CIS6930/4930

Random Variables: General Case

Prof. Ye Xia

Continuous Random Variables

ullet A random variable X is called **continuous** if its distribution function can be expressed as

$$F(x) = \int_{-\infty}^{x} f(u)du$$

for some integrable function $f: \mathbb{R} \to [0, \infty)$.

f(x) is called the **probability density function**.

Here, integrability is in the usual sense, i.e., Riemann-integrability.

• The distribution function of a continuous random variable is continuous.

Probability Density Function (pdf)

If X has a density function (i.e., X is a continuous random variable), then

- (i) $\int_{-\infty}^{\infty} f(x) dx = 1$;
- (ii) P(X = x) = 0 for all $x \in \mathbb{R}$;
- (iii) $P(a \le X \le b) = \int_a^b f(x) dx$.
- More generally, for $B \in \mathcal{R}$ that is sufficiently nice (so that the integral is well-defined), $P(X \in B) = \int_B f(x) dx$. (Recall \mathcal{R} is the Borel σ -field on \mathbb{R} .)

Independence

- **Definition**: Two random variables X and Y are **independent** if the events $\{X \leq x\}$ and $\{Y \leq y\}$ are independent for all $x, y \in \mathbb{R}$.
- This definition holds for all types of random variables.
- If X and Y are independent, so are g(X) and h(Y) where g and h are measurable functions from $\mathbb{R} \to \mathbb{R}$.

Expectation

 \bullet There are two ways of calculating the expectation of X.

$$E[X] = \int_{\Omega} X(\omega) dP = \int_{\mathbb{R}} x dF(x).$$

The first one is the definition of E[X].

$$E[X] = \int_{\mathbb{R}} x dF(x) = \begin{cases} \int_{-\infty}^{\infty} x f(x) dx & \text{if } X \text{ is continuous} \\ \sum_{x} x P(X = x) & \text{if } X \text{ is discrete,} \end{cases}$$

provided $\int_{-\infty}^{\infty} |x| f(x) dx$ or $\sum_{x} |x| P(X=x)$ is finite; in other words, $E|X| < \infty$.

- For the general case, $\int_{\mathbb{R}} x dF(x)$ is a Riemann-Steiltjes integral, which is a generalization of the Riemann integral.
- For a mixed random with a finite number of discontinuities in F(x), say at a_1, a_2, \ldots, a_n , E[X] can be computed by adding the discrete

part and the continuous part. For convenience, let $a_0 = -\infty$ and $a_{n+1} = \infty$.

$$E[X] = \sum_{i=1}^{n} a_i P(X = a_i) + \sum_{i=0}^{n} \int_{a_i}^{a_{i+1}} x f(x) dx,$$

where f(x) is the derivative of F(x) on each interval, provided $\int_{a_0}^{a_1} |x| f(x) dx < \infty$ and $\int_{a_n}^{a_{n+1}} |x| f(x) dx < \infty$ (only the integrals on $(a_0, a_1]$ and $[a_n, a_{n+1})$ may cause problems).

• Let $g: \mathbb{R} \to \mathbb{R}$ be a measurable function (i.e., $g^{-1}(B) \in \mathcal{R}$ for every $B \in \mathcal{R}$). Then, $E[g(X)] = \int_{\mathbb{R}} g(x) dF(x)$, provided the integral $\int_{\mathbb{R}} |g(x)| dF(x)$ exists (i.e., well-defined and finite).

If X is continuous $E[g(X)] = \int_{\mathbb{R}} g(x) f(x) dx$, provided the integral $\int_{\mathbb{R}} |g(x)| f(x) dx$ exists.

