Kaggle – Digit Recognizer

關薦勇

29	/1	1	12	Λ	1	C
291	1	1	<i> Z</i>	u	1	Č

Part 1. Introduction	1
Part 2. Data preparation	1
2.1 資料處理	1
2.2 標準化與資料形態轉換	2
2.3 切割為訓練集 train 與驗證集 val	2
2.4 資料集視覺化與預覽	2
Part 3. CNN engineering	3
3.1 建立模型	3
3.2 建立 optimizer 與 annealer	4
3.3 數據擴充	4
3.4 擬合模型	5
Part 4. Evaluate the mode	5
4.1 訓練集與驗證集曲線 Curve of Training set & Validation set	5
4.2 混淆矩阵 Confusion Matrix	6
4.3 上傳 Kaggle	7
4.4 結論與改善	7
Part 5. Predict different pixel photos	8
5.1 圖像讀取預處理	8
5.2 範例	8

Part 1. Introduction

資料量: 訓練集 42000 x 785, 變量 "label" 為因變量 y

測試集 28000 x 784

資料描述:每個圖像的尺寸為 28x28,總共為 784 個像素。

每個像素具有與其相關聯的單個像素值,指示該像素的亮度或暗度,較高的數值意味著較暗。該像素值是 0 到 255 之間的整數,包括 0 和 255。

缺失值:無

資料構成圖像的排列如下圖

(圖像取自 kaggle)

Part 2. Data preparation

2.1 資料處理

- a. 從訓練集裡提取 y 變量 label
- b. 觀察訓練集 y 變量的分佈是否均勻,假設為不均勻分佈可能會影響模型的適配性能

0	0	4132
1	1	4684
2	2	4177
3	3	4351
4	4	4072
5	5	3795
6	6	4137
7	7	4401
8	8	4063
9	9	4188

label count

變量 y:0~9 的數值,上圖為每個數值的出現總次數

使用卡方配適度檢定(Pearson's Chi-square Test)檢定變量 y 是否分佈均勻 使用方法為 scipy.stats 中的 chisquare 檢定

Power_divergenceResult(statistic=120.45285714285716, pvalue=1.0793226 805531035e-21)

Statistic 卡方檢定統計量 = 120.4529

p-value = 1.079 > 0.05

不拒絕虛無假設,沒有顯著證據顯示變量 y 的分佈不均勻

2.2 標準化與資料形態轉換

- a. 為了使得梯度收斂的更快,將訓練集(不包含因變量)與測試集進行標準化 使用方法為除以 255,使得所有的特征值介於 0 至 1 之間。
- b. 由於訓練集與測試集中每一個觀察值為 784x1 的矩陣,但照片應為 28x28 的像素排列,故將之轉換為 28x28x1 矩陣
- c. 訓練集變量 y 轉換為虛擬變量

 $(ex: 2 \rightarrow [0,0,1,0,0,0,0,0,0,0])$

2.3 切割為訓練集 train 與驗證集 val

將目前的測試集進一步切割為訓練集與驗證集 (x_train, ytrain) 與 (x_val, y_val) 比例為 9:1

2.4 資料集視覺化與預覽

上述圖像為當前訓練集的前三個觀察值的圖像呈現形態

Part 3. CNN engineering

3.1 建立模型

初始化 CNN 模型

classifier=Sequential()

- 。選擇建立的架構依序為 3 層特征探測器為 32 的卷積層·3 層特征探測器為 64 的卷積層以及 1 曾特征探測器為 128 的卷積層。
- 。第一層卷積層需要額外設立讀取圖像的大小尺寸轉化為為(28 x 28 x 1)的像素大小,把載入的圖像像素都統一為相同大小的像素尺寸進行建立模型
- 。並且每一層都會設有一層的 Batch Normalization。
- 。每三層的結束都會添加一層(2x2)最大池化 MaxPool 層以及 Dropout 層(需要丢弃的輸入比例為 0.4),以避免過度擬合
- 。這些卷積層所使用的激活函數皆為 relu (Rectified Linear Unit)
- 。卷積層建立完成後對模型進行 Flatten 扁平化處理
- 。再來建立一層 Dense 隱藏層,由於要變量 y 的值區間為 0 到 9 (10 個值),故隱藏層的數量設為 10,激活函數選擇為 softmax

CNN 建構步驟依序(由上至下順序建構)

a.

卷積層	特征探測器:32	特征探測器大小:(3,3)	激活函數:relu
批標準化			
卷積層	特征探測器:32	特征探測器大小:(3,3)	激活函數:relu
批標準化			
卷積層	特征探測器:32	特征探測器大小:(3,3)	激活函數:relu
批標準化			
最大池化	池化尺寸:(2,2)		
Drouput	丟棄比例: 0.4		

b.

卷積層	特征探測器:64	特征探測器大小:(3,3)	激活函數:relu
批標準化			
卷積層	特征探測器:64	特征探測器大小:(3,3)	激活函數:relu

批標準化			
卷積層	特征探測器:64	特征探測器大小:(3,3)	激活函數:relu
批標準化			
最大池化	池化尺寸:(2,2)	strides 卷積步長: (2,2)	
Drouput	丟棄比例: 0.4		

C.

