http://www.math.uni.wroc.pl/~aracz

24 lutego 2021 r.

Preliminaria

Zadanie 1. Sprawdź, czy podana funkcja jest rozwiązaniem podanego równania różniczkowego:

a)
$$x(t) = \operatorname{tg} t$$
, $x' = 1 + x^2$, b) $x(t) = \frac{\sin t}{t}$, $tx' + x = \cos t$.

b)
$$x(t) = \frac{\sin t}{t}, \quad tx' + x = \cos t.$$

Zadanie 2. Znajdź rozwiązania stacjonarne poniższych równań, jeśli to możliwe, zbadaj ich charakter:

a)
$$y'(t) = ye^t$$
,

b)
$$y'(t) = (t-1)(y^2-1)$$
,

a)
$$y'(t) = ye^t$$
, b) $y'(t) = (t-1)(y^2-1)$, c) $y'(t) = \log(y^2+1)$,

d)
$$y'(t) = y^3 + y^2 - 2y$$
.

Zadanie 3. Zbadaj zachowanie (granicę dla $t \to +\infty$) rozwiązań poniższych zagadnień (o ile się

a)
$$y'(t) = y^4 e^t$$
, $y(0) = 1$, b) $y'(t) = y^4 e^{-t}$, $y(0) = 1$, c) $y'(t) = y^4 - 1$, $y(0) = 2$, d) $y'(t) = y^4 - 1$, $y(0) = -2$, e) $y'(t) = e^{-y} - 1$, $y(0) = 1$,

Równania o zmiennych rozdzielonych

Zadanie 4. Znajdź rozwiązania ogólne następujących równań różniczkowych o rozdzielonych zmiennych:

a)
$$y' = e^{x+y}$$
,

b)
$$y' = \sqrt{x}/y$$
,

c)
$$y' = \sqrt{y/x}$$
.

a) $y'=e^{x+y}$, b) $y'=\sqrt{x}/y$, c) $y'=\sqrt{y/x}$. Zadanie 5. Znajdź rozwiązania ogólne następujących równań i naszkicuj ich wykresy dla różnych stałych C. Następnie znajdź rozwiązanie równania spełniające podany warunek poczatkowy: a) y'=b) y' = y/x, y(1) = 5, c) $y' = -y^2 e^x$, y(0) = 1/2. 2, y(0) = 2,

Zadanie 6. Rozwiąż równania nie rozdzielając różniczek dy i dt (czyli całkując metodą "klasyczną"): b) $y' = e^{t+y+3}$, a) y' = (1+t)(1+y), c) $tyy' = \ln t$, y(1) = 1.

Zadanie 7. Równania postaci dy/dt = f(y/t), gdzie f jest daną funkcją, nazywamy równaniem jednorodnym. Udowodnij, jeżeli y jest rozwiązaniem równania jednorodnego, to funkcja v(t) = y(t)/tspełnia równanie o zmiennych rozdzielonych t(dv/dt) + v = f(v).

Zadanie 8. Rozwiąż równania jednorodne: 2x+t-tx'=0, $tx'=x-te^{x/t}$, $tx'=x\cos\left(\log\frac{x}{t}\right)$.

Zadanie 9. Dla danej rodziny krzywych znajdź trajektorie ortogonalne:

$$y = Cx^2$$
, $y = C\sin x$, $y = Ce^x$, $x^2 + y^2 = Cx$.

Równania liniowe pierwszego rzędu

Zadanie 10. Znajdź całkę ogólną (tzn. rozwiązanie ogólne) równań liniowych mnożąc je przez odpowiedni czynnik całkujący: $x' + x \cos t = 0$, $x' + t^2x = t^2$, $x' + \frac{2t}{1+t^2}x = \frac{1}{1+t^2}$, $x' + x = te^t$. **Zadanie 11.** Rozwiąż następujące zagadnienia początkowe bez znajdowania rozwiązania ogólnego:

 $y' + \sqrt{1 + t^2}y = 0$, $y(0) = \sqrt{5}$; y' + ty = 1 + t, y(3/2) = 0.

