Continuuity Reactor 2.2.0

Installation and Configuration Guide

Contents

Introduction	3
Conventions	3
System Requirements	4
Hardware Requirements	4
Network Requirements	4
Software Prerequisites	5
Java Runtime	5
Node.js Runtime	5
Hadoop/HBase Environment	5
Prepare the Cluster	6
ULIMIT Configuration	6
Packaging	7
RPM using Yum	7
Debian using APT	8
Installation	9
Verification	10
Troubleshooting	11
Application Won't Start	11
No Metrics/logs	11
Only the First Flowlet Showing Activity	11
YARN Application Shows ACCEPTED For Some Time But Then Fails	11
Appendix: continuuity-site.xml	12

Introduction

This guide is to help you install and configure Continuuity Reactor. It provides the system, network, and software requirements, packaging options, and instructions for installation and verification of the Continuuity Reactor components so they work with your existing Hadoop cluster.

These are the Continuuity Reactor components:

- Continuuity Web-App: User interface—the Dashboard—for managing Continuuity Reactor applications;
- Continuuity Gateway: Service supporting REST endpoints for Continuuity Reactor;
- **Continuuity Reactor-Master**: Service for managing runtime, lifecycle and resources of Reactor applications; and
- Continuuity Kafka: Metrics and logging transport service, using an embedded version of Kafka.

Before installing the Continuuity Reactor components, you must first install a Hadoop cluster with HDFS, YARN, HBase, and Zookeeper. All Reactor components can be installed on the same boxes as your Hadoop cluster, or on separate boxes that can connect to the Hadoop services.

Our recommended installation is to use two boxes for the Reactor components; the hardware requirements are relatively modest, as most of the work is done by the Hadoop cluster. These two boxes provide high availability; at any one time, one of them is the leader providing services while the other is a follower providing failover support.

Some Reactor components run on YARN, while others orchestrate the Hadoop cluster. The Continuuity Gateway service starts a router instance on each of the local boxes and instantiates one or more gateway instances on YARN as determined by the gateway service configuration.

We have specific hardware, network and prerequisite software requirements detailed below that need to be met and completed before installation of the Continuuity Reactor components.

Conventions

In this document, *client* refers to an external application that is calling the Continuuity Reactor using the HTTP interface.

Application refers to a user Application that has been deployed into the Continuuity Reactor.

Text that are variables that you are to replace is indicated by a series of angle brackets (< >). For example:

https://<username>:<password>@repository.continuuity.com

indicates that the texts <username> and <password> are variables and that you are to replace them with your values, perhaps username john_doe and password BigData11:

https://john_doe:BigDatall@repository.continuuity.com

System Requirements

Hardware Requirements

Systems hosting the Continuuity Reactor components must meet these hardware specifications, in addition to having CPUs with a minimum speed of 2 GHz:

Continuuity Component	Hardware Component	Specifications
Continuuity Web-App	RAM	1 GB minimum, 2 GB recommended
Continuuity Gateway	RAM	2 GB minimum, 4 GB recommended
Continuuity Reactor-Master	RAM	2 GB minimum, 4 GB recommended
Continuuity Kafka	RAM	1 GB minimum, 2 GB recommended
	Disk Space	Continuuity Kafka maintains a data cache in a configurable data directory. Required space depends on the number of Continuuity applications deployed and running in the Continuuity Reactor and the quantity of logs and metrics that they generate.

Network Requirements

Continuuity components communicate over your network with *HBase*, *HDFS*, and *YARN*. For the best performance, Continuuity components should be located on the same LAN, ideally running at 1 Gbps or faster. A good rule of thumb is to treat Continuuity components as you would *Hadoop DataNodes*.

Software Prerequisites

You'll need this software installed:

- Java runtime (on Reactor and Hadoop nodes)
- Node.js runtime (on Reactor nodes)
- Hadoop/HBase environment to run against

Java Runtime

The latest JDK or JRE version 1.6.xx for Linux and Solaris must be installed in your environment.

Once you have installed the JDK, you'll need to set the JAVA_HOME environment variable.

Node.js Runtime

You can download the latest version of Node.js from nodejs.org, using any of the methods given.

Using Yum:

```
$ curl -0 http://download-i2.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noarch.rpm
$ sudo rpm -ivh epel-release-6-8.noarch.rpm
$ sudo yum install npm
```

Using APT:

```
$ sudo apt-get install npm
```

Hadoop/HBase Environment

For a distributed enterprise, you must install these Hadoop components:

Component	Distribution	Required Version
HDFS	Apache Hadoop DFS	2.0.2-alpha or later
	CDH	4.2.x or later
	HDP	2.0 or later
YARN	Apache Hadoop DFS	2.0.2-alpha or later
	CDH	4.2.x or later
	HDP	2.0 or later
HBase		0.94.2+ or 0.96.0+
Zookeeper		Version 3.4.3 or later

Reactor nodes require Hadoop and HBase client installation and configuration. No Hadoop services need to be running.

