

Data Analytics 4 - Project

Yolo - algorithm with use case

Rohit Keshav Bewoor (11011831)

Big Data and Business Analytics 2018-20 batch SRH Hochschule Heidelberg

Content

- Introduction
- How YOLO works
- Types of YOLO
- Use case
- Model Description and Visualisation
- References
- Q&A

Introduction

- You Only Look Once (YOLO) is an object detection algorithm
- Four versions v1 in May 2016, v2 in December 2016, v3 in April 2018, v4 in April 2020
- Does not use region proposal based approach like the R-CNN family
- Developed using the Darknet framework
- Github Repo for this project work : https://github.com/rbewoor/DataAnalytics4_Project

How YOLO works

STAATLICH ANERKANNTE HOCHSCHULE

- Divides image into a grid of size S x S where S is an integer
- Each pixel evaluated as possible center point of an object
- All detections are evaluated in one pass very fast algorithm
- Model is trained to identify C classes of objects
- B is the number of Bounding Boxes detected all over the image (without threshold consideration). Five values are output for each bounding box:
 - Two values for center coordinates.
 - Two values for dimensions (height and width)
 - Confidence score
- Can handle multiple bounding boxes and aspect ratios (anchor box concept)
 - Anchor boxes are predefined boxes provided by the user to Darknet which gives the network an idea about the relative position and dimensions of the objects to be detected.
 - These are calculated using the training set Objects.

Source: YOLO v1 paper

- Usually Non-max suppression used to remove redundant detections
- Total detections per image = (SxS)*((B*5)+C
- For example, suppose that:
 - o image is divided into 3 x 3 grid (i.e. S = 3)
 - we want to detect dog, cat and bird (i.e. C = 3)
 - o 10 boxes predicted (B = 10)
 - #Detections = (3 x 3) * ((10 * 5) + 3) = 477

• Threshold value used for Confidence Score to evaluate acceptance of object detection

Types of Yolo

STAATLICH ANERKANNTE HOCHSCHULE

Model Type	YOLO v1	YOLO v2 (aka YOLO9000)	YOLOv3
Salient points	26 total (24 Conv + 2 FC) Problem detecting small objects	30 layers (included batch norm after every Conv) Anchor boxes introduced No FC present Still poor with small objects	106 layers Detection on 3 scales to handle small to large object sizes 9 anchor boxes (3 per scale)

FC: Fully connected layer

Conv: Convolution layer

YOLOv4 is very recent and not been studied in depth

Use Case

STAATLICH ANERKANNTE HOCHSCHULE

Objective:

Use the YOLO model for desired use case and explain the architecture

Use Case:

Present a set of new images to a pre-trained YOLO v3 model.

For each image, capture the detected **object class** and the **confidence score**.

Store information in a neo4j graph database:

- Relationship format: (i:Image)-[r:HAS]->(o:Object)
- Confidence score is a property of the "HAS" relationship
- Python script: my_yolo3_one_file_to_detect_them_all_6.py

E.g. Image123.jpg HAS the objects:

- car (score 58.98),
- person (score 98.34)
- person (score 93.23)

Neo4j representation

STAATLICH ANERKANNTE HOCHSCHULE

Image - HAS -> Object

Objects found in images: Traffic light, truck, motorbike, car, etc.

Many to many relationship could exist.

Model description and visualisation

- Darknet-53 block diagram taken from the YOLO v3 paper:
 - o maps to Layers 0 74 of the source code
- Model description using Keras built in functions:
 - Python script: my_yolo3_model_stats_1.py
 - Textual description with model.summary function
 Link:
 https://github.com/rbewoor/DataAnalytics4 Project/blob/master/model_summary_1.txt
 - Visualisation with Plot_model function
 Link: https://github.com/rbewoor/DataAnalytics4 Project/blob/master/model vis 1.png

	Туре	Filters	Size	Output
	Convolutional	32	3×3	256×256
	Convolutional	64	$3 \times 3/2$	128×128
	Convolutional	32	1 × 1	
1×	Convolutional	64	3×3	
	Residual			128×128
	Convolutional	128	$3 \times 3 / 2$	64 × 64
	Convolutional	64	1 × 1	
2×	Convolutional	128	3×3	
7.0	Residual			64×64
8×	Convolutional	256	$3 \times 3 / 2$	32 × 32
	Convolutional	128	1 × 1	
	Convolutional	256	3×3	
	Residual			32×32
	Convolutional	512	$3 \times 3 / 2$	16 × 16
8×	Convolutional	256	1 × 1	
	Convolutional	512	3×3	
	Residual			16×16
	Convolutional	1024	$3 \times 3/2$	8 × 8
4×	Convolutional	512	1 × 1	
	Convolutional	1024	3×3	
	Residual	95		8 × 8

References

- How to Perform Object Detection With YOLOv3 in Keras.
 https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/
- 2. Github Code https://github.com/rbewoor/keras-yolo3 (forked from https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/ on 05.06.2020)
- 3. YOLOv3 pre-trained weights. https://pjreddie.com/media/files/yolov3.weights
- 4. J. Redmon et al. You Only Look Once: Unified, Real-Time Object Detection. 09-05-2016. https://arxiv.org/abs/1506.02640
- 5. J. Redmon et al. YOLO9000: Better, Faster, Stronger. 25-12-2016. https://arxiv.org/abs/1612.08242
- 6. J. Redmon et al. YOLOv3: An Incremental Improvement. 08-04-2018. https://arxiv.org/abs/1804.02767
- 7. How to Visualize a Deep Learning Neural Network Model in Keras. https://machinelearningmastery.com/visualize-deep-learning-neural-network-model-keras/
- 8. All About YOLO Object Detection and its 3 versions (Paper Summary and Codes).

 https://medium.com/data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-codes-2742

 <a href="https://data-science-in-your-pocket/all-about-yolo-object-detection-and-its-3-versions-paper-summary-and-its-3-versions-paper-summary-and-its-3-versions-paper-summary-and-its-3-versions-paper-summary-and-

Thank you.