Optimizing Changepoint Detection through Deep Learning-based Penalty Tuning

Author: Tung Nguyen

- 2. Review
- 3. Method
- 4. Results

We apply the algorithm (OPART, LOPART) and return a set of changepoints (or breakpoints)

- 2. Review
- 3. Method
- 4. Results

There is a fixed penalty parameter of the algorithms (OPART, LOPART), which is λ

OPART (sequence,
$$\lambda$$
) = set_of_changepoints

LOPART (sequence, labels,
$$\lambda$$
) = set_of_changepoints

With varying values of λ , different results are produced. See examples below:

- 2. Review
- 3. Method
- 4. Results

So from the example, we see that λ =0.1 is not good, λ =1 is maybe better.

My research goal is to identify the optimal λ that minimize the number of predicted label errors

- 1. Problem
 2. Review
- 3. Method
- 4. Results

Below is the general model

- 1. Problem
- 2. Review
- 3. Method
- 4. Results

1. Bayesian Information Criterion (BIC)

- M1: x = log(N) where N is the sequence length.
- M2: $\lambda = x$

- 2. Review
- 3. Method
- 4. Results

2. Linear

- M1: x = log(log(N)) where N is the sequence length.
- M2: $\lambda = \exp(xw + \beta)$ where w and β are the model's parameters.

- 1. Problem
- 2. Review
- 3. Method
- 4. Results

Summary

	BIC	Linear
M1	x = log(N)	x = log(log(N))
M2	λ = x	$\lambda = \exp(xw + \beta)$

Innovation: Using different type of models for M1 and M2

- 1. Problem
- 2. Review

3. Method

4. Results

I have two approaches for selecting models M1 and M2

- Approach 1:
 - M1: consider a set of features that I can manually extract from a sequence (length, mean, variance, ...), then using visualization to select the useful ones.
 - M2: multilayer perceptron (MLP)
- Approach 2:
 - M1: Recurrent Neural Network (RNN)
 - M2: linear model

To learn a model M2, we need data X and target y:

- X is the set of features (output of M1)
- y is the (m1, m2): for each sequence, I run OPART with λ = 10^m where m ∈ {-5, -4.5, ..., 5}. Then choose the interval (m1, m2) that minimizes the number of train label errors. (For example, for sequence 1, (m1, m2) = (-3, 3))

2. Review

3. Method

4. Results

Loss Function: Mean Square Hinge Error (for example, (m1, m2) = (-3, 3)) with margin = 1

2. Review

3. Method

a. Approach 1

b. Approach 2

4. Results

Approach 1:

- M1: I consider 7 features
 - Standard deviation
 - Mean
 - Range Value
 - Absolute skewness
 - Kurtosis
 - Length
 - Sum of difference between two consecutive points

Then I visualize each of them with respect to the target interval (m1, m2) to pick the useful ones.

M2: multilayer perceptron (MLP)

2. Review

3. Method

a. Approach 1

b. Approach 2

4. Results

2. Review

3. Method

a. Approach 1

b. Approach 2

4. Results

Approach 1 comparison with the previous works

	BIC	Linear	Approach 1
M1	x = log(N)	X =	x1 = std(seq)
		log(log(N))	x2 = range(seq)
			x3 = skew(seq)
			x4 = len(seq) = N
			x5 = sum_diff(seq)
M2	λ = x	$\lambda = \exp(xw + \beta)$	$log(\lambda) = MLP(x1, x2, x3, x4, x5)$

1. Problem 2. Review 3. Method a. Approach 1

b. Approach 2

4. Results

- 1. Problem
- 2. Review
- 3. Method
- a. Approach 1
- b. Approach 2
- 4. Results

Approach 2

- M1: Recurrent Neural Network (RNN)
- M2: Linear model

The reason I chose RNN to be the M1 (extracting features from sequences) because this type of model can:

- Take into inputs with different length
- Produce the fixed length output
- Can learn features from sequences (like mean, standard variation, length, ...) so I hope this model can produce some useful features that I did not consider on the approach 1.

- 1. Problem
- 2. Review
- 3. Method
- a. Approach 1
- b. Approach 2
- 4. Results

Approach 2 comparison with the previous works

	BIC	Linear	Approach 2
M1	x = log(N)	x = log(log(N))	x = RNN(seq)
M2	λ = x	$\lambda = \exp(xw + \beta)$	$\lambda = \exp(\mathbf{x}\mathbf{w} + \beta)$

- 1. Problem
- 2. Review
- 3. Method

4. Results

Using each method (4 of them) to predict λ , and I apply OPART (seq_i, λ_i) for each sequence, get the set of changepoints. Then I can calculate the correct predicted label percentage.

THANK YOU FOR LISTENING