FPCRL: Feature Projection and Contrastive Representation Learning for End-to-End Speech Translation

School of Computer and Artificial Intelligence Zhengzhou University 1791088334@qq.com, iehyzan@zzu.edu.cn

All Neural Network roads lead to Rome

Introduction

Speech-to-text translation is a cross-modal and multilingual translation task. To alleviate the modality gap and data scarcity of this task, recent research has primarily focused on aligning speech and text representations to unify cross-modal features and incorporating external knowledge via multi-task learning. Although significant progress has been achieved, there remains potential for improvement, particularly in enhancing translation performance by purifying speech representations to extract more content-relevant information. In this paper, we propose a framework based on feature projection and contrastive representation learning for speech translation, FPCRL, which is adaptable to various training settings. FPCRL introduces additional full-content and irrelevant-content encoders, which separately extract full and irrelevant information from speech. Through a feature projection module, irrelevant components are removed from the full content representations, yielding purified speech representations. Furthermore, the extracted content-irrelevant information is utilized to guide the training of the irrelevant-content encoder via contrastive representation learning. Experiments on the MuST-C En-De, CoVoST-2 De-En, and CoVoST-2 Fr-En benchmarks demonstrate that FPCRL achieves significant improvements across all datasets.

We open-source the model for future research at https://github.com/Akito-Go/FPCRL.

Methods

(a) Speech Mask:

We modify the speech input s to mask continuous segments and obtain the masked waveform s', which is utilized as the input of the model. Then we mask with a probability of 0.75 for each speech input. The selected speech input is then masked for at least 2 spans, each containing at least 3600 consecutive frames.

(b) Orthogonal Projection:

We use the OPL to remove content-irrelevant information from the full content representations and firstly project H_f onto H_i to extract the content-irrelevant information H_f^i . Then we obtain the expected purified speech representations H_f^p by removing H_f^i from H_f .

(c) Feature Fusion:

We fuse H_f^i and H_i into H_i^* , and the future fusion process automatically controls the selection of H_f^i based on H_f and H_i , and then adds the selected portion to H_i to obtain the fused features H_i^* .

(d) Contrastive Learning:

To further enhance the encoding ability of irrelevant-content encoder for content-irrelevant information, we leverage H_i and H_i^* for contrastive learning.

$$\mathcal{L}_{CRL} = -\left[\sum_{m=1}^{N} log \frac{sim(H_i, H_{im}^*)}{\tau} + \sum_{m=1}^{N} \sum_{n \neq m} log(1 - \frac{sim(H_i, H_{in}^*)}{\tau})\right]$$

(e) Consistency Constraints:

For the speech input s_i , we apply Gaussian noise with a perturbation level defined randomly by the signal-to-noise ratio $snr \in [5, 50]$ to obtain new noisy data: $\tilde{s_i} = s_i + Guss(s_i, snr)$ to verify the effectiveness of the FOP in removing content-irrelevant information.

$$\mathcal{L}_{ ext{CST}} = \sum_{i=1}^{|D|} \|Mean(H_f^p) - Mean(\tilde{H_f^p})\|_2$$

(f) Loss Warm-up:

We propose a loss warm-up method, where the loss coefficient is initialized to a small value of 1e-8 at the beginning of training. As the number of training steps increases, the coefficient gradually increases to 1, allowing the loss to fully contribute to optimization.

Main contributions:

- **E2E ST Training Framework.** We propose a training framework FPCRL for E2E ST, which can be applied in various settings. This framework purifies speech representations by introducing additional full-content and irrelevant-content encoders and employing a feature orthogonal projection method.
- > Speech Purification and Feature Fusion. By leveraging the redundant content-irrelevant information extracted during the purification process, we introduce a feature fusion method to combine it with the output from the irrelevant-content encoder. This fusion further guides the encoder to effectively capture and learn the content-irrelevant information.
- Significant improvements. Experiments on the MuST-C En-De, CoVoST-2 De-En, and CoVoST-2 Fr-En benchmarks show that the methods we proposed can lead to significant improvements over strong E2E ST baselines across three settings: transcript-free, multi-task, and expanded data.

Main Results

Evaluation Metrics:

✓ BLEU: An automatic metric used to evaluate the quality of machine-generated text, especially in translation tasks. It measures how closely a candidate translation matches one or more reference translations based on overlapping n-grams. Scores range from 0 to 1 (often shown as 0–100), with higher scores indicating better translation quality.

Models	External Data			BLEU
Models	Speech	ASR	MT	BLEU
Training in	n transcript	-free sett	ting	
Fairseq ST [5]	-	-	-	22.7
Revisit ST [41]	-	-	-	23.0
Self-training [17]	1	✓	-	25.2
CCSRD [11]	√	(=)	-	25.4
DUB [40]	1	150	1	26.2
SRPSE [15]	✓	(-)	=	26.2
W2V2-Transformer	√	_	2	24.3
HuBERT-Transformer	1	_	2	24.4
FPCRL	1	-	-	25.7

XSTNet [6]	1	-	-	25.5
STEMM [7]	✓	=	-	25.6
ConST [8]	✓	-	=	25.7
CCSRD [11]	1	-	5	26.1
M ³ ST [42]	✓	-	-	26.4
SRPSE [15]	1	-	5	26.9
CMOT [9]	✓		-	27.0
FPCRL	✓	20	=	26.8
Training	g in <i>expai</i>	nded date	a setting	ŗ,
XSTNet [6]	√	-	1	27.8
CCSRD [11]	1	-	1	28.1

External Data

Speech ASR

Training in multi-task setting

BLEU

MT

Models	External Data			CoVoST-2	
	Speech	ASR	MT	De-En	Fr-En
Transformer-ST [35]	12	1	_	17.1	26.3
Revisit ST [41]	1-	-	-	14.1	26.9
Siamese-PT [43]	-	1	1	19.7	27.7
DUB [40]	✓	-	✓	19.5	29.5
FPCRL	/	(70)	=	16.4	28.8
FPCRL _{MTL}	√	-	=	22.8	31.7

XSTNet [6]	1	-	1	27.8
CCSRD [11]	✓	-	1	28.1
ConST [8]	1	-	1	28.2
STEMM [7]	✓	<u>-</u>	✓	28.7
CMOT [9]	✓	2.0	1	29.0
SRPSE [15]	✓	20	1	29.2
FPCRL	√	-	1	28.8

Ext. Main Results: comparison with baselines && multilingual verification

Ablation Study

Models	BLEU
Our FPCRL	25.7
w/o \mathcal{L}_{CST}	25.5
w/o Speech Mask	25.3
w/o L _{CRL}	24.5
w/o OPL	24.3

(a) w/o purification (sim: 0.06). (b) w/ purification (sim: 0.12)

Models	LW _{CRL}	LW _{CST}	BLEU
	0	_	24.8
EDCDI	5k	_	25.1
FPCRL _{CRL}	10k	-	25.3
	15k	=	25.5
	15k	0	24.9
FPCRL _{CRL-CST}	15k	5k	25.0
	15k	10k	25.5
	15k	15k	25.7

Ext. Methods Evaluation: ablation studies && visualization