TRUE (or) FALSE

Small - o Notation:

Let f and g be functions $f,g:N\to R^+$ say that f(n)=O(g(n)) if for any real number

c > 0, a number n_0 exists, where f(n) < c. g(n) for all $n \ge n_0$.

(a)

False.

The statement n = o(2n) is invalid, because the functions n and 2n grows equality

That is $f(n) = c \cdot g(n)$. But according to definition $f(n) < c \cdot g(n)$

Therefore n = o(2n) is false

(b)

True.

The statement $2n = o(n^2)$ is valid, because the functions $n^2 = n \cdot n$ which will grow faster than n. That is f(n) < g(n).

Therefore from the definition of small – o notation, $2n = o(n^2)$ is true.

(c)

True.

The statement $2^n = o(3^n)$ is valid, because the function 2^n runs shower than

the function 3^n .

Then, $2^n < 3^n$.

That is $f(n) < c \cdot g(n)$

Hence from the definition of small – o notation, $2^n = o(3^n)$ is true.

(d)

True.

The statement 1 = o(n) is valid, because the function n grows faster than a number 1.

Therefore $f(n) < c \cdot g(n)$

By the definition of small – o notation, 1 = o(n) is true.

(e)

False.

The statement $n = o(\log n)$ is not valid, because the functions $\log n$ grows slower than the function n, which is a contradiction.

Hence $n = o(\log n)$ is false.

(f)

新ICP备16034203号-2 **False**.

The statement 1 = o(1/n) is not valid, because the function 1/n grows slower than 1.

Therefore f(n) > g(n).

Which is a contradiction

Hence 1 = o(1/n) is false.