# INTRODUCTION TO STATISTICS

**LECTURE 3** 

# LAST TIME

Parameter estimation

Maximum Likelihood

• Discrete distributions

• Randomized response

# **TODAY**

• Wrap-up randomized response exercise

• Overview of the distributions we've seen so far

More MLE

Continuous distributions

# A bit more on randomized response

Constrained optimization

Ask people two questions:

50% of the cases: **Q1** (embarrassing)

50% of the cases: Q2 (regular, answer is always YES)

Ask people two questions:

50% of the cases: **Q1** (embarrassing)

50% of the cases: Q2 (regular, answer is always YES)

• Record responses  $X_1, ..., X_{100}, X_i = 1$  (YES) or 0 (NO)

Ask people two questions:

50% of the cases: **Q1** (embarrassing)
50% of the cases: **Q2** (regular, answer is always YES)

• Record responses  $X_1, ..., X_{100}, X_i = 1$  (YES) or 0 (NO)

$$q = P(X_i = 1) = P(YES) =$$

Ask people two questions:

50% of the cases: **Q1** (embarrassing)
50% of the cases: **Q2** (regular, answer is always YES)

• Record responses  $X_1, ..., X_{100}, X_i = 1 \text{ (YES) or 0 (NO)}$ 

$$q = P(X_i = 1) = P(YES) = P(YES|Q1)*P(Q1) + P(YES|Q2)*P(Q2) =$$

Ask people two questions:

50% of the cases: **Q1** (embarrassing)
50% of the cases: **Q2** (regular, answer is always YES)

• Record responses  $X_1, ..., X_{100}, X_i = 1 \text{ (YES) or 0 (NO)}$ 

$$q = P(X_i = 1) = P(YES) = P(YES|Q1)*P(Q1) + P(YES|Q2)*P(Q2) =$$
  
= **P(YES|Q1)**\*0.5 + 0.5\*1

Ask people two questions:

50% of the cases: **Q1** (embarrassing)
50% of the cases: **Q2** (regular, answer is always YES)

• Record responses  $X_1, ..., X_{100}, X_i = 1$  (YES) or 0 (NO)

$$q = P(X_i = 1) = P(YES) = P(YES|Q1)*P(Q1) + P(YES|Q2)*P(Q2) =$$
  
= **P(YES|Q1)**\*0.5 + 0.5\*1 = **p**\*0.5 + 0.5

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5
- MLE:  $\hat{q} = \{ \text{We got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of 100} \} = \{ \text{Ve got 60 YES out of$

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5
- MLE:  $\hat{q}$  = {We got 60 YES out of 100} = 0.6  $\Rightarrow \hat{p}$  =

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5
- MLE:  $\hat{q}$  = {We got 60 YES out of 100} = 0.6  $\Rightarrow \hat{p}$  =  $2\hat{q}$  1 = 0.2

• Responses 
$$X_1, ..., X_{100}, X_i \sim Bernoulli(q)$$

• 
$$q = 0.5*p + 0.5$$

• MLE: 
$$\hat{q}$$
 = {We got 60 YES out of 100} = 0.6  $\Rightarrow \hat{p}$  =  $2\hat{q}$  - 1 = 0.2

• Imagine that we got 40 YES out of 100. Then:

$$\hat{q} = \Rightarrow \hat{p} =$$

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5
- MLE:  $\hat{q}$  = {We got 60 YES out of 100} = 0.6  $\Rightarrow \hat{p}$  =  $2\hat{q}$  1 = 0.2
- Imagine that we got 40 YES out of 100. Then:

$$\hat{q} = 0.4$$
  $\Rightarrow \hat{p} = 2\hat{q} - 1 = -0.2$ 



- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5
- MLE:  $\hat{q}$  = {We got 60 YES out of 100} = 0.6  $\Rightarrow$   $\hat{p}$  =  $2\hat{q}$  1 = 0.2
- Imagine that we got 40 YES out of 100. Then:

$$\hat{q} = 0.4$$
  $\Rightarrow \hat{p} = 2\hat{q} - 1 = -0.2$ 



- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

Constraints: 
$$0 \le \hat{q} \le 1$$
,

$$0 \le \hat{p} \le 1$$

• Responses 
$$X_1, ..., X_{100}, X_i \sim Bernoulli(q)$$

$$X_i \sim Bernoulli(q)$$

• 
$$q = 0.5*p + 0.5$$

$$0 \leq \hat{q} \leq 1$$
,

$$0 \le \hat{p} \le 1$$

$$\Rightarrow 0.5 \le \hat{q} \le 1$$

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

Constraints: 
$$0 \le \hat{q} \le 1$$
,  $0 \le \hat{p} \le 1$   $0 \le \hat{q} \le 1$ 

• When maximizing a function with constraints: check the borders.

