# Statistical Methods for Complex Models in Climate Science

#### Murali Haran

Department of Statistics, Pennsylvania State University

Network for Sustainable Climate Risk Management (SCRiM) Summer School Lunch Talk. July 2014

#### This Talk

- Complex models are often used to make projections about future climate. E.g. Ice models are often used to make projections about future ice sheet behavior.
- Model input parameters are like knobs/dials on the climate model. They greatly influence how the model behaves.
- What values should these parameters be set to? How sure/uncertain are we about their values?
- Use data! E.g. recent data on the ice sheet
- Lots of challenges: large spatial data, complicated errors.
- A SCRiM research group is developing statistical methods for parameter inference for climate models.

#### Greenland Ice Sheet

Important contributor to sea level rise: Total melting results in sea level rise of 7m.



Bamber et al. (2001)

#### Calibration Problem

Which parameter settings best match observations?



#### The AMOC and Climate Change

- Atlantic Meridional Overturning Circulation (AMOC): AMOC heat transport makes a substantial contribution to the moderate climate of Europe (cf. Bryden et al., 2005)
- Any slowdown in the overturning circulation may have major implications for climate change
- AMOC projections from climate models.

A major source of uncertainty about the AMOC is due to uncertainty about  $K_{bg}$ : model parameter that quantifies the intensity of vertical mixing in the ocean.

## AMOC and Model Parameter K<sub>bq</sub>



#### Ocean Temperatures



(2D versions of 3D data)

#### Two-stage Approach to Emulation-Calibration

 Emulation step: Find fast approximation for climate model using Gaussian process (GP).

**Information used**: climate model runs at various parameter settings.

Calibration step: Infer climate parameter using emulator and observations. Important: account for errors in the data, and data-model discrepancy (model is an imperfect representation of reality).

Information used: climate observations and emulator.

References: Bhat, Haran, Olson, Keller (2012); Chang, Haran, Olson, Keller (2014); Liu, Bayarri and Berger (2009)

## Emulation Step: A Simple Example

We use a statistical model called a **Gaussian process**. This model is a fast emulator (approximation) of the computer model.



0.0 0.2 0.4 0.6 0.8 1.0 input, θ

Computer model output (y-axis) vs. input (x-axis)

Emulation (approximation) of computer model using GP

#### Calibration Step: A Simple Example

We use statistical methods called **Bayesian inference and Markov chain Monte Carlo**: Use emulator (from before) and observations to learn about parameters.



Combining observation and emulator



Posterior PDF of  $\theta$  given model output and observation

#### Results for K<sub>bq</sub> Inference



(from Chang, Haran, Olson and Keller, 2014)

## MOC Projections for 2100 Using Inferred K<sub>bg</sub>



(from Chang, Haran, Olson and Keller, 2014)

## **Concluding Thoughts**

- Without probability and statistics, it is not possible to quantify risk.
- Advanced statistical methods allow us to
  - Utilize all (*large*) data sets which can often help reduce uncertainties about projections.
  - Account for errors, uncertainties carefully.
  - Learn about various sources of error, e.g. discrepancy between data and model.
  - Learn about complicated interactions among model parameters.
- This work requires expertise (people with M.S. and Ph.D.s!) in statistics and geosciences. We work together very closely.

#### Statistical Methods: Details

BEGIN: FANCY STATS...

## Summary of Statistical Problem

- Goal: Learning about θ based on two sources of information:
  - ▶ **Observations**: Mean ice thickness profile†  $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))^T$ , where  $\mathbf{s}_1, \dots, \mathbf{s}_n$  are latitude points.
  - ▶ **Ice model output\*** for mean ice thickness  $\mathbf{Y}(\theta_1), \dots, \mathbf{Y}(\theta_p)$ , where each  $\mathbf{Y}(\theta_i) = (Y(\mathbf{s}_1, \theta_i), \dots, Y(\mathbf{s}_n, \theta_i))^T$  is spatial process (Applegate et al 2012).

**Z** and  $\mathbf{Y}(\theta_i)$ 's are *n*-dimensional vectors

▶ Important: output at each  $\theta_i$  is a spatial process. n = 264 locations, p = 100 runs.

