A VLAN

- A VLAN a Virtual Local Area Network rövidítése.
- A VLAN a második rétegben (layer 2) hozzuk létre.
- Szórási tartományok csökkennek a használatával.
- LAN hálózaton.
- De léteznek MAN, WAN hálózaton is.

Minden VLAN teljesen külön hálózat. El van különítve az unicast, a multicast és a broadcast is.

Előnyök

- biztonság
- költségcsökkentés
- szórási tartományok kisebbek

Típusok

- adat VLAN
 - o a felhasználók forgalmának létrehozva
- alapértelmezett VLAN
 - o a kapcsoló alapértelmezett VLAN-ja
- natív VLAN
 - o 802.1Q trönk porthoz rendelt
- felügyeleti VLAN
 - o felügyeleti célból beállított

VoIP

- Voice Over IP
- elkülönített VLAN-on továbbítjuk
- a hangminőség érdekében garantált sávszélesség szükséges
- más forgalommal szemben prioritást élvez

Nézelődés

S1# show vlan brief

VLAN	Name	Status	Ports				
1	default	active	Fa0/1,	Fa0/2,	Fa0/3,	Fa0/4	
			Fa0/5.	Fa0/6.	Fa0/7.	Fa0/8	

```
Fa0/9, Fa0/10, Fa0/11, Fa0/12
Fa0/13, Fa0/14, Fa0/15, Fa0/16
Fa0/17, Fa0/18, Fa0/19, Fa0/20
Fa0/21, Fa0/22, Fa0/23, Fa0/24
Gig0/1, Gig0/2
```

1002	fddi-default	active
1003	token-ring-default	active
1004	fddinet-default	active
1005	trnet-default	active
S1#		

Láthatjuk, hogy van néhány VLAN, ami automatikusan létrejön, ezek:

• 1, 1002, 1003, 1004, 1005

A VLAN tárolása

A konfigurált VLAN-ok a **vlan.dat** fájlba tárolódnak. A fájl a flash memórián kerül tárolásra, vagyis újraindítás után megmaradnak.

Ha valakinek kevés az alapértelmezett VLAN ID, akkor használhatja 1006 és 4094 között VLAN ID-t. A normál VLAN-nál kevesebbet tudnak és a futó konfigurációban kerülnek tárolásra.

VLAN létrehozása

Létrehozás:

```
S1(config) #vlan 10
S1(config-vlan) #name tanulok
S1(config-vlan) #end
```

Egyszerre több VLAN:

```
S1(config) # vlan 10,20,100-110
```

Portok VLAN-hoz

Általánosan elmondható, hogy 1 portot egy VLAN-hoz rendelünk. De van egy kivétel, ha IP telefon is van.

Portok VLAN-hoz rendelése:

```
S1(config) # interface f0/2
S1(config) # interface range f0/1-5
```

Hozzáférési mód

A hozzáférési mód beállítása opcionális, de a biztonság kedvéért szokás mindig beállítani. Így állandó hozzáférési módra váltunk.

```
S1(config-if) # swithport mode access
```

Alapértelmezett: dynamic

Összerendelés

```
S1(config-if)# switchport access vlan 10
S1(config-if)# end
```

Ellenőrzés

Ellenőrizzük:

S1# show vlan brief

VLAN törlése

```
S1(config)# no vlan 20
S1(config)# end
S1# show vlan brief
```

Az állomány törlésével az összes VLAN törölhető:

```
delete flash:vlan.dat
```

vagy:

delete vlan.dat

Minden konfigurációs törlése:

```
S1# erase startup-config
S1# delete vlan.dat
```

VLAN trönkök

A trönk angolul trunk. A kapcsolók, hogy továbbítsák a VLAN információkat más kapcsolóknak, trönköt kell beállítanunk.

A két alsó kapcsoló f0/1 portjait és a felső kapcsoló f0/1, f0/2 portjait trönknek kell beállítani.

