Project 3 October 21, 2024

Project 3 Dymamic Programming

Author:

Alex Zongo (GWID) Harsh Sharma (GWID) He Jiaying (GWID) Yiding Pei G28608005

1 Problem Analysis

1.1 Problem Description

Question 0: Teleportation in Astro haunted galaxies

You have a teleporter that can take you from galaxy i to galaxy j. Cost to teleport is given by c(i,j), which can be arbitrary. Some galaxies are "astro-haunted" – this is specified by a(i) which can be 0 or 1 (1 means that that galaxy is "astro-haunted"). Give a polynomial time algorithm that minimizes the cost of going from galaxy 1 to galaxy n, such that you pass through no more than k astro-haunted galaxies. (You can assume that galaxies 1 and n are not astro-haunted.)

1.2 Keys to the Solution

This question is similar to All Pairs Shortest Path Problem. We can use dynamic programming to solve it.

Notation We use the notation: D(i, j, m) to denote the length of the shortest path from i to j passing through a maximum of m astro-haunted galaxies.

As a degenerate case, we observe that D(i, j, 0) signifies the App Pairs Shortest Path Problem between i and j.

Proof of Optimality

Recurrence Relation For the base case of D(i, j, 0), we can solve it as an APSP problem. Therefore, the recurrence relations can be writteen as follows:

$$D^{(k)}(i,j,0) = \begin{cases} \min \left\{ D^{(k-1)}(i,j,0), D^{(k-1)}(i,k,0) + D^{(k-1)}(k,j,0) \right\} & (if \ k \ is \ not \ astro-haunted) \\ D^{(k-1)}(i,j,0) & (if \ k \ is \ astro-haunted) \end{cases}$$

For the general case of D(i, j, m), we can write the recurrence relation as follows:

$$D(i, j, m) = min\{D(i, z, m - a[z]) + D(z, j, 0)\}, z \in \{all \ galaxies\}$$

Pseudocode

- 2 Theoretical Analysis
- 3 Experimental Analysis
- 4 Conclusion