

MIDTERM 4

Continual Learning with Deep Generative Replay

Pasquali Alex

The setting

- Deep learning is the state-of-the-art tool to solve many complex tasks.
- The trend has been to go towards more and more complicated problems, but in narrow domains.
- The scenario was usually **offline learning**, where the training data is all available prior to the deployment of the model.

This creates problems in terms of **adaptability** and **versatility** of the model, as well as of **scalability** and **feasibility** in some real-world applications.

- Continual learning is a framework where the model learns sequentially from a stream of experiences.
- Data can become available during time
- No access to previously encountered data is necessary (depends on the approach)
- Constant computational and memory resources (depends on the approach)

The problem

"Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a **chronic problem** called **catastrophic forgetting**" [1]

Catastrophic Forgetting

- Problem where the model's **performance on previously learnt tasks degrades** when the model is trained on a new task because the parameters are optimized for the new one without considering the previous knowledge.
- Stability vs plasticity tradeoff
- It is **not sustainable** to train the model **from scratch** for every new experience

Some solution approaches

Regularization-based

- Elastic weight consolidation (Kirkpatrick et al, 2017)
- Learning without forgetting (Li et al, 2018)

Rehersal-based

Rehearsal and Pseudorehersal (Robins, 1994)

More advanced replay strategies

- Generative Replay (Shin et al, 2017)
- Distilled Replay (Rosasco, Carta, Cossu, Lomonaco, Bacciu, 2021)

Deep Generative Replay

Scholar model

- capable of learning a new task and teaching its knowledge to other networks.
- Composed by a generator and a solver

Solver: Task-solving model (neural network)

Generator

- Deep generative model → GAN
- Adversarial training of generator and discriminator
- Generator learns to mimic real data distribution
- Discriminator learns to distinguish between real and generated data

Training

- Sequential training on scholar model
- Train current scholar while referring to recent copy of the network → current scholar learns from past one
- Equivalent to train a sequence of scholars

1) Generator training

- New generator (G) receives current task's input
 (x) and replayed inputs from previous tasks (x')
- x' generated by the previous scholar's generator
- G learns to reconstruct cumulative input space

2) Solver training

- New solver (S) learns to couple inputs and targets from mix of real and replayed data
- Replayed targets are past solver's response to replayed inputs

More in depth

Previous generator

$$L_{train}(\theta_i) = r \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim D_i} [L(S(\boldsymbol{x}; \theta_i), \boldsymbol{y})] + (1 - r) \mathbb{E}_{\boldsymbol{x}' \sim G_{i-1}} [L(S(\boldsymbol{x}'; \theta_i), S(\boldsymbol{x}'; \theta_{i-1}))]$$

r is the **ratio** between the importance of the **new task** compared to the **older ones**

Loss of the solver with **real** data and **real** targets

Loss of the solver where the **data** is **generated** by the previous generator and the **targets** are the **previous solver's response** to those same inputs

$$L_{test}(\theta_i) = r \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim D_i}[L(S(\boldsymbol{x}; \theta_i), \boldsymbol{y})] + (1 - r) \, \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y}) \sim D_{past}}[L(S(\boldsymbol{x}; \theta_i), \boldsymbol{y})]$$
 At test time, no self-generated inputs are used of past data

Preliminary experiment

- A trained scholar model alone suffices to train an "empty" network.
- It's shown that scholar models transfer knowledge without loosing information.

Table 1: Test accuracy of sequentially learned solver measured on full test data from MNIST database. The first solver learned from real data, and subsequent solvers learned from previous scholar networks.

	$Solver_1 \rightarrow$	$Solver_2 \rightarrow$	$Solver_3 \rightarrow$	$Solver_4 \rightarrow$	$Solver_5$
Accuracy(%)	98.81%	98.64%	98.58%	98.53%	98.56%

Experiments

Independent tasks

- Image classification on MNIST
- Pixels shuffled by permutation unique to each task
- Solver must classify permuted inputs to original class

Learning new domains

Model sequentially trained to classify MNIST and SVHN numbers

Learning new classes

- Model sequentially trained on mutually exclusive subsets of classes
- Solver must eventually classify examples from all classes

Conclusion

- GR has the advantage of not needing any memory
 - Unlike rehearsal strategies
 - Maintain former knowledge solely from input-target pairs produced by the saved network
 - Ease of balancing performances on former and new tasks, but old tasks are balanced as a whole
- GR has a constant computational time
 - No extra parameters for each task like in LwF, where training time linearly increases for each new task
- GR is not regularization-based
 - Approaches such as EWC might suffer from the tradeoff between performances on old tasks and new tasks
- The quality of GR heavily depends on the quality of the generator
 - But improvements in training generative models can be directly reflected into improvements in GR
- Generated samples can represent well the data distribution
 - But they might be less dense of information compared to *Distilled Replay*, thus more samples would be necessary to mitigate forgetting
- LwF needs context about the task that's being performed (to use a task-specific output layer), GR does not.
 - GR can be used to augment LwF, adding samples similar to former tasks inputs (instead of using only current task's inputs to revoke past knowledge)

THANK YOU FOR YOUR ATTENTION

Pasquali Alex