

MeteoMagician

一个用于气象数据诊断分析的 Matlab 工具箱

Dy

2024年6月

目 录

一、MeteoMagician 间介	
二、安装步骤	5
	5
3. 1 基本函数	5
色标选取	5
计算两点之间的距离	6
站点插值	6
3. 2 基础物理量	6
科氏参数	6
经纬度网格距	7
空气密度	7
散度	7
垂直相对涡度	8
绝对涡度	8
水平平流项	8
重力位势、高度的相互转换	8
3.3 差分/梯度/平滑	8
水平梯度	8
垂直梯度	9
拉普拉斯项(二维)	9
拉普拉斯项(垂直)	9
五点平滑	9
九点平滑	10
泊松方程	10
3. 4 动力学变量	10
地转风	10
Q 矢量	11
正压模式下的位势涡度	11
Ertel 位涡	11
湿位涡	12
流函数	
势函数	12

	使用风速、风向计算风的经纬分量	13
	使用经纬向风计算风速、风向	13
	风暴移动方向	13
	3.5 热力学变量	14
	位温	14
	相当位温	14
	虚温	14
	虚位温	14
	干绝热递减率	15
	湿绝热递减率	15
	非绝热加热率	15
	锋生函数	15
	干静力能	16
	3. 6 大气湿度	16
	露点温度	16
	抬升凝结温度	16
	单层水汽通量/散度	16
	饱和水汽压	17
	饱和混合比	17
	混合比	17
	饱和比湿	17
	可降水量	17
	3.7 大气稳定性	18
	静力稳定度	18
	Brunt Vaisala 频率	18
四	、其它功能	19
	1. Shuman-Shapiro 滤波	19
	2. 降水类型识别	19
	3. 对流类型识别	20
	4. 制作剖面	21
	5. 涡度收支诊断	22
	6. 热带气旋诊断	22
	二维直角坐标插值到二维极坐标系	22
	三维直角坐标插值到柱坐标系	23
	极坐标系插值到二维直角坐标系	24

参考文	ケ献	31
	Shear relative analysis	31
	Shear aligned analysis	30
	TC 中心定位(质心方法)	30
	非对称风场	30
	波数分解	29
	热带气旋变性的客观分析	28
	绝对角动量	28
	计算降水非对称性	27
	计算热带气旋的深层垂直风切变(去除 TC 涡旋)	27
	计算热带气旋的深层垂直风切变	26
	去除 TC 涡旋	25
	寻找热带气旋最大风半径(RMW)	25
	切向风和径向风	25
	柱坐标系插值到三维直角坐标系	24

MeteoMagician 使用说明

一、MeteoMagician 简介

MeteoMagician 是基于 Matlab 开发的,专门用于气象数据诊断和分析的工具箱,包含气象物理量诊断相关的基本函数,可快速计算出所需的气象物理量。可用于气象科研、数据可视化等领域。需要在 Matlab2016a 以上版本运行。

二、安装步骤

1. 需要先将当前文件夹设置为工具箱安装路径

2.在命令行输入 setup MeteoMagician

3.出现 MeteoMagician added to Matlab path,即为启动成功

```
命令行窗口

>> setup_MeteoMagicain
MeteoMagician added to Matlab path

fx;>> |
```

三、函数使用说明

3.1 基本函数

色标选取

```
function col_data = colormap_selection(name)
功能:更换色阶
输入:
    色阶名称 name,包括 NCL 中的大部分色阶,且名称相同使用案例:
```

colormap(colormap_selection('MPL_Blues'));

计算两点之间的距离

function ds = latlon_ds(lat1,lat2,lon1,lon2)

输入:

两点所在位置的经纬度(lat1,lat2,lon1,lon2)

输出:

两点之间的距离 ds (单位: km)

站点插值

function fout = grid2point(F,lat,lon,lat_p,lon_p,option,method)

功能:

将格点数据插值到站点上

输入:

气象要素 F(vertical,lat,lon)(当 option=1 时)、F(lat,lon)(当 option=0 时)

格点数据经纬度 lat/lon (一维或二维)、

站点经纬度 lat_p/lon_p (站点经纬度坐标,需要插值 n 个站点的数值时,输入 l*n 经纬度数组)

选项 option:

0-在二维水平格点上进行插值、

1-在三维格点上进行插值

插值算法 method (字符串), 详见表 1

输出:

fout 插值后的数据

表 1 Matlab R2021a 中支持的插值算法

算法	说明	连续性	
'linear'	线性插值	C^{0}	
'nearest'	最邻近插值	不连续	
'natural'	自然临点插值	C^1	
'cubic'	三次插值	C^2	
'v4'	双调和样条插值	C^2	

