Computer Graphics - Sampling & Antialiasing

Junjie Cao @ DLUT Spring 2017

http://jjcao.github.io/ComputerGraphics/

Let's draw some triangles on the screen!

Computing triangle coverage

What pixels does the triangle overlap?

Note: need to represent a continuous signal using a discrete approximation!

What does it mean for a pixel to be covered by a triangle?

Question: which triangles "cover" this pixel?

One option: compute fraction of pixel area covered by triangle, then color pixel according to this fraction.

Computing amount of overlap?

Analytical schemes can get quite tricky, especially when considering interactions between multiple triangles

Estimating amount of overlap through sampling

What is a principled approach to think about this process?

Sampling 101

Sampling

1D Temporal Signal and Sampling

Frequency	1 mHz	1 Hz	1 kHz	1 MHz	1 GHz	1 THz
	(10 ⁻³ Hz)	(10 ⁰ Hz)	(10 ³ Hz)	(10 ⁶ Hz)	(10 ⁹ Hz)	(10 ¹² Hz)
Period	1 ks	1 s	1 ms	1 μs	1 ns	1 ps (10 ⁻¹² s)

$$f=rac{1}{T}$$

T: sampling period or sampling interval

Audio file: stores samples of a 1D signal

Most consumer audio is sampled at 44.1 KHz

Video's temporal sampling rate is 24 frame per second, i.e. 24/60 Hz

Video's spatial sampling rate is:

720p (1280×720 px; also called HD Ready) 1080p (1920×1080 px; also known as full HD)

Q: Why 44.1Khz?

Frequency	1 mHz	1 Hz	1 kHz	1 MHz	1 GHz	1 THz
	(10 ⁻³ Hz)	(10 ⁰ Hz)	(10 ³ Hz)	(10 ⁶ Hz)	(10 ⁹ Hz)	(10 ¹² Hz)
Period	1 ks	1 s	1 ms		1 ns	1 ps

Reconstruction: from discrete to continuous (an interpolation problem)

 $f_{recon}(x)$ is the reconstructed version of the original function f(x)

Piecewise constant approximation

 $f_{recon}(x) = value of sample closest to x (Nearest Neighbor)$

Piecewise linear approximation

 $f_{recon}(x)$ = linear interpolation between two samples closest to x

How can we reconstruct the signal more accurately?

Q: What does "increase sampling rate" mean for our problem?

Reconstruction from denser sampling

= reconstruction via linear interpolation

Sampling and Reconstruction

- As an aside
 - Sampling rate is obviously very important
 - Why limit it?

Mathematical representation of sampling

Consider the Dirac delta:

$$\delta(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ \text{undefined} & \text{at } x = 0 \end{cases}$$

s.t.

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

Sampling function

Consider a sequence of impulses with period T:

Discrete-time Signals

Continuous-time signal x(t) math: real function of t

Discrete-time signal x_n math: sequence

Impulse-sampled signal $x_{\delta}(t)$

math: train of impulses

$$x_{\delta}(t) = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nT)$$
$$= \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT)$$

Reconstruction as convolution

It may be hapful to consider the effect of convolution with the simple unit-area "box" function:

$$f(x) = \begin{cases} 1 & |x| \le 0.5 \\ 0 & otherwise \end{cases}$$

$$(f * g)(x) = \int_{-0.5}^{0.5} g(x - y) dy$$

Convolution

Reconstruction as convolution (box filter)

Sampled signal: (with period T)

$$g(x) = \coprod_{T} f(x) f(x) = T \sum_{i=-\infty}^{\infty} f(iT) \delta(x - iT)$$

Reconstruction filter: (unit area box of width

$$h(x) = \begin{cases} 1/T & |x| \le T/2\\ 0 & otherwise \end{cases}$$

Reconstructed signal:

(nearest neighbor)

$$f_{recon}(x) = (h*g)(x) = T \int_{-\infty}^{\infty} h(y) \sum_{i=-\infty}^{\infty} f(iT) \delta(x-y-iT) dy$$
 non-zero only for iT closest to x

