
cagtataaca gatattctaa ttcttcttaa tattccccca taatgccaga aattggctta 2340
atgatgcttt cactaaattc atcaaataga ttgctcctaa atccaattgt taaaattgga 2400
tcagaataat tatcacagga acttaaatgt taagccatta gcatagaaaa actgttctca 2460
gttttatttt tacctaacac taacatgagt aacctaaggg aagtgctgaa tggtgttggc 2520
aggggtatta aacgtgcatt tttactcaac tacctcaggt attcagtaat acaatgaaaa 2580
qcaaaattqt tcctttttt tqaaaatttt atatacttta taatqataqa aqtccaaccq 2640
ttttttaaaa aataaattta aaatttaaca gcaatcagct aacaggcaaa ttaagatttt 2700
tacttctggc tggtgacagt aaagctggaa aattaatttc agggtttttt gaggcttttg 2760
```

91

```
acacagttat tagttaaatc aaatgttcaa aaatacggag cagtgcctag tatctggaga 2820
gcagcactac catttattct ttcatttata gttgggaaag tttttgacgg tactaacaaa 2880
gtggtcgcag gagattttgg aacggctggt ttaaatggct tcaggagact tcagttttt 2940
gtttagctac atgattgaat gcataataaa tgctttgtgc ttctgactat caatacctaa 3000
agaaagtgca tcagtgaaga gatgcaagac tttcaactga ctggcaaaaa gcaagcttta 3060
gettgtetta taggatgett agtttgecae tacaetteag accaatggga eagteataga 3120
tggtgtgaca gtgtttaaac gcaacaaaag gctacatttc catggggcca gcactgtcat 3180
gagceteact aagetatttt gaagattttt aageactgat aaattaaaaa aaaaaaaaa 3240
aaattagact ccaccttaag tagtaaagta taacaggatt tctgtatact gtgcaatcag 3300
ttctttgaaa aaaaagtcaa aagatagaga atacaagaaa agttttnggg atataatttg 3360
aatgactgtg aaaacatatg acctttgata acgaactcat ttgctcactc cttgacagca 3420
aagcccagta cgtacaattg tgttgggtgt gggtggtctc caaggccacg ctgctctctg 3480
aattgatttt ttgagttttg gnttgnaaga tgatcacagn catgttacac tgatcttnaa 3540
ggacatatnt tataaccctt taaaaaaaa atcccctgcc tcattcttat ttcgagatga 3600
atttcgatac agactagatg tctttctgaa gatcaattag acattntgaa aatgatttaa 3660
agtgttttcc ttaatgttct ctgaaaacaa gtttcttttg tagttttaac caaaaaagtg 3720
ccctttttgt cactggtttc tcctagcatt catgattttt ttttcacaca atgaattaaa 3780
attgctaaaa tcatggactg gctttctggt tggatttcag gtaagatgtg tttaaggcca 3840
gagettttet eagtatttga ttttttece caatatttga ttttttaaaa atatacacat 3900
aggagetgea tttaaaacct getggtttaa attetgtean attteactte tageetttta 3960
gtatggcnaa tcanaattta cttttactta agcatttgta atttggagta tctggtacta 4020
gctaagaaat aattcnataa ttgagttttg tactcnccaa anatgggtca ttcctcatgn 4080
ataatgtncc cccaatgcag cttcattttc caganacctt gacgcaggat aaattttttc 4140
<210> 176
<211> 579
<212> PRT
```

<213> Homo sapiens

<400> 176

Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser 10 Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His 55 Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile 70 75 Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val 90 Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln 105 Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser 120 125 Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu 135 Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Met Ala Ala 155 150 Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln 165 170 Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys 180 185 190 Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln Phe Val Gly 200 205 Ala Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln

```
215
Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala
                              235
                230
Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala Ala
              245
                               250
Cys Lys Ser Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys
           260
                              265
Phe Thr Glu Glu Ile Pro Leu Lys Ile Leu Ala His Asn Asn Phe Val
                         280
Gly Arg Leu Ile Gly Lys Glu Gly Arg Asn Leu Lys Lys Ile Glu Gln
                      295
                                      300
Asp Thr Asp Thr Lys Ile Thr Ile Ser Pro Leu Gln Glu Leu Thr Leu
                  310
                                     315
Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys
              325
                                 330
Ala Lys Ala Glu Glu Glu Het Lys Lys Ile Arg Glu Ser Tyr Glu
           340
                              345
Asn Asp Ile Ala Ser Met Asn Leu Gln Ala His Leu Ile Pro Gly Leu
                         360
Asn Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro
                      375
Pro Thr Ser Gly Pro Pro Ser Ala Met Thr Pro Pro Tyr Pro Gln Phe
                  390
                                     395
Glu Gln Ser Glu Thr Glu Thr Val His Gln Phe Ile Pro Ala Leu Ser
               405
                                 410
Val Gly Ala Ile Ile Gly Lys Gln Gly Gln His Ile Lys Gln Leu Ser
                              425
           420
                                          430
Arg Phe Ala Gly Ala Ser Ile Lys Ile Ala Pro Ala Glu Ala Pro Asp
                          440
Ala Lys Val Arg Met Val Ile Ile Thr Gly Pro Pro Glu Ala Gln Phe
                      455
                                         460
Lys Ala Gln Gly Arg Ile Tyr Gly Lys Ile Lys Glu Glu Asn Phe Val
                  470
                                  475 . 480
Ser Pro Lys Glu Glu Val Lys Leu Glu Ala His Ile Arg Val Pro Ser
               485
                                 490
Phe Ala Ala Gly Arg Val Ile Gly Lys Gly Lys Thr Val Asn Glu
           500
                              505
Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
                          520
Pro Asp Glu Asn Asp Gln Val Val Lys Ile Thr Gly His Phe Tyr
                      535
Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
                   550
                                      555
Lys Gln His Gln Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
                                  570
Arg Arg Lys
```

<210> 177

<211> 401

<212> DNA

<213> Homo sapiens

<400> 177

atgccccgta aatgtcttca gtgttcttca gggtagttgg gatctcaaaa gatttggttc 60 agatccaaac aaatacacat tctgtgtttt agctcagtgt tttctaaaaa aagaaactgc 120 cacacagcaa aaaattgttt actttgttgg acaaaccaaa tcagttctca aaaaatgacc 180

```
ggtgcttata aaaagttata aatatcgagt agctctaaaa caaaccacct gaccaagagg 240
gaagtgagct tgtgcttagt atttacattg gatgccagtt ttgtaatcac tgacttatgt 300
gcaaactggt gcagaaattc tataaactct ttgctgtttt tgatacctgc titttgtttc 360
attttgtttt gttttgtaaa aatgataaaa cttcagaaaa t
<210> 178
<211> 561
<212> DNA
<213> Homo sapiens
<400> 178
acgcetttca agggtgtacg caaagcacte attgatacee ttttggatgg ctatgaaaca 60
gcccgctatg ggacaggggt ctttggccag aatgagtacc tacgctatca ggaggccctg 120
agtgagctgg ccactgcggt taaagcacga attgggagct ctcagcgaca tcaccagtca 180
gcagccaaag acctaactca gtcccctgag gtctccccaa caaccatcca ggtgacatac 240
gataactata acacattgga gagtactctg tgacggagct gaaggactct tgccgtagat 360
taagccagtc agttgcaatg tgcaagacag gctgcttgcc gggccgccct cggaacatct 420
ggcccagcag gcccagactg tatccatcca agttcccgtt gtatccagag ttcttagagc 480
ttgtgtctaa agggtaattc cccaaccctt ccttatgagc atttttagaa cattggctaa 540
gactattttc ccccagtagc g
<210> 179
<211> 521
<212> DNA
<213> Homo sapiens
<400> 179
cccaacgcgt ttgcaaatat tcccctggta gcctacttcc ttacccccga atattggtaa 60
gategageaa tggetteagg acatgggtte tetteteetg tgateattea agtgeteaet 120
gcatgaagac tggcttgtct cagtgtttca acctcaccag ggctgtctct tggtccacac 180
ctcgctccct gttagtgccg tatgacagcc cccatcaaat gaccttggcc aagtcacggt 240
ttctctgtgg tcaaggttgg ttggctgatt ggtggaaagt agggtggacc aaaggaggcc 300
acgtgagcag tcagcaccag ttctgcacca gcagcgcctc cgtcctagtg ggtgttcctg 360
tttctcctgg ccctgggtgg gctagggcct gattcgggaa gatgcctttg cagggagggg 420
aggataagtg ggatctacca attgattctg gcaaaacaat ttctaagatt tttttgcttt 480
atgtgggaaa cagatctaaa tctcatttta tgctgtattt t
                                                                521
<210> 180
<211> 417
<212> DNA
<213> Homo sapiens
<400> 180
ggtggaattc gccgaagatg gcggaggtgc aggtcctggt gcttgatggt cgaggccatc 60
tectgggeeg eetggegge ategtggeta aacaggtaet getgggeegg aaggtggtgg 120
tegtaegetg tgaaggeate aacatttetg geaattteta cagaaacaag ttgaagtaee 180
tggctttcct ccgcaagcgg atgaacacca accettcccg aggcccctac cacttccggg 240
ccccagccg catcttctgg cggaccgtgc gaggtatgct gccccacaaa accaagcgag 300
gccaggccgc tctggaccgt ctcaaggtgt ttgacggcat cccaccgccc tacgacaaga 360
aaaageggat ggtggtteet getgeeetea aggtegtgeg tetgaageet acaagaa
<210> 181
<211> 283
<212> DNA
<213> Homo sapiens
<220>
```

```
<221> misc feature
<222> 35
<223> n = A, T, C or G
<400> 181
gatttcttct aaataggatg taaaacttct ttcanattac tcttcctcag tcctgcctgc 60
caagaactca agtgtaactg tgataaaata acctttccca ggtatattgg caggtatgtg 120
tgtaatetea gaatacacag gtgacataga tatgatatga caactggtaa tggtggatte 180
atttacattg tttacacttc tatgaccagg ccttaaggga aggtcagttt tttaaaaaac 240
caagtagtgt cttcctacct atctccagat acatgtcaaa aaa
<210> 182
<211> 401
<212> DNA
<213> Homo sapiens
<400> 182
atattettge tgettatgea getgaeattg ttgecetece taaageaace aagtageett 60
tatttcccac agtgaaagaa aacgctggcc tatcagttac attacaaaag gcagatttca 120
agaggattga gtaagtagtt ggatggcttt cataaaaaca agaattcaag aagaggattc 180-
atgctttaag aaacatttgt tatacattcc tcacaaatta tacctgggat aaaaactatg 240
tagcaggcag tgtgttttcc ttccatgtct ctctgcacta cctgcagtgt gtcctctgag 300
gctgcaagtc tgtcctatct gaattcccag cagaagcact aagaagctcc accctatcac 360
ctagcagata aaactatggg gaaaacttaa atctgtgcat a
<210> 183
<211> 366
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 325
<223> n = A, T, C or G
<400> 183
accepted agentiating accepted 
accatcatgc tttgatgttc ccctgtcttt ctctcttctg ctctcaagag caaaggttaa 120
tttaaggaca aagatgaagt cactgtaaac taatctgtca ttgtttttac cttccttttc 180
tttttcagtg cagaaattaa aagtaagtat aaagcaccgt gattgggagt gtttttgcgt 240
gtgtcggaat cactggtaaa tgttggctga gaacaatccc tccccttgca cttgtgaaaa 300
cactttgagc gctttaagag attancctga gaaataatta aatatctttt ctcttcaaaa 360
aaaaaa
                                                                                                                                       366
<210> 184
<211> 370
<212> DNA
<213> Homo sapiens
<400> 184
tcttacttca aaaqaaaaat aaacataaaa aataaqttqc tqqttcctaa caqqaaaaat 60
tttaataatt gtactgagag aaactgctta cgtacacatt gcagatcaaa tatttggagt 120
taaaatgtta gtctacatag atgggtgatt gtaactttat tgccattaaa agatttcaaa 180
ttgcattcat gcttctgtgt acacataatg aaaaatgggc aaataatgaa gatctctcct 240
teagtetget etgtttaatt etgetgtetg etetteteta atgetgegte eetaattgta 300
cacagtttag tgatatctag gagtataaag ttgtcgccca tcaataaaaa tcacaaagtt 360
ggtttaaaaa
```

```
<210> 185
<211> 107
<212> DNA
<213> Homo sapiens
<400> 185
ctcatattat tttccttttg agaaattgga aactctttct gttgctatta tattaataaa 60
gttggtgttt attttctggt agtcaccttc cccatttaaa aaaaaaa
<210> 186
<211> 309
<212> DNA
<213> Homo sapiens
<400> 186
gaaaggatgg ctctggttgc cacagagetg ggacttcatg ttcttctaga gagggccaca 60
agagggccac aggggtggcc gggagttgtc agctgatqcc tqctqaqaqq caqqaattgt 120
gccagtgagt gacagtcatg agggagtgtc tcttcttggg gaggaaagaa ggtagagcct 180
ttctgtctga atgaaaggcc aaggctacag tacagggccc cgcccagcc agggtgttaa 240
tgcccacgta gtggaggcct ctggcagatc ctgcattcca aggtcactgg actgtacgtt 300
tttatggtt
<210> 187
<211> 477
<212> DNA
<213> Homo sapiens
<400> 187
ttcaqtccta gcaagaaqcg agaattctga gatcctccag aaagtcgagc agcacccacc 60
tecaaecteg ggecagtgte tteaggettt actggggace tgegagetgg cetaatgtgg 120
tggcctqcaa gccaggccat ccctgggcgc cacagacgag ctccqagcca ggtcaggctt 180
eggaggeeac aageteagee teaggeeeag geactgattg tggeagaggg geeactacee 240
aaggtctagc taggcccaag acctagttac ccagacagtg agaagcccct ggaaggcaga 300
aaagttggga gcatggcaga cagggaaggg aaacattttc agggaaaaga catgtatcac 360
atgtetteag aageaagtea ggttteatgt aacegagtgt eetettgegt gteeaaaagt 420
agcccagggc tgtagcacag gcttcacagt gattttgtgt tcagccgtga gtcacac
<210> 188
<211> 220
<212> DNA
<213> Homo sapiens
<400> 188
taaatatggt agatattaat attcctctta gatgaccagt gattccaatt gtcccaagtt 60
ttaaataagt accctgtgag tatgagataa attagtgaca atcagaacaa gtttcagtat 120
cagatgttca agaggaagtt gctattgcat tgattttaat atttgtacat aaacactgat 180
                                                                   220
ttttttgagc attattttgt atttgttgta ctttaatacc
<210> 189
<211> 417
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 76, 77
\langle 223 \rangle n = A,T,C or G
```

```
<400> 189
accatcttga cagaggatac atgeteccaa aacgtttgtt accacactta aaaatcactg 60
ccatcattaa gcatcnnttt caaaattata gccattcatg atttactttt tccagatgac 120
tatcattatt ctagtccttt gaatttgtaa ggggaaaaaa aacaaaaaca aaaacttacg 180
atgcactttt ctccagcaca tcagatttca aattgaaaat taaagacatg ctatggtaat 240
gcacttgcta gtactacaca ctttgtacaa caaaaaacag aggcaagaaa caacggaaag 300
agaaaagcct tcctttgttg gcccttaaac tgagtcaaga tctgaaatgt agagatgatc 360
tctgacgata cctgtatgtt cttattgtgt aaataaaatt gctggtatga aatgaca
<210> 190
<211> 497
<212> DNA
<213> Homo sapiens
<400> 190
gcactgcggc gctctcccgt cccgcggtgg ttgctgctgc tgccgctgct gctgggcctg 60
aacgcaggag ctgtcattga ctggcccaca gaggagggca aggaagtatg ggattatgtg 120
acggtccgca aggatgccta catgttctgg tggctctatt atgccaccaa ctcctgcaag 180
aactteteag aactgeeect ggteatgtgg etteagggeg gteeaggegg ttetageact 240
ggatttggaa actttgagga aattgggccc cttgacagtg atctcaaacc acggaaaacc 300
acctggetec aggetgecag tetectattt gtggataate cegtgggeae tgggtteagt 360
tatgtgaatg gtagtggtgc ctatgccaag qacctggcta tqqtqqcttc agacatgatg 420
gttctcctga agaccttctt cagttgccac aaagaattcc agacagttcc attctacatt 480
ttctcagagt cctatgg
<210> 191
<211> 175
<212> DNA
<213> Homo sapiens
<400> 191
atgttgaata ttttgcttat taactttgtt tattgtcttc tccctcgatt agaatattag 60
ctacttgagt acaaggattt gagcctgtta cattcactgc tgaattttag gctcctggaa 120
gatacccagc attcaataga gaccacacaa taaatatatg tcaaataaaa aaaaa
<210> 192
<211> 526
<212> DNA
<213> Homo sapiens
<400> 192
agtaaacatt attattttt ttatatttgc aaaggaaaca tatctaatcc ttcctataga 60
aagaacagta ttgctgtaat tccttttctt ttcttcctca tttcctctgc cccttaaaag 120
attgaagaaa gagaaacttg tcaactcata tccacgttat ctagcaaagt acataagaat 180
ctatcactaa gtaatgtatc cttcagaatg tgttggttta ccagtgacac cccatattca 240
tcacaaaatt aaagcaagaa gtccatagta atttatttgc taatagtgga tttttaatgc 300
tcagagtttc tgaggtcaaa ttttatcttt tcacttacaa gctctatgat cttaaataat 360
ttacttaatg tattttggtg tattttcctc aaattaatat tggtgttcaa gactatatct 420
aattoototg atcactttga gaaacaaact tttattaaat gtaaggcact tttotatgaa 480
ttttaaatat aaaaataaat attgttctga ttattactga aaaaaa
                                                                  526
<210> 193
<211> 553
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
<222> 290, 300, 411, 441
<223> n = A, T, C or G
<400> 193
tccattgtgg tggaattcgc tctctggtaa aggcgtgcag gtgttggccg cggcctctga 60
gctgggatga gccgtgctcc cggtggaagc aagggagccc agccggagcc atggccagta 120
cagtggtagc agttggactg accattgctg ctgcaggatt tgcaggccgt tacgttttgc 180
aagccatgaa gcatatggag cctcaagtaa aacaagtttt tcaaagccta ccaaaatctg 240
ccttcagtgg tggctattat agaggtgggt ttgaacccaa aatgacaaan cgggaagcan 300
cattaatact aggtgtaagc cctactgcca ataaagggaa aataagagat gctcatcgac 360
gaattatget tttaaateat eetgacaaag gaggatetee ttatatagea necaaaatea 420
atgaagctaa agatttacta naaggtcaag ctaaaaaatg aagtaaatgt atgatgaatt 480
ttaagttcgt attagtttat gtatatgagt actaagtttt tataataaaa tgcctcagag 540
ctacaatttt aaa
<210> 194
<211> 320
<212> DNA
<213> Homo sapiens
<400> 194
cccttcccaa tccatcagta aagaccccat ctgccttgtc catgccgttt cccaacaggg 60
atgtcacttg atatgagaat ctcaaatctc aatgccttat aagcattcct tcctgtgtcc 120
attaagactc tgataattgt ctccctcca taggaatttc tcccaggaaa gaaatatatc 180
cccatctccg tttcatatca gaactaccgt ccccgatatt cccttcagag agattaaaga 240
ccagaaaaaa gtgagcctct tcatctgcac ctgtaatagt ttcagttcct attttcttcc 300
attgacccat atttatacct
<210> 195
<211> 320
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 203, 218
<223> n = A, T, C or G
<400> 195
aagcatgacc tggggaaatg gtcagacctt gtattgtgtt tttggccttg aaagtagcaa 60
gtgaccagaa tctgccatgg caacaggctt taaaaaagac ccttaaaaag acactgtctc 120
aactgtggtg ttagcaccag ccagctctct gtacatttgc tagcttgtag ttttctaaga 180
ctgagtaaac ttcttattt tanaaagggg aggctggntt gtaactttcc ttgtacttaa 240
ttgggtaaaa gtcttttcca caaaccacca tctattttgt gaactttgtt agtcatcttt 300
tatttggtaa attatgaact
                                                                   320
<210> 196
<211> 357
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 36
<223> n = A, T, C or G
<400> 196
atataaaata atacgaaact ttaaaaagca ttggantgtc agtatgttga atcagtagtt 60
```

```
tcactttaac tgtaaacaat ttcttaggac accatttggg ctagtttctg tgtaagtgta 120
 aatactacaa aaacttattt atactgttet tatgteattt gttatattea tagatttata 180
 tgatgatatg acatctggct aaaaagaaat tattgcaaaa ctaaccacta tgtacttttt 240
 tataaatact gtatggacaa aaaatggcat tttttatatt aaattgttta gctctggcaa 300
 aaaaaaaaa ttttaagagc tggtactaat aaaggattat tatgactgtt aaaaaaa
 <210> 197
 <211> 565
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
 <222> 27
 <223> n = A, T, C or G
 <400> 197
 tcagctgagt accatcagga tatttanccc tttaagtgct gttttgggag tagaaaacta 60
aagcaacaat acttoctett gacagetttg attggaatgg ggttattaga teatteacet 120
 tggtcctaca ctttttagga tgcttggtga acataacacc acttataatg aacatccctg 180
gttcctatat tttgggctat gtgggtagga attgttactt gttactgcag cagcagccct 240
agaaagtaag cccagggctt cagatctaag ttagtccaaa agctaaatga tttaaagtca 300
agttgtaatg ctaggcataa gcactctata atacattaaa ttataggccg agcaattagg 360
gaatgtttct gaaacattaa acttgtattt atgtcactaa aattctaaca caaacttaaa 420
 aaatgtgtct catacatatg ctgtactagg cttcatcatg catttctaaa tttgtgtatg 480
atttgaatat atgaaagaat ttatacaaga gtgttattta aaattattaa aaataaatgt 540
atataatttg tacctattgt aaaaa
<210> 198
<211> 484
 <212> DNA
<213> Homo sapiens
<400> 198
tatgtaagta ttggtgtctg ctttaaaaaa ggagacccag acttcacctg tcctttttaa 60
acatttgaga acagtgttac tctqaqcagt tqqqccacct tcaccttatc cqacaqctga 120
tgggcgcagc agcaggtggc aggggtgtgg cttgaggtgg gtggcagcgt ctggtcctcc 240
tetetggtgc tttetgagag ggtetetaaa geagagtgtg gttggeetgg gggaaggeag 300
agcacgtatt teteceetet agtacetetg catttgtgag tgttecetet ggetttetga 360
agggcagcag actcttgagt atactgcaga ggacatgctt tatcagtagg tcctgagggc 420
tecagggget caactgacca agtaacacag aagttggggt atgtggeeta tttgggtegg 480
aaac
                                                                  484
<210> 199
<211> 429
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 77, 88, 134, 151, 189, 227, 274, 319
<223> n = A, T, C or G
<400> 199
gcttatgttt tttgttttaa cttttgtttt ttaacattta gaatattaca ttttgtatta 60
tacagtacct ttctcanaca ttttgtanaa ttcatttcgg cagctcacta ggattttgct 120
gaacattaaa aagngtgata gcgatattag ngccaatcaa atggaaaaaa ggtagtctta 180
```

```
ataaacaana cacaacgttt ttatacaaca tactttaaaa tattaanaaa actccttaat 240
attgtttcct attaagtatt attctttggg caanattttc tgatgctttt gattttctct 300
caatttagca tttgctttng gtttttttct ctatttagca ttctgttaag gcacaaaaac 360
tatgtactgt atgggaaatg ttgtaaatat taccttttcc acattttaaa cagacaactt 420
tgaatccaa
<210> 200
<211> 279
<212> DNA
<213> Homo sapiens
<400> 200
gcttttttga ggaattacag ggaageteet ggaattgtac atggatatet ttateectag 60
ggggaaatca aggagctggg cacccctaat tctttatgga agtgtttaaa actattttaa 120
ttttattaca agtattacta gagtagtggt tctactctaa gatttcaaaa gtgcatttaa 180
aatcatacat gttcccgcct gcaaatatat tgttattttg gtggagaaaa aaatagtata 240
ttctacataa aaaattaaag atattaacta agaaaaaaa
<210> 201
<211> 569
<212> DNA
<213> Homo sapiens
<400> 201
taggtcagta tttttagaaa ctcttaatag ctcatactct tgataccaaa agcagccctg 60
attgttaaag cacacactg cacaagaagc agtgatggtt gcatttacat ttcctgggtg 120
cacaaaaaaa aattctcaaa aagcaaggac ttacgctttt tgcaaagcct ttgagaagtt 180
actggatcat aggaagctta taacaagaat ggaagattct taaataactc actttctttg 240
gtatccagta acagtagatg ttcaaaatat gtagctgatt aataccagca ttgtgaacgc 300
tgtacaacct tgtggttatt actaagcaag ttactactag cttctgaaaa gtagcttcat 360
aattaatgtt atttatacac tgccttccat gacttttact ttgccctaag ctaatctcca 420
aaatctgaaa tgctactcca atatcagaaa aaaaggggga ggtggaatta tatttcctgt 480
gattttaaga gtacagagaa tcatgcacat ctctgattag ttcatatatg tctagtgtgt 540
aataaaagtc aaagatgaac tctcaaaaa
<210> 202
<211> 501
<212> DNA
<213> Homo sapiens
<400> 202
attaataggc ttaataattg ttggcaagga tccttttgct ttctttggca tgcaagctcc 60
tagcatctgg cagtggggcc aagaaaataa ggtttatgca tgtatgatgg ttttcttctt 120
gagcaacatg attgagaacc agtgtatgtc aacaggtgca tttgagataa ctttaaatga 180
tgtacctgtg tggtctaagc tggaatctgg tcaccttcca tccatgcaac aacttgttca 240
aattettgae aatgaaatga ageteaatgt geatatggat teaateceae accategate 300
atagcaccac ctatcagcac tgaaaactct tttgcattaa gggatcattg caagagcagc 360
gtgactgaca ttatgaaggc ctgtactgaa gacagcaagc tgttagtaca gaccagatgc 420
tttcttggca ggctcgttgt acctcttgga aaacctcaat gcaagatagt gtttcagtgc 480
tggcatattt tggaattctg c
                                                                  501
<210> 203
<211> 261
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
```

```
<222> 36, 96
<223> n = A,T,C or G
<400> 203
gacaagetee tggtettgag atgtettete gttaangaga tgggeetttt ggaggtaaag 60
gataaaatga atgagttctg tcatgattca ctattntata acttgcatga cctttactgt 120
gttagctctt tgaatgttct tgaaatttta gactttcttt gtaaacaaat gatatgtcct 180
tatcattgta taaaagctgt tatgtgcaac agtgtggaga ttccttgtct gatttaataa 240
aatacttaaa cactgaaaaa a
                                                                  261
<210> 204
<211> 421
<212> DNA
<213> Homo sapiens
<400> 204
agcatctttt ctacaacgtt aaaattgcag aagtagctta tcattaaaaa acaacaacaa 60
caacaataac aataaatcct aagtgtaaat cagttattct accccctacc aaggatatca 120
gcctgttttt tccctttttt ctcctgggaa taattgtggg cttcttccca aatttctaca 180
geetetttee tetteteatg ettgagette eetgtttgea egeatgegtg tgeaggaetg 240
gettgtgtgc ttggactegg etccaggtgg aageatgett teeettgtta etgttggaga 300
aactcaaacc ttcaagccct aggtgtagcc attttgtcaa gtcatcaact gtatttttgt 360
actggcatta acaaaaaaag aagataaaat attgtaccat taaactttaa taaaacttta 420
<210> 205
<211> 460
<212> DNA
<213> Homo sapiens
<400> 205
tactctcaca atgaaggacc tggaatgaaa aatctgtgtc taaacaagtc ctctttagat 60
tttagtgcaa atccagagcc agcgtcggtt gcctcgagta attctttcat gggtaccttt 120
ggaaaagctc tcaggagacc tcacctagat gcctattcaa gctttggaca gccatcagat 180
tgtcagccaa gagcctttta tttgaaagct cattcttccc cagacttqqa ctctqqqtca 240
gaggaagatg ggaaagaaag gacagatttt caggaagaaa atcacatttg tacctttaaa 300
cagactttag aaaactacag gactccaaat tttcagtctt atgacttgga cacatagact 360
gaatgagacc aaaggaaaag cttaacatac tacctcaagg tgaactttta tttaaaagag 420
agagaatctt atgtttttta aatggagtta tgaattttaa
<210> 206
<211> 481
<212> DNA
<213> Homo sapiens
<400> 206
tgtggtggaa ttcgggacgc ccccagaccc tgactttttc ctgcqtqqqc cqtctcctcc 60
tgcggaagca gtgacctctq acccctqqtq accttcqctt tqaqtqcctt ttqaacqctq 120
gtcccgcggg acttggtttt ctcaagctct gtctgtccaa agacgctccg gtcgagqtcc 180
cgcctgccct gggtggatac ttgaacccca gacgcccctc tgtgctgctg tgtccqqagg 240
eggeetteee atetgeetge ceaeceggag etettteege eggegeaggg teceaageee 300
acctecegee eteagteetg eggtgtgegt etgggeaegt eetgeaeaea caatgeaagt 360
cetggcetee gegeeegeee geeeaegega geegtaeeeg eegeeaacte tgttatttat 420
ggtgtgaccc cctggaggtg ccctcggccc accggggcta tttattgttt aatttatttg 480
t
                                                                  481
<210> 207
<211> 605
```

```
<221> misc feature
\langle 222 \rangle 20, \overline{2}1, 61
<223> n = A, T, C or G
<400> 210
cgccttgggg agccggcggn ngagtccggg acgtggagac ccggggtccc ggcagccggg 60
nggcccgcgg gcccagggtg gggatgcacc gccgcggggt gggagctggc gccatcgcca 120
aqaaqaaact tqcaqaqqcc aaqtataaqq aqcqaqqqac qqtcttggct gaggaccagc 180
tagcccagat gtcaaagcag ttggacatgt tcaagaccaa cctggaggaa tttgccagca 240
aacacaaqca qqaqatccqq aagaatcctq agttccqtqt gcagttccag gacatgtgtg 300
caaccattgg cgtggatccg ctggcctctg gaaaaggatt ttggtctgag atgctgggcg 360
tgggggactt ctattacqaa ctaggtgtcc aaattatcga agtgtgcctg gcgctgaagc 420
qcaaqttcqc ccaqqatqtc aqtcaaqatq acctqatcaq aqccatcaag aaa
<210> 211
<211> 451
<212> DNA
<213> Homo sapiens
<400> 211
ttagcttgag ccgagaacga ggcgagaaag ctggagaccg aggagaccgc ctagagcgga 60
gtgaacgggg aggggaccgt ggggaccggc ttgatcgtgc gcggacacct gctaccaagc 120
ggagetteag caaggaagtg gaggagegga gtagagaaeg geeeteecag eetgagggge 180
tgcgcaaggc agctagcctc acggaggatc gggaccgtgg gcgggatgcc gtgaagcgag 240
aagctgeect acceecagtg agceecetga aggeggetet etetgaggag gagttagaga 300
agaaatccaa ggctatcatt gaggaatatc tccatctcaa tgacatgaaa gaggcagtcc 360
agtgcgtgca ggagctggcc tcaccctcct tgctcttcat ctttgtacgg catggtgtcg 420
agtctacgct ggagcgcagt gccattgctc g
                                                                 451
<210> 212
<211> 471
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 54
<223> n = A, T, C or G
<400> 212
gtgattattc ttgatcaggg agaagatcat ttagatttgt tttgcattcc ttanaatgga 60
gggcaacatt ccacagctgc cctggctgtg atgagtgtcc ttgcaggggc cggagtagga 120
gcactggggt gggggcggaa ttggggttac tcgatgtaag ggattccttg ttgttgtgtt 180
gagatccagt gcagttgtga tttctgtgga tcccagcttg gttccaggaa ttttgtgtga 240
ttggcttaaa tccagttttc aatcttcgac agctgggctg gaacgtgaac tcagtagctg 300
aacctgtctg acccggtcac gttcttggat cctcagaact ctttgctctt gtcggggtgg 360
gggtgggaac tcacgtgggg agcggtggct gagaaaatgt aaggattctg gaatacatat 420
                                                                 471
tocatgggac tttccttccc tctcctgctt cctcttttcc tgctccctaa c
<210> 213
<211> 511
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222>27, \overline{6}3, 337, 442
```

```
<212> DNA
<213> Homo sapiens
<400> 207
accetttttg gatteaggge teeteacaat taaaatgagt gtaatgaaac aaggtgaaaa 60
tatagaagca tooctttgta tactgttttg ctacttacag tgtacttggc attgctttat 120
ctcactggat tctcacggta ggatttctga gatcttaatc taagctccaa agttqtctac 180
ttttttgatc ctagggtgct ccttttgttt tacagaqcag ggtcacttqa tttqctagct 240
ggtggcagaa ttggcaccat tacccaggtc tgactgacca ccagtcagag gcactttatt 300
tgtatcatga aatgatttga aatcattgta aagcagcgaa gtctgataat gaatqccagc 360
tttccttgtg ctttgataac aaagactcca aatattctgg agaacctgga taaaagtttg 420
aagggctaga ttgggatttg aagacaaaat tgtaggaaat cttacatttt tgcaataaca 480
aacattaatg aaagcaaaac attataaaag taattttaat tcaccacata cttatcaatt 540
tettgatget tecaaatgae atetaceaga tatggttttg tggacatett tttetgttta 600
cataa
<210> 208
<211> 655
<212> DNA
<213> Homo sapiens
<400> 208
ggcgttgttc tggattcccg tcgtaactta aagggaaact ttcacaatgt ccggagccct 60
tgatgtcctg caaatgaagg aggaggatgt ccttaagttc cttgcagcag gaacccactt 120
aggtggcacc aatcttgact tccagatgga acagtacatc tataaaagga aaagtgatgg 180
catctatatc ataaatctca agaggacctg ggagaagctt ctgctggcag ctcgtgcaat 240
tgttgccatt gaaaaccctg ctgatgtcag tgttatatcc tccaggaata ctggccagag 300
ggctgtgctg aagtttgctg ctgccactgg agccactcca attgctggcc gcttcactcc 360
tggaacette actaaceaga tecaggeage etteegggag ceaeggette ttgtggttae 420
tgaccccagg gctgaccacc agcctctcac ggaggcatct tatgttaacc tacctaccat 480
tgcgctgtgt aacacagatt ctcctctgcg ctatgtggac attgccatcc catgcaacaa 540
caagggagct cactcagtgg gtttgatgtg gtggatgctg gctcgggaaq ttctgcqcat 600
gcgtggcacc atttcccgtg aacacccatg ggaggtcatg cctgatctgt acttc
<210> 209
<211> 621
<212> DNA
<213> Homo sapiens
<400> 209
catttagaac atggttatca tccaagacta ctctaccctg caacattgaa ctcccaagag 60
caaatccaca ttcctcttga gttctgcagc ttctgtgtaa atagggcagc tgtcgtctat 120
gccgtagaat cacatgatct gaggaccatt catggaagct gctaaatagc ctagtctggg 180
gagtcttcca taaagttttg catggagcaa acaaacagga ttaaactagg tttggttcct 240
teagecetet aaaageatag ggettageet geaggettee ttgggettte tetgtgtgtg 300
tagttttgta aacactatag catctgttaa gatccagtgt ccatggaaac cttcccacat 360
gccgtgactc tggactatat cagtttttgg aaagcagggt tcctctgcct gctaacaagc 420
ccacgtggac cagtetgaat gtettteett tacacetatg tttttaaata gteaaaette 480
aagaaacaat ctaaacaagt ttctgttgca tatgtgtttg tgaacttgta tttgtattta 540
gtaggettet atattgeatt taacttgttt ttgtaactee tgattettee tttteggata 600
ctattgatga ataaagaaat t
                                                                  621
<210> 210
<211> 533
<212> DNA
<213> Homo sapiens
<220>
```

