Bioinformatics Lessons Schedule

- RNA-seq
- single cell RNA-seq
- RRBS

Date	Subject		
12-24	Christmas break		
12-31	Christmas break		
01-07	Process RNA-seq		
01-14	Process RNA-seq, continued		
01-21	Process RNA-seq, continued		
01-28	Analyze RNA-seq		
01-28	Analyze RNA-seq, continued		

RNA-seq

Quality Check

FastQC

- Before going forward, we want to check the quality of the data
 - How much did the sequencer fail?
 - Did we sequence mostly our sample DNA?
- FastQC is a program from the Babraham Institute in the UK that creates an html report on the quality of the sequencing data
 - Has 11 quality control checks that it does

Basic Statistics

Good Quality

Basic Statistics

Measure	Value
Filename	<pre>good_sequence_short.txt</pre>
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	250000
Sequences flagged as poor quality	0
Sequence length	40
%GC	45

Measure	Value
Filename	bad_sequence.txt
File type	Conventional base calls
Encoding	Illumina 1.5
Total Sequences	395288
Sequences flagged as poor quality	0
Sequence length	40
%GC	47

Per base sequence quality

Good Quality

Per base sequence quality

Bad Quality

OPER Per base sequence quality

Per tile sequence quality

Good Quality

Per tile sequence quality

Bad Quality

Per tile sequence quality

Per sequence quality scores

Good Quality

Per sequence quality scores

Bad Quality

Per sequence quality scores

Per base sequence content

Good Quality

Per base sequence content

Per sequence GC content

Good Quality

Per sequence GC content

Per base sequence quality

Good Quality

Per base N content

Per base sequence quality

Good Quality

Sequence Length Distribution

Sequence Duplication Levels

Good Quality

Sequence Duplication Levels

Bad Quality

Sequence Duplication Levels

Overrepresented sequences

Good Quality

No overrepresented sequences

Sequence	Count	Percentage	Possible Source
AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC			
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA			
CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA			
AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT			
TGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCAT			
AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA			
GATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATC			
AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC			
ATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCA			
AATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCC			
AAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTT			
CGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAG			
ATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAG			
CAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTT			
TGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACT			
CAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTA			
TATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAA GTCATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAA			
AACTTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGG			
GCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTT			
TGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACG			
GGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGC			
ATANANATGATTGGCGTATCCAACCTGCAGAGTTTTATCG			
ACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAAC			
ATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAATCA			
GATAAAACTCTGCAGGTTGGATACGCCAATCATTTTTATC			
CGTCATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCA			
ACTTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGA			
TAACTTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTG			
CATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAATC			
CGATAAAACTCTGCAGGTTGGATACGCCAATCATTTTAT			
TAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGC			
GCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCA			
TGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGATACGC			
GGAAGCGATAAAACTCTGCAGGTTGGATACGCCAATCATT			
AAGCGATAAAACTCTGCAGGTTGGATACGCCAATCATTTT			
ACTCTGCAGGTTGGATACGCCAATCATTTTTATCGAAGCG			
AAACTCTGCAGGTTGGATACGCCAATCATTTTTATCGAAG			
AAAACTCTGCAGGTTGGATACGCCAATCATTTTTATCGAA			
AGCGATAAAACTCTGCAGGTTGGATACGCCAATCATTTTT			
ATAAAACTCTGCAGGTTGGATACGCCAATCATTTTTATCG			
AACTCTGCAGGTTGGATACGCCAATCATTTTTATCGAAGC			
CTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACAC			
TTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGATA			
TGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAATCAT			
TAAAACTCTGCAGGTTGGATACGCCAATCATTTTTATCGA			
GAAGCGATAAAACTCTGCAGGTTGGATACGCCAATCATTT			
GCGTCATGGAAGCGATAAAACTCTGCAGGTTGGATACGCC			
GCGATAAAACTCTGCAGGTTGGATACGCCAATCATTTTTA			
TTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGAC			
CTTCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGAT			
TCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGT			
CCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTT			
TCATGGAAGCGATAAAACTCTGCAGGTTGGATACGCCAAT			
TCTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGATAC			
CCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACA			
			Illumina Paired End PCR Primer 2 (96% over 25bp)
TCTGCAGGTTGGATACGCCAATCATTTTTATCGAAGCGCG			
CGCTTAAAGCTACCAGTTATATGGCTGGGGGGTTTTTTTT			
CTCTGCAGGTTGGATACGCCAATCATTTTTATCGAAGCGC			
CTGCGTCATGGAAGCGATAAAACTCTGCAGGTTGGATACG			
CTGCAGGTTGGATACGCCAATCATTTTTATCGAAGCGCGC	505	0.12775495335046852	No Hit
GCTTAAAGCTACCAGTTATATGGCTGGGGGGTTTTTTTTT	411	0.10397482341988626	No Hit

