Serial No.: 09/871,564

Filing Date: May 31, 2001

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C07D 401/04, A61K 31/415, 31/44 31/505, C07D 401/14, 409/14, 413/14 405/14, 471/04, 417/14, 453/02 // (C07D 471/04, 237:00, 231:00) (C07D 471/04, 237:00, 233:00)

(11) International Publication Number:

WO 98/52940

(43) International Publication Date: 26 November 1998 (26.11.98)

(21) International Application Number:

PCT/US98/10436

A1

(22) International Filing Date:

22 May 1998 (22.05.98)

(30) Priority Data:

60/047,570

22 May 1997 (22.05.97)

US

(71) Applicant (for all designated States except US): G.D. SEARLE AND CO. [US/US]; P.O. Box 5110, Chicago, IL 60680

(72) Inventors; and

(75) Inventors; and
(75) Inventors/Applicants (for US only): ANANTANARAYAN,
Ashok [US/US]; 54 Lisk Drive, Hainesville, IL 60030
(US). CLARE, Michael [GB/US]; 5154 West Brown Street,
Skokie, IL 60077 (US). COLLINS, Paul, W. [US/US]; 1557 Hawthome Place, Deerfield, IL 60015 (US). CRICH, Joyce, Zuowu [CN/US]; 1501 G Topp Lane, Glenview, IL 60025 (US). DEVRAJ, Rajesh [IN/US]; 41 Westmeade Court, Chesterfield, MO 63017 (US). FLYNN, Daniel, L. [US/US]; 16868 Kehrsdale Drive, Clarkson Valley, MO 63005 (US). GENG, Lifeng [CN/US]; 5300 Davis Street, Skokie, IL 60077 (US). HANSON, Gunnar, J. [US/US]; 7410 Keystone

Avenue, Skokie, IL 60076 (US). KOSZYK, Francis, J. [US/US]; 11 Wildwood Drive South, Prospect Heights, IL 60070 (US). LIAO, Shuyuan [CN/US]; 2N 500 Diane Avenue, Glen Ellyn, IL 60137 (US). PARTIS, Richard, A. [US/US]; 2221 Noyes Street, Evanston, IL 60201 (US). RAO, Shashidhar, N. [IN/US]; 43 Windsor Place, Conference of the C Mundelein, IL 60060 (US). SELNESS, Shaun, Raj [US/US]; Apartment J, 12387 Cross Creek Cove, St. Louis, MO 63141 (US). SOUTH, Michael, S. [US/US]; 11671 Chieftain Drive, St. Louis, MO 63146 (US). STEALEY, Michael, A. [US/US]; 502 Juniper Parkway, Libertyville, IL 60048 (US). WEIER, Richard, M. [US/US]; 240 Hickory Court, Lake Bluff, IL 60044 (US). XU, Xiangdong [CN/US]; Apartment 715, 855 Hinman Avenue, Evanston, IL 60202 (US).

- (74) Agents: ROEDEL, John, K., Jr. et al.; Senniger, Powers, Leavitt and Roedel, 16th floor, One Metropolitan Square, St. Louis, MO 63102 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, signated States: AL, AM, AI, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, Eurasian patent (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TJ, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KG, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KZ, MD, PLI, TM, EURASIAN (GM, AZ, BY, KZ, MD, AZ, EURASIAN (GM, AZ, BY, KZ, MD, AZ, EURASIAN (GM, AZ, BY, KZ, MD, AZ, EURASIAN (GM, AZ, patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: SUBSTITUTED PYRAZOLES AS p38 KINASE INHIBITORS

(57) Abstract

A class of pyrazole derivatives is described for use in treating p38 kinase mediated disorders. Compounds of particular interest are defined by Formula (I) wherein R1, R2, R3 and R4 are as described in the specification.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slave-i-
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovenia
AT	Austria	FR	France	LU	Luxembourg	SK. SN	Slovakia
AU	Australia	GA	Gabon	LV	Latvia	. SZ	Senegal
AZ	Azerbaijan	GB	United Kingdom	MC	Моласо		Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TD	Chad
BB	Barbados	GH	Ghana	MG	Madagascar	TG	Togo
BE	Belgium	GN	Guinca	MK		TJ	Tajikistan
BF	Burkina Faso	GR	Greece	MIK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali	TR .	Turkey
BJ	Benin	(E	Ireland	MN		TT	Trinidad and Tobago
BR	Brazil	ΙĽ	[srac]	MR	Mongolia Mauritania	UA	Ukraine
BY	Belarus	ıs	Iceland	MW	Malawi	UG	Uganda
CA	Canada	ŧΤ	Italy	MX		US	United States of America
CF	Central African Republic	JP	Japan	NE NE	Mexico	UZ	Uzbekistan
CG	Congo	KE	Kenya		Niger	VN	Viet Nam
СН	Switzerland	KG	Kyrgyzstan	, NL	Netherlands	YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NO	Norway	zw	Zimbabwe
СМ	Cameroon	•••	Republic of Korea	NZ	New Zealand		
CN	China	KR	Republic of Korea	PL	Poland		
CU	Cuba	KZ	Kazakstan	PT	Portugal		
cz	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	LI	Liechtenstein	RU	Russian Federation		
DK	Denmark	LK	Sri Lanka	SD	Sudan		
EE	Estonia	LR	Liberia	SE	Sweden		
		LK	Споспа	SG	Singapore		
ĺ							

SUBSTITUTED PYRAZOLES AS p38 KINASE INHIBITORS

5 Cross-Reference to Related Application

This application claims priority from U.S. Provisional Application Serial No. 60/047,570 filed May 22, 1997.

10 Field of the Invention

20

25

30

35

This invention relates to a novel group of pyrazole compounds, compositions and methods for treating p38 kinase mediated disorders.

15 Background of the Invention

Mitogen-activated protein kinases (MAP) is a family of proline-directed serine/threonine kinases that activate their substrates by dual phosphorylation. The kinases are activated by a variety of signals including nutritional and osmotic stress, UV light, growth factors, endotoxin and inflammatory cytokines. The p38 MAP kinase group is a MAP family of various isoforms, including p38 α , p38 β and p38 γ , and is responsible for phosphorylating and activating transcription factors (e.g. ATF2, CHOP and MEF2C) as well as other kinases (e.g. MAPKAP-2 and MAPKAP-3). The p38 isoforms are activated by bacterial lipopolysaccharide, physical and chemical stress and by pro-inflammatory cytokines, including tumor necrosis factor (TNF- α) and interleukin-1 (IL-1). The products of the p38 phosphorylation mediate the production of inflammatory cytokines, including TNF and IL-1, and cyclooxygenase-2.

 $TNF-\alpha$ is a cytokine produced primarily by activated monocytes and macrophages. Excessive or unregulated TNF production has been implicated in mediating a number of diseases. Recent studies indicate that TNF has a causative role in the pathogenesis of rheumatoid

5

10

15

20

25

30

35

2

arthritis. Additional studies demonstrate that inhibition of TNF has broad application in the treatment of inflammation, inflammatory bowel disease, multiple sclerosis and asthma.

TNF has also been implicated in viral infections, such as HIV, influenza virus, and herpes virus including herpes simplex virus type-1 (HSV-1), herpes simplex virus type-2 (HSV-2), cytomegalovirus (CMV), varicella-zoster virus (VZV), Epstein-Barr virus, human herpesvirus-6 (HHV-6), human herpesvirus-7 (HHV-7), human herpesvirus-8 (HHV-8), pseudorabies and rhinotracheitis, among others.

IL-8 is another pro-inflammatory cytokine, which is produced by mononuclear cells, fibroblasts, endothelial cells, and keratinocytes, and is associated with conditions including inflammation.

IL-1 is produced by activated monocytes and macrophages and is involved in the inflammatory response. IL-1 plays a role in many pathophysiological responses including rheumatoid arthritis, fever and reduction of bone resorption.

TNF, IL-1 and IL-8 affect a wide variety of cells and tissues and are important inflammatory mediators of a wide variety of disease states and conditions. The inhibition of these cytokines by inhibition of the p38 kinase is of benefit in controlling, reducing and alleviating many of these disease states.

Various pyrazoles have previously been described.

U.S. Patent No. 4,000,281, to Beiler and Binon, describes 4,5-aryl/heteroaryl substituted pyrazoles with antiviral activity against both RNA and DNA viruses such as myxoviruses, adenoviruses, rhinoviruses, and various viruses of the herpes group. WO 92/19615, published November 12, 1992, describes pyrazoles as novel fungicides. U. S. Patent No. 3,984,431, to Cueremy and Renault, describes derivatives of pyrazole-5-acetic acid as having anti-inflammatory activity. Specifically, [1-

3

isobutyl-3,4-diphenyl-1H-pyrazol-5-yl]acetic acid is described. U. S. Patent No. 3,245,093 to Hinsgen et al, describes a process for preparing pyrazoles. WO 83/00330, published February 3, 1983, describes a new process for the preparation of diphenyl-3,4-methyl-5-pyrazole derivatives. WO 95/06036, published March 2, 1995, describes a process for preparing pyrazole derivatives. US patent 5,589,439, to T. Goto, et al., describes tetrazole derivatives and their use as herbicides. EP 515,041 describes pyrimidyl substituted pyrazole derivatives as novel agricultural fungicides. Japanese Patent 4,145,081 describes pyrazolecarboxylic acid derivatives as herbicides. Japanese Patent 5,345,772 describes novel pyrazole derivatives as inhibiting acetylcholinesterase.

10

15

20

25

Pyrazoles have been described for use in the treatment of inflammation. Japanese Patent 5,017,470 describes synthesis of pyrazole derivatives as antiinflammatory, anti-rheumatic, anti-bacterial and antiviral drugs. EP 115640, published Dec 30, 1983, describes 4-imidazolyl-pyrazole derivatives as inhibitors of thromboxane synthesis. 3-(4-Isopropyl-1methylcyclohex-1-yl)-4-(imidazol-1-yl)-1H-pyrazole is specifically described. WO 97/01551, published Jan 16, 1997, describes pyrazole compounds as adenosine 4-(3-0xo-2,3-dihydropyridazin-6-yl)-3antagonists. phenylpyrazole is specifically described. U.S. Patent No. 5,134,142, to Matsuo et al. describes 1,5-diaryl pyrazoles as having anti-inflammatory activity.

30 U.S. Patent No. 5,559,137 to Adams et al, describes novel pyrazoles (1,3,4,-substituted) as inhibitors of cytokines used in the treatment of cytokine diseases.

Specifically, 3-(4-fluorophenyl)-1-(4-methylsulfinylphenyl)-4-(4-pyridyl)-5H-pyrazole is described. WO 96/03385, published February 8, 1996, describes 3,4-substituted pyrazoles, as having anti-

4

inflammatory activity. Specifically, 4-[1-ethyl-4-(4-pyridyl)-5-trifluoromethyl-1H-pyrazol-3-yl]benzenesulfonamide is described.

The invention's pyrazolyl compounds are found to show usefulness as p38 kinase inhibitors.

Description of the Invention

5

A class of substituted pyrazolyl compounds useful in treating p38 mediated disorders is defined by Formula I:

wherein

R1 is selected from hydrido, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, 15 cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl, haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, 20 heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl, alkylthioalkylene, alkenylthioalkylene, alkylthioalkenylene, amino, aminoalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, 25 alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl, alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene,

10

20

25

30

5

alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene, heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, arylcarbonylarylene, alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and heterocyclylcarbonyloxyarylene; or

R¹ has the formula

wherein:

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and

R²⁷ is selected from alkyl, cycloalkyl, alkynyl, aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene, cycloalkylarylene, cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene, aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyarylene, aryloxyarylene, aralkoxyarylene,

10

15

20

25

30

alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene, alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene, aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene, cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, arylaminocarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, and alkylsulfonylarylene groups are optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl,

alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹
is selected from aralkyl, aralkoxyalkylene,
heterocyclylalkylene, alkylheterocyclylalkylene,
alkoxycarbonylalkylene, alkylthioalkylene, and
aralkylthioalkylene; wherein said aralkyl and
heterocylcyl groups are optionally substituted with one
or more radicals independently selected from alkyl and
nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals are optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy;

10 and R² is selected from hydrido, halogen, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, haloalkyl, hydroxyalkyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, heterocyclylalkylamino, aralkylamino, 15 aminoalkyl, aminoaryl, aminoalkylamino, arylaminoalkylene, alkylaminoalkylene, arylaminoarylene, alkylaminoarylene, alkylaminoalkylamino, cycloalkyl, cycloalkenyl, alkoxy, heterocyclyloxy, alkylthio, arylthio, heterocyclylthio, carboxy, carboxyalkyl, 20 carboxycycloalkyl, carboxycycloalkenyl, carboxyalkylamino, alkoxycarbonyl, heterocyclylcarbonyl, alkoxycarbonylalkyl, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonyl, alkoxyalkylamino, 25 alkoxycarbonylaminoalkylamino, and heterocyclylsulfonyl; wherein the aryl, heterocyclyl, heterocyclylalkyl, cycloalkyl and cycloalkenyl groups are optionally substituted with one or more radicals independently selected from halo, keto, amino, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, aralkyl, heterocyclylalkyl, 30 epoxyalkyl, amino(hydroxyalkyl) carboxy, alkoxy, aryloxy, aralkoxy, haloalkyl, alkylamino, alkynylamino, alkylaminoalkylamino, heterocyclylalkylamino, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, 35 arylsulfonyl, and aralkylsulfonyl; or

R² has the formula:

8

wherein:

j is an integer from 0 to 8; and
m is 0 or 1; and

R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R³² is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, alkyl, $-C(0)R^{35}$, $-C(0)OR^{35}$, $-SO_2R^{36}$, $-C(0)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$, wherein R^{35} , R^{36} , R^{37} , R^{38} , R^{39} and R^{40} are independently selected from hydrocarbon, heterosubstituted hydrocarbon and heterocyclyl; and

R³⁴ is selected from hydrogen, alkyl, aminocarbonyl, alkylaminocarbonyl, and arylaminocarbonyl; or

 \mbox{R}^2 is $\mbox{-CR}^{41}\mbox{R}^{42}$ wherein \mbox{R}^{41} is aryl, and \mbox{R}^{42} is hydroxy; and

R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl,

25

5

15

20

(IV) (V)

ç

wherein \mathbb{R}^{43} is selected from hydrogen, alkyl, aminoalkyl, alkoxyalkyl, alkenoxyalkyl, and aryloxyalkyl; and

wherein the R3 pyridinyl, pyrimidinyl, quinolinyl and purinyl groups are optionally substituted with one or 5 more radicals independently selected from halo, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, 10 alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, heterocyclylamino, aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyaralkylamino, aminosulfinyl, 15 aminosulfonyl, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, heterocyclylalkylamino, aralkylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino, halosulfonyl, aminoalkyl, haloalkyl, 20 alkylcarbonyl, hydrazinyl, alkylhydrazinyl, arylhydrazinyl, or -NR44R45 wherein R44 is alkylcarbonyl or amino, and R45 is alkyl or aralkyl; and

R4 is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein
25 R4 is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfinylalkylene, arylsulfinylalkylene, arylsulfonylalkylene, arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;

arylaminoalkylene, aminoalkylamino, and hydroxy; provided R³ is not 2-pyridinyl when R⁴ is a phenyl

10

ring containing a 2-hydroxy substituent and when R^1 is hydrido; further provided R^2 is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R^4 is hydrido; and further provided R^4 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

5

10

15

20

25

30

35

Compounds of Formula I would be useful for, but not limited to, the treatment of any disorder or disease state in a human, or other mammal, which is excacerbated or caused by excessive or unregulated TNF or p38 kinase production by such mammal. Accordingly, the present invention provides a method of treating a cytokine-mediated disease which comprises administering an effective cytokine-interfering amount of a compound of Formula I or a pharmaceutically acceptable salt thereof.

Compounds of Formula I would be useful for, but not limited to, the treatment of inflammation in a subject, and for use as antipyretics for the treatment of fever. Compounds of the invention would be useful to treat arthritis, including but not limited to, rheumatoid arthritis, spondyloarthropathies, gouty arthritis, osteoarthritis, systemic lupus erythematosus and juvenile arthritis, osteoarthritis, gouty arthritis and other arthritic conditions. Such compounds would be useful for the treatment of pulmonary disorders or lung inflammation, including adult respiratory distress syndrome, pulmonary sarcoisosis, asthma, silicosis, and chronic pulmonary inflammatory disease. The compounds are also useful for the treatment of viral and bacterial infections, including sepsis, septic shock, gram negative sepsis, malaria, meningitis, cachexia secondary to infection or malignancy, cachexia secondary to acquired immune deficiency syndrome (AIDS), AIDS, ARC (AIDS related complex), pneumonia, and herpesvirus.

11

compounds are also useful for the treatment of bone resorption diseases, such as osteoporosis, endotoxic shock, toxic shock syndrome, reperfusion injury, autoimmune disease including graft vs. host reaction and allograft rejections, cardiovascular diseases including 5 atherosclerosis, thrombosis, congestive heart failure, and cardiac reperfusion injury, renal reperfusion injury, liver disease and nephritis, and myalgias due to infection. The compounds are also useful for the treatment of influenza, multiple sclerosis, cancer, 10 diabetes, systemic lupus erthrematosis (SLE), skinrelated conditions such as psoriasis, eczema, burns, dermatitis, keloid formation, scar tissue formation, and angiogenic disorders. Compounds of the invention also would be useful to treat gastrointestinal conditions such 15 as inflammatory bowel disease, Crohn's disease, gastritis, irritable bowel syndrome and ulcerative colitis. The compounds would also be useful in the treatment of ophthalmic diseases, such as retinitis, retinopathies, uveitis, ocular photophobia, and of acute 20 injury to the eye tissue. Compounds of the invention also would be useful for treatment of angiogenesis, including neoplasia; metastasis; ophthalmological conditions such as corneal graft rejection, ocular neovascularization, retinal neovascularization including 25 neovascularization following injury or infection, diabetic retinopathy, retrolental fibroplasia and neovascular glaucoma; ulcerative diseases such as gastric ulcer; pathological, but non-malignant, conditions such 30 as hemaginomas, including invantile hemaginomas, angiofibroma of the nasopharynx and avascular necrosis of bone; diabetic nephropathy and cardiomyopathy; and disorders of the female reproductive system such as endometriosis. The compounds of the invention may also be useful for preventing the production of 35 cyclooxygenase-2.

.5

10

15

20

25

30

35

12

Besides being useful for human treatment, these compounds are also useful for veterinary treatment of companion animals, exotic animals and farm animals, including mammals, rodents, and the like. More preferred animals include horses, dogs, and cats.

The present compounds may also be used in cotherapies, partially or completely, in place of other conventional anti-inflammatories, such as together with steroids, cyclooxygenase-2 inhibitors, DMARD's, immunosuppressive agents, NSAIDs, 5-lipoxygenase inhibitors, LTB4 antagonists and LTA4 hydrolase inhibitors.

As used herein, the term "TNF mediated disorder" refers to any and all disorders and disease states in which TNF plays a role, either by control of TNF itself, or by TNF causing another monokine to be released, such as but not limited to IL-1, IL-6 or IL-8. A disease state in which, for instance, IL-1 is a major component, and whose production or action, is exacerbated or secreted in response to TNF, would therefore be considered a disorder mediated by TNF.

As used herein, the term "p38 mediated disorder" refers to any and all disorders and disease states in which p38 plays a role, either by control of p38 itself, or by p38 causing another factor to be released, such as but not limited to IL-1, IL-6 or IL-8. A disease state in which, for instance, IL-1 is a major component, and whose production or action, is exacerbated or secreted in response to p38, would therefore be considered a disorder mediated by p38.

As TNF- β has close structural homology with TNF- α (also known as cachectin) and since each induces similar biologic responses and binds to the same cellular receptor, the synthesis of both TNF- α and TNF- β are inhibited by the compounds of the present invention and thus are herein referred to collectively as "TNF" unless

10

25

30

specifically delineated otherwise.

A preferred class of compounds consists of those compounds of Formula I wherein

R¹ is selected from hydrido, lower alkyl, lower cycloalkyl, lower alkenyl, lower alkynyl, lower heterocyclyl, lower cycloalkylalkylene, lower haloalkyl, lower hydroxyalkyl, lower aralkyl, lower alkoxyalkyl, lower mercaptoalkyl, lower alkylthioalkylene, amino, lower alkylamino, lower arylamino, lower alkylaminoalkylene, and lower heterocyclylalkylene; or

R1 has the formula

wherein:

i is 0, 1 or 2; and

15 R²⁵ is selected from hydrogen, lower alkyl, lower phenylalkyl, lower heterocyclylalkyl, lower alkoxyalkylene, lower phenoxyalkylene, lower aminoalkyl, lower alkylaminoalkyl, lower phenoxyaminoalkyl, lower alkylcarbonylalkylene, lower phenoxycarbonylalkylene, and lower heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, lower alkyl, lower alkenyl, lower alkynyl, lower cycloalkylalkylene, lower phenylalkyl, lower alkoxycarbonylalkylene, and lower alkylaminoalkyl; and

R²⁷ is selected from lower alkyl, lower cycloalkyl, lower alkynyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower phenylalkyl, lower cycloalkylalkylene, lower cycloalkenylalkylene, lower cycloalkylarylene, lower cycloalkylcycloalkyl, lower heterocyclylalkylene, lower alkylphenylene, lower alkylphenylalkyl, lower phenylalkylphenylene, lower alkylheterocyclyl, lower alkylheterocyclylalkylene, lower

alkylheterocyclylphenylene, lower phenylalkylheterocyclyl, lower alkoxyalkylene, lower alkoxyphenylene, lower alkoxyphenylalkyl, lower alkoxyheterocyclyl, lower alkoxyalkoxyphenylene, lower phenoxyphenylene, lower phenylalkoxyphenylene, lower alkoxyheterocyclylalkylene, lower phenoxyalkoxyphenylene, lower alkoxycarbonylalkylene, lower alkoxycarbonylheterocyclyl, lower alkoxycarbonylheterocyclylcarbonylalkylene, lower aminoalkyl, lower alkylaminoalkylene, lower 10 phenylaminocarbonylalkylene, lower alkoxyphenylaminocarbonylalkylene, lower aminocarbonylalkylene, arylaminocarbonylalkylene, lower alkylaminocarbonylalkylene, lower phenylcarbonylalkylene, 15 lower alkoxycarbonylphenylene, lower phenoxycarbonylphenylene, lower alkylphenoxycarbonylphenylene, lower phenylcarbonylphenylene, lower alkylphenylcarbonylphenylene, lower alkoxycarbonylheterocyclylphenylene, lower 20 alkoxycarbonylalkoxylphenylene, lower heterocyclylcarbonylalkylphenylene, lower alkylthioalkylene, cycloalkylthioalkylene, lower alkylthiophenylene, lower phenylalkylthiophenylene, lower 25 heterocyclylthiophenylene, lower phenylthioalklylphenylene, lower phenylsulfonylaminoalkylene, lower alkylsulfonylphenylene, lower alkylaminosulfonylphenylene; wherein said lower alkyl, lower cycloalkyl, aryl selected from phenyl, biphenyl and 30 naphthyl, lower heterocyclyl, lower phenylalkyl, lower heterocyclylalkylene, lower alkylheterocyclylphenylene, lower alkoxyphenylene, lower phenoxyphenylene, lower phenylaminocarbonylalkylene, lower phenoxycarbonylphenylene, lower phenylcarbonylphenylene, 35

lower alkylthiophenylene, lower

10

15

20

25

30

35

heterocyclylthiophenylene, lower phenylthioalklylphenylene, and lower alkylsulfonylphenylene groups are optionally substituted with one or more radicals independently selected from lower alkyl, halo, lower haloalkyl, lower alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR⁴⁶R⁴⁷ wherein R⁴⁶ is lower alkoxycarbonyl, and R⁴⁷ is selected from lower phenylalkyl, lower phenylalkoxyalkylene, lower heterocyclylalkylene, lower alkylheterocyclylalkylene, lower alkoxycarbonylalkylene, lower alkylthioalkylene, and lower phenylalkylthioalkylene; wherein said phenylalkyl and heterocylcyl groups are optionally substituted with one or more radicals independently selected from lower alkyl and nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a 4-8 membered ring heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from lower alkyl, aryl selected from phenyl, biphenyl and naphthyl, heterocyclyl, heterocyclylalkylene, lower alkylheterocyclylalkylene, lower phenoxyalkylene, lower alkoxyphenylene, lower alkylphenoxyalkylene, lower alkoxyphenylene, lower alkoxycarbonyl, lower alkoxycarbonyl, lower phenylalkoxycarbonyl, lower alkylamino and lower alkoxycarbonylamino; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclylalkylene and lower phenoxyalkylene radicals are optionally substituted with one or more radicals independently selected from halogen, lower alkyl and lower alkoxy; and

R² is selected from hydrido, halogen, lower alkyl, aryl selected from phenyl, biphenyl, and naphthyl, lower haloalkyl, lower hydroxyalkyl, 5- or 6-membered heterocyclyl, lower alkylheterocyclyl, lower heterocyclylalkyl, lower alkylamino, lower alkynylamino, phenylamino, lower heterocyclylamino, lower

16

heterocyclylalkylamino, lower phenylalkylamino, lower aminoalkyl, lower aminoalkylamino, lower alkylaminoalkylamino, lower cycloalkyl, lower alkenyl, lower alkoxycarbonylalkyl, lower cycloalkenyl, lower carboxyalkylamino, lower alkoxycarbonyl, lower heterocyclylcarbonyl, lower alkoxycarbonylheterocyclyl, lower alkoxycarbonylheterocyclylcarbonyl, alkoxycarbonylalkyl, lower alkoxyalkylamino, lower alkoxycarbonylaminoalkylamino, lower heterocyclylsulfonyl, lower heterocyclyloxy, and lower heterocyclylthio; wherein the aryl, heterocylyl,

heterocyclylsulfonyl, lower heterocyclyloxy, and lower heterocyclylthio; wherein the aryl, heterocylyl, heterocyclylalkyl, cycloalkyl, and cycloalkenyl groups are optionally substituted with one or more radicals independently selected from halo, keto, lower alkyl,

lower alkynyl, phenyl, 5- or 6-membered heterocyclyl, lower phenylalkyl, lower heterocyclylalkyl, lower epoxyalkyl, carboxy, lower alkoxy, lower aryloxy, lower phenylalkoxy, lower haloalkyl, lower alkylamino, lower alkylamino, lower alkylamino, lower

amino(hydroxyalkyl), lower heterocyclylalkylamino, lower alkylcarbonyl, lower alkoxycarbonyl, lower alkylsulfonyl, lower phenylalkylsulfonyl, and phenylsulfonyl; or

R² has the formula:

25 wherein:

30

5

j is 0, 1 or 2; and
m is 0;

R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R32 is selected from hydrogen, alkyl, aralkyl,

heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

 R^{33} is selected from hydrogen, alkyl, $-C(O)R^{35}$, $-C(O)OR^{35}$, $-SO_2R^{36}$, $-C(O)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$;

5

30

35

wherein R³⁵ is selected from alkyl, cycloalkyl, haloalkyl, alkenyl, aryl, heterocyclyl, aralkyl, arylcycloalkyl, cycloalkenylalkylene,

- heterocyclylalkylene, alkylarylene, alkylheterocyclyl, arylarylene, arylheterocyclyl, alkoxy, alkenoxy, alkoxyalkylene, alkoxyaralkyl, alkoxyarylene, aryloxyalkylene, aralkoxyalkylene, cycloalkyloxyalkylene, alkoxycarbonyl, heterocyclylcarbonyl,
- alkylcarbonyloxyalkylene, alkylcarbonyloxyarylene, alkoxycarbonylalkylene, alkoxycarbonylarylene, aralkoxycarbonylheterocyclyl, alkylcarbonylheterocyclyl, arylcarbonyloxyalkylarylene, and alkylthioalkylene; wherein said aryl, heterocyclyl, aralkyl, alkylarylene,
- arylheterocyclyl, alkoxyarylene, aryloxyalkylene, cycloalkoxyalkylene, alkoxycarbonylalkylene, and alkylcarbonylheterocyclyl groups are optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; or

R³⁵ is CHR⁴⁸R⁴⁹ wherein R⁴⁸ is arylsulfonylamino or alkylarylsulfonylamino, and R⁴⁹ is selected from aralkyl, amino, alkylamino, and aralkylamino; or

 R^{35} is $-NR^{50}R^{51}$ wherein R^{50} is alkyl, and R^{51} is aryl; and

wherein R³⁶ is selected from alkyl, haloalkyl, aryl, heterocyclyl, cycloalkylalkylene, alkylarylene, alkenylarylene, arylarylene, aralkyl, aralkenyl, heterocyclylheterocyclyl, carboxyarylene, alkoxyarylene, alkoxycarbonylarylene, alkylcarbonylaminoarylene, alkylcarbonylaminoheterocyclyl,

arylcarbonylaminoalkylheterocyclyl, alkylaminoarylene, alkylamino, alkylaminoarylene, alkylsulfonylarylene, alkylsulfonylaralkyl, and arylsulfonylheterocyclyl; wherein said aryl, heterocyclyl, cycloalkylalkylene, aralkyl, alkylcarbonylaminoheterocyclyl, and alkylsulfonylarylene groups are optionally substituted with one or more radicals independently selected from alkyl, halo, hydroxy, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; and

5

10

15

20

25

30

wherein R³⁷ is selected from hydrogen and alkyl; and wherein R³⁸ is selected from hydrogen, alkyl, alkenyl, aryl, heterocyclyl, aralkyl, alkylarylene, arylcycloalkyl, arylarylene, cycloalkylalkylene, heterocyclylalkylene, alkylheterocyclylalkylene, aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, aryloxyarylene, arylcarbonyl, alkoxycarbonyl, alkoxycarbonylalkylene, alkoxycarbonylarylene, alkylcarbonylcarbonylalkylene, alkylaminoalkylene, alkylaminoaralkyl, alkylcarbonylaminoalkylene, alkylthioarylene, alkylsylfonylamalkyl, and

alkylthioarylene, alkylsulfonylaralkyl, and aminosulfonylaralkyl; wherein said aryl, heterocyclyl, aralkyl, and heterocyclylalkylene groups are optionally substituted with one or more radicals independently selected from alkyl, halo, hydroxy, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; or

 \mbox{R}^{38} is $-\mbox{CR}^{52}\mbox{R}^{53}$ wherein \mbox{R}^{52} is alkoxycarbonyl, and \mbox{R}^{53} is alkylthioalkylene; or

 \mbox{R}^{37} and \mbox{R}^{38} together with the nitrogen atom to which they are attached form a heterocycle; and

 R^{39} and R^{40} have the same definition as R^{26} and R^{27} in claim 1; or

 \mbox{R}^2 is -CR54R55 wherein R54 is phenyl and R55 is hydroxy; or

 ${\ensuremath{\mathsf{R}}}^2$ is selected from the group consisting of

$$\begin{array}{c} & & & & \\ R^{58} & & & \\ R^{58} & & & & \\ R^{58} & & &$$

(VI) (VII) (VIII)

wherein

5

10

15

20

25

k is an integer from 0 to 3; and

R⁵⁶ is hydrogen or lower alkyl; and

R⁵⁷ is hydrogen or lower alkyl; or

R⁵⁶ and R⁵⁷ form a lower alkylene bridge; and

R⁵⁸ is selected from hydrogen, alkyl, aralkyl, aryl,
heterocyclyl, heterocyclylalkyl, alkoxycarbonyl,
alkylsulfonyl, aralkylsulfonyl, arylsulfonyl, -C(O)R⁵⁹,
-SO₂R⁶⁰, and -C(O)NHR⁶¹;

wherein R⁵⁹ is selected from alkyl, haloalkyl, cycloalkyl, aryl, heterocyclyl, alkylarylene, aralkyl, alkylheterocyclyl, alkoxy, alkenoxy, aralkoxy, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl; wherein said aryl, heterocyclyl, and aralkyl groups are optionally substituted with one or more radicals independently selected from alkyl, halo, hydroxy, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; and

wherein R⁶⁰ is selected from alkyl, aryl, heterocyclyl, alkylarylene, alkylheterocyclyl, aralkyl, heterocyclylheterocyclyl, alkoxyarylene, alkylamino, alkylaminoarylene, alkylsulfonylarylene, and arylsulfonylheterocyclyl; wherein said aryl, heterocyclyl, and aralkyl groups are optionally substituted with one or more radicals independently selected from alkyl, halo, hydroxy, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; and

20

wherein R⁶¹ is selected from alkyl, aryl, alkylarylene, and alkoxyarylene; wherein said aryl group is optionally substituted with one or more radicals independently selected from alkyl, halo, hydroxy, haloalkyl, alkoxy, haloalkoxy, keto, amino, nitro, and cyano; and

 ${\ensuremath{R}}^3$ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl, and

5

15

wherein R⁴³ is selected from hydrogen, lower alkyl, lower aminoalkyl, lower alkoxyalkyl, lower alkenoxyalkyl and lower aryloxyalkyl; and

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl and purinyl groups are optionally substituted with one or more radicals independently selected from lower alkylthio, lower alkylsulfonyl, aminosulfonyl, halo, lower alkyl, lower aralkyl, lower phenylalkenyl, lower phenylheterocyclyl, carboxy, lower alkylsulfinyl, cyano, lower alkoxycarbonyl, aminocarbonyl, lower

alkylcarbonylamino, lower haloalkyl, hydroxy, lower alkoxy, amino, lower cycloalkylamino, lower alkylamino, lower alkenylamino, lower alkynylamino, lower aminoalkyl, arylamino, lower aralkylamino, nitro, halosulfonyl, lower alkylcarbonyl, lower alkoxycarbonylamino, lower

alkoxyphenylalkylamino, lower alkylaminoalkylamino, lower hydroxyalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower phenylalkylheterocyclylamino, lower alkylaminocarbonyl, lower alkoxyphenylalkylamino, hydrazinyl, lower

30 alkylhydrazinyl, or $-NR^{62}R^{63}$ wherein R^{62} is lower alkylcarbonyl or amino, and R^{63} is lower alkyl or lower

21

phenylalkyl; and

R4 is selected from hydrido, lower cycloalkyl, lower cycloalkenyl, aryl selected from phenyl, biphenyl, and naphthyl, and 5- or 6- membered heterocyclyl; wherein the lower cycloalkyl, lower cycloalkenyl, aryl and 5-10 membered heterocyclyl groups of R4 are optionally substituted with one or more radicals independently selected from lower alkylthio, lower alkylsulfonyl, lower alkylsulfinyl, halo, lower alkyl, lower alkynyl, lower alkoxy, lower aryloxy, lower aralkoxy, lower heterocyclyl, lower haloalkyl, amino, cyano, nitro, lower alkylamino, and hydroxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

15

20

10

A class of compounds of particular interest consists of these compounds of Formula I wherein

R¹ is selected from hydrido, methyl, ethyl, propyl, isopropyl, tert-butyl, isobutyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloroethyl, pentafluoroethyl,

heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, ethenyl, propenyl,

ethynyl, propargyl, 1-propynyl, 2-propynyl, piperidinyl, piperazinyl, morpholinyl, benzyl, phenylethyl, morpholinylmethyl, morpholinylethyl, pyrrolidinylmethyl, piperazinylmethyl, piperidinylmethyl, pyridinylmethyl, thienylmethyl, methoxymethyl, ethoxymethyl, amino,

methylamino, dimethylamino, phenylamino,
methylaminomethyl, dimethylaminomethyl, methylaminoethyl,
dimethylaminoethyl, ethylaminoethyl, diethylaminoethyl,
cyclopropyl, cyclopentyl, cyclohexyl, cyclohexylmethyl,
hydroxymethyl, hydroxyethyl, mercaptomethyl, and
methylthiomethyl; and

R² is selected from hydrido, chloro, fluoro, bromo,

methyl, ethyl, propyl, isopropyl, tert-butyl, isobutyl, phenyl, biphenyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, hydroxymethyl, hydroxyethyl, pyridinyl, isothiazolyl, isoxazolyl, thienyl, thiazolyl, oxazolyl, pyrimidinyl, quinolyl, isoquinolinyl, imidazolyl, benzimidazolyl, furyl, pyrazinyl, piperidinyl, 10 piperazinyl, morpholinyl, N-methylpiperazinyl, methoxycarbonylethyl, ethoxycarbonylethyl, N-methylamino, N, N-dimethylamino, N-ethylamino, N, N-diethylamino, N-npropylamino, N, N-dimethylamino, N-methyl-N-phenylamino, N-phenylamino, piperadinylamino, N-benzylamino, N-15 propargylamino, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, aminomethyl, aminoethyl, aminoethylamino, aminopropylamino, N,Ndimethylaminoethylamino, N,N-dimethylaminopropylamino, 20 morpholinylethylamino, morpholinylpropylamino, carboxymethylamino, methoxyethylamino, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, 1,1dimethylethoxycarbonyl, 1,1dimethylethoxycarbonylaminoethylamino, 1,1-25 dimethylethoxycarbonylaminopropylamino, piperazinylcarbonyl, and 1,1dimethylethoxycarbonylpiperazinylcarbonyl; wherein the aryl, heteroaryl, cycloalkyl and cycloalkenyl groups are optionally substituted with one or more radicals 30 independently selected from fluoro, chloro, bromo, keto, methyl, ethyl, isopropyl, tert-butyl, isobutyl, benzyl, carboxy, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, fluoromethyl, difluoromethyl, dimethylamino, methoxycarbonyl, ethoxycarbonyl, and 1,1-35 dimethylethylcarbonyl; or

15

20

30

R² is -CR⁵⁴R⁵⁵ wherein R⁵⁴ is phenyl and R⁵⁵ is hydroxy;

and R3 is selected from pyridinyl, pyrimidinyl, and purinyl; wherein R3 is optionally substituted with one or more radicals independently selected from methylthio, methylsulfinyl, methylsulfonyl, fluoro, chloro, bromo, aminosulfonyl, methyl, ethyl, isopropyl, tert-butyl, isobutyl, cyano, methoxycarbonyl, ethoxycarbonyl, aminocarbonyl, methylcarbonylamino, trifluoromethyl, difluoromethyl, fluoromethyl, trichloromethyl, dichloromethyl, chloromethyl, hydroxy, fluorophenylmethyl, fluorophenylethyl, chlorophenylmethyl, chlorophenylethyl, fluorophenylethenyl, chlorophenylethenyl, fluorophenylpyrazolyl, chlorophenylpyrazolyl, carboxy, methoxy, ethoxy, propyloxy, n-butoxy, methylamino, ethylamino, dimethylamino, diethylamino, 2methylbutylamino, propargylamino, aminomethyl, aminoethyl, N-methyl-N-phenylamino, phenylamino, diphenylamino, benzylamino, phenethylamino, cyclopropylamino, nitro, chlorosulfonyl, amino, methylcarbonyl, methoxycarbonylamino, ethoxycarbonylamino, methoxyphenylmethylamino, N,Ndimethylaminoethylamino, hydroxypropylamino,

ethoxycarbonylamino, methoxyphenylmethylamino, N,Ndimethylaminoethylamino, hydroxypropylamino,
hydroxyethylamino, imidazolylethylamino,
morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino,
piperidinylamino, pyridinylmethylamino,

phenylmethylpiperidinylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino,

methylaminocarbonyl, ethylaminocarbonyl, methylcarbonyl, methoxyphenylmethylamino, hydrazinyl, 1-methyl-hydrazinyl, or $-NR^{62}R^{63}$ wherein R^{62} is methylcarbonyl or amino, and R^{63} is methyl, ethyl or phenylmethyl; and

R4 is selected from hydrido, cyclopropyl, cyclobutyl, 35 cyclopentyl, cyclohexyl, cyclopropylenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, phenyl,

15

20

25

30

35

biphenyl, morpholinyl, pyrrolidinyl, piperazinyl, piperidinyl, pyridinyl, thienyl, isothiazolyl, isoxazolyl, thiazolyl, oxazolyl, pyrimidinyl, quinolyl, isoquinolinyl, imidazolyl, benzimidazolyl, furyl, pyrazinyl, dihydropyranyl, dihydropyridinyl, dihydrofuryl, tetrahydropyranyl, tetrahydrofuryl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein the cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups of R4 are optionally substituted with one or more radicals independently selected from methylthio, methylsulfinyl, methylsulfonyl, fluoro, chloro, bromo, methyl, ethyl, isopropyl, tert-butyl, isobutyl, ethynyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, fluoromethyl, difluoromethyl, amino, cyano, nitro, dimethylamino, and hydroxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

Another class of compounds of particular interest consists of these compounds of Formula I wherein

R¹ is hydrido, methyl, ethyl, propargyl, hydroxyethyl, dimethylaminoethyl, diethylaminoethyl or morpholinylethyl;

R² is selected from hydrido, methyl, ethyl, propyl, phenyl, trifluoromethyl, methoxycarbonylethyl, N,N-dimethylamino, N-phenylamino, piperidinyl, piperazinyl, pyridinyl, N-methylpiperazinyl, and piperazinylamino; wherein the phenyl, piperidinyl, and pyridinyl groups are optionally substituted with one or more radicals independently selected from fluoro, chloro, bromo, methyl, ethyl, and trifluoromethyl;

R³ is selected from pyridinyl, pyrimidinyl or quinolinyl; wherein R³ is optionally substituted with one or more radicals independently selected from fluoro, bromo, methyl, cyano, methoxycarbonyl, aminocarbonyl, benzyl, phenethyl, acetyl, hydroxyl, methoxy,

10

20

25

30

dimethylamino, benzylamino, phenethylamino, aminomethyl, amino, hydroxy, and methylcarbonyl;

25

R' is selected from phenyl, quinolyl, biphenyl, pyridinyl, thienyl, furyl, dihydropyranyl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein the cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups of R' are optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

A class of compounds of specific interest consists of those compounds of Formula I wherein

R1 is hydrido or methyl;

R2 is selected from hydrido, methyl or ethyl;

R³ is selected from pyridinyl, pyrimidinyl or quinolinyl; wherein R³ is optionally substituted with one or more radicals independently selected from fluoro, bromo, methyl, cyano, methoxycarbonyl, aminocarbonyl, benzyl, phenethyl, acetyl, hydroxyl, methoxy, dimethylamino, benzylamino, phenethylamino, aminomethyl, amino, hydroxy, and methylcarbonyl;

R4 is selected from phenyl which is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy,

trifluoromethyl, nitro, dimethylamino, and hydroxy; or a pharmaceutically-acceptable salt or tautomer thereof.

Still another class of compounds of particular

interest consists of those compounds of Formula I wherein

R¹ is selected from hydrido, methyl, ethyl, propyl,

isopropyl, tert-butyl, isobutyl, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloroethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl,

- dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl, dichloropropyl, ethenyl, propenyl, ethynyl, propargyl, 1-propynyl, 2-propynyl, piperidinyl, piperazinyl, morpholinyl, benzyl, phenylethyl, morpholinylmethyl, morpholinylethyl, pyrrolidinylmethyl,
- piperazinylmethyl, piperidinylmethyl, pyridinylmethyl, thienylmethyl, methoxymethyl, ethoxymethyl, amino, methylamino, dimethylamino, phenylamino, methylaminomethyl, dimethylaminomethyl, methylaminoethyl, dimethylaminoethyl, diethylaminoethyl,
- cyclopropyl, cyclopentyl, cyclohexyl, cyclohexylmethyl, hydroxymethyl, hydroxyethyl, mercaptomethyl, and methylthiomethyl; and

R² has the formula:

20 wherein:

j is 0, 1 or 2; and

m is 0; and

 R^{30} and R^{31} are independently selected from hydrogen and lower alkyl;

25 R³² is selected from hydrogen, lower alkyl, lower phenylalkyl, lower heterocyclylalkyl, lower alkoxyalkylene, aryloxyalkylene, aminoalkyl, lower alkylaminoalkyl, lower phenylaminoalkyl, lower alkylcarbonylalkylene, lower phenylcarbonylalkylene, and lower heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, lower alkyl, $-C(0)R^{35}$, $-C(0)OR^{35}$, $-SO_2R^{36}$, $-C(0)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$;

35

wherein R35 is selected from lower alkyl, lower cycloalkyl, lower haloalkyl, lower alkenyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower phenylalkyl, lower phenylcycloalkyl, lower cycloalkenylalkylene, lower heterocyclylalkylene, lower 5 alkylphenylene, lower alkylheterocyclyl, phenylphenylene, lower phenylheterocyclyl, lower alkoxy, lower alkenoxy, lower alkoxyalkylene, lower alkoxyphenylalkyl, lower alkoxyphenylene, lower phenoxyalkylene, lower phenylalkoxyalkylene, lower cycloalkyloxyalkylene, lower 10 alkoxycarbonyl, lower heterocyclylcarbonyl, lower alkylcarbonyloxyalkylene, lower alkylcarbonyloxyphenylene, lower alkoxycarbonylalkylene, lower alkoxycarbonylphenylene, lower phenylalkoxycarbonylheterocyclyl, lower 15 alkylcarbonylheterocyclyl, lower phenylcarbonyloxyalkylphenylene, and lower alkylthioalkylene; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower phenylalkyl, lower alkylphenylene, lower 20 phenylheterocyclyl, lower alkoxyphenylene, lower phenoxyalkylene, lower cycloalkoxyalkylene, lower alkoxycarbonylalkylene, and lower alkylcarbonylheterocyclyl groups are optionally substituted with one or more radicals independently 25 selected from lower alkyl, halo, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; or

R³⁵ is CHR⁴⁸R⁴⁹ wherein R⁴⁸ is phenylsulfonylamino or lower alkylphenylsulfonylamino, and R⁴⁹ is selected from lower phenylalkyl, amino, lower alkylamino, and lower phenylalkylamino; or

R³⁵ is -NR⁵⁰R⁵¹ wherein R⁵⁰ is lower alkyl, and R⁵¹ is aryl selected from phenyl, biphenyl and naphthyl; and wherein R³⁶ is selected from lower alkyl, lower haloalkyl, aryl selected from phenyl, biphenyl and

naphthyl, lower heterocyclyl, lower cycloalkylalkylene, lower alkylphenylene, lower alkenylphenylene, phenylphenylene, lower phenylalkyl, lower phenylalkenyl, lower heterocyclylheterocyclyl, carboxyphenylene, lower alkoxyphenylene, lower alkoxycarbonylphenylene, lower alkylcarbonylaminophenylene, lower alkylcarbonylaminoheterocyclyl, lower phenylcarbonylaminoalkylheterocyclyl, lower alkylaminophenylene, lower alkylamino, lower alkylaminophenylene, lower alkylsulfonylphenylene, lower alkylsulfonylphenylalkyl, and lower phenylsulfonylheterocyclyl; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower cycloalkylalkylene, lower phenylalkyl, lower alkylcarbonylaminoheterocyclyl, and lower with one or more radicals independently selected from

10

15 alkylsulfonylphenylene groups are optionally substituted lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; 20 and

wherein R37 is selected from hydrogen and lower alkyl; and

wherein R38 is selected from hydrogen, lower alkyl, lower alkenyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower phenylalkyl, lower 25 alkylphenylene, lower phenylcycloalkyl, phenylphenylene, lower cycloalkylalkylene, lower heterocyclylalkylene, lower alkylheterocyclylalkylene, lower phenylalkylheterocyclyl, lower alkoxyalkylene, lower alkoxyphenylene, lower phenoxyphenylene, phenylcarbonyl, 30 lower alkoxycarbonyl, lower alkoxycarbonylalkylene, lower alkoxycarbonylphenylene, lower alkylcarbonylcarbonylalkylene, lower alkylaminoalkylene, lower alkylaminophenylalkyl, lower 35 alkylcarbonylaminoalkylene, lower alkylthiophenylene, lower alkylsulfonylphenylalkyl, and lower

29

aminosulfonylphenylalkyl; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower phenylalkyl, and lower heterocyclylalkylene groups are optionally substituted with one or more radicals independently selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; or

 R^{38} is $-CR^{52}R^{53}$ wherein R_{52} is lower alkoxycarbonyl, and R_{53} is lower alkylthioalkylene; or

R³⁷ and R³⁸ together with the nitrogen atom to which they are attached form a 4-8 membered ring heterocycle;

 \mbox{R}^{39} and \mbox{R}^{40} have the same definition as \mbox{R}^{26} and \mbox{R}^{27} in claim 2; or

 R^2 is selected from the group consisting of

$$R^{58}$$

$$CCH_2)_k$$

$$CCH_2)_k$$

$$CCH_2)_k$$

$$CCH_2)_k$$

15

20

25

10

(VI) (VII) (VIII)

wherein

k is an integer from 0 to 2; and R^{56} is hydrogen or lower alkyl; and R^{57} is hydrogen or lower alkyl; and

R⁵⁸ is selected from hydrogen, lower alkyl, lower phenylalkyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower heterocyclylalkyl, lower alkoxycarbonyl, lower alkylsulfonyl, lower phenylalkylsulfonyl, lower phenylsulfonyl, -C(O)R⁵⁹, -SO₂R⁶⁰, and -C(O)NHR⁶¹;

wherein R⁵⁹ is selected from lower alkyl, lower haloalkyl, lower cycloalkyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower

alkylphenylene, lower phenylalkyl, lower alkenoxy, loewr phenylalkoxy, lower alkoxyalkylene, lower alkoxyphenylene, lower alkoxyphenylalkyl; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, and lower phenylalkyl groups are optionally substituted with one or more radicals independently selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; and

5

10

25

30

35

wherein R⁶⁰ is selected from lower alkyl, aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, lower alkylphenylene, lower alkylheterocyclyl, lower phenylalkyl, lower heterocyclylheterocyclyl, lower alkoxyphenylene, lower 15 alkylamino, lower alkylaminophenylene, lower alkylsulfonylphenylene, and lower phenylsulfonylheterocyclyl; wherein said aryl selected from phenyl, biphenyl and naphthyl, lower heterocyclyl, and lower phenylalkyl groups are optionally substituted 20 with one or more radicals independently selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; and

wherein R⁶¹ is selected from lower alkyl, aryl selected from phenyl, biphenyl and napthyl, lower alkylphenylene, and lower alkoxyphenylene; wherein said aryl group is optionally substituted with one or more radicals independently selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; and

R³ is selected from pyridinyl, pyrimidinyl, and purinyl; wherein R³ is optionally substituted with one or more radicals independently selected from methylthio, methylsulfinyl, methylsulfonyl, fluoro, chloro, bromo, aminosulfonyl, methyl, ethyl, isopropyl, tert-butyl,

isobutyl, cyano, methoxycarbonyl, ethoxycarbonyl, aminocarbonyl, methylcarbonylamino, trifluoromethyl, difluoromethyl, fluoromethyl, trichloromethyl, dichloromethyl, chloromethyl, hydroxy, fluorophenylmethyl, fluorophenylethyl, 5 chlorophenylmethyl, chlorophenylethyl, fluorophenylethenyl, chlorophenylethenyl, fluorophenylpyrazolyl, chlorophenylpyrazolyl, carboxy, methoxy, ethoxy, propyloxy, n-butoxy, methylamino, ethylamino, dimethylamino, diethylamino, 2-10 methylbutylamino, propargylamino, aminomethyl, aminoethyl, N-methyl-N-phenylamino, phenylamino, diphenylamino, benzylamino, phenethylamino, cyclopropylamino, nitro, chlorosulfonyl, amino, methylcarbonyl, methoxycarbonylamino, 15 ethoxycarbonylamino, methoxyphenylmethylamino, N,Ndimethylaminoethylamino, hydroxypropylamino, hydroxyethylamino, imidazolylethylamino, morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, 20 phenylmethylpiperidinylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminocarbonyl, ethylaminocarbonyl, methylcarbonyl, methoxyphenylmethylamino, hydrazinyl, 1-methylhydrazinyl, or -NR62R63 wherein R62 is methylcarbonyl or 25 amino, and R63 is methyl, ethyl or phenylmethyl; R4 is selected from hydrido, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclopropylenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cyclohexadienyl, phenyl, biphenyl, morpholinyl, pyrrolidinyl, piperazinyl, 30 piperidinyl, pyridinyl, thienyl, isothiazolyl, isoxazolyl, thiazolyl, oxazolyl, pyrimidinyl, quinólyl, isoquinolinyl, imidazolyl, benzimidazolyl, furyl, pyrazinyl, dihydropyranyl, dihydropyridinyl, dihydrofuryl, tetrahydropyranyl, tetrahydrofuryl, 35 benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein

the cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups of R4 are optionally substituted with one or more radicals independently selected from methylthio, methylsulfinyl, methylsulfonyl, fluoro, chloro, bromo, methyl, ethyl, isopropyl, tert-butyl, isobutyl, ethynyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, fluoromethyl, difluoromethyl, amino, cyano, nitro, dimethylamino, and hydroxy; or

32

a pharmaceutically-acceptable salt or tautomer 10 thereof.

