Construção de Compiladores

Ciência da Computação

UFFS

Atividade avaliativa semana 4

Docente: BRAULIO ADRIANO DE MELLO Discente: JARDEL OSÓRIO DUARTE

Objetivo:

Verificação de aprendizagem: reconhecedores sintáticos Enunciados da atividade.

1 (peso 3): Para reconhecimento sintático por APND, explique qual a diferença entre reconhecimento por estado final e reconhecimento por pilha vazia. Considerando as seguintes definições para um linguagem qualquer G:

= estado inicial; I = símbolo inicial da pilha; F = conjunto de estados finais da pilha;

O reconhecimento por estado final é dado pela seguinte definição

$$L_{ef}(G) = \{ a \in \Sigma^* \} \mid [i, \ a, \ I] \vdash {}^* \ [f, \epsilon, \gamma] \ , \ com \ f \in F \ e \ \gamma \in {}^{\textstyle \lceil} \ * \ qualquer.$$

E o reconhecimento por estado de pilha vazia é dado por:

$$L_{_{DV}}(G) = \{ a \in \Sigma^* \} \mid [i, \ a, \ I] \vdash \ ^* \ [p, \varepsilon, \varepsilon] \ , \ com \ p \in K \ qualquer.$$

Observe o seguinte, em ambos os estados o automata deve reconhecer pois as propriedades F e K estão na definição do apnd, entretanto o que diferencia estes reconhecimentos é que o da fita vazia L_{pV} independente do estado da máquina, γ tem que ser igual a vazio, ou seja γ = ϵ e no reconhecimento por estado final, o estado da máquina tem que ser F e o último símbolo da pilha deve estar no conjunto do alfabeto da máquina, ou seja γ \in Γ * podendo assumir qualquer valor.

Gerando portanto as seguintes configurações finais:

[q, ϵ , γ] é uma configuração final para aceitação por estado final se q \in F; [q, ϵ , γ] é uma configuração final para aceitação por pilha vazia se $\gamma \in \epsilon$;

Importante salientar que em um caso geral as linguagens $L_{\it ef}(\it G)$ e $L_{\it pV}(\it G)$ podem ser distintas.

2 (peso 7): Para a GLC abaixo, construa a tabela preditiva e execute o reconhecimento da seguinte fita de entrada: [a]\$

```
S ::= a \mid [L]

L ::= SL'

L' ::= ;SL' \mid \epsilon

First (S) = { a, [ }; Follow (S) = { $, ;, 1 };

First (L) = { a, [ }; Follow (L) = { ] };

First (L') = { ;, $\epsilon$} Follow (L') = { ] };
```

Tabela preditiva:

	а]	1	,	\$
S	S→a	S→[L]			
L	L→SL'	L→SL'			
L'			L'→ε	L'→;SL'	

stack	input	action
\$S	[a]\$	S→ [L] return] L [
\$]L[[a]\$	Desempilha [
\$] L	a]\$	L→SL' return L'S
\$ 1 L' S	a]\$	S→a
\$] L' a	a]\$	Desempilha a
\$ 1 L']\$	L'→ε
\$]]\$	Desempilha]
\$	\$	Aceita a sentença