Instalações Elétricas Industriais

ENG 1480

Professor: Rodrigo Mendonça de Carvalho

Dimensionamento de Condutores Elétricos

Livro: "João Mamede Filho" Instalações Elétricas Industriais

Dimensionamento de Condutores Elétricos

CAPÍTULO 03

O mau dimensionamento acontece quando:

Não se conhece as condições da instalação;

Levado à:

- Operação inadequada da carga;
- Risco de incêndio;

(principalmente se associado a um projeto de proteção deficiente)

Dados básicos para Dimensionamento:

- Tensão nominal;
- Freqüência nominal;
- Potência ou corrente da carga;
- Fator de Potência da carga;
- Tipo de sistema (monofásico, bifásico...);
- Natureza da carga;
- Distância da carga ao ponto de suprimento;
- Corrente de curto-circuito.

Observações Importantes

• Os elementos de proteção associados a um condutor, devem proteger o condutor e sua isolação caso ocorra uma sobrecorrente.

 NBR 5410:2004 restringe o a aplicação de condutores de alumínio para S≥16mm.

Apesar desses condutores serem mais baratos.

Compostos Isolantes de Cabos e Fios

(mais empregados)

• PVC- Cloreto de Polivinila;

EPR- Etileno-Propileno;

• XLPE- Polietileno Reticulado

Classificação - Fios e Cabos Condutores

Fig. 3.1 – Cabo isolado

Fig. 3.2 - Cabo unipolar

Fig. 3.3 - Cabo tripolar

Classificação pelo tipo de Isolação

Tipo de isolação	Temperatura máxima para serviço contínuo do condutor (°C)	Temperatura limite de sobrecarga (condutor) (°C)	Temperatura limite de curto-circuito (condutor) (°C)
Cloreto de polivinila (PVC)	70	100	160
Borracha etileno- propileno (EPR)	90	130	250
Polietileno reticulado (XLPE)	90	130	250

Os cabos não propagadores de chama, livres de halogêneo e com baixa emissão de fumaça e gases tóxicos podem ser condutores isolados, cabos unipolares e cabos multipolares.

Marcas conhecidas

Pirelli (atual Prysmyan):

- Pirastic (fios e cabos- PVC)
- Sintenax (cabos unipolar- PVC)

Isolação de condutores isolados

• Dado pela tensão nominal entre fases (padrão-750 V).

Isolação de condutores unipolares

 Dado pela tensão entre fase e terra, e entre fases (padrão – 0,6/1 KV para baixa tensão; 3,6/6 KV- 6/10 KV – 8,7/15 KV – 12/20 KV para média tensão)

Tipos de Sistemas secundários de Distribuição

Referências:

NBR 5410:2004

João Mamede Filho,8º ed.

Os sistemas de distribuição são determinados em função do:

esquema de condutores vivos;

• esquema de aterramento.

Esquemas de condutores vivos (Corrente Alternada)

- monofásico a 2 condutores;
- monofásico a 3 condutores;
- bifásico a 3 condutores;
- trifásico a 3 condutores;
- - trifásico a 4 condutores;

Monofásico a dois condutores (F-N)

- Instalações residenciais isoladas;
- Instalações prediais (poucas unidades de consumo) e comerciais (de pequena carga);

Fig. 3.4 – Sistema monofásico

Monofásico a Três fios

 Instalações residenciais e comerciais onde há cargas de iluminação e motores;

Fig. 3.5 - Sistema monofásico a três condutores

Trifásico a Três condutores (3F)

• Instalações industriais com carga predominante de motores;

Fig. 3.6 – Sistema trifásico a três condutores em (Δ) Fig. 3.7 – Sistema trifásico a três condutores em Y

Trifásico a quatro condutores (3F-N)

• Mais comumente usado em instalações elétricas industriais e comerciais de pequeno porte.

Fig. 3.8 – Sistema trifásico a quatro condutores em Y

Trifásico a cinco condutores (3F-N-T)

• Mais comumente usado em instalações elétricas industriais de médio e grande porte.

Fig. 3.9 – Sistema trifásico a cinco condutores

Esquemas de aterramento

Primeira letra - Situação da alimentação em relação à terra:

• T = um ponto diretamente aterrado;

• I = isolação de todas as partes vivas em relação à terra ou aterramento de um ponto através de uma impedância;

Segunda letra - Situação das massas da instalação elétrica em relação à terra:

 T = massas diretamente aterradas, independentemente do aterramento eventual de um ponto de alimentação;

 N = massas ligadas diretamente ao ponto de alimentação aterrado (em corrente alternada, o ponto aterrado é normalmente o ponto neutro);

Outras letras (eventuais) - Disposição do condutor neutro e do condutor de proteção:

 S = funções de neutro e de proteção asseguradas por condutores distintos;

 C = funções de neutro e de proteção combinadas em um único condutor

(condutor PEN).

