Beyond sequent calculus: proof systems for conditional logics

Marianna Girlando

ILLC, University of Amsterdam

Based on joint work with: Björn Lellmann, Sara Negri, Nicola Olivetti and Gian Luca Pozzato

The Nihil Workshop, Amsterdam 02 February 2024

Clear understanding of the logic

- Clear understanding of the logic
- Establish properties of the logic

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP Is A valid?

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP Is A valid?

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP Is A valid?

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP Is A valid?

Intuitionistic S4: [G, Kuznets, Marin, Morales, Straßburger, 2023]

- Clear understanding of the logic
- Establish properties of the logic

Decidability and FMP Is A valid?

Intuitionistic S4: [G, Kuznets, Marin, Morales, Straßburger, 2023]

Interpolation

[Kuznets, Lellmann, 2018], [van der Giessen, Jalali, Kuznets, 2023]

Outline

- Conditional logics
- Semantics
- Proof theory for conditional logics
 - ★ Labelled calculi for conditional logics
 - ★ Sequent calculi with blocks for (some) Lewis' logics

Conditional logics

If A then B

▶ If I hadn't overslept, then I would have caught the train.

- ▶ If I hadn't overslept, then I would have caught the train.
- ▶ If Tux is a bird then it can fly.

- ▶ If I hadn't overslept, then I would have caught the train.
- If Tux is a bird then it can fly.
 But if Tux is a bird and a penguin, then it can't fly.

- ▶ If I hadn't overslept, then I would have caught the train.
- If Tux is a bird then it can fly. But if Tux is a bird and a penguin, then it can't fly. A Normally, birds can fly.

▶ If I hadn't overslept, then I would have caught the train.

▶ If I hadn't overslept, then I would have caught the train.

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

▶ If I hadn't overslept, then I would have caught the train.

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

If Tux is a bird then it can fly.
But if Tux is a bird and a penguin, then it can't fly.

▶ If I hadn't overslept, then I would have caught the train.

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	T
F	F	Т

If Tux is a bird then it can fly.
But if Tux is a bird and a penguin, then it can't fly.

Monotonicity
$$(A \rightarrow B) \rightarrow ((A \land C) \rightarrow B)$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B$$

 $\neg A := A \rightarrow \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$

 $\neg A := A \to \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A > B$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A > B$$

$$\Box A := \neg A > \bot$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A > B$$

$$\Box A := \neg A > \bot$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A \leqslant B$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid A > B$$
$$\Box A := \neg A > \bot$$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid A \leqslant B$$
"A is at least as plausible as B"

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \rightarrow B \mid \Box A$$

 $\neg A := A \rightarrow \bot$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid A > B$$
$$\Box A := \neg A > \bot$$

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid A \leqslant B$$

"A is at least as plausible as B"

$$\Box A := \bot \leqslant \neg A$$

$$A > B := (\bot \leqslant A) \lor \neg ((A \land \neg B) \leqslant (A \lor B))$$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid \Box A$$
$$\neg A := A \to \bot$$

1960-70: Stalnaker, Lewis, Nute, Chellas, Burgess ...

$$A, B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid A > B$$

$$\Box A := \neg A > \bot$$

$$A \leqslant B := ((A \lor B) > \bot) \lor ((A \lor B) > \neg A)$$

$$A,B ::= p \mid \bot \mid A \lor B \mid A \land B \mid A \to B \mid A \leqslant B$$

"A is at least as plausible as B"

$$\Box A := \bot \leqslant \neg A$$
$$A > B := (\bot \leqslant A) \lor \neg ((A \land \neg B) \leqslant (A \lor B))$$

Conditional logics

Conditional logics

Prototypical properties [KLM, 1990]

- Prototypical properties [KLM, 1990]
- Counterfactuals [Lewis,1973]

- Prototypical properties [KLM, 1990]
- Counterfactuals [Lewis, 1973]
- Conditional belief of agents [Baltag and Smets, 2006, 2008]

Axioms

PCL: classical propositional logic plus

rcea
$$\frac{(A > C) \leftrightarrow (B > C)}{A \leftrightarrow B}$$
 rck $\frac{(C > A) \rightarrow (C > B)}{A \rightarrow B}$ id $A > A$ r.and $(A > B) \land (A > C) \rightarrow (A > (B \land C))$ cm $(A > C) \land (A > B) \rightarrow ((A \land B) > C)$ rt $(A > B) \land ((A \land B) > C) \rightarrow (A > C)$ or $(A > C) \land (B > C) \rightarrow ((A \lor B) > C)$

Axioms

PCL: classical propositional logic plus

rcea
$$\frac{(A > C) \leftrightarrow (B > C)}{A \leftrightarrow B}$$
 rck $\frac{(C > A) \rightarrow (C > B)}{A \rightarrow B}$ id $A > A$ r.and $(A > B) \land (A > C) \rightarrow (A > (B \land C))$ cm $(A > C) \land (A > B) \rightarrow ((A \land B) > C)$ rt $(A > B) \land ((A \land B) > C) \rightarrow (A > C)$ or $(A > C) \land (B > C) \rightarrow ((A \lor B) > C)$ V: PCL plus cv $(A > C) \land \neg (A > \neg B) \rightarrow ((A \land B) > C)$