3.2 基础物理量

科氏参数

```
\beta = 2\Omega cos\varphi
 function [f,b]=coriolis_parameter(lat,lon)
     输入:
        纬度 lat(n)、
        经度 lon(m) (可选)
     输出:
        科氏参数 f(n,m) (单位: /s)、
        β项(科氏参数随纬度的导数)b(n,m) (单位: /s)
        如果不输入经度,则为: f(n)、b(n)
经纬度网格距
 function [dx,dy]=latlon2delta(lat,lon)
     输入:
        纬度 lat(n)
        经度 lon(m)
     输出:
        纬向、经向网格距(目前仅适用于等经纬度和墨卡托投影网格)
        dx,dy(n,m) (单位: m)
空气密度
                                \rho = \frac{p}{RT}
 function rho=density(T,pressure)
     输入:
        温度 T(p,n,m) (单位: K)、
        气压 pressure(p)(单位: Pa)
     输出:
        空气密度 rho(p,n,m) (单位: kg/m^3)
散度
                              Div = \nabla_h \cdot \overrightarrow{V_h}
 function dv=divergence_2d(U,V, dx,dy,lat)
     输入:
        经向风、纬向风 U, V(n, m) (单位: m/s)、
        纬向、经向网格距 dx, dy(n, m) 或 dx, dy(1) (单位: m)、
```

纬度 lat(n) (可选)

水平散度 dv(n,m) (单位: /s)

输出:

垂直相对涡度

水平梯度

function [gradx,grady]=gradient_2d(F,dx,dy)

```
输入:
```

物理量 F(n,m)、

纬向、经向网格距 dx, dy(n, m)或 dx, dy(1) (单位: m)

输出:

等压面/等位势面上的水平梯度 gradx, grady(n, m)

垂直梯度

function [gradp]=gradient_vert(F, vertical)

输入:

物理量 F(p,n,m)、

垂直方向的坐标(气压或高度) vertical(p) (单位: Pa)

输出:

物理量的垂直梯度 gradp(p,n,m)

拉普拉斯项 (二维)

$$\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$$

function Lap=Laplacian_2d(F,dx,dy)

输入:

物理量 F(n,m)、

纬向、经向网格距 dx, dy(n, m) (单位: m)

输出:

等压面/等位势面上的拉普拉斯项 Lap(n,m)

拉普拉斯项 (垂直)

function Lap_vert=Laplacian_vert(F, vertical)

输入:

物理量 F(p,n,m)、

垂直方向的坐标(气压或高度) vertical(p) (单位: Pa)

输出:

物理量垂直方向的拉普拉斯项 Lap_vert(p,n,m)

五点平滑

$$\widetilde{F_{i,j}} = F_{i,j} + \frac{s}{4} (F_{i+1,j} + F_{i-1,j} + F_{i,j+1} + F_{i,j-1} - 4F_{i,j})$$

function F1=smth5(F,s)

输入:

物理量 F(n,m)、

平滑系数 s

输出:

五点平滑后的数据 F1(n,m)

九点平滑

$$\begin{split} \widetilde{F_{i,j}} &= F_{i,j} + \frac{s(1-s)}{2} \left(F_{i+1,j} + F_{i-1,j} + F_{i,j+1} + F_{i,j-1} - 4F_{i,j} \right) \\ &\quad + \frac{s^2}{4} \left(F_{i+1,j+1} + F_{i-1,j-1} + F_{i-1,j+1} + F_{i+1,j-1} - 4F_{i,j} \right) \end{split}$$

function F1=smth9(F,s)

输入:

物理量 F(n,m)、

平滑系数 s

输出:

九点平滑后的数据 F1(n,m)

泊松方程

$$\Delta u = f(x, y)$$

function u = poisson(f,dx,dy,option,eps)

输入:

泊松方程右端的 f(n,m) 或 f(p,n,m)、

纬向、经向网格距 dx, dy(n, m) (单位: m)、

选项 option:

option = 1 时表示计算三维空间上的水平方向二维泊松方程

option = 0 时表示计算二维空间上的泊松方程

收敛精度 eps: 默认为10⁻⁷,可以不输入

输出:

泊松方程的解 u(n,m)或 u(p,n,m)

3.4 动力学变量

地转风

$$U_g = -\frac{g}{f} \frac{\partial H}{\partial y}$$
$$V_g = \frac{g}{f} \frac{\partial H}{\partial x}$$

function [Ug,Vg]=geostropic_wind(H,dx,dy,f)

输入:

位势高度 H(n,m) (单位: gpm)、

纬向、经向网格距 dx, dy(n, m) 或 dx, dy(1) (单位: m)、

科氏参数 **f(n,m)** (单位:/s)

