Funzioni di più variabili 2

March 9, 2021

Derivate parziali e direzionali

$$f: \mathbb{R}^n \to \mathbb{R}$$
; $\mathbf{x} = (x_1, x_2, ..., x_n) \mapsto f(\mathbf{x}) = f(x_1, x_2, ..., x_n)$

Se n = 2:

$$f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$$
, $(x, y) \mapsto f(x, y)$.

Assumiamo *D* aperto e fissiamo $(x_0, y_0) \in D$; possiamo valutare *f* in (x_0, y_0) e in un intorno $B_r(x_0, y_0)$.

Qual'è il tasso di variazione di f se ci spostiamo dal punto fissato lungo una qualunque direzione?

Consideriamo inizialmente le *direzioni degli assi*; fissiamo $y = y_0$ e muoviamo la x a partire da x_0 , oppure fissiamo $x = x_0$ e muoviamo la y a partire da y_0 .

Consideriamo quindi i limiti:

$$\lim_{h\to 0}\frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}\,;\qquad \lim_{k\to 0}\frac{f(x_0,y_0+k)-f(x_0,y_0)}{k}\,.$$

Se tali limiti esistono finiti, si chiamano **derivate parziali** di f rispetto a x e rispetto a y, calcolate nel punto (x_0, y_0) :

$$\frac{\partial f}{\partial x}(x_0, y_0) := \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$
$$\frac{\partial f}{\partial y}(x_0, y_0) := \lim_{k \to 0} \frac{f(x_0, y_0 + k) - f(x_0, y_0)}{k}$$

Altre notazioni di uso comune:

$$\partial_x f(x_0, y_0)$$
, $\partial_y f(x_0, y_0)$; $f_x(x_0, y_0)$, $f_y(x_0, y_0)$; $D_1 f(x_0, y_0)$, $D_2 f(x_0, y_0)$.

Le derivate parziali sono semplicemente le derivate (ordinarie) delle funzioni $x \mapsto f(x, y_0)$, $y \mapsto f(x_0, y)$, cioè delle *restrizioni* di f rispettivamente alle rette $y = y_0$ e $x = x_0$.

Dunque valgono le stesse regole di calcolo delle derivate ordinarie, con l'avvertenza: quando si deriva rispetto ad una variabile, l'altra viene considerata come una *costante*.

Esempio.

Derivate parziali di

$$f(x,y) = (x^2 + y)e^x + \sin(xy)$$

nel generico punto (x, y):

$$\partial_x f(x, y) = (x^2 + 2x + y)e^x + y\cos(xy);$$

$$\partial_{\nu}f(x,y)=e^{x}+x\cos(xy).$$

Significato geometrico di $\partial_x f(x_0, y_0)$ $(\partial_y f(x_0, y_0))$:

Pendenza (coefficiente angolare) della retta tangente alla curva $z = f(x, y_0)$ ($z = f(x_0, y)$), intersezione della superficie z = f(x, y) con il piano (verticale) $y = y_0$ ($x = x_0$).

<u>Esercizio</u>: verificare che i *vettori tangenti* alle due sezioni della superficie, considerate come curve regolari, sono rispettivamente:

$$i + f_x(x_0, y_0)k$$
, $j + f_y(x_0, y_0)k$.

Funzioni di più variabili 2 March 9, 2021

Derivate parziali per $n \ge 2$.

$$f:D\subseteq\mathbb{R}^n\to\mathbb{R}$$
; $\mathbf{x}=(x_1,x_2,...,x_n)\mapsto f(\mathbf{x})=f(x_1,x_2,...,x_n)$

Sia *D* aperto, $\mathbf{x}_0 \in D$; $\mathbf{e}_i = (0, 0, ..., 1, ...0)$ denota il *versore dell'asse x_i*.

La derivata parziale di f rispetto a x_i in \mathbf{x}_0 si definisce

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) := \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h \, \mathbf{e}_i) - f(\mathbf{x}_0)}{h}$$

Si muove solo l'*i*-esima variabile indipendente x_i .

Altre notazioni:

$$\partial_{x_i} f(\mathbf{x}_0)$$
; $f_{x_i}(\mathbf{x}_0)$; $D_i f(\mathbf{x}_0)$.

Se esistono tutte le derivate parziali $\partial_{x_i} f(\mathbf{x}_0)$, i = 1, 2, ..., n, la funzione si dice **derivabile** in \mathbf{x}_0 . Se f è derivabile in ogni punto di D, si dice derivabile in D.

