Подготовка: Дифференциальные уравнения

Полная версия с разборами тем и ссылками

11 сентября 2025 г.

Содержание

1	Линейные разностные уравнения с постоянными коэффициентами (ЛОС)	2
2	Синтез разностного уравнения по заданным решениям	4
3	Нелинейные 2D-системы: равновесия, линеаризация, классификация	5
4	Линейные ОДУ 2-го порядка: нормальная форма, вронскиан, короткие доказа- тельства	7
5	ПЧП 1-го порядка (задача Коши по кривой)	9
6	Глава М6. Системы разностных: диагонализуемые матрицы, Phi t равно ${\bf A}$ в степени ${\bf t}$, вариация постоянных	10
7	Нелинейные 2D-системы: линеаризация, классификация по tr, det, D	11
8	Вращающиеся системы и полярные координаты: $(x,y) \to (r,\theta), \dot{r}, \dot{\theta},$ классификация	13
9	Линейные ОДУ 2-го порядка: вронскиан, Абель, детектор линейности	15
10	Негиперболические равновесия: полярные координаты и инвариантные лучи	17
11	Периодические коэффициенты, сдвиг, монодромия, Флоке	19
f 12	Механические системы и устойчивость потенциала	20

1 Линейные разностные уравнения с постоянными коэффициентами (ЛОС)

1. Тип экзаменационной задачи (полное условие)

Найдите общее решение:

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9,$$

где $t \in \mathbb{Z}$, $(y_t)_{t \in \mathbb{Z}} \subset \mathbb{R}$ (или \mathbb{C}).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано ЛОС порядка $n \in \mathbb{N}$:

$$a_n y_{t+n} + a_{n-1} y_{t+n-1} + \dots + a_1 y_{t+1} + a_0 y_t = f(t),$$

где $a_n \neq 0$, $a_k \in \mathbb{R}$ (или \mathbb{C}), $t \in \mathbb{Z}$. Вводим: $\chi(r) := r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$ — характеристический многочлен (после нормировки $a_n = 1$); $k_{\chi}(\lambda) \in \mathbb{N}$ — кратность корня λ в χ ; $P_d(t) \in \mathbb{R}[t]$ — произвольный полином степени $\leq d$; $Q_{\lambda,\theta}(r) := r^2 - 2\lambda \cos \theta \, r + \lambda^2$.

Шаг 0. Привести уравнение к канонической форме.

Разделить на a_n (если $a_n \neq 1$) и написать

$$y_{t+n} + b_{n-1}y_{t+n-1} + \dots + b_1y_{t+1} + b_0y_t = f(t).$$

Шаг 1. Построить $\chi(r)$ и зафиксировать кратности корней.

Выписать $\chi(r) = r^n + b_{n-1}r^{n-1} + \dots + b_1r + b_0$, найти все λ_j и $k_{\chi}(\lambda_j)$.

Шаг 2. Записать общее решение однородной части $y_t^{(h)}$.

Для каждого корня λ кратности $s=k_{\chi}(\lambda)$ включить базис

$$t^0\lambda^t$$
, $t^1\lambda^t$, ..., $t^{s-1}\lambda^t$;

для пары $\lambda = \rho e^{i\theta}$, $\bar{\lambda} = \rho e^{-i\theta}$ — реальный базис $\rho^t \cos(\theta t)$, $\rho^t \sin(\theta t)$.

Таблица соответствий (множитель \Rightarrow вклад в $y^{(h)}$):

Множитель	Вклад в y(h)
$(r-\lambda)^s$	$P_{s-1}(t)\lambda^t$
$(r^2 - 2\rho\cos\thetar + \rho^2)^s$	$P_{s-1}(t)\rho^t\cos(\theta t), P_{s-1}(t)\rho^t\sin(\theta t)$

Шаг 3. Выбрать пробную форму $y_t^{(p)}$ по атомам f(t) и признакам резонанса через χ . Разложить f(t) на атомы и применить правила из таблицы:

Атом	Резонанс?	Вклад в у(р)
λ^t	$k_{\chi}(\lambda) = 0$?	$A \lambda^t$
$P_d(t)$	$k_{\chi}(1) = 0?$	$c_0 + c_1 t + \dots + c_d t^d$
$\lambda^t P_d(t)$	$k_{\chi}(\lambda) = 0?$	$\lambda^t(c_0+c_1t+\cdots+c_dt^d)$
$\lambda^t \cos(\theta t)$	$Q_{\lambda,\theta} \mid \chi$?	$\lambda^t (A\cos(\theta t) + B\sin(\theta t))$
$\lambda^t \sin(\theta t)$		
При резонансе:	любая форма	умножить на t^s

Шаг 4. Определить коэффициенты пробной формы.

Подставить $y^{(p)}$ в уравнение, сгруппировать по независимым типам (λ^t , t^k , $\lambda^t \cos / \sin$) и решить линейную систему на коэффициенты.

Шаг 5. Собрать общий ответ и учесть начальные условия (при наличии).

Записать $y_t = y_t^{(h)} + y_t^{(p)}$. При наличии y_0, \dots, y_{n-1} подставить соответствующие t и решить систему для констант при $y^{(h)}$.

3. Сопроводительные материалы (таблицы и обозначения)

Атом \rightarrow пробная форма (до резонанса):

$$\lambda^t \mapsto A \lambda^t, \qquad P_d(t) \mapsto c_0 + c_1 t + \dots + c_d t^d, \qquad \lambda^t P_d(t) \mapsto \lambda^t (c_0 + c_1 t + \dots + c_d t^d),$$

$$\lambda^t \cos(\theta t), \ \lambda^t \sin(\theta t) \mapsto \lambda^t (A \cos(\theta t) + B \sin(\theta t)).$$

Правило резонанса (через χ): $s = k_{\chi}(1)$ для $P_d(t)$; $s = k_{\chi}(\lambda)$ для $\lambda^t P_d(t)$; если $Q_{\lambda,\theta} \mid \chi$, умножить триг-форму на t^s .

4. Применение алгоритма к объявленной задаче

$$y_{t+3} - y_{t+2} + 4y_{t+1} - 4y_t = 26 \cdot 3^t + 10t + 9.$$

Шаг 0. Канонический вид зафиксирован.

Уравнение уже записано как $y_{t+3} + (-1)y_{t+2} + 4y_{t+1} + (-4)y_t = f(t)$, нормировка не требуется.

Шаг 1. Построить $\chi(r)$ и кратности корней.

$$\chi(r) = r^3 - r^2 + 4r - 4 = (r-1)(r^2+4)$$
; корни 1, $\pm 2i$, все кратности равны 1: $k_{\chi}(1) = 1$, $k_{\chi}(\pm 2i) = 1$.

Шаг 2. Записать $y_t^{(h)}$ по найденному спектру.

$$y_t^{(h)} = C_1 \cdot 1^t + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right).$$

Шаг 3. Выбрать $y_t^{(p)}$ по атомам RHS и признакам резонанса на χ . $f(t) = 26 \cdot 3^t + P_1(t)$, где $P_1(t) = 10t + 9$.

- Для 3^t : $k_{\gamma}(3) = 0$ (3 не корень) $\Rightarrow A \cdot 3^t$
- Для $P_1(t)$: $k_\chi(1)=1$ (1- корень кратности $1)\Rightarrow t(\tilde{a}t+\tilde{b})=\tilde{a}t^2+\tilde{b}t$

Итого

$$y_t^{(p)} = A \cdot 3^t + a t^2 + b t.$$

Шаг 4. Найти коэффициенты пробной формы, учитывая разложение по типам. Подстановка даёт

$$L[y^{(p)}] = 26A \cdot 3^t + 10at + (9a + 5b) \stackrel{!}{=} 26 \cdot 3^t + 10t + 9 \Rightarrow A = 1, \ a = 1, \ b = 0.$$

Следовательно, $y_t^{(p)} = 3^t + t^2$.

Шаг 5. Собрать общий ответ и отметить, как добавляются начальные условия.

$$y_t = C_1 + 2^t \left(C_2 \cos \frac{\pi t}{2} + C_3 \sin \frac{\pi t}{2} \right) + 3^t + t^2$$

При наличии y_0, y_1, y_2 — подставить t = 0, 1, 2 и решить систему для C_1, C_2, C_3 .

2 Синтез разностного уравнения по заданным решениям

1. Тип экзаменационной задачи (полное условие)

Задача. Построить линейное однородное разностное уравнение с постоянными коэффициентами минимально возможного порядка, частными решениями которого являются

$$y_t^{(1)} = 3^t, y_t^{(2)} = 2^t \sin \frac{\pi t}{3}.$$

(Решение здесь не приводится; это контекст для главы.)

