User Total Active Time as Metric

```
In [629]:
          import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from scipy import stats
In [630]: # reading the data sets
          t1 user active min = pd.read csv("t1 user active min.csv")
          t2_user_variant
                               = pd.read_csv("t2_user_variant.csv")
          t3 user active min pre = pd.read csv("t3 user active min pre.csv")
          t4_user_attributes = pd.read_csv("t4_user_attributes.csv")
```

Use table 1 and 2

```
In [631]: t1_user_active_min.head()
Out[631]:
               uid
                          dt active_mins
                0 2019-02-22
                                    5.0
                0 2019-03-11
                                    5.0
                0 2019-03-18
                                    3.0
                0 2019-03-22
                                    4.0
               0 2019-04-03
                                    9.0
In [632]: t2_user_variant.head()
Out[632]:
```

	uid	variant_number	dt	signup_date
0	0	0	2019-02-06	2018-09-24
1	1	0	2019-02-06	2016-11-07
2	2	0	2019-02-06	2018-09-17
3	3	0	2019-02-06	2018-03-04
4	4	0	2019-02-06	2017-03-09

```
In [633]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da
          t1 user active min = t1 user active min[t1 user active min.active mins <
          = 24*60]
```

```
In [634]: # Total minutes per user
            t1 user active min total = t1 user active min.groupby(by=['uid'], as ind
            ex=False).sum()
In [635]: # merge t1 and t2 by uid
            t12 = pd.merge(t2_user_variant, t1_user_active_min_total, on='<mark>uid</mark>')
In [636]: t12.head()
Out[636]:
               uid variant_number
                                        dt signup_date active_mins
            0
                0
                              0 2019-02-06
                                            2018-09-24
                                                            43.0
            1
                              0 2019-02-06
                                            2016-11-07
                                                         15205.0
                2
                              0 2019-02-06
                                            2018-09-17
                                                            17.0
                              0 2019-02-06
                                            2018-03-04
                                                            77.0
                              0 2019-02-06
                                            2017-03-09
                                                            39.0
In [637]: t12.variant_number.value_counts()
Out[637]: 0
                 37425
            1
                  9208
           Name: variant_number, dtype: int64
```

Compute confidence interval on difference of means.

```
In [638]: | stats12 = t12.groupby(['variant_number'])['active_mins'].agg(['mean', 'c
           ount', 'std','var'])
           stats12
Out[638]:
                                  count std
                        mean
                                                  var
           variant number
                      0 458.221162 37425 1653.447132 2.733887e+06
                      1 458.402476
                                  9208 1680.571091 2.824319e+06
In [639]: | sigma_diff = np.sqrt(stats12.loc[0]['var'] / stats12.loc[0]['count'] +
                                 stats12.loc[1]['var'] / stats12.loc[1]['count'])
           upper = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) + (1.96 * sigm
           lower = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) - (1.96 * sigm
           a diff)
           print([lower, upper])
```

[-38.01476992103114, 38.37739748719736]

Perform a t-test:

```
In [640]: stats.ttest_ind(t12.active_mins[t12.variant_number==1], t12.active_mins[
    t12.variant_number==0], equal_var =False)
Out[640]: Ttest_indResult(statistic=0.009303964709989936, pvalue=0.99257675062736
    44)
```

The high p-value suggests INSUFFICIENT evidence for the new UI design to make a positive impact on total active time per user.

Add Table 3

```
In [641]: t3_user_active_min_pre.head()
Out[641]:
              uid
                        dt active_mins
               0 2018-09-24
                                 3.0
               0 2018-11-08
                                 4.0
               0 2018-11-24
                                 3.0
           3
               0 2018-11-28
                                 6.0
               0 2018-12-02
                                 6.0
In [642]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da
           t3 user active min pre = t3 user active min pre[t3 user active min pre.a
           ctive mins <= 24*60]
In [643]: # Total minutes per user
           t3 user active min pre total = t3 user active min pre.groupby(by=['uid'
           ], as index=False).sum()
In [644]: t123 = pd.merge(t12, t3 user active min pre total, on='uid', suffixes=(
           '_post', '_pre'))
```

```
In [645]:
            t123.head()
Out[645]:
                uid variant number
                                             signup_date active_mins_post active_mins_pre
             0
                 0
                               0 2019-02-06
                                                                                  70.0
                                              2018-09-24
                                                                   43.0
             1
                 1
                                0 2019-02-06
                                              2016-11-07
                                                                 15205.0
                                                                               19158.0
             2
                 2
                               0 2019-02-06
                                              2018-09-17
                                                                   17.0
                                                                                  37.0
             3
                 3
                               0 2019-02-06
                                              2018-03-04
                                                                   77.0
                                                                                 108.0
                               0 2019-02-06
                                              2017-03-09
                                                                   39.0
                                                                                  66.0
In [646]:
           t123['active mins diff'] = t123['active mins post'] - t123['active mins
            pre']
            stats123 = t123.groupby(['variant number'])['active mins post', 'active_
In [648]:
            mins_pre', 'active_mins_diff'].agg(['mean', 'count', 'std','var'])
            stats123
Out[648]:
                           active_mins_post
                                                                     active_mins_pre
                           mean
                                      count std
                                                                     mean
                                                                               count std
                                                        var
             variant_number
                                                        2.741501e+06 506.84027
                         0 459.544824
                                      37313
                                             1655.747990
                                                                               37313
                                                                                     1874.763969
                                       9165 1684.238222 2.836658e+06 295.81102
                         1 460.465139
                                                                                9165 1118.898491 1
```

