Automaten und Berechenbarkeit - Übung 03

FELIX TISCHLER, MARTRIKELNUMMER: 191498

Aufgabe 1

NFA $M = (\{0, 1\}, \{a, b, c, d\}, \delta, \{a, d\}, \{b, d\})$ δ :

Zustand	0	1
Ø	Ø	Ø
a	Ø	$\{b,c,d\}$
b	$\{d\}$	Ø
c	$\{b\}$	Ø
d	Ø	{c}

(a)

$$\begin{split} \delta^*(\{a\}, 1001) &= \bigcup_{z \in \{a\}} \delta^*(\delta(\{a\}, 1), 001) \\ &= \delta^*(\{b, c, d\}, 001) \\ &= \bigcup_{z \in \{b, c, d\}} \delta^*(\delta(\{b, c, d\}, 0), 01) \\ &= \delta^*(\{d\}, 01) \cup \delta^*(\{b\}, 01) \cup \delta^*(\emptyset, 01) \\ &= \delta^*(\delta(\{d\}, 0), 1) \cup \delta^*(\delta(\{b\}, 0), 1) \\ &= \emptyset \cup \delta^*(\{d\}, 1) \\ &= \delta^*(\delta(\{d\}, 1), \lambda) \\ &= \delta^*(\{c\}, \lambda) \\ &= \{c\} \end{split}$$

$$\delta^*(\{d\}, 1000) = \delta^*(\delta(\{d\}, 1), 000)$$

$$= \delta^*(\{c\}, 000)$$

$$= \delta^*(\delta(\{c\}, 0), 00)$$

$$= \delta^*(\{b\}, 00)$$

$$= \delta^*(\delta(\{b\}, 0), 0)$$

$$= \delta^*(\{d\}, 0)$$

$$= \delta^*(\delta(\{d\}, 0), \lambda)$$

$$= \delta^*(\emptyset, \lambda) = \emptyset$$

Bestimmen Sie $\{w \in \{0,1\}^* \mid \delta^*(\{a\},w) \cap \{d\} \neq \emptyset\}!$

 $\delta^*(\{a\}, w)$... Menge der möglichen Endzustände, in denen man landet, wenn man w abgearbeitet hat.

Da $\delta^*(a,w) \cup \{d\} \neq \emptyset$ gelten soll, muss $d \in \delta^*(a,w)$. 1. Fall: direkt aus a nach d. 2. Fall aus a nach b und dann nach d. 3. Fall aus a nach c und dann nach d. 4. Fall: einer der drei Fälle und dann aus d nach c und dann nach b und dann wieder nach d.

Aus Fall 1 bis 4 ergeben sich folgende Muster in den akzeptierten Wörtern: $\begin{cases} 1. & w = 1 - a \\ 2. & w = 10 = b \\ 3. & w = 100 = c \\ 4. & w = a100|b100|c100 \end{cases}$

Der 4. Fall kann als einziger immer wieder angewandt werden ohne, dass die Akzeptanz von w beeinflusst wird. Somit ergibt sich: $\{w \in \{0,1\}^* \mid \delta^*(\{a\},w) \cap \{d\} \neq \emptyset\} = \{1,10,100\} \cdot \{100\}^*$

Bzw.

(c) Übergangstabelle des gegebenen NFA M:

Zustand	0	1
Ø	Ø	Ø
a	Ø	$\{b,c,d\}$
b	$\{d\}$	Ø
С	{b}	Ø
d	Ø	$\{c\}$
$\{b,c,d\}$	$\{d,b\}$	$\{c\}$
$\{d,b\}$	$\{d\}$	$\{c\}$

Zustand	0	1
Ø	Ø	Ø
q_0	Ø	$\{q_4\}$
q_1	$\{q_3\}$	Ø
q_2	$\{q_1\}$	Ø
q_3	Ø	$\{q_2\}$
q_4	$\{q_5\}$	$\{q_2\}$
q_5	$\{q_3\}$	$\{q_2\}$

Bestimmung der Einträge in der Übergangstabelle:

$$\begin{split} & \delta^*(\{d,b\},0) = \delta^*(\emptyset \cup \{d\},\lambda) = \{d\} \\ & \delta^*(\{d,b\},1) = \delta^*(\{c\} \cup \emptyset,\lambda) = \{c\} \\ & \delta^*(\{b,c,d\},0) = \delta^*(\{d\} \cup \{b\} \cup \emptyset,\lambda) = \{d,b\} \\ & \delta^*(\{b,c,d\},1) = \delta^*(\emptyset \cup \emptyset \cup \{c\}) \end{split}$$

DFA M':

Aufgabe 2

(a)