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано множество частных решений $\{y_t^{(k)}\}_{k=1}^K$ ЛОС. Требуется построить характеристический полином $p(\lambda)$ минимального порядка N такой, что все $y_t^{(k)}$ являются решениями уравнения $p(L)[y_t]=0$, где L — оператор сдвига $Ly_t=y_{t+1}$.

Вводим: $\alpha \in \mathbb{R}$ — основание экспоненты; $\omega \in \mathbb{R}$ — частота тригонометрических функций; $s \in \mathbb{N}_0$ — степень полинома t^s ; $p(\lambda) \in \mathbb{R}[\lambda]$ — характеристический полином.

Шаг 0. Распознать «атом» каждого данного решения.

Для каждого $y_t^{(k)}$ определить одну из форм: α^t ; $t^s\alpha^t$; $\alpha^t\cos(\omega t)$ или $\alpha^t\sin(\omega t)$; $t^s\alpha^t\cos(\omega t)$ или $t^s\alpha^t\sin(\omega t)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

По таблице соответствий заменить атом на множитель $p(\lambda)$ с учётом кратности (s+1).

Шаг 2. Собрать общий характеристический полином минимального порядка.

Перемножить paзныe множители (комплексные корни берутся парой \Rightarrow реальный квадратичный множитель). Повторы дают максимальную кратность.

Шаг 3. Записать разностное уравнение.

Привести $p(\lambda)$ к виду $\lambda^N + a_{N-1}\lambda^{N-1} + \cdots + a_1\lambda + a_0$ и выписать

$$y_{t+N} + a_{N-1}y_{t+N-1} + \dots + a_1y_{t+1} + a_0y_t = 0.$$

Шаг 4. Проверить минимальность и корректность.

Убедиться, что N равен сумме степеней множителей; проверить зануление $p(\lambda)$ на атомах (для тригонометрических — на $\lambda = \alpha e^{\pm i\omega}$).

3. Сопроводительные материалы (таблицы и обозначения)

Таблица соответствий (атом \Rightarrow множитель \Rightarrow кратность):

Атом	Множитель	Кратность
α^t	$(\lambda - \alpha)$	1
$t^s \alpha^t$	$(\lambda - \alpha)^{s+1}$	s+1
$\alpha^t \cos(\omega t), \alpha^t \sin(\omega t)$	$\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2$	1
$t^s \alpha^t \cos(\omega t), t^s \alpha^t \sin(\omega t)$	$(\lambda^2 - 2\alpha\cos\omega\lambda + \alpha^2)^{s+1}$	s+1

Быстрые значения $\cos \omega$:

$$\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}, \quad \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}, \quad \cos \frac{\pi}{3} = \frac{1}{2}, \quad \cos \frac{\pi}{2} = 0.$$

Правила сборки: (i) Пара $\{\cos, \sin\}$ с одинаковыми α, ω даёт один и тот же квадратичный множитель (не удваивать). (ii) При нескольких степенях t^s берётся максимальная кратность.

4. Применение алгоритма к объявленной задаче

Дано: $y_t^{(1)} = 3^t$, $y_t^{(2)} = 2^t \sin \frac{\pi t}{3}$.

Шаг 0. Распознать «атом» каждого данного решения.

Атомы: $3^t \ (\alpha = 3)$; $2^t \sin(\pi t/3) \ (\alpha = 2, \ \omega = \pi/3)$.

Шаг 1. Получить характеристический множитель(и) для каждого атома.

Множители: $(\lambda - 3)$ и $\lambda^2 - 2 \cdot 2\cos(\pi/3)\lambda + 2^2 = \lambda^2 - 2\lambda + 4$.

Шаг 2. Собрать общий характеристический полином минимального порядка.

Сборка: $p(\lambda) = (\lambda - 3)(\lambda^2 - 2\lambda + 4)$.

Шаг 3. Записать разностное уравнение.

Развёртка: $p(\lambda) = \lambda^3 - 5\lambda^2 + 10\lambda - 12$. Соответствующее ЛОС:

$$y_{t+3} - 5y_{t+2} + 10y_{t+1} - 12y_t = 0$$

Шаг 4. Проверить минимальность и корректность.

Минимальность: порядок N=3; проверка p(3)=0 и $\lambda=2e^{\pm i\pi/3}$ зануляют квадратичный множитель.

3 Нелинейные 2D-системы: равновесия, линеаризация, классификация

1. Тип экзаменационной задачи (полное условие)

Условие. Найдите положения равновесия автономной системы уравнений, определите их характер, и нарисуйте фазовые портреты в окрестности положений равновесия

$$\begin{cases} \dot{x} = 2 - 2\sqrt{1 + x + y}, \\ \dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1. \end{cases}$$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана автономная система $\dot{x} = f(x,y), \, \dot{y} = g(x,y), \, \text{где}$ $f,g \in C^1(\mathbb{R}^2)$. Требуется найти положения равновесия (x_0,y_0) такие, что $f(x_0,y_0) = 0, \, g(x_0,y_0) = 0,$ и классифицировать их характер.

Вводим: J(x,y) — матрица Якоби; ${\rm tr}\,J=f_x+g_y$ — след; ${\rm det}\,J=f_xg_y-f_yg_x$ — определитель; $D={\rm tr}^2-4\,{\rm det}$ — дискриминант; $\lambda_{1.2}$ — собственные значения J.

Шаг 0. Найти положения равновесия.

Решить систему f(x,y) = 0, g(x,y) = 0 и найти все точки (x_0,y_0) такие, что $f(x_0,y_0) = 0$, $g(x_0,y_0) = 0$.

Шаг 1. Составить матрицу Якоби.

Вычислить частные производные и составить

$$J(x,y) = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}.$$

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Для каждой точки (x_0, y_0) вычислить:

$$\operatorname{tr} J(x_0, y_0), \quad \det J(x_0, y_0), \quad D = \operatorname{tr}^2 - 4 \det.$$

Шаг 3. Классифицировать тип точки по детектору.

Применить правила из таблицы классификации по знакам \det , D, tr .

Шаг 4. Определить устойчивость и направления.

По знаку tr и типу точки зафиксировать вход/выход; для седла отметить две сепаратрисы вдоль собственных направлений J.

Шаг 5. Нарисовать фазовый портрет.

Нанести типы точек и стрелки; при необходимости использовать изоклины f=0, g=0 для знаков \dot{x}, \dot{y} .

3. Сопроводительные материалы (таблицы и обозначения)

Таблица классификации равновесий:

Условие	Тип точки	Устойчивость
$\det < 0$	седло	неустойчивая
$\det > 0, \ D > 0, \ \text{tr} < 0$	узел	устойчивый
$\det > 0, \ D > 0, \ \text{tr} > 0$	узел	неустойчивый
$\det > 0, \ D < 0, \ \text{tr} < 0$	фокус	устойчивый
$\det > 0, \ D < 0, \ \text{tr} > 0$	фокус	неустойчивый
$\det > 0, \ D = 0$ или $\det = 0$	негиперболика	см. главу М10

Быстрые производные (частые атомы):

$$\begin{split} f(x,y) &= A - B\sqrt{\Phi(x,y)}: \quad f_x = -\frac{B}{2}\Phi^{-1/2}\Phi_x, \quad f_y = -\frac{B}{2}\Phi^{-1/2}\Phi_y; \\ g(x,y) &= e^{\Psi(x,y)} - 1: \quad g_x = e^{\Psi}\Psi_x, \quad g_y = e^{\Psi}\Psi_y. \end{split}$$

Правила упрощения: Если в равновесии g=0, то $e^{\Psi}=1$ и $g_x=\Psi_x,\,g_y=\Psi_y;$ если 1+x+y=1, то $\sqrt{1+x+y}=1$ и $f_x=f_y=-1.$

4. Применение алгоритма к объявленной задаче

Дано:
$$\dot{x} = 2 - 2\sqrt{1 + x + y}$$
, $\dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1$.

Шаг 0. Найти положения равновесия.

$$f=0 \Rightarrow \sqrt{1+x+y}=1 \Rightarrow x+y=0.$$
 $g=0 \Rightarrow \frac{5}{4}x+2y+y^2=0.$ Подставляя $y=-x$: $x^2-\frac{3}{4}x=0 \Rightarrow x\in\{0,\frac{3}{4}\}.$

Точки равновесия: (0,0) и $(\frac{3}{4}, -\frac{3}{4})$.

Шаг 1. Составить матрицу Якоби.

При x+y=0 и $\Psi=0$ имеем

$$J(x,y) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2+2y \end{pmatrix}.$$

Значит
$$J(0,0) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2 \end{pmatrix}$$
, $J(\frac{3}{4}, -\frac{3}{4}) = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & \frac{1}{2} \end{pmatrix}$.

