Lecture Comprehension, Twists (Chapter 3.3.2, Part 2 of 2)

TOTAL POINTS 2

1.	What is the dimension of the matrix adjoint representation $[{\rm Ad}_T]$ of a transformation matrix T (an element of $SE(3)$)? $ 3x3 \\ 4x4 \\ $	1/1 point
	\checkmark Correct The adjoint representation $[\mathrm{Ad}_{T_{ab}}]$ of a transformation matrix T_{ab} can be used to change the frame of representation of a twist (or a screw), i.e., $\mathcal{V}_a = [\mathrm{Ad}_{T_{ab}}]\mathcal{V}_b$, so it must be 6x6.	
2.	A 3-vector angular velocity ω can be represented in matrix form as $[\omega]$, an element of $so(3)$, the set of 3x3 skew-symmetric matrices. Analogously, a 6-vector twist $\mathcal{V}=(\omega,v)$ can be represented in matrix form as $[\mathcal{V}]$, an element of $se(3)$. What is the dimension of $[\mathcal{V}]$? 3x3 4x4	1/1 point
	\checkmark Correct The top left 3x3 submatrix is $[\omega]$ and the top right 3x1 submatrix is the linear velocity v . The bottom row consists of four zeros.	