输出:

地转风场 Ug, Vg(n, m) (单位: m/s)

Q矢量

$$Q_x = -\frac{R}{p} \left(\frac{\partial \overrightarrow{V_g}}{\partial x} \cdot \nabla T \right)$$
$$Q_y = -\frac{R}{p} \left(\frac{\partial \overrightarrow{V_g}}{\partial y} \cdot \nabla T \right)$$

function [Qx,Qy]=qvector_isobaric(T,Ug,Vg,pressure,dx,dy)

输入:

温度 T(n,m) (单位: K)、

地转风场 Ug, Vg(n, m) (单位: m/s)、

气压(Pa) pressure(1) (单位: Pa)、

纬向、经向网格距 dx, dy(n, m) (单位: m)

输出:

Q 矢量 Q(n,m) (单位: $m^2 \cdot kg^{-1}s^{-1}$)

正压模式下的位势涡度

$$PV = \frac{f + \zeta}{H}$$

function pv = potential_vorticity_barotropic(U,V,H,lat,dx,dy)

输入:

风场 U, V(n, m) (单位: m/s)、

位势高度场 H(n,m) (单位: gpm)、

纬度 lat(n)、

纬向、经向网格距 dx, dy(n, m) (单位: m)

输出:

位涡 pv(n,m) (单位: PVU)

Ertel 位涡

$$pv = (\zeta_{\theta} + f) \left(-g \frac{\theta}{n} \right)$$

function pv = Ertel_potential_vorticity(theta,U,V,dx,dy,lat,pressure)

输入:

位温 theta(p,n,m) (单位: K)、

风场 U, V(p, n, m) (单位: m/s)、

纬向、经向网格距 dx, dy(n, m) (单位: m) 、

纬度 lat(n)、

气压 pressure(p) (单位: Pa)

输出:

Ertel 位涡 pv(p,n,m) (单位: PVU)

湿位涡

势函数

无旋风场 u, v (n, m) (单位: m/s)

图 3.1 使用流函数和势函数程序计算得到的风场(左)与实际风场(右)的对比

图 3.2 计算得到的流函数场、无辐散风(左)和势函数场、无旋风场

使用风速、风向计算风的经纬分量

```
function [U,V] = wind_component(speed, direction) 输入:

风速 speed (单位: m/s)、
风向 direction (单位: m/s)、
输出:

纬向、经向风分量 U,V (单位: m/s)
```

使用经纬向风计算风速、风向

风暴移动方向

```
function tc_dir = storm_motion(lat,lon)
```

```
输入:
      纬度 lat(n)、
      经度 lon(n)
   输出:
      各时刻风暴的移动方向 tc_dir(n)
3.5 热力学变量
位温
 function theta=potential_temperature(T,pressure)
   输入:
      温度 T(p,n,m) (单位: K)、
      气压 pressure(p) (单位: Pa)
   输出:
      位温 theta(p,n,m) (单位: K)
相当位温
 function theta_e=equivalent_potential_temperature(RH,T,pressure)
   输入:
      相对湿度 RH(p,n,m) (单位: 小数)、
      温度 T(p,n,m) (单位: K)、
      气压 pressure(p) (单位: Pa)
   输出:
      相当位温 theta_e(p,n,m) (单位: K)
虚温
 function tv = virtual_temperature(T,q)
   输入:
      温度 T (单位: K)、
      比湿 q (单位: kg/kg)
   输出:
      虚温 tv (单位: K)
虚位温
 function theta_v = virtual_potential_temperature(theta,q)
   输入:
      位温 theta (单位: K)、
      比湿 q (单位: kg/kg)
   输出:
```

虚位温 theta_v (单位: K)

干绝热递减率

$$\gamma_d = \frac{dT}{dp} = \frac{RT}{c_n p}$$

function gamma_d = dry_lapse(T, pressure)

输入:

温度 T(p,n,m) 或 T(n,m)或 T(p) (单位: K)、

气压 pressure(p) 或 pressure(1) (单位: Pa)

输出:

干绝热递减率 gamma_d(p,n,m)或 gamma_d(n,m)或 gamma_d(p) (单位: K/Pa)

湿绝热递减率

$$\gamma_s = \frac{dT}{dp} = \frac{1}{p} \frac{R_d T + L_v r_s}{C_{pd} + \frac{L_v^2 r_s \epsilon}{R_d T^2}}$$

function gamma_s = moist_lapse(T,pressure)

输入:

温度 T(p,n,m) 或 T(n,m)或 T(p) (单位: K)、

气压 pressure(p) 或 pressure(1) (单位: Pa)

输出:

湿绝热递减率 gamma_s(p,n,m)或 gamma_s(n,m)或 gamma_s(p) (单位: K/Pa)

