

Fast & Convergent SGD for Non-Differentiable Models via Reparameterisation and Smoothing

Dominik Wagner, Basim Khajwal and Luke Ong

Introduction

Objective: solve stochastic optimisation problems expressed in programming languages

Example: variational inference for probabilistic programming

Main Contribution:

- ▶ novel variant of SGD (Diagonalisation SGD) for non-differentiable models, which follows the reparameterisation gradient estimator on a smooth approximation whilst enhancing the accuracy in each step
- **provable** convergence to stationary points of the **unsmoothed** objective

Problem Statement

Idealised Programming Language:

F: term in language, \mathcal{D} : continuous probability distribution on \mathbb{R}^n ,

 $m{\Theta}\subseteq \mathbb{R}^m$: parameter space, each $m{\phi_{m{ heta}}}: \mathbb{R}^n o \mathbb{R}^n$ is a diffeomorphism*

* with suitable assumptions guaranteeing the objective is well-defined

in practice: apply stochastic gradient descent

Gradient Estimation

- ► Score Estimator: widely applicable but high variance in practice
- ► Reparametrisation Estimator:

$$abla_{m{ heta}} \ \llbracket F
rbracket (m{\phi_{m{ heta}}}(m{s})) \qquad ext{where } m{s} \sim m{\mathcal{D}}$$

typically lower variance but may be biased! [LYY18]

(Unbiasedness) $\nabla_{\boldsymbol{\theta}} \mathbb{E}_{s \sim \mathcal{D}} \left[\llbracket F \rrbracket \left(\phi_{\boldsymbol{\theta}}(s) \right) \right] \stackrel{!}{=} \mathbb{E}_{s \sim \mathcal{D}} \left[\nabla_{\boldsymbol{\theta}} \llbracket F \rrbracket \left(\phi_{\boldsymbol{\theta}}(s) \right) \right]$

$$\nabla_{\boldsymbol{\theta}} \, \mathbb{E}_{s \sim \mathcal{N}(0,1)} \left[\left[\theta + s \geq 0 \right] \right] \neq \mathbb{E}_{s \sim \mathcal{N}(0,1)} \left[\underbrace{\nabla_{\boldsymbol{\theta}} \left[\theta + s \geq 0 \right]}_{= 0 \text{ a.e.}} \right]$$

Smoothing

(Unbiasedness). \checkmark (for each $\eta > 0$)

$$\nabla_{\boldsymbol{\theta}} \, \mathbb{E}_{\boldsymbol{s} \sim \mathcal{D}} \left[\llbracket F \rrbracket \left(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\boldsymbol{s}) \right) \right]_{\eta} = \mathbb{E}_{\boldsymbol{s} \sim \mathcal{D}} \left[\nabla_{\boldsymbol{\theta}} \, \llbracket F \rrbracket \left(\boldsymbol{\phi}_{\boldsymbol{\theta}}(\boldsymbol{s}) \right) \right]_{\eta}$$

idea: apply SGD to smoothing

quality of approximation?

Solid red: biased estimator $\mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[
abla heta(heta,z)
ight]$ for example above, solid green: true gradient $abla_{\theta} \, \mathbb{E}_{z\sim\mathcal{N}(0,1)}\left[f(heta,z)
ight]$, black: gradient of smoothed objective (dashed: $\eta=1$, dotted: $\eta=1/3$)

(Uniform Convergence). Under mild syntactic assumptions,

$$\mathbb{E}_{s \sim \mathcal{D}}\left[\llbracket F
rbracket_{oldsymbol{\eta}}(\phi_{oldsymbol{ heta}}(s))
ight] \xrightarrow{ ext{unif}} \mathbb{E}_{s \sim \mathcal{D}}\left[\llbracket F
rbracket(\phi_{oldsymbol{ heta}}(s))
ight] \qquad \quad \text{as } \eta \searrow 0$$

Counter-Example: For $F \equiv \mathbf{if} \ 0 < 0 \ \mathbf{then} \ 0 \ \mathbf{else} \ 1$, $\llbracket F \rrbracket_{\eta} = 0.5 \not \to \llbracket F \rrbracket = 1$.

Diagonalisation SGD

Problem: choice of accuracy coefficients η ?