Símbolos

Esquema TN

• Alimentação diretamente aterrada;

• Massas ligadas à esse ponto de aterramento.

Esquema TN-S (sistema a cinco condutores)

Figura 1 - Esquema TN-S (O condutor neutro e o condutor de proteção são separados ao longo de toda a instalação)

Esquema TN-C-S

Figura 2 - Esquema TN-C-S (As funções de neutro e de condutor de proteção são combinadas em um único condutor em uma parte da instalação)

Esquema TN-C

Figura 3 - Esquema TN-C (As funções de neutro e de condutor de proteção são combinadas em um único condutor ao longo de toda a instalação)

PEN em cobre >=10mm. Não pode usar DR.

Esquema TT

Figura 4 - Esquema TT

Esquema IT

¹⁾ O neutro pode ser isolado do terra.

Figura 5 - Esquema IT

Determinação da seção dos condutores

Método de Referência;

• Tipos de Linhas Elétricas;

Método de Referência

Referência	Descrição
A1	Condutores isolados em eletroduto de seção circular embutido em parede termicamente isolante
A2	Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante
B1	Condutores isolados em eletroduto de seção circular sobre parede de madeira
B2	Cabo multipolar em eletroduto de seção circular sobre parede de madeira
С	Cabos unipolares ou cabo multipolar sobre parede de madeira
D	Cabo multipolar em eletroduto enterrado no solo
Е	Cabo multipolar ao ar livre
F	Cabos unipolares justapostos (na horizontal, na vertical ou em trifólio) ao ar livre
G	Cabos unipolares espaçados ao ar livre

Tipos de Linhas Elétricas (I)

Método de instalação número	Esquema Ilustrativo	Descrição	Método de referência para a capacidade de condução de corrente (1)	Método de instalação número	Esquema ilustrativo	Descrição	Método de referência para a capacidade de condução de corrente (1)
1		Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em parede termicamente isolante (2)	Al	17		Cabos unipolares ou cabo multipolar suspenso(s) por cabo de suporte, incorporado ou não	E (multipolar) F (unipolares)
2		Cabo multipolar em eletroduto de seção circular embutido em parede termicamente isolante (2)	A2	18	25	Condutores nus ou isolados sobre isoladores	G
3		Condutores isolados ou cabos unipolares em eletroduto aparente e de seção circular sobre parede ou espaçado da mesma (3)	В1	21	1 89	Cabos unipolares ou cabo multipolar em espaço de construção (6)	$1.5 D_{e} \le V < 5 D_{e}$ $B2$ $5 D_{e} < V < 50 D_{e}$ $B1$
4		Cabo multipolar em eletroduto de seção circular sobre parede ou espaçado da mesma (3)	B2	22		Condutores isolados em eletroduto de seção circular em espaço de construção (6)	1,5 D _e ≤V < 20 D _e B2 V ≥ 20 D _e B1
5		Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	23		Cabos unipolares ou cabo multipolar em eletroduto de seção circular em espaço de construção (6)	В2

Tipos de Linhas Elétricas (II)

5	000	Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	23		Cabos unipolares ou cabo multipolar em eletroduto de seção circular em espaço de construção (6)	В2
6		Cabo multipolar em eletroduto aparente de seção não-circular sobre parede	B2	24		Condutores isolados em eletroduto de seção não-circular em espaço de construção (6)	1,5 D _e ≤V< 20 D _e B2 V ≥ 20 D _e B1
7	}	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria	В1	25		Cabos unipolares ou cabo multipolar em eletroduto de seção não-circular em espaço de construção	В2
8	9	Cabo multipolar em eletroduto de seção circular embutido em alvenaria	B2	26	2 & 1	Condutores isolados em eletroduto de seção não-circular embutido em alvenaria (6)	$1.5 D_{e} \le V < 5 D_{e}$ $B2$ $5 D_{e} \le V < 50 D_{e}$ $B1$
11		Cabos unipolares ou cabo multipolar sobre parede ou afastado da mesma (4)	С	27	<i>⊗</i>	Cabos unipolares ou cabo multipolar em eletroduto de seção não-circular embutido em alvenaria (6)	В2
11A		Cabos unipolares ou cabo multipolar no teto (4)	c	28		Cabos unipolares ou cabo multipolar em forro falso ou em piso elevado (7)	$1.5 D_{e} \le V < 5 D_{e}$ $B2$ $5 D_{e} \le V < 50 D_{e}$ $B1$

Tipos de Linhas Elétricas (III)

