

Introduction to Theory of Computation Kikutadze, Lomauridze, Melikidze & Nadareishvili Summer semester 2024

Exercises below are your homework; they will be discussed during exercise classes. Problems marked with a (*) are more challenging.

Week 3

1. Consider the following transition table (δ function) of a DFA. A is a start state and D is the only accepting state.

	0	1
\overline{A}	B	\overline{A}
B	A	C
C	D	B
D	D	A
E	D	F
F	G	E
G	F	G
H	G	D

- a. Draw the table of distinguishabilities for this automaton by minimization alogirthm.
- **b.** Construct the minimum-state equivalent DFA.
- 2. (*) Prove Lemma 1 from the lecture on Chomsky hierarchy. That is, show

Lemma 1. Let G = (N, T, P, S) be a context free grammar. Let $B \in N$ and $w \in (N \cup T)^+$. Then there is a derivation tree for G with root B and border word w if and only if $B \xrightarrow{*}_{G} w$.

- 3. Read and understand Theorem 2.34 (Pumping lemma for context-free languages) from Michael Sipser "Introduction to theory of Computation" (3rd edition).
- 4. Show that the language $L = \{a^n b^n c^n : n \ge 1\}$ is not context free.