Cálculo diferencial e integral IV Examen final Primera parte

Indicaciones: Resuelva exactamente 3 ejercicios. Para resolver cada problema únicamente puede utilizar los resultados vistos hasta antes del tema correspondiente y, además, cada resultado que use debe ser enunciado.

1. Sean $R = [0,1] \times [0,1] \subseteq \mathbb{R}^2$ y $f:R \longrightarrow \mathbb{R}$ la función dada por

$$f(x,y) = \begin{cases} 1 & \text{si } 0 \le x < \frac{1}{4} \\ -1 & \text{si } \frac{1}{4} \le x \le 1. \end{cases}$$

Demuestre que f es integrable sobre R.

- 2. Sea $f:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ acotada sobre el conjunto Jordan–medible A. Pruebe que si $f(\overline{x})=0$ para toda $\overline{x}\in \mathrm{int}(A)$, entonces f es integrable sobre A y además $\int_A f=0$.
- 3. Calcule la integral de la función $f(x,y)=x^3y$ sobre la región acotada por el eje Y y la parábola $x=-4y^2+3$.
- 4. De una esfera de radio ρ se corta una cuña mediante dos planos que se intersecan en un diámetro de la esfera. Si el ángulo entre los planos es $\frac{\pi}{3}$, ¿cuál es el volumen de la cuña?