Homework 4

NAME	/ 🗖	CCODE	
N / N/LH:	/ ~ ·		
T 1 W TATE /	\mathcal{O}_{\bullet}	 SCOILL.	

Subject: Quantum Mechanics I

Deadline: Thursday 1 September 2022 (until 7pm)

Credits: 20 points Number of problems: 4

Type of evaluation: Formative Evaluation

- This homework consists of problems related to units 2 and 3 of the course.
- You may submit this assignment either individually or in pairs. Submitted assignments should have maximum two authors.
- Unless stated otherwise, write your answers in SI units, and consider all bolded quantities as vector quantities. Please highlight the answers.

1. (5 points) Finite square well potential

In class we studied the finite square well potential and found that this potential admits both scattering states (when E > 0) and bound states (when E < 0). For the latter, we derived the even solutions and numerically solved a transcendental equation for the allowed energies.

- (a) Following the same approach we followed in class, find the odd bound state wave functions, $\psi(x)$, for the finite square well.
- (b) Derive the transcendental equation for the allowed energies of these odd bound states.
- (c) Solve it graphically and numerically (using your favourite programming tool).
- (d) Study and discuss the two limiting cases and how the energy levels compare to those found for the even bound state wave functions studied in class. Is there always an odd bound state?
- (e) Normalise the even and odd bound state wave functions.

2. (8 points) Mathematical formalism of quantum mechanics

- (a) Consider the orthonormal states $|1\rangle$, $|2\rangle$, and $|3\rangle$. For which value of x are the following states, $|\Psi_1\rangle = 5|1\rangle 3|2\rangle + 2|3\rangle$ and $|\Psi_2\rangle = |1\rangle 5|2\rangle + x|3\rangle$, orthogonal?
- (b) Assuming that $\gamma \in \mathbb{R}$ (but not necessarily positive), for what range of γ is the function $f(x) = x^{\gamma 1}$ in Hilbert space, on the interval (0, 1)? What about x f(x) and $\frac{d}{dx} f(x)$?
- (c) Show that the position and momentum operators are hermitian. Using these results, construct the hermitian conjugate of the raising ladder operator that we used to study the quantum harmonic oscillator, $\hat{a}_{+} = \frac{1}{\sqrt{2\hbar m\omega}}(-i\hat{p} + m\omega x)$.
- (d) Consider the state $\Psi = \frac{1}{\sqrt{5}}\Psi_{-1} + \frac{1}{\sqrt{4}}\Psi_{+1} + \frac{1}{\sqrt{20}}\Psi_{+2} + \frac{1}{\sqrt{2}}\Psi_{+3}$, which is a linear combination of four orthonormal eigenstates of the operator \hat{Q} corresponding to eigenvalues -1, +1, +2, and +3. Calculate the expectation value of the operator \hat{Q} for this state.

3. (3 points) Hamiltonian, eigenvalues and eigenvectors

Consider a quantum system in a state, $|\Psi\rangle$:

$$\Psi = \frac{1}{\sqrt{3}} \begin{bmatrix} i \\ -i \\ i \end{bmatrix}$$

The Hamiltonian is represented by the matrix shown below:

$$\hat{H} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

- (a) Determine the eigenvalues and eigenvectors of \hat{H} . What do the eigenvalues represent?
- (b) Which eigenvalue of \hat{H} is most likely to emerge from a measurement?
- (c) Find $\langle H \rangle$, $\langle H^2 \rangle$, and σ_H .

4. (4 points) Dirac notation: brakets and dual basis

Consider a 3D vector space spanned by an orthonormal basis $|1\rangle$, $|2\rangle$, $|3\rangle$. In this basis, let the $|\Psi_0\rangle$ and $|\Psi_1\rangle$ kets be:

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{i}{2}|2\rangle + \frac{1}{2}|3\rangle$$

$$|\Psi_1\rangle = \frac{1}{\sqrt{3}}|1\rangle + \frac{i}{\sqrt{3}}|3\rangle$$

- (a) Are these kets normalised? If not, normalise them.
- (b) Write $\langle \Psi_0 |$ and $\langle \Psi_1 |$ in terms of the dual basis $\langle 1 |$, $\langle 2 |$, $\langle 3 |$.
- (c) Find $\langle \Psi_0 | \Psi_1 \rangle$ and $\langle \Psi_1 | \Psi_0 \rangle$, and confirm that $\langle \Psi_1 | \Psi_0 \rangle = \langle \Psi_0 | \Psi_1 \rangle^*$.
- (d) Find all the matrix elements of the operators $\hat{M}_{01} = |\Psi_0\rangle \langle \Psi_1|$, $\hat{M}_{00} = |\Psi_0\rangle \langle \Psi_0|$, and $\hat{M}_{11} = |\Psi_1\rangle \langle \Psi_1|$ in this basis, and construct their respective matrices, are they hermitian?