Ch 1. Firing Rate & Spike Statistics. Nov. 22nd. 2020.

1. Introduction.

· Neural coding: involves measuring how Stimulus attributes (such as light or sound intensity) or motor actions (such as the direction of arm movement) are per represented by action potentials.

Stimulus encoding (how neurons respond to \$ stimulars). (reconstruct a stimulus from the spike sequence it

enokes)

fill lestrager last nacer (70m). resting state: - Jom V.

action potential: 100mV. busts for ~1ms.

refactory period: for a few miliseconds just after an action potential has been fired, it may be virtually impossible to initiate another spice. (absolute refactory period)

depolarization. hyperpolarization.

· - Recording Neural Response.

întra-cellulour

ox tra-cellular.

- · shourp electrodes inserted through the cell
- · partih electrooks. (Seal).
- · usually soma. dendrites are bet becoming more and
- invitar in vitan

- · in vivo.
 - · only action potentials, not sometime Sub threshold memberne potentials.

· From stimulus to response:

· How neurons respond to Stimulus?

producing complex sequences -> refect <

intrinsic dynamics of neurons temporal characteristis of

- · challenges:
 - · How to isolate features of the response that encode changes in the Stimulus?
 - · Neuronal responses con voing from trial to trial even when the Stimulus is presented repeatedly. (trial-to-trial voinability. \(\text{\text{\$Inot able to be described deterministically}} \).
- · population coding:

many neurons respond to the Stimulus.

fining patterns of individual neurons

the relationships of these fining patterns to each other across the population.

- 2. Spike Frains and Fining Rates.
 - Spike time: t_i . i=1,2,...,n. t_i t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_9
 - · Diract & function i
 - · properties:
 - · approaches o everywhere except where the argument iso.
 - · Infinite height & infinitesimal width.
 - · \$ \int \dt = 1.

page 3

•
$$\int \delta(t-s)f(s) ds = f(t)$$
, $f:continuous$. (*).

· examples of possible S(t) function;

•
$$\delta(t) = \lim_{\Delta t \to 0} \begin{cases} \overline{\Delta t} & -\frac{\Delta t}{2} < t < \frac{\Delta t}{2} \end{cases}$$

0. $0 : W$

$$\cdot \quad \delta(t) = b \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} exp(iwt) dw. \qquad \qquad \leq .$$

• Spike sequence:
$$P(t) = \sum_{i=1}^{n} S(t-ti)$$
.

· According to (*): any h(t). continuous;

$$h(t-ti) = \int \delta(t-s) h(s) ds.$$

$$h(t-ti) = \int \delta(t-s-ti) h(s) ds.$$

$$\sum_{i=1}^{n} h(t-ti) = \sum_{i=1}^{n} \int \delta(t-s-ti) h(s) ds$$

$$= \int \sum_{i=1}^{n} \delta(t-s-ti) h(s) ds = \int \ell(t-s) h(s) ds.$$

$$= \int \ell(t-s) h(s) ds.$$

$$r = \frac{n}{T} = \frac{1}{T} \int_0^T \rho(\tau) d\tau \qquad (n = \int_0^T \rho(\tau) d\tau).$$

· time-dependent firing rate. (overaged over mals)

<): trial average.

$$\gamma(t) = \frac{1}{\Delta t} \int_{t}^{t t \Delta t} \langle \ell(\tau) \rangle d\tau.$$

$$\langle r \rangle = \frac{\langle n \rangle}{T} = \frac{1}{T} \cdot \int_0^T \langle \rho(\overline{v}) \rangle d\overline{v} \cdot = \frac{1}{T} \int_0^T r(t) dt$$

firing rate: r(t). Spile-count rate: r. average fining rate. <r>.

Measuring Firing Rates.

- · bin . count within bins
- . sticking window.

$$V_{approx}(t) = \sum_{i=1}^{n} w(t-ti). \qquad w(t) = \begin{cases} \frac{1}{\Delta t} & -\frac{\delta t}{2} \le t \le \frac{\delta t}{2} \\ 0 & 0 \le t \le \frac{\delta t}{2} \end{cases}$$

spike train convolve with ones (1, win Size). divided by win Size.

