§1 ВЫПУКЛЫЕ МНОЖЕСТВА

Пусть \mathbb{A}^n-n -мерное аффинное пространство над полем \mathbb{R} , $n\in\mathbb{N}$. Зафиксируем некоторую точку $O\in\mathbb{A}^n$ в качестве начала координат. Далее будет отождествлять произвольную точку $P\in\mathbb{A}^n$ с её радиусом вектором \overrightarrow{OP} , а само пространство \mathbb{A}^n- с вещественным n-мерным векторным пространством \mathbb{R}^n . Для обозначения векторов и точек будем использовать строчные буквы, а для обозначения множеств — заглавные.

Опр. 1.1. Точка $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m \in \mathbb{R}^n$, где $p_i \in \mathbb{R}^n$, $\alpha_i \geqslant 0$ и $\sum_{i=1}^m \alpha_i = 1$, называется выпуклой комбинацией точек p_1, p_2, \ldots, p_m .

Опр. 1.2. Для произвольных точек $x, y \in \mathbb{R}^n$ множество

$$[x,y] \stackrel{\text{def}}{=} \{\alpha x + (1-\alpha)y \colon \alpha \in [0,1]\},$$

состоящее из всех возможных выпуклых комбинаций точек x и y, называется отрезком (c концами x, y).

Опр. 1.3. Множество $X \subset \mathbb{R}^n$ называется выпуклым, если для произвольных двух точек $x, y \in X$ оно содержит весь отрезок [x, y].

Отметим, что согласно определению 1.3 пустое множество \varnothing и произвольное одноточечное множество $\{p\}, p \in \mathbb{R}^n$, являются выпуклыми.

Лемма 1.1. Множество X является выпуклым, если и только если X содержит любую выпуклую комбинацию своих точек.

ightharpoonup Если множество X содержит любую выпуклую комбинацию своих точек, то, в частности, для любых двух точек $x,\,y\in X$ имеем $[x,y]\subset X$, а значит, X — выпуклое множество.

Обратное утверждение доказывается индукцией по количеству m точек $p_1, p_2, \ldots, p_m \in X$, входящих в выпуклую комбинацию $\alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_m p_m$. База индукции m=2 следует из определения 1.3. Предположим теперь, что множество X содержит всевозможные выпуклые комбинации своих точек размера $m \geq 2$. Докажем, что X также содержит любую выпуклую комбинацию размера m+1. Действительно, пусть $p_1, p_2, \ldots, p_{m+1} \in X$ и числа $\alpha_1, \alpha_2, \ldots, \alpha_{m+1} \geq 0$, такие что $\sum_{i=1}^{m+1} \alpha_i = 1$. Без нарушения общности будем считать, что $\alpha_1 < 1$ (иначе это выпуклая комбинация, состоящая из одной точки). Тогда

$$p = \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_{m+1} p_{m+1} = \alpha_1 p_1 + (1 - \alpha_1) q_1$$

где
$$q=\frac{\alpha_2}{1-\alpha_1}p_2+\frac{\alpha_3}{1-\alpha_1}p_3+\ldots+\frac{\alpha_{m+1}}{1-\alpha_1}p_{m+1}$$
. Так как $\sum\limits_{i=2}^{m+1}\frac{\alpha_i}{1-\alpha_1}=1$, то согласно предположению индукции $q\in X$, а значит, $p\in X$. \lhd

Рассмотрим операции над выпуклыми множествами, которые сохраняют выпуклость.

Лемма 1.2. Пусть I — некоторое множество индексов произвольной мощности, а $\{X_i \subset \mathbb{R}^n : i \in I\}$ — семейство выпуклых множеств. Тогда множество $X = \bigcap_i X_i$ является выпуклым.

ightharpoonup Действительно, пусть $x, y \in X$. Тогда $x, y \in X_i$ для всех $i \in I$, а значит, $[x,y] \subset X_i$. Таким образом, $[x,y] \subset X$, т.е. множество X является выпуклым. \lhd

Выпуклой оболочкой $\operatorname{Conv} X$ произвольного множества $X\subset \mathbb{R}^n$ называется наименьшее (по вложению) выпуклое множество, содержащее X. Из леммы 1.2 следует, в частности, что $\operatorname{Conv} X$ — это пересечение всех выпуклых множеств, содержащих X.

Лемма 1.3. Пусть $F \colon \mathbb{R}^n \to \mathbb{R}^m$ — аффинное преобразование, т.е. преобразование, действующее по правилу $F \colon x \mapsto Ax + b$, где $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Тогда для произвольных выпуклых множеств $X \subset \mathbb{R}^n$ и $Y \subset \mathbb{R}^m$ множества $F(X) \stackrel{\mathrm{def}}{=} \{Fx \colon x \in X\} \subset \mathbb{R}^m$ и $F^{-1}(Y) \stackrel{\mathrm{def}}{=} \{x \colon Fx \in Y\} \subset \mathbb{R}^n$ также являются випуклыми.

ightharpoonup Пусть $y_1 = Fx_1$, $y_2 = Fx_2$ и $\alpha \in [0,1]$. Тогда утверждение леммы следует из равенства $\alpha y_1 + (1-\alpha)y_2 = \alpha Fx_1 + (1-\alpha)Fx_2 = F(\alpha x_1 + (1-\alpha)x_2)$, которое выполнено для любого аффинного преобразования F. ightharpoonup

Лемма 1.4. Пусть $\{X_i \subset \mathbb{R}^{n_i} \colon 1 \leq i \leq m\}$ — семейство выпуклых множеств. Тогда прямое произведение

$$X_1 \times X_2 \times \ldots \times X_m \stackrel{\text{def}}{=} \{(x_1, x_2, \ldots, x_m) : x_i \in X_i, 1 \le i \le m\}$$

является выпуклым множеством в пространстве $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \times \ldots \times \mathbb{R}^{n_m}$.

ightharpoonup Пусть $x_i, \ \widetilde{x}_i \in X_i, \ 1 \leq i \leq m, \ й \ \alpha \in [0,1].$ Тогда

$$\alpha(x_1, x_2, \dots, x_m) + (1 - \alpha)(\widetilde{x}_1, \widetilde{x}_2, \dots \widetilde{x}_m) =$$

$$= (\alpha x_1 + (1 - \alpha)\widetilde{x}_1, \dots, \alpha x_m + (1 - \alpha)\widetilde{x}_m) \in X_1 \times X_2 \times \dots X_m, \quad (1.1)$$

так как $\alpha x_i + (1 - \alpha)\widetilde{x}_i \in X_i$, 1 < i < m. \triangleleft

Композиция операций, сохраняющих выпуклость, также, очевидно, сохраняет выпуклость. Следовательно, для произвольных выпуклых множеств $X_1, X_2, \ldots, X_m \in \mathbb{R}^n$ и вещественных чисел $\alpha_1, \alpha_2, \ldots, \alpha_m \in \mathbb{R}$ множество

$$\alpha_1 X_1 + \alpha_2 X_2 + \ldots + \alpha_m X_m \stackrel{\text{def}}{=} \left\{ \sum_{i=1}^m \alpha_i x_i \colon x_i \in X_i, 1 \le i \le m \right\}$$

является выпуклым. Действительно, эту линейную комбинацию множеств можно представить как композицию прямого произведения и аффинного преобразования. Отметим, что линейную композицию вида A+B называют суммой Минковского множеств $A,\,B\subset\mathbb{R}^n.$

Лемма 1.5. Замыкание \overline{X} выпуклого множества $X \subset \mathbb{R}^n$ выпукло.

ightharpoonup Выберем произвольные точки $a, b \in \overline{X}$ и число $\alpha \in [0,1]$. Необходимо доказать, что $c \stackrel{\mathrm{def}}{=} \alpha a + (1-\alpha)b \in \overline{X}$. Существуют такие две последовательности точек $(a_k)_{k \in \mathbb{N}}$ и $(b_k)_{k \in \mathbb{N}} \subset X$, что $a_k \to a$ и $b_k \to b$. Тогда последовательность точек $(c_k)_{k \in \mathbb{N}} \subset X$, где $c_k = \alpha a_k + (1-\alpha)b_k$, сходится к c, а значит, $c \in \overline{X}$. \lhd

Опр. 1.4. Множества $X, Y \subset \mathbb{R}^n$ называются отделимыми, если существуют ненулевой вектор c и число d, такие что $c^\mathsf{T} x \geq d \geq c^\mathsf{T} y$ для любых $x \in X$ и $y \in Y$. Если известно, что неравенства строгие $c^\mathsf{T} x > d > c^\mathsf{T} y$, то говорят, что множества X и Y строго отделимы. Гиперплоскость, заданная уравнением $c^\mathsf{T} x = d$, называется разделяющей гиперплоскостью.

