Funktionalanalysis - Wiederholungsaufgaben 1

Wintersemester 2022 Christian Düll

Aufgabe 1.1

Rekapitulieren Sie folgende Sätze der Vorlesung:

- (a) Satz 1.37 zur Kompaktheit der Einheitskugel
- (b) Satz 1.50 vom orthogonalen Komplement und Folgerungen
- (c) Satz 2.15 von Stone-Weierstraß
- (d) Satz von Arzelà-Ascoli 2.22 und Riesz-Fréchet-Kolmogorov 2.62 über die Präkompaktheit in den Funktionenräumen $C(\overline{\Omega})$ und $\mathcal{L}^p(\mathbb{R}^n)$
- (e) Satz 2.70 von Meyers-Serrin über Sobolev-Funktionen
- (f) Dualräume von $L^p(\Omega, \mu)$ und Darstellungssatz 3.26 von Riesz
- (g) Die Sätze von Hahn-Banach und Folgerungen (3.21 ff)
- (h) Satz 3.27 von Lax-Milgram und Lösungsmethoden für Randwertprobleme
- (i) Abschnitt 3.4 Hauptsätze für Operatoren
- (j) Schwache und schwach-* Topologie und schwache (Folgen-) Kompaktheit der Einheitskugeln sowie Reflexivität
- (k) Definition und wichtige Eigenschaften der Resolventemenge und des Spektrums
- (l) Wichtige Aussagen über kompakte Operatoren (5.9ff) sowie die Aussage der Spektralsätze
- (m) Wiederholen Sie, welche in der Vorlesung vorkommenden wichtigen Räume vollständig, separabel und/oder reflexiv etc. sind

Aufgabe 1.1

Man zeige: Es existiert ein stetiges lineares Funktional $L: \ell^{\infty} \to \mathbb{R}$ mit

$$L(x) = \lim_{k \to \infty} \frac{1}{k} \sum_{n=1}^{k} x_n \tag{1}$$

für alle $x \in \ell^{\infty}$, für die der Limes in (1) existiert.

Aufgabe 1.2

Sei $L: \ell^2 \to \ell^2$ gegeben durch $(Lx)_k := \frac{x_k}{k}$. Man zeige, dass L kompakt ist. Hinweis: Approximieren Sie L durch Operatoren mit endlich dimensionalem Bild.

Aufgabe 1.3

Sei I := (0,1) und b > 0 eine Konstante. Sei weiter $f \in L^2(I)$. Man zeige, es existiert genau ein $u \in W_0^{2,2}(I)$, so dass

$$\int_0^1 \left(u''\varphi'' + bu'\varphi' + u\varphi \right) dx = \int_0^1 f\varphi dx \quad \text{für alle } \varphi \in W_0^{2,2}(I). \tag{2}$$

Aufgabe 1.4

Sei X ein reeller Banachraum und $x, x_n \in X$ für alle $n \in \mathbb{N}$. Es gebe ein c > 0 mit $||x_n|| \le c$ für alle $n \in \mathbb{N}$. Sei weiter $Y \subset X^*$ ein dichter Teilraum des Dualraums von X mit $\lim_{n\to\infty} \varphi(x_n) = \varphi(x)$ für alle $\varphi \in Y$. Zeigen Sie, dass $x_n \rightharpoonup x$ gilt.

Aufgabe 1.5

Seien X,Y Banachräume. Seien $A:X\to Y$ und $B:Y^*\to X^*$ linear. Für alle $x\in X$ und $y'\in Y^*$ gelte

$$\langle Ax, y' \rangle_Y = \langle x, By' \rangle_X$$

Man zeige, dass dann A und B stetig sind.

Aufgabe 1.6

Sei $(H, (\cdot, \cdot)_H)$ ein reeller Hilbertraum. Sei $(x_k)_{k \in \mathbb{N}} \subset H$ eine Folge und $x_* \in H$. Zeigen Sie:

$$x_k \rightharpoonup x_*$$
 schwach in $H \Leftrightarrow \lim_{k \to \infty} (x_k, h)_H = (x_*, h)_H$ für alle $h \in H$.

Aufgabe 1.7

Betrachte $T: L^2([0,1]) \to L^2([0,1])$ gegeben durch $(Tf)(x) = \frac{1}{x+1}f(x)$. Man zeige, dass T linear und beschränkt, aber nicht kompakt ist.

Aufgabe 1.8

Sei X ein Banachraum und Y ein normierter Raum. Sei $(T_n)_n$ eine Folge in $\mathscr{L}(X,Y)$, sodass $T(x) = \lim_{n \to \infty} T_n(x)$ für alle $x \in X$. Zeigen Sie, dass $T \in \mathscr{L}(X,Y)$ mit $||T|| \le \liminf_{n \to \infty} ||T_n|| < \infty$ gilt.

