Black Hole Perturbation Theory: An Introduction

Vitor Fernandes Guimarães, BSc.

I São Paulo School on Gravitational Physics

July 19, 2024

Overview

• Perturbations in Schwarzschild

Previously...

 \rightarrow From previous lecture:

• Odd: $\{h_A^{o,lm}, h^{lm}\}$

• Even: $\{h_A^{e,lm}, h_{AB}^{lm}, K^{lm}, G^{lm}\}$

 \rightarrow Which means that we can decompose the perturbation thusly:

$$h_{\mu\nu}(t,r,\theta,\phi) = h_{\mu\nu}^e(t,r,\theta,\phi) + h_{\mu\nu}^o(t,r,\theta,\phi), \tag{1}$$

 \rightarrow where:

$$h_{\mu\nu}^{e} = \sum_{l,m} \left(r^{2} K^{lm} \gamma_{ab} Y^{lm} + h_{AB}^{lm} Y^{lm} + h_{A}^{e,lm} Y_{a}^{lm} + G^{lm} Z_{ab}^{lm} \right)_{\mu\nu}$$

$$h_{\mu\nu}^{o} = \sum_{l,m} \left(h_{A}^{o,lm} S_{a}^{lm} + 2h^{lm} S_{ab}^{lm} \right)_{\mu\nu}$$
(2)

Perturbations $l \geq 2$

 \rightarrow Note that we're taking first and second derivatives of $Y^{lm},$ which are composed of Assoc. Legendre polynomials P_l^m :

$$\partial_a Y^{lm} \Rightarrow P_{l-1}^m$$

$$Z_{ab}^{lm} \Rightarrow P_{l-2}^m \tag{3}$$

 \rightarrow Hence:

$$\exists S_a^{lm}, Y_a^{lm} \Leftrightarrow l \ge 1$$
$$\exists S_{ab}^{lm}, Z_{ab}^{lm} \Leftrightarrow l \ge 2$$
 (4)

 $\rightarrow l = 0, 1$ have nothing to do with GWs:

$$monopole \rightarrow l = 0 \Rightarrow BH \ mass$$
 $dipole \rightarrow l = 1 \Rightarrow BH \ ang. \ momentum$ $quadrupole \rightarrow l = 2 \Rightarrow Grav. \ radiation$

The Schwarzschild background

 \rightarrow The geometry for the exterior of a spherically symmetric body of radius R is given by the Schwarzschild metric, in spherical coordinates:

$$ds^{2} = -f(r)dt^{2} + f^{-1}(r)dr^{2} + r^{2}d\Omega^{2},$$
(5)

$$\rightarrow$$
 where $f(r) = \left(1 - \frac{2M}{r}\right)$, $2M = R_s$.

 \rightarrow For this to be a black hole:

$$R < R_s \tag{6}$$

 \rightarrow Also where:

$$d\Omega = d\theta^2 + \sin^2\theta d\phi^2 \tag{7}$$

The Regge-Wheeler Gauge

 \rightarrow Once again we turn to a gauge transformation for simplification.

 \rightarrow We perform an initiational diffeomorphism:

$$h'_{\mu\nu} = h_{\mu\nu} + 2\nabla_{(\mu}\xi_{\nu)},$$
 (8)

 \rightarrow s.t. we can set:

$$h_A^{e,lm} = G_{lm} = h_{lm} = 0, (9)$$

 \rightarrow which means we can make $h_A^{o,lm} \equiv h_A^{lm} = \left(h_0^{lm}(t,r), h_1^{lm}(t,r)\right)$

The Regge-Wheeler Gauge II

 \rightarrow In this gauge:

$$h_{AB}^{lm} = \begin{pmatrix} fH_0^{lm} & H_1^{lm} \\ H_1^{lm} & f^{-1}H_2^{lm} \end{pmatrix} \tag{10}$$

$$h_{Aa}^{lm} = h_{aA}^{lm} = \begin{pmatrix} h_0^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & h_0^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \\ h_1^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & h_1^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \end{pmatrix}$$
(11)

$$h_{ab}^{lm} = \begin{pmatrix} r^2 K^{lm} Y^{lm} & 0\\ 0 & r^2 (sin^2 \theta) K^{lm} Y^{lm} \end{pmatrix}$$
 (12)

