Machine Learning Engineer Nanodegree

July 15, 2020

Efficient detection of deceptive content using Deep Learning

1. Definition

Project Overview

Fake News or deception is an emerging topic that has received a lot of attention since the 2016 US presidential election, where many reckon that the spread of false information on social networks had a significant influence on its outcome. Most of the current work focuses either on the actual content of the news articles or the user that shares the news article on social media. However, social media platforms where fake news spread can be easily modelled as graphs and the goal of our project is to leverage techniques from deep Learning on Graphs for design better models for fake news detection.

Problem Statement

The proliferation of digital fake news is one of the most pressing needs of modern society, with several academics as well as tech companies investing heavy resources for this task.

We categorize this as an Artificial Intelligence problem, and suggest Deep Learning methods to tackle it. The problem is viewed as the classification of a single news story based on the features of the online posts users make about the news, using Twitter15 and Twitter16 datasets to show the same.

2. Analysis

Data Exploration

Several datasets and models of various neural nets have been implemented by the deceptive content detection community. A first step toward contributing to this research is to mix and match various datasets with models and observe the performance. This report summarizes such datasets and models used.

Datasets

- 1. Fake News [1]
- 2. Fake or Real News [2]

- 3. Election Day Tweets [3]
- 4. Fake News Data [4]
- 5. LIAR
- 6. TWITTER15&16

Fake New	vs Dataset
Columns/Attributes	 ID Title Author Text Label (0, 1)
Rows	20,800
Туре	Content-based
Attributes considered	Title, Text, Label
Split ratio (train/val/test)	16640 10400 10400

Election D	ay Tweets
Columns/Attributes	 ID Text Retweet count Username (12 more)
Rows	1327
Туре	Content-based
Attributes considered	text, label, retweet
Split ratio (train/val/test)	1061 664 663

LIAR

Colu
Rows
Type
Attri

Row

Colu

Type

Split

SPLIT	TRAIN	VALIDATION	TEST
SIZE	9727	6144	4095
	1892	1218	776
FALSE			
	1582	1008	668
TRUE			
	1870	1142	820
MOSTLY-TRUE			
	2000	1261	853
HALF-TRUE			
	798	503	336
PANTS ON FIRE			
BARELY TRUE	1585	1012	642

Column1	barely_true_c	false_c	half_true_c	mostly_true_c	pants_on_fire_c
count	1023	7 10237	10237	10237	10237
mean	11.53433623	13.28768194	17.13539123	16.43586988	6.202012308
std	18.9743486	24.11380828	35.84786188	36.15308885	16.12959871
min	(0	0	0	0
2	5% () 0	0	0	0
5	0%	2 2	3	3	1
7	5% 10	2 12	13	11	5
max	70	114	160	163	105

DESCRIPTION OF THE LIARDATASET

For experimental evaluation, we use two publicly available Twitter datasets released by Ma et al. (2017), namely Twitter15 and Twitter164, which respectively contains 1,381 and 1,181 propagation trees (see (Ma et al., 2017) for detailed statistics). In each dataset, a group of wide spread source tweets along with their propagation threads, i.e., replies and retweets, are provided in the form of tree structure. Each tree is annotated with one of the four class labels, i.e., non-rumor, false rumor, true rumor and unverified rumor. We remove the retweets from the trees since they do not provide any extra information or evidence contentwise. We build two versions for each tree, one for the bottom-up tree and the other for the top-down tree, by flipping the edges' direction.

Current results

[1]	
Author	Yang Yang Beihang University Beijing, China and all
Model	TI-CNN (Text and Image information based Convolutional Neural Network
Detection	NEWS CONTENT AND CONTEXT BASED
Dataset	The dataset in this paper contains 20,015 news, i.e., 11,941 fake news and 8,074 real news. It is available online1. For fake news, it contains text and metadata scraped from more than 240 websites by the Megan Risdal on Kaggle2. The real news is crawled from the well known authoritative news websites, i.e., the New York Times, Washington Post, etc. The dataset contains multiple information, such as the title, text, image, author and website. To reveal the intrinsic differences between real and fake news, we solely use the title, text and image information.
Method	TI-CNN-1000
Precision	0.9220
Recall	0.9277
F1-measure	0.9210

[2]

Author	ArnaudAutef Department of Management Science and Engineering
--------	--

	arnaud15@stanford.edu and all	
Model	GraphicalModels	
Detection	NEWS CONTEXT BASED	
Dataset	Twitter15 and Twitter16	
Method	-(SEIZ)ContagionModelforFakeNewsDetection -GraphNeuralNetworks GNNs	
Accuracy	TRAIN VAL TEST TEST BINARY CLASSIFICATION	
	Twitter 15 1.00 0.719 0.690 0.88	
	Twitter 16 0.859 0.841 0.750 0.88	