Still another class of compounds of particular interest consists of those compounds of Formula I wherein R1 is hydrido, methyl, ethyl, propargyl,

hydroxyethyl, dimethylaminoethyl, diethylaminoethyl or 15 morpholinylethyl;

R² has the formula:

wherein:

5

25

30

20 j is 0, 1 or 2; and

m is 0; and

R30 is hydrogen; and

R31 is selected from hydrogen and lower alkyl; and

R32 is selected from hydrogen and lower alkyl; and

 R^{33} is selected from lower alkyl, $-C(0)R^{35}$, $-C(0)OR^{35}$, $-SO_2R^{36}$, $-C(0)NR^{37}R^{38}$, and $-SO_2NR^{39}R^{40}$;

wherein R35 is selected from lower alkyl, lower cycloalkyl, phenyl, lower heterocyclyl, lower alkylphenylene, lower alkoxy, lower alkenoxy, lower alkoxyalkylene, lower phenoxyalkylene, and lower phenylalkoxyalkylene; wherein said phenyl and lower phenoxyalkylene groups are optionally substituted with

15

one or more radicals independently selected from lower alkyl, halo, and lower haloalkyl; and

wherein R³⁶ is selected from lower alkyl, phenyl, lower heterocyclyl, lower alkylphenylene, phenylphenylene, lower phenylalkyl, lower alkylheterocyclyl, lower heterocyclylheterocyclyl, lower alkoxyphenylene, and lower alkylamino; wherein said phenyl and lower heterocyclyl groups are optionally substituted with one or more radicals independently selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; and

wherein R37 is hydrogen; and

wherein R³⁸ is selected from lower alkyl, phenyl, and lower alkylphenylene;

wherein R^{39} and R^{40} have the same definition as R^{26} and R^{27} in claim 2; or

 ${\ensuremath{R^2}}$ is selected from the group consisting of

$$R^{58}$$

$$CH_2)_k$$

$$CH_2)_k$$

$$CH_2)_k$$

$$CH_2)_k$$

20 (VI) (VII) (VIII)

wherein

k is an integer from 0 or 1; and

R56 is hydrogen; and

R⁵⁷ is hydrogen; and

25 R^{58} is selected from -C(O) R^{59} and -SO₂ R^{60} ;

wherein R⁵⁹ is selected from lower alkyl, lower cycloalkyl, phenyl, lower alkylphenylene, and lower alkoxyalkylene; wherein said phenyl group is optionally substituted with one or more radicals independently

5

10

15

20

30

35

34

selected from lower alkyl, halo, hydroxy, lower haloalkyl, lower alkoxy, lower haloalkoxy, keto, amino, nitro, and cyano; and

wherein R⁶⁰ is selected from lower alkyl; and
R³ is selected from pyridinyl, pyrimidinyl or
quinolinyl; wherein R³ is optionally substituted with one
or more radicals independently selected from fluoro,
bromo, methyl, cyano, methoxycarbonyl, aminocarbonyl,
benzyl, phenethyl, acetyl, hydroxyl, methoxy,
dimethylamino, benzylamino, phenethylamino, aminomethyl,
amino, hydroxy, and methylcarbonyl; and

R' is selected from phenyl, quinolyl, biphenyl, pyridinyl, thienyl, furyl, dihydropyranyl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein the cycloalkyl, cycloalkenyl, aryl and heterocyclyl groups of R' are optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; or

a pharmaceutically-acceptable salt or tautomer thereof.

Still another class of compounds of specific

25 interest consists of those compounds of Formula I wherein

R¹ is hydrido or methyl; and

R³ is selected from pyridinyl, pyrimidinyl or quinolinyl; wherein R³ is optionally substituted with one or more radicals independently selected from fluoro, bromo, methyl, cyano, methoxycarbonyl, aminocarbonyl, benzyl, phenethyl, acetyl, hydroxyl, methoxy, dimethylamino, benzylamino, phenethylamino, aminomethyl,

R4 is selected from phenyl which is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl,

amino, hydroxy, and methylcarbonyl; and

5

15

20

In one embodiment of the present invention, the compounds of Formula I satisfy one or more of the following conditions:

R¹ is hydrido or lower alkyl; more preferably, R¹ is hydrido or methyl; and still more preferably, R¹ is hydrido;

 R^2 is hydrido or lower alkyl; more preferably, R^2 is hydrido or methyl; and still more preferably, R^2 is hydrido;

R³ is substituted or unsubstituted pyridinyl; and preferably, the pyridinyl is a 4-pyridinyl; or

R' is substituted or unsubstituted phenyl; and preferably, R' is phenyl substituted with halo.

In addition, where R³ is substituted pyrimidinyl, preferably at least one R³ substitutent is attached to the carbon atom positioned between two nitrogen atoms of the pyrimidinyl ring.

A family of specific compounds of particular

interest within Formula I consists of compounds,
tautomers and pharmaceutically-acceptable salts thereof
as follows:

4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine;

30 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;

- 4-[5-methyl-3-(2-methylphenyl)-1H-pyrazol-4-yl]pyridine;
- 4-[3-(4-fluorophenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
- 4-[5-methyl-3-(4-methylphenyl)-1H-pyrazol-4-yl]pyridine;
- 4-[5-methyl-3-[4-(methylthio)phenyl]-1H-pyrazol-4-

35 yl]pyridine;

4-[3-(4-chlorohpenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;

```
4-[3-methyl-5-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine;
     4-[5-(2,5-dimethylphenyl)-3-methyl-1H-pyrazol-4
     yllpyridine;
    4-[5-(1,3-benzodioxol-5-yl)-3-methyl-1H-pyrazol-4-
    yl]pyridine;
    4-[3-methyl-5-(4-phenoxyphenyl)-1H-pyrazol-4-yl]pyridine;
     4-[5-[(1,1'-biphenyl)-4-yl]-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[3-methyl-5-[3-(phenoxyphenyl)-1H-pyrazol-4-
10
    yl]pyridine;
     4-[3-methyl-5-[3-(phenylmethoxy)phenyl]-1H-pyrazol-4-
     yl]pyridine;
     4-[3-methyl-5-[2-(phenylmethoxy)phenyl]-1H-pyrazol-4-
     yl]pyridine;
     2-[3-methyl-4-(4-pyridinyl)-1H-pyrazol-4-yl]phenol;
15
     3-[3-methyl-4-(4-pyridinyl)-1H-pyrazol-4-yl]phenol;
     1-hydroxy-4-(3-methyl-5-phenyl-1H-pyrazol-4-
     yl]pyridinium;
     5-(4-fluorophenyl)-N, N-dimethyl-4-(4-pyridinyl)-1H-
20
     pyrazol-3-amine;
     5-(4-fluorophenyl)-N-phenyl-4-(4-pyridinyl)-1H-pyrazol-3-
     amine; 4-[5-(4-fluorophenyl)-3-phenyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-4-
     yl]pyridine;4-[3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-
25
     pyrazol-5-yl]pyridine;
     4-(5-cyclohexyl)-3-methyl-1H-pyrazol-4-yl)pyridine;
     4-[5-(3-fluoro-5-methoxyphenyl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(3-methylphenyl)-3-propyl-1H-pyrazol-4-yl]pyridine;
30
     4-[(3-methyl-5-phenyl-1H-pyrazol-4-yl)methyl]pyridine;
     4-[3,5-bis(3-methylphenyl)-1H-pyrazol-4-yl]pyridine;
     4-[4-methyl-2-(2-trifluorophenyl)-1H-pyrazol-4-
     yl]pyridine;
35
     4-[3-(2-chlorophenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
     4-[5-methyl-3-(2,4-dimethylphenyl)-1H-pyrazol-4-
```

```
yl]pyridine;
     4-[5-(4-chlorophenyl)-1,3-dimethyl-1H-pyrazol-4-
     yl]pyridine;
     4-[3-(3-fluoro-2-methylphenyl)-5-methyl-1H-pyrazol-4-
 5
     yl]pyridine;
     4-[3-(3,5-dimethylphenyl)-5-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[3-(3,5-dimethoxyphenyl)-5-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-methyl-3-(3-nitrophenyl)-1H-pyrazol-4-yl]pyridine;
10
     N, N-dimethyl-4-[5-methyl-4-(4-pyridinyl)-1H-pyrazol-3
     yl]benzenamine;
     4-[3-(2,3-dihydrobenzofuran-5-yl)-5-methyl-1H-pyrazol-4-
     yl]pyridine;
15
     4-[3-(4-bromophenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(2-fluorophenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(3-fluorophenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-methyl-5-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-
     yl]pyridine;
20
     4-(3-ethyl-4-phenyl-1H-pyrazol-4-yl)pyridine;
     4-[5-(3-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl}pyridine;
     4-[3-ethyl-5-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine;
     4-[5-(3,4-difluorophenyl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(3-ethoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine;
25
     4-[3-methyl-5-[4-(trifluoromethyl)phenyl]-1H-pyrazol-4-
     yl]pyridine;
     4-[3-methyl-5-(3-thienyl)-1H-pyrazol-4-yl]pyridine;
     4-[5-(2,4-dichlorophenyl)-3-methyl-1H-pyrazol-4-
30
     yl]pyridine;
     4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine;
     4-[5-(3-chloro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     ethyl 3-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazole-5-
35
     propanoate;
     4-[3-(4-fluorophenyl)-1-methyl-pyrazol-4-yl]pyridine;
```

WO 98/52940

5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyrimidin-5-[3-methyl-5-(3-methylphenyl)-1H-pyrazol-4-yl]pyrimidin-2-amine; 5-[3-methyl-5-(2-methylphenyl)-1H-pyrazol-4-yl]pyrimidin-5 5-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyrimidin-2-amine; 5-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]pyrimidin-10 2-amine; 5-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4yl]pyrimidin-2-amine; 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-15 amine; 4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-20 amine; 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2amine; 4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-25 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]-2methoxypyridine; 2-methoxy-5-[3-methyl-5-(3-methylphenyl)-1H-pyrazol-4-30 yl]pyridine; 2-methoxy-5-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4yl)pyridine; 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]-2methoxypyridine; 2-methoxy-4-[3-methyl-5-(3-methylphenyl)-1H-pyrazol-4-35 yl]pyridine;

```
2-methoxy-4-[3-methyl-5-(2-methylphenyl)-1H-pyrazol-4-
    yl]pyridine;
     4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]-2-
     methoxypyridine;
     4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]-2-
     methoxypyridine;
     2-methoxy-4-[3-methyl-5-(4-methylphenyl)-1H-pyrazol-4-
     yl]pyridine;
     5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
10
     4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
     4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
     4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
15
     4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
     4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-2-
20
     ol;
     4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridin-
     5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-methanamine;
     4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
25
     2-methanamine;
     4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-methanamine;
     4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
30
     2-methanamine;
     4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-methanamine;
     4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-methanamine;
     4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
35
     2-methanamine;
```

```
5-{5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl}pyridine-
    2-carboxamide;
    4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
    2-carboxamide;
    4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
    2-carboxamide;
    4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
    2-carboxamide;
     4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
    2-carboxamide;
10
     4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-carboxamide;
     4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine-
     2-carboxamide;
     4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-
15
     yl]pyridine;
     4-[5-(4-fluoro-3-methoxyphenyl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-{5-(4-chloro-3-methoxyphenyl)-3-methyl-1H-pyrazol-4-
20
     yl]pyridine;
     4-[5-(2,3-dihydrobenzofuran-6-yl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(benzofuran-6-yl)-3-methyl-1H-pyrazol-4-yl]pyridine;
     4-[5-(3-fluoro-5-methoxyphenyl)-3-methyl-1H-pyrazol-4-
25
     yl]pyridine;
     4-[5-(3-chloro-5-methoxyphenyl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(1-cyclohexyen-1-yl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(1,3-cyclohexadien-1-yl)-3-methyl-1H-pyrazol-4-
30
     yl]pyridine;
     4-[5-(5,6-dihydro-2H-pyran-4-yl)-3-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-(5-cyclohexyl-3-methyl-1H-pyrazol-4-yl)pyridine;
     4-[5-(4-methoxy-3-methylphenyl)-3-methyl-1H-pyrazol-4-
35
     yl]pyridine;
```

```
4-[5-(3-methoxy-4-methylphenyl)-3-methyl-1H-pyrazol-4-
    yl]pyridine;
    4-[5-(3-methoxy-5-methylphenyl)-3-methyl-1H-pyrazol-4-
    yl]pyridine;
    4-[5-(3-furyl)-3-methyl-1H-pyrazol-4-yl]pyridine;
5
     2-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;
     2-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;
    methyl 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyri-dine-2-
    carboxylate;
     4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine-2-
10
     carboxamide;
     1-[4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridin-2-
    yl]ethanone;
    N, N-dimethyl-4-(3-methyl-5-phenyl-1H-pyrazol-2-
    yl)pyridin-2-amine;
15
     3-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;
     3-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;
     methyl 4-(3-methyl-5-phenyl-1H-pyrazol-4yl)pyridine-3-
     carboxylate;
20
     4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine-3-
     carboxamide;
     1-[4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridin-3-
     yl]ethanone;
     3-bromo-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine;
25
    N, N-dimethyl-4-(3-methyl-5-phenyl-1H-pyrazol-2-
     yl)pyridin-3-amine;
     2-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyrimidine;
     4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyrimidine;
     2-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-4-
30
     yl)pyrimidine;
     4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyrimidin-2-amine;
     N, N-dimethyl-4-(3-methyl-5-phenyl-1H-pyrazol-4-
     yl)pyrimidin-2-amine;
     4-(5,6-dihydro-2H-pyran-4-yl)-3-methyl-5-phenyl-1H-
35
     pyrazole;
     3-methyl-5-phenyl-4-(3-thienyl)-1H-pyrazole;
```

```
4-(3-furyl)-3-methyl-5-phenyl-1H-pyrazole;
    3-methyl-5-phenyl-4-(2-thienyl)-1H-pyrazole;
    4-(2-furyl)-3-methyl-5-phenyl-1H-pyrazole;
    4-(3-isothiazolyl)-3-methyl-5-phenyl-1H-pyrazole
    4-(3-isoxazolyl)-3-methyl-5-phenyl-1H-pyrazole;
5
    4-(5-isothiazolyl)-3-methyl-5-phenyl-1H-pyrazole;
    4-(5-isoxazolyl)-3-methyl-5-phenyl-1H-pyrazole;
     3-methyl-5-phenyl-4-(5-thiazolyl)-1H-pyrazole;
     3-methyl-4-(5-oxazolyl)-5-phenyl-1H-pyrazole;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine;
10
     2-methyl-4-[3-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine;
     4-(1-methyl-3-phenyl-1H-pyrazol-4-yl)pyridine;
     4-(3-phenyl-1H-pyrazol-4-yl)pyridine;
     2-methyl-4-(3-phenyl-1H-pyrazol-4-yl)pyridine;
     4-[3-(3-chlorophenyl)-1-methyl-pyrazol-4-yl]pyridine;
15
     4-[3-(4-chlorophenyl)-1-methyl-pyrazol-4-yl]pyridine;
     4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-2-methylpyridine;
     4-[3-(3-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
20
     4-[3-(3-fluorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(3-chlorophenyl)-1-methyl-pyrazol-4-yl]-2-
     methylpyridine;
     5-(4-chlorophenyl)-N-phenyl-4-(4-pyridinyl)-1H-pyrazol-3-
25
     5-(4-chlorophenyl)-N-methyl-4-(4-pyridinyl)-1H-pyrazol-3-
     amine;
     5-(4-chlorophenyl)-N, N-dimethyl-4-(4-pyridinyl)-1H-
     pyrazol-3-amine dihydrate;
     5-(3-fluorophenyl)-N, N-dimethyl-4-(4-pyridinyl)-1H-
30
     pyrazol-3-amine;
     N, N-dimethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-
     pyrazol-3-amine;
     N-methyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
35
     N-ethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
```

```
amine;
    N, N-diethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-
    pyrazol-3-amine;
    5-(4-chlorophenyl) - N, N-diethyl-4-(4-pyridinyl) -1H-
5
    pyrazol-3-amine;
    4-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
    yl]morpholine;
    5-(4-chlorophenyl)-N-propyl-4-(4-pyridinyl)-1H-pyrazol-3-
    5-(4-chlorophenyl)-N-(phenylmethyl)-4-(4-pyridinyl)-1H-
10
    pyrazol-3-amine hydrate (2:1);
     5-(4-chlorophenyl)-N-(2-methoxyethyl)-4-(4-pyridinyl)-1H-
     pyrazol-3-amine monohydrate;
     1,1-dimethylethyl 4-[5-(4-chlorophenyl)-4-(4-pyridinyl)-
15
     1H-pyrazol-3-yl]-1-piperazinecarboxylate;
     1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
   yl]piperazine trihydrochloride;
     1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-
     methylpiperazine;
     1,1-dimethylethyl 4-[5-(4-fluorophenyl)-4-(4-pyridinyl)-
20
     1H-pyrazol-3-yl]-1-piperazinecarboxylate;
     1-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
     yl]piperazine trihydrochloride;
     1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
     yllpiperazine;
25
     N-[5-(4-chlorophenyl)-4-[2-(phenylmethyl)amino]-4-
     pyridinyl]-1H-pyrazol-3-yl]-1,3-propanediamine,
     trihydrochloride;
     1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-
     (phenylmethyl) piperazine;
30
     4-[3-(4-fluorophenyl)-5-(1-piperazinyl)-1H-pyrazol-4-
     yl]pyrimidine, dihydrochloride;
     1,1-dimethylethyl [3-[[5-(4-chlorophenyl)-4-(4-
     pyridinyl) -1H-pyrazol-3-yl]amino]propyl]carbamate;
35
     N-[5-[4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-
     1,3-propanediamine, trihydrochloride monohydrate;
```

自然意志 经制度

```
1,1-dimethylethyl [2-[[5-(4-chlorophenyl)-4-(4-
    pyridinyl) -1H-pyrazol-3-yl]amino]ethyl]carbamate;
    1,1-dimethylethyl 4-[5-(4-chlorophenyl)-1-(2-
    hydroxyethyl) -4-(4-pyridinyl) -1H-pyrazol-3-yl}-1-
    piperazinecarboxylate;
5
    1,1-dimethylethyl 4-[5-(4-fluorophenyl)-4-(4-
    pyrimidinyl)-1H-pyrazol-3-yl]-1-piperazinecarboxylate;
     1,1-dimethylethyl [3-[[5-(4-chlorophenyl)-4-(2-fluoro-4-
    pyridinyl)-1H-pyrazol-3-yl]amino]propyl]carbamate;
     1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-
10
     ethylpiperazine;
    N-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-
     1,2-ethanediamine;
     4-[3-(2,6-difluorophenyl)-5-methyl-1H-pyrazol-4-
15
     yl]pyridine;
     4-[3-(3-ethylphenyl)-5-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(3-chlorophenyl)-5-ethyl-1H-pyrazol-4-yl]pyridine;
     4-[3-ethyl-5-(3-ethylphenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-chlorophenyl)-5-(1-methylethyl)-1H-pyrazol-4-
     yl]pyridine;
20
     4-[3-cyclopropyl-5-(4-fluorophenyl)-1H-pyrazol-4-
     yl]pyridine;
     4-[3-(4-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(cyclopropyl-3-(4-(fluorophenyl)-1-methyl-1H-
25
     pyrazol-4-yl]pyridine;
     5-cyclopropyl-3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-
     pyrazole-1-ethanol;
     3-(4-fluorophenyl)-5-(2-methoxy-4-pyridinyl)-4-(4-
     pyridinyl) -1H-pyrazole-1-ethanol;
30
     4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-
     1H-pyrazol-5-yl]-2(1H)-pyridinone;
     1-acetyl-4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-
     pyridinyl) -1H-pyrazol-5-yl]-2(1H)-pyridinone;
     Ethyl 2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-
35
     pyridinyl)-1H-pyrazol-5-yl]cyclopropanecarboxylate;
```

```
2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-
     1H-pyrazol-5-yl]cyclopropanecarboxylic acid;
     3-(4-fluorophenyl)-5-(4-imidazolyl)-4-(4-pyridinyl)-1H-
    pyrazole-1-ethanol;
    4-[3-(4-chloro-3-methylphenyl)-1H-pyrazol-4-yl]pyridine
5
     5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-3-
     carboxylic acid;
     5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-3-
     1-[[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
10
     yl]carbonyl]piperazine;
     1,1-dimethylethyl 4-[[5-(4-fluorophenyl)-4-(4-pyridinyl)-
     1H-pyrazol-3-yl]carbonyl]-1-piperazinecarboxylate;
     4-(1,5-dimethyl-3-phenyl-1H-pyrazol-4-yl)pyridine;
     4-(1,3-dimethyl-5-phenyl-1H-pyrazol-4-yl]pyridine;
15
     4-[3-(4-chlorophenyl)-1,5-dimethyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-(4-chlorophenyl)-1,3-dimethyl-1H-pyrazol-4-
     yl]pyridine;
     4-[5-ethyl-1-methyl-3-(3-methylphenyl)-1H-pyrazol-4-
20
     yl]pyridine;
     4-[3-ethyl-1-methyl-5-(3-methylphenyl)-1H-pyrazol-4-
     yl]pyridine;
     4-[3-(4-chlorophenyl)-1-ethyl-5-methyl-1H-pyrazol-4-
25
     yl]pyridine;
     4-[3-(4-chlorophenyl)-2-ethyl-5-methyl-1H-pyrazol-4-
     yl]pyridine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(2-chlorophenyl)-1H-pyrazol-4-yl]pyridine;
30
     3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol;
     3-(4-fluorophenyl)-4-(4-pyrimidinyl)-1H-pyrazole-1-
     ethanol;
     4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
     2-[[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyridinyl]amino]-1-butanol;
35
     4-[5-bromo-3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-
```

```
yl]pyridine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
    pyridinecarbonitrile;
     4-[2-[3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-1-
5
    yl]ethyl]morpholine;
     3-(4-fluorophenyl)-1-methyl-\alpha-phenyl-4-(4-pyridinyl)-1H-
    pyrazole-5-methanol;
    N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-
     morpholineethanamine;
    4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-2(1H)-pyridinone
10
     hydrazone;
     4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-
     2-pyridinamine;
     4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylethyl)-2-
     pyridinamine;
15
     4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-ethyl-2-
     pyridinamine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyridinecarboxamide;
20
     Methyl 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyridinecarboxylate;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-
     pyridinecarboxamide;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
25
     pyridinecarboxylic acid;
     4-[3-(3-fluorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(1,3-benzodioxol-5-yl)-1H-pyrazol-4-yl]pyridine4-[3-
     (3-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]pyridine;
30
     4-[3-(1,3-benzodioxol-5-y)-1-methyl-1H-pyrazol-4-yl]pyrid
     4-[3-(4-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-methylp
     yridine; 4-[5-(3-chlorophenyl)-1-methyl-1H-pyrazol-4
     -y1]-2-methylpyridine;
35
     4-[3-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
```

WO 98/52940 PCT/US98/10436

47

```
4-[5-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
    2-methyl-4-[1-methyl-3-(3-methylphenyl)-1H-pyrazol-4
    -yl]pyridine;
    2-methyl-4-[1-methyl-5-(3-methylphenyl)-1H-pyrazol-4
5
    -yl]pyridine;
    4-(3-phenyl-1H-pyrazol-4-yl)pyridine;
    4-[3-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl)pyridine
    4-[1-methyl-3-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl
10
    ]pyridine;
     4-[3-(3,4-difluorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-fluoropyridine;
     4-[3-(4-bromophenyl)-1H-pyrazol-4yl]pyridine;
     4-[3-(3,4-difluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridi
15
     4-[3-(4-bromophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
     (E) -4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-(2-phenyleth
     enyl)pyridine;
     (S)-4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-N-(2-methylbut
20
     yl) - 2-pyridinamine;
     4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-N-[(4-methoxy-
     phenyl)methyl] - 2-pyridinamine;
     N-[4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-
     2-pyridinemethanamine;
     N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-
25
     2-pyridinemethanamine;
     2-fluoro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-iodophenyl)-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-iodophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine;
     4-[1-methyl-3-[4-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl
30
     ]pyridine;
     N-[1-(4-fluorophenyl)ethyl]-4-[3-(4-fluorophenyl)-1H-pyra
     zol-4-yl]-2-pyridinamine;
     N-[(3-fluorophenyl)methyl]-4-[3-(4-fluorophenyl)-1H-pyraz
     ol-4-yl]-2-pyridinamine;
35
     4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-(1-
```

THE E TO THE THE THE THE PROPERTY OF A THE WARRENCE

48

```
methylhydrazino)pyridine;
    2-fluoro-4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]p
    4-[3-(3,4-difluorophenyl)-1H-pyrazol-4-yl]-2-fluoro-
    pyridine;
    4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-3-methylpyridine;
     4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-3-methyl-
    pyridine;
     4-[3-(3,4-difluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-flu
10
    oropyridine;
     3-(4-fluorophenyl)-N,N-dimethyl-4-(4-pyridinyl)-1H-pyrazo
     le-1-ethanamine;
     2-[2-(4-fluorophenyl)ethyl]-4-[3-(4-fluorophenyl)-1-
     methyl-1H-pyrazol-4-yl]pyridine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[1-
15
     (phenylmethyl) -4-piperidinyl] -2-pyridinamine;
     N'-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-
     N, N-dimethyl-1, 2-ethanediamine;
     2,4-bis[3-(4-fluorophenyl)-lH-pyrazol-4-yl]pyridine;
     N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-4-
20
     morpholineethanamine;
     3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-1H-pyrazole-
     1-ethanol;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[2-(1H-imidazol-
     1-yl)ethyl]-2-pyridinamine;
25
     4-[2-[3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-1H-
     pyrazol-1-yl]ethyl]morpholine;
     (E) -3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethenyl]-
     4-pyridinyl]-1H-pyrazole-1-ethanol;
     3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-N, N-dimethyl-
30
     1H-pyrazole-1-ethanamine;
     3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethyl]-4-
     pyridinyl]-1H-pyrazole-1-ethanol;
     4-[1-[2-(dimethylamino)ethyl]-3-(4-fluorophenyl)-1H-
     pyrazol-4-yl]-N,N-dimethyl-2-pyridinamine;
35
     4-[1-[2-(dimethylamino)ethyl]-3-(4-fluorophenyl)-1H-
```

```
pyrazol-4-yl]-N-[(4-fluorophenyl)methyl]-2-pyridinamine;
    3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethyl]-4-
    pyridinyl]-N, N-dimethyl-1H-pyrazole-1-ethanamine;
    N-[(4-fluorophenyl)methyl]-4-[3(or 5)-(4-fluorophenyl)-1-
    [[2-(4-morpholinyl)ethyl]-1H-pyrazol-4-yl]-2-
5
    pyridinamine;
    4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-4-piperadinyl-2-
    pyridinamine;
    N, N-diethyl-3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-
    1H-pyrazole-1-ethanamine;
10
     4-[1-[2-(diethylamino)ethyl]-3-(4-fluorophenyl)-1H-
    pyrazol-4-yl]-N-[(4-fluorophenyl)methyl]-2-pyridinamine;
     2-[[4-[3-(4-(fluorophenyl)-1H-pyrazol-4-yl]-2-
    pyridinyl]amino]ethanol;
     2-[[4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-
15
    pyridinyl]amino]ethanol;
     3-[[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyridinyl]amino]-1-propanol;
     3-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-
     4-pyridinyl]-1H-pyrazole-1-ethanol;
20
     5-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-
     4-pyridinyl]-1H-pyrazole-1-ethanol;
     N, N-diethyl-3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-
     pyrazole-1-ethanamine;
     N-{(4-fluorophenyl)methyl]-4-[3-(4-fluorophenyl)-1-[2-(4-
25
     morpholinyl)ethyl]-1H-pyrazol-4-yl]-2-pyridinamine;
     N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-
     morpholinepropanamine;
     N'-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-
     N, N-dimethyl-1, 3-propanediamine;
30
     5-(4-fluorophenyl)-N-2-propynyl-4-(4-pyridinyl)-1H-
     pyrazol-3-amine;
     3-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-
     4-pyridinyl]-1H-pyrazole-1-ethanol;
35
     5-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-
     4-pyridinyl]-1H-pyrazole-1-ethanol;
```

```
4-[3-[(4-fluorophenyl)-1H-pyrazol-4-yl]quinoline;
    N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
    yl]glycine methyl ester;
    N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-
5
    yl]glycine;
    4-[3-(4-fluorophenyl)-1-(2-propynyl)-1H-pyrazol-4-
    yl]pyridine;
     4-[5-(4-fluorophenyl)-1-(2-propynyl)-1H-pyrazol-4-
    yl]pyridine;
    4,4'-(1H-pyrazole-3,4-diyl)bis[pyridine];
10
     4-[3-(3,4-dichlorophenyl)-1H-pyrazol-4-yl]pyridine;
     N-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl}-4-
     piperidinamine;
     2-Chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-
    yl]pyrimidine;
15
     4-[3-(4-fluorophenyl)-lH-pyrazol-4-yl]-2(1H)-pyrimidinone
     hydrazone;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N,N-dimethyl-2-
     pyrimidinamine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-
20
     pyrimidinamine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-
     2-pyrimidinamine;
     N-cyclopropyl-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyrimidinamine;
25
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[(4-
     methoxyphenyl) methyl] -2-pyrimidinamine;
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine;
     N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]-
     N-(phenylmethyl)acetamide;
30
     Ethyl [4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-
     pyrimidinyl]carbamate;
     4-[3-(3-methylphenyl)-1H-pyrazol-4-yl]pyrimidine;
     4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]pyrimidine;
     4-[3-(3-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine; and
35
     4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine.
```

Within Formula I there is another subclass of compounds of high interest represented by Formula IX:

$$\begin{array}{c|c}
R^{3} \\
R^{4} \\
\hline
R^{4} \\
\hline
R^{1}
\end{array}$$
(IX)

wherein

Z represents a carbon atom or a nitrogen atom; and R¹ is selected from hydrido, lower alkyl, lower hydroxyalkyl, lower alkynyl, lower heterocycyl, lower aralkyl, lower aminoalkyl and lower alkylaminoalkyl; and R² is selected from hydrido, lower alkyl, aryl selected from phenyl, biphenyl, and naphthyl, 5- or 6-membered heterocyclyl selected from piperidinyl, piperazinyl, imidazolyl, pyridinyl and morpholinyl, lower haloalkyl, lower hydroxyalkyl, lower alkoxycarbonyl, lower alkylamino, lower alkylamino, lower lower aralkyl, phenylamino, lower aralkyl, lower aralkylamino, lower

alkylaminoalkylamino, lower aminoalkyl, lower aminoalkylamino, lower alkynylamino, lower heterocyclylamino, lower heterocyclylalkyl, lower heterocyclylalkylamino, lower alkylheterocyclyl, lower carboxycycloalkyl, lower carboxyalkylamino, lower alkoxyalkylamino, lower alkoxycarbonylaminoalkylamino, lower heterocyclylcarbonyl, lower alkoxycarbonylheterocyclyl, and lower alkoxycarbonylheterocyclylcarbonyl; wherein the aryl and

15

20

25

30

phenylalkyl; or

heteroaryl groups are optionally substituted with one or more radicals independently selected from halo, lower alkyl, keto, aralkyl, carboxy, lower alkylaminoalkylamino, lower alkynylamino, lower heterocyclylalkylamino, lower alkylcarbonyl and lower alkoxycarbonyl; or

 \mbox{R}^2 is $-\mbox{CR}^{54}\mbox{R}^{55}$ wherein \mbox{R}^{54} is phenyl and \mbox{R}^{55} is hydroxy; and

R4 is selected from hydrido, lower cycloalkyl, lower cycloalkenyl, lower cycloalkyldienyl, 5- or 6-membered heterocyclyl, and aryl selected from phenyl, biphenyl, naphthyl; wherein R4 is optionally substituted at a substitutable position with one or more radicals independently selected from halo, lower alkyl, lower alkoxy, aryloxy, lower aralkoxy, lower haloalkyl, lower alkylthio, lower alkylamino, nitro, hydroxy; and

R⁵ is selected from halo, amino, cyano, aminocarbonyl, lower alkyl, lower alkoxy, hydroxy, lower aminoalkyl, lower aralkyl, lower aralkyloxy, lower aralkylamino, lower alkoxycarbonyl, lower alkylamino, lower alkylcarbonyl, lower aralkenyl, lower arylheterocyclyl, carboxy, lower cycloalkylamino, lower alkoxycarbonylamino, lower alkoxyaralkylamino, lower alkylaminoalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower aralkylheterocyclylamino, lower alkylaminocarbonyl, lower alkylcarbonyl, lower alkoxyaralkylamino, hydrazinyl, and lower alkylhydrazinyl, or -NR⁶²R⁶³ wherein R⁶² is lower alkylcarbonyl or amino, and R⁶³ is lower alkyl or lower

a pharmaceutically-acceptable salt or tautomer thereof.

A preferred class of compounds consists of those compounds of Formula IX

R1 is selected from hydrido, methyl, ethyl,

25

35

hydroxyethyl and propargyl; and

R² is selected from hydrido, methyl, ethyl, propyl, phenyl, trifluoromethyl, hydroxyethyl, methoxycarbonylethyl, ethoxycarbonylethyl, N-methylamino, N,N-dimethylamino, N-ethylamino, N,N-diethylamino, N-propylamino, N-phenylamino, aminomethyl, aminoethyl, aminoethylamino, aminopropylamino, propargylamino, benzylamino, dimethylaminopropylamino, morpholinylpropylamino, morpholinylethylamino, piperidinyl, piperazinyl, imidazolyl, morpholinyl

- piperidinyl, piperazinyl, imidazolyl, morpholinyl,
 pyridinyl, carboxymethylamino, methoxyethylamino, (1,1 dimethyl)ethylcarbonyl, (1,1 dimethyl)ethylcarbonylaminopropylamino, (1,1 dimethyl)ethylcarbonylaminoethylamino,
- piperazinylcarbonyl, 1,1-dimethylethylpiperazinylcarbonyl; wherein the phenyl, piperidinyl, piperazinyl, imidazolyl, morpholinyl, and pyridinyl groups are optionally substituted with one or more radicals independently selected from fluoro, chloro,
- bromo, keto, methyl, ethyl, trifluoromethyl, benzyl,
 methoxy, methoxycarbonyl, ethoxycarbonyl and (1,1dimethyl)ethoxycarbonyl; and

R4 is selected from cyclohexyl, cyclohexenyl, cyclohexadienyl, phenyl, quinolyl, biphenyl, pyridinyl, thienyl, furyl, dihydropyranyl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein R4 is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy,

benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; and

R⁵ is selected from fluoro, chloro, bromo, methyl, fluorophenylethyl, fluorophenylethenyl, fluorophenylpyrazolyl, cyano, methoxycarbonyl, aminocarbonyl, acetyl, hydroxy, carboxy, methoxy, methylamino, dimethylamino, 2-methylbutylamino,

ethylamino, dimethylaminoethylamino, hydroxypropylamino, hydroxyethylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, hydroxy, methylcarbonyl, ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylmethylamino, methylaminocarbonyl, methylcarbonyl, hydrazinyl, and 1-methylhydrazinyl, or NR⁶²R⁶³ wherein R⁶² is methylcarbonyl or amino, and R⁶³ is methyl or benzyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

15

10

5

Within Formula I there is another subclass of compounds of high interest represented by Formula X:

wherein

20

Z represents a carbon atom or a nitrogen atom; and R¹ is selected from lower alkyl, lower hydroxyalkyl, lower alkynyl, lower aminoalkyl and lower alkylaminoalkyl; and

R² is selected from hydrido, lower alkyl, aryl

WO 98/52940 PCT/US98/10436

55

selected from phenyl, biphenyl, and naphthyl, 5- or 6membered heterocyclyl selected from piperidinyl, piperazinyl, imidazolyl, pyridinyl and morpholinyl, lower haloalkyl, lower hydroxyalkyl, lower alkoxycarbonyl, lower alkylamino, lower alkylaminoalkyl, phenylamino, lower aralkyl, lower aralkylamino, lower alkylaminoalkylamino, lower aminoalkyl, lower aminoalkylamino, lower alkynylamino, lower heterocyclylamino, lower heterocyclylalkyl, lower heterocyclylalkylamino, lower alkylheterocyclyl, lower carboxycycloalkyl, lower carboxyalkylamino, lower alkoxyalkylamino, lower alkoxycarbonylaminoalkylamino, lower heterocyclylcarbonyl, lower alkoxycarbonylheterocyclyl, and lower alkoxycarbonylheterocyclylcarbonyl; wherein the aryl and heteroaryl groups are optionally substituted with one or

10

30

alkoxycarbonylheterocyclylcarbonyl; wherein the aryl and heteroaryl groups are optionally substituted with one or more radicals independently selected from halo, lower alkyl, keto, aralkyl, carboxy, lower alkylaminoalkylamino, lower alkynylamino, lower heterocyclylalkylamino, lower alkylcarbonyl and lower alkoxycarbonyl; or

 \mbox{R}^2 is -CR54R55 wherein R54 is phenyl and R55 is hydroxy; and

R4 is selected from 5- or 6-membered heteroaryl, and aryl selected from phenyl, biphenyl, and naphthyl; wherein R4 is optionally substituted with one or more radicals independently selected from halo, lower alkyl, lower alkoxy, aryloxy, lower aralkoxy, lower haloalkyl, lower alkylthio, lower alkylamino, nitro, hydroxy; and

R⁵ is selected from halo, amino, cyano, aminocarbonyl, lower alkyl, lower alkoxy, hydroxy, lower aminoalkyl, lower aralkyl, lower aralkyloxy, lower aralkylamino, lower alkoxycarbonyl, lower alkylamino, lower alkylcarbonyl, lower aralkenyl, lower

arylheterocyclyl, carboxy, lower cycloalkylamino, lower alkoxycarbonylamino, lower alkoxyaralkylamino, lower

WO 98/52940 PCT/US98/10436

56

alkylaminoalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower aralkylheterocyclylamino, lower alkylaminocarbonyl, lower alkylcarbonyl, lower alkoxyaralkylamino, hydrazinyl, and lower alkylhydrazinyl, or -NR⁶²R⁶³ wherein R⁶² is lower alkylcarbonyl or amino, and R⁶³ is lower alkyl or lower phenylalkyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

10

5

A preferred class of compounds consists of those compounds of Formula X

R¹ is selected from methyl, ethyl, hydroxyethyl and propargyl; and

R² is selected from methyl, ethyl, propyl, phenyl, trifluoromethyl, hydroxyethyl, methoxycarbonylethyl, ethoxycarbonylethyl, N-methylamino, N,N-dimethylamino, N-ethylamino, N,N-diethylamino, N-propylamino, N-phenylamino, aminomethyl, aminoethyl, aminoethylamino, aminopropylamino, propargylamino, benzylamino, piperadinylamino, dimethylaminoethylamino, dimethylaminopropylamino, morpholinylpropylamino, morpholinylethylamino, piperidinyl, piperazinyl, imidazolyl, morpholinyl, pyridinyl, N-methylpiperazinyl, carboxymethylamino, methoxyethylamino, (1,1-

dimethyl)ethylcarbonyl, (1,1dimethyl)ethylcarbonylaminopropylamino, (1,1dimethyl)ethylcarbonylaminoethylamino,
piperazinylcarbonyl, and 1,1-dimethyl-

ethylpiperazinylcarbonyl; wherein the phenyl, piperidinyl, piperazinyl, imidazolyl, morpholinyl, and pyridinyl groups are optionally substituted with one or more radicals independently selected from fluoro, chloro, bromo, keto, methyl, ethyl, trifluoromethyl, benzyl,

methoxy, methoxycarbonyl, ethoxycarbonyl and (1,1-dimethyl)ethoxycarbonyl; and

R' is selected from phenyl, quinolyl, biphenyl, pyridinyl, thienyl, furyl, dihydropyranyl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein R' is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; and

R⁵ is selected from fluoro, chloro, bromo, methyl, fluorophenylethyl, fluorophenylethenyl, 10 fluorophenylpyrazolyl, cyano, methoxycarbonyl, aminocarbonyl, acetyl, hydroxy, carboxy, methoxy, methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxypropylamino, hydroxyethylamino, propargylamino, imidazolylamino, 15 morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, hydroxy, methylcarbonyl, ethoxycarbonylamino, methoxyphenylmethylamino, 20 phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminocarbonyl, methylcarbonyl, hydrazinyl, and 1-methylhydrazinyl, or -NR62R63 wherein R62 is methylcarbonyl or amino, and R63 is methyl or benzyl; or 25

a pharmaceutically-acceptable salt or tautomer thereof.

Within Formula I there is another subclass of compounds of high interest represented by Formula XI:

STATES THE PROPERTY OF THE

wherein

Z represents a carbon atom or a nitrogen atom; and R¹ is selected from lower alkyl, lower hydroxyalkyl, lower alkynyl, lower aminoalkyl and lower alkylaminoalkyl; and

R² is selected from hydrido, lower alkyl, aryl selected from phenyl, biphenyl, and naphthyl, 5- or 6-membered heterocyclyl selected from piperidinyl,

- piperazinyl, imidazolyl, pyridinyl and morpholinyl, lower haloalkyl, lower hydroxyalkyl, lower alkoxycarbonyl, lower alkylamino, lower alkylamino, phenylamino, lower aralkyl, lower aralkylamino, lower alkylaminoalkyl, lower
- aminoalkylamino, lower alkynylamino, lower heterocyclylamino, lower heterocyclylalkyl, lower heterocyclylalkylamino, lower alkylheterocyclyl, lower carboxycycloalkyl, lower carboxyalkylamino, lower alkoxyalkylamino, lower alkoxycarbonylaminoalkylamino,
- lower heterocyclylcarbonyl, lower alkoxycarbonylheterocyclyl, and lower alkoxycarbonylheterocyclylcarbonyl; wherein the aryl and heteroaryl groups are optionally substituted with one or more radicals independently selected from halo, lower

10

15

20

25

30

35

alkyl, keto, aralkyl, carboxy, lower alkylaminoalkylamino, lower alkynylamino, lower heterocyclylalkylamino, lower alkylcarbonyl and lower alkoxycarbonyl; or

 R^2 is $-CR^{54}R^{55}$ wherein R^{54} is phenyl and R^{55} is hydroxy; and

R' is selected from 5- or 6-membered heteroaryl, and aryl selected from phenyl, biphenyl, and naphthyl; wherein R' is optionally substituted with one or more radicals independently selected from halo, lower alkyl, lower alkoxy, aryloxy, lower aralkoxy, lower haloalkyl, lower alkylthio, lower alkylamino, nitro, hydroxy; and

R⁵ is selected from halo, amino, cyano, aminocarbonyl, lower alkyl, lower alkoxy, hydroxy, lower aminoalkyl, lower aralkyl, lower aralkyloxy, lower aralkylamino, lower alkoxycarbonyl, lower alkylamino, lower alkylcarbonyl, lower aralkenyl, lower arylheterocyclyl, carboxy, lower cycloalkylamino, lower alkoxycarbonylamino, lower alkoxyaralkylamino, lower alkylaminoalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower aralkylheterocyclylamino, lower alkylaminocarbonyl, lower alkylcarbonyl, lower alkylamino, hydrazinyl, and lower alkylhydrazinyl, or -NR⁶²R⁶³ wherein R⁶² is lower alkylcarbonyl or amino, and R⁶³ is lower alkyl or lower phenylalkyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

A preferred class of compounds consists of those compounds of Formula XI

 $\ensuremath{\mathbb{R}}^1$ is selected from methyl, ethyl, hydroxyethyl and propargyl; and

R² is selected from methyl, ethyl, propyl, phenyl, trifluoromethyl, hydroxyethyl, methoxycarbonylethyl, ethoxycarbonylethyl, N-methylamino, N,N-dimethylamino, N-

25

30

35

ethylamino, N, N-diethylamino, N-propylamino, Nphenylamino, aminomethyl, aminoethyl, aminoethylamino, aminopropylamino, propargylamino, benzylamino, dimethylaminopropylamino, morpholinylpropylamino, 5 morpholinylethylamino, piperidinyl, piperazinyl, imidazolyl, morpholinyl, pyridinyl, carboxymethylamino, methoxyethylamino, (1,1-dimethyl)ethylcarbonyl, (1,1dimethyl) ethylcarbonylaminopropylamino, (1,1dimethyl) ethylcarbonylaminoethylamino, 10 piperazinylcarbonyl, 1,1-dimethylethylpiperazinylcarbonyl; wherein the phenyl, piperidinyl, piperazinyl, imidazolyl, morpholinyl, and pyridinyl groups are optionally substituted with one or more radicals independently selected from fluoro, chloro, 15 bromo, keto, methyl, ethyl, trifluoromethyl, benzyl, methoxy, methoxycarbonyl, ethoxycarbonyl and (1,1dimethyl) ethoxycarbonyl;

R4 is selected from phenyl, quinolyl, biphenyl, pyridinyl, thienyl, furyl, dihydropyranyl, benzofuryl, dihydrobenzofuryl, and benzodioxolyl; wherein R4 is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; and

R⁵ is selected from fluoro, chloro, bromo, methyl, fluorophenylethyl, fluorophenylethenyl, fluorophenylpyrazolyl, cyano, methoxycarbonyl, aminocarbonyl, acetyl, hydroxy, carboxy, methoxy, methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxypropylamino, hydroxyethylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl, cyclopropylamino, amino, hydroxy, methylcarbonyl,

15

ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminocarbonyl, methylcarbonyl, hydrazinyl, and 1-methylhydrazinyl, or - NR⁶²R⁶³ wherein R⁶² is methylcarbonyl or amino, and R⁶³ is methyl or benzyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

10 A preferred class of compounds consists of those compounds of Formula IX wherein

Z represents a carbon atom or a nitrogen atom; and

R¹ is selected from hydrido, lower alkyl, lower hydroxyalkyl, lower alkynyl, lower aminoalkyl and lower alkylaminoalkyl; and

R² is selected from hydrido, lower alkyl, aryl selected from phenyl, biphenyl, and naphthyl, 5- or 6-membered heterocyclyl selected from piperidinyl,

- piperazinyl, imidazolyl, pyridinyl and morpholinyl, lower haloalkyl, lower hydroxyalkyl, lower alkoxycarbonyl, lower alkylamino, lower alkylaminoalkyl, phenylamino, lower aralkyl, lower aralkylamino, lower alkylaminoalkylamino, lower alkylaminoalkylamino, lower
- aminoalkylamino, lower alkynylamino, lower heterocyclylamino, lower heterocyclylalkyl, lower heterocyclylalkylamino, lower alkylheterocyclyl, lower carboxycycloalkyl, lower carboxyalkylamino, lower alkoxyalkylamino, lower alkoxycarbonylaminoalkylamino,
- lower heterocyclylcarbonyl, lower alkoxycarbonylheterocyclyl, and lower alkoxycarbonylheterocyclylcarbonyl; wherein the aryl and heteroaryl groups are optionally substituted with one or more radicals independently selected from halo, lower
- alkyl, keto, aralkyl, carboxy, lower alkylaminoalkylamino, lower alkynylamino, lower

こうこと かんしょうしゃ アラス 不見はない

heterocyclylalkylamino, lower alkylcarbonyl and lower alkoxycarbonyl; or

5

20

30

 R^2 is $-CR^{54}R^{55}$ wherein R^{54} is phenyl and R^{55} is hydroxy; and

R4 is phenyl that is optionally substituted with one or more radicals independently selected from halo, lower alkyl, lower alkoxy, aryloxy, lower aralkoxy, lower haloalkyl, lower alkylthio, lower alkylamino, nitro, hydroxy; and

10 R⁵ is selected from halo, amino, cyano, aminocarbonyl, lower alkyl, lower alkoxy, hydroxy, lower aminoalkyl, lower aralkyl, lower aralkyloxy, lower aralkylamino, lower alkoxycarbonyl, lower alkylamino, lower alkylcarbonyl, lower aralkenyl, lower

arylheterocyclyl, carboxy, lower cycloalkylamino, lower alkoxycarbonylamino, lower alkoxyaralkylamino, lower alkylaminoalkylamino, lower heterocyclylamino, lower heterocyclylalkylamino, lower aralkylheterocyclylamino, lower alkylaminocarbonyl, lower alkylcarbonyl, lower.

alkoxyaralkylamino, hydrazinyl, and lower alkylhydrazinyl, or -NR⁶²R⁶³ wherein R⁶² is lower alkylcarbonyl or amino, and R⁶³ is lower alkyl or lower phenylalkyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

A class of compounds of specific interest consists of those compounds of Formula IX wherein

R¹ is selected from hydrido, methyl, ethyl, hydroxyethyl and propargyl;

R² is selected from methyl, ethyl, propyl, phenyl, trifluoromethyl, hydroxyethyl, methoxycarbonylethyl, ethoxycarbonylethyl, N-methylamino, N,N-dimethylamino, N-ethylamino, N,N-diethylamino, N-propylamino, N-phenylamino, aminomethyl, aminoethyl, aminoethylamino,

phenylamino, aminomethyl, aminoethyl, aminoethylamino, aminopropylamino, propargylamino, benzylamino,

WO 98/52940 PCT/US98/10436

63

dimethylaminopropylamino, morpholinylpropylamino, morpholinylethylamino, piperidinyl, piperazinyl, imidazolyl, morpholinyl, pyridinyl, carboxymethylamino, methoxyethylamino, (1,1-dimethyl)ethylcarbonyl, (1,1-dimethyl)ethylcarbonylaminopropylamino, (1,1-dimethyl)ethylcarbonylaminoethylamino, piperazinylcarbonyl, 1,1-dimethyl-ethylpiperazinylcarbonyl; wherein the phenyl, piperidinyl, piperazinyl, imidazolyl, morpholinyl, and pyridinyl groups are optionally substituted with one or more radicals independently selected from fluoro, chloro, bromo, keto, methyl, ethyl, trifluoromethyl, benzyl, methoxy, methoxycarbonyl, ethoxycarbonyl and (1,1-dimethyl)ethoxycarbonyl;

10

35

R⁴ is phenyl that is optionally substituted with one or more radicals independently selected from methylthio, fluoro, chloro, bromo, methyl, ethyl, methoxy, ethoxy, phenoxy, benzyloxy, trifluoromethyl, nitro, dimethylamino, and hydroxy; and

R⁵ is selected from fluoro, chloro, bromo, methyl, fluorophenylethyl, fluorophenylethenyl, fluorophenylpyrazolyl, cyano, methoxycarbonyl, aminocarbonyl, acetyl, hydroxy, carboxy, methoxy, methylamino, dimethylamino, 2-methylbutylamino, ethylamino, dimethylaminoethylamino, hydroxypropylamino,

ethylamino, dimethylaminoethylamino, hydroxypropylamino hydroxyethylamino, imidazolylamino, morpholinylethylamino, (1-ethyl-2-hydroxy)ethylamino, piperidinylamino, pyridinylmethylamino, phenylmethylpiperidinylamino, aminomethyl,

cyclopropylamino, amino, hydroxy, methylcarbonyl, ethoxycarbonylamino, methoxyphenylmethylamino, phenylmethylamino, fluorophenylmethylamino, fluorophenylethylamino, methylaminocarbonyl, methylcarbonyl, hydrazinyl, and 1-methylhydrazinyl, or -

 $NR^{62}R^{63}$ wherein R^{62} is methylcarbonyl or amino, and R^{63} is methyl or benzyl; or

WO 98/52940 PCT/US98/10/436

64

a pharmaceutically-acceptable salt or tautomer thereof.

