# Analisis Hasil Implementasi Algoritma RC4 untuk Pengamanan Komunikasi Suara pada Android

Mahazam Afrad<sup>1</sup>, L. Budi Handoko, M.Kom<sup>2</sup>

1,2</sup>Jurusan Teknik Informatika, FASILKOM UDINUS

Jl. Nakula 1 No 5-11 Semarang 50131 INDONESIA

1 mahazam01@gmail.com, 2 ensignbudi@gmail.com

**Abstract** (Voice communication through the Internet has the advantage of low cost but of a lower security level and vulnerable to eavesdropping. Safety voice communications can be done in various ways. Securing voice communications will be performed on each bit input by passing a series of safeguards that produces output that is different than the original.

At this research is to implement the RC4 algorithm to secure voice communication via the Internet on the Android platform and know the encryption by using the RC4 algorithm delay does not exceed the predetermined parameter is less than 300 ms.

Results of analysis of different test data using encryption and no encryption obtained delay the packets are encrypted and no encryption states that there is no difference between using encryption with a delay delay without encryption. From these results stating that the android voice communication using RC4 encryption algorithm description in accordance with the recommended delay is less than 300ms so that it can be accepted and the results. With the RC4 algorithm can be used for communication for Voice Over Internet Protocol (VoIP).)

*Index Terms*— VoIP, Encryption, Android, Technology, Networking, Cryptography

#### I. PENDAHULUAN

Dewasa ini teknologi informatika bekembang secara pesat, dimana memungkinkan bertukar informasi data melalui jaringan internet. Kemudahan bertukar informasi saat ini dimanfaatkan untuk melakukan komunikasi suara.

Komunikasi suara melalui jaringan internet dapat dibangun dengan mobile. Salah satu perangkat mobile yang dapat digunakan sebagai komunikasi melalui internet yaitu perangkat mobile dengan sistem operasi Android. Android merupakan

sistem operasi berbasis linux yang dapat digunakan pada telepon seluler. Android menyediakan platform terbuka bagi para pengembang buat menciptakan aplikasi mereka sendiri untuk digunakan oleh bermacam peranti bergerak.

# II. TINJAUAN PUSTAKA

. Tinjauan Pustaka untuk literature dalam penelitian ini dapat dilihat pada tabel 1.

Tabel 1. State of art

| No | Nama<br>Peneliti<br>Dan<br>Tahun | Judul     | Metode      | Hasil          |
|----|----------------------------------|-----------|-------------|----------------|
| 1. | Rinaldi                          | Pengama   | Metode      | Pada           |
|    | Munir,                           | nan       | pengamanan  | penelitian ini |
|    | 2013                             | Komunik   | yang        | pengamanan     |
|    |                                  | asi Suara | diterapkan  | komunikasi     |
|    |                                  | Melalui   | dengan      | suara dapat    |
|    |                                  | Internet  | metode      | dilakukan      |
|    |                                  | Pada      | kriptografi | pada           |
|    |                                  | Telepon   | modern.     | jaringan       |
|    |                                  | Seluler   | Pengamanan  | internet       |
|    |                                  | denganAl  | dilakukan   | dengan         |
|    |                                  | goritma   | pada masing | algoritma      |
|    |                                  | Tea Pada  | masing bit  | TEA dan        |
|    |                                  | Platform  | masukan,    | mobile         |
|    |                                  | Android   | melewati    | Android        |
|    |                                  |           | serangkaian | sebagai        |
|    |                                  |           | pengamanan, | telepon        |
|    |                                  |           | kemudian    | selulernya     |
|    |                                  |           | hasil       | Pengamanan     |
|    |                                  |           | keluaran    | yang           |
|    |                                  |           | yang sama   | dilakukan      |
|    |                                  |           | sekali      | tidak          |
|    |                                  |           | berbeda     | merusak        |

