CS 583: PROBABILISTIC GRAPHICAL MODELS

TOPIC: LOCAL PROBABILISTIC MODELS

CHAPTER: 5

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

CPDs

- So far, we assumed tabular representation of Conditional Probability Distributions (CPDs); these are also called Conditional Probability Tables (CPTs)
- A CPD encodes $P(X \mid Pa(X))$ where $\sum P(X \mid Pa(X)) = 1$
- CPTs have significant disadvantages
 - Cannot handle variables with infinite domains
 - The number of independent parameters needed is |Val(X)-1|*|Val(Pa(X))|, which is exponential in the number of parents

Example – Medical diagnosis

- A patient can have one of many diseases; each disease is represented as a binary variable (Present/NotPresent)
- A symptom, e.g., Fever, can have many causes; this requires many disease nodes to be the parents of a symptom
- If Fever is caused by 10 different diseases, then the CPT for Fever requires $2^{10} = 1,024$ independent parameters (assuming a patient can have more than one disease at the same time, and we represent each disease as present/notpresent; and fever is also binary)

KEY INSIGHT

- A CPD has to represent $P(X \mid Pa(X))$ where $\sum P(X \mid Pa(X)) = 1$
- CPD does not have to list all possible combinations
- CPD is a function that maps (x, Pa(x)) to a conditional distribution P(x | Pa(x))
- This representation guarantees that the joint is a well-defined probability distribution

Types of cpds we'll see

- Deterministic CPDs
- Context-Specific CPDs
 - Tree CPDs
 - Rule CPDs
- Causal independence
 - The noisy-or model
 - Logistic CPD
- Continuous variables
 - Linear Gaussian CPDs

DETERMINISTIC CPDS

- \circ X is a deterministic function of its parents Pa(X)
- There is a deterministic function $f: Val(Pa(X)) \rightarrow Val(X)$ such that
 - $P(x \mid Pa(x)) = 1$ if x = f(Pa(x)) and 0 otherwise
- Example
 - X is (OR, AND, XOR, ...) of its parents
 - *X* is average of its parents

INDEPENDENCIES

INDEPENDENCIES

INDEPENDENCIES

CONTEXT-SPECIFIC INDEPENDENCE

- **Definition**: Let X, Y, Z be pairwise disjoint sets of variables, C be a set of variables (that might overlap with $X \cup Y \cup Z$), and let $c \in \text{val}(C)$. We say X and Y are contextually independent given Z and the context c if
 - $P(X \mid Y, Z, c) = P(X \mid Z, c)$ whenever P(Y, Z, c) > 0.

EXAMPLE: JOB APPLICATION

TREE-CPDS

RULE CPDS

- Definition: A rule-based CPD $P(X|Pa_X)$ is a set of rules \mathcal{R} such that
 - For each rule $r \in \mathcal{R}$, Scope[r] $\subseteq \{X\} \cup Pa_X$
 - For each assignment to (x, \mathbf{u}) , we have precisely one rule $\langle \mathbf{c}; p \rangle \in \mathcal{R}$ such that \mathbf{c} is compatible with (x, \mathbf{u}) . In this case, $P(X=x \mid Pa_X=\mathbf{u}) = p$.
 - The resulting CPD $P(X | Pa_X)$ is a legal CPD,

EXAMPLE: RULE CPDS

$$\begin{array}{lll} \rho_{1}:\langle a^{1},b^{1},x^{0};0.1\rangle & \rho_{2}:\langle a^{1},b^{1},x^{1};0.9\rangle \\ \rho_{3}:\langle a^{0},c^{1},x^{0};0.2\rangle & \rho_{4}:\langle a^{0},c^{1},x^{1};0.8\rangle \\ \rho_{5}:\langle b^{0},c^{0},x^{0};0.3\rangle & \rho_{6}:\langle b^{0},c^{0},x^{1};0.7\rangle \\ \rho_{7}:\langle a^{1},b^{0},c^{1},x^{0};0.4\rangle & \rho_{8}:\langle a^{1},b^{0},c^{1},x^{1};0.6\rangle \\ \rho_{9}:\langle a^{0},b^{1},c^{0};0.5\rangle & \rho_{8}:\langle a^{1},b^{0},c^{1},x^{1};0.6\rangle \end{array}$$

