CellTagR CellTag Object Testing

Compiled: June 11, 2019

Single-Cell RNA-Seq CellTag Extraction

Loading the package (Will be changed later)

library(devtools)

devtools::install_github("morris-lab/CellTagR")

```
## broom
             (NA
                   -> 0.5.2) [CRAN]
## cellranger (NA
                   -> 1.1.0) [CRAN]
## dbplyr
             (NA
                   -> 1.4.1) [CRAN]
## ellipsis
                   -> 0.1.0) [CRAN]
             (NA
## forcats
             (NA
                   -> 0.4.0) [CRAN]
## generics
             (NA
                   -> 0.0.2) [CRAN]
## haven
             (NA
                   -> 2.1.0) [CRAN]
## lubridate (NA
                    -> 1.7.4) [CRAN]
## markdown
             (0.9)
                  -> 1.0 ) [CRAN]
## modelr
             (NA
                   -> 0.1.4) [CRAN]
## networkD3 (NA
                   -> 0.4 ) [CRAN]
## readr
             (NA
                   -> 1.3.1) [CRAN]
## readxl
                   -> 1.3.1) [CRAN]
             (NA
             (NA -> 1.0.1) [CRAN]
## rematch
## reprex
             (NA
                   -> 0.3.0) [CRAN]
             (NA -> 0.3.4) [CRAN]
## rvest
## selectr (NA
                   -> 0.4-1) [CRAN]
## tibble (2.1.2 -> 2.1.3) [CRAN]
## tidyverse (NA -> 1.2.1) [CRAN]
##
✓ checking for file '/tmp/RtmpP8xeYK/remotes4c95ab4a261/morris-lab-CellTagR-f53de19/DES
CRIPTION'
##
- preparing 'CellTagR':
##
     checking DESCRIPTION meta-information ...
  checking DESCRIPTION meta-information ...
  checking DESCRIPTION meta-information ... OK
  checking DESCRIPTION meta-information
##
  excluding invalid files
 excluding invalid files
##
  Subdirectory 'R' contains invalid file names:
##
       'scripts.zip'
##
```

```
checking for LF line-endings in source and make files and shell scripts

- checking for LF line-endings in source and make files and shell scripts

##

checking for empty or unneeded directories

- checking for empty or unneeded directories

##

building

building

building 'CellTagR_0.0.0.9000.tar.gz'

- building 'CellTagR_0.0.0.9000.tar.gz'

##
```

library(CellTagR)

Download the bam file from the URL

Note: This download might take a large space and a long time

download.file("https://sra-download.ncbi.nlm.nih.gov/traces/sra65/SRZ/007347/SRR7347033/
hf1.d15.possorted_genome_bam.bam", params\$fastq.bam.data.path)

Bam File read

bam.test.obj <- CellTagObject(params\$object.name, fastq.bam.directory=params\$fastq.bam.d
ata.path)</pre>

