动态规划的基本概念和基本原理

修贤超

https://xianchaoxiu.github.io

■ 阶段: 将所给问题的过程,按时间或空间特征分解成相互联系的阶段,以便按次序求每阶段的解。记 k 为阶段变量

$$k = 1, A \to B (B_1, B_2)$$

$$k = 2, B \to C(C_1, C_2, C_3, C_4)$$

$$k = 3, C \to D(D_1, D_2, D_3)$$

$$k = 4, D \to E(E_1, E_2)$$

$$\triangleright k = 5, E \rightarrow F$$

- <mark>状态</mark>: 每个阶段开始时的客观条件,描述了研究问题的状况。记 s_k 为第 k 阶段的状态变量, S_k 为状态变量 s_k 的取值集合
- 当某阶段状态给定以后,在这阶段以后过程的发展不受这段以前各段状态的 影响,这称为无后效性

- \square 第一阶段状态为 A,状态变量 s_1 的集合为 $S_1 = \{A\}$
- $S_2 = \{B_1, B_2\}, S_3 = \{C_1, C_2, C_3, C_4\}, S_4 = \{D_1, D_2, D_3\}, S_5 = \{E_1, E_2\}$

■ <mark>决策</mark>: 取定各阶段的状态后,就可以做出不同的决定,从而确定下一阶段的状态。记 $u_k(s_k)$ 为第 k 阶段当状态为 s_k 时的决策变量, $D_k(s_k)$ 为第 k 阶段从状态 s_k 出发的允许决策集合

- 』 从第二阶段的状态 B_1 出发,可选择下一阶段的 C_1, C_2, C_3 ,即其允许决策 集合为 $D_2(B_1) = \{C_1, C_2, C_3\}$
- \Box 如果我们决定选择 C_3 , 则 $u_2(B_1) = C_3$

■ 策略: 由所有各阶段组成的决策函数序列

$$p_{1,n}\{u_1(s_1), u_2(s_2), \dots, u_n(s_n)\} \in P_{1,n}$$

- 最优策略: 使整个问题达到最优效果的策略
- 状态转移方程: 本阶段状态与上一阶段状态和上一阶段决策的关系

$$s_{k+1} = T(s_k, u_k)$$

 \square 从 k 阶段到 k+1 阶段的状态转移方程为 $s_{k+1}=u_k(s_k)$

- 指标函数: 衡量所选定策略优劣的数量指标
- <mark>阶段指标函数</mark>: 第 k 阶段,从状态 s_k 出发,采取决策 u_k 时的效益,记 $d(s_k,u_k)$
- <mark>过程指标函数</mark>: 一个 n 段决策过程,从 1 到 n 叫做问题的原过程。对于任意一个给定的 k,从第 k 阶段到第 n 阶段的过程称为原过程的一个后部子过程
- 例如, $V_{1,n}(s_1,p_{1,n})$ 表示初始状态为 s_1 采取策略 $p_{1,n}$ 时原过程的指标函数 值。 $V_{k,n}(s_k,p_{k,n})$ 表示在第 k 阶段状态为 s_k 采取策略 $p_{k,n}$ 时,后部子过程的指标函数值

- 最优指标函数: 指标函数的最优值
- 例如, $f_k(s_k)$ 表示从第 k 阶段状态 s_k 采用最优策略 $p_{k,n}$ 到过程终止时的最佳效益值。 $f_1(s_1)$ 表示从第 1 阶段状态 s_1 采用最优策略 $p_{1,n}$ 到过程终止时的最佳效益值
- 最优指标函数 $f_k(s_k)$ 与 $V_{k,n}(s_k, p_{k,n})$ 的关系

$$f_k(s_k) = V_{k,n}(s_k, p_{k,n}^*)$$

= opt_{p_{k,n} \in P_{k,n}} V_{k,n}(s_k, p_{k,n})}

■ 例如指标函数是距离,第 2 阶段,状态为 B_1 时 $d(B_1, C_2)$ 表示由 B_1 出发,采用决策到下一段 C_2 点间的距离。

- 从过程的最后一段开始,用<mark>逆序递推方法</mark>求解,逐步求出各段各点到终点 F 的最短路线,最后求得 A 点到 F 点的最短路线。
- 当 k=5 时: 状态变量 s_5 可取两种状态 E_1, E_2 , 它们到 F 点的路长分别为

