VII – Dimensionamento de uma instalação coletiva

Exemplo:

Como dimensionar a coluna montante e as entradas de um edifício para habitações, as características indicadas na figura.

Cálculo da potência

Número de utilizadores	Coeficientes de simultaneidade
Locais de habitação	
2 a 4	1,00
5 a 9	0,75
10 a 14	0,56
15 a 19	0,48
20 a 24	0,43
25 a 29	0,40
30 a 34	0,38
35 a 39	0,37
40 a 49	0,36
≥ 50	0,34
Outros locais (a)	
Qualquer	1

Nº de colunas: 1

Nº de habitações: 8

Potência total: $(4 \times 10,35) + (4 \times 17,25) = 110,4kVA$

Coeficiente de simultaneidade: 0,75

Potência de dimensionamento: $110,4 \times 0,75 = 82,8 \text{kVA}$

Cálculo da corrente de serviço (I_B)

$$S = \sqrt{3} \cdot U_C \cdot I_B$$

$$I_B = \frac{S}{(\sqrt{3} \cdot U_C)} = \frac{82800}{(1,73 \times 400)}$$

$$I_{B} = 119,7A$$

Cálculo da secção do condutor

Intensidades admissíveis em canalizações elétricas com três condutores de cobre isolados (PVC) em condutas circulares (tubos) embebidas em elementos da construção termicamente isolantes (*Quadro 52 – C3 – Parte 5 – Anexos das RTIEBT*)

Secção nominal dos condutores (mm²)	Correntes admissíveis (A)
10	42
16	56
25	73
35	89
50	108
70 ←	 136
95	164
120	188

Considerando condutores isolados do tipo H07V-R instalados em tubo VD, a secção a considerar será de 70mm 2 ($I_Z = 136A$).

É de notar que se verifica a condição $I_B < I_Z (119,7A < 136A)$

Diâmetro do tubo

Colunas montantes e entradas: diâmetros nominais mínimos de tubos do tipo VD em função da secção dos condutores H07V (mm) - Instalações novas

		Núm	nero de condutores	(a)	
Secção nominal dos condutores (mm²)	1	2	3	4	5
10	32	32	32	40	40
16	32	32	40	40	50
25	32	40	50	50	63
35	32	50	63	63	63
50	40	50	63	75	75
70	40	63	75	75	90
95	50	63	90	90	90
120	50	75	90	110	110
150	63	90	110	110	110
185	63	90	110	110	
240	75	110			
300	75	110			
400	90	the second section			
500	110				

(a) Para condutores de secção nominal superior a 16mm², os valores correspondentes a quatro e cinco condutores consideram que, respetivamente, 1 ou 2 condutores são de secção reduzida (condutor neutro e condutor de proteção).

O diâmetro do tubo VD será de 90mm (VD 90), já que vamos ter 5 condutores enfiados no tubo.

Proteção contra sobreintensidades

	Tabela de fusíveis tipo	gG
Corrente estipulada In (A)	Corrente convencional de não funcionamento Inf (A)	Corrente convencional de funcionamento I2 (A)
2	3	4
4	6	8
6	9	11
8	12	15
10	15	19
12	18	23
16	24	30
20	25	32
25	31	40
32	40	51
40	50	64
50	63	80
63	79	101
80	100	128
100	125	160
125	156	200
160	200	256
200	250	320
250	313	400
315	394	504
400	500	640
500	625	800
630	788	1008
800	1000	1280
1000	1250	1600

O dispositivo de proteção selecionado é o **fusível do tipo gG** que garante proteção contra sobrecargas e curtocircuitos, como é exigido regulamentarmente.

A intensidade nominal (I_n) do fusível será de 125A (valor imediatamente acima da corrente de serviço I_B =119,7A).

A intensidade convencional de fusão/funcionamento $(\mathbf{l_2})$ será de: $\mathbf{l_2} = 200A$

O fusível respeita as condições de funcionamento contra sobrecargas ?

Proteção contra sobrecargas

1ª condição:

 $I_B \le I_n \le I_Z \rightarrow 119,7A < 125A < 136A - condição verificada$

2ª condição:

$$I_2 \le 1,45 I_Z \rightarrow 200A \le 1,45 \times 136$$

 $200A \le 197,2A - condição não verificada$

Como a proteção contra sobrecargas não fica assegurada, em virtude de a 2^a condição não ter sido verificada, temos de selecionar uma secção do condutor imediatamente acima, ou seja, $95mm^2$ (I_Z =164A).

1ª condição:

$$I_B \le I_n \le I_Z \rightarrow 119,7A < 125A < 164A - condição verificada$$

2ª condição:

$$I_2 \le 1,45 I_Z \rightarrow 200A \le 1,45 \times 164$$

200A < 237,8A – condição verificada

Proteção contra curto-circuitos

Como o poder de corte de um fusível do tipo gG é de 100kA e o poder de corte previsível para uma alimentação elétrica a partir da rede pública de baixa tensão tem nas condições mais desfavoráveis, ou seja, na proximidade de um posto de transformação valores típicos inferiores a 6kA, então a regra do poder de corte está verificada (**Icc ≤ Pdc**).

Como o fusível escolhido garante a proteção simultânea contra sobrecargas e curto-circuitos, uma vez verificada a regra do poder de corte, é dispensável a verificação da regra do tempo de corte $\sqrt{\mathbf{t}} = \mathbf{K} \cdot (\mathbf{S} / \mathbf{lcc})$

Cálculo da queda de tensão

Uma análise simplificada do cálculo da queda de tensão pode ser efetuada considerando a situação mais desfavorável (e não a real!) que corresponde à alimentação de toda a potência no topo da coluna (15m).

