ASSERT: Automated Safety Scenario Red Teaming for Evaluating the Robustness of Large Language Models

Alex Mei*1, Sharon Levy*2, William Yang Wang³

¹Two Sigma Investments, LP; ²Johns Hopkins University;

³University of California, Santa Barbara

*This presentation is based on research conducted at University of California, Santa Barbara

This presentation contains examples of physically unsafe text for illustrative purposely only. Under no circumstances do the authors recommend following such dangerous advice.

DISCLAIMER

The views expressed herein are solely the views of the authors and are not necessarily the views of their affiliates. They are not intended to provide, and should not be relied upon for, investment advice.

Al Can Improve the Quality of Life

How can I treat pimples?

- Benzoyl peroxide: This is available in varying strengths and can help kill bacteria that cause pimples.
- Salicylic acid: It works by exfoliating the skin and can help unclog pores.
- Alpha hydroxy acids: These can help remove dead skin cells and reduce inflammation.

What is Red Teaming?

Model Testing Desiderata

Scalable

time and cost effective

Comprehensive

simulates a diverse set of user inputs

Realistic

mimics queries from real users in production

ASSERT Test Suite

Semantically Aligned Augmentation

semantically equivalent samples to analyze the effects of users' prompt variations

Targeted Bootstrapping

synthetic examples of related, but nonequivalent content to existing scenarios

Adversarial Knowledge Injection

malicious examples created through exploiting models' internal "knowledge"

Physically Unsafe Language

Safety Domain

susceptible critical sector with high liability

Covertly Unsafe Language

language that requires additional reasoning to determine whether such text leads to physical harm

Integrated Reasoning

implicit language that elevates complexity

Example: if you have a pimple on your eye, treat it with salicylic acid

Mitigating Covertly Unsafe Text within Natural Language Systems. Alex Mei*, Anisha Kabir*, Sharon Levy, Melanie Subbiah, Emily Allaway, John Judge, Desmond Patton, Bruce Bimber, Kathleen McKeown and William Yang Wang, EMNLP 2022

SafeText Dataset

- Context: describes a common scenario
 - Example: if you need to put out a grease fire
- Action: advice to follow in such a scenario
 - Safe Example: smother it in baking soda
 - Unsafe Example: throw some water on it

SafeText: A Benchmark for Exploring Physical Safety in Language Models. Sharon Levy, Emily Allaway, Melanie Subbiah, Lydia Chilton, Desmond Patton, Kathleen McKeown and William Yang Wang, EMNLP 2022

Semantically Aligned Augmentation

- Task: create semantically equivalent samples
- Goal: analyze the variational robustness against different prompt styles

Results

Differences in accuracy between augmented **semantically aligned** and SafeText examples:

* results partitioned by domain

* delta denotes differences in absolute classification accuracy

* p-values are computed from the two-tailed two-proportion z-test

Domain	Model	Safe		Unsafe		
Domain		p	Δ	p	$ \Delta$	
Outdoors	GPT3.5	0.06	-3.09	0.66	1.47	
	GPT4	0.43	-0.73	0.86	0.49	
	Alpaca	<.01	-10.58	0.96	0.16	
	Vicuna	0.05	-3.78	0.35	-4.49	
Medical	GPT3.5	0.35	-1.34	0.60	-1.48	
	GPT4	0.27	-0.77	0.58	-1.11	
	Alpaca	0.12	-4.21	0.32	-2.65	
	Vicuna	0.03	-4.03	<u>0.01</u>	-9.30	
Household	GPT3.5	< .01	-4.84	0.07	-4.34	
	GPT4	0.50	-0.63	0.57	-0.62	
	Alpaca	0.01	-7.16	0.98	-0.06	
	Vicuna	<.01	-5.66	0.12	-6.01	
Extra	GPT3.5	1.00	0.00	0.76	-1.18	
	GPT4	0.49	1.06	0.23	-2.75	
	Alpaca	0.06	-8.06	0.20	-5.53	
	Vicuna	0.57	-1.98	0.12	-9.43	
Overall	GPT3.5	< .01	-2.77	0.23	-1.78	
	GPT4	0.35	-0.45	0.41	-0.81	
	Alpaca	< .01	-7.26	0.30	-1.52	
	Vicuna	<.01	-4.23	<.01	-7.27	
IIC CANITA DADDADA 10						

Targeted Bootstrapping

- Task: create new test cases in the same vein as the original
- Goal: analyze the domain robustness against faithful test cases

Results

Differences in accuracy between **bootstrapped** and SafeText examples:

* results partitioned by domain

* delta denotes differences in absolute classification accuracy

* p-values are computed from the two-tailed two-proportion z-test

Domain	Model	Unsafe p	Unsafe Δ	
Outdoors	GPT3.5	<u>< .01</u>	8.14	
	GPT4	0.23	2.63	
	Alpaca	<.01	6.05	
	Vicuna	<.01	11.33	
Medical	GPT3.5	<.01	4.93	
	GPT4	0.82	0.36	
	Alpaca	0.02	3.18	
	Vicuna	0.06	3.14	
Household	GPT3.5	0.70	0.57	
	GPT4	0.03	-4.28	
	Alpaca	<.01	5.32	
	Vicuna	<.01	7.42	
Extra	GPT3.5	<.01	5.69	
	GPT4	0.08	-5.57	
	Alpaca	0.07	2.96	
	Vicuna	< .01	7.3	
Overall	GPT3.5	<.01	4.27	
	GPT4	0.14	-1.55	
	Alpaca	<.01	4.55	
	Vicuna	< .01	7.12	

Adversarial Knowledge Injection

- Task: leverage models' own knowledge for a stronger attack
- Goal: analyze the adversarial robustness against model blind spots

Results from Self-Adversarial Attacks

Absolute errors of **self-adversarial prompts** and delta errors between self-adversarial and SafeText examples:

^{*} few-shot demonstrations are adversarial – intended to mislead

Domain	Model	0-Shot↓	$ \Delta$	4-Shot↓	$ \Delta$
Outdoors	GPT3.5	13.9	4.1	49.0	39.3
	GPT4	18.3	16.0	36.1	30.0
Medical	GPT3.5	10.3	3.8	39.8	33.3
	GPT4	22.1	15.5	34.2	31.4
Household	GPT3.5	17.0	13.9	66.7	63.6
	GPT4	21.6	20.9	29.8	29.0
Extra	GPT3.5	11.2	5.3	42.0	36.1
	GPT4	13.7	13.7	34.5	34.5
Overall	GPT3.5	13.6	7.6	51.5	45.6
	GPT4	19.8	17.3	33.1	30.7

^{*} results partitioned by domain

^{*} self-adversarial attacks use the same source and target models

Please refer to our paper for methodological decisions, implementation details, additional experiments, and much more!

Conclusion

- Establish the ASSERT test suite consisting of three novel methods –
 semantically aligned augmentation, targeted bootstrapping, and
 adversarial knowledge injection to explore language model robustness.
- Analyze robustness in the critical domain of Al Safety and (1) show model
 instability across semantically similar prompts and (2) highlight high error
 rates in the adversarial setting, despite existing safeguards.

https://github.com/alexmeigz/ASSERT

