

# **AO4606**

# **Complementary Enhancement Mode Field Effect Transistor**

# **General Description**

The AO4606 uses advanced trench technology MOSFETs to provide excellent  $R_{\text{DS(ON)}}$  and low gate charge. The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

#### **Features**

 $\begin{array}{lll} \text{n-channel} & \text{p-channel} \\ V_{DS}\left(V\right) = 30V & -30V \\ I_{D} = 6.9A & -6A \\ R_{DS(ON)} & R_{DS(ON)} \end{array}$ 

 $< 28m\Omega (V_{GS}=10V)$   $< 35m\Omega (V_{GS}=10V)$  $< 42m\Omega (V_{GS}=4.5V)$   $< 58m\Omega (V_{GS}=4.5V)$ 



### Absolute Maximum Ratings T<sub>A</sub>=25°C unless otherwise noted

| Parameter              |                      | Symbol                            | Max n-channel | Max p-channel | Units |
|------------------------|----------------------|-----------------------------------|---------------|---------------|-------|
| Drain-Source Voltage   | e                    | $V_{DS}$                          | 30            | -30           | V     |
| Gate-Source Voltage    |                      | $V_{GS}$                          | ±20           | ±20           | V     |
| Continuous Drain       | T <sub>A</sub> =25°C |                                   | 6.9           | -6            |       |
| Current <sup>A</sup>   | T <sub>A</sub> =70°C | $I_D$                             | 5.8           | -5            | Α     |
| Pulsed Drain Current B |                      | I <sub>DM</sub>                   | 30            | -30           |       |
|                        | T <sub>A</sub> =25°C | D                                 | 2             | 2             | w     |
| Power Dissipation      | T <sub>A</sub> =70°C | $-P_{D}$                          | 1.44          | 1.44          |       |
| Junction and Storage   | e Temperature Range  | T <sub>J</sub> , T <sub>STG</sub> | -55 to 150    | -55 to 150    | °C    |

| Thermal Characteristics: n-channel and p-channel |              |                  |      |     |       |      |
|--------------------------------------------------|--------------|------------------|------|-----|-------|------|
| Parameter                                        | Symbol       | Device           | Тур  | Max | Units |      |
| Maximum Junction-to-Ambient <sup>A</sup>         | t ≤ 10s      | $R_{\theta JA}$  | n-ch | 48  | 62.5  | °C/W |
| Maximum Junction-to-Ambient <sup>A</sup>         | Steady-State | dy-State         |      | 74  | 110   | °C/W |
| Maximum Junction-to-Lead <sup>C</sup>            | Steady-State | $R_{	hetaJL}$    | n-ch | 35  | 60    | °C/W |
| Maximum Junction-to-Ambient <sup>A</sup>         | t ≤ 10s      | Ь                | p-ch | 48  | 62.5  | °C/W |
| Maximum Junction-to-Ambient <sup>A</sup>         | Steady-State | $ R_{\theta JA}$ | p-ch | 74  | 110   | °C/W |
| Maximum Junction-to-Lead <sup>C</sup>            | Steady-State | $R_{	hetaJL}$    | p-ch | 35  | 40    | °C/W |