X	$ a^0 b^0 c^0$	$a^{0}b^{0}c^{1}$	$a^{0}b^{1}c^{0}$	$a^0b^1c^1$	$a^{1}b^{0}c^{0}$	$a^1b^0c^1$	$a^{1}b^{1}c^{0}$	$a^{1}b^{1}c^{1}$
$\overline{x^0}$	0.3	0.2	0.5	0.2	0.3	0.4	0.1	0.1
x^1	0.7	0.8	0.5	0.8	0.7	0.6	0.1 0.9	0.9

INDEPENDENCE OF CAUSAL MODELS

- Variable of interest Y depends on a number of causes X_1 , ..., X_k
- Even though the interaction between X_i and Y can be arbitrary, it is often reasonable to assume that the combined influence of X_i on Y is a simple combination of the individual influences of X_i on Y in isolation.
 - Noisy-or model
 - Logistic CPD

- A professor writes a good letter if
 - The student asked good questions in class
 - The student wrote a good final paper
- However, the professor
 - Might forget that student asked good questions, with 0.2 probability
 - Might not be able to read student's handwriting, with 0.1 probability
- What is the probability that the professor will write a good letter if the student
 - Did not ask good questions, and did not write a good final paper?
 - Asked good questions but did not write a good final paper?
 - Did not ask good questions but wrote a good final paper?
 - Asked good questions, and wrote a good final paper?

Q, F	l^0	l^1
Q , F q^0 , f^0	1	0
q^0 , f^1	0.1	0.9
q^1,f^0	0.2	0.8
q^1,f^1	?	?

For the professor to write a bad letter when student asked good questions and a good final paper, the professor

- Forgets the student's participation AND
- Cannot read the student's handwriting

$$P(l^0 | q^1, f^1) = 0.1*0.2 = 0.02$$

 $P(l^1 | q^1, f^1) = 1 - 0.02 =$
 0.98

• Let Y be a binary random variable with k binary parents $X_1, ..., X_k$. The CPD $P(Y | X_1, ..., X_k)$ is a noisy-or if there k+1 parameters $\lambda_0, \lambda_1, ..., \lambda_k$ such that

$$P(y^{0} | X_{1},...,X_{k}) = (1-\lambda_{0}) \prod_{i:X_{i}=x_{i}^{1}} (1-\lambda_{i})$$

$$P(y^{1} | X_{1},...,X_{k}) = 1-(1-\lambda_{0}) \prod_{i:X_{i}=x_{i}^{1}} (1-\lambda_{i})$$

LOGISTIC CPD

• Let Y be a binary variable with k parents: $X_1, ..., X_k$ that take on numerical values. The CPD $P(Y | X_1, ..., X_k)$ is a *logistic CPD* if there are k+1 weights $w_0, w_1, ..., w_k$ such that

$$P(y^{1} | X_{1},...,X_{k}) = sigmoid\left(w_{0} + \sum_{i=1}^{k} w_{i}X_{i}\right)$$

$$= \frac{e^{w_{0} + \sum_{i=1}^{k} w_{i}X_{i}}}{1 + e^{w_{0} + \sum_{i=1}^{k} w_{i}X_{i}}}$$

LOGISTIC CPD

23

 ${
m CS}$ 583 – Probabilistic Graphical Models – Illinois Institute of Technology

LINEAR GAUSSIAN CPD

• Let Y be a continuous variable with continuous parents X1, ..., Xk. We say that Y has a linear Gaussian model if there are parameters β_0 , ..., β_k and σ^2 such that

$$p(Y \mid x_1, \dots x_k) = \mathcal{N}\left(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k; \sigma^2\right)$$