[3]

Author	Shivangi Singhal IIIT-Delhi Delhi, India shivangis@iiitd.ac.in and all
Model	SpotFake
Dataset	The training is performed on two publicly available datasets i.e., Twitter and Weibo
Detection	NEWS CONTENT AND CONTEXT BASED
Method	Textual Feature Extractor:-

Bidirectional Encoder Representations from Transformers		
(BERT) which is then passed through a fully-connected layer		
Visual Feature Extractor:-		
The pre-trained VGG-19. The second last layer of VGG-19 convolutional network pre-trained on ImageNet dataset (denoted by Vg) and pass it through a fully connected layer to reduce down to final dimension of length 32.		
Twitter Dataset		
0.7777		
REAL	FAKE	
0.751	0.832	
0.900	0.606	
0.82	0.701	
Weibo Dataset		
0.8923		
REAL	FAKE	
0.902	0.847	
0.964	0.656	
0.932	0.739	
	(BERT) which is then passed to Visual Feature Extractor:- The pre-trained VGG-19. The network pre-trained on Image through a fully connected layer. Twitter Dataset. 0.7777 REAL. 0.751 0.900 0.82 Weibo Dataset. 0.8923 REAL. 0.902 0.964	

Author	Yaqing Wang, Department of Computer Science, the State University of New York at Buffalo, Buffalo, New York and all
Model	EventAdversarialNeuralNetwork (EANN)
Dataset	Twitter and Weibo
Detection	NEWS CONTEXT BASED
Method	Convolutional neural networks(CNN)as the core module for textual feature extractor and Event Discriminator
Dataset	Twitter Dataset
Accuracy	0.715
Precision	0.822
Recall	0.638
F1-measure	0.719
Dataset	Weibo Dataset
Accuracy	0.827
Precision	0.847
Recall	0.812
F1-measure	0.829

[5]

Author	Natali RuchanskyUniversityofSouthernCalifornia Los Angeles, California natalir@bu.edu and all

Model	CSI which is composed of three modules: Capture, Score, and Integrate
Dataset	Twitter and Weibo
Detection	NEWS CONTEXT BASED
Method	RecurrentNeuralNetwork(RNN)
Dataset	Twitter Dataset
Accuracy	0.892
F1-measure	0.894
Dataset	Weibo
Accuracy	0.953
F1-measure	0.954

[6]

Author	Feng Qian, Peking University and all
Model	Two-Level Convolutional Neural Network with User Response Generator (TCNN-URG)
Dataset	Weibo Dataset and self-collected
Method	TCNN-URG
Dataset	Weibo Dataset
% of all data used as training data	10% 20% 30% 40% 50% 60% 70% 80% 90%

Accuracy	79.00	84.52	85.51	86.26	88.05	88.41	88.43	88.56	5 89.84
Dataset	Self-coll	lected D	ataset						
% of all data used as training data	10%	20%	30%	40%	50%	60%	70%	80%	90%
Accuracy	77.47	77.71	79.38	81.92	83.98	86.13	86.68	88.28	88

Model Architectures

Introduction

eural Network model architectures have recurring structures based on the type of neural network: such as convolutional, recurrent, etc. In this section

the types of common layers, their purposes and functions are briefly discussed.

CNN_[5]

A Convolutional Neural Network is a deep learning algorithm that can recognize and classify features in data such as images or text. It is a multi-layer (deep when layers are dense) neural network designed to analyze visual inputs and perform tasks such as image classification, segmentation, object detection, or text classification, which are useful in various countless scenarios.[6]

A CNN is composed of several kinds of layers:

- **Convolutional layer:** creates a feature map to predict the class probabilities for each feature by applying a filter that scans the whole image, few pixels at a time.
- Pooling layer (downsampling): scales down the amount of information the convolutional layer generated for each feature and maintains the most essential information (the process of the convolutional and pooling layers usually repeats several times).
- **Fully connected input layer:** "flattens" the outputs generated by previous layers to turn them into a single vector that can be used as an input for the next layer.
- **Fully connected layer:** applies weights over the input generated by the feature analysis to predict an accurate label.

• **Fully connected output layer:** generates the final probabilities to determine a class for the image.

