Task 1

An integer is called "prime" if it is divisible only by itself and 1

• For example: 5 is prime, but 4 is not.

Your task is to write a program that decides whether or not an integer input by the user is prime or not. Furthermore, after the user enters a number, the program will ask whether the user wishes to enter a new number and continue if the user types a 'y' (stops if user enters 'n').

Name your file task1.cpp

Hints:

- 1 is not prime
- No need to be clever with this. You can just use a "brute-force" method to test divisibility.

Example run (user input in red):

```
Please enter an integer: 5
5 is a prime number!
Would you like to enter another number? (y/n) y
Please enter an integer: 6
6 is not a prime number!
Would you like to enter another number? (y/n) n
Exiting...
```

Task 2

Consider the following code snippet

```
#include <iostream>
using namespace std;

int main() {
    int numbers[5] = {1, 2, 3, 4, 5};
    bool is_prime[5]; // uninitialized
    // YOUR CODE GOES HERE
    return 0;
}
```

CSCI 1300 Summer 2018 Assignment 2

Your task is to write code that assigns either a true/false to each element of the is_prime array depending on whether or not each element of the numbers array is prime or not. You will then print the contents of the array. Call your program task2.cpp

Task 3 (Extra Credit -- 20pts)

Testing for a prime number by testing divisibility is a bit inefficient. One method to **efficiently** find prime numbers is to use what is called a "prime sieve" algorithm. Check out the following link to learn more about a famous instance of such an algorithm. **Call your program task3.cpp**

https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes

The Sieve of Eratosthenes is a method for finding all prime numbers up to a given number.

Your task is to write a program that defines an array of 100 boolean values. Your goal is to implement the Sieve of Eratosthenes, which will take this array of 100 values and set all the **prime indices** to **true** and **false** otherwise.

For example, let A be our array. Then A[2] will be true and A[4] would be false, etc.

Note: You must be able to fully explain the algorithm/code that you've written to receive any points for this task.

Advice

- Finish task 1 as early as possible.
- Ask questions. Notice that I didn't go into that much detail regarding Task 2.