본질 집중 깊은 사고

새로운 시도 집요한 실행

정직과 신의

ToF 통합 Calibration

목 차

- 1. Indirect ToF의 기본 원리
- 2. Infineon(PMD) Calibration 장비
- 3. Sony Calibration 장비
- 4. ToF Calibration 통합화
- 5. Infineon Calibration 기술 소개
- 6. Sony Calibration 기술 소개
- 7. Calibration 차이점

2019.04.26

1.개념

- Depth 인식을 하고자 하는 영역(3D Scene)으로 Light source (Laser) 에서 굉장히 빠른 간격으로 점멸 (Modulation)을 시키면서 빛을 쏘고,
- 수신부(TOF Sensor)에서는 Modulation 간격과 동기화 하여 Receptor들을 활성화 시키면서 되돌아오는 빛의 양을 인식하여 물체와의 거리 측정

2. 시스템 구성

핵심부품: Light source(발광부), TOF Sensor(수광부)

3. Light source

VCSEL(vertical cavity surface emitting laser): LED에 비해 빛을 집중적으로 멀리 쏠 수 있는 장점

4. 인식 원리 (Indirect type)

● 인식거리는 속도 x 시간 측면에서 아래와 같이 계산함

$$d = \frac{1}{2}c\tau$$

c : Speed of Light, T : Flight time (Returning time) (※T은 Returning time이므로 ½로 계산)

- Indirect TOF에서는 직접적인 "T"를 알 수 없으므로, Sinusoidal wave 라는 가정하에 송출신호와 수신신호 차이(Signal phase)를 토대로 계산
- 변조된 주파수의 범위는 10~100Mhz
- Signal phase와 Time of Flight의 관계는 아래와 같음

$$\phi = 2\pi f \tau \qquad \mathbf{d} = \frac{1}{2f} c \frac{\emptyset}{2\pi}$$

 ϕ : Signal phase(위상차), f : modulation frequency

■ TOF 측정 가능 범위

 $d=rac{c}{2f}$ $f: ext{Modulation Frequency}$ $f=80 ext{MHz}
ightarrow d=1.875 ext{m}$ $c: ext{Speed of Light}$ $f=60 ext{MHz}
ightarrow d=2.5 ext{m}$

" ϕ " : Signal phase, defined up to 2 π

"A" : Amplitude of the received signal, 물체의 반사율과 센서의 Sensitivity에 의해서 결정됨

Amplitude는 Light spread에 의해 1/d² 만큼 감소

"B": Offset coefficient due to the ambient illumination.

▲ 구조광 방식

L= $(1/X) \times f \times B$

Light source

Parameter	Direct TOF	Indirect TOF	/ Triangulation
Measurement range	Long	Middle	Middle
Accuracy	Middle	High	High
Optical system size	Small	Small	Large
Readout circuit	Complex	Complex	Simple
Array	Suitable	Suitable	Unsuitable
Ambient light immunity	High	Middle	Low

PMD 와 Sony의 기본 phase data

Distance =
$$\frac{C \times \Phi}{2 \omega} = \frac{C}{4 \pi f mod} \times tan^{-1} \left(\frac{signal2}{signal1}\right)$$

Distance =
$$\frac{C \times \Phi}{2 \omega} = \frac{C}{4 \pi f mod} \times \tan^{-1} \left(\frac{(\text{signal2} - \text{signal4})/2}{(\text{signal1} - \text{signal3})/2} \right)$$

2. Infineon(PMD) Calibration 장비 (1/2)

1) LED box

- Lens Calibration
- FPN
- FPPN

2) Fiber box

- Wiggling calibration (depth calibration)
- For mass production

2. Infineon(PMD) Calibration 장비 (2/2)

3) Validation box

- Calibration output validation

4) LTS (Linear translation stage)

