# Computational methods and numerical algorithms: Lecture 3

Wangtao Lu Zhejiang University

September 27, 2020

## Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

positive-definite matrices

quations

Assignment II



## Contents

### Wangtao Lu Zhejiang University

## Chapter 2: System of Equations

- 2.5 Iterative Methods
- positive-definite matrices
- Equations
- Assignment I

## Chapter 2: System of Equations

- 2.5 Iterative Methods
- 2.6 Methods for symmetric positive-definite matrices
- 2.7 Nonlinear Systems of Equations Assignment III

## 2.5 Iterative Methods

### Wangtao Lu Zhejiang University

Equations

#### 2.5 Iterative Methods

.6 Methods for symmetr ositive-definite matrices .7 Nonlinear Systems of equations

Why we need iterative methods? Since the computational complexity of Gaussian elimination  $\mathcal{O}(n^3)$  is too large when n is large.

As Newton's method for finding roots, we need an initial guess and refine the guess at each step, and except it converges to the true solution.

Jacobi Method: Solves the i-th equation for the i-th unknown in each iteration at each iterative step.

**Example 1.**Apply the Jacobi Method to the system,

$$3u + v = 5, u + 2v = 5.$$

**Sol.** We use the initial guess  $u_0 = 0$ ,  $v_0 = 0$ . Then, from the following iterative formula:

$$u_{i+1} = (5 - v_i)/3, \quad v_{i+1} = (5 - u_i)/2,$$

we get

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 5/3 \\ 5/2 \end{bmatrix}, \quad \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 5/6 \\ 5/3 \end{bmatrix},$$
:

$$\left[\begin{array}{c} u_{10} \\ v_{10} \end{array}\right] \approx \left[\begin{array}{c} 0.999871399176955 \\ 1.999742798353910 \end{array}\right] \cdots \left[\begin{array}{c} u_{20} \\ v_{20} \end{array}\right] \approx \left[\begin{array}{c} 0.999999983461828 \\ 1.999999966923657 \end{array}\right]$$

True solution, u = 1, v = 2.

**Example 2.**Apply the Jacobi Method to the system u + 2v = 5. 3u + v = 5.

**Sol.** We use the initial guess  $u_0 = 0$ ,  $v_0 = 0$ . Then, from the following iterative formula:

$$u_{i+1} = (5-2v_i), \quad v_{i+1} = (5-3u_i),$$

we get

$$\begin{bmatrix} u_1 \\ v_1 \end{bmatrix} = \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \quad \begin{bmatrix} u_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} -5 \\ -10 \end{bmatrix},$$

$$\vdots,$$

$$\begin{bmatrix} u_{10} \\ v_{10} \end{bmatrix} = \begin{bmatrix} -7775 \\ -15550 \end{bmatrix} \dots \begin{bmatrix} u_{20} \\ v_{20} \end{bmatrix} = \begin{bmatrix} -60466175 \\ -120932350 \end{bmatrix}$$

True solution, u = 1, v = 2.

#### 2.5 Iterative Methods

For any given  $n \times n$  matrix A and a given vector  $b \in \mathbb{R}^{n \times 1}$ , we can split A into

$$A = L + U + D.$$

Thus, the Jacobi Method gives the following iterative formula

$$Dx_{k+1} = b - (L+U)x_k \rightarrow x_{k+1} = D^{-1}(b-(L+U)x_k).$$

If  $\{x_k\}$  converges to x, x is a fixed point of

$$x = D^{-1}(b - (L + U)x).$$

$$|a_{ii}|>\sum_{j\neq i}|a_{ij}|.$$

**Theorem.** If A is a strictly diagonally dominant matrix of size  $n \times n$ , then: (1)  $\det(A) \neq 0$ ; (2) for every b and any initial guess, the Jacobi Method applied to Ax = b converges to the (unique) solution. **Proof.** Recall the Jacobi's iterative formula

$$x_{k+1} = D^{-1}(b - (L + U)x_k),$$

which gives

$$(x_{k+1}-x_k)=-R(x_k-x_{k-1}), \quad R=D^{-1}(L+U).$$

But  $||R||_{\infty} < 1$  since A is strictly diagonally dominant. Consequently, we get

$$||x_{k+1}-x_k||_{\infty} \le ||R||_{\infty}||x_k-x_{k-1}||_{\infty} \le ||R||_{\infty}^{k-1}||x_1-x_0||.$$

equations

2.5 Iterative Methods

positive-definite matrices 2.7 Nonlinear Systems of

Assignment III

Thus, for all  $p \in \mathbb{N}_*$ ,

$$\begin{aligned} ||x_{k+p} - x_k||_{\infty} &\leq \sum_{i=1}^{p-1} ||x_{k+i} - x_{k+i-1}|| \\ &\leq \sum_{i=1}^{p-1} ||R||_{\infty}^{k+i-2} ||x_1 - x_0|| \\ &= \left[ ||x_1 - x_0||_{\infty} \frac{1 - ||R||_{\infty}^{p-1}}{1 - ||R||_{\infty}} \right] ||R||_{\infty}^{k-1} \to 0, \quad k \to \infty. \end{aligned}$$

This indicates that  $\{x_k\}$  is a Cauchy sequence so that it converges uniquely to some vector  $x \in \mathbb{R}^n$ , which satisfies

$$x = D^{-1}b - D^{-1}(L+U)x.$$

This is equivalent to Ax = b has a unique solution for every b and any initial guess, which in fact indicates that  $det(A) \neq 0$ .

