Making decisions when you do not trust your forecasts

Pierre Pinson

Imperial College London, Dyson School of Design Engineering
mail: p.pinson@imperial.ac.uk - webpage: www.pierrepinson.com

CMAF Friday Forecasting Talks – 24 May 2024

- Renewables (wind) offering in electricity markets
- No forecasts
- Deterministic forecasts
- Probabilistic forecasts
- Concluding thoughts

... though when using forecasts, we will not necessarily trust them...

• Renewables (wind) offering in electricity markets

 y_k : Decision at time t for time t+k (energy sold in day-ahead market)

 $\pi_{s,k}$: Price per unit when selling energy at time t

 ω_{t+k} : Random variable for renewable energy generation at time t+k (which we normalise, to take values in [0,1])

 $\pi_{o,k}, \ \pi_{u,k}$: Penalties (price per unit) if over- (resp. under-) producing compared to contract y_k (based on realisation of ω_{t+k})

Let us focus on a given market time unit t+k (e.g., 12-1pm tomorrow – and drop time-related notations)

Write

- ullet $\pi_{\mathcal{S}}$ the day-ahead price
- ullet $\pi_{\scriptscriptstyle O}$ the unit penalty if over-producing (referred to as *overage* penalty)
- ullet $\pi_{\it u}$ the unit penalty if under-producing (referred to as $\it underage$ penalty)

The revenue for t+k (after some reformulation, to be maximised) is given by

$$\mathcal{R}(\mathbf{y},\omega,\pi_o,\pi_u) = \pi_s\omega - \pi_o(\omega - \mathbf{y})_+ - \pi_u(\mathbf{y} - \omega)_+$$

This yield the equivalent loss function (to be minimised)

$$\mathcal{L}(\mathbf{y}, \omega, \pi_o, \pi_u) = \pi_o(\omega - \mathbf{y})_+ + \pi_u(\mathbf{y} - \omega)_+$$

No forecasts

(the most interesting case...!)

What would you do, if you knew nothing about ω and about the penalties π_o, π_u ??

What would you do, if you knew nothing about ω and about the penalties π_o, π_u ??

Implicit assumptions:

- Uninformative prior on ω : $\omega \sim U[0,1]$
- Uninformative prior on π_o, π_u : $\pi_o = \pi_u$

The minimax regret solution is $y = \frac{1}{2}$

What would you do, if you knew nothing about ω , but you knew something about the penalties π_o, π_u ??

What would you do, if you knew nothing about ω , but you knew something about the penalties π_o, π_u ??

Implicit assumptions:

- Uninformative prior on ω : $\omega \sim U[0,1]$
- Perfect knowledge of π_o, π_u

The minimax regret solution is
$${m y}=rac{\pi_o}{\pi_o+\pi_u}$$

Penalty-blind decision-making

What would you do, if you knew the distribution (or the expectation) of ω , but you knew nothing about the penalties π_O , π_U ??

What would you do, if you knew the distribution (or the expectation) of ω , but you knew nothing about the penalties π_O , π_u ??

Implicit assumptions:

- Perfect knowledge of $F(\omega)$, or of $\mathbb{E}[\omega]$
- No information (whatsoever) about π_o, π_u

The minimax regret solution is $\mathbf{y} = \mathbb{E}[\omega]$

Oeterministic forecasts

(the least interesting case... use decision rules!)

Probabilistic forecasts

(the most fun case... though technical!)

The newsvendor problem

- The newsvendor problem is one of the most classical problems in stochastic optimization (or statistical decision theory)
- It can be traced back to:

FY Edgeworth (1888). The mathematical theory of banking. *Journal of the Royal Statistical Society* **51**(1): 113–127 (even though in this paper the problem is about how much a bank should keep in its reserves to satisfy request for withdrawal (i.e., the *bank-cash-flow problem*))

- It applies to varied problems as long as:
 - one shot possibility to decide on the quantity of interest
 - outcome is uncertain
 - known marginal profit and loss
 - the aim is to maximize expected profit!