Adapter Content

Good Quality

Adapter Content

Sidenote - Loops in Bash

```
for i in *.fastq.gz;
  do echo $i;
done
```

```
for i in *.fastq.gz; ← condition do echo $i;

done
```

```
for i in *.fastq.gz; — condition

do echo $i; — command
```

```
for i in *.fastq.gz; — condition

do echo $i; — command

done — stop
```

```
for i in *.fastq.gz;
  do echo $i;
done
```

```
starting
a loop
 for i in *.fastq.gz;
    do echo $i;
 done
```

```
starting
     variable
a loop
      name
 for i in *.fastq.gz;
     do echo $i;
 done
```

```
starting
      variable
                   meeting this
a loop
                    condition
       name
 for i in *.fastq.gz;
     do echo $i;
 done
```

```
starting
      variable
                    meeting this
a loop
                     condition
       name
 for i in *.fastq.gz;
      do echo $i;
     execute
```

```
starting
      variable
                    meeting this
a loop
                     condition
       name
 for i in *.fastq.gz;
      do echo $i;
     execute
           command
```

```
starting
      variable
                     meeting this
a loop
                      condition
       name
 for i in *.fastq.gz;
      do echo $i;
                     variable
     execute
            command
```


Now go try this loop on the server

Run FastQC

- 1. Go to the RNA-seq data directory
- 2. Make a directory to put the FastQC reports into, fastqc
- 3. Run fastqc on the samples

```
for i in *.fastq.gz; do fastqc $i -o fastqc/; done
```

Trim Bad Quality Sequences

What is trimming and why do it?

What is trimming and why do it?

 Trimming removes sequencing adapters, bad quality sequences, and/or other biased sequence information

What is trimming and why do it?

- Trimming removes sequencing adapters, bad quality sequences, and/or other biased sequence information
- Why is that important?
 - Helps prevent incorrect base calls by removing poor quality information
 - Increases speed and accuracy of alignment by removing artificial sequences and low quality sequences

What is trimming and why do it?

- Trimming removes sequencing adapters, bad quality sequences, and/or other biased sequence information
- Why is that important?
 - Helps prevent incorrect base calls by removing poor quality information
 - Increases speed and accuracy of alignment by removing artificial sequences and low quality sequences

- Trimming does two complementary things:
 - Removes any sequence information that comes from library preparation or sequencing
 - 2. Removes low quality bases / low quality reads

