КОЛЕБАНИЯ И ВОЛНЫ ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

1. Груз, висящий на пружине, оттянули вниз и отпустили. За какое время от начала движения груз пройдет путь, равный половине амплитуды. Период колебаний груза равен 2,4 с? Ответ дать в единицах СИ.

<u>Дано:</u> T = 2,4 c<u>Найти:</u> t = ?

Решение:

Запишем закон смещения груза от положения равновесия при гармонических колебаниях: $x(t) = A\sin(\omega t + \varphi_0)$. В начальный момент времени t = 0 смещение груза максимально, т.е. x(0) = A. Это

означает, что $\sin(\phi_0) = 1$, откуда определяем начальную фазу колебания: $\phi_0 = \pi/2$. Тогда закон колебания может быть преобразован:

$$x(t) = A\sin(\omega t + \pi/2) = A\cos(\omega t).$$

В интересующий нас момент времени смещение груза от положения равновесия x(t) = A/2. Из равенства $A/2 = Acos(\omega t)$ следует, что $cos(\omega t) = 1/2$, т.е. $\omega t = \pi/3$. Учитывая, что циклическая частота ω связана с периодом колебаний T соотношением $\omega = 2\pi/T$, получаем выражение для времени, за которое груз достигнет указанного положения:

$$t = \pi/3\omega = \pi T/6\pi = T/6 = 2,4/6 = 0,4 \text{ c.}$$

Ответ: t = 0,4 с

2. Полная энергия колебаний груза на пружине равна 0,1 Дж. Определить максимальную силу, действующую на тело в процессе колебаний, если амплитуда колебаний составляет 5 см. Ответ дать в единицах СИ.

<u>Дано:</u> W = 0,1 Дж A = 0,05 м
<u>Найти:</u> $F_{max} = ?$

Решение:

Возвращающая упругая сила, действующая на тело со стороны пружины, определяется законом Гука: $F_{yпp} = -k|x|$. Эта сила максимальна в крайнем положении, когда смещение x от положения равновесия максимально, т.е. $F_{max} = kx_{max} = kA$.

неизвестную жесткость пружины k, найти запишем для потенциальной энергии пружинного маятника: выражение $W_{II}=kx/2$. Учтем, полная энергия колебаний что равна $W = W_{II}$ максимальному потенциальной энергии: значению

 $_{max}=kA^{2}/2,\,\,\,$ откуда находим $k=2W/A^{2}.\,\,\,$ Для максимальной силы получаем: $F_{max}=kA=2W/A.$

Проведём расчёты: $F_{max} = 2.0, 1/0, 05 = 4$ H.

Ответ: $F_{max} = 4 \text{ H.}$

3. Длина одного из математических маятников на 1,5 см больше длины другого. В то время как первый маятник делает 7 колебаний, второй делает на одно колебание больше. Определить в миллисекундах период колебания второго маятника. Принять ускорение свободного падения равным 10 м/c^2 .

<u>Дано:</u> $\Delta l = 0,015$
M
$N_1 = 7$
$N_2 = 8$
$g = 10 \text{ m/c}^2$
Найти:
$\overline{T_2 = ?}$

Решение:

Период колебаний второго маятника определяется выражением: $T_2 = 2\pi (l_2/g)^{1/2}$, где пока неизвестна длина этого маятника l_2 . За одно и то же время t маятники совершают различное число колебаний, поэтому их периоды отличаются:

 $T_1 = t/N_1$ и $T_2 = t/N_2$.

Отсюда видно, что $N_2/N_1 = T_1/T_2 = (l_1/l_2)^{1/2}$.

Ясно, что длина первого маятника больше, чем $l_1 = l_2 + \Delta l$.

второго:

С учётом этого имеем: $N_2/N_1 = (1 + \Delta l/l_2)^{1/2}$, откуда находим длину второго маятника: $l_2 = \Delta l/[(N_2/N_1)^2 - 1] = 0,049$ м.

Теперь стало возможным вычислить период колебаний второго маятника:

паятника:
$$T_2 = 2\pi (0,049/10)^{1/2} = 0,14\pi = 0,4396 \text{ c} = 439,6 \text{ мc.}$$
 Ответ: $T_2 = 439,6 \text{ мc.}$

4. Во сколько раз период колебаний математического маятника на некоторой планете больше, чем на Земле, если радиус планеты вдвое меньше радиуса Земли, а их плотности одинаковы?

Дано:
$$R/R_x = 2$$
 $\rho = \rho_x$ Найти: $T_x/T = ?$

Решение:

Период колебаний математического маятника на Земле вычисляется по формуле $T = 2\pi (l/g)^{1/2}$, а на некоторой планете: $T_x = 2\pi (l/g_x)^{1/2}$. Взяв отношение этих периодов, имеем: $T_x/T = (g/g_x)^{1/2}$. Из динамики известно выражение (2.9) для ускорения свободного

падения у поверхности Земли: $g = GM/R^2$, где G — гравитационная постоянная, а M и R — масса и радиус Земли соответственно. Массу Земли можно выразить через ее плотность: $M = \rho V$.

