

Computer Networks 1

ENCODING AND MODULATION

Fatemeh Rezaei

ENCODING AND MODULATION TECHNIQUES

(b) Modulation onto an analog signal

OUTLINE

KEY DATA TRANSMISSION TERMS

Term	Units	Definition
Data element	Bits	A single binary one or zero
Data rate	Bits per second (bps)	The rate at which data elements are transmitted
Signal element	Digital: a voltage pulse of constant amplitude	That part of a signal that occupies the shortest interval of a signaling code
	Analog: a pulse of constant frequency, phase, and amplitude	
Signaling rate or modulation rate	Signal elements per second (baud)	The rate at which signal elements are transmitted

KEY DATA TRANSMISSION TERMS

- Unipolar signaling
 - Signal elements all have the same algebraic sign
 - All positive or negative
- Polar signaling
 - One logic state is represented by a positive voltage level
 - The other by a negative voltage level
- Mark
 - Binary digits 1
- Space
- Binary digits 0

DIGITAL DATA, DIGITAL SIGNAL

DIGITAL DATA, DIGITAL SIGNAL

- ☐ The simplest form
 - Assigning one voltage level to binary one and another to binary zero
- More complex encoding schemes
 - Using to improve performance

EVALUATING FACTORS OF ENCODING TECHNIQUES

- ■Signal spectrum
- Clocking
- Error detection
- Signal interference and noise immunity
- Cost and complexity

SIGNAL SPECTRUM

- Codes can be designed with the aim of shaping the spectrum of the transmitted signal
- Lack of high-frequency components
 - Less bandwidth is required for transmission
- □ lack of a direct-current (dc) component
 - AC coupling via transformer is possible
 - Providing excellent electrical isolation
 - Reducing interference

SIGNAL SPECTRUM

- The magnitude of the effects of signal distortion and interference depend on the spectral properties of the transmitted signal.
- Transmission characteristics of a channel are worse near the band edges
 - •A good signal design should concentrate the transmitted power in the middle of the transmission bandwidth.
 - Smaller distortion in the received signal

EVALUATING FACTORS OF ENCODING TECHNIQUES

Clocking

- Need to determine the beginning and end of each bit position
- Providing some synchronization mechanism in the transmitted signal by suitable encoding

Error detection

- having some error detection capability built into the physical signaling encoding scheme
- Permitting errors to be detected more quickly

EVALUATING FACTORS OF ENCODING TECHNIQUES

- Signal interference and noise immunity
 - Certain codes exhibit superior performance in the presence of noise.
 - Performance is usually expressed in terms of a BER
- Cost and complexity
 - The higher the signaling rate to achieve a given data rate, the greater the cost
 - Some codes require a signaling rate that is greater than the actual data rate

Nonreturn to Zero-Level (NRZ-L)

0 = high level

1 = low level

Nonreturn to Zero Inverted (NRZI)

- 0 = no transition at beginning of interval (one bit time)
- 1 = transition at beginning of interval

DIFFERENTIAL ENCODING

- Information is represented in terms of the changes between successive signal elements rather than the signal elements themselves
- More reliable to detect a transition in the presence of noise than to compare a value to a threshold
- It is easy to lose the sense of the polarity of the signal
 - Accidentally all 1s and 0s for NRZ-L will be inverted
 - Not happening with differential encoding

NRZ CODES

Used for digital magnetic recording

Make efficient use of bandwidth

Easiest to engineer

Unattractive for signal transmission applications

Lack of synchronization capability

Presence of a dc component

MULTILEVEL BINARY CODES

(Alternate Mark Inversion)

- 0 = no line signal
- 1 = positive or negative level, alternating for successive ones

Pseudoternary

Toosi

- 0 =positive or negative level, alternating for successive zeros
- 1 = no line signal

MULTILEVEL BINARY ADVANTAGES

- No loss of synchronization if a long string of 1s occurs
 - (A long string of 0s would still be a problem)
- ■No net dc component
 - Because the 1 signals alternate in voltage from positive to negative
- The bandwidth is less than the bandwidth for NRZ
- Simple means of error detection
 - Because of the pulse alternation property
 - Any isolated error causes a violation of this property

