Problemas

Solução do capítulo 1

1.3-1)

(1)

$$0.1Kq - NaCl - 100q$$

(2)

$$0,15Kg - C_{12}H_{22}O_{11} - 150g$$

(3)

$$0,50KgH_2O - 500g$$

o volume restante do sistema é $0.55 \times 10^{-3} m^3 V = 0.55 l$ Qual é o número de moles dos três componentes do sistema?

Solução: Podemos calcular o número de moles através da massa molar

$$N_1 = \frac{100}{58,44} = 1,71 mol$$

 $m_1 = 22,99 + 35,45 = 58,44g$

$$N_2 = \frac{150}{342} = 0,43 mol$$

 $m_2 = 12 \times 12 + 22 \times 1 + 11 \times 16 = 342$

$$N_3 = \frac{500}{18} = 27,77mol$$

 $m_3 = 2 \times 1 + 16 = 18$

Quais as frações molares?

Solução: Primeiramente vamos calcular o número de mols

$$N_t = \sum_{r=1}^{3} N_r = 1.71 + 0,43 + 27.77 = 29.9$$

$$F = \frac{N_k}{\sum_{j}^{r} N_j}$$

 $F_1 = 0.057 \ F_2 = 0.014 \ F_3 = 0.93$

Qual o volume molar do sistema?

Solução: O volume molar do sistema é dado por

$$V_m = \frac{V}{\sum_{r=1}^3 N_r} = \frac{V}{N_t} = \frac{0.55 \times 10^{-3}}{29.9} = 18.39 \times 10^{-6} m^3 / mol$$

1.3-2) Sabemos que o boro é uma mistura dos isótopos $B^{10}(10.0129g)$ e $B^{11}(11.0093g)$. Queremos saber qual a fração que cada um contribui para o boro encontrado na natureza (10.811g). Qual a fração molar de B^{10} na mistura?

Solução:

$$x(10.0129) + y(11.0093) = 10.811$$

$$x + y = 1$$

usando que y = (1 - x)

$$x(10.0129) + (1 - x)(11.0093) = 10.811$$

$$10.0129x + 11.0093 - 11.0093x = 10.81$$

$$10.0129x - 11.0093x = 10.81 - 11.0093$$

$$-0.9964x = -0.1993(-1)$$

$$x = \frac{0.1993}{0.9964} = 0.20$$

$$B^{10} = 20\%$$

1.3-3

(1)
$$C_2H_5OH - 0.79q/cm^3 - 20cm^3$$

(2)
$$CH_3OH - 0.81q/cm^3 - 20cm^3$$

(3)
$$H_2O - 1q/cm^3 - 20cm^3$$

Qual é o número de moles e a fração molar dos três componentes do sistema? Solução:

$$N_1 = \frac{0.79 \times 20}{2 \times 12 + 6 \times 1 + 1 \times 16} \frac{15.8}{46} = 0.34$$

$$N_2 = \frac{0.81 \times 20}{12 + 4 \times 1 + 16} = \frac{16.2}{32} = 0.51$$

$$N_3 = \frac{1 \times 20}{2 \times 1 + 16} = \frac{20}{18} = 1.11$$

$$N_t = \sum_{r=1}^{3} N_r = 0.34 + 0.51 + 1.11 = 1.96$$

$$F_m = \frac{N_k}{\sum_j^r N_j}$$

$$F_1 = 0.17 \ F_2 = 0.26 \ F_3 = 0.57$$

1.3-4

$$0.01Kg\ 50\% - H_2\ 30\% - HD\ 20\% - D_2$$

$$\frac{0.2 + x}{1 + x} = 0.3$$

$$0.2x + x = 0.3 + 0.3x$$

$$0.7x = 0.1$$

$$x = 0.142$$

$$m_t = 0.01 Kg$$

1.3-5)

$$C_{12}H_{22}O_{11}-20\%$$

$$H_2O - 80\%$$

por peso;

Qual é a fração molar de açucar na solução?

$$\frac{m_1}{m_t} = 0.2$$

$$m_t = m_1 + m_2$$

$$m_1 = 0.2 m_t$$

$$m_1 = 0.2(m_1 + m_2)$$

$$m_1 0.8 = 0.2 m_2$$

mas

$$m_1 = N_1 M_1$$

$$m_2 = N_2 M_2$$

$$N_1 M_1 0.8 = 0.2 N_2 M_2$$

$$F = \frac{N_1}{N_1 + N_2} = \frac{N_1}{N_1 + \left(\frac{0.8}{0.2}\frac{M_1}{M_2}\right)N_1} = \frac{1}{1 + 4 \times \frac{M_1}{M_2}}$$

$$\frac{M_1}{M_2} = \frac{12 \times 12 + 22 \times 1 + 16 \times 11}{2 \times 1 + 16} = 19$$

$$F = \frac{1}{1 + 4 \times 19} = \frac{1}{77} = 0.01298$$

1.3-6) Uma solução aquosa tem massa m=0.1029Kg a fração molar do soluto é 0.1. A solução é diluida com 0.036Kg de água, na qual a fração molar é 0.04.

Solução:

$$\frac{N_1}{N_t} = 0.1$$

$$\frac{N_2}{N_t} = 0.9$$

$$N_1 M_1 + N_2 M_2 = m = 0.1029$$

como $M_2 = (2 \times 1 + 16) = 18$ adicionando 0.036 Kg $N_2^{`} = 1.00 moles$

$$\frac{N_1}{(N_T + 2)} = 0.07$$

$$0.1N_t = 0.01(N_t + 2)$$

$$N_t = 4.67$$

$$N_t = 4.67$$

$$M_1 = \frac{m - N_2 M_2}{N_1}$$

$$M = \frac{0.1029 \times 10^{23} - 0.9 \times 4.67}{0.1467} = 211$$

1.3-7) Solução aquosa de N_aCl 0.2Kg

S:

$$\frac{N_3}{N_t} = 0.25$$

$$M_1 = 36.461$$

$$M_2 = 18.0154$$

$$0.1N_t \times 36.461 + 0.9N_t \times 18.0154 = 0.1 \times 10^3$$

$$N_t = 5.04$$

$$M_3 = 40.00$$

$$M_4 = 18.0154$$

$$N_t(0.25 \times 40 + 0.75 \times 18) = 0.3 \times 10^3$$

$$N_t = 12.73$$

$$x_{H_2O} = 0.79$$

1.8-1) Primeiramente vamos resolver o exemplo 1

Exemplo 1: Um gás está feixado em um cilindro com um pistão móvel. E observando que se as paredes são adiabáticas, um aumento quase estático do volume resulta em uma diminuição da pressão segundo a equação

$$P^3V^5=c$$

para (Q=0)

com c = uma constante.

a) Achar o trabalho realizado no sistema e o calor resultante transferido em cada um dos processos: (ADB,ACB,AB) linear:

Primeiramente vamos achar a diferença de energia do estado A ao estado B.

$$dU = dQ + dW$$

se usarmos a curva adiabática (dQ = 0)

$$\int_{U_a}^{U_b} dU = -\int PdV$$

$$U_b - U_a = -\int_{V_a}^{V_b} \frac{c^{1/3}}{V^{5/3}} dV$$

$$U_b - U_a = \frac{3c}{2} \left[V_b^{-2/3} - V_a^{-2/3} \right] = \frac{3P_a V_a^{5/3}}{2} \left[V_b^{-2/3} - V_a^{-2/3} \right] = -112.5J$$

agora que sabemos ΔU vamos calcular os dQ e dW

$$dU_1 = dQ_1 + dW_1$$

$$dW_{ABC} = -\int_{10^{-3}}^{8 \times 10^{-3}} P dV = -10^5 (8 \times 10^{-3} - 10^{-3}) = -700 J$$

logo

$$U_b - U_a = Q + W$$

$$Q = -113.5 + 700 = 587.5J$$

Para as outras transformações

$$W_{ABC} = -\int_{10^{-3}}^{8 \times 10^{-3}} \frac{10^5}{32} dV = \frac{-10^5}{32} (7 \times 10^{-3}) = -\frac{7}{32} \times 10^2$$

$$Q_{ABC} = -112.5 + \frac{7}{32} \times 10^2$$

$$P = aV + b$$

$$W = -\int_{V_a}^{V_b} P dV = -\frac{a(V_b^2 - V_a^2)}{2} + b(V_b - V_a)$$

b) Um eixo é instalado dentro do sistema e é movimentado por um motor externo. O motor exerce um torque, movimentando o eixo a uma velocidade angular w, a pressão do gás é observada

$$\frac{dp}{dt} = \frac{2}{3} \frac{\vec{w}}{v} \times \vec{N}$$

com isso podemos achar a relação entre variação na pressão o volume constante e variação na energia interna

$$dp = \frac{2}{3} \vec{w} \frac{dt \times \vec{N}}{V} = \frac{2}{3} d \vec{\theta} \times \vec{N} = \frac{2}{3} \frac{1}{v} dU$$

$$dU = \frac{2}{3}VdP$$

1.8-2) Queremos calcular o calor transferido na transformação Primeiro vamos achar a reta que define a transformação

$$P = \frac{(-V \times 10^8 + 15 \times 10^5)}{14}$$

$$V = -14P \times 10^{-8} + 15 \times 10^{-3}$$

se considerarmos o motor para medirmos a diferença de energia entre os estados

$$dU = \frac{3}{2}VdP$$

$$U_p - U_a = \frac{3}{2} \int V dV = \frac{3}{2} \int_{P_a}^{P_b} (-14 \times 10^{-8} P + 15 \times 10^{-3}) dP$$

$$\frac{3}{2} \left[-14 \times 10^{-8} \frac{(P_p^2 - P_a^2)}{2} + 15 \times 10^{-3} (P_p - P_a) \right]$$

agora que sabemos ΔU podemos calcular Q

$$dQ = dU - dW$$

$$Q = \Delta U + \int_{V_b}^{V_a} P dV = \Delta U \int_{V_a}^{V_p} \frac{(15 \times 10^3 - V \times 10^8) dV}{14}$$

$$Q = \Delta U + \frac{1}{14} \left[15 \times 10^5 (V_p - V_a) - 10^8 (V_p^2 - V_a^2) \right]$$

