SubnetMask: come funzionano e come si calcolano le sottoreti (SpySystem.it)

In una rete TCP/IP, se un computer (A) deve inoltrare una richiesta ad un altro computer (B) attraverso la rete locale, lo dovrà fare riferendosi ad un indirizzo IP che identificherà univocamente il computer (B) sulla rete.

Una volta ricevuta la richiesta il computer (B) dovrà rispondere, e per farlo, si dovrà riferire, a sua volta, all'indirizzo IP univoco che identifica il computer che ha proposto la richiesta, estrapolando l'indirizzo dalla richiesta stessa.

Due o più computer per capire se operano sulla stessa rete TCP/IP usano la maschera di sottorete (comunemente chiamata Subnet Mask) per distinguere nell'indirizzo IP l'ID di rete e l'ID dell'host.

La Subnet Mask blocca una parte dell'indirizzo IP in modo che il TCP/IP possa distinguere l'ID di rete dall'ID dell'host.

Indirizzo IP		192.168.001	.001
		ID di rete	ID dell'host
Subnet Mask		255.255.255	.000

Per comprendere meglio come la subnet mask blocchi la parte dell'indirizzo IP relativo all'ID di rete è necessario convertire i valori decimali dell'indirizzo IP e della Subnet Mask in binario.

Quindi in binario si ottiene:

Eseguendo l'AND logico BIT per BIT fra l'indirizzo IP e la Subnet Mask si ottiene la separazione della parte dell'indirizzo IP che identifica l'ID della rete e dalla parte che identifica l'ID dell'host.

Quindi:

- 1 AND 1 = 1
- 1 AND 0 = 0

Come si può notare dalla figura sopra riportata, la parte di indirizzo IP interessata dai BIT settati ad 1 della Subnet Mask rimane invariata, mentre i BIT interessati dai BIT settati a 0 assume anch'esso il valore 0. Quindi ne viene fuori che la parte che rimane inalterata è l'ID della rete, mentre la parte che assume il valore 0 è la parte destinata all'Host.

Nel caso sopra citato rimangono liberi per gli Host gli ultimi 8 bit dell'indirizzo di IP.

Per calcolare il numero di Host che possono far parte della rete si esegue un semplice calcolo.

Numero Host = $2^N - 2$

Dove il primo 2 sta ad indicare il numero di possibili valori che può assumere il bit (0 o 1), N sta ad indicare il numero di bit destinati agli Host (8 nel nostro caso). Da questo numero bisogna sottrarre gli indirizzi estremi della nostra rete, in quanto non utilizzabili come indirizzi di Host (0 e 255 nel nostro caso). Vieni fuori quindi che nella rete sopra descritta possiamo utilizzare per gli Host gli indirizzi IP da 192.168.1.1 a 192.168.1.254.

Indirizzo Broadcast

Nelle reti di calcolator<u>i</u>, un **IP Broadcast** è un indirizzo IP che consente l'invio delle informazioni a tutti gli host sulla stessa sottorete invece che ad un singolo destinatario.

L'indirizzo broadcast si ricava calcolando l'OR logico tra l'indirizzo IP e il complemento bit-a-bit della subnet mask.

Specchietto per determinare rapidamente la parte finale di una maschera di rete secondo la notazione decimale puntata.

Ottetto binario	Ottetto decimale
111111112	255 ₁₀
111111102	254 ₁₀
111111002	252 ₁₀
111110002	248 ₁₀
111100002	240 ₁₀
11100000 ₂	224 ₁₀
110000002	192 ₁₀
10000000 ₂	128 ₁₀
000000002	0 ₁₀

□ Verifica con IP Subnet Calculator (http://www.subnet-calculator.com/)

□ Verifica con : Calcolatrice IP online

(http://www.fagintosh.com/risorse/it/othutil/webapps/ipcalc/)

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
192.168.1.1 /24	255.255.255.0	192.168.1.0	192.168.1.255

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
С	1	256	254

Subnet	Network	Min IP	Max IP	Broadcast
0	192.168.1.0	192.168.1.1	192.168.1.254	192.168.1.255

Notazione / lunghezza del prefisso

Esiste un altro modo di indicare Indirizzo IP e Subnet Mask, ed è il seguente:

Prefisso	SubnetMask	Prefissso	SubnetMask
/0	0.0.0.0	/1	128.0.0.0
/2	192.0.0.0	/3	224.0.0.0
/4	240.0.0.0	/5	248.0.0.0
/6	252.0.0.0	/7	254.0.0.0
/8	255.0.0.0	/9	255.128.0.0
/10	255.192.0.0	/11	255.224.0.0
/12	255.240.0.0	/13	255.248.0.0
/14	255.252.0.0	/15	255.254.0.0
/16	255.255.0.0	/17	255.255.128.0
/18	255.255.192.0	/19	255.255.224.0
/20	255.255.240.0	/21	255.255.248.0
/22	255.255.252.0	/23	255.255.254.0
/24	255.255.255.0	/25	255.255.255.128
/26	255.255.255.192	/27	255.255.255.224
/28	255.255.255.240	/29	255.255.255.248
/30	255.255.255.252	/31	255.255.255.254
/32	255.255.255.255		

☐ II metodo Chumley si può applicare per subnets > /24

Esempio:

Consideriamo l'indirizzo : 192.168.4.18/29

/29 è proprio il numero di bits usati per la subnet mask.