A Word on Riemann Integrals $\int_a^b f(x)dx$

- Integral is the area under f.
- Partition [a, b] by $P = \{x_0, x_1, \dots, x_n\}$ with

$$a = x_0 < x_1 < \dots < x_n = b$$

Approximate integral by lower and upper Darboux sums:

$$L(f, P) = \sum_{i=0}^{n-1} \inf_{x \in [x_i, x_{i+1}]} f(x)(x_{i+1} - x_i)$$

$$U(f,P) = \sum_{i=0}^{n-1} \sup_{x \in [x_i, x_{i+1}]} f(x)(x_{i+1} - x_i)$$

 Approximation improves with finer partitions ⇒ lower and upper Darboux integrals:

$$L(f) = \sup\{L(f, P) : P \text{ is a partition of } [a, b]\}.$$

$$U(f) = \inf\{U(f, P) : P \text{ is a partition of } [a, b]\}.$$

- Riemann integral is defined if L(f) = U(f), and $\int_a^b f(x)dx = L(f) = U(f)$.
- Integral exists if f is continuous on [a, b] or if it has countably many discontinuities.

A Word on Riemann-Stieltjes Integrals $\int_a^b f(x)dg(x)$

Suppose *g* is monotone and right-continuous.

Lower and upper sums:

$$\underline{S}(f, g; P) = \sum_{i=0}^{n-1} \inf_{x \in [x_i, x_{i+1}]} f(x) (g(x_{i+1}) - g(x_i)).$$

$$\bar{S}(f,g;P) = \sum_{i=0}^{n-1} \sup_{x \in [x_i, x_{i+1}]} f(x)(g(x_{i+1}) - g(x_i)).$$

Lower and upper integrals:

$$\bar{S}(f;g) = \inf\{\bar{S}(f,g;P) : P \text{ is a partition of } [a,b]\}.$$

$$\underline{S}(f,g) = \sup{\underline{S}(f,g;P) : P \text{ is a partition of } [a,b]}.$$

Riemann-Stieltjes integral is defined if $\underline{S}(f,g) = \bar{S}(f,g)$, and

$$\int_{a}^{b} f(x)dg(x) = \underline{S}(f,g) = \bar{S}(f,g).$$

When g(x) = x, Riemann-Stieltjes integral becomes Riemann integral.

Riemann-Stieltjes integral generalizes in two ways:

- Generalized interval 'length' or 'measure': $g(x_{i+1}) g(x_i)$
- Allows discontinuities in g(x). For a monotone function, there are up to countably many.

A discontinuity at t contributes $f(t)(g(t) - g(t_{-}))$ to the integral; whereas in the Riemann integral $f(t)(t - t_{-}) = 0$.

Existence: Both f and g can have countably many discontinuities, provided their discontinuities don't coincide.

To define Riemann-Stieltjes integral more generally, g need not be monotone. The usual requirement is that g has bounded variation. It is known that a function has bounded variation if and only if it can be written as the difference of two monotone functions. If, in addition, f is

continuous on [a, b], then the integral exists.

For a random variable X with the distribution function F(x), $E[h(X)] = \int h(x) dF(x)$ covers the discrete, continuous and mixed random variables.

Riemann-Stieltjes integral is usually good enough for probability calculations, but not good enough for conceptualization.

Consider the definition of E[X], $E[X] = \int_{\Omega} X(\omega) dP(\omega)$. What does it mean?

 Ω is not necessarily \mathbb{R}^k . We need to define integral on abstract spaces. This leads to the general, measure-theoretic integral, sometimes called the Lebesgue integral.

Also, this general integration theory has rich structures, suggesting it is the right kind of generalization.

More to come.

Nonnegative Random Variables

Suppose X is a nonnegative random variable. Then,

$$E[X] = \int_0^\infty P(X \ge x) dx.$$
 $\left(\text{Or } E[X] = \int_0^\infty P(X > x) dx \right).$

Consider the indicator function $1_{\{X \geq x\}}$. Recall $E[1_{\{X \geq x\}}] = P(X \geq x)$.

$$\int_{0}^{\infty} P(X \ge x) dx = \int_{0}^{\infty} E[1_{\{X \ge x\}}] dx$$

$$= \int_{0}^{\infty} \int_{\Omega} 1_{\{X \ge x\}}(\omega) dP(\omega) dx$$

$$= \int_{\Omega} \int_{0}^{\infty} 1_{\{X \ge x\}}(\omega) dx dP(\omega)$$

$$= \int_{\Omega} \int_{0}^{X(\omega)} 1 dx dP(\omega)$$

$$= \int_{\Omega} X(\omega) dP(\omega) = E[X].$$

The interchange of the two integrals is justified by Fubini-Tonelli's Theorem (check it out). Here, the integrand $1_{\{X \geq x\}}(\omega)$ as a function of x and ω is a non-negative measurable function. That is enough.