1.8-3) Para um sistema gasoso foi determinado que a energia interna é dada por

$$U = 2.5PV + c$$

calcular $Q \in W$ para os 3 processos

$$dW = -PdV$$

$$w = -\int_{V_1}^{V_2} PdV = 0.2(0.01 - 0.03) \times 10^6 = -4 \times 10^3 joules$$

$$U = 2.5PV + cte$$

$$U_b - U_a = 2.5(P_b V_b - P_a V_a)$$

$$U_b - U_a = 2.5(0.03 \times 0.2 - 0.01 \times 0.2) \times 10^6 = 1 \times 10^4 J$$

$$Q_{AB} = 1 \times 10^4 + 4 \times 10^3 = 4.1 \times 10^4 J$$

 $B \to C$

$$dW = -PdV$$

$$P = -15V + 0.65$$

$$W = -\int_{V_a}^{V_c} PdV = -\frac{15}{2}(V_c^2 - V_b^2) + 0.65(V_b - V_c)$$

$$W = 6 \times 10^6 + 1.3 \times 10^3 = 1.3 \times 10^3 J$$

$$U_c - U_b = 2.5 \times (P_c V_c - P_b V_b) = -2.5 \times 10^3 J$$

$$U_c - U_b = 2.5 \times (P_c V_c - P_b V_b) = -2.5 \times 10^3$$

$$Q = -9.8 \times 10^3 J$$

processo $C \to V$

$$w = 0$$

$$dV = 0$$

logo $U_a-U_c=2.5\times(P_aV_a-P_cV_c)=-7.5\times10^{-3}=Q$ agora queremos calcular Q e W atráves da parábola $P=10^5+10^9\times(V-0.02)^2$, o trabalho fica

$$w = -\int_{V_a}^{V_b} P dV = -10^5 (V_b - V_a) - 2 \times 10^9 \times \left[(V_b - 0.02)^2 - (V_a - 0.02) \right]$$

$$W = -2 \times 10^3 J$$

a energia interna é dada por $\Delta U = 1 \times 10^4$

$$Q = 10 \times 10^3 + 2 \times 10^3 = 12 \times 10^3$$

1.8-4) Queremos achar as curvas adicháticas (dQ = 0) no sistema anterior

$$dQ = dU - dW$$

logo

$$dU = dW = -PdV$$

nós sabemos que U=2.5PV+c, diferenciando U

$$dU = \frac{\partial U}{\partial V}dP + \frac{\partial U}{\partial V}dV = 2.5VdP + 2.5PdV$$

$$2.5VdP + 2.5PdV = -PdV$$

$$2.5VdP = -3.5PdV$$

$$-\frac{5}{7}\frac{dP}{P} = \frac{dV}{V}$$

$$5lnP = -7lnVc$$

$$lnP^5 = lnV^{-7}c$$

$$P^5V^7 = c$$

1.8-5) A energia de um sistema é dado por

$$U = AP^2V$$

Queremos achar a equação das adiabáticas no plano P-V. Temos que dQ=dU-dW, mas vamos impor que dQ=0

$$dU = dW = -PdV \tag{1}$$

diferenciando U

$$dU = \frac{\partial U}{\partial V}dV + \frac{\partial U}{\partial P}dP = AP^2dV + 2APVdP$$

substituindo em 1

$$AP^2dV + 2APVdP = -PdV$$

$$2APVdP = P(AP - 1)dV$$

$$\frac{2AdP}{AP-1} = \frac{dV}{V}$$

integrando

$$2ln(AP - 1) = lnVc$$

$$c = \frac{(AP - 1)^2}{V}$$

1.8-6) Temos que um sistema em particular o volume é mantido constante (V_o) e a pressão varia de P_o para um valor arbitrário P° , tal que a transferência de calor é

$$Q' = A(P' - P_O) \tag{2}$$

para A > 0

Nós também sabemos que as adiabáticas do sistema são:

$$PV^8 = cte (3)$$

para $\gamma > 1$

queremos achar U=U(P,V), temos que no caso 2 dW=0, logo

$$dU = dQ = -AP_o dP' (4)$$

no caso 3 dQ = 0, logo

$$dU = -dW = -PdV = \frac{c}{V^8}dV \tag{5}$$

sendo $U_o = U(P_o, V_o)$ integrando a equação 4

$$\int_{U_o}^{U_1} dU = \int_{P_o}^{P_1} -AP_o dP$$

$$U_1 - U_o = -AP_o(P_1 - P_O)$$

$$\int_{U_1}^{U} dU = -\int_{V_o}^{V} \frac{c}{V^8} dV = U - U_1 = \frac{c}{(\gamma - 1)} \left[\frac{1}{V^{\gamma - 1}} - \frac{1}{V_o^{\gamma - 1}} \right]$$

$$P_1V_o^{\gamma} = c$$

$$P_1 = \frac{c}{V^8}$$

$$U - U_o = -AP_o \left[\left(\frac{V}{V_o} \right)^{\gamma} P - P_o \right] + \frac{P.V}{\gamma - 1} \left[1 - \left(\frac{V}{V_o} \right)^{\gamma - 1} \right]$$

se $r = \frac{V}{V_0}$

$$U - U_o = -AP_o [r^{\gamma}P - P_o] + \frac{P.V}{\gamma - 1} [1 - r^{r-1}]$$

1.8-7) Dois moles de um sistema de um único componente, obedece

$$U = APV^2$$

para N=2

usando o fato de V e U serem, extensivos vamos achar U(P, V, N) se $V_2 = 2V_1$ e $U_2 = 2U_1$

$$U_1 = \frac{1}{2}U_2 = \frac{1}{2}AP(V_2)^2$$

$$U_1 = 2AP(V_1)^2$$

se tivermos N moles teremos $U = NV_1$

$$U = 2NAPV_1^2$$

mas $V = NV_1$, ou seja, $V_1 = \frac{V}{N}$

$$U = \frac{2NAPV^2}{N^2} = \frac{2APV^2}{N}$$

1.10-1) Das equações fundamentais deste exercício, cinco são inconsistentes com um ou mais postulados. Queremos achar essas cinco equações e indicar quais postulados são quebrados. Solução: a)

$$S = \left(\frac{R^2}{v_\theta \theta}\right)^{1/3} (NVU)^{1/3}$$

como o postulado 2 só afirma a existência de S a sua dependência com N,V e U este já e é automaticamente satisfeito. Para o postulado (3)

$$S(\lambda N, \lambda U, \lambda V) = \lambda S(N, U, V)$$

$$S\left(\lambda N, \lambda U, \lambda V\right) = \left(\frac{R^2}{v_{\theta}\theta}\right)^{1/2} \left(\lambda^3 N V U\right)^{1/3} = \lambda \left(\frac{R^2}{v_{\theta}\theta}\right) (N V U)^{1/2} = \lambda S\left(N, V, U\right)$$

do mesmo postulado

$$\frac{\partial S}{\partial U}(U, V, N) = \frac{1}{3} \left(\frac{R^2}{v_{\theta}\theta}\right)^{1/3} (NUV)^{-2/3} NV > 0$$

para o postulado 4

$$\frac{\partial U}{\partial S} = \frac{1}{\frac{\partial S}{\partial U}} = 3 \left(\frac{R^2}{v_{\theta} \theta} \right)^{-1/3} (NVU)^{2/3}$$

que é zero quando, N=0 ou V=0 ou U=0 mas nesses valores S=0 também logo a) é uma função aceitável

b)
$$S = \left(\frac{R}{\theta_2}\right)^{1/3} \left(\frac{NU}{V}\right)^{2/3}$$

verificando postulado 2

$$S\left(\lambda N,\lambda V,\lambda U\right) = \left(\frac{R}{\theta^2}\right)^{1/3} \left(\lambda \frac{NU}{V}\right)^{2/3} = \lambda^{2/3} S\left(N,V,U\right)$$

logo b) não é uma função aceitável c)

$$S = \left(\frac{R}{\theta}\right)^{1/4} \left(NU + \frac{R\theta V^2}{v_o^2}\right)^{1/2}$$

postulado 2

$$S\left(\lambda U, \lambda V, \lambda N\right) = \left(\frac{R}{\theta}\right)^{1/2} \left(\lambda^2 N U + \lambda^2 \frac{R\theta V^2}{v_o^2}\right)^{1/2} = \lambda S\left(U, V, N\right)$$

passando a segunda parte do postulado

$$\frac{\partial S}{\partial U} = \left(\frac{R}{\theta}\right)^{1/2} \frac{1}{2} \left(NU + \frac{R\theta V^2}{v_o^2}\right)^{-1/2} N > 0$$

postulado 4

$$\frac{\partial U}{\partial S} = \left(\frac{R}{\theta}\right)^{-1/2} \frac{1}{2} \left(NU + \frac{R\theta V^2}{v_o^2}\right)^{1/2}$$

que toma valor nulo. Quando $NU+\frac{R\theta V^2}{V_o^2}=0$ mas nesse caso S(U,V,N)=0 , logo c) também é uma função aceitável. d)

$$S = \left(\frac{R^2 \theta}{v_0^3}\right) \frac{V^3}{NU}$$

esta função vai contra o postulado 3

$$\frac{\partial U}{\partial S} = \left(\frac{R^2 v}{v_o^3}\right) \frac{V^3}{N} (-1) \frac{1}{U^2} N > 0$$

e)
$$S = \left(\frac{R^3}{v_0 \theta^2}\right)^{1/5} = \left[N^2 V U^2\right]^{2/5}$$

do postulado 2

$$S\left(\lambda U, \lambda V, \lambda N\right) = \left(\frac{R^3}{v_o \theta^2}\right)^{1/5} \left[\lambda^5 N^2 V U^2\right]^{1/5} = \left(\frac{R^3}{v_o \theta^2}\right) \lambda \left[N^2 V U^2\right]^{1/5} = \lambda S\left(U, V, N\right)$$

e

$$\frac{\partial S}{\partial U} = \left(\frac{R^3}{v_\theta^2}\right) \left(N^2 V\right)^{1/5} \frac{1}{5} (U^2)^{-4/5} 2U$$

que pode tomar valores menores que zero se U < 0 f)

$$S = NRln\left(\frac{UV}{N^2R\theta v_o}\right)$$

testando o postulado 3

$$S\left(\lambda U, \lambda V, \lambda N\right) = \lambda NRln\left(\frac{\lambda^2 UV}{\lambda^2 N^2 R\theta v_o}\right) = \lambda S(U, V, N)$$

$$\frac{\partial S}{\partial U} = \frac{NRV}{N^2 R \theta v_o} \frac{1}{\frac{UV}{N^2 R \theta v_o}} = \frac{NR}{U} > 0$$

pois U>0 para que $\frac{UV}{N^2R\theta v_o}>0$ passando ao postulado 4

$$\frac{\partial U}{\partial S} = \frac{U}{NR}$$

que é sempre diferente de zero pois em S, U > 0g)

$$S = \left(\frac{R}{\theta}\right)^{1/2} [NU]^{1/2} e^{-\left(V^2/2N^2 v_o^2\right)}$$

postulado 3:

$$S\left(\lambda U, \lambda V, \lambda N\right) = \left(\frac{R}{\theta}\right)^{1/2} \lambda \left[NU\right] e^{-\left(V^2/2N^2 v_o^2\right)} = \lambda S\left(U, V, N\right)$$

quanto a propriedade monótona

$$\frac{\partial S}{\partial U} = \left(\frac{R}{\theta}\right)^{1/2} \frac{1}{2} \frac{N}{NU^{-1/2}} e^{-\left(V^2/2N^2 v_o^2\right)} > 0$$

pois U > 0 em S

1.10-2) Quando achar U(S,V,N) nas funções aceitáveis do exercício anterior:

$$S = \left(\frac{R^2}{v_o \theta}\right)^{1/3} (NVU)^{1/3}$$

$$S^3 = \left(\frac{R^2}{v_o \theta}\right) (NVU)$$

$$U = \left(\frac{v_o \theta}{R^2}\right) \frac{S^2}{NV}$$

$$S = \left(\frac{R}{\theta}\right)^{1/2} \left(NU + \frac{R\theta V^2}{v_o^2}\right)^{1/2}$$

$$S^2 = \left(\frac{R}{\theta}\right) \left[NU + \frac{R\theta V^2}{v_o^2}\right]$$

$$S = NR \ln \left(UV/N^2 R\theta v_o\right)$$

$$e^S = \left(\frac{UV}{N^2 R^2 \theta v_o}\right)^{NR}$$

$$e^{S/NR} = \frac{UV}{N^2 R\theta v_o}$$

$$U = \frac{N^2 R\theta v_o}{V} e^{S/NR}$$

$$S = \left(\frac{R}{\theta}\right)^{1/2} (NU)^{1/2} e^{-V^2/2N^2 v_o^2}$$

$$S^2 = \frac{R}{\theta} (Nu) e^{-V^2/2N^2 v_o^2}$$

$$U = e^{V^2/2N^2 v_o^2} \left(\frac{\theta}{R}\right) \frac{1}{N}$$

1.10-3) Temos dois sistemas A e B que obedecem a equação fundamental

$$S = \left(\frac{R^2}{v_o^{\theta}}\right) (NVU)^{1/3}$$

inicialmente os sistemas estão separados por uma parede rígida, impermeável e adiabática $V_a=9.10^{-6}m^3\ V_b=4.10^{-6}m^3\ N_a=3moles\ N_b=2moles$

$$U_A + U_B = 80J$$

a entropia total do sistema é dada pelo postulado 3

$$S = \left(\frac{R^2}{v_o \theta}\right)^{1/3} \left[(N_A V_A U_A)^{1/3} + (N_B V_B U_B)^{1/3} \right]$$

