

The ideally polarizable interface: The metallic boundary limit

A. Alastuey, B. Jancovici, L. Blum, P. J. Forrester, and M. L. Rosinberg

Citation: The Journal of Chemical Physics 83, 2366 (1985); doi: 10.1063/1.449278

View online: http://dx.doi.org/10.1063/1.449278

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/83/5?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Limiting current from a metallic ideal edge attached to a dielectric edge

Appl. Phys. Lett. 75, 3084 (1999); 10.1063/1.125238

Electronic properties of ideal and interfacemodified metalsemiconductor interfaces

J. Vac. Sci. Technol. B 14, 2985 (1996); 10.1116/1.588947

Lowtemperature formation of metal/molecularbeam epitaxyGaAs(100) interfaces: Approaching ideal chemical and electronic limits

J. Vac. Sci. Technol. B 7, 1007 (1989); 10.1116/1.584791

The ideally polarizable interface: Integral equations

J. Chem. Phys. 83, 892 (1985); 10.1063/1.449504

The ideally polarizable interface: A solvable model and general sum rules

J. Chem. Phys. 81, 3700 (1984); 10.1063/1.448121

The ideally polarizable interface: The metallic boundary limit

A. Alastuey and B. Jancovici

Laboratoire de Physique Theorique et Hautes Energies, Universite Paris-Sud, 91405 Orsay, France

Department of Physics of Puerto Rico, Rio Piedras, Puerto Rico 00931

P. J. Forrester

Department of Theoretical Physics, Research School of Physical Sciences, The Australian National University, Camberra, 2601 Australia

M. L. Rosinberg

L. P. 15 du CNRS "Physique des Liquides et Electrochimie" associe a l'Universite P. et M. Curie, 4 place Jussieu, 75230 Paris Cedex 05, France

(Received 25 February 1985; accepted 29 May 1985)

The model of a classical one-component plasma in the vicinity of a metallic hard wall is shown to be a limiting case of an ideally polarizable interface.

A simple model which simulates the behavior of ideally polarizable interfaces (IPI) has been proposed recently. It consists of two classical one-component plasmas (OCP) of different background densities α_1/π , α_2/π separated by an impermeable membrane. An exact solution was found in two dimensions with a logarithmic interaction at the special value of the coupling constant $\Gamma = \beta e^2 = 2$, where e is the charge of the mobile ions and $\beta = 1/kT$ is the thermal Boltzmann factor. In the limit $\alpha_2 \rightarrow \infty$ we may expect that the corresponding region of the interface behaves as a perfect conductor since the screening length [typically $\lambda = (2\Gamma\alpha_2)^{-1/2}$] tends to zero and the excess charge stands close to the interface. In this limit and for a membrane of finite width we should then recover the solution obtained recently for the OCP-metal interface² where the image forces induced by the metal are explicitly included in the Hamiltonian. Since the technical methods used in Refs. 1 and 2 are quite different it is interesting to verify that they vield effectively the same solution.

First we must extend the results of Ref. 1 to the case of an impermeable membrane of finite width ϵ . This can be done quite easily by noticing that, in the limit of a large system, the introduction of ϵ only modifies the expression of the function $\gamma(t)$ defined by Eq. (2.13). Since the partition function, the free energy, the one- and two-body distribution functions are given as functionals of $\chi(t)$ their formal expressions remain unchanged. After some simple manipulations we find

$$\chi(t) = me^{(m^2 - 1)t^2} \frac{\operatorname{erfc}(mt)}{\operatorname{erfc}(-t)} e^{-2t\epsilon\sqrt{2\alpha_1}}, \tag{1}$$

where erfc(t) is the complementary error function and $m = (\alpha_1/\alpha_2)^{1/2}$. As in Ref. 1 the key ingredient of the exact solution is the quantity $z_0 = z_1/z_2$ where z_1 and z_2 are the fugacities of the particles on either side of the interface;

$$z_1 = e^{\beta [\mu_1 + e\varphi(+\infty)]}, \ z_2 = e^{\beta [\mu_2 + e\varphi(-\infty)]}.$$
 (2)

 φ is the electrostatic potential and μ_1 and μ_2 are the bulk chemical potentials of the two plasmas separated by the gap $0 < x < \epsilon$ (to make easier the comparison between Refs. 1 and 2 the positions of regions 1 and 2 have been inverted).

We now consider the limit $\alpha_2 \rightarrow \infty$, i.e., $m \rightarrow 0$. First we notice that in two dimensions the potential difference $\varphi(0) - \varphi(-\infty)$ does not become zero as it would be in an ideal conductor. For dimensional reasons it is of the form

$$\varphi(0) - \varphi(-\infty) = ef\left(\frac{\sigma}{\sqrt{\alpha_2}}, \frac{\alpha_1}{\alpha_2}\right),$$
 (3)

where σ is the surface charge density defined by Eq. (3.10) of Ref. 1.

