ACH2002

Aula 4

Análise assintótica

Aula passada

- Problema, algoritmo e programa
- Prova de corretude de algoritmos iterativos:
 - Prova por indução de invariantes
- Análise de complexidade (ex: tempo)
 - Testes empíricos
- EACH

Análise numérica do insertion-sort

Prova por indução

Ex: prova por indução que

$$1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$$

Base: P \acute{e} verdadeira para n = 1:

$$1 = \frac{1(1+1)}{2}$$

 $=\frac{(n+1)(n+2)}{2}$

Hipótese: P é verdadeira para um dado n qualquer:
$$1+2+3+\cdots+n=\sum_{i=1}^n i=\frac{n(n+1)}{2}$$

Passo: Dado que P vale para n, P é verdadeira para n+1:

$$1 + 2 + 3 + \dots + n + n + 1 = \frac{n(n+1)}{2} + n + 1$$
$$= \frac{n^2 + n + 2n + 2}{2}$$
$$= \frac{n^2 + 3n + 2}{2}$$

Note que um loop é uma série...

Prova de corretude por indução

```
int Max (int v[], int n) {
   int j, x;
   x = v[0];
   for (j = 1; j < n; j++)
        /* x é um elemento máximo de v[0..j-1] */
        if (x < v[j]) x = v[j];
        return x;</pre>
```

Base: no início da primeira iteração (j = 1), x é o elemento máximo de v[0]

Hipótese: assuma que é verdadeiro para um j < n, que x é o elemento máximo de v[0..j-1]

x, o valor retornado, é o elemento máximo do vetor

Passo da indução: se x é o elemento máximo de v[0..j-1] no início da iteração para o valor j, então na próxima instrução (que é única no loop):

- se x < v[j], x será substituído por v[j], o que o torna o elemento máximo de v[0,j] no início da próxima iteração (valor j+1)
- se x >= v[j], x não mudará de valor, pois continua sendo o elemento máximo de v[0,j] no início da próxima iteração (valor j+1)

Aula passada

- Problema, algoritmo e programa
- Prova de corretude de algoritmos iterativos:
 - Prova por indução de invariantes
- Análise de complexidade (ex: tempo)
 - Testes empíricos
- EACH

Análise numérica do insertion-sort

Aula passada

- Problema, algoritmo e programa
- Prova de corretude de algoritmos iterativos:
 - Prova por indução de invariantes
- Análise de complexidade (ex: tempo)
 - Testes empíricos
- EACH
- Análise numérica do insertion-sort

Função de custo de um algoritmo

A[i+1] = chave

10 fim para

- engloba o custo de tempo de cada instrução e o número de vezes que cada instrução é executada
- Fxemplo: insertion-sort(A) (entrada: array A que tem tamanho n) custo vezes

```
1 para j = 2 até tamanho[A] faça
                                                    n
    chave = A[j] // "número a inserir"
                                                  n-1
3 // ordenando elementos à esquerda
                                                    n-1
                                                    n-1
   i = j - 1
                                             C_{4}
                                                                t<sub>i</sub> – número de vezes
    enquanto i > 0 e A[i] > chave faça
                                             C_5
                                                                que a linha é
      A[i+1] = A[i]
6
                                                                executada para um
      i = i - 1
                                                                dado i (depende do i)
     fim enquanto
```

n-1

Cg

EACH

7

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1)$$

$$custo vezes$$
 Melhor caso: vetor já ordenado (A[i]

j=2,3,...,nn-1chave = A[j] C_2 $T(n)=c_1n + c_2(n-1) + c_4(n-1) + c_5(n-1)$ 3 // ordenando elementos à esquerda n-1 $+ c_{o}(n-1) =$ i = j - 1n-1 C_{A}

1 para j = 2 até tamanho[A] faça

10 fim para

 $(C_1 + C_2 + C_4 + C_5 + C_8)n - (C_2 + C_4 + C_5 + C_8)$ $\sum_{j=2}^{n} t_{j}$ $\sum_{j=2}^{n} (t_{j} - 1)$ $\sum_{j=2}^{n} (t_{j} - 1)$ C^8 enquanto i > 0 e A[i] > chave faça Tempo de execução, neste caso,

n

 \leq chave na linha 5 \rightarrow t_i=1 para

A[i+1] = A[i]pode ser expresso como an + b para i = i -1constantes **a** e **b** que dependem dos fim enquanto custos de instrução c. > função n-1linear de *n* A[i+1] = chave

Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução

cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_i=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

de n

 $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = 0$ $\left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - (c_2 + c_4 + c_5 + c_8)$

Tempo de execução, neste caso, pode ser expresso como an2 + bn + c para constantes a, b e c que dependem dos custos de instrução c, -> função quadrática

Exercícios (Indução matemática)

- 1. Prove que $1^2 + 2^2 + 3^2 + ... + n^2 = (2n^3 + 3n^2 + n)/6$, $\forall n \ge 1$
- 2. Prove que $1 + 3 + 5 + ... + 2n 1 = n^2$, $\forall n \ge 1$
- 3. Prove que $1^3 + 2^3 + 3^3 + \dots + n^3 = (n^4 + 2n^3 + n^2)/4$, $\forall n \ge 1$
- 4. Prove que $1^3 + 3^3 + 5^3 + ... + (2n 1)^3 = 2n^4 n^2$, $\forall n \ge 1$

Prove que $1 + 2 + 2^2 + 2^3 + ... + 2^n = 2^{n+1} - 1$, $\forall n \ge 0$

Desculpem, os dois últimos ainda não estudamos...

Conseguiram fazer os demais?

- 6. Prove que $2^n \ge n^2$; $\forall n \ge 4$
 - Prove que $\frac{1}{1} \frac{1}{2} + \frac{1}{3} \dots + \frac{1}{2n-1} \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$
- 8. Prove que a soma dos cubos de três números naturais positivos sucessivos é divisível por 9.
- 9. Prove que todo número natural n > 1 pode ser escrito como o produto de primos (indução forte).
- 10. Prove que todo número natural positivo pode ser escrito como a soma de diferentes potências de 2 (indução forte).

Aula de hoje

- Análise assintótica (de complexidade)
- Análise formal (matemática) de algoritmos

Análise assintótica

• Primeiro: consciência que a complexidade (tempo, memória, etc) normalmente depende do tamanho da entrada

Figura 2.2: Gráfico ilustrando a hipótese de que o tempo de processamento

da busca sequencial segue a função linear t(x) = 0.997x.

 $t(x) = a.log_2(x) + b = 0,043.log_2(x) + 0,529$

Análise de algorimos

- Em geral:
 - tempo de execução de um algoritmo é fixo para uma determinada entrada
 - analisamos apenas o **pior caso** dos algoritmos:
 - é um limite superior sobre o tempo de execução de qualquer entrada;
 - pior caso ocorre com muita frequência para alguns algoritmos. Exemplo: registro inexistente em um banco de dados;
 - muitas vezes, o *caso médio* é quase tão ruim quanto o pior caso

- Nas análises anteriores, foram feitas algumas simplificações em relação às constantes, chegando à função linear e à função quadrática
- Taxa de crescimento ou ordem de crescimento:
 - considera apenas o termo inicial de uma fórmula (exemplo: an²), pois os termos de mais baixa ordem são relativamente insignificantes para grandes valores de *n*;
 - ignora o coeficiente constante do termo inicial (a) também por ser menos significativo para grandes entradas;
 - Portanto, dizemos que: a ordenação por inserção, por exemplo, tem um tempo de execução do pior caso igual a $\Theta(n^2)$ (*lê-se* "theta de n ao quadrado");
 - Em geral, consideramos um algoritmo mais eficiente que outro se o tempo de execução do seu pior caso apresenta uma ordem de crescimento mais baixa.

Complexidade? Assintótica?

Complexidade

(cs) sf (complexo+dade) Qualidade do que é complexo.

Complexo

(cs) adj (lat complexu) 1 Que abrange ou encerra muitos elementos ou partes. 2 Que pode ser considerado sob vários pontos de vista. 3 Complicado.

Complexidade? Assintótica?