Считая Землю идеальным шаром, находим ее объем: $V = 4\pi R^3/3$.

Итак, на Земле ускорение свободного падения $g = G \rho 4\pi R^3/3 R^2 = G \rho 4\pi R/3,$

$$g = G\rho 4\pi R^3/3R^2 = G\rho 4\pi R/3$$

и, аналогично, на другой планете $g_x = G\rho 4\pi R_x/3$.

Находим отношение $g/g_x = R/R_x$.

Окончательно получаем: $T_x/T = (R/R_x)^{1/2} = (2)^{1/2} = 1,41$. Ответ: $T_x/T = 1,41$.

5. Когда груз неподвижно висел на вертикальной пружине, ее удлинение составило 2,5 см. Затем груз оттянули и отпустили, вследствие чего он начал совершать гармонические колебания. Какова циклическая частота колебаний груза. Ответ дать в единицах СИ. Принять ускорение свободного падения равным 10 m/c^2 .

Дано: $\Delta x = 0.025 \text{ M}$ $g = 10 \text{ m/c}^2$ Найти: $\omega = ?$

Решение:

Циклическая частота колебаний пружинного определяется выражением: маятника $\omega = 2\pi/T = (k/m)^{1/2}$, где неизвестны ни жесткость пружины k, ни масса груза m. Целесообразно искать сразу отношение этих величин. Для этого

надо учесть, что в состоянии статического равновесия сила тяжести $F_{\rm T}$, действующая на груз со стороны Земли, уравновешивается упругой силой $F_{\text{упр}}$, действующей на груз со стороны растянутой пружины: $F_{\rm T} = F_{\rm vnp}$. Подставляя сюда выражения для силы тяжести $F_{\scriptscriptstyle
m T}=mg$ и для упругой силы $F_{\scriptscriptstyle
m VIIp}=k\Delta l$, имеем: $mg=k\Delta l$, откуда находим отношение двух величин: $k/m = g/\Delta l$. Таким образом, циклическая частота колебаний груза на пружине $\omega = \left(g/\Delta l\right)^{1/2} = \left(10/0,025\right)^{1/2} = 20 \text{ рад/с}.$

$$\omega = (g/\Delta l)^{1/2} = (10/0,025)^{1/2} = 20$$
 рад/с. Ответ: $\omega = 20$ рад/с.

6. Колебательный контур с конденсатором емкостью 0,5 мкФ настроен на частоту 600 Гц. Если параллельно этому конденсатору подключить другой конденсатор, то частота колебаний в контуре станет равной 200 Гц. Найти в микрофарадах емкость второго конденсатора.

Дано: $C_1 = 5 \cdot 10^{-5} \, \Phi$ $\nu_1 = 600 \; \Gamma$ ц $\nu = 200 \ \Gamma$ ц Найти: $C_2 = ? (\text{MK}\Phi)$

Решение:

Первоначальная частота v_1 электрических колебаний в контуре находится по формуле

$$v_1 = 1/2\pi (LC_1)^{1/2}$$
.

После подключения второго конденсатора с емкостью C_2 частота колебаний изменится: $v = 1/2\pi(LC)^{1/2}$, где C – ёмкость получившейся батареи. При параллельном соединении конденсаторов их общая емкость равна $C = C_1 + C_2$, поэтому для частоты имеем: $v = 1/2\pi [L(C_1 + C_2)]^{1/2}$. Взяв отношение этих двух частот колебаний, получаем:

$$v_1/v = [(C_1 + C_2)/C_1]^{1/2} = [1 + C_2/C_1]^{1/2}.$$

Отсюда находим емкость

$$C_2 = C_1 \cdot [(v_1/v)^2 - 1] = 8 \cdot C_1 = 4 \cdot 10^{-6} \Phi = 4 \text{ мк}\Phi.$$

Ответ: $C_2 = 4$ мк Φ .

конденсатору, заряд которого 2,5 нКл, подключили индуктивности. Определить максимальный катушку протекающий через катушку, если частота свободных колебаний образованного контура равна 40 МГц. Ответ дать в единицах СИ.

Дано: $q_{max} = 2,5 \cdot 10^{-9} \text{ Кл}$ $v = 4 \cdot 10^7 \text{ Гц}$ Найти: $I_{max} = ?$

Решение:

Полная энергия колебаний в контуре со изменяется временем не (потерями излучение электромагнитных волн как обычно, пренебрегаем). При полной разрядке конденсатора эта энергия полностью

переходит в энергию магнитного поля катушки, которая в этот момент максимальна:

$$W_{L\,max} = LI_{max}^2/2$$
.

