Index

σ -algebra, 275	binomial
σ -field, 275	distribution, 289
<i>p</i> -quantile, 162, 170	binomial coefficient, 313
№ code, 8, 9, 11, 15–18, 20, 21, 36, 37,	binomial indentity, 314
40, 41, 44, 46, 47, 49, 52, 55–61,	binomial logistic regression, 209
63-65, 68, 69, 76, 79, 82, 83, 86, 90,	BIS, 129, 253
114-118, 131, 141, 143-145, 188,	bivariate exponential, 120
209, 212, 213, 215–219, 225, 292,	bivariate Gaussian, 105
295, 318, 346, 348, 352	Black-Cox model, 228, 233
• package	Black-Scholes
quantmod, 11, 18, 56	formula, 140
Sim.DiffProc, 20	put options, 144
tseries, 55	bond
	defaultable, 245
adapted process, 242	pricing PDE, 369
adjusted close price, 11	Borel-Cantelli Lemma, 278
aggregate claim amount, 91, 100	Brent, 131
Ali-Mikhail-Haq copula, 335	Brownian
annuity	motion, 6
numéraire, 254	series construction, 7
arbitrage	business risk, v
opportunity, 343	buy back guarantee, 129
price, 136	
AUC - Area Under the Curve, 216	call
autocovariance, 49	option, 129
	cash settlement, 129, 131
backtesting, 68	catastrophe risk, v
Bank for International Settlements, 129,	Cauchy
253	distribution, 286
Basel II, 263	causal, 38
Bayes formula, 202	causation, 103
Bernoulli	CDF, 156
random walk, 3	CDO, 258
Bernoulli distribution, 289	CDS, 253

characteristic	Gaussian, 24
function, 302	Poisson, 24
Chebyshev inequality, 100	cumulative distribution function, 156, 284
closing portfolio value, 66	joint, 287
coherent risk measure, 154	CVA, 266
cointegration, 64	CVaR, 177
collar option, 131	
costless, 134	default rate, 241
collateralized debt obligation, 258	defaultable bonds, 249, 250
complement rule, 277	Delta, 143, 145
complex unit circle, 50, 322	density
compound Poisson	function, 283
process, 84	marginal, 288
conditional	derivatives
expectation, 152, 294, 304	market, 129
probability, 279	Dickey-Fuller test, 53
survival probability, 239	discrete distribution, 289
tail expectation, 177	dispersion index, 78
Value at Risk, 177	distortion function, 156, 177, 183
Conditional tail expectation, 177, 187	distortion risk measure, 177, 183
conditional tail expectation	distribution
Gaussian, 180	Bernoulli, 289
conditional Value at Risk, 176	binomial, 289
conditioning, 279	bivariate exponential, 120
Consumer Price Index, 11	Cauchy, 286
contract	discrete, 289
credit default, 237	exponential, 285
copula, 118	gamma, 286
Ali-Mikhail-Haq, 335	Gaussian, 285
exponential, 120	geometric, 290
survival, 121	Gumbel bivariate, 120
correlation, 103	lognormal, 20, 286
costless collar option, 134	marginal, 297
counterparty risk, v	negative binomial, 290
counting process, 75, 77	Pareto, 172, 345
covariance, 49	Pascal, 290
Cox process, 79	Poisson, 290
Cox-Ross-Rubinstein model, 141	stable, 30
Cramér-Lundberg model, 92	uniform, 285
credit default	diversification, 155
reduced-form approach, 239	domino effect, 232
structural approach, 223	,
credit default contract, 237	enlargement of filtration, 245
credit default swap, 253, 256	entitlement ratio, 131
credit valuation, 253	equity holder, 224
adjustment, 266	ES, 181, 187, 188
cross-covariance, 49	Gaussian, 183
CRR model, 141	event, 275
CTE, 177, 187	event risk, v
Gaussian, 180	excess kurtosis, 24
cumulants	exercise price, 127
	office price, 121

