

WELCOME BACK!

COMBINED

	CONTINUOUS	CATEGORICAL
SUPERVISED	REGRESSION	CLASSIFICATION
UNSUPERVISED	DIMENSION REDUCTION	CLUSTERING

Exploration

ML STEPS

Collection

2. Processing

3. Model Building

Evaluation

Text
Image/Video
Transactions
User info
Revenues

Clean
Transform
Impute
Features

Prediction

Score
Train/Test
Cross Val

5. Deployment

Define Hypothesis Define Cost

OVERFITTING

HISTORY OF SUPERVISED LEARNING

All data available

TRAIN - TEST SPLIT

Training data

Testing data

PRECISION - RECALL & ACCURACY

- **Precision:** When test is positive, how often is prediction correct?
 - TP / test yes
- **Recall:** When actual value is positive, how often is prediction correct?
 - TP / actual yes
- Accuracy: Overall, how often is it correct?
 - (TP + TN) / total

	Condition Positive	Condition Negative
Test	TRUE	FALSE
Positive	POSITIVE	POSITIVE
Test	FALSE	TRUE
Negative	NEGATIVE	NEGATIVE

DISTANCE & SIMILARITY

	Age	Gender	Annual Salary	Months in residence	Months in job	Current Debt
Client I	23	M	\$30,000	36	12	\$5,000
Client 2	30	F	\$45,000	12	12	\$1,000
Client 3	19	M	\$15,000	3	I	\$10,000

CLUSTER VALIDATION

DATA CLEANING

DATA CLEANING

Other examples include:

Remove inconsistencies
Data type harmonization
Typos correction
Formatting (eg. timestamps)
Sorting

TIME SPENT

Obtain Data
Scrub Data
Explore
Model Algorithms
iNterpret Results

- 80%
20%

IMPORT DATA

IO Tools (Text, CSV, HDF5, ...)

The pandas I/O API is a set of top level reader functions accessed like pd.read_csv() that generally return a pandas object.

- read_csv
- read_excel
- read_hdf
- read_sql
- read_json
- read_msgpack (experimental)
- read_html
- read_gbq (experimental)
- read_stata
- read_sas
- read_clipboard
- read_pickle

JSON

JSON (JavaScript Object Notation) is:
a lightweight data-interchange format
a string


```
{ "empinfo" :
               "employees" : [
                  "name" : "Scott Philip",
"salary" : £44k,
"age" : 27,
               },
                  "name" : "Tim Henn",
"salary" : £40k,
"age" : 27,
               },
                 "name" : "Long Yong",
"salary" : £40k,
"age" : 28,
```


API

Collection

GET https://api.instagram.com/v1/users/10

http://www.pythonapi.com/

CONCATENATE DATA

df1

	Α	В	U	D
0	A0	В0	8	D0
1	Al	B1	Cl	D1
2	A2	B2	C2	D2
3	A3	В3	СЗ	D3

df2

	А	В	С	D
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	Аб	В6	C6	D6
7	A7	B7	C7	D7

df3

	Α	В	С	D
8	A8	B8	C8	DB
9	A9	B9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

Result

	Α	В	С	D
0	A0	В0	8	D0
1	A1	B1	Cl	D1
2	A2	B2	C2	D2
3	A3	В3	СЗ	D3
4	A4	B4	C4	D4
5	A5	B5	C5	D5
6	Аб	B6	C6	D6
7	A7	В7	C7	D7
8	A8	B8	C8	DB
9	A9	B9	C9	D9
10	A10	B10	C10	D10
11	A11	B11	C11	D11

MERGE DATA

left

A B key 0 A0 B0 K0 1 A1 B1 K1 2 A2 B2 K2 3 A3 B3 K3

right

	С	D	key
0	O	D0	KO
1	Cl	D1	K1
2	C2	D2	K2
3	СЗ	D3	КЗ

Result

	Α	В	key	С	D
0	A0	В0	K0	CO	D0
1	A1	В1	K1	C1	D1
2	A2	B2	K2	C2	D2
3	A3	В3	К3	C3	D3

left

right

	С	D
KO	O	D0
K1	Cl	D1

Result

	Α	В	key	С	D
0	A0	В0	K0	CO	D0
1	A1	В1	K1	C1	D1
2	A2	В2	K0	CO	D0
3	A3	В3	K1	C1	D1

REBUILD MISSING

Missing at Random?

REBUILD MISSING

MCAR
Missing completely at random

MAR
Missing at random

MNAR
Missing not at random

Missing value (y) neither depends on x nor y

e.g.: some survey questions asked to fewer people Missing value (y) depends on x, but not y

e.g. Respondents in service occupations less likely to report income The probability of a missing value depends on the variable that is missing

e.g.: Respondents with high income less likely to report income

TECHNIQUES

- Imputation, Partial imputation
- Deletion, Partial deletion
- Analysis
- Interpolation

STANDARDIZATION

STANDARDIZATION

• Sep 12th, 2015 9/12/15 12-Sep-15

• USA United States of America EU U.s.a.

• Mr. Mister

• etc. etc.

NORMALIZATION

NORMALIZATION

- STANDARD
 - subtract mean
 - divide by std
- MINMAX
 - subtract min
 - divide by (max-min)

DE-DUPLICATE

FEATURES FROMTEXT

- Bag of Words approach:
 - Term Frequency (TF)
 - Inverse Document Frequency (IDF)

- NLP Approach
 - Stemming
 - Parts of Speech tagging
 - Named Entity Detection
 - Parsing

TFIDF

- Term frequency
 - Nterm/Nterms in document
- Document frequency
 - Ndocuments containing term/Ndocuments

STEMMING

science, scientist => scien

• swim, swimming, swimmer => swim

Porter stemmer

Very useful to reduce feature set size

PART OF SPEECH

PARSING

STANDARDIZATION

you

 u, ya, yo, yaaaa, yew, you, yoiu, youy, yooooo, youz, yooouuuu

Together

• 2gether, tegetha, tgthr, togather, 2getha, 2gthr, togeter, together, together, together, 2getter

LAB CLEANING + TEXT

