Metin Sınıflandırma

Mehmet Fatih AMASYALI

BLM 5212 Doğal Dil İşlemeye Giriş Ders Notları

Akış

- Görev
- Eğiticili Eğiticisiz Öğrenme
- Metin Özellikleri
- · Metin Kümeleme
- · Özellik Belirleme
 - Çok Boyutlu Verilerle Çalışmak
 - Özellik Belirleme Metotları
 - Stop Functional words
 - Ağırlıklandırma
 - Gövdeleme
 - Filtreler (Information Gain, S2N vs.) (Zaten Görmüştük!)
 - Kelime Grupları
 - Kelime Koordinatları
 - Projeksiyonlar (LSI, PCA, LDA)
 - Metin resimleri
- · Metin Sınıflandırmada bir Metot: Naive Bayes

Görev

- · Verilen: bir metin kümesi
- İstenen: metinlerin kategorilere ayrılması
- Örnekler:
 - Haber metinleri: POLİTİK, SPOR, SAĞLIK, MAGAZİN vs. haber başlıklarına ayırmak
 - Web siteleri: EĞİTİM, EĞLENCE, BİLİM vs. türlerine ayırmak, bir sayfaya benzeyen diğer sayfaların bulunması (Arama motorlarındaki gibi)
 - E-mailler: İSTENEN, İSTENMEYEN şeklinde ayırmak
 - Bir metnin yazarını/dilini bulmak

EĞITICILI- EĞITICISIZ

- Elimizdeki örneklerin etiketleri varsa eğiticili, yoksa eğiticisiz metotlar kullanılır.
- Eğiticili → sınıflandırma
- Eğiticisiz → kümeleme

Metin Özellikleri

- Metinleri ifade etmek için kullanılan özellikler:
 - Kelimeler
 - Kelime türleri
 - Ngramlar
 - Ekler (Morfolojik analiz, Zemberek)
 - Ek türleri
 - **-** ... ?

Yazar belirlemede kullanılan özellikler

ID Style Markers			Style Markers
1	Num. of sentences	12	Avg. Num. of pronoun in a sentence
2	Num. of words	13	Avg. Num. of conjunctions in a sentence
3	Avg. Num. of words in a sentence	14	Avg. Num. of exclamations in a sentence
4	Avg. word length	15	Num. of points
5	Num. of different words	16	Num. of commas
6	Word richness	17	Num. of colons
7	Avg. Num. of nouns in a sentence	18	Num. of semicolons marks
8	Avg. Num. of verbs in a sentence	19	Num. of question marks
9	Avg. Num. of adj. in a sentence	20	Num. of exclamation marks
10	Avg. Num. of adverb in a sentence	21	Num. of inverted / Num. of all sentences
11	Avg. Num. of particle in a sentence	22	Num. of incomplete / Num. of all sentences

Metinlerin Kelime Frekanslarıyla İfadesi

Örnek metin

Manchester United won 2-1 against Chelsea , Barcelona tied Madrid 1-1 , and Bayern München won 4-2 against Nürnberg

Metnin kelime sayılarıyla ifadesi

Manchester	/ 1\	(0.04)
United	[1]	0.04
won	1 2 2 3	0.08
2	2	0.08
-	3	0.12
1	3	0.12
against	2	0.08
Chelsea	1 2	0.04
,	2	0.08
Barcelona	1	0.04
tied	1	0.04
Madrid	1	0.04
and	1	0.04
Bayern	1	0.04
München	1	0.04
4	1	0.04
Nürnberg	$\backslash 1$	\0.04 <i>/</i>

Her metinde aynı kelimeler yer almaz

dokümanlar * kelimeler

Metinlerin N-gram'larla İfadesi

- Kelime D1: "Army troops searched for nuclear weapons."
- Karakter D2: "Military personnel investigated reports of dirty bombs"

	D1	D2
army troops	1	0
dirty bombs	0	1
for nuclear	1	0
investigated reports	0	1
military personnel	0	1
nuclear weapons	1	0
of dirty	0	1
personnel investigated	0	1
reports of	0	1
searched for	1	0
troops searched	1	0

İki metnin kelime bigramları ile ifadesi

Metin Kümeleme

- Hiyerarşik kümeleme
- K-means
- SOM

Özellik Belirleme

- Metinleri özellikle kelime frekanslarıyla ifade edildiğinde verisetimizin boyut sayısı çok yüksek olur. (binler)
- · Çok yüksek boyutta işlem yapmak iyi değil
- · Neden?
- Bir sebep işlem hızı
- Başka?

