

Course > Week 8 > Home... > hw5_rl...

hw5_rl_q3_direct_evaluation

Question 3: Direct Evaluation

0.0/10.0 points (graded)

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Episode 1

A, south, C, -1 C, south, E, -1 E, exit, x, +10

Episode 2

B, east, C, -1 C, south, D, -1 D, exit, x, -10

Episode 3

B, east, C, -1 C, south, E, -1 E, exit, x, +10

Episode 4

A, south, C, -1 C, south, E, -1 E, exit, x, +10

What are the estimates for the following quantities as obtained by direct evaluation:

$${\hat V}^{\pi}\left(A
ight)=$$

8

Answer: 8

$${\hat V}^{\pi}\left(B
ight) =$$

-2

Answer: -2

$$\hat{V}^{\pi}\left(C
ight) =% {\displaystyle\int\limits_{0}^{\infty}} \left(C
ight) \left(C
i$$

4

Answer: 4

 $\hat{V}^{\pi}\left(D
ight) =% {\displaystyle\int\limits_{0}^{\infty}} \left(D
ight) \left(D
i$

-10

Answer: -10

 ${\hat V}^{\pi}\left(E
ight) =% {\displaystyle\int\limits_{0}^{\pi}} {\left(E
ight) } {\left(E
ight) } {\displaystyle\int\limits_{0}^{\pi}} {\left(E
ight) } {\left(E
ight) } {\displaystyle\int\limits_{0}^{\pi}} {\left(E
ight) } {\left(E
ight) } {\left(E
ight) } {\displaystyle\int\limits_{0}^{\pi}} {\left(E
ight) } {\left(E$

100

Answer: 10

The estimated value of $\hat{V}^{\pi}\left(s\right)$ is equal to the average value achieved starting from that state.

 \hat{V}^{π} (A): Episodes 1 and 4 start from state A and both result in a utility of 8. $rac{8+8}{2}=8$

 \hat{V}^{π} (B): Episodes 2 and 3 start from state B. Episode 2 results in -12, while episode 3 results in 8. $\frac{8-12}{2}=-2$

 \hat{V}^{π} (C): State C is visited in every episode. The remaining rewards from C in episodes 1, 3, and 4 total 9, while the remaining rewards in episode 2 total -11. $\frac{9+9+9-11}{4}=4$

 $\hat{m{V}}^{\pi}$ ($m{D}$): State D is only visited in episode 2 and has a remaining utility of -10.

 \hat{V}^{π} (E): State E is visited in episodes 1, 3, and 4 and has a remaining utility of 10 in each state. $\frac{10+10+10}{3}=10$

Submit

• Answers are displayed within the problem