```
<223> n = A, T, C or G
<400> 213
ctaattagaa acttgctgta ctttttnttt tcttttaggg gtcaaggacc ctctttatag 60
ctnccatttg cctacaataa attattgcag cagtttgcaa tactaaaata ttttttatag 120
actttatatt tttccttttg ataaagggat gctgcatagt agagttggtg taattaaact 180
atctcagccg tttccctgct ttcccttctg ctccatatgc ctcattgtcc ttccagggag 240
ctcttttaat cttaaagttc tacatttcat gctcttagtc aaattctgtt acctttttaa 300
taactcttcc cactgcatat ttccatcttg aattggnggt tctaaattct gaaactgtag 360
ttgagataca gctatttaat atttctggga gatgtgcatc cctcttcttt gtggttgccc 420
aaggttgttt tgcgtaactg anactccttg atatgcttca gagaatttag gcaaacactg 480
gccatggccg tgggagtact gggagtaaaa t
<210> 214
<211> 521
<212> DNA
<213> Homo sapiens
<400> 214
agcattgcca aataatccct aattttccac taaaaatata atgaaatgat gttaagcttt 60
ttgaaaagtt taggttaaac ctactgttgt tagattaatg tatttgttgc ttccctttat 120
ctggaatgtg gcattagctt ttttatttta accctcttta attcttattc aattccatga 180
cttaaggttg gagagctaaa cactgggatt tttggataac agactgacag ttttgcataa 240
ttataatcgg cattgtacat agaaaggata tggctacctt ttgttaaatc tgcactttct 300
aaatatcaaa aaagggaaat gaagtataaa tcaatttttg tataatctgt ttgaaacatg 360
agttttattt gcttaatatt agggctttgc cccttttctg taagtctctt gggatcctgt 420
gtagaagctg ttctcattaa acaccaaaca gttaagtcca ttctctggta ctagctacaa 480
attcggtttc atattctact taacaattta aataaactga a
<210> 215
<211> 381
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 17, 20, 60, 61, 365
\langle 223 \rangle n = A,T,C or G
<400> 215
gageggagag eggacength agagecetga geagececae egeegeegee ggeetagtth 60
ncatcacacc ccgggaggag ccgcagctgc cgcagccggc cccagtcacc atcaccgcaa 120
ccatgagcag cgaggccgag acccagcagc cgcccgccgc ccccccgcc gcccccgccc 180
teagegeege egacaceaag eeeggeacta egggeagegg egeagggage ggtggeeegg 240
geggeeteae ateggeggeg eetgeeggeg gggacaagaa ggteategea acgaaggttt 300
tgggaacagt aaaatggttc aatgtaagga acggatatgg tttcatcaac aggaatgaca 360
ccaangaaga tgtatttgta c
                                                                   381
<210> 216
<211> 425
<212> DNA
<213> Homo sapiens
<400> 216
ttactaacta ggtcattcaa ggaagtcaag ttaacttaaa catgtcacct aaatgcactt 60
gatggtgttg aaatgtccac cttcttaaat ttttaagatg aacttagttc taaagaagat 120
aacaggccaa tcctgaaggt actccctgtt tgctgcagaa tgtcagatat tttggatgtt 180
gcataagagt cctatttgcc ccagttaatt caacttttgt ctgcctgttt tgtggactgg 240
```

104

```
ctggctctgt tagaactctg tccaaaaagt gcatggaata taacttgtaa agcttcccac 300
aattgacaat atatatgcat gtgtttaaac caaatccaga aagcttaaac aatagagctg 360
cataatagta tttattaaag aatcacaact gtaaacatga gaataactta aggattctag 420
tttag
                                                                   425
<210> 217
<211> 181
<212> DNA
<213> Homo sapiens
<400> 217
gagaaaccaa atgataggtt gtagagcctg atgactccaa acaaagccat cacccgcatt 60
cttcctcctt cttctggtgc tacagctcca agggcccttc accttcatgt ctgaaatgga 120
actttggctt tttcagtgga agaatatgtt gaaggtttca ttttgttcta gaaaaaaaaa 180
<210> 218
<211> 405
<212> DNA
<213> Homo sapiens
<400> 218
caggccttcc agttcactga caaacatggg gaagtgtgcc cagctggctg gaaacctggc 60
agtgatacca tcaagcctga tgtccaaaag agcaaagaat atttctccaa gcagaagtga 120
gcgctgggct gttttagtgc caggctgcgg tgggcagcca tgagaacaaa acctcttctg 180
tatttttttt ttccattagt aaaacacaag acttcagatt cagccgaatt gtggtgtctt 240
acaaggcagg cetttectac agggggtgga gagaccagec tttetteett tggtaggaat 300
ggcctgagtt ggcgttgtgg gcaggctact ggtttgtatg atgtattagt agagcaaccc 360
attaatcttt tgtagtttgt attaaacttg aactgagaaa aaaaa
<210> 219
<211> 216
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 207, 210
<223> n = A, T, C or G
<400> 219
actccaagag ttagggcagc agagtggagc gatttagaaa gaacatttta aaacaatcag 60
ttaatttacc atgtaaaatt getgtaaatg ataatgtgta cagattttct gttcaaatat 120
tcaattgtaa acttettgtt aagactgtta cgtttetatt gettttgtat gggatattge 180
aaaaataaaa aggaaagaac cctcttnaan aaaaaa
                                                                   216
<210> 220
<211> 380
<212> DNA
<213> Homo sapiens
<400> 220
cttacaaatt gcccccatgt gtaggggaca cagaaccctt tgagaaaact tagatttttg 60
tctgtacaaa gtctttgcct ttttccttct tcattttttt ccagtacatt aaatttgtca 120
atttcatctt tgagggaaac tgattagatg ggttgtgttt gtgttctgat ggagaaaaca 180
gcaccccaag gactcagaag atgattttaa cagttcagaa cagatgtgtg caatattggt 240
gcatgtaata atgttgagtg gcagtcaaaa gtcatgattt ttatcttagt tcttcattac 300
tgcattgaaa aggaaaacct gtctgagaaa atgcctgaca gtttaattta aaactatggt 360
```

```
380
qtaaqtcttt gacaaaaaa
<210> 221
<211> 398
<212> DNA
<213> Homo sapiens
<400> 221
ggttagtaag ctgtcgactt tgtaaaaaag ttaaaaatga aaaaaaaagg aaaaatgaat 60
tgtatattta atgaatgaac atgtacaatt tgccactggg aggaggttcc tttttgttgg 120
gtgagtctgc aagtgaattt cactgatgtt gatattcatt gtgtgtagtt ttatttcggt 180
cccagccccg tttcctttta ttttggagct aatgccagct gcgtgtctag ttttgagtgc 240
agtaaaatag aatcagcaaa tcactcttat ttttcatcct tttccggtat tttttgggtt 300
gtttctqtqq gagcagtgta caccaactct tcctgtatat tgcctttttg ctggaaaatg 360
ttgtatgttg aataaaattt tctataaaaa ttaaaaaa
<210> 222
<211> 301
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 49, 64
<223> n = A, T, C or G
<400> 222
ttcgataatt gatctcatgg gctttccctg gaggaaaggt tttttttgnt gtttattttt 60
taanaacttg aaacttgtaa actgagatgt ctgtagcttt tttgcccatc tgtagtgtat 120
gtgaagattt caaaacctga gagcactttt tctttgttta gaattatgag aaaggcacta 180
gatgacttta ggatttgcat ttttcccttt attgcctcat ttcttgtgac gccttgttgg 240
ggagggaaat ctgtttattt tttcctacaa ataaaaagct aagattctat atcgcaaaaa 300
                                                                   301
<210> 223
<211> 200
<212> DNA
<213> Homo sapiens
<400> 223
qtaaqtqctt aggaaqaaac tttqcaaaca tttaatgagg atacactgtt catttttaaa 60
attectteac actgtaattt aatgtgtttt atattetttt gtagtaaaac aacataactc 120
agatttctac aggagacagt ggttttattt ggattgtctt ctgtaatagg tttcaataaa 180
                                                                   200
gctggatgaa cttaaaaaaa
<210> 224
<211> 385
<212> DNA
<213> Homo sapiens
<400> 224
gaaaggtttg atccggactc aaagaaagca aaggagtgtg agccgccatc tgctggagca 60
gctgtaactg caagacctgg acaagagatt cgtcagcgaa ctgcagctca aagaaacctt 120
tetecaacae cageaageee taaccaggge cetecteeae aagtteeagt atetectgga 180
ccaccaaagg acagttctgc ccctggtgga cccccagaaa ggactgttac tccagcccta 240
tcatcaaatg tgttaccaag acatcttgga tcccctgcta cttcagtgcc tggaatgggt 300
aaacagagca cttaatgtta tttacagttt atattgtttt ctctggttac caataaaacg 360
ggccattttc aggtggtaaa aaaaa
```

<210> 225 <211> 560 <212> PRT <213> Homo sapiens <400> 225 Met Glu Cys Leu Tyr Tyr Phe Leu Gly Phe Leu Leu Leu Ala Ala Arg Leu Pro Leu Asp Ala Ala Lys Arg Phe His Asp Val Leu Gly Asn Glu 20 25 Arg Pro Ser Ala Tyr Met Arg Glu His Asn Gln Leu Asn Gly Trp Ser 40 Ser Asp Glu Asn Asp Trp Asn Glu Lys Leu Tyr Pro Val Trp Lys Arg 55 Gly Asp Met Arg Trp Lys Asn Ser Trp Lys Gly Gly Arg Val Gln Ala 70 75 Val Leu Thr Ser Asp Ser Pro Ala Leu Val Gly Ser Asn Ile Thr Phe 85 90 Ala Val Asn Leu Ile Phe Pro Arg Cys Gln Lys Glu Asp Ala Asn Gly 100 105 Asn Ile Val Tyr Glu Lys Asn Cys Arg Asn Glu Ala Gly Leu Ser Ala 115 120 Asp Pro Tyr Val Tyr Asn Trp Thr Ala Trp Ser Glu Asp Ser Asp Gly 135 Glu Asn Gly Thr Gly Gln Ser His His Asn Val Phe Pro Asp Gly Lys 155 145 150 Pro Phe Pro His His Pro Gly Trp Arg Arg Trp Asn Phe Ile Tyr Val 165 170 175 Phe His Thr Leu Gly Gln Tyr Phe Gln Lys Leu Gly Arg Cys Ser Val 185 190 180 Arg Val Ser Val Asn Thr Ala Asn Val Thr Leu Gly Pro Gln Leu Met 195 200 Glu Val Thr Val Tyr Arg Arg His Gly Arg Ala Tyr Val Pro Ile Ala 215 Gln Val Lys Asp Val Tyr Val Val Thr Asp Gln Ile Pro Val Phe Val 230 235 240 Thr Met Phe Gln Lys Asn Asp Arg Asn Ser Ser Asp Glu Thr Phe Leu 245 250 Lys Asp Leu Pro Ile Met Phe Asp Val Leu Ile His Asp Pro Ser His 260 265 270 Phe Leu Asn Tyr Ser Thr Ile Asn Tyr Lys Trp Ser Phe Gly Asp Asn 280 Thr Gly Leu Phe Val Ser Thr Asn His Thr Val Asn His Thr Tyr Val 290 295 300 Leu Asn Gly Thr Phe Ser Leu Asn Leu Thr Val Lys Ala Ala Ala Pro 305 310 315 320 Gly Pro Cys Pro Pro Pro Pro Pro Pro Pro Pro Arg Pro Ser Lys Pro Thr 330 Pro Ser Leu Gly Pro Ala Gly Asp Asn Pro Leu Glu Leu Ser Arg Ile 345 Pro Asp Glu Asn Cys Gln Ile Asn Arg Tyr Gly His Phe Gln Ala Thr 360 Ile Thr Ile Val Glu Gly Ile Leu Glu Val Asn Ile Ile Gln Met Thr 375 380 Asp Val Leu Met Pro Val Pro Trp Pro Glu Ser Ser Leu Ile Asp Phe 390 395 Val Val Thr Cys Gln Gly Ser Ile Pro Thr Glu Val Cys Thr Ile Ile

```
405
                               410
Ser Asp Pro Thr Cys Glu Ile Thr Gln Asn Thr Val Cys Ser Pro Val
          420
                        425
Asp Val Asp Glu Met Cys Leu Leu Thr Val Arg Arg Thr Phe Asn Gly
                     440
                                         445
Ser Gly Thr Tyr Cys Val Asn Leu Thr Leu Gly Asp Asp Thr Ser Leu
          455
                                460
Ala Leu Thr Ser Thr Leu Ile Ser Val Pro Asp Arg Asp Pro Ala Ser
    470
                                475
Pro Leu Arg Met Ala Asn Ser Ala Leu Ile Ser Val Gly Cys Leu Ala
       485 490
Ile Phe Val Thr Val Ile Ser Leu Leu Val Tyr Lys Lys His Lys Glu
       500 505
Tyr Asn Pro Ile Glu Asn Ser Pro Gly Asn Val Val Arg Ser Lys Gly
           520
   515
                                         525
Leu Ser Val Phe Leu Asn Arg Ala Lys Ala Val Phe Phe Pro Gly Asn
 530 535
                                     540
Gln Glu Lys Asp Pro Leu Leu Lys Asn Gln Glu Phe Lys Gly Val Ser
                 550
                                   555
<210> 226
<211> 9
<212> PRT
<213> Homo sapiens
<400> 226
Ile Leu Ile Pro Ala Thr Trp Lys Ala
<210> 227
<211> 9
<212> PRT
<213> Homo sapiens
<400> 227
Phe Leu Leu Asn Asp Asn Leu Thr Ala
<210> 228
<211> 9
<212> PRT
<213> Homo sapiens
<400> 228
Leu Leu Gly Asn Cys Leu Pro Thr Val
              5
<210> 229
<211> 10
<212> PRT
<213> Homo sapiens
<400> 229
Lys Leu Leu Gly Asn Cys Leu Pro Thr Val
```

PCT/US01/47576

```
5
                                 10
 1
<210> 230
<211> 10
<212> PRT
<213> Homo sapiens
<400> 230
Arg Leu Thr Gly Gly Leu Lys Phe Phe Val
              5
<210> 231
<211> 9
<212> PRT
<213> Homo sapiens
<400> 231
Ser Leu Gln Ala Leu Lys Val Thr Val
1 5
<210> 232
<211> 20
<212> PRT
<213> Homo sapiens
<400> 232
Ala Gly Ala Asp Val Ile Lys Asn Asp Gly Ile Tyr Ser Arg Tyr Phe
1
                         10
Phe Ser Phe Ala
           20
<210> 233
<211> 21
<212> PRT
<213> Homo sapiens
<400> 233
Phe Phe Ser Phe Ala Ala Asn Gly Arg Tyr Ser Leu Lys Val His Val
1 5
                                 10
Asn His Ser Pro Ser
           20
<210> 234
<211> 20
<212> PRT
<213> Homo sapiens
<400> 234
Phe Leu Val Thr Trp Gln Ala Ser Gly Pro Pro Glu Ile Ile Leu Phe
                      10
Asp Pro Asp Gly
           20
```

```
<210> 235
<211> 20
<212> PRT
<213> Homo sapiens
<400> 235
Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe Ile Pro
                                  10
Pro Asn Ser Asp
           20
<210> 236
<211> 20
<212> PRT
<213> Homo sapiens
<400> 236
Ile Gln Asp Asp Phe Asn Asn Ala Ile Leu Val Asn Thr Ser Lys Arg
1
                        10
Asn Pro Gln Gln
           20
<210> 237
<211> 21
<212> PRT
<213> Homo sapiens
Arg Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu
1
                                  10
Phe Ile Pro Pro Asn
           20
<210> 238
<211> 20
<212> PRT
<213> Homo sapiens
<400> 238
Thr His Glu Ser His Arg Ile Tyr Val Ala Ile Arg Ala Met Asp Arg
1
                        10
Asn Ser Leu Gln
           20
<210> 239
<211> 20
<212> PRT
<213> Homo sapiens
<400> 239
Arg Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Phe Thr Phe Ser Pro
                                   10
Gln Ile Ser Thr
```

```
<210> 240
<211> 21
<212> PRT
<213> Homo sapiens
<400> 240
Gly Gln Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Ser Leu Gln Asn
1 5 4
                                 10
Ile Gln Asp Asp Phe
           20
<210> 241
<211> 20
<212> PRT
<213> Homo sapiens
<400> 241
Glu Arg Lys Trp Gly Phe Ser Arg Val Ser Ser Gly Gly Ser Phe Ser
1
Val Leu Gly Val
           20
<210> 242
<211> 20
<212> PRT
<213> Homo sapiens
<400> 242
Gly Ser His Ala Met Tyr Val Pro Gly Tyr Thr Ala Asn Gly Asn Ile
1
                                  10
Gln Met Asn Ala
<210> 243
<211> 20
<212> PRT
<213> Homo sapiens
<400> 243
Val Asn His Ser Pro Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly
                      10
Ser His Ala Met
           20
<210> 244
<211> 20
<212> PRT
<213> Homo sapiens
<400> 244
Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser Leu
```

```
10
                                                   15
His Phe Pro His
           20
<210> 245
<211> 20
<212> PRT
<213> Homo sapiens
<400> 245
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
1 5
                                10
Gln Ala Leu Lys
           20
<210> 246
<211> 20
<212> PRT
<213> Homo sapiens
Asn Leu Thr Phe Arg Thr Ala Ser Leu Trp Ile Pro Gly Thr Ala Lys
                    . 10
1 5
Pro Gly His Trp
       . 20
<210> 247
<211> 20
<212> PRT
<213> Homo sapiens
<400> 247
Leu His Phe Pro His Pro Val Met Ile Tyr Ala Asn Val Lys Gln Gly
                                  10
Phe Tyr Pro Ile
<210> 248
<211> 20
<212> PRT
<213> Homo sapiens
<400> 248
Pro Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala
Gly Ala Asp Val
<210> 249
<211> 20
<212> PRT
<213> Homo sapiens
```

```
<400> 249
Gly Phe Tyr Pro Ile Leu Asn Ala Thr Val Thr Ala Thr Val Glu Pro
                                  10
Glu Thr Gly Asp
            20
<210> 250
<211> 20
<212> PRT
<213> Homo sapiens
<400> 250
Phe Asp Pro Asp Gly Arg Lys Tyr Tyr Thr Asn Asn Phe Ile Thr Asn
1
Leu Thr Phe Arq
            20
<210> 251
<211> 20
<212> PRT
<213> Homo sapiens
<400> 251
Leu Gln Ala Leu Lys Val Thr Val Thr Ser Arg Ala Ser Asn Ser Ala
Val Pro Pro Ala
           20
<210> 252
<211> 153
<212> PRT
<213> Homo sapiens
<400> 252
Met Ala Ser Val Arg Val Ala Ala Tyr Phe Glu Asn Phe Leu Ala Ala
                                   10
Trp Arg Pro Val Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val
                               25
Pro Met Gly Asp Val Pro Met Asp Gly Ile Ser Val Ala Asp Ile Gly
                           40
Ala Ala Val Ser Ser Ile Phe Asn Ser Pro Glu Glu Phe Leu Gly Lys
                       55
Ala Val Gly Leu Ser Ala Glu Ala Leu Thr Ile Gln Gln Tyr Ala Asp
                                      75
Val Leu Ser Lys Ala Leu Gly Lys Glu Val Arg Asp Ala Lys Ile Thr
                                   90
Pro Glu Ala Phe Glu Lys Leu Gly Phe Pro Ala Ala Lys Glu Ile Ala
                               105
Asn Met Cys Arg Phe Tyr Glu Met Lys Pro Asp Arg Asp Val Asn Leu
                           120
                                              125
Thr His Gln Leu Asn Pro Lys Val Lys Ser Phe Ser Gln Phe Ile Ser
                      135
Glu Asn Gln Gly Ala Phe Lys Gly Met
                   150
```

```
<210> 253
<211> 462
<212> DNA
<213> Homo sapiens
<400> 253
atggccagtg tccgcgtggc ggcctacttt gaaaactttc tcgcggcgtg gcggcccgtg 60
aaagcctctg atggagatta ctacaccttg gctgtaccga tgggagatgt accaatggat 120
ggtatctctg ttgctgatat tggagcagcc gtctctagca tttttaattc tccagaggaa 180
tttttaggca aggccgtggg gctcagtgca gaagcactaa caatacagca atatgctgat 240
qttttqtcca aqqctttqqq qaaaqaaqtc cqaqatqcaa aqattacccc gqaagctttc 300
qaqaaqctqq qattccctqc aqcaaaqqaa ataqccaata tqtqtcqttt ctatqaaatg 360
aagccagacc gagatgtcaa tctcacccac caactaaatc ccaaagtcaa aagcttcagc 420
cagtttatct cagagaacca gggagccttc aagggcatgt ag
<210> 254
<211> 8031
<212> DNA
<213> Homo sapiens
<400> 254
tggcgaatgg gacgcgcct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagogtgacc gctacacttg ccagogccct agogcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
qttccqattt aqtqctttac qqcacctcqa ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
acteaecgag geagtteeat aggatggeaa gateetggta teggtetgeg atteegacte 720
qtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatq aqtqacqact gaatccqqtq aqaatgqcaa aagtttatqc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tegeacetga ttgecegaca ttategegag eccatttata eccatataaa teageateea 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatecttttt ttetgegegt aatetgetge ttgeaaacaa aaaaaccace getaceageg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagegeaga taccaaatac tgtccttcta gtgtageegt agttaggeea ccacttcaag 1680
aactetgtag caccgcetac ataceteget etgetaatee tgttaceagt ggetgetgee 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cageggtegg getgaacggg gggttegtge acacagecea gettggageg aacgacetae 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
```

tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220 agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280 tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340 caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400 ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460 gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520 gttttcaccg tcatcaccga aacgegegag geagetgegg taaageteat cagegtggte 2580 gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640 aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700 ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760 acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820 ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880 tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940 tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000 cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060 gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120 ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180 catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240 ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300 getecagega aageggteet egeegaaaat gaeecagage getgeeggea eetgteetae 3360 gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420 ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480 atgagtgage taacttacat taattgegtt gegeteactg eeegetttee agtegggaaa 3540 cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600 tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660 ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720 aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780 atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840 cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900 gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960 teggetgaat tigattgega gigagatatt tatgeeagee ageeagaege agaegegeeg 4020 agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080 gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140 ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200 catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260 tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320 tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380 gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440 ccacgeggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500 tegeagaaac gtggetggee tggtteacea egegggaaac ggtetgataa gagacaeegg 4560 catactetge gacategtat aacgttactg gtttcacatt caccaccetg aattgactet 4620 cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680 tetegaeget etecettatg egaeteetge attaggaage ageceagtag taggttgagg 4740 ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800 ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860 cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920 gegeeggtga tgeeggeeac gatgegteeg gegtagagga tegagatete gateeegega 4980 aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040 ttttgtttaa ctttaagaag gagatataca tatgcagcat caccaccatc accacggagt 5100 acagcttcaa gacaatgggt ataatggatt gctcattgca attaatcctc aggtacctga 5160 gaatcagaac ctcatctcaa acattaagga aatgataact gaagcttcat tttacctatt 5220 taatgctacc aagagaagag tatttttcag aaatataaag attttaatac ctgccacatg 5280 gaaagctaat aataacagca aaataaaaca agaatcatat gaaaaggcaa atgtcatagt 5340 gactgactgg tatggggcac atggagatga tccatacacc ctacaataca gagggtgtgg 5400 aaaagaggga aaatacattc atttcacacc taatttccta ctgaatgata acttaacagc 5460 tggctacgga tcacgaggcc gagtgtttgt ccatgaatgg gcccacctcc gttggggtgt 5520 gttcgatgag tataacaatg acaaaccttt ctacataaat gggcaaaatc aaattaaagt 5580. gacaaggtgt tcatctgaca tcacaggcat ttttgtgtgtgt gaaaaaggtc cttgccccca 5640

```
agaaaactgt attattagta agctttttaa agaaggatgc acctttatct acaatagcac 5700
ccaaaatgca actgcatcaa taatgttcat gcaaagttta tcttctgtgg ttgaattttg 5760
taatgcaagt acccacaacc aagaagcacc aaacctacag aaccagatgt gcagcctcag 5820
aagtgcatgg gatgtaatca cagactctgc tgactttcac cacagctttc ccatgaacgg 5880
gactgagett ccacetecte ccacattete gettgtagag getggtgaca aagtggtetg 5940
tttagtgctg gatgtgtcca gcaagatggc agaggctgac agactccttc aactacaaca 6000
agccgcagaa ttttatttga tgcagattgt tgaaattcat accttcgtgg gcattgccag 6060
tttcgacagc aaaggagaga tcagagccca gctacaccaa attaacagca atgatgatcg 6120
aaagttgctg gtttcatatc tgcccaccac tgtatcagct aaaacagaca tcagcatttg 6180
ttcagggctt aagaaaggat ttgaggtggt tgaaaaactg aatggaaaag cttatggctc 6240
tgtgatgata ttagtgacca gcggagatga taagcttctt ggcaattgct tacccactgt 6300
gctcagcagt ggttcaacaa ttcactccat tgccctgggt tcatctgcag ccccaaatct 6360
ggaggaatta tcacgtctta caggaggttt aaagttcttt gttccagata tatcaaactc 6420
caatagcatg attgatgctt tcagtagaat ttcctctgga actggagaca ttttccagca 6480
acatattcag cttgaaagta caggtgaaaa tgtcaaacct caccatcaat tgaaaaacac 6540
agtgactgtg gataatactg tgggcaacga cactatgttt ctagttacgt ggcaggccag 6600
tggtcctcct gagattatat tatttgatcc tgatggacga aaatactaca caaataattt 6660
tatcaccaat ctaacttttc ggacagctag tctttggatt ccaggaacag ctaagcctgg 6720
gcactggact tacaccctga acaataccca tcattctctg caagccctga aagtgacagt 6780
gacctctcgc gcctccaact cagctgtgcc cccagccact gtggaagcct ttgtggaaag 6840
agacageete catttteete ateetgtgat gatttatgee aatgtgaaac agggatttta 6900
teccattett aatgecaetg teaetgecae agttgageea gagaetggag atectgttae 6960
gctgagactc cttgatgatg gagcaggtgc tgatgttata aaaaatgatg gaatttactc 7020
gaggtatttt ttctcctttg ctgcaaatgg tagatatagc ttgaaagtgc atgtcaatca 7080
ctctcccagc ataagcaccc cagcccactc tattccaggg agtcatgcta tgtatgtacc 7140
aggttacaca gcaaacggta atattcagat gaatgctcca aggaaatcag taggcagaaa 7200
tgaggaggag cgaaagtggg gctttagccg agtcagctca ggaggctcct tttcagtgct 7260
gggagttcca gctggccccc accetgatgt gtttccacca tgcaaaatta ttgacctgga 7320
agctgtaaaa gtagaagagg aattgaccct atcttggaca gcacctggag aagactttga 7380
tcagggccag gctacaaget atgaaataag aatgagtaaa agtctacaga atatccaaga 7440
tgactttaac aatgctattt tagtaaatac atcaaagcga aatcctcagc aagctggcat 7500
cagggagata tttacgttct caccccaaat ttccacgaat ggacctgaac atcagccaaa 7560
tggagaaaca catgaaagcc acagaattta tgttgcaata cgagcaatgg ataggaactc 7620
cttacagtct gctgtatcta acattgccca ggcgcctctg tttattcccc ccaattctga 7680
tcctqtacct qccaqaqatt atcttatatt qaaaqqaqtt ttaacaqcaa tqqqtttqat 7740
aggaatcatt tgccttatta tagttqtgac acatcatact ttaagcagga aaaagagagc 7800
agacaagaaa gagaatggaa caaaattatt ataatgaatt ctgcagatat ccatcacact 7860
ggcggccgct cgagcaccac caccaccacc actgagatcc ggctgctaac aaagcccgaa 7920
aggaagctga gttggctgct gccaccgctg agcaataact agcataaccc cttggggcct 7980
ctaaacgggt cttgaggggt tttttgctga aaggaggaac tatatccgga t
<210> 255
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 9, 67, 247, 275, 277, 397
\langle 223 \rangle n = A,T,C or G
<400> 255
gtggccagng actagaaggc gaggcgccgc gggaccatgg cggcggcggc ggacgagcgg 60
```

agtccanagg acggagaaga cgaggaagag gaggagcagt tggttctggt ggaattatca 120 ggaattattg attcagactt cctctcaaaa tgtgaaaata aatgcaaggt tttgggcatt 180 gacactgaga ggcccattct gcaagtggac agctgtgtct ttgctgggga gtatgaagac 240

```
actctangga cctgtgttat atttgaagaa aatgntnaac atgctgatac agaaggcaat 300
aataaaacag tgctaaaata taaatgccat acaatgaaga agctcagcat gacaagaact 360
ctcctgacag agaagaagga aggagaagaa aacatangtg g
<210> 256
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 7, 37, 51, 79, 96, 98, 103, 104, 107, 116, 167, 181, 183,
194, 206, 276, 303, 307, 308, 310, 323, 332, 341, 353, 374,
376
<223> n = A, T, C or G
<400> 256
tggtggncct gggatgggga accgcggtgg cttccgngga ggtttcggca ntggcatccg 60
gggccggggt cgcggccgng gacggggccg gggccnangc cgnnganctc gcggangcaa 120
ggccgaggat aaggagtgga tgcccgtcac caacttgggc cgcttgncca aggacatgaa 180
nancaagccc ctgnaggaga tctatntctt cttccctgcc ccattaagga atcaagagat 240
catttgattt cttcctgggg gcctctctca aggatnaggt ttttgaagat tatgccagtg 300
canaaannan acccegttge cengteeate tneacceaac netteeaagg genatttttg 360
tttaggcctc attncngggg ggaaccttaa cccaatttgg g
<210> 257
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 382, 387
<223> n = A, T, C or G
<400> 257
atgtatgtaa aacacttcat aaaatgtaaa gggctataac aaatatgtta taaagtgatt 60
ctctcagccc tgaggtatac agaatcattt gcctcagact gctgttggat tttaaaattt 120
ttaaaatatc tgctaagtaa tttgctatgt cttctcccac actatcaata tgcctgcttc 180
taacaggctc cccactttct tttaatgtgc tgttatgagc ttttggacatg agataaccgt 240
gcctgttcag agtgtctaca gtaagagctg gacaaactct ggagggacac agtctttgag 300
acagetettt tggttgettt ceaettttet gaaaggttea cagtaacett etagataata 360
gaaactccca gttaaagcct angctancaa tttttttag t
                                                                   401
<210> 258
<211> 401
<212> DNA
<213> Homo sapiens
<400> 258
qgagcqctag qtcqqtgtac gaccqagatt aggqtgcgtg ccagctccgg gaggccgcgg 60
tgaggggccg ggcccaagct gccgacccga gccgatcgtc agggtcgcca gcgcctcagc 120
tctgtggagg agcagcagta gtcggagggt gcaggatatt agaaatggct actccccagt 180
caattttcat ctttgcaatc tgcattttaa tgataacaga attaattctg gcctcaaaaa 240
gctactatga tatcttaggt gtgccaaaat cggcatcaga gcgccaaatc aagaaggcct 300
ttcacaagtt ggccatgaag taccacctg acaaaaataa gacccagatg ctgaagcaaa 360
attcagagag attgcagaag catatgaaac actctcagat g
```

```
<210> 259
<211> 401
<212> DNA
<213> Homo sapiens
<400> 259
attgggtttg gagggaggat gatgacagag gaatgccctt tggccatcac ggttttgatt 60
ctccagaata ttgtgggttt gatcatcaat gcagtcatgt taggctgcat tttcatgaaa 120
acageteagg eteacagaag ggeagaaact ttgattttea geegeeatge tgtgattgee 180
gtccgaaatg gcaagctgtg cttcatgttc cqagtgggtq acctgaggaa aagcatgatc 240
attaqtqcct ctqtqcqcat ccaqqtqqtc aaqaaaacaa ctacacctqa aqqqqaqqtq 300
gttcctattc accaactgga cattcctgtt gataacccaa tcgagagcaa taacattttt 360
ctggtggccc ctttgatcat ctgccacgtg attgacaagc g
<210> 260
<211> 363
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 7, 9, 19, 41, 63, 73, 106, 111, 113, 116, 119, 156, 158,
162, 187, 247, 288, 289, 290, 292, 298, 299, 300, 340
<223> n = A, T, C or G
<400> 260
aggaganang gagggggana tgaataggga tggagaggga natagtggat gagcagggca 60
canggagagg aancagaaag gagaggcaag acagggagac acacancaca nangangana 120
caggtggggg ctggggtggg gcatggagag cctttnangt cncccaggcc accctgctct 180
cgctggnctg ttgaaaccca ctccatggct tcctgccact gcagttgggc ccagggctgg 240
cttattnctg gaatgcaagt ggctgtggct tggagcctcc cctctggnnn anggaaannn 300
attgeteect tatetgettg gaatatetga gttttteean eeeggaaata aaacacacae 360
aca
<210> 261
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 114, 152
<223> n = A, T, C or G
<400> 261
eggeteteeg eegeteteee ggggtttegg ggeacttggg teceaeagte tggteetget 60
tcaccttccc ctgacctgag tagtcgccat ggcacaggtt ctcagaggca ctgngactga 120
cttccctgga tttgatgagc gggctgatgc anaaactctt cggaaggcta tgaaaggctt 180
gggcacagat gaggagagca tcctgactct gttgacatcc cgaagtaatg ctcagcgcca 240
ggaaatctct gcagctttta agactctgtt tggcaqggat cttctggatg acctgaaatc 300
agaactaact qqaaaatttq aaaaattaat tqtqqctctq atqaaaccct ctcqqcttta 360
tgatgcttat gaactgaaac atgccttgaa gggagctgga a
                                                                   401
<210> 262
<211> 401
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc feature
<222> 7, 26, 258, 305, 358, 373, 374, 378
<223> n = A, T, C or G
<400> 262
agtctanaac atttctaata ttttgngctt tcatatatca aaggagatta tgtgaaacta 60
tttttaaata ctgtaaagtg acatatagtt ataagatata tttctgtaca gtagagaaag 120
agtttataac atgaagaata ttgtaccatt atacattttc attctcgatc tcataagaaa 180
ttcaaaagaa taatgataga ggtgaaaata tgtttacttt ctctaaatca agcctagttg 240
tcaactcaaa aattatgntg catagtttta ttttgaattt aggttttggg actacttttt 300
tccancttca atgagaaaat aaaatctaca actcaggagt tactacagaa gttctaanta 360
tttttttgct aannagcnaa aaatataaac atatgaaaat g
<210> 263
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 232, 290, 304, 326, 383
<223> n = A, T, C or G
<400> 263
ctgtccgacc aagagaggcc ggccgagccc gaggcttggg cttttgcttt ctggcggagg 60
gatctgcggc ggtttaggag gcggcgctga tcctgggagg aagaggcagc tacggcggcg 120
geggeggtgg eggetaggge ggeggegaat aaaggggeeg eegeegggtg atgeggtgae 180
cactgeggca ggcccaggag ctgagtgggc cccggccctc agcccgtccc gncggacccg 240
ctttcctcaa ctctccatct tctcctqccg accgagatcg ccgaggcggn ctcaggctcc 300
ctaneccett eccepteect tecenecee eqteceegee eegggggeeg eegceaeeeg 360
cctcccacca tggctctgaa ganaatccac aaggaattga a
<210> 264
<211> 401
<212> DNA
<213> Homo sapiens
<400> 264
aacaccagcc actccaggac ccctgaaggc ctctaccagg tcaccagtgt tctgcgccta 60
aagccaccc ctggcagaaa cttcagctgt gtgttctgga atactcacgt gagggaactt 120
actttggcca gcattgacct tcaaagtcag atggaaccca ggacccatcc aacttggctg 180
cttcacattt tcatcccctc ctgcatcatt gctttcattt tcatagccac agtgatagcc 240
ctaagaaaac aactctgtca aaagctgtat tcttcaaaag acacaacaaa aagacctgtc 300
accacaacaa agagggaagt gaacagtgct gtgaatctga acctgtggtc ttgggagcca 360
gggtgacctg atatgacatc taaagaagct tctggactct g
<210> 265
<211> 271
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 59
<223> n = A, T, C or G
<400> 265
```

