Capa física

Medios de transmisión

Contenido

- Conceptos generales
- Medios guiados
 - Par trenzado
 - Cable coaxial
 - Fibra óptica
- Medios libres
 - Microondas
 - Satélites

Medios de transmisión

- Camino físico a través del cual se transmite información entre dos dispositivos
- Características
 - Tipo de conexión
 - Modo de transmisión
 - Características de transmisión
 - Características de propagación
 - Cobertura
 - Costo

Tipos de conexión

Punto a punto

Punto a multipunto

Modos de transmisión

Transmisión de datos

- Las señales transmitidas pueden
 - Alterarse por ruido
 - Atenuarse
 - Distorsionarse
- La atenuación y la distorsión dependen de:
 - El medio de transmisión
 - El ancho de banda
 - La velocidad de transmisión
 - La distancia
- El medio determina
 - El ancho de banda
 - La tasa de bits

Afectaciones de la señal en la transmisión

Características de transmisión

Atenuación

- La potencia de la señal disminuye con la distancia.
- Dependiente del medio, pero en general, a mayor frecuencia, mayor atenuación

Distorsión

- La señal recibida es distinta de la transmitida. La atenuación es distinta para distintos componentes de frecuencia
- Distorsión por retardo
 - La velocidad de propagación varía con la frecuencia
 - Efecto de trayectorias múltiples
- Distorsión por ruido.

Capacidades de los medios

Fig. 2-11. The electromagnetic spectrum and its uses for communication.

Ancho de banda

- Un medio de transmisión se comporta como un filtro.
- Su ancho de banda B es la diferencia entre las frecuencias máxima y mínima que deja pasar.

Baudaje y velocidad de transmisión

- El baudaje es el número máximo de cambios de estado que puede haber en la señal portadora por segundo
- La velocidad de transmisión es el número de bits que se transmiten por segundo

Ejemplo: Transmisión de la letra "b"

Fuente: Tanenbaum

Velocidad de transmisión

- Fórmula de Nyquist
 - Si un canal tiene un ancho de banda B
 - C = 2B bps

Dos niveles por elemento

- Caso general (ideal)
 - C = 2B log2 (M) bps

M = Niveles por elemento

 Sin embargo, la velocidad se reduce porque la transmisión no es perfecta. Hay ruido

Teorema de Shannon

$$C = B \log_2(1 + \frac{S}{N})$$

- Capacidad de una línea telefónica
 - Relación señal a ruido = 422
 - Ancho de banda = 3300 Hz
 - C se acerca a 28.8 kbps
 - ¿Cómo trabaja un módem a 56 kbps?

Aproximación de señales A con D Ejemplo: escala de gris

Preguntas binarias sucesivas:

¿más negro que blanco o blanco que negro?

Respuesta binaria

¿más hacia lo negro o hacia lo blanco? Respuesta binaria

repetir pregunta hasta llegar a aproximación deseada por medio de "unos" y "ceros"

Aproximación de señales A con D Ejemplo: escala de gris

¿Cómo pasar de analógica a digital? (A/D)

Conversión A/D: muestreo y cuantización

Conversión A/D: cuantización y codificación

Señal muestreada, cuantizada y codificada

Frecuencia de muestreo

 El teorema de muestreo de Nyquist indica que deben tomarse al menos 2B muestras, donde B es la frecuencia máxima de la señal.

Medios guiados

Par trenzado

- Par de conductores de cobre aislados trenzados entre sí
- Económico, flexible y sumamente difundido en redes telefónicas (bucle de abonado) y redes locales
- Tres tipos:
 - no blindado (UTP)
 - Recubierto (FTP)
 - blindado (STP)

Par trenzado

- Cada par es un canal de comunicación
- Diámetro de cada cable < 1mm
- El trenzado reduce la interferencia entre cables adyacentes (diafonía)
- Alcance depende de la frecuencia, pero limitado a distancias relativamente cortas: atenuación 3dB/km@1kHz
 - Amplificadores cada 5 a 6 km (analógico) y repetidores cada 2 ó 3 km (digital)
- Susceptible al ruido pues no se eliminan todas las interferencias (sobre todo en UTP)

