Этапы решения соревнования

ML SCHOOL 2018

Этапы работы над соревнованием

1) Организаторы

- Постановка задачи
- Определение функционала качества
- Сбор данных
- Тестовое решение, создание базового решения

2) Пайплайн:

- Понимание функционала качества
- Кросс-валидация
- Подготовка данных (джойны табличек, базовые преобразования фич)
- Сабмит, проверка соответствия LB и CV

3) Улучшение решения:

- о Генерация новых признаков
- о Смешивание разных моделей
- Поиск ликов
- Использование визуализаций

Понимание функционала качества

- 1) MAE
- 2) Logistic Loss
- 3) AUC
- 4) RMSE
- 5) Accuracy
- 6) RMSLE ???

```
import math

#A function to calculate Root Mean Squared Logarithmic Error (RMSLE)

def rmsle(y, y_pred):
    assert len(y) == len(y_pred)
    terms_to_sum = [(math.log(y_pred[i] + 1) - math.log(y[i] + 1)) ** 2.0 for i,pred in enumerate(y_pred)]
    return (sum(terms_to_sum) * (1.0/len(y))) ** 0.5
```

Понимание функционала качества

- 1) Выбор алгоритмов, оптимизирующих правильный функционал
- 2) Масштабирование признаков:
 - Нужно для линейных моделей, kNN, NN, бустинга над линейными моделями
 - Не нужно для деревьев, леса, бустинга над деревьями
- 3) Может ли понадобиться постобработка ответов
 - Например, превращение отрицательных значений в ноль
 - Или калибрация вероятностей
- 4) Выбор приемлемых способов смешивания моделей
 - \circ y = ypred1 ** 0.9 + ypred2 ** 1.4 может сработать для AUC, но не для Logloss

Кросс-валидация

1031	▲ 833	MAIZA	Q	0.55037	27	3mo
1032	▲ 837	SVJ24		0.55037	16	3mo
1033	▲ 886	Jonathon		0.55035	15	4mo
1034	1799	weijunchen	1	0.55035	1	5mo
1035	▼ 670	Yasin		0.55034	40	3mo
1036	▼ 738	Leonard Zhao		0.55034	29	3mo
1037	▼ 789	₹ * * * * * * * * * *		0.55034	149	3mo
1038	▼ 306	Avishek		0.55033	32	3mo

Yet another example

10	▲ 16	TheFirstBrazilianSniper - Fed	0.67372	74	5mo
11	▼ 2	Peace Data - Skoltech - Russia	0.67361	98	5mo
12	▼ 4	UCUpnic - UCU - Ukraine	0.67354	63	5mo
13	4 6	Make Latin America Great Ag	0.67341	81	5mo
14	▼ 9	E3 Analytics-UNI-Peru	0.67310	121	5mo
15	-	Imagouille - ENSIMAG - France	0.67296	132	5mo
16	▼ 9	Outliers - SPbSU - Russia	0.67236	47	5mo
17	^1	SID - UPS - France	0.67207	100	5mo
18	4 6	Lab Rats - HSE NN - Russia	0.67193	79	5mo
19	▼ 3	Confounders	0.67080	112	5mo
20	▼ 8	Rebyatishki - MIPT - Russia	0.67046	72	5mo

Кросс-валидация

- 1) Виды кросс валидации
 - Holdout: n = 1
 - K-fold: n = k
 - Leave-one-out: n = len(train)
 - Sliding window

2) Стратификация

• Классификация: сохраняется соотношение классов

Кросс-валидация

Разбиение:

- Случайно, по строчкам
- По времени
- о По географическим координатам
- По некоторой фиче (user_id, shop_id ...)
- о Комбинировано, например, по географии и времени: со своего момента в каждом регионе

Бейзлайн

Бейзлайн

Сабмит и проверка кросс-валидации

Правильная кросс-валидация: изменение качества модели на валидации соответствует изменению качества модели на лидерборде.

Частые проблемы:

Мало данных в тесте - более масштабная CV.

Обычно: KFold вместо Holdout, увеличить K

- Случайное разбиение
- Разбиение по времени
- Разбиение по другим признакам: KFold на уникальных значениях признака

Генерация новых признаков

S = H *W

Item-based filtering

Генерация новых признаков

- 1) Масштабирование числовых признаков:
 - Нужно для линейных моделей, KNN, NN, бустинга над линейными моделями
 - Не нужно для деревьев, леса, бустинга над деревьями
- 2) Подстройка категориальных признаков под алгоритм Pd.get_dummies
- 3) Простые операции на парах признаков (умножить, сложить, ==)
- 4) Подсчёт признаков по сгруппированным данным pd.groupby(['customer_id', 'shop_id']).visit.count()
- 5) Сложные связи между признаками догадки по визуализациям + понимание данных хпеw = x1 + x2*24 + x3*24*60
- 6) Категориальные признаки: кодирование средних не переобучитесь! (out-of-fold) pd.groupby(['categorical_feature']).target.mean()

Тюнинг моделей

- Objective
- Learning rate
- Max depth
- Subsample
- Colsample by tree
- Colsample by level

Смешивание разных моделей

Смешивание разных моделей

1. Средние: арифметическое, геометрическое, гармоническое... Взвешивайте модели

2. Сложные комбинации:

- o y1 ** 2 + y2 / 14 (AUC)
- y1 * 1.1 y2 * 0.1 (RMSE)

3. Блендинг

Оставляем ещё один холдаут, чтобы генерировать новые признаки (предсказания) для него и учить метамодель на нём

4. Стекинг

Генерируем признаки для всех данных (Out-of-fold):

- Разбиваем данных на K частей (==KFold)
- Для каждой части
 - учимся на оставшихся
 - Сохраняем предсказание как новый признак для выбранной части

Поиск ликов

Поиск ликов

Потенциальные места

- 1. Сортировка данных
- 2. Разбиение на трейн и тест
- 3. Дублирующиеся строки

Использование визуализаций

Генерация новых признаков
 plt.scatter(x.feature1, x.feature2, color=target)

2. Смешивание моделей
plt.scatter(ypred1, ypred2, color=target) # color=target на валидации

3. Поиск ликов

Инструменты

theano