Another class of compounds of specific interest
consists of those compounds of Formula IX wherein
Z represents a carbon atom or a nitrogen atom;
and

 \mathbb{R}^1 is selected from hydrido, lower alkyl, lower hydroxyalkyl and lower alkynyl; and

R² is selected from hydrido and lower alkyl; and R⁴ is selected from phenyl and benzodioxolyl; wherein phenyl is optionally substituted with one or more halo radicals; and

R⁵ is selected from hydrido, halo and alkylhydrazinyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

Still another class of compounds of specific interest consists of those compounds of Formula IX wherein

Z represents a carbon atom; and

 $\ensuremath{\mathtt{R}}^1$ is selected from hydrido, methyl, hydroxyethyl, propargyl; and

R² is hydrido; and

15

25

R' is selected from phenyl and benzodioxolyl; wherein phenyl is optionally substituted with one or more radicals independently selected from chloro, fluoro and bromo; and

R⁵ is selected from hydrido, fluoro, and 1-methylhydrazinyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

A preferred class of compounds of specific interest consists of those compounds of Formula IX wherein

WO 98/52940 PCT/US98/10/436

65

Z represents a carbon atom; and

R1 is selected from hydrido and methyl; and

R² is hydrido; and

R4 is selected from phenyl that is optionally substituted with one or more radicals independently selected from chloro, fluoro and bromo; and

R⁵is selected from hydrido and fluoro; or

a pharmaceutically-acceptable salt or tautomer thereof.

10

The term "hydrido" denotes a single hydrogen atom This hydrido radical may be attached, for example, to an oxygen atom to form a hydroxyl radical or two hydrido radicals may be attached to a carbon atom to form 15 a methylene (-CH2-) radical. Where used, either alone or within other terms such as "haloalkyl", "alkylsulfonyl", "alkoxyalkyl" and "hydroxyalkyl", "cyanoalkyl" and "mercaptoalkyl", the term "alkyl" embraces linear or branched radicals having one to about twenty carbon atoms or, preferably, one to about twelve carbon atoms. More 20 preferred alkyl radicals are "lower alkyl" radicals having one to about ten carbon atoms. Most preferred are lower alkyl radicals having one to about six carbon atoms. Examples of such radicals include methyl, ethyl, 25 n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tertbutyl, pentyl, iso-amyl, hexyl and the like. The term "alkenyl" embraces linear or branched radicals having at least one carbon-carbon double bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkenyl radicals are "lower 30 alkenyl" radicals having two to about six carbon atoms. Examples of alkenyl radicals include ethenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The terms "alkenyl" and "lower alkenyl", embrace radicals having 35 "cis" and "trans" orientations, or alternatively, "E" and "Z" orientations. The term "alkynyl" embraces linear or

مَّ رَبَيْنَ مِن مِنْكُونِ وَيُمَكِّرُ إِبْرَاءً * كَمْكُونِيدُ * أَمْمُ وَيَعْمُلُونَ * مُ

branched radicals having at least one carbon-carbon triple bond of two to about twenty carbon atoms or, preferably, two to about twelve carbon atoms. More preferred alkynyl radicals are "lower alkynyl" radicals having two to about six carbon atoms. Examples of 5 alkynyl radicals include propargyl, 1-propynyl, 2propynyl, 1-butyne, 2-butenyl and 1-pentynyl. The term "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. 10 "cycloalkyl" embraces saturated carbocyclic radicals having three to about twelve carbon atoms. preferred cycloalkyl radicals are "lower cycloalkyl" radicals having three to about eight carbon atoms. Examples of such radicals include cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term 15 "cycloalkylalkylene" embraces alkyl radicals substituted with a cycloalkyl radical. More preferred cycloalkylalkylene radicals are "lower cycloalkylalkylene" which embrace lower alkyl radicals substituted with a lower cycloalkyl radical as defined 20 above. Examples of such radicals include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl and cyclohexylmethyl. The term "cycloalkenyl" embraces partially unsaturated carbocyclic radicals having three to twelve carbon atoms. Cycloalkenyl radicals that are 25 partially unsaturated carbocyclic radicals that contain two double bonds (that may or may not be conjugated) can be called "cycloalkyldienyl". More preferred cycloalkenyl radicals are "lower cycloalkenyl" radicals having four to about eight carbon atoms. Examples of 30 such radicals include cyclobutenyl, cyclopentenyl and cyclohexenyl. The term "halo" means halogens such as fluorine, chlorine, bromine or iodine. The term "haloalkyl" embraces radicals wherein any one or more of 35 the alkyl carbon atoms is substituted with halo as defined above. Specifically embraced are monohaloalkyl,

dihaloalkyl and polyhaloalkyl radicals. A monohaloalkyl radical, for one example, may have either an iodo, bromo, chloro or fluoro atom within the radical. Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals. "Lower haloalkyl" embraces radicals having one to six carbon atoms. Examples of haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, 10 difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. The term "hydroxyalkyl" embraces linear or branched alkyl radicals having one to about ten carbon atoms any one of which may be substituted with one or 15 more hydroxyl radicals. More preferred hydroxyalkyl radicals are "lower hydroxyalkyl" radicals having one to six carbon atoms and one or more hydroxyl radicals. Examples of such radicals include hydroxymethyl, 20 hydroxyethyl, hydroxypropyl, hydroxybutyl and hydroxyhexyl. The terms "alkoxy" and "alkyloxy" embrace linear or branched oxy-containing radicals each having alkyl portions of one to about ten carbon atoms. preferred alkoxy radicals are "lower alkoxy" radicals having one to six carbon atoms. Examples of such radicals 25 include methoxy, ethoxy, propoxy, butoxy and tert-butoxy. The term "alkoxyalkyl" embraces alkyl radicals having one or more alkoxy radicals attached to the alkyl radical, that is, to form monoalkoxyalkyl and dialkoxyalkyl 30 radicals. The "alkoxy" radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide haloalkoxy radicals. The term "aryl", alone or in combination, means a carbocyclic aromatic system containing one, two or three rings 35 wherein such rings may be attached together in a pendent

manner or may be fused. The term "aryl" embraces

aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. Aryl moieties may also be substituted at a substitutable position with one or more substituents selected independently from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, 5 alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene, arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, 10 arylaminocarbonyl, alkoxycarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, hydroxy, alkoxyalkyl, carboxyalkyl, alkoxycarbonylalkyl, 15 aminocarbonylalkylene, acyl, carboxy, and The term "heterocyclyl" embraces aralkoxycarbonyl. saturated, partially unsaturated and unsaturated heteroatom-containing ring-shaped radicals, which can also be called "heterocyclyl", "heterocycloalkenyl" and 20 "heteroaryl" correspondingly, where the heteroatoms may be selected from nitrogen, sulfur and oxygen. Examples of saturated heterocyclyl radicals include saturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms (e.g. pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl, etc.); saturated 3 to 6-membered 25 heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. morpholinyl, etc.); saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., 30 thiazolidinyl, etc.). Examples of partially unsaturated heterocyclyl radicals include dihydrothiophene, dihydropyran, dihydrofuran and dihydrothiazole. Heterocyclyl radicals may include a pentavalent nitrogen, such as in tetrazolium and pyridinium radicals. The term "heteroaryl" embraces unsaturated heterocyclyl radicals. 35 Examples of heteroaryl radicals include unsaturated 3 to

6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl (e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.) tetrazolyl 5 (e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.), etc.; unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl (e.g., 10 tetrazolo[1,5-b]pyridazinyl, etc.), etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing a sulfur 15 atom, for example, thienyl, etc.; unsaturated 3- to 6membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl (e.g., 1,2,4-oxadiazolyl, 1,3,4oxadiazolyl, 1,2,5-oxadiazolyl, etc.) etc.; unsaturated 20 condensed heterocyclyl group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms (e.g. benzoxazolyl, benzoxadiazolyl, etc.); unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl (e.g., 1,2,4- thiadiazolyl, 1,3,4-25 thiadiazolyl, 1,2,5-thiadiazolyl, etc.) etc.; unsaturated condensed heterocyclyl group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms (e.g., benzothiazoly), benzothiadiazolyl, etc.) and the like. The term "heterocycle" also embraces radicals where heterocyclyl 30 radicals are fused with aryl or cycloalkyl radicals. Examples of such fused bicyclic radicals include benzofuran, benzothiophene, and the like. "heterocyclyl group" may have 1 to 3 substituents such as 35 alkyl, hydroxyl, halo, alkoxy, oxo, amino, alkylthio and alkylamino. The term "heterocyclylalkylene" embraces

heterocyclyl-substituted alkyl radicals. More preferred heterocyclylalkylene radicals are "lower heterocyclylalkylene" radicals having one to six carbon atoms and a heterocyclyl radicals. The term "alkylthio" embraces radicals containing a linear or branched alkyl radical, of one to about ten carbon atoms attached to a divalent sulfur atom. More preferred alkylthio radicals are "lower alkylthio" radicals having alkyl radicals of one to six carbon atoms. Examples of such lower alkylthio radicals are methylthio, ethylthio, propylthio, 10 butylthio and hexylthio. The term "alkylthioalkylene" embraces radicals containing an alkylthio radical attached through the divalent sulfur atom to an alkyl radical of one to about ten carbon atoms. More preferred alkylthioalkylene radicals are "lower alkylthioalkylene" 15 radicals having alkyl radicals of one to six carbon Examples of such lower alkylthioalkylene radicals include methylthiomethyl. The term "alkylsulfinyl" embraces radicals containing a linear or branched alkyl 20 radical, of one to about ten carbon atoms, attached to a divalent -S(=0) - radical. More preferred alkylsulfinyl radicals are "lower alkylsulfinyl" radicals having alkyl radicals of one to six carbon atoms. Examples of such lower alkylsulfinyl radicals include methylsulfinyl, 25 ethylsulfinyl, butylsulfinyl and hexylsulfinyl. The term "sulfonyl", whether used alone or linked to other terms such as "alkylsulfonyl", "halosulfonyl" denotes a divalent radical, -SO2-. "Alkylsulfonyl" embraces alkyl radicals attached to a sulfonyl radical, where alkyl is 30 defined as above. More preferred alkylsulfonyl radicals are "lower alkylsulfonyl" radicals having one to six carbon atoms. Examples of such lower alkylsulfonyl radicals include methylsulfonyl, ethylsulfonyl and propylsulfonyl. The "alkylsulfonyl" radicals may be 35 further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide haloalkylsulfonyl

radicals. The term "halosulfonyl" embraces halo radicals attached to a sulfonyl radical. Examples of such halosulfonyl radicals include chlorosulfonyl, and The terms "sulfamyl", "aminosulfonyl" and bromosulfonyl. "sulfonamidyl" denote NH_2O_2S -. The term "acyl" denotes a radical provided by the residue after removal of hydroxyl from an organic acid. Examples of such acyl radicals include alkanoyl and aroyl radicals. Examples of such alkanoyl radicals include formyl, acetyl, propionyl, 10 butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, and radicals formed from succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, mandelic, pantothenic, β -hydroxybutyric, galactaric and galacturonic acids. The term "carbonyl", whether used 15 alone or with other terms, such as "alkoxycarbonyl", denotes - (C=O) -. The terms "carboxy" or "carboxyl", whether used alone or with other terms, such as "carboxyalkyl", denotes -CO2H. The term "carboxyalkyl" embraces alkyl radicals substituted with a carboxy 20 radical. More preferred are "lower carboxyalkyl" which embrace lower alkyl radicals as defined above, and may be additionally substituted on the alkyl radical with halo. Examples of such lower carboxyalkyl radicals include 25 carboxymethyl, carboxyethyl and carboxypropyl. "alkoxycarbonyl" means a radical containing an alkoxy radical, as defined above, attached via an oxygen atom to a carbonyl radical. More preferred are "lower alkoxycarbonyl" radicals with alkyl portions having one 30 to six carbons. Examples of such lower alkoxycarbonyl (ester) radicals include substituted or unsubstituted methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl and hexyloxycarbonyl. The term "alkoxycarbonylalkyl" embraces alkyl radicals substituted with a alkoxycarbonyl radical as defined above. More 35 preferred are "lower alkoxycarbonylalkyl" radicals with

alkyl portions having one to six carbons. Examples of such lower alkoxycarbonylalkyl radicals include substituted or unsubstituted methoxycarbonylmethyl, ethoxycarbonylmethyl, methoxycarbonyl-ethyl and ethoxycarbonylethyl. The term "alkylcarbonyl", includes radicals having alkyl, hydroxylalkyl, radicals, as defined herein, attached to a carbonyl radical. of such radicals include substituted or unsubstituted methylcarbonyl, ethylcarbonyl, propylcarbonyl, butylcarbonyl, pentylcarbonyl, hydroxymethylcarbonyl, 10 hydroxyethylcarbonyl. The term "aralkyl" embraces arylsubstituted alkyl radicals such as benzyl, diphenylmethyl, triphenylmethyl, phenylethyl, and diphenylethyl. The aryl in said aralkyl may be additionally substituted with one or more substituents 15 selected independently from halo, alkyl, alkoxy, halkoalkyl, haloalkoxy, amino and nitro. The terms benzyl and phenylmethyl are interchangeable. The term "heterocyclylalkylene" embraces saturated and partially 20 unsaturated heterocyclyl-substituted alkyl radicals (also can be called heterocycloalkylalkylene and heterocycloalkenylalkylene correspondingly), such as pyrrolidinylmethyl, and heteroaryl-substituted alkyl radicals (also can be called heteroarylalkylene), such as pyridylmethyl, quinolylmethyl, thienylmethyl, furylethyl, 25 and quinolylethyl. The heteroaryl in said heteroaralkyl may be additionally substituted with halo, alkyl, alkoxy, halkoalkyl and haloalkoxy. The term "aryloxy" embraces aryl radicals attached through an oxygen atom to other radicals. The term "aralkoxy" embraces aralkyl radicals 30 attached through an oxygen atom to other radicals. The term "aminoalkyl" embraces alkyl radicals substituted with amino radicals. More preferred are "lower aminoalkyl" radicals. Examples of such radicals include aminomethyl, aminoethyl, and the like. 35 The term

"alkylamino" denotes amino groups which are substituted

35

with one or two alkyl radicals. Preferred are "lower alkylamino" radicals having alkyl portions having one to six carbon atoms. Suitable lower alkylamino may be monosubstituted N-alkylamino or disubstituted N, Nalkylamino, such as N-methylamino, N-ethylamino, N,Ndimethylamino, N,N-diethylamino or the like. The term "arylamino" denotes amino groups which are substituted with one or two aryl radicals, such as N-phenylamino. The "arylamino" radicals may be further substituted on the aryl ring portion of the radical. The term 10 "aminocarbonyl" denotes an amide group of the formula -C(=O)NH2. The term "alkylaminocarbonyl" denotes an aminocarbonyl group which has been substituted with one or two alkyl radicals on the amino nitrogen atom. Preferred are "N-alkylaminocarbonyl" and "N,N-15 dialkylaminocarbonyl" radicals. More preferred are "lower N-alkylaminocarbonyl" and "lower N, Ndialkylaminocarbonyl" radicals with lower alkyl portions as defined above. The term "alkylcarbonylamino" embraces amino groups which are substituted with one alkylcarbonyl 20 radicals. More preferred alkylcarbonylamino radicals are "lower alkylcarbonylamino" having lower alkylcarbonyl radicals as defined above attached to amino radicals. The term "alkylaminoalkylene" embraces radicals having 25 one or more alkyl radicals attached to an aminoalkyl radical.

The "hydrocarbon" moieties described herein are organic compounds or radicals consisting exclusively of the elements carbon and hydrogen. These moieties include alkyl, alkenyl, alkynyl, and aryl moieties. These moieties also include alkyl, alkenyl, alkynyl, and aryl moieties substituted with other aliphatic or cyclic. hydrocarbon groups, such as alkaryl, alkenaryl and alkynaryl. Preferably, these moieties comprise 1 to 20 carbon atoms.

The heterosubstituted hydrocarbon moieties described

10

15

20

25

30

35

herein are hydrocarbon moieties which are substituted with at least one atom other than carbon, including moieties in which a carbon chain atom is substituted with a hetero atom such as nitrogen, oxygen, sulfur, or a halogen atom. These substituents include lower alkoxy such as methoxy, ethoxy, butoxy; halogen such as chloro or fluoro; ethers; acetals; ketals; esters; heterocyclyl such as furyl or thienyl; alkanoxy; hydroxy; protected hydroxy; acyl; acyloxy; nitro; cyano; amino; and amido.

The additional terms used to describe the substituents of the pyrazole ring and not specifically defined herein are defined in a similar manner to that illustrated in the above definitions. As above, more preferred substituents are those containing "lower" Unless otherwise defined to contrary, the term radicals. "lower" as used in this application means that each alkyl radical of a pyrazole ring substituent comprising one or more alkyl radicals has one to about six carbon atoms; each alkenyl radical of a pyrazole ring substituent comprising one or more alkenyl radicals has two to about six carbon atoms; each alkynyl radical of a pyrazole ring substituent comprising one or more alkynyl radicals has two to about six carbon atoms; each cycloalkyl or cycloalkenyl radical of a pyrazole ring substituent comprising one or more cycloalkyl and/or cycloalkenyl radicals is a 3 to 8 membered ring cycloalkyl or cycloalkenyl radical, respectively; each aryl radical of a pyrazole ring substituent comprising one or more aryl radicals is a monocyclic aryl radical; and each heterocyclyl radical of a pyrazole ring substituent comprising one or more heterocyclyl radicals is a 4-8 membered ring heterocyclyl.

The present invention comprises the tautomeric forms of compounds of Formulas I and IX. As illustrated below, the pyrazoles of Formula I and I' are magnetically and structurally equivalent because of the prototropic

10

15

20

25

tautomeric nature of the hydrogen:

The present invention also comprises compounds of Formula I, IX, X and XI having one or more asymmetric carbons. It is known to those skilled in the art that those pyrazoles of the present invention having asymmetric carbon atoms may exist in diastereomeric, racemic, or optically active forms. All of these forms are contemplated within the scope of this invention. More specifically, the present invention includes enantiomers, diastereomers, racemic mixtures, and other mixtures thereof.

The present invention comprises a pharmaceutical composition for the treatment of a TNF mediated disorder, a P38 kinase mediated disorder, inflammation, and/or arthritis, comprising a therapeutically-effective amount of a compound of Formula I, or a therapeutically-acceptable salt or tautomer thereof, in association with at least one pharmaceutically-acceptable carrier, adjuvant or diluent.

The present invention further encompasses substituted pyrazoles that specifically bind to the ATP binding site of p38 kinase. Without being held to a particular theory, applicants hypothesize that these substituted pyrazoles interact with p38 kinase as set forth below. As the substituent at the 3-position of the pyrazole ring approaches the ATP binding site of p38

kinase, a hydrophobic cavity in the p38 kinase forms around the 3-position substitutent at the binding site. This hydrophobic cavity is believed to form as the 3-position substituent binds to a specific peptide sequence of the enzyme. In particular, it is believed to bind to the sidechains of Lys_{52} , Glu_{69} , Leu_{73} , Ile_{82} , Leu_{84} , Leu_{101} and the methyl group of the Thr_{103} sidechain of p38 kinase at the ATP binding site (wherein the numbering scheme corresponds to the numbering scheme conventionally used for ERK-2). Where the 3-position substituent is aryl or heteroaryl, such aryl or heteroaryl may be further substituted. It is hypothesized that such ring substituents may be beneficial in preventing hydroxylation or further metabolism of the ring.

10

15

20

25

30

35

The substituent at the 4-position of the pyrazole ring is one that is a partial mimic of the adenine ring of ATP, although it may be further elaborated. Preferably, it is a planar substituent terminated by a suitable hydrogen bond acceptor functionality. It is hypothesized that this acceptor hydrogen bonds to the backbone N-H of the Met₁₀₆ residue while one edge of this substituent is in contact with bulk solvent.

Substitution at the 5-position of the pyrazole ring is well tolerated and can provide increased potency and selectivity. It is hypothesized that such substituents extend out in the direction of the bulk solvent and that suitable polar functionality placed at its terminus can interact with the sidechain of Asp¹⁰⁹, leading to increased potency and selectivity.

Similarly, substitution on the nitrogen atom at the 1- or 2-position of the pyrazole ring is well tolerated and can provide increased potency. It is hypothesized that a hydrogen substituent attached to one of the ring nitrogen atoms is hydrogen bonded to Asp₁₆₅. Preferably, the nitrogen atom at the 2-position is double bonded to the carbon atom at the 3-position of the pyrazole while

the nitrogen atom at the 1-position of the pyrazole is available for substitution with hydrogen or other substituents.

77

The 5-position substitutent and the 1- or 2-position substituent of the pyrazole can be selected so as to improve the physical characteristics, especially aqueous solubility and drug delivery performance, of the substituted pyrazole. Preferably, however, these substituents each have a molecular weight less than about 360 atomic mass units. More preferably, these substituents each have a molecular weight less than about less than about 250 atomic mass units. Still more preferably, these substituents have a combined molecular weight less than about 360 atomic mass units.

A class of substituted pyrazoles of particular interest consists of those compounds having the formula:

wherein

5

10

15

20

25

R1 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a molecular weight less than about 360 atomic mass units; and

R2 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical that binds with p38 kinase at said ATP binding site of p38 kinase; and

R3 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a hydrogen bond acceptor functionality; and

R4 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a molecular weight less than about 360 atomic mass units;

provided R3 is not 2-pyridinyl when R4 is a phenyl ring containing a 2-hydroxy substituent and when R1 is hydrido; further provided R2 is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R4 is hydrido; and further provided R4 is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

10

20

25

35

A class of substituted pyrazoles of particular interest consists of those compounds of Formula XI wherein

15 R1 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a molecular weight less than about 360 atomic mass units; and

R2 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical wherein said radical binds with Lys_{52} , Glu_{69} , Leu_{73} , Ile_{82} , Leu_{84} , Leu_{101} , and Thr_{103} sidechains at said ATP binding site of p38 kinase, said radical being substantially disposed within a hydrophobic cavity formed during said binding by p38 kinase at the ATP binding site; and

R³ is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a hydrogen bond acceptor functionality that hydrogen bonds with the N-H backbone of Met₁₀₆ of p38 kinase; and

R4 is a hydrocarbyl, heterosubstituted hydrocarbyl or heterocyclyl radical having a molecular weight less than 30 about 360 atomic mass units.

The present invention also comprises a therapeutic method of treating a TNF mediated disorder, a p38 kinase mediated disorder, inflammation and/or arthritis in a subject, the method comprising treating a subject having or susceptible to such disorder or condition with a therapeutically-effective amount of a compound of Formula

5 wherein

R¹ is selected from hydrido, alkyl, cycloalkyl, alkenyl, cycloalkenyl, alkynyl, aryl, heterocyclyl, cycloalkylalkylene, cycloalkenylalkylene, heterocyclylalkylene, haloalkyl, haloalkenyl,

haloalkynyl, hydroxyalkyl, hydroxyalkenyl, hydroxyalkynyl, aralkyl, aralkenyl, aralkynyl, arylheterocyclyl, carboxy, carboxyalkyl, alkoxyalkyl, alkenoxyalkyl, alkynoxyalkyl, aryloxyalkyl, heterocyclyloxyalkyl, alkoxyalkoxy, mercaptoalkyl,

alkylthioalkylene, alkenylthioalkylene,
alkylthioalkenylene, amino, aminoalkyl, alkylamino,
alkenylamino, alkynylamino, arylamino, heterocyclylamino,
alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl,
arylsulfinyl, heterocyclylsulfinyl, alkylsulfonyl,

alkenylsulfonyl, alkynylsulfonyl, arylsulfonyl, heterocyclylsulfonyl, alkylaminoalkylene, alkylsulfonylalkylene, acyl, acyloxycarbonyl, alkoxycarbonylalkylene, aryloxycarbonylalkylene, heterocyclyloxycarbonylalkylene, alkoxycarbonylarylene,

aryloxycarbonylarylene, heterocyclyloxycarbonylarylene, alkylcarbonylalkylene, arylcarbonylalkylene, heterocyclylcarbonylalkylene, alkylcarbonylarylene, arylcarbonylarylene, heterocyclylcarbonylarylene,

alkylcarbonyloxyalkylene, arylcarbonyloxyalkylene, heterocyclylcarbonyloxyalkylene, alkylcarbonyloxyarylene, arylcarbonyloxyarylene, and heterocyclylcarbonyloxyarylene; or

R1 has the formula

wherein:

5

10

15

i is an integer from 0 to 9;

R²⁵ is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene; and

R²⁶ is selected from hydrogen, alkyl, alkenyl, alkynyl, cycloalkylalkylene, aralkyl, alkoxycarbonylalkylene, and alkylaminoalkyl; and R²⁷ is selected from alkyl, cycloalkyl, alkynyl, aryl, heterocyclyl, aralkyl, cycloalkylalkylene, cycloalkenylalkylene,

cycloalkylcycloalkyl, heterocyclylalkylene, alkylarylene, alkylaralkyl, aralkylarylene, alkylheterocyclyl, alkylheterocyclylalkylene, alkylheterocyclylarylene, aralkylheterocyclyl, alkoxyalkylene, alkoxyarylene, alkoxyaralkyl, alkoxyheterocyclyl, alkoxyalkoxyarylene, aryloxyarylene, aralkoxyarylene,

aryloxyarylene, aralkoxyarylene, alkoxyheterocyclylalkylene, aryloxyalkoxyarylene, alkoxycarbonylalkylene, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonylalkylene, aminoalkyl, alkylaminoalkylene, arylaminocarbonylalkylene,

alkoxyarylaminocarbonylalkylene, aminocarbonylalkylene, arylaminocarbonylalkylene, alkylaminocarbonylalkylene, arylcarbonylalkylene, alkoxycarbonylarylene,

aryloxycarbonylarylene, alkylaryloxycarbonylarylene, arylcarbonylarylene, alkylarylcarbonylarylene, alkoxycarbonylheterocyclylarylene, alkoxycarbonylalkoxylarylene, heterocyclylcarbonylalkylarylene, alkylthioalkylene,

heterocyclylcarbonylalkylarylene, alkylthioalkylene, cycloalkylthioalkylene, alkylthioarylene, aralkylthioarylene, heterocyclylthioarylene, arylthioalklylarylene, arylsulfonylaminoalkylene, alkylsulfonylarylene, alkylaminosulfonylarylene; wherein said alkyl, cycloalkyl, aryl, heterocyclyl, aralkyl,

heterocyclylalkylene, alkylheterocyclylarylene, alkoxyarylene, aryloxyarylene, aryloxyarylene, aryloxycarbonylalkylene, aryloxycarbonylarylene, arylcarbonylarylene, alkylthioarylene, heterocyclylthioarylene,

arylthioalklylarylene, and alkylsulfonylarylene groups are optionally substituted with one or more radicals independently selected from alkyl, halo, haloalkyl, alkoxy, keto, amino, nitro, and cyano; or

R²⁷ is -CHR²⁸R²⁹ wherein R²⁸ is alkoxycarbonyl, and R²⁹
is selected from aralkyl, aralkoxyalkylene,
heterocyclylalkylene, alkylheterocyclylalkylene,
alkoxycarbonylalkylene, alkylthioalkylene, and
aralkylthioalkylene; wherein said aralkyl and
heterocylcyl groups are optionally substituted with one
or more radicals independently selected from alkyl and
nitro; or

R²⁶ and R²⁷ together with the nitrogen atom to which they are attached form a heterocycle, wherein said heterocycle is optionally substituted with one or more radicals independently selected from alkyl, aryl, heterocyclyl, heterocyclylalkylene, alkylheterocyclylalkylene, aryloxyalkylene, alkoxyarylene, alkylaryloxyalkylene, alkylcarbonyl, alkoxycarbonyl, aralkoxycarbonyl, alkylamino and alkoxycarbonylamino; wherein said aryl, heterocyclylalkylene and aryloxyalkylene radicals are

30

35

optionally substituted with one or more radicals independently selected from halogen, alkyl and alkoxy; and

R² is selected from hydrido, halogen, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, haloalkyl, hydroxyalkyl, aralkyl, alkylheterocyclyl, heterocyclylalkyl, alkylamino, alkenylamino, alkynylamino, arylamino, heterocyclylamino, aralkylamino, aminoalkyl, aminoaryl, aminoalkylamino,

arylaminoalkylene, alkylaminoalkylene, arylaminoarylene, alkylaminoarylene, alkylaminoalkylamino, cycloalkyl, cycloalkenyl, alkoxy, heterocyclyloxy, alkylthio, arylthio, heterocyclylthio, carboxy, carboxyalkyl, carboxycycloalkyl, carboxycycloalkyl,

carboxyalkylamino, alkoxycarbonyl, heterocyclylcarbonyl, alkoxycarbonylalkyl, alkoxycarbonylheterocyclyl, alkoxycarbonylheterocyclylcarbonyl, alkoxyalkylamino, alkoxycarbonylaminoalkylamino, and heterocyclylsulfonyl; wherein the aryl, heterocyclyl, heterocyclylalkyl,

cycloalkyl and cycloalkenyl groups are optionally substituted with one or more radicals independently selected from halo, keto, amino, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, aralkyl, heterocyclylalkyl, epoxyalkyl, amino(hydroxyalkyl) carboxy, alkoxy, aryloxy,

aralkoxy, haloalkyl, alkylamino, alkynylamino, alkylaminoalkylamino, heterocyclylalkylamino, alkylcarbonyl, alkoxycarbonyl, alkylsulfonyl, arylsulfonyl, and aralkylsulfonyl; or

R² has the formula:

30

25

wherein:

j is an integer from 0 to 8; and

m is 0 or 1; and

5

10

15

25

30

R³⁰ and R³¹ are independently selected from hydrogen, alkyl, aryl, heterocyclyl, aralkyl, heterocyclylalkylene, aminoalkyl, alkylaminoalkyl, aminocarbonylalkyl, alkoxyalkyl, and alkylcarbonyloxyalkyl; and

R³² is selected from hydrogen, alkyl, aralkyl, heterocyclylalkyl, alkoxyalkylene, aryloxyalkylene, aminoalkyl, alkylaminoalkyl, arylaminoalkyl, alkylcarbonylalkylene, arylcarbonylalkylene, and heterocyclylcarbonylaminoalkylene;

 R^{33} is selected from hydrogen, alkyl, $-C\left(O\right)R^{35}$, $-C\left(O\right)OR^{35}$, $-SO_{2}R^{36}$, $-C\left(O\right)NR^{37}R^{38}$, and $-SO_{2}NR^{39}R^{40}$, wherein R^{35} , R^{36} , R^{37} , R^{38} , R^{39} and R^{40} are independently selected from hydrocarbon, heterosubstituted hydrocarbon and heterocyclyl; and

 \mathbb{R}^{34} is selected from hydrogen, alkyl, aminocarbonyl, alkylaminocarbonyl, and arylaminocarbonyl; or

 \mathbb{R}^2 is $-\mathbb{C}\mathbb{R}^{41}\mathbb{R}^{42}$ wherein \mathbb{R}^{41} is aryl, and \mathbb{R}^{42} is hydroxy; and

20 R³ is selected from pyridinyl, pyrimidinyl, quinolinyl, purinyl,

(IV) (V)

wherein R⁴³ is selected from hydrogen, alkyl,
aminoalkyl, alkoxyalkyl, alkenoxyalkyl, and aryloxyalkyl;
and

wherein the R³ pyridinyl, pyrimidinyl, quinolinyl and purinyl groups are optionally substituted with one or more radicals independently selected from halo, alkyl, aralkyl, aralkenyl, arylheterocyclyl, carboxy,

25

30

35

carboxyalkyl, alkoxy, aryloxy, alkylthio, arylthio, alkylsulfinyl, arylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkoxy, heterocyclylalkoxy, amino, alkylamino, alkenylamino, alkynylamino, cycloalkylamino, cycloalkenylamino, arylamino, heterocyclylamino, 5 aminocarbonyl, cyano, hydroxy, hydroxyalkyl, alkoxycarbonyl, aryloxycarbonyl, heterocyclyloxycarbonyl, alkoxycarbonylamino, alkoxyaralkylamino, aminosulfinyl, aminosulfonyl, alkylaminoalkylamino, hydroxyalkylamino, aralkylamino, heterocyclylalkylamino, 10 aralkylheterocyclylamino, nitro, alkylaminocarbonyl, alkylcarbonylamino, halosulfonyl, aminoalkyl, haloalkyl, alkylcarbonyl, hydrazinyl, alkylhydrazinyl, arylhydrazinyl, or -NR44R45 wherein R44 is alkylcarbonyl or amino, and R45 is alkyl or aralkyl; and 15

R* is selected from hydrido, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, aryl, and heterocyclyl, wherein R* is optionally substituted with one or more radicals independently selected from halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkylthio, arylthio, alkylthioalkylene, arylthioalkylene, alkylsulfinyl, alkylsulfinylalkylene, arylsulfinylalkylene, alkylsulfinylalkylene, alkylsulfonyl, alkylsulfonylalkylene, arylsulfonylalkylene, arylsulfonylalkylene, arylsulfonylalkylene, alkoxy, aryloxy, aralkoxy, aminocarbonyl, alkylaminocarbonyl, arylaminocarbonyl, aryloxycarbonyl, haloalkyl, amino, cyano, nitro, alkylamino, arylamino, alkylaminoalkylene, arylaminoalkylene, aminoalkylamino, and hydroxy;

provided R³ is not 2-pyridinyl when R⁴ is a phenyl ring containing a 2-hydroxy substituent and when R¹ is hydrido; further provided R² is selected from aryl, heterocyclyl, unsubstituted cycloalkyl and cycloalkenyl when R⁴ is hydrido; and further provided R⁴ is not methylsulfonylphenyl; or

a pharmaceutically-acceptable salt or tautomer thereof.

Also included in the family of compounds of Formula I are the pharmaceutically-acceptable salts thereof. term "pharmaceutically-acceptable salts" embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases. The nature 5 of the salt is not critical, provided that it is pharmaceutically-acceptable. Suitable pharmaceuticallyacceptable acid addition salts of compounds of Formula I may be prepared from an inorganic acid or from an organic Examples of such inorganic acids are hydrochloric, 10 hydrobromic, hydroiodic, nitric, carbonic, sulfuric and phosphoric acid. Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, araliphatic, heterocyclyl, carboxylic and sulfonic classes of organic acids, example of which are formic, 15 acetic, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, stearic, salicylic, p-20 hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, benzenesulfonic, pantothenic, toluenesulfonic, 2-hydroxyethanesulfonic, sulfanilic, cyclohexylaminosulfonic, algenic, β hydroxybutyric, galactaric and galacturonic acid. 25 Suitable pharmaceutically-acceptable base addition salts of compounds of Formula I include metallic salts and organic salts. More preferred metallic salts include, but are not limited to appropriate alkali metal (group Ia) salts, alkaline earth metal (group IIa) salts and 30 other physiological acceptable metals. Such salts can be made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc. Preferred organic salts can be made from tertiary amines and quaternary ammonium salts, including in part, tromethamine, diethylamine, 35 N, N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumine (N-

10

15

86

methylglucamine) and procaine. All of these salts may be prepared by conventional means from the corresponding compound of Formulas I-III by reacting, for example, the appropriate acid or base with the compound of Formulas I-III.

General Synthetic Procedures

The compounds of the invention can be prepared according to the following procedures of Schemes I-XVIII wherein R^1 , R^2 , R^3 , R^4 , R^5 and Ar^1 are as previously defined for the compounds of Formula I, IX, X and XI except where expressly noted.

SCHEME I

Scheme I shows the synthesis of pyrazole 5 by two

routes. Condensation of the pyridylmethyl ketone 1 with aldehyde 2 in the presence of a base, such as piperidine, in a solvent, such as toluene or benzene, either in the absence or the presence of acetic acid at reflux, provides the α, β -unsaturated ketone 3. In route 1, 5 ketone 3 is first converted to epoxide 4, such as by treatment with hydrogen peroxide solution at room temperature, in the presence of base such as sodium hydroxide. Treatment of epoxide 4 with hydrazine in ethanol or other suitable solvent at a temperature 10 ranging up to reflux, yields pyrazole 5. In route 2, ketone 3 is condensed directly with tosyl hydrazide in the presence of an acid such as acetic acid, at reflux, to provide pyrazole 5. Alternatively, the intermediate tosyl hydrazone 6 may be isolated, conversion of it to 15 pyrazole 5 is effected by treatment with a base, such as potassium hydroxide, in a suitable solvent, such as ethylene glycol, at a temperature ranging from 25 °C up to 150 °C.

10

15

20

12

Scheme II shows the synthesis of pyrazole 12 of the present invention. The treatment of pyridine derivative 7 with ester 8 in the presence of a base, such as sodium bis(trimethylsilyl)amide, in a suitable solvent, such as tetrahydrofuran, gives ketone 9. Treatment of ketone 9 or a hydrohalide salt of ketone 9 with a halogenating agent, such as bromine, N-bromosuccinimide or Nchlorosuccinimide, in suitable solvents, such as acetic acid, methylene chloride, methanol, or combinations thereof, forms the α -halogenated ketone 10 (wherein X is halo). Examples of suitable hydrohalide salts include the hydrochloride and hydrobromide salts. Reaction of haloketone 10 with thiosemicarbazide 11 (where R⁶ and R⁷ can be hyrido, lower alkyl, phenyl, heterocyclyl and the like or where R⁶ and R⁷ form a heterocyclyl ring optionally containing an additional heteroatom) provides pyrazole 12. Examples of suitable solvents for this

10

15

reaction are ethanol and dimethylformamide. The reaction may be carried out in the presence or absence of base or acid at temperatures ranging from room temperature to 100 °C.

Thiosemicarbazides which are not commercially available may be conveniently prepared by one skilled in the art by first reacting an appropriate amine with carbon disulfide in the presence of a base, followed by treatment with an alkylating agent such as methyl iodide. Treatment of the resultant alkyl dithiocarbamate with hydrazine results in the desired thiosemicarbazide. This chemistry is further described in E. Lieber and R.C. Orlowski, J. Org. Chem., Vol. 22, p. 88 (1957). An alternative approach is to add hydrazine to appropriately substituted thiocyanates as described by Y. Nomoto et al., Chem. Pharm. Bull., Vol. 39, p.86 (1991). The Lieber and Nomoto publications are incorporated herein by reference.

10

15

Scheme III shows the synthesis of pyrazole 19 in more general form by three routes. In Route 1, ketone 13 is condensed with hydrazine 14 to give the substituted hydrazide 16, which is then reacted with acyl halide or anhydride 17 at low temperature to provide acyl hydrazone Upon heating at a temperature up to 200°C, acyl hydrazone 18 is converted to pyrazole 19. In Route 2, acyl hydrazone 18 is formed directly by reaction of ketone 13 with acyl hydrazide 15, formed by reaction of hydrazine with a carboxylic acid ester, at room temperature. Heating acyl hydrazone 18 as above then provides pyrazole 19. In Route 3, ketone 13 is treated with acyl hydrazide 15 at a suitable temperature, ranging from room temperature to about 200 °C, to give pyrazole 19 directly. Alternatively, this condensation may be carried out in an acidic solvent, such as acetic acid, or in a solvent containing acetic acid.

20

Synthetic Scheme IV describes the preparation of pyrazole 19.

5

10

15

Scheme V shows the two step synthesis of the 3substituted 4-pyridyl-5-arylpyrazoles 33 of the present
invention by cyclization of hydrazone dianions with
carboxylates. In step 1, the reaction of substituted
pyridylmethyl ketones 31 (prepared, for example, as later
described in Scheme IX) with hydrazines in the presence
of solvents such as ethanol gives ketohydrazones 32.
Examples of suitable hydrazines include, but are not
limited to, phenylhydrazine and p-methoxyphenylhydrazine.
In step 2, the hydrazones 32 are treated with two
equivalents of a base such as sodium
bis(trimethylsilyl)amide in a suitable solvent such as
tetrahydrofuran to generate dianions. This reaction may
be carried out at temperatures of about 0 °C or lower.

92

In the same step, the dianions then are condensed with esters such as methyl isonicotinate, methyl cyclopropanecarboxylate, to give the desired pyrazoles 33. It may be necessary to treat the product from this step with a dehydrating agent, such as a mineral acid, to produce the target pyrazole in some instances.

Scheme VI shows an alternative method for synthesizing pyrazoles which are unsubstituted at the 5 position of the ring. In accordance with this method, a heteroarylmethyl ketone 34 is synthesized by first treating a heteroarylmethane with a strong base such as lithium hexamethyldisilazide or lithium diisopropylamide. Examples of suitable heteroarylmethanes are 4methylpyridine, 4-methylpyrimidine, 2,4-dimethylpyridine, 2-chloro-4-methylpyrimidine, 2-chloro-4-methylpyridine The resulting and 2-fluoro-4-methylpyridine. heteroarylmethyl lithium species is then reacted with a substituted benzoate ester to produce ketone 34. Examples of suitable benzoate esters are methyl and ethyl p-fluorobenzoate and ethyl and methyl p-chlorobenzoate. Ketone 34 is converted to the aminomethylene derivative 35 by reaction with an aminomethylenating agent such as dimethylformamide dimethyl acetal or tertbutoxybis (dimethylamino) methane. Ketone 35 is converted to pyrazole 36 by treatment with hydrazine.

10

15

20

25

30

35

A modification of this synthetic route serves to regioselectively synthesize pyrazole 38 which contains a substituted nitrogen at position 1 of the ring. Ketone 34 is first converted to hydrazone 37 by reaction with the appropriate substituted hydrazine. Examples of suitable hydrazines are N-methylhydrazine and N-(2-hydroxyethyl)hydrazine. Reaction of hydrazone 37 with an aminomethylenating agent produces pyrazole 38. Examples of suitable aminomethylenating agents include dimethylformamide dimethyl acetal and tert-butoxybis(dimethylamino)methane.

In cases where the R³ substituent of pyrazoles 36 and 38 bears a leaving group such as a displaceable halogen, subsequent treatment with an amine produces an aminosubstituted heteroaromatic derivative. Examples of such amines include benzylamine, cyclopropylamine and ammonia.

WO 98/52940 PCT/US98/10436

95

The leaving group may also be replaced with other nucleophiles such as mercaptides and alkoxides. Examples of substitutable R³ groups include, but are not limited to, 2-chloropyridinyl and 2-bromopyridinyl groups.

5

$$S(R^2 = CH_3)$$

$$S(R^2 = CH_3$$

10

Scheme VII describes the preparation of derivatives from pyrazole 5 (prepared in accordance with Scheme I) when $R^2 = CH_3$. Oxidation of pyrazole 5 gives carboxylic acid 39, which is then reduced to hydroxymethyl compound 40, or coupled with amine $NR^{10}R^{11}$ (wherein R^{10} and R^{11} are independently selected, for example, from hydrogen, alkyl and aryl, or together with the nitrogen atom to which they are attached form a 4-8 membered ring that may contain one or more additional heteroatoms selected from oxygen, nitrogen or sulfur) to form amide 41 followed by reduction to generate amine derivative 42.

SCHEME VIII

15

20

Scheme VIII illustrates the synthesis of pyrazoles 44 and 45 from pyrazole 43. The alkylation of the ring nitrogen atoms of pyrazole 43 can be accomplished using conventional techniques. Treatment of pyrazole 43 with an appropriate base (for example, sodium hydride) followed by treatment with an alkyl halide (for example, CH₃I) yields a mixture of isomers 44 and 45.

SCHEME IX

"desoxybenzoin"

Scheme IX illustrates the synthesis of 3-aryl-4pyridyl-pyrazoles of the present invention. Benzoate 46 is reacted with pyridine 47 in the presence of a strong base, such as an alkali metal hexamethyldisilazide (preferably sodium hexamethyldisilazide or lithium hexamethyldisilazide), in a suitable solvent, such as tetrahydrofuran, to give desoxybenzoin 48. Desoxybenzoin 48 is then converted to ketone 49 by treatment with an excess of dimethylformamide dimethyl acetal. Ketone 49 is then reacted with hydrazine hydrate in a suitable solvent such as ethanol to yield pyrazole 50. IX, R12 represents one or more radicals independently selected from the optional substituents previously defined for R4. Preferably, R12 is hydrogen, alkyl, halo, trifluoromethyl, methoxy or cyano, or represents methylenedioxy.

5

10

15

20

The 3-aryl-4-pyrimidinyl-pyrazoles of the present invention can be synthesized in the manner of Scheme IX by replacing pyridine 47 with the corresponding pyrimidine. In a similar manner, Schemes X through XVII can be employed to synthesize 3-aryl-4-pyrimidinylpyrimidines corresponding to the 3-aryl-4-pyrimidinylpyrazoles shown in those schemes.

15

100

SCHEME X

5 2

Scheme X illustrates one variation of Scheme IX that can be used to synthesize 3-aryl-4-pyridyl-pyrazoles that are further substituted on the nitrogen atom at position 1 of the pyrazole ring. If desoxybenzoin 48 (prepared in accordance with Scheme IX) instead is first converted to hydrazone 51 by treatment with hydrazine and hydrazone 51 is then treated with dimethylformamide dimethyl acetal, then the resulting product is pyrazole 52.

Schemes XI through XVIII illustrate further modifications that can be made to Scheme IX to synthesize other 3-aryl-4-pyridyl-pyrazoles having alternative substituents.

54

5 SCHEME XII

R12

N N R1

R13NH-R20

210C

1hr

In Scheme XII, X is chloro, fluoro or bromo; R^{13} is, for example, hydrogen, alkyl, phenyl, aralkyl, heteroarylalkyl, amino or alkylamino; and R_{20} is, for example, hydrogen or alkyl.

10

SCHEME XIII

5

SCHEME XIV

SCHEME XV

In Scheme XV, n is 1, 2, 3, 4 or 5; and \mathbb{R}^{14} and \mathbb{R}^{15} are independently selected from, for example, hydrogen, alkyl or aryl, or together with the nitrogen atom to which they are attached form a 4-7 membered ring that may contain one or more additional heteroatoms selected from oxygen, nitrogen or sulfur.

5

10

SCHEME XVI

In Scheme XVI, R^{16} is selected, for example, from hydrogen, alkyl and phenyl.

5

SCHEME XVII

In Scheme XVII, R¹⁷ is selected, for example, from alkyl, phenylalkyl and heterocyclylalkyl.

Compounds wherein the 2-position of the pyridine ring is substituted by a carboxyl group or a carboxyl derivative may be synthesized according to the procedures outline in Scheme XVIII. The starting pyridyl pyrazole 67 is converted to the 2-cyano derivative 68 by first

WO 98/52940 PCT/US98/10436

106

5

10

15

20

25

30

35

conversion to its pyridine N-oxide by reaction with an oxidizing agent such as m-chloroperoxybenzoic acid. Treatment of the pyridine N-oxide with trimethylsilyl cyanide followed by dimethylcarbamoyl chloride produces the 2-cyano compound 68. Compound 68 is converted to its carboxamide 69 by reaction with hydrogen peroxide in the presence of a suitable base. Examples of suitable bases include potassium carbonate and potassium bicarbonate. Carboxamide 69 is converted to its methyl ester 70 by reaction with dimethylformamide dimethyl acetal in methanol. The ester 70 is converted to its carboxylic acid 71 by saponification. Typical saponification conditions include reaction with a base such as sodium hydroxide or potassium hydroxide in a suitable solvent such as ethanol or ethanol and water or methanol and water or the like. Ester 70 is also convertible to substituted amide 72 by treatment with a desired amine, such as methylamine at a suitable temperature. Temperatures may range from room temperature to 180°C. In Scheme XVIII, \mathbb{R}^{18} and \mathbb{R}^{19} are independently selected, for example, from hydrogen, alkyl and aryl, or together with the nitrogen atom to which they are attached form a 4-8 membered ring that may contain one or more additional heteroatoms selected from oxygen, nitrogen or sulfur.

The following examples contain detailed descriptions of the methods of preparation of compounds of Formulas I, XI, X and XI. These detailed descriptions fall within the scope, and serve to exemplify, the above described General Synthetic Procedures which form part of the invention. These detailed descriptions are presented for illustrative purposes only and are not intended as a restriction on the scope of the invention. All parts are by weight and temperatures are in Degrees centigrade unless otherwise indicated. All compounds showed NMR spectra consistent with their assigned structures. In some cases, the assigned structures were confirmed by

nuclear Overhauser effect (NOE) experiments. The following abbreviations are used: HCl - hydrochloric acid MqSO4 - magnesium sulfate Na₂SO₄ - sodium sulfate NaIO4 - sodium periodate NaHSO3 - sodium bisulfite NaOH - sodium hydroxide KOH - potassium hydroxide P2O5 - phosphorus pentoxide 10 Me - methyl Et - ethyl MeOH - methanol EtOH - ethanol HOAc (or AcOH) - acetic acid 15 EtOAc - ethyl acetate H₂O - water H₂O₂ - hydrogen peroxide CH2Cl2 - methylene chloride 20 K₂CO₃ - potassium carbonate KMnO₄ - potassium permanganate NaHMDS - sodium hexamethyldisilazide DMF - dimethylformamide EDC - 1-(3-dimethylaminopropyl)3-ethylcarbodiiminde hydrochloride 25 HOBT - 1-hydroxybenzotriazole mCPBA - 3-chloroperoxybenzoic acid Ts - tosyl TMSCN - trimethylsilyl cyanide 30 Me₂NCOCl - N, N-dimethylcarbamoyl chloride SEM-Cl - 2-(trimethylsilyl)ethoxymethyl chloride h - hour hr - hour min - minutes THF - tetrahydrofuran 35

TLC - thin layer chromatography

WO 98/52940 PCT/US98/10436

108. .

DSC - differential scanning calorimetry

b.p. - boiling point

m.p. - melting point

eq - equivalent

15

20

25

30

5 RT - room temperature

Example A-1

4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine

10 <u>Step 1: Preparation of 4-(3-fluoro-4-methoxylphenyl)-3-pyridyl-3-butene-2-one</u>

A solution of 4-pyridylacetone (1.0 g, 7.4 mmol), 3-fluoro-p-anisaldehyde (1.25 g, 8.1 mmol), and piperidine (0.13 g, 1.5 mmol) in toluene (50 ml) was heated to reflux. After 18 hours, the reaction was cooled to room temperature and the solvent was removed under reduced pressure. The crude product (3.0 g) was purified by column chromatography (silica gel, 65:35 ethyl acetate/hexane) to give 4-(3-fluoro-4-methoxylphenyl)-3-pyridyl-3-butene-2-one as a pale yellow solid (1.60 g, 80%).

Step 2: Preparation of 4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yllpyridine

To a solution of 3-pyridyl-4-(3-fluoro-4-methoxylphenyl)-3-butene-2-one (step 1) (0.99 g, 3.65 mmol) in acetic acid (25 ml), p-toluenesulfonyl hydrazide (0.68 g, 3.65 mol) was added. The reaction solution was heated to reflux for 6 hours. Acetic acid was removed by distillation from the reaction solution. The resulting residue was diluted with CH2Cl2 (150 ml), washed with H2O

(2x100 ml), dried (Na₂SO₄), filtered, and concentrated. The crude product (1.5 g) was purified by chromatography (silica gel, ethyl acetate) to give 4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-1H-pyrazol-4-yl]pyridine as a pale yellow solid (213 mg, 20.7%): Anal. Calc'd for C₁₆H₁₄N₃OF.0.1 H₂O: C, 67.41; H, 5.02; N, 14.74. Found: C, 67.37; H, 4.88; N, 14.35.

Example A-2

4-(3-methyl-5-phenyl-1H-pyrazol-4-y1)

pyridine

10

Step 1: Preparation of 4-pyridylacetone

4-Pyridylacetone was prepared according to the method of Ippolito et al, U.S. Patent 4,681,944.

15

20

25

30

Step 2: Preparation of 4-phenyl-3-(4-pyridyl)-3-butene-2-one

Using the procedure of Example A-1, step 1, 4-pyridylacetone (step 1) (1 g, 7.4 mmol) was condensed with benzaldehyde (790 mg, 7.4 mmol) in benzene (15 mL) containing piperidine (50 mg) at reflux. The desired 4-phenyl-3-(4-pyridyl)-3-butene-2-one (1.3 g, 78 %) was obtained as a crystalline solid: m. p. 101-103 °C. Anal. Calc'd for C₁₅H₁₃NO (223.28): C, 80.69; H, 5.87; N, 6.27. Found: C, 80.59; H, 5.79; N, 6.18.

Step 3: Preparation of 4-phenyl-3-(4-pyridyl)-3,4-epoxy-2-butanone

Using the procedure of Example A-1, step 2, a solution of 4-phenyl-3-(4-pyridyl)- 3-butene-2-one (step 2) (1.25 g, 5.6 mmol) in methanol (20 ml) was treated

10

15

20

25

30

110

with 30% aqueous hydrogen peroxide (1 ml) in the presence of sodium hydroxide (230 mg, 5.7 mmol). The crude product was purified by chromatography (silica gel, 1:1 ethyl acetate/hexane) to give 4-phenyl-3-(4-pyridyl)-3,4-epoxy-2-butanone (270 mg, 20%).

