60004190057 END SEM - 3 EXAM JAGOLKas -11-12-2020 DISCRETE STRUCTURES 83 $A = \{2,3,6,12,24,36,724\}$ The xelation "is divisible by" is given by the following matrin 2 3 6 12 24 36 72 3 0 1 1 1 1 1 6 p 6 1 1 1 1 1 12 0 0 0 1 1 1 1 R = 24 0 0 0 0 1 0 1 36 0 0 0 0 0 1 1 72 0 0 0 0 0 0 1 Relation of divisibility: R. $R = \{(2,2), (2,6), (2,12), (2,24), (2,36), (2,72), (2,72), (2,24), (2,36), (2,72), (2,72), (2,24), (2,36), (2,72), (2,72), (2,24), ($ (3,3), (3,6), (3,12), (3,24), (3,36), (3,72), (6,6), (6,12), (6,24), (6,36), (6,72), (12,12) (12, 24), (12, 36), (12, 72), (24,24), (24,72) (36,30), (36,72), (72,72) 3 DIGRAPH :

FOR EDUCATIONAL USE

Sundaram

JUNAID. GIRKAR

JUNAID GIRKAR 60004190057 JAGükal

all self loops & transitivity Removing (12) 36 HASSE DIAGRAM. 72 36 24 6

FOR EDUCATIONAL USE

<u>Sundaram</u>

JUNAID. GIRKAR GOODUIGOOST JAGUKAL

Q3 .2	Performing join (avb) [least upper bound]
	V 2 3 6 12 24 36 72
	2 2 6 6 12 24 36 72
	3 6 3 6 12 24 36 72
	6 6 6 6 12 24 36 72
	12 12 12 12 24 36 72
7	24 24 24 24 24 72 72
,	36 36 36 36 72 36 72
	72 72 72 72 72 72 72
	•
	Performing meet (anb) [Greatest lower bound]
	The greatest lower bound of pair (2,3) is not possible
-	Hence its not a lattice.
0-	
1	

FOR EDUCATIONAL USE

Sundaram

84 let f be a function from A to B. let f be defined everywhere i.e. domain f= A * INJECTIVE A function of is said to be injective [one-to-one] i) two distinct elements of a cosucespond to two distinct elements of B le. If a function $f \times Y$ is one-to-one if $X_1 \neq X_2$ implies $f(X_1) \neq f(X_2)$ ox $f(X_1) = f(X_2)$ implies $X_1 = X_2$ e.g: let A = {a,b,c} B = {1,2,3} $= \{(a,3), (b,2), (c,1)\}$ fi is one - to - one. * SURJECTIVE A function f: A -> B is called swijective ox onto if every element of per is an image of atleast one Velement a of A i.e. In other woods, the grange of f=B e.g. let $A = \{a, b, c, d\}$ $B = \{n, y, z\}$ $f_2 = \{(a,x), (b,y), (c,y), (d,z)\}$ fz is onto or sucjective because every element m, y, z of B is an image of atleast one element (pre-image)

FOR EDUCATIONAL USE

Sundaram

* BIJECTIVE

I f: A > B is both one-to-one and onto the f is bijective. Such a function is also called one-to-one correspondence between A and B

If f is injective and swipective, it is bijective.

e.g: A = {a,b,c3 B={1,2,33} f3 = { (9,1), (6,2), (c,3) } f3 is one-to-one & onto f3 is bijective

INVERSE FUNCTION

Let $f: X \rightarrow Y$. Suppose g is a function $g: Y \rightarrow X$ such that $(g \circ f)_X \neq X$ for every $n \in X$ and $(f \circ g)_Y = Y$ for every $-Y \in Y$, then g is called the inverse g = f and is denoted by f^{-1} . Thus $g = f^{-1}$ and $dom(f) = codom(f^{-1})$ and codom (+) = dom (+-1)

JUNAID. GIRKAR GOODUIGOOST JAGUKAL

JUNAID. GIRKAR GOOD 4190057 JAGIREALS

86	
a)	
	6 /2
	5 3
	4
	(b)
a	Divide the region into 6 equilateral triangles.
	If seven points are chosen in the region, we can
	assign each of them to a triangle that contains
	it. If the point belongs to several triangles
-	arbitrarily assign to one at them. Then the seven
	points are assigned to sin triangular regions. so
	by the pigeonhole principle atleast two points
	must belong to the same region. These two
	cannot be more than 1 unit apout
(b) let $P(n): 5^{n} - 1$
	(1) BASIS OF INDUCTION
	For n=1, 5 = 1 = 4 divisible by 4
	,
	(i) INDUCTION STE P
	Assume that 5k-1 is divisible by 4
	Assume that $5^{k}-1$ is divisible by 4 we have $5^{k+1}-1=(5^{k}.5-5)+4$
	= 5 (5 ^k -1) + 4
	By induction hypothesis 5k-1 is divisible by 4.
	Each teem on the RHS is divisible by 4.
	:- $5^{K+1} - 1$ is divisible by 4. Hence $5^n - 1$ is divisible by 4 for $n \ge 1$.
(B)	Hence 5"-1 is divisible by 4 for n > 1.
Sundaram ®	FOR EDUCATIONAL USE

JAGUKAL

97.	Solve the following relation an - 7an-1 + 10 an-2 = 0
	with initial wondition as = 1 a, = 6
,	
	The given equation is second oxdex linear homogeneous
	xelation with constant coefficient
	Let an = or be the solution
,	$\therefore x^{n} - 7x^{n-1} + 10x^{n-2} = 0$
,	$\therefore x^{9-2} \left[x^2 - 7x + 10 \right] = 0$
K	(9-5)(9-2)=0
	∴ 9c = 5,2
	: The roots are real rational and distinct.
	Hence let the general solution be an = $A(5)^n + B(2)^n$
,	and the second of the second o
,	we now use the initial condition to find the value of
	A&B
	putting n=0 putting n=1
	putting $n = 0$ i. $a_0 = A + B = 1$ — (1) i. $a_1 = 5A + 2B = 6 - 12$
	Solving (1) and (2)
	100 Got A - 11 and B 1
	3
	Hence the desired xelation solution is
	$a_n = 4 (5)^n - 1(2)^n$
	5 3
. 19	Service and the service of the servi