Demand Estimation

MIXTAPE SESSION

Jeff Gortmaker and Ariel Pakes

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

• In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})}$$

- In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.
- Logit shocks ε_{ijt} give mixed (over individual types) logit market shares.

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})}$$

- In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.
- Logit shocks ε_{ijt} give mixed (over individual types) logit market shares.
- On day 1, we set $\mu_{ijt} = 0$ to get a conveniently linear estimating equation:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

$$\max_{j \in \mathcal{J}_t \cup \{0\}} u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt} \quad \Longrightarrow \quad s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})}$$

- In each market $t \in \mathcal{T}$, individuals with types $i \in \mathcal{I}_t$ choose a $j \in \mathcal{J}_t \cup \{0\}$.
- Logit shocks ε_{ijt} give mixed (over individual types) logit market shares.
- On day 1, we set $\mu_{ijt} = 0$ to get a conveniently linear estimating equation:

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

Let's go over your first coding exercise.

Unrealistic Substitution Patterns

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

• In the price cut exercise, the pure logit model didn't perform well. Why?

Unrealistic Substitution Patterns

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In the price cut exercise, the pure logit model didn't perform well. Why?
- Last week we derived the own-price elasticity. What about the cross-price one?

$$\eta_{jkt} = \frac{\partial \log q_{jt}}{\partial \log p_{kt}} = \frac{\partial q_{jt}}{\partial p_{kt}} \frac{p_{kt}}{q_{jt}} = \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}} = -\alpha \cdot p_{kt} \cdot s_{kt}$$

Unrealistic Substitution Patterns

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = \alpha p_{jt} + x'_{jt}\beta + \xi_{jt}$$

- In the price cut exercise, the pure logit model didn't perform well. Why?
- Last week we derived the own-price elasticity. What about the cross-price one?

$$\eta_{jkt} = \frac{\partial \log q_{jt}}{\partial \log p_{kt}} = \frac{\partial q_{jt}}{\partial p_{kt}} \frac{p_{kt}}{q_{jt}} = \frac{\partial s_{jt}}{\partial p_{kt}} \frac{p_{kt}}{s_{jt}} = -\alpha \cdot p_{kt} \cdot s_{kt}$$

- Doesn't depend on the characteristics of j!
 - ightarrow Independence of Irrelevant Alternatives (IIA) property.

• Most industrial organization examples are about cereals or automobiles.

- Most industrial organization examples are about cereals or automobiles.
- There are two options: buying a car or a blue bus. Each has a 50% market share.

- Most industrial organization examples are about cereals or automobiles.
- There are two options: buying a car or a blue bus. Each has a 50% market share.
- Introduce a second bus, but it's red. Pure logit (IIA) predicts 33% market shares.
 - ightarrow In your exercise, consumers substituted proportionally from each cereal.

- Most industrial organization examples are about cereals or automobiles.
- There are two options: buying a car or a blue bus. Each has a 50% market share.
- Introduce a second bus, but it's red. Pure logit (IIA) predicts 33% market shares.
 - \rightarrow In your exercise, consumers substituted *proportionally* from each cereal.
- In reality, we'd expect the car to still have 50% and each bus to have 25%.
 - $\,\rightarrow\,$ In your exercise, we'd hope for more substitution from more similar cereals.

Roadmap

Preference Heterogeneity

Mixed Logit Estimation

Numerical Best Practices

Differentiation Instruments

Coding Exercise :

Red Bus/Blue Bus Solution

• Our solution will be to re-introduce non-logit preference heterogeneity.

$$u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

Red Bus/Blue Bus Solution

• Our solution will be to re-introduce non-logit preference heterogeneity.

$$u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- This will allow 50% of consumers to really like cars and 50% to really like buses.
 - → When a new bus is introduced, this doesn't really affect the car-lovers' choice.

