

COPY

SEQUENCE LISTING

<110> Le, Junming
Vilcek, Jan
Daddona, Peter
Ghazayeb, John
Knight, David M.
Siegel, Scott

<120> Anti-TNF Antibodies and Peptides of
Human Tumor Necrosis Factor

<130> 0975.1005-013

<150> U.S. 09/756,398
<151> 2001-01-08

<150> U.S. 09/133,119
<151> 1998-08-12

<150> U.S. 08/570,674
<151> 1995-12-11

<150> U.S. 08/324,799
<151> 1994-10-18

<150> U.S. 08/192,102
<151> 1994-02-04

<150> U.S. 08/192,861
<151> 1994-02-04

<150> U.S. 08/192,093
<151> 1994-02-04

<150> U.S. 08/010,406
<151> 1993-01-29

<150> U.S. 08/013,413
<151> 1993-02-02

<150> U.S. 07/943,852
<151> 1992-09-11

<150> U.S. 07/853,606
<151> 1992-03-18

<150> U.S. 07/670,827
<151> 1991-03-18

<160> 19

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 157
<212> PRT

<213> Homo sapiens

<400> 1

Val	Arg	Ser	Ser	Ser	Arg	Thr	Pro	Ser	Asp	Lys	Pro	Val	Ala	His	Val
1				5				10						15	
Val	Ala	Asn	Pro	Gln	Ala	Glu	Gly	Gln	Leu	Gln	Trp	Leu	Asn	Arg	Arg
				20				25						30	
Ala	Asn	Ala	Leu	Leu	Ala	Asn	Gly	Val	Glu	Leu	Arg	Asp	Asn	Gln	Leu
				35				40						45	
Val	Val	Pro	Ser	Glu	Gly	Leu	Tyr	Leu	Ile	Tyr	Ser	Gln	Val	Leu	Phe
				50				55						60	
Lys	Gly	Gln	Gly	Cys	Pro	Ser	Thr	His	Val	Leu	Leu	Thr	His	Thr	Ile
				65				70						80	
Ser	Arg	Ile	Ala	Val	Ser	Tyr	Gln	Thr	Lys	Val	Asn	Leu	Leu	Ser	Ala
				85				90						95	
Ile	Lys	Ser	Pro	Cys	Gln	Arg	Glu	Thr	Pro	Glu	Gly	Ala	Glu	Ala	Lys
				100				105						110	
Pro	Trp	Tyr	Glu	Pro	Ile	Tyr	Leu	Gly	Gly	Val	Phe	Gln	Leu	Glu	Lys
				115				120						125	
Gly	Asp	Arg	Leu	Ser	Ala	Glu	Ile	Asn	Arg	Pro	Asp	Tyr	Leu	Asp	Phe
				130				135						140	
Ala	Glu	Ser	Gly	Gln	Val	Tyr	Phe	Gly	Ile	Ile	Ala	Leu			
				145				150						155	

<210> 2

<211> 321

<212> DNA

<213> Mus Balb/c

<220>

<221> CDS

<222> (1)...(321)

<400> 2

gac	atc	ttg	ctg	act	cag	tct	cca	gcc	atc	ctg	tct	gtg	agt	cca	gga
Asp	Ile	Leu	Leu	Thr	Gln	Ser	Pro	Ala	Ile	Leu	Ser	Val	Ser	Pro	Gly
1				5					10					15	

gaa	aga	gtc	agt	ttc	tcc	tgc	agg	gcc	agt	cag	ttc	gtt	ggc	tca	agc
Glu	Arg	Val	Ser	Phe	Ser	Cys	Arg	Ala	Ser	Gln	Phe	Val	Gly	Ser	Ser
				20					25					30	

atc	cac	tgg	tat	cag	caa	aga	aca	aat	ggt	tct	cca	agg	ctt	ctc	ata
Ile	His	Trp	Tyr	Gln	Gln	Arg	Thr	Asn	Gly	Ser	Pro	Arg	Leu	Leu	Ile
									35					40	

aag	tat	gct	tct	gag	tct	atg	tct	ggg	atc	cct	tcc	agg	ttt	agt	ggc
Lys	Tyr	Ala	Ser	Glu	Ser	Met	Ser	Gly	Ile	Pro	Ser	Arg	Phe	Ser	Gly
									50					60	

agt	gga	tca	ggg	aca	gat	ttt	act	ctt	agc	atc	aac	act	gtg	gag	tct
Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Ser	Ile	Asn	Thr	Val	Glu	Ser
									65					75	

gaa	gat	att	gca	gat	tat	tac	tgt	caa	caa	agt	cat	agc	tgg	cca	ttc
Glu	Asp	Ile	Ala	Asp	Tyr	Tyr	Cys	Gln	Gln	Ser	His	Ser	Trp	Pro	Phe
									85					90	

acg ttc ggc tcg ggg aca aat ttg gaa gta aaa 321
Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
100 105

