

Informe N° 10

Ensayo Cavitación

Laboratorio de Máquinas (ICM 557)

Segundo Semestre 2020

Profesores: Cristóbal Galleguillos

Tomas Herrera

Ayudante: Ignacio Ramos

Paralelo: 3

Nombre: Gustavo Sáez

Índice

1.	•	Intro	oducción3
2	ı	Obje	etivos
3.		Met	odología / Procedimientos4
4.	•	Resu	ıltados5
	4.	1	Tabla de Valores Medidos5
	4.	2	Tablas de Valores Calculados
	4.	3	Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad
	er	ısaya	da y sobreponga los nuevos valores de altura y caudal obtenidos9
	4.4	4	¿Qué significan las desviaciones que se producen?9
	4.	5	Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenada H, Ne en
	[%	6] res	pecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD10
	4.	6	¿Cómo determina la CSPD crítica y qué representa?11
	4.8	8	¿La curva obtenida tiene la forma característica?12
	4.9	9	¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?
			12
5.	•	Ane	xos13
6		Cond	clusiones
7		Refe	erencias 16

1. Introducción

En el presente informe, se continuará con el estudio de bombas centrífugas, particularmente la curva de columna neta de succión positiva requerida y disponible (CNSPR y CNSPD respectivamente). Mediante el estudio de estos valores, se logrará comprender de mejor manera el comportamiento de estas bombas.

2. Objetivos

El objetivo de este ensayo es determinar la curva de columna neta de succión positiva requerida, CNSPR, de una bomba centrífuga.

3. Metodología / Procedimientos

Los procedimientos a realizar en laboratorio son:

Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor.

Luego de inspeccionar los instrumentos y su operación, esperar un tiempo prudente para que se estabilice la operación de la bomba, estrangular, parcialmente, la descarga para situarse en un punto de la curva característica de la bomba ligeramente separada de su extremo derecho. A continuación, tome las siguientes medidas:

Medir:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, [rpm].
- pax% presión de aspiración, [%].
- pdx% presión de descarga, [%].
- Δhx caudal de la bomba, presión diferencial del venturímetro, [mm_{Hg}].
- Fx fuerza medida en la balanza, [kp].
- T temperatura de agua en el estanque, [ºC].
- P_{atm} presión atmosférica, [mm_{Hg}].

Finalizada esta, estrangular la válvula de aspiración haciendo disminuir la presión de aspiración y el caudal en un valor indicado por el profesor. A continuación, restablecer el caudal al valor original abriendo la válvula de descarga. Y se realizan las mediciones efectuadas anteriormente.

El procedimiento se repite tantas veces como sea necesario hasta alcanzar plena cavitación.

Terminado lo anterior, se procede de igual manera para otros puntos de curva convenientemente seleccionados. Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

4. Resultados

4.1 Tabla de Valores Medidos

				VALORES	MEDIDOS	2900 (cur	va H vs Q)				
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
1	2900	0.115	0.165	2899	91.8	5.6	140	1.19	18	757.1	0.2108
2	2900	0.115	0.165	2899	93.8	10.2	128	1.27	18	757.1	0.2108
3	2900	0.115	0.165	2898	96.3	14.6	115	1.34	18	757.1	0.2108
4	2900	0.115	0.165	2899	98.6	19.4	101	1.42	18	757.1	0.2108
5	2900	0.115	0.165	2898	100.8	24	87	1.48	18	757.1	0.2108
6	2900	0.115	0.165	2897	103.2	28.5	74	1.53	18	757.1	0.2108
7	2900	0.115	0.165	2899	104.8	32.2	63	1.53	18	757.1	0.2108
8	2900	0.115	0.165	2896	107.3	37.7	50	1.57	18	757.1	0.2108
9	2900	0.115	0.165	2897	109.7	42.2	36	1.53	18	757.1	0.2108
10	2900	0.115	0.165	2898	112.2	46.5	22	1.45	18	757.1	0.2108
11	2900	0.115	0.165	2899	115.2	50.3	9	1.21	19	757.1	0.2244
12	2900	0.115	0.165	2900	121.1	54.3	0	0.82	19	757.1	0.2244

Tabla 4.1 – Tabla de Valores Medidos en Laboratorio para 2900[rpm](curva H vs Q).

					PUN	TO 1								
	n	срах	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}	Pv			
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]			
1	2900	0.115	0.165	2908	97.4	17.6	105	1.4	16	757.1	0.18496			
2	2900	0.115	0.165	2912	79.5	12.8	105	1.4	16	757.1	0.18496			
3	2900	0.115	0.165	2912	63	8.6	105	1.4	16	757.1	0.18496			
4	2900	0.115	0.165	2913	53.5	5.2	105	1.38	16	757.1	0.18496			
5	2900	0.115	0.165	2916	50.4	5	98	1.35	16	757.1	0.18496			
6	2900	0.115	0.165	2917	39.4	4.9	89	1.4	16.5	757.1	0.19176			
7	2900	0.115	0.165	2916	36.2	4.7	79	1.4	17	757.1	0.1972			

Tabla 4.2 – Tabla de Valores Medidos Punto 1.