```
gccacttcct gtggacatgg gcagagcgct gctgccagtt cctggtagcc ttgaccacna 60
cgctgggggg tctttgtgat ggtcatgggt ctcatttgca cttgggggtg tgggattcaa 120
gttagaagtt tctagatctg gccgggcgca gtggctcaca cctgtaatcc cagcacttta 180
ggaggctgag gcaggcggat catgaggtca ggagatcgag accgtcctgg ctaacacagt 240
gaaaccccgt ctctactaaa aatacaaaaa a
<210> 266
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 45
<223> n = A, T, C or G
<400> 266
attcataaat ttagctgaaa gatactgatt caatttgtat acagngaata taaatgagac 60
gacagcaaaa ttttcatgaa atgtaaaata tttttatagt ttgttcatac tatatgaggt 120
tctattttaa atgactttct ggattttaaa aaatttcttt aaatacaatc atttttgtaa 180
tatttatttt atgcttatga tctagataat tgcagaatat cattttatct gactctgtct 240
tcataagaga gctgtggccg aattttgaac atctgttata gggagtgatc aaattagaag 300
gcaatgtgga aaaacaattc tgggaaagat ttctttatat gaagtccctg ccactagcca 360
gccatcctaa ttgatgaaag ttatctgttc acaggcctgc a
<210> 267
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 116, 247, 277, 296, 307, 313, 322, 323, 336, 342, 355, 365,
377, 378, 397
\langle 223 \rangle n = A, T, C or G
<400> 267
gaagaggcat cacctgatcc cggagacctt tggagttaag aggcggcgga agcgagggcc 60
tgtggagteg gatectette ggggtgagee agggteggeg egegeggetg teteanaact 120
catgcagctg ttcccgcgag gcctgtttga ggacgcgctg ccgcccatcg tgctgaggag 180
ccaggtgtac agccttgtgc ctgacaggac cgtggccgac cggcagctga aggagcttca 240
agagcanggg gagacaaaat cgtccagctg ggcttcnact tggatgccca tggaanttat 300
tetttenett ganggaetta enngggaece aagaaneet tneaagggge eettngtgga 360
tgggncccga aaccccnnta tttgcccttg ggggggncca a
<210> 268
<211> 223
<212> DNA
<213> Homo sapiens
<400> 268
tegecatgtt ggecaggetg gtettgaact cetgaettta agtgateeac eegecteaac 60
ctcccaaagt gctgggatta caggtgtgag ccaccgcgcc tggcctgata catactttta 120
gaatcaagta gtcacgcact ttttctgttc atttttctaa aaagtaaata tacaaatgtt 180
                                                                   223
ttgttttttg tttttttgt ttgtttgtt ctgtttttt ttt
<210> 269
<211> 401
```

```
<212>, DNA
<213> Homo sapiens
<400> 269
actatgtaaa ccacattgta cttttttta ctttggcaac aaatatttat acatacaaga 60
tgctagttca tttgaatatt tctcccaact tatccaagga tctccagctc taacaaaatg 120
gtttattttt atttaaatgt caatagttgt tttttaaaat ccaaatcaga ggtgcaggcc 180
accagttaaa tgccgtctat caggttttgt gccttaagag actacagagt caaagctcat 240
ttttaaagga gtaggacaaa gttgtcacag gtttttgttg ttgtttttat tgcccccaaa 300
attacatgtt aatttccatt tatatcaggg attctattta cttgaagact gtgaagttgc 360
cattttgtct cattgttttc tttgacataa ctaggatcca t
<210> 270
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 240, 382
<223> n = A, T, C or G
<400> 270
tggctgttga ttcacctcag cactgcttgg tatctgcacc ctacctctct ttagaggctg 60
ccttgtcaac tgaaaaatgc acctgacttc gagcaagact ctttccttag gttctggatc 120
tqtttqaqcc ccatqqcact qaqctqqaat ctqaqqqtct tqttccaaqq atqtqatgat 180
gtgggagaat gttctttgaa agagcagaaa tccagtctgc atggaaacag cctgtagagn 240
agaagtttcc agtgataagt gttcactgtt ctaaggaggt acaccacagc tacctgaatt 300
ttcccaaaat gagtgcttct gtgcgttaca actggccttt gtacttgact gtgatgactt 360
tgttttttct tttcaattct anatgaacat gggaaaaaat g
<210> 271
<211> 329
<212> DNA
<213> Homo sapiens
<400> 271
ccacagcete caagteaggt ggggtggagt cccagagetg cacagggttt ggcccaagtt 60
tctaagggag gcacttcctc ccctcgccca tcagtgccag cccctgctgg ctggtgcctg 120
agcccctcag acagcccct gccccgcagg cctgccttct cagggacttc tgcggggcct 180
gaggcaagcc atggagtgag acccaggagc cggacacttc tcaggaaatg gcttttccca 240
acceccage cecaceggt ggttetteet gttetgtgae tgtgtatagt gecaceaeag 300
                                                                   329
cttatggcat ctcattgagg acaaaaaa
<210> 272
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 1, 7, 12, 21, 61, 62, 66, 72, 78, 88, 90, 92, 98, 117, 119,
128, 130, 134, 142, 144, 151, 159, 162, 164, 168, 169, 177,
184, 185, 188, 194, 202, 204, 209, 213, 218, 223, 231, 260,
272, 299, 300, 306, 321, 322, 323, 331, 335, 336, 338
<223> n = A, T, C or G
<221> misc feature
```

```
<222> 341, 342, 343, 345, 346, 351, 358, 360, 362, 363, 387, 390,
392
\langle 223 \rangle n = A, T, C or G
<400> 272
nggctgntaa cntcggaggt nacttcctgg actatcctgg agaccccctc cgcttccacg 60
nncatnatat cnctcatngc tgggcccntn angacacnat cccactccaa cacctgngng 120
atgctggncn cctnggaacc anchtcagaa ngaccctgnt cntntgtnnt ccgcaanctg 180
aagnnaangc gggntacacc tncntgcant ggnccacnct gcngggaact ntacacacct 240
acgggatgtg gctgcgccan gagccaagag cntttctgga tgattcccca gcctcttgnn 300
agggantcta caacattgct nnntaccttt ntccnncngc nnntnntgga ntacaggngn 360
tnntaacact acatctttt tactgeneen tncttggtgg g
<210> 273
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 399
<223> n = A, T, C or G
<400> 273
cagcaccatg aagatcaaga tcatcgcacc cccagagcgc aagtactcgg tgtggatcgg 60
tggctccatc ctggcctcac tgtccacctt ccagcagatg tggattagca agcaggagta 120
cgacgagteg ggeceteca tegtecaceg caaatgette taaacqqact cagcagatge 180
gtagcatttg ctgcatgggt taattgagaa tagaaatttg cccctggcaa atgcacacac 240
ctcatqctaq cctcacgaaa ctggaataag ccttcgaaaa gaaattgtcc ttgaagcttg 300
tatctgatat cagcactgga ttgtagaact tgttgctgat tttgaccttg tattgaagtt 360
aactgttccc cttggtatta acgtgtcagg gctgagtgnt c
<210> 274
<211> 401
<212> DNA
<213> Homo sapiens
<400> 274
ccacccacac ccaccgcgcc ctcgttcgcc tcttctccgg gagccagtcc gcgccaccgc 60
cgccgccag gccatcgcca ccctccgcag ccatgtccac caggtccgtg tcctcgtcct 120
cctaccgcaq gatgttcggc ggcccgggca ccgcgagccg gccgagctcc agccggagct 180
acqtqactac qtccaccqc acctacaqcc tqqqcaqcqc gctqcqccc agcaccaqcc 240
geagecteta egectegtee eegggeggeg tgtatgeeac gegeteetet geegtgegee 300
tgcggagcag cgtgcccggg gtgcggctcc tgcaggactc ggtggacttc tcgctggccg 360
acgccatcaa caccgagttc aagaacaccc gcaccaacga g
<210> 275
<211> 401
<212> DNA
<213> Homo sapiens
<400> 275
ccacttccac cactttgtgg agcagtgcct tcagcgcaac ccggatgcca ggtatccctg 60
ctggcctggg cctgggcttc gggagagcag agggtgctca ggagggtaag gccagggtgt 120
gaagggactt acctcccaaa ggttctgcag gggaatctgg agctacacac aggagggatc 180
agctcctggg tgtgtcagag gccagcctgg ggagctctgg ccactgcttc ccatgagctg 240
agggagagg agaggggacc cgaggctgag gcataagtgg caggatttcg ggaagctggg 300
qacacqqcaq tgatgctgcg gtctctcctc ccctttccct ccaggcccag tgccagcacc 360
```

```
401
ctcctgaacc actctttctt caagcagatc aagcgacgtg c
<210> 276
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 11
<223> n = A,T,C or G
<400> 276
tctgatattg ntacccttga gccacctaag ttagaagaaa ttggaaatca agaagttgtc 60
attgttgaag aagcacagag ttcagaagac tttaacatgg gctcttcctc tagcagccag 120
tatactttct gtcagccaga aactgtattt tcatctcagc ctagtgatga tgaatcaagt 180
aqtgatgaaa ccagtaatca gcccagtcct gcctttagac gacgccgtgc taggaagaag 240
accepttcte cttcagaatc tgaagacceg ctagttegete aacaagaaac tgaaccttct 300
aaggagttga gtaaacgtca gttcagtagt ggtctcaata agtgtgttat acttgctttg 360
gtgattgcaa tcagcatggg atttggccat ttctatggca c
<210> 277
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 227, 333
<223> n = A,T,C or G
<400> 277
aactttggca acatatetea geaaaaacta cagetatgtt atteatgeea aaataaaage 60
tgtgcagagg agtggctgca atgaggtcac aacggtggtg gatgtaaaag agatcttcaa 120
gtcctcatca cccatccctc gaactcaagt cccgctcatt acaaattctt cttgccagtg 180
tccacacatc ctgccccatc aagatgttct catcatgtgt tacgagnggc gctcaaggat 240
gatgcttctt gaaaattgct tagttgaaaa atggagagat cagcttagta aaagatccat 300
acagtgggaa gagaggctgc aggaacagcg ganaacagtt caggacaaga agaaaacagc 360
cgggcgcacc agtcgtagta atccccccaa accaaaggga a
<210> 278
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 322, 354
<223> n = A, T, C or G
<400> 278
aatgagtgtg agaccacaaa tgaatgccgg gaggatgaaa tgtgttggaa ttatcatggc 60
ggcttccgtt gttatccacg aaatccttgt caagatccct acattctaac accagagaac 120
cgatgtgttt gcccagtctc aaatgccatg tgccgagaac tgccccagtc aatagtctac 180
aaatacatga gcatccgatc tgataggtct gtgccatcag acatcttcca gatacaggcc 240
acaactattt atgccaacac catcaatact tttcggatta aatctggaaa tgaaaatgga 300
gagtctacct acgacaacaa anccctgtaa gtgcaatgct tgtgctcgtg aagncattat 360
caggaccaag agaacatatc gtggacctgg agatgctgac a
                                                                   401
```

```
<210> 279
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 30, 35, 81, 88, 180, 212, 378, 384, 391
<223> n = A, T, C or G
<400> 279
aaattattgc ctctgataca tacctaagtn aacanaacat taatacctaa gtaaacataa 60
cattacttgg agggttgcag nttctaantg aaactgtatt tgaaactttt aagtatactt 120
taggaaacaa gcatgaacgg cagtctagaa taccagaaac atctacttgg gtagcttggn 180
gccattatcc tgtggaatct gatatgtctg gnagcatgtc attgatggga catgaagaca 240
tetttggaaa tgatgagatt attteetgtg ttaaaaaaaa aaaaaatett aaatteetae 300
aatgtgaaac tgaaactaat aattttgatc ctgatgtatg ggacagcgta tctgtaccag 360
gctctaaata acaaaagnta gggngacaag nacatgttcc t
<210> 280
<211> 326
<212> DNA
<213> Homo sapiens
<400> 280
gaagtggaat tgtataattc aattcgataa ttgatctcat qqqctttccc tggagqaaaq 60
gttttttttg ttgtttttt tttaagaact tgaaacttgt aaactgagat gtctgtagct 120
tttttgccca tctgtagtgt atgtgaagat ttcaaaacct gagagcactt tttctttgtt 180
tagaattatg agaaaggcac tagatgactt taggatttgc atttttccct ttattgcctc 240
atttcttgtg acgccttgtt ggggagggaa atctgtttat tttttcctac aaataaaaag 300
ctaagattct atatcgcaaa aaaaaa
<210> 281
<211> 374
<212> DNA
<213> Homo sapiens
<400> 281
caacgcgttt gcaaatattc ccctggtagc ctacttcctt acccccgaat attggtaaga 60
tegageaatg getteaggae atgggttete tteteetgtg ateatteaag tgeteaetge 120
atqaaqactq qcttqtctca gtgtttcaac ctcaccaggg ctgtctcttg gtccacacct 180
cgctccctgt tagtgccgta tgacagcccc catcaaatga ccttggccaa gtcacggttt 240
ctctgtggtc aaggttggtt ggctgattgg tggaaagtag ggtggaccaa aggaggccac 300
gtgagcagtc agcaccagtt ctgcaccagc agcgcctccg tcctagtggg tgttcctgtt 360
                                                                   374
tctcctggcc ctgg
<210> 282
<211> 404
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 26, \overline{2}7, 51, 137, 180, 222
<223> n = A, T, C or G
<400> 282
```

```
agtgtggtgg aattcccgca tcctanncgc cgactcacac aaggcagagt ngccatggag 60
aaaattccag tgtcagcatt cttgctcctt gtggccctct cctacactct ggccagagat 120
accacagtca aacctgnagc caaaaaggac acaaaggact ctcgacccaa actgccccan 180
acceteteca gaggttgggg tgaccaacte atetggacte anacatatga agaageteta 240
tataaatcca agacaagcaa caaacccttg atgattattc atcacttgga tgagtgccca 300
cacagtcaag ctttaaagaa agtgtttgct gaaaataaag aaatccagaa attggcagag 360
cagtttgtcc tcctcaatct ggtttatgaa acaactgaca aaca
                                                                   404
<210> 283
<211> 184
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 26
<223> n = A, T, C or G
<400> 283
agtgtggtgg aattcacttg cttaanttgt gggcaaaaga gaaaaagaag gattgatcag 60
agcattqtqc aatacaqttt cattaactcc ttccctcqct cccccaaaaa tttgaatttt 120
tttttcaaca ctcttacacc tgttatggaa aatgtcaacc tttgtaagaa aaccaaaata 180
aaaa
<210> 284
<211> 421
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 147, 149
<223> n = A,T,C or G
<400> 284
ctattaatcc tgccacaata tttttaatta cgtacaaaga tctgacatgt cacccaggga 60
cccatttcac ccactgctct gtttggccgc cagtcttttg tctctcttt cagcaatggt 120
gaggeggata ccctttcctc ggggaanana aatccatggt ttgttgccct tgccaataac 180
aaaaatgttg gaaagtcgag tggcaaagct gttgccattg gcatctttca cgtgaaccac 240
gtcaaaagat ccagggtgcc tctctctgtt ggtgatcaca ccaattcttc ctaggttagc 300
acctccagtc accatacaca ggttaccagt gtcgaacttg atgaaatcag taatcttgcc 360
agtototaaa toaatotgaa tggtatoatt cacottgatg aggggatogg ggtagoggat 420
<210> 285
<211> 361
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 34, 188
<223> n = A,T,C or G
<400> 285
ctgggtggta actctttatt tcattgtccg gaanaaagat gggagtggga acagggtgga 60
cactgtgcag gcttcagctt ccactccggg caggattcag gctatctggg accgcaggga 120
ctgccaggtg cacagccctg gctcccgagg caggcaggca aggtgacggg actggaagcc 180
```

```
cttttcanag ccttggagga gctggtccgt ccacaagcaa tgagtgccac tctgcagttt 240
gcaggggatg gataaacagg gaaacactgt gcattcctca cagccaacag tgtaggtctt 300
qqtqaaqccc cqqcqctqaq ctaaqctcaq gctgttccaq ggagccacqa aactqcaggt 360
<210> 286
<211> 336
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 40, 68, 75, 127, 262
<223> n = A, T, C or G
<400> 286
tttqaqtqqc aqcqccttta tttqtqqqqq ccttcaaqqn agggtcgtgg ggggcagcgg 60
qqaqqaanaq ccqanaaact qtqtqaccqq ggcctcaggt ggtgggcatt gggggctcct 120
cttgcanatq cccattgqca tcaccqqtqc aqccattgqt qqcaqcqgqt accqgtcctt 180
tcttqttcaa cataqqqtaq qtqqcaqcca cqqqtccaac tcqcttqagq ctqqqccctg 240
qqcqctccat tttqtqttcc angagcatqt ggttctqtqg cgggagcccc acgcaggccc 300
tgaggatgtt ctcgatgcag ctgcgctggc ggaaaa
<210> 287
<211> 301
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 15, 33, 44, 53, 76, 83, 107, 117, 154, 166, 192, 194, 207,
215, 241, 246
<223> n = A, T, C or G
<400> 287
tgggtaccaa atttntttat ttgaaggaat ggnacaaatc aaanaactta agnggatgtt 60
ttggtacaac ttatanaaaa ggnaaaggaa accccaacat gcatgcnctg ccttggngac 120
cagggaagtc acccacggc tatggggaaa ttancccgag gcttancttt cattatcact 180
gtctcccagg gngngcttgt caaaaanata ttccnccaag ccaaattcgg gcgctcccat 240
nttgcncaag ttggtcacgt ggtcacccaa ttctttgatg gctttcacct gctcattcag 300
<210> 288
<211> 358
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 39, \overline{1}43, 226
<223> n = A, T, C or G
<400> 288
aagtttttaa actttttatt tgcatattaa aaaaattgng cattccaata attaaaatca 60
tttgaacaaa aaaaaaatg gcactctgat taaactgcat tacagcctgc aggacacctt 120
gggccagctt ggttttåctc tanatttcac tgtcgtccca ccccacttct tccaccccac 180
ttcttccttc accaacatqc aaqttctttc cttccctgcc agccanatag atagacagat 240
gggaaaggca ggcgcgcct tcgttgtcag tagttctttg atgtgaaagg ggcagcacag 300
```

```
tcatttaaac ttgatccaac ctctttgcat cttacaaagt taaacagcta aaagaagt
                                                                    358
<210> 289
<211> 462
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 87, 141, 182, 220, 269, 327
<223> n = A, T, C or G
<400> 289
ggcatcagaa atgctgttta tttctctgct gctcccaagc tggctggcct ttgcagagga 60
gcagacaaca gatgcatagt tgggganaaa gggaggacag gttccaggat agagggtgca 120
ggctgaggga ggaagggtaa naggaaggaa ggccatcctg gatccccaca tttcagtctc 180
anatgaggac aaagggactc ccaagccccc aaatcatcan aaaacaccaa ggagcaggag 240
gagettgage aggeeceagg gageeteana geeataceag ceaetgteta etteceatee 300
tectetecca ttecetgtet getteanace aceteccage taagecceag etecatteec 360
ccaatcctgg cccttgccag cttgacagtc acagtgcctg gaattccacc actgaggctt 420
ctcccaqttg gattaggacg tcgccctgtt agcatgctgc cc
<210> 290
<211> 481
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 44, 57, 122, 158, 304, 325, 352, 405
<223> n = A, T, C or G
<400> 290
tactttccta aactttatta aagaaaaaag caataagcaa tggnggtaaa tctctanaac 60
atacccaatt ttctgggctt cctcccccga gaatgtgaca ttttgatttc caaacatgcc 120
anaagtgtat ggttcccaac tgtactaaag taggtganaa gctgaagtcc tcaagtgttc 180
atcttccaac ttttcccagt ctgtggtctg tctttggatc agcaataatt gcctgaacag 240
ctactatggc ttcgttgatt tttgtctgta gctctctgag ctcctctatg tgcagcaatc 300
gcanaatttg agcagcttca ttaanaactg catctcctgt gtcaaaacca anaatatgtt 360
tgtctaaagc aacaggtaag ccctcttttg tttgatttgc cttancaact gcatcctgtg 420
tcaqqcqctc ctqaaccaaa atccqaattq ccttaaqcat taccaggtaa tcatcatgac 480
                                                                    481
<210> 291
<211> 381
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 79, \overline{1}66, 187, 208, 219, 315
<223> n = A, T, C or G
<400> 291
tcatagtaat gtaaaaccat ttgtttaatt ctaaatcaaa tcactttcac aacagtgaaa 60
attagtgact ggttaaggng tgccactgta catatcatca ttttctgact ggggtcagga 120
cctqqtccta qtccacaaqq qtqqcaqqaq qaqggtqgag gctaanaaca cagaaaacac 180
acaaaanaaa qqaaaqctqc cttqqcanaa qqatqaqqng gtqaqcttqc cgaaggatqg 240
```

```
tqqqaaqqqq qctccctqtt qqqqccqaqc caqqaqtccc aagtcagctc tcctgcctta 300
cttagctcct ggcanagggt gagtggggac ctacgaggtt caaaatcaaa tggcatttgg 360
ccagcctggc tttactaaca g
<210> 292
<211> 371
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 32, 55, 72, 151, 189, 292
<223> n = A, T, C or G
<400> 292
gaaaaaataa toogtttaat tgaaaaacct gnaggatact attocactoo cocanatgag 60
gaggetgagg anaccaaacc cetacateac etegtageca ettetgatac tetteacgag 120
qcaqcaqqca aaqacaattc ccaaaacctc nacaaaaqca attccaaggg ctgctgcagc 180
taccaccanc acatttttcc tcagccagcc cccaatcttc tccacacagc cctccttatg 240
gategeette tegttgaaat taateeeaca geecacagta acattaatge ancaggagte 300
ggggactegg ttettegaca tggaagggat ttteteceaa tetgtgtagt tageageece 360
acagcactta a
<210> 293
<211> 361
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 75, 196, 222
<223> n = A,T,C or G
<400> 293
gatttaaaag aaaacacttt attgttcagc aattaaaagt tagccaaata tgtatttttc 60
tccataattt attqnqatqt tatcaacatc aaqtaaaatg ctcattttca tcatttgctt 120
ctqttcatqt tttcttqaac acqtcttcaa ttttccttcc aaaatgctgc atgccacact 180
tgaggtaacg aagcanaagt atttttaaac atgacagcta anaacattca tctacagcaa 240
cctatatgct caatacatgc cgcgtgatcc tagtagtttt ttcacaacct tctacaagtt 300
tttqqaaaac atctqttatq atqactttca tacaccttca cctcaaaggc tttcttgcac 360
<210> 294
<211> 391
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 26, \overline{77}, 96, 150, 203, 252, 254, 264, 276
<223> n = A, T, C or G
<400> 294
tattttaaag tttaattatg attcanaaaa aatcgagcga ataactttct ctgaaaaaat 60
atattgactc tgtatanacc acagttattg gggganaagg gctggtaggt taaattatcc 120
tattttttat totgaaaatg atattaatan aaagtoocgt ttocagtotg attataaaga 180
tacatatgcc caaaatggct ganaataaat acaacaggaa atgcaaaagc tgtaaagcta 240
agggcatgca ananaaaatc tcanaatacc caaagnggca acaaggaacg tttggctgga 300
```

128

```
atttgaagtt atttcagtca tctttgtctt tggctccatg tttcaggatg cgtgtgaact 360
cgatgtaatt gaaattcccc tttttatcaa t
<210> 295
<211> 343
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 145, 174, 205, 232
<223> n = A, T, C or G
<400> 295
ttcttttgtt ttattgataa cagaaactgt gcataattac agatttgatg aggaatctgc 60
aaataataaa gaatgtgtct actgccagca aaatacaatt attccatgcc ctctcaacat 120
acaaatatag agttetteac accanatgge tetggtgtaa caaagecatt ttanatgttt 180
aattqtqctt ctacaaaacc ttcanaqcat qaqqtaqttt cttttaccta cnatattttc 240
cacatttcca ttattacact tttagtgagc taaaatcctt ttaacatagc ctgcggatga 300
tctttcacaa aagccaagcc tcatttacaa agggtttatt tct
<210> 296
<211> 241
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 96, 98, 106, 185
<223> n = A, T, C or G
<400> 296
ttcttggata ttggttgttt ttgtgaaaaa gtttttgttt ttcttctcag tcaactgaat 60
tattteteta etttgeeete etgatgeeea eatgananaa ettaanataa tttetaacag 120
cttccacttt ggaaaaaaa aaaacctgtt ttcctcatgg aaccccagga gttgaaagtg 180
gatanatcgc tctcaaaatc taaggctctg ttcagcttta cattatgtta cctgacgttt 240
t
<210> 297
<211> 391
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 12, 130
<223> n = A, T, C or G
<400> 297
gttgtggctg anaatgctgg agatgctcag ttctctccct cacaaggtag gccacaaatt 60
cttggtggtg ccctcacatc tggggtcttc aggcaccagc catgcctgcc gaggagtgct 120
gtcaggacan accatgtccg tgctaggccc aggcacagcc caaccactcc tcatccaagt 180
ctctcccagg tttctggtcc cgatgggcaa ggatgacccc tccagtggct ggtaccccac 240
catcccacta cccctcacat gctctcactc tccatcaggt ccccaatcct ggcttccctc 300
ttcacgaact ctcaaagaaa aggaaggata aaacctaaat aaaccagaca gaagcagctc 360
                                                                   391
tggaaaagta caaaaagaca gccagaggtg t
```

<210> 298

```
<211> 321
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 14, 30, 76, 116, 201, 288, 301
<223> n = A, T, C or G
<400> 298
caagccaaac tgtntccagc tttattaaan atactttcca taaacaatca tggtatttca 60
ggcaggacat gggcanacaa tcgttaacag tatacaacaa ctttcaaact cccttnttca 120
atggactacc aaaaatcaaa aagccactat aaaacccaat gaagtcttca tctgatgctc 180
tgaacaggga aagtttaaag ngagggttga catttcacat ttagcatgtt gtttaacaac 240
ttttcacaag ccgaccctga ctttcaggaa gtgaaatgaa aatggcanaa tttatctgaa 300
natccacaat ctaaaaatgg a
<210> 299
<211> 401
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 104, 268, 347
<223> n = A, T, C or G
<400> 299
tatcataaag agtgttgaag tttatttatt atagcaccat tgagacattt tgaaattgga 60
attggtaaaa aaataaaaca aaaagcattt gaattgtatt tggnggaaca gcaaaaaaag 120
agaagtatca tttttctttg tcaaattata ctgtttccaa acattttgga aataaataac 180
tggaattttg tcggtcactt gcactggttg acaagattag aacaagagga acacatatgg 240
agttaaattt tttttgttgg gatttcanat agagtttggt ttataaaaaag caaacagggc 300
caacgtccac accaaattct tgatcaggac caccaatgtc atagggngca atatctacaa 360
taggtagtct cacagccttg cgtgttcgat attcaaagac t
                                                                    401
<210> 300
<211> 188
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 48
\langle 223 \rangle n = A,T,C or G
<400> 300
tgaatgcttt gtcatattaa gaaagttaaa gtgcaataat gtttgaanac aataagtggt 60
qqtqtatctt qtttctaata agataaactt ttttgtcttt qctttatctt attagggagt 120
tgtatgtcag tgtataaaac atactgtgtg gtataacagg cttaataaat tctttaaaag 180
gaaaaaaa
<210> 301
<211> 291
<212> DNA
<213> Homo sapiens
<400> 301
```

```
aagattttgt tttattttat tatggctaga aagacactgt tatagccaaa atcggcaatg 60
acactaaaga aatcctctgt gcttttcaat atgcaaatat atttcttcca agagttgccc 120
tggtgtgact tcaagagttc atgttaactt cttttctgga aacttccttt tcttagttgt 180
tgtattcttg aagagcctgg gccatgaaga gcttgcctaa gttttgggca gtgaactcct 240
tgatgttctg gcagtaagtg tttatctggc ctgcaatgag cagcgagtcc a
<210> 302
<211> 341
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 25
<223> n = A,T,C or G
<400> 302
tgatttttca taattttatt aaatnatcac tgggaaaact aatggttcgc gtatcacaca 60
attacactac aatctgatag gagtggtaaa accagccaat ggaatccagg taaagtacaa 120
aaacqccacc ttttattqtc ctqtcttatt tctcqqqaaq qaqqqttcta ctttacacat 180
ttcatgagcc agcagtggac ttgagttaca atgtgtaggt tccttgtggt tatagctgca 240
gaaqaaqcca tcaaattctt gaggacttga catctctcgg aaagaagcaa actagtggat 300
ccccgggct gcaggaattc gatatcaagc ttatcgatac c
<210> 303
<211> 361
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
\langle 222 \rangle 15, \overline{27}, 92, 124, 127, 183, 198, 244, 320
<223> n = A, T, C or G
<400> 303
tgcagacagt aaatnaattt tatttgngtt cacagaacat actaggcgat ctcgacagtc 60
geteegtgac ageceaceaa eececaacee tntacetege agecaceeta aaggegaett 120
caanaanatg gaaggatete aeggatetea tteetaatgg teegeegaag teteacacag 180
tanacagacg gagttganat gctggaggat gcagtcacct cctaaactta cgacccacca 240
ccanacttca teccageegg gacgteetee eccaeeegag teeteeceat ttetteet 300
actttgccgc agttccaggn gtcctgcttc caccagtccc acaaagctca ataaatacca 360
                                                                    361
<210> 304
<211> 301
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
\langle 222 \rangle 23, \overline{1}04, 192
<223> n = A, T, C or G
<400> 304
ctctttacaa cagcctttat ttncggccct tgatcctgct cggatgctgg tggaggccct 60
tageteegee egecaggete tgtgeegeet eeeegeagge geanatteat gaacaeggtg 120
ctcaggggct tgaggccgta ctccccagc gggagctggt cctccagggg cttcccctcg 180
aaggtcagcc anaacaggtc gtcctgcaca ccctccagcc cgctcacttg ctgcttcagg 240
```

```
tgggccacgg tctgcgtcag ccgcacctcg taggtqctqc tgcggccctt gttattcctc 300
<210> 305
<211> 331
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 3, 36, 60, 193, 223
<223> n = A, T, C or G
<400> 305
qanaggctag taacatcagt tttattgggt tggggnggca accatagcct ggctgggggn 60
qqqqctqqcc ctcacaqqtt gttqaqttcc agcagggtct ggtccaaggt ctggtgaatc 120
tegaegttet ceteettgge aetggeeaag gtetetteta ggteategat ggttttetee 180
aactttgcca canacctctc ggcaaactct gctcgggtct cancctcctt cagcttctcc 240
tocaacagtt tgatctcctc ttcatattta tcttctttgg gggaatactc ctcctctgag 300
gccatcaggg acttgagggc ctggtccatg g
<210> 306
<211> 457
<212> DNA
<213> Homo sapiens
<400> 306
aatatgtaaa ggtaataact tttattatat taaagacaat gcaaacgaaa aacagaattg 60
agcagtgcaa aatttaaagg actgttttgt tctcaaagtt gcaagtttca aagccaaaag 120
aattatatgt atcaaatata taagtaaaaa aaagttagac tttcaagcct gtaatcccag 180
cactttggga ggctgaggca ggtggatcac taacattaaa aagacaacat tagattttgt 240
cgatttatag caattttata aatatataac tttgtcactt ggatcctgaa gcaaaataat 300
aaagtgaatt tgggattttt gtacttggta aaaagtttaa caccctaaat tcacaactag 360
tggatccccc gggctgcagg aattcgatat caagcttatc gataccgtcg acctcgaggg 420
ggggcccggt acccaattcg ccctatagtg agtcgta
                                                                   457
<210> 307
<211> 491
<212> DNA
<213> Homo sapiens
<400> 307
gtgcttggac ggaacccggc gctcgttccc caccccggcc ggccgcccat agccagccct 60
ccgtcacctc ttcaccgcac cctcggactg ccccaaggcc cccgccgccg ctccagcgcc 120
gcgcagccac cgccgccgcc gccgcctctc cttagtcgcc gccatgacga ccgcgtccac 180
ctcgcaggtg cgccagaact accaccagga ctcagaggcc gccatcaacc gccagatcaa 240
cctggagete tacgeeteet acgtttacet gtecatgtet tactaetttg accgegatga 300
tgtggctttg aagaactttg ccaaatactt tcttcaccaa tctcatgagg agagggaaca 360
tgctgagaaa ctgatgaagc tgcagaacca acgaggtggc cgaatcttcc ttcaggatat 420
caagaaacca gactgtgatg actgggagag cgggctgaat gcaatggagt gtgcattaca 480
tttggaaaaa a
<210> 308
<211> 421
<212> DNA
<213> Homo sapiens
<400> 308
```

