### ECCCos from the Black Box

Faithful Model Explanations through Energy-Based Conformal Counterfactuals

Patrick Altmeyer

Mojtaba Farmanbar Cynthia C. S. Liem

Arie van Deursen

Delft University of Technology

2024-02-15

# Pick your Poison

All of these counterfactuals are valid explanations for the model's prediction.

Which one would you pick?



Figure 1: Turning a 9 into a 7: Counterfactual explanations for an image classifier produced using *Wachter* (Wachter, Mittelstadt, and Russell 2017), *Schut* (Schut et al. 2021) and *REVISE* (Joshi et al. 2019).

Faithfulness first, plausibility second.

# Faithfulness first, plausibility second.

We propose *ECCCo*: a new way to generate faithful model explanations that are as plausible as the underlying model permits.

 Idea: generate counterfactuals that are consistent with what the model has learned about the data.

- Idea: generate counterfactuals that are consistent with what the model has learned about the data.
- **Method**: constrain the model's energy and predictive uncertainty for the counterfactual.

Faithfulness first, plausibility second

- Idea: generate counterfactuals that are consistent with what the model has learned about the data.
- Method: constrain the model's energy and predictive uncertainty for the counterfactual.
- Result: faithful counterfactuals that are as plausible as the model permits.

- Idea: generate counterfactuals that are consistent with what the model has learned about the data.
- **Method**: constrain the model's energy and predictive uncertainty for the counterfactual.
- Result: faithful counterfactuals that are as plausible as the model permits.
- Benefits: enable us to distinguish trustworthy from unreliable models.

# Counterfactual Explanations

$$\min_{\mathbf{Z}' \in \mathcal{Z}^L} \{ \mathsf{yloss}(M_{\theta}(f(\mathbf{Z}')), \mathbf{y}^+) + \lambda \mathsf{cost}(f(\mathbf{Z}')) \}$$

**Counterfactual Explanations** (CE) explain how inputs into a model need to change for it to produce different outputs.



Figure 2: Gradient-based counterfactual search.

# Reconciling Faithfulness and Plausibility

# **Plausibility**

# Definition (Plausible Counterfactuals)

Let  $\mathcal{X}|\mathbf{y}^+ = p(\mathbf{x}|\mathbf{y}^+)$  denote the true conditional distribution of samples in the target class  $\mathbf{y}^+$ . Then for  $\mathbf{x}'$  to be considered a plausible counterfactual, we need:  $\mathbf{x}' \sim \mathcal{X}|\mathbf{y}^+$ .

#### Why Plausibility?

Plausibility is positively associated with actionability, robustness (Artelt et al. 2021) and causal validity (Mahajan, Tan, and Sharma 2020)



Figure 3: Kernel density estimate (KDE) for the conditional distribution,  $p(\mathbf{x}|\mathbf{y}^+)$ , based on observed data. Counterfactual path as in Figure 2.

#### Faithfulness

#### Definition (Faithful Counterfactuals)

Let  $\mathcal{X}_{\theta}|\mathbf{y}^+ = p_{\theta}(\mathbf{x}|\mathbf{y}^+)$  denote the conditional distribution of  $\mathbf{x}$  in the target class  $\mathbf{y}^+$ , where  $\theta$  denotes the parameters of model  $M_{\theta}$ . Then for  $\mathbf{x}'$  to be considered a faithful counterfactual, we need:  $\mathbf{x}' \sim \mathcal{X}_{\theta}|\mathbf{y}^+.$ 

#### **Trustworthy Models**

If the model posterior approximates the true posterior  $(p_{\theta}(\mathbf{x}|\mathbf{y}^+) \to p(\mathbf{x}|\mathbf{y}^+))$ , faithful counterfactuals are also plausible



Figure 4: KDE for learned conditional distribution,  $p_{\theta}(\mathbf{x}|\mathbf{y}^+)$ . Yellow stars indicate conditional samples generated through SGLD for a joint energy model (JEM).

#### **ECCCo**

#### Key Idea

Use the hybrid objective ioint of energy models (JEM) and a model-agnostic penalty for predictive uncertainty: Energy-Constrained  $(\mathcal{E}_{\theta})$  Conformal  $(\Omega)$  Counterfactuals (ECCCo).

#### ECCCo objective<sup>a</sup>:

$$\begin{split} \min_{\mathbf{Z}' \in \mathcal{Z}^L} \{ L_{\text{clf}}(f(\mathbf{Z}'); M_{\theta}, \mathbf{y}^+) + \lambda_1 \text{cost}(f(\mathbf{Z}')) \\ + \lambda_2 \mathcal{E}_{\theta}(f(\mathbf{Z}') | \mathbf{y}^+) + \lambda_3 \Omega(C_{\theta}(f(\mathbf{Z}'); \alpha)) \} \end{split}$$

Figure 5: Gradient fields and counterfactual paths for different generators.

<sup>a</sup>We leverage ideas from Grathwohl et al. (2020) and Stutz et al. (2022). See the paper and appendix for a derivation of the objective from first principles.

# Results

Results

#### Visual Evidence



Figure 6: Turning a 9 into a 7. *ECCCo* applied to MLP (a), Ensemble (b), JEM (c), JEM Ensemble (d).

ECCCo generates counterfactuals that

- faithfully represent model quality (Figure 6).
- achieve state-of-the-art plausibility (Figure 7).











Figure 7: Results for different generators (from 3 to 5).

