IEEE POWER ENGINEERING SOCIETY Power System Analysis, Computing and Economics Committee

Chair

MARTIN L. BAUGHMAN Professor Emeritus The University of Texas at Austin 5703 Painted Valley Drive Austin, TX 78759 Vox: 512-345-8255

Fax: 512-345-9880 baughman@mail.utexas.edu Vice Chair

CHEN-CHING LIU Dept. of Electrical Eng. University of Washington Box 352500

Seattle, WA 98195 Vox: 206-543-2198 Fax: 206-543-3842 liu@ee.washington.edu Secretary

ROGER C. DUGAN Sr. Consultant Electrotek Concepts, Inc. 408 N Cedar Bluff Rd Knoxville, TN 37923 Vox: 865-470-9222 Fax: 865-470-9223 r.dugan@ieee.org

Distribution System Analysis Subcommittee

IEEE 123 Node Test Feeder

Subcommittee Chairs

Computer & Analytical Methods EDWIN LIU, Chair Nexant, Inc. 101, 2nd street, 11F San Francisco CA 94105 Vox: 415-369-1088 Fax: 415-369-0894 exliu@nexant.com

Distribution Systems Analysis SANDOVAL CARNEIRO, JR, Chair Dept. of Electrical Engineering Federal Univ. of Rio de Janeiro Rio de Janeiro, RJ, Brazil Vox: 55-21-25628025 Fax: 55-21-25628628 sandoval@coep.ufrj.br

Intelligent System Applications DAGMAR NIEBUR, Chair Department of ECE Drexel University 3141 Chestnut Street Philadelphia, PA 19104 Vox: (215) 895 6749 Fax: (215) 895 1695 niebur@cbis.ece.drexel.edu

Reliability, Risk & Probability Applications JAMES D. MCCALLEY, Chair Iowa State University Room 2210 Coover Hall Ames, Iowa 50011 Vox: 515-294-4844 Fax: 515-294-4263

Systems Economics ROSS BALDICK, Chair ECE Dept., ENS 502 The University of Texas at Austin

Austin, TX 78712 Vox: 512-471-5879 Fax: 512-471-5532 baldick@ece.utexas.edu

jdm@iastate.edu

Past Chair JOANN V. STARON Nexant Inc/ PCA 1921 S. Alma School Road Suite 207

Mesa, AZ 85210 Vox: 480-345-7600 Fax: 480-345-7601 joann.staron@pca-corp.com

IEEE 123 Node Test Feeder

Line Segment Data

Node A	Node B	Length (ft.)	Config.
1	2	175	10
1	3	250	11
1	7	300	1
3	4	200	11
3	5	325	11
5	6	250	11
7	8	200	1
8	12	225	10
8	9	225	9
8	13	300	1
9	14	425	9
13	34	150	11
13	18	825	2
14	11	250	9
14	10	250	9
15	16	375	11
15	17	350	11
18	19	250	9
18	21	300	2
19	20	325	9
21	22	525	10
21	23	250	2
23	24	550	11
23	25	275	2
25	26	350	7
25	28	200	2
26	27	275	7
26	31	225	11
27	33	500	9
28	29	300	2
29	30	350	2
30	250	200	2
31	32	300	11
34	15	100	11
35	36	650	8
35	40	250	1
36	37	300	9
36	38	250	10
38	39	325	10
40	41	325	11
40	42	250	1
42	43	500	10

42	44	200	1
44	45	200	9
44	47	250	1
45	46	300	9
47	48	150	4
47	49	250	4
49	50	250	4
50	51	250	4
52	53	200	1
53	54	125	1
54	55	275	1
54	57	350	3
55	56	275	1
57	58	250	10
57	60	750	3
58	59	250	10
60	61	550	5
60	62	250	12
62	63	175	12
63	64	350	12
64	65	425	12
65	66	325	12
67	68	200	9
67	72	275	3
67	97	250	3
68	69	275	9
69	70	325	9
70	71	275	9
72	73	275	11
72	76	200	3
73	74	350	11
74	75	400	11
76	77	400	6
76	86	700	3
77	78	100	6
78	79	225	6
78	80	475	6
80	81	475	6
81	82	250	6
81	84	675	11
82	83	250	6
84	85	475	11
86	87	450	6
87	88	175	9
87	89	275	6

Line Segment Data (cont.)

90	225	10
91	225	6
92	300	11
93	225	6
94	275	9
95	300	6
96	200	10
98	275	3
99	550	3
100	300	3
450	800	3
102	225	11
105	275	3
103	325	11
104	700	11
106	225	10
108	325	3
107	575	10
109	450	9
300	1000	3
110	300	9
111	575	9
112	125	9
113	525	9
114	325	9
35	375	4
1	400	1
52	400	1
67	350	6
101	250	3
	91 92 93 94 95 96 98 99 100 450 102 105 103 104 106 108 107 109 300 110 111 112 113 114 35 1 52 67	91 225 92 300 93 225 94 275 95 300 96 200 98 275 99 550 100 300 450 800 102 225 103 325 104 700 106 225 108 325 107 575 109 450 300 1000 110 300 111 575 112 125 113 525 114 325 35 375 1 400 52 400 67 350

Three Phase Switches						
Node A	Node B	Normal				
13	152	closed				
18	135	closed				
60	160	closed				
61	610	closed				
97	197	closed				
150	149	closed				
250	251	open				
450	451	open				
54	94	open				
151	300	open				
300	350	open				

Overhead Line Configurations (Config.)

Config.	Phasing	Phase Cond.	Neutral Cond.	Spacing
		ACSR	ACSR	ID
1	ABCN	336,400 26/7	4/0 6/1	500
2	CABN	336,400 26/7	4/0 6/1	500
3	BCAN	336,400 26/7	4/0 6/1	500
4	CBAN	336,400 26/7	4/0 6/1	500
5	BACN	336,400 26/7	4/0 6/1	500
6	ACBN	336,400 26/7	4/0 6/1	500
7	ACN	336,400 26/7	4/0 6/1	505
8	ABN	336,400 26/7	4/0 6/1	505
9	ΑN	1/0	1/0	510
10	ΒN	1/0	1/0	510
11	CN	1/0	1/0	510

Underground Line Configuration (Config.)					
Config.	Phasing	Cable	Spacing ID		
12	ABC	1/0 AA, CN	515		

Transforn	ner Dat	a			
	kVA	kV-high	kV-low	R-%	X - %
Substation	5,000	115 - D	4.16 Gr-W	1	8
XFM - 1	150	4.16 - D	.480 - D	1.27	2.72

Shunt			
Node	Ph-A	Ph-B	Ph-C
	kVAr	kVAr	kVAr
83	200	200	200
88	50		
90		50	
92			50
Total	250	250	250

Regulator Data

Regulator ID:	1	
Line Segment:	150 - 149	
Location:	150	
Phases:	A-B-C	
Connection:	3-Ph, Wye	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	700	
Compensator:	Ph-A	
R - Setting:	3	
X - Setting:	7.5	
Voltage Level:	120	
Regulator ID:	2	
Line Segment:	9 - 14	
Location:	9	
Phases:	Α	
Connection:	1-Ph, L-G	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	50	
Compensator:	Ph-A	
R - Setting:	0.4	
X - Setting:	0.4	
Voltage Level:	120	

Regulator ID:	3		
Line Segment:	25 - 26		
Location:	25		
Phases:	A-C		
Connection:	2-Ph,L-G		
Monitoring Phase:	A & C		
Bandwidth:	1		
PT Ratio:	20		
Primary CT Rating:	50		
Compenator:	Ph-A	Ph-C	
R - Setting:	0.4	0.4	
X - Setting:	0.4	0.4	
Voltage Level:	120	120	
Regulator ID:	4		
Line Segment:	160 - 67		
Location:	160		
Phases:	A-B-C		
Connection:	3-Ph, LG		
Monitoring Phase:	A-B-C		
Bandwidth:	2		
PT Ratio:	20		
Primary CT Rating:	300		
Compensator:	Ph-A	Ph-B	Ph-C
R - Setting:	0.6	1.4	0.2
X - Setting:	1.3	2.6	1.4
Voltage Level:	124	124	124

Spo	t Loa	ds					
<u> </u>							
Node	Load	Ph-1	Ph-1	Ph-2	Ph-2	Ph-3	Ph-4
	Model	kW	kVAr	kW	kVAr	kW	kVAr
1	Y-PQ	40	20	0	0	0	0
2	Y-PQ	0	0	20	10	0	0
4	Y-PQ	0	0	0	0	40	20
5	Y-I	0	0	0	0	20	10
6	Y-Z	0	0	0	0	40	20
7	Y-PQ	20	10	0	0	0	0
9	Y-PQ	40	20	0	0	0	0
10	Y-I	20	10	0	0	0	0
11	Y-Z	40	20	0	0	0	0
12	Y-PQ	0	0	20	10	0	0
16	Y-PQ	0	0	0	0	40	20
17	Y-PQ	0	0	0	0	20	10
19	Y-PQ	40	20	0	0	0	0
20	Y-I	40	20	0	0	0	0
22	Y-Z	0	0	40	20	0	0
24	Y-PQ	0	0	0	0	40	20
28	Y-I	40	20	0	0	0	0
29	Y-Z	40	20	0	0	0	0
30	Y-PQ	0	0	0	0	40	20
31	Y-PQ	0	0	0	0	20	10
32	Y-PQ	0	0	0	0	20	10
33	Y-I	40	20	0	0	0	0
34	Y-Z	0	0	0	0	40	20
35	D-PQ	40	20	0	0	0	0
37	Y-Z	40	20	0	0	0	0
38	Y-I	0	0	20	10	0	0
39	Y-PQ	0	0	20	10	0	0
41	Y-PQ	0	0	0	0	20	10
42	Y-PQ	20	10	0	0	0	0
43	Y-Z	0	0	40	20	0	0
45	Y-I	20	10	0	0	0	0
46	Y-PQ	20	10	0	0	0	0
47	Y-I	35	25	35	25	35	25
48	Y-Z	70	50	70	50	70	50
49	Y-PQ	35	25	70	50	35	20
50	Y-PQ	0	0	0	0	40	20
51	Y-PQ	20	10	0	0	0	0
52	Y-PQ	40	20	0	0	0	0
53	Y-PQ	40	20	0	0	0	0
55	Y-Z	20	10	0	0	0	0
56	Y-PQ	0	0	20	10	0	0