```
ctcagcgctt cttctttctt ggtttgatcc tgactgctgt catggcgtgc cctctggaga 60
aggccctgga tgtgatggtg tccaccttcc acaagtactc gggcaaagag ggtgacaagt 120
tcaagctcaa caagtcagaa ctaaaggagc tgctgacccg ggagctgccc agcttcttgg 180
ggaaaaggac agatgaagct gctttccaga agctgatgag caacttggac agcaacaggg 240
acaacgaggt ggacttccaa gagtactgtg tcttcctgtc ctgcatcgcc atgatgtgta 300
acgaattett tgaaggette ecagataage ageecaggaa gaaatgaaaa eteetetgat 360
gtggttgggg ggtctgccag ctggggccct ccctgtcgcc agtgggcact tttttttttc 420
<210> 309
<211>,321
<212> DNA
<213> Homo sapiens
<400> 309
accaaatggc ggatgacgcc ggtgcagcgg ggggcccgg gggccctggt ggccctggga 60
tggggaaccg cggtggcttc cgcggaggtt tcggcagtgg catccggggc cggggtcgcg 120
gccgtggacg gggccggggc cgaggccgcg gagctcgcgg aggcaaggcc gaggataagg 180
agtggatgcc cgtcaccaag ttgggccgct tggtcaagga catgaagatc aagtccctgg 240
aggagatcta tctcttctcc ctgcccatta aggaatcaga gatcattgat ttcttcctgg 300
gggcctctct caaggatgag g
<210> 310
<211> 381
<212> DNA
<213> Homo sapiens
<400> 310
ttaaccagcc atattggctc aataaatagc ttcggtaagg agttaatttc cttctagaaa 60
tcagtgccta tttttcctgg aaactcaatt ttaaatagtc caattccatc tgaagccaag 120
ctgttgtcat tttcattcgg tgacattctc tcccatgaca cccagaaggg gcagaagaac 180
cacatttttc atttatagat gtttgcatcc tttgtattaa aattattttg aaggggttgc 240
ctcattggat ggctttttt tttttcctcc agggagaagg ggagaaatgt acttggaaat 300
taatgtatgt ttacatctct ttgcaaattc ctgtacatag agatatattt tttaagtgtg 360
aatgtaacaa catactgtga a
<210> 311
<211> 538
<212> DNA
<213> Homo sapiens
<400> 311
tttgaattta caccaagaac ttctcaataa aagaaaatca tgaatgctcc acaatttcaa 60
cataccacaa gagaagttaa tttcttaaca ttgtgttcta tgattatttg taagaccttc 120
accaagttct gatatctttt aaagacatag ttcaaaattg cttttgaaaa tctgtattct 180
tgaaaatatc cttgttgtgt attaggtttt taaataccag ctaaaggatt acctcactga 240
qtcatcaqta ccctcctatt caqctcccca aqatqatqtq tttttqctta ccctaaqaqa 300
ggttttcttc ttatttttag ataattcaag tgcttagata aattatgttt tctttaagtg 360
tttatqqtaa actcttttaa agaaaattta atatgttata gctgaatctt tttggtaact 420
ttaaatcttt atcatagact ctgtacatat gttcaaatta gctgcttgcc tgatgtgtgt 480
atcatcggtg ggatgacaga acaaacatat ttatgatcat gaataatgtg ctttgtaa
<210> 312
<211> 176
<212> DNA
<213> Homo sapiens
<400> 312
```

```
ggaggagcag ctgagagata gggtcagtga atgcggttca gcctgctacc tctcctgtct 60
tcatagaacc attgccttag aattattgta tgacacgttt tttgttggtt aagctgtaag 120
qttttqttct ttqtqaacat qqqtattttq aqqqqaqqqt qqaqqqata qggaag
<210> 313
<211> 396
<212> DNA
<213> Homo sapiens
<400> 313
ccagcacccc caggccctgg gggacctggg ttctcagact gccaaagaag ccttgccatc 60
tggcgctccc atggctcttg caacatctcc ccttcgtttt tgagggggtc atgccggggg 120
agccaccage cecteactgg gtteggagga gagteaggaa gggeeaagea egacaaagea 180
qaaacatcgg atttggggaa cgcgtgtcaa tcccttgtgc cgcagggctg ggcgggagag 240
actqttctqt tccttqtgta actqtqttqc tgaaagacta cctcgttctt gtcttgatgt 300
qtcaccqqqq caactqcctq qqqqcqqqqa tqqqqqcaqq gtggaagcgg ctccccattt 360
tataccaaag gtgctacatc tatgtgatgg gtgggg
<210> 314
<211> 311
<212> DNA
<213> Homo sapiens
<400> 314
cctcaacatc ctcagagagg actggaagcc agtccttacg ataaactcca taatttatgg 60
cctgcagtat ctcttcttgg agcccaaccc cgaggaccca ctgaacaagg aggccgcaga 120
ggtcctgcag aacaaccggc ggctgtttga gcagaacgtg cagcgctcca tgcggggtgg 180
ctacategge tecacetact ttgagegetg cetgaaatag ggttggegea tacceacece 240
cgccacggcc acaagccctg gcatcccctg caaatattta ttgggggcca tgggtagggg 300
                                                                   31.1
tttggggggc g
<210> 315
<211> 336
<212> DNA
<213> Homo sapiens
<400> 315
tttagaacat ggttatcatc caagactact ctaccctgca acattgaact cccaagagca 60
aatccacatt cctcttgagt tctgcagctt ctgtgtaaat agggcagctg tcgtctatgc 120
cgtagaatca catgatctga ggaccattca tggaagctgc taaatagcct agtctgggga 180
gtcttccata aagttttgca tggagcaaac aaacaggatt aaactaggtt tggttccttc 240
agccctctaa aagcataggg cttagcctgc aggcttcctt gggctttctc tgtgtgtgta 300
                                                                   336
gttttgtaaa cactatagca tctgttaaga tccagt
<210> 316
<211> 436
<212> DNA
<213> Homo sapiens
<400> 316
aacatggtct gcgtgcctta agagagacgc ttcctgcaga acaggacctg actacaaaga 60
atgtttccat tggaattgtt ggtaaagact tggagtttac aatctatgat gatgatgatg 120
tqtctccatt cctggaaggt cttgaagaaa gaccacagag aaaggcacag cctgctcaac 180
ctgctgatga acctgcagaa aaggctgatg aaccaatgga acattaagtg ataagccagt 240
ctatatatgt attatcaaat atgtaagaat acaggcacca catactgatg acaataatct 300
atactttgaa ccaaaagttg cagagtggtg gaatgctatg ttttaggaat cagtccagat 360
gtgagttttt tccaagcaac ctcactgaaa cctatataat ggaatacatt tttctttgaa 420
agggtctgta taatca
                                                                   436
```

```
<210> 317
<211> 196
<212> DNA
<213> Homo sapiens
<400> 317
tattccttgt gaagatgata tactattttt gttaagcgtg tctgtattta tgtgtgagga 60
gctgctggct tgcagtgcgc gtgcacgtgg agagctggtg cccggagatt ggacggcctg 120
atgetecete ecetgeeetg gteeagggaa getggeegag ggteetgget eetgagggge 180
atctgccct cccca
<210> 318
<211> 381
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 8, 9, 102, 122, 167, 182, 193, 235, 253, 265, 266, 290, 321,
<223> n = A, T, C or G
<400> 318
qacqcttnng ccgtaacqat gatcggagac atcctgctgt tcgggacgtt gctgatgaat 60
gccggggcgg tgctgaactt taagctgaaa aagaaggaca cncagggctt tggggaggag 120
tncagggagc ccaacacagg tgacaacatc cgggaattct tgctgancct cagatacttt 180
cnaatettea tenecetgtg gaacatette atgatgttet geatgattgt getgntegge 240
tettgaatee canegatgaa accannaact caettteeeg ggatgeegan tetecattee 300
tocattoctg atgacttcaa naatgttttt gaccaaaaaa ccgacaacct toccagaaag 360'
tccaagctcq tqqtqqqnqq a
<210> 319
<211> 506
<212> DNA
<213> Homo sapiens
<400> 319
ctaagcttta cgaatggggt gacaacttat gataaaaact agagctagtg aattagccta 60
tttgtaaata cctttgttat aattgatagg atacatcttg gacatggaat tgttaagcca 120
cctctgagca gtgtatgtca ggacttgttc attaggttgg cagcagaggg gcagaaggaa 180
ttatacaggt agagatgtat gcagatgtgt ccatatatgt ccatatttac attttgatag 240
ccattgatgt atgcatctct tggctgtact ataagaacac attaattcaa tggaaataca 300
ctttgctaat attttaatgg tatagatctg ctaatgaatt ctcttaaaaa catactgtat 360
tctgttgctg tgtgtttcat tttaaattga gcattaaggg aatgcagcat ttaaatcaga 420
actotgccaa tgcttttatc tagaggcgtg ttgccatttt tgtcttatat gaaatttctg 480
tcccaagaaa qqcaqqatta catctt
                                                                   506
<210> 320
<211> 351
<212> DNA
<213> Homo sapiens
<400> 320
ctgacctgca ggacgaaacc atgaagagcc tgatccttct tgccatcctg gccgccttag 60
cggtagtaac tttgtgttat gaatcacatg aaagcatgga atcttatgaa cttaatccct 120
tcattaacag gagaaatgca aataccttca tatcccctca gcagagatgg agagctaaag 180
tccaagagag gatccgagaa cgctctaagc ctgtccacga gctcaatagg gaagcctgtg 240
```

```
atgactacag actttgcgaa cgctacgcca tggtttatgg atacaatgct gcctataatc 300
gctacttcag gaagcgccga gggaccaaat gagactgagg gaagaaaaaa a
<210> 321
<211> 421
<212> DNA
<213> Homo sapiens
<400> 321
ctcggaggcg ttcagctgct tcaagatgaa gctgaacatc tccttcccag ccactggctg 60
ccagaaactc attgaagtgg acgatgaacg caaacttcgt actttctatg agaagcgtat 120
ggccacagaa gttgctgctg acgctctggg tgaagaatgg aagggttatg tggtccgaat 180
cagtggtggg aacgacaaac aaggtttccc catgaagcag ggtgtcttga cccatggccg 240
tgtccgcctg ctactgagta aggggcattc ctgttacaga ccaaggagaa ctggagaaag 300
aaagagaaaa tcagttcgtg gttgcattgt ggatgcaaat ctgagcgttc tcaacttggt 360
tattgtaaaa aaaggagaga aggatattcc tggactgact gatactacag tgcctcgccg 420
<210> 322
<211> 521
<212> DNA
<213> Homo sapiens
<400> 322
agcagetete etgecacage tecteacece etgaaaatgt tegeetgete caagtttgte 60
tecaetecet cettggteaa gageacetea cagetgetga geegteeget atetgeagtg 120
gtgctgaaac gaccggagat actgacagat gagagcctca gcagcttggc agtctcatgt 180
ccccttacct cacttgtctc tagccgcagc ttccaaacca gcgccatttc aagggacatc 240
gacacagcag ccaagttcat tggagctggg gctgccacag ttggggtggc tggttctggg 300
gctgggattg gaactgtgtt tgggagcctc atcattggtt atgccaggaa cccttctctg 360
aagcaacage tetteteeta egecattetg ggetttgeee teteggagge catggggete 420
ttttgtctga tggtaqcctt tctcatcctc tttgccatgt gaaggagccg tctccacctc 480
ccatagttct cccgcgtctg gttggccccg tgtgttcctt t
                                                                  521
<210> 323
<211> 435
<212> DNA
<213> Homo sapiens
<400> 323
ccgaggtcgc acgcgtgaga cttctccgcc gcagacgccg ccgcgatgcg ctacgtcgcc 60
tcctacctgc tggctgccct agggggcaac tcctccccca gcgccaagga catcaagaag 120
atcttggaca gcgtgggtat cgaggcggac gacgaccggc tcaacaaggt tatcagtgag 180
ctgaatggaa aaaacattga agacgtcatt gcccagggta ttggcaagct tgccagtgta 240
cctgctggtg gggctgtagc cgtctctgct gccccaggct ctgcagcccc tgctgctggt 300
tctgcccctg ctgcagcaga ggagaagaaa gatgagaaga aggaggagtc tgaagagtca 360
gatgatgaca tgggatttgg cctttttgat taaattcctg ctcccctgca aataaagcct 420
ttttacacat ctcaa
                                                                  435
<210> 324
<211> 521
<212> DNA
<213> Homo sapiens
<400> 324
aggagatcga ctttcqqtqc ccqcaagacc aggqctggaa cgccgagatc acqctqcaga 60
tggtgcagta caagaatcgt caggccatcc tggcggtcaa atccacgcgg cagaagcagc 120
agcacctggt ccagcagcag ccccctcgc agccgcagcc gcagccgcag ctccagcccc 180
```

136

```
aaccccaqcc tcaqcctcaq ccqcaacccc aqccccaatc acaaccccaq cctcaqcccc 240
aacccaagce teageeceag eageteeace egtateegea teeacateea eateeacact 300
ctcatcctca ctcgcaccca caccctcacc cgcacccgca tccgcaccaa ataccgcacc 360
cacacccaca geogeacteg cageegeacg ggeacegget teteegeage acetecaact 420
ctgcctgaaa ggggcagctc ccgggcaaga caaggttttg aggacttgag gaagtgggac 480
gagcacattt ctattgtctt cacttggatc aaaagcaaaa c
<210> 325
<211> 451
<212> DNA
<213> Homo sapiens
<400> 325
attiticatti ccattaacci ggaagcittic atgaatattic tottottita aaacattita 60
acattattta aacagaaaaa gatgggctct ttctggttag ttgttacatg atagcagaga 120
tatttttact tagattactt tgggaatgag agattgttgt cttgaactct ggcactgtac 180
agtgaatgtg tctgtagttg tgttagtttg cattaagcat gtataacatt caagtatgtc 240
atccaaataa gaggcatata cattgaattg tttttaatcc tctgacaagt tgactcttcg 300
acccccaccc ccacccaaga cattttaata gtaaatagag agagagagaa gagttaatga 360
acatgaggta gtgttccact ggcaggatga cttttcaata gctcaaatca atttcagtgc 420
ctttatcact tgaattatta acttaatttg a
<210> 326
<211> 421
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 296
<223> n = A, T, C or G
<400> 326
cgcggtcgta agggctgagg atttttggtc cgcacgctcc tgctcctgac tcaccgctgt 60
tegetetege egaggaacaa gteggteagg aageeegege gcaacageea tggettttaa 120
qgataccgqa aaaacacccg tqqaqccgqa qqtqqcaatt caccqaattc gaatcaccct 180
aacaagccgc aacgtaaaat ccttggaaaa ggtgtgtgct gacttgataa gaggcgcaaa 240
agaaaagaat ctcaaagtga aaggaccagt tcgaatgcct accaagactt tgagantcac 300
tacaagaaaa actccttgtg gtgaaggttc taagacgtgg gatcgtttcc agatgagaat 360
tcacaagcga ctcattgact tgcacagtcc ttctgagatt gttaagcaga ttacttccat 420
                                                                   421
<210> 327
<211> 456
<212> DNA
<213> Homo sapiens
<400> 327
atcttgacga ggctgcggtg tctgctgcta ttctccgagc ttcgcaatgc cgcctaagga 60
cgacaagaag aagaaggacg ctggaaagtc ggccaagaaa gacaaagacc cagtgaacaa 120
atccgggggc aaggccaaaa agaagaagtg gtccaaaggc aaagttcggg acaagctcaa 180
taacttagtc ttgtttgaca aagctaccta tgataaactc tgtaaggaag ttcccaacta 240
taaacttata accccagetg tggtctctga gagactgaag attcgaggct ccctggccag 300
ggcagccctt caggagctcc ttagtaaagg acttatcaaa ctggtttcaa agcacagagc 360
tcaaqtaatt tacaccaqaa ataccaaqqq tqqaqatqct ccaqctgctg gtgaagatgc 420
                                                                   456
atgaataggt ccaaccagct gtacatttgg aaaaat
```

<210> 328

```
<211> 471
<212> DNA
<213> Homo sapiens
<400> 328
qtqqaaqtqa catcqtcttt aaaccctqcq tqqcaatccc tqacqcaccq ccgtqatqcc 60
cagggaagac agggcgacct ggaagtccaa ctacttcctt aagatcatcc aactattgga 120
tgattatccg aaatgtttca ttgtgggagc agacaatgtg ggctccaagc agatgcagca 180
gatecgeatg teeettegeg ggaaggetgt ggtgetgatg ggeaagaaca ceatgatgeg 240
caaggccatc cgagggcacc tggaaaacaa cccagctctg gagaaactgc tgcctcatat 300
ccgggggaat gtgggctttg tgttcaccaa ggaggacctc actgagatca gggacatgtt 360
gctggccaat aaggtgccag ctgctgcccg tgctggtgcc attgccccat gtgaagtcac 420
tqtqccaqcc caqaacactq qtctcqqqcc cqaqaaqacc tccttttcc a
<210> 329
<211> 278
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> 154, 204
<223> n = A, T, C or G
<400> 329
gtttaaactt aagcttggta ccgagctcgg atccactagt ccagtgtggt ggaattctag 60
aaattgagat gccccccag gccagcaaat gttccttttt gttcaaagtc tatttttatt 120
ccttgatatt tttcttttt ttttttttt ttgnggatgg ggacttgtga atttttctaa 180
aggtgctatt taacatggga gganagcgtg tgcggctcca gcccagcccg ctgctcactt 240
tocaccetet etecacetge etetggette teaggeet
<210> 330
<211> 338
<212> DNA
<213> Homo sapiens
<400> 330
ctcaggette aacategaat aegeegeagg eccettegee etattettea tageegaata 60
cacaaacatt attataataa acaccctcac cactacaatc ttcctaggaa caacatatga 120
cgcactctcc cctgaactct acacaacata ttttgtcacc aagaccctac ttctaacctc 180
cctqttctta tgaattcgaa cagcataccc ccgattccgc tacgaccaac tcatacacct 240
cattacaatc tccaqcattc cccctcaaac ctaaaaaa
<210> 331
<211> 2820
<212> DNA
<213> Homo sapiens
tggcaaaatc ctggagccag aagaaaggac agcagcattg atcaatctta cagctaacat 60
gttgtacctg gaaaacaatg cccagactca atttagtgag ccacagtaca cgaacctggg 120
getectgaac agcatggacc agcagatteg gaacggetec tegtecacca gtecetataa 180
cacagaccac gegeagaaca gegteaegge gecetegeee taegeaeage eeageeecac 240
cttcgatgct ctctctccat cacccgccat ccctccaac accgactacc caggcccgca 300
cagttccgac gtgtccttcc agcagtcgag caccgccaag tcggccacct ggacgtattc 360
cactgaactg aagaaactct actgccaaat tgcaaagaca tgccccatcc agatcaaggt 420
qatqacccca cctcctcaqq qaqctqttat ccqcqccatq cctqtctaca aaaaaqctga 480
```

	gaggtggtga					
gggacagatt	gcccctccta	gtcatttgat	tcgagtagag	gggaacagcc	atqcccaqta	600
	cccatcacag					
tggcactgaa	ttcacgacag	tcttqtacaa	tttcatgtgt	aacagcagtt	atattagaga	720
gatgaaccgc	cgtccaattt	taatcattqt	tactctqqaa	accagagatg	ggcaagtcct	780
gggccgacgc	tgctttgagg	cccggatctg	tacttaccca	ggaagagaca	ggaaggcgga	840
	atcagaaagc					
	cgtcagaaca					
cccagatgat	gaactgttat	acttaccagt	gagggggggg	gagacttatg	aaatactatt	1020
gaagatcaaa	gagtccctgg	aactcatcca	gtaccttcct	gagaeeeaag	ttassacats	1020
carreacar	caacagcagc	addecadgea	cttacttcac	aaacacacaa	cegaaacgta	11/0
	tatggtaaca					
	agccagctta					
	atgggagcca					
catgatgge	ctcagcccca	acaccccat	gargggcacc	cacatgccaa	cggccggaga	1200
	ccccacctc					
grigggergr	tcatcatgtc	tggactattt	cacgacccag	gggctgacca	ccatctatca	1500
	tactccatgg					
	aagggcatcc					
	accccaagca					
	attgatgctg					
	aatgacttca					
	ggggagtgag					
	aagcactcct					
	tttcttaggg					
	attctgattc					
	taggtagaag					
tttctcattg	acttttataa	agcatgttca	cccttatagt	ctaagactat	atatataaat	2160
	acagtataga					
ttaaatgaaa	gaaaattgag	ttgcacttat	tgaccatttt	ttaatttact	tgttttggat	2280
	tactccttcc					
aatgctacat	gtgagtgcga	tgatgtacag	attctttcag	ttctttggat	tctaaataca	2400
tgccacatca	aacctttgag	tagatccatt	tccattgctt	attatgtagg	taagactgta	2460
gatatgtatt	cttttctcag	tgttggtata	ttttatatta	ctgacatttc	ttctagtgat	2520
gatggttcac	gttggggtga	tttaatccag	ttataagaag	aagttcatgt	ccaaacggtc	2580
	tttggttggg					
	acgtcatgta					
	tacaatgttg					
	ctactagatt					
	,	,		-9	5 5	
<210> 332						
<211> 2270						
<212> DNA						
<213> Homo	sapiens					
<400> 332						
	caaagacagt	tgaaggaaat	gaattttgaa	acttcacoot	ataccaccet	60
	cctgaccctt					
	attaccgatc					
	tccagcatat					
		tgaaccatca				
						200
ageatygaet			azaata	acconstata	addadaataa	
acqaacctqq	gtatccgcat	gcaggactcg	gacctgagtg	accccatgtg	gccacagtac	360
acgaacctgg	gtatccgcat ggctcctgaa	gcaggactcg cagcatggac	cagcagattc	agaacggctc	ctcgtccacc	360 420
agtccctata	gtatccgcat ggctcctgaa acacagacca	gcaggactcg cagcatggac cgcgcagaac	cagcagattc agcgtcacgg	agaacggctc cgccctcgcc	ctcgtccacc ctacgcacag	360 420 480
agtccctata cccagctcca	gtatccgcat ggctcctgaa acacagacca ccttcgatgc	gcaggactcg cagcatggac cgcgcagaac tctctctca	cagcagattc agcgtcacgg tcacccgcca	agaacggctc cgccctcgcc tcccctccaa	ctcgtccacc ctacgcacag caccgactac	360 420 480 540
agtocctata cccagetcca ccaggcccgc	gtatccgcat ggctcctgaa acacagacca	gcaggactcg cagcatggac cgcgcagaac tctctctcca cgtgtccttc	cagcagattc agcgtcacgg tcacccgcca cagcagtcga	agaacggctc cgccctcgcc tcccctccaa gcaccgccaa	ctcgtccacc ctacgcacag caccgactac gtcggccacc	360 420 480 540 600

```
caqatcaaqq tgatqacccc acctcctcag ggagetgtta tccgcgccat gcctgtctac 720
aaaaaagctg agcacgtcac ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt 780
gaattcaacg agggacagat tgcccctcct agtcatttga ttcgagtaga ggggaacagc 840
catgcccagt atgtagaaga tcccatcaca ggaagacaga gtgtgctggt accttatgag 900
ccacccagg ttggcactga attcacgaca gtcttgtaca atttcatgtg taacagcagt 960
tgtgttggag ggatgaaccg ccgtccaatt ttaatcattg ttactctgga aaccagagat 1020
gggcaagtcc tgggccgacg ctgctttgag gcccggatct gtgcttgccc aggaagagac 1080
aggaaggcgg atgaagatag catcagaaag cagcaagttt cggacagtac aaagaacggt 1140
gatggtacga agcgcccgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
aaacgaagat ccccagatga tgaactgtta tacttaccag tgagggccg tgagacttat 1260
gaaatgctgt tgaagatcaa agagtccctg gaactcatgc agtaccttcc tcagcacaca 1320
attgaaacgt acaggcaaca gcaacagcag cagcaccagc acttacttca gaaacagacc 1380
tcaatacagt ctccatcttc atatggtaac agctccccac ctctgaacaa aatgaacagc 1440
atgaacaagc tgccttctgt gagccagctt atcaaccctc agcagcgcaa cgccctcact 1500
cctacaacca ttcctgatgg catgggagcc aacattccca tgatgggcac ccacatgcca 1560
atggctggag acatgaatgg actcagcccc acccaggcac tccctccccc actctccatg 1620
ccatccacct cccactgcac accccacct ccgtatccaa cagattgcag cattgtcggt 1680
ttcttagcga ggttgggctg ttcatcatgt ctggactatt tcacgaccca ggggctgacc 1740
accatctate agattgagea ttactccatg gatgatetgg caagtetgaa aatccetgag 1800
caatttcqac atgcgatctg gaagggcatc ctggaccacc ggcagctcca cgaattctcc 1860
teceettete ateteetgeg gaceecaage agtgeeteta eagteagtgt gggeteeagt 1920
gagacccggg gtgagcgtgt tattgatgct gtgcgattca ccctccgcca gaccatctct 1980
ttcccacccc gagatgagtg gaatgacttc aactttgaca tggatgctcg ccgcaataag 2040
caacagegea teaaagagga gggggagtga geeteaceat gtgagetett eetateeete 2100
tectaactge cageceecta aaageactee tgettaatet teaaageett eteectaget 2160
cctcccttc ctcttgtctg atttcttagg ggaaggagaa gtaagaggct acctcttacc 2220
taacatctga cctggcatct aattctgatt ctggctttaa gccttcaaaa
<210> 333
<211> 2816
<212> DNA
<213> Homo sapiens
<400> 333
tcgttgatat caaagacagt tgaaggaaat gaattttgaa acttcacggt gtgccaccct 60
acagtactgc cctgaccctt acatccagcg tttcgtagaa acccagctca tttctcttgg 120
aaagaaagtt attaccgatc caccatgtcc cagagcacac agacaaatga attcctcagt 180
ccagaggttt tccagcatat ctgggatttt ctggaacagc ctatatgttc agttcagccc 240
attgacttga actttgtgga tgaaccatca gaagatggtg cgacaaacaa gattgagatt 300
agcatggact gtatccgcat gcaggactcg gacctgagtg accccatgtg gccacagtac 360
acgaacctgg ggctcctgaa cagcatggac cagcagattc agaacggctc ctcgtccacc 420
agtocctata acacagacca cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag 480
cccageteca cettegatge teteteteca teaceegeca teccetecaa cacegactae 540
ccaggcccgc acagtttcga cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc 600
tggacgtatt ccactgaact gaagaaactc tactgccaaa ttgcaaagac atgccccatc 660
cagatcaagg tgatgacccc acctcctcag ggagctgtta tccgcgccat gcctgtctac 720
aaaaaagctg agcacgtcac ggaggtggtg aagcggtgcc ccaaccatga gctgagccgt 780
gaattcaacg agggacagat tgcccctcct agtcatttga ttcgagtaga ggggaacagc 840
catgcccagt atgtagaaga tcccatcaca ggaagacaga gtgtgctggt accttatgag 900
ccacccagg ttggcactga attcacgaca gtcttgtaca atttcatgtg taacagcagt 960
tgtgttggag ggatgaaccg ccgtccaatt ttaatcattg ttactctgga aaccagagat 1020
gggcaagtcc tgggccgacg ctgctttgag gcccggatct gtgcttgccc aggaagagac 1080
aggaaggcgg atgaagatag catcagaaag cagcaagttt cggacagtac aaagaacggt 1140
gatgqtacga agcgcccgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
aaacgaagat ccccagatga tgaactgtta tacttaccag tgaggggccg tgagacttat 1260
gaaatgctgt tgaagatcaa agagtccctg gaactcatgc agtaccttcc tcagcacaca 1320
attgaaacgt acaggcaaca gcaacagcag cagcaccagc acttacttca gaaacatctc 1380
ctttcagcct gcttcaggaa tgagcttgtg gagccccgga gagaaactcc aaaacaatct 1440
```

gacgtettet ttagacatte caageeecca aaccgateag tgtacecata gageeetate 1500 tctatatttt aagtgtgtgt gttgtatttc catgtgtata tgtgagtgtg tgtgtgtgta 1560 tgtgtgtgcg tgtgtatcta gccctcataa acaggacttg aagacacttt ggctcagaga 1620 cccaactgct caaaggcaca aagccactag tgagagaatc ttttgaaggg actcaaacct 1680 ttacaagaaa ggatgttttc tgcagatttt gtatccttag accggccatt ggtgggtgag 1740 gaaccactgt gtttgtctgt gagctttctg ttgtttcctg ggagggaggg gtcaggtggg 1800 gaaaggggca ttaagatgtt tattggaacc cttttctgtc ttcttctgtt gtttttctaa 1860 aattcacagg gaagcttttg agcaggtctc aaacttaaga tgtcttttta agaaaaggag 1920 aaaaaaagttg ttattgtctg tgcataagta agttgtaggt gactgagaga ctcagtcaga 1980 cccttttaat qctqqtcatq taataatatt qcaaqtaqta aqaaacqaaq gtqtcaaqtq 2040 tactgctggg cagcgaggtg atcattacca aaagtaatca actttgtggg tggagagttc 2100 tttgtgagaa cttgcattat ttgtgtcctc ccctcatgtg taggtagaac atttcttaat 2160 gctgtgtacc tgcctctgcc actgtatgtt ggcatctgtt atgctaaagt ttttcttgta 2220 catgaaaccc tggaagacct actacaaaaa aactgttgtt tggcccccat agcaggtgaa 2280 ctcattttgt gcttttaata gaaagacaaa tccaccccag taatattgcc cttacgtagt 2340 tgtttaccat tattcaaagc tcaaaataga atttgaagcc ctctcacaaa atctgtgatt 2400 aatttgctta attagagett etateeetea ageetaeeta eeataaaace ageeatatta 2460 ctgatactgt tcagtgcatt tagccaggag acttacgttt tgagtaagtg agatccaagc 2520 agacgtgtta aaatcagcac tcctggactg gaaattaaag attgaaaggg tagactactt 2580 ttcttttttt tactcaaaag tttagagaat ctctgtttct ttccatttta aaaacatatt 2640 ttaagataat agcataaaga ctttaaaaat gttcctcccc tccatcttcc cacacccagt 2700 caccagcact gtattttctg tcaccaagac aatgatttct tgttattgag gctgttgctt 2760 ttgtggatgt gtgattttaa ttttcaataa acttttgcat cttggtttaa aagaaa <210> 334 <211> 2082 <212> DNA <213> Homo sapiens <400> 334 agatgetaca gegactgeac acceaggetg tatgatacag cetattgetc eegggetgea 60 aacctgtcca gcatgtgatg tggtgggata ctgaattgaa taccgaatac tgtaggcaat 120 tgtaacacag tggtaagtct ttgtgtatct aaacatagct aaacaccaaa aggtatagta 180 agaatatggt attataatct tatggaacta tcattgtata tgtggtttgt caaccagaat 240 gtagttatac agcacaggac tgtgcttatg atgtgccaag cacagctctc agtactaact 300 cetttaatet teatateaac eetaggaggt aacttettaa gtagatteat attgtaaggg 360 tctcggggtg ggggggttgg caaaatcctg gagccagaag aaaggacagc agcattgatc 420 aatcttacag ctaacatgtt gtacctggaa aacaatgccc agactcaatt tagtgagcca 480 cagtacacga acctggggct cetgaacagc atggaccagc agattcagaa cggctcctcg 540 tecaceagte cetataacae agaceaegeg cagaacageg teaeggegee etegecetae 600 gcacagecca getecacett egatgetete tetecateae eegecatece etecaacace 660 gactacccag gcccgcacag tttcgacgtg tccttccagc agtcgagcac cgccaagtcg 720 gccacctgga cgtattccac tgaactgaag aaactctact gccaaattgc aaagacatgc 780 cccatccaga tcaaggtgat gacccacct cctcagggag ctgttatccg cgccatgcct 840 gtctacaaaa aagctgagca cgtcacggag gtggtgaagc ggtgccccaa ccatgagctg 900 agccgtgaat tcaacgaggg acagattgcc cctcctagtc atttgattcg agtagagggg 960 aacagccatg cccagtatgt agaagatccc atcacaggaa gacagagtgt gctggtacct 1020 tatgagccac cccaggttgg cactgaattc acgacagtct tgtacaattt catgtgtaac 1080 agcagttgtg ttggagggat gaaccgccgt ccaattttaa tcattgttac tctggaaacc 1140 agagatgggc aagtcctggg ccgacgctgc tttgaggccc ggatctgtgc ttgcccagga 1200 agagacagga aggcggatga agatagcatc agaaagcagc aagtttcgga cagtacaaag 1260 aacggtgatg gtacgaagcg cccgtctcgt cagaacacac atggtatcca gatgacatcc 1320 atcaagaaac gaagatcccc agatgatgaa ctgttatact taccagtgag gggccgtgag 1380 acttatgaaa tgctgttgaa gatcaaagag tccctggaac tcatgcagta ccttcctcag 1440 cacacaatty aaacytacay gcaacaycaa cagcagcagc accagcactt acttcagaaa 1500 cagtgagtgt atcaacgtgt cattttagga ggcatgagtg acggtgactt tatttggatc 1560 agcaataggg tgattgatga gcaatgtgga acataatggg agatagcaga ttgtcataga 1620 ttcagatgac ctggtatggc aaccetettt cagttgcaac cttttttacg tgtcttatta 1680

