# Discrete Simulation of DDN IME for architecture prototyping

Daniele Tolomelli

MHPC

December 18, 2017

#### **Supervisors:**

Jean-Thomas Acquaviva Stefano Cozzini









# Program

- Introduction
- Problems to solve
- Results
- Live session

#### Introduction

Many scientific applications need to interact with a large amount of data, not necessarily permanent.

IO operations represent the main bottleneck in these cases, blocking compute nodes until these are completed.

SSD and NVMe memories allowed the development of **Burst Buffers** technologies, acting as a **cache** between Mass Storage and RAM, adding a layer in the **memory hierarchy** 

IME, Infinite Memory Engine, is the DDN burst buffer solution.

#### Burst Buffer Architecture



### IME Architecture



### Problem

#### Issues

- Highly complex system with different bottlenecks based on the configuration
- Difficult way to determine the importance of a parameter in the final performance equation

#### Solution

DDN proposed the implementation of a **Discrete Event Simulator** to investigate the behaviour of the already existing system.

The usage of this tool should quickly evaluate the quality of the system through microbenchmarks without configuring a real machine

## Development

- Iterative process
- Python 3.5
- SimPy, a python discrete event simulation library
- Vmprof, a statistical profiler, and Flamegraph, data plotter from profile data
- General UNIX tools

## Results - Disk Bandwidth