Aufgabe 1.9

Betrachte $(C_b([0,\infty),\mathbb{R}),\|\cdot\|_{\infty})$. Man zeige, dass ein stetiges lineares Funktional $L: C_b([0,\infty)) \to \mathbb{R}$ existiert, sodass

$$L(f) = \lim_{x \to \infty} g(x) \tag{3}$$

für alle $g \in C_b([0,\infty))$, für welche der Limes auf der rechten Seite von (3) existiert.

Aufgabe 1.10

Sei $g_n:[0,1]\to\mathbb{R}$ eine Folge zweimal stetig differenzierbarer Funktionen. Sei $g_n(0)=g_n'(0)$ für alle n und $|g_n'(x)|\leq 1$ für alle n und $x\in[0,1]$. Zeigen Sie, dass eine Teilfolge von $(g_n)_n$ gleichmäßig in [0,1] konvergiert.

Aufgabe 1.11

Sei K eine kompakte Teilmenge eines metrischen Raumes (S,d). Zeigen Sie, dass dann K separabel ist.

Aufgabe 1.12

Wiederholen Sie, dass für einen Hilbertraum H und einen linearen Operator $A: H \to H$ gilt, dass wenn (Ax, y) = (x, Ay) für alle $x, y \in H$ gilt, dass A dann stetig ist.

Aufgabe 1.13

Sei $U \subset \mathbb{R}^n$ offen und beschränkt. Überlegen Sie sich, dass das folgende Randwertproblem für $f \in L^2(U)$ eine eindeutige, schwache Lösung besitzt

$$\begin{cases}
-\Delta u + u = f, \text{ in } U, \\
u = 0, \text{ auf } \partial U
\end{cases}$$
(4)

Aufgabe 1.14

Überlegen Sie sich, dass es keine offenen Mengen $U_i \subset \mathbb{R}, i \in \mathbb{N}$ geben kann, sodass $\mathbb{Q} = \bigcap_{i=1}^{\infty} U_i$

Aufgabe 1.15

Sei $(X, \|\cdot\|)$ ein Banachraum. $T \in \mathcal{L}(X, X)$ heißt beschränkt von unten, falls ein C > 0 existiert, sodass

$$||Tx|| \ge C||x|| \quad \forall x \in X.$$

- (a) Ist T invertierbar, so ist T beschränkt von unten
- (b) Ist T beschränkt von unten, so ist T^{-1} (definiert auf $\operatorname{ran}(T)$) beschränkt.

Aufgabe 1.16

Seien X, Y Banachräume, X reflexiv, $T: X \to Y$ linear. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (a) T ist kompakt
- (b) Ist $(x_k)_{k\in\mathbb{N}}\subset X$ beschränkt $\Rightarrow (Tx_k)_{k\in\mathbb{N}}$ ist präkompakt.
- (c) $x_k \rightharpoonup x^* \Rightarrow Tx_k \to Tx^*$.
- (d) $(x_k)_{k\in\mathbb{N}}$ beschränkt \Rightarrow es existiert eine Teilfolge x_{k_j} und ein $y\in Y$, sodass $Tx_{k_j}\to y$.
- (e) TA ist kompakt für alle $A \in \mathcal{L}(X)$.

Aufgabe 1.17

Zeigen Sie, dass $(C^0([0,1]), \|\cdot\|_{\infty})$ nicht reflexiv ist.

Aufgabe 1.18

Geben Sie ein Beispiel für eine Folge $(f_k)_k \subset L^3(\mathbb{R})$, die nicht stark in $L^3(\mathbb{R})$ konvergiert, aber so dass $f_k \rightharpoonup 0$ in $L^3(\mathbb{R})$ und $f_k \to 0$ punktweise fast überall. Beweisen Sie ihre Behauptung.

Aufgabe 1.19

Sei X ein Banachraum. Zeigen Sie:

- a) Wenn $Y \subset X$ ein linearer Unterraum mit nicht-leerem Inneren ist, dann ist Y = X.
- c) X hat keine abzählbar unendliche Hamelbasis. Verwenden Sie den Satz von Baire und benutzen Sie ohne Beweis, dass jeder endlich dimensionale Unterraum eines normierten Raumes vollständig und daher abgeschlossen ist)
- d) Sei P der Raum aller reellwertigen Polynome. $(P, \|\cdot\|)$ ist für jede beliebige Norm $\|\cdot\|$ kein Banachraum.

