SWE3003 Introduction to Database Systems - Midterm Spring 2023

Student ID		Name	!							
	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
For Instructor/TA only,										

Academic Honor Pledge

I affirm that I will not at any time be involved with cheating or plagiarism while enrolled as a student at SungKyunKwan University.

I understand that violation of this code will result in penalties as severe as indefinite suspension from the university.

Your signature:	
0	

get 2	ts] For each of the following statements, indicate whether it is TRUE or FALS points for each correct answer, -2 points for each incorrect answer, and 0 poer left blank or both answers marked.		
(a)	Each row in a database table can be uniquely identified by a super key. T	Т	F
(b)	Normalization is the process of organizing data in a database to eliminate redundant data		
(c)	The special value null is a member of every domain		
(d)	Given relations R(A, B) and S(A, C), the full outer join $R \supset S$ is equal to $R \cup (R \cap S) \cup S$.		
(e)	In the WHERE clause of a SQL query, the condition NULL <> NULL is evaluated to be false		
(f)	When an attribute A in a table T is declared as a foreign key that references a table R, the DBMS checks the foreign-key constraint each time a tuple in T is read.		
(g)	Every weak entity set in an entity-relationship model requires at least one total participation relationship		
(h)	If a relation R is in BCNF, R is also in 3NF		
(i)	Normalization to 3NF (Third Normal Form) yields less redundancy than normalization to BCNF (Boyce-Codd Normal Form)		
(j)	The data in a table with a clustered index is stored on disk in the same order as the index		

2. [10 pts] Consider the following DB schema for an online store:

Customers table:

	$customer_id$	name
	alice	Alice Wonderland
	bob	Bob Cat
e:	charlie	Charlie Brown
	dave	Davey Crockett
	emma	Emma Lou
	frank	Franken Stein

Orders table:

	order_id	customer_id	book_id
	1	alice	10
	2	bob	10
	3	charlie	20
•	4	dave	30
	5	charlie	10
	6	bob	20
	7	dave	10

Books table:

	book_id	title	price
	10	Atomic Habits	2500
:	20	Beyond SQL	1500
	30	Consistency Factor	3500
	40	Database Design	1500

Show the output relation for each of the following relational algebras.

• (a) $\Pi_{name,title,price}(\sigma_{name='Bob'}(Customers \bowtie (Orders \bowtie Books)))$

answer:

name	title	price
Bob Cat	Atomic Habits	2500
Bob Cat	Beyond SQL	1500

• (b) $\Pi_{name,title,price}(\sigma_{name='Bob'}((Customers \bowtie Orders) \bowtie Books))$

answer:

name	title	price
Bob Cat	Atomic Habits	2500
Bob Cat	Beyond SQL	1500

3. [35 pts] Write each of the following queries in SQL for the given tables.

Customers table:

customer_id	name
alice	Alice Wonderland
bob	Bob Cat
charlie	Charlie Brown
dave	Davey Crockett
emma	Emma Lou
frank	Franken Stein

Orders table:

order_id	customer_id	book_id
1	alice	10
2	bob	10
3	charlie	20
4	bob	40
5	dave	30
6	charlie	10
7	bob	30
8	dave	10
9	bob	20

Books table:

Dooks table.		
book_id	title	price
10	Atomic Habits	2500
20	Beyond SQL	1500
30	Consistency Factor	3500
40	Database Design	1500

(a). Select the name of customers who purchased a book titled "Beyond SQL".

```
answer (5 pts):

SELECT c.name
FROM Customers c
NATURAL JOIN Orders o
NATURAL JOIN Books b
WHERE b.title = 'Beyond SQL';
```

(b). Select the total amount spent by each customer on their orders:

```
answer (5 pts):

SELECT c.customer_id, c.name, SUM(b.price)
FROM customers c
NATURAL JOIN orders o
NATURAL JOIN books b
GROUP BY c.customer_id, c.name;
```

(c) Write a SQL query to list all customers who have placed at least one order.

```
answer (5 pts):

SELECT c.name
FROM Customers c
NATURAL JOIN Orders o
GROUP BY c.customer_id;
```

(d) Write a SQL query to find any customer who has bought ALL books that cost more than 2500.

