CBM414 - Procesamiento digital de señales biomédicas Clase 10 - Convolución

David Ortiz, Ph.D.

Escuela de Ingeniería Biomédica Universidad de Valparaíso

Objetivo general

Al finalizar la clase, el estudiante será capaz de aplicar la operación de convolución discreta en señales finitas, comprender su implementación práctica y diferenciarla de la convolución circular utilizada en algoritmos computacionales.

Clase anterior:

Causalidad y estabilidad 3.5

Clase de hoy:

• Convolución 4.1.1-4.1.3

Esta presentación es una recopilación del texto guía de Orfanidis y no contiene todos los temas abordados en clase. Por favor, reportar posibles errores al correo david ortiz@uv.cl.

Convolución discreta en su forma general

Supongamos que se registran L muestras $\mathbf{x}=[x_0,...,x_{L-1}]$ con una duración temporal de $T_L=LT$, donde $T=1/f_s$ es el periodo de muestreo. Además, sabemos que la respuesta de un sistema LTI será

$$y(n) = \sum_{m = -\infty}^{\infty} h(m)x(n - m) = \sum_{m = -\infty}^{\infty} x(m)h(n - m)$$

Por simplicidad, en esta clase manejaremos la notación \sum_m para los límites de la sumatoria dónde m estará definido según la propiedad a estudiar.

Forma directa (aplicación en la práctica)

Consideremos un filtro FIR con $\mathbf{h}(\mathbf{n}) = [h_0,...,h_M] \in \mathbb{R}^{M+1}$, es decir, de longitud $L_h = M+1$. Además, un vector de muestras de longitud L. Para hallar desarrollar la forma directa debemos determinar

- $1.\,$ el rango de valores del indice n de la salida
- 2. el rango preciso de la sumatoria en m, que dependerá de n.

Para (1), recordamos la forma directa

$$y(n) = \sum_{m} h(m)x(n-m), \quad \text{donde} \quad 0 \le m \le M$$
 (1)

Por otro lado, los índices de x(n-m) deben caer en el rango

$$0 \le n - m \le L - 1 \quad \to \quad m \le n \le L - 1 + m \tag{2}$$

Con los rangos (1) y (2) obtenemos

$$0 \le m \le n \le L-1+m \le L-1+M \quad \to \quad \boxed{0 \le n \le L-1+M},$$

el cual es el rango de indices de y(n), es decir

gices de
$$y(n)$$
, es decir $\mathbf{y}(\mathbf{n}) = [y_0,...,y_{L-1+M}], \quad \mathbf{y} \in \mathbb{R}^{L+M}$

y notese que la longitud de y es mayor a x en M muestras. Esto se debe a que un filtro de orden M, requiere una memoria de M (recordar clase 07).

Para (2)¿Cuál es el rango en el que se debe mover m? Se deben satisfacer simultáneamente las desigualdades

$$0 \le m \le M$$
$$0 \le n - m \le L - 1$$

Podemos escribir:

$$0 \leq n-m \leq L-1 \qquad \text{Multiplicamos} \ -1:$$

$$-(L-1) \leq m-n \leq 0 \qquad \text{Sumando} \ n:$$

$$n-L+1 \leq m \leq n$$

Combinando las desigualdades:

$$\max(0, n-L+1) \le m \le \min(n, M)$$

Así, podemos escribir la convolución en nuestra forma directa

$$y(n) = \sum_{m=\max(0,n-L+1)}^{\min(n,M)} h(m)x(n-m), \quad \text{para} \quad n=0,...,L+M-1$$

Convolución directa

Ejemplo: considera el caso de un filtro de orden 3 y una señal de entrada de longitud 5. Los bloques de filtro, entrada y salida son:

$$\mathbf{h} = [h_0, h_1, h_2, h_3]$$

$$\mathbf{x} = [x_0, x_1, x_2, x_3, x_4]$$

$$\mathbf{y} = \mathbf{h} * \mathbf{x} = [y_0, y_1, y_2, y_3, y_4, y_5, y_6, y_7]$$

El bloque de salida tiene una longitud $L_y = L + M = 5 + 3 = 8$ y se indexa como $0 \le n \le 7$. La convolución se convierte en:

$$y_n = \sum_{m=\max(0,n-4)}^{\min(n,3)} h_m x_{n-m}, \quad n = 0, 1, \dots, 7$$

Para $n=0,1,2,\ldots,7$, el índice de la sumatoria m toma los siguientes valores:

$$\begin{aligned} \max(0,0-4) & \leq m \leq \min(0,3) \implies m = 0 \\ \max(0,1-4) & \leq m \leq \min(1,3) \implies m = 0,1 \\ \max(0,2-4) & \leq m \leq \min(2,3) \implies m = 0,1,2 \\ \max(0,3-4) & \leq m \leq \min(3,3) \implies m = 0,1,2,3 \\ \max(0,4-4) & \leq m \leq \min(4,3) \implies m = 0,1,2,3 \\ \max(0,4-4) & \leq m \leq \min(4,3) \implies m = 1,2,3 \\ \max(0,5-4) & \leq m \leq \min(5,3) \implies m = 1,2,3 \\ \max(0,6-4) & \leq m \leq \min(6,3) \implies m = 2,3 \\ \max(0,7-4) & \leq m \leq \min(7,3) \implies m = 3 \end{aligned}$$

Por ejemplo, para n=5, la salida y_5 está dada por:

$$y_5 = \sum_{m=1,2,3} h_m x_{5-m} = h_1 x_4 + h_2 x_3 + h_3 x_2$$

Completar todos los y_n , desde n=0 hasta n=7 de este ejercicio.

Convolución circular discreta

Se aplica a dos secuencias finitas x(n) y h(n) de longitud N. Además, la convolución circular asume que las secuencias son **periódicas** de longitud N, es decir, trata los índices fuera del rango como si se "envolvieran" dentro del rango válido.

Formalmente, si tenemos dos secuencias x(n) e h(n), ambas de longitud N, la convolución circular discreta de estas secuencias se define como:

$$y(n) = (x * h)[n] = \sum_{m=0}^{N-1} x(m) h[(n-m) \mod N], \quad 0 \le n < N$$

donde mod se refiere a la función matemática módulo.

Convolución circular discreta

Características de la Convolución Circular Discreta:

- 1. **Periodicidad**: La convolución circular trata las secuencias como si fueran periódicas, lo cual implica que los elementos "fuera de rango" se "envuelven" al inicio de la secuencia.
- 2. **Mismo Tamaño**: La salida y[n] tiene la misma longitud N que las secuencias de entrada.
- 3. Relación con DFT: La convolución circular está estrechamente relacionada con la Transformada Discreta de Fourier (DFT). De hecho, realizar una convolución circular entre dos secuencias en el dominio del tiempo es equivalente a realizar una multiplicación punto a punto de las transformadas DFT de las secuencias.

Ejercicios (Orfanidis)

- Demostraciones/deducciones: Deducción realizada en clase sobre la forma directa de la convolución.
- Ejemplos (resueltos): Ejemplo hecho en clase (página 124)
- Ejercicios Página 178, sección 4.3: 4.3 4.6

Objetivo general

Estudiar con mayor detalle la convolución.

Clase de hoy:

• Convolución (4.1.1-4.1.3)

Próxima clase:

• Resolución en frecuencia y ventaneo (9.1)

Referencias:

S. J. Orfanidis, Introduction to signal processing. Rutgers University, 2010.
 Disponible en https://eceweb1.rutgers.edu/~orfanidi/intro2sp/2e/