$$S = \left(\frac{R^2}{v_o \theta}\right)^{1/3} \left[3.10^{-2} U_A^{1/3} + 2.10^{-2} U_B^{1/3}\right]$$

$$U_B = 80 - U_a$$

$$S = \left(\frac{R^2 80}{v_o \theta}\right)^{1/3} \left[3.10^{-2} \left(\frac{U_a}{80}\right)^{1/3} + 2.10^{-2} \left(1 - \frac{U_A}{80}\right)^{1/3} \right]$$

vamos considerar que a parede agora é diatérmica qual é o nosso equilíbrio? usando o princípio do máximo

$$\frac{\partial S}{\partial U_a} = \left(\frac{R^2 80}{v_o \theta}\right)^{1/3} \left[\frac{3.10^{-2}}{80} \frac{1}{3} \left(\frac{80}{U_a}\right)^{2/3} - \frac{2.10^{-2}}{80} \frac{1}{3} \left(1 - \frac{U_A}{80}\right)^{-2/3}\right] = 0$$

$$3 \left(\frac{U_A}{80}\right)^{2/3} - 2 \left(1 - \frac{U_A}{80}\right)^{2/3} = 0$$

$$\frac{3}{2} \left(\frac{U_A}{80}\right)^{2/3} = \left(1 - \frac{U_A}{80}\right)^{2/3}$$

$$U_A = \frac{1}{(3/2)^{3/2} + 1} \times 80$$

$$U_A = 28.20 J$$

Solução Capítulo 2

2.2-1) Achar as equações de estado para um sistema com a equação fundamental

$$U = \left(\frac{v_o \theta}{R^2}\right) \frac{S}{NV}$$

temos que

$$T = \frac{\partial U}{\partial S} = \left(\frac{v_o \theta}{R^2}\right) \frac{3S^2}{NV} = T(V, N)$$

$$T(\lambda V, \lambda N) = \frac{3\lambda^2 S^2}{\lambda^2 N V} \left(\frac{v_o \theta}{R^2}\right) = \frac{3S^2}{NV} = T(V, N)$$

$$P = -\frac{\partial U}{\partial V} = +\left(\frac{v_o \theta}{R^2}\right) \frac{S^3}{NV^2}$$

$$P(\lambda S, \lambda V, \lambda N) = -\left(\frac{v_o \theta}{R^2}\right) \frac{\lambda^3 S^3}{\lambda^3 N V^2} = P(S, V, N)$$

$$\mu = \frac{\partial U}{\partial N} = \left(\frac{V_o \theta}{R^2}\right) \frac{(-1)S^3}{N^2 V}$$

$$\mu(\lambda V, \lambda N, \lambda S) = -\left(\frac{v_o \theta}{R^2}\right) \frac{\lambda^3 S^3}{\lambda^3 N^2 V} = \mu(V, N, S)$$

2.2-2) Queremos achar uma função $\mu(T,V,N)$ temos pelo exercício anterior

$$\mu = -\left(\frac{v_o \theta}{R^2}\right) \frac{S^3}{N^2 V}$$

sendo que

$$T = \frac{3S^2}{NV} \left(\frac{v_o \theta}{R^2} \right)$$

$$S = \sqrt{\frac{R^2}{v_0 \theta} \frac{NVT}{3}}$$

$$\mu = -\left(\frac{v_o\theta}{R^2}\right)\frac{1}{N^2V}\frac{R^2}{v_o\theta}\frac{NVT}{3}\sqrt{\frac{R^2}{v_o\theta}\frac{NVT}{3}} = -\frac{1}{3}\sqrt{\frac{R^2}{v_o\theta}\frac{VT}{N3}}$$

2.2-3) Queremos achar a pressão como função do volume e da temperatura no exercício 1 obtemos:

$$P = \left(\frac{v_o \theta}{R^2}\right) \frac{S^3}{NV^2} \tag{6}$$

$$T = \left(\frac{v_o \theta}{R^2}\right) \frac{3S^2}{NV} \tag{7}$$

isolando S em 7

$$S^2 = \left(\frac{R^2}{v_o \theta}\right) \frac{1}{3} N V^2 T$$

$$S = \sqrt{\left(\frac{R^2}{v_o \theta}\right) \frac{1}{3} NVT}$$

substituindo em 6

$$P = \left(\frac{v_o \theta}{R^2}\right) \left(\frac{R^2}{v_o \theta}\right) \frac{1}{3} \frac{NVT}{NV^2} \sqrt{\left(\frac{R^3}{v_o \theta}\right) \frac{1}{3} NVT}$$

$$P = \frac{1}{3} \sqrt{\left(\frac{R^2}{v_o \theta}\right) \frac{1}{3} \frac{NT^3}{V}}$$

2.2-4) Primeiramente vamos achar as equações de estado para consistir com a equação fundamental

$$u = \left(\frac{\theta}{R}\right)s^2 - \left(\frac{R\theta}{v_o^2}\right)v^2$$

a temperatura

$$T = \frac{\partial U}{\partial S} = 2\left(\frac{\theta}{R}\right)S$$

a pressão

$$P = -\frac{\partial u}{\partial v} = 2\left(\frac{R\theta}{v_o^2}\right)\theta$$

o potencial químico

$$\mu = \frac{\partial U}{\partial N} = \frac{\partial (NU)}{\partial N} = u + N \frac{\partial U}{\partial N} = N \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial N} + \frac{\partial u}{\partial v} \frac{\partial v}{\partial N} \right)$$

como v=V/Nes=S/N ,

$$\frac{\partial v}{\partial N} = -\frac{1}{N}v\frac{\partial S}{\partial N} = -\frac{1}{N}S$$

$$\mu = u - ST + vP = u - 2\left[\left(\frac{\theta}{R}\right)S^2 - \left(\frac{R\theta}{v_o^2}\right)v^2\right]$$

logo $\mu = -u$

2.2-5) Queremos expressar a função μ obtida do exercício anterior como função de T e P.

$$\mu = -\left(\frac{\theta}{R}\right)S^2 + \left(\frac{R\theta}{v_o^2}\right)v^2$$

temos também que

$$T = 2\left(\frac{\theta}{R}\right)S$$

$$P = 2\left(\frac{R\theta}{v_o^2}\right)v$$

isolando Se vem Te P

$$S = \frac{1}{2} \left(\frac{R}{\theta} \right) T$$

$$v = \frac{1}{2} \left(\frac{v_o^2}{R\theta} \right) P$$

substituindo em $\mu(s, v)$

$$\mu = -\frac{1}{4} \left(\frac{R}{\theta} \right) T^2 + \frac{1}{4} \left(\frac{v_o^2}{R\theta} \right) P^2$$

2.2-6) Achar as equações do estado para um sistema com a equação fundamental

$$u = \left(\frac{v_o \theta}{R}\right) \frac{s^2}{v} e^{s/R}$$

a temperatura

$$T = \frac{\partial U}{\partial S} = \left(\frac{v_o \theta}{R}\right) \left(\frac{2s}{v} e^{s/R} + \frac{1}{R} \frac{s^2}{v} e^{s/R}\right)$$

$$T = \left(\frac{v_o \theta}{R}\right) \frac{s}{v} e^{s/R} \left(2 + \frac{s}{R}\right)$$

a pressão fica

$$P = -\frac{\partial u}{\partial v} = \left(\frac{v_o \theta}{R}\right) \frac{s^2}{v^2} e^{s/R}$$

o potencial químico

$$\mu = \frac{\partial (NU)}{\partial N} = u + N \left(\frac{\partial u}{\partial s} \frac{\partial s}{\partial N} + \frac{\partial u}{\partial v} \frac{\partial v}{\partial N} \right)$$

$$\mu = u - ST + vP$$

$$\mu = u - \left(\frac{v_o \theta}{R}\right) \frac{2s^2}{v} e^{s/R} - \left(\frac{v_o \theta}{R^2}\right) \frac{s^3}{v} e^{s/R} + \left(\frac{v_o \theta}{R}\right) \frac{s^2}{v} e^{s/R}$$

substituindo u:

$$\mu = -\left(\frac{v_o\theta}{R^2}\right)\frac{s^3}{v}e^{s/R}$$

2.2-7) Um sistema particular

$$u = Av^{-2}e^{s/R}$$

N moles dessa substância, inicialmente a uma temperatura T_o e pressão P_o , são expandidos com S constante até que a pressão seja $P_o/2$. Queremos achar a temperatura final

$$dU = TdS - Pdv$$

calculando as equações de estado

$$P = -\frac{\partial u}{\partial v} = 2Av^{-3}e^{s/R}$$

escrevendo a energia em função de P

$$v^{-3} = \frac{P}{2A}e^{-s/R}$$

$$v = \left(\frac{2A}{P}e^{s/R}\right)^{1/3}$$

$$u = A \left(\frac{P}{2A}e^{-s/R}\right)^{2/3} e^{s/R}$$

$$u = A \left(\frac{P}{2A}\right)^{2/3} e^{s/R}$$

a temperatura fica

$$T = \frac{\partial U}{\partial S} = Av^{-2} \frac{1}{R} e^{s/R}$$

logo

$$T = \frac{1}{R}u$$

$$u_f = Ae^{s_o/BR} \left(\frac{P_o}{4A}\right)^{2/3} = \left(\frac{1}{2}\right)^{2/3} Ae^{s_o/3R} \left(\frac{P_o}{2A}\right) = 0.63\mu_o$$

$$T_f = \frac{1}{R}\mu_f = 0.63 \frac{1}{R}\mu_o = 0.63 T_o$$

2.2-8) Mostre que para um sistema co r componentes:

$$du = TdS - Pdv + \sum_{j=1}^{r-1} (\mu_j - \mu_r) dV_j$$

onde x_j é a função molar μ_j/N temos um sistema cuja energia interna é dada por

$$U = U(V, P, N_1, \dots, N_r)$$

temos por definição que u=U/Nlogo

$$du = \frac{1}{N}du - \frac{1}{N^2}dN$$

$$du = TdS - Pdv + \sum_{j=1}^{r} \mu_j dN_j$$

dividindo po N

$$\frac{dN}{U} = \frac{TdS}{N} - \frac{PdV}{N} + \sum_{j=1}^{r} \mu_j \frac{dN_j}{N}$$

$$s = \frac{S}{N}$$

$$ds = \frac{ds}{N} - \frac{1}{N^2}dN$$

$$ds = Nds + \frac{1}{N}dN$$

$$v = \frac{V}{N}$$

$$dv = \frac{dV}{N} - \frac{1}{N^2}dN$$

$$dV = NdV + \frac{1}{N}dN$$

$$du = TNds + \frac{T}{N} - PNdv - \frac{P}{N}dN + \sum_{j=1}^{r} \mu_j dN_j$$

$$x_j = \frac{N_j}{N}$$

$$dx_j = \frac{dN_j}{N} - \frac{1}{N_2}dN$$

 $2.2\mbox{-}9)$ Queremos mostrar que se em um subsistema simples de um único componente

 $PV^{\hat{k}} = c$ processo adiabático onde c é uma constante, a energia é

$$U = \frac{1}{K - 1}PV + N_f\left(\frac{PV^k}{N^k}\right)$$

temos que $PV^k = g(s)$ pois PV^k deve depender de s, logo

$$\frac{\partial U}{\partial v} = -g(s)V^{-k}$$

mas

$$du = \left(\frac{\partial U}{\partial V}\right) dV$$

integrando

$$U = \frac{-g(s)V^{-k+1}}{-k+1} + f(s) = \frac{g(s)V^{-k+1}}{k-1} + f(s)$$

usando que $g(s) = PV^k$

$$N = \frac{PV}{K-1} + f(s) = \frac{PV}{K-1} + F_f(PV^k) = \frac{PV}{K-1} + N_f\left(\frac{PV^k}{N^k}\right)$$

