Lab3 Report

R12943006 謝郡軒

Block Diagram

Finite State Machine

Operation

AXI4-Lite Write

- If address == 0, FIR immediately changes ap_idle, ap_done, ap_start
- o if address == 1, FIR immediately changes data length
- if other addresses, meaning that coefficients are inputted, write the data into tap_bram

AXI4-Lite Read

- If address == 0, FIR immediately output {ap_idle, ap_done, ap_start}
- if address == 1, FIR immediately output data_length
- if other addresses, meaning that tb wants to read coefficients, then read the corresponding coefficients from tap_bram and then output
 - The reading process takes 3 cycles, one for asking tap_bram for data, one for tap_bram to read, one for outputting the data
 - Because the reading process can be pipelined, "arready" will be pulled down to 0 only for 1 cycle

AXI4-Stream Read

FIR pulls "ss tready" to 1 for 1 cycle if FIR needs data

AXI4-Stream Write

When FIR finishes calculating one answer, FIR pulls "sm_tvalid" to 1 for 1
 cycle and sets "sm_tdata" to the output answer at the same time

At The Very Start

- Before tb starts to input coefficients, tb first checks whether FIR is idle. If
 ap_idle == 1, then tb starts to input coefficients.
- After FIR receives all coefficients, tb will start reading coefficients
- If all coefficients are correct, then tb write ap_start 1, and FIR start calculating

BRAM access during calculation

- Before any calculation is conducted, I write 0 to every address except address 0 in tap_bram, because the first n answers are calculated using the first n data only
- Input data from AXI4-Stream is stored in data_bram sequentially, and it replaces the oldest data if data_bram is full. That is, the ith data is stored in address (i % 12) in data_bram
- The figure below shows the calculation of the first data
 - Data with the same color in data bram and tap bram will multiply.
 - Since there is only one multiplier, each data pair is multiplied in 1 cycle. The product is added to a register called sum.
 - The first data read from data_bram is address 0, after that, read address in decreasing order.
 - The first data read from tap_bram is address 0, after that, read address in increasing order.

■ After 11 cycles of calculation, the sum will be outputted to "sm_tdata" and pull "sm_tvalid" to 1 simultaneously for 1 cycle

First data

- The figure below shows the calculation of the second data
 - The first data read from data_bram is address 1, after that, read address in decreasing order.
 - The first data read from tap_bram is address 0, after that, read address in increasing order.

Second data

- The figure below shows the calculation of the 12th data
 - d11 replace the original d0 in data bram
 - The first data read from data_bram is address 0, after that, read address in decreasing order.
 - The first data read from tap_bram is address 0, after that, read address in increasing order.

12th data

How ap_done is generated

- When FIR gets stream data with "ss_tlast" high, then FIR will calculate the last data, and after the calculation, FIR will pull ap_done to 1
- After the last data is successfully sent to tb, FIR will pull ap_idle to 1

Resource Usage

Component

```
Detailed RTL Component Info :
   -Adders :
          2 Input
                    32 Bit
                                  Adders := 1
          2 Input
                    12 Bit
                                  Adders := 3
                     4 Bit
          2 Input
                                  Adders := 1
          2 Input
                     3 Bit
                                  Adders := 2
  --Registers :
                                Registers := 6
                      32 Bit
                      16 Bit
                                Registers := 1
                      12 Bit
                                Registers := 3
                       4 Bit
                                Registers := 3
                       3 Bit
                                Registers := 1
                       1 Bit
                                Registers := 15
  --Multipliers :
                     32x32 Multipliers := 1
   -Muxes:
          2 Input
                    32 Bit
                                  Muxes := 9
          4 Input
                    32 Bit
                                  Muxes := 1
          2 Input
                    12 Bit
                                  Muxes := 6
          4 Input
                    12 Bit
                                  Muxes := 2
                     8 Bit
          2 Input
                                  Muxes := 3
          2 Input
                     4 Bit
                                  Muxes := 4
          4 Input
                     4 Bit
                                  Muxes := 3
          2 Input
                     3 Bit
                                  Muxes := 1
          4 Input
                     3 Bit
                                  Muxes := 1
          2 Input
                     2 Bit
                                  Muxes := 1
                     1 Bit
                                  Muxes := 52
          2 Input
                     1 Bit
                                  Muxes := 3
          3 Input
                     1 Bit
                                  Muxes := 15
          4 Input
```

