C8/B.TECH/(C8E/IT)/ EVEN/8EM-4/C8-402/2016-17

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: C8-402

FORMAL LANGUAGE AND AUTOMATA THEORY

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own twords as far as practicable.

GROUP - A (Multiple Choice Type Questions)

Choose the correct alternatives for the following:

 $10 \times 1 = 10$

http://www.makaut.com

- i) Regular grammar is
 - a) context free grammar
 - b) context sensitive grammar
 - non-context grammar
 - d) none of these.
- ii) In Moore machine, output is associated with
 - a) present state only
 - b) next state only
 - c) present state and input
 - d) none of these.

Turn over

JV-400301

۳

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

- iii) Compatible pairs are obtained from
 - a) Merger Graph
- b) Compatible Graph

http://www.makaut.com

- c) Testing Table
- d) Testing Graph.
- iv) The string 1101 does not belong to the set represented by
 - a) 110 * (0 + 1)
 - b) 1(0+1)*101
 - c) (10)*(01)*(00+11)*
 - d) (00 + (11) * 01)*
- v) Regular expression is accepted by
 - a) Finite automata
 - b) Mealy machine
 - c) Pushdown automata
 - od) all of these.
- vi) If P and Q are regular expression (P is not null), then R = Q + RP has the unique solution
 - a) R = Q * P
- b) $R = PQ^*$
- c) R = Q * P *
- $R = QP^*.$
- vii) Which of the following is common in both CNF & GNF?
 - a) $(NT) \rightarrow (Single T) (String of NT)$
 - b) $(NT) \rightarrow (String of exactly two NT)$
 - c) $(NT) \rightarrow (String of NT)$
 - d) $(NT) \rightarrow (Single T)$.

http://www.makaut.com

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

viii) Consider the languages:

$$L_1 = \{ ww^R \mid w \in \{0,1\}^* \}$$

 $L_2 = \{ w \# w^R \mid w \in \{0,1\}^* \}, \text{ where } \# \text{ is a special }$ symbol

$$L_3 = \{ ww \mid w \in \{0,1\}^* \}.$$

Which one of the following is true?

- L_1 is a deterministic CFL
- L_2 is a deterministic CFL b)

c) L_3 is a CFL, but not a deterministic CFL

- L_3 is a deterministic CFL.
- Difference between Turing Machine & Two way FA ix) is in http://www.makaut.com
 - Input tape a)
- Read wire head b)
- Finite control all of these.
- Which of the following statements is false? x)
 - The halting problem of Turing machine is undecidable.
 - Determining whether a context-free grammar b) is ambiguous is undecidable.
 - Given two arbitrary context free grammars G1 c) and G_2 . It is undecidable whether $L(G_1) = L(G_2).$
 - Given two regular grammars G_1 and G_2 . It is d) undecidable whether $L(G_1) = L(G_2)$.

IV-400301

3

Turn over

http://www.makaut.com

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

GROUP - B (Short Answer Type Questions)

Answer any three of the following. $3 \times 5 = 15$

What do you mean by unit production? Remove unit productions from the grammar

$$S \rightarrow AB, A \rightarrow a, B \rightarrow C, C \rightarrow D, D \rightarrow b.$$
 1 + 4

- 3. Construct grammar of the following:
 - a) For the language $a^n b^n$, where n > 0.
 - b) All even integers up to 998.

2 + 3

http://www.makaut.com

Define NFA. Construct equivalent DFA from the given NFA.

Present State	Next State		
	0	1	
$\rightarrow q_0$	q_0, q_1	q_2	
q_1	q_2	$q^{}_1$	
q_2	q_1^-	q_2	

1 + 4

Design a two-input two-output sequence detector which generates an output 1 every time the sequence 1101 is detected. And for all other cases output 0 is generated.
 Overelapping sequences are also counted. 2 + 1 + 2

http://www.makaut.com

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

- 6. Define Left Linear and Right linear grammar. Construct
- grammar for the following FA:

2 + 3

http://www.makaut.com

GROUP - C
(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

7. State and prove Arden's theorem in regular expression.

Minimize the following incompletely specified machine:

	· NS, Z			
PS	I_1	I ₂	<i>I</i> ₃	
A	A, 1	D, _	C, _	
В	A, _	D, _	E, _	
С	<i>E</i> , 0	<i>A</i> , 1	_,_	
D	E, _	A, 1	_,_	
E	E, 0		C, _	

5 + (5 + 2 + 3)

IV-400301

5

[Turn over

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

8. Convert the following Mealy machine to equivalent Moore machine:

Moore macrime.					
	<i>I/P</i> = 0		I/P = 1		
Present State	Next State	O/P	Next State	O/P	
$\rightarrow q_0$	q_1	1	$q_2^{}$	1	
q_1	q_3	0	$q_0^{}$	1	
q_2	q_4	0	q_3	1	
q_3	q_1	0	q ₄	0	
q_4	q_2	1	q_4	0	

Using Pumping lemma prove that

$$L = \left\{ a^n b^n \mid n \ge 1 \right\} \text{ is not regular.}$$

Construct Finite Automata equivalent to the Regular Expression

$$L = ab(a+b)(ab)*b.$$

6 + 5 + 4

9. Find a reduced grammar equivalent to the grammar:

$$S \rightarrow aAa$$

$$A \rightarrow bBB$$

$$B \rightarrow ab$$

$$C \rightarrow aB$$

Convert the following grammar into GNF.

$$S \rightarrow AA/a$$

$$A \rightarrow SS/b$$

Prove that Context Free Languages are not closed under intersection.

$$5 + 6 + 4$$

IV-400301

http://www.makaut.com

http://www.makaut.com

CS/B.TECH/(CSE/IT)/ EVEN/SEM-4/CS-402/2016-17

10. Define PDA by giving a block diagram. Explain how a string be accepted by a PDA? Design a non-Deterministic Pushdown Automata for accepting the string $L = \{WCW^R \mid W \in (a,b)^* \text{ and } W^R \text{ is the reverse of Wby Empty stack.}$

Construct an equivalent PDA for the following Context Free Grammar.

 $S \rightarrow aA$

 $A \rightarrow aABC/bB/a$

 $C \rightarrow c$

Show an ID for the string aabbbc for the PDA generated.

2 + 3 + 10

http://www.makaut.com

11. Design a Turing Machine which accepts the language $L = \{a^n b^n, n \ge 1\}$. Write a short note on Multi-Tape and Multi Head Turing Machine. 10 + 5

http://www.makaut.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रूपये पार्य, Paytm or Google Pay से