Indian Institute of Technology Patna Department of Mathematics MA - 225: B.Tech. II year **Spring Semester**

Tutorial Sheet-4

- 1. A continuous random variable has probability density function (PDF) defined as $f_X(x) = cxe^{-\frac{x}{2}}$, $x \geq 0$ and $f_X(x) = 0$, x < 0.(i) Find the constant c, (ii) What is the CDF of X. (iii) Find the mean, variance and standard deviation of X.(iv) Where is the median of X located.
- 2. In a dart game the player wins at a circular target having a radius of 25 centimeters. Let X be the distance (in centimeters) between the dart's impact point and the center of the target. Suppose that $P(X \le x) = c\pi x^2$, $0 \le x \le 25$ and = 1, x > 25, where c is a constant. Evaluate (i) the constant c (ii) the PDF of X (iii) the mean of X (iv) the probability $P(X \le 10 | X \ge 5)$ (v) It costs 1\$ to throw a dart and the player wins 10\\$ if $X \le r$, 1\\$ if $r < X \le 2r$, 0\\$ if $2r < X \le 25$. For what values of r is the average gain of the player equal to 0.25\$.
- 3. Show that the function defined as $f_X(x) = \frac{x(6+x)}{3(3+x)^2}$, $0 < x \le 3$ and $= \frac{9(3+2x)}{x^2(3+x)^2}$, x > 3 is a probability density function (PDF)
- 4. Does the function $\theta^2 x e^{-\theta x}$, x > 0, and x < 0, x < 0, $\theta > 0$ defines a probability density function? If yes, find the corresponding distribution function and also evaluate $P(X \ge 1)$.
- 5. Are the following functions distribution functions. If so, find the corresponding PDF/PMF.
 - $(i) \ F(x) = 0, \ x \leq 0, = x/2, \ 0 \leq x < 1, = 1/2, \ 1 \leq x < 2, \ = x/4, \ 2 \leq x < 4, \ = 1, \ x \geq 4.$

 - (ii) F(x) = 0, $x < -\theta$, $= \frac{1}{2}(x/\theta + 1)$, $|x| \le \theta$, $= 1, x > \theta$ (iii) F(x) = 0, x < 1, $= \frac{(x-1)^2}{8}$, $1 \le x < 3$, = 1, $x \ge 3$.
- 6. Let X be an RV with pdf $f(x) = \frac{\Gamma(m)}{\Gamma(1/2)\Gamma(m-\frac{1}{2})(1+x^2)^m}$, $-\infty < x < \infty$, $m \ge 1$. Evaluate $E(X^{2r})$ whenever it exists.
- 7. Let f(x) be the density function of the RV X. Suppose that X has symmetric distribution about a. Show that the mean of X is a itself.
- 8. (i) Let X be a continuous random variable with density function function f(x) and distribution function F(x). Then Show that $E(X) = \int_0^\infty [1 - F(x)] dx - \int_{-\infty}^0 F(x) dx$ provided $x\{1 - F(x) - F(x)\} dx = \int_0^\infty [1 - F(x)] dx$ F(-x) $\to 0$ as $x \to \infty$.
 - (ii) When X is a nonnegative RV, then $E(X) = \int_0^\infty [1 F(x)] dx$.
- 9. Let X be a RV with Distribution Function $F(x) = 1 0.8e^{-x}$, $x \ge 0$ and F(x) = 0, x < 0. Find EX.
- 10. Let X be an RV with density function $f(x) = 1/2, -1 \le x \le 1$, and = 0 otherwise. Find the distribution function of $\max(X,0)$.
- 11. Find the moment generating function for the density function $\frac{1}{2a}e^{-\frac{|x-\mu|}{a}}$, $-\infty < x < \infty, a >$ $0, -\infty < \mu < \infty$. Check whether or not it is a density function.
- 12. Let $f_X(x) = \frac{1}{2}[1 \frac{|x-3|}{2}]$, 1 < x < 5. Check that $f_X(x)$ is a PDF. Find mean, median, variance and p^{th} quantile of X.
- 13. Let $f_X(x) = \frac{k}{\beta} \left[1 \frac{(x-\alpha)^2}{\beta^2}\right], (\alpha \beta) < x < (\alpha + \beta)$ where $-\infty < \alpha < \infty, \beta > 0$. Find the value of k so that $f_X(x)$ is a PDF. Find mean, median, variance and p^{th} quantile of X. Also evaluate $E(|X-\alpha|)$