Figure 1: $\int_0^\infty P(X>x)dx$ is the area underneath the function P(X>x)

Suppose X is a nonnegative, integer-valued random variable. Then,

$$E[X] = \sum_{n=0}^{\infty} P(X > n) = \sum_{n=1}^{\infty} P(X \ge n).$$

In general, if X is a nonnegative random variable, then,

$$E[X] = \int_0^\infty \bar{F}(x)dx,$$

where $\bar{F}(x) = 1 - F(x)$ is the complementary cdf of X.

Exponential Distribution

Exponential distribution with parameter $\lambda > 0$: For $x \geq 0$,

$$F(x) = 1 - \exp(-\lambda x);$$
 $f(x) = \lambda \exp(-\lambda x).$

$$E[X] = \int_0^\infty \bar{F}(x)dx = \int_0^\infty \exp(-\lambda x)dx = -\frac{1}{\lambda} \exp(-\lambda x)|_0^\infty = 1/\lambda;$$

var(X) = 1/\lambda^2.

An exponential random variable is often used to model the time between

two consecutive events, e.g., arrival of buses, failures of equipment.

Memoryless Property: Suppose the inter-arrival time of buses has the exponential distribution with mean 10 minutes (i.e., $\lambda = 0.1$). Suppose you have waited for 9 minutes. What is the expected waiting time till the next bus arrival? Answer: 10 minutes.

Let X be the waiting time till the next bus arrival. For $x \geq 9$,

$$P(X > x | X > 9) = \frac{P(X > x, X > 9)}{P(X > 9)}$$
$$= \frac{\exp(-0.1x)}{\exp(-0.1 \times 9)} = \exp(-0.1(x - 9)).$$

Thus, when you shift the time origin to 9, i.e., let t = x - 9, the above conditional probability is equal to $\exp(-0.1t)$ for $t \ge 0$, which is exactly the complementary cdf of the exponential random variable with mean 10.

That is,

$$P(X > t + 9|X > 9) = P(X - 9 > t|X > 9) = \exp(-0.1t).$$

X-9 is the additional or remaining waiting time till the next bus arrival.

Given you have waited for 9 minutes, the additional or remaining time till the next bus arrival is still exponentially distributed with the same mean.

This isn't a surprise as the exponential distribution is the continuous version (limiting case) of the geometric distribution.

Suppose a sequence of IID Bernoulli trials is performed at time $\delta, 2\delta, \ldots$. Let p be the success probability of each trial. Let W be the waiting time till the first success. Then,

$$P(W > k\delta) = (1-p)^k \text{ for } k \ge 0, \text{ or } P(W \ge k\delta) = (1-p)^{k-1} \text{ for } k \ge 1.$$

Note
$$E[W] = \delta \sum_{k=0}^{\infty} (1-p)^k = \delta \sum_{k=1}^{\infty} (1-p)^{k-1} = \delta/p$$
.

For a fixed time $t, k = t/\delta$. Let $k \to \infty$ $(\delta \to 0)$ and $p \to 0$ such that $p/\delta \to \lambda$ (hence, $p = \lambda \delta + o(\delta)$; also note $p/\delta = \frac{kp}{t}$, so the scaling of k and p is such that $kp \approx \lambda t$). Then,

$$P(W > t) = (1 - p)^{t/\delta} \approx (1 - \lambda \delta)^{t/\delta} \to \exp(-\lambda t).$$

In the above, we used $(1-1/n)^n \to e^{-1}$ with $1/n = \lambda \delta$.