Axioms

PCL: classical propositional logic plus

rcea
$$\frac{(A > C) \leftrightarrow (B > C)}{A \leftrightarrow B}$$
 rck $\frac{(C > A) \rightarrow (C > B)}{A \rightarrow B}$ id $A > A$ r.and $(A > B) \land (A > C) \rightarrow (A > (B \land C))$ cm $(A > C) \land (A > B) \rightarrow ((A \land B) > C)$ rt $(A > B) \land ((A \land B) > C) \rightarrow (A > C)$

V: PCL plus

$$\mathsf{cv} \ (A > C) \land \neg (A > \neg B) \to ((A \land B) > C)$$

or $(A > C) \land (B > C) \rightarrow ((A \lor B) > C)$

Extensions of PCL and V

$$\begin{array}{lll} \text{n} & \neg(\top > \bot) & \text{t} & A \rightarrow \neg(A > \bot) \\ \text{w} & (A > B) \rightarrow (A \rightarrow B) & \text{c} & (A \wedge B) \rightarrow (A > B) \\ \text{u}_1 & (\neg A > \bot) \rightarrow (\neg(\neg A > \bot) > \bot) & \text{u}_2 & \neg(A > \bot) \rightarrow ((A > \bot) > \bot) \\ \text{a}_1 & (A > B) \rightarrow (C > (A > B)) & \text{a}_2 & \neg(A > B) \rightarrow (C > \neg(A > B)) \end{array}$$

Semantics

▶ Sphere semantics [Lewis,1973]

- ▶ Sphere semantics [Lewis,1973]
- ▶ Preferential semantics [Burgess,1981]

- ▶ Sphere semantics [Lewis,1973]
- ▶ Preferential semantics [Burgess,1981]
- ▶ Selection function semantics [Chellas, 1975]

- ▶ Sphere semantics [Lewis,1973]
- Preferential semantics [Burgess, 1981]
- Selection function semantics [Chellas, 1975]
- Neighbourhood semantics [Scott, 1970, Montague, 1970]

- ▶ Sphere semantics [Lewis,1973]
- Preferential semantics [Burgess, 1981]
- Selection function semantics [Chellas, 1975]
- Neighbourhood semantics [Scott, 1970, Montague, 1970]
 Direct proof of soundness and completeness w.r.t. the axiomatization of PCL and extensions
 [G, Negri, Olivetti, 2021]

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$

$$\mathcal{M} = \langle \textcolor{red}{W}, \textcolor{red}{N}, \llbracket \cdot \rrbracket \rangle$$

y

X

Z

k

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle \quad N : W \to \mathcal{P}(\mathcal{P}(W)) \text{ s.t. } \emptyset \notin N(x)$$

y

X

z

k

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $N : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin N(x)$

$$\mathcal{M} = \langle W, N, [\![\cdot]\!] \rangle \quad \mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W)) \text{ s.t. } \emptyset \notin \mathbb{N}(x) \quad [\![\cdot]\!] : Atm \to \mathcal{P}(W)$$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle \quad N : W \to \mathcal{P}(\mathcal{P}(W)) \text{ s.t. } \emptyset \notin N(x) \quad \llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin N(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$
Nesting for all x , for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$


```
\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle \mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W)) s.t. \emptyset \notin \mathbb{N}(x) \llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)
Nesting for all x, for all \alpha, \beta \in \mathbb{N}(x), \alpha \subseteq \beta or \beta \subseteq \alpha
```


$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$
Nesting for all x , for all $\alpha, \beta \in \mathbb{N}(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

 $x \Vdash q \leqslant p$ iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} p$ then $\alpha \Vdash^{\exists} q$

$$\mathcal{M} = \langle W, N, \llbracket \cdot \rrbracket \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin \mathbb{N}(x)$ $\llbracket \cdot \rrbracket : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

$$x \Vdash q \leqslant p$$
 iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} p$ then $\alpha \Vdash^{\exists} q$

$$\alpha \Vdash^{\forall} A \equiv \forall y \in \alpha, y \Vdash A$$

$$\alpha \Vdash^{\exists} A \equiv \exists y \in \alpha \text{ s. t. } y \Vdash A$$

$$\mathcal{M} = \langle W, N, [\![\cdot]\!] \rangle$$
 $\mathbb{N} : W \to \mathcal{P}(\mathcal{P}(W))$ s.t. $\emptyset \notin N(x)$ $[\![\cdot]\!] : Atm \to \mathcal{P}(W)$

Nesting for all x, for all $\alpha, \beta \in N(x)$, $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$ Centering for all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$

 $x \Vdash p > q$ iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} p$, then there is $\beta \in N(x)$ s.t. $\beta \subseteq \alpha$ and $\beta \Vdash^{\exists} p$ and $\beta \Vdash^{\forall} p \to q$

$$\alpha \Vdash^{\forall} A \equiv \forall y \in \alpha, y \Vdash A$$

$$\alpha \Vdash^{\exists} A \equiv \exists y \in \alpha \text{ s. t. } y \Vdash A$$

* Nesting For all x, for all $\alpha, \beta \in N(x)$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

★ Centering For all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$.

