Московский Физико-технический Институт (Национальный исследовательский университет)

Отчет о выполнении работы 2.1.4

Определение теплоемкости твердых тел

Выполнили студентки 1 курса ФБМФ, группа Б06-103 Попеску Полина Фитэль Алёна

1 Введение

Цель работы: измерение количества подведенного тепла и вызванного им нагрева твердого тела; определение теплоемкости по экстраполяции отношения $\Delta Q/\Delta T$ к нулевым потерям тепла.

В работе используются: калориметр с нагревателем и термометром сопротивления; амперметр; вольтметр; мост постоянного тока; источник питания 36 В.

2 Теоретический материал

Теплоемкость определяется по формуле

$$C = \frac{\Delta Q}{\Delta T},\tag{1}$$

где ΔQ — количество тепла, подведенного к телу, и ΔT — изменение температуры тела, произошедшее в результате подвода тепла.

Температура исследуемого тела надежно измеряется термометром сопротивления, а определение количества тепла, поглощенного телом, обычно вызывает затруднение. В реальных условиях не вся энергия $P\Delta t$, выделенная нагревателем, идет на нагревание исследуемого тела и калориметра, часть ее уходит из калориметра благодаря теплопроводности его стенок. Оставшееся в калориметре количество тепла ΔQ равно

$$\Delta Q = P\Delta t - \lambda (T - T_{\kappa}) \Delta t, \tag{2}$$

где P — мощность нагревателя, λ — коэффициент теплоотдачи стенок, T — температура тела, T_{κ} — комнатная температура, Δt — время, в течение которого идет нагревание.

Из уравнений (1) и (2) получаем

$$C = \frac{P - \lambda (T - T_{\kappa})}{\Delta T / \Delta t} \tag{3}$$

Формула (3) является основной расчетной формулой. Она определяет теплоемкость тела вместе с калориметром. Теплоемкость калориметра измеряется отдельно и вычитается из результата.

С увеличением температуры исследуемого тела растет утечка энергии, связанная с теплопроводностью стенок калориметра. Из формулы (2) видно, что при постоянной мощности нагревателя по мере роста температуры количество теплаб передаваемое телу, уменьшается, и, следовательно, понижается скорость изменения его температуры.

Погрешности, связанные с утечкой тепла, оказываются небольшими, если не давать телу заметных перегревов и проводить все измерения при температурах, мало отличающихся от комнатной. Однако при небольших перегревах возникает большая ошибка при измерении $\Delta T = T - T_{\rm K}$, и точность определения теплоемкости не возрастает. Чтобы избежать этой трудности, в работе используется следующая методика измерений. Зависимость скорости нагревания тела $\Delta T/\Delta t$ от температуры измеряется в широком интервале изменения температур. По полученным данным строится график

$$\frac{\Delta T}{\Delta t} = f(T).$$

Этот график экстраполируется к температуре $T=T_{\rm K}$, и таким образом определяется скорость нагревания при комнатной температуре $(\Delta T/\Delta t)_{T_{\rm K}}$. Подставляя полученное выражение в формулу (3) и замечая, что при $T=T_{\rm K}$ член $\lambda(T-T_{\rm K})$ обращается в ноль, получаем

$$C = \frac{P}{(\Delta T/\Delta t)_{T_{\rm K}}} \tag{4}$$

Рис. 1: Схема устройства калориметра

Температура измеряется термометром сопротивления, который представляет собой медную проволоку, намотанную на теплопроводящий каркас внутренней стенки калориметра (рис. 1). Сопротивление проводника изменяется с температурой по закону

$$R_T = R_0(1 + \alpha \Delta T),\tag{5}$$

где R_T – сопротивление термеметра про $T^{\circ}C$, R_0 – его сопротивление при $0^{\circ}C$, α – температурный коэффициент сопротивления.

Дифференцируя (5) по времени, найдем

$$\frac{dR}{dt} = R_0 \alpha \frac{dT}{dt},\tag{6}$$

Выразим сопротивление R_0 через исмеренное значение R_{κ} – сопротивление термометра при комнатной температуре. Согласно (5), имеем

$$R_0 = \frac{R_{\kappa}}{1 + \alpha \Delta T_{\kappa}},\tag{7}$$

Подставляя (6) и (7) в (4), найдем

$$C_{\kappa} = \frac{PR_{\kappa}\alpha}{(\frac{dR}{dt})_{T_{\kappa}}(1 + \alpha\Delta T_{\kappa})},$$
(8)

Входящий в формулу температурный коэффициент сопротивления меди равен $\alpha=4,28\cdot 10^{-3}$ град $^{-1}$, все остальные величины определяются экспериментально. Таким образом, для определения удельной теплоемкости образцов, будем использовать

$$C = \frac{P}{m \cdot (\frac{dR}{dt})_{T_{\kappa}}} - \frac{C_{\kappa}}{m} \tag{9}$$

3 Экспериментальная установка

Установка состоит из калориметра с пенопластовой изоляцией, помещенного в ящик из многослойной клееной фанеры. Внутренние стенки калориметра выполненым из материала с высокой теплопроводностью. Надежность теплового контакта между телом и стенками обеспечивается их формой: они имеют вид усеченных конусов и плотно прилегают друг к другу. В стенку

калориметра вмонтированы электронагреватель и термометр сопротивления. Схема включения нагревателя изображения на рис.2. Система реостатов позволяет установить нужную силу тока в цепи нагревателя. По амперметру и вольтметру определяется мощность, выделяемая в нагревателе. Величина сопротивления термометра измеряется мостом постоянного тока.

