

```
In [0]: import warnings
        warnings.filterwarnings("ignore")
        import pandas as pd
        import sqlite3
        import csv
        import matplotlib.pyplot as plt
        import seaborn as sns
        import numpy as np
        from wordcloud import WordCloud
        import re
        import os
        from sqlalchemy import create_engine # database connection
        import datetime as dt
        from nltk.corpus import stopwords
        from nltk.tokenize import word_tokenize
        from nltk.stem.snowball import SnowballStemmer
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.feature_extraction.text import TfidfVectorizer
        from sklearn.multiclass import OneVsRestClassifier
        from sklearn.linear_model import SGDClassifier
        from sklearn import metrics
        from sklearn.metrics import f1_score,precision_score,recall_score
        from sklearn import svm
        from sklearn.linear_model import LogisticRegression
        from skmultilearn.adapt import mlknn
        from skmultilearn.problem transform import ClassifierChain
        from skmultilearn.problem_transform import BinaryRelevance
        from skmultilearn.problem_transform import LabelPowerset
        from sklearn.naive_bayes import GaussianNB
        from datetime import datetime
```

Stack Overflow: Tag Prediction

1. Business Problem

1.1 Description

Description

Stack Overflow is the largest, most trusted online community for developers to learn, share their programming knowledge, and build their careers.

Stack Overflow is something which every programmer use one way or another. Each month, over 50 million developers come to Stack Overflow to learn, share their knowledge, and build their careers. It features questions and answers on a wide range of topics in computer programming. The website serves as a platform for users to ask and answer questions, and, through membership and active participation, to vote questions and answers up or down and edit questions and answers in a fashion similar to a wiki or Digg. As of April 2014 Stack Overflow has over 4,000,000 registered users, and it exceeded 10,000,000 questions in late August 2015. Based on the type of tags assigned to questions, the top eight most discussed topics on the site are: Java, JavaScript, C#, PHP, Android, jQuery, Python and HTML.

Problem Statemtent

Suggest the tags based on the content that was there in the question posted on Stackoverflow.

Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/

1.2 Source / useful links

Data Source: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle

Youtube: https://youtu.be/nNDqbUhtIRg (https://youtu.be/nNDqbUhtIRg)

 $Research\ paper: \underline{https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.pdf\ (\underline{https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tagging-1.pdf\ (\underline{https://www.microsoft.com/en-us/research/wp-con$

content/uploads/2016/02/tagging-1.pdf)

Research paper: https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL (https://dl.acm.org/citation.cfm?id=2660970&dl=ACM&coll=DL)

1.3 Real World / Business Objectives and Constraints

- 1. Predict as many tags as possible with high precision and recall.
- 2. Incorrect tags could impact customer experience on StackOverflow.
- 3. No strict latency constraints.

2. Machine Learning problem

2.1 Data

2.1.1 Data Overview

Refer: https://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction/data (https://www.kaggle.com/c

Train.csv contains 4 columns: Id,Title,Body,Tags.

Test.csv contains the same columns but without the Tags, which you are to predict.

Size of Train.csv - 6.75GB

Size of Test.csv - 2GB

Number of rows in Train.csv = 6034195

The questions are randomized and contains a mix of verbose text sites as well as sites related to math and programming. The number of questions from each site may vary, and no filtering has been performed on the questions (such as closed questions).

Data Field Explaination

Dataset contains 6,034,195 rows. The columns in the table are:

Id - Unique identifier for each question

Title - The question's title

Body - The body of the question

Tags - The tags associated with the question in a space-seperated format (all lowercase, should not contain tabs '\t' or am persands '&')

2.1.2 Example Data point

Title: Implementing Boundary Value Analysis of Software Testing in a C++ program?
Body :

```
#include<</pre>
iostream>\n
#include<
stdlib.h>\n\n
using namespace std;\n\n
int main()\n
{\n
         int n,a[n],x,c,u[n],m[n],e[n][4];\n
         cout<<"Enter the number of variables";\n</pre>
                                                             cin>>n;\n\n
         cout<<"Enter the Lower, and Upper Limits of the variables";\n</pre>
         for(int y=1; y<n+1; y++)\n
         {\n
            cin>>m[y];\n
            cin>>u[y];\n
         }\n
         for(x=1; x<n+1; x++)\n
         {\n
            a[x] = (m[x] + u[x])/2;\n
         }\n
         c=(n*4)-4;\n
         for(int a1=1; a1<n+1; a1++)\n
         {\n\setminus n}
            e[a1][0] = m[a1]; \n
            e[a1][1] = m[a1]+1; \n
            e[a1][2] = u[a1]-1;\n
            e[a1][3] = u[a1];\n
         }\n
         for(int i=1; i<n+1; i++)\n</pre>
         {\n
            for(int l=1; l<=i; l++)\n
            {\n
                if(1!=1)\n
                 {\n
                     cout<<a[1]<<"\\t";\n
                 }\n
            }\n
            for(int j=0; j<4; j++)\n
            {\n
                cout<<e[i][j];\n</pre>
                for(int k=0; k<n-(i+1); k++)\n
                 {\n
                     cout<<a[k]<<"\\t";\n
                }\n
                 cout<<"\\n";\n</pre>
            }\n
            \n\n
         system("PAUSE");\n
         return 0;
}\n
```

\n\n

The answer should come in the form of a table like $\n\$

```
1
                        50
                                        50\n
                         50
                                        50\n
            99
                        50
                                        50\n
           100
                        50
                                        50\n
            50
                        1
                                        50\n
            50
                        2
                                        50\n
                        99
            50
                                        50\n
            50
                        100
                                        50\n
            50
                        50
                                        1\n
            50
                        50
                                        2\n
            50
                        50
                                        99\n
            50
                        50
                                        100\n
n\n
if the no of inputs is 3 and their ranges are\n
        1,100\n
        1,100\n
        1,100\n
        (could be varied too)
n\n
The output is not coming, can anyone correct the code or tell me what\'s wrong?
```

2.2 Mapping the real-world problem to a Machine Learning Problem

2.2.1 Type of Machine Learning Problem

Tags : 'c++ c'

It is a multi-label classification problem

Multi-label Classification: Multilabel classification assigns to each sample a set of target labels. This can be thought as predicting properties of a data-point that are not mutually exclusive, such as topics that are relevant for a document. A question on Stackoverflow might be about any of C, Pointers, FileIO and/or memory-management at the same time or none of these.

Credit: http://scikit-learn.org/stable/modules/multiclass.html

2.2.2 Performance metric

Micro-Averaged F1-Score (Mean F Score): The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

```
F1 = 2 * (precision * recall) / (precision + recall)
```

In the multi-class and multi-label case, this is the weighted average of the F1 score of each class.

'Micro f1 score':

Calculate metrics globally by counting the total true positives, false negatives and false positives. This is a better metric when we have class imbalance.

'Macro f1 score':

Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.

https://www.kaggle.com/wiki/MeanFScore (https://www.kaggle.com/wiki/MeanFScore)

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html (http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html)

Hamming loss: The Hamming loss is the fraction of labels that are incorrectly predicted. https://www.kaggle.com/wiki/HammingLoss (https

3. Exploratory Data Analysis

3.1 Data Loading and Cleaning

3.1.1 Using Pandas with SQLite to Load the data

```
In [0]: |#Creating db file from csv
        #Learn SQL: https://www.w3schools.com/sql/default.asp
        if not os.path.isfile('train.db'):
            start = datetime.now()
            disk_engine = create_engine('sqlite:///train.db')
            start = dt.datetime.now()
            chunksize = 180000
            j = 0
            index_start = 1
            for df in pd.read_csv('Train.csv', names=['Id', 'Title', 'Body', 'Tags'], chunksize=chunksize, iterator=True, enco
        ding='utf-8', ):
                df.index += index_start
                j+=1
                print('{} rows'.format(j*chunksize))
                df.to_sql('data', disk_engine, if_exists='append')
                index_start = df.index[-1] + 1
            print("Time taken to run this cell :", datetime.now() - start)
```

3.1.2 Counting the number of rows

```
In [0]: if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    num_rows = pd.read_sql_query("""SELECT count(*) FROM data""", con)
    #Always remember to close the database
    print("Number of rows in the database :","\n",num_rows['count(*)'].values[0])
    con.close()
    print("Time taken to count the number of rows :", datetime.now() - start)
    else:
        print("Please download the train.db file from drive or run the above cell to genarate train.db file")

Number of rows in the database :
    6034196
```

Time taken to count the number of rows: 0:01:15.750352

```
In [0]: #Learn SQL: https://www.w3schools.com/sql/default.asp
if os.path.isfile('train.db'):
    start = datetime.now()
    con = sqlite3.connect('train.db')
    df_no_dup = pd.read_sql_query('SELECT Title, Body, Tags, COUNT(*) as cnt_dup FROM data GROUP BY Title, Body, Tags'
    , con)
        con.close()
        print("Time taken to run this cell :", datetime.now() - start)
else:
    print("Please download the train.db file from drive or run the first to genarate train.db file")
```

Time taken to run this cell: 0:04:33.560122

In [0]: df_no_dup.head()
we can observe that there are duplicates

Out[0]:

	Title	Body	Tags	cnt_dup
0	Implementing Boundary Value Analysis of S	<pre><pre><code>#include<iostream>\n#include&</code></pre></pre>	c++ c	1
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in		

number of duplicate questions : 1827881 (30.2920389063 %)

Out[0]: 1 2656284 2 1272336 3 277575 4 90 5 25 6 5

Name: cnt_dup, dtype: int64

Time taken to run this cell : 0:00:03.169523

Out[0]:

	Title	Body	Tags	cnt_dup	tag_count
0	Implementing Boundary Value Analysis of S	<pre><pre><code>#include&Itiostream>\n#include&</code></pre></pre>	c++ c	1	2
1	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding	1	3
2	Dynamic Datagrid Binding in Silverlight?	I should do binding for datagrid dynamicall	c# silverlight data-binding columns	1	4
3	java.lang.NoClassDefFoundError: javax/serv	I followed the guide in			

Out[0]: 3 1206157 2 1111706 4 814996 1 568298 5 505158

Name: tag_count, dtype: int64

```
In [0]: #Creating a new database with no duplicates
         if not os.path.isfile('train_no_dup.db'):
             disk_dup = create_engine("sqlite:///train_no_dup.db")
             no_dup = pd.DataFrame(df_no_dup, columns=['Title', 'Body', 'Tags'])
             no_dup.to_sql('no_dup_train',disk_dup)
In [12]: #This method seems more appropriate to work with this much data.
         #creating the connection with database file.
         if os.path.isfile('train_no_dup.db'):
             start = datetime.now()
             con = sqlite3.connect('train_no_dup.db')
             tag_data = pd.read_sql_query("""SELECT Tags FROM no_dup_train""", con)
             #Always remember to close the database
             con.close()
             # Let's now drop unwanted column.
             tag_data.drop(tag_data.index[0], inplace=True)
             #Printing first 5 columns from our data frame
             tag_data.head()
             print("Time taken to run this cell :", datetime.now() - start)
         else:
             print("Please download the train.db file from drive or run the above cells to genarate train.db file")
```

Time taken to run this cell: 0:02:02.937662

In [0]: # Importing & Initializing the "CountVectorizer" object, which

3.2 Analysis of Tags

3.2.1 Total number of unique tags

```
#is scikit-learn's bag of words tool.
         #by default 'split()' will tokenize each tag using space.
         vectorizer = CountVectorizer(tokenizer = lambda x: x.split())
         # fit_transform() does two functions: First, it fits the model
         # and learns the vocabulary; second, it transforms our training data
         # into feature vectors. The input to fit_transform should be a list of strings.
         tag_dtm = vectorizer.fit_transform(tag_data['Tags'])
In [14]: | print("Number of data points :", tag_dtm.shape[0])
         print("Number of unique tags :", tag_dtm.shape[1])
         Number of data points : 4206314
         Number of unique tags : 42048
In [15]: #'get_feature_name()' gives us the vocabulary.
         tags = vectorizer.get_feature_names()
         #Lets look at the tags we have.
         print("Some of the tags we have :", tags[:10])
         Some of the tags we have : ['.a', '.app', '.asp.net-mvc', '.aspxauth', '.bash-profile', '.class-file', '.cs-file', '.
         doc', '.drv', '.ds-store']
```

3.2.3 Number of times a tag appeared

```
In [0]: # https://stackoverflow.com/questions/15115765/how-to-access-sparse-matrix-elements
#Lets now store the document term matrix in a dictionary.
freqs = tag_dtm.sum(axis=0).A1
result = dict(zip(tags, freqs))
```

```
In [17]: #Saving this dictionary to csv files.
    if not os.path.isfile('tag_counts_dict_dtm.csv'):
        with open('tag_counts_dict_dtm.csv', 'w') as csv_file:
            writer = csv.writer(csv_file)
            for key, value in result.items():
                 writer.writerow([key, value])
        tag_df = pd.read_csv("tag_counts_dict_dtm.csv", names=['Tags', 'Counts'])
    tag_df.head()
```

Out[17]:

	Tags	Counts
0	.a	18
1	.арр	37
2	.asp.net-mvc	1
3	.aspxauth	21
4	.bash-profile	138

```
In [0]: tag_df_sorted = tag_df.sort_values(['Counts'], ascending=False)
   tag_counts = tag_df_sorted['Counts'].values
```

```
In [19]: plt.plot(tag_counts)
    plt.title("Distribution of number of times tag appeared questions")
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
```



```
In [20]: plt.plot(tag_counts[0:10000])
    plt.title('first 10k tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:10000:25]), tag_counts[0:10000:25])
```


400 [331	505 119	220 22	/20 17 [.]	728 133	364 11	162 100	929	148 8	3054 7151
6466	5865	5370	4983	4526	4281	4144	3929	3750	3593
3453	3299	3123	2989	2891	2738	2647	2527	2431	2331
2259	2186	2097	2020	1959	1900	1828	1770	1723	1673
1631	1574	1532	1479	1448	1406	1365	1328	1300	1266
1245	1222	1197	1181	1158	1139	1121	1101	1076	1056
1038	1023	1006	983	966	952	938	926	911	891
882	869	856	841	830	816	804	789	779	770
752	743	733	725	712	702	688	678	671	658
650	643	634	627	616	607	598	589	583	577
568	559	552	545	540	533	526	518	512	506
500	495	490	485	480	477	469	465	457	450
447	442	437	432	426	422	418	413	408	403
398	393	388	385	381	378	374	370	367	365
361	357	354	350	347	344	342	339	336	332
330	326	323	319	315	312	309	307	304	301
299	296	293	291	289	286	284	281	278	276
275	272	270	268	265	262	260	258	256	254
252	250	249	247	245	243	241	239	238	236
234	233	232	230	228	226	224	222	220	219
217	215	214	212	210	209	207	205	204	203
201	200	199	198	196	194	193	192	191	189
188	186	185	183	182	181	180	179	178	177
175	174	172	171	170	169	168	167	166	165
164	162	161	160	159	158	157	156	156	155
154	153	152	151	150	149	149	148	147	146
145	144	143	142	142	141	140	139	138	137
137	136	135	134	134	133	132	131	130	130
129	128	128	127	126	126	125	124	124	123
123	122	122	121	120	120	119	118	118	117
117	116	116	115	115	114	113	113	112	111
111	110	109	109	108	108	107	106	106	106
105	105	104	104	103	103	102	102	101	101
100	100	99	99	98	98	97	97	96	96
95	95	94	94	93	93	93	92	92	91
91	90	90	89	89	88	88	87	87	86
86	86	85	85	84	84	83	83	83	82
82	82	81	81	80	80	80	79	79 75	78
78	78	78 74	77	77	76	76	76	75 73	75 733
75	74	74	74	73	73	73	73	72	72]

```
In [21]: plt.plot(tag_counts[0:1000])
    plt.title('first 1k tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:1000:5]), tag_counts[0:1000:5])
```


200 [331505 221533 122769 95160 62023 26925 24537 1639]

```
In [22]: plt.plot(tag_counts[0:500])
    plt.title('first 500 tags: Distribution of number of times tag appeared questions')
    plt.grid()
    plt.xlabel("Tag number")
    plt.ylabel("Number of times tag appeared")
    plt.show()
    print(len(tag_counts[0:500:5]), tag_counts[0:500:5])
```



```
100 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537
 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703
 13364
        13157
                12407 11658 11228
                                     11162
                                            10863
                                                   10600
                                                          10350
                                                                 10224
                                                                   8163
 10029
          9884
                 9719
                        9411
                               9252
                                      9148
                                             9040
                                                    8617
                                                           8361
  8054
                        7564
                                             7052
          7867
                 7702
                               7274
                                      7151
                                                    6847
                                                           6656
                                                                   6553
   6466
          6291
                 6183
                        6093
                               5971
                                      5865
                                             5760
                                                    5577
                                                           5490
                                                                   5411
   5370
          5283
                 5207
                        5107
                               5066
                                      4983
                                             4891
                                                    4785
                                                           4658
                                                                   4549
   4526
                                      4281
                                             4239
                                                                   4159
          4487
                 4429
                        4335
                               4310
                                                    4228
                                                           4195
   4144
          4088
                        4002
                                      3929
                                             3874
                                                                   3797
                 4050
                               3957
                                                    3849
                                                            3818
   3750
          3703
                 3685
                        3658
                               3615
                                      3593
                                             3564
                                                    3521
                                                           3505
                                                                   3483]
```

```
In [23]: plt.plot(tag_counts[0:100], c='b')
    plt.scatter(x=list(range(0,100,5)), y=tag_counts[0:100:5], c='orange', label="quantiles with 0.05 intervals")
# quantiles with 0.25 difference
plt.scatter(x=list(range(0,100,25)), y=tag_counts[0:100:25], c='m', label = "quantiles with 0.25 intervals")

for x,y in zip(list(range(0,100,25)), tag_counts[0:100:25]):
    plt.annotate(s="({{}}, {{}})".format(x,y), xy=(x,y), xytext=(x-0.05, y+500))

plt.title('first 100 tags: Distribution of number of times tag appeared questions')
plt.grid()
plt.xlabel("Tag number")
plt.legend()
plt.legend()
plt.show()
print(len(tag_counts[0:100:5]), tag_counts[0:100:5])
```


20 [331505 221533 122769 95160 62023 44829 37170 31897 26925 24537 22429 21820 20957 19758 18905 17728 15533 15097 14884 13703]

```
In [24]: # Store tags greater than 10K in one List
    lst_tags_gt_10k = tag_df[tag_df.Counts>10000].Tags
    #Print the Length of the List
    print ('{} Tags are used more than 10000 times'.format(len(lst_tags_gt_10k)))
    # Store tags greater than 100K in one List
    lst_tags_gt_100k = tag_df[tag_df.Counts>100000].Tags
    #Print the Length of the List.
    print ('{} Tags are used more than 100000 times'.format(len(lst_tags_gt_100k)))
```

153 Tags are used more than 10000 times 14 Tags are used more than 100000 times

Minimum number of tags per question: 1 Avg. number of tags per question: 2.899440

Observations:

- 1. There are total 153 tags which are used more than 10000 times.
- 2. 14 tags are used more than 100000 times.
- 3. Most frequent tag (i.e. c#) is used 331505 times.
- 4. Since some tags occur much more frequenctly than others, Micro-averaged F1-score is the appropriate metric for this probelm.

3.2.4 Tags Per Question

```
In [25]: #Storing the count of tag in each question in list 'tag_count'
tag_quest_count = tag_dtm.sum(axis=1).tolist()
    #Converting list of lists into single list, we will get [[3], [4], [2], [2], [3]] and we are converting this to [3, 4, 2, 2, 3]
    tag_quest_count=[int(j) for i in tag_quest_count for j in i]
    print ('We have total {} datapoints.'.format(len(tag_quest_count)))

    print(tag_quest_count[:5])

We have total 4206314 datapoints.
    [3, 4, 2, 2, 3]

In [26]: print( "Maximum number of tags per question: %d"%max(tag_quest_count))
    print( "Minimum number of tags per question: %d"%min(tag_quest_count))
    print( "Avg. number of tags per question: %f"% ((sum(tag_quest_count)*1.0)/len(tag_quest_count)))

    Maximum number of tags per question: 5
```

```
In [27]: sns.countplot(tag_quest_count, palette='gist_rainbow')
   plt.title("Number of tags in the questions ")
   plt.xlabel("Number of Tags")
   plt.ylabel("Number of questions")
   plt.show()
```


Observations:

- 1. Maximum number of tags per question: 5
- 2. Minimum number of tags per question: 1
- 3. Avg. number of tags per question: 2.899
- 4. Most of the questions are having 2 or 3 tags

3.2.5 Most Frequent Tags

```
In [28]: # Ploting word cloud
          start = datetime.now()
         # Lets first convert the 'result' dictionary to 'list of tuples'
         tup = dict(result.items())
         #Initializing WordCloud using frequencies of tags.
         wordcloud = WordCloud(
                                    background_color='black',
                                    width=1600,
                                    height=800,
                              ).generate_from_frequencies(tup)
         fig = plt.figure(figsize=(15,10))
         plt.imshow(wordcloud)
         plt.axis('off')
         plt.tight_layout(pad=0)
         fig.savefig("tag.png")
         plt.show()
         print("Time taken to run this cell :", datetime.now() - start)
```


Observations:

A look at the word cloud shows that "c#", "java", "php", "asp.net", "javascript", "c++" are some of the most frequent tags.

3.2.6 The top 20 tags

```
In [29]: i=np.arange(30)
    tag_df_sorted.head(30).plot(kind='bar')
    plt.title('Frequency of top 20 tags')
    plt.xticks(i, tag_df_sorted['Tags'])
    plt.xlabel('Tags')
    plt.ylabel('Counts')
    plt.show()
```


Observations:

- 1. Majority of the most frequent tags are programming language.
- 2. C# is the top most frequent programming language.
- 3. Android, IOS, Linux and windows are among the top most frequent operating systems.

3.3 Cleaning and preprocessing of Questions

3.3.1 Preprocessing

- 1. Sample 1M data points
- 2. Separate out code-snippets from Body
- 3. Remove Spcial characters from Question title and description (not in code)
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
In [9]: #http://www.sqlitetutorial.net/sqlite-python/create-tables/
         def create_connection(db_file):
              """ create a database connection to the SQLite database
                  specified by db_file
              :param db_file: database file
              :return: Connection object or None
             try:
                  conn = sqlite3.connect(db_file)
                  return conn
              except Error as e:
                  print(e)
             return None
         def create_table(conn, create_table_sql):
              """ create a table from the create_table_sql statement
              :param conn: Connection object
              :param create_table_sql: a CREATE TABLE statement
              :return:
              11 11 11
             try:
                  c = conn.cursor()
                  c.execute(create_table_sql)
              except Error as e:
                  print(e)
         def checkTableExists(dbcon):
              cursr = dbcon.cursor()
              str = "select name from sqlite_master where type='table'"
             table_names = cursr.execute(str)
              print("Tables in the databse:")
             tables =table_names.fetchall()
              print(tables[0][0])
              return(len(tables))
         def create_database_table(database, query):
              conn = create_connection(database)
              if conn is not None:
                  create_table(conn, query)
                  checkTableExists(conn)
              else:
                  print("Error! cannot create the database connection.")
              conn.close()
          sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, wor
          ds_pre integer, words_post integer, is_code integer);"""
         create_database_table("Processed.db", sql_create_table)
         Tables in the databse:
         QuestionsProcessed
In [33]: | # http://www.sqlitetutorial.net/sqlite-delete/
         # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
         start = datetime.now()
         read_db = 'train_no_dup.db'
         write_db = 'Processed.db'
         if os.path.isfile(read_db):
              conn_r = create_connection(read_db)
              if conn_r is not None:
                  reader =conn_r.cursor()
                  reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 1000000;")
         if os.path.isfile(write_db):
              conn_w = create_connection(write_db)
              if conn_w is not None:
                  tables = checkTableExists(conn_w)
                  writer =conn_w.cursor()
                  if tables != 0:
                      writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                      print("Cleared All the rows")
         print("Time taken to run this cell :", datetime.now() - start)
         Tables in the databse:
         OuestionsProcessed
         Cleared All the rows
```

Time taken to run this cell : 0:04:40.404914

```
In [34]: | #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
         start = datetime.now()
         preprocessed_data_list=[]
         reader.fetchone()
         questions_with_code=0
         len_pre=0
         len_post=0
         questions_proccesed = 0
         for row in reader:
             is\_code = 0
             title, question, tags = row[0], row[1], row[2]
             if '<code>' in question:
                 questions_with_code+=1
                 is\_code = 1
             x = len(question)+len(title)
             len_pre+=x
             code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
             question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
             question=striphtml(question.encode('utf-8'))
             title=title.encode('utf-8')
             question=str(title)+" "+str(question)
             question=re.sub(r'[^A-Za-z]+',' ',question)
             words=word_tokenize(str(question.lower()))
             #Removing all single letter and and stopwords from question exceptt for the letter 'c'
             question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
             len_post+=len(question)
             tup = (question,code,tags,x,len(question),is_code)
             questions_proccesed += 1
             writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values
          (?,?,?,?,?)",tup)
             if (questions_proccesed%100000==0):
                 print("number of questions completed=",questions_proccesed)
         no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
         no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
         print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
         print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
         print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
         print("Time taken to run this cell :", datetime.now() - start)
         number of questions completed= 100000
         number of questions completed= 200000
         number of questions completed= 300000
         number of questions completed= 400000
         number of questions completed= 500000
         number of questions completed= 600000
         number of questions completed= 700000
         number of questions completed= 800000
         number of questions completed= 900000
         Avg. length of questions(Title+Body) before processing: 1172
         Avg. length of questions(Title+Body) after processing: 327
         Percent of questions containing code: 57
         Time taken to run this cell: 0:23:00.589679
 In [0]: # dont forget to close the connections, or else you will end up with locks
          conn r.commit()
         conn_w.commit()
```

conn_r.close()
conn_w.close()

```
In [36]: if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
        conn_r.commit()
        conn_r.close()
```

Questions after preprocessed

('logitech discharg batteri today replac old aaa batteri logitech previous one held month grant use mous almost everi day nso wonder discharg batteri mous mous move mous click scroll wheel',)

('bing translat languag code zh cn zh chs found zh cn zh chs use languag code microsoft tell zh chs use http msdn mic rosoft com en us librari hh aspx would make differ',)

('sql detect loop parent child relat parent child data excel get load rd parti system run ms sql server data repres d irect hope acycl graph rd parti mean complet free hand schema excel data concaten file possibl exist cross refer vari ous file someon caus loop child elsewher write vb vba etc excel sql server db excel file almost row worri combinatori explos data set grow techniqu like creat tabl path might pretti unwieldi think simpli write program root tree travers leaf depth get greater nomin valu flag better suggest pointer previous discuss welcom',)

('unabl implement jms use apachemq iam tri implement simpl jms tradit use spring code eclips use apachemq download ap achemq apach org sampl jms sender simplequeuesend receiv simplequeuereceiv respect execut code alreadi gone relat tut ori couldnot find answer question pleas suggest solut chang done regard classpath set activemq start info jetti ninfo activemq webconsol initi ninfo initi spring frameworkservlet dispatch ninfo activemq consol http admin ninfo activemq web demo http demo ninfo rest file access applic http fileserv ninfo start selectchannelconnector proceed next server ad eclips new server program run server program run eclips execut separ consol',)

('upgrad upgrad packag use ppm open ui show sever upgrad packag unfortun select type ctrl click first element hold sh ift select last element list realli walk element press key order select refus believ',)

('nhibern check db schema generat newbi nhibern user tri wrap brain around contempl handl deploy later inject add on web app may requir persist class think use deploy would work pretti well wonder way get nhibern tell common code base way schema export done alreadi basic want smeth like pseudocod two function would intern use respect thank advanc pau l edit guy appreci answer far miss point bit tri set way applic allow addit remov add on may requir chang db talk ver sion code like least primari function question less deploy app add remov plug thei plugin henc pseudo code type check deploy run updat run export make sens',)

('digraph work need horizont output tri learn use php generat graph graphviz modul far got success generat graph use follow code howev show vertic graph block diagram know need use digraph show horizont get error shown second block so rri dont program background occasion purpos error get tri use digraph sure fix list sub modul recent instal imag grap hviz',)

('best way remov duplic uri param string string want creat java method remov duplic param valu alway sometim param du plic per applic function ask therefor becom program long rememb best way origin train thought went someth like grab p aram stick temp array run temp array compar array equal param name delet add back return string end loop print return string would requir length uri plus size array number param think would pretti bad consid run method around per minut incom uri better way go box java method handl overhead',)

('mssql c ef map tinyint int dozen field mark tinyint translat byte field find lot cast int code interact integ think chang entiti framework read integ instead byte implic besid chanc may pass integ rang tinyint ad addit cast may need also think use integ instead databas go high usag db edit zach comment entiti framework map sql server tinyint int lo ok like chang properti byte int ef throw error even way think',)

In [38]: preprocessed_data.head()

Out[38]:

_		
	question	tags
0	phpunit returnvaluemap yield expect result tri	php cakephp phpunit
1	logitech discharg batteri today replac old aaa	mouse battery logitech
2	bing translat languag code zh cn zh chs found	localization microsoft-translator
3	sql detect loop parent child relat parent chil	sql loops parent-child
4	unabl implement jms use apachemq iam tri imple	java jms activemq

```
In [39]: print("number of data points in sample :", preprocessed_data.shape[0])
    print("number of dimensions :", preprocessed_data.shape[1])

number of data points in sample : 999999
    number of dimensions : 2
```

4. Machine Learning Models

4.1 Converting tags for multilabel problems

X	y1	y2	у3	у4
x1	0	1	1	0
x1	1	0	0	0
x1	0	1	0	0

```
In [0]: # binary='true' will give a binary vectorizer
vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

We will sample the number of tags instead considering all of them (due to limitation of computing power)

```
In [0]: def tags_to_choose(n):
    t = multilabel_y.sum(axis=0).tolist()[0]
    sorted_tags_i = sorted(range(len(t)), key=lambda i: t[i], reverse=True)
    multilabel_yn=multilabel_y[:,sorted_tags_i[:n]]
    return multilabel_yn

def questions_explained_fn(n):
    multilabel_yn = tags_to_choose(n)
    x= multilabel_yn.sum(axis=1)
    return (np.count_nonzero(x==0))
```

```
In [0]: questions_explained = []
    total_tags=multilabel_y.shape[1]
    total_qs=preprocessed_data.shape[0]
    for i in range(500, total_tags, 100):
        questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

```
In [43]: fig, ax = plt.subplots()
    ax.plot(questions_explained)
    xlabel = list(500+np.array(range(-50,450,50))*50)
    ax.set_xticklabels(xlabel)
    plt.xlabel("Number of tags")
    plt.ylabel("Number Questions coverd partially")
    plt.grid()
    plt.show()
    # you can choose any number of tags based on your computing power, minimun is 50(it covers 90% of the tags)
    print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
```


with $\,$ 5500 tags we are covering $\,$ 99.044 % of questions

```
In [44]: multilabel_yx = tags_to_choose(5500)
print("number of questions that are not covered :", questions_explained_fn(5500),"out of ", total_qs)
number of questions that are not covered : 9563 out of 999999
```

```
In [45]: print("Number of tags in sample :", multilabel_y.shape[1])
    print("number of tags taken :", multilabel_yx.shape[1],"(",(multilabel_yx.shape[1]/multilabel_y.shape[1])*100,"%)")

Number of tags in sample : 35449
    number of tags taken : 5500 ( 15.515247256622189 %)
```

We consider top 15% tags which covers 99% of the questions

4.2 Split the data into test and train (80:20)

```
In [0]: total_size=preprocessed_data.shape[0]
    train_size=int(0.80*total_size)
    x_train=preprocessed_data.head(train_size)
    x_test=preprocessed_data.tail(total_size - train_size)

    y_train = multilabel_yx[0:train_size,:]
    y_test = multilabel_yx[train_size:total_size,:]

In [47]: print("Number of data points in train data :", y_train.shape)
    print("Number of data points in test data :", y_test.shape)

    Number of data points in train data : (799999, 5500)
    Number of data points in test data : (200000, 5500)
```

4.3 Featurizing data

```
In [48]: | start = datetime.now()
         vectorizer = TfidfVectorizer(min_df=0.00009, max_features=200000, smooth_idf=True, norm="12", \
                                       tokenizer = lambda x: x.split(), sublinear_tf=False, ngram_range=(1,3))
         x_train_multilabel = vectorizer.fit_transform(x_train['question'])
         x_test_multilabel = vectorizer.transform(x_test['question'])
         print("Time taken to run this cell :", datetime.now() - start)
         Time taken to run this cell : 0:07:41.530373
In [49]: | print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
         print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
         Dimensions of train data X: (799999, 88311) Y: (799999, 5500)
         Dimensions of test data X: (200000, 88311) Y: (200000, 5500)
 In [0]: | # https://www.analyticsvidhya.com/blog/2017/08/introduction-to-multi-label-classification/
         #https://stats.stackexchange.com/questions/117796/scikit-multi-label-classification
         # classifier = LabelPowerset(GaussianNB())
         from skmultilearn.adapt import MLkNN
         classifier = MLkNN(k=21)
         classifier.fit(x_train_multilabel, y_train)
         # predict
         predictions = classifier.predict(x_test_multilabel)
         print(accuracy_score(y_test,predictions))
         print(metrics.f1_score(y_test, predictions, average = 'macro'))
         print(metrics.f1_score(y_test, predictions, average = 'micro'))
         print(metrics.hamming_loss(y_test,predictions))
          # we are getting memory error because the multilearn package
         # is trying to convert the data into dense matrix
         #MemoryError
                                                    Traceback (most recent call last)
         #<ipython-input-170-f0e7c7f3e0be> in <module>()
         #----> classifier.fit(x_train_multilabel, y_train)
```

4.4 Applying Logistic Regression with OneVsRest Classifier

```
In [0]: # this will be taking so much time try not to run it, download the lr_with_equal_weight.pkl file and use to predict
# This takes about 6-7 hours to run.
#classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
#classifier.fit(x_train_multilabel, y_train)
from sklearn.externals import joblib
classifier=joblib.load('lr_with_equal_weight.pkl')
predictions = classifier.predict(x_test_multilabel)

print("accuracy :",metrics.accuracy_score(y_test, predictions, average = 'macro'))
print("macro f1 score :",metrics.f1_score(y_test, predictions, average = 'micro'))
print("hamming loss :",metrics.hamming_loss(y_test, predictions))
print("Precision recall report :\n",metrics.classification_report(y_test, predictions))
In [0]: from sklearn.externals import joblib
joblib.dump(classifier, 'lr_with_equal_weight.pkl')
```

4.5 Modeling with less data points (0.5M data points) and more weight to title and 500 tags only.

