Variational Autoencoders

18-789

Lecture 5

readings

1/29/2025	Wednesday	5	Varitional Autoencoders (VAEs)	Lecture 5	3	[Joseph]	
2/3/2025	Monday	6	Student Presentation I: Architecture for Sequence Modeling		4		
2/5/2025	Wednesday	7	Generative Adversarial Networks (GANs)	Lecture 6	4	[Lilian I]	
2/10/2025	Monday	8	Student Presentaiton II: Improving the Stability of Training GANs		5		HW1 due
2/12/2025	Wednesday	9	Normalizing Flows/Invertible Models	Lecture 7	5	[Lilian II]	HW2 release
2/17/2025	Monday	10	Introduction to Diffusion Models	Lecture 8	6	[Angus] [Calvin]	
2/19/2025	Wednesday	11	Guest Lecture: Recent Advances in GANs (Jun-Yan Zhu)		6		
2/24/2025	Monday	12	Continuous-time Diffusion Models	Lecture 9	7	[Yang] [Sander I]	
2/26/2025	Wednesday	13	Project proposal presentation		7		HW2 due
3/3/2025	Monday		Spring Break - No class		8		
3/5/2025	Wednesday		Spring Break - No class		8		
3/10/2025	Monday	14	Diffusion Models and Flow Matching	Lecture 10	9	[Ruiqi]	

Next Monday: Student Presentation

- Rubrics:
 - Structure (3pts)
 - Central message (3pts)
 - Communication (2pts)
 - Give broader context (1pt)
 - On time (1pt)
- Asking questions about papers during office hours is highly encouraged.

Recap: Training Autoregressive Models

Chain rule decomposition

•
$$p(x_1, ..., x_T) = \prod_t p(x_t | x_1, ..., x_{t-1})$$

Maximum Likelihood Estimation (MLE)

• $\underset{\theta}{\operatorname{argmax}} \sum_{t} \log p_{\theta}(x_{t}|x_{1,2,\dots,t-1})$

(also known as teacher forcing)

Recap: Training Autoregressive Models

Chain rule decomposition

•
$$p(x_1, ..., x_T) = \prod_t p(x_t | x_1, ..., x_{t-1})$$

Maximum Likelihood Estimation (MLE)

• $\underset{\theta}{\operatorname{argmax}} \sum_{t} \log p_{\theta}(x_{t}|x_{1,2,\dots,t-1})$

(also known as teacher forcing)

Recap: Sampling from Autoregressive Models

for t = 1, 2, ..., T do: sample $x_t \sim p_{\theta}(x_t | x_{1,2,...,t-1})$ return $(x_1, x_2, ..., x_T)$

Recap: Autoregressive Models

- 1. How to model the joint distribution of high-dimensional data?
 - Chain rule decomposition
 - $p_{\theta}(x_1, x_2, ..., x_t) = p_{\theta}(x_1)p_{\theta}(x_2|x_1) ... p_{\theta}(x_t|x_1, x_2, ..., x_{t-1})$
- 2. How to optimize your model?
 - Maximizing Likelihood Estimation (MLE)

Autoregressive is not all you need

Sampling cannot be parallelized

for
$$t = 1, 2, ..., T do$$
:
sample $x_t \sim p_{\theta}(x_t | x_{1,2,...,t-1})$
return $(x_1, x_2, ..., x_T)$

- Error Accumulation
 - Potential train-test distribution mismatch

Unpopular Opinion about AR-LLMs

- Auto-Regressive LLMs are doomed.
- They cannot be made factual, non-toxic, etc.
- ► They are not controllable

Probability e that any produced token takes us outside of the set of correct answers

- Probability that answer of length n is correct:
 - ightharpoonup P(correct) = $(1-e)^n$
- ▶ This diverges exponentially.
- It's not fixable (without a major redesign).

