Stochastik und Statistik

Jil Zerndt, Lucien Perret December 2024

ntro

Begriffe

Grundlegende Begriffe

- $\Omega = Grundgesamtheit$
- n = Anzahl Objekte
- X = Stichprobenwerte
- a = Ausprägungen
- h = Absolute Häufigkeit
- f = Relative Häufigkeit
- H = Kumulative Absolute Häufigkeit
- F = Kumulative Relative Häufigkeit

Boxplot

- $Q_1, Q_2 = x_{\text{med}}, Q_3$
- $IQR = Q_3 Q_1$
- Untere Antenne x_u : $u = \min [Q_1 - 1.5 \cdot IQR, Q_1]$
- Obere Antenne x_0 : $o = \max [Q_3 + 1.5 \cdot IQR, Q_3]$
- Ausreisser: $x_i < x_u \lor x_i > x_0$

Deskriptive Statistik

Bivariate Daten (Merkmale)

- 2x kategoriell → Kontingenztabelle + Mosaikplot
- $1x \text{ kategoriell} + 1x \text{ metrisch} \rightarrow \text{Boxplot oder Stripchart}$
- $2x \text{ metrisch} \rightarrow \text{Streudiagramm}$

Absolute Häufigkeiten

$$H = \sum_{i=1}^{n} h_i$$

H: Absolute Häufigkeit,

 h_i : Einzelhäufigkeit der i-ten Beobachtung,

n: Anzahl der Beobachtungen.

Relative Häufigkeiten

$$F = \sum_{i=1}^{m} f_i, \quad F(x) = \frac{H(x)}{n}$$

F: Relative Häufigkeit,

 f_i : Einzelrelative Häufigkeit der i-ten Beobachtung,

H(x): Absolute Häufigkeit eines Wertes x,

 $n{:}$ Anzahl der Beobachtungen.

| Kennwerte (Lagemasse) -

Quantil

$$i = \lceil n \cdot q \rceil, \quad Q = x_i = x_{\lceil n \cdot q \rceil}$$

- i: Position des Quantils,
- n: Anzahl der Beobachtungen.
- q: Quantilswert (z. B. 0.25 für das erste Quartil).
- x_i : Beobachtung an Position i.

Interquartilsabstand

$IQR = Q_3 - Q_1$

IQR: Interquartilsabstand,

 Q_3 : Oberes Quartil (75. Perzentil),

 Q_1 : Unteres Quartil (25. Perzen-

til).

Modus

 $x_{\text{mod}} = \text{H\"{a}ufigste Wert}$

Arithmetisches Mittel

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \sum_{i=1}^{m} a_i \cdot f_i$$

- \bar{x} : Arithmetisches Mittel,
- $n{:}$ Anzahl der Beobachtungen,
- x_i : Einzelbeobachtung,
- a_i : Klassenmitte,
- f_i: Relative Häufigkeit der Klas-

Mediar

$$\left\{ \begin{array}{c} x_{\left\lceil\frac{n+1}{2}\right\rceil} & n \text{ ungerade} \\ \\ 0.5 \cdot \left(x_{\left\lceil\frac{n}{2}\right\rceil} + x_{\left\lceil\frac{n}{2}+1\right\rceil}\right) & n \text{ gerade} \end{array} \right.$$

n: Anzahl der Beobachtungen,

 $\boldsymbol{x}_{[k]} \colon \text{Beobachtung}$ an der k-ten Position.

Stichprobenvarianz s^2 (Streumasse)

$$s^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \overline{x^{2}} - \bar{x}^{2}, \quad (s_{kor})^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$(s_{kor})^{2} = \frac{n}{n-1} \cdot s^{2}$$

 s^2 : Stichprobenvarianz,

 $s_{\rm kor}^2$: Korrigierte Stichprobenvarianz,

 x_i : Einzelbeobachtung,

 \bar{x} : Arithmetisches Mittel.

n: Anzahl der Beobachtungen.