Отметим, что согласно определению, вектор c из уравнения гиперплоскости $c^\mathsf{T} x = d$ ненулевой.

Теорема 1.1. Если непересекающиеся множества X и $Y \subset \mathbb{R}^n$ выпуклы, замкнуты и одно из них ограничено, то они строго отделимы.

ho Пусть X — ограниченное множество и $d_X \stackrel{\text{def}}{=} \sup_{x_1,x_2 \in X} \|x_1 - x_2\|$ — его диаметр. Докажем, что найдутся точки $x_0 \in X$ и $y_0 \in Y$, для которых $\|x_0 - y_0\| = \inf_{x \in X, y \in Y} \|x - y\|$. Действительно, выберем произвольные две точки $x_1 \in X$ и $y_1 \in Y$. Пусть $\widetilde{Y} = Y \cap B_r(x_1)$, где $B_r(x_1)$ — шар радиуса $r = d_X + \|x_1 - y_1\|$ с центром в x_1 . Множества X и \widetilde{Y} являются компактными, а функция f, действующая по правилу $f \colon (x,y) \in X \times \widetilde{Y} \mapsto \|x-y\|$, — непрерывной. Так как декартово произведение компактных множеств компактно, то функция f достигает свое минимальное значение в некоторых точках $x_0 \in X$ и $y_0 \in \widetilde{Y}$. Если $y \in Y \setminus \widetilde{Y}$ и $x \in X$, то $\|x-y\| \geq \|x_1-y\| - \|x_1-x\| \geq d_X + \|x_1-y_1\| - d_X = \|x_1-y_1\|$, а значит, точки x_0, y_0 искомые.

Пусть $\Pi \stackrel{\mathrm{def}}{=} \{x \in \mathbb{R}^n \colon c^\mathsf{T} x = d\}$ — гиперплоскость, проходящая через середину отрезка $[x_0, y_0]$, перпендикулярно ему. Выберем $c = x_0 - y_0$ и $d = (\|x_0\|^2 - \|y_0\|^2)/2$. Докажем, что множества X и Y не пересекаются c указанной гиперплоскостью, а значит, лежат в разных открытых полупространствах относительно её. Предположим противное, а именно, что некоторая точка $y \in Y$ принадлежит плоскости Π . Треугольник c вершинами c0, c0, c0 является равнобедренным c0 основанием c0, c0, c0 и острым углом при вершине c0, так как c0, c0, c0 условию c0 — выпуклое множество, а значит, c0, c0, c0, c0. Пусть c0 — основание перпендикуляра, опущенного из вершины c0 на сторону c0, c0, c0. Тогда c0, c

Опр. 1.5. Гиперплоскость $\Pi \stackrel{\text{def}}{=} \{x \in \mathbb{R}^n : c^{\mathsf{T}}x = d\}$ называется опорной к множеству X в точке x_0 , если $x_0 \in \Pi \cap \overline{X}$ и для всех $x \in X$ одновременно выполняется одно из неравенств: $c^{\mathsf{T}}x \geq d$ или $c^{\mathsf{T}}x \leq d$.

Напомним, что точка x называется граничной для множества X, если любая её окрестность содержит как точки, принадлежащие данному множеству, так и

не принадлежащие ему.