Kernel:

$$V_{\text{approx}}(t) = \int_{-\infty}^{+\infty} W(\tau) \ell(t-\tau) d\tau. \qquad (linear filter).$$

$$W(T) = \frac{1}{\sqrt{2\pi}} \sigma_W e^{-\frac{T^2}{2\sigma_W^2}}$$

Cansal: e.g.
$$W(T) = [x^2Te^{-dT}]_+$$

$$[Z]_{+} = \begin{cases} Z & Z > 0. \\ 0 & o.w. \end{cases}$$

$$V_{\text{approx}}^{t}(t) = \int_{-\infty}^{+\infty} w(t) \, \rho(t-t) \, dt.$$

Tuning Curves.

$$\langle r \rangle = f(s)$$
. houral response tuning curve.

3. What makes a neuron fire?

Spike-Triggered Average.

C(T): Spike-triggered average Stimulus, the average of the stimulus a time interval I before a spike is fired.

$$C(\overline{r}) = \langle -n \cdot \sum_{i=1}^{n} S(t_i - \overline{r}) \rangle \approx \frac{1}{\langle n \rangle} \langle \sum_{i=1}^{n} S(t_i - \overline{r}) \rangle \quad (n \approx \langle n \rangle)$$

The response is typically affected by only the Stimulus in a window a few hundred miliseconds wide immediately preceding a spike.

C(D)=0. (T>0 And . P> © correlation time between Stimulus and the response).

$$S(ti-D) = \int S(ti-D-t) S(t) dt$$

$$\sum_{i=1}^{n} S(ti-t) = \sum_{i=1}^{n} \int S(ti-t-t) S(t) dt = \int \sum_{i=1}^{n} S(ti-t-t) S(t) dt \quad \text{let } t=t-t$$

$$= \int \sum_{i=1}^{n} S(ti-t') S(t-t) dt' = \int \sum_{i=1}^{n} S(t'-ti) S(t'-t) dt'$$

$$= \int P(t') S(t-t) dt' = \int P(t) S(t-t) dt.$$

$$= \int_{0}^{1} P(t) S(t-t) dt. \quad S(t) = S(t+T). \quad \forall t.$$

$$C(T) = \frac{1}{\langle n \rangle} \langle \sum_{i=1}^{n} S(ti-T) \rangle = \frac{1}{\langle n \rangle} \langle \int_{0}^{T} f(t) S(t-T) dt \rangle$$

$$= \frac{1}{\langle n \rangle} \int_{0}^{T} \langle f_{0} \rangle S(t-T) dt = \frac{1}{\langle n \rangle} \int_{0}^{T} \gamma(t) S(t-T) dt.$$

Correlation Function:

determining how two quantities that vary over time are related to one another.

$$Q_{rs}(\tau) = \frac{1}{\tau} \int_0^7 r(t) \cdot S(t+\tau) dt$$

$$\begin{cases} Qrs(t) = \frac{1}{T} \int_0^T Y(t) S(t+T) dt \\ C(t) = \frac{1}{\langle n \rangle} \int_0^T Y(t) \cdot S(t-T) dt \\ \Rightarrow C(-T) = \frac{1}{\langle n \rangle} \int_0^T Y(t) S(t+T) dt \end{cases}$$

$$\Rightarrow$$
 · C(-P) = T· Qrs(P). \Rightarrow C(P) = $\frac{T}{\langle n \rangle}$ Qrs(-P).

(m. a. . carletania G. mother)

White power spectral density.

White-noise Stimuli:

its value at any one time is uncorrelated with its value out any other time.

Stimulus-Stimulus correlation function:

 $QSS^{e} \int_{0}^{T} S(t) \cdot S(t+r) dt$.

For white-noise Stimulus, Qss(T) = 0. (T+0). Qss(T)=85°S(E)

W= (3) M = \$1 > (3) M } = \$1 < 0 < 0 < 0 > =

4. Spike Train Statistics.

Ptz]: probability density. Pt.]: probability.

P[10 t1, t2,..., tn] = P[t, t2,...,tn]. (at)".

Point process: a Stochastic Process that generates a sequence of events. The prob. of an event occurring at any Renewal Process: Siven time depend on the entire history.

Poisson Process: only on the proceeding preceding event.

no independence on pres preceding events.

Homogeneous Poisson Process.

· Y(t) = Y.

$$S_n = \sum_{i=1}^n \chi_{ii}$$

{N(t) { N(t); \$ t>0}.