V1

Extract the CellTag Information From the bam file

```
bam.test.obj <- CellTagExtraction(bam.test.obj, "v1")</pre>
```

```
## Loading required package: GenomeInfoDb
## Loading required package: BiocGenerics
## Loading required package: parallel
##
## Attaching package: 'BiocGenerics'
## The following objects are masked from 'package:parallel':
##
##
       clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
##
       clusterExport, clusterMap, parApply, parCapply, parLapply,
##
       parLapplyLB, parRapply, parSapply, parSapplyLB
##
  The following objects are masked from 'package:dplyr':
##
##
       combine, intersect, setdiff, union
  The following objects are masked from 'package:Matrix':
##
##
##
       colMeans, colSums, rowMeans, rowSums, which
  The following objects are masked from 'package:igraph':
##
##
##
       normalize, path, union
## The following object is masked from 'package:gridExtra':
##
##
       combine
  The following objects are masked from 'package:stats':
##
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
##
       anyDuplicated, append, as.data.frame, basename, cbind,
       colMeans, colnames, colSums, dirname, do.call, duplicated,
##
##
       eval, evalq, Filter, Find, get, grep, grepl, intersect,
       is.unsorted, lapply, lengths, Map, mapply, match, mget, order,
##
       paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind,
##
##
       Reduce, rowMeans, rownames, rowSums, sapply, setdiff, sort,
       table, tapply, union, unique, unsplit, which, which.max,
##
       which.min
##
```

```
## Loading required package: S4Vectors
## Loading required package: stats4
##
## Attaching package: 'S4Vectors'
  The following objects are masked from 'package:dplyr':
##
##
##
       first, rename
  The following object is masked from 'package:tidyr':
##
##
##
       expand
  The following object is masked from 'package:Matrix':
##
##
##
       expand
  The following objects are masked from 'package:reshape':
##
##
##
       expand, rename
  The following object is masked from 'package:plyr':
##
##
##
       rename
##
  The following objects are masked from 'package:data.table':
##
##
       first, second
  The following object is masked from 'package:base':
##
##
##
       expand.grid
## Loading required package: IRanges
##
## Attaching package: 'IRanges'
## The following objects are masked from 'package:dplyr':
##
##
       collapse, desc, slice
```

```
## The following object is masked from 'package:purrr':
##
##
       reduce
  The following object is masked from 'package:plyr':
##
##
##
       desc
  The following object is masked from 'package:data.table':
##
##
##
       shift
## Loading required package: GenomicRanges
## Loading required package: Biostrings
## Loading required package: XVector
##
## Attaching package: 'XVector'
## The following object is masked from 'package:purrr':
##
##
       compact
  The following object is masked from 'package:plyr':
##
##
##
       compact
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
##
##
       strsplit
head(bam.test.obj@bam.parse.rslt)
```

##			
			0 %
			1%
	 = 		1%
	 = 		2%
	 == 		2%
	 == 		3%
	 == 		4%
	 === 		4%
	 === 		5%
	 ==== 		5%
	 ==== 		6%
	 ==== 		7%
	 ===== 		7%
	 ===== 		8%
	 ====== 		9%
	 ===== 		10%
	 ====== 		10%
	 ====== 		11%
	 ======= 		12%
	 ======= 		13%
	 ======= 		13%
	 ======= 		14%
			15%
		I	16%
	 	·	16%
	 	·	17%
 		1	- · -

 ======== 		18%
 ========= 		18%
 ========= 		19%
 ========== 		19%
 ========== 		20%
 ========= 		21%
 ========== 		21%
 ========== 		22%
 ============ 		22%
 ============ 		23%
 =========== 		24%
 ============== 		24%
 ============== 		25%
 ===================================		25%
 ============== 		26%
 ===================================		27%
 =============== 		27%
 ===================================		28%
 ===================================		29%
 ===================================		30%
 ===================================		30%
 ===================================		31%
 ===================================		32%
 ===================================		33%
 ===================================		33%
 ===================================		34%
 ===================================		35%

 ===================================	1	36%
 ===================================		36%
 ===================================		37%
 ===================================		38%
 ===================================		39%
 ===================================		39%
 ===================================		40%
 ===================================		41%
 ===================================		41%
 ===================================		42%
 ===================================		42%
 ===================================		43%
 ===================================		44%
 ===================================		44%
 ===================================		45%
 ===================================		45%
 ===================================		46%
 ===================================		47%
 ===================================		47%
 ===================================		48%
 ===================================		48%
 ===================================		49%
 ===================================	1	50%
 ===================================		50%
 ===================================		51%
 ===================================		52%
 =======		52%

 ===================================		53%
 ===================================		53%
 ===================================		54%
 ===================================		55%
! ====================================		55%
 ===================================		56%
 ===================================		56%
 ===================================		57%
 ===================================		58%
 ======== 		58%
 ======== 		59%
 ======== 		59%
 ======== 		60%
 ======== 		61%
 ===================================		61%
 ===================================		62%
 ======== 		62%
 ======== 		63%
 ======== 		64%
 ===================================		64%
 ===================================		65%
 ===================================		66%
 ===================================		67%
 ===================================		67%
 		68%
 ========		69%
 ========		70%

