Ejercicios Tema 5 - Variables aleatorias bidimensionales

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso de Probabilidad y Variables Aleatorias con R y Python

Contenidos

1	Variables aleatorias multidimensionales momentos	1
	1.1 Pregunta 1	1
	1.1.1 Solución	1

1 Variables aleatorias multidimensionales momentos

1.1 Pregunta 1

Una urna contiene una bola negra y dos bolas blancas. Se sacan tres bolas de la urna. Sea la variable I_k que vale 1 si el resultado de la extracción k-ésima es la bola negra y vale 0 en caso contrario. Definimos las siguientes tres variables aleatorias:

$$X = I_1 + I_2 + I_3,$$

 $Y = \min\{I_1, I_2, I_3\},$
 $Z = \max\{I_1, I_2, I_3\}.$

- 1. Especificar el rango de valores de la variable 3 dimensional (X, Y, Z) si las extracciones son con reposición. Hallar la función de probabilidad conjunta P_{XYZ} .
- 2. ¿Son las variables X, Y, Y, Z independientes? ¿Son las variables $X \in Y$ independientes?
- 3. Repetir el primer apartado suponiendo ahora que las extracciones son sin reposición.

1.1.1 Solución

Indicaciones para la solución

Para hallar las probabilidades pedidas, tenéis que tener en cuenta que, como las variables X, Y y Z son independientes, podéis "separar" las probabilidades pedidas de la forma siguiente:

 $P(X \text{ cumple condición } X, Y \text{ cumple condición } Y, Z \text{ cumple condición } Z) = P(X \text{ cumple condición } X) \cdot P(Y \text{ cumple condición } X)$

donde condición X, condición Y y condición Z dependerá de cada apartado. Por ejemplo, en el primer apartado:

condición X : |X| < 5, condición Y : Y < 4 y condición $Z : Z^3 > 8$.

El siguiente paso es escribir las probabilidades P(XcumplecondiciónX), P(YcumplecondiciónY) y P(ZcumplecondiciónZ) en función de las correspondientes funciones de distribución.

Por ejemplo, para hallar P(|X| < 5) consideraré dos casos:

- Caso X continua: $P(|X| < 5) = P(-5 < X < 5) = P(X < 5) P(X <= -5) = F_X(5) F_(-5)$. Caso X discreta con valores enteros: P(|X| < 5) = P(-5 < X < 5) = P(X < 5) P(X = 5) P(X <= -5) $-5) = P(X \le 4) - P(X \le -5) = F_X(4) - F_X(-5).$

En el caso de calcular $P(\min(X, Y, Z) < 2)$ es mejor calcular el complementario:

$$P(min(X, Y, Z) < 2) = 1 - P(min(X, Y, Z) >= 2).$$

Decir que el mínimo de tres cantidades es mayor o igual que 2 es equivalente a decir que todas son mayores que 2. Por tanto,

P(min(X,Y,Z) < 2) = 1 - P(min(X,Y,Z) >= 2) = 1 - P(X >= 2,Y >= 2,Z >= 2), y a partir de aquí ya que se puede aplicar lo dicho anteriormente.

En el caso de calcular $P(\max(X,Y,Z)>6)$, también es mejor usar el complementario:

$$P(\max(X, Y, Z) > 6) = 1 - P(\max(X, Y, Z) <= 6)$$

Decir que el máximo de tres cantidades es menor o igual que 6 es equivalente a decir que todas son menores que 6. Por tanto, P(max(X, Y, Z) > 6) = 1 - P(max(X, Y, Z) <= 6) = 1 - P(X <= 6, Y <= 6, Z <= 6), ya partir de aquí ya que se puede aplicar lo dicho anteriormente.