Machine learning basics

G. Châtel Disaitek

2019/02/13

Machine learning

Machine learning (ML) is a subfield of artificial intelligence.

Intuitively We want to learn from and make predictions on data.

Technically We want to update the parameters of a model to make it describe our training data as well (defined by a *loss function*) as possible.

Linear regression

Linear regression

Linear regression

Linear regression

Linear regression

Linear regression

Linear regression

Linear regression

Linear regression

Decision tree

Neural network (deep learning)

Neural network (deep learning)

Neural network (deep learning)

Input layer

Neural network (deep learning)

Input layer

Neural network (deep learning)

Image recognition (VGG 16)

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Application examples

Supervised learning

Regression

Polynomial
$$(x, y, z) \rightarrow f(x, y, z)$$

House price (surface, nb rooms, city) \rightarrow price

Classification

 $\mbox{Image classification} \qquad \mbox{pixel values} \rightarrow \mbox{cat or dog}$

Text classification list of words \rightarrow spam or valid email