BI476: Biostatistics - Case Studies

Maoying, Wu ricket.woo@gmail.com

Dept. of Bioinformatics & Biostatistics Shanghai Jiao Tong University

Spring, 2018

ptimization

Syllabus

Calculus

Linear algebra

Calculus

inear algebra

otimization

Syllabus

Calculus

Linear algebra

- ➤ This is a one-semester course for undergraduate students majored in biostatistics or bioinformatics.
- Topics will cover experiment design, intuitive hypothesis testing, (generalized linear models (including generalized estimating equations), survival analysis and multivariate statistics methods.
- Advanced topics will be included, such as penalized regression or hierarchical /mixed-effects linear models or Bayesian statistics, if time permits.
- Estimation, interpretation, and diagnostic approaches will be discussed.
- Software instruction will be provided in class in R.
- ▶ Performance will be evaluated based on homeworks (35%), two exams (30%), lab assignments (20%) and projects (15%).
- This is a two-credit course.

- ► Textbooks: No textbook is required. We will provide the readings and related materials on the website.
- Prerequisites:Linear algebra, Probability, Biostatistics
- Course Objectives: Upon successful completion of the course, the student will be able to
 - Design the experiment and analyze the experiment data
 - Apply, interpret and diagnose linear regression models
 - Apply, interpret and diagnose logistic, poisson and Cox regresssion models
 - Apply and interpret the multivariate analysis methods.

BI476: Syllabus

BI476

Maoying Wu

Syllabus

Instructor: Maoying Wu (ricket.woo@gmail.com)

Website: http://cbb.sjtu.edu.cn/~mywu/bi476

Github: https://github.com/ricket.sjtu/bi476

Office: Biopharmaceutics Building, Rm 4A-223

Time:Mondays, 14:00-15:40Location:East Lower Hall, Rm 403Office Hours:Monday-Friday, 8:30 17:00

- ► Lecture 1: Recaps of Mathematical Knowledge for Biostatistics (1-2)
- Lecture 2: Observational Studies and Analysis (3-4)
- Lecture 3: Randomized Clinical Trials and Analysis (5-6)
- ► Lecture 4: Linear Regression Models and Extensions (7-8)
- Midterm (9)
- ▶ Lecture 5: Panel Data Analysis (10-11)
- ► Lecture 6: Survival Analysis and Competing Risks (12-13)
- Lecture 7: Multivariate Statistcal Analysis (14-15)
- ► Projects (16)
- ► Final (17-18)

Calculus

Linear algebra

- ▶ R: Real set
- X: A random variable
- ▶ $\mathbf{X} \in \mathbb{R}^{m \times n}$: A *m*-by-*n* real matrix
- ▶ $\mathbf{x} \in \mathbb{R}^n$: A real vector of length n
- $x \in \mathbb{R}$: A real number
- ▶ $\Phi(x) = P(X \le x)$: Cumulative distribution function
- f(x) = f(X = x): Probability density function

- ► Calculus (微积分)
 - ► Limits (极限)
 - Derivatives (导数): First-order and second-order
 - ▶ Integration (积分)
 - ► Gradient (梯度): Jacobian, Hessian
 - ► Convex function (凸函数) and Jensen's inequality (简森不等式)
 - ▶ Taylor's expansion (泰勒展开)
- ▶ Linear algebra (线性代数)
 - ▶ Vector (向量), matrix (矩阵)
 - ► Norm (范数)
 - ► Rank (秩), determinant (行列式), trace (迹)
 - ► Matrix multiplication (矩阵乘积)
 - ► Eigendecomposition (正交分解)
 - ► Singular value decomposition (SVD, 奇异值分解)

Maoying Wu

Syllabus

Calculus

Linear algebra

- ▶ Probability density function (pdf, 概率密度函数)
- ▶ Probability mass function (pmf, 概率质量函数)
- ► Cumulative distribution function (cdf, 累积分布函数)
- ► Moment generating function (mgf, 矩母函数)
- ▶ Joint probability distribution (联合概率分布)
- ► Conditional probability distribution (条件概率分布)
- ► Marginal distribution (边缘概率分布)
- ► Bayes' Equation/Theorem (贝叶斯公式/定理)
- ► Continuous distributions (连续概率分布)
- ▶ Discrete distribution (离散概率分布)
- ► Numerical Optimization (数值优化方法)
 - ► Convex set (凸集)
 - ► Convex function (凸函数), Concave function (凹函数)
 - ► Gradient descent (梯度下降), gradient ascent (梯度上升)
 - ► Newton's method (牛顿法)
 - ► Quasi-Newton's methods (拟牛顿法)
 - ► Method of multiplers (乘子法)
 - ► Laglangian method of multiplier (拉格朗日乘子法)

Maoving Wu

Syllabus

Lincor olgobro

Calculus

inear algebra

ptimization

Syllabus

Calculus

Linear algebra

Limit (极限)

Compute the limit

$$\lim_{x\to 0}\frac{3\sin^2 x}{4x^2}$$

Maoying Wu

Syllabu

Calculus

Linear algebi

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The derivative is the slope of the tangent line to the graph of f(x), assuming the tangent line exists.

