Sequence to sequence модели

и механизм внимания

Олег Шляжко 19 ноября 2018

План лекции

- 1. Задачи Sequence to Sequence
- 2. Архитектура энкодер-декодер
- 3. Механизм внимания
- 4. Разбор примера Machine Translation

Рекуррентная нейросеть

Рекуррентная нейросеть

Задачи Sequence to Sequence

- 1. Распознавание речи (spectrum -> text)
- 2. Синтез речи (text -> waveform)
- 3. Рукописный ввод (image sequence -> text)
- 4. Машинный перевод (text -> text)
- 5. Чатботы (text -> text)
- 6. Суммаризация (text -> text)

Speech recognition

Speech Synthesis

Рукописный ввод

Задача перевода

Rosetta Stone --->

Параллельный корпус, найден в 1799 г.

Позволил расшифровать

египетские иероглифы

A BRIEF HISTORY OF MACHINE TRANSLATION

Чатботы

Google, Sutskever et al. 2014

Encoder

$$e_t = x_t * W_{emb}$$

$$h_t = rnn(h_{t-1}, e_t)$$

$$context = h_T$$

Decoder

$$h_0 = context$$

$$y_0 = \langle sos \rangle$$

$$e_t = y_{t-1} * W_{emb}$$

$$o_t, h_t = rnn(h_{t-1}, e_t)$$

$$y_t = softmax(o_t * W_{sm})$$

Cho et al. 2014

Encoder (same)

$$e_t = x_t * W_{emb}$$

 $h_t = rnn(h_{t-1}, e_t)$
 $context = h_T$

Decoder

$$c_t = [e_t; context]$$

$$y_0 = \langle sos \rangle$$

$$e_t = y_{t-1} * W_{emb}$$

$$o_t, h_t = rnn(h_{t-1}, c_t)$$

$$y_t = softmax(o_t * W_{sm})$$

Улучшения:

- 1. Deep Encoder
- 2. Deep Decoder

Проблемы:

- 1. Размер стейта фиксирован
- 2. Изменения из начала последовательности затираются
- 3. Не все входные токены одинаково значимы
- 4. Просто взять стейты со всех шагов декодера слишком много данных

Решение:

Внимание

Механизм внимания, мотивация

Xu et al. 2015
Show, Attend and Tell:
Neural Image Caption Generation
with Visual Attention.

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

https://arxiv.org/abs/1502.03044

"Soft" vs "Hard" Attention

Figure 2. Attention over time. As the model generates each word, its attention changes to reflect the relevant parts of the image. "soft" (top row) vs "hard" (bottom row) attention. (Note that both models generated the same captions in this example.)

Soft vs Hard Attention

Hard

- 1. Выбор одной/п областей
- 2. Получаем сэмплингом из softmax
- 3. Не дифференцируем
- 4. Нужно учить с помощью RL
- 5. А значит тяжело учится

Soft

- 1. Взвешенная сумма областей
- 2. Дифференцируемый
- 3. А значит обучаем через backprop

Механизм внимания, мотивация

В случае машинного перевода

(Edge thicknesses represent the attention weights found by the attention model)

Механизм внимания, alignment

Механизм внимания, мотивация

Механизм внимания

Bahdanau et al. 2014

$$c_i = \sum_{j=1}^{T_x} a_{ij} h_j$$

$$a_{ij} = \frac{exp(e_{ij})}{\sum_{k=1}^{T_x} exp(e_{ik})}$$

 $e_{ij} = attention(s_{i-1}, h_i)$

https://arxiv.org/pdf/1409.0473.pdf

Механизм внимания

Bahdanau et al. 2014

Карта внимания или alignment слов

https://arxiv.org/pdf/1409.0473.pdf

Механизм внимания

Bahdanau et al. 2014

$$c_i = \sum_{j=1}^{T_x} a_{ij} h_j$$

$$a_{ij} = \frac{exp(e_{ij})}{\sum_{k=1}^{T_x} exp(e_{ik})}$$

$$e_{ij} = attention(s_{i-1}, h_j)$$

https://arxiv.org/pdf/1409.0473.pdf

Attention function

($h^{\intercal} * s$	Dot Product
attention(s, h) =	$h^{\intercal} * W_a * s$	General
v_a^{T}	$* \tanh(W_a[h;s])$	Additive

Практические нюансы

- 1. Wordpiece models and character-based models
- 2. Pretrained embeddings
- 3. Stacked BiLSTM Layers
- 4. Multihead Attention
- 5. Teacher Forcing
- 6. Beam Search
- 7. Attention is all you need?

Wordpiece models

Проблемы словаря

- 1. большой размер эмбеддингов и софтмакс слоя (сотни тысяч)
- 2. неизвестные слова при инференсе, приходится заменять на UNKNOWN токен

Решение

Давайте разбивать предложения на характерные части, которые меньше чем слово, но больше чем буква.

Идея пришла из сегментации корейских и японских предложений, где нет явной границы между словами.

Wordpiece models, BPE - byte-pair encoding

Text:
$$T = ABABCDEBDEFABDEABC$$
 $X_1 = A;$ $X_2 = B;$ $X_3 = C;$ $X_4 = D;$ $X_5 = E;$ $X_6 = F;$ $X_7 = X_1 \cdot X_2$ $X_8 = X_4 \cdot X_5$

Multihead Attention

Scaled Dot-Product Attention

Teacher Forcing

Подаем на вход декодера не прошлый выход,

а верный символ из таргета

Decoder

<eos>

Output

ребята

привет

Beam Search

Beyond attention

- Attention позволяет построить текущее состояние с учетом всего прошлого последовательности.
- Одинаково хорошо учитывает данные как из далекого прошлого, так и близкого.
- Как правило не содержит информации об относительном расположении определенных данных в последовательности, но это решаемо.
- Зачем тогда RNN, которая обновляет стейт последовательно и с и потому хуже учитывает далекое прошлое?

Transformer

Attention is all you need, Vaswani et al. 2017

https://arxiv.org/abs/1706.03762

Self-attention instead of recurrence

Positional encoding

1. Sinusoidal encoding

2. Learned positional embeddings. Position index -> embedding layer -> vector

Что ещё посмотреть?

- https://distill.pub/2016/augmented-rnns/
- https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
- https://pytorch.org/tutorials/intermediate/seg2seg_translation_tutorial.html
- https://nlp.stanford.edu/pubs/emnlp15_attn.pdf
- https://www.youtube.com/watch?v=IxQtK2SjWWM (Stanford Deep NLP)