Smooth effect types & Big Data methods

Matteo Fasiolo (University of Bristol, UK)

matteo.fasiolo@bristol.ac.uk

June 27, 2018

Smooth effect types & Big Data methods

Structure:

- GAM model fitting
- Types of smooth effects
- Big Data methods

Structure of the talk

Structure:

- GAM model fitting
- 2 Types of smooth effects
- Big Data methods

Recall the GAM model structure:

$$y|\mathbf{x} \sim \mathsf{Distr}\{y|\mu(\mathbf{x}), \boldsymbol{\theta}\}$$

where
$$\mu(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = g^{-1} \big\{ \sum_{j=1}^m f_j(\mathbf{x}) \big\}.$$

The f_i 's can be

- parametric e.g. $f_j(\mathbf{x}) = \beta_1 x_j + \beta_2 x_j^2$
- random effects
- spline-based smooths such as

$$f_j(x_j) = \sum_{i=1}^r \beta_{ji} b_{ji}(x_j)$$

where β_{ji} are coefficients and $b_{ji}(x_j)$ are known spline basis functions.

NB: we call $\sum_{i=1}^{m} f_i(\mathbf{x})$ linear predictor because it is linear in β .

 $\hat{oldsymbol{eta}}$ is the maximizer of **penalized** log-likelihood

$$\hat{eta} = \operatorname*{argmax}_{eta} \operatorname{PenLogLik}(eta|\gamma) = \operatorname*{argmax}_{eta} \left\{ \overbrace{L_{y}(eta)}^{\operatorname{goodness of fit}} - \underbrace{\operatorname{Pen}(eta|\gamma)}_{\operatorname{penalize complexity}} \right\}$$

where:

- $L_{y}(\beta) = \sum_{i} \log p(y_{i}|\beta)$ is log-likelihood
- Pen $(\beta|\gamma)$ penalizes the complexity of the f_i 's
- $\gamma > 0$ smoothing parameters ($\uparrow \gamma \uparrow$ smoothness)

We use a hierarchical fitting framework:

 $\ \, \textbf{ 9} \,\, \textbf{ Select} \,\, \boldsymbol{\gamma} \,\, \textbf{ determine smoothness} \\$

$$\hat{\gamma} = \mathop{\mathsf{argmax}}_{\gamma} \mathsf{LAML}(\gamma)$$

where LAML $(\gamma) \approx p(y|\gamma) = \int p(y, \beta|\gamma) d\beta$.

2 For fixed γ , estimate β to determine actual fit

$$\hat{eta} = \operatorname*{argmax}_{eta} \operatorname{PenLogLik}(eta|\gamma).$$

Alternatives to Laplace Approximate Marginal Likelihood (LAML) for γ selection:

- Generalized Cross-Validation (GCV)
- Akaike Infomation Criterion (AIC)

but LAML is most widely applicable in mgcv (under name "REML").

Variance parameters of random effects can be included in γ and estimated by LAML.

Extra parameters θ of $y|\mathbf{x} \sim \text{Distr}\{y|\mu(\mathbf{x}), \theta\}$ handled similarly.

Structure of the talk

Structure:

- GAM model fitting
- 2 Types of smooth effects
- Big Data methods

mgcv offers a wide variety of smooths (see ?smooth.terms).

Univariate types:

- s(x) = s(x, bs = "tp") thin-plate-splines
- s(x, bs = "cr") cubic regression spline
- s(x, bs = "ad") adaptive smooth

Multivariate type:

- s(x1, x2) = s(x1, x2, bs = "tp") thin-plate-splines (isotropic)
- te(x1, x2) tensor-product-smooth (anisotropic)
- s(x, y, bs = "sos") smooth on sphere

They can depends on factors:

- s(x, by = Subject)
- s(x, Subject, bs = "fs")

$$s(x, bs = "cr", k = 20)$$

Cubic regression spline are related to the optimal solution to

$$\sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \gamma \int f''(x)^2 dx.$$

$$s(x, bs = "cc")$$

Cyclic cubic regression spline make so that

- $f(x_{min}) = f(x_{max})$
- $f'(x_{min}) = f'(x_{max})$

$$s(x, bs = "ad")$$

The wiggliness or smoothness of f(x) depends on x.

Based on thin plate regression splines basis.

