MATH 307: Group Homework 9

John Mays

04/16/21, Dr. Guo

Problem 1

. . .

Problem 2

. . .

Problem 3

 $A \in \mathbb{C}^{m \times n}$

SVD:

$$A = U\Sigma V^*$$
 and $A^* = V\Sigma^*U^*$, where range $(A) = \operatorname{span}(u_1, u_2, \dots, u_r) \subset \mathbb{C}^m$ and $\operatorname{null}(A^*) = \operatorname{span}(u_{r+1}, u_{r+2}, \dots, u_m) \subset \mathbb{C}^m$

Therefore,

$$\operatorname{range}(A) + \operatorname{null}(A^*) = \operatorname{span}(u_1, u_2, \dots, u_r) + \operatorname{span}(u_{r+1}, u_{r+2}, \dots, u_m)$$

$$\operatorname{range}(A) + \operatorname{null}(A^*) = \operatorname{span}(u_1, u_2, \dots, u_m)$$

$$\operatorname{range}(A) + \operatorname{null}(A^*) = \mathbb{C}^m$$

And by the properties of SVD, we know that U is an orthogonal matrix, therefore all the columns of U, u_i , are mutually orthogonal \Longrightarrow that the two collections of u_i , range(A) and null(A^*), are orthogonal subspaces of \mathbb{C}^m .

Therefore $\operatorname{range}(A) \oplus \operatorname{null}(A^*) = \mathbb{C}^m$