LSTM[7]

The German researchers, Hochreiter and Schmidhuber, introduced the idea of long short-term memory networks in a paper published in 1997. LSTM is a unique type of Recurrent Neural Network (RNN) capable of learning long-term dependencies, which is useful for certain types of prediction that require the network to retain information over longer time periods, a task that traditional RNNs struggle with.[8]

The chain-like architecture of LSTM allows it to contain information for longer time periods, solving challenging tasks that traditional RNNs struggle to or simply cannot solve. The three major parts of the LSTM include:

- Forget gate—removes information that is no longer necessary for the completion of the task. This step is essential to optimizing the performance of the network.
 - Input gate—responsible for adding information to the cells
 - Output gate—selects and outputs necessary information

Other Key Terms

Batch Normalization: method to standardize inputs going into a network, in order to proceed the activations of a Preceding layer and its inputs directly.

Regularization: This is a form of regression, that constrains/ regularizes or shrinks the coefficient estimates towards zero. In other words, this technique discourages learning a more complex or flexible model, so as to avoid the risk of overfitting.[9]

Model Architectures Used for Given Datasets

CNN Model

```
for fsz in filter sizes:
1 conv =
Conv1D(nb filter=128, filter length=fsz, activation='relu') (embed-
ded sequences)
    l pool = MaxPooling1D(5)(l conv)
    convs.append(l pool)
l merge = concatenate(convs, axis=1)
1 cov1= Conv1D(filters=128, kernel size=5, activation='relu')
(1 merge)
l pool1 = MaxPooling1D(5)(l cov1)
1 cov2 = Conv1D(filters=128, kernel size=5, activation='relu')
(l pool1)
l pool2 = MaxPooling1D(30)(l cov2) l flat
= Flatten()(l pool2)
1 dense = Dense(128, activation='relu')(1 flat) preds
= Dense(2, activation='softmax')(1 dense)
model2 = Model(sequence input, preds)
model2.compile(loss='categorical crossentropy',
              optimizer='adadelta',
```

As we can see in this code snippet where the CNN model is being designed, we have the following layers in the CNN architecture for Fake News Dataset:

CONV. LAYER - INPUT	MAX POOL LAYER - INPUT	CONV. LAYER - 1	MAX POOL LAYER - 1	CONV. LAYER - 2	MAX POOL LAYER - 2	FLATTENING LAYER

Activation Function: Input => ReLU

Output => softmax

Loss Function: Categorical Cross Entropy

Optimizer: Adadelta

DENSE DENSE **DENSE 64** DENSE 2 MAX MAX **BATCH DROPOUT** CONV. 1 CONV. 2 **LSTM** 256 128 POOL 1 POOL 2 UNITS **NORM** UNITS **UNITS** UNITS

LSTM Model

```
embedding vecor length = 32 modell
= Sequential()
modell.add(embedding layer)
modell.add(Dropout(0.2))
modell.add(Conv1D(filters=32, kernel size=5, padding='same', activa-
tion='relu'))
modell.add(MaxPooling1D(pool_size=2))
modell.add(Conv1D(filters=64, kernel size=3, padding='same', activa-
tion='relu'))
modell.add(MaxPooling1D(pool size=2))
modell.add(LSTM(100, dropout=0.2, recurrent dropout=0.2))
modell.add(BatchNormalization())
modell.add(Dense(256, activation='relu'))
modell.add(Dense(128, activation='relu'))
modell.add(Dense(64, activation='relu'))
modell.add(Dense(2, activation='softmax'))
modell.compile(loss='categorical crossentropy', optimizer='adam',
metrics=['accuracy'])
```

As we can see in this code snippet where the LSTM model is being designed, we have the following layers in the LSTM architecture for Fake News Dataset: AFTER AN INITIAL EMBEDDING LAYER