Шаг 2. Вычислить инварианты в каждой точке равновесия.

$$(0,0)$$
: tr = 1, det = $-\frac{3}{4} < 0$;
 $(\frac{3}{4}, -\frac{3}{4})$: tr = $-\frac{1}{2}$, det = $\frac{3}{4} > 0$, $D = \frac{1}{4} - 3 = -\frac{11}{4} < 0$.

Шаг 3. Классифицировать тип точки по детектору.

$$(0,0): \det <0 \Rightarrow$$
 седло (неустойчивая); $(\frac{3}{4},-\frac{3}{4}): \det >0,\ D<0,\ {\rm tr}<0 \Rightarrow$ фокус устойчивый.

Шаг 4. Определить устойчивость и направления.

В (0,0) — две сепаратрисы по собственным направлениям J; в $(\frac{3}{4},-\frac{3}{4})$ — спиральное вхождение.

Шаг 5. Нарисовать фазовый портрет.

Эскиз: седло в (0,0) с «крестом» сепаратрис; устойчивый фокус в $(\frac{3}{4},-\frac{3}{4})$ со стрелками внутрь. Изоклина x+y=0 помогает ориентировать знаки \dot{x} .

Две точки равновесия: седло
$$(0,0)$$
 и устойчивый фокус $(\frac{3}{4},-\frac{3}{4})$

4 Линейные ОДУ 2-го порядка: нормальная форма, вронскиан, короткие доказательства

1. Тип экзаменационной задачи (полное условие)

Стейтмент. Пусть функции p(x), q(x) непрерывны на \mathbb{R} и q(x) < 0 для всех x. Пусть y(x) — нетривиальное решение

$$y'' + p(x)y'(x) + q(x)y(x) = 0.$$

Покажите, что если решение принимает максимальное значение в некоторой точке, то это значение не может быть больше 0.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано линейное ОДУ 2-го порядка y'' + p(x)y' + q(x)y = 0, где $p, q \in C(\mathbb{R})$. Требуется доказать качественные свойства решений (экстремумы, нули, устойчивость).

Вводим: $\phi(x)$ — интегрирующий множитель; Q(x) — эффективный потенциал; W(x) — вронскиан; z(x) — решение в нормальной форме; x_0 — точка экстремума или нуля.

Шаг 0. Нормализация: увидеть p, q.

Привести уравнение к виду y'' + p(x)y' + q(x)y = 0 и зафиксировать знаки p(x), q(x).

Шаг 1. Нормальная форма: убрать y' при необходимости.

Взять

$$\phi(x) = \exp\left(-\frac{1}{2}\int p(x) dx\right), \quad y = \phi z,$$

тогда

$$z'' + Q(x)z = 0,$$
 $Q(x) = q - \frac{p'}{2} - \frac{p^2}{4}.$

Шаг 2. Вронскиан: независимость/масштаб.

Формула Абеля:

$$W(x) = W(x_0) \exp\left(-\int_{x_0}^x p(t) dt\right).$$

Шаг 3. Локальные/качественные выводы: «максимум/минимум/нули».

- Триггер «экстремум». В точке максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$. Подставить в уравнение.
- Триггер « ≤ 1 нуля». Перейти к z'' + Qz = 0; при $Q \leq 0$:

$$\int_{a}^{b} zz'' dx + \int_{a}^{b} Qz^{2} dx = 0 \Rightarrow -\int_{a}^{b} (z')^{2} dx + \int_{a}^{b} Qz^{2} dx = 0,$$

что невозможно при двух нулях.

Шаг 4. Итог: короткая формулировка.

Выписать использованные ϕ, Q и/или W и сформулировать вывод.

3. Сопроводительные материалы (таблицы и обозначения)

Детектор ветки Шага 3:

Признак в условии	Действие
Есть «максимум/минимум», дан знак q	Θ кстремум-тест: $y'=0$, знак y'' , подстановка в ОДУ
Требуется «не более одного нуля»	Шаг $1 \Rightarrow z'' + Qz = 0$, при $Q \le 0$
	интегральный аргумент
Нужно проверить фундаментальность пары	Абель: $W(x) = W(x_0)e^{-\int p}$

Памятка формул М4:

$$\phi(x) = \exp\left(-\frac{1}{2}\int p\right), \qquad Q = q - \frac{1}{2}p' - \frac{1}{4}p^2, \qquad W(x) = W(x_0)\exp\left(-\int_{x_0}^x p(t) dt\right).$$

Правила экстремума: В точке локального максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$; в точке локального минимума: $y'(x_0) = 0$, $y''(x_0) \ge 0$.

4. Применение алгоритма к объявленной задаче

Дано: y'' + p(x)y' + q(x)y = 0, где q(x) < 0 для всех x, и y(x) — нетривиальное решение с максимумом в точке x_0 .

Шаг 0. Нормализация: увидеть p, q.

Уравнение уже в виде y'' + py' + qy = 0 с q(x) < 0 для всех x.

Шаг 1. Нормальная форма: убрать y' при необходимости.

Переход к z не требуется для данного доказательства.

Шаг 2. Вронскиан: независимость/масштаб.

Вронскиан не нужен для данного доказательства.

Шаг 3. Локальные/качественные выводы: «максимум/минимум/нули».

В точке локального максимума x_0 : $y'(x_0) = 0$, $y''(x_0) \le 0$. Подставляя в уравнение:

$$y''(x_0) = -p(x_0) y'(x_0) - q(x_0) y(x_0) = -q(x_0) y(x_0).$$

При $q(x_0) < 0$ из $y(x_0) > 0$ следовало бы $y''(x_0) > 0$, что противоречит максимуму. Значит $y(x_0) \le 0$.

Шаг 4. Итог: короткая формулировка.

Положительный локальный максимум невозможен при q(x) < 0

5 ПЧП 1-го порядка (задача Коши по кривой)

1. Тип экзаменационной задачи (полное условие)

Даны две задачи Коши для уравнения

$$y z_x - x z_y = 0:$$

а) z = 2y при x = 1; б) z = 2y при x = 1 + y. Искать решение в окрестности (1,0). Проверить условия теоремы существования—единственности.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано квазилинейное ПЧП 1-го порядка $a(x,y)z_x + b(x,y)z_y = 0$, где $a,b \in C^1(\Omega \subset \mathbb{R}^2)$, и начальные данные на кривой $\gamma: s \mapsto (x(s),y(s)): z(\gamma(s)) = \varphi(s)$.

Вводим: $I_1(x,y)$ — первый интеграл (инвариант); $\Delta(s)$ — определитель нехарактеристичности; $\gamma'(s)$ — касательный вектор к кривой; F — произвольная функция.

Шаг 0. Найти характеристики.

Решить систему $\frac{dy}{dx} = \frac{b}{a}$ и найти первый интеграл $I_1(x,y) = C_1$.

Шаг 1. Записать общее решение.

Общее решение имеет вид $z(x,y) = F(I_1(x,y))$, где F — произвольная функция.

Шаг 2. Сшить с начальными данными.

Подставить кривую γ в общее решение: $F(I_1(\gamma(s))) = \varphi(s)$. Если $\Delta \neq 0$, то $s = \sigma(I)$ локально и

$$z(x,y) = \varphi(\sigma(I_1(x,y))).$$

Шаг 3. Проверить нехарактеристичность.

Вычислить $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s)$. Проверить условие $(a,b) \not | \gamma'(s) \Leftrightarrow \Delta \neq 0$.

Шаг 4. Сформулировать итог.

 $\Delta \neq 0 \Rightarrow$ единственность; $\Delta = 0 \Rightarrow$ ветвление или неединственность.

3. Сопроводительные материалы (таблицы и обозначения)

Быстрые инварианты:

\mathbf{K} оэффициенты (a,b)	У равнение $\frac{dy}{dx} = \frac{b}{a}$	Инвариант $I_1(x,y)$
(y, -x)	$-\frac{x}{y}$	$x^2 + y^2$
(x, y)	$\frac{y}{x}$	$\frac{y}{x}$
$(\alpha x, \ \beta y)$	$\frac{\beta y}{\alpha x}$	$rac{y}{x^{eta/lpha}}$
$(\alpha x + \beta y, \ \gamma x + \delta y)$	$\frac{\gamma x + \delta y}{\alpha x + \beta y}$	линейная замена $\Rightarrow \frac{\eta}{\xi^{\lambda_2/\lambda_1}}$

Условие нехарактеристичности: $\Delta(s) = a(\gamma)y'(s) - b(\gamma)x'(s) \neq 0$.

Правила диагностики: В виде g(x,y)=0: $ag_x+bg_y\neq 0$ на γ .

4. Применение алгоритма к объявленной задаче

Дано: $y z_x - x z_y = 0$ с двумя задачами Коши в окрестности (1,0).

Шаг 0. Найти характеристики.

a = y, $b = -x \Rightarrow dy/dx = -x/y \Rightarrow I_1 = x^2 + y^2$.