In contrast to Jacobi Method, Gauss-Seidel Method uses the most recent updated values of the unknowns at each step, while Jacobi Method always uses the previous guess of unknowns at each step.

**Example 3.**Apply the Gauss-Seidel Method to the system, 3u + v = 5, u + 2v = 5.

**Sol.** We still use the initial guess  $u_0 = 0$ ,  $v_0 = 0$ . In the first step we get

$$u_1 = (5 - v_0)/3 = 5/3.$$

In Gauss-Seidel method, we get

$$v_1 = (5 - u_1)/2 = 5/3.$$

In Jacobi method, we get

$$v_1 = (5 - u_0)/2 = 5/2.$$

Then,

and

$$u_2 = (5 - v_1)/2 = 10/9,$$
  
 $v_2 = (5 - v_2)/2 = 35/18.$ 

Then,

$$u_2 = (5 - v_1)/2 = 5/6,$$
  
 $v_2 = (5 - u_1)/2 = 5/3,$ 

and

$$u_3 = (5 - v_2)/2 = 55/54,$$
  
 $v_3 = (5 - u_3)/2 = 215/108.$ 

$$u_3 = (5 - v_2)/2 = 10/9,$$
  
 $v_3 = (5 - u_2)/2 = 25/12.$ 

$$\begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 1 \\ -1 & 2 & 5 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}.$$

Sol. True solution is  $[2, -1, 1]^T$ . The Gauss-Seidel iteration is

$$u_{k+1} = \frac{4 - v_k + w_k}{3},$$

$$v_{k+1} = \frac{1 - 2u_{k+1} - w_k}{4},$$

$$w_{k+1} = \frac{1 + u_{k+1} - 2v_{k+1}}{5}.$$

Using  $u_0 = v_0 = w_0 = 0$ , we get,

$$\begin{bmatrix} u_1 \\ v_1 \\ w_1 \end{bmatrix} = \begin{bmatrix} 4/3 \\ -5/12 \\ 19/30 \end{bmatrix}, \dots, \begin{bmatrix} u_{10} \\ v_{10} \\ w_{10} \end{bmatrix} \approx \begin{bmatrix} 1.99957 \\ -0.99966 \\ 0.99977 \end{bmatrix}, \dots$$

$$\begin{bmatrix} u_{20} \\ v_{20} \\ w_{20} \end{bmatrix} \approx \begin{bmatrix} 1.999999988 \\ -0.999999911 \\ 0.999999942 \end{bmatrix}.$$

### Wangtao Lu Zhejiang University

Equations

#### 2.5 Iterative Methods

2.6 Methods for symmetr positive-definite matrices

Assignment II



# Suppose

$$A=L+U+D,$$

then in the k+1-th iteration, we solve

$$L_{x_{k+1}} + Ux_k + Dx_{k+1} = b.$$

for  $x_{k+1}$ , and get

$$x_{k+1} = (L+D)^{-1}(b-Ux_k).$$

If  $\{x_k\}$  converges to  $x \in \mathbb{R}^n$ . Then, x is a fixed-point of

$$x = (L+D)^{-1}(b-Ux).$$

When will Gauss-Seidel iteration converges?

## Convergence Theorem

#### Wangtao Lu Zhejiang University

Equations

#### 2.5 Iterative Methods

2.6 Methods for symmetr positive-definite matrices 2.7 Nonlinear Systems of Equations

**Theorem.** If the  $n \times n$  matrix A is strictly diagonally dominant, then: (1) A is nonsingular, i.e.,  $det(A) \neq 0$ ; (2) for every b and every starting guess, the Gauss-Seidel Method applied to Ax = b converges to the solution to Ax = b.

Assignment III

For a given parameter  $\omega \in \mathbb{R}$ , in Successive Over-Relaxation, we define each component of the new guess  $x_{k+1}$  as a weighted average of  $\omega$  times the Gauss-Seidel formula and  $1-\omega$  times the current guess. The number  $\omega$  is called the relaxation parameter; the case when  $\omega>1$  is referred to as over-relaxation.

Iterative formula:

$$x_0 = initial guess,$$

$$x_{k+1} = (\omega L + D)^{-1}[(1 - \omega)Dx_k - \omega Ux_k] + \omega(D + \omega L)^{-1}b.$$

How to derive this?

Assignment III

For a given parameter  $\omega \in \mathbb{R}$ , in Successive Over-Relaxation, we define each component of the new guess  $x_{k+1}$  as a weighted average of  $\omega$  times the Gauss-Seidel formula and  $1-\omega$  times the current guess. The number  $\omega$  is called the relaxation parameter; the case when  $\omega>1$  is referred to as over-relaxation.

Iterative formula:

$$x_0 = initial guess,$$

$$x_{k+1} = (\omega L + D)^{-1}[(1-\omega)Dx_k - \omega Ux_k] + \omega(D+\omega L)^{-1}b.$$

How to derive this? the m-th component of the k+1-th guess  $\boldsymbol{x}_{k+1}^m$  in the SOR method,

For a given parameter  $\omega \in \mathbb{R}$ , in Successive Over-Relaxation, we define each component of the new guess  $x_{k+1}$  as a weighted average of  $\omega$  times the Gauss-Seidel formula and  $1-\omega$  times the current guess. The number  $\omega$  is called the relaxation parameter; the case when  $\omega>1$  is referred to as over-relaxation.