Çok Boyutlu Verilerle Çalışmak-2

- Tek boyutlu uzayda [0,1] aralığı temsil eden 10 nokta
- Rastgele bir noktanın, uzayı temsil eden noktalardan en yakın olanına ortalama uzaklığı = 0.5
- İki boyutlu uzayda rasgele bir noktanın en yakın noktaya olan ortalama uzaklığının düşey ya da dikey (manhattan) 0.5 olması için gerekli temsilci nokta sayısı = 100

]	Boyut Sayısı	Gerekli temsil eden nokta sayısı
	1	10
	2	100
	3	1000
	•••	
	p	10 ^p

Doğru sınıflandırma yapmak için gereken örnek sayısı artıyor.

Özellik Belirleme Metotları

- · Stop Functional words
- Ağırlıklandırma
- Gövdeleme
- Filtreler (Information Gain, S2N vs.)
- Özellik alt küme seçicileri (Wrappers)
- Projeksiyonlar (LSI, PCA, LDA)
- Kelime Grupları
- Kelime Koordinatları

Stop - Functional words

- Metinlerde geçen bütün kelimeleri kullanmak yerine bir kısmını silsek:
 - "bir, ben, o, ve" gibi frekansı çok yüksek, ancak bir anlam ifade etmeyen (?) kelimeler (Stop-word elimination)
 - Bütün dokümanlarda sadece 1-3 kere geçen düşük frekanslı kelimeler (Document frequency thresholding)

Ağırlıklandırma

- TF*IDF = kelime frekansı * ters doküman frekansı
- t_k kelimesinin d_i dokümanı için ağırlığı

$$tfidf(t_k, d_j) = \#(t_k, d_j) \cdot \log \frac{|Tr|}{|Tr(t_k)|}$$

- #(t_k , d_j): t_k kelimesinin d_j dokümanında geçme sayısı
- Tr: tüm dokümanların sayısı
- $-\operatorname{Tr}(t_k)$: içinde en az bir kere t_k kelimesi geçen doküman sayısı

Ağırlıklandırma ama Neden?

Bütün dokümanlarda geçen kelimelerin önemini azaltmak için.

$$tfidf(t_k, d_j) = \#(t_k, d_j) \cdot \log \frac{|Tr|}{|Tr(t_k)|}$$

A'nın payı ve paydası birbirine eşit/yakın olursa 1'e yaklaşır

B'nin içi 1'e yaklaşırsa B de 0'a yaklaşır ve terimin ağırlığı azalır.

Gövdemele (Stemming)

- Özellikle Türkçe gibi eklemeli diller için gerekli
- Ağaçlarımı = ağaçlarını = ağaç

Kelime gruplama

- Her kelime için aynı türden dokümanlardaki geçme sayılarının ortalamasını alırsak;
- Her kelime sınıf sayısı boyutunda bir vektörle ifade edilir.
- Bu kelimeleri kümeleme metotlarıyla kümelersek, X adet küme elde ederiz.
- Gerçek veri setimizdeki kelimeler yerine bu kümeleri alırsak, özellik sayımız kelime sayısı yerine küme sayısına düşer.
- Yeni veri seti oluşturulurken, küme içindeki kelimelerin toplam geçiş sayısı, kümenin geçiş sayısı olacaktır.

Kemik

Kelime gruplama-Örnek

• Veri seti (6 boyutlu 6 metin)

kelimeler	metin1	metin2	metin3	metin4	metin5	metin6
balık	1	6	2	1	6	5
kedi	2	8	1	0	6	6
aslan	0	9	0	2	8	6
araba	5	1	2	8	1	0
limuzin	7	0	9	8	1	0
tren	8	0	7	4	0	1
metin sınıf	taşımacılık	hayvanlar	taşımacılık	taşımacılık	hayvanlar	hayvanlar

Kelime gruplama-Örnek

Herbir kelimenin doküman türlerinde kaç defa geçtiği

	taşımacılık	hayvanlar
balık	4	17
kedi	3	20
aslan	2	23
araba	15	2
limuzin	24	1
tren	19	1

