オイラー関数の多重合成に対応する自然な余関数について

梶田光

2025/09/11

$1. \cos \varphi^2$ の定義とその値

オイラー関数 $\varphi(n)$ には, $\cos(n) := n - \varphi(n)$ で定義される余関数がある.

さて、これの知られている重要な性質を列挙すると:

- $\cos\varphi(n) = 0 \iff n = 1$
- $co\varphi(n) = 1 \iff n : prime$
- $n : \text{composite} \Longrightarrow \text{co}\varphi(n) \ge \sqrt{n}$

つまり, $\varphi(n)$ は, n が素数という条件ではほぼ n だが, 合成数のときはその差は \sqrt{n} 以上になる.

定数 A,B について, $An-B\varphi(n)=C$ を求める問題は, A>B のとき簡単すぎ, A<B のとき解けないほど難しい.

余関数はこの丁度いい境目に位置していると考えることができる.

さて、オイラー関数の合成 $\varphi^2(n) \coloneqq \varphi(\varphi(n))$ について上のような余関数を定義することを考える.

まずすぐにわかることは, $n-\varphi(\varphi(n))$ はうまくいかないであろうということである.

というのも、一般に大きい n について、 $\varphi(n)$ は偶数であるから、 $\varphi(\varphi(n))$ は最大でも $\frac{n}{2}$ 程度にしかならない.

そこで、係数を補って $\cos \varphi^2(n) \coloneqq n - 2 \varphi^2(n)$ と定義すると、以降議論するような面白い性質が得られる.

以下に示すのは、小さい整数の定数 C と、 $\cos^2(n) = C$ の解を列挙した表である.

C	n
-1	1
0	2
1	3, 5, 17, 257, 65537
2	2^2
3	$7, 11, 23, 47, 59, 83, 107, 167, 179, 227, \dots$
4	$2\cdot 3, 2^3$
5	$3^2, 13, 29, 53, 149, 173, 269, 293, 317, 389, \dots$
6	$2\cdot 5$
7	$3 \cdot 5, 19$
8	$2^2 \cdot 3, 2^4$
9	$5^2, 41, 89, 137, 233, 569, 809, 857, 1049, 1097, \dots$

以降, p はすべて素数を指すものとする.

定理 1.1: n > 2 ならば, $\cos(\alpha^2(n)) > 0$.

$$\mathit{Proof:}\ \, \varphi(n) = n \prod_{p \;|\; n} \left(1 - \frac{1}{p}\right) \; \mathcal{O} \; n \; \mathit{\textit{IC}} \; \varphi(n) \;$$
を代入すると, $\varphi^2(n) = \varphi(n) \prod_{p \;|\; \varphi(n)} \left(1 - \frac{1}{p}\right).$

さて, n > 2 ならば $\varphi(n)$ は偶数なので, p = 2 は $p \mid \varphi(n)$ を満たす.

つまり,
$$\prod_{p \mid \varphi(n)} \left(1 - \frac{1}{p}\right) \le 1 - \frac{1}{2} = \frac{1}{2}$$
 より, $\varphi^2(n) \le \frac{1}{2} \varphi(n)$.

$$\mathrm{co}\varphi^2(n) = n - 2\varphi^2(n) \geq n - 2 \cdot \frac{1}{2}\varphi(n) = \mathrm{co}\varphi(n).$$

そして、一般に
$$n>1$$
 のとき $\cos\varphi(n)>0$ であるから、 $\cos\varphi^2(n)\geq \cos\varphi(n)>0$.

さて, $\cos(\varphi^2(1)) = -1$, $\cos(\varphi^2(2)) = 0$ より以下が従う:

- $n=1 \iff \cos\varphi^2(n)=-1$
- $n=2 \iff \cos\varphi^2(n)=0$
- $n > 2 \Longleftrightarrow \cos^2(n) > 0$

主定理の証明のための補題として、以下のよく知られた結果を紹介する.

補題 1.1: n が合成数のとき, $\varphi(n) \leq n - \sqrt{n}$.

