Übungen QM I Vorbereitungskurs

Blatt 1

1) Teilchen im Delta-Potential

Betrachten Sie ein Teilchen der Masse m in einer Dimension in Anwesenheit eines Potentials V(x)

$$V(x) = -V_0 a \delta(x) \quad V_0 > 0, \quad a > 0 \tag{1}$$

- a) Stellen Sie die Schrödingergleichung für dieses Problem auf.
- b) Bestimmen Sie die Anschlussbedingung am Punkt x=0. Gehen Sie dazu davon aus, dass die Wellenfunktion stetig und normierbar ist und daher insbesondere überall endlich ist. $|\psi(x)| \leq \infty$

Hinweis: Integrieren Sie die Schrödingergleichung über das Intervall $[-\epsilon, \epsilon]$ um die Anschlußbedingung für die Ableitung der Wellenfunktion zu finden. Was ergibt sich dann für eine stetige Wellenfunktion im Grenzfall $\epsilon \to 0$

- c) Lösen Sie die Schrödingergleichung für den Fall E < 0 und bestimmen sie mit Hilfe der Anschlußbedingungen die Energie des gebundenen Zustandes.
- d) Welche Dimension hat die Konstante a, wenn V_0 die Dimension einer Energie hat? Warum? Können sie das am Ergebnis für die Bindungsenergie aus Aufgabe \mathbf{c}) bestätigen.

2) Transmission

Berechnen Sie $\ln T$, den Logarithmus der Transmissionswahrscheinlichkeit, für die in der Abbildung dargestellte Potentialschwelle näherungsweise im Grenzfall $\kappa a >> 1$, wobei $\kappa = \sqrt{2m(V_0 - E)/\hbar}$

3) Rechnungen mit Operatoren

- a) Zeigen Sie, dass die Eigenwerte eines hermiteschen Operators reel sind.
- b) Zeigen Sie, dass Eigenfunktionen zu hermiteschen Operatoren mit verschiedenen Eigenwerten orthogonal aufeinander stehen.
- c) Zeigen Sie, dass für kommutierende Operatoren ein System gemeinsamer simultaner Eigenfunktionen existiert.
- d) Zeigen Sie für $\left[\hat{A},\hat{A}^+\right]=1$ und für jede Funktion $f(\hat{A}^+)$ gilt mit $\hat{A}\left|0\right>=0$:

$$\hat{A}f(A^+)|0\rangle = \frac{df(\hat{A}^+)}{d\hat{A}^+}|0\rangle$$

e) Zeigen Sie hieraus:

$$e^{\lambda \hat{A}} f(\hat{A}^+) |0\rangle = f(\hat{A}^+ + \lambda) |0\rangle$$

- f) Seien \hat{A} und \hat{B} hermitesche Operatoren. Ist das Produkt hermitesch? Stellen Sie $\hat{A}\hat{B}$ als Kombination von $\left\{\hat{A},\hat{B}\right\} = \hat{A}\hat{B} + \hat{B}\hat{A}$ und $\left[\hat{A},\hat{B}\right]$ dar.
- g) Berechnen Sie den konjugierten Operator zu $\left[\hat{A},\hat{B}\right]$. Was lässt sich deshalb über den Operator $\left[\hat{A},\hat{B}\right]$ aussagen.

4) Kommutatoreigenschaften

Gegeben ist ein Hamilton- Operator der Form $\hat{H}=\hat{T}+\hat{V}$ mit dem kinetischen Term $\hat{T}=\frac{\hat{\mathbf{p}}^2}{2m}$ und einem Potential $\hat{V}=V(\mathbf{r})$

- a) Berechnen sie für einen beliebigen zeitunabhängigen Operator \hat{A} den Erwartungswert $\langle \psi_0 | \left[\hat{H}, \hat{A} \right] | \psi_0 \rangle$ des Kommutators von \hat{H} und \hat{A} im Energieeigenzustand $|\psi_0\rangle$ und zeigen sie, dass dieser verschwindet.
- b) Berechnen sie den den Kommutator $\left[\hat{H},\hat{\mathbf{p}}\hat{\mathbf{r}}\right]$. Zeigen sie mit dem Ergebnis aus a), dass für für die Erwartungswerte in einem Energieeigenzustand $|\psi_0\rangle$ gilt: $2\left\langle \hat{T}\right\rangle = \langle \mathbf{r}\nabla V(\mathbf{r})\rangle$
- c) Berechnen sie $\langle \mathbf{r} \nabla V(\mathbf{r}) \rangle$ für den speziellen Fall eines Coulombpotentials $(V(\mathbf{r}) = -\frac{e^2}{r})$ und zeigen sie, dass gilt: $2\langle \hat{T} \rangle = -\langle \hat{V} \rangle$
- d) Berechnen sie den Erwartungswert $\langle \frac{1}{r} \rangle$ im Grundzustand des Wasserstoffatoms. Bestimmen sie mit diesem Ergebnis und dem Ergebnis aus **c**) den Ewartungswert der kinetischen Energie im Grundzustand. Vergleichen sie den Erwartungswert $\langle \hat{H} \rangle = \langle \hat{T} \rangle + \langle \hat{V} \rangle$ mit der Grundzustandsenergie des Wasserstoffatoms.