При полной зарядке конденсатора вся энергия контура энергии электрического поля сосредоточена в конденсатора, которая при этом достигает своего максимального значения: W_C $_{max}=q_{max}^{2}/2C.$

Итак, по закону сохранения энергии можем записать:

$$W_{L\,max} = W_{C\,max}$$
 или $LI_{max}^{2}/2 = q_{max}^{2}/2C$,

 $W_{L\,max}=W_{C\,max}$ или $LI_{max}^{1/2}/2=q_{max}^{-2}/2C,$ откуда находим $I_{max}=q_{max}/(LC)^{1/2}.$ Теперь учтем, что частота свободных колебаний в контуре определяется выражением $\nu = 1/2\pi (LC)^{1/2}$, откуда выражаем $(LC)^{1/2} = 1/2\pi \nu$.

Окончательно для силы максимального тока имеем:

$$I_{max} = q_{max}/(LC)^{1/2} = 2\pi v q_{max} = 2.3,14.4.10^{7} \cdot 2,5.10^{-9} = 0,628 \text{ A}.$$

Ответ: I = 0,628 A.

8. При резонансе в колебательном контуре с индуктивностью 20 мГн и электроемкостью 50 мкФ амплитуда тока равна 3 А. Определить амплитуду напряжения на конденсаторе. Ответ дать в единицах СИ.

<u>Дано:</u> $L = 2 \cdot 10^{-2} \, \Gamma_{\rm H}$ $C = 5 \cdot 10^{-5} \, \Phi$ $I_{max} = 3 \, {\rm A}$ <u>Найти:</u> $U_{C \, max} = ?$

Решение:

Запишем закон Ома для участка цепи переменного тока, где имеется конденсатор, в терминах амплитудных (максимальных) значений: $I_{max} = U_{C\ max}/X_C$. Здесь величина $X_C = 1/\Omega_{pes}C$ — емкостное сопротивление при резонансной циклической частоте Ω_{pes} вынуждающей ЭДС. Из

этих соотношений находим амплитуду напряжения на конденсаторе: $U_{C\ max} = I_{max}/\Omega_{pes}C$. Теперь учтем, что резонансная циклическая частота Ω_{pes} совпадает с циклической частотой ω свободных колебаний в контуре:

$$\Omega_{pes} = \omega = 1/(LC)^{1/2}.$$

После указанной подстановки приходим к окончательному результату для амплитуды напряжения на конденсаторе:

$$U_{C\ max} = I_{max}(LC)^{1/2}/C = I_{max}(L/C)^{1/2} = 3 \cdot (2 \cdot 10^{-2} / 5 \cdot 10^{-5})^{1/2} = 60 \text{ B.}$$
Other: $U_{C\ max} = 60 \text{ B.}$

9. В некоторой среде распространяются волны. За время, в течение которого частица среды совершает 140 колебаний, волна распространилась на расстояние 98 метров. Определить длину волны. Ответ дать в единицах СИ.

<u>Дано:</u> N = 140 r = 98 м <u>Найти:</u> $\lambda = ?$

Решение:

Длина волны λ может быть найдена из выражения для и скорости распространения волны $v = \lambda v$, где v - частота колебаний в волне. Отсюда имеем: $\lambda = v/v$. Теперь необходимо записать формулу для скорости

волны как кинематического объекта: v = r/t, а также выражение для частоты колебаний: v = N/t. Итоговое выражение для длины волны выглядит так: $\lambda = r/N$. Простота этого результата наводит на мысль о том, что он может быть получен более простым и наглядным способом. Подставляя численные данные, получим: $\lambda = 98/140 = 0.7$ м.

Ответ: $\lambda = 0.7$ м.

10. Скорость звука в воде равна 1450 м/с. На каком минимальном расстоянии находятся точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц? Ответ дать в единицах СИ.

Дано: v = 1450 м $v = 725 \Gamma$ ц Найти: l = ?

Решение:

Абсолютное значение разности фаз колеблющихся точек, находящихся на расстоянии l друг от друга, определяется выражением $|\Delta\Phi|=kl$, где k — волновое число. Выразим его через частоту колебаний v и скорость распространения v волны:

 $k=\omega/v=2\pi v/v$. Итак, $|\Delta\Phi|=2\pi v l/v$, откуда находим расстояние между точками $l=|\Delta\Phi|v/2\pi v$. Для точек волны, колеблющихся в противоположных фазах $|\Delta\Phi|=\pi$. В итоге приходим к следующему выражению: l=v/2v. Расчёт даёт $l=1450/2\cdot725=1$ м.

Ответ: l = 1 м.