

特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局(43) 国際公開日
2003年12月24日 (24.12.2003)

PCT

(10) 国際公開番号
WO 03/107367 A1

(51) 国際特許分類 ⁷ :	H01G 9/04, 9/012, 9/08, 9/14	(71) 出願人(米国を除く全ての指定国について): ティー ディーケイ株式会社 (TDK CORPORATION) [JP/JP]; 〒103-8272 東京都 中央区 日本橋一丁目 13番 1号 Tokyo (JP).
(21) 国際出願番号:	PCT/JP03/07733	
(22) 国際出願日:	2003年6月18日 (18.06.2003)	
(25) 国際出願の言語:	日本語	(72) 発明者; および
(26) 国際公開の言語:	日本語	(75) 発明者/出願人(米国についてのみ): 小林 正明 (KOBAYASHI,Masaaki) [JP/JP]; 〒103-8272 東京都 中 央区 日本橋一丁目 13番 1号 ティー・ディー・ケイ株 式会社内 Tokyo (JP). 富樫 正明 (TOGASHI,Masaaki) [JP/JP]; 〒103-8272 東京都 中央区 日本橋一丁目 13番 1号 ティー・ディー・ケイ株式会社内 Tokyo (JP).
(30) 優先権データ: 特願2002-177547 2002年6月18日 (18.06.2002) JP 特願2002-177546 2002年6月18日 (18.06.2002) JP		

[統葉有]

(54) Title: SOLID ELECTROLYTIC CAPACITOR, BOARD WITH BUILT-IN SOLID ELECTROLYTIC CAPACITOR, AND METHOD FOR PRODUCING THEM

(54) 発明の名称: 固体電解コンデンサおよび固体電解コンデンサ内蔵基板ならびにそれらの製造方法

び銀ペースト層13からなる陰極電極14を備えている。この固体電解コ

(57) Abstract: A three-terminal solid electrolytic capacitor suitable to be built in a circuit board while reducing the ESL, a board with a built-in three-terminal solid electrolytic capacitor, and a method for producing them are disclosed. An electrode body (100) for a solid electrolytic capacitive element comprises an aluminum foil base (2) the surface of which is roughened (the surface area is increased) and on the surface of which an aluminum oxide coating which is an insulating oxide coating is formed, two aluminum foil bases (3a, 3b) the surfaces of which are not roughened, and two foil copper bases (4a, 4b) serving as metal conductors constituting lead electrodes. A cathode (14) composed of a solid polymer electrolyte layer (11), a graphite paste layer (12), and a silver paste layer (13) is provided on the whole surface of the aluminum foil base (2). The solid electrolytic capacitive element (110) is housed in a substantially closed space defined by first and second insulating sheets (21, 22), thus fabricating a board with a built-in three-terminal solid electrolytic capacitor.

(57) 要約: 本発明の目的は、ESLを低減しつつ、回路基板に内蔵するのに適した3端子型固体電解コンデンサおよび3端子型固体電解コンデンサが内蔵された基板ならびにそれらの製造方法を提供することにある。固体電解コンデンサ素子用電極体100は、表面が粗面化(拡面化)され、表面に、絶縁酸化皮膜である酸化アルミニウム皮膜が形成されたアルミニウム箔基体2と、表面が粗面化されていない2つのアルミニウム箔基体3a,3bと、リード電極を構成する金属導体として、2つの箔状の銅基体4a,4bを備えている。アルミニウム箔基体2の全表面上には、固体高分子電解質層11、グラファイトペースト層12およ

[統葉有]

- (74) 代理人: 大石皓一, 外(OISHI,Koichi et al.); 〒101-0063 東京都千代田区神田淡路町一丁目4番1号 友泉淡路町ビル8階 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ヨーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:
— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明細書

固体電解コンデンサおよび固体電解コンデンサ内蔵基板ならびにそれらの製造方法

5

技術分野

本発明は、固体電解コンデンサおよび固体電解コンデンサ内蔵基板ならびにそれらの製造方法に関するものであり、さらに詳細には、表面に絶縁性酸化皮膜が形成された弁金属箔基体に、固体高分子電解質層および導電体層が、順次、形成された固体電解コンデンサであって、回路基板に実装または内蔵するのに適した固体電解コンデンサおよび固体電解コンデンサ内蔵基板ならびにそれらの製造方法に関するものである。

15 従来の技術

電解コンデンサは、絶縁性酸化皮膜形成能力を有するアルミニウム、チタン、真鍮、ニッケル、タンタルなどの金属、いわゆる弁金属を陽極に用い、この弁金属の表面を陽極酸化して、絶縁性酸化皮膜を形成した後、実質的に陰極として機能する電解質層を形成し、さらに、グラファイトや銀などの導電層を陰極として設けることによって、形成されている。

たとえば、アルミニウム電解コンデンサは、エッチング処理によつて、比表面積を増大させた多孔質アルミニウム箔を陽極とし、この陽極表面に形成した酸化アルミニウム層と陰極箔との間に、電解液を含浸させた隔離紙を設けて、構成されている。

一般に、絶縁性酸化皮膜と陰極との間の電解質層に、電解液を利用する電解コンデンサは、シーリング部分からの液漏れや、電解液の蒸発によって、その寿命が決定されるという問題を有しているのに対し、金属酸化物や有機化合物からなる固体電解質を用いた固体電解コンデ

ンサは、かかる問題を有しておらず、好ましいものである。

固体電解コンデンサに用いられる金属酸化物からなる代表的な固体電解質としては、二酸化マンガンが挙げられ、一方、固体電解コンデンサに用いられる有機化合物からなる固体電解質としては、たとえば、
5 特開昭52-79255号公報や特開昭58-191414号公報に開示された7, 7, 8, 8-テトラシアノキシジメタン(TCNQ)錯塩が挙げられる。

近年、電子機器の電源回路の高周波化にともない、使用されるコンデンサに対しても、それに対応した性能が求められるようになってい
10 10 るが、二酸化マンガンあるいはTCNQ錯塩からなる固体電解質層を用いた固体電解コンデンサは、以下のような問題を有していた。

二酸化マンガンからなる固体電解質層は、一般に、硝酸マンガンの熱分解を繰り返すことによって形成されるが、熱分解の際に加えられる熱によって、あるいは、熱分解の際に発生するNO_xガスの酸化作用によって、誘電体である絶縁性酸化皮膜が損傷し、あるいは、劣化するため、固体電解質層を二酸化マンガンによって形成する場合には、漏れ電流値が大きくなるなど、最終的に得られる固体電解コンデンサの諸特性が低くなりやすいという問題があった。また、二酸化マンガンを固体電解質として用いるときは、高周波領域において、固体電解
15 15 コンデンサのインピーダンスが高くなってしまうという問題もあった。
20 20

一方、TCNQ錯塩は、電導度が、1S/cm程度以下であるため、現在の電解コンデンサに対する低インピーダンス化の要求に対して、十分に応えることができないという問題を有していた。さらに、TCNQ錯塩は、絶縁性酸化皮膜との密着性が低く、また、ハンダ固定時の熱的安定性や経時的な熱的安定性が低いなどの理由から、TCNQ錯塩を固体電解質として用いた固体電解コンデンサは、十分な信頼性が得られないということが指摘されている。加えて、TCNQ錯塩は高価であり、TCNQ錯塩を固体電解質として用いた固体電解コンデンサはコストが高いという問題も有していた。

二酸化マンガンあるいはT C N Q錯塩を、固体電解質として用いる場合のこれらの問題点を解消し、より優れた特性を有する固体電解コンデンサを得るため、製造コストが比較的低く、また、絶縁性酸化皮膜との付着性が比較的良好で、熱的な安定性にも優れた高導電性の高分子化合物を固体電解質として利用することが提案されている。

たとえば、特許第2725553号には、陽極表面の絶縁性酸化皮膜上に、化学酸化重合によって、ポリアニリンを形成した固体電解コンデンサが開示されている。

また、特公平8-31400号公報は、化学酸化重合法のみによつては、陽極表面の絶縁性酸化皮膜上に、強度の高い導電性高分子膜を形成することは困難であり、また、陽極表面の絶縁性酸化皮膜が電気導体であるため、電解重合法により、陽極表面の絶縁性酸化皮膜上に、直接、電解重合膜を形成することは不可能か、きわめて困難であるという理由から、絶縁性酸化皮膜上に、金属あるいは二酸化マンガンの薄膜を形成し、金属あるいは二酸化マンガンの薄膜上に、ポリピロール、ポリチオフェン、ポリアニリン、ポリフランなどの導電性高分子膜を電解重合法によって形成した固体電解コンデンサを提案している。

さらに、特公平4-74853号公報には、絶縁性酸化皮膜上に、化学酸化重合によって、ポリピロール、ポリチオフェン、ポリアニリン、ポリフランなどの導電性高分子膜を形成した固体電解コンデンサが開示されている。

一方、電子機器の小型化、薄型化の要求により、電子部品には、より一層の小型化、高性能化が要求され、回路基板には、薄層化、多層化による高機能化が要求されている。ことに、I Cカードの厚みは、25 1 mm以下、携帯型パーソナルコンピュータの厚みは、20 mm以下と、きわめて薄くなりつつあるため、これらに搭載される電子部品や、電子部品を実装した配線基板は、数mmないし数百ミクロンの厚みで形成することが要求されるようになっている。

しかしながら、上述した固体電解コンデンサは、いずれも、単体の

部品として製造され、配線基板に、ハンダ層を介して、実装されるものであるため、電子部品を十分に高集積化、高密度化することができないという問題があった。

そこで、特開平2-54510号公報および特許第2950587

5 号は、固体電解コンデンサを、配線基板の抵抗機能や導電パターンと同様に、あらかじめ、基板と一体的に形成し、複数の固体電解コンデンサが1枚の基板上に形成された回路基板によって、電子部品の高密度化、回路基板の薄型化を図ることを提案している。

すなわち、特開平2-54510号公報は、絶縁基板上に、電気導

10 体および絶縁性酸化皮膜形成能力を有するアルミニウム箔などの箔状の弁金属基体のパターンを形成し、この弁金属基体のパターンの表面の1箇所あるいは数箇所に、絶縁性酸化皮膜層、複素環式化合物の導電性ポリマー層および導電体層を、順次、形成して、固体電解コンデンサ内蔵基板を作製する方法を開示するとともに、絶縁基板の両面に、

15 電気導体および絶縁性酸化皮膜形成能力を有する弁金属基体のパターンを形成し、この弁金属基体のパターンの表面の1箇所あるいは数箇所に、絶縁性酸化皮膜層、複素環式化合物の導電性ポリマー層および導電体層を、順次、形成して、固体電解コンデンサ内蔵基板を作製した後、固体電解コンデンサ内蔵基板を積層して、多層構造とした固体

20 電解コンデンサ内蔵基板を開示している。特開平2-54510号公報によれば、導電性高分子を用いた固体電解コンデンサを、回路基板の抵抗体層や導電パターンと同様に、あらかじめ、基板と一体的に形成しておくことによって、個々のコンデンサを回路基板上に実装する必要がなく、電子部品の高密度化が実現されるとともに、ノイズの低減など、電気的特性をも向上させることができるとされている。

一方、特許第2950587号は、板状の陽極体、すなわち、板状の弁金属基体の両面に、誘電体層、電解質層および導電体層を、順次、形成し、各導電体層を介して、陰極端子を設けて、コンデンサ素子を形成し、こうして形成したコンデンサ素子の両面に、所望の配線パタ

ーンを備えたプリント基板を、樹脂層を介して、接合して、作製した固体電解コンデンサを開示している。特許第2950587号によれば、機械的に脆弱な固体電解質であっても、両面に配置されるプリント基板によって保護されるから、信頼性の高い固体電解コンデンサを得ることが可能になり、また、プリント基板に、あらかじめ、所望の配線パターンを形成しておくことにより、他の電子部品を、プリント基板に容易に実装することが可能になるとされている。

さらに、近年の電子機器の電源回路の高周波化にともない、使用されるコンデンサの等価直列インダクタンス（E S L）や等価直列抵抗（E S R）が低いことも必要とされている。かかる問題は、E S L等の初期特性値において大幅に改善されても、高温付加試験等の信頼性試験において特性値が変化しやすい場合には実用化できない。したがって、E S LやE S Rの初期特性値が非常に小さく、しかもほとんど特性変化のない電解コンデンサが要求されている。

一般に、低E S L化を図る方法としては、第1に、電流経路の長さを極力短くする方法、第2に、電流経路によって形成される磁場を別の電流経路によって形成される磁場により相殺する方法、第3に、電流経路をn個に分割して実効的なE S Lを $1/n$ にする方法が知られている。例えば、特開2000-311832号公報に開示された発明は、第1および第3の方法を採用したものであり、また特開平06-267802号公報に開示された発明は、第2および第3の方法を採用したものであり、また特開平06-267801号公報、および特開平11-288846号公報に開示された発明は、第3の方法を採用するものである。

かかる固体電解コンデンサ内蔵電気配線基板にあっては、固体電解コンデンサを、基板に搭載されるべき他の電子部品と接続するためのリード電極を、陽極となる絶縁性酸化皮膜形成能力を有する弁金属箔基体に接続することが必要不可欠であるが、弁金属箔基体に、単に、銅などの金属導体を接続して、リード電極を構成する場合には、所望

のコンデンサ特性を得ることができないという問題があった。

すなわち、固体電解コンデンサは、大容量の静電容量を得るために、
弁金属基体の表面積が大きくなるように、弁金属箔基体を粗面化（拡
面化）し、かつ、酸化アルミニウムなどの絶縁性酸化皮膜を形成した
5 アルミニウムなどの弁金属の箔状シートから所望のサイズの弁金属箔
基体を切り出し、粗面化された箔状の弁金属の絶縁性酸化皮膜上に、
陰極となる固体高分子電解質層を形成し、さらに、陰極となる固体高
分子電解質層上に、カーボンペースト層および銀ペースト層など導電
体層を設け、陰極のリード電極を形成することによって構成されてお
10 り、陽極のリード電極を形成するためには、粗面化された弁金属箔基
体の表面に形成された絶縁性酸化皮膜を除去して、銅などの金属導体
が、弁金属基体に、金属間が電気的に接続されて、接合されるように、
超音波溶接、コールド・ウェルディング（冷間圧接）などによって、
接続することが必要である。こうしてリード電極を形成した弁金属箔
15 基体は、弁金属のシートから切り出されているため、弁金属箔基体の
エッジ部分には、絶縁性酸化皮膜が形成されておらず、弁金属箔基体
のエッジ部分に、絶縁性酸化皮膜を形成しないと、弁金属基体の金属
部分が、固体高分子電解質層と接触し、固体電解コンデンサとして機
能しなくなるので、陽極酸化によって、弁金属箔基体のエッジ部分に
20 絶縁性酸化皮膜を形成することが必要不可欠になる。