Solution: enhance accuracy coefficient in each step

(rather than fixing η in advance)

$$oldsymbol{ heta}_{k+1} \coloneqq oldsymbol{ heta}_k - \gamma_k \cdot
abla_{oldsymbol{ heta}} \left[\!\left[F
ight]\!\right]_{oldsymbol{\eta_k}} (oldsymbol{\phi_{ heta_k}}(oldsymbol{s}_k)) \qquad oldsymbol{s}_k \sim oldsymbol{\mathcal{D}}$$

 $(\gamma_k)_{k\in\mathbb{N}}$ step sizes, $(\eta_k)_{k\in\mathbb{N}}$ schedule of accuracy coefficients s.t. $\eta_k \searrow 0$.

Problem: variance grows as $\eta \searrow 0$ **Solution:**

- \blacktriangleright tame variance with suitable schedule of accuracy coefficients η_k
- ▶ bound growth of variance based on **syntactic** shape of expressions (nesting depth of conditionals into guards of if-statements)

Example:

nesting depth 1:
$$F_1 \equiv -0.5 \cdot z^2 + \mathbf{if} \ z < 0 \ \mathbf{then} \ 0 \ \mathbf{else} \ 1$$
 nesting depth 2:
$$F_2 \equiv \mathbf{if} \ (a \cdot (\mathbf{if} \ b \cdot z_1 + c < 0 \ \mathbf{then} \ 0 \ \mathbf{else} \ 1) \\ + \ d \cdot (\mathbf{if} \ e \cdot z_2 + f < 0 \ \mathbf{then} \ 0 \ \mathbf{else} \ 1) + g) < 0$$

$$\mathbf{then} \ 0 \ \mathbf{else} \ 1$$

Theorem (Correctness of Diagonalisation SGD).

Suppose F has nesting depth ℓ of if-statements into guards and $\epsilon > 0$. Then DSGD is correct for $\gamma_k \in \Theta(1/k)$ and $\eta_k \in \Theta(k^{-\frac{1}{\ell} + \epsilon})$: almost surely

$$\liminf_{i \to \infty} \|\nabla_{\boldsymbol{\theta}_i} \mathbb{E}_{\boldsymbol{s} \sim \mathcal{D}}[\llbracket F \rrbracket (\boldsymbol{\phi}_{\boldsymbol{\theta}_i}(\boldsymbol{s}))]\| = 0$$

or $\theta_i \notin \Theta$ for some $i \in \mathbb{N}$.

Example: For nesting depth 1, $\eta_k \in \Theta(1/\sqrt{k})$ can be chosen.

Only the **syntactic** structure of terms is essential for the choice of $(\eta_k)_{k\in\mathbb{N}}!$

Empirical Evaluation

Our empirical evaluation reveals benefits over the state of the art: our approach is **simple**, **fast**, **stable** and attains orders of magnitude **reduction** in worknormalised **variance**.

temperature

Estimator	Cost	Avg(V(.))	$V(. _2)$	Estimato
DSGD (ours)	1.71	4.91e-11	2.54e-10	DSGD (o
FIXED	1.71	2.84e-10	2.24e-09	Fixed
REPARAM	1.26	1.47e-08	1.94e-08	Reparam
LYY18	9.61	1.05e-06	4.04e-05	LYY18

Estimator	Cost	Avg(V(.))	$V(\ .\ _2)$
$\begin{array}{c} \mathrm{DSGD} \; ext{(ours)} \\ \mathrm{FIXED} \end{array}$	1.74 1.87	6.21e-03 1.21e-02	3.66e-02 5.43e-02
REPARAM LYY18	0.388	8.34e-09 not applicable	2.62e-09

xornet

FIXED uses smoothing with fixed accuracy coefficient $\eta=\eta_{4000}$ [KOW23]. LYY18 corrects bias of standard reparameterisation estimator (REPARAM) by computing a boundary term [LYY18].

References

[LYY18] Wonyeol Lee, Hangyeol Yu, and Hongseok Yang: Reparameterization gradient for non-differentiable models. NeurIPS 2018.

[KOW23] Basim Khajwal, C.-H. Luke Ong, Dominik Wagner: Fast and Correct Gradient-Based Optimisation for Probabilistic Programming via Smoothing. ESOP 2023.