

## Análise comparativa de redes neurais convolucionais na classificação de tumores pulmonares

Thiago Henrique Leite da Silva

Orientadora: Prof. Dra. Lilian Berton

Universidade Federal de São Paulo Bacharelado em Ciência da Computação



#### Sumário

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Revisão Bibliográfica
- 4. Proposta de Trabalho
- 5. Resultados
- 6. Considerações Finais
- 7. Referências





- Definição do termo câncer;
- Letalidade da doença;
- Impactos e desafios da demora no diagnóstico;
- Justificativas do trabalho.



## Taxa de mortalidade por tipo de câncer em 2020

 Aproximadamente 18% dos casos de morte nesse ano foram relacionados ao câncer de pulmão.

#### Estimated number of deaths in 2020, worldwide, both sexes, all ages



......

Fonte: Organização Mundial da Saúde



- Analisar o desempenho de redes neurais convolucionais clássicas no reconhecimento do câncer de pulmão, visando identificar a abordagem mais adequada para auxiliar profissionais de saúde no diagnóstico da doença.





- 1. Investigar e apresentar as vantagens da utilização de redes neurais convolucionais para o processamento de imagens no contexto do diagnóstico de câncer de pulmão;
- 2. Realizar uma análise comparativa do desempenho de diferentes arquiteturas de redes neurais convolucionais no processamento das imagens de nódulos pulmonares;
- 3. Aplicar heat maps para identificar as regiões mais relevantes na imagem para as redes neurais convolucionais.





- Definição;
- Redes Neurais;
- Redes Neurais Convolucionais;





- Definição;
- Relevância desse Processo;
- Data Augmentation;



# Gradient-weighted Class Activation Mapping (Grad-CAM)

- Técnica de visualização que permite entender quais partes de uma imagem são mais relevantes para a classificação feita por uma rede neural.



Figura 39 – Dataset Binário - Xception -Mapa de calor para tumor benigno

Fonte: O Autor





| Referência                     | Metodologia   | Resultados                                                             |
|--------------------------------|---------------|------------------------------------------------------------------------|
| (ALAM; ALAM; HOSSAN, 2018)     | GLCM          | Identificação - 97.00%<br>Predição do Câncer - 87.00%                  |
| (HUANG et al., 2020)           | ELM & DTCNN   | Acurácia - 94.57%                                                      |
| (NISHIO et al., 2018)          | SVM & XGBoost | Acurácia:<br>SVM - 85.00%<br>XGBoost - 89.60%                          |
| (RODRIGUES et al., 2018)       | MLP, SVM, KNN | Acurácia:<br>MLP - 95.40%<br>SVM - 96.70%<br>KNN - 95.30%              |
| (NASSER; ABU-NASER, 2019)      | ANN           | Acurácia - 96.67%                                                      |
| (Poreva et. al, 2017)          | DT & SVM      | Acurácia:<br>DT - 72.00%<br>SVM - 75.00%                               |
| (TRAN et al., 2019)            | 2D CNN        | Acurácia - 97.20%<br>Sensibilidade - 96.00%<br>Especificidade - 97.30% |
| (DOU et al., 2016)             | 3D CNN        | Sensibilidade - 87.00%<br>Especificidade - 99.10%                      |
| (SKOURT; HASSANI; MAJDA, 2018) | U-Net         | Acurácia - 95.02%                                                      |



#### Seleção das Redes Neurais Convolucionais

- Foram selecionadas redes neurais convolucionais clássicas para a análise comparativa proposta:
  - VGG16;
  - VGG19;
  - Resnet;
  - Xception.



- Inclui 22.484 imagens de tomografias computadorizadas dos pulmões de 70 pacientes;
- Possui duas classes: tumores malignos e tumores benignos.



Fonte: O Autor



- Inclui 1.097 imagens de tomografias computadorizadas dos pulmões de 110 pacientes diagnosticados com câncer de pulmão em diferentes estágios, bem como indivíduos saudáveis;
- Possui três classes: **tumores malignos**, **tumores benignos** e pulmões **normais** (sem tumor).