Difference in difference

For each user, first obtain difference in post-test total time and pre-test total time: $\Delta x_1 \equiv x_{1,post} - x_{1,pre}$ and $\Delta x_2 \equiv x_{0,post} - x_{0,pre}$

Then obtain the difference in mean: $\overline{\Delta x_1} - \overline{\Delta x_2}$

Standard Error:
$$\sqrt{\frac{s_{\Delta x_1}^2}{n_1} + \frac{s_{\Delta x_2}^2}{n_1}}$$

[188.86398661059266, 235.03514450519842]

Perform a t-test:

The low p-value suggests high evidence for the new UI design to make a positive impact on total active time per user.

Distribution of Post/Pre-Test Difference in Total Active Miniutes

Add Table 4

```
In [654]: t4_user_attributes.head()
```

Out[654]:

	uid	gender	user_type
0	0	male	non_reader
1	1	male	reader
2	2	male	non_reader
3	3	male	non_reader
4	4	male	non_reader

```
In [655]: t1234 = pd.merge(t4_user_attributes, t123, on='uid')
```

```
In [656]:
            t1234.head()
Out[656]:
                             user_type variant_number
                                                         dt signup_date active_mins_post active_mins_pr
                uid gender
                                                      2019-
             0
                  0
                                                   0
                                                              2018-09-24
                                                                                    43.0
                                                                                                    70.
                       male
                            non_reader
                                                      02-06
                                                      2019-
             1
                       male
                                                              2016-11-07
                                                                                 15205.0
                                                                                                 19158.
                                reader
                                                      02-06
                                                      2019-
             2
                  2
                                                   0
                                                              2018-09-17
                                                                                    17.0
                                                                                                    37.
                       male
                            non_reader
                                                      02-06
                                                      2019-
             3
                  3
                                                   0
                                                              2018-03-04
                                                                                    77.0
                                                                                                   108.
                       male
                            non_reader
                                                      02-06
                                                      2019-
                       male
                            non_reader
                                                              2017-03-09
                                                                                    39.0
                                                                                                    66.
                                                      02-06
In [657]:
            pd.crosstab(t1234['variant number'],t1234['gender']).apply(lambda r: r/r
             .sum(), axis=1)
Out[657]:
             gender
                            female
                                      male
                                               unknown
             variant number
                            0.286737
                                      0.561493
                                               0.151770
                            0.282815
                                      0.559083
                                               0.158101
In [658]:
            pd.crosstab(t1234['variant_number'],t1234['user_type']).apply(lambda r:
             r/r.sum(), axis=1)
Out[658]:
             user_type
                            contributor new_user non_reader reader
             variant_number
                         0
                              0.024415
                                        0.061185
                                                    0.735240 0.17916
                          1
                              0.013857
                                        0.084015
                                                    0.764648 0.13748
In [659]:
            pd.crosstab(t1234['gender'],t1234['user_type']).apply(lambda r: r/r.sum
             (), axis=1)
Out[659]:
             user_type contributor new_user non_reader reader
                gender
                female
                         0.018734
                                   0.074637
                                               0.745166 0.161463
                                   0.055801
                  male
                         0.025849
                                               0.732579
                                                       0.185772
                         0.016170
                                   0.085208
                                               0.764342 0.134280
              unknown
```

Gender

```
In [660]: stats1234_gender = t1234.groupby(['variant_number', 'gender'])['active_mi
          ns_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'count',
          'var'])
          stats1234_gender
```