- 1. Go back up to the rnaseq directory
- 2. Make a folder to put the analysis results in, analysis
- 3. Make a folder inside the analysis folder to put the trimmed reads in, analysis/01 trim

```
for i in *R1.fastq.gz;
     do trim galore
          --paired
          --fastqc
          --illumina
          --output analysis/01_trim/
          --retain unpaired
          -q 30
          $i
          ${i/R1/R2};
```

```
for i in *R1.fastq.gz; ←
                                                    loop condition
     do trim galore
           --paired
           --fastqc
           --illumina
           --output analysis/01 trim/
           --retain unpaired
           -q 30
           $i
           ${i/R1/R2};
```

```
for i in *R1.fastq.gz; ←
                                                      loop condition
     do trim galore ←
                                                     call the program
           --paired
           --fastqc
           --illumina
           --output analysis/01 trim/
           --retain unpaired
           -q 30
           $i
           ${i/R1/R2};
```

```
for i in *R1.fastq.gz; +
                                                        loop condition
     do trim galore ←
                                                      call the program
            --paired
                                                    reads are paired-end
            --fastqc
            --illumina
            --output analysis/01 trim/
            --retain unpaired
            -q 30
            $i
            ${i/R1/R2};
```

```
for i in *R1.fastq.gz; -
                                                           loop condition
      do trim galore ←
                                                         call the program
            --paired
                                                      reads are paired-end
            --fastqc
                                             run FastQC again after trimming
            --illumina
            --output analysis/01 trim/
            --retain unpaired
            -q 30
            $i
            ${i/R1/R2};
```

```
for i in *R1.fastq.gz; -
                                                             loop condition
      do trim galore -
                                                           call the program
            --paired
                                                        reads are paired-end
            --fastqc
                                              run FastQC again after trimming
            --illumina ◆
                                                       trim Illumina adapters
            --output analysis/01 trim/
            --retain unpaired
            -q 30
            $i
            ${i/R1/R2};
```

```
for i in *R1.fastq.gz; +
                                                              loop condition
      do trim galore ←
                                                            call the program
             --paired
                                                         reads are paired-end
             --fastqc
                                               run FastQC again after trimming
             --illumina ◀
                                                        trim Illumina adapters
             --output analysis/01 trim/←
                                                          output goes here
             --retain unpaired
             -q 30
             $i
             ${i/R1/R2};
```

```
for i in *R1.fastq.gz;
                                                                 loop condition
      do trim galore ←
                                                               call the program
             --paired
                                                            reads are paired-end
             --fastqc
                                                 run FastQC again after trimming
             --illumina •
                                                           trim Illumina adapters
             --output analysis/01 trim/←
                                                             output goes here
             --retain unpaired -
                                                 keep reads where one mate fails
                                                  trimming but the other doesn't
             -q 30
             $i
             ${i/R1/R2};
```

```
for i in *R1.fastq.gz; +
                                                                 loop condition
      do trim galore ←
                                                               call the program
             --paired
                                                            reads are paired-end
             --fastqc
                                                 run FastQC again after trimming
             --illumina •
                                                           trim Illumina adapters
             --output analysis/01 trim/←
                                                             output goes here
             --retain unpaired ←
                                                 keep reads where one mate fails
                                                  trimming but the other doesn't
             -q
                                                                     read files
             $i
             ${i/R1/R2};
```

```
for i in *R1.fastq.gz; -
                                                                  loop condition
      do trim galore ←
                                                                call the program
              --paired
                                                             reads are paired-end
              --fastqc
                                                  run FastQC again after trimming
              --illumina ◀
                                                            trim Illumina adapters
              --output analysis/01 trim/←
                                                              output goes here
              --retain unpaired ←
                                                  keep reads where one mate fails
                                                  trimming but the other doesn't
              -q 30←
                                                  Keep bases at this quality or above
              $i
              ${i/R1/R2};
```

```
for i in *R1.fastq.gz; ←
                                                                          loop condition
           do trim galore ←
                                                                       call the program
                  --paired ←
                                                                    reads are paired-end
By default bases
quality less than
                  --fastqc
                                                         run FastQC again after trimming
   20 will be
                  --illumina ◆
                                                                   trim Illumina adapters
trimmed and if
 the read falls
                  --output analysis/01 trim/←
                                                                     output goes here
 below 20 bp, it
                  --retain unpaired ←
will be discarded;
                                                         keep reads where one mate fails
  we set the
                                                         trimming but the other doesn't
                  -q 30←
minimum quality
                                                        Keep bases at this quality or above
                  $i
   to be 30
                  ${i/R1/R2};
```

```
for i in *R1.fastq.qz; ←
                                                                       loop condition
          do trim galore ←
                                                                     call the program
                  --paired ←
                                                                  reads are paired-end
By default bases
quality less than
                  --fastqc ←
                                                       run FastQC again after trimming
   20 will be
                  --illumina ←
                                                                 trim Illumina adapters
trimmed and if
 the read falls
                  --output analysis/01 trim/←
                                                                   output goes here
 below 20 bp, it
                  --retain unpaired ←
will be discarded;
                                                       keep reads where one mate fails
  we set the
                                                        trimming but the other doesn't
                  -q 30←
minimum quality
                                                       Keep bases at this quality or above
   to be 30
                  ${i/R1/R2}; -----
                                                                            read files
```

Trim Command

```
for i in *R1.fastq.gz; do trim_galore
--paired --fastqc --illumina --output analysis/01_trim/
--retain_unpaired -q 30 $i ${i/R1/R2}; done
```