Hinweis Die Wellenfunktion im Grundzustand des H-Atoms ist: $\psi_0(\mathbf{r}) = \frac{1}{\sqrt{\pi a_0^3}} e^{-\frac{r}{a_0}}, a_0 = \frac{\hbar^2}{2m}$ außerdem gilt $\int_0^\infty dx x^n e^{-\alpha x} = \frac{n!}{\alpha^{n+1}}.$

5) Lösung des harmonischen Oszillators mittels Operatoren

Für den eindimensionalen harmonischen Oszillator gilt:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m}{2}w^2\hat{x}^2 = \hbar\omega \left\{ \frac{\hat{p}^2}{2m\hbar\omega} + \frac{m}{2\hbar}w\hat{x}^2 \right\}$$
 (2)

a) Berechnen Sie die Kommutatorrelation $[\hat{x}, \hat{p}]$.

- **b)** Berechnen Sie $\hat{a}^{\dagger}\hat{a}$ für Operatoren $\hat{a}=\hat{A}+i\hat{B}$ mit \hat{A} und \hat{B} hermitesch.
- c) Kann der Hamiltonoperator (2) mit Hilfe von b) in folgende Form gebracht werden?

$$\hat{H} = \hbar\omega \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right)$$

Definieren Sie dazu den Term mit \hat{p}^2 in (2) als \hat{B}^2 . Stellen Sie \hat{a}^+ und \hat{a} durch Kombination von \hat{x} und \hat{p} dar.

- d) Berechnen Sie $[\hat{a}, \hat{a}^+]$. Weisen Sie $[\hat{H}, \hat{a}^+] = \hbar \omega \hat{a}^+$ und $[\hat{H}, \hat{a}] = -\hbar \omega \hat{a}$ nach.
- e) Zeigen Sie: $\frac{\hbar\omega}{2}$ ist der kleinste Eigenwert von \hat{H} und der zugehörige Grundzustand ist durch $\hat{a}|0\rangle=0$ festgelegt. Berechnen Sie $|0\rangle$ in Ortsdarstellung.
- **f**) $|n\rangle$ sei der normierte Eigenzustand zum Energieeigenwert $\hbar\omega(n+1/2)$. Was ist $\hat{a}^+|n\rangle$ bzw. $\hat{a}|n\rangle$? Zeige:

$$\hat{a}^{+}|n\rangle = \sqrt{n+1}|n+1\rangle, \qquad \hat{a}|n\rangle = \sqrt{n}|n-1\rangle.$$

- g) Konstruieren Sie die normierten Eigenzustände $|n\rangle$ aus dem Grundzustand $|0\rangle$ (vgl. e)
- h) Drücken Sie die Operatoren \hat{x} und \hat{p} durch \hat{a} und \hat{a}^+ aus. Berechnen Sie nun die Erwartungswerte $\langle n | \hat{x}^k | n \rangle$ für k=1,2. Wieso verschwinden die Erwartungswerte für ungerade k?

6) Zeitliche Entwicklung von Wellenfunktionen

Betrachten Sie in einer Raumdimension ein nichtrelativistisches Teilchen der Masse m, welches durch das Potential V(x) in einem Bereich der Länge a eingesperrt sei: V(x)=0 für $0 \le x \le a$ und $V(x)=\infty$ für x < 0, x > a. Zur Zeit t=0 sei die normierte Wellenfunktion des Teilchens gegeben durch

$$\Phi(x, t = 0) = \sqrt{\frac{8}{5a}} \left[1 + \cos\left(\frac{\pi x}{a}\right) \right] \sin\left(\frac{\pi x}{a}\right)$$

- a) Bestimmen Sie einen vollständigen und orthonormierten Satz von Eigenfunktionen $\psi_n(x)$ und die zugehörigen Energieeigenwerte E_n des Hamiltonoperators mit dem angegebenen Potential V(x).
- b) Finden Sie nun die zeitliche Entwicklung $\Phi(x,t>0)$ indem sie $\Phi(x,t)$ nach den $\psi_n(x)$ entwickeln:

$$\Phi(x,t) = \sum_{n} A_n(t)\psi_n(x)$$

Bestimmen sie $A_n(t=0)$ für alle n. Wie lauten dann die $A_n(t)$?

c) Berechnen Sie den Energiemittelwert $\langle E(t) \rangle$ des Teilchens. Hinweis:

$$sin(x)cos(x) = \frac{1}{2}sin(2x), \quad sin^{2}(x) = \frac{1}{2}(1 - cos(2x))$$