Turing Machines

Formal Definition

A Turing Machine is represented with a quadruple: (Q, Σ, q_I, δ) where:

- Q finite set of states,
- \triangleright Σ finite set of symbols that include # that represents a blank.
- $ightharpoonup q_I \in Q$ Initial state
- ▶ $\delta: (Q \times \Sigma) \to (Q \cup \{\bigcirc\} \times (\Sigma \times (\{R, L, S\})))$ is a partial function.

Behavior

- ▶ $\delta(q, \sigma) = (q_1, \rho, R)$, on state q, reading σ , overwrite ρ , move right and go to state q_1 .
- ▶ $\delta(q, \sigma) = (q_1, \rho, S)$, on state q, reading σ , overwrite ρ , go to state q_1 , and don't move.
- ▶ $\delta(q, \sigma) = (q_1, \rho, L)$, on state q, reading σ , overwrite ρ , move left and go to state q_1 .
- ▶ $\delta(q, \sigma) = (\bigcirc, \rho, R)$, on state q,reading σ , overwrite ρ , move right, and , and halt execution.
- ▶ $\delta(q, \sigma) = (\bigcirc, \rho, S)$, on state q,reading σ , overwrite ρ , don't move, and halt execution
- ▶ $\delta(q, \sigma) = (\bigcirc, \rho, L)$, on state q, reading σ , overwrite ρ , move left, and halt execution.

Configuration

A configuration $C \in (Q \cup \{\bigcirc\} \times \Sigma^* \times \mathbb{N}) : \langle q, \omega, n \rangle$

- q is the state
- \blacktriangleright ω is the string written on the beginning of the tape afterwhich there are only blanks. It may contain blanks; it may even end with blanks, but after ω there are only blanks.
- n is the position of the head.

Configuration

- ▶ Given a configuration $\langle q, \omega, i \rangle$
- ▶ Let $\omega = \sigma_0 \dots \sigma_{n-1}$; , $0 \le i < n$
- ► We can omit *i* and represent the configuration as follows:

$$\langle q, \sigma_0 \dots \underline{\sigma_i} \dots \sigma_{n-1} \rangle$$

One-step Transitions

- $\langle q, \sigma_0 \dots \underline{\sigma_i} \dots \sigma_{n-1} \rangle \Rightarrow \langle q', \sigma_0 \dots \rho \underline{\sigma_{i+1}} \dots \sigma_{n-1} \rangle \text{ if } \delta(q, \sigma_i) = \langle q', \rho, R \rangle$
- $\langle q, \sigma_0 \dots \underline{\sigma_i} \dots \sigma_{n-1} \rangle \Rightarrow \langle q', \sigma_0 \dots \underline{\sigma_{i-1}} \rho \dots \sigma_{n-1} \rangle \text{ if } \delta(q, \sigma_i) = \langle q', \rho, L \rangle$

λ -Transitions

 λ -transitions are used to ignore the tape: don't read and/or don't write.

$$\delta: (Q \times (\Sigma \cup \{\lambda\}) \to (Q \cup \{\bigcirc\} \times (((\Sigma \cup \{\lambda\}) \times (R, L, S))))$$

Where:

- ▶ $\delta(q, \lambda) = (p, \rho, Op)$: writes ρ and executes Op no matter what symbol is on the tape, then switch to state p
- $\delta(q,\sigma)=(p,\lambda,op)$ leaves σ ,
- $\delta(q,\lambda) = (p,\lambda,op)$: executes Op, then switch to state p.

You should not confuse # with λ , as # is a symbol of the alphabet.

We can add non-determinism. To ensure determinism:

- ▶ If there is a transition from q reading λ , there should not be any other transition from q.
- If there is a transition from q to r executes op and writes λ , there should not be another transition from q to r executes op and writes something else.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,x)=(p,\lambda,op)$ by $\delta(q,x)=(p,x,op).$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,x)=(p,\lambda,op)$ by $\delta(q,x)=(p,x,op)$.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,x)=(p,\lambda,op)$ by $\delta(q,x)=(p,x,op)$.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,\lambda)=(p,x,op)$ with the following transitions $\{\sigma:\Sigma|\delta(q,\sigma)=(p,x,op)\}$ Remember!! $\#\in\Sigma$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,\lambda)=(p,x,op)$ with the following transitions $\{\sigma:\Sigma|\delta(q,\sigma)=(p,x,op)\}$ Remember!! $\#\in\Sigma$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine without $M=(Q,\Sigma,q_I,\delta)$ λ -transitions.