|    |           |          | dengan        | jalannya       |
|----|-----------|----------|---------------|----------------|
|    |           |          | masukan.      | komunikasi     |
|    |           |          |               | suara dan      |
|    |           |          |               | delay yang     |
|    |           |          |               | dihasilkan     |
|    |           |          |               | dari enkripsi  |
|    |           |          |               | dan deskripsi  |
|    |           |          |               | yakni          |
|    |           |          |               | sebesar        |
|    |           |          |               | 989,686 mili   |
|    |           |          |               | detik.         |
| 2. | A.        | Analisis | Metode        | Dari hasil     |
|    | Thoriq    | Perbandi | pengamanan    | pengujian      |
|    | Abrowi    | ngan     | yang          | dan studi      |
|    | Bastari,  | Stream   | diterapkan    | yang           |
|    | 2010      | Cipher   | dengan        | dilakukan      |
|    |           | RC4 dan  | metode        | oleh penulis   |
|    |           | SEAL     | kriptografi   | didapatkan     |
|    |           |          | modern.       | bahwa RC4      |
|    |           |          | Dengan        | adalah         |
|    |           |          | menganalisa   | algoritma      |
|    |           |          | dan           | enkripsi       |
|    |           |          | membanding    | stream         |
|    |           |          | kan kedua     | cipher yang    |
|    |           |          | Algoritma     | sangat cepat   |
|    |           |          | Stream        | dan            |
|    |           |          | Cipher RC4    | memiliki       |
|    |           |          | dan SEAL      | tingkat        |
|    |           |          |               | keamanan       |
|    |           |          |               | yang relatif   |
|    |           |          |               | baik.          |
| 3. | Mokh.     | Enkripsi |               | Data suara     |
|    | Lugas adi | Dan      | Menggunaka    | yang berupa    |
|    | Patra,    | Dekripsi | n Metode      | sinyal digital |
|    | 2014      | Pesan    | Algoritma     | akan           |
|    |           | Suara    | Serpent yaitu | dienkripsi     |
|    |           | Dengan   | memuat        | terlebih       |
|    |           | Metode   | cipher block  | dahulu         |
|    |           | Algoritm | yang          | kemudian       |

| a Serpent | berfungsi      | dikirim      |
|-----------|----------------|--------------|
| Menggun   | untuk          | melalui      |
| akan      | mengelompo     | media        |
| Visual    | kkan bit-bit   | jaringan dan |
| Basic 6.0 | sinyal digital | ketika data  |
|           | menjadi        | suara yang   |
|           | block-block    | telah        |
|           | dengan         | dienkripsi   |
|           | ukuran bit     | sampai ke    |
|           | tertentu.      | penerima     |
|           |                | proses       |
|           |                | selanjutnya  |
|           |                | adalah       |
|           |                | mendekripsi  |
|           |                | data suara   |
|           |                | yang telah   |
|           |                | diterima     |
|           |                | dengan       |
|           |                | metode yang  |
|           |                | sama.        |
|           |                |              |

## III. METODE YANG DIUSULKAN

#### A. Teknik Analisa Data

Adapun analisis kebutuhan data dan sistem dalam penelitian ini adalah sebagai berikut:

API Android 1. Penggunaan dari kemudahan memberikan dalam membangun komunikasi melalui protokol internet. Dalam Tugas Akhir akan dilakukan pengamanan pada bit bit paket suara yang akan dikirim. Tetapi diperlukan pengaksesan pada paketpaket yang akan dikirim. API Android tidak dapat diakses sehingga dapat

- dipilih aplikasi Sipdroid. Aplikasi ini membangun sendiri komunikasi suara melalui internet. Sehingga penyisipan enkripsi dan dekripsi dapat dilakukan.
- 2. Penyedia layanan SIP dibagi menjadi berbayar dan tidak berbayar. mencapai tujuan nilai ekonomis yang rendah, dipilih layanan yang tidak berbayar. Tetapi layanan SIP yang tidak berbayar ini ada berbagai kendala yang bisa terjadi seperti adanya batasan durasi telepon, server yang suka mati, hingga proses pendaftaran yang menyulitkan pengguna. SIP Linphone dipilih karena layanan SIP tidak berbayar ini tidak memiliki kendala yang disebutkan.
- Pada aplikasi yang akan dibangun menggunakan protocol User Datagram Protocol (UDP) dan algoritma yang digunakan adalah Algoritma RC4.
- 4. Setelah aplikasi siap selanjutnya melakukan pengujian delay pemanggilan dengan menggunakan enkripsi dan tanpa menggunkan enkripsi. Hasil dari pengujian ini ditangkap menggunakan tools wirshark.
- Pengujian dilanjutkan dengan melakukan pengujian hasil enkripsi untuk mengetahui apakah ciphertext dengan plainteks meru pakan data yang berbeda