```
In [51]: sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, wor
         ds_pre integer, words_post integer, is_code integer);"""
         create_database_table("Titlemoreweight.db", sql_create_table)
         Tables in the databse:
         QuestionsProcessed
In [52]: # http://www.sqlitetutorial.net/sqlite-delete/
         # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
         read_db = 'train_no_dup.db'
         write_db = 'Titlemoreweight.db'
         train_datasize = 400000
         if os.path.isfile(read_db):
             conn_r = create_connection(read_db)
             if conn_r is not None:
                  reader =conn r.cursor()
                  # for selecting first 0.5M rows
                  reader.execute("SELECT Title, Body, Tags From no_dup_train LIMIT 500001;")
                  # for selecting random points
                  #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 500001;")
         if os.path.isfile(write_db):
             conn_w = create_connection(write_db)
             if conn_w is not None:
                 tables = checkTableExists(conn_w)
                 writer =conn_w.cursor()
                 if tables != 0:
                      writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                      print("Cleared All the rows")
```

Tables in the databse: QuestionsProcessed Cleared All the rows

4.5.1 Preprocessing of questions

- 1. Separate Code from Body
- 2. Remove Spcial characters from Question title and description (not in code)
- 3. Give more weightage to title: Add title three times to the question
- 4. Remove stop words (Except 'C')
- 5. Remove HTML Tags
- 6. Convert all the characters into small letters
- 7. Use SnowballStemmer to stem the words

```
In [53]: | #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
         start = datetime.now()
         preprocessed_data_list=[]
         reader.fetchone()
         questions_with_code=0
         len_pre=0
         len_post=0
         questions_proccesed = 0
         for row in reader:
             is\_code = 0
             title, question, tags = row[0], row[1], str(row[2])
             if '<code>' in question:
                  questions_with_code+=1
                  is code = 1
             x = len(question)+len(title)
             len_pre+=x
             code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
             question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
             question=striphtml(question.encode('utf-8'))
             title=title.encode('utf-8')
             # adding title three time to the data to increase its weight
             # add tags string to the training data
             question=str(title)+" "+str(title)+" "+str(title)+" "+question
               if questions_proccesed<=train_datasize:</pre>
                   question=str(title)+" "+str(title)+" "+str(title)+" "+question+" "+str(tags)
         #
               else:
                    question=str(title)+" "+str(title)+" "+str(title)+" "+question
         #
             question=re.sub(r'[^A-Za-z0-9#+.\-]+',' ',question)
             words=word_tokenize(str(question.lower()))
             #Removing all single letter and and stopwords from question exceptt for the letter 'c'
             question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
             len_post+=len(question)
             tup = (question,code,tags,x,len(question),is_code)
             questions_proccesed += 1
             writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values
          (?,?,?,?,?)",tup)
             if (questions_proccesed%100000==0):
                  print("number of questions completed=",questions_proccesed)
         no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
         no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
         print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
         print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
         print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
         print("Time taken to run this cell :", datetime.now() - start)
         number of questions completed= 100000
         number of questions completed= 200000
         number of questions completed= 300000
         number of questions completed= 400000
         number of questions completed= 500000
         Avg. length of questions(Title+Body) before processing: 1239
         Avg. length of questions(Title+Body) after processing: 424
         Percent of questions containing code: 57
         Time taken to run this cell: 0:17:19.462904
 In [0]: # never forget to close the conections or else we will end up with database locks
         conn r.commit()
         conn_w.commit()
         conn_r.close()
         conn_w.close()
```

```
In [55]: if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        reader =conn_r.cursor()
        reader.execute("SELECT question From QuestionsProcessed LIMIT 10")
        print("Questions after preprocessed")
        print('='*100)
        reader.fetchone()
        for row in reader:
            print(row)
            print('-'*100)
        conn_r.commit()
        conn_r.close()
```

Questions after preprocessed

('dynam datagrid bind silverlight dynam datagrid bind silverlight dynam datagrid bind silverlight bind datagrid dynam code wrote code debug code block seem bind correct grid come column form come grid column although necessari bind nth ank repli advance..',)

('java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryvalid follow guid link instal jstl got follow error tri launch jsp page java.lang.noclassdeffounderror javax servlet jsp tagext taglibraryva lid taglib declar instal jstl 1.1 tomcat webapp tri project work also tri version 1.2 jstl still messag caus solv',)

('java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index java.sql.sqlexcept microsoft odbc driver manag invalid descriptor index use follow code display caus solv',)

('better way updat feed fb php sdk better way updat feed fb php sdk better way updat feed fb php sdk novic facebook a pi read mani tutori still confused.i find post feed api method like correct second way use curl someth like way bette r',)

('btnadd click event open two window record ad btnadd click event open two window record ad btnadd click event open two window record ad open window search.aspx use code hav add button search.aspx nwhen insert record btnadd click event open anoth window nafter insert record close window',)

('sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php sql inject issu prevent correct form submiss php check everyth think make sure input field safe type sql inject good news safe bad new sone tag mess form submiss place even touch life figur exact html use templat file forgiv okay entir php script get execut see data post none forum field post problem use someth titl field none data get post current use print post se e submit noth work flawless statement though also mention script work flawless local machin use host come across prob lem state list input test mess',)

('countabl subaddit lebesgu measur countabl subaddit lebesgu measur countabl subaddit lebesgu measur let lbrace rbrac e sequenc set sigma -algebra mathcal want show left bigcup right leq sum left right countabl addit measur defin set s igma algebra mathcal think use monoton properti somewher proof start appreci littl help nthank ad han answer make fol low addit construct given han answer clear bigcup bigcup cap emptyset neq left bigcup right left bigcup right sum left right also construct subset monoton left right leq left right final would sum leq sum result follow',)

('hql equival sql queri hql equival sql queri hql equival sql queri hql queri replac name class properti name error o ccur hql error',)

('undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error undefin symbol architectur i386 objc class skpsmtpmessag referenc error import framework send email applic background import framework i.e skpsmtpmessag somebodi suggest get error collect2 ld return exit st atus import framework correct sorc taken framework follow mfmailcomposeviewcontrol question lock field updat answer d rag drop folder project click copi nthat',)

Saving Preprocessed data to a Database

```
In [0]: #Taking 0.5 Million entries to a dataframe.
write_db = 'Titlemoreweight.db'
if os.path.isfile(write_db):
    conn_r = create_connection(write_db)
    if conn_r is not None:
        preprocessed_data = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
conn_r.commit()
conn_r.close()
```

In [57]: preprocessed_data.head()

Out[57]:

		question	tags
C	0	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding
1	1	dynam datagrid bind silverlight dynam datagrid	c# silverlight data-binding columns
2	2	java.lang.noclassdeffounderror javax servlet j	jsp jstl
3	3	java.sql.sqlexcept microsoft odbc driver manag	java jdbc
4	4	better way updat feed fb php sdk better way up	facebook api facebook-php-sdk

```
In [58]: print("number of data points in sample :", preprocessed_data.shape[0])
    print("number of dimensions :", preprocessed_data.shape[1])
    number of data points in sample : 500000
    number of dimensions : 2
```

Converting string Tags to multilable output variables

```
In [0]: vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
multilabel_y = vectorizer.fit_transform(preprocessed_data['tags'])
```

Selecting 500 Tags

```
In [0]: questions_explained = []
    total_tags=multilabel_y.shape[1]
    total_qs=preprocessed_data.shape[0]
    for i in range(500, total_tags, 100):
        questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

```
In [61]: fig, ax = plt.subplots()
    ax.plot(questions_explained)
    xlabel = list(500+np.array(range(-50,450,50))*50)
    ax.set_xticklabels(xlabel)
    plt.xlabel("Number of tags")
    plt.ylabel("Number Questions coverd partially")
    plt.grid()
    plt.show()
    # you can choose any number of tags based on your computing power, minimum is 500(it covers 90% of the tags)
    print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
    print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```


with 5500 tags we are covering 99.157 % of questions with 500 tags we are covering 90.956 % of questions

```
In [62]: # we will be taking 500 tags
multilabel_yx = tags_to_choose(500)
print("number of questions that are not covered :", questions_explained_fn(500),"out of ", total_qs)
```

number of questions that are not covered : 45221 out of 500000

```
In [0]: x_train=preprocessed_data.head(train_datasize)
    x_test=preprocessed_data.tail(preprocessed_data.shape[0] - 400000)

y_train = multilabel_yx[0:train_datasize,:]
    y_test = multilabel_yx[train_datasize:preprocessed_data.shape[0],:]
```

```
In [64]: print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
```

```
Number of data points in train data : (400000, 500)
Number of data points in test data : (100000, 500)
```

4.5.2 Featurizing data with Tfldf vectorizer

Time taken to run this cell : 0:04:37.441362

```
In [66]: print("Dimensions of train data X:",x_train_multilabel.shape, "Y:",y_train.shape)
print("Dimensions of test data X:",x_test_multilabel.shape,"Y:",y_test.shape)
```

Dimensions of train data X: (400000, 94927) Y: (400000, 500) Dimensions of test data X: (100000, 94927) Y: (100000, 500)

4.5.3 Applying Logistic Regression with OneVsRest Classifier

```
In [0]: start = datetime.now()
        classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=0.00001, penalty='l1'), n_jobs=-1)
        classifier.fit(x_train_multilabel, y_train)
        predictions = classifier.predict (x_test_multilabel)
        print("Accuracy :",metrics.accuracy_score(y_test, predictions))
        print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
        precision = precision_score(y_test, predictions, average='micro')
        recall = recall_score(y_test, predictions, average='micro')
        f1 = f1_score(y_test, predictions, average='micro')
        print("Micro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        precision = precision_score(y_test, predictions, average='macro')
        recall = recall_score(y_test, predictions, average='macro')
        f1 = f1_score(y_test, predictions, average='macro')
        print("Macro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        print (metrics.classification_report(y_test, predictions))
        print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy : 0.23617 Hamming loss 0.00278304 Micro-average quality numbers

Precision: 0.7215, Recall: 0.3248, F1-measure: 0.4480

Macro-average quality numbers
Precision: 0.5464, Recall: 0.2576, F1-measure: 0.3343

sion: 0.5	5464, Recall:			
	precision	recall	f1-score	support
0	0.94	0.64	0.76	5519
1	0.69	0.26	0.38	8190
2	0.81	0.38	0.51	6529
3	0.81	0.43	0.56	3231
4 5	0.81 0.82	0.40 0.34	0.54 0.48	6430 2879
6	0.87	0.50	0.63	5086
7	0.88	0.54	0.67	4533
8	0.61	0.13	0.21	3000
9	0.81	0.53	0.64	2765
10 11	0.59 0.70	0.16 0.33	0.26 0.45	3051
12	0.66	0.33	0.45	3009 2630
13	0.71	0.23	0.35	1426
14	0.90	0.53	0.67	2548
15	0.67	0.18	0.28	2371
16 17	0.64 0.89	0.23 0.61	0.33 0.72	873 2151
18	0.63	0.01	0.72	2204
19	0.72	0.41	0.52	831
20	0.77	0.40	0.53	1860
21	0.27	0.07	0.11	2023
22 23	0.49 0.91	0.21 0.49	0.30 0.63	1513 1207
24	0.57	0.49	0.39	506
25	0.67	0.30	0.41	425
26	0.64	0.40	0.49	793
27	0.60	0.32	0.42	1291
28	0.73	0.36	0.48	1208
29 30	0.43 0.74	0.09 0.18	0.14 0.29	406 504
31	0.29	0.09	0.14	732
32	0.57	0.24	0.33	441
33	0.56	0.17	0.26	1645
34	0.71	0.25	0.37	1058
35 36	0.83 0.66	0.55 0.18	0.66 0.29	946 644
37	0.97	0.67	0.79	136
38	0.63	0.36	0.45	570
39	0.85	0.28	0.43	766
40	0.60	0.28	0.38	1132
41 42	0.45 0.79	0.18 0.51	0.26 0.62	174 210
43	0.80	0.40	0.54	433
44	0.66	0.51	0.58	626
45	0.74	0.32	0.44	852
46	0.75	0.42	0.54	534
47 48	0.33 0.74	0.13 0.50	0.18 0.60	350 496
49	0.79	0.61	0.69	785
50	0.18	0.05	0.07	475
51	0.32	0.10	0.15	305
52 53	0.53 0.68	0.03 0.40	0.06 0.50	251 914
54	0.45	0.46	0.23	728
55	0.18	0.01	0.01	258
56	0.46	0.19	0.26	821
57	0.45	0.09	0.15	541
58 59	0.78 0.94	0.28 0.62	0.41 0.75	748 724
60	0.33	0.02	0.73	660
61	0.84	0.18	0.29	235
62	0.91	0.71	0.80	718
63	0.83	0.63	0.72	468
64 65	0.54 0.35	0.32 0.12	0.41 0.18	191 429
66	0.29	0.05	0.09	415
67	0.75	0.49	0.59	274
68	0.82	0.52	0.64	510
69 70	0.67	0.45	0.54	466 305
70 71	0.30 0.46	0.07 0.15	0.11 0.23	305 247
71	0.78	0.13	0.59	401
73	0.98	0.73	0.84	86
74	0.75	0.37	0.49	120
75 76	0.89	0.68	0.77	129
76 77	0.29 0.38	0.00 0.27	0.01 0.31	473 143
77 78	0.79	0.27	0.57	347
79	0.73	0.23	0.35	479

80	0.54	0.33	0.41	279
81	0.78	0.17	0.41	461
82	0.22	0.01	0.28	298
83	0.77	0.45	0.57	396
84	0.55	0.34	0.42	184
85	0.66	0.20	0.31	573
86	0.46	0.05	0.09	325
87	0.51	0.27	0.35	273
88	0.42	0.20	0.27	135
89	0.31	0.07	0.12	232
90	0.55	0.30	0.39	409
91	0.63	0.24	0.35	420
92	0.76	0.53	0.62	408
93	0.69	0.49	0.58	241
94	0.31	0.04	0.07	211
95	0.33	0.07	0.12	277
96	0.26	0.03	0.06	410
97	0.89	0.30	0.45	501
98	0.74	0.60	0.66	136
99	0.52	0.28	0.36	239
100	0.56	0.13	0.21	324
101	0.93	0.61	0.74	277
102	0.92	0.70	0.79	613
103	0.49	0.17	0.25	157
104	0.22	0.06	0.09	295
105	0.83	0.34	0.48	334
106	0.77	0.12	0.21	335
107	0.76	0.48	0.59	389
108	0.57	0.23	0.32	251
109	0.53	0.40	0.46	317
110	0.65	0.08	0.14	187
111	0.48	0.07	0.12	140
112	0.58	0.25	0.35	154
113		0.18	0.29	332
114	0.65 0.45			
115	0.47	0.28 0.22	0.34 0.30	323 344
116	0.76	0.49	0.60	370
117	0.56	0.22	0.32	313
118	0.78	0.68	0.72	874
119	0.46	0.20	0.72	293
120	0.00	0.00	0.28	200
121	0.77	0.48	0.59	463
122	0.36	0.08	0.14	119
123	0.75	0.01	0.02	256
124	0.91	0.70	0.79	195
125	0.45	0.14	0.73	138
126	0.80	0.49	0.61	376
127	0.14	0.03	0.05	122
128	0.14	0.03	0.05	252
129	0.42	0.10	0.16	144
130	0.40	0.08	0.13	150
131	0.27	0.01	0.03	210
132	0.66	0.26	0.37	361
133	0.94	0.54	0.68	453
134	0.89	0.73	0.81	124
135	0.21	0.03	0.06	91
136	0.67	0.27	0.38	128
137	0.57	0.33	0.42	218
138	0.75	0.15	0.25	243
139	0.38	0.18	0.24	149
140	0.76	0.43	0.55	318
141	0.28	0.12	0.17	159
142	0.66	0.36	0.47	274
143	0.87	0.72	0.78	362
144	0.61	0.17	0.26	118
145	0.67	0.37	0.47	164
146	0.60	0.28	0.38	461
147	0.66	0.42	0.51	159
148	0.34	0.14	0.20	166
149	0.98	0.46	0.63	346
150	0.63	0.08	0.14	350
151	0.90	0.65	0.76	55
152	0.79	0.46	0.58	387
153	0.50	0.11	0.18	150
154	0.59	0.12	0.20	281
155	0.23	0.04	0.20	202
156	0.76	0.62	0.68	130
157	0.29	0.07	0.12	245
158	0.89	0.58	0.70	177
159	0.49	0.25	0.33	130
160	0.50	0.13	0.20	336
161	0.93	0.59	0.72	220
162	0.16	0.03	0.05	229
163	0.89	0.40	0.55	316
164	0.76	0.35	0.48	283
165	0.63	0.32	0.42	197
166	0.51	0.27	0.35	101
167	0.47	0.18	0.26	231

1.00	0.50	0.22	0.22	270
168	0.59	0.23	0.33	370
169	0.42	0.19	0.26	258
170	0.26	0.05	0.08	101
171	0.38	0.22	0.28	89
172	0.51	0.35	0.41	193
173	0.42	0.22	0.29	309
174	0.52	0.15	0.23	172
175	0.93	0.71	0.80	95
176	0.94	0.59	0.72	346
177	0.95	0.44	0.60	322
178	0.63	0.46	0.53	232
179	0.29	0.06	0.09	125
180	0.55	0.27	0.36	145
181	0.39	0.09	0.15	77
182	0.15	0.02	0.04	182
183	0.61	0.31	0.41	257
184	0.08	0.01	0.02	216
185	0.31	0.07	0.11	242
186	0.38	0.15	0.22	165
187	0.75	0.56	0.64	263
188	0.30	0.09	0.14	174
189	0.71	0.31	0.43	136
190	0.88	0.50	0.63	202
191	0.42	0.15	0.22	134
192	0.73	0.40	0.52	230
193	0.43	0.18	0.25	90
194	0.57	0.48	0.52	185
195	0.18	0.04	0.06	156
196	0.42	0.09	0.15	160
197	0.64	0.07	0.12	266
198	0.38	0.05	0.09	284
199	0.41	0.06	0.11	145
			0.80	
200	0.94	0.69		212
201	0.67	0.22	0.33	317
202	0.78	0.54	0.64	427
203	0.28	0.08	0.12	232
204	0.51	0.21	0.30	217
205	0.48	0.44	0.46	527
206	0.14	0.02	0.03	124
207	0.47	0.09	0.15	103
208	0.89	0.49	0.63	287
209	0.34	0.09	0.14	193
210	0.70	0.31	0.43	220
211	0.78	0.20	0.32	140
212	0.16	0.02	0.03	161
213	0.50	0.22	0.31	72
214	0.61	0.46	0.52	396
215	0.86	0.33	0.48	134
216	0.45	0.04	0.08	400
217	0.51	0.24	0.33	75
218	0.96	0.75	0.85	219
219	0.77	0.36	0.49	210
220	0.91	0.59	0.72	298
221	0.97	0.59	0.73	266
222	0.77	0.41	0.54	290
223	0.08	0.01	0.01	128
224	0.80	0.40	0.53	159
225	0.58	0.29	0.39	164
226	0.63	0.35	0.45	144
227	0.59	0.31	0.41	276
228	0.16	0.02	0.03	235
229	0.42	0.02	0.04	216
230	0.35	0.18	0.23	228
231	0.72	0.48	0.58	64
232	0.44	0.07	0.12	103
233	0.71	0.31	0.43	216
234	0.71	0.09	0.15	116
235	0.56	0.39	0.46	77
236	0.96	0.64	0.77	67
237	0.54	0.06	0.11	218
238	0.27	0.06	0.09	139
239	0.17	0.01	0.02	94
240	0.57	0.30	0.39	77
241	0.50	0.08	0.14	167
242	0.83	0.29	0.43	86
243	0.42	0.14	0.21	58
244	0.60	0.17	0.26	269
245	0.18	0.06	0.09	112
246	0.95	0.74	0.83	255
247	0.46	0.74	0.29	58
	0.46 0.25	0.02	0.29	
248				81 121
249	0.00	0.00	0.00	131
250	0.40	0.20	0.27	93
251	0.68	0.29	0.40	154
252	0.33	0.04	0.07	129
253	0.62	0.29	0.39	83
254	0.39	0.09	0.14	191
255	0.15	0.02	0.04	219

256	0.22	0.03	0.05	130
257	0.45	0.28	0.34	93
258	0.68	0.41	0.51	217
259	0.29	0.10	0.15	141
260	0.95	0.13	0.22	143
261	0.53	0.11	0.18	219
262	0.55	0.29	0.38	107
263	0.38	0.21	0.27	236
264	0.27	0.17	0.21	119
265	0.37	0.15	0.22	72
266	0.00	0.00	0.00	70
267	0.30	0.13	0.18	107
268	0.67	0.44	0.53	169
269 270	0.32 0.73	0.11 0.52	0.16 0.61	129 159
270	0.80	0.35	0.49	190
272	0.59	0.22	0.32	248
273	0.91	0.70	0.79	264
274	0.89	0.65	0.75	105
275	0.62	0.08	0.14	104
276	0.14	0.02	0.03	115
277	0.83	0.60	0.70	170
278	0.67	0.25	0.36	145
279	0.92	0.62	0.74	230
280	0.56	0.44	0.49	80
281	0.68	0.56	0.61	217
282 283	0.74 0.33	0.47 0.06	0.58 0.10	175 269
284	0.62	0.24	0.35	74
285	0.86	0.50	0.63	206
286	0.90	0.59	0.71	227
287	0.85	0.31	0.45	130
288	0.38	0.06	0.11	129
289	0.40	0.03	0.05	80
290	0.15	0.07	0.10	99
291	0.77	0.31	0.44	208
292	0.29	0.03	0.05	67
293	0.83	0.40	0.54	109
294	0.39	0.24	0.30	140
295	0.25	0.08	0.12	241
296 297	0.23 0.22	0.10 0.04	0.14 0.06	72 107
298	0.80	0.39	0.53	61
299	0.91	0.38	0.53	77
300	0.19	0.06	0.10	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.56	0.33	0.41	176
304	0.96	0.72	0.82	230
305	0.96	0.60	0.74	156
306	0.52	0.37	0.43	146
307	0.29	0.08	0.13	98 78
308 309	0.00 0.71	0.00 0.05	0.00 0.10	78 94
310	0.76	0.36	0.49	162
311	0.81	0.53	0.64	116
312	0.48	0.26	0.34	57
313	0.75	0.05	0.09	65
314	0.48	0.35	0.40	138
315	0.55	0.21	0.30	195
316	0.43	0.23	0.30	69
317	0.35	0.10	0.16	134
318	0.50	0.34	0.41	148
319	0.85 0.21	0.45 0.14	0.59 0.17	161
320 321	0.21	0.14 0.54	0.17 0.66	104 156
322	0.58	0.31	0.40	134
323	0.57	0.38	0.45	232
324	0.42	0.16	0.23	92
325	0.45	0.31	0.37	197
326	0.13	0.02	0.04	126
327	0.45	0.04	0.08	115
328	0.98	0.64	0.78	198
329	0.61	0.31	0.41	125
330	0.80	0.20	0.32	81
331	0.40	0.06	0.11	94 56
332	0.50 0.15	0.02	0.03 0.05	56 260
333 334	0.15 0.20	0.03 0.03	0.05 0.06	260 60
334 335	0.20	0.03 0.07	0.12	110
336	0.63	0.41	0.12	71
337	0.19	0.05	0.07	66
338	0.45	0.31	0.37	150
339	0.00	0.00	0.00	54
340	0.85	0.54	0.66	195
341	0.88	0.19	0.31	79
342	0.40	0.16	0.23	38
343	0.71	0.40	0.51	43