Proof: n の最小の素因数を p_0 とすると, n は合成数なので $p_0 \leq \sqrt{n}$ が成り立つ.

$$\mbox{$\stackrel{\sim}{\sim}$} \ \tau, \ \varphi(n) = n \prod_{n \mid n} \left(1 - \frac{1}{p}\right) \leq n \left(1 - \frac{1}{p_0}\right) \leq n \left(1 - \frac{1}{\sqrt{n}}\right) = n - \sqrt{n}.$$

定理 1.2: $\cos^2(n) = C > 0$ が成り立っているとする.

 $n > C^2$ がさらに成り立つとき, n, C は以下のいずれかに当てはまる:

- C = 1 で, n はフェルマ素数
- ある正整数 e を用いて $C = 2^e + 1$ と書け, n は素数で $\frac{n-1}{2^e}$ も奇素数.

このとき
$$\varphi(n)$$
 は偶数なので、 $2\varphi^2(n)=2\varphi(n)\prod_{p\mid \varphi(n)}\left(1-\frac{1}{p}\right)=2\varphi(n)\cdot\left(1-\frac{1}{2}\right)\cdot\prod_{p\mid \varphi(n),p\neq 2}\left(1-\frac{1}{p}\right)=\varphi(n)\prod_{p\mid \varphi(n),p\neq 2}\left(1-\frac{1}{p}\right)$ が成り立つ.

n が合成数とすると, $\varphi(n) < n - \sqrt{n}$.

先の式から $2\varphi^2(n) < \varphi(n)$ より, $\cos\varphi^2(n) = n - 2\varphi^2(n) > n - (n - \sqrt{n}) = \sqrt{n}$.

 $C > \sqrt{n}$ \sharp \mathfrak{h} , $n < C^2$.

よって以降 n が素数の場合のみを考える.

n>2 より, n は奇素数で, n-1 は偶数なのである正整数 e と奇数 L を用いて $n-1=2^eL$ と書ける.

すると,
$$\varphi(n)=n-1$$
 より $n-2\varphi^2(n)=n-\varphi(n)\prod_{p\;|\; \varphi(n),p\neq 2}\left(1-\frac{1}{p}\right)=n-2^eL\prod_{p\;|\; 2^eL,p\neq 2}\left(1-\frac{1}{p}\right)$

ここで 2^eL の奇数の素因数は L の素因数と同じなので, $\cos \varphi^2(n) = n - 2^eL\prod_{n \vdash L} \left(1 - \frac{1}{p}\right) = n - 2^e \varphi(L)$.

ここで L が合成数であると仮定する.

すると $\cos \varphi^2(n)=n-2^e \varphi(L)\geq n-2^e \left(L-\sqrt{L}\right)=n-2^e L-2^e \sqrt{L}=1+2^e \sqrt{L}\geq 1+\sqrt{2^e L}\geq 1+\sqrt{n-1}>\sqrt{n}$.

したがってこの場合も $C > \sqrt{n}$ より $n \le C^2$ が成り立つ.

つまり, $n > C^2$ ならば L は 1 もしくは素数でなければならない.

L=1 の場合, $n-1=2^e$ より n はフェルマ素数である.

L が素数の場合, $\frac{n-1}{2^e} = L$ は奇素数で, $C = n - 2^e \varphi(L) = n - 2^e (L-1) = n - (n-1) + 2^e = 1 + 2^e$.

2. 一般の k に対応する $\cos \varphi^k$

一般の n について $\varphi^2(n)$ は最大でも $\frac{n}{2}$ ほどにしかならないことから $\cos \varphi^2(n) \coloneqq n - 2\varphi^2(n)$ と定義した.

次に, $\varphi^3(n)=\varphi(\varphi^2(n))$ は一般の n について $\varphi^2(n)$ が偶数であることから $\varphi^2(n)$ のさらに半分ほどが限界であるう.

したがって $\cos^3(n) := n - 4\varphi^3(n)$ が自然な余関数の定義である.

これらの議論から、一般の正整数 k について、 $\cos\varphi^k(n) := n - 2^{k-1}\varphi^k(n)$ と定義する.

