1

Discrete Assignment

Praful Kesavadas EE23BTECH11049

Question 11.9.5.15: The pth, qth and rth terms of an AP are a,b,c respectively. Show that

$$(q-r) a + (r-p) b + (p-q) c = 0$$

Solution:

The AP has the following parameters

Term	Value	Description
x(0)	-	First term
d	-	Common Difference
x(n)	x(0) + nd	General term
x(p)	а	pth term
x(q)	b	qth term
x(r)	c	rth term

TABLE 0
INPUT PARAMETERS

Now,

$$x(0) + pd = a \tag{1}$$

$$x(0) + qd = b (2)$$

$$x(0) + rd = c \tag{3}$$

$$p - q = \frac{a - b}{d} \tag{4}$$

$$q - r = \frac{b - c}{d} \tag{5}$$

$$r - p = \frac{c - a}{d} \tag{6}$$

Now, from (4), (5) and (6),

$$(q-r)a + (r-p)b + (p-q)c = \frac{b-c}{d}.a + \frac{c-a}{d}.b + \frac{a-b}{d}.c$$
 (7)

$$=0 (8)$$

Hence proved