MOBILE & CYBER-PHYSICAL SYSTEMS

STEFANO CHESSA

(MANETS)

- AUTONOMOUS SYSTEM OF MOBILE HOSTS CONNECTED
 BY WIRELESS LINKS
 - THE NODES ARE AUTONOMOUS AND INDEPENDENT
 - BATTERY POWERED
 - MOBILE
 - NODES COMMUNICATE BY EXCHANGING PACKETS VIA RADIO WAVES
 - COOPERATE IN A PEER-TO-PEER FASHION
 - NO FIXED NETWORK INFRASTRUCTURE
 - PURE DISTRIBUTED SYSTEM
 - NO CENTRALIZED COORDINATORS
 - THE NETWORK CAN BE (RE-)CONFIGURED ON-THE-FLY

• FEATURES:

- RAPIDLY DEPLOYABLE
- EASILY CONFIGURABLE
- ROBUST
- HETEROGENEOUS

APPLICATIONS:

- COMMUNICATION IN REMOTE OR HOSTILE ENVIRONMENTS
- MANAGEMENT OF EMERGENCIES
- DISASTER RECOVERY
- AD HOC COMMERCIAL INSTALLATIONS
- SENSOR NETWORKS

Wireless communications:

- Transmission range of the nodes is limited
- Obstacles may prevent direct communication between a pair of nodes

Point-to-point Network

 Communication between nonadjacent nodes must be supported by other nodes

UNIT DISK GRAPH MODEL:

- G = (V, E)
- $V = \{u : u \text{ is a node in the network}\}$
- $edge(u, v) \in E \iff d(u, v) \le r$, WHERE:
 - d(u,v) is the Euclidian distance between nodes u and v
 - r is the transmission range of the nodes

SEVERAL RELEVANT ISSUES:

- ACCESS TO THE SHARED WIRELESS CHANNEL
 - REQUIRES A (WIRELESS) MEDIA ACCESS CONTROL (MAC)
- LIMITED TRANSMISSION RANGE:
 - PROTOCOLS BASED ON NEIGHBOR KNOWLEDGE
 - THE NETWORK IS MULTI HOP
 - NEED FOR A MULTIHOP ROUTING PROTOCOL
- WIRELESS COMMUNICATION:
 - EAVESDROPPING OF ONGOING COMMUNICATIONS
 - SECURITY ISSUES

MAC-LEVEL ISSUES

- DUE TO PHYSICAL LAYER PROPERTIES:
 - ATTENUATION OF SIGNAL DEPENDS ON RECEIVER AND TRANSMITTER DISTANCE
 - NO DEFINITE BOUNDARIES FOR RADIO WAVES
 - HIGH BIT ERROR RATE (BER)
 - ASYMMETRIC CHANNEL QUALITIES
- CONCEPT OF "NEIGHBORS:" NODES WITHIN EACH OTHER TRANSMISSION RANGE: ONLY NEIGHBORS DETECT THE CARRIER ON THE CHANNEL

NETWORK-LEVEL ISSUES

- DISTRIBUTED CONTROL
- HETEROGENEITY OF NODES
 - BATTERY, PROCESSING, STORAGE CAPACITY
 - LAPTOPS/TABLETS, SMARTPHONES, SENSORS, ETC.
- ENERGY MANAGEMENT IS IMPORTANT
- MOBILITY IS A CHALLENGE
 - FREQUENT LINK/NODE FAILURES
 - THE NETWORK TOPOLOGY CHANGE ARBITRARILY
 - NODES' DISCONNECTIONS/NETWORK PARTITIONING

NETWORK-LEVEL ISSUES

- NODES ARE ROUTERS:
 - NEED FOR A MULTIHOP ROUTING PROTOCOL
- ADDRESSES DO NOT REFLECT THE POSITION OF THE NODES
 IN THE NETWORK ANYMORE!
 - NEED FOR DYNAMIC ROUTING
- NODES ARE MOBILE, THE NETWORK TOPOLOGY CHANGES FREQUENTLY
 - ROUTES MAY FAIL FREQUENTLY
 - NEED FOR FAST ROUTE UPDATE

MANET PROTOCOL STACK

	Applicat	ion layer		
App1	App2	App3	• • •	
	Transpo	ort layer		
	TCP		UDP	
	Networ	k layer		
	Non-IP Ro	outing $(!/?)$		
	Datalin	k layer		
		ireless links		
	Physico	al layer		
	Network	interface		

WIRELESS SENSOR NETWORKS (WSN)

ENVIRONMENTAL MONITORING WITH SENSORS

- CONVENTIONAL APPROACH:
 - THE SENSORS ARE JUST TRANSDUCERS
 - CONNECTED BY A CABLE TO A CENTRALIZED CONTROL DEVICE
- EXAMPLES
 - SENSORS IN AUTOMOTIVE
 - SENSORS IN INDUSTRIAL
 PLANTS
 - HOUSE ALARMS

DIFFERENCES WITH THE CONVENTIONAL MODEL:

- THE SENSORS ARE "INTELLIGENT"
 - MICROSYSTEMS (PROCESSOR, MEMORY, TRANSDUCERS,...)
 - CAN PROCESS SENSED DATA
- THE SENSORS COMMUNICATE VIA WIRELESS

TECHNOLOGIES

- RADIO
- OPTICAL
- ACOUSTIC, ...
- THE SENSORS BUILD A NETWORK
 - NOT JUST DIRECT COMMUNICATION TRANSDUCER-CENTRALIZED CONTROL
- NETWORK EASILY DEPLOYABLE
 - NO NEED FOR FIXED INFRASTRUCTURE

- SENSORS ARE DEPLOYED IN THE SENSING FIELD
- A TYPICAL CONFIGURATION COMPRISES:
 - ONE (OR MORE) SINK NODES
 - INTERFACE THE WSN WITH THE EXTERNAL WORLD
 - A SET OF WIRELESS SENSORS
- EACH SENSOR :
 - LOW POWER, LOW COST SYSTEM
 - SMALL
 - AUTONOMOUS

- EACH SENSOR EQUIPPED WITH:
 - PROCESSOR
 - MEMORY
 - RADIO TRANSCEIVER
 - TRANSDUCERS
 - FOR EXAMPLE: ACCELERATION, PRESSURE, HUMIDITY, LIGHT, ACOUSTIC, TEMPERATURE, GPS, MAGNETIC, ...
 - ANALOG TO DIGITAL CONVERTER (ADC)
 - BATTERY, SOLAR CELLS, ...

WSN: A TYPICAL CONFIGURATION

- EACH SENSOR SAMPLES ENVIRONMENTAL PARAMETERS
 - PRODUCES STREAMS OF DATA
 - DATA STREAMS CAN BE PRE-PROCESSED LOCALLY AND THEN FORWARDED TO A SINK
- THE SINKS MIGHT BE TEMPORARILY UNAVAILABLE
 - THE NETWORK OPERATES AUTONOMOUSLY
 - PRE-PROCESS AND STORE SENSED DATA
 - SENSORS MAY ACT AS LOGGERS (STORE DATA)

- SENSOR NETWORK DEPLOYMENT IS EASY AND CHEAP
 - NO NEED FOR CABLES
 - THE NETWORK IS SELF-CONFIGURABLE
 - THE NUMBER OF SENSORS CAN SCALE UP
 - THE SENSORS CAN BE REDUNDANT (FAULT-TOLERANCE)
- SENSORS CAN BE MOBILE
 - FOR INSTANCE SENSORS ON PEOPLE OR ANIMALS
- NO NEED FOR CENTRALIZED CONTROL
- THE SENSORS CAN FILTER/PROCESS DATA
 - THE NETWORK CAN BE PROGRAMMED DYNAMICALLY

ADVANTAGES OF WSN

- NUMBER OF SENSOR NODES CAN BE SEVERAL ORDERS OF MAGNITUDE HIGHER
- SENSOR NODES ARE STRONGLY CONSTRAINED IN POWER,
 COMPUTATIONAL CAPACITIES, AND MEMORY
- SENSOR NETWORK ARE DENSER AND SENSORS ARE PRONE TO FAILURES
- THE TOPOLOGY OF A SENSOR NETWORK CHANGES
 MAINLY DUE NODE FAILURES (AND MOBILITY?)
- NEED FOR A TIGHT INTEGRATION WITH SENSING TASKS

