

INSTITUTO FEDERAL DO RIO GRANDE DO NORTE

DISCIPLINA: MATEMÁTICA FINANCEIRA

ANÁLISES DE INVESTIMENTOS (VPL E TIR)

Professor: Fernando Antonio de Melo Pereira

Análise de Investimentos

 As decisões de investimento, também conhecidas como orçamento de capital, podem ser consideradas como o ponto central do sucesso de uma empresa, tendo em vista os montantes substanciais de absorvem.

- O desenvolvimento do carro mundial da Ford

 Mondeo -, cujos custos alcançaram US\$ 6
 bilhões.
- 3. A produção do filme Jurassic Park exigiu gastos da ordem de US\$ 60 milhões.

Fonte: Muller e Antonik (2012)

Análise de Investimentos

 Para avaliar a atratividade dos projetos, as empresas geralmente utilizam os métodos:

 Normalmente, a VPL e a TIR oferecem o mesmo resultado, entretanto algumas vezes podem esconder algumas armadilhas para o analista menos avisado, e até mesmo conflitar as decisões.

Fonte: Muller e Antonik (2012)

• O método do Valor Presente Líquido (VPL) para análise dos fluxos de caixa é obtido pela diferença entre o valor presente dos benefícios (ou pagamentos) previstos de caixa e o valor presente do fluxo de caixa inicial (valor do investimento, do empréstimo ou do financiamento).

FC_o Valor do fluxo de caixa no momento zero.

FC_i Fluxos previstos.

$$VPL = \frac{FC_1}{(1+i)^1} + \frac{FC_2}{(1+i)^2} + \frac{FC_3}{(1+i)^3} + \dots + \frac{FC_n}{(1+i)^n} - FC_0$$

$$VPL = \sum_{j=1}^{n} \frac{FC_{j}}{(1+i)^{j}} - FC_{0}$$

Fonte: Assaf Neto (2016)

Princípio da "maximização do valor presente":

 "A maximização do valor presente é o objetivo financeiro racional principal para todos os investidores".

Fonte: Assaf Neto (2016)

Interpretação do VPL:

VPL	Viabilidade	Decisão	
> 0	Viável	Aceitar	
< 0	Inviável	Rejeitar	
= 0	Indiferente		

- No caso de investimentos o VPL positivo pode significar:
- 1. Capital investido foi devidamente remunerado pela atividade;
- 2. Haverá um valor (igual ao VPL) em favor do investidor.

Fonte: Assaf Neto (2016)

• Exemplo: Determinado cliente quer comprar um eletrodoméstico e tem as seguintes alternativas de pagamento:

 $I - \dot{a}$ vista, por R\$ 900,00;

II – em duas prestações mensais e iguais a R\$ 500,00, vencendo a primeira no ato da compra;

III – em três prestações mensais e iguais a R\$ 350,00 vencendo a primeira no ato da compra.

Supondo que o cliente possa aplicar o dinheiro a uma taxa de 4% ao mês, determine o VPL das opções II e III e diga qual das opções é a mais vantajosa para o cliente.

$$FC_1 = 500,00$$

$$FC_2 = 500,00$$

$$i = 4\%a.m.$$

$$VPL = 500 + \left(\frac{500}{(1+0.04)^1}\right) - 900$$

$$VPL = 500 + (480,77) - 900$$

$$VPL = 80,77$$

$$500 + (500 \div (1 + 0.04) ^ 1) -900$$

• Exemplo: Determinado cliente quer comprar um eletrodoméstico e tem as seguintes alternativas de pagamento:

 $I - \dot{a}$ vista, por R\$ 900,00;

II – em duas prestações mensais e iguais a R\$ 500,00, vencendo a primeira no ato da compra;

III – em três prestações mensais e iguais a R\$ 350,00 vencendo a primeira no ato da compra.

Supondo que o cliente possa aplicar o dinheiro a uma taxa de 4% ao mês, determine o VPL das opções II e III e diga qual das opções é a mais vantajosa para o cliente.

$$FC_1 = 350,00$$

$$FC_2 = 350,00$$

$$i = 4\%a.m.$$

$$VPL = 350 + \left(\frac{350}{(1+0.04)^{1}}\right) + \left(\frac{350}{(1+0.04)^{2}}\right) - 900$$

$$VPL = 350 + (336,54) + (323,59) - 900 \qquad 350 \div (1 + 0,04) ^{1}$$

• Exemplo: (FCC/2009/TJ – SE) Sejam os dois fluxos de caixa abaixo referentes aos projetos M e N, mutuamente excludentes, em que ambos apresentam o mesmo desembolso na data

inicial.