Red Bus/Blue Bus Solution

Our solution will be to re-introduce non-logit preference heterogeneity.

$$u_{ijt} = \delta_{jt} + \mu_{ijt} + \varepsilon_{ijt}$$

- This will allow 50% of consumers to really like cars and 50% to really like buses.
 - → When a new bus is introduced, this doesn't really affect the car-lovers' choice.
- Want μ_{ijt} to dominate logit substitution from convenient but unrealistic ε_{ijt} .
 - ightarrow Want to add multiple dimensions of heterogeneity that really matter in our setting.

Random Coefficients

$$u_{ijt} = x'_{jt}\beta + \xi_{jt} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - ightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .

Random Coefficients

$$u_{ijt} = x'_{jt}\beta_{it} + \xi_{jt} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - ightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .
- Intuitively, we want to replace eta with random coefficients eta_{it} .
 - \rightarrow Random in that they're drawn from a distribution of consumer types $i \in \mathcal{I}_t$.
 - ightarrow For $x_{jt}=\mathrm{car}_{jt}$ and $\mathcal{I}_t=\{\mathrm{car-lovers},\mathrm{bus-lovers}\}$, want $eta_{it}\gg 0$ for car-lovers.

Random Coefficients

$$u_{ijt} = \underbrace{x'_{jt}\beta + \xi_{jt}}_{\delta_{jt}} + \underbrace{x'_{jt}(\Sigma\nu_{it} + \Pi y_{it})}_{\mu_{ijt}} + \varepsilon_{ijt}$$

- How to add preference heterogeneity to our pure logit model?
 - ightarrow For simplicity, I'll just let x_{jt} denote all characteristics, including prices p_{jt} .
- Intuitively, we want to replace β with random coefficients β_{it} .
 - \rightarrow Random in that they're drawn from a distribution of consumer types $i \in \mathcal{I}_t$.
 - ightarrow For $x_{jt}=\mathrm{car}_{jt}$ and $\mathcal{I}_t=\{\mathrm{car-lovers},\mathrm{bus-lovers}\}$, want $\beta_{it}\gg 0$ for car-lovers.
- Most common specification is $\beta_{it} \sim N(\beta + \Pi y_{it}, \Sigma \Sigma')$.
 - ightarrow Π shifts preferences according to observed demographics $y_{it}\sim$ census.
 - ightarrow Σ shifts preferences according to unobserved preferences $u_{it} \sim N(0,I)$.

Random Coefficients in Practice

$$u_{ijt} = \underbrace{x'_{jt}\beta + \xi_{jt}}_{\delta_{jt}} + \underbrace{x'_{jt}(\Sigma\nu_{it} + \Pi y_{it})}_{\mu_{ijt}} + \varepsilon_{ijt}$$

- In practice, we implement random coefficients by making a new dataset.
 - \rightarrow In PyBLP lingo, "product data" rows are j's, and new "agent data" rows are i's.

Random Coefficients in Practice

$$u_{ijt} = \underbrace{x'_{jt}\beta + \xi_{jt}}_{\delta_{jt}} + \underbrace{x'_{jt}(\Sigma\nu_{it} + \Pi y_{it})}_{\mu_{ijt}} + \varepsilon_{ijt}$$

- In practice, we implement random coefficients by making a new dataset.
 - \rightarrow In PyBLP lingo, "product data" rows are j's, and new "agent data" rows are i's.
- In your coding exercise, you'll just draw $|\mathcal{I}_t| = 100$ types per market.
 - \rightarrow Draw $\nu_{it} \sim N(0, I)$ from a random number generator.
 - \rightarrow Draw y_{it} from census data on demographics: income, etc.
 - ightarrow Each type is equally-likely, so use equal sampling weights $w_{it}=1/|\mathcal{I}_t|$.