In tal caso la subnet mask sarà: 255.255.255.248.

Effettuiamo il seguente calcolo : 256-248 = 8

Network Address (18 preso dall'indirizzo specificato)

$$integer(18/8) = 2 * 8 = 16$$

192.168.4.16

Broadcast Address (18 preso dall'indirizzo specificato)

integer(
$$18/8$$
) = $(2 + 1) * 8 - 1 = 23$

192.168.4.23

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
192.168.4.18 /29	255.255.255.248	192.168.4.16	192.168.4.23

Binary IP Address: 11000000.10101000.0000100.00010010
Binary Subnet Mask: 1111111111111111111111111000

AND

Binary **Network** Address: 11000000.10101000.0000100.00010000

Binary IP Address: 11000000.10101000.0000100.00010010 Complemento a 1 della S. M. : 00000000.0000000.00000000.00000111

OR

Binary **Broadcast** Address: 11000000.10101000.0000100.00010111

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
С	32	8	6

con il prefisso /29 si hanno 5 bit per le subnets e 3 bit per gli indirizzi IP e quindi il numero delle subnet è 32 (2^5) ed il numero degli indirizzi IP possibili è 8 (2^3) .

Subnet	Network	Min IP	Max IP	Broadcast
0	192.168.4.0	192.168.4.1	192.168.4.6	192.168.4.7
1	192.168.4.8	192.168.4.9	192.168.4.14	192.168.4.15
2	192.168.4.16	192.168.4.17	192.168.4.22	192.168.4.23
3	192.168.4.24	192.168.4.25	192.168.4.30	192.168.4.31
4	192.168.4.32	192.168.4.33	192.168.4.38	192.168.4.39
5	192.168.4.40	192.168.4.41	192.168.4.46	192.168.4.47
6	192.168.4.48	192.168.4.49	192.168.4.54	192.168.4.55
7	192.168.4.56	192.168.4.57	192.168.4.62	192.168.4.63
8	192.168.4.64	192.168.4.65	192.168.4.70	192.168.4.71
9	192.168.4.72	192.168.4.73	192.168.4.78	192.168.4.79
10	192.168.4.80	192.168.4.81	192.168.4.86	192.168.4.87
11	192.168.4.88	192.168.4.89	192.168.4.94	192.168.4.95
12	192.168.4.96	192.168.4.97	192.168.4.102	192.168.4.103
13	192.168.4.104	192.168.4.105	192.168.4.110	192.168.4.111
14	192.168.4.112	192.168.4.113	192.168.4.118	192.168.4.119
15	192.168.4.120	192.168.4.121	192.168.4.126	192.168.4.127
16	192.168.4.128	192.168.4.129	192.168.4.134	192.168.4.135
17	192.168.4.136	192.168.4.137	192.168.4.142	192.168.4.143
18	192.168.4.144	192.168.4.145	192.168.4.150	192.168.4.151
19	192.168.4.152	192.168.4.153	192.168.4.158	192.168.4.159
20	192.168.4.160	192.168.4.161	192.168.4.166	192.168.4.167
21	192.168.4.168	192.168.4.169	192.168.4.174	192.168.4.175
22	192.168.4.176	192.168.4.177	192.168.4.182	192.168.4.183
23	192.168.4.184	192.168.4.185	192.168.4.190	192.168.4.191
24	192.168.4.192	192.168.4.193	192.168.4.198	192.168.4.199
25	192.168.4.200	192.168.4.201	192.168.4.206	192.168.4.207
26	192.168.4.208	192.168.4.209	192.168.4.214	192.168.4.215
27	192.168.4.216	192.168.4.217	192.168.4.222	192.168.4.223
28	192.168.4.224	192.168.4.225	192.168.4.230	192.168.4.231
29	192.168.4.232	192.168.4.233	192.168.4.238	192.168.4.239
30	192.168.4.240	192.168.4.241	192.168.4.246	192.168.4.247
31	192.168.4.248	192.168.4.249	192.168.4.254	192.168.4.255