					PUN	TO 2					
	n	cpax	cpdx	nx	pax	pdx	∆hx	Fx	Т	P _{atm}	Pv
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]
1	2900	0.115	0.165	2917	102.3	27.8	78	1.52	17	757.1	0.1972
2	2900	0.115	0.165	2917	74	20.5	78	1.52	17	757.1	0.1972
3	2900	0.115	0.165	2917	48.4	10.6	78	1.48	17	757.1	0.1972
4	2900	0.115	0.165	2917	37.7	4.7	78	1.41	17.5	757.1	0.204
5	2900	0.115	0.165	2915	35.9	4.6	73	1.4	17.5	757.1	0.204
6	2900	0.115	0.165	2917	35.8	4.7	69	1.38	18	757.1	0.2108
7	2900	0.115	0.165	2916	36.1	4.4	64	1.35	18	757.1	0.2108

Tabla 4.3 – Tabla de Valores Medidos Punto 2.

	PUNTO 3														
n cpax cpdx nx pax pdx \(\Delta hx \) Fx T \(P_{atm} \) P															
	[rpm]	[m]	[m]	[rpm]	[%]	[%]	[mm _{Hg}]	[kp]	[°C]	[mm _{Hg}]	[mca]				
1	2900	0.115	0.165	2916	109.8	43.8	35	1.49	18	757.1	0.2108				
2	2900	0.115	0.165	2917	86.1	36.8	35	1.55	18	757.1	0.2108				
3	2900	0.115	0.165	2918	26.8	4	35	1.28	18	757.1	0.2108				
4	2900	0.115	0.165	2918	27.8	3.7	34	1.25	18.5	757.1	0.2176				
5	2900	0.115	0.165	2917	29.3	3.6	31	1.2	18.5	757.1	0.2176				

Tabla 4.4 – Tabla de Valores Medidos Punto 3.

4.2 Tablas de Valores Calculados

				V	ALORES C	ALCULAD	OS 2900 (c	urva H vs	Q)				
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
1	110.88	110.918248	-0.820115	2.240165	3.06028	3.06239163	2.53733526	2.5399619	0.92467114	36.4049218	3.74851584	9.93663954	9.93663954
2	104.76	104.796137	-0.620115	4.080165	4.70028	4.70352325	2.70791242	2.71071564	1.34181345	49.5003399	3.54161724	10.0597367	9.93663954
3	100.44	100.509317	-0.370115	5.840165	6.21028	6.21885477	2.85618186	2.86209936	1.70153274	59.4505126	3.39674286	10.2584863	9.93663954
4	93.24	93.2721628	-0.140115	7.760165	7.90028	7.90573129	3.02774459	3.0308789	2.0073249	66.2291356	3.15216105	10.4068201	9.93663954
5	89.28	89.3416149	0.079885	9.600165	9.52028	9.53342502	3.15458892	3.16112467	2.31860265	73.3473968	3.01932699	10.5850228	9.93663954
6	81.72	81.8046255	0.319885	11.400165	11.08028	11.1032403	3.26003756	3.27017588	2.47258469	75.610144	2.76461214	10.7499076	9.93663954
7	75.6	75.626078	0.479885	12.880165	12.40028	12.4088363	3.26228819	3.26566529	2.55461942	78.2266152	2.55580625	10.8532657	9.93663954
8	66.6	66.691989	0.729885	15.080165	14.35028	14.389949	3.34411256	3.35798853	2.61250121	77.7995871	2.253876	11.0292247	9.93663954
9	58.68	58.7407663	0.969885	16.880165	15.91028	15.943249	3.26003756	3.27017588	2.54941191	77.9594739	1.98516202	11.2111474	9.93663954
10	43.56	43.5900621	1.219885	18.600165	17.38028	17.4042776	3.09064455	3.09704782	2.06522353	66.6836179	1.47313938	11.3708653	9.93663954
11	25.56	25.5688168	1.519885	20.120165	18.60028	18.6131144	2.57997955	2.58265033	1.29554724	50.1634784	0.86410592	11.584689	9.93663954
12	0	0	2.109885	21.720165	19.61028	19.61028	1.749019	1.749019	0	0	0	12.136619	9.93663954

Tabla 4.5 – Tabla de Valores Calculados para 2900[rpm](curva H vs Q).