LUT & FF & BRAM

Name	Constraints	Status	WNS	TNS	WHS	THS	WBSS	TPWS	Total Power	Failed Routes	Methodology	RQA Score	QoR Suggestions	LUT	FF	BRAM	URAM	DSP
synth_1	constrs_1	synth_design Complete!												261	260	0	0	3

Register

1.1 Summary of Registers by Type											
+	!	 	++								
Total	Clock Enable	Synchronous	Asynchronous								
0	+ _		·								
0	_	l –	Set								
0	_	l –	Reset								
0	l _	Set	- 1								
0	l _	Reset	- 1								
0	Yes	-	- 1								
1	Yes	-	Set								
259	Yes	l -	Reset								
0	Yes	Set	- 1								
0	Yes	Reset	- 1								
+	+	·	++								

DSP

OSP Final Report (the ' indicates corresponding REG is set)													
Module Name	DSP Mapping	A Size	B Size	C Size	D Size	P Size	AREG	BREG	CREG	DREG	ADREG	MREG	PREG
fir	A*B	17	15	-	-	48	 0	0		-	-	0	0
fir	A*B	17	17	-	-	48	0	0	-	-	-	0	0
fir	PCIN>>17+A*B	17 	15 	- 	- +	48 +	0 +	0 +	- +	-	- +	0 +	0

Timing Report

Max Delay Paths

```
Max Delay Paths
Slack (MET) :
                                1.767ns (required time - arrival time)
                                 tap_A_r_reg[5]/C
  Source:
                                  (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@7.500ns period=15.000ns})
  Destination:
                                 sum_r_reg[31]/D
                                  (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@7.500ns period=15.000ns})
  Path Group:
                               axis_clk
  Path Group: axis_cik
Path Type: Setup (Max at Slow Process Corner)
Requirement: 15.000ns (axis_clk rise@15.000ns - axis_clk rise@0.000ns)
Data Path Delay: 13.096ns (logic 8.684ns (66.308%) route 4.412ns (33.692%))
Logic Levels: 12 (CARRY4=5 DSP48E1=2 LUT2=3 LUT3=1 LUT6=1)
Clock Path Skew: -0.145ns (DCD - SCD + CPR)
                                             2.128ns = ( 17.128 - 15.000 )
2.456ns
     Destination Clock Delay (DCD):
     Source Clock Delay (SCD):
     Clock Pessimism Removal (CPR):
                                                0.184ns
  Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
     Total System Jitter
                                   (TSJ):
                                                0.071ns
     Total Input Jitter
                                   (TIJ):
                                                0.000ns
     Discrete Jitter
                                     (DJ):
                                                0.000ns
    Phase Error
                                   (PE):
                                                0.000ns
```

