CS370 Operating Systems

Colorado State University Yashwant K Malaiya Fall 2016 Lecture 35

Mass Storage

Slides based on

- Text by Silberschatz, Galvin, Gagne
- Various sources

Questions For You

- Local/Global replacement policy: what is used more commonly?
- Locality we had seen: was it temporal or spatial?
- Why page size needs to be 2^{n?}
- Can virtual memory for a process be larger than the entire physical memory?
- If the secondary memory used the same technology as the main memory, would it still be slower?

Virtual Memory

- Address spaces and demand paging
- Page Replacement Algorithms
- Page Buffering
- Frame Allocation
- Page size issues

Windows

- Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page
- Processes are assigned working set minimum and working set maximum
- Working set minimum is the minimum number of pages the process is guaranteed to have in memory
- A process may be assigned as many pages up to its working set maximum
- When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory
- Working set trimming removes pages from processes that have pages in excess of their working set minimum

CS370 Operating Systems

Colorado State University Yashwant K Malaiya Fall 2016 Lecture 35+

Mass Storage

Slides based on

- Text by Silberschatz, Galvin, Gagne
- Various sources

Chapter 10: Mass-Storage Systems

- Physical structure of secondary storage devices and its effects on the uses of the devices
- Performance characteristics of mass-storage devices
- Disk scheduling algorithms
- Operating-system services provided for mass storage, including RAID

Objectives

- The physical structure of secondary storage devices and its effects on the uses of the devices
- To explain the performance characteristics of mass-storage devices
- ☐ To evaluate disk scheduling algorithms
- □ To discuss operating-system services provided for mass storage, including RAID

Overview of Mass Storage Structure

- Magnetic disks provide bulk of secondary storage of modern computers
 - Drives rotate at 60 to 250 times per second
 - Transfer rate is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head making contact with the disk surface -- That's bad
- Disks can be removable
- Drive attached to computer via I/O bus
 - Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel,
 SCSI, SAS, Firewire
 - Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Hard Disks

- Platters range from .85" to 14" (historically)
 - Commonly 3.5", 2.5", and 1.8"
- Range from 30GB to 10TB per drive
- Performance
 - Transfer Rate theoretical 6 Gb/sec
 - Effective Transfer Rate real –1Gb/sec (about 150 MB/s)
 - Seek time from 3ms to 12ms 9ms common for desktop drives
 - Average seek time measured or calculated based on 1/3 of tracks
 - Latency based on spindle speed1 / (RPM / 60) = 60 / RPM
 - Average latency = ½ latency

Spindle [rpm]	Average latency [ms]
4200	7.14
5400	5.56
7200	4.17
10000	3
15000	2

(From Wikipedia)

Hard Disk Performance

- Average access time = average seek time + average latency
 - For fastest disk 3ms + 2ms = 5ms
 - For slow disk 9ms + 5.56ms = 14.56ms
- Average I/O time = average access time + (amount to transfer / transfer rate) + controller overhead
- For example to transfer a 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead =
 - -5ms + 4.17ms + 0.1ms + transfer time
 - Transfer time = 4KB / 1Gb/s = 4x8K/G = 0.031 ms
 - Average I/O time for 4KB block = 9.27ms + .031ms = 9.301ms

Question from last time

- Average I/O time = average access time + (amount to transfer / transfer rate) + controller overhead
- 4KB block on a 7200 RPM disk with a 5ms average seek time, 1Gb/sec transfer rate with a .1ms controller overhead =
 - -5ms + 4.17ms + 0.1ms + (4x8K/G) = 9.301ms
- Why are transfer rates usually measure in bits instead of bytes?
- Ans: Convention. Storage often measured in bytes.

