

# (19) **BUNDESREPUBLIK DEUTSCHLAND**

# Offenlegungsschrift <sub>10</sub> DE 101 42 108 A 1

(51) Int. CI.7: E 04 H 15/20



**DEUTSCHES PATENT- UND MARKENAMT**  (21) Aktenzeichen: 101 42 108.7 Anmeldetag: 30. 8.2001 (43) Offenlegungstag: 28. 5.2003

(66) Innere Priorität:

101 30 008.5 25.06.2001

(71) Anmelder:

Foiltec Verarbeitung von Folien und Textilien GmbH, 28717 Bremen, DE

(74) Vertreter:

von Ahsen, Nachtwey & Kollegen Anwaltskanzlei, 28359 Bremen

(72) Erfinder:

Langner, Thomas, 28790 Schwanewede, DE

(56) Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

> DE 199 23 436 A1 DE 196 11 475 A1 DE 195 27 084 A1 DE 30 11 308 A1 DE 21 16 944 A DE 17 68 825 U US 38 99 853 US 27 54 836

JP 2000320191 A., In: Patent Abstracts of Japan;

# Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Der Inhalt dieser Schrift weicht von den am Anmeldetag eingereichten Unterlagen ab

- (5) Vorrichtung zum Halten von Folien, Dach- oder Wandelement mit einer solchen Vorrichtung sowie Dach oder Wand mit derartigen Dach- bzw. Wandelementen
- Die Erfindung befaßt sich insbesondere mit dem Thema sogenannter Foliendächer, die aus mittels Druckluft aufgepumpten Folienkissen (11) gebildet sind. Nachteilig bei den bekannten Folienkissen (11) ist, daß bei einer größeren Anzahl von Folienlagen (14, 17, 19, 23, 26, 27) eine entsprechend hohe Anzahl unterschiedlicher Drücke zum Aufpumpen der Folienkissen (11) erforderlich sind, nämlich von einer ersten Kammer (15, 16) mit einem ersten höchsten Druck nach außen hin abfallende Drücke. Zur Lösung dieses Problems wird erfindungsgemäß eine Vorrichtung vorgeschlagen, bei der die Folien (14, 17, 19, 23, 26, 27) mittels eines unter einem Innendruck stehenden Luftkissens oder Luftschlauches (18, 20, 24, 25) auf einem Abstand zueinander gehalten werden. Ein Dach- oder Wandelement weißt zur Lösung dieses Problems eine solche Vorrichtung auf.



1

#### Beschreibung

[0001] Die Erfindung betrifft eine Vorrichtung zum Halten von Folien in einer bestimmten oder in einer veränderlichen Lage zueinander. Ferner betrifft die Erfindung ein Dachoder Wandelement mit einer solchen Vorrichtung sowie ein Dach oder eine Wand mit derartigen Dach- oder Wandelementen.

[0002] Die Erfindung befaßt sich in erster Linie mit dem Thema sogenannter Foliendächer. Derartige Foliendächer 10 bestehen aus zwei oder mehr Lagen von Folien, die zwischen Dachsparren gespannt und mit Druckluft zu einem Folienkissen aufgepumpt werden. Diese Folienkissen bilden ein Dachelement, wobei mehrere dieser Dachelemente mosaikartig zu dem Dach zusammengesetzt werden. Selbstverständlich ließen sich in gleicher Weise aus diesen Elementen Wände bilden.

[0003] Gegenüber Glasdächern weisen die Foliendächer den Vorteil auf, daß sie sehr leicht sind und so große Spannweiten, beispielsweise für Regenwaldhäuser, Zooanlagen, 20 Atrien, Schwimmbäder, Lichtbänder für Fertigungshallen, Ausstellungshallen und viele weitere Anwendungen möglich sind. Zudem können die Dachelemente, im Gegensatz zu Glas, aus UV-durchlässigen Folien hergestellt werden, was insbesondere bei den Anwendungen für Regenwaldhäuser, Zooanlagen und Atrien, aber auch für Schwimmbäder mit natürlichem Pflanzenbewuchs oder dergleichen, vorteilhaft ist.

