

Modulhandbuch

für den Masterstudiengang Systemtechnik und Technische Kybernetik (Systems Engineering and Engineering Cybernetics)

an der

Otto-von-Guericke-Universität
Fakultät für Elektrotechnik und Informationstechnik

Inhaltsverzeichnis	2
1. Pflichtmodule	5
Nonlinear Control	5
Complex Systems	6
Dynamics of Distributed Parameter Systems	7
Nonlinear Systems	8
Advanced Process Systems Engineering	9
2. Wahlpflichtmodule der Schwerpunkte	10
2.1. Systems & Control Theory	10
Optimal Control	10
Hybride Discrete Event Systems	12
Application of Discrete Event Systems	13
Wissensbasierte Methoden	14
State Estimation	15
Process Control	16
Rechnerbasierter Reglerentwurf	17
2.2. Chemical Systems	18
Strömungsmechanik II	18
Computational Fluid Dynamics	19
Chemical Reaction Engineering	20
Adsorption und heterogene Katalyse	21
Modellierung mit Populationsbilanzen	23
Disperse Systeme der Verfahrenstechnik: Polymere, Kristalle, Emulsionen	25
Statistische Planung und Auswertung von Versuchen	27
Molekulares Modellieren	29
Prozesssimulation	31
Simulation of Mechanical Processes	32
2.3. Energy Systems	34
Elektrische Energienetze II - Energieversorgung	34
Alternative Energien / Regenerative Energiequellen	36
Windenergie	37
Modellierung und Expertensysteme in der elektrischen Energieversorgung	38
Leistungselektronische Systeme	40
Stromversorgungstechnik	41
Combustion Engineering	42
Fluidenergiemaschinen	43
Biofuels: Sustainable Production and Utilisation	44

Brennstoffzellen	46
Power Systems Control and Optimization	47
2.4. Systems Biology and Biomedical	48
Systems Theory in Systems Biology	48
Modeling and Analysis in Systems Biology	50
Bioverfahrenstechnik I	52
Modellierung von Bioprozessen	54
Computational Neuroscience II	56
Computational Neuroscience I	56
Strukturelle und funktionale Analyse von zellulären Netzwerken	59
Simulation und Steuerung/Regelung der biol. Abwasserreinigung	61
Computer Tomographie - Theorie und Anwendung	63
Einführung in die medizinische Bildgebung	63
Unsicheres Wissen	65
Anwendung Stochastischer Modelle in der Elektromagnetischen	
Verträglichkeit (EMV)	
Mathematische Modellierung physiologischer Systeme	67
Grundlagen stochastischer Prozesse in biophysikalischen Systeme	า68
2.5. Mechatronic Systems	70
Eingebettete Mechatronische Systeme I	70
Eingebettete Mechatronische Systeme II	72
Mechatronik II - Entwurf mechatronischer Systeme	74
Mechatronik II - Mechatronische Sensor-Aktor-Systeme	76
Dynamics of Robotic Systems	77
Elektromechanische Aktorsysteme	78
Speicherprogrammierbare Steuerungen	79
Robotersysteme	80
2.6. Information & Automation Technologies	81
Digital Information Processing	81
Prozessleittechnik II	82
Kommunikationssysteme	83
§ Elektrotechnik	83
§ Grundkenntnisse über Mikrorechner	83
Automatisierungsgeräte	85
Eingebettete Systeme	85
Bildcodierung	88
Informations- und Codierungstheorie	
3. Research Project / Interdisciplinary Team Project	
Research Project / Interdisciplinary Team Project	91
4. Master Thesis	92

Ma	ster Thesis Project	. 92
5.	Brückenmodule	. 93

1. Pflichtmodule

Name des Moduls	Nonlinear Control
Inhalte und Qualifikationsziele des Moduls	The module provides an introduction to the theory and application of nonlinear systems and nonlinear control. The students are enabled to mathematically formulate, analyse and solve nonlinear control problems, with a special focus on the mathematical description of nonlinear systems, the structured analysis of nonlinear systems and their behaviour, such as stability and the geometrical design of nonlinear controllers. They are introduced into the current status of nonlinear control, existing analysis and design methods.
	Inhalt: Review of mathematical basics Review of linear MIMO systems Lyapunov stability Concepts of BIBO stability Passivity I/O linerarization Design of controllers for nonlinear systems Literatur:
	[1] H. K. Khalil, Nonlinear Systems, Prentice Hall, 2002. [2] R. Sepulchre, Constructive Nonlinear Control, Springer-Verlag, 1997.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
	Wahlmodul in den anderen Masterstudiengängen, in der STK, MTK
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min am Ende des Moduls
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h 42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Rolf Findeisen (FEIT-IFAT)

Name des Moduls	Complex Systems
Inhalte und Qualifikationsziele des Moduls	Systems become more and more complex and difficult to analyse and control. The module provides an introduction to the field of complex systems, their modelling and analysis. The students are enabled to identify complex systems, to mathematical describe them, and to evaluate their complexity as well as their fragility. Possible application fields span from chemical engineering systems, electrical networks and power distribution networks, up to biological and medical systems. Besides an basic understanding of how to analyse and influence complex systems in a structured way, numerical tools and methods are introduced and exemplified considering various example systems.
	Inhalt: Review of complex systems from various areas Analysing complex systems Stability and fragility of complex systems Control of complex systems Literatur:
	 [1] K.J. Aström, P. Albertos, M. Blanke, A. Isidori, W. Schaufelberger, R. Sanz: Control of Complex Systems, Springer, 2001. [2] Decentralized Control of Complex Systems, D. Siljak, Dover Books, 2012.
Lehrformen	Vorlesung, Seminar
Voraussetzungen für die Teilnahme	Regelungstechnik, Systemtheorie
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
	Wahlmodul für die anderen Studiengänge
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min am Ende des Moduls
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung (wöchentlich) und 1 SWS Seminar (14-tägig) Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der Übungsaufgaben, sowie Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Rolf Findeisen (FEIT-IFAT)

Name des Moduls	Dynamics of Distributed Parameter Systems
Inhalte und Qualifikationsziele des Moduls	At the end of this module the students are able to derive model equations for different types of distributed parameter systems. They will learn how to derive analytical solutions, provide a stability analysis, design stabilizing control laws, improve tracking behavior by flatness-based trajectory planning. In the exercises that accompany the lecture the students apply the theory to improve their knowledge and skills. Inhalt: Basics of functional analysis Solution and stability analysis of distributed parameter systems Modeling of distributed parameter systems Modal control and linear optimal control Energy and passivity based control Backstepping control of distributed parameter systems Flatness-based trajectory planning Literatur: [1] D. Franke: System mit örtlich verteilten Parametern, Springer, 1987. [2] M. Krstic and A. Smyshlyaev: Boundary Control of PDEs: A Course on Backstepping Designs. SIAM, 2008.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik Wahlmodul für die anderen Studiengänge
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min am Ende des Moduls
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung (wöchentlich) und 1 SWS Übung (14- tägig) Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der Übungsaufgaben, sowie Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Stefan Palis (FEIT-IFAT)

Name des Moduls	Nonlinear Systems
Inhalte und Qualifikationsziele des Moduls	The students will learn the fundamental concepts in the theory of nonlinear ordinary differential equations with some applications to control problems. The module addresses first the general questions of existence and uniqueness and then turns to the geometric theory of integral manifolds as a main tool for investigations of stability and bifurcations. Finally the students will study various model reduction methods, e.g. by projections, by center manifolds or by the theory of singular perturbations. The motivating and illustrating applications are taken from the natural sciences (biology, chemistry, physics) as well as from the fields of bio - chemical and electrical engineering. Inhalt: Fundamental theorems on existence, uniqueness and sensitivities Invariant and integral manifolds for model reductions Geometric singular perturbation theory and model reduction Literatur: [1] Edelstein - Keshet L.: Mathematical Models in Biology, SIAM 2005 [2] Flockerzi D.: Scriptum, 2011 [3] Meiss J.D.: Differential Dynamical Systems, SIAM 2007
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Systemtechnik und Technische Kybernetik oder einem verwandten Studiengang
Verwendbarkeit des Moduls	Pflichtmodul in den Masterstudiengängen Systemtechnik und Technische Kybernetik, Biosystemtechnik Wahlmodul in den anderen Masterstudiengängen
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 120 min am Ende des Moduls
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Dietrich Flockerzi (FEIT-IFAT)

Name des Moduls	Advanced Process Systems Engineering
Inhalte und Qualifikationsziele des Moduls	By attending this module, the students are enabled to derive mathematical models for the analysis and design of complex chemical and biochemical production systems on different time and length scales (molecular level, particle level, continuum phase level, process unit level, plant level). The students are enabled to model multiphase systems, including various phase combinations and interfacial transport phenomena. Furthermore students will learn to apply advanced model reduction techniques.
	 Inhalt: Multilevel modelling concepts Molecular fundamentals of kinetics and thermodynamics Modelling of complex continuum systems Advanced model reduction techniques Literatur: [1] H. Freund and K. Sundmacher: Ullmanns Encyclopedia of Chemical Engineering, Chapter Process Intensification I-IV, Wiley-VCH (2011). [2] L.T. Biegler, Chem. Eng. Process. 46, 1043-1053 (2007). [3] H. Freund and K. Sundmacher: Chem. Eng. Process. 47, 2051-2060 (2008)
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Systemtechnik und Technische Kybernetik oder einem verwandten Studiengang
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur am Ende des Moduls 120 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Kai Sundmacher (FVST-IVT)

2. Wahlpflichtmodule der Schwerpunkte

2.1. Systems & Control Theory

Name des Moduls	Optimal Control
Inhalte und Qualifikationsziele des Moduls	The module provides an introduction to the formulation, theory, solution, and application of optimal control theory for dynamic systems subject to constraints. The students are enabled to mathematically formulate, analyse, and solve optimal control problems appearing in many applications spanning from medicine, process control up to systems biology. Besides an understanding of the theoretical basis, the students are enabled to derive numerical solutions for optimal control problems using different numerical solution algorithms. The acquired methods are deepened in the exercises considering small example systems. In the frame of mini-projects, the students derive numerical solutions of small, practical relevant optimal control problems and compare them to analytic solutions.
	Inhalt:
	 Static optimization Numerical algorithms Dynamic programming, principle of optimality, Hamilton-Jacobi-Bellman equation Variational calculus Pontryagin maximum principle Numerical solution of optimal control problems Infinite and finite horizon optimal control, LQ optimal control Model predictive control Application examples from various fields such as chemical engineering, economics, aeronautics, robotics, biomedicine, and systems biology
	Literatur:
	[1] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, New Jersey, 1957.
	[2] D.P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific Press, Belmont, MA, 2006.
	[3] D.E. Kirk. Optimal Control Theory – An Introduction. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 2004.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Elektrotechnik und Informationstechnik, Option Automatisierungstechnik Wahlpflichtmodul in den Masterstudiengängen Systemtechnik und Technische Kybernetik, Mechatronik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 120min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung

Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Rolf Findeisen (FEIT-IFAT)

Name des Moduls	Hybride Discrete Event Systems
Inhalte und Qualifikationsziele des Moduls	The module provides an introduction to the theory, description, and analysis of systems that contain continuous, discrete, and event driven dynamics. Specific focus is set on the introduction of various system descriptions, on the analysis of the properties of the systems, as well as on the design and development of suitable control and observation methods. Students get an overview of different modeling methods. They are able to
	combine the continuous and discrete behaviour of a system in a single model.
	Inhalt:
	 Hybrid Dynamical Systems: Signals, information, states and inputs, general system description, basic system properties Description of hybrid dynamical systems Modeling, time-behavior, hybrid states, events, automata, petri-
	networks
	[1] David, R.; Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer Verlag, 2005, ISBN 3-540-22480-7
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Ereignisdiskrete Systeme
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Elektrotechnik und Informationstechnik Option Automatisierungstechnik, Systemtechnik und Technische Kybernetik, Wirtschaftsingenieurwesen für Elektrotechnik, Mechatronik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS
	Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
1	jedes Jahr im WS
Häufigkeit des Angebots	
	ein Semester

Name des Moduls	Application of Discrete Event Systems
Inhalte und Qualifikationsziele des Moduls	The module provides a deep insight and view on the use of discrete event systems in various fields of applications. The main focus is on the application depending modeling, analysis, and realization of discrete event systems.
	The students will gain insight into selected applications. They are able to combine general methods of discrete event systems with special methods of applications. Application examples are taken from the field of scheduling and flexible automation.
	Inhalt:
	 Introduction to applications of discrete event systems Modeling and analysis of processes using advanced discrete event concepts Simulation and Visualization of discrete event systems including computer exercises Formulation, analysis, and solution of scheduling problems using discrete event systems and genetic algorithms Modeling, analysis, and verification of complex, flexible production systems using via discrete event systems.
	Literatur:
	[1] Cassandras, Ch.G.; Lafortune, St.: Introduction to Discrete Event Systems. Springer Verlag, 2008, ISBN 978-0-387-33332-8
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Ereignisdiskrete Systeme
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Elektrotechnik und Informationstechnik Option Automatisierungstechnik, Systemtechnik und Technische Kybernetik, Wirtschaftsingenieurwesen für Elektrotechnik, Mechatronik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
-	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesung 2 SWS, Übung 1 SWS
	Colhatandigos Arbeitan: Nacharbeitan dar Varlagungen Lägung von
	Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	
	Übungsaufgaben, Prüfungsvorbereitung

Name des Moduls	Wissensbasierte Methoden
Inhalte und Qualifikationsziele des Moduls	Es werden grundlegende Methoden zur Modellierung und Entwicklung Wissensbasierter Systeme vermittelt. Die Hörer werden befähigt, Problemstellungen für die Anwendung wissensbasierter Methoden zu erkennen und entsprechende Modellformen zu entwickeln. Sie erhalten Kenntnisse zur Auswahl und Anwendung von Realisierungswerkzeugen und werden in die Lage versetzt, die erworbenen Fähigkeiten insbesondere für automatisierungstechnische Problemstellungen einzusetzen. Durch Übungen werden sie befähigt, ihr Wissen auf komplexe Problemstellungen anzuwenden.
	Inhalt:
	 Einführung in die künstliche Intelligenz Suchstrategien und Suchverfahren: blinde und Heuristische Suche Grundlagen der Wissensrepräsentation und Wissensverarbeitung Regelbasierte Wissensverarbeitung: Modellierung mit Produktionsregeln, Problemlösen durch Vorwärts- und Rückwärtsverkettung Logikbasierte Wissensverarbeitung: Aussagenlogik, Prädikatenlogik, Inferenzregeln, Resolution Wissensverarbeitung mit strukturierten Objekten: Objektorientierte Modellierung, Semantische Netze, Frames Repräsentation und Verarbeitung von unscharfem Wissen: Methodenüberblick, Fuzzy-Set-Theory, Approximative Inferenz Sprachen und Werkzeuge Logische Programmiersprachen, Entwicklungstools
	Literatur: [1] Lunze, J: Künstliche Intelligenz für Ingenieure. 2.Auflage, Oldenburg Verlag, 2010, ISBN 978-3-486-70222-4
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Elektrotechnik und Informationstechnik Option Automatisierungstechnik, Systemtechnik und Technische Kybernetik, Wirtschaftsingenieurwesen für Elektrotechnik, Mechatronik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS
	Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Jürgen Ihlow (FEIT-IFAT)
<u> </u>	Inhaltsverzeichnis