```
taaccttccc ttcagaattc cacttatgtt ctgaaattaa atacaaacca tttctggtga 1740
attacaaaga aactcacact aacagttctc ttctctatat gcctggtcca tacacactaa 1800
cagtaagtac acactctatt tggtagtgat gtgtatattt gaaaacatga aatcttttct 1860
catcccaatg gattgtctta taaatctcct gggatgcaca ctatccactt ttgggaataa 1920
cactgtagac cagggatagc aaataggctt tactataata taaagtgact tgtttgaatg 1980
ctgtaatgag aagaattctg agacctagtg catgataatt ggggaaatat ctgggtgcag 2040
aaggataagg tagcatcatg ttgccqtatt ttagcatctc tg
<210> 335
<211> 4849
<212> DNA
<213> Homo sapiens
<400> 335
cgttgatatc aaagacagtt gaaggaaatg aattttgaaa cttcacggtg tgccacccta 60
cagtactgcc ctgaccctta catccagcgt ttcgtagaaa ccccagctca tttctcttgg 120
aaagaaagtt attaccgatc caccatgtcc cagagcacac agacaaatga attcctcagt 180
ccagaggttt tccagcatat ctgggatttt ctggaacagc ctatatgttc agttcagccc 240
attgacttga actttgtgga tgaaccatca gaagatggtg cgacaaacaa gattgagatt 300
agcatggact gtateegeat geaggacteg gacetgagtg acceeatgtg geeacagtae 360
acgaacctgg ggctcctgaa cagcatggac cagcagattc agaacggctc ctcgtccacc 420
agtccctata acacagacca cgcgcagaac agcgtcacgg cgccctcgcc ctacgcacag 480
cccageteca cettegatge teteteteca teaccegeca teccetecaa cacegactae 540
ccaggcccgc acagtttcga cgtgtccttc cagcagtcga gcaccgccaa gtcggccacc 600
tggacgtatt ccactgaact gaagaaactc tactgccaaa ttgcaaagac atgccccatc 660
cagatcaagg tgatgacccc acctcctcag ggagctgtta tccgcgccat gcctgtctac 720
aaaaaagctg agcacqtcac qgaqqtqqtg aaqcqqtqcc ccaaccatga qctgagccgt 780
gaattcaacg agggacagat tgcccctcct agtcatttga ttcgagtaga ggggaacagc 840
catgcccagt atgtagaaga tcccatcaca ggaagacaga gtgtgctggt accttatgag 900
ccaccccagg ttggcactga attcacgaca gtcttgtaca atttcatgtg taacagcagt 960
tgtgttggag ggatgaaccg ccgtccaatt ttaatcattg ttactctgga aaccagagat 1020
gggcaagtcc tgggccgacg ctgctttgag gcccggatct gtgcttgccc aggaagagac 1080
aggaaggcgg atgaagatag catcagaaag cagcaagttt cggacagtac aaagaacggt 1140
gatggtacga agcgccgtt tcgtcagaac acacatggta tccagatgac atccatcaag 1200
aaacqaaqat ccccaqatqa tqaactqtta tacttaccaq tqaqqqccq tqaqacttat 1260
gaaatgetgt tgaagatcaa agagteettg gaacteatge agtacettee teageacaca 1320
attgaaacgt acaggcaaca gcaacagcag cagcaccagc acttacttca gaaacagacc 1380
tcaatacagt ctccatcttc atatggtaac agetececae etetgaacaa aatgaacage 1440
atgaacaagc tgccttctgt gagccagctt atcaaccctc agcagcgcaa cgccctcact 1500
cctacaacca ttcctgatgg catgggagcc aacattccca tgatgggcac ccacatgcca 1560
atggctggag acatgaatgg actcagcccc acccaggcac tccctccccc actctccatg 1620
ccatccacct cccagtgcac accccacct ccgtatccca cagattgcag cattgtcagt 1680
ttcttagcga ggttgggctg ttcatcatgt ctggactatt tcacgaccca ggggctgacc 1740
accatctatc agattgagca ttactccatg gatgatctgg caagtctgaa aatccctgag 1800
caatttcgac atgcgatctg gaagggcatc ctggaccacc ggcagctcca cgaattctcc 1860
teceettete ateteetgeg gaeeceaage agtgeeteta eagteagtgt gggeteeagt 1920
gagaccoggg gtgagcgtgt tattgatgct gtgcgattca ccctccgcca gaccatctct 1980
ttcccacccc gagatgagtg gaatgacttc aactttgaca tggatgctcg ccgcaataag 2040
caacagcgca tcaaagagga gggggagtga gcctcaccat gtgagctctt cctatccctc 2100
toctaactgc cagcycccta aaagcactcc tgcttaatct tcaaagcctt ctccctagct 2160
cotcoccttc ctcttgtctg atttcttagg ggaaggagaa gtaagaggct acctcttacc 2220
taacatctga cctggcatct aattctgatt ctggctttaa gccttcaaaa ctatagcttg 2280
cagaactgta gctgccatgg ctaggtagaa gtgagcaaaa aagagttggg tgtctcctta 2340
agctgcagag atttctcatt gacttttata aagcatgttc acccttatag tctaagacta 2400
tatatataaa tgtataaata tacagtatag atttttgggt ggggggcatt gagtattgtt 2460
taaaatgtaa tttaaatgaa agaaaattga gttgcactta ttgaccattt tttaatttac 2520
ttgttttgga tggcttgtct atactccttc ccttaagggg tatcatgtat ggtgataggt 2580
atctagaget taatgetaca tgtgagtgae gatgatgtae agattettte agttetttgg 2640
```

```
attctaaata catgccacat caaacctttg agtagatcca tttccattgc ttattatgta 2700
qqtaaqactg taqatatgta ttcttttctc agtgttggta tattttatat tactgacatt 2760
tottotagtg atgatggttc acgttggggt gatttaatcc agttataaga agaagttcat 2820
gtccaaacgt cctctttagt ttttggttgg gaatgaggaa aattcttaaa aggcccatag 2880
cagccagttc aaaaacaccc gacgtcatgt atttgagcat atcagtaacc cccttaaatt 2940
taataccaga taccttatct tacaatattg attgggaaaa catttgctgc cattacagag 3000
gtattaaaac taaatttcac tactagattg actaactcaa atacacattt gctactgttg 3060
taagaattct gattgatttg attgggatga atgccatcta tctagttcta acagtgaagt 3120
tttactgtct attaatattc agggtaaata ggaatcattc agaaatgttg agtctgtact 3180
aaacagtaag atatctcaat gaaccataaa ttcaactttg taaaaatctt ttgaagcata 3240
gataatattg tttggtaaat gtttcttttg tttggtaaat gtttctttta aagaccctcc 3300
tattctataa aactctgcat gtagaggctt gtttaccttt ctctctctaa ggtttacaat 3360
aggagtggtg atttgaaaaa tataaaatta tgagattggt tttcctgtgg cataaattgc 3420
atcactgtat cattttcttt tttaaccggt aagagtttca gtttgttgga aagtaactgt 3480
gagaacccag tttcccgtcc atctccctta gggactaccc atagacatga aaggtcccca 3540
cagagcaaga gataagtctt tcatggctgc tgttgcttaa accacttaaa cgaagagttc 3600
ccttgaaact ttgggaaaac atgttaatga caatattcca gatctttcag aaatataaca 3660
catttttttg catgcatgca aatgagetet gaaatettee catgcattet ggtcaaggge 3720
tqtcattqca cataaqcttc cattttaatt ttaaaqtqca aaaqqqccaq cqtqqctcta 3780
aaaggtaatg tgtggattgc ctctgaaaag tgtgtatata ttttgtgtga aattgcatac 3840
tttgtatttt gattattttt tttttcttct tgggatagtg ggatttccag aaccacactt 3900
qaaacctttt tttatcgttt ttgtattttc atgaaaatac catttagtaa gaataccaca 3960
tcaaataaga aataatgcta caattttaag aggggaggga agggaaagtt ttttttatt 4020
atttttttaa aattttgtat gttaaagaga atgagtcctt gatttcaaag ttttgttgta 4080
cttaaatggt aataagcact gtaaacttct gcaacaagca tgcagctttg caaacccatt 4140
aaggggaaga atgaaagctg ttccttggtc ctagtaagaa gacaaactgc ttcccttact 4200
ttgctgaggg tttgaataaa cctaggactt ccgagctatg tcagtactat tcaggtaaca 4260
ctagggcctt ggaaattcct gtactgtgtc tcatggattt ggcactagcc aaagcgaggc 4320
accettactg gettacetee teatggeage etacteteet tgagtgtatg agtageeagg 4380
gtaaggggta aaaggatagt aagcatagaa accactagaa agtgggctta atggagttct 4440
tqtqqcctca qctcaatqca qttaqctqaa qaattqaaaa qtttttgttt qqaqacqttt 4500
ataaacagaa atggaaagca gagttttcat taaatccttt tacctttttt tttcttggt 4560
aatcccctaa aataacagta tgtgggatat tgaatgttaa agggatattt tttttctatt 4620
atttttataa ttgtacaaaa ttaagcaaat gttaaaagtt ttatatgctt tattaatgtt 4680
ttcaaaaggt attatacatg tgatacattt tttaagcttc agttgcttgt cttctggtac 4740
tttctgttat gggcttttgg ggagccagaa gccaatctac aatctctttt tgtttgccag 4800
gacatgcaat aaaatttaaa aaataaataa aaactaatta agaaataaa
<210> 336
<211> 1386
<212> DNA
<213> Homo sapiens
<400> 336
atgttgtacc tggaaaacaa tgcccagact caatttagtg agccacagta cacgaacctg 60
qqqctcctqa acaqcatqqa ccaqcaqatt caqaacqqct cctcqtccac cagtccctat 120
aacacagacc acgcgcagaa cagcgtcacq gcgccctcgc cctacgcaca gcccagctcc 180
accttegatg etetetete ateaceegee atecceteea acacegacta eccaggeeeg 240
cacagtttcq acqtqtcctt ccaqcaqtcq aqcaccqcca aqtcqqccac ctgqacqtat 300
tccactgaac tgaagaaact ctactgccaa attgcaaaga catgccccat ccagatcaag 360
gtgatgaccc cacctcctca gggagctgtt atccgcgcca tgcctgtcta caaaaaagct 420
gagcacgtca cggaggtggt gaagcggtgc cccaaccatg agctgagccg tgaattcaac 480
gagggacaga ttgcccctcc tagtcatttg attcgagtag aggggaacag ccatgcccag 540
tatgtagaag atcccatcac aggaagacag agtgtgctgg taccttatga gccaccccag 600
gttggcactg aattcacgac agtcttgtac aatttcatgt gtaacagcag ttgtgttgga 660
gggatgaacc gccgtccaat tttaatcatt gttactctgg aaaccagaga tgggcaagtc 720
ctgggccgac gctgctttga ggcccggatc tgtgcttgcc caggaagaga caggaaggcg 780
gatgaagata gcatcagaaa gcagcaagtt tcggacagta caaagaacgg tgatggtacg 840
```

```
aagcgcccgt ttcgtcagaa cacacatggt atccagatga catccatcaa gaaacgaaga 900
tccccagatg atgaactgtt atacttacca gtgaggggcc gtgagactta tgaaatgctg 960
ttgaagatca aagagtccct ggaactcatg cagtaccttc ctcagcacac aattgaaacg 1020
tacaggcaac agcaacagca gcagcaccag cacttacttc agaaacagac ctcaatacag 1080
tctccatctt catatggtaa cagctcccca cctctgaaca aaatgaacag catgaacaag 1140
ctgccttctg tgagccagct tatcaacct cagcagcgca acgccctcac tcctacaacc 1200
attectgatg geatgggage caacatteee atgatgggea cecacatgee aatggetgga 1260
gacatgaatg gactcagccc cacccaggca ctccctcccc cactctccat gccatccacc 1320
toccactgca caccoccacc tocgtatocc acagattgca gcattgtcag gatctggcaa 1380
atctaa
<210> 337
<211> 1551
<212> DNA
<213> Homo sapiens
<400> 337
atgtcccaga gcacacagac aaatgaattc ctcagtccag aggttttcca gcatatctgg 60
gattttctgg aacagcctat atgttcagtt cagcccattg acttgaactt tgtggatgaa 120
ccatcagaag atggtgcgac aaacaagatt gagattagca tggactgtat ccgcatgcag 180
gactoggacc tgagtgaccc catgtggcca cagtacacga acctggggct cctgaacagc 240
atggaccage agattcagaa eggeteeteg tecaccagte eetataacae agaccaegeg 300
cagaacageg teaeggegee etegecetae geaeageeea geteeacett egatgetete 360
tetecateae eegecateee etecaaeaee gactaeeeag geeegeaeag tttegaegtg 420
tccttccagc agtcgagcac cgccaagtcg gccacctgga cgtattccac tgaactgaag 480
aaactctact gccaaattgc aaagacatgc cccatccaga tcaaggtgat gaccccacct 540
cctcagggag ctgttatccg cgccatgcct gtctacaaaa aagctgagca cgtcacggag 600
gtggtgaagc ggtgccccaa ccatgagctg agccgtgaat tcaacgaggg acagattgcc 660
cctcctagtc atttgattcg agtagagggg aacagccatg cccagtatgt agaagatccc 720
atcacaggaa gacagagtgt gctggtacct tatgagccac cccaggttgg cactgaattc 780
acqacagtet tgtacaattt catgtgtaac agcagttgtg ttggagggat gaaccgccgt 840
ccaattttaa tcattqttac tctqqaaacc aqaqatqqqc aaqtcctqqq ccqacqctqc 900
tttqaqqccc ggatctqtqc ttqcccaqqa aqaqacaqqa aqqcqqatqa aqataqcatc 960
agaaaqcaqc aagtttcqqa cagtacaaag aacqgtqatg gtacgaaqcg cccgtttcgt 1020
cagaacacac atggtatcca gatgacatcc atcaagaaac gaagatcccc agatgatgaa 1080
ctgttatact taccaqtqaq qqqccqtqaq acttatqaaa tqctgttqaa gatcaaagag 1140
tccctggaac tcatgcagta ccttcctcag cacacaattg aaacgtacag gcaacagcaa 1200
cagcagcagc accagcactt acttcagaaa cagacctcaa tacagtctcc atcttcatat 1260
ggtaacagct ccccacctct gaacaaaatg aacagcatga acaagctgcc ttctgtgagc 1320
cagettatea acceteagea gegeaacgee eteacteeta caaccattee tgatggeatg 1380
ggagccaaca ttcccatgat gggcacccac atgccaatgg ctggagacat gaatggactc 1440
agccccaccc aggcactccc tececcactc tecatgccat ecaectecca etgeacacce 1500
ccacctccgt atcccacaga ttgcagcatt gtcaggatct ggcaagtctg a
<210> 338
<211> 586
<212> PRT
<213> Homo sapiens
<400> 338
Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln
                 5
                                    10
Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Arg Asn
                                25
Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser
                            40
                                                45
Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Pro Thr Phe Asp Ala
```

Leu 65	Ser	Pro	Ser	Pro	Ala 70	Ile	Pro	Ser	Asn	Thr 75	Asp	Tyr	Pro	Gly	Pro 80
His	Ser	Ser	Asp	Val 85	Ser	Phe	Gln	Gln	Ser 90	Ser	Thr	Ala	Lys	Ser 95	Ala
Thr	Trp	Thr	Tyr 100	Ser	Thr	Glu	Leu	Lys 105	Lys	Leu	Tyr	Cys	Gln 110	Ile	Ala
Lys	Thr	Cys 115	Pro	Ile	Gln	Ile	Lys 120	Val	Met	Thr	Pro	Pro 125	Pro	Gln	Gly
Ala	Val 130	Ile	Arg	Ala	Met	Pro 135	Val	Tyr	Lys	Lys	Ala 140	Glu	His	Val	Thr
Glu 145	Val	Val	Lys	Arg	Cys 150	Pro	Asn	His	Glu	Leu 155	Ser	Arg	Glu	Phe	Asn 160
Glu	Gly	Gln	Ile	Ala 165	Pro	Pro	Ser	His	Leu 170	Ile	Arg	Val	Glu	Gly 175	Asn
Ser	His	Ala	Gln 180	Tyr	Val	Glu	Asp	Pro 185	Ile	Thr	Gly	Arg	Gln 190	Ser	Val
		195	Tyr		1		200		-			205			
	210		Phe			215					220				
225			Leu		230					235					240
			Arg	245					250					255	
_	_	_	Ala 260	_		_		265	_				270		
		275	Asn				280					285			
	290		Gln			295		_			300				
305			Tyr		310					315					320
			Lys	325					330					335	
			Thr 340					345					350		
		355	Gln				360					365	-		
	370		Leu		-	375					380				
385			Ile		390					395					400
			Gly	405					410					415	
			Gly 420					425					430		
		435	Ser				440					445			
_	450		Asp			455					460	_		_	_
465			Leu		470					475					480
			His	485					490					495	
			Arg 500					505					510		
Leu	His	Glu 515	Phe	Ser	Ser	Pro	Ser 520	His	Leu	Leu	Arg	Thr 525	Pro	ser	ser

<210> 339

<211> 641

<212> PRT

<213> Homo sapiens

<400> 339

Met Ser Gln Ser Thr Gln Thr Asn Glu Phe Leu Ser Pro Glu Val Phe 5 10 Gln His Ile Trp Asp Phe Leu Glu Gln Pro Ile Cys Ser Val Gln Pro 20 25 Ile Asp Leu Asn Phe Val Asp Glu Pro Ser Glu Asp Gly Ala Thr Asn 40 Lys Ile Glu Ile Ser Met Asp Cys Ile Arg Met Gln Asp Ser Asp Leu · 55 Ser Asp Pro Met Trp Pro Gln Tyr Thr Asn Leu Gly Leu Leu Asn Ser 70 75 Met Asp Gln Gln Ile Gln Asn Gly Ser Ser Ser Thr Ser Pro Tyr Asn 90 85 Thr Asp His Ala Gln Asn Ser Val Thr Ala Pro Ser Pro Tyr Ala Gln 100 105 Pro Ser Ser Thr Phe Asp Ala Leu Ser Pro Ser Pro Ala Ile Pro Ser 120 Asn Thr Asp Tyr Pro Gly Pro His Ser Phe Asp Val Ser Phe Gln Gln 135 140 Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Thr Glu Leu Lys 150 155 Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val 175 165 Met Thr Pro Pro Pro Gln Gly Ala Val Ile Arg Ala Met Pro Val Tyr 180 185 190 Lys Lys Ala Glu His Val Thr Glu Val Val Lys Arg Cys Pro Asn His 205 195 200 Glu Leu Ser Arg Glu Phe Asn Glu Gly Gln Ile Ala Pro Pro Ser His 215 220 Leu Ile Arg Val Glu Gly Asn Ser His Ala Gln Tyr Val Glu Asp Pro 230 235 Ile Thr Gly Arg Gln Ser Val Leu Val Pro Tyr Glu Pro Pro Gln Val 245 250 Gly Thr Glu Phe Thr Thr Val Leu Tyr Asn Phe Met Cys Asn Ser Ser 260 265 Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Val Thr Leu 280 Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Cys Phe Glu Ala Arg 295 300 Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp Ser Ile 310 315 Arg Lys Gln Gln Val Ser Asp Ser Thr Lys Asn Gly Asp Gly Thr Lys

Arg Pro Phe Arg Gln Asn Thr His Gly Ile Gln Met Thr Ser Ile Lys 340 345 Lys Arg Arg Ser Pro Asp Asp Glu Leu Leu Tyr Leu Pro Val Arg Gly 360 Arg Glu Thr Tyr Glu Met Leu Leu Lys Ile Lys Glu Ser Leu Glu Leu 375 Met Gln Tyr Leu Pro Gln His Thr Ile Glu Thr Tyr Arg Gln Gln 395 390 Gln Gln His Gln His Leu Leu Gln Lys Gln Thr Ser Ile Gln Ser 405 410 415 Pro Ser Ser Tyr Gly Asn Ser Ser Pro Pro Leu Asn Lys Met Asn Ser . 420 425 430 Met Asn Lys Leu Pro Ser Val Ser Gln Leu Ile Asn Pro Gln Gln Arg 435 440 Asn Ala Leu Thr Pro Thr Thr Ile Pro Asp Gly Met Gly Ala Asn Ile 450 455 460 Pro Met Met Gly Thr His Met Pro Met Ala Gly Asp Met Asn Gly Leu 470 475 Ser Pro Thr Gln Ala Leu Pro Pro Pro Leu Ser Met Pro Ser Thr Ser 490 His Cys Thr Pro Pro Pro Pro Tyr Pro Thr Asp Cys Ser Ile Val Gly 505 Phe Leu Ala Arg Leu Gly Cys Ser Ser Cys Leu Asp Tyr Phe Thr Thr 520 525 Gln Gly Leu Thr Thr Ile Tyr Gln Ile Glu His Tyr Ser Met Asp Asp 535 540 Leu Ala Ser Leu Lys Ile Pro Glu Gln Phe Arg His Ala Ile Trp Lys 550 555 Gly Ile Leu Asp His Arg Gln Leu His Glu Phe Ser Ser Pro Ser His 565 570 575 Leu Leu Arg Thr Pro Ser Ser Ala Ser Thr Val Ser Val Gly Ser Ser 580 585 Glu Thr Arg Gly Glu Arg Val Ile Asp Ala Val Arg Phe Thr Leu Arg 600 Gln Thr Ile Ser Phe Pro Pro Arg Asp Glu Trp Asn Asp Phe Asn Phe 615 620 Asp Met Asp Ala Arg Arg Asn Lys Gln Gln Arg Ile Lys Glu Glu Gly 635 Glu

<210> 340

<211> 448

<212> PRT

<213> Homo sapiens

<400> 340

 Met
 Ser
 Gln
 Ser
 Thr
 Gln
 Thr
 Asn
 Glu
 Phe
 Leu
 Ser
 Pro
 Glu
 Val
 Phe

 Gln
 His
 Ile
 Trp
 Asp
 Phe
 Leu
 Glu
 Gln
 Pro
 Ile
 Cys
 Ser
 Val
 Gln
 Pro

 Ile
 Asp
 Leu
 Asp
 Phe
 Leu
 Glu
 Pro
 Ile
 Cys
 Ser
 Glu
 Asp
 Gly
 Ala
 Thr
 Asn

 Lys
 Ile
 Glu
 Ile
 Ser
 Met
 Asp
 Cys
 Ile
 Arg
 Met
 Gln
 Asp
 Leu

 Ser
 Asp
 Pro
 Gln
 Tyr
 Thr
 Asn
 Leu
 Gln
 Asp
 Ser
 Asp
 Leu

 Ser
 Asp
 Pro
 Gln
 Tyr
 Thr
 Asn
 Leu
 Gly
 Leu
 Asn
 Ser

 Ser
 Asp
 Pro
 Gln
 Tyr
 Thr
 Asn
 Leu
 Gly
 Leu
 Asn
 Ser

Met Asp Gln Gln Ile Gln Asn Gly Ser Ser Ser Thr Ser Pro Tyr Asn 90 Thr Asp His Ala Gln Asn Ser Val Thr Ala Pro Ser Pro Tyr Ala Gln 105 Pro Ser Ser Thr Phe Asp Ala Leu Ser Pro Ser Pro Ala Ile Pro Ser 120 Asn Thr Asp Tyr Pro Gly Pro His Ser Phe Asp Val Ser Phe Gln Gln 140 135 Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Thr Glu Leu Lys 150 155 Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val 165 170 Met Thr Pro Pro Pro Gln Gly Ala Val Ile Arg Ala Met Pro Val Tyr 180 185 Lys Lys Ala Glu His Val Thr Glu Val Val Lys Arg Cys Pro Asn His 200 Glu Leu Ser Arg Glu Phe Asn Glu Gly Gln Ile Ala Pro Pro Ser His 215 220 Leu Ile Arg Val Glu Gly Asn Ser His Ala Gln Tyr Val Glu Asp Pro 230 . 235 Ile Thr Gly Arg Gln Ser Val Leu Val Pro Tyr Glu Pro Pro Gln Val 250 245 Gly Thr Glu Phe Thr Thr Val Leu Tyr Asn Phe Met Cys Asn Ser Ser 265 Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Val Thr Leu 280 285 Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Cys Phe Glu Ala Arg 295 300 Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp Ser Ile 315 310 Arg Lys Gln Gln Val Ser Asp Ser Thr Lys Asn Gly Asp Gly Thr Lys 325 330 Arg Pro Phe Arg Gln Asn Thr His Gly Ile Gln Met Thr Ser Ile Lys 340 345 Lys Arg Arg Ser Pro Asp Asp Glu Leu Leu Tyr Leu Pro Val Arg Gly 360 365 Arg Glu Thr Tyr Glu Met Leu Leu Lys Ile Lys Glu Ser Leu Glu Leu 375 380 Met Gln Tyr Leu Pro Gln His Thr Ile Glu Thr Tyr Arg Gln Gln Gln 390 395 Gln Gln His Gln His Leu Leu Gln Lys His Leu Leu Ser Ala Cys 405 410 Phe Arg Asn Glu Leu Val Glu Pro Arg Arg Glu Thr Pro Lys Gln Ser 425 Asp Val Phe Phe Arg His Ser Lys Pro Pro Asn Arg Ser Val Tyr Pro 440

<210> 341

<211> 356

<212> PRT

<213> Homo sapiens

<400> 341

Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln 1 5 10 15

Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn 20 25 30

Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser 40 Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Ala 55 Leu Ser Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro 70 75 His Ser Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala 8.5 90 Thr Trp Thr Tyr Ser Thr Glu Leu Lys Lys Leu Tyr Cys Gln Ile Ala 105 110 1.00 Lys Thr Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly 120 125 Ala Val Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr 135 140 Glu Val Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn 150 155 Glu Gly Gln Ile Ala Pro Pro Ser His Leu Ile Arq Val Glu Gly Asn 170 Ser His Ala Gln Tyr Val Glu Asp Pro Ile Thr Gly Arg Gln Ser Val • 185 Leu Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val 200 Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg 220 215 Arg Pro Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val 230 235 Leu Gly Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg 245 . 250 Asp Arg Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp 265 Ser Thr Lys Asn Gly Asp Gly Thr Lys Arg Pro Ser Arg Gln Asn Thr 280 His Gly Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp 295 300 Glu Leu Leu Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu 315 310 Leu Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Pro Gln His 330 325 Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln Gln His Gln His Leu 345 Leu Gln Lys Gln 355

<210> 342

<211> 680

<212> PRT

<213> Homo sapiens

<400> 342

Met Asn Phe Glu Thr Ser Arg Cys Ala Thr Leu Gln Tyr Cys Pro Asp 10 Pro Tyr Ile Gln Arg Phe Val Glu Thr Pro Ala His Phe Ser Trp Lys 25 Glu Ser Tyr Tyr Arg Ser Thr Met Ser Gln Ser Thr Gln Thr Asn Glu 40 Phe Leu Ser Pro Glu Val Phe Gln His Ile Trp Asp Phe Leu Glu Gln

Pro 65	Ile	Cys	Ser	Val	Gln 70	Pro	Ile	Asp	Leu	Asn 75	Phe	Val	Asp	Glu	Pro 80
Ser	Glu	Asp	Gly	Ala 85	Thr	Asn	Lys	Ile	Glu 90	Ile	Ser	Met	Asp	Cys 95	Ile
Arg	Met	Gln	Asp 100	Ser	Asp	Leu	Ser	Asp 105	Pro	Met	Trp	Pro	Gln 110	Tyr	Thr
Asn	Leu	Gly 115	Leu	Leu	Asn	Ser	Met 120	Asp	Gln	Gln	Ile	Gln 125	Asn	Gly	Ser
Ser	Ser 130	Thr	Ser	Pro	Tyr	Asn 135	Thr	Asp	His	Ala	Gln 140	Asn	Ser	Val	Thr
Ala 145	Pro	Ser	Pro	Tyr	Ala 150	Gln	Pro	Ser	Ser	Thr 155	Phe	Asp	Ala	Leu	Ser 160
Pro	Ser	Pro	Ala	Ile 165	Pro	Ser	Asn	Thr	Asp 170	Tyr	Pro	Gly	Pro	His 175	Ser
			180					185			_		Ala 190		
		195				_	200		_	_		205	Ala		
	210					215					220		Gly		
225					230					235			Thr		240
				245					250				Asn	255	
			260					265	_			_	Asn 270		
		275					280					285	Val		
	290					295	_				300		Val		
305			_		310		_		_	315			Arg		320
				325					330				Val	335	
			340					345					Arg 350		
		355					360					365	Asp		
	370					375	_				380		Thr		
385					390			_		395			Asp		400
				405					410				Leu	415	
			420					425	_				His 430		
Glu	Thr	Tyr 435	Arg	Gln	Gln	Gln	Gln 440	Gln	Gln	His	Gln	His 445	Leu	Leu	Gln
	450					455					460		Ser		
Pro 465	Leu	Asn	Lys	Met	Asn 470	Ser	Met	Asn	Lys	Leu 475	Pro	Ser	Val	Ser	Gln 480
Leu	Ile	Asn	Pro	Gln 485	Gln	Arg	Asn	Ala	Leu 490	Thr	Pro	Thr	Thr	Ile 495	Pro
Asp	Gly	Met	Gly 500	Ala	Asn	Ile	Pro	Met 505	Met	Gly	Thr	His	Met 510	Pro	Met
Ala	Gly	Asp 515	Met	Asn	Gly	Leu	Ser 520	Pro	Thr	Gln	Ala	Leu 525	Pro	Pro	Pro

Leu Ser Met Pro Ser Thr Ser Gln Cys Thr Pro Pro Pro Pro Tyr Pro 535 Thr Asp Cys Ser Ile Val Ser Phe Leu Ala Arg Leu Gly Cys Ser Ser 550 555 Cys Leu Asp Tyr Phe Thr Thr Gln Gly Leu Thr Thr Ile Tyr Gln Ile 570 575 565 Glu His Tyr Ser Met Asp Asp Leu Ala Ser Leu Lys Ile Pro Glu Gln 580 585 590 Phe Arg His Ala Ile Trp Lys Gly Ile Leu Asp His Arg Gln Leu His 595 600 Glu Phe Ser Ser Pro Ser His Leu Leu Arg Thr Pro Ser Ser Ala Ser 610 615 620 Thr Val Ser Val Gly Ser Ser Glu Thr Arg Gly Glu Arg Val Ile Asp 630 635 Ala Val Arg Phe Thr Leu Arg Gln Thr Ile Ser Phe Pro Pro Arg Asp 650 645 Glu Trp Asn Asp Phe Asn Phe Asp Met Asp Ala Arg Arg Asn Lys Gln 660 665 Gln Arg Ile Lys Glu Glu Gly Glu

<210> 343

<211> 461

<212> PRT

<213> Homo sapiens

<400> 343

Met Leu Tyr Leu Glu Asn Asn Ala Gln Thr Gln Phe Ser Glu Pro Gln 10 Tyr Thr Asn Leu Gly Leu Leu Asn Ser Met Asp Gln Gln Ile Gln Asn 25 Gly Ser Ser Ser Thr Ser Pro Tyr Asn Thr Asp His Ala Gln Asn Ser 40 Val Thr Ala Pro Ser Pro Tyr Ala Gln Pro Ser Ser Thr Phe Asp Ala 50 - 55 60 Leu Ser Pro Ser Pro Ala Ile Pro Ser Asn Thr Asp Tyr Pro Gly Pro 65 70 75 His Ser Phe Asp Val Ser Phe Gln Gln Ser Ser Thr Ala Lys Ser Ala 85 90 Thr Trp Thr Tyr Ser Thr Glu Leu Lys Lys Leu Tyr Cys Gln Ile Ala 100 105 Lys Thr Cys Pro Ile Gln Ile Lys Val Met Thr Pro Pro Pro Gln Gly 120 Ala Val Ile Arg Ala Met Pro Val Tyr Lys Lys Ala Glu His Val Thr 135 140 Glu Val Val Lys Arg Cys Pro Asn His Glu Leu Ser Arg Glu Phe Asn 150 155 Glu Gly Gln Ile Ala Pro Pro Ser His Leu Ile Arg Val Glu Gly Asn 170 165 Ser His Ala Gln Tyr Val Glu Asp Pro Ile Thr Gly Arg Gln Ser Val 180 185 Leu Val Pro Tyr Glu Pro Pro Gln Val Gly Thr Glu Phe Thr Thr Val 195 200 Leu Tyr Asn Phe Met Cys Asn Ser Ser Cys Val Gly Gly Met Asn Arg 210 215 220 Arg Pro Ile Leu Ile Ile Val Thr Leu Glu Thr Arg Asp Gly Gln Val 230 235

Leu Gly Arg Arg Cys Phe Glu Ala Arg Ile Cys Ala Cys Pro Gly Arg 245 250 Asp Arg Lys Ala Asp Glu Asp Ser Ile Arg Lys Gln Gln Val Ser Asp 260 265 Ser Thr Lys Asn Gly Asp Gly Thr Lys Arg Pro Phe Arg Gln Asn Thr 280 His Gly Ile Gln Met Thr Ser Ile Lys Lys Arg Arg Ser Pro Asp Asp 295 300 Glu Leu Leu Tyr Leu Pro Val Arg Gly Arg Glu Thr Tyr Glu Met Leu 310 315 Leu Lys Ile Lys Glu Ser Leu Glu Leu Met Gln Tyr Leu Pro Gln His 325 330 Thr Ile Glu Thr Tyr Arg Gln Gln Gln Gln Gln His Gln His Leu 340 345 Leu Gln Lys Gln Thr Ser Ile Gln Ser Pro Ser Ser Tyr Gly Asn Ser 360 Ser Pro Pro Leu Asn Lys Met Asn Ser Met Asn Lys Leu Pro Ser Val 375 380 Ser Gln Leu Ile Asn Pro Gln Gln Arg Asn Ala Leu Thr Pro Thr Thr 390 395 Ile Pro Asp Gly Met Gly Ala Asn Ile Pro Met Met Gly Thr His Met 405 410 Pro Met Ala Gly Asp Met Asn Gly Leu Ser Pro Thr Gln Ala Leu Pro 420 425 Pro Pro Leu Ser Met Pro Ser Thr Ser His Cys Thr Pro Pro Pro 440 Tyr Pro Thr Asp Cys Ser Ile Val Arg Ile Trp Gln Val 455

<210> 344

<211> 516

<212> PRT

<213> Homo sapiens

<400> 344

Met Ser Gln Ser Thr Gln Thr Asn Glu Phe Leu Ser Pro Glu Val Phe 5 10 Gln His Ile Trp Asp Phe Leu Glu Gln Pro Ile Cys Ser Val Gln Pro 20 25 Ile Asp Leu Asn Phe Val Asp Glu Pro Ser Glu Asp Gly Ala Thr Asn 40 Lys Ile Glu Ile Ser Met Asp Cys Ile Arg Met Gln Asp Ser Asp Leu 55 Ser Asp Pro Met Trp Pro Gln Tyr Thr Asn Leu Gly Leu Leu Asn Ser 75 Met Asp Gln Gln Ile Gln Asn Gly Ser Ser Ser Thr Ser Pro Tyr Asn 90 Thr Asp His Ala Gln Asn Ser Val Thr Ala Pro Ser Pro Tyr Ala Gln 100 105 Pro Ser Ser Thr Phe Asp Ala Leu Ser Pro Ser Pro Ala Ile Pro Ser 120 125 Asn Thr Asp Tyr Pro Gly Pro His Ser Phe Asp Val Ser Phe Gln Gln 135 140 Ser Ser Thr Ala Lys Ser Ala Thr Trp Thr Tyr Ser Thr Glu Leu Lys 150 155 Lys Leu Tyr Cys Gln Ile Ala Lys Thr Cys Pro Ile Gln Ile Lys Val 170

152

