IN THE CLAIMS

Please amend the claims as follows:

- 1. (original) An optical data storage medium for recording by means of a focused radiation beam having a wavelength λ and entering through an entrance face of the medium during recording, at least comprising:
- -a substrate, with a surface including a guide groove with a depth g,
 - -a stack of layers on the substrate, which stack includes:
- -a reflective layer of a material having a complex refractive index $\tilde{n}_{M\lambda} = n_{M\lambda} i * k_{M\lambda}$ at the wavelength λ , n_M denoting the real part and k_M denoting the imaginary part of $\tilde{n}_{T\lambda}$, present adjacent the surface of the substrate in substantial conformity with the surface, -a transparent layer through which the radiation beam is incident during recording and of a material having a complex refractive index $\tilde{n}_{T\lambda} = n_{T\lambda} i * k_{T\lambda}$,
- -a recording layer of a material having a complex refractive index $\tilde{n}_{R\lambda} = n_{R\lambda} i * k_{R\lambda}$ and having a thickness d_{RG} in the groove portion and a thickness d_{RL} in the portion between grooves, being interposed between the reflective layer and the transparent layer,

characterized in that the following requirements are fulfilled:

 $0.25/(3.0+~k_{M\lambda}^2)~+~0.17~<~g*n_T/\lambda~<~0.22/(3.0~+~k_{M\lambda}^2)~+~0.45~and$ $0.2~<~(d_{RG}-~d_{RL})/g~<~0.5~and~0~<~d_{RG}~<~\lambda/n_{R\lambda}~and~k_{R\lambda}~<~0.5~and~2~< n_{R\lambda}~<~2.6.$

- 2. (original) An optical data storage medium as claimed in Claim 1 wherein the reflective layer is a metal layer having a thickness d_M > 20 nm and $\,g^*\,\,n_\text{T}/\lambda\,<\,0.50\,.$
- 3. (original) An optical data storage medium as claimed in Claim 1, wherein 0.25 < g* n_T/λ and $k_{M\lambda}$ < 0.5.
- 4. (currently amended) An optical data storage medium as claimed in anyone of Claims 1 3claim 1, wherein λ has a value selected from the range of 650 665 nm and $k_{R\lambda} \le 0.2$ at this value of λ .
- 5. (original) An optical data storage medium as claimed in Claim 4, wherein in nanometers:

$$0.5*d_{RG} + 42 < g < 0.5*d_{RG} + 125$$
 and $70 < d_{RG} < 130$.

6. (original) An optical data storage medium as claimed in Claim 5, wherein 100 nm < g < 160 nm.

- 7. (currently amended) An optical data storage medium as claimed in anyone of Claims 1 3 claim 1, wherein λ has a value selected from the range of 400 410 nm and $k_{R\lambda} \leq$ 0.20 at this value of λ .
- 8. (original) An optical data storage medium as claimed in Claim 7, wherein in nanometers:
 - $0.5*d_{RG}$ + 20 < g < $0.75*d_{RG}$ + 95 and 30 nm < d_{RG} < 80 nm.
- 9. (original) An optical data storage medium as claimed in Claim 8, wherein 70 nm < g < 110 nm.
- 10. (currently amended) Use of an optical data storage medium as claimed in any one of the preceding Claimsclaim 1, in an optical data storage medium recording/reading device suitable for tracking of the portion of the guide groove of an optical data storage medium nearest to the plane of incidence of the focused radiation beam.