Лемма 1.6. Выпуклое множество $X \subset \mathbb{R}^n$ в каждой граничной точке имеет опорную гиперплоскость.

ightharpoonup Пусть x_0 — граничная точка множества X. Так как X — выпуклое множество, то x_0 — граничная точка замыкания \overline{X} . Следовательно, найдётся такая последовательность точек $(y_k)_{k\in\mathbb{N}}\subset\mathbb{R}^n\setminus\overline{X}$, что $y_k\to x_0$. Согласно, теореме 1.1 для множеств $\{y_k\}$ и \overline{X} (выпуклость \overline{X} следует из леммы 1.5) найдётся такая гиперплоскость, заданная уравнением $c_k^\mathsf{T} x = d_k$, что $c_k^\mathsf{T} x > d_k > c_k^\mathsf{T} y_k$, $x\in\overline{X}$. Без нарушения общности будем считать, что $\|c_k\|=1$. Тогда, в силу построения, последовательность $(d_k)_{k\in\mathbb{N}}$ является ограниченной. Наконец, без нарушения общности будем считать, что $c_k\to c$ и $d_k\to d$. Тогда $c^\mathsf{T} x\geq d$, $x\in X$, и $c^\mathsf{T} x_0=d$. \lhd

Теорема 1.2. Произвольное выпуклое множество $X \subset \mathbb{R}^n$ можно отделить от точки y, ему не принадлежащей.

ightharpoonup Действительно, если $y \not\in \overline{X}$, то доказательство следует из теоремы 1.1, иначе — из леммы 1.6. \lhd

Теорема 1.3. Множества X и $Y \subset \mathbb{R}^n$ отделимы тогда и только тогда, когда множество X-Y и точка $\{\mathbf{0}\}$ отделимы.

ightharpoonup Пусть множества X и Y отделимы. Тогда существуют такие $c \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ и $d \in \mathbb{R}$, что $c^\mathsf{T} y \le d \le c^\mathsf{T} x$ для всех $x \in X, \ y \in Y$. Следовательно, $c^\mathsf{T} (x-y) \ge 0$, а значит, гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = 0\}$ отделяет множество X - Y от нуля.

Предположим теперь, что множества X-Y и $\{{\bf 0}\}$ отделимы. Тогда существуют такие $c\in\mathbb{R}^n\setminus\{{\bf 0}\}$ и $d\in\mathbb{R}$, что $0\leq d\leq c^{\sf T}z$ для всех $z\in X-Y$. Следовательно, $c^{\sf T}y\leq c^{\sf T}x$ для всех $x\in X,\ y\in Y$, а значит, $\sup_{y\in Y}c^{\sf T}y\leq \inf_{x\in X}c^{\sf T}x$. Выберем такое

число $\widetilde{d} \in \mathbb{R}$, что $\sup_{y \in Y} c^\mathsf{T} y \leq \widetilde{d} \leq \inf_{x \in X} c^\mathsf{T} x$. Тогда гиперплоскость $\Pi = \{x \colon c^\mathsf{T} x = \widetilde{d}\}$ отделяет множества X и Y. \lhd

Следствие 1.1. Пусть X, Y — непустые выпуклые непересекающиеся множества. Тогда X и Y отделимы.

Через $\operatorname{Int} X$ обозначим внутренность множества $X\subset \mathbb{R}^n$, т.е. множество всех внутренних точек X. Не сложно видеть, что, если X — выпуклое множество, то $\operatorname{Int} X$ также выпукло.

Следствие 1.2. Пусть $X, Y - выпуклые множества с непустой внутренностью, при этом <math>\operatorname{Int} X \cap \operatorname{Int} Y = \varnothing$. Тогда X и Y отделимы.

Упражнения

- 1. Пусть $X \subset \mathbb{R}^n$ непустое множество. Докажите, что любую точку p, принадлежащую выпуклой оболочке множества X, можно представить в виде выпуклой линейной комбинации не более чем n+1 точек множества X.
- 2. Пусть в \mathbb{R}^n заданы точки p_1, p_2, \ldots, p_s , где $s \ge n+2$. Докажите, что точки можно разбить на два непересекающихся множества так, что выпуклые оболочки этих двух множеств будут иметь непустое пересечение.

3. (Теорема Хелли) Пусть I — произвольное семейство индексов и $\{X_i\}_{i\in I}$ — семейство замкнутых выпуклых множеств в \mathbb{R}^n , из которых хотя бы одно компактно. Докажите, что если любое подсемейство из n+1 множеств имеет непустое пересечение, то и всё семейство имеет непустое пересечение.