- 1			
			70%
	=======================================		71%
			72%
	=======================================		73%
			73%
			74%
			75%
			75%
			76%
			76%
			77%
			78%
			78%
			79%
			79%
			80%
			81%
			81%
			82%
			82%
			83%
			84%
			84%
			85%
		1	86%
		1	87%
		1	87%

ı						
	======					88%
 	======					89%
	======					90%
	======					90%
 	======					91%
 	======					92%
 	======					93%
 	======					93%
 	======					94%
 	======					95%
 	======					95%
 	======					96%
 	======					96%
 	======					97%
	======					98%
 	======					98%
 	======					99%
 	======				=	99%
ļ	======				=	100%
	\$v1					
##			UMI	_		
##		GCAGTTAAGGAGTTGC-1				
## ##		GCAGTTAAGGAGTTGC-1				
##		ACTATCTCAGTATCTG-1				
## ##		TCTTCGGTCTTAGAGC-1 CTCTAATGTACTTGAC-1				
##	5 :	CICTAATGTACTTGAC-I	CGGTGTTACG	ATGACCTT		
		TTTGTCATCGTTTGCC-1	GAAACGCGCG	GACATACG		
		TTTGTCATCGTTTGCC-1				
ЩЩ	470041	mmmcmca mccmmmccc 1	CITA CITIC CITIES	GCMCA CA A		
		TTTGTCATCGTTTGCC-1				
		TTTGTCATCTACTTAC-1				
##	4/9943:	TTTGTCATCTACTTAC-1	AGGCCTGTCA	CAGCGTAG		

Generate the Count Matrix for CellTag

```
bam.test.obj <- CellTagMatrixCount(bam.test.obj, params$barcode.file)</pre>
```

```
## Warning in `[.data.table`(alltagCounts, , `:=`((tagsRemove), NULL)):
## length(LHS)==0; no columns to delete or assign RHS to.
```

bam.test.obj@celltag.stats

NULL

Generate the Binary Matrix from the Count Matrix

bam.test.obj <- SingleCellDataBinatization(bam.test.obj, 2)</pre>

Metric Plots to Facilitate for Additional Filtering

MetricPlots(bam.test.obj)

Histogram of CellTag Counts of Individual Cells

Average: 2.221668 ## Frequency: 1.340244

Apply the V1 whitelisted CellTags

bam.test.obj <- SingleCellDataWhitelist(bam.test.obj, params\$v1.whitelist.file)</pre>

Metric Based Filtering

```
bam.test.obj <- MetricBasedFiltering(bam.test.obj, 20, comparison = "less")
bam.test.obj <- MetricBasedFiltering(bam.test.obj, 2, comparison = "greater")</pre>
```

Metric Plots Again to Check for Additional Filtering

MetricPlots(bam.test.obj)

CellTag Counts of Individual Cells

Histogram of CellTag Counts of Individual Cells

Average: 4.974569
Frequency: 1.682125

Jaccard Analysis

bam.test.obj <- JaccardAnalysis(bam.test.obj)</pre>

Clone Calling

bam.test.obj <- CloneCalling(celltag.obj = bam.test.obj, correlation.cutoff=0.7)</pre>

Checking the stats and Saving the object

```
show(bam.test.obj)
saveRDS(bam.test.obj, paste0(params$object.saving.dir, "/bam_v1_obj.Rds"))
```

```
## Object name: hf1.d15.test
## Raw CellTag Counts = 6319
## Raw Number of Cells with CellTag = 3812
## Collapsed CellTag Counts = 0
## Whitelisted CellTag Counts = 3256
## Whitelisted Number of Cells with CellTag = 3812
```

V2

Extract the CellTag Information From the bam file

```
bam.test.obj <- CellTagExtraction(bam.test.obj, "v2")
head(bam.test.obj@bam.parse.rslt)</pre>
```

