MATH 20410 (Analysis in \mathbb{R}^n II – Accelerated) Notes

Steven Labalme

February 18, 2022

Contents

6	The Riemann-Stieltjes Integral	1
	6.1 Notes	
	6.2 Exam 1 Additional Topics	3
	Sequences and Series of Functions	4
	7.1 Notes	4
9	Functions of Several Variables	8
	9.1 Notes	8
	9.2 Chapter 9: Functions of Several Variables	10

Chapter 6

The Riemann-Stieltjes Integral

6.1 Notes

1/28:

- Plan:
 - 1. Finish up Fundamental Theorem of Calculus proof.
 - 2. Basic consequences.
 - 3. Rectifiable curves.
- Recall that we're given $f:[a,b]\to\mathbb{R}$ continuous, $f:[a,b]\to\mathbb{R}$, and $x\mapsto\int_a^x f(t)\,\mathrm{d}t$.
- Goal: Show $F'(x_0) = f(x_0)$.
 - WTS: Find δ such that $|x x_0| < \delta$ implies

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| dt$$

$$< \epsilon$$

- Since f is continuous, there exists δ such that if $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$.
- Now

$$\frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| \, \mathrm{d}t < \frac{1}{|x - x_0|} \int_{x_0}^x \epsilon \, \mathrm{d}t$$

$$= \epsilon$$

- Applications:
 - 1. Theorem (MVT for integration): $f:[a,b]\to\mathbb{R}$ continuous, then there exists $x_0\in[a,b]$ such that

$$f(x_0) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

– Apply MVT to $F(x) = \int_a^x f(t) dt$. Then

$$F'(x_0) = f(x_0) = \frac{F(b) - F(a)}{b - a}$$

as desired.

2. Theorem (Integration by parts): Let $F, G : [a, b] \to \mathbb{R}$ be differentiable with F' = f, G' = g and with f and g both integrable. Then

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- Just use the product rule plus the FTC to prove.
- We have

$$\int_{a}^{b} (FG)' = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$F(b)G(b) - F(a)G(a) = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- 3. Theorem (u-substitution).
 - Follows similarly from the chain rule and FTC.
- Integration of vector-valued functions.
- If $f:[a,b]\to\mathbb{R}^k$, we define $\int_a^b f$ by

$$\int_{a}^{b} f = \left(\int_{a}^{b} f_{1}, \dots, \int_{a}^{b} f_{k} \right)$$

- Alternatively, you can define $\int_a^b f$ using P, U(f,P), L(f,P), etc. and then prove that the integral exists iff all f_i are integrable and in this case the above definition holds.
- Rectifiable curves: Let $\gamma:[a,b]\to\mathbb{R}^k$ be a continuous function.
- Plan: Define the length of γ and show that we can compute it with an integral.
 - Idea: For polygonal paths, we know how to define length. So let's approximate γ by polygons and take a limit.
 - Ref: Given a partition P, then define the length of γ with respect to P as $\Lambda(\gamma, P)$. Let the length of γ be $\Lambda(\gamma) = \sup_{P} \Lambda(\gamma, P)$ if this limit exists in this case, we call γ rectifiable.
- Fractals are not rectifiable their length diverges.
- Theorem: Suppose γ is continuously differentiable (i.e., γ is differentiable and γ' is continuous). Then γ si rectifiable and

$$\Lambda(\gamma) = \int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t$$

- Notice: If $P \leq P'$, then $\Lambda(\gamma, P) \leq \Lambda(\gamma, P')$. (Prove with triangle inequality.)
- WTS: For all partitions P, $\Lambda(\gamma, P) \leq \int_a^b |\gamma'(t)| dt$ and thus $\Lambda(\gamma) \leq \int_a^b |\gamma'(t)| dt$.
- We have that

$$\Lambda(\gamma, P) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|$$

$$= \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} \gamma'(t) dt \right|$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |\gamma'(t)| dt$$

$$= \int_{a}^{b} |\gamma'(t)| dt$$

- Catch up.
 - I should make up PSets 1-2.
 - Exams have less than Rudin-strength problems.
 - Exams are mostly true/false (and of that, mostly false, provide a counterexample).

6.2 Exam 1 Additional Topics

• A continuous function that is not always differentiable.

$$f(x) = |x|$$

• A differentiable function with a discontinuous derivative.

$$f(x) = x^2 \sin \frac{1}{x}$$

• A vector-valued function that doesn't satisfy the MVT.

$$\mathbf{f}(x) = e^{ix}$$

- Between 0 and 2π .
- A pair of vector-valued functions that don't satisfy L'Hôpital's rule.

$$f(x) = x g(x) = x + x^2 e^{i/x^2}$$

Chapter 7

Sequences and Series of Functions

7.1 Notes

Midterm on differentiation and integration, and a bit of stuff from this week.

