

PSoC® Creator™ Project Datasheet for psoc_bil

Creation Time: 12/09/2015 14:48:50

User: LAZOR-PC\Lasse

Project: psoc_bil

Tool: PSoC Creator 3.3

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intl): 408.943.2600 http://www.cypress.com

Copyright

Copyright © 2015 Cypress Semiconductor Corporation. All rights reserved. Any design information or characteristics specifically provided by our customer or other third party inputs contained in this document are not intended to be claimed under Cypress's copyright.

Trademarks

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation. PSoC Creator is a trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Philips I2C Patent Rights

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name, NXP Semiconductors.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear in this document. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of a Cypress product in a life support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress PSoC Datasheets. Cypress believes that its family of PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as 'unbreakable.'

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress are committed to continuously improving the code protection features of our products.

Table of Contents

1 Overview	
2 Pins	
2.1 Hardware Pins	
2.2 Hardware Ports	7
2.3 Software Pins	8
3 System Settings	
3.1 System Configuration	
3.2 System Debug Settings	
3.3 System Operating Conditions	9
4 Clocks	
4.1 System Clocks	11
4.2 Local and Design Wide Clocks	11
5 Interrupts	
5.1 Interrupts	
6 Flash Memory	14
7 Design Contents	
7.1 Schematic Sheet: Page 1	
8 Components	16
8.1 Component type: SCB_P4 [v3.0]	
8.1.1 Instance I2C_1	
8.2 Component type: Timer [v2.70]	
8.2.1 Instance Timer_1	
9 Other Resources	

1 Overview

The Cypress PSoC 4 is a family of 32-bit devices with the following characteristics:

- Digital system that includes configurable Universal Digital Blocks (UDBs) and specific function peripherals such as PWM, UART, SPI and I2C
- Analog subsystem that includes 12-bit SAR ADC, comparators, op amps, CapSense, LCD drive and more
- Several types of memory elements, including SRAM and flash
- Programming and debug system through Serial Wire Debug (SWD)
- High-performance 32-bit ARM Cortex-M0 core with a nested vectored interrupt controller (NVIC)
- · Flexible routing to all pins

Figure 1 shows the major components of a typical <u>PSoC 4200</u> family member PSoC 4 device. For details on all the systems listed above, please refer to the <u>PSoC 4 Technical Reference Manual</u>.

Figure 1. PSoC 4200 Device Family Block Diagram

Table 1 lists the key characteristics of this device.

Table 1. Device Characteristics

Name	Value			
Part Number	CY8C4245AXI-483			
Package Name	44-TQFP			
Architecture	PSoC 4			
Family	PSoC 4200			
CPU speed (MHz)	48			
Flash size (kBytes)	32			
SRAM size (kBytes)	4			
Vdd range (V)	1.71 to 5.5			
Automotive qualified	No (Industrial Grade Only)			
Temp range (Celcius)	-40 to 85			

NOTE: The CPU speed noted above is the maximum available speed. The CPU is clocked by HFCLK, listed in the <u>System Clocks</u> section below.

Table 2 lists the device resources that this design uses:

Table 2. Device Resources

Resource Type	Used	Free	Max	% Used
Digital Clocks	1	3	4	25.00 %
Interrupts	2	30	32	6.25 %
10	6	30	36	16.67 %
Segment LCD	0	1	1	0.00 %
CapSense	0	1	1	0.00 %
Die Temp	0	1	1	0.00 %
Serial Communication (SCB)	1	1	2	50.00 %
Timer/Counter/PWM	0	4	4	0.00 %
UDB				
Macrocells	1	31	32	3.13 %
Unique P-terms	1	63	64	1.56 %
Total P-terms	1			
Datapath Cells	3	1	4	75.00 %
Status Cells	1	3	4	25.00 %
Statusl Registers	1			
Control Cells	1	3	4	25.00 %
Control Registers	1			
Comparator/Opamp	0	2	2	0.00 %
LP Comparator	0	2	2	0.00 %
SAR ADC	0	1	1	0.00 %
DAC				
7-bit IDAC	0	1	1	0.00 %
8-bit IDAC	0	1	1	0.00 %

2 Pins

Figure 2 shows the pin layout of this device.

Figure 2. Device Pin Layout

2.1 Hardware Pins

Table 3 contains information about the pins on this device in device pin order. (No connection ["n/c"] pins have been omitted.)