Iterative formula:

$$x_0 = \text{initial guess},$$

$$x_{k+1} = (\omega L + D)^{-1}[(1 - \omega)Dx_k - \omega Ux_k] + \omega(D + \omega L)^{-1}b.$$

How to derive this? the m-th component of the k+1-th guess  $x_{k+1}^m$  in the SOR method,

$$x_{k+1}^{m} = (1 - \omega)x_{k}^{m} + \omega \frac{b^{m} - \sum_{j>m} a_{mj}x_{k}^{j} - \sum_{j< m} a_{mj}x_{k+1}^{j}}{a_{mm}}.$$

$$\begin{bmatrix} 3 & -1 & 0 & 0 & 0 & \frac{1}{2} \\ -1 & 3 & -1 & 0 & \frac{1}{2} & 0 \\ 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & 0 \\ 0 & \frac{1}{2} & 0 & -1 & 3 & -1 \\ \frac{1}{2} & 0 & 0 & 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{3}{2} \\ 1 \\ 1 \\ \frac{3}{2} \\ \frac{5}{2} \end{bmatrix}$$

**Sol.** The true solution is  $[1, 1, 1, 1, 1, 1]^T$ . The following table shows the result after six iterations of each of the three methods.

| Jacobi | Gauss-Seidel | SOR ( $\omega=1.1$ ) |
|--------|--------------|----------------------|
| 0.9879 | 0.9950       | 0.9989               |
| 0.9846 | 0.9946       | 0.9993               |
| 0.9674 | 0.9969       | 0.9996               |
| 0.9674 | 0.9996       | 1.0004               |
| 0.9846 | 1.0016       | 1.0009               |
| 0.9879 | 1.0013       | 1.0004               |

# Sparse Matrix

Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

2.6 Methods for symmetr positive-definite matrices 2.7 Nonlinear Systems of Equations

Assignment III

A matrix is called **sparse** if many of the matrix entries are known to be zero. Typically, a sparse matrix only contains O(n) nonzero entries. A **full** matrix is the opposite, only a few entries are nonzero. When the matrix is of extremely big size but sparse with O(n) elements, Gaussian elimination loses efficiency since the LU factorization causes **fill-in** since the resulting matrices L and U are always full; in contrast, iterative methods are always more desirable/attractive.

See MATLAB for the Reference Page for the built-in function sparse!

# Sparse Matrix

### Wangtao Lu Zhejiang University

equations

#### 2.5 Iterative Methods

2.6 Methods for symmetr positive-definite matrices 2.7 Nonlinear Systems of Equations

A matrix is called **sparse** if many of the matrix entries are known to be zero. Typically, a sparse matrix only contains O(n) nonzero entries. A **full** matrix is the opposite, only a few entries are nonzero.

When the matrix is of extremely big size but sparse with O(n) elements, Gaussian elimination loses efficiency since the LU factorization causes fill-in since the resulting matrices L and U are always full; in contrast, iterative methods are always more desirable/attractive.

A question: What is the computational complexity of the product operation of a sparse matrix A with O(n) elements and a vector b? See MATLAB for the Reference Page for the built-in function sparse!

The  $n \times n$  matrix A is symmetric if  $A^T = A$ . The matrix A is positive-definite if  $x^T Ax > 0$  for all vectors  $x \neq 0$ .

**Example 1.**Show that  $A = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$  is symmetric positive-definite.

**Sol.** By completing squares,

$$x^{T}Ax = 2x_{1}^{2} + 4x_{1}x_{2} + 5x_{2}^{2} = 2(x_{1} + x_{2})^{2} + 3x_{2}^{2} > 0,$$

for all  $x \neq 0$ . Thus, A is strictly positive-definite.

**Example 2.**Show that  $A = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}$  is not positive-definite.

Sol. By completing squares,

$$x^{T}Ax = 2x_1^2 + 8x_1x_2 + 5x_2^2 = 2(x_1 + 2x_2)^2 - 3x_2^2.$$

Thus, if  $x_2 = 1$  and  $x_1 = -2x_2 = -2$ , then  $x^T A x = -3 < 0$ , which indicates that A is not strictly positive-definite.

**Property 1.** A symmetric matrix *A* is strictly positive-definite if and only if all of its eigenvalues are positive.

**Property 2.** If A is  $n \times n$  symmetric and strictly positive-definite and X is an  $n \times m$  matrix of full rank with  $n \ge m$ , then  $X^TAX$  is  $m \times m$  symmetric and strictly positive-definite.

A principle submatrix of a square matrix A is a square submatrix whose diagonal entries are diagonal entries of A; for example,

$$\left[\begin{array}{cc} 2 & 4 \\ 4 & 5 \end{array}\right]$$

is a principle submatrix of

**Property 3.** Any principle submatrix of a symmetric and strictly positive-definite matrix is symmetric and strictly positive definite.

For a symmetric positive-definite matrix *A*, it has a much more special factorization than the usual LU factorization.

**Theorem.** If A is symmetric positive-definite  $n \times n$  matrix, then there exists an upper triangular  $n \times n$  matrix R such that  $A = R^T R$ ; and this decomposition is called the **Cholesky Factorization**.