PCT/US98/10436

Step 4: Preparation of 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine

Using the procedure of Example A-1, step 3, a solution of 4-phenyl-3-(4-pyridyl)-3,4-epoxy-2-butanone (step 3) (250 mg, 1 mmol) in ethanol (15 ml) was treated with anhydrous hydrazine (50 mg, 1.5 mmol) and heated to reflux for 4 hours. The crude product was purified by chromatography (silica gel, 1:1 acetone/hexane). The product was recrystallized from ethyl acetate and hexane to give 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine (81 mg, 35%) as a crystalline solid: m. p. 212-214 °C. Anal. Calc'd for C15H13N3 (235.29): C, 76.57; H, 5.57; N, 17.86. Found: C, 76.49; H, 5.42; N, 17.39.

Example A-3

4-[5-methyl-3-(2-methylphenyl)-1H-pyrazol-4-y1]pyridine

Step 1: Preparation of 4-(2-methylphenyl)-3-(4-pyridyl)3-butene-2-one

A solution of 4-pyrridylacetone (Example A-5, step 1) (0.75 g, 5.56 mmol), o-tolualdehyde (0.73 g, 5.56 mmol) and piperidine (100 mg) in toluene (50 ml) was heated to reflux. Water generated during the reaction was removed by a Dean-Stark trap. After heating at

WO 98/52940 PCT/US98/10436

111

reflux for 5 hours, the reaction mixture was stirred at room temperature for 15 hours. The mixture was concentrated to an orange color oily residue. The crude ketone was purified by chromatography to give $4-(2-methylphenyl)-3-(4-pyridyl)-3-butene-2-one: Anal. Calc'd for <math>C_{16}H_{15}NO$ (237.30): C, 80.98; H, 6.37; N, 5.90. Found: C, 80.78; H, 6.61; N, 5.85.

Step 2: Preparation of 4-(2-methylphenyl)-3-(4-pyridyl)3,4-epoxy-2-butanone

To a solution of 4-(2-methylphenyl)-3-(4-pyridyl)-3-butene-2-one (step 1) (1.0g, 4.2 mmol) in methyl alcohol (18 ml), a solution of H₂O₂ (30% by wt.) (0.95 g, 8.4 mmol) and sodium hydroxide (0.18 g 4.6 mmol) in water (4 ml) was added. The reaction was stirred at room temperature for 70 hours. After methyl alcohol was removed, water (25 ml) and ethyl acetate (100 ml) were added and the two phase mixture was stirred for 30 minutes. The layers were separated, and the aqueous layer was washed with ethyl acetate (100 ml). The combined organic layer was dried with Na₂SO₄, filtered and concentrated to give an oil. 4-(2-Methylphenyl)-3-(4-pyridyl)-3,4-epoxy-2-butanone was isolated from the oil residue by chromatography.

25

30

35

10

15

20

Step 3: Preparation of 4-[5-methyl-3-(2-methylphenyl)1H-pyrazol-4-yl]pyridine

A solution of 4-(2-methylphenyl)-3-(4-pyridyl)-3,4-epoxy-2-butanone (step 2) (0.11 g, 0.434 mmol) and hydrazine hydrate (0.043 g, 0.868 mmol) in ethyl alcohol (50 ml) was heated at reflux for 20 hours. The solvent was removed and the resulting residue was purified by chromatography to give 4-[5-methyl-3-(2-methylphenyl)-1H-pyrazol-4-yl]pyridine: Anal. Calc'd for C16H15N3 (249.32); C, 77.08; H, 6.06; N, 16.85. Found: C, 76.66; H, 5.91; N, 16.84.

Example A-4

4-[5-methyl-3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine

By following the method of Example A-3 and substituting p-fluorobenzaldehyde for o-tolualdehyde, the titled compound was prepared: Anal. Calc'd for $C_{15}H_{12}N_3F$ + 0.1 H_2O : (249.32): C, 70.63; H, 4.82; N, 16.47. Found: C, 70.63; H, 4.78; N, 16.40.

10

5

Example A-5

4-(5-methy!-3-(4-methy!pheny!)-1H-pyrazol-4-y1]pyridine

By following the method of Example A-3 (with one minor modification: in Step 2, the preparation of the intermediate epoxide was accomplished at 0-10 °C for 1 hour, and the reaction was quenched by being partitioned

between water, containing 2 eq. sodium bisulfite, and ethyl acetate) and substituting p-tolualdehyde for o-tolualdehyde, the titled product was isolated: Anal. Calc'd for C16H15N3 (249.32): C, 77.08; H, 6.06; N, 16.85. Found: C, 76.97; H, 6.09; N, 16.90.

Example A-6

5

4-[5-methyl-3-[4-(methylthlo)phenyl]-1H-pyrazol-4-y1]pyridine

By following the method of Example A-5 and substituting 4-(methylthio)benzaldehyde for p-tolualdehyde, the titled product was prepared: Anal. Calc'd for C16H15N3S (281.38): C, 68.30; H, 5.37; N, 14.93. Found: C, 68.34; H, 5.09; N, 14.78.

Example A-7

By following the method of Example A-5 and substituting p-chlorobenzaldehyde for p-tolualdehyde, the titled product was obtained. Anal. Calc'd for C₁₅H₁₂N₃Cl (269.77): C, 66.79; H, 4.48; N, 15.58. Found: C, 66.43; H, 4.44; N, 15.78.

10

Example A-8

pyrazol-4-y1]pyridine

By following the method of Example A-5 and substituting m-tolualdehyde for p-tolualdehyde, the titled product was obtained: Anal. Calc'd for C16H15N3 + 0.2H2O: C, 75.98; H, 6.14; N, 16.61. Found: C, 76.06; H,

10

115

6.05; N, 16.38.

Example A-9

4-[5-(2,5-dimethylphenyl)-3-methyl-1H-pyrazol-4-y1]pyridine

By following the method of Example A-5 and substituting 2,5-dimethylbenzaldehyde for p-tolualdehyde, the titled product was obtained: Anal. Calc'd for

 $C_{17}H_{17}N_3 + 0.1H_2O$: C, 77.01; H, 6.54; N, 15.85. Found: C, 76.96; H, 6.81; N, 15.51.

Example A-10

4-[5-(1,3-benzodioxol-5-y1)-3-methyl-1H-pyrazol-4-y1]pyridine

4-Pyridylacetone (1.5 g, 12 mmol), piperonal (1.6 g, 10.6 mmol), acetic acid (110 mg, 1.8 mmol), and piperidine (110 mg, 1.3 mmol) were dissolved in toluene

WO 98/52940 PCT/US98/10/436

116

(30 mL) and heated for 2 hours at reflux in a flask The solution was cooled equipped with a Dean-Stark trap. to room temperature, and ethyl acetate was added to precipitate a solid, which was collected on a filter plate (1.25 g). A sample (500 mg) of this solid was heated with p-toluensulfonyl hydrazide (348 mg, 1.81 mmol) in acetic acid (5 mL) at 80 °C for 1 hour. reaction was heated to reflux for 1 hour. The reaction was cooled to room temperature and the solvent was evaporated. The residue was dissolved in ethyl acetate, washed with 5% aqueous potassium carbonate, and water. The organic layer was dried (MgSO₄), filtered and evaporated to obtain a yellow solid. This solid was triturated with methylene chloride, yielding 4-[5-(1,3benzodioxol-5-yl)-3-methyl-1H-pyrazol-4-yl]pyridine which was collected on a filter plate (220 mg, 42% yield). Anal. Calc'd for $C_{16}H_{13}N_3O_2$: C, 68.81; H, 4.69; N, 15.04. Found: C, 68.02; H, 4.54; N, 14.76. MS (M+H): 280 (base peak).

20

25

15

10

Example A-11

4-[3-methy1-5-(4-phenoxyphenyl)-1H-pyrazol-4-y1]pyridine

4-Pyridylacetone (1.5 g, 12 mmol), 4-phenoxybenzoldehyde 92.1 g, 10.6 mmol), acetic acid (110 mg, 1.8 mmol), and piperidine (110 mg, 1.3 mmol) were dissolved in toluene (30 mL) and heated for 2 hours at

reflux in a flask equipped with a Dean-Stark trap. The solution was cooled to room temperature and ethyl acetate was added to precipitate a solid, which was collected on a filter plate. A sample (223 mg) of this solid was heated with p-toluensulfonyl hydrazide (348 mg, 1.81 mmol) in ethylene glycol with potassium hydroxide (77 mg) at 110 °C for 0.5 hour. The work up procedure was the same as that in Example A-10. 4-[3-Methyl-5-(4-phenoxyphenyl)-1H-pyrazol-4-yl]pyridine was obtained (100 mg, 66% yield): Anal. Calc'd for C21H17N3O + 0.1 H2O: C, 76.62; H, 5.27; N, 12.76. Found: C, 76.37; H, 5.19; N, 12.64. MS (M+H): 328 (base peak).

Example A-12

4-[5-[[1,1 -biphenyl]-4-y1]-3-methyl 1H-pyrazol-4-y1]pyridine

15

20

10

The same procedure as for the preparation of Example A-10 was used, substituting 4-formylbiphenyl in place of piperonal, to give 4-[5-[(1,1'-biphenyl)-4-yl]-3-methyl-1H-pyrazol-4-yl]pyridine as a white solid: MS (M+H): 312 (base peak).

Example A-13

4-[3-methyl-5-[3-(phenoxyphenyl)-1H-pyrazol-4-y1]pyridine

The same procedure for the preparation of Example A-10 was used, substituting 3-phenoxybenzaldehyde in place of piperonal, to give 4-[3-methyl-5-[3-(phenoxyphenyl)-1H-pyrazol-4-yl]pyridine as a white solid.

5

Example A-14

4-[3-methyl-5-[3-(phenylmethoxy)phenyl]
1H-pyrazol-4-y1]pyridine

The same procedure for the preparation of Example A-10 was used, substituting 3-benzyloxybenzaldehyde in place of piperonal, to give 4-[3-methyl-5-[3-(phenylmethoxy)phenyl]-1H-pyrazol-4-yl]pyridine as a white solid: MS (M+H): 342 (base peak).

Example A-15

4-[3-methyl-5-[2-(phenylmethoxy)phenyl]-1H-pyrazol-4-y1]pyridine

15

10

The same procedure for the preparation of Example A-10 was used, substituting 2-benzyloxybenzaldehyde in place of piperonal, to give 4-[3-methyl-5-[2-

10

119

(phenylmethyloxy)phenyl]-1H-pyrazol-4-yl]pyridine. MS
(M+H): 342 (base peak).

Example A-16

2-[3-methyl-4-(4-pyridinyl)-1Hpyrazol-4-y1]phenol

The same procedure for the preparation of Example A-10 was used, substituting 2-hydroxybenzaldehyde in place of piperonal, to give 2-[3-methyl-4-(4-pyridinyl)-1Hpyrazol-4-yl]phenol: MS (M+H): 252 (base peak).

Example A-17

3-[3-methyl-4-(4-pyridinyl)-1Hpyrazol-4-y1]phenol

The same procedure for the preparation of Example A15 10 was used, substituting 3-hydroxybenzaldehyde in place
of piperonal, to give 3-[3-methyl-4-(4-pyridinyl)-1Hpyrazol-4-yl]phenol: MS (M+H): 252 (base peak).

Example A-18

1-hydroxy-4-[3-methyl-5-phenyl-1Hpyrazol-4-y1]pyridinium

To a solution of 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine (Example A-2) (2.06 g, 8.76 mmol) in a mixture of CH₂Cl₂ (10 mL) and MeOH (20 mL), was added 3-chloroperoxybenzoic acid (57~86%) (2.65 g, 8.76 mmol). The reaction was stirred at room temperature for 2h, quenched with K₂CO₃ solution (25%, 15 mL), and concentrated. The resulting residue was partitioned between EtOAc (2.0 L) and H₂O (500 mL). The organic layer was separated, washed with H₂O (500 mL), dried over MgSO₄, filtered and concentrated to give 1-hydroxy-4-[3-methyl-5-phenyl-1H-pyrazol-4-yl]pyridinium (1.12 g, 54.5%): MS (M+H): 252 (base peak).

15

10

5

Example A-19

5-(4-fluorophenyl)-N,N-dimethyl-4-(4-pyr.idinyl)-1H-pyrazol-3-amine

Step 1: Preparation of 1-fluoro-4-(4'-pyridylacetyl)benzene

To a solution of sodium bis(trimethylsilyl)amide (200 mL, 1.0 M in THF) at 0 °C was added a solution of 4picoline (18.6 g, 0.20 mol) in dry THF (200 mL) over 30 5 The reaction mixture was stirred at 0-10 °C for minutes. another 30 minutes, then was added to a solution of ethyl 4-fluorobenzoate (16.8 g, 0.10 mol) in dry THF (200 mL) at such a rate that the internal temperature didn't exceed 15 °C. After the addition, the resulting yellow 10 suspension was stirred at room temperature for 3 hours. Water (600 mL) was added and the aqueous phase was extracted with ethyl acetate (3 X 200 mL). The combined organic layers were washed with brine, dried over magnesium sulfate and filtered. The filtrate was 15 concentrated in vacuo to give 1-fluoro-4-(4'pyridylacetyl)benzene (19.9 g, 92 %) as an oil which solidified upon standing: m.p.: 90-91 °C; Anal. Calc'd for C₁₃H₁₀FNO: C, 72.55; H, 4.68; N, 6.51. Found: C, 72.07; H, 4.66; N, 6.62. 20

Step 2: Preparation of 1-fluoro-4-(4'pvridylbromoacetyl) benzene

25

30

To a solution of 1-fluoro-4-(4'pyridylacetyl)benzene (step 1) (10.0 g, 0.046 mol) in
acetic acid (200 mL) was added a solution of bromine (8.2
g, 0.052 mol) in acetic acid (20 mL) dropwise. The
reaction mixture was stirred at room temperature
overnight. After the solvent was removed, the residue
was triturated with ethyl acetate. A yellow solid
formed, which was filtered and air-dried to give 1fluoro-4-(4'-pyridylbromoacetyl)benzene (14.5 g). The
compound was used in next step without further
purification.

15

Step 3: Preparation of 5-(4-fluorophenyl)-N, N-dimethyl4-(4-pyridinyl)-1H-pyrazol-3-amine

A mixture of 1-fluoro-4-(4'-pyridylbromoacetyl)-benzene (step 2) (3.8 g, 0.01 mol) and 4,4-dimethylamino-3-thiosemicarbazide (1.2 g, 0.01 mol) in ethanol (10 mL) was heated at reflux for 30 minutes. The dark green solution was cooled and poured into water (100 mL). The aqueous phase was extracted with methylene chloride (100 mL). The combined organic layers were washed with brine, dried over magnesium sulfate, filtered, and concentrated. The resulting residue was purified by chromatography (silica gel, ethyl acetate) to give 0.3 g 5-(4-fluorophenyl)-N, N-dimethyl-4-(4-pyridinyl)-1H-pyrazol-3-amine (0.3 g, 11 %) as a light yellow solid: m.p.: 245-247 °C. Anal. Calc'd for C16H15FN4: C, 68.07; H, 5.36; N, 19.84. Found: C, 68.00; H, 5.37; N, 19.61.

Example A-20

5-(4-fluorophenyl)-N-phenyl-4-(4-pyridinyl)-1H-pyrazol-3-amine

5-(4-Fluorophenyl)-N-phenyl-4-(4-pyridinyl)-1H-pyrazol-3-amine was prepared by the same procedure as described for Example A-19: m.p. 218-219 °C. Anal. Calc'd for C20H15FN4 + 0.1 H2O: C, 72.33; H, 4.61; N, 16.87. Found: C, 72.16; H, 4.56; N, 16.77.

25

123

Example A-21

Step 1: Preparation of 1-fluoro-4-(40- pyridylacetyl) benzene N-benzoylhydrazone

To a solution of benzoic hydrazide (1.36 g, 0.01 mol) in THF (20 mL) was added 1-fluoro-4-(4'-pyridylacetyl)benzene (2.15 g, 0.011 mol) in one portion followed by a drop of conc. HCl. The reaction mixture was stirred at room temperature overnight. There was white precipitate formed, which was filtered, washed with ether and air-dried to give 1-fluoro-4-(4'-pyridylacetyl)benzene N-benzoylhydrazone (2.90 g, 79 %) as a mixture of cis and trans (ratio, 1:9) isomers.

15 <u>Step 2: Preparation of 4-[5-(4-fluorophenyl)-3-phenyl-1H-pyrazol-4-yl]pyridine</u>

1-Fluoro-4-(4'-pyridylacetyl)benzene N-benzoylhydrazone (step 1) (0.50 g, 1.5 mmol) was heated at 180 °C under N₂ for 15 minutes, then cooled. The resulting solid was purified by chromatography (silica gel, 1:1 ethyl acetate/hexane) to give 4-[5-(4-fluorophenyl)-3-phenyl-1H-pyrazol-4-yl]pyridine (0.25 g, 53 %) as a pale yellow solid: m.p.: 265-267 °C. Anal. Calc'd for C20H14FN3 + 0.25 H2O: C, 75.10; H, 4.57; N, 13.14. Found: C, 74.98; H, 4.49; N, 12.87.

Example A-22

4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-4-y1]pyridine

Step 1: Preparation of 3-(4'-pyridylacetyl)toluene

3-(4'-Pyridylacetyl) toluene was prepared by the same method as described for Example A-19, step 1 in 70% yield.

Step 2: Preparation of trifluoroacetyl hydrazide

A mixture of ethyl trifluoroacetate (14.2 g, 0.10 mol) and hydrazine hydrate (5.54 g, 0.11 mol) in ethanol (25 mL) was heated at reflux for 6 hours. Solvent was removed and the resulting residue was dried in vacuum to give trifluoroacetyl hydrazide (12.3 g, 96 %) as a clear oil which solidified upon standing.

15

10

Step 3: Preparation of 4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-4-yl]pyridine

A mixture of 3-(4'-pyridylacetyl)toluene (2.11 g, 0.01 mol) and trifluoroacetyl hydrazide (step 2) (1.0 g, 0.01 mol) was heated at 200 °C under N₂ for 15 minutes. The crude residue was purified by chromatography (silica gel, 35:65 ethyl acetate/hexane) to give 4-[5-(3-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-4-yl]pyridine (0.56 g) as a white solid: m.p. 237-239 °C.

Anal. Calc'd for C16H12F3N3: C, 63.36; H, 3.99; N, 13.85.

10

15

20

125

Found: C, 63.6; H, 4.00; N, 13.70.

Example A-23

4-[3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-5-y1]pyridine

A mixture of 1-fluoro-4-(4'-pyridylacetyl)benzene (1.0 g, 4.6 mmol) and isonicotinic hydrazide (0.63 g, 4.6 mmol) in THF (25 mL) was heated to dissolution and then evaporated to dryness. The resulting solid was heated first to 140 °C, which caused a phase change, and subsequently melted on further heating until 180 °C whereupon a solid crystallized out. The reaction was immediately cooled, diluted with 10 % HCl (50 mL) and washed with chloroform. The aqueous layer was neutralized with bicarbonate and a tan colored solid was precipitated out. The solid was purified by treatment with activated carbon (Darco*) in boiling MeOH (100 mL), followed by filtration and concentration, to give 4-[3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]pyridine (1.05 g, 69 %) as a shiny tan solid: m.p. 304 °C (DSC). Mass (MH⁺) 137 (100%). Anal. Calc'd for C19H13N4F.1/4H2O: C, 71.13; H, 4.24; N, 17.46. Found: C, 70.88; H, 3.87.; N, 17.38.

Example A-24

4-(5-cyclohexyl)-3-methyl-1H-pyrazol-4-y1)pyridine

Step 1: Preparation of 4-cyclohexyl-3-pyridyl-3-butene2-one

4-Cyclohexyl-3-pyridyl-3-butene-2-one was prepared by the method of Example A-1, step 1 by replacing of 3fluoro-p-anisaldehyde with cyclohexanecarboxaldehyde.

Step 2: Preparation of 4-(5-cyclohexyl)-3-methyl-1H-pyrazol-4-yl)pyridine

4-(5-Cyclohexyl)-3-methyl-1H-pyrazol-4-yl)pyridine was prepared by the method for Example A-1, step 2, by replacing 4-(3-fluoro-4-methoxylphenyl)-3-pyridyl-3-butene-2-one with 4-cyclohexyl-3-pyridyl-3-butene-2-one (step 1): Anal. Calc'd for C15H19N3: C, 73.56; H, 7.98; N, 17.16. Found: C, 73.72; H, 7.91; N, 19.98.

Example A-25

20

5

10

15

4-{5-(3-Fluoro-5-methoxyphenyl)-3-methyl-3-methyl-1H-pyrazol-4-yl}pyridine was prepared by the method of Example A-1, steps 1 and 2 by replacing 3-fluoro-p-anisaldehyde with 3-fluoro-m-anisaldehyde: Anal. Calc'd for C16H14N3OF: C, 67.83; H, 4.98; N, 14.83. Found: C, 67.68, H, 4.92; N, 14.92.

The following examples (No 26-55) listed in Table 1 were prepared by the procedures described above:

[]		I			m.p. or	Anal Calc'd	Anal (Calc'd (calcd/found)		
No A -	R¹	R²	R ³	· R ⁴	DSC(°C	Formula	C	H	N N	
26	н	H ₂ C, CH ₃	Y CN	·(<u>\(\)</u>	185-186	C ₁₈ H ₁₉ N ₃	77.95/ 77.5 ₁ 1	6.90/ 6.93	15.15/ 14.73	
27	н	₹CH ₃	Y N	4€>	142-144	C ₁₆ H ₁₅ N ₃	75.71/ 75.69	6.16/ 6.11	16.55/ 16.49	
28	Н	- ₹©	Y CZ	-{(240-242	C ₂₂ H ₁₉ N ₃ · .0.25H ₂ O	80.09/ 79.74	5.96/ 5.90	12.74/ 13.01	
29	Н	F ₁ C	X N	•{ CH₃	228.8	C ₁₆ H ₁₂ N ₃ F ₃	63.36/ 63.28	3.99/ 3.73	13.85/ 13.69	
30	н	•{ CH₃	Y CN	-{ _	189.6	C ₁₅ H ₁₂ N ₃ Cl .0.15H ₂ O	66.13/ 65.98	4.55/ 4.31	15.42/ 15.74	
31	Н	•{ CH₃	Y CN	*\$>	171.6	C ₁₇ H ₁₇ N ₃ .0.2H ₂ O	76.49/ 76.69	6.57/ 6.53	15.74/ 15.61	
32	-}-СН₃	•{ CH₃	7 CN	1 (C) CI	88.6	C ₁₆ H ₁₄ N ₃ Cl	67.72/ 67.35	4.97/ 5.29	14.81/ 15.02	
33	н	•{ CH ₃	YON	-{\S_F	188.8	C ₁₆ H ₁₄ N ₃ F	71.89/ 71.72	5.28/ 5.45	15.72/ 15.77	
34	Н	-{ CH₃	Y CN	₩	215.7	C ₁₇ H ₁₇ N ₃	77.54/ 77.24	6.51/ 6.80	15.96/ 15.71	
35	н	•{ CH₃	Y CN	₹ ∰°.	201.4	C ₁₇ H ₁₇ N ₃ O ₂ .0.25H ₂ O	68.10/ 67.92	5.88/ 5.65	14.01/ 13.65	
36	Н	H ₂ 7-C CH ₃ C H ₂	Y CN	\$ (2)	210.7	C ₁₅ H ₁₂ N ₄ O ₂ .0.25H ₂ O	63.26/ 63.59	4.42/ 4.39	19.67/ 19.31	
37	н	•{ CH ₃	Y CN	YO _M	252.5	C ₁₇ H ₁₈ N ₄	73.35/ 72.61	6.52/ 6.79	20.13/ 19.59	
38	н		Y CN	•{ CH₃	196.3	C ₁₇ H ₁₅ N ₃ O	73.63/ 73.43	5.45/ 5.46	15.15/ 15.19	
39	Н	1 (1) Br	Y N	• { CH₃	252.8	C ₁₅ H ₁₂ N ₃ Br	57.34/ 57.09	3.85/ 3.79	13.37/ 13.06	
40	н	j j	Y (N	•{ CH₃	198.5	C ₁₅ H ₁₂ N ₃ F	71.13/ 71.23	4.78/ 5.01	16.59/ 16.76	
41	н	-{ CH₃	YEN	-{< <u>}</u>	225.6	C ₁₅ H ₁₂ N ₃ F ₃	71.13/ 70.74	4.78/ 4.66	16.59/ 16.44	
42	Н	-{ CH ₃	YEN	-{<>>	219.5	C ₁₆ H ₁₂ F ₃ N ₃	63.36/ 63.19	3.99/ 4.07	13.85/ 13.38	
43	н		YEN	-1<_>	227.7	C ₁₆ H ₁₅ N ₃ .0.1H ₂ O	76.53/ 76.53	6.10/ 6.20	16.73/ 16.49	

No	R ¹	R ²	R ³	R ⁴	m.p. or DSC(°C)	Anal.Calc'd Formula	Anal. Calc'd (calcd/found)		
A-							C	H	N
44	Н	-{-CH₃	Y CN	10°	175.6	C ₁₆ H ₁₅ N ₃ O .0.15H ₂ O	71.70/ 71.92	5.75/ 5.76	15.68/ 15.29
45	н	-}∙сн₂сн₃	TEN .	- ₹©		C ₁₇ H ₁₉ N ₃	77.54/ 77.13	6.51/ 6.28	15.96/ 15.69
46	н	· ł· CH3	Y CN	-{<_}F	412.1	C ₁₅ H ₁₁ N ₃ F ₂	66.42/ 66.12	4.09/ 3.86	15.49/ 15.25
47	н	-1-CH₃	Y (C)	٥, ا	168.5	C ₁₇ H ₁₇ N ₃ O .0.15H ₂ O	72.40/ 72.39	6.18/ 5.87	14.90/ 14.50
48	н	-{-CH₃	YEN	C _{CF} ,	211.2	C ₁₆ H ₁₂ N ₃ F ₃ .0.2H ₂ O	62.62/ 62.64	4.07/ 4.06	13.69/ 13.35
49	н	-{-сн₃	Y CN	\(\tilde{\chi_s}\)		C ₁₃ H ₁₁ N ₃ S	64.71/ 64.44	4.59/ 4.58 .	17.41/ 17.27
50	Н	·{·CH ₃	YEN	CI	189.2	C ₁₅ H ₁₁ N ₃ Cl ₂	59.23/ 59.22	3.65/ · 3.24	13.81/ 13.81
51	н	-\$-CH₃	YEN	'ÆÖCI	211.7	C ₁₅ H ₁₂ N ₃ Cl .0.15H ₂ O	66.13/ 66.33	4.55/ 4.62	15.42/ 15.05
52	н	-{-CH₃	7 (C)	FOT CI	219.8	C ₁₆ H ₁₄ N ₃ Cl	64.11/ 63.85	4.71/ 4.69	14.02/ 13.93
53	н	بريا _ه ۲	*Ch	″(©)_c1	163.4	C ₁₉ H ₁₇ N ₃ O ₂ CI	64.32/ 63.98	4.83/ 5.08	11.84/ 11.80
54	-{-CH₃	TO _F	YEN	н		C ₁₅ H ₁₂ N ₃ F .0.2H ₂ O	70.15/ 70.18	4.86/ 4.60	16.35/ 16.47
55	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	YEN	Н	_	C ₁₄ H ₁₀ N ₃ F	70.28/ 69.97	4.21/ 3.84	17.56/ 17.53

WO 98/52940 PCT/US98/10436

130

The following pyrazoles could be prepared by the procedures described above:

Example A-56 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-

```
5
    4-yl]pyrimidin-2-amine;
    Example A-57 5-[3-methyl-5-(3-methylphenyl)-1H-pyrazol-
    4-yl]pyrimidin-2-amine;
    Example A-58 5-[3-methyl-5-(2-methylphenyl)-1H-pyrazol-
    4-yl]pyrimidin-2-amine;
    Example A-59 5-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
10
    4-yl]pyrimidin-2-amine;
    Example A-60 5-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyrimidin-2-amine;
    Example A-61 5-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-
15
    4-yl]pyrimidin-2-amine;
    Example A-62 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-amine;
    Example A-63 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-amine;
20
    Example A-64 4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-amine;
    Example A-65 4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-amine;
    Example A-66 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
25
    4-yl]pyridin-2-amine;
    Example A-67 4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-4-
          yl]pyridin-2-amine;
    Example A-68 4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridin-2-amine;
30
    Example A-69 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
     4-yl]-2-methoxypyridine;
     Example A-70 2-methoxy-5-[3-methyl-5-(3-methylphenyl)-
     1H-pyrazol-4-yl]pyridine;
     Example A-71 2-methoxy-5-[5-(4-methoxyphenyl)-3-methyl-
35
     1H-pyrazol-4-yl]pyridine;
```

Example A-72 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-

```
4-yl]-2-methoxypyridine;
    Example A-73 2-methoxy-4-[3-methyl-5-(3-methylphenyl)-
    1H-pyrazol-4-yl]pyridine;
    Example A-74 2-methoxy-4-[3-methyl-5-(2-methylphenyl)-
    1H-pyrazol-4-yl]pyridine;
    Example A-75 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]-2-methoxypyridine;
    Example A-76 4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-
    4-yl]-2-methoxypyridine;
    Example A-77 2-methoxy-4-[3-methyl-5-(4-methylphenyl)-
10
    1H-pyrazol-4-yl]pyridine;
    Example A-78 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-ol;
    Example A-79 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
15
    4-yl]pyridin-2-ol;
    Example A-80 4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridin-2-ol;
    Example A-81 4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridin-2-ol;
    Example A-82 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
20
     4-yl]pyridin-2-ol;
    Example A-83 4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridin-2-ol;
     Example A-84 4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridin-2-ol;
25
     Example A-85 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridine-2-methanamine;
     Example A-86 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridine-2-methanamine;
     Example A-87 4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-
30
     4-yl]pyridine-2-methanamine;
     Example A-88 4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-
     4-yl]pyridine-2-methanamine;
     Example A-89 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
     4-yllpyridine-2-methanamine;
35
     Example A-90 4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-
```

WO 98/52940 PCT/US98/10436

132

```
4-yl]pyridine-2-methanamine;
    Example A-91 4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-methanamine;
    Example A-92 5-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-carboxamide;
    Example A-93 4-[5-(3-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-carboxamide;
    Example A-94 4-[5-(3-methylphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-carboxamide;
    Example A-95 4-[5-(2-methylphenyl)-3-methyl-1H-pyrazol-
10
    4-yl]pyridine-2-carboxamide;
    Example A-96 4-[5-(4-chlorophenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-carboxamide;
    Example A-97 4-[5-(4-fluorophenyl)-3-methyl-1H-pyrazol-
15
    4-yl]pyridine-2-carboxamide;
    Example A-98 4-[5-(4-methoxyphenyl)-3-methyl-1H-pyrazol-
    4-yl]pyridine-2-carboxamide;
    Example A-99 4-[5-(3-fluoro-4-methoxyphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
20
    Example A-100 4-[5-(4-fluoro-3-methoxyphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
    Example A-101 4-[5-(4-chloro-3-methoxyphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
    Example A-102 4-[5-(2,3-dihydrobenzofuran-6-yl)-3-
25
    methyl-1H-pyrazol-4-yl]pyridine;
    Example A-103 4-[5-(benzofuran-6-y1)-3-methyl-1H-
    pyrazol-4-yl]pyridine;
     Example A-104 4-[5-(3-fluoro-5-methoxyphenyl)-3-methyl-
     1H-pyrazol-4-yl]pyridine;
30
     Example A-105 4-[5-(3-chloro-5-methoxyphenyl)-3-methyl-
     1H-pyrazol-4-yl]pyridine;
     Example A-106 4-[5-(1-cyclohexyen-1-yl)-3-methyl-1H-
          pyrazol-4-yl]pyridine;
     Example A-107 4-[5-(1,3-cyclohexadien-1-yl)-3-methyl-1H-
35
     pyrazol-4-yl]pyridine;
     Example A-108 4-[5-(5,6-dihydro-2H-pyran-4-yl)-3-methyl-
```

```
1H-pyrazol-4-yl]pyridine;
    Example A-109 4-(5-cyclohexyl-3-methyl-1H-pyrazol-4-
              yl)pyridine;
    Example A-110 4-[5-(4-methoxy-3-methylphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
5
    Example A-111 4-[5-(3-methoxy-4-methylphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
    Example A-112 4-[5-(3-methoxy-5-methylphenyl)-3-methyl-
    1H-pyrazol-4-yl]pyridine;
    Example A-113 4-[5-(3-furanyl)-3-methyl-lH-pyrazol-4-
10
    yl]pyridine;
    Example A-114 2-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-
    4-yl)pyridine;
    Example A-115 2-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-
    4-yl)pyridine;
15
    Example A-116 methyl 4-(3-methyl-5-phenyl-1H-pyrazol-4-
    yl)pyridine-2-carboxylate;
     Example A-117 4-(3-methyl-5-phenyl-1H-pyrazol-4-
    yl)pyridine-2-carboxamide;
     Example A-118 1-[4-(3-methyl-5-phenyl-1H-pyrazol-4-
20
     yl)pyridin-2-yl]ethanone;
     Example A-119 N,N-dimethyl-4-(3-methyl-5-phenyl-1H-
     pyrazol-2-yl)pyridin-2-amine;
     Example A-120 3-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-
25
     4-yl)pyridine;
                    3-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-
     Example A-121
     4-yl)pyridine;
     Example A-122 methyl 4-(3-methyl-5-phenyl-1H-pyrazol-4-
     yl)pyridine-3-carboxylate;
                    4-(3-methyl-5-phenyl-1H-pyrazol-4-
     Example A-123
30
     yl)pyridine-3-carboxamide;
     Example A-124 1-[4-(3-methyl-5-phenyl-1H-pyrazol-4-
     yl)pyridin-3-yl]ethanone;
                    3-bromo-4-(3-methyl-5-phenyl-1H-pyrazol-4-
     Example A-125
     yl)pyridine;
35
     Example A-126 N, N-dimethyl-4-(3-methyl-5-phenyl-1H-
```

PCT/US98/10436

```
pyrazol-2-yl)pyridin-3-amine;
    Example A-127 2-methyl-4-(3-methyl-5-phenyl-1H-pyrazol-
    4-yl)pyrimidine;
    Example A-128 - 4-(3-methyl-5-phenyl-1H-pyrazol-4-
    yl)pyrimidine;
5
    Example A-129 2-methoxy-4-(3-methyl-5-phenyl-1H-pyrazol-
    4-yl)pyrimidine;
    Example A-130 4-(3-methyl-5-phenyl-1H-pyrazol-4-
    yl)pyrimidin-2-amine;
    Example A-131 N, N-dimethyl-4-(3-methyl-5-phenyl-1H-
10
    pyrazol-4-yl)pyrimidin-2-amine;
    Example A-132 4-(5,6-dihydro-2H-pyran-4-yl)-3-methyl-5-
    phenyl-1H-pyrazole;
    Example A-133 3-methyl-5-phenyl-4-(3-thienyl)-1H-
15
    pyrazole;
    Example A-134 4-(3-furanyl)-3-methyl-5-phenyl-1H-
    pyrazole;
    Example A-135 3-methyl-5-phenyl-4-(2-thienyl)-1H-
    pyrazole;
    Example A-136 4-(2-furanyl)-3-methyl-5-phenyl-1H-
20
    pyrazole;
    Example A-137 4-(3-isothiazolyl)-3-methyl-5-phenyl-1H-
    pyrazole;
    Example A-138 4-(3-isoxazolyl)-3-methyl-5-phenyl-1H-
25
          pyrazole;
    Example A-139 4-(5-isothiazolyl)-3-methyl-5-phenyl-1H-
    pyrazole;
     Example A-140 4-(5-isoxazolyl)-3-methyl-5-phenyl-1H-
          pyrazole;
                    3-methyl-5-phenyl-4-(5-thiazolyl)-1H-
30
    Example A-141
    pyrazole;
                    3-methyl-4-(5-oxazolyl)-5-phenyl-1H-
     Example A-142
     pyrazole;
                    2-methyl-4-[3-(3-methylphenyl)-1H-pyrazol-
     Example A-143
35
     4-yl]pyridine;
                    4-(1-methyl-3-phenyl-1H-pyrazol-4-yl)pyridine;
     Example A-144
```

134

WO 98/52940 PCT/US98/10436

135

4-(3-phenyl-1H-pyrazol-4-yl)pyridine; Example A-145 2-methyl-4-(3-phenyl-1H-pyrazol-4-Example A-146 yl)pyridine; Example A-147 4-[3-(3-chlorophenyl)-1-methyl-pyrazol-4yl]pyridine; 4-[3-(4-chlorophenyl)-1-methyl-pyrazol-4-Example A-148 yllpyridine; 4-[3-(3-chlorophenyl)-1H-pyrazol-4-Example A-149 yl]pyridine; Example A-150 4-[3-(4-chlorophenyl)-1H-pyrazol-4-10 yl]pyridine; 4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-2-Example A-151 methylpyridine; Example A-152 4-[3-(3-fluorophenyl)-1-methyl-1H-pyrazol-15 4-yl]pyridine; Example A-153 4-[3-(3-fluorophenyl)-1H-pyrazol-4yl]pyridine; and Example A-154 4-[3-(3-chlorophenyl)-1-methyl-pyrazol-4yl]-2-methylpyridine.

20

25

The compounds of Examples A-155 through A-172 were synthesized in accordance with the chemistry described above (particularly Scheme II) and illustrated by many of the previously disclosed Examples by selection of the corresponding starting reagents:

Example A-155

5-(4-chlorophenyl)-N-phenyl-4-(4-pyridinyl)-1H-

WO 98/52940 PCT/US98/10436

136

pyrazol-3-amine: DSC 261 °C. Anal. Calc'd for $C_{20}H_{15}ClN_4$ + 0.25 H_2O (MW 351.32): C, 68.38, H, 4.30, N, 15.95. Found: C, 68.25, H, 4.41, N, 15.74.

Example A-156

5

10

5-(4-chlorophenyl)-N-methyl-4-(4-pyridinyl)-1H-pyrazol-3amine: DSC 260 °C. Anal. Calc'd for C₁₅H₁₃ClN₄ + 0.125 H₂O (MW 287.00): C, 62.77, H, 4.57, N, 19.52. Found: C, 62.78, H, 4.33, N, 19.22.

Example A-157

5-(4-chlorophenyl)-N,N-dimethyl-4-(4-pyridinyl)-1Hpyrazol-3-amine dihydrate: DSC 230 °C. Anal. Calc'd for C₁₆H₁₅ClN₄ + 2 H₂O (MW 334.81): C, 57.40, H, 4.52, N, 16.73.
Found: C, 57.72, H, 4.85, N, 16.54.

137

Example A-158

5-(3-fluorophenyl)-N,N-dimethyl-4-(4-pyridinyl)-1H-pyrazol-3-amine: DSC 227 °C. Anal. Calc'd for C₁₆H₁₅FN₄ + 0.125 H₂O (MW 284.57): C, 67.53, H, 5.31, N, 19.69. Found: C, 67.60, H, 5.20, N, 19.84.

Example A-159

10 N,N-dimethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H pyrazol-3-amine: DSC 222 °C. Anal. Calc'd for C₁₇H₁₈N₄ +
 0.25 H₂O (MW 282.86): C, 72.19, H, 6.41, N, 19.81. Found:
 C, 71.99, H, 6.46, N, 19.90.

138

Example A-160

N-methyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3-amine: DSC 226 °C. Anal. Calc'd for $C_{16}H_{16}N_4$ + 0.125 H_2O (MW 266.58): C, 72.09, H, 6.05, N, 21.02. Found: C, 72.12, H, 6.12, N, 20.83.

Example A-161

N-ethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3amine: DSC 227 °C. Anal. Calc'd for C₁₇H₁₈N₄ + 0.125 H₂O
(MW 280.61): C, 72.77, H, 6.47, N, 19.97. Found: C,
72.63, H, 6.40, N, 19.73.

Example A-162

N,N-diethyl-5-(3-methylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3-amine: DSC 234 °C. Anal. Calc'd for C₁₉H₂₂N₄ (MW 306.41): C, 74.48, H, 7.24, N, 18.29. Found: C, 74.12, H, 7.18, N, 18.13.

Example A-163

5-(4-chlorophenyl) - N, N-diethyl-4-(4-pyridinyl) -1Hpyrazol-3-amine: m.p. 260-261°C. Anal. Calc'd for
C₁₈H₁₉ClN₄ (MW 326.83): C, 66.15, H, 5.86, N, 17.14.
Found: C, 66.03, H, 5.72, N, 17.23.^[

Example A-164

4-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3yl]morpholine: DSC 279 °C. Anal. Calc'd for C₁₈H₁₇ClN₄O + 0.25 H₂O (MW 345.32): C, 62.61, H, 4.96, N, 16.23. Found: C, 62.52, H, 4.77, N, 16.52.

Example A-165

5-(4-chlorophenyl)-N-propyl-4-(4-pyridinyl)-1H-pyrazol-3amine: DSC 244 °C. Anal. Calc'd for C₁₇H₁₇ClN₄ + 0.125 H₂O
(MW 315.06): C, 64.81, H, 5.44, N, 17.78. Found: C,
64.94, H, 5.43, N, 17.78.

Example A-166

Isolated as 5-(4-chlorophenyl)-N-(phenylmethyl)-4-(4-pyridinyl)-1H-pyrazol-3-amine hydrate (2:1): DSC 237 °C. Anal. Calc'd for $C_{21}H_{17}ClN_4$ + 0. 5 H_2O (MW 369.86): C, 68.20, H, 4.63, N, 15.15. Found: C, 68.09, H, 4.55, N, 15.15.

Example A-167

10

Isolated as 5-(4-chlorophenyl)-N-(2-methoxyethyl)-4-(4-pyridinyl)-1H-pyrazol-3-amine monohydrate: DSC 223 °C. Anal. Calc'd for $C_{17}H_{17}ClN_4O$ + H_2O (MW 346.82): C, 58.87, H, 4.94, N, 16.15. Found: C, 58.59, H, 4.79, N, 16.02.

Example A-168

1,1-dimethylethyl 4-[5-(4-chlorophenyl)-4-(4-pyridinyl)5 1H-pyrazol-3-yl]-1-piperazinecarboxylate: DSC 251 °C.
Anal. Calc'd for C₂₃H₂₆ClN₅O (MW 439.95): C, 62.79, H,
5.96, N, 15.92. Found: C, 62.40, H, 5.82, N, 15.82.

10

Example A-169

Isolated as 1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]piperazine trihydrochloride: DSC 99 °C.

Anal. Calc'd for $C_{18}H_{18}ClN_4$ + 3 HCl (MW 449.21): C, 48.13, H, 4.71, N, 15.59. Found: C, 47.76, H, 5.07, N, 15.51.

Example A-170

5

1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-methylpiperazine: m.p. 247-249 °C. Anal. Calc'd for $C_{19}H_{20}ClN_5$ + 0.75 H_2O (MW 367.33): C, 62.12, H, 5.49, N, 19.06. Found: C, 62.45, H, 5.86, N, 19.32.

10

Example A-171

1,1-dimethylethyl 4-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-1-piperazinecarboxylate: m.p. 243-244

WO 98/52940 PCT/US98/19436

144

°C. Anal. Calc'd for $C_{23}H_{26}FN_5O_2 + 0.5$ $CH_3CH_2CO_2CH_2CH_3$ (MW 467.55): C, 64.22, H, 6.47, N, 14.98. Found: C, 63.90, H, 6.61, N, 14.88.

Example A-172

5

NH IN SHC1

1-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]piperazine trihydrochloride: m.p. 204-206 °C. Anal. Calc'd for C₁₈H₁₈Fn₅ + 3 HCl + 0.5 H₂O (MW 441.77): C, 48.94, H, 4.79, N, 15.85. Found: C, 48.66, H, 4.88, N, 15.50.

1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-315 yl]piperazine: m.p. 264-265 °C. Anal. Calc'd for
C₁₈H₁₈ClN₅ + 0.125 H₂O (MW 342.08): C, 63.20, H, 5.30, N,
20.47. Found: C, 63.04, H, 5.36, N, 20.33.

Additional compounds that were synthesized in accordance with the chemistry described in Scheme II by selection of the corresponding starting reagents further include the compounds disclosed in Table 2.

Example	General			Mic	Microanalysis	sis			DSC
	Procedure	Formula	C calc	C found	H calc	H found	N calc	N calc N found deg C	deg C
A-173	Sch. II	C24H25CIN6•3HCI•1.5H2O	50.63	50.58	4.96	5.03	14.76	14.68	182
A-174	Sch. II	C25H24CIN5•0.125H2O	69.47	69.33	5.60	5.56	16.20	16.11	259
A-175	Sch. II	C17H17FN6•1.25H2O	48.64	48.45	4.56	4.86	20.02	20.24	82
A-176	Sch. II	C22H26CIN502	61.75	61.57	6.12	6.04	16.37	16.34	217
A-177	Sch. II	C17H18CIN5•3HCI•H2O	44.85	44.96	4.65	4.87	15.38	15.17	220
A-178	Sch. II	C21H24CIN5O2•0.125H2O	60.61	60.51	5.81	5.81	16.83	16.64	232
A-179	Sch. II	C25H30 CIN5O3	62.04	61.76	6.25	6.25	14.47	14.37	220
A-180	Sch. II	C22H25 FN6O2•0.5H2O	60.96	98.09	5.81	6.21	19.39	19.47	N.D.
A-181	Sch. II	C22H25 CIFN502	59.26	58.98	5.65	5.55	15.71	15.36	210
A-182	Sch. II	C20H22CINS+0.75H2O	62.98	62.97	5.81	5.64	18.36	17.83	271
A-183	Sch. II	C16H19CI4N5•3HCI	45.41	45.37	4.53	4.74			120

ABLE 2

Example A-173

N-[5-(4-chlorophenyl)-4-[2-(phenylmethyl)amino]-4pyridinyl]-1H-pyrazol-3-yl]-1,3-propanediamine,
trihydrochloride

Example A-174

1- [5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3yl]-4-(phenylmethyl)piperazine

Example A-175

Isolated as 4-[3-(4-fluorophenyl)-5-(1-piperazinyl)-1H-pyrazol-4-yl]pyrimidine, dihydrochloride

5

Example A-176

1,1-dimethylethyl [3-[[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]amino]propyl]carbamate

Example A-177

Isolated as N-[5-[4-chlorophenyl)-4-(4-pyridinyl)-1Hpyrazol-3-yl]-1,3-propanediamine, trihydrochloride
monohydrate

Example A-178

10 1,1-dimethylethyl [2-[[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]amino]ethyl]carbamate

Example A-179

1,1-dimethylethyl 4-[5-(4-chlorophenyl)-1-(25 hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-1piperazinecarboxylate

Example A-180

10 1,1-dimethylethyl 4-[5-(4-fluorophenyl)-4-(4-pyrimidinyl)-1H-pyrazol-3-yl]-1-piperazinecarboxylate

WO 98/52940

PCT/US98/10436

150

Example A-181

1,1-dimethylethyl [3-[[5-(4-chlorophenyl)-4-(2-fluoro-45 pyridinyl)-1H-pyrazol-3-yl]amino]propyl]carbamate

Example A-182

1-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-410 ethylpiperazine

Example A-183

5 N-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-1,2-ethanediamine

The compounds of Examples A-184 through A-189 were synthesized in accordance with the chemistry described above (particularly in Schemes I and IV) and illustrated by the previously disclosed Examples by selection of the corresponding starting reagents:

Example A-184

15

10

4-[3-(2,6-difluorophenyl)-5-methyl-1H-pyrazol-4yl]pyridine: Anal. Calc'd for C₁₅H₁₁F₂N₃: C, 66.42; H, 4.09; N, 15.49. Found: C, 66.20; H, 3.94; N, 15.16; m.p.

SUBSTITUTE SHEET (RULE 26)

omenica.

236.67 °C.

Example A-185

5 4-[3-(3-ethylphenyl)-5-methyl-1H-pyrazol-4-yl]pyridine:
Anal. Calc'd for C₁₇H₁₇N₃: C, 77.54; H, 6.51; N, 15.96.
Found; C, 77.16; H, 6.27; N, 15.69. m.p. (DSC): 189.25
°C.

10

15

Example A-186

4-[3-(3-chlorophenyl)-5-ethyl-1H-pyrazol-4-yl]pyridine: Anal Calc'd for C₁₆H₁₄ClN₃•0.1 mole H₂O: C, 67.15; H, 4.91; N, 14.33. Found: C, 66.95; H, 5.00; N, 14.36. DSC: 176.18 °C.

Example A-187

4-[3-ethyl-5-(3-ethylphenyl)-1H-pyrazol-4-yl]pyridine:
5 Anal. Calc'd for C₁₈H₁₉N₃•0.1 mole H₂O: C, 77.44; H, 6.93;
N, 15.05. Found: C, 77.39; H, 6.94; N, 14.93. m.p.
(DSC): 192.66 °C.

Example A-188

10

4-[3-(4-chlorophenyl)-5-(1-methylethyl)-1H-pyrazol-4-yl]pyridine: Anal. Calc'd for $C_{17}H_{16}ClN_2 \bullet 0.4M$ EtOAc: C, 67.08; H, 5.81; N, 12.62. Found: C, 67.40; H, 6.15; N, 12.34.

20

Example A-189

5 4-[3-cyclopropyl-5-(4-fluorophenyl)-1H-pyrazol-4yl]pyridine: Anal. Calc'd for C₁₇H₁₄FN₃: C, 73.1; H, 5.05;
N, 15.04. Found: C, 73.23; H, 4.89; N, 14.63; m.p.: 239240 °C.

The compound of Example A-190 was synthesized in accordance with the chemistry described above (particularly in Scheme III) and illustrated by the previously disclosed Examples by selection of the corresponding starting reagents:

Example A-190

4-[3-(4-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazol-4-yl]pyridine

This compound was prepared by the same procedure as

described for Example A-22 by replacing 3-(4'-pyridylacetyl) toluene with 1-fluoro-4-(4'-pyridylacetyl) benzene (prepared as set forth in Example A-19).

Anal. Calc'd for C₁₅H₉F₄N₃: C, 58.64; H, 2.95; N, 13.68. Found: C, 58.57; H, 3.07; N, 13.31. m.p. (DSC): 281.94 °C.

The compounds of Examples A-191 through A-198 were synthesized in accordance with the chemistry described above (particularly in Scheme V) by selection of the corresponding starting reagents:

Example A-191

15

4-[5-(cyclopropyl-3-(4-(fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Step 1: Preparation of 1-(4-fluorophenyl)-2-(4-20 pyridinyl)ethanone methylhydrazone

1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone methylhydrazone

WO 98/52940 PCT/US98/10436

156

To a solution of 4-fluorobenzoyl-4'-pyridinyl methane (8.60 g, 0.04 mol) and methyl hydrazine (2.14 g, 0.044 mol) in 50 mL of ethanol was added two drops of concentrated sulfuric acid. The reaction mixture was stirred at room temperature overnight. After the removal of solvent, the residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated sodium carbonate solution, washed with brine, and dried over magnesium sulfate. The filtrate was concentrated and the crude product was recrystallized from diethyl ether and hexane to afford 7.5 g of a yellow solid product (77% yield), 1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone methylhydrazone.

15 <u>Step 2: Preparation of 4-[5-(cyclopropyl-3-(4-(fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine</u>

10

To a solution of sodium hexamethyldisilazide (5.5 mL, 1.0 M in THF) at 0 °C was added a solution of the compound prepared in step 1 (0.67 g, 0.0028 mol) in 10 mL of dry THF dropwise. The dark brown solution was stirred 20 at this temperature for 30 minutes. Then a solution of methyl cyclopropanecarboxylate (0.34 g, 0.0034 mol) in 5 mL of dry THF was added. The reaction mixture was allowed to warm up to room temperature and stirred for 3 25 hours. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane/acetone, 10:9:1) to give 0.45 g of 30 product, 4-[5-(cyclopropyl-3-(4-(fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine, as a light yellow solid (55% yield), mp: 129-130 °C; ^{1}H NMR (CDCL₃): δ 8.53 (m, 2H), 7.32 (m, 2H), 7.14 (m, 2H), 6.97 (m, 2H), 4.00 (s, 3H), 35 1.83 (m, 1H), 0.95 (m, 2H), 0.36 (m, 2H); Anal. Calc'd For $C_{18}H_{16}FN_3$: C, 73.70; H, 5.50; N, 14.32. Found: C,

73.63; H, 5.57; N, 14.08.