##			
			0%
			1%
	=		1%
	=		2%
	==	ı	2%
	==	' 	3%
	==	1	4%
	===	1	
		1	4%
	===	1	5%
	====		5%
	====		6%
	====		7%
	====		7%
	====		8%
	=====		9%
	=====		10%
	======		10%
	======		11%
	======		12%
	======		13%
	======		13%
	======		14%
	=======		15%
	=======		16%
	=======		16%
	========		17%

9	Centagn Centag Object resting		
	 ======== 	1	18%
	 ======== 		18%
	 ========= 		19%
	 ========= 		19%
	 ======== 		20%
	======== 	1	21%
	 ===================================		21%
	 ===================================		22%
	 ===================================		22%
	 ===================================		23%
	 ===================================		24%
	 ===================================		24%
	====================================		25%
	 ===================================		25%
	====================================		26%
	 ===================================		27%
	 		27%
	 		28%
	=====================================		29%
	=====================================		30%
	=====================================		30%
	=====================================		31%
	=====================================		32%
	=====================================		33%
	=====================================		33%
	=====================================		34%
	======================================		35%

_	centage centag object resting		
	 ===================================		36%
	 ===================================		36%
	 ===================================		37%
	 ===================================	1	38%
	! ====================================		39%
	 		39%
	 ===================================		40%
	 ===================================		41%
	 ===================================		41%
	 ===================================	1	42%
	 ===================================		42%
	 ===================================		43%
	 ===================================		44%
	ı ====================================		44%
	ı ====================================		45%
	 ===================================		45%
	 ===================================		46%
	 ===================================		47%
	 ===================================		47%
	 ===================================		48%
	 ===================================		48%
	 ===================================		49%
	 ===================================		50%
	 ===================================		50%
	 ===================================		51%
	 ===================================		52%
	 		52%

9					
	 ===================================		53%		
	 ===================================		53%		
	 ===================================		54%		
	! ====================================		55%		
	 ===================================		55%		
	' ====================================		56%		
	 ======== 		56%		
	 ===================================		57%		
	 ===================================		58%		
	! ====================================		58%		
	ı ======= 		59%		
	 ======== 		59%		
	 ======= 		60%		
	 ======= 		61%		
	 ======== 		61%		
	 ======== 		62%		
	 		62%		
	======== 		63%		
	======== 		64%		
	======== 		64%		
	 		65%		
	========		66%		
	======== 		67%		
	========= 		67%		
		1	68%		
		1	69%		
	====================================	I	70%		

. Centrag Object results		
 ===================================		70%
 ===================================		71%
 ===================================	1	72%
 ===================================		73%
 ===================================	1	73%
 ===================================	1	74%
 ===================================	1	75%
 ===================================	1	75%
 ===================================		76%
 ===================================		76%
 ===================================		77%
 ===================================		78%
 ===================================		78%
 ===================================		79%
 ===================================		79%
 ===================================		80%
 ===================================		81%
 ===================================		81%
 ===================================		82%
 ===================================		82%
 ===================================		83%
 ===================================		84%
 ===================================		84%
 ===================================		85%
 ===================================		86%
 		87%
 ===================================		87%

]						
	 ======		=======				888
	 ======: 						89%
	 ======: 						90%
	 ======: 			======	=======================================		90%
	 ======= 						91%
	======		=======	======	========================		92%
	 ======= 			=======			93%
	 ======= 						93%
	 ======= 			======			94%
	 ======: 						95%
	 ======= 			======			95%
	 ======= 			======			96%
	 ======= 						96%
	 ======: 			======			97%
	 ======= 			======			98%
	 ====== 			======			98%
	 ======= 						99%
	 ======= 			======	=======================================		99%
##	======= \$v1			======	=======	1	00%
##	•	Cell.BC	TIMT	Cell.Tag			
##	1.	GCAGTTAAGGAGTTGC-1		_			
##		GCAGTTAAGGAGTTGC-1					
##		ACTATCTCAGTATCTG-1					
##		TCTTCGGTCTTAGAGC-1					
##		CTCTAATGTACTTGAC-1	CGGTGTTACG	ATGACCTT			
##							
		TTTGTCATCGTTTGCC-1					
		TTTGTCATCGTTTGCC-1					
		TTTGTCATCGTTTGCC-1					
		TTTGTCATCTACTTAC-1					
	4/9943:	TTTGTCATCTACTTAC-1	AGGCCTGTCA	CAGCGTAG			
## ##	¢0						
	\$v2	G-11 DG	TTM-T	Coll ma			
##	_	Cell.BC	UMI	Cell.Tag			

