Design and Analysis of Algorithms

Linear Time Sort

Fall 2022

National University of Computer and Emerging Sciences, Islamabad

Introduction to Algorithms

Sorting Lower Bounds

- Decision trees
- **Linear-Time Sorting**
- Counting sort
- Radix sort
- Bucket sort

How fast can we sort?

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

• *E.g.*, insertion sort, merge sort, quicksort, heapsort.

The best worst-case running time that we've seen for comparison sorting is $O(n \lg n)$.

Is $O(n \lg n)$ the best we can do?

Decision trees can help us answer this question.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i > a_j$.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le \mathbb{Z} \le a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- View the algorithm as splitting whenever it compares two elements.
- The tree contains the comparisons along all possible instruction traces.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decision- tree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. The tree must contain $\geq n!$ leaves, since there are n! possible permutations. A height-h binary tree has $\leq 2^h$ leaves. Thus, $n! \leq 2^h$.

```
∴ h \ge \lg(n!) (lg is mono. increasing)

\ge \lg ((n/e)^n) (Stirling's formula)

= n \lg n - n \lg e

= \Omega(n \lg n).
```


Lower bound for comparison sorting

Corollary. Heapsort and merge sort are asymptotically optimal comparison sorting algorithms.

LINEAR SORT

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1 ... k].

Counting sort assumes that each of the n input elements is an integer in the range 0 to k,

Counting sort

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for j \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
    do C[i] \leftarrow C[i] + C[i-1]
                                                     \triangleright C[i] = |\{\text{key} \le i\}|
for j \leftarrow n downto 1
     \operatorname{do} B[C[A[j]]] \leftarrow A[j]
          C[A[j]] \leftarrow C[A[j]] - 1
```


Counting-sort example

B:

B:

for
$$i \leftarrow 1$$
 to k

$$do C[i] \leftarrow 0$$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

B:

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

$$C: \begin{array}{|c|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline C: & 1 & 0 & 2 & 2 \\ \hline \end{array}$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key} \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

3 5

3

for $i \leftarrow 2$ to k **do** $C[i] \leftarrow C[i] + C[i-1] \qquad \triangleright C[i] = |\{ \text{key } \le i \}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

$$ightharpoonup C[i] = |\{\text{key} \le i\}|$$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

$$\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \end{cases}$$

$$\Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}$$

$$\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{cases}$$

$$\mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ B[C[A[j]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}$$

$$\Theta(n + k)$$

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a comparison sort.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Exercise: What other sorts have this property?

Stable Sorting Algorithms

• A sorting algorithms is **stable** if for any two indices i and j with i < j and $a_i = a_j$, element a_i precedes element a_j in the output sequence.

Observation: Counting Sort is stable.

Counting Sort

- Linear Sort! Cool! Why don't we always use counting sort?
- Because it depends on range k of elements
- Could we use counting sort to sort 32 bit integers? Why or why not?
- Answer: no, k too large (2^{32} = 4,294,967,296)

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on most-significant digit first.
- Good idea: Sort on *least-significant digit first* with auxiliary *stable* sort.

Operation of radix sort

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.
 - Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Radix Sort Correctness and Running Time

- •What is the running time of radix sort?
 When k is not too large, use counting sort as a stable sort counting sort
- •Each pass over the d digits takes time O(n+k),
- •Running Time= Running time of stable Sort x d

$$\bullet = \Theta d.(n+k)$$

•K and d constants

•

$$T(n) = \Theta(n)$$

- •Stable, Fast
- •Doesn't sort in place (because counting sort is used)

Bucket Sort

- Assumption: input n real numbers from [0, 1)
- Basic idea:
 - Create n linked lists (buckets) to divide interval [0,1) into subintervals of size 1/n
 - Add each input element to appropriate bucket and sort buckets with insertion sort
- Uniform input distribution → O(1) bucket size
 - Therefore the expected total time is O(n)

Bucket Sort

Bucket-Sort(A)

- 1. $n \leftarrow length(A)$
- 2. for $i \leftarrow 0$ to $n \leftarrow$ Distribute elements over buckets
- 3. do insert A[i] into list B[floor(n*A[i])]
- 4. for $i \leftarrow 0$ to n-1Sort each bucket
- 5. do Insertion-Sort(B[i])
- 6. Concatenate lists *B*[*0*], *B*[*1*], ... *B*[*n 1*] in order

Bucket Sort Example

Bucket Sort – Running Time

- All lines except line 5 (Insertion-Sort) take O(n) in the worst case.
- In the worst case, O(n) numbers will end up in the same bucket, so in the worst case, it will take $O(n^2)$ time.
- Lemma: Given that the input sequence is drawn uniformly at random from [0,1), the expected size of a bucket is O(1).
- So, in the average case, only a constant number of elements will fall in each bucket, so it will take O(n) (see proof in book).
- Use a different indexing scheme (hashing) to distribute the numbers uniformly.

Sorting Algorithms

Algorithm	Worst-case running time	Average-case/expected running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Heapsort	$O(n \lg n)$	
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)

Reference

- Chapter# 8
 - Sorting in Linear Time
- Introduction to Algorithms by Cormen