• Plan:

1/31:

- Talk about sequences of functions, all with the same domain and range, converging.
- Address what properties of f_n remain in the limit (e.g., continuity, differentiability, integrability).
 - The answer depends on what we mean by "convergence."
 - $f_n \to f$ pointwise implies basically nothing.
 - \blacksquare $f_n \to f$ uniformly implies that basically everything works out nicely.
- We'll restrict ourselves to real functions because those have all the properties (integrability, differentiability, etc.) that we care about.
- **Pointwise** (convergent sequence $\{f_n\}$ to f): A sequence of functions $\{f_n\}$ such that for all $x \in X$, the sequence $\{f_n(x)\}$ converges to f(x), where $f_n: X \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f: X \to \mathbb{R}$. Denoted by $f_n \to f$.
- Bad functions.
 - Consider $f_n:[0,1]\to\mathbb{R}$ defined by $x\mapsto x^n$. Each f_n is continuous, but f is not (zero everywhere except $f(1)=1)^{[1]}$.
 - Consider $f_n : \mathbb{R} \to \mathbb{R}$ defined by $f_n(x) = x^2/(1+x^2)^n$, and $f(x) = \sum_{n=0}^{\infty} f_n(x)$. As a geometric series, $f(x) = 1 + x^2$ when $x \neq 0$ but f(0) = 0. Thus, the limit exists but is not continuous once again.
 - Consider $f_m : \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto \lim_{n \to \infty} \cos^{2n}(m!\pi x)$. Each f_m is integrable, but the limit f is the function that's 1 for rationals and zero for irrationals. In particular, f is not integrable.
 - We take even powers of the cosine to make it always positive.
 - We use $\cos^2(x)$ just because its always between [0, 1], and we know when it is equal to 1.
 - In particular, $\cos^2(\pi x)$ is equal to 1 at every integer, $\cos^2(2\pi x)$ is equal to 1 at every half integer. $\cos^2(6\pi x)$ is equal to 1 at every one-sixth of an integer.
 - Then raising it to the n^{th} power just makes it spiky.
- Aside: Interchanging limits.
 - If all f_n are continuous, then $\lim_{x\to x_0} f_n(x) = f_n(x_0)$.

¹Questions that require counterexamples like this could show up on the midterm!

- The question "is f continuous" is equivalent to being able to interchange limits:

$$\lim_{x \to x_0} \lim_{n \to \infty} f_n(x) = f(x_0) = \lim_{n \to \infty} \lim_{x \to x_0} f_n(x)$$

- Sequence example showing we need to be careful interchanging limits: $s_{n,m} = m/(m+n)$.
- All of this pathology goes away with the right definition, though.
- Uniformly (convergent sequence $\{f_n\}$ to f): A sequence of functions $\{f_n\}$ such that for all $\epsilon > 0$, there exists an N such that if $n \geq N$, then $|f_n(x) f(x)| < \epsilon$ for all $x \in X$, where $f_n : X \to \mathbb{R}$ for all $n \in \mathbb{N}$ and $f : X \to \mathbb{R}$.
- Proposition (Cauchy criterion for uniform convergence): $f_n \to f$ uniformly iff for all $\epsilon > 0$, there exists N such that for all $m, n \ge N$ and for all $x \in X$, $|f_n(x) f_m(x)| < \epsilon$.
 - Forward direction: Let $\epsilon > 0$. Suppose $f_n \to f$ uniformly. Choose N such that the functions are within $\epsilon/2$. Then

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f(x) - f_m(x)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

- 2/2: Office hours tomorrow 4-5 PM.
 - Plan:
 - 1. More on uniform convergence.
 - Limit of continuous functions is continuous.
 - Limit of the integral of functions is the integral of the limit.
 - 2. $\mathcal{C}(X)$ perspectives on uniform convergence.
 - Corollary (Weierstraß M-test): If there exist constants $M_n \in \mathbb{R}$ such that $|f_n(x)| \leq M_n$ for all x and $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly.
 - Theorem: $f_n: X \to \mathbb{R}$, f_n continuous at $x_0 \in X$ for all n, and $f_n \to f$ uniformly imply f continuous at x_0 .
 - Idea:
 - " $\epsilon/3$ trick": Find δ such that if $|x-x_0|<\delta$, then

$$|f(x) - f(x_0)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(x_0)| + |f_N(x_0) - f(x_0)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

