Hashing Classification for charged particle tracking

Luiza Adelina Ciucu (ATLAS)

10 July 2020

Introduction

- o 100 events. For each group of 10: 7 train, 3 test.
- o If nbPositiveHit<10, set nbPositiveHit=0 and output made only of -1.
- o For Train used Balanced (130k), for Test use Unbalanced (3.2M).
- o Balancing Train in two steps, as shown last time.
 - Make peak flat between 10-17 (with value of 17).
 - Reduce nbPositiveHit=0 until 50% Pos, 50% Neg.
- o Train in Balanced, evaluate in Test in Unbalanced.
- o Last time showed how peak at 17 gives best results.
 - Many values at bin, and almost nothing at bins 1-9 (out of 21)
 - But problem that only a peak in 1-2 bins around bin 14.
- New studies today:
 - Tried other model settings.
 - Also added a dropout(0.2) layer at the end of the hidden layers.

Model changes

- Naming convention of model description, e,g. 02_05_E_RH_A_0120.
 - 02 hidden layers
 - 05 \times 20 nodes on the hidden layer. Input layer has 3 \times 20 nodes, output layer has 1 \times 20 nodes.
 - $\mathsf{E} = \mathsf{elu}$ activation function for all nodes on all the hidden layers. Other options: $\mathsf{R} = \mathsf{relu}$.
 - RH = regular hinge loss function (power one).
 Other options: SH = squared hinge loss function (power two).
 - A= no dropout layer at the end of hidden layers. Option options: B= one dropout layer at the end of the hidden layers.
 - 0120 number of epochs, each with batch size of 50000. Other options: 600, 1200.
- Today they all have Tanh activation function on the output layer.
 Squared non linear and soft sign were not that good.
- Comparing best models from last week with the best models from this week.

Accuracy and Loss from training

o For 120 epochs, Test shows unbalanced, for 1200 Test balanced.

Output and output predicted 1D

Older ones have a sharp peak, the new ones are more flat.

Output and output predicted 2D 1/2 - last week

No diagonal in either Train or Test.

Output and output predicted 2D 2/2 - new models

o In Train balanced, a diagonal is seen. In Test unbalanced it's harder.

Metrics for each VolumeID.

o The new ones (bluish) have a clearly better Train Balance and only a slightly better Test Unbalanced than the old ones (reddish).

Accuracy	Precision	Recall
TP+TN	TP	TP
TP+FP+FN+TN	TP+FP	TP+FN

Conclusion

- Improved model from last week.
- o In balanced dataset (Train and Test) a diagonal can be nicely seen.
- In Test unbalanced it is harder to see, but still values look relatively flat in 1D.
- o Changes to the model for the best choice: 02_05_E_SH_A_0120 \rightarrow 03_10_R_RH_B_1200.
 - $02 \rightarrow 03$ hidden layers
 - $05 \times 20 \rightarrow 10 \times 20$ nodes on each hidden layer. Input layer has 3×20 nodes, output layer has 1×20 nodes.
 - Elu ightarrow Relu activation function for all nodes on all the hidden layers.
 - Squared Hinge \rightarrow Regular Hinge as loss function.
 - Added one dropout layer (0.2) at the end of the hidden layers.
 - $120 \rightarrow 1200$ epochs, each with batch size of 50000.
 - Kept Tanh activation function on the output layer.
- This model seems good enough.
- o Next step: add these results in the thesis.