Ансамблирование моделей • Ensembling

Сегодня

- ответим на вопрос "как можно соедининть несколько моделей?"
- разберем наиболее популярные варианты
- установим и запустим самые мощные библиотеки для работы с ансамблями моделей

Голосование / Voting

- **Hard voting**: классификаторы предсказывают классы выбираем наиболее частотный
- **Soft voting**: классификаторы предсказывают вероятности усредняем вероятности по классам

Голосование / Voting

Что делать с задачей регрессии?

Бутстреп / Bootstrap

Бэггинг / Bagging

- 1. Основная идея: формируем boostrap выборки
 - Обучаем одну простую модель на каждой выборке
- 2. Агрегируем предсказания всех моделей

Случайный лес / Random Forest

- 1. Формируем *N* boostrap-выборок из исходного датасета
- 2. Обучаем **одно** дерево на каждой из *N* выборок
- 3. Для предсказания агрегируем результаты каждого дерева: наиболее частотный класс в случае классификации, усредненное значение в случае регрессии:
- Классификация самый частотный класс
- Регрессия усредняем предсказания

Параметры

- число деревьев: n_estimators
- + все те же, что для деревьев

Бустинг / Boosting

- Строим базовые алгоритмы (почти всегда дерево) последовательно
- Каждый следующий исправляет суммарную ошибку предыдущих
- Решение принимаем взвешенным голосованием

Градиентный бустинг / Gradient Boosting

- x^i это объекты, которые мы используем для обучения модели, их количество обозначается как N
- y^i это правильные ответы для этих объектов
- $\hat{f}_i(x)$ это предсказание i-ого дерева, которое мы обучаем
- $\hat{f}(x)$ это итоговое предсказание всего бустинга
- $oldsymbol{\hat{f}}(x) = c_1 \cdot \hat{f}_1(x) + c_2 \cdot \hat{f}_2(x) + \cdots + c_k \cdot \hat{f}_k(x)$
- $Loss(y,f(x))=rac{1}{N}\sum_{i=1}^{N}\mathcal{L}(y^i,a(x^i))$ это функция, которая показывает, насколько хорошо наша модель работает, чем меньше значение, тем лучше

Градиентный бустинг: Визуализация

Градиентный бустинг / Gradient Boosting

- Например, построены k алгоритмов, нужно построить \hat{f}_{k+1} ое дерево с c_{k+1} весом
- Функция потерь для одного i-го объекта:

$$\mathcal{L}(y^i,\hat{f}(x^i)) = \mathcal{L}(y^i,c_1\cdot\hat{f_1}(x^i) + \cdots + c_k\cdot\hat{f_k}(x^i) + c_{k+1}\cdot\hat{f_{k+1}}(x^i))$$

Bagging vs Bosting

Градиентный бустинг / Gradient Boosting

- Базовые модели могут быть любыми, но лучше деревьями
- Решает задачи классификации, регрессии, ранжирования (не очень быстро)
- Нужна большая выборка
- Реализации:
 - sklearn.ensemble:scikit-learn.org
 - Extreme Gradient Boosting / xgboost : xgboost.readthedocs.io
 - Light Gradient Boosting Machine / lightgbm : lightgbm.readthedocs.io
 - Categorical Boosting / catboost : catboost.ai
 - Про сравнения и детали реализаций можно почитать тут:
 - CatBoost vs. Light GBM vs. XGBoost
 - When to Choose CatBoost Over XGBoost or LightGBM [Practical Guide]

Итоги

- Voting: берем произвольные модели, а результаты агрегируем произвольным образом
- Бэггинг: строим бустреп подвыборки и обучаем простые модели на каждой из выборок
 - о пример: случайный лес(RandomForest)
- Бустинг: последовательно строим модели, каждая следующая исправляет ошибку предыдущих
 - Бустинг пока еще лучшее решение для табличных данных.