Let us focus on a given market time unit t+k (e.g., 12-1pm tomorrow – and drop time-related notations)

We have

- ullet $\hat{\mathcal{F}}_{\omega}$ the predictive CDF for renewable energy generation
- ullet $\pi_{\it O}$ the unit penalty if over-producing (referred to as $\it overage$ penalty)
- ullet $\pi_{\it U}$ the unit penalty if under-producing (referred to as *underage* penalty)

The loss function for t + k (to be minimised) is

$$\mathcal{L}(\mathbf{y}, \omega, \pi_o, \pi_u) = \pi_o(\omega - \mathbf{y})_+ + \pi_u(\mathbf{y} - \omega)_+$$

The expected utility maximization offer is

$$\mathbf{y}^* = \underset{\mathbf{y}}{\operatorname{argmin}} \mathbb{E}_{\omega} \left[\mathcal{L}(\mathbf{y}, \omega, \pi_o, \pi_u) \right] = \hat{\mathbf{F}}_{\omega}^{-1} \left(\frac{\pi_o}{\pi_o + \pi_u} \right)$$

In practice, π_o and π_u are replaced by estimates (/forecasts).

- The overage π_o and underage π_u penalties are unknown!
- Instead of parameters, they should be seen as random variables (now, π_o and π_u)
- Only one of them is active in most cases (two-price imbalance settlement)

One can then define the penalization as a the outcome of the Bernoulli variable s (with chance of success τ):

$$s = \frac{\pi_o}{\pi_o + \pi_u}$$

where

$$\pi_o = (\pi_s - \pi_b) \mathbf{1}_{\{s_L \ge 0\}}$$
 $\pi_u = (\pi_b - \pi_s) \mathbf{1}_{\{s_L < 0\}}$

 $(\pi_b$ the balancing price, s_L the overall system imbalance)

s has only 2 potential discrete outcomes, i.e.

(i)
$$\pi_o \neq 0$$
, $\pi_u = 0 \Rightarrow s = \frac{\pi_o}{\pi_o + \pi_u} = 1$, $1 - s = 0$
(ii) $\pi_o = 0$, $\pi_u \neq 0 \Rightarrow s = \frac{\pi_o}{\pi_o + \pi_u} = 0$, $1 - s = 1$

Definition (Bernoulli newsvendor problem)

Based on a Bernoulli random variable s (with chance of success τ), and the random variable ω (with c.d.f. F_{ω}), the decision y^* minimizing the expected opportunity cost function is

$$\mathbf{y}^* = \underset{\mathbf{v}}{\operatorname{argmin}} \ \mathbb{E}_{\omega,s} \left[\mathcal{L}(\mathbf{y}, \omega, s) \right] \,, \tag{1a}$$

where the opportunity cost is defined as

$$\mathcal{L}(\mathbf{y},\omega,\mathbf{s}) = \mathbf{s}(\omega - \mathbf{y})_{+} + (1 - \mathbf{s})(\mathbf{y} - \omega)_{+}, \tag{1b}$$

and where $(.)_+$ is for the positive part.

Definition (Bernoulli newsvendor problem)

Based on a Bernoulli random variable s (with chance of success τ), and the random variable ω (with c.d.f. F_{ω}), the decision y^* minimizing the expected opportunity cost function is

$$\mathbf{y}^* = \underset{\mathbf{v}}{\operatorname{argmin}} \ \mathbb{E}_{\omega,s} \left[\mathcal{L}(\mathbf{y}, \omega, s) \right] \,, \tag{1a}$$

where the opportunity cost is defined as

$$\mathcal{L}(\mathbf{y},\omega,\mathbf{s}) = \mathbf{s}(\omega - \mathbf{y})_{+} + (1 - \mathbf{s})(\mathbf{y} - \omega)_{+}, \tag{1b}$$

and where $(.)_+$ is for the positive part.

And its solution:

Proposition

Consider F_{ω} the c.d.f. for the uncertain parameter ω and τ the chance of success for s. The optimal decision y^* for the Bernoulli newsvendor problem (1a) is

$$\mathbf{y}^* = \mathbf{F}_{\omega}^{-1}(\tau).$$

Problem setup

- F_{ω} and F_{s} are still unknown and need to be replaced by forecasts, \hat{F}_{ω} and \hat{F}_{s}
- These forecasts are necessarily imperfect...

Both renewable energy generation and balancing market outcomes are notoriously difficult to predict...