{X1, X2,...} {S1, S2,...}

N(t)=N. Sn st < Sn+1. Xi = Si-Si-1. (i>1)

So counting r.v. is defined as the number of arrivals in internal

 $\left\{ S_n \leq t \right\} = \left\{ N(t) \geq n \right\}.$ $\left\{ S_n > t \right\} = \left\{ N(t) < n \right\}.$

- · a prenewal process is an arrival process for which the sequence of inter-arrival times is a sequence of i'd r.v's.
- A poisson process is a renewal process in which the inter-arrival interarrivals have an exponential distribution function.

i.e. for some $\lambda > 0$. $f_{X_i}(\alpha) = \lambda e^{-\lambda \alpha}$ $\alpha > 0$.

A: rate of the process.

· Memoryless Property:

X: riv. P(X>0)=1. YXZ0 tzo.

 $P(X>t+\alpha) = P(X>\alpha) \cdot P(X>t)$

P(X>t+s | X>t) = P(X>s).

Stationary incremented property of an a counting process $\{N(t); t>0\}$ page 9 $\{t'>t>0\}$. N(t')-N(t) has the same distribution function as N(t'-t),

 $\widetilde{N}(t,t')=N(t')-N(t)$. the number of arrivals in the interval (t,t') (t'>t).

· independent increment property of a counting process {N(t); t>0}.

 $\forall k \in \mathbb{N}_+$. $\forall k$ -tuple. $0 < t_1 < t_2 < \dots < t_k$. $N(t_1)$. $\widetilde{N}(t_1,t_2)$,... $\widetilde{N}(t_{k1},t_k)$. are statistically independent.

· Poisson Process. has both increment. property-ies)

 X_1, X_2 independent. $\Rightarrow f_{X_1, X_2}(x_1, x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2)$.

 $\Rightarrow f_{X_1,S_2}(\chi_1,S_2) = f_{X_1}(\chi_1) \cdot f_{X_2}(S_2 - \chi_1) = \lambda \cdot e^{-\lambda \chi_1} \quad \lambda \cdot e^{-\lambda (S_2 - \chi_1)} = \lambda^2 \cdot e^{-\lambda S_2} \cdot o \leq \chi_1 \leq S_2$

 $f_{X_1}(x_1) \quad f_{S_2}(S_2) = \int_{\mathcal{X}_1} f_{X_1,S_2}(\chi_1,S_2) d\chi = \int_0^{S_2} \lambda^2 e^{-\lambda S_2} d\chi = \lambda^2 S_2 \cdot e^{-\lambda S_2}.$

 $f_{X_1,...,X_n}(x_1,...,x_n) = \frac{n}{i!!} f_{X_i}(x_i) = \lambda^n e^{-\lambda \sum_{i=1}^n x_i}. \quad S_n = \sum_{i=1}^n x_i.$

=> for fx,...x, (x,..., xn) = >n. e-25n

 $f_{x_{1},...,x_{n-1}, S_{n}}(x_{1},...,x_{n-1}, S_{n}) = f_{x_{1}}(x_{1}) \cdot ... \cdot f_{x_{n-1}}(x_{n-1}) \cdot f_{x_{n}}(s_{n}-x_{1}-...-x_{n-1})$ $= \lambda e^{-\lambda x_{1}} \cdot \lambda e^{-\lambda x_{n-1}} \cdot \lambda e^{-\lambda (s_{n}-x_{1}-...-x_{n-1})}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... \cdot \lambda x_{n-1} + \lambda x_{1} \cdot ... + \lambda x_{n-1} - \lambda s_{n}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... \cdot x_{n-1} + \lambda x_{1} \cdot ... + \lambda x_{n-1} - \lambda s_{n}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... \cdot x_{n-1} + \lambda x_{1} \cdot ... + \lambda x_{n-1} \cdot \lambda x_{n}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... \cdot x_{n-1} + \lambda x_{1} \cdot ... + \lambda x_{n-1} \cdot \lambda x_{n}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... \cdot x_{n-1} + \lambda x_{1} \cdot ... + \lambda x_{n-1} \cdot \lambda x_{n}$ $= \lambda^{n} \cdot e^{-\lambda x_{1}} \cdot \lambda x_{2} \cdot ... + \lambda x_{n-1} \cdot \lambda x_{n-$

 $f_{Sn}(S_n) = \iint_{X_1 \times 2} \int_{X_{n-1}} \int_{X_{1} \times 2} \int_{X_{n-1}} \int_{X_{1} \times 2} \int_{X_{n-1}} \int_{X_{n-1} \times 2} \int_$

Xi >0. i=1.2,..., @ N-1. Sn-Xi-...- Xn- zo.