Name des Moduls	State Estimation
Inhalte und Qualifikationsziele des Moduls	The module provides an introduction to state estimation and model based measurement systems. The students are enabled to judge if the available measurement data are sufficient to reconstruct all states of a process model, or which additional measurement information is required. At the end of the course the students are able to choose suitable state estimation techniques for linear and nonlinear systems. Special emphasis is on the Kalman filter. The students are enabled to derive the filter equations, to implement them and to choose the tuning parameters. The acquired methods are deepened in computer exercises. In miniprojects, the students obtain practical experience in programming and testing state estimation algorithms. Inhalt: Observability criteria for LTI systems Luenberger observers for LTI systems Kalman filter for linear time-discrete systems Kalman filter for linear time-continuous systems Extended Kalman filter for nonlinear time-discrete and time-continuous systems Unscented Kalman filter Kalman filter with constrained filter update Bayesian estimators Outlook on observers for nonlinear systems Literatur: [1] A. Gelb, Applied Optimal Estimation, M.I.T. Press, 1974. [2] D. Luenberger, Introduction to Dynamic Systems. Wiley, 1979.
Lehrformen	[3] D. Simon, Optimal State Estimation, John Wiley, 2006. Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Systemtechnik und Technische Kybernetik oder einem verwandten Studiengang
Verwendbarkeit des Moduls	Wahlpflichtfach im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min
Leistungspunkte und Noten	4 SWS / 5 Credit Points = 150 h (56 h Präsenzzeit + 94 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 2 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungs-/Projektaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	apl. Prof. DrIng. Michael Mangold (FEIT-IFAT)

Name des Moduls	Process Control
Inhalte und Qualifikationsziele des Moduls	Students will learn fundamentals and advanced methods of multivariable process control with special emphasis on decentralized control. At the end of the course the students are able to apply the above mentioned methods for the control of single and multi unit processes and simulation software (MATLAB) for computer aided control system design. In computer exercises that accompany the lecture the students do a project work on simulation, control configuration selection and control of a multivariable chemical process to gain practical experience in developing process control systems. Inhalt: Introduction to Process Control Process Models Process Control Fundamentals Control-Loop Interactions PID Controller Tuning PID Controller Implementation Advanced Process Control Plantwide Control Case Studies Literatur: [1] B. Wayne Bequette: Process Control, Modeling Design and Simulation, Pearson Education 2003
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Regelungstechnik oder "Systems and Control"
Verwendbarkeit des Moduls	Compulsory module for the Master's Courses "Elektrotechnik und Informationstechnik" and "Wirtschaftsingenieurwesen für Elektrotechnik und Informationstechnik" "Option Automatisierungstechnik", optional module for the Master's Courses "Elektrotechnik und Informationstechnik", "Systemtechnik und Technische Kybernetik", "Chemical and Energy Engineering", "Mechatronik", and "Biosystemtechnik", for students of the International Max-Planck Research School
Voraussetzungen für die Vergabe von Leistungsp.	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Steffen Sommer (FEIT-IFAT)

Gualifikationsziele des Moduls Fertigkeiten zum rechnergestützten Entwurf von Regelungen und deren Implementierung unter Matlab/Simulink. Hierfür lernen Sie moderne Konzepte zur Synthese und Analyse von Regelungssystemen und deren Anwendung. Durch das Lösen von Übungsaufgaben und einer Belegaufgabe sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen. Inhalt: **Auto-Tuning von PI/PID-Reglern (zentral, dezentral, Implementierung) **Robustheitsuntersuchung von Regelkreisen **Entwurf robuster Mehrgrößenregelungen (H-unendlich-Entwurf, µ-Synthese, H-unendlich-Ioopshaping, Ordnungsreduktion) **Reglerentwurf mit Hilfe von linearen Matrixungleichungen (LMIs) **Echtzeitlimplementierung Literatur: [1] D-W. Gu, P. H. Petkov, M. M. Konstantinov: Robust Control Design with MATLAB, Springer, 2005 Lehrformen Voraussetzungen für die Regelungstechnik, Robuste Mehrgrößenregelungen wünschenswert Teilnahme Verwendbarkeit des Moduls Wahlplifichtmodul in den Masterstudiengängen "Systemtechnik und Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Mechatronik" Voraussetzungen für die Pergabe von Leistungsp. Referat / Belegarbeit Voraussetzungen für die Pergabe von Leistungsp. Referat / Belegarbeit Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständige Arbeit), Notenskala gemäß Prüfungsordnung Arbeitsaufwand Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung gaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots jedes Jahr im WS Dauer des Moduls ein Semester	Name des Moduls	Rechnerbasierter Reglerentwurf
Implementierung) Robustheitsuntersuchung von Regelkreisen Entwurf robuster Mehrgrößenregelungen (H-unendlich-Entwurf, µ-Synthese, H-unendlich-loopshaping, Ordnungsreduktion) Regelerentwurf mit Hilfe von linearen Matrixungleichungen (LMIs) Echtzeitimplementierung Literatur: [1] DW. Gu, P. H. Petkov, M. M. Konstantinov: Robust Control Design with MATLAB, Springer, 2005 Lehrformen Vorlesung, Übung Regelungstechnik, Robuste Mehrgrößenregelungen wünschenswert Teilnahme Verwendbarkeit des Moduls Wahlplfichtmodul in den Masterstudiengängen "Systemtechnik und Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Mechatronik" Voraussetzungen für die Vergabe von Leistungsp. Referat / Belegarbeit Referat / Belegarbeit Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots Jedes Jahr im WS Dauer des Moduls ein Semester		Regelungssystemen und deren Anwendung. Durch das Lösen von Übungsaufgaben und einer Belegaufgabe sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen.
Vorlesung, Übung Vorlesung, Übung Vorlesung, Übung Regelungstechnik, Robuste Mehrgrößenregelungen wünschenswert Verwendbarkeit des Wahlplfichtmodul in den Masterstudiengängen "Systemtechnik und Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Mechatronik" Voraussetzungen für die Vergabe von Leistungsp. Referat / Belegarbeit Leistungspunkte und Noten 3 SWS / 5 Credit Points = 150h (42h Präsenzzeit + 108h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots Dauer des Moduls ein Semester		 Implementierung) Robustheitsuntersuchung von Regelkreisen Entwurf robuster Mehrgrößenregelungen (H-unendlich-Entwurf, μ-Synthese, H-unendlich-loopshaping, Ordnungsreduktion) Reglerentwurf mit Hilfe von linearen Matrixungleichungen (LMIs) Echtzeitimplementierung Literatur: [1] DW. Gu, P. H. Petkov, M. M. Konstantinov: Robust Control
Teilnahme Verwendbarkeit des Moduls Wahlplfichtmodul in den Masterstudiengängen "Systemtechnik und Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Mechatronik" Voraussetzungen für die Vergabe von Leistungsp. Leistungspunkte und Noten 3 SWS / 5 Credit Points = 150h (42h Präsenzzeit + 108h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung Arbeitsaufwand Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots pauer des Moduls ein Semester	Lehrformen	Vorlesung, Übung
Moduls Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Mechatronik" Voraussetzungen für die Vergabe von Leistungsp. Leistungspunkte und Noten 3 SWS / 5 Credit Points = 150h (42h Präsenzzeit + 108h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung Arbeitsaufwand Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots Dauer des Moduls ein Semester		Regelungstechnik, Robuste Mehrgrößenregelungen wünschenswert
Vergabe von Leistungsp. Leistungspunkte und Noten 3 SWS / 5 Credit Points = 150h (42h Präsenzzeit + 108h selbstständige Arbeit), Notenskala gemäß Prüfungsordnung Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots jedes Jahr im WS Dauer des Moduls ein Semester	Verwendbarkeit des Moduls	Technische Kybernetik", "Elektrotechnik und Informationstechnik",
Noten Selbstständige Arbeit), Notenskala gemäß Prüfungsordnung Präsenzzeiten: zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots Jedes Jahr im WS Dauer des Moduls ein Semester	9	Referat / Belegarbeit
zweiwöchentliche Vorlesung 1 SWS wöchentliche Übungen 2 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots jedes Jahr im WS Dauer des Moduls ein Semester	Leistungspunkte und Noten	
Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen, Prüfung vorbereiten Häufigkeit des Angebots jedes Jahr im WS Dauer des Moduls ein Semester	Arbeitsaufwand	zweiwöchentliche Vorlesung 1 SWS
Dauer des Moduls ein Semester		Vorlesung nacharbeiten, Übungsaufgaben und Belegaufgabe lösen,
	Häufigkeit des Angebots	jedes Jahr im WS
Modulverantwortlicher DrIng. Steffen Sommer (FEIT-IFAT)	Dauer des Moduls	ein Semester
	Modulverantwortlicher	DrIng. Steffen Sommer (FEIT-IFAT)

2.2. Chemical Systems

Name des Moduls	Strömungsmechanik II
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden durch den Besuch des Moduls in die Lage versetzt, die grundlegenden Mechanismen komplexer Strömungen in verfahrenstechnischen Apparaten zu verstehen, zu beurteilen und zu berechnen. Sie verfügen über vertiefte Kenntnisse im Bereich der Strömungsdynamik und kennen spezifische Themen, die für Regelungsanwendungen besonders wichtig sind. Das betrifft insbesondere solche Komplexitätsmerkmale (mehrere Phasen mit Wechselwirkung, komplexes Stoffverhalten, reaktive Prozesse, Dichteänderungen), die für Verständnis und Optimierung praktischer Prozesse erforderlich sind. Inhalt: Einführung, Wiederholung notwendiger Grundkenntnisse Kompressible Strömungen mit Reibungsverlusten und Wärmeaustausch Verdichtungsstöße und Verdünnungswellen Laminare und turbulente Grenzschichten Strömungen mit freier oder erzwungener Konvektion, reaktive Strömungen Strömungen komplexer Fluide, nicht-newtonsches Verhalten Turbulente Strömungen und deren Modellierung Mehrphasenströmungen: Grundeigenschaften, Analyse disperser Systeme, Analyse dicht beladener Systeme Literatur: [1] Herwig, H., Strömungsmechanik, Vieweg+Teubner, 2008 [2] White, F.M., Fluid Mechanics, McGraw Hill Professional, 2003
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Vorlesung Strömungsmechanik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungsp.	Klausur 120 min
Leistungspunkte und Noten	4 SWS / 5 Credit Points = 150 h (56 h Präsenzzeit + 144 h selbständige Arbeit), Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 2 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Dominique Thévenin (FVST-ISUT)

Name des Moduls	Computational Fluid Dynamics
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden durch den Besuch des Moduls in die Lage versetzt, einen komplexen Strömungsprozess mithilfe numerischer Strömungssimulation zu simulieren und anschließend die Simulationsergebnisse kritisch zu analysieren. Das Modul vermittelt sowohl Fachkompetenz als auch Methodenkompetenz unter Einbeziehung praxisbezogener Beispiele. Inhalt: Introduction, simulations on high-performance computers Best-practice guidelines, introduction to Matlab, using Matlab to solve a potential flow Solutions for unsteady flows. Using Matlab to solve a Couette flow. Procedure of Computational Fluid Dynamics: choice of geometry, generation of high-quality grids, discretization Order of discretization, convergence and residuals, error estimations, validation Turbulent flows, models and limitations Simulation of multiphase flows Simulation involving non-newtonian fluids Literatur: [1] J. Ferziger and M. Peric. Numerische Strömungsmechanik. Springer-Verlag, Berlin/Heidelberg, 2008. [2] E. Laurien and H. Oertel. Numerische Strömungsmechanik. Springer, 2009.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Strömungsmechanik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	benotete Projektarbeit
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 1 SWS, Übung 2 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS und SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	PrivDoz. DrIng. Gábor Janiga (FVST-ISUT)

Name des Moduls	Chemical Reaction Engineering
Inhalte und Qualifikationsziele des Moduls	The topic of this module is the quantitative assessment of chemical reactions, the selection of suitable reactor types and their design. By attending this module, students are enabled to:
	Inhalt:
	 Stoichiometry of chemical reactions Chemical thermodynamics Kinetics Mass transfer in heterogeneous catalysis Design of chemical reactors Heat balance of chemical reactors Material aspects in chemical process engineering Literatur:
	[1] O. Levenspiel. Chemical Reaction Engineering, Wiley, 1999
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Thermodynamics, Physical Chemistry, Fluid Mechanics
Verwendbarkeit desModuls	Wahlmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 120 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (56 h Präsenzzeit + 94 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Tutorium 2 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Andreas Seidel-Morgenstern (FVST-IVT)
1	• • • • • • • • • • • • • • • • • • • •

Name des Moduls	Adsorption und heterogene Katalyse
Inhalte und Qualifikationsziele des Moduls	Die Studierenden sind in der Lage die wichtigsten Adsorbentien, hinsichtlich ihrer Eigenschaften in ihren Grundzügen zu charakterisieren können Adsorptionsgleichgewichte von Einzelstoffen und Gemischen mathematisch und experimentell quantifizieren. haben ein Grundverständnis zur Durchführung von Adsorptionsprozessen in technischen Apparaten zur Stofftrennung, z.B. für die Auslegung von Festbettadsorbern können effektive Reaktionsgeschwindigkeiten katalytisch wirkender Feststoffe unter Berücksichtigung des Adsorptionsverhaltens identifizieren sind mit verschiedenen modernen instationären (Reaktor) Betriebsweisen vertraut Inhalt: Adsorptionsprozesse Adsorptionsgleichgewicht und Adsorptionskinetik Stoffbilanzen und Adsorberauslegung Beispiele zur technischen Anwendung Heterogene Katalyse Kinetik Wärme-und Stoffbilanzen Berechnung von Festbettreaktoren Instationäre Betriebsweisen Industrielle Chromatographie Vorstellung verschiedener verfahrenstechnischer Konzepte Beispiele aus der pharmazeutischen Industrie und Biotechnologie Literatur: [1] Kast, Adsorption aus der Gasphase, VCH, Weinheim, 1988 [2] Ertl, Knörziger, Weitkamp, Handbook of Heterogeneous Catalysis, VCH, 2008
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Chemie, Reaktionstechnik I, Thermodynamik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung

Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Andreas Seidel-Morgenstern (FVST-IVT)

Name des Moduls	Modellierung mit Populationsbilanzen
Inhalte und Qualifikationsziele des Moduls	Ziel des Modules ist es, die Studierenden mit den allgemeinen Prozessen in dispersen Systemen, die zu einer Eigenschaftsveränderung der Individuen einer Population, z.B. Partikel oder Zellen, vertraut zu machen. Da die Individuen in der Regel nicht gleichartig sind, kommt es zur Ausbildung einer Eigenschaftsverteilung. Anhand ausgewählter Fallbeispiele aus der Partikeltechnik und der Bioverfahrenstechnik werden die Studenten befähigt, die allgemeinen populationsdynamischen Mechanismen (Wachstum, Aggregation, Bruch und Keimbildung) zu erkennen, mathematisch zu beschreiben und auf neue Anwendungsfälle zu übertragen. Anhand der eindimensionalen Populationsbilanz für örtlich konzentrierte Systeme werden den Studierenden die notwendigen mathematischen Grundlagen der populationsdynamischen Modellierung vermittelt. Nach Abschluss des Moduls sind die Studierenden in der Lage, populationsdynamische Modelle für Prozesse in dispersen Systemen zu erstellen, zu analysieren und mit Hilfe spezieller numerischer Methoden zu lösen. Des Weiteren werden die Studierenden befähigt, die erhaltenen Ergebnisse für Aufgaben des Prozessdesigns und der Prozessführung zu bewerten und einzusetzen.
	 Inhalt: Eigenschaften, Darstellung von Eigenschaftsverteilungen durch Dichtefunktion; Merkmale und Handhabung von Dichtefunktionen Modellierung populationsdynamischer Prozesse (Nukleation, Wachstum, Aggregation, Bruch) Analytische Lösungsmethoden für Populationsbilanzen (Momentenmethoden, Laplace-Transformation, Methode der Charakteristiken) Numerische Lösungsmethoden (Finite-Volumen-Methoden, QMOM, Cell-Average, Monte-Carlo-Methoden) Anwendungsbeispiele und Fallstudien aus Partikeltechnik und Bioverfahrenstechnik
	Literatur: [1] D. Ramkrishna. Population balances: Theory and application to particulate systems in engineering. Academic Press, 2000. [2] A. Randolph, M. Larson. Theory of particulate processes: Analysis and techniques of continuous crystallization. Academic Press, 1972. [3] M. Peglow, A. Bück, M. Dernedde. Einführung in die Modellierung populationsdynamischer Systeme. Vorlesungsskript.
Lehrform	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematische Grundlagen anwendungsbereites Wissen der Verfahrens- und Simulationstechnik
Verwendbarkeit des Moduls	Wahlpflichtmodul in den Masterstudiengängen Systemtechnik und Technische Kybernetik, Biosystemtechnik, Verfahrenstechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Bearbeitung eines Beleges mündliche Prüfung am Ende des Moduls (30 min)
Leistungspunkte und	3 SWS / 5 Credit Points = 150 h