Example A-192

5 -cyclopropyl-3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

Step 1: Preparation of 1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone (2-hydroxyethyl)hydrazone

1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone (2-hydroxyethyl)hydrazone

To a flask containing hydroxyethyl hydrazine (3.4 g, 0.04 mol) at 80 °C was added 4-fluorobenzoyl-4'-pyridinyl methane (8.6 g, 0.04 mol) portionwise. The yellow oil was stirred at this temperature overnight. The cooled reaction mixture was dissolved with hot ethyl acetate and then triturated with hexane to give 8.9 g of product, 1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone (2-hydroxyethyl)hydrazone, as a yellow crystal (81%), mp: 122-123 °C.

Step 2: Preparation of 1-(4-fluorophenyl)-2-(4pyridinyl)ethanone [2-[[(1,1dimethylethyl)dimethylsilyl]oxy]ethyl]hydrazone

5

1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone
[2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]ethyl]nydrazone

To a solution of the 1-(4-fluorophenyl)-2-(4pyridinyl)ethanone (2-hydroxyethyl)hydrazone prepared in step 1 (2.73 g, 0.01 mol) and (1,1dimethylethyl) dimethylsilyl chloride (1.5 g, 0.01 mol) in 10 25 mL of DMF was added imidazole portionwise. The reaction mixture was stirred at room temperature overnight. Water was added and extracted with ethyl acetate, the organic layer was washed with water, washed 15 with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated to give 3.8 g of crude product, 1-(4-fluorophenyl)-2-(4-pyridinyl)ethanone [2-[[(1,1-dimethylethyl)dimethylsilyl]oxy]ethyl]hydrazone, as a yellow oil that was used in the next step without 20 further purification.

Step 3: 5-cyclopropyl-1-[2-[[(1,1-dimethylethyl) dimethylsilyl]oxy]ethyl]-3,4-diphenyl-1H-pyrazole

5-cyclopropyl-1-[2-[[(1,1-dlmethylethyl) dlmethylsilyl]oxy]ethyl]-3,4-dlphenyl-1H-pyrazole

To a solution of sodium hexamethyldisilazide (4.2 mL, 1.0 M in THF) at 0 °C was added a solution of the 5 compound prepared in step 2 (0.78 g, 0.002 mol) in 10 mL of dry THF dropwise. The dark brown solution was stirred at this temperature for 30 minutes. Then a solution of methyl cyclopropanecarboxylate (0.27 g, 0.0026 mol) in 5 10 mL of dry THF was added. The reaction mixture was allowed to warm up to room temperature and stirred for 3 hours. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and 15 filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 3:7) to give 0.30 g of product, 5-cyclopropyl-1-[2-[[(1,1dimethylethyl) dimethylsilyl]oxy]ethyl]-3,4-diphenyl-1Hpyrazole, as a light yellow oil (35% yield), 1H NMR 20 $(CDCL_3): \delta 8.53 \text{ (m, 2H), } 7.32 \text{ (m, 2H), } 7.14 \text{ (d, } J = 5.6$ Hz, 2H), 6.97 (m, 2H), 4.47 (t, J = 4.8 Hz, 2H), 4.14 (t, J = 4.8 Hz, 2H), 1.93 (m, 1H), 0.95 (m, 2H), 0.87 (s,9H), 0.41(m, 2H); Anal. Calc'd For C₂₅H₃₂FN₃OSi: C, 68.61; H, 7.37; N, 9.60. Found: C, 68.39; H, 7.81; N, 9.23.

WO 98/52940 PCT/US98/10436

160

Step 4: Preparation of 5-cyclopropyl-3-(4-fluorophenyl)4-(4-pyridinyl)-1H-pyrazole-1-ethanol

To a solution of the compound prepared in step 3 (0.27 g, 0.00062 mol) in 5 mL of THF was added tetrabutylammonium fluoride (1.9 mL of 1.0 M THF 5 solution) at room temperature. After 1 hour, water was added and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 10 9:1) to give 0.16 g of product, 5-cyclopropyl-3-(4fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol, as a pale yellow solid, mp: 155-157 °C; ^{1}H NMR (CDCL₃): δ 8.53 (br s, 2H), 7.32 (m, 2H), 7.14 (d, J = 5.6 Hz, 2H), 6.97(m, 2H), 4.42 (t, J = 4.8 Hz, 2H), 4.14 (t, J = 4.8 Hz,15 2H), 1.83 (m, 1H), 0.93 (m, 2H), 0.35(m, 2H); Anal. Calc'd For $C_{19}H_{18}FN_3O$: C, 70.57; H, 5.61; N, 12.99. Found: C, 70.46; H, 5.87; N, 12.84.

20

Example A-193

3-(4-fluorophenyl)-5-(2-methoxy-4-pyridinyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

To a solution of sodium hexamethyldisilazide (7.4 mL, 1.0 M in THF) at 0 °C was added a solution of the

compound prepared in step 2 of Example A-192 (1.25 g, 0.0034 mol) in 15 mL of dry THF dropwise. The dark brown solution was stirred at this temperature for 30 minutes. Then a solution of methyl 4-(2-

- methoxy)pyridinecarboxylate (0.0.59 g, 0.0035 mol) in 5 mL of dry THF was added. The reaction mixture was allowed to warm up to room temperature and stirred for 3 hours. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was
- washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 1:1) to give 0.28 g of product, 3-(4-fluorophenyl)-5-(2-methoxy-4-pyridinyl)-4-(4-pyridinyl)-1H-pyrazole-1-
- ethanol, as a yellow solid, mp: 168-169 °C; ^{1}H NMR (CDCL₃): δ 8.42 (m, 2H), 8.20 (dd, J = 0.7, 5.2 Hz, 1H), 7.37 (m, 2H), 7.02 (m, 2H), 6.95 (m, 2H), 6.71 (dd, J = 1.4, 5.2 Hz, 1H), 6.66 (t, J = 0.7 Hz, 1H), 4.20 (m, 2H), 4.14 (m, 2H), 3.95 (s, 3H); Anal. Calc'd for $C_{22}H_{19}FN_4O_2$: C, 67.86; H, 4.91; N, 14.35. Found: C, 67.46; H, 5.08; N, 14.03.

4-[1-[2-[[(1,1-dimethylethyl)dimethylsilyl]coxy]ethyl]-3-(4-fluorophenyl-4-(4-pyridinyl)-1H-pyrazol5-yl]-2-methoxypyridine

WO 98/52940 PCT/US98/10436

162

A second compound, $4-[1-[2-[(1,1-dimethylethyl) dimethylsilyl]oxy]ethyl]-3-(4-fluorophenyl-4-(4-pyridinyl)-1H-pyrazol-5-yl]-2-methoxypyridine also was isolated from the above reaction as a yellow oil by chromatography. ¹H NMR (CDCL₃): <math>\delta$ 8.45 (m, 2H), 8.20 (m, 1H), 7.40 (m, 2H), 7.04 (m, 2H), 6.93 (m, 2H), 6.81 (m, 2H), 4.24 (m, 2H), 4.14 (m, 2H), 3.98 (s, 3H), 0.83 (s, 9H), 0.02 (s, 6H).

Example A-194

5

10

4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl}-2(1H)-pyridinone

To a solution of 3-(4-fluorophenyl)-5-(2-methoxy-4-pyridinyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol (0.28 g, 0.0006 mol) in 5 mL of acetic acid was added 3 mL of 48% hydrobromic acid. The reaction mixture was heated at reflux for 3 hour. The cooled mixture was then treated with water, basified with ammonium hydroxide and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (MeOH/CH₂Cl₂/NH4OH, 5:94:1) to give 0.07 g of product, 4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]-2(1H)-

WO 98/52940

163

PCT/US98/10436

pyridinone, as a yellow solid (32% yield), mp: 250-251 °C; 1 H NMR (DMSO-d₆): δ 11.74 (s, 1H), 8.45 (d, J = 5.0 Hz, 2H), 7.35 (m, 3H), 7.16 (m, 2H), 7.03 (d, J = 5.0 Hz, 2H), 6.37 (s, 1H), 6.05 (d, J = 5.2 Hz, 1H), 5.0 (m, 1H), 4.13 (m, 2H), 3.81 (m, 2H); Anal. Calc'd for $C_{21}H_{17}FN_4O_2 • 0.2 H_2O$: C, 66.06; H, 4.65; N, 14.67. Found: C, 66.31; H, 4.49; N, 14.27.

Example A-195

10

1-acetyl-4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]-2(1H)-pyridinone

1-acetyl-4-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4(4-pyridinyl)-1H-pyrazol-5-yl]-2(1H)-pyridinone was obtained as a byproduct of the reaction of Example A-194 in the form of a yellow solid (38% yield), mp: 220-221
°C; ¹H NMR (CDCl₃): δ 8.50 (m, 2H), 7.39 (m, 3H), 7.02 (m, 4H), 6.59 (m, 1H) 6.08 (dd, J = 1.4, 5.2 Hz, 1H), 4.52
(t, J = 6.0 Hz, 2H), 4.43 (t, J = 6.0 Hz, 2H), 2.04 (s,3H); Anal. Calc'd for C₂₃H₁₉FN₄O₃•0.3 H₂O: C, 65.46; H, 4.63; N, 13.28. Found: C, 65.09; H, 4.64; N, 12.99.

PCT/US98/10436

5.

164

Example A-196

Ethyl 2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]cyclopropanecarboxylate

To a solution of sodium hexamethyldisilazide (17.0 mL, 1.0 M in THF) at 0 °C was added a solution of the compound prepared in step 1 of Example A-192 (1.37 g, 0.005 mol) in 20 mL of dry THF dropwise. The dark brown solution was stirred at this temperature for 30 minutes. 10 Then a solution of diethyl 1,2-cyclopropanedicarboxylate (1.12 g, 0.006 mol) in 10 mL of dry THF was added. reaction mixture was allowed to warm up to room temperature and stirred for 2 hours. Water was added and the aqueous phase was extracted with ethyl acetate. 15 organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 8:2) to give 0.18 g of product, ethyl 2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-20 1H-pyrazol-5-yl]cyclopropanecarboxylate, as a light yellow oil (35% yield), ^{1}H NMR (CDCL₃): δ 8.55 (m, 2H), 7.32 (m, 2H), 7.11 (m, 2H), 6.97 (m, 2H), 4.38 (m, 2H), 4.16 (m, 4H), 2.47 (m, 1H), 1.53 (m, 2H), 1.26 (t, J=7.0 Hz, 3H), (m, 2H), 0.90 (m, 2H); Anal. Calc'd for 25 C₂₂H₂₂FN₁O₃•0.25 H₂O: C, 66.07; H, 5.67; N, 10.51 Found: C,

way or a

表 新一倍的多多数的。

65.89; H, 5.80; N, 9.95.

Example A-197

5 2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]cyclopropanecarboxylic acid

To a solution of ethyl 2-[3-(4-fluorophenyl)-1-(2hydroxyethyl) -4-(4-pyridinyl) -1H-pyrazol-5-yl] 10 cyclopropanecarboxylate prepared in accordance with Example A-196 (0.21 g, 0.00045 mol) in 10 mL of methanol was added a solution of sodium hydroxide (0.09 g, 0.0022 mol) in 2 mL of water. The reaction mixture was stirred at reflux for 6 hours. After the solvent was removed, 15 the residue was dissolved with 10 mL of 1N HCl and stirred for 30 minutes. The pH was then adjusted to 5-6 by addition of 1N sodium hydroxide solution and then extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium and filtered. 20 The filtrate was concentrated and the crude was purified by recrystallization from ethanol and ether to give 0.1 g of product, 2-[3-(4-fluorophenyl)-1-(2-hydroxyethyl)-4-(4-pyridinyl)-1H-pyrazol-5-yl]cyclopropanecarboxylic acid, as a white solid (60% yield), mp: 253-255 °C; 1H NMR 25 $(CD_3OD): \delta 8.46 \text{ (m, 2H), } 7.32 \text{ (m, 2H), } 7.25 \text{ (m, 2H), } 7.04$ (m, 2H), 4.39 (t, J = 5.0 Hz, 2H), 4.03 (m, 2H), 2.60 (m, 1H), 1.51 (m, 2H), 0.97 (m, 2H); Anal. Calc'd For

and the second of the second o

. I 5

10

15

20

166

 $C_{20}H_{18}FN_3O_3$: C, 65.39; H, 4.94; N, 11.44. Found: C, 64.92; H, 4.77; N, 11.20.

1 The State of the Control of the State of t

Example A-198

3-(4-fluorophenyl)-5-(4-imidazolyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

Step 1: Preparation of methyl 1-[[2-(trimethylsilyl) ethoxy]methyl]-1H-pyrrole-3-carboxylate

methyl 1-[[2-(trimethylsilyl)ethoxy]methyl]-1H-pyrrole-3carboxylate

To a suspension of sodium hydride (1.0 g, 0.025 mol) in 50 mL of DMF was added methyl 4-imidazolecarboxylate (2.95 g, 0.023 mol) portionwise at room temperature. The mixture was stirred at room temperature for 0.5 hours. Then SEM-Cl (4.17 g, 0.025 mol) was added dropwise over 5 minutes. The reaction mixture was stirred for 4 hours and quenched by adding water. The aqueous phase was extracted with ethyl acetate and the organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude

20

1.77

was purified by chromatography on silica gel (ethyl acetate/hexane, 8:2) to give 4.0 g of the major regionsomer as a clear oil.

5 Step 2: Preparation of 4-[1-[2-[[(1,1-dimethylethyl)
dimethylsilyl]oxy]ethyl]-3-(4-fluorophenyl-5-[1-[[(2trimethysilyl)ethoxy]methyl-1H-imidizol-4-yl]-1H-pyrazol4-yl]pyridine

10 4-[1-[2[[(1,1-dimethylethyl)dimethylsilyl] oxy]ethyl]-3-(4-fluorophenyl)-5-[1-[[2 trimethylsilyl)ethoxy]methyl]-1H-imidazol-4-yl]-1H pyrazol-4-yl]pyridine

To a solution of sodium hexamethyldisilazide (4.5 mL, 1.0 M in THF) at 0 °C under Ar was added a solution of the compound prepared in step 2 of Example A-192 (0.8 g, 0.002 mol) in 10 mL of dry THF dropwise. The dark brown solution was stirred at this temperature for 30 minutes. Then a solution of the compound prepared in step 1 of the present Example (0.54 g, 0.0021 mol) in 5 mL of dry THF was added. The reaction mixture was allowed to warm up to room temperature and stirred for 1 hour. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was

washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by chromatography on silica gel (ethyl acetate/hexane, 8:2) to give 0.98 g of product as a light yellow oil which solidified upon standing (91% yield), mp: 79-80 °C; ¹H NMR (CDCL₃): δ 8.48 (d, J = 6.0 Hz, 2H), 7.68 (d, J = 1.3 Hz, 1H), 7.38 (d, J = 6.0 Hz, 2H), 7.10 (m, 2H), 7.00 (m, 2H), 6.93 (d, J = 1.3 Hz, 1H), 5.25 (s, 2H), 4.53 (t, J = 6.0 Hz, 2H), 4.12 (t, J = 6.0 Hz, 2H), 3.84 (t, J = 8.0 Hz, 2H), 0.92 (t, J = 8.0 Hz, 2H), 0.84 (s, 9H), 0.021 (s, 18H); Anal. Calc'd For $C_{31}H_{44}FN_5O_2Si_2$: C, 62.70; H, 7.47; N, 11.79. Found: C, 62.98; H, 7.74; N, 11.88.

Step 3: Preparation of 3-(4-fluorophenyl)-5-(4-imidazolyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

10

15

To a solution of the compound prepared in step 2 of the present Example (0.54 g, 0.001 mol) in 10 mL of THF was added a solution of tetrabutylammonium fluoride (1.0 M in THF). After the mixture was heated at reflux for 3 hours, the solvent was removed and the residue was 20 partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude product was purified on silica gel (methylene chloride/methanol, 95:5) to give 0.22 g of the product, 25 3-(4-fluorophenyl)-5-(4-imidazolyl)-4-(4-pyridinyl)-1Hpyrazole-1-ethanol, as a white solid (63% yield), mp: 227-228 °C; ¹H NMR (DMSO-d₆): δ 8.45 (m, 2H), 7.83 (s, 1H), 7.35 (m, 2H), 7.15 (m, 4H), 7.09 (s, 1H), 5.20 (br 30 s, 1H), 4.32 (s, 2H), 3.81 (m, 2H); Anal. Calc'd For $C_{19}H_{16}FN_5O$: C, 65.32; H, 4.62; N, 20.05. Found: C, 64.98; H, 4.55; N, 19.79.

The compound of Example A-199 was synthesized in accordance with the chemistry described above (particularly in Scheme VI) by selection of the

corresponding starting reagents:

Example A-199

5 4-[3-(4-chloro-3-methylphenyl)-1H-pyrazol-4-yl]pyridine

Anal. Calc'd for $C_{15}H_{12}N_3Cl$ (269.74): C, 66.79; H, 4.48; N, 15.58. Found: C, 66.57; H, 4.15; N, 15.54. m.p. (DSC): 198.17 °C.

10

The compounds of Examples A-200 through A-202 were synthesized in accordance with the chemistry described above (particularly in Scheme VII) by selection of the corresponding starting reagents:

15

Example A-200

5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-3-carboxylic acid

WO 98/52940 PCT/US98/10436

170

A mixture of 4-[3-(4-fluorophenyl)-5-methyl-1Hpyrazol-4-yl]pyridine prepared as set forth in Example A-4 (5.83 g, 24.0909 mmol) and potassium permanganate (7.6916 q, 48.1818 mmol) in water (7.5 ml) and tertbutanol (10 ml) was heated at reflux for 6 hours (or until all the potassium permanganate was consumed). The mixture was then stirred at room temperature overnight and then diluted with water (150 ml). Manganese dioxide was removed from the mixture by filtration. The filtrate was extracted with ethyl acetate to remove unreacted starting material. The aqueous layer was acidified with 1N HCl to increase the pH to about 6. A white precipitate formed, was collected by filtration, washed with water, and dried in a vacuum oven to give 5-(4fluorophenyl) -4-(4-pyridinyl) -1H-pyrazole-3-carboxylic acid (isolated as the monohydrate salt) (2.9777 g, 43.7 %). Anal. Calc'd for $C_{15}H_{10}N_3FO_2.H_2O$ (283 + 18): C, 59.80; H, 4.01; N, 13.95; Found: C, 59.48; H, 3.26; N, 13.65. MS (MH*): 284 (base peak).

20

15

5

10

Example A-201

5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-3-methanol

25 To a suspension of 5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-3-carboxylic acid, monohydrate prepared in accordance with Example A-200 (0.526 g, 2.0 mmol) in dry THF (15 ml) at reflux under nitrogen, a solution of 1N lithium aluminum hydride in THF (4.0 ml,

4.0 mmol) was added dropwise over 15 minutes. precipitate formed. The mixture was boiled for an additional hour. Excess lithium aluminum hydride was then decomposed by cautiously adding a solution of 4N potassium hydroxide in water (0.5 ml). Upon hydrolysis, a white salt precipitated. After the addition was complete, the mixture was heated at reflux for 15 minutes. The hot solution was filtered by suction through a Buchner funnel, and remaining product was 10 extracted from the precipitate by refluxing with THF (15 ml) for 1 hour, followed again by suction filtration. The combined filtrates were concentrated under reduced pressure. The resulting residue was taken into ethyl acetate, washed with water and brine, dried over MqSO, to 15 give a crude product (0.45 g). Recrystallization of the crude product from methanol gave 5-(4-fluorophenyl)-4-(4pyridinyl)-1H-pyrazole-3-methanol (0.2808 g, 56.5%). DSC: 260.26 °C; Anal. Calc'd for $C_{15}H_{12}N_3FO$ (269): C, 66.91; H, 4.49; N, 15.60; Found: C, 66.07; H, 4.63; N, 15.20. MS 20 (MH*): 270 (base peak).

Example A-202

25 1-[[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]carbonyl]piperazine

Step 1: Preparation of 1,1-dimethylethyl 4-[[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]carbonyl]1-piperazinecarboxylate

To a solution of 5-(4-fluorophenyl)-4-(4-pyridinyl)-5 1H-pyrazole-3-carboxylic acid, monohydrate prepared in accordance with Example A-200 (0.9905 g, 3.5 mmol) and 1hydroxybenzotriazole (0.4824 g, 3.57 mmol) in DMF (20 ml) at 0 °C under nitrogen, 1-(3-dimethylaminopropyl)3ethylcarbodiiminde hydrochloride (0.6984 g, 3.57 mmol, 10 Aldrich Chemical Co.) was added. The solution was stirred at 0 °C under nitrogen for 1 hour then 1butoxycarbonylpiperazine (0.6585 g, 3.5 mmol) was added followed by N-methylmorpholine (0.40 ml, 3.6 mmol). reaction was stirred from 0 °C to room temperature 15 overnight. After 19 hours, the solvent was removed under reduced pressure, and resulting residue was diluted with ethyl acetate, washed with saturated NaHCO3 solution, water and brine, and dried over MgSO4. After filtration, the solvent was removed under reduced pressure to give a 20 crude product (1.7595 g). 1,1-Dimethylethyl 4-[[5-(4fluorophenyl) -4-(4-pyridinyl)-1H-pyrazol-3-yl]carbonyl]-1-piperazinecarboxylate (1.2372 g, 78.4%) was obtained by chromatography. Anal. Calc'd for C24H26N5O3F. (451): C, 63.85; H, 5.80; N, 15.51; Found: C, 63.75; H, 5.71; N, 25 15.16. MS (MH*): 452 (base peak).

Step 2: Preparation of 1-[[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]carbonyl]piperazine bis(trifluoroacetate), monohydrate

A solution of the compound prepared in step 1 (0.1804 g, 0.4 mmol) in methylene chloride (1.0 ml) and 5 TFA (0.3 ml) was stirred at room temperature under nitrogen for 2 hours. The solvent was removed under reduced pressure and TFA was chased by methylene chloride and methanol. The resulting colorless oily residue was dried in a vacuum oven overnight to give 1-[[5-(4-10 fluorophenyl) -4-(4-pyridinyl) -1H-pyrazol-3yl]carbonyl]piperazine (isolated as the bis(trifluoroacetate), monohydrate salt) (0.2400g, 100%) as a white solid. Anal. Calc'd for $C_{19}H_{18}N_5OF.2CF_3COOH.H_2O(351 + 228 + 18): C, 46.24; H, 3.71;$ 15 N, 11.72; Found: C, 45.87; H, 3.43; N, 11.45. MS (MH+): 352 (base peak).

The compounds of Examples A-203 through A-206 were synthesized in accordance with the chemistry described above (particularly in Scheme VIII) by selection of the corresponding starting reagents:

25 Example A-203

20

4-(1,5-dimethyl-3-phenyl-1H-pyrazol-4-yl)pyridine

WO 98/52940

AND THE PROPERTY OF THE PROPER

174

4-(1,3-dimethyl-5-phenyl-1H-pyrazol-4-yl)pyridine

A 60% dispersion of sodium hydride (41 mg, 0.00172 5 moles) (prewashed with hexane) in mineral oil (69 mg) was added with 5 ml of dioxane to a stirred solution of 4-(3methyl-5-phenyl-1H-pyrazol-4-yl)pyridine (200 mg, 0.00086 moles) (prepared as set forth in Example A-2) in 50 ml of dioxane. After 3 hours a solution of CH₃I (122 mg, 0.00086 mole) in 10 ml dioxane was added and the mixture 10 was stirred at room temperature for 20 hours. The mixture was concentrated to a solid. The products were partitioned between water (15 ml) and ethyl acetate (50 ml). The organic layer was dried over Na2SO4, filtered 15 and concentrated to a solid. The products were purified and separated by radial chromatography. NMR (NOE experiments) showed that the first component off the column (the minor component) was 4-(1,3-dimethyl-5phenyl-1H-pyrazol-4-yl]pyridine, and the second material 20 off the column was 4-(1,5-dimethyl-3-phenyl-1H-pyrazol-4yl)pyridine.

Major isomer (4-(1,5-dimethyl-3-phenyl-1H-pyrazol-4-yl)pyridine): m.p.: 94-99 °C. Anal. calc'd for C₁₆H₁₅N₃•0.1MH₂O: C, 77.08; H, 6.06; N, 16.85. Found: C, 76.59; H, 5.70; N, 16.62

Example A-204

4-[3-(4-chlorophenyl)-1,5-dimethyl-1H-pyrazol-4-yl]pyridine

5

4-[5-(4-chlorophenyl)-1,3-dimethyl-1H-pyrazol-4-yl]pyridine (the compound of Example A-32)

4-[3-(4-chlorophenyl)-1,5-dimethyl-1H-pyrazol-4-yl)pyridine and 4-[5-(4-chlorophenyl)-1,3-dimethyl-1H-pyrazol-4-yl)pyridine were prepared by the same procedure as described for Example A-203 by replacing 4-(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine with 4-(3-(4-chlorophenyl)-5-methyl-1H-pyrazol-4-yl)pyridine (prepared as set forth in Example A-7).

Major Isomer (4-[3-(4-chlorophenyl)-1,5-dimethyl-1H-pyrazol-4-yl]pyridine): Anal. calc'd for C₁₆H₁₄N₃Cl

(283.76): C, 67.72; H, 4.97; N, 14.81; Found: C, 67.45;
H, 4.71; N, 14.63. m.p. (DSC): 190.67 °C.

WO 98/52940

176

Minor Isomer (4-[5-(4-chlorophenyl)-1,3-dimethyl-1H-pyrazol-4-yl]pyridine): m.p.: 82-88 °C. Anal. calc'd for C₁₆H₁₄N₃Cl: C, 67.72; H, 4.97; N, 14.81; Found: C, 67.56; H, 4.96; N, 14.73.

5

Example A-205

4-[5-ethyl-1-methyl-3-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine

10

4-[3-ethyl-1-methyl-5-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine

4-[5-ethyl-1-methyl-3-(3-methylphenyl)-1H-pyrazol-4yl]pyridine and 4-[3-ethyl-1-methyl-5-(3-methylphenyl)1H-pyrazol-4-yl]pyridine were prepared by the same
procedure as described for Example A-203 by replacing 4(3-methyl-5-phenyl-1H-pyrazol-4-yl)pyridine with 4-(3-(4methylphenyl)-5-ethyl-1H-pyrazol-4-yl)pyridine (prepared

177

as set forth in Example A-45).

Major Isomer (4-[5-ethyl-1-methyl-3-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine): Anal. Calc'd for C₁₈H₁₉NO₃•0.45 MH₂O: C, 75.73; H, 7.03; N, 14.77. Found: C, 76.03; H, 6.87 N, 14.28.

Minor Isomer (4-[3-ethyl-1-methyl-5-(3-methylphenyl)-1H-pyrazol-4-yl]pyridine): Anal. Calc'd for

C₁₈H₁₉NO₃•0.30MH₂O: C, 76.46; H, 6.99; N, 14.86. Found: C, 76.58; H, 6.98; N, 14.63.

Example A-206

4-[3-(4-chlorophenyl)-1-ethyl-5-methyl-1H-pyrazol-4yl]pyridine: Anal. Calc'd for C₁₇H₁₆N₃Cl (297.79): C,
68.57; H, 5.42; N, 14.11. Found: C, 68.33; H, 5.27; N,
14.08; m.p. (DSC) 164.36 °C.

20 Example A-207

WO 98/52940

The second secon

178

4-[3-(4-chlorophenyl)-2-ethyl-5-methyl-1H-pyrazol-4-yl]pyridine: Anal. Calc'd for C₁₇H₁₆N₃Cl (297.79): C, 68.57; H, 5.42; N, 14.11. Found: C, 68.25; H, 5.36; N, 13.74; m.p. (DSC) 153.46 °C.

5

The same than the same of the

The compounds of Examples A-208 and A-209 were prepared in accordance with the chemistry described above (particularly in Scheme IX):

10

15

20

25

Example A-208

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine

Step 1: Preparation of 4-fluorobenzoyl-4'-pyridyl methane

To a mixture of 4-picoline (32.6 g, 0.35 moles) and ethyl-4-fluorobenzoate (50.45g, 0.3 moles), maintained at 20 °C, was added lithium bis(trimethylsilylamide) (600 mL (1M)) in a steady but rapid stream so as to maintain ambient temperature. The initial yellow solution turned into a suspension which was then stirred for an additional 2 hours. Toluene (250 mL) was added and the mixture cooled to 0 °C. The reaction mixture was quenched with concentrated HCl at 0 °C to lower the pH to about 7. The organic layer was separated and the aqueous layer re-extracted with of toluene (100 mL). The organic layer was dried (sodium sulfate) and concentrated, to furnish a yellow solid which on trituration with hexanes (200 mL) provided the pure desoxybenzoin, 4-

fluorobenzoyl-4'-pyridyl methane, in 90% yield (58g). ¹H NMR was consistent with the proposed structure.

Step 2:

To a suspension of the desoxybenzoin prepared in step 1 (30g, 0.14 moles) in tetrahydrofuran (50 mL) was added dimethylformamide dimethyl acetal (50 mL) and the mixture stirred at ambient temperature for two days. The solution was then concentrated to dryness and the solid paste obtained was triturated with hexanes (150 mL) to furnish a yellow solid which was of sufficient purity (as determined by NMR) and was used for the next step without additional purification. Yield: 33.9 g (90%). H NMR was consistent with the proposed structure.

15

10

5

Step 3:

The vinyl amine prepared in step 2 (33.9g, 0.1255 moles) was dissolved in 125 mL of ethanol and cooled to 0 °C. Hydrazine hydrate (8.0g of anhydrous or 16.0g. of 20 hydrate, 0.25 moles) was then added in one portion. mixture was stirred well and allowed to warm up to ambient temperature for a total reaction time of 3 hours. The mixture was concentrated and taken up in 200 mL of chloroform. After washing with water (100 mL), the 25 organic layer was extracted with 150 mL of 10% HCl. water layer was then treated with 0.5 g of activated charcoal at 70 °C for 10 minutes, filtered through celite and neutralized cautiously to pH 7 - 8 with vigorous stirring and cooling (20% sodium hydroxide was used). The 30 fine off-white precipitate was filtered and dried to give 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine. Yield: 27.3g. (91%). Mass spectrum: m/z = 240. H NMR was consistent with the proposed structure. Anal. calc'd for $C_{14}H_{10}FN_3$: C, 70.28; H, 4.21; N, 17.56. Found: C, 70.11; H, 4.33; N, 17.61. 35

Example A-209

4-[3-(2-chlorophenyl)-1H-pyrazol-4-yl]pyridine

This compound was prepared by the same procedure described for Example A-208 using the corresponding starting reagents.

Anal. Calc'd for $C_{14}H_{10}ClN_3$: C, 65.76; H, 3.94; N, 16.43. 10 Found: C, 65.22; H, 3.91; N, 16.50. m.p. (DSC): 208.46 °C.

The compounds of Examples A-2010 and A-211 illustrate

15 were prepared in accordance with the chemistry described above (particularly in Scheme X):

Example A-210

3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

The desoxybenzoin prepared in step 1 of Example A-208, 4-fluorobenzoyl-4'-pyridyl methane, (12.7g, 0.059 moles) was mixed with 90% hydroxyethyl hydrazine (5.3q, 0.062 moles) in 30 mL of ethanol containing 0.5 mL of acetic acid in a 500 mL Erlenmeyer flask. After gentle 5 boiling (1 hour), a small sample was evacuated at high vacuum and examined by 'H NMR to confirm completion of hydrazone formation. On cooling to ambient temperature, the reaction mass solidified to a yellow cake. 10 dimethylacetal (36 mL, 0.27 moles) was then added and the mixture heated to 80C for 10min, at which point all the solids dissolved and a clear yellow viscous solution was obtained. The reaction mixture was immediately allowed to cool slowly to 25 °C, and water (20 mL) was added 15 dropwise with stirring, at which point a cloudy yellow oily suspension was obtained. The solution was now warmed to approximately 50-60 °C, whereupon the solution turned clear yellow. Slow cooling to ambient temperature with stirring (a crystal seed if available speeds up the 20 process) results in a copious formation of crystals. Suction filtration followed by washing with 10% ethanolwater (50 mL), followed by drying, furnishes 3-(4fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol as a light yellow crystalline solid. Re-heating the filtrate to clarity as before, followed by cooling, yields 25 additional product. The third and fourth recovery from the mother liquor on standing overnight furnishes the remaining 3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol. Total yield: $\{12.3 + 3.3 + 0.4 + 0.4\} =$ 30 16.4g. (97.6%). Mass spectrum, m/z = 284. ¹H NMR was consistent with the proposed structure. Anal. calc'd for $C_{16}H_{14}FN_3O + H_2O: C, 63.78; H, 5.35; N, 13.95. Found: C,$ 63.55; H, 5.07; N, 13.69.

182

3-(4-fluorophenyl)-4-(4-pyrimidinyl)-1H-pyrazole-1-ethanol

5

This compound was prepared by the same procedure as described for Example A-210 except that the 4-picoline used to synthesize the desoxybenzoin was replaced with 4-methyl-pyrimidine.

10

The compound of Example A-212 was prepared in accordance with the chemistry of Scheme XI:

Example A-212

15

4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

The vinyl amine prepared in Step 2 of Example A-208 (5.0g, 0.0185 moles) was taken up in ethanol (75mL) and cooled to 0 °C. Methyl hydrazine (1.7g, 0.037 moles) in ethanol (75mL) was added in one portion while maintaining the temperature at 0 to 10 °C. After 3 hours at ambient temperature the solvent was removed and the residue taken up in methylene chloride (150 mL) and water (100 mL). The organic layer was separated, dried and concentrated to provide the crude regio-isomeric mixture as a light tan colored solid (80:20 by NMR in favor of the title compound). The crude isomeric mixture was taken up in 10% HCl (100 mL) and washed with methylene chloride (100

10

15

mL) and the water layer treated with activated charcoal (0.5g). After filtration through Celite, the solution was neutralized with sodium hydroxide (20%) to pH 8 with good stirring and cooling. The cream colored precipitate was filtered, washed with water and dried. The solid (5 g) was dissolved in hot 10% heptane/toluene (70 mL) and allowed to cool slowly, first to ambient temperature and then to 15 °C. Scratching the sides of the flask starts the crystallization process. After 2 hours of standing, the solids formed were filtered, washed with cold 50% toluene/heptane (25 mL) followed by hexane (25 mL) and dried to yield the pure title compound. 1H NMR confirmed the structure (including regiochemistry using NOE experiments). Yield: 2.1g. (45%). Mass spectrum, m/z =254 (base peak). Anal. calc'd for $C_{15}H_{12}FN_3 + 0.2 H_20$: C, 70.15; H, 4.86; N, 16.4. Found: C, 70.18; H, 4.6; N, 16.47.

The compound of Example A-213 was prepared in accordance with the chemistry of Scheme XII:

Example A-213

2-[[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]amino]-1-butanol

10

15

20

25

一个人的一种的多种性。一个的对于

An intimate mixture of 2-fluoro-pyridinyl pyrazole (0.2g, (prepared by the same procedure as described for Example A-210 except that the 4-picoline used to synthesize the desoxybenzoin was replaced with 2-fluoro-4-methylpyridine) and (R,S)-2-amino-1-butanol (4 fold molar excess) was heated to 210-220 °C in a sealed vial for 1.5 hours. After cooling to 100 °C the vial was cautiously opened and 5 mL of toluene and 5 mL of water were added and stirred well for 1 hour. The solid obtained, 2-[[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]amino]-1-butanol, was suction-filtered and washed with an additional 5 mL of water followed by toluene and dried. Yield: 190mg. (71%). Mass spectrum, m/z = 343. ¹H NMR was consistent with the proposed structure.

The compound of Example A-214 was prepared in accordance with the chemistry of Scheme XIII:

Example A-214

4-[5-bromo-3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

To a solution of 4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine (2.7 g, 10.67 mmol) (prepared in accordance with Example A-212) in acetic acid (30 mL) and DMF (13 mL) was added bromine (19.5 g, 122.0 mmol). The solution was heated at 80 °C overnight. TLC indicated

that the reaction was complete. The mixture was quenched slowly with K_2CO_3 (25g). When pH was about 5, a precipitate was formed. The precipitate was washed with water (50mL x 5) to give 4-[5-bromo-3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine (1.24g, 35%): mp 174.38°C; Mass spectrum m/z = 332, 334; ¹H NMR was consistent with the proposed structure. Anal. Calc'd for $C_{15}H_{11}N_3FBr • 0.2$ H_2O : C, 53.66; H, 3.42; N, 12.51. Found: C, 53.58; H, 3.12; N, 12.43.

10

5

The compound of Example A-215 was prepared in accordance with the chemistry of Scheme XIV:

Example A-215

15

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarbonitrile

Step 1:

20

25

To a solution of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine (4.3g, 17.97 mmol) (prepared in accordance with Example A-208) in methanol (100 mL) was added 3-chloroperoxybenzoic acid (5.44 g in 57 % purity, 17.97 mmol). The solution was stirred at 25 °C for overnight. The mixture was concentrated. K_2CO_3 (10%, 100 mL) was added to the residue. A precipitate was formed, filtered and washed with water (30 mL x 3) to give the

corresponding N-oxide (3.764g, 81.66%).

Step 2:

To a suspension of the N-oxide prepared in step 1 (0.40 g, 1.567 mmol) in DMF (5 mL) was added trimethysilyl cyanide (0.3 mL, 2.25 mmol). The mixture 5 was stirred for 15 minutes at 25 °C. Dimethylcarbamyl chloride (0.8 mL, 8.69 mmol) was added. The mixture was stirred at 25 °C for 2 hours. TLC indicated that the starting materials were gone. The mixture was partitioned into ethyl acetate:water (100 mL:20 mL). The 10 organic layer was washed with $\mathrm{K_2CO_3}^{-}$ (10%, 20 mL), water (50 mL), brine (50 mL), dried over MgSO4, filtered and concentrated to give 4-[3-(4-fluorophenyl)-1H-pyrazol-4yl]-2-pyridinecarbonitrile (0.23 g, 56 % yield): mp 209.22 °C; Mass spectrum (chemical ionization): m/z =15 265; ¹H NMR was consistent with the proposed structure. Anal. Calc'd for $C_{15}H_9N_4F \bullet 0.2$ H_2O : C, 67.26; H, 3.54; N, 20.92. Found: C, 67.44; H, 3.40; N, 20.69.

20

The compound of Example A-216 was prepared in accordance with the chemistry of Scheme XV:

Example A-216

25

4-[2-[3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-1yl]ethyl]morpholine

Step 1:

3-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol (prepared in accordance with Example A-210) (10.0 g, 0.0353 moles) was suspended in pyridine (100 mL) and cooled to 0 °C. Methane sulfonyl chloride (4.4 g, 0.0388 moles) was added slowly while maintaining the temperature at 0 °C. After stirring overnight at 10 °C, chilled water (100 mL) and methylene chloride (150 mL) was added and the two layers separated. The water layer was reextracted with 100 mL of methylene chloride and the organic layer dried and concentrated to a paste. After drying at high vacuum, a light tan colored cake was obtained which was triturated with ether (75 mL), filtered and dried to furnish a cream colored solid in 79% yield (10.1g). ¹H NMR was consistent with the proposed structure. The compound was used as such for step 2.

Step 2:

10

15

The mesylate prepared in step 1 (5.0 g, 0.0138 20 moles) was dissolved in an eight fold excess of morpholine (9.6 g, 0.11 moles) in methanol (50 mL) and heated at reflux for 3 to 4 hours. After an NMR sample confirmed completion, the mixture was concentrated and taken up in methylene chloride (150 mL) and washed with water (100 mL) and then with 75 mL of 5% HCl. The water 25 layer was neutralized to pH 8 and extracted with methylene chloride (100 mL). On drying and concentration a light yellow pasty solid was obtained which was triturated with 25 mL of ether to furnish a solid. crystallization from toluene/hexane provided 4-[2-[3-(4-30 fluorophenyl) -4-(4-pyridinyl) -1H-pyrazol-1yl]ethyl]morpholine as a solid. Yield: 4.5g (86%). spectrum, m/z = 353. ¹H NMR was consistent with the proposed structure. Anal. calc'd for C20H21FN4O: C, 68.16; 35 H, 6.01; N, 15.90. Found: C, 68.20; H, 6.21; N, 15.80.

188

The compound of Example A-217 was prepared in accordance with the chemistry of Scheme XVI:

Example A-217

5

 $3-(4-fluorophenyl)-1-methyl-\alpha-phenyl-4-(4-pyridinyl)-1H-pyrazole-5-methanol$

To solid magnesium (60 mg, 5 mmol) under nitrogen was added a solution of 4-[5-bromo-3-(4-fluorophenyl)-1-10 methyl-1H-pyrazol-4-yl]pyridine (450 mg, 1.35 mmol) (prepared in accordance with Example A-214) in tetrahydrofuran (7 mL). The mixture was heated at 40 °C for 2 hours. Benzaldehyde (1 mL) was added. The mixture was heated to 45 °C for 2 hours. It was quenched with HCl 15 (10 mL, 1N) and washed with ethyl acetate. The aqueous acid layer was basified and extracted with ethyl acetate. The organic layer was washed with water, brine, dried over MgSO4, filtered and concentrated to give a residue. The residue was purified with a silica gel column to give 20. the title compound (59 mg, 12% yield). MS: m/z = 360(M+1); 1H NMR was consistent with the proposed structure. Anal. Calc'd for $C_{22}H_{18}N_2OF = 0.6EtOAC$: C, 71.1; H, 5.6; N, 10.2; Found: C, 70.9; H, 5.47; N, 10.2.

189

The compound of Example A-218 was prepared in accordance with the chemistry described above (particularly Scheme XVII):

5

Example A-218

N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-morpholineethanamine

The starting desoxybenzoin prepared in step 1 of 10 Example A-208, 4-fluorobenzoyl-4'-pyridyl methane, (1.0 g, 0.0046 moles) was dissolved in 10 mL of DMF and cooled to -10 °C (dry ice-aqueous isopropanol). Nchlorosuccinimide (0.62 g, 0.0046 moles) was added in one 15 portion while maintaining the temperature at -10 °C. After 5 minutes the thiosemicarbazide (0.0046 moles) was added in one portion at 0 °C and allowed to warm to ambient temperature slowly over 1 hour. After stirring overnight, the solvent was removed at high vacuum and 20 water and toluene (25 mL each) added and stirred well. The toluene layer was separated and the water layer (starting pH of 5.5) treated with bicarbonate to pH 8. The fine precipitate formed was filtered and washed with water, toluene and ether. A final trituration with ether 25 (25 mL) furnished an off white solid, N-[5-(4fluorophenyl) -4-(4-pyridinyl) -1H-pyrazol-3-yl] -4morpholineethanamine, which was re-filtered and dried.

190

Yield: 0.95g. (56%). Mass Spec. m/z: 368 (base peak). Anal. Calc'd for $C_{20}H_{22}FN_5O$. C, 65.38; H, 6.04; N, 19.06. Found: C, 64.90; H, 5.92; N, 18.67.

5

15

20

Example A-219

4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-2(1H)-pyridinone hydrazone

10 Step 1: Preparation of (E)-2-(2-bromo-4-pyridinyl)-N,N-dimethylethenamine

4-Methyl-2-bromopyridine (1.0 g, 5.8 mmol) and t-butoxybis(dimethylamino)methane (5 ml) were heated to 150 °C for 16 hours. 4-Methyl-2-bromopyridine was prepared as set forth in B. Adger et al., <u>J. Chem. Soc.</u>, Perkin Trans. 1, pp. 2791-2796 (1988), which is incorporated herein by reference. The contents were evaporated and the residue dissolved in ethyl acetate and washed with water. The organic layer was dried over magnesium sulfate and solvent removed in vacuo to give 1.0 g of (E)-2-(2-bromo-4-pyridinyl)-N,N-dimethylethenamine as an

191

oil suitable for use in step 2.

Step 2: Preparation of (Z)-2-(2-bromo-4-pyridinyl)-1-(3-chlorophenyl)-3-(dimethylamino)-2-propen-1-one

5

10

15

The product from step 1 (1.0 g, 4.4 mmol) was dissolved in methylene chloride (15 ml). Triethylamine (900 mg, 8.8 mmol) was added at 0 °C, followed by the addition of 3-chlorobenzoyl chloride (350 mg, 4.5 mmol). The mixture was stirred under nitrogen for 16 hours. Solvent was evaporated in vacuo and the residue was dissolved in ether (25 ml), stirred with magnesium sulfate (500 mg) and silica gel (500mg), and filtered. Ether was evaporated and the residue was chromatographed on silica gel using mixtures of acetone and methylene chloride as eluents to give 670 mg of the product, (Z)-2-(2-bromo-4-pyridinyl)-1-(3-chlorophenyl)-3-(dimethylamino)-2-propen-1-one, as a glass which was used in step 3 without further purification.

20

Step 3: Preparation of 2-bromo-4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]pyridine

192

A solution of the product from step 2 (650 mg, 1.8 mmol) and hydrazine monohydrate (100 mg) in ethanol (10 ml) was refluxed for 24 hours. Solvent was evaporated and the residue was chromatographed on silica gel using mixtures of ethyl acetate and toluene as eluents to give 2-bromo-4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]pyridine (190 mg, 31%) as an oil: Anal. Calc'd for C₁₄H₉BrClN₃: C, 50.25; H, 2.71; N, 12.56. Found: C, 50.10; H, 2.60; N, 12.40.

10

15

25

Continued elution with mixtures of ethyl acetate and methanol gave 4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-2(1H)-pyridinone hydrazone (190 mg, 36%) as a crystalline solid: m.p. 163-164 °C.; MS (M+H) = 286. Anal. Calc'd for $C_{14}H_{12}N_5Cl$: C, 58.85; H, 4.23; N, 24.51. Found: C, 58.53; H, 4.28; N, 24.87.

Example A-220

4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-2-pyridinamine

A solution of the bromopyridine compound prepared in step 3 of Example A-219 (150 mg, 0.5 mmol) in benzylamine (5 ml) was heated at 175 °C for six hours. After cooling, excess benzylamine was removed by high vacuum distillation and ethyl acetate added to the residue. After washing the organic phase with water and drying over magnesium sulfate, the solvent was removed in vacuo

193

and the residue chromatographed on silica gel using mixtures of ethyl acetate and toluene to give 4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-2-pyridinamine (110 mg, 61%) as a solid, m.p. 179-180 °C.

5

Anal. Calc'd For $C_{21}H_{17}ClN_4$: C, 69.90; H, 4.75; N, 15.53. Found: C, 69.69; H, 4.81; N, 15.11.

Example A-221

10

4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylethyl)-2-pyridinamine

A solution of the bromopyridine compound prepared in step 3 of Example A-219 (250 mg, 0.75 mmol) in phenethylamine (5 ml) was heated at 175 °C for six hours under a nitrogen atmosphere. The excess amine was distilled off under high vacuum and the residue was dissolved in ethyl acetate and washed with water. After drying over magnesium sulfate and removal of solvent, the residue was chromatographed on silica gel with mixtures of ethyl acetate and toluene to give 4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-(phenylethyl)-2-pyridinamine (230 mg, 81%) as a solid, m.p. 185-186 °C.

25

Anal. Calc'd For $C_{22}H_{19}ClN_4$: C, 70.49; H, 5.11; N, 14.95. Found: C, 70.29; H, 5.15; N, 14.66.

Example A-222

4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-ethyl-2-pyridinamine

5

10

A solution of the bromopyridine compound prepared in step 3 of Example A-219 (300 mg, 0.9 mmol) in ethylamine (3.5 ml) and ethanol (5 ml) as heated at 150 °C in a sealed tube for 9 hours. The solvent was removed in vacuo and the residue chromatographed on silica gel with 70 ethyl acetate/30 toluene to give 4-[3-(3-chlorophenyl)-1H-pyrazol-4-yl]-N-ethyl-2-pyridinamine (125 mg, 46%) as a solid, m.p. 186-187 °C.

15 Anal. Calc'd For C₁₆H₁₅ClN₄: C, 64.32; H, 7.06; N, 18.75. Found: C, 64.42; H, 7.01; N, 18.45.

The compounds of Examples A-223 through A-226 were synthesized in accordance with the chemistry described above (particularly in Scheme XVIII) by selection of the corresponding starting reagents:

Example A-223

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxamide

Step 1:

5

10

15

20

To a suspension of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine (prepared as set forth in Example A-208) (8.8 g, 0.037 mol) in methylene chloride was added m-chloroperoxybenzoic acid (mCPBA) in one portion at room temperature. After stirring for 16 hours, solvent was removed and the residue was treated with saturated sodium bicarbonate solution. The precipitate was filtered, airdried to give 8.2 g of a product as a white solid (87%), mp: 207-209°C.

Step 2: Preparation of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarbonitrile

To a solution of the product of step 1 (5.1 g, 0.02 mol) in 20 mL of DMF was added trimethylsilyl cyanide (2.5 g, 0.025 mol), followed by a solution of N, N-dimethylcarbamoyl chloride (2.7 g, 0.025 mol) in 5 mL of DMF at room temperature. After stirring overnight, the

reaction mixture was basified by 200 mL of 10% potassium carbonate water solution. The aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude was triturated with hexane and filtered to give 4.3 g of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarbonitrile (90%) as a pale yellow solid, mp: 238-239°C.

10

15

Step 3: Preparation of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxamide:

To a solution of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarbonitrile from step 2 (0.45 g, 0.0017 mol) in 10 mL of DMSO was added hydrogen peroxide (0.24 mL of 30% aqueous solution, 1.7 mmol) and potassium carbonate (0.04 g, 0.4 mmol) at 0°C. The mixture was stirred for 1 hour while allowing it to warm to room temperature. Water was added and the precipitate was collected by filtration and air-dried to give 0.32 g of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxamide as a white solid (67% yield), mp: 230-231 °C. Anal. Calc'd for C₁₅H₁₁FN₄O: C, 63.83; H, 3.93; N, 19.85. Found C, 63.42; H, 3.66; N, 19.58.

25

20

Example A-224

Methyl 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2pyridinecarboxylate

To a suspension of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxamide prepared as set forth in

Example A-223 (2.9 g, 0.01 mol) in 50 mL of methanol was added N,N-dimethylformamide dimethyl acetal (3.67 g, 0.03 mol) dropwise. The reaction mixture was stirred at room temperature overnight and heated at reflux for 4hours.

After cooling, the precipitate was collected by

filtration and air-dried to give 2.0 g of methyl 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxylate as a white solid (69% yield), mp: 239-241°C. Anal. Calc'd for C16H12FN3O2: C, 64.64; H, 4.07; N, 14.13. Found: C, 64.36; H, 4.10; N, 14.27.

15

Example A-225

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-pyridinecarboxamide

20

25

A mixture of methyl 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxylate prepared as set forth in Example A-224 (0.45 g, 1.5 mmol) and 20 mL of methylamine (40% aqueous solution) was heated at 120°C in a sealed tube for 16 hours. After cooling, water was

added and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated to afford 0.4 g of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-pyridinecarboxamide as a white solid, mp: 88-89°C. Anal. Calc'd for $C_{16}H_{13}FN_4O+0.4H_2O$: C, 63.32; H, 4.58; N, 18.46. Found C, 63.10; H, 4.62; N, 18.35.

10.

Example A-226

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxylic acid

To a solution of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-15 yl]-2-pyridinecarboxylate prepared as set forth in Example A-224 (0.90 g, 0.003 mol) in 10 mL of ethanol was added a solution of sodium hydroxide (0.24 g, 0.006 mol) in 5 mL of water. The reaction mixture was heated at reflux for 10 hours. After the removal of solvent, the 20 residue was dissolved in water and acidified with citric acid solution to pH 5. Then the aqueous phase was extracted with ethyl acetate and the organic phase was dried over magnesium sulfate and concentrated. The crude was purified by treating with ether to give 0.62 g of 4-25 [3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinecarboxylic

acid as a white solid (73% yield), mp: 245°C(dec). Anal Calc'd for $C_{15}H_{10}FN_3O + 0.2 H_2O$: C, 62.80; H, 3.65; N, 14.65. Found: C, 62.77; H, 3.42; N, 14.58.

