Solution de la serie N° 2

Exercice 1.

1. Le tableau avec les effectifs marginaux de X et Y.

X/Y	0	1	2	3	$n_{i.}$
5	5	9	1	0	15
9	4	12	8	1	25
14	4	15	10	0	29
21	0	3	12	1	16
33,5	0	5	8	2	15
n.j	13	44	39	4	100

2. Les paramètres statistiques de
$$X$$
;
• $\bar{X} = \frac{1}{n} \sum_{i=1}^{k} n_{i.} x_i = \frac{1}{100} 1544, 5 = 15,445$

$$\bar{X} = 15,445$$

•
$$V(X) = \frac{1}{n} \sum_{i=1}^{k} n_i \cdot x_i^2 - \bar{X}^2 = \frac{31973,75}{100} - (15,445)^2 = 319,7375 - 238,548025$$

$$V(X) = 81,189475$$

•
$$\sigma(X) = \sqrt{V(X)} = \sqrt{81,189475}$$

$$\sigma(X) = 9,0105$$

•
$$C_X = \frac{\sigma(X)}{\bar{X}} = \frac{9,0105}{15,445} = 0,5833$$

$$C_X = 58,33\%$$

Les paramètres statistiques de
$$Y$$
;
• $\bar{Y} = \frac{1}{n} \sum_{j=1}^{l} n_{.j} y_j = \frac{134}{100}$

$$Y = 1,34$$

•
$$V(Y) = \frac{1}{n} \sum_{j=1}^{l} n_{.j} y_j^2 - \bar{Y}^2 = \frac{236}{100} - (1, 34)^2$$

$$V(Y) = 0,5644$$

$$\bullet \ \sigma(Y) = \sqrt{V(Y)} = \sqrt{0,5644}$$

$$\sigma(Y) = 0,7513$$

$$\bullet$$
 $C_Y = \frac{\sigma(Y)}{\bar{Y}} = \frac{0.7513}{1.34} = 0.5607$

$$C_Y = 56,07\%$$

3. La covariance;

$$cov\left(X,Y\right) = \frac{\left(\sum_{i=1}^{k} \left(\sum_{j=1}^{l} n_{ij} x_{i} y_{j}\right)\right)}{n} - \bar{X}.\bar{Y}$$

$$\begin{array}{l} cov\left({X,Y} \right) = \frac{{2358,5}}{{100}} - \left[{(15,445) \,.\, (1,34)} \right]\\ cov\left({X,Y} \right) = 23,585 - 20,6963 \end{array}$$

$$cov(X, Y) = 2,8887$$

Commentaire:

Corrélation positive(Relation de corrélation directe).

le coefficient de corrélation;

$$\rho = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{2,8887}{(9,0105).(0,7513)} = 0,4267$$

Commentaire:

Corrélation moyenne.

4. L'équation de la droite de régression de Y en X; $\bullet a=\frac{cov(X,Y)}{V(X)}=\frac{2,8887}{81,189475}$

$$\bullet a = \frac{cov(X,Y)}{V(X)} = \frac{2,8887}{81,189475}$$

$$a = 0,0356$$

•
$$b = \bar{Y} - a\bar{X} = (1,34) - [(0,0356) \cdot (15,445)]$$

$$b = 0,7902$$

• Donc; Y = aX + b

$$Y = 0.04X + 0.79$$

5. L'estimation du nombre de voiture pour un revenu mensuel égale à 40 ; $Y = 0.04X + 0.79 \Rightarrow Y = 0.04(40) + 0.79 = 2.39 \simeq 3 \text{ voitures}$

Exercice 2.

A partir des classes on détermine les centres de classes du couple (X;Y) puis on refait les mêmes calculs de l'exercice 1. Plus précisément on travaillera avec le tableau de contingence suivant :

Y/X	65	75	85	95	105
95	4	2	0	0	0
105	2	8	6	0	0
115	1	10	12	5	0
125	0	4	7	5	1
135	0	0	1	1	1