**Proof.** We construct R by induction on the size n. Then case when n=1 is trivial since one just takes  $R=\sqrt{A}$  and it is done. Consider A partitioned as

$$A = \left[ \begin{array}{c|c} a & b^T \\ \hline b & C \end{array} \right].$$

where a > 0,  $b \in \mathbb{R}^{n-1}$ , and C is  $(n-1) \times (n-1)$  symmetric and strictly positive-definite matrix. To zero  $b^T$  and b in A, we define

$$L = \begin{bmatrix} 1 & -u^T \\ \hline & I_{n-1} \end{bmatrix}, \quad u = \frac{b}{a} \in \mathbb{R}^{n-1}.$$

$$L^{T}AL = \begin{bmatrix} 1 & & \\ -u & I_{n-1} \end{bmatrix} \begin{bmatrix} a & b^{T} \\ b & C \end{bmatrix} \begin{bmatrix} 1 & -u^{T} \\ & I_{n-1} \end{bmatrix} = \begin{bmatrix} a & & \\ & C - \frac{bb^{T}}{a} \end{bmatrix}$$

Notice that  $C-\frac{bb^T}{a}$  is an  $(n-1)\times (n-1)$  symmetric positive-definite matrix so that there exists an  $(n-1)\times (n-1)$  matrix  $R_{n-1}$  such that  $C-\frac{bb^T}{a}=R_{n-1}^TR_{n-1}$ . Thus,

$$L^{T}AL = \begin{bmatrix} a & & \\ & R_{n-1}^{T}R_{n-1} \end{bmatrix} = \begin{bmatrix} \sqrt{a} & & \\ & R_{n-1} \end{bmatrix}^{T} \begin{bmatrix} \sqrt{a} & & \\ & R_{n-1} \end{bmatrix}.$$

Then, directly taking

$$R = \left[\begin{array}{c|c} \sqrt{a} & \\ \hline & R_{n-1} \end{array}\right] L^{-1}, \quad L^{-1} = \left[\begin{array}{c|c} 1 & -u^T \\ \hline & I_{n-1} \end{array}\right]^{-1} =$$

one complets the proof.

Equations

2.6 Methods for symmetric positive-definite matrices

iquations

$$L^{T}AL = \begin{bmatrix} 1 & & \\ -u & I_{n-1} \end{bmatrix} \begin{bmatrix} a & b^{T} \\ b & C \end{bmatrix} \begin{bmatrix} 1 & -u^{T} \\ & I_{n-1} \end{bmatrix} = \begin{bmatrix} a & & \\ & C - \frac{bb^{T}}{a} \end{bmatrix}$$

Notice that  $C-\frac{bb^T}{a}$  is an  $(n-1)\times (n-1)$  symmetric positive-definite matrix so that there exists an  $(n-1)\times (n-1)$  matrix  $R_{n-1}$  such that  $C-\frac{bb^T}{a}=R_{n-1}^TR_{n-1}$ . Thus,

$$L^{T}AL = \begin{bmatrix} a & & \\ & R_{n-1}^{T}R_{n-1} \end{bmatrix} = \begin{bmatrix} \sqrt{a} & & \\ & R_{n-1} \end{bmatrix}^{T} \begin{bmatrix} \sqrt{a} & & \\ & R_{n-1} \end{bmatrix}.$$

Then, directly taking

$$R = \begin{bmatrix} \boxed{\sqrt{a} \mid \\ R_{n-1} \end{bmatrix}} L^{-1}, \quad L^{-1} = \begin{bmatrix} \boxed{1 \mid -u^T \\ I_{n-1} \end{bmatrix}^{-1} = \begin{bmatrix} \boxed{1 \mid u^T \\ I_{n-1} \end{bmatrix}},$$

one complets the proof.

Equations

2.6 Methods for symmetric positive-definite matrices

Equations

From the above proof, we see that, for a symmetric positive-definite matrix

$$A = \left[ \begin{array}{c|c} a & b^T \\ \hline b & C \end{array} \right].$$

, its Cholesky factorization is  $A = R^T R$  with

$$R = \left[ \begin{array}{c|c} \sqrt{a} & b^T / \sqrt{a} \\ \hline & R_{n-1} \end{array} \right],$$

where  $R_{n-1}$  satisfies  $C - bb^T/a = R_{n-1}^T R_{n-1}$ .

$$R_{\underline{k}\underline{k}} = \sqrt{A_{kk}}$$

$$u^{T} = \frac{1}{R_{kk}} A_{k,k+1:n} \qquad R_{k,k+1:n} = u^{T}$$

$$A_{k+1:n,k+1:n} = A_{k+1:n,k+1:n} - uu^T$$

Example 3. Find the Cholesky factorization of

$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 11 \end{bmatrix}$$

**Sol.** First,  $u = [-2/\sqrt{4}, 2/\sqrt{4}]^T = [-1, 1]^T$ . Thus,

$$R = \begin{bmatrix} \frac{\sqrt{4} & -1 & 1}{} \\ \hline & & \end{bmatrix}, A_{2:3,2:3} = \begin{bmatrix} 2 - (-1)^2 & -4 - (-1) \times 1 \\ -4 - (-1) \times 1 & 11 - 1 \times 1 \end{bmatrix}$$

Second, u = -3 Thus,

$$R = \begin{bmatrix} 2 & -1 & 1 \\ \hline & 1 & -3 \end{bmatrix}, A_{3,3} = 10 - (-3)^T (-3) = 1.$$

2 E Januarius Mashada

2.6 Methods for symmetric positive-definite matrices

Equations



$$R_{\underline{k}\underline{k}} = \sqrt{A_{kk}}$$

$$u^{T} = \frac{1}{R_{kk}} A_{k,k+1:n} \qquad R_{k,k+1:n} = u^{T}$$

$$A_{k+1:n,k+1:n} = A_{k+1:n,k+1:n} - uu^T$$

Example 3. Find the Cholesky factorization of

$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 11 \end{bmatrix}$$

**Sol.** First, 
$$u = [-2/\sqrt{4}, 2/\sqrt{4}]^T = [-1, 1]^T$$
. Thus,

$$R = \begin{bmatrix} \boxed{\sqrt{4} & -1 & 1} \\ \hline & & \end{bmatrix}, A_{2:3,2:3} = \begin{bmatrix} 1 & -3 \\ -3 & 10 \end{bmatrix}.$$

