CS608-SPRING2023: ALGORITHMS & COMPUTING THEORY

Assignment#1 - TOTAL POINTS: 100

DUE DATE: 02/19/2023 (FEB 19th)

S.No.	Questions	Points	Self- Assessment
1	Find the Time Complexity of the recurrence relation $T(n) = T(n-1) + n$. Hint: Refer Week2, Slide40.	25	
2	Draw a recursive tree for the computation of power(2,5) and give O(n). Hint: Refer Week2, Slides38,26.	25	
3	Write a recursive algorithm for finding the maximum element in a sequence, S, of n elements. Give Pseudocode. What is the running time and space usage of this Algorithm? Hint: Refer Week2, Slide21.	25	
4	Arrange the below sequences according to the order of complexity: A. n^3 , $10\log n$, $57\sqrt{n}$, $495\log \log n$, 2^n . B. $6897n\log n$, $5n^5$, $2n^n$, $85\log n$, $10000n$. C. $2n\sqrt{n}$, 36485 , $73[n/2]$, 2^{18} , $5n^2$. Hint: Refer Week1, slide26	25	

Submission:

- Submit a word document with a detailed explanation of the problem and draw diagrams wherever necessary. You can also write and draw on paper and scan to submit (you can upload hand-drawn clear scanned pages).
- You may not be graded full points if your submissions are not clear or unreadable.
- Late submission of up to one week will incur a 10% loss of total points earned. 5% every week thereafter.
- Attach this file with self-assessment. This is for your reference if you answered all the questions completely.