また便宜上 $\varphi^0(n) = n$ とする.

また, k は n に依らない定数とし, 以降は $k \ge 2$ の場合について考える.

定理 2.1: k > 1 とする. $\cos \varphi^k(n) < 0$ ならば. $\varphi^{k-1}(n) = 1$.

Proof: 対偶法で証明する. つまり, まず $\varphi^{k-1}(n) \geq 2$ と仮定する.

すると, $\varphi(n)$, $\varphi^2(n)$, $\varphi^3(n)$, ..., $\varphi^{k-1}(n)$ はすべて 2 以上の整数である.

さて,
$$\varphi(n)=n\prod_{p\mid n}\left(1-\frac{1}{p}\right)$$
 より $\varphi^2(n)=\varphi(n)\prod_{p\mid \varphi(n)}\left(1-\frac{1}{p}\right)$ と書けた.

ここから
$$\varphi^3(n)=\varphi^2(n)\prod_{p\mid \varphi^2(n)}\left(1-\frac{1}{p}\right)=\varphi(n)\left\{\prod_{p\mid \varphi(n)}\left(1-\frac{1}{p}\right)\right\}\left\{\prod_{p\mid \varphi^2(n)}\left(1-\frac{1}{p}\right)\right\}$$
 と書ける.

この議論を繰り返すと、一般に $\varphi^k(n)=\varphi(n)\prod_{1\leq j< k}\prod_{p\mid \varphi^j(n)}\left(1-\frac{1}{p}\right)$ のように書ける. (これは単純な帰納法によって証明できる.)

ここで
$$\varphi(n), \varphi^2(n), ..., \varphi^{k-1}(n)$$
 がすべて偶数なので, $\varphi^k(n) \leq \varphi(n) \prod_{1 \leq i \leq k} \left(1 - \frac{1}{2}\right) = \frac{\varphi(n)}{2^{k-1}}$.

いま $\varphi(n)$ は偶数なので, n > 2 から $\varphi(n) < n$ がわかる.

したがって
$$\varphi^k(n) < \frac{n}{2^{k-1}}$$
 より, $2^{k-1}\varphi^k(n) < n$.

つまり,
$$\mathrm{co}\varphi^k(n)=n-2^{k-1}\varphi^k(n)>0.$$

証明したかった命題の対偶が示せたので, 命題は証明された.

系 2.1: C を整数の定数, k > 1 とする.

 $C \leq 0$ について, $\cos \varphi^k(n) = C$ の唯一の解は $n = 2^{k-1} + C$.

 $Proof: co\varphi^k(n) = C \le 0$ とすると、先の命題より $\varphi^{k-1}(n) = 1$ から $\varphi^k(n) = 1$.

したがって, $\cos^k(n) = n - 2^{k-1}\varphi^k(n) = n - 2^{k-1}$ より, $n = 2^{k-1} + C$ と書ける.

次に、これが実際に $\cos \varphi^k(n) = C$ の解であることを示そう.

先の命題の証明の中で、 $\varphi^{k-1}(n) > 2$ ならば $2^{k-1}\varphi^k(n) < n$ を示していた.

したがって, $\varphi^{k-1}(n) > 2$ ならば $2^{k-1} < n$.

しかし、いま $n = 2^{k-1} + C < 2^{k-1}$ より、 $\varphi^{k-1}(n) = 1$ から $\varphi^k(n) = 1$.

よって, $\cos \varphi^k(n) = n - 2^{k-1} = \left(2^{k-1} + C\right) - 2^{k-1} = C$ になっていることが確かめられた.

さて、主定理の証明の前に補助関数を用意し、それについてのいくつかの補題を証明する.

定義 2.1:
$$\overline{\varphi}^k(n)\coloneqq n\prod_{0\leq j< k}\prod_{p\mid \varphi^j(n), p\neq 2} \left(1-\frac{1}{p}\right).$$

特に k=0 の場合は $\overline{\varphi}^k(n)$ は n と定義される.

