3. Дискретное во времени преобразование Фурье (ДВПФ)

Оценка спектра сигнала по последовательности его отсчетов

Пусть есть последовательность выборок $x(k\Delta t)$, некоторого аналогового сигнала x(t), где Δt — шаг дискретизации — интервал времени между каждой парой соседних эквидистантных отсчетов, $k\in Z$ — номер отсчета. $f_{\pi}=1/\Delta t$ — частота дискретизации — величина, братная шагу дискретизации (размерность [Гц]=[c $^{-1}$]). Будем считать, что спектр исходного аналогового сигнала ограничен интервалом $\left[-f_{\pi}/2;\,f_{\pi}/2\right]$, а соответственно при дискретизации не наблюдается эффект наложения спектров ($f_{\pi}>2f_{\pi}$).

Рассмотрим последовательность отсчетов (дискретный сигнал) x[k], которую будем определять через выборки следующим образом

$$x[k] = Tx(k\Delta t),$$

где $T=\Delta t$. Как ранее было установлено, при $T=\Delta t$ спектр дискретизованного сигнала x[k] представляет собой периодическое повторение исходного спектра $X_{\rm a}(f)$ аналогового сигнала x(t) с периодом, равным частоте дискретизации f_{π} :

$$X_{_{\mathrm{I}}}(f) = \sum_{n=-\infty}^{\infty} X_{\mathrm{a}}(f - nf_{_{\mathrm{I}}}).$$

Необходимая спектральная информация будет содержаться в полосе $\left[-f_{_{\rm I\! I}}/2;f_{_{\rm I\! I}}/2\right]$. Теперь оценим спектр исходного сигнала по его выборкам в этой полосе.

Континуальная запись дискретного сигнала x[k] в данном случае

$$x_{_{\mathrm{II}}}(t) = \sum_{k=-\infty}^{\infty} x[k]\delta(t - k\Delta t).$$

Вычислим его спектр (преобразование Фурье)

$$\begin{split} X_{\pi}\left(f\right) &= \int_{-\infty}^{\infty} x_{\pi}(t) \exp(-j2\pi ft) dt = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k] \delta(t-k\Delta t) \exp(-j2\pi ft) dt = \\ &= \sum_{k=-\infty}^{\infty} x[k] \int_{-\infty}^{\infty} \delta(t-k\Delta t) \exp(-j2\pi ft) dt = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi fk\Delta t), \end{split}$$

Таким образом, спектр дискретного сигнала определяется через его отсчёты по формуле

$$X_{_{\pi}}(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t). \tag{0.1}$$

Эта формула определяет прямое дискретное во времени преобразование Фурье (ДВПФ). Учитывая, что (0.1) представляет собой ряд Фурье для периодической функции $X_{_{\rm I\! I}}(f)^{\rm I}$, получаем, что отсчётные значения дискретного сигнала соответствуют коэффициентам Фурье в этом ряде:

$$x[k] = c_{-k} = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$
 (0.2)

В итоге получаем пару формул (0.1) и (0.2), определяющих прямое и обратное дискретное во времени преобразование Фурье (ДВПФ). ДВПФ в свою очередь показывает, каким является спектр дискретного сигнала x[k], который на отрезке оси частот $\left[-f_{_{\rm I}}/2; f_{_{\rm I}}/2\right]$ в отсутствии наложения совпадает со спектром исходного аналогового сигнала. При этом важно

$$\phi_m(x) = \exp(jm\frac{\pi}{l}x), \quad m \in Z: \quad f(x) = \sum_{m=-\infty}^{+\infty} c_m \exp(jm\frac{\pi}{l}x),$$
 ede

коэффициенты Фурье
$$c_m = \frac{1}{2l} \int_{-l}^{l} f(x) \exp(-jm\frac{\pi}{l}x) dx$$

помнить, что в данном случае выборки аналогового сигнала связаны с дискретной последовательностью как $x[k] = \Delta t x(k \Delta t)$.

