Demo for Insight Interview: Predict Time Series with ARIMA & HMM

Chaoyi (Mina) Zheng 30 July, 2019

Load Data

This data represents monthly number of major cancer surgery in New York State in a ten year period from 1997 to 2006. There are 120 data pionts in total.

```
total <- read.csv('C:/Users/zcyhi/Downloads/data.csv')
total <- total %>%
  select(month, total)
kable(head(total), row.names=FALSE) %>% kable_styling(bootstrap_options = "striped", ful
l_width = F)
```

month	total
1	1309
2	1057
3	1166
4	1196
5	1206
6	1171

 $\label{local_styling} $$ kable(tail(total), row.names=FALSE) \%>\% \ kable_styling(bootstrap_options = "striped", full_width = F) $$$

month	total
115	1338
116	1482
117	1396

month	total
118	1415
119	1450
120	1260

Recode Key Variables

This step prepares variables for subsequent modeling.

month	total	lag1	lag2	post	monthpost	monthdummy	date	cos	sin
54	1378	1427	1282	0	0	6	2001- 06-01	-1.0000000	0.0000000
55	1339	1378	1427	0	0	7	2001- 07-01	-0.8660254	-0.5000000
56	1340	1339	1378	0	0	8	2001- 08-01	-0.5000000	-0.8660254
57	1167	1340	1339	0	0	9	2001- 09-01	0.0000000	-1.0000000
58	1420	1167	1340	1	1	10	2001- 10-01	0.5000000	-0.8660254

m	onth	total	lag1	lag2	post	monthpost	monthdummy	date	cos	sin
	59	1326	1420	1167	1	2	11	2001- 11-01	0.8660254	-0.5000000
	60	1234	1326	1420	1	3	0	2001- 12-01	1.0000000	0.0000000
	61	1477	1234	1326	1	4	1	2002- 01-01	0.8660254	0.5000000
	62	1263	1477	1234	1	5	2	2002- 02-01	0.5000000	0.8660254
	63	1303	1263	1477	1	6	3	2002- 03-01	0.0000000	1.0000000

Plot Data

```
ggplot(total, aes(x = date, y = total, colour = as.factor(post))) +
  geom_point() +
  geom_path() +
  labs(y = '', x = '') +
  scale_colour_discrete(name = "", labels = c("Pre-Expansion", "Post-Expansion")) +
  theme_minimal() +
  theme(legend.position = 'bottom', plot.title = element_text(hjust = 0.5)) +
  ggtitle("Monthly Total Number of Cancer Surgery Cases")
```


Segmented Linear Regression (OLS)

The standard approach is to regress the outcome measure (total) on time (month), indicator for intervention (post), and post-intervention time (postmonth). As results from this section shows, the residuals from this model are still autocorrelated, indicating this model is not adequate.

We build models using the first 9 years of data, saving the last 1 year of data for testing. Prediction accuracy is measured by sum of squared errors (SSE).

ARIMA Model with 1st Order and Seasonal Autoregression

term estimate std.error statistic p.value

term	estimate	std.error	statistic	p.value
ar1	-0.1990809	0.0995724	-1.9993575	0.0455697
sar1	0.4882089	0.0899229	5.4291950	0.0000001
intercept	1185.9924203	19.2646882	61.5630220	0.0000000
month	2.7088977	0.5231431	5.1781200	0.0000002
post	-23.3213241	20.7340594	-1.1247833	0.2606809
monthpost	-0.8489078	0.8682474	-0.9777258	0.3282100

```
ar.pred <- predict(ar, 12, newxreg = total[109:120, c(1,5,6)])$pred
ar.sse <- sum((ar.pred-total[109:120, 2])^2)

(acf(residuals(ar), main = 'ACF of AR(1)X(12) Model'))</pre>
```

ACF of AR(1)X(12) Model


```
##
## Autocorrelations of series 'residuals(ar)', by lag
##
                                           5
                      2
                             3
                                                  6
##
           0.004 0.043 0.158 -0.012 0.048 -0.010 -0.096 0.043 0.163
##
    1.000
##
                     12
                            13
                                   14
                                          15
                                                 16
                                                        17
                                                                18
                                                                       19
   0.038 -0.095 -0.042 -0.107 0.082 -0.061 -0.226 -0.018 -0.083 -0.123
##
##
## -0.068
```

```
(ar.qtest <- c(
   Box.test(residuals(ar), type="Ljung-Box", lag=6)$p.value,
   Box.test(residuals(ar), type="Ljung-Box", lag=12)$p.value,
   Box.test(residuals(ar), type="Ljung-Box", lag=18)$p.value,
   Box.test(residuals(ar), type="Ljung-Box", lag=24)$p.value
))</pre>
```

```
## [1] 0.7685199 0.6777519 0.3578611 0.2017350
```

HMM with 1st-Order Autoregression and Fourier Seasonal Terms

This section fits a hidden Markov model (HMM) with 3 states for the latent Markov chain and normally distributed source distributions. This model also accounts for first-order autocorrelation and seasonal pattern.

```
## converged at iteration 74 with logLik: -539.8393
```

```
## Convergence info: Log likelihood converged to within tol. (relative change)
## 'log Lik.' -539.8393 (df=32)
## AIC: 1143.679
## BIC: 1228.909
```

