Parameterized Algorithms for Matrix Completion with Radius Constraints

Tomohiro Koana¹ Vincent Froese¹ Rolf Niedermeier¹

 1 Techqnische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity

May 12, 2020

Applications

Best@1: find the best item over a set

- Question Answering
- Recommendation System
- Machine Translation
- Web Search

Techniques Employed

- ML sorting algorithm and select the first element
- ML pairwise classifier and work on the induced graph

Warm Up

T is a DAG

The Champion beats everyone \implies we have a O(n) algorithm!

Warm Up

T is a DAG

The Champion beats everyone \implies we have a O(n) algorithm!

General Case: Lower Bound

We need to unfold at least $\Omega\left(n^2\right)$ arcs \implies Brute force is optimal

Warm Up

T is a DAG

The Champion beats everyone \implies we have a O(n) algorithm!

General Case: Lower Bound

We need to unfold at least $\Omega\left(n^2\right)$ arcs \implies Brute force is optimal

Exploit the tournament structure \longrightarrow parametrized complexity

Parametrize with ℓ the number of matches lost by the champion

Parametrize with ℓ

the number of matches lost by the champion

Lower Bound

We have to unfold at least $\Omega(\ell n)$ arcs

$$M = \begin{pmatrix} 0 & * & * & * & * & * \\ * & 0 & * & * & * & * \\ * & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Parametrize with ℓ

the number of matches lost by the champion

Lower Bound

We have to unfold at least $\Omega(\ell n)$ arcs

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & * & 1 & * \\ 0 & 1 & 0 & 0 & * & * \\ 0 & * & 1 & 0 & 0 & * \\ 0 & 0 & * & 1 & 0 & * \\ 1 & * & * & * & * & 0 \end{pmatrix}$$

Parametrize with ℓ

the number of matches lost by the champion

Lower Bound

We have to unfold at least $\Omega(\ell n)$ arcs

$$M = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & * & 1 & * \\ 0 & 1 & 0 & 0 & * & * \\ 0 & * & 1 & 0 & 0 & * \\ 0 & 0 & * & 1 & 0 & * \\ 1 & * & * & * & * & 0 \end{pmatrix}$$

Parametrize with ℓ

the number of matches lost by the champion

Lower Bound

We have to unfold at least $\Omega(\ell n)$ arcs

$$M = \begin{pmatrix} 0 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 0 & * & \mathbf{1} & * \\ 0 & 1 & 0 & 0 & * & * \\ 0 & * & 1 & 0 & 0 & * \\ 0 & 0 & * & \mathbf{1} & \mathbf{0} & * \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

Parametrize with ℓ

the number of matches lost by the champion

Lower Bound

We have to unfold at least $\Omega(\ell n)$ arcs

Proof

$$M = \begin{pmatrix} 0 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 0 & * & \mathbf{1} & * \\ 0 & 1 & 0 & 0 & * & * \\ 0 & * & 1 & 0 & 0 & * \\ 0 & 0 & * & 1 & 0 & * \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

The **optimality certificate** consists of $\Omega(\ell n)$ entries of M

```
\begin{pmatrix} 0 & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \\ 0 & 0 & 0 & * & \mathbf{1} & * \\ 0 & \mathbf{1} & 0 & 0 & * & * \\ 0 & * & \mathbf{1} & 0 & 0 & * \\ 0 & 0 & * & \mathbf{1} & 0 & * \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{0} \end{pmatrix}
```

Find the optimality certificate

Find the optimality certificate

$$\begin{pmatrix} 0 & * & * & * & 1 & * \\ * & 0 & * & * & * & * \\ * & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

$$\begin{pmatrix} 0 & * & * & 1 & 1 & * \\ * & 0 & * & * & * & * \\ * & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

Find the optimality certificate

$$\begin{pmatrix} 0 & * & 0 & 1 & 1 & * \\ * & 0 & * & 1 & * & * \\ * & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

$$\begin{pmatrix} 0 & * & 0 & 1 & 1 & * \\ * & 0 & 0 & 1 & * & * \\ * & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

$$\begin{pmatrix} 0 & * & 0 & 1 & 1 & * \\ * & 0 & 0 & 1 & * & * \\ 1 & * & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

$$\begin{pmatrix} 0 & * & 0 & 1 & 1 & * \\ * & 0 & 0 & 1 & * & * \\ 1 & 0 & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$

Find the optimality certificate

$$\begin{pmatrix} 0 & * & 0 & 1 & 1 & * \\ * & 0 & 0 & 1 & * & * \\ 1 & 0 & 0 & * & * & * \\ * & * & * & 0 & * & * \\ * & * & * & * & 0 & * \\ * & * & * & * & * & 0 \end{pmatrix}$$
 Las Vegas Algorithm
$$\text{Worst Case: } \Theta\left(\ell n \log(n)\right) \text{ w.h.p.}$$
 Bound Unmatched!

Kill Threshold α $\alpha/2 \le \ell < \alpha$

Kill Until
$$2\alpha + 1$$
 survive

1)

2

Solve Brute Force $\label{eq:condition} \text{in } O\left((2\alpha+1)n\right)$

Complexity

- Every arc unfolded increase a counter by one
- ullet Every counter is always $\leq \alpha$

 \implies The first phase takes $O(\alpha n)$

Complexity

- Every arc unfolded increase a counter by one
- ullet Every counter is always $\leq \alpha$
- \implies The first phase takes $O(\alpha n)$
 - ullet We start the second phase with $2\alpha+1$ survivals
 - Every survival plays n-1 games
- \implies The second phase takes $O(\alpha n)$

$$\alpha/2 < \ell \implies \mathsf{Complexity} : \mathcal{O}(\ell n)$$

Correctness

We assumed to know α such that $\alpha/2 \le \ell < \alpha$

- We don't know ℓ in advance!
- ullet Perform an exponential search over lpha
- ullet If the candidate has lost < lpha games, then it is the champion

Complexity is Preserved

$$\sum_{2^{i} \leq \ell} 2^{i} n = O\left(\ell n\right)$$

Correctness

Can we keep killing vertices until $2\alpha + 1$ survive?

- Consider a sub-tournament of $2\alpha + 1$ alive vertices
- ullet Suppose every vertex loses < lpha games
- Double counting total losses gives a contradiction

Open Problems

- Is there any better parametrization?
- Is there a Monte Carlo algorithm that runs faster?
- Waiting for further advancements in ML pairwise classifiers...

Thank You!