しかしながら、表面に粗面化処理を施した弁金属箔基体に、超音波
溶接、コールド・ウェルディング（冷間圧接）などにより、銅などの
金属導体を接合した陽極体を、ステンレススピーカーなどの導電性容器
に収容されたアジピン酸アンモニウムなどの化成溶液に浸し、銅など
25 の金属導体をプラス極に接続するとともに、導電性容器をマイナス極
に接続して、陽極酸化をする際に、銅などの金属導体が化成溶液に接
触すると、電流が流れ続け、その結果として、銅などの金属導体が腐
食され、弁金属基体のエッジ部分に絶縁性酸化皮膜を形成することができ
ないという問題があり、表面に粗面化処理を施した弁金属箔基体

のみを、化成溶液に浸して、陽極酸化をする場合にも、弁金属箔基体の表面に粗面化処理が施されているため、毛細管現象によって、化成溶液が銅などの金属導体に達し、同様に、電流が流れ続け、銅などの金属導体が腐食されて、弁金属箔基体のエッジ部分に、絶縁性酸化皮膜を形成することができないという問題があった。

かかる問題は、銅などの金属導体を弁金属箔基体に接合する前に、弁金属箔基体の絶縁性酸化皮膜が形成されていないエッジ部分に電極を設けて、陽極酸化処理を施し、弁金属基体のエッジ部分に絶縁性酸化皮膜を形成することによって、理論的には解消することができるが、一般に、アルミニウムなどの弁金属基体の箔状シートの厚みは、100ミクロンのオーダーであるため、弁金属箔基体の絶縁性酸化皮膜が形成されていないエッジ部分に電極を設けて、陽極酸化処理を施すことは、きわめて困難であり、回路基板に内蔵するのに適した固体電解コンデンサを得ることができないという問題があった。

さらに、上述したように、電子機器の電源回路の高周波化にともない、使用されるコンデンサの等価直列抵抗（E S R）や等価直列インダクタンス（E S L）が低いことも併せて必要とされている。かかる問題は、E S L等の初期特性値において大幅に改善されても、高温付加試験等の信頼性試験において特性値が変化しやすい場合には実用化できない。したがって、E S LやE S Rの初期特性値が非常に小さく、しかもほとんど特性変化のない固体電解コンデンサが要求されている。

発明の開示

したがって、本発明の目的は、表面に絶縁性酸化皮膜が形成された弁金属箔基体に、少なくとも、固体高分子電解質層および導電体層が、順次、形成された固体電解コンデンサであって、E S Lを低減しつつ、回路基板に実装または内蔵するのに適した固体電解コンデンサおよび固体電解コンデンサが内蔵された基板ならびにそれらの製造方法を提供することにある。

本発明者は、本発明のかかる目的を達成するため、鋭意、研究を重ねた結果、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合して、3端子型の固体電解コンデンサ素子用電極体を構成することによって、本発明の前記目的を達成することが可能になることを見出した。

本発明者の研究によれば、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの両端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合して、形成した
10 固体電解コンデンサ素子用電極体は、陽極酸化により、弁金属箔基体の絶縁性酸化皮膜が形成されていないエッジ部分に、絶縁性酸化皮膜を形成しても、化成溶液は、弁金属箔基体の一端部と、表面が粗面化されていない弁金属体の一端部との接合部を越えて、弁金属体に達することができなく、したがって、弁金属箔基体の一端部と、弁金属体の一
15 端部との接合部に、絶縁性酸化皮膜が形成された時点で、電流は流れなくなつて、陽極酸化が完了し、弁金属箔基体のエッジ部分に、所望のように、絶縁性酸化皮膜を形成することが可能になることが認められている。

しかしながら、こうして、陽極酸化によって、弁金属箔基体のエッジ部分に、絶縁性酸化皮膜を形成して得た固体電解コンデンサ素子用電極体を備えた固体電解コンデンサを、回路基板に内蔵させた場合、弁金属体の表面に、経時的に、絶縁性酸化皮膜が形成されるため、回路基板に搭載される他の電子部品とのコンタクトを、表面が粗面化されていない弁金属体の表面に設けたときに、絶縁性酸化皮膜の抵抗が大きく、コンデンサのインピーダンス特性が悪化するという問題が発生することが見出された。

したがって、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合し、前記弁金属体それぞれの他

端部に、導電性金属基体の一端部を、金属間が電気的に接続されるよう、それぞれ接合して、固体電解コンデンサ素子用電極体を構成することによって、初めて、本発明の前記目的を達成することが可能になる。

5 本発明によれば、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それに、弁金属体の一端部が、弁金属間が電気的に接続されるように、それぞれ接合され、前記弁金属体それぞれの他端部に、導電性金属基体の一端部が、金属間が電気的に接続されるように、それぞれ接合されて、固体電解コンデンサ素子用電極体が構成されているから、陽極酸化により、弁金属箔基体の絶縁性酸化皮膜が形成されていないエッジ部分に、絶縁性酸化皮膜を形成しても、化成溶液は、弁金属箔基体の一端部と、弁金属体の一端部との接合部を越えて、導電性金属基体に達する事なく、したがって、弁金属箔基体の一端部と、弁金属体の一端部との接合部に、絶縁性酸化皮膜が形成された時点で、電流は流れなくなつて、陽極酸化が完了し、弁金属箔基体のエッジ部分に、所望のように、絶縁性酸化皮膜を形成することができ、固体電解コンデンサを、回路基板に内蔵させた後に、表面が粗面化されていない箔状の弁金属基体の表面に、経時的に、絶縁性酸化皮膜が形成されても、表面が粗面化されていない箔状の弁金属基体の他端部に、さらに、箔状の導電性金属の一端部が、電気的に接続するように、接合されているから、導電性金属に、回路基板に搭載される他の電子部品とのコンタクトを設けることによって、所望のインピーダンス特性を有する固体電解コンデンサを、回路基板に内蔵させることができが可能になる。さらに3端子型の電極構造により、E S Lを大幅に低減することができる。

本発明の好ましい実施態様においては、複数の前記固体電解コンデンサ素子が、少なくとも1つずつ、独立して、リードフレーム上にそれぞれ配列され、前記リードフレームによって、前記固体電解コンデンサ素子にそれぞれ設けられた導電体層が、互いに電気的に接続され、

前記リードフレームと、前記固体電解コンデンサ素子それぞれの導電体層部分が交わっている領域の一方の面から当該面に対し垂直方向に前記陰極リード部の一部が引き出されている。

本発明の好ましい実施態様によれば、3端子型の固体電解コンデンサ素子がアレー状に複数個配列された、ディスクリート型の固体電解コンデンサとして構成することができ、各コンデンサ素子の陰極リード電極を共通化していることから、回路の組み方によっては、各コンデンサ素子を独立して使用することもできるし、また複数のコンデンサの並列接続により大容量化を図ることも可能である。すなわち、本実施態様にかかる固体電解コンデンサは、多目的に利用することができる。

本発明の前記目的はまた、表面に絶縁性酸化皮膜が形成された弁金属箔基体と、前記弁金属箔基体の対向する2つの端部それぞれに、その一端部が、弁金属間が電気的に接続されるように、それぞれ接合された、弁金属体と、前記弁金属箔基体それぞれの他端部に、一端部が、金属間が電気的に接続されるように、それぞれ接合された、導電性金属基体と、前記弁金属箔基体に、少なくとも、固体高分子電解質層および導電体層が、順次、形成されてなる陰極電極を有する固体電解コンデンサ素子を少なくとも1つ備え、前記固体電解コンデンサ素子が、少なくとも1つの配線パターンが形成された第1の絶縁基板の一方の面上に、前記配線パターンと電気的に接続されるように取り付けられ、前記第1の絶縁基板と対向して、少なくとも1つの配線パターンが形成された第2の絶縁基板が設けられ、前記固体電解コンデンサ素子が、前記第1の絶縁基板および前記第2の絶縁基板によって形成された実質的に閉じた空間内に収容されたことを特徴とする固体電解コンデンサ内蔵基板によって達成される。

本発明の好ましい実施態様においては、複数の前記固体電解コンデンサ素子が、少なくとも1つずつ、独立して、前記第1の絶縁基板上にそれぞれ配列され、前記配線パターンによって、前記固体電解コン

デンサ素子にそれぞれ設けられた導電体層が、互いに電気的に接続され、前記配線パターンと、前記固体電解コンデンサ素子それぞれの導電体層部分が交わっている領域の一方の面から当該面に対し垂直方向に、前記配線パターンの一部が、前記第1の絶縁基板を貫通するよう
5 に引き出されている。

本発明の前記目的はまた、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合する工程と、前記弁金属体それぞれの他端部に、導電性金属基体の一端部を、金属間が
10 電気的に接続されるように、それぞれ接合して、固体電解コンデンサ素子用電極体を形成する工程と、前記電極体のうち、どちらか一方の前記弁金属体の一部および、それに接合されている前記導電性金属基体の全体をマスキングする工程と、前記電極体のうち、前記弁金属箔基体全体と、前記マスキング処理された部分全体と、マスキング処理
15 が施されていない前記弁金属体の一部が化成溶液に浸されるように、前記化成溶液に浸し、前記電極体に電圧を印加して、陽極酸化処理を施し、前記弁金属箔基体の少なくともエッジ部分に、絶縁性酸化皮膜を形成する工程と、前記弁金属箔基体の略全表面上に、固体高分子電解質層を形成する工程と、前記固体高分子電解質層上に、導電性ペー
20 ストを塗布し、乾燥して、導電体層を形成する工程を備えていることを特徴とする固体電解コンデンサの製造方法によって達成される。

本発明の前記目的はまた、表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合する工程と、前記弁金属体それぞれの他端部に、導電性金属基体の一端部を、金属間が電気的に接続されるように、それぞれ接合して、固体電解コンデンサ素子用電極体を形成する工程と、前記電極体のうち、どちらか一方の前記弁金属体の一部および、それに接合されている前記導電性金属基体の全体をマスキングする工程と、前記電極体のうち、前記弁金属箔

基体全体と、前記マスキング処理された部分全体と、マスキング処理が施されていない前記弁金属箔基体の一部が化成溶液に浸されるよう5に、前記化成溶液に浸し、前記電極体に電圧を印加して、陽極酸化処理を施し、前記弁金属箔基体の少なくともエッジ部分に、絶縁性酸化皮膜を形成する工程と、前記弁金属箔基体の略全表面上に、固体高分子電解質層を形成する工程と、前記固体高分子電解質層上に、導電性ペーストを塗布し、乾燥して、導電体層を形成する工程と、前記各工程を経て得られる少なくとも1つの固体電解コンデンサを、少なくとも1つの配線パターンが形成された第1の絶縁基板の一方の面上、前10記配線パターンと電気的に接続されるように取り付ける工程と、少なくとも1つの配線パターンが形成された第2の絶縁基板を前記第1の絶縁基板と対向させて、前記固体電解コンデンサを、前記第1の絶縁基板および第2の絶縁基板によって形成された実質的に閉じた空間内15に収容する工程を備えていることを特徴とする固体電解コンデンサ内蔵基板の製造方法によって達成される。

本発明において、弁金属基体は、絶縁性酸化皮膜形成能力を有する金属およびその合金よりなる群から選ばれる金属または合金によって形成される。好ましい弁金属としては、アルミニウム、タンタル、チタン、ニオブおよびジルコニウムよりなる群から選ばれる1種の金属または2種以上の金属の合金が挙げられ、これらの中でも、アルミニウムおよびタンタルが、とくに好ましい。陽極電極は、これらの金属あるいは合金を、箔状に加工して、形成される。

本発明において、導電性金属の材料は、導電性を有する金属または合金であればよく、とくに限定されるものではないが、好ましくは、ハンダ接続が可能であり、とくに、銅、真鍮、ニッケル、亜鉛およびクロムよりなる群から選ばれる1種の金属または2種以上の金属の合金から選択されることが好ましく、これらの中では、電気的特性、後工程での加工性、コストなどの観点から、銅が最も好ましく使用される。

本発明において、固体高分子電解質層は、導電性高分子化合物を含有し、好ましくは、化学酸化重合あるいは電解酸化重合によって、表面が粗面化され、絶縁性酸化皮膜が形成された弁金属箔基体上に、形成される。

5 化学酸化重合によって、固体高分子電解質層を形成する場合、具体的には、固体高分子電解質層は、たとえば、以下のようにして、表面が粗面化され、絶縁性酸化皮膜が形成された弁金属箔基体上に、形成される。

まず、表面が粗面化され、絶縁性酸化皮膜が形成された弁金属箔基
10 体上のみに、0.001ないし2.0モル／リットルの酸化剤を含む溶液、あるいは、さらに、ドーパント種を与える化合物を添加した溶液を、塗布、噴霧などの方法によって、均一に付着させる。

次いで、好ましくは、少なくとも0.01モル／リットルの導電性高分子化合物の原料モノマーを含む溶液あるいは導電性高分子化合物の原料モノマー自体を、弁金属箔基体の表面に形成された絶縁性酸化皮膜に、直接接触させる。これによって、原料モノマーが重合し、導電性高分子化合物が合成され、弁金属箔基体の表面に形成された絶縁性酸化皮膜上に、導電性高分子化合物よりなる固体高分子電解質層が形成される。

20 本発明において、固体高分子電解質層に含まれる導電性高分子化合物としては、置換または非置換のπ共役系複素環式化合物、共役系芳香族化合物およびヘテロ原子含有共役系芳香族化合物よりなる群から選ばれる化合物を、原料モノマーとするものが好ましく、これらのうちでは、置換または非置換のπ共役系複素環式化合物を、原料モノマーとする導電性高分子化合物が好ましく、さらに、ポリアニリン、ポリピロール、ポリチオフェン、ポリフランおよびこれらの誘導体よりなる群から選ばれる導電性高分子化合物、とくに、ポリアニリン、ポリピロール、ポリエチレンジオキシチオフェンが好ましく使用される。

本発明において、固体高分子電解質層に好ましく使用される導電性

高分子化合物の原料モノマーの具体例としては、未置換アニリン、アルキルアニリン類、アルコキシアニリン類、ハロアニリン類、o-フェニレンジアミン類、2, 6-ジアルキルアニリン類、2, 5-ジアルコキシアニリン類、4, 4'-ジアミノジフェニルエーテル、ピロール、3-メチルピロール、3-エチルピロール、3-プロピルピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3, 4-エチレンジオキシチオフェンなどを挙げることができる。

本発明において、化学酸化重合に使用される酸化剤は、とくに限定されるものではないが、たとえば、塩化第2鉄、硫化第2鉄、フェリシアン化鉄といった Fe^{3+} 塩や、硫酸セリウム、硝酸アンモニウムセリウムといった Ce^{4+} の塩、ヨウ素、臭素、ヨウ化臭素などのハロゲン化物、五フッ化珪素、五フッ化アンチモン、四フッ化珪素、五塩化リン、五フッ化リン、塩化アルミニウム、塩化モリブデンなどの金属ハロゲン化物、硫酸、硝酸、フルオロ硫酸、トリフルオロメタン硫酸、クロロ硫酸などのプロトン酸、三酸化イオウ、二酸化窒素などの酸素化合物、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、過酸化水素、過マンガン酸カリウム、過酢酸、ジフルオロスルホニルパーオキサイドなどの過酸化物が、酸化剤として使用される。