3

★ Nesting For all x, for all $\alpha, \beta \in N(x)$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

- **★** Normality For all x, $N(x) \neq \emptyset$.
- ★ Total reflexivity For all x, there is $\alpha \in N(x)$ such that $x \in \alpha$.
- ★ Weak centering For all x, $N(x) \neq \emptyset$ and for all $\alpha \in N(x)$, $x \in \alpha$.
- ★ Centering For all x, for all $\alpha \in N(x)$, $x \in \alpha$ and $\{x\} \in N(x)$.
- ★ Uniformity For all $x, y, \cup N(y) = \bigcup N(x)$.
- ★ Absoluteness For all x, y, N(x) = N(y).
- ★ Nesting For all x, for all $\alpha, \beta \in N(x)$, either $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$.

N

W

Proof systems for conditional logics

Sequent calculus for propositional logic [Gentzen, 1933-34]

Sequent calculus for propositional logic [Gentzen, 1933-34]

$$\Gamma, \Delta \text{ multisets of formulas} \qquad \Gamma \Rightarrow \Delta \, \rightsquigarrow \, \bigwedge \Gamma \to \bigvee \Delta$$

Sequent calculus for propositional logic [Gentzen, 1933-34]

$$\Gamma, \Delta$$
 multisets of formulas $\Gamma \Rightarrow \Delta \rightsquigarrow \bigwedge \Gamma \rightarrow \bigvee \Delta$

$$\operatorname{init} \frac{}{p,\Gamma \Rightarrow \Delta,p} \quad {}^{\perp} \frac{}{\perp,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{L}} \frac{\Gamma \Rightarrow \Delta,A \quad B,\Gamma \Rightarrow \Delta}{A \to B,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{R}} \frac{A,\Gamma \Rightarrow \Delta,B}{\Gamma \Rightarrow \Delta,A \to B}$$

Sequent calculus for propositional logic [Gentzen, 1933-34]

$$\Gamma, \Delta$$
 multisets of formulas $\Gamma \Rightarrow \Delta \rightsquigarrow \bigwedge \Gamma \rightarrow \bigvee \Delta$

$$\operatorname{init} \frac{}{p,\Gamma \Rightarrow \Delta,p} \quad {}^{\perp} \frac{}{\perp,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{L}} \frac{\Gamma \Rightarrow \Delta,A \quad B,\Gamma \Rightarrow \Delta}{A \to B,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{R}} \frac{A,\Gamma \Rightarrow \Delta,B}{\Gamma \Rightarrow \Delta,A \to B}$$

Proof systems for modal logics

Sequent calculus for propositional logic [Gentzen, 1933-34]

$$\Gamma, \Delta \text{ multisets of formulas} \qquad \Gamma \Rightarrow \Delta \, \rightsquigarrow \, \bigwedge \Gamma \rightarrow \bigvee \Delta$$

$$\operatorname{init} \frac{}{p,\Gamma\Rightarrow\Delta,p} \quad {}^{\perp}\frac{}{\perp,\Gamma\Rightarrow\Delta} \quad {}^{\rightarrow_{L}}\frac{\Gamma\Rightarrow\Delta,A\quad B,\Gamma\Rightarrow\Delta}{A\to B,\Gamma\Rightarrow\Delta} \quad {}^{\rightarrow_{R}}\frac{A,\Gamma\Rightarrow\Delta,B}{\Gamma\Rightarrow\Delta,A\to B}$$

Proof systems for modal logics → Adding modal rules:

$$\Box \frac{\Sigma \Rightarrow A}{\Box \Sigma, \Gamma \Rightarrow \Delta, \Box A}$$

$$\Box \Sigma = \Box B_1, \ldots, \Box B_k$$
, for $0 \le k$

Sequent calculus for propositional logic [Gentzen, 1933-34]

$$\Gamma, \Delta$$
 multisets of formulas $\Gamma \Rightarrow \Delta \rightsquigarrow \bigwedge \Gamma \rightarrow \bigvee \Delta$

$$\operatorname{init} \frac{}{p,\Gamma \Rightarrow \Delta,p} \quad {}^{\perp} \frac{}{\perp,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{L}} \frac{\Gamma \Rightarrow \Delta,A \quad B,\Gamma \Rightarrow \Delta}{A \rightarrow B,\Gamma \Rightarrow \Delta} \quad {}^{\rightarrow_{R}} \frac{A,\Gamma \Rightarrow \Delta,B}{\Gamma \Rightarrow \Delta,A \rightarrow B}$$

Proof systems for modal logics → Adding modal rules:

$$\Box \frac{\Sigma \Rightarrow A}{\Box \Sigma, \Gamma \Rightarrow \Delta, \Box A}$$

$$\Box \Sigma = \Box B_1, \ldots, \Box B_k$$
, for $0 \le k$

Problem for some systems of modal logics (S5), no **cut-free** Gentzen-style sequent calculus is known

$$\operatorname{cut} \frac{\Gamma \Rightarrow \Delta, \mathbf{A} \quad \mathbf{A}, \Gamma' \Rightarrow \Delta'}{\Gamma, \Gamma' \Rightarrow \Delta, \Delta'}$$

Solutions

Enrich the language of the calculus

Enrich the language of the calculus Labelled calculus [Negri, 2005]

Enrich the language of the calculus Labelled calculus [Negri, 2005]

