第三章 简单优化模型

优化——工程技术、经济管理、科学研究中的常见问题.

材料强度最大 运输费用最低

利润最高

风险最小

用数学建模方法解决优化问题的过程

优化目标与决策 模型假设与建立 数学求解与分析

简单优化模型归结为函数极值问题,用微分法求解.

属于数学规划的优化模型在第四章讨论.

数学模型

第

3.1 存贮模型

三

3.2 冰山运输

章

3.3 影院里的视角和仰角

简

单

优

化

模

型

3.1 存贮模型

问题

配件厂为装配线生产若干种产品,轮换产品时因更换设备要付生产准备费,产量大于需求时要付贮存费.该厂生产能力非常大,即所需数量可在很短时间内产出.

已知某产品日需求量100件,生产准备费5000元,贮存费每日每件1元.试安排该产品的生产计划,即多少天生产一次(生产周期),每次产量多少,使总费用最小.

要 不只是回答问题,而且要建立生产周期、产量与 索 需求量、准备费、贮存费之间的关系.

问题分析与思考

日需求100件,准备费5000元,贮存费每日每件1元.

•每天生产一次,每次100件,无贮存费,准备费5000元.

每天费用5000元

- •10天生产一次,每次1000件,贮存费900+800+...+100
- =4500元,准备费5000元,总计9500元.

平均每天费用950元

- •50天生产一次,每次5000件, 贮存费4900+4800+...+100
- =122500元,准备费5000元,总计127500元.

平均每天费用2550元

10天生产一次,平均每天费用最小吗?

问题分析与思考

- •周期短,产量小
- 贮存费少,准备费多

- •周期长,产量大

准备费少,贮存费多

- □ 存在最佳的周期和产量,使总费用(二者之和)最小.
 - •是一个优化问题,关键在建立目标函数.

显然不能用一个周期的总费用作为目标函数.

目标函数——每天总费用的平均值.

模型假设

- 1. 产品每天的需求量为常数 r;
- 2. 每次生产准备费为 c_1 , 每天每件产品贮存费为 c_2 ;
- 3. T天(一周期)生产一次,每次生产Q件,当贮存量降为零时,Q件产品立即生产出来(生产时间不计);
- 4. 为方便起见,时间和产量都作为连续量处理.

建模目的

 r, c_1, c_2 已知,求T, Q 使每天总费用的平均值最小.

模型建立

离散问题连续化

贮存量表示为时间的函数 q(t)

t=0生产Q件,q(0)=Q,q(t)以 需求速率r递减,q(T)=0.

$$Q = rT$$

每天总费用平均 值(目标函数)

$$C(T) = \frac{C}{T} = \frac{c_1}{T} + \frac{c_2 rT}{2}$$

模型求解 求
$$T$$
 使 $C(T) = \frac{c_1}{T} + \frac{c_2rT}{2} \rightarrow \min$

$$\frac{\mathrm{d}C}{\mathrm{d}T} = 0 \implies T = \sqrt{\frac{2c_1}{rc_2}} \qquad Q = rT = \sqrt{\frac{2c_1r}{c_2}}$$

模型解释

$$c_1 \uparrow \Rightarrow T,Q \uparrow$$

定性分析
$$c_1 \uparrow \Rightarrow T, Q \uparrow$$
 $c_2 \uparrow \Rightarrow T, Q \downarrow$ $r \uparrow \Rightarrow T \downarrow, Q \uparrow$

$$r \uparrow \Rightarrow T \downarrow, Q \uparrow$$

敏感性分析

参数 c_1,c_2 ,r的微小变化对T,Q的影响

T对 c_1 的(相 对)敏感度

$$S(T,c_2)=-1/2$$
, $S(T,r)=-1/2$ c_2 或 r 增加1%, T 减少0.5%

模型应用

$$T = \sqrt{\frac{2c_1}{rc_2}} \qquad Q = rT = \sqrt{\frac{2c_1r}{c_2}}$$

•回答原问题 $c_1=5$

$$c_1 = 5000, c_2 = 1, r = 100$$

思考: 为什么与前面计算的C=950元有差别?

