Vladislav Belavin, Maxim Borisyak

Bayesian Optimization

combining GP and BO

2021

Bayesian Optimization refresher

Prerequisites

- 1. model: $\mathcal{M} = \{f_{\theta} : \mathcal{X} \to \mathbb{R} \mid \theta \in \Theta\}$;
- 2. prior: $P(\theta \mid \theta \in \Theta)$;
- 3. probability data model: $P(y \mid \theta, x)$;
- 4. gain/acquisition function.
- 5. the objective/target function *t*.

Main loop

6: end for

```
1: for i=1 to N do

2: compute P(\theta \mid X, Y)

3: search for x_i with the most expected gain

4: evaluate y_i = t(x_i)

5: extend X and Y with x_i and y_i
```

Posterior computation

Bayesian inference is difficult:

$$P(\theta \mid X, Y) = \frac{P(Y \mid X, \theta)P(\theta)}{P(Y \mid X)} = \frac{P(Y \mid X, \theta)P(\theta)}{\int P(Y \mid X, \theta)P(\theta)d\theta} = \frac{P(Y \mid X, \theta)P(\theta)}{Z}$$

$$P(y \mid X, Y) = \int P(y \mid \theta, X, Y) P(\theta \mid X, Y) d\theta$$

Gaussian processes

Role in Bayesian Optimization

```
1: for i=1 to N do

2: compute \mathbf{P}(\theta \mid \mathbf{X}, \mathbf{Y})

3: search for x_i with the most expected gain

4: evaluate y_i = t(x_i)

5: extend X and Y with x_i and y_i

6: end for
```

Gaussian processes refresher

Linear Gaussian process:

- $f_w(x) = w \cdot x;$
- $extbf{w} \sim \mathcal{N}(0, \Sigma)$, $\Sigma = \operatorname{diag}(\sigma_w^2)$;
- $ightharpoonup y \mid x, w \sim \mathcal{N}(w \cdot x, \sigma_y^2).$

Bayesian inference on a linear model

$$P(w \mid Y, X) \propto P(Y \mid w, X)P(w) \propto$$

$$\exp\left[-\frac{1}{2\sigma_y^2}(y-X^Tw)^T(y-X^Tw)\right]\cdot\exp\left[-\frac{1}{2}w^T\Sigma_w^{-1}w\right] =$$

$$\exp\left[-\frac{1}{2}(w-w^*)^T A_w(w-w^*)\right]$$

where:

$$A_w = \frac{1}{\sigma_y^2} X X^T + \Sigma^{-1};$$

•
$$w^* = \frac{1}{\sigma_y^2} A_w^{-1} X y$$
.

Bayesian inference on a linear model

To make prediction y in point x:

$$P(y \mid Y, X, x) = \int P(y \mid w, x) P(w \mid X, y) = \mathcal{N}\left(\frac{x^T A^{-1} X Y}{\sigma_y^2}, x^T A^{-1} x\right)$$

- posterior distribution of model parameters is Gaussian;
- (posterior) joint distribution of any number of y(x) is a Gaussian distribution.

Basis expansion

Basis expansion:

- $x \to \phi(x);$
- **polynomial:** $x \to (1, x_1, x_2, \dots, x_n, x_1 x_2, x_1, x_3, \dots, x_1^2, x_2^2, \dots, x_n^2, \dots)$;
- ► Fourier: $x \to (1, \cos(2\pi x_1), \sin(2\pi x_1), \cos(2\pi x_2), \sin(2\pi x_2), \dots)$;

Kernels

P(y, Y, X, x) can be rewritten via scalar products:

$$k(x_i, x_j) = \phi^T(x_i) \cdot \phi(x_j)$$

Popular kernels:

- polynomial;
- RBF:

$$RBF(x_i, x_j) = \exp(-\gamma ||x_i - x_j||^2)$$

Matern:

$$Matern(x_i, x_j) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}}{l} ||x_i - x_j|| \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}}{l} ||x_i - x_j|| \right)$$

RBF kernel

Matern kernel, $\nu=1.5$

Matern kernel, $\nu=2.5$

Gaussian processes, summary

- GP is a Bayesian inference over a linear model:
 - analytical form for posterior $P(y \mid X, Y, x)$;
 - functions can be sampled from GP.
- with basis expansion and kernels, GP is a powerful model:
 - kernel version is slow: $\mathcal{O}(n^3)$;
 - linear/basis expansion version: $\mathcal{O}(nd^3)$.

Acquisition functions

Role in Bayesian Optimization

```
1: for i = 1 to N do
```

- 2: compute $P(\theta \mid X, Y)$
- \mathbf{x}_{i} search for \mathbf{x}_{i} with the most expected gain
- 4: evaluate $y_i = t(x_i)$
- 5: extend X and Y with x_i and y_i
- 6: end for

Thompson sampling

- 1. draw $\theta \sim P(\theta \mid X, Y)$;
- 2. find $x' = \arg\min f_{\theta}$;
- 3. select x' as the next point.

- stochastic;
- encourages exploration;
- applicable for wide range of situations.

Probability of Improvement

$$x' = \arg \max P(y < y^* \mid X, Y, x)$$

where $y^* = \min Y$.

- exploitative;
- tends to get stuck at the same points.

Expected Improvement

$$x' = \argmax_y \mathbb{E}\left[y - y^* \mid X, \, Y, x\right]$$
 where $y^* = \min \, Y$.

- explorative;
- one of the most popular choices.

Lower Confidence Bound

$$x' = \arg\min (\mu(x) - \gamma \sigma(x))$$

where $\gamma \in (0, +\infty)$.

- explorative;
- one of the most popular choices.

Optimization of acquisition functions

Optimization of acquisition functions

- Gaussian Processes are differentiable;
- most acquisition functions are differentiable;
- in general, non-convex:
 - multiple local minima.

Random Search

- global optimization algorithm;
- imprecise:
 - reduce convergence speed;
 - makes exploitative acquisition functions more explorative.

Gradient methods

- local optimization:
 - optimization converges to a local minimum;
- precise.

Multi-start

- 1. randomly draw initial guess;
- 2. descend with a gradient method;
- 3. repeat;
- global optimization;
- precise.

Summary

Gaussian Processes in practice

- basis expansion:
 - good basis is known;
- RBF kernel:
 - popular choice;
 - the objective is expected to be smooth;
- Matern kernel:
 - can be adjusted via ν ;
 - $\nu = 1.5$ once differentiable functions;
 - $-\nu \to +\infty$ approaches RBF.

Acquisition functions

- Thompson sampling:
 - stochastic;
 - only sampling from $P(\theta \mid X, Y)$;
- Probability of Improvement:
 - tends to get stuck at the same place;
 - greedy (exploitative);

- Expected improvement:
 - popular choice;
 - explorative;
- Lower Confidence Bound:
 - popular choice;
 - easy to computer for GP;
 - explorative.

Optimization of acquisition functions

Multi-start with gradient methods:

- global;
- precise;
- de facto standard.

Quizzz

Consider a Gaussian process with mean $\mu(x)$ and variance $\sigma^2(x)$, and the following acquisition function:

$$x' = \arg\max_{x} \sigma(x).$$

Which characteristics can be applied to the acquisition function:

- 1. explorative;
- 2. exploitative;
- 3. both;
- 4. neither?

Is there any relation to Lower Confidence Bound?

References, BO

- ▶ Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. and De Freitas, N., 2015. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1), pp.148-175.
- Daniel James Lizotte. 2008. Practical bayesian optimization. Ph.D. Dissertation. University of Alberta, CAN. Order Number: AAINR46365.
- Frazier, P.I., 2018. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811.