Шаг 1. Записать общее решение.

Общее решение: $z = F(x^2 + y^2)$.

Шаг 2. Сшить с начальными данными.

(a)
$$x = 1$$
, $z = 2y$:

$$I_1|_{x=1} = 1 + y^2$$
, $\Delta = y \cdot 1 - (-1) \cdot 0 = y$.

В (1,0): $\Delta = 0$ (характеристическая).

Инверсия многозначна: $y = \pm \sqrt{I-1} \Rightarrow$

$$z = 2 \operatorname{sgn}(y) \sqrt{x^2 + y^2 - 1}$$

(неединственность у y = 0).

(6)
$$x = 1 + y$$
, $z = 2y$:

$$I_1|_{x=1+y} = 1 + 2y + 2y^2, \quad \Delta = 2y + 1.$$

В (1,0): $\Delta=1\neq 0$ (нехарактеристическая). $I=1+2s+2s^2\Rightarrow s=\frac{-1+\sqrt{2I-1}}{2} \ (\text{ветвь y } s\approx 0).$

$$z(x,y) = -1 + \sqrt{2(x^2 + y^2) - 1}$$

(единственно в окрестности (1,0)).

Глава M6. Системы разностных: диагонализуемые матрицы, Phi t равно A в степени t, вариация постоянных

1) Тип экзаменационной задачи

Условие.

$$\begin{pmatrix} x_{t+1} \\ y_{t+1} \end{pmatrix} = A \begin{pmatrix} x_t \\ y_t \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \qquad A = \frac{1}{2} \begin{pmatrix} -1 & 3 \\ 3 & -1 \end{pmatrix}.$$

(a) Найти фундаментальную матрицу Φ_t . (б) Полагая $\binom{x_t}{y_t} = \Phi_t\binom{c_1^t}{c_2^t}$, выписать уравнения для c_1^t, c_2^t (не решать).

2) Универсальный алгоритм (формулы)

Ввод. $A \in \mathbb{R}^{n \times n}$, $x_t \in \mathbb{R}^n$, $b_t \in \mathbb{R}^n$. $\Phi_t := A^t$. Спектр: $A = V\Lambda V^{-1}$, $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$.

Шаг 1. Спектр. Найти λ_j и базис $\{v_j\}$: $(A-\lambda_j I)v_j=0$. $\sum_j \dim \ker(A-\lambda_j I)=n \Rightarrow$ диагонализуемо.

Шаг 2. A в степени t.

$$A^t = V\Lambda^t V^{-1}, \quad \Lambda^t = \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t).$$

Если $\lambda = \rho e^{\pm i\theta}$: на \mathbb{R}^2 блок $S = \frac{a-b}{b-a}$, $a+ib = \lambda$,

$$S^{t} = \rho^{t} \begin{pmatrix} \cos(\theta t) & -\sin(\theta t) \\ \sin(\theta t) & \cos(\theta t) \end{pmatrix}.$$

Шаг 3. Phi t и однородная система.

$$x_{t+1} = Ax_t \implies x_t = \Phi_t x_0, \quad \Phi_t = A^t.$$

Шаг 4. Вариация постоянных. Полагаем $x_t = \Phi_t c^t$. Тогда

$$\Phi_{t+1}c^{t+1} = \Phi_{t+1}c^t + b_t \implies \boxed{c^{t+1} - c^t = \Phi_{t+1}^{-1}b_t}$$

Эквивалентно: $x_t = A^t x_0 + \sum_{k=0}^{t-1} A^{t-1-k} b_k$.

Шаг 5. Частные случаи. Если $b_t \equiv b$ и I-A обратима: $x_t = A^t(x_0 - (I-A)^{-1}b) + (I-A)^{-1}b$. Если $\lambda < 0$: $\lambda^t = (-1)^t |\lambda|^t$. Пара $\rho e^{\pm i\theta}$: блок $\rho^t R(\theta t)$.

3) Сопроводительные материалы

Спектр А	Φ ормула для A^t
$\lambda_j \in \mathbb{R}$ простые	$V \operatorname{diag}(\lambda_1^t, \dots, \lambda_n^t) V^{-1}$
$\rho e^{\pm i\theta}$	$W(\rho^t \frac{\cos \theta t - \sin \theta t}{\sin \theta t})W^{-1}$
смешанный	блочно по строкам выше

$$\Phi_t^{-1} = V \operatorname{diag}(\lambda_1^{-t}, \dots, \lambda_n^{-t}) V^{-1}.$$

4) Применение алгоритма к условию

Шаг 1. $\widehat{A} = \frac{-1}{3} \frac{3}{-1} \Rightarrow \sigma(\widehat{A}) = \{2, -4\}, v_1 = (1, 1), v_2 = (1, -1).$ $\sigma(A) = \{1, -2\}$ (диагонализуемо).

Шаг 2.

$$V = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad \Lambda = \operatorname{diag}(1, -2), \quad V^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$\Phi_t = A^t = \frac{1}{2} \begin{pmatrix} 1 + (-2)^t & 1 - (-2)^t \\ 1 - (-2)^t & 1 + (-2)^t \end{pmatrix}.$$

Шаг 3. $x_t = \Phi_t x_0$.

Шаг 4.

$$c^{t+1} - c^t = \Phi_{t+1}^{-1}b, \quad \Phi_{t+1}^{-1} = V \operatorname{diag}(1, (-2)^{-(t+1)})V^{-1}.$$

$$\Phi_{t+1}^{-1}b = \frac{1}{2} \begin{pmatrix} 1 + (-2)^{-(t+1)} & 1 - (-2)^{-(t+1)} \\ 1 - (-2)^{-(t+1)} & 1 + (-2)^{-(t+1)} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} (-\frac{1}{2})^{t+1} \\ -(-\frac{1}{2})^{t+1} \end{pmatrix}.$$

$$c_1^{t+1} - c_1^t = (-\frac{1}{2})^{t+1}, \quad c_2^{t+1} - c_2^t = -(-\frac{1}{2})^{t+1}.$$

Шаг 5. (I-A) необратима (есть $\lambda=1)\Rightarrow$ стационарная формула неприменима; используем вариацию постоянных как выше.

7 Нелинейные 2D-системы: линеаризация, классификация по tr, det, D

1. Тип экзаменационной задачи (полное условие)

Стейтмент. Найдите положения равновесия автономной системы, определите их характер и набросайте фазовые портреты в окрестности равновесий:

$$\begin{cases} \dot{x} = 2 - 2\sqrt{1 + x + y}, \\ \dot{y} = \exp(\frac{5}{4}x + 2y + y^2) - 1. \end{cases}$$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана автономная система $\dot{x} = f(x,y), \, \dot{y} = g(x,y), \, \text{где}$ $f,g \in C^1(\mathbb{R}^2)$. Требуется найти положения равновесия (x_*,y_*) такие, что $f(x_*,y_*)=0,\, g(x_*,y_*)=0,\,$ и классифицировать их характер по линеаризации.

Вводим: J — матрица Якоби; $\operatorname{tr} J = f_x + g_y$ — след; $\det J = f_x g_y - f_y g_x$ — определитель; $D = \operatorname{tr}^2 - 4 \det$ — дискриминант; $\lambda_{1,2}$ — собственные значения J.

Шаг 0. Найти положения равновесия.

Решить систему f(x,y) = 0, g(x,y) = 0 и найти все точки (x_*,y_*) такие, что $f(x_*,y_*) = 0$, $g(x_*,y_*) = 0$.

Шаг 1. Вычислить матрицу Якоби.

Вычислить частные производные и составить

$$J = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \Big|_{(x_*, y_*)}.$$

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Посчитать

$$\operatorname{tr} J = f_x + g_y, \qquad \det J = f_x g_y - f_y g_x, \qquad D = \operatorname{tr}^2 - 4 \det,$$

и применить таблицу классификации.

Шаг 3. Определить стабильность и направления.

- det < 0: седло (неустойчиво).
- $\det > 0, D > 0$: узел; знак tr даёт устойчивость.
- \bullet det > 0, D < 0: фокус; знак tr даёт устойчивость.

Шаг 4. Нарисовать локальный эскиз.

Нанести тип точки и стрелки вход/выход; для седла — сепаратрисы по собственным векторам J.

Примечание. Если $\det J \neq 0$ (гиперболическая точка), линеаризация локально адекватна типу (Хартман–Гробман).

3. Сопроводительные материалы (таблицы и обозначения)

Классификация по \det , tr , D:

Условие	Тип точки	Устойчивость
$\det < 0$	седло	неустойчивая
$\det > 0, \ D > 0, \ \text{tr} < 0$	узел	устойчивый
$\det > 0, \ D > 0, \ \text{tr} > 0$	узел	неустойчивый
$\det > 0, \ D < 0, \ \operatorname{tr} < 0$	фокус	устойчивый
det > 0, D < 0, tr > 0	фокус	неустойчивый

Детектор гиперболичности: $\det J \neq 0 \quad \Rightarrow \quad$ линеаризация достаточна для локального типа.

