

OPTIMIZATION

MASTER IN FUNDAMENTAL PRINCIPLES OF DATA SCIENCE

OPTIMIZATION PROBLEM 6

CONJUGATE GRADIENT METHOD PROBLEM II

Author

Vladislav Nikolov Vasilev

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

ACADEMIC YEAR 2021-2022

1 Problem description

Consider the conjugate gradient method applied to the minimization of

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

where A is a positive definite and symmetric matrix.

Show that the iterate \mathbf{x}_k minimizes f over

$$\mathbf{x}_0 + \langle \mathbf{v}_0, A\mathbf{v}_0, \dots, A_{k-1}\mathbf{v}_0 \rangle$$

where $\mathbf{v}_0 = \nabla f(\mathbf{x}_0)$, and $\langle \mathbf{v}_0, A\mathbf{v}_0, \dots, A_{k-1}\mathbf{v}_0 \rangle$ is the subspace generated by $\mathbf{v}_0, A\mathbf{v}_0, \dots, A_{k-1}\mathbf{v}_0$.

2 Solution

Let $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k \in \mathbb{R}^n$ with $k \leq n$ be k mutually conjugate directions with respect to a given matrix A, which is symmetric and positive definite. Then, \mathbf{x}_k , which is a point defined from this directions, will minimize the function f over the affine set $\mathbf{x}_0 + \langle \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k \rangle$. Basically, what we want to prove is that $\langle \mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_k \rangle = \langle \mathbf{v}_0, A\mathbf{v}_0, \dots, A_{k-1}\mathbf{v}_0 \rangle$.

• If k = 1, we have that $\mathbf{z}_1 = -\mathbf{v}_0 = -\nabla f(\mathbf{x})$.