Related to optimal solution to:

$$\sum_{i} \{y_i - f(x_i, z_i)\}^2 + \gamma \int f_{xx}^2 + 2f_{xz}^2 + f_{zz}^2 dx dz$$

A single smoothing parameter γ .

Isotropic: same smoothness along $x_1, x_2, ...$

Figure: Rank 17 2D TPRS basis. Courtesy of Simon Wood.

Isotropic effect of x_1 , x_2 are in same unit (e.g. Km).

If different units better use tensor product smooths te(x1, x2).

Construction: make a spline $f_z(z)$ a function of x by letting its coefficients vary smoothly with x

- x-penalty: average wiggliness of red curves
- z-penalty: average wiggliness of green curves

Can use (almost) any kind of marginal:

- te(x1, x2, x2) product of 3 thin-plate-spline bases
- te(x1, x2, bs = c("cc", "cr"), k = c(10, 6))
- te(LO, LA, t, d=c(2,1), k=c(20,10), bs=c("tp","cc"))

Basis of te contains functions of the form $f(x_1) + f(x_2)$.

To fit $f(x_1) + f(x_2) + f(x_1, x_2)$ separately use:

$$y \sim ti(x1) + ti(x2) + ti(x1, x2)$$

Sometimes data is allocated to irregular partitions of space (eg regions).

Markov random fields (MRF) can be used for smoothing such data.

The smooth has a coefficient, γ_i , for each region.

Let N_i be set of indices of neighbours of region i.

Then the simplest penalty is $\sum_{i} \left\{ \sum_{j \in N_i} (\gamma_i - \gamma_j) \right\}^2$

```
data(columb.polys) ## district shapes list
xt <- list(polys=columb.polys)
gam(crime ~ s(district,bs="mrf",xt=xt),data=columb)</pre>
```


By-factor smooths

Approach (1) is s(x, by = subject), which means

- $\mu_{\tau}(x) = f_1(x) + ...$ if subject = 1
- $\mu_{\tau}(x) = f_2(x) + ...$ if subject = 2
- ...

Approach (2) is s(x, subject, bs = "fs"), which means

- $\mu_{\tau}(x) = b_1 + f_1(x) + ...$ if subject = 1
- $\mu_{\tau}(x) = b_2 + f_2(x) + ...$ if subject = 2
- ...

where $b_1, b_2, \dots \sim N(0, \gamma_b \mathbf{I})$ are random effects.

- In (1) each f_j has its own smoothing parameter.
- In (2) all f_i 's have the same smoothing parameter.

Structure of the talk

Structure:

- GAM model fitting
- 2 Types of smooth effects
- Big Data methods

Big Data methods

Recall the GAM model structure:

$$\mu(\mathbf{x}) = \mathbb{E}(y|\mathbf{x}) = g^{-1}\Big\{\sum_{j=1}^m f_j(\mathbf{x})\Big\}$$

Linear predictor $\sum_{j=1}^{m} f_j(\mathbf{x}_i)$ can be written as $\mathbf{X}_i \boldsymbol{\beta}$, where:

$$\mathbf{X} = \begin{bmatrix} A_{11} & A_{12} & \cdots & b_{11}(x_{11}) & b_{12}(x_{11}) & \cdots & b_{21}(x_{21}) & \cdots \\ A_{21} & A_{22} & \cdots & b_{11}(x_{12}) & b_{12}(x_{12}) & \cdots & b_{21}(x_{22}) & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \end{bmatrix}$$

has n rows and

$$p = m + k_1 + \cdots + k_i + \cdots + k_s$$

columns.

Big Data methods

Bottom line: **X** can get very big, which causes problems:

- storing X takes to much memory
- \bullet computing things involving X (e.g. X^TX) takes time

Solution implemented in mgcv::bam function:

• do not create **X** but only sub-blocks:

$$\mathbf{X} = \left[\begin{array}{cc} \mathbf{X}_{11} & \mathbf{X}_{12} \\ \mathbf{X}_{21} & \mathbf{X}_{22} \end{array} \right]$$

do not store them either, but create them when needed;

- any computation involving X is based on the blocks;
- use parallelization when possible;

Big Data methods

Further acceleration and memory savings by discretization.

Instead of having n unique rows of \mathbf{X} discretize to b << n rows.

As long as number of bins $b = O(\sqrt{n})$ this is ok (statistically).

In mgcv:

Further reading

References I