Assintótico

adj (*assíntota+ico*²) *Geom* **1** Pertencente ou relativo à assíntota. **2** Qualificativo do espaço compreendido entre uma curva e a sua assíntota. **3** Diz-se da direção paralela de uma assíntota. *Var: assimptótico*.

Assíntota

sf (gr asýmptotos) Geom Linha reta que se aproxima indefinidamente de uma curva sem nunca poder tocála. Var: assímptota.

A função f(x)=1/x tem como assíntotas os eixos coordenados.

(Fonte: http://pt.wikipedia.org/wiki/Assímptota)

Crescimento Assintótico de Funções

- Escolha do algoritmo não é um problema crítico quando n é pequeno.
 - O problema é quando *n* cresce.
- Por isso, é usual analisar o comportamento das funções de custo quando *n* é bastante grande:
 - analisa-se o comportamento assintótico das funções de custo;
 - representa o limite do comportamento da função de custo quando n cresce.

Crescimento Assintótico de Funções

- Eficiência assintótica dos algoritmos:
 - estuda a maneira como o tempo de execução de um algoritmo aumenta com o tamanho da entrada no limite, à medida que o tamanho da entrada aumenta indefinidamente (sem limitação)
 - em geral, um algoritmo que é assintoticamente mais eficiente será a melhor escolha para toda as entradas, exceto as pequenas.

Crescimento Assintótico de Funções

 Vamos comparar funções assintoticamente, ou seja, para valores grandes, desprezando constantes multiplicativas e termos de menor ordem.

	n = 100	n = 1000	$n = 10^4$	$n = 10^6$	$n = 10^9$
log n	2	3	4	6	9
n	100	1000	10 ⁴	10 ⁶	10 ⁹
$n \log n$	200	3000	$4 \cdot 10^4$	$6 \cdot 10^{6}$	$9 \cdot 10^{9}$
n^2	10 ⁴	10 ⁶	10 ⁸	10 ¹²	10 ¹⁸
$100n^2 + 15n$	$1,0015 \cdot 10^6$	$1,00015 \cdot 10^8$	$pprox 10^{10}$	$pprox 10^{14}$	$\approx 10^{20}$
2 ⁿ	$\approx 1,26 \cdot 10^{30}$	$\approx 1,07 \cdot 10^{301}$?	?	?

Comportamento Assintótico

Supondo uma máquina que execute 1 milhão (10⁶)
 de operações por segundo

Função de custo	10	20	30	40	50	60
	0,00001s	0,00002s	0,00003s	0,00004s	0,00005s	0.000066
n	0,000018	0,000028	0,000038	0,000048	0,000058	0,00006s
n ²	0,0001s	0,0004s	0,0009s	0,0016s	0,0025s	0,0036s
n ³	0,001s	0,008s	0,027s	0,064s	0,125s	0,216s
n ⁵	0,1s	3,2s	24,3s	1,7min	5,2min	12,96min
2 ⁿ	0,001s	1,04s	17,9min	12,7dias	35,7 anos	366 séc.
3 ⁿ	0,059s	58min	6,5anos	3855séc.	10 ⁸ séc.	10 ¹³ séc.

Comportamento Assintótico - Resumindo...

- Se f(n) é a função de complexidade de um algoritmo A
 - O comportamento assintótico de f (n) representa o limite do comportamento do custo (complexidade) de A quando n cresce.
- A análise de um algoritmo (função de complexidade)
 - Geralmente considera apenas algumas operações elementares ou mesmo uma operação elementar (e.g., o número de comparações).
- A complexidade assintótica relata crescimento assintótico das operações elementares.

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Definição:
 - Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo: $g(n) = n e f(n) = n^2$
 - Alguém domina alguém?

odma

Definição:

■ Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas $c \in m$ tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo: $g(n) = n e f(n) = n^2$
- Alguém domina alguém?
 - $|n| \le |n^2|$ para todo n ∈ N
- Para $c = ? e m = ? \Rightarrow |g(n)| \le |f(n)|$
- Portanto, f (n) domina assintoticamente g(n).

empo o

Definição:

• Uma função g(n) domina assintoticamente outra função f(n) se existem duas constantes positivas c e m tais que, para $n \ge m$, tem-se $|f(n)| \le c \cdot |g(n)|$.

