Tree Based Methods

Greg Strabel

July 1, 2020

1 Preliminaries

Definition: A directed graph, G, is a tuple (V, A), consisting of a set V, called vertices, and a set $A \subseteq \{(v, w) | v, w \in V, v \neq w\}$, called arrows, consisting of order pairs of distinct elements of V.

Definition: Given a directed graph G = (V, A), a directed path from v to w is a tuple of distinct arrows $\{(v_i, w_i)\}_{i=1}^P \in A$ such that $v_1 = v$, $w_P = w$ and $\forall i < P$, $w_i = v_{i+1}$

Definition: A binary tree is a directed graph G = (V, A) such that:

- 1. There is a unique $r \in V$, called *root*, such that $\forall v \in V : (v, r) \notin A$.
- 2. For each vertex $v \in V$, there is a unique directed path from root to v.
- 3. For each vertex $v \in V, \ |\{w \in V : (v, w) \in A\}| \in \{0, 2\}.$

If $(v, w) \in A$, then we say that v is a parent of w and w is a child of v. If $v \in V$ has children, we call it an internal vertex or internal node. If $v \in V$ does not have any children, we call it a leaf.

Given a binary tree $G_0 = (V_0, A_0)$ and a leaf $l \in V$, we can construct another binary tree that is an extension of G_0 , by adding two new vertices v and w as children of l:

$$G_1 := (V_1, A_1) := (V_0 \cup \{v, w\}, A \cup \{(l, v), (l, w)\})$$
 (1)

Starting with a tree consisting of just a root, $G_0 = (\{r\}, \emptyset)$, we can apply the extension procedure above recursively to build arbitrarily large binary trees.

2 Basics of Recursive Binary Partitions

Assume that we have a dataset $\mathbb{D} := \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^N$ where \mathbf{x}_i is a *n*-tuple, $\mathbf{x}_i = (x_{i1}, ..., x_{in}) \in \mathbf{X} = X_1 \times ... \times X_n$, and $\mathbf{y}_i \in \mathbf{Y}$. Given a loss function L, we desire to find a function

 $f: \mathbf{X} \to \mathbf{Y}$ of the form

$$f(\mathbf{x}) := \sum_{j \in J} c_j \mathbf{1} \{ \mathbf{x} \in R_j \}$$
 (2)

where $\{R_j\}_{j=1}^J$ is a partition of **X** that approximately minimizes $\sum_{i=1}^N L(\mathbf{y}_i, f(\mathbf{x}_i))$ This approach is generally computationally infeasible. Instead, we search for a partition of **X** in a recursive, greedy manner.

Let

$$\mathbb{D}_R := \{ (\mathbf{x}_i, \mathbf{y}_i) \in \mathbb{D} : \mathbf{x}_i \in R \}, \tag{3}$$

$$\mathfrak{D} := \{ (R, \mathbb{D}_R) : R \subseteq \mathbf{X} \} \tag{4}$$

and, for $\mathbf{D} = (R, \mathbb{D}_R) \in \mathfrak{D}$,

$$2^{\mathbf{D}} := \{ ((R_l, \mathbb{D}_{R_l}), (R_r, \mathbb{D}_{R_r})) \in \mathfrak{D}^2 : R_r \subseteq R, \ R_l = R \setminus R_r \}$$
 (5)

For $\mathbf{D} = (R, \mathbb{D}_R) \in \mathfrak{D}$ the loss improvement from the refined binary partition $(\mathbf{D}_l, \mathbf{D}_r) = ((R_l, \mathbb{D}_{R_l}), (R_r, \mathbb{D}_{R_r})) \in 2^{\mathbf{D}}$ is

$$\operatorname{lossImp}\left(\mathbf{D}, \mathbf{D}_{l}, \mathbf{D}_{r}\right) = \min_{c} \sum_{\left(\mathbf{x}_{i}, \mathbf{y}_{i}\right) \in \mathbb{D}_{R}} L\left(\mathbf{y}_{i}, c\right) - \min_{c_{l}, c_{r}} \left[\sum_{\mathbb{D}_{R_{l}}} L\left(\mathbf{y}_{i}, c_{l}\right) + \sum_{\mathbb{D}_{R_{r}}} L\left(\mathbf{y}_{i}, c_{r}\right) \right]$$
(6)