The First Commercial Disk Drive

1956 IBM RAMDAC computer included the IBM Model 350 disk storage system

5M (7 bit) characters 50 x 24" platters Access time = < 1 second

Solid-State Disks

- Nonvolatile memory used like a hard drive
 - Many technology variations
- Can be more reliable than HDDs
- More expensive per MB (\$0.30/GB vs \$0.05 for HD)
- Shorter life span (100,000 writes?) Probably not
- Capacity ? (up to 16 TB vs 8 TB for HD)
- But much faster (access time < 0.1 millisec, transfer rate 100MB-GB/s)
- No moving parts, so no seek time or rotational latency
- Lower power consumption
- "Breakthrough Technology" 3D Xpoint (1000 times faster) expected 2016

SSD vs HDD

Solid-State Disks

File Transfer Test (MBps)

Magnetic Tape

- Was early secondary-storage medium (now tertiary)
 - Evolved from open spools to cartridges
- Relatively permanent and holds large quantities of data
- Access time slow
- Random access ~1000 times slower than disk
- Mainly used for backup, storage of infrequently-used data, transfer medium between systems
- Kept in spool and wound or rewound past read-write head
- Once data under head, transfer rates comparable to disk
 - 140MB/sec and greater
- 200GB to 1.5TB typical storage Sony: New 185 TB

Disk Structure

- Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the smallest unit of transfer
 - Low-level formatting creates sectors on physical media (typically 512 bytes)
- The 1-dimensional array of logical blocks is mapped into the sectors of the disk sequentially
 - Sector 0 is the first sector of the first track on the outermost cylinder
 - Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through the rest of the cylinders from outermost to innermost
 - Logical to physical address should be easy
 - Except for bad sectors
 - Non-constant # of sectors per track via constant angular velocity

Disk Formatting

- Low-level formatting marks the surfaces of the disks with markers indicating the start of a recording block (sector markers) and other information by the disk controller to read or write data.
- Partitioning divides a disk into one or more regions, writing data structures to the disk to indicate the beginning and end of the regions. Often includes checking for defective tracks/sectors.
- High-level formatting creates the file system format within a disk partition or a logical volume. This formatting includes the data structures used by the OS to identify the logical drive or partition's contents.

Disk Attachment: I/O busses

- Host-attached storage accessed through I/O ports talking to I/O busses
- SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator (adapter) requests operation and SCSI targets (controller) perform tasks
 - Each target can have up to 8 logical units (disks attached to device controller)
- FC (fibre channel) is high-speed serial architecture
 - Can be switched fabric with 24-bit address space the basis of storage area networks (SANs) in which many hosts attach to many storage units

Storage Array

- Can just attach disks, or arrays of disks to an I/O port
- Storage Array has controller(s), provides features to attached host(s)
 - Ports to connect hosts to array
 - Memory, controlling software
 - A few to thousands of disks
 - RAID, hot spares, hot swap
 - Shared storage -> more efficiency

Storage Area Network

- Common in large storage environments
- Multiple hosts attached to multiple storage arrays

Storage Area Network (Cont.)

- SAN is one or more storage arrays
- Hosts also attach to the switches
- Storage made available from specific arrays to specific servers
- Easy to add or remove storage, add new host and allocate it storage
 - Over low-latency Fibre Channel fabric

Network-Attached Storage

- Network-attached storage (NAS) is storage made available over a network rather than over a local connection (such as a bus)
 - Remotely attaching to file systems
- NFS and CIFS are common protocols
- Implemented via remote procedure calls (RPCs) between host and storage over typically TCP or UDP on IP network
- iSCSI protocol uses IP network to carry the SCSI protocol
 - Remotely attaching to devices (blocks)

Disk Scheduling

- The operating system is responsible for using hardware efficiently — for the disk drives, this means having a fast access time and disk bandwidth
- Minimize seek time
- Seek time ≈ seek distance (between cylinders)
- Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request for service and the completion of the last transfer

Disk Scheduling (Cont.)

- There are many sources of disk I/O request
 - OS
 - System processes
 - Users processes
- I/O request includes input or output mode, disk address, memory address, number of sectors to transfer
- OS maintains queue of requests, per disk or device
- Idle disk can immediately work on I/O request, busy disk means work must queue
 - Optimization algorithms only make sense when a queue exists

Disk Scheduling (Cont.)

- Note that drive controllers have small buffers and can manage a queue of I/O requests (of varying "depth")
- Several algorithms exist to schedule the servicing of disk I/O requests
- The analysis is true for one or many platters
- We illustrate scheduling algorithms with a request queue (cylinders 0-199)

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53 (head is at cylinder 53)

FCFS (First come first served)

Illustration shows total head movement