	VALORES CALCULADOS PUNTO 1													
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR	
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
1	96.48	96.2145805	-0.260115	7.040165	7.30028	7.26016865	2.9943676	2.96972272	1.901565	64.0317354	3.25160094	10.3451273	4.05169823	
2	96.48	96.0824176	-2.050115	5.120165	7.17028	7.11130605	2.9984864	2.96156975	1.8600168	62.8050986	3.24713446	8.55364738	4.05169823	
3	96.48	96.0824176	-3.700115	3.440165	7.14028	7.08155279	2.9984864	2.96156975	1.85223461	62.542326	3.24713446	6.90364738	4.05169823	
4	96.48	96.0494336	-4.650115	2.080165	6.73028	6.67034288	2.95666587	2.91725765	1.74408056	59.784934	3.24601975	5.95327835	4.05169823	
5	90	89.5061728	-4.960115	2.000165	6.96028	6.88410788	2.8953693	2.84796993	1.67735207	58.8964109	3.02488827	5.57257657	4.05169823	
6	86.4	85.896469	-6.060115	1.960165	8.02028	7.92706954	3.0036349	2.95142566	1.85358094	62.8029011	2.90289723	4.42890686	4.05169823	
7	81	80.555556	-6.380115	1.880165	8.26028	8.1698809	3.0026052	2.9534503	1.79157419	60.6603805	2.72239945	4.05169823	4.05169823	

Tabla 4.6 – Tabla de Valores Calculados Punto 1.

					VALOR	ES CALCU	JLADOS PI	JNTO 2					
	Qx	Q	pax	pdx	Hx	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]
1	80.28	79.8121358	0.229885	11.120165	10.89028	10.7637148	3.26108932	3.204405	2.33859325	72.9805767	2.69727535	10.6547558	3.94916814
2	80.28	79.8121358	-2.600115	8.200165	10.80028	10.6747608	3.26108932	3.204405	2.31926653	72.3774469	2.69727535	7.82475578	3.94916814
3	80.28	79.8121358	-5.160115	4.240165	9.40028	9.29103139	3.17527118	3.12007855	2.01862866	64.6980077	2.69727535	5.26475578	3.94916814
4	80.28	79.8121358	-6.230115	1.880165	8.11028	8.01602357	3.02508944	2.97250727	1.74161234	58.590684	2.69727535	4.18795578	3.94916814
5	78.48	78.0761578	-6.410115	1.840165	8.25028	8.16558992	3.0015755	2.95547703	1.7355198	58.7221551	2.63860745	3.99199492	3.94916814
6	75.6	75.1594104	-6.420115	1.880165	8.30028	8.20381542	2.96072583	2.90926243	1.6785057	57.6952316	2.54003508	3.94916814	3.94916814
7	72	71.6049383	-6.390115	1.760165	8.15028	8.06108472	2.8953693	2.84796993	1.57130335	55.1727505	2.41991062	3.94879024	3.94916814

Tabla 4.7 – Tabla de Valores Calculados Punto 2.

	VALORES CALCULADOS PUNTO 3													
	Qx	Q	pax	pdx	Нх	Н	Nex	Ne	Nh	η _{gl}	V	CNSPD	CNSPR	
	[m³/h]	[m³/h]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[m _{ca}]	[kW]	[kW]	[kW]	[-]	[m/s]	[m _{ca}]	[m _{ca}]	
1	54	53.7037037	0.979885	17.520165	16.54028	16.359266	3.19562982	3.14331496	2.39161697	76.0858202	1.81493296	11.1881653	2.88793518	
2	54	53.6852931	-1.390115	14.720165	16.11028	15.9230488	3.32545293	3.26764983	2.32704686	71.2146951	1.81431077	8.81805019	2.88793518	
3	54	53.6668951	-7.320115	1.600165	8.92028	8.810568	2.74712192	2.69659711	1.2871642	47.7329073	1.81368901	2.88793518	2.88793518	
4	53.28	52.9513365	-7.220115	1.480165	8.70028	8.59327382	2.68273625	2.63339562	1.23868008	47.0373713	1.78950649	2.97669257	2.88793518	
5	50.4	50.1062736	-7.070115	1.440165	8.51028	8.41137483	2.5745442	2.52979342	1.14731499	45.3521216	1.69335672	3.10961862	2.88793518	

Tabla 4.8 – Tabla de Valores Calculados Punto 2.

4.3 Con los valores del ensayo anterior, trace la curva característica de la bomba para la velocidad ensayada y sobreponga los nuevos valores de altura y caudal obtenidos.

Gráfica 4.1 – Gráfico de H vs Caudal utilizando la curva original.

4.4 ¿Qué significan las desviaciones que se producen?

Estas desviaciones repentinas ocurren cuando se produce la cavitación. La cavitación es una vaporización instantánea del fluido, que se produce principalmente en las zonas en las que la presión absoluta es muy baja, a la cual sigue una rápida condensación. Cuando las burbujas que se crean colapsan, se producen micro-chorros a presiones altas, que erosionan las partes mecánicas afectadas.