Verifica con : ipcalc321.exe

Fir	First 📴 Last 📴 Selected			
#	ID	ID Range Broadcas		
1	192.168.4.8	192.168.4.9 - 192.168.4.14	192.168.4.15	
2	192.168.4.16	192.168.4.17 - 192.168.4.22	192.168.4.23	
3	192.168.4.24	192.168.4.25 - 192.168.4.30	192.168.4.31	
4	192.168.4.32	192.168.4.33 - 192.168.4.38	192.168.4.39	
5	192.168.4.40	192.168.4.41 - 192.168.4.46	192.168.4.47	
6	192.168.4.48	192.168.4.49 - 192.168.4.54	192.168.4.55	
7	192.168.4.56	192.168.4.57 - 192.168.4.62	192.168.4.63	
8	192.168.4.64	192.168.4.65 - 192.168.4.70	192.168.4.71	
9	192.168.4.72	192.168.4.73 - 192.168.4.78	192.168.4.79	
10	192.168.4.80	192.168.4.81 - 192.168.4.86	192.168.4.87	
11	192.168.4.88	192.168.4.89 - 192.168.4.94	192.168.4.95	
12	192.168.4.96	192.168.4.97 - 192.168.4.102	192.168.4.103	
13	192.168.4.104	192.168.4.105 - 192.168.4.110	192.168.4.111	
14	192.168.4.112	192.168.4.113 - 192.168.4.118	192.168.4.119	
15	192.168.4.120	192.168.4.121 - 192.168.4.126	192.168.4.127	
16	192.168.4.128	192.168.4.129 - 192.168.4.134	192.168.4.135	
17	192.168.4.136	192.168.4.137 - 192.168.4.142	192.168.4.143	
18	192.168.4.144	192.168.4.145 - 192.168.4.150	192.168.4.151	
19	192.168.4.152	192.168.4.153 - 192.168.4.158	192.168.4.159	
20	192.168.4.160	192.168.4.161 - 192.168.4.166	192.168.4.167	
21	192.168.4.168	192.168.4.169 - 192.168.4.174	192.168.4.175	
22	192.168.4.176	192.168.4.177 - 192.168.4.182	192.168.4.183	
23	192.168.4.184	192.168.4.185 - 192.168.4.190	192.168.4.191	
24	192.168.4.192	192.168.4.193 - 192.168.4.198	192.168.4.199	
25	192.168.4.200	192.168.4.201 - 192.168.4.206	192.168.4.207	
26	192.168.4.208	192.168.4.209 - 192.168.4.214	192.168.4.215	
27	192.168.4.216	192.168.4.217 - 192.168.4.222	192.168.4.223	
28	192.168.4.224	192.168.4.225 - 192.168.4.230	192.168.4.231	
29	192.168.4.232	192.168.4.233 - 192.168.4.238	192.168.4.239	
30	192.168.4.240	192.168.4.241 - 192.168.4.246	192.168.4.247	

□ Verifica con : IP Subnet Calculator (http://www.subnet-calculator.com/)

□ Verifica con : Calcolatrice IP online

(http://www.fagintosh.com/risorse/it/othutil/webapps/ipcalc/)

(da Wikipedia)

Subnet Mask o "Maschera di Sottorete", erroneamente chiamata "indirizzo di subnet", è necessaria al computer che deve comunicare con un altro indirizzo IP per sapere se deve instradare i pacchetti verso il gateway della sua rete locale oppure usare l'indirizzo di rete locale del destinatario (ethernet, tokenring o quant'altro).

Il **gateway** (dall'inglese, *portone*, *passaggio*) è un dispositivo di rete che opera al livello di rete e superiori del modello ISO/OSI.

Il suo scopo principale è quello di veicolare i pacchetti di rete all'esterno della rete locale (LAN). Da notare che gateway è un termine generico che indica il servizio di inoltro dei pacchetti verso l'esterno; il dispositivo hardware che porterà a termine questo compito è tipicamente un router.

Nelle reti più semplici è presente un solo *gateway* che inoltra tutto il traffico diretto all'esterno verso la rete internet. In reti più complesse in cui sono presenti parecchie subnet, ognuna di queste fa riferimento ad un *gateway* che si occuperà di instradare il traffico dati verso le altre sottoreti o a rimbalzarlo ad altri *gateway*.

Spesso i *gateway* non si limitano a fornire la funzionalità di base di *routing* ma integrano altri servizi come proxy DNS, firewall, NAT, etc

Principio di funzionamento

- Un computer connesso alla rete locale confronta l'indirizzo di destinazione dei dati da inviare con la subnet mask:
 - o se corrispondono, significa che il computer di destinazione è sulla stessa rete locale;
 - o se invece non corrispondono, il computer d'origine invia i dati al *gateway* predefinito, il quale si occuperà del loro successivo instradamento verso la rete remota di destinazione!

Normalmente viene indicata con un indirizzo di 4 byte scritti sotto forma di 4 numeri decimali separati da un punto, come nel caso degli indirizzi ip, ad esempio:

- 255.255.0.0
- 255.255.255.192

E' altresì identificabile apponendo al pseudo-indirizzo IP della rete locale a cui si riferisce, una barra e un numero, come questi:

- 192.168.0.0/16
- 61.161.16.224/27

Tale notazione sta a significare che dei 32 bit dello pseudo-indirizzo IP, i primi 16 sono comuni a tutti gli IP della rete locale a cui è connesso il computer, mentre i bit successivi variano per ogni computer della rete (non è quindi un vero indirizzo IP perché identifica un gruppo di computer e non uno soltanto). Il primo esempio sopra è molto comune ed è il caso di una rete IP privata, che può contenere fino a 65534 (cioè 2³²⁻¹⁶-2) computer; il secondo invece è decisamente particolare ed è una sottorete internet "non locale" che può contenere fino a 30 computer (cioè 2³²⁻²⁷-2).