The Regge-Wheeler Gauge III

 \rightarrow Putting them all together:

$$h_{\mu\nu} = \begin{pmatrix} fH_0^{lm}Y^{lm} & H_1^{lm}Y^{lm} & h_0^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi}Y^{lm} \right) & h_0^{lm} \left(\sin\theta \partial_{\theta}Y^{lm} \right) \\ H_1^{lm}Y^{lm} & f^{-1}H_2^{lm}Y^{lm} & h_1^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi}Y^{lm} \right) & h_1^{lm} \left(\sin\theta \partial_{\theta}Y^{lm} \right) \\ * & * & r^2K^{lm}Y^{lm} & 0 \\ * & * & 0 & r^2(\sin^2\theta)K^{lm}Y^{lm} \end{pmatrix}$$

- \rightarrow Which renders the full metric perturbation tensor in the Regge-Wheeler gauge!
- \rightarrow However, we've seen that we can decompose $h_{\mu\nu}$ based on parity:

The Regge-Wheeler gauge IV

 \rightarrow Odd (Axial):

$$h_{lm}^{o} = \begin{pmatrix} 0 & 0 & h_{0}^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & h_{0}^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \\ 0 & 0 & h_{1}^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & h_{1}^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{pmatrix}$$
(13)

 \rightarrow Even (Polar)

$$h_{lm}^{e} = \begin{pmatrix} fH_{0}^{lm} & H_{1}^{lm} & 0 & 0\\ H_{1}^{lm} & f^{-1}H_{2}^{lm} & 0 & 0\\ 0 & 0 & r^{2}K^{lm} & 0\\ 0 & 0 & 0 & r^{2}sin^{2}\theta K^{lm} \end{pmatrix} Y^{lm}$$
(14)

The Path to Regge-Wheeler I

 \rightarrow From this:

$$h_{lm}^{o} = \begin{pmatrix} 0 & 0 & h_{0}^{lm} \left(-\frac{1}{sip\theta} \partial_{\phi} Y^{lm} \right) & h_{0}^{lm} \left(sin\theta \partial_{\theta} Y^{lm} \right) \\ 0 & 0 & h_{1}^{lm} \left(-\frac{1}{sin\theta} \partial_{\phi} Y^{lm} \right) & h_{1}^{lm} \left(sin\theta \partial_{\theta} Y^{lm} \right) \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{pmatrix}$$
 (15)

 \rightarrow We can reconstruct the line element substituting the perturbation components (for fixed $\{l,m\}$):

$$ds_{odd}^{2} = ds_{Schw}^{2} - \left(h_{0}^{lm} \frac{1}{\sin\theta} \partial_{\phi} Y^{lm}\right) 2dt d\theta + \left(h_{0}^{lm} \sin\theta \partial_{\theta} Y^{lm}\right) 2dt d\phi - \left(h_{1}^{lm} \frac{1}{\sin\theta} \partial_{\phi} Y^{lm}\right) 2dr d\theta + \left(h_{1}^{lm} \sin\theta \partial_{\theta} Y^{lm}\right) 2dr d\phi \quad (16)$$

The Path to Regge-Wheeler II

 \rightarrow And from this:

$$h_{lm}^{e} = \begin{pmatrix} fH_{0}^{lm} & H_{1}^{lm} & 0 & 0\\ H_{1}^{lm} & f^{-1}H_{2}^{lm} & 0 & 0\\ 0 & 0 & r^{2}K^{lm} & 0\\ 0 & 0 & 0 & r^{2}\sin^{2}\theta K^{lm} \end{pmatrix} Y^{lm}$$
(17)

 \rightarrow We get the even line element (for fixed $\{l, m\}$):

$$ds_{even}^{2} = -f \left(1 + H_{0}^{lm} Y^{lm} \right) dt^{2} + f^{-1} \left(1 + H_{2}^{lm} Y^{lm} \right) dr^{2} + \left(1 + K^{lm} Y^{lm} \right) r^{2} d\Omega^{2} + 2H_{1}^{lm} Y^{lm} dt dr$$
(18)