Certain Continuuity components need to reference your *Hadoop*, *HBase*, and *YARN* cluster configurations by adding your configuration to their classpaths.

Prepare the Cluster

To prepare your cluster so that Continuuity Reactor can write to its default namespace, create a top-level /continuuity directory in HDFS, owned by an HDFS user yarn:

```
hadoop fs -mkdir /continuuity && hadoop fs -chown yarn /continuuity
```

In the Continuuity Reactor packages, the default HDFS namespace is /continuuity and the default HDFS user is yarn. If you set up your cluster as above, no further changes are required.

If you want to use an HDFS directory with a name other than /continuuity:

- Create the HDFS directory you want to use, such as /myhadoop/myspace.
- Create an xml file conf/continuuity-site.xml (see appendix) and include in it an hdfs.namespace property for the HDFS directory:

```
<configuration>
...
<name>hdfs.namespace</name>
<value>/myhadoop/myspace</value>
<description>Default HDFS namespace</description>

</pr
```

• Ensure that the default HDFS user yarn owns that HDFS directory.

If you want to use a different HDFS user than yarn:

- Check that there is—and create if necessary—a corresponding user on all machines in the cluster on which YARN is running (typically, all of the machines).
- Create an hdfs.user property for that User in conf/continuuity-site.xml:

• Check that the HDFS user owns the HDFS directory described by hdfs.namespace on all machines.

ULIMIT Configuration

When you install the Continuuity Reactor packages, the ulimit settings for the Continuuity user are specified in the /etc/security/limits.d/continuuity.conf file. On Ubuntu, they won't take effect unless you make changes to the /etc/pam.d/common-session file. For more information, refer to the ulimit discussion in the Apache HBase Reference Guide.

Packaging

Continuuity components are available as either Yum .rpm or APT .deb packages. There is one package for each Continuuity component, and each component may have multiple services. Additionally, there is a base Continuuity package with two utility packages installed which creates the base configuration and the continuuity user. We provide packages for *Ubuntu 12* and *CentOS 6*.

Available packaging types:

RPM: YUM repoDebian: APT repo

• Tar: For specialized installations only

Continuuity packages utilize a central configuration, stored by default in /etc/continuuity.

When you install the Continuuity base package, a default configuration is placed in /etc/continuuity/conf.dist. The continuuity-site.xml file is a placeholder where you can define your specific configuration for all Continuuity components.

Similar to Hadoop, Continuuity utilizes the alternatives framework to allow you to easily switch between multiple configurations. The alternatives system is used for ease of management and allows you to to choose between different directories to fulfill the same purpose.

Simply copy the contents of /etc/continuuity/conf.dist into a directory of your choice (such as /etc/continuuity/conf.myreactor) and make all of your customizations there. Then run the alternatives command to point the /etc/continuuity/conf symlink to your custom directory.

RPM using Yum

Create a file continuuity.repo at the location:

/etc/yum.repos.d/continuuity.repo

The RPM packages are accessible using Yum at this authenticated URL:

[continuuity]
name=Continuuity Reactor Packages
baseurl=https://<username>:<password>@repository.continuuity.com/content/groups/restricted
enabled=1
protect=0
gpgcheck=0
metadata_expire=30s
autorefresh=1
type=rpm-md

where: <username>: Username provided by your Continuuity.com representative

<password>: Password provided by your Continuuity.com representative

Debian using APT

Debian packages are accessible via APT on Ubuntu 12.

Create a file continuuity.list at the location:

```
/etc/apt/sources.list.d/continuuity.list
```

Use this authenticated URL (one line):

deb [arch=amd64] https://<username>:<password>@repository.continuuity.com/content/sites/apt
 precise release

where: <username>: Username provided by your Continuuity.com representative

<password>: Password provided by your Continuuity.com representative

Installation

Install the Continuuity Reactor packages by using either of these methods:

Using Yum (on one line):

Using APT (on one line):

Do this on each of the boxes that are being used for the Reactor components; our recommended installation is a minimum of two boxes.

This will download and install the latest version of Continuuity Reactor with all of its dependencies. When all the packages and dependencies have been installed, you can start the services on each of the Reactor boxes by running this command:

```
for i in `ls /etc/init.d/ | grep continuuity`; do service $i restart; done
```

When all the services have completed starting, the Continuuity Web-App should then be accessible through a browser at port 9999. The URL will be <app-fabric-ip>:9999 where <app-fabric-ip> is the IP address of one of the machine where you installed the packages and started the services.