Quando il sistema operativo (più precisamente: il livello IP dello stack TCP/IP) riceve da un programma la richiesta di inviare un pacchetto IP ad un certo indirizzo IP destinatario, per prima cosa calcola l'AND logico fra la subnet mask e il proprio indirizzo IP, e lo confronta con l'AND logico tra la subnet mask e l'indirizzo IP di destinazione. Se il risultato delle operazioni è identico (cioè i bit che identificano l'id di rete, o net ID, sono identici, mentre variano solo i bit dell'id di host) allora invierà il pacchetto nella rete locale indirizzandolo con l'indirizzo di rete locale del PC destinatario (se non conosce tale indirizzo userà il protocollo ARP per trovarlo); se invece il risultato delle operazioni è differente significa che il computer destinatario non appartiene alla rete locale, e il pacchetto verrà trasmesso al gateway della rete locale affinché lo instradi verso la rete remota che contiene il computer destinatario.

Fra i sistemisti è diventata pratica comune usare le subnet mask per identificare e dimensionare le reti IP, sezionandole in sottoreti per poterle meglio gestire ed amministrare.

Un esempio pratico

Supponiamo che il protocollo IP del nostro computer sia configurato come segue:

Indirizzo IP: 192.168.32.97Subnet Mask: 255.255.255.224

e che richiediamo di connetterci all'indirizzo IP 192.168.32.130: allora lo strato IP calcolerà:

192.168.32.97 **AND** 255.255.255.224 = 192.168.32.96

operazione che per maggiore chiarezza riportiamo anche in numeri binari:

11000000.10101000.00100000.01100001 **AND** 11111111.11111111111111111111111111100000 =

11000000.10101000.00100000.01100000

Ora ripetiamo l'operazione con l'IP di destinazione:

192.168.32.130 **AND** 255.255.255.224 = 192.168.32.128

Per maggior chiarezza riportiamo l'operazione in binario:

11000000.10101000.00100000.10000010 **AND** 11111111.1111111.111111111.111100000 =

11000000.10101000.00100000.10000000

I due risultati 192.168.32.96 e 192.168.32.128, essendo differenti tra di loro, indicano due macchine appartenenti a diverse reti.

Se al posto dell'indirizzo da raggiungere ci fosse stato l'indirizzo 192.168.32.100, i due indirizzi avrebbero indicato macchine appartenenti alla medesima sottorete:

192.168.32.100 **AND** 255.255.255.224 = 192.168.32.96

11000000.10101000.00100000.01100100 **AND** 11111111.1111111.111111111.111100000 =

11000000.10101000.00100000.01100000

11000000110101000100100000101100000

IP e maschera di sottorete

Ogni computer connesso ad Internet è identificato *globalmente* mediante un indirizzo (chiamato appunto *indirizzo IP*) di 4 byte (es 192.168.120.10) ma, se due computer sono connessi alla medesima rete locale (LAN), che collega i computer di uno stesso edificio, questi comunicano in modo **diretto**, mediante l'indirizzo Ethernet (o MAC) di sei byte, che identifica le rispettive schede di rete. Altrimenti, la comunicazione è indirizzata al *router*, che svolge le funzioni di *instradamento* verso il resto di Internet.

Ma come fa un computer a capire che il destinatario è nella stessa LAN?? Si utilizza la cosidetta *maschera di sottorete*, che indica la parte iniziale dell'indirizzo IP (il prefisso) da interpretare come identificatore della LAN:

Indirizzo IP/maschera	192.168.120.10/22	solo i primi 22 bit identificano la LAN
in binario	11000000.10101000.01111000.00001010	
parte sottorete	<u>11000000.10101000.011110</u> 00.00000000	
indirizzo di sottorete	192.168.120.0/22	

In definitiva, la maschera di sottorete identifica un sottoinsieme di tutti gli indirizzi IP: ad esempio, i computer con indirizzo IP 192.168.120.X, appartengono alla sottorete 192.168.120.0/24, contenuta dentro a quella con maschera /22. In particolare, la sottorete con maschera di ventidue bit (/22), contiene al suo interno le quattro LAN con maschera a 24 bit 192.168.120.0/24, 192.168.121.0/24, 192.168.123.0/24.

La rete con maschera /22 utilizza 6 bit del terzo ottetto per identificare la LAN. Con gli altri 2 bit disponibili si possono, ovviamente, creare solo 4 LAN con maschera /24.

Nel caso specifico $120_{10} = 01111000_2$

variando gli ultimi 2 bit si ha:

$$121_{10} = 01111001_2$$
 $122_{10} = 01111010_2$ $123_{10} = 01111011_2$

D.: Come fa il mittente a capire che il destinatario è nella sua stessa sottorete?

R.: Mette in AND l'indirizzo IP di destinazione con la Network Mask, e confronta il risultato con l'AND del proprio indirizzo, per la stessa maschera. Se i risultati coincidono, gli indirizzi appartengono alla stessa LAN

Esempio: 192.168.121.32 e 192.168.122.45, messi in AND con maschera di lunghezza 22, forniscono lo stesso risultato, ovvero 192.168.120.0. Morale, tutti i computer della stessa LAN, devono utilizzare la stessa Network Mask!! Altrimenti, per poter comunicare tra loro in modo diretto, necessiterebbero della presenza di un router.

