1

AI1110 ASSIGNMENT 1

Bandaru Naresh Kumar, AI21BTECH11006

ICSE class 10 paper 2019

Q3 (b): M and N are two points on the X axis and Y axis respectively. P(3,2) divides the line segment MN in the ratio 2:3. Find:

- (i)the coordinates of M and N
- (ii)the slope of MN.

Solution:

Various paraetres used in this question are:

Symbol	Value	Description
P	$\begin{pmatrix} 3 \\ 2 \end{pmatrix}$	Given point
$\mathbf{e_1}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	Standard X-axis vector
$\mathbf{e_2}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	Standard Y-axis vector
M	ae_1	A point on X-axis and $a \in R$
N	be_2	A point on Y-axis and $b \in R$
k	$\frac{2}{3}$	Ratio in which P divides MN

TABLE I VARIABLES

According to Section formula, If P divides MN in the ratio k:1,then:

$$\mathbf{P} = \frac{k(\mathbf{N}) + 1(\mathbf{M})}{k+1} \tag{0.0.1}$$

$$\mathbf{P} = \frac{bk\mathbf{e_2} + a\mathbf{e_1}}{k+1} \tag{0.0.2}$$

$$\mathbf{P} = \left(\frac{a}{k+1}\right)\mathbf{e_1} + \left(\frac{bk}{k+1}\right)\mathbf{e_2} \qquad (0.0.3)$$

But we have,

$$\mathbf{P} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

Therefore,

$$\left(\frac{a}{k+1}\right)\mathbf{e_1} + \left(\frac{bk}{k+1}\right)\mathbf{e_2} = \begin{pmatrix} 3\\2 \end{pmatrix} \tag{0.0.4}$$

$$\left(\frac{a}{k+1}\right)\mathbf{e_1} + \left(\frac{bk}{k+1}\right)\mathbf{e_2} = 3\mathbf{e_1} + 2\mathbf{e_2} \quad (0.0.5)$$

$$\implies \frac{a}{k+1} = 3 \text{ and } \frac{bk}{k+1} = 2$$

$$\implies a = 3(k+1) \text{ and } b = \frac{2(k+1)}{k}$$

Substituting $k = \frac{2}{3}$, we get: a = 5 and b = 5

$$(i)M = 5e_1$$
 and $N = 5e_2$

(ii) Slope of MN =
$$\frac{5-0}{0-5}$$
$$= -1$$