# Algorithms and Data Structures

### Heap

A heap is a nearly complete tree in which all parents have values either larger (max-heap) or lower (min-heap) than their children.

|  | $egin{array}{c c c c c c c c c c c c c c c c c c c $ |
|--|------------------------------------------------------|
|--|------------------------------------------------------|

Remark. Heaps can be implemented efficiently using arrays.

### Space Efficient Trees

Nearly complete binary trees can be implemented efficiently using an array and the following helper functions.

```
children(i) = { 2i + 1, 2i + 2 }
parent(i) = [(i-1) / 2)]
```

Remark. code for 0 indexes arrays.

## Heapify

The heapify function produces a new *heap* given an arbitrary root to two valid heaps in  $O(\log n)$  by iteratively swapping the root with its largest child.

```
node = largest(root, left(root), right(root))
if (root != node) {
   exchange heap[root] and heap[node]
   heapify(node)
}
```

Remark. This function is the core of heap-build and heapsort.

#### Building a Heap

To build a *heap* in linear time O(n) we iteratively apply **heapify** from the parents of leafs, which are valid heaps, to the root.

```
for i from parent(n) to 1
  heapify(i)
```

## Heapsort

| $n \log n \mid n \log n \mid 1 \mid \times$ | average worst         | memory | stable |
|---------------------------------------------|-----------------------|--------|--------|
|                                             | $n \log n$ $n \log n$ | 1      | ×      |

heapsort is a sorting algorithm using a *heap* to iteratively extract the root and rebuilding a smaller heap using heapify.

```
build-max-heap(A)
heap-end = n - 1
while (end > 0) {
   swap A[heap-end] and A[0]
   heap-end--
   heapify(A, heap-end) // restore heap property
}
```

## Quicksort

|--|

quicksort is a sorting algorithm progressively partitioning the array into two subarrays containing only elements respectively smaller and larger than some pivot.

Linear partitioning schemes such as *Lomuto* and *Hoare* produce an average running time T(n) = O(n) + 2T(n/2).

Remark. Randomized quicksort also yields  $O(n \log n)$  worst-case.

### Lomuto Partitioning

Lomuto is a linear partitioning scheme using the last element as the pivot and progressively growing a region with only lower elements.

```
p = A[hi]
i = lo // A[lo..i-1] are elements below p
for (j from lo to hi - 1) // A[i..j] are over p
    if (A[j] < p)
        exchange A[i] and A[j]
    i += 1
exchange A[i+1] and p
return i+1</pre>
```

*Remark.* Used in *quicksort* and *quickselect*. By fist swapping a random element to the end we produce randomized quicksort.

Remark. Less efficient than Hoare.

## Hoare Partitioning

Hoare is a *linear* partitioning scheme in which two pointers travel towards each other while exchanging elements that violate their respective relation to the pivot.

```
p = A[lo]
i = lo - 1  // A[lo..i] are smaller than p
j = hi + 1  // A[j..hi] are larger than p
while True
   do i++ while A[i]
```

#### Remark. Used for quicksort and quickselect.

# **Dutch Flag Partitioning**

The Dutch Flag problem is solved by a *linear* three-way partition operating with constant memory which iterates over the array while progressively growing three regions.

```
x = -1  // A[0..x] contains 0s
i = 0  // A[x+1...i-1] contains 1s
y = n  // A[y..n] contains 2s
while (i < y)
  if (A[i] < 1) { x++; swap A[x] and A[i]; i++ }
  if (A[i] = 1) { i++ }
  if (A[i] > 1) { y--; swap A[y] and A[i] }
```

Remark. Useful for quicksort with multiple duplicates.

## Quickselect

Quickselect or Hoare Selection uses a partitioning scheme such as Lomuto or Hoare to select the k-th element in linear O(n) time.

```
select(A, lo, hi, k):
   if (lo == hi) return A[lo]
   p = partition(A, lo, hi) // pivot at correct spot
   if (p == k) return A[p]
   else if (p < k) return select(A, p+1, hi, k)
   else return select(A, lo, p-1, k)</pre>
```

A pivot selection strategy such as median-of-medians can be used. Remark. Worst case  $O(n^2)$  as for quicksort. Constant memory overhead under tail call optimization or iteration.