- dan kunci yang berbada masih dapat saling berkomunikasi atau tidak.
- Melakukan perbandingan antara hasil pengujian delay menggunakan enkripsi dengan tanpa menggunakan enkripsi dan hasil delaynya apakah melebihi batas yang direkomendasikan yaitu 300ms.

## B. Metode Penelitian

Metode penelitian yang akan dilakukan oleh peneliti adalah sebagai berikut:



#### IV. IMPLEMENTASI

Implementasi algoritma RC4 pada aplikasi Sipdroid menggunakan modul JCE (*Java Cryptography Extension*). Pada aplikasi yang akan dibangun menggunakan protocol User Datagram Protocol (UDP) dan algoritma yang digunakan adalah Algoritma RC4. Proses enkripsi dilakukan pada RTP payload sebelum RTP dibungkus menjadi paket UDP dan dikirim melalui jaringan. Proses penggambaran implementasi modul enkripsi sebagai berikut :



## V. ANALISA & PEMBAHASAN

Analisa pengujian sistem bertujuan untuk mengetahui delay dari sistem komunikasi VoIP. Pengujian ini ada tiga tahap yaitu pengujian komunikasi dengan enkripsi, pengujian komunikasi tanpa enkripsi dan pengujian hasil enkripsi. Untuk mendapatkan data yang baik maka pengujian dilakukan sebanyak 30 kali.

# A. Analisa Pengujian Delay dengan Enkripsi

Berikut merupakan tangkapan pada menu *summary* di *wireshark* dari sampel pengujian ke satu:



Dengan menggunakan hasil *summary* di atas dapat dihitung *delay* seperti berikut:

$$Delay(sec)Tx = \underbrace{I^{\textit{Time beween first and last packet(sec)}}_{\textit{Jumlah paket}}$$

 $= 29.647 \sec/5716$ 

= 0.005186 sec

Dari hasil perhitungan *delay* pada sampel pertma yang diperoleh yaitu 0,005186sec atau 5,186ms.

Untuk hasil delay dari pengujian sebanyak 30 kali dapat dilihat pada tabel dibawah ini:

Tabel 2 hasil pengujian enkripsi

| NO  | Jumlah | Time beween first    | Delay |
|-----|--------|----------------------|-------|
| 110 | Paket  | and last packet(sec) | (ms)  |
| 1   | 5716   | 29,647               | 5,186 |
| 2   | 5980   | 30,008               | 5,018 |
| 3   | 5069   | 30,344               | 5,986 |
| 4   | 6021   | 30,432               | 5,054 |
| 5   | 5887   | 30,567               | 5,192 |
| 6   | 5838   | 30,567               | 5,236 |
| 7   | 5887   | 30, 568              | 5,192 |
| 8   | 5835   | 30, 455              | 5,219 |
| 9   | 5838   | 30,679               | 5,255 |
| 10  | 5884   | 30,798               | 5,234 |
| 11  | 5832   | 30,488               | 5,228 |
| 12  | 5854   | 30,687               | 5,242 |
| 13  | 5887   | 30,598               | 5,198 |
| 14  | 5889   | 30,768               | 5,225 |
| 15  | 5878   | 30,878               | 5,253 |
| 16  | 5889   | 30,589               | 5,194 |
| 17  | 5876   | 30,489               | 5,189 |
| 18  | 5840   | 30,698               | 5,256 |
| 19  | 5898   | 30,789               | 5,220 |
| 20  | 5787   | 30,482               | 5,267 |
| 21  | 5885   | 30,583               | 5,197 |
| 22  | 5834   | 30,678               | 5,258 |
| 23  | 5835   | 30,776               | 5,274 |
|     |        |                      |       |

| 24 | 5845 | 30,564 | 5,229 |
|----|------|--------|-------|
| 25 | 5857 | 30,445 | 5,198 |
| 26 | 5821 | 30,349 | 5,214 |
| 27 | 5872 | 30,587 | 5,209 |
| 28 | 5867 | 30,689 | 5,231 |
| 29 | 5834 | 30,381 | 5,208 |
| 30 | 5841 | 30,482 | 5,219 |