<210> 3
<211> 107
<212> PRT
<213> Mus Balb/c

```

<400> 3
Asp Ile Leu Leu Thr Gln Ser Pro Ala Ile Leu Ser Val Ser Pro Gly
1           5           10          15
Glu Arg Val Ser Phe Ser Cys Arg Ala Ser Gln Phe Val Gly Ser Ser
20          25          30
Ile His Trp Tyr Gln Gln Arg Thr Asn Gly Ser Pro Arg Leu Leu Ile
35          40          45
Lys Tyr Ala Ser Glu Ser Met Ser Gly Ile Pro Ser Arg Phe Ser Gly
50          55          60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Ser Ile Asn Thr Val Glu Ser
65          70          75          80
Glu Asp Ile Ala Asp Tyr Tyr Cys Gln Gln Ser His Ser Trp Pro Phe
85          90          95
Thr Phe Gly Ser Gly Thr Asn Leu Glu Val Lys
100         105

```

<210> 4
<211> 357
<212> DNA
<213> Mus Balb/c

<220>
<221> CDS
<222> (1) . . . (357)

```

<400> 4
gaa gtg aag ctt gag gag tct gga gga ggc ttg gtg caa cct gga gga      48
Glu Val Lys Leu Glu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
1          5          10          15

```

tcc atg aaa ctc tcc tgt gtt gcc tct gga ttc att ttc agt aac cac 96
 Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His
 20 25 30

tgg atg aac tgg gtc cgc cag tct cca gag aag ggg ctt gag tgg gtt 144
Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
35 40 45

gct gaa att aga tca aaa tct att aat tct gca aca cat tat gcg gag 192
 Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
 50 55 60

tct gtg aaa ggg agg ttc acc atc tca aga gat gat tcc aaa agt gct 240
 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala
 65 70 75 80

gtc tac ctg caa atg acc gac tta aga act gaa gac act ggc gtt tat 288
 Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr
 85 90 95

tac tgt tcc agg aat tac tac ggt agt acc tac gac tac tgg ggc caa 336
 Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln
 100 105 110

ggc acc act ctc aca gtc tcc 357
 Gly Thr Thr Leu Thr Val Ser
 115

<210> 5
<211> 119
<212> PRT
<213> Mus Balb/c

<400> 5
 Glu Val Lys Leu Glu Glu Ser Gly Gly Leu Val Gln Pro Gly Gly
 1 5 10 15
 Ser Met Lys Leu Ser Cys Val Ala Ser Gly Phe Ile Phe Ser Asn His
 20 25 30
 Trp Met Asn Trp Val Arg Gln Ser Pro Glu Lys Gly Leu Glu Trp Val
 35 40 45
 Ala Glu Ile Arg Ser Lys Ser Ile Asn Ser Ala Thr His Tyr Ala Glu
 50 55 60
 Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Ser Ala
 65 70 75 80
 Val Tyr Leu Gln Met Thr Asp Leu Arg Thr Glu Asp Thr Gly Val Tyr
 85 90 95
 Tyr Cys Ser Arg Asn Tyr Tyr Gly Ser Thr Tyr Asp Tyr Trp Gly Gln
 100 105 110
 Gly Thr Thr Leu Thr Val Ser
 115

<210> 6
<211> 8
<212> PRT
<213> Homo sapiens

<400> 6
 Gly Thr Leu Val Thr Val Ser Ser
 1 5

<210> 7
<211> 7
<212> PRT
<213> Homo sapiens

<400> 7
 Gly Thr Lys Leu Glu Ile Lys
 1 5

<210> 8

<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 8
cctggatacc tgtgaaaaga 20

<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 9
cctggtacct tagtcaccgt ctcctca 27

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 10
aatagatatac tccttcaaca cctgcaa 27

<210> 11
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 11
atcgggacaa agttggaaat a 21

<210> 12
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 12
ggcggtctgg taccgg 16

<210> 13
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 13
gtcaacaaca tagtcatca

19

<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 14
cacaggtgtg tccccaaaggaa aaa

23

<210> 15
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 15
aatctgggtt aggcacaa

18

<210> 16
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 16
agtgtgtgtc cccaaagg

17

<210> 17
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 17
cacagctgcc cgccccaggtg gcat 24

<210> 18
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 18
gtcgccagtg ctccctt 17

<210> 19
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> PCR oligonucleotides

<400> 19
atcggacgtg gacgtgcaga 20