Università degli Studi Roma Tre - Corso di Laurea in Matematica $Tutorato\ di\ GE220$

A.A. 2010-2011 - Docente: Prof. Edoardo Sernesi

Tutori: Filippo Maria Bonci, Annamaria Iezzi e Maria Chiara Timpone

Soluzioni Tutorato 6 (5 Maggio 2011) Varietà topologiche

Osservazione: Nelle soluzioni degli esercizi useremo indifferentemente le seguenti due definizioni equivalenti di *varietà topologica*:

- Una varietà topologica di dimensione n è uno spazio topologico di Hausdorff X che soddisfa il secondo assioma di numerabilità e tale che ogni $p \in X$ possieda un intorno aperto U_p omeomorfo a un aperto di \mathbb{R}^n .
- Una varietà topologica di dimensione n è uno spazio topologico di Hausdorff X che soddisfa il secondo assioma di numerabilità e tale che ogni $p \in X$ possieda un intorno aperto U_p omeomorfo a \mathbb{R}^n .
- 1. Dimostrare o confutare con un esempio le seguenti affermazioni:
 - (a) Ogni sottospazio di uno spazio a base numerabile è a base numerabile;
 - (b) Il prodotto di due spazi a base numerabile è a base numerabile;
 - (c) Il quoziente di uno spazio a base numerabile è a base numerabile.

Solutione:

- (a) Vero. Infatti se \mathcal{B} è una base numerabile di uno spazio X e $Y \subset X$ allora $\{A \cap Y : A \in \mathcal{B}\}$ è una base numerabile del sottospazio Y.
- (b) Vero. Infatti, se ${\mathcal A}$ è una base di aperti di Xe ${\mathcal B}$ è una base di aperti di Y,allora la famiglia

$$\mathcal{C} = \{ A \times B : A \in \mathcal{A}, B \in \mathcal{B} \}$$

è una base di aperti del prodotto $X \times Y$.

Se \mathcal{A} , \mathcal{B} sono numerabili, allora anche \mathcal{C} è numerabile.

(c) Falso. Consideriamo su $\mathbb R$ la relazione d'equivalenza \sim definita nel modo seguente

$$x \sim y \Leftrightarrow x = y \text{ oppure } x, y \in \mathbb{Z}.$$

Mostriamo che \mathbb{R}/\sim non soddisfa il primo assioma di numerabilità; ciò implicherà che \mathbb{R}/\sim non soddisfa il secondo assioma di numerabilità.

Indichiamo con $p: R \to R/\sim$ la proiezione al quoziente e con $[z]=p(\mathbb{Z})$ la classe di equivalenza dei numeri interi. Supponiamo, per assurdo, che [z] abbia un sistema fondamentale numerabile di intorni $\{U_n\}_{n\in\mathbb{N}}$. Possiamo assumere, senza perdita di generalità, che U_n sia aperto per ogni $n\in\mathbb{N}$; segue che $p^{-1}(U_n)$ è aperto e contiene \mathbb{Z} , per ogni $n\in\mathbb{N}$.

Per ogni $n \in \mathbb{N}$, considero $n \in p^{-1}(U_n)$; dal fatto che $n \in p^{-1}(U_n)$ e che $p^{-1}(U_n)$ è aperto, possiamo dunque trovare un numero $0 < d_n < \frac{1}{2}$ tale che $[n - d_n, n + d_n] \subset p^{-1}(U_n)$. L'aperto

$$A := (-\infty, -\frac{1}{2}) \cup \bigcup_{n \in \mathbb{N}} (n - d_n, n + d_n)$$

è saturo da cui p(A) è aperto ed è, quindi, un intorno di [z]. Ma allora dovrebbe esistere $n \in \mathbb{N}$ tale che $U_n \subseteq p(A)$: assurdo poiché, se così fosse, si avrebbe che $[n-d_n,n+d_n] \subset p^{-1}(U_n) \subseteq p^{-1}(p(A)) = A$.

- 2. Dimostrare i seguenti risultati sulle varietà topologiche:
 - (a) le varietà topologiche di dimensione 0 sono tutti e soli gli spazi topologici discreti a cardinalità numerabile;
 - (b) ogni sottoinsieme aperto di una varietà topologica è una varietà topologica della stessa dimensione.

