

Primer examen parcial (27/04/2013)

Regularización

1. La figura presenta la velocidad v de un cuerpo que se mueve en el eje x, el cual pasa por x = 5 m cuando t = 1 s. Escriba la función x(t) para el móvil, indicando los valores de los parámetros x_0 , v_0 y a.

2. Una piedra se lanza hacia el río desde una barranca de 12 m de altura, y la misma cae al agua a una distancia de 25 m. Indique el módulo de la velocidad inicial de la piedra, si esta se lanza horizontalmente.

3. En el sistema de la figura, un bloque de 3 kg se desliza hacia la derecha por la acción de una fuerza F = 22 N, la cual forma 25° con la superficie horizontal. El coeficiente de rozamiento es $\mu_k = 0,35$. Realice el diagrama de partícula libre para el bloque y aplique la segunda ley de Newton para calcular la aceleración del mismo.

4. En el sistema del ejercicio anterior (3), se desea obtener experimentalmente la aceleración del bloque, para lo cual sólo cuenta con una cinta métrica y un cronómetro. Suponga que F comienza a actuar a t = 0. Indique que variables deberá medir y que cálculos deberá realizar.

Promoción

- 1. Considere el ejercicio 1 de Regularización. Indique si la siguiente aseveración es verdadera o falsa, y justifique apropiadamente su elección: "El área debajo de la curva v(t) representa la distancia recorrida por el móvil en ese intervalo de tiempo".
- 2. Considere el ejercicio 2 de Regularización.
- 2.1. Obtenga la ecuación y(x) que describe la trayectoria de la piedra, y grafíquela para diferentes valores del módulo de velocidad inicial.
- 2.2. Indique si la siguiente aseveración es verdadera o falsa, y justifique apropiadamente su elección: "En todos los lanzamientos del gráfico anterior (2.1), la piedra demora el mismo tiempo en llegar al agua".
- 3. En el sistema de la figura, el bloque de masa $m_1 = 1$ kg está apoyado sobre otro de masa $m_2 = 2$ kg, el cual es tirado por una fuerza de tensión T. El coeficiente de rozamiento entre el bloque 2 y la mesa es despreciable, y el coeficiente de rozamiento estático entre el bloque 1 y el bloque 2 es $\mu_{12} = 0,5$.

- 3.1. Realice el diagrama de partícula libre para cada bloque.
- 3.2. Calcule la magnitud de T si ambos bloques se desplazan juntos con una aceleración de 2 m/s².
- 3.3. Indique cual es el valor máximo que puede tener la tensión (T_{max}) sin que el bloque 1 se caiga.
- 4. En el sistema anterior (3), explique por qué no se puede estudiar la dinámica del bloque 1 aplicando las leyes de Newton con un sistema de referencia fijo en el bloque 2. ¿Qué inconsistencia aparecería cuando $T > T_{max}$?
- 5. Considere un niño meciéndose en una hamaca. El problema se modela como una partícula unida a una cuerda, la cual forma un ángulo α con la línea vertical, y se desprecia todo tipo de fricción. Realice un esquema mostrando las aceleraciones tangencial y normal, para un dado α entre 0 y 90°. Luego indique como obtener el módulo de cada una de esas aceleraciones.
- **6.** El intrépido Félix se dejó caer desde un globo aerostático a 39000 m de altura, y abrió su paracaídas recién cuando estaba a 1500 m de altura. La velocidad justo antes de abrir el paracaídas era de 1343 km/h. La masa de Félix más su traje era de 97 kg. Calcule el trabajo de las fuerzas de fricción del aire durante la caída (suponiendo que g no varía con la altura).