S1 = X1. S2=X1+X2. S3=X1+X2+X3 ... & Sn=X1+X2+111+X4

$$S = (S_1 \quad S_2 \quad S_3 \quad \dots \quad S_n) = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 1 & 1 & \dots & 1 \end{pmatrix} \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_n \end{pmatrix}.$$

S=AX. The joint density of a non-singular linear transformation. AX. at X=X. is $f_X(X)$ [det A].

This is becomes the transformation A convies an incremental cube, S on each side, into a pourallelpiped of volume $S^n | \det A |$. det A = 1 here.

 $f_{s_1,\ldots,s_n}(s_1,\ldots,s_n) = \lambda^n \cdot \exp(-\lambda s_n)$. $0 \le s_1 \le s_2 \le \ldots \le s_n$.

• For a Poisson Process of rate λ , and for any t>0. the PMT for N(t) (i.e. the number of arrivals in (o,t]) is given by: $RN(t)(n) = \frac{(nt)^n e^{-\lambda t}}{n!}.$

· Non-homogeneous Poisson

$$P(\tilde{N}(t,t+\delta)=1)=\delta \tilde{N}(t)+O(\delta).$$

$$\widetilde{N}(t,t+\delta) = N(t+\delta) - N(t)$$
.

does not have Stationary increment property.

· Y= g(x).

$$F_{Y}(y) = P(\mathbf{g}(X) \leq y) = P(X \leq g^{-1}(y)).$$

= $F_{X}(g^{-1}(y)).$

$$\Rightarrow f_Y(y) = F_Y'(y) = \frac{dF_X(g^{-1}(y))}{dy} = \frac{dF_X(g^{-1}(y))}{dg^{-1}(y)} = \frac{dF_X(g^{-1}(y))}{dg^{-1}(y)} = \frac{dg^{-1}(y)}{dy}.$$

(Random):

$$S_n = X_1 + X_2 + \dots + X_n$$
. $S = AX$. A invertible.
 $S = g(x)$.

Mean:
$$\sum_{n=0}^{\infty} h \cdot P_{7}[n] = \sum_{n=1}^{\infty} P_{7}[n] = \sum_{n=1}^{\infty} n \cdot \frac{(r_{7})^{n}}{n!} e^{-r_{7}} = e^{-r_{7}} \cdot \frac{\infty}{n} \frac{(r_{7})^{n}}{(n-1)!}$$

$$= (r_{7}) e^{-r_{7}} \cdot \sum_{n=1}^{\infty} \frac{(r_{7})^{n-1}}{(h-1)!} = (r_{7}) \cdot e^{-r_{7}} \cdot \sum_{n=0}^{\infty} \frac{(r_{7})^{n}}{n!} = r_{7} \cdot e^{-r_{7}} \cdot e^{-r_{7}}.$$

$$= r_{7} \cdot e^{-r_{7}} \cdot e^{-r_{7}} \cdot e^{-r_{7}}.$$

Variance:
$$\sum_{n=0}^{\infty} n^{2} \cdot p_{T}[n] - (r\tau)^{2}$$

$$= \sum_{n=0}^{\infty} n^{2} \cdot \frac{(r\tau)^{n} e^{-2r\tau}}{n!} - (r\tau)^{2} = \sum_{n=1}^{\infty} n^{2} \cdot \frac{(r\tau)^{n} e^{-2r\tau}}{n!} - (r\tau)^{2}$$

$$= r\tau e^{\frac{\pi}{2}} n \cdot \frac{(r\tau)^{n-1}}{(n-1)!} - (r\tau)^{2} = (r\tau) \cdot e^{-r\tau} \cdot \sum_{n=1}^{\infty} n \cdot \frac{(r\tau)^{n-1}}{(n-1)!} - (r\tau)^{2}$$

$$= (r\tau) e^{-r\tau} \cdot \sum_{n=0}^{\infty} (r\tau)^{n} + \sum_{n=1}^{\infty} \frac{(r\tau)^{n}}{(n-1)!} - (r\tau)^{2}$$

$$= (r\tau) e^{-r\tau} \cdot \left[\sum_{n=0}^{\infty} \frac{(r\tau)^{n}}{n!} + \sum_{n=1}^{\infty} \frac{(r\tau)^{n}}{(n-1)!} \right] - (r\tau)^{2}$$

$$= (r\tau) e^{-r\tau} \cdot \left[e^{r\tau} + r\tau \cdot e^{r\tau} \right] - (r\tau)^{2}$$

$$= r\tau + (r\tau)^{2} \cdot (r\tau)^{2} = r\tau$$

4.

