

Description

Features

 \bullet V_{DS} = -20V, I_D = -3A

 $R_{DS(ON)}$ <64m Ω @ Vgs = -4.5V

 $R_{DS(ON)} < 89 \text{m}\Omega @ V_{GS} = -2.5V$

- Advanced Trench Technology
- Excellent R_{DS(ON)} and Low Gate Charge
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	OUTLINE	Device Package	Reel Size	Reel (PCS)	Per Carton (PCS)
VSM2301A-S2	VSM2301A	TAPING	SOT-23-3	7inch	3000	180000

Absolute Maximum Ratings (T_A=25°C unless otherwise specified)

Symbol	ymbol Parameter		Max.	Units	
V _{DSS}	Drain-Source Voltage		-20	V	
V _{GSS}	Gate-Source Voltage		±12	V	
I _D	Continuous Drain Current	T _A = 25℃	-3	A	
		T _A = 100℃	-2		
I_{DM}	Pulsed Drain Current note1		-12	Α	
P_D	Power Dissipation	T _A = 25°C	0.9	W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		139	°C/W	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	$^{\circ}$	

Electrical Characteristics (T_J=25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units		
Off Characteristic								
V _{(BR)DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = -250\mu A$	-20	-	-	V		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -20V, V_{GS} = 0V,$	-	-	-1	μA		
I _{GSS}	Gate to Body Leakage Current	$V_{DS} = 0V, V_{GS} = \pm 12V$	-	-	±100	nA		
On Charac	cteristics							
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \mu A$	-0.5	-0.7	-0.9	V		
0	Static Drain-Source on-Resistance	$V_{GS} = -4.5V$, $I_{D} = -3A$	-	49	64	m0		
$R_{DS(on)}$	note2	$V_{GS} = -2.5V, I_{D} = -2A$	-	59	89	mΩ		
Dynamic (Characteristics							
C _{iss}	Input Capacitance		-	550	-	pF		
Coss	Output Capacitance	$V_{DS} = -10V, V_{GS} = 0V,$	-	89	-	pF		
C _{rss}	Reverse Transfer Capacitance	f = 1.0MHz	-	65	-	pF		
Qg	Total Gate Charge	$V_{DS} = -10V, I_{D} = -3A,$ $V_{GS} = -4.5V$	-	4.3	-	nC		
Q _{gs}	Gate-Source Charge		-	0.8	-	nC		
Q_{gd}	Gate-Drain("Miller") Charge	VGS4.5V	-	1.1	-	nC		
Switching	Characteristics							
t _{d(on)}	Turn-on Delay Time	\/ - 40\/ L - 24	-	12	-	ns		
t _r	Turn-on Rise Time	$V_{DD} = -10V, I_D = -3A,$	-	54	-	ns		
t _{d(off)}	Turn-off Delay Time	$R_G = 1\Omega, V_{GEN} = -4.5V,$	-	15	-	ns		
t _f	Turn-off Fall Time	$-$ R _L =1.2 Ω	-	9	-	ns		
Drain-Sou	rce Diode Characteristics and Maxim	num Ratings						
l _a	I _S Maximum Continuous Drain to Source Diode Forward Current				-3	Α		
IS				-	-ა	A		
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-12	Α		
V_{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{S} = -3A$	-	-	-1.2	V		

Notes:1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

^{2.} Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Figure1: Output Characteristics

Figure 3:On-resistance vs. Drain Current

Figure 5: Gate Charge Characteristics

Figure 2: Typical Transfer Characteristics

Figure 4: Body Diode Characteristics

Figure 6: Capacitance Characteristics

Figure 7: Normalized Breakdown Voltage vs. Junction Temperature

Figure 9: Maximum Safe Operating Area

Figure.11: Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Figure 8: Normalized on Resistance vs. Junction Temperature

Figure 10: Maximum Continuous Drain Current vs. Ambient Temperature

Test Circuit

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