- Proof:
 - $f_n \to f$ uniformly implies there exists $N \in \mathbb{N}$ such that $|f_N(x) f(x)| < \epsilon/3$ for all $x \in X$.
 - f_N continuous at x_0 : There exists δ such that if $d(x,x_0) < \delta$, then $|f_N(x) f_N(x_0)| < \epsilon/3$.
 - Thus, by the $\epsilon/3$ trick, we have the continuity of f.
- Defining a norm on C(X).

$$||f|| = \sup_{x \in X} |f(x)|$$

- This makes $\mathcal{C}(X)$ into a vector space.
- We can now define our metric d(f,g) by d(f,g) = ||f-g||.
- $f_n \to f \iff f$ is bounded.
 - $-f_n \to f$ uniformly $\iff \lim_{n \to \infty} \sup |f_n(x) f(x)| = 0 \iff f_n \to f$ is $\mathcal{C}(X)$.
- Corollary to the Weierstraß M-test: C(X) is complete (i.e., all uniformly Cauchy sequences converge).

- Assume $\{f_n\}$ is Cauchy. Then by the Cauchy criterion for uniform convergence, f_n converges uniformly to some f. But this f must be continuous, too, meaning $f \in \mathcal{C}(X)$.
- 2/4: Plan.
 - 1. $\int \lim f_n = \lim \int f_n$.
 - 2. $dx \lim f_n = \lim dx f_n$.
 - 3. Definitions: Pointwise/uniform boundedness, equicontinuity.
 - Theorem: $f_n:[a,b]\to\mathbb{R}$ integrable and $f_n\to f$ uniformly implies f is integrable and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

- Plan:
 - 1. Show f is integrable.
 - 2. Show $\int f = \lim \int f_n$.
- Proof:
 - $\blacksquare \text{ Let } \epsilon_n = \sup_{x \in [a,b]} |f(x) f_n(x)|.$
 - Since $f_n \to f$ uniformly, $\epsilon_n \to 0$ as $n \to \infty$.
 - By definition, $f_n \epsilon_n \le f \le f_n + \epsilon_n$.
 - \blacksquare Thus, by Theorems 6.4 and 6.5,

$$\int_{a}^{b} (f_{n} - \epsilon_{n}) = \int (f_{n} - \epsilon_{n}) \le \int f \le \bar{f} \le \int_{a}^{b} (f_{n} + \epsilon_{n})$$

■ It follows since

$$0 \le \bar{\int} f - \int f \le \int_a^b (f_n + \epsilon_n) - \int_a^b (f_n - \epsilon_n) = (b - a)...$$

that f is integrable.

■ Hence,

$$\int_{a}^{b} (f_{n} - \epsilon_{n}) \leq \int_{a}^{b} f \leq \int_{a}^{b} (f_{n} - \epsilon_{n})$$

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leq \epsilon_{n}$$

$$\lim_{n \to \infty} \int_{a}^{b} f_{n} = \int_{a}^{b} f$$

- Theorem: $f_n:[a,b]\to\mathbb{R}$, each f_n differentiable, $f_n\to f$ pointwise, and $(f_n)'\to g$ uniformly implies that f is differentiable and f'=g.
 - Note that you can do better: Substituting $f_n(x_0)$ converging for some $x_0 \in [a, b]$ for $f_n \to f$ pointwise still implies the desired result.
 - Idea: We use the $\epsilon/3$ trick; 2/3 will be easy and 1/3 will be tricky.
 - Goal: We want

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| < \epsilon$$

for some δ with $0 < |x - x_0| < \delta$. We will show that

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{f_N(x) - f_N(x_0)}{x - x_0} + \frac{f_N(x) - f_N(x_0)}{x - x_0} - f'_N(x_0) + f'_N(x_0) - g(x_0) \right|$$

$$\leq \left| \frac{f(x) - f(x_0)}{x - x_0} - \frac{f_N(x) - f_N(x_0)}{x - x_0} \right| + \left| \frac{f_N(x) - f_N(x_0)}{x - x_0} - f'_N(x_0) \right| + \left| f'_N(x_0) - g(x_0) \right|$$

- For the middle inequality, use Chapter 5, Exercise 8.
- For the right inequality, use the uniform convergence condition.
- For the left inequality, it will suffice to show the Cauchy condition

$$\left| \frac{f_n(x) - f_n(x_0)}{x - x_0} - \frac{f_m(x) - f_m(x_0)}{x - x_0} \right| < \frac{\epsilon}{3}$$

so, noting that the left term above is equal to

$$\left| \frac{[f_n(x) - f_m(x)] - [f_n(x_0) - f_m(x_0)]}{x - x_0} \right|$$

which is equal to $|f'_n(c) - f'_m(c)|$ by the MVT, from which we can apply the Cauchy form of the uniform convergence of $(f_n)'$ condition.

