0.1 Soluções para equações lineares homogêneas

Uma equação diferencial linear de ordem n da forma

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0$$
 (2)

é chamada de equação homogênea, enquanto

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$
 (3)

com g(x) não identicamente nula, é chamada de **não homogênea**.

Exemplo 7 A equação 2y'' + 3y' - 5y = 0 é uma equação diferencial ordinária linear de segunda ordem homogênea.

Exemplo 8 A equação $xy'''_{4}2xy'' + 5y' + 6y = e^x$ é uma equação diferencial ordinária linear de terceira ordem não homogênea.

Veremos nas próximas seções que, para resolver uma equação não homogênea (3) devemos primeiro resolver equação homogênea associada (2).

Princípio da superposição

Daqui por diante, para evitar repetições desnecessárias, faremos sempre as mesmas suposições com relação às equações lineares (2) e (3). Em algum intervalo I,

- os coeficientes $a_i(x)$, $i=0,1,2,\cdots,n$ são funções contínuas;
- a função g(x) é contínua;
- $a_n(x) \neq 0$ para todo $x \in I$.

O próximo teorema nos diz que a soma, ou **superposição**, de duas ou mais soluções para uma equação diferencial linear homogênea é também uma solução

Teorema 3 (Princípio da superposição-equações homogêneas) $Sejam y_1, y_2, \dots, y_k$ soluções para a equação diferencial linear de ordem n e homogênea (2) em um intervalo I. Então, a combinação linear

$$y = c_1'y_1 + c_2'y_2 + \dots + c_k'y_k,$$

onde os c_i , $i=1,2,\cdots,k$, são constantes arbitrárias, é também uma solução no intervalo I.

0 - 16

Corolário 3(1) Um múltiplo $y = c_1 y_1(x)$ de uma solução $y_1(x)$ para uma equação diferencial linear homogênea também é uma solução.

(ii) Uma equação diferencial linear homogênea sempre possui a solução trivial y = 0.

Exemplo 9a) As funções y= x² e y= x² hx são coluções da equação x³y" - 2xy' + 4y= 0 (Verifique!!!)

no intervalo (0,00). Pelo tweener anterior a combinação livear

y= C1x² + C2x² lux também e solução.

b) As funções $y_1 = e^{x}$, $y_2 = e^{2x}$ e $y_3 = e^{3x}$ sais soluções para y''' - 6y'' + 11y' - 6y = 0 (Verifique!!!)

Losi, $y = c_1e^{x} + c_2e^{2x} + c_3e^{3x}$ tambén à soluções

Soluções linearmente independentes \

Nosso objetivo agora é determinar quando n soluções y_1, y_2, \dots, y_n para a equação diferencial homogênea 2 são linearmente independentes.

Teorema 4 (Critério para independência linear de soluções) $Sejam y_1, y_2, \dots, y_n, n$ soluções para a equação diferencial linear homogênea 2 em um intervalo I. Então, o conjunto de soluções é linearmente independente em I se, e somente se,

$$\left| \overline{W(y_1, y_2, \cdots, y_n) \neq 0} \right|$$

para todo $x \in I$.

Do teorema acima segue que quando y_1, y_2, \dots, y_h são n soluções para a equação (2) em um intervalo I, o Wronskiano é identicamente nulo ou n unca se anula no intervalo.

Definição 3 (Conjunto fundamental de soluções) Qualquer conjunto y_1, y_2, \dots, y_n de <u>n</u> soluções linearmente independentes para a equação diferencial linear homogênea 2 em um intervalo I é chamado de **conjunto** fundamental de soluções no intervalo I.

Teorema 5 Sejam y_1, y_2, \dots, y_n n soluções linearmente independentes para a equação diferencial linear homogênea (2) em um intervalo I. Então, qualquer solução Y(x) para (2) é uma combinação linear das n soluções linearmente independentes y_1, y_2, \dots, y_n , ou seja, podemos encontrar constantes C_1, C_2, \dots, C_n , tais que $Y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x).$ Prova:

O seguinte teorema responde a questão básica de existência de um conjunto fundamental de soluções para uma equação linear. Sua demonstração é consequência do teorema 1.