補題 2.1: $k \ge 1$ とする. n が奇数で合成数ならば, $\overline{\varphi}^k(n) \le n - \sqrt{n}$.

$$Proof: \ \overline{\varphi}^k(n) = n \prod_{0 \leq j < k} \prod_{p \mid \varphi^j(n), p \neq 2} \left(1 - \frac{1}{p}\right) \leq n \prod_{p \mid n, p \neq 2} \left(1 - \frac{1}{p}\right) = \varphi(n) \leq n - \sqrt{n}.$$

補題 2.2: n,k を正整数, e を非負整数とすると, $\varphi^k(2^en)=2^f\varphi^k(n)$ を満たすような非負整数 f が存在する.

Proof: e = 0 の場合は f = 0 とすれば良いことは明らかであろう.

それ以外の場合をkについての帰納法で証明する.

まず, k=1 の場合について考える.

 $\varphi(2^e n)$ は n が奇数のとき $2^{e-1}\varphi(n)$, n が偶数のとき $2^e \varphi(n)$ に等しい.

よって命題は k=1 の場合に成り立つ.

次に, k = k' の場合に命題が成り立つと仮定する.

すると, $\varphi^{k'}(2^e n) = 2^f \varphi^{k'}(n)$ を満たすような非負整数 f が存在する.

このとき,
$$\varphi^{k'+1}(2^e n) = \varphi(\varphi^{k'}(2^e n)) = \varphi(2^f \varphi^{k'}(n)).$$

k=1 の場合の命題より, $\varphi\left(2^f \varphi^{k'}(n)\right) = 2^g \varphi\left(\varphi^{k'}(n)\right) = 2^g \varphi^{k'+1}(n)$ を満たす非負整数 g が存在する.

帰納法より、命題は示された.

補題 2.3: n を 奇素数とすると, $n-1=2^eL(e>0,L:\mathrm{odd})$ と書ける. このとき, k>1 について, $\overline{\varphi}^k(n)=2^e\overline{\varphi}^{k-1}(L)$ が成り立つ.

 $Proof: \varphi(n) = n - 1 = 2^e L$ であることに注意して計算すると、

$$\begin{split} \overline{\varphi}^k(n) &= n \prod_{0 \leq j < k} \prod_{p \mid \varphi^j(n), p \neq 2} \left(1 - \frac{1}{p}\right) = \left\{ n \prod_{p \mid n, p \neq 2} \left(1 - \frac{1}{p}\right) \right\} \prod_{1 \leq j < k} \prod_{p \mid \varphi^j(n), p \neq 2} \left(1 - \frac{1}{p}\right) \\ &= \varphi(n) \prod_{1 \leq j < k} \prod_{p \mid \varphi^{j-1}(2^eL), p \neq 2} \left(1 - \frac{1}{p}\right) = \varphi(n) \prod_{1 \leq j < k} \prod_{p \mid \varphi^{j-1}(L), p \neq 2} \left(1 - \frac{1}{p}\right) \\ &= 2^eL \prod_{0 \leq j < k} \prod_{p \mid \varphi^j(L), p \neq 2} \left(1 - \frac{1}{p}\right) = 2^e \overline{\varphi}^{k-1}(L) \end{split}$$

なお, * の変形では, 補題 2.2 より, $\varphi^{j-1}(2^eL)$ と $\varphi^{j-1}(L)$ の奇素数の素因数が同じであることを利用した.

定義 2.2: 正整数 n と非負整数 i について, $R_i(n)$ を以下のように定義する.

$$R_i(n) \coloneqq \begin{cases} n & \text{if } i = 0, \\ \frac{R_{i-1}(n) - 1}{2^{\nu_2(R_{i-1}(n) - 1)}} & \text{if } i > 0 \text{ and } R_{i-1}(n) > 1, \\ \text{undefined} & \text{otherwise.} \end{cases}$$

 $R_i(n)$ が 1 になるまでは i について $R_i(n)$ が狭義単調減少であることは明らかであろう.

定義 2.3: 正整数
$$n$$
 と i について, $E_i(n)\coloneqq \begin{cases} \nu_2(R_{i-1}(n)-1) & \text{if } R_{i-1}(n)>1,\\ \text{undefined} & \text{otherwise.} \end{cases}$ と定義する.