MULTILEVEL BINARY DISADVANTAGES

- The line signal may take on one of 3 levels
 - Each signal element, which could represent $log_2 3 = 1.58$ bits of information, bears only one bit of information.
 - Not as efficient as NRZ coding
- Receiver has to distinguish between 3 levels instead of just 2 levels
 - Requires approximately 3 dB more signal power for the same BER
- ■BER for NRZ codes, at a given SNR, is significantly less than that for multilevel binary

BIPHASE CODES

Manchester

- 0 = transition from high to low in middle of interval
- 1 = transition from low to high in middle of interval

IEEE 802.3 (Ethernet) standard for baseband coaxial cable and twisted-pair bus LANs

Differential Manchester

Always a transition in middle of interval

- 0 = transition at beginning of interval
- 1 =no transition at beginning of interval

IEEE 802.5 token ring LAN using shielded twisted pair

BIPHASE CODES

Error detection

More costly in a

No dc component

Synchronization

More costly in a long-distance application

Greater BW

Maximum modulation rate is twice NRZ

SCRAMBLING TECHNIQUES

B8ZS

- ■Bipolar with 8-Zeros Substitution
- Same as bipolar AMI, except that any string of 8 zeros is replaced by a string with 2 code violations
- If an octet of all zeros occurs and the last voltage pulse preceding this octet was positive
 - The eight zeros are encoded as 000+-0-+
- If an octet of all zeros occurs and the **last** voltage pulse preceding this octet was negative
 - The eight zeros are encoded as 000-+0+-

HDB3

- ☐ High-Density Bipolar-3 zeros
- Same as bipolar AMI, except that any string of 4 zeros is replaced by a string with one code violation

	Number of Bipolar Pulses (ones) since Last Substitution		
Polarity of Preceding Pulse	Odd	Even	
_	000 —	+ 0 0 +	
+	000+	- 0 0 -	

ENCODING RULES FOR B8ZS AND HDB3

B = Valid bipolar signal

V = Bipolar violation

DESIGN GOALS FOR SCRAMBLING TECHNIQUES

- No dc component
- ■No long sequences of zero-level line signals
- No reduction in data rate
- Error-detection capability

SPECTRAL DENSITY OF VARIOUS SIGNAL ENCODING SCHEMES

THEORETICAL BIT ERROR RATE FOR VARIOUS ENCODING SCHEMES

MODULATION RATE

$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

D =modulation rate, baud

R = data rate, bps

 $M = \text{number of different signal elements} = 2^{L}$

L = number of bits per signal element

A STREAM OF BINARY ONES AT 1 MBPS

NORMALIZED SIGNAL TRANSITION RATE OF VARIOUS DIGITAL SIGNAL ENCODING SCHEMES

	Minimum	101010	Maximum
NRZ-L	0 (all 0s or 1s)	1.0	1.0
NRZI	0 (all 0s)	0.5	1.0 (all 1s)
Bipolar-AMI	0 (all 0s)	1.0	1.0
Pseudoternary	0 (all 1s)	1.0	1.0
Manchester	1.0 (1010)	1.0	2.0 (all 0s or 1s)
Differential Manchester	1.0 (all 1s)	1.5	2.0 (all 0s)

DIGITAL DATA, ANALOG SIGNAL

ANALOG SIGNALING

- Carrier signal
 - A continuous constant-frequency signal
 - Its frequency is chosen to be compatible with the transmission medium
- Modulation
 - \square Process of encoding source data onto a carrier signal with frequency $f_{\mathcal{C}}$

DIGITAL DATA, ANALOG SIGNAL

- A modem converts digital data to an analog signal
- ■To be transmitted over an analog line
- ■Altering one or more characteristics of a carrier signal to represent binary data

AMPLITUDE SHIFT KEYING (ASK)

AMPLITUDE SHIFT KEYING (ASK)

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

IMPLEMENTATION OF BINARY ASK

CONSTELLATION DIAGRAM

Helps define the amplitude and phase of a signal element

ASK

□BASK: Simplest form \rightarrow On-Off Keying (OOK)