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
	(clock axis clk rise edg	e)		
	. –	0.000	0.000 r	
		0.000	0.000 r	axis_clk (IN)
	net (fo=0)	0.000	0.000	axis_clk
			r	axis_clk_IBUF_inst/I
	<pre>IBUF (Prop_ibuf_I_0)</pre>	0.972	0.972 r	axis_clk_IBUF_inst/0
	net (fo=1, unplaced)	0.800	1.771	axis_clk_IBUF
			r	axis_clk_IBUF_BUFG_inst/I
	BUFG (Prop_bufg_I_0)	0.101	1.872 r	axis_clk_IBUF_BUFG_inst/0
	net (fo=260, unplaced)	0.584	2.456	axis_clk_IBUF_BUFG
	FDCE		r	tap_A_r_reg[5]/C

```
2.934 r tap_A_r_reg[5]/Q
FDCE (Prop_fdce_C_Q)
                            0.478
net (fo=5, unplaced)
                            0.993
                                      3.927 tap_A_OBUF[5]
                                          r sum_w1_i_18/I0
LUT6 (Prop_lut6_I0_0)
                                      4.222 r sum_w1_i_18/0
                            0.295
net (fo=32, unplaced)
                            0.520
                                      4.742
                                              sum_w1_i_18_n_0
                                           r sum_w1_i_1/I1
LUT3 (Prop_lut3_I1_0)
                            0.124
                                      4.866 r sum_w1_i_1/0
net (fo=2, unplaced)
                            0.800
                                      5.666
                                              sum_w1_i_1_n_0
                                            r sum_w1__0/B[16]
DSP48E1 (Prop_dsp48e1_B[16]_PCOUT[47])
                                      9.517 r sum_w1__0/PCOUT[47]
                            3.851
net (fo=1, unplaced)
                            0.055
                                      9.572 sum_w1__0_n_106
                                           r sum_w1__1/PCIN[47]
DSP48E1 (Prop_dsp48e1_PCIN[47]_P[0])
                                     11.090 \text{ r sum\_w1\__1/P[0]}
                            1.518
net (fo=2, unplaced)
                            0.800
                                     11.890
                                              sum_w1__1_n_105
                                           r sum_r[19]_i_10/I0
LUT2 (Prop_lut2_I0_0)
                            0.124
                                     12.014 r sum_r[19]_i_10/0
net (fo=1, unplaced)
                            0.000
                                     12.014 sum_r[19]_i_10_n_0
                                           r sum_r_reg[19]_i_7/S[1]
CARRY4 (Prop_carry4_S[1]_CO[3])
                            0.533
                                     12.547 r sum_r_reg[19]_i_7/C0[3]
                                     12.556 sum_r_reg[19]_i_7_n_0
net (fo=1, unplaced)
                            0.009
                                            r sum_r_reg[23]_i_7/CI
CARRY4 (Prop_carry4_CI_CO[3])
                            0.117
                                     12.673 r sum_r_reg[23]_i_7/C0[3]
                                     12.673 sum_r_reg[23]_i_7_n_0
r sum_r_reg[27]_i_7/CI
net (fo=1, unplaced)
                            0.000
CARRY4 (Prop_carry4_CI_0[3])
                                     13.004 r sum_r_reg[27]_i_7/0[3]
                            0.331
                                     13.622 sum_r_reg[27]_i_7_n_4
net (fo=1, unplaced)
                            0.618
                                           r sum_r[27]_i_3/I1
LUT2 (Prop_lut2_I1_0)
                            0.307
                                     13.929 r sum_r[27]_i_3/0
net (fo=1, unplaced)
                            0.000
                                     13.929 sum_r[27]_i_3_n_0
                                           r sum_r_reg[27]_i_2/S[3]
CARRY4 (Prop_carry4_S[3]_CO[3])
                            0.376
                                     14.305 r sum_r_reg[27]_i_2/C0[3]
                                     14.305 sum_r_reg[27]_i_2_n_0
                            0.000
net (fo=1, unplaced)
                                           r sum_r_reg[31]_i_3/CI
CARRY4 (Prop_carry4_CI_0[3])
                            0.331
                                     14.636 r sum_r_reg[31]_i_3/0[3]
                                              sum_r_reg[31]_i_3_n_4
net (fo=1, unplaced)
                            0.618
                                     15.254
                                           r sum_r[31]_i_2/I0
                                     15.553 r sum_r[31]_i_2/0
LUT2 (Prop_lut2_I0_0)
                            0.299
net (fo=1, unplaced)
                            0.000
                                     15.553
                                               sum_w[31]
FDCE
                                         r sum_r_reg[31]/D
(clock axis_clk rise edge)
                            15.000
                                      15.000 r
                                      15.000 r axis_clk (IN)
                             0.000
net (fo=0)
                             0.000
                                      15.000
                                                axis_clk
                                            r axis_clk_IBUF_inst/I
IBUF (Prop_ibuf_I_0)
                             0.838
                                      15.838 r axis_clk_IBUF_inst/0
net (fo=1, unplaced)
                             0.760
                                      16.598
                                                axis_clk_IBUF
                                            r axis_clk_IBUF_BUFG_inst/I
BUFG (Prop_bufg_I_0)
                                      16.689 r axis_clk_IBUF_BUFG_inst/0
                             0.091
net (fo=260, unplaced)
                             0.439
                                      17.128
                                                axis_clk_IBUF_BUFG
FDCE
                                               sum_r_reg[31]/C
                                      17.311
clock pessimism
                             0.184
                            -0.035
                                      17.276
clock uncertainty
FDCE (Setup_fdce_C_D)
                             0.044
                                      17.320
                                                sum_r_reg[31]
                                      17.320
required time
arrival time
                                     -15.553
```

Simulation Waveform

At the begin

At the end

