

Conceitos básicos de hardware e software

Disciplina: Algoritmos e Programação

Curso: Engenharia de Computação

Professora: Mariza Miola Dosciatti

mariza@utfpr.edu.br

Objetivos

- Identificar as características de um problema que possui solução computacional.
- Saber conceitos de hardware e software.
- Conhecer os itens fundamentais de composição de um computador.
- Entender a forma de armazenamento de dados na memória do computador e sua manipulação.
- Entender o conceito de bit e byte.
- Item da ementa (Plano de ensino):
 - Noções de hardware e software.

Sumário

- Computador
- Problemas resolvidos pelo computador
- Hardware
- Software

Computador

- Computador é uma máquina capaz de executar (realizar as instruções de) algoritmos denominados programas, softwares, sistemas, aplicativos.
- Um computador é uma máquina programável que processa dados com o objetivo de resolver problemas.
- Programar um computador consiste em elaborar a sequência de instruções (algoritmo na forma de programa) que define a resolução de problemas.

Problemas resolvidos pelo computador

Computador x Humano

Computador

- Tarefas bem definidas e com instruções necessárias e suficientes para resolver o problema.
- Repetição.
- Precisão de cálculo.

Humano

- Raciocínio.
- Análise subjetiva.

Problemas: exemplos

• Problemas de solução fácil ou difícil para humanos e computadores?

- 1. Previsão do tempo.
- 2. Identificar se uma pessoa está triste.
- 3. Dividir dois números reais muito grandes.
- 4. Verificar se um número é primo.
- 5. Reconhecer uma pessoa que faz tempo que não vê.
- 6. Responder perguntas que exigem interpretação de texto.
- 7. Controle de estoque de uma empresa.
- 8. Determinar a rota mais curta entre *n* cidades (<u>problema do caixeiro viajante</u>).
- 9. Organizar a carga de caixas diferentes em um caminhão (<u>problema do container</u>).
- 10. Encher uma mochila com a melhor relação peso x valor (<u>problema da mochila</u>).
- 11. Problemas de Landau.

Problemas completamente especificados:

- Possuem todas as entradas necessárias para resolver o problema e as saídas adequadamente identificadas.
- A solução para o problema é conhecida. Há um método, uma fórmula, procedimentos para resolver o problema. São conhecidas as ações que devem ser realizadas para obter os valores de saída a partir dos dados de entrada.
- A solução é alcançada em tempo factível (finito) e com os recursos disponíveis.

Problemas P x NP

- P (polinomial) Problemas que podem ser computados em "tempo aceitável".
 - Exemplo: A multiplicação de dois números.
- NP (polinomial não determinista) Problemas que possuem respostas que podem ser rapidamente testadas, mas não são resolvidos de forma "tão rápida".
 - Exemplo: A fatoração de um número que é produto de dois primos: 13.717.421.
 - É um processo demorado encontrar os números: 3.607 e 3.803.
 - É rápido testar a solução: (3.607 * 3.803)

Problemas P x NP

 Os problemas NP ainda não resolvidos em tempo factível são categorizados de NP-completo.

Exemplos:

- Determinar a melhor rota para um número considerável de cidades.
- Quebrar senhas com 10 caracteres (letras, dígitos e símbolos especiais) por meio de teste de todas as possibilidades.
- Encher uma mochila com objetos na melhor combinação entre peso e valor/benefício.
- P == NP ou P \neq NP?
 - Pode ser que:
 - Não há uma forma polinomial de serem resolvidos (P ≠ NP).
 - Há solução, mas ainda não foi descoberta (P == NP).

- A solução de um problema deve ser considerada em âmbito geral e não em casos particulares.
 - As variáveis de entrada possuem valores fornecidos durante a execução do programa.
 - A solução deve ser adequada para um conjunto de valores de entrada especificados.
 - A solução pode abranger um determinado escopo ou parte de um problema.
 - A solução pode não ser a melhor.

Computador: hardware + software

- Computador é uma máquina (hardware) capaz de executar programas (software).
- O Hardware é formado pelos dispositivos físicos de um computador.
 - São exemplos de hardware: placa-mãe, memória, processador, placa de rede, placa de som, impressora, monitor, etc.
- O Software são as instruções lógicas do computador. Ou seja, são os todos programas que são executados no computador.
 - São exemplos de software: Sistemas Operacionais (Windows, Linux, etc.), editores de textos, jogos de computador, etc.

Computador: hardware + software (cont.)

• Um computador é uma máquina eletrônica que:

Recebe dados

• De periféricos (teclado, mouse, sensores, ...), meios de armazenamento, aplicativos.

Processa dados

Realizando operações lógicas e aritméticas.