Reconstruction as convolution (triangle filter)

Sampled signal: (with period T)

$$g(x) = \coprod_{T} (x) f(x) = T \sum_{i=-\infty}^{\infty} f(iT) \delta(x - iT)$$

Reconstruction filter: (unit area triangle of width T)

$$h(x) = \begin{cases} (1 - \frac{|x|}{T})/T & |x| \le T\\ 0 & otherwise \end{cases}$$

Reconstructed signal:

$$f_{recon}(x) = (h * g)(x) = \int_{-\infty}^{\infty} h(y)g(x - y)dy = \dots$$

Summary

- Sampling = measurement of a signal
 - Represent signal as discrete set of samples
 - Mathematically described as multiplication by impulse train
- Reconstruction = generating signal from a discrete set of samples
 - Convolution of sampled signal with a reconstruction filter
 - Intuition: value of reconstructed function at any point in domain is a combination of sampled values
 - We discussed simple box & triangle filters, but there are other, much higher quality filters

Normalized sinc filter

Truncated sinc filter

[Image credit: Wikipedia]

Now back to computing coverage

Think of coverage as a 2D signal

```
coverage(x,y) = \begin{cases} 1 & \text{if the triangle} \\ & \text{contains point (x,y)} \\ 0 & \text{otherwise} \end{cases}
```

Estimate triangle-screen coverage by sampling the binary function: coverage(x,y)

Results of sampling triangle coverage

I have a sampled signal, now I want to display it on a screen

Pixels on a screen

Each image sample sent to the display is converted into a little square of light of the appropriate color: (a pixel = picture element)

LCD . display pixel

* Thinking of each LCD pixel as emitting a square of uniform intensity light of a single color is a bit of an approximation to how real displays work, but it will do for now.

So if we send the display this

We see this on the screen

Recall: the real coverage signal

Aliasing

Representing signals as a superposition of frequencies

Representing signals as a superposition of frequencies

Representing signals as a superposition of frequencies

Representing images (2D signals) as superposition of frequencies

individual frequencies are 2D sinusoids $(e.g. f(x, y) = sin(a\pi x)^* sin(b\pi x))$

Visualizing the frequency content of images

Spatial domain image

Frequency Domain Image

Low frequencies only

Spatial domain result

Spectrum (after low-pass filter)
All frequencies above cutoff have
0 magnitude

Mid-range frequencies

Spatial domain result

Spectrum (after band-pass filter)

Mid-range frequencies

Spatial domain result

Spectrum (after band-pass filter)

High frequencies (edges)

Spatial domain result (strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold
have 0 magnitude

An image as a sum of its frequency components

CMU 15-462/662, Fall 2016

Back to 1D example: Sampling rate, high-frequency signals & aliasing

"Aliasing": high frequencies in the original signal masquerade as low frequencies after reconstruction (due to undersampling)

Back to 1D example: Sampling rate, high-frequency signals & aliasing

"Aliasing": high frequencies in the original signal masquerade as low frequencies after reconstruction (due to undersampling)

Sampling rate, high-frequency signals & aliasing

So, how densely should you be sampling?

Nyquist-Shannon theorem

- Consider a band-limited signal: has no frequencies above ω
 - 1D: consider low-pass filtered audio signal
 - 2D: recall the blurred image example from a few slides ago

- The signal can be perfectly reconstructed if sampled with frequency f_s > 2ω
- And reconstruction is performed using a normalized sinc (ideal reconstruction filter with infinite extent)

Challenges of sampling-based approaches in graphics

Our signals are not always band-limited in computer graphics. Why?

 Also, infinite extent of "ideal" reconstruction filter (sinc) is impractical for performant implementations. Why?

