```
## Cross-validation
## Coffee example (Coffee Quality Institute, 2018) continued
coffee <- read.csv("csv/coffee_arabica.csv")</pre>
# 1 = wet. O otherwise
coffee$wet <-</pre>
  ifelse(coffee$Processing.Method == 'Washed / Wet', 1, 0)
# 1 = semi/dry, 0 otherwise
coffee$semi <-
  ifelse(coffee$Processing.Method == 'Semi-washed / Semi-pulped', 1, 0)
coffee$Processing.Method <- NULL</pre>
N <- nrow(coffee)
## Train and validation set split
set.seed(12345678)
trainInd <- sample(1:N, round(N * 0.8), replace = F)</pre>
trainSet <- coffee[trainInd,]</pre>
validSet <- coffee[-trainInd,]</pre>
# Calculate RMSE on three models each with different variables included
m1 <-
 lm(Flavor ~ wet + semi + Aroma + Aftertaste + Body, dat = trainSet)
pred1 <- predict(m1, newdata = validSet)</pre>
sqrt(mean((validSet$Flavor - pred1) ^ 2)) # RMSE
## [1] 0.1577479
mean(abs(validSet$Flavor - pred1)) # MAE
## [1] 0.113643
m2 < -1m(
  Flavor ~ wet + Aroma + Aftertaste +
    Body + Acidity + Balance + Sweetness + Uniformity + Moisture,
  dat = trainSet
pred2 <- predict(m2, newdata = validSet)</pre>
sqrt(mean((validSet$Flavor - pred2) ^ 2))
## [1] 0.1426565
m3 <- lm(Flavor ~ Aroma + Aftertaste, dat = trainSet)
pred3 <- predict(m3, newdata = validSet)</pre>
sqrt(mean((validSet$Flavor - pred3) ^ 2))
## [1] 0.1615385
# K fold cross validation
K <- 5
validSetSplits <- sample((1:N) %% K + 1)</pre>
RMSE1 <-c()
RMSE2 \leftarrow c()
RMSE3 <-c()
for (k in 1:K) {
validSet <- coffee[validSetSplits == k,]</pre>
```

```
trainSet <- coffee[validSetSplits != k,]</pre>
  m1 <-
   lm(Flavor ~ wet + semi + Aroma + Aftertaste + Body, dat = trainSet)
  pred1 <- predict(m1, newdata = validSet)</pre>
  RMSE1[k] <- sqrt(mean((validSet$Flavor - pred1) ^ 2))</pre>
  m2 < -lm(
    Flavor ~ wet + Aroma + Aftertaste +
      Body + Acidity + Balance + Sweetness + Uniformity + Moisture,
    dat = trainSet
  pred2 <- predict(m2, newdata = validSet)</pre>
  RMSE2[k] <- sqrt(mean((validSet$Flavor - pred2) ^ 2))</pre>
 m3 <- lm(Flavor ~ Aroma + Aftertaste, dat = trainSet)
  pred3 <- predict(m3, newdata = validSet)</pre>
  RMSE3[k] <- sqrt(mean((validSet$Flavor - pred3) ^ 2))</pre>
}
RMSE1
## [1] 0.1479415 0.1653329 0.1556385 0.1656876 0.1482716
RMSE2
## [1] 0.1427025 0.1525461 0.1478815 0.1620440 0.1384244
## [1] 0.1513836 0.1667202 0.1616626 0.1675113 0.1532496
mean(RMSE1)
## [1] 0.1565744
mean(RMSE2)
## [1] 0.1487197
mean(RMSE3)
## [1] 0.1601055
```