 \hat{F}_{ω}

(input to obtain) \hat{F}_s (reproduced from Lucas *et al.* (2020))

We adapt here the solution approach of Fu et al. (2021) to the Bernoulli newsvendor problem...

Definition (distributionally robust Bernoulli newsvendor problem – ambiguity about $\hat{\mathcal{F}}_{\omega})$

Consider a Bernoulli random variable s with estimated chance of success $\hat{\tau}$, the uncertain production ω with predictive c.d.f. \hat{F}_{ω} , and an ambiguity set $\mathcal{B}_{\hat{F}_{\omega}}(\rho)$ with radius ρ . The distributionally robust Bernoulli newsvendor problem, with ambiguity about \hat{F}_{ω} , is that for which the decision y^* is given by

$$\mathbf{y}^* = \underset{\mathbf{y}}{\operatorname{argmin}} \sup_{\mathbf{F}_{\omega} \in \mathcal{B}_{\hat{F}_{\omega}}(\rho)} \mathbb{E}_{\omega,s} \left[\mathcal{L}(\mathbf{y}, \omega, \hat{\tau}) \right]. \tag{2}$$

How to define $\mathcal{B}_{\hat{F}_{\omega}}(\rho)$?

Deformation operator and FSD-ambiguity set

A first-order stochastic dominance ambiguity set (FSD-ambiguity set) is such that

$$\underline{F}_{\omega}(x) \leq F_{\omega}(x) \leq \overline{F}_{\omega}(x), \quad \forall x, \forall F_{\omega} \in \mathcal{B}_{\hat{F}_{\omega}}(\rho).$$

As an example, we introduce here a double-power deformation operator that fulfil the above definition.

Definition (double-power deformation operator)

Consider a reference c.d.f. F_{ω} . The upper $\overline{\mathcal{O}}_{\rho}$ and lower $\underline{\mathcal{O}}_{\rho}$ double-power deformation operators are defined as

$$\overline{\mathcal{O}}_{
ho}(F_{\omega}) = \left(1 - \left(1 - F_{\omega}^{\frac{1}{1-\rho}}\right)\right)^{1-\rho},$$

$$\mathcal{O}_{
ho}(F_{\omega}) = 1 - \left(1 - F_{\omega}^{\frac{1}{1-\rho}}\right)^{1-\rho},$$

with ρ the deformation parameter.

These deformations readily allow to define \underline{F}_{ω} and $\overline{F}_{\omega}(x)$.

The worst-case distribution F^{ws} for this distributionally robust problem is defined by

$$F^{\text{ws}}(x) = \begin{cases} \overline{F}_{\omega}(x), & x < \overline{F}_{\omega}^{-1}(\hat{\tau}) \\ \tau, & \overline{F}_{\omega}^{-1}(\hat{\tau}) < x < \underline{F}_{\omega}^{-1}(\hat{\tau}) \\ \underline{F}_{\omega}(x), & x > \underline{F}_{\omega}^{-1}(\hat{\tau}) \end{cases}$$

(reproduced from Fu et al. (2021))

Theorem

Consider an FSD-ambiguity set defined by a ball $\mathcal{B}_{\hat{F}_{\omega}}(\rho)$ with radius ρ , yielding the two bounding distributions \underline{F}_{ω} and \overline{F}_{ω} . For a predicted chance of success $\hat{\tau}$, the solution of the distributionally robust Bernoulli newsvendor problem (2) is

$$\mathbf{y}^* = \hat{\boldsymbol{\tau}} \underline{F}_{\omega}^{-1} (\hat{\boldsymbol{\tau}}) + (1 - \hat{\boldsymbol{\tau}}) \overline{F}_{\omega}^{-1} (\hat{\boldsymbol{\tau}}).$$

Theorem

Consider an FSD-ambiguity set defined by a ball $\mathcal{B}_{\hat{F}_{\omega}}(\rho)$ with radius ρ , yielding the two bounding distributions \underline{F}_{ω} and \overline{F}_{ω} . For a predicted chance of success $\hat{\tau}$, the solution of the distributionally robust Bernoulli newsvendor problem (2) is

$$\mathbf{y}^* = \hat{\tau} \underline{F}_{\omega}^{-1}(\hat{\tau}) + (1 - \hat{\tau}) \overline{F}_{\omega}^{-1}(\hat{\tau}).$$

For sufficiently large values of the radius ρ , we obtain the following (robust) limiting case:

Corollary

For sufficiently large values of ρ , the radius of $\mathcal{B}_{\hat{F}_{\omega}}(\rho)$, the solution of the distributionally robust Bernoulli newsvendor problem (2) converges to the robust solution $\mathbf{y}^* = \hat{\tau}$.