Solutione:

(a) Sia X una varietà topologica di dimensione 0. Allora per ogni $p \in X$ esiste un intorno aperto U di p omeomorfo ad $\mathbb{R}^0 = \{\mathbf{0}\}$; dalla biunivocità dell'omeomorfismo segue dunque che $U = \{p\} \Rightarrow \{p\}$ è aperto, cioè X è discreto. Inoltre, poiché X è a base numerabile ed ogni base della topologia discreta deve contenere tutti i sottoinsiemi costituiti da un solo punto, X ha cardinalità numerabile.

Sia viceversa X uno spazio topologico discreto a cardinalità numerabile. Verifichiamo che X soddisfa le tre proprietà delle varietà topologiche.

- i. $X
 ilde{e} T_2$: infatti, ogni spazio discreto $ilde{e}$ di Hausdorff;
- ii. $X
 in N_2$: l'insieme $\{\{p\} : p \in X\}$ costituisce una base per X numerabile;
- iii. $\forall p \in X \exists$ un intorno aperto $U_p \subseteq X$ di p omeomorfo ad \mathbb{R}^0 : sia $p \in X$. Consideriamo l'intorno aperto $U_p := \{p\}$ di p e l'applicazione $\varphi : U_p \to \mathbb{R}^0$ tale che $\varphi(p) = \mathbf{0}$; φ è biunivoca, continua e aperta e quindi è un omeomorfismo.
- (b) Sia X una varietà topologica di dimensione n; allora X è T_2 , N_2 e $\forall p \in X \exists$ un intorno aperto $U_p \subseteq X$ di p omeomorfo ad un aperto V_p di \mathbb{R}^n . Sia ora A un sottoinsieme aperto di X. Verifichiamo che A soddisfa le tre proprietà delle varietà topologiche.
 - i. $A
 ilde{e} T_2$: infatti, ogni sottospazio di uno spazio di Hausdorff $ilde{e}$ di Hausdorff;
 - ii. $A
 ilde{e} N_2$: ogni sottospazio di uno spazio $N_2
 ilde{e} N_2$ (esercizio 1(a));
 - iii. $\forall \ p \in A \ \exists \ \text{un} \ \text{intorno} \ \text{aperto} \ U_p' \subseteq A \ \text{di} \ p \ \text{omeomorfo} \ \text{ad} \ \text{un} \ \text{aperto} \ V_p' \ \text{di} \ \mathbb{R}^n \colon \text{sia} \ p \in A \ \overline{A} \subseteq X \ \text{e sia} \ U_p \subseteq X \ \text{l'intorno} \ \text{aperto} \ \text{di} \ p \ \text{omeomorfo} \ \text{all'aperto} \ V_p \ \text{di} \ \mathbb{R}^n \ \text{tramite}$ $\varphi : U_p \to V_p. \ \text{Consideriamo} \ U_p' := U_p \cap A \subseteq A \ \text{intorno} \ \text{aperto} \ \text{di} \ p \ \text{in} \ A. \ \text{La}$ restrizione $\varphi|_{U_p'} : U_p' \to \varphi(U_p') \ \text{è} \ \text{un} \ \text{omeomorfismo} \ \text{e} \ V_p' := \varphi(U_p') = \varphi(U_p \cap A) \ \text{è} \ \text{un}$ aperto di $\mathbb{R}^n \ \text{in} \ \text{quanto} \ \varphi \ \text{è} \ \text{aperta} \ \text{e} \ U_p \cap A \ \text{è} \ \text{un} \ \text{aperto} \ \text{di} \ U_p.$
- 3. Siano $Y_1 = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 = 1\}$ e $Y_2 = \{(x,y) \in \mathbb{R}^2 : (x+1)^2 + y^2 = 1\}$. Sia $Y = Y_1 \cup Y_2 \subseteq \mathbb{R}^2$. Dire se Y sia o meno una varietà topologica.

$\underline{Soluzione}$:

Dimostriamo che Y non è una varietà topologica.

Supponiamo per assurdo che lo sia. Allora scelto P := (0,0) esiste un intorno aperto U di P omeomorfo a \mathbb{R}^n ; sia $\varphi : U \to \mathbb{R}^n$ un omeomorfismo.

Osserviamo che si può assumere $U \neq Y$: infatti Y non è omeomorfo a \mathbb{R}^n , $\forall n \geq 1$ (Y è compatto mentre \mathbb{R}^n non è compatto se $n \geq 1$) nè omeomorfo a \mathbb{R}^0 (perchè non è possibile stabilire tra di essi una corrispondenza biunivoca).