Additional compounds of the present invention which were prepared according to one or more of above reaction schemes (particularly Schemes IX through XVIII) are disclosed in Table 3. The specific synthesis scheme or schemes as well as the mass spectroscopy and elemental analysis results for each compound also are disclosed in Table 3.

		EtoAc	added																						
		water E	added a	0.25		0.1				0.2	0.2	0.1	0.1	•							0.25	9.0	0.5	9.0	0.1
		N found		16.8.	14.98	16.3	16.52	13.90	15.32	14.9	15.4	15.7	19	14.32	13.83	16.31	14.95	14.01	15.32	13.27	12.05	15.82	12.26	18.65	15.98
	is	N calc		17.2	15.32	16.5	16.43	13.86	15.58	14.6	15.4	15.8	18.84	14.35	13.85	16.33	15.35	14.00	15.49	13.37	12.31	15.93	14.01	18.79	16.22
	Microanalysis	H found		4.6	4.33	4.5	3.78	4.31	4.24	5	4.6	6.5	5.1	3.51	3.91	3.52	3.01	3.26	4.04	3.68	. 4.51	6.17	5.56	4.34	3.63
TABLE 3	Mic	H calc		4.3	4.41	4.8	3.94	4.39	4.48	5	4.6	6.5	5.06	3.58	3.99	3.53	3.31	3.36	4.09	3.85	4.81	6.36	5.04	4.65	3.58
		c found	,	69	69.59	9.07	65.48	63.95	66.79	8.99	9.59	76.7	75.44	61.67	63.28	62.39	61.14	55.99	66.41	57.22	76.16	64.65	66.18	64.16	64.84
		c calc		69	69.59	9.07	65.76	64.18	66.79	. 6 . 99	62.9	77	75.38	61.52	98.89	65.37	61.44	56.02	66.42	57.34	76.39	64.89	80.99	64.46	64.91
	SW	M+1		240	266	254	256	280	271	284	270	264	221	290	304	258	274	300	272	314	342	341	391	362	258
	General	Procedure		XI	ΧI	XI	XI	IX	IX	IX	IX	IX	XI	XI	IX	XI	XI	XI	IX	XI	ΙΧ	XII	XII	XII	XII
	Example			A-227	A-228	A-229	A-230	A-231	A-232	A-233	A-234	A-235	A-236	A-237	A-238	A-239	A-240	A-241	A-242	A-243	A-244	A-245	A-246	'A-247	A-249

																			0.1					0.1	0.2
			9.0	П	0.2			0.25				0.1	0.25	0.75	0.75	1	1	0.4	0.75	1	0.25		0.5	0.2	2
12.01	11.54	13.81	14.34	14.6	20.7	23.32	14.78	14.73		15.84	14.51	17.89	10.99	15.08	20.45	15.83	17.56	13.53	22.5	14.17	10.15	16.8	9.89	18.7	14
12.1	11.63	13.85	14.47	14.73	20.9	23.55	15.49	15.02		15.72	14.53	17.95	11.06	15.88	20.66	16.78	18.17	13.7	22.7	14.42	10.3	17.1	10.14	19.1	14.4
2.82	3.51	3.96	4.71	4.31	3.4	5.41	4.26	3.18	٠	5.24	3.48	6.25	4.98	6.45	6.09	4.23	6.5	4.34	4.8	5.24	4.61	5.6	5.28	9.9	5.8
2.9	3.35	3.99	2	4.77	3.5	5.42	4.09	3.06		5.28	3.48	6.2	5.17	6.28	6:39	4.1	6.28	4.47	5.2	5.71	4.82	5.5	5.35	6.9	6.3
48.07	49.89	63.34	68.17	66.12	67.4	64.64	66.58	60.4		71.63	62.41	69.2	72.5	70.59	63.76	66.77	62.38	62.85	63.2	61.84	70.7	65.3	70.13	67.2	63.1
48.44	49.88	63.36	68.24	66.31	67.3	64.63	66.42	60.11		71.89	62.28	69.26	72.71	70.81	63.79	66.18	62.32	62.66	62.9	61.85	70.66	65.8	69.95	6.99	63.6
348	362	304	377	363	265	298	272	276	254	268	290	311	376	428	326	400	368	302	349	371	404	329	406	354	434
XI	XI	XI	XII	XII	XIV	XII	XI	XI	XI	IX	×	X, XV	XI	XII	XII	IX	XII	XI	XII	XI, XV	XI, XV	XI, XV	XI	IX	XI, XII, XV
A-250	A-251	A-252	A-253	A-254	A-215	A-255	A-256	A-257	A-258	A-259	A-260	A-261	A-262	A-263	A-264	A-265	A-266	A-267	A-268	A-269	A-270	A-271	A-272	A-273	A-274

<u> </u>			г				 -						- -						—ř	-	- 1	7	
	0.5		ŀ	0.5	:																		
9.0	0.5		1	0.6	0.9	0.2	0.3	0.25	0.25		2.25	3.75	0.1		1.4		0.4	1.8		1.3			
12.05	13.6	16.61	14.8	13.7	17.21	17.48	17.38	13.2	16.2	13.6	16.65	17.27	19.09	13.5	12.4	14.5	16.97	16.37	15	13.7	25.4	14.5	
12.64	13.3	18.75	15	13.6	17.86	17.73	17.73	13.6	16.3	14.7	16.6	17.21	19.05	13.8	13	14.5	16.8	16.25	15.2	14	25.2	14.5	-
6.3	6.1	6.39	9	6.2	5.11	5.63	5.43	5.2	6.9	6.2	95.9	7.1	4.6	4.5	4.9	4.2	4.53	4.02	. 4.2	4.3	4.7	2.9	•
6.18	6.1	6.48	6.5	6.7	5.37	5.55	5.55	5	6.9	5.7	6.81	7.31	4.52	5	5.3	4.2	4.77	4.85	4.4	6.4	4.5	3.1	
70.74	66.2	63.02	63.8	67.1	61.47	64.94	64.81	29	70.3	68.5	59.69	56.26	69.4	67.5	64.5	74.9	61.46	55.98	73.2	67.7	70.4	57.7	
70.44	62.9	61.11	64.2	67.4	61.27	64.63	64.63	67.2	70	68.2	59.77	56.07	69.42	68	64	74.7	61.22	55.75	73.6	6.79	70.3	57.9	
433	476	338	357	462	299	313	313	407	339	476	382	340	293	407	407	290	326	313	278	278			
XI, XV	XI, XII,	XII	XI, XV	XI, XII, XV	XII	XII	XII	XI, XII	XI, XV	XI, XII, XV	XVII	XVII	XVII	XI, XII	XI, XII	ΙΧ	XVII	XVII	XI	XI	ΙΧ	XI	
A-275	A-276	A-277	A-278	A-279	A-280	A-281	A-282	A-283	A-284	A-285	A-286	A-287	A-288	A-289	A-290	A-291	A-292	A-293	A-294	A-295	A-296	A-297	

Example A-227

4-[3-(3-fluorophenyl)-1H-pyrazol-4-yl]pyridine

5

Example A-228

4-[3-(1,3-benzodioxol-5-yl)-1H-pyrazol-4-yl]pyridine

Example A-229

10

4-[3-(3-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-230

5 4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]pyridine

Example A-231

4-[3-(1,3-benzodioxol-5-y)-1-methyl-1H-pyrazol-4-yl]pyrid ine

Example A-232

4-[3-(4-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-233

5 4-[3-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-methylp yridine and 4-[5-(3-chlorophenyl)-1-methyl-1H-pyrazol-4 -yl]-2-methylpyridine

10

Example A-234

4-[3-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine and 4-[5-(3-chlorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-235

2-methyl-4-[1-methyl-3 (or

5

5)-(3-methylphenyl)-1H-pyrazol-4 -yl]pyridine

Example A-236

4-(3-phenyl-1H-pyrazol-4-yl)pyridine

Example A-237

10 4-[3-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl]pyridine

207

Example A-238

4-[1-methyl-3-[3-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl]pyridine

Example A-239

4-[3-(3,4-difluorophenyl)-1H-pyrazol-4-yl]pyridine

Example A-240

4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-fluoropyridine

5

Example A-241

4-[3-(4-bromophenyl)-1H-pyrazol-4yl]pyridine

Example A-242

10

4-[3-(3,4-difluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridi

ne

Example A-243

5 4-[3-(4-bromophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-244

(E) -4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-(2-phenyleth enyl)pyridine

210

Example A-245

(S)-4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-N-(2-methylbut yl)- 2-pyridinamine

Example A-246

4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-N-[(4-methoxy-phenyl)methyl]- 2-pyridinamine

211

Example A-247

N-[4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-2-pyridinemethanamine

5

Example A-248

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-2-pyridinemethanamine

10

Anal Calc'd: C, 41.12; H, 3.58; N, 9.22. Found: C 41.74; H, 5.05; N, 11.11.

Example A-249

2-fluoro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine

5

Example A-250

4-{3-(4-iodophenyl)-1H-pyrazol-4-yl}pyridine

Example A-251

10

4-[3-(4-iodophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-252

4-[1-methyl-3-[4-(trifluoromethyl)phenyl]-1H-pyrazol-4-yl]pyridine

5

Example A-253

N-[1-(4-fluorophenyl)ethyl]-4-[3-(4-fluorophenyl)-1H-pyra zol-4-yl]- 2-pyridinamine

214

Example A-254

N-[(3-fluorophenyl)methyl]-4-[3-(4-fluorophenyl)-1H-pyraz ol-4-yl]- 2-pyridinamine

5

Example A-255

4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-(1-methylhydrazino)pyridine

Example A-256

2-fluoro-4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]p yridine

5

Example A-257

4-[3-(3,4-difluorophenyl)-1H-pyrazol-4-yl]-2-fluoropyridine

Example A-258

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-3-methylpyridine

5

Example A-259

4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-3-methylp yridine

Example A-260

10

4-[3-(3,4-difluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-flu oropyridine

Example A-261

5

3-(4-fluorophenyl)-N,N-dimethyl-4-(4-pyridinyl)-1H-pyrazole-1-ethanamine

Example A-262

10

2-[2-(4-fluorophenyl)ethyl]-4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]pyridine

Example A-263

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[1-(phenylmethyl)-4-piperidinyl]-2-pyridinamine

5

Example A-264

N'-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-N,N-dimethyl-1,2-ethanediamine

Example A-265

2,4-bis[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyridine

5

Example A-266

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]-4-morpholineethanamine

Example A-267

5 3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-1H-pyrazole-1-ethanol

Example A-268

10 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[2-(1H-imidazol-1-yl)ethyl]-2-pyridinamine

Example A-269

5 4-[2-[3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-1H-pyrazol-1-yl]ethyl]morpholine

Example A-270

10 (E)-3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethenyl]-4-pyridinyl]-1H-pyrazole-1-ethanol

Example A-271

3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-N,N-dimethyl-1H-pyrazole-1-ethanamine

5

Example A-272

3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethyl]-4-pyridinyl]-1H-pyrazole-1-ethanol

Example A-273

4-[1-[2-(dimethylamino)ethyl]-3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N,N-dimethyl-2-pyridinamine

5

Example A-274

4-[1-[2-(dimethylamino)ethyl]-3-(4-fluorophenyl)-1Hpyrazol-4-yl]-N-[(4-fluorophenyl)methyl]-2-pyridinamine

Example A-275

3-(4-fluorophenyl)-4-[2-[2-(4-fluorophenyl)ethyl]-4-pyridinyl]-N,N-dimethyl-1H-pyrazole-1-ethanamine

Example A-276

5

N-[(4-fluorophenyl)methyl]-4-[3(or 5)-(4-fluorophenyl)-1-[[2-(4-morpholinyl)ethyl]-1H-pyrazol-4-yl]-2-pyridinamine

Example A-277

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-4-piperadinyl-2-pyridinamine

Example A-278

5

N,N-diethyl-3-(4-fluorophenyl)-4-(2-fluoro-4-pyridinyl)-1H-pyrazole-1-ethanamine

Example A-279

4-[1-[2-(diethylamino)ethyl]-3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[(4-fluorophenyl)methyl]-2-pyridinamine

Example A-280

2-[[4-[3-(4-(fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]amino]ethanol

5

Example A-281

2-[[4-[3-(4-fluorophenyl)-1-methyl-1H-pyrazol-4-yl]-2-pyridinyl]amino]ethanol

Example A-282

3-[[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyridinyl]amino]-1-propanol

5

Example A-283

3 (or 5)-(4-fluorophenyl)-4-[2-[[(410 fluorophenyl)methyl]amino]-4-pyridinyl]-1H-pyrazole-1ethanol

229

Example A-284

N, N-diethyl-3-(4-fluorophenyl)-4-(4-pyridinyl)-1Hpyrazole-1-ethanamine

Example A-285

N-[(4-fluorophenyl)methyl]-4-[3-(4-fluorophenyl)-1-[2-(4-morpholinyl)ethyl]-1H-pyrazol-4-yl]-2-pyridinamine

Example A-286

15

N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-4-morpholinepropanamine

Example A-287

N'-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]-N,N-dimethyl-1,3-propanediamine

Example A-288

5-(4-fluorophenyl)-N-2-propynyl-4-(4-pyridinyl)-1H-pyrazol-3-amine

Example A-289

10

5

3-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-4-pyridinyl]-1H-pyrazole-1-ethanol

Example A-290

5

5-(4-fluorophenyl)-4-[2-[[(4-fluorophenyl)methyl]amino]-4-pyridinyl]-1H-pyrazole-1-ethanol

Example A-291

10

4-[3-[(4-fluorophenyl)-1H-pyrazol-4-yl]quinoline

Example A-292

N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3yl]glycine methyl ester

Example A-293

N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-10 yl]glycine

Example A-294

PCT/US98/10436

233

4-[3-(4-fluorophenyl)-1-(2-propynyl)-1H-pyrazol-4-yl]pyridine

Example A-295

5

4-[5-(4-fluorophenyl)-1-(2-propynyl)-1H-pyrazol-4-yl]pyridine

Example A-296

10

4,4'-(1H-pyrazole-3,4-diyl)bis[pyridine]

Example A-297

15

4-[3-(3,4-dichlorophenyl)-1H-pyrazol-4-yl]pyridine

Example A-298

N-[5-(4-chlorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl] -4-piperidinamine

5

The pyrimidine-substituted compounds of Examples A-299 through A-312 were synthesized in accordance with the chemistry described in Schemes I-XVIII by selection of the corresponding starting reagents:

10

Example A-299

2-Chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine

15 Step 1:

A mixture of 2,6-dichloro-4-methylpyrimidine (5.0 g, 0.031 mol), triethylamine (6.23 g, 0.062 mol) and catalytic amount of 5% Pd/C in 100 mL of THF was hydrogenated on a Parr apparatus under 40 psi at room temperature. After 0.5 hour, the catalyst was filtered and the filtrate was concentrated. The crude was purified by chromatography on silica gel (ethyl acetate/hexane, 3:7) to give 2.36 g of product as a pale yellow crystal (50% yield); mp: 47-49 °C.

Step 2: Preparation of 2-(2-chloro-4-pyrimidinyl)-1-(4-fluorophenyl)ethanone

2-(2-chloro-4-pyrimidinyl)-1-(4-fluorophenyl)ethanone

To a solution of lithium diisopropylamide (generated from BuLi (0.045 mol) and diisopropylamine (0.048 mol) in THF) at -78 °C was added a solution of the compound prepared in step 1 (5.5 g, 0.037 mol) in THF slowly over 30 minutes. After 1 hour, a solution of ethyl 420 fluorobenzoate (7.62 g, 0,045 mol) in THF was added and

the reaction mixture was stirred overnight and allowed to warm up to room temperature. Water was added and the aqueous phase was extracted with ethyl acetate. Organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude product purified by chromatography on silica gel (ethyl acetate/hexane, 3:7) to give 4.78 g of a yellow solid (51% yield), mp: 112-113 °C.

10 Step 3: Preparation of (E)-2-(2-chloro-4-pyrimidinyl)-3-(dimethylamino)-1-(4-fluorophenyl)-2-propen-1-one

5

15

25

(E)-2-(2-chioro-4-pyrimidinyl)-3-(dimethylamino)-1-(4-fluorophenyl)-2-propen-1-one

A mixture of the compound prepared in step 2 (4.7 g, 0.017 mol) in 100 mL of dimethylformamide dimethyl acetal was stirred at room temperature overnight. Excess dimethylformamide dimethyl acetal was removed under vacuum to give 4.5 g of crude product as a thick brown oil, which was used without further purification.

20 <u>Step 4: Preparation of 2-chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine</u>

A solution of the compound prepared in step 3 (4.4 g) and hydrazine hydrate (0.82 g, 0.014 mol) was stirred at room temperature for 6 hours. The yellow precipitate was collected by filtration and air-dried to give 1.85 g of 2-chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-

yl]pyrimidine as a yellow solid, mp: 204-205 °C; Anal. Calc'd for $C_{13}H_8ClFN_4$: C, 56.84; H, 2.94; N, 20.40; Cl, 12.91. Found: C, 56.43; H, 2.76; N, 20.02; Cl, 12.97.

Example A-300

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2(1H)-pyrimidinone hydrazone

10

15

20

5

A solution of the compound prepared in step 3 of Example A-299 (1.5 g) and hydrazine hydrate (5mL) in ethanol was heated at reflux overnight. After the reaction mixture was cooled, the solvent was removed. The residue was partitioned between ethyl acetate and water. The organic phase was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude product was purified by recrystallization from ethyl acetate and hexane to give 0.5 g of product, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2(1H)-pyrimidinone hydrazone, as a pale yellow solid (38% yield), mp: 149-150 °C; Anal. Calc'd for C₁₃H₁₁FN₆: C, 57.77; H, 4.10; N, 31.10. Found: C, 57.70; H, 4.31; N, 30.73.

Example A-301

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N,N-dimethyl-2-pyrimidinamine

5

Step 1: Preparation of

A solution of the compound prepared in step 2 of Example A-299 (3.0 g, 0.02 mol) and tert
butylbis(dimethylamino)methane (10.45 g, 0.06 mol) in 40 mL of DMF was stirred at 110 °C overnight. After the solvent was removed under vacuum, water was added and extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and purified by recrystallization from ethyl acetate and hexane to give 1.23 g of a yellow solid product (32% yield), mp: 76-77 °C; Anal. Calc'd for C10H16N4: C, 62.47; H, 8.39; N, 29.14. Found: C, 62.19; H, 8.58; N, 29.02.

Step 2: Preparation of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N, N-dimethyl-2-pyrimidinamine

To a solution of the compound prepared in step 1 of the present Example (1.2 g, 0.0064 mol) and triethylamine (0.65 g, 0.0064 mol) in 10 mL of toluene was added 4-5 fluorobenzoyl chloride dropwise. The mixture was heated at reflux for 10 hours and the solvent was removed. The residue was partitioned between ethyl acetate and water. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was 10 concentrated and the crude (1.6 g) was then dissolved in 50 mL of ethanol. The solution was treated with hydrazine hydrate (0.36 g, 0.006 mol) and the mixture was heated at reflux for 2 hours. After ethanol was removed, the residue was partitioned between water and ethyl 15 acetate. The organic phase was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude was purified by chromatography on silica gel (ethyl acetate/hexane, 1:1) to give 0.6 g of product, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N,N-20 dimethyl-2-pyrimidinamine, as a yellow solid (33% yield), mp: 155-156 °C; Anal. Calc'd for C15H14FN5: C, 63.59; H, 4.98; N, 24.72. Found: C, 63.32; H, 4.92; N, 24.31.

Example A-302

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-pyrimidinamine

A suspension of 2-chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine prepared in accordance with Example A-299 (0.3 g, 0.0011 mol) in 10 mL of methylamine (40% water solution) was heated in a sealed tube at 100 °C overnight. The mixture was then cooled to room temperature and the precipitate was filtered, air-dried to give 0.2 g of product, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-methyl-2-pyrimidinamine, as a white solid (68% yield), mp: 217-218 °C; Anal Calc'd for C₁₄H₁₂FN₅: C, 62.45; H, 4.49; N, 26.01. Found: C, 62.58; H, 4.36; N, 25.90.

15

10

5

Example A-303

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-2-pyrimidinamine

20

25

This compound was synthesize by refluxing 2-chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine prepared in accordance with Example A-299 in benzylamine overnight. The product, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-2-pyrimidinamine, was obtained as a white solid in 95% yield; mp: 216-217 °C;

Anal. Calc'd for $C_{20}H_{16}FN_5$: C, 69.55; H, 4.67; N, 20.28. Found: C, 69.73; H, 4.69; N, 19.90.

Example A-304

5

N-cyclopropyl-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine

This compound was synthesized by stirring 2-chloro
4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine prepared in accordance with Example A-299 with excess cyclopropylamine in methanol at 50 °C for 12 hours. The product, N-cyclopropyl-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine, was obtained as a white solid in 26% yield, mp: 203-204 °C; Anal. Calc'd for C₁₆H₁₄FN₅: C, 65.07; H, 4.78; N, 23.71. Found: C, 64.42; H, 4.82; N, 23.58.

and the substitution of the second states of the second

المراج على المعادل والمعادل المناج المراجع المعادل المناجع الم

242

Example A-305

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[(4-methoxyphenyl)methyl]-2-pyrimidinamine

This compound was synthesized by refluxing 2-chloro-4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine prepared in accordance with Example A-299 in 4-methoxybenzylamine overnight. The product, 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-[(4-methoxyphenyl)methyl]-2-pyrimidinamine, was obtained as a off-white solid in 80%

yield, mp: 183-185 °C; Anal. Calc'd for $C_{21}H_{18}FN_5O$: C, 67.19; H, 4.83, N, 18.66. Found: C, 67.01; H, 5.11; N, 18.93.

10.9

5

10

15

Example A-306

4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine

A solution of 4-[3-(4-fluorophenyl)-1H-pyrazol-4yl]-N-[(4-methoxyphenyl)methyl]-2-pyrimidinamine prepared in accordance with Example A-305 (0.35 g, 0.00093 mol) in 5 15 mL of trifluoroacetic acid was heated at reflux for 16 hours. Solvent was removed and the residue was partitioned between ethyl acetate and 1 N ammonia hydroxide. Organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was 10 concentrated and purified by chromatography on silica gel (ethyl acetate) to give 0.14 g of product, 4-[3-(4fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine, as a pale yellow solid (59% yield), mp: 273-274 °C; Anal. Calc'd for $C_{13}H_{10}FN_5$ 0.25 H_2O : C, 60.11; H, 4.07; N, 26.96. 15 Found: C, 60.15; H, 3.82; N, 26.38.

Example A-307

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]-N-(phenylmethyl)acetamide

To a mixture of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-N-(phenylmethyl)-2-pyrimidinamine prepared in accordance with Example A-303 (0.15 g, 0.00043 mol), DMAP

· "可以可能的一致明显,就是明确是"自然的"是

5

10

at the state of the second state of the second second

(0.027 g, 0.00022 mol) and acetic anhydride (0.066 g, 0.00066 mol) in 10 mL of THF was added triethylamine (0.053 g, 0.00052 mol). The solution was stirred at room temperature overnight. After the removal of solvent, the residue was partitioned between ethyl acetate and water. The organic layer was washed with saturated NaHCO₃, washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude product was triturated with ether to give 0.1 g of product, N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]-N-(phenylmethyl)acetamide, as a white solid (60% yield), mp: 176-178 °C; Anal. Calc'd for C₂₂H₁₈FN₅: C, 68.21; H, 4.68; N, 18.08. Found: C, 67.67; H, 4.85; N, 17.79.

15 Example A-308

Ethyl [4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]carbamate

To a suspension of 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinamine prepared in accordance with Example A-306 (0.26 g, 0.001 mol) in 5 mL of pyridine was added ethyl chloroformate dropwise. After the addition, the clear solution was stirred at room temperature for 6

hours. Water was added and the aqueous phase was extracted with ethyl acetate. The organic layer was washed with brine, dried over magnesium sulfate and filtered. The filtrate was concentrated and the crude was trituated with ether to give 0.15 g of product, ethyl [4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]carbamate, as a white solid <math>(46% yield), mp: 163-165 °C; Anal. Calc'd for $C_{16}H_{14}FN_5O_2$: C, 58.71; H, 4.31; N, 21.04. Found: C, 59.22; H, 4.51; N, 21.66.

10

5

Example A-309

4-[3-(3-methylphenyl)-1H-pyrazol-4-yl]pyrimidine

This compound was prepared by the same procedure as described for Example A-208 except that 1-methyl-3-(4'-pyrimidinylacetyl) benzene (prepared as set forth in Step 1 of Example A-19 from 4-methyl-pyrimidine and methyl 3-methylbenzoate) was used in place of 4-fluorobenzoyl-4-pyridinyl methane.

Anal. Calc'd for $C_{14}H_{12}N_4$ (236.27): C, 71.17; H, 5.12; N, 23.71. Found C, 70.67; H, 5.26; N, 23.53. m.p. (DSC): 151.67 °C.

Example A-310

4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]pyrimidine

- This compound was prepared according to the chemistry described in Schemes VI and IX by selection of the corresponding pyrimidine starting material in place of the pyridine starting material.
- 10 Anal. Calc'd for C₁₃H₉N₄Cl•O.25MH₂O: C, 59.78; H, 3.67; N, 21.45. Found: C, 59.89; H, 3.32; N, 21.56. m.p. (DSC): 218.17 °C.

Example A-311

15

tivings parties to

4-[3-(3-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine

This compound was prepared according to the chemistry described in Schemes VI and IX by selection of

the corresponding pyrimidine starting material in place of the pyridine starting material.

nakayaya za miningwal

+ : dr. tarz ... alfelfitt.

Anal. Calc'd for $C_{13}H_9N_4F$ (240.24): C, 64.99; H, 3.78; N, 23.22. Found: C, 64.78; H, 3.75; N, 23.31. m.p. (DSC): 168.58 °C.

Example A-312

10 4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]pyrimidine

This compound was prepared according to the chemistry described in Schemes VI and IX by selection of the corresponding pyrimidine starting material in place of the pyridine starting material.

Anal. Calc'd for $C_{13}H_9N_4F$ (240.24): C, 64.99; H, 3.78; N, 23.32. Found: C, 64.94; H, 3.56; N, 23.44. m.p. (DSC): 191.47 °C.

20

15

Additional compounds of the present invention which could be prepared using one or more of the reaction schemes set forth in this application include, but are not limited to, the following:

WO 98/52940

a men make of the home has a second to the second to the second to

PCT/US98/10436

248

4-[3-(4-chlorophenyl)-5-(1-piperazinyl)-1H-pyrazol-4-yl]pyrimidine

1-[5-(4-bromophenyl)-4-(4-pyrldinyl)-1H-pyrazol-3-yl]plperazine

1-[4-(4-pyridiny!)-5-[4-(trifluoromethy!)pheny!]-1H-pyrazoi-3-yi]piperazine

- 1H-pyrazol-3-yl]benzonitrile

- は、「はこれではないないないない」。

250

1-[5-(4-ethynylphenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl]piperazine

5-(4-fluorophenyl)-4-(4-pyridinyl)-N-3-pyrrolidinyl-1H-pyrazol-3-amine

5-(4-chlorophenyl)-4-(4-pyridinyl)-N-3-pyrrolldinyl-1H-pyrazol-3-amlne

N-[5-(4-fluorophenyl)-4-(4-pyridinyl)-1H-pyrazol-3-yl] -4-piperidinamine

3-(4-fluoropheny!)-5-(1-piperaziny!)-4-(4-pyridiny!)-1H-pyrazole-1-ethanol ment the standard in an agent free grant and the standard in the second

252

3-(4-chlorophenyl)-5-(1-piperazinyl)-4-(4-pyridinyl)-1H-pyrazole-1-ethanol

4-[2-aminoethyl]-2-(4-fluorophenyl]-4,5,5,7-tetrahydro-3-(4-pyridinyl)pyrazolo [1,5-a]pyrimidin-6-ol

4-[2-aminoethyi]-2-(4-chiorophenyi]-4,5,6,7-tetrahydro-3-(4-pyridinyi)pyrazolo
[1,5-a]pyrimidin-6-oi

3-(4-chlorophenyl)-4-(4-pyrimidinyl)-1H-pyrazole-1-ethanol

The second secon

254

5-(4-fluorophenyl)-4-(4-pyrimidinyl)-1H-pyrazole-3-ethanamine

5-(4-chlorophenyl)-4-(4-pyrimidinyl)-1H-pyrazole-3-ethanamine

4-[3-(4-fluorophenyl)-5-(4-piperidinyl)-1H-pyrazol-4-yl]pyrimidine " - marketin of greenings on a south the city

255

4-[3-(4-chlorophenyl)-5-(4-piperidinyl)-1H-pyrazol-4-yl]pyrlmidine

N-[4-[3-(4-fluoropheny!)-1H-pyrazol-4-yl]-2-pyrimidinyl]acetamide

N-[4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-pyrlmidinyl]acetamide

SUBSTITUTE SHEET (RULE 26)

A CONTRACTOR OF THE PARTY OF TH

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinylpropanamide

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-2-pyrimidinyl]propanamide

6-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]-1H-purine

6-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-1H-purine

N-[4-[3-(4-chlorophenyl)-1H-pyrazol-4-yl]-2-pyrlmidinyl]-N-(phenylmethyl)acetamide

N-[4-[3-(4-fluorophenyl)-1H-pyrazol-4-yl]- 2-pyrlmidinyl]-N-(phenylmethyl)propanamide

WO 98/52940

PCT/US98/10436

258

N-[4-[3-(4-chloropheny!)-1H-pyrazol-4-y!]2-pyrimidinyl]-N-(phenyimethyl)propanamide

BIOLOGICAL EVALUATION

p38 Kinase Assay

5

10

15

20

Cloning of human p38a:

The coding region of the human p38a cDNA was obtained by PCR-amplification from RNA isolated from the human monocyte cell line THP.1. First strand cDNA was synthesized from total RNA as follows: 2 μ g of RNA was annealed to 100 ng of random hexamer primers in a 10 μ l reaction by heating to 70 °C for 10 minutes followed by 2 minutes on ice. cDNA was then synthesized by adding 1 μ l of RNAsin (Promega, Madison WI), 2 μ l of 50 mM dNTP's, 4 μl of 5X buffer, 2 μl of 100 mM DTT and 1 μl (200 U) of Superscript II TM AMV reverse transcriptase. primer, dNTP's and Superscript TM reagents were all purchased from Life-Technologies, Gaithersburg, MA. The reaction was incubated at 42 °C for 1 hour. Amplification of p38 cDNA was performed by aliquoting 5 μl of the reverse transcriptase reaction into a 100 μl PCR reaction containing the following: 80 μ l dH₂O, 2 μ l 50 mM dNTP's, 1 μ l each of forward and reverse primers

(50 pmol/ μ l), 10 μ l of 10% buffer and 1 μ l Expand TM polymerase (Boehringer Mannheim). The PCR primers incorporated Bam HI sites onto the 5' and 3' end of the amplified fragment, and were purchased from Genosys. The sequences of the forward and reverse primers were 5 5'-GATCGAGGATTCATGTCTCAGGAGAGGCCCA-3' and 5'GATCGAGGATTCTCAGGACTCCATCTCTTC-3' respectively. PCR amplification was carried out in a DNA Thermal Cycler (Perkin Elmer) by repeating 30 cycles of 94 °C for 1 minute, 60 °C for 1 minute and 68 °C for 2 minutes. 10 After amplification, excess primers and unincorporated dNTP's were removed from the amplified fragment with a Wizard TM PCR prep (Promega) and digested with Bam HI (New England Biolabs). The Bam HI digested fragment was ligated into BamHI digested pGEX 2T plasmid DNA 15 (PharmaciaBiotech) using T-4 DNA ligase (New England Biolabs) as described by T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd ed. (1989). The ligation reaction was transformed into chemically competent E. coli DH10B cells purchased from Life-Technologies 20 following the manufacturer's instructions. Plasmid DNA was isolated from the resulting bacterial colonies using a Promega Wizard $^{ extsf{TM}}$ miniprep kit. Plasmids containing the appropriate Bam HI fragment were sequenced in a DNA Thermal Cycler (Perkin Elmer) with $Prism^{TM}$ (Applied 25 Biosystems Inc.). cDNA clones were identified that coded for both human p38a isoforms (Lee et al. Nature 372, 739). One of the clones which contained the cDNA for p38a-2 (CSBP-2) inserted in the cloning site of pGEX 2T, 3' of the GST coding region was designated pMON 35802. 30 The sequence obtained for this clone is an exact match of the cDNA clone reported by Lee et al. This expression plasmid allows for the production of a GST-p38a fusion protein.

15

20

25

260

Expression of human p38a:

GST/p38a fusion protein was expressed from the plasmid pMON 35802 in *E. coli*, stain DH10B (Life Technologies, Gibco-BRL). Overnight cultures were grown in Luria Broth (LB) containing 100 mg/ml ampicillin. The next day, 500 ml of fresh LB was inoculated with 10 ml of overnight culture, and grown in a 2 liter flask at 37 °C with constant shaking until the culture reached an absorbance of 0.8 at 600 nm. Expression of the fusion protein was induced by addition of isopropyl b-D-thiogalactosidse (IPTG) to a final concentration of 0.05 mM. The cultures were shaken for three hours at room temperature, and the cells were harvested by centrifugation. The cell pellets were stored frozen until protein purification.

Purification of p38 Kinase- α :

All chemicals were from Sigma Chemical Co. unless noted. Twenty grams of $E.\ coli$ cell pellet collected from five 1 L shake flask fermentations was resuspended in a volume of PBS (140 mM NaCl, 2.7 mM KCl, 10 mM Na_2HPO_4, 1.8 mM KH_2PO_4, pH 7.3) up to 200 ml. The cell suspension was adjusted to 5 mM DTT with 2 M DTT and then split equally into five 50 ml Falcon conical tubes. The cells were sonnicated (Ultrasonics model W375) with a 1 cm probe for 3 X 1 minutes (pulsed) on ice. Lysed cell material was removed by centrifugation (12,000 x g, 15 minutes) and the clarified supernatant applied to glutathione-sepharose resin (Pharmacia).

30

35

Glutathione-Sepharose Affinity Chromatography:

Twelve ml of a 50% glutathione sepharose-PBS suspension was added to 200 ml clarified supernatant and incubated batchwise for 30 minutes at room temperature. The resin was collected by centrifugation (600 x g, 5 min) and washed with 2 x 150 ml PBS/1% Triton X-100,

10

15

20

25

30

35

followed by 4 x 40 ml PBS. To cleave the p38 kinase from the GST-p38 fusion protein, the glutathione-sepharose resin was resuspended in 6 ml PBS containing 250 units thrombin protease (Pharmacia, specific activity > 7500 units/mg) and mixed gently for 4 hours at room temperature. The glutathione-sepharose resin was removed by centrifugation (600 x g, 5 min) and washed 2 x 6 ml with PBS. The PBS wash fractions and digest supernatant containing p38 kinase protein were pooled and adjusted to 0.3 mM PMSF.

Mono O Anion Exchange Chromatography:

The thrombin-cleaved p38 kinase was further purified by FPLC-anion exchange chromatography. Thrombin-cleaved sample was diluted 2-fold with Buffer A (25 mM HEPES, pH 7.5, 25 mM beta-glycerophosphate, 2 mM DTT, 5% glycerol) and injected onto a Mono Q HR 10/10 (Pharmacia) anion exchange column equilibrated with Buffer A. The column was eluted with a 160 ml 0.1 M-0.6 M NaCl/Buffer A gradient (2 ml/minute flowrate). The p38 kinase peak eluting at 200 mM NaCl was collected and concentrated to 3-4 ml with a Filtron 10 concentrator (Filtron Corp.).

Sephacryl S100 Gel Filtration Chromatography:

The concentrated Mono Q- p38 kinase purified sample was purified by gel filtration chromatography (Pharmacia HiPrep 26/60 Sephacryl S100 column equilibrated with Buffer B (50 mM HEPES, pH 7.5, 50 mM NaCl, 2 mM DTT, 5% glycerol)). Protein was eluted from the column with Buffer B at a 0.5 ml/minute flowrate and protein was detected by absorbance at 280 nm. Fractions containing p38 kinase (detected by SDS-polyacrylamide gel electrophoresis) were pooled and frozen at -80 °C. Typical purified protein yields from 5 L E. coli shake flasks fermentations were 35 mg p38 kinase.

A more of the feet that we will be a feet to be a feet to

10

15

20

25

30

35

In Vitro Assay

The ability of compounds to inhibit human p38 kinase alpha was evaluated using two in vitro assay methods. In the first method, activated human p38 kinase alpha phosphorylates a biotinylated substrate, PHAS-I (phosphorylated heat and acid stable protein-insulin inducible), in the presence of gamma $^{32}\text{P-ATP}$ ($^{32}\text{P-ATP}$). PHAS-I was biotinylated prior to the assay and provides a means of capturing the substrate which is phosphorylated during the assay. p38 Kinase was activated by MKK6. Compounds were tested in 10 fold serial dilutions over the range of 100 μM to 0.001 μM using 1% DMSO. Each concentration of inhibitor was tested in triplicate.

All reactions were carried out in 96 well polypropylene plates. Each reaction well contained 25 mM HEPES pH 7.5, 10 mM magnesium acetate and 50 μ M unlabeled ATP. Activation of p38 was required to achieve sufficient signal in the assay. Biotinylated PHAS-I was used at 1-2 μ g per 50 μ l reaction volume, with a final concentration of 1.5 μ M. Activated human p38 kinase alpha was used at 1 μ g per 50 μ l reaction volume representing a final concentration of 0.3 μ M. Gamma ³²P-ATP was used to follow the phosphorylation of PHAS-I. ³²P-ATP has a specific activity of 3000 Ci/mmol and was used at 1.2 μ Ci per 50 μ l reaction volume. The reaction proceeded either for one hour or overnight at 30 °C.

Following incubation, 20 μ l of reaction mixture was transferred to a high capacity streptavidin coated filter plate (SAM-streptavidin-matrix, Promega) prewetted with phosphate buffered saline. The transferred reaction mix was allowed to contact the streptavidin membrane of the Promega plate for 1-2 minutes. Following capture of biotinylated PHAS-I with 32 P incorporated, each well was washed to remove unincorporated 32 P-ATP three times with 2M NaCl, three washes of 2M NaCl with 1% phosphoric, three washes of distilled water and finally a single wash

10

15

20

of 95% ethanol. Filter plates were air dried and 20 μ l of scintillant was added. The plates were sealed and counted. Results are shown in Table 4.

A second assay format was also employed that is based on p38 kinase alpha induced phosphorylation of EGFRP (epidermal growth factor receptor peptide, a 21 mer) in the presence of 33P-ATP. Compounds were tested in 10 fold serial dilutions over the range of $100\,\mu\text{M}$ to 0.001 µM in 1% DMSO. Each concentration of inhibitor was tested in triplicate. Compounds were evaluated in $50\mu l$ reaction volumes in the presence of 25 mM Hepes pH 7.5, 10 mM magnesium acetate, 4% glycerol, 0.4% bovine serum albumin, 0.4mM DTT, 50μM unlabeled ATP, 25 μg EGFRP $(200 \mu M)$, and 0.05 uCi gamma ³³P-ATP. Reactions were initiated by addition of 0.09 μg of activated, purified human GST-p38 kinase alpha. Activation was carried out using GST-MKK6 (5:1,p38:MKK6) for one hour at 30 °C in the presence of $50\,\mu\text{M}$ ATP. Following incubation for 60minutes at room temperature, the reaction was stopped by addition of 150 μ l of AG 1X8 resin in 900 mM sodium formate buffer, pH 3.0 (1 volume resin to 2 volumes buffer). The mixture was mixed three times with pipetting and the resin was allowed to settle. A total of $50\mu l$ of clarified solution head volume was transferred from the reaction wells to Microlite-2 plates. 25 Microscint 40 was then added to each well of the Microlite plate, and the plate was sealed, mixed, and counted.

The state of the s

مدين إلى المرابع المنتاء وأساه المعادرات المعادرات المعادرات الما

264

		TABLE 4
	Example	p38 kinase IC50 (µM)
	1	4.6
5	2	1.5
	8	<0.1
	16	3.8
	23	1.5
	25	2.6
10	26	0.7
	28	0.3
	33	2.5
	34	8.0
	36	12.1
15	38	0.8
	39	1.1
	40	1.3
	42	0.3
	43	<0.1
20	44	<0.1
	45	<0.1
	46	<0.1
	47	3.2
	48	1.8
25	50 _.	2.3
	51	<0.1
	52	0.1
	53	0.9
	54	0.7
30	55	6.4

TNF Cell Assays

143

40

45

Method of Isolation of Human Peripheral Blood Mononuclear Cells:

<0.1

Human whole blood was collected in Vacutainer tubes containing EDTA as an anticoagulant. A blood sample (7 ml) was carefully layered over 5 ml PMN Cell Isolation Medium (Robbins Scientific) in a 15 ml round bottom centrifuge tube. The sample was centrifuged at 450-500 x g for 30-35 minutes in a swing out rotor at room temperature. After centrifugation, the top band of cells were removed and washed 3 times with PBS w/o calcium or magnesium. The cells were centrifuged at 400 x g for 10 minutes at room temperature. The cells were resuspended

WO 98/52940 PCT/US98/1Q436

265

in Macrophage Serum Free Medium (Gibco BRL) at a concentration of 2 million cells/ml.

LPS Stimulation of Human PBMs:

5

10

15

20

25

30

35

PBM cells (0.1 ml, 2 million/ ml) were co-incubated with 0.1 ml compound (10-0.41 μM, final concentration) for 1 hour in flat bottom 96 well microtiter plates. Compounds were dissolved in DMSO initially and diluted in TCM for a final concentration of 0.1% DMSO. LPS (Calbiochem, 20 ng/ml, final concentration) was then added at a volume of 0.010 ml. Cultures were incubated overnight at 37 °C. Supernatants were then removed and tested by ELISA for TNF-a and IL1-b. Viability was analyzed using MTS. After 0.1 ml supernatant was collected, 0.020 ml MTS was added to remaining 0.1 ml cells. The cells were incubated at 37 °C for 2-4 hours, then the O.D. was measured at 490-650 nM.

Maintenance and Differentiation of the U937 Human Histiocytic Lymphoma Cell Line:

U937 cells (ATCC) were propagated in RPMI 1640 containing 10% fetal bovine serum, 100 IU/ml penicillin, 100 μ g/ml streptomycin, and 2 mM glutamine (Gibco). Fifty million cells in 100 ml media were induced to terminal monocytic differentiation by 24 hour incubation with 20 ng/ml phorbol 12-myristate 13-acetate (Sigma). The cells were washed by centrifugation (200 x g for 5 min) and resuspended in 100 ml fresh medium. After 24-48 hours, the cells were harvested, centrifuged, and resuspended in culture medium at 2 million cells/ml.

LPS Stimulation of TNF production by U937 Cells:

U937 cells (0.1 ml, 2 million/ml) were incubated with 0.1 ml compound (0.004-50 μ M, final concentration) for 1 hour in 96 well microtiter plates. Compounds were prepared as 10 mM stock solutions in DMSO and diluted in

culture medium to yield a final DMSO concentration of 0.1% in the cell assay. LPS (E coli, 100 ng/ml final concentration) was then added at a volume of 0.02 ml. After 4 hour incubation at 37°C, the amount of TNF- α released in the culture medium was quantitated by ELISA. Inhibitory potency is expressed as IC50 (μ M). Results of these TNF Cell Assays are shown in Table 5.

267

TABLE 5

_				
Example.	Human PBM Assay IC50 (μΜ)	U937 Cell Assay IC50 ((μΜ)		
1	0.5			
2	1.6	0.578		
4	0.1	0.222		
5		0.274		
7	. 0.2	0.201		
8	<0.1			
9	0.4			
10	0.7	1.687		
12	8.5			
13	4.8			
14	1.2			
17	1.1			
19	0.3	0.484		
20		1.089		
21		0.077		
22	3.2			
24	8.2			
26	<0.1	0.029		
27	2.7			
28	0.1			
29	2.2			
30	2.6			
31	0.8	1.053		
32		2.696		
33	0.4			
34	0.5	•		
35	0.7			
36	1.4			
37	1.5	0.099		
38	0.2	0.208		
39	0.7	0.244		
40	0.4			
41	1.0			
42	0.7			
43	<0.1	0.243		
44	0.4	0.477		
45	<0.1	0.04		
46		0.329		
47		2.359		
48	2.2	0.522		
49	6.8			
50	0.9	, .		
51		0.074		
54	0.2	0.13		
55	<0.1	0.228		
143		0.301		

and a second and the control of the second second section to the control of the second

Rat Assay

The efficacy of the novel compounds in blocking the production of TNF also was evaluated using a model based on rats challenged with LPS. Male Harlen Lewis rats [Sprague Dawley Co.] were used in this model. Each rat weighed approximately 300 g and was fasted overnight prior to testing. Compound administration was typically by oral gavage (although intraperitoneal, subcutaneous and intravenous administration were also used in a few instances) 1 to 24 hours prior to the LPS challenge. Rats were administered 30 $\mu g/kg$ LPS [salmonella typhosa, Sigma Co.] intravenously via the tail vein. Blood was collected via heart puncture 1 hour after the LPS challenge. Serum samples were stored at -20 °C until quantitative analysis of TNF- α by Enzyme Linked-Immuno-Sorbent Assay ("ELISA") [Biosource]. Additional details of the assay are set forth in Perretti, M., et al., Br. J. Pharmacol. (1993), 110, 868-874, which is incorporated by reference in this application.

20

25

30

35

10

15

AT THE STATISTICS OF SOME

Mouse Assay

Mouse Model Of LPS-Induced TNF Alpha Production:

TNF alpha was induced in 10-12 week old BALB/c female mice by tail vein injection with 100 ng lipopolysaccharide (from S. Typhosa) in 0.2 ml saline. One hour later mice were bled from the retroorbital sinus and TNF concentrations in serum from clotted blood were quantified by ELISA. Typically, peak levels of serum TNF ranged from 2-6 ng/ml one hour after LPS injection.

The compounds tested were administered to fasted mice by oral gavage as a suspension in 0.2 ml of 0.5% methylcellulose and 0.025% Tween 20 in water at 1 hour or 6 hours prior to LPS injection. The 1 hour protocol allowed evaluation of compound potency at Cmax plasma levels whereas the 6 hour protocol allowed estimation of

The same of the sa

compound duration of action. Efficacy was determined at each time point as percent inhibition of serum TNF levels relative to LPS injected mice that received vehicle only.

Additional results obtained using the above-described assays are set forth in Table 6 below. p38 assay and U937 cell assay results are expressed as IC₅₀ (μ m). Mouse-LPS assay results are expressed as percent inhibition.

270 <u>TABLE 6</u>

Example	p38 ¹	p382	บ937	mLPS	mLPS	mLPS
				8h	6h dose	lh, 30mpk
A-212	0.49	0.74	0.0967	20	10	93
A-208	0.104	0.049	0.1896	98	30	97
A-227		0.06				96
A-228	0.76	0.339	0.4173	32	30	92
A-229		1.4	0.4622	76		91
A-230	0.42	0.178				96
A-231		0.174	0.3225	86	30	94
A-232		0.048				96
A-233		0.044				53
A-234		0.103				
A-235		0.104				56
A-236		0.237				94
A-237		0.093	0.087			60
A-238		0.177	0.4016			
A-239		0.034		51	30	87
A-240		0.961		78	30	85
A-241		0.338		79	30	87
A-242		0.047		95	30	87
A-243		0.729				82
A-244		0.099				
A-245		<.001	0.0337			65
A-246	0.403	0.592	0.4952			
A-247		<0.01	0.166			
A-249		0.432		73	30	86
A-250		2.873				
A-251		0.637		32		87
A-252		0.774	1.197	48	30	75
A-253		<.001	0.0044			61
A-254		0.081	0.1411			
A-215		2.34	0.2976	38	30	80
A-256		0.813	0.4562			
A-257	1.081	<.01	0.5167			
A-213		0.22				57
A-258		0.48	1.2083			68
A-259		0.17	0.7574			62
A-210	0.16		0.1983	85	30	93
A-260		0.23	1.2821	47	30	79
A-214		0.06	1.4006			70
A-261		0.008	+		30	92
A-216		0.018			30	91
A-262		<0.1	0.3267			45
A-263	<0.01		0.5434			49

Example	p381	p38 ²	U937	mLPS	mLPS	mLPS
	 			8h	6h dose	1h, 30mpk
A-264			0.2594			61
A-265		<0.1	0.6016			32
A-266			0.5393			0
A-267		0.43	2.6681			80
A-268		<0.01	0.0074			11
A-217	0.697		0.3486			9
A-269	-		>10 uM		*	51
A-270		0.015	0.3466			53
A-271		0.216	4.2144			68
A-272	0.073		0.583			-8
A-273	6.98		>10			43
A-274	<0.1		0.92	21	30	
	10.14					
A-275	2		>10			
A-276	0.176		0.45	-24	30	
A-277	0.026			33	30	
A-278	0.285		2.3	62	30	
A-279	0.005		0.7	64	30	
A-280	0.134			15	30	
A-281	0.053			22	30	
A-218	0.044			18	30	
A-282	0.045		0.0973	30	30	
A-283	<0.1		0.7998	-20	30	
A-284	0.98		0.5088			
A-285	<0.1		0.1795	11	30	
A-286	0.057		0.09	29	30	
A-287	0.041		0.27	-24	30	
A-288	0.017		0.3	40	30	
A-289	<0.1		0.14	44	30	
A-290			6.0191	4	30	
A-291	0.388		1.1309	36	30	
A-292	1.15		>10			
A-293	0.73					
A-294	0.015		0.5	61	30	
A-295	7.66		>10	94	30	
A-296	26					
A-297	0.52		0.17	89	30	

¹ p38α in vitro assay results based on PHAS-I assay procedure

 $^{^{2}\} p38\alpha$ in vitro assay results based on EGFRP assay procedure

<u>Induction And Assessment Of Collagen-Induced Arthritis In Mice:</u>

Arthritis was induced in mice according to the procedure set forth in J.M. Stuart, Collagen Autoimmune 5 Arthritis, Annual Rev. Immunol. 2:199 (1984), which is incorporated herein by reference. Specifically, arthritis was induced in 8-12 week old DBA/1 male mice by injection of 50 μ g of chick type II collagen (CII) (provided by Dr. Marie Griffiths, Univ. of Utah, Salt Lake City, UT) in complete Freund's adjuvant (Sigma) on 10 day 0 at the base of the tail. Injection volume was 100 μ l. Animals were boosted on day 21 with 50 μ g of CII in incomplete Freund's adjuvant (100 μ l volume). Animals were evaluated several times each week for signs of 15 arthritis. Any animal with paw redness or swelling was counted as arthritic. Scoring of arthritic paws was conducted in accordance with the procedure set forth in Wooley et al., Genetic Control of Type II Collagen Induced Arthritis in Mice: Factors Influencing Disease 20 Suspectibility and Evidence for Multiple MHC Associated Gene Control., <u>Trans. Proc.</u>, 15:180 (1983). Scoring of severity was carried out using a score of 1-3 for each paw (maximal score of 12/mouse). Animals displaying any redness or swelling of digits or the paw were scored as Gross swelling of the whole paw or deformity was 25 scored as 2. Ankylosis of joints was scored as 3. Animals were evaluated for 8 weeks. 8-10 animals per group were used.

30 Preparation And Administration Of Compounds:

The compounds tested on mice having collagen-induced arthritis were prepared as a suspension in 0.5% methylcelluose (Sigma, St. Louis, MO), 0.025% Tween 20 (Sigma). The compound suspensions were administered by oral gavage in a volume of 0.1 ml b.i.d. Administration began on day 20 post collagen injection and continued

daily until final evaluation on day 56. Scoring of arthritic paws was conducted as set forth above. Assay results are set forth in Table 7.

