Math 425B Midterm 1 Cheat Sheet

Gregory Faletto

1 Function Spaces: Uniform Convergence and C^0 (Chapter 4 of Pugh [2015], Section 4.1)

Definition 1.1 (Pointwise convergence; from Section 4.1 of Pugh [2015]). Let \mathcal{X} be a set, let (\mathcal{Y}, d) be a metric space. Let $f_n : \mathcal{X} \to \mathcal{Y}$ be functions for $n \geq 1$. Let $f : \mathcal{X} \to \mathcal{Y}$ be another function. We say f_n converges to f pointwise if for all $x \in \mathcal{X}$, the sequence $\{f_n(x)\}_{n=1}^{\infty}$ converges to f(x) as a sequence of points in \mathcal{Y} . I.e., if for all $\epsilon > 0$ and for all $x \in \mathcal{X}$, there exists N (maybe depending on ϵ and x) such that for $n \geq N$, we have $d(f_n(x), f(x)) < \epsilon$.

Definition 1.2 (Uniform convergence; from Section 4.1 of Pugh [2015]). Let \mathcal{X} be a set, let (\mathcal{Y}, d) be a metric space. Let $f_n : \mathcal{X} \to \mathcal{Y}$ be functions for $n \ge 1$. Let $f : \mathcal{X} \to \mathcal{Y}$ be another function. We say f_n converges uniformly to f if for all $\epsilon > 0$, there exists N (maybe depending on ϵ bit not x) such that for $n \ge N$ and for all $x \in \mathcal{X}$, we have $d(f_n(x), f(x)) < \epsilon$.

Remark. Note that uniform convergence implies pointwise convergence. This fact implies that uniform limits are unique, since limits in metric space (\mathcal{Y}, d) are unique, so the pointwise limits of sequences of functions are unique.

Example 1.1 (Example from 4.1 of pointwise convergence but not uniform convergence.).

Proposition 1. In Example ??, f_n does not converge uniformly to f.

Proof. Suppose f_n converges uniformly to 0 (the pointwise limit). Take $\epsilon = 1/2$. Can choose $N \ge 1$ such that $|x^n - 0| < 1/2$ for all $n \ge N$, and for all $x \in (0,1)$. Let $x = (3/4)^{1/N}$. (Nth roots exist by IVT.) Then $|x^N - 0| = 3/4$ which is not less than 1/2.

Theorem 2 (Cauchy 1821; Theorem 4.1 from Pugh [2015]). Let (X, d) and (Y, d') be metric spaces. Let $f_n : X \to Y$ be continuous at $x_0 \in X$ for all $n \ge 1$. Suppose f_n converges uniformly to f for some $f : X \to Y$. Then f is continuous at x_0 . (This implies that if all f_n are continuous everywhere and f_n converges uniformly to f then f is continuous everywhere.)

What about if you only have pointwise convergence? Then this theorem won't work. Consider the saw-tooth wave example: the limit is not continuous. There exist easier counterexamples as well.

Example 1.2 (From Section 4.1, p. 212 of Pugh [2015]). Let $X = [0,1], Y = \mathbb{R}, f_n(x) = x^n$. Let $f : [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0, & 0 \le x < 1, \\ 1, & x = 1 \end{cases}$$

As before, f_n converges to f pointwise but not uniformly. f_n is continuous on [0,1] for all n but f is not. See Figure ??.

Exercise 1. Let X be a set, (Y, d) be a metric space. Let $x_0 \in X$ be fixed. Let $f: X \to Y$ be a function. Then the following are equivalent:

1. There exists $m \in \mathbb{R}$ such that $d(f(x_0), f(x)) \leq m$ for all $x \in X$.

G. Faletto REFERENCES

Figure 1: Figure 88 from Section 4.1, p. 213 of Pugh [2015]

- 2. There exists $x_1 \in X$ and $m \in \mathbb{R}$ such that $d(f(x_1), f(x_2)) \leq m$ for all $x_2 \in X$.
- 3. There exists $m \in \mathbb{R}$ such that $d(f(x_1), f(x_2)) \leq m$ for all $x_1, x_2 \in X$.

Definition 1.3. If $f: X \to (Y, d)$ satisfies the statements in Exercise ??, then f is called **bounded.**

Definition 1.4. Let X be a set and (Y, d) be a metric space. Define $C_b(X, Y)$ as the set of bounded functions from X to Y.

Definition 1.5. For $f, g \in C_b(X, Y)$, let $d_{\infty}(f, g) := \sup_{x \in X} d(f(x), g(x))$.

Theorem 3 (Theorem 4.2 in Pugh [2015]). X set, (Y, d) metric space. If $f_n \in C_b(X, Y)$ for $n \ge 1$ and $f \in C_b(X, Y)$, then f_n converges uniformly to f if and only if $f_n \xrightarrow{d_{\infty}} f$).

Proposition 4 (Uniform convergence preserves boundedness). If $f_n: X \to Y$ is bounded for all n and f_n converges uniformly to f, then f is bounded.

Corollary 4.1 (similar to Theorem 4.2 in Pugh [2015]). If $f_n \in C_b(X,Y)$ for $n \geq 1$, then (f_n) converges uniformly if and only if (f_n) converges in $C_b(X,Y)$. (functional analysis perspective of uniform convergence.)

Definition 1.6. X set, (Y, d) metric space. A sequence of functions $f_n : X \to Y$ is **uniformly Cauchy** if for every $\epsilon > 0$ there exists $N \ge 1$ such that for $n, m \ge N$ we have $d(f_n(x), f_m(x)) < \epsilon$ for all $x \in X$.

Theorem 5. X set, (Y, d) metric space. If (Y, d) is complete, then any uniformly Cauchy sequence of functions $f_n: X \to Y$ is uniformly convergent.

Definition 1.7. Assume both (X, d) and (Y, d') are metric spaces. $(C^0(X, Y) \subset C_b(X, Y))$ is the set of bounded continuous functions $X \to Y$. We can restrict d_∞ to $C_0(X, Y)$ and get a metric subspace.

Corollary 5.1 (Corollary to Theorem ??). $C^0(X,Y)$ is a closed subset of $C_b(X,Y)$.

References

C. Pugh. Real Mathematical Analysis. Undergraduate Texts in Mathematics. Springer International Publishing, 2015. ISBN 9783319177717. URL https://books.google.com/books?id=2NVJCgAAQBAJ.