- Wiggling calibration (depth calibration)
- For golden sample

3. Sony Calibration 장비

- 1) Slated Chart
- Lens Calibration
- Gradient Error (FPPN과 동일)
- FPN

2) Cat Tree

Cyclic Error

□ 기존 (~'18.7) Infineon 2-box vs. Sony only Slated-chart

♀ 우위 동등 € 열위

Sensor	Calibration 장비	기술 완성도	자사의 숙련도	투자비 (MP) 300k/月 기준 4대	Tact-time 업체 제	Depth 정밀도 공기준
Infineon	양산성 Issue !! 삭제 검토 中 → 성능 저하 예상 EDD box • 2D calibration • 3D calibration	양산경험 有 /w Sunny Optics, Lite-on 2-box 개발 完 1-box 개발 中 (~'18.6)	Fiber Box 양산성 검토 미 흡 ① 온/습도 유지 ② VCSEL과의 결합 ③ 주기적인 Fiber자 체 calibration 필요	UPH 204 (건) 7.52 억원 LED chart와 module간의 정확한 alignment 유지를 위한 추가장비필요	- <mark>2개 장비</mark> - 1번 영상 획득 1개 module 동등 수준 예상	동 <1% @ 1m 절대적인 거리값 측정 가능
		(2)	•	•	등등 구군 대명 (NPI 장비로 분석 예정)	<u>\bar{\bar{\bar{\bar{\bar{\bar{\bar{</u>
Sony		<u>양산경험無</u>	RGB, stereo 에서 이용하는 방식	7 억원 이하↓ (예상)	- <mark>1개 장비</mark> - 4번 영상 획득 4개 module 동	<1% @ 1m
	Slated chart + Turn table • 2D calibration • 3D calibration	개발 중 (~'18.6)	SW처리를 통한 절대 적인 위치 추출 가능 (예상)	장비 관리를 위한 추가 장비가 필요없 음	시 (가능 여부 확 인 필요)	기울어진 chart로 다양한 거리값 측정 가능

□ 검토 결과

- Infineon 장비로의 동합 가능성 ↓ (Sony 에서 black-box화하여 기술 제공 예상)
- Sony 장비토의 동합 가능성 ↑ (Infineon 기술 내재화 완료)
- ✓ Sony 장비에 Infineon 기술을 통합하여 플랫폼화하는 방향으로 기술 검토 진행.

(라이브러리 형태토 제공 예상)

대외비 2급

□ 변경 ('18.8~) Infineon 1-box vs. Sony Slated-chart (/w Cat tree)

♀ 우위 동등 열 열위

Sensor	Calibration 장비	기술 완성도	자사의 숙련도	투자비 (MP) 300k/月 기준 4대	Tact-time 업체 제공	Depth 정밀도 공기준	
Infineon	• 2D		우 양산경험 有 /w Sunny Optics, Lite-on 2-box 개발 完 1-box 개발 中 (~'18.6)		UPH 204	우 - <mark>1개 장비</mark> - 1번 영상 획득 1개 module	동 <1% @ 1m 절대적인 거리값 측정 가능
Sony		양산성 at tree Issue!! Cyclic error	양산경험無 개발 중 (~'18.6)	모두 신규 장비	② 7 억원 이상↑ Cat tree 추가	2개 장비 - 2개 장비 - 4번 영상 획득 4개 module 동 시 (가능 여부 확 인 필요)	동 < 1% @ 1m 기울어진 chart로 다양한 거리값 측정 가능

□ 검토 결과

- Infineon 장비토의 동합 가능성 ↑ (Sony SW open 되어 기준 내재화 작업 中)
- Sony 장비토의 동합 가능성 ↓ (Infineon에서 black-box화하여 기술 제공)

(라이브러리 형태토 제공)

✓ <u>Infineon 장비에 Sony 기술을 통합하여 플랫폼화</u>하는 방향으로 플랫폼화 기술 개발.

Done

Platform 장비

+ Infineon 센서

Infineon 센서 Cal.-Val.

Alpha 向 ('18.6 기준) ToF Module Frame Grabber

···>

Validation Box

PC

5. Infineon Calibration 기술 소개 (1/7)

대외비 2급

LEDsON.rds* / LEDsOFF.rds

Alpha向 PPO SPL 기준

Sequence Type	Dummy	Modulated					Modu	ılated	1	IlluOFF	IlluON	
D	1	2 3 4 5		6	7	8 9		10	11			
Raw image	Gray Scale	0°	90°	90° 180° 270° (0° 90° 180° 270°		Gray Scale	Gray Scale			
Modulation Frequency [Hz]	60240000	80320000								60240000		
Exposure Time [µs]	100		1295			1295				1290	1295	
Duty Cycle (Illumination)	0% (OFF)		25	5%			25	5%		0% (OFF)	25%	

LEDsON Mode Raw images 1 2 3 4 5

11

8

10

^{*} RDS file format = calibration을 하기 위한 Raw data, Exposure time, Illumination temperature 등의 정보를 가진 input format

