

Probabilistic Inference — Test, 2022-01-31

Duration: 50 minutes

1 Mathematical identities

• Subscripts of the covariance matrix of vector-valued random variables determine the ordering of the axes of the matrix. So for $\mathbf{x} \in \mathbb{R}^D$ and $\mathbf{y} \in \mathbb{R}^E$, we have $\Sigma_{\mathbf{x}\mathbf{y}} \in \mathbb{R}^{D \times E}$ with

$$\Sigma_{\mathbf{x}\mathbf{y}} = \operatorname{Cov}[\mathbf{x}, \mathbf{y}] = \mathbb{E}_{p(\mathbf{x}, \mathbf{y})}[(\mathbf{x} - \mathbf{m}_{\mathbf{x}})(\mathbf{y} - \mathbf{m}_{\mathbf{y}})^{\mathsf{T}}]$$

$$= \mathbb{E}[\mathbf{x}\mathbf{y}^{\mathsf{T}}] - \mathbf{m}_{\mathbf{x}}\mathbf{m}_{\mathbf{y}}^{\mathsf{T}}, \qquad (1)$$

$$\Longrightarrow [\mathbf{\Sigma}_{\mathbf{x}\mathbf{y}}]_{ij} = \operatorname{Cov}[x_i, y_j].$$
 (2)

- Covariance matrices are symmetric by definition.
- Covariance matrices are always positive semidefinite (PSD), i.e. $\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a} \geq 0$, $\forall \mathbf{a}$. This comes from the fact that for a random variable \mathbf{x} with covariance $\mathbf{\Sigma}$, we can define a scalar random variable $\mathbf{a}^{\mathsf{T}} \mathbf{x}$ for a constant \mathbf{a} . Its variance must be $\mathbf{a}^{\mathsf{T}} \mathbf{\Sigma} \mathbf{a}$, and variances are always positive.
- The family of Gaussian distributions is **closed under linear transformations**. I.e. transforming the outcome of a Gaussian random vector \mathbf{x} by a matrix $A(A\mathbf{x})$ will also be Gaussian distributed (see above for its variance).

This is the **single most important** property of Gaussians that leads to many of its other properties.

• Gaussians are closed under **marginalisation** (take A to be a row vector with a element being 1), i.e. for a Gaussian $p(\mathbf{x}, \mathbf{y})$ we have

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y} = \int \mathcal{N}\left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}; \begin{bmatrix} \mathbf{m}_{\mathbf{x}} \\ \mathbf{m}_{\mathbf{y}} \end{bmatrix}, \begin{bmatrix} \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}} & \mathbf{\Sigma}_{\mathbf{x}\mathbf{y}} \\ \mathbf{\Sigma}_{\mathbf{y}\mathbf{x}} & \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}} \end{bmatrix}\right) d\mathbf{y} = \mathcal{N}(\mathbf{x}; \mathbf{m}_{\mathbf{x}}, \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}}).$$
(3)

• Gaussian probability density function (pdf) with input $\mathbf{x} \in \mathbb{R}^D$, which in my notes I designate by $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{D}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp(-(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})).$$
(4)

• For a joint Gaussian density

$$p\left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}\right) = \mathcal{N}\left(\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}; \begin{bmatrix} \mathbf{m}_{\mathbf{x}} \\ \mathbf{m}_{\mathbf{y}} \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}} & \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{y}} \\ \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{x}} & \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{y}} \end{bmatrix}\right), \tag{5}$$

we have the conditional density

$$p(\mathbf{x} \mid \mathbf{y}) = \mathcal{N}(\mathbf{x}; \quad \mathbf{m}_{\mathbf{x}} + \mathbf{\Sigma}_{\mathbf{x}\mathbf{y}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1}(\mathbf{y} - \mathbf{m}_{\mathbf{y}}), \quad \mathbf{\Sigma}_{\mathbf{x}\mathbf{x}} - \mathbf{\Sigma}_{\mathbf{x}\mathbf{y}} \mathbf{\Sigma}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{\Sigma}_{\mathbf{y}\mathbf{x}}).$$
 (6)

2.1 Finite basis function models

Consider a finite basis function model $f(x) = \phi(x)^{\mathsf{T}} \mathbf{w}$ basis functions $\phi_i(x) = \exp(-(x - c_i)^2)$ with a prior $p(\mathbf{x}) = \mathcal{N}(\mathbf{w}; 0, \mathbf{I})$, if for all $i, 0 \le c_i \le 10$.

Question 1 If we observe data in the region $0 \le x \le 10$ through e.g. a Gaussian likelihood, the posterior variance of $f(\cdot)$ at x = 20 will be

A Very large.

B 1

C Very close to zero.

D 0

Question 2 If we observe data in the region $20 \le x \le 30$ through e.g. a Gaussian likelihood, the posterior variance of $f(\cdot)$ at x = 50 will be

A 0

B 1

C Very close to zero.

D Very large.

Question 3 What is the prior variance on f(x) for x > 20?

A 0

B Very close to zero.

C Very large.