## Mergesort

| _          |            | memory |              |
|------------|------------|--------|--------------|
| $n \log n$ | $n \log n$ | n      | $\checkmark$ |

Mergesort is a stable sorting algorithm recursively sorting two subarrays of equal size before merging them.

```
merge-sort(A, lo, hi):
    q = [(lo+hi)/2]
    merge-sort(A, lo, q)
    merge-sort(A, q+1, hi)
    merge(A, lo, hi, q)
```

Linear merging can be performed with O(n) memory and sentinel cards. merge-sort thus has running time T(n) = 2T(n/2) + O(n). Remark. Practical for multi-threaded sorting.

Sorting, Comparison, Divide-and-conquer

## **Counting Sort**

```
\begin{array}{c|c} \mathbf{running \ time} & \mathbf{memory} & \mathbf{stable} \\ n+k & n+k & \checkmark \end{array}
```

Counting sort is a stable integer sorting algorithm for a known range [0,k] placing elements based on their prefix sum.

```
for (i from 1 to A.length) C[A[i]] += 1 // occurences
for (j from 1 to k) C[j] += C[j-1] // prefix sum
for (i from A.length to 1)
   B[C[A[i]]] = A[i] // put A[i] at position C[A[i]]
   C[A[i]] -= 1
```

Remark. Using both 0 and 1 indexed array. Due to being stable, counting sort can be used for radix sort.

Remark. Prefix sums can be very useful in subarray problems.

#### Radix Sort

Radix sort is an integer sorting algorithm using *counting sort* to sort elements for every digit, beginning with the *least-significant*.

```
for (i from 1 to d)
    stable-digit-sort(A, i) // digit 1 is the LSD
```

Remark. The underlying sorting algorithm needs to be stable.

#### **Bucket Sort**

Bucket sort is a sorting algorithm assuming the input is drawn from a uniform distribution over [0,1). Distribute the input numbers into n equal-sized subintervals and sort each.

```
for (i in 1 to n) insert A[i] into list B[[n A[i]]]
for (i in 1 to n) sort list B[i]
return B[0], ..., B[n-1]
```

Remark. Each bucket i is expected to contain few elements  $n_i$ , yielding linear O(n) average running time.

$$E[T(n)] = \Theta(n) + \sum_{i=1}^{n-1} O(E[n_i^2])$$

#### Breadth-First Search

```
running time O(V+E) or O(b^{d+1})
```

BFS is a graph traversal and search algorithm progressively expanding the *shallowest* nodes using a FIFO queue for the frontier.

Remark. Produces a breadth-first tree. BFS can find the shortest path if path cost is a non-decreasing function of depth.

## Depth-First Search

```
running time O(V+E)
```

DFS is a graph traversal and search algorithm progressively expanding the *deepest* nodes in the frontier.

```
dfs-visit(u):
    u.discovery = ++time
    for (v in u.neighbors if v.parent = 0)
        v.parent = u
        dfs-visit(v)
    u.finish = ++time
for (u in G.V if v.parent = 0) dfs-visit(u)
```

Remark. A non-recursive implementation uses a stack.

Remark. Applications include  $topological\ sort$  and finding strongly connected components.

### **Topological Sort**

topological-sort produces a linear ordering  $\prec$  in a directed acyclic graph G such that  $(u, v) \in E \implies u \prec v$ , using decreasing finishing times of a *depth-first* forest.

```
topological-visit(u):
    u.discovered = true
    for (v in u.neighbors if not v.discovered)
        topological-visit(v)
    ordering.prepend(u)
```

## **Strongly Connected Components**

*Depth-first search* can be used to identify strongly connected components by being applied to the transposed graph  $G^{\mathsf{T}}$ .

```
dfs\left( G\right) to produce u.f dfs\left( G^{T}\right) \ but \ create \ each \ tree \ by \ decreasing \ u.f each tree is a strongly connected component
```

Remark.  $G^{\mathsf{T}}$  simply contains all edges of G reversed.

