

Amendments to the claims

This following listing of claims replaces all prior versions and listings of claims in the application:

1. (Currently Amended) An organic anti-reflective composition comprising a crosslinking agent, a light absorbing agent, a thermal acid generator, an organic solvent and an adhesivity enhancer represented by the following Chemical Formula 1:

Chemical Formula 1

wherein

a is the degree of polymerization, ranging from 30 to 400,

wherein said light absorbing agent is a compound represented by the following Chemical Formula 3:

wherein ℓ , m and n are molar ratios: ℓ ranging from 0.1 to 0.5, m ranging from 0.05 to 0.5, n ranging from 0.1 to 0.7, and $\ell + m + n = 1$; and c is the degree of polymerization, ranging from 10 to 400.

2. (Original) The organic anti-reflective composition according to Claim 1, which comprises:

- (a) 100 parts by weight of crosslinking agent;
- (b) 30 to 400 parts by weight of light absorbing agent;
- (c) 10 to 200 parts by weight thermal acid generator;
- (d) 30 to 400 parts by weight of adhesivity enhancer represented by Chemical Formula 1; and
- (e) 1,000 to 10,000 parts by weight of organic solvent.

3. (Original) The organic anti-reflective composition according to Claim 2, wherein said crosslinking agent is the compound represented by the following Chemical Formula 2:

Chemical Formula 2

wherein

b is the degree of polymerization, ranging from 10 to 100;

each of R₁ and R₂ is C₁ to C₄ alkyl; and

R₃ is hydrogen or methyl.

4. (Cancelled)

5. (Currently amended) The organic anti-reflective composition according to Claim 2, wherein said thermal acid generator is the compound represented by the following Chemical Formula 4:

Chemical Formula 4

6. (Original) A patterning method comprising the steps of
 - (a) coating the organic anti-reflective composition according to Claim 1 on a part to be etched;
 - (b) crosslinking said organic anti-reflective composition by baking to form an organic anti-reflective film;
 - (c) coating a photoresist on said organic anti-reflective film, and exposing and developing the same to form a photoresist pattern; and
 - (d) etching the organic anti-reflective film with said photoresist pattern as mask.
7. (Original) The patterning method according to Claim 6, wherein said baking of the step (b) is carried out at 150 to 300 °C for 1 to 5 minutes.
8. (Original) The patterning method according to Claim 6, wherein baking is further carried out before and/or after exposure of the step (c).
9. (Original) The patterning method according to Claim 8, wherein said baking is carried out at 70 to 200 °C.
10. (Original) The patterning method according to Claim 6, wherein far UV such as F₂ laser (157 nm), ArF (193 nm), KrF (248 nm) and EUV (extremely ultraviolet); E-beam; X-ray; or ion beam is used as exposure light source in the step (c).

11. (Previously presented) A semiconductor device prepared by any method of Claim 6.

12. (Previously presented) A semiconductor device prepared by any method of Claim 7.

13. (Previously presented) A semiconductor device prepared by any method of Claim 8.

14. (Previously presented) A semiconductor device prepared by any method of Claim 9.

15. (Previously presented) A semiconductor device prepared by any method of Claim 10.

16. (New) An organic anti-reflective composition comprising a crosslinking agent, a light absorbing agent, a thermal acid generator, an organic solvent and an adhesivity enhancer represented by the following Chemical Formula 1:

Chemical Formula 1

wherein

a is the degree of polymerization, ranging from 30 to 400,
wherein said thermal acid generator is a compound represented by the following Chemical Formula 4:

17. (New) The organic anti-reflective composition according to Claim 16, which comprises:

- (a) 100 parts by weight of crosslinking agent;
- (b) 30 to 400 parts by weight of light absorbing agent;
- (c) 10 to 200 parts by weight thermal acid generator;
- (d) 30 to 400 parts by weight of adhesivity enhancer represented by Chemical Formula 1; and
- (e) 1,000 to 10,000 parts by weight of organic solvent.

18. (New) The organic anti-reflective composition according to Claim 17, wherein said crosslinking agent is the compound represented by the following Chemical Formula 2:

Chemical Formula 2

wherein

b is the degree of polymerization, ranging from 10 to 100;

each of R_1 and R_2 is C_1 to C_4 alkyl; and

R_3 is hydrogen or methyl.

19. (New) A patterning method comprising the steps of
 - (a) coating the organic anti-reflective composition according to Claim 16 on a part to be etched;
 - (b) crosslinking said organic anti-reflective composition by baking to form an organic anti-reflective film;
 - (c) coating a photoresist on said organic anti-reflective film, and exposing and developing the same to form a photoresist pattern; and
 - (d) etching the organic anti-reflective film with said photoresist pattern as mask.

20. (New) The patterning method according to Claim 19, wherein said baking of the step (b) is carried out at 150 to 300 °C for 1 to 5 minutes.

21. (New) The patterning method according to Claim 20, wherein baking is further carried out before and/or after exposure of the step (c).