5	TABLE 7				
	Compound	% Inhibition of Arthritis			
	A-210	58.5 @ 15 mpk			
	A-172	49.3 @ 100 mpk			
	A-189	51.6 @ 30 mpk			
10	A-208	97.5 @ 60 mpk			
	A-208	75.0 @ 60 mpk			

Also embraced within this invention is a class of pharmaceutical compositions comprising the active 15 compounds of this invention in association with one or more non-toxic, pharmaceutically-acceptable carriers and/or diluents and/or adjuvants (collectively referred to herein as "carrier" materials) and, if desired, other active ingredients. The active compounds of the present 20 invention may be administered by any suitable route, preferably in the form of a pharmaceutical composition adapted to such a route, and in a dose effective for the treatment intended. The active compounds and composition may, for example, be administered orally, intravascularly 25 (IV), intraperitoneally, subcutaneously, intramuscularly (IM) or topically. For oral administration, the pharmaceutical composition may be in the form of, for example, a tablet, hard or soft capsule, lozenges, dispensable powders, suspension or liquid. 30 pharmaceutical composition is preferably made in the form of a dosage unit containing a particular amount of the active ingredient. Examples of such dosage units are tablets or capsules. The active ingredient may also be administered by injection (IV, IM, subcutaneous or jet) 35 as a composition wherein, for example, saline, dextrose, or water may be used as a suitable carrier. The pH of

the composition may be adjusted, if necessary, with suitable acid, base, or buffer. Suitable bulking, dispersing, wetting or suspending agents, including mannitol and PEG 400, may also be included in the composition. A suitable parenteral composition can also 5 include a compound formulated as a sterile solid substance, including lyophilized powder, in injection vials. Aqueous solution can be added to dissolve the compound prior to injection. The amount of therapeutically active compounds that are administered 10 and the dosage regimen for treating a disease condition with the compounds and/or compositions of this invention depends on a variety of factors, including the age, weight, sex and medical condition of the subject, the severity of the inflammation or inflammation related 15 disorder, the route and frequency of administration, and the particular compound employed, and thus may vary widely. The pharmaceutical compositions may contain active ingredients in the range of about 0.1 to 1000 mg, preferably in the range of about 7.0 to 350 mg. A daily 20 dose of about 0.01 to 100 mg/kg body weight, preferably between about 0.1 and about 50 mg/kg body weight and most preferably between about 0.5 to 30 mg/kg body weight, may be appropriate. The daily dose can be administered in one to four doses per day. In the case of skin 25 conditions, it may be preferable to apply a topical preparation of compounds of this invention to the affected area two to four times a day. For disorders of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably applied as a topical gel, 30 spray, ointment or cream, or as a suppository, containing the active ingredients in a total amount of, for example, 0.075 to 30% w/w, preferably 0.2 to 20% w/w and most preferably 0.4 to 15% w/w. When formulated in an ointment, the active ingredients may be employed with 35 either paraffinic or a water-miscible ointment base.

Alternatively, the active ingredients may be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base may include, for example at least 30% w/w of a polyhydric alcohol such as propylene glycol, butane-1,3-diol, mannitol, sorbitol, glycerol, polyethylene glycol and mixtures thereof. topical formulation may desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include 10 dimethylsulfoxide and related analogs. The compounds of this invention can also be administered by a transdermal Preferably topical administration will be accomplished using a patch either of the reservoir and porous membrane type or of a solid matrix variety. 15 either case, the active agent is delivered continuously from the reservoir or microcapsules through a membrane into the active agent permeable adhesive, which is in contact with the skin or mucosa of the recipient. active agent is absorbed through the skin, a controlled 20 and predetermined flow of the active agent is administered to the recipient. In the case of microcapsules, the encapsulating agent may also function as the membrane. The transdermal patch may include the compound in a suitable solvent system with an adhesive 25 system, such as an acrylic emulsion, and a polyester The oily phase of the emulsions of this invention may be constituted from known ingredients in a known While the phase may comprise merely an 30 emulsifier, it may comprise a mixture of at least one emulsifier with a fat or an oil or with both a fat and an Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a It is also preferred to include both an oil stabilizer. and a fat. Together, the emulsifier(s) with or without 35 stabilizer(s) make-up the so-called emulsifying wax, and

the wax together with the oil and fat make up the socalled emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the present invention include Tween 60, 5 Span 80, cetostearyl alcohol, myristyl alcohol, glyceryl monostearate, and sodium lauryl sulfate, among others. The choice of suitable oils or fats for the formulation is based on achieving the desired cosmetic properties, 10 since the solubility of the active compound in most oils likely to be used in pharmaceutical emulsion formulations is very low. Thus, the cream should preferably be a nongreasy, non-staining and washable product with suitable consistency to avoid leakage from tubes or other Straight or branched chain, mono- or dibasic 15 containers. alkyl esters such as di-isoadipate, isocetyl stearate, propylene glycol diester of coconut fatty acids, isopropyl myristate, decyl oleate, isopropyl palmitate, butyl stearate, 2-ethylhexyl palmitate or a blend of 20 branched chain esters may be used. These may be used alone or in combination depending on the properties required. Alternatively, high melting point lipids such as white soft paraffin and/or liquid paraffin or other mineral oils can be used. Formulations suitable for topical administration to the eye also include eye drops 25 wherein the active ingredients are dissolved or suspended in suitable carrier, especially an aqueous solvent for the active ingredients. The anti-inflammatory active ingredients are preferably present in such formulations 30 in a concentration of 0.5 to 20%, advantageously 0.5 to 10% and particularly about 1.5% w/w. For therapeutic purposes, the active compounds of this combination invention are ordinarily combined with one or more adjuvants appropriate to the indicated route of If administered per os, the compounds 35 administration. may be admixed with lactose, sucrose, starch powder,

cellulose esters of alkanoic acids, cellulose alkyl esters, talc, stearic acid, magnesium stearate, magnesium oxide, sodium and calcium salts of phosphoric and sulfuric acids, gelatin, acacia gum, sodium alginate, polyvinylpyrrolidone, and/or polyvinyl alcohol, and then tableted or encapsulated for convenient administration. Such capsules or tablets may contain a controlled-release formulation as may be provided in a dispersion of active compound in hydroxypropylmethyl cellulose. Formulations for parenteral administration may be in the form of aqueous or non-aqueous isotonic sterile injection solutions or suspensions. These solutions and suspensions may be prepared from sterile powders or granules having one or more of the carriers or diluents mentioned for use in the formulations for oral administration. The compounds may be dissolved in water, polyethylene glycol, propylene glycol, ethanol, corn oil, cottonseed oil, peanut oil, sesame oil, benzyl alcohol, sodium chloride, and/or various buffers. Other adjuvants and modes of administration are well and widely known in the pharmaceutical art.

10

15

20

25

All patent documents listed herein are incorporated by reference.

Although this invention has been described with respect to specific embodiments, the details of these embodiments are not to be construed as limitations.

Description of parallel array synthesis methodology utilized to prepare compounds of Examples B-i, B-ii, and B-iii.

5

pering selfs with public inquinterments of process to the com-

Scheme B-1 describes the parallel array reaction blocks that were utilized to prepare compounds of Examples B-0001 through B-1574, and by analogy could also be used to prepare compounds of Examples B-1575 through B-2269. Parallel reactions were performed in multi-chamber 10 reaction blocks. A typical reaction block is capable of performing 48 parallel reactions, wherein a unique compound is optionally prepared in each reaction vessel Each reaction vessel B1 is made of either polypropylene or pyrex glass and contains a frit B2 15 toward the base of the vessel. Each reaction vessel is connected to the reaction block valve assembly plate B3 via leur-lock attachment or through threaded а connection. Each vessel valve B4 is either opened or closed by controlling the leur-lock position or by the 20 opening or closing of levers B5 within a valve assembly plate row. Optionally, solutions can be either drained or maintained above the vessel frits by leaving the valves in the opened position and controlling the back pressure beneath the valve assembly plate by control of inert gas flow through the inert gas inlet valve B6. The parallel reactions that are performed in these reaction blocks are allowed to progress by incubation in a jacketed, temperature controlled shaking 30 Temperature control of the reaction chambers is effected passing a heat-transfer liquid through aluminum plates that make contact with the reaction block

Mixing is effected at the shaking station by either vertical orbital shaking of the up-right reaction block or by lateral shaking of the reaction block tilted on its side.

5

Functionalized resins are optionally added to each reaction vessel B1 during the course of reaction or at the conclusion of the reaction. These functionalized resins enable the rapid purification of each reaction 10 vessel product. Vacuum filtration of the reaction block apparatus by opening of the vacuum valve B8 allows purified products to be separated from resin-sequestered non-product species. Valve B8 is located on the bottom reaction block chamber B10 which houses the quadrant collection vial racks B11. The desired products are obtained as filtrates in unique collection vials B9. Removal of solvent from these collection vials affords desired products.

20

15

2 mar - 12 12 mar. "The

10

Scheme B-2 illustrates the various utilizations functionalized resins to purify reaction vessel products B22 prior to filtration from the fritted vessels B1 into collection vials B9. Said functionalized resins perform as 1) resin-bound reagents B12, which give rise to resinbound reagent byproducts B13; 2) sequestrants B14 or B15 solution-phase reactants of excess **B16** B17, respectively. Solution-phase reactants **B**16 and **B17** contain inherent reactive functionality -rf1 and

which enable their chemoselective sequestration by the complementary reactive functionality -Crf₁ and -Crf₂ attached to resins B14 and B15; 3) sequestrants B18 of solution-phase byproducts B19. Byproduct B19 contains molecular recognition functionality $-mr_2$ which enables its chemoselective sequestration by the complementary functionality -Cmr2 attached to resin B18; 4) reactionquenching resins B20 which give rise to quenched resins B21. Resin B20 contains functionality -Q which mediates reaction quenching (for instance, proton transfer) of 10 product B22 to form a desired isolable form of product B22. Upon performing reaction quench, the resin B20 is converted to resin B21 wherein -q represents the spent functionality on resin B21; 5) sequestrants B23 of chemically-tagged reagents B24 and their corresponding 15 reagent byproducts B25. The soluble reagent B24 contains a bifunctional chemical group, -tag, which is inert to the reaction conditions but is used to enable the postreaction sequestration of B24 by the complementary 20 functionality -Ctag attached to resin B23. Additionally, the soluble reagent byproduct B25, formed during the course of reaction, contains the same chemical function tag that also enables its sequestration by resin B23. Additionally, some reactants B16, particularly sterically-hindered reactants and/or electron deficient 25 nucleophiles, contain poorly sequestrable functionality (rf1 in this case is a poorly sequestable functionality). These poorly sequestable reactants B16 can be transformed in situ to more robustly sequestrable species B27 through 30 their reaction with sequestration-enabling-reagents B26. B26 contain highly reactive, complementary functionality Crf₁ which reacts with **B16** to form **B27** in situ.

bifunctional molecular recognition functionality, contained within B26 is also present on the in situ derivatized B27. Both B26 and B27 are sequestered by the complementary molecular recognition functionality attached to resin B28: By analogy, some reactions contain poorly sequestable byproducts B19, wherein the molecular recognition functionality mr2 in this case is not able to mediate the direct sequestration of B19 by the complementary functionality attached to resin B18. Similar use of the bifunctional sequestration-enabling-10 reagent B29 transforms B19 into the more readily imparted molecular sequestrable species B30. The recognition functionality, mr, present in B30 is readily sequestered by the complementary functionality, attached to resin B31. In some reactions, multiple 15 sequestration resins are utilized simultaneously to perform reaction purifications. Even resins containing incompatible (mutually reactive) functional groups can be used simultaneously because these resins complementary functionalized solution phase reactants, 20 reagents, or byproducts from solution phase faster than resin cross-neutralization. Similarly, resins containing mutually reactive or neutralizing reaction-quenching functionality are able to quench solution reactants, products, or byproducts faster than resin 25 cross-neutralization.

Scheme B3 describes the modular robotics laboratory environment that was utilized to prepare compounds of Examples B0001 through Bxxxx. Chemicals that are utilized in the robotics laboratory are weighed and then dissolved or suspended into solvents at Station #1 (Automated Chemistry Prep Station). Thus, solutions or suspensions of known molarity are prepared for use at the other robotics workstations. Station #1 also optionally bar-code labels each chemical solution so that its identity can be read by bar-code scanning at this and other robotics workstations.

DUP. Station #2DUP is defined as a duplicate of Station #2 and is used to increase capacity within the robotics laboratory. A reaction block is mounted at Station #2 or #2 DUP. Also, racks containing reactants, reagents, solvents, and resin slurries are also mounted at Station #2 or #2 DUP. Under the control of a chemical

informatics mapping file, reactions are initiated by the transfer of reactant solutions, reagent solutions, solvents, and/or resin slurries into each mounted reaction block vessel. The transfer of known volumes of suspensions, or solvents is mediated syringes which control a one-up septum piercing/argon purging cannula, a wide-bore resin slurry-despensing cannula, or by a six-up cannula which can simultaneously deliver volumes to a row of six reaction vessels. reaction block and/or chemical solution racks may be 10 optionally cooled below room temperature during the chemical solution transfer operations. After transfer of chemical solutions and solvents has been performed by Station#2 or #2DUP. incubation of 15 reaction block may occur while the reaction block mounted at the robot station. Preferably, however, the reaction block is removed after all volume transfers are complete and the reaction block is brought to ambient The reaction block is transferred off-line temperature. 20 to either a vertical- or lateral shaking Incubator Station #5.

The Automated weighing/archival Station #3 performs the functions of weighing empty collection vials (to obtain tare weights of collection vials) and also performs the of weighing collection vials containing filtered, purified products (to obtain gross weights of collection vials). After product-containing collection vials have been weighed (gross weight determinations) at workstation #3, the collection vial products optionally redissolved into organic an solvent at workstation #3. Transfer of solvents is accomplished with syringes which control a mounted one-up septumpiercing/argon purging cannula. Each product-containing

25

30

20

25

30

collection vial is prepared as a solution of known molarity as directed and recorded by the chemical informatics system. These product solutions may be subsequently mounted at Station #2 or #2DUP subsequent reaction steps or taken to Station #7 or #7DUP for analytical processing.

Rapid solvent evaporation of product-containing collection vials is accomplished by mounting the collection racks at Savant Automated Solvent Evaporation Stations #4, #4 DUP, or #4 TRIP, wherein #4DUP and #4TRIP are defined as a duplicate and a triplicate of Station #4 to increase the capacity for solvent removal within the laboratory. Commercially available removal stations were purchased from the Savant Company (model # SC210A speedvac unit equipped with model # RVT4104 vapor trap and model # VN100 vapornet cryopump).

Stations #7 #7DUP perform analytical processing and Station #7DUP is defined as a duplicate of functions. Station #7 to increase capacity within the robotics laboratory. Product-containing collection raċks mounted at either of these stations. Each productcontaining collection vial is then prepared as a solution of known molarity as directed and recorded by chemical informatics mapping file. Optionally, dissolution function is performed by prior processing of the collection vial rack at Station #3 as described Station#7 or #7DUP, under the control of the chemical informatics mapping file, transfers aliquots of each product vial into unique and identifable microtiter plate wells that are utilized to perform analytical determinations.

and the second s

One such microtiter plate is prepared at . Station #7 or #7DUP for subsequent utilization at the Automated HPLC/Mass Spectrometer Station #8 or #8DUP. Station #8DUP is a duplicate of Station #8 to increase the analytical capacity of the robotics laboratory. Stations #8 and #8DUP are commercially available benchtop LC/Mass spec units purchased from Hewlett Packard (model HP1100 HPLC connected to HP1100 MSD (G1946A) mass spectrometer; this unit is also equipped with a model# G1322A solvent 10 degasser, model # G1312A binary pump, a model # G1316A column heater, and a model # G1315A diode array detector. The HP unit has been interfaced with a commercially available autosampler rack (Gilson Company autosampler). Station #8 or #8DUP is utilized for the determination of product purity and identity performing high performance liquid chromatography (HPLC) companion atmospheric pressure chemi-ionization (APCI) or electrospray mass spectrometry for molecular weight determination.

- Another microtiter plate is prepared at Station #7 or #7DUP for subsequent utilization at a commercially available flow-probe Varian NMR spectrometer Station #10 (Varian Instruments flow probe NMR, 300 MHz, interfaced with a commercially available Gilson 215 autosampler).
- 25 Proton, ¹³-Carbon, and/or ¹⁹-Fluorine NMR spectra are determined at this Station #10.
 - Other microtiter plates are optionally mounted at Station #7 or #7DUP for the purpose of preparing product-containing plates for biological assays. Aliquots of product-containing collection vials are transferred to these biological assay microtiter plates under the control of the chemical informatics mapping file. Identity and amount of each transferred product is

recorded by the chemical informatics system for retrieval by biologists who perform the biological assaying of products.

Fourier Transfrom InfraRed (FT-IR) Spectrometer Station #11 is utilized to analyze resins for the identity of organic functional groups chemically attached to these resins. The resins, as mentioned above, contain functionality utilized chemical as reagents, chemoselective sequestrants, or reaction quenching media 10 for the workup and purification of the crude product mixtures contained within reaction block vessels. robotics laboratory utilizes a commercially available FT-IR spectrometer purchased from Nicolet Instruments (model # MagnaIR 560 interfaced with an InspectIR microscope for resin mounting and positioning).

Scheme: B-3

The lines interconnecting the modular Stations denote the transfer of chemical racks, reaction blocks, and/or collection vial racks from one modular Station to another.

The ChemLib IT system is a composite of software running on the client's desktop and software running on a remote server.

The ChemLib IT system is a client/server software application developed to support and document the data handling flow in the robotics laboratory described above. This IT system integrates the chemist with the robotics synthesis laboratory and manages the data generated by this processes.

The software running on the server warehouses all the electronic data for the robotics chemistry unit. This

server, a Silicon Graphics IRIX station v6.2, runs the database software, Oracle 7 v7.3.3.5.0, that warehouses Connection from the client's desktop to the server is provided by Oracle's TCP/IP Adapter v2.2.2.1.0 and SQL*Net v2.2.2.1.0A. SQL*Net is Oracle's network allows applications interface that running client's desktop to access data in Oracles' database. The client's desktop is Microsoft Windows ChemLib IT system client software is composed of Omnis7 v3.5 and Microsoft Visual C++ v5.0. This composition on 10 the client side is what is herein referred to as ChemLib. ChemLib communicates with the server for its data via Oracle's PL/SOL v2.3.3.4.0. These PL/SQL calls within ChemLib creates a network socket connection to Oracle's SQL*Net driver and the TCP/IP Adapter thereby allowing 15 access to the data on the server.

A "library" is defined as a composite number of wells, where each well defines a single compound. ChemLib defines a library in a module called the *Electronic Spreadsheet*. The *Electronic Spreadsheet* is then a composite of n-number of wells containing the components that are required to synthesize the compound that exist in each these well(s).

25

30

The chemist begins by populating the *Electronic Spreadsheet* with those components required for the compound synthesis. The identity and the availability of these components are defined in the *Building Block Catalog* module of ChemLib. The *Building Block Catalog* is a catalog of a listing of all reagents, solvents, peripherals available in the robotics laboratory. Upon selecting the components for each compound we also

15

20

30

declare the quantity of each component to be utilized. The quantity of each component can be identified by its molarity and volumetric amounts (ul) or by it's solid state form (mg). Therefore a well in the *Electronic Spreadsheet* defines a compound that is identified by its components and the quantity of each of these components.

The assembly or the synthesis of these components for each compound in the Electronic Spreadsheet is defined in the WS Sequence module of ChemLib. The Define WS Sequence module identifies the synthesis steps to be performed at the robotics workstations and any activities to be performed manually or off-line from the robotics With this module we identify which workstation. components from the Electronic Spreadsheet and the activity that should be performed with this component in the robotics laboratory. In the Define WS Sequence module the chemist chooses from a list of activities to be performed in the robotics laboratory and assembles them in the order in which they are to occur. ChemLib system takes these set of activities identified, and with the component data in the Electronic Spreadsheet assembles and reformats these instructions terminology for the robotics workstation use. robotics terminology is stored in a 'sequence' file on a common server that is accessible by the robotics workstation.

The robotics workstation performs the synthesis in a reaction block apparatus as described. Each well in the *Electronic Spreadsheet* is tracked and mapped to a unique location in the reaction block apparatus on the robotics workstation. The compound or product synthesized at the

WO 98/52940 PCT/US98/10436

291

robotics workstation in the reaction block is then captured into collection vials.

The collection vials are first tarred then grossed on the robotics workstation after collecting their products from the reaction block. These weights (tare and gross) are recorded into the ChemLib system with the Tare/Gross Session module. The Tare/Gross Session module then calculates the product or compound yields and its final mass.

Preparation of the compound for analytical analysis and screening is defined by the Analytical WS Setup module in ChemLib. The Analytical WS Setup module identifies the dilution factor for each well in the Spreadsheet, based on the compound's product yield and the desired molar concentration. This identifies the quantity, in uL, to be transferred at the robotics workstation, to a specific location on the (microtiter plate) to be sent for analysis and/or The mass spectrometric and HPLC biological assaying. results for each well are recorded and scored into the ChemLib system.

The Dilute/Archive WS module further identifies each compound by mapping the compound's well from the Electronic Spreadsheet to a specific MX block location for long term storage and archival as part of the registration process.

30

10

All communications between ChemLib and the robotics workstations are by ASCII files. These files are placed on a server by the ChemLib system that is accessible by

the robotics workstations. Reports generated by the robotics workstations are also placed on the server where the ChemLib system can read these files to record the data generated. Each robotics workstation consists of robotics hardware by Bohdan Automation, Inc. Mundelein, Illinois, and a PC currently running Microsoft Windows for Workgroup v3.11 and Ethernet software. The robotics workstation PC is logged into the network for one-way communication that allows the workstation to access the server for file access only.

General Scheme B4

20

Scaffold C-i with a primary amine functionality contained within the R4 substituent is reacted addressed, parallel array reaction block spatially vessels with excess of electrophiles $R^{3}-Q$ wherein Q is chloro, bromo, or an acid activating group including but not limited to N-hydroxysuccinimide. RJ-Q includes acid chlorides, alkyl chloroformates, sulfonyl chlorides, acids, activated esters of carboxylic carbamates, and isocyanates. Reaction of scaffold C-i with $R^{J}-Q$ is effected in the presence of a tertiary amine base at room temperature in a mixture of a polar aprotic solvent and/or a halogenated solvent. As illustrated in Scheme B-4 the products of the general formulae B-i are isolated in purified form by addition of a carbonylfunctionalized resin B32 which covalently sequesters any unreacted primary amine scaffold C-i as resin-bound adduct B35, and also by the addition of a primary aminefunctionalized resin B33 which covalently sequesters any remaining electrophile RJ-Q from each reaction mixture as

resin-bound adduct B34. Resin B33 also sequesters the HQ byproduct from the reaction mixture by proton transfer from solution-phase Base-HQ. Incubation at room temperature, filtration, rinsing of the resin cake, and concentration of the filtrates affords purified products B-i filtered away from resin-bound adducts B32, B33, B34, B35, and B36.

Scheme B-5 specifically illustrates the derivatization of the primary amine-containing scaffold C1 to afford the desired products B-i in a parallel array synthesis format. In a parallel array synthesis reaction block, individual reaction products are prepared in each of multiple reaction block vessels in a spatially

addressed format. A solution of the desired primary amine-containing scaffold C1 (limiting amount,) dimethylformamide (DMF) is added to the reaction vessels followed by a 4.0 fold stoichiometric excess solution of N-methylmorpholine in DMF. To each reaction vessel is added the electrophiles: either a 2.0 stoichiometric excess when RJ-Q is an acid chloride or alkyl chloroformate, or a 1.5 fold stoichiometric excess when R^J-Q is a sulfonyl chloride, a 1.25 fold or stoichiometric excess when RJ-Q is an isocyanate. Excess 10 electrophiles and N-methylmorpholine were used to effect more rapid and/or more complete conversion of scaffold C1 to products B-0001-B-0048 compared to reactions that do not utilize stoichiometric excesses of electrophiles and N-methylmorpholine. The reaction mixtures are incubated 15 at ambient temperature for 2-3 h. Each reaction vessel then charged with a large excess (15-20 stoichiometric excess) of the amine-functionalized resin B33 and the aldehyde-functionalized resin B32. resin-charged reaction block is shaken vertically for 20 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. The excess electrophiles RJ-Q unreacted scaffold amine C1 are removed from the reaction medium as insoluble adducts B34 and B37 respectively. 25 addition the N-methylmorpholine hydrochloride salt formed during the course of the reaction is also neutralized its free base form by proton transfer reaction to the amine-functionalized resin B33. Simple filtration of the insoluble resin- adducts B32, B33, B34, B36, and B37, 30 rinsing of the resin cake with dichloroethane, evaporation of the filtrates affords the desired products B-i in purified form.

B-6 Scheme illustrates а general synthetic method involving the parallel array reaction of a scaffold C-ii containing a secondary amine functionality within the definition of the R4 substituent. Each reaction vessel is charged with the secondary amine-containing scaffold cii, followed by the introduction of a stoichiometric excess of an optionally unique electrophile R^L -Q into each vessel, wherein Q is chloro, bromo, or an acid activating group including but not limited to N-hydroxysuccinimide. R^L-Q includes acid chlorides, alkyl chloroformates,

And the state of the second of the second of the second se

296

sulfonyl chlorides, activated esters of carboxylic acids, activated carbamates, and isocyanates. Reaction of scaffold **C-ii** with R^L-Q is effected in the presence of tertiary amine base at room temperature or elevated temperature in a mixture of a polar aprotics solvent and/or a halogenated solvent. After solution-phase reactions have progressed to afford crude product mixtures in each vessel, the products

B-ii are isolated in purified form by the addition of the isocyanate-functionalized resin B38 which covalently sequesters remaining secondary amine scaffold C-ii as resin-bound adduct B39, and also by the addition of the primary amine-functionalized resin B33 which covalently sequesters remaining electrophile RL-Q from each reaction vessel as resin-bound adducts B40. Resin B33 also sequesters the HQ byproduct in each vessel as B36, formed proton transfer from solution-phase Incubation with these resins, either simultaneously or sequentially, followed by filtration, rinsing, concentration of the filtrates affords purified products B-ii filtered away from resin-adducts B33, B36, B38, B39, and B40.

25

10

15

SUBSTITUTE SHEET (RULE 26)

Scheme B-7 illustrates the conversion of the secondaryamine containing scaffold C-2 to the desired products Bparallel array synthesis reaction block, individual reaction products are prepared in each of 48 multiple reaction block vessels. A solution of the scaffold C-2 (limiting amount) in dimethylformamide (DMF) is added to the reaction vessels followed by a 4.0fold stoichiometric excess solution of N-methylmorpholine To each reaction vessel is then added an electrophile R^L-Q as a dichloroethane (DCE) solution: either a 2.0 fold stoichiometric excess is used when R^L-Q is an acid chloride or alkyl chloroformate, or a 1.5 fold stoichiometric excess when RL-Q is a sulfonyl chloride, or fold stoichiometric excess when RL-Q isocyanate. The reaction mixtures are incubated at

Each reaction vessel is ambient temperature for 2-6 h. charged with a large excess (15-20 fold stoichiometric excess) of the amine-functionalized resin B33 and the isocyanate-functionalized resin B32. resin-charged reaction block is shaken vertically for 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel The excess electrophiles RL-Q and unreacted mixtures. scaffold amine C-2 are removed from the reaction medium as insoluble adducts B40 and B39, respectively. Resin B33 also sequesters the HQ byproduct in each vessel as B36, formed by proton transfer from solution-phase Base-Incubation with these resins, followed by filtration and rinsing with solvent mixtures of DMF and/or DCE, affords purified product solutions in collection vials filtered away from resin-adducts B33, B36, B38, B39, and Concentration of filtrates affords products B-ii.

20

Scheme B-8 illustrates another general synthetic method involving the parallel array reaction of a scaffold **C-ii** containing a secondary amine functionality within the definition of the R⁴ substituent. Each reaction vessel is charged with the secondary amine-containing scaffold **C-ii**, followed by the introduction of a stoichiometric excess of an optionally unique electrophile R^L-Q into each vessel. Reaction of scaffold **C-ii** with R^L-Q is effected in the presence of tertiary amine base at room temperature or elevated temperature in a mixture of a polar aprotic solvent and/or a halogenated solvent.

Excess electrophiles and N-methylmorpholine are used to effect more rapid and/or more complete conversion of scaffold C-ii to products B-ii compared to reactions that do not utilize stoichiometric excesses of electrophiles The N-methylmorpholine. reaction mixtures incubated at ambient temperature for 2-8 h. reaction vessel is then charged with the sequestrationenabling reagent phenylsulfonylisocyanate B41. with remaining reagent **B41** reacts secondary scaffold C-ii, converting C-ii to the in situ-derivatized Subsequent incubation of these vessel compound B42. mixtures with a large excess (15-20 fold stoichiometric excess) of the amine-functionalized resin B33 sequesters the solution-phase species R^L-Q, HQ, B41, and B42 as the 15 resin-bound adducts B40, B36, B44, and B43, respectively. The resin-charged reaction block is shaken vertically for 14-20 h on an orbital shaker at ambient temperature to allow optimum agitation of the resin-containing vessel Filtration of the insoluble resin- adducts B33, B36, B40, B43 and B44 and subsequent rinsing of the vessel resin-bed with DMF and/or DCE affords filtrates containing the purified products B-ii. Concentration of the filtrates affords the purified products B-ii.

Scheme B-9 illustrates the method of Scheme B-8 using scaffold C-2. A solution of the scaffold C-2 (limiting

WO 98/52940

10

15

302

PCT/US98/10436

amount) in dimethylformamide (DMF) is added to the reaction vessels followed by a 4.0-fold stoichiometric excess solution of N-methylmorpholine in DMF. reaction vessel is then added an electrophile R^L-Q as a dichloroethane (DCE) solution: either 2.0 stoichiometric excess is used when RL-Q is an acid or alkyl chloroformate, or a 1.5 stoichiometric excess when R^L-Q is a sulfonyl chloride, or 1.25 fold stoichiometric excess when R^L-Q is The reaction mixtures are incubated isocyanate. ambient temperature for 2-6 h. After solution-phase reactions have progressed to afford crude product mixtures, each reaction vessel is then charged with a dichloroethane solution of the sequestration-enabling reagent phenylsulfonylisocyanate **B41**. This reagent B41 reacts with remaining secondary amine scaffold C-2, converting C-2 to the in situ-derivatized compound B45. Subsequent incubation of these vessel mixtures with a large excess (15-20 fold stoichiometric excess) of the amine-functionalized resin B33 sequesters the solution-20 phase species R^L-Q, HQ, B41, and B45 as the resin-bound adducts B40, B36, B44, and B46, respectively. The resincharged reaction block is shaken vertically for 20 h on an orbital shaker at ambient temperature to allow optimum 25 agitation of the resin-containing vessel mixtures. Filtration of the insoluble resin- adducts B33, B36, B40, B44, and B46 and subsequent rinsing of the vessel resinbed with DCE affords filtrates containing the purified products **B-ii**. Concentration of the filtrates the purified products B-ii. 30

Another general method for the parallel array reaction block synthesis is illustrated in Scheme B-10 for the derivatization of the carboxylic acid-containing scaffold

Scaffold C-iii with a free carboxylic acid functionality is reacted in spatially addressed, parallel array reaction block vessels with excesses of optionally different primary or secondary amines B47 in the presence 5 of the polymer-bound carbodiimide reagent B48 and a tertiary amine base in a mixture of a polar aprotic solvent and/or a halogenated solvent. After filtration of each crude vessel product misture away from resins B48 and B49, each reaction mixture is purified by treatment sequestration-enabling-reagent with the **B50** fluorophthalic anhydride). The reagent B50 reacts with remaining excess amine B47 to afford the in situderivatized intermediates B51 which contain carboxylic acid molecular recognition functionality. Subsequent incubation of each reaction mixture with a 15-20-fold stoichiometric excess of the primay amine-functionalized resin B33 sequesters B51, B50, and any remaining acid scaffold C-iii as resin-bound adducts B52, B53, and B54, respectively. Filtration of soluton-phase products B-iii away from these resin-bound adducts and rinsing of the beds with polar aprotic solvent а halogenated solvent affords filtrates containing purified products B-iii. Concentration of the filtrates affords purified B-iii.

10

15

Scheme B-11 illustrates the conversion of the acid containing scaffold C-49 to the desired amide products Bin a parallel synthesis format. A limiting amount of the scaffold C-49 is added as a solution dimethylformamide to each reaction vessel containing the polymer bound carbodiimide reagent **B48** (5 fold stoichiometric excess). A solution of pyridine (4 fold stoichiometric excess) in dichloromethane is added to this slurry, followed by addition of an excess amount of a dimethylformamide solution of a unique amine B47 (1.5 10 fold stoichiometric excess) to each vessel. The parallel reaction block is then agitated vertically on an orbital shaker for 16-18 h at ambient temperature and filtered to separate the solution phase product mixture away from resin-bound reagent B48 and resin-bound reagent byproduct 15 The resulting solutions (filtrates) containing a mixture of the desired amide products B-iii, excess amines B47 and any unreacted acid containing scaffold C-49, are treated with tetrafluorophthalic anhydride B50. B50 converts the excess amines B47 in each filtrate 20 vessel to its respective sequestrable half acid form B51. After two h incubation time, an excess of the aminefunctionalized resin B33 and dichloromethane solvent are added to each reaction vessel. The amine-containing resin B33 converts B51, any remaining B50, 25 and any remaining C-49 to their resin-bound adducts B52, B53, and B55, respectively. The resin-charged reaction block is shaken vertically for 16 h on an orbital shaker ambient temperature to allow optimum agitation of the resin-containing vessel mixtures. 30 Filtration of insoluble resin- adducts B33, B52, B53, and B55 and subsequent rinsing of the vessel resin-bed with

WO 98/52940 PCT/US98/10436

307

dimethylformamide affords filtrates containing the purified products **B-iii**. Concentration of the filtrates affords the purified products **B-iii**.

CLESTITUTE SHEET (RULE 26)

Although Schemes B-1 through B-11 describe the use of parallel array chemical library technology to prepare compounds of general formulae B-i, B-ii, and B-iii, it is noted that one with ordinary skill in the art of classical synthetic organic chemistry would be able to prepare B-i, B-ii, and B-iii by conventional means (one compound prepared at a time in conventional glassware and purified by conventional means such as chromatography and/or crystallization).

A general synthesis of pyridylpyrazole scaffolds C-i, Cii, and C-iii is depicted in Scheme C-1. 15 Step A: Picoline is treated with a base chosen from but not limited to n-butyllithium (n-BuLi), lithium di-isopropylamide (LDA), lithium hexamethyldisilazide (LiHMDS), potassium t-butoxide (tBuOK), or sodium hydride (NaH) in an organic solvent such as tetrahydrofuran (THF), diethyl 20 ether, t-butyl methyl ether, t-BuOH or dioxane from -78 °C to 50 °C for a period of time from 10 minutes to 3 hours. The metallated picoline solution is then added to a solution of ester B56. The reaction is allowed to stir from 30 minutes to 48 hours during which time the 25 temperature may range from -20 °C to 120 °C. The mixture is then poured into water and extracted with an organic solvent. After drying and removal of solvent the pyridyl monoketone B57 is isolated as a crude solid which can be purified by crystallization and/or chromatography. 30

WO 98/52940 PCT/US98/10436

310

Step B: A solution of the pyridyl monoketone **B57** ether, THF, tBuOH, or dioxane is added to a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, NaH contained in hexane, THF, diethyl ether, methyl ether, or t-BuOH from -78 °C to 50 °C for a period of time from ranging from 10 minutes to 3 hours. appropriately substituted activated ester or acid halide derived from R4-CO2H is then added as a solution in THF, ether, or dioxane to the monoketone anion of B57 while the temperature is maintained between -50 °C and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 5 minutes to three The resulting pyridyl diketone intermediate B58 is utilized without purification in Step C.

15

20

25

10

Step C: The solution containing the pyridyl diketone B58 is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen The temperature during from HOAc, H₂SO₄, HCl, or HNO₃. step is maintained between -20 °C this and room Hydrazine or hydrazine hydrate was then temperature. added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to The mixture is then poured into water and three hours. extracted with an organic solvent. The pyridyl pyrazole C-i or C-ii is obtained as a crude solid which is purified by chromatography or crystallization.

Step: D In some cases the pyridyl pyrazole \mathbf{C} - \mathbf{i} or \mathbf{C} - \mathbf{i} is alkylated with $Q-C(R^A)-(CH2)_nCO_2$ alkyl wherein Q is halogen. \mathbf{C} - \mathbf{i} or \mathbf{C} - \mathbf{i} is treated with a base chosen from NaH, NaOEt, KOtBu, or NEt₃ in an organic solvent such as THF, methylene chloride, dioxane, or DMF at temperatures

between -20 $^{\circ}\text{C}$ and 150 $^{\circ}\text{C}$ and reaction times between 30 minutes and 12 hours. The resulting alkylated pyridyl pyrazole ester is then hydrolyzed to the acid by treament with NaOH or LiOH in aqueous/alcohol solvent mixtures or in THF/water solvent mixtures. Alternatively, the ester function is removed by treatment with an organic or inorganic acid if the alkyl residue is t-butyl. Acidification, followed by extraction with an organic solvent affords C-iii which may be purified chromatography or crystallography. In some regioisomeric alkylated products C-iv are also formed. The desired **C-iii** can be separated away from **C-iv** by chromatographic purification by fractional orcrystallization.

15

A synthesis of pyridylpyrazole scaffold **C-1** is depicted in Scheme C-2.

Step A:

WO 98/52940 PCT/US98/10436

Picoline is added to a solution of LiHMDS in THF at room temperature over a time period ranging from 30 minutes to The resulting solution is stirred additional 30 minutes to 1 hour at room temperature. solution is then added to neat ethyl This fluorobenzoate B60 at room temperature over 1-2 h. The mixture is then allowed to stir at room temperature for Equal portions of water and ethyl acetate are then added to the reaction and the mixture is partitioned The organic layer is dried, in an extraction funnel. 10 filtered, and evaporated to give an oily solid. Hexanes are then added and the solid is filtered and washed with cold hexanes leaving the pyridyl monoketone B61 for use in Step B.

15 Step B:

20

The pyridyl monoketone B61 is added as a solution in THF to a flask maintained at room temperature which contains t-BuOK in a THF/ t-BuOH cosolvent. A yellow precipitate forms and stirring at room temperature is continued for 1-3 h. After this time, N-Cbz-protected glycine Nadded dropwise at. hydroxysuccinimide B62 is room temperature as a solution in THF over 1-3 h. This solution, containing crude diketone B63, is used directly in Step C.

25 Step C:. The solution from step C is treated with water and the pH is adjusted to between 6 and 7 with acetic acid. Hydrazine hydrate is then added dropwise to the mixture as a solution in water over 30 minutes to 1h at room temperature. Water and ethyl acetate are then added to the flask and the mixture is then partitioned in a separatory funnel. The organic layer is dried, filtered, and evaported to give a crude oil which is purified by

silica gel chromatography, giving rise to purified C-

Step: D

The Cbz protecting group contained in compound C-1Cbz is cleaved using hydrogen gas under pressure and Pd-C in methanol solvent. The resulting amine C-1 is obtained by filtration and concentration.

A number of pyridyl pyrazole scaffolds of type $\mathbf{C-v}$ are prepared as shown in Scheme $\mathbf{C-3}$.

Step A: Picoline is treated with a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, or NaH in an organic solvent such as THF, ether, t-BuOH or dioxane from -78 °C to 50 °C for a period of time from 10 minutes The metallated picoline solution is then to 3 hours. added to a solution of an appropriately activated ester analog of a carboxylic acid CbzNR^H-(CH₂) nCR^F(R^G)-CO₂H or $BocNR^{H}-(CH_{2})$ ${}_{n}CR^{F}(R^{G})-CO_{2}H$, preferably but not limited to the N-hydroxysuccinimide B64. The reaction is allowed to stir from 30 minutes to 48 hours during which time the temperature may range from -20 °C to 120 °C. is then poured into water and extracted with an organic solvent. After drying and removal of solvent the pyridyl monoketone B65 is isolated as a crude solid which can be purified by crystallization and/or chromatography.

15

Step B: A solution of the pyridyl monoketone **B65** 20 ether, THF, tBuOH, or dioxane is added to a base chosen from but not limited to n-BuLi, LDA, LiHMDS, tBuOK, NaH contained in hexane, THF, ether, dioxane, or tBuOH from -78 °C to 50 °C for a period of time from 10 minutes to 3 hours. The anion sometimes precipitates as a yellow An appropriately substituted activated ester such 25 the N-hydroxysuccinimide B66 is then added as a solution in THF, ether, or dioxane to the monoketone anion while the temperature is maintained between -50 °C and 50 °C. The resulting mixture is allowed to stir at the specified temperature for a period of time from 30 ranging from 5 minutes to 3 hours. The resulting pyridyl diketone intermediate B67 is utilized without further purification in Step C.

Step C: The solution containing the pyridyl diketone **B67** is quenched with water and the pH is adjusted to between 4 and 8 utilizing an inorganic or organic acid chosen from HOAc, H₂SO₄, HCl, or HNO₃. The temperature during this step is maintained between -20 °C and room temperature. Hydrazine or hydrazine hydrate is then added to the mixture while maintaining the temperature between -20 °C and 40 °C for a period of 30 minutes to three hours. The mixture is then poured into water and extracted with an organic solvent. The pyridyl pyrazole C-vBoc or C-vCbz is obtained as a crude solid which is purified by chromatography or crystallization.

15 Step: D

The carbamate protecting groups from C-vBoc or C-vCbz are removed to afford the scaffolds C-v containing either a free primary amine (RH is hydrogen) or a free secondary amine (RH not equal to hydrogen). The Boc protecting 20 carbamate groups are cleaved utilizing trifluoroacetic acid (TFA)/methylene chloride at room temperature for several hours. The CBZ carbamate protecting groups are cleaved using hydrogen gas under pressure and Pd-C in an alcoholic solvent. The resulting 25 amines C-v are then optionally crystallized or purified by chromatography.

The synthesis of scaffolds **C-vi** is accomplished as shown in Scheme C-4.

5

10

Step A:

A Boc protected pyridylpyrazole B68 is treated with benzaldehyde in methylene chloride at room temperature in the presence of a drying agent for a period of time ranging from 1-24 h. Solvent is then evaporated and the resulting imine B69 is used in step B without further purification.

Step B:

The pyridylpyrazole imine B69 is dissolved in THF and 15 stirred under nitrogen at temperatures ranging from -78 to -20 °C. A base such as LDA, n-BuLi, or LiHMDS is added dropwise to the mixture which is then stirred for an additional 10 minutes to 3 h. Two-five equivalents of an alklyating agent RF-Q are then added to the mixture and 20 stirring is continued for several hours. The mixture is then quenched with acid and allowed to warm to room temperature and stirred several hours until cleavage of the Boc and the imine functions is complete. The pH is 25 adjusted to 12 and then the mixture is extracted with an organic solvent, which is dried and evaporated. crude pyridylpyrazole is then crystallized and/or chromatographed to give C-vi.

and the second standard and the second

5

10

15

مد الله الله المراز يعاد ما يوليفل ويسيها الماسها بالإستانية والرياية الماسية المرازية

The synthesis of maleimide-containing scaffolds **C-vii** is accomplished as shown in Scheme C-5.

The maleimide pyrazole scaffolds C-vii are synthesized as depicted in scheme C-5. Condensation reaction of a primary amine H_2N-R with a maleic anhydride B70 that is substituted at position 3 with either a bromo, chloro, or triflate group generates compound B71. The formed maleimide derivative B71 then reacts with an acetophenone derivative B72 in the presence of a Pd(0)

catalyst and base to afford compound B73. The methylene position of B73 is then acylated with an acid anhydride B74 or an activated acid ester B75, forming the di-ketone derivative B76. The di-ketone B76 condenses with hydrazine to afford the desired maleimide pyrazole scaffold C-vii.

10

Scheme C-6 illustrates the synthesis of the maleimide pyrazole scaffold C-63 wherein R⁴ is hydrogen. The synthesis starts with the condensation reaction of bromomaleic anhydride B77 with 2, 4-dimethoxybenzylamine in acetic acid and acetic anhydride, giving rise to intermediate B78. The maleimide B78 is then treated with 4'-fluoroacetophenone in the presence of catalytic amount

Pd₂(dba)₃ and sodium t-butoxide to form the fluoroacetophenone substituted maleimide B79. The B79 is treated with tert-butoxybis(dimethylamino)methane to yield the a-ketoenamine B80. The a-ketoenamine B80 is condensed with hydrazine to form the maleimide pyrazole skeleton B81. The 2, 4-dimethoxybenzyl group protecting group is optionally removed with ceric ammonium nitrate (CAN) to give compound C-63.

Scheme C-7 illustrates the synthesis of maleimidecontaining scaffolds C-64 and C-65. These scaffolds C-49 and C-50 are synthesized according to the general methods

illustrated in Scheme C-5 and exemplified with the utilization of N-hydroxysuccinimides B82 and B83 to afford the maleimide-containing pyrazoles B86 and B87, respectively. Optional removal of the 2,4-dimethoxylbenzyl groups with CAN and subsequent removal of the Boc-protecting groups with trifluoroacetic acid (TFA) affords the scaffolds C-64 and C-65.

Kalingani Tanih Kalin Kingani Kansil Bandani Andria

The various functionalized resins and sequestrationenabling-reagents utilized to prepare and purify parallel reaction mixtures are more fully described below, including their commercial source or literature reference to their preparation.

B32 4-benzyloxybenzaldehyde functionalized polystyrene. Novabiochem cat. #01-64-0182 **B33** Prepared as reported in D. L. Flynn et al, J. American Chemical Society (1997) 119, 4874-4881. Methylisocyanate functionalized polystyrene. **B38** Novabiochem cat. # 01-64-0169 cı 👄 Polymer bound EDC, prepared as reported by M. C. Desai et al, Tetrahedron Letters **B48** (1993) 34, 7685. Benzenesulfonylisocyanate, purchased from **B41** Aldrich Chemical Company. Cat# 23,229-7 Tetra-fluorophthalic anhydride, purchased B50 from Aldrich Chemical Company. Cat # 33,901-6

10

15

20

25

30

. and the

Experimental procedure for the parallel synthesis of a series of amides, carbamates, ureas and sulfonamides B-0001 through B-0048 from scaffold C-1.

Examples B-0001 through B-0048

To each reaction vessel (polypropylene syringe tubes fitted with a porous frit, closed at the bottom) of a parallel reaction apparatus was added 200 uL dimethylformamide. A stock solution of the scaffold amine C-1 in dimethylformamide (0.1 M, 500 uL) was added to each reaction vessel followed by the addition of a stock solution of N-methylmorpholine in dimethylformamide (1.0 M., 200 uL). A stock solution of each of the electrophiles was then added to the appropriate reaction vessels: a) 500 uL of a 0.2 M solution of the acid chlorides in dichloroethane or b) 500 uL of a 0.2 M solution of the chloroformates in dichloroethane or c) 313 uL of a 0.2 M solution of the isocyanates in dichloroethane or d) 375 uL of a 0.2 M solution of the sulfonyl chlorides in dichloroethane. The parallel reaction apparatus was then orbitally shaken (Labline shaker) 200 RPM at at ambient Benchtop orbital

temperature (23-30 °C) for a period of 2-3 h, under a At this time each reaction gentle flow of nitrogen. vessel was treated with approximately 250 mg of polyamine resin B33 (4.0 meq N/g resin) and approximately 100 mg of polyaldehyde resin B32 (2.9 mmol/g resin). Each reaction vessel was diluted with 1 mL dimethylformamide and 1 mL dichloroethane and the orbital shaking was continued at 200 RPM for a period of 14-20 h at ambient temperature. Each reaction vessel was then opened and the desired solution phase products separated from the insoluble quenched byproducts by filtration and collected individual conical vials. Each vessel was rinsed twice with dichloroethane (1 mL) and the rinsings were also The solutions obtained were then evaporated to dryness in a Savant apparatus (an ultracentrifuge equipped with high vacuum, scalable temperature settings and a solvent trap to condense the volatile solvent The resulting amide, carbamate, urea and sulfonamide products were then weighed and characterized. The yields and analytical data for the products obtained using this method are shown below.

25

10

15

20

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0001	F—		85	397	398
B-0002	F—		94	412	413
B-0003	F-		91	340	341
B-0004	F-		79	368	369
B-0005	F—		92	498	499
B-0006	F—		92	416	417
B-0007	F—	Br	86	450	451

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0008	F—	100	86	448	449
B-0009	F—		83	368	369
B-0010	F—		86	338	339
B-0011	F—		92	402	403
B-0012	F-\{\}		74	442	443
B-0013	F—{}		91	446	447
B-0014	F—{}		84	352	353
B-0015	F-{}		94	380	381
B-0016	F—	Z CF3	89	440	441
B-0017	F—		83	498	499

SUBSTITUTE SHEET (RULE 28)

Example#	R²	, R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0018	F—	200	24	439	440
B-0019	F—		89	474	475
B-0020	F—	To the state of th	90	440	441
B-0021	F—		85	386	387
B-0022	F—	NO2	35	417	418
B-0023	F—		94	397	398
B-0024	F-	MO 2	87	417	418
B-0025	F—		5	354	
B-0026	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	87	426	427
B-0027	F—		89	350	351

SUBSTITUTE SHEET (RULE 26)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0028	F-	o cr,	92	456	457
B-0029	F—		89	428	429
B-0030	F—		37	498	499
B-0031	F—	NO ₂	18	407	408
B-0032	F—		86	462	463
B-0033	F—{		3	352	-
B-0034	F-		92	446	447
B-0035	F—		28	569	570
B-0036	F-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	93	416	417
B-0037	F{}	8	91	422	423

SUBSTITUTE SHEET (RULE 26)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0038	F—		84	390	393
B-0039	F—		87	402	403
B-0040	F—		92	416	417
B-0041	F—	-00V	75	444	445
B-0042	F—		54	390	391
B-0043	F{}		80	396	397
B-0044	F—	7	81	310	311
B-0045	F-		91	408	409
B-0046	F-	F,c CF,	25	464	465
B-0047	F-		88	430	431

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0048	F-\\{		95	414	415

BUESTITUTE SHEET (RULE 28)

By analogy to the procedure identified above for the preparation of Examples B0001-B0048, the following examples B-0049 through B-1573 were prepared.

