2, Stochastické prohledávaní

· horolezecký algoritmus
- upravený algoritmus nahodného prohledávání s operátorem mutace

- operetor mutace:

d. {1-d pro random() < Pmut pravdépodobnast mutes
d. d v opačném případě

- okalí binárního vektoru

Kardinalita (počet jedinců je předepseru)

P: hill_climb (I: tmax, Pmnt, co; O: d*, f*):

t=0; Ax = 00; d = random vector

while tetmax:

d = arg min f(T(d'))

A'e U(d)

if f(T(K)) < P*:

d* = & ; P* = F(T(&))

· simulované zíhaní

- varianta horolezeckého algoritmu, ve kleré se s určitou pravdépodobnosté pfijihné horší kandidát na rešewí
- implementative se jedna o setvenci Metropolisoných algoritmu s postupným snižováru a topbty, na začátku je T velka (náhodní prohledávení) a jejím suizováním se blíží horolezeckému

simulated annealing

Hetropolis algorithm

A: 2H (T: Imm	[mex, k; O: d")
	vektor 2 D; T=Tmax
while TaTou	•

d . MA(d, N,T)

P: HA(I: do, N, T; O: dn):

T = kT # ochlazovam **L* - 4**

d = d'

4m = 4

· rikoly: 1, Najdete optimum bfunka: Rastrigin pomoci horolezeckého algo.

2) Najdete optimum blunka: Ackley pomocí simulovaného zíhom 3) Podívejte se na Isingur model magnetismu jato aplikaci Simulovaného žíhání ve vědě