The Path to Regge-Wheeler III

 \rightarrow Now the idea is to construct:

$$\delta G_{\mu\nu}^{even} = \delta R_{\mu\nu}^{even} - \frac{1}{2} \mathring{g}_{\mu\nu} \left(\mathring{g}^{\alpha\beta} \delta R_{\alpha\beta}^{even} \right)$$
 (19)

$$\delta G_{\mu\nu}^{odd} = \delta R_{\mu\nu}^{odd} - \frac{1}{2} \mathring{g}_{\mu\nu} \left(\mathring{g}^{\alpha\beta} \delta R_{\alpha\beta}^{odd} \right)$$
 (20)

 \rightarrow Before that, since the background spacetime is static, we may separate the time dependence through a Fourier transform:

$$h_{\mu\nu}(t,r,\theta,\phi) = \int_{-\infty}^{+\infty} \tilde{h}_{\mu\nu}(\omega,r,\theta,\phi)e^{-i\omega t}d\omega$$
 (21)

 \rightarrow Such that:

The Path to Regge-Wheeler IV

$$\tilde{h}_{lm}^{o} = \begin{pmatrix} 0 & 0 & \tilde{h}_{0}^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & \tilde{h}_{0}^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \\ 0 & 0 & \tilde{h}_{1}^{lm} \left(-\frac{1}{\sin\theta} \partial_{\phi} Y^{lm} \right) & \tilde{h}_{1}^{lm} \left(\sin\theta \partial_{\theta} Y^{lm} \right) \\ * & * & 0 & 0 \\ * & * & 0 & 0 \end{pmatrix}$$
(22)

$$\tilde{h}_{lm}^{e} = \begin{pmatrix} f \tilde{H}_{0}^{lm} & \tilde{H}_{1}^{lm} & 0 & 0\\ \tilde{H}_{1}^{lm} & f^{-1} \tilde{H}_{2}^{lm} & 0 & 0\\ 0 & 0 & r^{2} \tilde{K}^{lm} & 0\\ 0 & 0 & 0 & r^{2} \sin^{2}\theta \tilde{K}^{lm} \end{pmatrix} Y^{lm}$$
(23)

 \rightarrow We'll use these functions instead from now on.

The Path to Regge-Wheeler V

 \rightarrow Note that, for the Odd Einstein equations:

$$ds_{odd}^{2} = ds_{Schw}^{2} - \left(h_{0}^{lm} \frac{1}{\sin\theta} \partial_{\phi} Y^{lm}\right) 2dt d\theta + \left(h_{0}^{lm} \sin\theta \partial_{\theta} Y^{lm}\right) 2dt d\phi - \left(h_{1}^{lm} \frac{1}{\sin\theta} \partial_{\phi} Y^{lm}\right) 2dr d\theta + \left(h_{1}^{lm} \sin\theta \partial_{\theta} Y^{lm}\right) 2dr d\phi$$
 (24)

 \rightarrow Perturbation terms only off-diagonal, hence:

$$\delta G_{\mu\nu}^{odd} = \delta R_{\mu\nu}^{odd} - \frac{1}{2} \mathring{g}_{\mu\nu} \left(\mathring{g}^{\alpha\beta} \delta R_{\alpha\beta}^{odd} \right)$$
$$\delta G_{\mu\nu}^{odd} = \delta R_{\mu\nu}^{odd}$$
(25)

 \rightarrow Reference [2] uses the equations:

$$\delta R_{\mu\nu} = 0 \tag{26}$$

Source I

 \rightarrow Reference [1] uses:

$$\delta G_{\mu\nu} = 0 \tag{27}$$

$$\delta G_{\mu\nu} = 8\pi \delta T_{\mu\nu} \tag{28}$$

 \rightarrow Where we must prepare the source the same way we did with the metric perturbations.

$$\delta T_{\mu\nu}^{odd} = \begin{pmatrix} 0 & 0 & T_0^{odd} S_\theta & T_0^{odd} S_\phi \\ 0 & 0 & T_1^{odd} S_\theta & T_1^{odd} S_\phi \\ T_0^{odd} S_\theta & T_1^{odd} S_\theta & T_s^{odd} S_{\theta\theta} & T_s^{odd} S_{\theta\phi} \\ T_0^{odd} S_\phi & T_1^{odd} S_\phi & T_s^{odd} S_{\theta\phi} & T_s^{odd} S_{\phi\phi} \end{pmatrix}$$
(29)

Source II

$$\delta T_{\mu\nu}^{even} = \begin{pmatrix} T_{0}^{even}Y^{lm} & T_{0}^{e$$

 \rightarrow Bear in mind that everything we do on the LHS, will also be done to the RHS of the perturbed Einstein equations, including the separation of the angular part.