#### Metodologia

- 1. Pré-processamento das imagens;
- 2. Execução dos modelos no dataset binário;
- 3. Aplicação da técnica de Grad-CAM para imagens do dataset binário;
- 4. Avaliação dos resultados e seleção das duas redes com melhor desempenho;
- 5. Execução dos modelos no dataset multiclasse;
- 6. Aplicação da técnica de Grad-CAM para imagens do dataset multiclasse;
- 7. Avaliação dos novos resultados;
- 8. Conclusões.



#### **Conhecendo os Termos**

- **Acurácia**: porcentagem de exemplos classificados corretamente em relação ao total de exemplos;
- **Perda**: medida de quão distantes as previsões do modelo estão dos valores reais;
- **Precisão**: indica quantas das previsões positivas do modelo são realmente verdadeiras;
- Recall: é uma medida de sensibilidade que indica quantos dos exemplos positivos o modelo conseguiu encontrar;
- **F1 Score**: é uma métrica que combina a precisão e o *recall* em uma única medida, útil quando queremos uma avaliação geral do desempenho do modelo;
- **Matriz de confusão**: A matriz de confusão é uma tabela que mostra a contagem de exemplos classificados corretamente e incorretamente pelo modelo para cada classe;
- **Parâmetros**: são os valores que a rede aprende durante o treinamento;

#### Dataset Binário: Pré-processamento das Imagens



#### Dataset Binário: Parâmetros da Execução

- 70 épocas;
- Função de perda: binary crossentropy;
- Função de ativação: sigmoid com uma unidade;
- Otimizador: Adam com taxa de aprendizado de 10e-5.

#### Dataset Binário: Execução dos Modelos

Tabela 4 - Dataset Binário - Resumo dos resultados do modelo VGG16

| Acurácia | 0.96147 |
|----------|---------|
| Perda    | 0.11648 |
| Precisão | 0.92701 |
| F1 Score | 0.96196 |
| Recall   | 1.0     |

Tabela 6 - Dataset Binário - Resumo dos resultados do modelo Resnet

| Acurácia | 0.99109 |
|----------|---------|
| Perda    | 0.02350 |
| Precisão | 0.98211 |
| F1 Score | 0.99106 |
| Recall   | 1.0     |

Tabela 5 - Dataset Binário - Resumo dos resultados do modelo VGG19

| Acurácia | 0.99371 |
|----------|---------|
| Perda    | 0.02032 |
| Precisão | 0.99569 |
| F1 Score | 0.99343 |
| Recall   | 0.99143 |

Tabela 7 - Dataset Binário - Resumo dos resultados do modelo Xception

| Acurácia | 0.99868 |
|----------|---------|
| Perda    | 0.00429 |
| Precisão | 0.99786 |
| F1 Score | 0.99856 |
| Recall   | 0.99946 |









#### Dataset Binário: Técnica de Grad-CAM



Figura 32 – Dataset Binário - VGG16 -Mapa de calor para tumor benigno

Fonte: O Autor



Figura 34 – Dataset Binário - VGG19 - Mapa de calor para tumor benigno

Fonte: O Autor



Figura 36 - Dataset Binário - Resnet -Mapa de calor para tumor benigno

Fonte: O Autor



Figura 38 – Dataset Binário - Xception -Mapa de calor para tumor benigno

Fonte: O Autor



Tabela 8 - Quantidade de parâmetros dos modelos treinados

| Modelo   | Parâmetros |
|----------|------------|
| VGG16    | 14.953.313 |
| VGG19    | 20.263.009 |
| Xception | 21.542.473 |
| Resnet   | 24.268.705 |

#### Dataset Binário: Matriz de Confusão





- Todos os modelos selecionados apresentaram desempenho bastante satisfatório para o problema de classificação binária;
- Pode-se observar que os modelos com maior quantidade de parâmetros, como a Resnet e
   Xception, tiveram uma vantagem em relação aos modelos baseados na arquitetura
   VGG16 e VGG19;
- Os modelos que obtiveram os melhores resultados foram aqueles que possuíam uma maior quantidade de parâmetros e que classificavam como parte mais relevante da imagem toda a abrangência dos pulmões na aplicação da técnica de Grad-CAM.