**xRy \infty "x has access to y"

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

xRy \sim "x has access to y"

x: A \sim "x satisfies A"

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

 $xRy \rightsquigarrow "x \text{ has access to } y"$ $x:A \rightsquigarrow "x \text{ satisfies } A"$

Enrich the structure of sequents

Enrich the language of the calculus Labelled calculus [Negri, 2005]

**xRy \infty "x has access to y"

 $x: A \rightsquigarrow "x satisfies A"$

- Enrich the structure of sequents
 - Hypersequent calculus [Avron, 1996]

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

$$xRy \rightsquigarrow "x \text{ has access to } y"$$

 $x: A \rightsquigarrow "x \text{ satisfies } A"$

- Enrich the structure of sequents
 - Hypersequent calculus [Avron, 1996]

$$\Gamma_1 \Rightarrow \Delta_1 \mid \cdots \mid \Gamma_n \Rightarrow \Delta_n$$

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

$$xRy \rightsquigarrow "x \text{ has access to } y"$$

$$x: A \rightsquigarrow "x \text{ satisfies } A"$$

- Enrich the structure of sequents
 - Hypersequent calculus [Avron, 1996]

$$\Gamma_1 \Rightarrow \Delta_1 \mid \cdots \mid \Gamma_n \Rightarrow \Delta_n$$

Nested sequent calculi [Brünnler, 2009]

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

$$xRy \rightsquigarrow "x \text{ has access to } y"$$

$$x: A \rightsquigarrow "x \text{ satisfies } A"$$

- Enrich the structure of sequents
 - Hypersequent calculus [Avron, 1996]

$$\Gamma_1 \Rightarrow \Delta_1 \mid \cdots \mid \Gamma_n \Rightarrow \Delta_n$$

Nested sequent calculi [Brünnler, 2009]

$$\Delta$$
, $[\Delta_1]$, ..., $[\Delta_n]$

Enrich the language of the calculus

Labelled calculus [Negri, 2005]

$$xRy \rightsquigarrow "x \text{ has access to } y"$$

$$x: A \rightsquigarrow "x \text{ satisfies } A"$$

- Enrich the structure of sequents
 - Hypersequent calculus [Avron, 1996]

$$\Gamma_1 \Rightarrow \Delta_1 \mid \cdots \mid \Gamma_n \Rightarrow \Delta_n$$

Nested sequent calculi [Brünnler, 2009]

$$\Delta$$
, $[\Delta_1]$, ..., $[\Delta_n]$

> ...

Labelled calculi for conditional logics

 \square Countably many variables for worlds: $x, y, z \dots$ (labels)

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - $ightharpoonup xRy \rightsquigarrow "x \text{ has access to } y"$ (relational atoms)

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas

(relational atoms)

(labelled formulas)

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - xRy
 "x has access to y"

(relational atoms)
(labelled formulas)

Labelled sequent: $\mathcal{R}, \Gamma \Rightarrow \Delta$

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - \triangleright xRy \rightsquigarrow "x has access to y" (relational atoms)
 - $\triangleright x : A \iff "x \text{ satisfies } A"$ (labelled formulas)
- Labelled sequent: $\mathcal{R}, \Gamma \Rightarrow \Delta$
- Rules for □

$$\square_{L} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \square A} y! \qquad \square_{R} \frac{xRy, \mathcal{R}, x : \square A, y : A, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, x : \square A, \Gamma \Rightarrow \Delta}$$

 $x \Vdash \Box A$ iff for all $y s.t. xRy, y \Vdash A$

- \square Countably many variables for worlds: $x, y, z \dots$ (labels)
- Labelled formulas
 - \triangleright xRy \rightsquigarrow "x has access to y" (relational atoms)
 - $\triangleright x : A \rightsquigarrow "x \text{ satisfies } A"$ (labelled formulas)
- Labelled sequent: $\mathcal{R}, \Gamma \Rightarrow \Delta$
- Rules for

$$\Box_{L} \frac{xRy, \mathcal{R}, \Gamma \Rightarrow \Delta, y : A}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : \Box A} y! \quad \Box_{R} \frac{xRy, \mathcal{R}, x : \Box A, y : A, \Gamma \Rightarrow \Delta}{xRy, \mathcal{R}, x : \Box A, \Gamma \Rightarrow \Delta}$$

$$x \Vdash \Box A$$
 iff for all $y s.t. xRy, y \Vdash A$

Rules for frame conditions, example: transitivity

$$\operatorname{tr} \frac{xRz, xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}{xRy, yRz, \mathcal{R}, \Gamma \Rightarrow \Delta}$$

 \square Countably many variables for worlds x, y, z, ...