- Exemplo: $g(n) = n e f(n) = n^2$
- Alguém domina alguém? mostrar os primeiros valores (c=13 e m=5 também vale

Não necessariamente precisa para a prova)

- $|n| \le |n^2|$ para todo $n \in N$
- Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - 333

- $g(n) = n e f(n) = -n^2$
- Alguém domina alguém?
 - $|n| \le |-n^2|$ para todo n ∈ N.
 - Por ser módulo, o sinal não importa
 - Para c = 1 e $m = 0 \Rightarrow |g(n)| \le |f(n)|$.
- Portanto, f (n) domina assintoticamente g(n).

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - 333

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Vamos colocar em um gráfico
 - $|n^2| \le |(n+1)^2|$, para $n \ge 0$, c = 1

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Será somente isso?
 - Não há como f(n) dominar g(n)?
 - 333

- $g(n) = (n+1)^2 e f(n) = n^2$
- Alguém domina alguém?
 - Não há como f(n) dominar g(n)?

- Suponha que queremos $g(n) \le cf(n)$
- Então $|(n+1)^2| \le |cn^2|$
- Mas, para isso, basta que $|(n+1)^2| \le |(\sqrt{c} n)^2|$,
 - ou $|n+1| \le |\sqrt{c} \, n|$
- Se \sqrt{c} = 2, ou seja, c=4, isso é verdade

$$g(n) = (n+1)^2 e f(n) = n^2$$

Alguém domina alguém?

$$|(n+1)^2| \le |4n^2|$$
, para $n \ge 0$

f(n) domina g(n), para $n \ge 1$

Messe caso, dizemos que f(n) e g(n) dominam assintoticamente uma a outra.

Notação O

- Knuth(1971) * criou a notação O (lê-se "O grande") para expressar que g(n) domina assintoticamente f(n)
 - Escreve-se f(n) = O(g(n)) e lê-se: "f(n) é da ordem no máximo g(n)".
- Para que serve isto para o Bacharel em Sistemas de Informação?

^{*}Knuth, D.E. (1971) "Mathematical Analysis of Algorithms". *Proceedings IFIP Congress 71, vol. 1, North Holland, Amsterdam, Holanda, 135-143.*

Notação O

- Para que serve isto para o Bacharel em Sistemas de Informação?
 - Muitas vezes calcular a função de complexidade exata f(n) de um algoritmo é complicado.
 - É mais fácil determinar que f(n) é O(g(n)), isto é, que assintoticamente f(n) cresce no máximo como g(n).

Notação O

- Definição: Conjunto de funções dominadas por g(n)
 - $O(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais}$ que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0 \}$ funções assintoticamente não negativas
- Informalmente, dizemos que, se f(n) ∈ O(g(n)), então f(n) cresce no máximo tão rapidamente quanto

g(n).

cg é um limite superior de f

Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
 ?

???

Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2) \quad ? \quad \left| \frac{3}{2}n^2 - 2n \right| \le |c n^2|$$

鎮???

p Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2) \quad ? \quad \frac{3}{2}n^2 - 2n \le |c n^2|$$

Fazendo c = 3/2, teremos
$$\left| \frac{3}{2} n^2 - 2n \right| \le \left| \frac{3}{2} n^2 \right|$$
, para n \ge

Definição:

 $O(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0$ tais que $0 \le f(n) \le cg(n)$, para todo $n \ge n_0$

$$\frac{3}{2}n^2 - 2n \in O(n^2)$$
?
$$\frac{3}{2}n^2 - 2n \leq |c|^2 |c|^2$$
 Qualquer $n_0 >= 0$ vale

Fazendo $c = 3/2$, teremos $\left|\frac{3}{2}n^2 - 2n\right| \leq \left|\frac{3}{2}n^2\right|$, para $n \geq 2$

 Outras constantes podem existir, mas o que importa é que existe alguma escolha para as constantes

Usamos a notação O para dar um limite superior sobre uma função, dentro de um fator constante.