DIFFERENCES WITH AD HOC NETWORKS

WSN APPLICATIONS

- ENVIRONMENTAL
 - TRACKING ANIMALS, ...
 - POLLUTION CONTROL, ...
- DISASTER RECOVERY
 - MONITOR DISASTER AREAS,
 - FIRE/FLOODING DETECTION, ...
 - METEOROLOGICAL RESEARCH
- SECURITY
 - NUCLEAR, BIOLOGICAL AND CHEMICAL (NBC) ATTACK DETECTION
 - MONITORING BATTLEFIELD,
 - SURVEILLANCE, ...

- HEALTH
 - DIAGNOSTICS
 - MONITORING
 - SUPPORT TO DISABLED
- COMMERCIAL
 - INVENTORY MANAGEMENT
 - VEHICLE TRACKING
 - TOYS
 - DOMOTICS
- ART
- SPACE EXPLORATION
- ...

REFERENCE STANDARDS

MAIN STANDARDS FOR AD HOC & SENSOR NETWORKING

- IEEE 802.11 (WI-FI)
 - GENERAL PURPOSE WIRELESS ACCESS
- IEEE 802.15.1 & BLUETOOTH
 - CABLE REPLACEMENT, SENSORS, ...
- IEEE 802.15.4 & ZIGBEE
 - SENSOR AND ACTUATOR NETWORKS
- IEEE 802.16 (WIMAX)
 - METROPOLITAN WIRELESS ACCESS NETWORKS

WIRELESS TECHNOLOGIES

Range vs Data rate

IEEE 802.15.4 AND ZIGBEE VS BLUETOOTH

Name	ZigBee	WiFi	Bluetooth (1&2)
Standard	802.15.4	802.11 a,b,g	802.15.1
Applications	Monitoring and control	Web, e-mail, video	Cable replacement
System resources	50 to 60 Kbytes	>1 Mbytes	>250 Kbytes
Battery life (days)	100 to > 1000	1 to 5	1 to 7
Network size	64K nodes	~ 100 nodes	7 nodes
Bandwidth (Kbps)	20 to 250 Kbps	~ 100 Mbps	~ 1 Mbps
Maximum transmission range	100+ meters	100 meters	10 meters
Success metrics	Reliability, power, cost	Speed, flexibility	Cost, convenience

WSN

V.S.

RFID & ... BARCODES!

WSN, BARCODES AND RFIDS

- BARCODES & QR CODES:
 - EXTREMELY CHEAP (THE COMPLEXITY IS IN THE READER)
 - DEEP USER INVOLVEMENT
 - SHORT RANGE (A FEW CENTIMETERS)

https://elearning.di.unipi.it/course/view.php?id=76

- RFID (RADIO FREQUENCY IDENTIFIERS):
 - CHEAP TECHNOLOGY (THE COMPLEXITY IS IN THE READER)
 - SIGNIFICANT USER INVOLVEMENT
 - SHORT RANGE (A FEW METERS)
 - RFID TAGS GIVE THEIR IDENTIFIER TO THE READER

WSN, BARCODES AND RFIDS

- RFID (RADIO FREQUENCY IDENTIFIERS):
 - PASSIVE TAGS (POWERED BY THE READER)
 - CAN PROVIDE TAG ID AND A FEW SAMPLED DATA TO THE READER
 - ACTIVE TAGS (BATTERY POWERED)
 - NO NETWORK, JUST TAG AND READER
 - NOT POWERED BY THE READER: SMALLER ANTENNA

WSN, BARCODES AND RFID

- WIRELESS SENSOR NETWORKS
 - NO USER INVOLVEMENT
 - MEDIUM RANGE (10-100 METERS)
 - RANGE CAN BE EXTENDED WITH MULTIHOP COMMUNICATIONS
 - ACTIVE SENSORS (BATTERY POWERED)
 - CAN CONNECT ALSO TO RFID TAGS