Table 3. Device Pins

Pin	Port	Name	Type	Drive Mode
1	VSS	VSS	Power	
2	P2[0]	GPIO [unused]		
3	P2[1]	GPIO [unused]		
4	P2[2]	GPIO [unused]		
5	P2[3]	GPIO [unused]		
6	P2[4]	GPIO [unused]		
7	P2[5]	GPIO [unused]		
8	P2[6]	GPIO [unused]		
9	P2[7]	GPIO [unused]		
10	VSS	VSS	Power	
11	P3[0]	GPIO [unused]		
12	P3[1]	GPIO [unused]		
13	P3[2]	Debug:SWD_IO	Reserved	
14	P3[3]	Debug:SWD_CK	Reserved	
15	P3[4]	GPIO [unused]		
16	P3[5]	GPIO [unused]		
17	P3[6]	GPIO [unused]		
18	P3[7]	GPIO [unused]		
19	VDDD	VDDD	Power	
20	P4[0]	\I2C 1:scl\	Dgtl In	OD, DL
21	P4[1]	\I2C 1:sda\	Dgtl In	OD, DL
22	P4[2]	GPIO [unused]		,
23	P4[3]	GPIO [unused]		
24	P0[0]	GPIO [unused]		
25	P0[1]	GPIO [unused]		
26	P0[2]	GPIO [unused]		
27	P0[3]	GPIO [unused]		
28	P0[4]	GPIO [unused]		
29	P0[5]	GPIO [unused]		
30	P0[6]	GPIO [unused]		
31	P0[7]	GPIO [unused]		
32	XRES	XRES	Dedicated	
33	VCCD	VCCD	Power	
34	VDDD	VDDD	Power	
35	VDDA	VDDA	Power	
36	VSSA	VSSA	Power	
37	P1[0]	Pin_1 Software		Res pull up
38	P1[1]	debug_pin	debug_pin Software Output	
39	P1[2]	GPIO [unused]		
40	P1[3]	GPIO [unused]		
41	P1[4]	GPIO [unused]		
42	P1[5]	GPIO [unused]		
43	P1[6]	GPIO [unused]		
44	P1[7]/VREF	GPIO [unused]		
	hil Dotochoot		2/00/2015 1	

Abbreviations used in Table 3 have the following meanings:

- Dgtl In = Digital Input
- OD, DL = Open drain, drives low
- Res pull up = Resistive pull up

2.2 Hardware Ports

Table 4 contains information about the pins on this device in device port order. (No connection ["n/c"], power and dedicated pins have been omitted.)

Table 4. Device Ports

Port	Pin	Name	Туре	Drive Mode
P0[0]	24	GPIO [unused]	1,400	Dillo modo
P0[1]	25	GPIO [unused]		
P0[2]	26	GPIO [unused]		
P0[3]	27	GPIO [unused]		
P0[4]	28	GPIO [unused]		
P0[5]	29	GPIO [unused]		
P0[6]	30	GPIO [unused]		
P0[7]	31	GPIO [unused]		
P1[0]	37	Pin_1	Software Input	Res pull up
P1[1]	38	debug_pin	Software Output	Strong drive
P1[2]	39	GPIO [unused]		
P1[3]	40	GPIO [unused]		
P1[4]	41	GPIO [unused]		
P1[5]	42	GPIO [unused]		
P1[6]	43	GPIO [unused]		
P1[7]/VREF	44	GPIO [unused]		
P2[0]	2	GPIO [unused]		
P2[1]	3	GPIO [unused]		
P2[2]	4	GPIO [unused]		
P2[3]	5	GPIO [unused]		
P2[4]	6	GPIO [unused]		
P2[5]	7	GPIO [unused]		
P2[6]	8	GPIO [unused]		
P2[7]	9	GPIO [unused]		
P3[0]	11	GPIO [unused]		
P3[1]	12	GPIO [unused]		
P3[2]	13	Debug:SWD_IO	Reserved	
P3[3]	14	Debug:SWD_CK	Reserved	
P3[4]	15	GPIO [unused]		
P3[5]	16	GPIO [unused]		
P3[6]	17	GPIO [unused]		
P3[7]	18	GPIO [unused]		
P4[0]	20	\I2C_1:scl\	Dgtl In	OD, DL
P4[1]	21	\I2C_1:sda\	Dgtl In	OD, DL
P4[2]	22	GPIO [unused]		
P4[3]	23	GPIO [unused]		

Abbreviations used in Table 4 have the following meanings:

- Res pull up = Resistive pull up
- Dgtl In = Digital Input
- OD, DL = Open drain, drives low

2.3 Software Pins

Table 5 contains information about the software pins on this device in alphabetical order. (Only software-accessible pins are shown.)

Table 5. Software Pins

Name	Port	Type
\I2C_1:scl\	P4[0]	Dgtl In
\I2C_1:sda\	P4[1]	Dgtl In
Debug:SWD_CK	P3[3]	Reserved
Debug:SWD_IO	P3[2]	Reserved
debug_pin	P1[1]	Software
		Output
Pin_1	P1[0]	Software
		Input

Abbreviations used in Table 5 have the following meanings:

• Dgtl In = Digital Input

For more information on reading, writing and configuring pins, please refer to:

- Pins chapter in the <u>System Reference Guide</u>
 - o CyPins API routines
- Programming Application Interface section in the cy_pins component datasheet

3 System Settings

3.1 System Configuration

Table 6. System Configuration Settings

Name	Value
Device Configuration Mode	Compressed
Unused Bonded IO	Allow but warn
Heap Size (bytes)	0x80
Stack Size (bytes)	0x0400
Include CMSIS Core Peripheral Library Files	True

3.2 System Debug Settings

Table 7. System Debug Settings

Name	Value
Chip Protection	Open
Debug Select	SWD (serial wire debug)

3.3 System Operating Conditions

Table 8. System Operating Conditions

	-
Name	Value
Variable VDDA	True
VDDA (V)	3.3
VDDD (V)	3.3

4 Clocks

The clock system includes these clock resources:

- Two internal clock sources:
 - o 3 to 48 MHz Internal Main Oscillator (IMO) ±2% at 3 MHz
 - o 32 kHz Internal Low Speed Oscillator (ILO) output
- HFCLK can be generated using an external signal from EXTCLK pin
- Twelve clock dividers, each with 16-bit divide capability:
 - o Eight can be used for fixed-function blocks
 - o Four can be used for the UDBs

Figure 3. System Clock Configuration

4.1 System Clocks

Table 9 lists the system clocks used in this design.

