Interpretation of offshore wind management policies identified via partially observable Markov decision processes

Nandar Hlaing^{1,*}, Pablo G. Morato¹, Konstantinos G. Papakonstantinou², Charalampos P. Andriotis³, and Philippe Rigo¹

¹Naval & Offshore Engineering, ArGEnCo, University of Liege, 4000 Liege, Belgium

²Department of Civil & Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA

³Faculty of Architecture & the Built Environment, Delft University of Technology, 2628 BL Delft, The Netherlands

EAWE PhD Seminar November 3, 2022, Bruges

Introduction

- Development of offshore wind energy
- Increased risk VS complex inspection and maintenance tasks
- How to optimally allocate inspections and maintenance interventions?

Introduction

In 20 years, $> 3 \times 10^{15}$ branches Decision-making under uncertainty Year (2) Year (1) $(1-4)\times10^{11}$ stars Repair Detection Detection No Repair Inspection Fail Fail Inspection No Detection Repair No Detection Safe Safe No Repair No Inspection No Inspection Repair No Repair 3/11/2022

Introduction

✓ Optimality

- Outperforms state-of-the-art planning methods
- Significant cost savings

✓ Adaptability

Heuristics (EQINS) policy realization

POMDP policy realization

Reference: P. G. Morato, K. G. Papakonstantinou, C. P. Andriotis, J. S. Nielsen, P. Rigo, Optimal inspection and maintenance planning for deteriorating structural components through dynamic Bayesian networks and Markov decision processes, Structural Safety 94 (2022) 102140.

- ✓ Flexibility
 - Deterioration models: SN curve, fracture mechanics (FM)
 - Failure criteria: through-thickness, failure assessment diagram

Crack growth in a tubular joint section

detectable through-thickness failure

1D FM + Through-thickness

2D FM + Failure assessment diagram

? Interpretability

Reference: N. Hlaing, P. G. Morato, J. S. Nielsen, P. Amirafshari, A. Kolios, P. Rigo, Inspection and maintenance planning for offshore wind structural components: integrating fatigue failure criteria with Bayesian networks and Markov decision processes, Structure and Infrastructure Engineering 18 (7)(2022) 983–1001.

POMDPs – 7-tupled control process

$$\langle S, A, O, T, Z, R, \gamma \rangle$$

Actions

- Move left/right
- Move up/down

+1	+1	+1	+1	-100
+1	+2	+2	+2	+1
+1	+3	+5	+3	+1
+1	ф М	#7	+2	+1
+1	+1	+1	+1	+1

+1	+1	+1	+1	-100
+1	+2	+2	+2	+1
+1	+3	+5	+3	+1
+1	+	+	+2	+1
+1	+	+100	+1	+1

MDP in grid world

POMDP in grid world

- Solving POMDPs
 - Policy is a mapping from the belief state to the optimal action.

$$\pi: \mathbb{B} \to A$$

$$V(\mathbf{b}_{t}) = \max_{a_{t} \in A} \left\{ \sum_{s_{t} \in S} b(s_{t}) r(s_{t}, a_{t}) + \gamma \sum_{o_{t+1} \in \Omega} p(o_{t+1} | \mathbf{b}_{t}, a_{t}) V(\mathbf{b}_{t+1}) \right\}$$

- Point-based solvers
 - Reachable beliefs
 - Optimal value function is generally piece-wise linear and convex

$$V^*(\mathbf{b}) = \max_{\alpha \in \Gamma} \sum_{s \in S} b(s)\alpha(s).$$

Alpha vector → Action

References: K. G. Papakonstantinou, M. Shinozuka, Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part I: Theory, Reliability Engineering and System Safety 130 (2014) 202–213.

K. G. Papakonstantinou, M. Shinozuka, Planning structural inspection and maintenance policies via dynamic programming and Markov processes. Part II: POMDP implementation, Reliability Engineering and System Safety 130 (2014) 214–224

Optimal I&M planning for offshore wind structures

POMDPs –
$$\langle S, A, O, T, Z, R, \gamma \rangle$$

States:

Fatigue crack size

Actions:

- Do-nothing/No-inspection
- Do-nothing/Inspection
- Perfect-repair/No-inspection

Observations:

- Detection
- No-detection

Optimal I&M planning for offshore wind structures

POMDPs –
$$\langle S, A, O, T, Z, R, \gamma \rangle$$

Transition model:

$$d_{t+1} = \left[d_t^{\frac{2-m}{2}} + \left(\frac{2-m}{2} \right) C_{FM} \{ S_R \pi^{0.5} \}^m n \right]^{\frac{2}{2-m}}$$

- Do-nothing Paris Law
- Perfect repair back to initial belief

Observation model:

Eddy current inspection method (DNV)

Cost model:

10⁶ monetary units

10⁴ monetary units

10³ monetary units

$$\beta_0 = 7.3074$$
, $\beta_1 = 2.092$, $\sigma_{\varepsilon} = 4.189$, $\hat{d}_{s,th} = 5.4898$

Interpretation of POMDP-based policies

Optimal value function

$$V^*(\mathbf{b}) = \max_{\alpha \in \Gamma} \sum_{s \in S} b(s)\alpha(s).$$

At the first decision step (initial belief), the optimal action is DN-NI.

Interpretation of POMDP-based policies

Bayes' theorem for updating the current belief:

$$b(s') \propto P(o|s',a) \sum_{s \in S} P(s'|s,a) b(s).$$
 Observation model Transition model

Selecting sequential optimal actions based on updated beliefs:

What if the optimal policy is not strictly followed?

- At year 7, two subsequent detections have been observed.
- Optimal action Perfect repair/No-inspection

- Alternative actions
 - Do-nothing/No-inspection
 - Do-nothing/Inspection

What is the "regret" if a perfect repair is not performed.

What if the optimal policy is not strictly followed?

Expected cost after taking alternative actions (Bellman backup):

$$V(\mathbf{b}_7) = \sum_{s \in S} b_7(s) R(s, a) + \gamma V(\mathbf{b}_7')$$

What if the optimal policy is not strictly followed?

A 4.	$\mathbb{E}[C_{_T}]$	Regret: $\mathbb{E}[C_P]$	
Action	(monetary units)	(%)	
PR-NI (Optimal)	12493	-	
DN-NI	15552	24,5 %	
DN-I	15428	23,5 %	

15

Conclusion

Partially Observable Markov Decision Processes (POMDPs)

- ✓ Optimality
- ✓ Adaptability
- ✓ Flexibility
- ✓ Interpretability

For questions and comments:

nandar.hlaing@uliege.be

Partners

With the support of Energy Transition Fund