- ☐ Values represented by different amplitudes of the carrier sine wave
- ■Susceptible to noise and sudden changes in gain
- ☐ Up to 1200bps on voice grade lines
- Used over optical fiber

FREQUENCY SHIFT KEYING (FSK)

FREQUENCY SHIFT KEYING (FSK)

IMPLEMENTATION OF BINARY FSK

FREQUENCY SHIFT KEYING (FSK)

- Most common form: binary FSK (BFSK)
- ☐ The two binary data values represented by two different frequencies

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 0} \\ A\cos(2\pi f_2 t) & \text{binary 1} \end{cases}$$

- Less susceptible to noise than ASK
 - ☐ Frequency can be detected correctly in the presence of noise better than amplitude
- Applications
 - Up to 1200bps on voice grade lines
 - □Used at High frequency radio (3-30 MHz)
 - Higher frequencies on LANs using coaxial cables

FULL-DUPLEX FSK TRANSMISSION ON A VOICE-GRADE LINE

- Direction A: carrier centered on 1170 Hz
 - e.g. 1070 Hz represent 1
 - 1270 Hz represent 0
- Direction B: carrier centered on 2125 Hz
- e.g. 2025 Hz represent 1
- 2225 Hz represent 0

MULTIPLE FSK (MFSK)

- To improve BW utilization (efficiency)
- More than two frequencies used
- More susceptible to error
- ■An example of multi-level coding (M levels)
- Each signaling element conveys more than one bit

(L bits,
$$L = log_2 M$$
)

MULTIPLE FSK (MFSK)

☐ The transmitted MFSK signal for one signal element time:

MFSK
$$s_i(t) = A \cos 2\pi f_i t$$
, $1 \le i \le M$

$$f_i = f_c + (2i - 1 - M)f_d$$

 $f_c =$ the carrier frequency
 $f_d =$ the difference frequency
 $M =$ number of different signal elements = 2^L

L = number of bits per signal element

MULTIPLE FSK (MFSK)

- \square T =bit period (data rate = 1/T)
- □ A signal element, a constant-frequency tone, encodes L bits
- T_s=LT output signal element period
- lueThe minimum frequency separation required: $2f_d$ = $1/T_s$
- lueThe total bandwidth required : W_d =2 Mf_d
- \square Max signaling rate D = $1/T_s = 2f_d$
- \square Max data rate R = D L = 2f_d L

MFSK EXAMPLE

EXAMPLE With $f_c = 250 \text{ kHz}$, $f_d = 25 \text{ kHz}$, and M = 8 (L = 3 bits), we have the following frequency assignments for each of the eight possible 3-bit data combinations:

$$f_1 = 75 \text{ kHz}$$
 000 $f_2 = 125 \text{ kHz}$ 001
 $f_3 = 175 \text{ kHz}$ 010 $f_4 = 225 \text{ kHz}$ 011
 $f_5 = 275 \text{ kHz}$ 100 $f_6 = 325 \text{ kHz}$ 101
 $f_7 = 375 \text{ kHz}$ 110 $f_8 = 425 \text{ kHz}$ 111

This scheme can support a data rate of $1/T = 2Lf_d = 150$ kbps.

4-FSK EXAMPLE

$$M = 4$$

 $L = Log_2(M) = 2$

- 20 bits is encoded 2 bits at a time
- Each of the four possible 2-bit combinations transmitted as a different frequency
- Frequency transmitted (y-axis) as a function of time (x-axis)
- Columns: a time unit in which a single 2-bit signal element is transmitted
- The shaded rectangle: the frequency transmitted during Data

PHASE SHIFT KEYING (PSK)

PHASE SHIFT KEYING (PSK)

BPSK

$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases} = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

$$s_d(t) = A d(t) \cos(2\pi f_c t)$$

$$d(t) = +1$$
 for '1' data and -1 for '0' data

IMPLEMENTATION OF BINARY PSK

DIFFERENTIAL PHASE SHIFT KEYING (DPSK)

- Phase shifted relative to the previous signal element, rather than some reference signal
- 0: Do not reverse phase
- 1: Reverse phase (as with NRZI, invert on 1)
- Advantage:
 - No need for a reference oscillator at RX to determine absolute phase

DIFFERENTIAL PHASE SHIFT KEYING (DPSK)