Out[660]:

		active_mins	_post		active_mins_pre			
		mean	count	var	mean	count	var	me
variant_number	gender							
	female	347.295635	10699	1.775838e+06	388.001309	10699	2.291656e+06	-4
0	male	555.593957	20951	3.547350e+06	602.397213	20951	4.430440e+06	-4
	unknown	316.268939	5663	1.506830e+06	377.835246	5663	2.361617e+06	-6
	female	355.527778	2592	1.705491e+06	224.615741	2592	6.196977e+05	13
1	male	534.548009	5124	3.581443e+06	341.800546	5124	1.663136e+06	19
	unknown	386.204969	1449	2.184961e+06	260.536922	1449	9.123354e+05	12

```
In [714]: def ConfidenceInterval(stats, attribute):
              mean did = stats.loc[1, attribute]['active mins diff', 'mean'] - sta
          ts.loc[0,attribute]['active_mins_diff', 'mean']
              SE_did = np.sqrt(stats.loc[1, attribute]['active_mins_diff','var'] /
          stats.loc[1, attribute]['active_mins_diff','count'] +
                               stats.loc[0, attribute]['active mins diff','var'] /
          stats.loc[0, attribute]['active mins diff', 'count'])
              upper = mean_did + (1.96 * SE_did)
              lower = mean did - (1.96 * SE did)
              return [lower, upper]
```

```
In [715]: | intervals = {}
          for g in set(t4 user attributes['gender']):
              intervals[g] = ConfidenceInterval(stats1234 gender, g)
              print(g, ':', ConfidenceInterval(stats1234 gender, g))
```

unknown: [136.26857431526759, 238.20013476417938] female: [134.88598802514008, 208.34943290378027] male: [205.61842607578922, 273.4830101924954]

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Male)

User Type

```
In [664]: stats1234_user_type = t1234.groupby(['variant_number','user_type'])['act
    ive_mins_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'cou
    nt', 'var'])
    stats1234_user_type
```

Out[664]:

		active_mins_post			active_mins_pre		
		mean	count	var	mean	count	var
variant_number	user_type						
	contributor	4309.835346	911	3.489298e+07	4967.092206	911	4.838156e+07
0	new_user	29.132720	2283	2.346789e+04	6.105563	2283	8.846519e+01
Ü	non_reader	104.923671	27434	1.121262e+05	108.010352	27434	9.982839e+04
	reader	1537.135378	6685	6.323741e+06	1706.748691	6685	7.733619e+06
	contributor	4708.031496	127	5.280503e+07	3231.299213	127	2.824765e+07
1	new_user	54.623377	770	4.513559e+04	6.487013	770	7.679892e+01
ı	non_reader	164.454623	7008	1.961370e+05	99.442066	7008	3.998564e+04
	reader	1926.734127	1260	9.683510e+06	1268.926984	1260	3.980188e+06

```
In [716]: for g in set(t4_user_attributes['user_type']):
    intervals[g] = ConfidenceInterval(stats1234_user_type, g)
    print(g, ':', ConfidenceInterval(stats1234_user_type, g))
```

contributor : [1284.297301979685, 2983.680986134959]
non_reader : [58.15701884268577, 78.04145683476409]

reader : [710.25891739744, 944.5819950932107]
new user : [8.967288343457433, 41.2511244308029]

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User)

Gender and User Type

Out[706]:

			active_mins_post			active_mins_pre			
			mean	mean count var		mean	count	var	
variant_number	user_type	gender							
		female	2891.901345	223	1.919445e+07	3680.219731	223	2.7	
	contributor	male	4959.790541	592	4.056130e+07	5466.097973	592	5.5	
		unknown	3595.520833	96	2.918201e+07	4879.187500	96	4.7	
		female	28.274590	732	2.253973e+04	5.845628	732	5.3	
	new_user	male	30.543119	1090	2.800025e+04	6.227523	1090	8.6	
0		unknown	27.160521	461	1.430522e+04	6.229935	461	1.4	
Ü		female	91.746596	7932	1.876154e+05	97.312532	7932	2.0	
	non_reader	male	115.496277	15175	9.035496e+04	116.640461	15175	5.7	
		unknown	92.000462	4327	4.926881e+04	97.354749	4327	5.4	
	reader	female	1281.672737	1812	5.308603e+06	1409.699227	1812	6.4	
		male	1689.815584	4094	7.074096e+06	1858.350513	4094	8.4	
		unknown	1328.952503	779	4.437375e+06	1600.966624	779	6.6	
		female	3514.038462	26	2.606714e+07	2304.115385	26	5.3	
	contributor	male	5354.695122	82	6.312565e+07	3830.280488	82	3.9	
		unknown	3551.052632	19	4.398827e+07	1915.000000	19	7.1	
		female	50.650000	260	1.585127e+04	6.334615	260	6.6	
	new_user	male	58.923288	365	6.926217e+04	6.487671	365	8.0	
1		unknown	50.924138	145	3.735781e+04	6.758621	145	8.6	
ı		female	137.462475	1972	1.131500e+05	80.724645	1972	2.4	
	non_reader	male	184.613955	3927	2.676727e+05	108.973262	3927	4.0	
		unknown	141.066727	1109	8.735659e+04	98.974752	1109	6.7	
		female	1634.485030	334	7.857262e+06	1082.218563	334	3.0	
	reader	male	2071.270667	750	1.057237e+07	1342.662667	750	4.2	
		unknown	1865.420455	176	9.208636e+06	1309.034091	176	4.7	

```
In [711]: covariates = [[a,b] for a in set(t4_user_attributes['user_type']) for b
   in set(t4_user_attributes['gender'])]
   len(covariates)
```

```
In [712]: def ConfidenceInterval_covariate(stats, covariate):
               mean did = stats.loc[1, covariate[0], covariate[1]]['active mins dif
           f', 'mean'] - stats.loc[0, covariate[0], covariate[1]]['active mins dif
           f', 'mean']
               SE_did = np.sqrt(stats.loc[1, covariate[0], covariate[1]]['active_mi
           ns_diff','var'] / stats.loc[1, covariate[0], covariate[1]]['active_mins_
          diff','count'] +
                                 stats.loc[0, covariate[0], covariate[1]]['active mi
          ns diff','var'] / stats.loc[0, covariate[0], covariate[1]]['active mins
           diff','count'])
               upper = mean_did + (1.96 * SE_did)
               lower = mean_did - (1.96 * SE_did)
               return [lower, upper]
In [717]: for c in covariates:
               intervals['_'.join(c)] = ConfidenceInterval_covariate(stats1234, c)
               print(c, ':', ConfidenceInterval_covariate(stats1234, c))
           ['contributor', 'unknown'] : [653.6048080357796, 5185.8337884554485]
           ['contributor', 'female'] : [343.4674981069095, 3653.0154270396924]
          ['contributor', 'male'] : [925.4251510097495, 3136.018982147799]
          ['non_reader', 'unknown'] : [28.39717566566377, 66.49534790818825]
           ['non_reader', 'female'] : [49.22753265482336, 75.3799974770583]
           ['non_reader', 'male'] : [61.20339354405016, 92.36636076534171]
           ['reader', 'unknown'] : [545.8458322158888, 1110.9551363918833]
           ['reader', 'female'] : [460.6913673558314, 899.8945469083554]
          ['reader', 'male']: [739.678278996958, 1054.607579332304]
           ['new_user', 'unknown'] : [-9.935825860614052, 56.405688976778315]
           ['new_user', 'female'] : [3.262515103845068, 40.5103306296564]
['new_user', 'male'] : [-0.4068322301028964, 56.646872446264766]
In [718]: df intervals = pd.DataFrame(intervals)
```

```
In [769]: for c in covariates:
              build_dist(t1234[(t1234.variant_number==1) & (t1234.user_type==c[0])
          & (t1234.gender==c[1]) &
                           (t1234.active mins diff < t1234.active mins diff.quantil
          e(0.90)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.10))],
                     t1234[(t1234.variant number==0) & (t1234.user_type==c[0]) & (
          t1234.gender==c[1]) &
                           (t1234.active_mins_diff < t1234.active_mins_diff.quantil</pre>
          e(0.90)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.1))],
                      "active_mins_diff", "active_mins_diff", "Difference in Total Ac
          tive Mins " + '(' + c[0].title() + ', ' + c[1].title() + ')', "Treatmen
          t", "Control",
                      title='Distribution of Post/Pre-Test Difference in Total Acti
          ve Miniutes ' + '(' + c[0].title() + ', ' + c[1].title() + ')')
```

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Contributor, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Non_Reader, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (Reader, Male)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User, Unknown)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New User, Female)

Distribution of Post/Pre-Test Difference in Total Active Miniutes (New_User, Male)


```
In [771]: for u in set(t4_user_attributes.user_type):
    plt.figure()
    plt.title('Confidence Intervals of Difference in User Total Time')
    plt.grid()
    plt.vlines(0, -1, 4, colors='r')
    for i in df_intervals.columns[df_intervals.columns.str.startswith(u
)]:
        plt.hlines(i, df_intervals[i][0], df_intervals[i][1], colors='g'
        , alpha=0.8, linestyles='solid', label=i, linewidth=5.0)
```


