i)
$$\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ $\mathbf{w} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$

ii)
$$\mathbf{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$ $\mathbf{w} = \begin{pmatrix} -1 \\ 6 \end{pmatrix}$

iii)
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $\mathbf{v} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\mathbf{w} = \begin{pmatrix} \frac{8}{3} \\ \frac{5}{3} \end{pmatrix}$

- M
- **b)** (*Utilice el archivo lincomb.m*) Verifique los resultados (y observe la geometría) introduciendo primero los vectores u, v y w y después dando lincomb (u, v, w) para cada uno de los conjuntos de vectores en el inciso a).
- 3. a) (Lápiz y papel) Decir que w está en gen {v₁, v₂, v₃} significa que existen escalares c₁, c₂ y c₃ tales que w = c₁v₁ + c₂v₂ + c₃v₃. Para cada conjunto de vectores dado, escriba w = c₁v₁ + c₂v₂ + c₃v₃, interprételo como un sistema de ecuaciones para las incógnitas c₁, c₂ y c₃, verifique que la matriz aumentada para el sistema sea [v₁ v₂ v₃ | w] y resuelva el sistema. Observe que habrá un número infinito de soluciones.

i)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ $\mathbf{v}_3 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$ $\mathbf{w} = \begin{pmatrix} 1 \\ -4 \end{pmatrix}$

ii)
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $\mathbf{v}_2 = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ $\mathbf{v}_3 = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$ $\mathbf{w} = \begin{pmatrix} -4 \\ -1 \end{pmatrix}$

- b) (*Lápiz y papel*) Este inciso y el inciso c) exploran el "significado" de tener un número infinito de soluciones. Para cada conjunto de vectores en el inciso a):
 - i) Haga $c_3 = 0$ y despeje c_2 y c_1 . Escriba w como combinación lineal de v_1 y v_2 .
 - ii) Haga $c_2 = 0$ y despeje c_1 y c_3 . Escriba w como combinación lineal de \mathbf{v}_1 y \mathbf{v}_3 .
 - iii) Haga $c_1 = 0$ y despeje c_2 y c_3 . Escriba w como combinación lineal de v_2 y v_3 .
- c) (Utilice el archivo combine2.m) A continuación se presenta el código de la función combine2.m:

```
function combine2(v1, v2, v3, w);
% COMBINE2 funcion que grafica las combinaciones lineales de
          pares de vectores (v1, v2), (v2, v3), (v1, v3) para producir
          al vector w, los pares de vectores no deben ser paralelos
양
ջ
     v1: vector 2x1
     v2: vector 2x1
ջ
     v3: vector 2x1
      w: vector 2x1
origen=[0;0];
Ov1=[origen,v1];Ov2=[origen,v2];Ov3=[origen,v3];Ow=[origen,w];
wv1v2 = [v1, v2] \w; wv2v3 = [v2, v3] \w; wv1v3 = [v1, v3] \w;
Ov1Mv2w=[origen,wv1v2(1)*v1,wv1v2(2)*v2,[v1,v2]*wv1v2];
Ov1Mv3w=[origen,wv1v3(1)*v1,wv1v3(2)*v3,[v1,v3]*wv1v3];
```