

Pertemuan 2

SISTEM BILANGAN

I. Konsep Dasar Sistem Bilangan

- Sistem bilangan adalah suatu cara untuk mewakili besaran dari suatu item fisik.
- Konsep dasar sistem bilangan dikarakteristikkan oleh basis (radix), absolute digit dan posisi (place) value, yang dituliskan:

 Basis yang digunakan sistem bilangan tergantung dari jumlah nilai bilangan yang dipergunakan.

Konsep Dasar Sistem Bilangan (Lanjutan)

Sistem bilangan yang sering digunakan adalah:

- Sistem bilangan desimal
- Sistem bilangan biner
- Sistem bilangan oktal
- Sistem bilangan hexadesimal

1. Sistem Bilangan Desimal

- Sistem bilangan desimal menggunakan basis 10 (deca)
- Menggunakan 10 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7,8,9
- Dasar penulisan:

- Bentuk nilai desimal dapat berupa integer (bilangan bulat) dan pecahan
- Dapat ditulis dalam bentuk eksponensial yaitu ditulis dengan mantissa dan exponent.
- Contoh: $1234 = 0,1234 \times 10^4$ mantissa exponent

Sistem Bilangan Desimal (Lanjutan)

Penulisan base/radix dituliskan setelah absolut digit, yaitu A₁₀, atau A(D).

Dalam hal ini yang dituliskan adalah A₁₀

Contoh nilai 4352₁₀ dan 762,15₁₀ dapat diartikan:

$$4 \times 10^{3} = 4000$$
 $7 \times 10^{2} = 700$
 $3 \times 10^{2} = 300$ $6 \times 10^{1} = 60$
 $5 \times 10^{1} = 50$ $2 \times 10^{0} = 2$
 $2 \times 10^{0} = 2$
 4352 $1 \times 10^{-1} = 0,1$
 $5 \times 10^{-2} = 0,05 + 762,15$

2. Sistem Bilangan Biner

- Sistem bilangan biner menggunakan basis 2 (binary)
- Menggunakan 2 macam simbol bilangan berbentuk digit angka: 0 dan 1
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₂ atau A(B). Dalam hal ini yang dituliskan adalah A₂
- Dasar penulisan:

A x 2ⁿ

Contoh penulisan: 1001 0011₂

3. Sistem Bilangan Oktal

- Sistem bilangan oktal menggunakan basis 8 (octal)
- Menggunakan 8 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₈ atau A(O). Dalam hal ini yang dituliskan adalah A₈
- Dituliskan:
 A x 8ⁿ

Contoh penulisan: 347₈

4. Sistem Bilangan Hexadesimal

- Sistem bilangan hexadesimal menggunakan basis 16 (hexa)
- Menggunakan 16 macam simbol bilangan berbentuk digit angka: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Penulisan base/radix dituliskan setelah absolut digit, yaitu
 A₁₆ atau A(H). Dalam hal ini yang dituliskan adalah A₁₆
- Dituliskan: A x 16ⁿ
- Contoh penulisan: A78₁₆

II. Satuan Data

Komputer bekerja atas dasar sistem biner berupa 0 dan 1 yang disebut bit.

Bit merupakan satuan data terkecil dalam sistem komputer.

Bit-bit dapat digunakan untuk menyusun karakter apa saja.

Sebuah karakter dinyatakan dengan 8 bit atau 16 bit.