Gera saídas

• Dados processados, dados enviados para periféricos e equipamentos (monitor de vídeo, impressora, ...), para aplicativos, para meios de armazenamento.

Tupã – Supercomputador brasileiro (Instituto Nacional de Pesquisas Espaciais (INPE)

<u>Sunway TaihuLight</u>, o supercomputador mais poderoso do mundo

Titan – Supercomputador que faz 20 quatrilhões de operações aritméticas float por segundo

- Arduino é uma plataforma de prototipagem de código aberto baseado no conceito easy-to-use para hardware e software.
- Placas Arduino são capazes de ler entradas (a luz em um sensor, o apertar de um botão, ou uma mensagem de Twitter) e transformá-las em uma saída (ativação de um motor, ligar um LED, publicar algo online).

Fonte: https://www.arduino.cc/en/Guide/Introduction

Arduino

Arduino Flora

Arduino com display LCD

Arduino em robótica

Fonte: Bezerra (2013, p. 12).

Arquitetura de um computador

- A arquitetura de computadores é o projeto conceitual e fundamental da estrutura operacional de um sistema computacional.
- A arquitetura **define os requisitos necessários** para que um computador funcione e como organizar os diversos componentes para obter o melhor desempenho (relação custo x benefício).
- Arquiteturas modelos clássicos:
 - CISC (Complex Instruction Set Computing) arquitetura von Neumann
 - RISC (Reduced Instruction Set Computing) arquitetura Harvard
 - CRISC híbrido

Arquitetura de von Neumann

Características:

- Utiliza o mesmo espaço de memória para instruções e dados.
- Processa uma única instrução por vez.
- As instruções e os dados percorrem o mesmo barramento.

Arquitetura de von Neumann

Arquitetura de von Neumann

1) Dispositivos de entrada:

interação com o programa, entrada de dados.

2) Unidade central de processamento:

- o processador que executa as instruções do programa:
 - 2.1) <u>Unidade lógica e aritmética</u> realiza cálculos e operações lógicas.
 - 2.2) <u>Unidade de controle</u> gerencia o fluxo interno de dados.
 - 2.3) Registradores armazenam dados necessários ao processamento.

• 3) Memória principal – RAM (Random Access Memory):

armazena os dados e o programa em execução.

4) Dispositivos de saída:

apresentação dos resultados (saídas) do programa.

Arquitetura Harvard

- A arquitetura Harvard surgiu com a necessidade de melhorar o desempenho do microprocessador.
- Sua principal característica está na separação das memórias de dados e de instruções, fazendo com que o processador possa acessar as duas simultaneamente.
- Isso pode representar um **desempenho melhor** do que o obtido com a arquitetura de Von Neumann, já que o processador busca uma nova instrução ao mesmo tempo que executa outra.

Arquitetura Harvard (cont.)

Fonte: Wikipédia (2016)

Arquiteturas von Neumann e Harvard

Hardware: bit

- O computador trabalha com o sistema binário que utiliza 2 dígitos (0 e 1) e assim é de base 2.
- No sistema binário, os dígitos 0 e 1 são conhecidos como bits (Binary Digit).
- Bit é a menor unidade de representação de dado em um computador e pode assumir dois valores: 0 ou 1 (representativamente).
- **Bit** é a menor unidade binária de informação que pode ser armazenada ou transmitida.

Bit

Hardware: byte

Bit - dois valores (0 e 1).

Problema – representar os caracteres das linguagens escritas.

Solução – agrupamento de bits. Utilizar **8 bits** para representar **um caractere (byte)**.

Hardware: byte (cont.)

- Byte é uma unidade de informação digital composta por 8 bits.
- Byte *Binary term* é um conjunto de 8 bits. As combinações 00110101 de 8 bits representam 256 caracteres:
 - Dígitos numéricos (0 a 9).
 - Letras maiúsculas e minúsculas do alfabeto (A ... Z, a ... z).
 - Sinais de pontuação, símbolos aritméticos e outros (. , % \$)
 - Caracteres de controle.
 - As 256 combinações compõem a <u>tabela ASCII</u>.
 - Exemplos:

• O número **0** em binário é : 00110000

• O número **1** em binário é : 00110001

• O caractere B em binário é: 01000010

 Byte especifica o tamanho ou a quantidade de memória ou de capacidade de armazenamento.

Hardware: byte

• **Byte** - É a unidade de medida básica e universal para a capacidade de armazenamento de informação (incluindo memória) para computadores e os seus dispositivos.