Zadanie 12. Udowodnij, że dla równania x' + a(t)x = f(t), gdzie a i f sa funkcjami ciagłymi, $a(t) \ge c > 0$, oraz $\lim_{t\to\infty} f(t) = 0$, zachodzi relacja $\lim_{t\to\infty} x(t) = 0$.

Zadanie 13. Udowodnij, że równanie Bernoulliego, tzn. równanie postaci: $x' + a(t)x = b(t)x^m$, $m \in \mathbb{R}$, sprowadza się przez zamianę zmiennych $z(t) = x(t)^{1-m}$ do równania liniowego.

Zadanie 14. Rozwiąż równania: $tx' + x = x^2 \log t$, $x' = tx + t^3 x^2$.

Zadanie 15. Równanie postaci $x' + a(t)x = b(t)x^2 + f(t)$, gdzie a, b, f są danymi funkcjami, nazywa się równaniem Riccatiego. Nie istnieje ogólny sposób całkowania tego równania. Udowodnij, że jeżeli znamy jedno rozwiązanie $x_1(t)$, to funkcja $u(t) = x(t) - x_1(t)$ spełnia równanie Bernoulliego.

Zadanie 16. Znajdź rozwiązania szczególne następujących równań Riccatiego, zredukuj je do równań typu Bernoulliego i scałkuj: $t^2x' + tx + t^2x^2 = 4$, $x' + 2xe^t - x^2 = e^{2t} + e^t$.

Równania zupełne

Zadanie 17. W podanych równaniach dobierz stałą a tak, aby było ono zupełne, a następnie rozwiąż je: $t + ye^{2ty} + ate^{2ty}y' = 0$, $\frac{1}{t^2} + \frac{1}{y^2} + \frac{(at+1)}{y^3}y' = 0$.

Zadanie 18. Znajdź wszystkie funkcje f(t), dla których równanie $y^2 \sin t + y f(t) (dy/dt) = 0$ jest zupełne. Rozwiąż równanie dla tych funkcji f.

Zadanie 19. Znajdź współczynnik f = f(t) w równaniu $f(t)x' + t^2 + x = 0$, jeżeli wiadomo, że ma ono czynnik całkujący postaci u(t) = t.

Zadanie 20. Równanie liniowe niejednorodne (dy/dt)+a(t)y=b(t) nie jest zupełne. Znajdź czynnik całkujący.

Zadanie 21. Rozwiąż równania w postaci różniczek zupełnych:

$$2tx dt + (t^2 - x^2) dx = 0$$
, $e^{-x} dt - (2x + te^{-x}) dx = 0$.

Zadanie 22. Sprawdź, że podana funkcja $\mu(x,y)$ jest czynnikiem całkującym danego równania i rozwiaż równanie:

- a) $6xy dx + (4y + 9x^2) dy = 0$, $\mu(x, y) = y^2$, b) $-y^2 dx + (x^2 + xy) dy = 0$, $\mu(x, y) = 1/(x^2y)$,
- c) y(x+y+1) dx + (x+2y) dy = 0, $\mu(x,y) = e^x$

Zadanie 23. Równanie różniczkowe może mieć więcej niż jeden czynnik całkujący. Udowodnij, że $\mu_1(x,y)=1/(xy),\ \mu_2(x,y)=1/y^2,\ \mu_3(x,y)=1/(x^2+y^2)$ są czynnikami całkującymi równania $y\,dx-x\,dy=0$. Uzasadnij, że otrzymane przy pomocy tych czynników całkujących rozwiązania są równoważne.

Zadanie 24. Scałkuj równania metodą czynnika całkującego:

$$\left(\frac{x}{y}+1\right)dx + \left(\frac{x}{y}-1\right)dy = 0, (x^2+y)dx - xdy = 0, (y+x^2)dy + (x-xy)dx = 0.$$

Zadanie 25. Uzasadnij, że równanie o zmiennych rozdzielonych M(t) + N(y)(dy/dt) = 0 jest równaniem zupełnym.

Zadanie 26. Uzasadnij, że jeżeli $\partial M/\partial y = \partial N/\partial t$, to wyrażenie $M(t,y) - \int (\partial N(t,y)/\partial t) dy$ nie zależy od od y (tzn. zależy tylko od t).

Andrzej Raczyński