UTP – Estándar EIA/TIA - 568

- Categoría 1: Comunicaciones telefónicas únicamente
- Categoría 2: Transmisión de datos a 4 MHz
- Categoría 3: Tasas hasta 16 MHz
- Categoría 4: Tasas hasta 20 MHz
- Categoría 5: Tasas hasta 100 MHz
- Categoría 6: Tasas hasta 200 MHz
- Categoría 7: Tasas hatsta 600 MHz

Cable FTP

Cable FTP (Foiled Twisted Pair)

STP

- Pares de cobre recubiertos con malla metálica
- El recubrimiento reduce la interferencia y el ruido eléctrico
- Más costos y menos flexible que UTP, hoy no se aconseja su uso salvo en aplicaciones puntuales

STP-A: Sistema Blindado 150 Ohms

Cable coaxial

- Conductor central de cobre rodeado por otro conductor en forma de malla circular y separados por un medio dieléctrico.
- Mayor inmunidad que par trenzado, puede cubrir mayores distancias a mayores frecuencias

Dos clases:

Banda base: transmisión digital

 Banda amplia: transmisión analógica

Cable coaxial

- La frecuencia depende de la distancia y de las características del cable
 - 1 a 2 GHz para 1 km
 - 300 MHz para 100 km
- Transmisión digital en configuración de banda amplia requiere generalmente de un par de cables unidireccionales
- Más costoso y difícil de instalar y manipular, ha sido ampliamente sustituido por UTP categoría 5 en redes locales

Fibra óptica

- Fibra de vidrio o plástico (núcleo) a través de la cual se transmite la señal en forma de energía luminosa
- El núcleo está rodeado por un revestimiento, también de vidrio o plástico con un índice de refracción menor
- Es una forma de guía de onda en la que la señal óptica se propaga por la reflexión interna entre el núcleo y el revestimiento

Principio de transmisión

- Angulo de incidencia mayor al ángulo critico
- n1 > n2

Reflexión

- Angulo de incidencia menor al ángulo critico
- n1 > n2
 n es el índice de refracción

Refracción

Características

- Menor atenuación que par trenzado y coaxial, permite transmitir señales a distancias mucho mayores sin necesidad de amplificación
- Transmite luz, por lo que es inmune a interferencias electromagnéticas
- Inmune a factores ambientales (oxidación, tormentas eléctricas, etc.)
- Capacidad teórica de transmitir 50 Gbps con una sola longitud de onda, se han demostrado 10 Gbps sobre decenas de kilómetros.
- Más delgada y más ligera que el par trenzado
- Seguridad: muy difícil de intervenir

Características (cont.)

- Atenuación
 - Absorción por calor, fugas, impurezas, dobleces, vibración atómica
- Muy costosa
 - Instalación, mantenimiento, interfaces (sobre todo monomodal)
- Poco flexible: no soporta dobleces con grandes ángulos
- Relativamente frágil
- Usos: Enlaces larga distancia, redes metropolitanas, backbone redes LAN

Tipos de fibra óptica

Fibra óptica monomodal

- Diámetro del núcleo muy pequeño: 0.5 a 10
 micras, un solo ángulo de incidencia permitido
- Indice de refracción uniforme
- Grandes distancias (decenas de km) y altas frecuencias (varios Gbps)
- Transmisor láser de alta precisión
- Muy costosa

Fibra óptica multimodal

- Diámetro del núcleo 50 a 125 micras
- Varios ángulos de incidencia permitidos, la luz viaja en distintos modos
- Indice de refracción uniforme
- Distancias de uno a dos km y frecuencias medias a altas
- Transmisor láser o LED
- La más económica de las tres

Fibra óptica multimodal de índice graduado

- Diámetro del núcleo relativamente grande pero difícil de fabricar
- Indice de refracción del núcleo no es uniforme: su densidad varía alterando las propiedades de propagación del haz de luz
- Características de distancia y frecuencia intermedias entre los otros dos tipos de fibra
- Costosa, se usa poco en redes de datos

Angulos de incidencia

Demasiado grande

Tolerable

Muy apropiado

Angulo crítico de flexión

Conectores 568ST

Conectores 568SC

Conectores 568-SC

-...Bueno, en realidad somos pocas las compañías que nos damos el lujo de tener enlaces de fibra óptica punto punto...