Generate the Count Matrix for CellTag

```
bam.test.obj <- CellTagMatrixCount(bam.test.obj, params$barcode.file)

## Warning in `[.data.table`(alltagCounts, , `:=`((tagsRemove), NULL)):
## length(LHS)==0; no columns to delete or assign RHS to.

bam.test.obj@celltag.stats

## NULL</pre>
```

Generate the Binary Matrix from the Count Matrix

```
bam.test.obj <- SingleCellDataBinatization(bam.test.obj, 2)</pre>
```

Metric Plots to Facilitate for Additional Filtering

```
MetricPlots(bam.test.obj)
```


Histogram of CellTag Counts of Individual Cells

Histogram of CellTag Occurrence Frequency Across All Cells

Average: 2.5383
Frequency: 1.173417

Apply the V2 whitelisted CellTags

bam.test.obj <- SingleCellDataWhitelist(bam.test.obj, params\$v2.whitelist.file)</pre>

Metric Based Filtering

bam.test.obj <- MetricBasedFiltering(bam.test.obj, 20, comparison = "less")
bam.test.obj <- MetricBasedFiltering(bam.test.obj, 2, comparison = "greater")</pre>

Metric Plots Again to Check for Additional Filtering

MetricPlots(bam.test.obj)

Histogram of CellTag Counts of Individual Cells

Histogram of CellTag Occurrence Frequency Across All Cells

Average: 5.251781
Frequency: 2.614505

Jaccard Analysis

bam.test.obj <- JaccardAnalysis(bam.test.obj)</pre>

Clone Calling

bam.test.obj <- CloneCalling(celltag.obj = bam.test.obj, correlation.cutoff=0.7)</pre>

Checking the stats and Saving the object

```
show(bam.test.obj)
saveRDS(bam.test.obj, paste0(params$object.saving.dir, "/bam_v12_obj.Rds"))
```

```
## Object name: hf1.d15.test
## Raw CellTag Counts = 14565
## Raw Number of Cells with CellTag = 3812
## Collapsed CellTag Counts = 0
## Whitelisted CellTag Counts = 5793
## Whitelisted Number of Cells with CellTag = 3812
```

V3

Extract the CellTag Information From the bam file

```
bam.test.obj <- CellTagExtraction(bam.test.obj, "v3")
head(bam.test.obj@bam.parse.rslt)</pre>
```

	- 0 · 0 · 1						
##							
			0%				
 			1%				
 	=		1%				
 	=		2%				
 	==	ı	2%				
į	==	' 	3%				
į	==	 	4%				
 	===	1	4%				
 	===	1	5%				
į		1					
 	====		5%				
	====		6%				
i	====		7%				
 	====		7%				
	====		8%				
 	=====		9%				
 	=====		10%				
	=====		10%				
	======		11%				
 	======		12%				
	======		13%				
ĺ	=======		13%				
j I	=======		14%				
 	=======		15%				
 			16%				
 	=======		16%				
ļ	=======		17%				

centage centag object resung		
 ======== 		18%
 ========= 		18%
 ========= 	1	19%
 ========= 		19%
 ========== 		20%
 ===================================		21%
 ===================================		21%
 =========== 		22%
 ============= 		22%
 ===================================		23%
 ===================================		24%
 ============== 		24%
 ============== 		25%
 ===================================		25%
 ===================================		26%
 ===================================		27%
 ===================================		27%
 ===================================		28%
 ===================================		29%
 ===================================		30%
 ===================================		30%
 ===================================		31%
 ===================================		32%
ı ====================================		33%
! ====================================		33%
ı ====================================		34%
 ===================================		35%

9	CellTagR CellTag Object Testing				
	 ===================================		36%		
	 ===================================		36%		
	 ===================================		37%		
	 ===================================		38%		
	 ===================================		39%		
	' ====================================		39%		
	 ===================================		40%		
	 ===================================		41%		
	 ===================================		41%		
	 ===================================		42%		
	 ===================================		42%		
	 ===================================		43%		
	 ===================================		44%		
	 ===================================		44%		
	 ===================================		45%		
	 ===================================		45%		
	 ===================================		46%		
	 ===================================		47%		
	 ===================================		47%		
	 ===================================		48%		
	 ===================================		48%		
	 ===================================		49%		
	 ===================================		50%		
	 ===================================		50%		
	 ===================================		51%		
	 ===================================		52%		
			52%		

9	Centage Centage Object Testing				
	 ===================================		53%		
	 ===================================		53%		
	 ===================================		54%		
	 ===================================		55%		
	ı ======= 		55%		
	' =======		56%		
	 ======= 		56%		
	 ======= 		57%		
	 ======= 		58%		
	 ======= 		58%		
	 ======= 		59%		
	 ======= 		59%		
	 ======== 		60%		
	 ======== 		61%		
	 ======== 		61%		
	 ======== 		62%		
	 ======== 		62%		
	 ======== 		63%		
	 ======== 		64%		
	 		64%		
	 		65%		
	======== 		66%		
	======== 		67%		
	 		67%		
	 		68%		
	 		69%		
	 ======== 		70%		

centago contag object resung					
 ===================================		70%			
 ===================================		71%			
 ===================================	1	72%			
 ===================================		73%			
 ===================================		73%			
' ====================================		74%			
 ===================================		75%			
 ===================================	1	75%			
 ===================================	1	76%			
 ===================================	1	76%			
 ===================================	1	77%			
 ===================================	1	78%			
 ===================================		78%			
 ===================================		79%			
 ===================================	1	79%			
 ===================================		80%			
 ===================================		81%			
 		81%			
 ===================================		82%			
 		82%			
 ===================================		83%			
ı ====================================		84%			
ı ====================================		84%			
ı 	1	85%			
 		86%			
 		87%			
 		87%			