Table 9. System Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at	Enabled
			1.04	1104	(70)	Reset	
DPLL_Sel	NONE	IMO	24 MHz	24 MHz	±2	True	True
SYSCLK	NONE	HFCLK	? MHz	24 MHz	±2	True	True
Direct_Sel	NONE	IMO	24 MHz	24 MHz	±2	True	True
PLL1_Sel	NONE	IMO	24 MHz	24 MHz	±2	True	True
PLL0_Sel	NONE	IMO	24 MHz	24 MHz	±2	True	True
HFCLK	NONE	Direct_Sel	24 MHz	24 MHz	±2	True	True
IMO	NONE		24 MHz	24 MHz	±2	True	True
LFCLK	NONE	ILO	? MHz	32 kHz	±60	True	True
ILO	NONE		32 kHz	32 kHz	±60	True	True
Timer2 (WDT2)	NONE	LFCLK	? MHz	? MHz	±0	False	False
EXTCLK	NONE		24 MHz	? MHz	±0	False	False
DigSig3	NONE		? MHz	? MHz	±0	False	False
DigSig2	NONE		? MHz	? MHz	±0	False	False
DigSig4	NONE		? MHz	? MHz	±0	False	False
DigSig1	NONE		? MHz	? MHz	±0	False	False
Timer1 (WDT1)	NONE	LFCLK	? MHz	? MHz	±0	False	False
Timer0 (WDT0)	NONE	LFCLK	? MHz	? MHz	±0	False	False

4.2 Local and Design Wide Clocks

Local clocks drive individual analog and digital blocks. Design wide clocks are a user-defined optimization, where two or more analog or digital blocks that share a common clock profile (frequency, etc) can be driven from the same clock divider output source.

Figure 4. Local and Design Wide Clock Configuration

Table 10 lists the local clocks used in this design.

Table 10. Local Clocks

Name	Domain	Source	Desired Freq	Nominal Freq	Accuracy (%)	Start at Reset	Enabled
I2C_1_SCBCLK	FIXED FUNCT- ION	HFCLK	2.2 MHz	2.182 MHz	±2	True	True
timer_clock	DIGITAL	HFCLK	400 kHz	400 kHz	±2	True	True

For more information on clocking resources, please refer to:

- Clocking System chapter in the PSoC 4 Technical Reference Manual
- Clocking System Chapter in the PSOC 4 Technical
 Clocking chapter in the System Reference Guide
 CySysClkImo API routines
 CySysClkIllo API routines
 CySysClkWrite API routines

5 Interrupts

5.1 Interrupts

This design contains the following interrupt components: (0 is the highest priority)

Table 11. Interrupts

Name	Priority	Vector
I2C_1_SCB_IRQ	3	10
isr_1	3	1

For more information on interrupts, please refer to:

- Interrupt Controller chapter in the PSoC 4 Technical Reference Manual
- Interrupts chapter in the <u>System Reference Guide</u>
 Cylnt API routines and related registers
- Datasheet for cy_isr component

6 Flash Memory

PSoC 4 devices offer a host of Flash protection options and device security features that you can leverage to meet the security and protection requirements of an application. These requirements range from protecting configuration settings or Flash data to locking the entire device from external access.

Table 12 lists the Flash protection settings for your design.

Table 12. Flash Protection Settings

Start Address	End Address	Protection Level
0x0	0x7FFF	U - Unprotected

Flash memory is organized as rows with each row of flash having 128 bytes. Each flash row can be assigned one of four protection levels:

- U Unprotected
- W Full Protection

For more information on Flash memory and protection, please refer to:

- Flash Protection chapter in the <u>PSoC 4 Technical Reference Manual</u>
- Flash and EEPROM chapter in the **System Reference Guide**
 - CySysFlash API routines

7 Design Contents

This design's schematic content consists of the following schematic sheet:

7.1 Schematic Sheet: Page 1

Figure 5. Schematic Sheet: Page 1

This schematic sheet contains the following component instances:

- Instance I2C_1 (type: SCB_P4_v3_0)
- Instance <u>Timer_1</u> (type: Timer_v2_70)

8 Components

8.1 Component type: SCB_P4 [v3.0]

8.1.1 Instance I2C_1

Description: Serial Communication Block (SCB)

Instance type: SCB_P4 [v3.0]

Datasheet: online component datasheet for SCB_P4

Table 13. Component Parameters for I2C_1

Parameter Name	Value	Description
Ezl2cBusVoltage	3.3	When the SCB mode is EZI2C, this parameter specifies the voltage applied to the pull-up resistors on the I2C bus.
		Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
Ezl2cByteModeEnable	false	When the SCB mode is EZI2C, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16 bits FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8 bits FIFO data element. The FIFO depth is 16 entries. Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
Ezl2cClockFromTerm	false	When the SCB mode is EZI2C, this parameter provides a clock terminal to connect a clock outside the component.
Ezl2cClockStretching	true	When the SCB mode is EZI2C, this parameter specifies whether the SCL is stretched while in EZI2C operation.
Ezl2cDataRate	100	When the SCB mode is EZI2C, this parameter defines EZI2C Data rate in kbps. The standard data rates are: 100, 400 and 1000 kbps.
Ezl2cNumberOfAddresses	1	When the SCB mode is EZI2C, this parameter defines the number of I2C slave addresses that device respond to.
Ezl2cPrimarySlaveAddress	8	When the SCB mode is EZI2C, this parameter specifies EZI2C primary 7-bits slave address (MSB ignored).

