

Mahindra University Hyderabad

École Centrale School of Engineering/ School of Management/School of Law Minor-I

Program: B. Tech. Branch: AI, CSE, ECM, ECE, CM, CE, ME, MT, NT Year: II Semester: I Subject: Physics II (PH2102)

Date: 15.09.2023

Time Duration: 1.5 Hours

Start Time: 2:00 PM Max. Marks: 100

Instructions:

1) All questions are mandatory

2) Calculators allowed

Question 1

a) Calculate $\int_0^4 \delta(x-6) dx$.

b) Find the Laplacian for $U = x^3y^2z^2$ at (1, -1, 1).

In a Hydrogen atom the electric field exerted by the proton on the electron is said to be $\approx 10^{39}$ times greater than the gravitational force exerted by the proton on the electron when they are 0.50×10^{-10} m apart. Verify the statement. [$G = 6.7 \times 10^{-11}$ N.m²/kg², the proportionality constant that appear in Coulomb's law is 9.0×10^9 N. m²/ C².

Marks 5 + 10 + 15 = 30

Question 2

a) A charge Q is uniformly distributed over a thin wire of length L. Find the electric field components at a point P, whose perpendicular distance from the center of the wire is a. What will be the field when a>>L.

b) If the charge distribution inside the nucleus of $92U^{238}$ is given by $\rho(r) = \alpha r$, 0 < r < R and its radius (R) of $92U^{238}$ nucleus is 6.63 x 10⁻¹⁵ m, Calculate the value of α .

Marks 25 + 15 = 40

Question 3

a) The temperature variation inside the earth can be assumed to be spherically symmetric and approximately describable by the following equation

$$T(r) = T_0 - \alpha r^2$$

Calculate gradient of T and indicate constant temperature surfaces.

c) A charge Q sits at the back corner of a cube, as shown in the figure. What will be the flux of E through the shaded side shown in the figure?

Marks 15 + 15 = 30

Useful relations and constants:

i)
$$q_{e,P} = 1.6 \times 10^{-19} \text{ C}$$
, $m_P = 1.7 \times 10^{-27} \text{ kg and } m_e = 9.1 \times 10^{-31} \text{ kg}$

ii) Gradient in Spherical polar coordinates,
$$\nabla t = \frac{\partial t}{\partial r} \hat{r} + \frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\theta} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\phi}$$

iii) Laplacian in cylindrical polar coordinates,
$$\nabla^2 t = \frac{1}{s} \frac{\partial t}{\partial s} (s \frac{\partial t}{\partial s}) + \frac{1}{s^2} \frac{\partial^2 t}{\partial s^2} + \frac{\partial^2 t}{\partial z^2}$$

iv) Laplacian in cartesian coordinate system,
$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}$$