本発明において、必要に応じて、酸化剤に添加されるドーパント種を与える化合物としては、たとえば、 LiPF_6 、 LiAsF_6 、 NaPF_6 、 KPF_6 、 KAxF_6 などの陰イオンがヘキサフロロリニアニオン、ヘキサフロロ砒素アニオンであり、陽イオンがリチウム、ナトリウム、カリウムなどのアルカリ金属カチオンである塩、 LiBF_4 、 NaBF_4 、 NH_4BF_4 、 $(\text{CH}_3)_4\text{NBF}_4$ 、 $(n-\text{C}_4\text{H}_9)_4\text{NBF}_4$ などの四フッ過ホウ素塩化合物、p-トルエンスルホン酸、p-エチルベンゼンスルホン酸、p-ヒドロキシベンゼンスルホン酸、ドデシルベンゼンスルホン酸、メチルスルホン酸、ドデシルスルホン酸、ベンゼンスルホン酸、 β -ナフタレンスルホン酸などのスルホン酸ま

たはその誘導体、ブチルナフタレンスルホン酸ナトリウム、2, 6-ナフタレンジスルホン酸ナトリウム、トルエンスルホン酸ナトリウム、トルエンスルホン酸テトラブチルアンモニウムなどのスルホン酸またはその誘導体の塩、塩化第二鉄、臭化第二鉄、塩化第二銅、集荷第二銅などの金属ハロゲン化物、塩酸、臭化水素、ヨウ化水素、硫酸、リン酸、硝酸あるいはこれらのアルカリ金属塩、アルカリ土類金属塩もしくはアンモニウム塩、過塩素酸、過塩素酸ナトリウムなどの過ハロゲン酸もしくはその塩などのハロゲン化水素酸、無機酸またはその塩、酢酸、シュウ酸、蟻酸、酪酸、コハク酸、乳酸、クエン酸、フタル酸、マレイン酸、安息香酸、サリチル酸、ニコチン酸などのモノもしくはジカルボン酸、芳香族複素環式カルボン酸、トリフルオロ酢酸などのハロゲン化されたカルボン酸およびこれらの塩などのカルボン酸類を挙げることができる。

本発明において、これらの酸化剤およびドーパント種を与えることのできる化合物は、水や有機溶媒などに溶解させた適当な溶液の形で使用される。溶媒は、単独で使用しても、2種以上を混合して、使用してもよい。混合溶媒は、ドーパント種を与える化合物の溶解度を高める上でも有効である。混合溶媒としては、溶媒間に相溶性を有するものおよび酸化剤およびドーパント種を与えることのできる化合物と相溶性を有するものが好ましい。溶媒の具体例としては、有機アミド類、含硫化合物、エステル類、アルコール類が挙げられる。

一方、電解酸化重合によって、固体高分子電解質層を、表面が粗面化され、絶縁性酸化皮膜が形成された弁金属箔基体上に形成する場合には、公知のように、導電性下地層を作用極として、対向電極とともに、導電性高分子化合物の原料モノマーと支持電解質を含んだ電解液中に浸漬し、電流を供給することによって、固体高分子電解質層が形成される。

具体的には、表面が粗面化され、絶縁性酸化皮膜が形成された弁金属箔基体上に、好ましくは、化学酸化重合によって、まず、薄層の導

電性下地層が形成される。導電性下地層の厚さは、一定の重合条件のもとで、重合回数を制御することによって、制御される。重合回数は、原料モノマーの種類によって決定される。

導電性下地層は、金属、導電性を有する金属酸化物、導電性高分子化合物のいずれから構成してもよいが、導電性高分子化合物から構成することが好ましい。導電性下地層を構成するための原料モノマーとしては、化学酸化重合に用いられる原料モノマーを用いることができ、導電性下地層に含まれる導電性高分子化合物は、化学酸化重合によつて形成される固体高分子電解質層に含まれる導電性高分子化合物と同様である。導電性下地層を構成するための原料モノマーとして、エチレンジオキシチオフェン、ピロールを用いる場合は、化学酸化重合のみで高分子固体電解質層を形成する場合に生成される導電性高分子の全量の 10%～30%（重量比）程度の導電性高分子が生成する条件になるように重合回数を換算して、導電性下地層が形成すればよい。

その後、導電性下地層を作用極として、対向電極とともに、導電性高分子化合物の原料モノマーと支持電解質を含んだ電解液中に浸漬し、電流を供給することによって、導電性下地層上に、固体高分子電解質層が形成される。

電解液には、必要に応じて、導電性高分子化合物の原料モノマーおよび支持電解質に加えて、種々の添加剤を添加することができる。

固体高分子電解質層に使用することのできる導電性高分子化合物は、導電性下地層に使用される導電性高分子化合物、したがって、化学酸化重合に用いられる導電性高分子化合物と同様であり、置換または非置換の π 共役系複素環式化合物、共役系芳香族化合物およびヘテロ原子含有共役系芳香族化合物よりなる群から選ばれる化合物を、原料モノマーとする導電性高分子化合物が好ましく、これらのうちでは、置換または非置換の π 共役系複素環式化合物を、原料モノマーとする導電性高分子化合物が好ましく、さらに、ポリアニリン、ポリピロール、ポリチオフェン、ポリフランおよびこれらの誘導体よりなる群から選

ばれる導電性高分子化合物、とくに、ポリアニリン、ポリピロール、
ポリエチレンジオキシチオフェンが好ましく使用される。

支持電解質は、組み合わせるモノマーおよび溶媒に応じて、選択さ
れるが、支持電解質の具体例としては、たとえば、塩基性の化合物と
5 しては、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、
炭酸ナトリウム、炭酸水素ナトリウムなどが、酸性の化合物としては、
硫酸、塩酸、硝酸、臭化水素、過塩素酸、トリフルオロ酢酸、スルホ
ン酸などが、塩としては、塩化ナトリウム、臭化ナトリウム、ヨウ化
カリウム、塩化カリウム、硝酸カリウム、過ヨウ酸ナトリウム、過塩
10 素酸ナトリウム、過塩素酸リチウム、ヨウ化アンモニウム、塩化アン
モニウム、四フッ化ホウ素塩化合物、テトラメチルアンモニウムクロ
ライド、テトラエチルアンモニウムクロライド、テトラメチルアンモ
ニウムプロマイド、テトラエチルアンモニウムプロマイド、テトラエ
チルアンモニウムパークロライド、テトラブチルアンモニウムパーク
15 ロライド、テトラメチルアンモニウム、D-トルエンスルホン酸クロ
ライド、ポリジサリチル酸トリエチルアミン、10-カンファースル
ホン酸ナトリウムなどが、それぞれ、挙げられる。

本発明において、支持電解質の溶解濃度は、所望の電流密度が得ら
れるように設定すればよく、とくに限定されないが、一般的には、0.
20 05ないし1.0モル/リットルの範囲内に設定される。

本発明において、電解酸化重合で用いられる溶媒は、とくに限定さ
れるものではなく、たとえば、水、プロトン性溶媒、非プロトン性溶
媒またはこれらの溶媒の2種以上を混合した混合溶媒から、適宜選択
することができる。混合溶媒としては、溶媒間に相溶性を有するもの
25 ならびにモノマーおよび支持電解質と相溶性を有するものが好ましく
使用できる。

本発明において使用されるプロトン性溶媒の具体例としては、蟻酸、
酢酸、プロピオン酸、メタノール、エタノール、n-ブロパノール、
イソブロパノール、tert-ブチルアルコール、メチルセロソルブ、

ジエチルアミン、エチレンジアミンなどを挙げることができる。

また、非プロトン性溶媒の具体例としては、塩化メチレン、1, 2-ジクロロエタン、二硫化炭素、アセトニトリル、アセトン、プロピレンカーボネート、ニトロメタン、ニトロベンゼン、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン、N, N-ジメチルアセトアミド、N, N-ジメチルホルムアミド、ピリジン、ジメチルスルホキシドなどが挙げられる。
5

本発明において、電解酸化重合によって、固体高分子電解質層を形成する場合には、定電圧法、定電流法、電位掃引法のいずれを用いてもよい。また、電解酸化重合の過程で、定電圧法と定電流法を組み合わせて、導電性高分子化合物を重合することもできる。電流密度は、とくに限定されないが、最大で、 500 mA/cm^2 程度である。
10

本発明において、化学酸化重合時あるいは電解酸化重合時に、特開2000-100665号公報に開示されるように、超音波を照射しつつ、導電性高分子化合物を重合することもできる。超音波を照射しつつ、導電性高分子化合物を重合する場合には、得られる固体高分子電解質層の膜質を改善することが可能になる。
15

本発明において、固体高分子電解質層の最大厚さは、エッチングなどによって形成された陽極電極表面の凹凸を完全に埋めることができるように厚さであればよく、とくに限定されないが、一般に、5ないし $100\mu\text{m}$ 程度である。
20

本発明において、固体電解コンデンサは、さらに、固体高分子電解質層上に、陰極として機能する導電体層を備えており、導電体層としては、グラファイトペースト層および銀ペースト層を設けることができる、グラファイトペースト層および銀ペースト層は、スクリーン印刷法、スプレー塗布法などによって形成することができる。銀ペースト層のみによって、固体電解コンデンサの陰極を形成することができるが、グラファイトペースト層を形成する場合には、銀ペースト層のみによって、固体電解コンデンサの陰極を形成する場合に比して、銀
25

のマイグレーションを防止することができる。

陰極として、グラファイトペースト層および銀ペースト層を形成するにあたっては、メタルマスクなどによって、粗面化処理が施され、絶縁酸化皮膜が形成された弁金属箔基体に対応する部分を除いた部分
5 がマスクされ、粗面化処理が施され、絶縁酸化皮膜が形成された弁金属箔基体に対応する部分にのみ、グラファイトペースト層および銀ペースト層が形成される。

本発明において、固体電解コンデンサは、一方の面に、少なくとも
10 1つの配線パターンが形成された1つの絶縁基板の他方の面側に固定され、あるいは、それぞれ、一方の面に、少なくとも1つの配線パターンが形成された互いに対向する一対の絶縁基板の他方の面の間に固定される。

本発明において、絶縁基板の材料は、とくに限定されないが、樹脂として、接着性や耐溶剤性などが良好なフェノール樹脂、ポリイミド樹脂、エポキシ樹脂、ポリエステル樹脂などによって形成することができ、さらに、有機材料系に限らず、無機材料によって、絶縁基板を形成してもよく、アルミナ基板などの金属酸化物系の基板も、本発明の絶縁基板として、使用することができる。

20 図面の簡単な説明

第1図は、本発明の好ましい実施態様にかかる固体電解コンデンサに用いられる固体電解コンデンサ素子用電極体（以下、単に電極体ということがある）の略斜視図である。

第2図は、第1図に示した固体電解コンデンサ素子用電極体のA—
25 A線に沿った略断面図である。

第3図は、表面が粗面化されているアルミニウム箔基体2のエッジ部に、酸化アルミニウム皮膜を形成する陽極酸化方法を示す略断面図である。

第4図は、固体電解コンデンサ素子の略断面図である。

第5図は、固体電解コンデンサ内蔵基板の略断面図である。

第6図は、複数の固体電解コンデンサ素子が内蔵される内蔵基板を示す略斜視図である。

第7図は、本発明の他の好ましい実施態様にかかる固体電解コンデンサ素子の略上面斜視図である。
5

第8図は、第7図の各素子が接合された状態におけるB—B線に沿った略断面図である。

第9図は、本発明の他の好ましい実施態様にかかる固体電解コンデンサに用いられる固体電解コンデンサ素子用電極体（以下、単に電極体といふことがある）の略斜視図である。
10

第10図は、第9図に示した固体電解コンデンサ素子用電極体のA—A線に沿った略断面図である。

第11図は、表面が粗面化されているアルミニウム箔基体2のエッジ部に、酸化アルミニウム皮膜を形成する陽極酸化方法を示す略断面図である。
15

第12図は、固体電解コンデンサ素子の略断面図である。

第13図は、リードフレームの構成を示す略斜視図である。

第14図は、リードフレームに搭載された複数の固体電解コンデンサ素子の略斜視図である。

第15図は、モールドされた固体電解コンデンサ素子を示す略斜視図である。
20

第16図は、リードフレームから切り離された、モールド後の固体電解コンデンサを示す略斜視図である。なお、内部の固体電解コンデンサ素子は図示を省略する。

25

発明の実施の形態

以下、添付図面に基づいて、本発明の好ましい実施態様につき、詳細に説明を加える。

第1図は、本発明の好ましい実施態様にかかる固体電解コンデンサ

に用いられる固体電解コンデンサ素子用電極体（以下、単に電極体と
いうことがある）の略斜視図であり、第2図は、第1図に示した固体
電解コンデンサ素子用電極体のA-A線に沿った略断面図である。

本実施態様においては、絶縁性酸化皮膜形成能力を有する弁金属と
5 して、アルミニウムが用いられ、第1図および第2図に示されるよう
に、本実施態様にかかる固体電解コンデンサの電極体100は、表面
が粗面化（拡面化）され、表面に、絶縁酸化皮膜である酸化アルミニ
ウム皮膜2xが形成されたアルミニウム箔基体2と、表面が粗面化さ
れていない2つのアルミニウム箔基体3a, 3bと、リード電極を構
10 成する金属導体として、2つの箔状の銅基体4a, 4bを備えている。

表面が粗面化され、表面に、酸化アルミニウム皮膜2xが形成され
たアルミニウム箔基体2の一端部には、表面が粗面化されていないア
ルミニウム箔基体3aの一端部が、超音波溶接によって、弁金属間が
電気的に接続されるように、接合され、さらに、表面が粗面化されて
15 いないアルミニウム箔基体3aの他端部には、箔状の銅基体4aの一
端部が、超音波溶接によって、金属間が電気的に接続されるように、
接合されている。

また、表面が粗面化され、表面に、酸化アルミニウム皮膜が形成さ
れたアルミニウム箔基体2の他端部には、表面が粗面化されていない
20 アルミニウム箔基体3bの一端部が、超音波溶接によって、弁金属間
が電気的に接続されるように、接合され、さらに、表面が粗面化され
ていないアルミニウム箔基体3bの他端部には、箔状の銅基体4bの一
端部が、超音波溶接によって、金属間が電気的に接続されるように、
接合されている。

25 電極体100の形成にあたっては、まず、銅箔シートから、リード
電極を構成すべき2つの銅基体4a, 4bが所定寸法に切り出される。
また、表面が粗面化されていないアルミニウム箔シートから、2つの
アルミニウム基体3a, 3bが所定寸法に切り出される。そして、箔
状の銅基体4aと、表面が粗面化されていないアルミニウム箔基体3

a が、所定面積の端部が互いに重なり合うように、重ね合わされる。また、箔状の銅基体 4 b と、表面が粗面化されていないアルミニウム箔基体 3 b が、所定面積の端部が互いに重なり合うように、重ね合わされる。