Given the IID nature of the Bernoulli trials, it is not surprising that after waiting for some time without seeing a success, the remaining time till the first success has the same distribution as if we start from the first trial.

Gaussian/Normal Distribution

The pdf for Gaussian distribution with mean μ and variance σ^2 :

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), x \in \mathbb{R}.$$

The distribution function:

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

- It is denoted by $\mathcal{N}(\mu, \sigma^2)$.
- $\mathcal{N}(0,1)$ is called the standard normal distribution.

Let X be
$$\mathcal{N}(\mu, \sigma^2)$$
. Then, $Y = (X - \mu)/\sigma$ is $\mathcal{N}(0, 1)$.

This can be verified by calculating $P(Y \le y) = P(X \le y\sigma + \mu)$.

In general, given the above X, any $Y = \alpha X + \beta$ is

$$\mathcal{N}(\alpha\mu + \beta, \alpha^2\sigma^2)$$
 (prove this).

Gamma Distribution

• Gamma distribution (α, β) : $\alpha, \beta > 0$; very useful for modeling

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x \ge 0.$$

The gamma function $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$. For integer n, $\Gamma(n) = (n-1)!$.

$$E[X] = \frac{\alpha}{\beta}, \text{var}(X) = \frac{\alpha}{\beta^2}.$$

• When α is an integer, we often rename $\alpha \leftrightarrow n, \beta \leftrightarrow \lambda$. Then,

$$f(x) = \frac{\lambda e^{-\lambda x}}{(n-1)!} (\lambda x)^{n-1}, \quad x \ge 0.$$

In this form, it is also known as the Erlang distribution.

When n = 1, it becomes the exponential distribution.

The sum of n IID exponential random variables has the Erlang distribution:

If X_1, \ldots, X_n are IID exponential random variables with parameter λ , then $X = X_1 + \ldots + X_n$ has the Erlang distribution (n, λ) .

Other Examples

- Uniform on [a, b]: The density function f(x) = 1/(b-a) on [a, b] and zero elsewhere. E[X] = (a+b)/2.
- Pareto (α, K) , where $\alpha, K > 0$:

$$F(x) = 1 - \left(\frac{K}{x}\right)^{\alpha}, \ f(x) = \frac{\alpha K^{\alpha}}{x^{\alpha+1}}, \ x \ge K.$$

$$E[X] = \infty$$
 for $\alpha \le 1$; $E[X] = \alpha K/(\alpha - 1)$ for $\alpha > 1$.
 $var(X) = \infty$ for $\alpha \le 2$; $var(X) = \frac{K^2 \alpha}{(\alpha - 1)^2(\alpha - 2)}$ for $\alpha > 2$.

It is the continuous version of the power law distribution.

Heavy-tail distribution: The tail of $\bar{F}(x)$ decays as a power function as apposed to exponential.

If you draw samples from such a heavy-tail distribution, large values

show up with a non-trivial probability.

If (X_1, X_2, \dots, X_n) are IID Pareto random variables, the maximum $(\max_i X_i)$ often dominates in the sum $(\sum_i X_i)$.

If you use Pareto distribution in simulation, you need to watch out the large values drawn from the Pareto distribution, especially when α is close (and above) 2. Sometimes the large values are so large that they don't make practical sense; furthermore, with those exceedingly large values, your simulation may not reach the steady-state behavior even after a long run. In those situations, you may need to use 'bounded' Pareto where the large values cannot exceed an upper bound. One possibility is that, whenever a value drawn from the original Pareto distribution exceeds the upper bound, you 'round' it down to the upper bound.

Joint Distribution

X and Y are defined on a common probability space (Ω, \mathcal{F}, P) .

• The joint distribution function $F: \mathbb{R}^2 \to [0,1]$ of X and Y is

$$F(x,y) = P(X \le x, Y \le y).$$

Definition: X and Y are (jointly) continuous with joint probability density function $f: \mathbb{R}^2 \to [0, \infty)$ if

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$$
, for each $x,y \in \mathbb{R}$.