11

Guías de onda

- Ducto circular o rectangular de cobre ó algún otro conductor que confina y conduce la propagación de la señal en forma de onda electromagnética
- Se utiliza para señales en el rango de GHz donde las pérdidas aún en cable coaxial son considerables

Guías de onda

- Se utiliza para transportar la señal del amplificador o repetidor a la antena satelital o de microondas
- En los satélites, transporta la señal en el transpondedor
- Para que la propagación sea apropiada, el diámetro del tubo debe ser del orden de la longitud de onda.
 ¼ λ es un parámetro crítico
- El interior debe estar completamente seco: suele contener un gas inerte.
- Muy costosa

Medios no guiados

Ondas electromagnéticas

- La corriente eléctrica genera un campo eléctrico que induce un campo magnético que a su vez genera un campo eléctrico...
- Principio de radiación de las antenas

Ondas electromagnéticas

- Una onda es una perturbación del estado de equilibrio
 - Sonido
 - Ondas al arrojar una piedra a un lago
- Campos eléctricos y magnéticos que varían en el tiempo inducen cambios electromagnéticos
- Diferentes maneras de interpretar una onda electromagnética
 - En el dominio del tiempo (amplitud, período, fase)
 - En el dominio de la frecuencia (frecuencia, espectro, ancho de banda)
 - En el dominio espacial (longitud de onda)

Medios no guiados

- El espacio o el aire es el medio de propagación de las ondas electromagnéticas. No se requiere de conexión física
- Emisor y receptor pueden ser fijos o móviles
- Amplia gama de espectro: servicios con requerimientos grandes de ancho de banda o limitados
- Puede implementarse rápidamente
- Propenso a interferencias
- Estricto control de acceso y utilización del medio

Aplicaciones

- Radiodifusión (radio, TV, datos)
- Redes locales y metropolitanas
- Telefonía celular
- Servicios de trunking
- Aplicaciones ICM y de entretenimiento
- Radiolocalización
- Navegación
- •

Radiodifusión

- Propagación omnidireccional de señales terrenas
- Antenas relativamente sencillas sin necesidad de alineación muy precisa
- Difusión de radio AM, FM
- Difusión de televisión VHF, UHF
- Servicios de datos

Microondas

- Propagación en línea de vista, requiere de alineación muy precisa
- Utiliza antenas altamente direccionales para minimizar interferencia
- Frecuencias dedicadas y reguladas por COFETEL
- Señales de microondas pueden atravesar paredes y barreras físicas
- Exposición a radiaciones es nociva para la salud
- Propensa a interferencia de otras fuentes

Microondas terrestres

- Rangos de frecuencia de 2 a 40 GHz
- Relativamente cara aunque puede resultar la tecnología más económica en el corto plazo o cuando la instalación física no es viable
- Distancia entre repetidores de 40 km a 100 km
- Tasas de transmisión de decenas de Mbps, aunque 500 Mbps son factibles
- Telecomunicaciones de media y larga distancia
- Enlaces punto a punto entre edificios
- Voz, televisión y redes de datos privadas

Frecuencia vs cobertura

Fuente: Propia con datos de Morgan Stanley

Frecuencia vs cobertura

Frecuencia (GHz)	Distancia (km)
2	60
4-6	50
7-8	45
11	40
13	35
15	20
20	10
30	5
60	0.5

Para una potencia fija

Enlaces satelitales

- Estación de relevo de microondas en el espacio, funciona como un amplificador o como un repetidor
- Conectividad
 - punto a punto para enlazar dos estaciones terrenas
 - Punto multipunto para servicios de difusión
- Huella puede ser amplia o angosta
- Categorías
 - LEO, MEO, GEO

