Differential- und Integralrechnung, Wintersemester 2020-2021

2. Übung

Reelle Zahlenfolgen

Grenzwerte

Theorem 1 (Th1)

Sind $(x_n)_{n\in\mathbb{N}}$ eine Zahlenfolge und $x\in\mathbb{R}$, dann gilt

$$\lim_{n\to\infty} x_n = x \Leftrightarrow \lim_{n\to\infty} |x_n - x| = 0.$$

Insbesondere ist

$$\lim_{n\to\infty} x_n = 0 \Leftrightarrow \lim_{n\to\infty} |x_n| = 0.$$

Grenzwerte

Satz 2 (S2)

Sei $q \in \mathbb{R}$. Dann gilt für den Grenzwert der Folge $(q^n)_{n \in \mathbb{N}^*}$

$$\lim_{n\to\infty}q^n\left\{ \begin{array}{ll} =\infty, & \text{falls} & q>1\\ =1, & \text{falls} & q=1\\ =0, & \text{falls} & q\in(-1,1)\\ \not\exists, & \text{falls} & q\leq-1. \end{array} \right.$$

Bew.: Zur Erinnerung

(1)
$$x^{\infty} = \begin{cases} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1). \end{cases}$$

- **1. Fall:** q > 1. Aus $(1) \Rightarrow \lim_{n \to \infty} q^n = \infty$.
- **2. Fall:** q = 1. $\Rightarrow q^n = 1$, $\forall n \in \mathbb{N}^* \Rightarrow \lim_{n \to \infty} q^n = 1$.

(1)
$$x^{\infty} = \begin{cases} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1). \end{cases}$$

- **3. Fall:** $q \in (-1,1)$. $\Rightarrow |q| \in [0,1)$. Aus $(1) \Rightarrow \lim_{n \to \infty} |q|^n = 0$. Da $|q^n| = |q|^n$, $\forall n \in \mathbb{N}^* \Rightarrow \lim_{n \to \infty} |q^n| = 0$. Aus **Th1** $\Rightarrow \lim_{n \to \infty} q^n = 0$.
- **4. Fall:** q = -1. \hookrightarrow wurde in der Vorlesung behandelt.
- **5. Fall:** q < -1. $\Rightarrow q^2 > 1$. Aus $(1) \Rightarrow$

$$\lim_{n\to\infty}q^{2n}=\lim_{n\to\infty}(q^2)^n=\infty,\ \lim_{n\to\infty}q^{2n+1}=\lim_{n\to\infty}q\cdot q^{2n}=-\infty.$$

Aus **Th3** (2. Vorlesung) $\Rightarrow \angle \lim_{n \to \infty} q^n$. \Box

Monotonie

Sei $(x_n)_{n\in\mathbb{N}}$ eine Zahlenfolge.

Für alle $n \in \mathbb{N}$ muss x_n mit x_{n+1} verglichen werden.

Satz 3 (S3)

- $(x_n)_{n\in\mathbb{N}}$ ist wachsend $\Leftrightarrow 0 \le x_{n+1} x_n$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n \in \mathbb{N}}$ ist streng wachsend $\Leftrightarrow 0 < x_{n+1} x_n$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist fallend $\Leftrightarrow 0 \ge x_{n+1} x_n$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist streng fallend $\Leftrightarrow 0 > x_{n+1} x_n$, für alle $n \in \mathbb{N}$.

Monotonie

Satz 4 (S4)

Sei $x_n > 0$, $\forall n \in \mathbb{N}$.

- $(x_n)_{n\in\mathbb{N}}$ ist wachsend $\Leftrightarrow 1 \leq \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist streng wachsend $\Leftrightarrow 1<\frac{x_{n+1}}{x_n}$, für alle $n\in\mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist fallend $\Leftrightarrow 1 \geq \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist streng fallend $\Leftrightarrow 1 > \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.

Satz 5 (S5)

Sei $x_n < 0, \forall n \in \mathbb{N}$.

- $(x_n)_{n\in\mathbb{N}}$ ist wachsend $\Leftrightarrow 1 \geq \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist streng wachsend $\Leftrightarrow 1>\frac{x_{n+1}}{x_n}$, für alle $n\in\mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist fallend $\Leftrightarrow 1 \leq \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.
- $(x_n)_{n\in\mathbb{N}}$ ist streng fallend $\Leftrightarrow 1 < \frac{x_{n+1}}{x_n}$, für alle $n \in \mathbb{N}$.