#### Graphs in AI

# Bellman-Ford Algorithm

running time  $\Theta(VE)$ 

bellman-ford solves single-source shortest-path problems for any directed graph through relaxation, and detects negative cycles.

```
u.d = ∞ for (u in V) but s.d = 0
for (i from 1 to |V|-1)
   for (edge (u, v) in E)
        relax(u, v) // can v.d be improved through u?

for (edge (u, v) in E)
   if v.d > u.d + w(u, v) raise CycleException
```

Remark. Relaxation is used greedily in *Dijkstra's* algorithm.

## Dijkstra's Algorithm

```
running time O(V^2) or O(E + V \log V)
```

dijkstra solves single-source shortest-path problems for directed graphs with non-negative weights using *greedy* relaxation.

#### **DAG Shortest Path**

running time O(V+E)

The single-source shortest-path problem for directed acyclic graphs can be solved linearly using  $topological\ sort$ .

```
u.d = \infty for (u in V) but s.d = 0
for (u in topological-sort(G))
  for (v in u.neighbors)
    relax(u, v) // can v.d be improved through u?
```

# Floyd-Warshall Algorithm

### running time $O(V^3)$

floyd-warshall solves all-pairs shortest-path problems for graphs without negative weight cycles using dynamic programming. Define  $d_{ij}^k$  as the shortest path from i to j using vertices  $\{1,...,k\}$ .

$$d_{ij}^{k} = \min \left\{ w_{ij}, d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1} \right\}$$

#### **Huffman Code**

A Huffman code is an optimal *prefix* scheme for a character coding problem. The corresponding full binary tree is constructed by *greedily* merging leaves with minimal frequency.

```
Q = C // the characters
for (i from 1 to n-1)
    create new node z
    z.left = x = Q.extract-min() // 0
    z.right = y = Q.extract-min() // 1
    z.freq = x.freq + y.freq
    Q.insert(z, z.freq)
return Q.extract-min() // root
```

### Rod Cutting Problem

Given prices  $p_i$  for a rod of length i, determine the highest revenue decomposition for a rod of length n.

```
input: p = [1, 5, 8, 9], n = 4
solution: r = 10 // two pieces of length 2
```

#### Solution $\Box$ .

### **Rod Cutting Solution**

The rod-cutting problem can be solved using dynamic programming by exploiting optimal substructure. The maximum price  $r_n$  for a rod of length n can be written as:

$$r_n = \max_{1 \le i \le n} \{ p_i + r_{n-i} \}$$

A running time of  $\Theta(n^2)$  is achieved by both the *memoized top-down* and *bottom-up* implementations.

## Memoized Rod Cutting

The top-down implementation rod-cut with memoization to the rod-cutting problem is written recursively but solutions to subproblems are remembered in r[i].

```
if (r[n] \geq 0) return r[n]
q = 0
for (i from 1 to n)
    q = max{q, p[i] + rod-cut(n - i)}
r[n] = q
return r[n]
```

### Bottom-Up Rod Cutting

The bottom-up implementation rod-cut to the *rod-cutting* problem iteratively solves subproblems of larger size.

```
for (i from 1 to n)
    q = -∞
    for (j from 1 to i)
        q = max(q, p[j] + r[i - j])
    r[i] = q
return r[n]
```

## Longest Common Subsequence

Given two sequences  $X = \langle x_1, ..., x_n \rangle$  and  $Y = \langle y_1, ..., y_m \rangle$ , determine the maximum-length common subsequence Z of X and Y.

```
input: X = ABCBDAB, Y = BDCABA solution: BCBA or BDAB // 4
```

#### Solution $\Box$ .

Proble

#### LCS Solution

The *longest common subsequence* problem can be solved using dynamic problem in  $\Theta(mn)$ . Define  $c_{ij}$  the length of the LCS of the prefix sequences  $X_{1..i}$  and  $Y_{1..j}$ .

$$c_{ij} = \begin{cases} c_{i-1,j-1} + 1 & \text{if } x_i = x_j \\ \max\{c_{i,j-1}, c_{i-1,j}\} & \text{if } x_i \neq x_j \end{cases}$$

For the optimal solution use auxiliary table  $b_{ij} \in \{\uparrow, \nwarrow, \leftarrow\}$  to record the optimal structure of  $c_{ij}$  and backtrack from  $b_{nm}$ .