Enlaces satelitales

- Anchos de banda de 36 A 72 Mbps en canales de 64 kbps a 512 kbps
- Bandas de frecuencia de operación (transponders):
 - Banda C: 3.7 4.2 5.925 6.425 GHz
 - Banda Ku: 11.7 12.2 14 -14.5 GHz
 - Banda L: 1.6465 1.66 1.545 1.5585GHz
- Orbita geoestacionaria
 - Cinturon de Clark: 35,784 km sobre el ecuador
 - Antenas en posición fija

Enlaces satelitales

Usos

- Difusión de televisión
- Telefonía larga distancia
- Redes de datos privadas

Limitaciones

- Retraso: satélite geoestacionario 250 ms
- Seguridad
- Susceptibilidad a condiciones atmosféricas (> 10GHz)
- Visibilidad desde la tierra

Flotillas

Satélite	Posición orbital
Satmex 4 (Solidaridad 2)	113.5 -> 114.9
Satmex 5	116.8
Satmex 6	113.5
Satmex 8 (remplazo Satmex 5)	116.8
Mexsat 2 (Morelos III)	113.5
Mexsat 3 (Bicentenario)	114.9

https://es.wikipedia.org/wiki/Sat%C3%A9lites_artificiales_de_M%C3%A9xico

Satélites de órbita baja

- LEO
- 750 a 1500 Km. de altura
- Ejemplos:

– Iridium 66 satélites

Globalstar48

SkyBridge80

VSAT: Very small aperture terminals

VSAT

- Alternativa de bajo costo para empresas
- Comparten satélite para transmitir información hacia un nodo concentrador
- El concentrador coordina la comunicación entre suscriptores
- Transmisión con mucha potencia, permite que las antenas receptoras tengan diámetro pequeño (0.6 a 3.8 m)

60

Infrarrojo

- Transmisor modula haz de luz infrarroja
- Se requiere línea de vista o reflexión en una superficie clara (por ejemplo, el techo)
- Tasas de transmisión hasta de 20 Mbps
- No requiere licencia
- Cobertura limitada: potencia de emisión restringida para evitar daños
- Conectividad punto a punto
- Inherentemente seguro pues las ondas infrarrojo no penetran las paredes
- Luz ambiental puede ser una fuente de ruido.
 Necesario filtros ópticos pasa bandas

Comparación entre medios

(para despliegues MAN/WAN)

	P.Trenzado	Coaxial	F. Optica	μOndas	Satélite
Costo	Bajo	Medio	Alto	Medio	Muy alto
Velocidad	Baja/media	Media	Muy alta	Media/alta	Baja/media
Disponibilidad	Buena	Buena	Buena	Buena	Media, Buena
Escalabilidad	Media	Alta (local)	Baja/media	Media/Alta	Alta (GEO)
Errores	Media	Buena	Muy buena	Media	Media
Seguridad	Media	Media	Muy buena	Mala	Mala

Sistemas de capa física

Módems Codificación

Capa física

 Intercambio de bits a través de un medio de transmisión.

Sistema telefónico

- 1876: Alexander Graham Bell patenta el teléfono.
- 1878: Se establece el primer sistema comercial telefónico con 21 usuarios en New Haven, CT.
 Primera línea telefónica entre Palacio Nacional y el Castillo de Chapultepec
- 1927: Primer circuito radiotelefónico transatlántico.
- 1956: Primer cable telefónico submarino transatlántico.

Sistema telefónico

- 1958: Los laboratorios Bell desarrollan los módems.
- 1965: Se introducen los satélites de comunicación comerciales y se vuelven rutinarias las conversaciones transoceánicas.
- 1988: Primer cable submarino trasatlántico en fibra óptica.

Módems

- La red telefónica fue creada para transportar una señal analógica. Ofrece un ancho de banda de 3400-300 Hz a cada canal.
- La información intercambiada entre computadoras es digital.
- Los módems permiten intercambiar información digital sobre un medio "analógico".

