

DIGITAL HEARING AID

Submitted To: Dr. Neelu Jain Professor, ECE dept Submitted By: Divya Khandelwal ME16207022

Audio Signal Processing A MATLAB Program

Contents

- 1. Need of Hearing Aid
- 2. Block Diagram of System
- 3. Algorithm
- 4. GUI & Program Flow
- 5. Output Graphs

Need of Hearing Aid

Classification of	Hearing level
Hearing Loss	
Normal hearing	-10 dB – 26 dB
mild hearing loss	27 dB - 40 dB
moderate hearing	40 dB - 70 dB
loss	
severe hearing loss	70 dB - 90 dB
profound hearing	greater than 90 dB
loss	

Table 1: Different degree of Hearing Loss

GUI and program flow

Recovering signal i.e removing noise

0.5

0

-0.5

200

150

100

50

Magnitude

Amplitude

recovered audio

RESPONSES FOR SAMPLE FILE OF MATLAB

The Perfect

Addition of noise in signal

Recovery using wavelet transform

0.5

Amplitude

For normal hearing

Thank You!