Random Coefficients in Practice

$$u_{ijt} = \underbrace{x'_{jt}\beta + \xi_{jt}}_{\delta_{jt}} + \underbrace{x'_{jt}(\Sigma\nu_{it} + \Pi y_{it})}_{\mu_{ijt}} + \varepsilon_{ijt}$$

- In practice, we implement random coefficients by making a new dataset.
 - \rightarrow In PyBLP lingo, "product data" rows are j's, and new "agent data" rows are i's.
- In your coding exercise, you'll just draw $|\mathcal{I}_t| = 100$ types per market.
 - \rightarrow Draw $\nu_{it} \sim N(0, I)$ from a random number generator.
 - \rightarrow Draw y_{it} from census data on demographics: income, etc.
 - ightarrow Each type is equally-likely, so use equal sampling weights $w_{it}=1/|\mathcal{I}_t|$.
- The goal is to have a dataset that reflects the *distribution* of individuals.

Roadmap

Preference Heterogeneity

Mixed Logit Estimation

Numerical Best Practices

Differentiation Instruments

Coding Exercise 2

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- In your exercise, you estimated $\boldsymbol{\beta}$ by running the above regression.
 - \rightarrow Again, let x_{jt} include price, a constant, any other characteristics.
 - ightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- In your exercise, you estimated β by running the above regression.
 - \rightarrow Again, let x_{it} include price, a constant, any other characteristics.
 - ightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .
- Our exclusion restriction implies the moment condition $\mathbb{E}[\xi_{jt} \cdot z_{jt}] = 0$.

From Linear Regression to GMM

$$\log \frac{s_{jt}}{s_{0t}} = \delta_{jt} = x'_{jt}\beta + \xi_{jt}$$

- In your exercise, you estimated β by running the above regression.
 - \rightarrow Again, let x_{it} include price, a constant, any other characteristics.
 - \rightarrow Let z_{jt} include our price IV and exogenous characteristics in x_{jt} .
- Our exclusion restriction implies the moment condition $\mathbb{E}[\xi_{jt} \cdot z_{jt}] = 0$.
- We'd get the exact same $\hat{\beta}$ by optimizing the following GMM objective:

$$\hat{\beta} = \operatorname*{argmin}_{\beta} g(\beta) W g(\beta)' \quad \text{where} \quad g(\beta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt} - x'_{jt}\beta) \cdot z_{jt}$$

The BLP Contraction

• With preference heterogeneity, $\delta_{jt} = \log rac{s_{jt}}{s_{0t}}$ no longer holds.

The BLP Contraction

- With preference heterogeneity, $\delta_{it} = \log \frac{s_{jt}}{s_{ol}}$ no longer holds.
- Instead, given a guess of (Σ, Π) , we numerically find the δ_{it} 's that solve:

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + \mu_{ijt}(\Sigma, \Pi)]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + \mu_{ikt}(\Sigma, \Pi)]} \quad \text{for all} \quad j \in \mathcal{J}_t$$

The BLP Contraction

- With preference heterogeneity, $\delta_{jt} = \log \frac{s_{jt}}{s_{0t}}$ no longer holds.
- Instead, given a guess of (Σ, Π) , we numerically find the δ_{it} 's that solve:

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp[\delta_{jt} + \mu_{ijt}(\Sigma, \Pi)]}{1 + \sum_{k \in \mathcal{J}_t} \exp[\delta_{kt} + \mu_{ikt}(\Sigma, \Pi)]} \quad \text{for all} \quad j \in \mathcal{J}_t$$

- Many ways to solve and speed up BLP's (1995) contraction.
 - → PyBLP will take care of this, but see Conlon and Gortmaker (2020) if interested.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta = (\beta, \Sigma, \Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{jt}(\Sigma,\Pi)$.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta = (\beta, \Sigma, \Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{jt}(\Sigma,\Pi)$.
- Actually, since $g(\theta)$ is linear in x_{jt} , we can "concentrate out" β and optimize (Σ, Π) .
 - \to Get $\hat{\beta}$ by running an IV regression of $\delta_{jt}(\Sigma,\Pi)$ on x_{jt} , like in the pure logit exercise.