Autoregressive is not all you need

- Sampling cannot be parallelized
- Error Accumulation
 - Potential train-test distribution mismatch
- Assumes the distribution is roughly time-invariant in some order
 - $p(x_t|x_1,...,x_{t-1}) \approx p(x_{t+1}|x_2,...,x_t)$

p(basketball|love, playing)doesn't change much no matter where it is

Autoregressive is not all you need

- Sampling cannot be parallelized
- Error Accumulation
 - Potential train-test distribution mismatch
- Assumes the distribution is roughly time-invariant in some order
 - $p(x_t|x_1,...,x_{t-1}) \approx p(x_{t+1}|x_2,...,x_t)$
- Continuous data?
- Doesn't learn a compressed representation
 - Compressing the dataset
 - But NOT compressing a data point

Variational Autoencoders

Latent Variable Models

- Data (like images) can be very high-dimensional
- BUT: there exists a latent variable *z* that is much lower-dimensional and captures important factors of variations.
 - Gender, pose, age, hair color, race, etc.
 - Not observed in our dataset (unless explicitly annotated)
 - $p_{\theta}(x) = \int_{z} p_{\theta}(x, z) dz = \int_{z} p_{\theta}(z) p_{\theta}(x|z) dz$
 - Assume p(z) is a simple distribution, e.g., N(0, I) that hopefully captures meaningful information
 - Assume $p_{\theta}(x|z)$ is also simple, e.g., independent Gaussian

Latent Variable Models

- 1. How to model the joint distribution of high-dimensional data?
 - $p_{\theta}(x) = \int_{z} p(z)p_{\theta}(x|z)dz$, where z is lower-dimensional
 - p(z) and $p_{\theta}(x|z)$ are simple distributions that can be factorized
 - $p_{\theta}(x|z) = p_{\theta}(x^1, x^2, ..., x^D|z) = \prod_i p_{\theta}(x^i|z)$
- 2. How to optimize your model?

Latent Variable Models

- 1. How to model the joint distribution of high-dimensional data?
 - $p_{\theta}(x) = \int_{z} p(z)p_{\theta}(x|z)dz$, where z is lower-dimensional
 - p(z) and $p_{\theta}(x|z)$ are simple distributions that can be *factorized*
 - $p_{\theta}(x|z) = p_{\theta}(x^1, x^2, ..., x^D|z) = \prod_i p_{\theta}(x^i|z)$
- 2. How to optimize your model?

Maximum Likelihood Estimation (?)

• $\log p_{\theta}(x) =$

- BUT: $p_{\theta}(x|z)$ is almost zero for most z
- Why is it a problem?

Evidence Lower Bound (ELBO)

We use a neural network ϕ to predict the "posterior" distribution $q_{\phi}(z|x)$

Then: $\log p_{\theta}(x)$

=

Variational Autoencoders (VAEs)

$$\min_{\theta,\phi} - \mathbb{E}_{z \sim q_{\phi}(z|\mathcal{X})} [\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x) \parallel p(z))$$

Reconstruction Loss

$$\min_{\theta,\phi} - \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x) \parallel p(z))$$

- How to evaluate $\log p_{\theta}(x|z)$?
- Idea: Gaussian likelihood decoder $p_{\theta}(x|z) = N(x|\mu_{\theta}(z), \sigma^2)$

Reconstruction Loss

$$\min_{\theta,\phi} -\mathbb{E}_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x) \parallel p(z))$$

$$= \frac{1}{\mu_{\theta}(z) - x \parallel^{2}}$$

$$\sum_{x} \frac{\text{Sample}}{p(z|x)}$$

$$\sum_{y(z)} \frac{\text{Decoder}}{p_{\theta}(x|z)}$$

Regularization Loss (KL Loss)

$$\min_{\theta,\phi} \mathbb{E}_{z \sim q_{\phi}(z|x)} \parallel \mu_{\theta}(z) - x \parallel^{2} + KL(q_{\phi}(z|x) \parallel p(z))$$

- How to evaluate the KL divergence?
- Idea: Gaussian posterior $q_{\phi}(z|x) = N(\mu_{\phi}(x), \sigma_{\phi}^2(x))$ because the KL divergence between Gaussians can be computed in closed form.

Reparameterization Trick

$$\min_{\theta,\phi} \mathbb{E}_{z \sim q_{\phi}(Z|\mathcal{X})} \parallel \mu_{\theta}(z) - x \parallel^{2} + KL(q_{\phi}(z|x) \parallel p(z))$$

• To train neural networks with backpropagation, the computation needs to be differentiable. But sampling from a distribution is not differentiable.

Reparameterization Trick

$$\min_{\theta,\phi} \mathbb{E}_{z \sim q_{\phi}(Z|\mathcal{X})} \parallel \mu_{\theta}(z) - x \parallel^{2} + KL(q_{\phi}(z|x) \parallel p(z))$$

• To train neural networks with backpropagation, the computation needs to be differentiable. But sampling from a distribution is not differentiable.

