Algebraic K Theory

Labix

September 20, 2024

Abstract

Contents

1	The K ₀ -Group	3
	1.1 K ₀ of a Symmetric Monoidal Category	3
	1.2 K_0 of a Ring	3
	1.3 K_0 of an Abelian Category	3
	1.4 K_0 of a Waldhaussen Category	3
2	The K ₁ -Group	4
	2.1 K_1 of a Ring	4
	2.1 K ₁ of a Ring	4
2	The Negative K-Groups	5
,	The regative R-Groups	J
4	The K ₂ -Group	6
	4.1 The Steinberg Group	6
	4.1 The Steinberg Group	6
=	The K_n -Group	8
,	5.1 Universal Definition	S
	On Chivelous Demandri	U
6		8
	6.1	8
	62	q

1 The K₀-Group

1.1 K₀ of a Symmetric Monoidal Category

Definition 1.1.1: The K₀-Group of a Symmetric Monoidal Category

Let (\mathcal{C}, I, \oplus) be a symmetric monoidal category. Let \mathcal{C}^{iso} be the category consisting of isomorphism classes of objects, which is also an abelian monoid under the operation \oplus . Define the K_0 group of \mathcal{C} by the Grothendieck completion

$$K_0(\mathcal{C}, I, \oplus) = \left(\mathcal{C}^{\text{iso}}\right)^{-1} \mathcal{C}^{\text{iso}}$$

1.2 K_0 of a Ring

Definition 1.2.1: The Category of Projective Modules over a Ring

Let R be a ring. Define the category P(R) of projective modules over R as follows.

- ullet The objects are projective modules M over R
- For two projective modules M,N over R, a morphism $M\to N$ is just an R-module homomorphism.
- Composition is given by the composition of functions.

Lemma 1.2.2

Let R be a ring. Then the category P(R) is a symmetric monoidal category with the distinguished object R as an R-module and binary operator $\oplus: P(R) \times P(R) \to P(R)$ the direct sum.

Definition 1.2.3: The K₀-Group of a Ring

Let R be a ring. Define the K_0 -group of R by the Grothendieck completion of the abelain monoid:

$$K_0(R) = P(R)^{-1}P(R) = K_0(P(R), R, \oplus)$$

1.3 K_0 of an Abelian Category

1.4 K₀ of a Waldhaussen Category

2 The K₁-Group

2.1 K_1 of a Ring

Definition 2.1.1: The K₁-Group of a Ring

Let R be a ring. Define the K_1 -group of R to be the group

$$K_1(R) = \frac{GL(R)}{[GL(R), GL(R)]}$$

Proposition 2.1.2

Let ${\cal R}$ and ${\cal S}$ be two rings. Then there is an isomorphism

$$K_1(R \times S) \cong K_1(R) \oplus K_1(S)$$

Proposition 2.1.3

Let R be a ring. Then there is an isomorphism

$$K_1(R) \cong K_1(M_n(R))$$

for any $n \in \mathbb{N}$.

2.2 The Fundamental Theorems for K_1 and K_0

3 The Negative K-Groups

4 The K₂-Group

4.1 The Steinberg Group

Definition 4.1.1: The *n***th Steinberg Group**

Let R be a ring. For $n \ge 3$, define the nth Steinberg group by

$$\operatorname{St}_n(R) = \frac{\langle x_{ij}(r) \text{ for } r \in R, 1 \leq i, j \leq n \rangle}{R}$$

where R is the relation generated by

- For $r, s \in R$, $x_{ij}(r)x_{ij}(s) = x_{ij}(rs)$ for $1 \le i, j \le n$
- For $r, s \in R$,

$$[x_{ij}(r), x_{kl}(s)] = \begin{cases} 1 & \text{if } j \neq k \text{ and } i \neq l \\ x_{il}(rs) & \text{if } j = k \text{ and } i \neq l \\ x_{kj}(-rs) & \text{if } j \neq k \text{ and } i = l \end{cases}$$

Lemma 4.1.2

Let R be a ring. For any $n \geq 3$, the nth Steinberg group $\operatorname{St}_n(R)$ of R includes into the (n+1)th Steinberg group $\operatorname{St}_{n+1}(R)$.

