Harvard-MIT Division of Health Sciences and Technology
HST.951J: Medical Decision Support, Fall 2005
Instructors: Professor Lucila Ohno-Machado and Professor Staal Vinterbo

6.873/HST.951 Medical Decision Support Fall 2005

Biomedical Decision Support

Lucila Ohno-Machado Staal Vinterbo Pete Szolovits

Medical decisions

Maximize value:

- Prolong life
- Increase quality of life
- Minimize pain
- Minimize cost
- Match available resources

Figures by MIT OCW.

Decision Theory

- Game theory
 - Statistics
 - Operations research
- Maximize utility
 - In many domains, this means maximize \$\$\$

Example of a Decision Problem

- College athlete considering knee surgery
- Uncertainties:
 - success in recovering perfect mobility
 - infection in surgery (if so, needs another surgery and may loose more mobility)
 - survive surgery

Knee Surgery

Expected Value of Surgery

Sensitivity Analysis

Effect of probabilities in the decision

Sensitivity Analysis

Effect of probabilities in the decision

Knee Surgery

Predictive Models

Objectives

- Build models from existing data
 - Pattern recognition
- Apply model to new data to predict an unknown feature such as:
 - Diagnosis
 - Prognosis (outcome)

Figures removed due to copyright reasons.

Figure by MIT OCW.

What kind of data?

Figure by MIT OCW.

Coronary Disease

Myocardial Infarction Risk Assessment Calculator

M.I. Probability: Low Risk High Risk 58 %

Recommendation: (RLL 9!! IMMEDIRTELY

(Some chest pain is assumed to exist.)

What is your age? 45

What is your sex? 🜘 Male 🥘 Female

Do you smoke? 🧶 Yes 📵 No

Previous angina? 🥚 Yes 🌘 No

Previous M.I.? (6) Yes (6) No

Select all that apply:

Pain in Left Arm

Pleuritic

Sharp Chest Pain

X Sweating

Nausea

Episodic

Calculate

Clear

ECG Interpretation

Risk Score of Death from Angioplasty

Unadjusted Overall Mortality Rate = 2.1%

Predicting Individual Outcome in Coronary Intervention

Logistic Regression Model

Prognos	stic	Risk
Score	Мо	del

Age > 74yrs
B2/C Lesion
Acute MI
Class 3/4 CHF
Left main PCI
Ilb/IIIa Use
Stent Use
Cardiogenic Shock
Unstable Angina
Tachycardic
Chronic Renal Insuf

Odds Ratio	p-value
2.51	0.02
2.12	0.05
2.06	0.13
8.41	0.00
5.93	0.03
0.57	0.20
0.53	0.12
7.53	0.00
1.70	0.17
2.78	0.04
2.58	0.06

beta coefficient	Risk Value
0.921	2
0.752	1
0.724	1
2.129	4
1.779	3
-0.554	-1
-0.626	-1
2.019	4
0.531	1
1.022	2
0.948	2

Informed consent

"Informed consent and good clinical practice require a discussion of these risks and benefits, but there is very little data on the degree to which patients comprehend the specifics of this information,"

The researchers found that, of the patients who received angioplasty 42 percent could not identify any risks, and 41 percent could not identify any benefits. For the surgery patients, 45 percent could not identify any risks and 22 percent could not identify any benefits. Furthermore, when asked to quantify the risks of the procedure, 78 percent of the angioplasty and 57 percent of the surgery patients could not.

Alexander et al, 52th ACC meeting

Overview of this Course

Individualized prediction for decision support in medical/biological problems

- Theory -- how it works
- •Practicality -- when to apply
- •Implementation -- how to apply

Pre-Requisites

6034 -- Intro to AI (Machine Learning) basic statistics, including linear regression

If needed, we will consider optional refresher recitations:

- basic linear algebra (mostly notation)
- basic statistical tests
- set theory

Course Structure

Homeworks, individual (30%)

• Midterm (30%)

Final Project

Presentation and write-up – 5 pages plus references, figures, tables on the web

(40%)

No final exam

Slides available online.

Office hours by arrangement.

Password protection for posting articles: Username and password.

Intro to Decision Theory and Decision Analysis

- Optimal classification performance of a model
- Cost functions
- Individualized decisions
 - Confidence in predictions
 - Decision trees

Source: DOE

Simple Models

- Artificial Intelligence
 - Nearest neighbors
 - Association rules
 - Learning from experts
- Statistics
 - Linear regression
 - Linear discriminant analysis

Analysis of Failure Times

- Survival analysis
- Cox model
- Assumptions required for models
- Alternatives

Supervised Methods I

- Logistic Regression
 - interpretation of coefficients
 - limitations

Classification Trees

splitting

functions

- pruning
- forests

Supervised Methods II

- Neural networks
 - Regularization
 - Mixture of experts
- Support Vector Machines
 - VC dimension
 - Soft margins

Supervised Methods III

- Rule-based approaches
 - Rough sets
 - Fuzzy sets

Figures removed due to copyright reasons.

Unsupervised Learning

Clustering

- Agglomerative/divisive
- Hierarchical/nonhierarchical
- K-means, k-medoids
- Multidimensional scaling
- Visualization

Dimensionality Reduction

- Pre-processing
 - Discretization algorithms
 - Filtering, cleaning
- Compression
 - Principal components analysis
 - Partial least squares
- Variable/Model Selection
 - Multivariate strategies
 - Interpretation

Stochastic Search

- Approximate solution strategies
 - Greedy
 - Annealing
 - Genetic algorithms
 - Ant colony optimization
 - Other evolutionary approaches

Evaluation

- How good is the prediction?
 - Calibration
 - Discrimination
 - Bias and variance
- Strategies for evaluation when number of cases is small
 - Cross-validation
 - Jackknife
 - Bootstrap

Improving Performance

Combining Models/Ensembles

- Boosting
- Bagging
- Stacking

Bioinformatics

- Phylogenetic trees
- Haplotype tagging (SNP patterns)

Figures by MIT OCW.

Sugested General Books

 Duda R, Hart P, Stork D.
 Pattern Classification Wiley Interscience (\$103)

Duda, Richard O., Peter E. Hart, and David G. Stork. *Pattern Classification*. 2nd ed. New York, NY: Wiley, 2001. ISBN: 0471056693.

 Hastie T, Tibshirani R, Friedman J.
 The Elements of Statistical Learning Springer (\$67)

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction.* New York, NY: Springer, 2001. ISBN: 0387952845.

Decision Analysis Module

Chernoff and Moses
 Elementary Decision
 Theory. Dover (\$12)

Chernoff, Herman and Lincoln E. Moses.

Elementary Decision Theory. New York, NY:

Dover Publications, 1986, c1959. ISBN: 0486652181.□□

Hunink et al
 Decision Making in
 Health and Medicine:
 Integrating Evidence
 and Values. (\$65)

Hunink, M.G. Myriam and et. al. Decision Making in Health and Medicine: Integrating Evidence and Values. Cambridge, UK: Cambridge University Press, 2001. ISBN: 0521770297.