Правила границ: Границы $\det = 0$ или D = 0 — вне рамок M7 (негиперболика).

4. Применение алгоритма к объявленной задаче

Дано:
$$\dot{x} = 2 - 2\sqrt{1 + x + y}$$
, $\dot{y} = \exp\left(\frac{5}{4}x + 2y + y^2\right) - 1$.

Шаг 0. Найти положения равновесия.

 $f=0\Rightarrow x+y=0.$ $g=0\Rightarrow \frac{5}{4}x+2y+y^2=0.$ Совместно: точки (0,0) и $(\frac{3}{4},-\frac{3}{4}).$

Шаг 1. Вычислить матрицу Якоби.

$$f_x = f_y = -\frac{1}{\sqrt{1+x+y}}, \quad g_x = \frac{5}{4}e^{\Phi}, \quad g_y = (2+2y)e^{\Phi}, \quad \Phi = \frac{5}{4}x + 2y + y^2.$$

В равновесиях $\sqrt{1+x+y} = 1$, $e^{\Phi} = 1$.

Шаг 2. Вычислить инварианты в каждой точке равновесия.

Для
$$(0,0)$$
: $J = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & 2 \end{pmatrix}$, $\operatorname{tr} = 1$, $\det = -\frac{3}{4} < 0$.
Для $(\frac{3}{4}, -\frac{3}{4})$: $J = \begin{pmatrix} -1 & -1 \\ \frac{5}{4} & \frac{1}{2} \end{pmatrix}$, $\operatorname{tr} = -\frac{1}{2}$, $\det = \frac{3}{4} > 0$, $D = \frac{1}{4} - 3 = -\frac{11}{4} < 0$.

Шаг 3. Определить стабильность и направления.

Для (0,0): det $< 0 \Rightarrow$ седло (неустойчивая).

Для $(\frac{3}{4}, -\frac{3}{4})$: det > 0, D < 0, tr $< 0 \Rightarrow$ устойчивый фокус.

Шаг 4. Нарисовать локальный эскиз.

Седло в (0,0): одна устойчивая и одна неустойчивая сепаратриса. Фокус в $(\frac{3}{4},-\frac{3}{4})$: затухающие спирали.

Две точки равновесия: седло (0,0) и устойчивый фокус $(\frac{3}{4},-\frac{3}{4})$

8 Вращающиеся системы и полярные координаты: $(x,y) \to (r,\theta), \, \dot{r}, \dot{\theta},$ классификация

1. Тип экзаменационной задачи (полное условие)

Исследовать фазовый портрет

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

в окрестности (0,0) для всех $a \in \mathbb{R}$. Указание: перейти в полярные координаты. Определить тип начала координат для линеаризованной системы.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана система $\dot{x}=f(x,y),\ \dot{y}=g(x,y)$ в декартовых координатах. Вводим полярные координаты: $x=r\cos\theta,\ y=r\sin\theta,$ где r>0. Вводим функции: $H(x,y):=\frac{xf+yg}{x^2+y^2}$ — радиальная компонента; $A(x,y):=-\frac{xg-yf}{x^2+y^2}$ — угловая компонента. Тогда $\dot{r}=rH,\ \dot{\theta}=A$.

Шаг 0. Перейти к полярным координатам.

Использовать формулы преобразования:

$$\dot{r} = \frac{xf + yg}{r}, \qquad \dot{\theta} = \frac{xg - yf}{r^2}$$

или через введённые функции:

$$\dot{r} = r H, \quad \dot{\theta} = A$$

Шаг 1. Вычислить функции H и A.

Найти
$$H(x,y) = \frac{xf+yg}{x^2+y^2}$$
 и $A(x,y) = -\frac{xg-yf}{x^2+y^2}$.

Шаг 2. Определить порядки малости у r = 0.

Разложить $H(r,\theta) = h_k(\theta) r^k + o(r^k)$ и $A(r,\theta) = a_0 + a_1(\theta) r + \dots$ при $r \to 0$.

Шаг 3. Классифицировать тип равновесия по знаку h_k .

Анализировать $\dot{r} = r H$:

- Если k=0 и $h_0 \neq 0$: $\dot{r} \sim h_0 r$
 - $-h_0 < 0$: устойчивый фокус
 - $-h_0 > 0$: неустойчивый фокус
- Если $k \geq 1$: $\dot{r} \sim h_k(\theta) \, r^{k+1}$ негиперболическое равновесие
 - $-h_k(\theta)>0$: радиальный разлёт
 - $-h_k(\theta) < 0$: радиальное притяжение

Анализировать $\dot{\theta} \sim a_0$: при $a_0 \neq 0$ — равномерное вращение (знак a_0 задаёт направление).

Шаг 4. Проверить линеаризацию.

Вычислить якобиан $J(0,0) = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$. Если $\sigma(J) = \{\pm ia_0\}$ — центр для линейной части, устойчивость определяет H.

Шаг 5. Построить эскиз фазового портрета.

Нарисовать стрелки по знакам $\operatorname{sgn}(\dot{r})$ и $\operatorname{sgn}(\dot{\theta})$. Кривая $\dot{r}=0 \Leftrightarrow H=0$ — радиальные барьеры.

3. Сопроводительные материалы (таблицы и обозначения)

Основные формулы преобразования:

$$xf + yg = r^2H$$
, $xg - yf = -r^2A$.

Классификация по порядку малости Н:

$$H(r,\theta) \sim egin{dcases} h_0 \ (
eq 0) & \Rightarrow \ \dot{r} \sim h_0 r \ \Rightarrow \ \begin{cases} h_0 < 0 \ : \$$
устойчивый фокус, $h_0 > 0 \ : \$ неустойчивый фокус, $h_k(\theta) \ r^k, \ k \geq 1 \ \Rightarrow \ \dot{r} \sim h_k(\theta) \ r^{k+1} \$ (негиперболика)

Специальный случай: Если $f = ay + x \Phi$, $g = -ax + y \Phi$, то

$$\dot{r} = r \Phi, \quad \dot{\theta} = -a$$
.

4. Применение алгоритма к объявленной задаче

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

Шаг 0. Перейти к полярным координатам.

Используем формулы:
$$f(x,y) = ay + x(x^2 + y^2)$$
, $g(x,y) = -ax + y(x^2 + y^2)$.

Шаг 1. Вычислить функции H и A.

$$H = \frac{x(ay + xr^2) + y(-ax + yr^2)}{r^2} = \frac{ar^2 \sin \theta \cos \theta + ar^2 \sin \theta \cos \theta + r^4}{r^2} = r^2$$
$$A = -\frac{x(-ax + yr^2) - y(ay + xr^2)}{r^2} = -\frac{-ar^2 \cos^2 \theta - ar^2 \sin^2 \theta}{r^2} = a$$

Шаг 2. Определить порядки малости у r=0.

 $H = r^2 \Rightarrow k = 2, \ h_2 \equiv 1 > 0; \ A \equiv a.$

Шаг 3. Классифицировать тип равновесия.

 $\dot{r}=r^3>0$ при $r>0\Rightarrow$ радиальный разлёт (негиперболическая неустойчивость). $\dot{\theta}=a\Rightarrow$ равномерное вращение (знак a задаёт направление).

Шаг 4. Проверить линеаризацию.

 $J(0,0) = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$, $\sigma(J) = \{\pm ia\}$ \Rightarrow центр для линейной части $(a \neq 0)$; истинная динамика — разлёт из-за r^3 .

Шаг 5. Построить эскиз фазового портрета.

Эскиз: расходящиеся спирали при $a \neq 0$; при a = 0 — чисто радиальный разлёт $(\dot{r} = r^3, \ \dot{\theta} \equiv 0)$.

При $a \neq 0$: расходящиеся спирали; при a = 0: радиальный разлёт

9 Линейные ОДУ 2-го порядка: вронскиан, Абель, детектор линейности

1. Тип экзаменационной задачи (полное условие)

Дано уравнение

$$(x+2y)y'' - 3y' + y\sqrt{1-x} = 0.$$

Пусть $y_1(x)$ — решение, удовлетворяющее $y_1(0)=0$, $y_1'(0)=1$; $y_2(x)$ — другое решение, удовлетворяющее $y_2(0)=3$, $y_2'(0)=2$. Составляют ли эти решения фундаментальную систему? Обоснуйте. Найдите $W[y_1,y_2](-1)$.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано уравнение F(x,y,y',y'')=0. Вводим линейный канон: $a_2(x)y''+a_1(x)y'+a_0(x)y=0$, где $a_2\neq 0$. Вводим коэффициенты: $p:=\frac{a_1}{a_2},\ q:=\frac{a_0}{a_2}$. Вводим вронскиан: $W[y_1,y_2]=\det\begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix}=y_1y_2'-y_2y_1'$.