$$F_{x}(x) = \int_{0}^{x} \lambda e^{-\lambda t} dt = -\int_{0}^{x} e^{-\lambda t} d\lambda t = -e^{\lambda t} \Big|_{0}^{x} = -\left(e^{-\lambda x}\right) = 1 - e^{-\lambda x}.$$

$$P(X > x) = e^{-\lambda x}.$$

$$= \frac{(r\tau)^{\circ}e^{-r\tau}}{0!} \cdot \frac{(r\Delta t)^{!} \cdot e^{-r\Delta t}}{1!} = r\Delta t \cdot e^{-r\tau} \cdot \frac{e^{-r\Delta t}}{T}$$

$$= r\Delta t \cdot e^{-r\tau} = r\Delta t \cdot e^{-r\tau} \cdot \frac{e^{-r\Delta t}}{T}$$

$$= r\Delta t \cdot e^{-r\tau} \cdot \frac{e^{-r\Delta t}}{T}$$

T: interspite interval.

$$= 1 - rat + \frac{(rat)^2}{2!} + \cdots$$

$$e^{-rr} = \int_{0}^{+\infty} \tau \cdot r e^{-rr} d\tau = \int_{0}^{+\infty} \frac{r\tau d - rr}{e^{-rr} d\tau} = \frac{r\tau}{e^{-rr}} d\tau$$

$$= -\int_{0}^{+\infty} \tau de^{-rr} = -\left(\tau e^{-r\tau}\Big|_{0}^{+\infty} - \int_{e^{-rr}}^{e^{-rr}} d\tau\right)$$

$$= -\left(0 - 0 + \frac{1}{r}\int_{0}^{+\infty} de^{-r\tau}\right)$$

$$= -\frac{1}{r} e^{-r\tau}\Big|_{0}^{+\infty} = -\frac{1}{r}(0 - 1) = \frac{1}{r}$$

$$\begin{aligned}
\sigma_{r}^{2} &= \int_{0}^{+\infty} \overline{v}^{2} \cdot r e^{-rt} \cdot d\tau - \frac{1}{r^{2}} = -\int_{0}^{+\infty} \overline{v}^{2} de^{-rt} - \frac{1}{r^{2}} \cdot \\
&= -\left(\left(\overline{v}^{2} e^{-rt}\right) + \frac{1}{\sigma} - \int_{0}^{+\infty} e^{-rt} 2\overline{v} d\tau\right) - \frac{1}{r^{2}} \cdot \\
&= 2 \int_{0}^{+\infty} e^{-rt} r d\overline{v} - \frac{1}{r^{2}} \cdot \\
&= \frac{2}{r} \int_{0}^{+\infty} r \overline{v} e^{-rt} d\overline{v} - \frac{1}{r^{2}} \cdot \frac{1}{r} \cdot \frac{1}{r^{2}} - \frac{1}{r^{2}} \frac{1}{r^{2}} -$$

Coefficient of variation

$$C_V = \frac{G_E}{\langle T \rangle} = \frac{1}{\gamma} = 1$$
Homogeneous
 $C_V = |E| = |D_{0isson}| |Process|$

Spike-Train Autocorrelation Function. useful for detecting parterns in a spile train, most notbor hotably, oscillations

$$\langle r \rangle = \frac{\langle n \rangle}{T}$$
.

 $QPP(E) = \frac{1}{T} \int_{0}^{T} \langle P(E) \langle r \rangle \rangle$

Inhomogeneous Poisson Process.

$$0 \le t_1 \le t_2 \le \dots \le t_n \le T.$$

$$p[t_1, t_2, \dots, t_n] = \exp(-\int_0^T r(t) dt) \prod_{i=1}^n r(t_i).$$