Robust Block Coordinate Descent (RCD)

Kimon Fountoulakis and Rachael Tappenden

School of Mathematics University of Edinburgh

IMA Conference on the Mathematical Challenges of Big Data

Standard examples in optimization

Data fitting

minimize
$$\gamma ||x||_1 + \frac{1}{2} ||Ax - b||_2^2$$

minimize
$$\gamma ||x||_2^2 + \frac{1}{2} ||Ax - b||_2^2$$

Standard examples in optimization

Binary classification

minimize
$$\gamma ||x||_1 + \sum_{i=1}^m \log(1 + e^{-b_i x^{\mathsf{T}} a_i})$$

minimize
$$\gamma ||x||_{2}^{2} + \sum_{i=1}^{m} \log(1 + e^{-b_{i}x^{T}a_{i}})$$

Problem formulation

minimize
$$F(x) := \Psi(x) + f(x)$$

$$- \times \in \mathbb{R}^N$$
, $f(x) : \mathbb{R}^N \to \mathbb{R}$, $\Psi(x) : \mathbb{R}^N \to \mathbb{R}$

Assumptions

- f is smooth (possibly) convex function
- Ψ is a (possibly) nonsmooth convex function

Plenty of data

- N is very large. i.e. of order millions or billions

Numerical methods in convex optimization

Build a convex function Q that locally approximates F at a point x:

- $Q(y;x) \approx F(y)$ for y close to x
- Q(x;x) = F(x)

General framework

- 1: Given x_0 (an initial guess)
- 2: For $k = 0, 1, 2, \dots$
- 3: Approximately solve the subproblem

$$y^* pprox rg \min_{y} Q(y; x_k)$$

4: Set $x_{k+1} := y^*$

Examples of local convex approximations

L1 Logistic Regression (L1 LR): minimize $\gamma ||x||_1 + \sum_{i=1}^m \log(1 + e^{-b_i x^{\mathsf{T}} a_i})$

- **Separable quadratic** (majority of modern algorithms) $Q(y; x_k) := \gamma ||y||_1 + f(x_k) + \langle \nabla f(x_k), y x_k \rangle + \frac{L}{2} \langle y x_k, y x_k \rangle$
- Non separable quadratic $Q(y;x_k) := \gamma ||y||_1 + f(x_k) + \langle \nabla f(x_k), y x_k \rangle + \frac{1}{2} \langle y x_k, H_k(y x_k) \rangle$

Trade-off between simple and general quadratic approximations

Туре	Inexpensive step	Good approximation
Separable quad.:	✓	
Non sep. quad.:		\checkmark

Aim: control the trade off

Three ways in Robust Block Coordinate Descent (RCD)

- Inexpensively choose H_k such that it approximates the structure of f
- Dimensionality reduction: update only a block of coordinates
- Solve approximately the subproblem over the chosen block of coordinates

Trade offs in RCD: construction of quadratic

- 1) Construct any $H_k > 0$ such that $H_k \approx \nabla^2 f(x_k)$. No need to store H_k , we only need a process to perform matrix-vector products with it.
- 2) Construct a local convex model

$$Q(y;x_k) := \Psi(y) + f(x_k) + \langle \nabla f(x_k), y - x_k \rangle + \frac{1}{2} \langle y - x_k, H_k(y - x_k) \rangle$$

Dimensionality reduction

Dimensionality reduction

Dimensionality reduction: block notation

Assumption: Ψ is block separable

$$\Psi(x) = \begin{array}{c} x^T \\ \hline \Psi_1(x^{(1)}) + \Psi_2(x^{(2)}) + \Psi_3(x^{(3)}) + \Psi_4(x^{(4)}) + \Psi_5(x^{(5)}) \end{array}$$

Reformulation of local approximation and subproblem

$$Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k}) := \Psi_{i}(x_{k}^{(i)} + t^{(i)}) + f(x_{k}) + \langle \nabla_{i} f(x_{k}), t^{(i)} \rangle + \frac{1}{2} \langle t^{(i)}, H_{k}^{(i)} t^{(i)} \rangle$$
$$t_{k}^{(i)} \approx \underset{t^{(i)}}{\operatorname{arg \, min}} Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k})$$

Assumption: Ψ is block separable

$$\Psi(x) = \begin{array}{c} x^T \\ \Psi_1(x^{(1)}) + \Psi_2(x^{(2)}) + \Psi_3(x^{(3)}) + \Psi_4(x^{(4)}) + \Psi_5(x^{(5)}) \end{array}$$

