Analysis I Lecture 6

Daniel Yu

October 16, 2024

Contents

1 Uniformly Continuous Maps

3

CONTENTS 2

1 Uniformly Continuous Maps

Definition 1. Let $(X, \rho_X), (Y, \rho_Y)$ metric spaces and $f: X \to Y$ is **uniformly continous** if $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall x, y \in X, \rho_X(x, y) < \delta$ then $\rho_Y(f(x), f(y)) < \varepsilon$.

- 1. imposing a stronger constraint than continuous because this is saying some δ works across the entire domain for $x,y\in X$
- 2. stating that f behaves "similarly" across the whole domain
- 3. a function that is continuous at every point $\not\Leftrightarrow$ the function is uniformly continuous
- 4. consider behavior of functions with asymptotes, what can you say about them?

Remark. Recall that the definition of a continuous map is as follows. $f \in C(X,Y) \Leftrightarrow \forall x \in X, \forall \varepsilon > 0$ $\exists \delta > 0$ such that $\forall y \in X, \rho(y,x) < \delta$ we have $\rho(f(x),f(y)) < \varepsilon$

Lemma 1. If $f: X \to Y$ is uniformly continuous then $f \in C(X,Y)$ i.e. it is continuous.

Note. This is not true the other way around. A map that is continuous but not uniformly continuous. $f:[0,1]\to\mathbb{R}.$ $x_n=\frac{1}{n}, n\geq 1.$ Consider

$$\rho(x_n, x_{n+1}) = |x_n + x_{n+1}| = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \to 0 \text{ as } n \to \infty.$$

and,

$$\rho(f(x_n), f(x_{n+1})) = |f(x_n) - f(x_{n+1})| = |n - (n+1)| = 1.$$

Hence this map is continuous but not uniformly continuous (the same δ won't work across all x_n, x_{n+1} pairs).

Definition 2. f is not uniformly continuous $\Leftrightarrow \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x,y \in X \ \rho_X(x,y) < \delta$ such that $\delta_Y(f(x),f(y)) \geq \varepsilon$

Theorem 1. Assume that $f: X \to Y$ is continuous and X is compact. Then, f is uniformly continuous.

Proof. By contradition. Assume that $f: X \to Y$ is continuous and X is comapct but f is not uniformly continuous. Then, $\exists \varepsilon_0 > 0$ such that $\forall \delta > 0 \ \exists x, y \in X, \rho_X(x,y) < \delta$ and $\rho_Y(f(x), f(y)) \ge \varepsilon_0$. We can choose a construction like so

- 1. $x_1, y_1 \in X$ such that $\rho_X(x_1, y_1) < 1$ and $\rho_Y(f(x_1), f(y_1)) \ge \varepsilon_0$
- 2. $x_2, y_2 \in X$ such that $\rho_X(x_2, y_2) < \frac{1}{2}$ and $\rho_Y(f(x_2), f(y_2)) \ge \varepsilon_0$.
- 3. . . .
- 4. $x_n, y_n \in X$ such that $\rho_X(x_n, y_n) < \frac{1}{n}$ and $\rho_Y(f(x_n), f(y_n)) \ge \varepsilon_0$

Since X is compact, then \exists a subsequence $\{x_{n_j}\}$ such that $x_{n_j} \to x^*$ as $j \to \infty$. Then $f \in C(x^*) \Rightarrow \delta_0 > 0$ such that

$$f(B_{\delta_0}^X(x^*)) \subseteq B_{\frac{\varepsilon_0}{2}}^Y(f(x^*)).$$

Since $x_{n_j} \to x^*$ in X as $j \to \infty$ then $\exists j_0 \ge 1$ such that $x_{n_j} \in B_{\frac{\delta_0}{2}}(x^*), \forall j \ge j_0$. Now choose $j_0 \ge 1$ larger if necessary so that

$$\frac{1}{n_i} \le \frac{\delta}{2}, \forall j \ge j_0.$$

Then by triangle inequality

$$\begin{split} \rho_X(y_{n_j}, x^*) &\leq \rho_X(x^*, x_{n_j}) + \rho_X(x_{n_j}, y_{n_j}) \\ &< \frac{\delta_0}{2} + \frac{1}{n_j} \\ &< \frac{\delta_0}{2} + \frac{\delta_0}{2} \\ &= \delta_0. \end{split}$$

 \Rightarrow

$$x_{n_j}, y_{n_j} \in B_{\frac{\delta_0}{2}}^X(x^*), \forall j \ge j_0.$$

 \Rightarrow

$$f(x_{n_j}), f(y_{n_j}) \in B^Y_{\frac{\varepsilon_0}{2}}(y^*).$$

 \Rightarrow

$$\rho_Y(f(x_{n_j}), f(y_{n_j})) < \varepsilon_0 \forall j \ge j_0.$$

This is a contradiction to the construction of $x_n, y_n, n \ge 1$ since $\rho_Y(f(x_n), f(y_n)) \ge \varepsilon_0 \forall n \ge 1$. \square

Remark. What we essentially did in the proof above is that we took two sequences x_i 's and y_i 's that both converge to some point x^* and as they converge the distance $\rho_X(x_n, y_n) \to 0$ as $n \to \infty$. So in Y, bothe sequences in Y must converge to $f(x^*)$ and similarly the distances in Y of $\rho_Y(f(x_n), f(y_n)) \to 0$.