非绝热加热率

$$\frac{d\theta}{dt} = \omega \left(\frac{\partial \theta}{\partial p} - \frac{\gamma_m}{\gamma_d} \frac{\theta}{\theta_e} \frac{\partial \theta_e}{\partial p} \right)$$

function H = diabatic_heating(T,Omega,pressure,RH)

输入:

温度 T(p,n,m) (单位: K)、

P 坐标垂直速度 Omega(p,n,m) (单位: Pa/s)、

气压 pressure(p) (单位: Pa)

相对湿度 RH(p,n,m) (单位: 小数)、

输出:

非绝热加热率 H(p,n,m) (单位: K/s)

锋生函数

$$F \approx -\frac{1}{|\nabla_h \theta|} \left\{ \left[\left(\frac{\partial \theta}{\partial x} \right)^2 \frac{\partial u}{\partial x} + \left(\frac{\partial \theta}{\partial y} \right)^2 \frac{\partial v}{\partial y} \right] + \left[\frac{\partial \theta}{\partial x} \frac{\partial \theta}{\partial y} \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] \right\}$$

```
function F = frontogenesis(theta,U,V,dx,dy)
   输入:
      温度 T(n,m) (单位: K)、
      风场 U, V(n, m) (单位: m/s)、
      纬向、经向网格距 dx, dy(n, m) (单位: m)
   输出:
      水平锋生函数 F(n,m) (单位: K/(m.s))
干静力能
 function D = dry_static_energy(T,Phi)
   输入:
      重力位势 Phi (单位: m^2s^{-2})、
      温度 T (单位: K)
   输出:
      干静力能 D
3.6 大气湿度
露点温度
 function Td=Dewpoint(RH,T)
   输入:
      相对湿度 RH (单位: 小数)、
      温度 T (单位: K)
   输出:
      露点温度 Td (单位: K)
抬升凝结温度
 function Tlcl=T_lcl(T,Td)
   输入:
      温度 T (单位: K)、
      露点温度 Td (单位: K)
   输出:
      抬升凝结温度 Tlcl (单位: K)
单层水汽通量/散度
 function [qu,qv,qd] = vapor_flux(Q,U,V,dx,dy,lat)
   输入:
      比湿 Q(n,m) (单位: kg/kg)、
      风场 U, V(n, m) (单位: m/s)、
      纬向、经向网格距 dx, dy(n, m) (单位: m)
```

```
纬度 lat(n) (可选)
   输出:
      水汽通量 qu,qv(n,m) (单位: kg \cdot m^{-1}s^{-1})
      水汽通量散度 qd(n,m) (单位: kg \cdot m^{-2}s^{-1})
饱和水汽压
 function es = saturation_vapor_pressure(T)
   输入:
      温度 ▼ (单位: K)
   输出:
      饱和水汽压 es (单位: Pa)
饱和混合比
 function rs = saturation_mixing_ratio(T,pressure)
   输入:
      温度T(p,n,m)或T(n,m)或T(p)(单位: K)、
      气压 pressure(p) 或 pressure(1) (单位: Pa)
   输出:
      饱和混合比 rs(p,n,m)或 rs(n,m)或 rs(p)(单位: kg/kg)
混合比
 function r = mixing_ratio(e,pressure)
   输入:
      水汽压 e (单位: Pa或hPa)、
      气压 pressure (单位: Pa 或 hPa)
   输出:
      混合比 r (单位: kg/kg)
饱和比湿
 function qs = saturation_specific_humidity(es,pressure)
   输入:
      饱和水汽压 es (单位: Pa 或 hPa)、
      气压 pressure (单位: Pa 或 hPa)
   输出:
      饱和比湿 qs (单位: kg/kg)
可降水量
 function pw = precipitable_water(q,pressure,p_sfc)
   输入:
      比湿 q (单位: kg/kg)、
```

气压 pressure (单位: Pa)地表气压 p_sfc (单位: Pa, 可以不输入)输出:可降水量 pw (单位: mm)

图 3.3 计算得到的全球可降水量分布

3.7 大气稳定性

静力稳定度

```
function [ss]=static_stability(T,pressure) 输入:
    温度 T(p,n,m)、
    气压 pressure(p)
输出:
    静力稳定度 ss(p,n,m)
```

Brunt Vaisala频率

$$N^2 = \frac{g}{\theta} \frac{d\theta}{dz}$$

function N = brunt_vaisala_frequency(theta,z)

```
输入:
```

```
位温 theta(p,n,m)或 theta(p)
高度 z(p)
```

输出:

Brunt Vaisala 频率的平方 N(p,n,m)或 N(p)