2.3-1) Queremos achar as equações de estado na representação de entropia para a equação fundamental:

$$u = \left(\frac{v_o^{1/2}\theta}{R^{3/2}}\right) \frac{S^{3/2}}{U^{1/2}}$$

primeiramente vamos escrever a equação fundamental na representação de entropia

$$u^{2/5} = \left(\frac{v_o^{1/2}\theta}{R^{3/2}}\right)^{2/5} \frac{S}{U^{1/5}}$$

$$S = \left(\frac{R^{3/5}}{v_o^{1/5}\theta^{2/5}}\right) u^{2/5} U^{1/5}$$

assim as equações de estado ficam

$$\frac{1}{T} = \frac{\partial s}{\partial u} = \left(\frac{R^{3/5}}{v_o^{1/5}\theta^{2/5}}\right) \frac{2}{5} u^{-3/5} v^{1/5} = \frac{1}{s} \left(\frac{R^{3/5}}{v_o^{1/5}\theta^{2/5}}\right) u^{2/5} v^{-1/5}$$

calculando

$$S = NS\left(\frac{V}{N}, \frac{U}{N}\right) = \left(\frac{R^{3/5}}{v_o^{1/5}\theta^{2/5}}\right) \frac{N^{2/5}V1/5}{N^{2/5}N^{1/5}}N$$

$$\frac{\partial S}{\partial N} = \frac{\mu}{T} = \frac{2}{5} \left(\frac{R^{3/5}}{v_o^{1/5} \theta^{2/5}} \right) u^{2/5} v^{1/5}$$

2.3-2) Desenhar um gráfico de T(v) onde P=cte, no exercício anterior temos

$$\frac{1}{T} = \frac{2}{5} \left(\frac{R^{3/5}}{v_o^{1/5} \theta^{2/5}} \right) \frac{v^{1/5}}{u^{3/5}} \tag{8}$$

$$\frac{P}{T} = \frac{1}{5} \left(\frac{R^{3/5}}{v_o^{1/5} \theta^{2/5}} \right) \frac{u^{2/5}}{v^{4/5}} \tag{9}$$

queremos eliminar u da segunda equação para isso isolamos u em 9

$$u^{1/5} = \left[\frac{2T}{5} \left(\frac{R^{3/5}}{v_o^{1/5} \theta^{2/5}}\right) v^{1/5}\right]^{1/3}$$

$$T = 5P\left(\frac{v_o^{1/5}\theta^{2/5}}{R^{3/5}}\right)v^{4/5}\left[\frac{2T}{5}\left(\frac{R^{3/5}}{v_o^{1/5}\theta^{2/5}}\right)v^{1/5}\right]^{-2/3}$$

$$T^{5/3} = P5 \left(\frac{v_o^{1/5} \theta^{2/5}}{R^{3/5}} \right) v^{4/5} \left[\frac{2T}{5} \left(\frac{R^{3/5}}{v_o^{1/5} \theta^{2/5}} \right) v^{1/5} \right]^{-2/3}$$

$$T = K(P)(v^{4/5})^{3/5}(v^{4/5})^{-2/5} = K(P)v^{1/5}$$

2.3-3

$$u = \left(\frac{\theta}{R}\right) s^2 e^{-v^2/v_o^2}$$

queremos achar as equações de estado para a equação fundamental acima, faremos isto na representação da entropia:

$$S = \left[\frac{R}{\theta} u e^{v^2/v_o^2} \right]^{1/2} = \left(\frac{R}{\theta} \right)^{1/2} e^{(1/2)v^2/v_o^2}$$

derivando

$$F_o = \frac{1}{T} = \frac{\partial S}{\partial U} = \frac{1}{\alpha} \left(\frac{R}{\theta}\right)^{1/2} u^{-1/2} e^{(1/2)v^2/v_o^2}$$

$$F_1 = \frac{P}{T} = \frac{\partial S}{\partial V} = \left(\frac{R}{\theta}\right)^{1/2} u^{1/2} \frac{v}{v_o^2} e^{(1/2)v^2/v_o^2}$$

$$S = N_s \left(\frac{U}{N}, \frac{V}{N}\right) N \left(\frac{R}{\theta}\right)^{1/2} \frac{u^{1/2}}{N^{1/2}} e^{(1/2)v^2/N^2 v_o^2} = \left(\frac{R}{\theta}\right)^{1/2} (NU)^{1/2} e^{(1/2)v^2/(NV)^2}$$

calculando

$$\frac{\partial S}{\partial N}$$

$$F_2 = -\frac{\mu}{T} = \left(\frac{R}{\theta}\right)^{1/2} \frac{1}{\alpha} \left(\frac{U}{N}\right)^{1/2} e^{(1/2)v^2/(NV_o)^2} - \left(\frac{R}{\theta}\right)^{1/2} \frac{(NU)^{1/2}V^2}{N^3v_o^2} e^{(1/2)V^2/N^2v_o^2}$$

2.3-4) Temos a seguinte equação fundamental

$$S = AU^n V^m N^r$$

queremos saber para qual valores de m,n e r,s obedece os postulados da termodinâmica e impor que P cresce com U/V a N constante postulado 3

$$S(\lambda U, \lambda V, \lambda N) = \lambda S(U, V, N)$$

$$A(\lambda U)^{n}(\lambda V^{m})(\lambda N)^{v} = \lambda^{m+n+r}S(U, V, N)$$

logo m + n + r = 1queremos também que

$$\frac{\partial U}{\partial S} = \frac{1}{\partial S/\partial U} = \frac{1}{A} \frac{1}{nU^{n-1}V^mN^r} n > 0$$

e também

$$P = T \frac{\partial S}{\partial V} = \frac{1}{\partial S/\partial U} \frac{\partial S}{\partial V} = \frac{mAU^nV^{m-1}N^r}{nAU^{n-1}V^mNr} = \left(\frac{m}{n}\right) \frac{U}{V}$$

logo m = n

2.3-5) Queremos achar os três equações do estado para o sistema com a relação fundamental

$$\frac{S}{R} = \frac{UV}{N} - \frac{N^3}{UV}$$

$$F_o = \frac{\partial S}{\partial U} = R\left(\frac{V}{N} + \frac{N^3}{U^2V}\right) = \frac{1}{T}$$

$$F_1 = \frac{\partial S}{\partial V} = R\left(\frac{U}{N} + \frac{N^3}{UV^2}\right)$$

$$F_2 = \frac{\partial S}{\partial N} = R\left(\frac{-UV}{N^2} - \frac{3N^2}{UV}\right)$$

a) mostrar que ${\cal F}_o,\,{\cal F}_1$ e ${\cal F}_2$ são homogêneas de ordem zero

$$F_o = R\left(\frac{\lambda V}{\lambda N} + \frac{\lambda^3 N^3}{\lambda^3 U^2 V}\right) = R\left(\frac{V}{N} + \frac{N^3}{U^2 V}\right)$$

$$F_1(\lambda V, \lambda N, \lambda U) = R\left(\frac{\lambda U}{\lambda N} + \frac{\lambda^3 N^3}{\lambda U \lambda^2 V^2}\right) = F_1(U, V, N)$$

$$F_2 = -R\left(\frac{\lambda^2 UV}{\lambda^2 N^2} + \frac{3\lambda^2 N^2}{\lambda U \lambda V}\right) = -R\left(\frac{UV}{N^2} + \frac{3N^2}{UV}\right)$$

b) Mostrar que a temperatura é intrisicamente positiva

$$F_o = \frac{1}{T} = R\left(\frac{V}{N} + fracN^3U^2V\right)$$

$$T = \frac{1}{R} \left(\frac{V}{N} + \frac{N^3}{U^2 V} \right)^{-1}$$

se $R>0,\,T>0$ pois as quantidades V,N são positivas (U pode ser negativo mais como estão elevado ao quadrado este não influência

c) Achar a equação de estado mecânico P(T, v)

$$\frac{P}{T} = R\left(\frac{U}{N} + \frac{N^3}{UV^2}\right) \tag{10}$$

e

$$T = \frac{1}{R} \left(\frac{V}{N} + \frac{N^3}{U^2 V} \right)^{-1} \tag{11}$$

isolando U na equação 11

$$\frac{1}{T}\frac{1}{R} = \left(\frac{V}{N} + \frac{N^3}{U^2V}\right)$$

$$\frac{1}{RT} - \frac{V}{N} = \frac{N^3}{U^2 V}$$

$$\frac{1}{RT} - v = \frac{N^2}{U^2 v}$$

$$\frac{N}{U} = \left[\frac{v}{RT} - v^2\right]^{1/2}$$

$$P = TR \left[\left(\frac{v}{RT} - v^2 \right)^{-1/2} + \frac{1}{v^2} \left(\frac{v}{RT} - v^2 \right)^{1/2} \right]$$

$$P = TR \left[\left(\frac{1}{vRT} - 1 \right)^{-1/2} \frac{1}{v} + \frac{1}{v} \left(\frac{1}{vRT} - 1 \right)^{1/2} \right]$$

$$P = \frac{TR}{V} \left[\left(\frac{1}{vRT} - 1 \right)^{-1/2} + \left(\frac{1}{vRT} - 1 \right)^{1/2} \right]$$

2.6-3) Dois sistemas particulares tem a seguinte equação de estado

$$\frac{1}{T^{(1)}} = \frac{3}{2}R\frac{N^{(1)}}{U(1)}$$

$$\frac{1}{T^{(2)}} = \frac{5}{2}R\frac{N^{(2)}}{U^{(2)}}$$

como vimos se esse sistema for separado por uma parede diatérmica, atingirá o equilíbrio quando

$$\frac{1}{T^{(1)}} = \frac{1}{T^{(2)}}$$

logo

$$\frac{1}{T^{(1)}} = \frac{1}{T^{(2)}}$$

$$\frac{3}{2}R\frac{N^{(1)}}{U^{(1)}} = \frac{5}{2}R\frac{N^{(2)}}{U^{(2)}}$$

usando que $N^{(1)}=2$ e $N^{(2)}=3$

$$6U^{(2)} = 15U^{(1)}$$

$$2U^{(2)} = 5U^{(1)}$$

também sabemos que $U^{(1)}+U^{(2)}=2.5\times 10^3 J$ logo

$$2U^{(1)} + 5U^{(1)} = 5 \times 10^3 J$$

$$U^{(1)} = \frac{5}{7} \times 10^3 J = 714.3J$$

2.6-4) Temos o mesmo sistema anterior porém agora $U^{(1)}=2,\,N^{(2)}=3,\,T^{(1)}=250K$ e $T^{(2)}=350K$

$$U^{(1)} = \frac{3}{2}RN^{(1)}T^{(1)} = \frac{3}{2} \times 8.314 \times 2 \times 250 = 6.24 \times 10^{3}J$$

$$U^{(2)} = \frac{5}{2}RN^{(2)}T^{(2)}\frac{5}{2} \times 8.314 \times 3 \times 350 = 21.9 \times 10^{3}J$$

$$U^{(1)} + U^{(2)} = 28.14 \times 10^3 J$$

como vimos

$$2U^{(1)} + 5U^{(1)} = 56.28 \times 10^3$$

$$U^{(1)} = 8.04 \times 10^3 J$$

$$U^{(2)} = 20.1 \times 10^3 J$$

$$T^{(1)} = \left[\frac{3}{2} \times 8.314 \times \frac{2}{8.04 \times 10^3}\right]^{-1} = 322.3K$$

