NPS-53-89-016

NAVAL POSTGRADUATE SCHOOL

Monterey, California

A NOTE ON SMALE'S GLOBAL NEWTON METHOD

Allen Goldstein

August 1989

Approved for public release; distribution unlimited Prepared for:

Naval Postgraduate School Monterey, CA 93943 AL POLITHRADUATE SCHOOL
RULTERLY, CALIFORNIA 93945-6002

NAVAL POSTGRADUATE SCHOOL
Department of Mathematics

Rear Admiral R. W. West JR. Superintendent

Harrison Shull Provost

This report was prepared in conjunction with research conducted for the Naval Postgraduate School and funded by the Naval Postgraduate School. Reproduction of all or part of this report is authorized.

HAROLD M. FREDRICKSEN Chairman Department of Mathematics

Dean of Information and Policy Sciences

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0204-0188						
				OMB	OMB No 0704-0188	
UNCLASSIFIED	MARKINGS					
SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION/AVAILABILITY OF REPORT				
DECLASSIFICATION / DOWNGRADING SCHEDULE		Approved for public release; distribution unlimited				
PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)				
NPS-53-89-016		NPS-53-89-016				
NAME OF PERFORMING ORGANIZATION	7a NAME OF MONITORING ORGANIZATION					
Naval Postgraduate School	Naval Postgraduate School					
ADDRESS (City, State, and ZIP Code)		7b ADDRESS (City, State, and ZIP Code)				
Monterey, CA 93943		Monterey, CA 93943				
NAME OF FUNDING / SPONSORING ORGANIZATION	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				MBER
Naval Postgraduate School	O&MN Direct Funding					
Monterey, CA 93943		10 SOURCE OF FUNDING NUMBERS				
		PROGRAM ELEMENT NO	PROJECT NO	TASK NO		ACCESSION NO
TITLE (Include Security Classification)						
A NOTE ON SMALE'S GLOBAL NEWTON METHOD						
PERSONAL AUTHOR(S) Allen Goldstein						
TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT						OUNT
	89 to <u>8/89</u>	August 18, 1989 5				
SUPPLEMENTARY NOTATION						
COSATI CODES FIELD GROUP SUB-GROUP	Continue on reverse if necessary and identify by block number)					
FIELD GROUP SUB-GROUP	n methods, unconstrained optimization,					
computational complexity						
ABSTRACT (Continue on reverse if necessary and identify by block number)						
We present an implementation of Smale's Global Newton method in a simple						
setting. The iteration count for the algorithm is sensitive only to the quantity						
βο defined below.						
DISTRIBUTION / AVAILABILITY OF ABSTRACT ZMINCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS UNCLASSIFIED						
NAME OF RESPONSIBLE INDIVIDUAL	22b TELEPHONE (Include Area Code) 22c OFFICE SYMBUL					
Allen Goldstein		(408) 646	-2664		53Go	. T. W. C. O. F. F.

A note on Smale's Global Newton Method

A. A. Goldstein*

We have previously considered Smale's [1] global Newton method in conjunction with the Kantorovich inequalities in a simple setting. Our object was to determine a class of problems for which the method could be expected to be efficient. We now repeat this project using Smale's [2] estimates at one point instead of the Kantorovich estimate.

The power of Smale's estimate stems not only from the fact that the information is concentrated at one point. A further advantage is that, in contrast with the Kantorovich inequalities, no estimate of the norm of the inverse of the derivative operator by itself is needed. Newton step lengths can be small even if the derivative operator is nearly singular.

The algorithm below requires only local information for its implementation. To predict its behaviour, however, certain global constants are needed. These constants can be estimated on a thin cylinder containing a segment joining the origin and the initial value of the vector valued function for which we are seeking the root. The iteration count for the algorithm is sensitive only to the parameter $\beta\gamma$ defined below.

