Лабораторная работа №1.1.4 Измерение интенсивности радиационного фона

Габорак Александр Витальевич Б02-203

30 ноября 2022 г.

1 Введение

Цель работы:

• Применить методы обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиационного фона

В работе используются:

- счётчик Гейгера-Мюллера
- блок питания
- компьютер с интерфейсом связи со счётчиком

2 Теоретические сведения

Регистрация частиц однородна по времени и каждое последующее событие не зависит от предыдущего, поэтому количество отсчетов в одном опыте подчиняются распределению Пуассона, которое при больших числах стремится к нормальному. Стандартная ошибка отдельного измерения через измеренное значение n:

$$\sigma = \sqrt{n} \tag{1}$$

Отсюда следует, что результат измерений с высокой точностью записывается так:

$$n_0 = n \pm \sqrt{n} \tag{2}$$

При N измерениях среднее значение числа частиц за одно измерений равно:

$$\overline{n} = \frac{1}{N} \sum_{i=1}^{N} n_i \tag{3}$$

Стандартную ошибку измерения можно оценить по формуле:

$$\sigma_{\text{отд}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (n_i - \overline{n})^2}$$
(4)

Ближе всего к значению $\sigma_{\text{отд}}$ лежит величина $\sqrt{\overline{n}},$ то есть:

$$\sigma_{\text{отл}} \approx \sqrt{\overline{n}}$$
 (5)

Величина \overline{n} не вполне точно совпадает с истинным значением n_0 и является случайной. Стандартная ошибка отклонения \overline{n} от n_0 может быть определена так:

$$\sigma_{\overline{n}} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (n_i - \overline{n})^2} = \frac{\sigma_{\text{отд}}}{\sqrt{N}}$$
 (6)

Относительная ошибка отдельного измерения (ожидаемое отличие любого из n_i от n_0):

$$\varepsilon_{\text{отд}} = \frac{\sigma_{\text{отд}}}{n_i} \approx \frac{1}{\sqrt{n_i}}$$
(7)

Аналогично определяется относительная ошибка среднего по всем измерениям значения \bar{n} :

$$\varepsilon_{\overline{n}} = \frac{\sigma_{\overline{n}}}{\overline{n}} = \frac{\sigma_{\text{отд}}}{\overline{n}\sqrt{N}} \approx \frac{1}{\sqrt{\overline{n}N}}$$
(8)

3 Ход работы и обработка результатов

Проведём измерение, используя интерфейс компьютера. Приведём данные для 20 с, полученные из программы компьютера, в таблицу 1 и начнём обработку. Разбивая эти данные по парам и суммируя пары, получим данные для 40 с (таблица 2).

№ опыта	1	2	3	4	5	6	7	8	9	10
0	27	26	29	22	22	26	28	30	19	22
10	22	19	26	27	25	31	22	22	29	28
20	29	40	34	32	26	29	23	28	16	22
30	30	32	22	30	16	28	15	24	25	24
40	27	19	25	29	24	24	42	25	28	27
50	36	35	28	23	17	27	25	22	25	23
60	35	31	29	32	28	37	33	15	22	31
70	27	21	31	23	34	30	31	18	22	18
80	33	19	27	24	21	34	25	28	18	27
90	30	26	37	28	32	24	21	36	30	23
100	23	24	21	26	24	24	24	15	30	19
110	25	28	25	26	21	24	22	34	29	29
120	28	35	31	28	25	26	29	33	24	19
130	28	30	27	29	15	32	18	19	24	25
140	24	18	32	21	38	26	28	25	33	24
150	32	19	22	26	33	28	27	24	27	31
160	20	26	27	23	32	23	30	20	25	26
170	15	30	38	27	28	26	22	34	22	34
180	25	20	25	25	30	26	19	31	17	20
190	26	24	27	30	19	25	25	21	26	29

Таблица 1: Число срабатывании счётчика за 20 с

№ опыта	1	2	3	4	5	6	7	8	9	10
0	53	51	48	58	41	47	47	48	39	49
10	41	53	56	44	57	53	51	45	56	58
20	69	66	55	51	38	63	59	51	62	43
30	62	52	44	39	49	58	56	47	37	49
40	46	54	48	67	55	42	53	64	53	57
50	71	51	44	47	48	51	48	61	51	58
60	66	61	65	48	53	46	50	55	50	51
70	48	54	64	49	40	45	65	54	56	56
80	52	51	55	53	45	45	50	56	50	37
90	56	65	56	57	53	50	57	44	46	55

Таблица 2: Число срабатывании счётчика за 40 с

Проверим связь $\sigma_{\text{отд}} \approx \sqrt{\bar{n}}$. Индекс "1" для 20 с $(N_1 = 200)$, "2" для 40 с $(N_2 = 100)$

$$n_{06iii} = \sum_{i} n_{i} = 5223$$

$$\bar{n}_{1} = \frac{n_{06iii}}{N_{1}} = 26.115$$

$$\bar{n}_{2} = \frac{n_{06iii}}{N_{2}} = 52.230$$

$$\sigma_{1} = \sqrt{\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} (n_{i} - \bar{n}_{i})^{2}} \approx 5.20$$

$$\sigma_{2} = \sqrt{\frac{1}{N_{2}} \sum_{i=1}^{N_{2}} (n_{i} - \bar{n}_{i})^{2}} \approx 7.36$$

$$\sqrt{\bar{n}_{1}} = 5.11 \approx 5.20 = \sigma_{1}$$

$$\sqrt{\bar{n}_{2}} = 7.23 \approx 7.36 = \sigma_{2}$$

Результат эксперимента демонстрирует, что связь между среднеквадратическим отклонением и среднем значении есть ($\sigma \approx \sqrt{\bar{n}}$). Теперь определим долю случаев в пределах $\pm \sigma$ и $\pm 2\sigma$.

t = 20 c								
Предел	Число случаев Доля случаев Теоретическая оценк							
$\pm \sigma_1 = \pm 5.2$	142	71%	68%					
$\pm 2\sigma_1 = \pm 10.4$	189	95%	95%					

t = 40 c								
Предел	Число случаев Доля случаев Теоретическая оце							
$\pm \sigma_2 = \pm 7.4$	71	71%	68%					
$\pm 2\sigma_2 = \pm 14.7$	95	95%	95%					

Таблица 3: Количество измерении за пределами $\pm \sigma$ и $\pm 2\sigma$

Из таблицы 3 следует, что проведённые расчёты с довольно хорошей точностью соответствуют теории. Как видно из графика, относительный разброс данных за 40 с меньше, чем за 20 с. Подсчитаем, какая разница между этими двумя случаями.

$$\frac{\sigma_1}{\bar{n}_1} \approx 20\%, \quad \frac{\sigma_2}{\bar{n}_2} \approx 14\%$$

Получаем разницу примерно в 1.4 раза, что и следует от того факта, что $\sigma \approx \sqrt{\bar{n}}$.

Для финального ответа рассчитаем ошибки средних величин по формулам (6) и (8)

$$\sigma_{\bar{n}_1} = \frac{\sigma_1}{\sqrt{N_1}} \approx 0.37, \quad \sigma_{\bar{n}_2} \approx 0.74$$

$$\varepsilon_{\bar{n}_1} = \frac{\sigma_{\bar{n}_1}}{\bar{n}_1} \approx 1.4\%, \quad \varepsilon_{\bar{n}_2} \approx 1.4\%$$

Получаем финальный результат

$$n_{t=20c} = 26.12 \pm 0.37$$

$$n_{t=40c} = 52.23 \pm 0.74$$

TT	1 -	1.0	1 17	1.0	1.0	20	0.1
Число импульсов n_i	15	16	17	18	19	20	21
Число случаев	5	2	2	5	10	4	7
Доля случаев w_n	0.025	0.01	0.01	0.025	0.05	0.02	0.035
Число импульсов n_i	22	23	24	25	26	27	28
Число случаев	15	8	17	18	16	14	16
Доля случаев w_n	0.075	0.04	0.085	0.09	0.08	0.07	0.08
Число импульсов n_i	29	30	31	32	33	34	35
Число случаев	11	12	8	8	5	6	3
Доля случаев w_n	0.055	0.06	0.04	0.04	0.025	0.03	0.015
Число импульсов n_i	36	37	38	39	40	41	42
Число случаев	2	2	2	0	1	0	1
Доля случаев w_n	0.01	0.01	0.01	0	0.005	0	0.005

Таблица 4: Данные для гистограммы за 20 с

Число импульсов n_i	37	38	39	40	41	42	43
Число случаев	2	1	2	1	2	1	1
Доля случаев w_n	0.02	0.01	0.02	0.01	0.02	0.01	0.01
Число импульсов n_i	44	45	46	47	48	49	50
Число случаев	4	4	3	4	7	4	5
Доля случаев w_n	0.04	0.04	0.03	0.04	0.07	0.04	0.05
Число импульсов n_i	51	52	53	54	55	56	57
Число случаев	9	2	8	3	5	8	4
Доля случаев w_n	0.09	0.02	0.08	0.03	0.05	0.08	0.04
Число импульсов n_i	58	59	60	61	62	63	64
Число случаев	4	1	0	2	2	1	2
Доля случаев w_n	0.04	0.01	0	0.02	0.02	0.01	0.02
Число импульсов n_i	65	66	67	68	69	70	71
Число случаев	3	2	1	0	1	0	1
Доля случаев w_n	0.03	0.02	0.01	0	0.01	0	0.01

Таблица 5: Данные для гистограммы за 40 с

Рис. 1: Гистограммы для $t=20~{\rm c}$ и $t=40~{\rm c}$