58 59 60 62 63 64 65 66 68 69 70	Y-PQ Y-PQ Y-PQ Y-I D-Z Y-PQ Y-PQ Y-PQ Y-PQ	0 20 0 40 0 35 0	0 0 10 0 20 0 25 0	20 20 0 0 0 75 35	10 10 0 0 0 35	0 0 0 40 0	0 0 0 20 0
60 62 63 64 65 66 68 69	Y-PQ Y-Z Y-PQ Y-I D-Z Y-PQ Y-PQ Y-PQ	20 0 40 0 35 0 20	10 0 20 0 25	0 0 0 75	0 0	0 40 0	0 20
62 63 64 65 66 68 69	Y-Z Y-PQ Y-I D-Z Y-PQ Y-PQ Y-PQ	0 40 0 35 0 20	0 20 0 25 0	0 0 75	0	40	20
63 64 65 66 68 69	Y-PQ Y-I D-Z Y-PQ Y-PQ Y-PQ	40 0 35 0 20	20 0 25 0	0 75	0	0	
64 65 66 68 69	Y-I D-Z Y-PQ Y-PQ Y-PQ	0 35 0 20	0 25 0	75			0
65 66 68 69	D-Z Y-PQ Y-PQ Y-PQ	35 0 20	25 0		35	0	
66 68 69	Y-PQ Y-PQ Y-PQ	0 20	0	35			0
68 69	Y-PQ Y-PQ	20			25	70	50
69	Y-PQ		10	0	0	75	35
		4.0	ΤO	0	0	0	0
70	Y-PQ	40	20	0	0	0	0
		20	10	0	0	0	0
71	Y-PQ	40	20	0	0	0	0
73	Y-PQ	0	0	0	0	40	20
74	Y-Z	0	0	0	0	40	20
75	Y-PQ	0	0	0	0	40	20
76	D-I	105	80	70	50	70	50
77	Y-PQ	0	0	40	20	0	0
79	Y-Z	40	20	0	0	0	0
80	Y-PQ	0	0	40	20	0	0
82	Y-PQ	40	20	0	0	0	0
83	Y-PQ	0	0	0	0	20	10
84	Y-PQ	0	0	0	0	20	10
85	Y-PQ	0	0	0	0	40	20
86	Y-PQ	0	0	20	10	0	0
87	Y-PQ	0	0	40	20	0	0
88	Y-PQ	40	20	0	0	0	0
90	Y-I	0	0	40	20	0	0
92	Y-PQ	0	0	0	0	40	20
94	Y-PQ	40	20	0	0	0	0
95	Y-PQ	0	0	20	10	0	0
96	Y-PQ	0	0	20	10	0	0
98	Y-PQ	40	20	0	0	0	0
99	Y-PQ	0	0	40	20	0	0
100	Y-Z	0	0	0	0	40	20
102	Y-PQ	0	0	0	0	20	10
103	Y-PQ	0	0	0	0	40	20
104	Y-PQ	0	0	0	0	40	20
106	Y-PQ	0	0	40	20	0	0
107	Y-PQ	0	0	40	20	0	0
109	Y-PQ	40	20	0	0	0	0
111	Y-PQ	20	10	0	0	0	0
112	Y-I	20	10	0	0	0	0
113	Y-Z	40	20	0	0	0	0
114	Y-PQ	20	10	0	0	0	0
Total		1420	775	915	515	1155	635

IEEE 123 Node Test Feeder Impedances

Configuration 1:

```
Z (R +jX) in ohms per mile
                 0.1560 0.5017
0.4576
       1.0780
                                  0.1535
                                         0.3849
                 0.4666 1.0482
                                  0.1580
                                         0.4236
                                  0.4615 1.0651
        B in micro Siemens per mile
                    -1.8319
           5.6765
                             -0.6982
                     5.9809
                              -1.1645
                               5.3971
```

Configuration 2:

```
Z(R + jX) in ohms per mile
0.4666
        1.0482
                 0.1580 0.4236
                                  0.1560
                                          0.5017
                 0.4615 1.0651
                                  0.1535
                                          0.3849
                                  0.4576 1.0780
         B in micro Siemens per mile
           5.9809
                    -1.1645
                              -1.8319
                     5.3971
                              -0.6982
                               5.6765
```

Configuration 3:

```
Z(R + jX) in ohms per mile
0.4615
       1.0651
                 0.1535
                        0.3849
                                  0.1580
                                          0.4236
                                          0.5017
                 0.4576 1.0780
                                  0.1560
                                  0.4666
                                         1.0482
         B in micro Siemens per mile
           5.3971
                    -0.6982
                             -1.1645
                     5.6765
                              -1.8319
                               5.9809
```

Configuration 4:

```
Z (R +jX) in ohms per mile
0.4615 1.0651 0.1580 0.4236 0.1535 0.3849
0.4666 1.0482 0.1560 0.5017
0.4576 1.0780
B in micro Siemens per mile
5.3971 -1.1645 -0.6982
5.9809 -1.8319
5.6765
```


Configuration 5:

```
Z (R + jX) in ohms per mile
0.4666
       1.0482
                 0.1560 0.5017
                                  0.1580
                                          0.4236
                 0.4576 1.0780
                                  0.1535
                                          0.3849
                                  0.4615 1.0651
         B in micro Siemens per mile
           5.9809
                    -1.8319
                              -1.1645
                     5.6765
                              -0.6982
                               5.3971
```

Configuration 6:

```
Z (R + jX) in ohms per mile
0.4576
        1.0780
                 0.1535 0.3849
                                   0.1560
                                           0.5017
                 0.4615 1.0651
                                   0.1580
                                           0.4236
                                   0.4666
                                           1.0482
         B in micro Siemens per mile
           5.6765
                    -0.6982
                              -1.8319
                     5.3971
                               -1.1645
                                5.9809
```

Configuration 7:

```
Z (R + jX) in ohms per mile
0.4576
                 0.0000 0.0000
        1.0780
                                   0.1535
                                           0.3849
                 0.0000
                          0.0000
                                   0.0000
                                           0.0000
                                   0.4615
                                           1.0651
         B in micro Siemens per mile
           5.1154
                      0.0000
                               -1.0549
                      0.0000
                                0.0000
                                5.1704
```

Configuration 8:

```
Z(R + jX) in ohms per mile
          0.1535 0.3849
                           0.0000
1.0780
                                   0.0000
          0.4615 1.0651
                           0.0000
                                   0.0000
                           0.0000
                                   0.0000
 B in micro Siemens per mile
    5.1154
             -1.0549
                        0.0000
              5.1704
                        0.0000
                        0.0000
```


Configuration 9:

```
Z(R + jX) in ohms per mile
1.3292
        1.3475
                 0.0000 0.0000
                                   0.0000
                                           0.0000
                 0.0000
                         0.0000
                                   0.0000
                                           0.0000
                                   0.0000
                                           0.0000
         B in micro Siemens per mile
           4.5193
                     0.0000
                                0.0000
                     0.0000
                                0.0000
                                0.0000
```

Configuration 10:

```
Z (R + jX) in ohms per mile
                          0.0000
0.0000
        0.0000
                 0.0000
                                   0.0000
                                            0.0000
                  1.3292 1.3475
                                   0.0000
                                            0.0000
                                    0.0000
                                            0.0000
         B in micro Siemens per mile
           0.0000
                      0.0000
                                0.0000
                      4.5193
                                0.0000
                                0.0000
```

Configuration 11:

```
Z (R +jX) in ohms per mile
                                           0.0000
0.0000
                         0.0000
                                   0.0000
        0.0000
                 0.0000
                 0.0000
                          0.0000
                                            0.0000
                                   0.0000
                                   1.3292
                                           1.3475
         B in micro Siemens per mile
           0.0000
                      0.0000
                                0.0000
                      0.0000
                                0.0000
                                4.5193
```

Configuration 12:

```
Z(R + jX) in ohms per mile
                         0.2775
1.5209
        0.7521
                 0.5198
                                   0.4924
                                           0.2157
                 1.5329
                        0.7162
                                   0.5198
                                           0.2775
                                   1.5209
                                           0.7521
         B in micro Siemens per mile
          67.2242
                     0.0000
                                0.0000
                    67.2242
                                0.0000
                              67.2242
```


Power-Flow Results

RADIAL FLOW SUMMARY - DATE: 6-24-2004 AT 16:54:14 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE PHASE PHASE INPUT -----(A)------(B)------(C)------|------
 kW :
 1463.861 | 963.484 | 1193.153 | 3620.498

 kVAr :
 582.101 | 343.687 | 398.976 | 1324.765

 kVA :
 1575.351 | 1022.947 | 1258.092 | 3855.257

 PF :
 .9292 | .9419 | .9484 | .9391
 LOAD --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA-kW : 1242.8 182.3 822.8 108.1 1026.3 142.6 3091.9 433.0 TOT: 1425.022 | 930.965 | 1168.900 | 3524.887 kVAr: 651.0 126.7 447.3 77.2 535.9 101.8 1634.3 305.8 TOT: 777.767 524.544 | 637.773 | 1940.083 kVA : 1403.0 222.0 936.6 132.9 1157.8 175.2 3497.3 530.1 TOT: 1623.455 | 1068.570 | 1331.571 | 4023.524

 PF
 : .8858
 .8210 | .8786
 .8137 | .8864
 .8137 | .8841
 .8168

 TOT
 : .8778 | .8712 | .8778 | .8761

 LOSSES -----(A)------|-----(B)------|-----(C)------|-----95.611 50.540 | 10.134 | 34.937 | kW : kVAr : | 52.237 | 193.727 | 62.844 | 216.036 102.653 38.837 114.420 | 40.137 CAPAC --(A-N)----(A-B)-|--(B-N)----(B-C)-|--(C-N)----(C-A)-|---WYE-----DELTA--A-kVA: 271.3 .0 268.0 .0 269.7 .0 809.0 .0 TOT: 271.290 268.023 269.733 809.046

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

ANGLE | MAG ANGLE | NODE | MAG MAG ANGLE | mi.to SR C - N B-N A - N .00 120.00 150 1.0000 at 1.0000 at -120.00 1.0000 at .000 . 00 1.0437 at 1.0438 at -120.00 1.0438 at 120.00 .000 RG1 149 1.0436 at -.02 1.0437 at -120.02 1.0436 at 119.98 .000 1 1.0311 at -.66 1.0412 at -120.33 1.0348 at 119.60 .076 2 1.0410 at -120.33 .109 3 1.0331 at 119.57 .123 4 1.0326 at 119.56 .161 5 1.0318 at 119.55 .185 6 119.53 1.0311 at . 232 7 1.0218 at -1.13 1.0395 at -120.57 1.0291 at 119.35 .133 8 1.0158 at -1.44 1.0382 at -120.74 1.0253 at 119.18 .171 1.0379 at -120.74 12 .213 118.90 13 1.0079 at -1.87 1.0360 at -120.97 1.0196 at . 227 1.0196 at 118.89 152 1.0078 at -1.88 1.0360 at -120.98 .227 1.0018 at -2.26 1.0348 at -121.22 1.0164 at 118.64 52 .303 -2.43 53 .9991 at 1.0340 at -121.34 1.0148 at 118.51 .341 .9976 at 1.0334 at -121.41 -2.53 1.0138 at 118.43 54 .365 -2.54 118.43 55 .9974 at 1.0334 at -121.42 1.0139 at .417 .9974 at -2.53 56 1.0332 at -121.43 1.0140 at 118.43 .469 57 .9945 at -2.83 1.0306 at -121.61 - [1.0113 at 118.21 .431 58 1.0300 at -121.63 .478 1.0296 at -121.63 59 .526 1.0256 at -122.00 60 .9880 at -3.51 1.0052 at 117.76 .573 160 .9880 at -3.52 1.0256 at -122.01 1.0052 at 117.75 .573 1.0374 at -3.52 1.0320 at -122.01 1.0366 at RG4 117.75 .573 1.0345 at 67 1.0355 at -3.77 1.0311 at -122.19 117.61 .640 1.0340 at 68 -3.79 .677 1.0322 at -3.83 69 .730 -3.85 70 1.0310 at .791 -3.86 71 1.0303 at .843 .692 72 1.0359 at -3.86 1.0302 at -122.29 1.0343 at 117.50 73 1.0321 at 117.46 .744 74 1.0303 at 117.42 .810 75 1.0293 at 117.40 . 886 117.45 76 1.0358 at -3.92 1.0297 at -122.38 1.0349 at .730 77 1.0370 at -3.99 1.0308 at -122.46 1.0358 at 117.37 .805 78 1.0373 at -4.01 1.0312 at -122.48 1.0360 at 117.35 .824 79 1.0370 at -4.02 1.0313 at -122.48 1.0359 at 117.36 .867 80 1.0394 at -4.07 1.0329 at -122.54 1.0368 at 117.24 .914 81 1.0415 at -4.14 1.0352 at -122.57 1.0374 at 117.14 1.004 1.0424 at 82 -4.18 1.0364 at -122.60 1.0382 at 117.11 1.052 1.0436 at -4.20 1.0375 at -122.63 1.0390 at 117.07 1.099 83 84 1.0348 at 117.09 1.132 85 1.0336 at 117.07 1.222 1.0349 at -3.95 1.0279 at -122.55 1.0364 at 117.42 . 862 86 -3.97 1.0272 at -122.63 .947 87 1.0342 at 1.0369 at 117.39 1.0342 at -4.00 88 . 980 1.0338 at -3.96 89 1.0270 at -122.68 1.0373 at 117.38 .999 90 1.0269 at -122.72 1.042