Parameter Name	Value	Description
Ezl2cSecondarySlaveAddress Ezl2cSlewRate	9 Fast	When the SCB mode is EZI2C, this parameter specifies EZI2C secondary 7-bits slave address (MSB ignored). Only applicable when EZI2C clock stretching option is set. When the SCB mode is EZI2C,
LZIZOSIEWNAIE	rasi	this parameter specifies the slew rate settings of the I2C pins. For devices supporting GPIO Over-Voltage Tolerance (GPIO_OVT) pins, I2C FM+ options should be used when I2C data rate is greater than 400 kbps. This option also requires the I2C bus voltage to be defined.Refer to the Device Datasheet to determine which pins are GPIO_OVT capable.
Ezl2cSubAddressSize	8	When the SCB mode is EZI2C, this parameter specifies the maximum size of the slave buffer that is exposed to the master: 8bits – maximum buffer size is 256 bytes, 16 bits – maximum buffer size is 65535 bytes.
Ezl2cWakeEnable	false	When the SCB mode is EZI2C, this parameter enables wakeup from Deep Sleep on I2C address match event.
I2cAcceptAddress	false	When the SCB mode is I2C, this parameter specifies whether to accept the match slave address in RX FIFO or not. All slave matched addresses are ACKed. The user has to register the callback function to handle accepted addresses. This feature has to be used when more than one address support is required.
I2cAcceptGeneralCall	false	When the SCB mode is I2C, this parameter specifies whether to accept the general call address. The general call address is ACKed when accepted and NAKed otherwise. The user has to register the callback function to handle the general call address.
I2cBusVoltage	3.3	When the SCB mode is I2C, this parameter specifies the voltage applied to the pull-up resistors on the I2C bus. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.

Parameter Name	Value	Description
I2cByteModeEnable	false	Description When the SCB mode is I2C, this parameter specifies the number of bits per FIFO data element. The byte mode – false: a 16 bits FIFO data element. The FIFO depth is 8 entries. The byte mode – true: an 8 bits FIFO data element. The FIFO depth is 16 entries. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
I2cClockFromTerm	false	When the SCB mode is I2C, this parameter provides a clock terminal to connect a clock outside the component.
I2cDataRate	100	When the SCB mode is I2C, this parameter specifies the data rate in kbps. The standard data rates are: 100, 400 and 1000 kbps.
I2cExternIntrHandler	false	When the SCB mode is I2C, this parameter specifies whether the I2C interrupt handler is configured in SCB_I2CInit(). This parameter is intended to be used by the PM/SM bus component. The modification parameter default value causes I2C mode failures.
I2cManualOversampleControl	true	When the SCB mode is I2C, this parameter specifies the method of calculating the oversampling as manual or automatic.
I2cMode	Multi-Master-Slave	When the SCB mode is I2C, this parameter defines the I2C operation mode as: Slave, Master, Multi-Master or Multi-Master-Slave.
I2cOvsFactor	22	When the SCB mode is I2C, this parameter defines the oversampling factor of SCBCLK.
I2cOvsFactorHigh	10	When the SCB mode is I2C, this parameter defines the high oversampling factor of SCBCLK. Only applicable for I2C Master modes.
I2cOvsFactorLow	12	When the SCB mode is I2C, this parameter defines the low oversampling factor of SCBCLK. Only applicable for I2C Master modes.
I2cSlaveAddress	16	When the SCB mode is I2C, this parameter specifies the I2C 7-bits slave address (MSB ignored).

12/09/2015 14:48

Parameter Name	Value	Description
I2cSlaveAddressMask	254	When the SCB mode is I2C, this
		parameter specifies the I2C
		Slave address mask.
		Bit value 0 – excludes bit from
		address comparison.
		Bit value 1 – the bit needs to
		match with the corresponding
		bit of the I2C slave address.
I2cSlewRate	Fast	When the SCB mode is I2C, this
		parameter specifies the slew
		rate settings of the I2C pins.
		For devices supporting GPIO
		Over-Voltage Tolerance
		(GPIO_OVT) pins, I2C FM+ options should be used when
		I2C data rate is greater than
		400 kbps. This option also
		requires the I2C bus voltage to
		be defined. Refer to the Device
		Datasheet to determine which
		pins are GPIO_OVT capable.
I2cWakeEnable	false	When the SCB mode is I2C, this
	1	parameter enables wakeup from
		Deep Sleep on an I2C address
		match event.
ScbMisoSdaTxEnable	true	This parameter defines the
		availability of the spi_miso_i2c
		sda_uart_tx pin.
ScbMode	I2C	This parameter defines the
		mode of operation for the SCB
		component.
ScbMosiSclRxEnable	true	This parameter defines the
		availability of the spi_mosi_i2c
		scl_uart_rx pin.
ScbRxWakeIrqEnable	false	This parameter defines the
		availability of the spi_mosi_i2c
		scl_uart_rx_wake pin.
ScbSclkEnable	false	This parameter defines the
		availability of the sclk pin.
ScbSs0Enable	false	This parameter defines the
		availability of the ss0 pin.
ScbSs1Enable	false	This parameter defines the
		availability of the ss1 pin.
ScbSs2Enable	false	This parameter defines the
		availability of the ss2 pin.
ScbSs3Enable	false	This parameter defines the
		availability of the ss3 pin.
SpiBitRate	1000	When the SCB mode is SPI,
		this parameter specifies the Bit
		rate in kbps (up to 8000 kbps);
		the actual rate may differ based
		on available clock frequency
		and component settings. This
		parameter has no effect if the
		Clock from terminal parameter is enabled.
SpiBitsOrder	MSB First	When the SCB mode is SPI,
Opiblisordei	IVIOD FIISL	this parameter defines the bit
		order as: MSB first or LSB first.
	10/00/0045 44:40	Order as. WOD list of LOD list.