244	0 53	0.24	0.22	60
344	0.53	0.24	0.33	68
345	0.68	0.37	0.48	73
346	0.30	0.03	0.05	116
347	0.88	0.32	0.47	111
348	0.30	0.10	0.14	63
349	0.82	0.57	0.67	104
350	0.62	0.45	0.53	44
351	0.78	0.17	0.29	40
352	0.95	0.40	0.57	136
353	0.44	0.20	0.28	54
354	0.42	0.04	0.07	134
355	0.57	0.28	0.37	120
356	0.52	0.21	0.30	228
357	0.66	0.26	0.38	269
358	0.70	0.35	0.47	80
359	0.87	0.46	0.60	140
360	0.37	0.13	0.19	125
361	0.90	0.62	0.73	169
362	0.11	0.04	0.05	56
363	0.94	0.66	0.77	154
364	0.50	0.07	0.12	58
365	0.26	0.13	0.17	71
366	1.00	0.65	0.79	54
367	0.36	0.04	0.08	116
368	0.33	0.02	0.04	54
369	0.00	0.00	0.00	71
370	0.20	0.03	0.06	61
371	0.50	0.08	0.14	71
372	0.65	0.46	0.54	52
373	0.79	0.35	0.49	150
374	0.38	0.13	0.19	93
375	0.15	0.03	0.05	67
376	0.00	0.00	0.00	76
377	0.74	0.16	0.26	106
378	0.11	0.01	0.02	86
379	0.33	0.07	0.12	14
380	1.00	0.39	0.56	122
381	0.18	0.03	0.05	104
382	0.28	0.08	0.12	66
383	0.50	0.27	0.35	110
384	0.00	0.00	0.00	155
385	0.45	0.10	0.16	50
386	0.27	0.11	0.16	64
387	0.31	0.05	0.09	93
388	0.61	0.27	0.38	102
389	0.07	0.01	0.02	108
390	0.96	0.64	0.77	178
391				
	0.58	0.16	0.25	115
392	0.77	0.40	0.53	42
393	0.00	0.00	0.00	134
394	0.50	0.02	0.03	112
395	0.43	0.12	0.19	176
396	0.42	0.09	0.15	125
397	0.69	0.24	0.36	224
398	0.88	0.57	0.69	63
399	0.00	0.00	0.00	59
400	0.50	0.33	0.40	63
401	0.45	0.17	0.25	98
402	0.57	0.16	0.25	162
403	0.41	0.14	0.21	83
404	0.73	0.84	0.78	19
405	0.26	0.07	0.10	92
406	0.86	0.15	0.10	41
407	0.64	0.33	0.43	43
408	0.80	0.32	0.46	160
409	0.20	0.12	0.15	50
410	0.00	0.00	0.00	19
411	0.36	0.10	0.15	175
412	0.27	0.06	0.09	72
413	0.56	0.05	0.10	95
414	0.19	0.03	0.05	97
415	0.32	0.17	0.22	48
416	0.45	0.30	0.36	83
417	0.50	0.07	0.13	40
418	0.33	0.07	0.11	91
419	0.49	0.28	0.35	90
420	0.29	0.22	0.25	37
421	0.00	0.00	0.00	66
422	0.62	0.33	0.43	73
423	0.48	0.25	0.33	56
424	0.93	0.82	0.87	33
425	0.00	0.00	0.00	76
426	0.25	0.05	0.08	81
427	0.99	0.67	0.80	150
428	0.95	0.66	0.78	29
429	0.99	0.70	0.82	389
430	0.65	0.36	0.82	167
431	0.53	0.08	0.14	123

```
432
                     0.45
                                0.36
                                           0.40
                                                        39
          433
                     0.29
                                0.16
                                           0.20
                                                        82
          434
                     1.00
                                0.65
                                           0.79
                                                        66
          435
                     0.65
                                0.46
                                           0.54
                                                        93
          436
                                0.26
                                                        87
                     0.52
                                           0.35
          437
                     0.27
                                0.07
                                           0.11
                                                        86
          438
                     0.77
                                0.48
                                           0.59
                                                       104
          439
                     0.62
                                0.13
                                           0.21
                                                       100
          440
                     0.20
                                0.01
                                           0.01
                                                       141
          441
                     0.42
                                0.25
                                           0.31
                                                       110
          442
                     0.40
                                0.14
                                           0.20
                                                       123
          443
                     0.50
                                0.13
                                           0.20
                                                        71
          444
                     0.44
                                0.07
                                           0.13
                                                       109
          445
                                           0.23
                                                        48
                     0.36
                                0.17
          446
                                                        76
                     0.43
                                0.25
                                           0.32
          447
                     0.28
                                           0.18
                                                        38
                                0.13
          448
                     0.68
                                0.53
                                           0.60
                                                        81
          449
                                0.17
                                           0.26
                     0.58
                                                       132
          450
                     0.47
                                0.28
                                           0.35
                                                        81
          451
                     0.88
                                0.28
                                           0.42
                                                        76
          452
                     0.00
                                0.00
                                           0.00
                                                        44
          453
                     0.00
                                0.00
                                           0.00
                                                        44
          454
                                0.44
                                                        70
                     0.91
                                           0.60
          455
                     0.48
                                0.07
                                           0.12
                                                       155
          456
                     0.47
                                0.16
                                           0.24
                                                        43
          457
                     0.48
                                0.19
                                           0.28
                                                        72
          458
                     0.26
                                0.08
                                           0.12
                                                        62
          459
                                           0.21
                     0.60
                                0.13
                                                        69
                                                       119
          460
                     0.07
                                0.01
                                           0.02
          461
                                           0.26
                                                        79
                     0.80
                                0.15
          462
                                                        47
                     0.69
                                0.23
                                           0.35
          463
                                0.05
                                           0.08
                                                       104
                     0.25
          464
                     0.64
                                0.32
                                           0.43
                                                       106
          465
                     0.54
                                0.11
                                           0.18
                                                        64
                                                       173
          466
                     0.58
                                0.28
                                           0.38
          467
                     0.82
                                0.38
                                           0.52
                                                       107
          468
                     0.83
                                0.12
                                           0.21
                                                       126
                                0.00
                                           0.00
          469
                     0.00
                                                       114
          470
                                0.79
                     0.94
                                           0.86
                                                       140
          471
                                0.25
                                                        79
                     0.91
                                           0.40
          472
                     0.40
                                0.29
                                           0.34
                                                       143
          473
                     0.69
                                0.30
                                           0.42
                                                       158
          474
                                0.07
                                           0.11
                                                       138
                     0.38
          475
                     0.00
                                0.00
                                           0.00
                                                        59
          476
                     0.57
                                0.31
                                           0.40
                                                        88
          477
                     0.86
                                0.57
                                           0.69
                                                       176
          478
                                                        24
                     0.94
                                0.71
                                           0.81
          479
                     0.09
                                0.01
                                           0.02
                                                        92
          480
                     0.82
                                0.45
                                           0.58
                                                       100
          481
                     0.49
                                0.17
                                           0.26
                                                       103
          482
                     0.49
                                0.23
                                           0.31
                                                        74
                                                       105
          483
                     0.83
                                0.57
                                           0.68
          484
                     0.25
                                0.02
                                           0.04
                                                        83
          485
                     0.14
                                0.01
                                           0.02
                                                        82
          486
                                                        71
                     0.41
                                0.13
                                           0.19
          487
                     0.45
                                0.21
                                           0.29
                                                       120
          488
                     0.33
                                0.02
                                           0.04
                                                       105
          489
                     0.69
                                0.29
                                           0.41
                                                        87
          490
                     1.00
                                0.81
                                           0.90
                                                        32
          491
                                           0.00
                     0.00
                                0.00
                                                        69
          492
                     0.00
                                0.00
                                           0.00
                                                        49
          493
                     0.00
                                0.00
                                           0.00
                                                       117
          494
                     0.50
                                0.16
                                           0.25
                                                        61
          495
                     0.99
                                0.44
                                           0.61
                                                        344
          496
                     0.39
                                0.23
                                           0.29
                                                        52
          497
                     0.63
                                0.20
                                           0.30
                                                       137
          498
                                0.04
                                                        98
                     0.31
                                           0.07
          499
                                                        79
                     0.68
                                0.16
                                           0.27
                     0.72
                                0.32
                                           0.45
                                                    173812
   micro avg
   macro avg
                    0.55
                                0.26
                                           0.33
                                                    173812
weighted avg
                    0.66
                                0.32
                                           0.42
                                                    173812
 samples avg
                    0.41
                                0.31
                                           0.33
                                                    173812
```

Time taken to run this cell : 0:19:45.078539

```
In [0]: joblib.dump(classifier, 'lr_with_more_title_weight.pkl')
```

Out[0]: ['lr_with_more_title_weight.pkl']

4.5.4 Applying Logistic Regression (directly) with OneVsRest Classifier

```
In [0]: start = datetime.now()
        classifier_2 = OneVsRestClassifier(LogisticRegression(penalty='l1'), n_jobs=-1)
        classifier_2.fit(x_train_multilabel, y_train)
        predictions_2 = classifier_2.predict(x_test_multilabel)
        print("Accuracy :",metrics.accuracy_score(y_test, predictions_2))
        print("Hamming loss ",metrics.hamming_loss(y_test,predictions_2))
        precision = precision_score(y_test, predictions_2, average='micro')
        recall = recall_score(y_test, predictions_2, average='micro')
        f1 = f1_score(y_test, predictions_2, average='micro')
        print("Micro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        precision = precision_score(y_test, predictions_2, average='macro')
        recall = recall_score(y_test, predictions_2, average='macro')
        f1 = f1_score(y_test, predictions_2, average='macro')
        print("Macro-average quality numbers")
        print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
        print (metrics.classification_report(y_test, predictions_2))
        print("Time taken to run this cell :", datetime.now() - start)
```

Accuracy : 0.25107 Hamming loss 0.00270298 Micro-average quality numbers

Precision: 0.7172, Recall: 0.3673, F1-measure: 0.4858

Macro-average quality numbers Precision: 0.5570, Recall: 0.2951, F1-measure: 0.3710

sion: 0).5570, Recall: precision	0.2951, recall		0.3710 support
G	•	0.72		
1		0.72 0.34	0.82 0.45	5519 8190
2		0.42	0.55	6529
3		0.49	0.61	3231
4		0.44	0.57	6430
5		0.38	0.52	2879
7		0.53 0.58	0.66 0.70	5086 4533
8		0.13	0.22	3000
9		0.57	0.67	2765
16		0.20	0.30	3051
11		0.38	0.49	3009
12 13		0.29 0.30	0.40 0.43	2630 1426
14		0.57	0.70	2548
15		0.23	0.34	2371
16		0.25	0.37	873
17		0.63	0.74	2151
18 19		0.25 0.41	0.35 0.52	2204 831
26		0.47	0.58	1860
21		0.09	0.14	2023
22		0.24	0.33	1513
23		0.55	0.68	1207
24 25		0.28 0.34	0.38 0.45	506 425
26		0.43	0.52	793
27		0.38	0.47	1291
28		0.39	0.51	1208
29		0.10	0.17	406 504
36 31		0.21 0.08	0.33 0.12	504 732
32		0.29	0.39	441
33	0.60	0.27	0.38	1645
34		0.26	0.38	1058
35 36		0.58 0.24	0.68 0.35	946 644
37		0.65	0.78	136
38		0.38	0.47	570
39		0.31	0.45	766
46 41		0.35	0.44	1132
42		0.18 0.48	0.26 0.59	174 210
43		0.42	0.54	433
44		0.52	0.58	626
45		0.36	0.47	852
46 47		0.45 0.15	0.57 0.22	534 350
48		0.52	0.62	496
49		0.64	0.71	785
50		0.06	0.09	475
51 52		0.13 0.03	0.19 0.06	305 251
53		0.40	0.50	914
54		0.17	0.26	728
55		0.03	0.05	258
56 57		0.24	0.31	821
58		0.10 0.31	0.17 0.45	541 748
59		0.66	0.77	724
66		0.10	0.15	660
61		0.20	0.31	235
62 63		0.74 0.69	0.82 0.75	718 468
64		0.36	0.43	191
65		0.11	0.17	429
66		0.06	0.10	415
67 69		0.50	0.59	274 510
68 69		0.53 0.45	0.64 0.54	510 466
76		0.09	0.13	305
71	0.49	0.17	0.25	247
72		0.53	0.64	401
73 74		0.77 0.42	0.86 0.53	86 120
75		0.42 0.67	0.78	129
76	0.47	0.02	0.04	473
77		0.29	0.33	143
78 79		0.49 0.25	0.60 0.36	347 479
/5	0.03	0.23	0.30	4/3

80	0.56	0.34	0.43	279
81	0.70	0.23	0.34	461
82	0.34	0.04	0.07	298
83	0.78	0.50	0.61	396
84	0.55	0.29	0.38	184
85	0.61	0.24	0.35	573
86	0.50	0.07	0.12	325
87	0.51	0.29	0.37	273
88 89	0.49 0.36	0.21 0.11	0.30	135
90	0.56	0.11	0.17 0.43	232 409
91	0.61	0.27	0.43	420
92	0.78	0.57	0.66	408
93	0.66	0.44	0.53	241
94	0.30	0.04	0.07	211
95	0.37	0.10	0.15	277
96	0.28	0.04	0.07	410
97	0.86	0.43	0.57	501
98	0.75	0.63	0.69	136
99 1 00	0.54 0.57	0.34 0.15	0.42 0.24	239 324
101	0.91	0.68	0.24	277
102	0.91	0.75	0.82	613
103	0.47	0.17	0.25	157
104	0.22	0.06	0.10	295
105	0.75	0.43	0.55	334
106	0.88	0.28	0.43	335
107	0.75	0.54	0.63	389
108	0.58	0.27	0.37	251
109 110	0.58	0.45	0.51	317 197
111	0.68 0.73	0.10 0.11	0.18 0.20	187 140
112	0.73	0.43	0.52	154
113	0.58	0.20	0.29	332
114	0.46	0.27	0.34	323
115	0.47	0.26	0.33	344
116	0.75	0.55	0.63	370
117	0.58	0.24	0.34	313
118	0.78	0.73	0.75	874
119	0.45	0.21	0.29	293
120 121	0.11 0.77	0.01 0.51	0.01 0.61	200 463
122	0.77	0.10	0.15	119
123	0.67	0.02	0.03	256
124	0.91	0.70	0.79	195
125	0.44	0.14	0.21	138
126	0.81	0.54	0.65	376
127	0.27	0.03	0.06	122
128	0.20	0.04	0.07	252
129 130	0.48 0.42	0.22 0.11	0.30	144 150
131	0.42	0.03	0.18 0.06	210
132	0.65	0.28	0.39	361
133	0.92	0.59	0.72	453
134	0.89	0.77	0.82	124
135	0.31	0.05	0.09	91
136	0.69	0.28	0.40	128
137	0.55	0.37	0.44	218
138	0.67	0.18	0.28	243
139 140	0.45 0.77	0.18 0.46	0.26 0.58	149 318
141	0.77	0.10	0.15	159
142	0.63	0.38	0.47	274
143	0.85	0.79	0.82	362
144	0.54	0.21	0.30	118
145	0.63	0.39	0.48	164
146	0.54	0.31	0.39	461
147	0.68	0.45	0.54	159
148	0.30	0.12	0.17	166
149 150	0.97 0.64	0.55 0.13	0.70 0.21	346 350
151	0.93	0.13	0.78	55
152	0.78	0.52	0.63	387
153	0.51	0.17	0.25	150
154	0.58	0.12	0.21	281
155	0.25	0.06	0.10	202
156	0.81	0.67	0.73	130
157	0.28	0.06	0.10	245
158	0.93	0.63	0.75	177
159 160	0.53 0.48	0.34 0.18	0.41 0.26	130 336
160 161	0.48 0.90	0.18 0.65	0.26 0.75	336 220
162	0.28	0.05	0.09	229
163	0.20	0.44	0.58	316
164	0.78	0.44	0.56	283
165	0.60	0.34	0.44	197
166	0.65	0.43	0.51	101
167	0.45	0.18	0.26	231

1.00	0.56	0. 27	0.26	270
168	0.56	0.27	0.36	370
169	0.40	0.21	0.27	258
170	0.33	0.07	0.11	101
171	0.38	0.24	0.29	89
172	0.53	0.36	0.43	193
173	0.47	0.26	0.33	309
174	0.62	0.14	0.23	172
175	0.92	0.73	0.81	95
176	0.93	0.62	0.74	346
177	0.86	0.57	0.69	322
178	0.65	0.51	0.57	232
179	0.20	0.04	0.07	125
180	0.65	0.33	0.44	145
181	0.44	0.10	0.17	77
182	0.26	0.06	0.10	182
183	0.60	0.32	0.41	257
184	0.21	0.03	0.05	216
185	0.35	0.09	0.14	242
186	0.43	0.18	0.25	165
187	0.75	0.59	0.66	263
188	0.39	0.12	0.18	174
189	0.75	0.40	0.53	136
190	0.89	0.55	0.68	202
191	0.44	0.16	0.24	134
192	0.68	0.40	0.51	230
193	0.44	0.18	0.25	90
194	0.57	0.48	0.52	185
195	0.26	0.05	0.09	156
196	0.33	0.07	0.11	160
197	0.49	0.10	0.16	266
198	0.47	0.13	0.20	284
199	0.32	0.04	0.07	145
200	0.93	0.74	0.82	212
201	0.65	0.26	0.37	317
202	0.78	0.59	0.67	427
203	0.36	0.11	0.17	232
204	0.51	0.29	0.37	217
205	0.50	0.46	0.48	527
206	0.24	0.03	0.06	124
207	0.50	0.17	0.26	103
208	0.85	0.53	0.65	287
209	0.33	0.11	0.16	193
210	0.75	0.38	0.50	220
211	0.72	0.21	0.32	140
212	0.12	0.02	0.03	161
213	0.63	0.43	0.51	72
214	0.64	0.45	0.53	396
215	0.87	0.34	0.49	134
216	0.61	0.17	0.27	400
217	0.51	0.24	0.33	75
218	0.96	0.76	0.85	219
219	0.77	0.42	0.54	210
220	0.88	0.64	0.74	298
221	0.96	0.70	0.81	266
222	0.76	0.45	0.57	290
223	0.11	0.01	0.01	128
224	0.78	0.45	0.57	159
225	0.55	0.29	0.38	164
226	0.58	0.31	0.41	144
227	0.56	0.29	0.38	276
228	0.19	0.03	0.05	235
229	0.33	0.03	0.06	216
230	0.40	0.17	0.23	228
231	0.70	0.48	0.57	64
232	0.48	0.10	0.16	103
233	0.72	0.35	0.47	216
234	0.72	0.11	0.19	116
235	0.54	0.36	0.43	77
236	0.90	0.67	0.77	67
237	0.58	0.13	0.21	218
238	0.40	0.14	0.20	139
239	0.00	0.00	0.00	94
240	0.55	0.35	0.43	77
241	0.47	0.08	0.14	167
242	0.78	0.37	0.50	86
242	0.40	0.10	0.16	58
243 244		0.10 0.27		
	0.62		0.38	269 112
245	0.16	0.04	0.07	112
246	0.95	0.76	0.84	255
247	0.44	0.24	0.31	58
248	0.44	0.05	0.09	81
249	0.23	0.02	0.04	131
250	0.43	0.24	0.31	93
251	0.61	0.29	0.39	154
252	0.36	0.04	0.07	129
253	0.69	0.40	0.50	83
254	0.34	0.08	0.13	191
254 255	0.15	0.03	0.13	219
233	0.10	U.U3	כש.ש	213

256	0.22	0.05	0.00	120
256	0.32	0.05	0.09	130
257	0.48	0.26	0.34	93
258	0.65	0.48	0.55	217
259	0.41	0.13	0.20	141
260	0.86	0.17	0.29	143
261	0.62	0.17	0.27	219
262	0.55	0.27	0.36	107
263	0.41	0.27	0.32	236
264	0.32	0.22	0.26	119
265	0.57	0.24	0.33	72
266	0.00	0.00	0.00	70
267	0.36	0.14	0.20	107
268	0.67	0.44	0.53	169
269	0.32	0.14	0.19	129
270	0.74	0.53	0.62	159
271	0.88	0.48	0.62	190
272	0.61	0.27	0.37	248
273	0.90	0.75	0.82	264
274	0.90	0.68	0.77	105
275	0.52	0.12	0.20	104
276	0.08	0.01	0.02	115
277	0.83	0.63	0.72	170
278	0.74	0.41	0.52	145
279	0.90	0.70	0.78	230
280	0.58	0.42	0.49	80
281	0.66	0.54	0.59	217
282	0.75	0.50	0.60	175
283	0.33	0.13	0.18	269
284	0.65	0.32	0.43	74
285	0.82	0.49	0.43	206
	0.89			227
286		0.66	0.75	
287	0.84	0.41	0.55	130
288	0.32	0.07	0.11	129
289	0.57	0.05	0.09	80
290	0.21	0.09	0.13	99
291	0.76	0.35	0.48	208
292	0.42	0.07	0.13	67
293	0.84	0.48	0.61	109
294	0.46	0.26	0.34	140
295	0.24	0.12	0.16	241
296	0.31	0.12	0.18	72
297	0.44	0.11	0.18	107
298	0.77	0.49	0.60	61 77
299	0.89	0.51	0.64	77
300	0.21	0.08	0.12	111
301	0.00	0.00	0.00	126
302	0.25	0.01	0.03	73 176
303	0.57	0.43	0.49	176
304	0.91 0.92	0.79 0.72	0.85	230
305 306		0.72	0.81	156 146
307	0.50 0.34	0.11	0.43 0.17	98
308	0.00	0.00	0.00	78
309		0.13		76 94
	0.80		0.22	
310	0.74	0.41	0.53	162
311	0.79	0.51	0.62	116 57
312	0.52	0.28	0.36	
313	0.83	0.08	0.14	65 138
314	0.52	0.36	0.42	138
315	0.54	0.22	0.31	195
316	0.56	0.35	0.43	69 134
317	0.29	0.13	0.18	134
318 319	0.56 0.84	0.39	0.46	148
	0.24	0.50	0.63	161
320		0.19	0.21	104
321	0.82	0.61 0.37	0.70	156 134
322	0.60		0.46	134
323 324	0.58	0.44	0.50	232
	0.34	0.15	0.21	92
325	0.41	0.24	0.31	197
326	0.14	0.03	0.05	126
327	0.20	0.03	0.05	115 108
328	0.99 0.59	0.70	0.82 0.41	198 125
329 330	0.59	0.32	0.41 0.31	125 91
330 331	0.73 0.45	0.20	0.31 0.16	81 94
331	0.45	0.10	0.16	94 56
332	0.54	0.12	0.20	56 260
333	0.19	0.05	0.08	260
334	0.42	0.13	0.20	60 110
335 336	0.35	0.08	0.13 0.55	110 71
336 337	0.62 0.18	0.49 0.05	0.55 0.07	71 66
337	0.18 0.47	0.05 0.36	0.07 0.41	150
339	0.47	0.36	0.41	150 54
349 340	0.84	0.57	0.68	195
341	0.84	0.52	0.66	195 79
341	0.38	0.32	0.31	79 38
342 343	0.62	0.42	0.50	36 43
J -1 J	0.02	U.72	0.50	+0

344	0.56	0.29	0.38	68
345	0.62	0.33	0.43	73
346	0.14	0.03	0.04	116
347	0.86	0.43	0.57	111
348	0.33	0.11	0.17	63
349	0.84	0.65	0.74	104
350	0.62	0.48	0.54	44
351	0.57	0.30	0.39	40
352	0.93	0.57	0.70	136
353	0.38	0.15	0.21	54
354	0.39	0.09	0.15	134
355	0.64	0.35	0.45	120
356	0.54	0.29	0.38	228
357	0.66	0.36	0.47	269
358	0.62	0.38	0.47	80
359	0.84	0.59	0.69	140
360	0.39	0.18	0.24	125
361	0.90		0.79	169
		0.71		
362	0.14	0.05	0.08	56
363	0.92	0.73	0.82	154
364	0.46	0.10	0.17	58
365	0.22	0.08	0.12	71
366	1.00	0.69	0.81	54
367	0.31	0.07	0.11	116
368	0.38	0.06	0.10	54
369	0.33	0.03	0.05	71
370	0.00	0.00	0.00	61
371	0.40	0.08	0.14	71
372	0.72	0.44	0.55	52
373	0.78	0.41	0.54	150
374	0.41	0.14	0.21	93
			0.07	
375	0.20	0.04		67
376	0.00	0.00	0.00	76
377	0.58	0.28	0.38	106
378	0.25	0.02	0.04	86
379	0.50	0.14	0.22	14
380	0.91	0.52	0.67	122
381	0.23	0.07	0.10	104
382				
	0.46	0.20	0.28	66
383	0.54	0.35	0.42	110
384	0.14	0.01	0.01	155
385	0.69	0.22	0.33	50
386	0.20	0.06	0.10	64
387	0.32	0.08	0.12	93
388	0.53	0.24	0.33	102
389	0.07	0.01	0.02	108
390	0.96	0.68	0.80	178
391	0.49	0.17	0.26	115
392	0.81	0.40	0.54	42
393	0.00	0.00	0.00	134
394	0.22	0.04	0.06	112
395	0.54	0.27	0.36	176
396	0.47	0.13	0.20	125
397				
	0.74	0.37	0.49	224
398	0.84	0.67	0.74	63
399	0.30	0.05	0.09	59
400	0.51	0.32	0.39	63
401	0.50	0.24	0.33	98
402	0.51	0.19	0.27	162
403	0.38	0.14	0.21	83
404	0.76	0.84	0.80	19
405	0.34	0.11	0.17	92
406	0.69	0.22	0.33	41
407	0.64	0.37	0.47	43
408	0.80	0.46	0.58	160
409	0.20	0.12	0.15	50
410	0.00	0.00	0.00	19
411	0.35	0.11	0.17	175
412	0.28	0.07	0.11	72
				95
413	0.38	0.05	0.09	
414	0.12	0.02	0.04	97
415	0.33	0.10	0.16	48
416	0.53	0.35	0.42	83
417	0.43	0.07	0.13	40
418	0.48	0.16	0.25	91
419	0.53	0.37	0.43	90
420	0.38	0.27	0.32	37
421	0.38	0.02	0.02	66
422	0.69	0.45	0.55	73
423	0.48	0.25	0.33	56
424	0.94	0.88	0.91	33
425	0.00	0.00	0.00	76
426	0.27	0.05	0.08	81
427	0.98	0.73	0.84	150
428	0.95	0.69	0.80	29
429	0.99	0.93	0.96	389
430	0.63	0.40	0.49	167
431	0.57	0.11	0.18	123

	432	0.52	0.31	0.39	39
	433	0.33	0.21	0.25	82
	434	1.00	0.70	0.82	66
	435	0.55	0.38	0.45	93
	436	0.56	0.37	0.44	87
	437	0.10	0.02	0.04	86
	438	0.72	0.53	0.61	104
	439	0.54	0.13	0.21	100
	440	0.38	0.04	0.06	141
	441	0.43	0.33	0.37	110
	442	0.37	0.15	0.22	123
	443	0.57	0.18	0.28	71
	444				
		0.32	0.06	0.11	109
	445	0.45	0.31	0.37	48
	446	0.47	0.29	0.36	76
	447	0.39	0.18	0.25	38
	448	0.67	0.54	0.60	81
	449	0.67	0.26	0.37	132
	450	0.42	0.27	0.33	81
	451	0.89	0.32	0.47	76
	452	0.00	0.00	0.00	44
	453	0.00	0.00	0.00	44
	454	0.84	0.51	0.64	70
	455	0.39	0.18	0.25	155
	456	0.50	0.21	0.30	43
	457	0.54	0.28	0.37	72
	458	0.35	0.13	0.19	62
	459	0.63	0.25	0.35	69
	460	0.00	0.00	0.00	119
	461	0.71	0.19	0.30	79
	462	0.61	0.23	0.34	47
	463	0.39	0.14	0.21	104
	464	0.70	0.42	0.52	106
	465	0.64	0.22	0.33	64
	466	0.55	0.35	0.43	173
	467	0.78	0.42	0.55	107
	468	0.56	0.26	0.36	126
	469	0.20	0.01	0.02	114
	470	0.93	0.81	0.87	140
	471	0.85	0.42	0.56	79
	472	0.40	0.35	0.37	143
	473	0.67	0.37	0.47	158
	474	0.48	0.10	0.17	138
	475	0.00	0.00	0.00	59
	476	0.63	0.33	0.43	88
	477	0.83	0.65	0.73	176
	478	0.95	0.79	0.86	24
	479	0.22	0.04	0.07	92
	480	0.79	0.50	0.61	100
	481	0.51	0.28	0.36	103
	482	0.40	0.22	0.28	74
	483	0.78	0.63	0.69	105
	484	0.20	0.02	0.04	83
	485	0.20	0.02	0.04	82
	486	0.48			71
			0.15	0.23	
	487	0.45	0.21	0.29	120
	488	0.50	0.06	0.10	105
	489	0.73	0.37	0.49	87
	490	1.00	0.81	0.90	32
	491	0.33	0.03	0.05	69
	492	0.33	0.02	0.04	49
	493	0.11	0.02	0.03	117
	494	0.52	0.23	0.32	61
	495	0.95	0.79	0.87	344
	496	0.32	0.13	0.19	52
	497	0.59	0.28	0.38	137
	498	0.31	0.10	0.15	98
	499	0.48	0.20	0.29	79
micro	avg	0.72	0.37	0.49	173812
macro	avg	0.56	0.30	0.37	173812
weighted	_	0.67	0.37	0.46	173812
samples	avg	0.46	0.35	0.37	173812
· -F	3	-			