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

SUBSTA	IION: IEEE 1	123; FEI	EDER: IEEE 123		
NODE	MAG	ANGLE	MAG ANGLE	MAG	ANGLE mi.to SR
91	1.0336 at	-3.96	1.0266 at -122.69	1.0376 at 1	.17.36 1.042
92	İ		j i	1.0375 at 1	17.31 1.099
93	1.0333 at	-3.97	1.0265 at -122.71	1.0377 at 1	17.37 1.085
94	•		i i		1.137
95	1.0332 at		1.0261 at -122.73	1.0378 at 1	.17.37 1.141
96			1.0258 at -122.73		j 1.179
97	1.0345 at	-3.82		1.0338 at 1	.17.60 .687
197	1.0345 at				.17.59 .687
101	1.0337 at		1.0303 at -122.22		.17.59 .734
102			i i		.17.56 .777
103	· 		i i		.17.53 .838
104			i i		.17.49 .971
105	1.0323 at	-3.90	1.0301 at -122.27		17.61 .786
106			1.0290 at -122.29		.829
107			1.0275 at -122.32		.938
108	1.0309 at	-3.97	1.0308 at -122.28	1.0334 at 1	.17.65 .848
109	1.0267 at	-4.05			.933
110	1.0248 at	-4.09	i		.990
111	1.0240 at	-4.10	i i		1.099
112	1.0241 at	-4.10	i		1.014
113	1.0220 at	-4.14	i		1.113
114	1.0216 at	-4.15	i		1.175
300	1.0309 at	-3.97	 1.0308 at -122.28	1.0334 at 1	17.65 1.037
98	1.0343 at	-3.83	1.0303 at -122.22		.17.59 .739
99	1.0346 at	-3.82	1.0295 at -122.23		.17.55 .843
100	1.0348 at	-3.82	1.0294 at -122.21		.17.53 .900
450	1.0348 at	-3.82	1.0294 at -122.21		17.53 1.052
61	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
XF1	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
610	.9880 at	-3.51	1.0256 at -122.00		.17.76 .677
62	.9872 at	-3.50	1.0245 at -121.98		17.75 .620
63	.9866 at	-3.49	1.0236 at -121.97		.17.74 .654
64	.9863 at	-3.47			.17.70 .720
65	.9856 at	-3.48			17.70 .800
66	.9858 at	-3.51			17.70 .862
18	.9988 at	-2.29	1.0319 at -121.22		.18.83 .384
135	.9988 at	-2.29	1.0318 at -121.23		18.83 .384
35	.9960 at	-2.38	1.0293 at -121.31		18.77 .455
36	.9951 at	-2.40	1.0288 at -121.36		.578
37	.9943 at	-2.41			.635
38			1.0282 at -121.37		.625
39			1.0278 at -121.38		.687
40	.9945 at	-2.42	1.0282 at -121.36	1.0101 at 1	.18.72 .502
41		· -			.18.71 .564
42	.9929 at	-2.45	1.0270 at -121.41		.18.68 .549
43			1.0257 at -121.43	-	.644
44	.9918 at	-2.48	1.0263 at -121.44	1.0084 at 1	18.65 .587
		-	' '		,

--- V O L T A G E P R O F I L E ---- DATE: 6-24-2004 AT 16:54:32 HOURS ---- SUBSTATION: IEEE 123; FEEDER: IEEE 123

NODE	MAG	ANGLE	MAG	ANGLE	MAG	ANGLE	mi.to SR
45	.9913 at	-2.49					.625
46	.9909 at	-2.50					.682
47	.9908 at				1.0074 at		.635
48	.9905 at				1.0072 at		•
49	.9905 at				1.0071 at		
50	.9905 at				1.0067 at		
51	.9903 at				1.0067 at		
151	.9903 at		1.0248 at	-121.47	1.0067 at	118.58	•
19	.9975 at						.431
20	.9967 at						.493
21	.9983 at	-2.34	1.0320 at		1.0111 at	118.81	•
22			1.0305 at				.540
23	.9979 at	-2.39	1.0323 at	-121.20			
24					1.0085 at	118.77	•
25	.9972 at		1.0328 at				
28	.9968 at		1.0330 at				
29	.9967 at						
30	.9969 at				1.0078 at		
250	.9969 at		1.0331 at	-121.18			
RG3	.9972 at				1.0028 at		•
26	.9970 at				1.0023 at		•
27	.9966 at		ļ		1.0022 at	118.79	•
33	.9953 at	-2.52	ļ				.753
31	!		ļ		1.0017 at		•
32	!		!		1.0013 at	118.77	•
34	!		!		1.0187 at	118.88	
15	!		!		1.0183 at		•
16			!		1.0173 at		
17			!		1.0178 at	118.86	
9	1.0144 at		!				.213
RG2	1.0080 at		!				.213
14	1.0063 at						.294
10	1.0060 at		ļ				.341
11	1.0057 at	-1.51	1		1		.341

SUBSTA		OLTAGE R EEE 123;					-24-2004 A	AT 16:54:	35 H	IOURS	
[NODE]	[NODE][VREG][SEG][NODE] MODEL OPT BNDW										
150	[VKLO]	1/0	0]	1/0	Dha	ς Δ Λ 2 D	hasa Gande				
150 RG1 149 149 Phase A, 3 Phase Ganged Wye RX										2.00	
	PHASE	LDCTR	VOLT H	IOLD	R-VOLT	X-V0LT	PT RATIO	CT RATE		TAP	
	1		120.0	000	3.000	7.500	20.00	700.00		7	
[NODE]	[VREG]	[SE	G]	- [NOE	 DE]	MOD	EL		OPT	BNDW	
							& C, Wye		RX	2.00	
	PHASE	LDCTR					PT RATIO	CT RATE		TAP	
	1						20.00				
	2						20.00			1	
	3		124.0	000	. 200	1.400	20.00	300.00		5	
[NODE]	[VREG]	[SE	G1	- [NOE	DE1	MOD	EL		OPT	BNDW	
25	RG3	26	-	26	Pha	se A & C,	Wye		RX	1.00	
	PHASE	LDCTR	VOLT F	IOLD	R-VOLT	X-V0LT	PT RATIO	CT RATE		TAP	
	1		120.0	000	. 400	. 400	20.00 20.00	50.00		0	
	3		120.0	000	. 400	. 400	20.00	50.00		-1	
[NODE]	[VREG]	[SE	G]	- [NOE	 DE]	MOD	EL		OPT	BNDW	
9	RG2	14	-	14	Pha	se A, Wye			RX	2.00	
	DUACE	LDCTD			D VOLT		DT DATTO			 TAD	
		LUCIK					PT RATIO 20.00				
	_		120.0	, , ,	. 400	. 400	20.00	55.00		_	

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE -----B-----*-----*-----* NODE: 150 VOLTS: 1.000 .00 1.000 -120.00 1.000 120.00 MAG/ANG kVll 4.160 NO LOAD OR CAPACITOR REPRESENTED AT SOURCE NODE TO NODE RG1 <VRG>...: 655.91 -21.69 425.91 -139.63 523.82 101.51 AMP/DG < < RG1 > LOSS = .000: (.000) (.000) (.000) kW-----A-----* -----* -----*----NODE: RG1 VOLTS: 1.044 .00 1.044 -120.00 1.044 120.00 MAG/ANG -LD: .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 150 <VRG>: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < <RG1 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 149: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < (.000) (.000) (.000) kW <149 > LOSS= .000: -------*-----* ----* -----C-----*-----1.044 -.02 .00 .00 NODE: 149 VOLTS: 1.044 -120.02 1.044 119.98 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: . 00 . 00 .00 kVR FROM NODE RG1: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < <149 > LOSS= .000: (.000) (.000) (.000) kW 628.42 -21.69 408.06 -139.63 TO NODE 1: 501.86 101.51 AMP/DG < (11.176) (.429) (7.554) kW <1 > LOSS= 19.159: ----*-----* NODE: 1 VOLTS: 1.031 -.66 40.00 20.00 .00 .00 .00 kW/kVR Y-LD: .00 kVll 4.160 .00 Y CAP: .00 kVR FROM NODE 149: 628.42 -21.69 408.06 -139.63 501.86 101.51 AMP/DG < (.429) (7.554) <1 > LOSS= 19.159: (11.176) kW 8.94 -146.89 TO NODE 2: AMP/DG <2 > LOSS= .004: (.004)kW TO NODE 3: 46.54 92.99 AMP/DG <3 > LOSS= .136: (.136) kW 610.45 -21.52 399.19 -139.47 455.89 102.38 AMP/DG < TO NODE 7: <7 > LOSS= 13.090: (8.408) (.167) (4.515) kW NODE: 2 VOLTS: 1.041 -120.33 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR : 8.94 -146.89 FROM NODE 1 AMP/DG <2 > LOSS= .004: (.004) kW