Proposition 4.1.3

Let R be a ring. Let $n \ge 3$. Then the universal property of free groups with relations induce a canonical group surjection

$$\phi_n: \operatorname{St}_n(R) \to [GL(R), GL(R)]$$

that sends $x_{ij}(r)$ to $e_{ij}(r)$.

Definition 4.1.4: The Steinberg Group of a Ring

Let R be a ring. Define the Steinberg group of R by the direct limit

$$\operatorname{St}(R) = \varinjlim_{n \in \mathbb{N} \setminus \{0,1,2\}} \operatorname{St}_n(R)$$

Proposition 4.1.5

Let R be a ring. The universal property of the direct limit induces a canonical group surjection

$$\phi: \operatorname{St}(R) \to [GL(R), GL(R)]$$

4.2 K_2 of a Ring

Definition 4.2.1: The K₂-Group of a Ring

Let R be a ring. Define the K_2 -group of R to be the kernel

$$K_2(R) = \ker (\phi : \operatorname{St}(R) \to [GL(R), GL(R)])$$

Lemma 4.2.2

Let R be a ring. Then there is an exact sequence of groups

$$0 \longrightarrow K_2(R) \longrightarrow \operatorname{St}(R) \longrightarrow [GL(R), GL(R)] \longrightarrow K_1(R) \longrightarrow 0$$

Theorem 4.2.3: (Stein)

For any ring R, the K_2 -group $K_2(R)$ is an abelian group. Moreover, we have

$$Z(\operatorname{St}(R)) = K_2(R)$$

5 The K_n -Group

5.1 Universal Definition

Definition 5.1.1: The Plus Construction

Let R be a ring. Define $BGL(R)^+$ to be any CW complex that has a distinguished map $BGL(R) \to BGL(R)^+$ such that the following are true.

- There is an isomorphism $\pi_1(BGL(R)^+) \cong K_1(R)$ given by the induced map $\pi_1(BGL(R)) \to \pi_1(BGL(R)^+)$, which is required to be surjective with kernel [GL(R), GL(R)]
- For each $n \in \mathbb{N}$, there are isomorphisms

$$H_n(BGL(R); M) \cong H_n(BGL(R)^+; M)$$

for any R-module M.

Intuitively, $BGL(R)^+$ is a modification of the classifying space of GL(R) so that their homology remains the same while its fundamental group returns $K_1(R)$. The latter point is important because K_n will be defined as the nth homotopy group.

Definition 5.1.2: K_n of a Ring

Let R be a ring. Define the nth K-group of R to be

$$K_n(R) = \pi_n(BGL(R)^+)$$

for $n \geq 1$.

Notice that $BGL(R)^+$ for a ring R is not defined uniquely. However, we can prove that any two such plus constructions are homotopy equivalent so that $K_n(R)$ is well defined.

In order to accommodate the 0th *K*-group, we make the following amendments.

Definition 5.1.3: K-Theory of a Ring

Let R be a ring. Define the K-theory of R by

$$K(R) = K_0(R) \times BGL(R)^+$$

so that $\pi_n(BGL(R)^+) = K_n(R)$ for all $n \ge 0$.

6

6.1

Theorem 6.1.1: Serre-Swan Theorem 1

Let M be a smooth manifold. Let E be a smooth vector bundle over M. Then the space of smooth sections $\Gamma(E)$ of E is finitely generated and projective over $C^{\infty}(M)$.

If M is connected, then the space of smooth section is one-to-one with the finitely generated and projective modules over $C^{\infty}(M)$.

Theorem 6.1.2

Let M be a smooth and connected manifold. Then the category of smooth vector bundles $\mathrm{SVect}(M)$ is equivalent to the category of finitely generated projective modules $\mathrm{FinProj}_{C^\infty(M)}\mathrm{Mod}$ via the global section functor

$$\Gamma: \mathsf{SVect}(M) \to \mathsf{FinProj}_{C^\infty(M)} \mathsf{Mod}$$

defined by $E \mapsto \Gamma(E)$

6.2