Der DFA ist mittel Potenzmengenkonstruktion aus dem NFA in (b) entstanden. Die Zustände z_2 und z_3 wurden entfernt, da Sie nicht erreichbar sind. Im Teil (b) habe ich den NFA bewiesen. Da dieser DFA auf jenem beruht gilt er ebenso.

$$M' = (\{0,1\}, Z', \delta', S', Z_E')$$
 $\delta :$

Zustand	0	1
z_0	$\{z_0\}$	$\{z_1\}$
z_1	$\{z_0,z_2\}$	$\{z_0, z_2\}$
z_2	$\{z_0,z_3\}$	$\{z_0,z_3\}$
z_3	$\{z_0\}$	$\{z_0\}$
$\{z_0,z_1\}$	$\{z_0, z_2\}$	$\{z_0,z_1,z_2\}$
$\{z_0, z_2\}$	$\{z_0,z_3\}$	$\{z_0,z_1,z_3\}$
$\{z_0,z_3\}$	$\{z_{0}\}$	$\{z_0,z_1\}$
$\{z_0, z_1, z_2\}$	$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$
$\{z_0, z_1, z_3\}$	$\{z_0,z_2\}$	$\{z_0,z_1,z_2\}$
$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$	$\{z_0, z_1, z_2, z_3\}$

0	1
$\{z_0\}$	$\{z_1\}$
$\{z_5\}$	$\{z_5\}$
$\{z_{6}\}$	$\{z_6\}$
$\{z_0\}$	$\{z_0\}$
$\{z_5\}$	$\{z_7\}$
$\{z_6\}$	$\{z_8\}$
$\{z_0\}$	$\{z_4\}$
$\{z_9\}$	$\{z_9\}$
$\{z_5\}$	$\{z_7\}$
$\{z_{9}\}$	$\{z_9\}$
	$ \begin{aligned} &\{z_0\} \\ &\{z_5\} \\ &\{z_6\} \\ &\{z_0\} \\ &\{z_5\} \\ &\{z_6\} \\ &\{z_0\} \\ &\{z_9\} \\ &\{z_5\} \end{aligned} $

Bzw.

(b)

$$M = (\{0,1\}, Z, \delta, S, Z_E)$$

 δ :

Zustand	0	1
z_0	$\{z_0\}$	$\{z_1\}$
z_1	$\{z_0, z_2\}$	$\{\mathbf{z}_0, z_2\}$
z_2	$\{z_0, z_3\}$	$\{\mathbf{z}_0, z_3\}$
z_3	$\{z_0\}$	$\{z_0\}$

Beweis. " \subseteq " | w | \ge 3 ist trivial. Wir sehen, dass der Automat frühestens nach einer Wortlänge von 3 ein Wort akzeptiert. Denn es muss mindestens $z_0 \to z_1 \to z_2 \to z_3$ abgearbeitet sein um akzeptiert zu werden. Der Übergang von $z_0 \to z_1$ bestimmt das 3. letzte Zeichen. Da $z_0 \to z_1$ nur durch eine 1 möglich ist, ist garantiert, dass das 3. letzte Zeichen eine 1 ist.

Beweis. " \supseteq " Jedes Wort ist lesbar, da in jedem Zustand eine 0 oder 1 gelesen werden kann. Jedoch: kann ein Wort akzeptiert werden, so kann es nach beliebiger Anzahl von 0 und 1 in z_0 nach z_1 wandern, insofern der dritt letzte Buchstabe eine 1 ist (andern falls bleibt es in z_0). von dort kann es dann mit 2 variablen Buchstaben nach z_3 wo es schließlich akzeptiert wird.

Aufgabe 3

Zustand	a	b
z_0	z_3	z_1
z_1	z_3	z_2
z_2	z_3	Ø
z_3	z_3	z_3

Beweis. " \subseteq " Mittels eines a's kann in jedem Zustand ein Wort akzeptiert werden. Sollte jedoch nach den ersten 2 gelesenen Buchstaben kein a dabei gewesen sein, also der Fall, dass man in z_2 sich befindet, so kann nur durch ein a in z_3 übergegangen werden. Alle anderen Wörter sind nicht lesbar, z_2 bildet bei Eingabe eines b's in \emptyset ab. Somit ist sichergestellt, dass der NFA nur die Wörter akzeptiert, die laut Aufgabenstellung zulässig sind.

Beweis. " \supseteq " Jedes Wort, dass ein a unter den ersten 3 Buchstaben enthält landet in z_3 . Von dort aus kann es beliebig lang sein und immer akzeptiert werden.

Aufgabe 4

$$G_{1} = (\{a,b\}, \{S,A,B,E1,E2\}, S,R) \text{ mit } R : \begin{cases} S & \to aA \mid Bb \\ A & \to E_{1}b \mid b \\ B & \to aE_{2} \mid a \\ E_{1} & \to aA \\ E_{2} & \to Bb \end{cases}$$