Example#

	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0049	F-		85	414	415
B-0050	F—		9	458	459
B-0051	F—	F	91	426	427
B-0052	F—		79	407	408
B-0053	F—	⇒ Î	92	407	408
B-0054	F—		92	363	364
B-0055	F—	, CI	86	505	506

Example#					•
	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0056	F—\$		86	487	488
B-0057	F—		83	394	395
B-0058	F—		86	462	463
B-0059	F—		92	466	467
B-0060	F—	Ş OrcEş	74	456	457
B-0061	F—	CF ₃	35	458	459
B-0062	F—	CF ₃	94	458	459
B-0063	F—		87	372	373
B-0064	F—		5	394	395
B-0065	F—	i Q ci	87	420	395

		336			
Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0066	F—		89	350.	351
B-0067	F—		92	386	387
B-0068	F—		89	432	433
B-0069	F—		37	390	391
B-0070	F-\{\}		18	432	433
B-0071	F—		86	440	441
B-0072	F—		3	432	433
B-0073	F—	Br	92	450	451
B-0074	F—	F _O	28	390	391
B-0075	F—	7	93	402	403

Еx	ar	np	ie	#
----	----	----	----	---

Examples	R²	R ³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0076	F-_\}		91	400	401
B-0077	F—		84	382	383
B-0078	F-		87	396	397
B-0079	F—{}		92	364	365
B-0080	F—	NO ₂	75	447	448
B-0081	F—	\$\sigma_s'	54	370	371
B-0082	F—	1000	80	430	431
B-0083	F—		81	382	383
B-0084	F—		91	464	465
B-0085	F—		25	462	463

	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0086	F—	2000	88	432	433
B-0087	F—		95	416	417
B-0088	F-\{\}			438	439
B-0089	F—			336	337
B-0090	F—		·	444	445
B-0091	F—			368	369
B-0092	F—			506	507
B-0093	F—	₩		436	437
B-0094	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	CF,	-	461	462
B-0095	F—{}	75 F		408	409

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0096	F-			410	411

Example#	R²	₽ ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0097	F—		14	486	487
B-0098	F-	N N N N N N N N N N N N N N N N N N N	8	465	-
B-0099	F—		75	464	465
B-0100	F—	0===0	72	388	389
B-0101	F-\{\}		23	408	409
B-0102	F—	NO NO	37	487	488
B-0103	F—) HO	11	492	493

DESTITUTESHEET (RULE 26)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0104	F—		59	426	427
B-0105	F—		79	360	361
B-0106	F—		56	374	375
B-0107	F-	οΠ 	33	346	347
B-0108	F——		12	466	467
B-0109	F—		65	450	451
B-0110	F—	0==0	55	458	459
B-0111	F—		41	458	459
B-0112	F-		19	467	468
B-0113	F—		78	453	454

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0114	F—		14	453	454
B-0115	F—	NO.	33	453	-
B-0116	F—		11	459	487
B-0117	F—		77	438	439
B-0118	F		52	422	423
B-0119	F-\{\}		82	434	435
B-0120	F-___________________		49	422	423
B-0121	F—		64	414	415
B-0122	F-		87	501	502
B-0123	F-		100	450	451

BUESTITUTE SHEET (RULE 86)

Example#	. R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0124	F—		87	456	457
B-0125	F—		45	472	473
B-0126	F—		100	476	477
B-0127	F—	AZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	100	433	434
B-0128	F—	ZZ S S S	100	482	-
B-0129	F{}		96	480	481
B-0130	F—		93	468	469
B-0131	F-		90	468	469
B-0132	F—		78	436	437
B-0133	F—		76	426	427

SUBSTITUTE SHEET (RULE 26)

Example#				Cálcd.	Observed
	R ²	RJ	%Yield	Mass Spec	Mass Spec (M+H)
B-0134	F—		87	444	445
B-0135	F—		67	476	477
B-0136	F—		100	570	-
B-0137	F—		35	480	481
B-0138	F—		60	500	-
B-0139	F—		73	585 ₋	586
B-0140	F—		62	434	459
B-0141	F—		100	483	484
B-0142	F—{}		90	444	445
B-0143	F—	S. C.	61	492	493

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0144	F—		. 49	448	449

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0145	F—		48	433	434
B-0146	IF—		32	415	416
B-0147	F—		·· 67	. 471	472
B-0148	F-		79	465	-
B-0149	F—	NN O	65	353	354
B-0150	IF—		53	465	466
B-0151	F—		68	401	402

Example#	R²	К	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0152	F—		39	383	<u>-</u>
B-0153	F—		96	427	428
B-0154	F—		44	459	460
B-0155	F—		74	479	480
B-0156	F—		44	459	460
B-0157	F—		72	415	416
B-0158	F—		96	445	446
B-0159	F-		97	411	412
B-0160	F—		49	417	418
B-0161	F-_\{		93	459	460

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0162	F-	,	91	405	406
B-0163	F—		94	455	456
B-0164	F—————————————————————————————————————		84	455	456
B-0165	F—	i	52	411	412
B-0166	F—	IBI O	72	417	418
B-0167	F—		66	447	448
B-0168	F—		27	415	416
B-0169	F—		91	415	416
B-0170	F-		8	351	352
B-0171	F—{}		10	437	438

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0172	F—		62	471	472
B-0173	F—		40	455	456
B-0174	F—	H.	92	405	40 6
B-0175	F—		96	387	388
B-0176	F-		25	415	416
B-0177	F—		100	397	398
B-0178	F—		34	429	430
B-0179	F—{		72	429	430
B-0180	F—	i,O	91	463	464
B-0181	F—		100	463	464

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0182	F—		-50	447	448
B-0183	F—		22	455	456
B-0184	F—		63	465	466
B-0185	F—		65	471	472
B-0186	F—		42	429	430
B-0187	F-		62	481	482
B-0188	F-{}		98	439	440
B-0189	F-		21	453	454
B-0190	F—		57	417	418
B-0191	F{}		24	477	478

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0192	F-	i c	35	455	456

Example#	R²	В	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0193	F—		42	378	379
B0194	F—		65	365	366
B-0195	F—		93	587	588
B-0196	F—		82	365	366
B-0197	F—		100	587	588
B-0198	F—		86	373	374
B-0199	F—		81	373	374

Example#	R²	. / R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0200	F—		78	373	374
B-0201	F—		95	352	353
B-0202	F—		100	416	417
B-0203	F—		69	354	355
B-0204	F-		93	340	341
B-0205	F—		94	354	355
B-0206	F-		79	424	425
B-0207	F—		82	326	327
B-0208	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		88	378	379
B-0209	F-\{\}		83	362	363

Example#	Ħ²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0210	F—	CF 3	100	364	365
B-0211	F——	NH	60	325	326
B-0212	F—	NH NH NH NH	79	339	340
B-0213	F—	NH NH	71	353	354
B-0214	F—	NH 2	77	311	312
B-0215	F—	-z	24	353	354
B-0216	F-			339	340
B-0217	F-			381	382
B-0218	F—			365	366
B-0219	F—	NH NH		401	402

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)*
B-0220	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		415	416
B-0221	F—	O CF 3		367	368

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0222		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	96	486	487
B-0223	F—		100	465	466
B-0224	F—	2/80	75	486	509a
B-0225	F—	S S S S S S S S S S S S S S S S S S S	100	442	443
B-0226	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0=0=0	88	482	483
B-0227	F-	0=0=0	73	482	483
B-0228	F—	0=s=0 OH	37	452	-

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0229	F-	S CI	100	476	477
B-0230	F—	0==0	94	476	477
B-0231	F-	0= S= 0	100	460	461
B-0232	F—	0=%=0 F	90	440	441
B-0233	F—{}	©=s=0 CI	99	476	477
B-0234	F—{}	O Br	100	486	487,489
B-0235	F—{}	S Br	89	486	487,489
B-0236	F—	0	100	476	477
B-0237	F—	0 = 9 = 0 CF ₃	100	476	477
B-0238	F{}		92	438	_

· Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0239	F-		100	442	443
B-0240	F—	S CI	100	442	443
B-0241	F—		100	476	477
B-0242	F-	0 = s = 0 CI	100	460	461
B-0243	F-		87	456	457
B-0244	F-		100	436	437
B-0245	F-		100	422	423
B-0246	F—	\$-\$-\$-\$-\$	100	452	453
B-0247	F—		100	476	477
B-0248	F—		73	468	

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0249	F—	Br O	100	516	517,519
B-0250	F-	0=0=0	72	458	•
B-0251	F—	0=0=0	100	427	428
B-0252	F—		100	450	451
B-0253	F-\{\}	0=0=0 0=0=0	100	472	473
B-0254	F-\{\}	CN CN	100	433	434
B-0255	F-\{\}		84	547	548
B-0256	F—{}		100	484	507a
B-0257	F—		85	534	535
B-0258	F—		100	491	492

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0259	F-	9 9 9 9	100	554	555
B-0260	F—{}		<u> </u>	500	501
B-0261	F-		100	486	487
B-0262	F—{}		100	481	482
B-0263	F-		100	554	555
B-0264	F—	S = 0 S S S S S S S S S	75	375	376
B-0265	F-{}	≥ 0= 0= 0= 0	71	459	460
B-0266	F-		100	412	413

Example#	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0267	F—		100	386	387
B-0268	F-		89	406	407
B-0269			84	386	387
B-0270	F—	CF ₃	92	440	441
B-0271	F—		98	428	429
B-0272	F—————————————————————————————————————		57	498	499
B-0273	F—{}	CI CI	100	440	441

Example#	R ²	R ¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0274	F{}	, cn	94	397	398
B-0275	F—		90	422	423
B-0276	F—	J. F	100	408	409
B-0277	F—		88	408	409
B-0278	F—		100	426	427
B-0279	F—	5 C	54	440	441
B-0280	F—		79	414	415
B-0281	F-\{\}	0 CF.8	82	458	459
B-0282	F—{}	F	89	426	427
B-0283	F-{}	CF ₃	90	458	459

Example#	, R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0284	F—{	CF 3	100	458	459
B-0285	F—	CF ₃	94	458	459
B-0286	F-		100	458	459
B-0287	F—	CF,	96	458	459
B-0288	F-	CF 3	100	458	459
B-0289	F—	a a	96	406	407
B-0290	F—		96	386	387
B-0291	F-	Co	95	440	441
B-0292	F-		94	390	391
B-0293	F—	F	100	408	409

Example#	R²	В'n	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0294	F—	CI C	100 .	440	441
B-0295	F-	F	91	408	409
B-0296	F—	F C	96	426	427
B-0297	F—		88	390	391
B-0298	F—	L C	95	408	409
B-0299	F—	F O	90	408	409
B-0300	F—{}	ē.	95	406	407
B-0301	F—{}	B'	99	450	451,453
B-0302	F-	CF ₃	94	440	441
B-0303	F-{}	S S	100	378	379

365

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0304	F—	N,	100 ·	391	392

Example#	R²	Ħ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0305			70	326	327
B-0306		www.	59	340	341
B-0307			59	354	355
B-0308			60	368	369
B-0309			61	352	353
B-0310			61	366	367
B-0311			65	356	357

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0312			75	342	343
B-0313			68	356	357
B-0314			31	370	371
B-0315			61	384	385
B-0316			75	368	369
B-0317			62	366	367
B-0318			52	388	389
B-0319			53	424	425
B-0320			50	424	425
B-0321			54	442	443

Example#	H²	₽¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0322			64	474	475
B-0323			58	474	475
B-0324			60	422	423
B-0325			64	422	423
B-0326		<u> </u>	58	422	423
B-0327			63	378	379
B-0328			68	389	390
B-0329		 	63	362	363
B-0330			48	376	377
B-0331			66	424	425

Example#	R²	. R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0332			61	442	443
B-0333			60	458	459
B-0334			55	502	503
B-0335			60	454	455
B-0336			100	500	501
B-0337			65	458	-
B-0338			69	502	503
B-0339			69	454	•
B-0340			77	492	493
B-0341			64	458	459

Example#	R ²	В	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0342			41	438	-
B-0343			63	430	431
B-0344			96	464	465
B-0345			62	507	508
B-0346			56	497	498
B-0347		o zz	61	341	342
B-0348			3	367	-
B-0349			57	403	404
B-0350			57	481	482
B-0351			31	355	356

SUBSTITUTE SHEET (RULE 26)

371

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0352			51	397	398

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0353	F—		71	382	383
B-0354	F—		35	512	513
B-0355	F—		37	352	353
B-0356	F—		57	404	405
B-0357	F—_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		88	366	367
B-0358	F—		88	410	411
B-0359	F-		100	324	325

SUBSTITUTE SHEFT (RULE PRI

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0360	F—{		5 6	364	365
. B-0361	F—	222	70	350	351
B-0362	F—	B _f	100	4 64	465
B-0363	F—		73	512	513
B-0364	F		88	377	378
B-0365	F—		70	396	397
B-0366	F—		100	354	355
B-0367	F—{		71	416	417
B-0368	F-		86	454	455
B-0369	F—	F	40	440	441

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0370	F—		94	364	365
B-0371	F—		88	460	461
B-0372	F—		69	430	431
B-0373	F—		100	430	431
B-0374	F—		75	400	401
B-0375	F-\{\}		74	386	387
B-0376	F—		53	378	379
B-0377	F—{}		71	387	388
B-0378	F-		69	387	388
B-0379	F-		66	387	388

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0380	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		85	416	417
B-0381	F—		93	430	431
B-0382	F—		84	382	383
B-0383	F—		74	583	584
B-0384	F—		63	438	439

Example#	R²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0385	F—		83	440	441
B-0386	F—		99	422	423
B-0387	F—	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	47	388	389
B-0388	F—		100	448	449
B-0389	F—		71	436	437
B-0390	F—		100	458	459
B-0391	F—{}	S — CF 3	45	414	415

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0392	F—		100	440	441
B-0393	F—	0 0	75	388	389
B-0394	F—		92	402	403
B-0395	F-		87	374	375
B-0396	F{}	ο <u></u> σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	86	360	361
B-0397	F-		81	452	453
B-0398	F-		88	428	429
B-0399	F-		99	436	437
B-0400	F-{}		82	482	483
B-0401	F-___\\		94	367	368

Example#	R²	. к	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0402	F-\{\}	NH 2	73	325	326
B-0403	F—		91	415	416
B-0404	F—		41	379	380
B-0405	F—		88	395	396
B-0406	F-\{\}		100	419	420
B-0407	F-		52	353	354
B-0408	F—	S N	83	339	340
B-0409	F-{}		74	415	416
B-0410	F-\(\)		100	419	420
B-0411	F—		94	429	430

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^d	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0412	F—		91	365	366
B-0413	F—		79	367	368
B-0414	F—		85	429	430
B-0415	F—		82	401	402
B-0416	F—		93	429	430
B-0417	F—		97	.429	430
B-0418	F—		100	419	420
B-0419	F-{}		100	431	432
B-0420	F-{}		36	381	382
B-0421	F—	NH NH	96	353	354

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^{J.}	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0422	F—{}		100	461	462
B-0423	F—		100	406	407
B-0424	F—		76	366	367
B-0425	F-	•	21	368	369
B-0426	F-{}	**	100	354	355
B-0427	F-	Hay	100	379	380
B-0428	F-		100	379	380
B-0429	F-		86	368	369

Example#	R²	Вì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0430			51	. 500	501
B-0431	F—		76	479	480
B-0432	F	Bi O	90	500	501
B-0433	F—	2, S 0 CI	96	456	457
B-0434	F—	o Simon	75	496	497
B-0435	F—	0=0=0	52	496	497
B-0436	F—		73	506	

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0437	F—	No Control House	19	466	
B-0438	F—		100	490	491
B-0439	F——}		67	464	465
B-0440	F-		96	472	473
B-0441	F—		87	472	473
B-0442	F—	}_	72	481	482
B-0443	F—		66	473	474
B-0444	F-		80	515	516
B-0445	F—		94	490	491
B-0446	F—_\\		84	464	465

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0447	F—		89	470	471
B-0448	F—		100	490	491
B-0449	F-		100	474	475
B-0450	F—		100	447	448
B-0451	F—		100	454	455
B-0452	F—		95	496	497
B-0453	F-		100	490	491
B-0454	F-{		100	500	501
B-0455	F-		96	500	501
B-0456	F-__\\\\		89	494	495

SUBSTITUTE SHEET (RULE 26)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0457	F-		93	482	483
B-0458	F—		100	490	491
B-0459	F-	CF	100	490	491

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0460	F—		93	450	451
B-0461	F—		84	452	453
B-0462	F—		96	456	457
B-0463	F—		66	456	457
B-0464	F—		69	490	491
B-0465	F—	0 0 0 0	86	490	491
B-0466	F—		78	474	475

Example#	R²	Кì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0467	F—		78	470	471
B-0468	F—		91	450	451
B-0469	F—		85	436	437
B-0470	F—		99	466	467
B-0471	F-_\{	CF 5	100	490	491
B-0472	F-		37	482	483
B-0473	F—		92	462	463
B-0474	F-		99	530	532
B-0475	F—		55	472	473
B-0476	F—		89	441	442

Example#	R²	R٦	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0477	F—		79	464	465
B-0478	F—		92	486	487
B-0479	F—		97	447	448
B-0480	F—		75	561	562
B-0481	F—		74	498	499
B-0482	F—_\		57	548	549
B-0483	F—_\		83	505	506
B-0484	F-		100	568	569
B-0485	F—		100	495	496
B-0486	F—		100	426	427

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0487	F—	0 	32	389	390
B-0488	F—		100	568	569
B-0489	F—		91	500	501
B-0490	F—		40	473	474
B-0491	F—		73	514	515

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0492	F—	, , , , , , , , , , , , , , , , , , ,	89	400	401
B-0493	F—	200	100	420	421
B-0494	F—		100	400	401
B-0495		CF ₃	100	454	455
B-0496	F—	S S	100	442	443
B-0497	F—		50	512	513
B-0498	 F-__\\\\	CI	100	454	455

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0499	F—	CN CN	98	411	412
B-0500	F-(-)}		100	436	437
B-0501	F—	r F	100	422	423
B-0502	F—		100	422	423
B-0503	F—	F F	92	440	441
B-0504	F—	C C	67	454	455
B-0505	F-		68	428	429
B-0506	F—	CF 3	98	472	473
B-0507	F-{}	F	82	440	441
B-0508	F—{}	CF ₃	99	472	473

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0509	F—	CF 3	100	472	473
B-0510	F-	CF ₃	96	472	473
B-0511	F—	CF 3	100	472	473
B-0512	F-	CF,	100	472	473
B-0513	F-	CF ₃	100	472	473
B-0514	F—	a ci	100	420	421
B-0515	F-		100	400	401
B-0516	F-\{\}	Co	100	454	455
B-0517	F-\{\}		100	404	405
B-0518	F—		99	422	423

Example#	R²	. R ^J .	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0519	F-	G C C	100	454	455
B-0520	F—	F	98	422	423
B-0521	F-	F	99	440	441
B-0522	F—	F	88	404	405
B-0523	F—	F	100	422	423
B-0524	F—	F	100	422	423
B-0525	F—	o Col	100	420	421
B-0526	F{}	B C	100	464	465
B-0527	F-\{\}	CF ₃	100	454	455
B-0528	F—	S S	100	392	393

SUBSTITUTE SHEET (RULE 26)

393

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0529	F—	, , o	94	405	406

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0530	F—		67	382	383
B-0531	F—		66	512	513
B-0532	F—		37	352	353
B-0533	F-{}		56	404	405
B-0534	F—		100	366	367
B-0535	F—		100	410	411
B-0536	F-		41	324	325

Example#	R²	R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0537	F—		100	364	365
B-0538	F—		29	350	351
B-0539	F—	Br	70	464	465
B-0540	F—		50	512	513
B-0541	F-		61	377	378
B-0542	F-	- www	61	396	397
B-0543	F—{}		59	354	355
B-0544	F-\{\}		45	416	417
B-0545	F-{}	F,c	100	454	455
B-0546	F-		44	440	441

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0547	F—		64	364	365
B-0548	F—		89	460	461
B-0549	F-		100	430	431
B-0550	F-		100	430	431
B-0551	F—		81	400	401
B-0552	F-{}		38	386	387
B-0553	F-\{\}		31	378	379
B-0554	F-	N N N N N N N N N N N N N N N N N N N	100	387	388
B-0555	F{}		66	387	388
B-0556	F-		32	387	388

SUBSTITUTE SHEET (RULE 26)

397

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0557	F—		70	416	417
B-0558	F—		57	430	431
B-0559	F—		74	382	383
B-0560	F-		36	583	584
B-0561	F-		51	438	439

Example#	R²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0562	F—		88	440	441
B-0563	F—	0=0=0	68	422	423
B-0564	F—	0=	47	388	389
B-0565	F—		100	448	449
B-0566	F—		76	436	437
B-0567	F—		99	458	459
B-0568	F—	\$CF 3	45	414	415

Example#	R²	₽,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0569	F—		88	440	441
B-0570	F—	0 s s 0	61	388	389
B-0571	F—		58	402	403
B-0572	F—	0=0=0	75	374	375
B-0573	F—	0==0=0	72	360	361
B-0574	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		97	452	453
B-0575	F-\{	\$	71	428	429
B-0576	F-\{\}		88	436	437
B-0577	F-{}		72	482	483
B-0578	F-	l l	89	367	368

SUBSTITUTE SHEET (RULE 28)

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0579	F—	NH 2	100	325	326
B-0580	F—		75	415	416
B-0581	F—		44	379	380
B-0582	F—		75	395	396
B-0583	F-		80	419	420
B-0584	F—		57	353	354
B-0585	F-	N. P.	83	339	340
B-0586	F-		71	415	416
B-0587	F-\{\}		100	419	420
B-0588	F—	E N	94	429	430

SUBSTITUTE SHEET (RULE 26)

Example#	R ²	. · R¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0589	F——		78	365	366
B-0590	F—		82	367	368
B-0591	F—		72	429	430
B-0592	F—		82	401	402
B-0593	F—		88	429	430
B-0594	F—		100	429	430
B-0595	F-		99	419	420
B-0596	F-		93	431	432
B-0597	F—		40	381	382
B-0598	F—	NH NH	93	353	354

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0599	F—		100	461	462
B-0600	F-		98	406	407
B-0601	F—		66	366	367
B-0602	F—		25	368	369
B-0603	F-	**	90	354	355
B-0604	F-\{\}	HN HN	86	379	380
B-0605	F-{}		87	379	380
B-0606	F-{}		72	368	369

Example#	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0607	F—	O=0=0	34	500	501
B-0608	F—	YOU	100	479	480
B-0609	F-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82	500	501
B-0610)= 	100	456	457
B-0611	F-{}	0=0=0	76	496	497
B-0612	F-	0=0=0	69	496	497
B-0613	F—	MO S	61	506	

Example#	R²	. R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0614	F—		18	466	
B-0615	F—		100	490	491
B-0616	F-		77	464	465
B-0617	F-		93	472	473
B-0618	F—		84	472	473
B-0619	F-{}	, See	71	481	482
B-0620	F-		89	473	474
B-0621	F-		68	515	516
B-0622	F—	CI CI CI	70	490	491
B-0623	F-		92	464	465

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0624	F—		98	470	471
B-0625	F—		96	490	491
B-0626	F—		100	474	475
B-0627	F—		100	447	448
B-0628	F—		64	454	455
B-0629	F-{}		100	496	497
B-0630	F-		85	490	491
B-0631	F-		75	500	501
B-0632	F—{}		83	500	501
B-0633	F-		58	494	495

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0634	F—		63	482	483
B-0635	F-{}		95	490	491
B-0636	F-		100	490	491

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0637	IF—		91	450	451
B-0638	IF—		96	436	437
B-0639	F-		100	456	457
B-0640	F—		100	456	457
B-0641	!F————————————————————————————————————		88	490	491
B-0642	iF—	0	99	490	491
B-0643	F		92	474	475

Example#	H²	R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0644	F—		100	470	471
B-0645	F—		92	450	451
B-0646	F—		100	436	437
B-0647	F—		90	466	467
B-0648	F—	E CF3	94	490	491
B-0649	iF—		57	482	
B-0650	F-		82	462	463
B-0651	F-\		100	530	531
B-0652	F-{}		53	472	
B-0653	F-		84	441	442

Example#	₽²	. R ^J	%Yleid	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0654	F-		92	464	465
B-0655	F—		100	486	487
B-0656	F—		98	447	448
B-0657	F—		85	561	562
B-0658	F—		92	498	499
B-0659	F-	1	46	548	549
B-0660	F-		80	505	506
B-0661	F-		100	568	569
B-0662	F—		98	495	496
B-0663	F-		74	426	427

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0664	F—	\$	30	389	390
B-0665	F—		100	568	569
B-0666	F—		93	500	501
B-0667	F—		54	473	474
B-0668	F—		66	514	515

Example#	R²	RJ ·	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0669	F—	4	65	400	401
B-0670	F—		45	420	421
B-0671	F—		43	400	401
B-0672	F—	CF,	45	454	455
B-0673	F—{}	S	41	442	443
B-0674	F—{		16	512	513
B-0675	F-\{\}	CI	39	454	455

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0676	F—	CN CN	34	411	412
B-0677	F—		46	436	437
B-0678	F—	F	37	422	423
B-0679	F—		34	422	423
B-0680	F—		60	440	441
B-0681	F—{}	G W	31	454	455
B-0682	F-{}		37	428	429
B-0683	F—{}	CF 3	46	472	473
B-0684	F—{	F	50	440	441
B-0685	F—{	CF ₃	44	472	473

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0686	F—	CF s	66	472	473
B-0687	F-\{\}	CF ₃	57	472	473
B-0688	F—	F	52	472	473
B-0689	F—	CF,	42	472	473
B-0690	F—	CF ₃	34	472	473
B-0691	F—	a control of the cont	52	420	421
B-0692	F-		41	400	401
B-0693	F	<u>0</u>	56	454	455
B-0694	F-{}		38	404	405
B-0695	F-	F	43	422	423

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0696	F—	CI	57	454	455
B-0697	F-	F	51	422	423
B-0698	F—	F	59	440	441
B-0699	F—	F	46	404	405
B-0700	F—		47	422	423
B-0701	F—		46	422	423
B-0702	F—	Ci	43	420	421
B-0703	F-\{\}	Br	57	464	465
B-0704	F—	CF ₃	44	454	455
B-0705	F-{}	S S	33	392	393

SUBSTITUTE SHEET (RULE 26)

Example#	H²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0706	F—	, , , , , , , , , , , , , , , , , , ,	35	405	406

Example#	R²	₽¹	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0707	F—		76	516	517
B-0708	F-		61	498	499
B-0709	F—	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	37	4 64	465
B-0710	F—	0-0-0	76	524	525
B-0711	F—		75	512	513
B-0712	F—		91	534	535
B-0713	F-	S CF 3	42	490	491

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0714	F—		87	516	517
B-0715	F—		60	464	465
B-0716	F-		59	478	479
B-0717	F—	S	61	450	451
B-0718	F-{}	\$s	65	436	437
B-0719	F-{}		84	528	529
B-0720	F-	\$\bigs\square\sq	69	504	505
B-0721	F-		63	512	513
B-0722	F-		88	558	559
B-0723	F-	J. A.	68	443	444

SUBSTITUTE SHEET (RULE 26)

Example#	R²	Вì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0724	F—	NH 2	75	401	402
B-0725	F—		83	491	492
B-0726	F—		24	455	456
B-0727	F—		67	471	472
B-0728	F—	i i	89	495	496
B-0729	F—		38	429	430
B-0730	F-	ZH.	76	415	416
B-0731	F—		60	491	492
B-0732	F—		86	495	496
B-0733	F-\{\}		81	505	506

SUBSTITUTE SHEET (RULE 26)

Example#	R ²	, R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0734	F—		87	441	442
B-0735	F-		83	443	444
B-0736	F—		91	505	506
B-0737	F—		9	477	-
B-0738	F—		87	505	506
B-0739	F—		82	505	506
B-0740	F—		85	495	496
B-0741	F-		68	507	508
B-0742	F—{}		14	45 7	•
B-0743	F-	w j	77	429	430

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0744	F-__\\\		86	537	538
B-0745	F—		82	482	483
B-0746	F—		74	442	443
B-0747	F-	***	83	444	445
B-0748	F-	***	94	430	431
B-0749	F—	Hey Hey	100	455	456
B-0750	F—	H O	100	455	456
B-0751	F-\{\}		48	444	445

Example#	R²	Ь,	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0752	F——}		84	516	517
B-0753	F—		67	498	499
B-0754	F—		31	464	465
B-0755	F—	0-0-0	85	524	525
B-0756	F—		77	512	513
B-0757	F-		57	534	535
B-0758	F-	S — CF 3	36	490	491

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0759	F—		79	516	517
B-0760	F-	0==== 0====	53	464	465
B-0761	F—	0=	50	478	479
B-0762	F—		60	450	451
B-0763	F—	o=====================================	75	436	437
B-0764	F—		43	528	529
B-0765	F—		75	504	505
B-0766	F-\{\}		67	512	513
B-0767	F-\{\}		43	558	559
B-0768	F—_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		78	443	444

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0769	F—	NH ₂	76	401	402
B-0770	F—		57	491	492
B-0771	F—		14	455	456
B-0772	F—		72	471	472
B-0773	F—		100	495	496
B-0774	F—		41	429	430
B-0775	F-	₽ P	91	415	416
B-0776	F—		64	491	492
B-0777	F—		90	495	496
B-0778	F-\{\}		19	505	506

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0779	F—		79	441	442
B-0780	F—	IZ O	40	443	444
B-0781	F—		93	505	506
B-0782	F—		57	477	478
B-0783	F—		99	505	506
B-0784	F—		100	505	506
B-0785	F—		92	495	496
B-0786	F—		91	507	508
B-0787	F-	*	15	457	458
B-0788	F-		48	429	430

Example#	₽²	- · R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0789	F—		91	537	538
B-0790	F-		93	482	483
B-0791	F—		76	442	443
B-0792	F-	*	96	444	445
B-0793	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		54	430	431
B-0794	F-		100	455	456
B-0795	F-		100	455	456
B-0796	F——		94	444	445

Example#	Ft ²	₽	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0797	F—		90	458	459
B-0798	F—		90	588	589
B-0799	F—		82	428	429
B-0800			92	480	481
B-0801	iF—		82	442	443
B-0802	 F-\		95	486	487
B-0803	F-		89	400	401

Example#	R²	. R ^J	%Yleid	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0804	F—		87	440	441
B-0805	F—		100	426	427
B-0806	F—	Br	99	540	541
B-0807	F-\		96	588	589
B-0808	F-		82	453	454
B-0809	F—		92	472	473
B-0810	F-	A CONTRACTOR OF THE CONTRACTOR	98	430	431
B-0811	F—		88	492	493
B-0812	F-	F,Ç	81	530	531
B-0813	F-		98	516	517

Example#	H²	₽ ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0814	F—	***	100	440	441
B-0815	F—		. 100	536	537
B-0816	F—		99	506	507
B-0817	F—		98	506	507
B-0818	F-		86	476	477
B-0819	F-{}		90	462	463
B-0820	F—		91	454	455
B-0821	F-		69	463	464
B-0822	F-		79	463	464
B-0823	F-		79	463	464

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0824	F—		82	492	493
B-0825	F—		100	506	507
B-0826	F—		97	458	459
B-0827	F—		100	659	660
B-0828	F—		97	514	515

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0829			63	458	459
B-830	F-		70	588	589
B-0831		ww	100	428	429
B-0832	F—		81	480	481
B-0833	F—		73	442	443
B-0834			79	486	487
B-0835			5	400	401

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0836	F—		28	440	441
B-0837	F-		81	426	427
B-0838	F—	Br	84	540	541
B-0839	F—		80	588	589
B-0840	F—		71	453	454
B-0841	F—		55	472	473
B-0842	F-	o o	. 71	430	431
B-0843	F-		68	492	493
B-0844	F-		61	530	531
B-0845	F-		84	516	517

SUBSTITUTE SHEET (RULE 26)

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0846	F-__\{	**	87	440	441
B-0847	F—		86	536	537
B-0848	F—		79	506	507
B-0849	F-		81	506	507
B-0850	F-		69	476	477
B-0851	F—		83	462	463
B-0852	F—		77	454	455
B-0853	F—		87	463	464
B-0854	F-		73	463	464
B-0855	F-		92	463	464

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0856	F—		75	492	493
B-0857	F—		86	506	507
B-0858	F—{}		84	458	459
B-0859	F—{}		80	659	660
B-0860	F-		94	514	515

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0861	F——}		84	583	. 584
B-0862	F—		96	475	476
B-0863	F—		69	423	424
B-0864	F—		86	437	438
B-0865	F—		62	395	-
B-0866	F—		81	421	422
B-0867	F-	er	100	535	536

Example#	Ħ²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0868	F—		89	583	584
B-0869	F—	z.t.	100	448	449
B-0870	F—		100	425	426
B-0871	F—		100	487	488
B-0872	F-		78	501	502
B-0873	F-__\\\\		78	471	472
B-0874	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		92	475	476
B-0875	F-	in a second	37	458	459
B-0876	F-__\\		69	507	508
B-0877	F-		70	445	446

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0878	F—	o 	91	431	432
B-0879	F—		92	511 ·	512
B-0880	F—		89	410	411
B-0881	F—		84	490	491
B-0882	F—	o zz	85	500	501
B-0883	F—	***	85	424	425
B-0884	F-		86	532	533

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0885	F———		51	583	-
B-0886	F—————————————————————————————————————		97	475	-
B-0887	F—		29	423	424
B-0888	F—		82	437	438
B-0889	F—		93	395	396
B-0890	F—		91	421	422
B-0891	F—	Bri	43	535	536

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0892	F—		62	583	584
B-0893	F—	Art O	95	448	449
B-0894	F—		100	425	426
B-0895	F—		76	487	488
B-0896	F—		62	501	502
B-0897	iF—		80	471	472
B-0898	F—		79	475	476
B-0899	F—	o viving o	70	458	459
B-0900	F—		62	507	508
B-0901	F-		43	445	446

SUBSTITUTE SHEET (RULE 26)

Example#	H²	Кì	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0902	F—		93	431	432
B-0903	F——	0===0	100	511	512
B-0904	F—		95	410	411
B-0905	F—		89	490	491
B-0906	F-		69	500	501
. B-0907	F-	***	28	424	425
B-0908	F—		64	532	533

Example#	R²	Ŕ ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0909	F—{	222	83	542	543
B-0910	F—{		80	434	435
B-0911	F—		91	382	383
B-0912	F—		100	396	397
B-0913	F-		94	354	355
B-0914	F-_\{		95	380	381
B-0915	F—	B,	98	494	495

RUPSTITUTE SHEET (RULE 28)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0916	F—		84	542	543
B-0917	iF—	ş ^z O _N	79	407	408
B-0918	F—		89	384	385
B-0919	F—		91	446	447
B-0920	F—		99	460	461
B-0921	F—		84	430	431
B-0922	F-		81	434	435
B-0923	F——}		76	417	418
B-0924	F—		70	466	. 467
B-0925	F-		64	404	405

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0926	F—	\$\s	47	390	391
B-0927	F—		89	470	471
B-0928	F—		53	369	370
B-0929	F—		100	449	450
B-0930	F—		14	459	460
B-0931	F—	***	41	383	384
B-0932	F-		94	491	492

Example#	R²	R,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0933	F—		48	447	448
B-0934	F-		44	429	430
B-0935	F—		33	485	486
B-0936	F—	4	30	479	• :
B-0937	F-) H	68	367	368
B-0938	F—		72	479	480
B-0939	F—{}		76	415	416

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0940	F-	NH O	36	397	398
B-0941	F—		41	441	442
B-0942	F—		27	473	474
B-0943	F-		55	493	494
B-0944	F—{}		, 53	473	474
B-0945	F—		82	429	430
B-0946	F—{}		100	459	460
B-0947	F-{}		60	425	426
B-0948	F-{}		100	431	432
B-0949	F-		98	473	474

SUBSTITUTE SHEET (RULE 26)

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0950	F—		64	419	420
B-0951	F—		100	469	470
B-0952	F—		61	469	470
B-0953	F—		67	425	426
B-0954	F-{}		62	431	432
B-0955	F—_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		39	461	462
B-0956	F—	j.	66	429	430
B-0957	F-{}		93	429	430
B-0958	F—{	N HN	86	365	366
B-0959	F-		73	451	452

Example#	H²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0960	F—		98	485	486
B-0961	F—		100	469	470
B-0962	F—		100	419	420
B-0963	F—		83	401	402
B-0964	F-		38	429	430 [°]
B-0965	F—		90	411	412
B-0966	F—		76	443	444
B-0967	F—		100	443	444
B-0968	F—	LOO	100	477	478
B-0969	F-__\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		77	477	478

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0970	F—		38	461	462
B-0971	F—		95	469	470
B-0972	F—		98	479	480
B-0973	F—		96	485	486
B-0974	F—		74	443	444
B-0975	F—		100	495	496
B-0976	F—		70	453	454
B-0977	F-		100	467	468
B-0978	F—{		91	431	432
B-0979	F—{}		54	491	492

448

Example#	R²	, RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0980	F-	n n	65	469	470

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0981	F—		78	382	383
B-0982	F—		82	512	513
B-0983	F—		94	352	353
B-0984	F-		81	404	405
B-0985	F—		84	366	367
B-0986	F—		80	410	411
B-0987	F-{}		85	324	325 ~

Example#	R²	R٦	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0988	F-\{\}		91	364	365
B-0989	F—		88	350	351
B-0990	F—	Br Br	68	464	465
B-0991	F—		86	512	513
B-0992	F—		79	377	378
B-0993	F—		81	396	397
B-0994	F—		100	354	355
B-0995	F-		75	416	417
B-0996	F-		65	454	455 ့

Example#	R ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-0997			64	440	441
B-0998	F—		81	364	365
B-0999	F—		79	460	461
B-1000	F—	i C	84	430	431
B-1001	F—		78	430	431
B-1002	F-		85	400	401
B-1003	F—		83	386	387
B-1004	F—		87	378	379
B-1005	F-		57	387	388

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1006	F-		80	387	388
B-1007	F—		54	387	388
B-1008	F—		64	416	417
B-1009	F-		81	430	431
B-1010	F—		81	382	383
B-1011	F—		66	583	584
B-1012	F—		69	438	439

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1013	F———		53	440	441
B-1014	F-		61	422	423
B-1015	F—		47	388	389
B-1016	F—		74	448	449
B-1017	F-_		63	436	437
B-1018	F—		82	458	459
B-1019	F—	\$ CF 3	41	414	415

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1020	F—		100	440	441
B-1021	F—	0=0	100	388	389
B-1022	F—		74	402	403
B-1023	F—	S—————————————————————————————————————	76	374	375
B-1024	F—	\$s	73	360	361
B-1025	F—		100	452	453
B-1026	F-	\$\tag{\tag{\tag{\tag{\tag{\tag{\tag{	95	428	429
B-1027	F-		98	436	437
B-1028	F-__\\\\		100	482	483
B-1029	F-\{\}		98	367	368

SUBSTITUTE SHEET (RULE 26)

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1030	F—	NH 2	88	325	326
B-1031	F-		97	415	416
B-1032	F-{}		64	379	380
B-1033	F—		83	395	396
B-1034	F—		67	419	420
B-1035	F—	×	73	353	354
B-1036	F-	IIZ O	79	339	340
B-1037	F-		78	415	416
B-1038	F—		100	419	420
B-1039	F-__\\\\		95	429	430

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1040	F—		91	365	366
B-1041	F—	E C	88	367	368
B-1042	F—		78	429	430
B-1043	F—		79	401	402
B-1044	F-		93	429	430
B-1045	F-		100	429	430
B-1046	F—		94	419	420
B-1047	F—		100	431	432
B-1048	F-	**************************************	58	381	382
B-1049	F-	W N	97	353	354

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1050	F—		100	461	462
B-1051	F-		88	406	407
B-1052	F—{}		82	366	367
B-1053	F—	*	21	368	
B-1054	F-\{\}		98	354	355
B-1055	F—	HØV N	100	379	380
B-1056	F—		85	379	380
B-1057	F-{}		30	368	369

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1058	F—		35	500	501
B-1059	F	0=0=0	77	479	480
B-1060		O Br	37	500	501
B-1061	 F-	2, S	86	456	457
B-1062	F—	0=0=0	58	496	497
B-1063	F-	0=0=0	59	496	497
B-1064	F-	O Ci	58	506	-

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1065	F—	он В о о он	24	466	-
B-1066	F—		100	490	491
B-1067	F—		74	464	465
B-1068	F—		79	472	473
B-1069	F—		97	472	473
B-1070	F—		54	481	482
B-1071	F—		67	473	474
B-1072	F		35	515	516
B-1073	F—		100	490	491
B-1074	F-		100	464	465

Example#	R²	, R^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1075	F—		100	470	471
B-1076	F—		93	490	491
B-1077	F—		100	474	475
B-1078	F—		80	447	448
B-1079	F—		85	454	455
B-1080	F—		100	496	497
B-1081	F—		100	490	491
B-1082	F—		100	500	501
B-1083	F—{}	₹————————————————————————————————————	93	500	501
B-1084	F—		. 81	494	495

461

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1085	F—		93	482	483
B-1086	F—		92	490	491
B-1087	F	CF,	100	490	491

Example#	R²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1088	F—		97	450	451
B-1089	F—		100	436	437
B-1090	F—		100	456	457
B-1091	F—		100	456	457
B-1092	F-\$		96	490	491
B-1093	F—		100	490	491
B-1094	F—	٥	100	474	475

Example#	R²	ВĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1095	F—	\(\frac{1}{2} - \frac{1}{10} - \frac{1}{2} - \frac{1}{10} - \frac	81	470	471
B-1096	F—		77	450	451
B-1097	F—		100	436	437
B-1098	F		93	466	467
B-1099	F—		100	490	491
B-1100	F—		47	482	- '
B-1101	F-	222	64	462	463
B-1102	F—		98	530	531
B-1103	F-{}		65	472	-
B-1104	F-{}		88	441	442

Example#	R² R³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1105		100	464	465
B-1106		91	486	487
B-1107		96	447	448
B-1108		55	561	562
B-1109		100	498	499
B-1110	F—	73	548	549
B-1111		94	505	506
B-1112		100	568	569
B-1113		100	495	496
B-1114	F-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S	73	426	427

Example#	R ²	R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1115	F—		30	389	390
B-1116	F—		100	568	569
B-1117	F—		83	500	501
B-1118	F—		55	473	-
B-1119	F—		70	514	515

Example#	R ²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1120	:F————————————————————————————————————	200	84	400	401
B-1121	F—	, C	86	420	421
B-1122	F-____\		90	400	401
B-1123	F-	CF,	100	454	455
B-1124	F-__\	S S S S S S S S S S S S S S S S S S S	91	442	443
B-1125	IF—		50	512	513
B-1126	iF—	CI	85	454	455

Example#	R²	. K ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1127	F——}	CN CN	93	411	412
B-1128	F——}		87	436	437
B-1129	F—————————————————————————————————————	J.J. F	78	422	423
B-1130	F—	ST F	96	422	423
B-1131	F—		84	440	441
B-1132	F—	G G G G G G G G G G G G G G G G G G G	77	454	455
B-1133	F—		62	428	429
B-1134	F-	CF 3	91	472	473
B-1135	F—	F	85	440	441
B-1136	F-	CF ₃	82	472	473

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1137	F—	CF 3	95	472	473
B-1138	F—	CF ₃	100	472	473
B-1139	F-	S CF ,	100	472	473
B-1140	F—	CF,	92	472	473
B-1141	F—		100	472	473
B-1142	F—	co	88	420	421
B-1143	F-		90	400	401
B-1144	F-	CI C	87	454	455
B-1145	F-		93	404	405
B-1146	F-	F	90	422	423

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1147	F—	CI	100	454	455
B-1148	F-	F	87	422	423
B-1149	F—————————————————————————————————————	F F	87	440	441
B-1150	F-\		90	404	405
B-1151	F-	F	82	422	423
B-1152	F-	F F	85	422	423
B-1153	F—	CI	90	420	421
B-1154	F-	Br S	78	464	465
B-1155	F-	CF3	79	454	455
B-1156	F—	S S	95	392	393

470

Example#	R²	. R J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1157	F—	, , ,	81	405	406

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1158	F—		54	396	397
B-1159	F—		42	526	527
B-1160	F—	AAA A	27	366	367
B-1161	F—		58	418	419
B-1162	F—		62	380	381
B-1163	F—	¥X.Å	58	424	425
B-1164	F—		67	338	339

A STATE OF THE PARTY OF THE PARTY OF

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1165	F—		66	378	379
B-1166	F—		65	364	365
B-1167	F—	Br	64	478	479
B-1168	F—		76	526	527
B-1169	F—		70	391	392
B-1170	F—	\$	76	410	411
B-1171	F—		82	368	369
B-1172	F—		73	430	431
B-1173	F—	j,	74	468	469
B-1174	F-{		- 83	454	455

SUBSTITUTE SHEET (RULE 28)

Example#	R²	₽³	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1175	F) 	76	378	379
B-1176	F—		96	474	475
B-1177	F—		94	444	445
B-1178	F		90	444	445
B-1179	F—		57	414	415
B-1180	F—		75	400	401
B-1181	F—		66	392	393
B-1182	F—		74	401	402
B-1183	F—		62	401	402
B-1184	F—	z —	51	401	402

Example#	R² .	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1185	F—		90	430	431
B-1186	F—		86	444	445
B-1187	F—	**************************************	74	396	397
B-1188	F—		76	597	598
B-1189	F—		60	452	453

والمراوي والمدرو

Example#	R²	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1190	IF—		44	454	455
B-1191	F—		47	436	437
B-1192	F—	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50	402	403
B-1193			62	462	463
B-1194	[F-		49	450	451
B-1195			61	472	473
B-1196	 F-_\	\$	52	428	429

Example#	R ²	. R ^J	%Yield	Calcd. Mass Spec	Observed, Mass Spec (M+H)
B-1197	F—		54	454	455
B-1198	F—————————————————————————————————————		44	402	403
B-1199	F—		67	416	417
B-1200	F—	0======================================	45	388	389
B-1201	F-{}	\$s	52	374	375
B-1202	F—{}		100	466	467
B-1203	F—{}		91	442	443
B-1204	F-_\{		100	450	451
B-1205	F—		83	496	497
B-1206	F—		97	381	382

Example#	R²	. R ^J	%Yleld	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1207	F—	NH 2	100	339	340
B-1208	F—		90	429	430
B-1209	F—		69	393	394
B-1210	F—		35	409	410
B-1211	F—		100	433	434
B-1212	F-	N N	83	367	368
B-1213	F-) N	78	353	354
B-1214	F-		68	429	430
B-1215	F-		65	433	434
B-1216	F{}		91	443	444

Example#	R²	B,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1217	F—		99	379	380
B-1218	F—	rz N	92	381	382
B-1219	F—		74	443	444
B-1220	F—		67	415	416
B-1221	F—{}		14	443	444
B-1222	F—{		19	443	444
B-1223	F—		71	433	434
B-1224	F-		100	445	446
B-1225	F—		75	395	396
B-1226	F—	No.	58	367	368

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1227	F—		98	475	476
B-1228	F—		71	420	421
B-1229	F—		85	380	381
B-1230	F—		10	382	-
B-1231	F—	**	66	368	369
B-1232	F-____	100	100	393	394
B-1233	F—		96	393	394
B-1234	F—		66	382	383

Example#	R²	В'n	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1235	F—		50	514	515
B-1236	F—	0=0=0 TT	100	493	494
B-1237	F—	O Br	91	514	515
B-1238	iF—	2/ S 0	100	470	471
B-1239	F—	0=0=0	71	510	511
B-1240	iF—	0=/1	27	510	511
B-1241	F-	HO CI	73	520	

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1242	F—	S S O O O O O O O O O	26	480	481
B-1243	F—		100	504	
B-1244	F—		52	478	479
B-1245	F—		100	486	487
B-1246	F-		56	486	487
B-1247	F—		43	495	496
B-1248	F—		61	487	488
B-1249	F—		32	529	530
B-125	0 F-		56	504	505
B-125	1 F-		58	478	479

SUBSTITUTE SHEET (RULE 26)

Example#	R² .	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1252	F—		98	484	485
B-1253	F—		59	504	505
B-1254	F—		100	488	489
B-1255	F—		96	461	·
B-1256	F—		79	468	469
B-1257	[F—		63	510	511
B-1258	F-	٥	100	504	505
B-1259	F—{}		95	514	515
B-1260	F—{}		92	514	515
B-1261	F-		98	508	509

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1262	F—		97	496	497
B-1263	F—	# # # # # # # # # # # # # # # # # # #	100	504	505
B-1264	F—	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100	504	505

Example#	R ²	₽₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1265	F—		100	464	465
B-1266	F—		79	466	451
B-1267	F—		100	470	471
B-1268	F—		87	470	471
B-1269	F—		100	504	505
B-1270	F—————————————————————————————————————		100	504	505
B-1271	F—		56	488	489

Example#	R² .	RJ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1272	F—	}-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.98	484	485
B-1273	F—		90	464	465
B-1274	F—		87	450	451
B-1275	F—		94	480	481
B-1276	F—	CF,	100	504	505
B-1277	F—		-60	496	511
B-1278	F—		68	476	477
B-1279	F—		100	544	545
B-1280	F-{}		68	486	-
B-1281	F-		98	455	456

SUBSTITUTE SHEET (RULE 26)

Example#	Ħ²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1282	F——}		100	478	479
B-1283	F—		58	500	501
B-1284	F—	- CA	58	461	462
B-1285	F—		65	575	576
B-1286	F—		87	512	513
B-1287	F-		79	562	563
B-1288	F-{}		100	519	520
B-1289	F—{		77	582	583
B-1290	F—		100	509	510
B-1291	F—		91	440	441

SUBSTITUTE SHEET (RULE 26)

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1292	F—	₩	35	403	404
B-1293	F—		73	582	583
B-1294	F—		49	514	515
B-1295	F—		48	487	-
B-1296	F—		76	528	529

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1297		NH NH	62	447	448
B-1298			66	452	453
B-1299	 F-___\	<u> </u>	65	479	431
B-1300	F—		71	444	445
B-1301	F—		100	472	473
B-1302	F—		7 5	410	411
B-1303	F—		74	424	425

Example#	R²	КĄ	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1304	F—		11	430	431
B-1305	F		2	424	-
B-1306	F—		30	433	434
B-1307	F—		100	522	523
B-1308	F—	3	100	508	509
B-1309	F—		100	448	449
B-1310	F-	NH NH	26	430	431
B-1311	F—	NH O	45	397	398
B-1312		NH S	14	507	508
B-1313	3 F-		67	450	451

Example#	R²	. R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1314	F-		69	444	445
B-1315	F—		57	450	451
B-1316	F-		75	393	394
B-1317	F—		100	461	462
B-1318	F—	NH NH	31	450	451
B-1319	F-		23	464	465
B-1320	F-{}		59	512	513

Example#	R²	H,	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1321	F-	4	63	414	415
B-1322	F—		45	434	435
B-1323	F—		53	414	415
B-1324	F—	CF ₃	32	468	469
B-1325	F—	S S	45	456	457
B-1326	F-{}		50	526	527
B-1327	F—	CI CI	55	468	469

Example#	R²	₽ ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1328	F—{}	ST CN	29	425	426
B-1329	F-_\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		67	450	451
B-1330	F—————————————————————————————————————	J. F	59	436	437
B-1331	F—		45	436	437
B-1332	F—	F	81	454	455
B-1333	F-\{\}	C C	23	468	469
B-1334	F—{}		53	442	443
B-1335	F{}	ÇF 3	81	486	487
B-1336	F—	F	69	454	455
B-1337	F-___________________	CF	67	486	487

Example#	R²	К ₁	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1338	F—	CF 3	39	486	487
B-1339	F-	CF ₃	61	486	487
B-1340	F—	CF.	49	486	487
B-1341	F—	CF,	55	486	487
B-1342	F-		51	486	487
B-1343	F-{}	CI	72	434	435
B-1344	F{}		52	414	415
B-1345	F—	CI	43	468	469
B-1346	F—{}		40	418	419
B-1347	F-{}	F, F	67	436	437

Example#	R²	, R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1348	F-_\{	CI	39	468	469
B-1349	F-	F	68	436	437
B-1350	F—	F	73	454	455
B-1351	F—		54	418	419
B-1352	F—	F	77	436	437
B-1353	F-\{\}	F	66	436	437
B-1354	F-\{\}		58	434	435
B-1355	F-\{\}	Br	77	478	479
B-1356	F—{}	CF ₈	50	468	469
B-1357	F-\{\}	s	36	406	407

495

Example#	R²	R ^J	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1358	F—	N,	39	419	420

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1359	F—	3.0	95	552	553
B-1360	F—	Z.L.	77	444	445
B-1361	F—	3,4	100	392	393
B-1362	F—		85	406	407
B-1363	F—	2,4	100	364	365
B-1364	F-	2,4	99	390	391
B-1365	F-	O BR	92	504	505

Example#	R ²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1366	F—	3.1	100	552	553
B-1367	F—	2, 1	100	417	418
B-1368	F—	بالرم	86	394	395
B-1369	F—		100	456	457
B-1370	F-		100	470	471
B-1371	F-{}		77	440	441
B-1372	F—{}	FT	100	444	445
B-1373	F—	~~~.	42	427	428
B-1374	F—		60	476	477
B-1375	F—	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	94	414	415

Example#	R²	. R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1376	F—	74.00 0	87	400	401
B-1377	F—	F 0	100	480	481
B-1378	F—	Z / Z /	95	379	380
B-1379	F—		93	459	460
B-1380	F—		89	469	470
B-1381	F—	HN	8.4	393	394
B-1382	F—	N N	85	501	502

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1383	F—		46	416	417
B-1384			56	432	433
B-1385	F—	4	59	426	427
B-1386	F-	2	50	427	428
B-1387	F—	7	12	427	428
B-1388	F—	L. Br	66	504	505
B-1389	F-{}	4	48	460	<u>.</u> 461

Example#	R²	R ^L	%Yield	Calcd. Mass Spec	Observed Mass Spec (M+H)
B-1390	F—	CF ₃	44	494	495
B-1391	F—		50	456	457
B-1392	F—		47	451	452
B-1393	F—		44	444	445
B-1394	F—		52	460	461
B-1395	F—		77	440	441
B-1396	F-		58	451	452
B-1397	F-{}	S CI	64	460	461
B-1398	F—	Br	65	504	505
B-1399	F-	F ₃ C	50	494	495