Selection Sort

Implementation:

```
void selection_sort(int ara[],int n)
{
    for(int i=0;i<(n-1);i++)
    {
        for(int j=i+1;j<n;j++)
        {
            if(ara[i]>ara[j])
            swap(ara[i],ara[j]);
        }
    }
    return;
}
```

Analysis:

 void selection_sort(int ara[],int n) 	cost	time
2. {		
3. for(int i=0;i<(n-1);i++)	c1	n-1
4. {		
5. for(int j=i+1;j <n;j++)< td=""><td>c2</td><td>$\frac{n(n+1)}{2}$</td></n;j++)<>	c2	$\frac{n(n+1)}{2}$
6. {		
7. if(ara[i]>ara[j])	c3	$\frac{n(n+1)}{2}$
a. swap(ara[i],ara[j]);	c4	$\frac{n(n+1)}{2}$
8. }		
9. }		
10. return;		
11. }		

So time function will be

$$f(t) = c1*(n-1) + c2* \frac{n(n+1)}{2} + c3* \frac{n(n+1)}{2} + c4* \frac{n(n+1)}{2}$$

Best Case occurs when the array is already sorted

1	2	3	4	5

For a already sorted array swap in inner loop will not happen, value of c4 will be 0 so time function will be

$$f(t) = \left(\frac{c2+c3}{2}\right) * n^2 + \left(\frac{c2+c3+2c1}{2}\right) * n - c1$$

This function is looking like $f(t) = an^2 + bn + c$, which is a quadric function

And worst case will be occurred when the array is reversely sorted

5	4	3	2	1

For a reversly sorted array time function will be,

$$f(t) = \left(\frac{c4+c2+c3}{2}\right) * n^2 + \left(\frac{c4+c2+c3+2c1}{2}\right) * n - c1$$

This function is looking like $f(t) = an^2 + bn + c$, which is also a quadric function

Time complexity

Best Case:

For best case ,
$$f(t) = an^2 + bn + c$$

so time complexity $O(n^2)$

Worst case:

For worst case,
$$f(t) = an^2 + bn + c$$

so time complexity $\Omega(n^2)$