The BLP Estimator

$$\hat{\theta} = \operatorname*{argmin}_{\theta} g(\theta) W g(\theta)' \quad \text{where} \quad g(\theta) = \frac{1}{N} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_t} (\delta_{jt}(\Sigma, \Pi) - x'_{jt}\beta) \cdot z_{jt}$$

- BLP estimation consists of two nested loops.
 - 1. In the "outer" loop, we optimize over $\theta = (\beta, \Sigma, \Pi)$.
 - 2. In the "inner" loop, we solve the BLP contraction for $\delta_{it}(\Sigma, \Pi)$.
- Actually, since $g(\theta)$ is linear in x_{jt} , we can "concentrate out" β and optimize (Σ, Π) .
 - $\rightarrow \operatorname{Get} \hat{\beta}$ by running an IV regression of $\delta_{jt}(\Sigma,\Pi)$ on x_{jt} , like in the pure logit exercise.
- What about the GMM weighting matrix W?
 - \rightarrow If you're just-identified (dim $z_{jt}=\dim \theta$), it doesn't matter. You'll get a zero objective.
 - ightarrow Otherwise, you may want to repeat optimization with optimal the two-step GMM \hat{W} .

Roadmap

Preference Heterogeneity

Mixed Logit Estimation

Numerical Best Practices

Differentiation Instruments

Coding Exercise 2

Motivation for Numerical Best Practices

 Variation in BLP estimates across different optimization algorithms and starting values has disillusioned some researchers (Knittel and Metaxoglou, 2014).

Motivation for Numerical Best Practices

- Variation in BLP estimates across different optimization algorithms and starting values has disillusioned some researchers (Knittel and Metaxoglou, 2014).
- But there are some numerical best practices that you can follow to avoid these kinds of issues (Conlon and Gortmaker, 2020).
 - ightarrow They're likely to be useful for most structural estimation, not just BLP!

Nonlinear Optimization

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
 - \rightarrow E.g. huge Σ values can make the inner loop unstable.
 - → Economic intuition and initial estimates will give a sense for reasonable bounds.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
 - ightarrow For 2-step GMM, do this twice, once for each step (6-10 jobs total).
 - \rightarrow If you have access to a cluster, each can be a separate job, run in parallel.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
 - → Avoid derivative-free methods like Nelder-Mead/simplex, which tend to work worse.
 - ightarrow I prefer trust-region algorithms, e.g. SciPy's trust-constr or Knitro if you have it.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\underline{\theta}, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
- Try to terminate on strict first-order conditions, e.g. $\|gradient\|_{\infty} < 1e-8$.
 - → Inner loop should be tighter to prevent error "bubbling up." PyBLP default is very tight.
 - ightarrow Can also check second-order conditions, i.e. Hessian eigenvalues are positive.

$$\hat{\theta} = \operatorname*{argmin}_{\theta} Q(\theta)$$

- Set box constraints $\theta \in [\underline{\theta}, \overline{\theta}]$ to preclude unrealistic and unstable guesses of θ .
- Check that 3-5 different starting values $\theta \sim U(\theta, \overline{\theta})$ give the same $\hat{\theta}$.
- Prefer using gradient-based algorithms for "smooth" problems like BLP.
- Try to terminate on strict first-order conditions, e.g. $\|gradient\|_{\infty} < 1e-8$.
- Configure your optimizer! Defaults may not work for your setting.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})}$$

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \approx \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{it})$$

• Individual types *i* are typically an *approximation* to a population distribution.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \approx \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{it})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
 - \rightarrow E.g. high- and low-income types $i \in \{1,2\}$ with known shares w_{1t} and $w_{2t} = 1 w_{1t}$.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \approx \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{it})$$

