

Unit for Occupational and Environemtal Epidemiology & Net Teaching Head: Prof. Dr. Katja Radon, MSc

Institute and Outpatient Clinic for Occupational, Social a. Environmental Medicine Director: Prof. Dr. med. Dennis Nowak

Mapping the methods:

Exposure, outcome, confounders

Non-differential misclassifcation

- Unreliable measures (random measurement error)
 - = attenuation of true association
 - = increased amount of variation, unexplained by independent variable
- Solutions:
 - Improve your measurement
 - Increase your sample size

Differential misclassification

- Biased measurements (systematic measurement error)
 - = estimated effects are higher or lower than the true association

Solutions:

- Improve your measurement
- Balance your design so systematic errors in measurement are equally represented in the comparison group (to cancel out the effect)
- Blind the observers and subjects to exposure/ outcome/ intervention status

Sources and remedies for unreliability and bias

in measurement	in	maacu	romoi	1
		<u>IIICaSu</u>	<u>i Cilici</u>	IL

Source	Possible reason	Remedy
Subject	Biological variation (e.g. RR) Sampling error (e.g. electrosensitivity)	Repeated measurements on same subject Increase number of items used to measure the attribute
Obser- ver	Different interpretation / data collection methods	 train observers standardized data collection method get rid of observers remove/revise items observers can't agree upon

Sources and remedies for unreliability and bias in measurement

Source	Possible reason	Remedy
Proce- dure	Procedure for data collection varies (e.g., humidity, time)	Standardize the data collection methods
Instru- ment	Different instruments used, instrument variability (e.g., lab measures)	Standardize the instrumentsCalibrate instruments regularly

Variables / measurements

- Keep in mind the value of efficiency and parsimony
- Collect useful data at an affordable cost in time and money

Back to your protocol

- 1. Design
- 2. Population Inclusion / exclusion criteria (who, where) Sampling
- 3. Define variables / measurements
 How to ascertain exposure
 How to ascertain outcome
 How to measure potential confounders
- 4. Procedures: how to collect
- 5. Analysis
- 6. Sample Size / Power
- 7. Limitations

Confounding

Confounder

A confounder is an unknown or unaccounted for factor in a research study.

A confounder is

- associated with the **exposure** under study
- 2. associated with the **disease** (outcome) under study
- 3. is **not** in the causal pathway between exposure and disease

. ,	

Instrument	Category	Group	Parameter	
Question-	Animal contact	Е	(Farm) animal contact during pregnancy	
naire		Е	(Farm) animal contact in infancy	
	Markers of hygiene	Е	Consumption of raw farm milk and cheese	
		E	Infectious disease (Tbc, Worms,)	
		E	Vaccination	
		E	Siblings, day care attendants	
		Е	Day care attendants	
		Е	Housing / Heating	
		E	Fleas / cockroaches / mice / rats	
	Nutrition	Е	Nutrition (traditional / modern food), vitai	min D
			supplementation	
	Phenotype	С	Family history of AD/IBD	
	Confounder	С	Breast feeding	
		С	Birth weight	
		С	Socio-demographics	
		С	ETS exposure	
Clinical	Skin prick test	0	House dust mites, storage mites, bla g 1,	
parameter			Alternaria tenuis, cat, dog, local grass mix	<
	Blood sample	O/E	Total IgE (O), eosinophilia (E)	
	Stool	E	Giardia lamblia, Ascaris	
	Anthropometric	E	Weight, height (BMI)	
	measurements			
Genetics	Blood sample	E	Golden Gate Assay analyzing 1.500 cand	didate
			SNPs	
Home	Dust samples	E	Endotoxin	
sampling			Allergens: Der p1, bla 1, mice, cat, dog	

E=Exposure, O=Outcome, C=Confounder

Classification of measurement types of scales

Type

Definition

- Nominal
- 2 or more mutually exclusive categories, no ordering among categories Example: ?

Ordinal

• 2 or more mutually exclusive categories that are ordered; distance between categories might not be equal Examples: ?

Interval

 multiple categories and the distance between categories equal Examples: ?

Ratio

 Multiple categories, distance equal, zero=absence of the attribute (e.g.weight)

Classification of types of variables

By their measurement characteristic

Ty	pe
----	----

Scales

Summary Statistics

Mean, mode, median

- Continuous
- Ratio
- Interval
- *Ordinal

- Discrete
- *Ordinal
- Nominal

- Proportion
- Frequency

Back to your protocol

- 1. How do you measure
 - Exposure?
 - Outcome?
 - Confounders?
- 2. What about (non-)differential misclassification?
- 3. What about the feasibility of your measurements?

Generic structure of the measurement section

1. Predictors / exposure

e.g., intervention, risk factor, individual characteristic policy change

2. Outcomes

e.g., Morbidity Mortality Quality of life Satisfaction Costs

3. Confounders

e.g., disease severity individual characteristic Opportunity for detection Co-intervention

Generic structure of the write-up per variable measured

- Definition
- Source of information
- Reliability
- Validity
- (Feasibility)
- 6. Variable creation (e.g., compliance = number of pills taken/ number of pills required per months)
- 7. Type of variable (e.g., compliance will be treated as continuous=% required taken) and dichotomous (=compliance with therapeutic effectiveness range 80-110%) variable

Generic structure of the write-up per variable measured

Describe your main outcome variable according to the structure described

Back to your protocol

- 1. Design
- 2. Population Inclusion / exclusion criteria (who, where) Sampling
- 3. Define variables / measurements
 How to ascertain exposure
 How to ascertain outcome
 How to measure potential confounders
- 4. Procedures: how to collect the data
- 5. Data analysis
- 6. Sample Size / Power
- 7. Limitations

Data analysis

1. Restate the hypothesis to be tested including predictor, outcome and pot. confounders in general terms

This study will test the hypothesis that living in a rural area during infancy protects from allergies at age 6-16 yrs independent of sex, SES, parental atopy.

Data analysis

2. Operationalize each variable (table)

Variable	Definition	Type	Scale
Farm-contact in infancy	Questionnaire q32	Exposure	Dichotomous
Asthma	Bronchial challenge(+) symptoms (+) Symptoms score	Outcome	Dichotomous Ordinal
BMI	Height+Weight measured	Confoun- der	Continous
etc			

Data analysis

- 3. Define type of analysis (make linkt to measurement scale)
- 4. Unit of analysis (group, individual, tissue)
- 5. Criteria for including/excluding variables
- Complexity of your data
 (Multiple explanatory variables, Repeated measures over time, Missing data...)

Last but not least: ETHICS

http://www.ethikkommission.med.unimuenchen.de/

http://www.blaek.de/beruf recht/ethik/ethik
formulare.cfm

Assignment 2

Compose the following sections of your research protocol:

- Variables and their measurement
- Data collection
- Data analysis (as far as possible)
- Sample size/Power (as far as possible)
- Limitations of your study

Submit the final protocol until 05.12.2012 to

katja.radon@gmail.com

On December 6th 2012 your group will receive the protocol of another group for review! Further information will be given via email.