Constructed, Augmented MaxDiff

EARL London September 13, 2018

Chris Chapman Principal Researcher, Google **Eric Bahna** Product Manager, Google

Overview

We often have lists of things we want customers to prioritize:

Feature requests

Key needs

Product messaging

Use cases and scenarios

Generally, preferences amongst any set of things

Overview

We often have lists of things we want customers to prioritize:

Feature requests

Key needs

Product messaging

Use cases and scenarios

Generally, preferences amongst any set of things

We discuss how to do this systematically ...

... with shared R code, and modern Bayesian methods under the hood!

Problem: Sparse, local data vs. global prioritization

Rank	Feature	Priority				
1	FR4	P0				
2	FR5	P0				
3	FR6	P1				
4	FR1	P1				
5	FR3	P2				
6	FR2	P2				

Dense, global data → global prioritization decisions

	FR1	FR2	FR3	FR4	FR5	FR6				
CustomerA	P1	P1		P1				Rank	Feature	Priority
CustomerB		P0						1	FR4	P0
CustomerC			P1					2	FR5	P0
CustomerD					P1		PMs	3	FR6	P1
	FR1	FR2	FR3	FR4	FR5	FR6		4	FR1	P1
CustomerA	16	11	17	21	24	11		5	FR3	P2
CustomerB	26	2	8	25	12	27		6	FR2	P2
CustomerC	5	15	6	42	23	9				
CustomerD	3	11	8	28	23	27				

Dense, global data → global prioritization decisions

	FR1	FR2	FR3	FR4	FR5	FR6				
CustomerA	P1	P1		P1				Rank	Feature	Priority
CustomerB		P0						1	FR4	P0
CustomerC			P1					2	FR5	P0
CustomerD					P1		PMs	3	FR6	P1
	FR1	FR2	FR3	FR4	FR5	FR6		4	FR1	P1
CustomerA	16	11	17	21	24	11		5	FR3	P2
CustomerB	26	2	8	25	12	27		6	FR2	P2
CustomerC	5	15	6	42	23	9				
CustomerD	3	11	8	28	23	27				

Rating scales don't work very well

Analysts often try to solve this problem with a rating scale:

How important is each feature?

	Not at all	Slightly	Moderately	Very	Extremely
Feature 1					
Feature 2					
Feature 3					
Feature 4					
Feature 5					

Rating scales don't work very well

Analysts often try to solve this problem with a rating scale:

How important is each feature?

	Not at all	Slightly	Moderately	Very	Extremely
Feature 1					
Feature 2					\boxtimes
Feature 3					\boxtimes
Feature 4					\boxtimes
Feature 5					\boxtimes

What's the problem? ⇒ No user cost: I can rate "everything is important!" ⇒ Not all "important" things are equally important

Common result: hard to interpret!

	Average Importance
Feature 1	4.6
Feature 2	4.3
Feature 3	4.4
Feature 4	4.8

Initial Solution: MaxDiff discrete choice survey

- Ask respondents to make forced-choice tradeoffs among features
- Repeat multiple times with randomized sets.
- Estimate a **mixed effects model** for overall and per-respondent preference

Considering just these 4 features, which one is **most important** for you? Which one is **least important**?

	Most Important	Least Important
i13 description	0	0
i16 description	0	0
i34 description	0	0
i9 description	0	0

Click the 'Next' button to continue...

⇒ London EARL 2017 talk re discrete choice: https://goo.gl/73zasi

Concerns with Initial MaxDiff

Data Quality & Item relevance:

Enterprise respondents are often specialized; can't prioritize all items.

Respondent survey experience:

Length of survey is proportional to number of items. Shorter is better!

Concerns with Initial MaxDiff

Data Quality & Item relevance:

Enterprise respondents are often specialized; can't prioritize all items.

Respondent survey experience:

Length of survey is proportional to number of items. Shorter is better!

Solution:

Construct the MaxDiff list per respondent for what interests them. Optionally **augment** the data file with inferred preferences.