Ne segue che la restrizione $\varphi|_{U\setminus\{P\}}: U\setminus\{P\}\to\mathbb{R}^n\setminus\{\varphi(P)\}$ è un omeomorfismo, ma questo è un assurdo poichè $U\setminus\{P\}$ ha 3 o 4 componenti connesse (ne ha 3 nel caso in cui $Y_1\subseteq U$ oppure $Y_2\subseteq U$), mentre $\mathbb{R}^n\setminus\{\varphi(P)\}$ ha al più due componenti connesse (nello specifico \mathbb{R}^n ha due componenti connesse se n=1, mentre è connesso per archi se n>1).

- 4. Dire per quali valori del parametro t i seguenti sotto insiemi di \mathbb{R}^2 sono curve topologiche:
 - (a) $C_t = \{(x, y) \in \mathbb{R}^2 : xy + t = 0\};$
 - (b) $\mathcal{D}_t = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 t = 0\}, t \ge 0.$

Solutione:

Richiamiamo che una curva topologica è una varietà topologica di dimensione 1.

- (a) Mostriamo che C_t è una curva topologica se e solo se $t \neq 0$.
 - t = 0:

Supponiamo per assurdo che C_0 sia una varietà topologica. Allora scelto P := (0,0) esiste $n \in \mathbb{N}$ e un intorno aperto U di P omeomorfo a \mathbb{R}^n ; sia $\varphi : U \to \mathbb{R}^n$ un omeomorfismo.

Ne segue che la restrizione $\varphi|_{U\setminus\{P\}}:U\setminus\{P\}\to\mathbb{R}^n\setminus\{\varphi(P)\}$ è un omeomorfismo, ma questo è un assurdo poichè $U\setminus\{P\}$ ha 4 componenti connesse , mentre $\mathbb{R}^n\setminus\{\varphi(P)\}$ ha al più due componenti connesse.

• $t \neq 0$:

Osserviamo, innanzitutto, che $C_t = \{(x, -\frac{t}{x}) : x \in \mathbb{R} \setminus \{0\}\}$. Costruiamo un atlante di C_t .

Siano $U_1 := \{(x, -\frac{t}{x}) : x > 0\}$ e $U_2 := \{(x, -\frac{t}{x}) : x < 0\}$; chiaramente $C_t = U_1 \cup U_2$. Mostriamo che U_1 e U_2 sono omeomorfi ad aperti di \mathbb{R} .

Sia $p_1: U_1 \to \mathbb{R}^{>0}$ tale che p((x,y)) = x. Si ha:

- p_1 è chiaramente suriettiva;
- p_1 è iniettiva: infatti, se $p_1((x_1, y_1)) = p_1((x_2, y_2)) \Rightarrow x_1 = x_2 \Rightarrow y_1 = -\frac{t}{x_1} = -\frac{t}{x_2} = y_2 \Rightarrow (x_1, y_1) = (x_2, y_2);$
- p_1 è chiaramente continua;
- p_1 ha inversa continua $p_1^{-1}: \mathbb{R}^{>0} \to U_1$ definita nel modo seguente

$$p_1^{-1}(x) = (x, -\frac{t}{x}).$$

Ne segue che p_1 è un omeomorfismo. Analogamente si ottiene che $p_2:U_2\to\mathbb{R}^{<0}$ tale che p((x,y))=x è un omeomorfismo.

La famiglia $\{p_1, p_2\}$ costituisce dunque un atlante di \mathcal{C}_t .

- (b) Mostriamo che \mathcal{D}_t è una curva topologica se e solo se t > 0.
 - t = 0: osserviamo che $\mathcal{D}_0 = \{(0,0)\}$. Ne segue che $U := \{(0,0)\}$ è l'unico intorno aperto di (0,0) e non è omeomorfo ad \mathbb{R} , da cui \mathcal{D}_0 non è una curva topologica.
 - $t \neq 0$: Chiaramente $\mathcal{D}_t \cong S^1$ (un omeomorfismo è dato dall'applicazione $\varphi : \mathcal{D}_t \to S^1$ tale che $\varphi((x,y)) = \left(\frac{x}{\sqrt{t}}, \frac{y}{\sqrt{t}}\right)$). Basterà, dunque, mostrare che S^1 è una curva topologica

Siano N := (0,1) e S := (0,-1) e siano $U_1 := S^1 \setminus \{N\}$ e $U_2 := S^1 \setminus \{S\}$; chiaramente, $S^1 = U_1 \cup U_2$ e $U_1 \cong \mathbb{R} \cong U_2$ tramite le proiezioni stereografiche che denotiamo rispettivamente con p_1, p_2 . L'insieme $\{p_1, p_2\}$ è un atlante per S^1 .

