1 Money and Heterogeneity

Consider a two-period OLG model with fiat money.

Demographics: In each period $N_t = (1+n)^t$ persons are born. Each lives for 2 periods. Half of the agents are of type I, the other half of type II.

Endowments: The initial old hold M_0 units of money, evenly distributed across agents. Each person is endowed with (e_i^y, e_i^o) units of consumption when (young, old).

Preferences: $\ln(c_t^y) + \beta \ln(c_{t+1}^o)$.

Technology: Goods can only be eaten the day they drop from the sky.

Government: The government pays a lump-sum transfer of $x_t p_t$ units of money to each old person: $M_t = M_{t-1} + N_{t-1} x_t p_t$. The aggregate money supply grows at the constant rate μ : $M_{t+1} = (1 + \mu) M_t$.

Markets: In each period, agents buy/sell goods and money in spot markets.

Questions:

- 1. Define a competitive equilibrium.
- 2. Derive the household consumption function.
- 3. Derive a difference equation for the equilibrium interest rate when $\mu = 0$.
- 4. Is the monetary steady state dynamically efficient?

1.1 Answer: Money and Heterogeneity

It is important to be clear about the timing. At the start of period t, the money stock is M_{t-1} . Then the old receive the transfer x_t , which raises the money stock to M_t . Let $m_{i,t}^d$ be the real, per capita money holdings of the young in t (and thus of the old at the start of t+1).

1. Equilibrium:

Objects: $\{c_{i,t}^{y}, c_{i,t}^{o}, m_{i,t}^{d}, x_{t}, p_{t}, M_{t}\}$

Equations:

- household: Euler equation and 2 budget constraints. Young: $e_i^y = c_{i,t}^y + m_{i,t}^d$. Old: $e_i^o + m_{i,t}^d p_t/p_{t+1} + x_{t+1}$.
- government: 2 laws of motion for M_t
- market clearing:

– goods:
$$\sum_i e_i^y + e_i^o/\left(1+n\right) = \sum_i c_{i,t}^y + c_{i,t}^o/\left(1+n\right)$$

- money: $M_t = p_t \sum_{i} N_{i,t} m_{i,t}^d$ (here $N_{i,t} = N_t/2$).

2. Consumption function: Euler + lifetime budget constraint implies that

$$c_{it}^{y}(1+\beta) = W_{it} = e_i^{y} + (e_i^{o} + x_{t+1})/R_{t+1}$$
(1)

and

$$c_{it}^o = \frac{\beta}{1+\beta} W_{it} R_{t+1} \tag{2}$$

where $R_{t+1} = 1/(1 + \pi_{t+1})$ and $1 + \pi_{t+1} = p_{t+1}/p_t$.

3. Implicit solution for the equilibrium interest rate when x=0: Start from goods market clearing

$$\sum_{i} W_{it} / (1+\beta) + W_{i,t-1} \frac{\beta R_t}{(1+\beta)(1+n)} = E = \sum_{i} e_i^y + e_i^o / (1+n)$$
 (3)

Now sub in the definitions for $W_{i,t}$:

$$\sum_{i} \frac{e_i^y + e_i^o / R_{t+1}}{1 + \beta} + \sum_{i} \frac{e_i^y + e_i^o / R_t}{1 + n} \frac{\beta R_t}{1 + \beta} = E \tag{4}$$

This produces a difference equation in R_t .

4. Steady state with money:

We need m = M/(NP) to be constant over time. Therefore, $1 + \pi = (1 + \mu)/(1 + n)$. With $\mu > 0$, the monetary economy must be dynamically *inefficient*. With $\mu = 0$, we get the Golden Rule and the economy is efficient. The same could be derived by setting R constant in the difference equation above.

2 Money and Storage

Consider a two-period OLG model with fiat money and a storage technology.

Demographics: In each period $N_t = (1+n)^t$ persons are born. Each lives for 2 periods.

Endowments: The initial old hold capital K_0 and money M_0 . Each young person is endowed with a e units of the good.