FOUR-LEVEL PSK (QPSK)

 \square 4 different phases spaced at $\pi/2$ (90°)

$$s(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$

$$\cos(2\pi f_{c}t + n\frac{\pi}{4}) = \pm \frac{1}{\sqrt{2}}\cos(2\pi f_{c}t) \mp \frac{1}{\sqrt{2}}\sin(2\pi f_{c}t)$$
$$s(t) = I(t)\frac{1}{\sqrt{2}}\cos(2\pi f_{c}t) - Q(t)\frac{1}{\sqrt{2}}\sin(2\pi f_{c}t)$$

OFFSET QPSK (OQPSK)

- Orthogonal QPSK
- A delay of one bit time is introduced in the Q stream

$$s(t) = \frac{1}{\sqrt{2}}I(t)\cos 2\pi f_c t - \frac{1}{\sqrt{2}}Q(t - T_b)\sin 2\pi f_c t$$

QPSK AND OQPSK WAVEFORMS

QPSK VS. OQPSK

- QPSK: From one symbol time to the next, a phase change of as much as 180° is possible
- OQPSK: The phase change in the combined signal never exceeds 90°
- Spectral characteristics and bit error performance are the same
- ■Advantage of OQPSK over QPSK:
 - Physical limitations on phase modulators
 - Easier to control the spreading of the signal bandwidth due to nonlinear components

QPSK AND OQPSK MODULATORS

٦٤

MULTI-LEVEL PSK (MPSK)

- Multilevel signaling
- More efficient use of bandwidth
 - Higher data rate for the same signaling rate
- \square Each signal element represents $\log_2 M = L$ bits

QUADRATURE AMPLITUDE MODULATION (QAM)

- An extension of the QPSK
- Combines both ASK and PSK
- Example:
 - ASK with 2 levels
 - PSK with 4 levels
 - $4 \times 2 = 8-QAM$
- M = 8, L = 3
- Bandwidth savings
- Susceptibility to noise
- Used on
 - ADSL
 - Wireless system

QUADRATURE AMPLITUDE MODULATION

$$s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$$

PERFORMANCE OF D-A ENCODING SCHEMES (WITHOUT NOISE)

Transmission bandwidth B_T

Bandwidth (or spectral) Efficiency:

$$BE = \frac{R}{B_T}$$

For ASK and PSK:

D: signaling, modulation, baud rate

r: filtering coefficient; 0 < r < 1

$$B_{T} = (1+r)D$$

• With binary encoding (not multilevel): D = R

$$B_T = (1+r)R$$

Bandwidth Efficiency, BE:

$$BE_{BASK,BPSK} = \frac{R}{B_T} = \frac{1}{1+r}$$

PERFORMANCE OF D-A ENCODING SCHEMES (WITHOUT NOISE)

For **MPSK:** M phases, L bits/signal element $L = \log_2(M)$

- ullet B_T directly related to the signaling rate, D $B_{T}=(1+r)D$
- With M-level encoding:

$$D = \frac{R}{L} = \frac{R}{\log_2(M)}$$

$$B_{T} = \frac{(1+r)R}{L} = \frac{(1+r)R}{\log_{2}^{M}}$$

Bandwidth Efficiency, BE:

$$BE_{MPSK} = \frac{R}{B_T} = \frac{L}{1+r}$$

 $BE_{MPSK} = \frac{R}{B_r} = \frac{L}{1+r}$ For multilevel, $L \ge 2$ and $r \le 1$, so $BE \ge 1$

PERFORMANCE OF D-A ENCODING SCHEMES (WITHOUT NOISE)