[0004] Aus dem Vorstehenden wird deutlich, daß die Dachelemente standardmäßig aus zwei Folienlagen gebildet 30 sind. Oft ist es aber erforderlich, das Dachelement mit einer dritten oder weiteren Folienlagen zu versehen, beispielsweise zur Ergänzung einer akustisch wirksamen Folienlage oder aus Wärmeisolierungsgründen.

[0005] Der Erfindung liegt nun das Problem zugrunde, 35 eine Vorrichtung zum Halten von Folien in einer bestimmten oder einer veränderlichen Lage zueinander auf einfache und kostengünstige Weise bei großer Flexibilität vorzuschlagen. Ferner liegt der Erfindung das Problem zugrunde, ein Dachoder Wandelement mit einer solchen Vorrichtung sowie ein 40 Dach oder eine Wand aus derartigen Dach- oder Wandelementen vorzuschlagen.

[0006] Zur Lösung dieses Problems sind bei der erfindungsgemäßen Vorrichtung die Folien mittels eines unter einem Innendruck stehenden Luftkissens oder Luftschlauches 45 in einer bestimmten oder einer veränderlichen Lage zueinander gehalten. Mit Hilfe dieser Vorrichtung läßt sich zum Beispiel eine akustisch wirksame dritte Folienlage mit einem vorbestimmten Abstand an dem Dachelement anbringen. Wenn nämlich als akustisch wirksame Folienlage eine 50 microperforierte Folie, wie die von der Firma KAEFER Isoliertechnik GmbH & Co. KG, Bremen, unter KAETA-PHON® angebotene Folie, verwendet wird, läßt sich diese aufgrund der Leckverluste durch die Microperforation nicht direkt aufblasen. Durch das Luftkissen oder den Luft- 55 schlauch kann die akustisch wirksame Folie dennoch einfach und kostengünstig an dem Dachelement angebracht werden, wobei das Luftkissen bzw. der Luftschlauch als Abstandhalter dient. Aber auch bei, beispielsweise aus Wärmeisolationsgründen, aus mehreren Folienlagen gebildeten 60 Dachelementen läßt sich die Erfindung vorteilhaft einsetzen. Bei derartigen Luftkissen müssen nämlich in die von zwei benachbarten Folienlagen gebildeten Folienkammern unterschiedliche Drücke gefahren werden, wobei die erste Kammer mit einem hohen Druck beaufschlagt und daran einsei- 65 tig oder zu beiden Seiten angrenzende Kammer mit nach außen hin abfallendem Druck beaufschlagt werden. Bei einem Dachelement aus N Folienlagen zu einer Seite der ersten

2

Kammer mit dem höchsten Druck sind also N-1 verschiedene Drücke erforderlich. Das heißt bei einem beispielsweise fünflagigem Dachelement sind vier verschiedene Drücke erforderlich. Bei einem Dachelement mit insgesamt

beiden Seiten einer mittleren Kammern gleichmäßig zu beiden Seiten einer mittleren Kammer mit dem höchsten Druck erstrecken sind INT(N/2) verschiedene Drücke erforderlich. Das heißt, bei beispielsweise 7 Folienlagen sind 3 verschieden Drücke erforderlich. Mit Hilfe der erfindungsgemäßen Vorrichtung sind hingegen nur zwei unterschiedliche Drücke notwendig. Die Kammern zwischen den einzelnen Folienlagen können alle mit dem selben, ersten Druck und die Luftkissen bzw. Luftschläuche, welche hier ebenfalls als Abstandhalter dien mit einem zweiten, höheren

5 Druck beaufschlagt werden. Durch die erfindungsgemäße Vorrichtung sind somit nur noch zwei unterschiedliche Drücke erforderlich.

[0007] Besonders vorteilhaft ist es, wenn die Luftkissen bzw. die Luftschläuche aus dem selben, insbesondere transparenten, Material wie die Folien für die Dachelemente selbst hergestellt sind. Die Luftkissen bzw. die Luftschläuche sind so für den Betrachter nicht optisch sichtbar. Das harmonische Erscheinungsbild des Foliendaches wird nicht beeinträchtigt.