The following solution is not available in the literature...

Definition (distributionally robust Bernoulli newsvendor problem – ambiguity about \hat{F}_s)

Consider a Bernoulli random variable s with estimated chance of success $\hat{\tau}$, the uncertain production ω with predictive c.d.f. \hat{F}_{ω} , and an ambiguity set for \hat{F}_s defined by the ball $\mathcal{B}_{\hat{\tau}}(\varepsilon)$ with radius ε . The distributionally robust Bernoulli newsvendor problem, with ambiguity about \hat{F}_s , is that for which the decision y^* is given by

$$\mathbf{y}^* = \operatorname*{argmin}_{\mathbf{y}} \max_{\mathbf{ au} \in \mathcal{B}_{\hat{\mathbf{ au}}}(arepsilon)} \mathbb{E}_{\omega,s} \left[\mathcal{L}(\mathbf{y}, \omega, au) \right]$$

Ambiguity about \hat{F}_s

The following solution is not available in the literature...

Definition (distributionally robust Bernoulli newsvendor problem – ambiguity about $\hat{\mathcal{F}}_s)$

Consider a Bernoulli random variable s with estimated chance of success $\hat{\tau}$, the uncertain production ω with predictive c.d.f. \hat{F}_{ω} , and an ambiguity set for \hat{F}_s defined by the ball $\mathcal{B}_{\hat{\tau}}(\varepsilon)$ with radius ε . The distributionally robust Bernoulli newsvendor problem, with ambiguity about \hat{F}_s , is that for which the decision y^* is given by

$$oldsymbol{y}^* = rgmin_{oldsymbol{y}} \max_{ au \in \mathcal{B}_{\hat{ au}}(arepsilon)} \mathbb{E}_{\omega, \mathbf{s}} \left[\mathcal{L}(oldsymbol{y}, \omega, au)
ight]$$

How to define $\mathcal{B}_{\hat{\tau}}(\varepsilon)$?

Definition (uniform and level-adjusted ambiguity sets for \hat{F}_s)

Given a ball radius ε , a uniform ambiguity set for \hat{F}_s is defined by the ball $\mathcal{B}_{\hat{\tau}}$ with

$$\underline{\tau} = \max(\hat{\tau} - \varepsilon, 0)$$
 $\overline{\tau} = \min(\hat{\tau} + \varepsilon, 1)$

while a level-adjusted ambiguity set (with parameter $\theta \in [0,1)$) for \hat{F}_s is defined by the ball $\mathcal{B}_{\hat{\tau}}$ with

$$\underline{\tau} = \max(\hat{\tau} - \varepsilon(1 - 4 \hat{\tau}(1 - \hat{\tau})), 0)$$

$$\overline{\tau} = \min(\hat{\tau} + \varepsilon(1 - 4 \hat{\tau}(1 - \hat{\tau})), 1)$$

Figure: Expected opportunity cost, as a function the decision y, for different values of $\hat{\tau}$ and ε (using uniform ambiguity sets). The uncertain parameter ω follows a Beta(2,6) distribution (with expected value $\mathbb{E}[\omega] = 0.25$), while the estimate $\hat{\tau}$ is based on 15 samples.

Theorem

Consider an ambiguity set for \hat{F}_s defined by a ball $\mathcal{B}_{\hat{\tau}}(\varepsilon)$ with radius ε , and the predictive c.d.f. \hat{F}_{ω} for the random variable ω . The solution of the distributionally robust Bernoulli newsvendor problem (6) is