Шаг 0. Проверить линейность уравнения.

Проверить: $\exists a_0, a_1, a_2$ (зависят только от x), что $F \equiv a_2 y'' + a_1 y' + a_0 y$. Эквивалентные условия:

$$F_{y''y''} \equiv 0$$
, $\partial_y F_{y''} \equiv 0$, $\partial_{y'} F_{y''} \equiv 0$, $F - y'' F_{y''}$ линеен по (y', y) с коэффициентами от x .

Шаг 1. Привести к каноническому виду (если линейно).

Записать y'' + p(x)y' + q(x)y = 0, где $p = \frac{a_1}{a_2}$, $q = \frac{a_0}{a_2}$.

Шаг 2. Применить формулу Абеля для вронскиана (только линейный случай).

Использовать:

$$W' = -pW$$
, $W(x) = W(x_0) \exp\left(-\int_{x_0}^x p\right)$

Шаг 3. Проверить фундаментальность системы решений (только линейный случай).

Если y_1, y_2 — решения линейного уравнения, то:

$$W(x_0) \neq 0 \Leftrightarrow$$
 решения независимы на интервале

Шаг 4. Обработать нелинейный случай.

Если уравнение нелинейное, то:

- Понятие фундаментальной системы неприменимо
- Формула Абеля неприменима
- Вычислимо лишь $W(x_0) = y_1(x_0)y_2'(x_0) y_2(x_0)y_1'(x_0)$ локально

Шаг 5. Вычислить вронскиан в заданной точке.

Использовать начальные данные: если $y_1(x_0) = \alpha_1$, $y'_1(x_0) = \beta_1$, $y_2(x_0) = \alpha_2$, $y'_2(x_0) = \beta_2$, то

$$W(x_0) = \alpha_1 \beta_2 - \alpha_2 \beta_1$$

3. Сопроводительные материалы (таблицы и обозначения)

Детектор линейности/нелинейности:

Признак	Вывод
$F_{y''y''} \not\equiv 0$	нелинейное
$\partial_y F_{y''} eq 0$ или $\partial_{y'} F_{y''} eq 0$	нелинейное
$\partial_{(y')^2} (F - y'' F_{y''}) \neq 0$ или $\partial_{y^2} (F - y'' F_{y''}) \neq 0$	нелинейное
или $\partial_{y,y'}(F-y''F_{y''}) \neq 0$	нелинейное

Формула Абеля (линейный канон):

$$W' = -pW,$$
 $W(x) = W(x_0) \exp(-\int_{x_0}^x p),$ $p = \frac{a_1}{a_2}$

Вычисление вронскиана по начальным данным: Если $y_1(x_0)=\alpha_1,\,y_1'(x_0)=\beta_1,\,y_2(x_0)=\alpha_2,\,y_2'(x_0)=\beta_2,\,$ то

$$W(x_0) = \alpha_1 \beta_2 - \alpha_2 \beta_1$$

4. Применение алгоритма к объявленной задаче

$$(x+2y)y'' - 3y' + y\sqrt{1-x} = 0$$

Шаг 0. Проверить линейность уравнения.

$$F = (x+2y)y'' - 3y' + y\sqrt{1-x}, F_{y''} = x+2y, \partial_y F_{y''} = 2 \neq 0.$$

нелинейное

Шаг 1. Привести к каноническому виду.

Невозможно получить $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$.

Шаг 2. Применить формулу Абеля.

неприменимо для нелинейного уравнения

Шаг 3. Проверить фундаментальность системы решений.

некорректно для нелинейного уравнения

Шаг 4. Обработать нелинейный случай.

Понятие фундаментальной системы неприменимо; формула Абеля неприменима.

Шаг 5. Вычислить вронскиан в заданной точке.

При x = 0: $W(0) = \det\begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix} = -3$. Требуемое W(-1) без линейности не выводится из данных: W(-1) не определяется без явного решения.

10 Негиперболические равновесия: полярные координаты и инвариантные лучи

1. Тип экзаменационной задачи (полное условие)

Исследуйте фазовый портрет (определите тип траекторий) нелинейной системы

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

в окрестности начала координат для всех значений параметра $a.\ Указание.$ Переход к полярным координатам.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана система $\dot{x}=f(x,y),\ \dot{y}=g(x,y).$ Вводим якобиан: $J(0,0)=\begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix}$ в точке (0,0). Вводим собственные значения: $\lambda_{1,2}$ — корни характеристического уравнения $\det(J-\lambda I)=0.$ Вводим полярные координаты: $x=r\cos\theta,\ y=r\sin\theta,$ где r>0. Вводим функции: Rad =xf+yg — радиальная компонента; $\tan x = xg - yf$ — тангенциальная компонента.

Шаг 0. Диагностировать негиперболичность.

Вычислить J(0,0) и $\lambda_{1,2}$. Если $\Re \lambda = 0$ или $\det J = 0$ — негиперболическое равновесие \Rightarrow переходить к полярным координатам.

Шаг 1. Проверить представимость в виде «вращение+радиал».

Проверить, можно ли представить систему как:

$$(f,g) = \Omega(r^2) \, J\!\binom{x}{y} + R(r^2)\!\binom{x}{y}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ r^2 = x^2 + y^2$$

Шаг 2. Перейти к полярным координатам.

Использовать формулы:

$$\dot{r} = \frac{xf + yg}{r} = \frac{\text{Rad}}{r}, \qquad \dot{\theta} = \frac{xg - yf}{r^2} = \frac{\text{Tan}}{r^2}$$

Получить $\dot{r} = R(r), \, \dot{\theta} = \Omega(r).$

Шаг 3. Определить порядки малости у r = 0.

Разложить: $\dot{r} = \alpha r^k + o(r^k)$ $(k \ge 2)$, $\dot{\theta} = \beta + \gamma r^\ell + o(r^\ell)$.

Шаг 4. Классифицировать тип равновесия по знакам α и β .

- $\beta \neq 0$, $\alpha > 0$ неустойчивый спиральный источник
- $\beta \neq 0$, $\alpha < 0$ устойчивый спиральный сток
- $\beta=0,\ \alpha>0$ радиальный источник (инвариантные лучи $\theta=\mathrm{const}$)
- $\beta = 0, \ \alpha < 0$ радиальный сток

Шаг 5. Построить эскиз фазового портрета.

Указать знак вращения по β и монотонность r(t) по знаку α ; отметить инвариантные кривые при $\beta = 0$.

3. Сопроводительные материалы (таблицы и обозначения)

Быстрый полярный тест:

$$Rad = xf + yg$$
, $Tan = xg - yf$

Если Rad =
$$r^2 \cdot \tilde{R}(r^2)$$
 и Tan = $r^2 \cdot \tilde{\Omega}(r^2)$, то $\dot{r} = \tilde{R}(r)$, $\dot{\theta} = \tilde{\Omega}(r)$.

Таблица локальной классификации:

Случай	\dot{r}	$\dot{\theta}$	\mathbf{T} ип у $r=0$
Спиральный источник	$\alpha r^k, \ \alpha > 0$	$\beta \neq 0$	неустойчивый спираль
Спиральный сток	$\alpha r^k, \ \alpha < 0$	$\beta \neq 0$	устойчивый спираль
Радиальный источник	$\alpha r^k, \ \alpha > 0$	$\beta = 0$	лучи инвариантны, исход
Радиальный сток	$\alpha r^k, \ \alpha < 0$	$\beta = 0$	лучи инвариантны, вход

Формулы преобразования в полярные координаты:

$$\dot{r} = \frac{xf + yg}{r}$$

$$\dot{r} = rac{xf + yg}{r}$$
, $\dot{ heta} = rac{xg - yf}{r^2}$

4. Применение алгоритма к объявленной задаче

$$\begin{cases} \dot{x} = a y + x(x^2 + y^2), \\ \dot{y} = -a x + y(x^2 + y^2), \end{cases}$$

Шаг 0. Диагностировать негиперболичность.

$$J(0,0) = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \Rightarrow \lambda_{1,2} = \pm ia$$
 — негиперболическое равновесие.

Шаг 1. Проверить представимость в виде «вращение+радиал».

$$(f,g)=a\,Jinom{x}{y}+r^2inom{x}{y}$$
 — система имеет вид «вращение+радиал».

Шаг 2. Перейти к полярным координатам.

$$\dot{r} = \frac{x(ay + xr^2) + y(-ax + yr^2)}{r} = \frac{r^4}{r} = r^3$$

$$\dot{\theta} = \frac{x(-ax + yr^2) - y(ay + xr^2)}{r^2} = \frac{-ar^2}{r^2} = -a$$

Шаг 3. Определить порядки малости у r = 0. $\alpha = 1 > 0, \ k = 3; \ \beta = -a.$

- Если a = 0: $\beta = 0$, $\alpha = 1 > 0$ радиальный источник ($\theta = \text{const}$ инвариантно, r растёт)

Шаг 5. Построить эскиз фазового портрета.

