Lineare Algebra 1 – WS 2024/25

Übungsblatt 8 - 8.1.2025

Aufgabe 1

Es sei $0 \neq a \in \mathbb{R}^2$. Zeigen Sie, dass folgende Abbildungen linear sind, bestimmen Sie Kern und Bild, und interpretieren Sie die Abbildungen geometrisch.

(a)
$$p_a : \mathbb{R}^2 \to \mathbb{R}^2$$
, $v \mapsto v - \frac{\langle a, v \rangle}{\|a\|^2} a$.

(b)
$$s_a : \mathbb{R}^2 \to \mathbb{R}^2$$
, $v \mapsto v - 2 \frac{\langle a, v \rangle}{\|a\|^2} a$.

Aufgabe 2

Es seien V ein \mathbb{R} -Vektorraum mit Basis (v_1, v_2, v_3, v_4) und W ein \mathbb{R} -Vektorraum mit Basis (w_1, w_2, w_3) .

(a) Warum gibt es genau eine lineare Abbildung $f: V \longrightarrow W$ mit

$$f(v_1) = w_1 + 2w_2 + 3w_3, \quad f(v_2) = 5w_1 + 11w_2 + 16w_3, \quad f(v_3) = 3w_1 + 9w_2 + 13w_3, \quad f(v_4) = w_1 + 2w_2 + 2w_3 + 2w_4 + 2w$$

(b) Es sei f die lineare Abbildung aus a). Bestimmen Sie Basen von $\ker(f)$ und f(V).

Aufgabe 3

Es seien K ein Körper, U, V, W drei K-Vektorräume, und $f \colon U \longrightarrow V, g \colon V \longrightarrow W$ lineare Abbildungen. Zeigen Sie:

- (a) Es ist $g \circ f$ linear.
- (b) Ist f bijektiv, so ist f^{-1} linear.

Aufgabe 4

Es seien K ein Körper, V ein K-Vektorraum, und $f: V \longrightarrow V$ eine lineare Abbildung. Wir setzen $f^2 = f \circ f: V \longrightarrow V$. Zeigen Sie:

$$\ker(f) \cap f(V) = 0 \iff \ker(f^2) = 0.$$

Aufgabe 5

Es sei V ein \mathbb{C} -Vektorraum mit Basis B. Durch Einschränkung der Skalarmultiplikation ist V auch ein \mathbb{R} -Vektorraum.

- (a) Beweisen Sie, dass $B \cup \{ib \mid b \in B\}$ eine Basis von V über \mathbb{R} ist.
- (b) Zeigen Sie, dass die komplexe Konjugation

$$\begin{cases} \mathbb{C} & \to \mathbb{C} \\ z = a + \mathrm{i}b & \mapsto \overline{z} = a - \mathrm{i}b \end{cases} \quad (a, b \in \mathbb{R})$$

als Abbildung linear über \mathbb{R} , aber nicht über \mathbb{C} , ist.

(c) Bestimmen Sie Basen von

$$L_{\mathbb{C}}(\mathbb{C}, \mathbb{C}) = \{ \varphi \colon \mathbb{C} \to \mathbb{C} \mid \varphi \text{ ist } \mathbb{C}\text{-linear } \}$$

und von

$$L_{\mathbb{R}}(\mathbb{C},\mathbb{C}) = \{ \varphi \colon \mathbb{C} \to \mathbb{C} \mid \varphi \text{ ist } \mathbb{R}\text{-linear } \}.$$