192.168.121.32 e 192.168.125.45 messi in AND con una maschera di lunghezza 22, non forniscono lo stesso risultato e quindi appartengono a reti diversi.

Per verificare, manualmente, se il secondo indirizzo IP appartiene alla stessa rete del primo si può anche individuare l'intervallo di indirizzi individuati dal dato indirizzo IP con la relativa subnet mask. Se l'indirizzo IP destinatario rientra in questo intervallo vuol dire che appartiene alla stessa rete altrimenti appartiene ad una rete diversa.

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
192.168.121.32 /22	255.255.252.0	192.168.120.0	192.168.123.255

Min IP	Max IP
192.168.120.1	192.168.123.254

quindi l'indirizzo 192.168.122.45 appartiene alla stessa rete in quanto rientra nell'intervallo individuato, mentre l'indirizzo 192.168.125.45, non rientrando in tale intervallo, appartiene ad una rete diversa.

Verifica con l'operazione AND:

192.168.122.45 **AND** 255.255.252.0 = 192.168.120.0 (stesso risultato = stessa rete)

11000000.10101000.01111010.00101101 **AND** 11111111.11111111.11111100.00000000 =

11000000.10101000.01111000.00000000

192.168.125.45 **AND** 255.255.252.0 = 192.168.124.0 (risultato diverso = rete diversa)

11000000.10101000.01111101.00101101 **AND** 11111111.11111111.11111100.00000000 =

11000000.10101000.01111100.00000000

Metodo di calcolo

Dato un indirizzo IP e una maschera di sottorete, si ottengono le informazioni seguenti con le seguenti operazioni bit per bit

- indirizzo di rete: indirizzo AND maschera
- numero di host: indirizzo AND NOT maschera
- indirizzo di broadcast: indirizzo di rete XOR NOT maschera
- numero di sottorete: indirizzo di rete AND NOT maschera default

definendo:

- (congiunzione) 0 AND 0 = 0, 0 AND 1 = 0, 1 AND 0 = 0, 1 AND 1 = 1
- (disgiunzione esclusiva) 0 XOR 0 = 0, 0 XOR 1 = 1, 1 XOR 0 = 1, 1 XOR 1 = 0
- (negazione) NOT 0 = 1, NOT 1 = 0

Esempi

Vediamo in dettaglio perché con questa subnet mask si ottengono 6 reti da 30 host ciascuna.

La formula per calcolare il numero di sottoreti è simile a quella utilizzata per calcolare il numero di host per rete e cioè:

Dove questa volta N è il numero di bit che sono stati aggiunti alla subnet mask nativa, quindi $2^3 = 8 - 2 = 6$, ecco ottenuto il numero di sottoreti. Avendo aggiunto 3 bit alla rete, per gli host rimangono 5 bit, quindi utilizzando la precedente formula per il calcolo degli host di ogni rete otteniamo $2^5 = 32 - 2 = 30$ host per rete.

2) Dato un host avente indirizzo IP **150.151.152.153** e netmask **255.255.255.224** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di quella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione **150.151.152.153/27**, ovvero si hanno **27** bit per l'ID Rete e **5** per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

 $224_{10} = 11100000_2$ (dell'ultimo ottetto della netmask 3 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

 $153_{10} = 10011001_2$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

 $128_{10} = 10000000_2$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $159_{10} = 10011111_2$ (i 5 bit dell'ID Host settati a 1)

Numero Host = $2^5 - 2 = 30$

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host (128, ovvero 10000000, e 159, ovvero 10011111) si possono utilizzare per gli Host gli indirizzi IP da **150.151.152.129**, ovvero 10000001, a **150.151.152.158**, ovvero 10011110.

indirizzo IPv4	150.151.152.153
maschera di rete	255.255.255.224
indirizzo di rete	150.151.152.128
primo indirizzo utile per i nodi di rete	150.151.152.129
ultimo indirizzo utile per i nodi di rete	150.151.152.158
indirizzo broadcast	150.151.152.159

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo: 150.151.152.153 con subnet mask 255.255.255.224

Effettuiamo il seguente calcolo: 256 - 224 = 32

Network Address = integer(153/32) = 4 * 32 = 128 quindi : 150.151.152.128

Broadcast Address = integer (153/32) = (4 + 1) * 32 - 1 = 159 quindi : 150.151.152.159

Verifica con IP Subnet Mask Calculator (operatori logici)

(http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
150.151.152.153 /27	255.255.255.224	150.151.152.128	150.151.152.159

Binary IP Address: 10010110.10010111.10011000.10011001 Binary Subnet Mask: 11111111.11111111.11111111.11100000 AND 10010110.10010111.10011000.10000000 Binary **Network** Address: Binary IP Address: 10010110.10010111.10011000.10011001

