IN THE CLAIMS

What is claimed is:

1

4.

ì	1.	A semiconductor device, comprising:
2		a semiconductor substrate;
3		an isolation film buried in the substrate;
4		a gate insulating film formed between the isolation film and having
5		end portions adjacent to the isolation film that are thicker than a central
- 6		portion.
	2.	The semiconductor device according to claim 1, further including: a trench in the semiconductor substrate between adjacent gate
3 - 4 - 4 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		insulating films and having a width essentially the same as the distance between the adjacent insulating films; and the isolation film is buried in the trench.
1	3.	The semiconductor device according to claim 1, further including:
2		a first electrode formed on the gate insulating film;
3		a capacitance insulating film formed on the first electrode; and
4		a second electrode formed on the capacitance insulating film.

The semiconductor device according to claim 1, wherein:

2		an upper surface of the isolation film is at substantially the same height
3		as an upper surface of the end portion of the gate insulating film.
1	5.	The semiconductor device according to claim 1, wherein:
2		an upper surface of the isolation film is higher than an upper surface of
3		the end portion of the gate insulating film.
1	6.	The semiconductor device according to claim 1, further including:
2		a first electrode formed on the gate insulating film and having a
<u>-</u> 3 □ □		recessed portion at a central first electrode portion between the isolation film.
	7.	The semiconductor device according to claim 1, wherein:
		the semiconductor device is a flash memory.
	8	A manufacturing method of a semiconductor device, comprising the steps of:
		forming a first oxide film on a surface of a semiconductor substrate;
3		depositing a stacked film including a first conductive layer in contact
ل	/	with the first onide film;
5		etching the stacked film and the first oxide film to form a plurality of
6		stacked film patterns arranged on the semiconductor substrate;
7		oxidizing the semiconductor substrate to form a second oxide film on a
8		surface of the semiconductor substrate sandwiched between adjacent stacked
9		film patterns and a surface of the semiconductor substrate below end portions

3

4

5

10

11

12

13

14

15

16

of the stacked film patterns wherein the second oxide film has a film thickness thicker than the first oxide film;

forming a side wall mask film on a side of the stacked film patterns to form mask patterns including the stacked film patterns;

removing the portion of the second oxide film sandwiched between the mask patterns and a portion of the underlying semiconductor substrate using the mask patterns as a mask to form a trench in the semiconductor substrate; and

filling the trench with an insulating film.

9. The manufacturing method of a semiconductor device according to claim 8, wherein:

the step of filling the trench with an insulating film includes forming the insulating film to have a top surface having a height that essentially matches with a height of the second oxide film.

- 10. The manufacturing method of a semiconductor device according to claim 8, further including the steps of:
 - forming a capacitance insulating film on the surface including the first conductive layer after the step of filling the trench with an insulating film; and forming an electrode on the capacitance insulating film.
- 1 11. The manufacturing method of a semiconductor device according to claim 8, wherein:
 2 the side wall mask film includes a nitride film.

1	12.	The manufacturing method of a semiconductor device according to claim 8, wherein:
2		the second oxide film is approximately 20 to 50 nm thicker than the first oxide
3		film.
1	13.	The manufacturing method of a semiconductor device according to claim 8, wherein:
2		the stacked film includes a stopper film that provides a stopper for a
3		chemical mechanical polishing step.
`	\ .	
	14.	A manufacturing method of a semiconductor device, comprising the steps of:
Ξ ₂		forming a first oxide film on a surface of a semiconductor substrate;
$h_{\perp}^{\mathbb{D}}$	Y /	depositing a stacked film including a first stopper layer on the first
JT: _⊈4	7 /	oxide film;
#5 126 127	(etching the stacked film and the first oxide film to form a plurality of
1 6		stacked film patterns arranged on the semiconductor substrate;
<u>_</u> 7		oxidizing the semiconductor substrate to form a second oxide film on a
8		surface of the semiconductor substrate sandwiched between adjacent stacked
9		film patterns and a surface of the semiconductor substrate below end portions
10		of the stacked film patterns wherein the second oxide film has a film thickness

11

12

13

14

proximately 20 to 50 nm thicker than the first oxide miconductor device according to claim 8, wherein: a stopper film that provides a stopper for a p. iconductor device, comprising the steps of: n a surface of a semiconductor substrate; including a first stopper layer on the first nd the first oxide film to form a plurality of the semiconductor substrate; or substrate to form a second oxide film on a trate sandwiched between adjacent stacked semiconductor substrate below end portions in the second oxide film has a film thickness thicker than the first oxide film; removing the portion of the second oxide film sandwiched between the

mask patterns and a portion of the underlying semiconductor substrate using

the stacked film patterns as a mask to form a trench in the semiconductor

5
\Box_{γ}
کیا
1 1 1 1 1 1 1 3 7
J
•
≐ 5
======================================
= 5 = 5 = 15 = 15 = 15 = 15 = 15 = 15 =
<u> </u>

1

4

15	substrate;	and

filling the trench with an insulating film.

1 15. The manufacturing method of a semiconductor device according to claim 14,

2 wherein:

16

3 the step of filling the trench with an insulating film includes forming

the insulating film to have a top surface having a height that essentially

matches with a height of the first stopper layer.

16. The manufacturing method of a semiconductor device according to claim 14, further including the steps of:

removing the stacked film patterns so that at least the second oxide film below the stacked film patterns remain;

forming a gate oxide film in a region between the second oxide film;

forming a first electrode over the gate oxide film and at least a portion
of the second oxide film.

- 17. The manufacturing method of a semiconductor device according to claim 16,
- 2 wherein:
- 3 the first electrode includes end portions next to the insulating film that
- 4 are higher than a central portion of the first electrode.
 - 18. The manufacturing method of a semiconductor device according to claim 16,

3	the insulating film has a top surface that substantially matches with a
4	top surface of the first electrode.
1	19. The manufacturing method of a semiconductor device according to claim 16, further
2	including the steps of:
3	forming a capacitance insulating film on the first electrode; and
4	forming a second electrode on the capacitance insulating film.
·1	70. The manufacturing method of a semiconductor device according to claim 16

20. The manufacturing method of a semiconductor device according to claim 16 wherein:

the first electrode includes polysilicon.