Kelime gruplama-Örnek

Kelimeleri gruplama

	taşımacılık	hayvanlar
balık	4	17
kedi	3	20
aslan	2	23
araba	15	2
limuzin	24	1
tren	19	1

 K_{emik}

Kelime gruplama-Örnek

 Metinlerin yeni boyutlarda ifadesi (2 boyutlu 6 metin)

	metin1	metin2	metin3	metin4	metin5	metin6
küme1	3	23	3	3	20	17
küme2	20	1	18	20	2	1
metin sınıf	taşımacılık	hayvanlar	taşımacılık	taşımacılık	hayvanlar	hayvanlar

Kemik

Kelime Koordinatları

- Öncelikle metinlerin içinde geçen kelimelerin koordinatları bulunur.
- Metinler içinde geçen kelimelerin koordinatlarının ortalamasıyla ifade edilir.

Kelime Koordinatları-Örnek

- Kelimelerin koordinatlarını bulmak için birlikte geçtikleri doküman sayılarından yararlanılır.
- Birlikte geçtikleri doküman sayılarını nasıl bulabiliriz?
 - Ya da?

– Kendi veri küm	emizle	akbaba	ayı	baykuş	araba	limuzin
– Ya da?	akbaba		0	20	1	0
	ayı	0		33	4	0
	baykuş	20	33		0	0
	araba	1	4	0		38
	limuzin	0	0	0	38	

Kemik

Projeksiyonlar

- Verileri n boyuttan r boyuta indirgeyen bir projeksiyon matrisi bulunur. Tüm veriler bu projeksiyon matrisiyle çarpılarak boyutları indirgenmiş olur.
- Gerçek veri= k örnek * n boyut
- Projeksiyon matrisi = n * r boyut
- Yeni veri seti = gerçek veri * projeksiyon matrisi

=
$$(k*n) * (n*r) = k*r boyut$$
 K_{emik}

Naïve Bayes

Eğitim:

- Sınıf olasılıklarını bul.
 - Toplam K adet doküman varsa, Y sınıfından Z adet doküman varsa → Y sınıfının olasılığı (Z/K)
- Her kelimenin her doküman sınıfında yer alma olasılığını bul. İki yaklaşım:
 - Y sınıfındaki K adet dokümanın Z tanesinde yer almışsa → (1+Z)/K
 - Y sınıfındaki dokümanlarda K adet kelime varsa ve kelimemiz bu dokümanlarda Z defa geçmişse → (1+Z)/K

Naïve Bayes Dökümanın c sınıfına ait olma olasılığı dokümandaki her kelimenin c sınıfına ait olma olasılıklarının çarpımının c sınıfının olasılığı ile çarpımına eşittir. Test: Sınıfı istenen doküman X Herbir sınıf için n →X dokümanındaki kelime sayısı bu olasılık bulunur ve doküman en yüksek X'in sınıfı: olasılığa sahip sınıfa dahil edilir. argmax ai kelimesinin cj sınıfında yer alma olasılığı (önceki slayt) Bir dokümanın ci sınıfından olma olasılığı Kemik

Sonuç

- Metinlerin makine öğrenmesi metotlarıyla işlenebilmesi için öncelikle sayısallaştırılmaları gerekir.
- Bu derste bunun için birçok metot gördük.
- · Artık metinler sayı olduğuna göre onlar üzerinde kümeleme, sınıflandırma işlemlerini gerçekleştirebiliriz.

Text2arff

- Gördüğümüz yöntemleri içeren bir doğal dil işleme kütüphanesi
- Metin girdilerini arff dosyasına çevirir

BLM 5212 Doğal Dil İşlemeye Giriş Ders Notları

Kaynaklar

- Alpaydın E. (2004) "Introduction to Machine Learning", The MIT Press
- Helena Ahonen-Myka, Processing of large document collections
- Philipp Koehn, Data Intensive Linguistics Lecture 12, Text Classification and Clustering
- · SUNY Learning Network, Text Classification
- Christopher Manning, Opportunities in Natural Language Processing
- M.Fatih Amasyalı, Arama Motorları Kullanarak Bulunan Anlamsal Benzerlik Ölçütüne Dayalı Kelime Sınıflandırma