四、其它功能

1. Shuman-Shapiro 滤波

```
function [synoptic_scale,meso_scale]=
    shuman_shapiro_filter(F,s,option)
```

2. 降水类型识别

该函数使用 Rogers (2010)中使用的降水分类算法进行计算。

```
function [pre_cat] =
    convective stratiform partition(dbz,w,height,dx)
```

功能:通过 WRF 或其它数值模式输出的雷达反射率和垂直速度识别对流降水、层云降水和云砧降水

输入:

雷达反射率 dbz(height,lat,lon) (单位:dBZ)、

垂直速度 w(height,lat,lon) (单位:m/s)、

各层的高度 z(height) (单位:m/s),注意: 必须包含 3000m 和 900m 高度的格点,并至少包含一个大于 3000m 高度的垂直层

格点距离 dx(km)

输出:

各个格点的降水类型 pre_cat(lat,lon)

0-no rain/无降水,

1-convective/对流降水,

2-stratiform/层状云降水,

3-anvil type/云砧降水,

4-other/其它类型降水。

图 4.1 (左图)组合反射率 (阴影,单位:dBZ); (右图)降水分类结果 (阴影)

3. 对流类型识别

function [con_type] =
 convective_partition(pre_cat,dbz,height,dx)

功能:基于分类好的降水类型和雷达反射率

输入:

降水分类结果 pre_cat(lat,lon)

雷达反射率 dbz(height,lat,lon) (单位:dBZ)、

各层的高度 **z**(height) (单位:m/s),注意:必须包含 4000m 和 8000m 高度的格点,并至少包含一个小于 4000m 和大于 8000m 高度的垂直层格点距离 **dx**(km)

输出:

各个格点的对流类型 con_type(lat,lon)

- 0-no convection/无对流,
- 1-shallow convection/浅对流降水,
- 2-midlevel convection/中层对流降水,
- 3-deep convection/深对流降水,

图 4.2 (左图)降水分类结果(阴影);(右图)对流分类结果(阴影)

4. 制作剖面

function fout =

cross_section(F,lat,lon,lat_p,lon_p,n,option,

method, angle, R, Roption)

功能:将格点数据插值到剖面上

输入:

气象要素 F(vertical,lat,lon)(当 option=1 时)、F(lat,lon)(当 option=0 时)

格点数据经纬度 lat/lon (一维或二维)、

站点经纬度 lat_p/lon_p (当 method 选择'PTP'时,输入 1*2 的经纬度数组,如:(.....,[19.2,22.3],[118.3,122.3],.....)、当选择其它 method 时,则输入单个站点的经纬度坐标)

剖面格点数 n

选项 option:

- 0-在二维水平格点上进行插值、
- 1-在三维格点上进行插值

方式 method(string):

'PTP'(Point To Point);在输入的两个站点之间做剖面,此时lat_p/lon_p 为 1*2 数组,包含 2 个站点坐标

'Center'以输入站点为中心,根据输入角度 angle、半径 R 做剖面;

```
'SP'(Start from a Point),以输入站点为起点,根据输入角度 angle、距
      离 R 做剖面
      Roption: (仅在使用后 2 种 method 时可用)
         1-距离 R 的单位是经纬度:
         0-距离 R 的单位是 km
   输出:
      fout(vertical, lat, lon)插值后的数据
5. 涡度收支诊断
 function [H_adv,V_adv,Tilt,Stre,F]=
      vorticity_equation(U,V,W,vertical,dx,dy,lat,Fx,Fy)
   输入:
      三维的风场 U, V, W(vertical, lat, lon)
      垂直坐标 vertical(vertical)(单位: m 或 hPa)
      水平格点间距 dx/dy(单位: m)
      纬度 lat
         如果是在等经纬度网格上计算,请输入一维的纬度数组
         如果是在非经纬度网格上计算,请用一个具体的纬度代替
         如用 45N 代替,则 lat 变量输入 45
      摩擦加速度(可不输入)Fx/Fy(vertical,lat,lon)
   输出:
      水平相对涡度平流项 H_adv(vertical,lat,lon)、
      相对涡度垂直输送项 V adv(vertical,lat,lon)
      倾斜项 Tilt(vertical, lat, lon)
      辐散项 Stre(vertical, lat, lon)
      摩擦耗散项 F(vertical, lat, lon)
6. 热带气旋诊断
二维直角坐标插值到二维极坐标系
 function [F,theta,r,lat_n,lon_n] = hurricane_cart2pol ...
      (F0,ctr_lat,ctr_lon,lat,lon,Radius,Nr,Ntheta,option,method)
   功能: 以涡旋中心为原点,将二维直角坐标插值到极坐标
   使用方法:
      输入:
         气象要素 F0(lat,lon)
         涡旋中心经纬度 ctr_lat,ctr_lon
```

