POLITECHNIKA LUBELSKA WYDZIAŁ PODSTAW TECHNIKI

Kierunek: MATEMATYKA

Praca inżynierska

Zastosowanie modeli mieszanych w analizie rozwoju pandemii wywołanej wirusem Covid-19 na świecie

The use of mixed-effects models in the analysis of the Covid-19

pandemic in the world

Praca wykonana pod kierunkiem: dra Dariusza Majerka Autor:

Alicja Hołowiecka

nr albumu: 89892

Spis treści

Wstęp)	5
Rozdz	ział 1. Teoretyczne podstawy badań własnych	7
1.1.	Modele liniowe	7
1.2.	Modele mieszane	7
\mathbf{Rozdz}	ział 2. Część praktyczna	9
2.1.	Probelmy szczegółowe i cele	9
	2.1.1. Hipoteza 1	9
2.2.	Zbiór danych i jego wstępne przygotowanie	9
2.3.	Modele	9
2.4.	Dyskusja wyników	9
Podsu	mowanie i wnioski	11
Biblio	grafia	13
Spis r	ysunków	15
Spis ta	abel	17
Załącz	zniki	19
Stresz	czenie (Summary)	21

Wstęp

Bla bla koronaświrus...

Rozdział 1

Teoretyczne podstawy badań własnych

W tej części pracy przedstawimy metody matematyczne, które zostaną użyte w części praktycznej tej pracy. Zgodnie z tematem, będą to głównie modele mieszane.

1.1. Modele liniowe

Na początek przypomnimy podstawowe wiadomości o modelach liniowych. Model regresji prostej ma postać

$$y = x\beta_1 + \beta_0 + \varepsilon$$

gdzie oszacowania parametrów β_1 , β_0 obliczamy następująco:

$$\hat{\beta}_1 = \frac{Cov(x, y)}{Var(x)},$$

$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1.$$

Model interpretujemy w ten sposób, że jeżeli zmienna x wzrośnie o 1, to zmienna y zmieni się o β_1 .

1.2. Modele mieszane

W powyżej opisanych modelach liniowych z efektami stałymi zakładamy niezależność kolejnych pomiarów, dlatego nie są to odpowiednie modele, kiedy mamy np. kilka pomiarów dla pojedynczego elementu. W takim przypadku możemy użyć modeli liniowych z efektami mieszanymi (stałymi i losowymi), które krótko nazywamy modelami mieszanymi.

Rozważamy model postaci

$$u = X\beta + Zu + \varepsilon$$

gdzie X - macierz zmiennych będących efektami stałymi, Z - macierz zmiennych będących efektami losowymi [1].

Rozdział 2

Część praktyczna

2.1. Probelmy szczegółowe i cele

2.1.1. Hipoteza 1

Wpływ kraju (efektu losowego) jest większy niż wpływ czasu (czynnika stałego) w modelu mieszanym.

2.2. Zbiór danych i jego wstępne przygotowanie

Zbiór danych pochodzi z witryny internetowej Our World In Data, gdzie dane zostały zebrane z różnych źródeł, m. in. ze Światowej Organizacji Zdrowia (WHO) oraz Europejskiego Centrum ds. Zapobiegania i Kontroli Chorób (ECDC). W zbiorze znajduje się 210 krajów, dane dotyczące terytoriów międzynarodowych oraz łącznie dla całego świata. Mamy ponad 40 kolumn z różnymi parametrami - w dalszej części pracy opiszemy, które zmienne będą przez nas użyte.

W zbiorze znajdowało się wiele braków danych. W przypadku zmiennych takich jak liczba zachorowań, zostały one wypełnione poprzez przepisanie danych z poprzedniego dnia. Dla każdego kraju zostały usunięte dane sprzed rozpoczęcia się epidemii na jego terytorium (total cases=0), dni są numerowane kolejnymi liczbami całkowitymi.

2.3. Modele

2.4. Dyskusja wyników

Podsumowanie i wnioski

Wszyscy umrzemy.

Bibliografia

[1] Przemysław Biecek, Analiza danych z programem R. Modele liniowe z efektami stałymi, losowymi i mieszanymi, Wydawnictwo Naukowe PWN, Wydanie II, Warszawa 2013

Spis rysunków

Spis tabel

Załączniki

1. Płyta CD z niniejszą pracą w wersji elektronicznej.

Streszczenie (Summary)

Zastosowanie modeli mieszanych w analizie rozwoju pandemii wywołanej wirusem Covid-19 na świecie

The use of mixed-effects models in the analysis of the Covid-19 pandemic in the world