•用于订货供应情况:每天需求量r,每次订货费 c_1 ,每天每件贮存费 c_2 ,T天(周期)订货一次,每次订货Q件,当贮存量降到零时,Q件立即到货.

经济批量订货公式(EOQ公式)

不允许缺货的存贮模型

允许缺货的存贮模型

当贮存量降到零时仍有需求r, 出现缺货,造成损失.

原模型假设: 贮存量降到零时

Q件立即生产出来(或立即到货). O

现假设: 允许缺货,每天每件缺货损失费 c_3 ,缺货需补足.

周期T, $t=T_1$ 贮存量降到零

一周期
$$c_2 \int_0^{T_1} q(t) dt = c_2 A$$
 贮存费

一周期
$$c_3 \int_{T_1}^T |q(t)| dt = c_3 B$$

一周期总费用

$$\overline{C} = c_1 + c_2 \frac{QT_1}{2} + c_3 \frac{r(T - T_1)^2}{2}$$

允许缺货的存贮模型

一周期总费用
$$\overline{C} = c_1 + \frac{1}{2}c_2QT_1 + \frac{1}{2}c_3r(T - T_1)^2$$
 $T_1 = \frac{Q}{r}$

每天总费用

平均值

(目标函数)

$$C(T,Q) = \frac{\overline{C}}{T} = \frac{c_1}{T} + \frac{c_2 Q^2}{2rT} + \frac{c_3 (rT - Q)^2}{2rT}$$

求
$$T,Q$$
 $C(T,Q) \rightarrow \min$

$$\frac{\partial C}{\partial T} = 0, \frac{\partial C}{\partial Q} = 0$$

 $\frac{\partial C}{\partial T} = 0$, $\frac{\partial C}{\partial O} = 0$ 为与不允许缺货的存贮模型 相比,T记作T',Q记作Q'.

$$T' = \sqrt{\frac{2c_1}{rc_2} \frac{c_2 + c_3}{c_3}}$$

$$Q' = \sqrt{\frac{2c_1r}{c_2} \frac{c_3}{c_2 + c_3}}$$

允许
$$T' = \sqrt{\frac{2c_1}{rc_2} \frac{c_2 + c_3}{c_3}}$$
 不允许 $T = \sqrt{\frac{2c_1}{rc_2}}$ 缺货 $Q' = \sqrt{\frac{2c_1r}{c_2} \frac{c_3}{c_2 + c_3}}$ 模型 $Q = rT = \sqrt{\frac{2c_1r}{c_2}}$

$$T = \sqrt{\frac{2 c_1}{r c_2}}$$

$$Q = rT = \sqrt{\frac{2c_1 r}{c_2}}$$

记
$$\mu = \sqrt{\frac{c_2 + c_3}{c_3}}$$

$$T' = \mu T, \quad Q' = \frac{Q}{\mu}$$

$$\mu > 1 \quad \Box \quad T' > T, \quad Q' < Q \qquad c_3 \uparrow \Rightarrow \mu \downarrow$$

$$\Leftrightarrow c_3 \to \infty \Longrightarrow \mu \to 1 \Rightarrow T' \to T, Q' \to Q$$

允许
$$T' = \sqrt{\frac{2c_1}{rc_2} \frac{c_2 + c_3}{c_3}}$$

$$Q' = \sqrt{\frac{2c_1 r}{c_2} \frac{c_3}{c_2 + c_3}}$$

注意: 缺货需补足

Q'~每周期初的存贮量

每周期的生产量
$$R = rT' = \sqrt{\frac{2c_1r}{c_2} \frac{c_2 + c_3}{c_3}}$$

$$R = \mu Q > Q$$

Q~不允许缺货时的产量(或订货量)

存 贮 模 型

- 存贮模型(EOQ公式)是研究批量生产计划的 重要理论基础,也有实际应用.
- 建模中未考虑生产费用,为什么?在什么条件下可以不考虑?
- · 建模中假设生产能力为无限大(生产时间不计), 如果生产能力有限(是大于需求量的常数),应作 怎样的改动?