- Individual types *i* are typically an *approximation* to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
 - \rightarrow Use a random number generator (RNG) to draw $|\mathcal{I}_t| \approx 1,000$ of (ν_{it}, y_{it}) 's per market.
 - → Even better than your default RNG are quasi-Monte Carlo sequences.
 - → I recommend scrambled Halton sequences. R: Owen (2017). Python: SciPy or PyBLP.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \approx \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{it})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
- If you just need a few $\nu_{it} \sim N(0, I)$'s, try out Gauss-Hermite quadrature.
 - \rightarrow 10-100× fewer carefully-chosen (w_{it}, ν_{it}) 's that do just as well as Monte Carlo.
 - $\,\rightarrow\,$ Chosen to exactly integrate a polynomial expansion of the integrand.

$$s_{jt} = \sum_{i \in \mathcal{I}_t} w_{it} \cdot \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \approx \int \frac{\exp(\delta_{jt} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kt} + \mu_{ikt})} \, \mathrm{d}F(\mu_{it})$$

- Individual types i are typically an approximation to a population distribution.
- Sometimes there are only a few types that we can integrate exactly.
- But usually we approximate the distribution with Monte Carlo integration.
- If you just need a few $\nu_{it} \sim N(0,I)$'s, try out Gauss-Hermite quadrature.
- Keep increasing $|\mathcal{I}_t|$ until your estimates stabilize across draws/starting values.

• Can see how $Q(\theta) = g(\theta) W g(\theta)'$ varies with θ .

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - ightarrow Too few draws $|\mathcal{I}_t|$ makes the objective "choppy."

- Can see how $Q(\theta) = q(\theta)Wq(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - \rightarrow Too few draws $|\mathcal{I}_t|$ makes the objective "choppy."
 - → Poorly-configured optimizers can stop too early.

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - ightarrow Too few draws $|\mathcal{I}_t|$ makes the objective "choppy."
 - → Poorly-configured optimizers can stop too early.
- · Different instruments give different objectives.

- Can see how $Q(\theta) = g(\theta)Wg(\theta)'$ varies with θ .
- Here, there's a minimum but also some challenges.
 - ightarrow Too few draws $|\mathcal{I}_t|$ makes the objective "choppy."
 - → Poorly-configured optimizers can stop too early.
- Different instruments give different objectives.
 - \rightarrow Even if they're all valid, some may be weaker.
 - \rightarrow Weaker means flatter and harder to optimize.

Roadmap

Preference Heterogeneity

Mixed Logit Estimation

Numerical Best Practices

Differentiation Instruments

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - \rightarrow If you have fewer moments than parameters, you're under-identified.

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - \rightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .

- For each new parameter in (Σ, Π) , we need another instrument in z_{it} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - \rightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .
- This makes your estimation strategy clear, and makes optimization easier.
 - ightarrow Just-identified models give $Q(\hat{\theta}) \approx 0$ at the optimum.
 - ightarrow This is regardless of your weighting matrix W, so you don't need 2-step GMM.

- For each new parameter in (Σ, Π) , we need another instrument in z_{jt} .
 - → If you have fewer moments than parameters, you're under-identified.
- In general, I recommend starting with one instrument per parameter.
 - \rightarrow Try to choose an instrument that "targets" that parameter.
 - ightarrow For example, a single strong cost-shifter that "targets" lpha on p_{jt} .
- This makes your estimation strategy clear, and makes optimization easier.
 - ightarrow Just-identified models give $Q(\hat{\theta}) \approx 0$ at the optimum.
 - \rightarrow This is regardless of your weighting matrix W, so you don't need 2-step GMM.
- Later, adding more can help with weakness and testing exclusion restrictions.

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - → Identification of nonlinear models like BLP can be challenging.
 - \rightarrow See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - ightarrow Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - → Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it})x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

• Salanié and Wolak (2022) approximate the BLP model around $\sigma, \pi \approx 0$:

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt}$$

- There's a lot of confusion about what instruments are needed for BLP estimation.
 - → Identification of nonlinear models like BLP can be challenging.
 - → See Berry and Haile (2014, 2023) for a more formal, nonparametric framework.
- Simplest case: 1 characteristic x_{jt} (e.g. price), 1 demographic y_{it} (e.g. income).

$$u_{ijt} = (\beta + \sigma \nu_{it} + \pi y_{it}) x_{jt} + \xi_{jt} + \varepsilon_{ijt}$$

• Salanié and Wolak (2022) approximate the BLP model around $\sigma, \pi \approx 0$:

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt}$$

• Let's use our stronger intuition about linear regression to think about instruments!