User Average Active Time as Metric

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from scipy import stats

In [2]: # reading the data sets
   t1_user_active_min = pd.read_csv("t1_user_active_min.csv")
   t2_user_variant = pd.read_csv("t2_user_variant.csv")
   t3_user_active_min_pre = pd.read_csv("t3_user_active_min_pre.csv")
   t4_user_attributes = pd.read_csv("t4_user_attributes.csv")
```

Use table 1 and 2

= 24*601

```
In [3]:
         t1_user_active_min.head()
Out[3]:
             uid
                         dt active mins
               0 2019-02-22
                                    5.0
               0 2019-03-11
                                    5.0
               0 2019-03-18
                                    3.0
               0 2019-03-22
                                    4.0
               0 2019-04-03
                                   9.0
In [4]: t2 user variant.head()
Out[4]:
             uid variant number
                                       dt signup date
               0
                             0 2019-02-06
                                            2018-09-24
                             0 2019-02-06
                                            2016-11-07
               2
                             0 2019-02-06
                                            2018-09-17
               3
                             0 2019-02-06
                                            2018-03-04
                             0 2019-02-06
                                            2017-03-09
```

In [5]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da

t1 user active min = t1 user active min[t1 user active min.active mins <

```
In [6]: # Total minutes per user
          tl_user_active_min_mean = tl_user_active_min.groupby(by=['uid'], as_inde
          x=False).mean()
In [21]: # merge t1 and t2 by uid
          t12 = pd.merge(t2_user_variant, t1_user_active_min_mean, on='uid')
In [22]: t12.head()
Out[22]:
             uid variant_number
                                      dt signup_date active_mins
           0
               0
                            0 2019-02-06
                                          2018-09-24
                                                      3.307692
           1
                            0 2019-02-06
                                          2016-11-07
                                                    160.052632
                            0 2019-02-06
                                          2018-09-17
                                                      2.428571
                            0 2019-02-06
                                          2018-03-04
                                                      3.208333
                            0 2019-02-06
                                          2017-03-09
                                                      1.950000
In [23]: t12.variant number.value counts()
Out[23]: 0
                37425
          1
                 9208
          Name: variant_number, dtype: int64
```

Compute confidence interval on difference of means.

```
In [24]: stats12 = t12.groupby(['variant_number'])['active_mins'].agg(['mean', 'c
          ount', 'std','var'])
          stats12
Out[24]:
                               count std
                       mean
                                              var
          variant number
                        8.761316 37425 18.780503 352.707296
                     1 11.638743
                                9208 21.102090 445.298205
In [25]: sigma_diff = np.sqrt(stats12.loc[0]['var'] / stats12.loc[0]['count'] +
                                stats12.loc[1]['var'] / stats12.loc[1]['count'])
          upper = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) + (1.96 * sigm
          lower = (stats12.loc[1]['mean'] - stats12.loc[0]['mean']) - (1.96 * sigm
          a diff)
         print([lower, upper])
          [2.406274815429466, 3.3485787569999346]
```

Perform a t-test:

The low p-value suggests strong evidence for the new UI design to make a positive impact on total active time per user.

Add Table 3

```
t3_user_active_min_pre.head()
Out[27]:
                        dt active mins
              uid
               0 2018-09-24
           0
                                  3.0
           1
               0 2018-11-08
                                  4.0
           2
               0 2018-11-24
                                  3.0
               0 2018-11-28
                                  6.0
               0 2018-12-02
                                  6.0
In [28]: # Drop data with active mins more than (24 hrs * 60 mins) on a single da
          t3 user active min pre = t3 user active min pre[t3 user active min pre.a
          ctive mins <= 24*60]
In [29]: # Total minutes per user
          t3 user active min pre mean = t3 user active min pre.groupby(by=['uid'],
          as_index=False).mean()
In [31]: t123 = pd.merge(t12, t3_user_active_min_pre_mean, on='uid', suffixes=('_
          post', '_pre'))
In [32]: t123.head()
Out[32]:
             uid variant_number
                                      dt signup_date active_mins_post active_mins_pre
           0
               0
                             0 2019-02-06
                                          2018-09-24
                                                           3.307692
                                                                         3.333333
                             0 2019-02-06
               1
                                          2016-11-07
                                                         160.052632
                                                                       158.330579
           1
                             0 2019-02-06
                                          2018-09-17
               2
                                                           2.428571
                                                                         3.700000
                            0 2019-02-06 2018-03-04
                                                           3.208333
           3
               3
                                                                         5.684211
                            0 2019-02-06
                                          2017-03-09
                                                           1.950000
                                                                         2.357143
           4
               4
```

In [33]: t123['active mins diff'] = t123['active_mins_post'] - t123['active_mins_

pre']

