

- PLAN DE VALIDATION - ETUDE D'UN SYSTEME COMPLEXE SOC

Formation AJC FPGA - Eve CHAR

17 JUILLET 2023 EVE CHAR

Table des matières

I.	,	VUE D'ENSEMBLE DU PROJET	. 2
II.		PLAN DE DEROULEMENT DU PLAN DE VALIDATION	. 3
		ENVIRONNEMENT DE TESTS	
III.		ENVIRONNEMENT DE TESTS	. 4
IV.		DESCRIPTION DES TESTS	. 4
:	1.	VALIDATION DE LA FONCTION DE LA LECTURE D'UNE IMAGE	
:	2.	VALIDATION DE LA FONCTION D'ECRITURE D'UNE IMAGE	
3	3.	VALIDATION DE LA FONCTION DE GESTION DES PIXELS (FIFO1 ET FIFO2)	. 5
		a. Validation des entrées / sorties du fifo1 (lecture- écriture)	. 5
		b. Validation des entrées / sorties du fifo2 (lecture-écriture)	. 7
4	4.	VALIDATION DE LA FONCTION DE CALCUL DU FILTRE SOBEL	. 8
į	5.	VALIDATION DE LA FONCTION DE COMPARAISON AVEC UN SEUIL- THRESHOLD	. 9
(6.	VALIDATION GLOBALE AVEC LOGICIEL -FIJI	. 9

Création document	Eve CHAR	10 /07/2023

I. Vue d'ensemble du projet

Le projet consiste à valider une IP de traitement d'image : Détection de points d'intérêts (corner détection) sur un SOC (système on the Chip).

Détection de points d'intérêt

Figure 1: contexte du projet : IP de traitement d'image pour détection de points d'intérêts

II. Plan de déroulement du plan de validation

Voici un synoptique simplifié de déroulement de plan de validation du projet :

Figure 2 : plan de déroulement du plan de validation

III. Environnement de tests

Le matériel utilisé lors de la phase de validation est le suivant :

Outil	Utilisation
Test bench xilinx- simulation	Simulation logicielle du code
CORA Z7	Non utilisée
FIJI logiciel	Pour comparer avec les résultats attendus
PC	Calcul de convolution et simulation
Images de tailles différentes	Source à traiter

Figure 3 : Outils à disposition pour réaliser les tests

IV. Description des tests

1. Validation de la fonction de la lecture d'une image

Spécification: image en format « .txt »

Méthode / comment : tester une matrice de valeur et voir comment l'outil (testbench) la lit

<u>Outils</u>: Logiciel VIVADO-XILINX : Ce logiciel permet de visualiser sous forme de chronogrammes les sorties produites en fonction des entrées forcées, le tout par simulation.

Fiches de test

Test N°1 Fct-lecture-Image – gen01 : Vérification de Fct-lecture-Image – gen01 Résumé: tester une matrice de valeur et voir comment l'outil (tb) la lit comment/pré-requis : Réaliser un testbench de la fonction avec : en entrée : un fichier de matrice 4 X 4 et une sortie chronogramme avec les valeur des pixels N° d'étape Actions de pas: Résultats attendus: - Valeur des pixels affichés dans le bon ordre de gauche à droite, ligne par ligne

Type d'exécution:	Test_bench
Cahier d'exigences	Fct-lecture-Image – gen01

2. Validation de la fonction d'écriture d'une image

Spécification: écrire données en format « .txt » qui forment une image

Méthode / comment : tester l'écriture d'une matrice de valeur et voir comment l'outil (tb) l'écrit

<u>Outils</u>: Logiciel VIVADO-XILINX : Ce logiciel permet de visualiser sous forme de chronogrammes les sorties produites en fonction des entrées forcées, le tout par simulation.