Reformulation of local approximation and subproblem

$$Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k}) := \Psi_{i}(x_{k}^{(i)} + t^{(i)}) + f(x_{k}) + \langle \nabla_{i} f(x_{k}), t^{(i)} \rangle + \frac{1}{2} \langle t^{(i)}, H_{k}^{(i)} t^{(i)} \rangle$$
$$t_{k}^{(i)} \approx \underset{t^{(i)}}{\operatorname{arg min}} Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k})$$

Assumption: Ψ is block separable

$$\Psi(x) = \begin{bmatrix} x^T \\ \Psi_1(x^{(1)}) + \Psi_2(x^{(2)}) + \Psi_3(x^{(3)}) + \Psi_4(x^{(4)}) + \Psi_5(x^{(5)}) \end{bmatrix}$$

Reformulation of local approximation and subproblem

$$Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k}) := \Psi_{i}(x_{k}^{(i)} + t^{(i)}) + f(x_{k}) + \langle \nabla_{i} f(x_{k}), t^{(i)} \rangle + \frac{1}{2} \langle t^{(i)}, H_{k}^{(i)} t^{(i)} \rangle$$
$$t_{k}^{(i)} \approx \underset{t^{(i)}}{\operatorname{arg min}} Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k})$$

Assumption: Ψ is block separable

$$\Psi(x) = \begin{array}{c} x^T \\ \Psi_1(x^{(1)}) + \Psi_2(x^{(2)}) + \Psi_3(x^{(3)}) + \Psi_4(x^{(4)}) + \Psi_5(x^{(5)}) \end{array}$$

Reformulation of local approximation and subproblem

$$Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k}) := \Psi_{i}(x_{k}^{(i)} + t^{(i)}) + f(x_{k}) + \langle \nabla_{i} f(x_{k}), t^{(i)} \rangle + \frac{1}{2} \langle t^{(i)}, H_{k}^{(i)} t^{(i)} \rangle$$
$$t_{k}^{(i)} \approx \underset{t^{(i)}}{\operatorname{arg min}} Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k})$$

Assumption: Ψ is block separable

$$\Psi(x) = \begin{bmatrix} x^T \\ \Psi_1(x^{(1)}) + \Psi_2(x^{(2)}) + \Psi_3(x^{(3)}) + \Psi_4(x^{(4)}) + \Psi_5(x^{(5)}) \end{bmatrix}$$

Reformulation of local approximation and subproblem

$$Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k}) := \Psi_{i}(x_{k}^{(i)} + t^{(i)}) + f(x_{k}) + \langle \nabla_{i} f(x_{k}), t^{(i)} \rangle + \frac{1}{2} \langle t^{(i)}, H_{k}^{(i)} t^{(i)} \rangle$$
$$t_{k}^{(i)} \approx \underset{t^{(i)}}{\operatorname{arg \, min}} Q_{i}(x_{k}^{(i)} + t^{(i)}; x_{k})$$

Trade offs in RCD: inexact solution of subproblem

Interpretation: solve subproblem until

- direction $t_k^{(i)}$ reduces Q_i compared to zero direction, and
- direction $t_{k}^{(i)}$ is closer to optimality than zero direction.

First condition: decrease of local model

$$Q_i(x_k^{(i)} + t_k^{(i)}; x_k) < Q_i(x_k^{(i)}; x_k)$$

Second condition: decrease distance from optimality of the local model

$$\|g_i(x_k^{(i)} + t_k^{(i)}; x_k)\|_2 \le \eta_k^i \|g_i(x_k^{(i)}; x_k)\|_2, \quad \eta_k^i \in [0, 1)$$

Think $g_i(x_k^{(i)} + t^{(i)}; x_k)$ as the gradient of Q_i at $t^{(i)}$

RCD

- 1: **Input:** Choose x^0 and $\theta \in (0, 1/2)$
- 2: **Loop:** For k = 1, 2, ..., until termination criteria are met
- 3: Sample block of coordinates i with probability $p_i > 0$
- 4: Calculate direction $t_k^{(i)}$ by approximately solving

$$t_k^{(i)} pprox rg \min_{t^{(i)}} Q_i(x_k^{(i)} + t^{(i)}; x_k)$$

- 5: Backtracking line search along direction $t_k^{(i)}$ starting from $\alpha=1$. That is, find $\alpha\in(0,1]$ such that a sufficient decrease condition is satisfied (explained in next slide).
- 6: Set $x_{k+1}^{(i)} := x_k^{(i)} + \alpha t_k^{(i)}$

- the decrease of *F* (objective function) is proportional to the decrease of its *block* first order approximation.
- Block first order approximation of *F*:

$$\ell_i(x_k^{(i)} + t^{(i)}; x_k) := \Psi_i(x_k^{(i)} + t^{(i)}) + f(x_k) + \langle \nabla_i f(x_k), t^{(i)} \rangle$$

