Kinematics

DPP-11

- A body is moving along circular track of radius R then find the ratio of average velocity and average speed when it cover angle 90° in 5 sec.
 - (A) $\frac{2\sqrt{2}}{\pi}$
- (B) $\frac{\pi}{2\sqrt{2}}$
- (C) $\frac{\sqrt{2}}{2}$
- A body is moving along square track ABCD of arm 10 m then find average velocity and average speed when body moves form $A \rightarrow B \rightarrow C$ in 10 sec.
 - (A) -2 m/sec; $\sqrt{2} \text{ m/sec}$
 - (B) -4 m/sec; $\sqrt{3} \text{ m/sec}$
 - (C) $\sqrt{2}$ m/sec; 2 m/sec
 - (D) $-\sqrt{2}$ m/sec; $\sqrt{3}$ m/sec
- A particle moves in straight line in same direction for 20 seconds with velocity 3 m/s and then moves with velocity 4 m/s for another 20 sec and finally moves with velocity 5 m/s for next 20 seconds. What is the average velocity of the particle?
 - (A) 3 m/s
- (B) 4 m/s
- (C) 5 m/s
- (D) zero
- One car moving on a straight road covers one-third of the distance with 20 km/hr and the rest with 60 km/hr. The average speed
 - (A) 40 km/hr
- (B) 80 km/hr
- (C) $46\frac{2}{3}$ km/hr
- (D) 36 km/hr
- A monkey walks 40 m east, 30 m south & finally climbs up on a pole of height 120 m. What is the displacement of monkey?
 - (A) 190 m
- (B) 130 m
- (C) 150 m
- (D) 170 m

- A person moves northwards 20 m, eastward 30 m & finally towards west 40 m. What is his distance & displacement?

 - (A) 90 m, $10\sqrt{5}$ m (B) 90 m, $20\sqrt{2}$ m
 - (C) 90 m, $10\sqrt{13}$ m (D) 90 m, 70 m
- A particle moving with acceleration 4 m/s² along x-axis covers 20 m in 4th second. Find the distance covered by the particle in the 3rd and 5th seconds:
 - (A) 16 m, 20 m
- (B) 20 m, 24 m
- (C) 16 m, 24 m
- (D) 20 m, 25 m
- A body starts from rest with an acceleration 2 m/s² till it attains the maximum velocity then retards to rest with 3 m/s². If total time taken is 10 seconds, then maximum speed attained is
 - (A) 12 m/s
- (B) 8 m/s
- (C) 6 m/s
- (D) 4 m/s
- The velocity of a bullet is reduced by 200 m/s while travelling through a wooden block in 10 sec. The retardation, assuming it to be uniform, will be:
 - (A) 10 m/s^2
- (B) 12 m/s^2
- (C) 20 m/s^2
- (D) 15 m/s^2
- 10. A body starts from rest and is uniformly accelerated for 30 s. The distance travelled in the first 10s is x_1 , next 10s is x_2 and the last 10 s is x_3 . Then $x_1 : x_2 : x_3$ is the same as
 - (A) 1:2:4
- (B) 1:2:5
- (C) 1:3:5
- (D) 1:3:9
- 11. A car accelerates from 36 km/h to 90 km/h in 5s. How far did it travel in this time? Assume constant acceleration.
 - (A) 87.5 cm
- (B) 82.5 cm
- (C) 90.5 m
- (D) 80.5 m

ANSWERS KEY

- **1.** (C)
- 2. (C)
- **3.** (**B**)
- **4. (D)**
- 5. **(B)**
- **6. (B)**
- 7. (C)
- 8. (A)
- **9.** (C)
- **10.** (C)
- 11. (A)

Note - If you have any query/issue

Mail us at support@physicswallah.org