11B	(S)	Cabos unipolares ou cabo multipolar afastado do teto (4)	С	31	00	Condutores isolados ou cabos unipolares em eletrocalha sobre parede em percurso horizontal ou vertical	ВІ
12		Cabos unipolares ou cabo multipolar em bandeja não perfurada ou em prateleira	С	32			В1
13	000	Cabos unipolares ou cabo multipolar em bandeja perfurada horizontal ou vertical	E (multipolar) F (unipolares)	31A	E	Cabo multipolar em eletrocalha sobre parede em percurso horizontal ou vertical	B2
14	[000]	Cabos unipolares ou cabo multipolar sobre suportes horizontais ou sobretela	E (multipolar) F (unipolares)	32 A	3		В2
15		Cabos unipolares ou cabo multipolar afastado(s) da parede (5)	E (multipolar) F (unipolares)	33	8	Condutores isolados ou cabos unipolares em canaleta fechada encaixada no piso ou no solo	B 1
16		Cabos unipolares ou cabo multipolar em leito	E (multipolar) F (unipolares)	34		Cabo multipolar em canaleta fechada encaixada no piso ou no solo	B2

Tipos de Linhas Elétricas (IV)

Método de instalação número	Esquema Ilustrativo	Descrição	Método de referência a utilizar para a capacidade de condução de corrente (1)	Método de instalação número	Esquema ilustrativo	Descrição	Método de referência a utilizar para a capacidade de condução de corrente (1)
35	GG GG	Condutores isolados ou cabo unipolares em eletrocalha ou perfilado suspensa(o)	B1	61A	***************************************	Cabos unipolares ou cabo multipolar em eletroduto enterrado ou em canaleta não ventilada no solo	D
36		Cabo multipolar em eletrocalha ou perfilado suspensa(o)	B2	62		Cabos unipolares ou cabo multipolar diretamente enterrado(s), sem proteção mecânica adicional (6)	D
41	•	Condutores isolados ou cabos unipolares em eletroduto de seção circular contido em canaleta fechada com percurso horizontal ou vertical	$1.5 D_e \le V < 5 D_e$ $B2$ $V \ge 20 D_e$ $B1$	63	999	Cabos unipolares ou cabo multipolar diretamente enterrado(s), com proteção mecânica adicional	D
42		Condutores isolados em eletroduto de seção circular contido em canaleta ventilada encaixada no piso ou no solo	Ві	71	75°	Condutores isolados ou cabos unipolares em moldura	Al
43		Cabos unipolares ou cabo multipolar em canaleta ventilada encaixada no piso ou no solo	B1	72	12	Condutores isolados ou cabos unipolares em canaleta provida de separações sobre parede	B1 ,

Tipos de Linhas Elétricas (V)

51		Cabo multipolar embutido diretamente em parede termicamente isolante	Al	72A	TV USON	Cabo multipolar em canaleta provida de separações sobre parede	B2
52	08	Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria sem proteção mecânica adicional	С	73		Condutores isolados em eletroduto, cabos unipolares ou cabo multipolar embutido(s) em caixilho de porta	A1
53		Cabos unipolares ou cabo multipolar embutido(s) diretamente em alvenaria com proteção mecânica adicional	С	74	UID>	Condutores isolados em eletroduto, cabos unipolares ou cabo multipolar embutido(s) em caixilho de janela	Al
61		Cabo multipolar em eletroduto enterrado ou em canaleta não- ventilada no solo	D	75 75A	SON SON	Cabo multipolar em canaleta embutida em parede	B2

Critérios para dimensionamento de condutores

Ampacidade;

• Limite de queda de tensão;

• Capacidade de condução em curto-circuito por tempo limitado.

Critério da capacidade de condução de corrente (Ampacidade)

Calculo da Corrente

Circuitos monofásicos (F - N)

$$I_c = \frac{P}{V_{fn} * \cos(\emptyset)}$$

Calculo da Corrente

Circuitos bifásicos Simétrico (F - F - N)
 Fase A e neutro:

$$I_{an} = \frac{P}{V_{fn} * \cos(\emptyset)}$$

Fase A e fase B:

$$I_{ab} = \frac{P}{V_{ff} * \cos(\emptyset)}$$

$$I_t = I_{an} + I_{ab}$$

Calculo da Corrente

Circuitos trifásicos

$$I_c = \frac{P}{\sqrt{3} * V_{ff} * \cos(\emptyset)}$$

Cores dos condutores (NBR5410:2004)

- Fase: qualquer cor, menos as definidas para o neutro ou terra;
- Neutro: cor azul-clara;
- Proteção(PE): cor verde-amarela ou cor verde.
- Condutor neutro + proteção(PEN):cor azul-clara com anilhas verdeamarela nos pontos visíveis.

Tabela 3.4

- Condutores isolados, cabos unipolares e multipolares, isolação PVC;
- 2 e 3 condutores carregados;
- Temperatura do condutor: 70°C;
- Temperatura ambiente:30°C e 20°C para instalações subterrâneas.

