

100V N-Channel Enhancement Mode MOSFET

Voltage	100 V	R _{DS} (ON),max	< 5.0 mΩ
Current	120 A	Q _{G (TYP)}	40.5 nC

Feature

- $R_{DS(ON),max} < 5.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 50 \text{ A}$
- $R_{DS(ON),max} < 7.0 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 25 \text{ A}$
- High switching speed
- Low reverse transfer capacitance
- Lead free in compliance with EU RoHS 2.0
- Green molding compound as per IEC 61249 standard

Mechanical Data

• Case: TO-220AB-L package

• Terminals: Solderable per MIL-STD-750, Method 2026

• Approx. Weight: 2.0948 grams

• SR solutions of Power supply, BMS, BLDC motor driver switch

Absolute Maximum Ratings (T_A = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	LIMIT	UNITS		
Drain-Source Voltage		V_{DS}	100		
Gate-Source Voltage		V_{GS}	±20	V	
Continuous Prain Current (Note 3)	Tc=25 °C	,	120	^	
Continuous Drain Current (Note 3)	T _C =100 °C	─ I _D	76	Α	
Pulsed Drain Current (Note 6)	Tc=25 °C	I _{DM}	480	Α	
Single Pulse Avalanche Current (Note 5)		IAS	50	А	
Single Pulse Avalanche Energy (Note 5)		E _{AS}	318	mJ	
Dawar Dissination	T _C =25 °C	D-	138	W	
Power Dissipation	Tc=100 °C	Po	55		
Operating Junction and Storage Temperature Ra	ange	T _J ,T _{STG}	-55~150	°C	

Thermal Characteristics

PARAM	PARAMETER		MAXIMUM	UNITS
	Junction-to-Case (Bottom)	$R_{ heta JC}$	0.9	°C/W
Thermal Resistance	Junction-to-Ambient (Note.4)	$R_{\theta JA}$	60	°C/W

Electrical Characteristics (T_A = 25 °C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Static						
Drain-Source Breakdown Voltage	BV _{DSS} V _{GS} =0 V, I _D =250 μA		100	-	-	V
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =270 μA	1.8	2.8	3.8	V
Drain-Source On-State Resistance	$R_{DS(on)} = \begin{cases} V_{GS} = 10 \text{ V}, I_{D} = 50 \text{ A} \\ V_{GS} = 6 \text{ V}, I_{D} = 25 \text{ A} \end{cases}$	-	4.3	5.0		
(Note 1)		V _{GS} =6 V, I _D =25 A	-	5.4	7.0	mΩ
Zero Gate Voltage Drain Current	IDSS	V _{DS} =100 V, V _{GS} =0 V	-	-	1	μA
Gate-Source Leakage Current	Igss	V _{GS} =±20 V, V _{DS} =0 V	-	-	±100	nA
Transfer characteristics (Note 1)	G fs	V _{DS} =10 V, I _D =50 A		100	-	S
Gate Resistance	Rg	f =1.0 MHz	-	0.8	1.6	Ω
Dynamic (Note 6)						
Total Gate Charge	Q_g		-	40.5	53	
Gate-Source Charge	Qgs	V _{DS} =50 V, I _D =50 A,	-	15	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} =10 V	-	6	-	
Gate Plateau Voltage	V _{plateau}		-	5	-	V
Input Capacitance	Ciss	., 50.7.7. 0.7.	-	3010	3910	
Output Capacitance	Coss	V _{DS} =50 V, V _{GS} =0 V,	-	1080	1400	pF
Reverse Transfer Capacitance	Crss	f=250 kHz	-	14	-	
Output Charge	Qoss	V _{DS} =50 V, V _{GS} =0 V	-	85	110	nC
Turn-On Delay Time	t _{d(on)}	V 50 V I 50 A	-	16	-	
Rise Time	t _r	V _{DD} =50 V, I _D =50 A,	-	6	-	20
Turn-Off Delay Time	t _{d(off)}	$V_{GS}=10 \text{ V}, R_{G}=3.0 \Omega$ (Note 2)	-	26	-	ns
Fall Time	t _f	(·····································	-	6	-	
Drain-Source Diode						
Diode Forward Voltage	V _{SD}	I _S =50 A, V _{GS} =0 V	-	0.9	1.2	V
Reverse Recovery Charge (Note 6)	Qrr	I _F =50 A, V _{DD} =50 V	-	85	170	nC
Reverse Recovery Time (Note 6)	T _{rr}	di/dt=100 A/µs	-	56	112	ns

NOTES:

- 1. Pulse width \leq 300 μ s, Duty cycle \leq 2 %
- 2. Essentially independent of operating temperature typical characteristics.
- 3. The maximum drain current calculated by maximum junction temperature and thermal impedance. It can be varied by application and environment.
- 4. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. Mounted on a 1 inch² with 2oz.square pad of copper.
- 5. E_{AS} is calculated based on the condition of L = 1.0 mH, I_{AS} = 25.2 A, V_{DD} = 50 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 50 A in production.
- 6. Guaranteed by design, not subject to production testing.

TYPICAL CHARACTERISTIC CURVES

Fig.1 Output Characteristics

Fig.2 Transfer Characteristics

Fig.3 On-Resistance vs. Drain Current

Fig.4 On-Resistance vs. Junction temperature

Fig.6 On-Resistance vs. Gate-Source Voltage

TYPICAL CHARACTERISTIC CURVES

Fig.7 Gate-Charge Characteristics

Fig.8 Breakdown Voltage Variation vs. Temperature

Fig.9 Threshold Voltage Variation with Temperature

Fig.10 Source-Drain Diode Forward Voltage

Fig.11 Maximum Safe Operating Area

Fig.12 Normalized Transient Thermal Impedance

TYPICAL CHARACTERISTIC CURVES

Fig.13 Avalanche Characteristics

Fig.14 Drain Current vs. Case Temperature

Product and Packing Information

Part No.	Package Type	Packing Type	Marking	
PSMP050N10NS2	TO-220AB-L	50pcs / Tube	050N10NS	

Packaging Information

Marking Diagram

PJ 050N10NS YWLL x Y = Year Code

W = Week Code (A~Z)

LL = Lot Code (00~99)

x = Production Line Code

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are
 responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no
 representation or warranty that such applications will be suitable for the specified use without further testing
 or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining.