ADVANCED MATH PRACTICE TEST 3

Name	TID VILICE	Date					
Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! 1. If you bought c stamps with d dollars, how many cents was each stamp?							
	•	•	<i>C</i>	c			
(A) $\frac{d}{c}$	$(\mathbf{B}) \stackrel{\sim}{-}_{\mathcal{C}}$	(C) $\frac{100c}{d}$	$(\mathbf{D}) \frac{d}{d}$	(E) $\frac{c}{100d}$			
2. You have <i>m</i> dollars made up of nickels and dimes. If there are <i>y</i> more nickels than dimes, which two equations would best represent this problem? Let <i>n</i> represent the number of nickels and <i>d</i> represent the number of dimes.							
$ \mathbf{(A)} \begin{cases} n = d + y \\ 5n + 10d = 100m \end{aligned} $	$ \mathbf{(B)} \begin{cases} n = d + y \\ 5n + 10d = m \end{cases} $	$(\mathbf{C}) \begin{cases} n+d=y\\ 5n+10d=100m \end{cases}$	$\mathbf{(D)} \begin{cases} d = n + y \\ 5n + 10d = 100m \end{cases}$	$ \mathbf{(E)} \begin{cases} d = n + y \\ 5n + 10d = m \end{cases} $			
3. $\frac{2}{a+b} - \frac{2}{b} =$							
a+b b	a	a	2 a	Ab = 2a			
$(\mathbf{A}) \ \frac{2}{a}$	(B) $\frac{-a}{a+b}$	(C) $\frac{a}{a+b}$	(D) $\frac{-2a}{ab+b^2}$	(E) $\frac{4b-2a}{ab+b^2}$			
4. If $x-4$ is a multiple of 1:	3, which of the following	g is also a multiple of 13?	uv + v	uv + v			
(A) $x + 13$	(B) $x-13$	(C) $x + 22$	(D) $x-26$	(E) $x+8$			
5. Which of the following is	$\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}$ equivalent to	0?					
(A) $\frac{1}{\sqrt{x}}$	(B) $\frac{2}{\sqrt{2}}$	(C) $\frac{1}{\sqrt{2}}$	(D) $\frac{1}{r}$	(E) $\frac{2}{x}$			
V A	V A	$Z \vee X$	X	x			
6. Which of the following points is a member of the solution set for the following system? $ \begin{cases} -3y - 2x > -6 \\ x \le -2 \end{cases} $							
(A) $(-3,4)$	(B) $(-6,7)$	(C) $(-9,8)$	(D) $(0,2)$	(E) $(-12,9)$			
7. If the smallest of three con	nsecutive odd integers is	$\frac{g-3}{5}$, which of the follow	ving is equivalent to the lar	gest of the three			
consecutive odd integers?							
(A) $\frac{g+1}{5}$	(B) $\frac{g+7}{5}$	(C) $\frac{g+12}{5}$	(D) $\frac{g+17}{5}$	(E) $\frac{g+22}{5}$			
8. Which of the following is:	3	3	3	3			
I. $\{(0,1),(1,2)(2,2)\}$ III. $x=0$							
(A) I	· ·		(D) I and II	(E) II and III			
9. Find the distance between	$\left(-r,t-5\right)$ and $\left(-r,2t\right)$	+5) assuming $2t+5>t-$	-5.				
(A) 0	(B) <i>t</i>	(C) $t+10$	(D) 3 <i>t</i>	(E) $3t + 10$			
10. Find the midpoint of $\left(-7\right)$, ,	<i>'</i>	_				
(A) $(-15c, -5d)$	(B) $(-8c, -5d)$	(C) $(-15c, 13d)$ (D)	$\left(-8c,13d\right)$ (E) $\sqrt{\left(-8c,13d\right)}$	$(-16c)^2 + (-26d)^2$			
11. Simplify $\frac{6(\sqrt{5})^3 - 12(\sqrt{5})^3}{6(\sqrt{5})^3}$	$\sqrt{5}$) $^{\circ}$						
		(C) $1-6(\sqrt{5})^2$	(D) $-11(\sqrt{5})^5$	(E) −9			
12. Which is the largest num	_	_	_				
(A) $3\sqrt{5}$			(D) $2\sqrt{11}$	(E) 7			
13. When $2t^4 - 1$ is divided by $t + 2$, what is the remainder?							
(A) $\frac{-33}{t+2}$	t 1 2	t 1 2	(D) $\frac{29}{t+2}$	$(\mathbf{E}) \ \frac{31}{t+2}$			
14. If $c + d + 1 = 0$ and $(a + 1)$	$-b)(c+d)^3-9(c+d)-$	$+4=0$, find the value of α	a+b?				