This version: May 3, 2024

382

expectation, 291	heteroskedasticity, 45
conditional, 152, 177, 187, 294, 304	historical measure, 223
expected shortfall, 181, 187, 188	HJM
Gaussian, 183	model, 245
expected value premium principle, 152	
exponential	implied
distribution, 81, 241, 285	probability, 138
exponential series, 313	independence, 153, 279, 281, 283, 288, 290, 295, 302, 303, 307
failure rate, 240	indicator function, 152, 282, 313
False Positive Rate, 214	infimum, 290
Fatou's lemma, 301	insolvency, 162
filtration	Internal Ratings-Based formula, 263
enlargement of, 245	investment risk, v
financial risk, v	IPython notebook, 8, 9, 11–13, 15, 17, 18
formula	135, 141, 218
Bayes, 202	IRB formula, 263
Lévy-Khintchine, 87	Treb formula, 200
four-way collar option, 131	Japan / II C. Faraign Evaluation Data 11
FPR, 214	Japan/U.S. Foreign Exchange Rate, 11
	joint
gamma	cumulative distribution function, 287
distribution, 286	probability density function, 287
function, 286	1 1 244
Gaussian	key lemma, 244
bivariate, 105	KPSS test, 55
conditional tail expectation, 180	kurtosis, 24, 29
distribution, 21, 285	
Expected Shortfall, 183	Lévy-Khintchine formula, 87
random variable, 303	lag operator, 36, 38, 41
Value at Risk, 168	law
generalized inverse, 107, 158	of total expectation, 297
generating function, 302	of total probability, 277, 280, 297
geometric	least square regression, 62
Brownian motion, 10	leptokurtic distribution, 28
distribution, 290	liability, 134, 152
series, 314	likelihood ratio, 205
sum, 313	log
GLM regression, 211	variance, 20
Greeks	log variance, 20
Delta, 143, 145	log-returns, 10, 15
gross market value, 129, 253	logistic regression, 209
gross world product, 126, 129	logit, 211
guarantee	lognormal
buy back, 129	distribution, 20, 286
price lock, 130	long box spread option, 150, 343
* '	. J
guaranteed maturity benefits, 99	macro-economic shock, 121
Gumbel bivariate logistic distribution,	marginal
120 CWD 126 120	density, 288
GWP, 126, 129	distribution, 297
hedge ratio, 63	market

Q

log-returns, 10, 15	portfolio
returns, 10, 15	value, 140
Marshall-Olkin bivariate exponential, 120	premium, 63
maturity, 127	pure, 155
mean-square distance, 306	price
measure	graph, 128, 130, 132
historical, 223	price lock guarantee, 130
physical, 223	probability
model	acceptance curve, 202
Cramér-Lundberg, 92	conditional, 279
moment	default curve, 202, 219
generating function, 302	density function, 283
moments	joint, 287
Gaussian, 24	distribution, 283
Poisson, 24	measure, 277
moving average, 38, 39	sample space, 273
0 0, ,	space, 278
natural logarithm, 21	probability default curve, 220
negative	process
binomial distribution, 290	counting, 75
net present value, 264	Cox, 79
neural network, 217	pure premium, 152
non-causal, 39	put
normal	option, 127
conditional tail expectation, 180	Python code, 8, 9, 11–13, 15, 17, 18, 135
Expected Shortfall, 183	141, 218
Value at Risk, 168	Python package
notional, 255	yfinance, 11–13
notional amount, 129, 253	,,
NPV, 264	quantile risk measure, 156
111 1, 201	quantmod (package), 11, 18, 56
OLS, 62	quantimod (** pacinago), 11, 10, 00
opening portfolio price, 66	random
operational risk, v	product, 299
option	sum, 299
issuer, 136	variable, 281
long box spread, 150, 343	random forest, 218
writer, 136	rate
zero-collar, 134	default, 241
zero centar, 101	Receiver Operating Characteristics
pair trading, 61	(ROC), 214
Pareto distribution, 172, 345	recovery rate, 245, 247
partition, 280, 304	recovery value, 227
Pascal distribution, 290	reduced-form approach, 239
payoff function, 128, 130	regression
physical delivery, 129, 131	GLM, 211
physical derivery, 123, 131 physical measure, 223	logistic, 209
Poisson	renewal processes, 84
compound martingale, 84	reserve process, 91
distribution, 290	risk measure, 151
,	coherent, 154
process, 75, 241	CONCIONO, 101