Capacidade de Conducão de Corrente

				M	étodos de 1	referência (definidos n	a Tabela 3	.1			
Seções	A	1	A	.2	Е	81	В	32	(C	I)
nominais mm²	2 Condutores carregados	Condutores carregados	Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	Condutores carregados	3 Condutores carregados
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Cobre								, ,				
0,5	7	7	7	7	9	8	9	8	10	9	12	10
0,75	9	9	9	9	11	10	11	10	13	11	15	12
1	11	10	11	10	14	12	13	12	15	14	18	15
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18
2,5	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24
4	26	24	25	23	32	28	30	27	36	32	38	31
6	34	31	32	29	41	36	38	34	46	41	47	39
10	46	42	43	39	57	50	52	46	63	57	63	52
16	61	56	57	52	76	68	69	62	85	76	81	67
25	80	73	75	68	101	89	90	80	112	96	104	86
35	99	89	92	83	125	110	11	99	138	119	125	103
50	119	108	110	99	151	134	133	118	168	144	148	122
70	151	136	139	125	192	171	168	149	213	184	183	151
95	182	164	167	150	232	207	201	179	258	223	216	179
120	210	188	192	172	269	239	232	206	299	259	246	203
150	240	216	219	196	309	275	265	236	344	299	278	230
185	273	245	248	223	353	314	300	268	392	341	312	258
240	321	286	291	261	415	370	351	313	461	403	361	297
300	367	328	334	298	477	426	401	358	530	464	408	336
400	438	390	398	355	571	510	477	425	634	557	478	394

Tabela 3.5

- Condutores isolados, cabos unipolares e multipolares, isolação EPR
 OU XLPE;
- 2 e 3 condutores carregados;
- Temperatura do condutor: 90°C;
- Temperatura ambiente:30°C e 20ºC para instalações subterrâneas.

Capacidade de Condução de Corrente

				М	étodos de 1	referência	definidos n	a Tabela 3	.1			
	A	1	· A		В			2	()
Seções mm²	2 Condutores carregados	3 Condutores carregados	Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Cobre												
0,5	10	9	10	9	12	10	11	10	12	11	14	12
0,75	12	11	12	11	15	13	15	13	16	14	18	15
1	15	13	14	13	18	16	17	15	18	17	21	17
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22
2,5	26	23	25	22	31	28	30	26	33	30	34	29
4	35	31	33	30	42	37	40	35	45	40	44	37
6	45	40	42	38	54	48	51	44	58	52	56	46
10	61	54	57	51	75	66	69	60	80	71	73	61
16	81	73	76	68	100	88	91	80	107	96	95	79
25	106	95	99	89	133	117	119	105	138	119	121	101

Capacidade de Condução de Corrente(continuação)

35	131	117	121	109	164	144	146	128	171	147	146	122
50	158	141	145	180	198	175	175	154	209	179	173	144
70	200	179	183	161	253	222	221	194	269	229	213	178
95	241	216	220	197	306	269	265	233	328	278	252	211
120	278	249	253	227	354	312	305	268	382	322	287	240
150	318	285	290	259	407	358	349	307	441	371	324	271
185	362	324	329	295	464	408	395	348	506	424	363	304
240	424	380	386	346	546	481	462	407	599	500	419	351
300	486	435	442	396	626	553	529	465	693	576	474	396
400	579	519	527	472	751	661	628	552	835	692	555	464
500	664	595	604	541	864	760	718	631	966	797	627	525
630	765	685	696	623	998	879	825	725	1122	923	711	596
800	885	792	805	721	1158	1020	952	837	1311	1074	811	679
1000	1014	808	923	826	1332	1173	1088	957	1515	1237	916	767

Exemplo de aplicação 1)Determinar a seção dos condutores fase do circuito bifásico, cabos unipolares, isolação XLPE e eletroduto embutido em alvenaria, mostrado abaixo:

Fig. 3.20 – Sistema bifásico simétrico a três fios

Solução (Primeiro passo)

$$I_{ab} = \frac{2.500}{380 * 0.8} = 8.2 A$$

$$I_{an} = \frac{3.000}{220 * 0.9} = 15.1 A$$

$$I_{bn} = \frac{800}{220 * 0.7} + \frac{600}{220 * 0.6} = 9.7 A$$

A fase A é a mais carregada, logo:

$$I_a = I_{an} + I_{ab} = 15,1 + 8,2 = 23,3 A$$

Solução (Segundo passo)

Olhar na tabela de referências o tipo da linha elétrica.

B1, método de instalação 7.

Solução (terceiro passo)

Olhar na tabela de Capacidade de Condução de Corrente. B1, 3 condutores carregados, i>=23,3 A.