[0008] Nach einer Weiterbildung der Erfindung ist der Innendruck in den Luftkissen bzw. den Luftschläuchen variierbar. Hierdurch läßt sich die Lage zweier benachbarter Folienlagen zueinander, insbesondere der Abstand zweier benachbarter Folienlagen zueinander, einstellen. Dieses ist insbesondere dann interessant, wenn die Dachelemente zusätzlich mit einer microperforierten Folie als Schallabsorber ausgerüstet sind. Der Frequenzbereich, in dem die microperforierte Folie Schall absorbiert, ist nämlich nicht nur eine Funktion der Foliendicke und des Lochdurchmessers der Microperforationen, sondern auch eine Funktion des Abstandes der microperforierten Folie von einer schallharten Fläche (Prof. Maa Dah-you, "Theory and design of microperforated panel sound-absorbing constructions" Scientia Sinica, Vol. XVIII No. 1, Jan. bis Feb. 1975), im vorliegenden Fall der benachbarten Folie des Dachelementes. Es liegt auf der Hand, daß sich die Foliendicke und der Lochdurchmesser der microperforierten Folie nicht im Betrieb variieren läßt; wohl aber mittels der erfindungsgemäßen Vorrichtung der Abstand der microperforierten Folie von der benachbarten schallharten Folie über den Innendruck in den Luftkissen bzw. in den Luftschläuchen. Der Frequenzbereich, in dem der Schall absorbiert wird, läßt sich so optimal auf den Frequenzbereich der Schallemittenden einstellen. Gegebenenfalls kann über einen Schallsensor und eine entsprechende Regeleinrichtung der Innendruck in den Luftkissen bzw. Luftschläuchen und damit der Abstand der microperforierten Folie von der schallharten Fläche und damit wiederum das Absorptionsverhalten in situ optimal eingeregelt werden.

[0009] Bei Variieren des Innendrucks können die Luftkissen bzw. Luftschläuche gegen die Spannung der Folie aufgepumpt werden, so daß bei einem Absenken des Drucks aufgrund der Spannung in der Folie automatisch auch der Abstand zwischen den benachbarten Folien verkleinert wird. Gegebenenfalls können aber auch gesonderte Rückholeinrichtungen vorgesehen sein, beispielsweise eine Feder, insbesondere eine Zugfeder, oder ein anderes elastisches Mittel oder ein weiteres Luftkissen oder ein weiterer Luftschlauch. Dabei sind ein weiteres Luftkissen bzw. ein weiterer Luftschlauch besonders bevorzugt, da auch diese optisch unauffällig aus dem selben Folienmaterial wie die Folien für die Dachelemente selbst und für die Luftkissen und Luftschläuche hergestellt sein können. Die Rückholein-

richtungen sind vorteilhafterweise innerhalb der eigentlichen Luftkissen bzw. Luftschläuche angeordnet.

3

[0010] Die Luftkissen bzw. Luftschläuche sind nach einer ersten konstruktiven Ausgestaltung der Erfindung zwischen zwei benachbarten Folien angeordnet. In diesem Fall wird der Abstand der benachbarten Folien zueinander eingestellt. Die Luftkissen bzw. Luft bilden in diesem Fall Abstandhalter zwischen den Folienlagen. Nach einer alternativen Ausgestaltung oder auch zusätzlich können Luftkissen oder Luftschläuche in eine der Folien selbst eingesetzt sein. Dadurch werden die Folien parallel zueinander verschoben. In letzerem Fall können je ein Luftschlauch bzw. in der Gruppe von Luftkissen zu beiden Seitenrändern der Folie angeordnet sein, so daß durch wechselseitiges Beaufschlagen mit Druck die Folie hin- und herverfahren werden kann.

[0011] Ein Dach- oder Wandelement, welches das der Erfindung zugrunde liegende Problem löst, ist mit einer Vorrichtung mit den Erfindungsmerkmalen und gegebenenfalls den erfindungsgemäßen Weiterbildungen ausgerüstet. Dabei können zwei benachbarte Folienlagen mit einem Rasterdruck versehen sein. Mit der erfindungsgemäßen Vorrichtung lassen sich die beiden Folien so gegeneinander verfahren, daß die Raster einmal in Deckung kommen und Sonnenlicht durchlassen oder andererseits zueinander versetzt sind und so eine Verschattung bilden. Wird das Dach- oder 25 Wandelement mit einer, insbesondere äußeren, microperforierten Folie ausgerüstet, ist das Dach- oder Wandelement akustisch wirksam. Ein Dach- oder Wandelement mit mehreren, jeweils durch das Luftkissen bzw. den Luftschlauch voneinander beabstandeten Folienlagen wirkt besonders gut 30 wärmeisolierend.

