The group G is isomorphic to the projective special linear group PSL(2,17). Ordinary character table of $G \cong PSL(2,17)$:

1a $2a$ $3a$ $4a$	8a	8b	9a	9b	9c	17a	17b				
χ_1 1 1 1 1	1	1	1	1	1	1	1				
$\chi_2 = 9 - 1 = 0 - 1$	-1	-1	0	0	0	$-E(17) - E(17)^2 - E(17)^4 - E(17)^8 - E(17)^9 - E(17)^{13} - E(17)^{15} - E(17)^{16}$	$-E(17)^3 - E(17)^5 - E(17)^6 - E(17)^7 - E(17)^{10} - E(17)^{11} - E(17)^{12} - E(17)^{14}$				
$\chi_3 \ \ 9 \ \ 1 \ \ 0 \ \ 1$	-1	-1	0	0	0	$-E(17)^3 - E(17)^5 - E(17)^6 - E(17)^7 - E(17)^{10} - E(17)^{11} - E(17)^{12} - E(17)^{14}$	$-E(17) - E(17)^{2} - E(17)^{4} - E(17)^{8} - E(17)^{9} - E(17)^{13} - E(17)^{15} - E(17)^{16}$				
χ_4 16 0 -2 0	0	0	1	1	1	-1	-1				
χ_5 16 0 1 0	0	0	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	-1	-1				
χ_6 16 0 1 0	0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	-1	-1				
χ_7 16 0 1 0	0	0	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	-1	-1				
χ_8 17 1 -1 1	1	1	-1	-1	-1	0	0				
χ_9 18 2 0 -2	0	0	0	0	0	1	1				
$ \chi_{10} 18 -2 0 0 -$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	1	1				
$ \chi_{11} 18 -2 0 0$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	1	1				

Trivial source character table of $G \cong PSL(2,17)$ at p = 17:

Trivial source character table of $G = PSL(2,17)$ at $p = 17$:														
Normalisers N_i		N_1					N_2							
p-subgroups of G up to conjugacy in G			P_1				P_2							
Representatives $n_j \in N_i$	1a 2a 3a 4e	a = 8a	8 <i>b</i>	9a	9b	9c	1a	8 <i>a</i>	4b	$\overline{2a}$	8d	8c	$\overline{4a}$	8b
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 17 1 -1 1$	1	1	-1	-1	-1	0	0	0	0	0	0	0	0 '
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 2 1 -$	2 0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	0	0	0	0	0	0	0	0 '
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1}$ 17 1 2 1	1	1	$-E(9)^2 - E(9)^3 - E(9)^6 - E(9)^7$	$-E(9)^3 - E(9)^4 - E(9)^5 - E(9)^6$	$E(9)^2 - E(9)^3 + E(9)^4 + E(9)^5 - E(9)^6 + E(9)^7$	0	0	0	0	0	0	0	0 '
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 - 2 1 0$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	0	0	0	0	0	0	0	0 '
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 - 2 1 0$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	0	0	0	0	0	0	0	0 '
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 2 -2 -$	2 0	0	1	1	1	0	0	0	0	0	0	0	0 '
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 34 -2 -2 0$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	1	1	1	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \begin{vmatrix} 34 & 2 & 1 & 2 \end{vmatrix}$	-2	-2	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	1	$-E(8)^{3}$	-E(4)	-1 -	-E(8)	$E(8)^{3}$	E(4)	E(8)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $			0	0	0	0	1	E(4)	-1	1	-E(4)	E(4)	-1	-E(4)
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_{1}$ 18 2 0 $_{-}$	2 0	0	0	0	0	1	-E(4)	-1	1	E(4)	-E(4)	-1	E(4)
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$	$_{1}$ 18 2 0 2	-2	-2	0	0	0	1	-1	1	1	-1	-1	1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1} \mid 18 - 2 = 0 = 0$	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	1	-E(8)	E(4)	-1 -	$-E(8)^{3}$	E(8)	-E(4)	$E(8)^3$
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1}$ 18 -2 0 0	$-E(8) + E(8)^3$	$E(8) - E(8)^3$	0	0	0	1	$E(8)^{3}$	-E(4)	-1	E(8)	$-E(8)^3$	E(4)	-E(8)
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11}$		1	1	1	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot $	$_{1}$ 18 -2 0 0	$E(8) - E(8)^3$	$-E(8) + E(8)^3$	0	0	0	1	E(8)	E(4)	-1	$E(8)^{3}$	-E(8)	-E(4)	$-E(8)^3$

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 10, 17, 9, 4, 14, 12, 3, 2, 16, 18, 11, 8, 7, 15, 13, 6)]) \cong C17$

 $N_1 = Group([(1,16)(2,8)(3,11)(5,10)(6,14)(7,12)(9,15)(17,18),(1,8,15)(2,11,7)(3,4,10)(5,14,9)(6,12,13)(16,18,17)]) \cong PSL(2,17)$ $N_2 = Group([(1,10,17,9,4,14,12,3,2,16,18,11,8,7,15,13,6),(2,4,17,10,16,7,13,6)(3,8,12,9,18,14,11,15)]) \cong C17: C8$