If F is sufficiently differentiable at (x, y), we normally specify

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y).$$

Think of f(x,y)dxdy as the (infinitesimal) probability of

 $P(x < X \le x + dx, y < Y \le y + dy).$

If $B \in \mathbb{R}^2$ is a sufficiently nice set, then

$$P((X,Y) \in B) = \int \int_{B} f(x,y) dx dy.$$

• The **marginal** distribution functions of X and Y are:

$$F_X(x) = P(X \le x) = F(x, \infty); F_Y(y) = P(Y \le y) = F(\infty, y).$$

The marginal density functions (when the joint density exists) are:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy;$$
 $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx.$

• Expectation of Continuous Random Variables: Let $g: \mathbb{R}^2 \to \mathbb{R}$ be a measurable function (i.e., $g^{-1}(B) \in \mathcal{R}^2$ for every $B \in \mathcal{R}$). Then, $E[g(X,Y)] = \int_{\mathbb{R}} \int_{\mathbb{R}} g(x,y) f(x,y) dx dy$, provided the integral $\int_{\mathbb{R}} \int_{\mathbb{R}} |g(x,y)| f(x,y) dx dy$ exists (i.e., well-defined and finite).

• X and Y are independent if and only if

$$F(x,y) = F_X(x)F_Y(y)$$
, for all $x, y \in \mathbb{R}$,

and for the continuous case, if and only if

$$f(x,y) = f_X(x)f_Y(y)$$
, for all $x, y \in \mathbb{R}$.

Conditional Distribution and Expectation

• For a discrete random variable, the conditional distribution function of Y given X=x is defined by

$$F_{Y|X}(y|x) = P(Y \le y|X = x) = \frac{P(Y \le y, X = x)}{P(X = x)},$$

for any x such that P(X = x) > 0. This doesn't work for a continuous random variable because P(X = x) = 0 for all x.

But, if the marginal density $f_X(x) > 0$ for some x, we have

$$P(Y \le y | x \le X \le x + dx) = \frac{P(Y \le y, x \le X \le x + dx)}{P(x \le X \le x + dx)}$$

$$\approx \frac{\int_{-\infty}^{y} \int_{x}^{x+dx} f(u,v) du dv}{f_X(x) dx} \approx \frac{\int_{-\infty}^{y} f(x,v) dx dv}{f_X(x) dx} = \int_{-\infty}^{y} \frac{f(x,v)}{f_X(x)} dv.$$

Definition: Suppose X and Y have the joint pdf f(x, y). The

conditional distribution of Y given X = x, written as $F_{Y|X}(y|x)$ or $P(Y \le y|X = x)$, is defined to be

$$F_{Y|X}(y|x) = \int_{-\infty}^{y} \frac{f(x,v)}{f_X(x)} dv,$$

for any x such that $f_X(x) > 0$. In such a case, $f_{Y|X}(y|x) \triangleq \frac{f(x,y)}{f_X(x)}$ is the **conditional density function**.

• When the conditional density exists, the **conditional expectation** of Y given X=x, written as E[Y|X=x], is defined by $E[Y|X=x]=\int_{\mathbb{R}}yf_{Y|X}(y|x)dy$, for any x such that $f_X(x)>0$. More generally,

$$E[Y|X=x] = \int_{\mathbb{R}} y dF_{Y|X}(y|x).$$

• E[Y|X=x] is depends on x. Let $\psi(x)=E[Y|X=x]$. Then, $\psi(X)=E[Y|X]$ is a random variable, which depends X.

• Important Fact: We have $E[\psi(X)] = E[Y]$. In other words,

$$E[Y] = E[E[Y|X]].$$

This works for all types of random variables.

Since $E[E[Y|X]] = E[\psi(X)], E[E[Y|X]]$ means

$$E[E[Y|X]] = \int_{\mathbb{R}} \psi(x) dF_X(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} y dF_{Y|X}(y|x) dF_X(x).$$

To compute E[Y], we can conditional on some random variable first, say X, and compute the conditional expectation of Y given each X=x. Then, we 'average' the result over X (that is, compute the expectation of the result over the distribution of X).