定義 2.4: 正整数 n について, $R_i(n) = 1$ が成り立つ整数 i を I(n) と定義する.

補題 2.4: n と i を正整数とし, i < I(n) とする.

このとき、
$$n = \left\{\sum_{1 \leq j \leq i} 2^{\sum_{1 \leq k < j} E_k(n)} \right\} + R_i(n) \cdot 2^{\sum_{1 \leq k \leq i} E_k(n)}.$$

Proof: i についての帰納法で示す.

$$i=1 \,\, \mathcal{O} \,\, \boldsymbol{\xi} \,\, , \,\, n=R_0(n) \,\, \, \, \, \boldsymbol{\widetilde{\tau}} , \,\, \frac{R_0(n)-1}{2^{E_1(n)}} = R_1(n) \,\,\, \, \boldsymbol{\xi} \,\, \, \boldsymbol{\mathcal{I}} \,\, \, \, \, n=1+R_1(n) \, \cdot 2^{E_1(n)}.$$

i < I(n) のとき命題が成り立つと仮定すると、

$$\begin{split} n &= \left\{ \sum_{1 \leq j \leq i} 2^{\sum_{1 \leq k < j} E_k(n)} \right\} + R_i(n) \cdot 2^{\sum_{1 \leq k \leq i} E_k(n)} \\ &= \left\{ \sum_{1 \leq j \leq i} 2^{\sum_{1 \leq k < j} E_k(n)} \right\} + \left(1 + R_{i+1}(n) \cdot 2^{E_{i+1}(n)} \right) \cdot 2^{\sum_{1 \leq k \leq i} E_k(n)} \\ &= \left\{ \sum_{1 \leq j \leq i} 2^{\sum_{1 \leq k < j} E_k(n)} \right\} + 2^{\sum_{1 \leq k \leq i} E_k(n)} + R_{i+1}(n) \cdot 2^{\sum_{1 \leq k \leq i+1} E_k(n)} \\ &= \left\{ \sum_{1 \leq j \leq i+1} 2^{\sum_{1 \leq k < j} E_k(n)} \right\} + R_{i+1}(n) \cdot 2^{\sum_{1 \leq k \leq i+1} E_k(n)} \end{split}$$

つまり i+1 のときも命題が成り立つ.

よって、数学的帰納法より命題は示された.

定理 2.2: k > 1, $\cos(\kappa(n)) = C$, $\varphi^{k-1}(n) > 1$ が成り立っているとし, $L = \min(I(n), k)$ とおく.

 $n > C^2$ がさらに成り立つならば, $0 \leq j < L$ の範囲のすべての整数 j について $R_j(n)$ が奇素数でなけれ ばならない.

このとき、
$$C = \sum_{1 \leq j \leq L} 2^{\sum_{1 \leq k < j} E_k(n)}$$
 が成り立つ.

Proof: 定理 2.1 の対偶より, C > 1.

 $\varphi^{k-1}(n) > 1$ より, $\varphi(n), \varphi^{2}(n), ..., \varphi^{k-1}(n)$ はすべて偶数である.

さて, 定理
$$2.1$$
 での式変形より $\varphi^k(n)=\varphi(n)\prod_{1\leq j< k}\prod_{p\mid \varphi^j(n)}\left(1-\frac{1}{p}\right).$

いま
$$\varphi(n),...,\varphi^{k-1}(n)$$
 はすべて偶数なので $2^{k-1}\varphi^k(n)=\varphi(n)\prod_{1\leq j< k}\prod_{p\mid \varphi^j(n),p\neq 2}\left(1-\frac{1}{p}\right)$.

n=1 の場合, $\varphi^{k-1}(n)=1$ なのでそもそも除外する.

n が合成数ならば、 $2^{k-1}\varphi^k(n) \leq \varphi(n) \leq n - \sqrt{n}$ より、 $\cos(\kappa(n)) \geq n - (n - \sqrt{n}) = \sqrt{n}$.

したがって $n < C^2$ なので, 以降 n は素数とする.