卷積層	特征探測器:128	特征探測器大小:(4,4)	激活函數:relu
批標準化			

d.

扁平層		
Drouput	丟棄比例: 0.4	
隱藏層	數量:10	激活函數:softmax

3.2 建立 optimizer 與 annealer

e. 優化器: RMSprop, 參數為 keras.optimizers.RMSprop 默認參數

參數為: Ir 學習率: 0.001

rho RMSProp 梯度平方的移动均值的衰减率:0.9

epsilon 模糊因子:None

decay 每次参数更新后学习率衰减值:0.0

f. 編譯模型: loss = "categorical_crossentropy"

metrics=["accuracy"]

h. 学习速率定时器

annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95 ** x)

3.3 數據擴充

q. 通過實時數據增強生成張量圖像數據批次:

keras.preprocessing.image.ImageDataGenerator()

隨機縮放範圍	zoom_range	0.15
上下位置平移	height_shift_range	0.1
水平位置平移	width_shift_range	0.1

隨機旋轉的度數範圍	rotation_range	15
隨機水平翻轉	horizontal_flip	False
隨機垂直翻轉	vertical_flip	False

3.4 擬合模型

classifier.fit_generator()

指定進行梯度下降時每个 batch 包含的樣本數	batch_size	64
訓練終止時的 epoch 值	epochs	60
指定驗證集	validation_data	(x 驗證集,y 驗證集)
一个 epoch 包含的步數	steps_per_epoch	
日志顯示	verbose	2
回調函數	callbacks	[annealer]

Part 4. Evaluate the mode

4.1 訓練集與驗證集曲線 Curve of Training set & Validation set

下列為第 55 至 60 Epoch 的訓練結果

```
Epoch 55/60
- 453s - loss: 0.0221 - acc: 0.9934 - val_loss: 0.0167 - val_acc: 0.9955
Epoch 56/60
- 426s - loss: 0.0208 - acc: 0.9936 - val_loss: 0.0165 - val_acc: 0.9960
Epoch 57/60
- 433s - loss: 0.0222 - acc: 0.9933 - val_loss: 0.0143 - val_acc: 0.9962
Epoch 58/60
- 478s - loss: 0.0220 - acc: 0.9937 - val_loss: 0.0148 - val_acc: 0.9957
Epoch 59/60
- 452s - loss: 0.0237 - acc: 0.9932 - val_loss: 0.0145 - val_acc: 0.9952
Epoch 60/60
- 459s - loss: 0.0236 - acc: 0.9934 - val_loss: 0.0142 - val_acc: 0.9960
```

在 Epoch = 60 之後,模型在驗證集上達到 99.6%的準確率

訓練時 Validation set 的準確度都一直保持著大於 Training set 的準確度,說明著這個模型不會有過度訓練 Training set 的情況

在 Epoch = 1 開始,Validation set 的訓練曲線就已經優於 Training set 在 Epoch = 10 開始,Validation set 的訓練曲線走向已經非常趨近於 Training set 的訓練曲線

4.2 混淆矩阵 Confusion Matrix

從混淆矩阵圖中可以觀察出數字 0 與數字 2 的預測率在驗證集上準確率達到了 100% 其中 8 被預測錯誤的次數最多, 有 2 次被誤認為 6 與有 2 次被誤認為 3

下圖為一些預測錯誤的值

Predicted label :6Predicted label :8Predicted label :4Predicted label :8
True label :4 True label :6 True label :8 True label :5

4.3 上傳 Kaggle

評分方法: 根據預測的分類準確性(您獲得的圖像百分比)進行評估

獲得分數為: 0.99671

排名: 239/2705 (Top 9%)

時間:2018/12/203:25

4.4 結論與改善

從混淆矩陣可看出這個模型容易把 3 或者 6 誤認為 8 · 所以本人初步認為可以通過調整權重的方式讓被識別為 8 的門檻高一些來改善模型的預測能力。但凡事都有兩面性,預測判斷為 8 的門檻高了有可能會導致一些真實值為 8 但由於調整了權重問題導致這些值被誤認為其他值。有可能模型的預測能力反而降低。

Part 5. Predict different pixel photos

5.1 圖像讀取預處理

Step1. 讀取圖像

Step2. 將圖像轉換為灰色圖像

(0表示黑,255表示白,其他数字表示不同的灰度)

Step3. 將圖像轉換為 28x28 像素尺寸的圖像

Step4. 並對圖像依照 2.2 標準化與資料形態轉換 進行轉換

Step5. 進行預測

5.2 範例

使用的 package

import matplotlib.pyplot as plt import matplotlib.image as mpimg

左圖為原始圖像

圖像數值:7

圖像類型: RGBA

像素: 296x198x4 pixel

Predict result: 7

模型預測為7.預測值與真實值相同

程式碼會附在 github 裡

注意:這個模型由於訓練的所有圖像皆為背景為黑色,字體顏色為灰白色。

所以只能用來預測相同色彩構架的圖像,如白底黑體的圖像會預測錯誤