PREFIXO	SÍMBOLO	TAMANHO EM BYTES
byte	byte	1
quilo	KB	1.024
mega	MB	1.048.576
giga	GB	1.073.741.824
tera	ТВ	1.099.511.627.776
peta	PB	1.125.899.906.843.624
exa	EB	1.152.921.504.607.870.976
zeta	ZB	1.180.591.620.718.458.879.424
yotta	YB	1.208.925.819.615.701.892.530.176

Hardware: byte (cont.)

Tabela <u>ASCII</u>

256 combinações de 8 bits (caracteres)

Tabela UNICODE

- Possibilita que todos os caracteres de todas as linguagens escritas possam ser representados (<u>ANDRADE, 2016</u>).
- Fornece uma identificação única para cada caractere.
- UNICODE (http://www.unicode.org).
- Permite a representação de 1.114.112 símbolos diferentes (<u>code</u> <u>points</u>).
- Suporta praticamente todos idiomas do mundo.

Hardware: memória

- A memória RAM (*Random Access Memory*) é constituída por um número finito de localizações (ou células) nas quais são armazenados os dados.
- É a área de trabalho do computador.
- A memória é organizada em posições, como os elementos de uma matriz.
 Um sistema de endereçamento permite identificar cada localização (ou célula) da memória. Esta identificação é conhecida como endereço e possui representação numérica em hexadecimal.

Para escrever ou ler algum dado na memória do computador é necessário fazê-lo

byte a byte*.

Endereço	Conteúdo										
Endereço									Ó		
A013545D	0	1	0	0	1	1	0	1	_	. 60	
A013545E	0	1	1	0	1	0	1	1		O	è
A013545F	0	1	1	1	1	1	1	1			
A0135460	0	0	0	0	0	0	0	0			
A0135461	0	1	0	1	1	1	0	1			
A0135462	1	0	1	1	1	0	1	1			
A0135463	1	0	1	0	0	1	0	1			

^{*}Considerando que a palavra do computador possui 1 byte de tamanho ou mais, especificamente fazê-lo **palavra** a **palavra**.

Hardware: memória

- **Memória** armazenar bytes em tempo de execução. Esses bytes compõem os programas e os dados manipulados.
- Representação esquemática da memória (RAM):

0022FF74	0022FF75	0022FF76	0022FF77	0022FF78	0022FF79	
0022FF80	0022FF81	0022FF82	0022FF83	0022FF84	0022FF85	
0022FF86	0022FF87	0022FF88	0022FF89	0022FF90	0022FF91	
1						

Célula de memória (endereço sequencial)-local de armazenamento

Exemplo: palavra "aluno" armazenada na memória de um computador

Endereço	Conteúdo (representação binária)
0040180E	01100001
0040180F	01101100
00401810	01110101
00401811	01101110
00401812	01101111

célula de memória, armazenamento de um b*yte (*um caractere)

Localização na memória

Memória: variáveis

- Declarar uma variável é reservar células (espaço, endereço) de memória denominando-as por um identificador (nome) para armazenar valores e permitir a sua recuperação posterior.
 - A quantidade de células necessárias, reservadas, depende do tipo de dado a ser armazenado.
 - Para declarar uma variável é necessário definir um nome (identificador) para o endereço reservado. É por meio desse identificador que dados são armazenados e recuperados nesse e desse "espaço" de memória.

Leituras complementares

Unicode

http://unicode.org/standard/translations/portuguese.h tml

https://pt.wikipedia.org/wiki/Unicode

- Supercomputadores
 https://www.tecmundo.com.br/supercomputadores
- Memória flash http://www.hardware.com.br/tutoriais/entendendo-ssd/memoria-flash.html

Referências

- Arquitetura Harvard. Disponível em https://pt.wikipedia.org/wiki/Arquitetura Harvard. Acesso em 01 mar. 2022.
- Byte. Disponível em https://pt.wikipedia.org/wiki/Byte. Acesso em 01 mar. 20221.
- ANDRADE, Eduardo M. Unicode: conceitos básicos. Disponível em: http://www.devmedia.com.br/unicode-conceitos-basicos/25169. Acesso em 01 mar. 2022.
- **ARDUINO**. Disponível em: https://www.arduino.cc/en/Main/Products. Acesso em: Acesso em 01 mar. 2022.
- BORATTI, I. C., OLIVEIRA, A. B. de. **Introdução à programação de algoritmos**, 3ª edição, Visual Books: Florianópolis, 2007.
- **Significado de Bit e Byte.** Disponível em: http://www.significados.com.br/bit-e-byte. Acesso em 01 mar. 2022.
- Alecrim, Emerson. O que são bits, bytes, megabits, megabytes e afins? Disponível em: http://www.infowester.com/bit.php. Acesso em 01 mar. 2022.
- Conteúdo baseado no material disponibilizado pela professora Beatriz Borsoi.

Dúvidas

• 555