Módems

Módem 300 bps

- V.21 (300 baudios)
- Modulación FSK alterna entre dos portadoras de diferente frecuencia:

	0	1
originador	1180	980 Hz
contestador	1850	1650

Módem a 1200 bps

10 01

- V.22 (600 baudios)
- Modulación DPSK cambia la fase de la portadora:

 Las frecuencias de las portadoras son: originador 1200 y contestador 2400 Hz.

Módem a 2400 bps

- V.22bis (600 bauds)
- Modulación QAM cambia la fase y la amplitud de la portadora.
- Las frecuencias de las portadoras son: originador 1200 y contestador 2400 Hz.

Utiliza 4 fases y 2 amplitudes en los dos ejes de un plano complejo, lo que permite contar con 16 estados

Constelación QAM

Módems a 9600 bps

- V.29 (sobre 4 hilos)
- V.32 (sobre 2 hilos)
 - frecuencia de la portadora: 1800 Hz
 - cancelación de eco
 - esquemas de modulación:
 - no redundante QAM
 - redundante TCM

V.32 Constelación Trellis

Módems

• V.32 (2400 bauds) 9600 bps

• V.32bis 14400

• V.34 (3200 bauds) 28800

(3429 bauds) 33600

• V.90 56000

Resumen

Modem	Rata de TX	Modulación	Aplicación
V.21	300 b/s	FSK	Tx de Datos
v.22 bis	2.4 kb/s	QPSK	Tx de Datos
v.29	9.6 kb/s	16-QAM	Tx de Datos
v.32	9.6 Kb/s	TCM	Tx de Datos
v.34	33.6 Kb/s	TCM	Tx de Datos
v.90	56 kb/s	TCM	Acceso Internet
BRI ISDN	144 kb/s	2B1Q	2B+D
HDSL	2048 kb/s	2B1Q	Acceso E1/T1
SDSL	768 kb/s	2B1Q	Acceso Internet
ADSL	1.54 Mb/s Dw 16 kb/s Up	CAP/DMT	Distrib. Mmedia
VDSL	52 Mb/s Dw	CAP/DMT	ADSL +HDTV

- Transmisión asimétrica.
 - hasta 8 Mbps de la red al abonado
 - hasta 1 Mbps del abonado a la red
- Las velocidades de transmisión dependen de los módems y de las características de las líneas de cobre.
- Se necesita un módem en la central telefónica.

- No se pierde el canal telefónico.
- Para transmitir datos en una banda de frecuencia separada del canal telefónico se utiliza DMT (Discrete Multi Tone).

Discrete Multitone (DMT)

- Ancho de banda dividido en canales de 4kHz
 - 256 canales en el flujo descendente
- DMT evalúa SNR de cada canal
- Se asignan más bits (codificación más densa) a los canales con mayor SNR
- Cada canal podría transportar hasta 60 kb/s
 - En teoría, 60 b x 256 = 15.36 Mb/s
 - En realidad, las condiciones del medio reducen capacidad a 1.5 – 9 Mb/s

DTM Asiganción de bits por canal

DMT Transmitter

Capa física

83

Módems de cable

 Usa la infraestructura de la televisión por cable.

Módems de cable

WLL - LMDS

Telefonía celular

• Transmisión en células para reutilizar frecuencias:

Tecnologías móviles – Tx de datos

Generación movil	Tecnología movil	Velocidad teorica
2G	GSM, HSCSD, PHS & PDC, CDMA	14.4 kb/s, 36.6 kb/s, 64 kb/s, 64 kb/s
2.5G	GPRS	115 kb/s
2.75G	EDGE	384 kb/s
3G	UMTS	2 Mb/s
4G	LTE	325 Mb/s

Codificación

Non Return to Zero NRZ

AMI (Alternate Mark Inversion)

2B1Q

Sincronización

- Transmisión asíncrona
- Transmisión síncrona
 - Señal de reloj en una línea específica
 - EIA-232
 - Señal de reloj inmersa en los datos
 - HDB3
 - Scrambling
 - Manchester
 - 4B/5B + NRZI

Manchester