Time taken to run this cell : 1:16:19.984150

```
In [67]: import warnings
         warnings.filterwarnings("ignore")
         start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.00001, penalty='l1'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict (x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell: 0:07:25.261763

Accuracy : 0.24735 Hamming loss 0.0026982 Micro-average quality numbers

Macro-average quality numbers

Precision: 0.8074, Recall: 0.2939, F1-measure: 0.4310 Precision: 0.4206, Recall: 0.2167, F1-measure: 0.2635 recall f1-score precision 0 0.95 0.67 0.78 5519 1 8190 0.70 0.22 0.34 2 0.35 0.50 6529 0.84 3 0.82 0.42 0.55 3231 4 0.85 0.37 0.52 6430 5 0.82 0.35 0.49 2879 6 0.87 0.52 0.65 5086 7 0.54 0.89 0.67 4533 8 3000 0.62 0.14 0.23 9 0.83 0.51 0.63 2765 10 0.62 0.01 0.02 3051 11 0.78 0.31 0.44 3009 12 0.74 0.22 0.34 2630 13 0.71 0.18 0.28 1426 14 0.90 0.56 0.69 2548 15 2371 0.77 0.16 0.26 16 0.68 0.23 0.35 873 17 0.88 0.60 0.72 2151 18 0.20 0.32 2204 0.73 19 0.68 0.49 0.57 831 20 0.76 0.46 0.57 1860 21 0.00 0.00 0.00 2023 22 0.54 0.01 0.02 1513 23 0.55 1207 0.88 0.68 24 0.58 0.01 0.03 506 25 0.73 0.36 0.48 425 26 0.65 0.39 0.48 793 27 0.68 0.26 0.37 1291 28 0.82 0.35 0.49 1208 29 0.60 0.01 0.01 406 30 0.77 0.17 0.28 504 31 0.00 0.00 0.00 732 32 0.63 0.26 0.37 441 33 0.00 0.00 0.00 1645 34 0.71 0.27 0.39 1058 35 0.82 0.69 946 0.60 36 0.76 0.15 0.24 644 37 0.96 0.80 0.87 136 38 0.66 0.34 0.44 570 39 0.41 0.86 0.27 766 40 0.69 0.16 0.26 1132 41 0.43 0.17 0.25 174 42 0.75 0.56 0.64 210 43 0.79 0.43 0.55 433 44 0.60 0.66 0.56 626 45 0.82 0.19 0.31 852 46 0.77 0.39 0.52 534 47 0.67 0.01 0.01 350 48 0.74 0.58 0.65 496 49 0.78 0.69 0.73 785 50 0.00 0.00 0.00 475 51 0.00 0.00 0.00 305 52 0.00 0.00 0.00 251 53 0.69 0.35 0.46 914 54 0.00 0.00 0.00 728 55 0.00 0.00 0.00 258 56 0.00 0.00 0.00 821 57 0.00 0.00 0.00 541 58 0.80 0.27 0.40 748 59 0.92 0.70 0.79 724 60 0.57 0.01 0.02 660 61 0.89 0.20 0.33 235 62 0.91 0.73 0.81 718 63 0.82 0.66 0.73 468 64 0.51 0.29 0.37 191 0.00 0.00 0.00 429 65 66 0.00 0.00 0.00 415 67 0.75 0.55 0.63 274 68 0.82 0.58 0.68 510 0.47 0.55 69 0.66 466 70 0.00 0.00 0.00 305 71 0.00 0.00 0.00 247 72 0.81 0.53 0.64 401 73 0.78 0.86 0.96 86 74 0.44 0.57 0.82 120 75 0.89 0.74 0.81 129 76 0.00 0.00 0.00 473 77 0.38 0.29 0.33 143

78

0.77

0.55

0.64

347

70	0.75	0.26	a 20	479
79 80	0.75 0.72	0.26 0.21	0.39 0.32	279
81	0.72	0.21	0.32	461
82	0.00	0.00	0.00	298
83	0.76	0.54	0.63	396
84	0.53	0.05	0.09	184
85	0.77	0.03	0.23	573
86	0.62	0.02	0.25	325
87	0.00	0.02	0.00	273
88	0.00	0.00	0.00	135
89	0.00	0.00	0.00	232
90	0.62	0.02	0.04	409
91	0.00	0.00	0.00	420
92	0.76	0.59	0.66	408
93	0.63	0.51	0.57	241
94	0.00	0.00	0.00	211
95	0.00	0.00	0.00	277
96	0.00	0.00	0.00	410
97	0.87	0.51	0.64	501
98	0.73	0.74	0.73	136
99	0.00	0.00	0.00	239
100	0.00	0.00	0.00	324
101	0.90	0.75	0.82	277
102	0.92	0.71	0.80	613
103	0.00	0.00	0.00	157
104	0.00	0.00	0.00	295
105	0.88	0.32	0.47	334
106	0.96	0.22	0.36	335
107	0.77	0.53	0.63	389
108	0.00	0.00	0.00	251
109	0.52	0.46	0.49	317
110	0.00	0.00	0.00	187
111	0.75	0.13	0.22	140
112	0.66	0.35	0.46	154
113	0.71	0.15	0.25	332
114	0.00	0.00	0.00	323
115	0.00	0.00	0.00	344
116	0.77	0.57	0.65	370
117	0.61	0.13	0.21	313
118	0.78	0.67	0.72	874
119	0.33	0.00	0.01	293
120 121	0.00 0.73	0.00 0.55	0.00 0.63	200 463
122	0.00	0.00	0.00	119
123	0.00	0.00	0.00	256
124	0.88	0.78	0.83	195
125	0.00	0.00	0.00	138
126	0.81	0.47	0.59	376
127	0.00	0.00	0.00	122
128	0.00	0.00	0.00	252
129	0.00	0.00	0.00	144
130	0.00	0.00	0.00	150
131	0.00	0.00	0.00	210
132	0.00	0.00	0.00	361
133	0.93	0.56	0.70	453
134	0.88	0.83	0.85	124
135	0.00	0.00	0.00	91
136	0.84	0.16	0.27	128
137	0.59	0.32	0.41	218
138	0.81	0.07	0.13	243
139	0.00	0.00	0.00	149
140	0.73	0.56	0.64	318
141	0.00	0.00	0.00	159
142 143	0.66 0.86	0.50 0.81	0.57 0.83	274 362
144 145	0.00 0.63	0.00 0.40	0.00 0.49	118 164
145 146	0.00	0.00	0.49	461
147	0.64	0.48	0.55	159
148	0.00	0.00	0.00	166
149	0.94	0.59	0.73	346
150	0.86	0.03	0.73	350
151	0.83	0.69	0.75	55
152	0.82	0.48	0.61	387
153	0.43	0.04	0.07	150
154	0.00	0.00	0.00	281
155	0.00	0.00	0.00	202
156	0.73	0.69	0.71	130
157	0.00	0.00	0.00	245
158	0.86	0.64	0.74	177
159	0.68	0.32	0.44	130
160	0.00	0.00	0.00	336
161	0.92	0.62	0.74	220
162	0.00	0.00	0.00	229
163	0.87	0.48	0.62	316
164	0.77	0.40	0.52	283
165	0.66	0.26	0.38	197
166	0.73	0.35	0.47	101

167	0.00	0.00	0.00	224
167	0.00	0.00	0.00	231
168	0.00	0.00	0.00	370
169	0.00	0.00	0.00	258
170	0.00	0.00	0.00	101
171	0.47	0.25	0.32	89
172	0.33	0.01	0.01	193
173	0.00	0.00	0.00	309
174	0.00	0.00	0.00	172
175	0.91	0.83	0.87	95
176	0.92	0.59	0.72	346
177	0.89	0.52	0.66	322
178	0.64	0.49	0.56	232
179	0.00	0.00	0.00	125
180	0.62	0.39	0.47	145
181	0.00	0.00	0.00	77
182	0.00	0.00	0.00	182
183				257
	0.00	0.00	0.00	
184	0.00	0.00	0.00	216
185	0.00	0.00	0.00	242
186	0.00	0.00	0.00	165
187	0.75	0.64	0.69	263
188	0.00	0.00	0.00	174
189	0.79	0.14	0.24	136
190	0.93	0.63	0.75	202
191	0.00	0.00	0.00	134
192	0.73	0.48	0.58	230
193	0.00	0.00	0.00	90
194	0.58	0.52	0.55	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.64	0.10	0.18	266
198	0.00	0.00	0.00	284
199	0.00	0.00	0.00	145
200	0.92	0.77	0.84	212
201	0.71	0.21	0.32	317
202	0.77	0.59	0.67	427
203	0.00	0.00	0.00	232
204	0.00	0.00	0.00	217
		0.00		
205	0.00		0.00	527 124
206	0.00	0.00	0.00	124
207	0.40	0.02	0.04	103
208	0.88	0.52	0.65	287
209	0.00	0.00	0.00	193
210	0.80	0.15	0.25	220
211	0.76	0.23	0.35	140
212	0.00	0.00	0.00	161
213	0.52	0.19	0.28	72
214	0.60	0.02	0.04	396
215	0.84	0.40	0.55	134
216	0.50	0.01	0.03	400
217	0.75	0.04	0.08	75
218	0.94	0.78	0.86	219
219	0.86	0.29	0.43	210
220	0.88	0.64	0.74	298
221	0.89	0.74	0.81	266
222	0.77	0.39	0.52	290
223	0.00	0.00	0.00	128
224	0.79	0.47	0.58	159
225	0.68	0.27	0.39	164
226	0.61	0.43	0.51	144
227	0.76	0.06	0.11	276
228	0.00	0.00	0.00	235
229	0.00	0.00	0.00	216
230	0.00	0.00	0.00	228
231	0.74	0.62	0.68	64
232	0.00	0.00	0.00	103
232	0.72			216
234		0.36	0.48	
	0.00	0.00	0.00	116
235	0.59	0.51	0.55	77 67
236	0.91	0.73	0.81	67
237	0.75	0.10	0.17	218
238	0.00	0.00	0.00	139
239	0.00	0.00	0.00	94
240	0.66	0.35	0.46	77
241	0.00	0.00	0.00	167
242	0.82	0.33	0.47	86
243	0.00	0.00	0.00	58
244	0.78	0.13	0.23	269
245	0.00	0.00	0.00	112
246	0.94	0.79	0.86	255
247	0.50	0.31	0.38	58
248	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.00	0.00	0.00	93
251	0.00	0.00	0.00	154
252	0.00	0.00	0.00	129
253	0.67	0.27	0.38	83
254	0.00	0.00	0.00	191

255	0.00	0.00	0.00	219
256	0.00	0.00	0.00	130
257	1.00	0.01	0.02	93
258	0.66	0.54	0.59	217
259	0.00	0.00	0.00	141
260	0.73	0.15	0.25	143
261	0.00	0.00	0.00	219
262	1.00	0.02	0.04	107
263	0.00	0.00	0.00	236
264	0.33	0.02	0.03	119
265	0.60	0.04	0.08	72
266	0.00	0.00	0.00	70
267	0.00	0.00	0.00	107
268	0.68	0.50	0.58	169
269 270	0.00	0.00 0.67	0.00	129 159
270 271	0.74 0.90	0.49	0.70 0.64	190
271	0.72	0.09	0.16	248
273	0.90	0.76	0.82	264
274	0.90	0.71	0.80	105
275	0.00	0.00	0.00	104
276	0.00	0.00	0.00	115
277	0.83	0.69	0.75	170
278	0.73	0.33	0.45	145
279	0.91	0.70	0.79	230
280	0.54	0.39	0.45	80
281	0.66	0.74	0.70	217
282	0.75	0.62	0.68	175
283	0.00	0.00	0.00	269
284	0.64	0.38	0.47	74
285	0.85	0.51	0.64	206 227
286 287	0.88 0.90	0.64 0.34	0.74 0.49	227 130
288	0.00	0.00	0.49	129
289	0.00	0.00	0.00	80
290	0.00	0.00	0.00	99
291	0.76	0.28	0.41	208
292	0.00	0.00	0.00	67
293	0.95	0.38	0.54	109
294	0.00	0.00	0.00	140
295	0.00	0.00	0.00	241
296	0.00	0.00	0.00	72
297	0.00	0.00	0.00	107
298	0.76	0.31	0.44	61
299	0.81	0.34	0.48	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.57	0.35	0.44	176
304 305	0.94 0.91	0.80 0.76	0.86 0.83	230 156
306	1.00	0.01	0.01	146
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
309	0.59	0.14	0.22	94
310	0.78	0.13	0.22	162
311	0.76	0.58	0.66	116
312	0.50	0.39	0.44	57
313	0.00	0.00	0.00	65
314	0.46	0.13	0.20	138
315	0.00	0.00	0.00	195
316	1.00	0.01	0.03	69
317	0.62	0.07	0.13	134
318	1.00 0.84	0.03	0.05 0.66	148 161
319 320		0.55 0.00		161 104
320 321	0.00 0.82	0.67	0.00 0.74	164 156
322	0.62	0.10	0.74	134
323	0.29	0.01	0.02	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328	0.96	0.73	0.83	198
329	0.62	0.32	0.42	125
330	0.67	0.02	0.05	81
331	0.00	0.00	0.00	94
332	0.00	0.00	0.00	56
333	0.00	0.00	0.00	260
334	0.00	0.00	0.00	60
335	0.00	0.00 0.51	0.00	110 71
336	0.58	0.51	0.54	71 66
337 338	0.00 0.59	0.00	0.00 0.15	66 150
338 339	0.59 0.00	0.09 0.00	0.15	150 54
340	0.85	0.63	0.72	195
341	0.77	0.22	0.72	79
342	1.00	0.05	0.10	38
=		.	- -	

343	0.64	0.49	0.55	43
344	0.00	0.00	0.00	68
345	0.50	0.01	0.03	73
346	0.00	0.00	0.00	116
347	0.84	0.47	0.60	111
348	0.00	0.00	0.00	63
349	0.83	0.70	0.76	104
350	0.63	0.59	0.61	44
351	0.70	0.17	0.28	40
352	0.90	0.56	0.69	136
353	0.00	0.00	0.00	54
354	0.00	0.00	0.00	134
355	0.73	0.30	0.43	120
356	0.00	0.00	0.00	228
357 358	0.00 0.79	0.00 0.14	0.00 0.23	269 80
359	0.84	0.62	0.72	140
360	0.00	0.00	0.00	125
361	0.89	0.73	0.81	169
362	0.00	0.00	0.00	56
363	0.93	0.73	0.82	154
364	0.00	0.00	0.00	58
365	0.00	0.00	0.00	71
366	1.00	0.70	0.83	54
367	0.00	0.00	0.00	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.00	0.00	0.00	71
372	0.61	0.54	0.57	52 150
373 274	0.81	0.45	0.58	150
374 375	0.00 0.00	0.00 0.00	0.00 0.00	93 67
375 376	0.00	0.00	0.00	76
377	0.00	0.00	0.00	106
378	0.00	0.00	0.00	86
379	0.75	0.21	0.33	14
380	0.85	0.61	0.71	122
381	0.00	0.00	0.00	104
382	0.00	0.00	0.00	66
383	1.00	0.05	0.09	110
384	0.00	0.00	0.00	155
385	0.36	0.08	0.13	50
386	0.00	0.00	0.00	64
387	0.00	0.00	0.00	93
388	1.00	0.01	0.02	102
389	0.00	0.00	0.00	108
390	0.94	0.70	0.80	178
391 392	0.00 0.86	0.00 0.57	0.00 0.69	115 42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.00	0.00	0.00	125
397	0.67	0.26	0.37	224
398	0.77	0.70	0.73	63
399	0.00	0.00	0.00	59
400	0.40	0.03	0.06	63
401	0.00	0.00	0.00	98
402	0.00	0.00	0.00	162
403	0.00	0.00	0.00	83
404 405	0.67	0.84	0.74	19
405 406	0.00 0.70	0.00 0.17	0.00	92 41
407	0.70 0.73	0.17 0.26	0.27 0.38	41
408	0.75 0.76	0.33	0.38 0.46	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.00	0.00	0.00	175
412	0.00	0.00	0.00	72
413	0.00	0.00	0.00	95
414	0.00	0.00	0.00	97
415	0.00	0.00	0.00	48
416	0.38	0.06	0.10	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.48	0.16	0.24	90
420	0.00	0.00	0.00	37
421	0.00	0.00	0.00	66 73
422	0.00	0.00	0.00	73 56
423 424	0.47 0.91	0.32 0.88	0.38 0.89	56 33
424 425	0.91 0.00	0.88 0.00	0.89 0.00	33 76
425 426	0.00	0.00	0.00	81
427	0.97	0.75	0.85	150
428	0.91	0.73	0.83	29
429	0.99	0.92	0.96	389
430	0.67	0.37	0.47	167

	431	0.00	0.00	0.00	123
	432 433	0.00 0.00	0.00 0.00	0.00 0.00	39 82
	434	0.96	0.73	0.83	66
	435	0.59	0.39	0.47	93
	436 437	0.62 0.00	0.23 0.00	0.34 0.00	87 86
	437	0.74	0.52	0.61	104
	439	0.00	0.00	0.00	100
	440	0.00	0.00	0.00	141
	441 442	0.00 0.00	0.00 0.00	0.00 0.00	110 123
	443	0.25	0.03	0.05	71
	444	0.00	0.00	0.00	109
	445	0.69	0.23	0.34	48
	446 447	0.21 0.00	0.04 0.00	0.07 0.00	76 38
	448	0.66	0.70	0.68	81
	449	0.00	0.00	0.00	132
	450 451	0.00	0.00	0.00	81 76
	451 452	0.86 0.00	0.32 0.00	0.46 0.00	76 44
	453	0.00	0.00	0.00	44
	454	0.81	0.49	0.61	70
	455 456	0.00	0.00	0.00	155
	456 457	0.67 0.00	0.05 0.00	0.09 0.00	43 72
	458	0.00	0.00	0.00	62
	459	1.00	0.10	0.18	69
	460 461	0.00	0.00	0.00	119 79
	461 462	0.00 1.00	0.00 0.06	0.00 0.12	7 <i>9</i> 47
	463	1.00	0.12	0.22	104
	464	0.00	0.00	0.00	106
	465 466	0.00 0.00	0.00 0.00	0.00 0.00	64 173
	467	0.72	0.36	0.47	107
	468	0.85	0.09	0.16	126
	469	0.00	0.00	0.00	114
	470 471	0.91 0.94	0.81 0.39	0.86 0.55	140 79
	471	0.36	0.13	0.19	143
	473	0.72	0.37	0.49	158
	474	0.00	0.00	0.00	138
	475 476	0.00 0.65	0.00 0.27	0.00 0.38	59 88
	477	0.84	0.69	0.76	176
	478	0.95	0.75	0.84	24
	479	0.00	0.00	0.00	92
	480 481	0.79 0.53	0.57 0.08	0.66 0.14	100 103
	482	0.00	0.00	0.00	74
	483	0.81	0.63	0.71	105
	484	0.00	0.00	0.00	83
	485 486	0.00 0.00	0.00 0.00	0.00 0.00	82 71
	487	0.00	0.00	0.00	120
	488	0.67	0.08	0.14	105
	489 490	0.77 1.00	0.38 0.81	0.51 0.90	87 32
	491	0.00	0.00	0.00	69
	492	0.00	0.00	0.00	49
	493	0.00	0.00	0.00	117
	494 495	0.47 0.97	0.30 0.75	0.36 0.85	61 344
	496	1.00	0.73	0.07	52
	497	0.67	0.12	0.20	137
	498	0.00	0.00	0.00	98
	499	0.58	0.18	0.27	79
micro	avg	0.81	0.29	0.43	173812
macro	avg	0.42	0.22	0.26	173812
weighted samples	_	0.60 0.41	0.29 0.28	0.37 0.32	173812 173812
sambres	avg	0.41	0.20	0.34	1/2017

```
In [68]: import warnings
         warnings.filterwarnings("ignore")
         start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=0.00001, penalty='12'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict (x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Accuracy : 0.24899 Hamming loss 0.0026806

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

0.00

0.00

1.00

0.81

0.93

0.50

0.90

0.92

0.83

0.53

0.00

0.00

0.77

0.84

0.67

0.00

0.00

0.80

0.99

0.84

0.90

0.00

0.44

0.78

0.00

0.00

0.00

0.26

0.64

0.00

0.20

0.73

0.66

0.41

0.00

0.00

0.54

0.57

0.49

0.00

0.00

0.51

0.77

0.41

0.74

0.00

0.24

0.52

0.00

0.00

0.00

0.39

0.76

0.00

0.32

0.81

0.73

0.46

0.00

0.00

0.63

0.68

0.57

0.00

0.00

0.63

0.86

0.55

0.81

0.00

0.31

0.62

258

821

541

748

724

660

235

718

468

191

429

415

274

510

466

305

247

401

86

120

129

473

143

347

Time taken to run this cell: 0:05:19.925545 Micro-average quality numbers Precision: 0.8247, Recall: 0.2907, F1-measure: 0.4298 Macro-average quality numbers Precision: 0.4562, Recall: 0.2073, F1-measure: 0.2587 recall f1-score precision support 0 0.95 0.69 0.80 5519 1 0.74 0.24 0.36 8190 2 0.86 0.35 0.50 6529 3 0.84 0.43 0.57 3231 4 0.87 0.37 0.52 6430 5 0.84 0.36 0.51 2879 6 0.90 0.49 5086 0.64 7 0.54 0.90 0.67 4533 8 3000 0.62 0.14 0.23 9 0.83 0.56 0.67 2765 10 0.79 0.01 0.03 3051 11 0.80 0.31 0.44 3009 12 0.75 0.22 0.34 2630 13 0.81 0.22 0.35 1426 14 0.92 0.53 0.67 2548 15 2371 0.85 0.12 0.22 16 0.69 0.26 0.38 873 17 0.90 0.59 0.72 2151 18 0.19 0.31 2204 0.73 19 0.69 0.47 0.56 831 20 0.77 0.47 0.59 1860 21 0.00 0.00 0.00 2023 22 0.19 0.68 0.11 1513 23 0.91 0.52 0.66 1207 24 0.72 0.09 0.17 506 25 0.73 0.33 0.45 425 26 0.66 0.42 0.52 793 27 0.70 0.23 0.35 1291 28 0.84 0.35 0.49 1208 29 0.50 0.01 0.01 406 30 0.79 0.16 0.26 504 31 0.00 0.00 0.00 732 32 0.68 0.27 0.39 441 33 1.00 0.00 0.01 1645 34 0.73 0.26 0.38 1058 35 0.70 946 0.83 0.61 36 0.73 0.16 0.26 644 37 0.96 0.75 0.84 136 38 0.65 0.38 0.48 570 39 0.39 0.90 0.25 766 40 0.72 0.18 0.29 1132 41 0.52 0.22 0.31 174 42 0.79 0.55 0.65 210 43 0.83 0.41 0.55 433 44 0.60 0.69 0.54 626 45 0.83 0.24 0.37 852 46 0.81 0.40 0.54 534 47 0.01 1.00 0.00 350 48 0.74 0.57 0.64 496 49 0.78 0.70 0.74 785 50 0.00 0.00 0.00 475 51 0.00 0.00 0.00 305 52 0.00 0.00 0.00 251 53 0.70 0.34 0.46 914 54 0.00 0.00 0.00 728

79	0.77	0.25	0.37	479
80	0.70	0.23	0.35	279
81	0.85	0.19	0.31	461
82	0.00	0.00	0.00	298
83	0.80	0.48	0.60	396
84	0.60	0.18	0.28	184
85	0.78	0.06	0.12	573
86 97	0.78	0.02	0.04	325
87 88	0.71 0.00	0.04 0.00	0.08 0.00	273 135
89	0.00	0.00	0.00	232
90	0.69	0.06	0.11	409
91	0.00	0.00	0.00	420
92	0.77	0.56	0.65	408
93	0.68	0.50	0.58	241
94	0.00	0.00	0.00	211
95	0.00	0.00	0.00	277
96	0.00	0.00	0.00	410
97 98	0.89 0.75	0.43 0.71	0.58 0.73	501 136
99	0.69	0.08	0.75	239
100	0.00	0.00	0.00	324
101	0.93	0.65	0.76	277
102	0.93	0.72	0.81	613
103	0.14	0.01	0.01	157
104	0.00	0.00	0.00	295
105	0.89	0.34	0.49	334
106	0.97	0.17	0.28	335
107 108	0.79 0.00	0.50 0.00	0.61 0.00	389 251
109	0.57	0.43	0.49	317
110	0.00	0.00	0.00	187
111	0.70	0.10	0.17	140
112	0.68	0.32	0.44	154
113	0.67	0.15	0.24	332
114	0.00	0.00	0.00	323
115	1.00	0.00	0.01	344
116	0.75	0.57	0.65	370
117 118	0.61 0.79	0.12 0.61	0.20 0.69	313 874
119	0.75	0.01	0.03	293
120	0.00	0.00	0.00	200
121	0.75	0.54	0.63	463
122	0.00	0.00	0.00	119
123	0.00	0.00	0.00	256
124	0.89	0.78	0.83	195
125	0.00	0.00	0.00	138
126	0.83	0.49	0.61	376 122
127 128	0.00 0.00	0.00 0.00	0.00 0.00	122 252
129	0.00	0.00	0.00	144
130	1.00	0.01	0.01	150
131	0.00	0.00	0.00	210
132	1.00	0.00	0.01	361
133	0.95	0.55	0.70	453
134	0.87	0.81	0.84	124
135	0.00	0.00	0.00	91 138
136 137	0.95 0.62	0.15 0.30	0.26 0.41	128 218
138	1.00	0.01	0.41	243
139	0.00	0.00	0.00	149
140	0.75	0.52	0.61	318
141	0.00	0.00	0.00	159
142	0.65	0.48	0.55	274
143	0.86	0.79	0.83	362
144	0.50	0.01	0.02	118
145 146	0.65 0.71	0.35 0.09	0.45 0.16	164 461
147	0.71	0.58	0.16 0.63	461 159
148	0.00	0.00	0.00	166
149	0.98	0.47	0.63	346
150	1.00	0.04	0.07	350
151	0.88	0.69	0.78	55
152	0.83	0.47	0.60	387
153	0.57	0.03	0.05	150
154 155	0.00 a aa	0.00	0.00 0.00	281 202
155 156	0.00 0.80	0.00 0.69	0.00 0.74	202 130
157	0.00	0.09	0.74	245
158	0.89	0.66	0.75	177
159	0.68	0.32	0.44	130
160	0.00	0.00	0.00	336
161	0.91	0.63	0.74	220
162	0.00	0.00	0.00	229
163	0.89	0.43	0.58	316
164 165	0.79 0.64	0.34 0.30	0.47 0.41	283 197
166	0.64 0.72	0.30 0.49	0.41 0.58	197
		- • • •		_~_

167	0.00	0.00	0.00	224
167	0.00	0.00	0.00	231
168	0.83	0.01	0.03	370
169	0.00	0.00	0.00	258
170	0.00	0.00	0.00	101
171	0.48	0.26	0.34	89
172	0.00	0.00	0.00	193
173	0.25	0.00	0.01	309
174	0.00	0.00	0.00	172
175	0.92	0.84	0.88	95
176	0.94	0.58	0.71	346
177	0.93	0.46	0.62	322
178	0.66	0.46	0.54	232
179	0.00	0.00	0.00	125
180	0.54	0.36	0.43	145
181	0.00	0.00	0.00	77
182	0.00	0.00	0.00	182
			0.00	
183	0.00	0.00		257 21.6
184	0.00	0.00	0.00	216
185	0.00	0.00	0.00	242
186	0.00	0.00	0.00	165
187	0.75	0.59	0.66	263
188	0.00	0.00	0.00	174
189	0.90	0.19	0.32	136
190	0.95	0.50	0.66	202
191	0.00	0.00	0.00	134
192	0.74	0.45	0.56	230
193	0.00	0.00	0.00	90
194	0.60	0.44	0.50	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.61	0.06	0.12	266
198	0.00	0.00	0.00	284
199	0.00	0.00	0.00	145
200	0.93	0.70	0.80	212
201	0.67	0.10	0.17	317
202	0.80	0.57	0.67	427
203	0.00	0.00	0.00	232
204				217
	0.00	0.00	0.00	
205	0.50	0.00	0.00	527
206	0.00	0.00	0.00	124
207	1.00	0.02	0.04	103
208	0.90	0.50	0.64	287
209	0.00	0.00	0.00	193
210	0.76	0.25	0.38	220
211	0.83	0.17	0.28	140
212	0.00	0.00	0.00	161
213	0.61	0.31	0.41	72
214	0.67	0.01	0.01	396
215	0.84	0.38	0.52	134
216	0.00	0.00	0.00	400
217	0.40	0.05	0.09	75
218	0.97	0.76	0.85	219
219	0.85	0.27	0.41	210
220	0.91	0.60	0.73	298
221	0.97	0.65	0.78	266
222	0.77	0.38	0.51	290
223	0.00	0.00	0.00	128
224	0.78	0.46	0.58	159
225	0.73	0.26	0.39	164
226	0.64	0.38	0.48	144
227	0.73	0.03	0.06	276
228	0.00	0.00	0.00	235
229	0.00	0.00	0.00	216
230	0.00	0.00	0.00	228
231	0.75	0.61	0.67	64
232	0.00	0.00	0.00	103
233	0.73	0.31	0.44	216
234				
	0.00	0.00	0.00	116 77
235	0.56	0.42	0.48	77
236	0.96	0.66	0.78	67
237	0.79	0.07	0.13	218
238	0.00	0.00	0.00	139
239	0.00	0.00	0.00	94
240	0.67	0.21	0.32	77
241	0.00	0.00	0.00	167
242	0.87	0.31	0.46	86
243	0.00	0.00	0.00	58
244	0.79	0.10	0.18	269
245	0.00	0.00	0.00	112
246	0.94	0.78	0.85	255
247	0.48	0.24	0.32	58
248	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.50	0.02	0.04	93
251	0.83	0.06	0.12	154
252	0.00	0.00	0.00	129
253	0.74	0.28	0.40	83
254	0.00	0.00	0.00	191

255	0.00	0.00	0.00	219
256	0.00	0.00	0.00	130
257	1.00	0.03	0.06	93
258	0.66	0.52	0.58	217
259	0.00	0.00	0.00	141
260	0.90	0.13	0.23	143
261	0.00	0.00	0.00	219
262	0.60	0.03	0.05	107
263	0.00	0.00	0.00	236
264	0.00	0.00	0.00	119
265	0.50	0.03	0.05	72
266	0.00	0.00	0.00	70
267	0.00	0.00	0.00	107
268	0.69	0.46	0.55	169
269 270	0.00	0.00	0.00	129 150
270 271	0.73 0.89	0.67 0.40	0.70 0.55	159 190
272	0.78	0.12	0.22	248
273	0.91	0.73	0.81	264
274	0.89	0.71	0.79	105
275	0.00	0.00	0.00	104
276	0.00	0.00	0.00	115
277	0.84	0.68	0.75	170
278	0.75	0.25	0.37	145
279	0.92	0.66	0.77	230
280	0.57	0.34	0.43	80
281	0.67	0.70	0.68	217
282	0.76	0.59	0.66	175
283	0.00	0.00	0.00	269
284	0.58	0.26	0.36	74
285	0.84	0.52	0.65	206 227
286 287	0.89 0.93	0.63 0.32	0.73 0.47	227 130
288	0.00	0.00	0.47	129
289	0.00	0.00	0.00	80
290	0.00	0.00	0.00	99
291	0.79	0.26	0.39	208
292	0.00	0.00	0.00	67
293	0.96	0.40	0.57	109
294	0.00	0.00	0.00	140
295	0.00	0.00	0.00	241
296	0.00	0.00	0.00	72
297	0.00	0.00	0.00	107
298	0.85	0.38	0.52	61
299	0.92	0.44	0.60	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73 176
303 304	0.68 0.96	0.31 0.76	0.42 0.84	176 230
305	0.96	0.62	0.75	156
306	1.00	0.01	0.01	146
307	0.00	0.00	0.00	98
308	0.00	0.00	0.00	78
309	0.78	0.07	0.14	94
310	0.79	0.14	0.23	162
311	0.77	0.57	0.65	116
312	0.51	0.33	0.40	57
313	0.00	0.00	0.00	65
314	0.51	0.22	0.30	138
315	0.00	0.00	0.00	195
316	1.00	0.06	0.11	69 134
317 318	0.58 0.00	0.05 0.00	0.10 0.00	148
319	0.84	0.47	0.60	161
320	0.00	0.00	0.00	104
321	0.81	0.64	0.72	156
322	0.72	0.25	0.37	134
323	0.61	0.11	0.18	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115
328	0.99	0.67	0.80	198
329	0.65	0.24	0.35	125
330 221	0.67	0.07	0.13	81 04
331 332	0.00	0.00	0.00 0.00	94 56
332 333	0.00 0.00	0.00 0.00	0.00 0.00	56 260
334	0.00	0.00	0.00	60
335	0.00	0.00	0.00	110
336	0.63	0.51	0.56	71
337	0.00	0.00	0.00	66
338	0.80	0.05	0.10	150
339	0.00	0.00	0.00	54
340	0.84	0.58	0.69	195
341	0.93	0.18	0.30	79
342	1.00	0.03	0.05	38