特に $\varphi(2) = 1$ なので n は奇素数である.

このとき、
$$2^{k-1} \varphi^k(n) = \varphi(n) \prod_{1 \leq j < k} \prod_{p \mid \varphi^j(n), p \neq 2} \left(1 - \frac{1}{p}\right) = n \left\{ \prod_{p \mid n, p \neq 2} \left(1 - \frac{1}{p}\right) \right\} \prod_{1 \leq j < k} \prod_{p \mid \varphi^j(n), p \neq 2} \left(1 - \frac{1}{p}\right).$$

これは $\overline{\varphi}^k(n)$ に等しく、よって $\cos(\varphi^k(n)) = n - \overline{\varphi}^k(n)$ である。

すると, 以下の命題 (*) が証明できる:

iを $1 \le i < k$ の範囲の整数とする.

 $R_{i-1}(n)$ が奇素数で, $\mathrm{co} arphi^k(n) = n - \overline{arphi}^{k-i}(R_i(n)) 2^{\sum_{1 \leq j \leq i} E_j(n)}$ と表せ. $n > C^2$ ならば、以下のいずれかが成り立つ:

•
$$R_i(n) = 1, \cos \varphi^k(n) = \sum_{1 \le k < j} E_k(n)$$

$$\begin{array}{ll} \bullet & R_i(n) = 1, \mathrm{co}\varphi^k(n) = \sum_{1 \leq j \leq i} 2^{\sum_{1 \leq k < j} E_k(n)} \\ \bullet & R_i(n) : \mathrm{odd\ prime}, \mathrm{co}\varphi^k(n) = n - \overline{\varphi}^{k-i-1} \big(R_{i+1}(n)\big) 2^{\sum_{1 \leq j \leq i+1} E_j(n)} \end{array}$$

命題 (*) の証明:

 $R_i(n)$ が合成数であると仮定する.

すると、補題 2.1 より
$$\overline{\varphi}^{k-i}(R_i(n)) \leq R_i(n) - \sqrt{R_i(n)}$$
 であるから、 $\cos \varphi^k(n) \geq n - 2^{\sum_{1 \leq j \leq i} E_j(n)} \Big\{ R_i(n) - \sqrt{R_i(n)} \Big\}.$

補題
$$2.4$$
 から, $X=\sum_{1\leq j\leq i}2^{\sum_{1\leq k< j}E_k(n)}$ とおくと, $n=X+R_i(n)\cdot 2^{\sum_{1\leq j\leq i}E_j(n)}$.

よって,
$$\cos \varphi^k(n) \ge X + 2^{\sum_{1 \le j \le i} E_j(n)} \sqrt{R_i(n)}$$
.

したがって、
$$C=\mathrm{co} arphi^k(n) \geq X + \sqrt{2^{\sum_{1 \leq j \leq i} E_j(n)} R_i(n)} = X + \sqrt{n-X}$$

 $C-X \ge \sqrt{n-X}$ で、両辺は正なので 2 乗して $C^2-2CX+X^2 \ge n-X$ を得る.

$$C \ge X$$
 から, $C^2 - 2CX + X^2 \le C^2 - 2X^2 + X^2 = C^2 - X^2$ より, $C^2 - X^2 + X \ge n$.

X > 1 なので $C^2 > n$ を得る.

したがって, $n > C^2$ ならば $R_i(n)$ は 1 もしくは奇素数でなければならない.

$$R_i(n)=1$$
 の場合, $\overline{arphi}^{k-i}(R_i(n))=1$ より, $\cos arphi^k(n)=n-2^{\sum_{1\leq j\leq i}E_j(n)}=X.$

 $R_i(n)$ が奇素数の場合、補題 2.3 より $\overline{\varphi}^{k-i}(R_i(n)) = \overline{\varphi}^{k-i-1}(R_{i+1}(n)) \cdot 2^{E_{i+1}(n)}$.

したがって,
$$\cos^k(n) = n - \overline{\varphi}^{k-i-1}(R_{i+1}(n))2^{\sum_{1 \leq j \leq i+1} E_j(n)}$$
.

