	$\sigma_{1^{+}\alpha\beta}^{\sharp 1}$	$\sigma_{1^+ lpha eta}^{\# 2}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_1^{\sharp 1}{}_{lpha}$	$\sigma_1^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	τ ₁ - α
$\sigma_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2}$ † lphaeta	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$ au_{1}^{\#1} \dagger^{lphaeta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i\left(3k^{2}(2r_{3}\!+\!r_{5})\!+\!2t_{2}\right)}{k(1\!+\!k^{2})^{2}(2r_{3}\!+\!r_{5})t_{2}}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_1^{\sharp 1} \dagger^{\alpha}$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_1^{\#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} +^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-} \ lpha}^{\sharp 1}$	$\omega_{1^{-}\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1} \dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}$ † $^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{#1}\dagger^{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_{1}^{#2}\dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	<u>2 i k t 3</u> 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

Source constraints				
SO(3) irreps	#			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5			
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5			
Total #:	21			

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\sharp 1}$
$\omega_{0^+}^{\sharp 1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

	$\sigma_{2^{-}}^{*1} \dagger^{\alpha \beta \chi}$	$\tau_{2+}^{*1} + \alpha \beta$	$\sigma_{2^{+}}^{#1} + \alpha^{\beta}$	
(c)#1	0	0	$-\frac{2}{3k^2r_3}$	_
£#1	0	0	0	$\tau_{2}^{\#1}{}_{lpha}$
,, ,, #1	0	0	0	$\sigma_{2^{+}\alpha\beta}^{*1}$ $\tau_{2^{+}\alpha\beta}^{*1}$ $\sigma_{2^{-}\alpha\beta\chi}^{*1}$

	Massive particle			
?	Pole residue:	- -		
3 -0	Polarisations:	1		
$\overrightarrow{k^{\mu}}$	Square mass:	$-\frac{t}{r}$		
?	Spin:	0		
·	Parity:	0		

Unitarity conditions

$$r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 || r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 ||$$

$$r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$$