TransGAN: Two Transformers Can Make One Strong GAN

School of Industrial and Management Engineering, Korea University

Sae Rin Lim

Contents

- 1. Background: GAN
- 2. Overview of the TransGAN
- Contributions of the TransGAN
 - Model architecture
 - Training Technique
 - Performance
- 4. Limitations and future potential of TransGAN

Background: GAN

GAN Keywords

- ❖ Generator: 정규분포를 따르는 random noise vector를 실제 데이터 분포로 mapping하여 가짜 이미지를 생성하는 모델
- ❖ Discriminator: 실제 이미지와 Generator가 생성한 이미지를 입력 받아 진짜인지 가짜인지 판별하는 모델
- ❖ Min-Max Game: Generator는 Discriminator를 속임으로써 목적함수를 감소시키고 Discriminator는 정확히 판별함으로 써 목적함수를 증가시키는 Generator와 Discriminator의 Min-Max Game
- ❖ Generative Adversarial Nets : Generator와 Discriminator가 하나의 목적함수(Adversarial Loss)를 통해 적대적으로 학 습하는 모델

Overview of TransGAN

TransGAN

- Department of Electronic and Computer Engineering, University of Texas at Austin 1
- ❖ USA MIT-IBM Watson AI Lab²
- ❖ 2021년 2월 14일 arXiv Computer Vision and Pattern Recognition
- ❖ 2021년 6월 28일 기준 25회 인용
- ❖ 'Transformer가 Computer Vision의 다른 Task인 GAN을 해낼 수 있을까?'에 대한 최초의 pilot study

TransGAN: Two Transformers Can Make One Strong GAN

Yifan Jiang ¹ Shiyu Chang ² Zhangyang Wang ¹

Issues and Contributions

- ❖ 기존이미지를 출력하는 Transformer 모델들은 CNN-based encoder 또는 feature extractor를 활용
- ❖ 잘 구성된 CNN-based GAN도 학습이 불안정하고 모델 collapse의 위험이 있음
- ❖ Vision Transformer 또한 inductive bias를 학습하기 위해 많은 데이터가 필요한 data-hungry 모델임

위 이슈들을 해결하는 방향으로 Contribution을 정의

1. Model Architecture

- Convolution없이 순순하게 transformer만을 이용한 GAN model
- Memory overheads를 피하기 위한 memory-friendly generator and discriminator 구성

2. Training Technique

- 기존 CNN-based GAN과 비교할 때 Data Augmentation의 효과 증명
- 불안정한 GAN의 학습을 안정화 시키기 위한 co-training with self-supervised auxiliary loss
- CNN처럼 지역적인 특성을 잘 학습하기 위한 locally initialized self-attention

3. Performance

- CNN-based SOTA Model과 비슷하거나 더 좋은 성능 증명

Model Architecture

- ❖ Transformer의 Encoder를 활용하여 Generator와 Discriminator 모델 구축
- ❖ **Pixel 단위**로 이미지를 생성하는 Generator
- ❖ Patch 단위로 이미지를 분류하는 Discriminator

TransGAN 모델 구조

- Model Architecture : Memory-friendly Generator
- ❖ Generator에서는 이미지를 pixel 단위로 생성해야 하기 때문에 낮은 해상도의 이미지라도 입력 시퀀스 크기가 커짐
 (ex. 32 by 32 image의 pixel 수 = generator의 입력 = 1024 pixel)
- ❖ 입력시퀀스의 크기에 따라 self-attention 계산 비용 역시
 quadratic하게 증가하기 때문에 이를 해결하기 위한
 Memory-friendly generator 구축
- ❖ 입력시퀀스를 늘리는 동시에(image resolution) embedding dimension을 줄이는 방법을 stage별로 target image size가 될 때까지 반복하여 이미지 생성함으로써 계산 비용을 줄임
- ❖ 이러한 특성을 이용하여 큰 이미지에 대해 효율적으로 모 델을 확장할 수 있음

- Example of stage flow: 8 by 8 to 16 by 16
 - 1. Pixel Embedding과 Positional Embedding vector를 더해 Transformer encoder의 입력 벡터 생성

- 8 -

- Example of stage : 8 by 8 to 16 by 16
 - 2. 입력 벡터를 transformer encoder에 태워 출력 벡터를 얻고 이를 reshape하여 image feature map 생성

- Example of stage: 8 by 8 to 16 by 16
 - 3. Feature map을 up-sampling하여 크기를 2배로 늘리면서 pixel embedding size(=feature map 개수)를 ¼로 줄임

Example of stage: 8 by 8 to 16 by 16

4. Up-sampling한 feature map을 flatten하여 다시 1-D vector로 변환하여 다음 stage의 encoder 입력 벡터 생성

 $5.2\sim4$ 를 하나의 stage로 반복하여 원하는 target size가 될 때까지 진행

Image feature map (16,16,C/4)