Noten	(42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	HonProf. DrIng. Mirko Peglow (FVST-IVT)

Name des Moduls	Disperse Systeme der Verfahrenstechnik: Polymere, Kristalle, Emulsionen
Inhalte und Qualifikationsziele des Moduls	The students acquire knowledge on the applications, processes and modelling principles of disperse systems. Various disperse systems are introduced and compared. Basic modelling techniques that are important to all disperse systems are taught, that is, mass and energy balances and the population balance and derived equations thereof (e.g. momentum equations). Three important classes of disperse systems in chemical engineering, i.e. crystallization systems, polymerization systems and emulsions, are discussed consecutively in detail. For all three systems the students learn the basic mechanisms as well as thermodynamic aspects. The students acquire knowledge on the kinetics of the most important mechanisms in crystallization, polymerization and emulsions. An overview of the most important measurement techniques for property distributions is given. In order to employ this knowledge to solve practical problems, industrially relevant example processes are analysed and modelled. This enables the students to analyse, quantify, model, optimize and design processes and products involving a dispersed phase.
	Inhalt:
	 Introduction to dispersed phase systems: Fundamentals and characterisation
	 Balance equations: Mass balance, energy balance, population balance
	 Important dispersed phase systems in chemical engineering: Crystallization systems, polymerization systems, emulsions and dispersions
	Mechanisms affecting property distributions
	Thermodynamic aspects, Kinetics, Modelling
	 Process examples
	Measurement techniques
	Literatur: [1] Ramkrishna, Population Balances, Academy Press 2000 [2] Lagaly, Dispersionen und Emulsionen Steinkopff Verlag 1997. [3] Hofmann, Kristallisation in der industriellen Praxis, Wiley-VCH 2004. [4] Odin, Principles of Polymerization, John Wiley & Sons, 2004. [5] Mullin, Crystallization, Elsevier, 2000. Takeo, Disperse Systems, Wiley-VCH, 2001
Lehrform	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Basic knowledge of chemical engineering, process systems engineering, thermodynamics, reaction engineering, mathematics
Verwendbarkeit des Moduls	Wahlmodul STK
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung

Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	42 hours of attendence (one-week full-time block seminar), 10 hours outside class, examination preparation
Häufigkeit des Angebots	jedes Jahr in den Semesterferien des SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Lehrauftrag DrIng. Christian Borchert (BASF SE)

Name des Moduls	Statistische Planung und Auswertung von Versuchen
Inhalte und Qualifikationsziele des Moduls	Ziel des Moduls ist es, den Studenten die Fähigkeit zu vermitteln, experimentelle Daten aus Produktionsprozessen mit statistischen Methoden auszuwerten. Die Studenten werden in die Lage versetzt, Regressionsrechnungen, Regressionsanalysen und Korrelationsanalysen für lineare sowie für nichtlineare Prozessmodelle durchzuführen und Vertrauensbereiche von Modellparametern zu ermitteln. Nach Abschluss des moduls beherrschen die Studenten grundlegende Arbeitstechniken der Versuchsplanung für Modelle ersten und zweiten Grades (orthogonale, zentrale und zusammengesetzte Versuchspläne).
	Inhalt:
	 Grundbegriffe und Definitionen der Statistik: Variable, Parameter, Modelle, Regression, Planung Statistische Grundlagen: Zufall, Wahrscheinlichkeit, Verteilungen, Stichprobe, Varianz, Schätzung, Vertrauensbereiche Lineare Modelle: Parameter, Einfache Regression, Korrelations- und Regressionsanalyse, Vertrauensintervalle, Varianz und Kovarianz, Multiple Regression Nichtlineare Modelle: Linearisierung, Iterative Verfahren Versuchsplanung: Modelle 1. und 2. Grades, Faktorielle Versuchspläne, Blockfaktorpläne, Orthogonale, zentrale und zusammengesetzte Versuchspläne, Rotierte Versuchspläne, Zuverlässigkeit Literatur: [1] E. Kreyszig, Statistische Methoden und ihre Anwendungen, Vandenhoeck & Ruprecht [2] KR. Koch, Parameter Estimation and Hypothesis Testing in Linear Models, Springer [3] K. Siebertz, D. Van Bebber, T. Hochkirchen, Statistische Versuchsplanung: Design of Experiments (DoE), Springer. [4] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Anwendungsbereites Wissen der Mathematik
Verwendbarkeit des	Wahlpflichtmodul im Masterstudiengang
Moduls	Systemtechnik und technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit), Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Kai Sundmacher (FVST-IVT)

Name des Moduls	Molekulares Modellieren
Inhalte und Qualifikationsziele des Moduls	Ziel des Moduls ist es, den Studenten theoretische und praktischen Fähigkeiten zum Einsatz verschiedener Modellierungswerkzeuge für diskrete Systeme von Partikeln, Gruppen von Molekülen, Molekülen und Atomen auf verschiedenen Raum- und Zeitskalen mit besonderem Bezug auf den Einsatz in technisch - ingenieurwissenschaftlichen Gebieten zu vermitteln. Dabei werden modelltheoretische Kenntnisse mit verschiedenen numerischen Verfahren verknüpft und damit die molekular orientierte Simulation am Computer als eigenständiges Ingenieurswerkzeug vermittelt. Nach Abschluss des Moduls sind die Studenten in der Lage, einfache Problemstellungen zu verfahrenstechnischen Prozessen mit den jeweils adäquate Modellierungen und geeigneten numerischen Verfahren zu verknüpfen. Sie erlangen damit übertragbares Wissen für spätere forschende Tätigkeiten und den industriellen Arbeitsalltag. Inhalt: Einführung, Konzepte und Grundlagen des molekularen Modellierens Simulationswerkzeuge für verschiedene Raum- und Zeitskalen Monte-Carlo-Methoden: Einführung, Gleichgewichtsmethoden, Dynamische Methoden, Anwendung für die Partikelsynthese Molekulardynamik: Grundlagen, Potentiale, Anwendung für Diffusion und Keimbildung Quantenmechanik: Einführung, Kraftfelder, Dichtefunktionale Aktuelle Entwicklungen: Methoden, Algorithmen, Software Literatur: [1] Bungartz, Zimmer, Buchholz, Pflüger: Modelbildung und Simulation, Springer 2009. [2] Andrew Leach, Molecular Modelling - Principles and Application, Pearson 2001. [3] M. Griebel, Numerische Simulation in der Moleküldynamik, Springer 2004.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagenwissen der Physik und Chemie Anwendungsbereites Wissen von Simulationstechniken in MatLab
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technischen Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS

Dauer des Moduls	ein Semester
Modulverantwortlicher	Dr. rer. nat. Andreas Voigt (FVST-IVT)

Name des Moduls	Prozesssimulation
Inhalte und Qualifikationsziele des Moduls	Ziel des Moduls ist es, den Studenten die grundlegenden Schritte des konzeptionellen Prozessentwurfs und die systematische Vorgehensweise bei der Modellierung und Simulation stationärer und dynamischer verfahrenstechnischer Prozesse unter Benutzung industrierelevanter kommerzieller Simulationswerkzeuge (z. B. Aspen Plus und Aspen Dynamics) zu vermitteln. Die Studenten erlangen dabei das Wissen, diese Simulationswerkzeuge eigenständig und zielführend für den konzeptionellen Prozessentwurf und für die Bewertung unterschiedlicher Prozessvarianten einzusetzen und Prozesssimulationen selbstständig durchzuführen. Inhalt: Einführung in den Simulator Aspen Plus für die stationäre Prozesssimulation Stoffdaten (Reinstoffe, Gemische), Phasengleichgewichtsmodelle Apparate-Modellierung: Chemische Reaktoren, Trennkolonnen, Wärmetauscher, Mischer, Separatoren, Pumpen, Verdichter Rückführungen, Verschaltung zum Gesamtprozess Flowsheet-Simulation ausgewählter Beispielprozesse Dynamische Prozesssimulation mit Aspen Dynamics Literatur: [1] Baerns et al.: Technische Chemie (Wiley - VCH) [2] Biegler et al.: Systematic Methods of Chemical Process Design (Prentice Hall) [3] Smith: Chemical Process Design (McGraw - Hill)
Lehrformen	Vorlesung, Ubung
Voraussetzungen für die Teilnahme	Chemische Thermodynamik, Thermische Verfahrenstechnik, Reaktionstechnik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Dr. rer. nat. Andreas Voigt (FVST-IVT)

Name des Moduls	Simulation of Mechanical Processes
Inhalte und Qualifikationsziele des Moduls	 perfect and consolidate their physical basic understanding of essential processes of Mechanical Process Engineering and Particle Technology can properly handle statistically distributed material properties of disperse particle systems (material analysis), see content 1., to improve product quality (product design) analyse thoroughly the problems and objectives of stochastic and dynamic conversion processes of disperse material systems (process diagnose) to develop appropriate solutions (process design) are able to develop and consolidate their skills in development, design, multiscale modelling and simulation and evaluation of combined, stochastic, instationary, dynamic processes (process systems design) Inhalt: Consolidation of knowledge concerning characterisation of disperse material systems, new physical test methods in granulometry, test methods of porosimetry
	2. Consolidation of knowledge concerning particle processing by comminution, mechanoluminescence at cracking, utilization of these physical effects to develop innovative on-line test methods, balancing of microprocesses of particle breakage and the macroscopic comminution kinetics by population balances, energetic evaluation of process performance, dynamics and process design
	3.1 Consolidation of knowledge concerning separation of particles, balancing the kinetics of mechanical separation processes, separation function and separation sharpness as stochastically oscillating characteristics of process performance,
	3.2 Kinetics and one-dimensional particle dynamics of sieving, energetic evaluation of process performance and consequences for dynamics and process design
	4.1 Simulations of flow separation, microscopically accelerated (time-dependent) particle flow in a fluid, fluid and field forces including mass inertia, instationary and stationary particle settling velocity, velocity-time and distance-time laws of laminar and turbulent particle flow-around,
	4.2 Characterisation of dynamics of turbulent flow, turbulent particle diffusion, one-dimensional Fokker-Planck equation of convective (directional) and diffusive (random) particle transport in macroscopic continuum of process chamber, balancing of turbulent counter-current and cross-flow classification of particles in water and air,
	4.3 Modelling of multistage cross-flow separation processes and separators, energetic evaluation of process performance, dynamics and process design
	5. Modelling and Simulation of combinations of macroscopic comminution and separation processes, energetic evaluation of these process combinations, process systems design

	6.1 Short introduction into Discrete-Element Method, classical spring-dashpot contact model, micromechanical force-displacement models of elastic-plastic and viscous contacts of fine adhesive particles,
	6.2 Problem solutions for practical powder dosing, fluctuations at discharge of fine cohesive powders from containers, modelling and simulation of incipient (accelerated) outflow of cohesive powders, macroscopic dynamics and process design
	7. Particle formulation by press agglomeration, compressibility and compactibility of cohesive particle packings, biaxial stress states and dynamic flow pattern within roller gap, dynamics and design of roller presses
	8. Coating of cohesive powders by additives to physical product formulation, stochastic homogeneity, mixing kinetics and dynamics of high-performance agitators
	Literatur:
	[1] Manuscript with text, figures and tutorials, see www.ovgu.de/ivt/mvt/
	[2] Schubert, H., Handbuch der Mechanischen Verfahrenstechnik, Wiley-VCH, Weinheim 2003
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Fundamentals and Processes of Chemical Engineering
Verwendbarkeit des Moduls	Wahlpflichtfach im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung am Ende des Moduls, Leistungsnachweis
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 63 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Jürgen Tomas (FVST-IVT)

2.3. Energy Systems

Name des Moduls	Elektrische Energienetze II - Energieversorgung
Inhalte und Qualifikationsziele des Moduls	Die Studenten erwerben in dem Modul vertiefende Kenntnisse im Bereich der Energieübertragung und -verteilung. Sie werden befähigt, die Auswirkungen der sich verändernden Struktur der Energiegewinnung und -verteilung auf die Gebiete der Netzplanung, des Netzbetriebes, der Netzregelung und der Netzdienstleistungen zu erkennen und daraus gezielt Maßnahmen zur Entwicklung intelligenter Netzstrukturen (Smart Grid) abzuleiten.
	Durch die Aneignung des vermittelten Spezialwissens zu Problemen der Netzbeobachtung, zur Netzsicherheit, zur Black-Out Prävention und zur verstärkten Netzintegration von dezentralen Erzeugern in unterschiedlichen Netzebenen werden die Studenten in die Lage versetzt, das komplexe Zusammenspiel von Erzeugung, Speicherung, Netzmanagement und Verbrauch in einem Smart Grid zu erfassen und dieses Wissen für die Weiterentwicklung bestehender Netzstrukturen anzuwenden.
	Inhalt:
	 Netzplanung und Netzbetrieb, Netzregelung, Parallelbetrieb von Generatoren, Netzdienstleistungen, Netzbeobachtung durch synchrone Messungen, Dynamic Security Assessment,
	 Black-Out-Prevention, Windparkmodellierung und Modellreduktion Organisation der Energiewirtschaft, Bilanzkreise und Übertragungsnetzbetrieb, Kostenrechnung in der Energiewirtschaft,
	 Zuverlässigkeitsrechnung im Energienetz
	Literatur:
	[1] B. Oswald – Netzberechnung 2, Berechnung transienter Vorgänge Elektroenergieversorgungsnetzen, VDE-Verlag, 1996
	[2] V. Crastan, D. Westermann – Elektrische Energieversorgung 1+2+3, Springer 2012
	[3] D. Oeding, B. R. Oswald – Elektrische Kraftwerke und Netze, 7. Auflage, Springer 2011
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Elektrische Energienetze 1
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik Pflichtmodul im Masterstudiengang "Elektrotechnik und Informationstechnik" mit der Option "Elektrische Energietechnik" Pflichtmodul im Masterstudiengang "Elektrische Energiesysteme"
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung

Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Zbigniew Antoni Styczynski (FEIT-IESY)

Name des Moduls	Alternative Energien / Regenerative Energiequellen
Inhalte und Qualifikationsziele des Moduls	Das Modul vermittelt Kenntnisse zur elektrischen Energieerzeugung aus regenerativen Energiequellen und zur Integration der regenerativen Elektroenergiequellen in das gesamte Energiesystem.
	Die Studenten werden durch den Besuch des Moduls in die Lage versetzt, die qualitativen und quantitativen Auswirkungen der aus verschiedenen erneuerbaren Quellen erzeugten elektrischen Energie auf das Energieversorgungssystem zu erkennen und zu bewerten. Sie lernen die Nutzungsmöglichkeiten der regenerativ verfügbaren Energiepotentiale kennen und können Probleme der verstärkten Netzintegration durch Betrachtung des Gesamtsystems unter Einbeziehung von Energiespeichern und Brennstoffzellen nachvollziehen und beeinflussen. Dies trägt zum Verständnis des sogenannten "Smart Grid" bei.
	Inhalt:
	 Einführung, Elektrische Energiesysteme, Energiebegriffe, Smart Grid Grundlagen des regenerativen Energieangebots, Energiebilanz Photovoltaische Stromerzeugung Stromerzeugung aus Wind Stromerzeugung aus Wasserkraft Brennstoffzellen Elektrische Energiespeicher Netzintegration regenerativer Erzeuger
	Literatur:
	[1] V. Quaschning: Regenerative Energiesysteme, Carl Hanser Verlag[2] A. G. Orths: Stromerzeugung durch Windenergieanlagen, Skript zur Vorlesung Windenergie, Otto-von-Guericke- Universität, Magdeburg
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik Pflichtmodul im Masterstudiengang "Elektrotechnik und Informationstechnik" mit der Option "Elektrische Energietechnik" Pflichtmodul im Masterstudiengang "Elektrische Energiesysteme"
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, 14-tägige Übungen 1 SWS Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Zbigniew Antoni Styczynski (FEIT-IESY)