20

		PERFORM
Parameter Name	Value	Description
SpiByteModeEnable	false	When the SCB mode is SPI,
		this parameter specifies the
		number of bits per FIFO data
		element.
		The byte mode – false: a 16 bits
		FIFO data element. The FIFO
		depth is 8 entries.
		The byte mode – true: an 8 bits
		FIFO data element. The FIFO
		depth is 16 entries.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
CniCloak Fram Tarm	foloo	
SpiClockFromTerm	false	When the SCB mode is SPI,
		this parameter provides a clock
		terminal to connect a clock
		outside the component.
SpiFreeRunningSclk	false	When the SCB mode is SPI,
		this parameter specifies the
		SCLK generation by the master
		as: gated or free running
		(continuous).
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
SpilnterruptMode	None	When the SCB mode is SPI,
		this parameter specifies the
		interrupt mode. None: Removes
		all interrupt support. Internal:
		Leaves the interrupt SCBIRQ
		inside the component - the
		interrupt terminal becomes
		invisible. External: Provides an
		interrupt terminal to connect an
		interrupt outside the component.
SpiIntrMasterSpiDone	false	When the SCB mode is SPI,
opiniti Macter opi Bene	laioo	this parameter enables the
		SCB.INTR_M. SPI_DONE
		interrupt source.
		SCB.INTR M. SPI DONE: all
		data are sent into TX FIFO and
		the TX FIFO and the shifter
		register are emptied.
		Only applicable for SPI Master
		mode.
CollecteDyFyII	falaa	
SpilntrRxFull	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.FULL interrupt
		source.
		SCB.INTR_RX.FULL trigger
		condition: RX FIFO is full.
SpiIntrRxNotEmpty	false	When the SCB mode is SPI,
		this parameter enables the
		SCB.INTR_RX.NOT_EMPTY
		interrupt source.
		SCB.INTR_RX.NOT_EMPTY
		trigger condition: RX FIFO is not
		empty. There is at least one
		entry to get data from.
L	+	· , ,

Parameter Name	Value	Description
SpilntrRxOverflow	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_RX.OVERFLOW interrupt source. SCB.INTR_RX.OVERFLOW trigger condition: attempt to write to a full RX FIFO.
SpilntrRxTrigger	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_RX.TRIGGER interrupt source. SCB.INTR_RX.TRIGGER trigger condition: remains active until RX FIFO has more entries than the value specified by SpiRxTriggerLevel.
SpiIntrRxUnderflow	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_RX.UNDERFLOW interrupt source. SCB.INTR_RX.UNDERFLOW trigger condition: attempt to read from an empty RX FIFO.
SpilntrSlaveBusError	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_SLAVE.BUSERROR interrupt source. SCB.INTR_SLAVE.BUSERROR trigger condition: slave select line is deselected at an unexpected time in the SPI transfer. Only applicable for SPI Slave mode.
SpilntrTxEmpty	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_TX.EMPTY interrupt source. SCB.INTR_TX.EMPTY trigger condition: TX FIFO is empty.
SpiIntrTxNotFull	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_TX.NOT_FULL interrupt source. SCB.INTR_TX.NOT_FULL trigger condition: TX FIFO is not full. There is at least one entry to put data.
SpilntrTxOverflow	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_TX.OVERFLOW interrupt source. SCB.INTR_TX.OVERFLOW trigger condition: attempt to write to a full TX FIFO.