384

Notes on Financial Risk and Analytics

expected value, 152	telescoping sum, 42
pure premium, 152, 155	tenor structure, 247, 253
quantile, 156	test
standard deviation, 152	Dickey-Fuller, 53
superhedging, 149	KPSS, 55
risk-neutral	Theil index, 34
measure, 137	theorem
probabilities, 137	Sklar, 109
riskless asset, 14, 22	tower property, 296, 301, 307, 369
ROC, 214	TPR, 214
	True Positive Rate (TPR), 214
self-financing portfolio	tseries, 55
discrete time, 66	,
Sim.DiffProc, 20	uniform distribution, 285
skewness, 24, 29	unit
Sklar's theorem, 109	circle, 50
solvency, 162	root test, 50
spread, 64	unit circle, 322
SRM, 149	unit chere, 022
St. Petersburg paradox, 293	Value at Risk, 162, 170
stable	Gaussian, 168
distribution, 30	tail, 176, 195
standard deviation premium principle,	Value at Risk conditional, 176
152	VaR, 162, 170
stationary	variance, 298
strictly, 48	variance, 256
weakly, 50	warrant, 131
stochastic	weakly stationary, 50
default, 241	West Texas Intermediate (WTI), 126, 131
stopping time, 242	white noise, 36
strictly stationary, 48	Wiener space, 6
strike price, 127	wiener space, o
strong Markov property, 81	VCD + 010
structural approach, 223	XGBoost, 218
superhedging risk measure, 149	XVA, 264
surplus process, 91	C (D 1) 1 11 10
survival copula, 121	yfinance (Python package), 11–13
survival probability, 239	
T 1777	zero-
Tail Value at Risk, 176, 195	collar option, 134

Q

Author index

Aas, K. 263	Guo, X. 243
Aristotle 125	Gupton, G.M. 233
D 1 11 7 7	H:lk ID 54
Bachelier, L. 5	Hamilton, J.D. 54
Bhatia, M. 233	Hardy, M.R. 152
Black, F. 228	Hofert, M. 107, 158
Bosq, D. 77	Huang, J.Z. 246
Boulding, K.E. 14	Hull, J. 233
Brigo, D. 266	Hurd, TR. 223, 228
Brockwell, P.J. 50	
Brown, R. 5	Ignatova, G. 97 Ishikawa, K. 70
Castellacci, G. 258, 267, 372	I I I 045 050
Charlier, C.V.L. 31	Jacod, J. 245, 273
Chen, R.R. 246	Jarrow, R. 243
Cheng, X. 246	Jasiak, J. v
Chourdakis, K. 266	Jeanblanc, M. 244, 245
Çınlar, E. 283	Jeulin, Th. 245
Cox, J.C. 228	Jones, S. 233
Cramér, H. 31	17 : 1 37 07
	Kaishev, V. 97
Davis, R.A. 50	Kallenberg, O. 308
De Vylder, F. 97	Krachunov, R. 97
Dellacherie, C. 244	Krehbiel, T. 233
Devore, J.L. 273	I I- D 949
Dickey, D. 53, 64	Lando, D. 242
Dozzi, M. 95	Lee, S. 233
2022, 111 00	Lefèvre, C. 97
Einhorn, D. 175	León, J.A. 95
Elliott, R.J. 244, 245	Li, D.X. 233, 234
Embrechts, P. 107, 158	Li, W.P. 233
Enders, W. 64	Liu, B. 246
Engle, R.F. 64	Loève, M. 109
Engle, R.P. 04	Loisel, S. 97
Fabozzi, F. 246	Maisonneuve, B. 244
Finger, C.C. 233	Masetti, M. 266
Folland, G.B. 6	Menn, C. 243
Fuller, W. 53, 64	Merton, R.C. 223, 233, 263
	Meyer, P.A. 244
Gibson, M. 233	Milne, J.S. 377
Gourieroux, C. v	Mina, J. 170
Gram, J.P. 31	, 0 0
Granger, C.W.J. 64	Nguyen, H.T. 77
Grasselli, M.R. 223, 228	Norris, J.R. 81

