A BOTTOM UP SENSOR **TESTBED**

upf. Universitat
Pompeu Fabra Barcelona

Student: Sergio Almendros Díaz

Supervisors: Jaume Barceló and Davide Scaini

Bachelor's degree in Computer Science

Year: 2014

Outline

- Introduction
- State of the art
- Technologies
- Testbed
- Conclusions
- Future Work

INTRODUCTION

 The goal is to gather sensor data, store it as opendata, and visualize it.

 Give the community a trace to improve their environmental conscience.

INTRODUCTION

INTRODUCTION Wireless Sensor Networks

- A network composed of nodes.
- A node:
 - A sensor node will be attach to a Guifi node.
 - A node has equipped wireless technology to create ad-hoc networks.

INTRODUCTION Bottom Up Broadband (BuB)

- BuB defines network design, deployment and operation initiatives driven by end user needs.
- These end users can be individuals, companies or institutions.
- In BuB, those that need the network are the ones that take the initiative and participate in the organization and funding of the project.

http://bubforeurope.net/

INTRODUCTION

- Sensor Networks can be founded by:
 - Government → Top-Down pattern.
 - Companies → Top-Down pattern.
 - Community → Bottom-Up pattern.

State of the Art Smartcities

- A city capable of having real-time information.
- Amsterdam:
 - Flexible street lighting
 - Smart parking

- Santander:
 - Environmental monitoring
 - Traffic Intensity Monitoring

State of the Art Companies

- Smartcitizen is a platform that offers a sensor board based on Arduino to monitor the environment.
- Libelium is an Internet of things platform provider, which supplies an open source sensor platform for the Internet of things.

State of the Art Open Data

- The term Open data pursues the fact that certain types of data should be available for anyone to use, without any control mechanism, e.g. copyright.
- Opencities, Xively and Sentilo are platform that allow the user to upload and download data.

State of the Art Sensor Boards

Some options for the sensor node:

Arduino YUN

Raspberry Pi model B

Picoboard

TechnologySensor Boards

- The first step was to choose the board:
 - Power, CPU and Communication.
 - Size.
 - Openhardware.
 - Power over Ethernet.

Raspberry Pi with PoE

Arduino Ethernet with PoE

TechnologyArduino Yun

- Microcontroller board with one processor and one microcontroller.
- Has an Ethernet and WiFi module.
- Arduino sketches can communicate with the Linux processor through the Bridge library

Technology Sensors

- The goal is to analyze the environment.
- These sensors measure the aspects that may be more useful for citizens:

TechnologyUpload Sensor Data

- Upload the data from the sensors to a platform so that everyone can access them.
- A GeoJSON message includes data from the 5 sensors.
- A Python script has been used to upload this message.

```
"type": "FeatureCollection",
"name": "dummy",
"timeStamp": "2014-06-12T08:54:59.424Z",
"features": [
        "type": "Feature",
        "tags": [
             "tall"
            "cheap",
             "upf"
        "geometry": {
            "type": "Point",
            "coordinates": [
                 2.18946,
                 41.403809
```

GeoJSON message

Technology Community Network

Is a network created and used by a community.

 Guifi is a network created by people interested in building an open, free and neutral network

infrastructure.

 Guifi is the network where the Arduino nodes will be deployed.

Guifi Nodes

TechnologyStorage Resource Broker

 The entity that stores the sensor data and is between the sensor network and the android App.

- Opencities is the opendata service that has been chosen:
 - The developers are at UPF, so the process of improving both projects (feedback, bug fixing, etc) can be fast and effective.
 - Easy API to upload and download the data.

TechnologyVisualization Platform

- A map is used to display the data.
- The goal is that a user checks it for a small period of time.
- The Android operating system has been chosen.

Android App

Repository

- All the code, report, figures, etc have been stored in a public repository.
- Github.com/SergioAlmendros

Testbed

 A Testbed is a platform for experimentation of new technologies, scientific theories...

For this project, three nodes had been

deployed:

Testbed Nodes

TestbedSensor node Prototype

 It is composed of an Arduino YUN, and a breadboard with all the sensors.

TestbedResults

- A Sensor Network has been deployed.
- The data has been stored as opendata.
- A mobile application shows the data.
- Some graphs show the collected data.

Testbed Results

Conclusions

- The deployment of the sensor network has been successful.
- It has been shown that anyone can deploy their own network in an inexpensive way.
- A mobile application has been developed to serve as an example.
- The project satisfied the goals presented at the start.

Future Work

- Build a prototype.
- Make the Arduino Power over Ethernet.
- The mobile application showed some issues.
- Show how the data changes during a period of time.
- Disseminate the project.

