Classifying Bird Song from Around the World

(revised to: Europe)

Sandra Forro, Imran Naskani, Erin Rebholz

Harvard University, School of Extension Studies, CSCI 109B Advanced Data Science Spring 2024

Project Question:

How might we use bird song audio data to Classify Top Bird Songs in Europe.

Success is defined as **surpassing the 85% accuracy** that the Nature and Biodiversity Conservation Union (NABU)'s model achieves.

2,901 15 second song **recordings of the top 10 European bird species** were subsetted from the Bird sound collection of Xeno-canto (XC), the Foundation for Nature Sounds in the Netherlands. There are approximately **200 samples** per bird type, with small upward or downward deviations.

Initial EDA and Data Quality: data is subsetted based on findings

Narrowing Behaviors: data is segmented into sound types. 'Songs' and 'Calls' were grouped together, other sounds and heterogeneous groups were excluded from baseline model

Samples Grouped by behavior

bel	navior	
ca.	11	17985
fl:	ight call	12119
no	cturnal flight call	11647
son	ng	10404
fl:	ight call, nocturnal flight call	2781
ca.	ll, flight call	2576
ala	arm call	1761
ca.	ll, flight call, nocturnal flight call	992
son	ng, call	952
ca.	ll, alarm call	707
und	certain	500
beg	gging call	355
ala	arm call, flight call	292
ca.	ll, nocturnal flight call	271
dri	umming	269
son	ng, flight call	263
ca.	ll, alarm call, flight call	164
sub	osong	149
102	ng, nocturnal flight call	133
ca.	ll, begging call	133
wir	ng beats	94
102	ng, imitation, mimicry/imitation	88
fl:	ight call, nocturnal flightcall	83
102	ng, subsong	74
	ng, call, flight call	73
ca.	ll, wailing call	65
ca.	ll, wing beats	65
son	ng, aberrant	62
	ll, aberrant	54
no	cturnal flight call, aberrant	53

Behaviors Were Grouped into Similar Types:

Song = 'song, 'subsong', 'song, subsong'

Call = 'call', 'flight call', 'nocturnal flight call', 'flight call, nocturnal flight call', 'call, flight call'

Excludes 6,189, 'Identity Unknown' for Vernacular Name

Top 10 Vernacular Names by Behaviour Group (sample cts)

Cetti's Warbler	699	9 sample:
Eurasian Wren	334	with calls
Common Cuckoo	307	
Great Tit	256	>200
Eurasian Blackcap	244	
Willow Warbler	236	2901
Common Chiffchaff	227	
Common Quail	215	samples
Common Chaffinch	209	Total for
European Green Woodpecker	174	Top 10

Common Moorhen	972	
Red Crossbill	965	
Water Rail	959	77 birds
Redwing	830	with call
Eurasian Coot	822	
Common Sandpiper	717	samples
Common Blackbird	671	>200
Song Thrush	654	
Tree Pipit	600	
European Robin	583	

Evaluation Pipeline: Parameters within our evaluation pipeline were iterated to optimize accuracy results in baseline CNN model, then further models were tested to improve accuracy

Evaluation Pipeline

Pre-Processing And Oversampling

Narrow sample of interest to 10 categories of bird song

Oversample to create synthetic samples to improve class balance

Mel-Spectrogram
Sample
Generation

Trims, normalize and loop sampled audio

Generate mel-spec images and save to folder for multiple uses

Image Data Generator

Parses into Test/Train/Validation generators that are used within models.

Light transformation to 1/255 ranges and image size normalized to 128 x 128 x 3

CNN/ Autoencoder Model Evaluation

Baseline CNN

Optimization of CNN with regularization / drop out for consistency

Experimentation with autoencoders

Refined Approach: TensorFlow I/O was used for GPU-enabled normalization, noise reduction, and mel spectrogram image generation

Audio was normalized to amplitudes between 1 & -1, then files were trimmed to exclude baseline noise that wasn't relevant.

The CNN approach requires a standard size image, so sound was looped to full 15 seconds and used to generate mel-spectrogram images:

100000 150000 200000 250000

Duration (Sampling Rate * Audio Length)

300000

-0.75 -1.00

Correcting for class imbalance: Oversampling was performed to generate synthetic image samples by varying parameters

Sample with No Oversampling

Initial data had sample variation with a majority class of 690 samples and the others ranged from 174-334

Sample with Oversampling

Oversampling generated additional mel-spectrographs by varying frequency filters, max decibel ranges & baseline noise exclusion

Finding:

Generic tweaks to photos available in image-data generator decreased prediction accuracy.

Instead,permutations in parameters used within audio processing were used to supplement image samples.