343	0.63	0.44	0.52	43
344	0.75	0.44	0.08	68
345	0.61	0.15	0.24	73
346	0.00	0.00	0.00	116
347	0.87	0.36	0.51	111
348	0.00	0.00	0.00	63
349	0.83	0.69	0.75	104
350	0.62	0.59	0.60	44
351	0.75	0.15	0.25	40
352	0.96	0.48	0.64	136
353	0.00	0.00	0.00	54
354	0.00	0.00	0.00	134
355	0.80	0.28	0.41	120
356 357	0.00	0.00	0.00	228
357 358	0.75 0.80	0.02 0.15	0.04 0.25	269 80
359	0.85	0.54	0.66	140
360	0.00	0.00	0.00	125
361	0.90	0.71	0.79	169
362	0.00	0.00	0.00	56
363	0.93	0.68	0.78	154
364	0.00	0.00	0.00	58
365	0.00	0.00	0.00	71
366	1.00	0.70	0.83	54
367	0.00	0.00	0.00	116
368	0.00	0.00	0.00	54
369	0.00	0.00	0.00	71
370	0.00	0.00	0.00	61
371	0.00	0.00	0.00	71
372	0.67	0.50	0.57	52 150
373 274	0.83	0.39	0.53	150
374 375	0.00 0.00	0.00 0.00	0.00 0.00	93 67
375 376	0.00	0.00	0.00	76
377	0.00	0.00	0.00	106
378	0.00	0.00	0.00	86
379	0.50	0.07	0.12	14
380	1.00	0.45	0.62	122
381	0.00	0.00	0.00	104
382	0.00	0.00	0.00	66
383	0.92	0.10	0.18	110
384	0.00	0.00	0.00	155
385	0.44	0.08	0.14	50
386	0.00	0.00	0.00	64
387	0.00	0.00	0.00	93
388	1.00	0.02	0.04	102
389	0.00	0.00	0.00	108
390 301	0.95	0.68	0.79	178
391 392	0.00 0.89	0.00 0.40	0.00 0.56	115 42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.00	0.00	0.00	125
397	0.80	0.33	0.46	224
398	0.85	0.70	0.77	63
399	0.00	0.00	0.00	59
400	0.50	0.03	0.06	63
401	0.00	0.00	0.00	98
402	0.00	0.00	0.00	162
403	0.00	0.00	0.00	83
404 405	0.67	0.84	0.74 0.00	19 92
406	0.00 0.78	0.00 0.17	0.28	41
407	0.76	0.30	0.43	43
408	0.79	0.28	0.41	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.00	0.00	0.00	175
412	0.00	0.00	0.00	72
413	0.00	0.00	0.00	95
414	0.00	0.00	0.00	97
415	0.00	0.00	0.00	48
416	0.50	0.04	0.07	83
417	0.00	0.00	0.00	40
418	0.00	0.00	0.00	91
419	0.56	0.10	0.17	90
420	0.00	0.00	0.00	37
421 422	0.00 a aa	0.00	0.00	66 73
422 423	0.00 0.47	0.00 0.25	0.00 0.33	73 56
423 424	0.47	0.25	0.88	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	0.98	0.72	0.83	150
428	0.95	0.69	0.80	29
429	0.99	0.88	0.93	389
430	0.83	0.26	0.39	167

	431	0.00	0.00	0.00	123
	432	0.67	0.05	0.10	39
	433	0.00	0.00	0.00	82
	434	1.00	0.68	0.81	66
	435	0.65	0.30	0.41	93
	436	0.61	0.25	0.36	87
	437	0.00	0.00	0.00	86
	438	0.70	0.41	0.52	104
	439	0.00	0.00	0.00	100
	440	0.00	0.00	0.00	141
	441	0.00	0.00	0.00	110
	442	0.00	0.00	0.00	123
	443	0.25	0.01	0.03	71
	444	0.00	0.00	0.00	109
	445	0.75	0.06	0.12	48
	446			0.05	76
		0.17	0.03		
	447	0.00	0.00	0.00	38
	448	0.66	0.74	0.70	81
	449	1.00	0.01	0.02	132
	450	0.00	0.00	0.00	81
	451	0.88	0.28	0.42	76
	452	0.00	0.00	0.00	44
	453	0.00	0.00	0.00	44
	454	0.92	0.49	0.64	70
	455	0.00	0.00	0.00	155
	456	1.00	0.02	0.05	43
	457	1.00	0.01	0.03	72
	458	0.00	0.00	0.00	62
	459	1.00	0.12	0.21	69
	460	0.00	0.00	0.00	119
	461	0.00	0.00	0.00	79
	462	0.50	0.09	0.15	47
	463	0.00	0.00	0.00	104
	464	0.00	0.00	0.00	106
	465	0.00	0.00	0.00	64
	466	0.00	0.00	0.00	173
	467	0.82	0.35	0.49	107
	468	0.83	0.04	0.08	126
	469	0.00	0.00	0.00	114
	470	0.92	0.81	0.86	140
	471	1.00	0.37	0.54	79
	472	0.20	0.01	0.01	143
	473	0.77	0.28	0.41	158
	474	0.00	0.00	0.00	138
	475	0.00	0.00	0.00	59
	476	0.65	0.19	0.30	88
	477	0.85	0.67	0.75	176
	478	0.90	0.79	0.84	24
	479	0.00	0.00	0.00	92
	480	0.80	0.53	0.64	100
	481	0.50	0.05	0.09	103
	482	0.00	0.00	0.00	74
	483	0.86	0.56	0.68	105
	484	0.00	0.00	0.00	83
	485	0.00	0.00	0.00	82
	486	0.00	0.00	0.00	71
	487	0.00	0.00	0.00	120
	488	0.40	0.02	0.04	105
	489	0.79	0.26	0.40	87
	490	1.00	0.81	0.90	32
	491	0.00	0.00	0.00	69
	492	0.00	0.00	0.00	49
	493	0.00	0.00	0.00	117
	494	0.59	0.21	0.31	61
	495	0.97	0.75	0.85	344
	496	0.00	0.00	0.00	52
	497	0.60	0.02	0.04	137
	498	0.00	0.00	0.00	98
	499	0.68	0.16	0.27	79
		2.00			, ,
mica	2)/6	0 02	a 20	0.42	172012
micro	_	0.82	0.29	0.43	173812
macro	•	0.46	0.21	0.26	173812
weighted	_	0.65	0.29	0.38	173812
samples	avg	0.41	0.28	0.32	173812

4.5.7 Logistic Regression Hyper Parameter Tuning (1 to 3grams)

In [71]: from sklearn.model_selection import GridSearchCV start = datetime.now() classifier = OneVsRestClassifier(SGDClassifier(loss='log', penalty='l1'), n_jobs=-1) parameters = {'estimator_alpha':[2*10**-7, 4*10**-7, 6*10**-7, 8*10**-7]} clf = GridSearchCV(classifier, parameters, cv= 3, return_train_score=True, scoring='f1_micro', n_jobs=-1) clf.fit(x_train_multilabel, y_train) print("Time taken to run this cell :", datetime.now() - start)

Time taken to run this cell : 1:53:21.364263

```
In [72]: plt.figure(figsize=(20,10))
    train_auc= clf.cv_results_['mean_train_score']
    cv_auc = clf.cv_results_['mean_test_score']

plt.plot(parameters['estimator__alpha'], train_auc, label='Train')
    plt.plot(parameters['estimator__alpha'], cv_auc, label='CV')

plt.scatter(parameters['estimator__alpha'], train_auc, label='Train points')
    plt.scatter(parameters['estimator__alpha'], cv_auc, label='CV points')

plt.legend()
    plt.xlabel("alpha: Hyperparameter")
    plt.ylabel("Micro F1 score")
    plt.title("Hyperparameter v/s Micro F1score plot")
    plt.grid()
    plt.show()
```



```
In [73]: import warnings
         warnings.filterwarnings("ignore")
         start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=8*10**-7, penalty='l1'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict(x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell : 0:11:15.409339

Hamming loss 0.00272156

Micro-average quality numbers
Precision: 0.6923, Recall: 0.3908, F1-measure: 0.4996

Macro-average quality numbers

Precision: 0.5528, Recall: 0.3126, F1-measure: 0.3855

n: 0	.5528, Recall: precision	0.3126, recall	f1-measure: f1-score	0.3855 support
0	0.94	0.76	0.84	5519
1	0.64	0.39	0.48	8190
2	0.77	0.44	0.56	6529
3	0.79	0.53	0.63	3231
4	0.75	0.48	0.58	6430
5	0.80	0.41	0.54	2879
6 7	0.84 0.85	0.56 0.60	0.67 0.70	5086 4533
8	0.56	0.14	0.22	3000
9	0.79	0.60	0.68	2765
10	0.56	0.25	0.35	3051
11	0.66	0.40	0.50	3009
12 13	0.58 0.70	0.33 0.35	0.42 0.47	2630 1426
14	0.89	0.59	0.47	2548
15	0.60	0.27	0.37	2371
16	0.66	0.29	0.40	873
17	0.87	0.63	0.73	2151
18	0.56	0.26	0.35	2204
19 20	0.70 0.75	0.42 0.50	0.53 0.60	831 1860
21	0.31	0.14	0.19	2023
22	0.51	0.26	0.34	1513
23	0.88	0.59	0.70	1207
24	0.54	0.29	0.38	506
25 26	0.63 0.64	0.36 0.41	0.46 0.50	425 793
27	0.61	0.41	0.49	1291
28	0.72	0.42	0.53	1208
29	0.41	0.12	0.18	406
30	0.67	0.21	0.32	504
31 32	0.26 0.60	0.08 0.30	0.13 0.40	732 441
33	0.60	0.30	0.40	1645
34	0.66	0.26	0.37	1058
35	0.83	0.58	0.68	946
36	0.65	0.27	0.38	644
37 38	0.98	0.66	0.79 0.48	136 570
39	0.61 0.81	0.40 0.32	0.46	766
40	0.59	0.40	0.48	1132
41	0.47	0.21	0.29	174
42	0.74	0.51	0.60	210
43 44	0.73	0.44	0.55	433
45	0.66 0.69	0.50 0.38	0.57 0.49	626 852
46	0.75	0.48	0.59	534
47	0.39	0.21	0.27	350
48		0.53	0.62	496
49 50	0.78	0.67	0.72	785 475
51	0.20 0.40	0.11 0.16	0.14 0.23	475 305
52	0.38	0.04	0.07	251
53	0.63	0.40	0.49	914
54	0.49	0.19	0.28	728
55 56	0.38 0.43	0.05 0.24	0.08 0.31	258 821
57	0.48	0.12	0.19	541
58	0.72	0.34	0.46	748
59	0.93	0.68	0.78	724
60	0.35	0.13	0.19	660
61 62	0.70 0.92	0.21 0.74	0.32 0.82	235 718
63		0.74	0.75	468
64		0.32	0.40	191
65	0.29	0.11	0.16	429
66	0.28	0.07	0.11	415
67 68	0.72 0.82	0.51 0.53	0.60 0.64	274 510
69	0.67	0.33 0.45	0.54 0.54	466
70	0.32	0.12	0.18	305
71	0.50	0.17	0.25	247
72	0.78	0.51	0.62	401
73 74	0.94 0.82	0.79 0.44	0.86 0.57	86 120
75	0.92	0.44	0.78	129
76	0.34	0.03	0.05	473
77	0.45	0.30	0.36	143
78 79	0.78 0.67	0.50 0.26	0.61 0.37	347 479
79	0.67	Ø.20	0.37	479

80	0.54	0.39	0.45	279
81	0.70	0.25	0.43	461
82	0.36	0.23	0.07	298
83	0.77	0.48	0.59	396
84	0.53	0.38	0.44	184
85	0.59	0.25	0.36	573
86	0.46	0.07	0.12	325
87	0.51	0.38	0.44	273
88	0.43	0.20	0.27	135
89	0.36	0.12	0.19	232
90	0.52	0.39	0.45	409
91	0.61	0.29	0.39	420
92	0.78	0.59	0.67	408
93	0.67	0.46	0.55	241
94	0.38	0.08	0.13	211
95	0.43	0.13	0.20	277
96	0.23	0.08	0.11	410
97	0.85	0.48	0.61	501
98	0.77	0.60	0.67	136
99	0.50	0.34	0.41	239
100	0.53	0.15	0.24	324
101	0.91	0.71	0.80	277
102	0.90	0.76	0.82	613
103	0.47	0.18	0.26	157
104	0.30	0.11	0.16	295
105	0.76	0.45	0.56	334
106	0.87	0.33	0.48	335
107	0.75	0.56	0.64	389
108	0.62	0.29	0.40	251
109	0.56	0.47	0.51	317
110	0.70	0.11	0.19	187
111	0.62	0.13	0.21	140
112	0.71	0.48	0.57	154
113	0.55	0.21	0.31	332
114	0.50	0.31	0.38	323
115	0.47	0.29	0.36	344
116	0.74	0.55	0.63	370
117	0.56	0.24	0.34	313
118	0.77	0.74	0.76	874
119	0.41	0.24	0.30	293
120	0.30	0.04	0.08	200
121	0.75	0.50	0.60	463
122	0.34	0.11	0.17	119
123	0.36	0.02	0.03	256
124	0.91	0.72	0.80	195
125	0.37	0.13	0.19	138
126	0.80	0.58	0.67	376
127	0.26	0.04	0.07	122
128	0.22	0.03	0.06	252
129	0.50	0.29	0.37	144
130	0.41	0.13	0.19	150
131	0.30	0.06	0.10	210
132	0.65	0.31	0.42	361
133	0.91	0.63	0.75	453
134	0.89	0.77	0.83	124
135	0.27	0.07	0.11	91
136	0.71	0.36	0.48	128
137	0.56	0.40	0.47	218
138	0.57	0.21	0.31	243
139	0.36	0.21	0.27	149
140	0.75	0.49	0.59	318
141	0.37	0.13	0.19	159
142	0.61	0.40	0.48	274
143	0.86	0.81	0.83	362
144	0.53	0.25	0.34	118
145	0.60	0.35	0.45	164
146	0.56	0.33	0.42	461
147	0.70	0.50	0.58	159
148	0.35	0.14	0.20	166
149	0.96	0.57	0.71	346
150	0.67	0.15	0.25	350
151	0.93	0.71	0.80	55
152	0.77	0.55	0.64	387
153	0.47	0.20	0.28	150
154	0.56	0.13	0.21	281
155	0.39	0.13	0.20	202
156	0.80	0.66	0.72	130
157	0.41	0.07	0.12	245
158	0.93	0.65	0.76	177
159	0.54	0.33	0.41	130
160	0.47	0.21	0.29	336
161	0.88	0.65	0.75	220
162	0.23	0.06	0.10	229
163 164	0.88 0.75	0.45 0.46	0.59	316
164 165	0.75 0.56	0.46 0.31	0.57 0.40	283 197
165 166	0.56 0.69	0.31	0.40 0.58	197
		1/1	×	
167	0.45	0.50 0.16	0.38	101 231

160	0 50	0.20	0.20	270
168	0.58	0.30	0.39	370
169	0.40	0.21	0.28	258
170	0.58	0.14	0.22	101
171	0.38	0.27	0.31	89
172	0.53	0.35	0.42	193
173	0.48	0.29	0.36	309
174	0.54	0.12	0.20	172
175	0.93	0.71	0.80	95
176	0.91	0.62	0.74	346
177	0.86	0.60	0.71	322
178	0.63	0.52	0.57	232
179	0.38	0.09	0.14	125
180	0.63	0.36	0.46	145
181	0.55	0.14	0.23	77
182	0.23	0.08	0.12	182
183	0.60	0.35	0.44	257
184	0.25	0.08	0.12	216
185	0.37	0.17	0.23	242
186	0.44	0.17	0.25	165
187	0.76	0.58	0.66	263
188	0.45	0.13	0.20	174
189	0.75	0.43	0.55	136
190	0.89	0.57	0.69	202
191	0.44	0.18	0.25	134
192	0.62	0.42	0.50	230
193	0.38	0.14	0.21	90
194	0.56	0.57	0.56	185
195	0.27	0.08	0.12	156
196	0.31	0.10	0.15	160
197	0.41	0.11	0.17	266
198	0.38	0.12	0.18	284
199	0.33	0.07	0.11	145
200	0.93	0.77	0.84	212
201	0.65	0.25	0.36	317
202	0.77	0.60	0.68	427
203	0.33	0.14	0.20	232
204	0.45	0.30	0.36	217
205	0.50	0.50	0.50	527
206	0.29	0.06	0.11	124
207	0.43	0.20	0.28	103
208	0.85	0.54	0.66	287
209	0.33	0.10	0.16	193
210	0.70	0.40	0.51	220
211	0.68	0.19	0.30	140
212	0.18	0.04	0.07	161
213	0.60	0.44	0.51	72
214	0.63	0.46	0.53	396
215	0.79	0.36	0.49	134
216	0.54	0.22	0.31	400
217	0.50	0.27	0.35	75
218	0.97	0.76	0.85	219
219	0.74	0.41	0.53	210
220	0.88	0.66	0.76	298
221	0.95	0.71	0.81	266
222	0.75	0.42	0.54	290
223	0.10	0.01	0.01	128
224	0.76	0.46	0.57	159
225	0.56	0.31	0.40	164
226	0.55	0.32	0.40	144
227	0.56	0.38	0.46	276
228	0.14	0.03	0.04	235
229	0.23	0.04	0.06	216
230	0.38	0.19		228
			0.26	
231	0.76	0.55	0.64	64
232	0.30	0.15	0.20	103
233	0.71	0.37	0.48	216
234	0.60	0.21	0.31	116
235	0.52	0.34	0.41	77
236	0.90	0.69	0.78	67
237	0.53	0.15	0.24	218
238	0.41	0.15	0.22	139
239	0.33	0.01	0.02	94
240	0.62	0.30	0.40	77
241	0.47	0.10	0.16	167
242	0.79	0.36	0.50	86
243	0.41	0.12	0.19	58
244	0.60	0.31	0.41	269
244	0.33	0.12	0.41	112
246	0.95	0.78	0.86	255
247	0.36	0.16	0.22	58
248	0.36	0.05	0.09	81
249	0.17	0.02	0.04	131
250	0.44	0.26	0.32	93
251	0.62	0.31	0.41	154
252	0.33	0.04	0.07	129
253	0.62	0.37	0.47	83
253 254	0.02	0.08	0.47	191
255	0.13	0.05	0.07	219

256	0.20	0.05	0.00	120
256	0.28	0.05	0.09	130
257	0.48	0.25	0.33	93
258	0.65	0.48	0.55	217
259	0.33	0.11	0.16	141
260	0.76	0.20	0.32	143
261	0.57	0.17	0.27	219
262	0.59	0.35	0.44	107
263	0.38	0.19	0.25	236
264	0.29	0.21	0.24	119
265	0.55	0.22	0.32	72
266	0.10	0.01	0.02	70
267	0.35	0.17	0.23	107
268	0.66	0.47	0.55	169
269	0.42	0.12	0.19	129
270	0.72	0.56	0.63	159
271	0.85	0.50	0.63	190
272	0.61	0.28	0.38	248
273	0.90	0.75	0.82	264
274	0.89	0.70	0.78	105
275	0.46	0.11	0.17	104
276	0.06	0.01	0.02	115
277	0.84	0.62	0.71	170
278	0.74	0.41	0.53	145
279	0.90	0.72	0.80	230
280	0.56	0.41	0.47	80
281	0.65	0.53	0.59	217
282	0.75	0.52	0.61	175
283	0.32	0.13	0.18	269
284	0.62	0.34	0.44	74
285	0.83	0.49	0.62	206
286	0.89	0.67	0.76	227
287	0.81	0.42	0.55	130
288	0.31	0.07	0.11	129
289	0.38	0.06	0.11	80
290	0.29	0.13	0.18	99
291	0.76	0.38	0.50	208
292	0.27	0.04	0.08	67
293	0.82	0.50	0.62	109
294	0.45	0.25	0.32	140
295	0.21	0.15	0.17	241
296	0.39	0.15	0.22	72
297	0.43	0.14	0.21	107
298	0.64	0.49	0.56	61
299	0.82	0.55	0.66	77
300	0.17	0.09	0.12	111
301	1.00	0.01	0.02	126
302	0.14	0.01	0.03	73
303	0.57	0.40	0.47	176
304	0.91	0.79	0.85	230
305	0.88	0.74	0.81	156
306	0.48	0.42	0.45	146
307	0.41	0.13	0.20	98
308	0.17	0.01	0.02	78
309	0.71	0.13	0.02	94
310	0.71	0.38	0.50	162
311	0.76	0.52	0.62	116
312	0.58	0.25	0.35	57
313	0.86	0.09	0.17	65
314	0.49	0.32	0.39	138
315	0.54	0.30	0.39	195
316	0.45	0.36	0.40	69
317	0.43	0.36 0.15	0.40	134
318	0.52	0.39	0.44	148
319	0.84	0.53	0.44 0.65	161
320	0.25	0.17	0.20	104
321	0.80	0.62	0.70	156
322	0.61	0.62	0.78	134
323	0.53	0.41	0.46	232
324	0.28	0.16	0.40	92
324	0.28	0.18	0.21	197
326	0.40	0.27	0.06	126
327	0.17	0.04	0.05	115
328	0.18	0.71	0.82	198
329	0.58	0.71	0.39	125
339	0.58 0.73	0.30	0.39	81
331	0.73	0.23	0.36 0.18	81 94
	0.41 0.53	0.12 0.18	0.18 0.27	94 56
332 333				260
333 334	0.23 0.40	0.06 0.13	0.09 0.20	
334 335	0.40 0.50	0.13 0.08	0.20 0.14	60 110
335 336		0.08 0.49	0.14 0.56	110 71
336 337	0.66 0.20	0.49 0.08	0.56 0.11	71 66
337	0.44	0.08 0.37	0.11	150
339 340	0.00 0.82	0.00 0.61	0.00 0.70	54 105
340 341	0.82 0.90	0.61 0.58	0.70 0.71	195 79
341 342	0.90 0.52		0.71 0.43	
342 343	0.52 0.61	0.37 0.44	0.43 0.51	38 43
J 4 3	0.61	0.44	0.51	43

344	0.57	0.31	0.40	68
345	0.68	0.36	0.47	73
346	0.17	0.03	0.06	116
347	0.82	0.46	0.59	111
348	0.30	0.13	0.18	63
349	0.84	0.64	0.73	104
350	0.62	0.55	0.58	44
351	0.58	0.35	0.44	40
352	0.93	0.59	0.72	136
353	0.50	0.22	0.31	54
354	0.42	0.11	0.18	134
355	0.63	0.36	0.46	120
356	0.51	0.34	0.41	228
357	0.64	0.42	0.50	269
358	0.63	0.36	0.46	80
359	0.83	0.61	0.71	140
360	0.39	0.19	0.26	125
			0.81	
361	0.91	0.73		169
362	0.11	0.04	0.05	56
363	0.90	0.73	0.81	154
364	0.43	0.16	0.23	58
365	0.21	0.08	0.12	71
366	0.97	0.67	0.79	54
367	0.30	0.09	0.14	116
368	0.36	0.07	0.12	54
369	0.09	0.01	0.02	71
370	0.33	0.02	0.03	61
371	0.35	0.08	0.14	71
372	0.70	0.44	0.54	52
373	0.74	0.49	0.59	150
374	0.38	0.14	0.20	93
375	0.21	0.06	0.09	67
376	0.17	0.01	0.02	76
377	0.49	0.35	0.41	106
378	0.25	0.02	0.04	86
379	0.40	0.14	0.21	14
380	0.91	0.55	0.68	122
381	0.23	0.07	0.10	104
382	0.41	0.14	0.20	66
383	0.58	0.37	0.45	110
384	0.16	0.02	0.03	155
385	0.75	0.24	0.36	50
386	0.23	0.09	0.13	64
387	0.35	0.10	0.15	93
388	0.48	0.24	0.32	102
389	0.06	0.01	0.02	108
390	0.93	0.69	0.79	178
391	0.47	0.20	0.28	115
392	0.75	0.43	0.55	42
393	0.00	0.00	0.00	134
394	0.33	0.07	0.12	112
395	0.49	0.28	0.36	176
396	0.35	0.12	0.18	125
397	0.72	0.43	0.54	224
398	0.82	0.67	0.74	63
399	0.23	0.05	0.08	59
400	0.52	0.38	0.44	63
401	0.51	0.32	0.39	98
402	0.53	0.22	0.31	162
403				
	0.36	0.19	0.25	83
404	0.68	0.79	0.73	19
405	0.34	0.11	0.17	92
406	0.82	0.34	0.48	41
407	0.62	0.35	0.45	43
408	0.80	0.49	0.61	160
409	0.15	0.10	0.12	50
410	0.00	0.00	0.00	19
410	0.32	0.19	0.24	175
412	0.40	0.08	0.14	72
413	0.46	0.06	0.11	95
414	0.27	0.07	0.11	97
415	0.41	0.15	0.22	48
416	0.52	0.41	0.46	83
417	0.36	0.12	0.19	40
418	0.48	0.12	0.15	91
419	0.57	0.33	0.42	90
420	0.35	0.22	0.27	37
421	0.08	0.02	0.03	66
422	0.63	0.52	0.57	73
423	0.48	0.25	0.33	56
424	0.90	0.85	0.88	33
425	0.00	0.00	0.00	76
426	0.17	0.02	0.04	81
427	0.96	0.73	0.83	150
428	0.95	0.69	0.80	29
429	0.99	0.94	0.97	389
430	0.63	0.40	0.49	167
431	0.55	0.13	0.21	123
		-		=

	432	0.46	0.31	0.37	39
	433	0.31	0.28	0.29	82
	434	1.00	0.71	0.83	66
	435	0.60	0.41	0.49	93
	436	0.57	0.37	0.45	87
	437	0.15	0.03	0.06	86
	438	0.71	0.51	0.59	104
	439	0.56	0.15	0.24	100
	440	0.44	0.06	0.10	141
	441	0.48	0.37	0.42	110
	442	0.35	0.15	0.21	123
	443	0.50			71
			0.14	0.22	
	444	0.30	0.07	0.12	109
	445	0.53	0.42	0.47	48
	446	0.44	0.37	0.40	76
	447	0.33	0.24	0.28	38
	448	0.63	0.52	0.57	81
	449	0.60	0.33	0.42	132
	450	0.44	0.32	0.37	81
	451	0.87	0.34	0.49	76
	452	0.00	0.00	0.00	44
	453	0.00	0.00		44
				0.00	
	454	0.83	0.57	0.68	70
	455	0.37	0.18	0.24	155
	456	0.48	0.23	0.31	43
	457	0.56	0.31	0.40	72
	458	0.40	0.13	0.20	62
	459	0.58	0.26	0.36	69
	460	0.10	0.03	0.04	119
	461	0.72	0.23	0.35	79
	462	0.55	0.23	0.33	47
	463	0.44	0.16	0.24	104
	464	0.63	0.41	0.49	106
	465	0.58	0.28	0.38	64
	466	0.54	0.44	0.48	173
	467	0.72	0.45	0.55	107
	468	0.56	0.25	0.35	126
	469	0.57	0.04	0.07	114
	470	0.93	0.82	0.87	140
	471	0.79	0.43	0.56	79
	472	0.40	0.37	0.38	143
	473	0.65	0.42	0.51	158
	474	0.50	0.11	0.18	138
	475	0.00	0.00	0.00	59
	476	0.66	0.38	0.48	88
	477	0.81	0.69	0.74	176
	478	0.95	0.79	0.86	24
	479	0.18	0.08	0.11	92
	480	0.79	0.54	0.64	100
	481	0.49	0.30	0.37	103
	482	0.37	0.22	0.27	74
	483	0.78	0.62	0.69	105
	484	0.28	0.06	0.10	83
	485	0.24	0.05	0.08	82
	486	0.45	0.18	0.26	71
	487	0.48	0.20	0.28	120
	488	0.50	0.06	0.10	105
	489	0.70	0.37	0.48	87
	490	1.00	0.84	0.92	32
	491	0.14	0.01	0.03	69
	492	0.50	0.02	0.04	49 117
	493	0.17	0.04	0.07	117
	494	0.52	0.23	0.32	61
	495	0.93	0.82	0.87	344
	496	0.37	0.19	0.25	52
	497	0.59	0.28	0.38	137
	498	0.33	0.15	0.21	98
	499	0.50	0.22	0.30	79
	•				
micno	avg	0.69	0.39	0.50	173812
micro					
macro	-	0.55	0.31	0.39	173812
weighted	_	0.65	0.39	0.48	173812
samples	avg	0.47	0.37	0.39	173812

4.5.8 Linear SVM Hyper Parameter Tuning (1 to 3grams)

```
In [74]: start = datetime.now()
    classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', penalty='l1'), n_jobs=-1)
    parameters = {'estimator_alpha':[2*10**-6, 4*10**-6, 6*10**-6, 8*10**-6]}
    clf = GridSearchCV(classifier, parameters, cv= 3, return_train_score=True, scoring='f1_micro', n_jobs=-1)
    clf.fit(x_train_multilabel, y_train)
    print("Time taken to run this cell :", datetime.now() - start)
```

Time taken to run this cell : 1:17:52.986729

```
In [75]: plt.figure(figsize=(20,10))
    train_auc= clf.cv_results_['mean_train_score']
    cv_auc = clf.cv_results_['mean_test_score']
    plt.plot(parameters['estimator_alpha'], train_auc, label='Train')
    plt.plot(parameters['estimator_alpha'], cv_auc, label='CV')

    plt.scatter(parameters['estimator_alpha'], train_auc, label='Train points')
    plt.scatter(parameters['estimator_alpha'], cv_auc, label='CV points')

    plt.legend()
    plt.xlabel("alpha: Hyperparameter")
    plt.ylabel("Micro F1 score")
    plt.title("Hyperparameter v/s Micro F1score plot")
    plt.grid()
    plt.show()
```



```
In [76]: import warnings
         warnings.filterwarnings("ignore")
         start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=2*10**-6, penalty='l1'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict(x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell : 0:08:38.912048

Hamming loss 0.00259098

Micro-average quality numbers Precision: 0.7847, Recall: 0.3510, F1-measure: 0.4850

Macro-average quality numbers Precision: 0.5278, Recall: 0.2689, F1-measure: 0.3264

n: 0.	5278, Recall:			
	precision	recall	f1-score	support
0	0.94	0.77	0.84	5519
1	0.72	0.33	0.45	8190
2	0.82	0.42	0.55	6529
3	0.83	0.50	0.62	3231
4 5	0.83 0.81	0.43 0.40	0.57 0.54	6430 2879
6	0.87	0.55	0.68	5086
7	0.88	0.61	0.72	4533
8	0.62	0.15	0.24	3000
9	0.82	0.59	0.68	2765
10	0.64	0.09	0.15	3051
11	0.73	0.38	0.50	3009
12	0.71	0.26	0.38	2630
13	0.72	0.33	0.45	1426
14 15	0.89 0.76	0.63 0.20	0.74 0.31	2548 2371
16	0.67	0.30	0.41	873
17	0.89	0.64	0.74	2151
18	0.72	0.21	0.32	2204
19	0.70	0.46	0.55	831
20	0.75	0.56	0.64	1860
21	0.40	0.00	0.01	2023
22	0.59	0.19	0.28	1513
23	0.90	0.60	0.72	1207
24 25	0.62 0.73	0.18 0.38	0.28 0.50	506 425
26	0.64	0.41	0.50	793
27	0.69	0.32	0.44	1291
28	0.82	0.39	0.53	1208
29	0.34	0.03	0.06	406
30	0.72	0.20	0.31	504
31	0.00	0.00	0.00	732
32	0.65	0.29	0.40	441
33 34	0.70 0.74	0.13 0.27	0.22 0.39	1645 1058
35	0.81	0.64	0.71	946
36	0.68	0.21	0.32	644
37	0.95	0.77	0.85	136
38	0.66	0.41	0.50	570
39	0.83	0.34	0.48	766
40	0.65	0.28	0.39	1132
41	0.54	0.26	0.35	174
42 43	0.76	0.55	0.64	210
43 44	0.82 0.66	0.42 0.57	0.56 0.61	433 626
45	0.80	0.29	0.42	852
46	0.77	0.50	0.61	534
47	0.38	0.02	0.03	350
48	0.75	0.58	0.65	496
49	0.77	0.74	0.75	785
50	0.00	0.00	0.00	475
51 52	0.00	0.00	0.00	305 251
53	0.00 0.68	0.00 0.38	0.00 0.48	251 914
54	0.00	0.00	0.00	728
55	0.00	0.00	0.00	258
56	0.50	0.02	0.03	821
57	0.50	0.01	0.02	541
58	0.81	0.26	0.39	748
59	0.92	0.72	0.81	724
60	0.53	0.02 0.23	0.03	660
61 62	0.83 0.92	0.23 0.76	0.35 0.83	235 718
63	0.82	0.66	0.73	468
64	0.54	0.31	0.40	191
65	0.00	0.00	0.00	429
66	0.00	0.00	0.00	415
67	0.76	0.55	0.64	274
68	0.82	0.57	0.67	510
69 70	0.67	0.51	0.58 a a1	466 305
76 71	0.33 0.33	0.00 0.00	0.01 0.01	305 247
72	0.81	0.52	0.64	401
73	0.96	0.81	0.88	86
74	0.74	0.42	0.53	120
75	0.91	0.73	0.81	129
76	0.91	0.02	0.04	473
77 79	0.40	0.34	0.37	143
78 79	0.77 0.73	0.56	0.65 0.39	347 479
/9	0.73	0.27	0.39	479

