2 Matrix Multiplication and Systems of Linear Equations

2.1 Matrix Multiplication

Definition 1: Matrix Multiplication

Let $A \in M_{m \times p}(\mathbb{F})$, $B \in M_{p \times n}$. We define the matrix product to be $C = AB \in M_{m \times n}$. The entries c_{ij} of the matrix C are determined by,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}$$

Where $1 \le i \le m$, $1 \le j \le n$.

Definition 2: Indentity Matrix

We define $I_n \in M_{n \times n}$ to be,

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Properties 1: Matrix Multiplication

1. For $A \in M_{m \times n}(\mathbb{F})$, $B \in M_{n \times p}(\mathbb{F})$, $C \in M_{p \times r}(\mathbb{F})$,

$$(AB)C = A(BC)$$
 (Associative)

2. For $A \in M_{m \times n}(\mathbb{F}), B, C \in M_{n \times p}(\mathbb{F}),$

$$A(B+C) = AB + AC$$
 (Left distributivity)

3. FOr $A, B \in M_{m \times n}(\mathbb{F}), C \in M_{n \times p}$

$$(A+B)C = AC + BC$$
 (Right distributivity)