Name des Moduls	Windenergie
Inhalte und Qualifikationsziele des Moduls	Die Studenten erwerben beim Besuch des Moduls grundlegende Kenntnisse zur Umwandlung und Nutzung der Windenergie für die Stromerzeugung. Ihnen wird ein Überblick über die Komponenten von Windkraftanlagen und ein Verständnis über dessen Funktionen vermittelt. Die Anwendungsgebiete und mögliche Arten der Windenergienutzung werden aufgezeigt. In den Übungen werden die erworbenen Fähigkeiten zur Berechnung und Auslegung von Windkraftanlagen ergänzend gefestigt. Darüber hinaus werden technische und wirtschaftliche Aspekte zur Netzintegration und zur Systemführung analysiert.
	Inhalt:
	 Grundbegriffe, Potentiale, Rahmenbedingungen Physik der Windenergienutzung, grundlegende Konversionsprinzipien Auslegung von Windturbinen, Tragflügeltheorie Kennfeldberechnung und Teillastverhalten Berechnungsverfahren, Leistungskennlinie Aufbau von Windkraftanlagen, Anlagenkomponenten, Generatorarten Generator-Netz-Kopplung, Netzrückwirkungen Systemdienstleistungen Wirtschaftlichkeitsbetrachtung Literatur:
	[1] R. Gasch (Hrsg.): Windkraftanlagen, Teubner Verlag, Berlin
	[2] S. Heier: Nutzung der Windenergie, TÜV-Verlag, Köln
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	-
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang "Elektrotechnik und Informationstechnik" mit der Option "Elektrische Energietechnik" und im Masterstudiengang "Elektrische Energiesysteme – Regenerative Energien" sowie im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Antje Orths (FEIT-IESY)

Name des Moduls	Modellierung und Expertensysteme in der elektrischen Energieversorgung	
Inhalte und Qualifikationsziele des Moduls	Die Studenten erwerben Kenntnisse über Modellbildung und Simula zur Analyse der Verhältnisse in elektrischen Energienetzen. Sie wer durch den Besuch des Moduls befähigt, physikalische Modelle entwerfen und diese bei der Durchführung von Berechnungen Simulationen in elektrischen Energienetzen anzuwenden. Weite erwerben sie Kenntnisse zum Aufbau, zur Entwicklung und zur Funk von Expertensystemen und werden in die Lage versetzt, Expertensyste für die Lösung komplexer Problemstellungen in der Energieversorgung nutzen.	
	Inhalt:	
	 Modellierung Schaltgeräte: Konstruktion, Funktionsfähigkeiten und Modelle Schaltvorgänge und Darstellung von Wanderwellenvorgängen im Netz Expertensysteme Grundbegriffe, Expertensysteme in der Energieversorgung Wissensakquisition und Wissensrepräsentation Behandlung von Ungenauigkeiten, Wahrscheinlichkeiten Fuzzy-Techniken und Neuronale Netze in Expertensystemen Daten- und Wissensbanken in Expertensystemen Überwachung elektrischer Anlagen unterstützt durch wissensbasierte Systeme 	
	o BeispieleLiteratur:	
	[1] Adolf J. Schwab : Elektroenergiesysteme: Erzeugung, Transport, Übertragung und Verteilung elektrischer Energie	
	[2] Günther Hilgarth: Hochspannungstechnik (Leitfaden der Elektrotechnik)	
	[3] Karl Kurbe: Entwicklung und Einsatz von Expertensystemen: Eine anwendungsorientierte Einführung in wissensbasierte Systeme	
	[4] Raul Rojas: Theorie der neuronalen Netze: Eine systematische Einführung	
	[5] Gert Böhme: Fuzzy-Logik: Einführung In Die Algebraischen Und Logischen Grundlagen	
Lehrformen	Vorlesung, Übung	
Voraussetzungen für die Teilnahme	-	
Verwendbarkeit des Moduls	Masterstudiengänge der Fakultät "Elektrotechnik- und Informationstechnik"	
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung	
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung	
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung	
, a bolisaulwallu	Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten	

Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. habil. Zbigniew Antoni Styczynski (FEIT-IESY)

Name des Moduls	Leistungselektronische Systeme
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden durch das Modul in die Lage versetzt, aus bekannten Grundschaltungen komplexere leistungselektronische Schaltungen zu entwickeln, verschiedene Schaltungen exemplarisch zu benennen, ihre Funktionsweise einschließlich der Steuer- und Regelverfahren nachzuvollziehen und ihre Anwendung einzuordnen - beispielsweise die Verwendung des Dreipunktumrichters zur Einspeisung von dezentral photovoltaisch erzeugter Energie ins Netz. Die Studierenden können entsprechende Schaltungen anwendungsspezifisch auslegen und regelungstechnisch modellieren. Sie sind befähigt, Zusammenhänge zwischen dem behandelten und benachbarten Fachgebieten zu erkennen und gewonnene Erkenntnisse auch interdisziplinär anzuwenden, wie sie sich beispielsweise durch Anwendung der Leistungselektronik zur Umformung aus erneuerbaren Quellen erzeugter elektrischer Energie ergeben. Inhalt: • resonante Schaltungen • Varianten selbstgeführte Brückenschaltungen • Varianten netzgeführter Stromrichter • Regelung von leistungselektronischen Schaltungen
	Literatur:
	[1] Dierk Schröder: Leistungselektronische Schaltungen - Funktion,
	Auslegung und Anwendung; Springer-Verlag
	Berlin, 3. Auflage 2012
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Leistungselektronik
Verwendbarkeit des Moduls	Masterstudiengänge
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, zweiwöchentliche Übungen 1 SWS
	Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Andreas Lindemann (FEIT-IESY)

Name des Moduls	Stromversorgungstechnik
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden durch das Modul in die Lage versetzt, den Einsatz bekannter leistungselektronischer Schaltungen in komplexen Systemen zu implementieren; aufgrund der Anwendungsbeispiele insbesondere von Systemen zur Versorgung mit aus erneuerbaren Quellen erzeugter elektrischer Energie sowie für Elektrofahrzeuge können die Studierenden die erworbenen Kompetenzen unmittelbar in diesen Bereichen einsetzen und sich darüber hinaus in andere Gebiete einarbeiten. Die Studierenden sind in der Lage, die Funktionsweise der leistungselektronischen Systeme nachzuvollziehen; darüber hinaus können sie entsprechende Systeme anwendungsspezifisch auslegen. Sie sind befähigt, Zusammenhänge zwischen dem behandelten und benachbarten Fachgebieten zu erkennen und gewonnene Erkenntnisse auch interdisziplinär anzuwenden, wie sie sich beispielsweise durch die oben genannten Anwendungsbereiche ergeben. Inhalte: Stromversorgungen Leistungselektronische Systeme für aus erneuerbaren Quellen erzeugte elektrische Energie Photovoltaik-Anlagen Windenergie-Anlagen Windenergie-Anlagen Hochspannung-Gleichstrom-Übertragung (GHÜ) leistungselektronische Systeme in Fahrzeugen - Elektromobilität elektrische Antriebstechnik Ladegeräte Literatur: [1] Dierk Schröder: Leistungselektronische Schaltungen - Funktion, Auslegung und Anwendung; Springer-VerlagBerlin, 3. Auflage 2012
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Leistungselektronik
Verwendbarkeit des Moduls	Masterstudiengänge
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, 14-tägige Übungen 1 SWS Selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Andreas Lindemann (FEIT-IESY)

Name des Moduls	Combustion Engineering
Inhalte und Qualifikationsziele des Moduls	The students are able to conduct energy and mass balances for firings using all stoichiometric conditions. They are able to calculate the fuel consumption and the flue gas composition for a given heat requirement. They can calculate approximately criteria for stable ignitions, minimum ignition energy, flash back and blow off of flames. They know the conditions for explosions and detonations. Therewith they can design firings and can assess firings for energy efficiency, reduction of emissions and increase of safety. Inhalt: Characterizing of gaseous, liquid and solid fuels, oxygen and air demand Composition of combustion gas, influence of excess air number, specific flue gas amount, equilibrium of gas, dissociated components, hypostoichiometric combustion Combustion gas temperatures, firing efficiency, influence of heat recovery with air preheating, oxygen enrichment, using of gross heating values for heatings of houses Premixed flames, reaction mechanism, ignition, flame speed, distinguish distance, minimum ignition energy, stability Diffusion flames, mixing mechanism, flame length, stability Explosions and detonations Combustion of liquid fuels, mechanism, atomization Combustion of solid fuels, grinding, pyrolysis, reaction mechanism, ash behaviour Design of firings Literatur: [1] S. Turns: An introduction to combustion, Mc. Graw Hill, 2003.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Thermodynamics, Heat Transfer, Physical Chemistry
Verwendbarkeit des	Wahlpflichtmodul in den Masterstudiengängen Umwelt - und
Moduls	Energieprozesstechnik, Systemtechnik und Technische Kybernetik Pflichtmodul im Masterstudiengang Chemical and Energy Engineering
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Eckehard Specht (FVST-ISUT)
<u> </u>	Inhaltavawaiahnia

Name des Moduls	Fluidenergiemaschinen
Inhalte und Qualifikationsziele des Moduls	Die Studenten lernen die grundlegenden Funktionsprinzipien und den konstruktiven Aufbau der Fluidenergiemaschinen kennen, machen sich mit Auslegung, Betriebsverhalten und Regelung dieser Maschinen bei optimaler Energieumsetzung vertraut. Sie sind anschließend in der Lage, Auswahl und Dimensionierung entsprechender Systeme selbstständig zu realisieren.
	 Inhalt: Aufgabe, Einsatzgebiete, Bedeutung in der Energiewirtschaft, rationeller Energieverbrauch in Anlagen Strömungstechnische Grundlagen, Energiebilanz, Thermodynamische Grundlagen Energieübertragung in Strömungsmaschinen Leiteinrichtungen, Kennlinien, Affinitätsgesetze und dimensionslose Kennzahlen Pumpen Wasserturbinen Gas- und Dampfturbinen Windturbinen und Gebläse Literatur: [1] Menny, K., Strömungsmaschinen, Teubner, 2006 [2] Volk, M., Pump characteristics and applications, Taylor and Francis, 2005
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Vorlesung Strömungsmechanik, Thermodynamik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungs- punkten	Klausur 90 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Dominique Thévenin (FVST-ISUT)

Name des Moduls	Biofuels: Sustainable Production and Utilisation
Inhalte und Qualifikationsziele des Moduls	The module provides an overview of the conversion processes of biomass to various fuels. The students will learn the differences between the thermochemical and biotechnological processes and they will understand the process limitations for various raw materials (e.g. starch vs. lignocellulosic raw materials). They will learn how to apply the common chemical reaction engineering modeling principles for biomass conversion processes and which are feasible model assumptions to describe the reactions and unit operations applicable for biofuel production processes.
	Beyond the process engineering aspects the students will learn the principles of a life cycle assessment. Over case studies they will learn how to critically apply the life cycle assessment analysis for the production and utilization of biomass based fuels.
	Furthermore, the course brings the students the skills of searching and collecting scientific information with the citation database Scopus. They will learn to analyse and critically review the relevant scientific publications, and to report scientific published information appropriately.
	Inhalt: 1. Renewable biomass sources in comparison to fossil sources 2. Biomass feedstock and intermediates, feedstock characterisation 3. Biofuels: Properties, utilization, comparison to fossil fuels 4. Production processes and model description for the processes • Ethanol production processes (lignocellulosic and sugar based) • Biodiesel production: transesterification and hydrogenation processes • Thermochemical conversion: biomass gasification and pyrolysis • Fischer-Tropsch process, biomass-to-liquid (BTL) • Algae biomass potential and utilisation for biofuel production 5. Sustainability of biofuel production and utilisation • Principles of LCA and case studies for biofuel production Literatur: lecture materials (free to download)
Lehrformen	Vorlesung, Literaturübersicht
Voraussetzungen für die Teilnahme	Bachelor level (chemical engineering or chemistry)
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang: Chemical and Energy Engineering (CEE), Nachhaltige Energiesysteme (NES), Umwelt- und Energieprozesstechnik (UEPT), Wahlmodul in den anderen Studiengängen, Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / CEE 4 CP , NES 5 CP, UEPT 4 CP =120 h (28 h Präsenzzeit + 92 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Selbständiges Arbeiten: Erstellung der Literaturübersicht, Nacharbeiten

	der Vorlesungen, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Dr. techn. Liisa Rihko-Struckmann (MPI Magdeburg)

Name des Moduls	Brennstoffzellen
Inhalte und Qualifikationsziele des Moduls	The participants of the module are enabled to understand the principles of electrochemical energy conversion. They are aware of the technical applications and future trends in the area of fuel cells. The participants are able to analyze, design and optimize fuel cell systems and possess basic knowledge in the area of fuel processing.
	Inhalt: Introduction to fuel cells - Working principle - Types of fuel cells - Applications Steady-state behavior of fuel cells - Potential field - Constitutive relations (Nernst equation, electrochemical reaction kinetics, mass transport) - Integral balance equations for mass and energy - Current-voltage-curve, efficiencies, design Experimental methods in fuel cell research Fuels - Handling and storage of hydrogen - Fuel processing Fuel cell systems Literatur: [1] Vielstich, W. et al.: Handbook of Fuel Cells, Wiley 2003 [2] Larminie, J. and Dicks, A.: Fuel Cell Systems Explained, Wiley, 2003 [3] Haman, C.H. and Vielstich, W.: Electrochemistry, Wiley, 1998
l ab wfa was a r	[4] Bard, A.J. and Faulkner, L.R.: Electrochemical Methods, Wiley, 2001 [5] Lecture notes, available for download
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Basic knowledge on thermodynamics, reaction engineering and mass transport is advantageous.
Verwendbarkeit des Moduls	Wahlpflichtfach im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von LPs	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Block-Vorlesung 5 Tage Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Laborarbeiten, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Richard Hanke-Rauschenbach (FVST-IVT)

Name des Moduls	Power Systems Control and Optimization
Inhalte und Qualifikationsziele des Moduls	Students: learn fundamentals of automatic power system operation gain the ability to provide a stability analysis and design control laws for specific parts of a power system, learn how to formulate and solve different kinds of optimization problems for power systems. Inhalt:
	 Relay control, automatic emergency control Generation and frequency control Voltage stability and automatic voltage regulator Economic dispatch problem Unit commitment Optimal power flow Literatur: [1] A.J. Wood, B.F. Wollenberg, Power generation operation and control,
	John Wiley & Sons, 1996. [2] XP. Zhang, C. Rehtanz, B. Pal, Flexible AC transmission systems: modeling and control, Springer, 2006. [3] V. A. Venikov, Transient processes in electrical power systems, Mir Publishers, 1977.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Electrical Engineering or related studies
Verwendbarkeit des Moduls	Optional module for the Master's Courses "Systemtechnik und Technische Kybernetik", "Elektrotechnik und Informationstechnik", "Wirtschaftsingenieurwesen für Elektrotechnik und Informationstechnik" and "Electrical Engineering and Information Technology"
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Stefan Palis (FEIT-IFAT)

2.4. Systems Biology and Biomedical

Name des Moduls	Systems Theory in Systems Biology
Inhalte und Qualifikationsziele des Moduls	The students are introduced to systems theoretical methods and concepts that are specially tailored to problems appearing in systems biology.
	By attending this module, the students are enabled to model and analyze signal transduction, metabolic, and genetic networks in a structured way. They learn to apply systems theoretical methods to evaluate properties of dynamic models in systems biology, and get to know how to relate the theoretical findings back to dynamic features of the considered biological systems. Students learn to apply the theoretical methods to actual systems biology models by considering various application examples and during a project work that is part of the module.
	Inhalt:
	 Nonlinear dynamics in biological systems Sensitivity analysis for systems biology Model reduction for systems biology Modeling and analysis of heterogeneous cell populations Optimization methods in systems biology Robustness of biological systems
	Literatur: [1] R. Heinrich and S. Schuster: The regulation of cellular systems. Chapman & Hall, New York, USA. 1996. [2] Y. A. Kuznetsov: Elements of applied bifurcation theory. Springer, New York, USA. 2004.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagenwissen aus dem Bereich der Regelungstechnik und Systemtheorie
	Grundlagenwissen der Systembiologie
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
	Wahlpflichtmodul im Masterstudiengang Biosystemtechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des	jedes Jahr im SS

