Contents

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Reduction (데이터 축소)

- Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same (or almost the same) analytical results
- Why data reduction?
 - A database may store tera-, peta-, or exa bytes of data.
 - Complex data analysis may take a very long time to run on the complete data set.
- Data reduction strategies
 - **Dimensionality reduction**, e.g., remove unimportant attributes
 - Principal Components Analysis (PCA)
 - Feature subset selection, feature creation
 - Numerosity reduction (some simply call it: Data Reduction)
 - Regression and Log-Linear Models
 - Histograms, clustering, sampling
 - Data compression

Data Reduction 1: Dimensionality Reduction

Curse of dimensionality

When dimensionality increases, data becomes increasingly sparse

• Distance between points, which is critical to clustering, outlier analysis, becomes less

meaningful

Num. Dimension

smaller

larger

Distance

more meaningful

less meaningful

Data Reduction 1: Dimensionality Reduction

- Dimensionality reduction (차원 축소)
 - Avoid the curse of dimensionality
 - Help eliminate irrelevant features and reduce noise
 - Reduce time and space required in data mining
 - Allow easier visualization

Principal Component Analysis (PCA)

5

- Find a projection that captures the largest amount of variation in data
- The original data are projected onto a much smaller space, resulting in dimensionality reduction. We find the eigenvectors of the covariance matrix, and these eigenvectors define the new space

Image source: Wikipedia

Attribute Subset Selection

- Another way to reduce dimensionality of data
- Redundant attributes
 - Duplicate much or all of the information contained in one or more other attributes
 - E.g., purchase price of a product and the amount of sales tax paid
- Irrelevant attributes
 - Contain no information that is useful for the data mining task at hand
 - E.g., students' ID is often irrelevant to the task of predicting students' GPA

Heuristic Search in Attribute Selection

- There are 2^d possible attribute combinations of d attributes
- Typical methods (heuristic)
 - Step-wise feature selection
 - The best single-attribute is picked first
 - Then next best attribute condition to the first, ...
 - Step-wise attribute elimination
 - Starting from all the feature sets,
 repeatedly eliminate the worst attribute

Data Reduction 2: Numerosity Reduction

- Reduce data volume by choosing alternative, smaller forms of data representation
- Parametric methods (e.g., regression)
 - Assume the data fits some model, estimate model parameters, store only the parameters, and discard the data (except possible outliers)
- Non-parametric methods
 - Do not assume models
 - Major families: histograms, clustering, sampling, …

Sampling

- Sampling: obtaining a small sample s to represent the whole data set N
- Key principle: Choose a representative subset of the data
 - Simple random sampling may have very poor performance in the presence of skewness
 - Develop adaptive sampling methods, e.g., stratified sampling

Types of Sampling

Simple random sampling

There is an equal probability of selecting any particular item

Sampling without replacement

Once an object is selected, it is removed from the population

Sampling with replacement

A selected object is not removed from the population

Stratified sampling

- Partition the data set, and draw samples from each partition (proportionally, i.e., approximately the same percentage of the data)
- Used in conjunction with skewed data

Sampling: With or without Replacement

Sampling: Stratified Sampling

Motivation

Bias (편향) in the training data: Training on a skewed data could lead to a poor performance later in the KD steps

Stratified sampling can reduce the bias of selected samples

Data Reduction 3: Data Compression

- String compression
 - There are extensive theories and well-tuned algorithms
 - Typically lossless, but only limited manipulation is possible without expansion
- Audio/video compression
 - Typically **lossy** compression, with progressive refinement
 - Sometimes small fragments of signal can be reconstructed without reconstructing the whole
- Dimensionality and numerosity reduction may also be considered as forms of data compression

Data Compression

Recommended reading

- Large language models (LLMs) such as GPT are lossy compression of WEB
- If you are interested in the basic mechanism of ChatGPT, check the inspiring article in the New Yorker by Ted Chiang (SF writer)
- https://www.newyorker.com/tech/annals-of-technology/chatgpt-is-a-blurryjpeg-of-the-web

Contents

- Data Preprocessing: An Overview
- Data Cleaning
- Data Integration
- Data Reduction
- Data Transformation and Data Discretization
- Summary

Data Transformation (데이터 변환)

- A function that maps the entire set of values of a given attribute to a new set of replacement values s.t. each old value can be identified with one of the new values
- Methods
 - Smoothing: Remove noise from data
 - Attribute/feature construction: New attributes constructed from the given ones
 - Aggregation: Summarization
 - Normalization: Scaled to fall within a smaller, specified range
 - Discretization
- Data transformation may make the resulting mining process more efficient

Normalization

• Min-max normalization: to $[new_min_A, new_max_A]$

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- Ex. Let income range \$12,000 to \$98,000 normalized to [0.0, 1.0]. Then \$73,000 is manned to 0.716 $\frac{73,600-12,000}{98,000-12,000}(1.0-0)+0=0.716$

Z-score normalization (μ: mean, σ: standard deviation)

$$v' = \frac{v - \mu_A}{\sigma_A}$$

- Ex. Let μ = 54,000, σ = 16,000. Then $\frac{73,600-54,000}{16,000}$ = 1.225
- Normalization by decimal scaling

$$v' = \frac{v}{10^{j}}$$
 where j is the smallest integer such that $\max(|v'|) < 1$

Discretization (이산화)

- Discretization: Divide the range of a continuous attribute into intervals
 - Interval labels can then be used to replace actual data values
 - Reduce data size by discretization
 - Supervised vs. unsupervised
 - Split (top-down) vs. merge (bottom-up)

Simple Discretization: Binning

- Equal-width (distance) partitioning
 - <u>Divides the range into N intervals of equal size</u>: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: W = (B A)/N.
 - The most straightforward, but outliers may dominate presentation
- Equal-depth (frequency) partitioning
 - Divides the range into N intervals, each containing approx. same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky

Binning Methods for Data Smoothing

- Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
 - * Partition into equal-frequency (equal-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
 - * Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
 - * Smoothing by bin boundaries:
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34

Summary

- In the preprocessing steps, we want to improve data quality: accuracy, completeness, consistency, timeliness, believability, interpretability
- Data cleaning: e.g. missing/noisy values
- Data integration from multiple sources: e.g., remove redundancies
- Data reduction:
 Dimensionality reduction, Numerosity reduction, Data compression
- Data transformation and data discretization