- Com a notação *O* podemos descrever frequentemente o tempo de execução de um algoritmo apenas inspecionando a estrutura global do algoritmo.
- **Exemplo**: estrutura de laço duplamente aninhado no algoritmo *insertion-sort* (visto anteriormente) produz um limite superior $O(n^2)$ no pior caso:
 - custo de **uma iteração** do laço interno é limitado superiormente por *O*(1) (constante)
 - índices i e j são no máximo n
 - laço interno é executado no máximo uma vez para cada um dos n² pares de valores correspondentes a *i* e *j*

- 1 para j = 2 até tamanho[A] faça
- $2 \quad \text{chave} = A[j]$
- 3 // ordenando elementos à esquerda
- $4 \quad i = j 1$
- 5 enquanto i > 0 e A[i] > chave faça
- A[i+1] = A[i]
 - $7 \qquad \qquad i = i 1$
 - 8 fim enquanto
 - 9 A[i+1] = chave
 - 10 fim para

```
f(n) = O(f(n))

c \times f(n) = O(f(n)), c \text{ \'e uma constante}

O(f(n)) + O(f(n)) = O(f(n))

O(O(f(n))) = O(f(n))

O(f(n)) + O(g(n)) = O(max(f(n), g(n)))

O(f(n))O(g(n)) = O(f(n)g(n)))

f(n)O(g(n)) = O(f(n)g(n)))
```


$$f(n) = O(f(n))$$

$$c \times f(n) = O(f(n)), c \text{ \'e uma constante}$$

$$O(f(n)) + O(f(n)) = O(f(n))$$

$$O(O(f(n))) = O(f(n))$$

$$O(f(n)) + O(g(n)) = O(max(f(n), g(n)))$$

$$O(f(n))O(g(n)) = O(f(n)g(n))$$

$$f(n)O(g(n)) = O(f(n)g(n))$$

Particularmente útil para analisar algoritmos (sequências de trechos de código)

- A regra $O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$ pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - 333

- A regra O(f(n)) + O(g(n)) = O(max(f(n),g(n))) pode ser usada para calcular o tempo de execução de uma sequência de trechos de um programa
 - Suponha 3 trechos: O(n), $O(n^2)$ e O(nlogn)
 - Qual o tempo de execução do algoritmo como um todo?
 - Lembre-se que o tempo de execução é a soma dos tempos de cada trecho

Ex: InsertionSort é O de quanto?

- Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução
- T(n)= c_1 n + c_2 (n-1) + c_4 (n-1) + $c_5 \sum_{j=2}^{n} t_j$ + $c_6 \sum_{j=2}^{n} (t_j 1)$ + $c_7 \sum_{j=2}^{n} (t_j 1)$ + c_8 (n-1)
- Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_i=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Ex: InsertionSort é O(n2)

- Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução
- $T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{i=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$
- Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com/cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Ex: InsertionSort é O(n²)

- Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução
- $T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{i=2}^n (t_j-1)+c_7\sum_{i=2}^n (t_j-1)+c_8(n-1)$
- Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com/cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Também é $O(n^k)$ para k > 2...

Definição:

Notação Ω

- $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que}$ • $0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$ • funções assintoticamente não negativas
- Informalmente, dizemos que, se $f(n) \in \Omega(g(n))$, então f(n) cresce no mínimo tão lentamente quanto g(n).
 - Note que se f(n) ∈ O(g(n))
 define um limite superior
 para f(n), Ω(g(n)) define
 um limite inferior

Definição:

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \text{ tais que } 0 \le cg(n) \le f(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2)$$
 ?

夢???

Definição:

```
\Omega(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0
tais que 0 \le cg(n) \le f(n), para todo n \ge n_0}
\frac{3}{2}n^2 - 2n \in \Omega(n^2)?
      Fazendo c = ? teremos \begin{vmatrix} c n^2 \\ - \end{vmatrix} \le \begin{vmatrix} 3 \\ 2 \end{vmatrix} n^2 - 2n , para n \ge ? 0 \le cg(n) \le f(n)
```

Definição:

```
\Omega(g(n)) = \{f(n): existem constantes positivas <math>c \in n_0
tais que 0 \le cg(n) \le f(n), para todo n \ge n_0}
\frac{3}{2}n^2 - 2n \in \Omega(n^2)?
       Fazendo c = ? teremos \begin{vmatrix} c n^2 \\ -1 \end{vmatrix} \le \begin{vmatrix} 3 \\ 2 \end{vmatrix} n^2 - 2n , para n \ge ? 0 \le cg(n) \le f(n) \left(\frac{3}{2} - c\right) n^2 - 2n >= 0
```

Definição:

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \}$ tais que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0 \}$ $\frac{3}{2}n^2 - 2n \in \Omega(n_1^2)$?