Funzioni di più variabili 2 March 9, 2021

Se f è derivabile in un punto \mathbf{x} , si definisce **gradiente** di f il vettore

$$\nabla f(\mathbf{x}) := (\partial_{x_1} f(\mathbf{x}), \partial_{x_2} f(\mathbf{x}), ..., \partial_{x_n} f(\mathbf{x})) = \sum_{i=1}^n \partial_{x_i} f(\mathbf{x}) \mathbf{e}_i.$$

Esempi

Il gradiente della funzione $f(x, y) = x e^y$ nel generico punto (x, y) è

$$\nabla f(x,y) = e^y \mathbf{i} + x e^y \mathbf{j}.$$

Perciò:

$$\nabla f(0,0) = \mathbf{i}, \quad \nabla f(1,0) = \mathbf{i} + \mathbf{j}, \quad \nabla f(-1,2) = e^2 \mathbf{i} - e^2 \mathbf{j}, \dots$$

Se $F(x, y, z) = \sqrt{x^2 + y^2 + z^2} \equiv r$, il gradiente

$$\nabla F(x, y, z) = \frac{x}{r}\mathbf{i} + \frac{y}{r}\mathbf{j} + \frac{z}{r}\mathbf{k} \equiv \frac{\mathbf{r}}{r},$$

definito in $R^3 \setminus \{(0,0,0)\}$, è in ogni punto fuori dall'origine il *versore radiale*.

Funzioni di più variabili 2 March 9, 2021

E se volessimo valutare la variazione di f quando ci spostiamo da \mathbf{x}_0 lungo una direzione *qualsiasi*?

Se $\mathbf{x}_0 \in D$ (D aperto) e \mathbf{v} è un *versore*, consideriamo la retta $\mathbf{x}_0 + t\mathbf{v}$.

Definizione

Se esiste finito il limite

$$D_{\mathbf{v}}f(\mathbf{x}_0) := \lim_{t \to 0} \frac{f(\mathbf{x}_0 + t\,\mathbf{v}) - f(\mathbf{x}_0)}{t},$$

si dice derivata direzionale di f nella direzione di \mathbf{v} calcolata nel punto \mathbf{x}_0 .

Osservazioni

- i) Il limite è la derivata in t = 0 della restrizione di f alla retta:
- ii) Le derivate parziali sono particolari derivate direzionali (scegliere $\mathbf{v} = \mathbf{e}_i$).

Se n = 2, $\mathbf{x} = (x_0, y_0)$, $\mathbf{v} = (\cos \theta, \sin \theta)$ e si può scrivere:

$$D_{\mathbf{v}}f(x_0,y_0) = \lim_{t\to 0} \frac{f(x_0+t\cos\theta,y_0+t\sin\theta)-f(x_0,y_0)}{t}.$$

Esempio

Sia
$$f(x, y) = (x^2 y)^{1/3}$$
 e $\mathbf{v} = (\cos \theta, \sin \theta)$.

$$D_{\mathbf{v}} f(0, 0) = \lim_{t \to 0} \frac{\left((t \cos \theta)^2 t \sin \theta \right)^{1/3} - 0}{t} =$$

$$= \lim_{t \to 0} \frac{t(\cos \theta)^{2/3} (\sin \theta)^{1/3}}{t} = (\cos \theta)^{2/3} (\sin \theta)^{1/3}.$$

Osservare che le derivate parziali di f nell'origine ($\theta = 0$ e $\theta = \pi/2$) sono nulle, in accordo con le restrizioni di f agli assi: f(x,0) = 0, f(0,y) = 0.

March 9, 2021

Attenzione:

Se n=1, è noto che: f derivabile in $x_0 \Rightarrow f$ continua in x_0 . Se n>1 l'implicazione *non* vale. Nemmeno se esistono *tutte* le derivate direzionali nel punto \mathbf{x}_0 .

Esempio

$$f(x,y) = \begin{cases} 1, & \text{if } x^2 < y < 2x^2; \\ 0, & \text{otherwise.} \end{cases}$$

Dalla definizione segue che f(0,0)=0; inoltre, per ogni θ , si vede che per t abbastanza piccolo $f(t\cos\theta,t\sin\theta)=0$.

Dunque $D_{\mathbf{v}}f(0,0) = 0$ per ogni \mathbf{v} , ma f non è continua nell'origine.

Differenziabilità

Se n > 1, la derivabilità di f è un'informazione 'debole'...

Ripassiamo una definizione già introdotta nel caso n = 1:

Sia $f: \mathbb{R} \to \mathbb{R}$ derivabile in $x_0 \in \mathbb{R}$ con derivata $f'(x_0)$.

