## SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

## Final Answers

Answer1 (25 points)

(a) (6 pts) X is given below.

 $initial\ state = final\ state = A$ 



**(b)**(6 pts)

NFA Y has the table below

*Note the new initial state(s)* =  $\varepsilon$ -closure(A) = ABC

| state | input | next state |
|-------|-------|------------|
| >A*   | 0     | D          |
|       | 1     | ABC        |
| >B    | 0     | D          |
|       | 1     | ABC        |
| >C    | 0     | D          |
|       | 1     | ABC        |
| D     | 0     | null       |
|       | 1     | ABCE       |
| E     | 0     | D          |
|       | 1     | ABC        |

(c) (7 pts) DFA **Z** equivalent to **Y** is given below.

| state   | input | next    |
|---------|-------|---------|
| >ABC=1* | 0     | D=2     |
|         | 1     | ABC=1   |
| D=2     | 0     | Null =3 |
|         | 1     | ABCE=4  |
| ABCE=4* | 0     | D=2     |
|         | 1     | 1       |
| Null=3  | 0     | Null=3  |
|         | 1     | Null=3  |



(d) (6 pts) Minimal state DFA W that is equivalent to Z is computed using table filling algorithm.

1 2 3 4

| 1 | 1 | eq | 1 |
|---|---|----|---|
|   | 2 | 1  | 2 |
|   |   | 1  | 3 |
|   |   |    | 4 |

The above filled table shows that state I is equivalent to state I. Hence minimal state I is given below.



The language symbolized by E (and accepted by W) is: set of all strings in which a 0 is always immediately followed by a 1.

## Answer 2 (25 points)

(a) (13 Xpts) Consider the CFG, G = (V, T, R, S) where

 $V = \{Zero, One, S\}, T = \{0,1\}$  and R is given by the following productions:

 $S \rightarrow 0$  Zero  $S \mid 1$  One  $S \mid e$ ; Zero  $\rightarrow 0$  Zero Zero  $\mid 1$ ; One  $\rightarrow 1$  One One  $\mid 0$ 

Leftmost derivation of *011010* is given below.

The language  $L_G = (\omega \in \{0,1\}^* \mid \#0$ 's = #1's in  $\omega$ )

(b)(12 pts) Construct a PDA  $P = (Q, \Sigma, \Gamma, \delta, q_{\theta}, Z_{\theta}, F)$  that accepts the language :

 $L = (\omega \in \{0,1\}^* \mid \omega = 0^n 1^{n+1}, n \ge 0)$ , by final state.

 $P = (\{q_{\theta}, f\}, \{0,1\}, \{Z_{\theta}, 0,1\}, \delta, q_{\theta}, Z_{\theta}, \{f\})$  where the transitions of  $\delta$  are given below:

$$(q_{\theta}, \theta, X) \rightarrow (q_{\theta}, \theta X); X=\theta, Z_{\theta}$$

$$(q_{\theta}, 1, \theta) \rightarrow (q_{\theta}, e)$$

$$(q_0, 1, Z_0) \rightarrow (f, Z_0)$$

P is definitely a DPDA

Answer 3 (25 points)

- (a) (7 pts) See the slides.
- (b) (8pts) Consider the CFG,  $G=(\{X,S\}, \{a,b,c\}, R, S)$  where R is composed of the following productions:

$$S \rightarrow aSc \mid X \mid e ; X \rightarrow aXb \mid e$$

Leftmost derivation of  $a^3bc^2$ 

$$S \Rightarrow aSc \Rightarrow aaScc \Rightarrow aaXcc \Rightarrow aaaXbcc \Rightarrow aaaebcc = a^3bc^2$$

$$L_G = \{ a^r b^n c^m ; r = n+m, n,m \geq 0 \text{ integers } \}$$

(c) (10 pts) Compute the Chomsky Normal Form for G.

Get rid of null productions

$$S \rightarrow aSc \mid X \mid ac ; X \rightarrow aXb \mid ab$$

Get rid of unit production

$$S \rightarrow aSc \mid aXb \mid ab \mid ac ; X \rightarrow aXb \mid ab$$

And more:

$$S \rightarrow ASC \mid AXB \mid AB \mid AC; X \rightarrow AXB \mid AB; A \rightarrow a; B \rightarrow b; C \rightarrow c$$
  
 $S \rightarrow AD \mid AE \mid AB \mid AC; D \rightarrow SC; E \rightarrow XB; X \rightarrow AE \mid AB; A \rightarrow a; B \rightarrow b; C \rightarrow c$   
Done.

## **Question 4** (25 points)

(a) (15 pts) For input w = ab the step-by-step computation is given below:

$$\underline{\#} ab \mid --\# \underline{a} b \mid --\# \underline{\$} b \mid --\# \underline{\$} b \# \mid --\# \underline{\$} b \# \underline{a} \mid --\# \underline{\$} b \# \underline{a} \mid --\# \underline{a} b \# \underline{a} \mid --\# \underline{a} b \# \underline{a} \mid --\# \underline{a} \underline{b} \# \underline{a} \mid --\# \underline{a} \underline{\$} \# \underline{a} \mid --\# \underline{a} \underline{\$} \# \underline{a} \vdash --\# \underline{a} \underline{\$} \# \underline{a} \underline{b} \mid --\# \underline{a} \underline{\$} \# \underline{a} \underline{b} \mid --\# \underline{a} \underline{\$} \# \underline{a} \underline{b} \mid --\# \underline{a} \underline{b} \# \underline{a} \underline{b} | --\# \underline{a} \underline{b} \underline{b} | --\# \underline{a} \underline{b} \underline{b} \underline{b} | --\#$$

$$(s, \# w) \mid -- _{M} * (h, \# w w)$$