Verification

To verify that the Continuuity software is successfully installed and you are able to use your Hadoop cluster, run an example application. We provide in our SDK pre-built .JAR files for convenience:

- 1. Download and install the latest Continuuity Developer Suite from http://accounts.continuuity.com.
- 2. Extract to a folder (CONTINUUITY_HOME).
- 3. Open a command prompt and navigate to CONTINUUITY_HOME/examples.
- 4. Each example folder has in its target directory a .JAR file. For verification, we will use the TrafficAnalytics example.
- 5. Open a web browser to the Continuuity Reactor Web-App ("Dashboard"). It will be located on port 9999 of the box where you installed Reactor.
- 6. On the Dashboard, click the button Load an App.
- 7. Find the pre-built JAR (*TrafficAnalytics-1.0.jar*) by using the dialog box to navigate to CONTINUUITY_HOME/examples/TrafficAnalytics/target/TrafficAnalytics-1.0.jar
- 8. Once the application is deployed, instructions on running the example can be found at the TrafficAnalytics example.
- 9. You should be able to start the application, inject log entries, run the MapReduce job and see results.
- 10 When finished, stop and remove the application as described in the TrafficAnalytics example.

.

Troubleshooting

Here are some selected examples of potential problems and possible resolutions.

Application Won't Start

Check HDFS write permissions. It should show an obvious exception in the YARN logs.

No Metrics/logs

Make sure the *Kafka* server is running, and make sure local the logs directory is created and accessible. On the initial startup, the number of available seed brokers must be greater than or equal to the *Kafka* default replication factor.

In a two-box setup with a replication factor of two, if one box fails to startup, metrics will not show up though the application will still run:

```
[2013-10-10 20:48:46,160] ERROR [KafkaApi-1511941310]
Error while retrieving topic metadata (kafka.server.KafkaApis)
kafka.admin.AdministrationException:
replication factor: 2 larger than available brokers: 1
```

Only the First Flowlet Showing Activity

Check that YARN has the capacity to start any of the remaining containers.

YARN Application Shows ACCEPTED For Some Time But Then Fails

It's possible that YARN can't extract the .JARs to the /tmp, either due to a lack of disk space or permissions.

Appendix: continuuity-site.xml

Here are the parameters that can be defined in the continuuity-site.xml file, their default values, descriptions and notes.

Parameter name	Default Value	Description
app.bind.address	127.0.0.1	App-Fabric server host address
app.bind.port	45000	App-Fabric server port
app.command.port	45010	App-Fabric command port
app.output.dir	/programs	Directory where all archives are stored
app.program.jvm.opts	<pre>\${weave.jvm.gc.opts}</pre>	Java options for all program containers
app.temp.dir	/tmp	Temp directory
dashboard.bind.port	9999	Dashboard bind port
data.local.storage	\${local.data.dir}/ldb	Database directory
data.local.storage.blocks ize	1024	Block size in bytes
data.local.storage.caches ize	104857600	Cache size in bytes
data.queue.config.update. interval	5	Frequency, in seconds, of updates to the queue consumer
data.queue.table.name	queues	Tablename for queues
data.tx.bind.address	127.0.0.1	Transaction Inet address
data.tx.bind.port	15165	Transaction bind port
data.tx.client.count	5	Number of pooled transaction instances
data.tx.client.provider	thread-local	Provider strategy for transaction clients
data.tx.command.port	15175	Transaction command port number
data.tx.janitor.enable	True	Whether or not the TransactionDataJanitor coprocessor
data.tx.server.io.threads	2	Number of transaction IO threads
data.tx.server.threads	25	Number of transaction threads
data.tx.snapshot.dir	\${hdfs.namespace}/tx.snapshot	Directory in HDFS used to store snapshots and transaction logs
data.tx.snapshot.interval	300	Frequency of transaction snapshots in seconds
data.tx.snapshot.local.di	\${local.data.dir}/tx.snapshot	Snapshot storage directory on the local filesystem