22

D N	Malaaa	PERFORM
Parameter Name	Value	Description
SpilntrTxTrigger	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_TX.TRIGGER interrupt source. SCB.INTR_TX.TRIGGER
		trigger condition: remains active until TX FIFO has fewer entries than the value specified by SpiTxTriggerLevel.
SpiIntrTxUnderflow	false	When the SCB mode is SPI, this parameter enables the SCB.INTR_TX.UNDERFLOW interrupt source. SCB.INTR_TX.UNDERFLOW trigger condition: attempt to read from an empty TX FIFO.
SpiLateMisoSampleEnable	false	When the SCB mode is SPI, this parameter enables late sampling of the MISO line by the master.
SpiMedianFilterEnable	false	When the SCB mode is SPI, this parameter applies a digital 3 tap median filter to the SPI input line.
SpiMode	Slave	When the SCB mode is SPI, this parameter selects SPI mode of operation as: Slave or Master.
SpiNumberOfRxDataBits	8	When the SCB mode is SPI, this parameter specifies the number of data bits inside the SPI byte/word for RX direction.
SpiNumberOfSelectLines	1	When the SCB mode is SPI, this parameter defines the number of slave select lines. The SPI Slave has only one slave select line. The SPI Master has up to 4 lines.
SpiNumberOfTxDataBits	8	When the SCB mode is SPI, this parameter define the number of data bits inside the SPI byte/word for TX direction.
SpiOvsFactor	16	When the SCB mode is SPI, this parameter defines the oversampling factor of SCBCLK.
SpiRemoveMiso	false	When the SCB mode is SPI, this parameter removes the MISO pin.
SpiRemoveMosi	false	When the SCB mode is SPI, this parameter removes the MOSI pin.
SpiRemoveSclk	false	When the SCB mode is SPI, this parameter removes the SCLK pin.
SpiRxBufferSize	8	When the SCB mode is SPI, this parameter defines the size of the RX buffer.

Parameter Name	Value	Description
SpiRxOutputEnable	false	When the SCB mode is SPI, this parameter enables the RX trigger output terminal of the component. This terminal must be connected to the DMA input trigger or left unconnected. Only applicable for devices which have a DMA controller.
SpiRxTriggerLevel	7	When the SCB mode is SPI, this parameter defines the number of entries in the RX FIFO to control the SCB.INTRRX.TRIGGER interrupt event or RX DMA trigger output.
SpiSclkMode	CPHA = 0, CPOL = 0	When the SCB mode is SPI, this parameter defines the serial clock phase (CPHA) and polarity (CPOL).
SpiSs0Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 0. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
SpiSs1Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 1. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
SpiSs2Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 2. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
SpiSs3Polarity	Active Low	When the SCB mode is SPI, this parameter specifies active polarity of slave select 3. Only applicable for PSoC 4100 BLE/PSoC 4200 BLE/PSoC 4100 M/PSoC 4200 M devices.
SpiSubMode	Motorola	When the SCB mode is SPI, this parameter defines the sub mode of the SPI as: Motorola, TI(Start Coincides), TI(Start Precedes), or National Semiconductor.
SpiTransferSeparation	Continuous	When the SCB mode is SPI, this parameter defines the type of SPI transfers separation as: continuous or separated.
SpiTxBufferSize	8	When the SCB mode is SPI, this parameter defines the size of the TX buffer.

Develop News	Value	PERFORM
Parameter Name	Value	Description
SpiTxOutputEnable	false	When the SCB mode is SPI,
		this parameter enables the TX
		trigger output terminal of the
		component. This terminal must
		be connected to the DMA input
		trigger or left unconnected. Only
		applicable for devices which
		have a DMA controller.
SpiTxTriggerLevel	0	When the SCB mode is SPI,
SprixinggerLevel	0	·
		this parameter defines the
		number of entries in the TX
		FIFO to control the SCB.INTR
		TX.TRIGGER interrupt event or
		TX DMA trigger output.
SpiWakeEnable	false	When the SCB mode is SPI,
		this parameter enables wakeup
		from Deep Sleep on slave
		select event.
UartByteModeEnable	false	When the SCB mode is UART,
CartbytewodeEnable	laise	this parameter specifies the
		number of bits per FIFO data
		element.
		The byte mode – false: a 16 bits
		FIFO data element. The FIFO
		depth is 8 entries.
		The byte mode – true: an 8 bits
		FIFO data element. The FIFO
		depth is 16 entries.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
UartClockFromTerm	false	When the SCB mode is UART,
Cartolocki formatini	idisc	this parameter provides a clock
		·
		terminal to connect a clock
		outside the component.
UartCtsEnable	false	When the SCB mode is UART,
		this parameter enables the cts
		input.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
UartCtsPolarity	Active Low	When the SCB mode is UART,
	1.00.10 2011	this parameter specifies active
		polarity of an input cts signal.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
11 12 1 2 1	14-555	4100 M/PSoC 4200 M devices.
UartDataRate	115200	When the SCB mode is UART,
		this parameter specifies the
		Baud rate in bps (up to 1000
		kbps); the actual rate may differ
		based on available clock
		frequency and component
		settings. This parameter has no
		effect if the Clock from terminal
		parameter is enabled.
		parameter is enabled.

Parameter Name	Value	Description
UartDirection	TX + RX	When the SCB mode is UART, this parameter enables RX or TX direction or both simultaneously.
UartDropOnFrameErr	false	When the SCB mode is UART, this parameter defines whether the data is dropped from RX FIFO on a frame error event.
UartDropOnParityErr	false	When the SCB mode is UART, this parameter determines whether the data is dropped from RX FIFO on a parity error event.
UartInterruptMode	None	When the SCB mode is UART, this parameter specifies the interrupt mode. None: Removes all interrupt support. Internal: Leaves the interrupt SCBIRQ inside the component - the interrupt terminal becomes invisible. External: Provides an interrupt terminal to connect an interrupt outside component.
UartIntrRxFrameErr	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.FRAMEERROR interrupt source. SCB.INTR_RX.FRAMEERROR trigger condition: frame error in received data frame.
UartIntrRxFull	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.FULL interrupt source. SCB.INTR_RX.FULL trigger condition: RX FIFO is full.
UartIntrRxNotEmpty	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.NOT_EMPTY interrupt source. SCB.INTR_RX.NOT_EMPTY trigger condition: RX FIFO is not empty. There is at least one entry to get data from.
UartIntrRxOverflow	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.OVERFLOW interrupt source. SCB.INTR_RX.OVERFLOW trigger condition: attempt to write to a full RX FIFO.
UartIntrRxParityErr	false	When the SCB mode is UART, this parameter enables the SCB.INTR_RX.PARITY ERROR interrupt source. SCB.INTR_RX.PARITY ERROR trigger condition: parity error in received data frame.