```
In [34]: stats123 = t123.groupby(['variant_number'])['active_mins_post', 'active_
           mins pre', 'active mins diff'].agg(['mean', 'count', 'std','var'])
           stats123
Out[34]:
                         active_mins_post
                                                             active_mins_pre
                         mean
                                  count std
                                                                     count std
                                                                                     var
                                                  var
                                                             mean
           variant number
                          8.778037 37313 18.805182 353.634855 9.114909
                                                                     37313 18.827314
                                                                                     354.467740
                       1 11.668744 9165 21.145444 447.129817 7.221025
                                                                      9165 12.555481 157.640098
```

Difference in difference

For each user, first obtain difference in post-test user average time and pre-test user average time:

$$\Delta x_1 \equiv x_{1,post} - x_{1,pre}$$
 and $\Delta x_2 \equiv x_{0,post} - x_{0,pre}$

Then obtain the difference in mean: $\overline{\Delta x_1} - \overline{\Delta x_2}$

Standard Error:
$$\sqrt{\frac{s_{\Delta x_1}^2}{n_1} + \frac{s_{\Delta x_2}^2}{n_1}}$$

[4.499019292447001, 5.070162945220937]

Perform a t-test:

```
In [36]: stats.ttest_ind(t123.active_mins_diff[t123.variant_number==1], t123.acti
    ve_mins_diff[t123.variant_number==0], equal_var =False)

Out[36]: Ttest_indResult(statistic=32.838668686479814, pvalue=2.6124834427323526
    e-226)
```

The low p-value suggests high evidence for the new UI design to make a positive impact on total active time per user.

Distribution of Post/Pre-Test Difference in Mean Active Miniutes

Out[49]: <matplotlib.axes._subplots.AxesSubplot at 0x134035d30>

[variant_number]

Add Table 4

```
In [57]: t4_user_attributes.head()
```

Out[57]:

	uid	gender	user_type
0	0	male	non_reader
1	1	male	reader
2	2	male	non_reader
3	3	male	non_reader
4	4	male	non_reader

```
In [58]: t1234 = pd.merge(t4_user_attributes, t123, on='uid')
```

```
In [59]:
           t1234.head()
Out[59]:
                            user_type variant_number
                                                        dt signup_date active_mins_post active_mins_pr
               uid gender
                                                     2019-
            0
                0
                                                  0
                                                             2018-09-24
                                                                               3.307692
                                                                                               3.33333
                      male
                           non_reader
                                                     02-06
                                                     2019-
            1
                                                             2016-11-07
                                                                             160.052632
                                                                                             158.33057
                      male
                               reader
                                                     02-06
                                                     2019-
            2
                 2
                                                  0
                                                             2018-09-17
                                                                               2.428571
                                                                                               3.70000
                      male
                           non_reader
                                                     02-06
                                                     2019-
            3
                 3
                                                  0
                                                             2018-03-04
                                                                               3.208333
                                                                                               5.68421
                      male
                           non_reader
                                                     02-06
                                                     2019-
                      male
                          non_reader
                                                             2017-03-09
                                                                               1.950000
                                                                                               2.35714
                                                     02-06
In [60]:
           pd.crosstab(t1234['variant number'],t1234['gender']).apply(lambda r: r/r
            .sum(), axis=1)
Out[60]:
            gender
                           female
                                     male
                                              unknown
            variant number
                           0.286737
                                     0.561493
                                              0.151770
                           0.282815
                                     0.559083
                                              0.158101
           pd.crosstab(t1234['variant_number'],t1234['user_type']).apply(lambda r:
In [61]:
           r/r.sum(), axis=1)
Out[61]:
            user_type
                           contributor new_user non_reader reader
            variant_number
                        0
                             0.024415
                                       0.061185
                                                   0.735240
                                                           0.17916
                         1
                             0.013857
                                       0.084015
                                                   0.764648 0.13748
In [62]: pd.crosstab(t1234['gender'],t1234['user_type']).apply(lambda r: r/r.sum
            (), axis=1)
Out[62]:
            user_type contributor new_user non_reader reader
              gender
               female
                        0.018734
                                  0.074637
                                              0.745166 0.161463
                                  0.055801
                 male
                        0.025849
                                              0.732579
                                                      0.185772
                        0.016170
                                  0.085208
                                              0.764342 0.134280
             unknown
```

Gender

Out[63]:

		active_min		active_mi	active_min			
		mean	mean count		mean	count	var	mean
variant_number	gender							
	female	7.642952	10699	234.200195	8.213522	10699	265.149126	-0.570570
0	male	9.704124	20951	424.230905	9.872825	20951	414.573699	-0.168701
	unknown	7.496357	5663	310.960230	8.013876	5663	296.083171	-0.517519
	female	10.590656	2592	325.528234	6.584398	2592	97.235650	4.006258
1	male	12.397131	5124	516.836077	7.553167	5124	187.825623	4.843964
	unknown	11.021509	1449	414.340209	7.185305	1449	158.030374	3.836204

