2019

CALCULO DE LÍMITES CON PYTHON.

JUAN LILLO MORALES Y DANIEL HERRERO GÓMEZ.

22/02/2019

ÍNDICE.

- Introducción.
- Explicación.
- Conclusión.

INTRODUCCIÓN.

Para este trabajo hemos utilizado un código de representación de límites a través de PYTHON. Dichos límites acababan creando una gráfica una vez estuviese completado todo el código, el cual varía según los datos indicados en el proceso de creación y modificación de dicho código.

EXPLICACIÓN.

Para este trabajo hemos utilizado el siguiente código:

```
In [3]:
            1 from matplotlib.pyplot import *
                  from numpy import *
from pandas import *
                  def f(x):
                        return x**2 - x + 2
             9 ylabel('f(x)')
10 xlabel('x')
             11 title("Gráfico de f(x)=x^2 - x + 2")
             title ( dailto de $1(x) = 2 = x + 2$)

x1= arange(-2, 5, 0.05)

plot(x1, f(x1))

scatter(2, 4, label="Limite cuando x tiende a 2", color='r')

legend()
             16 show()
                                      Gráfico de f(x) = x^2 - x + 2
                22.5

    Límite cuando x tiende a 2

                20.0
                17.5
                15.0
                12.5
                 10.0
                  7.5
                  5.0
```

In []: 1

from matplotlib.pyplot import *

- Desde la librería se importa la función.

from numpy import *

- Desde numpy se importa la función.

from pandas import *

- Importamos desde panda.

def f(x):

Definimos la función de X.

return $x^{**2} - x + 2$

- Función definida.

grid()

ylabel('f(x)')

- Se establece la función de X.

xlabel('x')

- Se establece X.

$title("Gráfico de $f(x)=x^2 - x + 2$")$

- Titulamos el gráfico de la función.

x1 = arange(-2, 5, 0.05)

- Definimos el rango de la función.

plot(x1, f(x1))

scatter(2, 4, label="Límite cuando x tiende a 2", color='r')

- Título del ejercicio establecido cuando el límite de X tiende a 2.

legend()

- Leyenda.

show()

- Resultado gráfico del límite.

CONCLUSIÓN.

Cómo conclusión de este ejercicio podemos sacar que ha sido un ejercicio fácil de realizar al cual se le pueden realizar bastantes modificaciones respecto al límite.