D (N		PERFORM
Parameter Name	Value	Description
UartIntrRxTrigger	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_RX.TRIGGER
		interrupt source.
		SCB.INTR_RX.TRIGGER
		trigger condition: remains active
		until RX FIFO has more entries
		than the value specified by
		UartRxTriggerLevel.
UartIntrRxUnderflow	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_RX.UNDERFLOW
		interrupt source.
		SCB.INTR_RX.UNDERFLOW
		trigger condition: attempt to
		read from an empty RX FIFO.
UartIntrTxEmpty	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.EMPTY interrupt
		source.
		SCB.INTR_TX.EMPTY trigger
		condition: TX FIFO is empty.
UartIntrTxNotFull	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.NOT_FULL
		interrupt source.
		SCB.INTR_TX.NOT_FULL
		trigger condition: TX FIFO is not
		full. There is at least one entry
		to put data.
UartIntrTxOverflow	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.OVERFLOW
		interrupt source.
		SCB.INTR_TX.OVERFLOW
		trigger condition: attempt to
		write to a full TX FIFO.
UartIntrTxTrigger	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.TRIGGER
		interrupt source.
		SCB.INTR_TX.TRIGGER
		trigger condition: remains active
		until TX FIFO has fewer entries
		than the value specified by
<u> </u>		UartTxTriggerLevel.
UartIntrTxUartDone	false	When the SCB mode is UART,
		this parameter enables the
		SCB.INTR_TX.UART_DONE
		interrupt source.
		SCB.INTR_TX.UART_DONE
		trigger condition: all data are
		sent in to TX FIFO and the
		transmit FIFO and the shifter
		register are emptied.

Parameter Name	Value	Description
UartIntrTxUartNostArb	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UART_ARBLOST interrupt source. SCB.INTR_TX.UART_ARBLOST trigger condition: UART lost arbitration, the value driven on the TX line is not the same as the value observed on the RX line. This event is useful when the transmitter and the receiver share a TX/RX line. Only applicable for UART SmartCard mode.
UartIntrTxUartNack	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UART_NACK interrupt source. SCB.INTR_TX.UART_NACK trigger condition: UART transmitter received a negative acknowledgement. Only applicable for UART SmartCard mode.
UartIntrTxUnderflow	false	When the SCB mode is UART, this parameter enables the SCB.INTR_TX.UNDERFLOW interrupt source. SCB.INTR_TX.UNDERFLOW trigger condition: attempt to read from an empty TX FIFO.
UartIrdaLowPower	false	When the SCB mode is UART, this parameter enables the low power receiver option. Only applicable for UART IrDA mode.
UartIrdaPolarity	Non-Inverting	When the SCB mode is UART, this parameter inverts the incoming RX line signal. Only applicable for UART IrDA mode.
UartMedianFilterEnable	false	When the SCB mode is UART, this parameter applies a digital 3 tap median filter to the UART input line.
UartMpEnable	false	When the SCB mode is UART, this parameter enables the UART multi-processor mode. Only applicable for UART Standard mode.
UartMpRxAcceptAddress	false	When the SCB mode is UART, this parameter define whether to put the matched UART address into RX FIFO. Only applicable for UART multiprocessor mode.

Parameter Name	Value	Description
UartMpRxAddress	2	When the SCB mode is UART,
		this parameter defines the
		UART address.
		Only applicable for UART multi-
		processor mode.
UartMpRxAddressMask	255	When the SCB mode is UART,
		this parameter defines the
		address mask in multi-
		processor operation mode. Bit value 0 – excludes bit from
		address comparison.
		Bit value 1 – the bit needs to
		match with the corresponding
		bit of the UART address.
		Only applicable for UART multi-
		processor mode.
UartNumberOfDataBits	8 bits	When the SCB mode is UART,
		this parameter defines the
		number of data bits inside the
Hardhlood an OfOta a Dita	4 1:11	UART byte/word.
UartNumberOfStopBits	1 bit	When the SCB mode is UART,
		this parameter defines the number of Stop bits.
UartOvsFactor	12	When the SCB mode is UART,
Garlovsi actor	12	this parameter defines the
		oversampling factor of
		SĆBCĽK.
UartParityType	None	When the SCB mode is UART,
		this parameter applies UART
		parity check as Odd or Even or
		discards the parity entirely.
UartRtsEnable	false	When the SCB mode is UART,
		this parameter enables the rts
		output. Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
UartRtsPolarity	Active Low	When the SCB mode is UART,
Cara and Carana,		this parameter specifies active
		polarity of the output rts signal.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
UartRtsTriggerLevel	4	When the SCB mode is UART,
		this parameter specifies the number of entries in the RX
		FIFO to activate the rts output
		signal. When the receiver FIFO
		has fewer entries than the
		UartRtsTriggerLevel, an rts
		output signal is activated.
		Only applicable for PSoC 4100
		BLE/PSoC 4200 BLE/PSoC
		4100 M/PSoC 4200 M devices.
UartRxBufferSize	8	When the SCB mode is UART,
		this parameter defines the size of the RX buffer.
		of the KA bullet.

