Sprawozdanie

Daniel Majchrzycki, 218476

- 1. Program przypisuje wartość 1 do kolejnych komórek pamięci w tablicy dynamicznej, powiększając ją w przypadku braku miejsca. Program stosuje 4 strategie powiększania tablicy.
 - a) Powiększanie tablicy o 1 w przypadku braku miejsca.
 - b) Powiększanie tablicy o 1000 w przypadku braku miejsca.
 - c) Powiększanie tablicy o 50 000 w przypadku braku miejsca.
 - d) Powiększanie tablicy 2x w przypadku braku miejsca.

Testy zostały przeprowadzone dla różnych rozmiarów danych wejściowych:

- a) 10^1
- b) 10^2
- c) 10^3
- d) 10^6
- e) 10^7
- f) 10^8
- g) 10^9 nie udało mi się sprawdzić z powodu zbyt małej ilości pamięci RAM na testowym komputerze.

2. Wyniki:

Strategia\liczba	10 ¹	10^{2}	10^{3}	10^{4}	10^{5}	10 ⁶	10 ⁷	10 ⁸
danych								
a)	1	1	2	129	13869	$1.61 \cdot 10^6$	_	_
b)	1	1	1	3	32	1844	15560	_
c)	1	1	1	1	7	53	3261	327667
d)	1	1	1	3	14	68	698	6962

Tabela~1) Wyniki pomiarów różnych strategii powiększania tablic dynamicznych. Wyniki podane w ms.

3. Wykresy:

a)

c)

d)

4. Wnioski

Algorytm zwiększania tablicy o 1 jest bezużyteczny w przypadku dużych tablic, z powodu bardzo dużej ilości operacji kopiowania całej tablicy.

Algorytmy zwiększania tablicy o 1000 i 50000 osiągają znacznie lepsze rezultaty, nie powodując przy tym sytuacji w której duża część zaalokowanej pamięci jest nie używana

Algorytm podwajający rozmiar tablicy przy każdym braku pamięci osiąga najlepsze wyniki w przypadku dużych tablic, poprzez znaczną redukcje ilości operacji kopiowania tablic. Może jednak wystąpić sytuacje w której prawie połowa tablicy będzie zaalokowana a nie wykorzystana.