1. Byte

- Byte merupakan satuan yang digunakan untuk menyatakan sebuah karakter pada sistem ASCII atau EBCDIC
- 1 byte = 8 bit

Satuan Data (Lanjutan)

2. Kilobyte (KB)

- Biasa digunakan untuk berkas gambar berukuran kecil
- 1 kilobyte = 1024 byte

3. Megabyte (MB)

- Biasa digunakan untuk menyatakan kapasitas RAM dalam PC
- 1 MB = 1024 KB = 1.048.576 byte

4. Gigabyte (GB)

- Biasa digunakan untuk menyatakan kapasitas harddisk dalam PC
- 1 GB = 1024 MB = 1.073.741.824 byte

Satuan Data (Lanjutan)

5. Terabyte (TB)

- Biasa digunakan untuk menyatakan kapasitas harddisk dalam mainframe
- 1 TB = 1024 GB = 1.009.511.627.776 byte

6. Petabyte (PB)

1 PB = 1024 TB

III. Sistem Pengkodean

- Sistem yang digunakan untuk mengkodekan karakter bermacam-macam.
- Data disimpan dalam memori komputer menempati posisi 1 byte, yang menggunakan kombinasi dari digit Biner.
- Komputer berbeda dalam menggunakan kode biner untuk mewakili sebuah karakter.
- Ada beberapa kode yang akan dibahas, yaitu BCD, EBCDIC, ASCII dan Unicode

1. BCD (Binary Coded Decimal)

- Merupakan kode biner yang digunakan hanya untuk mewakili nilai digit desimal saja.
- Sebuah karakter BCD dinyatakan dengan 4 bit
- Karakter yang tersedia sebanyak 10 angka, yaitu angka 0,1,2,3,4,5,6,7,8,9
- Digunakan pada komputer generasi pertama.

BCD 4 Bit	Digit Desimal
0000	0
0001	1
0010	2
0011	3
0100	4

BCD 4 Bit	Digit Desimal
0101	5
0110	6
0111	7
1000	8
1001	9

2. EBCDIC (Extended Binary Coded Decimal Interchange Code)

- EBCDIC dikembangkan oleh IBM, yang diterapkan pada berbagai komputer mainframe
- Sebuah karakter dinyatakan dengan 8 bit
- Karakter yang tersedia sebanyak 2⁸ = 226 karakter
- Digunakan pada komputer generasi ketiga

3. ASCII (American Standard Code for Information Interchange)

- ASCII dikembangkan oleh ANSI (American National Standard Institute)
- Sebuah karakter ASCII dinyatakan dengan 8 bit
- Karakter yang tersedia sebanyak 226 karakter, meliputi huruf, angka, dan spesial karakter, termasuk simbol Yunani dan karakter grafis

Tabel EBCDIC 8 bit

HEX	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0	NUL	DLE	DS		SP	&										0
1	SOH	DC1	DOS						а	j			A	J		1
2	STX	DC2	FS	SYN					b	k	S		В	K	S	2
3	ETX	DC3							С	1	t		С	L	T	3
4	PF	RES	BYP	PN					d	m	u		D	M	U	4
5	HT	NL	LF	RS					е	n	v		E	N	V	5
6	LC	BS	ETB	UC					f	0	w		F	О	W	6
7	DEL	IL	ESC	EOT					g	p	x		G	P	X	7
8	CAN								h	q	У		Н	Q	Y	8
9	RLF	EM							į	r	z		Ι	R	Z	9
A	SMM	CC	SM			!		-								
В	VT					\$	3	#								
C	FF	IFS		DC4	٧	e.c.	%	@								
D	CR	IGS	ENQ	NAK	()										
E	SO	IRS	ACK			5	>	=								
F	SI	IUS	BEL	SUB			?									

Tabel ASCII 8 bit

Dec	Hex	Char
128	80	ç
129	81	ü
130	82	e
131	83	â
132	84	ä
133	85	ä
134	86	å
135	87	g
136	88	Sélé è i î î î î ê ê % fi ô
137	89	ë
138	8A	è
139	8B	ï
140	8C	î
141	8D	ì
142	8E	Ä
143	8F	å
144	90	É
145	91	3 8
146	92	A
147	93	ô
148	94	i
149	95	$ \tilde{\mathbf{o}} $
150	96	ĺû
151	97	ù
152	98	9
153	99	ù ij ij
154	9A	Ü
155	98	Ç
156	9C	¢ £ ¥ R
157	910	¥
158	9E	
159	9F	£