```
Met Thr Pro Pro Pro Gln Gly Ala Val Ile Arg Ala Met Pro Val Tyr
          180
                             185
Lys Lys Ala Glu His Val Thr Glu Val Val Lys Arg Cys Pro Asn His
                          200
Glu Leu Ser Arg Glu Phe Asn Glu Gly Gln Ile Ala Pro Pro Ser His
                      215
                                        220
Leu Ile Arg Val Glu Gly Asn Ser His Ala Gln Tyr Val Glu Asp Pro
                  230
                                     235
Ile Thr Gly Arg Gln Ser Val Leu Val Pro Tyr Glu Pro Pro Gln Val
              245
                                 250
Gly Thr Glu Phe Thr Thr Val Leu Tyr Asn Phe Met Cys Asn Ser Ser
                             265 270
           260
Cys Val Gly Gly Met Asn Arg Arg Pro Ile Leu Ile Ile Val Thr Leu
                          280
                                            285
Glu Thr Arg Asp Gly Gln Val Leu Gly Arg Arg Cys Phe Glu Ala Arg
                      295
                                        300
Ile Cys Ala Cys Pro Gly Arg Asp Arg Lys Ala Asp Glu Asp Ser Ile
                  310
                                     315
Arg Lys Gln Gln Val Ser Asp Ser Thr Lys Asn Gly Asp Gly Thr Lys
                                 330
               325
Arg Pro Phe Arg Gln Asn Thr His Gly Ile Gln Met Thr Ser Ile Lys
           340
                             345
Lys Arg Arg Ser Pro Asp Asp Glu Leu Leu Tyr Leu Pro Val Arg Gly
       355
                          360
Arg Glu Thr Tyr Glu Met Leu Leu Lys Ile Lys Glu Ser Leu Glu Leu
                      375
                                         380
Met Gln Tyr Leu Pro Gln His Thr Ile Glu Thr Tyr Arg Gln Gln Gln
                  390
                                     395
Gln Gln His Gln His Leu Leu Gln Lys Gln Thr Ser Ile Gln Ser
               405
                                 410
Pro Ser Ser Tyr Gly Asn Ser Ser Pro Pro Leu Asn Lys Met Asn Ser
                             425
Met Asn Lys Leu Pro Ser Val Ser Gln Leu Ile Asn Pro Gln Gln Arg
                          440
Asn Ala Leu Thr Pro Thr Thr Ile Pro Asp Gly Met Gly Ala Asn Ile
                      455
                                        460
Pro Met Met Gly Thr His Met Pro Met Ala Gly Asp Met Asn Gly Leu
                                    475
                  470
Ser Pro Thr Gln Ala Leu Pro Pro Pro Leu Ser Met Pro Ser Thr Ser
              485
                                490 495
His Cys Thr Pro Pro Pro Pro Tyr Pro Thr Asp Cys Ser Ile Val Arg
          500
                            505
Ile Trp Gln Val
       515
```

<210> 345

<211> 1800

<212> DNA

<213> Homo sapiens

<400> 345

gegeeteatt geeactgeag tgactaaage tgggaagaeg etggteagtt cacetgeece 60 actggttgtt ttttaaacaa attetgatae aggegacate etcactgaee gageaaagat 120 tgacattegt ateateactg tgeaceattg gettetagge acteeagtgg ggtaggagaa 180 ggaggtetga aaccetegea gagggatett geeeteatte tttgggtetg aaacaetgge 240 agtegttgga aacaggaete agggataaae eagegeaatg gattgggga egetgeaeae 300 ttteateggg ggtgteaaca aacaeteeae eageateggg aaggtgtgga teaeagteat 360

ctttattttc cgagtcatga tcctagtggt ggctgcccag gaagtgtggg gtgacgagca 420 agaggacttc gtctgcaaca cactgcaacc gggatgcaaa aatgtgtgct atgaccactt 480 tttcccggtg tcccacatcc ggctgtgggc cctccagctg atcttcgtct ccaccccagc 540 gctgctggtg gccatgcatg tggcctacta caggcacgaa accactcgca agttcaggcg 600 aggagagaag aggaatgatt tcaaagacat agaggacatt aaaaagcaca aggttcggat 660 agaggggtcg ctgtggtgga cgtacaccag cagcatcttt ttccgaatca tctttgaagc 720 agcctttatg tatgtgtttt acttccttta caatgggtac cacctgccct gggtgttgaa 780 atgtgggatt gacccctgcc ccaaccttgt tgactgcttt atttctaggc caacagagaa 840 gaccgtgttt accattttta tgatttctgc gtctgtgatt tgcatgctgc ttaacgtggc 900 agagttgtgc tacctgctgc tgaaagtgtg ttttaggaga tcaaagagag cacagacgca 960 ttcagatagt ggtcaaaatg caatcacagg tttcccaagc taaacatttc aaggtaaaat 1080 gtagctgcgt cataaggaga cttctgtctt ctccagaagg caataccaac ctgaaagttc 1140 cttctgtagc ctgaagagtt tgtaaatgac tttcataata aatagacact tgagttaact 1200 ttttgtagga tacttgctcc attcatacac aacgtaatca aatatgtggt ccatctctga 1260 aaacaagaga ctgcttgaca aaggagcatt gcagtcactt tgacaggttc cttttaagtg 1320 gactetetga caaagtgggt aetttetgaa aatttatata aetgttgttg ataaggaaca 1380 tttatccagg aattgatacg tttattagga aaagatattt ttataggctt ggatgttttt 1440 agttccgact ttgaatttat ataaagtatt tttataatga ctggtcttcc ttacctggaa 1500 aaacatgcga tgttagtttt agaattacac cacaagtatc taaatttcca acttacaaag 1560 ggtcctatct tgtaaatatt gttttgcatt gtctgttggc aaatttgtga actgtcatga 1620 tacgettaag gtgggaaagt gttcattgca caatatattt ttactgettt ctgaatgtag 1680 acggaacagt gtggaagcag aaggettttt taactcatcc gtttggccga tcgttgcaga 1740 ccactgggag atgtggatgt ggttgcctcc ttttgctcgt ccccgtggct taacccttct 1800 <210> 346 <211> 261 <212> PRT <213> Homo sapiens <400> 346 Met Asp Trp Gly Thr Leu His Thr Phe Ile Gly Gly Val Asn Lys His Ser Thr Ser Ile Gly Lys Val Trp Ile Thr Val Ile Phe Ile Phe Arg 25 Val Met Ile Leu Val Val Ala Ala Gln Glu Val Trp Gly Asp Glu Gln 40 Glu Asp Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Lys Asn Val Cys 55 60 Tyr Asp His Phe Phe Pro Val Ser His Ile Arg Leu Trp Ala Leu Gln 70 75 Leu Ile Phe Val Ser Thr Pro Ala Leu Leu Val Ala Met His Val Ala 90 85 Tyr Tyr Arg His Glu Thr Thr Arg Lys Phe Arg Arg Gly Glu Lys Arg 100 105 . 110 Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys Lys His Lys Val Arg Ile 120 125 Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser Ile Phe Phe Arg Ile 135 140 Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Phe Leu Tyr Asn Gly 155 1.50 Tyr His Leu Pro Trp Val Leu Lys Cys Gly Ile Asp Pro Cys Pro Asn 170 165

Leu Val Asp Cys Phe Ile Ser Arg Pro Thr Glu Lys Thr Val Phe Thr 185

Ile Phe Met Ile Ser Ala Ser Val Ile Cys Met Leu Leu Asn Val Ala

200

180

195

```
Glu Leu Cys Tyr Leu Leu Lys Val Cys Phe Arg Arg Ser Lys Arg
                        215
Ala Gln Thr Gln Lys Asn His Pro Asn His Ala Leu Lys Glu Ser Lys
225
                    230
                                        235
Gln Asn Glu Met Asn Glu Leu Ile Ser Asp Ser Gly Gln Asn Ala Ile
                245
                                    250
Thr Gly Phe Pro Ser
            260
<210> 347
<211> 1740
<212> DNA
<213> Homo sapiens
<400> 347
atgaacaaac tgtatatcgg aaacctcagc gagaacgccg cccctcgga cctagaaagt 60
atcttcaagg acgccaagat cccggtgtcg ggaccettce tggtgaagac tggctacgcg 120
ttcgtggact gcccggacga gagctgggcc ctcaaggcca tcgaggcgct ttcaggtaaa 180
atagaactgc acgggaaacc catagaagtt qagcactcgg tcccaaaaaag gcaaaggatt 240
cggaaacttc agatacgaaa tatcccgcct catttacagt gggaggtgct ggatagttta 300
ctagtccagt atggagtggt ggagagctgt gagcaagtga acactgactc ggaaactgca 360
gttgtaaatg taacctattc cagtaaggac caagctagac aagcactaga caaactgaat 420
ggatttcagt tagagaattt caccttgaaa gtagcctata tccctgatga aacggccgcc 480
cagcaaaacc ccttgcagca gccccgaggt cgccgggggc ttgggcagag gggctcctca 540
aggcaggggt ctccaggatc cgtatccaag cagaaaccat gtgatttgcc tctgcgcctg 600
ctggttccca cccaatttgt tggagccatc ataggaaaag aaggtgccac cattcggaac 660
atcaccaaac agaccagtc taaaatcgat gtccaccgta aagaaaatgc gggggctgct 720
gagaagtcga ttactatcct ctctactcct gaaggcacct ctgcggcttg taagtctatt 780
ctggagatta tgcataagga agctcaagat ataaaattca cagaagagat ccccttgaag 840
attttagctc ataataactt tgttggacgt cttattggta aagaaggaag aaatcttaaa 900
aaaattgagc aagacacaga cactaaaatc acgatatctc cattgcagga attgacgctg 960
tataatccag aacgcactat tacagttaaa ggcaatgttg agacatgtgc caaagctgag 1020
gaggagatca tgaagaaaat cagggagtct tatgaaaatg atattgcttc tatgaatctt 1080
caagcacatt taatteetgg attaaatetg aacgeettgg gtetgtteec acceaettea 1140
gggatgccac ctcccacctc agggccccct tcagccatga ctcctcccta cccgcagttt 1200
gagcaatcag aaacggagac tgttcatctg tttatcccag ctctatcagt cggtgccatc 1260
ateggeaage agggeeagea cateaageag ettteteget ttgetggage tteaattaag 1320
attgctccag cggaagcacc agatgctaaa gtgaggatgg tgattatcac tggaccacca 1380
gaggeteagt teaaggetea gggaagaatt tatggaaaaa ttaaagaaga aaactttgtt 1440
agtcctaaag aagaggtgaa acttgaagct catatcagag tgccatcctt tgctgctggc 1500
agagttattg gaaaaggagg caaaacggtg aatgaacttc agaatttgtc aagtgcagaa 1560
gttgttgtcc ctcgtgacca gacacctgat gagaatgacc aagtggttgt caaaataact 1620
ggtcacttct atgcttgcca ggttgcccag agaaaaattc aggaaattct gactcaggta 1680
aagcagcacc aacaacagaa ggctctgcaa agtggaccac ctcagtcaag acggaagtaa 1740
<210> 348
<211> 579
<212> PRT
<213> Homo sapiens
<400> 348
Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
                                    10
Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro
                                25
Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser
```

		35					40					4 5			
Trp	Ala 50		Lys	Ala	Ile	Glu 55	-	Leu	Ser	Gly	Lys 60	45 Ile	Glu	Leu	His
Gly 65	Lys	Pro	Ile	Glu	Val 70	Glu	His	Ser	Val	Pro 75		Arg	Gln	Arg	Ile 80
Arg	Lys	Leu	Gln	Ile 85	Arg	Asn	Ile	Pro	Pro 90	His	Leu	Gln	Trp	Glu 95	Val
Leu	Asp	Ser	Leu 100	Leu	Val	Gln	Tyr	Gly 105	Val	Val	Glu	Ser	Cys 110	Glu	Gln
		115					120					125	Tyr		
	130					135					140		Phe		
145					150					155			Thr		160
				165					170				Leu	175	
			180					185					Lys 190		
		195					200					205	Phe		_
	210					215					220		Thr		
225					230					235			Gly		240
				245					250				Ser	255	
			260					265					Asp 270		
		275					280					285	Asn		
	290					295			1		300		Ile		
305					310					315			Leu		320
				325					330				Glu	335	
			340					345					Ser 350	-	
		355					360					365	Pro	_	
	370					375					380		Met Pro		
385					390					395			Ala		400
				405					410				Gln	415	
			420					425					430 Ala		
		435					440					445	Ala		-
	450					455					460				
465					470					475			Asn Val		480
				485					490					495	
T IIG	пта	ита	атЛ	Arg	val	тте	σтУ	тλг	σтУ	σтλ	тĀг	mr	Val	ASN	GTU

```
500
                                  505
 Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
                             520
 Pro Asp Glu Asn Asp Gln Val Val Lys Ile Thr Gly His Phe Tyr
                         535
 Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
                     550
                                          555
                                                              560
 Lys Gln His Gln Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
                 565
                                      570
                                                          575
 Arg Arg Lys
 <210> 349
 <211> 207
 <212> DNA
 <213> Homo sapiens
 <400> 349
 atgtggcagc ccctcttctt caagtggctc ttgtcctgtt gccctgggag ttctcaaatt 60
 gctgcagcag cctccaccca gcctgaggat qacatcaata cacagaggaa qaaqagtcag 120
 gaaaagatga gagaagttac agacteteet gggegaeeee gagagettac catteeteag 180
 acttcttcac atggtgctaa cagattt
                                                                    207
 <210> 350
 <211> 69
 <212> PRT
 <213> Homo sapiens
 <400> 350
 Met Trp Gln Pro Leu Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly
  1
 Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp Ile
Asn Thr Gln Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val Thr Asp
                             40
                                                  45
 Ser Pro Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr Ser Ser His
                         55
 Gly Ala Asn Arg Phe
 65
 <210> 351
 <211> 1012
 <212> DNA
 <213> Homo sapiens
 <400> 351
 ccctctagaa ataattttgt ttaactttaa gaaggagata tacatatgca tcaccatcac 60
 catcacacgg ccgcgtccga taacttccag ctgtcccagg gtgggcaggg attcgccatt 120
 ccgatcgggc aggcgatggc gatcgcgggc cagatcaagc ttcccaccgt tcatatcggg 180
 cctaccgcct tcctcggctt gggtgttgtc gacaacaacg gcaacggcgc acgagtccaa 240
 cgcgtggtcg .ggagcgctcc ggcggcaagt ctcggcatct ccaccggcga cgtgatcacc 300
 geggtegaeg gegeteegat caacteggee acegegatgg eggaegeget taaegggeat 360
 catcccggtg acgtcatctc ggtgacctgg caaaccaagt cgggcggcac gcgtacaggg 420
 aacgtgacat tggccgaggg acccccggcc gaattcatgg attgggggac gctgcacact 480
 ttcatcgggg gtgtcaacaa acactccacc agcatcggga aggtgtggat cacagtcatc 540
 tttattttcc gagtcatgat cctcqtqqtq qctqcccaqq aaqtqtqqqq tqacqaqcaa 600
```

```
gaggacticg tetqcaacac actgcaaccg ggatgcaaaa atgtgtgcta tgaccacttt 660
ttcccqqtqt cccacatccq qctqtqqqcc ctccaqctqa tcttcqtctc caccccaqcq 720
ctgctggtgg ccatgcatgt ggcctactac aggcacgaaa ccactcgcaa gttcaggcga 780
ggagagaaga ggaatgattt caaagacata qaqqacatta aaaaqcaqaa qqttcqqata 840
gaggggtgac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagcccga 900
aaggaagetg agttggetge tgecaceget gagcaataac tagcataace eettggggee 960
tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatccgg at
<210> 352
<211> 267
<212> PRT
<213> Homo sapiens
<400> 352
Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
                 5
                                    10
Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
            2.0
                                25
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
                            40
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
                        55
Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
                    70
                                        75
Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
                                    90
Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
            100
                                105
                                                    110
Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
        115
                            120
                                                125
Leu Ala Glu Gly Pro Pro Ala Glu Phe Met Asp Trp Gly Thr Leu His
                        135
                                            140
Thr Phe Ile Gly Gly Val Asn Lys His Ser Thr Ser Ile Gly Lys Val
                    150
                                        155
Trp Ile Thr Val Ile Phe Ile Phe Arg Val Met Ile Leu Val Val Ala
                165
                                    170
                                                        175
Ala Gln Glu Val Trp Gly Asp Glu Gln Glu Asp Phe Val Cys Asn Thr
            180
                                185
                                                    190
Leu Gln Pro Gly Cys Lys Asn Val Cys Tyr Asp His Phe Pro Val
                            200
                                                205
Ser His Ile Arg Leu Trp Ala Leu Gln Leu Ile Phe Val Ser Thr Pro
                        215
                                            220
Ala Leu Leu Val Ala Met His Val Ala Tyr Tyr Arg His Glu Thr Thr
                    230
                                       235
Arg Lys Phe Arg Arg Gly Glu Lys Arg Asn Asp Phe Lys Asp Ile Glu
                245
                                   250
Asp Ile Lys Lys Gln Lys Val Arg Ile Glu Gly
<210> 353
<211> 900
<212> DNA
<213> Homo sapiens
<400> 353
atgcatcacc atcaccatca cacggccgcg tecgataact tecagetgte ecagggtggg 60
cagggattcg ccattccgat cggqcaggcg atggcgatcg cgggccagat caagcttccc 120
```

```
accepticata tegggeetae egecticete ggettgggtg tigtegaeaa caacggeaac 180
ggcgcacgag tccaacgcgt ggtcgggagc gctccggcgg caagtctcgg catctccacc 240
ggcgacgtga tcaccgcggt cgacggcgct ccgatcaact cggccaccgc gatggcggac 300
gegettaaeg ggeateatee eggtgaegte ateteggtga eetggeaaae caagteggge 360
ggcacgcgta cagggaacgt gacattggcc gagggacccc cggccgaatt ccacgaaacc 420
actogoaagt toaggogagg agagaagagg aatgatttoa aagacataga ggacattaaa 480
aagcagaagg ttcggataga ggggtcgctg tggtggacgt acaccagcag catctttttc 540
cgaatcatct ttgaagcagc ctttatgtat gtgttttact tcctttacaa tgggtaccac 600
ctgccctggg tgttgaaatg tgggattgac ccctgcccca accttgttga ctgctttatt 660
tctaggccaa cagagaagac cgtgtttacc atttttatga tttctgcgtc tgtgatttgc 720
atgctgctta acgtggcaga gttgtgctac ctgctgctga aagtgtgttt taggagatca 780
aagagagcac agacgcaaaa aaatcacccc aatcatgccc taaaggagag taagcagaat 840
gaaatgaatg agctgatttc agatagtggt caaaatgcaa tcacaggttt cccaagctaa 900
<210> 354
<211> 299
<212> PRT
<213> Homo sapiens
<400> 354
Met His His His His His Thr Ala Ala Ser Asp Asn Phe Gln Leu
                                    10
Ser Gln Gly Gln Gly Phe Ala Ile Pro Ile Gly Gln Ala Met Ala
                                25
Ile Ala Gly Gln Ile Lys Leu Pro Thr Val His Ile Gly Pro Thr Ala
Phe Leu Gly Leu Gly Val Val Asp Asn Asn Gly Asn Gly Ala Arg Val
                        55
Gln Arg Val Val Gly Ser Ala Pro Ala Ala Ser Leu Gly Ile Ser Thr
                    70
Gly Asp Val Ile Thr Ala Val Asp Gly Ala Pro Ile Asn Ser Ala Thr
Ala Met Ala Asp Ala Leu Asn Gly His His Pro Gly Asp Val Ile Ser
            100
Val Thr Trp Gln Thr Lys Ser Gly Gly Thr Arg Thr Gly Asn Val Thr
        115
                            120
                                                125
Leu Ala Glu Gly Pro Pro Ala Glu Phe His Glu Thr Thr Arg Lys Phe
                        135
                                            140
Arg Arg Gly Glu Lys Arg Asn Asp Phe Lys Asp Ile Glu Asp Ile Lys
                                        155
                    150
Lys Gln Lys Val Arg Ile Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser
                165
                                    170
                                                        175
Ser Ile Phe Phe Arg Ile Ile Phe Glu Ala Ala Phe Met Tyr Val Phe
            180
                                185
                                                    190
Tyr Phe Leu Tyr Asn Gly Tyr His Leu Pro Trp Val Leu Lys Cys Gly
                            200
Ile Asp Pro Cys Pro Asn Leu Val Asp Cys Phe Ile Ser Arg Pro Thr
                                            220
                        215
Glu Lys Thr Val Phe Thr Ile Phe Met Ile Ser Ala Ser Val Ile Cys
                    230
                                        235
Met Leu Leu Asn Val Ala Glu Leu Cys Tyr Leu Leu Leu Lys Val Cys
                245
                                    250
Phe Arg Arg Ser Lys Arg Ala Gln Thr Gln Lys Asn His Pro Asn His
                                                    270
            260
                                265
Ala Leu Lys Glu Ser Lys Gln Asn Glu Met Asn Glu Leu Ile Ser Asp
                            280
                                                285
Ser Gly Gln Asn Ala Ile Thr Gly Phe Pro Ser
```

159

295

<210> 355 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 355 ggagtacagc ttcaagacaa tggg 24 <210> 356 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 356 ccatgggaat tcattataat aattttgttc c 31 <210> 357 <211> 920 <212> PRT <213> Homo sapiens <400> 357 Met Gln His His His His His Gly Val Gln Leu Gln Asp Asn Gly 1 5 10 Tyr Asn Gly Leu Leu Ile Ala Ile Asn Pro Gln Val Pro Glu Asn Gln Asn Leu Ile Ser Asn Ile Lys Glu Met Ile Thr Glu Ala Ser Phe Tyr 40 Leu Phe Asn Ala Thr Lys Arg Arg Val Phe Phe Arg Asn Ile Lys Ile 55 60 Leu Ile Pro Ala Thr Trp Lys Ala Asn Asn Asn Ser Lys Ile Lys Gln 70 75 Glu Ser Tyr Glu Lys Ala Asn Val Ile Val Thr Asp Trp Tyr Gly Ala 85 90 His Gly Asp Asp Pro Tyr Thr Leu Gln Tyr Arg Gly Cys Gly Lys Glu 100 105 Gly Lys Tyr Ile His Phe Thr Pro Asn Phe Leu Leu Asn Asp Asn Leu 115 120 Thr Ala Gly Tyr Gly Ser Arg Gly Arg Val Phe Val His Glu Trp Ala 135 140 His Leu Arg Trp Gly Val Phe Asp Glu Tyr Asn Asn Asp Lys Pro Phe 150 155 Tyr Ile Asn Gly Gln Asn Gln Ile Lys Val Thr Arg Cys Ser Ser Asp 165 170 Ile Thr Gly Ile Phe Val Cys Glu Lys Gly Pro Cys Pro Gln Glu Asn 180 185 Cys Ile Ile Ser Lys Leu Phe Lys Glu Gly Cys Thr Phe Ile Tyr Asn 200 205 Ser Thr Gln Asn Ala Thr Ala Ser Ile Met Phe Met Gln Ser Leu Ser

PCT/US01/47576 WO 02/47534 160

	210					215					220				
Ser 225	Val	Val	Glu	Phe	Cys 230	Asn	Ala	Ser	Thr	His 235	Asn	Gln	Glu	Ala	Pro 240
Asn	Leu	Gln	Asn	Gln 2 4 5	Met	Cys	Ser	Leu	Arg 250	Ser	Ala	Trp	Asp	Val 255	Ile
Thr	Asp	Ser	Ala 260	Asp	Phe	His	His	Ser 265	Phe	Pro	Met	Asn	Gly 270	Thr	Glu
		275					Ser 280					285	_	<u> </u>	
Val	Cys 290	Leu	Val	Leu	Asp	Val 295	Ser	Ser	Lys	Met	Ala 300	Glu	Ala	Asp	Arg
305					310		Ala			315					320
				325			Ile		330					335	
			340				Ile	345					350		
		355					Thr 360				_	365	_		
	370					375	Gly				380				
385					390		Met			395			_	-	400
				405			Pro		410				-	415	
			420				Ser	425					430		
		435	·				Leu 440					445			
	450					455	Ala				460				
465					470		Ile			475			_		480
				485			Lys		490				_	495	
			500				Leu	505					510		
		515					Pro 520 Phe					525			
	530					535	Trp	_			540		_		
545					550		Val			555					560
				565		_	Val		570			_		575	
			580				Met	585					590	_	
		595					600 Thr					605			
	610					615					620				
625					630		Arg			635	-	_		_	640
				645			Ile Leu		650					655	
			660		-		Ser	665					670		
DCT		DCT	T11T	110	1.7TC	1172	net	11E	LLU	ary	2CT	TITO	UTQ	1-1-C	тАт

```
680
Val Pro Gly Tyr Thr Ala Asn Gly Asn Ile Gln Met Asn Ala Pro Arg
                         695
                                             700
Lys Ser Val Gly Arg Asn Glu Glu Glu Arg Lys Trp Gly Phe Ser Arg
                     710
                                         715
Val Ser Ser Gly Gly Ser Phe Ser Val Leu Gly Val Pro Ala Gly Pro
                 725
                                     730
His Pro Asp Val Phe Pro Pro Cys Lys Ile Ile Asp Leu Glu Ala Val
                                 745
                                                     750
            740
Lys Val Glu Glu Glu Leu Thr Leu Ser Trp Thr Ala Pro Gly Glu Asp
        755
                             760
                                                 765
Phe Asp Gln Gly Gln Ala Thr Ser Tyr Glu Ile Arg Met Ser Lys Ser
                         775
                                             780
Leu Gln Asn Ile Gln Asp Asp Phe Asn Asn Ala Ile Leu Val Asn Thr
                     790
                                         795
Ser Lys Arg Asn Pro Gln Gln Ala Gly Ile Arg Glu Ile Phe Thr Phe
                 805
                                     810
Ser Pro Gln Ile Ser Thr Asn Gly Pro Glu His Gln Pro Asn Gly Glu
                                 825
Thr His Glu Ser His Arg Ile Tyr Val Ala Ile Arg Ala Met Asp Arg
                             840
                                                 845
Asn Ser Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe
                         855
Ile Pro Pro Asn Ser Asp Pro Val Pro Ala Arg Asp Tyr Leu Ile Leu
                     870
                                         875
Lys Gly Val Leu Thr Ala Met Gly Leu Ile Gly Ile Ile Cys Leu Ile
                                     890
                 885
Ile Val Val Thr His His Thr Leu Ser Arg Lys Lys Arg Ala Asp Lys
                                 905
             900
Lys Glu Asn Gly Thr Lys Leu Leu
        915
```

<210> 358 <211> 2773 <212> DNA <213> Homo sapiens

<400> 358

catatgcagc atcaccacca tcaccacgga gtacagcttc aagacaatgg gtataatgga 60 ttgctcattg caattaatcc tcaggtacct gagaatcaga acctcatctc aaacattaag 120 qaaatgataa ctgaaqcttc attttaccta tttaatgcta ccaagagaag agtatttttc 180 agaaatataa agattttaat acctgccaca tggaaagcta ataataacag caaaataaaa 240 caagaatcat atgaaaaggc aaatgtcata gtgactgact ggtatggggc acatggagat 300 gatccataca ccctacaata cagagggtgt ggaaaagagg gaaaatacat tcatttcaca 360 cctaatttcc tactgaatga taacttaaca gctggctacg gatcacgagg ccgagtgttt 420 gtccatgaat gggcccacct ccgttggggt gtgttcgatg agtataacaa tgacaaacct 480 ttctacataa atgggcaaaa tcaaattaaa gtgacaaggt gttcatctga catcacaggc 540 atttttgtgt gtgaaaaagg tccttgcccc caagaaaact gtattattag taagcttttt 600 aaagaaggat gcacctttat ctacaatagc acccaaaatg caactgcatc aataatgttc 660 atgcaaagtt tatcttctgt ggtigaattt tgtaatgcaa gtacccacaa ccaagaagca 720 ccaaacctac agaaccagat gtgcagcctc agaagtgcat gggatgtaat cacagactct 780 qctgactttc accacagctt tcccatgaac gggactgagc ttccacctcc tcccacattc 840 tegettgtag aggetggtga caaagtggte tgtttagtge tggatgtgte cageaagatg 900 gcagaggctg acagactcct tcaactacaa caagccgcag aattttattt gatgcagatt 960 gttgaaattc ataccttcgt gggcattgcc agtttcgaca gcaaaggaga gatcagagcc 1020 cagctacacc aaattaacag caatgatgat cgaaagttgc tggtttcata tctgcccacc 1080 actgtatcag ctaaaacaga catcagcatt tgttcagggc ttaagaaagg atttgaggtg 1140

```
qttqaaaaac tqaatqqaaa aqcttatqqc tctqtqatqa tattaqtqac caqcqqaqat 1200
gataagcttc ttggcaattg cttacccact gtgctcagca gtggttcaac aattcactcc 1260
attgccctgg gttcatctgc agccccaaat ctggaggaat tatcacgtct tacaggaggt 1320
ttaaagttct ttgttccaga tatatcaaac tccaatagca tgattgatgc tttcagtaga 1380
atttcctctg gaactggaga cattttccag caacatattc agcttgaaag tacaggtgaa 1440
aatgtcaaac ctcaccatca attgaaaaac acagtgactg tggataatac tgtgggcaac 1500
gacactatgt ttctagttac gtggcaggcc agtggtcctc ctgagattat attatttgat 1560
cctgatggac gaaaatacta cacaaataat tttatcacca atctaacttt tcggacagct 1620
agtctttgga ttccaggaac agctaagcct gggcactgga cttacaccct gaacaatacc 1680
catcattctc tgcaagccct gaaagtgaca gtgacctctc gcgcctccaa ctcagctgtg 1740
ccccagcca ctgtggaagc ctttgtggaa agagacagcc tccattttcc tcatcctgtg 1800
atgatttatg ccaatgtgaa acagggattt tatcccattc ttaatgccac tgtcactgcc 1860
acagttgagc cagagactgg agatcctgtt acgctgagac tccttgatga tggagcaggt 1920
gctgatgtta taaaaaatga tggaatttac tcgaggtatt ttttctcctt tgctgcaaat 1980
ggtagatata gcttgaaagt gcatgtcaat cactctcca gcataaqcac cccagccac 2040
tctattccag ggagtcatgc tatgtatgta ccaggttaca cagcaaacgg taatattcag 2100
atgaatqctc caaqqaaatc aqtaqqcaqa aatqaqqaqq aqcqaaaqtq qqqctttaqc 2160
cgagtcaget caggaggetc cttttcagtg ctgggagttc cagctggccc ccaccctgat 2220
gtqtttccac catgcaaaat tattgacctg gaagctgtaa aagtagaaga ggaattgacc 2280
ctatcttgga cagcacctgg agaagacttt gatcagggcc aggctacaag ctatgaaata 2340
agaatgagta aaagtctaca gaatatccaa gatgacttta acaatgctat tttagtaaat 2400
acatcaaagc gaaatcctca gcaagctggc atcagggaga tatttacgtt ctcaccccaa 2460
atttccacga atggacctga acatcagcca aatggagaaa cacatgaaag ccacagaatt 2520
tatgttgcaa tacgagcaat qqataqqaac tccttacaqt ctqctqtatc taacattqcc 2580
caggogoctc tgtttattcc ccccaattct gatcctgtac ctgccagaga ttatcttata 2640
ttgaaaggag ttttaacagc aatgggtttg ataggaatca tttgccttat tatagttgtg 2700
acacatcata ctttaagcag gaaaaagaga gcagacaaga aagagaatgg aacaaaatta 2760
ttataatgaa ttc
<210> 359
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 359
tggcagcccc tcttcttcaa qtqqc
                                                                  25
<210> 360
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 360
cgccagaatt catcaaacaa atctgttagc acc
                                                                  33
<210> 361
<211> 77
<212> PRT
<213> Homo sapiens
<400> 361
Met Gln His His His His His Trp Gln Pro Leu Phe Phe Lys Trp
```

```
15
                5
                                    10
Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser
           20
                                25
Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu
                            40
Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr
                        55
Ile Pro Gln Thr Ser Ser His Gly Ala Asn Arg Phe Val
<210> 362
<211> 244
<212> DNA
<213> Homo sapiens
<400> 362
catatqcaqc atcaccacca tcaccactgg cagcccctct tcttcaagtg gctcttgtcc 60
tgttgccctg ggagttctca aattgctgca gcagcctcca cccagcctga ggatgacatc 120
aatacacaqa qqaaqaaqaq tcaqqaaaaq atqaqaqaaq ttacagactc tcctgggcga 180
ccccgagagc ttaccattcc tcagacttct tcacatggtg ctaacagatt tgtttgatga 240
<210> 363
<211> 20
<212> PRT
<213> Homo sapiens
<400> 363
Met Trp Gln Pro Leu Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly
                                    10
Ser Ser Gln Ile
            20
<210> 364
<211> 60
<212> DNA
<213> Homo sapiens
<400> 364
atgtggcagc ccctcttctt caagtggctc ttgtcctgtt gccctgggag ttctcaaatt 60
<210> 365
<211> 20
<212> PRT
<213> Homo sapiens
Gly Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp
                                    10
                                                        15
Ile Asn Thr Gln
            20
<210> 366
<211> 60
```

