Smart Parking Manager 실시간 주차 관리 시스템

홍의대학교 소프트웨어융합학과 최지은, 정은진, 이하은

차례

- 1. 연구 배경
- 2. 관련 연구 및 현황
- 3. 실시간 주차 관리 시스템
- 4. 적용 사례
- 5. 결론 및 향후 연구 방향

1. 연구 배경

1. 연구 배경

1. 늘어나는 차량 보유율

https://www.index.go.kr/unity/potal/main/EachDtlPageDetail.do?idx_cd=1257

"우리나라 자동차 등록대수 2640만8000대...**1.94명 중 1명** 보유"

나날이 늘어나는 차량 보유율에 의해 **주차 관리 문제**도 대두되고 있다.

출처: 한국 뉴스투데이(http://www.koreanewstoday.co.kr/news/articleView.html?idxno=73791)

1. 연구 배경

2. 주차 공간 탐색을 위한 순환 주행(cruising for parking)

교통 혼잡도 증가

배출가스 증가

불필요한 움직임

2. 관련 연구 및 현황

2. 관련 연구 및 현황

3. 해외 사례

Talaat, Fatma M., et al. "Real-Time Smart Parking System Using YOLO11 and OpenCV."

연구에서 제안하는 SmartPark-V11 시스템은 92.8%의 탐지 정확도를 달성하며, 이전 YOLO 버전들보다 속도와 정밀도 모두에서 뛰어난 성능을 보였다. => 기존의 연구는 탐지 정확도를 높이는데 집중되었다.

2. 관련 연구 및 현황

4. 국내 사례

윤태진, et al. "딥러닝기법을 이용한 주차면 영상 인식 시스템 개발." 한국컴퓨터정보학회 학술발표논문집 27.1 (2019): 301-302.

대부분의 기존 주차 관리 시스템은 이미 주차가 완료된 차량에 대해서만 점유 상태로 인식한다. => 주차 중인 차량이나 출차 중인 차량은 실시간 점유 정보에 반영되지 않아, 주차 공간 정보의 정확도와 효율성이 떨어진다.

3. 실시간 주차 관리 시스템

3. 실시간 주차 관리 시스템

5. 주차 공간 탐색 없이 "바로 하는 주차"

- 1. 관리자 측면: 효율적인 출차 및 사건 대응 관리
 - 주차장 관리자는 출차 차량의 흐름을 실시간으로 파악하여 효율적인 차량 이동 유도 가능
 - 사건 발생 시, 차량 번호 및 상태 데이터가 기록되어
 - → CCTV 영상 전체를 수작업으로 확인할 필요 없이,
 - → 필요한 구간만 **정확히 추출** 가능 → 대응 시간 단축 및 업무 효율 향상
- 2. 사용자 측면: 실시간 주차 공간 정보 제공
 - 사용자는 앱 또는 화면을 통해 **주차 가능 공간을 실시간으로 확인**
 - → 물리적 이동 없이도 빠르게 빈 공간을 찾아 이동 가능
 - → 불필요한 대기 및 혼잡 최소화
- 3. 혼잡 시간대에도 효율적인 공간 운영
 - 주말이나퇴근 시간 등 고밀도 시간대에도 효율적인 주차 공간 운영 가능
 - **→ 공간 회전율** 증가
 - → 주차 불가로 인한 민원 및 갈등 감소
- 4. 기존 연구의 한계 극복
 - 기존 시스템은 **주차 완료 차량만** 점유로 인식
 - 본 연구는 주차 중이거나 출차 중인 차량까지도 실시간으로 점유 상태에 반영
 - → 보다 정교한 주차 공간 정보 제공
 - → 실제 이용 가능한 공간과 시스템 정보의 오차 최소화

4. 적용 사례

4. 적용 사례

6. 구현

https://github.com/ddde8/3jo

5. 결론 및 향후 연구방향

5. 결론 및 향후 연구 방향

7. 결론

- ➤ 스마트시티 주차 공간 등 물리적인 공간 관리를 디지털화(DX) 필요성 대두
- ➤ 단순 점유 판별을 넘어 효율적 주차 관리·교통 혼잡 완화·환경 문제 개선에 기여

기대효과

- **좀 탐색 주행 감소** → 불필요한 연료 소모·탄소 배출 절감
- ☑ 관리자 편의성 증대 → 실시간 모니터링 및 사건 대응 신속화
- 🙋 사용자 만족도 향상 → 빠르고 편리한 주차 경험 제공
- ◇ 스마트시티 확장성 → 교통 데이터 기반 정책 수립 및 도시 인프라 최적화

5. 결론 및 향후 연구 방향8. 향후 연구 방향

이중주차를 장려하는 "플러그링크"

https://www.industrynews.co.kr/news/articleView.html?idxno=4

효율적인 이중주차는 오히려 주차 공긴

-> IoT 연결을 통해 더욱 활성화하는 방

Q&A