Angebots	
Dauer des Moduls	ein Semester
Modulverantwortlicher	JunProf. DrIng. Steffen Waldherr (FEIT-IFAT)

Name des Moduls	Modeling and Analysis in Systems Biology
Inhalte und Qualifikationsziele des Moduls	This module provides an introduction to the general concepts of Systems Biology, a motivation for quantitative and dynamical approaches in biology. It furthermore describes the role of mathematical modelling. The students are enabled to model simple metabolic, genetic and signal transduction networks, understand their key underlying dynamical properties and analyse biological models. They are furthermore enabled to understand the basic approaches, basic language, and methods in biology, especially systems biology.
	The main focus is on a systems view on cell-biological and molecular systems, their mathematical modeling and their analysis.
	Inhalt: Systems Biology? Why modeling and analysis? Basic biological principles Modeling Biological systems Cell Chemistry Cell Signalling Biochemical Reaction Kinetics Enzyme Kinetics Dynamic modelling of biochemical networks (ODE, Boolean-models) Stochastic Modelling and Simulation A systems view on Metabolic control analysis Computer exercises Literatur: [1] Klipp, E., Herwig, R., Kowald, A., Wierling, C. and Lehrach, H. 2005. Systems Biology in Practice: Concepts, Implementation and Application. Wiley-VCH, Weinheim.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagenvorlesung aus dem Bereich der Regelungstechnik und Systemtheorie
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Wahlpflichtmodul im Masterstudiengang Biosystemtechnik Klausur 90 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS

Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Rolf Findeisen (FEIT-IFAT)

Name des Moduls	Bioverfahrenstechnik I
Inhalte und Qualifikationsziele des Moduls	Bioverfahrenstechnik I Den Studierenden werden neben einer Einführung in die Mikrobiologie für Ingenieure die wesentlichen Grundlagen der biologischen, apparativen und theoretischen Aspekte biotechnologischer Prozesse vermittelt. Die Studierenden Iernen Geräte, Messtechniken und Verfahren kennen, die in der Bioverfahrenstechnik routinemäßig zur Kultivierung von Mikroorganismen und zur Aufreinigung biologischer wirkstoffe eingesetzt werden. Durch die praktischen Übungen sind die Studierenden in der Lage eigen ständig Experimente in Bioreaktoren sowie Versuche zur Aufreinigung von Makromolekülen (Proteine) vorzubereiten, durchzuführen und auszuwerten. Die Ergebnisse der Versuche können sie in Form von schriftlichen Protokollen darstellen. Inhalt: ■ Einführung in die Mikrobiologie ■ Mikroorganismen (Prokaryonten; Eukaryonten; Bakteriophagen, Viren und Plasmide) ■ Chemie der lebenden Zelle (Kohlenstoffverbindungen, Makromoleküle) ■ Energetik und Metabolismus (Grundlegende Begriffe, Oxidation und Reduktion, Enzymkatalysierte Reaktionen, Katabolismus, Anabolismus, Regulation des Stoffwechsels) ■ Grundlagen der Genetik (RNA - , Proteinbiosynthese, DNA Replikation, Kontrolle Genexpression) ■ Bioprozesse ■ Vermehrung von Mikroorganismen (Wachstumskinetik, Einfluss physikalischer Faktoren, Produktbildung, Substratverbrauch, Sauerstoffbedarf) ■ Fermentationspraxis (Bioreaktoren, Steriltechnik, Impfkulturen, Transportprozesse, Maßstabsvergrößerung) ■ Analyse von Fermentationsprozessen (Off - line Messungen, Prozesskontrolle, Modellierung) ■ Downstream Processing ■ Vorbemerkungen (Ziel von Aufarbeitungsverfahren, Anzahl der Reinigungswege, Reinheit und Reinigungskoeffizienten, Proteinreinigungsprozesse als Einheitsoperationen) ■ Biomasseabtrennung (Sedimentation, Zentrifugation, Filtration und Membranseparation) ■ Zellaufschluss (Verfahren, Beispiel: Aufschluss durch Kugelmühlen) ■ Chromatographie (Verfahren, Trennprinzipien, Systemkomponenten, Probenvorbereitung, Medien, Ionenaustausch - , Gel- und Affinitätschromatogra
Lehrformen	[5] Storhas, W.(2003): Bioverfahrensentwicklung, Wiley - VCH Vorlesung, Praktikum

Voraussetzungen für die Teilnahme	Grundlagenfächer des Bachelors
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik, Pflichtmodul in den Bachelorstudiengängen Verfahrenstechnik, Molekulare und strukturelle Produktgestaltung, Biosystemtechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min Leistungsnachweis (Protokoll des Praktikums)
Leistungspunkte und Noten	4 SWS / 6 Credit Points = 180 h (56 h Präsenzzeit + 124 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 3 SWS, Praktikum 1 SWS (Termin nach Vereinbarung), Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Schreiben des Protokolls
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Udo Reichl (FVST-IVT)

Name des Moduls	Modellierung von Bioprozessen
Inhalte und Qualifikationsziele des Moduls	Den Studierenden kennen die wesentlichen Grundlagen der mathematischen Modellierung biotechnologischer Prozesse, die im Rahmen von Forschung und industrieller Produktion eingesetzt werden. Die Studierenden sind in der Lage, Verfahren zur Lösung einfacher Differentialgleichungen, zur Ermittlung von Parametern aus experimentellen Daten und zur Beurteilung der Qualität der Modellanpassung anzuwenden. Die theoretischen Ansätze werden in einer begleitenden Rechnerübung vertieft. Basierend auf der Programmiersprache Matlab lernen die Studenten konkrete Aufgabenstellungen aus der Praxis in Einzel – oder Kleingruppenarbeit umzusetzen und in Form von lauffähigen Programmen zu dokumentieren.
	 Mathematische Modelle Massenbilanzen, Bilanzgleichungen, Bildungsraten, Eintrags - und Austragsterme
	 Allgemeines Modell für einen einfachen Bioreaktor, Unstrukturierte und strukturierte Modelle Gleichungen für die Reaktionskinetik Allgemeine Grundlagen, Enzymkinetiken, Zellwachstum, Zellerhaltung, Zelltod Produktbildung, Substratverbrauch, Umgebungseffekte (Einführung: Regressionsanalyse) Lösung der Modellgleichungen Differentialgleichungen und Integrationsverfahren, Rand - und Anfangsbedingungen Stationäre und dynamische Modelle, Überprüfung eines Modells (Einführung: Gewöhnliche Differentialgleichungen / Numerische Integration) Bioprozesse Batch Kulturen, Kontinuierliche Kulturen, Fed - Batch Kulturen, Chemostaten mit Biomasse – Rückführung Transport über Phasengrenzen Kinetische Modelle für den Sauerstoffverbrauch, Bestimmung des KI ·a und der Sauerstoff - Transportrate, Sauerstofflimitierung in Batch Prozessen Modellvalidierung Analyse der Residuen, Autokovarianz und Autokorrelation, Kreuzkovarianz und Kreuzkorrelation Parameterunsicherheiten und Modellauswahl Komplexe Modelle Literatur: [1] Bailey, J.E. and Ollis, D.F. (1986): Biochemical engineering
	fundamentals, McGraw - Hill, second edition [2] Dunn, I.J. (1992): Biological reaction engineering. Principles, applications and modelling with PC simulation, Wiley VCH [3] Ingham, J., Dunn, J.I., Heinzle, E., Prenosil, J.E. (1992): Chemical engineering dynamics, Wiley VCH
	[4] Nielsen, J., Villadsen, J. and Gunnar, L. (2003): Bioreaction Engineering Principles, 2 nd Ed. Kluwer Academic/Plenum Publishers, New York [5] Schuler, M.L., Kargi, F. (2006): Bioprocess Engineering, 2 nd ed., Prentice Hall, New York.
Lehrformen	Vorlesung, Übung

Voraussetzungen für die Teilnahme	Grundlagenfächer des Bachelor
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik, Verfahrenstechnik, Wahlpflichtfach im Bachelorstudiengang Biosystemtechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 120 min, Leistungsnachweis (Übungen)
Leistungspunkte und Noten	3 SWS / 4 Credit Points = 150 h (42 h Präsenzzeit + 78 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Udo Reichl (FVST-IVT)

Name des Moduls	Computational Neuroscience II
Inhalte und Qualifikationsziele	Das Modul vermittelt theoretische Grundlagen von Architekturen und Lernverfahren in Modellen neuronaler Netze und in Verhaltensmodellen.
des Moduls	Nach Abschluss hat der Teilnehmer Kenntnis der grundlegenden Probleme und Methoden der theoretischen Neurowissenschaften. Er/Sie kann theoretische Konzepte und Programme wie in der Vorlesung vermittelt anwenden. Er/Sie hat die Fähigkeit, kleine Computerprogramme und Visualisierungen zu erstellen.
	Inhalt:
	 Biologische Motivation Feedforward Netzwerke Stabilität und Asymptotisches Lernverhalten Rekurrente Netzwerke Dichotomien als Bedeutungszuweisungen, Grenzen linearer Modelle Assoziatives Gedächtnis Exzitatorisch-inhibitorische Netzwerke Plastizität und Lernen Lernkapazität und Robustes Lernen Konditionierung und Verstärkung Lernen zeitlich verzögerter Belohnungen Strategien und Verhaltenskontrolle (,actor-critic') Generative und Klassifizierende Modelle Erwartungsmaximierung Prinzipielle und Unabhängige Komponentenanalyse Literatur: Dayan and Abbott (2001) Theoretical Neuroscience, MIT Press
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Erforderlich: Grundkenntnisse Differential- und Integralrechnung und Lineare Algebra. Nützlich: Grundkenntnisse Programmieren
Verwendbarkeit des Moduls	Wahlpflichtmodul im Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Leistungsnachweis (termingerechte Abgabe von regelmäßigen Übungs- und Programmierarbeiten), Klausur 120min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Andreas Wendemuth (FEIT-IIKT)
	Inhaltsverzeichnis

Name des Moduls	Computational Neuroscience I

Inhalte und Qualifikationsziele des Moduls	Das Modul vermittelt theoretische Grundlagen der Funktion von Neuronen und Neuronenpopulationen, insbesondere die elektrochemische und biophysikalische Entstehung neuronaler Aktivität und synaptischer Aktivitätsübertragung sowie die Enkodierung und Dekodierung sensorischer Informationen in rauschbehafteter Populationsaktivität. Daneben werden Konzepte der statistischen Physik und Informationstheorie vermittelt, die auch in vielen anderen Bereichen nützlich sind.
	Nach Abschluss können die Teilnehmer die Entstehung neuronaler Aktivität und die Enkodierung/Dekodierung sensorischer Information gedanklich nachvollziehen, mathematisch beschreiben und programmiertechnisch nachbilden. Daneben verfügen Teilnehmer über selbstgefertigte Programme mit Anwendungsbeispielen wichtiger Analyseverfahren (z.B., Simulation dynamischer Systeme, Bayes' Theorem und bedingte Wahrscheinlichkeiten, Autokorrelation, Faltungsintegral, Rückkorrelation, "maximum likelihood' Schätzung, Berechnung von Fisher und Shannon Information).
	Inhalt: Nernst Gleichung und Membranpotential RC Modell des Neurons LIF Modell des Neurons HH Modell des Aktionspotentials Synaptische Leitfähigkeiten Netzwerke von LIF Neuronen Antwortselektivität (,tuning') Lineare Filter Modelle der Antwortselektivität Psychometrische Funktionen Neurometrische Funktionen Bayes Theorem Dekodierung von Populationsaktivität Fisher und Shannon Information Literatur: [1] Dayan and Abbott (2001) Theoretical Neuroscience, MIT Press [2] Gerstner & Kistler (2002). Spiking Neuron Models. Cambridge University Press
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Erforderlich: Grundkenntnisse Differential- und Integralrechnung. Nützlich: Grundkenntnisse Programmieren
Verwendbarkeit des Moduls	Wahlpflichtmodul im Bachelorstudiengang Biosystemtechnik, Pflichtmodul im Bachelorstudiengang Biosystemtechnik (letztmalig WS 2013/14), Pflichtmodul im Bachelorstudiengang PNK Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von LPs	Leistungsnachweis (termingerechte Abgabe von regelmäßigen Programmierarbeiten), Klausur 120 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von

	Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Jochen Braun, Ph.D. (FNW-IBIO)

Name des Moduls	Strukturelle und funktionale Analyse von zellulären Netzwerken
Inhalte und	Lernziele und erworbene Kompetenzen:
Qualifikationsziele	Dieses Modul vermittelt verschiedene theoretische Ansätze und
des Moduls	Methoden zur strukturellen und qualitativen Modellierung und Analyse zellulärer Netzwerke. Die Studenten bekommen ein allgemeines Verständnis für den strukturellen Aufbau und die Arbeitsweise unterschiedlicher Klassen von biochemischen Netzwerken und eignen sich dann verschiedene Methoden für die rechnergestützte Analyse dieser Netzwerke an. Die Verfahren kommen hauptsächlich aus dem Bereich der diskreten Mathematik (z.B. Graphen- und Hypergraphentheorie, Boolesche Netzwerke) und der linearen Algebra. Die Anwendung der theoretischen Methoden wird in Übungen mithilfe eines Softwarepakets und konkreten biologischen Beispielen gezeigt. Das interdisziplinäre (systembiologische) Denken der Studenten und das Verständnis für netzwerkweite Prozesse in der Zelle wird gefestigt. Außerdem werden Methoden zur Bestimmung strategischer Eingriffe und zur Rekonstruktion zellulärer Netzwerke vermittelt.
	 Inhalt: Einführung: zelluläre Netzwerke, Stoffflüsse und Signalflüsse, Datenbanken Graphentheoretische Analyse, statistische Kennzahlen, Netzwerkmotive Metabolische Netzwerkanalyse: Erhaltungsrelationen, Stoffflussverteilungen, Flusskegel, Elementarmoden, Minimal cut sets Modellierung von regulatorischen und Signaltransduktionsnetzen mittels Interaktionsgraphen und Booleschen Netzwerken: Feedback loops, cut sets, Abhängigkeitsmatrix, Minimale Interventionsmengen Zusammenhänge zwischen Netzstruktur und qualitativer Dynamik: Einführung in Methoden der Netzwerkrekonstruktion Literatur: [1] Zoltan Szallasi, Vipul Periwal, Jörg Stelling (eds): System Modeling in Cellular Biology: From Concepts to Nuts and Bolts, MIT Press,
	Cambridge, MA, 125-148, 2006. [2] Bernhard Palsson: Systems Biology - Properties of Reconstructed Networks. Cambridge University Press: 2006.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundverständnis für Molekularbiologie und Modellierung. Grundlagen in linearer Algebra.
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang STK
Voraussetzungen für die Vergabe von LPs	Klausur 120 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit), Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung

Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Dr. Steffen Klamt (Max-Planck-Institut frü Dynamik komplexer technischer Systeme)