## N-Channel Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Symbol                                               | Parameter                         | Parameter Conditions                                             |    | Тур   | Max | Units    |  |
|------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|----|-------|-----|----------|--|
| STATIC PARAMETERS                                    |                                   |                                                                  |    |       |     |          |  |
| $BV_{DSS}$                                           | Drain-Source Breakdown Voltage    | $I_D=250\mu A,\ V_{GS}=0V$                                       | 30 |       |     | ٧        |  |
| I <sub>DSS</sub>                                     | Zero Gate Voltage Drain Current   | V <sub>DS</sub> =24V, V <sub>GS</sub> =0V                        |    |       | 1   | μΑ       |  |
| יטאי                                                 | Zero date voltage Brain durrent   | T <sub>J</sub> =55°C                                             |    |       | 5   | μΛ       |  |
| $I_{GSS}$                                            | Gate-Body leakage current         | $V_{DS}$ =0V, $V_{GS}$ =±20V                                     |    |       | 100 | nA       |  |
| $V_{GS(th)}$                                         | Gate Threshold Voltage            | $V_{DS}=V_{GS}$ $I_D=250\mu A$                                   | 1  | 1.9   | 3   | <b>V</b> |  |
| $I_{D(ON)}$                                          | On state drain current            | V <sub>GS</sub> =4.5V, V <sub>DS</sub> =5V                       | 20 |       |     | Α        |  |
|                                                      |                                   | V <sub>GS</sub> =10V, I <sub>D</sub> =6.9A                       |    | 22.5  | 28  | mΩ       |  |
| $R_{DS(ON)}$                                         | Static Drain-Source On-Resistance | T <sub>J</sub> =125°C                                            |    | 31.3  | 38  | 1115.2   |  |
|                                                      |                                   | V <sub>GS</sub> =4.5V, I <sub>D</sub> =5.0A                      |    | 34.5  | 42  | mΩ       |  |
| <b>g</b> FS                                          | Forward Transconductance          | $V_{DS}$ =5V, $I_D$ =6.9A                                        | 10 | 15.4  |     | S        |  |
| $V_{SD}$                                             | Diode Forward Voltage             | I <sub>S</sub> =1A                                               |    | 0.76  | 1   | V        |  |
| I <sub>S</sub> Maximum Body-Diode Continuous Current |                                   |                                                                  |    |       | 3   | Α        |  |
| DYNAMIC                                              | PARAMETERS                        |                                                                  |    |       |     |          |  |
| C <sub>iss</sub>                                     | Input Capacitance                 |                                                                  |    | 680   |     | pF       |  |
| C <sub>oss</sub>                                     | Output Capacitance                | $V_{GS}$ =0V, $V_{DS}$ =15V, f=1MHz                              |    | 102   |     | pF       |  |
| C <sub>rss</sub>                                     | Reverse Transfer Capacitance      |                                                                  |    | 77    |     | pF       |  |
| $R_g$                                                | Gate resistance                   | V <sub>GS</sub> =0V, V <sub>DS</sub> =0V, f=1MHz                 |    | 3     |     | Ω        |  |
| SWITCHING PARAMETERS                                 |                                   |                                                                  |    |       |     |          |  |
| Q <sub>g</sub> (10V)                                 | Total Gate Charge                 |                                                                  |    | 13.84 |     | nC       |  |
| Q <sub>g</sub> (4.5V)                                | Total Gate Charge                 | V <sub>GS</sub> =10V, V <sub>DS</sub> =15V, I <sub>D</sub> =6.9A |    | 6.74  |     | nC       |  |
| $Q_{gs}$                                             | Gate Source Charge                | V <sub>GS</sub> -10V, V <sub>DS</sub> -13V, I <sub>D</sub> -0.9A |    | 1.82  |     | nC       |  |
| $Q_{gd}$                                             | Gate Drain Charge                 | ]                                                                |    | 3.2   |     | nC       |  |
| $t_{D(on)}$                                          | Turn-On DelayTime                 |                                                                  |    | 4.6   |     | ns       |  |
| t <sub>r</sub>                                       | Turn-On Rise Time                 | $V_{GS}$ =10V, $V_{DS}$ =15V, $R_{L}$ =2.2 $\Omega$ ,            |    | 4.1   |     | ns       |  |
| $t_{D(off)}$                                         | Turn-Off DelayTime                | $R_{GEN}$ =3 $\Omega$                                            |    | 20.6  |     | ns       |  |
| t <sub>f</sub>                                       | Turn-Off Fall Time                | ]                                                                |    | 5.2   |     | ns       |  |
| t <sub>rr</sub>                                      | Body Diode Reverse Recovery Time  | I <sub>F</sub> =6.9A, dI/dt=100A/μs                              |    | 16.5  |     | ns       |  |
| $Q_{rr}$                                             | ·                                 | I <sub>F</sub> =6.9A, dI/dt=100A/μs                              |    | 7.8   |     | nC       |  |

A: The value of  $R_{\theta JA}$  is measured with the device mounted on  $1\text{in}^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$ =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t ≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to lead  $R_{\theta JL}$  and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using  $80\mu s$  pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in  $^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$ =25°C. The SOA curve provides a single pulse rating.

