Контрольна робота з математичного аналізу #3

Студента 2 курсу групи МП-21 Захарова Дмитра 24 травня 2023 р.

Завдання 1.

Умова. Знайти масу, розподілену вздовж даної кривої з густиною $\mu(x,y)=\frac{x}{3}+\frac{y}{4}$. Крива це трикутник з вершинами A(0,0),B(3,0),C(0,4)

Рис. 1: Контур AB, BC, CA

Розв'язок. Щоб знайти масу кривої, потрібно знайти наступний криволінійний інтеграл (використовуємо по суті фізичний зміст криво-

лінійного інтегралу):

$$\oint_L \mu(x,y) d\ell$$

де L наш трикутник.

3амітка. Це випливає з того, що дуже малий відрізок кривої довжини $d\ell$ має массу $\mu(x,y)d\ell$ і нам просто потрібно просумувати цю масу по всій довжині.

Оберемо порядок обходу контуру, наприклад нехай AB, BC, CA. Тоді ми можемо розписати наш інтеграл як:

$$\oint_L \mu(x,y)d\ell = \int_{AB} \mu(x,y)d\ell + \int_{BC} \mu(x,y)d\ell + \int_{CA} \mu(x,y)d\ell$$

Де інтеграли з індексами AB, BC, CA позначають інтеграл по прямій AB, BC, CA.

Тепер розберемо кожний відрізок. Наприклад, AB. Параметризуємо цей відрізок як $\boldsymbol{r}(t) = \boldsymbol{r}_A + (\boldsymbol{r}_B - \boldsymbol{r}_A)t, \ t \in [0,1],$ тобто

$$\boldsymbol{r}(t) = \begin{bmatrix} 3t \\ 0 \end{bmatrix}$$

Тоді, наш інтеграл запишеться як:

$$\int_{AB} \mu(x,y)d\ell = \int_0^1 \mu(\boldsymbol{r}(t)) \|\boldsymbol{r}'(t)\| dt$$

Похідна $\boldsymbol{r}' = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, отже модуль $\|\boldsymbol{r}'\| = 3$. Тоді:

$$\int_{AB} \mu(x,y)d\ell = \int_0^1 3tdt = \frac{3t^2}{2} \Big|_{t=0}^{t=1} = \frac{3}{2}$$

Аналогічним чином, BC можемо параметризувати як $\boldsymbol{r}(t) = \begin{bmatrix} 3-3t\\4t \end{bmatrix}$ де наш параметр $t \in [0,1]$. Похідна $\boldsymbol{r}'(t) = \begin{bmatrix} -3\\4 \end{bmatrix}$, а отже модуль 5. Тоді

$$\int_{BC} \mu(x,y)d\ell = \int_0^1 \mu(\mathbf{r}(t)) \|\mathbf{r}'(t)\| dt = \int_0^1 (1-t+t) \cdot 5dt = 5$$

Нарешті, CA параметризуємо як ${m r}(t)=\begin{bmatrix}0\\4(1-t)\end{bmatrix}$ де знову $t\in[0,1]$. В такому разі похідна ${m r}'(t)=\begin{bmatrix}0\\-4\end{bmatrix}$, а тому модуль 4. Отже наш інтеграл:

$$\int_{CA} \mu(x,y) d\ell = \int_0^1 \mu(\boldsymbol{r}(t)) \|\boldsymbol{r}'(t)\| dt = \int_0^1 (1-t) 4 dt = 4 \left(t - \frac{t^2}{2}\right) \Big|_{t=0}^{t=1} = 2$$

Отже остаточно наш інтеграл:

$$\oint_L \mu(x,y)d\ell = \int_{AB} \mu(x,y)d\ell + \int_{BC} \mu(x,y)d\ell + \int_{CA} \mu(x,y)d\ell = 2 + 5 + \frac{3}{2} = \frac{17}{2}$$

Відповідь. $\frac{17}{2}$.