80	0.73	0.28	0.40	279
81	0.81	0.24	0.40	461
82	0.00	0.00		298
			0.00	
83	0.77	0.56	0.65	396
84	0.55	0.29	0.38	184
85	0.75	0.20	0.31	573
86	0.57	0.05	0.09	325
87	0.54	0.30	0.38	273
88	0.42	0.06	0.10	135
89	1.00	0.00	0.01	232
90	0.57	0.25	0.35	409
91	0.62	0.04	0.08	420
92	0.78	0.59	0.67	408
93	0.69	0.50	0.58	241
94	0.00	0.00	0.00	211
95	0.64	0.03	0.05	277
96	0.00	0.00	0.00	410
97	0.86	0.53	0.66	501
98	0.74	0.71	0.72	136
99	0.58	0.28	0.38	239
100	0.00	0.00	0.00	324
101	0.89	0.78	0.83	277
102	0.91	0.76	0.83	613
103	0.50	0.04	0.07	157
104	0.00	0.00	0.00	295
105	0.80	0.43	0.56	334
106	0.94	0.30	0.46	335
107	0.77	0.62	0.69	389
108	0.90	0.08	0.14	251
109	0.55	0.44	0.49	317
110	1.00	0.01	0.02	187
111	0.74	0.16	0.27	140
112	0.72	0.52	0.60	154
113	0.65	0.16	0.26	332
114 115	0.73 0.42	0.02	0.05	323 344
	0.73	0.01	0.03 0.67	370
116 117	0.61	0.61 0.15	0.07	313
118	0.78	0.74	0.76	874
119	0.56	0.05	0.70	293
120	0.00	0.00	0.00	200
121	0.73	0.56	0.64	463
122	0.00	0.00	0.00	119
123	0.57	0.02	0.03	256
124	0.88	0.75	0.81	195
125	0.62	0.07	0.13	138
126	0.81	0.57	0.67	376
127	0.00	0.00	0.00	122
128	0.00	0.00	0.00	252
129	0.53	0.22	0.31	144
130	0.57	0.11	0.18	150
131	0.00	0.00	0.00	210
132	0.67	0.04	0.08	361
133	0.92	0.61	0.73	453
134	0.88	0.81	0.85	124
135	0.00	0.00	0.00	91
136	0.88	0.17	0.29	128
137	0.61	0.32	0.42	218
138	0.85	0.18	0.30	243
139	0.44	0.03	0.05	149
140	0.75	0.55	0.63	318
141	0.36	0.03	0.05	159
142	0.64	0.51	0.57	274
143	0.84	0.83	0.83	362
144	0.59	0.08	0.15	118
145	0.60	0.42	0.49	164
146	0.62	0.23	0.33	461
147	0.69	0.58	0.63	159
148	0.00	0.00	0.00	166
149	0.93	0.64	0.76	346
150	0.80	0.05	0.09	350
151	0.86	0.69	0.77	55
152	0.79	0.55	0.65	387
153	0.61	0.07	0.13	150
154	0.62	0.06	0.10	281
155	0.00	0.00	0.00	202
156	0.81	0.68	0.74	130
157	0.00	0.00	0.00	245
158	0.88	0.71	0.78	177
159	0.64	0.32	0.43	130
160	0.43	0.01	0.02	336
161	0.88	0.70	0.78	220
162	0.00	0.00	0.00	229
163	0.88	0.48	0.62	316
164	0.78	0.42	0.54	283
165	0.63	0.38	0.47	197
166	0.69	0.55	0.62	101
167	1.00	0.00	0.01	231

1.00	0.72	0.16	0.26	270
168	0.72	0.16	0.26	370
169	0.45	0.03	0.06	258
170	0.00	0.00	0.00	101
171	0.46	0.26	0.33	89
172	0.48	0.10	0.17	193
173	0.49	0.16	0.24	309
174	1.00	0.01	0.01	172
175	0.91	0.84	0.87	95
176	0.91	0.64	0.75	346
177	0.82	0.65	0.72	322
178	0.63	0.54	0.58	232
179	0.00	0.00	0.00	125
180	0.72	0.36	0.48	145
181	0.00	0.00	0.00	77
182	0.00	0.00	0.00	182
183	0.61	0.19	0.29	257
184	0.00	0.00	0.00	216
185	0.00	0.00	0.00	242
186	1.00	0.01	0.01	165
187	0.75	0.66	0.70	263
188	0.00	0.00	0.00	174
189	0.79	0.44	0.57	136
190	0.87	0.64	0.74	202
191	0.00	0.00	0.00	134
192	0.72	0.47	0.57	230
193	0.36	0.09	0.14	90
194	0.56	0.55	0.55	185
195	0.00	0.00	0.00	156
196	0.00	0.00	0.00	160
197	0.65	0.13	0.21	266
	0.00	0.00		
198			0.00	284
199	0.00	0.00	0.00	145
200	0.93	0.77	0.85	212
201	0.71	0.23	0.35	317
202	0.77	0.62	0.69	427
203	0.00	0.00	0.00	232
204	0.61	0.18	0.28	217
205	0.49	0.30	0.37	527
206	0.00	0.00	0.00	124
207	0.42	0.11	0.17	103
208	0.86	0.55	0.67	287
209	0.00	0.00	0.00	193
210	0.79	0.32	0.45	220
211	0.78	0.23	0.35	140
212	0.00	0.00	0.00	161
213	0.55	0.50	0.52	72
214	0.68	0.31	0.42	396
215	0.82	0.40	0.54	134
216	0.67	0.07	0.13	400
217	0.49	0.27	0.34	75
218	0.95	0.78	0.86	219
219	0.80	0.34	0.47	210
220	0.89	0.70	0.78	298
221	0.90	0.79	0.84	266
222	0.78	0.43	0.55	290
223	0.00	0.00	0.00	128
224	0.76	0.48	0.59	159
225	0.71	0.29	0.41	164
226	0.63	0.42	0.50	144
227	0.63	0.22	0.32	276
228	0.00	0.00	0.00	235
229	0.33	0.00	0.01	216
230	0.00	0.00	0.00	228
231	0.73	0.59	0.66	64
232	1.00	0.01	0.02	103
233	0.75	0.39	0.51	216
234	0.57	0.07	0.12	116
235	0.57	0.60	0.59	77
236	0.91	0.73	0.81	67
237	0.74	0.11	0.20	218
238	0.00	0.00	0.00	139
239	0.00	0.00	0.00	94
240	0.62	0.42	0.50	77
241	0.00	0.00	0.00	167
242	0.84	0.44	0.58	86
242	0.67	0.03	0.07	58
243 244	0.67 0.75			
		0.16	0.26	269 112
245	0.00	0.00	0.00	112
246	0.94	0.82	0.88	255
247	0.44	0.29	0.35	58
248	0.00	0.00	0.00	81
249	0.00	0.00	0.00	131
250	0.63	0.18	0.28	93
251	0.66	0.23	0.34	154
252	0.00	0.00	0.00	129
253	0.69	0.30	0.42	83
254	0.00	0.00	0.00	191
255	0.00	0.00	0.00	219
ررے	0.00	0.00	0.00	213

256	0.00	0.00	0.00	120
256	0.00	0.00	0.00 0.31	130
257	0.50	0.23		93 217
258	0.69	0.63	0.66	217
259	1.00	0.01	0.01	141
260	0.85	0.20	0.33	143
261	1.00	0.01	0.02	219
262	0.64	0.25	0.36	107
263	0.33	0.06	0.10	236
264	0.45	0.04	0.08	119
265	0.50	0.12	0.20	72
266	0.00	0.00	0.00	70
267	0.67	0.02	0.04	107
268	0.70	0.51	0.59	169
269	0.50	0.01	0.02	129
270	0.72	0.64	0.67	159
271	0.87	0.50	0.64	190
272	0.64	0.24	0.35	248
273	0.89	0.78	0.83	264
274	0.88	0.71	0.79	105
275	0.78	0.07	0.12	104
276	0.00	0.00	0.00	115
277	0.83	0.68	0.75	170
278	0.78	0.48	0.59	145
279	0.91	0.71	0.80	230
280	0.53	0.34	0.41	80
281	0.67	0.66	0.66	217
282	0.78	0.62	0.69	175
283	0.00	0.00	0.00	269
284	0.67	0.54	0.60	74
285	0.85	0.52	0.64	206
286	0.89	0.68	0.77	227
287	0.84	0.42	0.56	130
288	0.00	0.00	0.00	129
289	0.67	0.03	0.05	80
290	0.00	0.00	0.00	99
291	0.77	0.33	0.46	208
292	0.00	0.00	0.00	67
293	0.86	0.47	0.61	109
294	0.80	0.03	0.06	140
295	0.00	0.00	0.00	241
296	0.00	0.00	0.00	72
297	0.40	0.02	0.04	107
298	0.73	0.52	0.61	61
299	0.81	0.60	0.69	77
300	0.00	0.00	0.00	111
301	0.00	0.00	0.00	126
302	0.00	0.00	0.00	73
303	0.62	0.45	0.52	176
304	0.92	0.82	0.32	230
305	0.90	0.78	0.83	156
306	0.57	0.27	0.36	146
307	0.37	0.01	0.02	98
308	0.00	0.00	0.02	78
309	0.67	0.11	0.18	94
310	0.70	0.40	0.51	162
311	0.76	0.59	0.66	116
312	0.48	0.37	0.42	57
313	0.48	0.00	0.42	65
314	0.51	0.36	0.42	138
315	0.68	0.15	0.42	195
316	0.51	0.15	0.25	69
317	0.31	0.08	0.13	134
318	0.51	0.20	0.28	148
319	0.85	0.60	0.28	161
320	0.15	0.03	0.76	104
321	0.80	0.63	0.71	156
322	0.61	0.40	0.71	134
323	0.55	0.56	0.48	232
324	0.00	0.00	0.00	92
325	0.00	0.00	0.00	197
326 327	0.00	0.00	0.00	126
327	0.00	0.00	0.00	115 108
328	0.96	0.74	0.84 0.42	198 125
329	0.60	0.33	0.42	125
330	0.74	0.17	0.28	81
331	1.00	0.01	0.02	94 56
332	0.40	0.07	0.12	56 260
333	0.00	0.00	0.00	260
334	0.50	0.02	0.03	60
335	0.00	0.00	0.00	110
336	0.68	0.48	0.56	71
337	0.50	0.02	0.03	66 150
338	0.49	0.44	0.46	150
339	0.00	0.00	0.00	54
340	0.82	0.62	0.70	195
341	0.82	0.51	0.62	79
342	0.52	0.29	0.37	38
343	0.67	0.51	0.58	43

244	ο το	0.10	0.20	C 0
344	0.59	0.19	0.29	68 73
345	0.65	0.27	0.38	73 116
346 247	0.00	0.00	0.00	116
347	0.82	0.50	0.63	111
348	0.25	0.02	0.03	63
349	0.84	0.70	0.76	104
350	0.59	0.59	0.59	44
351	0.61	0.42	0.50	40
352	0.91	0.64	0.75	136
353	0.20	0.02	0.03	54
354	0.00	0.00	0.00	134
355	0.75	0.33	0.46	120
356	0.67	0.17	0.27	228
357	0.64	0.41	0.50	269
358	0.73	0.34	0.46	80
359	0.84	0.67	0.75	140
360	0.67	0.02	0.03	125
361	0.90	0.76	0.83	169
362	1.00	0.02	0.04	56
363	0.89	0.76	0.82	154
364	0.57	0.07	0.12	58 71
365	0.80	0.06	0.11	71 54
366	0.97	0.70	0.82	54 116
367 368	0.00	0.00	0.00	116
368	0.50	0.02	0.04	54 71
369 370	0.00	0.00	0.00	71 61
370 371	0.00	0.00	0.00	61 71
371	0.00	0.00	0.00	71 52
372 373	0.70 0.77	0.50	0.58	150
		0.46	0.57	
374 275	0.00	0.00	0.00	93 67
375 376	0.00	0.00	0.00	67 76
376 277	0.00	0.00	0.00	76 106
377 379	0.77	0.09	0.17	106
378	0.00	0.00	0.00	86
379	0.75	0.21	0.33	14 122
380	0.84	0.64	0.73	122
381	0.00	0.00	0.00	104
382	0.00	0.00	0.00	66 110
383	0.57	0.23	0.32	110
384	0.00	0.00	0.00	155
385 386	0.71	0.24	0.36	50 64
387	0.43 0.00	0.05 0.00	0.08 0.00	93
388	0.40	0.12	0.18	102
389	0.00	0.00	0.18	102
390	0.94	0.71	0.81	178
391	0.52	0.20	0.31	115
392	0.85	0.52	0.65	42
393	0.00	0.00	0.00	134
394	0.00	0.00	0.00	112
395	0.00	0.00	0.00	176
396	0.57	0.03	0.06	125
397	0.72	0.40	0.52	224
398	0.81	0.70	0.75	63
399	0.00	0.00	0.00	59
400	0.56	0.32	0.40	63
401	0.64	0.18	0.29	98
402	0.00	0.00	0.00	162
403	0.00	0.00	0.00	83
404	0.67	0.84	0.74	19
405	0.67	0.02	0.04	92
406	0.78	0.34	0.47	41
407	0.63	0.44	0.52	43
408	0.78	0.44	0.56	160
409	0.00	0.00	0.00	50
410	0.00	0.00	0.00	19
411	0.00	0.00	0.00	175
412	0.00	0.00	0.00	72
413	0.50	0.05	0.10	95
414	0.00	0.00	0.00	97
415	0.20	0.02	0.04	48
416	0.64	0.17	0.27	83
417	1.00	0.03	0.05	40
418	0.00	0.00	0.00	91
419	0.60	0.28	0.38	90
420	0.25	0.03	0.05	37
421	0.00	0.00	0.00	66
422	0.64	0.44	0.52	73
423	0.45	0.27	0.34	56
424	0.88	0.88	0.88	33
425	0.00	0.00	0.00	76
426	0.00	0.00	0.00	81
427	0.97	0.79	0.87	150
428	0.91	0.69	0.78	29
429	0.99	0.93	0.96	389
430	0.67	0.37	0.48	167
431	0.00	0.00	0.00	123

	432	0.47	0.23	0.31	39
	433	0.50	0.04	0.07	82
	434	0.96	0.71	0.82	66
	435	0.60	0.44	0.51	93
	436	0.67	0.53	0.59	87
	437	0.50	0.01	0.02	86
	438	0.72	0.69	0.71	104
	439	0.00	0.00	0.00	100
	440 441	0.00 0.62	0.00 0.21	0.00 0.31	141 110
	442	0.02	0.00	0.00	123
	443	0.47	0.24	0.32	71
	444	0.00	0.00	0.00	109
	445	0.64	0.33	0.44	48
	446	0.48	0.29	0.36	76
	447	0.00	0.00	0.00	38
	448	0.66	0.65	0.66	81
	449	0.84	0.20	0.33	132
	450 451	0.64 0.84	0.09 0.34	0.15 0.49	81 76
	452	0.00	0.00	0.49	44
	453	0.00	0.00	0.00	44
	454	0.80	0.51	0.63	70
	455	0.50	0.04	0.07	155
	456	0.60	0.21	0.31	43
	457	0.52	0.17	0.25	72
	458	0.00	0.00	0.00	62
	459	0.76	0.23	0.36	69
	460	0.00	0.00	0.00	119
	461	0.86	0.08	0.14	79
	462 463	0.62 1.00	0.17 0.13	0.27 0.24	47 104
	464	0.64	0.36	0.46	104
	465	0.62	0.08	0.14	64
	466	0.61	0.30	0.40	173
	467	0.72	0.38	0.50	107
	468	0.60	0.17	0.26	126
	469	0.00	0.00	0.00	114
	470	0.91	0.82	0.86	140
	471	0.87	0.43	0.58	79
	472	0.42	0.32	0.36	143
	473 474	0.71 0.89	0.37 0.06	0.48 0.11	158 138
	474	0.00	0.00	0.00	59
	476	0.69	0.40	0.50	88
	477	0.81	0.71	0.76	176
	478	0.91	0.88	0.89	24
	479	0.00	0.00	0.00	92
	480	0.79	0.55	0.65	100
	481	0.53	0.32	0.40	103
	482	0.00	0.00	0.00	74
	483	0.83	0.62	0.71	105
	484 485	0.00 0.00	0.00 0.00	0.00 0.00	83 82
	486	0.00	0.00	0.00	71
	487	0.00	0.00	0.00	120
	488	0.64	0.09	0.15	105
	489	0.71	0.46	0.56	87
	490	1.00	0.81	0.90	32
	491	0.00	0.00	0.00	69
	492	0.00	0.00	0.00	49
	493	0.00	0.00	0.00	117
	494 495	0.54 0.96	0.31	0.40 0.88	61 344
	495 496	0.50	0.81 0.10	0.88 0.16	544 52
	497	0.64	0.25	0.36	137
	·	0.41	0.09	0.15	98
	498	0.11			
	498 499	0.56	0.23	0.32	79
	499	0.56		0.32	79
micro	499 avg	0.560.78	0.35	0.320.48	79 173812
macro	499 avg avg	0.560.780.53	0.35 0.27	0.320.480.33	79 173812 173812
	avg avg avg	0.560.78	0.35	0.320.48	79 173812

4.5.9 Featurizing data with BOW vectorizer (1 to 4 grams)

Reduce Datasize to 0.1M due to Time complexity calculating 1 to 4 grams(was taking more than 10 hours)

```
create_database_table("Titlemoreweight100k.db", sql_create_table)
         Tables in the databse:
         QuestionsProcessed
In [11]: # http://www.sqlitetutorial.net/sqlite-delete/
         # https://stackoverflow.com/questions/2279706/select-random-row-from-a-sqlite-table
         read_db = 'train_no_dup.db'
         write_db = 'Titlemoreweight100k.db'
         if os.path.isfile(read_db):
             conn_r = create_connection(read_db)
             if conn_r is not None:
                 reader =conn_r.cursor()
                 # for selecting first 0.1M rows
                 reader.execute("SELECT Title, Body, Tags From no_dup_train LIMIT 100001;")
                 # for selecting random points
                 #reader.execute("SELECT Title, Body, Tags From no_dup_train ORDER BY RANDOM() LIMIT 100001;")
         if os.path.isfile(write_db):
             conn_w = create_connection(write_db)
             if conn_w is not None:
                 tables = checkTableExists(conn_w)
                 writer =conn_w.cursor()
                 if tables != 0:
                      writer.execute("DELETE FROM QuestionsProcessed WHERE 1")
                      print("Cleared All the rows")
```

In [10]: sql_create_table = """CREATE TABLE IF NOT EXISTS QuestionsProcessed (question text NOT NULL, code text, tags text, wor

ds_pre integer, words_post integer, is_code integer);"""

Tables in the databse: QuestionsProcessed Cleared All the rows

```
In [12]: | #http://www.bernzilla.com/2008/05/13/selecting-a-random-row-from-an-sqlite-table/
         start = datetime.now()
         preprocessed_data_list=[]
         reader.fetchone()
         questions_with_code=0
         len_pre=0
         len post=0
         questions_proccesed = 0
         for row in reader:
             is\_code = 0
             title, question, tags = row[0], row[1], row[2]
             if '<code>' in question:
                  questions_with_code+=1
                  is_code = 1
             x = len(question)+len(title)
             len_pre+=x
             code = str(re.findall(r'<code>(.*?)</code>', question, flags=re.DOTALL))
             question=re.sub('<code>(.*?)</code>', '', question, flags=re.MULTILINE|re.DOTALL)
             question=striphtml(question.encode('utf-8'))
             title=title.encode('utf-8')
             question=str(title)+" "+str(question)
             question=re.sub(r'[^A-Za-z]+',' ',question)
             words=word_tokenize(str(question.lower()))
             #Removing all single letter and and stopwords from question exceptt for the letter 'c'
             question=' '.join(str(stemmer.stem(j)) for j in words if j not in stop_words and (len(j)!=1 or j=='c'))
             len_post+=len(question)
             tup = (question,code,tags,x,len(question),is_code)
             questions_proccesed += 1
             writer.execute("insert into QuestionsProcessed(question,code,tags,words_pre,words_post,is_code) values
          (?,?,?,?,?)",tup)
             if (questions_proccesed%10000==0):
                  print("number of questions completed=",questions_proccesed)
         no_dup_avg_len_pre=(len_pre*1.0)/questions_proccesed
         no_dup_avg_len_post=(len_post*1.0)/questions_proccesed
         print( "Avg. length of questions(Title+Body) before processing: %d"%no_dup_avg_len_pre)
         print( "Avg. length of questions(Title+Body) after processing: %d"%no_dup_avg_len_post)
         print ("Percent of questions containing code: %d"%((questions_with_code*100.0)/questions_proccesed))
         print("Time taken to run this cell :", datetime.now() - start)
         number of questions completed= 10000
         number of questions completed= 20000
         number of questions completed= 30000
         number of questions completed= 40000
         number of questions completed= 50000
         number of questions completed= 60000
         number of questions completed= 70000
         number of questions completed= 80000
         number of questions completed= 90000
         number of questions completed= 100000
         Avg. length of questions(Title+Body) before processing: 1232
         Avg. length of questions(Title+Body) after processing: 355
         Percent of questions containing code: 57
         Time taken to run this cell : 0:02:32.358797
         # never forget to close the conections or else we will end up with database locks
         conn_r.commit()
         conn w.commit()
         conn_r.close()
         conn_w.close()
 In [0]: #Taking 0.1 Million entries to a dataframe.
         write_db = 'Titlemoreweight100k.db'
         if os.path.isfile(write_db):
             conn_r = create_connection(write_db)
             if conn r is not None:
                  preprocessed_data_100k = pd.read_sql_query("""SELECT question, Tags FROM QuestionsProcessed""", conn_r)
         conn_r.commit()
```

conn_r.close()

Out[15]:

	question	tags
0	dynam datagrid bind silverlight bind datagrid	c# silverlight data-binding
1	dynam datagrid bind silverlight bind datagrid	c# silverlight data-binding columns
2	java lang noclassdeffounderror javax servlet j	jsp jstl
3	java sql sqlexcept microsoft odbc driver manag	java jdbc
4	better way updat feed fb php sdk novic faceboo	facebook api facebook-php-sdk

```
In [16]: print("number of data points in sample :", preprocessed_data_100k.shape[0])
    print("number of dimensions :", preprocessed_data_100k.shape[1])
    number of data points in sample : 100000
    number of dimensions : 2

In [0]: vectorizer = CountVectorizer(tokenizer = lambda x: x.split(), binary='true')
    multilabel_y = vectorizer.fit_transform(preprocessed_data_100k['tags'])
```

```
In [0]: questions_explained = []
total_tags=multilabel_y.shape[1]
total_qs=preprocessed_data_100k.shape[0]
for i in range(500, total_tags, 100):
    questions_explained.append(np.round(((total_qs-questions_explained_fn(i))/total_qs)*100,3))
```

```
In [22]: fig, ax = plt.subplots()
    ax.plot(questions_explained)
    xlabel = list(500+np.array(range(-50,450,50))*50)
    ax.set_xticklabels(xlabel)
    plt.xlabel("Number of tags")
    plt.ylabel("Number Questions coverd partially")
    plt.grid()
    plt.show()
    # you can choose any number of tags based on your computing power, minimun is 500(it covers 90% of the tags)
    print("with ",5500,"tags we are covering ",questions_explained[50],"% of questions")
    print("with ",500,"tags we are covering ",questions_explained[0],"% of questions")
```


with 5500 tags we are covering 99.481 % of questions with 500 tags we are covering 92.5 % of questions

```
In [23]: # we will be taking 5500 tags
multilabel_yx = tags_to_choose(500)
print("number of questions that are not covered :", questions_explained_fn(500),"out of ", total_qs)
```

number of questions that are not covered : 7500 out of 100000

```
In [0]: x_train=preprocessed_data_100k.head(70000)
    x_test=preprocessed_data_100k.tail(preprocessed_data_100k.shape[0] - 70000)

y_train = multilabel_yx[0:70000,:]
    y_test = multilabel_yx[70000:preprocessed_data_100k.shape[0],:]
```

```
In [25]: print("Number of data points in train data :", y_train.shape)
print("Number of data points in test data :", y_test.shape)
```

```
Number of data points in train data : (70000, 500) Number of data points in test data : (30000, 500)
```

4.5.10 Applying Logistic Regression (SGD with Log Loss) with OneVsRest Classifier(1 to 4grams)

Hyper parameter Tuning

```
In [29]: from sklearn.model_selection import GridSearchCV
    start = datetime.now()

classifier = OneVsRestClassifier(SGDClassifier(loss='log', penalty='l1'), n_jobs= 1)

parameters = {'estimator_alpha':[2*10**-5, 4*10**-5, 6*10**-5]}

clf = GridSearchCV(classifier, parameters, cv= 3, return_train_score=True, scoring='f1_micro')

clf.fit(x_train_multilabel, y_train)

print("Time taken to run this cell :", datetime.now() - start)
```

Time taken to run this cell : 3:30:02.857675

```
In [30]: plt.figure(figsize=(20,10))
    train_auc= clf.cv_results_['mean_train_score']
    cv_auc = clf.cv_results_['mean_test_score']

plt.plot(parameters['estimator_alpha'], train_auc, label='Train')
    plt.plot(parameters['estimator_alpha'], cv_auc, label='CV')

plt.scatter(parameters['estimator_alpha'], train_auc, label='Train points')
    plt.scatter(parameters['estimator_alpha'], cv_auc, label='CV points')

plt.legend()
    plt.vlabel("alpha: Hyperparameter")
    plt.ylabel("Wicro F1 score")
    plt.title("Hyperparameter v/s Micro F1score plot")
    plt.grid()
    plt.show()
```