Stage2 input vector (16*16*C/4) = (8*8*C)

Model Architecture: ViT-based Discriminator

- Discriminator에서는 ViT와 마찬가지로 이미지를 patch 단위 • 로 잘라서 한 patch를 단어처럼 Transformer Encoder에 입력 변수로 사용
- 여러 Encoder 층을 통과한 최종 출력 변수에서 CLS Token • 에 해당하는 Token을 통해 진짜 이미지인지 가짜 이미지 인지를판단

Discriminator

Training Technique : Data Augmentation

- ❖ CNN-based SOTA모델인AUTOGAN의 generator와 discriminator를 TransGAN으로 바꿔가며 실험 진행
- ❖ TransGAN Generator는 좋은 성능을 보였지만 Discriminator는 성능이 좋지 않음을 발견
- ❖ 저자들은 ViT에서 transformer-based classifier가 inductive bias를 학습하기 어려워 많은 데이터를 필요로 하는 data-hungry 한 모델이기 때문에 TransGAN Discriminator도 같을 것이라 생각하고 **Data Augmentation(DA)기법**을 도입
- ❖ CNN-based SOTA모델 3개와 TransGAN 모델을 가지고 DA의 효과 비교
- ❖ CNN-based 모델에서는 큰 성능 향상이 없었지만 TransGAN은 큰 성능 향상을 보임으로써 DA의 중요성 확인

GENERATOR	DISCRIMINATOR	IS↑	FID↓
AUTOGAN	AUTOGAN	$8.55 \!\pm 0.12$	12.42
TRANSFORMER	AutoGAN	$\textbf{8.59} \!\pm \textbf{0.10}$	13.23
AUTOGAN	TRANSFORMER	6.17 ± 0.12	49.83
TRANSFORMER	TRANSFORMER	6.95 ± 0.13	41.41

CNN-based와 transformer-based의 비교실험

METHODS	DA	IS ↑	FID↓
WGAN-GP (GULRAJANI ET AL., 2017)	×	6.49 ± 0.09 6.29 ± 0.10	39.68 37.14
AUTOGAN (GONG ET AL., 2019)	×	8.55 ± 0.12 8.60 ± 0.10	12.42 12.72
STYLEGAN v2 (Zhao et al., 2020b)	×	9.18 9.40	11.07 9.89
TRANSGAN	×	6.95 ± 0.13 8.15 ± 0.14	41.41 19.85

Data Augmentation 비교실험

- Training Technique: Co-Training with Self-Supervised Auxiliary Task
 - ❖ NLP 분야의 BERT와 같은 모델에서 여러 Task를 동시에 학습하는 방법이 효과가 있음을 증명
 - ❖ 또한, GAN에서 self-supervised auxiliary task를 활용하는 것이 GAN 학습에 안정성을 더해준다는 연구가 있음
- ❖ 위두연구를기반으로 TransGAN에 Co-Training with Self-Supervised Auxiliary Task를 추가
- ❖ 기존 이미지에 Down-Sampling한 것을 Low Resolution으로 사용하는 Resolution task도입하여 추가 데이터가 필요 없음
- 목적함수에 Resolution에 대한 MSE loss term을 추가하고 가중치 λ= 50 으로 설정
- ❖ 실험결과 조금의 성능 향상이 있음을 확인

MODEL	IS↑	FID↓
TRANSGAN + DA (*)	8.15 ± 0.14	19.85
(*) + MT-CT	8.20 ± 0.14	19.12
(*) + MT-CT + LOCAL INIT.	$\textbf{8.22} \!\pm \textbf{0.12}$	18.58

Resolution Task를 추가한 TransGAN 학습 flow

Multi-Task Co-Training 효과 검증 실험

Training Technique: Locality-Aware Initialization for Self-Attention

- ❖ CNN의 convolution 연산은 receptive field가 가중치를 공유하기 때문에 이동에 동변하고 이미지의 지역적 특성을 잘 학습할 수 있음
- ❖ 하지만 receptive field가 특정 크기만을 보기 때문에 global한 특징을 학습하려면 layer를 깊게 쌓아야 하며 이는 디테일한 특징을 잘 잡지 못하며 그 특징을 손실할 수도 있고 수렴의 어려움을 야기함
- ❖ 반면에 Transformer는 self-attention을 통해 global한 특징을 잘 잡을 수 있는 CNN보다 더 genera한 모델이지만 local한 특성을 학습하기 어려움
- ❖ 이 이슈를 해결하기 위해 self-attention을 **현재 pixel의 이웃만 계산**하도록 Mask를 씌운 locality-aware initialization 도입하여 일종의 규제 효과를 줌
- ❖ 학습 초반에 적용해 self-attention이 지역적 특성을 학습하도록 규제함으로써 학습 초반 변동성을 줄이고 점점 Mask 크기를 줄여 최종적으로 self-attention을 통해 global한 특성을 학습
- ❖ 실험결과 조금의 성능 향상이 있음을 확인