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

- \square Countably many variables for worlds x, y, z, ...
- \blacksquare Countably many variables for neighbourhoods a, b, c, ...
- Relational atoms

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...
- Relational atoms
 - ▶ $x \in a \rightsquigarrow$ "x is an element of a"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x) \rightsquigarrow$ "a is an element of N(x)"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \iff$ "a is included in b"

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x) \implies$ "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"
- □ Labelled formulas

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

Labelled formulas

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x) \implies$ "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

Labelled formulas

$$x \Vdash A > B$$
 iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} A$, then there is $\beta \in N(x)$ s.t. $\beta \subseteq \alpha$ and $\beta \Vdash^{\exists} A$ and $\beta \Vdash^{\forall} A \to B$

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

□ Labelled formulas

- ▶ $a \Vdash^{\exists} A \rightsquigarrow$ "A is satisfied at some world of a"

 $x \Vdash A > B$ iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} A$, then there is $\beta \in N(x)$ s.t. $\beta \subseteq \alpha$ and $\beta \Vdash^{\exists} A$ and $\beta \Vdash^{\forall} A \to B$

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

Labelled formulas

- ▶ $a \Vdash^{\exists} A \rightsquigarrow$ "A is satisfied at some world of a"
- ▶ $a \Vdash^{\forall} A \rightsquigarrow$ "A is satisfied at all worlds of a"

 $x \Vdash A > B$ iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} A$, then there is $\beta \in N(x)$ s.t. $\beta \subseteq \alpha$ and $\beta \Vdash^{\exists} A$ and $\beta \Vdash^{\forall} A \to B$

- \square Countably many variables for worlds x, y, z, ...
- \square Countably many variables for neighbourhoods a, b, c, ...

Relational atoms

- ▶ $x \in a \iff$ "x is an element of a"
- ▶ $a \in N(x)$ \rightsquigarrow "a is an element of N(x)"
- ▶ $a \subseteq b \rightsquigarrow$ "a is included in b"

□ Labelled formulas

- ▶ $a \Vdash^{\exists} A \rightsquigarrow$ "A is satisfied at some world of a"
- ▶ $a \Vdash^{\forall} A \iff$ "A is satisfied at all worlds of a"
- ▶ $x \Vdash_a A \mid B \implies$ "there is a $b \in N(x)$ such that $b \subseteq a, b \Vdash^{\exists} A$ and $b \Vdash^{\forall} A \rightarrow B$ "

 $x \Vdash A > B$ iff for all $\alpha \in N(x)$, if $\alpha \Vdash^{\exists} A$, then there is $\beta \in N(x)$ s.t. $\beta \subseteq \alpha$ and $\beta \Vdash^{\exists} A$ and $\beta \Vdash^{\forall} A \to B$

$$\begin{array}{c} \underset{>_{\mathbb{R}}}{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A > B} \text{ (a!)} \\ \\ \underset{>_{\mathbb{L}}}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A} \quad \underset{a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta} \\ \\ \underset{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \rightarrow B} \\ \\ \underbrace{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}_{\mathbb{L}} \\ \underbrace{c \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A, b \vdash^{\exists} A, c \vdash^{\exists} A, c$$

Rules for >

$$\frac{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A > B} \text{ (a!)}$$

$$\stackrel{\geq}{\underset{\geq}{\underset{\wedge}{\boxtimes}}} \frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, x : A > B}{a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \rightarrow B}{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_{a} A \mid B, \Gamma \Rightarrow \Delta} \text{ (al)}$$

- Rules for frame conditions, example: centering
- C For all x, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$C \frac{\{x\} \in N(x), \{x\} \subseteq a, a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Rules for >

Trules for
$$>_{\mathsf{R}} \frac{a \in \mathsf{N}(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A > B}$$
 (a!)
$$= \frac{a \in \mathsf{N}(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in \mathsf{N}(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}{a \in \mathsf{N}(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$= \frac{c \in \mathsf{N}(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in \mathsf{N}(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \Rightarrow B}{c \in \mathsf{N}(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}$$

$$= \frac{b \in \mathsf{N}(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \Rightarrow B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_{a} A \mid B, \Gamma \Rightarrow \Delta}$$
 (a!)

- Rules for frame conditions, example: centering
- C For all x, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$\mathtt{C}\frac{\{x\} \in \mathit{N}(x), \{x\} \subseteq \mathit{a}, \mathit{a} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{\mathit{a} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \text{single} \frac{\mathit{x} \in \{x\}, \{x\} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{\{x\} \in \mathit{N}(x), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Rules for >

Trules for
$$>$$

$$\frac{a \in N(x), \mathcal{R}, a \Vdash^{\exists} A, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}{\mathcal{R}, \Gamma \Rightarrow \Delta, x : A > B} \text{ (a!)}$$

$$\stackrel{\geq}{=} \frac{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta, a \Vdash^{\exists} A \quad a \in N(x), \mathcal{R}, x \Vdash_{a} A \mid B, x : A > B, \Gamma \Rightarrow \Delta}{a \in N(x), \mathcal{R}, x : A > B, \Gamma \Rightarrow \Delta}$$

$$\frac{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\exists} A \quad c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B, c \Vdash^{\forall} A \rightarrow B}{c \in N(x), c \subseteq a, \mathcal{R}, \Gamma \Rightarrow \Delta, x \Vdash_{a} A \mid B}$$

$$\frac{b \in N(x), b \subseteq a, \mathcal{R}, c \Vdash^{\exists} A, c \Vdash^{\forall} A \rightarrow B, \Gamma \Rightarrow \Delta}{\mathcal{R}, x \Vdash_{a} A \mid B, \Gamma \Rightarrow \Delta} \text{ (a!)}$$