3

5. Dimostrare che ogni varietà topologica connessa è anche connessa per archi. Dedurne che gli aperti connessi di \mathbb{R}^n sono anche connessi per archi.

Solutione:

Per quanto visto nell'esercizio 10 del tutorato 5 sappiamo che uno spazio topologico connesso e localmente connesso per archi è connesso per archi.

Quindi ai fini del nostro esercizio sarà sufficiente mostrare che ogni varietà topologica è localmente connessa per archi.

Sia dunque X una varietà topologica e sia $p \in X$. Dalla definizione di varietà topologica esiste un intorno aperto U di p omeomorfo a un aperto V di \mathbb{R}^n ; sia $\varphi_U : U \to V$ un omeomorfismo.

Sia ora N un intorno di $p \Rightarrow \exists A$ aperto tale che $p \in A \subseteq N$.

Consideriamo $B:=A\cap U$. B è chiaramente aperto e contiene $p\Rightarrow \varphi_U(B)$ è un aperto di \mathbb{R}^n che contiene $\varphi_U(p)\Rightarrow$ esiste un disco $D_r(\varphi_U(p))$ di raggio r e centro $\varphi_U(p)$ tale che $\varphi_U(p)\in D_r(\varphi_U(p))\subseteq \varphi_U(B)$. Ma allora $\varphi_U^{-1}(D_r(\varphi_U(p)))$ è un intorno di p connesso per archi (essendo $D_r(\varphi_U(p))$) connesso per archi) tale che $\varphi_U^{-1}(D_r(\varphi_U(p)))\subseteq B\subseteq A\subseteq N$.

Chiaramente essendo gli aperti connessi di \mathbb{R}^n varietà topologiche connesse segue che essi sono anche connessi per archi.

6. Costruire un atlante per ognuna delle seguenti superfici: il cilindro $S^1 \times \mathbb{R}$, $\mathbb{P}^2(\mathbb{R})$.

Solutione:

• $S^1 \times \mathbb{R}$:

Consideriamo gli aperti di $S^1 \times \mathbb{R}$ $U_1 := [S^1 \setminus \{(0,1)\}] \times \mathbb{R}$ e $U_2 := [S^1 \setminus \{(0,1)\}] \times \mathbb{R}$; chiaramente $U_1 \cup U_2 = S^1 \times \mathbb{R}$.

Mostriamo che U_1 e U_2 sono omeomorfi ad \mathbb{R}^2 ; due omeomorfismi sono dati dalle applicazioni

$$\varphi_1: U_1 \to \mathbb{R}^2, \ \varphi_1((x, y, z)) = \left(\frac{x}{1-y}, z\right)$$

$$\varphi_2: U_2 \to \mathbb{R}^2, \ \varphi_2((x, y, z)) = \left(\frac{x}{1+y}, z\right)$$

Si osservi che, p_1 e p_2 sono ottenute dalle due proiezioni stereografiche di centro rispettivamente (0,1) e (0,-1) e dall'identità di \mathbb{R} .

Ne segue che la famiglia $\{\varphi_1, \varphi_2\}$ è un atlante di $S^1 \times \mathbb{R}$.

• $\mathbb{P}^2(\mathbb{R})$:

Sia $\pi: \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{P}^2(\mathbb{R})$ la proiezione e $[x_0, x_1, x_2] := \pi(x_0, x_1, x_2)$. Per ogni i = 0, 1, 2 consideriamo l'aperto di $\mathbb{P}^2(\mathbb{R})$ $U_i = \{[x_0, x_1, x_2] : x_i \neq 0\}$; chiaramente, $\mathbb{P}^2(\mathbb{R}) = U_0 \cup U_1 \cup U_2$.

Mostriamo che $U_i \cong \mathbb{R}^2$; infatti, l'applicazione $\varphi_i : U_i \to \mathbb{R}^2$ tale che

$$\varphi_i([x_0, x_1, x_2]) = (\frac{x_0}{x_i}, \frac{x_1}{x_i}, \frac{x_2}{x_i})$$

è un omeomorfismo. Ne segue che la famiglia $\{\varphi_0, \varphi_1, \varphi_2\}$ è un atlante di $\mathbb{P}^2(\mathbb{R})$.