N. Privault

Partzsch, L. 8	Thales 125
Picard, D. 97	Theil, H. 34
Pitman, J. 273	Thiele, T.N. 23
Poisson, S.D. 75	
Pourahmadi, M. 50	UCLES, MOE & 50, 202, 281
Protter, P. 244, 273	
	Vallois, P. 95
Revuz, D. 6	Vašiček, O. 233, 263
Rullière, D. 97	Villa, J. 95
Salmon, F. 233	Watanabe, T. 31
Salmon, F. 233 Schilling, R.L. 8	Watanabe, T. 31 Wei, X. 97
,	,
Schilling, R.L. 8	Wei, X. 97
Schilling, R.L. 8 Shreve, S. 229	Wei, X. 97
Schilling, R.L. 8 Shreve, S. 229 Sklar, M. 109	Wei, X. 97 White, A. 233
Schilling, R.L. 8 Shreve, S. 229 Sklar, M. 109	Wei, X. 97 White, A. 233
Schilling, R.L. 8 Shreve, S. 229 Sklar, M. 109 Stroock, D.W. 306	Wei, X. 97 White, A. 233 Xiao, J.Y. 170

References

- K. Aas. The Basel II IRB approach for credit portfolios: A survey. Note No SAMBA/33/05, Norwegian Computing Center, 2005. (Cited on page 263).
- [2] C. Acerbi and D. Tasche. On the coherence of expected shortfall. Preprint arXiv:cond-mat/0104295, 2001. (Cited on page 184).
- [3] Aristotle. Politics, Book one, Part XI. The Internet Classics Archive, 350
 BCE. http://classics.mit.edu/Aristotle/politics.1.one.html. (Cited on page 125).
- [4] L. Bachelier. Théorie de la spéculation. Annales Scientifiques de l'Ecole Normale Supérieure. Série 3, 17:21–86, 1900. (Cited on pages 5 and 13).
- [5] F. Black and J.C. Cox. Valuing corporate securities. *Journal of Finance*, 31:351–357, 1976. (Cited on page 228).
- [6] F. Black and M. Scholes. The pricing of options and corporate liabilities. J. of Political Economy, 81, 1973. (Cited on page 126).
- [7] D. Bosq and H.T. Nguyen. A Course in Stochastic Processes: Stochastic Models and Statistical Inference. Mathematical and Statistical Methods. Kluwer, 1996. (Cited on page 77).
- [8] K.E. Boulding. In "Energy Reorganization Act of 1973. Hearings, Ninety-third Congress, first session, on H.R. 11510". U.S. Government Printing Office, Washington, 1973. (Cited on page 14).
- [9] D. Brigo and K. Chourdakis. Counterparty risk for credit default swaps: impact of spread volatility and default correlation. *Int. J. Theor. Appl. Finance*, 12(7):1007–1026, 2009. (Cited on page 266).
- [10] D. Brigo and M. Masetti. Risk neutral pricing of counterparty risk. In M. Pykhtin, editor, In Counter-party Credit Risk Modeling: Risk Management, Pricing and Regulation, London, 2006. Risk Books. (Cited on page 266).

- [11] P.J. Brockwell and R.A. Davis. Time series: theory and methods. Springer Series in Statistics. Springer-Verlag, New York, second edition, 1991. (Cited on page 50).
- [12] R. Brown. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. *Philosophical Magazine*, 4:161–173, 1828. (Cited on page 5).
- [13] G. Castellacci. Bootstrapping credit curves from CDS spread curves. Available at https://dx.doi.org/10.2139/ssrn.2042177, 2008. (Cited on pages 258, 267, and 372).
- [14] C.V.L. Charlier. Frequency curves of type A in heterograde statistics. Ark. Mat. Astr. Fysik, 9(25):1-17, 1914. (Cited on page 31).
- [15] R.-R. Chen and J.-Z. Huang. Credit spread bounds and their implications for credit risk modeling. Working paper, Rutgers University and Penn State University, 2001. (Cited on page 247).
- [16] R.-R. Chen, X. Cheng, F.J. Fabozzi, and B. Liu. An explicit, multi-factor credit default swap pricing model with correlated factors. *Journal of Financial and Quantitative Analysis*, 43(1):123–160, 2008. (Cited on page 247).
- [17] E. Çınlar. Probability and stochastics, volume 261 of Graduate Texts in Mathematics. Springer, New York, 2011. (Cited on page 283).
- [18] M. Clark. Trillion Dollar Bet. PBS Nova Documentaries, 2000. (Cited on page 14).
- [19] H. Cramér. Mathematical methods of statistics. Princeton University Press, Princeton, NJ, 1946. (Cited on page 31).
- [20] F. De Vylder. Numerical finite-time ruin probabilities by the Picard-Lefevre formula. Scand. Act. J., 2:97–105, 1999. (Cited on page 97).
- [21] C. Dellacherie, B. Maisonneuve, and P.A. Meyer. Probabilités et Potentiel, volume 5. Hermann, 1992. (Cited on page 243).
- [22] J. L. Devore. Probability and Statistics for Engineering and the Sciences. Duxbury Press, sixth edition edition, 2003. (Cited on page 273).
- [23] M. Dozzi and P. Vallois. Level crossing times for certain processes without positive jumps. *Bull. Sci. Math.*, 121(5):355–376, 1997. (Cited on page 95).
- [24] D. Duffie and K.J. Singleton. Credit risk. Princeton Series in Finance. Princeton University Press, Princeton, NJ, 2003. (Cited on page 246).
- [25] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik, 17:549–560, 1905. (Cited on page 5).
- [26] R.J. Elliott and M. Jeanblanc. Incomplete markets with jumps and informed agents. *Math. Methods Oper. Res.*, 50(3):475–492, 1999. (Cited on page 245).

