

FusionINN: Decomposable Image Fusion for Brain Tumor Monitoring

Nishant Kumar¹, Ziyan Tao¹, Jaikirat Singh¹, Yang Li², Peiwen Sun³, Binghui Zhao³, Stefan Gumhold¹

¹Chair of Computer Graphics and Visualization, TU Dresden, Germany

²School of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, China

³Department of Radiology, Shanghai Tenth People's Hospital, Tongji University Medical School, Shanghai, China

Jeju, South Korea 4th August 2024

Motivation

- ☐ Fused images aid in visualizing clinical features from multiple sources.
- ☐ Merging grayscale values can obscure salient features.
- ☐ Prior work use non-invertible neural networks to perform image fusion.
- ☐ Decomposability of fused images is therefore not explored.

Method

Loss Functions

Fusion Loss

•
$$L_{SSIM} = (1 - Q_{SSIM}(x_1, y)) + (1 - Q_{SSIM}(x_2, y))$$

•
$$L_{l2} = ||y - x_1||_2^2 + ||y - x_2||_2^2$$

•
$$L_{fusion} = \lambda L_{SSIM} + (1 - \lambda) L_{l2}$$

Latent Loss

• $L_{latent} = MMD(q_{\theta}(z)||p(z))$

Decomposition Loss

•
$$L_{dec}^{SSIM} = (1 - Q_{SSIM}(x_1, \hat{x}_1)) + (1 - Q_{SSIM}(x_2, \hat{x}_2))$$

•
$$L_{dec}^{l2} = ||\hat{x}_1 - x_1||_2^2 + ||\hat{x}_2 - x_2||_2^2$$

•
$$L_{dec} = \lambda L_{dec}^{SSIM} + (1 - \lambda) L_{dec}^{l2}$$

Total Loss

• $L_{total} = \alpha (L_{fusion} + L_{latent}) + (1 - \alpha) L_{dec}$

Experiments - Main Results

□ BraTS-2018 data → T1-Gd and T2-Flair modalities → 8500 training + 1153 validation images.

Averaged results on the validation dataset of our pre-processed BraTS-2018 images.

Model Type	Model Name	$Q_{SSIM}\uparrow$	$Q_{FMI}\uparrow$	$Q_{NCIE} \uparrow$	$Q_{XY}\uparrow$	$Q_P \uparrow$
Discriminative	DeepFuse [3]	0.927	0.791	0.806	0.449	0.766
(Equal Dimension)	FunFuseAn [5]	0.930	0.845	0.806	0.481	0.781
Discriminative	Half-UNet [17]	0.933	0.850	0.805	0.464	0.774
(Dimension Reduction)	UNet [18]	0.934	0.835	0.805	0.420	0.711
	UNet++[19]	0.937	0.849	0.805	0.433	0.739
	UNet3 + [20]	0.937	0.849	0.805	0.434	0.742
Generative	DDFM [10]	0.921	0.861	0.806	0.472	0.702
	FusionINN (Ours)	0.927	0.835	0.806	0.493	0.783

Experiments - Main Results

Experiments - Clinical Results

DWI-ADC T2-Flair **DWI-ADC** T2-Flair Example Decomposition Source Fusion 2 Example

Conclusion

☐ FusionINN	integrates th	ie image d	decomp	osition	task into	the fusion	problem.
	0						

☐ Showcases its capability for clinically relevant fusion and decomposition images.

Future work

☐ Learning latent space not as random noise, but for tasks like image segmentation.

☐ Incorporating feedback from clinicians may help enhance the learning scheme.

Thanks for Listening!

Questions?