We require an algorithm which, for each $\mathbf{D} \in \mathfrak{D}$, searches over a representative subset of $2^{\mathbf{D}}$ for a binary partition of \mathbf{D} that approximately maximizes lossImp. One such algorithm is the Basic Binary Split of Algorithm(1) on the following page. Starting with $\mathbf{D} = (\mathbf{X}, \mathbb{D})$, we apply the Basic Binary Split recursively to each leaf until some stopping criteria is reached. Common stopping criteria include a minimum number of observations in a leaf or a minimum loss improvement from splitting.

Unfortunately, the Basic Binary Split quickly becomes computationally infeasible when datasets contain categorical variables with even a small number of distinct values. For a categorical variable with K levels, there are $2^{K-1} - 1$ distinct partitions to consider when splitting. For instance, if K = 30, there are over 500 million possible partitions. We explore several alternative methods for splitting on categorical variables in the next section.

3 Splitting on a Categorical Variable

3.1 All possible partitions

3.2 Binary Target Variable

When **Y** is binary, there is a shortcut for finding the best partition of a leaf $(R, \mathbb{D}_R) \in \mathfrak{D}$ on a categorical variable X_j . Without loss of generality, assume $\mathbf{Y} = \{0, 1\}$ and for each

Algorithm 1: Basic Binary Split

```
Input: Subset \mathbf{D} = (R, \mathbb{D}_R) \in \mathfrak{D}, loss function L
      Output: Partition (\mathbf{D}_l, \mathbf{D}_r) \in 2^{\mathbf{D}}
 1 for j \in \{1, ..., n\} do
            if X_i is categorical then
                  S = \mathbf{enum}\left(\{(\mathbf{D}_l, \mathbf{D}_r) \in 2^{\mathbf{D}} : (\exists A \subset X_j : R_l = A \cap R)\}\right)
 3
            else if X_i is ordinal then
 4
                  V \leftarrow \mathbf{cutpoints}\left(\{\mathbf{x}_{ij}\}\right)
                                                                    // e.g. midpoints of adjacent order
  5
                S = \mathbf{enum}\left(\{(\mathbf{D}_l, \mathbf{D}_r) \in 2^\mathbf{D} : R_l = R \cap \{x \leq d : d \in V\}\}\right)
 6
            v = \overrightarrow{0} \in \mathbb{R}^{|S|}
 7
            for t \in \{1, ..., |S|\} do
                  (\mathbf{D}_r, \mathbf{D}_l) = S(t)
              v_t = \text{lossImp}(\mathbf{D}, \mathbf{D}_l, \mathbf{D}_r)
10
            b_j = \operatorname{argmax}_{t \in \{1, \dots, |S|\}} v_t
           \mathbf{D}^{(j)} = S\left(b_i\right)
13 j^* = \operatorname{argmax}_{j \in \{1, \dots, n\}} \{b_j\}
14 return \mathbf{D}^{(j^*)}
```

 $A \subseteq X_j$ define

$$N_A = \sum_{(\mathbf{x}_i, y_i) \in \mathbb{D}_R} \mathbf{1}\{\mathbf{x}_{ij} \in A\}$$
 (7)

and

$$\overline{y}_A = \frac{1}{N_A} \sum_{(\mathbf{x}_i, y_i) \in \mathbb{D}_R} y_i \mathbf{1} \{ \mathbf{x}_{ij} \in A \}$$
(8)