- 5 次いで、互いに重ね合わされている箔状の銅基体 4 a, 4 b の端部と、アルミニウム箔基体 3 a, 3 b の端部とが、超音波溶接によって、接合されて、溶接接合部 5 a, 5 b が形成される。アルミニウム箔基体 3 a, 3 b の表面に、自然酸化アルミニウム皮膜が形成されている場合でも、超音波溶接によって、接合することによって、酸化アルミニウム皮膜が除去され、金属間が電気的に接続されるように、箔状の銅基体 4 a, 4 b の端部と、アルミニウム箔基体 3 a, 3 b の端部とが接合される。ここに、互いに重なり合う箔状の銅基体 4 a, 4 b の端部およびアルミニウム箔基体 3 a, 3 b の端部の面積は、接合部が、所定の強度を有するように決定される。
- 10 その後、表面が粗面化され、表面に酸化アルミニウム皮膜が形成されている所定寸法のアルミニウム箔基体 2 が、アルミニウム箔シートから切り出され、箔状の銅基体 4 a, 4 b とそれぞれ接合された表面が粗面化されていないアルミニウム箔基体 3 a, 3 b が、それぞれ、所定面積の端部が互いに重なり合うように、重ね合わされる。
- 15 次いで、互いに重ね合わされている表面が粗面化されたアルミニウム箔基体 2 の端部と、表面が粗面化されていないアルミニウム箔基体 3 a, 3 b の端部とが、超音波溶接によって、接合されて、溶接接合部 6 a, 6 b が生成される。ここに、超音波溶接によって、接合することによって、アルミニウム箔基体 2 の表面に形成されている酸化アルミニウム皮膜が除去され、アルミニウム金属間が電気的に接続されるように、表面が粗面化されていないアルミニウム箔基体 3 a, 3 b の端部と、表面が粗面化されているアルミニウム箔基体 2 の端部とが接合される。ここに、互いに重なり合うアルミニウム箔基体 3 a, 3 b の端部およびアルミニウム箔基体 2 の端部の面積は、接合部が、所

定の強度を有するように決定される。

こうして形成された電極体100は、表面が粗面化され、表面に酸化アルミニウム皮膜が形成されたアルミニウム箔基体2が、アルミニウム箔シートから切り出されたものであるため、そのエッジ部には、

- 5 酸化アルミニウム皮膜が形成されてはおらず、固体電解コンデンサの陽極電極として用いるためには、表面が粗面化されているアルミニウム箔基体2のエッジ部に、陽極酸化によって、酸化アルミニウム皮膜を形成することが必要である。

- 第3図は、表面が粗面化されているアルミニウム箔基体2のエッジ部に、酸化アルミニウム皮膜を形成する陽極酸化方法を示す略断面図である。

- 第3図に示されるように、まず、電極体100の一方に設けられた、表面が粗面化されていないアルミニウム箔基体3aのうち、表面が粗面化されたアルミニウム箔基体2と重なっていない部分の一部および箔状の銅基体4aの全体が、熱硬化型レジスト8xによってマスクされる。次いで、ステンレススピーカー7中に収容されたアジピン酸アンモニウム水溶液よりなる化成溶液8中に、表面が粗面化されたアルミニウム箔基体2の全体と、マスク処理された表面が粗面化されていないアルミニウム箔基体3aの一部および箔状の銅基体4aの全体が浸漬されるように、電極体100がセットされ、箔状の銅基体4bがプラスに、ステンレススピーカー7がマイナスになるように、電圧が印加される。

- 使用電圧は、形成すべき酸化アルミニウム皮膜の膜厚に応じて、適宜決定することができ、10nmないし1μmの膜厚を有する酸化アルミニウム皮膜を形成するときは、通常、数ボルトないし20ボルト程度に設定される。

その結果、陽極酸化が開始され、化成溶液8は、アルミニウム箔基体2の表面が粗面化されているため、毛細管現象によって上昇するが、アルミニウム箔基体3bの表面は粗面化されていないため、表面が粗

面化されているアルミニウム箔基体2と、表面が粗面化されていない
アルミニウム箔基体3bの接合部を越えて、銅基体4bまで上昇し接
触することなく、また、表面が粗面化されていないアルミニウム箔
基体3aの一部および箔状の銅基体4aは、熱硬化型レジストによっ
てマスクされているので、これらが化成溶液8と接触することはない。
5

したがって、リード電極を構成する箔状の銅基体4a, 4bに化成
溶液8が接触することが確実に防止され、エッジ部を含む表面が粗面
化されているアルミニウム箔基体2の全表面およびこれに接合された
表面が粗面化されていないアルミニウム箔基体3a, 3bの一部の領
10 域のみに、酸化アルミニウム皮膜が形成される。

こうして作製された電極体100には、表面が粗面化され、酸化アルミニウム皮膜が形成されているアルミニウム箔基体2の略全表面上に、公知の方法で、導電性高分子などからなる陰極電極が形成され、
固体電解コンデンサ素子が作製される。

15 第4図は、固体電解コンデンサ素子の略断面図である。

第4図に示されるように、固体電解コンデンサ素子110は、表面
が粗面化され、酸化アルミニウム皮膜9が形成されているアルミニウ
ム箔基体2の略全表面上に、固体高分子電解質層11、グラファイト
ペースト層12および銀ペースト層13からなる陰極電極14を備え
20 ている。

導電性高分子化合物を含む固体高分子電解質層11は、表面が粗面
化され、酸化アルミニウム皮膜9が形成されているアルミニウム箔基
体2の略全表面上に、化学酸化重合あるいは電解酸化重合によって形
成され、グラファイトペースト層12および銀ペースト層13は、固
25 体高分子電解質層11上に、スクリーン印刷法あるいはスプレー塗布
法によって形成される。

こうして作製された固体電解コンデンサ素子110は、熱硬化型レ
ジスト8xによるマスクが除去され、一対の絶縁基板の間に、固定さ
れて、基板に内蔵され、固体電解コンデンサ内蔵基板とされる。

第5図は、固体電解コンデンサ内蔵基板の略断面図である。

第5図に示されるように、固体電解コンデンサ内蔵基板120は、互いに対向する第一の絶縁基板21と第二の絶縁基板22を備え、第一の絶縁基板21と第二の絶縁基板22との間に、固体電解コンデンサ素子110を備えている。
5

第一の絶縁基板21には、互いに対向する2つの側部に沿って、その高さが、固体電解コンデンサ素子110の厚さよりも大きいバンク23が形成されており、固体電解コンデンサ素子110は、バンク23の間の第一の絶縁基板21の一面上の所定の位置に位置決めされ、
10 導電性接着剤29によって固定される。

本実施態様において、バンク23は、第一の絶縁基板21および第二の絶縁基板22と同じ材質の基板を、その周縁部に、所定面積の部分が残されるように打ち抜き加工して、枠状の基板を形成し、第一の絶縁基板21および第二の絶縁基板22と同じ材質の接着剤を用いて、
15 枠状の基板を第一の絶縁基板に固定することによって、形成されている。

第一の絶縁基板21の他面には、配線パターン24が形成されており、第一の絶縁基板21には、設置しようとする3端子型の固体電解コンデンサの電極位置に対応するように、複数のスルーホール25が
20 形成されている。

固体電解コンデンサ素子110が、第一の絶縁基板21上の所定の位置に位置決めされて、導電性接着剤29によって、第一の絶縁基板21上に固定されると、第一の絶縁基板21に形成されたバンク23に当接するように、平板状の第二の絶縁基板22が被せられる。

25 さらに第一の絶縁基板21および第二の絶縁基板22と同じ材質の接着剤を用いて、第一の絶縁基板21と第二の絶縁基板22とが接着されて、固体電解コンデンサ内蔵基板20が作製される。

第二の絶縁基板22の上面には、配線パターン27が形成され、第二の絶縁基板22にも、複数のスルーホール28が形成されている。

さらに、第一の絶縁基板 21 の下面および第二の絶縁基板 22 の上面には、電子部品 30 が搭載され、そのコンタクトが、配線パターン 24、27 に電気的に接続される。

第一の絶縁基板 21 は、固体電解コンデンサ素子 110 の陽極リード電極である箔状の銅基体 4a, 4b に対応する位置および、陰極電極 14 に対応する位置に、それぞれ、スルーホール 25a, 25b, 25c を備えており、スルーホール 25a, 25b, 25c を介して、固体電解コンデンサ素子 110 の陽極リード電極である銅基体 4a, 4b および陰極電極 14 を目視によって、確認することができるよう 10 に構成されている。

スルーホール 25a, 25b, 25c を介して、固体電解コンデンサ素子 110 の陽極および陰極は、第一の絶縁基板 21 に形成された配線パターン 24 あるいは第二の絶縁基板 22 に形成された配線パターン 27 と電気的に接続される。

以上説明したように、本実施態様によれば、箔状の銅基体 4a, 4b よりなる陽極リード電極を備え、表面が粗面化されたアルミニウム 箔基体 2 の表面が酸化アルミニウム皮膜で覆われた電極体 100 を有する電気的特性に優れた 3 端子型の固体電解コンデンサ素子 110 を得ることができる。また、3 端子型の固体電解コンデンサ素子として構成されているので、電流経路の分割によって ESL を低減することができ、しかも初期特性値のみならず、ほとんど特性変化のない良好な電気的特性を有する電解コンデンサを得ることができる。

こうして得られた固体電解コンデンサは、その厚さを十分に薄くすることができるから、回路基板に内蔵するのに適し、所望のように、25 固体電解コンデンサが内蔵された基板 120 を作製することが可能になる。

また、本実施態様によれば、第一の絶縁基板 22 には、バンク 23 が設けられ、固体電解コンデンサ内蔵基板 120 の作製にあたり、固体電解コンデンサ 10 は、第一の絶縁基板 21、バンク 23 および第

二の絶縁基板 2 2 によって形成される実質的に閉じた空間内に収容されているから、第二の絶縁基板 2 2 を、固体電解コンデンサ素子 1 1 0 および第一の絶縁基板 2 1 と一体化させる際に、固体電解コンデンサに過度な圧力が加わることがなく、したがって、アルミニウム箔基体 2 の表面に形成された酸化アルミニウム皮膜が破壊されて、陽極として作用するアルミニウムと固体高分子電解質層 1 1 とが接触し、通電時に、ショートが発生することを確実に防止することが可能になる。

第 6 図は、複数の固体電解コンデンサ素子が内蔵される内蔵基板を示す略斜視図である。

第 6 図に示されるように、固体電解コンデンサ内蔵基板 1 3 0 は、互いに対向する第一の絶縁基板 2 1 と第二の絶縁基板 2 2 を備え、第一の絶縁基板 2 1 と第二の絶縁基板 2 2 との間に、4 つの固体電解コンデンサ素子 1 1 0 A ないし 1 1 0 D が内蔵される。

第一の絶縁基板 2 1 の周囲には、その高さが、固体電解コンデンサ素子 1 1 0 A ないし 1 1 0 D の厚さよりも大きいバンク 2 3 が形成されており、固体電解コンデンサ素子 1 1 0 A ないし 1 1 0 D は、バンク 2 3 の間の第一の絶縁基板 2 1 の一面上に形成された配線パターン上の所定の位置に位置決めされ、導電性接着剤 2 9 によって固定される。

第一の絶縁基板 2 1 の一面には、固体電解コンデンサを実装するための配線パターン（ランド） 2 4 A ないし 2 4 D, 2 5 A ないし 2 5 D, および 2 6 が形成されている。固体電解コンデンサ素子 1 0 A ないし 1 0 D が実装される位置には、一方の陽極リード電極に対応するランド 2 4 A ないし 2 4 D と、他方の陽極リード電極に対応するランド 2 5 A ないし 2 5 D と、陰極電極（導電体層）に対応するランド 2 6 が設けられている。ランド 2 6 は、配列された 4 つの固体電解コンデンサ素子のすべての陰極電極と接続される 1 本の配線パターンとして形成されている。

また、第1の絶縁基板21において、各ランド24ないし26が形成されている位置には、複数のスルーホール27が形成され、これにより第1の絶縁基板21の裏面に形成された配線パターンと各ランドとの接続が確保される。したがって、第一の絶縁基板21の裏面に搭載された電子部品と、スルーホール27および基板裏面の配線パターンを介して電気的に接続することができる。
5

固体電解コンデンサ素子110Aないし110Dを実装すると、各固体電解コンデンサ110Aないし110Dの一方の導電性金属基体4aは、対応するランド24Aないし24Dにそれぞれ個別に接続され、また各固体電解コンデンサ110Aないし110Dの他方の導電性金属基体4bは、対応するランド25Aないし25Dにそれぞれ個別に接続され、各固体電解コンデンサ110Aないし110Dの陰極電極は、共通のランド26にすべて接続される。
10

固体電解コンデンサ素子110Aないし110Dが、第一の絶縁基板21上の所定の位置に位置決めされて、各ランドとリード電極とが半田付け或いは導電性接着剤によって電気的に接続されつつ、第一の絶縁基板21上に固定されると、第一の絶縁基板21に形成されたバンク23に当接するように、平板状の第二の絶縁基板22が被せられ、第一の絶縁基板21と第二の絶縁基板22とが、接着剤などにより一體化される。
15
20

上記のように構成された固体電解コンデンサ素子110Aないし110Dは、各陽極リード電極がそれぞれ独立して設けられている一方、陰極電極は、共通のランド26によって短絡されている。したがって、各固体電解コンデンサ素子の陰極電極は、すべて電気的に接続された状態にある。
25

したがって、回路の組み方によっては、各コンデンサ素子を独立して使用することもできるし、また複数のコンデンサの並列接続により大容量化および低ESR化を図ることも可能である。すなわち、本実施態様にかかる固体電解コンデンサ内蔵基板は、多目的に利用するこ

とできるものである。

特に、複数のコンデンサを並列接続した場合に、基板に内蔵された見かけ上のコンデンサは、多数の陽極リード電極を有する多端子構造のコンデンサとなるため、電流経路の分割によってE S LおよびE S Rを大幅に低減させることが可能となる。

第7図は、本発明の他の好ましい実施態様にかかる固体電解コンデンサ素子の略上面斜視図である。また第8図は、第7図の各素子が接合された状態におけるB-B線に沿った略断面図である。

第7図および第8図に示されるように、この固体電解コンデンサ素子140は、第4図に示した1つの固体電解コンデンサの素子110を、3個積み重ねて構成されたものである。各固体電解コンデンサ素子110aないし110cは、陰極電極14どうしが導電性接着剤29によって接着され、陽極リード電極4a, 4bどうしが超音波溶接によって接合されることにより、それぞれ電気的に接続される。したがって、コンデンサ素子としてはわずかに厚みが増すものの、第4図に示した1素子の固体電解コンデンサに比べて3倍の静電容量を有する固体電解コンデンサ素子を提供することができる。なお、本実施態様では固体電解コンデンサ素子を3個重ねた場合を説明したが、これに限定されるものではなく、静電容量と低背化の要求との兼ね合いに応じて、積層枚数は自由に決めることが可能である。