Prova: (n=2) y $\bar{\epsilon}$ soluções e ya eya soluções $l-\hat{i}$, de $a_2(x)y' + a_1(x)y' + adx|y=0$ em I.

Squ t E I tal que W(y1(t), y2(t)) \$ 0. Sejan Y(t) = K1, Y'(t) = K2.

Considere o sigbeno $\begin{cases} C_1 y_1(t) + C_2 y_2(t) = K_1 \\ C_1 y_1'(t) + C_2 y_2'(t) = K_2 \end{cases} = y(t)$

Si livear que satisfat / yold) yold) $\neq 0$. Loss Sposnis nua vivica solução (Cs, Co).

Sya G(x)= Czyz(x) + Czyz(x). Obselve que:

- i) G(x) è soluçées da eq. diférencial pois ele è combinacés livea de y, e y,
- Aii) G(x) sabisfar as condition $G(t)=C_1y_1(t)+C_2y_2(t)=K_1=J(t)$ $G(t)=C_1y_1(t)+C_2y_2(t)=K_1=J'(t)$

iii) I(x) sobistot a mesma eq. l'near e as mesmas undipositificialis Assim I(x) e G(x) ses solupes do PVI

 $\begin{cases}
a_2(x)y'' + a_1(x)y' + a_0(x)y = 0 \\
y(t) = K_1 \quad y'(t) = K_2
\end{cases}$

Pula unividade de soluções para un PVI segue que Y(x) = G(x) : Y(x) = c,y,(x) + C,y,(x) Teorema 6 Existe um conjunto fundamental de soluções para a equação diferencial linear homogênea (2) em um intervalo I.

Com base nos teoremas 5 e 6 podemos fazer a seguinte definição.

Definição 4 (Solução geral - equações homogêneas) $Sejam[y_1, y_2, \cdots, y_n]$ n soluções linearmente independentes para a equação diferencial homogênea (2) em um intervalo I. A solução geral para a equação no intervalo I \acute{e} dada por

onde
$$c_1, c_2, \cdots$$
, $c_n \underbrace{\tilde{sao} \ constantes \ arbitr{\acute{a}rias}}_{Q_{1}}$, $c_1 \underbrace{\tilde{sao} \ constantes \ arbitr{\acute{a}rias}}_{Q_{2}}$.

Exemplo 10

A equação de segunda ordem y'' - 9y = 0 possui duas soluções

$$y_1(x) = e^{3x}$$
 e $y_2(x) = e^{-3x}$. $\left(\bigvee i ; \gamma_{i} \right)$

Como

$$W(e^{3x}, \mathbf{2}^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

para todo valor de x, segue que y_1 e y_2 formam um conjunto fundamental de soluções em $(-\infty, \infty)$. Assim, a solução geral para a equação diferencial é dada por

$$y = \overbrace{c_1 e^{3x} + c_2 e^{-3x}}.$$

Exemplo 11

As funções $y_1 = e^x$, $y_2 = e^{2x}$ e $y_3 = e^{3x}$ satisfazem a equação de terceira

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

ordem (Verifique!!!)
$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$
Como
$$W(e^x, e^{2x}, e^{3x}) = \begin{vmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0$$

para todo valor de x, segue que y_1 , y_2 e y_3 formam um conjunto fundamental de soluções em $(-\infty, \infty)$. Concluimos que

$$y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

é a solução geral para a equação diferencial.

O método da redução de ordem \

O método da redução de ordem é um método para converter uma equação diferencial linear para uma equação diferencial linear de ordem inferior e, em seguida construir a solução geral da equação original usando a solução geral da equação de ordem inferior. Vamos ilustrar o método para uma equação de ordem 2.