- RADIAL SUBSTATION: IE	EE 123;	FEEDER: IEE	DATE: 6-2 EE 123			HOURS
NODE VAI	UE	PHASE A	PHASE B	PHA	SE C	UNT 0/L< 60.%
NODE: 3	VOLTS:	,		1.033 .00	119.57 .00 .00	MAG/ANG kW/kVR
FROM NODE 1 <3 > LOSS= TO NODE 4 . <4 > LOSS= TO NODE 5 . <5 > LOSS=	.136: : .016: :	Δ	·-*B	(18.03 (28.51	92.98 .136) 93.00 .016) 92.98 .066)	kW AMP/DG kW AMP/DG kW
NODE: 4	VOLTS: Y-LD:	7	J	1.033 40.00	119.56 20.00 .00	MAG/ANG kW/kVR
FROM NODE 3 <4 > LOSS=	.016:	Δ	· - * R	(93.00 .016)	kW
NODE: 5	VOLTS: Y-LD:	,,	J	1.032 20.64	119.55 10.32 .00	MAG/ANG kW/kVR
FROM NODE 3 <5 > LOSS= TO NODE 6 . <6 > LOSS=	.066: :	Δ	*B	(19.20 (92.97 .066) 92.97 .023)	kW AMP/DG kW
NODE: 6 kVLL 4.160	VOLTS: Y-LD:	7	J	1.031 42.53	119.53 21.27 .00	MAG/ANG kW/kVR
FROM NODE 5 <6 > LOSS=	.023:		·-*B	(92.97 .023)	kW
NODE: 7	VOLTS: Y-LD:		1.039 -120 00 .00	.57 1.029	119.35 .00	
FROM NODE 1 <7 > LOSS= 3 TO NODE 8 . <8 > LOSS=	13.090:	(8.408)	(.167)	(4 .47 455.89	.515)	kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C (LINE B) (LINE C) NODE VALUE PHASE A (LINE A) -----B-----*-----*-----*-----* -1.44 VOLTS: 1.016 .00 .00 . 00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR FROM NODE 7: 601.39 -21.43 399.19 -139.47 455.89 102.38 AMP/DG < <8 > LOSS= 8.583: (5.420) (.184) (2.979) kW TO NODE 12: 8.97 -147.31 AMP/DG <12 > LOSS= .005: (.005) kW TO NODE 13: 390.31 -139.29 555.51 -20.88 455.89 102.38 AMP/DG < (6.704) 46.22 -28.05 <13 > LOSS= 11.745: (.700) (4.341)TO NODE 9: AMP/DG <9 > LOSS= .122: (.122) NODE: 12 MAG/ANG VOLTS: 1.038 -120.74 20.00 10.00 Y-LD: kW/kVR kV11 4.160 Y CAP: .00 kVR FROM NODE 8 8.97 -147.31 AMP/DG (.005) <12 > LOSS= .005: ----A----*---* VOLTS: NODE: 13 1.008 -1.87 1.036 -120.97 1.020 118.90 MAG/ANG .00 .00 .00 .00 -LD: .00 .00 kW/kVR CAP: kV11 4.160 .00 .00 .00 kVR FROM NODE 8: 455.89 102.38 AMP/DG < 555.51 -20.88 390.31 -139.29 <13 > LOSS= 11.745: (.700) (6.704) (4.341) kW TO NODE 152: 332.01 -14.31 244.34 -129.30 265.02 112.07 AMP/DG <152 > LOSS= .000: (.000) (.000) (.000) kW 228.85 -30.43 TO NODE 18: 153.35 88.61 AMP/DG 155.56 -155.10 <18 > LOSS= 4.907: (2.436) (.341) (2.131) kW TO NODE 34: 46.42 92.30 AMP/DG (.081) kW <34 > LOSS= .081: VOLTS: 1.008 -1.88 1.036 -120.98 1.020 118.89 MAG/ANG NODE: 152 .00 .00 .00 .00 .00 -LD: .00 kW/kVR CAP: kV11 4.160 .00 .00 .00 kVR 265.02 112.07 AMP/DG FROM NODE 13: 332.01 -14.31 244.34 -129.30 (.000) <152 > LOSS= .000: (.000) (.000) kW TO NODE 52: 244.34 -129.30 332.01 -14.31 265.02 112.07 AMP/DG < (3.538) (.363) (1.719) kW <52 > LOSS= 5.621:

- RADIAL SUBSTATION: IE	EE 123;					04 AT 16	:54:45 H	HOURS
NODE VA			\ \ \) *	PHAS (LIN	SE B NE B) 3*	PHAS	E C)	UNT 0/L< 60.%
NODE: 52 kVll 4.160	VOLTS:	1.002 -	2.26	1.035	-121.22	1.016	118.64	MAG/ANG
FROM NODE 152 <52 > LOSS= TO NODE 53 . <53 > LOSS=	5.621:	(3.538 314.05 -1	3) L3.46	(244.34	.363) -129.30	(1.° 265.02	719) 112.07	kW AMP/DG
NODE: 53 kVll 4.160	VOLTS:	999 -	2 43	1 034	-121 34	1 015	118 51	MAG/ANG
FROM NODE 52 <53 > LOSS= TO NODE 54 . <54 > LOSS=	2.663:	(1.555 296.14 -1	5) L2.50	(244.34	.271) -129.30	(.: 265.02	837) 112.07	kW AMP/DG
NODE: 54 kVll 4.160	VOLTS:	. 998 -	2.53	1.033	-121.41	1.014	118.43	MAG/ANG
FROM NODE 53 <54 > LOSS= TO NODE 55 . <55 > LOSS= TO NODE 57 . <57 > LOSS=	1.580: : .003: : 4.240:	(.846 9.28 -2 (.003 287.25 -1 (1.543	6) 29.09 3) 1.97	9.01 (235.82 (1.	.226) -147.98 .000) -128.60	(.00 (265.02 (1	.00 .00 000) 112.07 369)	kW AMP/DG kW AMP/DG kW
NODE: 55 kVll 4.160	VOLTS:	.997 -	2.54	1.033	-121.42	1.014	118.43	MAG/ANG
FROM NODE 54 <55 > LOSS= TO NODE 56 . <56 > LOSS=	.003:	(.003 .00	3) .00	(9.01	.000) -147.99	(.00	000) .00	kW AMP/DG
NODE: 56	VOLTS: Y-LD:	.997 .00	2.53	1.033 20.00	-121.43	1.014 .00	118.43	MAG/ANG kW/kVR
FROM NODE 55 <56 > LOSS=					-147.99 .002)		.00 000)	

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE -----B-----*-----*-----* VOLTS: .994 -2.83 1.031 -121.61 1.011 118.21 MAG/ANG .00 .00 .00 .00 kW/kVR .00 -LD: kVll 4.160 CAP: .00 .00 .00 kVR: 287.25 -11.97 235.82 -128.60 265.02 112.07 AMP/DG FROM NODE 54 <57 > LOSS= 4.240: (1.543) (1.328) (1.369) TO NODE 58: 18.35 -148.19 AMP/DG <58 > LOSS= .021: (.021) TO NODE 60: 287.25 -11.97 218.62 -126.99 265.02 112.07 AMP/DG <60 > LOSS= 8.780: (3.190) (2.296) (3.294) kW -----B-----*-----*-----* VOLTS: NODE: 58 1.030 -121.63 MAG/ANG Y-LD: 20.60 10.30 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 57 18.35 -148.19 AMP/DG .021: <58 > LOSS= (.021) kW TO NODE 59: 9.04 -148.19 AMP/DG <59 > LOSS= .005: (.005) -----B-----*-----*-----* NODE: 59 VOLTS: 1.030 -121.63 Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR FROM NODE 58 9.04 -148.20 AMP/DG : (.005) <59 > LOSS= .005: ____*_ -----A-----*-----B------*-----C------* 1.026 -122.00 1.005 117.76 MAG/ANG VOLTS: .988 -3.51 .00 Y-LD: 20.00 10.00 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 57: 287.25 -11.97 218.62 -126.99 265.02 112.07 AMP/DG <60 > LOSS= 8.780: (3.190) (2.296) (3.294) kW TO NODE 160: 240.09 -5.95 172.00 -120.02 191.06 120.31 AMP/DG (.000) .00 .00 (.000) 45.37 -41.35 (.000) .00 .00 (.001) 52.24 -150.54 <160 > LOSS= .000: (.000) kW .00 .00 AMP/DG (.000) kW TO NODE 61: <61 > LOSS= .000: TO NODE 62: 80.73 92.22 AMP/DG <62 > LOSS= .565: (.072) (.151) (.341) kW ------* -----*----* .988 -3.52 VOLTS: 1.026 -122.01 1.005 117.75 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 .00 kVR: 240.09 -5.95 172.00 -120.02 191.06 120.31 AMP/DG FROM NODE 60 <160 > LOSS= .000: (.000) (.000) (.000) kW 240.09 -5.95 TO NODE RG4 .<VRG>.: 172.00 -120.02 191.06 120.31 AMP/DG < <RG4 > LOSS= .000: (.000) (.000) (.000) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* NODE: RG4 VOLTS: 1.037 -3.52 1.032 -122.01 1.037 117.75 MAG/ANG -LD: .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: . 00 . 00 .00 kVR FROM NODE 160 <VRG>: 228.66 -5.95 170.93 -120.02 185.27 120.31 AMP/DG <RG4 > LOSS= .000: (.000) (.000) (.000) kW TO NODE 67: 228.66 -5.95 170.93 -120.02 185.27 120.31 AMP/DG <67 > LOSS= 2.371: (.940) (.429) (1.001) kW ----* -----B----*----C-----* NODE: 67 VOLTS: 1.036 -3.77 .00 .00 kW/kVR -LD: .00 .00 .00 .00 kVll 4.160 CAP: . 00 . 00 .00 kVR 228.66 -5.95 FROM NODE RG4: 170.93 -120.02 185.27 120.31 AMP/DG (.940) <67 > LOSS= 2.371: (.429) (1.001)54.15 -30.40 TO NODE 68: AMP/DG <68 > LOSS= .148: (.148) kW 126.10 -108.04 132.91 134.06 AMP/DG TO NODE 72: 118.75 22.68 <72 > LOSS= .769: (.117) (.396) (.256) kW 64.43 90.97 AMP/DG TO NODE 97: 82.68 -30.60 54.30 -148.83 (.094) (.035) (.077) ----B-----*----C------ - - - - - A - - - - - - * 1.034 -3.79 NODE: 68 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 67: 54.15 -30.40 AMP/DG <68 > LOSS= .148: (.148) kW 45.14 -30.41 TO NODE 69: AMP/DG <69 > LOSS= .141: (.141) -----*----* ----*-----* NODE: 69 VOLTS: 1.032 -3.83 MAG/ANG 40.00 20.00 Y-LD: kW/kVR kVll 4.160 Y CAP: kVR FROM NODE 68 45.14 -30.41 : AMP/DG .141: (.141) 27.10 -30.42 <69 > LOSS= kW TO NODE 70: AMP/DG <70 > LOSS= .060: (.060) VOLTS: 1.031 -3.85 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: .00 kVR 27.10 -30.42 FROM NODE 69 AMP/DG : <70 > LOSS= .060: (.060) kW 18.07 -30.43 TO NODE 71: AMP/DG <71 > LOSS= .023: (.023) kW

- RADIAL SUBSTATION: IE	EEE 123;	FEEDER:	IEEE	123			6:54:45 I	HOURS
NODE VA							SE C IE C)	UNT 0/L< 60.%
NODE: 71	VOLTS:	1.030 40 00	-3.86 20.00		,		,	MAG/ANG kW/kVR kVR
FROM NODE 70	:	18.07	-30.43					AMP/DG
NODE: 72 kVll 4.160	VOLTS: -LD: CAP:	1.036 .00	-3.86 .00 .00	1.030 .00	-122.29 .00 .00	1.034	117.50 .00 .00	MAG/ANG kW/kVR kVR
FROM NODE 67 <72 > LOSS= TO NODE 73 . <73 > LOSS=	: .769:	118.75	22.68	126.10	-108.04 396)	132.91 (. 55.31	134.06 256)	AMP/DG kW AMP/DG
	:	118.75	22.68 168) *	126.10	-108.04 284)	100.03	156.30	AMP/DG
NODE: 73	VOLTS: Y-LD:	A				1.032		MAG/ANG kW/kVR
FROM NODE 72 <73 > LOSS= TO NODE 74 . <74 > LOSS=	.212:	Δ.	*	D		(. 37.27	90.85	kW AMP/DG
NODE: 74	VOLTS: Y-LD:	A				1.030		MAG/ANG kW/kVR
FROM NODE 73 <74 > LOSS= TO NODE 75 . <75 > LOSS=	.122: : .033:		*	D	*	(. 18.09 (.	90.85 122) 90.84 033)	kW AMP/DG kW
	VOLTS: Y-LD:	А	^		,^	1.029	117.40 20.00	MAG/ANG
FROM NODE 74 <75 > LOSS=							90.84 033)	AMP/DG kW

RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B (LINE B) PHASE B PHASE C (LINE C) NODE VALUE PHASE A UNT 0/L< (LINE A) -----B-----*-----*-----*-----* -3.92 VOLTS: 1.036 72.97 52.12 kW/kVR D-LD: 107.59 81.97 72.32 51.66 kV11 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 72 : 118.75 22.68 126.10 -108.04 100.03 156.30 AMP/DG <76 > LOSS= .473: (.168) (.284) (.020) kW TO NODE 77: 77.82 60.48 77.40 -57.30 77.45 -177.48 AMP/DG <77 > LOSS= .418: (.101) (.151) (.166) kW 57.67 -129.86 TO NODE 86: 32.69 5.55 21.03 157.54 AMP/DG <86 > LOSS= .229: (.075) (.191) (-.036) kW ____*_ ----* ----* -----*----VOLTS: 1.037 -3.99 1.031 -122.46 1.036 117.37 MAG/ANG .00 . 00 40.00 20.00 .00 Y-LD: .00 kW/kVR .00 kV11 4.160 Y CAP: .00 .00 kVR 77.82 60.48 77.40 -57.30 77.45 -177.48 AMP/DG FROM NODE 76 : <77 > LOSS= .418: (.101) (.151) (.166) kW 77.82 60.48 TO NODE 78: 80.01 -44.26 77.45 -177.48 AMP/DG (.034) (.043) kW <78 > LOSS= .108: (.031) ----*---- - - - - - A - - - - - ³ -----* NODE: 78 1.037 -4.01 1.031 -122.48 1.036 117.35 MAG/ANG VOLTS: .00 .00 .00 .00 -LD: .00 .00 kW/kVR CAP: kV11 4.160 .00 .00 .00 kVR 80.01 -44.26 77.45 -177.48 AMP/DG FROM NODE 77 77.82 60.48 : (.043) kW <78 > LOSS= (.034) (.031) .108: .00 .00 TO NODE 79: .00 .00 AMP/DG 19.31 -30.58 (.000) kW <79 > LOSS= .007: (800.) (.000) TO NODE 80: 80.52 74.35 80.01 -44.26 77.45 -177.48 AMP/DG (.126) <80 > LOSS= .524: (.139) (.259) kW ----* ----*----- - - - - - A - - - - - - * 1.037 -4.02 1.031 -122.48 1.036 117.36 MAG/ANG VOLTS: .00 kW/kVR .00 .00 Y-LD: 43.01 21.51 . 00 Y CAP: .00 kV11 4.160 . 00 .00 kVR .00 .00 AMP/DG .00 .00 FROM NODE 78 : 19.31 -30.59 .007: (.000) kW <79 > LOSS= (.008) (.000) *----* ----* ----* -----*----NODE: 80 1.039 -4.07 1.033 -122.54 1.037 117.24 MAG/ANG VOLTS: .00 .00 Y-LD: 40.00 20.00 .00 .00 kW/kVR kV11 4.160 Y CAP: . 00 .00 .00 kVR 80.01 -44.26 80.52 74.35 77.45 -177.48 AMP/DG FROM NODE 78 : .524: <80 > LOSS= (.126) (.139) (.259) kW TO NODE 81: 80.52 74.35 86.40 -32.63 77.45 -177.48 AMP/DG <81 > LOSS= .562: (.175) (.120) (.267) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE C (LINE C) NODE VALUE PHASE A PHASE B UNT 0/L< (LINE B) (LINE A) -----B-----*-----*-----*-----* 1.042 -4.14 NODF: 81 VOLTS: .00 .00 -LD: .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 . 00 .00 kVR FROM NODE 80 : 80.52 74.35 86.40 -32.63 77.44 -177.48 AMP/DG (.267) kW <81 > LOSS= .562: (.175) (.120) TO NODE 82: 80.52 74.35 86.40 -32.63 82.90 -158.48 AMP/DG <82 > LOSS= .304: (.091) (.112) (.100) kW 27.01 90.52 AMP/DG TO NODE 84: <84 > LOSS= .124: (.124) kW -----A-----*-----B------*-----C-----*-----VOLTS: 1.042 -4.18 1.036 -122.60 1.038 117.11 MAG/ANG .00 .00 .00 .00 kW/kVR Y-LD: 40.00 20.00 .00 kVll 4.160 Y CAP: .00 .00 kVR 86.40 -32.63 80.52 74.35 82.90 -158.48 AMP/DG FROM NODE 81 : <82 > LOSS= .304: (.091) (.112) (.100) kW TO NODE 83: 86.90 85.80 86.40 -32.63 82.90 -158.48 AMP/DG (.081) (.102) (.135) kW <83 > LOSS= .318: ----*---- - - - - - A - - - - - - * -----* NODE: 83 VOLTS: 1.044 -4.20 1.038 -122.63 1.039 117.07 MAG/ANG .00 .00 .00 .00 20.00 10.00 kW/kVR Y-LD: kV11 4.160 Y CAP: 217.81 215.30 215.91 kVR FROM NODE 82 86.40 -32.63 82.90 -158.48 AMP/DG 86.90 85.80 : .318: (.135) kW <83 > LOSS= (.081) (.102) ----B--------*---NODE: 84 VOLTS: 1.035 117.09 MAG/ANG 20.00 10.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: .00 kVR FROM NODE 81 27.01 90.52 AMP/DG <84 > LOSS= .124: (.124) kW TO NODE 85: 18.01 90.51 AMP/DG .039: (.039) kW <85 > LOSS= .039: 1.034 117.07 MAG/ANG NODE: 85 VOLTS: 40.00 20.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: .00 kVR 18.01 90.51 AMP/DG FROM NODE 84 <85 > LOSS= .039: (.039) kW

RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT 0/L< (LINE A) -----B-----*-----*-----*-----* 1.035 -3.95 NODE: 86 VOLTS: .00 20.00 10.00 .00 .00 kW/kVR Y-LD: .00 kV11 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 76 : 32.69 5.55 57.67 -129.86 21.02 157.54 AMP/DG <86 > LOSS= .229: (.075) (.191) (-.036) kW TO NODE 87: 32.69 5.55 49.21 -126.38 21.02 157.54 AMP/DG <87 > LOSS= .116: (.059) (.066) (-.009) kW ----*-------A----⁻ -----* NODE: 87 VOLTS: 1.034 -3.97 1.027 -122.63 1.037 117.39 MAG/ANG .00 kW/kVR Y-LD: .00 .00 40.00 20.00 .00 kV11 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 86 32.69 5.55 49.21 -126.39 21.02 157.54 AMP/DG : <87 > LOSS= .116: (.059) (.066) (-.009) kW TO NODE 88: 21.00 35.93 AMP/DG <88 > LOSS= .019: (.019) kW TO NODE 89: 18.03 -30.54 33.25 -114.18 21.02 157.54 AMP/DG (.031) (-.009) (.019) <89 > LOSS= .040: ----B-----*----C------ - - - - - A - - - - - - * NODE: 88 1.034 -4.00 VOLTS: MAG/ANG Y-LD: 40.00 20.00 kW/kVR kV11 4.160 Y CAP: 53.48 kVR FROM NODE 87 21.00 35.93 AMP/DG : <88 > L0SS= .019: (.019) ----* -----B-----*-----* NODE: 89 1.034 -3.96 1.027 -122.68 VOLTS: 1.037 117.38 MAG/ANG .00 .00 .00 .00 .00 -LD: .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR 21.02 157.53 AMP/DG FROM NODE 87 33.25 -114.19 : 18.03 -30.54 <89 > LOSS= .040: (.019) (.031) (-.009) TO NODE 90: 21.16 -84.64 AMP/DG <90 > LOSS= .025: (.025) kW 18.15 -149.29 TO NODE 91: 18.03 -30.54 21.02 157.53 AMP/DG (.008) <91 > LOSS= .018: (.009) (.001) kW -----A-----*----B------*-----C------*-----NODE: 90 1.027 -122.72 VOLTS: MAG/ANG Y-LD: 41.08 20.54 kW/kVR kVll 4.160 Y CAP: 52.72 kVR 21.16 -84.64 FROM NODE 89 : AMP/DG (.025) <90 > LOSS= .025: kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT O/L< -----B-----*-----*-----* 1.034 -3.96 1.027 -122.69 1.038 117.36 MAG/ANG VOLTS: .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 . 00 .00 kVR: 18.03 -30.54 FROM NODE 89 18.15 -149.29 21.02 157.53 AMP/DG <91 > LOSS= .018: (.009) (.008) (.001) kW TO NODE 92: 21.02 157.53 AMP/DG (.033) kW <92 > LOSS= .033: .00 .00 AMP/DG TO NODE 93: 18.03 -30.54 18.15 -149.29 <93 > LOSS= .011: (.000) kW (.010) (.001) NODE: 92 VOLTS: 1.037 117.31 MAG/ANG 40.00 20.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: 53.82 kVR FROM NODE 91 21.02 157.53 AMP/DG <92 > LOSS= .033: (.033) kW ----A----*---*---B-----*----C-----*----1.026 -122.71 NODE: 93 VOLTS: 1.033 -3.97 1.038 117.37 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: .00 kVll 4.160 CAP: .00 .00 kVR .00 .00 AMP/DG FROM NODE 91: <93 > LOSS= .011: FROM NODE 91 18.03 -30.54 18.15 -149.29 : (.001) (.000) (.010) TO NODE 94: 18.03 -30.55 AMP/DG <94 > LOSS= .023: (.023) kW .00 .00 .00 .00 AMP/DG TO NODE 95: 18.15 -149.29 (.000) <95 > LOSS= .009: (.008) (.000) -B----*----C---------A----VOLTS: 1.033 -3.98 NODE: 94 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVll 4.160 Y CAP: kVR FROM NODE 93 : 18.03 -30.55 AMP/DG <94 > LOSS= .023: (.023) -----A-----*----*----B------*-----C------*----1.026 -122.73 NODE: 95 VOLTS: 1.033 -3.96 1.038 117.37 MAG/ANG .00 kW/kVR .00 .00 Y-LD: 20.00 10.00 .00 .00 kV11 4.160 Y CAP: .00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 93 : 18.15 -149.29 (.000) <95 > LOSS= .009: (.000) kW (.008) 9.08 -149.29 TO NODE 96: AMP/DG <96 > LOSS= .004: (.004) -----B-----*-----*-----*-----*

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT O/L< -----B-----*-----*-----* 1.026 -122.73 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 95 9.08 -149.30 AMP/DG : <96 > LOSS= .004: (.004) ______ NODE: 97 VOLTS: 1.035 -3.82 1.031 -122.21 1.034 117.60 MAG/ANG .00 .00 .00 .00 .00 kW/kVR -LD: .00 CAP: kVll 4.160 . 00 . 00 .00 kVR FROM NODE 67: 82.68 -30.60 54.30 -148.83 64.43 90.97 AMP/DG (.035) <97 > LOSS= .206: (.094) (.077) kW 64.68 -30.66 TO NODE 197: 36.21 -148.86 45.20 90.96 AMP/DG (.000) kW 19.23 90.98 AMP/DG (.000) <197 > LOSS= .000: (.000) TO NODE 98: 18.00 -30.38 18.08 -148.77 (.004) (.005) kW <98 > LOSS= .016: (.007) ----*-- - - - - - A - - - - - - * ----* -----*----NODE: 197 VOLTS: 1.034 -3.82 1.031 -122.21 1.034 117.59 MAG/ANG .00 .00 .00 .00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: .00 .00 kVR FROM NODE 97: <197 > LOSS= .000: 64.68 -30.66 36.21 -148.86 45.20 90.96 AMP/DG (.000) 36.21 -148.86 (.000) kW 45.20 90.96 AMP/DG (.000) TO NODE 101: 64.68 -30.66 (.010) (.044) kW <101 > LOSS= .114: (.060) ----*------------* 1.034 -3.86 1.030 -122.22 VOLTS: 1.033 117.59 MAG/ANG .00 .00 .00 . 00 .00 .00 kW/kVR -LD: kVll 4.160 CAP: . 00 . 00 .00 kVR 64.68 -30.66 FROM NODE 197: 36.21 -148.86 45.20 90.96 AMP/DG (.044) kW <101 > LOSS= .114: (.060) (.010) TO NODE 102: 45.20 90.96 AMP/DG <102 > LOSS= .116: (.116) kW 36.21 -148.86 TO NODE 105: 64.68 -30.66 .01 .00 AMP/DG (.000) kW <105 > LOSS= .114: (.133) (-.019) ----B---------*----VOLTS: NODE: 102 1.032 117.56 MAG/ANG 20.00 10.00 kW/kVR Y-LD: kVLL 4.160 Y CAP: .00 kVR FROM NODE 101 45.20 90.96 AMP/DG .116: <102 > LOSS= (.116) kW TO NODE 103: 36.18 90.95 AMP/DG (.107) kW <103 > LOSS= .107: -----B-----*-----*-----*