- Rules for frame conditions, example: centering
- C For all x, for all $\alpha \in N(x)$, $\{x\} \in N(x)$ and $x \in \alpha$

$$\mathtt{C}\,\frac{\{x\}\in \mathit{N}(x),\{x\}\subseteq a,\,a\in \mathit{N}(x),\mathcal{R},\Gamma\Rightarrow\Delta}{a\in \mathit{N}(x),\mathcal{R},\Gamma\Rightarrow\Delta} \qquad \mathsf{single}\,\frac{x\in\{x\},\{x\}\in \mathit{N}(x),\mathcal{R},\Gamma\Rightarrow\Delta}{\{x\}\in \mathit{N}(x),\mathcal{R},\Gamma\Rightarrow\Delta}$$

$$\underset{\mathsf{Repl}_{1}}{\mathsf{Repl}_{1}} \frac{y \in \{x\}, At(y), At(x), \mathcal{R}, \Gamma \Rightarrow \Delta}{y \in \{x\}, At(x), \mathcal{R}, \Gamma \Rightarrow \Delta} \qquad \underset{\mathsf{Repl}_{2}}{\mathsf{Repl}_{2}} \frac{y \in \{x\}, At(x), At(y), \mathcal{R}, \Gamma \Rightarrow \Delta}{y \in \{x\}, At(y), \mathcal{R}, \Gamma \Rightarrow \Delta}$$

Example

Axiom c
$$(A \land B) \rightarrow (A > B)$$

Single
$$\frac{\sum_{\mathbb{R}^{3}}^{1} \dots x \in \{x\}, x : p \Rightarrow \{x\} \Vdash^{3} p, x : p}{\sum_{\mathbb{R}^{3}}^{1} \dots x \in \{x\}, x : p \Rightarrow \{x\} \Vdash^{3} p} = \frac{\sum_{\mathbb{R}^{3}}^{1} \frac{y \in \{x\}, \dots, y : q, y : p \Rightarrow y : q}{y \in \{x\}, \dots, y : q \Rightarrow y : p \rightarrow q}}{\sum_{\mathbb{R}^{3}}^{1} \frac{y \in \{x\}, \dots, y : q \Rightarrow y : p \rightarrow q}{y \in \{x\}, \dots, x : q \Rightarrow y : p \rightarrow q}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \{x\}, \dots, x : q \Rightarrow x \vdash q p \mid q}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \frac{x \in \mathbb{R}^{3} \times \mathbb{R}^{3}}{\sum_{\mathbb{R}^{3}}^{1} \times \mathbb{R}^{3}}$$

For L any logic in the conditional lattice

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

For *L* any logic in the conditional lattice

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice without absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

For *L* any logic in the conditional lattice

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice without absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. Show that if A is not provable, we can construct a finite countermodel for it (easy).

For *L* any logic in the conditional lattice

Theorem (Completeness, I). If A is derivable from the axioms for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. By proving cut-admissibility (easy).

For L any logic in the conditional lattice without absoluteness

Theorem (Completeness, II). If A is valid in the class of models for L, then $\Rightarrow x : A$ is provable in the labelled calculus for L.

Proof. Show that if *A* is not provable, we can construct a finite countermodel for it (easy). We need to show termination (difficult).

Sequent calculi with blocks for (some) Lewis' logics

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]
$$[\Sigma \lhd C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \lessdot C)$$

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]
$$[\Sigma \lhd C] \quad \rightsquigarrow \quad \bigvee_{B \in \Sigma} (B \lessdot C)$$
 Example $[A, B \lhd C] \quad \rightsquigarrow \quad (A \lessdot C) \lor (B \lessdot C)$

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]
$$[\Sigma \lhd C] \quad \leadsto \quad \bigvee_{B \in \Sigma} (B \leqslant C)$$

Example
$$[A, B \triangleleft C] \longrightarrow (A \leqslant C) \lor (B \leqslant C)$$

Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$

Blocks (
$$\Sigma$$
 multiset of formulas) [Olivetti & Pozzato, 2015]
$$[\Sigma \lhd C] \quad \rightsquigarrow \quad \bigvee_{B \in \Sigma} (B \lessdot C)$$
 Example $[A, B \lhd C] \quad \rightsquigarrow \quad (A \lessdot C) \lor (B \lessdot C)$ Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$ $\Gamma \Rightarrow \Delta, [\Sigma_1 \lhd C_1], \ldots, [\Sigma_k \lhd C_k]$

Blocks
$$(\Sigma \text{ multiset of formulas})$$
 [Olivetti & Pozzato, 2015]
$$[\Sigma \lhd C] \quad \rightsquigarrow \quad \bigvee_{B \in \Sigma} (B \lessdot C)$$
 Example $[A, B \lhd C] \quad \rightsquigarrow \quad (A \lessdot C) \lor (B \lessdot C)$ Sequents with blocks $(\Gamma, \Delta \text{ multisets of formulas})$
$$\Gamma \Rightarrow \Delta, [\Sigma_1 \lhd C_1], \ldots, [\Sigma_k \lhd C_k] \quad \rightsquigarrow$$

$$\bigwedge \Gamma \rightarrow \bigvee \Delta \lor (\bigvee_{B \in \Sigma_1} (B \lessdot C_1)) \lor \cdots \lor (\bigvee_{B \in \Sigma_k} (B \lessdot C_k))$$