AN EXAMPLE: USER LOCALIZATION

- LOCALIZATION:
 - LOCATE A PERSON OR A DEVICE IN AN ENVIRONMENT
- WITH BARCODES:
 - A CODE DENOTES AN AREA
 - THE USER (EQUIPPED WITH A BARCODE READER) READS THE CODE
 - THE READER DETERMINES THE POSITION OF THE USER
 - USED IN SOME PILOT PROJECT IN MUSEUMS ETC..
- BARCODES SUITABLE FOR LOCALIZATION IN AREAS OF INTEREST

AN EXAMPLE: USER LOCALIZATION

- WITH RFIDS
 - A RFID READER DENOTES AN AREA
 - THE USER BRINGS AN RFID TAG
 - AS THE USER APPROACHES THE AREA THE READER DETECTS THE USER'S TAG
- TAGS SUITABLE FOR LOCALIZATION IN AREAS OF INTEREST

AN EXAMPLE: USER LOCALIZATION

- WITH A WSN
 - A WSN IS DEPLOYED IN A BUILDING
 - A USER BRINGS A SENSOR THAT CONSTANTLY EMITS RADIO BEACONS
 - THE WSN DETECTS THE PRESENCE AND POSITION OF THE USER'S SENSOR IN THE BUILDING
- SUITABLE TO COVER ALL THE BUILDING, NOT JUST AREAS OF INTEREST

WSN & IOT

0

WSN & INTERNET OF THINGS (IOT)

A LARGE, MAJOR CHANGE IN INTERNET COMPLETED IN THE LAST YEARS

THE TRANSITION FROM IPV4 TO IPV6

ENABLES UP TO

655.571 BILLION OF BILLIONS

OF DEVICES PER SQUARE METER ON EARTH (INCLUDED OCEANS!)

IS THERE ANY PURPOSE/NEED?

WHO NEEDS ALL THIS?

INTERNET OF THINGS (IOT)

- PHYSICAL OBJECTS («THINGS»)
- EMBEDDED WITH ELECTRONICS, SOFTWARE, SENSORS, NETWORK CONNECTIVITY

IOT DEVICES VS HUMANS

- 2003: THE TERM INTERNET OF THINGS WAS CONIED
- IN 2008 MORE DEVICES IN INTERNET THAN PEOPLE
- IN 2014 THE NUMBER OF MOBILE DEVICES ON INTERNET SURPASSED THE NUMBER OF HUMANS ON EARTH
- BY 2020 THE NUMBER OF DEVICES
 ON INTERNET WILL EXCEED 50
 BILLIONS

- MOST OF THE DEVICES ARE NOT DIRECTLY IN USE BY HUMAN BEINGS
- INDEPENDENT PHYSICAL OBJECTS WITH THEIR OWN BUSINNESS LOGIC
 - EMBEDDED WITH ELECTRONICS, SOFTWARE, SENSORS AND NETWORK CONNECTIVITY
 - MOSTLY SENSORS AND ACTUATORS
 - NOT HUMAN-OPERATED!

WEARABLE SENSORS

- Smartphones/smartwatches sensors (accelerometers, radio, gyroscopes, ...)
- Fitness (heartrate, step counter, energy, ...)
- Medical sensors (hearthbeat, ECG, blood pressure,...)
- Panic buttons and fall detectors
- •

IOT & THE CLOUD...

- WSN (+ ACTUATORS) ARE THE EDGE OF THE CLOUD
- BEHIND INTERNET, DATA STORED/PROCESSED IN THE CLOUD
- EXAMPLE: THINGSPEAK
 - HTTPS://THINGSPEAK.COM
 - A WEB-BASED DB
 - CAN BE CONFIGURED TO STORE DATA FROM SENSORS
 - USE INPUT CHANNELS TO RECEIVE AND STORE SENSOR DATA.
 - SOME CHANNELS ARE PUBLIC

Account • Logout

MATLAB Visualization

IOT & THE CLOUD...

IOT & THE CLOUD...