```
In [65]: intervals = {}
for g in set(t4_user_attributes['gender']):
    intervals[g] = ConfidenceInterval(stats1234_gender, g)
    print(g, ':', ConfidenceInterval(stats1234_gender, g))
```

female : [4.082668281657273, 5.070986716879877]
male : [4.609718461419328, 5.415611021626094]
unknown : [3.6834453016973905, 5.023999837578068]

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Female)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Male)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Unknown)

User Type

```
In [68]: stats1234_user_type = t1234.groupby(['variant_number','user_type'])['act
    ive_mins_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'cou
    nt', 'var'])
    stats1234_user_type
```

Out[68]:

		active_mins_post			active_min		active	
		mean	count	var	mean	count	var	mean
variant_number	user_type							
	contributor	53.160145	911	4151.228369	56.656796	911	4184.622372	-3.49
0	new_user	3.441046	2283	22.749363	4.483866	2283	32.671914	-1.04
O .	non_reader	4.447460	27434	29.756430	4.555002	27434	25.243865	-0.10
	reader	22.324380	6685	740.317113	22.930689	6685	702.626548	-0.60
	contributor	65.306837	127	6568.871801	44.492685	127	2990.703181	20.81
1	new_user	6.242814	770	54.127892	4.698840	770	27.781261	1.54
•	non_reader	7.508955	7008	68.836087	4.610943	7008	16.323160	2.89
	reader	32.714566	1260	1333.164449	19.522641	1260	406.913170	13.19

```
In [69]: for g in set(t4_user_attributes['user_type']):
    intervals[g] = ConfidenceInterval(stats1234_user_type, g)
    print(g, ':', ConfidenceInterval(stats1234_user_type, g))
```

contributor : [16.995995749451346, 31.625610810993443]
non_reader : [2.8231488470903954, 3.1879584027166366]
reader : [12.376071976734565, 15.220396987874775]
new user : [1.9489593821827849, 3.2246293485292896]

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Contributor)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Non_Reader)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Reader)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (New_User)

Gender and User Type

```
In [72]: stats1234 = t1234.groupby(['variant_number','user_type','gender'])['acti
    ve_mins_post', 'active_mins_pre', 'active_mins_diff'].agg(['mean', 'coun
    t', 'var'])
    stats1234
```

Out[72]:

			active_mins_post			active_mins_pre		
			mean	count	var	mean	count	var
variant_number	user_type	gender						
1	contributor	female	38.714459	223	2066.235264	46.924005	223	2498.233
		male	58.017646	592	4452.855001	59.510130	592	4642.289
		unknown	56.761676	96	6584.499784	61.669696	96	5067.883
	new_user	female	3.306261	732	12.007781	4.266963	732	23.383
		male	3.476038	1090	17.301803	4.591055	1090	31.122
		unknown	3.572328	461	52.765472	4.574837	461	51.131
	non_reader	female	4.353322	7932	41.899578	4.525700	7932	40.190
		male	4.545964	15175	27.172688	4.592553	15175	20.056
		unknown	4.274572	4327	16.490376	4.477025	4327	16.035
	reader	female	19.971238	1812	615.897040	21.187164	1812	655.815
		male	23.495545	4094	786.285890	23.673501	4094	711.371
		unknown	21.642918	779	769.423072	23.082419	779	757.384
	contributor	female	53.337951	26	3460.047432	34.521595	26	892.456
		male	72.437659	82	7224.506929	49.235937	82	3690.044
		unknown	50.910186	19	8008.855289	37.666457	19	2794.911
	new_user	female	6.033502	260	33.294186	4.900733	260	30.799
		male	6.098764	365	38.696240	4.404795	365	22.607
		unknown	6.980743	145	130.679167	5.077011	145	35.380
ľ		female	7.242834	1972	60.681066	4.389482	1972	14.319
	non_reader	male	7.719148	3927	76.425539	4.685607	3927	16.264
		unknown	7.237863	1109	56.219090	4.740352	1109	20.001
	reader	female	30.576685	334	1262.135957	18.679489	334	342.441
		male	33.391819	750	1364.267695	19.542601	750	407.295
		unknown	33.885655	176	1338.367584	21.037655	176	528.938