OBTAIN PARAMETER ESTIMATES

TRANSITION MATRIX

kable(trans <- t(matrix(getpars(fm.lag)[4:12], c(3,3)))) %>% kable_styling(bootstrap_op
tions = "striped", full_width = F)

0.2364537	0.6764410	0.0871053
0.6263355	0.0000004	0.3736641
0.7170669	0.1913419	0.0915912

OTHER PARAMETERS

kable(pars <- cbind(getpars(fm.lag)[13:19],getpars(fm.lag)[21:27],getpars(fm.lag)[29:3
5])) %>% kable_styling(bootstrap_options = "striped", full_width = F)

(Intercept)	2313.0692815	1292.4902549	974.4524602
month	6.1474732	-1.4065804	4.1815895
monthpost	-0.9921967	3.6738858	-1.1263824
post	-119.9130717	40.0750409	-55.4206261
lag1	-0.9702878	0.0200643	0.1241805
cos	-16.3172782	-88.1384443	14.2784040
sin	29.3766873	29.0132211	48.0836843

```
## INITIAL AND ENDING DISTRIBUTIONS
init<-t(matrix(getpars(fm.lag)[1:3], c(3,1)))</pre>
end.distr <- as.matrix(posterior(fm.lag)[106,2:4])</pre>
## PREDICTED VALUES FOR YEARS 1997 TO 2005
base <- cbind.data.frame(</pre>
  rep(1,106),
  select(total[3:108,], month, monthpost, post, lag1, cos, sin))
base <- as.matrix(base) %*% pars</pre>
pred<-NULL
for (i in 1 : 106){
  pred<-c(pred, as.matrix(attributes(fm.lag)$posterior[i,2:4]) %*% base[i,])</pre>
}
## SSE FOR FORECAST VALUES FOR YEAR 2006
forecast.base <- cbind.data.frame(</pre>
  rep(1,12),
  select(total[109:120,], month, monthpost, post, lag1, cos, sin))
forecast.distr <- matrix(0, nrow = 12, ncol = 3)</pre>
for (i in (1:12)){
  forecast.distr[i,] <- end.distr %*% (trans %^% i)</pre>
}
forecast.m <- as.matrix(forecast.base) %*% as.matrix(pars)</pre>
hmm.forecast <- NULL
for (i in (1:12)){
  hmm.forecast <- c(hmm.forecast, forecast.m[i,] %*% t(t(forecast.distr[i,])))</pre>
}
hmm.sse <- sum((hmm.forecast-total$total[109:120])^2)</pre>
## EXAMINE DISTRIBUTION OF PSEUDO-RESIDUALS
design <- cbind.data.frame(</pre>
  rep(1,106),
  select(total[3:108,], month, monthpost, post, lag1, cos, sin))
HidMarkov <- mmglm1(</pre>
  total[3:108, 2],
  Pi = trans,
  delta = c(1,0,0),
  glmfamily = gaussian(link = "identity"),
  beta = pars,
  Xdesign = as.matrix(design),
  sigma = c(getpars(fm.lag)[c(20,28,36)]))
res <- residuals(HidMarkov)
```

```
plot(density(res), main="Gaussian HMM: Pseudo Residuals")
box()
```

Gaussian HMM: Pseudo Residuals


```
qqnorm(res, main="Gaussian HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)
```

Gaussian HMM: Q-Q Plot of Pseudo Residuals

Summary: Compare Predictions and Forecast between ARIMA and HMM

```
pred.table = cbind.data.frame(
  1:106,
  total[3:108, 2],
  total[3:108, 2] - residuals(ar)[3:108],
)
colnames(pred.table) <- c('Time', 'Observed', 'Predicted: ARIMA', 'Predicted: HMM')</pre>
pred.table <- pred.table %>%
  mutate(`Residual: ARIMA` = `Predicted: ARIMA` - Observed,
         `Residual: HMM` = `Predicted: HMM` - Observed)
pred.values <- melt(pred.table[, 1:4], id.vars = c('Time', 'Observed'))</pre>
res.values <- melt(pred.table[, c(1,2,5,6)], id.vars = c('Time', 'Observed'))
(ggplot(data=pred.values) +
  geom_line(aes(x = Time, y = Observed), alpha = 0.6) +
  geom_point(aes(x = Time, y = value, colour = variable))) +
  theme minimal() +
  theme(legend.position = 'bottom', plot.title = element_text(hjust = 0.5)) +
  labs(y = '', x = '') +
  scale_colour_discrete(name = "") +
  ggtitle("Predicted vs. Observed")
```



```
summary.table = cbind.data.frame(
    c('OLS', 'ARIMA', 'HMM'),
    c(lm.sse, ar.sse, hmm.sse),
    c(AIC(lm), AIC(ar), NA))
colnames(summary.table) = c('Model', 'Forecast SSE', 'AIC')
kable(summary.table) %>% kable_styling(bootstrap_options = "striped", full_width = F)
```

Model	Forecast SSE	AIC
OLS	167141.5	1252.629
ARIMA	125742.6	1220.973
НММ	107104.0	NA