При $a \neq 0$: из нуля выходят спирали, r(t) монотонно растёт. При a = 0: исход по лучам $\theta = \text{const.}$

При $a \neq 0$: неустойчивый спиральный источник; при a = 0: радиальный источник

11 Периодические коэффициенты, сдвиг, монодромия, Флоке

1. Тип экзаменационной задачи (полное условие)

Пусть $q \in C(\mathbb{R})$ периодична с периодом 1. Пусть $y \not\equiv 0$ — решение

$$y''(x) + q(x)y(x) = 0,$$
 $y(0) = 0,$ $y(1) = 0.$

Доказать: $\exists C \in \mathbb{R} : \boxed{y(x+1) = C y(x) \ \forall x}$

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано уравнение y''(x) + q(x)y(x) = 0, где q(x+T) = q(x) с периодом T > 0. Вводим векторную форму: $X = \begin{pmatrix} y \\ y' \end{pmatrix}$, X' = A(x)X, где $A(x) = \begin{pmatrix} 0 & 1 \\ -q(x) & 0 \end{pmatrix}$. Вводим фундаментальную матрицу: Y'(x) = A(x)Y(x), Y(0) = I. Вводим монодромию: M := Y(T). По формуле Абеля: det M = 1.

Шаг 0. Проверить периодичность коэффициентов.

Убедиться, что q(x+T) = q(x) для некоторого T > 0.

Шаг 1. Применить сдвиг к решению.

Определить $y_T(x) := y(x+T)$. Тогда $y_T'' + q y_T = 0$ (так как q периодична).

Шаг 2. Найти 1D-подпространство при граничных условиях.

Если y(0) = 0, выбрать базисное решение u: u(0) = 0, u'(0) = 1. Тогда $S_0 = \{\alpha u : \alpha \in \mathbb{R}\}$.

Шаг 3. Доказать скалярность сдвига на S_0 .

Если y(0)=y(T)=0 и $y=\beta u\neq 0$, то u(T)=0 и $\exists \alpha:\ u(x+T)=\alpha\,u(x)$. Сравнивая производные в нуле: $\alpha=\frac{u'(T)}{u'(0)}=u'(T)$.

Шаг 4. Вывести формулу для коэффициента C.

$$y(x+T) = C y(x), \quad C = u'(T) = \frac{y'(T)}{y'(0)}$$

Шаг 5. Связать с матрицей монодромии.

Выбрать базис (u, v): u(0) = 0, u'(0) = 1; v(0) = 1, v'(0) = 0.

$$M = Y(T) = \begin{pmatrix} v(T) & u(T) \\ v'(T) & u'(T) \end{pmatrix} = \begin{pmatrix} v(T) & 0 \\ v'(T) & C \end{pmatrix}$$

Из $\det M = 1$: $v(T) = C^{-1}$. Собственные числа: $\rho_1 = C$, $\rho_2 = C^{-1}$.

3. Сопроводительные материалы (таблицы и обозначения)

Основные свойства монодромии:

$$Y(x+T) = Y(x)M$$
, det $M = 1$, $\sigma(M) = {\rho_1, \rho_2}$, $\rho_1 \rho_2 = 1$

Классификация по собственным числам монодромии:

Условие	$ ho_{1,2}$	Поведение решений
$ \operatorname{tr} M < 2$	$e^{\pm i heta}$	ограниченные осцилляции
$ \operatorname{tr} M = 2$	±1	пороговый случай
$ \operatorname{tr} M > 2$	$\rho_{1,2} \in \mathbb{R}, \rho_1 = \rho_2^{-1}, \rho_1 > 1$	рост/затухание

Специальный случай y(0) = y(T) = 0:

$$u(T) = 0 \implies M = \begin{pmatrix} C^{-1} & 0 \\ * & C \end{pmatrix}, \qquad y(x+T) = Cy(x), \ C = u'(T) = \frac{y'(T)}{y'(0)}$$

Формула Абеля для периодических систем:

$$\det Y(x) = \det Y(0) \exp\left(\int_0^x \operatorname{tr} A(s) \, ds\right)$$

Для
$$A(x) = \begin{pmatrix} 0 & 1 \\ -q(x) & 0 \end{pmatrix}$$
: tr $A(x) = 0$, поэтому $\det M = 1$.

4. Применение алгоритма к объявленной задаче

$$y''(x) + q(x)y(x) = 0,$$
 $y(0) = 0,$ $y(1) = 0,$ $T = 1$

Шаг 0. Проверить периодичность коэффициентов.

q(x+1) = q(x) — условие выполнено.

Шаг 1. Применить сдвиг к решению.

$$y_1(x) = y(x+1) \Rightarrow y_1'' + q y_1 = 0.$$

Шаг 2. Найти 1D-подпространство при граничных условиях.

$$u(0) = 0, \ u'(0) = 1 \Rightarrow S_0 = \{\alpha u\}.$$

Шаг 3. Доказать скалярность сдвига на S_0 .

$$y = \beta u \neq 0, \ y(1) = 0 \Rightarrow u(1) = 0.$$

Шаг 4. Вывести формулу для коэффициента C.

$$u(x+1) = C u(x), C = u'(1) \Rightarrow y(x+1) = C y(x).$$

Шаг 5. Связать с матрицей монодромии.

$$M = Y(1) = \begin{pmatrix} v(1) & 0 \\ v'(1) & C \end{pmatrix}, \det M = 1 \Rightarrow v(1) = C^{-1}, \ \sigma(M) = \{C, C^{-1}\}.$$

Итог:

$$y(x+1) = \frac{y'(1)}{y'(0)} y(x)$$

12 Механические системы и устойчивость потенциала

1. Тип экзаменационной задачи (полное условие)

Дано: $\ddot{\mathbf{x}} = -\nabla V(\mathbf{x}), V \in C^1(\mathbb{R}^n), V(\mathbf{0}) = \min V, V(\mathbf{x}) > 0$ при $\mathbf{x} \neq \mathbf{0}$. **Требуется:** найти положение равновесия и доказать его устойчивость.

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дана механическая система $\ddot{\mathbf{x}} = -\nabla V(\mathbf{x})$. Вводим переменные: $\mathbf{x} \in \mathbb{R}^n$ — координаты, $\mathbf{v} = \dot{\mathbf{x}}$ — скорости. Вводим энергию: $E(\mathbf{x}, \mathbf{v}) = \frac{1}{2} ||\mathbf{v}||^2 + V(\mathbf{x})$. Вводим гессиан: $H = \nabla^2 V(\mathbf{0})$ — матрица вторых производных потенциала в точке равновесия.

Шаг 0. Проверить потенциальность системы.

Проверить:
$$\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x}) \iff \partial_{x_j} f_i = \partial_{x_i} f_j \ (\forall i, j).$$

Шаг 1. Найти положения равновесия.

$$\dot{\mathbf{x}} = \mathbf{0}, \ \ddot{\mathbf{x}} = \mathbf{0} \iff \mathbf{v} = \mathbf{0}, \ \nabla V(\dot{\mathbf{x}}) = \mathbf{0}.$$
 При строгом минимуме V в $\mathbf{0}$: $\boxed{\mathbf{x}_* = \mathbf{0}}$

Шаг 2. Проверить сохранение энергии.

$$\dot{E} = \dot{\mathbf{x}} \cdot \ddot{\mathbf{x}} + \nabla V \cdot \dot{\mathbf{x}} = \mathbf{v} \cdot (-\nabla V) + \nabla V \cdot \mathbf{v} = 0 \implies E(t) \equiv E(0)$$

Шаг 3. Доказать положительную определённость энергии.

$$V(\mathbf{0}) = 0, \ V(\mathbf{x}) > 0 \ (\mathbf{x} \neq 0) \Rightarrow E(\mathbf{x}, \mathbf{v}) \geq 0, \ E = 0 \Leftrightarrow (\mathbf{x}, \mathbf{v}) = (\mathbf{0}, \mathbf{0})$$

Шаг 4. Использовать субуровни энергии для оценки траекторий.

$$m(\varepsilon) := \min_{\|\mathbf{x}\| = \varepsilon} V(\mathbf{x}) > 0$$
. Если $E(0) < m(\varepsilon)$, то $E(t) \equiv E(0) < m(\varepsilon)$ и $\|\mathbf{x}(t)\| < \varepsilon \ \forall t \geq 0$.

