CB n°5 - Espaces préhilbertiens - Sujet 1

Pour $(P,Q) \in \mathbb{R}[X]$, on pose :

$$\varphi(P,Q) = \int_0^{+\infty} e^{-2t} P(t) Q(t) dt$$

- 1. Questions préliminaires d'analyse.
 - **a.** Justifier que pour tout $(P,Q) \in \mathbb{R}[X]^2$, $\int_0^{+\infty} e^{-2t} P(t) Q(t) dt$ converge.
- **b.** Pour $n \in \mathbb{N}$, on note $I_n = \int_0^{+\infty} t^n e^{-2t} dt$. Montrer que pour tout $n \in \mathbb{N}^*$, $I_n = \frac{n}{2} I_{n-1}$.
- **c.** Calculer I_0 , et en déduire I_1 , I_2 , I_3 et I_4 .
- **2.** Montrer que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 3. Déterminer une base orthonormée de $Vect\{X^0, X\}$ pour ce produit scalaire.
- **4.** Calculer la distance de X^2 à Vect $\{X^0, X\}$.

CB n°5 - Espaces préhilbertiens - Sujet 2

Pour $(P,Q) \in \mathbb{R}[X]$, on pose :

$$\varphi(P,Q) = \int_0^{+\infty} e^{-3t} P(t) Q(t) dt$$

- 1. Questions préliminaires d'analyse.
 - **a.** Justifier que pour tout $(P,Q) \in \mathbb{R}[X]^2$, $\int_0^{+\infty} e^{-3t} P(t) Q(t) dt$ converge.
 - **b.** Pour $n \in \mathbb{N}$, on note $I_n = \int_0^{+\infty} t^n e^{-3t} dt$. Montrer que pour tout $n \in \mathbb{N}^*$, $I_n = \frac{n}{3} I_{n-1}$.
 - **c.** Calculer I_0 , et en déduire I_1 , I_2 , I_3 et I_4 .
- **2.** Montrer que φ est un produit scalaire sur $\mathbb{R}[X]$.
- 3. Déterminer une base orthonormée de $Vect\{X^0, X\}$ pour ce produit scalaire.
- **4.** Calculer la distance de X^2 à Vect $\{X^0, X\}$.

Spé PT B CB5 - 2019-2020