

GENETICS

This is how it works

DSC 180A: Clustering the Human Genome

Shannon Ellis

INTRODUCTIONS

For your name tag, please:

- 1. Fold paper into thirds
- 2. write your name large enough (this should be what you want me to call you)

On the back, include:

- 1. Your PID
- 2. Something you're interested in (work/fun)
- 3. The most boring fact about you/your life

Genetics: Section Details

- Attendance required (1 absence free; after that, we should chat)
- Each week there will be readings and discussion questions.
 - Readings:
 - posted on GH: https://github.com/ShanEllis/Genetic-Variation
 - More helpful if I share PDFs as well?
 - Discussion Question responses:
 - must be submitted by Sunday night (11:59 PM); gives me time to read over them and form discussion plan
 - Will be submitted using Google Forms
 - 'Friday' Lab Hours (weekly check-in):
 - Planning to hold on a different day
 - Date/Time up for discussion
 - First proposal: W 4-6 PM
 - Slack or Piazza?

Idea here:

- You're working as a data scientist at a genetics company
- You need to be able to "speak" data science, genetics, and general audience
- You need to understand the biology/genetics *enough* to work with, understand, and interpret the company's data (goal of Wednesdays)
- The replication portion == something geneticists working with genotyping data do at the beginning of pretty much every project

Quick Assessment

18 questions; 12 minutes; Multiple Choice

How you do does not matter

Only answer questions you have some idea about

Gives me an idea about what you all already know

HOW TO READ A SCIENTIFIC PAPER...

- 1. READ THE TITLE
- 2. READ THE ABSTRACT (AND *MAYBE* THE INTRODUCTION)
- 3. LOOK AT THE FIGURES. UNDERSTAND THE FIGURES.
- 4. ...then: READ THE PAPER
 - a. Look stuff up as needed
 - b. This takes time, y'all

If I were in this class, I would:

- Skim reading once
- Actually read the whole thing (while looking up a bunch of stuff)
- Look over the reading questions
- Read the whole thing again

Readings for Week 2:

https://github.com/ShanEllis/Genetic-Variation/tree/master/02 background

Genetics: a branch of biology that deals with heredity and variation of organisms

Discussion Questions:

- 1. What is heredity?
- 2. What is DNA?
- 3. What is a gene?
- 4. What is variation?

- What is heredity?
- Process of getting characteristics from your parents
- What is DNA?
 - Stuff that holds your genetic material
 - 4 nucleotides (A,T,C,G) (-> codes for proteins; combine to determine amino acids)
- Genetic code -> proteins == carry out biological processes
- What is a gene?
 - Genes = Section of DNA that codes for something (makes proteins)
- What is variation?
 - Different 'expressions' of genes in your DNA
 - Mutations can be benign, deleterious (harmful), silent

Genetics: Mendel's definition (1866)

Alleles can be dominant or recessive

Dominant – an allele that gets expressed regardless of what the other allele is (the trait appears in the heterozygous condition)

Recessive – an allele that is masked by a dominant allele; requires homozygous state to be expressed

B= Purple Allele ; b= White Allele

Your genotype contributes to your phenotype

Genotype - the genetic makeup of an organism

- What are the alleles?

Phenotype - the physical appearance of an organism?

- What does the organism look like?

Genetics:

The Molecular Definition

Double helix w/ nucleotides:

- G, T, C, A
- Stored on chromosomes
- Inherited from one generation to the next
- Comprised of:
 - genes
 - Lots of other stuff (rRNA, tRNA, microRNA, lincRNA, repetitive elements, etc.)

Dept. Biol. Penn State ©2004

The structure of DNA

- Double helix
- Deoxyribose sugar + nitrogenous base + phosphate backbone
- Right-handed
- Phosphate on outside; bases on inside of helix
- A T; G C base pairing

Dept. Biol. Penn State ©2004

The Nobel Prize in Physiology or Medicine (1962): Watson, Crick, and Wilkins

(Rosalind Franklin got the shaft.)

Francis Harry Compton Crick (1916-2004)

James Dewey Watson (1928 -)

Maurice Hugh Frederick Wilkins (1916-2004)

The Central Dogma of Genetics

THE CENTRAL DOGMA

Source: Khan Academy

After Class Update

Domain-specific check-in:

- Not happening on Fridays
- Instead:
 - W 4-5 PM
 - Th 10:30-11:30AM
- Where: CSB 243
- What: Show up at some point with questions/updates/etc.
- Begins: week 2 (meaning, you don't need to check in week 1)

Piazza for genetics domain: piazza.com/ucsd/winter2020/dsc180agenetics