Primeiramente, vamos considerar um exemplo bem simples. Depois generalizaremos. É fácil ver que a função $y_1(x) = e^x$ é uma solução da equação y'' - y = 0. Vamos tentar uma solução da forma $y = u(x)e^x$ então:

0-24

$$y' = ue^{x} + u'e^{x}$$

$$y'' = ue^{x} + 2u'e^{x} + u''e^{x}$$

$$\frac{\forall}{\exists x} = \lambda \sqrt{x}$$

e assim

$$y'' - y = 2u'e^x + u''e^x = e^x(u'' + 2u') = 0$$

Como $e^x \neq 0$, segue que $u'' + 2u' = 0$.

$$V_{n} = M_{n}$$

$$V_{n} = M_{n}$$

$$V_{n} = M_{n}$$

$$V_{n} = M_{n}$$

Fazendo a substituição w=u', a equação resultante será uma equação linear de primeira ordem em w, dada por

$$w' + 2w = 0. \qquad e^{\int 2dx} = e^{2x}$$

Multiplicando esta equação pelo respectivo fator integrante, que nesse caso é e^{2x} , obtemos

$$e^{2x}w' + 2we^{2x} = 0$$

ou seja

$$\frac{d}{dx}(e^{2x}w) = 0 \qquad e^{2x}w = C_{3}$$

$$w = C_{3}e^{-2x}$$

Segue daí que

$$w = c_1 e^{-2x}$$
 ou $u' = c_1 e^{-2x}$

Integrando obtemos

$$u = -\frac{c_1}{2}e^{-2x} + c_2$$

e assim

$$y = u(x)e^x = \underbrace{\left(-\frac{c_1}{2}e^{-x} + c_2e^x\right)}_{}$$

Escolhendo $c_2 = 0$ e $c_1 = -2$, obteemos a segunda solução $y_2 = e^{-x}$. Como $W(e^x, e^{-x}) = -2 \neq 0$, para todo x, as soluções y_1 e y_2 são linearmente independentes em $(-\infty, \infty)$. Logo, as solução geral da equação é a dada por y, ou seja, $y = c_1 e^{-x} + c_2 e^x.$ Exemple: Considere a eq. $x^2y'' + xy' - y = 0$, x>0Enuntre a voluções seral da eq. sabonas que $y_1 = x$ e una saboções. Sol: Divida por x^2 para obter $y'' + \frac{1}{x}y' - \frac{1}{x^2}y = 0$ (forme padrão)

Faga 42= M(x) y1(x) = Mx y', = M'y, + My', y", = M"y, + My', + My', + My', + My', Substitutions y=x: y= mx+m y= mx+2m $M'' \cdot X + 2M' + \frac{1}{4}(M'X + M) - \frac{1}{42}MX = 0$ $\times M' + 2M' + M' + \frac{M}{2} - \frac{M}{2} = 0$ xm"+3n" = 0 M + 3 M = 0

· uma monlik

$$M'' = -\frac{3}{x} n' \implies \int \frac{n''}{n'} = \int \frac{3}{x} \implies \int \frac{1}{x} \ln |x|^{-3}$$

$$M' = x^{-3}$$

$$M' = x^{-3}$$

$$M' = x^{-3}$$

$$M = -\frac{x^{-2}}{2} = -\frac{1}{2x^{2}}$$

$$M' = \frac{1}{2x^{2}} = -\frac{1}{2x^{2}}$$

$$M' = \frac{1}{2x^{2}} = -\frac{1}{2x^{2}}$$

omtra moneira

$$w=u$$
, $w'+3w=0$
Lator integrote: $e^{\int \frac{3}{x} dx} = e^{3hx} = e^{hx^3} = x^3$
 $x^2 w'+3x^2w=0$

$$x^3w'+3x^2w=0$$

$$y^3(w)=0$$

$$x^{2}\omega = 0$$

$$x^{3}\omega = 0$$

$$x^{3}\omega = 0$$

$$d(x^{3}\omega) = 0 \qquad w = \frac{C_{1}}{x^{3}} = w^{2} = M = -\frac{C_{1}x^{-2}}{2} + c_{2}$$

$$x^{3}\omega = c_{1}$$

$$y_2 = \times M(x) = -\frac{C_1}{2} \times \frac{1}{x} + C_2 \times \frac{1}{x} + C_2 \times \frac{1}{x}$$

$$C_2 = 0 \quad C_1 = 2 \quad y_2 = \frac{1}{x} \quad y = C_1 \cdot \frac{1}{x} + C_2 \times \frac{1}{x}$$

Exemplo 12 Sabendo que $y_1 = x^3$ é uma solução para a equação $x^2y'' - 6y = 0$, use redução de ordem para encontrar uma segunda solução no intervalo $(0, \infty)$.