5. Infineon Calibration 기술 소개 (2/7)

대외비 2급

[Validation] 1. Data Acquisition 2. Validation **Error Calculation** Pass/Fail Decision

WigShifts.rds

50

	Alpha向 PP0 SPL 기준

Sequence Type	Dummy	Modulated					Modulated					IlluOFF	IlluON
В. :	1	2	2 3 24 2		25	26	5 27 48 49		50	51			
Raw image	Gray Scale	0°	15°	:	330°	345°	0° 15° 330°345°		Gray Scale	Gray Scale			
Modulation Frequency [Hz]	60240000		80320000										
Exposure Time [µs]	100		600				600				110	300	
Duty Cycle (Illumination)	0% (OFF)	25%						25%	0% (OFF)			25%	

Wiggling Mode Raw images

51

Wig Shifts.rds

5. Infineon Calibration 기술 소개 (3/7)

대외비 2급

Lens Calibration

- 목적: 센서와 렌즈의 조립 공차 보상
- Input RDS: LEDsON.rds, LEDsOFF.rds
- Output: Lens parameter = [fx, fy, cx, cy, k1, k2, p1, p2, k3]

- ①: Filtered image data = 영상에서 검출 된 LED Pattern data (사용되는 영상 = LEDsON_Raw{10} LEDsOFF_Raw{10})
- ②: Rerecence template = 실제 LED pattern의 위치 정보로 생성한 Reference data
- ③: ①과 ②의 Matching 결과
 - → LED pattern을 찾아서 센서와 렌즈 조립 오차 계산

5. Infineon Calibration 기술 소개 (4/7)

대외비 2급

FPN(Fixed Pattern Noise) Removal

- 목적: 센서의 고정 노이즈 오차 계산
- Input RDS: LEDsOFF.rds
- Output: 224x172 크기의 FPN

- VCSEL의 영향을 최소화 하기 위하여 낮은 노출에서 offset image 획득
- 사용되는 영상: LEDsOFF_Raw{1}, LEDsOFF_Raw{10}
- FPN = LEDsOFF_Raw{10} DarkCurrent xLEDsOFF_ExposureTime{10}
 DarkCurrent = (LEDsOFF_Raw{10} LEDsOFF_Raw{1})
 /(LEDsOFF_ExposureTime{10} LEDsOFF_ExposureTime{1})

5. Infineon Calibration 기술 소개 (5/7)

대외비 2급

Wiggling Calibration

- 목적: 다양한 거리에 대한 거리 오차 계산
- Input RDS: WigShifts.rds
- Output: Modulation 별 fitting parameter

- ①: Real Phase와 Measured Phase에 대한 그래프
 - → 가장 이상적인 모양은 y=x 형태
 - → Real Phase와 Measured Phase의 차이 보상 필요
- ②: DeltaPhaseShift = Real Phase Measured Phase
 - → 다양한 거리에 대한 오차를 harmonic 함수*로 fitting
- 이때, 정확한 Real Distance가 중요하기 때문에 Box의 alignment가 필수

y=offset+A1*sin(1x+P1)+A2*sin(2x+P2)+A3*sin(4x+P3)+A4*sin(8x+P4)

FPPN (Fixed Pattern Phase Noise) Calibration

- · 목적: 센서의 픽셀 별 거리 오차 계산
- Input RDS: LEDsOFF.rds
- Output: Modulation 별 224x172 크기의 FPPN noise

- Flat한 평면의 Real Distance와 Measured Distance의 차를 이용하여 픽셀 별 오차 계산
- 이때, 정확한 Real Distance가 중요하기 때문에 Box의 alignment가 필수

[Validation]

5. Infineon Calibration 기술 소개 (7/7)

대외비 2급

Error Calculation

- 목적: Calibration 적용 후 depth의 정량적 평가
- Input RDS: Validation.rds (LEDsOFF.rds와 유사하지만, box의 거리가 다름)
- · Output: Amplitude Mean, Depth Error, Depth Noise 등 총 28개 항목

Amplitude Mean

Depth Error

Depth Noise

Platform 장비

+ Sony 센서

플랫폼 장비 – Sony 센서 Cal.-Val.