For simplicity, suppose the conditional density and marginal density

functions exist. Then,

$$\int_{\mathbb{R}} \int_{\mathbb{R}} y dF_{Y|X}(y|x) dF_X(x) = \int_{\mathbb{R}} \int_{\mathbb{R}} y f_{Y|X}(y|x) f_X(x) dy dx$$

$$= \int_{\mathbb{R}} \int_{\mathbb{R}} y f_{X,Y}(x,y) dy dx$$

$$= \int_{\mathbb{R}} y \int_{\mathbb{R}} f_{X,Y}(x,y) dx dy$$

$$= \int_{\mathbb{R}} y f_Y(y) dy$$

$$= E[Y].$$

Provided $E|Y| < \infty$, the interchange of integrals is justified by Fubini-Tonelli's theorem.

We can compute probabilities using the same 'conditioning' trick. Consider an event $B \in \mathcal{F}$. Let $Y = 1_B$, which is discrete. Suppose X is a continuous random variable. Then,

$$P(B) = E[1_B] = E[E[1_B|X]]$$

$$= \int_{\mathbb{R}} E[1_B|X = x] f_X(x) dx$$

$$= \int_{\mathbb{R}} 1 \cdot P(1_B = 1|X = x) f_X(x) dx$$

$$= \int_{\mathbb{R}} P(B|X = x) f_X(x) dx.$$

In the last step, we used $\{\omega \in \Omega : 1_B(\omega) = 1\} = B$. To go from step 2 to step 3, we are a bit fuzzy since we haven't defined what it means by $P(Y = y_i | X = x)$ when Y is discrete and X is continuous. Basically, it is the probability assignment for a discrete random variable, i.e., $\sum_i P(Y = y_i | X = x) = 1$. Then, we use the usual formula for calculating the expectation of a discrete random variable (i.e., $E[Z] = \sum_i z_i P(Z = z_i)$).

Sum of Random Variables

Suppose X and Y have joint density function f and Z = X + Y. Then,

$$f_Z(z) = \int_{-\infty}^{\infty} f(x, z - x) dx.$$

Formal method: Let $A = \{(x, y) : x + y \le z\}$.

$$P(Z \le z) = P(X + Y \le z) = \int \int_A f(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z-x} f(x, y) dy dx, \text{ (change of variable } y = v - x)$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{z} f(x, v - x) dv dx$$

$$= \int_{-\infty}^{z} \int_{-\infty}^{\infty} f(x, v - x) dx dv.$$

Therefore, $\int_{-\infty}^{\infty} f(x, v - x) dx$ is the density function for Z.

Heuristic argument:

$$f_Z(z)dz \approx P(z \le X + Y \le z + dz)$$

$$= \int_{-\infty}^{\infty} \int_{z-x}^{z-x+dz} f(x,y)dydx$$

$$\approx \int_{-\infty}^{\infty} f(x,z-x)dzdx.$$

Canceling dz, we get the desired $f_Z(z)$.

Next, suppose X and Y are independent. Then,

$$f(x, z - x) = f_X(x)f_Y(z - x)$$
, and

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx = \int_{-\infty}^{\infty} f_Y(y) f_X(z - y) dy.$$

 f_Z is equal to the convolution of f_X and f_Y , written as $f_Z = f_X * f_Y$.

Example

Suppose X_1 and X_2 are independent exponential random variables with parameter λ . Suppose $X=X_1$ and $S=X_1+X_2$. What is the conditional distribution of X given S=s?

First, we need to compute the joint density of X and S, f(x,s). The joint distribution function of X and S is $F(x,s) = P(X_1 \le x, X_1 + X_2 \le s)$.