原始数据经纬度 lat,lon,可为向量或二维数组

需要插值的极坐标半径范围 R (单位: km 或度)

极坐标径向格点个数 Nr

方位格点个数 Ntheta

插值选项 option,决定径向方向的距离单位是 km 还是度,是 km 则输入 0,

度则输入1

插值算法 method (字符串), 详见表 1

输出:

插值后的气象要素 F(r,theta)

方位坐标 theta (单位: 度)

径向坐标 r (单位: km 或度)

插值后气象要素的经纬度坐标 lat_n/lon_n(r,theta)

三维直角坐标插值到柱坐标系

```
function [F,theta,r,lat_n,lon_n] = hurricane_cart2cyl ...
```

(F0,ctr_lat,ctr_lon,lat,lon,vertical,Radius,Nr,Ntheta,option,method)

功能:以涡旋中心为原点,将三维直角坐标插值到柱坐标使用方法:

输入:

气象要素 F0(vertical, lat, lon)

涡旋中心经纬度 ctr_lat,ctr_lon

原始数据经纬度 lat,lon,可为向量或二维数组

一维垂直坐标 vertical (单位:任意)

需要插值的极坐标半径范围 R (单位: km 或度)

极坐标径向格点个数 Nr

方位格点个数 Ntheta

插值选项 option,决定径向方向的距离单位是 km 还是度,是 km 则输入 0,

度则输入1

插值算法 method (字符串), 详见表 1

输出:

插值后的气象要素 F(vertical,r,theta)

方位坐标 theta (单位: 度)

径向坐标r(单位: km 或度)

插值后气象要素的经纬度坐标 lat_n/lon_n(r,theta)

极坐标系插值到二维直角坐标系

```
function F = hurricane pol2cart
     (F0,F_base,theta,r,ctr_lat,ctr_lon,lat,lon,option,method)
   功能: 以涡旋中心为原点,将极坐标插值到二维直角坐标
  使用方法:
     输入:
         气象要素 F0 (r,theta)
         需要插值的目标网格 F_base (lat,lon)
        方位坐标 theta (单位: 度)
        径向坐标 r (单位: km 或度)
         涡旋中心经纬度 ctr_lat,ctr_lon
         原始数据经纬度 lat,lon,可为向量或二维数组
        插值选项 option,决定径向方向的距离单位是 km 还是度,是 km 则输入 0,
     度则输入1
        插值算法 method (字符串), 详见表 1
     输出:
        插值后的气象要素 F(lat,lon)
柱坐标系插值到三维直角坐标系
 function F = hurricane_cyl2cart
      (F0,F_base,vertical,theta,r,ctr_lat,ctr_lon,lat,lon,option,metho
d)
   使用方法:
     输入:
         气象要素 F0 (vertical,r,theta)
         需要插值的目标网格 F base (vertical, lat, lon)
         一维垂直坐标 vertical (单位:任意)
        方位坐标 theta (单位: 度)
         径向坐标 r (单位: km 或度)
         涡旋中心经纬度 ctr lat, ctr lon
         原始数据经纬度 lat,lon,可为向量或二维数组
        插值选项 option,决定径向方向的距离单位是 km 还是度,是 km 则输入 0,
     度则输入1
         插值算法 method (字符串), 详见表 1
     输出:
```

插值后的气象要素 F(vertical, lat, lon)

图 4.3 原始场 (左); 从极坐标插值到等经纬度坐标后 (中); 从等经纬度坐标插值到极坐标后 (右)

切向风和径向风

寻找热带气旋最大风半径(RMW)

```
function [RMW,Vmax] = hurricane_UV2RMW(U,V,lat,lon,ctr_lat,ctr_lon) 输入:

结向、经向风场 U,V(lat,lon) (单位: m/s)、
TC 中心经纬度 ctr_lat,ctr_lon(单位: 度)
经纬度 lat,lon(单位: 度)
输出:
最大风半径 RMW(单位: km)
热带气旋强度(最大风半径上的最大风速)Vmax(单位: m/s)
```

去除 TC 涡旋

本函数采用 Yu et al. (2021)使用的 Helmholtz 分解方法去除 TC 涡旋:

$$\nabla^2 \psi = \zeta, \ \nabla^2 \chi = \delta,$$

$$\psi|_{\partial} = 0, \ \chi|_{\partial} = 0,$$

$$V_{\psi} = \vec{k} \times \nabla \zeta, \ V_{\chi} = \nabla \chi, \ V_{env} = V_{ST} - V_{\psi} - V_{\chi},$$

