Coordinate descend for simplex vertices and its center

Parameters updating scheme

٠.		e. p. e. e. e.		5	
	γ=γ0/k		α=0.1γ		

γ0=0.5]	
p_0	-3.22427	-7.32523
p*	-3.13051	-1.58235
Oracle calls	102	
f*	-105.765	
p_0	-6.59976	-4.90541
p*	-5.32788	-5.53714
Oracle calls	274	
f*	2.495404	
p_0	-4.39497	-2.97296
p*	-3.12949	-1.58284
Oracle calls	95	
f*	-105.764	
p_0	-4.73966	-5.06786
p*	-6.40771	-5.95992
Oracle calls	2035	
f*	3.098809	

Conclusions

The number of a method is small reported for Ne more experime we exclude the the best. Nelde preferable for the additionally moset. Moreover in For example it compare the second of the

Average oracle calls:

626.5

average oracle calls for coordinate descend ler than the same number for all experiment lder Mead method. However, there are nts for Nelder Mead method method and if worst result of this method than it become in Mead method looks more robust and his function. Coordinate descend was diffied to prevent its stacking in the infeasible t is more sensitive for parameters changes. Itid not converged for $\gamma 0 = 1$.