Introdução ao Processamento de Imagens

Victória Goularte - 12/0137691

Resumo—No trabalho são aplicadas operações consideradas de médio nível no processamento digital de imagens. São as operações morfológicas, de segmanetação e codificação de vídeo.

I. Introdução

A BAIXO uma breve explicação sobre cada operação trabalhada:

A. Morfologia

A Morfologia Matemática em processamento de imagens trata de extração de regiões de uma imagem, representação e descrição das formas de uma determinada região.

Este processo é considerado de nível médio onde a saída do processo é um atributo da imagem.

Porém, como estes atributos atributos são resultados de processamentos na estrutura geométrica dos objetos. São representados em formato de imagens digitais

B. Segmentação de imagens

Tecnicamente a segmentação é subdividir uma imagem em regiões ou componentes.

No sistema visual humano a segmentação é uma tarefa subjetiva realizada no cérebro, pelos neurônios entre as áreas corticais de nível alto e médio. A segmentação deve concluir quando os objetos (ou regiões) de interesse para uma determinada aplicação tenham sido isolados.

O método morfológico de segmentação utilizado nesse trabalho foi o de 'wathershed' que realiza a segmentação da imagem através do crescimento de regiões.

É definido como de fato um divisor de águas de uma imagem em níveis de cinza e é análoga à noção de uma bacia de captação de um heightmap. Em suma, uma gota de água seguindo o gradiente de uma imagem flui ao longo de um caminho para alcançar finalmente um mínimo local. Intuitivamente, o divisor de águas correspondem aos limites das bacias hidrográficas adjacentes das gotas de água.

C. Codificação de vídeo

Essa operação foi utilizada para estimar o movimento entre frames de um vídeo para obter o melhor preditor dentro de sistema DPCM. A técnica de obter o quadro formado a partir dos preditores é chamada de compensação de movimento.

II. METODOLOGIA

O trabalho foi dividido em três partes(3 questões), que serão tratadas separadamente a seguir:

Parte I

Dada a imagem:

Figura 1. Original

Utilizando o MATLAB, um programa foi feito para que a imagem acima apresentada fosse modificada e resultasse em uma imagem binária com os objetos que a compõem pretos e fundo branco. Para isso, antes de qualquer coisa, a imagem foi binarizada e percebido que em certos pontos perdia-se informações, pois em alguns lugares o fundo e objetos estavam classificados em um mesmo nível de cinza fazendo com que objetos também se tornassem fundo. Então, fez-se a transformada bottom-hat que é é utilizada para realçar objetos escuros sobre fundo claro utilizando uma função do próprio MATLAB e alternativamente aplicando o fechamento na imagem obtendo apenas o seu fundo e depois subtraindo a fundo da imagem original, que também caracteriza uma operação bottom-hat, e os resultados obtidos foram:

(a) Imagem Bottom-Hat_int

(b) Fundo - Imagem

Nota-se que o objeto se destaca melhor na bottom-

hat feito obtendo-se o fundo e posteriormente subtraindo esse fundo da imagem origina. Então, sobre essa imagem foi aplicada a operção de identidade inversa para que os objetos ficassem pretos e fundo branco.

Figura 2. Inverse bottom-hat

Essa imagem foi binarizada para então destacar os objetos.

Figura 3. Bottom-hat binarizada

Foram então percebidos falhas de preenchimento dos dígitos e certos ruídos na imagem, e para que melhorasse essa imagem foram aplicados outra operação morfológica de dilatação para completar os objetos em que havia falhas e um filtro de média para retirada dos ruídos. Por fim, ainda foi feito um fechamento para separar dígitos que se emendaram na dilatação

Figura 4. Resultado

A. Parte II

Na segunda parte, foram seguidos os passos solicitados e os resultados obtidos para tratar a imagem abaixo serão descritos a seguir

Figura 5. Original

2.1: A imagem foi binarizada como na primeira parte, onde as células são pretas e o fundo é branco

Figura 6. Imagem binarizada

2.2: A função bwareopen para preencher espaços desconectados

Figura 7. Imagem Buracos Preenchidos

2.3: A distância foi calculada através da função bwdistusando o complemento da imagem

Figura 8. Distância

2.4: Por fim, essa imagem foi segmentada, a fim de dividir os objetos que a compõe

Figura 9. Distância

Nota-se que a imagem não foi perfeitamente segmentada, ou seja, os objetos não foram todos perfeitamente divididos, já que na binarização algumas células se mantiveram unidas, mesmo aplicando outras operações morfológicas para separá-las.

B. Parte III

Na terceira e última parte, foi feita uma função ler_yuv que recebe como parâmetros um arquivo YUV, sua resolução, o formato (4:2:0) e o número do quadro a ser lido, e seu retorno é a imagem desse quadro.

A seguir são feitas novas funções que estimam o movimento (DPCM) entre um quadro e outro, recuperados a partir da função já citada. Essas funções foram feitas a partir do algoritmo de Block Matching para estimação de movimento.

As funções implementadas no projeto foram:

- LogSearch;
- Motion_Est;
- reconstruct;
- FullSearch;
- Bidirectional_ME.

Resultados obtidos com blocos de tamanho 8x8 a partir dos frames 100 e 150 do arquivo 'foreman.yuv':

11 1 4 4 4

Resultados obtidos com blocos de tamanho 4x4 a partir dos frames 100 e 150 do arquivo 'foreman.yuv':

É notório como quanto menor o bloco, melhor a estimativa do movimento.

III. Conclusão

A partir dos resultados obtidos, na primeira parte notase que a definição da morfologia bottom-hat, que destaca objetos escuros sobre um fundo claro, aplicando fechamento na imagem para obter o fundo e posteriormente subtraindo a imagem por esse fundo encontrado é afirmada. Na segunda parte, aplicando segmentação seguindo os passos instruídos, tem-se o subdivisão da imagem em objetos ou regiões como era esperado, podendo servir para diversas aplicações que necessitam dos objetos isolados. E, por fim, um vídeo YUV é lido a partir dos parâmetros solicitados, e são recuperados frames especificos nessa função e aplica-se o algoritmo de Block Matching para estimação do movimento que foi claramente aplicado.

Referências

[1] http://scholar.harvard.edu/stanleychan/software/subpixel-motion-estimation-without-interpolation Materiais da disciplina