

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий (ИИТ) Кафедра цифровой трансформации (ЦТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 3

по дисциплине «Разработка баз данных»

Студент группы	ИНБО-12-23. Албахтин И.В.	
		(подпись)
Ассистент	Брайловский А.В.	
		(подпись)

ПРАКТИЧЕСКАЯ РАБОТА №3. УСЛОВНАЯ ЛОГИКА, ПОДЗАПРОСЫ И ОБОБЩЕННЫЕ ТАБЛИЧНЫЕ ВЫРАЖЕНИЯ (СТЕ) В POSTGRES PRO Цель:

Работа направлена на формирование глубокого понимания и практического применения инструментов для реализации сложной бизнеслогики непосредственно на уровне базы данных

Постановка задачи:

Задание 1: использование оператора CASE

- 1. Составить запрос, использующий поисковое выражение CASE для категоризации данных по какому-либо числовому признаку из вашей БД (например, цена, количество, возраст). Запрос должен содержать не менее трех условий WHEN и ветку ELSE.
- 2. Составить запрос, в котором оператор CASE используется внутри агрегатной функции (например, SUM или COUNT) для выполнения условной агрегации.

Задание 2: использование подзапросов.

Составить и выполнить три запроса, демонстрирующих разные типы подзапросов.

- 1. Скалярный подзапрос: найти все записи в таблице, у которых значение в некотором числовом столбце превышает среднее (или максимальное/минимальное) значение по этому столбцу.
- 2. Многострочный подзапрос с IN: вывести информацию из одной таблицы на основе идентификаторов, полученных из связанной таблицы по определенному критерию (в данном случае, обязательно по дате).

- 3. Коррелированный подзапрос с EXISTS: найти все записи из родительской таблицы, для которых существует хотя бы одна связанная запись в дочерней таблице, удовлетворяющая текстовому условию.
- 4. Альтернативное решение с JOIN: решите задачу из пункта выше (2.3, Коррелированный подзапрос с EXISTS), но на этот раз с использованием оператора соединения JOIN.

Задание 3: использование обобщенных табличных выражений (СТЕ).

- 1. Стандартное СТЕ: переписать запрос из Задания 2.3 (с коррелированным подзапросом) с использованием обобщенного табличного выражения (СТЕ).
- 2. Рекурсивное СТЕ: используя имеющуюся в вашей схеме данных таблицу с иерархической структурой (например, pharmacists), написать рекурсивный запрос с помощью WITH RECURSIVE для вывода всей иерархии с указанием уровня вложенности.

ВЫПОЛНЕНИЕ ПРАКТИЧЕСКОЙ РАБОТЫ

Таблица 1. Таблица саг (автомобиль)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 car_id	1	int4			[v]		
123 client_id	2	int4			[]		
A-Z brand	3	varchar(30)		<u>default</u>	[]		
A-Z model	4	varchar(30)		<u>default</u>	[]		
123 year	5	int4			[]		
A-Z license_plate	6	varchar(17)		<u>default</u>	[]		

Таблица 2. Таблица client (клиент)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 client_id	1	int4			[v]		
A-Z name	2	varchar(15)		<u>default</u>	[]		
A-Z surname	3	varchar(15)		default	[]		
A-Z phone	4	varchar(15)		<u>default</u>	[]		
A-Z email	5	varchar(254)		default	[]		

Таблица 3. Таблица diagnosis (диагностика)

ļ	Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
1	123 diagnosis_id	1	serial4			[v]	nextval('diagnosis_diagnosis_id_seq'::regclass)	
	123 maintenance_id	2	int4			[]		
	A-Z result	3	text		default	[]		

Таблица 4. Таблица invoice (счёт за работы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 invoice_id	1	serial4			[v]	nextval('invoice_invoice_id_seq'::regclass)	
123 maintenance_id	2	int4			[]		
123 total_amount	3	numeric			[]		
A-Z payment_status	4	varchar(20)		default	[]		

Таблица 5. Таблица maintenance (обслуживание)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 maintenance_id	1	serial4			[v]	nextval('maintenance_maintenance_id_seq'::regclass)	
123 car_id	2	int4			[]		
123 worker_id	3	int4			[]		
123 part_id	4	int4			[]		
	5	date			[]		
O end_date	6	date			[]		
A-Z status	7	varchar(20)		default	[]	'planned'::character varying	

