Code No: 153AN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech II Year I Semester Examinations, December - 2019

DIGITAL SYSTEM DESIGN

(Electronics and Communication Engineering)

//	Time:	3 Hours	Max. Mar	ks: 75
	Note:	This question paper contains two parts A and B.		
		Part A is compulsory which carries 25 marks. Answer all question	ons in Part A	. Part B
		consists of 5 Units. Answer any one full question from each unit.	Each question	carries
		10 marks and may have a, b as sub questions.		
J		PART- A	(25	Marks)
	1.a)	Given that $(292)_{10} = (1204)_b$, Determine b.		[2]
	b)	Write a note on 'display decoders'.		[2]
	c)	What is the difference between Latch and Flip Flop?		[2]
	d)	What is Moore and Mealey machine?		[2]
	e)	Draw the circuit for CMOS AND-OR Invert (AOI) logic gate.		[2]
	f)	Add (98) and (89) in Excess-3 form.		[3]
1/	g)	Realize the function $f_1 = A \oplus B \oplus C$ using two half adders: U	se additional	gates if.
		necessary.		[3]
	h)	Differentiate combinational and sequential circuits.		[3]
	i)	List the limitations of finite – state machines.		[3]
	j)	What are the precautions to be taken while handling CMOS logic ga	ites?	[3]
	2.a)	Find the complement of the Boolean function (AB'+CD') (B'C+A minimum number of literals.	to a first the second of	Marks) e it to a
	b)	Determine the Canonical sum-of-products form for $T(x,y,z)=x'y+z'-OR$	+xyz.	[5+5]
	3.a)	Show the weights of three different four bit Self-Complementing	ng codes who	se only
<i>.</i>	b)	negative weight is -4. Convert the function $f(x, y, z) = \pi(0, 3, 6, 7)$ to the other canonical	form.	[5+5]
	4.a)	Minimise the following expression using Karnaugh - map		
		$f(A,B,C,D) = \Sigma m (1,4,7,10, 13) + \Sigma d (5,14,15)$		
	b)	Give the gate-level realization for 8:1 mux with active-low enal	ble input. She	ow how
		several 8:1 muxes can be combined to make a 32-to-1 mux.	.	[5+5]
		OR		
	5.a)	Using the tabular method, obtain the prime implicants of a four	r- input single	e-output
//		function $f(w,x,y,z) = \sum_{i=1}^{n} m(0,2,4,5,6,7,8,9,10,11,13)$. Reduce the	, - ,	-,
		and find the minimal cover of f.	- •	
	b)	Give the schematic circuit of a 2-to-4 binary decoder with an act	ive-low enabl	le input.
		Give the truth-table for the same.		[5+5]

	6.a)	present and clear and explain its operation with the help of truth table.					
	b)						
		aid of output state timing diagran	i _ i			[5+5]	
.//	7.a)	Draw the circuit diagram of a RS	OR S flip flop and e	explain its operate	ion with the he	lp of truth	
		table.					
	b)	Design a modulo 6 up/down syndiagram.	chronous count	er using T flip-f	flops and draw	the circuit [5+5]	
		diagram.				[313]	
	8.	A sequential circuit with 2 D f		d B:2 inputs, x	and y; and one	output z	
J/		specified by the following equations $A(t+1)=x \ y+xA$					
		B(t+1)=xB+xA					
		Z=B	airanit				
		a) Draw the logic diagram of theb) Derive the state table	Circuit				
		c) Derive the state diagram.				[3+3+4]	
	9.	A combinational lock circuit h	OR as two imports	(x, x ₂) and si	ngle output (7) is to be	
	<i>)</i> .	A combinational lock circuit has two imports (x_1, x_2) and single output (Z) is to be designed such that the lock opens $(z=1)$ whenever there is a sequence of form consecutive					
		input changes with $x_2 = 1$. Construct the state diagram and stable table for this circuit.					
						[10]	
	10.a)	What is meant by Tri-state logic	? Draw the circ	cuit of Tri-state	ΓTL logic and α	explain its	
	b)	functions. Discuss current sinking, current sourcing and noise margins of a standard TTL logic ga [5+5]					
1/	0)						
	11 -\	Duran the simple diameter of head	OR				
	11.a) Draw the circuit diagram of basic TTL NAND gate and explain the three p help of functional operation?						
	b)	Describe CMOS driving TTL.				[6+4]	
1/			//	//		//	
			00O00				
			//)			