2.7-1) Temos três cilindros encaixados e quatro pistões os cilindros são conectados por barra diatérmicas condutoras de calor

$$\delta V = \delta l A$$

$$-3\delta V_1 = \delta V_s$$

$$2\delta V_3 = -3\delta V_2$$

$$-6V_1 = -3V_2$$

sabemos que $U_1 + U_2 + U_3 = C$, aplicando dS = 0

$$dS = \frac{1}{T_1}dU_1 + \frac{1}{T_2}dU_2 + \frac{1}{T_3}dU_s + \frac{P_1}{T_1}dV_1 + \frac{P_2}{T_2}dV_2 + \frac{P_3}{T_3}dV_3 = 0$$

como $dU_s = -dN_1 - dN_2$

$$dS = \left(\frac{1}{T_1} - \frac{1}{T_3}\right) dV_1 + \left(\frac{1}{T_1} - \frac{1}{T_3}\right) dN_3 + \left(\frac{P_1}{T_1} + \frac{2P_2}{T_1} - \frac{3P_3}{T_3}\right) dV_1$$

logo
$$T_1 = T_2 = T_3 P_1 + 2P_2 - 3P_3 = 0$$

2.7-2) Dois sistemas particulares tem a seguinte equação de estado

$$\frac{1}{T^{(1)}} = \frac{3}{2}R\frac{N^{(1)}}{U^{(1)}}$$

$$\frac{P^{(1)}}{T^{(1)}} = R \frac{N^{(1)}}{V^{(1)}}$$

e

$$\frac{1}{T^{(2)}} = \frac{5}{2}R\frac{N^{(2)}}{U^{(2)}}$$

$$\frac{P^{(2)}}{T^{(2)}} = R \frac{N^{(2)}}{V^{(2)}}$$

ambos estão num cilindro separados por um pistão, sendo que

$$N^{(1)} = 0.5$$

$$N^{(2)} = 0.75$$

$$T^{(1)} = 200K$$

$$T^{(3)} = 300K$$

$$V^{(1)} + V^{(2)} = 20l$$

$$U^{(1)} + U^{(2)} = C$$

usando que dS = 0

$$dS = \left(\frac{1}{T_1} - \frac{1}{T_2}\right) dU^{(1)} + \left(\frac{P_1}{T_1} - \frac{P_2}{T_2}\right) dV^{(1)}$$

calculando $U^{(1)}$ e $U^{(2)}$

$$U^{(1)} = \frac{3}{2}RN^{(1)}T^{(1)} = \frac{3}{2}(8.314) \times 0.5 \times 200 = 1.25 \times 10^{3}J = 1.3 \times 10^{3}J$$

$$U^{(2)} = \frac{5}{2}RN^{(2)}T^{(2)} = \frac{5}{2} \times (8.314) \times 0.75 \times 300 = 4.68 \times 10^{3}J = 4.7 \times 10^{3}J$$

$$U^{(1)} + U^{(2)} = 6 \times 10^3 J$$

tiramos que $T^{(1)}=T^{(2)}$ no equilíbrio

$$\frac{3}{2}R\frac{N^{(1)}}{U^{(1)}} = \frac{5}{2}R\frac{N^{(2)}}{U^{(2)}}$$

$$U^{(2)} = \frac{N^{(2)}}{N^{(1)}} \frac{5}{3} U^{(1)} = 2.5 U^{(1)}$$

$$3.5U^{(1)} = 6.0 \times 10^3 J$$

$$U^{(1)} = 1.7 \times 10^3 J$$

$$U^{(2)} = 4.3 \times 10^3 J$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$\frac{RN^{(1)}}{V^{(1)}} = \frac{RN^{(2)}}{V^{(2)}}$$

$$V^{(2)} = \frac{N^{(2)}}{N^{(1)}} V^{(1)}$$

$$V^{(2)} = 1.5V^{(1)}$$

$$V^{(1)} + 1.5V^{(1)} = 20$$

$$V^{(1)} = 8l$$

$$V^{(2)} = 12l$$

2.7-3) O problema hipotetico de equilíbrio em sistema composto fechado com uma parede adiabática movél em problema indeterminado aplicando o princípio dS=0

$$dS = \frac{1}{T_1}dU^{(1)} + \frac{1}{T_2}dU^{(2)} + \frac{P_1}{T_1}dV_1 + \frac{P_2}{T_2}dV_2 = 0$$

temos que dU = dQ - PdVmas como dQ = 0 então -dU = -PdV

$$dU_1 = -P_1 dV_1$$

$$dU_2 = -P_2 dV_2$$

as energias internas devem se conservar pois o sistema é fechado

$$dU_1 = -dU_2$$

$$-PdV_1 = P_2dV_2$$

mas

$$dV_1 = -dV_2$$

$$P_1 = P_2$$

2.8-1) A equação fundamental para um tipo particular do sistema de dois componentes é

$$S = NA + NR \ln \left(\frac{U^{3/2}V}{N^{5/2}} \right) + N_1 R \ln \left(\frac{N_1}{N} \right) - N_2 R \ln \left(\frac{N_2}{N} \right)$$

$$N = N_1 + N_2$$

dividindo o sistema em duas camadas de igual volume separadas por uma membrana diatérmica e permeável a N_1 . Primeiramente vamos encontrar as equações de estado

$$\frac{1}{T} = \frac{\partial S}{\partial U} = \frac{3}{2}N\frac{R}{U}$$

$$\frac{P_1}{T_1} = \frac{\partial S}{\partial V} = \frac{NR}{Y}$$

$$\frac{\partial S}{\partial N_1} = A + Rln\left(\frac{U^{3/2}V}{N^{5/2}}\right) - \frac{5}{2}R - Rln\left(\frac{N_1}{N}\right) - R = -\frac{\mu_1}{T}$$

vamos calcular U para cada sistema

$$N_1^{(1)} = 0.5$$

$$N_2^{(1)} = 0.75$$

$$V_1^{(1)} = 5l$$

$$T^{(1)} = 300K$$

$$N_1^{(2)} = 1$$

$$N_2^{(2)} = 0.5l$$

$$T_2^{(2)} = 250$$

$$U_1^{(1)} = 4676J$$

$$U^{(2)} = 4676J$$

$$U^{(1)} + U^{(2)} = 9352J = U$$

como vimos o sistema atinge o equilíbrio com:

$$T_{1} = T_{2}$$

$$\frac{3}{2} \frac{N^{(1)}}{U^{(1)}} R = \frac{3}{2} \frac{N^{(2)}}{U^{(2)}}$$

$$\frac{N^{(1)}}{U^{(1)}} = \frac{N^{(2)}}{U^{(2)}}$$

$$\frac{\mu_{1}}{T_{1}} = \frac{\mu_{2}}{T_{2}}$$

$$ln\left(\frac{U_{(1)}^{3/2}V^{(1)}}{N_{(1)}^{3/2}N_{1}^{(1)}}\right) = ln\left(\frac{U_{(2)^{3/2}V^{(2)}}}{N_{(2)}^{3/2}N_{1}^{(1)}}\right)$$

$$\frac{V^{(1)}}{N_{1}^{(1)}} = \frac{V^{(2)}}{N_{1}^{(2)}}$$

$$N_{1}^{(1)} = N_{2}^{(2)}$$

$$\frac{N_{1}^{(1)} + N_{2}^{(1)}}{U^{(1)}} = \frac{N_{1}^{(2)} + N_{2}^{(2)}}{U^{(2)}}$$

$$\frac{N_{1}^{(1)} + N_{2}^{(1)}}{U^{(2)}}$$

$$\frac{N_{1}^{(1)} + 0.75}{U^{(1)}} = \frac{N_{1}^{(1)} + 0.5}{U^{(2)}}$$

$$N_{1}^{(1)} + N_{2}^{(1)} = 1.5$$

$$N^{(1)} = 0.75$$

$$\frac{1.5}{U^{(1)}} = \frac{1.25}{U^{(2)}}$$

$$U^{(2)} = 0.833...U^{(1)}$$

T = 272.7

Solução capítulo 3

3.2-1) Achar a relação entre $T,\,P$ e
 μ para o sistema com a equação fundamental

$$U = \left(\frac{v_o^2}{R^3}\right) \frac{S^4}{NV^2}$$

como vimos pela relação de Gibbs-Puhen

$$SdT - VdP + Nd\mu = 0$$

$$\frac{\partial U}{\partial S} = T = \left(\frac{v_o^2 \theta}{R^3}\right) \frac{4S^3}{NV^2} = \frac{4S^3}{v^2}$$

$$-\frac{\partial U}{\partial V} = P = \left(\frac{v_o^2 \theta}{R^3}\right) \frac{2S^4}{NV^3} = \left(\frac{v_o^2 \theta}{R^3}\right) \frac{2S^4}{v^3}$$

$$\frac{\partial U}{\partial N} = \mu = -\left(\frac{v_o^2 \theta}{R^3}\right) \frac{S^4}{N^2 V^2} = -\left(\frac{\frac{2}{o}\theta}{R^3}\right) \frac{S^4}{v^2}$$

$$N = \frac{4S^3}{TV^2}$$

3.3-1) Um sistema particular obedece a duas equações de estado

$$T = \frac{As^3}{v^2}$$

$$P = \frac{Ss^3}{v^2}$$

a) achar $\mu(s,v)$ e a equação fundamental segundo a relação de Gibbs -Puhen

$$d\mu = -SdT + vdP$$

$$dT = \frac{\partial T}{\partial S}dS + \frac{\partial T}{\partial v}dv = \frac{\delta A_s}{v} + \frac{3As^2}{v^2}dv$$

$$dP = \frac{\partial P}{\partial S}dS + \frac{\partial P}{\partial v}dv = \frac{3As^2}{v^2}ds - \frac{2As^3}{v^3}dv$$

$$d\mu = -\frac{6As^2}{v}ds + \frac{\partial P}{\partial v}dv = \frac{3As^2}{v^2}ds - \frac{2As^2}{v^3}dv$$

$$d\mu = -\frac{6As^2}{v}ds + \frac{3As^3}{v^2}dv + \frac{3As^2}{v}ds - \frac{2As^3}{v^2}dv$$

$$d\mu = -\frac{3As^2}{v}ds + \frac{As^3}{v^2}dv - \frac{s^3}{v} + \frac{-s^3}{v} = d - \left(\frac{2s^3}{v}\right)$$

$$d\mu = -Ad\left(\frac{s^3}{v}\right)$$

$$\mu = \frac{-As^3}{v} + \mu_o$$

segundo arelação de euler

$$u = Ts - PV + \mu$$

$$u = \frac{3As^3}{v} + \frac{As^3}{v} - \frac{As^5}{v} + \mu_o$$

$$u = \frac{As^3}{v} + \mu_o$$

$$U = \frac{AS^3}{NV} + N\mu_o$$

$$dU = Tds - Pdv$$

b)

$$dU = \frac{3As^2}{v}ds - \frac{As^3}{v^2}dv$$

$$dU = Ad\left(\frac{s^3}{v}\right)$$

$$u = \frac{As^3}{v} + \mu_o$$

$$U = \frac{AS^3}{NV} + N\mu_o$$

3.4--3) Temos dois moles de um gás ideal monoatômico que estão a 0^oC e num volume de 45l. O gás é expandido adiabaticamente até a nova temperatura de $-50^oC.$ como dQ=0

$$dU = -PdV$$

$$du = -Pdv$$

sendo

$$P = \frac{NRT}{V} = \frac{RT}{v}$$

е

$$C = cNRT$$

$$T = \frac{U}{CNR} = \frac{u}{cR}$$

$$P = \frac{R}{v} \frac{u}{cR} = \frac{u}{vc}$$

$$du = -\frac{u}{cv}dv$$

$$\frac{du}{u} = -\frac{1}{cv}v$$

$$ln\frac{u}{u_o} = \frac{lnv^{-c}}{v_o^{-c}}$$

$$uv^c = k$$

$$uv^{3/2} = k$$

$$P = 0.1mP_a$$

$$K = 152.2$$

$$U_f = 51l$$

Solução capítulo 4

- 4.1-1) Temos um mol de gás ideal e um mol de fluido de Van Der Waals com c=3/2 estão contidos em recipientes separados com volume fixo V_1 e V_2 sendo as temperaturas T_1 e T_2 , desejamos levar o gás ideal a uma temperatura T, mantendo a energia total constante
- a) Qual é a temperatura final do fluido de Van Der Waals A energia do gás ideal é dado por

$$\frac{3}{2}RT$$

a energia do fluido de Van Der Waals

$$u = \frac{3}{2}RT - \frac{a}{v}$$

a energia total será então

$$u_1 + u_2 = \frac{3}{2}R(T_1 + T_2) - \frac{a}{v_2}$$

se a energia deve permanecer constante então

$$\frac{3}{2}R(T_f + T) - \frac{a}{v_2} = \frac{3}{2}R(T_1 + T_2) - \frac{a}{v_2}$$

$$T_f = T_1 + T_2 - T$$

quais as restrições nos parâmetros $(T_1, T_2, a, b, v_1, v_2)$ para que seja possível projetar um motor que realize essa transformação?

