Hall's Theorem

Naina Kumari

IIT DELHI

July 17, 2023

Applications

Problem Statement

A set of job applicants have applied for a set of jobs. We want to assign , to each job, an applicant who is qualified for it. Under which conditions is this possible ?

Example

Applicants $a_1, a_2,, a_5$ have applied for jobs j_1, j_2, j_3 and j_4

Job	Qualified Applicants
j_1	a_1, a_4, a_5
j_2	a_1
j_3	a_2, a_3, a_4
j_4	a_2, a_4

A solution would be 1-1 correspondence between the set of J jobs and a subset of the set A of applicants .

Mathematical Model

Bipartite graph G(J,A) (i.e with J jobs , A applicants) with an edge from $j \in J$ to $a \in A \iff$ a is qualified for j.

```
J1 A2 J2 A3 J3 A4 J4 A5
```


A **complete matching** from J to A is a 1-1 correspondence between J and a subset of A , such that the corresponding vertices are adjacent.

Question

When does a complete matching exist?

Necessary condition

Each set of k jobs must have at least k "jointly qualified" applicants i.e. each of them is qualified for at least one of these jobs . This must hold for every $1 \leq k \leq |J|$

The necessary condition is also sufficient Theorem(Hall, 1935)

In the bipartite graph G(V1,V2) , there is a complete matching from V_1 to V_2 if and only if for each subset A $\subset V_1$, $|N(A)| \ge |A|$

Proof

Necessary Part

|N(A)| > |A|

To prove : There exists a complete matching from V_1 to V_2 only if $|N(A)| \ge |A|$ \approx if |N(A)| < |A|, then no complete matching from V_1 to V_2 \approx if there exists complete matching from V_1 to V_2 then

Let M be a complete matching from V_1 to V_2

Every node in A must be the end point of some distinct edge in M.

$$\implies |N(A)| \ge |A|$$

Proof(Sufficiency Condition–Induction on $|V_1|$))

We will give an existential proof . Base Case : $|V_1| = 1$

Given the condition , the only subset $A = \{u\}$ will have at least one neighbour . Trivially ,there exists a complete matching - An edge whose end point is u (either (u,v) or (u,w)) in this case.

Proof(Sufficiency Condition–Induction on $|V_1|$)

Inductive Hypothesis:

For every bipartite graph G=(V,E) with bipartition (V_1,V_2) ,where $V_1\leq k$, such that $|N(A)|\geq |A|$ for all $A\subset V_1$, a complete matching from V_1 to V_2 exists.

Inductive Step:

Consider a bipartite graph G with bipartition (V_1, V_2) where $|V_1| = k + 1$,such that $|N(A)| \ge |A|$ for all $A \subset V_1$

Goal:

To show the existence of a complete matching from V_1 to V_2

<u>Case I</u>: Every k-sized subset A of V_1 has at least k+1 neighbours in V_2 .

 $\{k = 3 \text{ for demonstration purpose only } \}$

Case II:

There is a k sized subset of V_1 that has exactly k neighbours.

Case I

Consider any vertex $u \in V_1$ and one of its adjacent edges in V_2 , say v

Let
$$V_1' = V_1 - \{u\}$$
 and $V_2' = V_2 - \{v\}$

 (V_1', V_2') : bipartition of the reduced graph

$$|V_1'|=k$$
 and

<u>Claim</u>: $|N(A)| \ge |A|$ for all A ⊂ V_1 i.e. V_1' has at least k neighbours in V_2'

Since V_1 has at least k+1 neighbours in V_2 , so it's trivially true.

From inductive hypothesis , there is a complete matching , say M,from V_1^\prime to V_2^\prime

Now M $\cup \{(u,v)\}$:complete matching from V_1 to V_2

Case II

Let $S \subset V_1$ such that |S| = k and T = N(S) with |T| = k. By Inductive Hypothesis , a complete matching , say M ,exists from S to T.

Let $V_1'=V_1$ - S and $V_2'=V_2$ - T. Now , $|V_1'|=1$ and Claim : V_1' has at least 1 neighbour in V_2' .

V1

V2'

Otherwise It implies that V_1 has only k neighbours in V_2 , (contradiction to $|N(A)| \geq |A|$ for all $A \subset V_1$)

From Inductive Hypothesis , there is a complete matching say M' ,from V_1^\prime to V_2^\prime .

 $\mathsf{M} \cup \mathsf{M}'$ is a complete matching from V_1 to V_2

Thus, Hall's Theorem is proved.

References

- Introduction to Graph Theory by Douglas B.West
- GRAPH THEORY WITH APPLICATIONS by J. A. Bondy and U. S. R. Murty

THANK YOU