3.2 冰山运输

背景

- •波斯湾地区水资源贫乏,淡化海水的成本为每立方米0.1英镑.
- · 专家建议从9600km远的南极用拖船运送冰山,取代淡化海水.
- 从经济角度研究冰山运输的可行性.

建模准备

1. 日租金和最大运量

船型	小	中	大
日租金(英镑)	4.0	6.2	8.0
最大运量(m³)	5×10 ⁵	10^6	10^7

建模准备

2. 燃料消耗 (英镑/km)

冰山体积(m³) 船速(km/h)	10 ⁵	106	107
1	8.4	10.5	12.6
3	10.8	13.5	16.2
5	13.2	16.5	19.8

3. 融化速率 (m/天)

与南极距离 (km)			
船速(km/h)	0	1000	>4000
1	0	0.1	0.3
3	0	0.15	0.45
5	0	0.2	0.6

建模目的

选择船型和船速,使冰山到达目的地后每立方米水的费用最低,并与淡化海水的费用比较.

模型假设

- · 航行过程中船速不变,总距离9600km.
- •冰山呈球形,球面各点融化速率相同.
- •到达目的地后,每立方米冰可融化0.85m3水.

建模分析

总费用

燃料消耗

船型,船速

租金

/ 船型

目的地水体积

目的地冰体积

运输过程融化规律

初始冰山体积

別 船型

□ 船型,船速

模	1. 冰山融化规律

型

船速u (km/h)

建 与南极距离d(km)

立 融化速率r(m/天)

	0	1000	>4000
1	0	0.1	0.3
3	0	0.15	0.45
5	0	0.2	0.6

r是 u 的线性函数 d<4000时u与d成正比 d>4000时u与d无关

$$r = \begin{cases} a_1 d (1+bu), & 0 \le d \le 4000 \\ a_2 (1+bu), & d > 4000 \end{cases}$$
$$a_1 = 6.5 \times 10^{-5}, a_2 = 0.2, b = 0.4$$

航行 t 天, d=24ut

第t天融 化速率

$$r_{t} = \begin{cases} 1.56 \times 10^{-3} u (1 + 0.4u)t, & 0 \le t \le \frac{1000}{6u} \\ 0.2(1 + 0.4u), & t > \frac{1000}{6u} \end{cases}$$

1. 冰山融化规律

冰山初始半径 R_0 ,航行t天时半径 $R_t = R_0 - \sum_{k=1}^t r_k$

$$R_t = R_0 - \sum_{k=1}^t r_k$$

冰山初始体积
$$V_0 = \frac{4\pi}{3} R_0^3$$
 t天时体积 $V_t = \frac{4\pi}{3} R_t^3$

选定 u,V_0 ,航行

选定
$$u, V_0,$$
 航行
t天时冰山体积
$$V(u, V_0, t) = \frac{4\pi}{3} \left(\left(\frac{3V_0}{4\pi} \right)^{\frac{1}{3}} - \sum_{k=1}^{t} r_k \right)^3$$

总航行天数
$$T = \frac{9600}{24 \, u} = \frac{400}{u}$$

到达目的地

到达目的地
时冰山体积
$$V(u,V_0) = \frac{4\pi}{3} \left(\left(\frac{3V_0}{4\pi} \right)^{\frac{1}{3}} - \sum_{t=1}^{T} r_t \right)^3$$

