Хлориды фосфора

Известно, что фосфор в реакции с хлором способен образовывать два хлорида, которые являются газообразными при температуре реакции. Известны энтальпии этих процессов:

(1)
$$2P_{\text{(тв)}} + 3Cl_2 = 2PCl_{3(\Gamma)}$$
 $\Delta H_1 = -581 \text{ кДж/моль}$

(2)
$$2P_{\text{(тв)}} + 5Cl_2 = 2PCl_{5(\Gamma)}$$
 $\Delta H_2 = -751 \text{ кДж/моль}$

При этом соотношение между количествами образующихся хлоридов определяется не только давлением хлора в системе, но и температурой.

 Как меняется мольное соотношение PCl₃/PCl₅ при увеличении температуры при постоянном давлении хлора? Ответ объясните.

Если после реакции не конденсировать хлориды фосфора, а поддерживать высокую температуру, между газообразными хлоридами установится равновесие в соответствии с реакцией:

(3)
$$PCl_{3(r)} + Cl_2 = PCl_{5(r)}\Delta H_3 = ? кДж/моль$$

2. Вычислите энтальпию реакции 3.

Известно, что энергии связи P–Cl в двух хлоридах неравноценны: в PCl_3 энергия связи на 23.53 % выше, чем в PCl_5 . Известно также, что энергия связи в молекуле хлора составляет 236 кДж/моль.

- **3.** Изобразите структурные формулы PCl_3 и PCl_5 , обозначив геометрию каждой молекулы и указав тип гибридизации центрального атома.
- 4. Установите энергии связи P-Cl в PCl₃ и PCl₅.

Если смесь газообразных хлоридов, выдержанную при 200 °C при парциальном давлении хлора 0.1 бар, быстро охладить до комнатной температуры, то в полученной смеси хлоридов массовая доля хлора окажется равной 81.54 %.

5. Установите содержание хлоридов в полученной смеси (в мольн. %) и вычислите значение константы равновесия^а реакции (3) при 200 °C.

Важной термодинамической характеристикой любого процесса является изменение энтропии, ΔS . В ряде случаев именно эта величина определяет положение химического равновесия в системе.

- **6.** Какие знаки имеют величины изменения энтропии ΔS_1 , ΔS_2 и ΔS_3 для реакций (1) (3)? Ответ объясните.
- 7. Используя полученные ранее данные, вычислите изменение энтропии ΔS_3 при 200 °C.

Необходимые формулы:

Изменение энергии Гиббса процесса: $\Delta G = \Delta H - T \Delta S$.

Взаимосвязь энергии Гиббса с константой равновесия: $\Delta G^{\circ} = -RT \ln K_p$.

^а Константа равновесия выражается через парциальные давления реагентов и продуктов в барах (1 бар = 10^5 Па).

Указание: во всех вопросах, требующих численного ответа, обязательно приведите расчёты. Ответ без расчётов оценивается в 0 баллов.

Решение задачи 10-5 (автор: Болматенков Д. Н.)

1. Реакция образования PCl₅ является более экзотермичной, что обуславливает более резкое падение её константы равновесия с температурой. По этой причине соотношение PCl₃/PCl₅ будет расти с температурой.

Также для ответа можно проанализировать реакцию (3), которая является экзотермической и равновесие в которой смещается в сторону PCl₃ при повышении температуры.

- **2.** Для получения энтальпии реакции (3) достаточно скомбинировать энтальпии реакций 1 и 2 следующим образом: $\Delta H_3 = 0.5 \Delta H_2 0.5 \Delta H_1 = -85.0$ кДж/моль.
- **3.** Молекула PCl_3 имеет форму тригональной пирамиды, атом фосфора находится в состоянии sp^3 -гидбридизации. Форма молекулы PCl_5 тригональная бипирамида с sp^3d гибридизацией атома фосфора:

4. Выразим энтальпию реакции (3) через соответствующие энергии связи, обозначив энергию связи P-Cl в PCl_5 за x, а в PCl_3- за y:

$$\Delta H_3 = E_{\text{Cl-Cl}} + 3 \ y - 5 \ x = -85.0$$

С другой стороны, известно соотношение между энергиями связей в двух хлоридах: $y = 1.2353 \ x$. С учётом последнего получаем уравнение:

$$\Delta H_3 = E_{\text{Cl-Cl}} + 3.706 \ x - 5 \ x = -85.0$$

-1.295 $x = -85.5 - 236 = -321.0$

Откуда x = 247.9 кДж/моль, y = 306.2 кДж/моль.