D 1

2.2 Gaussian processes

If not otherwise stated, assume a GP model with

- a zero-mean GP prior,
- squared exponential prior covariance function: $k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp((\mathbf{x} \mathbf{x}')^{\mathsf{T}}(\mathbf{x} \mathbf{x}')/(2\ell^2))$ with $\sigma_f = \ell = 1$, and
- the likelihood $p(\mathbf{y} | f(X), X) = \mathcal{N}(\mathbf{y}; f(X), \sigma^2),$
- no more than 100 observations.

Question 4 The posterior for $f(X^*)$ of a model with a GP prior and a Gaussian likelihood is independent over all outputs.

A False.

B True.

Question 5 The posterior of the GP model is also a Gaussian process.

A True.

B False.

Question 6 The likelihood $p(\mathbf{y} | f(X), X) = \mathcal{N}(\mathbf{y}; f(X), \sigma^2 \mathbf{I})$ is independent over all observations.

A True.

B False.

The posterior over function values $p(f(X^*)|X, \mathbf{y})$ for a model with Gaussian likelihood $p(\mathbf{y}|f(X), X) = \mathcal{N}(\mathbf{y}; f(X), \sigma^2 \mathbf{I})$ is

$$\mathcal{N}\left(f(X^*); \mathbf{K}_{X^*X}[\mathbf{K}_{XX} + \mathbf{A}]^{-1}\mathbf{y}, \mathbf{K}_{X^*X^*} + \mathbf{B} - \mathbf{K}_{X^*X}[\mathbf{K}_{XX} + \mathbf{A}]^{-1}\mathbf{K}_{XX^*}\right),\tag{7}$$

where $\mathbf{K}_{X_1X_2} = k(X_1, X_2)$, i.e. the prior kernel evaluated at points $X_1 \in \mathbb{R}^{N_1 \times D}$ and $X_2 \in \mathbb{R}^{N_2 \times D}$, giving an $N_1 \times N_2$ matrix. The correct \mathbf{A} and \mathbf{B} are

Question 8

The posterior over observations \mathbf{y}^* at locations X^* $p(\mathbf{y}^* \mid X, \mathbf{y}, X^*)$ for a model with Gaussian likelihood $p(\mathbf{y} \mid f(X), X) = \mathcal{N}(\mathbf{y}; f(X), \sigma^2 \mathbf{I})$ is

$$\mathcal{N}\left(\mathbf{y}^*; \mathbf{K}_{X^*X}[\mathbf{K}_{XX} + \mathbf{A}]^{-1}\mathbf{y}, \mathbf{K}_{X^*X^*} + \mathbf{B} - \mathbf{K}_{X^*X}[\mathbf{K}_{XX} + \mathbf{A}]^{-1}\mathbf{K}_{XX^*}\right), \tag{8}$$

where $\mathbf{K}_{X_1X_2} = k(X_1, X_2)$, i.e. the prior kernel evaluated at points $X_1 \in \mathbb{R}^{N_1 \times D}$ and $X_2 \in \mathbb{R}^{N_2 \times D}$, giving an $N_1 \times N_2$ matrix. The correct \mathbf{A} and \mathbf{B} are

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Question 9 If we observe data in the region $20 \le x \le 30$ through e.g. a Gaussian likelihood, the posterior variance of $f(\cdot)$ at x = 50 will be

A Very close to 1. B Very close to zero. C 0 D Very large.

Question 10 A Gaussian process is completely defined by its mean function and covariance function.

A False. B True.

Question 11 A Gaussian process with a squared exponential covariance function behaves as a basis function model with *
blank>* basis functions. Substitute for *
blank>*:

A 1 B a very large but finite nite number of D infinite

2.3 Model selection & low-rank kernels

Question 12 In a Bayesian inference problem, the prior $p(\theta)$, likelihood $p(\mathbf{y} | \theta)$, and marginal likelihood $p(\mathbf{y})$ are related through Bayes' rule:

$$p(\boldsymbol{\theta} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathbf{y})}.$$
 (9)

To perform maximum a-posteriori (MAP) inference, we need to be able to evaluate

A the likelihood and B the posterior and C the marginal likeprior likelihood lihood and prior

A True. B False.

Question 15 For a linear kernel $k(\mathbf{x}, \mathbf{x}) = 1 + \mathbf{x}^{\mathsf{T}}\mathbf{x}$, which for an arbitrary input matrix $X \in \mathbb{R}^{N \times D}$ gives a kernel matrix of $\mathbf{K} = XX^{\mathsf{T}} + \mathbf{1}_{N \times N} = [X, \mathbf{1}_N][X, \mathbf{1}_N]^{\mathsf{T}}$, what is the best computational complexity that GP regression be performed in?

2.4 Bayesian optimisation

Question 16 Bayesian optimisation is most useful when the true function we are trying to optimise is very cheap to evaluate.

A True B False

Question 17 When designing an acquisition function for minimising a black box function, we need to balance exploration and exploitation. This is done by

A Exploring regions where the mean function is low by choosing locations where the mean function is minimised

B Choosing locations with a trade-off between low mean function and high uncertainty