Различные формы записи ДВПФ

Итак, мы установили, что пара дискретного во времени преобразования Фурье (ДВПФ) имеет вид

$$X(f) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi f k \Delta t),$$

$$x[k] = \frac{1}{f_{\pi}} \int_{-f_{\pi}/2}^{f_{\pi}/2} X(f) \exp(j2\pi f k \Delta t) df.$$

Введем нормированные частоты $\, {
m V} = f \, / \, f_{_{
m A}} = f \, \Delta t \, . \,$ Тогда пара ДВПФ может быть записана следующим образом:

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk),$$

$$x[k] = \int_{-1/2}^{1/2} X(v) \exp(j2\pi vk) dv.$$

Если принять $2\pi f=\omega$, а частоту дискретизации взять в рад/с $~\omega_{_{\rm I}}=2\pi/\Delta t$, то

$$X(\omega) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\omega k \Delta t),$$

$$x[k] = \frac{\Delta t}{2\pi} \int_{-\omega_{\pi}/2}^{\omega_{\pi}/2} X(\omega) \exp(j\omega k \Delta t) d\omega.$$

Приняв $\theta = 2\pi v$ (нормированный угол в радианах), получаем

$$X(\theta) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j\theta k),$$

$$x[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\theta) \exp(j\theta k) d\theta.$$

 $^{^1}$ Напоминание. Для 2l - периодической функции f(x) , абсолютно интегрируемой на интервале (-l;l) ряд Фурье по системе функций

Частотная	Размерность	Период	
переменная		поветорения	
		спектра	
f	Гц	$f_{\mathcal{A}} = 1/\Delta t$	$[-f_{\mathcal{A}}/2;f_{\mathcal{A}}/2]$
$\omega = 2\pi f$	рад/с	$\omega_{\mathcal{A}} = 2\pi / \Delta t$	$[-\omega_{\mathcal{I}}/2;\omega_{\mathcal{I}}/2]$
$v = f / f_{\mathcal{A}}$	безразмерная	1	[-0,5;0,5]
$\theta = 2\pi f / f_{\mathcal{A}}$	рад	2π	$[-\pi;\pi]$

Пример.

Рассмотрим в качестве примера последовательность единичных импульсов $x[k] = \mathbf{1}[k+1] + \mathbf{1}[k] + \mathbf{1}[k-1]$, где $\mathbf{1}[k]$ — единичный импульс, определяемый как

$$\mathbf{1}[k] = \begin{cases} 1, k = 0; \\ 0, k \neq 0. \end{cases}$$

ДВПФ такой последовательности

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = \sum_{k=-1}^{1} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$

$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v)$$

Свойства ДВПФ

1) Линейность

Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$ и $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$, то $\alpha x[k] + \beta y[k] \overset{DTFT}{\longleftrightarrow} \alpha X(\nu) + \beta Y(\nu)$, где α , β — фиксированные числа.

Это свойство следует непосредственно из соответствующих свойств интеграла и суммы.

2) Теорема запаздывания

Если

$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, to $x[k-l] \overset{DTFT}{\longleftrightarrow} X(v) \exp(-j2\pi v l)$.

где x[k-l] — это сигнал, запаздывающий по времени относительно сигнала x[k] на l отсчетов в случае l>0 и опережающий сигнал x[k] на -l отсчетов в случае l<0.

Докажем свойство. Для этого возьмем обратное ДВПФ для правой части выражения:

 $\int_{-1/2}^{1/2} X(\nu) \exp(-j2\pi\nu l) \exp(j2\pi\nu k) d\nu = \int_{-1/2}^{1/2} X(\nu) \exp(j2\pi\nu (k-l)) d\nu = x[k-l].$ Стоит отметить, что $|X(\nu)|$ для запаздывающего и исходного сигнала одинаков.

Пример

$$\mathbf{1}[k] = \begin{cases} 1, k = 0, \\ 0, k \neq 0. \end{cases}$$

3) Теорема смещения

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $x[k] \exp(j2\pi v_0 k) \overset{DTFT}{\longleftrightarrow} X(v-v_0)$

Умножение сигнала на комплексную экспоненту вида $\exp(j2\pi v_0 k)$, $v_0\in R$ приводит к сдвигу спектральной функции вдоль оси частот на v_0 вправо в случае $v_0>0$ и на $-v_0$ влево в случае $v_0<0$.

Пример.

$$y[k] = x[k] \exp(j2\pi v_0 k)$$
, где $x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m]$.