Рис. 2: Схема включения нагревателя

Зафиксируем параметры установки и образцов (напряжение и ток в термометре, мощность термометра, массы образцов):

$$U = 36 \text{ B}, I = 0, 3 \text{ A}, P = 10, 8 \text{ Bt}$$

	Железный образец	Латунный образец	Алюминиевый образец
Масса, г	$815, 1 \pm 0, 1$	$875, 5 \pm 0, 1$	$294, 2 \pm 0, 1$

4 Обработка результатов измерений

- 1. Снимем зависимость R(t) для калориметра, а также для 3 исследуемых образцов и построим графики зависимости R(t) для результатов измерений.
- 2. По полученным данным построим также графики зависимостей $\frac{dR}{dt}(R)$ для различных серий измерений, т.е. для калориметра и 3 исследуемых образцов. Данную зависимость построим с учетом формулы:

$$\frac{dR}{dt}(R_{t_1}) = \frac{R_{t_2} - R_{t_2}}{t_2 - t_1} \tag{10}$$

3. Экстраполируем полученные зависимости полиномом второй степени до значений $R=R_{\rm K}$ и вычислим значения $(\frac{dR}{dt})_{T=T_{\rm K}}$ с использованием полученной формулы.

	Уравнение экстраполяции	R_{κ} , Om	$(dR/dt)_{R_{\rm K}} \cdot 10^{-4}, {\rm Om/c}$
Калориметр	$y = 0.001x^2 - 0.034x + 0.327$	18,105	$16,08 \pm 0,12$
Железо	$y = 0,003x^2 - 0,106x + 0,997$	18,105	$16,85 \pm 0,16$
Латунь	$y = 0,002x^2 - 0,06x + 0,558$	18,105	$8,71 \pm 0,12$
Алюминий	$y = 0,003x^2 - 0,114x + 1,054$	18,105	$11,70 \pm 0,22$

Таблица 1: Экстраполяция

Рис. 3: Зависимость R(t)

Рис. 4: Зависимость dR/dt(R)

4. Вычисляем, используя полученные зависимости при экстраполяции теплоемкость калориметра по формуле (6), суммарную теплоемкость образцов с калориметром по формуле (4) и удельную теплоемкость образцов по формуле (9). Для определения погрешностей косвенных измерений, учтем, что погрешности измерения сопротивления мостом, массы образцов весами и времени секундомером, а также случайные погрешности, крайне малы в сравнении с погрешностью экстраполяции функций. Вследствие этого, для расчета погрешности определяемых величин, ограничемся рассмотрением вклада только последней.

	Теплоемкость, Дж/К	Тепл. без калориметра, Дж/К	Удельная тепл., Дж/кг-К
Калориметр	897 ± 7	-	-
Железный образец	1238 ± 11	341 ± 13	418 ± 16
Латунный образец	1180 ± 15	283 ± 17	323 ± 20
Алюминиевый образец	1092 ± 21	195 ± 22	663 ± 74

Таблица 2: Результат вычислений теплоемкости

5 Вывод

В ходе работы были измерены удельные теплоемкости железа, латуни и алюминия: $c_{\text{железо}} =$ 418 \pm 16 $\frac{\mathcal{I}_{\text{Kr} \cdot \text{K}}}{\text{кr} \cdot \text{K}}$, $c_{\text{латунь}} = 323 \pm 20 \frac{\mathcal{I}_{\text{Kr} \cdot \text{K}}}{\text{кr} \cdot \text{K}}$, $c_{\text{алюминий}} = 663 \pm 74 \frac{\mathcal{I}_{\text{ж}}}{\text{кr} \cdot \text{K}}$. Табличные значения для этих матриалов: $c_{\text{железо}}^{\text{табл.}} = 460 \frac{\mathcal{I}_{\text{ж}}}{\text{кг} \cdot \text{K}}$, $c_{\text{латунь}}^{\text{табл.}} = 380 \frac{\mathcal{I}_{\text{ж}}}{\text{кг} \cdot \text{K}}$, и $c_{\text{алюминий}}^{\text{табл.}} = 920 \frac{\mathcal{I}_{\text{ж}}}{\text{кг} \cdot \text{K}}$. В пределах погрешности значения теплоемкости для образцов из железа и латуни хорошо сходятся с табличными данными, но вот значение теплоемкости алюминия отличается значительно, несмотря даже на то, что диапазон погрешностей достаточно велик в данном эксперименте. Причиной такого результата может являться, во-первых, то, что теплоемкость алюмния значительно выше, чем у других исследуемых материалов, вследствие чего процесс нагревания и охлаждения в этом образце происходит с большей скоростью, что ведет к большей разнице температур с окружающим пространством, и, следовательно, к большим тепловым потерям за время проведения эксперимента (формула (3)). С учетом этого, наша зависимость R(t) и полученный из нее график $\frac{dR}{dt}(R)$ для экстраполяции значения $(\frac{dR}{dt})_{T=T_{\kappa}}$ не вполне соответствуют действительности. Во-вторых, отличие полученной удельной теплоемкости алюминия от табличного значения может быть связано с чистотой исследуемого образца: образец представляет собой сплав металлов неизвестного процентного состава, вследствие чего его удельная теплоемкость не являетя удельной теплоемкостью чистого алюминия (это замечание также относится и к образцам для исследования удельной теплоемкости железа и латуни).