

Proposta de Projeto Trabalho de Conclusão de Curso I

Aluno: Adonis Andreas Marinos

Orientador: Prof. Arliones Stevert Hoeller Junior, Dr.

Aplicação loT para Análise e Classificação da Qualidade do Ar

Motivação

A poluição do ar é responsável pelo falecimento prematuro de cerca de 7 milhões de pessoas no planeta todos os anos, sendo que no Brasil, apenas dez estados e o Distrito Federal realizam monitoramento da concentração de poluentes.

Recentemente a OMS reduziu os limites considerados seguros para a concentração de cinco dos poluentes responsáveis por afetar a qualidade do ar e o Brasil não cumpre nem os limites anteriores.

Poder mensurar a qualidade do ar de um ambiente é importantíssimo para estrategizar como reverter a situação, buscando evitar ao máximo as consequências das altas concentrações destes poluentes nas vidas das pessoas.

Motivação

"Perda de fertilidade, distúrbios gestacionais, obesidade, diabetes, e o mais recente, o que a gente tem trabalhado com maior afinco é a questão da associação da exposição com as doenças neurodegenerativas, como, por exemplo, o Alzheimer."

"Nós estimamos que viver numa cidade com os níveis de poluentes como os de São Paulo, você perde, em média, dois anos e meio de vida."

Mariana Veras, chefe do Laboratório de Patologia Ambiental da USP

Objetivos do Projeto

Criar uma solução que realiza a medição e análise das componentes do ar de um determinado ambiente e classificá-lo a partir das resoluções mais atuais do Conselho Nacional do Meio Ambiente (CONAMA).

Objetivos específicos:

- Determinar quais são as grandezas que são medidas para classificar o ar.
- Desenvolver o dispositivo que realizará a coleta dos dados das grandezas.
- Desenvolver um banco de dados para armazenar os dados coletados.
- Desenvolver uma aplicação para realizar a análise das séries temporais de dados e realizar predições comportamentais.
- Monitorar o ar de um ambiente específico e classificá-lo seguindo a resolução 491/2018 do CONAMA.

Classificação do Ar pelo CONAMA

A partir da resolução 491/2018 do CONAMA, foram definidas as seguintes grandezas para classificar a qualidade do ar de um ambiente:

- Partículas Inaláveis MP10 e MP2,5
- Dióxido de Enxofre (SO2)
- Dióxido de Nitrogênio (NO2)
- Ozônio (O3)
- Fumaça
- Monóxido de Carbono (CO)
- Partículas Totais em Suspensão
- Chumbo (Pb)

Arquitetura da Solução

Requisitos diferenciais de mercado:

Gerenciar acesso para usuários.

Sensores (1:N)

- Baixo custo (Max. R\$500).
- Baixo consumo de energia.
- Interface de fácil utilização.
- Análise de séries temporais e predição de comportamentos.

Conexão LoRaWAN

É um protocolo de comunicação entre os dispositivos de um sistema (principalmente IoT) através da tecnologia de rádio frequência LoRa, permitindo comunicação a longas distâncias com baixo consumo de energia, considerada uma LPWAM (*Low Power Wide Area Network*).

Características:

- Cobertura de longo alcance (Chegando a mais de 15 Km).
- Permite grande capacidade de nós na rede.
- Baixa interferência de ruídos.
- Baixo consumo de energia.

Conexão LoRaWAN

Arquitetura da rede LoRa:

Na imagem acima, cada nó é um dispositivo que possui um módulo LoRa que transmite e recebe sinais dos *gateways*, os quais recebem as informações dos dispositivos e transmitem para um servidor local ou remoto.

Séries Temporais

Podemos chamar de série temporal uma coleção de observações de uma ou mais informações que sejam variáveis feitas sequencialmente ao longo de um determinado período de tempo.

Vantagens:

- O uso de séries temporais nas medições irá expandir a análise dos dados.
- Será possível prever comportamentos e padrões.
- Permite aumentar as possibilidades na apresentação das informações coletadas.

Requisitos funcionais:

RF01: Medir e transmitir dados de vários sensores simultaneamente num microcontrolador.

RF02: Armazenar dados dos sensores como séries temporais em um banco de dados.

RF03: Gerenciar acesso por usuários.

RF04: GUI para explorar dados das séries temporais graficamente e em tabelas.

RF05: Análise de séries temporais e predição de comportamentos.

RF06: Gerenciar o cadastro de várias estações de monitoramento.

RF07: Recarregar bateria por painel fotovoltaico.

Requisitos não-funcionais:

RNF01: Custo baixo (Max. R\$500).

RNF02: Baixo consumo de energia (bateria deve durar ao menos 7 dia sem recarga).

RNF03: Interface de fácil utilização.

RNF04: Atender aos padrões de qualidade do ar do órgão CONAMA.

RNF05: Possuir alertas configuráveis.

Coleta dos dados:

Para obter o resultados de qualidade satisfatória, será necessário manter a solução realizando medições durante períodos contínuos, coletando quantias suficiente de dados para estabelecer a possibilidade da análise das séries temporais dos dados, além da validação dos padrões que definem a qualidade do ar, estabelecidos pelo CONAMA.

Duração: 2-3 semanas coletando informações.

Etapas do projeto:

- **Etapa 1**: Definir os objetivos geral e específicos do projeto.
- **Etapa 2**: Determinar a partir da resolução 491/2018 do CONAMA quais são as grandezas a serem medidas para poder classificar a qualidade do ar.
- Etapa 3: Pesquisar quais são sensores para medir as determinadas grandezas encontradas e realizar a compra dos mesmos.
- **Etapa 4:** Pesquisar sobre a arquitetura IoT, séries temporais e soluções existentes no mercado para redigir a fundamentação teórica do trabalho.
- Etapa 5: Documentar a definição da proposta do projeto.
- Etapa 6: Iniciar a produção da parte prática do trabalho, integrando os sensores ao microcontrolador.
- Etapa 7: Confeccionar um banco de dados para armazenar as informações obtidas no formato de séries temporais.
- Etapa 8: Realizar o desenvolvimento da aplicação que fará a análise das séries temporais para predições e apresentação dos dados.
- Etapa 9: Integrar a interface gráfica para visualização dos dados.
- **Etapa 10:** Realização de testes de campo, onde a aplicação ficará coletando dados durante determinados períodos de tempo para validar a proposta apresentada.

Cronograma

Cronograma de Atividades:

Atividade	Mês									
	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul
Etapa 1	X									
Etapa 2	X									
Etapa 3	X									
Etapa 4		X	X	X						
Etapa 5					X	X				
Etapa 6							X	X		
Etapa 7							X	X		
Etapa 8								X		
Etapa 9							İ		X	
Etapa 10									X	X
Relatório Final									X	X
Defesa do TCC										X

Obrigado!

Aplicação loT para Análise e Classificação da Qualidade do Ar