# B. Analisa Pengujian Delay Tanpa Enkripsi

Analisa Pengujian kedua ini untuk megetahui delay yang dihasilkan tanpa adanya proses enkripsi dan deskripsi. Skema analisa pengujian yang digunakan sama seperti pengujian menggunakan enkripsi deskripsi yaitu dengan menggunakan aplikasi wireshark. Pengujian komunikasi ini dilakukan selama kurang lebih 30 detik.

Berikut merupakan tangkapan pada menu *summary* di *wireshark:* 



Dengan menggunakan hasil *summary* di atas dapat dihitung *delay* seperti berikut:

Delay(sec)Tx=
$$\frac{\text{Time beween first and last packet(sec)}}{\text{Jumlah paket}}$$
$$= 29,299 \text{ sec/5890}$$
$$= 0,004974 \text{ sec}$$

Dari hasil perhitungan *delay* pada sampel pertama yang diperoleh yaitu 0,004974 sec sec atau 4,974ms. Perhitungan lengkap pengujian 30 kali delay tanpa enkripsi dapat dilihat pada lampiran 2. Untuk hasil delay dari pengujian sebanyak 30 kali dapat dilihat pada tabel dibawah ini:

Tabel 3 hasil pengujian enkripsi

| No | Jumlah<br>Paket<br>5890 | Time beween first and last packet(s)  29,299 | Delay (ms) 4,974 |
|----|-------------------------|----------------------------------------------|------------------|
| 2  | 5733                    | 23,923                                       | 4,173            |
| 3  | 5878                    | 30,058                                       | 5,114            |
| 4  | 5738                    | 23,984                                       | 4,118            |
| 5  | 5987                    | 30,883                                       | 5,158            |
| 6  | 5938                    | 30,786                                       | 5,187            |
| 7  | 5987                    | 30,455                                       | 5,087            |
| 8  | 5935                    | 30,568                                       | 5,150            |
| 9  | 5938                    | 30,879                                       | 5,200            |
| 10 | 5984                    | 30,898                                       | 5,163            |
| 11 | 5932                    | 30,888                                       | 5,207            |
| 12 | 5899                    | 30,687                                       | 5,202            |
| 13 | 5987                    | 30,898                                       | 5,161            |
| 14 | 5989                    | 30,568                                       | 5,104            |
| 15 | 5978                    | 30,678                                       | 5,132            |
| 16 | 5989                    | 30,989                                       | 5,174            |

| 17 | 5976 | 30,789 | 5,152 |
|----|------|--------|-------|
| 18 | 5897 | 30,898 | 5,240 |
| 19 | 5998 | 30,889 | 5,150 |
| 20 | 5899 | 30,882 | 5,235 |
| 21 | 5985 | 30,883 | 5,160 |
| 22 | 5898 | 30,286 | 5,135 |
| 23 | 5935 | 30,876 | 5,202 |
| 24 | 5945 | 30,564 | 5,141 |
| 25 | 5957 | 30,745 | 5,161 |
| 26 | 5921 | 30,549 | 5,159 |
| 27 | 5972 | 30,    | 5,172 |
| 28 | 5967 | 30,789 | 5,160 |
| 29 | 5934 | 30,881 | 5,204 |
| 30 | 5941 | 30,882 | 5,198 |

Hasil pengujian delay menunjukan bahwa tidak ada delay yang melebihi batas rekomendasi yaitu 300ms.

