

Lecture 08 – Part 01 Model Complexity

Empirical Risk Minimization

- 1. Pick a model.
 - E.g., linear prediction rules.
- 2. Pick a loss.
 - E.g., mean squared error.
- 3. Find a prediction rule minimizing the risk.

Big Decision

▶ Pick a model.

Picking the wrong model causes problems.

Underfitting

- Fit $H(x) = w_0 + w_1 x$?
 - We have underfit the data.

Overfitting

- Fit $H(x) = w_0 + w_1 x + w_2 x^2 + ... + w_{10} x^{10}$?
 - We have overfit the data.

Model Complexity

- Difference? Complexity.
- Complex models are highly flexible.
 - They tend to overfit.
- Simple models are stiff.
 - They tend to underfit.

Example: kNN

► 1NN: complex model, likely to overfit.

20NN: less complex model, likely to underfit.

Choosing Model Complexity

- How do we choose between two models?
 - Between degree 10 and degree 1?
 - Between 1NN and 20NN?

Not always obvious.

Bad Idea: Use training MSE

► Which has smaller MSE on training data?

Bad Idea: Use training MSE

- Which has smaller MSE on training data?
- Problem: Best 10-degree polynomial will always have smaller MSE on training data.

Good Idea: Use validation MSE

- ► We care about **generalization**.
- So keep a small amount of data hidden in a validation set.
- Fit model on training data, compute MSE on validation set.
- Pick whichever model has smaller validation error.

What do you expect?

- You fit a complex model on training data.
- Test it on a validation set.
- Likely: validation MSE > training MSE.

What do you expect?

- You fit a very simple model on training data.
- Test it on a validation set.
- ▶ Likely: validation MSE ≈ training MSE.

Cross-Validation

- We want all the training data we can get.
- Reserving some of it is wasteful.
- Idea: split data into pieces, each takes turn as validation set.

k-Fold Cross Validation

- 1. Split data set into k pieces, $S_1, ..., S_k$.
- 2. Loop *k* times; on iteration *i*:
 - Use S_i as validation set; rest as training.
 - ightharpoonup Compute validation error ϵ_i
- 3. Overall error: $\frac{1}{k} \sum \epsilon_i$

Leave-One-Out Cross Validation

- Suppose we have n labeled data points.
- ▶ LOOCV: k-fold CV with k = n.

Another Approach

- We can control complexity by choosing model.
- ► Also: via regularization.

Regularization

- ► Let's fit a complex model: $w_0 + w_x x + ... + w_{10} x^{10}$.
- ▶ But impose a budget on weights, $w_0, ..., w_d$.

Budgeting Weights

- ▶ One way to budget: ask that $\|\vec{w}\|^2$ is small.
- ▶ Before: minimize

$$R_{\text{sq}}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \vec{x}^{(i)} - y_i)^2$$

▶ Now: minimize

$$\tilde{R}_{sq}(\vec{w}) = \frac{1}{n} \sum_{i=1}^{n} (\vec{w} \cdot \vec{x}^{(i)} - y_i)^2 + \lambda ||\vec{w}||^2$$

Solution

► The **regularized** Normal Equations:

$$(X^TX + \lambda I)\vec{w} = X^T\vec{y}$$

Example

Example

Example

Regularization

- \triangleright As λ increases, simpler models preferred.
- \triangleright Pick λ using cross-validation.

Other Penalizations

- $\|\vec{w}\|_2^2$ is ℓ_2 regularization (explicit solution)
 - a.k.a., ridge regression
- $\|\vec{w}\|_1$ is ℓ_1 regularization (no explicit solution)
 - ▶ a.k.a., the LASSO
 - ► encourages **sparse** \vec{w}

Lecture 08 – Part 02 Logistic Regression

Note

► The midterm will cover everything up to right now.

Regularization: yes.

Logistic regression: no.

Predicting Heart Disease

Classification problem: Does a patient have heart disease?

► **Features**: blood pressure, cholesterol level, exercise amount, maximum heart rate, sex

Better idea...

- Instead of predicting yes/no...
- Give a probability that they have heart disease.
 - ► 1 = definitely yes
 - ► 0 = definitely no
 - ► 0.75 = probably, yes
 - **.**.

Associations

- If cholesterol is high, increased likelihood.
 - ► Positive association.
- ► If exercise is low, increased likelihood.
 - Negative association.

The Model

- ► Measure cholesterol (x_1) , exercise (x_2) , etc.
- ▶ **Idea**: weighted¹ "vote" for heart disease:

$$W_1 X_1 + W_2 X_2 + ... + W_d X_d$$

- Convention:
 - A positive number = vote for yes
 - ► A negative number = vote for no

¹We'll learn weights later.