Then the optimal partition (R_l, R_r) of R is of the form $R_l = R \cap A$ and $R_r = R \cap B$ where $A = \{z \in X_j : \overline{y}_{\{z\}} < p\}$ for some $p \in (0,1)$, $B = X_j \setminus A$ and the corresponding predictions for R_l and R_r are p_A and p_B where $p_A < p_B$. To see why this is the case, suppose the optimal partition of R on X_j is (R_l, R_r) where $R_l = R \cap A$ for some $A \subset X_j$, $B = X_j \setminus A$ and $p_A < p_B$. Suppose that $\alpha \in A$ and $\beta \in B$. Since the partition is optimal

$$\overline{y}_{\{\alpha\}}L(1,p_A) + \left(1 - \overline{y}_{\{\alpha\}}\right)L(0,p_A) < \overline{y}_{\{\alpha\}}L(1,p_B) + \left(1 - \overline{y}_{\{\alpha\}}\right)L(0,p_B)$$

$$(9)$$

and

$$\overline{y}_{\{\beta\}}L(1,p_B) + \left(1 - \overline{y}_{\{\beta\}}\right)L(0,p_B) < \overline{y}_{\{\beta\}}L(1,p_A) + \left(1 - \overline{y}_{\{\beta\}}\right)L(0,p_A)$$
 (10)

Rearranging and combining these equations and using the assumptions that L(1, p) is decreasing in p and L(0, p) is increasing in p, we have

$$\overline{y}_{\{\alpha\}} \left[L(1, p_A) - L(1, p_B) \right] < \left(1 - \overline{y}_{\{\alpha\}} \right) \left[L(0, p_B) - L(0, p_A) \right]
< \left(1 - \overline{y}_{\{\beta\}} \right) \left[L(0, p_B) - L(0, p_A) \right]
< \overline{y}_{\{\beta\}} \left[L(1, p_A) - L(1, p_B) \right]$$
(11)

which implies that $\overline{y}_{\{\alpha\}} < \overline{y}_{\{\beta\}}$. The result follows immediately from the fact that α and β were arbitrary elements of A and B, respectively.

Therefore, finding the optimal split of a categorical variable X_j in a binary classification problem reduces to a problem of order $O(|X_j|)$.

3.3 Numeric Target Variable and Squared Loss

When **Y** is numeric and $L(y, f) = (f - y)^2$, there is a shortcut for finding the best partition of a leaf $(R, \mathbb{D}_R) \in \mathfrak{D}$ on a categorical variable X_j analogous to that for a binary response. For each $A \subseteq X_j$ define

$$N_A = \sum_{(\mathbf{x}_i, y_i) \in \mathbb{D}_R} \mathbf{1} \{ \mathbf{x}_{ij} \in A \}$$
 (12)

and

$$\overline{y}_A = \frac{1}{N_A} \sum_{(\mathbf{x}_i, y_i) \in \mathbb{D}_R} y_i \mathbf{1} \{ \mathbf{x}_{ij} \in A \}$$
(13)

Then the optimal partition (R_l, R_r) of R is of the form $R_l = R \cap A$ and $R_r = R \setminus A$ where $A = \{z \in X_j : \overline{y}_{\{z\}} < p\}$ for some $p \in \mathbb{R}$ and the corresponding predictions for R_l and R_r are \overline{y}_A and $\overline{y}_{X_j \setminus A}$. To see why this is the case, suppose the optimal partition of R on X_j is (R_l, R_r) where $R_l = R \cap A$ for some $A \subset X_j$, $B = X_j \setminus A$ and $\overline{y}_A < \overline{y}_B$. Since the slit is optimal and we are using squared error loss, the predictions on R_l and R_r are \overline{y}_A and \overline{y}_B , respectively. Suppose that $\alpha \in A$ and $\beta \in B$. Optimality implies that

$$\sum_{(\mathbf{x}_{i},y_{i})\in\mathbb{D}_{R}:\mathbf{x}_{ij}=\alpha}\left[\left(y_{i}-\overline{y}_{\{\alpha\}}\right)^{2}+\left(\overline{y}_{\{\alpha\}}-\overline{y}_{A}\right)^{2}\right]=\sum_{(\mathbf{x}_{i},y_{i})\in\mathbb{D}_{R}:\mathbf{x}_{ij}=\alpha}\left(y_{i}-\overline{y}_{A}\right)^{2}$$