次に、本発明の他の好ましい実施態様につき、詳細に説明を加える。

第9図は、本発明の他の好ましい実施態様にかかる固体電解コンデンサに用いられる固体電解コンデンサ素子用電極体（以下、単に電極体ということがある）の略斜視図であり、第10図は、第9図に示した固体電解コンデンサ素子用電極体のA-A線に沿った略断面図である。

本実施態様においては、絶縁性酸化皮膜形成能力を有する弁金属として、アルミニウムが用いられ、第9図および第10図に示されるよ

うに、本実施態様にかかる固体電解コンデンサの電極体 150 は、表面が粗面化（拡面化）され、表面に、絶縁性酸化皮膜である酸化アルミニウム皮膜 2x が形成されたアルミニウム箔基体 2 と、表面が粗面化されていない 2 つのアルミニウム箔基体 3a, 3b を備えている。

- 5 表面が粗面化され、表面に、酸化アルミニウム皮膜 2x が形成されたアルミニウム箔基体 2 の一端部には、表面が粗面化されていないアルミニウム箔基体 3a の一端部が、超音波溶接によって、弁金属間が電気的に接続されるように、接合されている。また、表面が粗面化され、表面に、酸化アルミニウム皮膜 2x が形成されたアルミニウム箔基体 2 の他端部には、表面が粗面化されていないアルミニウム箔基体 3b の一端部が、超音波溶接によって、弁金属間が電気的に接続されるように、接合されている。

- 10 電極体 150 の形成にあたっては、まず、表面が粗面化され、表面に酸化アルミニウム皮膜が形成されているアルミニウム箔シートから、アルミニウム基体 2 が所定寸法に切り出される。また、表面が粗面化されていないアルミニウム箔シートから、2 つのアルミニウム基体 3a, 3b が所定寸法に切り出される。そして、表面が粗面化され、表面が粗面化されているアルミニウム箔基体 2 の量端部に、表面が粗面化されていないアルミニウム箔基体 3a, 3b の一端部が、それぞれ、所定面積の端部が互いに重なり合うように、重ね合わされる。

- 15 次いで、互いに重ね合わされている表面が粗面化されたアルミニウム箔基体 2 の端部と、表面が粗面化されていないアルミニウム箔基体 3a, 3b の端部とが、超音波溶接によって、接合されて、溶接接合部 4a, 4b が生成される。ここに、超音波溶接によって、接合することによって、アルミニウム箔基体 2 の表面に形成されている酸化アルミニウム皮膜 2x が除去され、アルミニウム金属間が電気的に接続されるように、表面が粗面化されていないアルミニウム箔基体 3a, 3b の端部と、表面が粗面化されているアルミニウム箔基体 2 の端部とが接合される。ここに、互いに重なり合うアルミニウム箔基体 3a,

3 b の端部およびアルミニウム箔基体 2 の端部の面積は、接合部が、所定の強度を有するように決定される。

こうして作製された電極体 150 は、表面が粗面化され、表面に酸化アルミニウム皮膜 2x が形成されたアルミニウム箔基体 2 が、アルミニウム箔シートから切り出されたものであるため、そのエッジ部には、誘電体を構成する酸化アルミニウム皮膜が形成されてはおらず、固体電解コンデンサの陽極電極として用いるためには、表面が粗面化されているアルミニウム箔基体 2 のエッジ部に、陽極酸化によって、酸化アルミニウム皮膜を形成することが必要である。

第 11 図は、表面が粗面化されているアルミニウム箔基体 2 のエッジ部に、酸化アルミニウム皮膜を形成する陽極酸化方法を示す略断面図である。

第 11 図に示されるように、まず、電極体 150 は、表面が粗面化されていないアルミニウム箔基体 3a のうち、表面が粗面化されたアルミニウム箔基体 2 と重なっていない部分の一部が、熱硬化型レジスト 8x によってマスクされる。次いで、ステンレススピーカー 7 中に収容されたアジピン酸アンモニウム水溶液よりなる化成溶液 8 中に、表面が粗面化されたアルミニウム箔基体 2 の全体と、マスク処理されたアルミニウム箔基体 3a の全体と、マスク処理されていないアルミニウム箔基体 3b の一部が浸漬されるように、電極体 150 がセットされ、表面が粗面化されていないアルミニウム箔基体 3b がプラスに、ステンレススピーカー 7 がマイナスになるように、電圧が印加される。

使用電圧は、形成すべき酸化アルミニウム皮膜の膜厚に応じて、適宜決定することができ、10 nmないし 1 μm の膜厚を有する酸化アルミニウム皮膜を形成するときは、通常、数ボルトないし 20 ボルト程度に設定される。

その結果、陽極酸化が開始され、化成溶液 8 は、アルミニウム箔基体 2 の表面が粗面化されているため、毛細管現象によって上昇するが、アルミニウム箔基体 3b の表面は粗面化されていないため、表面が粗

面化されているアルミニウム箔基体2と、表面が粗面化されていないアルミニウム箔基体3bの接合部を越えて、上昇することはなく、また、表面が粗面化されていないアルミニウム箔基体3aの一部は、熱硬化型レジスト8xによってマスクされているので、化成溶液8と接触することはない。

したがって、表面が粗面化されていないアルミニウム箔基体3a, 3bの先端部に化成溶液8が接触することが確実に防止され、エッジ部を含む表面が粗面化されているアルミニウム箔基体2の全表面およびこれに接合された表面が粗面化されていないアルミニウム箔基体3a, 3bの一部の領域のみに、酸化アルミニウム皮膜が形成される。

こうして作製された電極体150には、表面が粗面化され、酸化アルミニウム皮膜が形成されているアルミニウム箔基体2の略全表面上に、公知の方法で、導電性高分子などからなる陰極電極が形成され、固体電解コンデンサ素子が作製される。

第12図は、固体電解コンデンサ素子の略断面図である。

第12図に示されるように、固体電解コンデンサ素子160は、表面が粗面化され、酸化アルミニウム皮膜9が形成されているアルミニウム箔基体2の略全表面上に、固体高分子電解質層11、グラファイトペースト層12および銀ペースト層13からなる陰極電極14を備えている。

導電性高分子化合物を含む固体高分子電解質層11は、表面が粗面化され、酸化アルミニウム皮膜9が形成されているアルミニウム箔基体2の略全表面上に、化学酸化重合あるいは電解酸化重合によって形成され、グラファイトペースト層12および銀ペースト層（導電体層）13は、固体高分子電解質層11上に、スクリーン印刷法あるいはスプレー塗布法によって形成される。

こうして作製された、複数個の固体電解コンデンサ素子160は、熱硬化型レジスト8xによるマスクが除去され、リードフレーム上に搭載され、リードフレーム中に予め作製された陽極リード電極および

陰極リード電極と接続された後、モールドされ、ディスクリート型の固体電解コンデンサとされる。

第13図は、リードフレームの構成を示す略斜視図である。また、第14図は、リードフレームに搭載された複数の固体電解コンデンサ素子の略斜視図である。
5

第13図および第14図に示されるように、リードフレーム15は、4つの固体電解コンデンサ素子を搭載させるべく、りん青銅製の基体が所定の形状に打ち抜き加工されたものである。リードフレーム15には、四方を囲むメインフレーム15xの中央にセンターフレーム18Xが設けられており、センターフレーム18Xには、下方に向けて突出した陰極リード部18Aないし18Dが所定の間隔ごとに設けられている。また、センターフレーム18Xとの直交方向には、メインフレーム15xから陰極リード部18Aに向けて突出した2つの陽極リード部16Aおよび17Aと、陰極リード部18Bに向けて突出した2つの陽極リード部16Bおよび17Bと、陰極リード部18Cに向けて突出した2つの陽極リード部16Cおよび17Cと、陰極リード部18Dに向けて突出した2つの陽極リード部16Dおよび17Dが設けられる。

4つの固体電解コンデンサ素子10Aないし10Dは、リードフレーム15上の所定の位置にそれぞれ搭載され、各素子の陰極電極をなすペースト層（導電体層）14Aないし14Dがリードフレーム15中に予め作製された陰極リード部18Aないし18Dと電気的に接続されるように、銀系の導電性接着剤を用いて接着して、固定される。また、粗面化処理が施されていないアルミニウム箔3a, 3bの端部25は、リードフレーム中に予め作製された2つの陽極リード部16Aないし16D, 17Aないし17Dの端部に、それぞれ重ね合わされ、それぞれレーザスポット溶接機で溶接して、陽極リード部16, 17と接合される。

第15図は、モールドされた固体電解コンデンサ素子を示す略斜視

図である。

第15図に示されるように、各固体電解コンデンサ素子は、リードフレーム上に固定された後、インジェクションまたはトランスブアモールドによって、エポキシ樹脂19でモールドされるが、陰極リード部18の一部は、モールドの底面から露出させて、陰極リード電極とされる。

第16図は、リードフレームから切り離された、モールド後の固体電解コンデンサを示す略斜視図である。なお、内部の固体電解コンデンサ素子は図示を省略する。

第16図に示されるように、エポキシ樹脂19によってモールドされた固体電解コンデンサは、リードフレームから切り離され、陽極リード部を折り曲げて、陽極リード電極16, 17が構成される。また陰極リード部をモールドの底面から露出させて、陰極リード電極18が構成される。

上記のように構成された固体電解コンデンサ素子10Aないし10Dは、陽極リード電極16Aないし16Dおよび17Aないし17Dがそれぞれ独立して設けられている一方、陰極リード電極18Aないし18Dは、共通の支持部18xによって一体化され、短絡されている。したがって、各固体電解コンデンサ素子の陰極電極は、すべて電気的に接続された状態にある。

以上説明したように、本実施態様によれば、表面が粗面化され、酸化アルミニウム皮膜で覆われたアルミニウム箔基体2の対向する2つの端部それぞれに、表面が粗面化されていないアルミニウム箔基体3a, 3bの一端部が接合され、さらにその他端部に、銅基体16, 17が接合されて、陽極リード電極が構成されているので、電気的特性に優れた固体電解コンデンサ素子10を得ることができる。

また、3端子型の固体電解コンデンサ素子として構成されているので、電流経路の分割によってE S Lを低減することができ、しかも初期特性値のみならず、ほとんど特性変化のない良好な電気的特性を有

する電解コンデンサを得ることができる。

そして、3端子型の固体電解コンデンサ素子がアレー状に複数個配列された、ディスクリート型の固体電解コンデンサは、各コンデンサ素子の陰極リード電極を共通化していることから、回路の組み方によ
5 っては、各コンデンサ素子を独立して使用することもできるし、また複数のコンデンサの並列接続により大容量化を図ることも可能である。すなわち、本実施態様にかかる固体電解コンデンサは、多目的に利用
することできるものである。

特に、複数のコンデンサを並列接続した場合に、モールド内の見か
10 け上のコンデンサは、多数の陽極リード電極を有する多端子構造のコンデンサとなるため、電流経路の分割によってE S LまたはE S Rを大幅に低減させることが可能となる。

なお、第12図に示した1つの固体電解コンデンサ素子を複数個積み重ねて、大容量化された固体電解コンデンサ素子を実現することも可能である。この場合、陰極電極14どうしが導電性接着剤29によ
15 って接着され、表面が粗面化されていないアルミニウム箔基体の先端部どうしが超音波溶接などによって接合される。このような固体電解コンデンサ素子を第11図に示したリードフレームに搭載すれば、静電容量がさらに大きなディスクリート型固体電解コンデンサを実現す
20 ることができる。

以下、本発明の効果をより一層明らかなものとするため、実施例および比較例を掲げる。

実施例 1

固体高分子電解質層を有する固体電解コンデンサを、以下のように
25 して、作製した。

銅箔シートから、 $0.5\text{ cm} \times 1\text{ cm}$ の寸法で切り出された厚さ $60\mu\text{m}$ の銅箔と、アルミニウム箔シートから、 $1\text{ cm} \times 1\text{ cm}$ の寸法で切り出された粗面化処理が施されていない厚さ $60\mu\text{m}$ のアルミニウム箔を、それぞれの一端部が 1 mm だけ重なり合うように、重ね合

わせ、それぞれの一端部が重なり合った部分を、日本エマソン株式会社プランソン事業本部製の 40 kHz - 超音波溶接機によって、接合するとともに、電気的に接続して、銅箔と粗面化処理が施されていないアルミニウム箔の接合体を 2 個作製した。

5 次いで、酸化アルミニウム皮膜が形成され、粗面化処理が施されている厚さ 100 μm のアルミニウム箔シートから、1 cm × 1.5 cm の寸法で、アルミニウム箔を切り出し、その対向する 2 つの端部それぞれに、粗面化処理が施されていないアルミニウム箔の他端部が 1 mm だけ重なり合うように、銅箔と粗面化処理が施されていないアル
10 ミニウム箔の接合体をそれぞれ重ね合わせ、それぞれの端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されているアルミニウム箔、粗面化処理が施されていないアルミニウム箔、銅箔の順に接合されている 3 端子型固体電解コンデンサ素子用電極体を作製した。

こうして作製された電極体において、両端部に形成されている銅箔及び粗面化処理が施されていないアルミニウム箔部分のうち、一端部分にのみレジストを塗布してコーティングした。ただし、粗面化処理が施されていないアルミニウム箔の一部と、粗面化処理が施されているアルミニウム箔の接合部にはレジストを塗布していない。

さらに、こうして得られた電極体を、7 重量% の濃度で、6.0 の pH に調整されたアジピン酸アンモニウム水溶液中に、酸化アルミニウム皮膜が形成され、粗面化処理が施されているアルミニウム箔が完全に浸漬されるように、アジピン酸アンモニウム水溶液中にセットした。この際、粗面化処理が施されていない 2 つのアルミニウム箔のうちコーティングされていない方のアルミニウム箔の一部も、アジピン酸アンモニウム水溶液中に浸されたが、2 つの銅箔のうちコーティングされていない方の銅箔は、アジピン酸アンモニウム水溶液と接触させなかった。

次いで、電極体のレジスト処理されていない銅箔側を陽極とし、化成電流密度が50ないし100mA/cm²、化成電圧が35ボルトの条件下で、アジピン酸アンモニウム水溶液中に浸漬されているアルミニウム箔の表面を酸化させ、酸化アルミニウム皮膜を形成した。

5 その後、電極体をアジピン酸アンモニウム水溶液から引き上げ、粗面化処理が施されているアルミニウム箔の表面上に、化学酸化重合によって、ポリピロールからなる固体高分子電解質層を形成した。詳細には、蒸留精製した0.1モル/リットルのピロールモノマー、0.1モル/リットルのアルキルナフタレンスルホン酸ナトリウムおよび10 0.05モル/リットルの硫酸鉄(III)を含むエタノール水混合溶液セル中に、粗面化処理が施され、酸化アルミニウム皮膜が形成されたアルミニウム箔のみが浸漬されるように、電極体をセットし、30分間にわたって、攪拌し、化学酸化重合を進行させ、同じ操作を3回にわたって、繰り返した。その結果、最大厚さが、約50μmの固体高分子電解質層が形成された。