Fazendo c = 1/2, teremos
$$\left| \frac{1}{2} n^2 \right| \le \left| \frac{3}{2} n^2 - 2n \right|$$
, para n \ge ?

$$0 \le cg(n) \le f(n) \left(\frac{3}{2} - c \right) n^2 - 2n >= 0$$

Definição:

 $\Omega(g(n)) = \{f(n): \text{ existem constantes positivas } c \in n_0 \}$ tais que $0 \le cg(n) \le f(n)$, para todo $n \ge n_0 \}$ $\frac{3}{2}n^2 - 2n \in \Omega(n_*^2) ?$

Fazendo c = 1/2, teremos
$$\left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right|$$
, para n ≥ 2
 $0 \le cg(n) \le f(n) \left(\frac{3}{2} - c\right)n^2 - 2n >= 0$

Ex: Qualquer algoritmo de ordenação é $\Omega(n)$. Por quê?

Ex: Qualquer algoritmo de ordenação é Ω (n). Porque no mínimo tem que conferir cada posição do array...

Mas é sempre interessante dar uma avaliação mais precisa

Ex: InsertionSort é Ω de quanto?

- Tempo de execução do algoritmo = soma dos tempos de execução para cada instrução
- $T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$
- Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com/cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

Ex: InsertionSort é Ω (n²)

Tempo de execução do algoritmo = soma dos tempos de execução para (por conta do pior caso) cada instrução

cada instrução

$$T(n)=c_1 n + c_2(n-1) + c_4(n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j-1) + c_7 \sum_{j=2}^{n} (t_j-1) + c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

- Definição:
 - $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais }$ $que \ 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- Informalmente, dizemos que, se $f(n) \in \Theta(g(n))$, então f(n) cresce tão rapidamente quanto g(n).

Definição:

 $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \in n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) ?$$

第 ???

Definição:

- $\Theta(g(n)) = \{f(n): \text{ existem constantes positivas } c_1, c_2 \text{ e } n_0 \text{ tais que } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \text{ para todo } n \ge n_0 \}$
- $\frac{3}{2}n^2 2n \in \Theta(n^2)$?
 - Fazendo $c_1 = 1/2$ e $c_2 = 3/2$ teremos $\left| \frac{1}{2} n^2 \right| \le \left| \frac{3}{2} n^2 2n \right| \le \left| \frac{3}{2} n^2 \right|$

para n ≥ 2

Mas, já vimos que:

$$\frac{3}{2}n^2 - 2n \in O(n^2) \to \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

$$\frac{3}{2}n^2 - 2n \in \Omega(n^2) \longrightarrow \left|\frac{1}{2}n^2\right| \le \left|\frac{3}{2}n^2 - 2n\right| \qquad \text{e ...}$$

$$\frac{3}{2}n^2 - 2n \in \Theta(n^2) \longrightarrow \left| \frac{1}{2}n^2 \right| \le \left| \frac{3}{2}n^2 - 2n \right| \le \left| \frac{3}{2}n^2 \right|$$

Será coincidência?

Notação Θ

Mas, já vimos que:

$$\frac{3}{2}n^{2} - 2n \in O(n^{2}) \to \left| \frac{3}{2}n^{2} - 2n \right| \le \left| \frac{3}{2}n^{2} \right|$$

$$\frac{3}{2}n^{2} - 2n \in \Omega(n^{2}) \to \left| \frac{1}{2}n^{2} \right| \le \left| \frac{3}{2}n^{2} - 2n \right|$$

$$\frac{3}{2}n^{2} - 2n \in \Theta(n^{2}) \to \left| \frac{1}{2}n^{2} \right| \le \left| \frac{3}{2}n^{2} - 2n \right| \le \left| \frac{3}{2}n^{2} \right|$$

$$\frac{3}{2}n^{2} - 2n \in \Theta(n^{2}) \to \left| \frac{1}{2}n^{2} \right| \le \left| \frac{3}{2}n^{2} - 2n \right| \le \left| \frac{3}{2}n^{2} \right|$$

- Será coincidência?
 - # Não!