Dec	Hex	Char
160	A0	á
161	A1	Ιí
162	A2	ó
163	A3	ú
164	A4	ក
165	A.5	Ñ
166	A6	⊈
167	A7	₾
168	A8	-
169	A9	- -
170	AA	- •
171	AB	½
172	AC	4
173	AD	į.
174	AE	-ec
175	AF	38.
176	B0	
177	В1	IIII
178	B2	
179	B3	ΙT
180	B4	-
181	B5	-
182	B6	140
183	B7	1 11
184	B8	17.
185	B9	1
18 6	BA	
187	вв	71
188	BC	4
189	BD	111
190	BE	4

Dec	Hex	Char
192	တ	L
193	Cl	1
194	C22	т .
195	cs	l ⊩
196	C4	l÷
197	CS	🕂
198	C6	T- +-
199	C7	l ⊪
200	C8	LL
201	ලා	1
202	CA	11
203	СВ	
204	œ	Ţ
205	ထာ	l ==
206	CE	<u>#</u>
207	CF	∓
208	D0	Щ
209	Dl	T
210	D2	П
211	D3	∣ .Ա.
212	D4	L
213	D5	F
214	D6	п
215	D7	₩
216	D8	≢
217	D9	
218	DA	∏
219	DB	
220	$_{\rm DC}$	
221	DD	
222	DE	
223	DF	_

Dec	Hex	Char
224	EO	•ox
225	E1	₽
226	E.2	F
227	E3	π
228	E4	Σ
229	E.5	or l
230	E6	مر
231	E7	~
232	E8	₽
233	E9	Θ
234	EA	Ω
235	EB	δ
236	EC	-00-
237	ED	95
238	E.E.	$ \epsilon $
239	EF	ın
240	FO	≡
241	Fl	<u>+</u>
242	F2	≥
243	F3	_<
244	F4	l r
245	F5	IJ
246	F6	l÷
247	F7	≈ ≈
248	F8	•
249	F9	•
250	FA	-
251	FB	1
252	FC	m
253	FD	2
254	FE	=
255	न न	1

4. Unicode

- Sebuah karakter Unicode dinyatakan dengan 16 bit
- Karakter yang tersedia sebanyak 65.536 karakter, meliputi huruf, angka, dan spesial karakter, termasuk simbol Yunani, karakter grafis, simbol Arab dan Cina

1. Konversi dari Bilangan Desimal ke Biner

- Dengan cara membagi bilangan desimal dengan 2 (basis biner) sampai tidak bisa dibagi lagi
- Kemudian <u>sisa pembagian diurutkan dari bawah ke atas</u> dalam format 8 bit
- Contoh nilai 89₁₀ akan dikonversikan menjadi Biner

Konversi dari Bilangan Desimal ke Biner (Lanjutan)

89

2:

44 sisa 1

2:

22 sisa **0**

2:

11 sisa **0**

<u>2</u>:

5 sisa 1

<u>2</u>:

2 sisa **1**

2:

1 sisa **0**

Dituliskan dari bawah ke atas: 1011001 Karena penulisan dengan 8 bit, maka 89₁₀ = 0101 1001₂

2. Konversi dari Bilangan Desimal ke Oktal

- Dengan cara membagi bilangan desimal dengan 8 (basis oktal) sampai tidak bisa dibagi lagi
- Cara yang digunakan sama dengan bilangan biner
- Contoh nilai 147₁₀ akan dikonversikan menjadi Oktal

Konversi dari Bilangan Desimal ke Oktal (Lanjutan)

- Dituliskan dari bawah ke atas: 223
- Maka hasilnya menjadi 147₁₀ = 223₈

3. Konversi dari Bilangan Desimal ke Hexadesimal

- Dengan cara membagi bilangan desimal dengan 16 (basis hexa) sampai tidak bisa dibagi lagi
- Cara yang digunakan sama dengan bilangan biner
- Contoh nilai 123₁₀ akan dikonversikan menjadi Hexa

