HOUSE PRICE PREDICTION

USING MACHINE LEARNING TECHNIQUES

Importing All the necessary Libraries

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
        import seaborn as sns
        sns.set_style('darkgrid')
        from sklearn.model_selection import train_test_split
        from sklearn.preprocessing import StandardScaler
        from sklearn.metrics import r2_score, mean_absolute_error,mean_squared_error
        from sklearn.linear_model import LinearRegression
        from sklearn.linear_model import Lasso
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.svm import SVR
        import xgboost as xg
        import warnings
        warnings.filterwarnings("ignore")
```

Loading the Dataset

```
In [2]: dataset = pd.read_csv('USA_Housing.csv')
    dataset.head()
```

Out[2]:

Addres	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry A 674\nLaurabury, N 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Su 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabe Stravenue\nDanieltow WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO A	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFPO A	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

Data Exploration

```
In [3]: # Shape:
dataset.shape
```

Out[3]: (5000, 7)

```
In [4]: # Columns:
    dataset.columns
```

```
In [5]: dataset.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Avg. Area Income	5000 non-null	float64
1	Avg. Area House Age	5000 non-null	float64
2	Avg. Area Number of Rooms	5000 non-null	float64
3	Avg. Area Number of Bedrooms	5000 non-null	float64
4	Area Population	5000 non-null	float64
5	Price	5000 non-null	float64
6	Address	5000 non-null	object

dtypes: float64(6), object(1)
memory usage: 273.6+ KB

In [6]: dataset.describe()

Out[6]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000	5.000000e+03
mean	68583.108984	5.977222	6.987792	3.981330	36163.516039	1.232073e+06
std	10657.991214	0.991456	1.005833	1.234137	9925.650114	3.531176e+05
min	17796.631190	2.644304	3.236194	2.000000	172.610686	1.593866e+04
25%	61480.562388	5.322283	6.299250	3.140000	29403.928702	9.975771e+05
50%	68804.286404	5.970429	7.002902	4.050000	36199.406689	1.232669e+06
75%	75783.338666	6.650808	7.665871	4.490000	42861.290769	1.471210e+06
max	107701.748378	9.519088	10.759588	6.500000	69621.713378	2.469066e+06

EDA and Pre-Processing of Data

Distribution of Price column

```
In [7]: plt.figure(figsize=(10,3))
    plt.subplot(121)
    sns.histplot(dataset, x='Price', bins=50, color='r')
    plt.subplot(122)
    sns.boxplot(dataset, x='Price', color='r');
```


Avg. Area House Age Vs Price

In [8]: sns.jointplot(dataset, x='Avg. Area House Age', y='Price', kind='hex', color='b');

In [9]: sns.jointplot(dataset, x='Avg. Area Income', y='Price', color='g');

Correlation among all the columns

In [10]: plt.figure(figsize=(12,8))
sns.pairplot(dataset);

<Figure size 1200x800 with 0 Axes>

Distribution of all the columns

In [11]: dataset.hist(figsize=(10,8));

Visualising Correlation

In [12]: dataset.corr(numeric_only=True)

Out[12]:

	Avg. Area Income	Avg. Area House Age	Avg. Area Number of Rooms	Avg. Area Number of Bedrooms	Area Population	Price
Avg. Area Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Avg. Area House Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
Avg. Area Number of Rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
Avg. Area Number of Bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Area Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

Dividing Dataset in to features and target variable

Split the dataset into train and test

```
In [15]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=10)
In [16]: Y_train.head()
Out[16]: 3413
                 1.305210e+06
         1610
                  1.400961e+06
         3459
                 1.048640e+06
         4293
                 1.231157e+06
                 1.391233e+06
         1039
         Name: Price, dtype: float64
In [17]: Y_train.shape
Out[17]: (4000,)
In [18]: Y_test.head()
Out[18]: 1718
                 1.251689e+06
         2511
                  8.730483e+05
         345
                 1.696978e+06
         2521
                  1.063964e+06
                  9.487883e+05
         Name: Price, dtype: float64
In [19]: Y_test.shape
Out[19]: (1000,)
```

Standardizing the data

Till now we have completed all the Data Pre-Processing steps. Now the data is ready for model building

```
In [ ]:
```