Komprese

Cíl komprese: redukovat objem dat za účelem

- Přenosu dat
- Archivace dat
- Vytvoření distribuce sw
- Ochrana před viry

Kvalita komprese

- Rychlost komprese
- symetrie/asymetrie kompresního algoritmu
- kompresní poměr = poměr objemu komprimovaných dat k objemu nekomprimovaných dat

Komprese:

- bezztrátová po kódování a dekódování je výsledek 100%shodný
- ztrátová po kódování a dekódování dochází ke ztrátě

Metody:

- jednoduché založené na kódování opakujících se posloupností znaků (RLE)
- statistické založené na četnosti výskytu znaků v komprimovaném souboru (Huffmanovo, Aritmetické)
- slovníkové založené na kódování všech vyskytujících se posloupností (LZW)
- transformační založené na ortogonálních popř. jiných transformacích (JPEG, waveletová, fraktálová)

RLE (Run Length Encoding) - kódování délkou běhu

Př:

vstup: AAAABBCDDDDABDvýstup: 4A2B1C4D1A1B1D

nevýhoda: pokud se znaky příliš neopakují nebude to komprese, ale naopak.

LZW (Lempel-Ziv-Welch) metoda

Princip:

- vyhledávání opakujících se posloupností znaků, ukládání těchto posloupností do slovníku pro další použití a přiřazení jednoznakového kódu těmto posloupnostem.
- jednoprůchodová metoda (nevyžaduje předběžnou analýzu souboru)
- Kódované znaky musí mít délku (počet bitů) větší než délka původních znaků (např. pro ASCII znaky (8 bitů) se obvykle

používá nová délka znaků 12 bitů popř. větší.)

• Při průchodu komprimovaným souborem se vytváří slovník (počet položek slovníku odpovídá hodnotě 2(počet bitů nového kódu), kde prvních 2(počet bitů původního kódu) položek jsou znaky původní abecedy a zbývající položky tvoří posloupnosti znaků obsažené v komprimovaném souboru.

Algoritmus komprese a vytvoření slovníku

```
5 := prect1 znak ze vstupu;
while (jsou dalčí znaky na vstupu) do
begin
C := přečtí znak ze vstupu;
if S+C je v kódovací tabulce then
S := S+C
else begin
    zapíš na výstup kód pro S
    přidej do kódovací tabulky (5+0)
    S := C
    end;
and;
zapíš na výstup kód pro S;
```

Výsledný výstupní řetězec:

65 66 67 256 258 257 68 259

Příklad: Komprese řetězce ABCABCABCDABC Postup kódování

S (prefix)	C (suffix)	výstup (kód)
A	В	A(65)
В	C	B(66)
C	A	C(67)
A	В	_
AB	C	AB(256)
C	A	_
CA	В	CA(258)
В	C	_
BC	D	BC(257)
D	A	D(68)
A	В	_
AB	C	_
ABC	_	ABC(259)

kód	posloupnost	
0255	jednotlivé znaky	
256	AB	
257	BC	
258	CA	
259	ABC	
260	CAB	
261	BCD	
262	DA	

Huffmanovo kódování

• využává optimálního (nejkratšího) prefixového kódu

Aritmetické kódování

Princip: Aritmetické kódování reprezentuje zprávu jako podinterval intervalu <0,1). Na začátku uvažujeme celý tento interval. Jak se zpráva prodlužuje, zpřesňuje se i výsledný interval a jeho horní a dolní mez se k sobě přibližují. Čím je kódovaný znak pravděpodobnější, tím se interval zúží méně a k zápisu delšího (to znamená hrubšího) intervalu stačí méně bitů. Na konec stačí zapsat libovolné číslo z výsledného intervalu.

- -Kóduje celou zprávu jako jedno kódové slovo (v původní verzi číslo z intervalu [0,1]).
- 1. Zjištění pravděpodobnosti P(i) výskytu jednotlivých znaků ve vstupním souboru
- 2. Stanovení příslušných kumulativních pravděpodobností K(0)=0,K(i)=K(i-1)+P(i-1) a rozdělení intervalu <0,1) na podintervaly I(i) odpovídající jednotlivým znakům (seřazeným podle abecedy)tak, aby délky těchto intervalů vyjadřovaly pravděpodobnosti příslušných znaků: I(i) = K(i), K(i+1)
- 3. Uložení použitých pravděpodobností
- 4. Vlastní komprese

Příklad kódování

P(a)=0.5, P(b)=0.25, P(c)=0.125, P(d)=0.125

JPEG (Join Photographic Experts Group)

- patří mezi nejvíce používané komprese u obrázků
- je vhodná pro komprimaci fotek, nevhodná pro např. technické výkresy (čárové výkresy) dochází k viditelnému rozmazání

Princip:

- části obrazu se transformují do frekvenční oblasti (výsledkom je matice "frekvenčních" koeficientů)
- z matice koeficientů se odstraní koeficienty odpovídajícím vyšším frekvencím
- zbývající koeficienty se vhodným způsobem zkomprimují