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT O/L< -----B-----*-----*-----* VOLTS: 1.030 117.53 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 102 36.18 90.95 AMP/DG : (.107) kW <103 > LOSS= .107: TO NODE 104: 18.11 90.93 AMP/DG <104 > LOSS= .058: (.058) kW ----*----C-----* NODE: 104 1.028 117.49 MAG/ANG VOLTS: Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR 18.11 90.93 AMP/DG FROM NODE 103: (.058) kW <104 > LOSS= .058: ----A----*---* NODE: 105 VOLTS: 1.032 -3.90 1.030 -122.27 1.034 117.61 MAG/ANG .00 .00 .00 kW/kVR -LD: .00 .00 .00 kVll 4.160 CAP: .00 . 00 .00 kVR FROM NODE 101 : 64.68 -30.66 36.21 -148.86 .00 .00 AMP/DG <105 > LOSS= .114: (.000) (.133) (-.019) kW TO NODE 106: 36.22 -148.87 AMP/DG (.074) <106 > LOSS= .074: kW .00 .00 AMP/DG 64.68 -30.66 .00 .00 TO NODE 108: (.000) (.000) kW <108 > LOSS= .119: (.119) -----* NODE: 106 VOLTS: 1.029 -122.29 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR 36.22 -148.87 FROM NODE 105 AMP/DG : <106 > LOSS= (.074) .074: kW TO NODE 107: 18.12 -148.88 AMP/DG <107 > LOSS= .048: (.048) ----B-----*-----C-----NODE: 107 VOLTS: 1.028 -122.32 MAG/ANG Y-LD: 40.00 20.00 kW/kVR .00 kVll 4.160 Y CAP: kVR FROM NODE 106: 18.12 -148.88 AMP/DG <107 > LOSS= .048: (.048) -----B----*----C-----*----*

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* VOLTS: 1.031 -3.97 1.031 -122.28 1.033 117.65 MAG/ANG -LD: .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR .00 .00 .00 .00 .000) 64.68 -30.66 FROM NODE 105 : .00 .00 AMP/DG (.000) <108 > LOSS= .119: (.119) kW TO NODE 109: 64.68 -30.66 AMP/DG (.474) <109 > LOSS= .474: kW .00 .000) TO NODE 300: .00 .00 .00 .00 AMP/DG .00 .00 .00 .00 .00 (-.001) <300 > LOSS= .000: ----B-----* NODE: 109 VOLTS: 1.027 -4.05 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVll 4.160 Y CAP: .00 kVR FROM NODE 108: 64.68 -30.67 AMP/DG <109 > LOSS= .474: (.474) kW : TO NODE 110 46.54 -30.69 AMP/DG (.164) <110 > LOSS= .164: -----B-----*-----*-----*-----* 1.025 -4.09 NODE: 110 VOLTS: MAG/ANG -LD: .00 .00 kW/kVR CAP: kVll 4.160 kVR . 00 FROM NODE 109: 46.54 -30.69 AMP/DG (.164) <110 > LOSS= .164: kW 9.09 -30.66 TO NODE 111: AMP/DG <111 > LOSS= .012: (.012) kW 37.45 -30.69 TO NODE 112: AMP/DG <112 > LOSS= .044: (.044) -----A-----*-----B------*------*---------*-NODE: 111 VOLTS: 1.024 -4.10 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kV11 4.160 Y CAP: kVR FROM NODE 110 9.09 -30.67 : AMP/DG .012: (.012) <111 > LOSS= -----*------*----C-----NODE: 112 VOLTS: 1.024 -4.10 MAG/ANG Y-LD: 20.48 10.24 kW/kVR kVll 4.160 Y CAP: .00 kVR FROM NODE 110: 37.45 -30.69 AMP/DG .044: <112 > LOSS= (.044) kW TO NODE 113: 28.14 -30.70 AMP/DG <113 > LOSS= .105: (.105) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C (LINE C) PHASE A (LINE A) NODE VALUE UNT 0/L< -----B-----*-----*-----*-----* VOLTS: 1.022 -4.14 MAG/ANG Y-LD: 41.78 20.89 kW/kVR kV11 4.160 Y CAP: . 00 kVR FROM NODE 112 : 28.14 -30.70 AMP/DG <113 > LOSS= .105: (.105) kW TO NODE 114: 9.11 -30.71 AMP/DG <114 > LOSS= .007: (.007) -----A-----*----B------*-----C------VOLTS: Y-LD: NODE: 114 1.022 -4.15 MAG/ANG 20.00 10.00 kW/kVR kV11 4.160 Y CAP: .00 kVR 9.11 -30.71 FROM NODE 113: AMP/DG .007: <114 > LOSS= (.007) -----^{*} ----B-----*----C-----* 1.031 -3.97 .00 .00 1.031 -122.28 1.033 117.65 MAG/ANG NODE: 300 VOLTS: .00 -LD: .00 .00 .00 .00 kW/kVR .00 .00 kVll 4.160 CAP: .00 kVR FROM NODE 108 : .00 .00 .00 .00 AMP/DG (.000) <300 > LOSS= (.001) kW .000: (-.001) ----A---------* ----*---NODE: 98 VOLTS: 1.034 1.030 -122.22 1.034 117.59 MAG/ANG -3.83 .00 .00 .00 .00 kW/kVR 40.00 20.00 Y-LD: .00 kV11 4.160 Y CAP: .00 .00 kVR 18.00 -30.38 FROM NODE 97 18.08 -148.78 19.23 90.98 AMP/DG : <98 > LOSS= .016: (.004) (.007) (.005) kW TO NODE 99: .00 .00 18.08 -148.78 19.23 90.98 AMP/DG <99 > LOSS= .028: (.000) (.028) (.000) kW -----*--------* ----* 1.035 -3.82 1.029 -122.23 1.033 117.55 MAG/ANG VOLTS: .00 .00 .00 Y-LD: 40.00 20.00 .00 kW/kVR Y CAP: .00 kV11 4.160 . 00 .00 kVR .00 .00 19.23 90.97 AMP/DG FROM NODE 98 : 18.08 -148.78 (.000) kW 19.23 90.97 AMP/DG <99 > LOSS= .028: (.000) (.028) `.00 .00 TO NODE 100: .00 .00 (.000) (.000) (.010) kW <100 > LOSS= .010: ----*--------* 1.035 -3.82 NODE: 100 VOLTS: 1.029 -122.21 1.033 117.53 MAG/ANG .00 Y-LD: . 00 .00 .00 42.67 21.33 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR .00 .00 .00 .00 FROM NODE 99 19.23 90.97 AMP/DG : (.000) (.000) (.010) kW <100 > LOSS= .010: .00 .00 TO NODE 450: .00 .00 .00 .00 AMP/DG <450 > LOSS= .000: (.000) (-.001) (.001) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE -----B----*----*----* 1.035 -3.82 1.029 -122.21 1.033 117.53 MAG/ANG VOLTS: .00 -LD: .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 . 00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 100 : .00 .00 (-.001) <450 > LOSS= .000: (.000) (.001) kW -----A-----* - - - - - - - B - - - - - * -----*----NODE: 61 VOLTS: .988 -3.51 1.026 -122.00 1.005 117.76 MAG/ANG .00 kW/kVR .00 .00 .00 -LD: .00 .00 kVll 4.160 CAP: . 00 . 00 .00 kVR .00 .00 AMP/DG .00 .00 .00 .00 FROM NODE 60 : (.000) kW (.001) <61 > LOSS= (.000) .000: .00 .00 .00 .00 AMP/DG TO NODE XF1: .00 .00 (.000) (.000) (.000) kW <XF1 > LOSS= .000: ----* ----A---------*---.988 -3.51 .00 .00 1.026 -122.00 1.005 117.76 MAG/ANG NODE: XF1 VOLTS: -LD: .00 .00 .00 .00 kW/kVR .00 . 00 kVll .480 CAP: .00 kVR FROM NODE 61 : .00 .00 .00 .00 AMP/DG <XF1 > LOSS= .000: (.000) (.000) (.000) kW .00 .00 .00 .00 AMP/DG TO NODE 610: .00 .00 (.000) (.000) (.000) kW <610 > LOSS= .000: - - - - - A - - - - - ³ -----[,] ----*---VOLTS: .988 -3.51 1.026 -122.00 1.005 117.76 MAG/ANG NODE: 610 . 00 . 00 .00 .00 .00 .00 kW/kVR -LD: kV11 . 480 CAP: . 00 .00 .00 kVR .00 .00 .00 .00 FROM NODE XF1 .00 .00 AMP/DG : (.000) (.000) .000: (.000) kW <610 > LOSS= ----* -----*--------* VOLTS: .987 -3.50 1.024 -121.98 1.003 117.75 MAG/ANG NODE: 62 .00 .00 .00 .00 Y-LD: 40.25 20.13 kW/kVR 4.160 Y CAP: kV11 .00 . 00 .00 kVR 45.37 -41.36 80.73 92.21 AMP/DG FROM NODE 60 : 52.24 -150.55 .565: (.072) 45.37 -41.36 (.151) 52.24 -150.55 <62 > LOSS= (.341) kW TO NODE 63: 62.06 92.52 AMP/DG (.125) kW (.065) (.106) <63 > LOSS= .295: ----* -----C-----*-----VOLTS: .987 -3.49 1.024 -121.97 1.002 117.74 MAG/ANG NODE: 63 .00 .00 .00 .00 kW/kVR

40.00 20.00

45.37 -41.36

(.065)

27.12 -49.20

.00

Y-LD:

. :

<64 > LOSS= .533: (.032)

kVll 4.160 Y CAP:

<63 > LOSS= .295:

TO NODE 64:

FROM NODE 62

.00

52.25 -150.56

(.106)

52.25 -150.56

(.245)