Parameter Name	Value	Description
UartRxOutputEnable	false	When the SCB mode is UART,
		this parameter enables the RX
		trigger output terminal of the
		component. This terminal must
		be connected to the DMA input
		trigger or left unconnected. Only
		applicable for devices which
		have a DMA controller.
UartRxTriggerLevel	7	When the SCB mode is UART,
3	·	this parameter defines the
		number of entries in the RX
		FIFO to trigger control the
		SCB.INTR RX.TRIGGER
		interrupt event or RX DMA
		trigger output.
UartSmCardRetryOnNack	false	When the SCB mode is UART,
Gartomoararctryomvack	laise	this parameter defines whether
		to send a message again when
		a NACK response is received.
		Only applicable for UART
		SmartCard mode.
UartSubMode	Standard	When the SCB mode is UART,
CartSubivioue	Staridard	this parameter defines the sub
		mode of UART as: Standard,
		SmartCard or IrDA.
UartTxBufferSize	8	When the SCB mode is UART,
Uait i xbuilei Size	0	
		this parameter defines the size of the TX buffer.
LlartTvOutputEnable	false	
UartTxOutputEnable	laise	When the SCB mode is UART,
		this parameter enables the TX
		trigger output terminal of the
		component. This terminal must
		be connected to the DMA input
		trigger or left unconnected. Only
		applicable for devices which have a DMA controller.
LlowtTvTrionord ovel	0	
UartTxTriggerLevel	0	When the SCB mode is UART,
		this parameter defines the
		number of entries in the TX
		FIFO to control the SCB.INTR
		TX.TRIGGER interrupt event or
Haway Malas Establ		TX DMA trigger output.
UartWakeEnable	false	When the SCB mode is UART,
		this parameter enables the
		wakeup from Deep Sleep on
		start bit event. The actual
		wakeup source is RX GPIO.
		The skip start UART feature
		allows it to continue receiving
		bytes.

8.2 Component type: Timer [v2.70]

8.2.1 Instance Timer_1

Description: 8, 16, 24 or 32-bit Timer Instance type: Timer [v2.70]

Datasheet: online component datasheet for Timer

Table 14. Component Parameters for Timer_1

Parameter Name	Value	Description
CaptureAlternatingFall	false	Enables data capture on either edge but not until a valid falling edge is detected first.
CaptureAlternatingRise	false	Enables data capture on either edge but not until a valid rising edge is detected first.
CaptureCount	2	The CaptureCount parameter works as a divider on the hardware input "capture". A CaptureCount value of 2 would result in an actual capture taking place every other time the input "capture" is changed.
CaptureCounterEnabled	false	Enables the capture counter to count capture events (up to 127) before a capture is triggered.
CaptureMode	None	This parameter defines the capture input signal requirements to trigger a valid capture event
EnableMode	Software Only	This parameter specifies the methods in enabling the component. Hardware mode makes the enable input pin visible. Software mode may reduce the resource usage if not enabled.
FixedFunction	false	Configures the component to use fixed function HW block instead of the UDB implementation.
InterruptOnCapture	false	Parameter to check whether interrupt on a capture event is enabled or disabled.
InterruptOnFIFOFull	false	Parameter to check whether interrupt on a FIFO Full event is enabled disabled.
InterruptOnTC	false	Parameter to check whether interrupt on a TC is enabled or disabled.
NumberOfCaptures	1	Number of captures allowed until the counter is cleared or disabled.
Period	4233332	Defines the timer period (This is also the reload value when terminal count is reached)
Resolution	24	Defines the resolution of the hardware. This parameter affects how many bits are used in the Period counter and defines the maximum resolution of the internal component signals.

Parameter Name	Value	Description
RunMode	Continuous	Defines the hardware to run continuously, run until a terminal count is reached or run until an interrupt event is triggered.
TriggerMode	None	Defines the required trigger input signal to cause a valid trigger enable of the timer

9 Other Resources

The following documents contain important information on Cypress software APIs that might be relevant to this design:

- Standard Types and Defines chapter in the System Reference Guide
 - Software base types
 - Hardware register types
 - Compiler defines
 - Cypress API return codes
 - Interrupt types and macros
- Registers
 - o The full PSoC 4 register map is covered in the PSoC 4 Registers Technical Reference
 - o Register Access chapter in the System Reference Guide
 - § CY_GET API routines § CY_SET API routines
- System Functions chapter in the **System Reference Guide**
 - General API routines
 - o CyDelay API routines
 - o CyVd Voltage Detect API routines
- Power Management
 - o Power Supply and Monitoring chapter in the PSoC 4 Technical Reference Manual
 - o Low Power Modes chapter in the PSoC 4 Technical Reference Manual
 - o Power Management chapter in the System Reference Guide
 - § CyPm API routines
- Watchdog Timer chapter in the System Reference Guide
 - CyWdt API routines