<····

Calibration Box

Validation Box

PC

Data Acquisition - For Lens calibration

Raw data – LED_ON_100.bin / LED_OFF_100.bin

Data	Тар А					οВ		
Raw data	30°	120°	210°	300°	210°	300°	30°	120°
Modulation Frequency (Hz)				10000	0000)		
Exposure Time [μs]				57	70			

6. Sony Calibration 기술 소개 (2/6)

대외비 2급

Data Acquisition – For Cyclic Error

Raw data - CYCLIC_100_[deg].bin / CYCLIC_60_[deg].bin

Data	Tap A Tap B								
Raw data_1	30°	120°	210°	300°	210°	300°	30°	120°	
Raw data_2	60°	150°	240°	330°	240°	330°	60°	150°	
			:	:	:		:		
Raw data_12	0° 90° 180° 270° 180° 270° 0° 90°							90°	
Modulation Frequency (Hz)			,	10000	00000)			
Exposure Time [µs]		570							

Data	Tap A Tap B									
Raw data_1	0°	90°	180°	270°	180°	270°	0°	90°		
Raw data_2	18°	108°	198°	288°	198°	288°	18°	108°		
Raw data_20	342°	72°	162°	252°	162°	252°	342°	72°		
Modulation Frequency (Hz)		6000000								
Exposure Time [µs]		570								

6. Sony Calibration 기술 소개 (3/6)

대외비 2급

Lens Calibration

- 목적: 센서와 렌즈의 조립 공차 보상
- Input: LED_ON_100.bin, LED_OFF_100.bin
- Output: Lens parameter = [fx, fy, cx, cy, k1, k2]

image data

• ①: Filtered image data = 영상에서 검출 된 LED Pattern data (사용되는 영상 = LEDsON TapA(0) – LEDsOFF TapB(0))

- ②: Rerecence template = 실제 LED pattern의 위치 정보로 생성한 Reference data
- ③: ①과 ②의 Matching 결과
 - → LED pattern을 찾아서 센서와 렌즈 조립 오차 계산

6. Sony Calibration 기술 소개 (4/6)

대외비 2급

[Validation] 1. Data Acquisition 2. Validation Error Calculation Pass/Fail Decision

Cyclic Error

- 목적: 다양한 거리에 대한 거리 오차 계산
- Input: CYCLIC_100_[deg].bin / CYCLIC_60_[deg].bin
- Output: Modulation frequency 별 fitting parameter

100MHz

60MHz

Error fitting

Phase Shift Offset

- Phase shift와 실제 거리에서 취득한 phase의 차이 (PP2 sample에서 발생)

100MHz phase offset

60MHz phase offset

Gradient Error

- 목적: 각 픽셀 별 거리 오차 계산
- Input: CYCLIC_100_30.bin / CYCLIC_60_0.bin
- Output: Modulation frequency 당 6 coefficients (p00, p10, p01, p20, p11, p02)

6. Sony Calibration 기술 소개 (6/6)

대외비 2급

Error Calculation

- 목적: Calibration Validation.rds적용 후 depth의 정량적 평가
- Input: VALDIATION_100.bin / VALIDATION_60.bin
- Output: Amplitude Mean, Depth Error, Depth Noise 등 총 28개 항목

- One-box 로 Cyclic error correction은 할 수 있기 위한 기본 가정
 - ✓ 주기 신호여야 함
 - ✓ 묻리적인 거리 (LTS) 와 phase shift 토 계산된 거리 (One-box)가 유사한 형태여야 함
- ▶ Infineon(~1cm)에 비해 Sony(~4cm)의 Phase shift 구동 정확도가 떨어짐

- One-Box의 Target 거리에 따른 최적의 기준 phase shift 가 있는 점은 확인
 - Cal.은 50cm에서 하려면, 100MHz: 30°, 60MHz: 0° phase shift 하여 사용
 - Cal.은 35cm에서 아려면, 100MHz: 60°, 60MHz: 18° phase shift 하여 사용
- Cat-tree 토 Calibration 한 결과 vs. One-box토 Calibration 한 결과
 - Depth Error: 동등 (근거리는 Cat-tree가 원거리는 One-box가 좋음)
 - Depth Noise: One-box가 더 좋음

- Infineon 은 픽섿볃 거리 오차가 랜덤하기 때문에 Fitting은 할 수 없음 → 해상도 만큼의 거리 오차 정보를 가지고 있어야 함

 - → Calibration data 용댱의 차이가 큼 Infineon: 120KB vs. Sony: 4KB

<Infineon>

<Sony>