.00 kVR

62.06 92.52 AMP/DG

62.06 92.52 AMP/DG

(.125) kW

(.256) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---

SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C (LINE B) (LINE C) NODE VALUE PHASE A UNT O/L< (LINE A) VOLTS: .986 -3.47 .00 .00 76.63 35.76 .00 Y-LD: .00 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR 62.06 92.51 AMP/DG FROM NODE 63 : 27.13 -49.22 52.25 -150.57 <64 > LOSS= .533: (.032) (.245) (.256) kW TO NODE 65: 27.13 -49.22 17.99 -157.50 62.06 92.51 AMP/DG (.031) <65 > LOSS= .452: (.024) (.398) kW ----* ----*---- - - - - - A - - - - - -.986 -3.48 .997 117.70 MAG/ANG NODE: 65 VOLTS: 1.021 -121.89 D-LD: 34.68 24.77 35.79 25.57 69.60 49.72 kW/kVR kVll 4.160 Y CAP: .00 .00 .00 kVR 62.07 92.50 AMP/DG FROM NODE 64 27.14 -49.24 18.00 -157.54 : <65 > LOSS= .452: (.024) (.031) (.398) kW TO NODE 66: .01 .00 .01 .00 34.61 92.69 AMP/DG <66 > LOSS= .112: (.000) (.000) (.112) kW ----*------*--------* ----* NODE: 66 .996 117.70 MAG/ANG VOLTS: .986 -3.51 1.022 -121.87 .00 . 00 .00 .00 75.00 35.00 kW/kVR Y-LD: . 00 kVll 4.160 Y CAP: .00 .00 kVR FROM NODE 65 .00 .00 .00 .00 34.62 92.68 AMP/DG .112: .000 (.000) (.112) kW (.000) <66 > LOSS= ____*. ----A----³ -----* -----*----.999 NODE: 18 VOLTS: -2.29 1.032 -121.22 1.012 118.83 MAG/ANG . 00 .00 .00 .00 -LD: .00 .00 kW/kVR kVll 4.160 CAP: .00 .00 .00 kVR 155.56 -155.10: 228.85 -30.43 153.36 88.61 AMP/DG FROM NODE 13 <18 > LOSS= 4.907: (2.436) (2.131) kW (.341) 135.82 -31.42 136.56 - 156.13 TO NODE 135: 98.12 86.58 AMP/DG (.000) (.000) <135 > LOSS= .000: (.000) kW TO NODE 19: 37.29 -28.89 AMP/DG (.087) 55.79 -29.05 <19 > LOSS= .087: kW TO NODE 21: 19.19 -147.79 55.41 92.21 AMP/DG (.011) <21 > LOSS= .125: (-.002) (.116) kW -----*-----* ----*------*----.999 -2.29 NODE: 135 VOLTS: 1.032 -121.23 1.012 118.83 MAG/ANG .00 .00 .00 .00 .00 kW/kVR .00 -LD: kV11 4.160 CAP: .00 .00 .00 kVR FROM NODE 18: 135.82 -31.42 <135 > LOSS= .000: (.000) 136.56 -156.13 98.12 86.58 AMP/DG (.000) (.000) kW TO NODE 35: 135.82 -31.42 136.56 -156.13 98.12 86.58 AMP/DG <35 > LOSS= 1.026: (.555) (.397) (.074) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* VOLTS: .996 -2.38 1.029 -121.31 1.011 118.77 MAG/ANG D-LD: 40.00 20.00 .00 .00 .00 .00 kW/kVR kVll 4.160 Y CAP: . 00 . 00 .00 kVR FROM NODE 135: 135.82 -31.42 136.56 -156.13 98.12 86.58 AMP/DG <35 > LOSS= 1.026: (.555) (.397) (.074) kW TO NODE 36: 18.51 -28.97 18.37 -147.93 AMP/DG <36 > LOSS= .032: (.030) (.003) TO NODE 40: 108.64 -34.95 108.47 -155.43 98.12 86.58 AMP/DG <40 > LOSS= .482: (.246) (.126) (.110) kW -----B-----*-----*-----*-----* NODE: 36 VOLTS: .995 -2.40 1.029 -121.36 MAG/ANG .00 .00 .00 .00 -LD: kW/kVR kVLL 4.160 .00 CAP: .00 kVR FROM NODE 35: 18.51 -28.98 18.37 -147.94 AMP/DG <36 > LOSS= .032: (.003) (.030) kW TO NODE 37: 18.51 -28.98 AMP/DG <37 > LOSS= .026: (.026) kW TO NODE 38: 18.37 -147.94 AMP/DG (.021) NODE: 37 VOLTS: .994 -2.41 Y-LD: 39.55 19.77 MAG/ANG kW/kVR Y CAP: kVll 4.160 kVR FROM NODE 36: 18.51 -28.98 AMP/DG <37 > LOSS= .026: (.026) *-----*----------A-----NODE: 38 VOLTS: 1.028 -121.37 MAG/ANG Y-LD: 20.56 10.28 kW/kVR kVll 4.160 Y CAP: kVR 18.37 -147.94 FROM NODE 36 AMP/DG <38 > LOSS= .021: (.021) kW TO NODE 39: 9.06 -147.94 AMP/DG (.007) <39 > LOSS= .007: -----A----*----* NODE: 39 VOLTS: 1.028 -121.38 MAG/ANG

Y-LD:

kVll 4.160 Y CAP:

FROM NODE 38: <39 > LOSS= .007:

FROM NODE 38

20.00 10.00

9.06 -147.94

(.007)

. 00

kW/kVR

AMP/DG

kVR

kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE UNT O/L< -----B-----*-----*-----* VOLTS: .994 -2.42 1.028 -121.36 1.010 118.72 MAG/ANG .00 .00 .00 .00 .00 kW/kVR .00 -LD: kVll 4.160 CAP: .00 .00 .00 kVR 98.12 86.58 AMP/DG: 108.64 -34.95 108.47 -155.43 FROM NODE 35 <40 > LOSS= .482: (.246) (.126) (.110) kW TO NODE 41: 9.22 92.15 AMP/DG <41 > LOSS= .007: (.007) kW TO NODE 42: 108.64 -34.95 108.47 -155.43 88.95 86.00 AMP/DG <42 > LOSS= .459: (.265) (.110) (.083) kW ____*_ -----A-----*-----B------*-----C------* NODE: 41 VOLTS: 1.010 118.71 MAG/ANG Y-LD: 20.00 10.00 kW/kVR Y CAP: kVLL 4.160 .00 kVR FROM NODE 40 9.22 92.15 AMP/DG <41 > LOSS= .007: (.007) kW -----*-----A----*----B-----*----C-----*----1.027 -121.41 NODE: 42 VOLTS: .993 -2.45 1.009 118.68 MAG/ANG .00 .00 kW/kVR Y-LD: 10.00 .00 .00 20.00 kVll 4.160 Y CAP: .00 .00 kVR FROM NODE 40: <42 > LOSS= .459: 108.64 -34.95 108.47 -155.43 88.95 86.00 AMP/DG (.265) (.110) 19.10 -148.00 (.083) kW TO NODE 43: AMP/DG <43 > LOSS= .046: (.046) kW TO NODE 44: 89.57 -157.01 99.32 -35.51 88.95 86.00 AMP/DG (.151) <44 > LOSS= .299: (.063) (.086) kW ----* ----A----- - - - - - C - - - - - * - - - - - -NODE: 43 VOLTS: 1.026 -121.43 MAG/ANG Y-LD: 42.08 21.04 kW/kVR kVll 4.160 Y CAP: kVR FROM NODE 42 19.10 -148.00 AMP/DG <43 > LOSS= .046: (.046) ----*-----A----*---* NODE: 44 VOLTS: . 992 1.008 118.65 MAG/ANG -2.48 1.026 -121.44 .00 kW/kVR .00 .00 .00 -LD: .00 .00 .00 .00 kVll 4.160 CAP: .00 kVR 88.95 86.00 AMP/DG 99.32 -35.51 FROM NODE 42 : 89.57 -157.01 <44 > LOSS= .299: (.151) (.063) (.086) kW 18.71 -29.06 TO NODE 45: AMP/DG (.018) 80.76 -37.00 <45 > LOSS= .018: kW TO NODE 47: 89.57 -157.01 88.95 86.00 AMP/DG <47 > LOSS= .327: (.125) (.117) (.085) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE B) (LINE C) NODE VALUE UNT O/L< (LINE A) -----B-----*-----*-----* VOLTS: .991 -2.49 MAG/ANG Y-LD: 19.83 9.91 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 44 : 18.71 -29.06 AMP/DG <45 > LOSS= .018: (.018) kW TO NODE 46: 9.40 -29.06 AMP/DG <46 > LOSS= .007: (.007) ----A-----*----B------* NODE: 46 .991 -2.50 VOLTS: MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVll 4.160 Y CAP: . 00 kVR 9.40 -29.06 FROM NODE 45 AMP/DG : .007: (.007) <46 > LOSS= -----B-----*-----C------*-----____*_ ----* NODE: 47 1.025 -121.47 1.007 118.61 MAG/ANG VOLTS: .991 -2.50 25.18 kW/kVR Y-LD: 34.68 24.77 35.88 25.63 35.26 kVll 4.160 Y CAP: .00 . 00 .00 kVR FROM NODE 44 : 80.76 -37.00 89.57 -157.01 88.95 86.00 AMP/DG <47 > LOSS= .327: (.117) (.125) (.085) kW TO NODE 48: 35.48 -38.05 36.71 -157.01 36.07 83.06 AMP/DG (.012) 27.40 -34.98 (.007) kW 35.15 90.51 AMP/DG (.015) <48 > LOSS= .034: 34.95 -157.01 TO NODE 49: (.010) (.030) (.007) kW <49 > LOSS= .047: ----------*-----* ----* NODE: 48 VOLTS: .990 -2.51 1.025 -121.47 1.007 118.60 MAG/ANG 71.01 68.68 49.05 73.54 52.53 50.72 kW/kVR Y-LD: kV11 4.160 Y CAP: . 00 .00 kVR .00 36.71 -157.01 FROM NODE 47 35.48 -38.05 36.07 83.06 AMP/DG (.012) (.015) (.007) kW <48 > LOSS= .034: ----*---- - - - - - A - - - - - - * -----* NODE: 49 .991 -2.51 1.025 -121.48 VOLTS: 1.007 118.58 MAG/ANG 35.00 70.00 50.00 Y-LD: 25.00 35.00 20.00 kW/kVR kV11 4.160 Y CAP: .00 .00 .00 kVR FROM NODE 47 27.40 -34.98 34.95 -157.01 35.15 90.51 AMP/DG : (.010) > LOSS= (.030) (.007) kW .047: .00 .00 TO NODE 50: 9.40 -29.08 18.49 92.02 AMP/DG (-.002) (.000) <50 > LOSS= .008: (.010) kW

