Logic Simulation

- Introduction
- Simulation Models
- Logic Simulation Techniques
 - Compiled code simulation
 - Event driven simulation
 - Parallel Simulation
- Issues of Logic Simulations
- Conclusions

Parallel Simulation

- Pack W patterns into a single word (W = word size)
 - Simultaneously evaluate a gate with W patterns
- Exploit parallelism of bit-wise logic operation
- Example: W = 4 (WWW Fig 3.8)
 - Consider only binary logic (no u or z)

Quiz

Q: what is the speedup of parallel simulation? (W = CPU size)

- A. W
- B. W²
- C. No speedup

How about Ternary Logic?

- Simple idea: use 2 bits to represent ternary logic
- Simple encoding method
 - Logic one=11, Logic zero=00, Unknown =10
- Works fine with OR/AND but wrong with inversion

Can we use both 10 and 01 as u? No

Sol: Improved Encoding Method

- Two words to encode single A: A¹, A⁰
 - A^1 =1 means logic one. A^0 =1 means logic zero.
 - $A^1=0$ $A^0=0$ means unknown.
- Example W=4, four patterns
 - * $C = \{0, 0, u, 1\}$
 - * $C^1 = (0, 0, 0, 1)$
 - * $C^0 = (1, 1, 0, 0)$

Parallel Gate Evaluation

Gate	Bitwise Operations
AND	$c^1 = a^1.b^1$ $c^0 = a^0 + b^0$
NAND	$c^1 = a^0 + b^0$ $c^0 = a^1.b^1$
OR	$c^1 = a^1 + b^1$ $c^0 = a^0.b^0$
NOR	$c^1 = a^0.b^0$ $c^0 = a^1 + b^1$
INV	$c^1 = a^0$ $c^0 = a^1$

→ bitwise AND+ = bitwise OR

Quiz: what are equations for XOR?

A:

Example

Apply four patterns

- A={1,1,1,0}; B={0,1,0,1}; C={0,0,u,1}
- K={0,0,u,1}

What is Complexity of LogicSim?

- Suppose P patterns, G gates
- Compiled-code, parallel simulation = $\Theta(PxG)$
- Event-driven simulation = ⊕(PxE)
 - E: number of events in each pattern
 - Assume *E* = O(*G*)
 - * O(*PxG*)
- Logic simulation is polynomial time complexity

Logic Simulation is Polynomial Time

Summary

- Introduction
- Simulation Models
- Logic Simulation Techniques
 - Compiled code simulation
 - Event driven simulation
 - Parallel Simulation
 - Exploits bitwise operation to gain linear speed up
 - Improved encoding for unknowns
 - Logic simulation is polynomial time
- Issues of Logic Simulations
- Conclusions

Parallel Version of Compiled-code/Event-driven

FFT

- Q1: Can we swap bit pairs after inverter?
- Q2: If we can, what are advantage/disadvantage compared with the encoding method we previously introduced?