$$\begin{split} \textbf{\textit{y}}^* &= \hat{\textit{\textbf{F}}}_{\omega}^{-1}(\overline{\tau}) \, \mathbf{1}_{\{\hat{\textit{\textbf{F}}}_{\omega}^{-1}(\overline{\tau}) < \mathbb{E}[\omega]\}} + \hat{\textit{\textbf{F}}}_{\omega}^{-1}(\underline{\tau}) \, \mathbf{1}_{\{\hat{\textit{\textbf{F}}}_{\omega}^{-1}(\underline{\tau}) > \mathbb{E}[\omega]\}} \\ &+ \, \mathbb{E}[\omega] \, \mathbf{1}_{\{\hat{\textit{\textbf{F}}}_{\omega}^{-1}(\overline{\tau}) \geq \mathbb{E}[\omega]\}} \, \mathbf{1}_{\{\hat{\textit{\textbf{F}}}_{\omega}^{-1}(\underline{\tau}) \leq \mathbb{E}[\omega]\}} \, . \end{split}$$

Theorem

Consider an ambiguity set for \hat{F}_s defined by a ball $\mathcal{B}_{\hat{\tau}}(\varepsilon)$ with radius ε , and the predictive c.d.f. \hat{F}_{ω} for the random variable ω . The solution of the distributionally robust Bernoulli newsvendor problem (6) is

$$egin{aligned} \mathbf{y}^* &= \hat{m{F}}_{\omega}^{-1}(\overline{ au}) \, \mathbf{1}_{\{\hat{F}_{\omega}^- - 1(\overline{ au}) < \mathbb{E}[\omega]\}} + \hat{m{F}}_{\omega}^{-1}(\underline{ au}) \, \mathbf{1}_{\{\hat{F}_{\omega}^- - 1(\underline{ au}) > \mathbb{E}[\omega]\}} \ &+ \, \mathbb{E}[\omega] \, \mathbf{1}_{\{\hat{F}_{\omega}^- - 1(\overline{ au}) \geq \mathbb{E}[\omega]\}} \, \mathbf{1}_{\{\hat{F}_{\omega}^- - 1(\underline{ au}) \leq \mathbb{E}[\omega]\}} \, . \end{aligned}$$

And, for sufficiently large values of ε , we obtain the following limiting (robust) case:

Corollary

For sufficiently large values of ε , the radius of $\mathcal{B}_{\hat{\tau}}(\varepsilon)$, the solution of the distributionally robust Bernoulli newsvendor problem (6) converges to the robust solution $\mathbf{y}^* = \mathbb{E}[\omega]$.

Simulations and case-study application

Ambiguity about $\hat{\mathcal{F}}_s$ - impact of ball radius arepsilon

- Monte-Carlo simulation with $N = 10^7$ replicates
- $\omega \sim \text{Beta}(2,6)$
- $\tau = 0.75$
- m = 10 (number of draws of a Bern (τ) to obtain estimate $\hat{\tau}$)
- $oldsymbol{ heta} heta =$ 0.9 (for the level-adjusted ball)

The performance measure γ (in %) is then defined as $\gamma = \frac{L_{\rm BN} - L_{\rm DR-BN}}{L_{\rm BN} - L_{\rm O}}$, and can be expressed in percents.

For the above example, $\gamma_{\rm U}=40.3\%$ and $\gamma_{\rm LA}=60.2\%$.

Ambiguity about \hat{F}_s - impact of forecast quality

- Monte-Carlo simulation with $N = 10^7$ replicates
- m (number of draws of a Bern(τ) to obtain estimate $\hat{\tau}$) is a proxy for forecast quality
- $\omega \sim \text{Beta}(2,6)$
- $\tau = 0.75$
- $oldsymbol{ heta} heta =$ 0.9 (for the level-adjusted ball)

Portfolio of wind farms from Midwest France (confidential) over a 2-year period

- first 131 days for warm start and cross-validation (to decide on m, ρ , ε , θ)
- remaining 600 days for genuine out-of-sample evaluation

Approach	R [€/MWh]	r [€/MWh]
Oracle	31.63	0
BN	29.25	2.38
DR-BN (\hat{F}_w)	29.34	2.29
DR-BN	29.35	2.28
$(\hat{F}_s, \text{ uniform})$		
DR-BN	29.36	2.27
$(\hat{F}_s$, level-adj.)		

Cumulative regret normalized per MWh produced

Concluding thoughts

- Making decisions from forecasts is not always obvious
- Various aspects of forecast quality are of relevance
- Trust (or lack of) in the forecasts can be handled in a data-driven manner

Thanks for your attention!