Complemento a 1 della S. M.: 0000000.00000000.00000000.00011111

10010110.10010111.10011000.10011111 Binary Broadcast Address:

OR

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
В	2048	32	30

Subnet	Network	Min IP	Max IP	Broadcast
0	150.151.152.0	150.151.152.1	150.151.152.30	150.151.152.31
1	150.151.152.32	150.151.152.33	150.151.152.62	150.151.152.63
2	150.151.152.64	150.151.152.65	150.151.152.94	150.151.152.95
3	150.151.152.96	150.151.152.97	150.151.152.126	150.151.152.127
4	150.151.152.128	150.151.152.129	150.151.152.158	150.151.152.159
5	150.151.152.160	150.151.152.161	150.151.152.190	150.151.152.191
6	150.151.152.192	150.151.152.193	150.151.152.222	150.151.152.223
7	150.151.152.224	150.151.152.225	150.151.152.254	150.151.152.255

Verifica con : ipcalc321.exe

□ Verifica con: IP Subnet Calculator (http://www.subnet-calculator.com/)

□ Verifica con : Calcolatrice IP online

(http://www.fagintosh.com/risorse/it/othutil/webapps/ipcalc/)

3) Dato un host avente indirizzo IP **217.205.209.132** e netmask **255.255.255.240** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di guella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione 217.205.209.132/28, ovvero si hanno 28 bit per l'ID Rete e 4 per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

 $240_{10} = 11110000_2$ (dell'ultimo ottetto della netmask 4 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

 $132_{10} = 10000100_2$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

 $128_{10} = 10000000_2$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $153_{10} = 10001111_2$ (i 4 bit dell'ID Host settati a 1)

Numero Host = $2^4 - 2 = 14$

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host (128, ovvero 10000000, e 153, ovvero 10001111) si possono utilizzare per gli Host gli indirizzi IP da **217.205.209.129**, ovvero 10000001, a **217.205.209.152**, ovvero 10001110.

indirizzo IPv4	217.205.209.132
maschera di rete	255.255.255.240
indirizzo di rete	217.205.209.128
primo indirizzo utile per i nodi di rete	217.205.209.129
ultimo indirizzo utile per i nodi di rete	217.205.209.152
indirizzo broadcast	217.205.209.153

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo: 217.205.209.132 con subnet mask 255.255.255.240

Effettuiamo il seguente calcolo : 256 - 240 = 16

Network Address = integer(132/16) = 8 * 16 = 128 quindi : **217.205.209.128**

Broadcast Address = integer(132/16) = (8 + 1) * 16 - 1 = 143 quindi : **217.205.209.143**

Binary Broadcast Address:

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
217.205.209.132 /28	255.255.255.240	217.205.209.128	217.205.209.143

11011001.11001101.11010001.10001111

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
С	16	16	14

Subnet	Network	Min IP	Max IP	Broadcast
0	217.205.209.0	217.205.209.1	217.205.209.14	217.205.209.15
1	217.205.209.16	217.205.209.17	217.205.209.30	217.205.209.31
2	217.205.209.32	217.205.209.33	217.205.209.46	217.205.209.47
3	217.205.209.48	217.205.209.49	217.205.209.62	217.205.209.63
4	217.205.209.64	217.205.209.65	217.205.209.78	217.205.209.79
5	217.205.209.80	217.205.209.81	217.205.209.94	217.205.209.95
6	217.205.209.96	217.205.209.97	217.205.209.110	217.205.209.111
7	217.205.209.112	217.205.209.113	217.205.209.126	217.205.209.127
8	217.205.209.128	217.205.209.129	217.205.209.142	217.205.209.143
9	217.205.209.144	217.205.209.145	217.205.209.158	217.205.209.159
10	217.205.209.160	217.205.209.161	217.205.209.174	217.205.209.175
11	217.205.209.176	217.205.209.177	217.205.209.190	217.205.209.191
12	217.205.209.192	217.205.209.193	217.205.209.206	217.205.209.207
13	217.205.209.208	217.205.209.209	217.205.209.222	217.205.209.223
14	217.205.209.224	217.205.209.225	217.205.209.238	217.205.209.233
15	217.205.209.240	217.205.209.241	217.205.209.254	217.205.209.255

Verifica con : ipcalc321.exe

□ Verifica con: IP Subnet Calculator (http://www.subnet-calculator.com/)

□ Verifica con : Calcolatrice IP online

(http://www.fagintosh.com/risorse/it/othutil/webapps/ipcalc/)

4) Dato un host avente indirizzo IP **131.175.23.99** e netmask **255.255.255.192** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di quella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione 131.175.23.99/26, ovvero si hanno 26 bit per l'ID Rete e 6 per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

 $192_{10} = 11000000_2$ (dell'ultimo ottetto della netmask 2 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

$$99_{10} = 01100011_2$$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

$$64_{10} = 01000000_2$$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $127_{10} = 011111111_2$ (i 6 bit dell'ID Host settati a 1)

Numero Host =
$$2^6 - 2 = 62$$

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host (64, ovvero 01000000, e 127, ovvero 01111111) si possono utilizzare per gli Host gli indirizzi IP da 131.175.23.65, ovvero 01000001, a 131.175.23.126, ovvero 01111110.

