SOLUTIONS TO HOMEWORK ASSIGNMENT #5, Math 253

1. For what values of the constant k does the function $f(x,y) = kx^3 + x^2 + 2y^2 - 4x - 4y$ have

(a) no critical points;

(b) exactly one critical point;

(c) exactly two critical points?

Hint: Consider k = 0 and $k \neq 0$ separately.

Solution:

Set $f_x = 0$ and $f_y = 0$ to find critical points:

$$f_x = 3kx^2 + 2x - 4 = 0 (1)$$

$$f_y = 4y - 4 = 0 (2)$$

(2) gives y = 1. For (1), consider k = 0 and $k \neq 0$ separately.

For k = 0, (1) becomes 2x - 4 = 0, or x = 2. So one critical point at (2, 1).

For $k \neq 0$, use quadratic formula to solve for x.

$$x = \frac{-2 \pm \sqrt{4 + 48k}}{6k} = \frac{-1 \pm \sqrt{1 + 12k}}{3k}$$

So critical points are $(\frac{-1\pm\sqrt{1+12k}}{3k},1)$ if they exist.

Conclusion:

k < -1/12: no critical points.

k = -1/12: one critical point (4, 1).

k > -1/12 and $k \neq 0$: two critical points $(\frac{-1 \pm \sqrt{1+12k}}{3k}, 1)$.

k = 0: one critical point (2, 1).

2. Find and classify all critical points of the following functions.

(a)
$$f(x,y) = x^3 - y^3 - 2xy + 6$$

Solution:

Step 1: find critical points

$$f_x = 3x^2 - 2y = 0 (1)$$

$$f_y = -3y^2 - 2x = 0 (2)$$

(1) gives $y = \frac{3}{2}x^2$. Substituting into (2) becomes $-3\left(\frac{3}{2}x^2\right)^2 - 2x = 0$, or simplified $-x(27x^3+8) = 0$. Hence x = 0 or -2/3.

If x = 0, then by (1) $y = 0 \Rightarrow (0,0)$

If x = -2/3, then by (1) again $y = 2/3 \Rightarrow (-2/3, 2/3)$.

Hence, critical points at (0,0) and (-2/3,2/3).

Step 2: apply second derivative test

$$f_{xx} = 6x \quad f_{yy} = -6y \quad f_{xy} = -2$$

At (0,0), $f_{xx} = 0$, $f_{yy} = 0$, $f_{xy} = -2$. So $D = f_{xx}f_{yy} - (f_{xy})^2 = -4 < 0 \Rightarrow$ saddle At (-2/3, 2/3), $f_{xx} = -4 < 0$, $f_{yy} = -4$, $f_{xy} = -2$. So $D = 12 > 0 \Rightarrow$ local max

Hence, local max at (-2/3, 2/3), saddle point at (0, 0)

(b)
$$f(x,y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$$

Solution:

Step 1: find critical points

$$f_x = 3x^2 + 6x = 0 (1)$$

$$f_y = 3y^2 - 6y = 0 (2)$$

We can solve the two equations separately. (1) gives x = 0 and -2. (2) gives y = 0 and 2. Hence, there are four critical points at (0,0), (0,2), (-2,0), and (-2,2).

Step 2: apply second derivative test

$$f_{xx} = 6x + 6$$
 $f_{yy} = 6y - 6$ $f_{xy} = 0$

At
$$(0,0)$$
, $f_{xx} = 6$, $f_{yy} = -6$, $f_{xy} = 0$, so $D = -36 < 0 \Rightarrow$ saddle

At
$$(0,2)$$
, $f_{xx} = 6 > 0$, $f_{yy} = 6$, $f_{xy} = 0$, so $D = 36 > 0 \Rightarrow \text{local min}$

At
$$(-2,0)$$
, $f_{xx} = -6 < 0$, $f_{yy} = -6$, $f_{xy} = 0$, so $D = 36 > 0 \Rightarrow \text{local max}$

At
$$(-2,2)$$
, $f_{xx} = -6$, $f_{yy} = 6$, $f_{xy} = 0$, so $D = -36 < 0 \Rightarrow$ saddle

Hence, local max at (-2,0), local min at (0,2), saddle at (0,0) and (-2,2)

(c)
$$f(x,y) = \frac{1}{x^2+y^2-1}$$

Solution:

Step 1: find critical points

$$f_x = -\frac{2x}{(x^2 + y^2 - 1)^2} = 0 (1)$$

$$f_y = -\frac{2y}{(x^2 + y^2 - 1)^2} = 0 (2)$$

(1) gives x = 0 and (2) gives y = 0. The critical point is at (0,0).