## C. Analisa Uji Beda Statistik

Pada pengujian sebelumnya telah didapat data delay yang menggunakan enkripsi dan tanpa menggunakan enkripsi. Untuk mengetahui apakah ada perbedaan antara delay setelah diberikan enkripsi dan tanpa menggunkan enkrispi ini maka digunakan pengujian perbedaan dua rata rata dari sampel berkorelasi. Untuk menguji siginfikan atau tidaknya perbedaan dua rata rata sampel dapat menggunakan rumus uji t sebagai berikut:

$$t = \frac{\sum D}{\sqrt{\frac{n\sum D^2 - (\sum D)^2}{n-1}}}$$

Keterangan:

t = Koefisien t

 $X_1$  = Delay menggunakan enkripsi

 $X_2$  = Delay tanpa enkripsi

 $\overline{X_1}$  = Rata rata pada delay enkripsi

 $\overline{X_2}$  = Rata rata pada delay tanpa

enkripsi

n = Jumlah data

 $\sum D =$  Jumlah perbedaan setiap

pasangan  $(X_1-X_2)$ 

Sebelum menghitung nilai t hitung dibuat hipotesa untuk penelitian ini yaitu:

1. Hipotesis Penelitian:

H<sub>0</sub> = Tidak terdapat perbedaan antara delay yang telah menggunakan enkrispi dengan delay tanpa menggunakan enkripsi.

H<sub>1</sub> = Terdapat perbedaan antara delay yang telah menggunakan enkrispi dengan delay tanpa menggunakan enkripsi.

2. Hipotesa statistik:

 $H_0: \mu_1 = \mu_2$ 

 $H_1: \mu_1 \neq \mu_2$ 

3. Mencari besarnya nilai t hitung

$$t = \frac{\sum D}{\sqrt{\frac{n\sum D^2 - (\sum D)^2}{n-1}}}$$

$$t = \frac{4,308}{\sqrt{\frac{30.18,558864 - (4,308)^2}{30 - 1}}}$$

$$t = \frac{4,308}{\sqrt{\frac{556,766 - 18,559}{29}}}$$

 $t = \frac{4,308}{4,307}$ 

t = 1,00023

Pengujian hipotesis dilakukan pada taraf sihnifikan  $\alpha = 0.05$  dan derajat kebebasan dk =(n1+n2)=58, maka dari daftar distribusi t dengan peluang 1- $\alpha$ = 0.95 dan dk = 58 diperoleh t0.95 (58) =1,672.

Berdasarkan perhitungan penelitaian diperoleh t=1,00023, jadi thitung<ttabel yaitu 1,00023 < 1,672. Sehingga dapat disimpulkan H1 ditolak dengan H0 diterima dengan taraf sihnifikan  $\alpha = 0,05$ , maka dapat disimpulkan bahwa tidak terdapat perbedaan antara delay dengan menggunakan enkripsi dan tanpa menggunakan enkripsi.

## D. Pembahasan

Hasil analisa data uji beda dengan menggunakan enkripsi dan tanpa menggunakan enkripsi diperoleh delay dengan paket yang dienkripsi dan tanpa menggunakan enkripsi menyatakan bahwa tidak ada perbedaan antara delay menggunakan enkripsi dengan delay tanpa enkripsi. menyatakan Dari hasil ini komunikasi suara yang pada android dengan menggunakan enkripsi deskripsi algoritma

RC4 sesuai dengan delay yang direkomendasikan yaitu kurang dari 300ms sehingga dapat diterima dan hasil tersebut. Hasil ini juga membuktikan bahwa algoritma RC4 merupakan algoritma yang ringan dan sesuai untuk pengamanan komunikasi suara secara realtime.

## VI. KESIMPULAN DAN SARAN

# A. Kesimpulan

Berdasarkan dari penelitian yang telah dilakukan maka dapat diambil kesimpulan seperti berikut:

- 1 Pengamanan pada komunikasi suara yang dibangun pada platform android dengan mengenkripsi RTP payload yang akan ditransmikan pada jaringan VoIP menggunakan algoritma RC4 dapat berjalan dengan baik.
- 2 Dengan menggunakan algoritma RC4, pengamanan yang dilakukan tidak merusak jalannya komunikasi suara.
- 3 Berdasarkan uji beda rata rata stitistik delay yang dihasilkan dari komunikasi suara menggunakan enkripsi tidak berbeda dengan delay tanpa enkripsi.
- 4 Delay menggunakan enkripsi dan tanpa menggunakan enkripsi tidak melebihi batas yang direkomendasikan yaitu 300 ms. Dengan ini algoritma RC4 dapat untuk digunakan untuk komunikasi suara melalui internet(VoIP).

