linkedin.com/in/eliot-heinrich-36200a67

Eliot Heinrich

51 Cushing St, Waltham MA 802-310-1278

Summary

Ph.D. candidate in physics specializing in quantum simulation, with strong experience in C++/Python software engineering, high performance computing, and published research in quantum information science. Skilled in building scalable quantum libraries, collaborating across scientific teams, and technical writing.

Education

Boston College Chestnut Hill, MA
Physics (Masters, Ph.D), GPA: 3.95
University of Vermont Burlington, VT
Physics (BS), Computer Science (BS), Mathematics (BS), GPA: 3.91
Chestnut Hill, MA
Aug. 2020 – May 2020
Burlington, VT
Sept. 2016 – May 2020

Experience

Quantum Simulation Research (PI: Xiao Chen)

Chestnut Hill, MA Sept. 2022 – Present

Graduate student

- Developed and maintained modular and efficient framework for large-scale quantum trajectory simulations in C++ with Python API. Stabilizer and matrix product state simulators typically outperform Qiskit on similar single-shot tasks by 3-10x.
- Studied dynamic phase transitions characterized by entanglement, participation entropy, stabilizer entropy, and other nonlinear quantities.

Boston College Research Services (High Performance Computing)

Chestnut Hill, MA

High performance computing research assistant

Jan. 2023 - Present

- Collaborated with 35+ interdisciplinary research groups to design optimized HPC workflows, deploy custom modules, accelerate large-scale simulations.
- Wrote and deployed automated scripts for aggregating and visualizing cluster usage data for monthly report to cluster policy committee.
- Wrote documentation for cluster policies and best practices.

MIT Lincoln Laboratory (Group 89)

Lexington, MA

Quantum theory/software summer intern

June 2022 - Aug. 2022

- Interned with Quantum Information & Integrated Nanosystems group to develop and benchmark algorithms for simulations of quantum circuits in C++ and Python
- Developed sparse-vector based C++ backend which extended simulation error model to include leakage errors in tansmon quantum circuit models

Recent Publications and Presentations

E. Heinrich et al, *Critical slowing of participation and stabilizer entropy in non-unitary quantum circuit dynamics,* (in preparation)

E. Heinrich et al, *Measurement induced phase transitions in quantum raise and peel models*, Phys. Rev. B (2024).

Skills

- High performance parallelized computing, open-source software, Linux, Python, C++, Rust, Git/GitHub, LaTeX
- Familiarity with quantum simulation techniques and simulable quantum subtheories including tensor network states, stabilizer states, and free fermion dynamics