Standardabweichung s (Streumasse)

$$s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} = \sqrt{\bar{x}^2 - \bar{x}^2}, \quad s_{kor} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

s: Standardabweichung,

skor: Korrigierte Standardabweichung,

 x_i : Einzelbeobachtung,

 \bar{x} : Arithmetisches Mittel,

n: Anzahl der Beobachtungen.

PDF + CDF -

Nicht klassierte Daten (PMF und CDF)

Die absolute Häufigkeit kann als Funktion $h:\mathbb{R}\to\mathbb{R}$ bezeichnet werden.

$$h_i$$

 h_i : Absolute Häufigkeit der i-ten Beobachtung.

Die relative Häufigkeit kann als Funktion $f:\mathbb{R}\to\mathbb{R}$ bezeichnet werden.

$$f_i = \frac{h_i}{n}$$

 f_i : Relative Häufigkeit der i-ten Beobachtung,

h_i: Absolute Häufigkeit der i-ten Beobachtung,

n: Anzahl der Beobachtungen.

Kombinatorik

Fakultät

$$n! = 1 \cdot 2 \cdot \ldots \cdot n = \prod_{k=1}^{n} k$$

 $n={\rm Die}$ positive ganze Zahl, für die die Fakultät berechnet wird

k = Laufvariable in der Produktnotation

 \prod = Produkt aller Terme von k = 1 bis n

Binomialkoeffizient

Wie viele Möglichkeiten gibt es k Objekte aus einer Gesamtheit von n Objekten auszuwählen.

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

n = Gesamtanzahl der Objekte in der Menge

k = Anzahl der auszuwählenden Objekte

n! = Fakultät von n

(n-k)! = Fakultät von (n-k)

k! = Fakultät von k

Systematik -

Grundbegriffe

Variation (mit Reihenfolge)		Kombination (ohne Reihenfolge)	
Mit Wiederholung	Ohne Wiederholung	Mit Wiederholung	Ohne Wiederholung
n^k	$\frac{n!}{(n-k)!}$	$\binom{n+k-1}{k}$	$\binom{n}{k}$
Zahlenschloss	Schwimmwettkampf	Zahnarzt	Lotto

Nahrscheinlichkeitsrechnung

Spezialfälle der Kombinatorik

Romme Beispiel Beim Rommé spielt man mit 110 Karten: sechs davon sind Joker. Zu Beginn eines Spiels erhält jeder Spieler genau 12

Wahrscheinlichkeit für genau zwei Joker:

$$\frac{\binom{6}{2} \cdot \binom{104}{10}}{\binom{110}{12}}$$

= Anzahl Möglichkeiten 2 Joker aus 6 zu wählen $\binom{4}{0}$ = Anzahl Möglichkeiten 10 Nicht-Joker aus 104 zu wählen

= Gesamtanzahl Möglichkeiten 12 Karten aus 110 zu wählen

Wahrscheinlichkeit für mindestens einen Joker:

$$1 - \frac{\binom{104}{12}}{\binom{110}{12}}$$

= Anzahl Möglichkeiten 12 Nicht-Joker aus 104 zu wählen

= Gesamtanzahl Möglichkeiten 12 Karten aus 110 zu wählen

Glühbirnen Beispiel Von 100 Glühbirnen sind genau drei defekt. Es werden nun 6 Glühbirnen zufällig ausgewählt.

Anzahl Möglichkeiten mit mindestens einer defekten Glühbirne:

$$\binom{100}{6} - \binom{97}{6} = 203'880'032$$

= Gesamtanzahl Möglichkeiten 6 Glühbirnen aus 100 zu

wählen $\binom{97}{6} = \text{Anzahl Möglichkeiten 6 intakte Glühbirnen aus 97 zu wählen}$

Wahrscheinlichkeit für keine defekte Glühbirne:

$$\frac{\binom{97}{6}}{\binom{100}{6}}$$

= Anzahl Möglichkeiten 6 intakte Glühbirnen aus 97 zu wählen

= Gesamtanzahl Möglichkeiten 6 Glühbirnen aus 100 zu wählen

Wahrscheinlichkeitstheorie

Ergebnisraum Ω ist die Menge aller möglichen Ergebnisse des Zufallsexperiments. Zähldichte $\rho:\Omega\to[0,1]$ ordnet iedem Ereignis seine Wahrscheinlichkeit zu.

