Lecture 22: Datapath Control Signals

CMPS 221 – Computer Organization and Design

Last Time: Building a Datapath

Part 2:
Assembly Language (Chapter 2)

Instruction Set Architecture (ISA)

Microarchitecture

Logic Design

Part 3:

Processor Organization (Chapter 4) Memory Organization (Chapter 5)

Part 1:

Logic Design (Appendix B)
Computer Arithmetic (Chapter 3)

Introduction

- CPU performance factors
 - Instruction count
 - Determined by ISA and compiler
 - CPI and Cycle time
 - Determined by CPU hardware
- We will examine two MIPS implementations
 - A simplified version
 - A more realistic pipelined version
- Focus on a simple subset (shows most aspects)
 - Arithmetic/logical: add, sub, addi, slt
 - Memory reference: 1w, sw
 - Control transfer: beq, j

Building a Datapath

- A datapath is a set of elements that process data and addresses in the CPU
- Components of a MIPS datapath:
 - PC register, instruction memory (fetch instructions)
 - Register file (read/write registers)
 - ALUs:
 - Arithmetic/logic operations
 - Memory address for load/store
 - Branch target address
 - Data memory (load/store data)

Full Datapath

Today: Datapath Control Signals

Instruction Set Architecture (ISA)

Microarchitecture

Logic Design

Part 3:

Processor Organization (Chapter 4) Memory Organization (Chapter 5)

Part 1:

Logic Design (Appendix B)
Computer Arithmetic (Chapter 3)

Instruction Fetch

Source register numbers extracted from rs and rt bits

immediate field

Load Instructions

Load Instructions

Load Instructions

Store Instructions

Store Instructions

Branch Instructions

Branch Instructions

Branch Instructions

Instr[31-26]	RegDst	RegWrite	ALUSrc	ALUOp	MemRead	MemWrite	MemtoReg	Branch	Jump
R-type (000000)	1	1	0	funct (10)	0	0	0	0	0
addi (001000)	0	1	1	add (00)	0	0	0	0	0
lw (100011)	0	1	1	add (00)	1	0	1	0	0
sw (101011)	d	0	1	add (00)	0	1	d	0	0
beq (000100)	d	0	0	sub (01)	0	0	d	1	0
j (000010)	d	0	d	d	0	0	d	d	1

ALUOp	Instr[5-0]	ALU Control Line			
	add (100000)	add (0010)			
funct (10)	sub (100010)	sub (0110)			
	slt (101010)	slt (0111)			
add (00)	d	add (0010)			
sub (01)	d	sub (0110)			

Textbook Sections

- The content in these slides corresponds to:
 - Textbook:
 - Computer Organization and Design, 5th Edition by David Patterson and John Hennessy, Morgan Kaufmann, 2014.
 - Sections:
 - 4.4