Beállítás

```
S1(config)# interface f0/1
S1(config-if)# switchport mode trunk
S1(config-if)# end
```

IEEEE 802.1Q

A IEEE 802.10 szabvány a trönkök összehangolására lett létrehozva. Egy VLAN trönk nem tartozik VLAN-hoz, de összeköti azokat.

VLAN trönkök beállíthatók a következők között:

- switch és switch
- switch és szerver
- switch és 802.1Q képes hálózati interfésszel rendelkező eszköz

A Cisco eszközök alapértelmezetten az összes VLAN információt továbbítják.

A Cisco switcheken alapértelmezetten a VLAN 1 a natív VLAN, amit persze meg lehet változtatni.

Gyakorlat

VLAN bevezetés

Adott a következő hálózat:

Négy darab PC egyetlen kapcsolón. Ha PC0-ról pingetem PC1-t, akkor elsőként egy ARP kérés indul, amit megkap PC3 és PC4 is, felesleges adatforgalmat generálva. Az is előfordulhat, hogy egyszerűen két különálló hálózatot szeretnék újabb kapcsoló megvásárlása nélkül. A kapcsolón ezért VLAN fogunk beállítani.

VLAN konfigurálása

Minden kapcsoló, alapértelmezésként tartalmaz 5 vlan-t. Ezek rendre:

- 1 default
- 1002 fddi-default
- 1003 token-ring-default
- 1004 fddinet-default
- 1005 trnet-default

Alaphelyzetben a kapcsoló összes portja a vlan1 virtuális hálózatba tartozik.

Hozzunk létre a vlan2 nevű virtuális hálózatot:

```
S1(config)#vlan 2
```

Ha nem adunk nevet a vlan 2 számára, akkor egy alapértelmezett név jön létre:

vlan0002

Adjunk nevet a vlan 2 számára:

```
S1(config) #vlan 2
S1(config-vlan) #name infoOsztaly
```

Válasszunk ki azt a portot, amit a tanulók számára szántunk. Például f0/3:

```
S1(config-vlan)#int f0/3
```

Állítsuk a portot hozáférhető állapotba:

```
S1(config-if) #switchport mode access
```

Adjuk hozzá a portot a virtuális hálózathoz:

```
S1(config-if)#switchport access vlan 2
S1(config-if)#end
```

A f0/3 bekerült a tanulók nevű vlan-ba:

Kiveszünk a portot a vlan-ból:

```
S1(config)#int f0/3
S1(config-if)#no switchport access vlan
```

Ellenőrizzük:

S1#show vlan brief

Példa VLAN beállítása

Legyen PC0 és PC1 a vlan 10 azonosítójú hálózatban. A PC3 és a PC4 legyen a vlan 20 azonosítójú hálózatban.

```
S1(config) #vlan 10
S1(config-vlan) #name tanulok
S1(config-vlan) #int range f0/1-2
S1(config-if-range) #switchport mode access
S1(config-if-range) #switchport access vlan 10
S1(config-if-range) #exit
S1(config) #
S1(config) #vlan 20
S1(config-vlan) #name tanarok
S1(config-vlan) #int range f0/3-4
S1(config-if-range) #switchport mode access
S1(config-if-range) #switchport access vlan 20
S1(config-if-range) #end
```

Ellenőrizzük:

S1#sh vlan brief

Kapcsoljuk le a többi portot:

```
S1(config) #int range f0/5-24
S1(config-if) #shutdown
S1(config-if) #int range g0/1-2
S1(config-if) #shutdown
```

Mentés:

S1#copy run sta

Trunk használata

A trunk jelentései: koffer, köpeny, oszloptörzs, pillértörzs, rönk, távbeszélővonal, tetőcsomagtartó, tönk, torzó, törzs, tuskó, utazóláda. Egyik sem szerencsés fordítás, hogy kifejezze a jelentését, amit itt a hálózatokban szánunk neki. A netacad.com tananyaga, Wikipédia, iskolák anyagai trönk néven fordítják, ezért mi is ezt használjuk a továbbiakban.