(e) Write a SQL query to find the customer who has spent the most money on orders.

```
answer (10 pts):

SELECT c.name, SUM(b.price)
FROM Customers c
NATRURAL JOIN Orders o
NATRURAL JOIN Books b
GROUP BY c.customer_id
HAVING SUM(b.price) =
    (SELECT MAX(total_spent)
    FROM (SELECT SUM(b.price) as total_spent
    FROM Customers c
    NATURAL JOIN Orders o
    NATURAL JOIN Books b
    GROUP BY c.customer_id));
```

Customers table:

Customers table.		
customer_id	name	
alice	Alice Wonderland	
bob	Bob Cat	
charlie	Charlie Brown	
dave	Davey Crockett	
emma	Emma Lou	
frank	Franken Stein	

Orders table:

Orders table:				
order_id	$customer_id$	book_id		
1	alice	10		
2	bob	10		
3	charlie	20		
4	bob	40		
5	dave	30		
6	charlie	10		
7	bob	30		
8	dave	10		
9	bob	20		

Books table:

<u> Dooks tab</u>	ie:	
book_id	title	price
10	Atomic Habits	2500
20	Beyond SQL	1500
30	Consistency Factor	3500
40	Database Design	1500
	book_id 10 20 30	10 Atomic Habits 20 Beyond SQL 30 Consistency Factor

4. [10 pts] Write SQL DDL statements for the following ER-diagram. Note: You may assume any type for all attributes.


```
answer:

CREATE TABLE Course (
   course_id INT PRIMARY KEY,
   title VARCHAR(255),
   credits FLOAT
);

CREATE TABLE Prerequisite (
   course_id INT,
   prereq_id INT,
   prereq_id INT,
   PRIMARY KEY (course_id, prereq_id),
   FOREIGN KEY (course_id) REFERENCES Course(course_id),
   FOREIGN KEY (prereq_id) REFERENCES Course(course_id)
);
```

- 5. [15 pts] Consider the following relations and functional dependencies (FDs) below.
 - (a) Is the following R in BCNF? If not, decompose it into BCNF.

```
R(A, B, C, D, E)

A,B \rightarrow C,D,E

C \rightarrow D
```

```
answer:

No.

R1(A, B, C, E)

R2(C, D)
```

(b) Is the following R in 3NF? If not, decompose it into 3NF.

```
R(A, B, C, D, E)

A \rightarrow B

B \rightarrow C

C \rightarrow D

A \rightarrow E
```

```
answer:

No.

R1(A, B, E)

R2(B, C)

R3(C, D)
```

(c) Is the following R in BCNF? If not, decompose R into BCNF.

```
R(A, B, C, D, E)

A \rightarrow BC

B \rightarrow D

C \rightarrow E

E \rightarrow A
```

```
answer:

No. B \to D violates BCNF.

R1(A, B, C)
R2(B, D)
R3(C, E)
Uh.oh.. we lost FD: E -> A.
```

- 6. [10 pts] How B+tree works.
 - (a) Below is the state of B+tree with degree 5. Draw the state of the B+tree after inserting 5.

(b) Below is the state of B+tree with degree 4. Draw the state of the B+tree after deleting 25.

- 7. [5 pts] Below is the current state of extendible hash table. We use the least significant bits of keys and $\%2^G$ as the hash function. Draw a diagram showing the state of the extendible hash table after inserting the following 2 more data entries.
 - $2 (0010_2)$ and $14 (1110_2)$

8. [5 pts] Below is the current state of linear hash table, where each bucket can hold only one key. We use the least significant bits of keys and $\%2 \cdot 2^{level}$ as the hash function. Draw a diagram showing the state of the linear hash table after inserting 10, 14, and 18

9. [10 pts] Consider the following table.

ID	Name	Gender	Age
1	Alice	Female	25
2	Bob	Male	30
3	Carol	Female	35
4	David	Male	40

Table 1: Caption

(a) Create bitmap indexes on the "Gender" and "Age" attributes.

```
Male: 0101
Female: 1010

Age0_9: 0000
Age10_19: 0000
Age20_29: 1000
Age30_39: 0110
Age40_over: 0001
// You may divide the age range as you like
```

(b) Show how your bitmap indexes can be used to optimize the following query? Explain the steps involved.

```
SELECT * FROM table WHERE Gender = 'Female' AND Age > 30;
```

```
answer:
You can perform a bitwise AND operation on the Female bitmap index and Age range
bitmap index. For example,

selected = Female_index & ( Age30_39 | Age40_over )
while(selected){
   if(selected & 1) {
      // select this record
   }
   selected >> 1;
}
```