$$<\sum_{(\mathbf{x}_{i},y_{i})\in\mathbb{D}_{R}:\mathbf{x}_{ij}=\alpha}\left(y_{i}-\overline{y}_{B}\right)$$

$$=\sum_{(\mathbf{x}_{i},y_{i})\in\mathbb{D}_{R}:\mathbf{x}_{ij}=\alpha}\left[\left(y_{i}-\overline{y}_{\{\alpha\}}\right)^{2}+\left(\overline{y}_{\{\alpha\}}-\overline{y}_{B}\right)^{2}\right]$$

$$(14)$$

It follows that

$$\left(\overline{y}_{\{\alpha\}} - \overline{y}_A\right)^2 < \left(\overline{y}_{\{\alpha\}} - \overline{y}_B\right)^2 \tag{15}$$

A similar argument shows that

$$\left(\overline{y}_{\{\beta\}} - \overline{y}_B\right)^2 < \left(\overline{y}_{\{\beta\}} - \overline{y}_A\right)^2 \tag{16}$$

It follows that

$$\overline{y}_{\{\alpha\}} < \frac{1}{2} \left(\overline{y}_A + \overline{y}_B \right) < \overline{y}_{\{\beta\}} \tag{17}$$

establishing the desired results. Hence, finding the optimal split of a categorical variable X in a regression problem with squared error loss reduces to a problem of order O(|X|).

3.4 Numeric Response and Quadratic Taylor Approximation to the Loss Function

3.5 Start Right, Pull Left

Versions of this algorithm appeared in Buntine and Caruana (1991) and Mehta et al. (1996)

```
Algorithm 2: Start Right, Pull Left
```

3.6 Principal Component Scoring

Principal Component Scoring is a heuristic method for splitting categorical variables when the target is a C-class categorical variable. The method was developed by Coppersmith,

Hong and Hosking (Partitioning Nominal Attributes in Decision Trees). Suppose |X| = K. For ease of notation, enumerate both the K levels of X and the C levels of Y. Define the $K \times C$ matrix \mathbf{N} by $\mathbf{N}_{k,c} = \sum_i \mathbf{1}\{x_i = k, y_i = c\}$. For $k \in \{1, ..., K\}$, let $N_k = \sum_c \mathbf{N}_{k,c}$. Define the $K \times C$ matrix \mathbf{P} by $\mathbf{P}_{k,c} = \mathbf{N}_{k,c}/N_k$. Let the vector of mean class probabilities be

$$\overline{\mathbf{p}} = \frac{1}{N} \sum_{k} \mathbf{N}_{k}.$$

Let

$$\Sigma = \frac{1}{N-1} \sum_{k} \mathbf{N}_{k \cdot} \left(\mathbf{P}_{k \cdot} - \overline{\mathbf{p}} \right) \left(\mathbf{P}_{k \cdot} - \overline{\mathbf{p}} \right)^{T}$$

Let **v** be the first principal component of Σ . The principal component score of \mathbf{P}_k is

$$S_k = \mathbf{v} \cdot \mathbf{P}_k$$
.

If $\{S_{(k)}\}$ are the order statistics for $\{S_k\}$ then we consider all partitions of the form

$$A_j = \{k : S_k < S_{(j)}\}, \quad B_j = X \setminus A_j$$
(18)

Coppersmith et al. recommend also considering partitions of the form

$$A_j = \{k : S_k < S_{(j)} \text{ or } S_k = S_{(j+1)}\}, \quad B_j = X \setminus A_j$$
 (19)

Experiments in Coppersmith et al. suggests that this heuristic performs comparatively well

3.7 Work

We require a Partition Refinement Algorithm (PRA):

$$C: \mathbf{D} \in \mathfrak{D} \mapsto C(\mathbf{D}) \in 2^R$$
 (20)

which specifies a two-partition refinement of any $\mathbf{D} \in \mathfrak{D}$. An obvious PRA is the Basic Binary Split