The Model

Add a "bias" term:

$$w_0 + w_1 x_1 + w_2 x_2 + ... + w_d x_d$$

= $\vec{w} \cdot \text{Aug}(\vec{x})$

- ► The more positive $\vec{w} \cdot \text{Aug}(\vec{x})$, the more likely.
- The more negative $\vec{w} \cdot \text{Aug}(\vec{x})$, the less likely.

Converting to a Probability

- Probabilities are between 0 and 1.
- ▶ **Problem**: $\vec{w} \cdot \text{Aug}(\vec{x})$ can be anything in $(-\infty, \infty)$
- We need to convert it to a probability.

The Logistic Function

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

The Model

Our simplified model for probability of heart disease:

$$H(\vec{x}) = \sigma(\vec{w} \cdot Aug(\vec{x}))$$

- ► What should w be?
- ightharpoonup To find \vec{w} , use principle of maximum likelihood.

- Suppose you have an unfair coin.
- Probability of heads is p, unknown.
- ▶ Flip 8 times and see: H, H, T, H, H, H, T
- ▶ Which is more **likely**: p = 0.5 or p = 0.75?

- Assume coin flips are independent.
- ► The **likelihood** of H, H, T, H, H, H, H, T is:

$$\mathcal{L}(p) = p \cdot p \cdot (1 - p) \cdot p \cdot p \cdot p \cdot p \cdot (1 - p)$$
$$= p^{6} (1 - p)^{2}$$

- ldea: find p maximizing $\mathcal{L}(p)$
 - ► Equivalently, find p maximizing $\log \mathcal{L}(p)$

Find p maximizing $\log \mathcal{L}(p) = \log p^6 (1 - p)^2$:

In general, given n_1 observed heads, n_2 observed tails, maximize:

$$\log [P(F_1 = f_1) \cdot P(F_2 = f_2) \cdots \cdot P(F_n = f_n)]$$

$$= \sum_{i=1}^{n} \log P(F_1 = f_1)$$

Back to Logistic Regression

► The probability that person *i* has heart disease:

$$H(\vec{x}^{(i)}) = \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})$$

- ► Gather a data set, $(\vec{x}^{(1)}, y_1), ..., (\vec{x}^{(n)}, y_n)$.
- ▶ What is the most **likely** \vec{w} ?

- ► Suppose 3 people, (+,-,+).
- Likelihood:

$$\begin{split} H(\vec{x}^{(1)}) \cdot & (1 - H(\vec{x}^{(2)})) \cdot H(\vec{x}^{(3)}) \\ &= \sigma(\vec{w} \cdot \text{Aug}(\vec{x}^{(1)})) \cdot \left(1 - \sigma(\vec{w} \cdot \text{Aug}(\vec{x}^{(2)}))\right) \cdot \sigma(\vec{w} \cdot \text{Aug}(\vec{x}^{(3)})) \\ &= \frac{1}{1 + e^{-\vec{w} \cdot \text{Aug}(\vec{x}^{(1)})}} \cdot \left(1 - \frac{1}{1 + e^{-\vec{w} \cdot \text{Aug}(\vec{x}^{(2)})}}\right) \cdot \frac{1}{1 + e^{-\vec{w} \cdot \text{Aug}(\vec{x}^{(3)})}} \end{split}$$

Observation

Note:

$$1 - \frac{1}{1 + e^{-t}} = \frac{1}{1 + e^{t}}$$

► The likelihood:

$$\frac{1}{1 + e^{-\vec{W} \cdot \text{Aug}(\vec{X}^{(1)})}} \cdot \frac{1}{1 + e^{\vec{W} \cdot \text{Aug}(\vec{X}^{(2)})}} \cdot \frac{1}{1 + e^{-\vec{W} \cdot \text{Aug}(\vec{X}^{(3)})}}$$

► Suppose $y_i = 1$ if positive, $y_i = -1$ if negative:

$$\frac{1}{1 + e^{-y_1 \vec{w} \cdot \text{Aug}(\vec{x}^{(1)})}} \cdot \frac{1}{1 + e^{-y_2 \vec{w} \cdot \text{Aug}(\vec{x}^{(2)})}} \cdot \frac{1}{1 + e^{-y_3 \vec{w} \cdot \text{Aug}(\vec{x}^{(3)})}}$$

► In general, the likelihood is:

$$\mathcal{L}(\vec{w}) = \prod_{i=1}^{n} \frac{1}{1 + e^{-y_i \vec{w} \cdot \text{Aug}(\vec{x}^{(i)})}}$$

► The log likelihood is:

$$\log \mathcal{L}(\vec{w}) = -\sum_{i=1}^{n} \log \left[1 + e^{-y_i \vec{w} \cdot \operatorname{Aug}(\vec{x}^{(i)})} \right]$$

Maximizing Likelihood

- ▶ **Goal**: find \vec{w} maximizing $\log \mathcal{L}$
- Take gradient, set to zero, solve?
- Problem: try it, you'll get stuck.
- Unlike least-squares regression, there is no explicit solution.

Next Time

How to maximize the log loss with gradient descent.