- ⇒ Shorter surveys, better targeted, better differentiation of high priority items
- ⇒ "Constructed, Augmented MaxDiff" (CAMD).

[We admit it, not so catchy.]

Constructed Augmented MaxDiff (CAMD)

CAMD Adds Two Questions Before MaxDiff

"Relevant?"

Yes → Add to constructed list

"Important at all?"

	At least somewhat important	Not important
i9		
description	0	
i13	0	
description		
i4		
description	0	
i24	0	0
description		
i29	0	0
description	0	0
	At least	

No → Use to *augment* data, saving time

"Most & Least Important?"

	Most Important	Least Important
i13 description	0	0
i16 description	0	0
i34 description	0	0
i9 description	0	0

Click the 'Next' button to continue...

MaxDiff uses the constructed list of items

CAMD Flow

Results: Enterprise Feature Study

(items disguised)

Results: 55% of Items Irrelevant to Median Respondent

⇒ Huge time cost & dilution of data with noise if we ask about irrelevant items

Results: Before & After Augmentation

Before Augmentation

After Augmentation

⇒ Modest changes; a few items change a lot, most don't. Good to use all the data!

Results: Changes in Business Priorities

Consider feature "i6" ...

Among 35 features, it was **#35 in engineering cost** to implement

Results: Changes in Business Priorities

Consider feature "i6" ...

Among 35 features, it was #35 in engineering cost to implement

... and now we learn that it is **#2 in** overall customer priority.

⇒ Much better coverage of customers' priorities, for a given amount of engineering resources

Results: Respondent and Executive Feedback

- Respondent feedback
 - "Format of this survey feels much easier"
 - "Shorter and easier to get through."
 - "this time around it was a lot quicker."
 - "Thanks so much for implementing the 'is this important to you' section! Awesome stuff!"
- Executive support
 - Funding for internal tool development
 - Advocacy across product areas
 - Support for teaching 10+ classes on MaxDiff, >100 Googlers
- Surprise: many colleagues interested for internal use cases

R Code

Referenced functions available at goo.gl/oK78kw

Features of the R Code

Data sources: Sawtooth Software (CHO file)

Qualtrics (CSV file)

⇒ Common format in R

⇒ Common format in R

Given the common data format

Estimation: Aggregate logit (using mlogit)

Hierarchical Bayes (using ChoiceModelR)

Augmentation: Optionally augment data for "not important" implicit choices

Plotting: Plot routines for aggregate logit & upper- & lower-level HB

Example R Code: Complete Example

```
> md.define.saw <- list(</pre>
                                                      # define the study, e.g.:
   md.item.k = 33,
                                                 # K items on list
   md.item.tasks = 10,
                                                 # num tasks (*more omitted)
. . . * )
> test.read <- read.md.cho(md.define.saw)</pre>
                                                      # Sawtooth Software survey data
> md.define.saw$md.block <- test.read$md.block # keep that in our study object
> test.aug <- md.augment(md.define.saw)</pre>
                                                      # augment the choices (optional)
                                                      # update data with augments
> md.define.saw$md.block <- test.aug$md.block
> test.hb <- md.hb(md.define.saw, mcmc.iters=50000)  # Hierarchical Bayes estimation
> plot.md.range(md.define.saw, item.disquise=TRUE)
                                                      # plot group-level estimates
> plot.md.indiv(md.define.saw, item.disquise=TRUE) +
                                                      # plot individual estimates
                                                      # note plots use ggplot
    theme minimal()
```

Example R Code, Part 0: Define the Study

```
# define the study, e.g.:
# K items on list
# num of tasks
```

