Prof. Dr. E. Cramer, Prof. Dr. M. Kateri

RWTH Aachen, SS 2021

T. v. Bentum, M.Sc., L. Kaufmann, M.Sc.

publication: April 30 ______ solutions: May 7th

Applied Data Analysis

Exercise Sheet 2

Exercise 7

(a) Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ with $\boldsymbol{\mu} \in \mathbb{R}^p$, $\Sigma \in \mathbb{R}_{>0}^{p \times p}$ and $\emptyset \neq K, L \subseteq \{1, \dots, p\}, K \cap L = \emptyset, k = |K|, l = |L|$. Further, let $\Sigma_{K,L} = \text{Cov}(\mathbf{X}_K, \mathbf{X}_L)$ and $\Sigma_{KK|L} = \Sigma_{K,K} - \Sigma_{K,L} \Sigma_{L,L}^{-1} \Sigma_{K,L}'$. Show Theorem I 2.8, i.e., the conditional distribution of \mathbf{X}_K given $\mathbf{X}_L = \mathbf{x}_L$ is given by

$$\boldsymbol{X}_K | \boldsymbol{X}_L = \boldsymbol{x}_L \sim N_k (\boldsymbol{\mu}_K + \Sigma_{K,L} \Sigma_{L,L}^{-1} (\boldsymbol{x}_L - \boldsymbol{\mu}_L), \Sigma_{KK|L})$$

- (b) Show that X_K and X_L are independent if and only if $E(X_K|X_L = x_L) = E(X_K) = \mu_K$ for all $x_L \in \mathbb{R}^l$.
- (c) Let $\mu_1, \mu_2 \in \mathbb{R}, \, \sigma_1, \sigma_2 > 0, \, \rho \in (-1, 1) \text{ and } \mathbf{X} = (X_1, X_2)' \sim N_2(\boldsymbol{\mu}, \Sigma) \text{ with }$

$$\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$.

For $t \in \mathbb{R}$ derive the conditional distribution of X_2 given $X_1 = t$.

Hint to (a): Argue that, without loss of generality, one may assume $K \cup L = \{1, ..., p\}$ and therefore

$$m{X} = egin{pmatrix} m{X}_K \\ m{X}_L \end{pmatrix}, \quad m{\mu} = egin{pmatrix} m{\mu}_K \\ m{\mu}_L \end{pmatrix} \quad ext{and} \quad \Sigma = egin{pmatrix} \Sigma_{K,K} & \Sigma_{K,L} \\ \Sigma_{L,K} & \Sigma_{L,L} \end{pmatrix},$$

i.e $K = \{1, ..., k\}$, $L = \{k + 1, ..., p\}$, and apply the results of Exercise 4 to factorize the density of $\mathbf{X} = \mathbf{X}_{K \cup L}$ into a marginal and conditional part.

Exercise 8

Show that if $X \sim N_p(\boldsymbol{\mu}, \Sigma)$, where Σ is an ortho-projection matrix and $\boldsymbol{\mu} \in Im(\Sigma)$, then $X'X \sim \chi^2(\operatorname{rank}(\Sigma), \frac{1}{2}\boldsymbol{\mu}'\boldsymbol{\mu})$.

Hint: Apply Theorem 1.3.5.

Exercise 9

Let $X \sim N_p(\boldsymbol{\mu}, \sigma^2 I_p)$ and $A, B \in \mathbb{R}^{p \times p}$, where A is symmetric and $BA = 0_{p \times p}$. Show the following statements.

- (a) X'AX and BX are independent.
- (b) If, furthermore, B is also symmetric, then X'AX and X'BX are independent.

Exercise 10

Consider the linear model $\mathbf{Y} = B\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, with $\text{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 I_p$, $\sigma^2 > 0$. Furthermore, assume that $\det(B'B) > 0$. Then, the residuals are defined by

$$\hat{\boldsymbol{\varepsilon}} := (I_p - B(B'B)^{-1}B')\boldsymbol{Y}.$$

Calculate

- (a) $E(\hat{\boldsymbol{\varepsilon}})$,
- (b) $Cov(\hat{\boldsymbol{\varepsilon}})$.