Step 2: apply second derivative test

$$f_{xx} = -\frac{2(x^2 + y^2 - 1)^2 - 2x[2(x^2 + y^2 - 1)(2x)]}{(x^2 + y^2 - 1)^4}$$

$$f_{yy} = -\frac{2(x^2 + y^2 - 1)^2 - 2y[2(x^2 + y^2 - 1)(2y)]}{(x^2 + y^2 - 1)^4}$$

$$f_{xy} = \frac{2x(2)(2y)}{(x^2 + y^2 - 1)^3}$$

At (0,0) $f_{xx} = -2 < 0$, $f_{yy} = -2$, $f_{xy} = 0$, So $D = 4 > 0 \Rightarrow \text{local max}$ Hence, local max at (0,0) (d) $f(x,y) = y \sin x$

Solution:

Step 1: find critical points

$$f_x = y\cos x = 0\tag{1}$$

$$f_y = \sin x = 0 \tag{2}$$

(2) gives $x = n\pi$ for all $n \in \mathbb{Z}$, i.e. integers. Substituting to (1) gives $\pm y = 0$, or y=0. The critical points are $(n\pi,0)$ for all $n\in\mathbb{Z}$.

Step 2: apply second derivative test

$$f_{xx} = -y\sin x \quad f_{yy} = 0 \quad f_{xy} = \cos x$$

At all $(n\pi, 0)$, $f_{xx} = 0$, $f_{yy} = 0$, $f_{xy} = \pm 1$, so $D = -1 < 0 \Rightarrow$ saddle Hence, saddle points at $(n\pi, 0)$ for all $n \in \mathbb{Z}$

3. Suppose f(x,y) satisfies the Laplace's equation $f_{xx}(x,y) + f_{yy}(x,y) = 0$ for all x and y in \mathbb{R}^2 . If $f_{xx}(x,y) \neq 0$ for all x and y, explain why f(x,y) must not have any local minimum or maximum.

Solution:

Since the second derivatives exists, the first derivatives must be continuous and f(x,y)must be differentiable. Also, since there is no boundary on \mathbb{R}^2 , local max/min must occur at critical points.

Suppose there is a critical point, then by second derivative test, $D = f_{xx}f_{yy} - f_{xy}^2$. But $f_{xx} + f_{yy} = 0 \Rightarrow f_{yy} = -f_{xx}$. It follows that $D = -f_{xx}^2 - f_{xy}^2 < 0$ when it is given that $f_{xx} \neq 0$. Therefore all critical points are saddle points.

- 4. Find all absolute maxima and minima of the following functions on the given domains.
 - (a) $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plate with vertices (0,0), (2,0), and (2,2)

Solution:

Step 1: find interior critical points

$$f_x = 4x - 4 = 0 (1)$$

$$f_y = 2y - 4 = 0 (2)$$

(1) gives x = 1. (2) gives y = 2. Critical point at (1, 2), but not in region.

Step 2: find boundary critical points and endpoints

Bottom side $y = 0 \Rightarrow f(x,0) = 2x^2 - 4x + 1$.

 $\frac{df}{dy} = 4x - 4 = 0 \Rightarrow x = 1. \text{ Critical point at } \underline{(1,0)}$ Right side $x = 2 \Rightarrow f(2,y) = 8 - 8 + y^2 - 4y + 1 = y^2 - 4y + 1.$

 $\frac{df}{dx} = 2y - 4 = 0 \Rightarrow y = 2$. Critical point at (2, 2).

Hypotenuse $y = x \Rightarrow f(x, x) = 2x^2 - 4x + x^{\frac{(x-x)^2}{2}} - 4x + 1 = 3x^2 - 8x + 1$

 $\frac{df}{dx} = 6x - 8 = 0 \Rightarrow x = 4/3$. So y = 4/3. Critical point at (4/3, 4/3).

Together with the endpoints of all sides (0,0), (2,0), (2,2).