THINGSPEAK

• MORE INFO ON:

HTTPS://THINGSPEAK.COM/

• DOCUMENTATION, TUTORIAL, EXAMPLES AND FORUM

- NO-SQL DATABASES ARE USED IN BIG DATA AND REAL-TIME WEB APPLICATIONS
 - USED BY GOOGLE, AMAZON, FACEBOOK ETC.
 - SIMPLER DESIGN WITH RESPECT TO SQL
 - SCALE WELL ON "HORIZONTAL" CLUSTERS OF MACHINES

EXAMPLE: MONGODB

- RECORDS IN MONGODB ARE DOCUMENTS
- JSON (JAVASCRIPT OBJECT NOTATION)-LIKE DATA SYNTAX:
 - A DOCUMENT IS SIMILAR TO A JSON OBJECT
 - JSON: HTTP://JSON.ORG/
- IN A DOCUMENT:
 - DATA IS IN NAME/VALUE PAIRS
 - DATA SEPARATED BY COMMAS
 - CURLY BRACES HOLD OBJECTS
 - SQUARE BRACKETS HOLD ARRAYS

EXAMPLE: MONGODB

• EXAMPLE OF A MONGODB DOCUMENT:

EXAMPLE: MONGODB

- MONGODB DOCUMENTS:
 - DOCUMENTS CORRESPOND TO NATIVE DATA TYPES IN MANY PROGRAMMING LANGUAGES.
 - EMBEDDED DOCUMENTS AND ARRAYS REDUCE NEED FOR EXPENSIVE JOINS.
 - A VALUE CAN BE AN ARRAY OR ANOTHER DOCUMENT

MONGODB - COLLECTIONS

- DOCUMENTS ARE STORED IN COLLECTIONS
 - A COLLECTION CORRESPONDS TO A TABLE IN A RELATIONAL DB
 - DOCUMENTS IN A COLLECTION MAY NOT HAVE THE SAME STRUCTURE

```
nar
age nar
sta age
group: "sue",
age: 26,
group: ["news", "sport"]
}
Collection
```


MONGODB - QUERIES

- A QUERY TARGETS A SPECIFIC COLLECTION OF DOCUMENTS
- IT SPECIFIES CRITERIA AND CONDITIONS THAT IDENTIFY DOCUMENTS IN THE COLLECTION
 - MAY INCLUDE A PROJECTION THAT SPECIFIES THE FIELDS FROM THE MATCHING DOCUMENT TO RETURN
 - MAY INCLUDE MODIFIER OF THE OUTPUT (E.G. SORTING OF RESULTS)

MONGODB - QUERIES

Collection

Query criteria

Modifier

DB.SENSEDDATA.FIND({TIME:{\$GT: 1900}}).SORT({TIME:1})

Query

```
{time:1760,temp:21,...}
{time:1733,humid:8,...}
{time:1845,temp:23,...}
{time:1901,humid:7,...}
                              Criteria
{time:1920,temp:24,...}
{time:1948,temp:23,...}
{time:1939,humid:6,...}
```

sensedData collection

{time:1901,humid:7,...} {time:1920,temp:24,...}

{time:1948,temp:23,...} {time:1939,humid:6,...}

{time:1901,humid:7,...} Modifier

{time:1920,temp:24,...}

{time:1939,humid:6,...}

{time:1948,temp:23,...}

MONGODB - DATA MODIFICATION

- OPERATIONS THAT CREATE, UPDATE, OR DELETE DATA
 - UPDATE AND DELETE OPERATIONS CAN SPECIFY THE CRITERIA TO SELECT THE DOCUMENTS TO UPDATE OR REMOVE
- EXAMPLE: INSERT

```
DB.SENSEDDATA.INSERT(

{
   TIME:2011,
   HUMID: 5,
   ...
}
```

```
time:2011,
humid: 5,
...
}
```

```
{time:1760,temp:21,...}

{time:1733,humid:8,...}

{time:1845,temp:23,...}

{time:1901,humid:7,...}

{time:1920,temp:24,...}

{time:1948,temp:23,...}

{time:1939,humid:6,...}

{time:2011,humid:5,...}
```


MONGODB

FOR MORE DETAILS SEE THE MONGODB TUTORIAL:

• HTTPS://WWW.MONGODB.COM/

HTTPS://DOCS.MONGODB.COM/MANUAL/INTRODUCTION/

RELEVANT ISSUES IN IOT

- COMMUNICATION MIDDLEWARE
 - HOW TO MEET DATA PRODUCERS (SENSORS) WITH CONSUMERS (USERS/ ACTUATORS/APPLICATIONS)
- PRESENTATION OF DATA
 - DATA FORMATS, STANDARDIZATION

Many standards already available

- At MAC level: Bluetooth, IEEE 802.15.4,...
- At network level: ZigBee, Bluetooth, 6LowPan,...
- At application level: MQTT, CoAP, oneM2M, ...