Ano	Projeto M (R\$)	Projeto N (R\$)
0	- 30.000,00	-30.000,00
1	21.600,00	29.160,00
2	23.328,00	29.160,00

$$VPL = \left(\frac{21.600}{(1+0.08)^{1}}\right) + \left(\frac{23.328}{(1+0.08)^{2}}\right) - 30.000$$

$$VPL = 20.000 + 20.000 - 30.000$$

$$VPL = 10.000,00$$

$$(21.600 \div (1 + 0.08) ^ 1) + (23.328 \div (1+0.08)^ 2) - 30.000$$

• Exemplo: (FCC/2009/TJ – SE) Sejam os dois fluxos de caixa abaixo referentes aos projetos M e N, mutuamente excludentes, em que ambos apresentam o mesmo desembolso na data

inicial.

Ano	Projeto M (R\$)	Projeto N (R\$)
0	- 30.000,00	-30.000,00
1	21.600,00	29.160,00
2	23.328,00	29.160,00

$$VPL = \left(\frac{21.600}{(1+0.08)^{1}}\right) + \left(\frac{23.328}{(1+0.08)^{2}}\right) - 30.000$$

$$VPL = 20.000 + 20.000 - 30.000$$

$$VPL = 10.000,00$$

-							
	E5	* 1 ×	✓ fx	=VPL(B5	;B2:B3)-B1		
	4	A	В	C	D	E	
	1	Investimento	30.000,00				
	2	Fluxos de caixa anuais	21.600,00				
	3		23.328,00				Ī
	4						
	5	Taxa	8%		VPL	R\$10.000,00	
	6		//				ſ

• Exemplo: (FCC/2009/TJ – SE) Sejam os dois fluxos de caixa abaixo referentes aos projetos M e N, mutuamente excludentes, em que ambos apresentam o mesmo desembolso na data

inicial.

Ano	Projeto M (R\$)	Projeto N (R\$)
0	- 30.000,00	-30.000,00
1	21.600,00	29.160,00
2	23.328,00	29.160,00

$$VPL = \left(\frac{29.160}{(1+0.08)^{1}}\right) + \left(\frac{29.160}{(1+0.08)^{2}}\right) - 30.000$$

$$VPL = 27.000 + 25.000 - 30.000$$

$$VPL = 22.000,00$$

$$(29.160 \div (1 + 0.08) ^ 1) + (29.160 \div (1+0.08)^ 2) - 30.000$$

• Exemplo: (FCC/2009/TJ – SE) Sejam os dois fluxos de caixa abaixo referentes aos projetos M e N, mutuamente excludentes, em que ambos apresentam o mesmo desembolso na data

inicial.

Ano	Projeto M (R\$)	Projeto N (R\$)
0	- 30.000,00	-30.000,00
1	21.600,00	29.160,00
2	23.328,00	29.160,00

$$VPL = \left(\frac{29.160}{(1+0.08)^{1}}\right) + \left(\frac{29.160}{(1+0.08)^{2}}\right) - 30.000$$

$$VPL = 27.000 + 25.000 - 30.000$$

$$VPL = 22.000,00$$

E5	+	i ×	√ fx	=VPL(B5	;B2:B3)-B1		
	Α		В	C	D	E	
1	Investimento		30.000,00				
2	Fluxos de caix	a anuais	29.160,00				
3			29.160,00		0		
4							
5	Taxa		8%		VPL	R\$22.000,00	
-							

• Exemplo: (FCC/2009/TJ – SE) Sejam os dois fluxos de caixa abaixo referentes aos projetos M e N, mutuamente excludentes, em que ambos apresentam o mesmo desembolso na data

inicial.

Ano	Projeto M (R\$)	Projeto N (R\$)
0	- 30.000,00	-30.000,00
1 21.600,0		29.160,00
2	23.328,00	29.160,00

$$VPL = 22.000,00 - 10.000,00$$

$$VPL = 12.000,00$$

 Exemplo: (2015/CESGRANRIO/Petrobras) Foi oferecido a ume empresa um projeto para investimento de R\$ 120.000,00 com a seguinte previsão do fluxo de entradas de caixa:

Considerando somente as informações recebidas, a taxa de retorno de 10% ao ano, fixada pela empresa, e o método de análise do Valor Presente Líquido (VPL), o resultado desse investimento, em reais é:

a)
$$-17,769,00$$
 b) $-5.000,00$ c) $12.073,00$ d) $16.070,00$

b)
$$-5.000,00$$

$$VPL = \left(\frac{55.000}{(1+0.10)^{1}}\right) + \left(\frac{54.450}{(1+0.10)^{2}}\right) + \left(\frac{26.620}{(1+0.10)^{3}}\right) - 120.000$$

$$VPL = (50.000 + 45.000 + 20.0000) - 120.000$$

$$VPL = -5.000,00$$

$$(55.000 \div (1,10)^{1}) + (54.450 \div (1,10)^{2}) + (26.620 \div (1,10)^{3}) - 120.000$$

Taxa Interna de Retorno (TIR)

Taxa Interna de Retorno: é a taxa que iguala, que equaliza o valor das saídas com o valor presente das entradas de um fluxo de caixa. É a taxa que faz o VPL ser igual a zero.

Importante: Se a TIR for maior que a taxa de rentabilidade do mercado, então VPL > 0, logo é vantajoso a efetivação de um determinado projeto.

$$FC_0 = \sum_{j=1}^{n} \frac{FC_j}{(1+i)^j}$$

Iaxa Interna de Retorno (TIR)

Taxa Interna de Retorno: é a taxa que iguala, que equaliza o valor das saídas com o valor presente das entradas de um fluxo de caixa. É a taxa que faz o VPL ser igual a zero.

Taxa Interna de Retorno (TIR)	Decisão
TIR > Taxa de mercado	Viável
TIR < Taxa de mercado	Inviável
TIR = Taxa de mercado	Indiferente

Importante: Se a TIR for maior que a taxa de rentabilidade do mercado, então VPL > 0, logo é vantajoso a efetivação de um determinado projeto.

Iaxa Interna de Retorno (TIR)

(CESPE/2011/Correios) O departamento de manutenção de determinada indústria está preparando uma proposta de projeto de modernização, por meio da reforma de suas instalações, da aquisição de novos equipamentos e dispositivos e de um software de auxílio ao planejamento e controle da manutenção, em um investimento total estimado em R\$250.000,00. O engenheiro responsável pela proposta de projeto, na análise de sua viabilidade, verificou que, para uma taxa de atratividade de 2% ao mês, relativos a juros compostos, espera-se, como retorno, um valor de R\$ 25.000,00 ao mês durante 12 meses consecutivos, sem valor residual.

Diante dessa situação hipotética, julgue o item subsequente.

Se a taxa interna de retorno calculada sobre o investimento for igual a 2,92%, é correto afirmar que o projeto é viável, considerando-se a análise desse índice.

TIR = 2,92% > 2%, ou seja é viável.

Taxa Interna de Retorno (TIR)

(2011/FCC/TCE-PR/Analista de Controle) A taxa interna de retorno (TIR) anual do projeto representado pelo fluxo de caixa abaixo é igual a 8%.

O valor de X é igual a:

a) R\$ 13,500,00	a)	R\$	13	.50	0.	0	0
------------------	----	-----	----	-----	----	---	---

- b) R\$ 14.580,00
- c) R\$ 14.904,00
- d) R\$ 15.746,40
- e) R\$ 16.096,00

Ano	Fluxo de Caixa (R\$)
0	- 38.500,00
1	X
2	2X

$$FC_0 = \sum_{j=1}^{n} \frac{FC_j}{(1+i)^j}$$

$$FC_0 = \left(\frac{FC_1}{(1+i)^1}\right) + \left(\frac{FC_2}{(1+i)^2}\right)$$

$$38500 = \left(\frac{X}{(1,08)^1}\right) + \left(\frac{2X}{(1,08)^2}\right)$$

$$38500.(1,08)^2 = (1,08)^2.\left(\frac{X}{(1,08)^1}\right) + (1,08)^2.\left(\frac{2X}{(1,08)^2}\right)$$

$$44.906,40 = 1,08X + 2X$$

$$44.906,40 = 3,08X$$

$$X = 14.580,00$$

EXERCÍCIOS

Exercícios - TIR

1. Calcule a taxa interna de retorno (TIR) de cada projeto de investimento:

		Fluxos de Caixa			
Projetos	Investimento (R\$)	Ano 1	Ano 2	Ano 3	
А	10.000,00	5.000,00	4.000,00	3.000,00	
В	30.000,00	9.000,00	12.000,00	15.000,00	
С	50.000,00	30.000,00	10.000,00	20.000,00	
D	40.000,00	0	30.000,00	30.000,00	

A = 10,65% B = 8,90% C = 10,70% D = 17,77%

Exercícios - TIR

2. (2011/FCC/SEFAZ-PI/Auditor Fiscal da Fazenda Estadual) No fluxo de caixa abaixo, a taxa interna positiva de retorno é de 20% ao ano.