[0012] Ein aus derartigen Dach- oder Wandelementen gebildetes Dach oder eine solche Wand löst ebenfalls das der Erfindung zugrunde liegende Problem.

[0013] Die Erfindung wird nachfolgend anhand von in der 35 Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

[0014] Fig. 1 ein erstes Ausführungsbeispiel eines Dachelementes mit einer Vorrichtung mit den Erfindungsmerkmalen in einem ersten Zustand im Vertikalschnitt,

[0015] Fig. 2 das Dachelement gemäß Fig. 1 in einem zweiten Zustand im Vertikalschnitt,

[0016] Fig. 3 das Dachelement gemäß Fig. 1 in einem dritten Zustand im Vertikalschnitt,

[0017] Fig. 4 ein zweites Ausführungsbeispiel eines 45 Dachelementes mit einer Vorrichtung mit den Erfindungsmerkmalen im Vertikalschnitt,

[0018] Fig. 5 ein drittes Ausführungsbeispiel mit den Erfindungsmerkmalen im Vertikalschnitt,

[0019] Fig. 6 ein viertes Ausführungsbeispiel einer Vor- 50 richtung mit den Erfindungsmerkmalen im Horizontalschnitt in einem ersten Zustand,

[0020] Fig. 7 die Vorrichtung gemäß Fig. 6 im Horizontalschnitt in einem zweiten Zustand,

[0021] Fig. 8 ein weiteres Ausführungsbeispiel eines 55 Dachelementes mit einer Vorrichtung mit den Erfindungsmerkmalen im Vertikalschnitt in einem ersten Zustand,

[0022] Fig. 9 das Dachelement gemäß Fig. 8 im Horizontalschnitt in einem zweiten Zustand,

[0023] Fig. 10 ein Element mit den Erfindungsmerkmalen 60 nach einem weiteren Ausführungsbeispiel.

[0024] In den Fig. 1 bis 3 ist ein Dachelement gezeigt, das aus einem im Dachsparren 10 gehaltenen Folienkissen 11 besteht. Das Folienkissen 11 weist eine obere Lage aus einer Folie 12, eine mittlere Lage aus einer Folie 13 und einer un- 65 teren Lage aus einer Folie 14 auf. Durch die Folien 12 und 13 einerseits und 13 und 14 andererseits werden Kammern 15, 16 gebildet, in denen ein gegenüber dem Umgebungs-

druck erhöhter Luftdruck herrscht. Die Kammern 15, 16 sind somit aufgeblasen. Zum Ausgleich eventueller oder auch gewollter Lecktagen werden die Kammern 15, 16 in an sich bekannter Weise ständig mit Druckluft versorgt.

[0025] Das insoweit beschriebene Folienkissen 11 entspricht dem Stand der Technik. Das Folienkissen ist zusätzlich mit einer vierten unteren Lage aus einer akustisch wirksamen, microperforierten Folie 17, wie sie von der Firma KAEFER Isoliertechnik GmbH & Co. KG unter der Marke KAETAPHON® vertrieben wird, versehen. Die microperforierte Folie 17 ist an ihren Rändern ebenfalls in die Dachsparren 10 eingespannt. Durch mehrere, parallel zueinander verlaufende Luftschläuche 18 wird die microperforierte Folie 17 auf einem Abstand zu der ihr benachbarten unteren Folie 14 des Folienkissens 11 gehalten. Die Luftschläuche 18 sind, wie auch die microperforierte Folie 17, aus dem selben (transparenten) Folienmaterial wie die Folien 12, 13, 14 hergestellt. Der Innendruck in den Luftschläuchen 18 ist durch einen entsprechend regelbaren Kompressor oder

hergestellt. Der Innendruck in den Luftschläuchen 18 ist durch einen entsprechend regelbaren Kompressor oder durch entsprechende Regelventile variierbar. Dabei sind die Luftschläuche 18 gegen eine Spannung in der transparenten Folie 17 aufblasbar, so daß durch Absenken des Drucks innerhalb der Luftschläuche 18 gleichzeitig auch der Abstand zwischen der microperforierten Folie 17 und der unteren Folie 14 vermindert wird.

