Предсказание появления ребра в темпоральном графе

Команда №2 Волокитин Егор Камынин Павел 20.Б12-ПУ

Стек технологий

- ЯП: C++20
- Компилятор: дсс
- Сборщик: *make*
- Библиотека базовых структур данных: *STL*
- ML: mlpack

Оценка свойств графа

Граф хранился в структуре: std::vector<std::unordered_set<int>>

radoslaw_email	l
Vertex count	167
Edge count	3250
Density	0.234
Weak comp. count	1
Main comp. to graph	1.000
Main component radius	3
Main component diameter	5
Main component 90%	3
Cl koef	0.296
Assort koef	-0.295

test_4			
Vertex count	l	62	
Edge count	l	159	
Density	l	0.084	
Weak comp. count	I	1	1
Main comp. to graph	1	1.000	
Main component radius	I	5	100
Main component diameter	l	8	
Main component 90%	I	5	100
Cl koef	l	0.129	
Assort koef	 	-0.044 	

 I	team_2			Ī
I	Vertex count	I	1098	Ī
Ī	Edge count	ı	60151	Ī
Ī	Density	l	0.100	Ī
I	Weak comp. count	l	1	Ī
 	Main comp. to graph	I	1.000	Ī
I I	Main component radius Main component radius]	Rand: 2 Snow: 2	Ī
I I	Main component diameter Main component diameter		Rand: 3 Snow: 3	Ī
 	Main component 90% Main component 90%	 	Rand: 2 Snow: 2	Ī
I	Cl koef	I	0.050	Ī
 	Assort koef	I	0.002	- -

Статические признаки для ребра (1, 2)

Структура данных признаков: std::map<std::pair<int,int>, std::vector<double>>

	radoslaw	team_2	reed	test_2	test_5	test_7	middlebury
CN	67	12	19	7	0	583	2
AA	16.8858	2.527	4.724	6.1307	0	255.859	0.3824
JC	0.5075	0.052	0.186	0.3888	0	0.07612	0.011
PA	8970	14224	3504	144	69	4.7*10^6	8262

Темпоральный граф

Структура данных для хранения графа с временными пометками: std::map<std::pair<int, int>, std::set<int>>

Почему <u>set</u>? Потому что это ускорит вычисление статических признаков

Common Neighbours (CN) The CN feature is equal to the number of common neighbours of two nodes.

$$CN_{\text{static}}(u, v) = |\Gamma(u) \cap \Gamma(v)|$$
 (1)

Adamic-Adar (AA) The AA feature considers all common neighbours, favouring nodes with low degrees (Adamic and Adar 2003).

$$AA_{\text{static}}(u, v) = \sum_{z \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log |\Gamma(z)|}$$
(2)

Jaccard Coefficient (JC) The JC feature is similar to the CN feature, but normalises for the number of unique neighbours of the two nodes.

$$JC_{\text{static}}(u, v) = \frac{|\Gamma(u) \cap \Gamma(v)|}{|\Gamma(u) \cup \Gamma(v)|}$$
 (3)

Preferential Attachment (PA) The PA feature takes into account the observation that nodes with a high degree are more likely to make new links than nodes with a lower degree.

$$PA_{\text{static}}(u, v) = |\Gamma(u)| \cdot |\Gamma(v)|$$
 (4)

ROC AUC Score

	radoslaw	bitcoin alpha	usocial	mathoverflow
Static	85%	86%	75%	85%
Temporal	88%	90%	83%	91%

Спасибо за внимание!