2. 燃料消耗

燃料消耗 q_1 (英镑/km)

 q_1 对u线性,对lgV线性

q_1	10 ⁵	106	107
1	8.4	10.5	12.6
3	10.8	13.5	16.2
5	13.2	16.5	19.8

$$q_1 = c_1(u + c_2)(\lg V + c_3),$$

$$c_1 = 0.3, c_2 = 6, c_3 = -1$$

选定 u,V_0 ,航行第t天燃料消耗 q (英镑/天)

$$q(u, V_0, t) = 24u \cdot c_1(u + c_2)[\lg V(u, V_0, t) + c_3]$$

$$= 7.2u(u+6) \left[\lg \frac{4\pi}{3} \left(\left(\frac{3V_0}{4\pi} \right)^{\frac{1}{3}} - \sum_{k=1}^{t} r_k \right)^3 - 1 \right]$$

燃料消耗总费用

$$Q(u,V_0) = \sum_{t=1}^{T} q(u,V_0,t)$$

3. 运送每立方米水费用

V_0	5 ×10 ⁵	106	107	
$f(V_0)$	4.0	6.2	8.0	

冰山初始体积 V_0 的日租金 $f(V_0)$ (英镑)

航行天数
$$T = \frac{400}{u}$$

拖船租金费用 $R(u,V_0) = f(V_0) \cdot \frac{400}{u}$

总燃料消耗费用

$$Q(u, V_0) = \sum_{t=1}^{T} 7.2u(u+6) \left[\lg \frac{4\pi}{3} \left(\left(\frac{3V_0}{4\pi} \right)^{\frac{1}{3}} - \sum_{k=1}^{t} r_k \right)^{3} - 1 \right]$$

冰山运输总费用

$$S(u,V_0) = R(u,V_0) + Q(u,V_0)$$

3. 运送每立方米水费用

到达目的地 时冰山体积

$$V(u, V_0) = \frac{4\pi}{3} \left(\left(\frac{3V_0}{4\pi} \right)^{\frac{1}{3}} - \sum_{t=1}^{T} r_t \right)^{3}$$

冰山到达目的地后得到的水体积

$$W(u, V_0) = 0.85V(u, V_0)$$

冰山运输总费用

$$S(u,V_0) = R(u,V_0) + Q(u,V_0)$$

运送每立方 米水费用

$$Y(u, V_0) = \frac{S(u, V_0)}{W(u, V_0)}$$

选择船型和船速,使冰山到达目的地后每立方米水的费用最低

求 u,V_0 使 $Y(u,V_0)$ 最小

V₀只能取离散值 经验公式很粗糙

口取几组(V_0 , u)用枚举法计算

V_0 u	3	3.5	4	4.5	5
10 ⁷	0.0723	0.0683	0.0649	0.0663	0.0658
5×10^6	0.2251	0.2013	0.1834	0.1842	0.1790
10^6	78.9032	9.8220	6.2138	5.4647	4.5102

 $u=4\sim5(km/h)$, $V_0=10^7(m^3)$, $Y(u,V_0)$ 最小

结果分析

大型拖船 V_0 = 10⁷ (m³),船速 u=4~5(km/h),冰山到达目的地后每立方米水的费用 $Y(u,V_0)$ 约0.065(英镑).

虽然0.065英镑略低于淡化海水的成本0.1英镑, 但是模型假设和构造非常简化与粗糙.

由于未考虑影响航行的种种不利因素,冰山到达目的地后实际体积会显著小于 $V(u,V_0)$.

有关部门认为,只有当计算出的 $Y(u,V_0)$ 显著低于淡化海水的成本时,才考虑其可行性.

小结与评注

- 模型来自实际问题的可行性研究.
- 收集数据是建模的重要准备工作.
- 根据数据得到的经验公式是建模的基础.
- •冰山形状的球形假设简化了计算,这个假设的合理性如何?如果改变它呢?

3.3 影院里的视角和仰角

前排座位? 后排座位? 中间座位?

前后排主要差别: 视角和仰角

视角~眼睛到屏幕上、下边缘视线夹角.

