STAT 610: Discussion 9

1 Summary

- UMP test for one sided hypothesis:
 - Monotone likelihood ratio (MLR): $f_{\theta}(x)$ is MLR in Y(X) if for any $\theta_1 < \theta_2$, $\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)}$ is monotone of Y(x) for values of x at which at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is positive.
 - Karlin-Rubin Theorem: $H_0: \theta \leq \theta_0$ v.s. $H_1: \theta > \theta_0$. $f_{\theta}(x)$ has non-decreasing MLR of Y(X). Then

$$T(X) = \begin{cases} 1, & \text{if } Y(X) > c \\ 0, & \text{if } Y(X) < c \end{cases},$$

is a level- α UMP test.

- UMPU test for one parameter exp-family:
 - Unbiased test: A test with power function $\beta(\theta)$ is unbiased if $\beta(\theta') \geq \beta(\theta'')$ for every $\theta \in \Theta_0^c$ and $\theta'' \in \Theta_0$.
 - Suppose that U is a sufficient statistic for $\theta \in \mathbb{R}$ with pdf or pmf $g_{\theta}(u) = h(u)c(\theta)e^{w(\theta)u}$. Consider $H_0: \theta = \theta_0$ v.s. $H_1: \theta \neq \theta_0$. A UMPU test of size α satisfies

$$T(X) = \begin{cases} 1, & \text{if } U(X) < c_1 \text{ or } U(X) > c_2 \\ 0, & \text{if } c_1 < U(X) < c_2 \end{cases}$$

for some constants c_1 and c_2 such that $\mathbb{E}_{\theta_0}(T) = \alpha$ and $\mathbb{E}_{\theta_0}(TU) = \alpha \mathbb{E}_{\theta_0}(U)$.

- p-value:
 - Valid p-value: For every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$,

$$\mathbb{P}_{\theta}(p(X) \le \alpha) \le \alpha.$$

- Commonly used p-value: If large value of W(X) gives evidence that H_1 is true, then

$$p(x) = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(W(X) \ge W(x))$$

is a valid p-value.

– Another way to define p-value: The smallest possible level α at which H_0 would be rejected for the computed level α test $T_{\alpha}(x)$, i.e.,

$$p(x) = \inf\{\alpha \in (0,1) : T_{\alpha}(x) \text{ rejects } H_0\}.$$

2 Questions

1. The random variable X has pdf $f(x) = e^{-x}, x > 0$. One observation is obtained on the random variable $Y = X^{\theta}$. Construct a UMP test of size α for $H_0: \theta = 1$ versus $H_1: \theta = 2$.

2. Consider the following distribution

$$f(x|\theta) = \frac{e^{x-\theta}}{(1+e^{x-\theta})^2}, \quad -\infty < x < \infty, \quad -\infty < \theta < \infty.$$

- (a) Show that this family has an MLR.
- (b) Find the UMP test of size α for $H_0: \theta \leq 0$ versus $H_1: \theta > 0$. base on one observation X.

3. Let X_1, \ldots, X_n and Y_1, \ldots, Y_n be i.i.d. samples from $\mathcal{N}(\mu_1, 1)$ and $\mathcal{N}(\mu_2, 1)$. Find a UMPU test of size α for the hypothesis $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$.

4. Prove that $p(x) = \inf\{\alpha \in (0,1) : T_{\alpha}(x) \text{ rejects } H_0\}$ is a valid p-value.