Second, u = -3 Thus,

$$R = \begin{bmatrix} 2 & -1 & 1 \\ \hline & 1 & -3 \end{bmatrix}, A_{3,3} = 10 - (-3)^T (-3) = 1.$$

#### Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

2.6 Methods for symmetric positive-definite matrices

Assignment I



$$R_{kk} = \sqrt{A_{kk}}$$

$$u^{T} = \frac{1}{R_{kk}} A_{k,k+1:n} \qquad R_{k,k+1:n} = u^{T}$$

$$A_{k+1:n,k+1:n} = A_{k+1:n,k+1:n} - uu^T$$

Example 3. Find the Cholesky factorization of

$$A = \begin{bmatrix} 4 & -2 & 2 \\ -2 & 2 & -4 \\ 2 & -4 & 11 \end{bmatrix}$$

**Sol.** First, 
$$u = [-2/\sqrt{4}, 2/\sqrt{4}]^T = [-1, 1]^T$$
. Thus,

$$R = \begin{bmatrix} \boxed{\sqrt{4} & -1 & 1} \\ \hline & & \end{bmatrix}, A_{2:3,2:3} = \begin{bmatrix} 1 & -3 \\ -3 & 10 \end{bmatrix}.$$

Second, u = -3 Thus,

$$R = \begin{bmatrix} 2 & -1 & 1 \\ \hline & 1 & -3 \\ \hline & & 1 \end{bmatrix}, A_{3,3} = 10 - (-3)^{T}(-3) = 1.$$

#### Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

2.6 Methods for symmetric positive-definite matrices

Assignment I



$$(v, w)_A = v^T A w.$$

The vectors v and w are A-conjugate if  $(v, w)_A = 0$ . Differentiate from the Euclidean inner product  $a^T b$ .

**Property 1.** Suppose the nonzero vectors  $\{x_k\}_{k=1}^n$  in  $\mathbb{R}^n$  satisfy

$$(x_k,x_j)=0, \forall k\neq j,$$

then  $\{x_k\}_{k=1}^n$  is a basis of  $\mathbb{R}^n$ , where  $(\cdot, \cdot)$  is an inner-product in  $\mathbb{R}^n$ . **Property 2.** For vectors  $\{x_k\}_{k=1}^n$  in  $\mathbb{R}^n$ , suppose

$$(r,x_k)=0, \forall k=1,\ldots,n_0\leq n.$$

then

$$(r,\sum_{k=1}^{n_0}c_kx_k)=0,\forall c_k\in\mathbb{R},k=1,\ldots,n_0.$$

**Property 3**. Suppose  $\{x_k\}_{k=1}^n$  is a basis of the space  $\mathbb{R}^n$ . Then, for any vector  $r \in \mathbb{R}^n$ , if

$$(r, x_k) = 0, \quad \forall k = 1, \ldots, n,$$

then  $r=0_n$ , where  $(\cdot,\cdot)$  is an inner-product in  $\mathbb{R}^n$ 

Wangtao Lu Zhejiang University

Equations

2.6 Methods for symmetric positive-definite matrices

Assignment III

**Conjugated Gradient method** is an iterative method for solving Ax = b when A is ( especially large and sparse,) **symmetric and strictly positive-definite**.

Suppose CG method gives a sequence of guess solutions  $\{x_k\}_{k=1}^{\infty}$  to Ax=b. Define

$$r_k = b - Ax_k$$

and the searching direction at step k is  $d_k$  such that there exist  $lpha_k, eta_k \in \mathbb{R}$ 

$$x_{k+1} = x_k + \alpha_k d_k, \quad d_{k+1} = r_{k+1} + \beta_k d_k.$$

The Conjugated Gradient method selects  $\alpha_k$  and  $\beta_k$  in the following way:

- 1.  $d_{k+1}$  is A-conjugate to  $\{d_i\}_{i=1}^k$  in the sense that  $d_k^T A d_i = 0$ .
- 2.  $r_{k+1}$  is orthogonal to  $\{r_i\}_{i=1}^k$  in the sense that  $r_{k+1}^T r_i = 0$ ,

Conjugated Gradient method is an iterative method for solving Ax = b when A is (especially large and sparse,) symmetric and strictly positive-definite.

Suppose CG method gives a sequence of guess solutions  $\{x_k\}_{k=1}^{\infty}$  to Ax=b. Define

$$r_k = b - Ax_k$$

and the searching direction at step k is  $d_k$  such that there exist  $lpha_k, eta_k \in \mathbb{R}$ 

$$x_{k+1} = x_k + \alpha_k d_k, \quad d_{k+1} = r_{k+1} + \beta_k d_k.$$

The Conjugated Gradient method selects  $\alpha_k$  and  $\beta_k$  in the following way:

- 1.  $d_{k+1}$  is A-conjugate to  $\{d_i\}_{i=1}^k$  in the sense that  $d_k^T A d_i = 0$ .
- 2.  $r_{k+1}$  is orthogonal to  $\{r_i\}_{i=1}^k$  in the sense that  $r_{k+1}^T r_i = 0$ , and so orthogonal to  $d_i$ .