†Averaged over longitude

#### Step 1: Dimension Reduction

▶ Consider model outputs at  $\theta_1, \dots, \theta_p$  as replicates and obtain PCs

$$\begin{pmatrix} Y(\mathbf{s}_{1}, \theta_{1}) & \dots & Y(\mathbf{s}_{n}, \theta_{1}) \\ \vdots & \ddots & \vdots \\ Y(\mathbf{s}_{1}, \theta_{p}) & \dots & Y(\mathbf{s}_{n}, \theta_{p}) \end{pmatrix}_{p \times n} \Rightarrow \begin{pmatrix} Y_{1}^{R}(\theta_{1}) & \dots & Y_{J_{y}}^{R}(\theta_{1}) \\ \vdots & \ddots & \vdots \\ Y_{1}^{R}(\theta_{p}) & \dots & Y_{J_{y}}^{R}(\theta_{p}) \end{pmatrix}_{p \times J_{y}}$$

▶ PCs pick up characteristics of model output that vary most across input parameters  $\theta_1, \dots, \theta_p$ .

## Step 2: Emulation Using PCs

- Fit 1-dimensional GP for each series  $Y_j^R(\theta_1), \dots, Y_j^R(\theta_p)$
- ▶  $\eta(\theta, \mathbf{Y}^R)$ :  $J_y$ -dimensional emulation process for PCs,  $\mathbf{Y}^R$  is collection of PCs
- ► Computation reduces from  $\mathcal{O}(n^3p^3)$  to  $\mathcal{O}(J_yp^3)$  (6.13 × 10<sup>12</sup> to 3.33 × 10<sup>6</sup> flops).
- ► Emulation for original output: compute  $\mathbf{K}_y \eta(\theta, \mathbf{Y}^R)$  where  $\mathbf{K}_y$  is matrix of scaled eignvectors

## **Dimension Reduction for Discrepancy Process**

- ▶ Kernel convolution: Specifying n-dimensional discrepancy process  $\delta$  using  $J_d$ -dimensional knot process  $\nu$  ( $J_d < n$ ) and kernel functions
- Kernel basis matrix K<sub>d</sub> links grid locations s<sub>1</sub>,..., s<sub>n</sub> to knot locations a<sub>1</sub>,..., a<sub>J<sub>d</sub></sub>;

$$\{\mathbf{K}_d\}_{ij} = \exp\left(-\frac{\|\mathbf{s}_i - \mathbf{a}_j\|}{\phi_d}\right)$$

with  $\phi_d > 0$ . Fix  $\phi_d$  at large value determined by expert judgment

Results in better identifiability: Overly flexible discrepancy process may be confounded with emulator

#### Calibration in Reduced Dimensions

Probability model for dimension-reduced observation Z<sup>R</sup>:

$$\begin{split} \mathbf{Z} &= \underbrace{\mathbf{K}_{y} \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^{R})}_{\text{emulator}} + \underbrace{\mathbf{K}_{d} \boldsymbol{\nu}}_{\text{discrepancy}} + \underbrace{\boldsymbol{\epsilon}}_{\text{observation error}}, \\ \Rightarrow & \mathbf{Z}^{R} = (\mathbf{K}^{T} \mathbf{K})^{-1} \mathbf{K}^{T} \mathbf{Z} = \begin{pmatrix} \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^{R}) \\ \boldsymbol{\nu} \end{pmatrix} + (\mathbf{K}^{T} \mathbf{K})^{-1} \mathbf{K}^{T} \boldsymbol{\epsilon}, \end{split}$$

with combined basis  $[\mathbf{K}_y \ \mathbf{K}_d]$ , knot process  $\nu \sim N(\mathbf{0}, \kappa_d \mathbf{I})$ , and observational error  $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$ .

Infer θ through posterior distribution

$$\pi(\boldsymbol{\theta}, \kappa_{d}, \sigma^{2} | \mathbf{Z}^{R}, \mathbf{Y}^{R}) \propto \underbrace{L(\mathbf{Z}^{R} | \mathbf{Y}^{R}, \boldsymbol{\theta}, \kappa_{d}, \sigma^{2})}_{\text{likelihood given by above}} \underbrace{p(\boldsymbol{\theta}) p(\kappa_{d}) p(\sigma^{2})}_{\text{priors}}$$