## Maximum Subarray Problem

Given a one-dimensional array of numbers, determine the continuous subarray with maximum sum.

```
input: [-2, 1, -3, 4, -1, 2, 1, -5, 4] solution: 6 // [4, -1, 2, 1]
```

#### Solution $\Box$ .



## Kadane's Algorithm

Kadane's algorithm is a linear O(n) dynamic programming solution to the *maximum subarray* problem which iteratively determines the maximum subarray  $B_i$  ending at position i using  $B_{i-1}$ .

```
bi = s = A[0]
for (i from 1 to n-1)
   bi = max(bi + A[i], A[i])
   s = max(s, bi)
return s
```

Remark. kadane is an instance of a sliding-window algorithm.

## Longest Increasing Subsequence

Given a one-dimensional array of numbers, determine the longest increasing subsequence.

```
input: [10, 22, 9, 33, 21, 50, 41, 60, 80] solution: 6 // [10, 22, 33, 50, 60, 80]
```

### Solution .

#### LIS Solution

The longest increasing subsequence problem can be solved using dynamic programming. Define  $x_i$  to be the smallest number terminating a LIS of length i.

candidate-lis determines the longest LIS whose last element can be replaced by n. Since x is *sorted*, we use binary search.

Remark. An alternate solution uses LIS[i] as the length of the LIS ending at position i for a running time  $O(n^2)$ .

## Longest k-Sum Subarray

Given a one-dimensional array of numbers A, determine the longest subarray A[i..j] summing to k.

```
input: A = [3, -5, 8, -14, 2, 4, 12], k = -5 solution: 5 // [-5, 8, -14, 2, 4]
```

### Solution $\Box$ .

Problem

## Longest k-Sum Subarray Solution

The *longest k-sum subarray* problem is solved in *linear* time by defining P[s] as the smallest index i such that subarray A[0..i] has prefix sum s.

```
prefix = best = 0
P = {0 : -1}
for (i from 0 to n-1)
    prefix += A[i]
    missing = prefix - k
    if (prefix not in P) P[prefix] = i
    if (missing in P) best = max(best, i - P[missing])
return best
```

Remark. Subarray A[p..i] has sum k where p = P[missing].

## Longest Substring Problem

Given a string s , determine the longest or shortest substring satisfying some criterion C.

```
input: S = ababbcabaac
criterion: pangram D = {a, b, c}
solution: cab // 3
```

 ${\it Example.} \ {\it Shortest pangram, longest substring without duplicates.}$ 

### Sliding Window Method

The general *longest substring* problem can be solved in linear time using a *sliding window* technique, where two pointers extend or retract some substring S[i..j] to satisfy C.

```
for (j from 0 to n-1) // longest no duplicates while (S[i..j] does not satisfy C) i++ is S[i..j] new best?
```

Remark. Implementation depends on C and length optimization. Similar to Kadane's algorithm.

### 0-1 Knapsack Problem

Given sizes  $s_i$  and values  $v_i$  for n items, determine the maximum value a knapsack with capacity k can carry.

```
input: s, v = [(10, 60), (20, 100), (30, 120)]
capacity: k = 50
solution: 220 // item 2 and 3
```

# 0-1 Knapsack Algorithm

The knapsack problem can be solved using dynamic programming. Define  $d_{i,k}$  to be the optimal value for a knapsack of capacity k using only items  $\{1,...,i\}$ .

$$d_{i,k} = \max\{v_i + d_{i-1,k-s_i}, d_{i-1,k}\}\$$

```
for (j from 1 to k)
    for (i from 1 to n)
        d[i, j] = ... // also check edge-cases
```

Remark. Additional substructure dimension than the *rod-cutting* solution as each items can only be taken once.