When $\alpha_2 \rightarrow \infty$ this potential difference becomes ef(0, 0)which can be also obtained by taking $\sigma = \alpha_1 = 0$ for α_2 finite. So ef(0, 0) is merely the potential drop across the surface of one OCP bounded by a hard uncharged insulating wall, which has already been computed at $\Gamma = 2$ (Ref. 3):

$$ef(0,0) = -\frac{e}{2} \left(\ln 2 - \frac{1}{2} \right).$$
 (4)

$$\beta\mu_2 = \frac{1}{2} \left(\ln \frac{\alpha_2}{2\pi^3} + 1 \right) \tag{5}$$

we see that z_0/m tends to the finite value

$$\tilde{z}_0 = \frac{\pi^{3/2}}{\sqrt{2\alpha_1}} e^{\beta(\mu_1 + e\Delta\varphi)},\tag{6}$$

where now $\Delta \varphi = \varphi(\infty) - \varphi(0)$. Also the quantity $\chi(t)/m$ tends to the finite value

$$\tilde{\chi}(t) = \frac{e^{-t^2 - 2t\epsilon\sqrt{2\alpha_1}}}{\operatorname{erfc}(-t)}.$$
(7)

The expressions for σ (Eq. 2.34), $\rho(x)$ (Eq. 3.4), and $\rho_T(x_1,x_2,y)$ (Eq. 3.15) of Ref. 1 are all functions of $\chi(t)/m$ and z_0/m . Thus their limiting value is obtained by simply replacing $\chi(t)/m$ and z_0/m by $\chi(t)$ and \tilde{z}_0 , respectively. In each case we regain the results of Ref. 2. For example, the density profile for $x > \epsilon$ (Eq. 3.4) tends to the limit

$$\rho(x) = \frac{2\alpha_1}{\pi^{3/2}} \tilde{z}_0 \int_{-\infty}^{+\infty} dt \frac{\exp\{-\left[t + (\epsilon - x)\sqrt{2\alpha_1}\right]^2\}}{\tilde{z}_0 \operatorname{erfc}(-t) + e^{-t^2 - 2t\epsilon\sqrt{2\alpha_1}}}$$
(8)

which is precisely the result of Ref. 2 (Eq. 4.20 with $\zeta = (\sqrt{2\alpha_1}/\pi^{3/2})\tilde{z}_0$. For α_2 finite the surface excess free energy can be written

$$f^{s} = f_{1}^{s} + f_{2}^{s} + \Delta f^{s} + \epsilon e^{2} \sigma^{2} / \pi, \tag{9}$$

where f_1^s and f_2^s denote the surface free energy of the OCP near an insulating wall, Δf^s is the correction term due to the correlations between the two sides, and the last term is due to the gap ϵ . When $\alpha_2 \rightarrow \infty$ f_2^s will not tend to a finite limit. However, the excess free energy of the limiting system defined as

$$f^{s} = f_{1}^{s} + \Delta f^{s} + \epsilon e^{2} \sigma^{2} / \pi \tag{10}$$

is a function of z_0/m and $\chi(t)/m$ and thus tends to a finite limit. This limit is identical to the corresponding expression for f^s in Ref. 2 [Eqs. (4.8) and (4.14)] provided we note that the latter contains an extra contribution $f_1^s(\sigma=0)$; it is due to the other uncharged wall located at $x=W+\epsilon$. Thus, as expected, the OCP-metal interface can be considered as a limiting case of the IPI model.

The correlation functions can be also obtained by a third method described in Ref. 4 which gives the exact solution for the 2D OCP in an arbitrary nonuniform background and submitted to an arbitrary non-Coulomb external potential $V_{\rm ext}(x)$.

An important consequence of the OCP-metal interface being a limiting case of the IPI model is that the sum rules proved in Ref. 1 also hold for the metallic boundary. Thus we have the Lippmann equation [Eq. (5.13) of Ref. 1] which is true for any charged interface and the sum rule

$$\left. \frac{\partial f^{s}}{\partial \alpha_{1}} \right|_{\sigma} = -e \int_{\epsilon}^{\infty} \left[\varphi(x) - \varphi(\infty) \right] dx, \tag{11}$$

which is restricted to the case of jellium.

We can also derive a contact theorem, expressing the balance of forces across the interface: it is not very useful because it requires the knowledge of the two-body correlation function.⁵ Let us indicate a last sum rule

$$\left. \frac{\partial f^{s}}{\partial \epsilon} \right|_{\sigma} = kT \rho(\epsilon) + \frac{\alpha_{1}}{\pi} e \left[\varphi\left(\epsilon\right) - \varphi\left(\infty\right) \right] - P, \tag{12}$$

FIG. 1. Differential capacity vs potential drop: (1) insulating wall, (2) metallic wall.

where P is the bulk pressure. It can be derived by the general method indicated in Sec. V C of Ref. 1.

Finally, let us compare the differential capacity C of the interface to that corresponding to a "primitive" electrode, i.e., the plasma near a charged *insulating* wall. Since the impermeable gap $0 < x < \epsilon$ gives a constant contribution $1/(2\pi\epsilon)$ to C it is sensible to compare only the "diffuse" contribution, i.e., $C_D = \partial(e\sigma/\pi)/\partial[\varphi(\epsilon) - \varphi(\infty)]$. Figure 1 shows the dependence with the potential drop $\Delta\varphi$ and corresponds to $\epsilon = 1$ (units are $e = \alpha_1 = 1$). Here we can see the influence of an exact treatment of metallic image forces.

¹M. L. Rosinberg and L. Blum, J. Chem. Phys. 81, 3700 (1984).

²P. J. Forrester, J. Phys. A 18, 1419 (1985).

³B. Jancovici, J. Stat. Phys. 28, 43 (1982).

⁴A. Alastuey and J. Lebowitz, J. Phys. (Paris) 45, 1859 (1984).

⁵S. L. Carnie and D. Y. Chan, J. Chem. Phys. 74, 1293 (1981).