Theoretische Physik I: Klassische Mechanik (PTP1)

Universität Heidelberg Wintersemester 2019/20

Übungsblatt 11

Dozent: Prof. Dr. Matthias Bartelmann

Obertutor: Dr. Christian Angrick

Besprechung in den Übungsgruppen am 20. Januar 2020

1. Hausaufgabe: Trägheitstensoren verschiedener Zylinder

Betrachten Sie einen Hohlzylinder mit konstanter Dichte ρ , innerem Radius R_i , äußerem Radius R und Höhe h und wählen Sie ein Koordinatensystem derart, dass der Koordinatenursprung im Schwerpunkt liegt und die z-Achse entlang der Symmetrieachse des Hohlzylinders zeigt.

- a) Berechnen Sie die Masse *M* des Hohlzylinders.
- b) Bestimmen Sie die drei Diagonalelemente des Trägheitstensors Θ_{xx} , Θ_{yy} und Θ_{zz} in Abhängigkeit von M.
- c) Argumentieren Sie, dass die nebendiagonalen Elemente des Trägheitstensors verschwinden müssen. Zeigen Sie dies explizit für Θ_{xy} .

Betrachten Sie nun einen Vollzylinder mit Radius R, dessen Dichte ρ gemäß $\rho(r) = \rho_0 r/R$ mit $0 \le r \le R$ und der Konstanten $\rho_0 > 0$ von r abhängt.

- d) Bestimmen Sie auch für diesen Körper den Trägheitstensor in Abhängigkeit von seiner Masse.
- e) Wie muss R_i gewählt werden, damit der Hohlzylinder aus dem ersten Aufgabenteil dieselben Trägheitsmomente bei gleicher Masse, äußerem Radius und Höhe aufweist wie der Vollzylinder aus dem zweiten Aufgabenteil?

2. Hausaufgabe: Kugel auf schiefer Ebene

Eine homogene Kugel mit Radius R und Masse M rolle eine schiefe Ebene mit Steigungswinkel α herunter.

- a) Bestimmen Sie zunächst die Komponente der Beschleunigung, die eine Punktmasse gleicher Masse entlang der Ebene erfährt.
- b) Betrachten Sie nun die ausgedehnte Kugel. Welche Relation besteht zwischen der Geschwindigkeit ν , mit der sich der Schwerpunkt der Kugel bewegt, und der Winkelgeschwindigkeit ω , mit der sich die Kugel dreht, wenn die Kugel auf der Ebene rollt und nicht gleitet?
- c) Bestimmen Sie die kinetische Energie der Kugel, die sich aus Rotations- und Translationsenergie zusammensetzt, in Abhängigkeit von der Schwerpunktsgeschwindigkeit v.
- d) Wie stark wird der Schwerpunkt der Kugel entlang der Ebene beschleunigt? Verwenden Sie hierfür Energieerhaltung und drücken Sie die Änderung der Höhe mit Hilfe der Geschwindigkeit *v* aus. Vergleichen Sie die Lösung mit der von a).

3. Präsenzaufgabe: Trägheitstensor eines homogenen Würfels

Betrachten Sie einen homogenen Würfel mit Kantenlänge *a* und Masse *M* und wählen Sie ein Koordinatensystem derart, dass die Koordinatenachsen parallel zu den Würfelkanten liegen und dass der Koordinatenursprung mit dem Schwerpunkt zusammenfällt.

- a) Berechnen Sie den Trägheitstensor Θ in Abhängigkeit von M und a.
- b) Wie lauten die Hauptträgheitsmomente Θ_i ? Welche Aussage können Sie über die Hauptträgheitsachsen treffen?
- c) Wie lautet das Trägheitsmoment bzgl. einer Achse, die mit einer Würfelkante zusammenfällt?

4. Verständnisfragen

- a) Beschreiben Sie den Übergang von einer Ansammlung diskreter Massenpunkte in einem starren Körper zu einem Kontinuum.
- b) Was ist die Jacobi-Matrix und welche Rolle spielt ihre Determinante bei der Berechnung von Volumenintegralen?
- c) Fassen Sie die Aussage des Gauß'schen Satzes zusammen.