Konversi dari Bilangan Desimal ke Hexadesimal (Lanjutan)

- Sisa 11 dikodekan menjadi B
- Maka hasilnya menjadi 123₁₀ = 7B₁₆

4. Konversi dari Bilangan Biner ke Desimal

- Dengan cara mengalikan masing-masing bit biner dalam bilangan sesuai dengan radix dan position value-nya
- Contoh bit 11 0101₂ akan dikonversikan menjadi Desimal

Maka hasil di samping dituliskan:

$$11\ 0101_2 = 53_{10}$$

5. Konversi dari Bilangan Biner ke Oktal

- Dengan cara membagi digit biner tersebut ke dalam tiga digit dari <u>kanan</u>
- Ketiga digit tersebut kemudian dikonversikan menjadi desimal
- Contoh bit 1010 1011₂ akan dikonversikan menjadi Oktal

Biner	10	101	011
Desimal	2	5	3

Maka dituliskan menjadi **1010 1011**₂ = **253**₈

6. Konversi dari Bilangan Biner ke Hexadesimal

- Dengan cara membagi digit biner tersebut ke dalam empat digit dari <u>kanan</u>
- Keempat digit tersebut kemudian dikonversikan menjadi desimal
- Contoh bit 10101011₂ akan dikonversikan menjadi Hexa

Biner	1010	1011
Desimal	10	11
Hexa	Α	В

Maka dituliskan menjadi 1010 1011₂ = AB₁₆

7. Konversi dari Bilangan Oktal ke Desimal

- Dengan cara mengalikan masing-masing bit oktal dalam bilangan sesuai dengan radix dan position valuenya
- Contoh bit 371₈ akan dikonversikan menjadi Desimal

Maka hasil disamping dituliskan:

$$371_8 = 249_{10}$$

8. Konversi dari Bilangan Oktal ke Biner

- Dengan cara mengkonversikan setiap satu digit oktal menjadi tiga digit biner
- Contoh bit 71₈ akan dikonversikan menjadi Biner

Oktal	7	1
Biner	111	001

Maka dituliskan menjadi $71_8 = 0011 1001_2$

9. Konversi dari Bilangan Oktal ke Hexadesimal

- Konversi ini tidak dapat dilakukan secara langsung, tetapi harus dikonversikan terlebih dahulu ke Desimal atau Biner
- Contoh bit 243₈ akan dikonversikan menjadi Hexa

Oktal	2	4		3
Biner	010	100		011
	1010		00	11
Hexa	Α		3	3

Maka dituliskan menjadi **243**₈ = **A3**₁₆

10. Konversi dari Bilangan Hexadesimal ke Desimal

- Dengan cara mengalikan masing-masing bit hexa dalam bilangan sesuai dengan radix dan position valuenya
- Contoh bit 8F₁₆ akan dikonversikan menjadi Desimal

Maka hasil disamping dituliskan:

$$8F_{16} = 143_{10}$$

11. Konversi dari Bilangan Hexadesimal ke Biner

- Dengan cara mengkonversikan setiap satu digit hexa menjadi empat digit biner
- Contoh bit 8F₁₆ akan dikonversikan menjadi Biner

Hexa	8	F
Biner	1000	1111

Maka dituliskan menjadi $8F_{16} = 1000 1111_2$

12. Konversi dari Bilangan Hexadesimal ke Oktal

- Konversi ini tidak dapat dilakukan secara langsung, tetapi harus dikonversikan terlebih dahulu ke Desimal atau Biner sama dengan konversi dari oktal ke hexa
- Contoh bit 8F₁₆ akan dikonversikan menjadi Oktal

Hexa	8		F	
Biner	1000		1111	
	10	001		111
Oktal	2	1		7

Maka dituliskan menjadi 8F₁₆ = 217₈

LATIHAN

Dosen diharapkan memberikan contoh dan latihan konversi bilangan