### P-Channel Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)

| Symbol                | Parameter                             | Parameter Conditions                                              |      | Тур   | Max      | Units |  |  |
|-----------------------|---------------------------------------|-------------------------------------------------------------------|------|-------|----------|-------|--|--|
| STATIC PARAMETERS     |                                       |                                                                   |      |       |          |       |  |  |
| BV <sub>DSS</sub>     | Drain-Source Breakdown Voltage        | $I_D = -250 \mu A, V_{GS} = 0 V$                                  | -30  |       |          | V     |  |  |
| I <sub>DSS</sub>      | Zero Gate Voltage Drain Current       | V <sub>DS</sub> =-24V, V <sub>GS</sub> =0V                        |      |       | -1<br>-5 | μА    |  |  |
| I <sub>GSS</sub>      | Gate-Body leakage current             | V <sub>DS</sub> =0V, V <sub>GS</sub> =±20V                        |      |       | ±100     | nA    |  |  |
| $V_{GS(th)}$          | Gate Threshold Voltage                | $V_{DS}=V_{GS}$ $I_{D}=-250\mu A$                                 | -1.2 | -2    | -2.4     | V     |  |  |
| $I_{D(ON)}$           | On state drain current                | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-5V                       | 30   |       |          | Α     |  |  |
|                       |                                       | V <sub>GS</sub> =-10V, I <sub>D</sub> =-6A                        |      | 28    | 35       | mO    |  |  |
| $R_{DS(ON)}$          | Static Drain-Source On-Resistance     | T <sub>J</sub> =125°C                                             |      | 37    | 45       | mΩ    |  |  |
|                       |                                       | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-5A                       |      | 44    | 1 00     | mΩ    |  |  |
| g <sub>FS</sub>       | Forward Transconductance              | $V_{DS}$ =-5V, $I_{D}$ =-6A                                       |      | 13    |          | S     |  |  |
| $V_{SD}$              | Diode Forward Voltage                 | I <sub>S</sub> =-1A,V <sub>GS</sub> =0V                           |      | -0.76 | -1       | V     |  |  |
| I <sub>S</sub>        | Maximum Body-Diode Continuous Current |                                                                   |      |       | -4.2     | Α     |  |  |
| DYNAMIC               | PARAMETERS                            |                                                                   |      |       |          |       |  |  |
| C <sub>iss</sub>      | Input Capacitance                     |                                                                   |      | 920   |          | pF    |  |  |
| C <sub>oss</sub>      | Output Capacitance                    | V <sub>GS</sub> =0V, V <sub>DS</sub> =-15V, f=1MHz                |      | 190   |          | pF    |  |  |
| C <sub>rss</sub>      | Reverse Transfer Capacitance          |                                                                   |      | 122   |          | pF    |  |  |
| $R_g$                 | Gate resistance                       | $V_{GS}$ =0V, $V_{DS}$ =0V, f=1MHz                                |      | 3.6   |          | Ω     |  |  |
| SWITCHII              | SWITCHING PARAMETERS                  |                                                                   |      |       |          |       |  |  |
| Q <sub>g</sub> (10V)  | Total Gate Charge (10V)               |                                                                   |      | 18.5  |          | nC    |  |  |
| Q <sub>g</sub> (4.5V) | Total Gate Charge (4.5V)              | V <sub>GS</sub> =-10V, V <sub>DS</sub> =-15V, I <sub>D</sub> =-6A |      | 9.6   |          | nC    |  |  |
| $Q_{gs}$              | Gate Source Charge                    | V <sub>GS</sub> 10V, V <sub>DS</sub> 13V, I <sub>D</sub> 0A       |      | 2.7   |          | nC    |  |  |
| $Q_{gd}$              | Gate Drain Charge                     |                                                                   |      | 4.5   |          | nC    |  |  |
| $t_{D(on)}$           | Turn-On DelayTime                     |                                                                   |      | 7.7   |          | ns    |  |  |
| t <sub>r</sub>        | Turn-On Rise Time                     | $V_{GS}$ =-10V, $V_{DS}$ =-15V, $R_L$ =2.7 $\Omega$ ,             |      | 5.7   |          | ns    |  |  |
| t <sub>D(off)</sub>   | Turn-Off DelayTime                    | $R_{GEN}$ =3 $\Omega$                                             |      | 20.2  |          | ns    |  |  |
| t <sub>f</sub>        | Turn-Off Fall Time                    |                                                                   |      | 9.5   |          | ns    |  |  |
| t <sub>rr</sub>       | Body Diode Reverse Recovery Time      | I <sub>F</sub> =-6A, dI/dt=100A/μs                                |      | 20    |          | ns    |  |  |
| $Q_{rr}$              | Body Diode Reverse Recovery Charge    | I <sub>F</sub> =-6A, dI/dt=100A/μs                                |      | 8.8   |          | nC    |  |  |

