Applied Multivariate Statistical Analysis: Homework 1

Homework format: all homework must be written in latex. You must turn in both your tex and pdf files. Attach your code and computer output if there is any programming.

- 1. (a) Consider an $N \times N$ invertible matrix A and a vector $a \in \mathbb{R}^N$, find explicit expressions for $|A + aa^T|$ and $(A + aa^T)^{-1}$, where |A| denotes the determinant of a square matrix A.
 - (b) For two non-singular $p \times p$ matrices A and B, find an expression of $(A+B)^{-1}$ that contains only A^{-1} and B^{-1} .
- 2. Suppose symmetric matrices A and B are both $(J \times J)$. Denote eigenvalues of A and B as $\{\lambda_j(A)\}$ and $\{\lambda_j(B)\}$, respectively. Please show that:

$$\sum_{j=1}^{J} \{\lambda_j(A) - \lambda_j(B)\}^2 \le trace\{(A-B)(A-B)^T\}$$

3. A is a $J \times J$ symmetric matrix, U is a $(J \times K)$ matrix where $K \leq J$. Suppose that $U^T U = I_K$. Please show that

$$\lambda_j(U^T A U) \le \lambda_j(A)$$

and the equality holds if the columns of U are the first K eigen-vectors of A.

4. Consider matrix
$$X = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$
,

- (a) Find the QR and singular value decomposition of X. What are the two sets of basis vectors of the column space C(X)?
- (b) Use the SVD of X to find the eigen-decomposition of X^TX . What are the eigenvalues and eigenvectors?

- 5. Consider a random sample X_1, \ldots, X_N that are uniformly distributed in a unit ball in \Re^p , i.e., $\{x \in \Re^p : ||x|| \le 1\}$.
 - (a) Derive the median distance M from the origin to the closest data point. What are the median distances for a sample of size 10^6 and p = 1, ..., 15, respectively.
 - (b) Derive the mean distance D from the origin to the closest data point. What are the mean distances for a sample of size 10^6 and $p=1,\ldots,15$, respectively.
- 6. Let X_1 be N(0,1) and $X_2=\left\{\begin{array}{ll} -X_1, & -c\leq X_1\leq c\\ X_1, & \text{otherwise} \end{array}\right.$ for some constant c>0.
 - (a) Show that X_2 also has a N(0,1) distribution for any fixed c, but $(X_1, X_2)^T$ does not have a bivariate normal distribution.
 - (b) Show that there exists c > 0 such that $cov(X_1, X_2) = 0$, but the resulting X_2 is not independent of X_1 .
- 7. Consider a linear model with p parameters, fit by ordinary least squares to a set of training data $(x_1, y_1), \ldots, (x_n, y_n)$ with the OLS estimate $\hat{\beta}_{OLS}$. Suppose we have some test data $(\tilde{x}_1, \tilde{y}_1), \ldots, (\tilde{x}_m, \tilde{y}_m)$ drawn at random from the same population as the training data. Denote $R_{tr}(\beta) = n^{-1} \sum_{i=1}^{n} (y_i \beta^T x_i)^2$ and $R_{te}(\beta) = m^{-1} \sum_{i=1}^{m} (\tilde{y}_i \beta^T \tilde{x}_i)^2$, show that $E\{R_{tr}(\hat{\beta}_{OLS})\} \leq E\{R_{te}(\hat{\beta}_{OLS})\}$, where the expectations are taken over all random quantities.
- 8. Consider the linear model $y = X\beta + \epsilon$, where X is $n \times p$ and $y \in \mathbb{R}^n$, and of interest is

$$\hat{\beta} = \operatorname{argmin}_{\{\beta \in \Re^p : A\beta = a\}} (y - X\beta)^T (y - X\beta),$$

where the $q \times p$ matrix A is of rank $q, q \leq p$, and $a \in \Re^q$. Show that

$$\hat{\beta} = \hat{\beta}_{OLS} - (X^T X)^{-1} A^T \{ A(X^T X)^{-1} A^T \}^{-1} (A \hat{\beta}_{OLS} - a),$$

where $\hat{\beta}_{OLS} = (X^T X)^{-1} X^T y$ is the ordinary least square estimator.