Object Oriented Programming assignment 3-3

IPSL**=**

ASSIGNMENT 3-3

Overview

- There are 100 billion neurons in the brain. Among many neurons responsible for arithmetic computation, the connection of particular nine neurons can be disconnected according to the certain rules. Implement a program that simulates the operation of nine neurons according to the several rules.
 - Nine neurons initially construct a linked list as below
 - When state updated, each inter-layer connection can be broken
 - At final state, execute the calculation and print the result

Class Neuron & Linked list

Class Neuron

- Member variables (You can use another data type)
 - int **Value**: Integer value N, 0<=N<=9
 - Char*/String Op: One of four operators of addition(add), subtraction(sub), multiplication(mul), and division(div)
 - Neuron* **RightNeuron**: Address of forward Neuron object connected with current neuron among the neurons of the next layer.
 - Neuron* **DownNeuron**: Address of forward Neuron object connected with current neuron among the neurons of the same layer.
- Linked list consists of nine Neuron objects.

First state

- Nine Neuron objects created and linked list is constructed as shown in the figure below.
- Member variables 'Value' and 'Op' is set as figure below.

State update

- When updating the state, each inter-layer connection is broken with a 10% probability
- Total three state updates are performed in order
 - First state -> Second state, Second state-> Third state, Third state-> Fourth state
- The connection break is determined as shown in the following code

```
srand(1); // Write only once at program start
ConnBreak = rand()%10; //connection will be broken if value of break is zero
```

 Seed of rand operation should be given with srand(1) for deciding connection will be broken or not

State update

- When updating the state, only the connections of the nodes accessible from the head node are considered in ascending order of connection index(Con1->Con2->Con3->..)
 - In the example below, state update from State N to State N+1 proceeds as below
 - Con1 is disconnected -> Do not consider disconnection of Con2
 - Con3 is connected -> Consider disconnection of Con4
 - Con5 is disconnected -> Do not consider disconnection of Con6
- Node not accessible from the head node, gray color nodes in the example below, may be deleted at any time

Final state

 In the fourth state, calculation will be executed horizontally from each neuron of first layer until there is no connection

■ The horizontal calculation between the layers is proceeds sequentially from the previous

layer

- Print the expression and answer
- Do not consider the priority of operators
- Discard the remaining of division
- If there is no connection between first layer and second layer, only the number of first neuron can be displayed or right term can be displayed also

