Converting Non-linear Models into Linear Ones

Absolute Value	
Domain and range	$x, l, u \in R$
Constant	
Upper bound	$u \leq \max(x, -x)$
Lower bound	$l \ge x$
	$l \ge -x$
Usage	$abs(x) \in [l, u]$
	$\min abs(x) \Rightarrow \min l$
	$\max abs(x) \Rightarrow \max u \Rightarrow \max \max(x, -x) \Rightarrow \min \min(x, -x)$
Reference	https://optimization.mccormick.northwestern.edu/index.php/Optimiza
	tion_with_absolute_values

	Value of Minimal Element
Domain and range	$X = \{x_1, x_2, \dots, x_{ X }\}\$
Domain and range	$x_i \in [a, b], l, u \in R, y_i \in \{0, 1\}$
Constant	$a,b\in R$
Constant	$M > \max(a , b , b - a)$
Upper bound	$u \le x_i, \forall i \in [1, X]$
	$l \ge x_i - M \cdot y_i, \qquad \forall i \in [1, X]$
Lower bound	$\sum_{i} y_i = X - 1$
Usage	$\min(X) \in [l,u]$
	$\min \min(X) \Rightarrow \min l$
	$\max \min(X) \Rightarrow \max u$
Reference	http://math.stackexchange.com/questions/1858740/how-to-covert-
keierence	min-min-problem-to-linear-programming-problem/1862709#1862709

Value of Maximal Element	
Domain and range	$X = \{x_1, x_2, \dots, x_{ X }\}\$
Domain and range	$x_i \in [a, b], l, u \in R, y_i \in \{0, 1\}$
Constant	$a,b\in R$
Constant	$M > \max(a , b , b - a)$
Upper bound	$u \le x_i + M \cdot y_i, \qquad \forall i \in [1, X]$
	$\sum y_i = X - 1$
	\sum_{i}^{j}
Lower bound	$l \ge x_i, \forall i \in [1, X]$
	$\max(X) \in [l, u]$
Usage	$\max \max(X) \Rightarrow \max u$
	$\min \max(X) \Rightarrow \min l$
Reference	http://math.stackexchange.com/questions/1858740/how-to-covert-

min-min-problem-to-linear-programming-problem/1862709#1862709

	Cardinality (Test Zero or Non-Zero)
Domain and range	$X = \{x_1, x_2, \dots, x_{ X }\}$ $x_i \in [a, b], y_i \in \{0, 1\}$
Constant	$a,b\in R$
Upper bound	$x_i \le b \cdot y_i$
Lower bound	$x_i \ge a \cdot y_i$
Usage	$\operatorname{card}(X) = \sum_{i} y_{i}$
Reference	

	Boolean Logic
Domain and range	$x, y \in \{0,1\}$
Constant	
Upper bound	
Lower bound	
Usage	$y = x_1 \land x_2 \land \dots \land x_n \Rightarrow 0 \le \sum_{i=0}^n x_i - n \cdot y \le n - 1$ $y = x_1 \lor x_2 \lor \dots \lor x_n \Rightarrow 0 \le n \cdot y - \sum_{i=0}^n x_i \le n - 1$
Reference	https://cs.stackexchange.com/questions/12102/express-boolean-logic- operations-in-zero-one-integer-linear-programming-ilp

"If-then" Logic (Implication)	
Domain and range	$x, z \in [a, b], y \in \{0, 1\}$
Constant	$a,b\in R$
Constant	$M > \max(a , b , b - a)$
Upper bound	
Lower bound	
	$z \le x \cdot y \Rightarrow \begin{cases} z \le x + M \cdot (1 - y) \\ z \le M \cdot y \end{cases}$
Usage	$z \ge x \cdot y \Rightarrow \begin{cases} z \ge x - M \cdot (1 - y) \\ z \ge -M \cdot y \end{cases}$
	http://math.stackexchange.com/questions/112159/what-are-the-
Reference	algorithms-for-integer-programming-in-which-constraints-are-
	depende/112927#112927

	Semi-continuous/integer Variable
Domain and range	$x \in \{0\} \cup [a, b], y \in \{0, 1\}$
Constant	$a,b\in R$

Lower bound	
Usage	$x = 0 \text{ or } a \le x \le b \Rightarrow \begin{cases} x \ge a \cdot y \\ x \le b \cdot y \end{cases}$
Reference	https://math.stackexchange.com/questions/849319/forbidden-range-
	for-a-linear-programming-variable
	Semi-binding Variable
Domain and range	$x \in \{0, t\}, y \in \{0, 1\}, t \in [a, b]$
Constant	$a,b\in R$
Constant	$M > \max(a , b , b - a)$
Upper bound	
Lower bound	
Usage	$x = 0 \text{ or } t \le x \le t \Rightarrow \begin{cases} -M \cdot (1 - y) \le x \le M \cdot (1 - y) \\ t - M \cdot y \le x \le t + M \cdot y \end{cases}$
Reference	
	Linear-fractional Objective
Domain and range	Linear-fractional Objective
Constant	
Upper bound	
Lower bound	
Usage	
Osage	https://en.wikipedia.org/wiki/Linear-fractional_programming
	Stancu-Minasian, I. M. Fractional programming: theory, methods and
Reference	applications. Vol. 409. Springer Science & Business Media, 2012.
	Bajalinov, Erik B. <i>Linear-Fractional Programming Theory, Methods</i> ,
	Applications and Software. Vol. 84. Springer Science & Business
	Media, 2013.

Upper bound