- [27] R.J. Elliott, M. Jeanblanc, and M. Yor. On models of default risk. Math. Finance, 10(2):179–195, 2000. (Cited on page 243).
- [28] P. Embrechts and M. Hofert. A note on generalized inverses. Math. Methods Oper. Res., 77(3):423–432, 2013. (Cited on pages 158 and 159).
- [29] W. Enders. Applied Econometric Time Series. Wiley, 2009. (Cited on page 64).
- [30] R.F. Engle and C.W.J. Granger. Co-integration and error correction: Representation, estimation, and testing. *Econometrica*, 55(2):251–276, 1987. (Cited on page 64).
- [31] G. B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley & Sons Inc., New York, second edition, 1999. (Cited on page 6).
- [32] M. Gibson. Understanding the risk of synthetic CDOs. Federal Reserve Board Working paper, 2004. (Cited on page 233).
- [33] C. Gourieroux and J. Jasiak. Chapter 10 value at risk. In Y. Aït-Sahalia and L.P. Hansen, editors, Handbook of Financial Econometrics: Tools and Techniques, volume 1 of Handbooks in Finance, pages 553–615, San Diego, 2010. North-Holland. (Cited on page v).
- [34] J.P. Gram. Über die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadraten. J. Reine Angew. Math, 94:41–73, 1883. (Cited on page 31).
- [35] M.R. Grasselli and T.-R. Hurd. Credit risk modeling. Lecture notes, McMaster University, 2010. (Cited on pages 224 and 228).
- [36] X. Guo, R. Jarrow, and C. Menn. A note on Lando's formula and conditional independence. Preprint, 2007. (Cited on pages 243 and 246).
- [37] G.M. Gupton, C.C. Finger, and M. Bhatia. Creditmetrics: technical document. JP Morgan & Co., 1997. (Cited on page 233).
- [38] J.D. Hamilton. A new approach to the economic analysis of nonstationary time series. *Econometrica*, 57:357–384, 1989. (Cited on page 54).
- [39] J.D. Hamilton. *Time Series Analysis*. Princeton University Press, 1994. (Cited on page 54).
- [40] M.R. Hardy. An introduction to risk measures for actuarial applications. Study Notes, 2006. (Cited on page 152).
- [41] J. Hull and A. White. Valuation of a CDO and an n-th to default CDS without Monte Carlo simulation. *Journal of Derivatives*, 12:8–23, 2004. (Cited on page 233).
- [42] G. Ignatova, V. Kaishev, and R. Krachunov. An improved finite-time ruin probabilities formula and its Mathematica implementation. *Insur*ance Math. Econom., 29:375–386, 2001. (Cited on page 97).
- [43] K. Itô. Stochastic integral. Proc. Imp. Acad. Tokyo, 20:519–524, 1944. (Cited on page 6).