15 さらに、こうして得られた固体高分子電解質層の表面に、カーボンペーストを塗布し、さらに、カーボンペーストの表面に、銀ペーストを塗布して、陰極電極を形成した。ペースト層が形成された後、前記塗布したレジスト層を有機溶媒にて溶解させ、レジストを除去し、粗面化処理が施されていないアルミニウム箔と、銅箔部分を露出させた。以上の処理によって、3端子型の固体電解コンデンサ素子を作製した。

一方、厚さ18μmの銅箔が、両面に貼り合わされた厚さ0.5mmで、2cm×4.5cmのサイズを有する2枚のガラスクロス含有エポキシ樹脂絶縁性基板を、以下のようにして、準備した。

20 銅箔面には、電気回路を形成するために、銅箔の不要部分を化学的にエッチングし、所定の配線パターンを形成した。ただし、3端子型固体電解コンデンサが固定されるべき側の基板面は、レジストでパターンングし、化学的にエッチングして、不要な部分の銅箔はすべて除去した。

さらに、内蔵されるべき固体電解コンデンサ素子の2つの陽極リード電極および陰極電極に対応するガラスクロス含有エポキシ樹脂絶縁性基板の位置に、それぞれ、スルーホールを形成し、スルーホールと、エッティングされた銅箔パターン上に、無電解メッキによって、 $3 \mu\text{m}$ のニッケルメッキを施し、さらに、その上に、 $0.08 \mu\text{m}$ の金メッキを施した。

搭載される各種電子部品のためのスルーホールを、さらに、もう一方のガラスクロス含有エポキシ樹脂絶縁性基板に同様の手法で形成した。

一方、2枚の基板と同じガラスクロス含有エポキシ樹脂よりなる厚さ $200 \mu\text{m}$ の基板を、 $2\text{cm} \times 4.5\text{cm}$ の寸法に加工し、加工した基板の周囲に幅 3mm の領域を残して、内側部分を、打ち抜き加工により、除去して、バンク形成用基板を作製した。

さらに、2枚の基板と同じガラスクロス含有エポキシ樹脂よりなる厚み $50 \mu\text{m}$ の2枚のエポキシプリプレグを、 $2\text{cm} \times 4.5\text{cm}$ の寸法に加工し、加工した基板の周囲に幅 3mm の領域を残して、内側部分を、打ち抜き加工によって、除去して、バンク形成用基板を作製した。

打ち抜き加工され、内側部分が除去されたバンク形成用基板と、ガラスクロス含有エポキシ樹脂絶縁性基板の一方の銅箔が除去された表面とを、上述のように加工された厚さ $50 \mu\text{m}$ の2枚のエポキシプリプレグの一方を介して、密着させ、真空ホットプレス装置を用いて、加圧および減圧下において、40分間にわたって、 175°C に保持し、エポキシプリプレグを硬化させて、ガラスクロス含有エポキシ樹脂絶縁性基板と、内側部分が除去された基板とを固定し、四部空間を備えた絶縁性基板を得た。

四部空間を備えた絶縁性樹脂基板の電解コンデンサの設置面に、3端子型固体電解コンデンサ素子の2つの陽極リード電極および陰極電極が、絶縁性基板に形成されたスルーホールに対応する位置に配置さ

れるように、銀ーエポキシ系接着剤を用いて、固体電解コンデンサ素子を固定した。

次いで、3端子型固体電解コンデンサ素子が固定されたガラスクロス含有エポキシ樹脂絶縁性基板上に、もう一方のエポキシ樹脂絶縁性基板を、上述のように加工された厚さ $50\text{ }\mu\text{m}$ の他方のエポキシプリプレグを介して、固体電解コンデンサが、凹部空間内に収容されるように、重ね合わせ、密着させた。

こうして、密着された2枚の絶縁性基板を、真空ホットプレス装置を用いて、加圧および減圧下で、40分間にわたり、 175°C に保持し、エポキシプリプレグを硬化させて、2枚のガラスクロス含有エポキシ樹脂絶縁性基板の間を固定した。

ガラスクロス含有エポキシ樹脂絶縁性基板の冷却後、ガラスクロス含有エポキシ樹脂絶縁性基板のそれぞれに形成されたスルーホールを介して、ガラスクロス含有エポキシ樹脂絶縁性基板の表面に形成されている配線パターンと、内蔵化された固体電解コンデンサが固定されているスルーホール部分とを電子部品等を介するなどして、導電性接着剤やハンダによって、電気的に接続して、固体電解コンデンサ内蔵プリント基板#1を得た。

こうして作製された固体電解コンデンサ内蔵プリント基板#1の電気的特性について、アジレントテクノロジー社製インピーダンスアナライザー4294Aおよびネットワークアナライザー8753Dを用いて、静電容量および S_{21} 特性を測定し、得られた S_{21} 特性をもとに、等価回路シミュレーションを行い、ESR、ESL値を決定した。

その結果、 120 Hz での静電容量は $150\text{ }\mu\text{F}$ であり、 100 k Hz でのESRは $25\text{ m}\Omega$ であり、ESLは 15 pH であった。

さらに、固体電解コンデンサ内蔵プリント基板サンプル#1を、 25°C の高温条件下で、 1000 時間にわたって放置し、上記と同様にして、電気的特性を評価した。

その結果、 120 Hz での静電容量は $145\text{ }\mu\text{F}$ であり、 100 k

H_zでのE S Rは27mΩであり、E S Lは16pHであった。

実施例2

実施例1と同様にして、3端子型固体電解コンデンサを3個作製した。

5 このうち、3つの3端子型固体電解コンデンサの一方の陽極リード電極と、ペースト層（導電体層）が形成された陰極電極と、他方の陽極リード電極とが、互いに重なり合うように積層した。陰極電極は、銀系の導電性接着剤を用いて一体化し、2つの陽極リード電極は、それぞれNEC製YAGレーザスポット溶接機で溶接して一体化した。

10 以上により、3つの3端子型固体電解コンデンサが積層された固体電解コンデンサユニットを作製した。

さらに、実施例1と同様にして、2枚のガラスクロス含有エポキシ樹脂絶縁性基板を作製した。

一方、基板と同じガラスクロス含有エポキシ樹脂よりなる500μmの厚さの2枚の基板を、それぞれ、2cm×4.5cmの寸法に加工し、加工した基板の周囲に幅3mmの領域を残して、内側部分を、打ち抜き加工により、除去して、2枚のバンク形成用基板を作製した。

次いで、基板と同じガラスクロス含有エポキシ樹脂よりなる厚み50μmの3枚のエポキシプリプレグを、それぞれ、2cm×4.5cmの寸法に加工し、加工した基板の周囲に幅3mmの領域を残して、内側部分を、打ち抜き加工によって、除去して、第一のエポキシプリプレグ、第二のエポキシプリプレグおよび第三のエポキシプリプレグを作製した。

打ち抜き加工され、内側部分が除去されたバンク形成用基板の一方と、ガラスクロス含有エポキシ樹脂絶縁性基板の一方の銅箔が除去された表面とを、上述のように加工された厚さ50μmの第一のエポキシプリプレグの一方を介して、密着させ、真空ホットプレス装置を用いて、加圧および減圧下において、40分間にわたり、175℃に保持し、エポキシプリプレグを硬化させて、ガラスクロス含有エポキシ

樹脂絶縁性基板と、バンク形成用基板の一方とを固定し、凹部空間を備えた第一の絶縁性基板を得た。

同様にして、打ち抜き加工され、内側部分が除去されたバンク形成用基板の他方と、ガラスクロス含有エポキシ樹脂絶縁性基板の他方の
5 銅箔が除去された表面とを、上述のように加工された厚さ 50 μm の第二のエポキシプリプレグの他方を介して、密着させ、真空ホットプレス装置を用いて、加圧および減圧下において、40 分間にわたり、
10 175 °C に保持し、エポキシプリプレグを硬化させて、ガラスクロス含有エポキシ樹脂絶縁性基板と、他方のバンク形成用基板とを固定し、
凹部空間を備えた第二の絶縁性基板を得た。

こうして得られた第一の絶縁基板の凹部空間内に、3 端子型固体電解コンデンサ素子ユニットの 2 つの陽極リード電極および陰極電極が、
15 絶縁性基板に形成されたスルーホールに対応する位置に配置されるようにして、銀—エポキシ系接着剤を用いて、固体電解コンデンサ素子を固定した。

次いで、3 端子型固体電解コンデンサが固定された第一の絶縁性基板上に、第二の絶縁性基板を、上述のように加工された厚さ 50 μm の第三のエポキシプリプレグを介在させ、凹部空間が互いに対向し、
20 固体電解コンデンサが凹部空間内に収容されるように重ね合わせて、密着させた。

こうして、密着された 2 枚の絶縁性基板を、真空ホットプレス装置を用いて、加圧および減圧下で、40 分間にわたり、175 °C に保持し、エポキシプリプレグを硬化させて、2 枚のガラスクロス含有エポキシ樹脂絶縁性基板の間を固定した。

25 ガラスクロス含有エポキシ樹脂絶縁性基板の冷却後、ガラスクロス含有エポキシ樹脂絶縁性基板のそれぞれに形成されたスルーホールを介して、ガラスクロス含有エポキシ樹脂絶縁性基板の表面に形成されている配線パターンと、内蔵化された固体電解コンデンサが固定されているスルーホール部分とを電子部品等を介するなどして、導電性接

着剤やハンダによって、電気的に接続して、固体電解コンデンサ内蔵プリント基板#2を得た。

こうして作製された固体電解コンデンサ内蔵プリント基板#2の電気的特性を、実施例1と同様の手法で評価した。

5 その結果、120Hzでの静電容量は455μFであり、100kHzでのESRは10mΩであり、ESLは12pHであった。

さらに、固体電解コンデンサ内蔵プリント基板サンプル#2を、125°Cの高温条件下で、1000時間にわたって放置し、上記と同様にして、電気的特性を評価した。

10 その結果、120Hzでの静電容量は450μFであり、100kHzでのESRは11mΩであり、ESLは12pHであった。

比較例1

15 銅箔シートから、0.5cm×1cmの寸法で切り出された厚さ60μmの銅箔と、アルミニウム箔シートから、1cm×1cmの寸法で切り出された粗面化処理が施されていない厚さ60μmのアルミニウム箔を、それぞれの一端部が1mmだけ重なり合うように、重ね合わせ、それぞれの端部が重なり合った部分を、日本エマソン株式会社ブランソン事業本部製の40kHz—超音波溶接機によって、接合するとともに、電気的に接続して、銅箔と粗面化処理が施されていない20アルミニウム箔の接合体を形成した。

次いで、酸化アルミニウム皮膜が形成され、粗面化処理が施されている厚さ100μmのアルミニウム箔シートから、1cm×1.5cmの寸法でアルミニウム箔を切り出し、その端部が、粗面化されていないアルミニウム箔の他端部と1mmだけ重なり合うように、重ね合わせ、それぞれの端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔、粗面化処理が施されていないアルミニウム箔、酸化アルミニウム皮膜が形成され、粗面化処理が施されているアルミニウム箔の接合体を形成した。

以上の処理によって、銅箔、粗面化処理が施されていないアルミニ

ウム箔、酸化アルミニウム皮膜が形成され、粗面化処理が施されているアルミニウム箔の順に接合されている2端子型固体電解コンデンサ用電極体を作製した。

このようにして得られた2端子型固体電解コンデンサ用電極体を、
5 実施例1と略同様に加工して、2端子型固体電解コンデンサ内蔵プリント基板サンプル#3を作製した。

こうして作製された固体電解コンデンサ内蔵プリント基板#3の電気的特性を、実施例1と同様の手法で評価した。

その結果、120Hzでの静電容量は150μFであり、100kHzでのESRは45mΩであった。ESLは1500pHであった。
10

さらに、固体電解コンデンサ内蔵プリント基板サンプル#3を、125°Cの高温条件下で、1000時間にわたって放置し、上記と同様にして、電気的特性を評価した。

その結果、120Hzでの静電容量は140μFであり、100kHzでのESRは55mΩであり、ESLは1556pHであった。
15

実施例1、2ならびに比較例1から、酸化アルミニウム皮膜が形成され、粗面化処理が施されているアルミニウム箔と、粗面化処理が施されていないアルミニウム箔と、銅箔とが接合されて、作製された固体電解コンデンサを用いた本発明にかかる固体電解コンデンサ内蔵プリント基板サンプル#1及び#2は、箔間の接合方法、電気導体の材質および使用する固体高分子化合物の種類のいかんにかかわらず、静電容量特性、ESR特性およびESL特性のいずれも良好であり、一方、比較例1にかかる固体電解コンデンサ内蔵プリント基板サンプル#3にあっては、ESR特性およびESL特性が劣っており、特にESL特性が著しく劣っていることが判明した。
20
25

実施例3

ディスクリート型の3端子型固体電解コンデンサを、以下のようにして、作製した。

まず、粗面化処理が施され、酸化アルミニウム皮膜が形成されてい

る厚さ $100 \mu m$ のアルミニウム箔シートから、 0.7 cm^2 の寸法で、アルミニウム箔を切り出した。また、粗面化処理が施されていない厚さ $60 \mu m$ のアルミニウム箔シートから、前記粗面化処理が施されたアルミニウム箔と同じ幅となるように、 0.2 cm^2 の寸法で、

5 アルミニウム箔を 2 枚切り出した。

次いで、粗面化処理が施されていないアルミニウム箔を、その一端部が 0.5 mm だけ重なり合うように、粗面化処理が施されているアルミニウム箔に重ね合わせ、それぞれの端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、粗面化処理が施されていないアルミニウム箔および粗面化処理が施されて 10 いるアルミニウム箔の接合体を作製した。

さらに、粗面化処理が施されているアルミニウム箔のもう一端部に、もう 1 枚の粗面化処理が施されていないアルミニウム箔を、その一端部が 0.5 mm だけ重なり合うように、重ね合わせ、それぞれの端部 15 が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されているアルミニウム箔および粗面化処理が施されていないアルミニウム箔の接合体を作製した。

以上の処理によって、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されているアルミニウム箔、粗面化処理が施されて 20 いないアルミニウム箔の順に接合されている 3 端子固体電解コンデンサ素子用電極体を作製した。

こうして作製された電極体において、粗面化処理が施され、酸化アルミニウム皮膜が形成されているアルミニウム箔の両端部に形成され 25 ている、粗面化処理が施されていないアルミニウム箔部分のうち、一方のアルミニウム箔の一端部分のみレジストを塗布してコーティングした。もう一方の粗面化処理が施されていないアルミニウム箔にはレジストを塗布していない。

さらに、こうして得られた電極体を、3 重量% の濃度で、6.0 の

pHに調整されたアジピン酸アンモニウム水溶液中に、レジストが塗布されている粗面化処理が施されていないアルミニウム箔の全体と、粗面化処理が施され、酸化アルミニウム皮膜が形成されているアルミニウム箔の全体と、粗面化処理が施されていないもう一方のアルミニウム箔の一部が第3図のように完全に浸漬されるように、アジピン酸アンモニウム水溶液中にセットした。