 - $Se f(n) \in O(g(n)) e f(n) \in \Omega(g(n)), então f(n) \in \Theta(g(n))$

Então InsertionSort é Θ (n²)

Tempo de execução do algoritmo = soma dos tempos de execução para (por conta do pior caso) cada instrução

cada instrução

$$T(n)=c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{j=2}^n t_j+c_6\sum_{j=2}^n (t_j-1)+c_7\sum_{j=2}^n (t_j-1)+c_8(n-1)$$

Pior caso: vetor em ordem inversa (deve comparar cada elemento A[j] com cada elemento do subarranjo ordenado A[j... j-1] → t_j=j para j=2,3,...,n)

$$\sum_{j=2}^{n} (j) = \frac{n(n-1)}{2} - 1 \qquad \sum_{j=2}^{n} (j-1) = \frac{n(n-1)}{2}$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \frac{n(n-1)}{2} - 1 + c_6 \frac{n(n-1)}{2} + c_7 \frac{n(n-1)}{2} + c_8 (n-1) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n - (c_2 + c_4 + c_5 + c_8)$$

$$f_1(n) = 2^{\pi}$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f ₂		Θ						
f ₃			Θ					
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

$$f_1(n) = 2^{\pi}$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ					
f ₄ f ₅				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f ₂ f ₃		Θ						
f ₃			Θ					
f_4				Θ				
f ₄ f ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f ₄				Θ				
f ₄					Θ			
f ₆						Θ		
f ₆							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f_4				Θ				
f ₄ f ₅					Θ			
f ₆						Θ		
f ₆							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Existem c1, c2 e n0 constantes positivas tal que

$$0 \le c_1 2^{\pi} \le 2^{\pi} \le c_2 2^{\pi}$$
 para $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

	f_1	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
<i>f</i> ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ					
f ₄				Θ				
f ₄					Θ			
f ₆						Θ		
f ₆							Θ	
f ₈								Θ

Prove que $2^{\pi} = \Theta(2^{\pi})$

Existem c1, c2 e n0 constantes positivas tal que

$$0 \le c_1 2^{\pi} \le 2^{\pi} \le c_2 2^{\pi}$$
 para $n \ge n_0$

Ex:
$$c_1 = c_2 = n_0 = 1$$

$$c_1 = 0.5$$
, $c_2 = 2$, $n_0 = 0.1$ (não podem ser 0...)

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				?	
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0	
f_4				Φ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $n \log n = n$ n logn = ? (n²) – Prove

n logn = $O(n^2)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le n \log n \le cn^2$, para todo $n \ge n_0$

Isso vale para c = ?, $n_0 = ?$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₂ f ₃			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f_6						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $n \log n = n$ n $\log n = 2 (n^2) - \text{Prove}$

n logn = $O(n^2)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le n \log n \le cn^2$, para todo $n \ge n_0$

Isso vale para c = 1, $n_0 = 2$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃ f ₄ f ₅			Θ				0	
f_4				Θ				
					Θ			
f ₆						Θ		
<i>f</i> ₇			?				Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante!!!}$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$
 $n^2 = ? (n \log n) - \text{Prove}$
 $n^2 = \Omega(n \log n), \text{ pois}$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f_1	Θ							
f ₂		Θ						
f ₃			Θ				0	
f_4				Φ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			?				Θ	
f ₈								Θ

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f_2		Θ						
f ₃			Θ				0	
f_4				Θ				
<i>f</i> ₅					Θ			
f ₆						Θ		
<i>f</i> ₇							Θ	
f ₈								Θ

 $I_7(II) = II^-$

 $n^2 = ? (n logn) - Prove$

 $n^2 = \Omega(n \log n)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le c \cdot n \cdot \log n \le n^2$, para todo $n \ge n_0$