- [44] K. Itô. On stochastic differential equations. Mem. Amer. Math. Soc., No. 4:51, 1951. (Cited on page 6).
- [45] J. Jacod. Grossissement initial, hypothèse (H') et théorème de Girsanov. In Th. Jeulin and M. Yor, editors, Grossissements de filtrations: exemples et applications, volume 1118 of Lecture Notes in Mathematics, pages 6– 14. Springer-Verlag, Berlin, 1985. (Cited on page 245).
- [46] J. Jacod and P. Protter. Probability essentials. Springer-Verlag, Berlin, 2000. (Cited on page 273).
- [47] Th. Jeulin. Semi-martingales et grossissement d'une filtration, volume 833 of Lecture Notes in Mathematics. Springer Verlag, 1980. (Cited on page 245).
- [48] S. Jones. The formula that felled Wall Street. Financial Times Magazine, April 24, 2009. (Cited on page 233).
- [49] R. Kaas, M. Goovaerts, J. Dhaene, and M. Denuit. Modern Actuarial Risk Theory: Using R. Springer, 2009. (Cited on page 95).
- [50] O. Kallenberg. Foundations of Modern Probability. Probability and its Applications. Springer-Verlag, New York, second edition, 2002. (Cited on page 308).
- [51] D. Lando. On Cox processes and credit risky securities. Review of Derivatives Research, 2:99–120, 1998. (Cited on pages 242, 243, and 246).
- [52] S. Lee. Formula from hell. Forbes.com, August 8, 2009. (Cited on page 233).
- [53] J.A. León and J. Villa. On the distributions of the sup and inf of the classical risk process with exponential claim. *Commun. Stoch. Anal.*, 3 (1):69–84, 2009. (Cited on page 95).
- [54] D.X. Li. On default correlation a copula function approach. The Journal of Fixed Income, 9(4):43–54, 2000. (Cited on pages 232 and 234).
- [55] W. Li and T. Krehbiel. An improved approach to evaluate default probabilities and default correlations with consistency. *Int. J. Theor. Appl. Finance*, 19(5), 2016. (Cited on page 233).
- [56] S. Loisel and N. Privault. Sensitivity analysis and density estimation for finite-time ruin probabilities. J. Comput. Appl. Math., 230(1):107–120, 2009. (Cited on page 97).
- [57] R. C. Merton. On the pricing of corporate debt: The risk structure of interest rates. *Journal of Finance*, 29:449–470, 1974. (Cited on pages 223, 233, and 263).
- [58] J.S. Milne. Mathematical apocrypha. https://www.jmilne.org/math/apocrypha.html, 2005. Accessed: 2020-06-12. (Cited on page 377).
- [59] J. Mina and J.Y. Xiao. Return to RiskMetrics: The Evolution of a Standard. RiskMetrics, 2001. Introduction by Christopher C. Finger. (Cited on pages 170 and 187).
- [60] MOE and UCLES. Mathematics (Syllabus 9758), Singapore-Cambridge General Certificate of Education Advanced Level Higher 2 (2022). https:

- //www.seab.gov.sg/docs/default-source/national-examinations/syllabus/alevel/2022syllabus/9758_y22_sy.pdf, 2020. Accessed: 2022-12-28. (Cited on pages 50, 202, and 281).
- [61] MOE and UCLES. Mathematics (Syllabus 4048), Singapore-Cambridge General Certificate of Education Ordinary Level (2022). https: //www.seab.gov.sg/docs/default-source/national-examinations/ syllabus/olevel/2022syllabus/4048_y22_sy.pdf, 2022. Accessed: 2024-04-20. (Cited on pages 50, 202, and 281).
- [62] J.R. Norris. Markov Chains, volume 2 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 1998. Reprint of 1997 original. (Cited on page 81).
- [63] Basel Committee on Banking Supervision. An explanatory note on the Basel II IRB risk weight functions. July, 2005. (Cited on page 263).
- [64] P. Picard and C. Lefèvre. The probability of ruin in finite time with discrete claim size distribution. *Scand. Act. J.*, 1:58–69, 1997. (Cited on page 97).
- [65] J. Pitman. Probability. Springer, 1999. (Cited on page 273).
- [66] M. Pourahmadi. Foundations of time series analysis and prediction theory. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley-Interscience, New York, 2001. (Cited on page 50).
- [67] N. Privault. Understanding Markov Chains. Springer Undergraduate Mathematics Series. Springer, second edition, 2018. (Cited on page 82).
- [68] N. Privault. Introduction to Stochastic Finance with Market Examples (2nd edition). Financial Mathematics Series. Chapman & Hall/CRC, 2022. (Cited on pages 229, 230, 242, 245, 246, 254, and 364).
- [69] N. Privault and X. Wei. A Malliavin calculus approach to sensitivity analysis in insurance. *Insurance Math. Econom.*, 35(3):679–690, 2004. (Cited on page 97).
- [70] N. Privault and X. Wei. Integration by parts for point processes and Monte Carlo estimation. J. Appl. Probab., 44:806–823, 2007. (Cited on page 97).
- [71] P. Protter. Stochastic integration and differential equations, volume 21 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin, second edition, 2004. (Cited on page 243).
- [72] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. Springer-Verlag, 1994. (Cited on page 6).
- [73] D. Rullière and S. Loisel. Another look at the Picard-Lefèvre formula for finite-time ruin probabilities. *Insurance Math. Econom.*, 35(2):187–203, 2004. (Cited on page 97).
- [74] F. Salmon. Recipe for disaster: the formula that killed Wall Street. Wired Magazine, 23 February, 2009. (Cited on page 233).
- [75] P.A. Samuelson. Rational theory of warrant pricing. Industrial Management Review, 6(2):13–39, 1965. (Cited on page 13).

