Assignment 05

Date: 15/03/2022

Second Year BS (Honours) 2020-2021 Course Title: Math Lab II (Fortran), Course Code: AMTH 250 Department of Applied Mathematics, University of Dhaka

Name: Roll No: Group:

[Write a FORTRAN program to solve each of the following problems. Use files for input/output unless specified otherwise. Name the files and the code according to the assignment and problem no., e.g., for problem no. Y of assignment X, input & output file names must be 'inXqY.txt' and 'outXqY.txt' respectively.]

Day-1		
1.	Use appropriate Lagrange interpolating polynomials to approximate $f(0:43)$	[5]
	if $f(0) = 1$; $f(0:25) = 1:64872$; $f(0:5) = 2:71828$; $f(0:75) = 4:48169$	
9		[10]
2.	Consider the following system of linear equations	[10]
	$3x_1 + 6x_2 + 2x_3 = 0$	
	$3x_1 - x_2 + x_3 = 1$	
	$3x_{-1} + 3x_{2} + 7x_{3} = 4$	
	Use Jacobi's iterative technique to find approximations $x(k)$ starting with $x(0) = x(k)$	
	$(0; 0; 0)^t$ within 10^{-5} .	
3	Use the Gauss-Seidel iterative method to approximate the solution with a tolerance	[10]
	of 10 ⁻² of the following linear system	
	$x_1 - x_3 = 0.2$	
	$-\frac{1}{2}x_1 + x_2 - \frac{1}{4}x_3 = -1.425$	
	$x_1 - \frac{1}{2}x_2 + x_3 = 2$	
4	Use the SOR method with $w = 1.2$ to solve the following linear systems with a	[10]
	tolerance $TOL = 10^{-3}$ in the l_{∞} norm.	
	$4x_1 + x_2 - x_3 = 5$	
	$-x_1 + 3x_2 + x_3 = -4$	
	$2x_1 + 2x_2 + 5x_3 = 1$	

Page 1 of 2 Total Points: 70

Day-2		
5.	Evaluate the integral	[15]
	$I = \int_0^{7.5} (1.5x^3 - 7x - 1 - e^x) dx$	
	using the following methods:	
	(a) Trapezoidal method. Divide the whole interval into 30 subintervals.	
	(b) Simpson's 1/3 method. Divide the whole interval into 18 subintervals.	
	Compare the results of each method in a suitable table with suitable headings.	
6.	Use the Simpson 3/8 rule to find approximations to $\int_0^{\frac{\pi}{4}} e^{3x} \sin(2x) dx$ with $n = 12$	[10]
7.	Use Weddle's rule to approximate $\int_{e}^{2e} \frac{1}{x \ln x} dx$ with $n = 30$	[10]