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

Constraints: 
$$0 \le \hat{q} \le 1$$
,  $0 \le \hat{p} \le 1$   $0 \le \hat{q} \le 1$ 

- When maximizing a function with constraints: check the borders.
- 40 out of 100 YES. MLE:
  - 0.4 gives the highest L(q), but out of reach L(0.5) L(1)

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

Constraints: 
$$0 \le \hat{q} \le 1$$
,  $0 \le \hat{q} \le 1$   $0 \le \hat{q} \le 1$ 

- When maximizing a function with constraints: check the borders.
- 40 out of 100 YES. MLE:
  - 0.4 gives the highest L(q), but out of reach

$$L(0.5) > L(1) = 0$$

- Responses  $X_1, ..., X_{100}, X_i \sim Bernoulli(q)$
- q = 0.5\*p + 0.5

Constraints: 
$$0 \le \hat{q} \le 1$$
,  $0 \le \hat{p} \le 1$   $0 \le \hat{q} \le 1$ 

- When maximizing a function with constraints: check the borders.
- 40 out of 100 YES. MLE:
  - 0.4 gives the highest L(q), but out of reach

$$L(0.5) > L(1) = 0$$
  $\Rightarrow \widehat{q} = 0.5, \quad \widehat{p} = 0$ 

# OVERVIEW OF SOME DISTRIBUTIONS WE WORKED WITH

### Bernoulli

$$X \sim Bernoulli(p)$$
  $P(X = 1) = p$ ,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Bernoulli

$$X \sim Bernoulli(p)$$
  $P(X = 1) = p$ ,  $P(X = 0) = 1 - p$ 

$$E(X) = p$$
 Chance of success in a single trial with two outcomes

### Bernoulli

$$X \sim Bernoulli(p)$$

X ~ Bernoulli(p) 
$$P(X = 1) = p$$
,  $P(X = 0) = 1 - p$ 

$$E(X) = p$$

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

### Bernoulli

$$E(X) = p$$

$$X \sim Bernoulli(p)$$
  $P(X = 1) = p$ ,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

# of successes in a series of n Bernoulli trials

### Bernoulli

$$X \sim Bernoulli(p)$$

$$E(X) = p$$

X ~ Bernoulli(p) 
$$P(X = 1) = p$$
,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

# of successes in a series of n Bernoulli trials

### Bernoulli

$$X \sim Bernoulli(p)$$

$$E(X) = p$$

X ~ Bernoulli(p) 
$$P(X = 1) = p$$
,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

# of successes in a series of n Bernoulli trials

### Poisson

$$X \sim Po(\lambda)$$
,

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, \quad k \ge 0$$

### Bernoulli

$$X \sim Bernoulli(p)$$

$$E(X) = p$$

$$X \sim Bernoulli(p)$$
  $P(X = 1) = p$ ,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

# of successes in a series of n Bernoulli trials

### Poisson

$$X \sim Po(\lambda)$$
,

$$P(X=k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}, \quad k \ge 0$$

# events that occur within a fixed amount of time

### Bernoulli

$$X \sim Bernoulli(p)$$

$$E(X) = p$$

X ~ Bernoulli(p) 
$$P(X = 1) = p$$
,  $P(X = 0) = 1 - p$ 

Chance of success in a single trial with two outcomes

### Binomial

$$X \sim Bi(n, p),$$

$$E(X) = np$$

$$P(X = k) = C_n^k p^k (1 - p)^{n - k}, \quad 0 \le k \le 1$$

# of successes in a series of n Bernoulli trials

### Poisson

$$X \sim Po(\lambda)$$
,

$$E(X) = \lambda$$

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^{k}}{k!}, \quad k \ge 0$$

# events that occur within a fixed amount of time

# MLE ONCE AGAIN

+ one more discrete distribution

# **WAITING FOR A METRO**

- You are waiting for a train in the metro.
- Trains go every t minutes (no delays).

# **WAITING FOR A METRO**

- You are waiting for a train in the metro.
- Trains go every t minutes (no delays).
- How long may you have to wait?

# **WAITING FOR A METRO**

- You are waiting for a train in the metro.
- Trains go every t minutes (no delays).
- How long may you have to wait?
  - Anything between 0 and t minutes.

- You are waiting for a train in the metro.
- Trains go every t minutes (no delays).
- How long may you have to wait?
  - Anything between 0 and t minutes.
- You ask N of your friends how long have they waited:

$$T_1, T_2, ..., T_N$$

- You are waiting for a train in the metro.
- Trains go every t minutes (no delays).
- How long may you have to wait?
  - Anything between 0 and t minutes.
- You ask N of your friends how long have they waited:

$$T_1, T_2, ..., T_N$$

How often do the trains go?
 And how much will you need to wait?