Preferences: $u(c_t^y) + \beta u(c_{t+1}^o)$.

Technology: Storing k_t units of the good in t yields $f(k_t)$ units in t+1. f obeys Inada conditions. The resource constraint is $N_t k_{t+1} = N_t e + N_{t-1} f(k_t) - C_t$ where $C_t = N_t c_t^y + N_{t-1} c_t^o$.

Government: The government pays a lump-sum transfer of $x_t p_t$ units of money to each old person: $M_{t+1} = M_t + N_{t-1} x_t p_t$. The aggregate money supply grows at the constant rate μ : $M_{t+1} = (1 + \mu) M_t$.

Markets: In each period, agents buy/sell goods and money in spot markets.

The timing in period t is a follows:

• The old enter period t holding aggregate capital $K_t = N_{t-1}k_t$ and nominal money balances of $M_t = m_t N_{t-1}$.

- The old receive the money transfer from the government and now hold M_{t+1} .
- Each old person produces $f(k_t)$.
- The young buy money (m_{t+1}/p_t) from the old, consume c_t^y and save k_{t+1} .
- The old consume their income.

Questions:

- 1. State the household's budget constraints when young and old.
- 2. Derive the household's optimality conditions. Define a solution to the household problem.
- 3. Define a competitive equilibrium.
- 4. Does an equilibrium with positive inflation exist? Intuition?
- 5. Define a steady state as a system of 6 equations in 6 unknowns.
- 6. Find the money growth rate (μ) that maximizes steady state consumption per young person, $(N_t c_t^y + N_{t-1} c_t^o)/N_t$.

2.1 Answer: Money and Storage

- 1. Young: $e_t = c_t^y + k_{t+1} + m_{t+1}/p_t$. Old: $c_{t+1}^o = f(k_{t+1}) + m_{t+1}/p_{t+1} + x_{t+1}$.
- 2. The household solves

$$\max u \left(e_t - k_{t+1} - m_{t+1}/p_t \right) + \beta u \left(f(k_{t+1}) + m_{t+1}/p_{t+1} + x_{t+1} \right)$$

First-order conditions are

$$u'(c_t^y) = \beta u'(c_{t+1}^o) f'(k_{t+1})$$

= $\beta u'(c_{t+1}^o) p_t/p_{t+1}$

A solution is a vector $(c_t^y, c_{t+1}^o, k_{t+1}, m_{t+1})$ that solves the 2 first-order conditions and 2 budget constraints. From the household first-order conditions, money and capital must have the same rate of return: $f'(k_{t+1}) = p_t/p_{t+1}$.

- 3. A CE consists of sequences $(c_t^y, c_{t+1}^o, k_{t+1}, m_{t+1}, M_t, p_t, x_t)$ that solve 4 household conditions, 2 government conditions, the definition $M_t = m_t N_{t-1}$ and goods market clearing (same as resource constraint). In per capita terms: $k_{t+1} = e_t + f(k_t)/(1+n) c_t^y c_t^o/(1+n)$. Transfer payments equal new money issues: $N_{t-1} p_t x_t = \mu M_t$.
- 4. There is no equilibrium with positive inflation. That would imply rate of return dominance, and nobody would hold money.
- 5. A steady state consists of constants $(c^y, c^o, k, m/p, \pi, x)$ that satisfy:
 - (a) Constant m/p requires $(1 + \mu) = (1 + n)(1 + \pi)$. This determines π .

- (b) $f'(k) = (1 + \pi)^{-1}$ determines k.
- (c) Both consumption levels are determined by the Euler equation and goods market clearing.
- (d) m/p is determined from the young budget constraint.
- (e) $x = \mu(m/p)$ from the law of motion for M.
- 6. Maximizing steady state consumption requires f'(k) = 1 + n. Therefore, $\mu = 0$. The intuition is that with a constant nominal money supply the per capita money supply shrinks at rate n. For the real money supply to be constant, inflation at rate -n is needed, which satisfies the Golden Rule.