#### Dataset Multiclasse: Parâmetros da Execução

- 35 épocas;
- Função de perda: sparse categorical crossentropy;
- Função de ativação: softmax com três unidade;
- Otimizador: Adam com taxa de aprendizado de 10e-5.



Tabela 9 - Dataset Multiclasse - Resumo dos resultados do modelo Resnet

| Acurácia | 0.9927 |
|----------|--------|
| Perda    | 0.0920 |
| Precisão | 0.9800 |
| F1 Score | 0.9900 |
| Recall   | 0.9900 |

Tabela 10 - Dataset Multiclasse - Resumo dos resultados do modelo Xception

| Acurácia | 0.9927 |
|----------|--------|
| Perda    | 0.0688 |
| Precisão | 0.9900 |
| F1 Score | 0.9900 |
| Recall   | 0.9900 |





#### Dataset Multiclasse: Técnica de Grad-CAM



Figura 49 – Dataset Multiclasse - Resnet - Mapa de calor para tumor benigno Fonte: O Autor



Figura 50 – Dataset Multiclasse - Resnet - Mapa de calor para tumor maligno Fonte: O Autor



Figura 51 – Dataset Multiclasse - Resnet - Mapa de calor para pulmões sem tumor Fonte: O Autor



Figura 52 – Dataset Multiclasse - Xception - Mapa de calor para tumor benigno

Fonte: O Autor



Figura 53 – Dataset Multiclasse - Xception - Mapa de calor para tumor maligno Fonte: O Autor



Figura 54 – Dataset Multiclasse - Xception - Mapa de calor para pulmões sem tumor Fonte: O Autor

#### Dataset Multiclasse: Matriz de Confusão





#### Dataset Multiclasse: Avaliação dos Resultados

- Em resumo, os modelos Resnet e Xception mostraram um desempenho excelente no conjunto de dados multiclasse IQ-OTH/NCCD, com altas taxas de acurácia e precisão. Os resultados destacam a capacidade dos modelos em classificar corretamente os pulmões com tumores malignos, enquanto alguns erros foram observados na distinção entre tumores benignos e pulmões normais.

### **Considerações Finais**

#### Conclusões

- As redes neurais convolucionais têm se mostrado altamente eficientes na classificação de tumores pulmonares;
- Redes com um maior número de parâmetros, capazes de abranger uma área mais ampla do pulmão para identificar as regiões mais relevantes da imagem, apresentam resultados superiores na classificação;
- Os bons resultados obtidos no conjunto de dados binários se estendem também para a base de dados multiclasse, demonstrando que as redes são capazes de lidar com diferentes abordagens com sucesso.



- Implementar e validar clinicamente os modelos selecionados, como as redes Resnet e Xception, em colaboração com profissionais de saúde;
- Realizar testes adicionais em conjuntos de dados mais amplos e diversificados, considerando diferentes tipos de câncer de pulmão e variações nas condições de aquisição das imagens;
- Realizar validação clínica dos modelos propostos, coletando dados clínicos reais e avaliando o desempenho em condições do mundo real.



- [1] ALAM, J.; ALAM, S.; HOSSAN, A. Multi-stage lung cancer detection and prediction using multi-class svm classifie. In: IEEE. 2018 International conference on computer, communication, chemical, material and electronic engineering (IC4ME2). [S.I.], 2018. p. 1–4.
- [2] ALYASRIY HAMDALLA; AL-HUSEINY, M. The IQ-OTH/NCCD lung cancer dataset. 2020. Website. Disponível em: <a href="https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset?sort=votes">https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset?sort=votes</a>. Acesso em: 20.12.2022.
- [3] CAMPBELL, M.; JR, A. J. H.; HSU, F.-h. Deep blue. Artificial intelligence, Elsevier, v. 134, n. 1-2, p. 57-83, 2002.
- [4] CARVALHO, A. C. P. d. L. et al. Inteligência artificial: riscos, benefícios e uso responsável. Estudos Avançados, SciELO Brasil, v. 35, p. 21–36, 2021.
- [5] CDC. Cancer Statistics At a Glance. 2021. Website. Disponível em: <a href="https://gis.cdc.gov/Cancer-/USCS/AtAGlance/">https://gis.cdc.gov/Cancer-/USCS/AtAGlance/</a>. Acesso em: 06.6.2022.
- [6] CHATURVEDI, P. et al. Prediction and classification of lung cancer using machine learning techniques. IOP Conference Series: Materials Science and Engineering, IOP Publishing, v. 1099, n. 1, p. 012059, mar 2021. Disponível em: <a href="https://doi.org/10.1088/1757-899x/1099/1/012059">https://doi.org/10.1088/1757-899x/1099/1/012059</a>>.
- [7] CHOLLET, F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2017. p. 1251–1258.
- [8] DOU, Q. et al. Multilevel contextual 3-d cnns for false positive reduction in pulmonary nodule detection. IEEE Transactions on Biomedical Engineering, IEEE, v. 64, n. 7, p. 1558–1567, 2016.

