NA-DPVI AISTATS 2025 Rebuttal

Anonymous

November 2024

1 NA-DPVI algorithm blocks

Algorithm 1 DPVI

```
1: for t = 1, ..., T - 1 do

2: \mathbf{g}_{t+1} \leftarrow \sum_{i \in \mathcal{B}_{t+1}} \operatorname{clip} (\nabla_{\boldsymbol{\phi}} \ell(\boldsymbol{\phi}_t; \mathbf{x}_i), C);

3: Sample \boldsymbol{\eta}_{t+1} \sim \mathcal{N}(0, \mathbf{I}_d);

4: \widetilde{\boldsymbol{g}}_{t+1} \leftarrow \boldsymbol{g}_{t+1} + \sigma_{\mathrm{DP}} C \boldsymbol{\eta}_{t+1}

5: \boldsymbol{\phi}_{t+1} \leftarrow \boldsymbol{\phi}_t - \lambda \widetilde{\boldsymbol{g}};

6: end for

7: return \mathcal{T} = (\boldsymbol{\phi}_t)_{t=0}^T, \ \widetilde{\boldsymbol{g}} = (\widetilde{\boldsymbol{g}}_t)_{t=1}^T;
```

Algorithm 2 NA-DPVI

```
1: Input:
                  M: number of samples;
  2:
                  \mu_{\phi^*}: \phi^* prior distribution mean;
  3:
                  \Sigma_{\phi^*}: \phi^* prior distribution covariance matrix;
  4:
                  \mu_{\mathbf{A}}: \mathbf{A} entries prior distribution mean;
  5:
                  \Sigma_{\mathbf{A}}: A entries prior distribution covariance matrix;
                  \mu_{\Sigma_{\text{sub}}}: \Sigma_{\text{sub}} entries prior distribution mean;
  7:
                  \Sigma_{\Sigma_{\text{sub}}}: \Sigma_{\text{sub}} entries prior distribution covariance matrix;
  8:
                  \mathcal{T}, \widetilde{\boldsymbol{g}} : \text{DPVI output};
10: model-definition \tilde{\boldsymbol{g}} \mid \mathcal{T}, \boldsymbol{\phi}^*, \mathbf{A}, \Sigma_{\mathrm{sub}}
                  \phi^* \sim \mathcal{N}(\mu_{\phi^*}, \Sigma_{\phi^*});
11:
                  \mathbf{A} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{A}}, \boldsymbol{\Sigma}_{\mathbf{A}});
12:
                 \Sigma_{\mathrm{sub}} \sim \mathcal{N}(\boldsymbol{\mu}_{\Sigma_{\mathrm{sub}}}, \boldsymbol{\Sigma}_{\Sigma_{\mathrm{sub}}});
13:
                  \widetilde{\boldsymbol{g}}_{t+1} \mid \boldsymbol{\phi}_t, \mathbf{A}, \boldsymbol{\phi}^*, \Sigma_{\mathrm{sub}} \sim \mathcal{N}\left(\kappa \mathbf{A} \left(\boldsymbol{\phi}_t - \boldsymbol{\phi}^*\right), \sigma_{\mathrm{DP}}^2 C^2 \mathbf{I}_d + \Sigma_{\mathrm{sub}}\right);
14:
15: end model-definition
16: Sample (\boldsymbol{\phi}_{i}^{*}, \mathbf{A}_{i}, \Sigma_{\mathrm{sub},i})_{i=1}^{M} \sim p(\boldsymbol{\phi}^{*}, \mathbf{A}, \Sigma_{\mathrm{sub}} \mid \widetilde{\boldsymbol{g}}, \mathcal{T});
17: return \widetilde{p}(\boldsymbol{\theta} \mid \mathcal{T}) = \frac{1}{M} \sum_{i=1}^{M} q_{\mathrm{VI}}(\boldsymbol{\theta}; \boldsymbol{\phi}_{i}^{*});
                                                                                                                                                           ▷ sampling using any approximate inference method.
                                                                                                                                                            ▶ approximate noise-aware posterior mixture model.
```

2 Exponential families experiment

See the benchmarks in Figure 1 and Table 1 which include the TARP coverages and the RMSE of the coverage errors for NA-DPVI (NUTS), Bernstein & Sheldon's (2018) method, last iterate DPVI, and DPVIm (Jälkö et al., 2023).