Für ein Laplace-Raum (Ω, P) gilt:

$$P(M) = \frac{|M|}{|\Omega|}$$

 $\Omega = \text{Ergebnisraum}$ (Menge aller möglichen Ergebnisse)

P(M) = Wahrscheinlichkeit des Ereignisses M

|M| = Anzahl der für M günstigen Ergebnisse

 $|\Omega|$ = Anzahl aller möglichen Ergebnisse

Stochastische Unabhängigkeit Zwei Ereignisse A und B heissen stochastisch unabhängig, falls:

$$P(A \cap B) = P(A) \cdot P(B)$$

 $P(A \cap B) = \text{Wahrscheinlichkeit dass beide Ereignisse eintreten}$

P(A) = Wahrscheinlichkeit von Ereignis A

P(B) = Wahrscheinlichkeit von Ereignis B

Zwei Zufallsvariablen $X:\Omega\to\mathbb{R}$ und $Y:\Omega\to\mathbb{R}$ heissen stochastisch unabhängig, falls:

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
, für alle $x, y \in \mathbb{R}$

P(X = x, Y = y) = Wahrscheinlichkeit dass X den Wert x und Yden Wert y annimmt

P(X=x) = Wahrscheinlichkeit dass X den Wert x annimmt

P(Y = y) = Wahrscheinlichkeit dass Y den Wert y annimmt

Bedingte Wahrscheinlichkeit -

Bedingte Wahrscheinlichkeit

$$P(B \mid A) = \frac{P(B \cap A)}{P(A)}$$

P(B|A) = Wahrscheinlichkeit von B unter der Bedingung dass Aeingetreten ist

 $P(B \cap A) = \text{Wahrscheinlichkeit dass beide Ereignisse eintreten}$ P(A) = Wahrscheinlichkeit von Ereignis A

Multiplikationssatz

$$P(A \cap B) = P(A) \cdot P(B \mid A) = P(B) \cdot P(A \mid B)$$

 $P(A \cap B) = \text{Wahrscheinlichkeit dass beide Ereignisse eintreten}$

P(A) = Wahrscheinlichkeit von Ereignis A

P(B|A) =Wahrscheinlichkeit von B unter der Bedingung dass Aeingetreten ist

P(A|B) = Wahrscheinlichkeit von A unter der Bedingung dass Beingetreten ist

Satz von der Totalen Wahrscheinlichkeit

$$P(B) = P(A) \cdot P(B \mid A) + P(\bar{A}) \cdot P(B \mid \bar{A})$$

P(B) = Wahrscheinlichkeit von Ereignis B

P(A) = Wahrscheinlichkeit von Ereignis A

 $P(\bar{A}) = \text{Wahrscheinlichkeit des Gegenereignisses von } A$

P(B|A) = Wahrscheinlichkeit von B unter der Bedingung dass Aeingetreten ist

P(B|A) = Wahrscheinlichkeit von B unter der Bedingung dass Anicht eingetreten ist

Satz von Bayes

$$P(A \mid B) = \frac{P(A) \cdot P(B \mid A)}{P(B)}$$

P(A|B) = Wahrscheinlichkeit von A unter der Bedingung dass Beingetreten ist

P(A) = Wahrscheinlichkeit von Ereignis A

P(B|A) = Wahrscheinlichkeit von B unter der Bedingung dass Aeingetreten ist

P(B) = Wahrscheinlichkeit von Ereignis B

Spezielle Verteilungen

Verteilungen und Erwartungswerte Für diskrete Verteilungen:

$$E(X) = \sum_{x \in \mathbb{R}} f(x) \cdot x$$

$$V(X) = \sum_{x \in \mathbb{R}} f(x) \cdot (x - E(X))^2$$

E(X) = Erwartungswert der Zufallsvariable X

V(X) = Varianz der Zufallsvariable X

f(x) =Wahrscheinlichkeitsfunktion

x = Mögliche Werte der Zufallsvariable

Für stetige Verteilungen:

$$E(X) = \int_{-\infty}^{\infty} f(x) \cdot x dx$$

$$V(X) = \int_{-\infty}^{\infty} f(x) \cdot (x - E(X))^{2} dx$$

E(X) = Erwartungswert der Zufallsvariable X

V(X) = Varianz der Zufallsvariable X

f(x) = Dichtefunktion

x = Mögliche Werte der Zufallsvariable

Bernoulliverteilung Bernoulli-Experimente sind Zufallsexperimente mit nur zwei möglichen Ergebnissen (1 und 0):

$$P(X = 1) = p$$
, $P(X = 0) = 1 - p = q$

Es gilt:

1.
$$E(X) = E(X^2) = p$$

2. $V(X) = p \cdot (1 - p)$

E(X) = Erwartungswert

V(X) = Varianz

P(X = 1) = Wahrscheinlichkeit für Erfolg

p = Erfolgswahrscheinlichkeit

q = Gegenwahrscheinlichkeit (1-p)

Normalverteilung -

Gauss-Verteilung Die stetige Zufallsvariable X folgt der Normalverteilung mit den Parametern $\mu, \sigma \in \mathbb{R}, \sigma > 0$:

$$\varphi_{\mu,\sigma}(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

Standardnormalverteilung ($\mu = 0$ und $\sigma = 1$):

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{1}{2}x^2}$$

 $\varphi_{\mu,\sigma}(x)$ = Dichtefunktion der Normalverteilung $\varphi(x)$ = Dichtefunktion der Standardnormalverteilung

 $\mu = \text{Erwartungswert}$

 $\sigma = \text{Standardabweichung}$

e = Eulersche Zahl

 $\pi = \text{Kreiszahl Pi}$

Approximation durch die Normalverteilung

• Binomial verteilung: $\mu = np, \sigma^2 = npq$

• Poissonverteilung:
$$\mu = \lambda, \sigma^2 = \lambda$$

$$P(a \le X \le b) = \sum_{x=a}^{b} P(X = x) \approx \phi_{\mu,\sigma}(b + \frac{1}{2}) - \phi_{\mu,\sigma}(a - \frac{1}{2})$$

 $P(a \leq X \leq b) =$ Wahrscheinlichkeit dass X zwischen a und b liegt $\phi_{\mu,\sigma} =$ Verteilungsfunktion der Normalverteilung a,b = Untere und obere Grenze

Zentraler Grenzwertsatz Für eine Folge von Zufallsvariablen X_1, X_2, \ldots, X_n mit gleichem Erwartungswert μ und gleicher Varianz σ^2 gilt:

$$E(S_n) = n \cdot \mu, \quad V(S_n) = n \cdot \sigma^2, \quad E(\bar{X}_n) = \mu, \quad V(\bar{X}_n) = \frac{\sigma^2}{n}$$

 $S_n =$ Summe der Zufallsvariablen

 $\bar{X}_n = \text{Arithmetisches Mittel der Zufallsvariablen}$

n = Anzahl der Zufallsvariablen

 $\mu = \text{Erwartungswert der einzelnen Zufallsvariablen}$

 σ^2 = Varianz der einzelnen Zufallsvariablen

Die standardisierte Zufallsvariable:

$$U_n = \frac{((X_1 + X_2 + \dots + X_n) - n\mu)}{\sqrt{n} \cdot \sigma} = \frac{(\bar{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