5. Обозначим за z мольную долю PCl_3 в смеси. Тогда PCl_5 будет (1-z). Если рассмотреть один моль смеси, то масса хлора, обусловленная присутствием PCl_3 , будет равна $35.5 \cdot 3z$, а масса хлора, обусловленная присутствием $PCl_5 - 35.5 \cdot 5 \cdot (1-z)$. Масса смеси будет равна:

$$m = (31 + 35.5 \cdot 3) \cdot z + (31 + 35.5 \cdot 5) \cdot (1 - z) = 137.5z + 208.5 - 208.5z = 208.5 - 71z.$$

Выразим массовую долю хлора в смеси:

$$\omega$$
(Cl) = [35.5·3 \mathbf{z} + 35.5·5·(1 – \mathbf{z})]/(208.5 – 71 \mathbf{z}) = (177.5 – 71 \mathbf{z})/(208.5 – 71 \mathbf{z}) = 0.8154
Решение данного уравнения даёт \mathbf{z} = 0.571.

Тогда смесь содержит 57.1 мольн. % PCl₃ и 42.9 мольн. % PCl₅.

Константу равновесия реакции 3 можно выразить через парциальные давления реагентов и продуктов:

$$K_p = \frac{p(\text{PCl}_5)}{p(\text{PCl}_3) \cdot p(\text{Cl}_2)}.$$

При этом парциальное давление хлора известно, а отношение парциальных давлений хлоридов фосфора можно заменить отношением их мольных долей:

$$K_p = 42.9/(57.1 \cdot 0.1) = 7.5$$

- 6. Поскольку стандартные энтропии соединений в конденсированной фазы обычно заметно меньше стандартных энтропий газов, знак изменения энтропии для реакции с участием газообразных реагентов и/или продуктов может быть определён путём сопоставления коэффициентов перед газообразными реагентами и продуктами. В реакции 1 в левой части перед газообразным хлором стоит коэффициент 3; перед газообразным продуктом в правой части стоит коэффициент 2. Общее число молей газов в результате реакции уменьшается, что соответствует уменьшению энтропии. Таким образом, $\Delta S_1 < 0$. То же справедливо и для реакций 2 и 3, которые характеризуются уменьшением энтропии.
- 7. Комбинируя имеющиеся в приложении формулы, а также ранее полученные величины K_p и ΔH_3 , выразим величину ΔS_3 .

$$\Delta S_3 = \frac{\Delta H_3 + RT \ln K_p}{T}$$

Для расчёта необходимо выразить T в кельвинах, а ΔH_3 – в Дж/моль:

$$\Delta S_3 = \frac{-85000 + 8.314 \cdot 473 \cdot \ln 7.5}{473} = -163$$
 Дж/моль/К.

Система оценивания:

1	Ответ с объяснением	2 балла
	Ответ без объяснения - 0 баллов	
2	Энтальпия реакции 3	1.5 балла
3	Структуры веществ по 1 баллу	3 балла
	Типы гибридизации по 0.5 балла	
4	Энергии связи по 2 балла	4 балла
5	Содержание компонентов – 2 балла	5 баллов
	Константа равновесия – 3 балла	
	Из них 1 балл за выражение, 2 балла за значение.	
6	Знаки ΔS реакций 1 -3	1.5 балла
	С объяснением по 0.5 балла	
	Без объяснения - 0 баллов	
7	Величина ΔS_3 с указанием размерности 3 балла	3 балла
	без указания размерности 1 балл	
	Итого	