Package 'VALIDICLUST'

December 1, 2022
Title VALID Inference for Clusters Separation Testing
Version 0.1.0
Author Benjamin Hivert
Maintainer Benjamin Hivert tenjamin.hivert@u-bordeaux.fr>
Description Given a partition resulting from any clustering algorithm, the implemented tests allow valid post-clustering inference by testing if a given variable significantly separates two of the estimated clusters. Methods are detailed in: Hivert B, Agniel D, Thiebaut R & Hejblum BP (2022). "Post-clustering difference testing: valid inference and practical considerations", <arxiv:2210.13172>.</arxiv:2210.13172>
Encoding UTF-8
RoxygenNote 7.2.2
Imports diptest, dplyr
Depends R (>= 3.6)
License MIT + file LICENSE
NeedsCompilation no
Repository CRAN
Date/Publication 2022-12-01 08:20:02 UTC
R topics documented:
merge_selective_inference 2 test_multimod 3 test_selective_inference 4
Index

merge_selective_inference

Merged version of the selective test

Description

Merged version of the selective test

Usage

```
merge_selective_inference(X, k1, k2, g, ndraws = 2000, cl_fun, cl)
```

Arguments

Χ	The data matrix of size on which the clustering is applied
k1	The first cluster of interest
k2	The second cluster of interest
g	The variables for which the test is applied
ndraws	The number of Monte-Carlo samples
cl_fun	The clustering function used to build clusters
cl	The labels of the data obtained thanks to the cl_fun function

Value

A list with the following elements

- pval : The resulting p-values of the test.
- adjacent: List of the adjacent clusters between k1 and k2
- pval_adj : The corresponding adjacent p-values that are merged

Examples

```
X <- matrix(rnorm(200),ncol = 2)
hcl_fun <- function(x){
return(as.factor(cutree(hclust(dist(x), method = "ward.D2"), k=4)))}
cl <- hcl_fun(X)
plot(X, col=cl)
#Note that in practice the value of ndraws (the number of Monte-Carlo simulations must be higher)
test_var1 <- test_selective_inference(X, k1=1, k2=4, g=1, ndraws =100, cl_fun = hcl_fun, cl = cl)</pre>
```

test_multimod 3

test_multimod

Multimodality test for post clustering variable involvement

Description

Multimodality test for post clustering variable involvement

Usage

```
test_multimod(X, g, cl, k1, k2)
```

Arguments

Χ	The data matrix of size on which the clustering is applied
g	The variable on which the test is applied
cl	The labels of the data obtained thanks to a clustering algorithm
k1	The first cluster of interest
k2	The second cluster of interest

Value

A list containing: A list with the following elements

- data_for_test : The data used for the test
- stat_g : The dip statistic
- pval : The resulting p-values of the test computed with the diptest function

Examples

```
X <- matrix(rnorm(200),ncol = 2)
hcl_fun <- function(x){
return(as.factor(cutree(hclust(dist(x), method = "ward.D2"), k=2)))}
cl <- hcl_fun(X)
plot(X, col=cl)
test_var1 <- test_multimod(X, g=1, k1=1, k2=2, cl = cl)
test_var2 <- test_multimod(X, g=2, k1=1, k2=2, cl = cl)</pre>
```

```
test_selective_inference
```

Selective inference for post-clustering variable involvement

Description

Selective inference for post-clustering variable involvement

Usage

```
test_selective_inference(
   X,
   k1,
   k2,
   g,
   ndraws = 2000,
   cl_fun,
   cl = NULL,
   sig = NULL
)
```

Arguments

Χ	The data matrix of size on which the clustering is applied
k1	The first cluster of interest
k2	The second cluster of interest
g	The variables for which the test is applied
ndraws	The number of Monte-Carlo samples
cl_fun	The clustering function used to build clusters
cl	The labels of the data obtained thanks to the cl_fun function
sig	The estimated standard deviation. Default is NULL and the standard deviation is estimated using only observations in the two clusters of interest

Value

A list with the following elements

- stat_g: the test statistic used for the test.
- pval : The resulting p-values of the test.
- stder: The standard deviation of the p-values computed thanks to the Monte-Carlo samples.
- clusters: The labels of the data.

Note

This function is adapted from the clusterpval::test_clusters_approx() of Gao et al. (2022) (available on Github: https://github.com/lucylgao/clusterpval)

References

Gao, L. L., Bien, J., & Witten, D. (2022). Selective inference for hierarchical clustering. Journal of the American Statistical Association, (just-accepted), 1-27.

Examples

```
X <- matrix(rnorm(200),ncol = 2)
hcl_fun <- function(x){
return(as.factor(cutree(hclust(dist(x), method = "ward.D2"), k=2)))}
cl <- hcl_fun(X)
plot(X, col=cl)
#Note that in practice the value of ndraws (the number of Monte-Carlo simulations must be higher)
test_var1 <- test_selective_inference(X, k1=1, k2=2, g=1, ndraws =100, cl_fun = hcl_fun, cl = cl)</pre>
```

Index

```
merge_selective_inference, 2
test_multimod, 3
test_selective_inference, 4
```