RELEVANT ISSUES IN IOT

- PERFORMANCE
- ENERGY EFFICIENCY
 - SAME AS WSN
- DATA ANALYSIS/PROCESSING
 - ADAPTABILITY/PERSONALIZATION

Interesting links also with machine learning...

IOT ISSUES: LATENCY-ANALYSIS-EFFICIENCY

Producing faststreaming heterogeneous sensed data

Power and communication constraints

Context
awareness &
continuous
adaptation

IOT & ARTIFICIAL INTELLIGENCE

AI AIMS AT GETTING COMPUTERS TO BEHAVE IN A SMARTER MANNER

- EITHER THROUGH...
- ... CURATED KNOWLEDGE...
- ... OR THROUGH MACHINE LEARNING

CAPABILITIES OF AI AS OF 2017 INCLUDE:

- UNDERSTANDING HUMAN LANGUAGE (WATSON, SIRI, CORTANA, TRANSLATORS ...)
- STRATEGIC GAME SYSTEMS (DEEP BLUE FOR CHESS, ALPHAGO FOR GO,...)

AI THROUGH CURATED KNOWLEDGE

MANY WAYS OF REPRESENTING KNOWLEDGE, OFTEN BASED ON (A LARGE NUMBER OF) CAUSE/EFFECT RULES

EXAMPLES:

- PROPOSITIONAL LOGIC: It is hot \rightarrow I wear shorts \land I drink ice tea
- PREDICATE LOGIC:

 $\forall x: day_of_week(x, wednesday) \lor day_of_week(x, friday)$ $go(me, football_court) \land play(me, football)$

- PRODUCTION RULES: if having a sandwitch then hungry
- SEMANTIC NETWORKS:

rar-and all be-and all beautiful and an and an all and an all be Lange of the survey of the sur and property and p

HETEROGENEOUS TIME-SERIES OF SENSED DATA

- FAST FLOWING
- NOISY
- REDUNDANT
- MISSING
- •

MACHINE LEARNING

IT IS A SUBFIELD OF AI THAT DEALS WITH:

«AUTOMATIC SYSTEMS THAT CAN LEARN FROM DATA»

- REPLACES (HUMAN WRITING CODE) WITH (HUMAN SUPPLYING DATA)
 - THE SYSTEM IS FED BY EXAMPLES TO LEARN HOW TO ASSOCIATE INPUT WITH OUTPUT
 - SOME EXAMPLES ARE USED TO TRAIN (TRAINING SET)
 - SOME EXAMPLES ARE USED TO TEST (TEST SET)
- WHEN GIVEN IN INPUT A DATA NEVER SEEN IN THE TRAINING PHASE THE SYSTEM PRODUCES ANYWAY AN OUTPUT
 - IF WELL TRAINED THE OUTPUT WILL BE (MOST LIKELY/HOPEFULLY) CORRECT...
 - DUE TO THE GENERALIZATION CAPABILITY OF ML

SEVERAL PARADIGMS OF ML:

UNSUPERVISED LEARNING

- ANALYSE DATA
- FINDS STRUCTURES/RELATIONSHIPS/SIMILARITIES AMONG DATA POINTS
- AIMS AT UNDERSTANDING THE PAST

SUPERVISED LEARNING

- LEARN FROM PAST EXAMPLES
- FOR EACH EXAMPLE REQUIRES INPUT + DESIRED OUTPUT
- AIMS AT PREDICTING THE FUTURE OR INTERPRETING THE PRESENT.

REINFORCEMENT LEARNING

- LEARNS FROM EXAMPLES
- FOR EACH EXAMPLE REQUIRES ONLY INPUT AND A REWARD
- E.G. TO LEARN A GAME THE REWARD CAN BE +1 FOR WINNING, 1 FOR LOSING, 0 OTHERWISE

MACHINE LEARNING

THE OVERALL PICTURE...

CLOUD, FOG & EDGE COMPUTING