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \xi_{jt}$$

• If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \xi_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
 - \rightarrow Use the same IV as before to target β : if $x_{jt}=p_{jt}$, a price IV; if exogenous, x_{jt} itself.

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - \rightarrow Can't use d_{it}^x itself because it depends on endogenous market shares s_{kt} .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - ightarrow Can't use d^x_{it} itself because it depends on endogenous market shares s_{kt} .
 - \rightarrow Conventional choice was $\sum_{k\neq j} x_{kt}$, the BLP instruments from day 1.

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - \rightarrow Can't use d_{it}^x itself because it depends on endogenous market shares s_{kt} .
 - \rightarrow Conventional choice was $\sum_{k\neq j} x_{kt}$, the BLP instruments from day 1.
 - \rightarrow A stronger choice is $\sum_{k\neq j} (x_{jt} x_{kt})^2$ or similar from Gandhi and Houde (2020).

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{jt} within t.
 - \rightarrow Can't use d_{it}^x itself because it depends on endogenous market shares s_{kt} .
 - \rightarrow Conventional choice was $\sum_{k\neq j} x_{kt}$, the BLP instruments from day 1.
 - \rightarrow A stronger choice is $\sum_{k\neq j} (x_{jt} x_{kt})^2$ or similar from Gandhi and Houde (2020).
 - \rightarrow We want cross-market choice set variation, otherwise d_{jt}^x is collinear with x_{jt}^2 .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{it} within t.
- To target π , we can interact x_{jt} with mean within-market income m_t^y .
 - \rightarrow We want cross-market demographic variation, otherwise $m_t^y x_{jt}$ is collinear with x_{jt} .

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{it} within t.
- To target π , we can interact x_{it} with mean within-market income m_t^y .
 - \rightarrow We want cross-market demographic variation, otherwise $m_t^y x_{jt}$ is collinear with x_{jt} .
 - ightarrow Can technically identify π from higher-order variation, e.g. in variance v_t^y

$$\log \frac{s_{jt}}{s_{0t}} \approx \beta x_{jt} + \sigma^2 d_{jt}^x + \pi m_t^y x_{jt} + \pi^2 v_t^y d_{jt}^x + \xi_{jt} \quad \text{where} \quad d_{jt}^x = \left(\frac{x_{jt}}{2} - \sum_{k \in \mathcal{J}_t} s_{kt} x_{kt}\right) x_{jt}$$

- If we set $\sigma = \pi = 0$ like on day 1, we get our familiar pure logit regression.
- To target σ , need a measure of how "differentiated" j is in terms of x_{it} within t.
- To target π , we can interact x_{jt} with mean within-market income m_t^y .
- In your exercise, you'll target (β, σ, π) with $z_{jt} = (x_{jt}, \sum_{k \neq j} (x_{jt} x_{kt})^2, m_t^y x_{jt})$.
 - \rightarrow If $x_{jt} = p_{jt}$, can replace x_{jt} with fitted values \hat{p}_{jt} from the price IV's first stage.