- Pointwise bounded ($\{f_n\}$): A sequence of real functions $\{f_n\}$ such that for all $x \in X$, there exists $M_x \in \mathbb{R}$ such that $|f_n(x)| \leq M_x$ for all $n \in \mathbb{N}$.
- Uniformly bounded ($\{f_n\}$): A sequence of real functions $\{f_n\}$ for which there exists $M \in \mathbb{R}$ such that for all $x \in X$ and $n \in \mathbb{N}$, $|f_n(x)| \leq M$.
- Proposition: $f_n: E \to \mathbb{R}$, $\{f_n\}$ is pointwise bounded, and E is countable implies there is a subsequence $\{f_{n_k}\}$ that converges pointwise.
 - Enumerate $E = \{x_1, x_2, \dots\}.$
 - Then since $\{f_n(x_m)\}\$ is bounded for all m by hypothesis, it always has a convergent subsequence.
 - The claim is if you look at the sequence of diagonal functions, it is such a subsequence, i.e., if $f_1(x_1)$ is the first term for x_1 , $f_3(x_2)$ is the second term for x_2 , $f_{11}(x_3)$ is the third term for x_3 , and so on, f_1, f_3, f_{11}, \ldots is such a subsequence.
- 2/9: Build up to the Arzelà-Ascoli theorem.
- 2/11: The Arzelà-Ascoli theorem.

Chapter 9

Functions of Several Variables

9.1 Notes

2/14:

- Plan:
 - 1. Warm-up with matrices.
 - 2. The total derivatives of $f: \mathbb{R}^n \to \mathbb{R}^m$ $(n = m = 2, \text{ i.e., } f: \mathbb{C} \to \mathbb{C}).$
 - 3. Basic properties: Chain rule, relation with partial derivatives, implicit function theorem.
- Let V, W be finite-dimensional vector spaces over \mathbb{R} . We let L(V, W) be the vector space of all linear transformations $\phi: V \to W$.
- If we pick bases $\mathbf{v}_1, \dots, \mathbf{v}_n$ of V and $\mathbf{w}_1, \dots, \mathbf{w}_m$ of W, then $V \cong \mathbb{R}^n$ and $W \cong \mathbb{R}^m$. It follows that $L(V, W) \cong \mathbb{R}^{mn}$.
- $L(V, W) \times L(W, U) \xrightarrow{\text{compose}} L(V, U)$, i.e., $\mathbb{R}^{mn} \times \mathbb{R}^{nl} \xrightarrow{\text{matrix}} \mathbb{R}^{ml}$.
- Sup norm: If A is an $m \times n$ real matrix, then $||A|| = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ |\mathbf{x}| = 1}} |A\mathbf{x}|$.
 - Basic properties:
 - 1. $|A\mathbf{x}| \le ||A|||x|$.
 - 2. $||A|| < \infty$ and all $A : \mathbb{R}^n \to \mathbb{R}^m$ are uniformly continuous.
 - 3. $||A|| = 0 \iff A = 0$.
 - 4. ||cA|| = |c|||A||.
 - 5. $||A + B|| \le ||A|| + ||B||$.
 - 6. $||AB|| \le ||A|| ||B||$.
 - Note that we get a metric space structure on L(V, W) by defining d(A, B) = ||A B||.
- Proves that 1 and 2 imply the uniform continuity of all A (via Lipschitz continuity).
- **Differentiable** (function \mathbf{f} at \mathbf{x}_0): A function $\mathbf{f}: U \to \mathbb{R}^m$ ($U \subset \mathbb{R}^n$) such that to $\mathbf{x}_0 \in U$ there corresponds some linear transformation $A: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\mathbf{h}\to\mathbf{0}}\frac{|\mathbf{f}(\mathbf{x}_0-\mathbf{h})-\mathbf{f}(\mathbf{x}_0)-A\mathbf{h}|}{|\mathbf{h}|}=0$$

- Total derivative (of f at x_0): The linear transformation A in the above definition. Denoted by $f'(x_0)$, $Df(x_0)$, $df(x_0)$.
- "An proof and progress in mathematics" Thurston.