For MFSK: M Frequencies, L bits/signal element

$$L = \log_2(M)$$

$$B_T = (1+r) [width of signal spectrum]$$

$$= (1+r)[M(2 fd)]$$

At maximum signaling rate: $D=1/T_s=2f_d$

$$B_T = (1+r)MD = \frac{(1+r)MR}{L} = (\frac{(1+r)M}{\log_2 M})R$$

Bandwidth Efficiency, BE:

$$BE_{MFSK} = \frac{R}{B_T} = \frac{L}{(1+r)M}$$

BANDWIDTH EFFICIENCY FOR VARIOUS DIGITAL-TO-ANALOG ENCODING SCHEMES

$BE = \frac{R}{}$			
B_{T}	r = 0	r = 0.5	r = 1
ASK	1.0	0.67	0.5
FSK	0.5	0.33	0.25
Multilevel FSK			
M=4, L=2	0.5	0.33	0.25
M=8, L=3	0.375	0.25	0.1875
M=16, L=4	0.25	0.167	0.125
M = 32, L = 5	0.156	0.104	0.078
PSK	1.0	0.67	0.5
Multilevel PSK			
M=4, L=2	2.00	1.33	1.00
M=8, L=3	3.00	2.00	1.50
M=16, L=4	4.00	2.67	2.00
M=32, L=5	5.00	3.33	2.50

PERFORMANCE OF D-A ENCODING SCHEMES BIT ERROR RATE

ANALOG DATA, DIGITAL SIGNAL

ANALOG DATA, DIGITAL SIGNAL

- Analog data are digitized to use digital transmission facilities
- codec (coder-decoder)
 - The device used for converting analog data into digital form for transmission
 - Recovering the original analog data from the digital

ANALOG DATA TO DIGITAL SIGNAL TECHNIQUES

- Pulse Code Modulation (PCM)
 - Sampling the analog data
 - Quantizing the samples
- Analog samples
 - pulse amplitude modulation (PAM)
- ☐ To convert to digital, each of these analog samples must be assigned a binary code

PCM

PCM BLOCK DIAGRAM

- Input: Continuous-time continuous-amplitude (analog) signal
- Output: Digital signal consists of blocks of n bits
- ■Each n-bit number: Amplitude of a PCM pulse
- \square n bit system gives $M = 2^n$ levels

QUANTIZING NOISE

- ■Reproducing the analog signal violates the terms of the sampling theorem
- ■By quantizing the PAM pulse, the original signal cannot be recovered exactly
- Quantizing error / Quantizing noise
- ■Signal-to-noise ratio for quantizing noise

$$SNR_{dB} = 20 \log 2^n + 1.76 dB = 6.02n + 1.76 dB$$

NONLINEAR ENCODING

- Linear Coding
- Equally spaced quantization levels
- Same mean absolute error for each sample
- More distortion of lower amplitude values
- Nonlinear coding
 - Greater number of quantizing steps for signals of low amplitude
 - Reduction in overall signal distortion

COMPANDING (COMPRESSING-EXPANDING)

- More gain to weak signals than to strong signals on input
- More levels available for lower-level signals
- ☐ Significant improvement in the PCM SNR ratio

DELTA MODULATION (DM)

DM TRANSCEIVER

ANALOG DATA, ANALOG SIGNAL

ANALOG DATA, ANALOG SIGNAL

- Analog data modulated by a carrier signal
- Producing analog signal in a different frequency band
- Can be utilized on an analog transmission system
- ☐ FDM
- Basic techniques
 - Amplitude modulation (AM)
 - •Frequency modulation (FM)
 - Phase modulation (PM)

Frequency-modulated wave

AMPLITUDE MODULATION

$$s(t) = [1 + n_a x(t)]\cos 2\pi f_c t \qquad n_a < 1$$

SPECTRUM OF AN AM SIGNAL

(a) Spectrum of modulating signal

(b) Spectrum of AM signal with carrier at f_c

$$B_T = 2B$$

PHASE MODULATION (PM)

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

$$\phi(t) = n_p m(t)$$

Carson's rule:

$$B_T = 2(\beta + 1)B$$

$$n_p A_m$$

 $\Lambda\Lambda$

FREQUENCY MODULATION (FM)

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

$$2\pi f_i(t) = \frac{d}{dt} [2\pi f_c t + \phi(t)]$$

$$f_i(t) = f_c + \frac{1}{2\pi} \phi'(t)$$

$$\Delta F = \frac{1}{2\pi} n_f A_m \text{ Hz}$$

$$\frac{\Delta F}{B} = \frac{n_f A_m}{2\pi B}$$

$$B_T = 2(\beta + 1)B$$

$$B_T = 2\Delta F + 2B$$