### Fractional Knapsack Problem

Given sizes  $s_i$  and values  $v_i$  for n items, determine the maximum value a knapsack with capacity k can carry if a *fraction* of each item can be taken.

```
input: s, v = [(10, 60), (20, 100), (30, 120)]
capacity: k = 50
solution: 240 // item 1, 2 and 2/3 of item 3
```

#### Solution .

## Greedy Knapsack Algorithm

The fractional knapsack problem can be solved using a greedy strategy. Order items by their volumetric value density  $x_i = v_i/s_i$  and greedily pick as much as possible of each.

```
sort items by v[i]/s[i]
i = 0;
while (capacity > 0)
  fraction = min(1, capacity/s[i])
  capacity -= fraction * s[i]
  i++
```

#### **Interval Selection Problem**

Given starting times  $s_i$  and finishing times  $f_i$  of n intervals, determine the maximum subset of mutually compatible intervals.

```
input: s = [1, 3, 0, 5, 8, 5]
    f = [2, 4, 6, 7, 9, 9]
solution: {0, 1, 3, 4}
```

# Interval Selection Algorithm

The *interval selection* problem can be solved by *greedily* picking compatible intervals by increasing finishing time  $f_i$ .

```
sort intervals by finishing time f_i S = \{A[0]\} f = f[0] for (i from 1 to n) if (s[i] \geq f) S = S \cup \{A[i]\} f = f[i] return S
```

### Interval Partitioning Problem

Given starting times  $s_i$  and finishing times  $f_i$  of n intervals, determine the smallest partition into compatible intervals.

```
input: s = [1, 3, 0, 5, 8, 5]
    f = [2, 4, 6, 7, 9, 9]
solution: 3 // {2, 4} + {0, 1, 3} + {5}
```

### Interval Partitioning Algorithm

The *interval partition* problem can be solved by *greedily* assigning intervals to the first compatible set by increasing start time  $s_i$ .

```
sort intervals by starting time s_i r = [] // when resources become available for (i from 0 to n-1) for (j=0; j < r.length; j++) // find compatible set if (r[j] \leq s[i]) break assign i to j r[j] = f[i]
```

#### **Next Greater Element**

Given a one-dimensional array, determine for each integer the next greater element, i.e. the first larger element on its right.

```
input: [5, 7, 4, 3, 6, 9, 2, 8] solution: [7, 9, 6, 6, 9, -1, 8, -1]
```

#### **NGE Solution**

The *next greater element* problem can be solved in linear time using a *stack* containing *pending* integers. As we traverse the array we compare the current element to the top unassigned elements.

```
s = [] // contains (value, position)
for (i from 0 to n-1)
  while (s && s.top()[0] < A[i]) // NGE for s.top
      x = s.pop()
      A[x[1]] = A[i]
  s.push(A[i], i)
while (s) A[s.pop()[1]] = -1</pre>
```

# Longest Balanced Subarray

Given a binary array  $\in \{0,1\}^n$ , determine the longest continuous subarray containing an equal number of each digit.

```
input: [0, 1, 0, 0, 1, 1, 0, 0] solution: [1, 0, 0, 1, 1, 0] // 6
```

## **Balanced Subarray Solution**

To solve the *longest balanced subarray* problem we use the algorithm to find the *longest 0-sum subarray* after substituting 0's by -1's.

```
B = {0: -1}
balance = longest = 0
for (i from 0 to n-1)
  balance += 1 if A[i] == 1 else -1
  if (balance in B)
    longest = max(longest, i - B[balance])
  else B[balance] = i
```

Remark. Note the use of an index map and prefix sums.

### Inorder Successors Sum

Given the root of a binary tree, add to each node the sum of all its in-order successors.

```
input: inorder = [5, 7, 2, 9, 10, 3] // given as tree solution: [36, 31, 24, 22, 13, 3]
```

#### Solutions $\Box$ $\Box$ .



### Recursive Inorder Successor Sum

The *in-order successor sum* problem can be solved *recursively* using an accumulator which each node increases by its own value.

```
int visit(node, acc): // acc = sum of upper successors
   if (node == NULL) return acc
   acc = visit(node->right, acc)
   node->value += acc
   return visit(node->left, node->value)
```

Remark. acc acts as a global variable. Use a pointer in C++. Remark. See the *iterative* solution.

