

Méca QCM2: Référentiels non Galiléens

Attention: plusieurs réponses possibles!

Etes vous présents?

A. Vrai

On considère deux points A et B fixes. On les relie par un toboggan de forme quelconque. On lâche un point matériel de A, sans vitesse initiale, et on voudrait que sa vitesse d'arrivée en B soit la plus grande possible. Tous les frottements sont négligés

A. A et B doivent être reliés par un toboggan ayant une forme géométrique particulière (la brachistochrone, cf géométrie)

B. La ligne droite: on n'a rien trouvé de mieux!

C. La forme du toboggan ne changera rien

 D. Je préfère être passif mais j'ai hâte de voir comment tout va se terminer

100%

On considère deux points A et B fixes. On les relie par un toboggan de forme quelconque. On lâche un point matériel de A, sans vitesse initiale, et on voudrait que sa vitesse d'arrivée en B soit la plus grande possible. Les frottements ne sont pas négligés.

- A. A et B doivent être reliés par un toboggan ayant une forme géométrique particulière (la brachistochrone, cf géométrie)
- B. La ligne droite: on n'a rien trouvé de mieux!
- C. La forme du toboggan ne changera rien
- D. Je soutiens les efforts de mes compagnons de galère... allez-y!

On considère un satellite, de masse *m*, en orbite circulaire de rayon *r* autour de la Terre de masse M, soumis uniquement à l'attraction gravitationnelle de la Terre. Est-il possible de montrer que la norme de la vitesse est constante sans la

Un point M tourne autour d'un point O avec un mouvement circulaire uniforme de vitesse angulaire $\frac{d\alpha}{dt}$. L'accélération vaut:

A.
$$\omega^2 \overrightarrow{OM}$$

$$B. \left[-\left(\frac{d\alpha}{dt}\right)^2 \overrightarrow{OM} \right]$$

C.
$$\omega^2 \overrightarrow{MO}$$
D. $-OM^2$

$$D. -OM^2$$

E. La vérité est ailleurs

Que vaut l'accélération de Coriolis:

$$A. [\overrightarrow{a_C} = 2\overrightarrow{\omega} \wedge \overrightarrow{v_r}]$$

B.
$$\overrightarrow{a_C} = -2\overrightarrow{\omega} \wedge \overrightarrow{v_r}$$

C.
$$\overrightarrow{a_C} = -2\overrightarrow{v_r} \wedge \overrightarrow{\omega}$$

$$D. \ \overrightarrow{a_C} = \overrightarrow{0}$$

E. La vérité est ailleurs

La loi de composition de vitesse s'écrit:

$$\overrightarrow{v_e} = \overrightarrow{v_r} + \overrightarrow{v_e} \text{ avec}$$
 $\overrightarrow{v_e} = \overrightarrow{v(o')} + \overrightarrow{\omega} \wedge \overrightarrow{O'M}$

- A. Vrai
- B. Faux

La loi de composition de vitesse s'écrit:

A.
$$\overrightarrow{v_a} = \overrightarrow{v_r} + \overrightarrow{v_e}$$

avec
 $\overrightarrow{v_e}$
 $= \overrightarrow{v(o')} + \overrightarrow{\omega} \wedge \overrightarrow{O'M}$
B. $\overrightarrow{v_a} = \overrightarrow{v_r} - \overrightarrow{v_e}$
avec
 $\overrightarrow{v_e}$
 $= -\overrightarrow{v(o')} - \overrightarrow{\omega} \wedge \overrightarrow{o'M}$

C. Je vote blanc

Résoudre l'exercice des deux barres -Etape 1: définir les référentiels-référentiel absolu:

$$A.\left((0,\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z})\right)$$

B.
$$(A, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

C.
$$(O, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

D.
$$(A, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

E. Copernic

Résoudre l'exercice des deux barres -Etape 1: définir les référentiels-référentiel relatif:

A.
$$(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

B.
$$(A, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

C.
$$(O, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

$$D.\left[\left(A,\overrightarrow{u_x}',\overrightarrow{u_y}',\overrightarrow{u_z}'\right)\right]$$

E. Copernic

Le mouvement de translation?

A. Vrai

Accélération relative

A.
$$\overrightarrow{a_r} = \omega'^2 \overrightarrow{AM}$$

B.
$$\overrightarrow{a_r} = -\omega^2 \overrightarrow{AM}$$

C.
$$\overrightarrow{a_r} = \omega'^2 \overrightarrow{OM}$$

D.
$$\overrightarrow{a_r} = -\omega' \overrightarrow{AM}$$

$$E. |\overrightarrow{a_r} = -\omega'^2 \overrightarrow{AM}|$$

F. Heu...... C'est quoi une accélération relative?

Accélération d'entraînement: C'EST l'ACCELERATION DU POINT COINCIDENT

$$A. \ \overrightarrow{a_e} = -\omega'^2 \overrightarrow{AM}$$

B.
$$\overrightarrow{a_e} = \omega'^2 \overrightarrow{OM}$$

C.
$$\overrightarrow{a_e} = -(\omega' + \omega)^2 \overline{OM}$$

$$D. |\overrightarrow{a_e} = -\omega^2 \overrightarrow{OM}|$$

E.
$$\overrightarrow{a_e} = -\omega'^2 \overrightarrow{AO}$$

F. Heu.... Point quoi?

Accélération de Coriolis: Comment la calculer?

- 1. Se souvenir que $\overrightarrow{a_C} = 2\overrightarrow{\omega} \wedge \overrightarrow{v_r} = 2\omega \overrightarrow{u_z} \wedge \overrightarrow{v_r}$
- 2. Que vaut la vitesse relative? Rotation autour de A
 - $\overrightarrow{v_r} = \rho \dot{\theta} \overrightarrow{u_\theta} = \rho \dot{\theta} (\overrightarrow{u_z} \wedge \overrightarrow{u_\rho}) = \overrightarrow{\omega}' \wedge \overrightarrow{AM}$
- 3. On remplace $\overrightarrow{v_r}$ par sa valeur dans l'expression 1. $\overrightarrow{a_C} = 2\omega \overrightarrow{u_z} \wedge (\overrightarrow{\omega}' \wedge \overrightarrow{AM})$
- 4. Double produit vectoriel:

$$\vec{A} \wedge \vec{B} \wedge \vec{C} = \vec{B} (\vec{A}.\vec{C}) - C (\vec{A}.\vec{B})$$

AU FINAL

$$\overrightarrow{a_{\alpha}} = -(\omega + \omega')^2 \overrightarrow{AM} - \omega'^2 \overrightarrow{AO}$$

Résoudre l'exercice des deux barres -Etape 1: définir les référentiels-référentiel absolu:

$$A.\left((0,\overrightarrow{u_x},\overrightarrow{u_y},\overrightarrow{u_z})\right)$$

B.
$$(A, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

C.
$$(O, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

D.
$$(A, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

E. Copernic

Résoudre l'exercice des deux barres -Etape 1: définir les référentiels-référentiel relatif:

A.
$$(0, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

B.
$$(A, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$$

C.
$$(O, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

D.
$$(A, \overrightarrow{u_x}', \overrightarrow{u_y}', \overrightarrow{u_z}')$$

E. Copernic

Le mouvement de translation?

A. Vrai

Accélération relative

A.
$$\overrightarrow{a_r} = \omega'^2 \overrightarrow{AM}$$

B.
$$\overrightarrow{a_r} = -(\omega + \omega')^2 \overrightarrow{AM}$$

C.
$$\overrightarrow{a_r} = -(\omega + \omega')^2 \overrightarrow{OM}$$

D.
$$\overrightarrow{a_r} = -(\omega + \omega')\overrightarrow{AM}$$

$$E. \ \overrightarrow{a_r} = -\omega'^2 \overrightarrow{AM}$$

F. Heu...... C'est quoi une accélération relative?

Accélération d'entraînement: C'EST l'ACCELERATION DU POINT COINCIDENT

A.
$$\overrightarrow{a_e} = -\omega'^2 \overrightarrow{AM}$$

B.
$$\overrightarrow{a_e} = \omega'^2 \overrightarrow{OM}$$

C.
$$\overrightarrow{a_e} = -(\omega' + \omega)^2 \overline{OM}$$

D.
$$\overrightarrow{a_e} = -\omega^2 \overrightarrow{OM}$$

$$E. |\overrightarrow{a_e} = -\omega^2 \overrightarrow{OA}|$$

F. Heu.... Point quoi?

Accélération de Coriolis est nulle:

A. Vrai

MERCI!