Maoying Wu

Calculus

Calculus

$$\frac{d}{dx}a^x = a^x \ln a$$

$$\frac{d}{dx}e^x = e^x$$

$$\rightarrow \frac{d}{dx}e^x = e^x$$

Product rule

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

Quotient rule

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

Chain rule

Let
$$y = f(g(x))$$
,

$$y'=f'(g(x))g'(x) \longrightarrow \mathbb{R} \longrightarrow \mathbb{$$

For a function f(x), its indefinite integral is:

$$\int f(x)dx = F(x) + C, \text{ where } F'(x) = f(x)$$

Maoying Wu

Calculus

(a)
$$\int_a^a f(x) dx = 0$$

(b)
$$\int_a^b f(x) dx = -\int_b^a f(x) dx$$

(c)
$$\int x^r dx = \frac{1}{r+1}x^{r+1} + C$$

(d)
$$\int_a^b f(x) dx = F(b) - F(a)$$

(e)
$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C, n \neq -1$$

(f)
$$\int \frac{1}{x} dx = \ln|x| + C$$

(g)
$$\int e^x dx = e^x + C$$

(h)
$$\int_a^b f(g(x))g'(x) = \int_{g(a)}^{g(b)} f(u)du$$
, where $u = g(x)$

(i) Integration by parts (分部积分):
$$\int_a^b u dv = uv|_a^b - \int_a^b v du$$

Maoving Wu

Calculus

Calculus

Linear algebi

- $\int_0^5 x^2 e^{-x} dx$
- $ightharpoonup \int x \ln x$

 $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!}(x - x_0)^{k} \frac{1}{2!}(x - x_0)^{k} \frac{1}{2!}(x$

Exercise

$$1+\frac{1}{2!}+\frac{1}{3!}+\dots$$

Calculus

Linear argebre

$$f_{X}(x,y) = \frac{\partial}{\partial x} f(x,y) = \frac{\partial f}{\partial x}$$

Calculus

Linear algebra

Syllabus

Calculus

Linear algebra

A linear vector space \mathcal{X} is a collection of elements satisfying the following properties:

- ▶ Rule of addition (加法律): $\forall x, y, z \in \mathcal{X}$,
 - 1. $x + y \in \mathcal{X}$
 - 2. x + y = y + x
 - 3. (x + y) + z = x + (y + z)
 - 4. $\exists 0 \in \mathcal{X}$, such that x + 0 = x
 - 5. $\forall x \in \mathcal{X}, \exists -x \in \mathcal{X} \text{ such that } x + (-x) = 0$
- ▶ Rule of multiplication (乘法律): $\forall x, y \in \mathcal{X}$ and $a, b \in R$,
 - 1. $ax \in \mathcal{X}$
 - $2. \ a(bx) = (ab)x$
 - 3. 1x = x, 0x = 0
 - 4. a(x + y) = ax + ay

Example: \mathbb{R}^n

The *n*-dimensional Euclidean \mathbb{R}^n , is a linear vector space.

Maoying Wu

Syllabus

Linear algebra

The inner product between any $x, y \in \mathcal{X}$ is denoted by $\langle x, y \rangle$ and it satisfies the following properties for all $x, y, z \in \mathcal{X}$:

- $(1) \langle x, y \rangle = \langle y, x \rangle$
- (2) $\langle ax, y \rangle = a \langle x, y \rangle$ for all scalars a
- (3) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- (4) $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \Rightarrow x = 0$

A space \mathcal{X} equipped with an inner product is called an **inner product space**.

Maoying Wu

Syllabus

Linear algebra

x and y are orthogonal vectors if:

$$\langle \boldsymbol{x},\boldsymbol{y}\rangle=0$$

Let $\mathcal{X} = \mathbb{R}^n$, then

$$\langle \mathbf{x}, \mathbf{y} \rangle := \mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

Maoying Wu

Linear algebra

The inner product induces the defintion of ℓ_2 -norm:

$$\|\boldsymbol{x}\|_2 = \sqrt{\langle \boldsymbol{x}, \boldsymbol{x} \rangle}$$

here the norm measure the size (length) of \mathbf{x} .