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk) = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{2j}{2j} \frac{e^{-j\pi vN}}{e^{-j\pi v}} \frac{(e^{j\pi vN} - e^{-j\pi vN})}{(e^{j\pi v} - e^{-j\pi v})} = \frac{\sin(N\pi v)}{\sin(\pi v)} \exp(-j(N-1)\pi v).$$

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

$$Y(v) = X(v - v_0) = \frac{\sin(N\pi(v - v_0))}{\sin(\pi(v - v_0))} \exp(-j(N - 1)\pi(v - v_0)).$$

4) Равенство Парсеваля

$$\sum_{k=-\infty}^{\infty} |x[k]|^2 = \int_{-1/2}^{1/2} |X(v)|^2 dv$$
$$\sum_{k=-\infty}^{\infty} x[k] y^*[k] = \int_{-1/2}^{1/2} X(v) Y^*(v) dv$$

Пример.

Предположим, что имеется финитная последовательность $x[k] = \{1; \ 1; \ 1\}$.

Тогда
$$\sum_{k=-\infty}^{\infty} \left|x[k]\right|^2 = 3$$
 . При этом

$$X(v) = \sum_{k=-\infty}^{\infty} x[k]e^{-j2\pi vk} = x[-1]e^{j2\pi v} + x[0]e^{0} + x[1]e^{-j2\pi v} =$$
$$= \exp(j2\pi v) + 1 + \exp(-j2\pi v) = 1 + 2\cos(2\pi v).$$

$$\int_{-1/2}^{1/2} |X(v)|^2 dv = \int_{-1/2}^{1/2} |1 + 2\cos(2\pi v)|^2 dv = 3.$$

5) Умножение на k и дифференцирование по частоте

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
, то $y(k) = kx[k] \overset{DTFT}{\longleftrightarrow} \frac{j}{2\pi} \frac{dX(v)}{dv}$.

6) Изменение масштаба

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 , то $\sum_{m=-\infty}^{\infty} x[m]\mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}L).$

Для того, чтобы доказать свойство, вычислим ДВПФ для последовательности в левой части.

$$\sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \exp(-j2\pi \nu k)$$

$$= \sum_{m=-\infty}^{\infty} x[m] \sum_{k=-\infty}^{\infty} \mathbf{1}[k-mL] \exp(-j2\pi \nu k) =$$

$$= \sum_{m=-\infty}^{\infty} x[m] \exp(-j2\pi (\nu L)m) = X(\nu L).$$

Пример

Рассмотрим последовательность из 10 единичных импульсов. N-1

$$x[k] = \sum_{m=0}^{N-1} \mathbf{1}[k-m].$$

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=0}^{N-1} \exp(-j2\pi vk) = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi v)} = \frac{1 - \exp(-j2\pi vN)}{1 - \exp(-j2\pi vN)} = \frac$$

$$=\frac{e^{-j\pi\nu N}}{e^{-j\pi\nu}}\frac{(e^{j\pi\nu N}-e^{-j\pi\nu N})}{(e^{j\pi\nu}-e^{-j\pi\nu})}=\frac{\sin(N\pi\nu)}{\sin(\pi\nu)}\exp(-j(N-1)\pi\nu).$$

$$|X(v)| = \left| \frac{\sin(N\pi v)}{\sin(\pi v)} \right|.$$

Между каждой парой отсчетов добавим $\,L\!-\!1\,$ нулевой отсчет. Тогда модуль ДВПФ получившейся последовательности

$$|X_L(v)| = \left| \frac{\sin(10\pi vL)}{\sin(\pi vL)} \right|.$$

7) Теорема о свертке во временной области.

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v})$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(\mathbf{v})$, то $\sum_{m=-\infty}^{\infty} x[m] y[k-m] \overset{DTFT}{\longleftrightarrow} X(\mathbf{v}) Y(\mathbf{v}).$

В левой части стоит дискретная свертка сигналов, в правой — произведение спектров.

8) Теорема о свертке в частотной области

Если
$$x[k] \overset{DTFT}{\longleftrightarrow} X(v)$$
 и $y[k] \overset{DTFT}{\longleftrightarrow} Y(v)$, то $x[k]y[k] \overset{DTFT}{\longleftrightarrow} \int_{-1/2}^{1/2} X(\tilde{v})Y(v-\tilde{v})d\tilde{v}.$

В левой части стоит произведение сигналов, в правой -- циклическая свертка спектров.

