TaD: A Plug-and-Play Task-Aware Decoding Method to Better Adapt LLMs on Downstream Tasks

Xinhao Xu, Hui Chen, Zijia Lin, Jungong Han, Lixing Gong, Guoxin Wang, Yongjun Bao, Guiguang Ding

Introduction

- ► Fine-tuning as a common strategy to enhance the pretrained LLMs in downstream tasks:
 - Algorithmic side: better fine-tuning methods, e.g. PEFT.
 - Data side: more effective datasets.
 - ► Inherent knowledge acquisition of fine-tuned LLMs rarely investigated in the existing works.
- ► **Motivation:** The outputs of pre-trained LLMs do not always accurately reflect the knowledge they possess.

Research Problem

How can we leverage such inherent knowledge in the fine-tuned LLMs to enhance their performance in downstream tasks?

Intuitive Ideas:

- ► Token-predicting behavior alterations during the fine-tuning process reflect the the inherent knowledge.
- ► Such alterations indicate an adaptive shift from common knowledge to specific knowledge for downstream tasks.
- Manually mining and leveraging such inherent knowledge can improve the adaptation of LLMs on downstream tasks.

Method

► A demonstration of the proposed knowledge vector and TaD:

► Knowledge Vector:

- Formulating the knowledge difference.
- Explicitly denoting the direction of knowledge adaptation learned by a pre-trained LLM during fine-tuning.
- Naturally possessing semantic information.

▶ Task-Aware Decoding:

- Enhancing the fine-tuned LLM's output probability distribution with the knowledge vector.
- Reinforcing the model's knowledge adaptation to downstream tasks for better performance.

A simplified illustration of our work:

training objective superior

Experiments

Results on multiple-choice and CBQA tasks:

Model	Method	Multiple Choices			CBQA	
	1,10,110,0	MC1	MC2	25.6 27.1 28.0 29.5 28.5 28.7 27.7 28.9 25.7 27.2 28.5 28.4 28.9 29.2 28.2 28.5	True*Info	
	LoRA	30.6	51.3		35.7	
•	+ <i>TaD</i>	33.0	52.5	27.1	37.0	
-6b	AdapterP	34.9	54.3	28.0	51.5	
GPT-J-6b	+TaD	38.2	55.5	29.5	51.7	
G	AdapterH	36.4	55.0	28.5	53.0	
	+TaD	38.3	55.8	28.7	55.3	
	Parallel	34.3	54.0	27.7	47.2	
	+TaD	37.5	55.1	28.9	47.4	
	LoRA	30.8	51.4	25.7	17.4	
٩	+TaD	32.8	52.3	27.2	17.5	
[z-7	AdapterP	35.3	53.8	28.5	20.6	
BLOOMz-7b	+TaD	35.7	54.8	28.4	20.7	
Š	AdapterH	36.8	54.5	28.9	50.3	
\mathbf{B}	+TaD	37.9	55.2	29.2	50.8	
	Parallel	34.5	53.6	28.2	21.8	
	+TaD	36.5	54.4	28.5	22.7	

Model	Method	Mul	tiple Cho	oices	CBQA
1,10001	1,1011104	MC1	MC2	MC3	True*Info
	LoRA	32.9	2.9 55.0 28.5 4.2 55.7 29.0 8.1 57.4 30.8 0.6 58.5 32.1 7.8 57.6 30.3 9.8 59.0 32.0 7.0 56.3 29.5 9.5 57.0 30.4 55.7 29.0 56.7 29.7 0.6 58.8 32.4 2.6 60.0 33.1 8.2 57.0 30.4 9.5 57.8 31.2 9.8 58.2 31.7	49.1	
_	+TaD	34.2	<i>55.7</i>	29.0	51.2
q1-1	AdapterP	38.1	57.4	30.8	61.4
LLaMa-7b	+TaD	40.6	58.5	32.1	61.8
LLa	AdapterH	37.8	57.6	30.3	60.3
	+TaD	39.8	59.0	32.0	61.0
	Parallel	37.0	56.3	29.5	54.3
	+TaD	39.5	57.0	30.4	55.2
	LoRA	33.4	55.7	29.0	54.1
-0	+TaD	35.1	55.0 28.5 55.7 29.0 57.4 30.8 58.5 32.1 57.6 30.3 59.0 32.0 56.3 29.5 57.0 30.4 55.7 29.0 56.7 29.7 58.8 32.4 60.0 33.1 57.0 30.4 57.8 31.2 58.2 31.7	54.7	
LLaMa-13b	AdapterP	40.6	58.8	32.4	58.6
Ma	+TaD	42.6	60.0	33.1	60.0
,La	AdapterH	38.2	57.0	30.4	61.8
Τ	+TaD	39.5	57.8	31.2	63.3
	Parallel	39.8	58.2	31.7	60.0
	+TaD	42.0	60.2	33.8	61.6

Results on reasoning tasks:

Model	Method Math		Reasoning	CS Rea	soning	
	1,1011104	GSM8K	MultiArith	BoolQ	PIQA	
	LoRA	21.9	92.5	61.8	63.4	
GPT-J-6b	+TaD	22.8	94.2	62.7	64.6	
0110 00	AdapterP	19.0	92.2	63.9	71.0	
	+TaD	19.5	92.5	64.2	71.2	
	LoRA	18.9	91.7	66.8	73.6	
BLOOMz-7b	+TaD	19.3	94.2	66.9	73.9	
	AdapterP	16.3	90.7	66.2	74.4	
	+TaD	17.1	93.0	66.2	75.0	
	LoRA	26.6	90.5	68.7	78.9	
LLaMa-7b	+TaD	27.7	91.0	69.3	79.5	
	AdapterP	31.5	93.5	65.4	76.3	
	+TaD	32.0	93.7	66.3	76.3	
	LoRA	35.9	91.5	70.1	82.5	
LLaMa-13b	+TaD	38.1	92.0	70.8	83.1	
	AdapterP	36.8	91.5	69.4	78.1	
	+TaD	37.5	94.0	69.4	79.2	

Comparison with other decoding strategies:

Model	Method	Multiple Choices			Math Reasoning	
Model	Method	MC1	MC2	MC3	GSM8K	MultiArith
	LoRA	32.9	55.0	28.5	26.6	90.5
7Ъ	+DoLa	31.6	48.6	22.7	26.6	89.7
LLaMa-7b	+TaD	34.2	55.7	29.0	27.7	91.0
Lal	AdapterP	38.1	<u>57.4</u>	30.8	31.5	93.5
	+DoLa	<u>39.7</u>	54.9	25.5	<u>31.5</u>	93.3
	+TaD	40.6	58.5	32.1	32.0	93.7
	LoRA	33.4	55.7	29.0	35.9	91.5
_	+CD	36.2	55.4	26.5	19.0	70.3
36	+DoLa	34.9	51.2	24.8	38.0	94.2
LLaMa-13b	+TaD	<u>35.1</u>	56.7	29.7	38.1	<u>92.0</u>
JaM.	AdapterP	40.6	58.8	32.4	36.8	91.5
LI	+CD	41.1	56.0	26.2	17.8	72.5
	+DoLa	41.3	56.5	27.5	35.9	<u>93.5</u>
	+TaD	42.6	60.0	33.1	37.5	94.0

► Ablation study of the knowledge vector:

\mathcal{M}	$ p_{\mathcal{S}} $	$\rightarrow p_{\mathcal{E}}$	G/M	\mathcal{M}	$p_{\mathcal{S}}$	$\rightarrow p_{\mathcal{E}}$	G /1	M
7b	/	<u>'</u>	10.8/37.5	71.*		/	26.6/9	0.5
7b*	/	•	26.6/90.5	7b*	7b	\rightarrow 7b*	27.7/9	1.0
3b	/	1	16.7/53.2	13b*		/ →13b*	35.9/9	
3b*	/	'	35.9/91.5		13b	→13b*	38.1/9	92.0
	•		sults on pre- ned models.	(b) Tal		ffectivene odels.	ss on	the

G/M $p_{\mathcal{S}} o p_{\mathcal{E}}$ $\mathcal{M} \mid p_{\mathcal{S}} \to p_{\mathcal{E}} \mid$ G/M

 $7b \rightarrow 13b$

16.7/53.2

17.2/51.8

35.9/91.5

 $7b* \rightarrow 13b* | 36.2/91.8$ (c) The effect of the opposite direction of the proposed knowledge vector (from the fine-tuned (d) The effect of the direction of the model size difference (from the to the pre-trained model). smaller to the larger model)

26.6/90.5

			smarter to the rarger moder).				
1	$p_{\mathcal{S}} o p_{\mathcal{E}}$	G/M	\mathcal{M}	$p_{\mathcal{S}} \rightarrow p_{\mathcal{E}}$	G/M		
		10.8/37.5		75 * 125 *	38.1/92.0		
					1		

(e) Comparison results on the direction of the knowledge and model size difference.

 $7b* | 7b* \rightarrow 7b | 23.7/79.0$

(f) The cumulative effect of the direction of the knowledge and model size difference.

► Integrated with different basic decoding strategies:

Model	Method	G/M	Model	Method	G/M
_	Greedy +TaD	26.6/90.5 27.7/91.0		Greedy +TaD	35.9/91.5 38.1/92.0
LLaMa-7b	Beam-4 + <i>TaD</i>	30.5/91.3 30.9/91.8	LLaMa-13b	Beam-4 + <i>TaD</i>	43.6/93.3 43.7/94.3
LLa	Top-p +TaD	26.7/90.7 27.4/91.3		Top-p +TaD	36.7/91.7 37.1/93.0
	Top-k + <i>TaD</i>	27.0/90.3 27.7/91.6		Top-k + <i>TaD</i>	36.8/91.7 37.2/93.0

Different ratios of training data and the selection of step:

