

Outline

- Introduction Problem Statement & Importance
- Exploratory Data Analysis (EDA)
- Dataset Analysis and Key Insights
- GAN Process and Model Training
- Transfer Learning with EfficientNetB0
- Visualization & Interpretation of Results
- Conclusion & Future Work

Introduction

Project Motivation & Objective

- Plant Disease Detection Using Deep Learning
- Accurate Disease Detection: Train a model to classify plant diseases effectively.
- Data Augmentation with GANs: Generate synthetic images for underrepresented disease classes.
- Transfer Learning with EfficientNetB0: Fine-tune a pre-trained model for better classification accuracy.

Challenges

- Limited data for rare diseases: Not enough real-world samples for all categories.
- GAN-generated image quality: Ensuring the synthetic images are realistic and useful.
- Transfer learning adaptation: EfficientNetB0 must generalize well for plant disease classification.

Exploratory Data Analysis (EDA)

- The dataset consists of multiple plant species and their diseases.
- Class imbalance is present, with some diseases having significantly fewer images.
- Some underrepresented diseases have less than 500 images, requiring augmentation.
- GAN-based data augmentation will be applied to balance rare disease classes.

Key Insights

- The dataset contains 38 classes with significant class imbalance.
- Images are 256x256 pixels, standardized to .JPG, with no missing or corrupt files.
- Green is the dominant color, while diseased leaves show variations in red and blue channels.
- GAN-based augmentation will focus on underrepresented classes like Potato Healthy and Apple - Cedar Apple Rust.
- Balancing the dataset and maintaining realistic color distributions are essential for model performance.

GAN Process

- The quality of the images produced was not high enough.
- More powerful hardware or alternative data augmentation methods should be evaluated to obtain better results.

Architecture:

- Generator (G): Creates fake images from random noise.
- Discriminator (D): Distinguishes real images from fake ones.
- Deep Convolutional GAN (DCGAN)

Transfer Learning as a Deep Learning Approach

- Pretrained Model: Used EfficientNetB0 pretrained on ImageNet, with only the final layers trained for plant disease classification.
- Data Preprocessing: Applied ImageDataGenerator with EfficientNet's preprocessing function and an 80-20 train-validation split.
- Model Architecture: Added GlobalAveragePooling2D, Dense (128 units, ReLU), Dropout (0.3), and Softmax output for 38 classes.
- Training Details: Used Adam optimizer (Ir=0.0001) and categorical cross-entropy loss, training for 20

epochs with batch size 32.

recall f1-score precision Apple___Apple_scab B.98 0.94 0.96 126 Apple___Black_rot 0.99 1.00 1.00 124 Apple___Cedar_apple_rust 1.00 1.00 1.00 55 Apple___healthy P 96 0.99 0.98 329 Blueberry___healthy 1.00 1.00 1.00 300 Cherry_(including_sour)___Powdery_mildew 1.00 1.00 210 Cherry_(including_sour)___healthy 0.99 0.99 179 Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot 0.90 0.81 0.86 102 Corn_(maize)___Common_rust_ 1.00 1.00 1.00 238 Corn_(maize)___Northern_Leaf_Blight 0.90 0.95 0.93 197 Corn_(maize)___healthy 1.00 1.00 1.00 232 Grape___Black_rot 0.98 0.97 0.97 236 Grape___Esca_(Black_Measles) 0.97 0.98 276 0.99 Grape___Leaf_blight_(Isariopsis_Leaf_Spot) 1.00 1.00 1.00 215 Grape healthy 0.99 0.99 Orange___Haunglongbing_(Citrus_greening) 1.00 1.00 1101 Peach___Bacterial_spot 9.99 9.99 0.99 459 Peach___healthy 0.97 1.00 0.99 72 Pepper,_bell___Bacterial_spot 0.99 0.97 0.98 199 Pepper,_bell___healthy 0.98 295 Potato Early blight 1.00 0.99 1.00 200 Potato___Late_blight 0.99 0.97 0.98 200 Potato___healthy 0.96 0.87 0.91 30 Raspberry__healthy 1.00 1.00 1.00 74 Soybean___healthy 1.00 1018 1.00 Squash___Powdery_mildew 1.00 1.00 1.00 367 Strawberry__Leaf_scorch 1.00 1.00 1.00 221 Strawberry___healthy 1.00 0.99 0.99 91 Tomato___Bacterial_spot 0.96 0.96 0.96 425 Tomato___Early_blight 0.78 0.84 200 Tomato___Late_blight 0.93 0.95 0.94 381 Tomato___Leaf_Mold P 94 0.95 0.94 190 Tomato Septoria leaf spot 0.94 0.96 0.95 354 Tomato___Spider_mites Two-spotted_spider_mite 0.97 0.92 335 Tomato___Target_Spot 0.92 0.83 0.87 280 Tomato___Tomato_Yellow_Leaf_Curl_Virus 0.99 0.99 1071 Tomato___Tomato_mosaic_virus 0.96 0.98 74 1.00 Tomato___healthy 0.98 0.99 318 0.98 10849 accuracy 0.97 0.97 0.97 10849 macro avo weighted avg 0.98 0.98 0.98 10849

Visualization & Interpretation of Results

- High Overall Accuracy: The model achieved 98% accuracy, demonstrating strong performance.
- Balanced Performance: Macro F1-score = 97%, indicating that even less frequent classes were classified well.
- Strong Precision & Recall: Most classes have precision and recall values above 0.95, ensuring both high detection rates and low false positives.
- Challenging Classes: Some classes, like
 Tomato___Spider_mites Two-spotted_spider_mite (F1-score:
 0.92) and Tomato___Target_Spot (F1-score: 0.87), had
 relatively lower performance.
- Well-Handled Class Imbalance: Even underrepresented classes like Potato__healthy (F1-score: 0.97) were classified with high accuracy.

Conclusion & Future Work

Conclusion

- Transfer learning with EfficientNetB0 achieved
 98% accuracy for plant disease classification.
- The model showed minimal overfitting, with validation accuracy closely following training accuracy.

Future Works

- Improve class balance using weighted loss functions or oversampling.
- Explore alternative augmentation methods, such as Mixup or CutMix, instead of GANs.
- Test real-world performance on unseen plant images outside the dataset.