Name des Moduls	Simulation und Steuerung/Regelung der biol. Abwasserreinigung
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden durch den Besuch des Moduls in die Lage versetzt, die Methode der dynamischen Simulation für die prozesstechnische Auslegung und die Automatisierung von Abwasserreinigungsanlagen anzuwenden. Qualifikationsziele sind ein fundiertes Verständnis der Belebtschlammmodelle (ASM3 – Activated Sludge Model 3) und der grundlegenden Steuerungs- und Regelungskonzepte von Kläranlagen. Nach Absolvierung des Moduls sind die Studierenden in der Lage, die Automatisierung für einen zuverlässigen, umweltschonenden und ökonomischen Betrieb von Abwasserreinigungsanlagen zu entwerfen.
	Inhalt:
	 Anwendungsfelder der Simulation anhand von Beispielen, Grundlagen der Modellierung von Kläranlagen: Stoffbilanzen, Erhaltungssätze, Reaktortypen Modellierung mikrobiologischer Prozesse: Ernährungstypen, Kinetik, Stöchiometrie, Belebtschlammmodelle Stoffgruppen und Prozesse zur Beschreibung der Stickstoff-, Kohlenstoff- und Phosphor-Elimination Simulation von Kläranlagen: Vorstellung eines Simulationssystems (SIMBA); Modellaufbau, Zulaufmodellierung und Datenaufbereitung, Modellkalibrierung und Modellverifikation Zusammenspiel von stationärer Bemessung und dynamischer Simulation Entwicklung und Analyse von Mess-, Steuerungs- und Regelungskonzepten Analyse und Synthese von Sauerstoffregelungen als Kern der Prozessregelung von Kläranlagen nach dem Belebtschlammprinzip; Entwurf von Sauerstoffregelungen sowie Vorstellung von Verfahrensregelungen für die Stickstoff- und Phosphor-Elimination; Behandlung praxisrelevanter Effekte und Randbedingungen Spezialmodellierung, alternative Modellierungsansätze, Biofilmmodellierung
	[1] Dochain, D. and Vanrolleghem, P.A. (2001): Dynamical Modelling and Estimation in Wastewater Treatment Processes. IWA Publishing, London, ISBN 1-900222-50-7. [2] Baumann, P. (2009): MSR-Technik in abwassertechnischen Anlagen. expert verlag, Renningen, ISBN 978-3-8169-2922-2.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Regelungstechnik und der Verfahrenstechnik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
	Wahlpflichtmodul in den Masterstudiengängen Biosystemtechnik, Umwelt- und Energieprozesstechnik, Verfahrenstechnik, Wirtschaftsingenieurwesen Verfahrenstechnik und Energietechnik
Voraussetzungen für die Vergabe von Leistungspunkte	mündliche Prüfung

Leistungspunkte und Noten	2 SWS / 3 Credit Points = 90 h (28 h Präsenzzeit + 62 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 14-tägige Vorlesung 1 SWS, Block-Übung 1 SWS selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Vor- und Nachbereitung der Übungen zur Rechnersimulation, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Ulrich Jumar (FEIT-IFAT)

Name des Moduls	Computer Tomographie - Theorie und Anwendung
Inhalte und Qualifikationsziele des Moduls	Ziele des Moduls (Kompetenzen):
	Die Studenten erhalten
	 Ein Verständnis der Systemtheorie abbildender Systeme Einen Überblick über die Physik und Funktionsweise der Computer Tomographie Ein Verständnis der mathematischen Verfahren zur tomographishen Rekonstruktion Einen Überblick über die aktuellen Forschungsgebiete der Tomographischen Bildgebung
	Inhalt:
	Beginnend mit der Systemtheorie abbildender Systeme folgt die Behandlung der physikalischen Eigenschaften der Röntgenstrahlung und ihrer Wechselwirkung mit Materie. Im zweiten Teil wird die Röntgen basierende Projektionsbildgebung diskutiert. Im dritten Teil folgt das genaue Studium der mathematischen Verfahren der tomographischen Bildgebung und die Behandlung diverser Bildrekonstruktionsverfahren. Die einzelnen Inhalte sind:
	Systemtheorie abbildender Systeme
	 Physikalische Grundlagen Röntgenröhren und Röntgendetektoren Projektionsbildgebung
	 Rekonstruktionsverfahren: Fourier-basierende Verfahren, Gefilterte Rückprojektion, Algebraische Verfahren, statistische Verfahren Geometrien: Parallel-, Fächer- und Kegelstrahl Implementierungsaspekte Bildartefakte und ihre Korrekturen
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Digitale Signalverarbeitung, Grundlagen der Physik
Verwendbarkeit des Moduls	Anrechenbar für alle Masterstudiengänge anderer Fakultäten, deren Studienordnung dies erlaubt.
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	5 Credit Points = 150h (42h Präsenzzeit + 108h Selbständiges Arbeiten) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung
	Selbständiges Arbeiten
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Georg Rose (FEIT-IIKT)

Name des Moduls	Einführung in die medizinische Bildgebung
-----------------	---

Inhalte und	Lernziele und erworbene Kompetenzen:
Qualifikationsziele des Moduls	Bildgebung ist heutzutage die wichtigste medizinische Diagnostikform. In dieser Veranstaltung wird eine Übersicht über die Modalitäten der modernen medizinischen Bildgebung gegeben. Dabei wird das Prinzip, die Funktionsweise sowie die wichtigsten medizinischen Anwendungen vorgestellt und die Vor- und Nachteile bezüglich der Bildqualität und Risiken für den Patienten diskutiert.
	Den Teilnehmern werden darüber hinaus Kenntnisse über die jeweils erforderlichen Datenverarbeitungsschritte sowie optionale weitere Bildverarbeitung vermittelt.
	Dass Wissen wird in den Übungen und insbesondere innerhalb eines Praktikums gefestigt.
	Inhalt:
	 Röntgendurchleuchtung Computertomographie Nukleare medizinische Bildgebung (PET, SPECT) Ultraschall-Bildgebung Kernspintomographie
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematik, Physik, Grundlagen der Elektrotechnik, Medizinische Grundbegriffe
Verwendbarkeit des Moduls	Wahlmodul in den Bachelor und Master Studiengängen
Voraussetzungen für die Vergabe von LPs	Klausur 90 min
Leistungspunkte und Noten	5 Credit Points / 3 SWS = 150 h (42 h Präsenzzeit + 108 h selbst. Arbeit)
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen: 1 Semester * 2 SWS wöchentliche Übungen: 1 Semester * 1 SWS Selbstständige Arbeit: Nachbereitung der Vorlesungen, Bearbeiten der Übungsaufgaben, Vor- und Nachbereitung der Praktikumsversuche, Vorbereitung für die Klausur
Häufigkeit des Angeb.	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Georg Rose (FEIT-IIKT)

Name des Moduls	Unsicheres Wissen
Inhalte und Qualifikationsziele des Moduls	 Verständnis der Konzepte für den Umgang mit unsicherem Wissen bei der Modellierung, Schätzung, Klassifikation und Entscheidung Fähigkeit der Entwicklung und Parametrisierung eines Bayes Netzes Verständnis der Konzepte der Schätztheorie und ihres Einsatzes Fähigkeit der Anwendung von stochastischen Filtern
	Inhalt:
	 Grundlagen der Verarbeitung unsicheren Wissens Bayes Netze, Topologie, Parametrisierung, Inferenz Stochastische Schätzung Wiener-Filter Kalman-Filter
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen der Statistik und Wahrscheinlichkeitsrechnung
Verwendbarkeit des Moduls	Wahlmodul in den Masterstudiengängen Systemtechnik und Technische Kybernetik und Elektrotechnik und Informationstechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90
Leistungspunkte und Noten	2 SWS / 3 Credit Points = 90 h (28 h Präsenzzeit + 62 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 1 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Georg Rose (FEIT-IIKT)

Name des Moduls	Anwendung Stochastischer Modelle in der Elektromagnetischen Verträglichkeit (EMV)
Inhalte und Qualifikationsziele des Moduls	Die Studierenden werden Fähigkeiten bei der Anwendung mathematischer Modelle in der Elektrotechnik, speziell der Elektromagnetischen Verträglichkeit (EMV) vermittelt. Sie kennen am Ende des Moduls stochastische Modelle zur Beschreibung von elektromagnetischen Kopplungen. Sie können stochastische Modelle zur Beschreibung von EMV-Testumgebungen anwenden. Die Studierenden sind mit erfolgreicher Beendigung des Moduls in der Lage, die qualitativen und quantitativen Ergebnisse von Experimenten zu bewerten sowie ihr Wissen und ihre Fähigkeiten angeleitet forschungsorientiert zu vertiefen, und anzuwenden.
	Inhalt:
	 Problemspezifische Einführung in die EMV, Begriffe, Störemission, Störfestigkeit, Störpegel, Störabstand, Zeit- und Frequenzbereich EMV-Mess- und Prüftechnik (Überblick) Methoden zur Analyse der Kabelkopplung Modellierung der Kabelkopplung in zufällige Kabelstrukturen Modenverwirbelungskammer (MVK) als stochastische EMV-Messumgebung Beschreibung des elektromagnetischen Feldes durch den Ansatz ebener Wellen Feldverteilung und Korrelationsfunktionen Messwertinterpretation
	Literatur:
	 [1] David A. Hill Electromagnetic Fields in Cavities: Deterministic and Statistical Theories, Wiley-IEEE Press
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Grundlagen Elektrotechnik
Verwendbarkeit des Moduls	Wahlmodul in den Masterstudiengängen Systemtechnik und Technische Kybernetik und Elektrotechnik und Informationstechnik
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min
Leistungspunkte und Noten	2 SWS / 3 Credit Points = 90 h (28 h Präsenzzeit + 62 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 1 SWS, Übung 1 SWS
	Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Ralf Vick (FEIT-IMT)
L	<u> </u>

Name des Moduls	Mathematische Modellierung physiologischer Systeme
Inhalte und Qualifikationsziele des Moduls	Die Studierenden verfügen am Ende des Moduls über Kenntnisse zur mathematischen Modellierung ausgewählter physiologischer Systeme auf der Basis der entsprechenden physikalisch-chemischen Grundgesetze. Im Rahmen von Übungen lernen sie die betrachteten physiologischen Systeme mit Hilfe geeigneter Simulationswerkzeuge auf dem Rechner zu simulieren und erhalten so einen vertieften Einblick in deren Funktionsweise. Nach erfolgreicher Beendigung des Moduls sollen sie im Rahmen einer forschungsorientierten Tätigkeit in der Lage sein, die erlernten Methoden und Werkzeuge auch auf erweiterte Fragestellungen aus den behandelten Themenbereichen oder verwandte Fragestellungen aus anderen Themenbereichen anzuwenden. Inhalt: Herz-Kreislauf-System Regelung des Zellvolumens und elektrische Eigenschaften von Zellen Signalübertragung in Nervenzellen Signalverarbeitung in der Retina Signalverarbeitung im Ohr/Ohrimplantate Populationsdynamische Modellierung biologischer Systeme Literatur: [1] Silbernagl, S.; Despopoulos, A.: Taschenatlas der Physiologie. Georg Thieme Verlag, Stuttgart, 2003. [2] Hoppensteadt, F.C.; Peskin, C.S.: Modeling and Simulation in Medicine and the Life Sciences. Springer-Verlag, Berlin, 2002. [3] Keener, J.; Sneyd, J.: Mathematical Physiology. Springer-Verlag, Berlin, 1998.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematische und physikalische Grundlagen, Grundlagen der Systemtheorie/Signale und Systeme
Verwendbarkeit des Moduls	Wahlpflichtfach für den Masterstudiengängen Systemtechnik und Technische Kybernetik, Medizinische Systeme, Biosystemtechnik
Voraussetzungen für die Vergabe von Leistungsp.	mündliche Prüfung
Leistungspunkte und Noten	2 SWS / 4 Credit Points = 120h (28h Präsenzzeit + 92h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 1 SWS Vorlesung, 1 SWS Übung Selbstständige Arbeit: Nacharbeiten der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Achim Kienle (FEIT-IFAT)
	•

Name des Moduls	Grundlagen stochastischer Prozesse in biophysikalischen Systemen
Inhalte und Qualifikationsziele des Moduls	Dieses Modul bietet eine Einführung in die Modellierung zufälliger Prozesse am Beispiel biophysikalischer Nichtgleichgewichtssysteme. Ziel des Moduls ist es, den Studenten den Umgang mit verschiedenen Modellierungsmethoden und deren Beziehung untereinander zu vermitteln. Theoretische Konzepte werden durch das Lösen von Beispielaufgaben in den Übungen ergänzt. Unter Einbeziehung von Originalliteratur werden Bezüge zur aktuellen Forschung hergestellt. Durch den Besuch des Moduls werden die Studenten in die Lage versetzt, einfache biologische oder physikalische Prozesse stochastisch zu modellieren, deren Verhalten zu analysieren und mit Hilfe geeigneter Methoden numerisch zu simulieren.
	 Inhalt: Eigenschaften stochastischer Prozesse (Stationarität, Homogenität, Ergodizität, spektrale Eigenschaften und Wiener-Khinchin Theorem) Markoprozesse und Chapman-Kolmogorov Gleichung: Herleitung der Mastergleichung Approximation der Mastergleichung durch Fokker-Planck Gleichungen: Krames-Moyal Entwicklung und Entwicklung nach der Systemgröße (Linear Noise Approximation) Stochastische Differentialgleichungen und Äquivalenz zur Beschreibung durch eine Fokker-Planck Gleichung Simulation stochastischer Prozesse: Gillespie Algorithmus Spezielle stochastische Prozesse / Verteilungen: Poisson Prozess, "Random Walk", Wiener Prozess, Ornstein-Uhlenbeck Prozess, Random-Telegraph Prozess, Gammaverteilung, Negative Binomialverteilung Literatur: N. G. Van Kampen. Stochastic Processes in Physics and Chemistry, Elsevier, 2. Edition, 1997. C. W. Gardiner. Handbook of Stochastic Methods, Springer, 4. Edition, 2009.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Nichtlineare Dynamik, mathematische Grundlagen zum Lösen von Differentialgleichungen sind hilfreich
Verwendbarkeit des Moduls	Wahlpflichtfach im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	 Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Prüfungsvorbereitung.

Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	PrivDoz. Dr. rer. nat. habil. Ronny Straube (FNW-IEP)

2.5. Mechatronic Systems

Name des Moduls	Eingebettete Mechatronische Systeme I
Inhalt und Qualifikationsziele des Moduls	Durch den Besuch des Moduls erlangen die Studierenden Grundlagenverständnis zum Aufbau und zur Funktion eingebetteter Systeme in der Mechatronik, zu analogen und digitalen Lösungen und zur Signalverarbeitung und zum Echtzeitverhalten.
	Inhalt:
	 Eingebettetes System im mechatronischen Gesamtsystem Grundlagen analoger Lösungen auf der Basis von OPs Grundlagen digitaler Lösungen auf der Basis von µCs Grundlagen der Spezifikation und Generierung von Echtzeitsoftware Grundlagen digitaler Lösungen auf der Basis von programmierbarer Logik Literatur:
	[1] Wiegelmann, J.: Softwareentwicklung in C für Mikroprozessoren,
	Hüthig-Verlag 1996 [2] Papoulis, A.: The fourier integral and ist applications, McGraw-Hill New York
	[3] Schmitt, F. J.; v.Wendofff, W. Ch.; Westerholz, K.: Embedded-Control Architekturen, Carl Hanser Verlag München-Wien 1999 [4] Auer, A.; Rudolf, D.: FPGA Feldprogrammierbare Gate Arrays, Hüthig-Verlag Heidelberg, 1995
	[5] Auer, A.: Programmierbare Logik-IC, Hüthig-Verlag
	Heidelberg,1994 [6] Färber, G.: Prozesstechentechnik, Springer-Lehrbuch, 1994 [7] Bernstein, H.: Analoge Schaltungstechnik mit diskreten und integrierten Bauelementen, Hüthig-Verlag, 1997 [8] Föllinger, O.: Lineare Abtastsysteme, Oldenbourg Verlag, 1974
	[9] Scholze, R.: Einführung in die Microcomputertechnik, Teubner Stuttgart 1993
	[10] Salzen, R.P; E.L.: A Practical Method of Designing RC Active Filters. IRE Trans. On Circuit Theory, Vol. CT-2, No. 1, March 1955, pp. 74-85.
	[11] Unbehauen, R.: Netzwerk- und Filtersynthese. Oldenburg-Verlag, München, Wien 1993.
	[12] Deliyannis, T.; Yichuang Sun; Fidler, J.K.: Continuous-Time Active Filter Design. CRC Press, Boca Raton, London, New York, Washington, D. C. 1999.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Mechatronik Wahlmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
	Vorbereitung für das Mechatronik Projekt II
	Anrechenbarkeit: Pflichtfach B-MTK
Voraussetzungen für die Vergabe von Leistungspunkten	Bestehen von 3 Testaten Klausur 90 min
Leistungspunkte und Noten	3 SWS / 4 Credit Points = 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit)

	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten:
	 wöchentliche Vorlesung: 2 SWS 14-tägige Übung: 1 SWS Selbstständiges Arbeiten:
	Nachbereitung der VorlesungLösen der Testataufgaben
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Roland Kasper (FMB-IMS)

Name des Moduls	Eingebettete Mechatronische Systeme II
Inhalt und Qualifikationsziele des Moduls	Durch den Besuch des Moduls erwerben die Studierenden Kenntnisse über den Aufbau und die Entwicklung der Hard- und Software, eingebettete Systeme in der Mechatronik speziell für Fahrzeugsteuergeräte, Industrie PCs und mobile Geräte, sie erwerben Kenntnisse und Fertigkeiten in der Anwendung moderner Werkzeuge zur Softwareentwicklung eingebetteter Systeme in der Mechatronik. Sie beherrschen Spezifikation von Echtzeitsystemen und ihre Implementierung mit Hilfe von Mikrocontrollern und Echtzeitbetriebssystemen.
	Inhalt: Eingebettete Systeme in der Mechatronik Hardware 8 Bit und 32 Bit Mikrocontroller Digitale Schnittstellen, FPGA Analoge Schnittstellen Software Software Software Funktionscodegenerierung Echtzeitbetriebssysteme ERCOS für harte Echtzeitanforderungen und Windows/CE für weiche Echtzeitanforderungen AUTomotive Open System ARchitecture Anwendungen Fahrzeug Aufbau und Funktionsmerkmale KFZ-Steuergerät Funktionsentwicklung für KFZ-Steuergerät Industrie PC / Mobile Phone Aufbau und Funktionsmerkmale IPC Steuerung und Regelung mit Windows CE Literatur: [1] Swik, R., Hatebur, D., Rottke, Th.: Messen, Steuern und Regeln mit Windows CE, Franzis Verlag [2] Färber, G.: Prozessrechentechnik - Grundlagen, Hardware, Echtzeitverhalten, Springer Verlag [3] Müller, H., Walz, L.: Mikroprozessortechnik, Vogel Buchverlag [4] Hering, E., Gutekunst, J., Dyllong, U.: Informatik für Ingenieure, VDI Verlag [5] Sikora, A., Drechsler, R.: Software-Engineering und Hardware-Design, Carl Hanser Verlag [6] Edwards, St. A.: Languages for Digital Embedded Systems, Kluwer Academic Publishers [7] Schmitt, F. J., von Wendorff, W. C., Westerholz, K.: Embedded-Control Architekturen, Carl Hanser Verlag [8] Salcic, Z., Smailagic, A.: Digital Systems Design and Prototyping using Field Programmable Logic, Kluwer Academic Publishers
	[9] Ghassemi-Tabrizi, A.: Realzeit-Programmierung, Springer Verlag [10] Flik, Th.: Mikroprozessortechnik, Springer Verlag
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine (Empfehlung: Eingebettete Systeme I)

Verwendbarkeit des Moduls	Wahlpflichtmodul in den Masterstudiengängen Mechatronik, Automotive, Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Teilnahme an Übungen Mündliche Prüfung
Leistungspunkte und	4 SWS / 6 Credit Points = 200 h
Noten	(56 h Präsenzzeit + 144 h selbstständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten:
	 Wöchentliche Vorlesung: 2 SWS Wöchentliche Übung: 2 SWS Selbstständiges Arbeiten:
	Nachbereitung der VorlesungVor- und Nachbereitung der Übungsaufgaben
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Roland Kasper (FMB-IMS)

Name des Moduls	Mechatronik II – Entwurf mechatronischer Systeme
Inhalt und Qualifikationsziele des Moduls	Durch den Besuch des Moduls erwerben die Studierenden Grundlagen der Systementwicklung, der Entwicklungs-methodik, dem Funktionsentwurf, von Entwurfswerkzeugen. Sie werden zum integrierten mechatronischen Entwurf befähigt und beherrschen Entwurfsumgebungen und Entwurfsmethoden
	Inhalt:
	 Grundlegende Formulierung mechatronischer Entwurfsprobleme Einführung V-Modell der Systementwicklung Entwurf offener Wirkketten Parameterempfindlichkeit Entwurf rückgekoppelter Systeme Verfahren für lineare und nichtlineare Systeme Einführung in die Optimierung mechatronischer Systeme Literatur:
	[1] Pelz, G.: Modellierung und Simulation mechatronischer Systeme, Hüthig-Verlag, 2001
	 [2] Heimann, B.; Gerth, W.; Popp, K.: Mechatronik: Komponenten, Methoden, Beispiele. Fachbuchverlag Leipzig im Carl-Hanser-Verlag, 1998 [3] Roddeck, W.: Einführung in die Mechatronik. Teubner-Stuttgart,
	1997 [4] Miu, D.K.: Mechatronics: electromechanics and
	contromechanics. Springer-Verlag-USA, 1993
	[5] Bradley, D.A.; Dawson, D.; Burd, N.C. u. Loader, A.J.: Mechatronics: electronics in products and processes. London. Chapman & Hall, 1994
	[6] Dindsdale, J. u.a.: Mechatronics – the integration of engineering design. University of Dundee, 1992[7] Stadler, W.: Analytical robotics and mechatronics. New York,
	McGraw- Hill Inc. 1995 [8] Föllinger, O.: Regelungstechnik: Einführung in die Methoden und ihre Anwendung. 8. überarb. Auflage. Heidelberg: Hüthig-Verlag 1994 - Meins, J.: Elektromechanik. Teubner-Studienbücher. Stuttgart 1997
	 [9] Moeller, F.; H. Frohne; u.a.: Grundlagen der Elektrotechnik, Teubner, Stuttgart 1996 [10] Bauer, G.: Ölhydraulik, Teubner, Stuttgart 1992 [11] Zierep, J.: Strömungslehre, Springer-Lehrbuch, 1990
	[12] Isermann, R.: Mechatronische Systeme - Grundlagen, Springer 1999
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Mechatronik, Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	5. Bestehen von 3 Testaten6. Klausur 90 min
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)

	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten:
	 Wöchentliche Vorlesung: 2 SWS Wöchentliche Übung: 1 SWS Selbstständiges Arbeiten: Nachbereitung der Vorlesung Lösen der Testataufgaben
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Roland Kasper (FMB-IMS)

Name des Moduls	Mechatronik II – Mechatronische Sensor-Aktor-Systeme
Inhalt und Qualifikationsziele des Moduls	Durch den Besuch des Moduls werden Studierende zur fortgeschrittenen Systementwicklung und Entwicklungsmethodik und funktionsorientiertem Entwurf befähigt. Sie beherrschen fortgeschrittene Entwurfswerkzeuge, den integrierten mechatronischen Entwurf und fortgeschrittene Entwurfsumgebungen und Entwurfsmethoden. Inhalt: Formulierung mechatronischer Entwurfsprobleme Anwendung des V-Modells der Systementwicklung Hierarchische und komponentenbasierte Entwurfsverfahren Parameterempfindlichkeit, Robustheit
	 Gesamtsystementwurf Grundlagen der Systemoptimierung Literatur:
	[1] Benker; H.: Mathematische Optimierung mit Computeralgebrasystem; Springer Verlag,2003
	[2] Reinhardt, R; Hoffmann, A., Gerlach, T.: Nichtlineare Optimierung, Springer-Spektrum, 2013
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Keine
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Mechatronik, Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	Bestehen von 3 Testaten Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten:
	 Wöchentliche Vorlesung: 2 SWS Wöchentliche Übung: 1 SWS Selbstständiges Arbeiten:
	Nachbereitung der VorlesungLösen der Testataufgaben
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Roland Kasper (FMB-IMS)

Name des Moduls	Dynamics of Robotic Systems
Inhalte und Qualifikationsziele des Moduls	The material treated in this course is a foundation of kinematics, dynamics and methods of computer simulation of robotic systems. The students will acquire the general mathematical and computer skills to understand and describe, as well as analyze the kinematics and dynamics analysis of robotic manipulators.
	Inhalt: Kinematics Rigid-Body Motion Instantaneous Kinematics of Serial Manipulators Dynamics of Robotic Systems
	 Literatur: [1] Angeles, J., "Fundamentals of Robotic Mechanical Systems", Springer, 1997 [2] Sciavicco, L., and Siciliano, B., "Modelling and Control of Robot Manipulators", 2nd Ed., Springer-Verlag Advanced Textbooks in Control and Signal Processing Series, London, 2000
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematik/Physik für Ingenieure
Verwendbarkeit des Moduls	Pflichtmodul im Masterstudiengang Mechatronik, Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Lehrauftrag DrIng. Dmitry Vlasenko (Schaeffler AG)
	Inhalteverzeichnie

Name des Moduls	Elektromechanische Aktorsysteme
Inhalte und Qualifikationsziele des Moduls	 Den Studenten werden grundlegenden Kenntnissen zum Aufbau, zur Wirkungsweise, zum Betriebsverhalten und zur Anwendung von elektromechanischen Aktoren vermittelt Fähigkeiten zur Integration von elektrischen Aktoren in komplexe mechanische Systeme beigebracht.
	Inhalt:
	 Modellbildung von elektromechanische Systeme mit Hilfe der Lagrange'schen Bewegungsgleichung Aufbau, Wirkungsweise und Betriebsverhalten von Piezoaktoren Elektrische Stellglieder (Leistungsverstärker) und Regelung von Piezoaktoren Bauformen von Piezomotoren Aufbau, Wirkungsweise und Betriebsverhalten von magnetostriktiven Aktoren Aufbau, Wirkungsweise und Betriebsverhalten von elektrorheologischen Flüssigkeiten
	 Systemintegration elektrischer Aktoren in komplexe mechanische Systeme Anwendungsbeispiele: Vibrationsdämpfung, Zweikanalpositioniereinrichtung Literatur: [1] U. Riefenstahl: Elektrische Antriebssysteme: Grundlagen, Komponenten, Regelverfahren, Bewegungssteuerung. Vieweg +
Lehrformen	Teubner Wiesbaden, 2010. Vorlesung, Übung
Voraussetzungen für die Teilnahme	 Elektrische Maschinen Elektrische Antriebe 1 Regelungstechnik
Verwendbarkeit des Moduls	Pflichtmodul in den Masterstudiengängen ETIT-EG, Wahlpflichtmodul im Master ETIT, Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, wöchentliche Übungen 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der
Häufigkeit des Angebots	Übungsaufgaben jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Frank Palis (FEIT)
	•

Name des Moduls	Speicherprogrammierbare Steuerungen
Inhalte und Qualifikationsziele des Moduls	Die Studierenden verfügen nach Teilnahme an diesem Modul über über grundlegender Kenntnisse zu den Aufgaben, Funktionseinheiten und der Struktur gesteuerter und geregelter Elektrischer Antriebssysteme unter Nutzung verschiedener industrieller Binärsteuerungen und industrieller quasikontinuierlicher digitaler Regeleinrichtungen.
	Durch praktische Übungen an praxisbezogenen Aufgaben sind die Studierenden in der Lage ihr Wissen und ihre Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden.
	Inhalt:
	 Aufgaben und Einsatzgebiete von SPS Steuerschaltungen für Asynchronmaschinen binäre Steuerungstechnik SPS-Anlagen für Antriebssteuerungen binäre Maschinen- und Anlagensteuerungen Programmierübungen an SPS-gesteuerten Antriebsanlagen Steuerung von Motion Control Anlagen speicherprogrammierbare Antriebsregelungen
	Literatur:
	[1] Ulrich Riefenstahl: Elektrische Antriebssysteme; Vieweg+Teubner; 2010, insbesondere Kapitel 4
Lehrformen	Vorlesung, Übung, Laborpraktikum
Voraussetzungen für die Teilnahme	 Elektrische Maschinen Elektrische Antriebssysteme Regelungstechnik Geregelte elektrische Antriebe
Verwendbarkeit des Moduls	Wahlpflichtmodul in den Masterstudiengängen Elektrotechnik und Informationstechnik, Electrical Engineering, Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 14-tägige Vorlesung 1 SWS, wöchentliche Übungen/Laborpraktika 2 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DiplIng. Andreas Bannack (FEIT-IESY)

Name des Moduls	Robotersysteme
Inhalte und	Lernziele und erworbene Kompetenzen:
Qualifikationsziele des Moduls	 Vermittlung von grundlegenden Kenntnissen zum Entwurf, zur Modellierung und Regelung und von Roboterantriebssystemen Vermittlung von Fähigkeiten zur Programmierung von Robotersteuerungen Entwicklung von praktischen Fertigkeiten zur Durchführung von experimentellen Untersuchungen an Robotersystemen
	Inhalt: Koordinatentransformation zur Beschreibung von Bewegungen im Raum (Denavit-Hardenberg), Dynamisches Modell von Robotersystemen, Integration von geregelten elektrischen Antrieben in die Roboterdynamik Regelung von Roboterantrieben in Kaskadenstruktur Verbesserung des Folgeverhaltens von Robotersystemen durch Sollwertaufschaltungen (flachheitsbasierte Regelung) Verbesserung des Störverhaltens von Roboterantrieben durch Störgrößenkompensation Entkopplung der Roboterachsen durch regelungstechnische Maßnahmen Intelligente Ansätze zur Regelung von Roboterantrieben Anwendungsbeispiele
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	 Elektrische Maschinen Elektrische Antriebssysteme Regelungstechnik Geregelte elektrische Antriebe
Verwendbarkeit des Moduls	Wahlpflichtmodul in den Masterstudiengängen Elektrotechnik und Informationstechnik, Electrical Engineering, Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, wöchentliche Übungen 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der
	Übungsaufgaben
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Frank Palis (FEIT)

2.6. Information & Automation Technologies

Name des Moduls	Digital Information Processing
Inhalte und Qualifikationsziele des Moduls	The module provides an introduction to the formulation, theory, solution, and application of digital information processing for linear time-invariant systems. The participant has an overview of basic problems and methods of digital signal processing. The participant understands the functionality of a digital signal processing system and can mathematically explain the modus of operation. The participant can assess applications in terms of stability and other markers. He / She can calculate the frequency response and reconstruction of analogue signals. The participant can perform these calculations and assessments as well on stochastically excited digital systems.
	 Inhalt: Digital Signals and Digital LTI Systems Z-Transform and Difference Equations Sampling and Reconstruction Synthesis and analysis of such systems Discrete and Fast Fourier Transformations Processing of Stochastic Signals by LTI-Systems: Correlation Techniques and Model-Based Systems (ARMA) Literatur: [1] Wendemuth, A (2004): "Grundlagen der Digitalen Signalverarbeitung", Springer Verlag, Heidelberg. ISBN: 3-540-21885-8 [2] Oppenheim, A; Schafer R (1975): "Digital Signal Processing", Provider Hall, ISBN: 0.432-44635.
Lehrformen	Prentice Hall, ISBN: 0-132-14635-5 Vorlesung, Übung
Voraussetzungen für die Teilnahme	Erforderlich: Grundkenntnisse Differential- und Integralrechnung und Lineare Algebra
Verwendbarkeit des Moduls	Wahlplfichtmodul Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von LPs	Leistungsnachweis (erfolgreiche Teilnahme an Übungen), Klausur 120 min.
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit und 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: Wöchentliche Vorlesung 2 SWS, Übung 1 SWS Selbständiges Arbeiten: Nacharbeiten der Vorlesungen, Lösung von Übungsaufgaben, Prüfungsvorbereitung, Projektarbeit
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. Dr. rer. nat. Andreas Wendemuth (FEIT-IIKT)

