ASSIGNMENT

COURSE	Networking Fundamental	ASSIGNMENT NO	2
MODULE	1	ASSIGNMENT DATE	20/08/2024
STUDENT	Konganti Chaithanya	SUBMISSION DATE	20/08/2024
NAME	Kumar		

Q1. Write the important functions of all 7 layers of OSI Layers.

Ans:

OSI Model is a structure to define the system of networking. It allows the transfer of data from one device to another over a network

1.Physical Layer:

This layer is responsible for the physical connection between devices. It transmits raw bits (0s and 1s) over a communication channel. It deals with the physical aspects of network communication, such as cables, switches, and electrical signals.

Protocols:

Not applicable in the traditional sense, but standards like Ethernet , DSL, and various types of cables fall under this layer.

Devices:

Network Interface Cards (NICs)

Hubs

Cabling and Connectors

2. Data Link Layer

Function:

Frame Transmission and Error Detection: This layer is responsible for node-to-node data transfer and handles error detection and correction that occurs at the frame level. It frames data packets, handles MAC addressing, and controls access to the physical medium.

Protocols:

- -Ethernet (IEEE 802.3)
- -PPP (Point-to-Point Protocol
- -HDLC (High-Level Data Link Control

Devices:

- -Switches
- -Bridges

3. Network Layer

Function:

Routing and Logical Addressing: This layer is responsible for routing packets across networks and managing logical addressing. It determines the best path for data to travel from the source to the destination.

Protocols:

-IP (Internet Protocol): Provides logical addressing and routing of packets.

-ICMP (Internet Control Message Protocol): Used for error messages and operational information (e.g., ping).

-IGMP (Internet Group Management Protocol): Manages multicast group memberships.

Devices:

Routers: Forward packets based on IP addresses and route them between different networks.

Layer 3 Switches: Perform routing functions in addition to switching.

4. Transport Layer

Function:

End-to-End Communication and Error Recovery: This layer ensures reliable data transfer between end systems. It provides end-to-end communication services for applications, manages data flow, and ensures error recovery and retransmission.

Protocols:

TCP (Transmission Control Protocol): Provides reliable, connection-oriented communication with error checking and recovery.

UDP (User Datagram Protocol): Provides connectionless communication with minimal error recovery.

Devices:

No specific devices at this layer; it's primarily concerned with software functions.

5. Session Layer

Function:

Session Management: This layer manages and controls the sessions between applications. It establishes, maintains, and terminates sessions between applications on different devices.

Protocols:

NetBIOS (Network Basic Input/Output System): Allows applications to communicate over a network.

RPC (Remote Procedure Call): Allows programs to execute procedures on remote systems.

Devices:

No specific devices; this layer operates at the software level within applications.

6. Presentation Layer (Layer 6)

Function:

Data Translation and Encryption: This layer translates, encrypts, and compresses data. It ensures that data is in a format that the application layer can understand. It also handles data encryption and decryption.

Protocols:

SSL/TLS (Secure Sockets Layer/Transport Layer Security): Provides encryption for secure communication.

JPEG, GIF, MPEG: Data formats for images and multimedia.

Devices:

No specific devices; it deals with data formatting and encryption within software.

7. Application Layer

Function:

End-User Services and Application Interfaces: This layer provides network services directly to end-user applications. It supports application services and ensures that data is usable by applications.

Protocols:

-HTTP/HTTPS: Used for web communication.

-FTP : For transferring files.

-SMTP: For email transmission.

-DNS: Translates domain names to IP addresses.

Devices:

No specific devices

Q2. Connect two PC to a server using a switch. Assign IP address to each and show the connection between all three.

Ans

- Select the PC's and server in Packet tracer
- Using switch and connect all three end devices with cable

Topology Diagram

Select the PC: choose two PCs (PC0 and PC1).

Insert a Switch: From the "Switches" section, select

Connect the Devices:Use copper straight-through cables to connect:

- PC1 to Switch (FastEthernet0/1)
- PC2 to Switch (FastEthernet0/2)
- Server to Switch (FastEthernet0/3)

• Assign IP's to all End devices

_PC0:

Click on PC1 \rightarrow Desktop \rightarrow IP Configuration.

Assign IP Address: 192.168.1.2

Subnet Mask: 255.255.255.0

- PC2:

Click on PC2 \rightarrow Desktop \rightarrow IP Configuration.

Assign IP Address: 192.168.1.3

Subnet Mask: 255.255.255.0

- Server:

Click on the Server \rightarrow Desktop \rightarrow IP Configuration.

Assign IP Address: 192.168.1.4

Subnet Mask: 255.255.255.0

• Ping PC1 to PC2

• Ping PC1 to Server & PC2 to Server

• Access the server using port 80 and 443 respectively and pen down your observations

• Port 80

<u>Observations:</u> The webpage loads over HTTP, which is an unsecured protocol. Information sent over the connection is not encrypted.

• Port 443

Observations: The webpage loads over HTTPS, ensuring the communication is encrypted and secure.

• Switch OFF port 80 and access the server and vice-versa, write your observations

• Port 80 OFF

<u>Observations:</u> The server is no longer accessible using HTTP when Port 80 is off.

• <u>Port 443 OFF</u>

Observations: The server is no longer accessible using HTTPS when Port 443 is off.