Model Architectures:

Baseline 'Vanilla' CNN

Optimized Model 1

Optimized Model 2

Optimized Model 2

Autoencoder

3 conv + 3 max pool layers

1 Dense layer

No regularization

4 conv2D + 4 max pool layer

2 Dense layers

No regularization

Optimized 1 + Optimized kernel sizes

2 Additional drop-out layers (0.5) + L1 Regularization

Optimizer learning rate adjustments

Experimentation with autoencoders

Basic construction

Trainable

Parameters: 2.2 MM

0.73 MM

0.88 MM

0.13 MM autoencoder + 0.88 MM model

Model Training Results:

Best Model based on performance*

CNN Models	Baseline Model	Baseline Model	Optimized Model 1	Optimized Model 2	Optimized Model 2 with Autoencoders
Data	Imbalanced (No oversampling)	Balanced (with oversampling)	Balanced (with oversampling)	Balanced (with oversampling)	Balanced (with oversampling)
Trainable Parameters	2,212,522	2,212,522	726,634	878,698	1,004,013 [125,315 (autoencoder) + 878,698 (model)]
Epochs	30	30	30	30	30
Patience	5	5	5	5	5
Best Epoch	4	8	8	30	15
Train Accuracy	0.8002	0.9878	0.9701	0.9955	0.9837
Validation Accuracy	0.6674	0.9158	0.9112	0.9484	0.9212

F1 Score by Bird Type: Validation Results

Baseline no Oversampling: F1-Score: 0.65

Baseline w/ Oversampling: F1-Score: 0.92

Optimized 2 w/ Oversampling: F1-Score: 0.95

Auto Encoder: F1-Score: 0.92

Final Inference and Discussion of Results

Test Accuracy: 95.9%

Val Accuracy: 94.8%

F1-score (weighted): .96:

Balanced across bird types

Incorrect Predictions:

Correct Predictions:

Areas for Future Expansion

Scenario 1: **Classifying bird** types for top songs and top calls

Top 10 Call Birds

Common Moorhen 972 Red Crossbill 965 Water Rail 959 Redwing 830 Furasian Coot 822 Common Sandpiper 717 Common Blackbird 671 Song Thrush 654 Tree Pipit 600 European Robin 583

Original song data + 77 birds with call samples >200 + 50koversampling

Scenario 2: Classifying both call and song data for the top song birds (multi classification)

Original song data + new song and call data (8k)+ oversampling (2k)

Appendix

MODEL ARCHITECTURES

CNN Models	Baseline Model	Optimized Model 1	Optimized Model 2	Optimized Model 3 with Autoencoders
Input	128 x 128 x 3	128 x 128 x 3	128 x 128 x 3	128 x 128 x 3
Conv2D layers	3	4	4	4
Conv2D channels	64, 128, 32	64, 128, 64, 32	64, 128, 64, 32	64, 128, 64, 32
Kernel size	3x3, 3x3, 3x3	3x3, 3x3, 3x3, 3x3	11x3, 9x3, 3x3, 3x3	11x3, 9x3, 3x3, 3x3
Padding	Same	same	same	same
MaxPooling2D	(2,2), (2,2), (2,2)	(2,2), (2,2), (2,2), (2,2)	(2,2), (2,2), (2,2), (2,2)	(2,2), (2,2), (2,2), (2,2)
Stride	1	1	1	1
Dense layers	1	2	2	2
Dense units	256	256, 128	256, 128	256, 128
Dropouts	-	-	0.5, 0.5	0.5, 0.5
L1 regularization	-	-	0.0001, 0.0001	0.0001, 0.0001
Output layer	1	1	1	1
Output units	10	10	10	10
learning rate (Adam)	default	default	0.0005	0.0005
Trainable Parameters	2,212,522	726,634	878,698	125,315 (autoencoder) - 878,698 (model)

Autoencoder Architecture				
	Input	128 x 128 x 3		
	Conv2D layers	3		
	Conv2D channels	128, 64, 32		
Encoder	Kernel size	3x3, 3x3, 3x3		
	Padding	same		
	MaxPooling2D	(2,2), -, (2,2)		
	Stride	1		
	Conv2D layers	3		
	Conv2D channels	32, 64, 3		
	Kernel size	3x3, 3x3, 3x3		
Decoder	Padding	same		
	UpSampling2D	(2,2), (2,2), -		
	Stride	1		
Trainable Parameters	125,315			

Bird Song Results Additional Call Data Early Results: 10 bird_song and 80 bird_call types

Sample Generation Using Oversampling:

78 of the 90 bird_behavior pairs produce results:

<u>Finding:</u> Parameter tuning required to account for different frequencies and decibel levels of call data & reduce omits

70% Val accuracy using Optimized Model 2

