Restricted Boltzmann Machines and the Renormalization Group: Learning Relevant Information in Statistical Physics

Jesse Hoogland

Amsterdam University College

26-06-2019

Introduction

This talk will revolve around the intersection of:

- Statistical Physics The Renormalization Group (RG)
- Machine Learning (ML) Restricted
 Boltzmann Machines (RBMs)
- ► Information Theory

Introduction

- ▶ We derive a more exact correspondence between RG and RBMs than in previous works.
- We provide a new implementation of an existing algorithm that learns optimal RG transformations, and we use this to calculate the Ising model's correlation length critical exponent.
- We describe a generalization of this algorithm to arbitrary lattice systems.

Introduction to Statistical Physics

(a) Ludwig Boltzmann [1]

(b) James Clerk Maxwell [2]

(c) Rudolf Clausius [3]

The Kinetic Theory of Gases

Figure 2: Statistical physics began with the kinetic theory of gases, positing gases as collections of tiny particles.

The Fundamental Responsibility of Statistical Physicists

Microscopic → Macroscopic

Ferromagnetism

Figure 3: Ferromagnetism is the process by which materials like iron form permanent magnets [4].

The Ising Model

Figure 4: The Ising model [5].

Critical Phenomena and Phase Transitions

The Renormalization Group

Figure 5: Three steps of majority-rule block-spin renormalization, preceding left to right (block size b=2).

In RG, we reexpress our system in terms of a simpler set of variables, iterating to remove information about the shortest-distances.

Challenges in RG.

- Devising RG procedure depends on system at hand.
- No obvious way to come up with appropriate transformations.

Challenges in RG.

- Devising RG procedure depends on system at hand.
- No obvious way to come up with appropriate transformations.

Solution: Machine Learning

Neural Networks

Figure 6: A neural network consists of alternating linear and non-linear transformations [7].

Qualitative similarities between RG and RBMs

Figure 7: Two iterations of block renormalization and a deep Boltzmann machine of three layers.

Qualitative similarities between RG and RBMs

Figure 8: Two iterations of block renormalization and a deep Boltzmann machine of three layers.

Can we make this more precise?

An Exact Correspondence between Kadanoff's Variational RG and RBMs

Figure 9: The receptive fields of hidden units in DBMs [10]

Surprisingly, this local block spin structure emerges from the training process, suggesting the [deep neural network] is self-organizing to implement block spin renormalization [10].

Do RBMs Learn Block Spin RG?

General block spin tranformations are **NOT** all appropriate RG procedures.

Extra conditions on RG Transformations

The Renormalization Group satisfies additional criteria that neural networks do not necessarily:

- ▶ RG transformations (should) respect the symmetry of the system under investigation.
- ▶ RG transformations (should) extract only the long-distance information.

Information Theory

Information theory gives us an exact way to calculate:

- ▶ The amount of information contained in a signal.
- ▶ The amount of *relevant* information contained in a signal.

'rgpy' — A python library for RG techniques.

A Recalculation of the Correlation-Length Critical Exponent

$$\nu\approx 0.79\pm 0.39$$

Figure 10: Finite-size collapse curve for our implementation of the RSMI algorithm.

Generalization to n-Spin and O(n) Models

Models	Symmetry of order parameter	α	β	γ	δ	ν	η
2-d Ising	2 -component scalar	0	1/8	7/4	15	1	1/4
		(log)					
3-d Ising	2 -component scalar	0.10	0.33	1.24	4.8	0.63	0.04
2-d Potts,	q -component scalar	1/3	1/9	13/9	14	5/6	4/15
q = 3							
3-d X-Y	2-d vector	0.01	0.34	1.30	4.8	0.66	0.04
3-d	3−d vector		0.36	1.39	4.8	0.71	0.04
Heisenberg		-0.12					
Mean field		0	1/2	1	3	1/2	0
		(dis)					

Figure 11: Universality classes for different numbers of dimensions d and spin components n [13].

Discussion and Conclusions

- Information theory as conceptual framework for comparing ML and RG and devising optimal procedures: e.g. the RSMI algorithm.
- Symmetries of our systems as restricting allowed RG and ML transformations and enabling understanding of "black box" neural networks: e.g. convolutional architectures.
- (Unsupervised) Machine learning as guiding the "physical reasoning process," going beyond data analysis alone: e.g. calculating critical exponents [11].

References

- [1] JT. Top 10 scientists who committed suicide, oct 2007.
- [2] Who2 Biographies. James clerk maxwell biography.
- [3] Sarah Griffiths. From child prodigies to playwrights, the world's 40 smartest people of all time revealed, Aug 2016.
- [4] Eurico Zimbres FGEL/UERJ. Magnetez, 2005.
- [5] JGTechSol. Optical computing, Feb 2017.
- [6] John Cardy. Scaling and Renormaliztion in Statistical Physics. Cambridge University Press, Cambridge, United Kingdom, 1996.
- [7] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexandre G. R. Day, Clint Richardson, Charles K. Fisher, and David J. Schwab. A high-bias, low-variance introduction to machine learning for physicists. arXiv e-prints, page arXiv:1803.08823, Mar 2018.
- [8] Marc-Alexandre Côté and Hugo Larochelle. An infinite restricted boltzmann machine. Neural Computation, 28:1265–1288, 2016.
- [9] Theano Development Team. Restricted boltzmann machines, 2013.
- [10] Pankaj Mehta and David J. Schwab. An exact mapping between the variational renormalization group and deep learning. arXiv e-prints, page arXiv:1410.3831, Oct 2014.
- Maciej Koch-Janusz and Zohar Ringel. Mutual information, neural networks and the renormalization group. Nature Physics 14:578–582, Jun 2018.
- [12] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
- [13] Sitangshu B. Santra. Advanced statistical mechanics models and universality, November 2013.