The inner product can be written into the following form with norms:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta$$

where θ is the angle between vectors **x** and **y**.

The general ℓ_p -norm for **x** is:

$$\|\mathbf{x}\|_{\rho} = (\sum_{i} x_{i}^{\rho})^{1/\rho}, \rho = 0, 1, 2, \dots, \infty$$

We have ℓ_0 and ℓ_1 norms:

$$\|\mathbf{x}\|_0 = \sum_i I(x_i \neq 0), \|\mathbf{x}\|_1 = \sum_i |x_i|$$

Maoving Wu

Linear algebra

$$\langle x, y \rangle \le ||x|| ||y||$$

Q: When does the equation hold?

BI476

Maoying Wu

Syllabus

Linear algebra

 $||x - y|| \le ||x|| + ||y||$

Q: When does the equation hold?

BI476

Maoying Wu

Syllabus

Linear algebra

For a set of vectors

$$x_1, x_2, \dots, x_p \in \mathcal{X},$$

if there exists a set of scalars $a_1, a_2, \ldots, a_p \in \mathbb{R}$ such that not all $a_i = 0$ and

$$\sum_{i=1}^p a_i x_i = 0$$

we say that x_1, x_2, \ldots, x_n are **linearly dependent** (线性相关). If equation only holds in the case $a_1 = a_2 = \ldots = a_p = 0$, then we say that the vectors are linearly independent (线性无关).

Maoving Wu

Linear algebra

Linear algebra

A set of vectors $\{\phi_i\}(i=1,\ldots,n)$ is a **basis (基)** for $\mathcal X$ if an arbitrary vector $\mathbf x \in \mathcal X$ can be expressed as the linear combination of $\{\phi_i\}(i=1,\ldots,n)$. That is, there exists a set of scalars $\{\theta_i\}(i=1,\ldots,n)$, such that

$$x = \sum_{i=1}^{n} \theta_i \phi_i$$

Orthonormal basis (正交基)

The bases $\{\phi_i\}_{i=1}^n$ are orthonormal if

$$\phi_i^T \phi_j = \left\{ \begin{array}{ll} 0, & i \neq j \\ 1, & i = j \end{array} \right.$$

Sullabua

Every $x \in \mathcal{H}$ can be represented in terms of an orthonormal basis $\{\phi_i\}_{i\geq 1}$ (or "orthobasis" for short) according to:

Linear algebra

$$\mathbf{X} = \sum_{i>1} \langle \mathbf{X}, \phi_i \rangle \phi_i$$

This is easy to see as follows. Suppose x has a representation $\sum_i \theta_i \phi_i$. Then

$$\theta_i = \langle \mathbf{x}, \phi_i \rangle$$

Example: Orthonormal basis for \mathbb{R}^n

$$\phi_k = \left[0, \cdots, 1, \cdots, 0\right]^{-1}$$

where

$$\phi_{k,i} = \begin{cases} 0, & i \neq k \\ 1, & i = k \end{cases}$$

$$span(\{xi\}_{i=1}^{p}) := \left\{ y : y = \sum_{i=1}^{p} a_i x_i, a_1, \dots, a_p \in \mathbb{R} \right\}$$

This set is also called a subspace of \mathcal{X} . A subset $\mathcal{M} \subset \mathcal{X}$ is a subspace if $x, y \in \mathcal{M}$, we have

$$\textit{ax} + \textit{by} \subset \mathcal{M}$$

注: 如果 ϕ_1, \dots, ϕ_p 是子空间 $\mathcal{M} \subset \mathbb{R}^n$ 的一组正交基,则该子空 间中的任意向量 $x \in M$ 可以写成:

$$x = \sum_{i=1}^{p} \theta_i \phi_i$$

这样虽然 $x \in \mathbb{R}^n$,但由于其是M中的向量,所以可以写成p个自 由参数的线性组合,也就是说其自由度为p。

Linear algebra

Linear algebra

Let \mathcal{H} be a **Hilbert space** and let $\mathcal{M} \subset \mathcal{H}$ be a subspace. Every $x \in \mathcal{H}$ can be written as

$$x = y + z$$

where $y \in \mathcal{M}$ and $z \perp \mathcal{M}$, which is shorthand for z orthogonal to \mathcal{M} ; that is

$$\forall \textit{v} \in \mathcal{M}, \langle \textit{v}, \textit{z} \rangle = 0$$

The vector y is the optimal approximation to x in terms of vectors in M in the following sense:

$$y = \operatorname{argmin}_{v \in \mathcal{M}} \|x - v\|$$

The vector y is called the **orthogonal projection** of x onto \mathcal{M} .