5 Suara yang dienkripsi aman, karena telah diuji coba jika antara perangkat satu dengan yang lain memiliki kunci yang berbeda atau yang satu dengan enkripsi dan yang lain fungsi enkripsi nya dimatikan maka akan hasil suara menjadi bising.

#### B. Saran

Sedangkan saran yang dapat diberikan pada penelitian ini adalah sebagai berikut:

- 1 Penelitian ini dapat dilanjutkan dengan memperbaiki kualitas suara pada komunikasi menggunakaan enkripsi. Meski komunikasi berjalan lancer masih ada sedikit *noise*
- 2 Penelitian ini dapat dilanjutkan dengan menambahkan algoritma enkripsi yang lain agar lebih aman.
- 3 Penelitian ini dapat dilanjutkan dengan memperbaiki sistem dari sipdroid yang telah dienkripsi, yakni jika kunci enkripsi pada penerima berbeda maka komunikasi langsung terputus.

#### VII. REVERENSI

[1] Denver, & Munir, R. (2013). Pengamanan Komunikasi Suara Melalui Internet Pada. *Prosiding Konferensi Nasional Informatika*, (pp. 96-101). Bandung.

[2]Lestari, D., & Riyanto, M. Z. (2012). SUATU ALGORITMA KRIPTOGRAFI STREAM CIPHER. *Kontribusi Pendidikan Matematika dan Matematika dalam Membangun* (pp. 33-40). Yogyakarta: FMIPA UNY.

[3]Bastari, A. T. (2010). *Analisis Perbandingan Stream Cipher RC4 dan* SEAL. Bandung: Institut Teknologi Bandung.

[4] Patra, M. L. (2014). ENKRIPSI DAN DEKRIPSI PESAN SUARA DENGAN METODE ALGORITMA Serpent Menggunakan Visual Basic

- 6.0. Semarang: Universitas Dian Nuswantoro Semarang.
- [5] Rakhmat, B., & Fairuzabadi, M. (2010, september). STEGANOGRAFI MENGGUNAKAN METODE LEAST SIGNIFICANT BIT DENGAN KOMBINASI ALGORITMA KRIPTOGRAFI VIGENÈRE DAN RC4. Jurnal Dinamika Informatika, 5(2), 1-17.
- [6] BIBLIOGRAPHY \l 1033 Andi. (2003). *Memahami model enkripsi* & security data. Semarang: Wahana Komputer Semarang.
- [7] Setiadi, W., Irawan, B., & Halomoan, J. (2012). SISTEM PENJUALAN ONLINE DENGAN MENGGUNAKAN APLIKASI JAVA BERBASIS SISTEM ANDROID 2.1. Bandung: Institut Teknologi Telkom.
- [8] TONG, H. A. (2005). SIP-based VoIP service Architecture and Comparison. INFOTECH Seminar Advanced Communication Services (ACS) (pp. 1-10). Institute of Communication Networks and Computer Engineering University of Stuttgart.
- [9] Carlson, I., & Avila, C. (2004). Voice over IP (VoIP)/SIP Infrastructure Considerations for the Interaction Center Platform. *Interactive Intelligence*, 2-19.
- [10] H, M. (2003). Dasar-Dasar Jaringan VOIP. Retrieved from IlmuKomputer.Com: IlmuKomputer.Com
- [11] Bahaweres, R. B., Alaydrus, M., & Wahab, A. (2012). Analisis Kinerja VoIP Client SIPDROID dengan Modul Enkripsi Terintegrasi. *SNATI* 2012.
- [12] Kurniawan, A. (2012). Network Forensics Panduan Analisis & Investigasi Paket Data Jaringan Menggunakan Wireshark. ANDI OFFSET.
- [13] Suprianto, D., & Agustina, R. (2012). *Pemrograman Aplikasi Android* Step by Step Membuat Aplikasi Android untuk Smatphone dan Tablet. Jakarta: PT. Buku Seru.
- [14] CISCO. (n.d.). Retrieved Desember 10, 2014, from CISCO: http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html