Zur Erinnerung: Eine Hamelbasis ist eine linear unabhängige Teilmenge, so dass sich jedes Element des Vektorraumes als endliche Linearkombination aus dieser Teilmenge darstellen lässt.

Aufgabe 1.20

(sehr schwer) Zeigen Sie, dass es eine stetige Funktion auf dem Intervall [0,1] gibt, die nirgends differenzierbar ist.

Hinweis: Betrachten Sie die Mengen

$$O_n := \left\{ f \in C([0,1]) \mid \sup_{0 < |h| \le \frac{1}{n}} \left| \frac{f(t+h) - f(t)}{h} \right| > n \, \forall t \in [0,1] \right\}$$

(Hierbei sind die Funktionen für $x \leq 0$ und $x \geq 1$ konstant stetig fortgesetzt) und zeigen Sie, dass alle O_n offen und dicht in $(C([0,1]), \|\cdot\|_{\infty})$ sind. Benutzen Sie dazu den Weierstraß'schen Approximationssatz (Beispiel 2.16 a))

Aufgabe 1.21

Seien X, Y Banachräume und $a: X \times Y \to \mathbb{R}$ eine Bilinearform mit folgenden Eigenschaften

- i) Für alle $x \in X$ ist die Abbildung $y \mapsto a(x, y)$ stetig.
- ii) Für alle $y \in Y$ ist die Abbildung $x \mapsto a(x, y)$ stetig.

Zeigen Sie, dass a stetig ist, das heißt, es gibt ein C > 0, so dass

$$|a(x,y)| \le C||x||_X ||y||_Y \qquad \forall x \in X, y \in Y.$$

Aufgabe 1.22

(schwer) Zeigen Sie, dass $W^{m,p}(\Omega)$ für $m \in \mathbb{N}, 1 und offenes <math>\Omega \subset \mathbb{R}^n$ reflexiv und separabel ist. Benutzen Sie hierfür die stetige Einbettung

$$J: W^{m,p}(\Omega) \to L^p(\Omega)^M, \qquad f \mapsto (\partial^{\alpha} f)_{|\alpha| \le m},$$

wobei $M=\sum_{|\alpha|\leq m}1$ die Anzahl aller schwachen Ableitungen inklusive der Funktion selbst sei.

Aufgabe 1.23

(recht schwer)

Sei $(V, \|\cdot\|)$ ein unendlich dimensionaler K-Vektorraum.

- (a) Seien $l_1, ..., l_n \in V^*$. Zeigen Sie, dass ein $v_0 \in V$, $v_0 \neq 0$ existiert mit $l_j(v_0) = 0$ für alle $1 \leq j \leq n$.
- (b) Es sei $S=\{v\in V\mid \|v\|=1\}$ die Einheitssphäre und $B=\{v\in V\mid \|v\|\leq 1\}$ die abgeschlossene Einheitskugel. Zeigen Sie, dass der schwache Abschluss von S durch B gegeben ist.

Hinweis: Zeigen Sie, dass $S \subset B \subset \overline{S}^{T_{\omega}}$ gelten muss, indem Sie $v \in B \setminus S$ mit einer Folge aus S approximieren.

(c) Folgern Sie, dass die offene Einheitskugel $\{v \in V \mid ||v|| \le 1\}$ nicht schwach offen ist.

Aufgabe 1.24

Sei $X \subset L^1(\mathbb{R})$ ein abgeschlossener Untervektorraum mit

$$X \subseteq \bigcup_{p>1} L^p(\mathbb{R}).$$

In dieser Aufgabe sollen Sie zeigen, dass ein $p_0 > 1$ existiert, sodass $X \subset L^{p_0}(\mathbb{R})$. Gehen Sie dafür, wie folgt vor:

(a) Für $k \in \mathbb{N}$ definieren wir die Menge

$$F_k = \{ f \in X \mid ||f||_{L^{1+1/k}} \le k \}.$$

Zeigen Sie, dass die F_k abgeschlossene Mengen bzgl. der L^1 Norm sind.

- (b) Zeigen Sie, dass $X = \bigcup_{k \in \mathbb{N}} F_k$. Hinweis: Zeigen Sie $||f||_{L^{1+1/k}} \leq (||f||_{L^1} + ||f||_{L^p}^p)^{\frac{1}{1+1/k}}$, indem Sie das Integral geeignet aufspalten.
- (c) Folgern Sie, dass ein $p_0 > 1$ existiert, sodass $X \subset L^{p_0}(\mathbb{R})$. Hinweis: Verwenden Sie den Satz von Baire.