Vale allora

$$f(x_0 + h) - f(x_0) = f'(x_0) h + o(h),$$

dove l'applicazione lineare

$$h \mapsto f'(x_0) h = df(x_0)$$
,

è il differenziale di f in x_0 e il termine o(h) verifica

$$\lim_{h\to 0} o(h)/h = 0.$$

Definizione

Sia $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}^n$ aperto e $\mathbf{x}_0 \in D$. Sia inoltre $\mathbf{h} \in \mathbb{R}^n$ tale che $\mathbf{x}_0 + \mathbf{h} \in D$.

La funzione f si dice **differenziabile** in \mathbf{x}_0 se esiste $\mathbf{a} \in \mathbb{R}^n$ tale che

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = \mathbf{a} \cdot \mathbf{h} + o(|\mathbf{h}|),$$

dove $o(|\mathbf{h}|)/|\mathbf{h}| \to 0$ per $\mathbf{h} \to \mathbf{0}$.

Con a · h si indica il prodotto scalare dei due vettori:

se **a** =
$$(a_1, a_2, ..., a_n)$$
, **h** = $(h_1, h_2, ..., h_n)$,

allora

$$\mathbf{a} \cdot \mathbf{h} = a_1 h_1 + a_2 h_2 + ... + a_n h_n$$
.

L'applicazione lineare $\mathbf{h} \mapsto \mathbf{a} \cdot \mathbf{h}$, si dice **differenziale** di f nel punto \mathbf{x}_0 e si denota con il simbolo $df(\mathbf{x}_0)$.

Teorema.

Sia f differenziabile in $\mathbf{x}_0 \in D$ (aperto in \mathbb{R}^n). Allora:

- i) f è continua in \mathbf{x}_0 ;
- ii) f è derivabile in \mathbf{x}_0 e, nella definizione di differenziabilità, $\mathbf{a} = \nabla f(\mathbf{x}_0)$;
- iii) esistono tutte le derivate direzionali di f in \mathbf{x}_0 e vale la formula

$$D_{\mathbf{v}}f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{v}$$

Dimostrazione:

i) Ponendo $\mathbf{x} = \mathbf{x}_0 + \mathbf{h}$, riscriviamo la definizione di differenziabilità nella forma

$$f(\mathbf{x}) = f(\mathbf{x}_0) + \mathbf{a} \cdot (\mathbf{x} - \mathbf{x}_0) + o(|\mathbf{x} - \mathbf{x}_0|),$$

da cui si ottiene facilmente $\lim_{\mathbf{x}\to\mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$.

ii) Scegliendo $\mathbf{h} = h \mathbf{e}_i$ nella definizione di differenziabilità si ottiene

$$f(\mathbf{x}_0 + h\mathbf{e}_i) - f(\mathbf{x}_0) = \mathbf{a} \cdot h\mathbf{e}_i + o(|h\mathbf{e}_i|) = ha_i + o(|h|).$$

Dividendo per h e facendo il limite per $h \rightarrow 0$ si trova

$$\frac{\partial f}{\partial x_i}(\mathbf{x}_0) = a_i + \lim_{h \to 0} \frac{o(|h|)}{h} = a_i, \quad \forall i = 1, 2, ..., n.$$

iii) Per il punto ii), possiamo ora scrivere nella definizione

$$f(\mathbf{x}_0 + \mathbf{h}) - f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{h} + o(|\mathbf{h}|),$$

Scegliamo ora $\mathbf{h} = t \mathbf{v}$, con \mathbf{v} *versore* qualsiasi:

$$f(\mathbf{x}_0 + t\mathbf{v}) - f(\mathbf{x}_0) = t \nabla f(\mathbf{x}_0) \cdot \mathbf{v} + o(|t|),$$

Dividendo per t e facendo il limite per $t \rightarrow 0$ si ottiene ora

$$D_{\mathbf{v}}f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{v}$$

Osservazioni importanti.

Se anche una sola delle tre proprietà i), ii), iii) del teorema non è verificata, la f non è differenziabile.

Dal punto ii) segue $df(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{h}$; denotando con $d\mathbf{x}$ lo spostamento arbitrario \mathbf{h} si scrive anche

$$df(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot d\mathbf{x} = \sum_{i=1}^{n} \partial_{x_i} f(\mathbf{x}) dx_i.$$

Da iii) e dalle proprietà prodotto scalare segue:

$$D_{\mathbf{v}}f(\mathbf{x}_0) = \nabla f(\mathbf{x}_0) \cdot \mathbf{v} = |\nabla f(\mathbf{x}_0)| \cos \alpha$$

dove α è l'angolo tra il vettore $\nabla f(\mathbf{x}_0)$ (se \neq **0**) ed il versore **v**.