Para esta situação, a queda de tensão será:

$$R = \rho \cdot L / s \rightarrow R = 0.0225 \times 15 / 95 \rightarrow R = 0.004\Omega$$

$$\Delta u = R \cdot I \rightarrow \Delta u = 0,004 \times 119,7 \rightarrow \Delta u = 0,48V$$

Cálculo da queda de tensão

Como a queda de tensão máxima admitida regulamentarmente nas colunas é de 1%, ou seja 1% de 400V que é 4V, a queda de tensão calculada (Δu=0,48V) é nitidamente inferior a esse valor.

Tipo de utilização	Pontos de referência	Quedas de tensão máximas admissíveis
Instalações individuais	Troço entre os ligadores de saída da portinhola e a origem da instalação eléctrica	1,5%
Instalações não individuais alimentadas por colunas montantes	Troço correspondente à entrada ligada a uma caixa de coluna	0,5% (a)
Colunas em instalações não individuais	Troço correspondente à coluna	1 % (a)

⁽a) Estes valores podem não ser individualmente respeitados em casos justificados desde que o valor global (coluna + entrada) não exceda 1,5%

Aparelho de corte do Quadro de Coluna

12

O aparelho de corte do Quadro de Coluna será do tipo <u>interruptor tetrapolar</u> de corrente estipulada igual a 125A e tensão estipulada de 400V.

Características do Quadro de coluna

T:				
Tipos de componentes	Intensidade estipulada/ Saídas (A)	Largura (mm)	Altura (mm)	Profundidade (mm)
Caixas de corte geral				
GA	32	200	230	90
GB	100	220	320	115
GC	250	350	500	150
GD	400	350	500	150
GE	630	550	850	195
GF	800	550	850	195
GG	1 250	600	850	195
Caixas de barramento*				
BAD	100	700	180	170
BAT	100	1 050	180	170
BBD	630	700	250	170
BBT	630	1 050	250	170
BCD	1 250	700	350	170
BCT	1 250	1 050	350	170
Caixas de protecção de saídas	e kaug koda niemi di		AND STREET OF THE STREET	
PA	1 x 32	150	200	90
PB	1 x 100 (a)	220	500	170
PC	2 x 100 (a)	220	500	170
PD	1 x 250 (b)	350	500	170
PE	1 x 100 (a)			
	1 x 250 (b)	500	500	170
PF	1 x 400 (c)	350	500	170

Quadro de colunas (QC):

Caixa de corte geral:

GC (250A)

Caixa de barramento: BBD (630A)

Caixa de proteção de

saída:

PD (1x250A - fusíveis APC tamanho 1)

¹³

Características das Caixas de coluna

As caixas de coluna devem ser previstas para a derivação de entradas trifásicas, mesmo que, delas sejam derivadas apenas entradas monofásicas.

➤ Para entradas trifásicas de 17,25kVA (*) a corrente de saída será de:

$$S = \sqrt{3} \cdot U_c \cdot I \rightarrow I = S / \sqrt{3} \cdot U_c \rightarrow I = 17 250 / (1,73 x 400) = 25A$$

➤ Para entradas monofásicas de 10,35kVA (*) a corrente de saída será de:

$$S = U \cdot I \rightarrow I = S / U \rightarrow I = 10 350 / 230 = 45A$$

(*) A alimentação poderá ser monofásica para potências até 13,8kVA (60A) se não existirem recetores trifásicos.

Características das Caixas de coluna

➤ Para entradas trifásicas de 17,25kVA (*) a corrente de saída será de: I=25A

Caixas de coluna: CAD (32A)

➤ Para entradas monofásicas de 10,35kVA (*) a corrente de saída será de: I=45A

Caixas de coluna: CBD (63A)

Tipos de componentes	Intensidade estipulada/ Saídas (A)	Largura (mm)	Altura (mm)	Profundidade (mm)
CAD	32	280	250	100
CAQ	32	470	250	100
CBD	63	320	300	100
CBQ	63	550	300	100

(*) A alimentação poderá ser monofásica para potências até 13,8kVA (60A) se não existirem recetores trifásicos.

Entradas

Canalização elétrica (de baixa tensão) compreendida entre uma caixa de coluna e a origem de uma instalação elétrica de utilização.

Segundo as Regras Técnicas das Instalações Elétricas de Baixa Tensão nas entradas (monofásicas ou trifásicas) destinadas a alimentar locais residenciais ou de uso profissional, não poderão ser empregues canalizações com condutores de secção nominal inferior a 6mm² nem tubos de diâmetro nominal inferior a 32mm.

Entradas

Entradas trifásicas de 17,25kVA → l=25A

- → Secção dos 5 condutores: 4x6+T6 (I_Z=31A);
- → Tubo VD Ø32mm.

Entradas monofásicas de 10,35kVA → l=45A

- → Secção dos 3 condutores: 2x16+T10 (I_Z=56A);
- → Tubo VD Ø40mm.

Condutores neutro e de proteção

SECÇÕES	ESTIPULADAS DE CONDL Normalizadas (mm²)	TORES
Condutores das fases	Condutor Neutro	Condutor de Protecção
1,5	1,5	1,5
2,5	2,5	2,5
4	4	4
6	6	6
10	10	10
16	10	10
25	16	16
35	16	16
50	25	25
70	35	35
95 — — — -	_ → 50 	- → 5 0
120	70	70
150	70	70
185	95	95
240	120	120
300	150	150

Coluna montante:

Solução possível