- Relating to the old one dimensional derivative.
- A paper we'd find rather impressionistic right now.
- Propositions ahead of us.
 - Proposition: Suppose that **f** is differentiable at $\mathbf{x}_0 \in U$ and A, B are both derivatives of **f** at \mathbf{x}_0 . Then A = B.
 - Proposition: Differentiable implies continuous.
 - Proposition: Sum rule, product rule, quotient rule.
- 2/16: Plan: Derivatives of functions $\mathbf{f}: U \to \mathbb{R}^m$ where $U \subset \mathbb{R}^n$.
 - Basic properties: Differentiability implies continuity, $(\mathbf{f} + \mathbf{g})' = \mathbf{f}' + \mathbf{g}'$, $(c\mathbf{f})' = c\mathbf{f}'$, chain rule, $\mathbf{f}' = 0$ iff \mathbf{f} is constant.
 - Relationship with partial derivatives (how we compute everything and anything).
 - When is **f** differentiable?
 - Inverse function theorem.
 - Implicit function theorem.
 - Continuously differentiable (function \mathbf{f}): A function $\mathbf{f}: U \to \mathbb{R}^m$ that is differentiable for all $\mathbf{x}_0 \in U$ and such that $\mathbf{f}': U \to L(\mathbb{R}^n, \mathbb{R}^m)$ is continuous. Also known as \mathscr{C}^1 .
 - Proposition: Let $\mathbf{f}: U \to \mathbb{R}^m$ be differentiable at $\mathbf{x}_0 \in U$. Then \mathbf{f} is continuous at \mathbf{x}_0 .
 - The proof makes use of the fact that $\mathbf{f}(\mathbf{x}_0 + \mathbf{h}) \mathbf{f}(\mathbf{x}_0) = \mathbf{f}'(\mathbf{x}_0)\mathbf{h} + \mathbf{r}(\mathbf{h})$.
 - Proposition: Given $\mathbf{f}, \mathbf{g} : U \to \mathbb{R}^m$ both differentiable at $\mathbf{x}_0 \in U$, then $\mathbf{f} + \mathbf{g}$ is also differentiable at \mathbf{x}_0 with

$$(\mathbf{f} + \mathbf{g})'(\mathbf{x}_0) = \mathbf{f}'(\mathbf{x}_0) + \mathbf{g}'(\mathbf{x}_0)$$

- The proof is immediate via the triangle inequality.
- Theorem (Chain Rule): Given $\mathbf{f}: U \to \mathbb{R}^m$ and $\mathbf{g}: V \to \mathbb{R}^k$, where $U \subset \mathbb{R}^n$ and $\mathbf{f}(U) \subset V \subset \mathbb{R}^m$, with \mathbf{f} differentiable at $\mathbf{x}_0 \in U$ and \mathbf{g} differentiable at $\mathbf{f}(\mathbf{x}_0)$, the composition $\mathbf{g} \circ \mathbf{f}$ is differentiable at \mathbf{x}_0 with

$$(\mathbf{g} \circ \mathbf{f})'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0)) \cdot \mathbf{f}'(\mathbf{x}_0)$$

- The proof is rather subtle.
- Partial derivative (of f_i wrt. x_j at \mathbf{x}_0): The following limit, if it exists, where $f_i : \mathbb{R}^n \to \mathbb{R}$, $1 \le i \le m$, and $1 \le j \le n$. Denoted by $(\partial f_i/\partial x_j)(\mathbf{x}_0)$, $(D_j f_i)(\mathbf{x}_0)$. Given by

$$\frac{\partial f_i}{\partial x_j}(\mathbf{x_0}) = \lim_{t \to 0} \frac{f_i(\mathbf{x_0} + t\mathbf{e}_j) - f_i(\mathbf{x_0})}{t}$$

• Directional derivative (of f_i toward $\mathbf{u} \in \mathbb{R}^n$): The following limit, if it exists, where $f_i : \mathbb{R}^n \to \mathbb{R}$ and $1 \le i \le m$. Denoted by $\mathbf{D_u} f_i$. Given by

$$D_{\mathbf{u}}f_i = \lim_{t \to 0} \frac{f_i(\mathbf{x}_0 + t\mathbf{u}) - f_i(\mathbf{x}_0)}{t}$$

• Jacobian: The following matrix. Given by

$$\left[\frac{\partial f_i}{\partial x_j}(\mathbf{x}_0)\right]$$

• Theorem: Let $\mathbf{f} = (f_1, \dots, f_m) : U \to \mathbb{R}^m$, where $U \subset \mathbb{R}^n$, be differentiable at some $\mathbf{x}_0 \in U$. Then the partial derivatives $\partial f_i/\partial x_j$ $(1 \le i \le m; 1 \le j \le n)$ exist at \mathbf{x}_0 and, with respect to the usual choice of bases.