Dunque la derivata è massima (= $|\nabla f(\mathbf{x}_0)|$) per $\alpha = 0$.

La direzione di massima crescita di f in \mathbf{x}_0 è quella del versore $\frac{\nabla f(\mathbf{x}_0)}{|\nabla f(\mathbf{x}_0)|}$, cioè quella del gradiente.

Per n=2, ponendo $\mathbf{x}_0=(x_0,y_0)$, $\mathbf{h}=(h,k)$, la definizione di differenziabilità si scrive

$$f(x_0 + h, y_0 + k) - f(x_0, y_0) = \partial_x f(x_0, y_0) h + \partial_y f(x_0, y_0) k + o(\sqrt{h^2 + k^2})$$

Introducendo le variabili $x=x_0+h,\,y=y_0+k,$ abbiamo la relazione equivalente

$$f(x,y) = f(x_0,y_0) + \partial_x f(x_0,y_0) (x - x_0) + \partial_y f(x_0,y_0) (y - y_0) + o([(x - x_0)^2 + (y - y_0)^2]^{1/2})$$

che ha un'importante *intepretazione geometrica*: il piano di equazione

$$z = f(x_0, y_0) + \partial_x f(x_0, y_0) (x - x_0) + \partial_y f(x_0, y_0) (y - y_0)$$

si dice **piano tangente** alla superficie di equazione z = f(x, y) nel punto (x_0, y_0) e rappresenta la migliore *approssimazione lineare* di f in un intorno del punto.

Dalla geometria, il vettore

$$-\partial_{x}f(x_{0},y_{0})\mathbf{i}-\partial_{y}f(x_{0},y_{0})\mathbf{j}+\mathbf{k}$$

è perpendicolare al piano tangente. La sua direzione è la direzione *normale* alla superficie z = f(x, y) nel punto (x_0, y_0) . Osservare che

$$-\partial_x f(x_0,y_0)\mathbf{i} - \partial_y f(x_0,y_0)\mathbf{j} + \mathbf{k} = [\mathbf{i} + \partial_x f(x_0,y_0)\mathbf{k}] \wedge [\mathbf{j} + \partial_y f(x_0,y_0)\mathbf{k}]$$

Verifiche di Differenziabilità.

La verifica diretta non è generalmente agevole.

Ricordando la definizione e il punto *ii*) del teorema, occorre verificare che nel punto considerato la funzione sia derivabile, calcolare il gradiente e infine verificare il limite:

$$\lim_{\boldsymbol{h} \to \boldsymbol{0}} \frac{f(\boldsymbol{x}_0 + \boldsymbol{h}) - f(\boldsymbol{x}_0) - \nabla f(\boldsymbol{x}_0) \cdot \boldsymbol{h}}{|\boldsymbol{h}|} = 0 \ .$$

Nel caso n=2:

$$\lim_{(h,k)\to (0,0)} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\partial_x f(x_0,y_0)\,h-\partial_y f(x_0,y_0)\,k}{\sqrt{h^2+k^2}}=0\,.$$

Esempio

Verifichiamo che

$$f(x,y)=x(2y+1)$$

è differenziabile in (1,0).

Calcoliamo:

$$f(1,0) = 1$$
, $\partial_x f(1,0) = 1$, $\partial_y f(1,0) = 2$.

Il limite da verificare è allora:

$$\lim_{(h,k)\to(0,0)}\frac{(1+h)(2k+1)-1-h-2\,k}{\sqrt{h^2+k^2}}=\lim_{(h,k)\to(0,0)}\frac{2h\,k}{\sqrt{h^2+k^2}}=0\,.$$

Teorema (c.s. di differenziabilità)

Se f è derivabile in un intorno di $\mathbf{x}_0 \in \mathbb{R}^n$ e le derivate parziali di f sono continue in \mathbf{x}_0 , allora f è differenziabile in \mathbf{x}_0 .

In particolare, se f è derivabile in un aperto D con derivate parziali continue (f di classe $C^1(D)$, allora f è differenziabile in (tutti i punti di) D.

Attenzione. Se non valgono le ipotesi del teorema occorre tornare alla verifica diretta:

la funzione f(x, y) = |xy| è differenziabile nell'origine (fare la verifica con la definizione) ma *non* valgono le ipotesi del teorema in un intorno dell'origine.

Esercizio.

Verificare che la funzione $f(x,y)=xe^y$ è differenziabile in tutto \mathbb{R}^2 . Scrivere l'equazione del piano tangente alla superficie $z=xe^y$ in (2,0). Calcolare nello stesso punto tutte le derivate direzionali e determinare la direzione di massima crescita di f.