

MACHINE LEARNING

EEL4930 Machine Learning Spring 2020

INSTRUCTORS

Instructor: Dr. Catia S. Silva

Lecturer

Electrical & Computer Engineering

Office: NEB 467

Office Hours: Tuesdays 10:40 AM – 11:40 AM, or by appointment

Supervised Teacher: Matthew Cook

Ph.D. student

Machine Learning & Sensing Lab

Electrical & Computer Engineering

Office: NEB 401

Office Hours: Thursday 11:00 AM – 12:00 PM at NEB 501

ABOUT ME

Dr. Catia Silva (KA-tee-uh SIL-vuh)

Lecturer in Electrical & Computer Engineering Department

Joined UF July 15, 2019

Conducting research in Machine Learning & Signal Processing since 2009

- Conduct basic Machine Learning & Pattern Recognition Research
- Driven by Application

MATT COOK

2nd year Ph.D. student

- Research Assistant in Dr. Alina Zare's research lab
 - Develop environmentally adaptive ATR

Previous school/work experience:

- University of Missouri (2009 to 2015): B.S. in ECE &M.S. in CE
- Naval Surface Warfare Center Panama City Division (2016 to Present):
 - Developed Automatic Target Recognition Software for Navy Applications

Research Interests:

- Deep Learning
- Competency Aware machine learning

COURSE WEBSITE: CANVAS & GITHUB

 Syllabus (including approximate course schedule) can be found posted on Canvas.

- Course Website
 - 1. Canvas: will be used as a communication channel and to post grades
 - https://ufl.instructure.com/courses/395133
- 2. GitHub: will be used to access all course materials (lectures, assignments, labs & project groups) and submit assignments
- Prerequisites
 - Programing experience
 - We will be programming in Python

TEXTBOOKS & SOFTWARE - REQUIRED

Title: Python Machine Learning

Author: Sebastian Raschka **Publisher:** Packt Publishing

Year: 2016

Title: Deep Learning with Pytorch **Author:** Eli Stevens & Luca Antiga

Publisher: Manning Publications

Year: 2006

e-book available here

Software:

Python 3.4.3+ Git Pytorch

TEXTBOOKS - RECOMMENDED

Title: Pattern Recognition and

Machine Learning

Author: Christopher Bishop

Publisher: Springer

Year: 2006

PDF available here

Title: Python Data Science

Handbook

Author: Jake VanderPlas **Publisher:** O'Reilly Media

Year: 2017

e-book available here

GRADING

- Grade will be based on:
 - Homework (30%)
- Lab Assignments (20%)
- Midterm Exam (20%)
- Project (10%)
- Final Exam (20%)
- During the semester, we will have:
 - ~ 8 Homework
 - 4 Lab Assignments
 - 1 semester-long project
 - We will provide assignment solutions
- Individual assignments will be normalized
- Final grades will be curved

Percent	Grade	Grade Points
93.4 - 100	A	4.00
90.0 - 93.3	A-	3.67
86.7 - 89.9	B+	3.33
83.4 - 86.6	В	3.00
80.0 - 83.3	B-	2.67
76.7 - 79.9	C+	2.33
73.4 - 76.6	C	2.00
70.0 - 73.3	C-	1.67
66.7 - 69.9	D+	1.33
63.4 - 66.6	D	1.00
60.0 - 63.3	D-	0.67
0 - 59.9	E	0.00

EXPECTATIONS

- Do the reading in advance
- Stay on top of assignments
- Ask questions when you do not understand
- Participate in classroom discussions and activities
- You are expected to bring a laptop to class with git installed, the ability to code and compile in python 3.4.3+, and run jupyter notebooks

EXTRA CREDIT

If you find (meaningful) errors or typos in lecture notes, code, examples, etc. posted in the class materials, you can report these using HitHub's "pull request" to get some extra credit.

➤ See: https://help.github.com/articles/about-pull-requests/

For errors/typos in any PDF file, be sure to correct both the associated the .ipynb and .pdf file for my review.

WHAT IS MACHINE LEARNING?

Course Overview: Introduction to **machine learning** and its role in a variety of real-world problems in areas such as adaptive filtering and image processing.

- So, what is machine learning? www.wooclap.com/SNDEMP
- Can a machine or a computer learn?
- Can a machine or computer be intelligent?
- One definition of **Machine Learning**: Area of study to develop methods for computers to make (intelligent?) decisions without being explicitly programmed.

SUB-AREAS OF ML

- Supervised Learning
- Unsupervised Learning
- Neural Networks & Deep Learning
- Semi-supervised Learning
- Reinforcement Learning
- Active Learning
- > Transfer Learning
- Structured Learning
- ➤ Associative Learning
- **>** ...

We will study these sub-areas of ML

Learning mapping from input data to desired output values given labeled training data.

0: Macaw 1: Conure

Learning mapping from input data to desired output values given labeled

training data

The Usual Flow (but not always)

Training

Collect Labeled Training Data

Extract Features

Select a Model

Fit the Model

The Usual Flow (but not always)

Testing

Given Unlabeled Test Data

Extract (the same) Features

Run It Through Your Trained Model

(SUBSET OF) CHALLENGES

- How do you know if you have representative training data?
- How do you know if you extracted good features?
- How do you know if you selected the right model?
- How do you know if you trained the model well?

GET LOADS AND LOADS OF DATA

Partition (thoughtfully) into Training, Validation, & Testing Data Conduct Cross-Validation
Carefully select Evaluation Metrics

LET'S GET STARTED

• Homework 0 has been posted.