	(A) −5	(B) 5	(C) -13	(D) 13	(E) $\frac{13}{3}$			
15. If $h = g^{-2}j^3$ and $k = g^5h^4j^2$, then $k =$								
	(A) $g^{-3}j^{14}$		(C) $g^{-1}j^{14}$	(D) $g^{21}j^{14}$	(E) $g^{21}j^{83}$			
	16. If $\frac{w^4 v^5}{u^3} > 0$, which of the following does not have to be positive?							
	$(\mathbf{A}) \ u^9 v^7 w^2$	(B) $w^6 v^9 u^6$	(C) $v^6 w^8 u^{12}$	(D) $w^6v^{11}u^{19}$	(E) $w^{10}v^2u^2$			
	17. If $p + q < r - t < w - v$		following must be false? -zv III. $zr - zt > zw$. – 7V				
	$(\mathbf{A}) \ \mathbf{I}$	$(\mathbf{B}) \text{ II}$	(C) III	(D) I and II	(E) II and III			
	18. If $(w+z)(t+v) = x+z$	y , then $\frac{w+z}{t+v}$ =						
	$(\mathbf{A}) \ \frac{t+v}{x+y}$	(B)	(C) $\left(\frac{t+v}{x+y}\right)^2$	$\mathbf{(D)} \ \frac{\left(x+y\right)^2}{t+v}$	(E) $\frac{x+y}{(t+v)^2}$			
	19. If $m + n = \frac{x^2 - 9}{x^3 - x^2 - 12x}$ and $p - r = \frac{x - 3}{x^3 + 4x^2}$, find the value of $\frac{m + n}{p - r}$.							
	$(\mathbf{A}) \ \frac{x(x+4)}{x-4}$	$\mathbf{(B)} \ \frac{x^2\left(x+4\right)}{x-4}$	(C) $\frac{x(x+4)(x+3)}{x-3}$	$\mathbf{(D)} \ \frac{x(x+4)(x-3)}{x+3}$	(E) <i>x</i>			
	$20. \left(x^{y-3}\right)^{y+3} =$							
	(A) x^{2y}	· /	(C) x^{y-9}	(D) x^{y^2-6y-9}	(E) x^{y^2-9}			
21. Solving the following system for x by substitution would yield which equation in the process? $3x-2y=4$								
	(A) 2x + 9x + 14 = 4	$\begin{cases} 3x - 2y = 4 \\ 4x - y = 7 \end{cases}$	(C) $3x - 8x - 9 = 4$	(D) 2x 9x 14 - 4	(E) 2x 9x + 14 = 4			
			(C) 3x - 6x - 9 - 4	(D) $3x - 6x - 14 - 4$	(E) $3x - 6x + 14 - 4$			
	22. $\left(\sqrt{5\frac{3}{16}}\right)^{6} \cdot \frac{1}{\left(\sqrt{6-\frac{13}{16}}\right)^{2}}$	=						
	(A) 3	(B) $5\frac{3}{16}$	(C) $\left(\sqrt{5\frac{3}{16}}\right)^3$	$(\mathbf{D}) \left(5\frac{3}{16}\right)^2$	$(\mathbf{E}) \left(5\frac{3}{16}\right)^4$			
23. Find the value of $\frac{b+c+d}{2}$ for the following system: $\begin{cases} 2b-(c+d)=10\\ c+d=-2b-2 \end{cases}$								
	(A) -4	(B) -3	(C) -2	(D) -1	(E) $-\frac{1}{2}$			
	24. If the sum of three conse	2	. 1		- 0			
	(A) $3x + 9$	(B) $\frac{x-3}{3}$	(C) $\frac{x+1}{3}$	$(\mathbf{D}) \ \frac{x+6}{3}$	$(\mathbf{E}) \ \frac{x+9}{3}$			
25. $-4\left(\frac{\sqrt[3]{y+z}}{w}\right)^2 + 4\left(\frac{\sqrt[3]{y+z}}{w}\right) + 48$ is equivalent to								
	$(\mathbf{A}) -4 \left(\frac{\sqrt[3]{y+z}}{w} - 4 \right) \left(\frac{\sqrt[3]{y}}{w} \right)$	$\frac{\sqrt{z+z}}{w} - 3 \qquad \qquad \textbf{(B)} -4 \left(\frac{\sqrt[3]{z}}{w} \right)$	$\frac{\overline{y+z}}{w} - 4 \left(\frac{\sqrt[3]{y+z}}{w} + 3 \right)$	$(\mathbf{C}) -4 \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right) \left(\frac{\sqrt[3]{y+z}}{w} + 4 \right)$	$\left(\frac{y+z}{w}-3\right)$			
	$\mathbf{(D)} -4\left(\frac{\sqrt[3]{y+z}}{w}+4\right)\left(\frac{\sqrt[3]{y}}{y}\right)$	$\frac{\sqrt{z+z}}{w} + 3 \qquad (\mathbf{E}) -4 \left(\frac{\sqrt[3]{z}}{2} \right)$	$\frac{\overline{y+z}}{w} - 6 \left(\frac{\sqrt[3]{y+z}}{w} + 2 \right)$					

ADVANCED MATH TEST 3 ANSWERS

1. B	2. A	3. D	4. C	5. B
6. E	7. D	8. C	9. C	10. A
11. E	12. B	13. E	14. D	15. A
16. B	17. D	18. E	19. A	20. E
21. E	22. D	23. C	24. E	25. B