	 ======: 						88%
	======			=======			89%
	 =======					l	90%
İ						•	
	======		========		========		90%
	 ======: 						91%
	======						92%
	 =======				========		93%
	 =======				========	1	93%
						ı	J J 0
	======						94%
	 =======				=========	ı	95%
į						•	
	======						95%
	 ======						96%
	======	=======================================					96%
	 ======						97%
	 					1	98%
						l	906
	======						98%
	 ======						99%
	======		========			:	99%
						'	,,,,
,, .,		=======================================	=======			:	100%
	\$v1	0.11 50	****	0011 7			
## ##	1.	CCACTTAACCACTTCC 1		Cell.Tag			
##		GCAGTTAAGGAGTTGC-1 GCAGTTAAGGAGTTGC-1					
##		ACTATCTCAGTATCTG-1					
##		TCTTCGGTCTTAGAGC-1					
##		CTCTAATGTACTTGAC-1					
##				5			
	479939:	TTTGTCATCGTTTGCC-1	GAAACGCGCG	GACATACG			
##	479940:	TTTGTCATCGTTTGCC-1	CCTCCCGGTC	GACATACG			
##	479941:	TTTGTCATCGTTTGCC-1	GTAGTCCTTT	CCTGAGAA			
##	479942:	TTTGTCATCTACTTAC-1	AGGCCTGTCA	CAGCGTAG			
##	479943:	TTTGTCATCTACTTAC-1	AGGCCTGTCA	CAGCGTAG			
##							
	\$v2						
##	_	Cell.BC	UMI	Cell.Tag			

```
1: CTACACCTCTTTACAC-1 CTGTGTGTGT TGTGCTTG
        2: CTACACCTCTTTACAC-1 CTGTGTGTGT TGTGCTTG
        3: CTTAACTCAAGTCTGT-1 CTCCCTGTGT TGTGCTTG
##
##
                         <NA> GTGTGTGTGT TGTGCTTG
##
        5: GTCTCGTGTGCAGACA-1 CTCTTCTCGC TGTGCTTG
##
  479470: TTTGTCATCGAGAGCA-1 AGATAGTTGA CCACTTAT
  479471: TTTGTCATCGAGAGCA-1 AGATAGTTGA CCACTTAT
  479472: TTTGTCATCGAGAGCA-1 TACATCTCTC CAAATTTT
  479473: TTTGTCATCGAGAGCA-1 TACATCTCTC CAAATTTT
  479474: TTTGTCATCGCCAGCA-1 CTCACGGAGC TCCTGCAA
##
## $v3
##
                      Cell.BC
                                     UMI Cell. Tag
##
        1: TCAGCTCCATCCGTGG-1 GTGTAGTCCG GCAGCCAT
##
        2: AAATGCCAGTTATCGC-1 CAACGAGAGA GCAGCTAT
##
        3: ATCATGGTCTTCGGTC-1 TATTCAGATA CTCACGAT
##
        4: CGACCTTAGGACCACA-1 ACAACTTCCG AGGAGCAT
##
        5: TTCTACACATGCTAGT-1 GGTGGCCGGG TCGCTTAT
##
## 130013: TTTGTCATCCGAATGT-1 GAGAGGTCAA TACCGTTC
## 130014: TTTGTCATCCGAATGT-1 GAACAAGTAC TACCGTTC
  130015: TTTGTCATCCGAATGT-1 CCCCAGAAAT GTAGTTCT
## 130016: TTTGTCATCCGAATGT-1 GAGAGGTCAA TACCGTTC
## 130017: TTTGTCATCTTACCTA-1 TCGACATTGA ACTAACAA
```

Generate the Count Matrix for CellTag

```
bam.test.obj <- CellTagMatrixCount(bam.test.obj, params$barcode.file)</pre>
## Warning in `[.data.table`(alltagCounts, , `:=`((tagsRemove), NULL)):
## length(LHS)==0; no columns to delete or assign RHS to.
bam.test.obj@celltag.stats
## NULL
```

Generate the Binary Matrix from the Count Matrix

```
bam.test.obj <- SingleCellDataBinatization(bam.test.obj, 2)</pre>
```

Metric Plots to Facilitate for Additional Filtering

```
MetricPlots(bam.test.obj)
```


Average: 0.8355194
Frequency: 0.687905

Apply the V3 whitelisted CellTags

bam.test.obj <- SingleCellDataWhitelist(bam.test.obj, params\$v3.whitelist.file)</pre>

Metric Based Filtering

bam.test.obj <- MetricBasedFiltering(bam.test.obj, 20, comparison = "less")
bam.test.obj <- MetricBasedFiltering(bam.test.obj, 2, comparison = "greater")</pre>

Metric Plots Again to Check for Additional Filtering

MetricPlots(bam.test.obj)

Histogram of CellTag Counts of Individual Cells

Histogram of CellTag Occurrence Frequency Across All Cells

Average: 4.099707
Frequency: 0.7057042

Jaccard Analysis

bam.test.obj <- JaccardAnalysis(bam.test.obj)</pre>

Clone Calling

bam.test.obj <- CloneCalling(celltag.obj = bam.test.obj, correlation.cutoff=0.7)</pre>

Checking the stats and Saving the object

```
show(bam.test.obj)
saveRDS(bam.test.obj, paste0(params$object.saving.dir, "/bam_v123_obj.Rds"))
```

```
## Object name: hf1.d15.test
## Raw CellTag Counts = 19195
## Raw Number of Cells with CellTag = 3812
## Collapsed CellTag Counts = 0
## Whitelisted CellTag Counts = 7774
## Whitelisted Number of Cells with CellTag = 3812
```