Assignment 1

Basic concepts

Deadline: Monday, October 12, 13:55

1.1 Submission instructions

- 1. Unzip the A1.zip folder.
- 2. Edit the first line of the Solutions. Elm file as described in the comments.
- 3. Edit the Solutions. Elm file in the src folder with your solutions.
- 4. When done, zip this A1 folder and name the zip archive with the following format:

$$A1_\langle FirstName \rangle_\langle LastName \rangle_\langle Group \rangle$$

Examples of valid names:

- A1_John_Doe_30432.zip
- A1_Ion_Popescu_30434.zip
- A1_Gigel-Dorel_Petrescu_30431.zip

Examples of invalid names:

- Solutions.zip
- A1.zip
- Solutii_A1_Ion_Popescu.zip

1.2 Assignment exercises

Exercise 1.2.1

3р

Define the types Face, Suit and Card to represent the cards of a standard 52-card deck^a.

Grading:

1 point for each correct definition.

ahttps://en.wikipedia.org/wiki/Standard_52-card_deck

Exercise 1.2.2

2p

Define functions for each of the Face, Suit and Card type to print their value as a string. For the Card type it should print it in the format " $\langle Face \rangle$ of $\langle Suit \rangle$ " (e.g. "Ace of Spades").

Grading:

- 0.5 points for the correct definition of faceToString
- 0.5 points for the correct definition of suitToString
- 1 point for the correct definition of cardToString

Exercise 1.2.3

2n

Write an Elm function linesIntersect, which given two line segments defined by their endpoints, computes whether the two segments intersect or not.

Grading:

- 1 point for implementing a function which returns correct results
- 1 point for defining suitable data types for the problem

Exercise 1.2.4

Зр

Write an Elm function called trailingZeroes n, which computes the number of trailing zeros in n factorial.

```
Elm REPL

> trailingZeroes 5

1 : number

> trailingZeroes 10

2 : number

> trailingZeroes 42

9 : number

> trailingZeroes 100

24 : number

> trailingZeroes 1000

249 : number
```

Grading:

- 1 point for implementing a function which returns correct results
- 1 point for correctly using local declarations (let ... in)
- 1 point for correctly using tail recursion