Name des Moduls	Prozessleittechnik II
Inhalte und Qualifikationsziele des Moduls	Die Studenten verfügen am Ende der Lehrveranstaltung über Kernkompetenzen zum Entwurf und dem Aufbau von verteilten digitalen Automatisierungssystemen. Sie verstehen, wie die Integration verschiedenster automatisierungstechnischer Komponenten geplant und durchgeführt wird und welche Technologien der Automatisierungstechnik und Informationstechnik dafür eingesetzt werden. Die Studierenden erwerben die Fähigkeit, abstrakte automatisierungs- und informationstechnische Modelle zu erkennen, zu interpretieren und deren Zusammenhänge zu erfassen, um funktionsfähige Automatisierungssysteme zu erstellen.
	Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen.
	 Inhalt: Modelle und Methoden zur Behandlung von Automatisierungssystemen Interaktions- und Kooperationsstrategien von Automatisierungssystemen Integrationstechnologien Prinzipien prozeduraler und deskriptiver Beschreibungsmethoden für technischen Systeme Literatur: Riedl, M., Naumann, F.: EDDL. Oldenbourg Industrie Verlag 2011.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelor in Elektrotechnik, Mechatronik oder Informatik
Verwendbarkeit des Moduls	Plfichtmodul Master ETIT Option Automatisierungstechnik. Wahlfpflichtmodul in ETIT, MTK, STK, WET, EEIT.
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS, wöchentliche Übungen 1 SWS Selbstständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)
•	Inhaltevorzoichnie

Name des Moduls	Kommunikationssysteme
Inhalte und Qualifikationsziele des Moduls Literatur	Die Studierenden verfügen am Ender der Lehrveranstaltung über Kenntnisse der industriellen Kommunikationssysteme. Dazu gehören Kenntnisse der prinzipiellen Wirkprinzipien von Kommunikationsprotokollen und –Diensten. Die Studierenden sind in der Lage die Strukturen und Dienste realer Kommunikationssysteme auf der Basis des ISO/OSI-Referenzmodell zu analysieren und zu verstehen. Die Studierenden haben Kenntnisse über unterschiedlichen physikalischen Realisierungsprinzipien, Buszugriffsverfahren und Anwendungsdienste typischer industrieller Kommunikationssysteme. Sie erlangen Basisfähigkeiten Ethernet/TCP/IP –Systeme zu konfigurieren und das Thema der "Security" einzuordnen. Die Studierenden erlangen Kenntnisse über Wirkprinzipien typischer industrieller Bussysteme. Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen sowie verschiedene Kommunikationssysteme anzuwenden. Inhalt: Übersicht des ISO/OSI-Referenzmodells Grundprinzipien von industriellen Kommunikationsprotokolle Grundprinzipien von Ethernet/TCP/IP und gebräuchliche höhere Protokolle Struktur und Wirkprinzipien von industriellen Bussystemen (z.B. PROFIBUS, CAN) Geräte- und Steuerungsintegration von industriellen Kommunikationssystemen
	[1] Frithjof Klasen, Volker Oestreich, Michael Volz: Industrielle Kommunikation mit Feldbus und Ethernet. VDE-Verlag. ISBN-10: 3800732971
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Das Modul ist geeignet für Studierende ingenieurwissenschaftlicher Studiengänge ab dem 5. Semester. Es werden vorausgesetzt: Elektrotechnik Grundkenntnisse über Mikrorechner Grundkenntnisse der Informationstechnik
Verwendbarkeit des Moduls	Wahlopflichtmodul im Masterstudiengang in den Optionen Automatisierungstechnik und Kommunikationstechnik der FEIT, Systemtechnik und Technische Kybernetik,Wahlmodul in anderen ingenieurtechnischen Masterstudiengängen.
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung

Arbeitsaufwand	Präsenzzeiten:
	wöchentliche Vorlesungen 2 SWS wöchentliche Übungen 1 SWS
	Selbstständiges Arbeiten:
	Nacharbeiten der Vorlesung Lösung der Übungsaufgaben und Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)

Name des Moduls	Automatisierungsgeräte
Inhalte und Qualifikationsziele des Moduls	Die Studierenden erlangen in der Vorlesung Kenntnisse über Aufbau, Funktionsweise und Verschaltung von Geräten der Automatisierungstechnik. Dazu werden Grundlagen und Grundkenntnisse für Realisierungsformen mit verschiedenen Signal- und Hilfsenergieträgerformen vermittelt. Die Studierenden verstehen wesentliche Wirkprinzipien der technischen Umsetzung von Sensoren, Informationsverarbeitungsgeräte (Algorithmenrealisierung) und Aktoren. Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen sowie automatisierungstechnische Geräte anzuwenden. InhaltÖ Wirkungsprinzipien von elektrisch digitalen Mess- und Stellgeräten Wirkungsprinzipien von pneumatischen Stellgeräten Uirkungsprinzipien von hydraulischen Stellgeräten Literatur: [1] G. Strohrmann: Automatisierungstechnik Bd I: Grundlagen, analoge und digitale Prozeßleitsysteme, R. Oldenbourg Verlag, 1998. [2] G. Strohrmann: Automatisierungstechnik. Bd II: Stellgeräte, Strecken, Projektabwicklung, R. Oldenbourg Verlag München Wien, 1991.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Die Lehrveranstaltung ist geeignet für Studierende ingenieurwissenschaftlicher Studiengänge ab dem 4. Semester. Es werden vorausgesetzt: Elektrotechnik, Grundkenntnisse über Mikrorechner, Grundkenntnisse der Informationstechnik
Verwendbarkeit des Moduls	Pflichtmodul Master ETIT Option Automatisierungstechnik .Wahlfach in anderen Masterstudiengängen der FEIT (ETIT, MTK, STK, WET, EEIT).
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbständiges Arbeiten: Nacharbeiten der Vorlesung, Lösung der Übungsaufgaben und Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Peter Eichelbaum (FEIT-IFAT)

Name des Moduls	Eingebettete Systeme

Inhalte und Qualifikationsziele des Moduls	Die Studierenden verfügen am Ende des Moduls über detaillierte Kenntnisse über Architekturen, die Signalverarbeitung sowie für den Entwurf und die Umsetzung Hardware- und Softwareplattformen von rechnergesteuerten eingebetteten Systemen. Die Studierenden sind außerdem in der Lage die Einsatzpotentiale von formalen Beschreibungsmethoden (vor allem Zustandsmaschinen) und deren Zuordnung zu Aufgabenklassen zu beurteilen. Die Studierenden sind mit erfolgreicher Beendigung des Moduls in der Lage, Methoden zum Entwurf, Validierung (Test) und Realisierung eingebetteter Systeme anzuwenden. Dies umfasst sowohl Software als auch Hardware (wie z.B. FPGA und DSP). Durch Übungen sind die Studierenden in der Lage, angeleitet ihr Wissen und Fähigkeiten forschungsorientiert zu vertiefen und in komplexen Problemstellungen anzuwenden und zu beurteilen. Inhalt: Einführung Struktur eingebetteter Systeme Modell der eingebettete System als mikrorechnergesteuerte interaktive Verarbeitungseinrichtung Signale als Grundlage der physischen Kopplung mit der "realen" Welt Objektorientiertes Entwurfsparadigma Erweiterte endliche Automaten methodisch Ansatz für den Softwareentwicklungsprozess FPGA als Funktionsrealisierung DSP als Funktionsrealisierung Test als Validierungsaufgabe Litteratur:
	[1] Software Engineering eingebetteter Systeme: Grundlagen - Methodik – Anwendungen. Liggesmeyer, Peter; Rombach, Dieter (Hrsg.). 2005. ISBN 978-3-8274-1533-2
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Bachelormodule Technische Informatik und Signale und Systeme
Verwendbarkeit des Moduls	Pflichtmodul in der Option IKT, Wahlpflichtmodul in anderen Masterstudiengängen der FEIT (ETIT, MTK, STK, WET).
Voraussetzungen für die Vergabe von Leistungspunkten	Mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbstständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten:
	wöchentliche Vorlesungen 2 SWS wöchentliche Übungen 1 SWS
	Selbstständiges Arbeiten:
	Nacharbeiten der Vorlesung Lösung der Übungsaufgaben, sowie Prüfungsvorbereitung
Häufigkeit des Angebots	jedes Jahr im WS

Dauer des Moduls	ein Semester
Modulverantwortli cher	Prof. DrIng. Christian Diedrich (FEIT-IFAT)

Name des Moduls	Bildcodierung
Inhalte und Qualifikationsziele des Moduls	Ziel ist es, grundsätzliche Methoden und Techniken der Bildcodierung als eine wesentliche Aufgabe bei der Bildkommunikation kennenzulernen. Probleme der Bilderfassung werden erläutert, soweit sie für die Bildcodierung relevant sind. Ausgehend von den signal-/informationstheoretischen Verfahren werden die in ihrer Bedeutung zunehmenden inhaltsorientierten (semantischen) Techniken behandelt und Anwendungen diskutiert. Die Studenten werden in die Lage versetzt, existierende Codierverfahren für Stand- und Bewegtbilder zu bewerten. Sie kennen relevante Probleme der Bilderfassung und der Repräsentation von Bildern, wissen wie der Informationsgehalt von Bildern abgeschätzt werden kann und beherrschen Prinzipien der Entwicklung von Encodern für die Bild- und Videokompression und können sie auf verschiedenen Gebieten anwenden. Inhalt: Erfassung und Repräsentation von Bildern Menschliche Wahrnehmung Bildgebende Systeme Informationstheorie Quantisierung Datenkompression Verlustbehaftete Codierung Videocodierung Transformationscodierung Semantische Codierung Semantische Codierung Standards und Anwendungen Literatur: [1] W. Woods: Multidimensional signal, image, and video processing and coding, Academic Press, 2012.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematik/Physik für Ingenieure/Informatiker o.ä., Grundlagen der Informationstechnik, Grundlagen der Elektronik
Verwendbarkeit des Moduls	Wahlpflichtmodul im Masterstudiengang Systemtechnik und Technische Kybernetik
Voraussetzungen für die Vergabe von Leistungspunkten	mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenz + 108 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: wöchentliche Vorlesungen 2 SWS zweiwöchentliche Übungen 1 SWS selbständiges Arbeiten: Vorlesung nacharbeiten, Übungsaufgaben lösen, Prüfung vorbereiten
Häufigkeit des	jedes Jahr im WS

Angebots	
Dauer des Moduls	ein Semester
Modulverantwortlicher	DrIng. Gerald Krell (FEIT-IIKT)

Name des Moduls	Informations- und Codierungstheorie
Inhalte und Qualifikationsziele des Moduls	Lernziele und erworbene Kompetenzen: Vermittlung der Informationstheoretischen Konzepte Informationsgehalt, Entropie, Redundanz, Quellencodierung, Kanalkapazität, Kanalcodierung, Hamming-Raum und Hamming-Distanz Erstellung mathematischer Modell für die o. g. Konzepte Behandlung ausgewählter Verfahren für die Quellen- und Kanalcodierung Behandlung ausgewählter Fehlerkorrigierender Decodierungsverfahren Inhalt:
	 Informationsgehalt und Entropie diskreter Informationsquellen Redundanz, Gedächtnis und Quellencodierung (Shannon-Fano- und Huffmann-Verfahren) Kontinuierliche Quellen Diskrete und kontinuierliche Kanäle, Kanalentropien und Kanalkapazität Kanalcodierung und Hamming-Raum Lineare Blockcodes Zyklische Codes Syndromdecodierung Literatur: [1] G.A. Jones, J.M. Jones. Information and Coding Theory. Springer, 2008.
Lehrformen	Vorlesung, Übung
Voraussetzungen für die Teilnahme	Mathematik, Grundlagen der Kommunikationstechnik Literaturangaben: siehe Script
Verwendbarkeit des Moduls	Es gibt keine Wechselwirkung mit anderen Modulen Anrechenbarkeit: Pflicht in den Bachelore-Studiengängen "Elektrotechnik und Informationstechnik" und "Informations- und Mikrosystemtechnik", Orientierung "Nachrichtentechnik" bzw. "Kommunikationstechnik" und "Technische Informatik"
Voraussetzungen für die Vergabe von Leistungspunkten	Klausur 90 min
Leistungspunkte und Noten	3 SWS / 4 Credit Points = 120 h (42 h Präsenzzeit + 78 h selbstständige Arbeit) Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung Selbstständiges Arbeiten: Nachbereitung der Vorlesungen, Vorbereitung der Übungen sowie Vorbereitung für die Klausur
Häufigkeit des Angebots	jedes Jahr im SS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Prof. DrIng. Abbas Sayed Omar (FEIT-IIKT) Inhaltsverzeichnis

3. Research Project / Interdisciplinary Team Project

Name des Moduls	Research Project / Interdisciplinary Team Project
Inhalte und Qualifikationsziele des Moduls	Solving as a team or individual a research problem. During the course the students develop the skills to solve a scientific problem independently. To solve the problem he acquires the required specific subject skills and how to obtain a overall picture of the given problem and how to tackle the problem by breaking it up in smaller sub problems. The derivation of a suitable solution to the problem supports the skills to work scientifically independently. Furthermore, presentation skills are acquired during the mandatory final presentation of the results in the frame of a colloquia.
	Literature:
	Current research questions out of the considered discipline.
Lehrformen	Wissenschaftliches Projekt
Voraussetzungen für die Teilnahme	keine
Verwendbarkeit des Moduls	Masterstudiengänge
Voraussetzungen für die Vergabe von Leistungspunkten	Wissenschaftliches Projekt, Vorstellung der Ergebnisse im Rahmen eines Vortrags einschließlich einer Diskussion, gegebenenfalls ergänzt durch schriftlichen Projektbericht bzw. mündliche Prüfung
Leistungspunkte und Noten	3 SWS / 5 Credit Points = 150 h (42 h Präsenzzeit + 108 h selbständige Arbeit)
	Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: 3 SWS Wissenschaftliches Projekt
Häufigkeit des Angebots	Verteilt über 2 Semester
Dauer des Moduls	zwei Semester
Modulverantwortlicher	alle Professoren der beteiligten Fakultäten

4. Master Thesis

Name des Moduls	Master Thesis Project
Inhalte und Qualifikationsziele des Moduls	Selbständiges wissenschaftliches Arbeiten, Anwendung moderner Forschungsmethoden und Erstellen einer schriftlichen Darstellung der Ergebnisse in wissenschaftlicher Form. Erwerb erweiterter Fachkenntnisse. Wissenschaftliche Qualifikation zu selbständiger forscherischer Tätigkeit.
	Inhalte: Die Master-Thesis wird unter fachlicher Betreuung eines Hochschullehrers angefertigt, wobei neue experimentelle oder theoretische Studien zu einem aktuellen wissenschaftlichen Thema innerhalb geplant, ausgeführt und ausgewertet werden. Die Ergebnisse sind in einer selbständig verfassten Arbeit schriftlich zu dokumentieren und einem fachkundigen Auditorium öffentlich zu präsentieren.
Lehrformen	Hausarbeit, Referat
Voraussetzungen für die Teilnahme	
Verwendbarkeit des Moduls	
Voraussetzungen für die Vergabe von Leistungspunkten	Vorlage eines vom Teilnehmer selbst erstellten wissenschaftlichen Textes mit Neuheitscharakter, im Umfange einer Masterabschlussarbeit. Präsentation und Verteidigung der Arbeit.
Leistungspunkte und Noten	30 Credit Points = 900 h selbständige Arbeit Notenskala gemäß Prüfungsordnung
Arbeitsaufwand	Präsenzzeiten: keine Selbständiges Arbeiten: Forschungsorientierte wissenschaftliche Arbeit
Häufigkeit des Angebots	jedes Jahr im SS oder WS
Dauer des Moduls	ein Semester
Modulverantwortlicher	Betreuer der Masterabschlussarbeit

5. Brückenmodule

Der Brückenmodulkatalog entspricht dem Modulhandbuch des Bachelorstudienganges Systemtechnik und Technische Kybernetik.