$$\mathbf{f}'(\mathbf{x}_0) = \left[\frac{\partial f_i}{\partial x_j}(\mathbf{x}_0)\right]$$

2/18:

- We have that

$$\mathbf{f}(\mathbf{x}_0 + t\mathbf{e}_j) - \mathbf{f}(\mathbf{x}_0) = \mathbf{f}'(\mathbf{x}_0)(t\mathbf{e}_j) + \mathbf{r}(t\mathbf{e}_j)$$

- Since **f** is differentiable at \mathbf{x}_0 , $\mathbf{f}(t\mathbf{e}_i)/t \to 0$ as $t \to 0$.
- Additionally, $\mathbf{f}'(\mathbf{x}_0)(t\mathbf{e}_i)/t = \mathbf{f}'(\mathbf{x}_0)(\mathbf{e}_i)$.
- Therefore,

$$\lim_{t\to 0} \frac{\mathbf{f}(\mathbf{x}_0 + t\mathbf{e}_j) - \mathbf{f}(\mathbf{x}_0)}{t} = \lim_{t\to 0} \frac{\mathbf{f}'(\mathbf{x}_0)(t\mathbf{e}_j) - \mathbf{r}(t\mathbf{e}_j)}{t} = \mathbf{f}'(\mathbf{x}_0)(\mathbf{e}_j) - \lim_{t\to 0} \frac{\mathbf{r}(t\mathbf{e}_j)}{t} = \mathbf{f}'(\mathbf{x}_0)(\mathbf{e}_j)$$

as desired.

- Unpacking the definition of the linear transformation as a matrix gives the rest of the proof.
- Today:
 - More on differentiation (recall the Jacobian).
 - Sufficient condition for differentiability.
 - $-\mathbf{f'} = 0$ iff \mathbf{f} is constant.
 - State the inverse function theorem.
- It is not true that having all partials exist implies that \mathbf{f} is differentiable at \mathbf{x}_0 .
- Theorem: \mathbf{f} continuously differentiable at \mathbf{x}_0 iff all partials exist and are continuous at \mathbf{x}_0 .
- Theorem (Inverse function theorem): If $E \subset \mathbb{R}^n$ open, $\mathbf{f} : E \to \mathbb{R}^n$ is differentiable at $\mathbf{x}_0 \in E$, and $\mathbf{f}'(\mathbf{x}_0)$ is invertible, then there exist $U \subset E$ open with $\mathbf{x}_0 \in U$ and $V \subset \mathbb{R}^n$ open with $\mathbf{f}(\mathbf{x}_0) \in V$ such that $\mathbf{f}|_U : U \to V$ is a bijection and $(\mathbf{f}|_U)^{-1}$ is continuously differentiable.

9.2 Chapter 9: Functions of Several Variables

From Rudin (1976).

- 2/15: Defines a vector space by the closure of its elements under addition and scalar multiplication.
 - Defines a linear combination, span, independence and dependence, dimension, basis, coordinates, and the standard basis.
 - Theorem 9.2: If X is spanned by r vectors, dim $X \leq r$.
 - Corollary: $\dim \mathbb{R}^n = n$.
 - Theorem 9.3: Let X a vector space with dim X = n.
 - (a) $E \subset X$ containing n vectors spans X iff E is independent.
 - (b) X has a basis, and every basis contains n vectors.
 - (c) If $1 \le r \le n$ and $\{\mathbf{y}_1, \dots, \mathbf{y}_r\}$ is independent in X, then X has a basis containing $\{\mathbf{y}_1, \dots, \mathbf{y}_r\}$.
 - Defines linear transformation, linear operator.
 - Notes that $A\mathbf{0} = \mathbf{0}$ if A is a linear transformation, and that A is completely determined by its action on any basis.

- Invertible (linear operator): A linear operator A that is one-to-one and onto.
- Theorem 9.5: A a linear operator on X finite-dimensional is one-to-one iff it is onto.
- Defines L(X,Y), L(X), the product BA of two linear transformations, and the supremum norm of a linear transformation.
- Theorem 9.7:
 - (a) $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ implies $||A|| < \infty$ and $A : \mathbb{R}^n \to \mathbb{R}^m$ uniformly continuous.
 - (b) $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $c \in \mathbb{C}$ implies

$$||A + B|| \le ||A|| + ||B||$$
 $||cA|| = |c|||A||$

Defining d(A, B) = ||A - B|| makes $L(\mathbb{R}^n, \mathbb{R}^m)$ a metric space.