仰角~眼睛到屏幕上边缘视线与水平线夹角.

视角大画面看起来饱满. 仰角太大头部过分上仰.

影院设计 总体上使观众视角尽可能大。 对仰角加一定限制。

简化问题

某一排观众的<mark>视角 α 和仰角 β </mark>

影响 α 和 β 的因素: h b d q θ c

影院设计 h,q,c基本固定. 排数n固定,d改变不大.

b和 θ 可在一定范围内调整.

垂直于屏幕和地面的影院纵向剖面示意图

简化问题

视角 α , 仰角 β

- h, d, q, c, n固定, 确定b和 θ , 使全体观众满意程度最高.
- 1. 观众视角平均值尽量大, 各排视角分散程度尽量小.
- 2. 各排座位仰角基本不超过30%(允许1~2排例外).
- 3. 前排观众不遮挡后排观众的视线.

<mark>问题分析 座位号k(=1,2,...,n) ↑ \Diamond 视角 α ,仰角 β \downarrow </mark>

观众视角平均值取1到n排视角的均值. 越大越好视角分散程度用n个视角均方差度量. 越小越好观众满意程度定义为各排视角均值与均方差之比.

——变异系数 (优化问题的目标函数(越大越好)

b, θ ~ 优化问题的决策变量

问题分析

优化问题的约束条件

- 前排观众不遮挡后排的视线.

条件:设眼睛到头顶的高度 c_1 ,使后排观众眼睛到屏幕下边缘的视线在前排观众头顶之上。只需最后一排满足条件.

模型假设

固定参数

决策变量

 $2m \le b \le 3m$

$$10^0 \le \frac{\theta}{} \le 20^0$$

假设

上仰角 β ~眼睛到屏幕上边缘视线与水平线夹角. 下仰角2~眼睛到屏幕下边缘视线与水平线夹角.

 $\alpha = \beta - \gamma$ 当下边缘视线在水平线之下时 γ 取负值.

模型建立

第k排视角

$$\alpha_k = \beta_k - \gamma_k$$

$$\tan \gamma_k = \frac{b - c - (k - 1)q \tan \theta}{d + (k - 1)q} \qquad \tan \beta_k$$

$$\tan \beta_k = \frac{b - c - (k - 1)q \tan \theta + h}{d + (k - 1)q}$$

$$m(\alpha) = \frac{1}{n} \sum_{k=1}^{n} \alpha_k, \quad s(\alpha) = \sqrt{\frac{1}{n-1}} \sum_{k=1}^{n} [\alpha_k - m(\alpha)]^2, \quad v(\alpha) = \frac{m(\alpha)}{s(\alpha)}$$

视角均值

视角均方差

目标函数

确定b, θ 使 $v(\alpha)$ 最大 (h, d, q, c, n为常数)

模型建立 约束条件: 仰角 $\beta_k \leq 30^0, k = 3, \dots, n$

约束条件:前排观众不遮挡后排的视线.

对最后一排: $\gamma_n > \delta$

$$\gamma_n > \delta$$

$$\tan \gamma_n = \frac{b - c - (n-1)q \tan \theta}{d + (n-1)q}$$

$$\tan \delta = \frac{c_1 - q \tan \theta}{q}$$

 $\tan \gamma_n > \tan \delta$

$$\left\langle \frac{b-c-(n-1)q\tan\theta}{d+(n-1)q} > \frac{c_1-q\tan\theta}{q} \right\rangle$$

模型分析

b和 θ 的改变对目标函数的影响

图形直观

$$\theta \uparrow \Diamond \beta_k, \gamma_k \downarrow \qquad \alpha_k \uparrow$$

