June 7, 2023

Contents

1	Setup	1
	Generazione di numeri casuali 2.1 Utilizzando numpy	1
3	Distribuzioni notevoli e metodi associati	;
4	Combinatoria	:

1 Setup

Importiamo le librerie qui usate

```
>>> import numpy as np
>>> from scipy import stats
```

2 Generazione di numeri casuali

2.1 Utilizzando numpy

Il modulo numpy.random fornisce supporto per la generazione di numeri casuali (preferibile al modulo builtin random).

Si crea un generatore di numeri casuali impostando il seme e poi si generano utilizzando metodi per averne dalle distribuzioni

Questo generatore è pertanto separato da altro codice che potrebbe generare la generazione di numeri casuali. I metodi di interesse sono in tabella 1

Metodo	Descrizione
permutation	Return a random permutation of a sequence, or return a permuted range
shuffle	Randomly permute a sequence in place
uniform	Draw samples from a uniform distribution
integers	Draw random integers from a given low-to-high range
binomial	Draw samples a binomial distribution
$standard_normal$	Estrazioni da una normale 0, 1
normal	Draw samples from a normal (Gaussian) distribution
beta	Draw samples from a beta distribution
chisquare	Draw samples from a chi-square distribution
gamma	Draw samples from a gamma distribution
uniform	Draw samples from a uniform [0, 1) distribution

Table 1: Metodi per la generazione di numeri casuali

Metodo	Descrizione
rvs	generazione di numeri casuali; equivalente di r* di R
pdf	probability density function; equivalente di d* di R
cdf	cumulative distribution function; equivalente di p*
ppf	percent point function (inversa di cdf). equivalente di q*
sf	Survival Function (1-CDF)
isf	Inverse Survival Function (Inverse of SF)
stats	media, varianza, (Fisher's) skew, or (Fisher's) kurtosis
moment	non-central moments of the distribution

Table 2: Metodi variabili quantitative scipy

3 Distribuzioni notevoli e metodi associati

In scipy.stats le variabili quantitative di maggiore interesse sono riportate in tabella ??, i relativi metodi sono riportati in tabella 2. Un esempio di utilizzo con normale a seguire

```
>>> # estrazioni di casuali normali standardizzate (come rnorm(5))
>>> stats.norm.rvs(size = 5)
array([-0.3560164 , 2.06084674, 0.10299413, -0.48892742, 1.25835606])
>>> # densità: come dnorm(0.5)
>>> stats.norm.pdf(0.5)
0.3520653267642995
>>> # cdf: come pnorm(1.96)
>>> stats.norm.cdf(1.96)
0.9750021048517795
>>> # ppf: come qnorm(0.5)
>>> stats.norm.ppf(0.5)
0.0
```

4 Combinatoria