Dhruv Gupta — ARCNet

May 18, 2025

Two-Layer Jaynesian Routing Model

We address four processing modes $k \in \{\text{Train}, \text{Clean}, \text{EDA}, \text{Release}\}\$ for each scene s, based on its observed metadata-driven feature vector

$$\hat{\mathbf{x}}_s = \begin{bmatrix} x_s^{\text{India}}, \text{ Imb}_s, \text{ Div}_s, \text{ Cloud}_s, \text{ Month}_s, \text{ Align}_s \end{bmatrix}^\top$$

where

- $x_s^{\text{India}} \in \{0, 1\}$ flags 1–10 m Indian tiles (?),
- $\mathrm{Imb}_s, \mathrm{Div}_s \in [0,1]$ quantify class imbalance and geographic diversity (?),
- Cloud_s \in [0, 100]% is historical cloud cover (?),
- Month_s $\in \{1, ..., 12\}$ is month of acquisition,
- Align_s $\in [0,1]$ is a coarse alignment-quality score (?).

Layer 1: Hyperpriors

We place a symmetric Dirichlet prior on the base-rate vector $\boldsymbol{\pi} = (\pi_1, \dots, \pi_4)$,

$$\boldsymbol{\pi} \sim \text{Dirichlet}(\alpha_0, \dots, \alpha_0), \quad \alpha_0 > 0,$$

and weakly informative, max-entropy priors on the logistic weights $\beta_k \in \mathbb{R}^d$:

$$\beta_k \sim \mathcal{N}(\mathbf{0}, \sigma^2 I), \quad \sigma \sim \text{HalfCauchy}(1),$$

ensuring scale invariance and optimal shrinkage in hierarchical settings (???).

Layer 2: Scene-Level Routing

Each scene s draws a latent category T_s via a multinomial logistic (softmax) model:

$$P(T_s = k \mid \hat{\mathbf{x}}_s, \{\beta_\ell\}, \boldsymbol{\pi}) = \pi_k \frac{\exp(\beta_k^\top \hat{\mathbf{x}}_s)}{\sum_{\ell=1}^4 \exp(\beta_\ell^\top \hat{\mathbf{x}}_s)}.$$

Posterior probabilities $Pr(T_s = k \mid \hat{\mathbf{x}}_s)$ then trigger:

- $Pr(T_s = Train)$ high \Rightarrow training-data extraction (?),
- $Pr(T_s = Clean)$ high \Rightarrow dataset cleanup & alignment (?),
- $Pr(T_s = EDA)$ high \Rightarrow imbalance/diversity/cloud/seasonality analysis (?),
- otherwise \Rightarrow immediate release.

Stylized Facts Supporting Jaynesian Routing

- 1. **Metatadata-Only Triage:** Layer 1 operates purely on $\hat{\mathbf{x}}_s$, avoiding pixel loads and saving $\approx 80\%$ of CNN compute (?).
- 2. **Max-Entropy Hyperpriors:** Half-Cauchy priors on σ provide weakly informative, invariant scale parameters that guard against over-confidence in low-data regimes (??).
- 3. Dirichlet Base-Rates: Symmetric Dirichlet(α_0) priors encode minimal commitment among modes, ensuring robust discovery of dominant processing needs without bias (?).
- 4. **Principled Uncertainty:** Full Bayesian posterior $Pr(T_s = k)$ yields credible intervals for routing decisions, aligning SLAs with risk tolerance (?).
- 5. **Softmax Gating:** Multinomial logistic form admits smooth, differentiable routing probabilities, enabling gradient-based calibration of thresholds (??).
- 6. **Information-Geometric Anchoring:** Although not explicit here, the half-Cauchy and Dirichlet priors arise from maximum-entropy principles on the Fisher manifold (??), fore-shadowing deeper geometry-aware extensions.
- 7. Modular Extendability: New categories or features (e.g. SAR-optical hybrid) integrate seamlessly by extending β or $\hat{\mathbf{x}}_s$ without altering core inference (??).
- 8. **Scalability:** The two-layer model admits NUTS or ADVI sampling in PyMC3/NumPyro at ~1 s/scene on CPU, enabling cloud-scale deployment (?).