O valor de k é:

a)R\$3.896,00

b)R\$5.000,00

c)R\$117,00

d)R\$260,00

e)R\$714,00

5k + 1300

$$FC_{o} = \left(\frac{FC_{1}}{(1+i)^{1}}\right) + \left(\frac{FC_{2}}{(1+i)^{2}}\right)$$

$$5K + 1.300 = \left(\frac{3k}{(1,2)^{1}}\right) + \left(\frac{4k-128}{(1,2)^{2}}\right)$$

$$(5k + 1.300) \cdot (1,2)^{2} = (1,2)^{2} \cdot \left(\frac{3k}{(1,2)^{1}}\right) + (1,2)^{2} \cdot \left(\frac{4k-128}{(1,2)^{2}}\right)$$

$$(5k + 1.300) \cdot (1,44) = (1,2) \cdot 3k + 4k - 128$$

$$7,2k + 1.872 = 3,6k + 4k - 128$$

$$0,4k = 2.000,00$$

$$K = 5.000,00$$

Exercícios - TIR

3. (2011/FCC/SEFAZ-PI/Auditor Fiscal da Fazenda Estadual) Considere o fluxo de caixa a seguir, com os valores em reais. Se a Taxa Interna de Retorno desse fluxo é igual a 8%, o valor de x é igual a:

- a)R\$5.230,00
- b)R\$5.590,00
- c)R\$5.940,00
- d)R\$6.080,00
- e)R\$6.160,00

(2x - 1.380)

$$FC_{0} = \left(\frac{FC_{1}}{(1+i)^{1}}\right) + \left(\frac{FC_{2}}{(1+i)^{2}}\right)$$

$$2x - 1.380 = \left(\frac{X}{(1,08)^{1}}\right) + \left(\frac{X-108}{(1,08)^{2}}\right)$$

$$(2x - 1.380) \cdot (1,08)^{2} = (1,08)^{2} \cdot \left(\frac{X}{(1,08)^{1}}\right) + (1,08)^{2} \cdot \left(\frac{X-108}{(1,08)^{2}}\right)$$

$$(2X - 1.380) \cdot (1,1664) = (1,08) \cdot X + X - 108$$

$$2,3328X - 1.609,63 = 1,08X + X - 108$$

$$0,2528X = 1.501,63$$

$$K = 5.939,99$$

Exercícios - VPL

4. (2014/CESPE/ANTAQ/Analista Administrativo) Paulo decidiu comprar a prazo um veículo zero quilômetro que custa R\$ 41 mil. A respeito das opções de empréstimos sugeridas a Paulo, julgue o item subsecutivo.

Suponha que um banco tenha emprestado a Paulo o valor necessário, a ser pago em 2 prestações, com vencimentos em 30 e 60 dias, a partir da data da assinatura do contrato. Nessa situação, se a taxa interna de retorno para esse empréstimo for de 5%, então o valor da prestação será inferior a R\$ 22.500.

$$FC_{0} = \left(\frac{FC_{1}}{(1+i)^{1}}\right) + \left(\frac{FC_{2}}{(1+i)^{2}}\right)$$

$$41.000 = \left(\frac{FC}{(1,05)^{1}}\right) + \left(\frac{FC}{(1,05)^{2}}\right)$$

$$41.000. (1,05)^{2} = (1,05)^{2}. \left(\frac{FC}{(1,05)^{1}}\right) + (1,05)^{2}. \left(\frac{FC}{(1,05)^{2}}\right)$$

$$45.202,50 = (1,05).FC + FC$$

$$2,05 FC = 45.202,50$$

$$FC = 22.050,00$$

Exercícios - VPL

5. (CESPE/2011/BRB - adaptada) Considerando o financiamento de R\$ 5.000,00, à taxa de juros compostos de 2% ao mês e pagamento em duas parcelas mensais, tenha permitido a implantação de um projeto com retorno de R\$ 4.000,00 em cada um dos dois meses. Face ao exposto, é correto afirmar que o valor presente líquido do referido projeto será superior a R\$ 2.750,00?

$$VPL = \left(\frac{4.000}{(1+0.02)^{1}}\right) + \left(\frac{4.000}{(1+0.02)^{2}}\right) - 5.000$$

$$VPL = (3.921,56 + 3.844.68) - 5.000$$

$$VPL = 2.766,24$$

 $(4.000 \div (1,02)^{1}) + (4.000 \div (1,02)^{2}) - 5.000$