Consider the following minimization problem:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^T A x - x^T b,$$

where A is an  $n \times n$ , symmetric, positive-definite matrix.



## Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

2.6 Methods for symmetric positive-definite matrices

Assignment I

$$x_0, d_0 = r_0 = b - Ax_0.$$

Iterative formula,

$$x_{k+1} = x_k + \alpha_k d_k, \quad d_{k+1} = r_{k+1} + \beta_k d_k.$$

We need to find both  $\alpha_k$  and  $\beta_k$  to proceed with the iteration. Since

$$r_{k+1} = b - Ax_{k+1} = r_k - \alpha_k Ad_k.$$

Thus,

$$\mathbf{0} = d_k^T r_{k+1} = d_k^T r_k - \alpha_k d_k^T A d_k \rightarrow \alpha_k = \frac{d_k^T r_k}{d_k^T A d_k} = \frac{r_k^T r_k}{d_k^T A d_k},$$

and

$$r_{k+1}^T r_{k+1} = \mathbf{0} - \alpha_k r_{k+1}^T A d_k = -\frac{r_k^T r_k}{d_k^T A d_k} r_{k+1}^T A d_k.$$

On the other hand,

$$0 = d_k^T A d_{k+1} = d_k^T A r_{k+1} + \beta_k d_k^T A d_k \to \beta_k = -\frac{d_k^T A r_{k+1}}{d_k^T A d_k} = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}.$$

#### Wangtao Lu Zhejiang University

Equations

2.5 Iterative Methods

2.6 Methods for symmetric positive-definite matrices 2.7 Nonlinear Systems of

Assignment III



# A Pseudocode of CG method:

$$x_0 = \text{initial guess}$$
 $d_0 = r_0 = b - Ax_0$ 

for  $k = 0, 1, 2, \dots, n - 1$ 

if  $r_k = 0, \text{ stop, end}$ 
 $\alpha_k = \frac{d_k^T r_k}{d_k^T A d_k} = \frac{r_k^T r_k}{d_k^T A d_k}$ 
 $x_{k+1} = x_k + \alpha_k d_k$ 
 $r_{k+1} = b - Ax_{k+1} = r_k - \alpha_k A d_k$ 
 $\beta_k = -\frac{d_k^T A r_{k+1}}{d_k^T A d_k} = \frac{r_k^T r_{k+1}}{r_k^T r_k}$ 
 $d_{k+1} = r_{k+1} + \beta_k d_k$ 

# Operation Count (Computational Complexity):

|                                | CG | LU              |
|--------------------------------|----|-----------------|
| full A                         |    | $\frac{n^3}{3}$ |
| sparse $A$ with $O(n)$ entries |    |                 |

# A Pseudocode of CG method:

$$x_0 = \text{initial guess}$$
 $d_0 = r_0 = b - Ax_0$ 

for  $k = 0, 1, 2, \dots, n - 1$ 

if  $r_k = 0, \text{ stop, end}$ 
 $\alpha_k = \frac{d_k^T r_k}{d_k^T A d_k} = \frac{r_k^T r_k}{d_k^T A d_k}$ 
 $x_{k+1} = x_k + \alpha_k d_k$ 
 $r_{k+1} = b - Ax_{k+1} = r_k - \alpha_k A d_k$ 
 $\beta_k = -\frac{d_k^T A r_{k+1}}{d_k^T A d_k} = \frac{r_k^T r_{k+1}}{r_k^T r_k}$ 
 $d_{k+1} = r_{k+1} + \beta_k d_k$ 

# Operation Count (Computational Complexity):

|                                | CG                       | LU                |
|--------------------------------|--------------------------|-------------------|
| full A                         | $n^3 + \mathcal{O}(n^2)$ | $\frac{n^{3}}{3}$ |
| sparse $A$ with $O(n)$ entries |                          |                   |

## A Pseudocode of CG method:

$$x_0 = \text{initial guess}$$
 $d_0 = r_0 = b - Ax_0$ 

for  $k = 0, 1, 2, \dots, n - 1$ 

if  $r_k = 0, \text{ stop, end}$ 
 $\alpha_k = \frac{d_k^T r_k}{d_k^T A d_k} = \frac{r_k^T r_k}{d_k^T A d_k}$ 
 $x_{k+1} = x_k + \alpha_k d_k$ 
 $r_{k+1} = b - Ax_{k+1} = r_k - \alpha_k A d_k$ 
 $\beta_k = -\frac{d_k^T A r_{k+1}}{d_k^T A d_k} = \frac{r_k^T r_{k+1}}{r_k^T r_k}$ 
 $d_{k+1} = r_{k+1} + \beta_k d_k$ 

# Operation Count (Computational Complexity):

|                                | CG                       | LU                      |
|--------------------------------|--------------------------|-------------------------|
| full A                         | $n^3 + \mathcal{O}(n^2)$ | $\frac{n^3}{3}$         |
| sparse $A$ with $O(n)$ entries | $\mathcal{O}(n^2)$       | <u>n</u> <sup>3</sup> 3 |

**Theorem** Suppose A is an  $n \times n$  symmetric, positive-definite matrix and b is an  $n \times 1$  matrix. Then the Conjugated Gradient method finds the solution of Ax = b in at most n steps for any initial guess vector  $x_0 \in \mathbb{R}^n$ .

Proof. Suppose the CG method produces a sequence of guess solutions  $\{x_k\}_{k=0}^K$  such that  $\{r_k\}_{k=0}^K$  are all nonzero and we let K to be the maximum integer that satisfies this property.