R A D I A L P O W E R F L O W --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE B PHASE C (LINE C) NODE VALUE PHASE A (LINE A) (LINE B) -----B-----*-----*-----*-----* 1.025 -121.47 NODE: 50 -2.52 VOLTS: .990 1.007 118.57 MAG/ANG 40.00 20.00 kW/kVR Y-LD: . 00 .00 .00 .00 kVll 4.160 Y CAP: .00 .00 .00 kVR 18.49 92.01 AMP/DG FROM NODE 49 : 9.40 -29.08 .00 .00 <50 > LOSS= .008: (.000) (-.002) (.010) kW TO NODE 51: 9.40 -29.08 .00 .00 .00 .00 AMP/DG <51 > LOSS= .002: (.002) (.000) (.000) kW ----A--------* ----*--NODE: 51 VOLTS: .990 -2.53 1.025 -121.47 1.007 118.58 MAG/ANG .00 kW/kVR Y-LD: 20.00 10.00 .00 .00 .00 kV11 4.160 Y CAP: . 00 . 00 .00 kVR .00 .00 .00 .00 AMP/DG FROM NODE 50 9.40 -29.09 : <51 > LOSS= .002: (.002) (.000) (.000) kW .00 .00 .00 .00 .00 .00 AMP/DG TO NODE 151: (.000) (.000) (.001) kW <151 > LOSS= .000: ----* -----B-----*-----C------*-----NODE: 151 .990 -2.53 1.025 -121.47 1.007 118.58 MAG/ANG VOLTS: .00 .00 .00 kW/kVR .00 -LD: .00 .00 .00 .00 kV11 4.160 CAP: .00 kVR .00 .00 .00 .00 .00 .00 AMP/DG FROM NODE 51 : .00 .00 .00 .00 .00 (.001) .000: (.000) <151 > LOSS= ----*------* NODE: 19 VOLTS: .998 -2.31 MAG/ANG 40.00 20.00 kW/kVR Y-LD: kVll 4.160 Y CAP: .00 kVR 37.29 -28.89 FROM NODE 18 : AMP/DG .087: <19 > LOSS= (.087) kW TO NODE 20: 18.62 -28.89 AMP/DG <20 > LOSS= .028: (.028) NODE: 20 .997 -2.33 VOLTS: MAG/ANG Y-LD: 39.87 19.93 kW/kVR kV11 4.160 Y CAP: kVR FROM NODE 19 18.62 -28.90 AMP/DG : > LOSS= .028: (.028) kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE A) (LINE B) (LINE C) NODE VALUE -----B-----*-----*-----* 1.032 -121.22 1.011 118.81 MAG/ANG VOLTS: .998 -2.34 NODF: 21 .00 .00 .00 .00 kW/kVR .00 -LD: . 00 kVll 4.160 CAP: .00 . 00 .00 kVR FROM NODE 18 : 55.80 -29.06 19.19 -147.80 55.41 92.21 AMP/DG <21 > LOSS= .125: (.011) (-.002) (.116) kW TO NODE 22: 19.19 -147.81 AMP/DG <22 > LOSS= .049: (.049) kW TO NODE 23: .00 .00 55.41 92.21 AMP/DG 55.80 -29.06 <23 > LOSS= .112: (-.006) (.000) (.117) kW ----A--------* -----*----VOLTS: 1.031 -121.25 MAG/ANG 42.48 21.24 Y-LD: kW/kVR kVll 4.160 Y CAP: .00 kVR 19.19 -147.81 FROM NODE 21 AMP/DG FROM NODE 21: <22 > LOSS= .049: (.049) -----B-----*-----*-----* .998 -2.39 1.032 -121.20 NODE: 23 VOLTS: 1.010 118.79 MAG/ANG .00 .00 kW/kVR -LD: .00 .00 .00 .00 kVll 4.160 CAP: .00 . 00 .00 kVR .00 .00 55.41 92.21 AMP/DG FROM NODE 21 55.80 -29.06 : .112: (.000) <23 > L0SS= (.117) kW (-.006) TO NODE 24: 18.46 92.21 AMP/DG <24 > LOSS= .047: (.047) kW .00 .00 TO NODE 25: 55.80 -29.06 36.95 92.21 AMP/DG (.000) <25 > LOSS= .091: (.021) (.070) kW ----*--------A--------B----VOLTS: NODE: 24 1.009 118.77 MAG/ANG Y-LD: 40.00 20.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 23 18.46 92.20 AMP/DG <24 > LOSS= .047: (.047) kW -----A-----*----B------*-----*-----*----* NODE: 25 .997 -2.45 1.009 118.80 MAG/ANG VOLTS: 1.033 -121.20 -LD: .00 .00 .00 .00 .00 .00 kW/kVR kVll 4.160 CAP: .00 . 00 .00 kVR .00 .00 36.95 92.21 AMP/DG 55.80 -29.06 FROM NODE 23 : (.000) <25 > LOSS= .091: (.021) 37.18 -29.05 (.070) kW TO NODE 28: .00 .00 18.47 92.21 AMP/DG <28 > LOSS= .026: (.011) (.000) (.015) kW TO NODE RG3 .<VRG>.: 18.62 -29.08 18.47 92.21 AMP/DG <RG3 > LOSS= .000: (.000) (.000) kW

SUBSTATION: IE	EE 123;	R F L O W FEEDER: IEEE :	123	94 AT 16:54:45 H	HOURS
		PHASE A (LINE A)		PHASE C (LINE C)	UNT 0/L< 60.%
NODE: 20	VOLTC:	.997 -2.48 39.87 19.94 .00	1 000 101 10	1 000 110 00	MAC/ANC
FROM NODE 25	:	37.18 -29.05 (.011) 18.56 -29.05 (001)	.00 .00	18.47 92.21	AMP/DG
NODE: 29 kVll 4.160	VOLTS: Y-LD: Y CAP:	.997 -2.50 39.73 19.87 .00	1.033 -121.19 .00 .00 .00	1.008 118.79 .00 .00 .00	MAG/ANG kW/kVR kVR
FROM NODE 28 <29 > LOSS= TO NODE 30 . <30 > LOSS=	: .015: : .010:	18.56 -29.06 (001) .00 .00 (.000)	.00 .00 (.000) .00 .00 (.000)	18.47 92.21 (.015) 18.47 92.21 (.010)	AMP/DG kW AMP/DG kW
NODE: 30	VOLTS:	.997 -2.50 .00 .00 .00	1.033 -121.18	1.008 118.77	MAG/ANG
<pre><30 > LOSS= TO NODE 250 .</pre>	.010:	.00 .00 (.000) .00 .00 (.000)	(.000) .00 .00	(.010) .00 .00	kW AMP/DG
NODE: 250 kVll 4.160	VOLTS:	.997 -2.50 .00 .00 .00	1.033 -121.18	1.008 118.77	MAG/ANG
	.000:	.00 .00 (.000) A*	(.000)	(.000)	kW
NODE: RG3 kVll 4.160	VOLTS:			1.003 118.80 .00 .00	MAG/ANG
FROM NODE 25 <rg3> LOSS= TO NODE 26 . <26 > LOSS=</rg3>	.000:	(.000)		18.59 92.21 (.000) 18.59 92.21 (.016)	kW AMP/DG

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C UNT O/L
(LINE A) (LINE B) (LINE C) 60.% NODE VALUE -----B-----*-----*-----* VOLTS: .997 -2.48 1.002 118.79 MAG/ANG .00 .00 -LD: . 00 .00 kW/kVR kVll 4.160 CAP: .00 .00 kVR: 18.62 -29.08 FROM NODE RG3 18.59 92.21 AMP/DG <26 > LOSS= .017: (.001) (.016) kW TO NODE 27: 18.62 -29.08 .00 .00 AMP/DG (.009) <27 > LOSS= .008: (.000) kW 18.59 92.21 AMP/DG TO NODE 31: <31 > LOSS= .020: (.020) kW -----B-----*-----*-----*-----* NODE: 27 VOLTS: .997 -2.49 1.002 118.79 MAG/ANG .00 .00 -LD: .00 .00 kW/kVR kVll 4.160 CAP: . 00 .00 kVR .00 .00 AMP/DG FROM NODE 26 18.62 -29.08 : (.000) kW <27 > LOSS= .008: (.009) TO NODE 33: 18.62 -29.08 AMP/DG (.044) <33 > LOSS= .044: -----B-----*-----*-----* .995 -2.52 NODE: 33 VOLTS: MAG/ANG Y-LD: 39.81 19.91 kW/kVR kVll 4.160 Y CAP: . 00 kVR FROM NODE 27 18.62 -29.08 : AMP/DG (.044) <33 > LOSS= .044: NODE: 31 VOLTS: 1.002 118.77 MAG/ANG Y-LD: 20.00 10.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR FROM NODE 26 18.59 92.21 AMP/DG : <31 > LOSS= .020: (.020) kW TO NODE 32: 9.30 92.20 AMP/DG <32 > LOSS= .007: (.007) kW -----B-----*-----*---NODE: 32 1.001 118.77 MAG/ANG VOLTS: Y-LD: 20.00 10.00 kW/kVR kVLL 4.160 Y CAP: .00 kVR 9.30 92.20 AMP/DG FROM NODE 31 : <32 > LOSS= .007: (.007) kW

- RADIAL SUBSTATION: IE	EE 123;	FEEDER:	IEEE 12	23		4 AT 16	6:54:45	HOURS
NODE VA						PHAS (LII)	SE C NE C)	UNT 0/L< 60.%
NODE: 34	VOLTS: Y-LD:	7		J		1.019	118.88 20.75 .00	MAG/ANG kW/kVR
FROM NODE 13 <34 > LOSS= TO NODE 15 . <15 > LOSS=	: .081: :	٨	*	D	*	(27.45	92.30 .081) 92.30	AMP/DG kW AMP/DG
NODE: 15 kVLL 4.160	VOLTS: -LD:	A		Б		1.018		MAG/ANG kW/kVR
FROM NODE 34 <15 > LOSS= TO NODE 16 . <16 > LOSS= TO NODE 17 . <17 > LOSS=	.019: : .032: :	٨	*	D	*	(18.30 (9.15	92.30 .019) 92.29 .032) 92.30	kW AMP/DG kW AMP/DG kW
NODE: 16 kVLL 4.160	VOLTS: Y-LD:	A		в		1.017 40.00		MAG/ANG kW/kVR
FROM NODE 15 <16 > LOSS=	: .032:	A	*	R	*_		92.29 .032)	
NODE: 17 kVLL 4.160	VOLTS: Y-LD:	^		J		1.018	118.86 10.00 .00	MAG/ANG kW/kVR
FROM NODE 15 <17 > LOSS=	.007:		*		*-	(92.30 .007)	kW
NODE: 9 kVll 4.160	VOLTS: Y-LD:		-1.47	Б		(,	MAG/ANG kW/kVR kVR
FROM NODE 8 <9 > LOSS= TO NODE RG2 . <rg2> LOSS=</rg2>	.122: <vrg>.:</vrg>	(.12	22) ·28.07					AMP/DG kW AMP/DG kW

- RADIAL POWER FLOW --- DATE: 6-24-2004 AT 16:54:45 HOURS ---SUBSTATION: IEEE 123; FEEDER: IEEE 123 PHASE A PHASE B PHASE C (LINE B) (LINE C) NODE VALUE UNT O/L< (LINE A) VOLTS: 1.008 -1.47 MAG/ANG .00 -LD: .00 kW/kVR kVll 4.160 CAP: .00 kVR <VRG>: 28.03 -28.07 FROM NODE 9 AMP/DG <RG2 > LOSS= .000: (.000) kW TO NODE 14: 28.03 -28.07 AMP/DG <14 > LOSS= .084: (.084) -----A----*-----B------*-----C------NODE: 14 VOLTS: 1.006 -LD: .00 1.006 -1.50 MAG/ANG .00 kW/kVR kVll 4.160 CAP: . 00 kVR FROM NODE RG2: 28.04 -28.07 AMP/DG (.084) <14 > LOSS= .084: kW 9.31 -28.07 TO NODE 10: AMP/DG (.005) <10 > LOSS= .005: kW TO NODE 11: 18.73 -28.07 AMP/DG <11 > LOSS= .022: (.022) -----B-----*-----*-----* VOLTS: 1.006 -1.50 MAG/ANG Y-LD: 20.12 10.06 kW/kVR Y CAP: kVll 4.160 kVR . 00 9.31 -28.07 FROM NODE 14 AMP/DG : (.005) <10 > LOSS= .005: kW -----B-----*----C------NODE: 11 VOLTS: 1.006 -1.51 MAG/ANG Y-LD: 40.45 20.23 kW/kVR kVll 4.160 Y CAP: .00 kVR: 18.73 -28.08 FROM NODE 14 AMP/DG <11 > LOSS= .022: (.022) kW