さて、命題 (*) の前提条件が i=1 で成り立つことは明らかであるから、 $R_1(n)$ は1または奇素数.

 $R_1(n)$ が奇素数の場合は命題 (*) が i=2 でも適用できるので, $R_2(n)$ は 1 または奇素数. (今はわかりや すさのためk>3とする)

まとめると, k > 3 の場合は

- $R_1(n) = 1$
- $R_1(n)$: odd prime, $R_2(n) = 1$
- $R_1(n)$: odd prime, $R_2(n)$: odd prime の 3 通りに分けることができる.

このような議論を繰り返すと、一般のkについて、 $n > C^2$ が成り立つには、次のいずれかが成り立って いる必要がある:

- I(n) < k で, $0 \le j < I(n)$ の範囲のすべての整数 j について $R_i(n)$ が奇素数.
- $I(n) \ge k$ で, $0 \le j < k$ の範囲のすべての整数 j について $R_j(n)$ が奇素数.

前者の場合,
$$\cos \varphi^k(n) = \sum_{1 \le j \le I(n)} 2^{\sum_{1 \le k \le j} E_k(n)}$$

前者の場合,
$$\cos \varphi^k(n) = \sum_{1 \leq j \leq I(n)} 2^{\sum_{1 \leq k < j} E_k(n)}.$$
後者の場合, $\cos \varphi^k(n) = n - R_k(n) 2^{\sum_{1 \leq j \leq k} E_j(n)} = \sum_{1 \leq j \leq k} 2^{\sum_{1 \leq k < j} E_k(n)}.$

これらをまとめると証明したかった命題の形になる.

この定理の条件「 $0 \le j < \min(I(n), k)$ の範囲のすべての整数 j について $R_i(n)$ が奇素数」は $n > C^2$ が成 り立つための必要条件であるが、十分条件ではないことに注意.

さて, $n > C^2$, $\varphi^{k-1}(n) > 1$ が成り立つような n で, I(n) < k であるような n は少ない.

これについて考えよう.

いま, 補題 2.4 より,
$$n = \sum_{1 \leq j \leq I(n) + 1} 2^{\sum_{1 \leq k < j} E_k(n)}$$
 で, $C = \sum_{1 \leq j \leq I(n)} 2^{\sum_{1 \leq k < j} E_k(n)}$ より,

 $Y=2^{\sum_{1\leq k\leq I(n)}E_k(n)}$ とおくと、n=C+Y より $n>C^2$ と $C+Y>C^2$ 、 $Y>C^2-C$ は同値である。 そしてかなり大雑把な評価であるが、 $C^2-C=C(C-1)>2^{2\sum_{1\leq k< I(n)}E_k(n)}$ より, $E_{I(n)}(n)>\sum_{1\leq k< I(n)}E_k(n)$ が従う.

さて, $n_{I(n)-1}=2^{E_{I(n)}(n)}+1$ はフェルマ素数であるから, ここから $E_1(n),...,E_{I(n)-1}(n)$ の組み合わせ, ひいては n 自体も限定される.

正確には、フェルマ素数が有限個しか存在しないと仮定したとき、 $n > C^2$ 、 $\varphi^{k-1}(n) > 1$, I(n) < k を満たす n は(k を動かしても)有限個しかないことがわかる.

特に, フェルマ素数が現在知られている $2^{2^0}+1,2^{2^1}+1,2^{2^2}+1,2^{2^3}+1,2^{2^4}+1$ に限られると大胆に仮定すると, 条件を満たす n と k は以下のリストにあるもののみになる.

n	I(n)	$E_1(n),,E_{I(n)}(n)$	range of k	C
3	1	2	[2, 2]	1
5	1	2	[2, 2]	1
17	1	4	[2,4]	1
257	1	8	[2, 8]	1
65537	1	16	[2, 16]	1
11	2	1, 2	[3, 3]	3
137	2	3,4	[3, 7]	9

これら以外の $n > C^2, \varphi^k(n)$ を満たす n については, $(フェルマ素数が現在知られているものに限ると仮定すれば)すべて <math>I(n) \ge k$ である.