次いで、電極体のレジスト処理されておらず、粗面化処理が施されていないアルミニウム箔側を陽極とし、化成電流密度が50ないし100mA/cm²、化成電圧が12ボルトの条件下で、アジピン酸アンモニウム水溶液中に浸漬されているアルミニウム箔の表面を酸化させ、酸化アルミニウム皮膜を形成した。

その後、電極体をアジピン酸アンモニウム水溶液から引き上げ、粗面化処理が施されているアルミニウム箔の表面上に、化学酸化重合によって、ポリピロールからなる固体高分子電解質層を形成した。

ここに、ポリピロールからなる固体高分子電解質層は、精製した0.1モル/リットルのピロールモノマー、0.1モル/リットルのアルキルナフタレンスルホン酸ナトリウムおよび0.05モル/リットルの硫酸鉄(III)を含むエタノール水混合溶液セル中に、粗面化処理が施され、酸化アルミニウム皮膜が形成されたアルミニウム箔のみが浸漬されるように、電極体をセットし、30分間にわたって、攪拌し、化学酸化重合を行なわせ、同じ操作を3回にわたって、繰り返して、生成した。その結果、最大厚さが、約50μmの固体高分子電解質層が形成された。

さらに、こうして得られた固体高分子電解質層の表面に、カーボンペーストを塗布し、さらに、カーボンペーストの表面に、銀ペーストを塗布して、陰極電極を形成し、ペースト層が形成された後、前記塗布したレジスト層を有機溶媒にて溶解させ、レジストを除去し、粗面化処理が施されていないアルミニウム箔部分を露出させた。以上の処理によって、3端子型の固体電解コンデンサ素子を作製した。

上記の作業を繰り返して、このような3端子型固体電解コンデンサ素子を4個作製した。

さらに、こうして作製された4つの固体電解コンデンサ素子を、第6図に示した所定の形状に加工されたリードフレーム上の所定の位置にアレー状に搭載した。固体電解コンデンサ素子のペースト層が塗布された陰極電極部分は、銀系の導電性接着剤を用いてリードフレーム上に接着した。粗面化されていない2つのアルミニウム箔部分は、それぞれNEC製YAGレーザスポット溶接機で溶接して、リードフレームの陽極リード部分と一体化した。

リードフレーム上に4つの固体電解コンデンサ素子が固定された後に、インジェクションまたはトランスマールドによって、エポキシ樹脂でモールドした。

モールド後の固体電解コンデンサ素子を、リードフレームから切り離し、陽極リード電極を折り曲げて、ディスクリート型の固体電解コンデンサのサンプル#4を得た。その後、既知の方法にて、固体電解コンデンサに一定の電圧を印加して、エージング処理を行い、漏れ電流を十分に低減させて、完成させた。

こうして得られた固体電解コンデンサ#4の電気的特性について、アジレントテクノロジー社製インピーダンスアナライザー4294A、ネットワークアナライザー8753Dを用いて、静電容量およびS₂₁特性を測定し、得られたS₂₁特性をもとに、等価回路シミュレーションを行い、ESR、ESL値を決定した。

実施例4

3端子型固体電解コンデンサ内蔵プリント基板（以下、3端子型固体電解コンデンサあるいは単に固体電解コンデンサということがある）を、以下のようにして、作製した。

まず、銅箔シートから、0.1cm²の寸法で切り出された厚さ60μmの銅箔と、アルミニウム箔シートから、前記銅箔と同じ幅となるように、0.2cm²の寸法で切り出された粗面化処理が施されて

5 いない厚さ $60 \mu\text{m}$ のアルミニウム箔を、それぞれの一端部が 2.0 mm だけ重なり合うように、重ね合わせ、それぞれの箔が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔と粗面化処理が施されていないアルミニウム箔の接合体を作製した。この接合体を 2 個作製した。

10 次いで、粗面化処理が施され、酸化アルミニウム皮膜が形成されている厚さ $100 \mu\text{m}$ のアルミニウム箔シートから、前記接合体と同じ幅となるように、 0.7 cm^2 の寸法でアルミニウム箔を切り出し、その一端部が 0.5 mm だけ重なり合うように、前記作製した銅箔と粗面化処理が施されていないアルミニウム箔の接合体に重ね合わせ、それぞれの端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔、粗面化処理が施されていないアルミニウム箔および粗面化処理が施されているアルミニウム箔の順に一体化されている接合体を形成した。

15 さらに、粗面化処理が施されているアルミニウム箔のもう一端部に、もう一つの銅箔と粗面化処理が施されていないアルミニウム箔の接合体を、その一端部が 0.5 mm だけ重なり合うように、重ね合わせ、それぞれの一端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されていないアルミニウム箔および銅箔の接合体を形成した。

20 25 以上の処理によって、銅箔、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されているアルミニウム箔、粗面化処理が施されていないアルミニウム箔、銅箔の順に接合されている 3 端子固体電解コンデンサ素子用電極体を作製した。

こうして作製された電極体において、粗面化処理が施され、酸化アルミニウム皮膜が形成されているアルミニウム箔の両端部に形成されている、銅箔および粗面化処理が施されていないアルミニウム箔の接

合体部分のうち、一端部分のみレジスト塗布してコーティングした。
もう一方の接合体にはレジストを塗布していない。

さらに、こうして得られた電極体を、3重量%の濃度で、6.0の
pHに調整されたアジピン酸アンモニウム水溶液中に、レジストが塗
5 布されている銅箔および粗面化処理が施されていないアルミニウム箔
の接合体の全体と、粗面化処理が施され、酸化アルミニウム皮膜が形
成されているアルミニウム箔の全体と、粗面化処理が施されていない
もう一方のアルミニウム箔の一部が完全に浸漬されるように、アジピ
ン酸アンモニウム水溶液中にセットした。この際、粗面化処理が施さ
10 れていないアルミニウム箔の一部も、アジピン酸アンモニウム水溶液
中に浸されたが、銅箔は、アジピン酸アンモニウム水溶液と接触させ
なかつた。

次いで、電極体のレジスト処理されていない銅箔側を陽極とし、化
成電流密度が50ないし100mA/cm²、化成電圧が12ボルト
15 の条件下で、アジピン酸アンモニウム水溶液中に浸漬されているアル
ミニウム箔の表面を酸化させ、酸化アルミニウム皮膜を形成した。

その後、電極体をアジピン酸アンモニウム水溶液から引き上げ、粗
面化処理が施されているアルミニウム箔の表面上に、化学酸化重合に
よって、ポリピロールからなる固体高分子電解質層を形成した。

20 ここに、ポリピロールからなる固体高分子電解質層は、精製した0.
1モル/リットルのピロールモノマー、0.1モル/リットルのアル
キルナフタレンスルホン酸ナトリウムおよび0.05モル/リットル
の硫酸鉄(III)を含むエタノール水混合溶液セル中に、粗面化処理が
施され、酸化アルミニウム皮膜が形成されたアルミニウム箔のみが浸
25 漬されるように、電極体をセットし、30分間にわたって、攪拌し、
化学酸化重合を進行させ、同じ操作を3回にわたって、繰り返して、
生成した。その結果、最大厚さが、約50μmの固体高分子電解質層
が形成された。

さらに、こうして得られた固体高分子電解質層の表面に、カーボン

ペーストを塗布し、さらに、カーボンペーストの表面に、銀ペーストを塗布して、陰極電極を形成し、ペースト層が形成された後、前記塗布したレジスト層を有機溶媒にて溶解させ、レジストを除去し、粗面化処理が施されていないアルミニウム箔と、銅箔部分を露出させた。

5 以上の処理によって、3端子型固体電解コンデンサ素子を作製した。

上記の作業を繰り返して、このような3端子型固体電解コンデンサ素子を4個作製した。

一方、厚さ $18\mu\text{m}$ の銅箔が両面に貼り合わされた、厚さ 0.5mm で、 $143\text{mm} \times 46\text{mm}$ のサイズを有する2枚のガラスクロス含有エポキシ樹脂絶縁性基板を、以下のようにして、準備した。

10 銅箔面には、電気回路を形成するために、銅箔の不要部分を化学的にエッチングし、所定の配線パターンを形成した。ただし、3端子型固体電解コンデンサ素子が固定されるべき側の基板面の銅箔は、所定のパターニングを行うため、レジストでパターニングし、化学的にエッチングして、4つの固体電解コンデンサ素子が所定間隔を隔てて配列され、かつ、それぞれの陰極電極どうしが電気的に接続されるように、不要な銅箔を除去した。

15 さらに、内蔵されるべき3端子型固体電解コンデンサ素子の2つの陽極リード電極および陰極電極に対応するガラスクロス含有エポキシ樹脂絶縁性基板の配線パターンの所定の位置に、それぞれ、スルーホールを形成し、スルーホールと、エッチングされた銅箔パターン上に、無電解メッキによって、 $3\mu\text{m}$ のニッケルメッキを施し、さらに、その上に、 $0.08\mu\text{m}$ の金メッキを施した。

20 搭載される各種電子部品のためのスルーホールを、さらに、ガラスクロス含有エポキシ樹脂絶縁性基板に形成した。

25 一方、2枚の基板と同じガラスクロス含有エポキシ樹脂よりなる厚さ $200\mu\text{m}$ の基板を、 $143\text{mm} \times 46\text{mm}$ の寸法に加工し、加工した基板の周囲に幅 3mm の領域を残して、内側部分を、打ち抜き加工により、除去して、バンク形成用基板を作製した。

さらに、2枚の基板と同じガラスクロス含有エポキシ樹脂よりなる厚み50μmの2枚のエポキシプリプレグを、143mm×46mmの寸法に加工し、加工した基板の周囲に幅3mmの領域を残して、内側部分を、打ち抜き加工によって、除去した。

5 打ち抜き加工され、内側部分が除去されたバンク形成用基板と、ガラスクロス含有エポキシ樹脂絶縁性基板の固体電解コンデンサ素子が設置されるように配線パターンが施された表面とを、上述のように加工された厚さ50μmのエポキシプリプレグの一方を介して、密着させ、真空ホットプレス装置を用いて、加圧および減圧下において、4
10 分間にわたって、175°Cに保持し、エポキシプリプレグを硬化させて、ガラスクロス含有エポキシ樹脂絶縁性基板と、内側部分が除去されたバンク形成用基板とを固定し、凹部空間を備えた絶縁性基板を得た。

15 固体電解コンデンサ素子が設置されるように配線パターンが施された表面に、3端子型固体電解コンデンサの2つの陽極電極および陰極電極が、絶縁性基板に形成された配線パターンのスルーホールに対応する位置に位置するように、銀ーエポキシ系接着剤を用いて、4つの3端子型固体電解コンデンサ素子をアレー状に固定した。

次いで、凹部空間を備えた3端子型固体電解コンデンサ素子が固定
20 されたガラスクロス含有エポキシ樹脂絶縁性基板上に、もう一方のガラスクロス含有エポキシ樹脂絶縁性基板を、上述のように加工された厚さ50μmの他方のエポキシプリプレグを介して、固体電解コンデンサが、凹部空間内に収容されるように、重ね合わせ、密着させた。

こうして、密着された2枚の絶縁性基板を、真空ホットプレス装置を用いて、加圧および減圧下で、40分間にわたり、175°Cに保持し、エポキシプリプレグを硬化させて、2枚のガラスクロス含有エポキシ樹脂絶縁性基板の間を固定した。

ガラスクロス含有エポキシ樹脂絶縁性基板の冷却後、ガラスクロス含有エポキシ樹脂絶縁性基板のそれぞれに形成されたスルーホール部

分と、ガラスクロス含有エポキシ樹脂絶縁性基板の表面に形成されている配線パターンとを、導電性接着剤またはハンダによって、電気的に接続して、固体電解コンデンサ内蔵プリント基板のサンプル#5を得た。その後、既知の方法にて、固体電解コンデンサに一定の電圧を印加して、エージング処理を行い、漏れ電流を十分に低減させて、完成させた。

こうして得られた固体電解コンデンサ内蔵プリント基板#5の電気的特性を、実施例3と同様の手法で評価した。

比較例2

2端子型固体電解コンデンサ内蔵プリント基板（以下、2端子型固体電解コンデンサあるいは単に固体電解コンデンサということがある）を、以下のようにして、作製した。

銅箔シートから、 0.1 cm^2 の寸法で切り出された厚さ $60 \mu\text{m}$ の銅箔と、アルミニウム箔シートから、前記銅箔と同じ幅となるよう 0.2 cm^2 の寸法で切り出された粗面化処理が施されていない厚さ $60 \mu\text{m}$ のアルミニウム箔を、それぞれの一端部が 2.0 mm だけ重なり合うように、重ね合わせ、それぞれの箔が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔と粗面化処理が施されていないアルミニウム箔の接合体を作製した。

次いで、酸化アルミニウム皮膜が形成され、粗面化処理が施されている厚さ $100 \mu\text{m}$ のアルミニウム箔シートから、前記接合体と同じ幅となるよう、 0.7 cm^2 の寸法で、アルミニウム箔を切り出し、その端部が 0.5 mm だけ重なり合うように、前記作製した銅箔と粗面化処理が施されていないアルミニウム箔の接合体に重ね合わせ、それぞれの端部が重なり合った部分を、超音波溶接機によって、接合するとともに、電気的に接続して、銅箔、粗面化処理が施されていないアルミニウム箔および粗面化処理が施されているアルミニウム箔の接合体を形成した。

以上の処理によって、銅箔、粗面化処理が施されていないアルミニウム箔、粗面化処理が施されているアルミニウム箔の順に接合されている 2 端子型固体電解コンデンサ素子用電極体を作製した。

このようにして得られた 2 端子型固体電解コンデンサ素子用電極体を用い、実施例 2 の場合と略同様に、固体高分子電解質層およびペースト層を形成して、2 端子型固体電解コンデンサ素子を作製し、2 枚のガラスクロス含有エポキシ樹脂絶縁性基板間にこれを収容して、2 端子型固体電解コンデンサ内蔵プリント基板のサンプル # 6 を得た。その後、既知の方法にて、固体電解コンデンサに一定の電圧を印加して、エージング処理を行い、漏れ電流を十分に低減させて、完成させた。

こうして得られた固体電解コンデンサ内蔵プリント基板 # 6 の電気的特性を、実施例 1 と同様の手法で評価した。

表 1 は、固体電解コンデンサ # 4 から # 6 の電気的特性の測定結果を示す表である。なお、No. 1 ~ No. 4 は、アレー状に配列された 4 つの固体電解コンデンサ素子それぞれを示している。

表 1

	静電容量 (μ F)			E S R (m Ω)			E S L (pH)		
	# 4	# 5	# 6	# 4	# 5	# 6	# 4	# 5	# 6
No. 1	95	100	100	20	18	28	18	20	125 0
No. 2	90	85	85	15	13	25	12	10	128 0
No. 3	97	87	87	23	15	30	14	14	123 0
No. 4	90	90	90	18	11	35	12	12	131 0