(c) $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$ implies

$$||BA|| \le ||B|| ||A||$$

- Theorem 9.8: Let Ω be the set of all invertible linear operators on \mathbb{R}^n .
 - (a) $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $||B A|| \cdot ||A^{-1}|| < 1$ implies $B \in \Omega$.

Proof. Let
$$||A^{-1}|| = 1/\alpha$$
, and let $||B - A|| = \beta$. Then

$$||B - A|| \cdot ||A^{-1}|| < 1$$
$$\beta \cdot \frac{1}{\alpha} < 1$$
$$\beta < \alpha$$

To prove that $B \in \Omega$, the definition of invertibility and Theorem 9.5 tell us that it will suffice to show that B is 1-1. To do so, it will suffice to show that $B\mathbf{x} = \mathbf{0}$ iff $\mathbf{x} = \mathbf{0}$. Let's begin. Let $\mathbf{x} \in \mathbb{R}^n$ be arbitrary. Then

$$\alpha |\mathbf{x}| = \alpha |A^{-1}A\mathbf{x}| \le \alpha |A^{-1}| \cdot |A\mathbf{x}| = |A\mathbf{x}| \le |(A - B)\mathbf{x}| + |B\mathbf{x}| \le \beta |\mathbf{x}| + |B\mathbf{x}|$$
$$(\alpha - \beta)|\mathbf{x}| \le |B\mathbf{x}|$$

It follows that if $\mathbf{x} \neq \mathbf{0}$, then $|B\mathbf{x}| > 0$. This combined with the fact that $B\mathbf{0} = \mathbf{0}$ implies the desired result.

(b) Ω is open in $L(\mathbb{R}^n)$ and $A \mapsto A^{-1}$ is continuous on Ω .

Proof. To prove that Ω is open in $L(\mathbb{R}^n)$, it will suffice to show that for all $A \in \Omega$, there exists $N_r(A)$ such that if ||B - A|| < r, then $B \in \Omega$. Let's begin. Let $A \in \Omega$ be arbitrary. Choose $N_{\alpha}(A)$ to be our neighborhood, where α is defined as in part (a). Let $B \in L(\mathbb{R}^n)$ satisfy $||B - A|| < \alpha$. Then $||B - A|| \cdot ||A^{-1}|| < 1$, so $B \in \Omega$ by part (a), as desired.

To prove that $A \mapsto A^{-1}$ is continuous, it will suffice to show that $||B^{-1} - A^{-1}|| \to 0$ as $B \to A$. First off, we have by part (a) and the substitution $\mathbf{x} = B^{-1}\mathbf{y}$ ($\mathbf{y} \in \mathbb{R}^n$) that

$$(\alpha - \beta)|B^{-1}\mathbf{y}| \le |BB^{-1}\mathbf{y}| = |\mathbf{y}|$$

$$\left|B^{-1}\left(\frac{\mathbf{y}}{|\mathbf{y}|}\right)\right| \le (\alpha - \beta)^{-1}$$

Thus, since $|B^{-1}\mathbf{u}|$ is bounded by $(\alpha - \beta)^{-1}$ for every unit vector $\mathbf{u} \in \mathbb{R}^n$, $||B^{-1}||$ is bounded by $(\alpha - \beta)^{-1}$. This combined with the fact that

$$\begin{split} B^{-1} - A^{-1} &= B^{-1}I - IA^{-1} \\ &= B^{-1}AA^{-1} - B^{-1}BA^{-1} \\ &= B^{-1}(A-B)A^{-1} \end{split}$$

implies by Theorem 9.7c that

$$||B^{-1} - A^{-1}|| \le ||B^{-1}|| ||A - B|| ||A^{-1}|| \le (\alpha - \beta)^{-1} \cdot \beta \cdot \frac{1}{\alpha} = \frac{\beta}{\alpha(\alpha - \beta)}$$

Therefore, since $\beta \to 0$ as $B \to A$, the above inequality establishes the desired result.

- Note that the mapping $A \mapsto A^{-1}$ defined in Theorem 9.8b is a 1-1 mapping of Ω onto Ω and its own inverse.
- Defines matrices, column vectors, and matrix multiplication.
- From the Schwarz inequality, we can show that