#### Iterative Inorder Successor Sum

The *in-order successor sum* problem can be solved *iteratively* using a stack to traverse the tree in-reverse-order and an accumulator which each node increases by its own value.

```
digg(node, stack):
    while (node) {stack.push(node); node = node->right}

solve(root):
    acc = 0; stack = []; digg(root, stack)
    while (stack)
        node = stack.pop()
        node->value = acc = acc + node->value
        digg(node->left, stack)
```

#### Remark. See the recursive solution.

### Longest Valid Parentheses

Given a string s containing characters ( and ), determine the longest valid well-formed parenthesis substring.

```
input: S = "()(()()()"
solution: "()()"
```

#### Solution $\Box$ .

Problem

## Longest Valid Parentheses Solution

The *longest valid parentheses* problem can be solved using an advanced *sliding window* method, using a stack containing the latest index of a potentially problematic character.

```
stack = [-1] // sentinel
solution = -1
for (i from 0 to n-1)
   if (s[i] == "(") stack.push(i)
   else
        stack.pop() // one less problem
        if (stack.empty()) stack.push(i) // problem!
        else solution = max(solution, i - stack.top())
```

#### k-Sum Combinations

Given a set of integers  $\ s$  and an integer  $\ k$ , find all distinct combinations from integers in  $\ s$  whose sum is equal to  $\ k$ .

Remark. A combination may contain duplicates.

```
input: S = [2, 3, 6, 7], k = 7
solution : [[7], [2, 2, 3]]
```

### Solution $\square$ .

#### k-Sum Combinations Solution

The k-sum combinations problem can be solved recursively using the helper function <code>solve</code>. Duplicates can be avoided by progressively restricting integers used from <code>s</code>.

```
solution = [], current = []
solve(k, j)
  if (k == 0) { solution.push_copy(current); return }
  for (i from j to n-1 if S[i] <= k)
      current.push_back(S[i])
      solve(k - S[i], i) // avoid duplicates with j
      current.pop_back() // clean-up</pre>
```

Remark. Note how only a single helper buffer current is needed.

## Frog Problem

You are positioned at the beginning on an array A of non-negative integers, representing the maximum distance A[i] you can jump forward from each position i. Determine the minimum number of jumps to reach the last position.

```
input: [2, 3, 1, 1, 4] solution: 2 // 0 -> 1 -> 4
```

#### Solutions $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ .

# Dynamic Frog Programming

The frog problem can be solved in  $O(n^2)$  using dynamic programming with x[i] as the minimum jumps required from index i.

```
X[..] = ∞, X[n-1] = 0
for (i from n - 2 to 0)
   for (j from 1 to A[i] if i + j < n)
        X[i] = min(X[i], 1 + X[i+j])
return X[0]</pre>
```

#### Remark. More efficient solutions are also provided.

### Breadth-First Frog

The *frog problem* can be solved intuitively using a vanilla implementation of *breadth-first search* over indices as nodes.

```
Q = [0], distance = {0: 0}
while (true)
  x = Q.dequeue()
  if (x == n-1) return distance[x]
  for (j from 1 to A[i] if i + j < n)
    if (i+j not in distance)
        distance[i+j] = 1 + distance[i]
        Q.enqueue(i+j)</pre>
```

Remark. The queue Q can be removed for an *improved solution*, as only increasing integers are enqueued.

## Improved Breadth-First Frog

The *frog problem* can be solved more efficiently using an adapted implementation of *breadth-first search*, avoiding a stack.

```
furthest = 0, distance = {0: 0}
for (i = 0; furthest < n - 1; i++)
   if (i + A[i] > furthest)
      for (j from furthest to i + A[i])
            distance[i+j] = distance[i] + 1
      furthest = i + A[i]
return distance[n-1]
```

Remark. The distance map can be avoided as well by counting the "waves" or breadth layers, for a linear solution.

## **Linear Frog Solution**

The frog problem can be solved linearly by improving the breadth-first search solution to simply count the waves or breadth layers.

```
furthest = 0, jumps = 0, cur_wave = 0
for (i = 0; i < n - 1; i++)
  furthest = max(furthest, i + A[i])
  if (i == cur_wave)
    jumps++
    cur_wave = furthest
return jumps</pre>
```

Remark. This solution can not produce the jump sequence.