表1から明らかなように、粗面化処理が施され、酸化アルミニウム皮膜が形成されているアルミニウム箔と、粗面化処理が施されていないアルミニウム箔と、銅箔とが接合されて作製された3端子型の固体電解コンデンサ素子を、アレー状に配列し、陰極電極どうしを電気的に接続した、本発明にかかる固体電解コンデンササンプル#4及び#5は、ディスクリート型か基板内蔵型かによらず、また箔間の接合法、電気導体の材質および使用する固体高分子化合物の種類のいかんにかかわらず、静電容量特性、ESR特性およびESL特性のいずれも良好であり、一方、比較例1にかかる2端子型の固体電解コンデンササンプル#6にあっては、ESR特性およびESL特性が劣っており、特にESL特性が著しく劣っていることが判明した。

さらに、3端子型固体電解コンデンサ、3端子型固体電解コンデンサ内蔵プリント基板、2端子型固体電解コンデンサ内蔵プリント基板の各サンプルを、125℃の恒温条件下で、1000時間にわたって、放置し、全く同様にして、電気的特性を測定した。

表2は、固体電解コンデンサ#4から#6の電気的特性の前記測定結果を示す表である。

表2

	静電容量 (μ F)			ESR (m Ω)			ESL (pH)		
	#4	#5	#6	#4	#5	#6	#4	#5	#6
No. 1	95	93	90	18	21	32	17	16	126 0
No. 2	91	89	82	14	15	30	13	10	128 5
No. 3	96	92	81	16	25	30	15	18	123 6
No. 4	91	88	89	15	20	37	12	21	134 0

表2から明らかなように、125°Cの恒温条件下で、100時間にわたって放置した場合であっても、第1の測定結果と略同様の結果が得られた。

5 本発明は、以上の実施態様および実施例に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。

10 たとえば、前記実施態様においては、弁金属基体2、3として、アルミニウムが用いられているが、アルミニウムに代えて、アルミニウム合金、または、タンタル、チタン、ニオブ、ジルコニウムもしくはこれらの合金などによって、弁金属基体2、3を形成することもできる。

15 また、前記実施態様においては、リード電極を構成すべき金属導体として、箔状の銅が用いられているが、銅に代えて、銅合金、または、真鍮、ニッケル、亜鉛、クロムもしくはこれらの合金によって、金属導体を形成することもできる。

20 さらに、前記実施態様においては、表面が粗面化されたアルミニウム箔基体2と、表面が粗面化されていないアルミニウム基体3a、3bとを、超音波溶接によって、接合するとともに、表面が粗面化されていないアルミニウム基体3a、3bと、箔状の銅基体4a、4bとを、超音波溶接によって、接合しているが、これらの接合部の双方を、あるいは、一方を、超音波溶接に代えて、コールドウェルディング（冷間圧接）によって、接合し、接合部を形成するようにしてもよい。

25 また、前記実施態様においては、アルミニウム箔基体2の比表面積を増大させるべく、その表面が粗面化される場合を例に説明したが、本発明においてアルミニウム箔基体2が粗面化されていることは必ずしも必要ではない。

また、前記実施態様においては、表面が粗面化されたアルミニウム

箔基体 2 に、表面が粗面化されていないアルミニウム箔基体 3 a, 3 b が接合される場合を例に説明したが、本発明においては箔状でなくとも構わない。例えば、より厚みのあるフレーム状やブロック状のものであってもよい。さらには、銅基体についても箔状に限られるものではなく、フレーム状やブロック状であってもよい。

5 また、第 5 図に示された実施態様においては、固体電解コンデンサ 10 を、第一の絶縁基板 21 と第二の絶縁基板 22 によって挟んで、固体電解コンデンサ内蔵プリント基板 20 を作製しているが、1 つの絶縁基板上に、固体電解コンデンサ 10 を固定して、固体電解コンデンサ内蔵プリント基板 20 を作製することもできる。

10 さらに、第 5 図に示された実施態様においては、第一の絶縁基板 21 の表面および第二の絶縁基板 22 の表面の双方に、複数の電子部品 30 が搭載されているが、複数の電子部品 30 を搭載することは必ずしも必要でない。

15 また、第 5 図に示された実施態様においては、第一の絶縁基板 21 の表面および第二の絶縁基板 22 の表面の双方に、電子部品 30 が搭載されているが、第一の絶縁基板 21 の表面および第二の絶縁基板 22 の表面の一方にのみ、電子部品 30 が搭載されていてもよい。

20 さらに、第 5 図に示された実施態様においては、第一の絶縁基板 21 の表面および第二の絶縁基板 22 の表面に、それぞれ、複数の配線パターン 24、27 が形成されているが、第一の絶縁基板 21 の表面と第二の絶縁基板 22 の表面に、複数の配線パターン 24、27 を形成することは必ずしも必要でなく、少なくとも 1 つの配線パターンが形成されればよい。

25 また、第 5 図に示された実施態様においては、第一の絶縁基板 21 および第二の絶縁基板 22 のそれぞれに、複数のスルーホール 28 が形成されているが、第一の絶縁基板 21 および第二の絶縁基板 22 のそれぞれに、複数のスルーホールを形成することは必ずしも必要でなく、それぞれ、少なくとも 1 つのスルーホールが形成されればよ

い。

さらに、第5図に示された実施態様においては、第一の絶縁基板21に、バンク23を形成しているが、第二の絶縁基板22に、バンク23を形成することもできる。

5 また、第5図に示された実施態様においては、第一の絶縁基板21および第二の絶縁基板22と同じ材質の基板を、その周縁部に、所定面積の部分が残されるように打ち抜き加工して、枠状の基板を形成し、第一の絶縁基板21および第二の絶縁基板22と同じ材質の接着剤を用いて、枠状の基板を第一の絶縁基板に固定することによって、バンク23を形成しているが、第一の絶縁基板21を切削加工するなどして、第一の絶縁基板21と一体的にバンクを形成することもできるし、第一の絶縁基板21および第二の絶縁基板22の双方に、切削加工などによって、一体的に、バンクを形成することもできる。

10 さらに、第5図に示された実施態様においては、第一の絶縁基板21に、互いに対向する2つの側部に沿って、その高さが、固体電解コンデンサ10の厚さよりも大きいバンク23が形成されているが、バンク23を形成することは必ずしも必要ではなく、スペーサによって代用することもできるし、単に、樹脂26によって、第一の絶縁基板21と第二の絶縁基板22とを、固体電解コンデンサ10を挟んで、互いに離間するように、一体化することもできる。

15 また、第5図に示された実施態様においては、固体電解コンデンサ素子110を、第一の絶縁基板21と第二の絶縁基板22によって挟んで、固体電解コンデンサ内蔵プリント基板120を作製しているが、1つの絶縁基板上に、固体電解コンデンサ素子110を固定した、固体電解コンデンサ実装プリント基板を作製することもできる。

20 本発明によれば、表面が粗面化され、絶縁性酸化皮膜が形成された箔状の弁金属基体と、箔状の弁金属基体に、絶縁性酸化皮膜、固体高分子電解質層および導電体層が、順次、形成された3端子型の固体電解コンデンサであって、回路基板に内蔵するのに適した3端子型固体

電解コンデンサおよび3端子型固体電解コンデンサ内蔵基板ならびに
それらの製造方法を提供することが可能になる。

請求の範囲

1. 表面に絶縁性酸化皮膜が形成された弁金属箔基体と、前記弁金属箔基体の対向する2つの端部それぞれに、その一端部が、弁金属間が電気的に接続されるように、それぞれ接合された、弁金属体と、前記弁金属体それぞれの他端部に、一端部が、金属間が電気的に接続されるように、それぞれ接合された、導電性金属基体と、前記弁金属箔基体に、少なくとも、固体高分子電解質層および導電体層が、順次、形成されてなる陰極電極を有する固体電解コンデンサ素子を少なくとも1つ備えていることを特徴とする固体電解コンデンサ。
5
2. 複数の前記固体電解コンデンサ素子が、少なくとも1つずつ、独立して、リードフレーム上にそれぞれ配列され、前記リードフレームによって、前記固体電解コンデンサ素子にそれぞれ設けられた導電体層が、互いに電気的に接続され、前記リードフレームと、前記固体電解コンデンサ素子それぞれの導電体層部分が交わっている領域の一方
10 15 の面から当該面に対し垂直方向に前記陰極リード部の一部が引き出されていることを特徴とする請求の範囲1に記載の固体電解コンデンサ。
3. 表面に絶縁性酸化皮膜が形成された弁金属箔基体と、前記弁金属箔基体の対向する2つの端部それぞれに、その一端部が、弁金属間が電気的に接続されるように、それぞれ接合された、弁金属体と、前記弁金属箔基体それぞれの他端部に、一端部が、金属間が電気的に接続されるように、それぞれ接合された、導電性金属基体と、前記弁金属箔基体に、少なくとも、固体高分子電解質層および導電体層が、順次、形成されてなる陰極電極を有する固体電解コンデンサ素子を少なくとも
20 25 1つ備え、前記固体電解コンデンサ素子が、少なくとも1つの配線パターンが形成された第1の絶縁基板の一方の面上に、前記配線パターンと電気的に接続されるように取り付けられ、前記第1の絶縁基板と対向して、少なくとも1つの配線パターンが形成された第2の絶縁基板が設けられ、前記固体電解コンデンサ素子が、前記第1の絶縁基板

および前記第2の絶縁基板によって形成された実質的に閉じた空間内に収容されたことを特徴とする固体電解コンデンサ内蔵基板。

4. 複数の前記固体電解コンデンサ素子が、少なくとも1つずつ、独立して、前記第1の絶縁基板上にそれぞれ配列され、前記配線パターンによって、前記固体電解コンデンサ素子にそれぞれ設けられた導電体層が、互いに電気的に接続され、前記配線パターンと、前記固体電解コンデンサ素子それぞれの導電体層部分が交わっている領域の一方の面から当該面に対し垂直方向に、前記配線パターンの一部が、前記第1の絶縁基板を貫通するように引き出されていることを特徴とする請求の範囲3に記載の固体電解コンデンサ内蔵基板。

5. 表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合する工程と、前記弁金属体それぞれの他端部に、導電性金属基体の一端部を、金属間が電気的に接続されるよう、それぞれ接合して、固体電解コンデンサ素子用電極体を形成する工程と、前記電極体のうち、どちらか一方の前記弁金属体の一部および、それに接合されている前記導電性金属基体の全体をマスキングする工程と、前記電極体のうち、前記弁金属箔基体全体と、前記マスキング処理された部分全体と、マスキング処理が施されていない前記弁金属体の一部が化成溶液に浸されるように、前記化成溶液に浸し、前記電極体に電圧を印加して、陽極酸化処理を施し、前記弁金属箔基体の少なくともエッジ部分に、絶縁性酸化皮膜を形成する工程と、前記弁金属箔基体の略全表面上に、固体高分子電解質層を形成する工程と、前記固体高分子電解質層上に、導電性ペーストを塗布し、乾燥して、導電体層を形成する工程を備えていることを特徴とする固体電解コンデンサの製造方法。

6. 表面に絶縁性酸化皮膜が形成された弁金属箔基体の対向する2つの端部それぞれに、弁金属体の一端部を、弁金属間が電気的に接続されるように、それぞれ接合する工程と、前記弁金属体それぞれの他端

部に、導電性金属基体の一端部を、金属間が電気的に接続されるよう
に、それぞれ接合して、固体電解コンデンサ素子用電極体を形成する
工程と、前記電極体のうち、どちらか一方の前記弁金属体の一部およ
び、それに接合されている前記導電性金属基体の全体をマスキングす
5　る工程と、前記電極体のうち、前記弁金属箔基体全体と、前記マスキ
ング処理された部分全体と、マスキング処理が施されていない前記弁
金属箔基体の一部が化成溶液に浸されるように、前記化成溶液に浸し、
前記電極体に電圧を印加して、陽極酸化処理を施し、前記弁金属箔基
体の少なくともエッジ部分に、絶縁性酸化皮膜を形成する工程と、前
記弁金属箔基体の略全表面上に、固体高分子電解質層を形成する工程
10　と、前記固体高分子電解質層上に、導電性ペーストを塗布し、乾燥し
て、導電体層を形成する工程と、前記各工程を経て得られる少なくとも
1つの固体電解コンデンサを、少なくとも1つの配線パターンが形
成された第1の絶縁基板の一方の面に、前記配線パターンと電気的に
接続されるように取り付ける工程と、少なくとも1つの配線パターン
15　が形成された第2の絶縁基板を前記第1の絶縁基板と対向させて、前
記固体電解コンデンサを、前記第1の絶縁基板および第2の絶縁基板
によって形成された実質的に閉じた空間内に収容する工程を備えてい
ることを特徴とする固体電解コンデンサ内蔵基板の製造方法。

1 / 16

第 1 図

2 / 1 6

第 2 図

100

3 / 16

第 3 図

4 / 16

第 4 図

5 / 16

第 5 図

6 / 16

第 6 図

7 / 16

第 7 図

8 / 16

第 8 図

9 / 16

第 9 図

10 / 16

第 10 図

11 / 16

第 11 図

12 / 16

第 12 図

13 / 16

第 13 図

14 / 16

第 14 図

15 / 16

第 15 図

16 / 16

第 16 図

INTERNATIONAL SEARCH REPORT

International application No.

P JP03/07733

A. CLASSIFICATION OF SUBJECT MATTER

Int.Cl⁷ H01G9/04, 9/012, 9/08, 9/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁷ H01G9/04, 9/012, 9/08, 9/14

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho	1922-1996	Toroku Jitsuyo Shinan Koho	1994-2003
Kokai Jitsuyo Shinan Koho	1971-2003	Jitsuyo Shinan Toroku Koho	1996-2003

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 62-189715 A (Nippon Tsushin Kogyo Kabushiki Kaisha), 19 August, 1987 (19.08.87), Full text; all drawings (Family: none)	1-6
A	JP 61-15316 A (NEC Corp.), 23 January, 1986 (23.01.86), Full text; all drawings (Family: none)	1-6

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
19 September, 2003 (19.09.03)Date of mailing of the international search report
07 October, 2003 (07.10.03)Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1' H01G 9/04, 9/012, 9/08, 9/14

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C1' H01G 9/04, 9/012, 9/08, 9/14

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報	1922-1996年
日本国公開実用新案公報	1971-2003年
日本国登録実用新案公報	1994-2003年
日本国実用新案登録公報	1996-2003年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	J P 62-189715 A (日本通信工業株式会社) 1987. 08. 19, 全文全図 (ファミリーなし)	1-6
A	J P 61-15316 A (日本電気株式会社) 1986. 01. 23, 全文全図 (ファミリーなし)	1-6

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日

19. 09. 03

国際調査報告の発送日

07.10.03

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

大澤 孝次

5R 7924

電話番号 03-3581-1101 内線 3565