数为

0	已知等差数列 $\{a_n\}$, a_1	$=-4$, $a_8=-18$,则	$S_8 = $	
	已知一个等差数列的前			286,则其项
	·			
3	数列 $\{a_n\}$ 的前 n 项和 S_n	满足 $\log_2(S_n+1) =$	$n+1, y = _{}$	_•
4	在等差数列 $\{a_n\}$ 中 $,a_1$	$= 3, a_4 = 2, $ $\bigcirc a_4 + 1$	a ₇ + ··· + a _{3n+1} 等于	
5	在等差数列 $\{a_n\}$ 中,已知 $a_3+a_{99}=200$,则 $S_{101}=$			
6	在等差数列 $\{a_n\}$ 中 $,a_2+a_5=19$, $S_5=40$,则 a_{10} 为().			
	(A) 27	(B) 28	(C) 29	(D) 30
	已知数列{a,}是等差数	例, $a_2 = 8$, $a_4 = 4$,	则前 n 项和 S ,中最大的]是().

(B) S_4 和 S_5 (C) S_5 和 S_6 (D) S_6 8 某单位开发了一个受政府扶持的新项目,得到政府无息贷款50万元购买了一套设备, 若该设备在使用过程中第一天维修费是 101 元······第 n 天的维修费是 100+n 元,则使 用多少天后,平均每天消耗的设备费用(总设备费用=购置费+维修费)最低?

- **9** 设数列 $\{a_n\}$ 的前 n 项和为 S_n . 已知 $a_1 = 1$, $\frac{2S_n}{n} = a_{n+1} \frac{1}{3}n^2 n \frac{2}{3}$, $n \in \mathbb{N}^*$.
 - (1) 求 a2 的值;

 $(A) S_3$

(2) 求数列 $\{a_n\}$ 的通项公式.

- 0 等差数列 $\{a_n\}$ 中,公差 $d\neq 0$,求证:
 - (1) 对任意 $n \in \mathbb{N}^*$, 方程 $a_n x^2 + 2a_{n+1} x + a_{n+2} = 0$ 有公共解;
 - (2) 若方程 $a_n x^2 + 2a_{n+1} x + a_{n+2} = 0$ 的另一根为 b_n ,则 $\frac{1}{1+b_1}$, $\frac{1}{1+b_2}$, $\frac{1}{1+b_3}$,…成等差数 列.