

Machine Learning

SUPERVISED LEARNING IN DATA ANALYSIS

Robotic Lab
Hochschule Rehin-Waal issued 11/11/19

Fields

Computer Vision

- How can computers understand digital images and video?
- Example: Facial recognition, object detection, object recognition, image generating, etc.

Natural Language Processing

- How can computer understand natural language data?
- Example: Virtual assistant, speed recognition, speedto-text, etc.

Data Analysis

- How can computer understand and deliver prediction from raw data?
- Example: House price prediction,

Manufacturing / Medical / Logistic / Robotics, etc

Al in Robotic Lab

- Object detection and recognition
- Self-driving rover.
- Traffic-sign recognition.

Supervised learning algorithms

- Linear Regression
- Logistic Regression
- Support Vector Machines (SVMs)
- Decision Trees and Random Forrest
- Neural Networks

Approach to ML problem

- 1. Visualize and pre-process your dataset.
- 2. Select machine learning algorithm.
- 3. Create a model and train it.
- 4. Fine-tune your model.
- 5. Evaluate and test your model.

Logistic Regression

Support Vector Machines (SVMs)

Random Forest Simplified

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

