In [4]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

In [8]:

```
df=pd.read_csv(r"C:\Users\DELL E5490\Downloads\Income.csv")
df
```

Out[8]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [9]:

```
df.head()
```

Out[9]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17

In [10]:

```
df.tail()
```

Out[10]:

	Gender	Age	Income(\$)
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

In [11]:

```
plt.scatter(df["Age"],df["Income($)"])
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[11]:

Text(0, 0.5, 'Income(\$)')

In [12]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[12]:

```
▼ KMeans
KMeans()
```

In [14]:

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(

Out[14]:

```
array([2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
```

In [15]:

```
df["cluster"]=y_predicted
df.head()
```

Out[15]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	2
1	Male	21	15	2
2	Female	20	16	2
3	Female	23	16	2
4	Female	31	17	2

In [16]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[16]:

Text(0, 0.5, 'Income(\$)')

In [17]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Income($)"]])
df["Income($)"]=scaler.transform(df[["Income($)"]])
df.head()
```

Out[17]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	2
1	Male	21	0.000000	2
2	Female	20	0.008197	2
3	Female	23	0.008197	2
4	Female	31	0.016393	2

In [18]:

```
scaler.fit(df[["Age"]])
df["Age"]=scaler.transform(df[["Age"]])
df.head()
```

Out[18]:

	Gender	Age	Income(\$)	cluster
0	Male	0.019231	0.000000	2
1	Male	0.057692	0.000000	2
2	Female	0.038462	0.008197	2
3	Female	0.096154	0.008197	2
4	Female	0.250000	0.016393	2

In [24]:

```
km=KMeans()
```

In [25]:

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack ages\sklearn\cluster_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn(

Out[25]:

In [26]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[26]:

	Gender	Age	Income(\$)	cluster	New Cluster
0	Male	0.019231	0.000000	2	2
1	Male	0.057692	0.000000	2	2
2	Female	0.038462	0.008197	2	2
3	Female	0.096154	0.008197	2	2
4	Female	0.250000	0.016393	2	6

In [27]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[27]:

Text(0, 0.5, 'Income(\$)')

In [28]:

```
km.cluster_centers_
```

Out[28]:

In [29]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="orange",marker="+")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[29]:

Text(0, 0.5, 'Income(\$)')

In [30]:

```
k_rng=range(1,10)
sse=[]
```

```
In [32]:
```

```
for k in k rng:
km=KMeans(n_clusters=k)
km.fit(df[["Age","Income($)"]])
sse.append(km.inertia )
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
<code>`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`</code>
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of
`n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of
`n init` will change from 10 to 'auto' in 1.4. Set the value of `n init`
explicitly to suppress the warning
  warnings.warn(
C:\Users\DELL E5490\AppData\Local\Programs\Python\Python310\lib\site-pack
ages\sklearn\cluster\ kmeans.py:870: FutureWarning: The default value of
`n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init`
explicitly to suppress the warning
 warnings.warn(
```

[23.583906150363603, 13.028938428018286, 7.492107868586012, 6.05585864481 2547, 4.713416604872824, 3.8551355763290687, 3.054717436369358, 2.6458640 14245702, 2.347258636041184]

Out[32]:

Text(0, 0.5, 'Sum of Squared Error')