Theorem 1 (Smale 86) Assume F is an analytic map between real Banach spaces X and Y. That is, the Frechet derivatives $F^{(k)}(x)$ exist for all $x \in X$ and k=1,2,3,.... Given $x_0 \in X$, assume that the inverse of F'(x), which we denote by $F'_{-1}(x)$, exists. Set

$$\beta(x_0) = ||F'_{-1}(x_0)F(x_0)||$$
 and

$$\gamma(x_0) = \sup \left\{ \left\| \frac{1}{k!} F'_{-1}(x_0) F^{(k)}(x_0) \right\|^{\frac{1}{k-1}} : k \ge 2 \right\}$$

If

$$\beta(x_0)\gamma(x_0) < .130707$$

then x_0 is an approximate root of F. That is the Newton sequence

$$x_{k+1} = x_k - F'_{-1}(x_k)F(x_k)$$

is well defined and $\{x_k\}$ converges to say ξ , a root of F at the rate:

$$||x_{k+1} - x_k|| \le 2(\frac{1}{2})^{2^k} \beta(x_0)$$

^{*} supported by grants NIH RR01243-05 AND NPS LMC-M4E1

Moreover,

$$||x_k - \xi|| \le \frac{7}{4} (\frac{1}{2})^{2^{k-1}} \beta(x_0)$$

The next result is not given by Smale but it is readily calculated using his ingredients. In what follows we shall often abbreviate $\beta(x_k)$ (and similar expressions) by β_k .

Remark 2

$$||F'(x_k)|| < 1.85 ||F'(x_0)||$$
 $k = 1, 2, 3, \dots$

Proof. In [2], Proposition 2, we find the formula

$$\alpha_{k+1} \leq \alpha_k / (2\alpha_k^2 - 4\alpha_k + 1),$$

where $\alpha_k = \beta_k \gamma_k \le 1/8$. Then $\alpha_{k+1} < (2 \alpha_k)^2$. In Smale's proof of Lemma 2 we find $||I - F'_{-1}(x_k)F'(x_{k+1})|| \le (1 - \alpha_k)^{-2} - 1$. Whence $||I - F'_{-1}(x_k)F'(x_{k+1})|| \le 1 + (11/4)\alpha_k$. Let $H_k = F'_{-1}(x_k)F'(x_{k+1})$ then $F'(x_{k+1}) = F'(x_k)H_k$, and

$$||F'(x_{k+1})|| < ||F'(x_0)|| \prod_{i=0}^{k} (1 + (11/4)(2\alpha_0)^{2^i})$$

We can improve this result by using sharper bounds for i=0 and for i=1, namely, .306 and .138, respectively. Then

$$\log \left(\prod_{i=2}^{\infty} (1 + (11/4)(2\alpha_0)^{2^i}) \right) < (11/4) \int_{1}^{\infty} (1/4)^{2^x} dx < .172$$

Finally we have the estimate

$$\prod_{i=0}^{\infty} ||H_k|| < 1.85.$$

Assume the hypotheses of Theorem 1. Let

$$T = \{ x \in X : ||F(x)|| \le ||F(x_0)|| \}.$$

We assume that $\gamma(x)$, F(x) and $\beta(x)$ are defined and can be calculated throughout T. Assume the existence of numbers β , γ , K and σ that bound $\beta(x)$, $\gamma(x)$, ||F'(x)|| and

$$\sigma(x) = \|F'_{-1}(x)\frac{F(x)}{\|F(x)\|}\|$$

on T. Let |x| denote the smallest integer $\geq x$.

Algorithm 3 Given $x_i \in T$, we define x_{i+1} as follows. Set $t_i = 1 - (8\gamma_i\beta_1)^{-1}$, where $\gamma_i = \gamma(x_i)$ and β_1 is defined similarly. Set $\xi_0^i = x_i$ and run the Newton sequence for G starting at ξ_0^i . Let k be the smallest integer satisfying

$$G(\xi_k^i) \leq ||F(x_i)||/40\gamma_i\beta_i$$

Set $x_{i+1} = \xi_k^i$.

The algorithm can be run and terminated with a posteriori data, without any knowledge of the values of the constants β , γ , σ , and K. Moreover to verify a) and b) below we do not use these constants. However the global behaviour of the algorithm as described in c) and d) is given in terms of these constants. Let $K_i = 1.85 ||F(x_i)||$.