A trönk két hálózati eszköz közötti olyan pont-pont kapcsolat, amely kettő vagy több VLAN forgalmát bonyolítja. Ez biztosítja, hogy a VLAN a hálózat egész részén használható legyen.

VLAN-ok összekötése egyetlen kábellel

A Router on a Stick eljárás a VLAN-ok összekötését jelenti egyetlen kábelen keresztül.

Két vagy több VLAN egyetlen kábellel is összeköthető. Ilyenkor a router felé trönköt hozunk létre. A routeren pedig al-interfészeket.

Topológia

Két VLAN van. Az egyik VLAN10, amelyben a PC0 és a PC1 gép vesz részt. A VLAN20-ban a PC2 és a PC3 vesz részt.

A kapcsoló beállítása

A kapcsolón létrehozzuk a vlan10 és a vlan20-t.

```
S1(config) #vlan 10
S1(config-vlan) #name Bal_vlan
S1(config-vlan) #vlan 20
S1(config-vlan) #name Jobb_vlan
S1(config-vlan) #end
S1#
S1#show vlan brief
```

VLAN	Name	Status	Ports
1	default	active	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24 Gig0/1, Gig0/2
20 1002 1003 1004	Bal_vlan Jobb_vlan fddi-default token-ring-default fddinet-default trnet-default	active active active active active	

Tegyük a portokat a megfelelő VLAN-ba:

```
S1#configure terminal
S1(config) #interface FastEthernet 0/1
S1(config-if) #switchport mode access
S1(config-if) #switchport access vlan 10
S1(config-if)#exit
S1(config)#
S1(config)#interface FastEthernet 0/2
S1(config-if) #switchport mode access
S1(config-if) #switchport access vlan 10
S1(config-if)#
S1(config)#
S1(config)#interface FastEthernet 0/3
S1(config-if) #switchport mode access
S1(config-if) #switchport access vlan 20
S1(config-if)#exit
S1(config)#
S1(config)#interface FastEthernet 0/4
S1(config-if) #switchport mode access
S1(config-if) #switchport access vlan 20
S1(config-if)#exit
S1(config)#
```

Nézzük meg, a portok átkerültek-e megfelelő VLAN-ba:

```
S1#show vlan brief
```

Beállítjuk a trunk-t:

```
S1(config) #interface g0/1
S1(config-if) #switchport mode trunk
S1(config-if) #
S1#show interface trunk
S1#show vlan brief
```

Forgalomirányító beállítása

A mai forgalomirányítók lehetővé teszik, hogy egyetlen interfészen keresztül kössük össze alhálózatokat. Ennek a módszernek a neve: "router-on-a-stick".

Beállítunk két al-interfészt, amelyeket egy-egy VLAN-hoz kötünk:

```
R1(config) #interface GigabitEthernet 0/0
R1(config-if) #no shutdown
R1(config-if) #exit

R1(config) #interface GigabitEthernet 0/0.10
R1(config-subif) #
R1(config-subif) #encapsulation dot1Q 10
R1(config-subif) #ip address 192.168.10.1 255.255.255.0
R1(config-subif) #exit

R1(config) #interface GigabitEthernet 0/0.20
R1(config-subif) #
R1(config-subif) #
R1(config-subif) #encapsulation dot1Q 20
R1(config-subif) #ip address 192.168.20.1 255.255.255.0
R1(config-subif) #exit
```

Ellenőrzések forgalomirányítók:

```
R1#show ip route R1#show vlans
```

Utóbbi parancs PT-ben nem érhető el!

Egyéb ellenőrzés

tracert 192.168.10.11
tracert 192.168.20.11

Figyeljük meg hány ugrást látunk.

show vlan id 10 show vlan name tanulok