Model	
-------	--

```
In [31]: start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='log', alpha=8*10**-5, penalty='l1'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict (x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Accuracy :",metrics.accuracy_score(y_test, predictions))
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell : 0:08:28.749626

Accuracy : 0.0852

Hamming loss 0.005211866666666667 Micro-average quality numbers

Precision: 0.3667, Recall: 0.4082, F1-measure: 0.3863

Macro-average quality numbers

Precision: 0.2508, Recall: 0.3127, F1-measure: 0.2588 recall f1-score precision support 0 0.83 0.73 0.78 6668 1 0.41 0.27 0.32 3659 2 0.15 0.15 971 0.15 3 0.49 0.56 0.52 1506 4 0.52 0.49 0.50 1649 5 0.55 0.49 0.52 1113 6 0.45 0.59 0.51 1482 7 0.63 0.53 0.58 980 8 0.81 0.68 0.74 1520 9 0.50 0.86 0.63 1041 10 0.49 0.41 0.45 861 11 0.36 0.38 0.37 386 12 0.13 0.65 0.22 37 13 0.50 0.46 0.48 917 14 0.27 0.25 0.26 519 15 0.31 0.26 0.28 656 16 0.39 0.26 0.31 794 17 0.39 0.37 0.38 700 18 0.53 0.44 0.66 363 19 0.55 0.62 0.58 541 20 0.35 0.49 0.40 540 21 0.47 0.67 0.55 362 22 0.64 0.55 0.59 551 23 0.30 0.28 0.31 309 24 0.33 0.40 0.36 331 25 0.26 0.38 0.31 424 26 0.30 0.31 465 0.32 27 0.14 386 0.18 0.11 28 0.19 0.26 0.22 107 29 0.06 0.12 0.08 195 30 0.29 0.34 0.31 758 31 0.09 0.47 0.14 15 32 0.45 0.61 0.52 323 33 0.29 0.33 0.31 279 34 0.37 0.33 0.35 275 35 0.59 0.67 0.53 268 36 0.110.12 0.1176 37 0.27 0.13 0.17 269 38 0.39 0.48 0.43 255 39 249 0.25 0.36 0.30 40 0.05 0.09 0.06 66 41 0.18 0.23 0.20 209 42 0.40 0.43 0.42 72 43 0.21 0.26 0.33 430 44 0.20 0.25 0.22 279 45 0.32 0.34 0.33 240 46 0.22 0.43 0.29 157 47 0.58 0.60 0.59 249 48 0.09 0.08 0.09 198 49 0.40 0.32 0.35 171 50 0.57 0.74 0.64 200 51 0.52 0.72 0.60 85 52 0.37 0.42 0.39 175 53 0.30 0.110.16 114 54 0.15 0.19 0.17 223 55 0.30 0.42 0.35 122 56 0.38 0.57 0.46 168 57 0.04 0.09 0.06 176 58 0.12 140 0.26 0.16 59 0.21 0.21 0.21 191 60 0.58 0.68 0.63 152 61 0.25 0.32 0.28 208 62 0.12 0.17 0.14 136 63 0.42 0.50 0.46 158 64 0.36 0.46 0.40 203 0.49 0.36 105 65 0.29 66 0.23 0.48 0.31 58 67 0.36 0.57 0.44 128 68 0.15 0.07 0.09 158 0.21 69 0.17 0.18 248 70 201 0.10 0.11 0.11 71 0.21 0.36 0.26 89 72 0.33 0.38 0.35 157 73 29 0.20 0.38 0.26 74 0.09 0.03 0.05 58 75 0.13 0.23 0.17 158 76 0.65 0.56 0.60 110 77 0.27 0.64 0.38 33 78 0.13 0.23 0.16 210

70	0.40	0.56	0.46	160
79	0.40	0.56	0.46	169
80	0.04	0.20	0.07	15
81	0.30	0.43	0.36	214
82	0.14	0.25	0.18	65
83	0.15	0.22	0.18	156
84	0.26	0.41	0.32	59
85	0.45	0.62	0.52	55
86	0.06	0.22	0.10	36
87	0.26	0.52	0.35	29
88	0.31	0.67	0.42	54
89	0.46	0.77	0.58	137
90	0.11	0.16	0.13	103
91	0.23	0.18	0.20	79
92	0.17	0.19	0.18	84
93	0.35	0.48	0.41	133
94	0.73	0.70	0.72	318
95				51
	0.33	0.67	0.44	
96	0.35	0.50	0.41	82
97	0.08	0.11	0.09	75 120
98	0.06	0.02	0.03	120
99	0.20	0.44	0.28	18
100	0.38	0.42	0.40	196
101	0.53	0.49	0.51	208
102	0.17	0.13	0.15	122
103	0.01	0.02	0.01	62
104	0.10	0.09	0.10	88
105	0.49	0.49	0.49	65
106	0.17	0.22	0.19	115
107	0.03	0.14	0.05	29
108	0.25	0.27	0.26	109
109	0.19	0.34	0.24	73
110	0.46	0.26	0.34	102
111	0.37	0.51	0.43	180
112	0.00	0.00	0.00	292
113	0.59	0.87	0.71	54
114	0.07	0.09	0.08	120
115	0.18	0.31	0.22	107
116				
	0.39	0.25	0.31	52
117	0.16	0.15	0.16	72 130
118	0.59	0.58	0.58	139
119	0.47	0.49	0.48	57
120	0.22	0.32	0.26	44
121	0.08	0.13	0.10	85
122	0.37	0.57	0.45	82
123	0.15	0.08	0.10	100
124	0.13	0.75	0.22	4
125	0.13	0.67	0.22	9
126	0.11	0.22	0.15	46
127	0.18	0.15	0.16	54
128	0.84	0.78	0.81	195
129	0.30	0.50	0.38	54
130	0.14	0.05	0.08	96
131	0.31	0.71	0.43	35
132	0.10	0.14	0.12	58
133	0.13	0.14	0.14	36
134	0.22	0.42	0.29	36
135	0.36	0.62	0.46	39
136	0.02	0.01	0.01	97
137	0.14	0.24	0.18	70
138	0.07	0.12	0.09	17
139	0.12	0.18	0.15	119
140	0.74	0.71	0.73	101
141	0.22	0.39	0.73	115
142	0.38	0.36	0.23	94
143				94 84
	0.34	0.57	0.43	
144	0.36	0.52	0.42	64
145	0.03	0.07	0.04	61
146	0.14	0.05	0.08	132
147	0.28	0.29	0.29	119
148	0.36	0.60	0.45	62
149	0.31	0.22	0.25	83
150	0.12	0.26	0.16	72
151	0.08	0.39	0.13	23
152	0.10	0.22	0.14	76
153	0.11	0.28	0.16	18
154	0.05	0.12	0.07	17
155	0.07	0.12	0.09	24
156	0.27	0.18	0.22	136
157	0.24	0.33	0.28	129
158	0.36	0.25	0.30	143
159	0.46	0.53	0.49	107
160	0.16	0.41	0.23	78
161	0.14	0.30	0.19	73
162	0.09	0.15	0.11	106
163	0.14	0.12	0.13	126
164	0.23	0.37	0.28	63
165	0.00	0.00	0.00	229
166	0.38	0.31	0.34	115
	2.20			

167	0.55	0.43	0.21	4.6
167	0.55	0.13	0.21	46
168	0.22	0.23	0.23	69
169	0.37	0.54	0.44	70
170	0.56	0.56	0.56	54
171	0.00	0.00	0.00	43
172	0.27	0.41	0.32	76
173	0.21	0.50	0.30	12
174	0.12	0.21	0.15	76
175	0.47	0.57	0.52	91
176	0.67	0.64	0.65	157
177	0.23	0.27	0.25	41
178	0.00	0.00	0.00	0
179	0.05	1.00	0.10	1
180	0.18	0.29	0.23	55
181			0.25	62
	0.05	0.08		
182	0.03	0.50	0.06	2
183	0.27	0.46	0.34	80
184	0.00	0.00	0.00	206
185	0.33	0.23	0.27	86
186	0.20	0.44	0.28	66
187	0.52	0.63	0.57	59
188	0.31	0.54	0.40	68
189	0.18	0.16	0.17	108
190	0.08	0.13	0.10	85
191	0.24	0.40	0.30	86
192	0.17	0.57	0.26	46
193	0.14	0.33	0.19	18
194	0.23	0.32	0.27	74
195	0.25	0.44	0.32	55
196	0.68	0.71	0.69	38
197	0.32	0.37	0.34	95
198	0.17	0.38	0.24	16
199	0.05	0.08	0.06	39
200	0.28	0.16	0.20	58
201	0.26	0.22	0.10	55
202	0.26	0.29	0.27	58 66
203	0.18	0.05	0.07	66
204	0.74	0.75	0.74	64
205	0.00	0.00	0.00	10
206	0.06	0.20	0.09	66
207	0.20	0.22	0.21	73
208	0.12	0.13	0.13	54
209	0.10	0.13	0.12	61
210	0.12	0.25	0.17	12
211	0.07	0.10	0.08	59
212	0.29	0.54	0.38	26
213	0.19	0.32	0.24	105
214	0.20	0.46	0.28	50
215	0.29	0.17	0.21	65
216	0.35	0.33	0.34	79
217	0.18	0.25	0.21	55
218	0.06	0.67	0.11	3
219	0.11	0.18	0.13	62
220	0.11	0.17	0.13	81
221	0.18	0.21	0.19	34
222	0.01	0.02	0.01	64
223	0.54	0.48	0.50	61
224	0.13	0.39	0.19	18
225	0.18	0.70	0.19	10
226	0.62	0.66	0.64	99
227	0.02	0.69	0.37	13
		0.11		74
228	0.09 0.63		0.10	50
229		0.74	0.68	
230	0.23	0.24	0.24	74
231	0.00	0.00	0.00	4
232	0.26	0.31	0.28	26
233	0.03	0.08	0.04	146
234	0.52	0.72	0.61	61
235	0.02	0.08	0.03	13
236	0.23	0.16	0.19	49
237	0.55	0.40	0.46	90
238	0.16	0.10	0.12	58
239	0.07	0.25	0.10	24
240	0.61	0.58	0.59	64
241	0.58	0.83	0.68	75
242	0.44	0.59	0.50	63
243	0.45	0.58	0.51	76
244	0.35	0.33	0.34	63
245	0.08	0.20	0.11	41
246	0.90	0.11	0.20	162
247	0.17	0.32	0.22	22
248	0.43	0.63	0.52	52
249	0.16	0.37	0.23	19
250	0.39	0.65	0.49	23
251	0.47	0.51	0.49	57
252	0.21	0.25	0.23	36
253	0.02	0.02	0.02	41
254	0.05	0.20	0.08	10
			-	

255	0.12	0.14	0.13	22
256	0.07	0.38	0.12	8
257	0.09	0.13	0.10	62
258	0.14	0.21	0.17	43
259	0.52	0.55	0.54	87
260	0.00	0.00	0.00	56
261	0.00	0.00	0.00	3
262	0.19	0.40	0.25	20
263	0.17	0.07	0.10	15
264	0.03	0.06	0.04	50
265	0.14	0.20	0.17	25
266	0.10	0.19	0.13	47
267	0.46	0.48	0.47	97
268	0.68	0.72	0.70	36
269	0.44	0.41	0.43	56
270	0.30	0.58	0.40	38
271	0.03	0.05	0.04	58
272	0.15	0.50	0.24	8
273	0.08	0.15	0.10	27
274	0.08	0.19	0.11	123
275	0.22	0.29	0.25	69
276	0.39	0.25	0.30	112
277	0.11	0.10	0.10	31
278	0.15	0.21	0.18	29
279 280	0.16	0.29 0.44	0.21 0.36	38 50
280 281	0.30 0.41	0.44	0.43	50 20
282	0.74	0.43	0.43	45
283	0.06	0.13	0.08	15
284	0.23	0.22	0.22	74
285	0.21	0.24	0.22	46
286	0.15	0.07	0.10	29
287	0.04	0.04	0.04	54
288	0.35	0.52	0.42	33
289	0.00	0.00	0.00	26
290	0.49	0.71	0.58	41
291	0.07	0.25	0.11	24
292	0.13	0.17	0.15	40
293	0.23	0.45	0.31	33
294	0.11	0.06	0.08	31
295	0.06	0.02	0.03	47
296	0.09	0.21	0.13	33
297	0.13	0.20	0.16	45
298	0.05	0.07	0.05	59
299	0.07	0.14	0.09	51
300	0.15	0.24	0.19	49
301	0.62	0.47	0.54	38
302 303	0.34 0.14	0.39 0.50	0.37 0.22	28 16
304	0.14	0.22	0.15	32
305	0.09	0.21	0.13	24
306	0.18	0.05	0.07	44
307	0.07	0.50	0.12	6
308	0.00	0.00	0.00	48
309	0.56	0.47	0.51	49
310	0.14	0.11	0.12	38
311	0.27	0.13	0.17	62
312	0.09	0.04	0.05	27
313	0.09	0.06	0.07	49
314	0.20	0.25	0.22	24
315	0.33	0.03	0.06	59
316	0.07	0.30	0.12	10
317	0.20	0.37	0.26	67
318	0.14	0.42	0.21	12
319	0.00	0.00	0.00	14
320	0.06	0.25	0.10	12
321 322	0.10	0.33	0.16	9 22
323	0.52 0.64	0.52 0.55	0.52 0.59	23 33
324	0.41	0.49	0.44	57
325	0.13	0.16	0.15	25
326	0.06	0.02	0.03	44
327	0.10	0.30	0.15	27
328	0.07	0.09	0.08	34
329	0.31	0.57	0.40	7
330	0.20	0.05	0.07	22
331	0.18	0.32	0.23	25
332	0.93	0.25	0.39	106
333	0.42	0.31	0.36	84
334	0.00	0.00	0.00	36
335	0.12	0.54	0.20	13
336	0.00	0.00	0.00	37
337	0.07	0.11	0.09	38
338	0.70	0.84	0.76	44
339	0.04	0.15	0.06	34
340 341	0.23	0.50 0.43	0.31	40 23
341 342	0.24 0.12	0.43 0.36	0.31 0.18	23 11
J+4	0.14	0.00	0.10	11

242	0. 20	0.50	0.20	12
343	0.28	0.58	0.38	12
344	0.10	0.24	0.14	25
345	0.03	1.00	0.05	1
346	0.21	0.15	0.17	41
347	0.05	0.17	0.08	46
348	0.02	0.11	0.04	19
349	0.28	0.42	0.34	38
350	0.31	0.39	0.35	33
351	0.29	0.19	0.23	53
352	0.00	0.00	0.00	49
353	0.24	0.19	0.21	27
354	0.12	0.16	0.14	31
355	0.42	0.42	0.42	12
	0.42	0.42	0.15	33
356 357				
357	0.47	0.71	0.57	24
358	0.39	0.35	0.37	34
359	0.33	0.42	0.37	33
360	0.13	0.11	0.12	47
361	0.13	0.54	0.22	39
362	0.69	0.66	0.68	38
363	0.08	0.18	0.11	17
364	0.01	0.03	0.01	33
365	0.29	0.08	0.12	26
366	0.10	0.21	0.13	19
367	0.30	0.08	0.13	98
368	0.24	0.47	0.32	38
369	0.59	0.57	0.58	28
370	0.33	0.27	0.30	15
371	0.14	0.18	0.16	22
372	0.57	0.33	0.42	12
373	0.33	0.50	0.40	6
374	0.24	0.16	0.19	31
375	0.19	0.08	0.13	38
				36 42
376	0.11	0.02	0.04	
377	0.06	0.17	0.09	23
378	0.08	0.50	0.14	4
379	0.14	0.19	0.16	37
380	0.05	0.33	0.09	6
381	0.41	0.50	0.45	18
382	0.30	0.28	0.29	40
383	0.01	0.02	0.01	53
384	0.29	0.36	0.32	25
385	0.19	0.28	0.22	53
386	0.70	1.00	0.82	14
387	0.34	0.39	0.36	88
388	0.00	0.00	0.00	16
389	0.00	0.00	0.00	8
390	0.00	0.00	0.00	37
391	0.89	0.65	0.76	52
392	0.10	0.12	0.11	17
393	0.56	0.41	0.47	37
394	0.00	0.00	0.00	19
395	0.00	0.00	0.00	9
396	0.04	0.14	0.06	14
397	0.73	0.55	0.63	29
398	0.30	0.42	0.35	38
399	0.56	0.66	0.60	38
400	0.07	0.11	0.09	36
401	0.26	0.18	0.21	56
402	0.81	0.65	0.72	20
403	0.02	0.09	0.03	11
404	0.37	0.56	0.44	27
405	0.68	0.75	0.72	57
406	0.00	0.00	0.00	95
407	0.10	0.08	0.09	25
408	0.17	0.27	0.21	11
409	0.03	0.07	0.04	27
410	0.14	0.45	0.22	11
411	0.20	0.17	0.18	53
412	0.58	0.35	0.44	31
413	0.50	0.21	0.29	29
414	0.10	0.11	0.11	27
415	0.03	0.10	0.05	30
416	0.23	0.10	0.14	31
417	0.23	0.30	0.14	10
417	0.23	0.00	0.20	23
418	0.30	0.50	0.00 0.37	23 6
419		0.30 0.41		22
	0.16 0.00		0.23 0.00	
421 422	0.00	0.00	0.00	1 50
422	0.02	0.03	0.03	59 20
423	0.00	0.00	0.00	38 76
424	0.67	0.03	0.05	76
425	0.07	0.26	0.11	19
426	0.06	0.13	0.08	15
427	0.38	0.67	0.48	48
428	0.31	0.32	0.32	28
429	0.47	0.42	0.45	40
430	0.59	0.45	0.51	29

	431	0.00	0.00	0.00	43
	432	0.24	0.21	0.22	19
	433	0.02	0.03	0.02	34
	434	0.00	0.00	0.00	0
	435	0.00	0.00	0.00	2
	436	0.21	0.07	0.11	40
	437	0.30	0.24	0.26	38
	438	0.41	0.62	0.49	26
	439	0.12	0.11	0.12	36
	440	0.57	0.30	0.39	27
	441	0.48	0.53	0.50	19
	442	0.50	0.67	0.57	21
	443	0.16	0.11	0.13	35
	444	0.10	0.17	0.12	18
	445	0.26	0.28	0.27	25
	446	0.72	0.69	0.71	49
	447	0.13	0.13	0.13	71
	448	0.05	0.05	0.05	19
	449	0.23	0.24	0.23	55
	450	0.12	0.06	0.08	52
	451	0.00	0.00	0.00	25
	452	0.81	0.62	0.70	40
	453	0.00	0.00	0.00	14
	454	0.12	0.20	0.15	15
	455	0.12	0.06	0.08	18
	456	0.12	0.67	0.20	6
	457	0.22	0.23	0.22	22
	458	0.12	0.17	0.14	18
	459	0.24	0.55	0.34	29
	460	0.00	0.00	0.00	24
	461	0.13	0.36	0.19	14
	462	0.55	0.23	0.32	26
	463	0.50	0.09	0.15	22
	464	0.91	0.75	0.82	40
	465	0.28	0.20	0.23	41
	466	0.19	0.14	0.16	42
	467	0.21	0.20	0.20	51
	468	0.20	0.27	0.23	37
	469	0.03	0.20	0.04	5
	470	0.20	0.21	0.21	19
	471	0.34	0.26	0.29	43
	472	0.00	0.00	0.00	55
	473	0.21	0.24	0.22	29
	474	0.82	0.75	0.78	24
	475	0.59	0.66	0.62	68
	476	0.15	0.11	0.12	38
	477	0.25	0.27	0.26	22
	478	0.16	0.17	0.16	53
	479	0.12	0.08	0.10	26
	480	0.00	0.00	0.00	64
	481	0.15	0.12	0.13	26
	482	0.13	0.57	0.21	7
	483	0.14	0.15	0.15	13
	484	0.15	0.26	0.19	23
	485	0.45	0.31	0.37	29
	486	0.47	0.39	0.43	23
	487	0.47	0.29	0.36	31
	488	0.31	0.27	0.29	30
	489	0.13	0.14	0.14	36
	490	0.07	0.12	0.09	16
	491	0.01	0.03	0.01	39
	492	0.09	0.27	0.13	11
	493	0.21	0.44	0.28	25
	494	0.03	0.07	0.05	15
	495	0.23	0.67	0.34	9
	496	0.33	0.53	0.41	19
	497	0.00	0.00	0.00	72
	498	0.38	0.42	0.40	19
	499				32
	+22	0.38	0.28	0.32	52
•		0.37	0.44	0.30	cooc -
micro	_	0.37	0.41	0.39	60294
macro	avg	0.25	0.31	0.26	60294
weighted	avg	0.41	0.41	0.40	60294
samples	avg	0.39	0.41	0.36	60294

4.5.11 Applying Linear SVM (SGD with Hinge Loss) with OneVsRest Classifier(1 to 4grams)

Hyper parameter Tuning

```
In [33]: start = datetime.now()
    classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', penalty='l1'), n_jobs=1)
    parameters = {'estimator_alpha':[2*10**-5, 4*10**-5, 6*10**-5]}
    clf = GridSearchCV(classifier, parameters, cv= 3, return_train_score=True, scoring='f1_micro', n_jobs=-1)
    clf.fit(x_train_multilabel, y_train)
    print("Time taken to run this cell :", datetime.now() - start)
```

Time taken to run this cell : 1:31:54.491088

```
In [34]: plt.figure(figsize=(20,10))
    train_auc= clf.cv_results_['mean_train_score']
    cv_auc = clf.cv_results_['mean_test_score']
    plt.plot(parameters['estimator__alpha'], train_auc, label='Train')
    plt.plot(parameters['estimator__alpha'], cv_auc, label='CV')

plt.scatter(parameters['estimator__alpha'], train_auc, label='Train points')
    plt.scatter(parameters['estimator__alpha'], cv_auc, label='CV points')

plt.legend()
    plt.xlabel("alpha: Hyperparameter")
    plt.ylabel("Micro F1 score")
    plt.title("Hyperparameter v/s Micro F1score plot")
    plt.grid()
    plt.show()
```


Model A with L1 Loss

```
In [35]: start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=8*10**-5, penalty='l1'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict(x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell : 0:07:16.262753

Hamming loss 0.0053706

Micro-average quality numbers
Precision: 0.3535, Recall: 0.4053, F1-measure: 0.3776

Macro-average quality numbers Precision: 0.2280, Recall: 0.3106, F1-measure: 0.2475

ion:		Recall: ision	0.3106, recall	F1-measure: f1-score	0.2475 support
	0	0.82	0.72	0.77	6668
	1 2	0.40 0.14	0.28 0.16	0.33 0.15	3659 971
	3	0.51	0.55	0.53	1506
	4	0.55	0.47	0.50	1649
	5	0.57	0.48	0.52	1113
	6	0.53	0.45	0.49	1482
	7 8	0.56	0.60	0.58 0.77	980 1520
	9	0.76 0.52	0.77 0.84	0.77	1041
1		0.45	0.43	0.44	861
1		0.23	0.40	0.30	386
1		0.07	0.54	0.13	37
1 1		0.55 0.28	0.43 0.22	0.48 0.24	917 519
1		0.25	0.27	0.26	656
1		0.42	0.24	0.31	794
1		0.40	0.32	0.36	700
1 1		0.40 0.58	0.55 0.64	0.46 0.61	363 541
2		0.35	0.48	0.41	540
2		0.54	0.64	0.58	362
2		0.63	0.55	0.59	551
2		0.25	0.34	0.29	309
2 2		0.29 0.26	0.40 0.36	0.34 0.30	331 424
2		0.35	0.29	0.32	465
2		0.17	0.07	0.10	386
2		0.15	0.18	0.16	107
2 3		0.06	0.08	0.07	195
3		0.29 0.11	0.36 0.53	0.32 0.18	758 15
3		0.41	0.58	0.48	323
3		0.30	0.34	0.32	279
3		0.37	0.37 0.49	0.37 0.54	275
3 3		0.59 0.09	0.49	0.10	268 76
3		0.10	0.23	0.14	269
3		0.41	0.51	0.45	255
3 4		0.24 0.16	0.32 0.26	0.28 0.20	249 66
4		0.20	0.20	0.20	209
4		0.30	0.38	0.33	72
4		0.28	0.42	0.34	430
4 4		0.17 0.33	0.21 0.35	0.18 0.34	279 240
4		0.26	0.38	0.31	157
4		0.48	0.58	0.53	249
4		0.13	0.11	0.12	198
4 5		0.30 0.55	0.34 0.68	0.32 0.61	171 200
5		0.60	0.75	0.67	85
5		0.32	0.33	0.32	175
5		0.08	0.30	0.13	114
5 5		0.07 0.21	0.18 0.32	0.10 0.25	223 122
5		0.48	0.58	0.52	168
5		0.10	0.05	0.06	176
5		0.14	0.23	0.17	140
5 6		0.21 0.64	0.21 0.75	0.21 0.69	191 152
6		0.27	0.73	0.24	208
6		0.16	0.15	0.15	136
6		0.44	0.47	0.45	158
6 6		0.61	0.50	0.55	203
6		0.28 0.22	0.42 0.50	0.33 0.30	105 58
6		0.43	0.54	0.48	128
6		0.14	0.12	0.13	158
6 7		0.21 0.19	0.15 0.14	0.17 0.16	248 201
7		0.19	0.14	0.16	201 89
7	2	0.40	0.38	0.39	157
7		0.19	0.48	0.27	29
7. 7		0.09 0.14	0.17 0.16	0.12 0.15	58 158
7		0.14 0.57	0.16	0.13	110
7	7	0.25	0.45	0.32	33
7		0.12	0.23	0.16	210
7	9	0.37	0.54	0.44	169

80	0.05	0.40	0.08	15
81	0.27	0.39	0.32	214
82	0.15	0.29	0.20	65
83	0.15	0.27	0.20	156
84	0.33	0.49	0.40	59
85	0.37	0.65	0.47	55
86	0.13	0.28	0.18	36
87	0.22	0.41	0.29	29
88	0.38	0.63	0.47	54
89	0.45	0.76	0.56	137
90	0.13	0.19	0.15	103
91	0.14	0.23	0.17	79
92	0.08	0.14	0.10	84
93	0.37	0.50	0.42	133
94	0.67	0.41	0.51	318
95	0.34	0.75	0.47	51
96	0.39	0.49	0.43	82
97	0.11			
		0.16	0.13	75
98	0.05	0.03	0.03	120
99	0.18	0.39	0.25	18
100	0.54	0.39	0.46	196
101	0.44	0.44	0.44	208
102	0.08	0.16	0.11	122
103	0.04	0.03	0.03	62
104	0.07	0.06	0.06	88
105	0.31	0.43	0.36	65
106	0.19	0.20	0.19	115
107	0.02	0.07	0.03	29
108	0.31	0.18	0.23	109
109	0.28	0.23	0.25	73
110	0.33	0.25	0.29	102
111	0.40	0.41	0.40	180
112	0.76	0.09	0.15	292
113	0.55	0.85	0.67	54
114	0.12	0.11	0.12	120
115	0.25	0.36	0.30	107
116	0.30	0.37	0.33	52
117	0.06	0.12	0.08	72
118	0.56	0.56	0.56	139
119	0.47	0.44	0.45	57
120	0.38	0.52	0.44	44
121	0.07	0.18	0.10	85
122	0.33	0.57	0.42	82
123	0.04	0.07	0.05	100
124	0.16	0.75	0.26	4
125	0.14	0.67	0.23	9
126	0.07	0.22	0.11	46
127	0.13	0.17	0.15	54
128	0.87	0.76	0.81	195
129	0.29	0.46	0.36	54
130	0.11	0.16	0.13	96
131	0.39	0.66	0.49	35
132	0.08	0.14	0.10	58
133	0.16	0.14	0.15	36
134	0.19	0.39	0.26	36
135	0.42	0.69	0.52	39
136	0.04	0.01	0.02	97
137	0.20	0.41	0.27	70
138	0.16	0.29	0.20	17
139	0.14	0.22	0.17	119
140				
	0.48	0.65	0.55	101
141	0.24	0.46	0.32	115
142	0.47	0.32	0.38	94
143	0.35	0.57	0.43	84
144	0.45	0.62	0.52	64
145	0.04	0.03	0.03	61
146	0.14	0.16	0.15	132
147	0.25	0.32	0.28	119
148	0.50	0.60	0.54	62
149	0.21	0.16	0.18	83
150	0.07	0.18	0.11	72
151	0.09	0.35	0.14	23
152	0.06	0.14	0.08	76
153	0.10	0.44	0.16	18
154	0.05	0.24	0.08	17
155	0.00	0.00	0.00	24
156	0.31	0.15	0.20	136
157	0.30	0.40	0.34	129
158	0.14	0.15	0.15	143
159	0.53	0.60	0.56	107
160	0.24	0.37	0.29	78
161	0.15	0.29	0.20	73
162	0.07	0.08	0.07	106
163	0.12	0.13	0.12	126
164	0.26	0.49	0.34	63 220
165	0.00	0.00	0.00	229
166	0.33	0.27	0.30	115
167	0.17	0.17	0.17	46

160	0.25	0.22	0.22	60
168	0.25	0.22	0.23	69
169	0.38	0.47	0.42	70
170	0.62	0.54	0.57	54
171	0.00	0.00	0.00	43
172	0.28	0.34	0.31	76
173	0.06	0.25	0.10	12
174	0.18	0.16	0.17	76
175	0.34	0.57	0.43	91
176	0.59	0.64	0.61	157
177	0.20	0.27	0.23	41
178	0.00	0.00	0.00	0
179	0.05	1.00	0.10	1
180	0.23	0.36	0.28	- 55
181	0.07	0.11	0.09	62
182	0.09	0.50	0.15	2
183	0.37	0.45	0.41	80
184		0.00		206
	0.00		0.00	
185	0.32	0.23	0.27	86
186	0.34	0.33	0.34	66
187	0.65	0.68	0.66	59
188	0.39	0.59	0.47	68
189	0.20	0.16	0.18	108
190	0.17	0.25	0.20	85
191	0.31	0.36	0.33	86
192	0.15	0.57	0.24	46
193	0.21	0.28	0.24	18
194	0.21	0.35	0.27	74
195	0.13	0.38	0.19	55
196	0.45	0.71	0.55	38
197	0.33	0.32	0.32	95
198	0.09	0.31	0.14	16
199	0.06	0.13	0.08	39
200	0.29	0.09	0.13	58
201	0.06	0.25	0.10	55
202	0.15	0.22	0.18	58
203	0.08	0.05	0.06	66
204	0.49	0.66	0.56	64
205				
	0.00	0.00	0.00	10
206	0.05	0.15	0.08	66
207	0.13	0.21	0.16	73
208	0.12	0.15	0.13	54
209	0.09	0.21	0.12	61
210	0.21	0.58	0.31	12
211	0.13	0.25	0.17	59
212	0.33	0.50	0.40	26
213	0.21	0.28	0.24	105
214	0.32	0.52	0.39	50
215	0.11	0.11	0.11	65
216	0.41	0.48	0.44	79
217	0.21	0.35	0.26	55
218	0.06	0.33	0.11	3
219	0.05	0.13	0.07	62
220	0.07	0.15	0.10	81
221	0.14	0.24	0.17	34
222	0.04	0.06	0.05	64
223	0.53	0.48	0.50	61
224	0.11	0.33	0.16	18
225	0.18	0.70	0.29	10
226	0.61	0.70	0.65	99
227	0.28	0.54	0.37	13
228	0.06	0.12	0.08	74
229	0.51	0.72	0.60	50
230	0.15	0.18	0.16	74
231	0.00	0.00	0.00	4
232	0.23			
232		0.35	0.28	26 146
	0.04	0.01	0.02	146
234	0.44	0.70	0.54	61
235	0.15	0.15	0.15	13
236	0.16	0.18	0.17	49
237	0.45	0.42	0.43	90
238	0.05	0.05	0.05	58
239	0.11	0.25	0.15	24
240	0.75	0.66	0.70	64
241	0.50	0.72	0.59	75
242	0.40	0.46	0.43	63
243	0.51	0.41	0.45	76
244	0.25	0.35	0.29	63
245	0.06	0.05	0.05	41
246	0.00	0.00	0.00	162
247	0.06	0.05	0.05	22
248	0.62	0.60	0.61	52
249	0.18	0.53	0.26	19
250	0.36	0.65	0.46	23
251	0.30	0.47	0.37	57
252	0.09	0.22	0.13	36
253	0.10	0.10	0.10	41
254	0.03	0.10	0.05	10
255	0.05	0.18	0.08	22