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{it} \mid z_{it}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{it} \mid z_{it}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{it} \mid z_{it}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).
- Optimal IVs overweight observations with ξ_{it} very sensitive to θ (Chamberlain, 1987):

$$f^*(z_{jt}) = \mathbb{E}\left[\frac{\partial \xi_{jt}}{\partial \theta'} \Big| z_{jt}\right]$$

- There are many valid instruments that satisfy exclusion restrictions $\mathbb{E}[\xi_{it} \mid z_{it}] = 0$.
 - \rightarrow E.g. z_{jt} itself, z_{it}^2 , z_{it}^3 , or any function $f(z_{jt})$ of z_{jt} .
- But adding a ton of instruments will bias your estimator.
 - → "Many weak IVs" problem is well-known for 2SLS (Angrist, Imbens and Krueger, 1999).
 - → Similar for nonlinear GMM (Han and Phillips, 2006; Newey and Windmeijer, 2009).
- Optimal IVs overweight observations with ξ_{it} very sensitive to θ (Chamberlain, 1987):

$$f^*(z_{jt}) = \mathbb{E}\left[\frac{\partial \xi_{jt}}{\partial \theta'} \middle| z_{jt}\right]$$

- Can be a bit tricky to compute, but with PyBLP it's just one line of code.
 - ightarrow In practice, can update your IVs along with your weighting matrix for a second GMM step.

Roadmap

Preference Heterogeneity

Mixed Logit Estimation

Numerical Best Practices

Differentiation Instruments

- Try to do the second exercise before day 3's class, when I'll do it live.
 - 1. Incorporating preference heterogeneity.
 - 2. Mixed logit estimation.
 - 3. Evaluating improvements to the price cut counterfactual.

- Try to do the second exercise before day 3's class, when I'll do it live.
 - 1. Incorporating preference heterogeneity.
 - 2. Mixed logit estimation.
 - 3. Evaluating improvements to the price cut counterfactual.
- Think critically about the limitations of the model you estimate.
 - ightarrow What dimensions of preference heterogeneity are missing?

- Try to do the second exercise before day 3's class, when I'll do it live.
 - 1. Incorporating preference heterogeneity.
 - 2. Mixed logit estimation.
 - 3. Evaluating improvements to the price cut counterfactual.
- Think critically about the limitations of the model you estimate.
 - ightarrow What dimensions of preference heterogeneity are missing?
- If you have time, try the supplemental exercises.
 - → Quadrature.
 - \rightarrow Supply-side restrictions.
 - $\rightarrow \ \, \text{Optimal IVs.}$

References I

- **Angrist, Joshua D, Guido W Imbens, and Alan B Krueger**, "Jackknife instrumental variables estimation," *Journal of Applied Econometrics*, 1999, 14 (1), 57–67.
- **Berry, Steven, James Levinsohn, and Ariel Pakes**, "Automobile prices in market equilibrium," *Econometrica*, 1995, *63* (4), 841–890.
- **Berry, Steven T and Philip A Haile**, "Identification in differentiated products markets using market level data," *Econometrica*, 2014, 82 (5), 1749–1797.
- and __ , "Nonparametric identification of differentiated products demand using micro data," 2023.
- **Chamberlain, Gary**, "Asymptotic efficiency in estimation with conditional moment restrictions," *Journal of Econometrics*, 1987, 34 (3), 305–334.

References II

- **Conlon, Christopher and Jeff Gortmaker**, "Best practices for differentiated products demand estimation with PyBLP," *The RAND Journal of Economics*, 2020, *51* (4), 1108–1161.
- **Gandhi, Amit and Jean-François Houde**, "Measuring substitution patterns in differentiated-products industries," 2020.
- **Han, Chirok and Peter CB Phillips**, "GMM with many moment conditions," *Econometrica*, 2006, 74 (1), 147–192.
- **Knittel, Christopher R and Konstantinos Metaxoglou**, "Estimation of random-coefficient demand models: Two empiricists' perspective," *Review of Economics and Statistics*, 2014, 96 (1), 34–59.

References III

Newey, Whitney K and Frank Windmeijer, "Generalized method of moments with many weak moment conditions," *Econometrica*, 2009, 77 (3), 687–719.

Owen, Art B, "A randomized Halton algorithm in R," 2017.

Salanié, Bernard and Frank A Wolak, "Fast, detail-free, and approximately correct: Estimating mixed demand systems," 2022.