A: The value of  $R_{\theta JA}$  is measured with the device mounted on  $1\text{in}^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$  =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R  $_{\theta JA}$  is the sum of the thermal impedence from junction to lead R  $_{\theta JL}$  and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using  $80\,\mu s$  pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in  $^2$  FR-4 board with 2oz. Copper, in a still air environment with  $T_A$ =25°C. The SOA curve provides a single pulse rating.

#### N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



Figure 5: On-Resistance vs. Gate-Source Voltage

#### N-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



Figure 7: Gate-Charge characteristics



Figure 8: Capacitance Characteristics



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)



Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)



Figure 11: Normalized Maximum Transient Thermal Impedance

#### P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



#### P-CHANNEL TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



Figure 7: Gate-Charge Characteristics



Figure 8: Capacitance Characteristics



Figure 9: Maximum Forward Biased Safe Operating Area (Note E)



Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)



Figure 11: Normalized Maximum Transient Thermal Impedance



# SO-8 Package Data







| SYMBOLS | DIMENS   | DIMENSIONS IN MILLIMETERS DIME |      |           | ENSIONS IN INCHES |       |  |
|---------|----------|--------------------------------|------|-----------|-------------------|-------|--|
|         | MIN      | NOM                            | MAX  | MIN       | NOM               | MAX   |  |
| A       | 1.45     | 1.50                           | 1.55 | 0.057     | 0.059             | 0.061 |  |
| A1      | 0.00     |                                | 0.10 | 0.000     |                   | 0.004 |  |
| A2      |          | 1.45                           |      |           | 0.057             |       |  |
| b       | 0.33     |                                | 0.51 | 0.013     |                   | 0.020 |  |
| С       | 0.19     |                                | 0.25 | 0.007     |                   | 0.010 |  |
| D       | 4.80     |                                | 5.00 | 0.189     |                   | 0.197 |  |
| E1      | 3.80     |                                | 4.00 | 0.150     |                   | 0.157 |  |
| e       | 1.27 BSC |                                |      | 0.050 BSC |                   |       |  |
| E       | 5.80     |                                | 6.20 | 0.228     |                   | 0.244 |  |
| h       | 0.25     |                                | 0.50 | 0.010     |                   | 0.020 |  |
| L       | 0.40     |                                | 1.27 | 0.016     |                   | 0.050 |  |
| aaa     |          |                                | 0.10 |           |                   | 0.004 |  |
| θ       | 0°       |                                | 8°   | 0°        |                   | 8°    |  |

- NOTE: 1. LEAD FINISH: 150 MICROINCHES ( 3.8 um) MIN. THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD 2. TOLERANCE ±0.10 mm (4 mil) UNLESS OTHERWISE SPECIFIED

- 3. COPLANARITY : 0.10 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

#### PACKAGE MARKING DESCRIPTION



NOTE:

LOGO - AOS LOGO

- AOS LOGO
- PART NUMBER CODE.
- FAB LOCATION
- ASSEMBLY LOCATION
- YEAR CODE
- WEEK CODE. 4606 F

A Y W

- ASSEMBLY LOT CODE LC

#### RECOMMENDED LAND PATTERN



UNIT: mm

# SO-8 PART NO. CODE

| PART NO. | CODE |
|----------|------|
| AO4606   | 4606 |
|          |      |

