Programming Assignment 1 Blah

HUIDS: 90978217 AND BLAHBLAH

02/27/2017

1 Introduction

In this programming assignment, we constructed minimum spanning trees (MSTs) for complete, undirected graphs of 0, 2, and 4 dimension. We then determined how the average total weight of the MST grew as a function of the number of vertices. [PUT IN ABSTRACT?]

2 Methods

2.1 Motivation

We chose to implement the eager implementation of Prim's algorithm. Unlike....

Thus, the eager implementation of Prim's algorithm takes O(-V-) space, whereas the lazy implementation of Prim's and Kruskal's take O(-E-)

3 Results

After running our algorithm on MSTs with n vertices, where n is $2^7, 2^8, ..., 2^18$, we obtained the following results:

log_2n						
7	8	9	10	11	12	13
Dimension	0	1.11348162861502	1.1811830820657701	1.18826182143426	1.19037513986864	1.197064159
	2	7.7160457449991098	10.7974908279157	14.8518168006092	21.0932111046993	29.65684989
	3	17.832779380000002	27.59744251	43.056824859999999	67.794734030000001	107.2951336
	4	28.518424490000001	46.918836720000002	78.282120980000002	130.56701039999999	216.3980491

4 Discussion