- the decrease of *F* (objective function) is proportional to the decrease of its *block* first order approximation.
- Block first order approximation of F:

$$\ell_i(x_k^{(i)} + t^{(i)}; x_k) := \Psi_i(x_k^{(i)} + t^{(i)}) + f(x_k) + \langle \nabla_i f(x_k), t^{(i)} \rangle$$

- the decrease of *F* (objective function) is proportional to the decrease of its *block* first order approximation.
- Block first order approximation of F:

$$\ell_i(x_k^{(i)} + t^{(i)}; x_k) := \Psi_i(x_k^{(i)} + t^{(i)}) + f(x_k) + \langle \nabla_i f(x_k), t^{(i)} \rangle$$

- the decrease of *F* (objective function) is proportional to the decrease of its *block* first order approximation.
- Block first order approximation of *F*:

$$\ell_i(x_k^{(i)} + t^{(i)}; x_k) := \Psi_i(x_k^{(i)} + t^{(i)}) + f(x_k) + \langle \nabla_i f(x_k), t^{(i)} \rangle$$

- the decrease of *F* (objective function) is proportional to the decrease of its *block* first order approximation.
- Block first order approximation of *F*:

$$\ell_i(x_k^{(i)} + t^{(i)}; x_k) := \Psi_i(x_k^{(i)} + t^{(i)}) + f(x_k) + \langle \nabla_i f(x_k), t^{(i)} \rangle$$

Local convergence of RCD: unit step sizes

Theory: There exists a neighbourhood of the optimal solution in which line search will accept unit step sizes for any chosen i.

Assumptions

- f is strongly convex
- Block Lipschitz continuity of $\nabla^2 f(x)$

$$\|\nabla_i^2 f(x + U_i t^{(i)}) - \nabla_i^2 f(x)\|_2 \le M_i \|t^{(i)}\|_2 \quad \forall i, x$$

Stronger inexactness condition for the subproblem

-
$$Q_i(x_k^{(i)}; x_k) - Q_i(x_k^{(i)} + t_k^{(i)}; x_k) > 0$$
 (previously)

Local convergence of RCD: unit step sizes

Theory: There exists a neighbourhood of the optimal solution in which line search will accept unit step sizes for any chosen i.

Assumptions

- f is strongly convex
- Block Lipschitz continuity of $\nabla^2 f(x)$

$$\|\nabla_i^2 f(x + U_i t^{(i)}) - \nabla_i^2 f(x)\|_2 \le M_i \|t^{(i)}\|_2 \quad \forall i, x$$

Stronger inexactness condition for the subproblem

$$- Q_i(x_k^{(i)}; x_k) - Q_i(x_k^{(i)} + t_k^{(i)}; x_k) > \xi \left(\ell_i(x_k^{(i)}; x_k) - \ell_i(x_k^{(i)} + \alpha t_k^{(i)}; x_k) \right)$$
(now)

Local rate of convergence

Theory: block superlinear convergence rate:

- if
$$\eta_k^i \to 0$$
 for $k \to \infty$ in $\|g_i(x_k^{(i)} + t_k^{(i)}; x_k)\|_2 \le \eta_k^i \|g_i(x_k^{(i)}; x_k)\|_2$

Then $||g_i(x_k^{(i)}; x_k)||_2$ has a superlinear rate of convergence in expectation.

Theory: block quadratic convergence rate:

- If
$$\eta_k^i = \min\{1/2, \|g_i(x_k^{(i)}; x_k)\|_2\}$$

Then, $||g_i(x_k^{(i)}; x_k)||_2$ has a quadratic rate of convergence in expectation.

Numerical experiments: synthetic L1 least squares

Solvers

- UCDC v.1: Single coordinate descent with separable quadratic
- UCDC v.2: Block coordinate descent with separable quadratic
- RCD v.1: $H_k^{(i)} := diag(\nabla_i^2 f(x_k))$. RCD v.2: $H_k := \nabla_i^2 f(x_k)$

Instance info: $N=2^{21}$, m=N/4, $nnz(A)=10^{-4}mN$ and Blocks $\approx 10^{-2}N$.

Numerical experiments: real world binary classification

Name: webspam $N \approx 16$ million, $m \approx 0.02N$

Name: kdd2010 (algebra) $N \approx 20$ million, $m \approx 0.4N$

Conclusion: Decreasing the computational complexity per iteration by missing the structure of the problem hides many pitfalls. In this work we carefully incorporated curvature information in the well-known block coordinate descent method and we showed empirically that it can result to large speedups.

Thank you!

Paper: K. Fountoulakis and R. Tappenden. Robust block coordinate descent. *Technical Report ERGO-14-010*, 2014

Software: http://www.maths.ed.ac.uk/~kfount/ (only for reproduction of the presented experiments)