Seção= 2,5 mm2

Tabela de valores de Corrente dos Motores (Cap.6)

Potência nominal	Potência ativa		rente ninal	Velocidade em rpm	Fator de potência	Relação Inp/In	Relação Cp/Cn	Conjugado nominal	Rotor bloqueado	Rendimento	Momento de inércia
	kW	220 V	380 V				%	mkgf	s	%	kgm²
cv	V AA	220 V	500 1			II pólos					
1	0,7	3,3	1,9	3.440	0,76	6,2	180,0	0,208	7,1	0,81	0,0016
3	2,2	9,2	5,3	3.490	0,76	8,3	180,0	0,619	6,0	0,82	0,0023
3	4	13,7	7,9	3.490	0,83	9,0	180,0	1,020	6,0	0,83	0,0064
7,5	5,5	19,2	11,5	3.480	0,83	7,4	180,0	1,540	6,0	0,83	0,0104
10	7,5	28,6	16,2	3.475	0,85	6,7	180,0	2,050	6,0	0,83	0,0179
1	7,3 11	40,7	23,5	3.500	0,82	7,0	180,0	3,070	6,0	0,83	0,0229
15	15	64,0	35,5	3.540	0,73	6,8	250,0	3,970	6,0	0,83	0,0530
20 25	1	69,0	38,3	3.540	0,82	6,8	300,0	4,960	6,0	0,86	0,0620
30	18,5 22	73,0	40,5	3.535	0,88	6,3	170,0	5,960	6,0	0,89	0,2090
	30	98,0	54,4	3.525	0,89	6,8	220,0	7,970	9,0	0,90	0,3200
40	37	120,0	66,6	3,540	0,89	6,8	190,0	9,920	10,0	0,91	0,3330
50	45	146,0	81,0	3.545	0,89	6,5	160,0	11,880	18,0	0,91	0,4440
60	1	l ' '	98,8	3,550	0,89	6,9	170,0	14,840	16,0	0,92	0,4800
75	55	178,0	· ·	3,560	0,90	6,8	140,0	19,720	11,0	0,93	0,6100
100	75	240,0	133,2	3.570	0,90	6,5	150,0	24,590	8,9	0,93	1,2200
125	90	284,0	158,7	3.575	0,90	6,8	160,0	29,460	27,0	0,93	1,2700
150	110	344,0	190,9	3.313		T37 41	100,0	100,100			

51

					r	V pólos					
, ,	0.7	2.0	22	1.715	0,65	5,7	200,0	0,420	6,0	0,81	0,0016
1 1	0,7	3,8	2,2	1.720	0,73	6,6	200,0	1,230	6,0	0,82	0,0080
3	2,2	9,5	5,5 7,9	1.720	0,83	7,0	200,0	2,070	6,0	0,83	0,0091
5	4	13,7		1.735	0,83	7,0	200,0	3,100	6,0	0,84	0,0177
7,5	5,5	20,6	11,9	1.740	0,85	6,6	190,0	4,110	8,3	0,86	0,0328
10	7,5	26,6	15,4	1.760	0,75	7,8	195,0	6,120	8,1	0,86	0,0433
15	11	45,0	26,0	1.760	0,86	6,8	220,0	7,980	7,0	0,88	0,0900
20	15	52,0	28,8 35,5	1.760	0,84	6,7	230,0	9,970	6,0	0,90	0,1010
25	18,5 22	64,0 78,0	43,3	1.760	0,83	6,8	235,0	11,970	9,0	0,90	0,2630
30	30	102,0	56,6	1.760	0,85	6,7	215,0	15,960	10,0	0,91	0,4050
40	30 37	102,0	68,8	1.760	0,86	6,4	300,0	19,950	12,0	0,92	0,4440
50 60	45	150,0	83,3	1.765	0,86	6,7	195,0	23,870	12,0	0,92	0,7900
75	55	182,0	101,1	1.770	0.86	6,8	200,0	29,750	15,0	0,92	0,9000
	75	244,0	135,4	1.770	0,87	6,7	200,0	39,670	8,3	0,92	1,0600
100 125	90	290,0	160,9	1.780	0,87	6,5	250,0	49,310	14,0	0,94	2,1000
	110	350,0	194,2	1.780	0,87	6,8	270,0	59,170	13,0	0,95	2,5100
150 180	132	420,0	233,1	1,785	0,87	6,5	230,0	70,810	11,0	0,95	2,7300
	150	470,0	271,2	1.785	0,87	6,9	230,0	80,000	17,0	0,95	2,9300
200	160	510,0	283,0	1,785	0,87	6,5	250,0	86,550	15,0	0,95	3,1200
220	185	590,0	327,4	1.785	0,87	6,8	240,0	95,350	15,0	0,95	3,6900
250	220	694,0	385,2	1.785	0,88	6,8	210,0	118,020	24,0	0,96	6,6600
300	280	864,0	479,5	1.785	0,89	6,9	210,0	149,090	25,0	0,96	7,4000
380	355	1100,0	610,5	1.788	0,89	7,6	220,0	186,550	26,0	0,96	9,1000
475 600	450	1384,0	768,1	1.790	0,89	7,8	220,0	265,370	29,0	0,96	12,1000

Exemplo 3

- Determinar seção dos condutores.
- PVC
- Sistema com 3 motores de 40 cv e 4 motores de 15 cv, todos de IV polos.
- 380 V
- Condutores isolados dispostos em eletroduto no interior de canaleta fechada.