```
<212> DNA
<213> Homo sapiens
<400> 366
gggagttete aaattgetge ageageetee acceageetg aggatgacat caatacacag 60
<210> 367
<211> 20
<212> PRT
<213> Homo sapiens
<400> 367
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
                                    10
Gln Ala Leu Lys
            20
<210> 368
<211> 2343
<212> DNA
<213> Homo sapiens
<400> 368
attecggage gtttgegget tegetteatg geegetetee egeceeteet gggatetgtg 60
gcgccgcgcc tctgaggcgc agcatgtgaa gcggagacgg catccagtgg ggggcgagcc 180
tctcagccgg ccgggatggc taccacggcc gagctcttcg aggagccttt tgtggcagat 240
gaatatattg aacgtcttgt atggagaacc ccaggaggag gctctagagg tggacctgaa 300
gcttttgatc ctaaaagatt attagaagaa tttgtaaatc atattcagga actccagata 360
atggatgaaa ggattcagag gaaagtagag aaactagagc aacaatgtca gaaagaagcc 420
aaggaatttg ccaagaaggt acaagagctg cagaaaagca atcaggttgc cttccaacat 480
ttccaagaac tagatgagca cattagctat gtagcaacta aagtctgtca ccttggagac 540
caqttaqaqq qqqtaaacac acccaqacaa cqqqcaqtqq aqqctcaqaa attqatqaaa 600
tactttaatg agtttctaga tggagaattg aaatctgatg tttttacaaa ttctgaaaag 660
ataaaggaag cagcagacat cattcagaag ttgcacctaa ttgcccaaga gttacctttt 720
gatagatttt cagaagttaa atccaaaatt gcaagtaaat accatgattt agaatgccag 780
ctgattcagg agtttaccag tgctcaaaga agaggtgaaa tctccagaat gagagaagta 840
gcagcagttt tacttcattt taagggttat tcccattgtg ttgatgttta tataaagcag 900
tgccaggagg gtgcttattt gagaaatgat atatttgaag acgctggaat actctgtcaa 960
agagtgaaca aacaagttgg agatatcttc agtaatccag aaacagtcct ggctaaactt 1020
attcaaaatg tatttgaaat caaactacag agttttgtga aagagcagtt agaagaatgt 1080
aggaagtccg atgcagagca atatctcaaa aatctctatg atctgtatac aagaaccacc 1140
aatctttcca gcaagctgat ggagtttaat ttaggtactg ataaacagac tttcttgtct 1200
aagcttatca aatccatttt catttcctat ttggagaact atattgaggt ggagactgga 1260
tatttgaaaa gcagaagtgc tatgatccta cagcgctatt atgattcgaa aaaccatcaa 1320
aagagatcca ttggcacagg aggtattcaa gatttgaagg aaagaattag acagcgtacc 1380
aacttaccac ttgggccaag tatcgatact catggggaga cttttctatc ccaagaagtg 1440
gtggttaatc ttttacaaga aaccaaacaa gcctttgaaa gatgtcatag gctctctgat 1500
ccttctgact taccaaggaa tgccttcaga atttttacca ttcttgtgga atttttatgt 1560
attgagcata ttgattatgc tttggaaaca ggacttgctg gaattccctc ttcagattct 1620
aggaatgcaa atctttattt tttggacgtt gtgcaacagg ccaatactat ttttcatctt 1680
tttgacaaac agtttaatga tcaccttatg ccactaataa gctcttctcc taagttatct 1740
gaatgccttc agaagaaaaa agaaataatt gaacaaatgg agatgaaatt ggatactggc 1800
attgatagga cattaaattg tatgattgga cagatgaagc atattttggc tgcagaacag 1860
aagaaaacag attttaagcc agaagatgaa aacaatgttt tgattcaata tactaatgcc 1920
tgtgtaaaag tctgtgctta cgtaagaaaa caagtggaga agattaaaaa ttccatggat 1980
```

gggaagaatg tggatacagt tttgatggaa cttggagtac gttttcatcq acttatctat 2040 gagcatcttc aacaatattc ctacagttgt atgggtggca tgttggccat ttgtgatgta 2100 gccgaatata ggaagtgtgc caaagacttc aagattccaa tggtattaca tctttttgat 2160 actotycaty ctotttycaa tottotyyta gttycoccay ataatttaaa gcaagtotyc 2220 tcaggagaac aacttgctaa tctggacaag aatatacttc actccttcgt acaacttcgt 2280 gctgattata gatctgcccg ccttgctcga cacttcagct gagattgaat ttacaaagga 2340 att <210> 369 <211> 708 <212> PRT <213> Homo sapiens <400> 369 Met Ala Thr Thr Ala Glu Leu Phe Glu Glu Pro Phe Val Ala Asp Glu 10 Tyr Ile Glu Arg Leu Val Trp Arg Thr Pro Gly Gly Ser Arg Gly 25 Gly Pro Glu Ala Phe Asp Pro Lys Arg Leu Leu Glu Glu Phe Val Asn 40 His Ile Gln Glu Leu Gln Ile Met Asp Glu Arg Ile Gln Arg Lys Val 55 Glu Lys Leu Glu Gln Gln Cys Gln Lys Glu Ala Lys Glu Phe Ala Lys 70 Lys Val Gln Glu Leu Gln Lys Ser Asn Gln Val Ala Phe Gln His Phe 90 Gln Glu Leu Asp Glu His Ile Ser Tyr Val Ala Thr Lys Val Cys His 100 105 Leu Gly Asp Gln Leu Glu Gly Val Asn Thr Pro Arg Gln Arg Ala Val 120 Glu Ala Gln Lys Leu Met Lys Tyr Phe Asn Glu Phe Leu Asp Gly Glu 135 140 Leu Lys Ser Asp Val Phe Thr Asn Ser Glu Lys Ile Lys Glu Ala Ala 150 155 Asp Ile Ile Gln Lys Leu His Leu Ile Ala Gln Glu Leu Pro Phe Asp 170 Arg Phe Ser Glu Val Lys Ser Lys Ile Ala Ser Lys Tyr His Asp Leu 185 Glu Cys Gln Leu Ile Gln Glu Phe Thr Ser Ala Gln Arg Arg Gly Glu 200 205 Ile Ser Arg Met Arg Glu Val Ala Ala Val Leu Leu His Phe Lys Gly 215 220 Tyr Ser His Cys Val Asp Val Tyr Ile Lys Gln Cys Gln Glu Gly Ala 230 235 Tyr Leu Arg Asn Asp Ile Phe Glu Asp Ala Gly Ile Leu Cys Gln Arg 250 245 Val Asn Lys Gln Val Gly Asp Ile Phe Ser Asn Pro Glu Thr Val Leu 265 Ala Lys Leu Ile Gln Asn Val Phe Glu Ile Lys Leu Gln Ser Phe Val 280 Lys Glu Gln Leu Glu Glu Cys Arg Lys Ser Asp Ala Glu Gln Tyr Leu 295 300 Lys Asn Leu Tyr Asp Leu Tyr Thr Arg Thr Thr Asn Leu Ser Ser Lys 310 315 Leu Met Glu Phe Asn Leu Gly Thr Asp Lys Gln Thr Phe Leu Ser Lys 325 330 335 Leu Ile Lys Ser Ile Phe Ile Ser Tyr Leu Glu Asn Tyr Ile Glu Val 340 345 350

```
Glu Thr Gly Tyr Leu Lys Ser Arg Ser Ala Met Ile Leu Gln Arg Tyr
                       360
Tyr Asp Ser Lys Asn His Gln Lys Arg Ser Ile Gly Thr Gly Gly Ile
                    375
Gln Asp Leu Lys Glu Arg Ile Arg Gln Arg Thr Asn Leu Pro Leu Gly
                390
                      395
Pro Ser Ile Asp Thr His Gly Glu Thr Phe Leu Ser Gln Glu Val Val
            405
                             410
Val Asn Leu Gln Glu Thr Lys Gln Ala Phe Glu Arg Cys His Arg
                          425
         420
Leu Ser Asp Pro Ser Asp Leu Pro Arg Asn Ala Phe Arg Ile Phe Thr
      435 440 445
Ile Leu Val Glu Phe Leu Cys Ile Glu His Ile Asp Tyr'Ala Leu Glu
   450 455 460
Thr Gly Leu Ala Gly Ile Pro Ser Ser Asp Ser Arg Asn Ala Asn Leu
               470
                                475
Tyr Phe Leu Asp Val Val Gln Gln Ala Asn Thr Ile Phe His Leu Phe
             485
                             490 495
Asp Lys Gln Phe Asn Asp His Leu Met Pro Leu Ile Ser Ser Pro
                           505
Lys Leu Ser Glu Cys Leu Gln Lys Lys Glu Ile Ile Glu Gln Met
                       520
Glu Met Lys Leu Asp Thr Gly Ile Asp Arg Thr Leu Asn Cys Met Ile
                    535
                                     540
Gly Gln Met Lys His Ile Leu Ala Ala Glu Gln Lys Lys Thr Asp Phe
                 550
                                  555
Lys Pro Glu Asp Glu Asn Asn Val Leu Ile Gln Tyr Thr Asn Ala Cys
             565
                             570
Val Lys Val Cys Ala Tyr Val Arg Lys Gln Val Glu Lys Ile Lys Asn
          580
                           585
Ser Met Asp Gly Lys Asn Val Asp Thr Val Leu Met Glu Leu Gly Val
                       600
Arg Phe His Arg Leu Ile Tyr Glu His Leu Gln Gln Tyr Ser Tyr Ser
                    615
Cys Met Gly Gly Met Leu Ala Ile Cys Asp Val Ala Glu Tyr Arg Lys
                630
                                  635
Cys Ala Lys Asp Phe Lys Ile Pro Met Val Leu His Leu Phe Asp Thr
                             650
             645
Leu His Ala Leu Cys Asn Leu Leu Val Val Ala Pro Asp Asn Leu Lys
                          665
         660
Gln Val Cys Ser Gly Glu Gln Leu Ala Asn Leu Asp Lys Asn Ile Leu
      675 680 685
His Ser Phe Val Gln Leu Arg Ala Asp Tyr Arg Ser Ala Arg Leu Ala
                   695
Arg His Phe Ser
705
```

<210> 370

<211> 60

<212> DNA

<213> Homo sapiens

×400× 270

gtcaatcact ctcccagcat aagcaccca gcccactcta ttccagggag tcatgctatg 60

<210> 371

```
<211> 60
<212> DNA
<213> Homo sapiens
<400> 371
agtagaattt cctctggaac tggagacatt ttccagcaac atattcagct tgaaagtaca 60
<210> 372
<211> 60
<212> DNA
<213> Homo sapiens
<400> 372
ccagagactg gagatcctgt tacgctgaga ctccttgatg atggagcagg tgctgatgtt 60
<210> 373
<211> 60
<212> DNA
<213> Homo sapiens
<400> 373
ttacagtctg ctgtatctaa cattgcccag gcgcctctgt ttattccccc caattctgat 60
<210> 374
<211> 60
<212> DNA
<213> Homo sapiens
<400> 374
gctgtgcccc cagccactgt ggaagccttt gtggaaagag acagcctcca ttttcctcat 60
<210> 375
<211> 60
<212> DNA
<213> Homo sapiens
<400> 375
aaaaacacag tgactgtgga taatactgtg ggcaacgaca ctatgtttct agttacgtgg 60
<210> 376
<211> 20
<212> PRT
<213> Homo sapiens
Leu Gln Ser Ala Val Ser Asn Ile Ala Gln Ala Pro Leu Phe Ile Pro
                                    10
Pro Asn Ser Asp
            20
<210> 377
<211> 20
```

```
<212> PRT
<213> Homo sapiens
<400> 377
Val Asn His Ser Pro Ser Ile Ser Thr Pro Ala His Ser Ile Pro Gly
                                  10
Ser His Ala Met
<210> 378
<211> 20
<212> PRT
<213> Homo sapiens
<400> 378
Pro Glu Thr Gly Asp Pro Val Thr Leu Arg Leu Leu Asp Asp Gly Ala
                        10
Gly Ala Asp Val
<210> 379
<211> 20
<212> PRT
<213> Homo sapiens
<400> 379
Ala Val Pro Pro Ala Thr Val Glu Ala Phe Val Glu Arg Asp Ser Leu
1 5
                                  10
His Phe Pro His
           20
<210> 380
<211> 20
<212> PRT
<213> Homo sapiens
<400> 380
Ser Arg Ile Ser Ser Gly Thr Gly Asp Ile Phe Gln Gln His Ile Gln
Leu Glu Ser Thr
           20
<210> 381
<211> 20
<212> PRT
<213> Homo sapiens
Lys Asn Thr Val Thr Val Asp Asn Thr Val Gly Asn Asp Thr Met Phe
                               10
Leu Val Thr Trp
           20
```

```
<210> 382
<211> 20
<212> PRT
<213> Homo sapiens
<400> 382
Lys Pro Gly His Trp Thr Tyr Thr Leu Asn Asn Thr His His Ser Leu
Gln Ala Leu Lys
<210> 383
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 383
                                                                   29
cggcgaattc atggattggg ggacgctgc
<210> 384
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 384
                                                                   35
cggcctcgag tcacccctct atccgaacct tctgc
<210> 385
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 385
                                                                   32
cggcgaattc cacgaaccac tcgcaagttc ag
<210> 386
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 386
                                                                   30
cggctcgagt tagcttgggc ctgtgattgc
<210> 387
<211> 20
```

```
<212> PRT
<213> Homo sapiens
<400> 387
Phe Phe Lys Trp Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala
                    10
Ala Ala Ala Ser
<210> 388
<211> 19
<212> PRT
<213> Homo sapiens
<400> 388
Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser Thr Gln
    5
1
                              10
Pro Glu Asp
<210> 389
<211> 20
<212> PRT
<213> Homo sapiens
<400> 389
Ala Ala Ala Ser Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg
1 5
                            10
Lys Lys Ser Gln
          20
<210> 390
<211> 20
<212> PRT
<213> Homo sapiens
<400> 390
Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu
                     10
Lys Met Arg Glu
          20
<210> 391
<211> 20
<212> PRT
<213> Homo sapiens
Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val
                      10
1
Thr Asp Ser Pro
. 20
```

```
<210> 392
<211> 20
<212> PRT
<213> Homo sapiens
<400> 392
Arg Lys Lys Ser Gln Glu Lys Met Arg Glu Val Thr Asp Ser Pro Gly
1 5
Arg Pro Arg Glu
           20
<210> 393
<211> 20
<212> PRT
<213> Homo sapiens
<400> 393
Glu Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu
Thr Ile Pro Gln
           20 .
<210> 394
<211> 20
<212> PRT
<213> Homo sapiens
<400> 394
Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr
Ser Ser His Gly
. 20
<210> 395
<211> 19
<212> PRT
<213> Homo sapiens
<400> 395
Gly Arg Pro Arg Glu Leu Thr Ile Pro Gln Thr Ser Ser His Gly Ala
Asn Arg Phe
<210> 396
<211> 19
<212> PRT
<213> Homo sapiens
Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser
                5
                    10
Asp Leu Glu
```

```
<210> 397
<211> 20
<212> PRT
<213> Homo sapiens
<400> 397
Ser Glu Asn Ala Ala Pro Ser Asp Leu Glu Ser Ile Phe Lys Asp Ala
1 5
                       10
Lys Ile Pro Val
           20
<210> 398
<211> 20
<212> PRT
<213> Homo sapiens
<400> 398
Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro Phe Leu Val
Lys Thr Gly Tyr
           20
<210> 399
<211> 20
<212> PRT
<213> Homo sapiens
<400> 399
Ser Gly Pro Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro
                                  10
                                                      15
Asp Glu Ser Trp
           20
<210> 400
<211> 20
<212> PRT
<213> Homo sapiens
<400> 400
Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu
Ala Leu Ser Gly
           20
<210> 401
<211> 20
<212> PRT
<213> Homo sapiens
Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His Gly
               5
                                 10
```

```
Lys Pro Ile Glu
  20
<210> 402
<211> 20
<212> PRT
<213> Homo sapiens
<400> 402
Lys Ile Glu Leu His Gly Lys Pro Ile Glu Val Glu His Ser Val Pro
                        10
Lys Arg Gln Arg
          20
<210> 403
<211> 20
<212> PRT
<213> Homo sapiens
<400> 403
Val Glu His Ser Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile
                                 10
Arg Asn Ile Pro
           20
<210> 404
<211> 20
<212> PRT
<213> Homo sapiens
<400> 404
Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu
1 5
Val Leu Asp Ser
           20
<210> 405
<211> 20
<212> PRT
<213> Homo sapiens
<400> 405
Ala Val Val Asn Val Thr Tyr Ser Ser Lys Asp Gln Ala Arg Gln Ala
Leu Asp Lys Leu
           20
<210> 406
<211> 20
<212> PRT
<213> Homo sapiens
<400> 406
```

```
Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu Glu
1 5
                              10
Asn Phe Thr Leu
          20
<210> 407
<211> 20
<212> PRT
<213> Homo sapiens
<400> 407
Asn Gly Phe Gln Leu Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro
1 5 10
Asp Glu Thr Ala
          20
<210> 408
<211> 20
<212> PRT
<213> Homo sapiens
<400> 408
Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Leu
1
                             10
Gln Gln Pro Arg
          20
<210> 409
<211> 20
<212> PRT
<213> Homo sapiens
<400> 409
Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly
1 . 5
Gln Arg Gly Ser
          20
<210> 410
<211> 20
<212> PRT
<213> Homo sapiens
Gly Arg Arg Gly Leu Gly Gln Arg Gly Ser Ser Arg Gln Gly Ser Pro
1
                              10
Gly Ser Val Ser
          20
<210> 411
<211> 20
<212> PRT
<213> Homo sapiens
```

```
<400> 411
Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys Pro Cys Asp
                         10
Leu Pro Leu Arg
       20
<210> 412
<211> 20
<212> PRT
<213> Homo sapiens
<400> 412
Lys Gln Lys Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln
                       10
Phe Val Gly Ala
<210> 413
<211> 20
<212> PRT
<213> Homo sapiens
<400> 413
Leu Leu Val Pro Thr Gln Phe Val Gly Ala Ile Ile Gly Lys Glu Gly
1
                                 10
Ala Thr Ile Arg
           20
<210> 414
<211> 20
<212> PRT
<213> Homo sapiens
<400> 414
Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln Thr
                                10
Gln Ser Lys Ile
           20
<210> 415
<211> 20
<212> PRT
<213> Homo sapiens
Asn Ile Thr Lys Gln Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu
                                 10
Asn Ala Gly Ala
           20
<210> 416
<211> 20
```

```
<212> PRT
<213> Homo sapiens
<400> 416
Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala Glu Lys Ser Ile Thr
Ile Leu Ser Thr
<210> 417
<211> 20
<212> PRT
<213> Homo sapiens
<400> 417
Ala Glu Lys Ser Ile Thr Ile Leu Ser Thr Pro Glu Gly Thr Ser Ala
1
                             10
Ala Cys Lys Ser
<210> 418
<211> 20
<212> PRT
<213> Homo sapiens
<400> 418
Pro Glu Gly Thr Ser Ala Ala Cys Lys Ser Ile Leu Glu Ile Met His
                                   10
Lys Glu Ala Gln
            20
<210> 419
<211> 20
<212> PRT
<213> Homo sapiens
<400> 419
Ile Leu Glu Ile Met His Lys Glu Ala Gln Asp Ile Lys Phe Thr Glu
Glu Ile Pro Leu
            20
<210> 420
<211> 455
<212> DNA
<213> Homo sapiens
<400> 420
gaagacatgc ttacttcccc ttcaccttcc ttcatgatgt gggaagagtg ctgcaaccca 60
gccctagcca acgccgcatg agagggagtg tgccgagggc ttctgagaag gtttctctca 120
catctagaaa gaagcgctta agatgtggca gcccctcttc ttcaagtggc tcttgtcctg 180
ttgccctggg agttctcaaa ttgctgcagc agcctccacc cagcctgagg atgacatcaa 240
tacacagagg aagaagagtc aggaaaagat qagagaagtt acagactctc ctgggcgacc 300
ccgagagett accattecte agacttette acatggtget aacagatttg tteetaaaag 360
```

taaaqctcta qaqqccqtca aattqqcaat aqaaqccqqq ttccaccata ttgattctgc 420 acatgtttac aataatgagg agcaggttgg actgg <210> 421 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 421 24 actagtgtcc gcgtggcggc ctac <210> 422 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 422 34 catgagaatt catcacatgc ccttgaaggc tccc <210> 423 <211> 161 <212> PRT <213> Homo sapiens <400> 423 Met Gln His His His His His His Thr Ser Val Arg Val Ala Ala 5 10 Tyr Phe Glu Asn Phe Leu Ala Ala Trp Arg Pro Val Lys Ala Ser Asp 20 25 Gly Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp Val Pro Met Asp 40 Gly Ile Ser Val Ala Asp Ile Gly Ala Ala Val Ser Ser Ile Phe Asn 55 Ser Pro Glu Glu Phe Leu Gly Lys Ala Val Gly Leu Ser Ala Glu Ala 75 70 Leu Thr Ile Gln Gln Tyr Ala Asp Val Leu Ser Lys Ala Leu Gly Lys 90 Glu Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu Lys Leu Gly 100 105 110 Phe Pro Ala Ala Lys Glu Ile Ala Asn Met Cys Arg Phe Tyr Glu Met 120 Lys Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val 135 Lys Ser Phe Ser Gln Phe Ile Ser Glu Asn Gln Gly Ala Phe Lys Gly 145 150 155 Met

<210> 424

<211> 489

<212> DNA

```
<213> Homo sapiens
<400> 424
atgcagcatc accaccatca ccaccacat agtgtccgcg tggcggccta ctttgaaaac 60
tttctcgcgg cgtggcgcc cgtgaaagcc tctgatggag attactacac cttggctgta 120
ccgatgggag atgtaccaat ggatggtate tetgttgetg atattggage agecgtetet 180
agcattttta attctccaga ggaattttta ggcaaggccg tggggctcag tgcagaagca 240
ctaacaatac agcaatatgc tgatgttttg tccaaggctt tggggaaaga agtccgagat 300
gcaaagatta ccccggaagc tttcgagaag ctgggattcc ctgcagcaaa ggaaatagcc 360
aatatgtgtc gtttctatga aatgaagcca gaccgagatg tcaatctcac ccaccaacta 420
aatcccaaag tcaaaagctt cagccagttt atctcagaga accagggagc cttcaagggc 480
atgtgatga
<210> 425
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 425
                                                                   32
aacaaactgt atatcggaaa cctcagcgag aa
<210> 426
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 426
ccatagaatt cattacttcc gtcttgactg agg
                                                                   33
<210> 427
<211> 586
<212> PRT
<213> Homo sapiens
<400> 427
Met Gln His His His His His Asn Lys Leu Tyr Ile Gly Asn Leu
                 5
                                    10
Ser Glu Asn Ala Ala Pro Ser Asp Leu Glu Ser Ile Phe Lys Asp Ala
Lys Ile Pro Val Ser Gly Pro Phe Leu Val Lys Thr Gly Tyr Ala Phe
Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu
                        55
Ser Gly Lys Ile Glu Leu His Gly Lys Pro Ile Glu Val Glu His Ser
                                        75
Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro
                                    90
Pro His Leu Gln Trp Glu Val Leu Asp Ser Leu Leu Val Gln Tyr Gly
            100
                                105
                                                     110
Val Val Glu Ser Cys Glu Gln Val Asn Thr Asp Ser Glu Thr Ala Val
                            120
Val Asn Val Thr Tyr Ser Ser Lys Asp Gln Ala Arg Gln Ala Leu Asp
```

	130					135					140				
Lys 145	_	Asn	Gly	Phe	Gln 150		Glu	Asn	Phe	Thr 155		Lys	Val	Ala	Tyr 160
Ile	Pro	Asp	Glu	Thr 165	Ala	Ala	Gln	Gln	Asn 170	Pro	Leu	Gln	Gln	Pro 175	Arg
Gly	Arg	Arg	Gly 180	Leu	Gly	Gln	Arg	Gly 185	Ser	Ser	Arg	Gln	Gly 190	Ser	Pro
Gly	Ser	Val 195	Ser	Lys	Gln	Lys	Pro 200	Cys	Asp	Leu	Pro	Leu 205	Arg	Leu	Leu
Val	Pro 210	Thr	Gln	Phe	Val	Gly 215	Ala	Ile	Ile	Gly	Lys 220	Glu	Gly	Ala	Thr
Ile 225	Arg	Asn	Ile	Thr	Lys 230	Gln	Thr	Gln	Ser	Lys 235	Ile	Asp	Val	His	Arg 240
Lys	Glu	Asn	Ala	Gly 245	Ala	Ala	Glu	Lys	Ser 250	Ile	Thr	Ile	Leu	Ser 255	Thr
		_	Thr 260				_	265					270		
_		275	Gln	_		_	280					285		_	
	290		Asn			295					300				
305		1	Lys		310					315					320
			Glu	325			-		330		_			335	
-	_		Val 340			_		345					350		_
_		355	Glu		_		360	_				365			
Ala	His 370	Leu	Ile	Pro	Gly	Leu 375	Asn	Leu	Asn	Ala	Leu 380	Gly	Leu	Phe	Pro
385			Gly		390					395					400
			Tyr	405					410					415	
			Pro 420					425				_	430		
		435	Lys				440			_		445			
	450		Glu			455		_		-	460				
465			Glu		470					475					480
			Glu	485					490					495	
			Arg 500					505					510		
	Gly	515					520					525	Ala		
	530		Arg			535					540				
545			Gly		550	_		-		555					560
			Leu	565					570	Gln	Gln	Gln	Lys	Ala 575	Leu
Gln	Ser	Gly	Pro 580	Pro	Gln	Ser	Arg	Arg 585	Lys						

```
<210> 428
<211> 1764
<212> DNA
<213> Homo sapiens
<400> 428
atgcaqcatc accaccatca ccacaacaaa ctqtatatcq qaaacctcaq cqaqaacqcc 60
gccccctcgg acctagaaag tatcttcaag gacgccaaga tcccggtgtc gggacccttc 120
ctggtgaaga ctggctacgc gttcgtggac tgcccggacg agagctgggc cctcaaggcc 180
atcgaggcgc tttcaggtaa aatagaactg cacgggaaac ccatagaagt tgagcactcg 240
gtcccaaaaa ggcaaaggat tcggaaactt cagatacgaa atatcccgcc tcatttacag 300
tgggaggtgc tggatagttt actagtccag tatggagtgg tggagagctg tgagcaagtg 360
aacactgact cggaaactgc agttgtaaat gtaacctatt ccagtaagga ccaagctaga 420
caagcactag acaaactgaa tggatttcag ttagagaatt tcaccttgaa agtagcctat 480
atcoctgatg aaacggccgc ccagcaaaac cccttgcagc agccccgagg tcgccggggg 540
cttgggcaga ggggctcctc aaggcagggg tctccaggat ccgtatccaa gcagaaacca 600
tqtqatttqc ctctqcqcct qctqqttccc acccaatttq ttqqaqccat cataggaaaa 660
qaaqqtqcca ccattcqqaa catcaccaaa caqacccaqt ctaaaaatcqa tqtccaccqt 720
aaagaaaatg cgggggctgc tgagaagtcg attactatcc tctctactcc tgaaggcacc 780
tctgcggctt gtaagtctat tctggagatt atgcataagg aagctcaaga tataaaattc 840
acagaagaga toccottgaa gattttagot cataataact ttgttggacg tottattggt 900
aaagaaggaa gaaatcttaa aaaaattgag caagacacag acactaaaat cacgatatct 960
ccattgcagg aattgacgct gtataatcca gaacgcacta ttacagttaa aggcaatgtt 1020
gagacatgtg ccaaagctga ggaggagatc atgaagaaaa tcagggagtc ttatgaaaat 1080
gatattgctt ctatgaatct tcaagcacat ttaattcctg gattaaatct gaacgccttg 1140
ggtctgttcc cacccacttc agggatgcca cctcccacct cagggccccc ttcagccatg 1200
actoctccct accogcagtt tgagcaatca gaaacggaga ctgttcatct gtttatccca 1260
getetateag teggtgeeat categgeaag eagggeeage acateaagea getttetege 1320
tttgctggag cttcaattaa gattgctcca gcggaagcac cagatgctaa agtgaggatg 1380
gtgattatca ctggaccacc agaggctcag ttcaaggctc agggaagaat ttatggaaaa 1440
attaaagaag aaaactttgt tagtcctaaa gaagaggtga aacttgaagc tcatatcaga 1500
gtgccatcct ttgctgctgg cagagttatt ggaaaaggag gcaaaacggt gaatgaactt 1560
caqaatttgt caagtgcaga agttgttgtc cctcgtgacc agacacctga tgagaatgac 1620
caaqtqqttq tcaaaataac tqqtcacttc tatqcttqcc aqqttqccca qaqaaaaatt 1680
caggaaattc tgactcaggt aaagcagcac caacaacaga aggctctgca aagtggacca 1740
                                                                  1764
cctcagtcaa gacggaagta atga
<210> 429
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 429
ccatggaatt cattatttca atataagata atctc
                                                                  35
<210> 430
<211> 881
<212> PRT
<213> Homo sapiens
<400> 430
Met Gln His His His His His Gly Val Gln Leu Gln Asp Asn Gly
                                    10
Tyr Asn Gly Leu Leu Ile Ala Ile Asn Pro Gln Val Pro Glu Asn Gln
```

181

			20					25					30		
Asn	Leu	Ile 35	Ser	Asn	Ile	Lys	Glu 40	Met	Ile	Thr	Glu	Ala 45	Ser	Phe	Tyr
Leu	Phe 50	Asn	Ala	Thr	Lys	Arg 55	Arg	Val	Phe	Phe	Arg 60	Asn	Ile	Lys	Ile
Leu 65	Ile	Pro	Ala	Thr	Trp 70	Lys	Ala	Asn	Asn	Asn 75	Ser	Lys	Ile	Lys	Gln 80
Glu	Ser	Tyr	Glu	Lys 85	Ala	Asn	Val	Ile	Val 90	Thr	Asp	Trp	Tyr	Gly 95	Ala
His	Gly	Asp	Asp 100	Pro	Tyr	Thr	Leu	Gln 105	Tyr	Arg	Gly	Cys	Gly 110	Lys	Glu
_	Lys	115	Ile				120					125	_		
	130		Tyr			135					140				
145		_	Trp	_	150		_			155		_	_		160
			Gly	165					170					175	
			Ile 180					185					190		
		195	Ser				200					205			
	210		Asn			215					220				
225			Glu		230					235					240
			Asn	245					250					255	
			Ala 260					265					270		
		275	Pro				280					285			
	290		Val		_	295			_		300				
305			Leu		310					315					320
			Thr	325					330					335	
	_		Gln 340					345			-	_	350	_	
		355	Tyr Gly				360					365			
	370		_		_	375					380				
385	_		Tyr Gly	_	390					395					400
			Ile	405					410					415	
			420					425					430		
		435	Leu	•			440					445			
	450		Ser			455					460				
465	=		Phe		470					475					480
val	тЛг	rro	His	пlS	GTD	ьeu	тЛг	ASN	ınr	val	ınr	val	ASP	ASN	THE

PCT/US01/47576

				485					490					495	
۷al	Gly	Asn	Asp 500	Thr	Met	Phe	Leu	Val 505	Thr	Trp	Gln	Ala	Ser 510	Gly	Pro
Pro	Glu	Ile 515	Ile	Leu	Phe	Asp	Pro 520	Asp	Gly	Arg	Lys	Tyr 525	Tyr	Thr	Asn
Asn	Phe 530	Ile	Thr	Asn	Leu	Thr 535	Phe	Arg	Thr	Ala	Ser 540	Leu	Trp	Ile	Pro
545			_		550					555				Thr	560
His	Ser	Leu	Gln	Ala 565	Leu	Lys	Val	Thr	Val 570	Thr	Ser	Arg	Ala	Ser 575	Asn
			580					585					590	Asp	
		595					600		_			605	_	Gln	
Phe	610					615					620			Pro	
Thr 625		_			630					635				Gly	640
_			_	645		_		_	650	_				Ser 655	
			660	-	_			665					670	Ser	
		675					680			_		685		Met	
	690	_	_			695	_				700			Pro	
705					710					715				Ser	720
			_	725					730	_				Gly 735	
		_	740				_	745		•	_		750	Ala	
_		755					760		_			765		Glu -	
	770		_			775		_			780			Lys	
785					790					795				Asn	800
		_		805					810					Thr 815	
			820					825					830		Glu
Thr	His	Glu 835	Ser	His	Arg	Ile	Tyr 840	Val	Ala	Ile	Arg	Ala 845	Met	Asp	Arg
Asn	Ser 850	Leu	Gln	Ser	Ala	Val 855	Ser	Asn	Ile	Ala	Gln 860	Ala	Pro	Leu	Phe
Ile 865 Lys	Pro	Pro	Asn	Ser	Asp 870	Pro	Val	Pro	Ala	Arg 875	Asp	Tyr	Leu	Ile	Leu 880

<210> 431

<211> 2646 <212> DNA

<213> Homo sapiens

```
<400> 431
atgcagcatc accaccatca ccacggagta cagcttcaag acaatgggta taatggattg 60
ctcattgcaa ttaatcctca ggtacctgag aatcagaacc tcatctcaaa cattaaggaa 120
atgataactg aagcttcatt ttacctattt aatgctacca agagaagagt atttttcaga 180
aatataaaga ttttaatacc tgccacatgg aaagctaata ataacagcaa aataaaacaa 240
gaatcatatg aaaaggcaaa tgtcatagtg actgactggt atggggcaca tggagatgat 300
ccatacaccc tacaatacag agggtgtgga aaagagggaa aatacattca tttcacacct 360
aatttcctac tgaatgataa cttaacagct ggctacggat cacgaggccg agtgtttgtc 420
catgaatggg cccacctccg ttggggtgtg ttcgatgagt ataacaatga caaacctttc 480
tacataaatg ggcaaaatca aattaaagtg acaaggtgtt catctgacat cacaggcatt 540
tttgtgtgtg aaaaaggtcc ttgccccaa gaaaactgta ttattagtaa gctttttaaa 600
gaaggatgca cctttatcta caatagcacc caaaatgcaa ctgcatcaat aatgttcatg 660
caaagtttat cttctgtggt tgaattttgt aatgcaagta cccacaacca agaagcacca 720
aacctacaga accagatgtg cagcctcaga agtgcatggg atgtaatcac agactctgct 780
gactttcacc acagetttcc catgaacggg actgagettc cacctcctcc cacattctcg 840
cttgtagagg ctggtgacaa agtggtctgt ttagtgctgg atgtgtccag caagatggca 900
qaqqctgaca qactccttca actacaacaa qccqcaqaat tttatttgat qcaqattgtt 960
qaaattcata ccttcqtqqq cattqccaqt ttcqacaqca aaqqaqaqat caqaqcccaq 1020
ctacaccaaa ttaacagcaa tgatgatcga aagttgctgg tttcatatct gcccaccact 1080
qtatcaqcta aaacaqacat caqcatttqt tcaqqqctta aqaaaqqatt tqaqqtqqtt 1140
gaaaaactga atggaaaagc ttatggctct gtgatgatat tagtgaccag cggagatgat 1200
aagettettg qeaattgett acceaetgtg etcageagtg gtteaacaat teaeteeatt 1260
gccctgggtt catctgcagc cccaaatctg gaggaattat cacgtcttac aggaggttta 1320
aagttctttg ttccagatat atcaaactcc aatagcatga ttgatgcttt cagtagaatt 1380
tcctctggaa ctggagacat tttccagcaa catattcagc ttgaaagtac aggtgaaaat 1440
gtcaaacctc accatcaatt gaaaaacaca gtgactgtgg ataatactgt gggcaacgac 1500
actatgtttc tagttacgtg gcaggccagt ggtcctcctg agattatatt atttgatcct 1560
gatggacgaa aatactacac aaataatttt atcaccaatc taacttttcg gacagctagt 1620
ctttggattc caggaacagc taagcctggg cactggactt acaccctgaa caatacccat 1680
cattetetge aageeetgaa agtgacagtg acetetegeg cetecaacte agetgtgeee 1740
ccagccactg tggaagcctt tgtggaaaga gacagcctcc attttcctca tcctgtgatg 1800
atttatgcca atgtgaaaca gggattttat cccattctta atgccactgt cactgccaca 1860
gttgagccag agactggaga tcctgttacg ctgagactcc ttgatgatgg agcaggtgct 1920
gatgttataa aaaatgatgg aatttactcg aggtattttt tctcctttgc tgcaaatggt 1980
agatatagct tgaaagtgca tgtcaatcac tctcccagca taagcacccc agcccactct 2040
attccaggga gtcatgctat gtatgtacca ggttacacag caaacggtaa tattcagatg 2100
aatgctccaa ggaaatcagt aggcagaaat gaggaggagc gaaagtgggg ctttagccga 2160
gtcagctcag gaggctcctt ttcagtgctg ggagttccag ctggccccca ccctgatgtg 2220
tttccaccat gcaaaattat tgacctggaa gctgtaaaag tagaagagga attgacccta 2280
tcttggacag cacctggaga agactttgat cagggccagg ctacaagcta tgaaataaga 2340
atgagtaaaa gtctacagaa tatccaagat gactttaaca atgctatttt agtaaataca 2400
tcaaagcgaa atcctcagca agctggcatc agggagatat ttacgttctc accccaaatt 2460
tccacqaatg gacctgaaca tcagccaaat ggaqaaacac atgaaagcca cagaatttat 2520
gttgcaatac gagcaatgga taggaactcc ttacagtctg ctgtatctaa cattgcccag 2580
gcgcctctgt ttattccccc caattctgat cctgtacctg ccagagatta tcttatattg 2640
aaataa
                                                                  2646
<210> 432
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> PCR primer
<400> 432
cqcctgctcg agtcattaat attcatcaga aaatgg
                                                                  36
```