[0026] Einen ähnlichen Aufbau zeigt die Fig. 4. Gleiches ist deshalb hier mit den selben Bezugsziffern versehen. Das in Fig. 4 gezeigte Dachelement verfügt jedoch noch über eine weitere untere Lage aus einer microperforierten Folie 19, die ebenfalls durch Luftschläuche 20 von der microperforierten Folie 17 beabstandet ist. Durch das Vorsehen von zwei Lagen microperforierter Folien 17, 19 läßt sich ein breitbandigeres (über einen größeren Frequenzbereich) Absorptionsverhalten als bei nur einlagiger microperforierter Folie 17 erreichen. Der Innendruck in den Luftschläuchen 20 kann wiederum variierbar gestaltet sein. Um eine optimale Kraftübertragung und gleichmäßige Spannung in den microperforierten Folien 17 und 19 zu erreichen, liegen die Luftschläuche 18, 20 genau untereinander.

[0027] Anstelle microperforierter Folien 17, 19 können bei den in den Fig. 1 bis 4 gezeigten Ausführungsbeispielen auch die selben, nicht perforierten Folien wie für die Folien 12, 13, 14 verwendet werden. Ein so aufgebautes Folienkissen verfügt über verbesserte wärmeisolierende Eigenschaften. Darüber hinaus können auch mit einem Rasteraufdruck versehene Folien verwendet werden, wobei die Rasteraufdrucke der Folien mit dem Abstand zueinander auch in unterschiedliche Orientierungen gelangen, so daß ein unterschiedlicher Verschattungsgrad gegen Sonneneinstrahlung eingestellt werden kann. Selbstverständlich können die Rasteraufdrucke auch mit den wärmeisolierenden oder den akustischen Eigenschaften kombiniert werden.

[0028] In den anhand der Fig. 1 bis 4 erläuterten Ausführungsbeispielen arbeiten die Luftschläuche 18, 20 gegen die Spannung der Folien 17, 19. Die Spannung in den Folien 17, 19 stellt somit auch eine Rückstellkraft zum Verkleinern des Abstandes bereit. Zusätzlich oder alternativ können gesonderte Rückholeinrichtungen, wie sie in den Fig. 5 bis 7 dargestellt sind, verwendet werden.

[0029] Fig. 5 zeigt eine Variante, bei der innerhalb des Luftschlauches 18 eine Zugfeder 21 vorgesehen ist. Bei der Variante gemäß Fig. 6 und 7 ist innerhalb des Luftschlauches 18 ein weiterer Luftschlauch 22 vorgesehen. Dieser Luftschlauch 22 ist in Fig. 6 nicht mit Druckluft beaufschlagt und hängt schlaff herunter. Wird der Luftschlauch 22 mit Druckluft beaufschlagt, streckt er sich wie in Fig. 7 dargestellt. Hierdurch wird der eigentliche Luftschlauch 18 elliptisch verformt und der Abstand zwischen den Folien 14

35

40

45

50

5

und 17 verringert.

[0030] Die anhand der Fig. 5 bis 7 erläuterten Maßnahmen sind analog selbstverständlich auch in Verbindung mit dem Luftschlauch 20 einsetzbar.

[0031] Bei dem in Fig. 8 und 9 gezeigten Ausführungsbeispiel ist im Inneren des Luftkissens 11, nämlich benachbart zur mittleren Folie 13 eine zusätzliche Folie 23 angeordnet. Diese Folie 23 weist zu beiden Seitenrändern je einen Luftschlauch 24, 25 auf. In der Darstellung in Fig. 8 ist der Luftschlauch 24 aufgepumpt, während der gegenüberliegende 10 Luftschlauch 25 drucklos ist. In der Position gemäß Fig. 9 ist hingegen der Luftschlauch 24 drucklos, während der gegenüberliegende Luftschlauch 25 aufgepumpt ist. Hierdurch kann die Folie 23 nach links und rechts verschoben werden. Dieses hat folgenden Hintergrund: Die mittlere Folie 13 und 15 die Folie 23 sind mit Rasteraufdrucken versehen. Durch Aufpumpen entweder des Luftschlauches 24 oder des Luftschlauches 25 oder auch durch Teilaufpumpen in unterschiedlichem Grad beider Luftschläuche 24 und 25 können die Rasteraufdrucke in unterschiedliche Positionen zueinan- 20 der gebracht werden, so daß ein variabler Verschattungsgrad gegen Sonneneinstrahlung einstellbar ist.