Figure 1: The first row in the figure shows the TARP coverages for the exponential families experiment for NA-DPVI (NUTS), Bernstein & Sheldon's (2018) method, last iterate DPVI, and DPVIm (Jälkö et al., 2023). The second row shows the error for the coverages $(C(\alpha) - (1 - \alpha))$. The solid lines show the average performance over 20 independent TARP repetitions and the error bars show the corresponding std. The parameters for NA-DPVI are $\delta = 10^{-5}$, N = 5000, $\kappa = 0.1$ and $T = 10^4$.

Table 1: The mean RMSE errors \pm std corresponding to the coverages in Figure 1.

Method	Gamma-Exponential	Beta-Bernoulli	Dirichlet-Categorical
NA-DPVI (NUTS)	$\textbf{0.023}\pm\textbf{0.008}$	$\textbf{0.016}\pm\textbf{0.006}$	0.020 ± 0.004
Bernstein & Sheldon	0.034 ± 0.011	0.018 ± 0.006	$\textbf{0.017}\pm\textbf{0.007}$
Naive (last iterate)	0.232 ± 0.003	0.273 ± 0.007	0.355 ± 0.009
DPVIm	0.038 ± 0.005	0.044 ± 0.004	0.251 ± 0.011

3 10D Bayesian linear regression experiment

See the benchmarks in Figure 2 and Table 2 which include the TARP coverages and the RMSE of the coverage errors for NA-DPVI (NUTS), last iterate DPVI, and Bernstein & Sheldon's (2019) Gibbs-SS-Noisy method.

Table 2: The mean RMSE errors \pm std corresponding to the coverages in Figure 2.

Method	$\epsilon = 0.1$	$\epsilon = 0.3$	$\epsilon = 1.0$
NA-DPVI (NUTS)	$\textbf{0.036}\pm\textbf{0.011}$	$\textbf{0.035}\pm\textbf{0.011}$	0.027 ± 0.009
NA-DPVI (Laplace)	0.078 ± 0.011	0.098 ± 0.006	0.06 ± 0.007
Naive (last iterate)	0.512 ± 0.003	0.307 ± 0.003	0.36 ± 0.003
Bernstein & Sheldon	0.301 ± 0.001	0.299 ± 0.001	0.323 ± 0.003
DPVIm	0.584 ± 0.0	0.584 ± 0.0	0.584 ± 0.0

4 UCI Adult Bayesian logistic regression experiment

See the benchmarks in Figure 3 and Table 3 which include the predictive calibrations and the RMSE of the calibration errors for NA-DPVI (NUTS), NA-DPVI (Laplace), last iterate DPVI, and DPVIm (Jälkö et al., 2023).

Figure 2: The first row in the figure shows the TARP coverages for the 10D Bayesian linear regression experiment for NA-DPVI (NUTS), last iterate DPVI, and Bernstein & Sheldon's (2019) Gibbs-SS-Noisy method. The second row shows the error for the coverages $(C(\alpha) - (1 - \alpha))$. The solid lines show the average performance over 20 independent TARP repetitions and the error bars show the corresponding std. The parameters for NA-DPVI are $\delta = 10^{-5}$, N = 5000, $\kappa = 0.1$ and $T = 10^4$.

Table 3: The mean RMSE errors \pm std corresponding to the calibrations in Figure 3.

Method	$\epsilon = 0.1$	$\epsilon = 0.3$	$\epsilon = 1.0$
NA-DPVI (NUTS)	0.061 ± 0.031	$\textbf{0.026}\pm\textbf{0.005}$	$\textbf{0.024}\pm\textbf{0.007}$
NA-DPVI (Laplace)	0.084 ± 0.043	0.044 ± 0.011	0.046 ± 0.014
Naive (last iterate)	0.12 ± 0.065	0.067 ± 0.024	0.054 ± 0.017
DPVIm	0.101 ± 0.052	0.065 ± 0.025	0.038 ± 0.014

Figure 3: The first row in the figure shows the predictive calibration for the UCI Adult logistic regression experiment for NA-DPVI (NUTS), NA-DPVI (Laplace), last iterate DPVI, and DPVIm (Jälkö et al., 2023). The second row shows the calibration error (Fraction of Positives - Predicted Probability). The solid lines show the average performance over 20 independent repetitions, and the error bars show the corresponding std. The parameters for NA-DPVI are $\delta = 10^{-5}$, $\kappa = 0.1$ and $T = 10^4$.