Replace each transition of the form: $\delta(q,\lambda)=(p,x,op)$ with the following transitions $\{\sigma:\Sigma|\delta(q,\sigma)=(p,x,op)\}$ Remember!! $\#\in\Sigma$

$$\begin{array}{c}
\sigma; x, op \\
\hline
\text{ for each } \sigma \in \Sigma
\end{array}$$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine $M=(Q,\Sigma,q_I,\delta)$ without λ -transitions.

Replace each transition of the form: $\delta(q,\lambda)=(p,\lambda,op)$ by the following set of transitions $\{\sigma:\Sigma|\delta(q,\sigma)=(p,\sigma,op)\}$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine $M=(Q,\Sigma,q_I,\delta)$ without λ -transitions.

Replace each transition of the form: $\delta(q, \lambda) = (p, \lambda, op)$ by the following set of transitions $\{\sigma : \Sigma | \delta(q, \sigma) = (p, \sigma, op)\}$

$$\begin{array}{ccc}
 & \lambda; \lambda, op & \\
 & & \\
 & & \\
\end{array}$$

If $M_{\lambda}=(Q,\Sigma,q_I,\delta_{\lambda})$ is a Turing Machine with λ -transitions, we can define an equivalent Turing Machine $M=(Q,\Sigma,q_I,\delta)$ without λ -transitions.

Replace each transition of the form: $\delta(q,\lambda) = (p,\lambda,op)$ by the following set of transitions $\{\sigma: \Sigma | \delta(q,\sigma) = (p,\sigma,op)\}$

$$\overbrace{q} \quad \overbrace{\text{for each } \sigma \in \Sigma} \quad \overbrace{p}$$

Combining Machines

We can combine machines. A machine can invoke another machine. If we define small simple machines, we can build larger machines combining these machines.

Simple Machines

- ► Move Right R
- ► Move Left *L*
- ▶ Move Right until R_{σ}
- ▶ Move Left until L_{σ}
- ► Move Right until not $R_{!\sigma}$
- Move Left until not $L_{!\sigma}$
- ightharpoonup Write W_{σ}
- ▶ Invoke another machine C_M

Simple Machines: Move Right R

Simple Machines: Move Left L

Simple Machines: Move Right until σ : R_{σ}

This machine executes the following operations:

- 1. Move Right
- 2. If reading σ , then HALT else start again.

Note that it moves to the right once!

- Start configurationn: xyzabccad
- ► End configurationn: xyzabccad

Simple Machines: Move Left until σ : L_{σ}

This machine executes the following operations:

- 1. Move Left
- 2. If reading σ , then HALT else start again.

Simple Machines: Move Right until not σ : $|R_{1\sigma}|$

This machine executes the following operations:

- 1. Move Right
- 2. If not reading σ , then HALT else start again.

- Start configuration: xyzbaaadf
- End configurationn: xyzbaaadf

Simple Machines: Move Left until not σ : $L_{!\sigma}$

This machine executes the following operations:

- 1. Move Left
- 2. If not reading σ , then HALT else start again.

Simple Machines: Write σ : W_{σ}

New Formalism

Nodes are operations:

- ► Move Right R
- ► Move Left *L*
- ▶ Move Right until R_{σ}
- Move Left until L_{σ}
- ▶ Move Right until not $R_{!\sigma}$
- Move Left until not $L_{!\sigma}$
- Write W_{σ}
- ▶ Invoke another machine C_M

Arcs may be labeled with symbols

$\#a^nb^n$

$\#a^nb^n$: Boxing together operations

$$#a^nb^nc^n$$

First : $\#a^nb^nc^n \Rightarrow \#a^nb^n$ Then call $\#a^nb^n$

WW, W \in \{a, b\}*$

Using variables $W\$W, W \in (\Sigma \setminus \{\$, \#\})*$

Buildiing Blocks: ShiftRight

Initial configuration:

$$\sigma_0 \dots \underline{\sigma_i} \sigma_{i+1} \dots \sigma_{n-1}$$

Final Configuration:

$$\sigma_0 \dots \sigma_i \underline{\#} \sigma_{i+1} \dots \sigma_{n-1}$$

Buildiing Blocks: ShiftLeft

Initial Configuration:

$$\sigma_0 \dots \# \sigma_{i+1} \dots \sigma_n - 1$$

Final Configuration:

$$\sigma_0 \dots \# \sigma_{i+2} \dots \sigma_n - 1$$

Buildiing Blocks: ShiftLeft

Buildiing Blocks: Delete This

Initial configuration:

$$\sigma_0 \ldots \sigma_{i-1} \sigma_i \sigma_{i+1} \ldots \sigma_n - 1$$

Final configuration:

$$\sigma_0 \ldots \sigma_{i-1} \sigma_{i+1} \ldots \sigma_n - 1$$