Fiches de test

Test N°2 Fct-écriture-Image – gen05 : Vérification de Fct-écriture-Image – gen05

Résumé: tester l'écriture d'une matrice de valeur et voir comment l'outil (tb) l'écrit

comment/pré-requis : Réaliser un testbench de la fonction avec :

en entrée : un fichier de matrice 4 X 4

et une sortie chronogramme avec les valeur des pixels et matrice en sortie .txt

<u>N° d'étape</u>	Actions de pas:	Résultats attendus:
1	Lancer la simulation	Valeur des pixels affichés dans le bon ordre de gauche à droite, ligne par ligne équivalente à la matrice en entrée : exemple 1
Type d'exécution:	Test_bench	
Cahier d'exigences Fct-écritur	e-Image – gen05	

3. Validation de la fonction de gestion des pixels (Fifo1 et Fifo2)

a. Validation des entrées / sorties du fifo1 (lecture- écriture)

Spécification:

Entrée de la FIFO1:

- Signal sur 24 bits (input-data)

Compte rendu Eve CHAR - 10/07/2023 - 17/07/2023

- Signal d'autorisation d'écriture dans la FIFO1 (write-enable)
- Signal d'autorisation de lecture (rd-enable)

Sortie de la FIFO1:

- Signal sortie du FIFO1 d-out (pixel_L2) sur 24 bits

Méthode / comment :

- Quand la 1e ligne est en train d'être lue :
 - On autorise à écrire dans FIFO1 → (FIFO_1_write_ena)
- Quand la 1e ligne est lue entièrement :
 - On autorise de lire FIFO1 → (FIFO_1_read_ena)

Outils: logiciel VIVADO-XILINX et carte CORA Z7

Fiche de test :

Test N°3 test des entrées / sorties du fifo1 (lecture- écriture)

Résumé : Tests permettant de s'assurer de la fonction Fct-gestion buffers – 02

Comment/pré-requis : Réaliser un test-bench avec :

*en entrée : signal input-data et autorisation d'écriture dans le FIFO1

*en sortie : FIFO_1_read_ena et Read (témoin : Init)

<u>N° d'étape</u>	Actions de pas:	<u>Résultats attendus:</u>
1	Vérifier l'écriture dans la FIFO1	Regarder quand la 1e ligne est en train d'être lue si (FIFO_1_write_ena) est active
2	Vérifier les conditions de lecture de la fifo : On lit dans FIFO_1 si : - FIFO_1 n'est pas vide - et si la première ligne est entièrement lue	Vérifier quel le signal full est toujours à zéro et que la lecture est autorisée quand Init passe à zéro
3	Vérifier le flux de l'autorisation de lecture de la FIFO1	Regarder quand la première ligne est entièrement reçue: si (FIFO_1_read_ena) est active
Cahier d'exigence	es EXIGENCE_ Fct-gestion buffers – 02	

b. Validation des entrées / sorties du fifo2 (lecture-écriture)

Spécification:

Entrée de la FIFO2:

- Signal (sortie de FIFO1) sur 24 bits
- Signal d'autorisation d'écriture dans la FIFO2 (write-enable)
- Signal d'autorisation de lecture (rd-enable)

Sortie de la FIFO2:

Signal sortie du FIFO2 d-out (pixel_L1) sur 24 bits

Méthode / comment :

- Quand la 1ere ligne est lue entièrement et que la première ligne est entièrement lue :
 - On autorise à écrire dans FIFO2 → (FIFO_2_write_ena)
- Quand la 2e ligne est lue entièrement :
 - On autorise de lire FIFO2 → (FIFO_2_read_ena)

Outils: logiciel VIVADO-XILINX et carte CORA Z7

Fiche de test :

Test N°4 test des entrées / sorties du fifo2 (lecture- écriture)

<u>Résumé :</u> Tests permettant de s'assurer de la fonction Fct-gestion buffers – 02

Comment/pré-requis : Réaliser un test-bench avec :

*en entrée : signal (sortie de FIFO1) et autorisation d'écriture dans le FIFO2

*en sortie : signal FIFO_2_read_ena et Read (témoin : Init2)

<u>N° d'étape</u>	Actions de pas:	Résultats attendus:
1	Vérifier les conditions d'écriture dans la	Regarder quand (FIFO_2_write_ena) est active : la 1e ligne est entièrement lue (Init passe à 0) et la ligne 2 en train d'être lue (par FIFO_1)
2	00.0	Vérifier quel le signal full est toujours à zéro Regarder si l'autorisation d'écriture passe à 1