Calculus

Let $\mathcal{M} \subset \mathcal{H}$ and let $\{\phi_i\}_{i=1}^r$ be an orthobasis for \mathcal{M} . For any $x \in \mathcal{H}$, the projection of x onto \mathcal{M} is given by

$$y = \sum_{i=1}^{r} \langle \phi_i, \mathbf{x} \rangle \phi_i$$

and this projection can be viewed as a sort of filter that removes all components of the signal x that are orthogonal to \mathcal{M} .

Example

Let $\mathcal{H} = \mathbb{R}^2$. Consider the canonical coordinate system

 $\phi_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\phi_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Let $\mathcal M$ be the subspace spanned

by ϕ_1 . The projection of any $x = [x_1 \ x_2]^T \in \mathbb{R}^2$ onto \mathcal{M} is

$$P_{1}x = \langle x, \phi_{1} \rangle \phi_{1}$$

$$= \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} \\ 0 \end{bmatrix}$$

Linear algebra

Orthogonal projections in Euclidean subspaces

More generally suppose we are considering \mathbb{R}^n and we have a orthonormal basis $\{\phi_i\}_{i=1}^r$ for some *r*-dimensional (r < n)subspace \mathcal{M} of \mathbb{R}^n . Then the projection matrix is given by

$$P_{\mathcal{M}} = \sum_{i=1}^{r} \phi_i \phi_i^T$$

Moreover, if $\{\phi_i\}_{i=1}^r$ is a basis for \mathcal{M} , but not necessarily orthonormal, then

$$P_{\mathcal{M}} = \Phi(\Phi^T \Phi)^{-1} \Phi^T$$

where $\Phi = [\phi_1, \dots, \phi_r]$, a matrix whose columns are the basis vectors.

注:这被用在线性回归模型 $y = X\beta$ 的求解上,其最小二乘解析 解就是y到X张成的p-维子空间的正交投影:

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Let $C \in \mathbb{R}^{n \times n}$ is a real, symmetric matrix ($C^T = C$). $v \in \mathbb{R}^n$ is the **eigenvector** (特征向量) of C such that:

$$Cv = \lambda v$$

where λ is the eigenvalue (特征值) of C corresponding to v. There are n orthonormal eigenvectors for C such that

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{ij}$$

Let $V = [v_1, \ldots, v_n]$, then

$$C = V \Lambda V^T$$

where $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n)$.

The SVD of an $n \times p$ matrix H is written as

$$H = \underbrace{U}_{n \times p} \quad \underbrace{\sum_{p \times p}}_{p \times p} \quad \underbrace{V^T}_{p \times p}$$

- ▶ $U = [u_1, \dots, u_p]$ where $\{u_i\}_{i=1}^p$ are real *n*-dimensional vectors, and called the **left singular vectors** of H. $U^TU = I_p$.
- ▶ $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_p), \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_p \ge 0$. And $\{\sigma_i\}_{i=1}^p$ are called the **singular values** of H.
- ▶ $V = [v_1, \dots, v_p]$ where $\{v_i\}_{i=1}^p$ are p-dimensional vectors, and called the **right singular vectors** of H. $V^T V = I_p$.

Also note that:

$$\begin{array}{rcl} H^T H & = & (U \Sigma V^T)^T U \Sigma V^T \\ & = & V \Sigma U^T U \Sigma V^T \\ & = & V \Sigma^2 V^T \\ H H^T & = & U \Sigma^2 U^T \end{array}$$

Therefore,

- ▶ $\{\sigma_1^2, \dots, \sigma_p^2\}$ are the eigenvalues of H^TH and $\{v_1, \dots, v_p\}$ are the corresponding eigenvectors.
- $\{\sigma_1^2, \dots, \sigma_p^2\}$ are the *p*-first eigenvalues of HH^T (the remaining n-p eigenvalues are all zeros) and $\{u_1, \dots, u_p\}$ are the associated eigenvectors.

BI4/6

Maoying Wu

Syllabus

Linear algebra

Linear algebra

$$\underbrace{y}_{n\times 1} = \underbrace{X}_{n\times p} \underbrace{\beta}_{p\times 1}$$

- ▶ If n = p and $X = U\Sigma V^T$ with $\sigma_1 \ge \cdots \ge \sigma_p > 0$, we say X is **square and non-singular**, $\beta = X^{-1}y$
- ▶ If n > p and $X = U \sum V^T$ with $\sigma_1 \ge \cdots \ge \sigma_p > 0$, we say X is **non-square and non-singular**, $\beta = (X^T X)^{-1} X^T y$. This is called the least squares solution to the over-determined linear equations.
- When n < p, this is an under-determined linear equations, and can be solved using penalized regression.

