Homework #3 Due Wednesday, June 27, 2018

1. Use forward, central, or backward difference formulas (as appropriate) to determine each missing entry in the following table.

x	f(x)	f'(x)
0.5	0.4794	
0.6	0.5646	
0.7	0.6442	

2. Use Taylor series expansions to arrive at the expression

$$f'(x) \approx \frac{1}{h} \left(-\frac{3}{2} f(x) + 2f(x+h) - \frac{1}{2} f(x+2h) \right)$$

which we found in class using Lagrange polynomials.

- 3. Derive Simpson's $\frac{3}{8}$ Rule using
 - (a) Lagrange polynomials.
 - (b) Taylor comparison.
- 4. Approximate the value of $\int_0^2 x^2 e^{-x^2} dx$ using the following methods with h = 0.25.
 - (a) Composite Trapezoidal rule.
 - (b) Composite Simpsons's 1/3 rule.
- 5. Approximate the integral $\int_0^1 x^2 e^{-x} dx$ using Gaussian quadrature (to be covered next Monday) and compare your results to the exact values of the integral.
 - (a) Use n=2.
 - (b) Use n = 3.