

Data Science Bootcamp

"How do you feel today?"

GoEmotions: text-based emotion detection

MOTIVATION

CONTEXT

- One of the many applications of Natural Language Processing (NLP)
- Text-based emotion detection is generally limited to a small number of emotions (6 to 12)
- **Difficulty of interpretation** due to subjectivity (sarcasm, irony...)

FIELDS OF APPLICATION

- **Social media analysis** in different areas (*product/brand reviews, hate speech, etc.*)
- Mental health (emotional distress, suicidal thoughts, etc.)
- Personalized customer services
- Empathetic chatbots

AMBITION

Building a text classification model that detects one or multiple
 emotions on a large spectrum of emotions

APPROACH

- Data selection and exploration
- Data cleansing
- Building classification models
- Evaluation and performance analysis

GOEMOTIONS DATASET

INTRODUCTION

Built by a Google Research team (subject of a research paper)

Gathers more than 58K Reddit comments (English)

Largest manually labeled dataset

CHALLENGES

Class imbalance: ~30% of "neutral" samples

Multi-label: Up to 5 emotions for a single comment

EMOTIONS WHEEL

2 TAXONOMIES

GoEmotions (27 emotions) + "neutral"

Ekman (6 emotions) + "neutral"

SCOPE OF STUDY

Emotions analysis (vs Sentiment analysis) (Focus on GoEmotions taxonomy)

GOEMOTIONS DATASET - WordClouds

LOVE

SADNESS

JOY

STEP 1

spaCy DATA CLEANING

DATA CLEANSING

EMOJIS

"demojize"

SPECIAL CHARACTERS / NUMERICAL

(#, @, ... except "?" and "!")

CONTRACTIONS

Separate contractions

ACRONYMS

STEP 2

MODELING & EVALUATION

1ST Model

Dummy model

2nd Model

Baseline model

3rd Model

BERT

MODELING - Dummy & Baseline models

Comment sample : "No one cares my guy"

DUMMY MODEL - Always predicts "neutral"

BASELINE MODEL - Machine Learning (Ridge Classification)

MODELING - BERT (General information)

PRESENTATION

BERT (Bidirectional Encoder Representations from Transformers)

Deep Learning model developed by Google for NLP tasks

Pre-trained on data extracted from **BooksCorpus** (800M words) and **English Wikipedia** (2,500M words)

Based on the **attention mechanism** (word contextualization)

ADVANTAGES

Very efficient

Keeps the **meaning of a sentence**

DISADVANTAGES

More than **100M trainable parameters** (base model)

MODELING - BERT (Experiments)

Comment sample: "No one cares my guy"

DISAPPOINTMENT **SADNESS**

TEXT & LABELS

MODEL

PREDICTIONS

DISAPPOINTMENT **SADNESS**

NEUTRAL

TEXT & LABELS

MODEL ENHANCEMENT No prediction → "neutral"

PREDICTIONS

(GoEmotions -Enhanced)

DISAPPOINTMENT **SADNESS**

NEUTRAL

SCORE*

46%

SCORE* 45%

*on test data

MODELING - BERT (Garbage in ... Garbage out ?)

PROBLEM

INTERPRETATION

- The "neutral" class was used as a "garbage" class at the time of labeling
- The "neutral" class adds noise to our data

SOLUTION

CONCLUSION

SUBJECTIVITY BIAS

- In the expression and interpretation of emotions in a text
- In the labelling
- In our evaluation of the detected emotions

PERFORMANCES

INITIAL SCORE*

46%

- **Exceeded our expectations**
- Similar score to Google's research paper
- A large potential for improvement

— THE CHERRY ON TOP

Training on "non-neutral" samples allows to

- **Better distinguish emotions**
- Detect a "neutral" emotion a posteriori

POTENTIAL IMPROVEMENTS

- Enhance the data cleaning phase
- Review training labels (False "neutral" samples, mislabeled samples, etc.)
- Find more data, more diversified and more representative of the general population
- **Try other algorithms** (GPT-2, RoBERTa, XLNet...)

ÉTAPE 3

DÉMONSTRATION

(Web app: My Annoying Shrink)

Thank you!

