Лабораторная работа 3.1.1

Магнитометр

Татаурова Юлия Романовна

19 сентября 2024 г.

Цель работы: определить горизонтальную составляющую магнитного поля Земли и установить количественное соотношение между единицами электрического тока в системах СИ и СГС.

Оборудование: магнитометр, осветитель со шкалой, источ ник питания, вольтметр, электромагнитный переключатель, конденсатор, намагниченный стержень, прибор для определения периода крутильных колебаний, секундомер, рулетка, штангенциркуль.

Экспериментальная установка

Магнитометр состоит из нескольких последовательно соединённых круговых витков К. В центре кольца К радиусом R на нити подвешена короткая магнитная стрелка С. В отсутствие других магнитных полей стрелка располагается по направлению горизонтальной составляющей земного магнитного поля B_0 .

Прибор настраивают с помощью световых зайчиков, отражённых от двух зеркал: 31, прикреплённого к стрелке, и 32, расположенного в плоскости кольца К и жёстко связанного с ним. Оба зеркала освещаются одним и тем же осветителем О.

При появлении дополнительного горизонтального магнитного поля B_{\perp} стрелка С установится по равнодействующей обоих полей B_{\sum} . В нашей установке дополнительное поле может быть создано либо малым ферромагнитным стержнем, расположенным на кольце на

Рис. 1: Схема установки

его горизонтальном диаметре (B_1) , либо током, проходящим по кольцу (B_2) . В обоих случаях дополнительное поле можно считать однородным, так как размеры стрелки много меньше радиуса кольца.

$$B_1 = \frac{\mu_0}{4\pi} \frac{m}{R^3}, \qquad B_2 = N \frac{\mu_0 I}{2R} \tag{1}$$

где m - магнитный момент стержня; I - сила тока в кольце; N - число витков в кольце.

Поля B_1, B_2 и угол отклонения стрелки φ связаны соотношением

$$B_{\perp} = B_0 \cdot \operatorname{tg} \varphi \tag{2}$$

Поле намагниченного стержня вдали от него можно считать:

$$\bar{B}(\bar{r}) = \frac{\mu_0}{4\pi} \left(2 \frac{(\bar{m} \cdot \bar{r})\bar{r}}{r^5} - \frac{\bar{m}}{r^3} \right) \tag{3}$$

Определение горизонтальной составляющей магнитного поля Земли

В отверстие Р устанавливается намагниченный стержень. Стрелка отклонится на угол φ_1 , что

$$\operatorname{tg}\varphi_1 = \frac{x_1}{2L} \tag{4}$$

Исключим из выражения \bar{m} , измерив период крутильных колебаний стержня в поле Земли.

$$M_{\text{Mex}} = |\bar{m} \times \bar{B}| \approx \bar{m} B_0 \alpha \tag{5}$$

$$J\ddot{\alpha} + m_0 \alpha = 0 \tag{6}$$

$$T = 2\pi \sqrt{\frac{J}{mB_0}} \tag{7}$$

$$J = m\left(\frac{l^2}{12} + \frac{r^2}{4}\right) \tag{8}$$

Из этого всего получаем выражение для горизонтальной составляющей магнитного поля Земли:

$$B_0 = \frac{2\pi}{TR} \sqrt{\frac{\mu_0 IL}{2\pi R x_1}} \tag{9}$$

Определение электродинамической постоянной

Ток в цепи кольца можно измерить двумя независимыми способами: по магнитному действию тока на стрелку магнитометра и по заряду, протекающему через цепь в единицу времени. По отношению результатов этих измерений можно определить электродинамическую постоянную c. По формулам 1-2 получаем:

$$I = \frac{2B_0 R}{\mu_0 N} \operatorname{tg} \varphi_2 \qquad [CII] \tag{10}$$

Второй способ: разрядим конденсатор (C), заряженный до U, через витки, то через них пройдет заряд q=CU. Если ν раз в секунду заряжать и разряжать, то средний ток будет: $I=CU\nu[{\rm acc}]$. Тогда определяем значение электродинамической постоянной как:

$$c\left[\frac{M}{c}\right] = \frac{1}{10} \frac{I_{[C\Gamma C]}}{I_{[CM]}} \tag{11}$$