Шаг 5. Доказать устойчивость по Ляпунову.

$$\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0 : \ \|(\mathbf{x}(0), \mathbf{v}(0))\| < \delta \Rightarrow \|\mathbf{x}(t)\| < \varepsilon \ \forall t \ge 0.$$

3. Сопроводительные материалы (таблицы и обозначения)

Детектор потенциальности:

$$\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x}) \Leftrightarrow \partial_{x_i} f_i = \partial_{x_i} f_j \ (\forall i, j)$$

Локальная квадратичная аппроксимация потенциала:

$$abla V(\mathbf{0}) = \mathbf{0}, \ H = \nabla^2 V(\mathbf{0}), \ H \succ 0 \Rightarrow V(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top H \mathbf{x} + o(\|\mathbf{x}\|^2)$$

$$\Rightarrow \exists m > 0 : V(\mathbf{x}) \ge \frac{m}{2} \|\mathbf{x}\|^2 \ (\text{в малой окрестности})$$

Энергетический кандидат Ляпунова:

$$E(\mathbf{x}, \mathbf{v}) = \frac{1}{2} ||\mathbf{v}||^2 + V(\mathbf{x}), \quad \dot{E} = 0$$

Свойства субуровней энергии: $\mathcal{L}_c := \{(\mathbf{x}, \mathbf{v}) : E(\mathbf{x}, \mathbf{v}) \leq c\}$ — замкнутые множества; при малых c лежат в окрестности $(\mathbf{0}, \mathbf{0})$.

Критерии устойчивости:

Условие	Вывод
$V(0) = 0, V(\mathbf{x}) > 0$ при $\mathbf{x} \neq 0$	устойчивость по Ляпунову
$H = \nabla^2 V(0) \succ 0$	локальная устойчивость
$\dot{E} = 0$	консервативная система

4. Применение алгоритма к объявленной задаче

$$\ddot{\mathbf{x}} = -\nabla V(\mathbf{x}), \quad V(\mathbf{0}) = \min V, \quad V(\mathbf{x}) > 0$$
 при $\mathbf{x} \neq \mathbf{0}$

Шаг 0. Проверить потенциальность системы.

Система задана в потенциальной форме: $\mathbf{f}(\mathbf{x}) = -\nabla V(\mathbf{x})$.

Шаг 1. Найти положения равновесия.

$$\nabla V(\mathbf{0}) = \mathbf{0} \Rightarrow \mathbf{x}_* = \mathbf{0}.$$

Шаг 2. Проверить сохранение энергии.

$$E = \frac{1}{2} ||\dot{\mathbf{x}}||^2 + V(\mathbf{x}), \, \dot{E} = 0.$$

Шаг 3. Доказать положительную определённость энергии.

 $V(\mathbf{x}) > 0$, $= 0 \Leftrightarrow \mathbf{x} = \mathbf{0} \Rightarrow E > 0$, нуль только в $(\mathbf{0}, \mathbf{0})$.

Шаг 4. Использовать субуровни энергии для оценки траекторий.

 $m(\varepsilon) = \min_{\|\mathbf{x}\|=\varepsilon} V(\mathbf{x}) > 0, E(0) < m(\varepsilon) \Rightarrow \|\mathbf{x}(t)\| < \varepsilon.$

Шаг 5. Доказать устойчивость по Ляпунову.

 $(\mathbf{0},\mathbf{0})$ устойчиво по Ляпунову

13 ПЧП 1-го порядка: задача Коши

1. Тип экзаменационной задачи (полное условие)

Даны две задачи Коши для уравнения

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0:$$

а) z = 2y при x = 1; б) z = 2y при x = 1 + y. В обеих задачах решение ищем в окрестности точки (1,0). Найдите решение этих задач, если это возможно. Проверьте условия теоремы существования и единственности (нехарактеристичность начальной линии).

2. Универсальный алгоритм (визуальные формулы и детерминированные шаги)

Исходные данные и обозначения (ввод). Дано ПЧП 1-го порядка в виде $a\,u_x + b\,u_y + c\,u_z = 0$. Вводим вектор коэффициентов: A = (a, b, c). Вводим начальное многообразие: $\Sigma : S = 0$ (3D) или $\Gamma: g = 0 \ (2D)$. Вводим нормаль: $n = \nabla S \ (3D)$ или $n = (g_x, g_y) \ (2D)$. Вводим инварианты: I_1, I_2 первоинтегралы системы характеристик.

Шаг 0. Нормализовать уравнение и проверить нехарактеристичность.

Привести ПЧП к виду $a u_x + b u_y + c u_z = 0$, положить A = (a, b, c). Проверить тест нехарактеристичности:

- 3D: $A \cdot n \neq 0$ на Σ
- 2D: $a g_x + b g_y \neq 0$ на Г

Шаг 1. Найти систему характеристик.

$$\dot{x} = a,$$
 $\dot{y} = b,$ $\dot{z} = c,$ $\frac{d}{ds}u(x(s), y(s), z(s)) = 0$

Шаг 2. Найти инварианты (первоинтегралы).

Из $\frac{dx}{a} = \frac{dy}{b} = \frac{dz}{c}$ находим первоинтегралы I_1, I_2 (или I_1 в 2D). Общий вид решения: $u = F(I_1, I_2)$ (3D) или $u = F(I_1)$ (2D).

Шаг 3. Определить функцию F по начальным данным.

Ограничиваем инварианты на начальное многообразие: $F(I_1|_{\Sigma},I_2|_{\Sigma})=u|_{\Sigma}$ (3D) или $F(I_1|_{\Gamma})=u|_{\Gamma}$ (2D). Локальная обратимость отображения параметров в инварианты эквивалентна нехарактеристичности.

Шаг 4. Записать решение и указать область единственности.

Записать u через найденный F и указать область единственности (где тест нехарактеристичности выполняется).

3. Сопроводительные материалы (таблицы и обозначения)

Тест нехарактеристичности:

- 3D: $A \cdot n \neq 0$ на $\Sigma \Rightarrow$ локальная единственность
- 2D: $a g_x + b g_y \neq 0$ на $\Gamma \Rightarrow$ локальная единственность

Быстрые детекторы инвариантов (для (x, y)):

Тип поля	Инвариант
Вращение $(a,b) = (y,-x)$	$I_1 = x^2 + y^2$
Масштаб $(a,b)=(x,y)$	$I_1 = y/x$
Диагональ $(\alpha x, \beta y)$	$I_1 = y/x^{\beta/\alpha}$
Общий линейный случай	по собственным векторам M^{\top} или через $v=y/x$

Система характеристик:

$$\frac{dx}{a} = \frac{dy}{b} = \frac{dz}{c} = ds$$

Общий вид решения:

- 3D: $u = F(I_1, I_2)$, где I_1, I_2 независимые инварианты
- 2D: $u = F(I_1)$, где I_1 инвариант

4. Применение алгоритма к объявленной задаче

$$y\frac{\partial z}{\partial x} - x\frac{\partial z}{\partial y} = 0$$

Шаг 0. Нормализовать уравнение и проверить нехарактеристичность.

A=(y,-x) (поле вращения), значит $I_1=x^2+y^2$ и $z=F(I_1)$.

Шаг 1. Найти систему характеристик.

 $\dot{x} = y, \, \dot{y} = -x, \, \dot{z} = 0$ — окружности $x^2 + y^2 = \text{const.}$

Шаг 2. Найти инварианты.

 $I_1 = x^2 + y^2$ — единственный инвариант, $z = F(x^2 + y^2)$.

Шаг 3. Определить функцию F по начальным данным.

• (а) Данные z = 2y при x = 1:

Тест: $g = x - 1 \Rightarrow a g_x + b g_y = y$. В (1,0): = 0 (характеристично).

На x=1: $F(1+y^2)=2y$ — не функция одного аргумента около y=0.

Итог: единственности нет; возможны ветви, например

$$z(x,y) = \pm 2\sqrt{x^2 + y^2 - 1}$$
 $(x^2 + y^2 > 1)$

• (б) Данные z = 2y при x = 1 + y:

Тест: $g = x - 1 - y \Rightarrow a g_x + b g_y = y + x$. В (1,0): $= 1 \neq 0$ (нехарактеристично). На x = 1 + y: $I_1 = 1 + 2y + 2y^2$, поэтому $F(1 + 2y + 2y^2) = 2y$. Локально (около y = 0) $y \mapsto 1 + 2y + 2y^2$ обратима, и

$$z(x,y) = F(x^2 + y^2) = -1 + \frac{1}{2}\sqrt{8(x^2 + y^2) - 4}$$

(ветвь выбрана так, чтобы z(1,0) = 0 и на начальной кривой z = 2y).

Шаг 4. Записать решение и указать область единственности.

- (а): Решение не единственно в окрестности (1,0)
- (б): Единственность в области, где начальная кривая пересекает каждую окружность $x^2 + y^2 = \mathrm{const}$ единожды