Lógica y Computabilidad

Práctica 1: Funciones primitivas recursivas y clases PRC

2do cuatrimestre 2022

Ejercicio 1

Para construir una constante k, aplicamos la función s (sucesor) unas k veces, partiendo inicialmente de la función n que nos devuelve el 0.

$$f(x) = k = (\underbrace{s \circ \cdots \circ s}_{k \text{ veces}} \circ n)(x) = s^k(n(x))$$

Ejercicio 2

- $f_1(x,y) = suma(x,y) = x + y$ $suma(x,0) = u_1^1(x) = x$ suma(x,y+1) = g(suma(x,y),x,y) donde $g(x_1,x_2,x_3) = s(u_1^3(x_1,x_2,x_3))$ $\Rightarrow suma(x,y+1) = s(suma(x,y))$
- $f_2(x,y) = prod(x,y) = x \cdot y$ prod(x,0) = n(x) = 0 prod(x,y+1) = g(prod(x,y),x,y) donde $g(x_1,x_2,x_3) = suma(u_1^3(x_1,x_2,x_3),u_2^3(x_1,x_2,x_3))$ $\Rightarrow prod(x,y+1) = suma(prod(x,y),x)$
- $f_3(x,y) = pot(x,y) = x^y$ pot(x,0) = s(n(x)) = 1 pot(x,y+1) = g(pot(x,y), x, y) donde $g(x_1, x_2, x_3) = prod(u_1^3(x_1, x_2, x_3), u_2^3(x_1, x_2, x_3))$ $\Rightarrow pot(x,y+1) = prod(pot(x,y), x)$
- $f_4(x,y) = \underbrace{x^{x}}_{y \text{ veces}}$ $f_4(x,0) = 1$ $f_4(x,y+1) = g(f_4(x,y),x,y) \text{ donde } g(x_1,x_2,x_3) = pot(u_2^3(x_1,x_2,x_3), u_1^3(x_1,x_2,x_3))$ $\Rightarrow f_4(x,y+1) = pot(x,f_4(x,y))$ Esta función a veces se la llama "Power Tower" (Wikipedia)
- $g_1(x) = pred(x) = x \div 1$ pred(0) = n() = 0 Permitimos utilizar la función nula n sin parámetros. pred(x+1) = g(pred(x), x) donde $g(x_1, x_2) = u_2^2(x_1, x_2) = x_2$ $\Rightarrow pred(x+1) = x$
- $g_2(x,y) = resta(x,y) = x y$ $resta(x,0) = u_1^1(x) = x$ resta(x,y+1) = g(resta(x,y),x,y) donde $g(x_1,x_2,x_3) = pred(u_1^3(x_1,x_2,x_3))$ $\Rightarrow resta(x,y+1) = pred(resta(x,y))$

g₃(x,y) = max{x,y}
g₃(x,y) = suma(resta(x,y),y) = (x ÷ y) + y
Si x ≥ y, entonces g₃ simplemente resta y suma y a un x que es más grande, y en efecto terminamos con x que era el máximo. Si es el otro caso, x < y, al hacer la resta en N : x ÷ y = 0, y luego al sumar y obtenemos y que era el máximo.
g₄(x,y) = min{x,y}

$g_4(x,y) = resta(suma(x,y), max\{x,y\}) = x + y - max\{x,y\}$

Ejercicio 3

Pendiente

Ejercicio 4

Pendiente

Ejercicio 5

Pendiente

Ejercicio 6

Pendiente

Ejercicio 7

Pendiente

Ejercicio 8

Pendiente

Ejercicio 9

Pendiente

Ejercicio 10

Pendiente

Ejercicio 11

Pendiente

Ejercicio 12

Pendiente

Ejercicio 13

Pendiente

Ejercicio 14

Pendiente

Ejercicio 15

Pendiente