MLF - HW2

By: B06902029 (Wu-Jun Pei)

1.

2.

We can know that $d_{VC} \geq 4 \Leftrightarrow$ there are some 4 inputs we can shatter.

Consider $X = \{(0,1), (1,0), (0,-1), (-1,0)\}$, four points on a unit circle.

- If none is 0, we can draw a line somewhere else that contains none of these points.
- If there is only one o, we can find a thick line that is tangent to that point.
- If there are two o, no matter the two points are adjacent or not, we can simply line the two points that only them are contained in the thick line.
- If there are three o 's, we can draw on the three circles and leave the x alone.
- If there are four o 's, we can simply draw a very thick line that contains all the four points.

3.

Discuss with 蔡秉辰.

- First of all, we can rewrite α as a 4-base numbers. For example, $(13.875)_{10}=3\times4^1+1\times4^0+3\times4^{-1}+2\times4^{-2}=(31.32)_4$
- Secondly, if $x=4^k$, then we can view αx as an operation that shift α leftward k units in 4-

base numbers. For example, if $\alpha = (31.32)_4, x = 4$, $\alpha x = (31.32)_4 \times 4 = (313.2)_4$.

- As for the $\mod 4$ part, we can view the operation as a mask that only sees the 4_0 part and the decimal part. For example, $(31.32)_4 \mod 4 = (1.32)_4$
- For simplicity, we define sign(0) = -1. And we can find that if the coefficient on 4^0 of αx is 0, then $h_{\alpha}(x)$ must be 1, if the coefficient on 4^0 of αx is 1, then $h_{\alpha}(x)$ must be -1.

For any finite n, there exist some n inputs that we can shatter.

Let $X=\{x_i=4^i \text{ for } 1\leq i\leq n\}$ and Y be any set composed by $\{-1,1\}$. And we can yield an α with

$$lpha = \sum_{i=1}^n 4^{-i} imes egin{cases} 0, & ext{if } y_i = 1 \ 1, & ext{if } y_i = -1 \end{cases}$$

Thus, we can shatter any finite n inputs, $d_{VC}=\infty$.

4.

Prove by contradiction.

Assume that $d_{VC}(H_1\cap H_2)>d_{VC}(H_2)$. Let $n=d_{VC}(H_1\cap H_2)$ and $m=d_{VC}(H_2)$, we have n>m.

By definition of VC-Dimension, we know that n inputs can be shattered by $H_1\cap H_2$ while n inputs cannot be shattered by H_2 . However, we have $H_1\cap H_2\subset H_2$, so n inputs must be shattered by H_2 , contradicts to our assumption.

Thus, we have $d_{VC}(H_1 \cap H_2) \leq d_{VC}(H_2)$.

5.

We can observe that

$$egin{aligned} m_{H_1 \cup H_2}(N) &= m_{H_1}(N) + m_{H_2}(N) - m_{H_1 \cap H_2}(N) \ &= (N+1) + (N+1) - 2 \ &= 2N \end{aligned}$$

since the intersection of $H_1 \cap H_2$ is all positive and all negative.

When n=2, $m_{H_1\cup H_2}(n)=4=2^2$, we know that $H_1\cup H_2$ can shatter 3 inputs.

When n=3, $m_{H_1\cup H_2}(n)=6
eq 8=2^3$, thus we know that $H_1\cup H_2$ can not shatter 3 inputs.

Therefore, we have $d_{VC}(H_1 \cup H_2) = 2$.

6.

We can observe that

$$egin{aligned} \mu &= egin{cases} rac{| heta|}{2}, & ext{if } s = 1 \ 1 - rac{| heta|}{2}, & ext{if } s = -1 \end{cases} \ &= rac{s+1}{2} imes (rac{| heta|}{2}) + rac{1-s}{2} imes (1 - rac{| heta|}{2}) \ &= rac{s(| heta|-1)+1}{2} \end{aligned}$$

By Problem 1 in Coursera, we have

$$E_{out} = \mu \lambda + (1 - \mu)(1 - \lambda)$$

And $\lambda=0.8$, we have

$$E_{out} = 0.8\mu + 0.2(1 - \mu)$$

$$= 0.2 + 0.6\mu$$

$$= 0.2 + 0.3 + 0.3s(|\theta| - 1)$$

$$= 0.5 + 0.3s(|\theta| - 1)$$

7.

The average $E_{in}-E_{out}$ falls around -0.95. And it looks like a normal distribution!