indirizzo IPv4	131.175.23.99
maschera di rete	255.255.255.192
indirizzo di rete	131.175.23.64
primo indirizzo utile per i nodi di rete	131.175.23.65
ultimo indirizzo utile per i nodi di rete	131.175.23.126
indirizzo broadcast	131.175.23.127

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo : 131.175.23.99 con subnet mask 255.255.255.192

Effettuiamo il seguente calcolo: 256 - 292 = 64

Network Address = integer(99/64) = 1 * 64 = 64 quindi : **131.175.23.64**

Broadcast Address = integer(99/64) = (1 + 1) * 64 - 1 = 127 quindi : **131.175.23.127**

□ Verifica con IP Subnet Mask Calculator (operatori logici)

(http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
131.175.23.99 /26	255.255.255.192	131.175.23.64	131.175.23.127

Binary IP Address: 10000011.10101111.00010111.01100011
Binary Subnet Mask: 11111111.1111111.11111111.111000000

AND

Binary **Network** Address: 10000011.10101111.00010111.01000000

Binary IP Address: 10000011.10101111.00010111.01100011 Complemento a 1 della S. M. : 00000000.00000000.00000000.00111111

OR

Binary **Broadcast** Address: 10000011.10101111.00010111.01111111

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
В	1024	64	62

Subnet	Network	Min IP	Max IP	Broadcast
0	131.175.23.0	131.175.23.1	131.175.23.62	131.175.23.63
1	131.175.23.64	131.175.23.65	131.175.23.126	131.175.23.127
2	131.175.23.128	131.175.23.129	131.175.23.190	131.175.23.191
3	131.175.23.192	131.175.23.193	131.175.23.254	131.175.23.255

☐ Verifica con : ipcalc321.exe

5) Dato un host avente indirizzo IP **131.175.23.99** e netmask **255.255.255.240** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di guella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione 131.175.23.99/28, ovvero si hanno 28 bit per l'ID Rete e 4 per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

 $240_{10} = 11110000_2$ (dell'ultimo ottetto della netmask 4 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

 $99_{10} = 01100011_2$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

 $96_{10} = 01100000_2$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $111_{10} = 01101111_2$ (i 4 bit dell'ID Host settati a 1)

Numero Host = $2^4 - 2 = 14$

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host $(96_{10}$, ovvero 01100000_2 , e 111_{10} , ovvero 01101111_2) si possono utilizzare per gli Host gli indirizzi IP da 131.175.23.97, ovvero 01100001_2 , a 131.175.23.110, ovvero 01101110_2 .

indirizzo IPv4	131.175.23.99
maschera di rete	255.255.255.240
indirizzo di rete	131.175.23.96
primo indirizzo utile per i nodi di rete	131.175.23.97
ultimo indirizzo utile per i nodi di rete	131.175.23.110
indirizzo broadcast	131.175.23.111

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo: 131.175.23.99 con subnet mask 255.255.255.240

Effettuiamo il seguente calcolo : 256 - 240 = 16

Network Address = integer(99/16) = 6 * 16 = 96 quindi : 131.175.23.96

Broadcast Address = integer (99/64) = (6 + 1) * 16 - 1 = 111 quindi : **131.175.23.111**

□ Verifica con IP Subnet Mask Calculator (operatori logici)

(http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
131.175.23.99 /28	255.255.255.240	131.175.23.96	131.175.23.111

Binary IP Address: 10000011.10101111.00010111.01100011 Complemento a 1 della S. M.: 00000000.0000000.00000000.00001111

OR

Binary **Broadcast** Address: 10000011.10101111.00010111.01101111

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
В	4096	16	14

Subnet	Network	Min IP	Max IP	Broadcast
0	131.175.23.0	131.175.23.1	131.175.23.14	131.175.23.15
1	131.175.23.16	131.175.23.17	131.175.23.30	131.175.23.31
2	131.175.23.32	131.175.23.33	131.175.23.46	131.175.23.47
3	131.175.23.48	131.175.23.49	131.175.23.62	131.175.23.63
4	131.175.23.64	131.175.23.65	131.175.23.78	131.175.23.79
5	131.175.23.80	131.175.23.81	131.175.23.94	131.175.23.95
6	131.175.23.96	131.175.23.97	131.175.23.110	131.175.23.111
7	131.175.23.112	131.175.23.113	131.175.23.126	131.175.23.127
8	131.175.23.128	131.175.23.129	131.175.23.142	131.175.23.143
9	131.175.23.144	131.175.23.145	131.175.23.158	131.175.23.159
10	131.175.23.160	131.175.23.161	131.175.23.174	131.175.23.175
11	131.175.23.176	131.175.23.177	131.175.23.190	131.175.23.191
12	131.175.23.192	131.175.23.193	131.175.23.206	131.175.23.207
13	131.175.23.208	131.175.23.209	131.175.23.222	131.175.23.223
14	131.175.23.224	131.175.23.225	131.175.23.238	131.175.23.239
15	131.175.23.240	131.175.23.241	131.175.23.254	131.175.23.255