Таблица 6. Таблица maintenance_work (соединительная таблица между обслуживанием и типом работы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 maintenance_work	1	serial4			[v]	nextval('maintenance_work_maintenance_work_seq'::regclass)	
123 maintenance_id	2	int4			[]		
123 work_type_id	3	int4			[]		

Таблица 7. Таблица part (запчасти)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	Комментарий
123 part_id	1	int4			[v]		
A-Z name	2	varchar(100)		<u>default</u>	[]		
123 price	3	numeric			[]		
123 supplier_id	4	int4			[]		

Таблица 8. Таблица part_warehouse (соединительная таблица между складом и запчастями)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 part_id	1	int4			[v]		
123 warehouse_id	2	int4			[]		
123 quantity	3	int4			[]		

Таблица 9. Таблица review (отзывы)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 review_id	1	serial4			[v]	nextval('review_review_id_seq'::regclass)
123 client_id	2	int4			[]	
A-Z text	3	varchar(1000)		<u>default</u>	[]	
123 rating	4	int4			[]	
	5	date			[]	

Таблица 10. Таблица supplier (поставщики)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 supplier_id	1	int4			[v]	
A-Z name	2	varchar(300)		<u>default</u>	[]	
A-Z phone	3	varchar(15)		<u>default</u>	[]	

Таблица 11. Таблица warehouse (склад)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 warehouse_id	1	int4			[v]	
A-Z address	2	varchar(100)		<u>default</u>	[]	

Таблица 12. Таблица warranty (гарантия)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию	K
123 warranty_id	1	serial4			[v]	nextval('warranty_warranty_id_seq'::regclass)	
123 maintenance_id	2	int4			[]		
expiry_date	3	date			[]		

Таблица 13. Таблица work_type (тип работ)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умс
123 work_type_id	1	int4			[v]	
A·Z name	2	varchar(500)		<u>default</u>	[]	
A-Z description	3	text		<u>default</u>	[]	

Таблица 14. Таблица worker (сотрудник)

Название	#	Тип данных	Автоувеличение	Правило сортировки	Not Null	По умолчанию
123 worker_id	1	int4			[v]	
A-Z name	2	varchar(15)		<u>default</u>	[]	
A-Z position	3	varchar(20)		<u>default</u>	[]	
A-Z phone	4	varchar(15)		<u>default</u>	[]	

Задание 1. Использование CASE

Рисунок 1 - Категоризируем автомобили по году выпуска

Рисунок 2 - Посчитаем, сколько ТО у каждого клиента было «дорогих» (сумма > 20 000) и «дешевых»

Задание 2. Подзапросы

Рисунок 3 – Вычисляем среднюю сумму всех счетов

Рисунок 4 – Обслуживания начатые в последний год

Рисунок 5 – Найти тип работы со словом «замена» по имени сотрудника через EXISTS

Рисунок 6 - Найти тип работы со словом «замена» по имени сотрудника через JOIN

Задание 3. Использование обобщенных табличных выражений (СТЕ)

Рисунок 7 - Найти тип работы со словом «замена» по имени сотрудника через СТЕ

Рисунок 8 – Создание новой таблицы "Categories"

```
⊌WITH RECURSIVE cat_tree AS (
              SELECT
                  category_id,
2
                  name,
parent_id,
              0 AS level
FROM categories
              WHERE parent_id IS NULL
              UNTON ALL
              SELECT
                  c.category_id,
c.name,
c.parent_id,
              ct.level + 1
FROM categories c
              JOIN cat_tree ct ON c.parent_id = ct.category_id
repeat(' ', Level * 4) || name AS hierarchy,
         FROM cat_tree;
0=
В Результат 1 ×
«T WITH RECURSIVE cat_tree AS ( SELECT category_id, г. 🚰 Введите SQL выражение чтобы отфильтровать результать
о мг hierarchy
1 Автомобили
2 Ремонт
3 Запчасти
3
4
5
             Замена масла
           Тормозная система
              Фильтры
```

Рисунок 9 – Рекурсивное СТЕ

ВЫВОД

В ходе работы были изучены и реализованы основные приёмы работы с SQL-запросами: агрегатные функции, вложенные и коррелированные подзапросы, оператор EXISTS, а также рекурсивные запросы WITH RECURSIVE для построения иерархических структур. На практике удалось закрепить навыки соединения таблиц, фильтрации данных и анализа содержимого базы. Работа позволила понять, как формировать сложные выборки и использовать SQL для решения реальных задач обработки данных.