Para que este processo seja possível então $\Delta S \ge 0$ e como $S = S^{(1)} + S^{(2)}$ a entropia total do sistema fica:

$$S = cRln \frac{T_1}{T_o} + Rln \frac{v_1}{v_o} [(v_2 - b)(cRT_2)^c] + S_o$$

calculando a variação da entropia

$$\Delta S = cRln \frac{T}{T_1} + Rln \left[\frac{(v_2 - b)}{(v_2 - b)} \left(\frac{cRT_f}{cRT_2} \right)^c \right]$$

$$\Delta S = \frac{3}{2} R ln \left(\frac{T}{T_f} \frac{T_f}{T_2} \right)$$

logo para que o processo seja possível

$$TT_f > T_1T_2$$

$$T(T_1 + T_2 - T) > T_1 T_2$$

$$TT_1 + TT_2 - T^2 > T_1 T_2$$

4.1-2) Temos uma faixa elástica (Rubber Band) inicialmente a temperatura T_B e comprimento L_B . Um mol monoatômico de gás ideal está inicialmente a temperatura T_G e volume V_G . O gás ideal, mantido a V_G , é aquecido até T_G . A energia requerida deve ser preenchida totalmente pela faixa elástica. O comprimento da faixa precisa ser alterado permanece veradade, mas o coeficiente de performae do refrigerador é aa taxa de calor removida $-dQ_c$ sobre o trabalho realizado

$$E_r = \frac{T_c}{T_h - T_c}$$

o coeficiente de performace do aquecedor (função oposta ao refrigerador) é a taxa de calor entregue ao sistema quente por trabalho extraido da fonte RWS

$$E_p = \frac{dQ}{-dW_{RWS}}$$

4.1-3) Vamos supor que do sistema com capacidades térmicas

$$C(T) = DT^n$$

com n > 0

a) Achar as relações U(T) e S(T)Primeiro voltemos a definição de calor específico

$$C_p = T \left(\frac{\partial S}{\partial T} \right)_P = DT^n$$

$$\frac{\partial S}{\partial T} = DT^{n-1}$$

$$\frac{\partial S}{\partial T} = DT^{n-1}$$

$$dS = -\frac{\partial S}{\partial T}\partial T$$

Nosso sistema se encontra com volume constante e número de moles constantes (dV = 0, dN = 0)

Escrevendo S da forma, mais geral, S(T, V, N) então

$$dS = \frac{\partial S}{\partial T}dT + \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial N}dN = 0$$

logo

$$dS = \frac{\partial S}{\partial T}dT$$

logo

$$S - S_o = \int DT^{n-1} = \frac{DT^N}{N}$$

$$S = S_o + \frac{DT^n}{n}$$

como $dU=TdS=T\frac{\partial S}{\partial T}dT$

$$U = U_o + D \int T^n dT = U_o + \frac{DT^{n+1}}{n+1}$$

vamos encontar a equação fundamental do sistema: U(S,V,N), usando a relação de Gibbs-Duhen:

$$U = TS$$

invertendo

$$S(T) \to T = \left[n \frac{(S - S_o)}{D} \right]^{1/n}$$

$$U = \left[\frac{n(S - S_o)}{D}\right]^{1/n}$$

para V e N constantes

b) Se as temperaturas iniciais forem T_{10} e T_{20} qual é o trabalho máximo? Os sistemas se encontrarão no final há uma mesma temperatura T_f

$$\Delta U = D \frac{\left[2(t_f)^{N+1} - T_{10}^{n+1} - T_{20}^{n+1} \right]}{n+1}$$

o trabalho será

$$w = -\Delta U = \frac{D}{n+1} \left[(T_{10})^{n+1} + (T_{20})^{n+1} - 2(T_f)^{n+1} \right]$$

logo quanto menor T_f maior será o trabalho, vamos encontrar agora menor valor T_f . Para que a variação na entropia seja positiva

$$\Delta S = \frac{D}{n} \left[2T_f^n - T_{10}^n - T_{20}^n \right] \ge 0$$

logo

$$2T_f^n \ge T_{10}^n + T_{20}6n$$

Se n=2 o menor trabalho é

$$T_f^2 = \frac{T_{10}^2 + T_{20}^2}{2}$$

$$T_f = \frac{1}{\sqrt{2}} (T_{10}^2 + T_{20}^2)^{1/2}$$

$$w = \frac{D}{3} \left[T_{10}^3 + T_{20}^3 - \frac{1}{\sqrt{2}} (T_{10}^2 + T_{20}^2)^{3/2} \right]$$

4.2-2) Considere um gás ideal em um cilindro com um pistão, ambos adiabáticos. O sistema está inicialmente em equilíbrio, mas a pressão externa é vagarozamente dimínuida. A troca de energia do gás na expansão resultante dV é dU = -PdV. Queremos mostrar que dS = 0

$$S = NS_o + NRln \left[\left(\frac{U}{U_o}^c \right) \left(\frac{V}{V_o} \right) \left(\frac{N}{N_o} \right)^{-(c+1)} \right]$$

calculando a diferencial

$$U = cNRT ln(x^{n}k) \frac{1}{kx^{n}} knx^{n-1}$$

$$dS = \frac{\partial S}{\partial U}dU + \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial N}dN$$

$$\frac{\partial S}{\partial U} = \frac{NRc}{U}$$

$$\frac{\partial S}{\partial V} = \frac{NR}{V}$$

$$dN = 0$$

$$dS = c\frac{NR}{u}dU + \frac{NR}{Y}dY$$

usando que dU = -PdV

$$dS = NR\left(\frac{1}{v} - \frac{cP}{U}\right)dV$$

$$\frac{P}{U} = \frac{NRT}{V} \frac{1}{cNRT} 4 = \frac{1}{cV}$$

$$dS = NR\left(\frac{1}{V} - \frac{1}{V}\right)dV = 0$$

4.2-3) Um gás monoatômico ideal é permitido expandir linearmente de V+dV se um gás expande livremente sua energia interna é conservada dU=0 então

$$dS = \frac{\partial S}{\partial U}dU + \frac{\partial S}{\partial V}dV + \frac{\partial S}{\partial N}dN = \frac{\partial S}{\partial V}dV$$

mas $\frac{\partial S}{\partial V}$ = para um gás ideal momoatômico

$$\frac{\partial S}{\partial V} = \frac{NR}{V}$$

logo

$$dS = \frac{NR}{V}dV$$

Um processo real pode ser aproximado por um processo quase-estático se este é monoticamente decrescente na entropia. O caso limite $\Delta S=0$ é chamado de processo reversível.

4.2-4) Em um intervalo de temperatura de interesse o sistema obedece a equação

$$T = \frac{Av^2}{S}$$

$$P = -2Avln\left(\frac{S}{S_o}\right)$$

o sistema realiza uma expansão livre de v_o até v_{of} . Queremos achar T_f sabendo que T_o é a temperatura inicial. A energia interna pode ser encontrada usando a reação de euler:

$$U = TS - PV$$

$$u = Ts - Pv = Av^2 + 2Av^2 ln\left(\frac{S}{S_o}\right)$$

a energia é conservada logo,

$$Av_o^2 \left(1 + \ln \left(\frac{S_o}{S_o} \right) \right) = Av_f^2 \left(1 + \ln \left(\frac{S_f}{S_o} \right) \right)$$

$$S_o' = \frac{Av_o^2}{T_o}$$

$$S_f = \frac{Av_f^2}{T_f}$$

$$Av_o^2 \left[1 + \ln \left(\frac{Av_o^2}{T_o S_o} \right) \right] = Av_f^2 \left[1 - \ln \left(\frac{Av_f^2}{T_f S_o} \right) \right]$$

$$\left(\frac{v_o}{v_f} \right)^2 \left[1 + \ln \left(\frac{Av_o^2}{T_o S_o} \right) \right] = \left[1 - \ln \left(\frac{Av_f^2}{T_f S_o} \right) \right]$$

$$\left(\frac{v_o}{v_f} \right)^2 + \left(\frac{v_o}{v_f} \right)^2 \ln \left(\frac{Av_o^2}{T_o S_o} \right) - 1 - \ln \left(\frac{Av_f^2}{S_o} \right) = \ln(T_f)$$

$$T_f = \frac{e^{+(v_o/v_f)^2} \left[1 + \ln \left(Av_o^2/T_o S_o \right) \right] S_o}{Av_f^2 e}$$

4.3-1) Temos o seguinte sistema com um cilindro de comprimento L dividido em duas camaras de comprimento L/2 a primeira camâra contém uma mola (K) que liga o fim do cilindro ao pistão, esta camâra também contém N moles de gás monoatômico. Queremos o volume e a temperatura quando o equilíbrio é atingido.

Atingiremos um equilíbrio quando a pressão feita pelo gás se iguala a realizada pela mola

$$P_{mola} = \frac{F}{A} = \frac{K\left(L/2 - K\right)}{A}$$

o volume inicial do gás é

$$V_o = \frac{A_o L}{2}$$

o volume final $V_f = AX$

logo a pressão exercida pela mola em função do parÂmetro extensivo V será

$$P = \frac{K\left(V_o - V\right)}{A^2}$$

a energia interna sofrerá uma variação dada por

$$dU = \frac{-K\left(V_o - V\right)dV}{A^2}$$

integrando a energia ΔU será dada por

$$\int_{U_o}^{U} dU = + \int_{V_o}^{V} \frac{K(V_o - V)}{A^2} dV = \frac{-K(V_o - V)^2}{A^2}$$

$$U_f - U_o = \frac{-K\left(V_o - V\right)^2}{A^2}$$

para um gás monoatômico

$$U = \frac{3}{2}NRT$$

$$\frac{3}{2}NR(T_f - T_o) = \frac{-K(V_o - V)^2}{A^2}$$

temos uma equação e duas incógnitas, outra pode ser obtida impondo o equlíbrio mecânico

$$\frac{-K(V_o - V)}{A^2} = \frac{\partial U}{\partial V} = \frac{NRT_f}{V}$$

logo

$$\frac{K\left(V - V_o\right)}{A^2} = \frac{NRT_f}{V}$$

$$T_f = \frac{K}{A^2} \frac{V \left(V - V_o\right)}{NR}$$

$$\frac{3}{2}NR\left[\frac{K}{A^{2}}\frac{V(V-V_{o})}{NR}-T_{o}\right] = \frac{-K(V-V_{o})^{2}}{A^{2}}$$

$$\frac{3}{2}V(V - V_o) - \frac{3}{2}\frac{A^2}{K}NRT_o = -(V_o - V)^2$$

4.4-1) Dois corpos tem capacidades térmicas

$$C = A + BT$$

$$A = 8J/K$$

$$B = 2.10^{-2} J/K^2$$

se esses dois corpos estão em uma temperatura inicial de $T_{10}=400K$ e $T_{20}=200K$. Qual é a temperatura final e a variação na entropia? Da conservação da enegia temos que:

$$\Delta U = \int_{T_{10}}^{T_f} (A + BT) dT + \int_{T_{20}}^{T_f} A + BT dT = 0$$

$$A(T_f - T_{10}) + \frac{B}{2}(T_f^2 - T_{10}^2) + A(T_f - T_{20}) + \frac{B}{2}(T_f^2 - T_{20}^2) = 0$$

$$2AT_f + BT_f^2 = A(T_{10} + T_{20}) + \frac{B}{2}(T_f^2 - T_{20}^2) = 0$$

$$2AT_f + BT_f^2 = A(T_{10} + T_{20}) + \frac{B}{2}(T_{20}^2 + T_{10}^2)$$

substituindo os valores

$$16T_f + 20.10^{-2}T_f^2 - 6800 = 0$$

$$T_f = \frac{-16 + \sqrt{16^2 + 4.2 \times 10^{-2} \times 6800}}{4.10^{-2}} = 307K$$

a mudança na entropia será:

$$\Delta S = \int_{T_{10}}^{T_f} \frac{(A + BT_1)}{T_1} dT_1 + \int_{T_{20}}^{T_f} \frac{(A + BT_2)}{T_2} dT_2$$

$$\Delta S = A \ln \left(\frac{T_f}{T_{10}} \right) + B(T_f - T_{10}) + A \ln \left(\frac{T_f}{T_{20}} \right) + B(T_f - T_{20})$$

$$\Delta S = 8ln\left(\frac{307}{400}\right) + 2.10^{-2}(307 - 400) + 8ln\left(\frac{307}{200}\right) + 2.10^{-2}(307 \times 200)$$

$$\Delta S = 1.59J/K$$

4.2-2) Imagine um terceiro corpo com capacidade calorífica

$$c_3 = BT$$

separando o corpo 1 do 2. Qual deve ser a temperatura inicial do corpo 3 para que o corpo 2 volte a ter a mesma temperatura

$$\int_{307}^{200} (A+BT)dT_2 = -\int_{T_{20}}^{200} BT$$

4.4-3) Queremos provar que a entropia (variação) é intrisicamente positiva em

$$\Delta S = c_1 ln \left(\frac{T_f}{T_{10}} \right) + c_2 ln \left(\frac{T_f}{T_{20}} \right)$$

$$T_f = \frac{{}_{1}T_{10} + c_2 T_{20}}{c_1 + c_2}$$

$$T_f = \frac{{}_{1}T_{10} + c_{2}T_{20}}{c_{1} + c_{2}}$$

$$\Delta S = c_1 ln \left[\frac{c_1 T_{10} + c_2 T_{20}}{c_1 T_{10} + c_2 T_{10}} \right] + c_2 ln \left[\frac{c_1 T_{10} + c_2 T_{20}}{c_1 T_{20} + c_2 T_{20}} \right]$$

$$\Delta S = c_1 ln \left[c_1 T_{10} + c_2 T_{20} \right] = c_1 ln \left[c_1 T_{10} + c_2 T_{10} \right] + c_2 ln \left[c_1 T_{10} + c_2 T_{20} \right] - c_2 ln \left[c_1 T_{20} + c_2 T_{20} \right]$$

$$\Delta S = (c_1 + c_2) ln[c_1 T_{10} + c_2 T_{20}] - (c_1 + c_2) [ln(c_1 + c_2)] - c_1 ln(T_{10}) - c_2 ln(T_{20})$$

$$\Delta S = (c_1 + c_2) ln \left[\frac{c_1 T_{10} + c_2 T_{20}}{c_1 + c_2} \right] - c_1 ln(T_{10}) - c_2 ln(T_{20})$$

$$\Delta S = ln \left[\left(\frac{c_1 T_{10} + c_2 T_{20}}{c_1 + c_2} \right)^{c_1 + c_2} \frac{1}{T_{10}^{c_1} T_{20}^{c_2}} \right]$$

$$\left(\frac{c_1 T_{10} + c_2 T_{20}}{c_1 + c_2}\right)^{c_1 + c_2} \frac{1}{T_{10}^{c_1} T_{20}^{c_2}} \ge 1$$

$$(c_1 T_{10} + c_2 T_{20})^{c_1 + c_2} \ge (c_1 + c_2)^{c_1} T_{10}^{c_1} (c_1 + c_2)^{c_2} T_{20}^{c_2}$$

4.4-4

$$U = \int_{T_{10}}^{T} c dT + \int_{T_{20}}^{T} c dT = 0$$

$$U = c(T - T_{10}) + c(T - T_{10}) = 0$$

$$c(T - T_{10}) = -c(T - T_{10})$$

$$T = \frac{T_{10} + T_{20}}{2}$$

4.4-5) Em um intervalo de temperatura a capacidade térmica é

$$c = \frac{A}{T}$$

a) Qual é a dependência da energia, o volume constante, para este sistema?

$$\int_{U_o}^{U} dU = \int_{T_o}^{T} \frac{A}{T} dT$$

$$U = U_o + Aln\left(\frac{T}{T_o}\right)$$

b) Se dois sistemas, com temperaturas iniciais T_{10} e T_{20} são colocadas em contato térmico. Qual é o equilíbrio térmico do par?

$$ln\left(\frac{T}{T_o}\right) = -ln\left(\frac{T}{T_o}\right)$$

$$T^2 = T_{10} T_{20}$$

$$T = \sqrt{T_{10}T_{20}}$$

4.4-6) Temos um série de N+1 barris de água com temperaturas $(T_o, T_1, T_s, \ldots, T_n)$ com $(T_n > T_{n-1})$. Um pequeno corpo com capacidade calorífica c (volume constante)

$$\Delta S = \int_{T_i}^{T_{i+1}} \frac{c}{T} dT$$

$$\Delta S_T = \sum_{i=0}^{n-1} \int_{T_i}^{T_{i+1}} \frac{c}{T} dT$$

$$\Delta S = \ln\left(\frac{T_{i+1}}{T_i}\right)c$$

logo

$$\Delta S_T = \sum_{i=0}^{n-1} Cln\left(\frac{T_{i+1}}{T_i}\right)$$

$$\Delta S_T = c \sum_{1=0}^{n-1} ln \left[\left(\frac{T_n}{T_o} \right)^{1/n} \right] = \frac{c}{n} ln \left(\frac{T_n}{T_o} \right) = c ln \left(\frac{T_n}{T_o} \right)$$

4.5-1) Um mol de um gás monoatômico esta contido em um cilindro de volume $10^{-3}m^3$ a temperatura 400K. O gás é levado para um estado final de volume $2.10^{-3}m^3$ e temperatura 400K. Um reservatório térmico tem temperatura 300K. Qual é o trabalho máximo entregue pela fonte. O sistema principal

$$\Delta U_1 = \frac{3}{2}R(T_f - T_o) = 0$$

$$\Delta S_1 = Rln\left(\frac{V_f}{V_*}\right) = Rln2$$

como para o reservatório de calor

$$\Delta S = \frac{Q_{Res}}{T_{Ris}} = -\Delta S_1$$

logo o trabalho máximo é

$$W_{RWS} = \Delta S_1 T_{RES} - \Delta U = (Rln2) \times 300 = 300 Rln2$$

- 4.5-2) O gás ideal é primeiramente expandido adiabaticamente (e isotropicamente) até sua temperatura cair para 300K o gás faz trabalho na RWS, nesta expansão. O gás é então expandido enquanto em contato térmico com o reservatório. E finalmente o gás é expandido adiabaticamente até atingir os valores finais
- 4.5-9) Dois corpos idênticos tem iguais e constantes capacidades térmicas $(c_1 = c_2 = c)$. Uma RWS está disponível. A temperatura dos dois corpos e T_{10} e T_{20}
- a) Qual é o trabalho máximo deixando os corpos em equilíbrio térmico o trabalho máximo acontece quando

$$dS_{tot} = dS_1 + dS_2 = 0$$

$$dS_{tot} = \frac{c(T_1)}{T_1} dT_1 + \frac{c(T_2)}{T_2} dT_2 = 0$$

$$\int_{T_{10}}^{T_f} \frac{c}{T_1} dT_1 = -\int_{T_{20}}^{T_f} \frac{c}{T_2} dT_2$$

$$ln\left(\frac{T_f}{T_{10}}\right) = \left(\frac{T_{20}}{T_f}\right)$$

$$T_f = \sqrt{T_{10}T_{20}} = 46^\circ$$

a conservação da energia nós dá

$$\int dW_{RWS} = -\int dU_1 - \int dU_2 = -\int_{T_{10}}^{T_f} c dT_1 - c \int_{T_{20}}^{T_f} c dT_2$$

$$w_{RWS} = -c \left[\sqrt{T_{10}T_{20}} - T_{10} + \sqrt{T_{10}T_{20}} - T_{20} \right] = -c \left[\sqrt{T_{10}} - \sqrt{T_{20}} \right]^2$$

a temperatura de equilíbrio máximo acontece quando o sistema não troca energia com o exterior

$$\int_{T_{10}}^{T_f} c dT_1 = -\int_{T_{10}}^{T_f} c dT_2 = (T_f - T_{10}) = -(T_f - T_{20})$$

$$T_f = \frac{T_{10} + T_{20}}{2} = 50^o$$

4.5-10) Dois corpos idênticos tem capacidades calorifícas de

$$c(T) = \frac{a}{T}$$

as temperaturas iniciais são T_{10} e T_{20} ($T_{20} > T_{10}$). Os dois corpos devem ser levados ao equilíbrio entregando o máximo de trabalho a um RWS. Qual é a temperatura final e o trabalho realizado?

Para obtermos trabalho máximo temos que

$$\Delta S_{tot} = 0$$

como RWS é cercada por paredes adiabáticas então a variação na entropia é devido aos corpos

$$\Delta S_{tot} = \Delta S_1 + \Delta S_2 = 0$$

$$\Delta S_1 = -\Delta S_2$$

$$\int_{T_{10}}^{T_f} \frac{c(T_1)dT_1}{T_1} = -\int_{T_{20}}^{T_f} \frac{c(T_2)dT_2}{T_2}$$

$$\left(\frac{a}{T_{10}}\right) - \left(\frac{a}{T_f}\right) = \left(\frac{a}{T_f}\right) - \left(\frac{a}{T_{20}}\right)$$

$$T_f = 2\left[\frac{1}{T_{10}} + \frac{1}{T_{20}}\right]^{-1}$$

o trabalho entregue a RWS é igual a

$$w_{RWS} = -\int_{T_{20}}^{T_f} \frac{a}{T_2} dT_2 - \int_{T_{10}}^{T_f} \frac{a}{T_1} dT_1$$

$$W_{RWS} = a \left[ln \left(\frac{T_{20}}{T_f} \right) + ln \left(\frac{T_{10}}{T_f} \right) \right]$$

$$W_{RWS} = a \left[ln \left(\frac{T_{10}T_{20}}{4} \right) \left(\frac{1}{T_{10}} + \frac{1}{T_{20}} \right)^2 \right] T_{20} = 2T_{10}$$

$$W = aln \left[2\frac{T_{10}^2}{4} \left(\frac{1}{T_{10}} + \frac{1}{2T_{10}} \right)^2 \right]$$

$$W = aln \left[\frac{1}{2} \left(\frac{3}{2} \right) \right] = aln \left(\frac{9}{8} \right)$$

4.6-1) Uma temperatura de 0.0001K é acessível em laboratório. Se o preço da energia é 15c/KW. Qual será o custo para a extração de um watthora de calor de um sistema há 0.001K? O reservatório quente e a atmosfera a 300K

$$(dQ_h + dW_h) + dQ_c + dW_{RWS} = 0$$

$$dQ_h + dQ_c + dW_{RWS} = 0$$

$$dW_{RWS} = \left(1 - \frac{T_c}{T_h}\right)(-dQ_h)$$

$$\frac{dQ_c}{dW_{RWS}} = \frac{T_c}{T_h - T_c}$$

$$\frac{dQ_c}{\left(\frac{T_c}{T_c - T_c}\right)} = dW_{RWS} = 300KW$$

o custo é 45\$

4.6-5) Um corpo tem uma equação de estado

$$U = cNT$$

com Nc = 10J/K. Quanto de trabalho precisamos para esfriar este corpo da temperatura ambiente 300K para 0.5K usando a atmosfera como (recipiente quente).