$$||A|| \le \left(\sum_{i,j} a_{i,j}^2\right)^{1/2}$$

- "If S is a metric space, if a_{11}, \ldots, a_{mn} are real continuous functions on S, and if for each $p \in S$, A_p is the linear transformation of \mathbb{R}^n into \mathbb{R}^m whose matrix has entries $a_{ij}(p)$, then the mapping $p \to A_p$ is a continuous mapping of S into $L(\mathbb{R}^n, \mathbb{R}^m)$ " (Rudin, 1976, p. 211).
- Rudin (1976) spends some time motivating the definition of the total derivative. He also discusses the natural 1-1 correspondence between \mathbb{R}^1 and $L(\mathbb{R}^1)$.
- Defines differentiability in \mathbb{R}^n .
- Theorem 9.12: A_1, A_2 the derivative of \mathbf{f} at \mathbf{x} implies $A_1 = A_2$.
- If $\mathbf{f}: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$, then $\mathbf{f}': E \to L(\mathbb{R}^n, \mathbb{R}^m)$.
- ullet f differentiable implies f continuous.
- Example (**f** is linear):
 - If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $A'(\mathbf{x}) = A$ for all $\mathbf{x} \in \mathbb{R}^n$. Note that this means that $A' : \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m)$, as expected.
- Theorem 9.15 (Chain Rule): E open in \mathbb{R}^n , $\mathbf{f}: E \to \mathbb{R}^m$ differentiable at $\mathbf{x}_0 \in E$, $I \supset \mathbf{f}(E)$ open in \mathbb{R}^m , and $\mathbf{g}: I \to \mathbb{R}^k$ differentiable at $\mathbf{f}(\mathbf{x}_0)$ implies $\mathbf{F}: E \to \mathbb{R}^k$ defined by

$$F(x) = g(f(x))$$

is differentiable at \mathbf{x}_0 with

$$\mathbf{F}'(\mathbf{x}_0) = \mathbf{g}'(\mathbf{f}(\mathbf{x}_0))\mathbf{f}'(\mathbf{x}_0)^{[1]}$$

Proof. Largely symmetric to that of the one-dimensional chain rule in Chapter 5.

• Components (of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$): The real functions f_1, \dots, f_m defined by

$$\mathbf{f}(\mathbf{x}) = \sum_{i=1}^{m} f_i(\mathbf{x}) \mathbf{u}_i$$

for all $\mathbf{x} \in E$ or, equivalently, by $f_i(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{u}_i$ $(1 \le i \le m)$, where $\mathbf{u}_1, \dots, \mathbf{u}_m$ is the standard basis of \mathbb{R}^m .

¹Note that the right-hand side of this equation contains the product of two linear transformations.

- Defines partial derivatives.
- Theorem 9.17: $E \subset \mathbb{R}^n$ open and $\mathbf{f}: E \to \mathbb{R}^m$ differentiable at $\mathbf{x} \in E$ imply the partial derivatives $(D_i f_i)(\mathbf{x})$ exist and

$$\mathbf{f}'(\mathbf{x})\mathbf{e}_j = \sum_{i=1}^m (D_j f_i)(\mathbf{x})\mathbf{u}_i$$

for $1 \leq j \leq n$.

• It follows that

$$[\mathbf{f}'(\mathbf{x})] = \begin{bmatrix} (D_1 f_1)(\mathbf{x}) & \cdots & (D_n f_1)(\mathbf{x}) \\ \vdots & & \vdots \\ (D_1 f_m)(\mathbf{x}) & \cdots & (D_n f_m)(\mathbf{x}) \end{bmatrix}$$

- Discusses the gradient and the directional derivative.
- Theorem 9.19: $E \subset \mathbb{R}^n$ convex and open, $\mathbf{f}: E \to \mathbb{R}^m$ differentiable in E, and there exists M such that

$$\|\mathbf{f}'(\mathbf{x})\| \le M$$

for all $\mathbf{x} \in E$ implies

$$|\mathbf{f}(\mathbf{b}) - \mathbf{f}(\mathbf{a})| \le M|\mathbf{b} - \mathbf{a}|$$

for all $\mathbf{a}, \mathbf{b} \in E$.

- Corollary: If, in addition, $\mathbf{f}'(\mathbf{x}) = \mathbf{0}$ for all $\mathbf{x} \in E$, then \mathbf{f} is constant.
- Continuously differentiable (mapping $\mathbf{f}: E \to \mathbb{R}^m$): A function $\mathbf{f}: E \to \mathbb{R}^m$ such that $\mathbf{f}': E \to L(\mathbb{R}^n, \mathbb{R}^m)$ is continuous. Also known as \mathscr{C}^1 -mapping. Denoted by $\mathbf{f} \in \mathscr{C}^1(E)$.
- Theorem 9.21: Let $E \subset \mathbb{R}^n$ open and $\mathbf{f}: E \to \mathbb{R}^m$. Then $\mathbf{f} \in \mathscr{C}^1(E)$ iff the partial derivatives $D_j f_i$ $(1 \le i \le m; 1 \le j \le n)$ exist and are continuous on E.