Solução (3)

 $I_c = 3 * 56,6 + 4 * 26 = 273,8 \,\mathrm{A}$ Método de instalação 42 tabela 3.2 (B1)

S=3#150mm²

Exemplo 4

Determinar a seção dos condutores fase do circuito trifásico mostrado na Fig. 3.21, sabendo-se que serão utilizados cabos isolados em PVC, dispostos em eletroduto aparente.

Fig. 3.21 – Circuito trifásico a quatro fios desequilibrado

$$I_{an} = \frac{600}{220 \times 0,80} + \frac{1.000}{220 \times 0,70} = 9,9 \text{ A}$$

$$I_{bn} = \frac{1.500}{220 \times 0.60} = 11.3 \,\mathrm{A}$$

$$I_{cn} = \frac{1.200}{220 \times 0.80} = 6.8 \,\mathrm{A}$$

$$I_{abc} = \frac{5.000}{\sqrt{3} \times 380 \times 0.90} = 8.4 \,\text{A}$$

 I_{an} , I_{bn} , I_{cn} – correntes correspondentes às cargas monofásicas, respectivamente ligadas entre as fases A, B e C e o neutro N, em A.

Considerando-se a corrente da fase de maior carga, tem-se:

$$I_b = I_{bn} + I_{abc} = 11,3 + 8,4 = 19,7 \text{ A}$$

 I_b – corrente de carga da fase B e que deve corresponder à capacidade mínima de corrente do condutor.

Logo, $S_a = S_b = S_c = 3 \pm 2.5 \text{ mm}^2$ (Tabela 3.4 – coluna B1 para três condutores carregados – justificada pela Tabela 3.2, método de instalação 3: condutores isolados ou cabos unipolares em eletroduto aparente e de seção circular sobre parede ou espaçado da mesma).

Circuitos terminais para Motores

• Sistemas 3F que tem origem em um 3F+N

$$Ic= Fs*In (A)$$

Onde: Fs é o fator de serviço.

In é a corrente nominal (Tab. 6.3).

Circuitos terminais para Capacitores

• Corrente mínima:

Ic=1.35*In

• Ex:capacitores de 40 kVAr, 380 V, 60 HZ.

In= Pn/√3*Vff

In= 40*1000/\sqrt{3*380}

In= 60,7 A

Logo:

Ic=1,35*60,7=81,9 A

Fatores de Correção de Corrente

Livro: "João Mamede Filho" Instalações Elétricas Industriais Motivo

condições diferentes das condições das tabelas usadas.

Objetivo

Manter o condutor em regime contínuo, com a temperatura igual ou inferior à projetada

Obs: Dimensionar para o pior caso (para o pior percurso)

Correções e Fatores

• Correções de Temperatura (fator K₁);

• Correções da Resistividade térmica do solo (fator K2);

• Correções de agrupamento de circuitos (fator K₃).

Temperatura Ambiente

	Temperatura em °C		Isolação
	Ambiente	PVC	EPR ou XLPE
1	10	1,22	1,15
1	15	1,17	1,12
1	25	1,12	1,08
ı	30	1,06	1,04
1	35	0,94	0,96
ı	40	0,87	0,91
1	45	0,79	0,87
1	50	0,71	0,82
١	55	0,61	0,76
١	60	0,50	0,71
ı	65	-	0,65
I	70	-	0,58
I	75	-	0,50
L	80	-	0,41
L	Solo		,
ı	10	1,10	1,07
l	15	1,05	1,04
ı	25	0,95	0,96
ı	30	0,89	0,93
ı	35	0,84	0,89
ı	40	0,77	0,85
	45	0,71	0,80
ı	50	0,63	0,76
ı	55	0,55	0,71
	60	0,45	0,65
	65	-	0,60
	70	-	0,53
	75	-	0,46
	80	-	0,38

Resistividade Térmica do solo

Tabela 3.11 – Fatores de correção para cabos em eletrodutos enterrados no solo, com resistividade térmica diferente de 2,5 K.m/W, a serem aplicados às capacidades de condução de corrente do método de referência

Resistividade térmica (K.m/W)	1	1,5	2	3
Fator de correção	1,18	1,1	1,05	0,96

Agrupamento de circuitos

- Cabos com corrente >= 30% da corrente nominal do cabo.
- Depende do método de referência adotado;

```
    As tabelas de ampacidade aplicam-se à:
        dois condutores isolados;
        dois cabos unipolares;
        um cabo bipolar;
        ou
        Três condutores isolados;
        Três cabos unipolares;
```

Um cabo tripolar.

Caso haja mais condutores, aplicar os fatores de correção.

Agrupamento de circuitos

• Aplicar esse fator de correção à cabos semelhantes e igualmente carregados.

Tab.3.15-Condutores agrupados em feixes, seja linhas abertas ou fechadas. Condutores em um mesmo plano e em uma camada.

