ESC201T : Introduction to Electronics

Discussion-7: 04/11/20

B. Mazhari Professor, Dept. of EE IIT Kanpur

Announcements

Discussion Quiz from 6.45-6.55 pm Topic : Diode Circuit

Major Quiz-3 on 11/11/2020 during Discussion hour.

Topic: 2 port parameters, semiconductors, diode circuits till Lecture 23

Non-Objective Type

Major Quiz-4 on 27/11/2020 during Tutorial hour.
Topic: Amplifiers and Digital Circuits
Objective type

Incremental (ac) Circuit Analysis

Incremental circuit analysis attempts to find the relationships between incremental voltages and currents v_{s1} , i_1 , v_o

Incremental (ac) Circuit Analysis

$$V_{S1} + v_{s1} = (I_1 + i_1) \times R_1 + V_0 + v_o$$
 (3)

$$I_1 + i_1 = I_S + (V_0 + v_o - V_{S2})/R_2$$
 (4)

(3)-(1):
$$v_{s1} = i_1 R_1 + v_0$$

$$(4)$$
- (2) : $i_1 = v_o/R_2$

$$v_{s1} = i_1 R_1 + i_1 R_2$$

Method: Incremental equivalent circuit

Analyze incremental equivalent circuit obtained by replacing each circuit element by its increment circuit model (sometimes called ac model).

$$I = f(V)$$

$$I = f(V) \qquad I + i = f(V + v)$$

Relation between *i and v*

Incremental (ac) Models: Resistor

$$V = I \times R$$

$$V + v = (I + i) \times R$$

$$\Rightarrow v = i \times R$$

Incremental model of a resistor is a resistor of the same magnitude

Incremental (ac) Models: Capacitor

$$I = C \frac{dV}{dt}$$

$$I + i = C \frac{d(V + v)}{dt}$$

$$i = C \times \frac{dv}{dt}$$

Incremental model of a capacitor is a capacitor of the same magnitude. The same holds for an inductor as well.

Incremental (ac) Models

Incremental model of a constant Voltage Source is a short circuit

Incremental model of a constant current Source is an open circuit

Incremental (ac) circuit Analysis

$$v_o = v_{s1} \times \frac{R_2}{R_1 + R_2}$$

$$I_o = g_m(V_i - V_\alpha)$$

$$I_O + i_o = g_m (V_I + v_i - V_\alpha) \qquad i_o = g_m v_i$$

Nonlinear element

$$I_{x} = k \times V_{x}^{2}$$

$$I_{\mathcal{X}} + i_{\mathcal{X}} = k \times (V_{\mathcal{X}} + v_{\mathcal{X}})^2$$

Incremental Model

$$I_{X} + i_{X} = k \times (V_{X} + v_{X})^{2}$$

$$i_{X} = k \{ (V_{X} + v_{X})^{2} - V_{X}^{2} \}$$

$$i_{X} = k V_{X}^{2} \{ (1 + v_{X}/V_{X})^{2} - 1 \}$$

Problem: model is **NONLINEAR**

Small signal approximation: $v_x << V_X$

$$(1 + \frac{v_x}{V_x})^2 \cong 1 + 2 \frac{v_x}{V_x}$$

$$i_x \cong 2 k V_x \times v_x$$

$$i_x = v_x/r_x$$
 ; $r_x = \frac{1}{2kV_X}$

Nonlinear element

$$I_{\mathcal{X}} = k \times V_{\mathcal{X}}^2$$

$$r_{x} = \frac{1}{2 k V_{o}}$$

$$v_O = v_S \times \frac{r_{\chi}}{R + r_{\chi}}$$

How small is small?

Depends on how much error we can tolerate!

$$i_x = kV_X^2 \{ (1 + v_x / V_X)^2 - 1 \}$$
 $i'_x \cong 2 k \times V_X \times v_x$

$$i_X' \cong 2k \times V_X \times v_X$$

$$V_X = 1V$$
 V_X (V) Error (%)

0.02 1

0.22 10

0.5 20

1.0 33.3

$$I_x = k \times V_x^4$$

$$V_X = 1V$$

$$V_X (V) \qquad \text{Error (\%)}$$

$$0.007 \qquad 1$$

$$0.071 \qquad 10$$

$$0.5 \qquad 50.77$$

$$1.0 \qquad 73.3$$

Stronger nonlinearity implies smaller voltage for same error

One of the strongest non-linearity is exponential

$$I_x = k \times \exp(\frac{V_x}{.026})$$

$$I_X + i_x = k \times \exp(\frac{V_X + v_x}{.026})$$

$$i_x = k \times \exp(\frac{V_X}{.026}) \times \{\exp(\frac{v_x}{.026}) - 1\}$$
 $i_x \cong k \times \exp(\frac{V_X}{.026}) \times (\frac{v_x}{.026})$

$$V_{\rm X} = 0.7 \rm{V}$$

v_x (mV)	Error (%)
0.53	1
5.4	10
10	18
26	41.8

Small Signal Models

Narrowing the magnitude of applied voltage to very small values allows development of model which are linear

A SS model is a linear model which is valid for small changes around a nominal value

General approach for obtaining small **signal model** for a 3-terminal device

$$I_{i} = f_{i}(V_{i})$$

$$I_{I} + i_{i} = f_{i}(V_{I} + v_{i})$$

 $\Rightarrow i_i = v_i \frac{\delta f_i}{\delta V_i} \Big|_{V_i} = \frac{v_i}{r_i}$

$$r_{i} = \frac{1}{\left. \frac{\delta f_{i}}{\delta V_{i}} \right|_{V_{i}}}$$

From the input port, the device appears as a resistance

Output port:

$$I_O = f_O(V_i, V_O)$$

$$V_0 \qquad I_O + i_o = f_O(V_i + v_i, V_O + v_o)$$

$$I_O + i_o = f_o(V_i, V_o) + v_i \frac{\delta f_0}{\delta V_i} |_{V_o} + v_o \frac{\delta f_0}{\delta V_0} |_{V_i} + \dots$$

$$i_o \cong v_i \frac{\delta f_0}{\delta V_i} |_{V_o} + v_o \frac{\delta f_0}{\delta V_0} |_{V_i}$$

$$i_O = g_m v_i + \frac{v_O}{r_O}$$

$$g_{m} = \frac{\delta f_{0}}{\delta V_{i}} |_{V_{o}} \qquad r_{0} = \frac{1}{\frac{\delta f_{0}}{\delta V_{0}} |_{V_{i}}}$$

Complete small signal model (dc) for a 3-terminal unilateral device.