数学分析

$$\tan \beta_k = \frac{b - c - (k - 1)q \tan \theta + h}{d + (k - 1)q}$$

$$\tan \gamma_k = \frac{b - c - (k - 1)q \tan \theta}{d + (k - 1)q}$$

$$\alpha_k = \beta_k - \gamma_k$$

模型分析 b和 θ 的改变对目标函数的影响

数学分析

$$\tan \alpha_k = \frac{h[d + (k-1)q]}{[d + (k-1)q]^2 + [b - c + h - (k-1)q \tan \theta][b - c - (k-1)q \tan \theta]}$$

$$b\uparrow \Diamond \alpha_k \downarrow$$

$$\theta \uparrow \phi \alpha_k \uparrow$$

$$b\uparrow \Diamond \alpha_k \downarrow \qquad \theta \uparrow \Diamond \alpha_k \uparrow \qquad \Diamond \qquad b \downarrow, \theta \uparrow \Diamond \alpha_k \uparrow \qquad$$

$$m(\alpha) = \frac{1}{n} \sum_{k=1}^{n} \alpha_k, \quad s(\alpha) = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} [\alpha_k - m(\alpha)]^2}, \quad v(\alpha) = \frac{m(\alpha)}{s(\alpha)}$$

$$\alpha_k \uparrow \Diamond m(\alpha) \uparrow$$

$$\alpha_k \uparrow \Diamond s(\alpha) \uparrow$$

模型分析

b和 θ 的改变对约束条件的影响

约束条件: 仰角 $\beta_k \leq 30^0$, $k = 3, \dots, n$

约束条件:前排观众不遮挡后排的视线.

$$\frac{b - c - (n-1)q \tan \theta}{d + (n-1)q} > \frac{c_1 - q \tan \theta}{q} \downarrow b + d \tan \theta > c + c_1(n-1) + \frac{c_1 d}{q}$$

 $b, \theta \uparrow \Diamond$ 条件容易满足.

$$\alpha_k = \beta_k - \gamma_k$$

$$\tan \beta_k = \frac{b - c - (k - 1)q \tan \theta + h}{d + (k - 1)q} \qquad \tan \gamma_k = \frac{b - c - (k - 1)q \tan \theta}{d + (k - 1)q}$$

$$m(\alpha) = \frac{1}{n} \sum_{k=1}^{n} \alpha_k, \quad s(\alpha) = \sqrt{\frac{1}{n-1} \sum_{k=1}^{n} [\alpha_k - m(\alpha)]^2}, \quad v(\alpha) = \frac{m(\alpha)}{s(\alpha)}$$

设h=2.5m, d=6m, q=0.8m,c=1.1m, c_1 =0.1m, n=16

求 $b(2m \le b \le 3m)$, $\theta(10^0 \le \theta \le 20^0)$ 使 $v(\alpha)$ 最大.

满足
$$\beta_k \leq 30^0, k = 3, \dots, n$$
 及 $\gamma_n > \delta$ ($\tan \delta = \frac{c_1 - q \tan \theta}{q}$).

微分法难以求解,转向数值搜索法.

取 b,θ 离散值计算目标函数 $v(\alpha)$

θ	10^{0}	11 ⁰	12 ⁰	13°	14 ⁰	15 ⁰	16 ⁰	170	18 ⁰	19 ⁰	200
b(m)											
2.0	3.1452	3.1443	3.1423	3.1392	3.1351	3.1300	3.1237	3.1163	3.1077	3.0981	3.0872
2.1	3.1795	3.1789	3.1772	3.1745	3.1707	3.1658	3.1598	3.1526	3.1443	3.1348	3.1240
2.2	3.2154	3.2152	3.2139	3.2115	3.2081	3.2034	3.1977	3.1907	3.1826	3.1732	3.1626
2.3	3.2530	3.2532	3.2523	3.2503	3.2471	3.2428	3.2373	3.2306	3.2226	3.2134	3.2029
2.4	3.2924	3.2930	3.2925	3.2908	3.2880	3.2840	3.2787	3.2722	3.2645	3.2554	3.2451
2.5	3.3336	3.3347	3.3346	3.3332	3.3307	3.3270	3.3220	3.3158	3.3082	3.2994	3.2891
2.6	3.3767	3.3782	3.3785	3.3775	3.3754	3.3720	3.3673	3.3613	3.3539	3.3452	3.3351
2.7	3.4217	3.4236	3.4243	3.4238	3.4220	3.4189	3.4145	3.4087	3.4016	3.3931	3.3831
2.8	3.4686	3.4710	3.4722	3.4720	3.4706	3.4679	3.4638	3.4583	3.4513	3.4430	3.4331
2.9	3.5176	3.5204	3.5221	3.5224	3.5213	3.5189	3.5151	3.5099	3.5032	3.4950	3.4853
3.0	3.5686	3.5720	3.5741	3.5748	3.5742	3.5721	3.5686	3.5637	3.5572	3.5492	3.5396