Sampling from a Variational Autoencoder

Sampling from a Variational Autoencoder

Intuitive interpretation: Regularized Autoencoder

- Autoencoder is a neural network that's trained to reconstruct data while passing through a low-dimensional bottleneck
- But it cannot generate data because the latent distribution is unknown

Intuitive interpretation: Regularized Autoencoder

- Add a regularization so that the latent distribution is close to a Gaussian
- So we can sample latent from Gaussian and generate new samples

Beta-VAE: adjusting the strength of regularization

Beta-VAE: adjusting the strength of regularization

• We can adjust the strength of regularization by increasing the weight of KL loss.

Reconstruction vs. generation tradeoff

- $L = \| \hat{x} x \|^2 + \beta KL(q_{\phi}(z|x) \| p(z))$
- When β is too small: good reconstruction, bad generation
- Increasing β
 - Reconstruction becomes worse
 - Generated images become more like reconstructed images

VQ-VAE: VAE with Discrete Latent

- $L = \|\hat{x} x\|^2 + \beta KL(q_{\phi}(z|x) \| p(z))$
- Will revisit it in a student presentation later
 - Taming Transformers for High-Resolution Image Synthesis

VAEs learn semantic latent space without supervision

- Sampling cannot be parallelized
- Error Accumulation
- Assumes the distribution is roughly time-invariant in some order
- Discrete Data only
- Doesn't learn a compressed representation

- Sampling cannot be parallelized
- Error Accumulation

- Assumes the distribution is roughly time invariant in some order
- Discrete Data only
- Doesn't learn a compressed representation

- Sampling cannot be parallelized
- Error Accumulation

- Assumes the distribution is roughly time invariant in some order
- Discrete Data only
- Doesn't learn a compressed representation

- Sampling cannot be parallelized
- Error Accumulation

- Assumes the distribution is roughly time invariant in some order
- Discrete Data only
- Doesn't learn a compressed representation

How do VAEs perform?

Why are output images from VAEs blurry?

- Assume our dataset only has two samples: $\{x_0, x_1\}$.
- With optimized reconstruction loss, what would the decoder output if we sample from the origin?

Why are output images from VAEs blurry?

• The optimal decoder output given latent z' is a weighted combination of samples in the training set $\{x_i\}$:

$$\mu_{\theta}(z') = \sum_{i} w_{i} x_{i}$$

where
$$w_i = \frac{q(z'|x_i)}{\sum_i q(z'|x_i)}$$

The average of many images is blurry

Average face of European parliament

Why are output images from VAEs blurry?

• The optimal decoder output given latent z' is a weighted combination of samples in the training set $\{x_i\}$:

$$\mu_{\theta}(z') = \sum_{i} w_{i} x_{i}$$

where
$$w_i = \frac{q(z'|x_i)}{\sum_i q(z'|x_i)}$$

- Another answer: VAE outputs are blurry because of Gaussian assumptions
 - Gaussian likelihood -> The optimal decoder output is a weighted average of training samples.
 - Gaussian posterior + prior -> There is always overlap between posterior distributions, so weights are never one-hot.

VAE: The Curse of Blurriness

• Blurriness is a fundamental problem of VAEs that can't be easily solved by scaling up

256x256

1024x1024

Very Deep (72 layers) + Hierarchical Latent Space

Non-Gaussian Decoder?

•
$$\min_{\theta,\phi} - \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x) \parallel p(z))$$

PixelCNN

- Can we use an autoregressive decoder (e.g. PixelCNN)?
- Posterior Collapse!
 - Encoder ignores x ($q_{\phi}(z|x) \equiv p(z)$ regardless of x)
 - Decoder ignores z ($p_{\theta}(x|z) \equiv p_{\theta}(x)$ regardless of z)
- Degenerate to an autoregressive model...

Recap

- VAEs maximize ELBO, a lower bound of the log-likelihood
 - $\mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] KL(q_{\phi}(z|x) \parallel p(z))$
- Maximizing Gaussian $\log p_{\theta}(x|z)$ = Minimizing MSE/L2 loss
- Assume Gaussian $q_{\phi}(z|x)$ and p(z) so we can compute their KL analytically
- Reparameterization trick to enable gradient backpropagation
- Autoencoder perspective, beta-VAE and VQVAE
- Why VAE outputs blurry images.
 - Gaussian assumptions are too simplistic 🕾

Next time: Generative Adversarial Networks (GANs)

The first generative models that can generate sharp images.

2020

Quiz – On Canvas

• Code: Snake