Claim 4

- (a) x_{i+1} can be found in $S = \log_2(\log_2(80 K_i \gamma_i \beta_i^2 / ||F(x_i)||))$ steps.
- (b) $||F(x_{i+1})|| \le (1 (1/10 \gamma_i \beta_i)) ||F(x_i)||$
- (c) Let $S = \log_2(\log_2(80 K \gamma \beta \sigma))$. Given $\epsilon > 0$, if $k \ge]10 \gamma \beta S \log_2(1/\epsilon)[$ then $(||F(x_k)/||F(x_0)) \le \epsilon$.
- (d) If $k \geq [10\gamma\beta S \log(8\gamma\sigma)]$ then x_k is an approximate root of F.

Proof. We show first that x_{i+1} can be chosen as claimed. Let $G^i(x) = t_i F(x_i)$. Then x_i is an approximate root for G^i . Hence if $\xi_0 = x_i$ and $\xi_{k+1} = \xi_k - F'(\xi_k)G(\xi_k)$ then ξ_k converges to ξ^i , a root of G^i . We now prove (b)

We have that $G^{i}(x_{i}) - G^{i}(\xi^{i}) = G^{i}(x_{i}) = (F(x_{i})/8\beta_{i}\gamma_{i}) = F(x_{i}) - F(\xi_{i})$. Also, $F(x_{i}) - F(x_{i+1}) = F(x_{i}) - F(\xi^{i}) + G^{i}(\xi^{i}) - G^{i}(x_{i+1}) = (F(x_{i})/8\beta_{i}\gamma_{i}) + G^{i}(\xi^{i}) - G^{i}(x_{i+1})$. Thus b) is true.

We now prove a) by counting the steps needed to ensure that $\|G^i(\xi^i)\| \leq \|F(x_i)\|/40 \gamma_i \beta_i = tmp$. Since $G^i(\xi_i) = F'(\xi_i) (\xi_{i+1} - \xi_i)$ we may choose k to ensure that $2K^i(\frac{1}{2})^{2^k}\beta(x_i) \leq tmp$

To prove c) replace β_i and γ_i by β and γ , respectively. If k satisfies $k \log_2(1 - (1/10\gamma\beta)) \leq \epsilon$ then $(\|F(x_k)\|/\|F(x_0)\|) \leq \epsilon$. To go from k to k+1 requires no more than S steps.

We now turn to d). If $||F(x)|| \leq \frac{1}{8\gamma\sigma}$ then x is an approximate root for F. Thus we replace $1/\epsilon$ in c) by $8\sigma\gamma$

Remarks 5

The method is sensitive only to the number $\gamma\beta$!

Note that from the above proof $F(\xi^i) = t_i F(x_i)$. Since x_{i+1} lies near ξ^i the global constants need be estimated only on a slender tube surrounding the segment joining the origin and $F(x_0)$.

Bibliography

- [1] Steve Smale Algorithms for solving Equations, Proceedings of the International Congress of Mathematicians, Vol1, pp172,195. AMS,1986.
- [2] Steve Smale Newton's method estimates from data at one point. The Merging of Disciplines... Springer-Verlag 1986 185-196.

INITIAL DISTRIBUTION LIST

DIRECTOR (2)
DEFENSE TECH. INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314

DIRECTOR OF RESEARCH ADMINISTRATION CODE 012
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

OFFICE OF NAVAL RESEARCH CODE 422AT ARLINGTON, VA 22217

PROFESSOR ALLEN GOLDSTEIN (12)
CODE 53GO
DEPARTMENT OF MATHEMATICS
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

LIBRARY (2)
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CA 93943

DEPARTMENT OF MATHEMATICS CODE 53 NAVAL POSTGRADUATE SCHOOL MONTEREY, CA 93943

CENTER FOR NAVAL ANALYSIS 4401 FORD AVENUE ALEXANDRIA, VA 22302-0268

