Let's Play a Game!

1

2

3

4

• Knowns:

- o 4 possible keys (1-4)
- Reward-based
- Starting position

• Unknowns:

- o Goal of the game
- What any of the keys does
- Consequences of objects in the environment

Deep Q-Learning

•••

Brittany Haffner, Atharva Jakkanwar, Apar Singhal, Bryan Fuh

Reinforcement Learning

- Neither supervised or unsupervised
- Does not require training data
- Interacts with the environment
- Updates policy based on rewards

Markov Decision Process

- Framework used to make decision on stochastic environment
- More useful than simple planning
 - MDP: solution will give you optimal action even if something goes wrong
 - Simple planning: Follow the plan after you find best strategy (doesn't allow mistakes/errors)
- Markovian property: the effects of an action taken in a state depend only on that state and not on prior history

Markov Decision Process

- Discrete time stochastic control process:
 - States: *s*
 - \circ Actions: A(s), a
 - \circ Rewards: R(s), R(s,a)
 - E.g. -1 for every move
 - E.g. +100/-100 for end states
 - \circ Transition model (rules/physics of the game): $T(s, a, s') \sim Pr(s' \mid s, a)$
 - For this example, 0.8 chance of going in the desired direction
 - Policy (solution): $\pi(s) \rightarrow a$; $\pi^*(s) \rightarrow a$

		Goal
		Die
Start		

Markov Decision Process

- Infinite horizon
- Finite horizon
 - Finite number of time steps
 - Changes policy
- Utility of sequences: $U(s_0, s_1, s_2, ...) = \sum_t \gamma^t R(s_t), 0 \le \gamma \le 1$
 - γ: discount factor
 - O Allows program to go infinite distance in finite amount of time

	Goal
	Die
	Start

Bellman Equations

- The key to solving MDP in RL
- $\pi^* = argmax_{\pi} E[\sum_t \gamma^t R(s_t) / \pi] \rightarrow \pi^*(s) = argmax_{a} \sum_s T(s,a,s') U(s')$
- Utility score
 - \circ The expected maximum cumulative reward by following the policy given by state s
 - $U(s) = \alpha \{R(s,a) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s')\}, 0 < \alpha < 1 \text{ (learning rate)}$
 - $\circ \pi^*(s) = \operatorname{argmax}_a U(s,a)$
 - $O U(s) = R(s) + \gamma \pi^*(s)$
- Fundamental recursive equation that defines the true value in a particular state
- Determines the best action to take

Bellman Equations

- Quality score (Q-Value)
 - \circ The expected maximum cumulative reward from taking action a in state s and following the policy
 - $\bigcirc Q(s,a) = \alpha \{R(s,a) + \gamma \max_{a'} \sum_{s'} T(s,a,s') Q(s',a')\}$
 - $\bigcirc Q(s',a') \leftarrow Q(s,a) + \alpha \{R(s,a) + \gamma \max_{a'} Q(s',a') Q(s,a)\}$
 - New action value = Old value + learning rate * (new information old information)

• Finding policies:

- Initialize: π_0 as initial guess
- Evaluate: given π_t calculate $Q_t = Q_t^{\pi}$
- $\bigcirc \quad \text{Improve: } \pi_{t+1} = \operatorname{argmax}_{a} \sum T(s, a, s') Q_{t}(s', a')$
- Policy equation: $Q_t(s) = \alpha \{R(s) + \gamma \sum_{s'} T(s, \boldsymbol{\pi}_t(t), s') Q_t(s')\}$

Q-Learning

- Q-value-based reinforcement learning
- Take action based on maximum expected future reward for current state: $\pi(s) = argmax_aQ(s,a)$
- Generate a Q-table

Example Q-table

	a ₁	a ₂	a _n
S ₁	0	0.1	0
S ₂	0	0	0
 S _m	0	0	0

Deep Q-Learning vs. Q-Learning

- Replace Q-table with CNN
- Better for large environments with many different states
- Used for learning control policies from highdimensional inputs
- Choose the action with the highest Q-value

Problem Statement

- Environment: Flappy Bird (pygame)
- Goal: Continually keeping the bird alive while it's moving forward
- State (s): Position of the bird in the environment (determined by the physics)
- Actions (a): Tap the screen or don't tap the screen
- Rewards *(r)*:
 - +0.1 every timestep it lives
 - +1 every pipe it crosses
 - -1 very time it dies (terminal state)
 - Reward clipping for better generalization

(MDP - perform an action a_t at state s_t to receive reward r_t and next state s_{t+1})

Architecture

Architecture (CNN)

- Preprocessing images for faster learning/training
 - RGB -> Grayscale
 - Resize to a smaller size
 - Stack 4 frames

 $C(8x8x4x32)A \rightarrow MP(2x2) \rightarrow C(4x4x32x64)A \rightarrow C(3x3x64x64)A \rightarrow FC(1600)A \rightarrow FC(512) \rightarrow FC(2)$

Epsilon Greedy Policy (Exploration vs Exploitation)

- To learn the optimal policy π^* , the agent must see all the possible states
 - So it should be exposed to as many states as possible
 - But the agent has access to only states that are generated by its own action
- Greedy approach (max Q) is optimal within the space already explored
- Epsilon provides new info to the agent; the probability of taking a random action
- Will make decisions based in new data obtained through randomization
- Mostly epsilon in annealed in order to reduce the exploration

Experience Replay

- In reinforcement learning, we receive sequential samples from interactions with the environment, which are highly correlated and can lead to overfitting
- Experience Replay to the rescue!
 - Avoid forgetting previous experiences
 - Reduce correlations between experiences
 - Distribution averaged over many previous states, smoothing out the learning
- Used to train Deep-Q Network (DQN)

Deep Q-Learning with Experience Replay

Initialize environment EInitialize replay memory M with finite capacity NInitialize the DQN weights wfor *episode* in $max_episode$.

for steps in max_steps:

s =Environment state

Choose action a from state s using probability ϵ greedily

Take action *a*, get reward *R* and next state *s* '

Store experience $\langle s_t, a_t, r_t, s_t' \rangle$ in M

Get random minibatch of experience $\langle s_p, a_p, r_p, s_p' \rangle$ from M

Set optimal Q-value $Q(s_p)^* = r_p + \gamma \max_{Q}(s_p)$, where γ is discount value

Update Q by taking gradient descent step on $(Q(s_p)^* - Q(s_p))^2$

Flappy Bird Demonstration

Thank you!

References:

- Stanford Lecture: Reinforcement Learning
- Human-level control through deep reinforcement learning
- Playing Atari with Deep Reinforcement Learning
- <u>Udacity: Reinforcement Learning GaTech</u>
- Pygame implementation of Flappy Bird