- [9] DUMOULIN, V.; VISIN, F. A guide to convolution arithmetic for deep learning. ArXiv, abs/1603.07285, 2016.
- [10] FAWCETT, T. An introduction to roc analysis. Pattern recognition letters, Elsevier, v. 27, n. 8, p. 861–874, 2006.
- [11] GONZALEZ, R. C.; WOODS, R. E. Digital image processing. Upper Saddle River, N.J.: Prentice Hall, 2008. ISBN 9780131687288 013168728X 9780135052679 013505267X. Disponível em: <a href="http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X">http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X</a>.
- [12] GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.I.]: MIT Press, 2016. http://www.deeplearningbook.org.
- [13] GURNEY, K. An Introduction to Neural Networks. London: CRC press, 1997. 234 p. ISBN 9781315273570.
- [14] HANSON, R.; STUTZ, J.; CHEESEMAN, P. Bayesian classification theory. [S.I.], 1991.
- [15] HAYKIN, S. Neural Networks and Learning Machines. Pearson Education, 2011. ISBN 9780133002553. Disponível em: <a href="https://books.google.com.br/books?id=faouAAAAQBAJ">https://books.google.com.br/books?id=faouAAAAQBAJ</a>.
- [16] HE, K. et al. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. [S.l.: s.n.], 2016. p. 770–778.
- [17] HUANG, X. et al. Deep transfer convolutional neural network and extreme learning machine for lung nodule diagnosis on ct images. Knowledge-Based Systems, Elsevier, v. 204, p. 106230, 2020.

[18] IBGE. Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística - Rio de Janeiro. Pesquisa Nacional por Amostra de Domicílios. 2008. Website. Disponível em: <a href="https://www.ibge.gov.br/">https://www.ibge.gov.br/</a>. Acesso em: 07.6.2022.

[19] INCA. O que é câncer? 2020. Website. Disponível em: <a href="https://www.inca.gov.br/o-que-e-cancer">https://www.inca.gov.br/o-que-e-cancer</a>. Acesso em: 15.5.2022.

[20] INCA. Como surge o câncer? 2021. Website. Disponível em: <a href="https://www.inca.gov.br/como-surge-o-cancer">https://www.inca.gov.br/como-surge-o-cancer</a>. Acesso em: 08.6.2022.

[21] LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. nature, Nature Publishing Group UK London, v. 521, n. 7553, p. 436–444, 2015.

[22] LECUN, Y.; KAVUKCUOGLU, K.; FARABET, C. Convolutional networks and applications in vision. In: IEEE. Proceedings of 2010 IEEE international symposium on circuits and systems. [S.I.], 2010. p. 253–256.

[23] MONARD, M. C.; BARANAUSKAS, J. A. Conceitos sobre aprendizado de máquina. Sistemas inteligentes-Fundamentos e aplicações, Manole, v. 1, n. 1, p. 32, 2003.

[24] NASSER, I. M.; ABU-NASER, S. S. Lung cancer detection using artificial neural network. International Journal of Engineering and Information Systems (IJEAIS), v. 3, n. 3, p. 17–23, 2019.

[25] NISHIO, M. et al. Computer-aided diagnosis of lung nodule using gradient tree boosting and bayesian optimization. PLOS ONE, Public Library of Science, v. 13, n. 4, p. 1–13, 04 2018. Disponível em: <a href="https://doi.org/10.1371/journal.pone.0195875">https://doi.org/10.1371/journal.pone.0195875</a>.



Obrigado pela atenção!