We claim K < n, since  $\{r_k\}_{k=0}^K$  are orthogonal to each other and form a basis set of  $\mathbb{R}^n$ .

This indicates that  $r_{K+1} = 0$  and the CG method finds the solution  $x_{K+1}$ to Ax = b in  $K + 1 \le n$  steps.

by the CG method in exact arithmetic and in IEEE double-precision arithmetic. Sol. Let  $x_0 = (0,0)^T$ ,  $r_0 = d_0 = (6,3)^T$ ,

In exact arithmetic, we have,

In exact arithmetic, we have, 
$$\alpha_0 = r_0^T r_0 / (d_0^T A d_0)^T = \frac{5}{21}$$

$$x_1 = x_0 + \alpha_0 d_0 = (\frac{10}{7}, \frac{5}{7})^T$$

$$r_1 = r_0 - \alpha_0 A d_0 = (\frac{12}{7}, \frac{-24}{7})^T$$

$$\beta_0 = r_1^T r_1 / (r_0^T r_0) = \frac{16}{49}$$

$$d_1 = r_1 + \beta_0 d_0 = (\frac{180}{49}, \frac{-120}{49})$$

$$\alpha_1 = r_1^T r_1 / (d_1^T A d_1) = \frac{7}{10}$$

$$x_2 = x_1 + \alpha_1 d_1 = (4, -1)^T$$

 $r_2 = r_1 - \alpha_1 A d_1 = (0,0)^T$ , STOP.

In IEEE double-precision arithmetic, we get from MATLAB the following guess solutions

2.6 Methods for symmetric

positive-definite matrices

-1.0000000000000000),

 $r_3 = (0.051e - 14, -0.102e - 14).$ 

Equations
2.5 Iterative Methods

2.6 Methods for symmetric positive-definite matrices

Equations
Assignment III

accumulate round-off errors quickly.

What is a preconditioner? Instead of solving

Ax = b,

we solve

$$M^{-1}Ax = M^{-1}b.$$

Here the invertible matrix M should satisfy the following properties:

- 1. *M* should be as close to *A* as possible;
- 2. *M* should be easy to invert.
- 2\*. M should be strictly positive-definite, symmetric so that the CG method applies here.

Suppose A = L + D + U such that  $U = L^T$ , we could use the following two possible preconditioners in practice.

- 1. Jacobi preconditioner: M = D.
- 2. Symmetric successive over-relaxation preconditioner:  $M = (D + wL)D^{-1}(D + wU)$  for  $w \in [0, 2]$ . The special case w = 1 is called the Gauss-Seidel preconditioner.



When preconditioned, the new coefficient matrix  $M^{-1}A$  in general is no longer symmetric, positive-definite in the usual Euclidean inner product. But it is positive-definite in the M-inner product in the sense that

$$(M^{-1}Au,u)_M\geq 0.$$

CG Pseudocode:  $x_0 = \text{initial guess}$   $d_0 = r_0 = b - Ax_0$  for  $k = 0, 1, 2, \dots, n - 1$  if  $r_k = 0$ , stop, end  $\alpha_k = \frac{r_k^T r_k}{d_k^T A d_k} = \frac{(r_k, r_k)}{(d_k, A d_k)}$   $x_{k+1} = x_k + \alpha_k d_k$   $r_{k+1} = r_k - \alpha_k A d_k$   $\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} = \frac{(r_{k+1}, r_{k+1})}{(r_k, r_k)}$   $d_{k+1} = r_{k+1} + \beta_k d_k$  end

 $\begin{array}{l} \text{PCG Pseudocode:} \\ x_0 = \text{initial guess} \\ d_0 = z_0 = M^{-1}b - M^{-1}Ax_0 \\ \text{for } k = 0, 1, 2, \dots, n-1 \\ \text{if } z_k = 0, \text{stop, end} \\ \alpha_k = \frac{(z_k, z_k)_M}{(d_k, M^{-1}Ad_k)_M} \\ x_{k+1} = x_k + \alpha_k d_k \\ z_{k+1} = z_k - \alpha_k M^{-1}Ad_k \\ \beta_k = \frac{(z_{k+1}, z_{k+1})_M}{(z_k, z_k)_M} \\ d_{k+1} = z_{k+1} + \beta_k d_k \\ \text{end} \end{array}$ 

2.6 Methods for symmetric

positive-definite matrices

$$(M^{-1}Au, u)_M = (M^{-1}Au)^T Mu = u^T Au \ge 0.$$

CG Pseudocode: 
$$x_0 = \text{initial guess}$$
  $d_0 = r_0 = b - Ax_0$  for  $k = 0, 1, 2, \dots, n-1$  if  $r_k = 0$ , stop, end  $\alpha_k = \frac{r_k^T r_k}{d_k^T A d_k} = \frac{(r_k, r_k)}{(d_k, A d_k)}$   $x_{k+1} = x_k + \alpha_k d_k$   $r_{k+1} = r_k - \alpha_k A d_k$   $\beta_k = \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k} = \frac{(r_{k+1}, r_{k+1})}{(r_k, r_k)}$   $d_{k+1} = r_{k+1} + \beta_k d_k$  end

```
PCG Pseudocode: z_k = M^{-1}r_k. x_0 = \text{initial guess} d_0 = z_0 = M^{-1}b - M^{-1}Ax_0 for k = 0, 1, 2, \dots, n-1 if z_k = 0, stone, end \alpha_k = \frac{(z_k, z_k)_M}{(d_k, M^{-1}Ad_k)_M} x_{k+1} = x_k + \alpha_k d_k z_{k+1} = z_k - \alpha_k M^{-1}Ad_k \beta_k = \frac{(z_{k+1}, z_{k+1})_M}{(z_k, z_k)_M} d_{k+1} = z_{k+1} + \beta_k d_k end
```