☐ Verifica con : ipcalc321.exe

□ Verifica con : Calcolatrice IP online
(http://www.faqintosh.com/risorse/it/othutil/webapps/ipcalc/)

Calcolatrice IP online

6) Dato un host avente indirizzo IP **151.5.184.163** e netmask **255.255.255.248** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di guella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione 151.5.184.163/29, ovvero si hanno 29 bit per l'ID Rete e 3 per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

248₁₀ = 11111000₂ (dell'ultimo ottetto della netmask 5 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

 $163_{10} = 10100011_2$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

 $160_{10} = 10100000_2$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $167_{10} = 10100111_2$ (i 3 bit dell'ID Host settati a 1)

Numero Host = 2^3 - 2 = 6

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host (160_{10} , ovvero 1010000_2 , e 167_{10} , ovvero 10100111_2) si possono utilizzare per gli Host gli indirizzi IP da 151.5.184.161, ovvero 10100001_2 , a 151.5.184.166, ovvero 10100110_2 .

indirizzo IPv4	151.5.184.163
maschera di rete	255.255.255.248
indirizzo di rete	151.5.184.160
primo indirizzo utile per i nodi di rete	151.5.184.161
ultimo indirizzo utile per i nodi di rete	151.5.184.166
indirizzo broadcast	151.5.187.167

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo : 151.5.184.163 con subnet mask 255.255.255.248

Effettuiamo il seguente calcolo : 256 - 248 = 8

Network Address = integer(163/8) = 20 * 8 = 160 quindi : **131.175.23.160**

Broadcast Address = integer(163/8) = (20 + 1) * 8 – 1 = 111 quindi : **131.175.23.167**

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

 IP Address
 Subnet Mask
 Network Address
 Broadcast Address

 151.5.184.163/29
 255.255.255.248
 151.5.184.160
 151.5.184.167

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
В	8192	8	6

☐ Verifica con : ipcalc321.exe

7) Dato un host avente indirizzo IP **151.5.184.133** e netmask **255.255.255.252** determinare l'indirizzo di rete, l'indirizzo broadcast, specificando quindi l'intervallo di indirizzi IPv4 disponibile per i nodi di quella rete.

L'indirizzo dato e la relativa netmask si possono esprimere con la notazione 151.5.184.133/30, ovvero si hanno 30 bit per l'ID Rete e 2 per l'ID Host.

È sufficiente concentrare l'attenzione sull'ultimo ottetto della netmask e dell'indirizzo IP per determinare la conversione binaria della maschera di rete :

252₁₀ = 11111100₂ (dell'ultimo ottetto della netmask 6 bit appartengono all'ID Rete)

e dell'indirizzo del nodo:

 $133_{10} = 10000101_2$

Si ottiene, effettuando l'operazione AND fra i due ottetti, che l'ultimo ottetto dell'indirizzo di rete è pari a:

 $132_{10} = 10000100_2$

Pertanto, l'ultimo ottetto dell'indirizzo broadcast è pari a:

 $135_{10} = 10000111_2$ (i 2 bit dell'ID Host settati a 1)

Numero Host = 2^2 - 2 = 2

Nella rete proposta, escludendo gli indirizzi estremi in quanto non utilizzabili come indirizzi di Host (132_{10} , ovvero 10000100_2 , e 135_{10} , ovvero 10000111_2) si possono utilizzare per gli Host gli indirizzi IP da 151.5.184.133, ovvero 10000101_2 , a 151.5.184.134, ovvero 10000110_2 .

indirizzo IPv4	151.5.184.133
maschera di rete	255.255.255.252
indirizzo di rete	151.5.184.132
primo indirizzo utile per i nodi di rete	151.5.184.133
ultimo indirizzo utile per i nodi di rete	151.5.184.134
indirizzo broadcast	151.5.187.135

☐ II metodo Chumley (si può applicare per subnets > /24)

Dato l'indirizzo: 151.5.184.133 con subnet mask 255.255.255.252

Effettuiamo il seguente calcolo : 256 - 252 = 4

Network Address = integer(133/4) = 33 * 4 = 132 quindi : **131.175.23.132**

Broadcast Address = integer(133/4) = (33 + 1) * 4 - 1 = 135 quindi : **131.175.23.135**

a cura del prof. Salvatore De Giorgi (I.T.I.S. "FALANTO" - TALSANO (TA))

- 32 -

□ Verifica con IP Subnet Mask Calculator (operatori logici) (http://ccna.exampointers.com/subnet.phtml)

IP Address	Subnet Mask	Network Address	Broadcast Address
151.5.184.133 /30	255.255.255.252	151.5.184.132	151.5.184.135

Binary IP Address: 10010111.00000101.10111000.10000101
Binary Subnet Mask: 11111111.1111111.111111100

Binary Network Address: 10010111.00000101.10111000.10000100

Binary IP Address: 10010111.00000101.10111000.10000101

Complemento a 1 della S. M. : 00000000.00000000.0000000011

OR 10010111.00000101.10111000.10000111

Class of Address	Number of Subnets	Number of IP	Number of Useable Hosts
В	16384	4	2

☐ Verifica con : ipcalc321.exe

