JIA ZHU(朱佳), 27720151153580, WISE

Homework 1

Question 1

The development of compute memory

Year	Byte	Year	Byte
			,
1970	262144	1990	2097152
1971	262144	1991	16777216
1972	262144	1992	16777216
1973	262144	1993	16777216
1974	262144	1994	16777216
1975	262144	1995	16777216
1976	262144	1996	268435456
1977	262144	1997	268435456
1978	262144	1998	1073741824
1979	262144	1999	1073741824
1980	262144	2000	1073741824
1981	262144	2004	4294967296
1982	262144	2009	8589934592
1988	2097152	2014	17179869184
1989	2097152		

Question 2

Brief explanation of Logistic regression

The linear regression model assumes that the response Y is quantitative. But in many situations, the response variable is qualitative. For example, eye color is qualitative, taking on values blue, brown, or green. It is unreasonable to assume that the dependent variable Y is normal distribution. Therefore, the outcome variable may be categorical such as binary variables(for example, yes/no, passed/failed, lived/died) and polytomous variables(for example, poor/good/excellent).

Logistic regression is applied to situations in which the response variable Y is binary (0,1). We use a linear regression model to represent the logistic or logit function of p:

$$\log it(p) = \log \frac{p}{1-p} = \beta^T X , \quad (1)$$

where p = P(Y = 1 | X). And we can know that $p = \mu_Y$ is the conditional mean of Y. In this case, $\log[p/(1-p)]$ is the link function.

Equation (1) can be rewritten as

$$p(X) = \frac{\exp(\beta^T X)}{1 + \exp(\beta^T X)} .$$

The logit function can take any real value, but the associated probability always lies in the required [0,1] interval. The parameters of the logistic regression model are estimated by maximum likelihood.

Question 1

R Codes:

question 1

Byte <- read.csv("byte.csv",header = TRUE)

plot(Byte, type="l", col="blue", main="The development of compute memory")

The development of compute memory

Question 2

R Codes:

question 2

plot(Byte, type="p", main="B-spline examples")

lines(smooth.spline(Byte, spar = 0.1),type = "1", col="red")

lines(smooth.spline(Byte, spar = 0.9),type = "1", col="blue")

B-spline examples

Question 3

Suppose we observe that in n=1000 mails (in 1 week) we have about 2 scams. In order to calculate that we have 6 scam emails in 2 weeks, we should calculate that we have 3 scam emails in 1 week. Therefore,

$$\lambda = 2$$
, $P(X = 3) = \frac{2^3}{3!} \exp(-2) = 0.18$.

In Scammyland you have 5 scams on average, what is the probability to have no scam mail:

$$\lambda = 5$$
, $P(X = 0) = \frac{5^{\circ}}{0!} \exp(-5) = 0.0067$.

Question 1

R Codes:

```
## question 1 ##
# install stuff for hash calculation
install.packages("digest")
# call the library doing the hashes
library("digest")
digest("I learn a lot from this class when I am proper listening to the professor")
# the result is "a8d3e4701672195e5dcd16ea9b062279"
digest("I do not learn a lot from this class when I am absent and playing on my phone")
# the result is "059ab10d478614d2eab3d70cfccd3fcc"
```

digest("I learn a lot from this class when I am proper listening to the professor", "sha256")
the result is "c16700de5a5c1961e279135f2be7dcf9c187cb6b21ac8032308c715e1ce9964c"
digest("I do not learn a lot from this class when I am absent and playing on my phone", "sha256")
the result is "f5e2cba48dac097355d0bb310fdbd5bd38a22a5c8e8215cd1ae67014cfc35b91"

Question 2

The digital signature algorithm (DSA) is a federal information processing standard for digital signatures. In august 1991 the national institute of standards and technology (NIST) proposed DSA for use in their digital signature standard (DSS) and adopted it as FIPS 186 in 1993.

DSA consists of 2 parts: generation of a pair of public key and private key; generation and verification of digital signature.

Key generation has two phases: The first phase is a choice of algorithm parameters which may be shared between different users of the system, The second phase computes public and private keys for a single user.

Reference:

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

 $\underline{http://www.herongyang.com/Cryptography/DSA-Introduction-What-Is-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-production-What-DSA-Digital-pro$

Signature-Algorithm.html

Question 3

R Codes:

```
## question 3 ##
install.packages("rjson", repos="http://cran.us.r-project.org")
library("rjson")
json_file = "http://crix.hu-berlin.de/data/crix.json"
json_data = fromJSON(file=json_file)
crix_data_frame = as.data.frame(json_data)
a <- 1:(ncol(crix_data_frame)/2)
n <- 2*a
m < -n-1
time <- t(crix_data_frame[m])</pre>
price <- t(crix_data_frame[n])</pre>
mydata <- cbind(time,price)</pre>
ts.plot(price, main="The trend of CRIX")
install.packages("tseries")
library(tseries)
adf.test(price) #p-value = 0.99, accept H0: price is nonstationary
acf(price)
pacf(price)
install.packages("forecast")
library(forecast)
```

auto.arima(price)# ARIMA(5,2,0)

Return <- diff(log(price))

ts.plot(Return,main="The log returns of CRIX")

adf.test(Return)#p-value = 0.01, Return is stationary

acf(Return)

pacf(Return)

auto.arima(Return)# ARIMA(5,2,0)

The trend of CRIX

Series price

Series price

The log returns of CRIX

Series Return

Series Return

Question 1

```
R Codes:
```

```
# figure 3 #

plot(price, type = "1", lwd = 2, col = "blue", xaxt='n',xlab="Time",ylab = "Price", main = "

CRIX Trend")

axis(1,c(120,420,720,1020),c("2014","2015","2016","2017"))

# figure 4 #

plot(Return, type = "1", xaxt='n',xlab="Time",ylab = "Price", main = "The log returns of CRIX")

axis(1,c(120,420,720,1020),c("2014","2015","2016","2017"))

# figure 5 #

hist(Return,freq=FALSE,breaks = seq(-0.25,0.2,by=0.025))

#lines(density(Return),col="blue",lwd=2)

qqnorm(Return)

qqline(Return,col="blue",lwd=2)# figure 6 #

# figure 6 #

acf(Return)

pacf(Return)
```


The log returns of CRIX

Histogram of Return

Normal Q-Q Plot

Series Return

Series Return

Question 2

R Codes:

```
for \ (q \ in \ 0:3) \ \{ b.p.q = arima(Return, order = c(p, 0, q)) bic.p.q = AIC(b.p.q, k = log(length(ret))) bic[p + 1, q + 1] = bic.p.q \} bic \# \ select \ p \ and \ q \ order \ of \ ARIMA \ model fit1 = arima(ret, order = c(3, 0, 3)) plot(fit1\$residuals, xaxt='n',ylab="Residuals", main="Residuals \ of \ ARMA(3,3)") axis(1,c(120,420,720,1020),c("2014","2015","2016","2017")) Box.test(fit1\$residuals, lag = 1) Residuals <- \ fit1\$residuals acf(Residuals)
```

Residuals of ARMA(3,3)

Series Residuals