Compte rendu Eve CHAR - 10/07/2023 - 17/07/2023

	- FIFO2 n'est pas rempli	
	- et si la première est entièrement lue	
3	Vérifier le flux de l'autorisation de lecture	FIFO_2_read_ena est active quand la deuxième ligne est entièrement lue Regarder si l'autorisation de lecture passe à 1
Cahier d'exigences	EXIGENCE_ Fct-gestion buffers – 02	

4. Validation de la fonction de calcul du Filtre Sobel

<u>Spécification</u>: Il faut multiplier les coefficients du masque par les valeurs des pixels, réaliser la somme puis comparer au Threshold. La comparaison au threshold sera dans un autre test, concentrons-nous ici à vérifier le calcul de la somme.

Méthode / comment:

Outils: logiciel VIVADO-XILINX

Fiche de test :

Test N°5 fonction : Fct- horizontale-Filtre de Sobel- 03				
	<u>Résumé:</u> Tests permettant de s'assurer que la fonction Filtre de Sobel– 03 se réalise comme attendu.			
*en sortie: variable de sortie du module de convolution				
<u>N° d'étape</u>				
1 Lancer la simulation Vérifier le calcul				
Cahier d'exigences Fct- horizontale-Filtre de Sobel- 03				

5. Validation de la fonction de comparaison avec un seuil- threshold

<u>Spécification</u>: la sortie du filtre de Sobel est comparée à une valeur seuil (threshold), on peut alors déterminer les points de changement soudain de luminosité, qui correspond à des bords/ contours.

<u>Méthode / comment :</u> on compare la sortie de filtre avec une valeur seuil (intensité). En fonction du résultat, on sélectionne une valeur de pixel « cyan » si supérieur ou égale au seuil sinon on prend la valeur du pixel d'origine.

<u>Outils</u>: Logiciel VIVADO-XILINX: Ce logiciel permet de visualiser sous forme de chronogrammes les sorties produites en fonction des entrées forcées, le tout par simulation.

Fiche de test:

Test N°6 fonction: Fct- threshold-comp-04				
<u>Résumé :</u> Tests permettant de vérifier la comparaison : si la sortie du filtre de Sobel est >= threshold, alors on prend une valeur de pixel « cyan » sinon on prend la valeur du pixel d'origine. <u>Comment/pré-requis</u> : Lancer la simulation *en entrée : image_in.txt, Threshold, sortie du filtre *en sortie : image_out.txt, output_data				
<u>N° d'étape</u>	Actions de pas:	<u>Résultats attendus:</u>		
1	Vérifier la comparaison avec threshold	Si la sortie du filtre de Sobel est >= threshold, alors on prend une valeur de pixel « cyan » sinon on prend la valeur du pixel d'origine.		
Type d'exécution : Test_bench				
Cahier d'exigences EXIGENCE_ Fct- threshold-comp-04				

6. Validation globale avec logiciel -FIJI

<u>Spécification</u>: le logiciel FIJI permet d'anticiper les résultats à obtenir après application du filtre SOBEL.

<u>Méthode / comment :</u> comparaison de résultat obtenu avec notre test Bench et celles obtenue avec le logiciel FIJI.

<u>Outils</u>: logiciel VIVADO-XILINX: Ce logiciel permet de visualiser sous forme de chronogrammes les sorties produites en fonction des entrées forcées, le tout par simulation.

Fiche de test:

Test N°7 fonction : Fct-comparison globale FIJI – 06

<u>Résumé :</u> Tests permettant la comparaison de résultat obtenu avec notre test Bench et celles obtenue avec le logiciel FIJI.

<u>Comment/pré-requis</u> : Réaliser un test-bench de la fonction **Fct-comparison globale FIJI – 06** avec :

*en entrée : image_in.txt, Threshold, sortie du filtre

*en sortie : image_out.txt, output_data

<u>N° d'étape</u>	Actions de pas:	<u>Résultats attendus:</u>	
1	Comparer les images de test bench avec celle de FIJI	Les mêmes points de contours marqués	
Type d'exécution :	Type d'exécution : Test_bench		
Cahier d'exigences	Cahier d'exigences EXIGENCE_ Fct-comparaison globale FIJI — 06		