7. Sia $X = D_1 \cup D_2$ dove con D_i indichiamo un disco chiuso in \mathbb{R}^2 . Assegnare un omeomorfismo tra $C_1 = \partial D_1$ e $C_2 = \partial D_2$ e dimostrare che il quoziente di X ottenuto identificano punti corrispondenti di C_1 e C_2 è omeomorfo a S^2 . Generalizzare l'esercizio a S^n .

Solutione:

A meno di omeomorfismi, possiamo assumere che $D_1 := \{(x, y) \in \mathbb{R}^2 : (x - 2)^2 + y^2 \le 1\}$ e $D_2 := \{(x, y) \in \mathbb{R}^2 : (x + 2)^2 + y^2 \le 1\}.$

Siano $C_1 := \partial D_1 = \{(x,y) \in \mathbb{R}^2 : (x-2)^2 + y^2 = 1\}$ e $C_2 := \partial D_2 = \{(x,y) \in \mathbb{R}^2 : (x+2)^2 + y^2 = 1\}$. Consideriamo l'omeomorfismo $\varphi : C_1 \to C_2$ tale che $\varphi((x,y)) = (x-4,y)$. Introduciamo su X la relazione di equivalenza \sim che identifica punti corrispondenti, tramite φ , di C_1 e C_2 , definita formalmente nel modo seguente:

$$p \sim q \Leftrightarrow (p = q)$$
 oppure $(p \in C_1, q \in C_2 \in q = \varphi(p))$ oppure $(p \in C_2, q \in C_1 \in p = \varphi(q))$

Sia $\pi: X \to X/\sim$ l'applicazione quoziente.

Siano ora $f_1:D_1\to S^2$ e $f_2:D_2\to S^2$ le applicazione definite nel modo seguente:

$$f_1((x,y)) = (x-2, y, \sqrt{1-(x-2)^2-y^2}),$$

$$f_2((x,y)) = (x+2, y, \sqrt{1-(x+2)^2-y^2});$$

Definiamo allora l'applicazione $f: X \to S^2$ incollamento delle applicazioni f_1 e f_2 :

$$\forall x \in X, f(x) = f_i(x) \text{ se } x \in D_i.$$

Ci si può facilmente convincere che f è un'identificazione. Inoltre risulta f(p) = f(q) ogni volta che $p \sim q$, ovvero f è compatibile con \sim . Dalla teoria sappiamo quindi che esiste un'applicazione continua $g: X/\sim \to S^2$ definita come segue:

$$g((\pi(x))) = f(x), \forall \pi(x) \in X/\sim.$$

Si può facilmente verificare che g è biettiva.

Si ha quindi il seguente diagramma commutativo:

Essendo g biettiva e f un'identificazione concludiamo che g è un omeomorfismo, da cui $X/\sim\cong S^2.$

L'esempio si può facilmente generalizzare ad S^n .

Siano $D_1 := \{(x_1, ..., x_n) \in \mathbb{R}^n : (x_1 - 2)^2 + \cdots + x_n^2 \le 1\}$ e $D_1 := \{(x_1, ..., x_n) \in \mathbb{R}^n : (x_1 + 2)^2 + \cdots + x_n^2 \le 1\}$ e siano $C_1 := \partial D_1$ e $C_2 := \partial D_2$. Consideriamo l'omeomorfismo $\varphi : C_1 \to C_2$ tale che $\varphi((x_1, ..., x_n)) = (x_1 - 4, x_2, ..., x_n)$.

Introduciamo su X la relazione di equivalenza \sim che identifica punti corrispondenti, tramite φ , di C_1 e C_2 , definita formalmente nel modo seguente:

$$p \sim q \Leftrightarrow (p = q)$$
 oppure $(p \in C_1, q \in C_2 \text{ e } q = \varphi(p))$ oppure $(p \in C_2, q \in C_1 \text{ e } p = \varphi(q))$

Siano ora $f_1: D_1 \to S^2$ e $f_2: D_2 \to S^n$ le applicazione definite nel modo seguente:

$$f_1((x,\ldots,x_n)) = (x_1-2,x_2,\ldots,x_n,\sqrt{1-(x_1-2)^2-x_2^2-\cdots-x_n^2}),$$

$$f_2((x,\ldots,x_n)) = (x_1-2,x_2,\ldots,x_n,\sqrt{1-(x_1+2)^2-x_2^2-\cdots-x_n^2});$$

Definiamo allora l'applicazione $f: X \to S^2$ incollamento delle applicazioni f_1 e f_2 :

$$\forall x \in X, f(x) = f_i(x) \text{ se } x \in D_i.$$

Procedendo come sopra si conclude che $X/\sim \cong S^n$.