Rules for V

$$^{\mathrm{init}} \frac{}{\Gamma, \, p \Rightarrow p, \Delta} \quad {^{\perp_{\mathrm{L}}}} \frac{}{\Gamma, \, \perp \Rightarrow \Delta} \quad {^{\rightarrow_{\mathrm{R}}}} \frac{\Gamma, \, A \Rightarrow \Delta, \, B}{\Gamma \Rightarrow \Delta, \, A \rightarrow B} \quad {^{\rightarrow_{\mathrm{L}}}} \frac{\Gamma, \, B \Rightarrow \Delta \quad \Gamma \Rightarrow \Delta, \, A}{\Gamma, \, A \rightarrow B \Rightarrow \Delta}$$

$$\begin{split} & \operatorname{init} \frac{}{\Gamma, \rho \Rightarrow \rho, \Delta} \quad {}^{\perp_{L}} \frac{}{\Gamma, \bot \Rightarrow \Delta} \quad {}^{\rightarrow_{R}} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \rightarrow B} \quad {}^{\rightarrow_{L}} \frac{\Gamma, B \Rightarrow \Delta \quad \Gamma \Rightarrow \Delta, A}{\Gamma, A \rightarrow B \Rightarrow \Delta} \\ & \qquad {}^{\leq_{R}} \frac{\Gamma \Rightarrow \Delta, [A \lhd B]}{\Gamma \Rightarrow \Delta, A \leqslant B} \end{split}$$

init
$$\frac{\Gamma, \rho \Rightarrow \rho, \Delta}{\Gamma, \rho \Rightarrow \rho, \Delta} \xrightarrow{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \bot \Rightarrow \Delta} \xrightarrow{\to_R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{\to_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow B}{\Gamma, A \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{}_{\bot} \frac{\Gamma, A \Rightarrow \Delta, A \Rightarrow \Delta, A \Rightarrow \Delta}{\Gamma, A \Rightarrow \Delta, A \Rightarrow \Delta, A \Rightarrow \Delta, A \Rightarrow \Delta,$$

com -

 $\Gamma \Rightarrow \Delta$, $[\Sigma_1 \triangleleft A]$, $[\Sigma_2 \triangleleft B]$

Rules for V

$$\inf \frac{\Gamma, P \Rightarrow P, \Delta}{\Gamma, P \Rightarrow P, \Delta} \xrightarrow{\bot_L} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma, \bot \Rightarrow \Delta} \xrightarrow{\to_R} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \Rightarrow B} \xrightarrow{J_L} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{I_L} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{I_L} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{I_L} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{I_L} \frac{\Gamma, A \Rightarrow \Delta, A}{\Gamma, A \Rightarrow B} \xrightarrow{I_L} \frac{B \Rightarrow \Sigma}{\Gamma, A \Rightarrow \Delta, [\Sigma \triangleleft B]} \xrightarrow{\Gamma, A \Rightarrow B} \frac{B \Rightarrow \Sigma}{\Gamma, A \Rightarrow \Delta, [\Sigma \triangleleft B]} \xrightarrow{\Gamma, A \Rightarrow B} \frac{\Gamma, A \Rightarrow B, \Sigma}{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \frac{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]}{\Gamma, A \Rightarrow B, \Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \xrightarrow{\Gamma, A \Rightarrow B} \xrightarrow{\Gamma, A \Rightarrow \Delta, [\Sigma, A \Rightarrow B]} \xrightarrow{\Gamma, A \Rightarrow \Delta, [$$

Rules for V

$$\begin{split} & \text{init} \, \frac{\Gamma, \rho \Rightarrow \rho, \Delta}{\Gamma, \rho \Rightarrow \rho, \Delta} \quad \stackrel{\bot_L}{} \frac{\Gamma, L \Rightarrow \Delta}{\Gamma, \bot \Rightarrow \Delta} \quad \stackrel{\to_R}{} \frac{\Gamma, A \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \Rightarrow B} \quad \stackrel{\bot_L}{} \frac{\Gamma, B \Rightarrow \Delta}{\Gamma, A \Rightarrow B \Rightarrow \Delta} \\ & \stackrel{\leqslant_R}{} \frac{\Gamma \Rightarrow \Delta, [A \lhd B]}{\Gamma \Rightarrow \Delta, A \leqslant B} \quad \text{jump} \frac{B \Rightarrow \Sigma}{\Gamma \Rightarrow \Delta, [\Sigma \lhd B]} \\ & \stackrel{\leqslant_L}{} \frac{\Gamma, A \leqslant B \Rightarrow \Delta, [B, \Sigma \lhd C] \quad \Gamma, A \leqslant B \Rightarrow \Delta, [\Sigma \lhd C], [\Sigma \lhd A]}{\Gamma, A \leqslant B \Rightarrow \Delta, [\Sigma \lhd C]} \\ & \stackrel{\varsigma_L}{} \frac{\Gamma \Rightarrow \Delta, [\Sigma_1, \Sigma_2 \lhd A], [\Sigma_2 \lhd B] \quad \Gamma \Rightarrow \Delta, [\Sigma_1 \lhd A], [\Sigma_1, \Sigma_2 \lhd B]}{\Gamma \Rightarrow \Delta, [\Sigma_1 \lhd A], [\Sigma_2 \lhd B]} \\ & \stackrel{\searrow_L}{} \frac{\bot \leqslant A, \Gamma \Rightarrow \Delta}{\Lambda \Rightarrow B, \Gamma \Rightarrow \Delta} \quad \stackrel{\searrow_R}{} \frac{(A \land \neg B) \leqslant A, \Gamma \Rightarrow \Delta, [\bot \lhd A]}{\Gamma \Rightarrow \Delta, A \Rightarrow B} \\ & A \Rightarrow B := (\bot \leqslant A) \lor \neg ((A \land \neg B) \leqslant (A \lor B)) \end{split}$$