data.tx.snapshot.retain	10	Number of retained transaction snapshot files
enable.unrecoverable.rese	False	WARNING: Enabling this option makes it possible to delete all applications and data; no recovery is possible!
gateway.boss.threads	1	Number of Netty server boss threads
gateway.connection.backlo	20000	Maximum connection backlog of Gateway
gateway.exec.threads	20	Number of Netty server executor threads
gateway.max.cached.events .per.stream.num	5000	Maximum number of a single stream's events cached before flushing
gateway.max.cached.stream .events.bytes	52428800	Maximum size (in bytes) of stream events cached before flushing
gateway.max.cached.stream .events.num	10000	Maximum number of stream events cached before flushing
gateway.memory.mb	2048	Memory in MB for Gateway process in YARN
gateway.num.cores	2	Cores requested per Gateway container in YARN
gateway.num.instances	1	Number of Gateway instances in YARN
gateway.server.address	localhost	Router address to which Dashboard connects
gateway.server.port	10000	Router port to which Dashboard connects
gateway.stream.callback.e xec.num.threads	5	Number of threads in stream events callback executor
gateway.stream.events.flu sh.interval.ms	150	Interval at which cached stream events get flushed
gateway.worker.threads	10	Number of Netty server worker threads
hdfs.lib.dir	\${hdfs.namespace}/lib	Common directory in HDFS for JAR files for coprocessors
hdfs.namespace	/\${reactor.namespace}	Namespace for files written by Reactor
hdfs.user	yarn	User name for accessing HDFS
kafka.bind.address	0.0.0.0	Kafka server hostname
kafka.bind.port	9092	Kafka server port

kafka.default.replication .factor	1	Kafka replication factor [Note 1]
kafka.log.dir	/tmp/kafka-logs	Kafka log storage directory
kafka.num.partitions	10	Default number of partitions for a topic
kafka.seed.brokers	127.0.0.1:9092	Kafka brokers list (comma separated)
kafka.zookeeper.namespace	continuuity_kafka	Kafka Zookeeper namespace
local.data.dir	data	Data directory for local mode
log.base.dir	/logs/avro	Base log directory
log.cleanup.run.interval.	1440	Log cleanup interval in minutes
log.publish.num.partition	10	Number of Kafka partitions to publish the logs to
log.retention.duration.da	7	Log file HDFS retention duration in days
log.run.account	continuuity	Logging service account
log.saver.num.instances	1	Log saver instances to run in YARN
metadata.bind.address	127.0.0.1	Metadata server address
metadata.bind.port	45004	Metadata server port
metadata.program.run.hist ory.keepdays	30	Number of days to keep metadata run history
metrics.data.table.retent ion.resolution.1.seconds	7200	Retention resolution of the 1 second table in seconds
metrics.kafka.partition.s ize	10	Number of partitions for metrics topic
metrics.query.bind.addres	127.0.0.1	Metrics query server host address
metrics.query.bind.port	45005	Metrics query server port
reactor.namespace	continuuity	Namespace for this Reactor instance
router.bind.address	0.0.0.0	Router server address
router.client.boss.thread	1	Number of router client boss threads
router.client.worker.thre ads	10	Number of router client worker threads
router.connection.backlog	20000	Maximum router connection backlog
router.forward.rule	10000:gateway,20000:webapp/\$HO ST	Router forward rules [Note 2]

router.server.boss.thread	1	Number of router server boss threads
router.server.worker.thre ads	10	Number of router server worker threads
scheduler.max.thread.pool .size	30	Size of the scheduler thread pool
stream.flume.port	10004	
stream.flume.threads	20	
thrift.max.read.buffer	16777216	Maximum read buffer size in bytes used by the Thrift server [Note 3]
weave.java.reserved.memor y.mb	250	Reserved non-heap memory in MB for Weave container
weave.jvm.gc.opts	-verbose:gc -Xloggc: <log-dir>/gc.log -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10 -XX:GCLogFileSize=1M</log-dir>	Java garbage collection options for all Weave containers; <log-dir> is the location of the log directory on each machine</log-dir>
weave.no.container.timeou t	120000	Amount of time in milliseconds to wait for at least one container for Weave runnable
weave.zookeeper.namespace	/weave	Weave Zookeeper namespace prefix
yarn.user	yarn	User name for running applications in YARN
zookeeper.quorum	127.0.0.1:2181/\${reactor.names pace}	Zookeeper address host:port
zookeeper.session.timeout .millis	40000	Zookeeper session time out in milliseconds

Note 1: kafka.default.replication.factor is used to replicate *Kafka* messages across multiple machines to prevent data loss in the event of a hardware failure. The recommended setting is to run at least two *Kafka* servers. If you are running two *Kafka* servers, set this value to 2; otherwise, set it to the number of *Kafka* servers

Note 2: This configuration has two rules:

- 1. Forward anything that comes on port 10000 to the service Gateway.
- 2. Forward anything that comes on port 20000 to webapp/\$HOST, where \$HOST is the host that the webapp wants to impersonate.

Example: webapp/streamy.com points to a webapp container running in YARN, with DNS set to point *streamy.com* to the router host. The router then forwards it to the webapp container in YARN.

Note 3: Maximum read buffer size in bytes used by the Thrift server: this value should be set to greater than the maximum frame sent on the RPC channel.