

I(1+x)I(1+y) = I(1-y)I(1-x)1+x+y+xy = 1-x-y+xy

2x = -2y

 $I_0 = I(1-x) - I(1+x) = -2x$

(a)

Write
$$I_0$$
 as $I(1+y)$ and $I(1-y)$. Then,
$$I(1+x)I(1-y) = I(1+y)I(1-x)$$
$$1-y+x-xy=1+y-x-xy$$
$$x=y$$
 The output currents are $I(1+x)$ and $I(1-x)$ so

(b)

(d)

 $I_3 = I_0 - I_3 - I_y$ $2I_3 = I_0 - I_y$ $I_3 = \frac{I_0 - I_y}{2}$

First find I_3 in terms of I_0 and I_V :

 $I_3 = I_0 - I_V$, and

From the Gilbert loop in the left four transistors, we know that

 $I_0^2 = I_x^2 + I_y^2$

$$\frac{I_{x}^{2}}{4} = I_{3}(I_{3} + I_{y})$$

$$\frac{I_{x}^{2}}{4} = \frac{I_{0} - I_{y}}{2} \qquad \frac{I_{0} + I_{y}}{2}$$

$$\frac{I_{x}^{2}}{4} = \frac{I_{0}^{2} - I_{y}^{2}}{4}$$