Rules for extensions, example: centering

$$\mathtt{C}\frac{A,\Gamma\Rightarrow\Delta\quad\Gamma\Rightarrow\Delta,B}{A\leqslant B,\Gamma\Rightarrow\Delta}$$

Examples

Axiom
$$(A \leqslant B) \lor (B \leqslant A)$$

$$\lim_{\text{jump}} \frac{\text{init } \overline{b \Rightarrow a, b}}{\Rightarrow a \leqslant b, b \leqslant a, [a, b \lhd b], [b \lhd a]} \xrightarrow{\text{jump}} \frac{\text{init } \overline{a \Rightarrow a, b}}{\Rightarrow a \leqslant b, b \leqslant a, [a \lhd b], [a, b \lhd a]}$$

$$\Rightarrow a \leqslant b, b \leqslant a, [a \lhd b], [b \lhd a]$$

$$\Rightarrow a \leqslant b, b \leqslant a, [a \lhd b]$$

$$\Rightarrow a \leqslant b, b \leqslant a$$

$$\Rightarrow a \leqslant b, b \leqslant a$$

$$\Rightarrow (a \leqslant b) \lor (b \leqslant a)$$
Axiom c $(A \lor B) \to (A > B)$

$$\downarrow^{\Lambda_L} \frac{p, p, q \Rightarrow [\bot \lhd p]}{p, \neg q, p, q \Rightarrow [\bot \lhd p]} \quad p, q \Rightarrow [\bot \lhd p], p$$

$$\downarrow^{\Lambda_L} \frac{p, \neg q, p, q \Rightarrow [\bot \lhd p]}{p, \neg q, p, q \Rightarrow [\bot \lhd p]} \quad p, q \Rightarrow [\bot \lhd p], p$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

$$\downarrow^{\Lambda_L} \frac{p, q \Rightarrow p > q}{p, q \Rightarrow p > q}$$

For L any logic in V, VN, VT, VW, VC, VA, VNA

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

For L any logic in V, VN, VT, VW, VC, VA, VNA

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

For L any logic in V, VN, VT, VW, VC, VA, VNA

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

Theorem (Completeness, II). If A is valid in the class of models for L, then A is provable in the labelled calculus for L.

For L any logic in V, VN, VT, VW, VC, VA, VNA

Theorem (Completeness, I). If A is derivable from the axioms for L, then A is provable in the sequent calculus w. blocks for L.

Proof. For V, by proving cut-admissibility (difficult). For the other logics, by simulating cut-free proofs of a non-standard calculus.

Theorem (Completeness, II). If A is valid in the class of models for L, then A is provable in the labelled calculus for L.

Proof. Show that if *A* is not provable, we can construct a finite countermodel for it (difficult). We need to show termination (easy).

Labelled calculi for all the logics [G, Negri, Olivetti, 2021]

- Labelled calculi for all the logics [G, Negri, Olivetti, 2021]
- Sequent calculus with blocks for V, VN, VT, VW, VC, VA, VNA
 [G, Lellmann, Olivetti, Pozzato, 2016]

- Labelled calculi for all the logics [G, Negri, Olivetti, 2021]
- Sequent calculus with blocks for V, VN, VT, VW, VC, VA, VNA
 [G, Lellmann, Olivetti, Pozzato, 2016]
- Hypersequent calculus with blocks for logics VTU, VWU, VCU, VTA, VWA, VCA [G, Lellmann, Olivetti, Pozzato, 2017]

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

Current & Future work:

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

Current & Future work:

► Explore the proof theory of logics with the comparative plausibility operator, **without** nesting [Dalmonte, G, 2022]

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

Current & Future work:

- Explore the proof theory of logics with the comparative plausibility operator, without nesting [Dalmonte, G, 2022]
- Evaluating ceteris paribus counterfacuals [Delkos, G, Arxiv]

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

Current & Future work:

- Explore the proof theory of logics with the comparative plausibility operator, without nesting [Dalmonte, G, 2022]
- Evaluating ceteris paribus counterfacuals [Delkos, G, Arxiv]
- ► Explore the proof theory of intuitionistic conditional logics [Ciardelli, Liu, 2019]

	formula interpretation	direct cut adm.	termination of proof search	countermodel construction
labelled	no	easy	difficult	easy
blocks	yes	difficult	easy	difficult

Current & Future work:

- Explore the proof theory of logics with the comparative plausibility operator, without nesting [Dalmonte, G, 2022]
- Evaluating ceteris paribus counterfacuals [Delkos, G, Arxiv]
- ► Explore the proof theory of intuitionistic conditional logics [Ciardelli, Liu, 2019]

Thank you!