FMI experience at ZF – Progress in MAP "System Structure and Parameterization"

Jochen Köhler, Michael Kübler

ZF Friedrichshafen AG

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Corporate Structure ZF Friedrichshafen AG

Shareholders: 93.8 % Zeppelin Foundation and 6.2 % DR. JÜRGEN AND IRMGARD ULDERUP FOUNDATION

Dr. Konstantin Sauer – Finance, I ⁻ Chassis Tech. / Electronic Systems		Resources / Governance / Region Asi ement / Industrial Technology Rolf L		
Automatic Transmissions Manual Transmissions / Dual Clutch Transmissions Axle Drives Powertrain Modules Electric Drive Technology Die Casting Technology	Chassis Systems Chassis Components Suspension Technology	Truck & Van Driveline Technology Axle & Transmission Systems for Buses & Coaches CV Chassis Modules CV Damper Technology CV Powertrain Modules	Off-Highway Systems Test Systems Special Driveline Tech. Marine Propulsion Systems Aviation Technology Wind Power Technology	Braking Systems Steering Systems Commercial Steering Systems Occupant Safety Systems Electronics Body Control Systems Engineered Fasteners &
Electronic Systems ZF Services	Components Parts & Service			

THE POWER OF² Key figures

The new ZF Group – An Overview						
	ZF (incl. TRW)	ZF	TRW			
Sales	>€ 30 billion	€ 18.4 billion	€ 13 billion			
Employees	134,000	71,000	63,000			
R&D expenditure	€ 1.6 billion	€ 891 million	€ 720 million			

THE POWER OF² Product Portfolio

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

How to test ECU Software with Modelica-Models

FMI is standardizing model exchange!

Generating FMUs only once for several Targets

Modularization on cycle-simulations

10

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Actual applications

Software model RangeExtender for PKW

- Modeling with Modelica
- Import as co-simulation-FMU in Softcar

Oscillation model 8HP for SIL

- Software development for shifting 3-2
- Rebuild of DRESP-models in Modelica
- Import as co-simulation-FMU in Softcar

Damper model for racing car application

- Detailed model in Modelica
- Export as co-simulation-FMU for external customers

12

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Making FMI being a ZF-Standard

Proceeding

- Validation of FMI (2013-2014)
- Including FMI functionality into in house tools (Softcar, OASIS)
- Evaluation of FMI (2015-2016)
 - High level of experience in central research with very good results
 - Finding other teams that want to evaluate FMI
- Developing a Directive for FMI as ZF Standard (2016)

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Motivation for initiating MAP System Structure and Parameterization (SSP)

Origin of SSP

- Workshop with BMW, Bosch, ZF 02/2014 Collecting "missing" features around FMI standard
- Presentation "Proposal for a standardized parameterization of FMUs / Models" and "FMI Mapping" on Modelica-Conference (2014, Lund)
- Initiating the Modelica-Association Project "System Structure and Parameterization"

Purposes of MAP-SSP

- Define a standardized format for the connection structure for a network of components.
- Define a standardized way to store and apply parameters to these components.
- The developed standard / APIs should be usable in all stages of development process (architecture definition, integration, simulation, test in MiL, SiL, HiL).
- This work in this project shall be coordinated with other standards and organizations (FMI, ASAM, OMG).

Planned Goals for MAP SSP in 2015

Working schedule

- Draft definition of data model for system structures exists (as XML schema). \checkmark
- Representative reference system structure is defined. (\(\sqrt{} \)
- FMUs are exported from different generators.
- At least two running prototypes (with co-simulation) exist for exchanging application packages in a round trip use-case based on the draft definition.
- Draft definition of data model for parameter sets exists. \checkmark

17

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Defined Use-Cases

- □ UC 01 Exchange of one FMU / Model with multiple different Parameter Sets
 - UC-03 Exchange of Parameter Sets with Restricted Visibility / Changeability of Parameters
 - UC-04 Encryption and Authentication of Parameter Sets
 - UC-05 Describing parameter sets for system architecture
 - UC-06 Handling parameter sets independently from FMUs/Models
 - UC-07 Use of one parameter set for parameterization of several FMUs
 - UC-08 Meta information for parameters
- ✓ UC-09 Describing a system structure
 - UC-10 Handling different parameter set formats
- □ UC-11 Handling parameters within an authoring tool
 - UC-12 Providing parameters sets for simulation
 - UC-13 Standard parameter handling plugin
- ■ UC-14 System architectures with signal-adoption-layers
- □ UC-15 Parameter Data Model

Exchange of one FMU / Model with multiple different Parameter Sets

Handling different parameter set formats

Handling parameters within an authoring tool

Describing parameter sets for system architecture

Describing a system structure

System architectures with signal-adoption-layers

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Design Goals and Basic Package

Design Goals

- Minimize additional semantics, rely on FMI as far as possible
- Fit into FMI world (use FMI-like design choices where reasonable)

System Structure Package (SSP)

- SSP is a "ZIP" container with standardized content (System Structure Package)
- 'SystemStructure.ssd' is main system structure description file
- Referenced FMUs, SSPs, etc. packaged in resources directory

27

Basic Data Model (UML)

https://svn.modelica.org/projects/ssp/trunk/SystemStructureDescription/SystemStructureDescription.xsd

28

- 1. Introduction ZF
- 2. Use-cases for FMI in ZF
- 3. Applications in ZF
- 4. FMI becomes ZF-Standard
- 5. Motivation / Planning MAP System Structure and Parameterization
- 6. Defined Use-cases
- 7. The SSD approach
- 8. First prototypes

Prototype from AVL – in Model.CONNECT™

Model.CONNECTTM is a platform to set up and execute system simulation models which are composed of subsystem and component models from multiple model authoring environments.

Prototype PMSF FMI Bench: Workbench for FMUs

- FMU Inspector
- FMU Pre-Integration
- FMU Debugging
- FMU Customization

Thank you

ZF Friedrichshafen AG behält sich sämtliche Rechte an den gezeigten technischen Informationen einschließlich der Rechte zur Hinterlegung von Schutzrechtsanmeldungen und an daraus entstehenden Schutzrechten im In- und Ausland vor. ZF Friedrichshafen AG reserves all rights regarding the shown technical information including the right to file industrial property right applications and the industrial property rights resulting from these in Germany and abroad.