 $b \uparrow v(\alpha) \uparrow$ 最大值位于b=3.0m. $\theta \uparrow v(\alpha) \uparrow \downarrow$ 最大值在 $\theta=13^{\circ}$ 达到.

计算b=3.0m, $\theta=13^{\theta}$ 的仰角 β_k

k	1	2	3	4	5	6	7	8
eta_k	36.2538	31.7947	27.9390	24.6005	21.7005	19.1701	16.9512	14.9951
k	9	10	11	12	13	14	15	16
$oldsymbol{eta_k}$	13.2615	11.7173	10.3350	9.0916	7.9684	6.9494	6.0214	5.1730

除 β_1 , β_2 外 $\beta_k \leq 30^0$

$$\tan \gamma_n = \frac{b - c - (n-1)q \tan \theta}{d + (n-1)q} = -2.7685$$

$$\tan \delta = \frac{c_1 - q \tan \theta}{q} = -6.0433$$

$$\sqrt{\gamma_n} > \delta$$

b=3.0m, $\theta=13^0$ 确是整个模型的最优解.

计算最优解b=3.0m, $\theta=13$ 0的视角 α_k

k	1	2	3	4	5	6	7	8
$lpha_k$	18.6826	17.6371	16.5521	15.4975	14.5067	13.5927	12.7579	11.9990
	9							
α_k	11.3103	10.6855	10.1178	9.6012	9.1301	8.6993	8.3044	7.9415

均值m(α)=12.3135

均方差s(α)=3.4445

随着k的增加, β_k 下降很快, α_k 变化不大.

观众不妨选择仰角下降变缓的第10排左右.

结果分析

最优解b=3.0m, $\theta=13$ 0的敏感性分析

θ $b(m)$	100	110	120	130	140	15 ⁰	160	170	180	190	200
2.9	3.5176	3.5204	3.5221	3.5224	3.5213	3.5189	3.5151	3.5099	3.5032	3.4950	3.4853
3.0	3.5686	3.5720	3.5741	3.5748	3.5742	3.5721	3.5686	3.5637	3.5572	3.5492	3.5396

b=3.0m处, $\triangle b=0.1$ m时 $\triangle v\approx 0.05$

$$\Diamond \triangle b/b=1\%$$
, $\triangle v/v < 0.5\%$

 θ =13 0 处, $\triangle \theta$ =1 0 时 $\triangle v$ =0.0007

$$\Diamond \triangle \theta / \theta = 1\%, \triangle v/v < 0.003\%$$

b对目标函数的影响比 θ 的影响大上百倍。

小结与评注

- 影院屏幕和座位设计中的简化问题:视角α均值和 均方差为决策目标,高度b和夹角θ为决策变量,仰角 β和视线遮挡限制为约束条件,建立优化模型.
- 定性分析决策变量的变化对目标函数和约束条件的 影响,结论与直观和常识相符合,是模型检验一部分。
- 模型定量结果与定性分析的相互印证,决策变量的敏感性分析,以及对各排座位仰角和视角的讨论,丰富了建模的成果,拓广了模型的应用.