Step 3: compare the values of f(x,y)

$$f(1,0) = -1$$

$$f(2,2) = -3$$

 $f(4/3,4/3) = -13/3 \Leftarrow \text{absolute min}$

 $f(0,0) = 1 \Leftarrow absolute max$

 $f(2,0) = 1 \Leftarrow absolute max$

Hence, abs max at f(2,0) = f(0,0) = 1, abs min at f(4/3,4/3) = -13/3

(b)
$$f(x,y) = x^2 + xy + 3x + 2y + 2$$
 on the domain $D = \{(x,y) | x^2 \le y \le 4\}$

Solution:

Step 1: find interior critical points

$$f_x = 2x + y + 3 = 0 (1)$$

$$f_y = x + 2 = 0 \tag{2}$$

(2) gives x = -2. Substituting to (1) gives y = 1. Critical point at (-2, 1) but not in region.

Step 2: find boundary critical points

Top side:
$$y = 4 \Rightarrow f(x, 4) = x^2 + 4x + 3x + 8 + 2 = x^2 + 7x + 10$$

$$\frac{df}{dx} = 2x + 7 = 0 \Rightarrow x = -7/2$$
 but not in region

Parabola:
$$y = x^2 \Rightarrow f(x, x^2) = x^2 + x^3 + 3x + 2x^2 + 2 = x^3 + 3x^2 + 3x + 2$$

Top side.
$$y = 4 \Rightarrow f(x, 4) = x^{2} + 4x + 3x + 6 + 2 = x^{2} + 7x + 10$$

 $\frac{df}{dx} = 2x + 7 = 0 \Rightarrow x = -7/2$ but not in region
Parabola: $y = x^{2} \Rightarrow f(x, x^{2}) = x^{2} + x^{3} + 3x + 2x^{2} + 2 = x^{3} + 3x^{2} + 3x + 2$
 $\frac{df}{dx} = 3x^{2} + 6x + 3 = 3(x + 1)^{2} = 0 \Rightarrow x = -1$, then $y = (-1)^{2} = 1$. Critical point $(-1, 1)$.

 $\overline{\text{Togeth}}$ er with the endpoints of the two sides (-2,4), (2,4).

Step 3: Compare the values of f(x,y)

$$f(-1,1) = 1$$

$$f(-2,4) = 0 \Leftarrow \text{absolute min}$$

$$f(2,4) = 28 \Leftarrow \text{absolute max}$$

Hence, absolute min at f(-2,4) = 0, absolute max at f(2,4) = 28

(c)
$$f(x,y) = 2x^2 + 3y^2 - 4x - 5$$
 on the domain $D = \{(x,y)|x^2 + y^2 \le 16\}$.

Solution:

Step 1: find interior critical points

$$f_x = 4x - 4 = 0 (1)$$

$$f_y = 6y = 0 (2)$$

(1) gives x = 1. (2) gives y = 0. Critical point (1, 0).

Step 2: find boundary critical points

Rewrite the boundary $y^2 = 16 - x^2$ or $y = \pm \sqrt{16 - x^2}$, which the endpoints are (4,0) and (-4,0).

Then
$$f$$
 becomes $f = 2x^2 + 3(16 - x^2) - 4x - 5 = -x^2 - 4x + 43$.
 $\frac{df}{dx} = -2x - 4 = 0 \Rightarrow x = -2, \ y^2 = 16 - (-2)^2 \Rightarrow y = \pm\sqrt{12}$

$$\frac{df}{dx} = -2x - 4 = 0 \Rightarrow x = -2, y^2 = 16 - (-2)^2 \Rightarrow y = \pm \sqrt{12}$$

Critical points at $(-2, \sqrt{12})$ and $(-2, -\sqrt{12})$.

Step 3: compare the values of f(x,y)

$$f(1,0) = -7 \Leftarrow \text{absolute min}$$

$$f(4,0) = 11$$

Figure 1: Q4(a)

Figure 2: Q4(b)

Figure 3: Q4(c)

$$f(-4,0) = 43$$

 $f(-2, \sqrt{12}) = 47 \Leftarrow \text{absolute max}$
 $f(-2, -\sqrt{12}) = 47 \Leftarrow \text{absolute max}$

Hence, abs min at f(1,0) = -7, abs max at $f(-2, \sqrt{12}) = f(-2, -\sqrt{12}) = 47$

- 5. Use Lagrange multipliers to find the maximum and minimum values of the following functions subject to the given constraint(s).
 - (a) f(x,y) = xy subject to $x^2 + 2y^2 = 1$

Solution:

Step 1: Find critical points on constraint

$$f(x,y) = xy, f_x = y, f_y = x$$

 $g(x,y) = x^2 + 2y^2 = 1, g_x = 2x, g_y = 4y$

$$y = 2\lambda x \tag{1}$$

$$x = 4\lambda y \tag{2}$$

$$x^2 + 2y^2 = 1 (3)$$

Substituting (1) into (2) gives $x = 4\lambda(2\lambda x)$, or $x(8\lambda^2 - 1) = 0 \Rightarrow x = 0$ or $\lambda = \pm 1\sqrt{8}$.