256	0.00	0 50	0.15	0
256	0.09	0.50	0.15	8
257	0.06	0.11	0.07	62
258	0.30	0.26	0.28	43
259	0.39	0.54	0.46	87
260	0.00	0.00	0.00	56
261	0.00	0.00	0.00	3
262	0.15	0.35	0.21	20
263	0.05	0.20	0.07	15
264	0.04	0.08	0.05	50
265	0.08	0.20	0.11	25
266	0.11	0.21	0.15	47
267	0.36	0.44	0.40	97
268	0.43	0.69	0.53	36
269	0.32	0.45	0.37	56
270	0.42	0.61	0.49	38
271	0.02	0.03	0.03	58
272	0.08	0.25	0.12	8
273	0.19	0.22	0.20	27
274	0.14	0.14	0.14	123
275	0.29	0.32	0.31	69
276	0.36	0.17	0.23	112
277	0.10	0.10	0.10	31
278	0.13	0.14	0.13	29
279	0.13	0.21	0.16	38
280	0.23	0.32	0.27	50
281	0.42	0.55	0.48	20
282	0.74	0.76	0.75	45
283	0.12	0.27	0.17	15
284	0.20	0.34	0.26	74
285	0.11	0.22	0.15	46
286	0.04	0.03	0.04	29
287	0.08	0.11	0.09	54
288	0.22	0.64	0.33	33
289	0.03	0.08	0.04	26
290	0.49	0.63	0.55	41
291	0.04	0.17	0.07	24
292	0.12	0.17	0.14	40
293	0.18	0.45	0.26	33
294	0.04	0.06	0.05	31
295	0.00	0.00	0.00	47
296	0.05	0.21	0.08	33
297	0.09	0.21 0.16	0.12	45
298	0.09 0.15			45 59
299	0.13	0.03 0.18	0.06	59 51
300	0.19	0.18	0.17 0.21	49
301	0.29	0.29	0.29	38 28
302	0.38	0.54	0.45	28 16
303	0.18	0.50	0.26	16
304	0.16	0.22	0.18	32
305 306	0.12	0.25	0.16	24
306 307	0.04	0.11	0.06	44
307	0.04	0.17	0.06	6
308	0.00	0.00	0.00	48
309	0.47	0.41	0.43	49
310	0.03	0.08	0.04	38
311	0.13	0.13	0.13	62 27
312	0.02	0.04	0.03	27
313	0.08	0.08	0.08	49
314	0.14	0.29	0.19	24
315	0.10	0.07	0.08	59
316	0.11	0.20	0.14	10
317	0.21	0.24	0.22	67
318	0.21	0.58	0.30	12
319	0.00	0.00	0.00	14
320	0.05	0.17	0.07	12
321	0.19	0.56	0.28	9
322	0.37	0.43	0.40	23
323	0.43	0.61	0.51	33
324	0.41	0.53	0.46	57
325	0.20	0.20	0.20	25
326	0.14	0.07	0.09	44
327	0.12	0.33	0.17	27
328	0.10	0.21	0.14	34
329	0.11	0.29	0.16	7
330	0.05	0.09	0.06	22
331	0.06	0.24	0.09	25
332	0.92	0.42	0.58	106
333	0.48	0.38	0.42	84
334	0.04	0.03	0.03	36
335	0.05	0.15	0.08	13
336	0.03	0.03	0.03	37
337	0.00	0.00	0.00	38
338	0.80	0.75	0.78	44
339	0.06	0.06	0.06	34
340	0.25	0.45	0.32	40
341	0.40	0.52	0.45	23
342	0.14	0.45	0.21	11
343	0.21	0.50	0.30	12

344	0.12	0.32	0.18	25
345	0.03	1.00	0.06	1
346	0.08	0.12	0.10	41
347	0.04	0.20	0.06	46
348	0.05	0.11	0.07	19
349	0.17	0.45	0.24	38
350	0.16	0.55	0.24	33
351	0.23	0.34	0.27	53
352	0.02	0.02	0.02	49
353	0.25	0.22	0.24	27
354	0.03	0.03	0.03	31
355 356	0.11	0.58	0.18	12 33
357	0.09 0.33	0.18 0.67	0.12 0.44	33 24
358	0.26	0.38	0.31	34
359	0.26	0.48	0.34	33
360	0.14	0.11	0.12	47
361	0.28	0.49	0.36	39
362	0.68	0.74	0.71	38
363	0.11	0.24	0.15	17
364	0.06	0.03	0.04	33
365	0.02	0.04	0.03	26
366	0.14	0.21	0.17	19
367 368	0.32 0.29	0.12 0.53	0.18	98 38
368 369	0.34	0.50	0.37 0.41	28
370	0.06	0.13	0.09	15
371	0.11	0.23	0.15	22
372	0.17	0.08	0.11	12
373	0.14	0.50	0.21	6
374	0.13	0.16	0.14	31
375	0.11	0.11	0.11	38
376	0.10	0.07	0.08	42
377	0.04	0.09	0.06	23
378	0.14	0.50	0.22	4
379	0.05	0.05	0.05	37
380 381	0.07 0.33	0.33 0.56	0.12 0.42	6 1 8
382	0.27	0.35	0.42	40
383	0.03	0.06	0.04	53
384	0.16	0.44	0.23	25
385	0.16	0.26	0.20	53
386	0.53	0.57	0.55	14
387	0.34	0.42	0.38	88
388	0.06	0.12	0.08	16
389	0.07	0.25	0.11	8
390	0.01	0.03	0.01	37 53
391 392	0.38 0.03	0.48 0.06	0.42 0.04	52 17
393	0.55	0.59	0.57	37
394	0.00	0.00	0.00	19
395	0.03	0.11	0.05	9
396	0.12	0.21	0.15	14
397	0.59	0.66	0.62	29
398	0.24	0.39	0.30	38
399	0.54	0.71	0.61	38
400	0.33	0.17	0.22	36
401	0.23	0.05	0.09	56
402 403	0.79 0.03	0.75 0.18	0.77 0.05	20 11
404	0.47	0.59	0.52	27
405	0.70	0.75	0.73	57
406	0.00	0.00	0.00	95
407	0.07	0.12	0.08	25
408	0.04	0.09	0.06	11
409	0.04	0.07	0.05	27
410	0.19	0.55	0.29	11
411	0.17	0.09	0.12	53
412	0.38	0.45	0.41	31 20
413 414	0.18 0.04	0.24 0.11	0.21 0.05	29 27
415	0.11	0.11	0.15	30
416	0.08	0.06	0.13	31
417	0.43	0.30	0.35	10
418	0.03	0.09	0.05	23
419	0.20	0.50	0.29	6
420	0.15	0.45	0.22	22
421	0.00	0.00	0.00	1
422	0.02	0.02	0.02	59
423	0.03	0.05	0.04	38 76
424 425	0.46	0.08	0.13	76 10
425 426	0.12 0.02	0.21 0.07	0.15 0.03	19 15
426 427	0.02	0.56	0.03 0.46	48
428	0.39	0.32	0.40	28
429	0.53	0.40	0.46	40
430	0.32	0.34	0.33	29
431	0.00	0.00	0.00	43

	432	0.27	0.16	0.20	19
	433	0.03	0.03	0.03	34
	434	0.00	0.00	0.00	0
	435	0.00	0.00	0.00	2
	436 437	0.12 0.23	0.17 0.29	0.14 0.26	40 38
	438	0.31	0.62	0.41	26
	439	0.08	0.11	0.09	36
	440	0.25	0.22	0.24	27
	441	0.23	0.42	0.30	19
	442 443	0.48 0.23	0.71	0.58 0.21	21 35
	444	0.09	0.20 0.22	0.13	18
	445	0.14	0.32	0.19	25
	446	0.31	0.76	0.44	49
	447	0.18	0.17	0.17	71
	448	0.02 0.24	0.11	0.04	19
	449 450	0.03	0.24 0.08	0.24 0.04	55 52
	451	0.00	0.00	0.00	25
	452	0.63	0.55	0.59	40
	453	0.00	0.00	0.00	14
	454	0.00	0.00	0.00	15
	455 456	0.02 0.11	0.06 0.50	0.03 0.18	18 6
	457	0.19	0.18	0.19	22
	458	0.02	0.06	0.03	18
	459	0.56	0.52	0.54	29
	460	0.05	0.04	0.04	24
	461	0.15	0.36	0.21	14
	462 463	0.35 0.25	0.42 0.05	0.39 0.08	26 22
	464	0.85	0.70	0.77	40
	465	0.20	0.22	0.21	41
	466	0.13	0.24	0.17	42
	467	0.27	0.29	0.28	51
	468	0.22	0.16	0.19	37
	469 470	0.06 0.09	0.40 0.21	0.10 0.13	5 1 9
	471	0.47	0.40	0.43	43
	472	0.04	0.04	0.04	55
	473	0.23	0.31	0.26	29
	474	0.59	0.71	0.64	24
	475	0.63	0.71	0.67	68
	476 477	0.25 0.25	0.34 0.45	0.29 0.32	38 22
	478	0.18	0.25	0.21	53
	479	0.07	0.12	0.09	26
	480	0.04	0.09	0.05	64
	481	0.05	0.15	0.07	26
	482	0.07	0.43	0.12	7
	483 484	0.33 0.22	0.38 0.39	0.36 0.28	13 23
	485	0.23	0.21	0.22	29
	486	0.26	0.30	0.28	23
	487	0.16	0.23	0.19	31
	488	0.12	0.20	0.15	30
	489 490	0.29 0.03	0.31 0.06	0.30 0.04	36 16
	491	0.00	0.00	0.00	39
	492	0.06	0.18	0.09	11
	493	0.22	0.48	0.30	25
	494	0.00	0.00	0.00	15
	495	0.10	0.33	0.15	9
	496 497	0.07 0.00	0.11 0.00	0.09 0.00	19 72
	497	0.26	0.42	0.32	72 19
	499	0.50	0.31	0.38	32
m =	21/5	A 25	Q 41	a 20	60204
micro macro	avg avg	0.35 0.23	0.41 0.31	0.38 0.25	60294 60294
weighted	avg	0.40	0.41	0.39	60294
•	avg	0.38	0.41	0.35	60294
	-				

micro macro weighted

```
In [36]: start = datetime.now()
         classifier = OneVsRestClassifier(SGDClassifier(loss='hinge', alpha=8*10**-5, penalty='12'), n_jobs=-1)
         classifier.fit(x_train_multilabel, y_train)
         predictions = classifier.predict(x_test_multilabel)
         print("Time taken to run this cell :", datetime.now() - start)
         print("Hamming loss ",metrics.hamming_loss(y_test,predictions))
         precision = precision_score(y_test, predictions, average='micro')
         recall = recall_score(y_test, predictions, average='micro')
         f1 = f1_score(y_test, predictions, average='micro')
         print("Micro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         precision = precision_score(y_test, predictions, average='macro')
         recall = recall_score(y_test, predictions, average='macro')
         f1 = f1_score(y_test, predictions, average='macro')
         print("Macro-average quality numbers")
         print("Precision: {:.4f}, Recall: {:.4f}, F1-measure: {:.4f}".format(precision, recall, f1))
         print (metrics.classification_report(y_test, predictions))
```

Time taken to run this cell: 0:01:48.287269

Hamming loss 0.0038696

Micro-average quality numbers
Precision: 0.5286, Recall: 0.3451, F1-measure: 0.4175

Macro-average quality numbers Precision: 0.3901, Recall: 0.2320, F1-measure: 0.2749

cision: 0	.3901, Recall:			
	precision	recall	f1-score	support
0	0.83	0.71	0.76	6668
1	0.38	0.27	0.31	3659
2	0.13	0.16	0.14	971
3	0.60	0.52	0.56	1506
4 5	0.57 0.54	0.48 0.48	0.52 0.51	1649 1113
6	0.53	0.48	0.42	1482
7	0.57	0.56	0.57	980
8	0.82	0.59	0.69	1520
9	0.57	0.73	0.64	1041
10 11	0.49 0.38	0.41 0.37	0.45 0.37	861 386
12	0.34	0.57	0.43	37
13	0.60	0.34	0.44	917
14	0.30	0.16	0.21	519
15 16	0.34 0.46	0.28 0.19	0.31 0.27	656 794
17	0.42	0.25	0.31	700
18	0.67	0.56	0.61	363
19	0.77	0.52	0.62	541
20	0.43	0.37	0.40	540
21 22	0.68 0.75	0.55 0.40	0.61 0.53	362 551
23	0.40	0.27	0.32	309
24	0.39	0.33	0.36	331
25	0.35	0.31	0.33	424
26	0.46	0.29	0.36	465
27 28	0.20 0.21	0.12 0.20	0.15 0.20	386 107
29	0.07	0.20	0.07	195
30	0.68	0.29	0.40	758
31	0.12	0.13	0.13	15
32	0.64	0.56	0.60	323
33 34	0.39 0.47	0.35 0.31	0.37 0.37	279 275
35	0.70	0.31	0.53	268
36	0.06	0.04	0.05	76
37	0.21	0.09	0.13	269
38	0.54	0.40	0.46	255
39 40	0.38 0.31	0.27 0.23	0.32 0.26	249 66
40	0.26	0.23	0.12	209
42	0.42	0.39	0.40	72
43	0.34	0.12	0.18	430
44	0.31	0.17	0.22	279
45 46	0.47 0.47	0.19 0.30	0.27 0.37	240 157
47	0.75	0.46	0.57	249
48	0.19	0.08	0.11	198
49	0.47	0.32	0.38	171
50	0.83	0.65	0.73	200
51 52	0.74 0.52	0.66 0.35	0.70 0.42	85 175
53	0.18	0.32	0.23	114
54	0.19	0.12	0.14	223
55	0.34	0.21	0.26	122
56 57	0.60 0.15	0.45	0.52	168 176
58	0.15 0.31	0.02 0.26	0.04 0.29	176 140
59	0.44	0.13	0.20	191
60	0.90	0.62	0.74	152
61	0.32	0.15	0.20	208
62 63	0.17	0.07 0.41	0.10	136 158
64	0.62 0.59	0.41 0.30	0.49 0.40	203
65	0.41	0.34	0.37	105
66	0.30	0.28	0.29	58
67	0.51	0.45	0.48	128
68 69	0.13 0.20	0.05 0.06	0.07 0.10	158 248
70	0.24	0.08	0.10	248
71	0.37	0.25	0.30	89
72	0.47	0.39	0.43	157
73 74	0.29	0.31	0.30	29
74 75	0.19 0.29	0.07 0.13	0.10 0.18	58 158
75 76	0.79	0.13	0.63	110
77	0.47	0.45	0.46	33
78	0.16	0.10	0.13	210
79	0.61	0.48	0.54	169

80	0.06	0.07	0.06	15
81	0.48	0.35	0.40	214
82	0.34	0.28	0.31	65
83	0.27	0.19	0.22	156
84	0.56	0.46	0.50	59
85	0.66	0.60	0.63	55
86	0.24	0.19	0.22	36
87	0.44	0.48	0.46	29
88	0.55	0.56	0.55	54
89	0.69	0.70	0.69	137
90	0.16	0.12	0.13	103
91	0.33	0.18	0.23	79
92	0.32	0.08	0.13	84
93	0.60	0.53	0.56	133
94	0.77	0.34	0.47	318
95	0.60	0.55	0.57	51
96	0.52	0.29	0.38	82
97	0.18	0.04	0.07	75
98	0.00	0.00	0.00	120
99	0.41	0.39	0.40	18
100	0.50	0.43	0.46	196
101	0.66	0.30	0.42	208
102	0.33	0.14	0.20	122
103	0.00	0.00	0.00	62
104	0.08	0.02	0.04	88
105	0.64	0.35	0.46	65
106	0.33	0.15	0.20	115
107	0.07	0.07	0.07	29
108	0.37	0.12	0.18	109
109	0.58	0.29	0.39	73
110	0.56	0.19	0.28	102
111	0.60	0.29	0.39	180
112	0.67	0.01	0.01	292
113	0.86	0.69	0.76	54
114	0.24	0.03	0.06	120
115	0.36	0.22	0.28	107
116	0.58	0.21	0.31	52
117	0.26	0.07	0.11	72
118	0.65	0.37	0.47	139
119	0.67	0.25	0.36	57
120	0.67	0.36	0.47	44
121	0.06	0.01	0.02	85
122	0.65	0.41	0.51	82
123	0.12	0.02	0.03	100
124	0.50	1.00	0.67	4
125	0.75	0.67	0.71	9
126	0.30	0.13	0.18	46
127	0.17	0.04	0.06	54
128	0.90	0.67	0.76	195
129	0.53	0.39	0.45	54
130	0.07	0.01	0.02	96
131	0.65	0.63	0.64	35
132	0.25	0.07	0.11	58
133	0.17	0.06	0.08	36
134	0.43	0.28	0.34	36
135	0.67	0.51	0.58	39
136	0.00	0.00	0.00	97
137				
	0.33	0.51	0.40	70
138	0.42	0.47	0.44	17
139	0.25	0.13	0.17	119
140	0.90	0.52	0.66	101
141	0.39	0.30	0.33	115
142	0.62	0.16	0.25	94
143	0.60	0.52	0.56	84
144	0.47	0.52	0.49	64
145		0.05		
	0.08		0.06	61
146	0.13	0.02	0.03	132
147	0.43	0.28	0.34	119
148	0.57	0.45	0.50	62
149	0.31	0.20	0.25	83
150	0.22	0.15	0.18	72
151	0.27	0.26	0.27	23
152	0.15	0.16	0.15	76
153	0.50	0.33	0.40	18
154	0.25	0.18	0.21	17
155	0.11	0.04	0.06	24
156	0.44	0.13	0.20	136
157	0.34	0.16	0.21	129
158	0.35	0.19	0.24	143
159	0.66	0.40	0.50	107
160	0.48	0.31	0.38	78
161	0.46	0.15	0.23	73
162	0.13	0.02	0.03	106
163	0.10	0.03	0.05	126
164	0.51	0.29	0.37	63
165	0.00	0.00	0.00	229
166	0.54	0.17	0.26	115
167	0.31	0.11	0.16	46

1.0	0 (1	0.16	0.25	C O
168	0.61	0.16	0.25	69
169	0.50	0.33	0.40	70
170	0.78	0.26	0.39	54
171	0.00	0.00	0.00	43
172	0.41	0.18	0.25	76
173	0.27	0.25	0.26	12
174	0.26	0.11	0.15	76
175	0.66	0.53	0.59	91
176	0.76	0.52	0.61	157
177	0.41	0.27	0.32	41
178	0.00	0.00	0.00	0
179	0.50	1.00	0.67	1
180	0.53	0.33	0.40	55
181	0.17	0.06	0.09	62
182	0.00	0.00	0.00	2
183	0.47	0.33	0.39	80
184	0.00	0.00	0.00	206
185	0.30	0.08	0.13	86
186	0.35	0.20	0.25	66
187	0.94	0.51	0.66	59
188	0.76	0.47	0.58	68
189	0.70	0.11	0.16	108
190	0.21	0.14	0.17	85 86
191	0.78	0.16	0.27	86
192	0.58	0.57	0.57	46
193	0.50	0.28	0.36	18
194	0.46	0.28	0.35	74
195	0.69	0.40	0.51	55
196	0.67	0.47	0.55	38
197	0.55	0.24	0.34	95
198	0.36	0.25	0.30	16
199	0.19	0.08	0.11	39
200	0.56	0.09	0.15	58
201	0.32	0.13	0.18	55
202	0.21	0.10	0.14	58
203	0.07	0.02	0.02	66
204	0.89	0.61	0.72	64
205	0.00	0.00	0.00	10
206	0.21	0.09	0.13	66
207	0.33	0.05	0.09	73
208	0.33	0.04	0.07	54
209	0.16	0.10	0.12	61
210	0.26	0.42	0.32	12
211	0.18	0.05	0.08	59
212	0.69	0.35	0.46	26
213	0.26	0.18	0.21	105
214	0.54	0.38	0.45	50
215	0.50	0.12	0.20	65
216	0.50	0.22	0.30	79
217	0.48	0.25	0.33	55
218	0.00	0.00	0.00	3
219	0.17	0.05	0.08	62
220	0.08	0.01	0.02	81
221	0.09	0.03	0.04	34
222	0.12	0.02	0.03	64
223	0.82	0.38	0.52	61
224	0.31	0.28	0.29	18
225	0.75	0.60	0.67	10
226	0.77	0.51	0.61	99
227	0.78	0.54	0.64	13
228	0.11	0.05	0.07	74
229	0.85	0.66	0.74	50
230	0.23	0.12	0.16	74
231	0.00	0.00	0.00	4
232	0.57	0.15	0.24	26
233	0.03	0.01	0.01	146
234	0.67	0.46	0.54	61
235	0.12	0.15	0.13	13
236	0.30	0.12	0.17	49
237	0.70	0.21	0.32	90
238	0.17	0.02	0.03	58
239	0.22	0.25	0.24	24
240	0.89	0.48	0.63	64
241	0.83	0.52	0.64	75
242	0.58	0.51	0.54	63
243	0.58	0.46	0.51	76
244	0.45	0.32	0.37	63
245	0.23	0.07	0.11	41
246	1.00	0.02	0.05	162
247	0.25	0.09	0.13	22
248	0.76	0.50	0.60	52
249	0.38	0.42	0.40	19
250	0.55	0.48	0.51	23
251	0.57	0.21	0.31	57
252	0.43	0.36	0.39	36
253	0.09	0.05	0.06	41
254	0.00	0.00	0.00	10
255	0.20	0.14	0.16	22

256	0.22	0.20	0.20	0
256	0.23	0.38	0.29	8
257	0.00	0.00	0.00	62
258	0.36	0.09	0.15	43
259	0.67	0.43	0.52	87
260	0.00	0.00	0.00	56
261	0.00	0.00	0.00	3
262	0.46	0.30	0.36	20
263	0.00	0.00	0.00	15
264	0.09	0.02	0.03	50
265	0.23	0.24	0.24	25
266	0.26	0.15	0.19	47
267	0.54	0.39	0.45	97
268	0.80	0.56	0.66	36
269	0.64	0.25	0.36	56
270	0.62	0.42	0.50	38
271	0.08	0.05	0.06	58
272	0.43	0.38	0.40	8
273	0.14	0.04	0.06	27
274	0.42	0.04	0.07	123
275	0.35	0.12	0.17	69
276	0.58	0.10	0.17	112
277	0.17	0.10	0.12	31
278	0.22	0.07	0.11	29
279	0.46	0.16	0.24	38
280	0.55	0.34	0.42	50
281	0.91	0.50	0.65	20
282	0.97	0.64	0.77	45
283	0.44	0.27	0.77	15
284	0.42	0.22	0.29	74
285	0.23	0.22	0.10	46
		0.07		29
286	0.22		0.11	
287	0.06	0.02	0.03	54
288	0.93	0.42	0.58	33
289	0.25	0.04	0.07	26
290	0.85	0.54	0.66	41
291	0.12	0.04	0.06	24
292	0.50	0.07	0.13	40
293	0.37	0.48	0.42	33
294	0.15	0.06	0.09	31
295	0.00	0.00	0.00	47
296	0.25	0.09	0.13	33
297	0.40	0.04	0.08	45 50
298 299	0.00	0.00 0.00	0.00	59 51
300	0.00 0.27	0.06	0.00 0.10	49
301		0.39		38
302	0.52		0.45 0.56	28
303	0.80 0.28	0.43 0.31	0.56 0.29	16
304	0.41	0.22	0.29	32
305	0.40	0.17	0.24	24
306	0.08	0.09	0.08	44
307	0.40	0.33	0.36	6
308	0.00	0.00	0.00	48
309	0.60	0.31	0.41	49
310	0.09	0.05	0.41	38
311			0.19	62
	0.36	0.13		27
312	0.00	0.00	0.00	
313	0.38	0.06	0.11	49
314	0.22	0.08	0.12	24
315	0.20	0.02	0.03	59
316	0.50	0.10	0.17	10
317	0.39	0.25	0.31	67 12
318	0.50	0.42	0.45	12
319	0.00	0.00	0.00	14
320	0.50	0.17	0.25	12
321	0.50	0.33	0.40	9
322	0.50	0.22	0.30	23
323	0.70	0.42	0.53	33
324	0.65	0.49	0.56	57 25
325	0.33	0.16	0.22	25
326	0.25	0.02	0.04	44
327	0.29	0.07	0.12	27
328	0.11	0.03	0.05	34 7
329 330	0.29 0.10	0.29	0.29	7 22
330 331	0.10 0.31	0.05	0.06 0.24	22 25
331	0.31	0.20	0.24	25 106
332	1.00	0.23	0.37	106
333	0.55	0.42	0.47	84 26
334	0.00	0.00	0.00	36 12
335 336	0.57 0.25	0.31	0.40 0.65	13 27
336 337	0.25 0.00	0.03 0.00	0.05 0.00	37 38
337	0.00 0.91	0.66	0.00 0.76	38 44
339	0.91 0.14	0.06	0.76	44 34
339 340	0.14 0.40	0.35	0.08 0.37	34 40
341	0.40 0.87	0.55 0.57	0.68	23
342	0.50	0.36	0.68	23 11
342 343	0.60	0.50	0.42 0.55	12
J - J	0.00	0.50	0.55	14

344	0.36	0.16	0.22	25
345	0.00	0.00	0.00	1
346	0.33	0.10	0.15	41
347	0.16	0.07	0.09	46
348	0.50	0.05	0.10	19
349	0.39	0.32	0.35	38
350	0.40	0.24	0.30	33
351	0.35	0.13	0.19	53
352	0.00	0.00	0.00	49
353	0.30	0.22	0.26	27
354	0.50	0.03	0.06	31
355	0.71	0.42	0.53	12
356	0.56	0.15	0.24	33
357	0.67	0.58	0.62	24
358 359	0.46 0.70	0.35 0.42	0.40 0.53	34 33
360	0.12	0.04	0.06	47
361	0.53	0.46	0.49	39
362	0.84	0.55	0.67	38
363	0.20	0.18	0.19	17
364	0.17	0.03	0.05	33
365	0.25	0.08	0.12	26
366	0.40	0.11	0.17	19
367	0.12	0.01	0.02	98
368	0.52	0.37	0.43	38
369	1.00	0.29	0.44	28
370	0.57	0.27	0.36	15
371	0.13	0.14	0.13	22
372	0.29	0.17	0.21	12
373	0.25	0.33	0.29	6
374 275	0.57	0.26	0.36	31
375 376	0.00 0.11	0.00 0.02	0.00 0.04	38 42
377	0.12	0.02	0.10	23
378	0.20	0.50	0.29	4
379	0.20	0.05	0.09	37
380	0.29	0.33	0.31	6
381	0.31	0.28	0.29	18
382	0.60	0.15	0.24	40
383	0.00	0.00	0.00	53
384	0.50	0.24	0.32	25
385	0.36	0.08	0.12	53
386	0.88	0.50	0.64	14
387	0.46	0.39	0.42	88
388	0.33	0.06	0.11	16
389	0.00	0.00	0.00	8
390	0.00	0.00	0.00	37 52
391 392	0.92	0.46	0.62	52 17
392 393	0.00 0.50	0.00 0.16	0.00 0.24	17 37
394	0.00	0.00	0.00	19
395	0.40	0.22	0.29	9
396	0.00	0.00	0.00	14
397	1.00	0.48	0.65	29
398	0.44	0.45	0.44	38
399	0.96	0.66	0.78	38
400	0.25	0.08	0.12	36
401	0.67	0.07	0.13	56
402	0.89	0.40	0.55	20
403	0.33	0.18	0.24	11
404	0.79	0.41	0.54	27
405	0.97	0.58	0.73	57
406 407	0.00	0.00	0.00	95 25
407	0.12 0.33	0.12 0.36	0.12 0.35	11
409	0.00	0.00	0.00	27
410	0.20	0.18	0.19	11
411	0.14	0.04	0.06	53
412	0.75	0.48	0.59	31
413	0.60	0.10	0.18	29
414	0.00	0.00	0.00	27
415	0.38	0.10	0.16	30
416	0.12	0.03	0.05	31
417	0.33	0.20	0.25	10
418	0.00	0.00	0.00	23
419	0.29	0.33	0.31	6
420	0.53	0.36	0.43	22
421	0.00	0.00	0.00	1
422	0.14	0.05	0.07	59
423 424	0.00	0.00 0.01	0.00	38 76
424 425	1.00	0.01 0.21	0.03 0.35	76 19
425 426	1.00 0.00	0.21	0.35 0.00	19 15
426 427	0.63	0.75	0.69	48
428	0.60	0.73	0.32	28
429	0.58	0.38	0.45	40
430	0.67	0.07	0.12	29
431	0.00	0.00	0.00	43

	432	0.50	0.11	0.17	19
	433	0.33	0.03	0.05	34
	434	0.00	0.00	0.00	0
	435	0.00	0.00	0.00	2
	436 437	0.33	0.10	0.15	40
	438	0.47 0.74	0.18 0.54	0.26 0.62	38 26
	439	0.12	0.03	0.05	36
	440	0.20	0.04	0.06	27
	441	0.30	0.32	0.31	19
	442	0.92	0.57	0.71	21
	443 444	0.15 0.00	0.06 0.00	0.08 0.00	35 18
	445	0.20	0.08	0.11	25
	446	0.73	0.45	0.56	49
	447	0.12	0.03	0.05	71
	448	0.44	0.21	0.29	19
	449 450	0.55 0.10	0.20 0.02	0.29 0.03	55 52
	451	0.00	0.00	0.00	25
	452	0.69	0.28	0.39	40
	453	0.00	0.00	0.00	14
	454	0.33	0.13	0.19	15
	455 456	0.00 0.14	0.00 0.17	0.00 0.15	18 6
	457	0.43	0.17	0.13	22
	458	0.14	0.06	0.08	18
	459	0.85	0.38	0.52	29
	460	0.00	0.00	0.00	24
	461	0.27	0.21	0.24	14
	462 463	0.40 0.00	0.08 0.00	0.13 0.00	26 22
	464	0.89	0.40	0.55	40
	465	0.44	0.17	0.25	41
	466	0.25	0.07	0.11	42
	467	0.44	0.37	0.40	51
	468 469	0.25	0.08	0.12	37
	470	0.00 0.20	0.00 0.11	0.00 0.14	5 1 9
	471	0.69	0.21	0.32	43
	472	0.00	0.00	0.00	55
	473	0.35	0.24	0.29	29
	474	0.82	0.58	0.68	24
	475 476	0.55 0.29	0.44 0.05	0.49 0.09	68 38
	477	0.50	0.18	0.27	22
	478	0.33	0.06	0.10	53
	479	0.00	0.00	0.00	26
	480	0.67	0.03	0.06	64
	481 482	0.50 0.33	0.08 0.29	0.13 0.31	26 7
	483	0.40	0.15	0.22	13
	484	0.67	0.35	0.46	23
	485	0.70	0.48	0.57	29
	486	0.43	0.26	0.32	23
	487 488	0.77	0.32	0.45	31
	489	0.57 0.30	0.13 0.17	0.22 0.21	30 36
	490	0.20	0.12	0.15	16
	491	0.00	0.00	0.00	39
	492	0.22	0.18	0.20	11
	493	0.41	0.36	0.38	25 15
	494 495	0.00 0.71	0.00 0.56	0.00 0.63	15 9
	496	0.50	0.58	0.54	19
	497	0.00	0.00	0.00	72
	498	0.31	0.21	0.25	19
	499	0.24	0.12	0.16	32
micro	avø	0.53	0.35	0.42	60294
macro	avg	0.39	0.23	0.42	60294
weighted	avg	0.50	0.35	0.39	60294
samples	avg	0.41	0.34	0.34	60294

5. Conclusions

micro macro weighted

Model	No. of Data Points	Tags	Vectorizer	MicroF1 score	Macro F1 score
Logistic Regression Linear SVM(L1)	 500000 500000	500 500	Count(1 to 3 grams) Count(1 to 3 grams)	0.4996 0.485	0.3855 0.3264
Logistic Regression Linear SVM(L1) Linear SVM(L2)	100000 100000 100000	500 500 500	Count(1 to 4 grams) Count(1 to 4 grams) Count(1 to 4 grams)	0.3863 0.3776 0.4175	0.2588 0.2475 0.2749