Aliasing artifacts in images

- Undersampling high-frequency signals and the use of non-ideal resampling filters yields image artifacts
 - "Jaggies" in a single image
 - "Roping" or "shimmering" of images when animated
 - Moiré patterns in high-frequency areas of images

Aliasing: sample a continues image at grid points

Moiré patterns

Antialiasing for Line Segments

- (c) is aliased, magnified
- (d) is antialiased, magnified

Temporal Aliasing

- Sampling rate is frame rate (30 Hz for video)
- Example: spokes of wagon wheel in movies

Camera's frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

https://www.youtube.com/watch?v=VNftf5qLpiA

- Solution: supersample in time and average
 - Fast-moving objects are blurred
 - Happens automatically with real hardware (photo and video cameras)
 - Exposure time is important (shutter speed)
 - Effect is called motion blur

motion blur

Motion Blur Example

Achieved by stochastic sampling in time

T. Porter, Pixar, 1984 16 samples / pixel / timestep

Recall: the real coverage signal

Initial coverage sampling rate (1 sample per pixel)

We see this on the screen

Increase density of sampling coverage signal

(high frequencies exist in original signal because of triangle edges)

Supersampling

Example: stratified sampling using four samples per pixel

Ok, but now we have more samples than pixels!

Resampling

Converting from one discrete sampled representation to another

Resample to display's pixel resolution

(Because a screen displays one sample value per screen pixel...)

Resample to display's pixel resolution (Because a screen displays one sample value per screen pixel...)

Resample to display's pixel resolution

Displayed result (note anti-aliased edges)

Recall: the real coverage signal

Displayed result (note anti-aliased edges)

Pretty much as well as we can do without an "infinite resolution display"

Sampling triangle coverage (evaluating coverage(x,y) for a triangle)

Compute triangle edge equations from projected positions of

vertices

$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x, y) = (x - X_i) dY_i - (y - Y_i) dX_i$$

= $A_i x + B_i y + C_i$

 $E_i(x, y) = 0$: point on edge

> 0: outside edge

$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x, y) = (x - X_i) dY_i - (y - Y_i) dX_i$$

= $A_i x + B_i y + C_i$

 $E_i(x, y) = 0$: point on edge > 0: outside edge

$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x, y) = (x - X_i) dY_i - (y - Y_i) dX_i$$

= $A_i x + B_i y + C_i$

 $E_i(x, y) = 0$: point on edge > 0: outside edge

$$P_i = (X_i, Y_i)$$

$$dX_i = X_{i+1} - X_i$$

$$dY_i = Y_{i+1} - Y_i$$

$$E_i(x, y) = (x - X_i) dY_i - (y - Y_i) dX_i$$

= $A_i x + B_i y + C_i$

 $E_i(x, y) = 0$: point on edge

> 0: outside edge

Sample point s = (sx, sy) is inside the triangle if it is "inside" all three edges.

Note: actual implementation of inside(sx,sy) involves ≤ checks based on the triangle coverage edge rules (see earlier slides)

Sample points inside triangle are highlighted red.

Which points should we test?

- All of them?
- Points within bounding box?

Incremental triangle traversal

Rather than testing all points on screen, traverse them incrementally

Many traversal orders are possible: backtrack, zig-zag, Hilbert/Morton curves (locality maximizing)

Modern approach: tiled triangle traversal

Traverse triangle in blocks

Test all samples in block against triangle in parallel

Advantages:

- Simplicity of wide parallel execution overcomes cost of extra point-intriangle tests (most triangles cover many samples, especially when supersampling coverage)
- Can skip sample testing work: entire block not in triangle ("early out"), entire block entirely within triangle ("early in")
- Additional advantages related to accelerating occlusion computations (not discussed today)

All modern GPUs have special-purpose hardware for efficiently performing point-in-triangle tests

Summary

- We formulated computing triangle-screen coverage as a sampling problem
 - Triangle-screen coverage is a 2D signal
 - Undersampling and the use of simple (non-ideal) reconstruction filters may yield aliasing
 - In today's example, we reduced aliasing via supersampling
- Image formation on a display
 - When samples are 1-to-1 with display pixels, sample values are handed directly to display
 - When "supersampling", resample densely sampled signal down to display resolution
- Sampling screen coverage of a projected triangle:
 - Performed via three point-inside-edge tests
 - Real-world implementation challenge: balance conflicting goals of avoiding unnecessary point-in-triangle tests and maintaining parallelism in algorithm implementation