## 4□ > 4□ > 4 = > 4 = > = 9 < ○</p>

When preconditioned, the new coefficient matrix  $M^{-1}A$  in general is no longer symmetric, positive-definite in the usual Euclidean inner product. But it is positive-definite in the M-inner product in the sense that

$$(M^{-1}Au,u)_M\geq 0.$$

```
PCG old Pseudocode: x_0 = \text{initial guess} d_0 = z_0 = M^{-1}b - M^{-1}Ax_0 for k = 0, 1, 2, \dots, n-1 if z_k = 0, stop, end \alpha_k = \frac{(z_k, z_k)_M}{(d_k, M^{-1}Ad_k)_M} x_{k+1} = x_k + \alpha_k d_k z_{k+1} = z_k - \alpha_k M^{-1}Ad_k \beta_k = \frac{(z_{k+1}, z_{k+1})_M}{(z_k, z_k)_M} d_{k+1} = z_{k+1} + \beta_k d_k end
```

```
PCG Pseudocode: z_k = M^{-1} r_k.
x_0 = initial guess
r_0 = b - Ax_0
d_0 = z_0 = M^{-1} r_0
for k = 0, 1, 2, \dots, n-1
   if r_k = 0, stop, end
   \alpha_k = \frac{(r_k, z_k)}{(d_k, \Delta d_k)}
   x_{k+1} = x_k + \alpha_k d_k
   r_{k+1} = r_k - \alpha_k A d_k
   z_{k+1} = M^{-1} r_k
   \beta_k = \frac{(r_{k+1}, z_{k+1})}{(r_{k}, z_k)}
   d_{k+1} = z_{k+1} + \beta_k d_k
end
```

For the SSOR preconditioner

$$M = (D + wL)D^{-1}(D + wU),$$

when we perform  $z_k = M^{-1}r_k$  in the PCG code, we don't need to really do the inversion of M. In stead, we solve the linear system

$$Mz_k = r_k$$

in two steps.

- 1. Forward solve  $(I + wLD^{-1})c_k = r_k$  for  $c_k$ ;
- 2. Backward solve  $(D + wU)z_k = c_k$  for  $z_k$ .

# **Example 1.**Let A be an $n \times n$ matrix with

$$A_{ii} = \sqrt{i}, \quad i = 1, \dots, n,$$
  $A_{i,i+10} = A_{i+10,i} = \cos i, \quad i = 1, \dots, n-10,$ 

and let b = A ones(n, 1). Using the PCG method to solve Ax = b using the following three preconditioners: (1) M = eye(n); (2) Jacobi preconditioner; (3) Gauss-Seidel preconditioner. Sol.

Numerical Results have been given in the Textbook.

2.7 Nonlinear Systems of Equations

$$f^{1}(x^{1}, x^{2}, x^{3}) = 0,$$
  

$$f^{2}(x^{1}, x^{2}, x^{3}) = 0,$$
  

$$f^{3}(x^{1}, x^{2}, x^{3}) = 0,$$

for  $x^1, x^2, x^3$ ? In vector form, we solve  $\vec{f}(\vec{x}) = 0$  for  $\vec{x} = (x^1, x^2, x^3)$  where  $\vec{f} = (f^1, f^2, f^3)$ ?

Suppose  $\vec{x}_k$  is close to a solution vector  $\vec{r}$  of  $\vec{f}(\vec{x}) = 0$ , i.e.,  $\vec{f}(\vec{r}) = 0$ . Then, by Taylor's expansion, we see that

$$O_3 = \vec{f}(\vec{r}) = \vec{f}(\vec{x}_k) + D\vec{f}(\vec{x}_k)(\vec{r} - \vec{x}_k) + \mathcal{O}(||\vec{r} - \vec{x}_k||^2),$$

where

$$\mathsf{D}\vec{f}(\vec{x}) = \begin{bmatrix} \frac{\partial f^1}{\partial x^1} & \frac{\partial f^1}{\partial x^2} & \frac{\partial f^1}{\partial x^3} \\ \frac{\partial f^2}{\partial x^1} & \frac{\partial f^2}{\partial x^2} & \frac{\partial f^2}{\partial x^3} \\ \frac{\partial f^3}{\partial x^1} & \frac{\partial f^3}{\partial x^2} & \frac{\partial f^3}{\partial x^3} \\ \frac{\partial f^3}{\partial x^1} & \frac{\partial f^3}{\partial x^2} & \frac{\partial f^3}{\partial x^3} \end{bmatrix}.$$

A refined guess solution  $\vec{x}_{k+1}$  satisfies

$$0 = \vec{f}(\vec{x}_k) + D\vec{f}(\vec{x}_k)(\vec{x}_{k+1} - \vec{x}_k) \to \vec{x}_{k+1} = \vec{x}_k - [D\vec{f}(\vec{x}_k)]^{-1}\vec{f}(\vec{x}_k).$$

# Assignment III

## Wangtao Lu Zhejiang University

Equations

2.5 Iterative Met

positive-definite matrices

2.7 Nonlinear Systems of

Assignment III

## Assignment III:

P116, 2.5 Computer Problems:2,6.

P130, 2.6 Computer Problems:6. (Don't use the built-in function in MATLAB!).

Due date: October 21, 2020.