 \rightarrow For the Odd/Axial part, both references[2, 1] yield the same exact equations, since:

$$\delta G^{odd}_{\mu\nu} = \delta R^{odd}_{\mu\nu} \tag{31}$$

Odd/Axial Equations

 \rightarrow Remember that:

$$\delta R_{\mu\nu} = \frac{1}{2} \left(\nabla_{\sigma} \nabla_{\mu} h_{\nu}^{\ \sigma} + \nabla_{\sigma} \nabla_{\nu} h_{\mu}^{\ \sigma} - \nabla^{\sigma} \nabla_{\sigma} h_{\mu\nu} - \nabla_{\nu} \nabla_{\mu} h \right)$$

 \rightarrow Decomposing

$$\delta R_{\mu\nu} = \begin{pmatrix} \delta R_{AB} & \delta R_{aA} \\ \delta R_{aA} & \delta R_{ab} \end{pmatrix} \tag{32}$$

 \rightarrow Where:

Odd/Axial Equations

$$2\delta R_{AB} = \sum_{l,m} \int_{-\infty}^{+\infty} \begin{pmatrix} A_{lm}^{(0)} & A_{lm}^{(1)} \\ A_{lm}^{(1)} & A_{lm}^{(2)} \end{pmatrix} Y^{lm} e^{-i\omega t} d\omega$$
 (33)

$$2\delta R_{Aa} = \sum_{l,m} \int_{-\infty}^{+\infty} \left(\alpha_A^{lm} Y_a^{lm} + \beta_A^{lm} S_a^{lm} \right) e^{-i\omega t} d\omega \tag{34}$$

$$2\delta R_{ab} = \sum_{l,m} \int_{-\infty}^{+\infty} \left(A_{lm}^{(3)} r^2 \gamma_{ab} Y^{lm} + s_{lm} Z_{ab}^{lm} + t_{lm} S_{ab}^{lm} \right) e^{-i\omega t} d\omega$$
 (35)

Odd/Axial Vacuum Equations

 \rightarrow where:

$$\beta_0^{lm} = f(h_{0,lm}'' + i\omega h_{1,lm}') - 2i\omega \frac{f}{r} h_1^{lm} + \left(\frac{f''}{2} + \frac{l(l+1) + f - 1}{r^2}\right) h_0^{lm}$$

$$\beta_1^{lm} = \mathbf{f^{-1}} (i\omega h_{0,lm}' - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r} h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right) h_1^{lm}$$

$$t_{lm} = i\omega f^{-1} h_0^{lm} + f h_{1,lm}' + f' h_1^{lm}$$

 \rightarrow For vacuum we set:

$$\beta_A^{lm} = 0 \tag{36}$$

$$t_{lm} = 0 (37)$$

Odd/Axial Sourced Equations

- \rightarrow For the sourced we need to appropriately separate the angular angular part.
- \rightarrow We need to construct the orthogonality relations, for ex:
 - (i) Multiplying $\delta R_{A\phi}$ by $\frac{\partial_{\theta} Y^{*lm}}{\sin \theta}$
- (ii) Multiplying $\delta R_{A\theta}$ by $\frac{\partial_{\phi} Y^{*lm}}{\sin \theta}$
- (iii) Subtracting (i) (ii)
- (iv) Integrating in $d\Omega$:

Odd/Axial Sourced Equations

 \rightarrow LHS:

$$2\int d\Omega \left(\frac{\partial_{\theta}Y^{*lm}}{\sin\theta}\delta R_{A\phi} - \frac{\partial_{\phi}Y^{*lm}}{\sin\theta}\delta R_{A\theta}\right) =$$

$$\sum_{l,m} \int_{-\infty}^{+\infty} \alpha_{A}^{lm} \int \left(\frac{Y_{\theta}^{lm}Y_{\phi}^{*lm}}{\sin\theta} - \frac{Y_{\phi}^{*lm}Y_{\theta}^{lm}}{\sin\theta}\right) d\Omega +$$

$$\sum_{l,m} \int_{-\infty}^{+\infty} \beta_{A}^{lm} \left(\gamma^{ab}\langle S_{a}^{lm}, S_{b}^{l'm'}\rangle\right) =$$

$$\sum_{l,m} \int_{-\infty}^{+\infty} \beta_{A}^{lm} l(l+1)$$
(38)

Odd/Axial Sourced Equations

 \rightarrow RHS:

$$16\pi \int d\Omega \left(\frac{\partial_{\theta} Y^{*lm}}{\sin \theta} \delta T_{A\phi} - \frac{\partial_{\phi} Y^{*lm}}{\sin \theta} \delta T_{A\theta} \right) = -l(l+1)16\pi \delta T_A^{odd}$$
 (39)

 \rightarrow s.t.:

$$\beta_A^{lm} = -16\pi\delta T_A^{odd} \tag{40}$$

 \rightarrow i.e.:

$$f(h_{0,lm}'' + i\omega h_{1,lm}') - 2i\omega \frac{f}{r}h_1^{lm} + \left(\frac{f''}{2} + \frac{l(l+1) + f - 1}{r^2}\right)h_0^{lm} = -16\pi\delta T_0^{odd}$$

$$f^{-1}(i\omega h_{0,lm}' - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r}h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right)h_1^{lm} = -16\pi\delta T_1^{odd}$$

Odd/Axial Sourced Equations:

 \rightarrow Analogously for t_{lm} , first we define:

$$\delta R_{aa}$$
 –

 $\delta R_{-} \equiv \delta R_{\theta\theta} - \frac{\delta R_{\phi\phi}}{\sin^2\theta}$

 $\delta R_{-} = s_{lm} W^{lm} - \frac{t_{lm}}{\sin \theta} X^{lm}$

 $2\delta R_{\theta\phi} = s_{lm} X^{lm} + t_{lm} sin\theta W^{lm}$

 $t_{lm} = -16\pi\delta T_{c}^{odd}$

 $\int d\Omega \left(\frac{W^{*lm}}{\sin \theta} 2\delta R_{\theta\phi} - \frac{X^{*lm}}{\sin \theta} \delta R_{-} \right) = (l-1)l(l+1)(l+2)t_{lm}$

 \rightarrow Thus:

 \rightarrow s.t.:

$$\gamma lm$$

(44)

(45)

(41)

(42)

(43)

$$\rightarrow$$
 Doing the same analogously for the RHS of t_{lm} :

$$t_{lm}$$
:

Odd/Axial Sourced Equations:

 \rightarrow Using the definitions for β_A^{lm}, t_{lm} :

$$f(h_{0,lm}'' + i\omega h_{1,lm}') - 2i\omega \frac{f}{r}h_1^{lm} + \left(\frac{f''}{2} + \frac{l(l+1) + f - 1}{r^2}\right)h_0^{lm} = -16\pi\delta T_0^{odd}$$

$$f^{-1}(i\omega h_{0,lm}' - \omega^2 h_1^{lm}) - 2i\omega \frac{f^{-1}}{r}h_0^{lm} + \left(\frac{f''}{2} + \frac{(l(l+1) - f - 1)}{r^2}\right)h_1^{lm} = -16\pi\delta T_1^{odd}$$

$$i\omega f^{-1}h_0^{lm} + fh_{1,lm}' + f'h_1^{lm} = -16\pi\delta T_s^{odd}$$

 \rightarrow Which are the Odd Einstein equations!!!

Next Time...

Tomorrow: The Regge-Wheeler & Zerilli Equations!!!

Thank you!

References I

- [1] Emanuele Berti. "Black Hole Perturbation Theory". In: Summer School on Gravitational-Wave Astronomy, International Center for Theoretical Sciences, Bangalore (2016). URL: https://www.icts.res.in/event/page/3071.
- [2] Valeria Ferrari, Leonardo Gualtieri, and Paolo Pani. General relativity and its applications: black holes, compact stars and gravitational waves. CRC press, 2020.