Methods of proof

Recall that we considered three methods of proof of a proposition of the form $(P \Rightarrow Q)$:

- 1. Direct argument: Here we simply assume that P is true and show that Q must be true. Since $(P \Rightarrow Q)$ is only false if P is true and Q is false this will complete the proof.
- 2. Contrapositive argument: Here we assume Q is false and prove P is also false. This uses the equivalence

$$(P \Rightarrow Q) \equiv ((\mathbf{not} \ Q) \Rightarrow (\mathbf{not} \ P)).$$

3. Proof by contradiction: To show $(P \Rightarrow Q)$ we assume P is true and Q is false and derive a contradiction. That is, we show (P and (not Q)) is false.

Example: Use a contrapositive argument to show that if the square of a positive integer is an even number then the integer itself must have been even.

Solution: Suppose n is a positive integer and n is not even. We will show that n^2 is also not even.

Recall that an integer which is not even is odd and has the form 2x + 1 for some integer x.

So n = 2x + 1 and therefore

$$n^2 = (2x+1)^2 = 4x^2 + 4x + 1 = 2(2x^2 + x) + 1.$$

But $2x^2 + x$ is an integer so that n^2 is an odd integer. Here P was the statement

 n^2 is even

while Q was the statement

n is even.

Thus **not** Q was the statement

n is odd

while **not** P was the statement

 n^2 is odd.

Example: Use a proof by contradiction argument to show that there is no $x \in \mathbb{Q}$ (fractions) satisfying $x^2 = 2$.

Note: This fact really puzzled the ancient Greeks. Since fractions can be made arbitrarily small and moved around they expected one of them to be

 $\sqrt{2}$. They might proceed as follows: Since $1^2=1<2$ and $2^2=4>2$ look for a fraction between 1 and 2. Check that $(3/2)^2=9/4>2=8/4$ so look between 1 and 3/2. Check that $(5/4)^2=25/16<2=32/16$ so look between 5/4 and 3/2. Check that $(11/8)^2=121/64<2=128/64$ so look between 11/8 and 3/2, etc.

Solution: Recall that \mathbb{Q} is the set of rational numbers or fractions, that is, numbers of the form p/q where p and q are integers with $q \neq 0$.

Suppose $x \in \mathbb{Q}$ has form x = p/q where p and q are integers with $q \neq 0$. We can also assume that after cancelling common factors of p and q that p and q are not both even.

Now $(p/q)^2 = 2$ means that $p^2 = 2q^2$. This makes p^2 even. Using the result from the last example this means p is also even. So p = 2r for some integer r. Substituting to get $(2r)^2 = 2q^2$ or $4r^2 = 2q^2$ or $2r^2 = q^2$ allows to deduce that q^2 is even and hence that q is even. This gives the contradiction since we assumed that p and q were not both even.

Here P was the statement

$$x^2 = 2$$

while Q was the statement

x cannot be expressed as p/q, p and q integers with $q \neq 0$ and p and q are not both even.

Thus **not** Q was the statement

x = p/q, p and q integers with $q \neq 0$ and p and q are not both even.

Mathematical Induction

Example: What happens when we sum consecutive odd positive integers? Let's check:

$$\begin{array}{c|cccc} 1 & 1 \\ 1+3 & 4 \\ 1+3+5 & 9 \\ 1+3+5+7 & 16 \\ \vdots & \vdots & \vdots \\ \end{array}$$

It looks like we get perfect squares. Can we come up with a predicate proposition for this and prove that it is always true? Let's start with the proposition.

A positive odd integer is of the form 2k-1 for some positive integer k so that the odd positive integers are

$$1 = 2(1) - 1$$
, $3 = 2(2) - 1$, $5 = 2(3) - 1$, $7 = 2(4) - 1$, ...

Now it looks like our rule should be

$$P(n): 1+3+5+\ldots+(2n-1)=n^2.$$

We would like to prove that this is always true, that is $\forall n, P(n)$. How can we prove this for infinitely many values of n in a finite time?

The Principle of Mathematical Induction: Let P(n) be a predicate that is defined for all integers $n \ge 1$. Suppose that

- 1. P(1) is true, and
- 2. $\forall k \geq 1$, $(P(k) \Rightarrow P(k+1))$ is true.

Then P(n) is true for all $n \ge 1$.

The reasoning is that P(1) is true by 1 and, by 2 applied repeatedly, P(2) is true, P(3) is true, P(4) is true, etc.