```
In [73]: covariates = [[a,b] for a in set(t4_user_attributes['user_type']) for b
    in set(t4_user_attributes['gender'])]
    len(covariates)
```

```
In [74]: def ConfidenceInterval_covariate(stats, covariate):
              mean did = stats.loc[1, covariate[0], covariate[1]]['active mins dif
          f', 'mean'] - stats.loc[0, covariate[0], covariate[1]]['active mins dif
         f', 'mean']
              SE_did = np.sqrt(stats.loc[1, covariate[0], covariate[1]]['active_mi
         ns_diff','var'] / stats.loc[1, covariate[0], covariate[1]]['active_mins_
         diff','count'] +
                               stats.loc[0, covariate[0], covariate[1]]['active mi
         ns diff','var'] / stats.loc[0, covariate[0], covariate[1]]['active mins
         diff','count'])
              upper = mean_did + (1.96 * SE_did)
              lower = mean_did - (1.96 * SE_did)
              return [lower, upper]
In [75]: for c in covariates:
              intervals['_'.join(c)] = ConfidenceInterval_covariate(stats1234, c)
              print(c, ':', ConfidenceInterval_covariate(stats1234, c))
          ['contributor', 'female'] : [12.130744823642814, 41.92105855818548]
          ['contributor', 'male'] : [15.730777970918131, 33.65763474572131]
         ['contributor', 'unknown'] : [-5.206375673663516, 41.50987221834224]
         ['non_reader', 'female'] : [2.700530875954784, 3.350930907232195]
         ['non_reader', 'male']: [2.8255329034443393, 3.334727150265173]
         ['non_reader', 'unknown'] : [2.27444359904215, 3.1254824622100603]
         ['reader', 'female']: [10.39133884786024, 15.834906003385534]
         ['reader', 'male'] : [12.112992512053513, 15.941355559229901]
         ['reader', 'unknown']: [11.037669873335581, 17.537331735804244]
         ['new_user', 'female']: [1.0973757799120127, 3.0895669986213443]
         ['new_user', 'male'] : [2.033044325735124, 3.584928320328269]
['new_user', 'unknown'] : [0.7886594445558002, 5.023821684977663]
In [76]: df intervals = pd.DataFrame(intervals)
```

```
In [114]: for c in covariates:
              build dist(t1234 (t1234 variant number==1) & (t1234 user type==c[0])
          & (t1234.gender==c[1]) &
                           (t1234.active mins diff < t1234.active mins diff.quantil
          e(0.99)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.01))],
                     t1234[(t1234.variant_number==0) & (t1234.user_type==c[0]) & (
          t1234.gender==c[1]) &
                           (t1234.active_mins_diff < t1234.active_mins_diff.quantil</pre>
          e(0.99)) &
                           (t1234.active_mins_diff > t1234.active_mins_diff.quantil
          e(0.01))],
                      "active_mins_diff", "active_mins_diff", "Difference in Mean Act
          ive Mins " + '(' + c[0].title() + ', ' + c[1].title() + ')', "Treatment"
          , "Control",
                      title='Distribution of Post/Pre-Test Difference in Mean Activ
          e Miniutes ' + '(' + c[0].title() + ', ' + c[1].title() + ')')
```

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Contributor, Female)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Contributor, Male)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Contributor, Unknown)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Non_Reader, Female)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Non_Reader, Male)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Non_Reader, Unknown)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Reader, Female)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Reader, Male)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (Reader, Unknown)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (New_User, Female)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (New_User, Male)

Distribution of Post/Pre-Test Difference in Mean Active Miniutes (New_User, Unknown)

Out[103]: (array([1, 2, 3, 4, 5, 6]), <a list of 6 Text xticklabel objects>)

[gender, user_type, variant_number]

```
In [107]: for u in set(t4_user_attributes.user_type):
    plt.figure()
    plt.title('Confidence Intervals of Difference in User Mean Time ')
    plt.grid()
    plt.vlines(0, -1, 4, colors='r')
    for i in df_intervals.columns[df_intervals.columns.str.startswith(u
)]:
    plt.hlines(i, df_intervals[i][0], df_intervals[i][1], colors='g'
, alpha=0.8, linestyles='solid', label=i, linewidth=5.0)
```