For x = 0, (2) gives y = 0, but contradicts with (3). No solution in this case.

For $\lambda = 1/\sqrt{8}$, (2) gives $x = \sqrt{2}y$. Substituting into (3) gives $2y^2 + 2y^2 = 1 \Rightarrow y = \pm 1/2$. So $x = \pm 1/\sqrt{2}$. Critical points at $(1/\sqrt{2}, 1/2), (-1/\sqrt{2}, -1/2)$.

For $\lambda = -1/\sqrt{8}$, (2) gives $x = -\sqrt{2}y$. Substituting into (3) gives $2y^2 + 2y^2 = 1 \Rightarrow y = \pm 1/2$. So $x = \mp 1/\sqrt{2}$. Critical points at $(-1/\sqrt{2}, 1/2)$, $(1/\sqrt{2}, -1/2)$.

Step 2: Compare the values of f(x,y)

 $f(1/\sqrt{2}, 1/2) = 1/2\sqrt{2} \Leftarrow$ absolute max

 $f(-1/\sqrt{2}, -1/2) = 1/2\sqrt{2} \Leftarrow \text{absolute max}$

 $f(-1/\sqrt{2}, 1/2) = -1/2\sqrt{2} \Leftarrow \text{absolute min}$

 $f(1/\sqrt{2}, -1/2) = -1/2\sqrt{2} \Leftarrow \text{absolute min}$

Hence, abs max at $f(1/\sqrt{2}, 1/2) = f(-1/\sqrt{2}, -1/2) = 1/2\sqrt{2}$,

abs min at $f(-1/\sqrt{2}, 1/2) = f(1/\sqrt{2}, -1/2) = -1/2\sqrt{2}$.

(b)
$$f(x, y, z) = xy + z^2$$
 subject to $y - x = 0$ and $x^2 + y^2 + z^2 = 4$

Solution:

Step 1: Find critical points on constraints

$$f(x,y) = xy + z^2$$
, $f_x = y$, $f_y = x$, $f_z = 2z$

$$g(x,y) = y - x = 0, g_x = -1, g_y = 1, g_z = 0$$

$$g(x,y) = y - x = 0, g_x = -1, g_y = 1, g_z = 0$$

 $h(x,y) = x^2 + y^2 + z^2 = 4, h_x = 2x, h_y = 2y, h_z = 2z$

$$y = -\lambda + 2\mu x \tag{1}$$

$$x = \lambda + 2\mu y \tag{2}$$

$$2z = 2\mu z \tag{3}$$

$$y - x = 0 \tag{4}$$

$$x^2 + y^2 + z^2 = 4 (5)$$

(4) gives y = x. Substitute into (1) and (2)

$$x = -\lambda + 2\mu x \tag{1a}$$

$$x = \lambda + 2\mu x \tag{2a}$$

(1a) - (2a) gives $\lambda = 0$. (1) and (2) becomes

$$x = 2\mu x \tag{1b}$$

$$y = 2\mu y \tag{2b}$$

(1b) and (2b) gives either x = y = 0 or $\mu = 1/2$.

For x = y = 0, (5) gives $z = \pm 2$, and (3) gives $\mu = 1$. Critical points at (0,0,2)and (0, 0, -2)

For $\overline{\mu = 1/2}$, (3) gives z = 0. (5) becomes $x^2 + x^2 = 4 \Rightarrow x = \pm \sqrt{2}$, then $y = \pm \sqrt{2}$. Critical points at $(\sqrt{2}, \sqrt{2}, 0)$ and $(-\sqrt{2}, -\sqrt{2}, 0)$

Step 2: Compare the values of f(x,y)

 $f(0,0,2) = 4 \Leftarrow absolute max$

 $f(0,0,-2) = 4 \Leftarrow absolute max$

 $f(\sqrt{2}, \sqrt{2}, 0) = 2 \Leftarrow \text{absolute min}$

 $f(-\sqrt{2}, -\sqrt{2}, 0) = 2 \Leftarrow \text{absolute min}$

Hence, absolute max at f(0,0,2) = f(0,0,-2) = 4,

absolute min at $f(\sqrt{2}, \sqrt{2}, 0) = f(-\sqrt{2}, -\sqrt{2}, 0) = 2$.