:# Assignment 1: Approximation of mathematical functions

import math
import numpy
import matplotlib.pyplot as plt
%matplotlib inline

▼ Question 1: Approximating log

Function \log is defined on positive real numbers: $\log(x): \mathcal{R}^+ \to \mathcal{R}$. The Taylor series for \log has the following form:

$$\log(x) = \frac{(x-1)^1}{1} - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \cdots$$
$$= \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$$

and converges to \log for 0 < x < 2.

- 1. Implement log1 that approximates $\log(x), \ 0 < x < 2$.
- 2. \circ Plot math.log and log1 for $0.25 \le x \le 4$ for n=1,2,4,8.
 - Plot the **absolute** error of log1 compared to math.log on $0.01 \le x \le 1$ for n=1,8. Use plt.plot:
- 3. Implement log2 that approximates $\log(x), \ 0 < x < \infty$. Hint: $\log(e^N \cdot x) = N + \log x$.
- 4. \circ Plot math.log and log2 for $0.1 \le x \le 100$ for n=1,2,4,8.
 - \circ Plot the **relative** error of log2 compared to math.log on $0.1 \le x \le 100$ for n=1,8. Use <u>plt.plot</u>:
- 5. What are the maximum absolute and relative errors of <code>log1</code> compared to <code>log2</code> on interval $0.25 \le x \le 1.75$?

ullet Question 2: Using approximate versions of \log and \exp

1. Use logfact from lecture 1 notebook with math.log and math.exp, to implement the multinomial coefficients for m=3 on the log scale:

$$egin{pmatrix} n \ k_1, k_2, \dots, k_m \end{pmatrix} = rac{n!}{k_1! k_2! \cdots k_m!}$$

- 2. Use log2 from question 1 and exp2 from the <u>lecture 2 notebook</u> to implement the approximate computation of the multinomial coefficients for m=3:
- 3. Compute $\binom{10}{2,2,6}$, and $\binom{150}{100,25,25}$. Compare the running times of multinomial coefficients using log2 and exp2 vs. math.log and math.exp.

- 4. What are the absolute and relative error of multinomial coefficients for each combination of arguments $-\binom{10}{2,2,6}$, and $\binom{150}{100,25,25}$?
- 5. For which n (number of Taylor series terms) the absolute difference between the *relative errors* of $\binom{1000}{900,50,50}$ computed for n and n+1 is smaller than 0.1%? Use the approximation from Q2.2

• ×