Q1.找一台电脑,打开机箱,说明每条连线都是什么总线按照总线在计算机系统中的物理位置,可以分为片上总线,内存总线,系统总线和设备总线。其中片上总线是外部不可见的。

下图为一块主板上的总线示意图:

IO 总线: 图中的 PCI 插槽和 PCIE 插槽分别是 PCI 总线和 PCIE 总线的接口

系统总线: 图中南桥芯片和北桥芯片之间的连接线路, 通常直接在线路板上蚀刻完成

图片顶部一排金属立方体:分别为 PS2,VGA/DVI 和 USB。另外, 主板还有额外的 USB 扩展

插槽

内存总线:图中的内存插槽(DDR3)

图中的磁盘接口, IDE 和 SATA 都是设备总线

另一块主板的示意图

机箱外部接口为设备总线。下述几种常见的接口:

PS/2 接口(蓝绿色): PS/2 接口有二组, 分别为下方(靠主板 PCB 方向)紫色的键盘接口和上方绿色的鼠标接口

USB 接口 (黑色): 接口外形呈扁平状, 是家用电脑外部接口中唯一支持热拔插的接口, 可连接所有采用 USB 接口的外设

LPT 接口(朱红色): 该接口为针角最多的接口, 共 25 针。可用来连接打印机

COM 接口 (深蓝色): 平均分布于并行接口下方, 该接口有 9 个针脚, 也称之为串口 1 和串口 2。可连接游戏手柄或手写板等配件。

Line Out 接口(淡绿色): 靠近 COM 接口, 通过音频线用来连接音箱的 Line 接口

Line in 接口 (淡蓝色): 位于 Line Out 和 Mic 中间的那个接口,意为音频输入接口,需和其他音频专业设备相连

Mic 接口(粉红色): MIC 接口与麦克风连接,用于聊天或者录音

显卡接口(蓝色): 蓝色的 15 针 D-Sub 接口是一种模拟信号输出接口, 用来双向传输视频信号到显示器

MIDI/游戏接口(黄色): 该接口和显卡接口一样有 15 个针脚, 可连接游戏摇杆

O2.说明总线包含哪些层次

- 1) 机械层。接口的外形、尺寸、信号排列、连接线的长度范围等
- 2) 电器层。信号描述、电源电压、电平标准、信号质量等
- 3) 协议层。信号时序、握手规范、命令格式、出错处理等
- 4) 架构层。硬件模型、软件架构等

O3.计算一组 AXI 总线需要的信号线条数

```
//axi
//ar
output reg [ 3:0] arid ,
output reg [31:0] araddr ,
output [ 7:0] arlen , //0
output reg [ 2:0] arsize ,
output [ 1:0] arburst , //2'b01
output [ 1:0] arlock , //0
```

```
[ 3:0] arcache, //0
    output
               [ 2:0] arprot , //0
   output
                     arvalid,
    output reg
    input
                     arready,
    //r
    input
               [ 3:0] rid
               [31:0] rdata
    input
               [ 1:0] rresp
                              , //ignore
    input
                     rlast
                              , //ignore
    input
                     rvalid
    input
    output reg
                     rready
   //aw
   output
               [ 3:0] awid
                              , //1
    output reg [31:0] awaddr
               [ 7:0] awlen
    output
                              , //0
    output reg [ 2:0] awsize
    output
               [ 1:0] awburst , //2'b01
    output
               [ 1:0] awlock , //0
               [ 3:0] awcache, //0
    output
    output
               [ 2:0] awprot , //0
                      awvalid,
    output reg
    input
                     awready,
    //w
    output
               [ 3:0] wid
                              , //1
   output reg [31:0] wdata
    output reg [ 3:0] wstrb
                              , //1
    output
                     wlast
                     wvalid
    output reg
    input
                     wready
    //b
               [ 3:0] bid
                              , //ignore
    input
               [ 1:0] bresp
                              , //ignore
    input
    input
                     bvalid,
    output reg
                     bready
总计 212 条线
如果加上时钟线和复位线,则为214条。
```

Q4.APB 接口的 GPIO 模块:

APB 协议:

信号 PCLK	来源 时钟源	描述 时钟
PADDR	APB bridge	地址总线。最大可达32位,由外围总线桥单元驱动
PSELx	APB bridge	选择信号
PENABLE	APB bridge	使能信号
PWRITE	APB bridge	方向,高时为写,低时为读
PWDATA	APB bridge	写入的数据,最高32位
PREADY	Slave interface	准备好,从器件利用该信号来扩展APB传输
PRDATA	Slave interface	读取的数据。最高可达32位
PSLVERR	Slave interface	传输失败

GPIO 接口:

一个 GPIO 端口至少需要两个寄存器,一个做控制用的"通用 IO 端口控制寄存器",还有一个是存放数据的"通用 I/O 端口数据寄存器"。数据寄存器的每一位是和 GPIO 的硬件引脚对应的,而数据的传递方向是通过控制寄存器设置的,通过控制寄存器可以设置每一位引脚的数据流向。

module gpio(
input wire PCLK,
input wire PRESETn,
input wire PSEL,
input wire[11:0] PADDR,
input wire PENABLE,
input wire PWRITE,
input wire[31:0] PWDATA,
output wire [31:0] PRDATA,
input wire [3:0] GPIOI,
output wire [2:0] GPIOO);

wire read_en,write_en;
wire [3:0] REG_00;
reg [2:0] REG_01;
assign read_en=PSEL & (~PWRITE);
assign write_en=PSEL & (~PENABLE)&PWRITE;
always@(posedge PCLK or negedge PRESETn)begin
if(~PRESETn)begin
REG_01[2:0]<=3'b0;
end else if(write_en)begin

```
case(PADDR)[11:2])
        10'b1:REG_01[2:0]=PWDATA[2:0];
        default:;
        end case
    end
end
always@(*)begin
if(read_en)begin
    case(PADDR[11:2])
        10'b0:PRDATA[31:0]={28'b0,REG_00[3:0]};
        10'b1:PRDATA[31:0]={29'b0,REG_01[2:0]};
        default:PRDATA[31:0]=32'b0;
        endcase
    end else begin
        PRDATA=32'b0;
    end
end
assgin REG 00[3:0]=GPIOI[3:0];
assgin GPIOO[2:0]=REG_01[2:0];
endmodule
```

Q5.DRAM 的寻址分为哪几部分

DRAM 存储单元是按照 Bank、行、列来组织的, 因此对 DRAM 的寻址分为三部分: 寻找 bank 地址、寻找行地址和寻找列地址。

对于单个 DRAM 存储的寻找如上。如果是多组 DRAM 串联在一起,则最初还需一个部分: DRAM 的片选。

Q6.假设一个处理器支持两个 DDR3 内存通道,每个通道 64 位宽,内存地址线个数为 15, 片选个数为 4. 计算实际支持的最大内存容量。

计算最大容量,则假设行地址线和列地址线均复用15条

一个 DDR3 的内存容量为 $4 \times 2^{15} \times 2^{15} \times 64 = 2^{32} \times 64 = 4Gb \times 64$

如果有两个通道,则最大内存容量达到 $8Gb \times 64$

通常来讲,列地址线复用的数目小于地址线的数目,所以内存往往达不到这么大。