T4	Disposição dos cabos			Núr	nero	de c	ircuit	os ot	ı de	cabos	multipola	res		Tabela dos métodos de
Item	justapostos	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	>20	referência
1	Feixe de cabos ao ar livre ou sobre superfície; cabos em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	3,4 a 3,7 (métodos A a F)
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70				3,4 e 3,5 (método C)
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	adiciona	fator de r l para mais ou cabos		
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	multipol	ares		3,6 e 3,7
5	Camada única em leito, suporte	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				(métodos E e F)

Prescrições da Tabela 3.15

- Somente condutores com corrente devem ser contados;
- Condutor neutro em circuitos trifásicos equilibrados não são contados;
- Em circuitos trifásicos que alimentam iluminação o neutro deve ser contado (circuito desequilibrado). Usar fator de agrupamento igual à 0,86;

(Deve-se usar TRÊS CONDUTORES CARREGADOS nas tabelas de capacidade de corrente)

- Condutores PE não são contados;
- Condutores PEN são considerados condutor neutro;

Prescrições da Tabela 3.15 (continuação)

• Pode-se aumentar os fatores de correção se os cabos não estiverem carregados com 100% de sua carga?

• Se a distância horizontal entre os cabos for superior ao dobro do diâmetro externo do cabo, não é necessário usar o fator.

• Agrupamento com cabos bipolares e tripolares o número de cabos torna-se igual ao número de circuitos.

Tab.3.16

• Tab.3.16-Condutores agrupados em feixes, seja linhas abertas ou fechadas. Condutores em mais de uma uma camada.

	Quantidade de Circuitos Trifásicos ou de Cabos Multipolares por Camada									
Quantidade de Camadas	2	3	4 ou 5	6 a 8	9 ou mais					
2	0,68	0,62	0,60	0,58	0,56					
3	0,62	0,57	0,55	0,53	0,51					
4 ou 5	0,60	0,55	0,52	0,51	0,49					
6 a 8	0,58	0,53	0,51	0,49	0,48					
9 ou mais	0,56	0,51	0,49	0,48	0,46					

Prescrições da Tabela 3.16

Válido para camadas dispostas tanto na horizontal quanto na vertical;

• Caso seja usado apenas uma camada, usar a Tab. 3.15

Tab.3.17

• Tab.3.17- cabos diretamente enterrados.

Número de	Distância entre Cabos ⁽¹⁾									
Circuitos	Nula	1 Diâmetro do Cabo	0,125 m	0,25 m	0,50 m					
2	0,75	0,80	0,85	0,90	0,90					
3	0,65	0,70	0,75	0,80	0,85					
4	0,60	0,60	0,70	0,75	0,80					
5	0,55	0,55	0,65	0,70	0,80					
6	0,50	0,55	0,60	0.70	0,80					

Prescrições da Tabela 3.17

 Aplicável a para profundidade de 70 cm e resistividade térmica do solo de 25 K.m/W;

Usar os cabos mais próximos;

Tab. 3.18

• Tab.3.18- Linhas em eletrodutos enterrados: cabos multipolares.

Cabos Multipolares em Eletrodutos - Um Cabo por Eletroduto										
U. 1. AV. 10	Espaçamento entre Eletrodutos ⁽¹⁾									
Vámero de Circuitos	Nula	0,25 m	0,50 m	1,0 m						
2	0,85	0,90	0,95	0,95						
3	0,75	0,85	0,90	0,95						
4	0,70	0,80	0,85	0,90						
5	0,65	0,80	0.85	0,90						
6	0,60	0,80	0,80	0,80						

Prescrições da Tabela 3.18

 Aplicável a para profundidade de 70 cm e resistividade térmica do solo de 25 K.m/W;

Usar os cabos mais próximos;

Tab.3.19

• Tab.3.18- Linhas em eletrodutos enterrados: cabos isolados ou unipolares.

	res Isolados ou Cabos Unipolares em Eletrodutos - Um Condutor por Eletroduto Espaçamento entre Eletrodutos (1)								
Número de Circuitos	Nula	0,25 m	0,50 m	1,0 m					
2	0,80	0,90	0,90	0,95					
3	0,70	0,80	0,85	0,90					
4	0,65	0,75	0,80	0,90					
5	0,60	0,70	0,80	0,90					
6	0,60	0,70	0,80	0,90					

Prescrições da Tabela 3.19

 Aplicável a para profundidade de 70 cm e resistividade térmica do solo de 25 K.m/W;

Usar os cabos mais próximos;

Recomendações da NBR 5410/2004

 Usar o fator de correção de 0,86 quando a seção do neutro for a mesma da fase e o circuito for desequilibrado ou com conteúdo harmônico (alimentação de QDL).

• Para quatro condutores usar fator de correção 0,86.