usando o princípio do trabalho máximo

$$(dQ_h + dW_h) + dQ_c + dW_{RWS} = 0$$

 $\max dQ_c = 10dT(dW_c = 0)$

também temos que $dW_h = 0$

A relação entre trabalho fornecido e calor retirado é dado pelo coeficiente de geladeira

$$dQ_c = \frac{T_c}{T_h - T_c} dW_{RWS}$$

$$W = 10 \int_{T_h}^{0.5} \frac{T_h - T_c}{T_c} dT_c$$

$$W = 10 \left[T_h (ln0.5 - lnT_h) - (0.5 - T_h) \right]$$

$$W = 16.2$$

4.7-1) Calcule o trabalho e calor em cada etapa do ciclo de Carnot para um sistema auxiliar constituido de 1*mol* de fluido de Van Der Waals. As equações de estado para o fluido de Van Der Waals

$$U = cRT - \frac{a}{V}$$

$$\frac{P}{T} = \frac{R}{V - b} - \frac{acR}{uv^2 + av}$$

a equação fundamental

$$S = NRln \left[(V - b)(cRT)^c \right] + NS_o$$

a primeira etapa do ciclo de Carnot envolve uma expansão isotérmica de V_a até V_b . Como a fonte quente é conservada em reservatório podemos escrever o calor como:

$$Q_{AB} = T_h(S_a - S_B) = Rln\left[\frac{(V_B - b)}{(V_A - b)}\right]$$

$$W = \frac{a}{V_A} - \frac{a}{V_b} + lnT \left[\frac{(V_B - b)}{(V_A - b)} \right]$$

usando

$$W = \Delta U - Q$$

Na segunda etapa temos uma expansão adiabática que leva o fluido a temperatura T_c . Como $\Delta Q = T\Delta S = 0$ e usando a equação fundamental obtemos

$$(V_B - b)(cRT_h)^c = (V_c - b)(cRT_c)^c$$

$$V_c = (V_B - b) \left(\frac{T_h}{T_c}\right)^c + b$$

logo $Q_{AC} = 0$

$$W_{BC} = \Delta U = cR(T_c - T_h) - \frac{a}{V_c} + \frac{a}{V_B}$$

a energia do gás ideal é dado por

$$U = \frac{3}{2}RT$$

já a energia da faixa elástica

$$U = cL_0T$$

como a energia deve ser mantida, então

$$\frac{3}{2}RT_G + cL_oT_B = \frac{3}{2}RT_G' + cL_oT_{B'}$$

$$T_{B^{\circ}} = \frac{3}{2cL_o}R(T_g - T_{G^{\circ}} + T_B)$$

agora vamos impor que a variação de entropia seja positiva, a entropia total é

$$S = S^{(1)} + S^{(2)}$$

$$S^{(1)} = S_o + cL_o ln \frac{cL_oT}{U_o} - \frac{b}{2(L_1 - L_o)} (L - L_o)^2$$

$$S^{(2)} = S_o' + \frac{3}{2}Rln\left(\frac{3}{2}\frac{RT}{U_o}\right) + Rln\left(\frac{v}{v_o}\right)$$

logo a variação de entropia total é

$$\Delta S = cL_o ln \frac{T_{B^{\circ}}}{T_B} - \frac{b}{2(L_1 - L_o)} \left[(L - L_o)^2 - (L_B - L_o)^2 \right] + \frac{3}{2} R ln \left(\frac{T_{G^{\circ}}}{T_G} \right) \ge 0$$

fazendo $L' = L - L_o L = L_B - L_o$

$$L_o ln\left(\frac{3R}{2cL_o}\frac{(T_G - T_{G^{\circ}})}{T_B} + 1\right) - \frac{b}{2(L_1 - L_o)}\left[L^{\circ 2} - L^2\right] + \frac{3}{2}R ln\left(\frac{T_{G^{\circ}}}{T_G}\right) \ge 0$$

$$(L^2 - L^2) \ge \frac{-2cL_o(L_1 - L_o)}{b} ln\left(\frac{3}{2c} \frac{R}{L_o} \frac{(T_G - T_{G^*})}{T_B} + 1\right)$$

$$\frac{-3R(L_1 - L_o)}{b} ln\left(\frac{T_{G^i}}{T_G}\right)$$

Solução capítulo 5

5.1-2)Um pistão adiabático, impermeável e fixo separa um cilindro de duas camara de volume $V_o/4$ e $3V_o/4$. Cada camera contem 1mol de gás ideal monoatômico. As temperaturas são T_s e T_l , os indices S e L se referem a camaras pequenas e grandes.

As equações de estado do gás ideal são

$$PV = NRT$$

$$U = \frac{3}{2}NRT$$

a) O pistão é móvel e o troca de calor é permitida, nessa condição a energia é conservada

$$U = U^{(1)} + U^{(2)} = \frac{3}{2}R(T_s + T_l) = \frac{3}{2}R(2T_f)$$

o princípio de máxima entropia

$$dS = \left(\frac{1}{T_{1f}} - \frac{1}{T_{2f}}\right) dU_1 + \left(\frac{P_{1f}}{T_{1f}} - \frac{P_{2f}}{T_{2f}}\right) dV_1$$

requer que $U_o = U_f$

$$T_f = \frac{T_s + T_l}{2}$$

e que $P_{1f} = P_{2f}$

$$\frac{NRT}{V_{1f}} = \frac{NRT}{V_{2f}}$$

$$V_{1f} = V_{2f}$$

logo como

$$V_{1f} + V_{2f} = V_o$$

$$V_{1f} = V_{2f} = \frac{V_o}{2}$$

b) o estado que obtemos em a) tem uma entropia S. Queremos mover o pistão de modo a manter a entropia constante. Como queremos manter a entropia constante. Impomos que

$$dS = 0$$

onde S é dado por

$$S = S_o + cRln\left(\frac{U^{(1)}U^{(2)}}{U_o^{(1)}U_o^{(2)}}\right) + Rln\left(\frac{V^{(1)}V^{(2)}}{V_o^{(1)}V_o^{(2)}}\right)$$

calculando a diferencial dS

$$dS = \frac{cRdU^{(1)}}{U^{(1)}} + \frac{cRdU^{(2)}}{U^{(2)}} + R\left(\frac{1}{V^{(1)}} - \frac{1}{V^{(2)}}\right)dV^{(1)} = 0$$

$$dS = 0$$

$$U_{1f} + U_{2f} + U_o$$

logo

$$\frac{cdU^{(1)}}{U^{(1)}} + \frac{cdU^{(2)}}{U^{(2)}} = \left(\frac{1}{V^{(2)}} - \frac{1}{V^{(1)}}\right)dV^{(1)}$$

5.2-1) Achar a equação da parabóla $y=x^2/10$ na representação geométrica de linhas.

$$\psi=\psi(p)$$

$$\psi = y - p.x$$

$$p = \frac{\partial y}{\partial x} = \frac{x}{5}$$

$$x = 5p$$

$$\psi = \frac{x^2}{10} - \frac{x}{5}.x = -\frac{x^2}{10} = -\frac{5}{2}p^2$$

5.2-2) Seja $y=Ae^{Bx}$ a) Achar $\psi(P)$

$$\psi = y - p.x$$

$$p = \frac{\partial y}{\partial x} = A.Be^{Bx}$$

$$\psi = Ae^{Bx} - A.Be^{Bx}.x$$

$$\psi = \frac{p}{B} - P.x$$

$$\frac{P}{AB} = e^{Bx}$$

$$x = \frac{1}{B} \ln \frac{P}{AB}$$

$$\psi = \frac{p}{B} - \frac{p}{B} \ln \frac{p}{AB} = \frac{p}{B} \left(1 - \ln \frac{p}{AB} \right)$$

b) Achar a inversa de ψ

$$y = \psi + p.x$$

$$x = \frac{\partial \psi}{\partial p} = \frac{1}{B} \left(1 - \ln \frac{p}{AB} \right) - \frac{p}{B} \frac{1}{p} = -\frac{1}{B} \ln \frac{p}{AB}$$

$$p = ABe^{Bx}$$

$$y = \frac{p}{B} \left(1 - \ln \frac{p}{AB} \right) + p.x$$

$$y = \frac{A.Be^{Bx}}{B} \left(-1 - Bx \right) + A.Be^{Bx}.x$$

$$y = Ae^{Bx} - ABe^{Bx}.x + ABe^{Bx}.x$$

$$y = Ae^{Bx}$$

- 5.3-1) Ache a equação fundamental do gás monoatómico nas representações de:
 - a) Helmholtz:

$$SNS_o + NR \ln \left[\left(\frac{U}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{(c+1)} \right]$$

isolando U

$$e^{s} = e^{NS_0} \left(\frac{U}{U_0}\right)^{cNR} \left(\frac{V}{V_0}\right)^{NR} \left(\frac{N}{N_0}\right)^{(c+1)NR}$$

$$e^{s-NS_0} = \left(\frac{U}{U_0}\right)^{cNR} \left(\frac{V}{V_0}\right)^{NR} \left(\frac{N}{N_0}\right)^{(c+1)NR}$$

$$U = U_0 \left(\frac{V}{V_0}\right)^{1/c} \left(\frac{N}{N_0}\right)^{(c+1)/c} e^{\frac{S - NS_0}{cNR}}$$
$$-\frac{1}{c} \left(\frac{V}{V_0}\right)^{1/c - 1} \cdot \frac{1}{V_0}$$

$$F = U - T.S$$

$$S = NS_0 + NR \ln \left[\left(\frac{cNRT}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

$$F = U - T.S$$

$$F = U_0 \left(\frac{V}{V_0}\right)^{1/C} \left(\frac{N}{N_0}\right)^{c+1/C} \left(\frac{cNRT}{U_0}\right) \left(\frac{V}{V_0}\right)^{1/C} \left(\frac{N}{N_0}\right)^{-(c+1)/C} - NS_0T - NRT \ln \left[\left(\frac{cNRT}{U_0}\right)^c \left(\frac{V}{V_0}\right)^{-(c+1)/C} \right] + NS_0T - NRT \ln \left[\left(\frac{cNRT}{U_0}\right)^c \left(\frac{V}{V_0}\right)^c \right] + NS_$$

$$F = cNRT - NS_0T - NRT \ln \left[\left(\frac{cNRT}{U_0} \right)^c \left(\frac{V}{V_0} \right) \left(\frac{N}{N_0} \right)^{-(c+1)} \right]$$

b) Na representação de entalpia

$$\begin{split} -P &= \frac{\partial U}{\partial V} = -\frac{U_0}{cV_0} \left(\frac{V}{V_0}\right)^{-(c+1)/c} \left(\frac{N}{N_0}\right)^{(c+1)/c} e^{\frac{S-NS_0}{cNR}} \\ &-P = -\frac{U}{cV} \\ &V = \frac{U}{Pc} \\ &P = \frac{U_o}{c} \frac{V_o^{1/c}}{V^{1/c+1}} \left(\frac{N}{N_0}\right)^{(c+1)/c} e^{\frac{S-NS_0}{cNR}} \\ &V = \frac{N}{N_0} V_0^{1/c+1} \left(\frac{U_0}{c}\right)^{c/c+1} e^{\frac{S-NS_0}{NR(c+1)}} \end{split}$$

Solução Capítulo 6

6.2-1) Calcule a pressão em cada lado do pistão interno do exemplo 1. A pressão de um gás ideal é

$$PV = \frac{NRT}{V}$$

o trabalho entregue é igual a:

$$dw_{RWS} = P^{(1)}dV^{(1)} + P^{(2)}dV^{(2)}$$

integrando

$$w_{RWS} = NRT \int_{10}^{6} \frac{dV^{(1)}}{V^{(1)}} + NRT \int_{1}^{5} \frac{dV^{(2)}}{V^{(2)}}$$

$$w_{RWS} = NRT \left[\ln \frac{6}{10} + \ln \frac{5}{1} \right] = NRT \ln 3$$