#### The Numbers

- Large benchmarks on a variety of models and datasets from various domains.
- ECCCo achieves state-of-the-art faithfulness across models and datasets and approaches state-of-the-art plausibility for more trustworthy models.

|              |                                                                                  | California Housing                                                                                           |                                                                                                                                     |                                                                                                                                        | GMSC                                                                                                        |                                                                                                                       |                                                                                                                   |
|--------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Model        | Generator                                                                        | Unfaithfulness $\downarrow$                                                                                  | Implausibility $\downarrow$                                                                                                         | Uncertainty $\downarrow$                                                                                                               | Unfaithfulness $\downarrow$                                                                                 | Implausibility $\downarrow$                                                                                           | Uncertainty ↓                                                                                                     |
| MLP Ensemble | ECCCo<br>ECCCo+<br>ECCCo (no CP)<br>ECCCo (no EBM)<br>REVISE<br>Schut<br>Wachter | 3.69 ± 0.08**<br>3.88 ± 0.07**<br>3.70 ± 0.08**<br>4.03 ± 0.07<br>3.96 ± 0.07*<br>4.00 ± 0.06<br>4.04 ± 0.07 | $1.94 \pm 0.13$<br>$1.20 \pm 0.09$<br>$1.94 \pm 0.13$<br>$1.12 \pm 0.12$<br>$0.58 \pm 0.03**$<br>$1.15 \pm 0.12$<br>$1.13 \pm 0.12$ | 0.09 ± 0.01**<br>0.15 ± 0.02<br>0.10 ± 0.01**<br>0.14 ± 0.01**<br>0.17 ± 0.03<br>0.10 ± 0.01**<br>0.16 ± 0.01                          | 3.84 ± 0.07**<br>3.79 ± 0.05**<br>3.85 ± 0.07**<br>4.08 ± 0.06<br>4.09 ± 0.07<br>4.04 ± 0.08<br>4.10 ± 0.07 | 2.13 ± 0.08<br>1.81 ± 0.05<br>2.13 ± 0.08<br>0.97 ± 0.08<br><b>0.63 ± 0.02</b> **<br>1.21 ± 0.08<br>0.95 ± 0.08       | 0.23 ± 0.01**<br>0.30 ± 0.01*<br>0.23 ± 0.01**<br>0.31 ± 0.01*<br>0.33 ± 0.06<br>0.30 ± 0.01*<br>0.32 ± 0.01      |
| JEM Ensemble | ECCCo ECCCo+ ECCCo (no CP) ECCCo (no EBM) REVISE Schut Wachter                   | 1.40 ± 0.08** 1.28 ± 0.08** 1.39 ± 0.08** 1.70 ± 0.09 1.39 ± 0.15** 1.59 ± 0.10* 1.71 ± 0.09                 | 0.69 ± 0.05**<br>0.60 ± 0.04**<br>0.69 ± 0.05**<br>0.99 ± 0.08<br>0.59 ± 0.04**<br>1.10 ± 0.06<br>0.99 ± 0.08                       | 0.11 ± 0.00**<br>0.11 ± 0.00**<br>0.11 ± 0.00**<br>0.11 ± 0.00*<br>0.14 ± 0.00*<br>0.25 ± 0.07<br><b>0.09 ± 0.00</b> **<br>0.14 ± 0.00 | 1.0 ± 0.06*<br>1.01 ± 0.07**<br>1.21 ± 0.07*<br>1.31 ± 0.07*<br>1.01 ± 0.07**<br>1.34 ± 0.07<br>1.31 ± 0.08 | 0.78 ± 0.07**<br>0.70 ± 0.07**<br>0.77 ± 0.07**<br>0.97 ± 0.10<br><b>0.63 ± 0.04</b> **<br>1.21 ± 0.10<br>0.95 ± 0.10 | 0.38 ± 0.01<br>0.37 ± 0.01<br>0.39 ± 0.01<br>0.32 ± 0.01**<br>0.33 ± 0.07<br><b>0.26 ± 0.01</b> **<br>0.33 ± 0.01 |

Table 1: Results for tabular datasets: sample averages +/- one standard deviation across valid counterfactuals. The best outcomes are highlighted in bold. Asterisks indicate that the given value is more than one (\*) or two (\*\*) standard deviations away from the baseline (Wachter).

# Questions?

# Questions?

With thanks to my co-authors Mojtaba Farmanbar, Arie van Deursen and Cynthia C. S. Liem.



#### Code

The code used to run the analysis for this work is built on top of CounterfactualExplanations.jl.

There is also a corresponding paper, *Explaining Black-Box Models through Counterfactuals*, which has been published in JuliaCon Proceedings.



Figure 8: Trustworthy AI in Julia: github.com/JuliaTrustworthyAI

# Artelt, André, Valerie Vaquet, Riza Velioglu, Fabian Hinder, Johannes Brinkrolf, Malte Schilling, and Barbara Hammer. 2021. "Evaluating Robustness of Counterfactual Explanations." In 2021 IEEE Symposium Series on Computational Intelligence (SSCI), 01–09. IEEE.

- Grathwohl, Will, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud, Mohammad Norouzi, and Kevin Swersky. 2020. "Your Classifier Is Secretly an Energy Based Model and You Should Treat It Like One." In *International Conference on Learning Representations*.
- Joshi, Shalmali, Oluwasanmi Koyejo, Warut Vijitbenjaronk, Been Kim, and Joydeep Ghosh. 2019. "Towards Realistic Individual Recourse and Actionable Explanations in Black-Box Decision Making Systems." https://arxiv.org/abs/1907.09615.
- Mahajan, Divyat, Chenhao Tan, and Amit Sharma. 2020. "Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers." https://arxiv.org/abs/1912.03277.
- Schut, Lisa, Oscar Key, Rory Mc Grath, Luca Costabello, Bogdan