Gradually	Increasing	Receptive	Field
-----------	------------	-----------	-------

MODEL	IS↑	FID↓
TRANSGAN + DA (*)	8.15 ± 0.14	19.85
(*) + MT-CT	8.20 ± 0.14	19.12
(*) + MT-CT + LOCAL INIT.	$\textbf{8.22} \!\pm \textbf{0.12}$	18.58

Locality-Aware Initialization for Self-Attention 효과 검증 실험

- Performance : Model Size
- ❖ 논문에서 Pixel embedding dimension(= feature map 수)와 transformer의 encoder block을 늘려가며 ablation study 진행
- ❖ Model Size가 증가할 수록 성능이 좋아지는 것을 확인

- ✓ DEPTH: 각 stage 별 transformer encoder block 개수
- ✓ DIM: Pixel embedding dimension

Model	DEPTH	DIM	IS ↑	FID↓
TRANSGAN-S TRANSGAN-M TRANSGAN-L	{5,2,2} {5,2,2} {5,2,2}	384 512 768	8.22 ± 0.14 8.36 ± 0.12 8.50 ± 0.14	18.58 16.27 14.46
TRANSGAN-XL	{5,4,2}	1024	8.63 ± 0.14	11.89

TransGAN 모델 크기 별 CIFAR-10 dataset에 대한 성능 비교

Performance

- ❖ TransGAN-XL모델을 다른 CNN-based 모델과 비교
- ❖ 순수한 transformer 구조로는 처음으로 SOTA에 준하는 성능을 내거나 SOTA보다 뛰어난 성능을 달성
- ❖ 저자들은 더 많은 training technique과 tuning을 통해 더 좋은 성능을 낼 수 있을 것이라고 주장

METHODS	IS	FID
WGAN-GP (GULRAJANI ET AL., 2017)	6.49 ± 0.09	39.68
LRGAN (YANG ET AL., 2017)	7.17 ± 0.17	-
DFM (WARDE-FARLEY & BENGIO, 2016)	7.72 ± 0.13	-
SPLITTING GAN (GRINBLAT ET AL., 2017)	7.90 ± 0.09	-
IMPROVING MMD-GAN (WANG ET AL., 2018A)	8.29	16.21
MGAN (Hoang et al., 2018)	8.33 ± 0.10	26.7
SN-GAN (MIYATO ET AL., 2018)	8.22 ± 0.05	21.7
PROGRESSIVE-GAN (KARRAS ET AL., 2017)	8.80 ± 0.05	15.52
AUTOGAN (GONG ET AL., 2019)	8.55 ± 0.10	12.42
STYLEGAN V2 (ZHAO ET AL., 2020B)	9.18	11.07
TRANSGAN-XL	8.63 ± 0.16	11.89

METHODS	IS ↑	FID ↓
DFM (WARDE-FARLEY & BENGIO, 2016)	8.51 ± 0.13	-
D2GAN (NGUYEN ET AL., 2017)	7.98	-
PROBGAN (HE ET AL., 2019)	8.87 ± 0.09	47.74
DIST-GAN (TRAN ET AL., 2018)	-	36.19
SN-GAN (MIYATO ET AL., 2018)	9.16 ± 0.12	40.1
IMPROVING MMD-GAN (WANG ET AL., 2018A)	9.23 ± 0.08	37.64
AUTOGAN (GONG ET AL., 2019)	9.16 ± 0.12	31.01
ADVERSARIALNAS-GAN (GAO ET AL., 2020)	9.63 ± 0.19	26.98
TRANSGAN-XL	$\textbf{10.10} \pm \textbf{0.17}$	25.32

CIFAR-10 dataset

STL-10 dataset

LEID

Limitations and future potential of TransGAN

- ❖ 이미지 생성이라는 어려운 task와 GAN의 학습 불안정성을 해결하고 최초로 pure transformer-based GAN 모델을 통해 CNN-based SOTA 모델과 비슷한 성능을 낸 것에 저자들은 큰 의의를 두고 있음
- ❖ 순수한 Transformer만을 이용함으로써 NLP 분야에서 Transformer를 기반으로 다양한 Task를 한 번에 해결할 수 있는 universal한 모델이 많이 등장하고 있는 것처럼 Vision 분야에서도 이를 시도하기 위한 기반을 닦는 연구라고 주장
- ❖ 반대로 단순히 CNN-based의 모델을 transformer-based 모델로 바꾸는 것을 목표로 한 연구이기 때문에 디테일한 tuning이나 다양한 학습기법에 대한 실험이 부족
- ❖ 저자들은 semantic grouping, pretext task, stronger attention form 등의 학습 기법을 적용하여 모델을 개선할 것이라 함

Reference

- 1. Jiang, Y., Chang, S., & Wang, Z. (2021). Transgan: Two transformers can make one strong gan. arXiv preprint arXiv:2102.07074.
- 2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.

Thank you