- [76] R.L. Schilling and L. Partzsch. Brownian motion. De Gruyter Graduate. De Gruyter, Berlin, second edition, 2014. (Cited on page 8).
- [77] S.E. Shreve. Stochastic calculus for finance. II. Springer Finance. Springer-Verlag, New York, 2004. Continuous-time models. (Cited on page 229).
- [78] M. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8:229–231, 1959. (Cited on page 109).
- [79] M. Sklar. Fonctions de répartition a n dimensions et leurs marges [republication of MR0125600]. Ann. I.S.U.P., 54(1-2):3-6, 2010. With an introduction by Denis Bosq. (Cited on page 109).
- [80] D.W. Stroock. Probability theory, an analytic view. Cambridge University Press, Cambridge, second edition, 2011. (Cited on page 306).
- [81] S. Takayanagi and K. Ishikawa. PairTrading: classical pair trading based on cointegration in finance, 2017. R package version 1.1. (Cited on page 70).
- [82] K. Tanaka, T. Yamada, and T. Watanabe. Applications of Gram-Charlier expansion and bond moments for pricing of interest rates and credit risk. *Quant. Finance*, 10(6):645–662, 2010. (Cited on page 31).
- [83] H. Theil. Economics and Information Theory. North-Holland, 1967. (Cited on page 34).
- [84] T.N. Thiele. On semi invariants in the theory of observations (Om Iagttagelseslærens Halvinvarianter). Kjöbenhavn Overs., pages 135–141, 1899. (Cited on page 23).
- [85] O. Vašiček. Probability of loss on loan portfolio. KMV Corporation Technical Report, 1987. (Cited on page 233).
- [86] O. Vašiček. Loan portfolio value. Risk Magazine, pages 160–162, 2002. (Cited on page 263).
- [87] N. Wiener. Differential space. Journal of Mathematics and Physics of the Massachusetts Institute of Technology, 2:131–174, 1923. (Cited on page 6).
- [88] M. Yor. Grossissements de filtration et absolue continuité de noyaux. In Th. Jeulin and M. Yor, editors, Grossissements de filtrations: exemples et applications, volume 1118 of Lecture Notes in Mathematics, pages 6–14. Springer-Verlag, Berlin, 1985. (Cited on page 245).

This document gives a presentation of mathematical tools used for financial risk modeling and related analytics, and is divided into three parts. The first part focuses on stochastic modeling using diffusion processes (Chapter 1), time series (Chapter 2), jump processes and insurance risk (Chapter 3), and random dependence structures (Chapter 4). The second part covers classical risk measures, starting with the superhedging risk measure, which is constructed in Chapter 5 from basic financial derivatives. Value at risk (VaR) is considered in Chapter 6, followed by tail value at risk (TVaR), conditional tail expectation (CTE) and expected shortfall (ES) in Chapter 7. The third part deals with credit risk, starting with Chapter 8 on credit scoring. Chapter 9 on credit risk builds on the geometric Brownian motion model of Chapter 1 for the pricing of default bonds. The remaining Chapters 10 and 11 consider credit default via defaultable bonds, credit default swaps (CDS) and collateralized debt obligations (CDOs), and involve more advanced knowledge of stochastic processes. The concepts presented are illustrated by 95 coding examples in \mathbb{R} and Python, and accompanied with 159 figures and 70 exercises with complete solutions.

Ó