Isso vale para c = ?, $n_0 = ?$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$
 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₃			Θ				O	
f_4				Θ				
<i>f</i> ₅					Θ			
<i>f</i> ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_{2}(n) = n$ $n^{2} = 2 (n)$

 $n^2 = ? (n logn) - Prove$

 $n^2 = \Omega(n \log n)$, pois existem constantes positivas c e n_0 tais que:

 $0 \le c \cdot n \cdot \log n \le n^2$, para todo $n \ge n_0$

Isso vale para c = 1, $n_0 = 2$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃			Θ				O	
f_4				Θ				
f ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

Obs: Prove que n logn NÃO é $\Omega(n^2)$

 $f_8(n) = n$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	f ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₂ f ₃ f ₄ f ₅			Θ				O	
f_4				Θ				
					Θ			
f_6						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

 $f_8(n) = n$ Obs: Prove que n logn NÃO é $\Omega(n^2)$

Se fosse, então existiriam constantes positivas c e n₀ tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	f ₁	f_2	f ₃	f_4	f ₅	f ₆	f ₇	f ₈
f ₁	Θ							
f ₂		Θ						
f ₃			Θ				0	
f ₄				Θ				
f ₅					Θ			
f ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

Obs: Prove que n logn NÃO é $\Omega(n^2)$

Se fosse, então existiriam constantes positivas c e n₀ tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, quem poderia ser esse c e n₀?

 $f_8(n) = n$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$

	<i>f</i> ₁	f ₂	f ₃	f_4	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f ₁	Θ			_				
<i>f</i> ₂		Θ						
f ₂ f ₃ f ₄			Θ				0	
f_4				Φ				
f ₅					Θ			
f ₅ f ₆ f ₇						Θ		
f ₇			Ω				Θ	
f ₈								Θ

 $f_{\rm B}(n) = n$

Obs: Prove que n logn NÃO é $\Omega(n^2)$

Se fosse, então existiriam constantes positivas c e no tais que:

 $0 \le cn^2 \le n \log n$, para todo $n \ge n_0$

Se fosse verdade, $0 \le cn \le \log n = c \le \log n / n$ para todo $n \ge n_0$

Quais as relações de comparação assintótica (O, Ω , Θ) das funções:

$$f_1(n) = 2^{\pi} = \Theta(1) \rightarrow \text{constante}!!!$$

 $f_2(n) = 2^n$
 $f_3(n) = n \log n$
 $f_4(n) = \log n$
 $f_5(n) = 100n^2 + 150000n$
 $f_6(n) = n + \log n$
 $f_7(n) = n^2$
 $f_8(n) = n$

	<i>f</i> ₁	f ₂	f ₃	f ₄	<i>f</i> ₅	<i>f</i> ₆	<i>f</i> ₇	f ₈
f_1	Θ							
f_2		Θ						
f ₂ f ₃			Θ				0	
f_4				Θ				
f ₄ f ₅					Θ			
<i>f</i> ₆						Θ		
<i>f</i> ₇			Ω				Θ	
f ₈								Θ

FAÇAM AS PROVAS FORMAIS PARA OS DEMAIS!!!!

(Inclusive para o que NÃO É)

Material extra sobre O, Ω , Θ

https://www.ime.usp.br/~pf/analise_de_algoritmos/aulas/Oh.html

Além de explicações, há 3 listas de exercícios. FAÇAM! (Cai na prova...)

Referências

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest & Clifford Stein. Algoritmos - Tradução da 2a. Edição Americana. Editora Campus, 2002 (Capítulo 3).
- Michael T. Goodrich & Roberto Tamassia. Estruturas de Dados e Algoritmos em Java. Editora Bookman, 4a. Ed. 2007 (Capítulo 4).
- Nívio Ziviani. Projeto de Algoritmos com implementações em C e Pascal. Editora Thomson, 2a. Edição, 2004 (Seção 1.3).
- Notas de aula dos professores Marcos Chaim, Cid de Souza, Cândida da Silva e Delano M. Beder.
- Notas de aula dos professores Fátima L. S. Nunes e Norton T. Roman