其中 ∇^2 是二维拉普拉斯算子; $|_{\partial}$ 表示边界条件; $\zeta = \vec{k} \cdot \nabla \times V_{ST}$ 和 $\delta = \nabla \cdot V_{ST}$ 分别是垂 直相对涡度和散度, V_{ST} 表示减去 TC 移速的风场; ψ 和 χ 为流函数和势函数; V_{ψ} = $(\mathbf{u}_{\psi}, \mathbf{v}_{\psi})$ 和 $V_{\mathbf{v}} = (\mathbf{u}_{\mathbf{v}}, \mathbf{v}_{\mathbf{v}})$ 分别为无辐散和无旋风场。 V_{env} 为去除 TC 涡旋后的环境风场。

```
function [U0,V0,ind_incircle] = hurricane_filter
   (U,V,lat,lon,ctr_lat,ctr_lon,R)
   功能: 去除台风涡旋
   使用方法:
      输入:
         风场 U, V(lat, lon)
         经纬度 lat, lon
         TC 中心经纬度 ctr lat, ctr lon
         分析半径 R (单位: km)
      输出:
         环境风场 U0\V0(lat,lon)
         位于涡旋半径内的格点序号 ind_incircle(lat,lon)
计算热带气旋的深层垂直风切变
```

```
function [Us,Vs,S,D] = hurricane VWS
    (U200, V200, U850, V850, ctr lat, ctr lon, lat, lon, method, Radius)
 功能: 计算热带气旋深层垂直风切变
 使用方法:
    输入:
        200 和 850hPa 等压面上的水平风场 U,V(lat,lon) (单位: m/s)、
       TC 中心经纬度 ctr lat, ctr lon (单位: 度)
       经纬度 lat, lon (单位: 度)
        计算方法 method:
           'simple'-以 Radius 为半径平均
           'ring'-在 200-800km 半径的环状区域平均
        分析半径 Radius,使用'simple'时可使用,默认为500km,可以不输入
 输出:
    x,y方向垂直风切变Us,Vs(单位: m/s)
    深层垂直风切变强度 5 (单位: m/s)
    风切变方向 D (单位: 度)
```

计算热带气旋的深层垂直风切变(去除 TC 涡旋)

这里采用 Velden and Sears (2014)中介绍的方法进行计算。

(U200, V200, U850, V850, ctr lat, ctr lon, lat, lon)

输入:

200 和 850hPa 等压面上的水平风场 U,V(lat,lon) (单位: m/s)、

TC 中心经纬度 ctr lat, ctr lon (单位: 度)

经纬度 lat, lon (单位: 度)

输出:

x,y方向垂直风切变Us,Vs(单位: m/s)

深层垂直风切变强度 5 (单位: m/s)

风切变方向 D (单位: 度)

计算降水非对称性

本函数使用 Schecter (2022)的降水非对称性公式:

$$R_{asym}(t;a) \equiv \sqrt{\frac{4}{3} \sum_{\varphi} \left[\widehat{\mathcal{R}_{\varphi}}(t;a) - \frac{1}{4}\right]^2} \,,$$

其中t是时间, α 表示区域积分的最大半径, φ 表示方位,当 $\varphi=0$ 时表示涡旋倾斜方向, $\widehat{\mathcal{R}_{\varphi}}$ 表示降雨率在某一个象限的概率。 $\widehat{\mathcal{R}_{\varphi}}$ 可以表示为:

$$\widehat{\mathcal{R}_{\varphi}}(t;a) \equiv \int_{\varphi-\pi/4}^{\varphi+\pi/4} d\widetilde{\varphi} \int_{0}^{a} \frac{dr r R(r,\widetilde{\varphi},t)}{\mathcal{R}_{I}(a,t)},$$

其中r是半径,R是降雨率, \mathcal{R}_I 表示以地面涡旋中心为原点,在半径a范围内的降雨率区域积分。 \mathcal{R}_I 表示为:

$$\mathcal{R}_I(a,t) \equiv \int_0^{2\pi} d\varphi \int_0^r d\, \tilde{r} \tilde{r} R(\tilde{r},\varphi,t) \,.$$

从极端情形讲, $R_{asym}=0$ 表明降雨率均匀分布, $\widehat{\mathcal{R}_{\varphi}}$ 此时在所有象限内均为1/4,反过来当 $R_{asym}=1$ 时降雨率仅集中于一个象限。

function [P_asy,Pi,Pp] = hurricane_precipitation_asymmetry

(P,lat,lon,ctr_lat,ctr_lon,US,VS,RMW)

输入:

降水强度 P(lat,lon) (单位: m/s)、

TC 中心经纬度 ctr lat, ctr lon (单位: 度)