Example R Code, Part 1: Data

Example R Code, Part 2: Augmentation

```
> md.define.saw$md.block <- test.read$md.block # save the data
> test.aug <- md.augment(md.define.saw)</pre>
                                                   # augment the choices
Reading full data set to get augmentation variables.
Importants: 493 494 495 496 497 498 499 ...
Unimportants: 592 593 594 595 596 597 ...
Augmenting choices per 'adaptive' method.
Rows before adding: 40700
Augmenting adaptive data for respondent:
  augmenting: 29 16 25 20 23 9 22 12 5 27 6 11 10 4 26 1 15 2 14 24 31 7 30
13 18 19 3 8 28 21 32 %*% 33 17 ...
Rows after augmenting data: 148660
                                                    # <== 3X data, 1x cost!
> md.define.saw$md.block <- test.aug$md.block</pre>
                                                    # update data with new choices
```

Example R Code, Part 3: HB

```
> md.define.saw$md.block <- test.aug$md.block  # update data with new choices
> test.hb <- md.hb(md.define.saw, mcmc.iters=50000) # HB</pre>
```

MCMC Iteration Beginning...

Iteration	Acceptance	RLH	Pct. Cert.	Avg. Var.	RMS	Time to End
100	0.339	0.483	0.162	0.26	0.31	83:47
200	0.308	0.537	0.284	0.96	0.84	81:50

> md.define.saw\$md.hb.betas.zc <- test.hb\$md.hb.betas.zc # zero-centered diffs

Example R Code: Plots

Conclusions

- Higher quality data
 - Respondents are asked for input on more items that are relevant to them
- More data
 - We observed 2.0 3.5x as many implicit choice tasks with augmented data
- Happier respondents
 - MaxDiff items were more relevant to users
 - We asked fewer MaxDiff questions because we could augment the data
- Use the code! goo.gl/oK78kw

Thank you!

Constructed, Augmented MaxDiff: camd@google.com

Appendix: Additional findings

Some other MaxDiff Options

- Adaptive MaxDiff (Orme, 2006):
 Tournament-style selection of items. More complex to program, less focused at beginning of survey. By itself, doesn't solve "I don't do that."
- Express MaxDiff (Wirth & Wolfrath, 2012):
 Selects subset of items to show each respondent. No insight at individual level on non-selected items. Addresses a different problem (long item list).
- Sparse MaxDiff (Wirth & Wolfrath, 2012):
 Uses all items from a long list per respondent, with few if any repetitions across choices. Low individual-level precision. Addresses long item lists.
- Bandit MaxDiff (Sawtooth Software, 2018):
 Focuses increasing attention on most-preferred items, based on previous choices. Addresses survey length concerns.

Results: Utilities Before and After Augmentation

- Modest adjustments to utilities
- Pearson's r = 0.90 between augmented and non-augmented utilities in one study
- Interesting that utilities became more compressed

Results: 50% More "Important" Items in MaxDiff

- Constructed MD study:
 - o 30 items in survey
 - o 20 items in MaxDiff exercise
- Without construction, we'd randomly select 20 of 30 items into MaxDiff exercise
- With construction, we emphasize "important" items

Construction Gives Respondents More 'Important' Items in MaxDiff

Appendix:

Additional Discussion and Design Recs

Design Recommendations

Initial rating for entire list of items, used to construct MaxDiff list

Risk: Difficult to answer long list of "what's relevant"

Solution: Break into chunks; ask a subset at a time; aggregate

Could chunk within a page (as shown), or several

pages.

Construction of the MaxDiff list

Risk: Items might be never selected ⇒ degenerate model

Solution: Add 1-3 random items to the constructed list

We used: 12 "relevant and important to me" +

1 "not relevant to me" + 2 "not important"

⇒ MaxDiff design with 15 items on constructed list

Open Topics

- If respondents select the items to rate, what does "population" mean?
 Carefully consider what "best" and "worst" mean to you.
 Want: share of preference among overall population? ⇒ don't construct
 ... or: share of preference among relevant subset? ⇒ construct
- Appropriate number of items -- if any -- to include randomly to ensure coverage We decided on 1 "not relevant" and 2 "not important", but that is a guess. *Idea*: Select tasks that omit those items, re-estimate, look at model stability.
- Best way to express the "*Relevant to you*?" and "*Important to you*?" ratings
 This needs careful pre-testing for appropriate wording of the task.