[0032] Fig. 10 zeigt einen weiteren Anwendungsfall für die Erfindung, bei der zwei Folien 26, 27 auf einen Abstand zueinander gehalten werden. Hierzu dienen Luftschläuche, 25 die analog zu den Luftschläuchen 18 gemäß Fig. 1 bis 3 arbeiten und deshalb hier ebenfalls mit 18 bezeichnet sind. Bei diesem Ausführungsbeispiel ist die durch die Folien 26 und 27 gebildete Kammer 28 drucklos. Die Folien 26, 27 werden lediglich durch die Luftschläuche 18 auf Abstand gehalten. 30

### Bezugszeichenliste

10 Dachsparren

11 Folienkissen

12 Folie

13 Folie

14 Folie

15 Kammer

16 Kammer

17 microperforierte Folie

18 Luftschlauch

19 microperforierte Folie

20 Luftschlauch

21 Zugfeder

22 Luftschlauch

23 Folie

24 Luftschlauch

25 Luftschlauch

**26** Folie

27 Folie28 Kammer

# Patentansprüche

- 1. Vorrichtung zum Halten von Folien (14, 17, 19, 23) in einer bestimmten oder einer veränderlichen Lage zueinander mittels eines unter einem Innendruck stehenden Luftkissens oder Luftschlauches (18, 20, 24, 25).

  2. Vorrichtung nach Anspruch 1, dadurch gekenn- 60 zeichnet, daß das Luftkissen bzw. der Luftschlauch (18,
- zeichnet, daß das Luftkissen bzw. der Luftschlauch (18, 20, 24, 25) aus dem gleichen Folienmaterial wie die übrigen Folien (12, 13, 14, 17, 19, 23), insbesondere aus transparenter Folie, hergestellt ist.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch ge- 65 kennzeichnet, daß der Innendruck im Luftkissen bzw. Luftschlauch (18, 20, 24, 25) variierbar ist.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, da-

6

durch gekennzeichnet, daß dem Luftkissen bzw. Luftschlauch (18, 20, 24, 25) eine Rückholeinrichtung zugeordnet ist.

- 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Rückholeinrichtung im Inneren des Luftkissens bzw. Luftschlauchs (18, 20, 24, 25) angeordnet ist.
- 6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Rückholeinrichtung eine Feder, insbesondere eine Zugfeder (21), oder ein anderes elastisches Mittel oder ein weiteres Luftkissen oder ein weiterer Luftschlauch (22) ist.
- 7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Luftkissen bzw. der Luftschlauch (18, 20, 24, 25) zwischen zwei benachbarten Folien (14, 17; 17, 19) angeordnet ist.
- 8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Luftkissen bzw. der Luftschlauch (24, 25) in eine der Folien (23) eingesetzt ist.
- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Folie (23) je eine Gruppe von Luftkissen bzw. je ein Luftschlauch (24, 25) an zwei gegenüberliegende Seitenrändern zugeordnet ist.
- 10. Dach- oder Wandelement mit wenigstens zwei voneinander beabstandeten Lagen von Folien (14, 17; 17, 19; 13, 23) mit einer Vorrichtung nach einem der Ansprüche 1 bis 9.
- 11. Dach- oder Wandelement nach Anspruch 10, dadurch gekennzeichnet, daß die beiden Lagen von Folien (14, 17; 17, 19; 13, 23) mit einem Rasterdruck versehen sind.
- 12. Dach- oder Wandelement nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß eine der Folien insbesondere eine äußere Folie (17, 19), eine microperforierte Folie (17, 19) ist.
- 13. Dach- oder Wandelement nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß mehrere jeweils durch das Luftkissen bzw. den Luftschlauch (18, 20) in einem Abstand zueinander gehaltenen Lagen von Folien vorgesehen sind.
- 14. Dach oder Wand mit Dach- bzw. Wandelementen nach einem der Ansprüche 10 bis 13.

Hierzu 5 Seite(n) Zeichnungen

- Leerseite -