Note that when x > s,

$$F(x,s) = P(X_1 \le s, X_1 + X_2 \le s) + P(s < X_1 \le x, X_1 + X_2 \le s)$$
$$= P(X_1 \le s, X_1 + X_2 \le s).$$

Therefore, we will assume $x \leq s$ in the following.

$$F(x,s) = P(X_1 \le x, X_1 + X_2 \le s)$$

$$= \int_0^x P(X_1 + X_2 \le s | X_1 = u) f_{X_1}(u) du$$

$$= \int_0^x P(X_2 \le s - u) f_{X_1}(u) du$$

$$= \int_0^x (1 - e^{-\lambda(s - u)}) \lambda e^{-\lambda u} du$$

$$= 1 - e^{-\lambda x} - \lambda x e^{-\lambda s}$$

We used the trick of 'conditioning' (on X_1) to get the second equality.

$$f(x,s) = \frac{\partial^2 F}{\partial x \partial s}(x,s) = \lambda^2 e^{-\lambda s}, \ \ 0 \le x \le s.$$

The marginal density of S is

$$f_S(s) = \int_0^\infty f(x,s)dx = \int_0^s f(x,s)dx = \lambda^2 s e^{-\lambda s}.$$

Then, for $0 \le x \le s$,

$$P(X \le x | S = s) = \int_0^x f_{X|S}(u|s) du$$
$$= \int_0^x \frac{f(u,s)}{f_S(s)} du$$
$$= \frac{x}{s}.$$

Conclusion: Given $X_1 + X_2 = s$, X_1 is uniformly distributed on [0, s].

Functions of Random Variables

Suppose X_1 and X_2 have joint density function f. Suppose $g_1, g_2 : \mathbb{R}^2 \to \mathbb{R}$ are measurable functions. Let $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$ What is the joint density function of Y_1 and Y_2 ?

Let the mapping $(x_1, x_2) \mapsto (y_1, y_2) = (g_1(x_1, x_2), g_2(x_1, x_2))$ be denoted by $g = (g_1, g_2)$. For simplicity, suppose g is a one-to-one and onto mapping from U to V, where $U, V \subseteq \mathbb{R}^2$. Suppose $(X_1, X_2) \in U$ and $(Y_1, Y_2) \in V$.

Then, $(x_1, x_2) = h(y_1, y_2)$, where $h = g^{-1}$. Suppose h can be written as

 $h(y_1, y_2) = (h_1(y_1, y_2), h_2(y_1, y_2))$. The Jacobian matrix of h is

$$J_h = \begin{pmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} \end{pmatrix}$$

For a typical set $B \subseteq V$, let $A = g^{-1}(B) = h(B) \in U$. Then,

$$P((Y_1, Y_2) \in B) = P((X_1, X_2) \in A) = \int \int_A f(x_1, x_2) dx_1 dx_2$$
$$= \int \int_B f(h(y_1, y_2)) |\det(J_h(y_1, y_2))| dy_1 dy_2.$$

In the above, we used the change of variable formula in calculus, and $det(J_h)$ is the determinant of the Jacobian matrix.

We see that the joint density function of (Y_1, Y_2) is

$$f_{Y_1,Y_2}(y_1,y_2) = f(h_1(y_1,y_2),h_2(y_1,y_2)) \left| \det(J_h(y_1,y_2)) \right|,$$

for (y_1, y_2) in the range of g.

Rewrite the earlier example as $Y_1 = X_1$ and $Y_2 = X_1 + X_2$. We have $g(x_1, x_2) = (x_1, x_1 + x_2)$ and g maps the set $\{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$ onto the set $\{(y_1, y_2) : 0 \le y_1 \le y_2\}$.

Then, $X_1 = Y_1$ and $X_2 = Y_2 - Y_1$. The inverse function $h = (h_1, h_2)$ is given by $h_1(y_1, y_2) = y_1$ and $h_2(y_1, y_2) = y_2 - y_1$. Then,

$$J_h = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix},$$

and $\det(J_h(y_1, y_2)) = 1$. Then,

$$f_{Y_1,Y_2}(y_1, y_2) = f(y_1, y_2 - y_1) = \lambda e^{-\lambda y_1} \lambda e^{-\lambda (y_2 - y_1)}$$
$$= \lambda^2 e^{-\lambda y_2}, \text{ for } 0 \le y_1 \le y_2.$$