

應用機器學習

Brian Chan 陳醒凡

課程目標

- 1. 了解基本的數據分析
- 2. 了解基本的機器學習(Machine Learning)方法
- 3. 掌握Python的基本操作和一些有用的package
- 4. 處理及從網上下載數據
- 5. 在Python上應用機器學習

今天課堂 概要

Model Evaluation

- Pipeline & Validation (Holdout & k-fold)
- 2. Over- and underfitting addressed with validation curves
- 3. Evaluation matrix
- 4. Class imbalance

PIPELINE

HOLDOUT VALIDATION

K-FOLD VALIDATION

Intend to avoid the possible bias introduced by relying on any one particular division into test and train components, to partition the original set in several different ways and to compute an average score over the different partitions.

DIAGNOSING BIAS AND VARIANCE

High bias – Too restricted model

High variance – Too complicated model

DIAGNOSING BIAS AND VARIANCE

OVER- AND UNDERFITTING ADDRESSED WITH VALIDATION CURVES

EVALUATION MATRIX

Predicted class NTrue False positives negatives (TP) (FN) Actual class False True positives negatives (FP) (TN)

$$Accuracy = \frac{TP + TN}{TP + FN + FP + TN}$$

$$Precision = \frac{TP}{TP + FP}$$

Recall
$$=\frac{TP}{FN+TP}$$

F1 =
$$2 \times \frac{PRE \times RECALL}{PRE + RECALL} = 2 \times \frac{1}{\frac{1}{Pre} + \frac{1}{Recall}}$$

"MISLEADING" ACCURACY

Suppose that there is a data set which has 1,000 data points (970 with false label and 30 with true label).

	Predict true	Predict false
Actual true	20	10
Actual false	70	900

Accuracy = (20+900)/(20+70+10+900) = 0.92

	Predict true	Predict false
Actual true	1	29
Actual false	0	939

Accuracy = 940/970 = 0.96

EVALUATION MEASURES

Case 1:

Precision =
$$20/(20+70)=0.222$$

Recall = $20/(20+10)=0.667$
F1 = 0.333

Case 2:

```
Precision = 0/(30)
Recall = 1/(1+30)=0.032
F1 = 0
```

IMBALANCED CLASS

Re-sampling

Class weighting

SMOTE

今天課堂 概要

Model Evaluation

- Pipeline & Validation (Holdout & k-fold)
- 2. Over- and underfitting addressed with validation curves
- 3. Evaluation matrix
- 4. Class imbalance

下一課...

- 1. Summarize the topics covered
- 2. Introduction of deep learning and demonstration of selected application (e.g. Text summarization or computer vision)