 $U_n = \text{Standardisierte Zufallsvariable}$

 $X_1, X_2, \ldots, X_n = \text{Einzelne Zufallsvariablen}$

 $\bar{X} = \text{Arithmetisches Mittel}$

Faustregeln für Approximationen

- Die Approximation (Binomialverteilung) kann verwendet werden, wenn npq>9
- Für grosses $n(n \ge 50)$ und kleines $p(p \le 0.1)$ kann die Binomialdurch die Poisson-Verteilung approximiert werden:

$$B(n, p) \approx \operatorname{Poi}(n \cdot p)$$

B(n, p) = Binomial verteilung

 $Poi(\lambda) = Poissonverteilung mit Parameter \lambda = n \cdot p$

• Eine Hypergeometrische Verteilung kann durch eine Binomialverteilung angenähert werden, wenn $n \leq \frac{N}{20}$:

$$H(N, M, n) \approx B(n, \frac{M}{N})$$

H(N, M, n) = Hypergeometrische Verteilung

B(n, p) = Binomial verteilung

N = Grundgesamtheit

 $M=\mbox{\sc Anzahl}$ der Erfolge in der Grundgesamtheit

n = Stichprobengröße

Methode der kleinsten Quadrate

Lineare Regression Gegeben sind Datenpunkte $(x_i; y_i)$ mit $1 \le i \le n$. Die Residuen / Fehler $\epsilon_i = g(x_i) - y_i$ dieser Datenpunkte sind Abstände in y-Richtung zwischen y_i und der Geraden g. Die Ausgleichs- oder Regressiongerade ist diejenige Gerade, für die die Summe der quadrierten Residuen $\sum_{i=1}^{n} \epsilon_i^2$ am kleinsten ist.

 $(x_i, y_i) = Datenpunkte$

 $\epsilon_i = \text{Residuum}$ (Abweichung) des *i*-ten Datenpunkts

 $g(x_i)$ = Wert der Regressionsgerade an der Stelle x_i

n = Anzahl der Datenpunkte

Regressionsgerade Die Regressionsgerade g(x) = mx + d mit den Parametern m und d ist die Gerade, für welche die Residualvarianz s_{ϵ}^{2} minimal ist.

Steigung:
$$m=\frac{s_{xy}}{s_x^2}, \quad \text{y-Achsenabschnitt: } d=\bar{y}-m\bar{x}, \quad s_\epsilon^2=s_y^2-\frac{s_{xy}^2}{s_x^2}$$

m =Steigung der Regressionsgerade

d = y-Achsenabschnitt

 $s_{xy} = \text{Kovarianz von } x \text{ und } y$

 s_x^2 = Varianz der x-Werte

 $s_y^2 = \text{Varianz der } y\text{-Werte}$

 $\bar{x} = \text{Arithmetisches Mittel der } x\text{-Werte}$

 $\bar{y} = \text{Arithmetisches Mittel der } y\text{-Werte}$

 $s_{\epsilon}^2 = \text{Residual varianz}$

Bestimmtheitsmass

Varianzaufspaltung Die Totale Varianz setzt sich zusammen aus der Residualvarianz und der Varianz der prognostizierten Werte:

- s_n^2 Totale Varianz
- s_{α}^2 prognostizierte (erklärte) Varianz
- s_{ϵ}^2 Residualvarianz

$$s_y^2 = s_\epsilon^2 + s_{\hat{y}}^2$$

 $s_y^2={\it Totale}$ Varianz der beobachteten $y{\it -}{\it Werte}$

 $s^{\frac{9}{2}}_{\epsilon}=$ Varianz der Residuen $s^{2}_{\hat{a}}=$ Varianz der durch die Regression geschätzten Werte

Bestimmtheitsmass Das Bestimmtheitsmass R^2 beurteilt die globale Anpassungsgüte einer Regression über den Anteil der prognostizierten Varianz $s_{\hat{y}}^2$ an der totalen Varianz s_y^2 :

$$R^2 = \frac{s_{\hat{y}}^2}{s_y^2}$$

 $R^2 = \text{Bestimmtheitsmass}$ (zwischen 0 und 1)

 $s^2_{\hat{y}} = \text{Varianz}$ der prognostizierten Werte

 $s_u^2 = \text{Totale Varianz}$

onskoeffizienten:

Das Bestimmtheitsmass R^2 entspricht dem Quadrat des Korrelati-

$$R^2 = \frac{s_{xy}^2}{s_x^2 \cdot s_y^2} = (r_{xy})^2$$

 $\begin{array}{l} s_{xy} = \text{Kovarianz von } x \text{ und } y \\ s_x^2 = \text{Varianz der } x\text{-Werte} \\ s_y^2 = \text{Varianz der } y\text{-Werte} \end{array}$

 r_{xy} = Korrelationskoeffizient

Linearisierungsfunktionen

Transformationen

Ausgangsfunktion	Transformation
$y = q \cdot x^m$	$\log(y) = \log(q) + m \cdot \log(x)$
$y = q \cdot m^x$	$\log(y) = \log(q) + \log(m) \cdot x$
$y = q \cdot e^{m \cdot x}$	$ ln(y) = ln(q) + m \cdot x $
$y = \frac{1}{q + m \cdot x}$	$V = q + m \cdot x; V = \frac{1}{y}$
$y = q + m \cdot \ln(x)$	$y = q + m \cdot U; u = \ln(x)$
$y = \frac{1}{q \cdot m^x}$	$\log(\frac{1}{y}) = \log(q) + \log(m) \cdot x$

y = Abhängige Variable

x = Unabhängige Variable

q, m = Parameter der Funktion

e = Eulersche Zahl

 $\ln = \text{Nat\"{u}rlicher Logarithmus}$

log = Logarithmus zur Basis 10

Schliessende Statistik

Erwartungstreue Schätzfunktion Eine Schätzfunktion Θ eines Parameters θ heisst erwartungstreu, wenn:

$$E(\Theta) = \theta$$

Effizienz einer Schätzfunktion Gegeben sind zwei erwartungstreue Schätzfunktionen Θ_1 und Θ_2 desselben Parameters θ . Man nennt Θ_1 effizienter als Θ_2 , falls:

$$V(\Theta_1) < V(\Theta_2)$$

Konsistenz einer Schätzfunktion Eine Schätzfunktion Θ heisst konsistent, wenn:

$$E(\Theta) \to \theta$$
 und $V(\Theta) \to 0$ für $n \to \infty$

Vertrauensintervalle ----

Vertrauensintervall Wir legen eine grosse Wahrscheinlichkeit γ fest (z.B. $\gamma = 95\%$), γ heisst statistische Sicherheit oder Vertrauensniveau. $\alpha = 1 - \gamma$ ist die Irrtumswahrscheinlichkeit.

Dann bestimmen wir zwei Zufallsvariablen Θ_u und Θ_o so, dass sie den wahren Parameterwert Θ mit der Wahrscheinlichkeit γ einschliessen:

$$P(\Theta_u \le \Theta \le \Theta_o) = \gamma$$

Intervallschätzung Verteilungstypen und zugehörige Quantile:

Verteilung	Parameter	Quantile
Normalverteilung (σ^2 bekannt)	μ	$c = u_p, p = \frac{1+\gamma}{2}$
t-Verteilung (σ^2 unbekannt)	μ	$c = t_{(p;f=n-1)}, p = \frac{1+\gamma}{2}$
Chi-Quadrat-Verteilung	σ^2	$c_1 = \chi^2_{(\frac{1-\gamma}{2};n-1)}, c_2 = \chi^2_{(\frac{1+\gamma}{2};n-1)}$

Berechnung eines Vertrauensintervalls Geben Sie das Vertrauensintervall für μ an $(\bar{\sigma}^2$ unbekannt). Gegeben sind:

$$n = 10, \quad \bar{x} = 102, \quad s^2 = 16, \quad \gamma = 0.99$$

- 1. Verteilungstyp mit Param μ und σ^2 unbekannt \to T-Verteilung 2. $f=n-1=9,\; p=\frac{1+\gamma}{2}=0.995,\; c=t_{(p;f)}=t_{(0.995;9)}=3.25$ 3. $e=c\cdot\frac{S}{\sqrt{n}}=4.111,\; \Theta_u=\bar{X}-e=97.89,\; \Theta_o=\bar{X}+e=106.11$

Likelyhood-Funktion -

Likelyhood-Funktion Wir betrachten eine Zufallsvariable X und ihre Dichte (PDF) $f_x(x|\theta)$, welche von x und einem oder mehreren Parametern θ abhängig sind.