- 1. Can you extend the derivatives to vector/matrix form, say, $\frac{dx^Ty}{dx}$, $\frac{dx^Ty}{dx^T}$, $\frac{dx^TAy}{dx}$?
- 2. What is least squares fitting of $\mathbf{X}\beta = \mathbf{y}$? Can you use the above matrix derivatives to reach the normal equation?
- 3. What is QR-decomposition and Cholesky decomposition? Can you give some comments on the application of the two decomposition techniques?
- 4. base::qr() and chol() can be used to compute the two kinds of decompositions. Give an example to illustrate the usage of the decompositions.
- 5. What kinds of matrices are positive-definite? positive semi-definite?

Linear algebra

Calculus

Optimization

Syllabus

Calculus

Linear algebra

- You should identify an objective function
 - Objective is a quantitative measure of the performance
 - Objective is usually a single number

Maoying Wu

Maoying Wu

Syllabus

.

Optimization

Optimization problem can be constrained or unconstrained.

Common groups

- Linear programming (LP)
 - Objective function and constraints are both linear
 - $\min_{\mathbf{x}} \mathbf{c}^{\mathsf{T}} \mathbf{x}$ s.t. $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$
- Quadratic programming (QP)
 - Objective function is quadratic and constraints are linear
 - ▶ $\min_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{Q} \mathbf{x} + \mathbf{c}^{\mathsf{T}} \mathbf{x} \text{ s.t. } \mathbf{A} \mathbf{x} \leq \mathbf{b} \text{ and } \mathbf{x} \geq 0$
- Nonlinear programming (NLP)
 - Objective function or at least one constraint is nonlinear

BI476

Maoying Wu

Svllabus

alculus

Optimization

	•				
Dimensionality	One-dimensional	Multi-dimensional			
Category	Non-gradient based	Gradient- based	Hessian- based	Non-gradient based	C
Algorithms	Golden Sec-	Gradient de-	Newton/Quasi-	Nelder-Mead	

scent

Newton (L-BFGS, BFGS)

Nonlinear optimization

tion Search

- Golden section search
- Basic steps:
 - 1. Golden ratio: $\phi = (\sqrt{5} 1)/2 = .618$
 - 2. Pick an interval [a, b] containing the optimum
 - 3. Evaluate $f(x_1)$ at $x_1 = a + (1 \phi)(b a)$ and compare with $f(x_2)$ at $x_2 = a + \phi(b a)$
 - 4. if $f(x_1) < f(x_2)$, continue the search in the interval $[a, x_1]$, else $[x_2, b]$
- R command stats::optimize()

```
optimize(f=, interval=, ...,
tol = .Machine$double.eps^0.25)
```

lculus

▶ How to solve it?

DI470

Maoying Wu

Syllabus

Calculus

Newton-Raphson

- Newton method is often used to find the zeros of a function.
- ▶ Minima fulfill the conditions $f'(x^*) = 0$ and $f''(x^*) > 0$, so Newton can be used to find the zeros of the first derivative
- Basic steps
 - Approximate the function at the starting point with a linear tangent (e.g., second-order Taylor expansion $t(x) \approx f'(x_0) + (x - x_0)f''(x_0)$
 - 2. Find the intersect $t(x_i) = 0$ as an approximation to $f'(x^*) = 0$
 - 3. Use the intersect as the new starting point
 - 4. Finally, the algorithm $x_{n+1} = x_n \frac{f'(x_n)}{f''(x_n)}$ is repeated until $f'(x_n)$ is close enough to 0.

 Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm builds on the idea of Newton method to take gradient information into account

- Gradient information comes from an approximation of the Hessian matrix
- No guaranteed conversion; especially problematic if Taylor expansion does not fit well
- L-BFGS-B stands for limited-memory-BFGS-box:
 - Extension of BFGS
 - Memory-efficient implementation
 - Additional handles box constraints

Maoying Wu

Syllabus

Odiodido

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2$$

- ► Himmelblau's function is a popular multi-modal function to benchmark optimization algorithms.
- For equivalent minima are located at f(-3.78, -3.28) = 0, f(-2.80, 3.13) = 0, f(3, 2) = 0, f(3.58, -1.85) = 0