```
<211> 371
<212> PRT
<213> Homo sapiens
<400> 433
Met Gln His His His His His Trp Gln Pro Leu Phe Phe Lys Trp
Leu Leu Ser Cys Cys Pro Gly Ser Ser Gln Ile Ala Ala Ala Ser
         20
                           25
Thr Gln Pro Glu Asp Asp Ile Asn Thr Gln Arg Lys Lys Ser Gln Glu
                      40
Lys Met Arg Glu Val Thr Asp Ser Pro Gly Arg Pro Arg Glu Leu Thr
  50 55
                                    60
Ile Pro Gln Thr Ser Ser His Gly Ala Asn Arg Phe Val Pro Lys Ser
    70
                     75
Lys Ala Leu Glu Ala Val Lys Leu Ala Ile Glu Ala Gly Phe His His
            85
                             90
Ile Asp Ser Ala His Val Tyr Asn Asn Glu Glu Gln Val Gly Leu Ala
  . 100
                          105 , 110
Ile Arg Ser Lys Ile Ala Asp Gly Ser Val Lys Arg Glu Asp Ile Phe
     115 120 125
Tyr Thr Ser Lys Leu Trp Ser Asn Ser His Arg Pro Glu Leu Val Arg
                   135
Pro Ala Leu Glu Arg Ser Leu Lys Asn Leu Gln Leu Asp Tyr Val Asp
                150
                                155
Leu Tyr Leu Ile His Phe Pro Val Ser Val Lys Pro Gly Glu Glu Val
             165
                              170
Ile Pro Lys Asp Glu Asn Gly Lys Ile Leu Phe Asp Thr Val Asp Leu
          180
                           185
Cys Ala Thr Trp Glu Ala Met Glu Lys Cys Lys Asp Ala Gly Leu Ala
                       200
Lys Ser Ile Gly Val Ser Asn Phe Asn His Arg Leu Leu Glu Met Ile
                    215
                                     220
Leu Asn Lys Pro Gly Leu Lys Tyr Lys Pro Val Cys Asn Gln Val Glu
                230
                                 235
Cys His Pro Tyr Phe Asn Gln Arg Lys Leu Leu Asp Phe Cys Lys Ser
             245
                              250
Lys Asp Ile Val Leu Val Ala Tyr Ser Ala Leu Gly Ser His Arg Glu
                          265
Glu Pro Trp Val Asp Pro Asn Ser Pro Val Leu Leu Glu Asp Pro Val
            280
Leu Cys Ala Leu Ala Lys Lys His Lys Arg Thr Pro Ala Leu Ile Ala
                   295
                           300
Leu Arg Tyr Gln Leu Gln Arg Gly Val Val Val Leu Ala Lys Ser Tyr
      310
                      315 320
Asn Glu Gln Arg Ile Arg Gln Asn Val Gln Val Phe Glu Phe Gln Leu
            325
                             330
Thr Ser Glu Glu Met Lys Ala Ile Asp Gly Leu Asn Arg Asn Val Arg
                          345 350
Tyr Leu Thr Leu Asp Ile Phe Ala Gly Pro Pro Asn Tyr Pro Phe Ser
                      360
Asp Glu Tyr
   370
```

<210> 434 <211> 1119

<210> 433

```
<212> DNA
<213> Homo sapiens
<400> 434
atgcagcatc accaccatca ccactggcag cccctcttct tcaagtggct cttgtcctgt
                                                                        60
tgccctggga gttctcaaat tgctgcagca gcctccaccc agcctgagga tgacatcaat
                                                                       120
acacagagga agaagagtca ggaaaagatg agagaagtta cagactctcc tgggcgaccc
                                                                       180
cgagagetta ccattectea gaettettea catggtgeta acagatttgt teetaaaagt
                                                                       240
aaagetetag aggeegteaa attggeaata gaageegggt teeaceatat tgattetgea
                                                                       300
catgtttaca ataatgagga gcaggttgga ctggccatcc gaagcaagat tgcagatggc
                                                                       360
agtgtgaaga gagaagacat attctacact tcaaagcttt ggagcaattc ccatcgacca
                                                                       420
gagttggtcc gaccagcctt ggaaaggtca ctgaaaaatc ttcaattgga ctatgttgac
                                                                       480
ctctatctta ttcattttcc agtgtctgta aagccaggtg aggaagtgat cccaaaagat
                                                                       540
                                                                       600
gaaaatggaa aaatactatt tgacacagtg gatctctgtg ccacatggga ggccatggag
                                                                       660
aagtgtaaag atgcaggatt ggccaagtcc atcggggtgt ccaacttcaa ccacaggctg
                                                                       720
ctggagatga tcctcaacaa gccagggctc aagtacaagc ctgtctgcaa ccaggtggaa
                                                                       780
tgtcatcctt acttcaacca gagaaaactg ctggatttct gcaagtcaaa agacattgtt
                                                                       840
ctgqttqcct ataqtqctct qqqatcccat cqaqaaqaac catqqqtqqa cccqaactcc
ccgqtqctct tqqaqqaccc aqtcctttqt qccttqqcaa aaaaqcacaa qcqaacccca
                                                                       900
gccctgattg ccctgcgcta ccagctgcag cgtggggttg tggtcctggc caagagctac,
                                                                       960
aatgagcagc gcatcagaca gaacgtgcag gtgtttgaat tccagttgac ttcagaggag
                                                                      1020
atgaaagcca tagatggcct aaacagaaat gtgcgatatt tgacccttga tatttttgct
                                                                      1080
ggcccccta attatccatt ttctgatgaa tattaatga
                                                                      1119
<210> 435
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 435
ggatccgccg ccaccatgac atccattcga gctgta
                                                                        36
<210> 436
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 436
                                                                        27
gtcgactcag ctggaccaca gccgcag
<210> 437
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 437
                                                                        37
ggatccgccg ccaccatgga ctcctggacc ttctgct
<210> 438
```

```
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Primer
<400> 438
gtcgactcag aaatcctttc tcttgac
                                                                        27
<210> 439
<211> 933
<212> DNA
<213> Homo sapiens
<400> 439
atggactect ggacettetg etgtgtgtee etttgcatee tggtageaaa geacacagat
                                                                        60
gctggagtta tccagtcacc ccqqcacgag qtqacagaqa tqqqacaaqa aqtqactctq
                                                                       120
agatgtaaac caatttcagg acacgactac cttttctggt acagacagac catgatgcgg
                                                                       180
ggactggagt tgctcattta ctttaacaac aacgttccga tagatgattc agggatgccc
                                                                       240
gaggatcgat tctcagctaa gatgcctaat gcatcattct ccactctgaa gatccagccc
                                                                       300
tcagaaccca gggactcagc tgtgtacttc tgtgccagca gtttagttgg agcaaacact
                                                                       360
gaagetttet ttggacaagg caccagacte acagttgtag aggacetgaa caaggtgtte
                                                                       420
ccaccegagg tegetgtt tgagccatca gaagcagaga teteccacae ecaaaaggee
                                                                       480
acactgqtgt gcctggccac aggcttcttc cctgaccacg tggagctgag ctggtgggtg
                                                                       540
aatgggaagg aggtgcacag tggggtcagc acggacccgc agcccctcaa ggagcagccc
                                                                       600
gccctcaatg actccagata ctgcctgagc agccgcctga gggtctcggc caccttctgg
                                                                       660
cagaaccccc gcaaccactt ccgctgtcaa gtccagttct acgggctctc ggagaatgac
                                                                       720
gagtggaccc aggatagggc caaacccgtc acccagatcg tcagcgccga ggcctggggt
                                                                       780
agagcagact gtggctttac ctcggtgtcc taccagcaag gggtcctgtc tgccaccatc
                                                                       840
ctctatgaga tcctgctagg gaaggccacc ctgtatgctg tgctggtcag cgcccttgtg
                                                                       900
ttgatggcca tggtcaagag aaaggatttc tga
                                                                       933
<210> 440
<211> 822
<212> DNA
<213> Homo sapiens
<400> 440
atgacatcca ttcgagctgt atttatattc ctgtggctgc agctggactt ggtgaatgga
                                                                        60
gagaatgtgg agcagcatcc ttcaaccctg agtgtccagg agggagacag cgctgttatc
                                                                       120
                                                                       180
aagtgtactt attcaqacaq tqcctcaaac tacttccctt qqtataagca agaacttgga
                                                                       240
aaaagacctc agcttattat agacattcgt tcaaatgtgg gcgaaaagaa agaccaacga
                                                                       300
attgctgtta cattgaacaa gacagccaaa catttctccc tgcacatcac agagacccaa
                                                                       360
cctgaagact cggctgtcta cttctgtgca gcaagtatac tgaacaccgg taaccagttc
                                                                       420
tattttggga cagggacaag tttgacggtc attccaaata tccagaaccc tgaccctgcc
                                                                       480
gtgtaccage tgagagacte taaatccagt gacaagtetg tetgeetatt cacegatttt
gatteteaaa caaatgtgte acaaagtaag gattetgatg tgtatateac agacaaaact
                                                                       540
qtqctaqaca tqaqqtctat qqacttcaaq aqcaacaqtq ctqtqqcctq qaqcaacaaa
                                                                       600
tctgactttg catgtgcaaa cgccttcaac aacagcatta ttccagaaga caccttcttc
                                                                       660
                                                                       720
cccagcccag aaagttcctg tgatgtcaag ctggtcgaga aaagctttga aacagatacg
aacctaaact ttcaaaacct gtcagtgatt gggttccgaa tcctcctcct gaaagtggcc
                                                                       780
gggtttaatc tgctcatgac gctgcggctg tggtccagct ga
                                                                       822
<210> 441
```

<211> 2311

<212> DNA

<213> Homo sapiens

```
<400> 441
gatttaatcc tatgacaaac taagttggtt ctgtcttcac ctgttttggt gaggttgtgt 60
aagagttggt gtttgctcag gaagagattt aagcatgctt gcttacccag actcagagaa 120
gtctccctgt tctgtcctag ctatgttcct gtgttgtgtg cattcgtctt ttccagagca 180
aaccgcccag agtagaagat ggattggggc acgctgcaga cgatcctggg gggtgtgaac 240
aaacactcca ccagcattgg aaagatctgg ctcaccgtcc tcttcatttt tcgcattatg 300
atcctcgttg tggctgcaaa ggaggtgtgg ggagatgagc aggccgactt tgtctgcaac 360
accetgeage eaggetgeaa gaacgtgtge tacgateact actteeceat etceeacate 420
cggctatggg ccctgcagct gatcttcgtg tccagcccag cgctcctagt ggccatgcac 480
gtggcctacc ggagacatga gaagaagagg aagttcatca agggggagat aaagagtgaa 540
tttaaggaca tcgaggagat caaaacccag aaggtccgca tcgaaggctc cctgtggtgg 600
acctacacaa gcagcatctt cttccgggtc atcttcgaag ccgccttcat gtacgtcttc 660
tatgtcatgt acgacggctt ctccatgcag cggctggtga agtgcaacgc ctggccttgt 720
cccaacactq tgqactqctt tqtqtcccqq cccacqqaqa aqactqtctt cacaqtqttc 780
atgattgcag tgtctggaat ttgcatcctg ctgaatgtca ctgaattgtg ttatttgcta 840
attaqatatt qttctqqqaa qtcaaaaaaq ccaqtttaac qcattqccca qttqttaqat 900
taaqaaataq acagcatqaq aqqqatqaqq caacccqtqc tcagctgtca aggctcagtc 960
qccaqcattt cccaacacaa aqattctqac cttaaatgca accatttqaa acccctgtag 1020
qcctcaggtg aaactccaga tgccacaatg agctctgctc ccctaaagcc tcaaaacaaa 1080
ggcctaattc tatgcctgtc ttaattttct ttcacttaag ttagttccac tgagacccca 1140
ggctgttagg ggttattggt gtaaggtact ttcatatttt aaacagagga tatcggcatt 1200
tgtttctttc tctgaggaca agagaaaaa gccaggttcc acagaggaca cagagaaggt 1260
ttgggtgtcc tcctggggtt ctttttgcca actttcccca cgttaaaggt gaacattggt 1320
tctttcattt gctttggaag ttttaatctc taacagtgga caaagttacc agtgccttaa 1380
actctgttac actttttgga agtgaaaact ttgtagtatg ataggttatt ttgatgtaaa 1440
gatgttctgg ataccattat atgttccccc tgtttcagag gctcagattg taatatgtaa 1500
atggtatgtc attcgctact atgatttaat ttgaaatatg gtcttttggt tatgaatact 1560
ttgcagcaca gctgagagag gctgtctgtt gtattcattg tggtcatagc acctaacaac 1620
attgtagcct caatcgagtg agacagacta gaagttccta gttggcttat gatagcaaat 1680
ggcctcatgt caaatattag atgtaatttt gtgtaagaaa tacagactgg atgtaccacc 1740
aactactacc tgtaatgaca ggcctgtcca acacatctcc cttttccatg ctgtggtagc 1800
cagcatcgga aagaacgctg atttaaagag gtgagcttgg gaattttatt gacacagtac 1860
catttaatgg ggagacaaaa atgggggcca ggggagggag aagtttctgt cgttaaaaac 1920
gagtttggaa agactggact ctaaattctg ttgattaaag atgagctttg tctaccttca 1980
aaagtttgtt tggcttaccc ccttcagcct ccaatttttt aagtgaaaat ataactaata 2040
acatgtgaaa agaatagaag ctaaggttta gataaatatt gagcagatct ataggaagat 2100
tgaacctgaa tattgccatt atgcttgaca tggtttccaa aaaatggtac tccacatact 2160
tcagtgaggg taagtatttt cctgttgtca agaatagcat tgtaaaagca ttttgtaata 2220
ataaagaata gctttaatga tatgcttgta actaaaataa ttttgtaatg tatcaaatac 2280
                                                                  2311
atttaaaaca ttaaaatata atctctataa t
<210> 442
<211> 226
<212> PRT
<213> Homo sapiens
<400> 442
Met Asp Trp Gly Thr Leu Gln Thr Ile Leu Gly Gly Val Asn Lys His
                                     10
Ser Thr Ser Ile Gly Lys Ile Trp Leu Thr Val Leu Phe Ile Phe Arg
             20
Ile Met Ile Leu Val Val Ala Ala Lys Glu Val Trp Gly Asp Glu Gln
                             40
```

Ala Asp Phe Val Cys Asn Thr Leu Gln Pro Gly Cys Lys Asn Val Cys

Tyr Asp His Tyr Phe Pro Ile Ser His Ile Arg Leu Trp Ala Leu Gln

Leu Ile Phe Val Ser Ser Pro Ala Leu Leu Val Ala Met His Val Ala

Tyr Arg Arg His Glu Lys Lys Arg Lys Phe Ile Lys Gly Glu Ile Lys 105

Ser Glu Phe Lys Asp Ile Glu Glu Ile Lys Thr Gln Lys Val Arg Ile

Glu Gly Ser Leu Trp Trp Thr Tyr Thr Ser Ser Ile Phe Phe Arg Val 135

Ile Phe Glu Ala Ala Phe Met Tyr Val Phe Tyr Val Met Tyr Asp Gly 150

Phe Ser Met Gln Arg Leu Val Lys Cys Asn Ala Trp Pro Cys Pro Asn

Thr Val Asp Cys Phe Val Ser Arg Pro Thr Glu Lys Thr Val Phe Thr 185

Val Phe Met Ile Ala Val Ser Gly Ile Cys Ile Leu Leu Asn Val Thr

Glu Leu Cys Tyr Leu Leu Ile Arg Tyr Cys Ser Gly Lys Ser Lys Lys

Pro Val 225

<210> 443

<211> 23

<212> PRT

<213> Homo sapiens

Val Lys Leu Cys Gly Ile Asp Pro Cys Pro Asn Leu Val Asp Cys Phe

Ile Ser Arg Pro Gly Cys Gly 20

<210> 444

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer

189

<400> 444 36 caatcaggca tgcacaacaa actgtatatc ggaaac <210> 445 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> PCR primer <400> 445 30 cgtcaagatc ttcattactt ccgtcttgac <210> 446 <211> 579 <212> PRT <213> Homo sapiens <400> 446 Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro 25 Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val Leu Asp Ser Leu Leu Val Gln Tyr Gly Val Val Glu Ser Cys Glu Gln 105 Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala 150 155 Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln 165 Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys 180 185

Pro	Cys	Asp 195	Leu	Pro	Leu	Arg	Leu 200	Leu	Val	Pro	Thr	Gln 205	Phe	Val	Gly
Ala	Ile 210	Ile	Gly	Lys	Glu	Gly 215	Ala	Thr	Ile	Arg	Asn 220	Ile	Thr	Lys	Gln
Thr 225	Gln	Ser	Lys	Ile	Asp 230	۷al	His	Arg	Lys	Glu 235	Asn	Ala	Gly	Ala	Ala 240
	Lys	Ser	Ile	Thr 245		Leu	Ser	Thr	Pro 250		Gly	Thr	Ser	Ala 255	
Cys	Lys	Ser	Ile 260	Leu	Glu	Ile	Met	His 265	Lys	Glu	Ala	Gln	Asp 270	Ile	Lys
Phe	Thr	Glu 275	Glu	Ile	Pro	Leu	Lys 280	Ile	Leu	Ala	His	Asn 285	Asn	Phe	Val
Gly	Arg 290	Leu	Ile	Gly	Lys	Glu 295	Gly	Arg	Asn	Leu	Lys 300	Lys	Ile	Glu	Gln
Asp 305	Thr	Asp	Thr	Lys	Ile 310	Thr	Ile	Ser	Pro	Leu 315	Gln	Glu	Leu	Thr	Leu 320
Tyr	Asn	Pro	Glu	Arg 325	Thr	Ile	Thr	Val	Lys 330	Gly	Asn	Val	Glu	Thr 335	Суѕ
Ala	Lys	Ala	Glu 340	Glu	Glu	Ile	Met	Lys 345	Lys	Ile	Arg	Glu	Ser 350	Tyr	Glu
Asn	Asp	Ile 355	Ala	Ser	Met	Asn	Leu 360	Gln	Ala	His	Leu	Ile 365	Pro	Gly	Leu
Asn	Leu 370	Asn	Ala	Leu	Gly	Leu 375	Phe	Pro	Pro	Thr	Ser 380	Gly	Met	Pro	Pro
Pro 385	Thr	Ser	Gly	Pro	Pro 390	Ser	Ala	Met	Thr	Pro 395	Pro	Tyr	Pro	Gln	Phe 400
Glu	Gln	Ser	Glu	Thr 405	Glu	Thr	Val	His	Leu 410	Phe	Ile	Pro	Ala	Leu 415	Ser
Val	Gly	Ala	Ile 420	Ile	Gly	Lys	Gln	Gly 425	Gln	His	Ile	Lys	Gln 430	Leu	Ser
Arg	Phe	Ala 435	Gly	Ala	Ser	Ile	Lуs 440	Ile	Ala	Pro	Ala	Glu 445	Ala	Pro	Asp
Ala	Lys 450	Val	Arg	Met	Val	Ile 455	Ile	Thr	Gly	Pro	Pro 460	Glu	Ala	Gln	Phe
Lys 465	Ala	Gln	Gly	Arg	Ile 470	Tyr	Gly	Lys	Ile	Lys 475	Glu	Glu	Asn	Phe	Val 480
Ser	Pro	Lys	Glu	Glu 485	Val	Lys	Leu	Glu	Ala 490	His	Ile	Arg	Val	Pro 495	Ser
Phe	Ala	Ala	Gly 500	Arg	Val	Ile	Gly	Lys 505	Gly	Gly	Lys	Thr	Val 510	Asn	Glu

```
Leu Gln Asn Leu Ser Ser Ala Glu Val Val Val Pro Arg Asp Gln Thr
                            520
Pro Asp Glu Asn Asp Gln Val Val Lys Ile Thr Gly His Phe Tyr
                       535
                                            540
Ala Cys Gln Val Ala Gln Arg Lys Ile Gln Glu Ile Leu Thr Gln Val
                    550
                                        555
545
Lys Gln His Gln Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
                                    570
```

Arg Arg Lys

<210> 447 <211> 1743 <212> DNA <213> Homo sapiens

<400> 447

atgaacaaac tgtatatcgg aaacctcagc gagaacgccg cccctcgga cctagaaagt 60 atcttcaagg acgccaagat cccggtgtcg ggacccttcc tggtgaagac tggctacgcg 120 ttcgtggact gcccggacga gagctgggcc ctcaaggcca tcgaggcgct ttcaggtaaa 180 atagaactgc acgggaaacc catagaagtt gagcactcgg tcccaaaaaag gcaaaggatt 240 cqqaaacttc agatacgaaa tatcccgcct catttacagt gggaggtgct ggatagttta 300 ctaqtccaqt atggagtggt ggagagctgt gagcaagtga acactgactc ggaaactgca 360 gttgtaaatg taacctattc cagtaaggac caagctagac aagcactaga caaactgaat 420 ggatttcagt tagagaattt caccttgaaa gtagcctata tccctgatga aacggccgcc 480 caqcaaaacc cettqcaqca gccccqaqqt cqccgggggc ttgggcagag gggctcctca 540 aggcagggt ctccaggatc cgtatccaag cagaaaccat gtgatttgcc tctgcgcctg 600 ctggttccca cccaatttgt tggagccatc ataggaaaag aaggtgccac cattcggaac 660 atcaccaaac agacccagtc taaaatcgat gtccaccgta aagaaaatgc gggggctgct 720 gagaagtcga ttactatcct ctctactcct gaaggcacct ctgcggcttg taagtctatt 780 ctggagatta tgcataagga agctcaagat ataaaattca cagaagagat ccccttgaag 840 attttagctc ataataactt tgttggacgt cttattggta aagaaggaag aaatcttaaa 900 aaaattgagc aagacacaga cactaaaatc acgatatctc cattgcagga attgacgctg 960 tataatccag aacgcactat tacagttaaa ggcaatgttg agacatgtgc caaagctgag 1020 qaqqaqatca tgaagaaaat cagggagtct tatgaaaatg atattgcttc tatgaatctt 1080 caagcacatt taatteetgg attaaatetg aacgeettgg gtetgtteec acceaettea 1140 gggatgccac ctcccacctc agggccccct tcagccatga ctcctcccta cccgcagttt 1200 gagcaatcag aaacggagac tgttcatctg tttatcccag ctctatcagt cggtgccatc 1260 atcqqcaaqc aqqqccaqca catcaaqcaq ctttctcqct ttqctqqaqc ttcaattaag 1320 attgctccag cggaagcacc agatgctaaa gtgaggatgg tgattatcac tggaccacca 1380 gaggeteagt teaaggetea gggaagaatt tatggaaaaa ttaaagaaga aaactttgtt 1440 agtectaaag aagaggtgaa aettgaaget catateagag tgecateett tgetgetgge 1500 agagttattg gaaaaggagg caaaacggtg aatgaacttc agaatttgtc aagtgcagaa 1560 gttgttgtcc ctcgtgacca gacacctgat gagaatgacc aagtggttgt caaaataact 1620 qqtcacttct atqcttqcca qqttqcccaq agaaaaattc aggaaattct gactcaggta 1680 aaqcaqcacc aacaacaqaa qqctctqcaa agtqqaccac ctcagtcaag acggaagtaa 1740 1743 tga

<210> 448 <211> 35 <212> DNA <213> Artificial Sequence

<220>
<223> PCR primer

<400> 448
cgtactagca tatgaacaaa ctgtatatcg gaaac

<210> 449
<211> 579

35

<212> PRT <213> Homo sapiens

<400> 449

Met Asn Lys Leu Tyr Ile Gly Asn Leu Ser Glu Asn Ala Ala Pro Ser 5 10 15

Asp Leu Glu Ser Ile Phe Lys Asp Ala Lys Ile Pro Val Ser Gly Pro 20 25 30

Phe Leu Val Lys Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser 35 40 45

Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly Lys Ile Glu Leu His 50 55 60

Gly Lys Pro Ile Glu Val Glu His Ser Val Pro Lys Arg Gln Arg Ile 65 70 75 80

Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val $85 \hspace{0.5cm} 90 \hspace{0.5cm} 95$

Leu Asp Ser Leu Leu Val Gl
n Tyr Gly Val Val Glu Ser Cys Glu Gl
n 100 105 110

Val Asn Thr Asp Ser Glu Thr Ala Val Val Asn Val Thr Tyr Ser Ser 115 120 125

Lys Asp Gln Ala Arg Gln Ala Leu Asp Lys Leu Asn Gly Phe Gln Leu 130 135 140

Glu Asn Phe Thr Leu Lys Val Ala Tyr Ile Pro Asp Glu Thr Ala Ala 145 150 155 160

Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln 165 170 175

Arg Gly Ser Ser Arg Gln Gly Ser Pro Gly Ser Val Ser Lys Gln Lys 180 185 190

Pro Cys Asp Leu Pro Leu Arg Leu Leu Val Pro Thr Gln Phe Val Gly 195 200 205

Ala Ile Ile Gly Lys Glu Gly Ala Thr Ile Arg Asn Ile Thr Lys Gln 210 215 220

Thr Gln Ser Lys Ile Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala 225 230 235 240

Glu	Lys	Ser	Ile	Thr 245	Ile	Leu	Ser	Thr	Pro 250	Glu	Gly	Thr	Ser	Ala 255	Ala
Cys	Lys	Ser	Ile 260	Leu	Glu	Ile	Met	His 265	Lys	Glu	Ala	Gln	Asp 270	Ile	Lys
Phe	Thr	Glu 275	Glu	Ile	Pro	Leu	Lys 280	Ile	Leu	Ala	His	Asn 285	Asn	Phe	Val
Glý	Arg 290	Leu	Ile	Gly	Lys	Glu 295	Gly	Arg	Asn	Leu	Lys 300	Lys	Ile	Glu	Gln
Asp 305	Thr	Asp	Thr	Lys	Ile 310	Thr	Ile	Ser	Pro	Leu 315	Gln	Glu	Leu	Thr	Leu 320
Tyr	Asn	Pro	Glu	Arg 325	Thr	Ile	Thr	Val	Lys 330	Gly	Asn	Val	Glu	Thr 335	Cys
Ala	Lys	Ala	Glu 340	Glu	Glu	Ile	Met	Lys 345	Lys	Ile	Arg	Glu	Ser 350	Tyr	Glu
Asn	Asp	Ile 355	Ala	Ser	Met	Asn	Leu 360	Gln	Ala	His	Leu	Ile 365	Pro	Gly	Leu
Asn	Leu 370	Asn	Ala	Leu	Gly	Leu 375	Phe	Pro	Pro	Thr	Ser 380	Gly	Met	Pro	Pro
Pro 385	Thr	Ser	Gly	Pro	Pro 390	Ser	Ala	Met	Thr	Pro 395	Pro	Tyr	Pro	Gln	Phe 400
Glu	Gln	Ser	Glu	Thr 405	Glu	Thr	Val	His	Leu 410	Phe	Ile	Pro	Ala	Leu 415	Ser
Val	Gly	Ala	Ile 420	Ile	Gly	Lys	Gln	Gly 425	Gln	His	Ile	Lys	Gln 430	Leu	Ser
Arg	Phe	Ala 435	Gly	Ala	Ser	Ile	Lys 440	Ile	Ala	Pro	Ala	Glu 445	Ala	Pro	Asp
Ala	Lys 450	Val	Arg	Met	Val	Ile 455	Ile	Thr	Gly	Pro	Pro 460	Glu	Ala	Gln	Phe
Lys 465		Gln	Gly	Arg	Ile 470		Gly	Lys	Ile	Lys 475		Glu	Asn	Phe	Val 480
Ser	Pro	Lys	Glu	Glu 485	Val	Lys	Leu	Glu	Ala 490	His	Ile	Arg	Val	Pro 495	Ser
Phe	Ala	Ala	Gly 500	Arg	Val	Ile	Gly	Lys 505	Gly	Gly	Lys	Thr	Val 510	Asn	Glu
Leu	Gln	Asn 515	Leu	Ser	Ser	Ala	Glu 520	Val	Val	Val	Pro	Arg 525	Asp	Gln	Thr
Pro	Asp 530	Glu	Asn	Asp	Gln	Val 535	Val	Val	Lys	Ile	Thr 540	Gly	His	Phe	Tyr
Ala	Cys	Gln	Val	Ala	Gln	Arg	Lys	Ile	Gln	Glu	Ile	Leu	Thr	Gln	Val

194

```
545
                    550
                                        555
                                                            560
Lys Gln His Gln Gln Gln Lys Ala Leu Gln Ser Gly Pro Pro Gln Ser
                565
                                    570
Arg Arg Lys
<210> 450
<211> 1743
<212> DNA
<213> Homo sapiens
<400> 450
atqaacaaac tgtatatcgg aaacctcagc gagaacgccg cccctcgga cctagaaagt 60
atcttcaagg acgccaagat cccggtgtcg ggacccttcc tggtgaagac tggctacgcg 120
ttcgtggact gcccggacga gagctgggcc ctcaaggcca tcgaggcgct ttcaggtaaa 180
atagaactgc acggqaaacc catagaagtt gagcactcgg tcccaaaaag gcaaaggatt 240
cggaaacttc agatacgaaa tatcccgcct catttacagt gggaggtgct ggatagttta 300
ctagtccagt atggagtggt ggagagctgt gagcaagtga acactgactc ggaaactgca 360
gttgtaaatg taacctattc cagtaaggac caagctagac aagcactaga caaactgaat 420
ggatttcagt tagagaattt caccttgaaa gtagcctata tccctgatga aacggccgcc 480
cagcaaaacc ccttgcagca gccccgaggt cgccgggggc ttgggcagag gggctcctca 540
aggcaggggt ctccaggatc cgtatccaag cagaaaccat gtgatttgcc tctgcgcctg 600
ctggttccca cccaatttgt tggagccatc ataggaaaag aaggtgccac cattcggaac 660
atcaccaaac agacccagtc taaaatcgat gtccaccgta aagaaaatgc gggggctgct 720
gagaagtcga ttactatcct ctctactcct gaaggcacct ctgcggcttg taagtctatt 780
ctggagatta tgcataagga agctcaagat ataaaattca cagaagagat ccccttgaag 840
attttagctc ataataactt tgttggacgt cttattggta aagaaggaag aaatcttaaa 900
aaaattgagc aagacacaga cactaaaatc acgatatctc cattgcagga attgacgctg 960
tataatccaq aacqcactat tacaqttaaa qqcaatqttq aqacatqtqc caaaqctgag 1020
gaggagatca tgaagaaaat cagggagtct tatgaaaatg atattgcttc tatgaatctt 1080
caagcacatt taatteetgg attaaatetg aacgeettgg gtetgtteec acceaettea 1140
gggatgcac eteccacete agggeeceet teagecatga etecteceta ecegeagttt 1200
gagcaatcag aaacggagac tgttcatctg tttatcccag ctctatcagt cggtgccatc 1260
atcggcaagc agggccagca catcaagcag ctttctcgct ttgctggagc ttcaattaag 1320
attgctccag cggaagcacc agatgctaaa gtgaggatgg tgattatcac tggaccacca 1380
gaggctcagt tcaaggctca gggaagaatt tatggaaaaa ttaaagaaga aaactttgtt 1440
agtoctaaag aagaggtgaa acttgaagct catatcagag tgccatcctt tgctgctggc 1500
agagttattg gaaaaggagg caaaacggtg aatgaacttc agaatttgtc aagtgcagaa 1560
gttgttgtcc ctcgtgacca gacacctgat gagaatgacc aagtggttgt caaaataact 1620
ggtcacttct atgcttgcca ggttgcccag agaaaaattc aggaaattct gactcaggta 1680
aagcagcacc aacaacagaa ggctctgcaa agtggaccac ctcagtcaag acggaagtaa 1740
tga
<210> 451
<211> 25
<212> PRT
<213> Homo sapiens
<400> 451
Leu Gly Lys Glu Val Arg Asp Ala Lys Ile Thr Pro Glu Ala Phe Glu
Lys Leu Gly Phe Pro Ala Ala Lys Glu
```

20

```
<210> 452
<211> 25
<212> PRT
<213> Homo sapiens
<400> 452
Lys Ala Ser Asp Gly Asp Tyr Tyr Thr Leu Ala Val Pro Met Gly Asp
Val Pro Met Asp Gly Ile Ser Val Ala
             20
<210> 453
<211> 16
<212> PRT
<213> Homo sapiens
<400> 453
Pro Asp Arg Asp Val Asn Leu Thr His Gln Leu Asn Pro Lys Val Lys
                 5
<210> 454
<211> 20
<212> PRT
<213> Homo sapiens
<400> 454
Lys Ile Ala Pro Ala Glu Ala Pro Asp Ala Lys Val Arg Met Val Ile
Ile Thr Gly Pro
<210> 455
<211> 20
<212> PRT
<213> Homo sapiens
<400> 455
Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly
                                     10
Arg Arg Gly Leu
<210> 456
<211> 20
<212> PRT
<213> Homo sapiens
<400> 456
Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr Cys Ala Lys Ala Glu
```

196

10 15 Glu Glu Ile Met 20 <210> 457 <211> 20 <212> PRT <213> Homo sapiens Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ala Ile Glu Ala Leu Ser Gly <210> 458 <211> 20 <212> PRT <213> Homo sapiens <400> 458 Ile Arg Lys Leu Gln Ile Arg Asn Ile Pro Pro His Leu Gln Trp Glu Val Leu Asp Ser 20 <210> 459 <211> 20 <212> PRT <213> Homo sapiens <400> 459 Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg Gly Arg Arg Gly Leu Gly Gln Arg Gly Ser <210> 460 <211> 20 <212> PRT <213> Homo sapiens Asp Val His Arg Lys Glu Asn Ala Gly Ala Ala Glu Lys Ser Ile Thr 10 Ile Leu Ser Thr

<210> 461

```
<211> 20
<212> PRT
<213> Homo sapiens
<400> 461
Leu Tyr Asn Pro Glu Arg Thr Ile Thr Val Lys Gly Asn Val Glu Thr
Cys Ala Lys Ala
<210> 462
<211> 20
<212> PRT
<213> Homo sapiens
<400> 462
Glu Glu Glu Ile Met Lys Lys Ile Arg Glu Ser Tyr Glu Asn Asp Ile
Ala Ser Met Asn
             20
<210> 463
<211> 20
<212> PRT
<213> Homo sapiens
<400> 463
Leu Asn Ala Leu Gly Leu Phe Pro Pro Thr Ser Gly Met Pro Pro Pro
                  5
Thr Ser Gly Pro
<210> 464
<211> 20
<212> PRT
<213> Homo sapiens
<400> 464
Lys Ile Ala Pro Ala Glu Ala Pro Asp Ala Lys Val Arg Met Val Ile
Ile Thr Gly Pro
<210> 465
<211> 18
<212> PRT
<213> Homo sapiens
Thr Gly Tyr Ala Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu Lys Ile
                                      10
```

Glu

<210> 466

<211> 11

<212> PRT

<213> Homo sapiens

<400> 466

Phe Val Asp Cys Pro Asp Glu Ser Trp Ala Leu

<210> 467

<211> 33

<212> DNA

<213> Homo sapiens

<400> 467

ttcgtggact gcccggacga gagctgggcc ctc

33

<210> 468

<211> 24

<212> PRT

<213> Homo sapiens

<400> 468

Ile Pro Asp Glu Met Ala Ala Gln Gln Asn Pro Leu Gln Gln Pro Arg
5 10 15

Gly Arg Arg Gly Leu Gly Gln Arg 20

<210> 469

<211> 24

<212> PRT

<213> Homo sapiens

<400> 469

Ile Pro Asp Glu Thr Ala Ala Gln Gln Asn Pro Ser Pro Gln Leu Arg

Gly Arg Arg Gly Pro Gly Gln Arg 20