4.5 Trace tantos gráficos como series de mediciones se hayan realizado. En la ordenadaH, Ne en [%] respecto al valor sin cavitación y ηgl, y en la abscisa la CNSPD.

Gráfica 4.2 – Gráfico de % vs CNSPD en Punto 1.

Gráfica 4.3 – Gráfico de % vs CNSPD en Punto 2.

Gráfica 4.4 – Gráfico de % vs CNSPD en Punto 3.

4.6 ¿Cómo determina la CSPD crítica y qué representa?

La CSPD crítica se determina observando las gráficas presentadas arriba. En el punto de inflexión, el CSPD es crítico. Este valor además nos indica el CSPR.

4.7 Grafique la CNSPR en función del caudal.

Gráfica 4.5 – Gráfico de Caudal vs CNSPR en los 3 Puntos.

4.8 ¿La curva obtenida tiene la forma característica?

Según las curvas características de las bombas, esta debería ser ascendente, así que, pese a los pocos puntos que se tienen, se observa un comportamiento de este tipo. A continuación, se presenta una figura con una curva característica de NPSHR:

Gráfica 4.5 – Curva de CNSPR típico de una bomba.

4.9 ¿De acuerdo a la velocidad específica de esta bomba los valores de la CNSPR son apropiados?

Gracias a la experiencia de bombas centrífugas, y considerando la velocidad específica para esta bomba, se puede comprobar que el valor de CNSPR es apropiado.

5. Anexos

• Fórmulas:

Caudal:

De gráfico del venturímetro adjunto se determina el caudal para cada línea de mediciones: Qx

Caudal corregido:

$$Q = Qx \left(\frac{n}{nx}\right) \quad \left\lceil \frac{m^3}{h} \right\rceil$$

Presión de aspiración:

$$pax = 0.1 pax\% - 10 - \frac{cpax}{1000} [m_{ca}]$$

cpax = 115 [mm]

Presión de descarga:

$$pdx = 0.4 pdx\% + \frac{cpdx}{1000} \left[m_{ca} \right]$$

cpdx=165 [mm]

Altura:

$$Hx = -pax + pdx$$
 $[m_{ca}]$

Altura corregida:

$$H = Hx \left(\frac{n}{nx}\right)^2 \left[m_{ca}\right]$$

Potencia en el eje de la bomba:

$$Nex = 0,0007355 Fxnx$$
 [kW]

Potencia en el eje de la bomba corregida:

$$Ne = Nex \left(\frac{n}{nx}\right)^3$$
 [kW]

Potencia hidráulica:

$$Nh = \gamma \frac{QH}{3600}$$
 [kW]

 γ peso específico del agua en $[N/m^3]$

Rendimiento global:

$$\eta_{gl} = \frac{Nh}{Ne} 100 \quad [\%]$$

Velocidad tangencial del rodete en la descarga:

$$U_2 = \frac{\pi}{60} n D_2 \left[\frac{m}{s} \right]$$

Velocidad meridional de descarga:

$$cm_2 = \frac{Q}{3600\pi D_2 B_2} \quad \left[\frac{m}{s}\right]$$

D₂ diámetro exterior del rodete

B2 ancho exterior del rodete

Phi:

$$\phi = \frac{cm_2}{U_2}$$
 [-]

Psi:

$$\psi = \frac{2gH}{U_2^2} \quad [-]$$

Velocidad:

$$V = \frac{4 Q}{3600 \pi D_A^2} \qquad \left[\frac{m}{s} \right]$$

$$D_A = 0,1023 \text{ [m]}$$

Columna neta de succión positiva disponible, CNSPD.

$$CNSPD = pax + \frac{13,54Patm}{1000} + \frac{V^2}{2g} - Pv$$
 $[m_{ca}]$

Pv = presión de vapor del líquido bombeado en [m_{ca}]

Columna neta de succión positiva requerida ,CNSPR.

$$CNSPR = CNSPD_{CRITICA}$$

• Gráfico de Venturímetro para cálculo del Caudal:

6. Conclusiones

Gracias a la realización de este ensayo se pudo comprender el concepto de cavitación en una bomba. Cabe destacar también la importancia del CNSPR, y las curvas de la bomba también sirven para obtener datos importantes e interesantes acerca de este tipo de bombas.

7. Referencias

- Valores obtenidos de experiencia Aula Virtual
- PPT suministrado por profesor Tomás, en aula virtual.
- http://docencia.udea.edu.co/cen/tecnicaslabquimico/03anexos/anexo05.htm
- https://www.debem.com/es/la-cavitacion-en-las-bombas-centrifugas/