$$f_5(E_1) = 4, \ f_5(E_2) = 3$$

■ 当 k = 4 时: 状态变量 s_4 可取三种状态 D_1, D_2, D_3 , 这是经过一个中途点到 达终点 F 的两级决策问题

- \square 从 D_1 到 F,其路径为 $D_1 \to E_1 \to F$,相应决策为方程 $u_4^*(D_1) = E_1$ $f_4(D_1) = \min\{d(D_1, E_1) + f_5(E_1), d(D_1, E_2) + f_5(E_2)\}$ $= \min\{3 + 4, 5 + 3\} = 7$
- f Q 从 D_2 到 F,其路径为 $D_2 o E_2 o F$,相应决策为方程 $u_4^*(D_2) = E_2$
- f Q 从 D_3 到 F ,其路径为 $D_3 o E_1 o F$,相应决策为方程 $u_4^*(D_3) = E_1$

- 当 k=3 时: 有
 - $\Box f_3(C_1) = 7, \quad u_3^*(C_1) = D_1$
- 当 k=2 时: 有

 - $f_2(B_1) = 15$, $u_2^*(B_1) = C_3$

■ 当 k=1 时: 只有一个状态点 A,因有

$$f_1(A) = \min\{d(A, B_1) + f_2(B_1), d(A, B_2) + f_2(B_2)\}$$

= \(\text{min}\{4 + 13, 5 + 15\} = 17\)

- 从 A 到 F 的最短距离为 17
- 按计算顺序反推可得最优决策序列 $\{u_k\}$, 即

$$u_1^*(A) = B_1, \ u_2^*(B_1) = C_2, \ u_3^*(C_2) = D_2$$

 $u_4^*(D_2) = E_2, \ u_5^*(E_2) = F$

■最优路线为

$$A \to B_1 \to C_2 \to D_2 \to E_2 \to F$$

■ 从本例的计算过程可以看出,在求解的各个阶段,都利用了第 k 段和第 k+1 段的如下关系

$$\begin{cases} f_k(s_k) = \min\{d_k(s_k, u_k) + f_{k+1}(s_{k+1})\}, & k = 5, 4, 3, 2, 1\\ f_6(s_6) = 0 \end{cases}$$

- 上式称为动态规划的基本方程
- $f_6(s_6) = 0$ 称为边界条件

- 将多阶段决策过程划分阶段,恰当的选取状态变量、决策变量及定义最优指标函数,从而将问题化为一族同类型的子问题,然后逐个求解
- 求解时从边界条件开始,逆(或顺)过程行进方向,逐段递推寻优。在每一个子问题求解时,都要使用它前面已求出的子问题的最优结果,最后一个子问题的最优解就是整个问题的最优解
- 既将当前一段与未来各段分开,又将当前效益与未来效益结合起来考虑的一种最优化方法,因此每段的最优决策选取时从全局考虑的,与该段的最优选择一般是不同的
- ■动态规划基本方程

$$\begin{cases} f_k(s_k) = \operatorname{opt}_{u_k \in D_k(s_k)} \{ v_k(s_k, u_k) + f_{k+1}(s_{k+1}) \}, \ k = n, n - 1, \dots, 1 \\ f_{n+1}(s_{n+1}) = 0 \end{cases}$$

动态规划的最优化原理

- 作为整个过程的最优策略具有如下性质: 不管在此最优策略上的某个状态以前的状态和决策如何,对该状态而言,以后所有的决策必定构成最优子策略
- 对最短路问题而言, 从最短路上任一点到终点的部分道路(最短路上的子路) 也一定是从该点到终点的最短路

小结

- ■基本概念
 - □ 阶段 k
 - □ 状态 s_k
 - □ 决策 u_k
 - □ 策略 p_{1,n}
 - 状态转移方程 $s_{k+1} = T_k(s_k, u_k)$
 - \Box 指标函数 $f_k(s_k)$
- 逆序递推法
- 标号法
- 课后作业: P217, 习题 7.1 (逆序法)

Q&A

Thank you!

感谢您的聆听和反馈