经纬度 lat, lon (单位: 度)

垂直风切变矢量 US, VS (单位: m/s)

最大风半径 RMW (单位: km)

输出:

降水非对称性 P_asy 区域积分降水率 Pi(4)

各个象限的降水概率 Pp(4)

图 4.4 计算得到的径向风速(上)和切向风速(下)的分布

绝对角动量

热带气旋变性的客观分析

绝对角动量 M(r,theta)

本函数采用 Evans and Hart (2003)的热带气旋变性客观识别算法。 function [A,B] = hurricane_extratropical_transition (H,pressure,SN,tc_dir,theta,r,Radius)

输入:

柱坐标系下的位势高度场 H(pressure, r, theta) (单位: gpm)、

半球 SN, 北半球输入 1, 南半球输入-1

热带气旋的移动方向 tc_dir (单位: 度)、

TC 中心所在纬度 ctr_lat

方位角 theta(theta)(单位:度)

径向距离 r(r) (单位: km)

分析半径 Radius,默认为 500km,可以不输入

输出:

A-热成风关系、B-风暴对称性

图 4.5 计算得到的飓风热成风关系、风暴对称性绘制的相空间图

波数分解

function [Fn] = wavenumber_decomposition(F,nr,theta,n)

功能:对极坐标下的物理量进行波数分解

输入:

物理量 F(r,theta)

径向格点数 nr

方位坐标 theta (单位: 度)

波数n

输出:

n波非对称分量 Fn(r,theta)

非对称风场

```
function [ua,va] = hurricane_asyuv(u,v,theta,r,n)
   功能: 计算极坐标下的非对称风
   输入:
      笛卡尔坐标系下的 u, v(r,theta)
      方位坐标 theta (单位: 度)
      半径坐标 r
      波数n
   输出:
      n波非对称风场 ua, va(r,theta)
TC 中心定位(质心方法)
   本函数使用 Nguyen et al. (2014)中使用的 TC 中心定位方法。
 function [lonc,latc,xc,yc] = hurricane_findcenter
    (P,PV,lat,lon,dx,p_flag)
   功能: 使用 PV/相对涡度/气压质心作为 TC 中心
   使用方法:
      输入:
         气压 P(lat, lon)
         PV/相对涡度/气压 PV(lat,lon)
         对应的经纬度网格 lat,lon(lat,lon)
         水平格距 dx(单位: km)
         气压质心方法标识 p flag, 如果需要使用气压质心方法,请输入任意值,如
      果不使用,请不要输入
      输出:
         TC 中心坐标经纬度 lonc, latc
         TC 中心坐标所在格点位置 xc,yc
Shear aligned analysis
 function [Fs] = hurricane_shear_alignment(F,theta,US,VS)
   功能:将极坐标下的物理量按照 shear relative 的方位排序
   输入:
      物理量 F(r,theta)
      方位坐标 theta (单位: 度)
```

风切变矢量 US\VS (单位: m s⁻¹)

输出:

Fs(theta,r)按照风切变矢量重新划分的极坐标变量,0°表示顺切变方向,随 theta 增加呈顺时针旋转。

```
Shear relative analysis
```

FQ(4,r,theta)或 FQ(4,vertical,r,theta)-4 个象限的柱坐标

参考文献

Evans, J. L., and R. E. Hart, 2003: Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. *Mon. Wea. Rev.*, 131, 909–925, https://doi.org/10.1175/1520-0493(2003)131<0909:OIOTLC>2.0.CO;2.

Nguyen, L. T., J. Molinari, and D. Thomas, 2014: Evaluation of tropical cyclone center identification methods in numerical models. *Mon. Wea. Rev.*, 142, 4326–4339, https://doi.org/10.1175/MWR-D-14-00044.1.

Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. *J. Atmos. Sci.*, 67, 44–70, https://doi.org/10.1175/2009JAS3122.1.

Schecter, D. A., 2022: Intensification of tilted tropical cyclones over relatively cool and warm oceans in idealized numerical simulations. *J. Atmos. Sci.*, 79, 485–512, https://doi.org/10.1175/JAS-D-21-0051.1.

Velden, C. S., and J. Sears, 2014: Computing deep-tropospheric vertical wind shear analyses for tropical cyclone applications: Does the methodology matter?. *Wea. Forecasting*, 29, 1169–1180, https://doi.org/10.1175/WAF-D-13-00147.1.

Yu, C., A. C. Didlake, F. Zhang, and R. G. Nystrom, 2021: Asymmetric rainband processes leading to secondary eyewall formation in a model simulation of hurricane Matthew (2016). *J. Atmos. Sci.*, 78, 29–49, https://doi.org/10.1175/JAS-D-20-0061.1.