Activation Function: Input => ReLU

Output => softmax

Loss Function: Categorical Cross Entropy Optimizer: Adam

DeepCNN

```
modell.add(embedding layer) for i in range (0,2):
                                                     modell.add(Conv1D(filters=1024,
kernel size=1, padding='same', activation='relu'))
modell.add(BatchNormalization())
                        modell.add(Conv1D(filters=32, kernel size=5,
for i in range (0,5):
padding='same', activation='relu'))
   modell.add(BatchNormalization())
modell.add(Activation('relu'))
     for i in range (0,5):
                           modell.add(Conv1D(filters=64, kernel size=3,
padding='same', activation='relu'))
    modell.add(BatchNormalization())
modell.add(Activation('relu'))
                            modell.add(Conv1D(filters=64, kernel size=5,
     for i in range (0,3):
padding='same', activation='relu'))
    modell.add(BatchNormalization())
modell.add(Activation('relu'))
    modell.add(Conv1D(filters=128, kernel size=3, padding='same', activation='relu'))
    modell.add(BatchNormalization())
modell.add(MaxPooling1D(pool size=2))
modell.add(Activation('relu'))
     for i in range (0,7):
                              modell.add(Conv1D(filters=128, kernel size=5,
padding='same', activation='relu'))
   modell.add(BatchNormalization())
                                        modell.add(Activation('relu')) for i in
range (0,5): modell.add(Conv1D(filters=256, kernel size=3, padding='same',
activation='relu'))
    modell.add(BatchNormalization())
modell.add(Activation('relu'))
                             modell.add(Conv1D(filters=256, kernel size=5,
     for i in range (0,3):
padding='same', activation='relu'))
   modell.add(BatchNormalization())
     for i in range (0,5):
                              modell.add(Conv1D(filters=512, kernel size=3,
padding='same', activation='relu'))
   modell.add(BatchNormalization())
    modell.add(Dropout(0.1))
     for i in range (0,2):
                             modell.add(Conv1D(filters=768, kernel size=5,
padding='same', activation='relu'))
    modell.add(BatchNormalization())
                                        modell.add(MaxPooling1D(pool size=2))
modell.add(Activation('relu')) for i in range(0,2):
modell.add(Conv1D(filters=1024, kernel size=3, padding='same', activation='relu'))
   modell.add(BatchNormalization())
modell.add(Activation('relu'))
modell.add(Dense(1024, activation='relu'))
modell.add(Dense(512, activation='relu'))
modell.add(Dense(128, activation='relu'))
modell.add(Dense(2, activation='softmax'))
modell.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
```


Activation Function: Input => ReLU

Output => softmax

Loss Function: Binary Cross Entropy
Optimizer: adam

Challenge: - Develop an efficient deep neural network for detection of deceptive content

Dataset: - Twitter15 and Twitter16 dataset

The datasets we work with are Twitter15 and Twitter16. These two datasets share the same exact structure. Both of them contain the tweets and re-tweets from a thousand of news articles published in 2015 and 2016. For each news article, the data contains the first tweet that shared it on Twitter, and a sequence of re-tweets following this initial post. We show one such data point (initial tweet and first two re-tweets). Each event is labeled according to the initial news article, the label is taken out of four possible classes: "true", "false", "unverified", "non-rumor". Labels are evenly distributed in both datasets.

Previous benchmark Results: - Previous benchmark results (Till Now) are shown below and accuracy is not so high (approx. 69%) using twitter15 dataset.

]	[witter1:	5]	[witter16	6
Split	Train	Val	Test	Train	Val	Test
Recursive Tree[8]	NA	NA	0.723	NA	NA	0.737
RNN+CNN[3]*	NA	NA	0.842	NA	NA	0.863
GBDT_user	0.962	0.629	0.628	1.00	0.671	0.647
GBDT_seiz	0.672	0.412	0.360	0.741	0.506	0.377
Ens_GBDT	0.959	0.635	0.577	0.995	0.617	0.618
MLP text	0.931	0.568	0.536	0.882	0.634	0.549
LSTM text	0.899	0.584	0.622	0.922	0.622	0.587
GraphSage text	0.954	0.624	0.622	0.866	0.756	0.712
GCN all (Our best)	1.00	0.719	0.690	0.859	0.841	0.750

my Goal: -To apply deep learning models using ALL THE datasets for fake news Detection that are mentioned.

Our results

Results

Observed results of the models we experimented along with proposed model.

DATASET	MODEL	ACCURACY
1. Fake and real news	CNN	96%
	DEEP CNN	91%
	LSTM	84%
2. Election day tweets	CNN	88%
	DEEP CNN	88%
	LSTM	86%
3. LIAR	CNN	98%
	DEEP CNN	94%
	LSTM	88%
4. Twitter16	CNN	79%
	DEEP CNN	83%
	LSTM	93%

Future Research and Conclusion

Several sub-problems and pre-problems exist in the area of fake news detection, one such problem being to detect whether a post is important or dangerous enough to employ fake news detection. It is also a challenge to detect fake news prior to its propagation, when serious effects of it have little chance of having already taken place.

Deep Learning is greatly advantageous in improving over present performance levels. Application of improved and customized CNN, Deep CNN, LSTM, and RNN models to the different detection methods can yield constantly improving results as datasets continue to improve.

Today, technology and social media companies are realizing the importance of the quality of information their users are posting and receiving. And they are slowly beginning to prioritize this over maximizing attention of users in their platforms. Seeing as attention has been the highest currency on the internet until now, this is a welcome change.