#### Class 14

2018年5月10日 星期四 10:00

Gamma distribution. 
$$\chi \sim r(\alpha, \beta)$$

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{|\Gamma(\alpha)|} \chi^{\alpha-1} e^{-\beta \chi} & \chi \geqslant 0 \\ 0, & \chi \leqslant 0 \end{cases}$$

P(x) = (x-1)! x=1,2,... アは1:5万

### 习题:

$$X \sim gamma(n,\lambda)$$
  $\Rightarrow X + Y \sim gamma(n+1,\lambda)$   
 $Y \sim exponential(\lambda)$ 

## 习题:

Let 
$$\alpha$$
 be an integer and suppose  $X$  has distribution Gamma ( $\alpha$ ,  $\beta$ ). Then  $P(X \leq x) = P(Y \gg \alpha)$  where  $Y \sim Poisson(\alpha\beta)$ 

Cauchy distribution: Cauchy (水) 人工反例分布, 下与泊松更为自然

$$f(x) = \frac{1}{\beta \pi} \cdot \frac{1}{1 + (x-\alpha)^2/\beta^2}$$

$$N(\mu, 6)$$

$$f(\alpha) = \frac{1}{\sqrt{2\pi} 6} e^{-\frac{(\chi+\mu)^2}{26^2}}$$

特征必数: øĶ

正於教:

$$P(x > a) = E(1_x > a) \le \overline{E}(\frac{x}{a}) = \frac{Ex}{a}$$
 $f(x) > b$ 

此級循本於約算訪用,加入 $f(x)$ 
 $\overline{E}(\frac{x}{a}) = \frac{Ex}{a}$ 

戊义:  $X \in \mathbb{R}^n$ ,  $\mathcal{P}_{x}(u) = E\left(e^{i\langle u, X \rangle}\right) \leftarrow E 即为积分$ 



#### \* 母函数:

$$(b_0,b_1,...,) \rightarrow \sum_{i=0}^{\infty} b_i t^i$$

### 箱排问题:

$$1 = \sum_{k} \frac{b_{n-k}}{k}$$
 (=>  $1 = \sum_{k} P \{ \sigma : | Fix \ \sigma \} = k \}$ 

$$\beta(t) = \frac{e^{-t}}{1-t} \qquad \lim_{n \to \infty} b_n = e^{-t} = 1 - 1 + \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} \dots = 0.5$$



# 扔下,校炸弹,格子不校炸到税车为0.37



### 布丰投针

期望线性性

#### \* X ~ Bernoulli(P):



Binomial (P, n),  $\gamma_{x}(u) = (pe^{iu} + 1-p)^{n}$ 



X ~ Poisson ()):

$$\gamma_{\kappa}(u) = e^{\lambda(e^{i\kappa_{-1}})} \qquad \frac{\lambda^{\kappa}}{\kappa!}e^{-\lambda}$$

$$X-uniform on (-a, a)$$

$$P_{X}(u) = \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} e^{iux} dx = e^{iua} - e^{iua}$$

$$= \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} e^{iux} dx = \frac{1}{2\alpha} e^{iua}$$

$$= \frac{1}{2\alpha} \int_{-\alpha}^{\alpha} e^{iux} dx = \frac{1}{2\alpha} e^{iua}$$

X ~ N(0,1): dK

$$P_{x}(u) := \int e^{iux} \frac{e^{-\frac{i}{2}}}{\sqrt{2\pi}} dx$$

$$= \int_{-\infty}^{\infty} \frac{\cos ux}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx + i \cdot \int_{-\infty}^{\infty} \frac{\sin ux}{\sqrt{2\pi}} \cdot e^{-\frac{x^{2}}{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos ux \, e^{-\frac{x^{2}}{2}} dx$$



$$\frac{\gamma_{n}}{\gamma_{n}} = -u \qquad \Rightarrow \ln \left| \gamma_{n}(u) \right| = -\frac{u^{*}}{2} + C$$

$$\gamma_{x}(0) = 1$$
 ,  $\gamma_{x}(u) = e^{-\frac{u^{3}}{3}}$ 

X ~ exponential (1):

$$P_{x}(u) = \frac{\lambda}{\lambda - iu}$$

→ double exponential - Laplace distribution ( = 0 , p = 1 )

$$f_{x}(x) = \frac{1}{2}e^{-|x|}$$
,  $p_{x}(u) = \frac{1}{1+u^{2}}$ 

Let  $X=(X_1,...,X_n)$  be an  $\mathbb{R}^n$ -valued  $Y_i$ . Then  $(X_j)_{j=1}^n$  are independent iff  $\mathbb{R}^n$   $\mathbb{R}^n$