9) ДВПФ периодических последовательностей

а) последовательность единичных импульсов с периодом 1

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu-n)$$

Вычислим ДВПФ для последовательности $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[k - m \big]$.

$$X(v) = \sum_{k=-\infty}^{\infty} x[k] \exp(-j2\pi vk) = \sum_{k=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m]\right) \exp(-j2\pi vk) =$$

$$\sum_{m=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \mathbf{1}[k-m] \exp(-j2\pi vk).$$

$$X(v) = \sum_{m=-\infty}^{\infty} \exp(-j2\pi vm).$$

Заметим, что $\sum_{m=-\infty}^{\infty} \exp(-j2\pi v m)$ — это ряд Фурье для периодической (по

частоте) последовательности δ -функций с периодом 1

$$\sum_{n=-\infty}^{\infty} \delta(\nu - n) = \sum_{m=-\infty}^{\infty} C_{-m} \exp(-j2\pi\nu m),$$

где коэффиценты Фурье

$$C_{-m}=\int_{-1/2}^{1/2}\delta(
u)\exp(j2\pi
u m)d
u=e^0=1$$
. Тогда получаем, что

$$X(v) = \sum_{n=-\infty}^{\infty} \delta(v - n).$$

б) Периодическая последовательность единичных импульсов с периодом ${\it L}\,.$

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mL \right] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{L} \right)$$

Найдем ДВПФ для последовательности $x[k] = \sum_{m=-\infty}^{\infty} \mathbf{1} \big[k - mL \big].$

Используя свойство об изменении масштаба

$$\sum_{m=-\infty}^{\infty} x[m] \mathbf{1}[k-mL] \overset{DTFT}{\longleftrightarrow} X(\nu L),$$

из

$$\sum_{m=-\infty}^{\infty} \mathbf{1}[k-m] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(\nu-n)$$

получаем

$$\sum_{m=-\infty}^{\infty} \mathbf{1} \left[k - mL \right] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(\nu L - n \right)$$

Воспользовавшись свойством
$$\delta$$
 -функции $\delta(av-b)=\frac{1}{\mid a\mid}\delta\bigg(v-\frac{b}{a}\bigg),$

получаем

$$\sum_{m=-\infty}^{\infty} \mathbf{1} [k - mL] \overset{DTFT}{\longleftrightarrow} \frac{1}{L} \sum_{n=-\infty}^{\infty} \delta \left(v - \frac{n}{L} \right)$$

в) Гармонические сигналы

$$\exp(j2\pi v_0 k), -\infty < k < +\infty \stackrel{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta(v - v_0 - n).$$

$$y[k] = \exp(j2\pi v_0 k)$$

Если $x[k] \overset{DTFT}{\longleftrightarrow} X(\nu)$, то $x[k] \exp \left(j2\pi \nu_0 k\right) \overset{DTFT}{\longleftrightarrow} X(\nu - \nu_0)$. (теорема смешения для ДВПФ). При этом $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[k-m \big] \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(\nu - n \right)$. Получаем, что $\sum_{m=-\infty}^{\infty} \mathbf{1} \big[k-m \big] \exp \left(j2\pi \nu_0 k\right) \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(\nu - \nu_0 - n \right).$ $\exp \left(j2\pi \nu_0 k\right), -\infty < k < +\infty \overset{DTFT}{\longleftrightarrow} \sum_{n=-\infty}^{\infty} \delta \left(\nu - \nu_0 - n \right).$

Задачи для самостоятельного решения.

- **1.** Гармонический сигнал $x(t) = \cos 2\pi f_0 t$, $f_0 = 500 \
 m k\Gamma \chi$ дискретизован с частотой $f_\pi = 2 \
 m M\Gamma \chi$. Изобразить как функцию нормированной частоты $v = f \ / \ f_\pi$ в диапазоне $|v| \le 2$
 - модуль спектра исходного сигнала;
 - модуль спектра дискретизованного сигнала;
 - модуль спектра последовательности $z[k] = x[k] \cdot 2\cos(k\pi/2)$.
- **2.** Сигнал x(t) имеет финитный спектр треугольного вида. Определить коэффициенты ряда Котельникова этого сигнала, полагая, что $\Delta t = \frac{1}{2 f}$.

3. Найти и изобразить по модулю ДВПФ 16 - точечных последовательностей

$$x[k] = \sum_{m=0}^{15} \mathbf{1}[k-m] \text{ } y[k] = x[k]\cos(2\pi k3/16).$$

4. Сформулировать и доказать теорему о свертке последовательностей для ДВПФ.