Exemplo 1

- 1) determinar a seção do condutor.
- Circuito de iluminação (F-N)
- 1200 W
- Eletroduto embutido de PVC
- Com mais quatro condutores.
- Temperatura ambiente=35 °C
- Tensão 120 V

Correção de temperatura: K₁ = 0,94

Temperatura em °C		Isolação
Ambiente	PVC	EPR ou XLPE
10	1,22	1,15
15	1,17	1,12
25	1,12	1,08
30	1,06	1,04
35	0,94	0,96
40	0,87	0,91
45	0,79	0,87
50	0,71	0,82
55	0,61	0,76
60	0,50	0,71
65	-	0,65
70	-	0,58
75	-	0,50
80		0,41
Solo		
10	1,10	1,07
15	1,05	1,04
25	0,95	0,96
30	0,89	0,93
35	0,84	0,89
40	0,77	0,85
45	0,71	0,80
50	0,63	0,76
55	0,55	0,71
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80		0,38

Correção de agrupamento de circuitos: K₂=0,7

Item	Disposição dos cabos	Número de circuitos ou de cabos multipolares										Tabela dos métodos de		
Item	justapostos	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	>20	referência
1	Feixe de cabos ao ar livre ou sobre superfície; cabos em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	3,4 a 3,7 (métodos A a F)
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70			3,4 e 3,5 (método C)	
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	adiciona	fator de r l para mais ou cabos		
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	multipol	ares	3,6 e 3,7	
5	Camada única em leito, suporte	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				(métodos E e F)

Solução

$$I_p = \frac{1200 W}{120 V} = 10 A$$

Correção de temperatura: K₁ = 0,94

Correção de agrupamento de circuitos: K2=0,7

Correção de total:

$$I_p = \frac{I_p}{k_1 * k_2} = 15,2 A$$

Tipos de linhas

5	8	Condutores isolados ou cabos unipolares em eletroduto aparente de seção não-circular sobre parede	B1	23		Cabos unipolares ou cabo multipolar em eletroduto de seção circular em espaço de construção (6)	B2
6		Cabo multipolar em eletroduto aparente de seção não-circular sobre parede	B2	24		Condutores isolados em eletroduto de seção não-circular em espaço de construção (6)	1,5 D _e ≤V< 20 D _e B2 V ≥ 20 D _e B1
7	(Geo	Condutores isolados ou cabos unipolares em eletroduto de seção circular embutido em alvenaria	В1	25		Cabos unipolares ou cabo multipolar em eletroduto de seção não-circular em espaço de construção	В2
8	9	Cabo multipolar em eletroduto de seção circular embutido em alvenaria	B2	26	2 <u>@</u> ()	Condutores isolados em eletroduto de seção não-circular embutido em alvenaria (6)	$1.5 D_e \le V < 5 D_e$ $B2$ $5 D_e \le V < 50 D_e$ $B1$
11		Cabos unipolares ou cabo multipolar sobre parede ou afastado da mesma (4)	С	27	⊗	Cabos unipolares ou cabo multipolar em eletroduto de seção não-circular embutido em alvenaria (6)	B2
11A		Cabos unipolares ou cabo multipolar no teto (4)	c	28	&	Cabos unipolares ou cabo multipolar em forro falso ou em piso elevado (7)	$1.5 D_{e} \le V < 5 D_{e}$ $B2$ $5 D_{e} \le V < 50 D_{e}$ $B1$

Capacidade de condução

	Métodos de referência definidos na Tabela 3.1												
Seções	A	A1 A2		В	31	B2		С		D			
nominais mm²	2 Condutores carregados	Condutores carregados	Condutores carregados	Gondutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	2 Condutores carregados	3 Condutores carregados	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	
Cobre													
0,5	7	7	7	7	9	8	9	8	10	9	12	10	
0,75	9	9	9	9	11	10	11	10	13	11	15	12	
. 1	11	10	11	10	14	12	13	12	15	14	18	15	
1,5	14,5	13,5	14	13	17,5	15,5	16,5	15	19,5	17,5	22	18	
2,3	19,5	18	18,5	17,5	24	21	23	20	27	24	29	24	
4	26	24	25	23	32	28	30	27	36	32	38	31	
6	34	31	32	29	41	36	38	34	46	41	47	39	
10	46	42	43	39	57	50	52	46	63	57	63	52	
16	61	56	57	52	76	68	69	62	85	76	81	67	
25	80	73	75	68	101	89	90	80	112	96	104	86	
35	99	89	92	83	125	110	11	99	138	119	125	103	
50	119	108	110	99	151	134	133	118	168	144	148	122	
70	151	136	139	125	192	171	168	149	213	184	183	151	
95	182	164	167	150	232	207	201	179	258	223	216	179	
120	210	188	192	172	269	239	232	206	299	259	246	203	
150	240	216	219	196	309	275	265	236	344	299	278	230	
185	273	245	248	223	353	314	300	268	392	341	312	258	
240	321	286	291	261	415	370	351	313	461	403	361	297	
300	367	328	334	298	477	426	401	358	530	464	408	336	
400	438	390	398	355	571	510	477	425	634	557	478	394	

Número 7 da tabela de tipos de linhas elétricas. Método B1.

1,5 mm²