Für eine Stichprobe vom Umfang n mit x_1, \ldots, x_n nennen wir die vom Parameter θ abhängige Funktion die Likelyhood-Funktion der Stichprobe:

$$L(\theta) = f_x(x_1|\theta) \cdot f_x(x_2|\theta) \cdot \ldots \cdot f_x(x_n|\theta)$$

Vorgehen bei Maximum-Likelihood-Schätzung

- 1. Likelyhood-Funktion bestimmen
- 2. Maximalstelle der Funktion bestimmen:
 - (Partielle) Ableitung $L'(\theta) = 0$

Beispiele

Erwartungstreue Schätzfunktion Grundgesamtheit mit Erwartungswert μ , Varianz σ^2 und Zufallsstichprobe X_1, X_2, X_3 . Die folgende Schätzfunktion ist gegeben:

$$\Theta_1 = \frac{1}{3} \cdot (2X_1 + X_2)$$

 $\Theta_1 = Schätzfunktion$

 $X_1, X_2 = \text{Zufallsvariablen}$ aus der Stichprobe

Ist diese Schätzfunktion erwartungstreu (Parameter: μ)?

$$\begin{split} E(\Theta_1) &= E(\frac{1}{3} \cdot (2X_1 + X_2)) = \frac{1}{3} \cdot (2E(X_1) + E(X_2)) \\ E(\Theta_1) &= \frac{1}{3} \cdot (2\mu + \mu) = \frac{3\mu}{3} = \mu \end{split}$$

 $E(\Theta_1) = \text{Erwartungswert der Schätzfunktion}$ $E(X_1), E(X_2) = \text{Erwartungswerte der einzelnen Zufallsvariablen}$ $\mu = \text{Wahrer Parameterwert}$

Da $E(\Theta_1) = \mu$ ist die Funktion erwartungstreu.

Intervallschätzung für die Varianz Für die Varianz σ^2 einer Normalverteilung mit Stichprobenumfang n = 10 und Stichprobenvarianz $s^2 = 16$ soll ein 99%-Vertrauensintervall berechnet werden.

1. Verteilungstyp: Chi-Quadrat-Verteilung

2. Freiheitsgrade: f=n-1=93. Quantile: $c_1=\chi^2_{(0.005;9)}=1.735,\ c_2=\chi^2_{(0.995;9)}=23.589$

4. Vertrauensintervall:

$$\frac{(n-1)s^2}{c_2} \le \sigma^2 \le \frac{(n-1)s^2}{c_1}$$

n = Stichprobenumfang

 $s^2 = \text{Stichprobenvarianz}$

 $c_1, c_2 = \text{Chi-Quadrat-Quantile}$ $\sigma^2 = \text{Wahre Varianz der Grundgesamtheit}$

$$\frac{9 \cdot 16}{23.589} \le \sigma^2 \le \frac{9 \cdot 16}{1.735}$$
$$6.10 \le \sigma^2 \le 82.99$$

Bernoulli-Anteilsschätzung Ein Vertrauensintervall für den Parameter peiner Bernoulli-Verteilung soll aus einer Stichprobe mit n = 100 und $\bar{x} = 0.42$ bei einem Vertrauensniveau von 95% berechnet werden.

1. Prüfen der Voraussetzung: $n\hat{p}(1-\hat{p}) = 100 \cdot 0.42 \cdot 0.58 = 24.36 > 9$

2. Quantil: $c = u_{0.975} = 1.96$

3. Standardfehler: $\sqrt{\frac{\bar{x}(1-\bar{x})}{n}} = \sqrt{\frac{0.42 \cdot 0.58}{100}} = 0.0494$

4. Vertrauensintervall:

$$0.42 \pm 1.96 \cdot 0.0494 = [0.323; 0.517]$$

n = Stichprobenumfang

 $\bar{x} = \text{Stichprobenmittelwert (Anteil der Erfolge)}$

 $\hat{p} = \text{Geschätzter Parameter der Bernoulli-Verteilung}$

 $u_{0.975} = 97.5$