• Let's start with estimating the value of parameter t (train come every t minutes).

- Let's start with estimating the value of parameter t (train come every t minutes).
- Assume a very simple model: X one's waiting time.

• Let's start with estimating the value of parameter t (train come every t minutes).

• Assume a very simple model: X – one's waiting time.

| X    | 0 | 1 | • • • | t |
|------|---|---|-------|---|
| P(X) |   |   |       |   |

• Let's start with estimating the value of parameter t (train come every t minutes).

• Assume a very simple model: X – one's waiting time.

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

• Let's start with estimating the value of parameter t (train come every t minutes).

• Assume a very simple model: X – one's waiting time.

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Let's start with estimating the value of parameter t (train come every t minutes).
- Assume a very simple model: X one's waiting time.

|    | X   | 0       | 1       | • • • | t       |                 |
|----|-----|---------|---------|-------|---------|-----------------|
| P( | (X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) | and 0 otherwise |

• You know how long N of your friends waited:  $T_1, T_2, ..., T_N$ How to estimate the parameter t?

- Let's start with estimating the value of parameter t (train come every t minutes).
- Assume a very simple model: X one's waiting time.

| X    | 0       | 1       | •••   | t       |           |
|------|---------|---------|-------|---------|-----------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) | and 0 oth |

herwise

• You know how long N of your friends waited:  $T_1, T_2, ..., T_N$ 

How to estimate the parameter t? -> Maximum likelihood ©

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) =$$

w.r.t. t

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) = \prod_{i=1}^{N} \frac{1}{t+1}$$

w.r.t. *t* 

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) = \prod_{i=1}^{N} \frac{1}{t+1} \cdot I(T_i \le t)$$
 w.r.t.  $t$ 

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) = \prod_{i=1}^{N} \frac{1}{t+1} \cdot I(T_i \le t)$$
 w.r.t.  $t$ 

$$I(T_i \le t) \ne 0 \Rightarrow t \ge \max(T_1, ..., T_N) = T$$

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) = \prod_{i=1}^{N} \frac{1}{t+1} \cdot I(T_i \le t)$$
 w.r.t.  $t$ 

$$I(T_i \le t) \ne 0 \Rightarrow t \ge \max(T_1, ..., T_N) = T$$

$$\log L(t) = \sum_{i=1}^{N} \log \frac{1}{t+1} = -N \log(t+1)$$

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

• Your friends waited for  $T_1, T_2, ..., T_N$ 

maximize 
$$L(t) = \prod_{i=1}^{N} \frac{1}{t+1} \cdot I(T_i \le t)$$
 w.r.t.  $t$ 

$$I(T_i \le t) \ne 0 \Rightarrow t \ge \max(T_1, ..., T_N) = T$$

$$\log L(t) = \sum_{i=1}^{N} \log \frac{1}{t+1} = -N \log(t+1)$$

decreasing function, need the smallest t possible  $\Rightarrow \hat{t} = T = max(T_1, ..., T_N)$ 

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE:

| X    | 0       | 1       | • • • | t       |   |
|------|---------|---------|-------|---------|---|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) | c |

and 0 otherwise

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes

| X    | 0       | 1       | • • • | t       |                 |
|------|---------|---------|-------|---------|-----------------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) | and 0 otherwise |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes
- Your friends waited on average
   2.8 minutes

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$
- How long will you need to wait on average?

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes
- Your friends waited on average
   2.8 minutes

$$E(X) =$$

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$
- How long will you need to wait on average?

$$E(X) = \sum_{k=0}^{\hat{t}} k \cdot \frac{1}{\hat{t}+1} =$$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes
- Your friends waited on average
  2.8 minutes

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$
- How long will you need to wait on average?

$$E(X) = \sum_{k=0}^{\hat{t}} k \cdot \frac{1}{\hat{t}+1} = \frac{\hat{t}}{2}$$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes
- Your friends waited on average
   2.8 minutes

| X    | 0       | 1       | • • • | t       |
|------|---------|---------|-------|---------|
| P(X) | 1/(t+1) | 1/(t+1) | • • • | 1/(t+1) |

... and 0 otherwise

- Your friends waited for  $T_1, T_2, ..., T_N$
- MLE:  $\hat{t} = T = max(T_1, ..., T_N)$
- How long will you need to wait on average?

$$E(X) = \sum_{k=0}^{\hat{t}} k \cdot \frac{1}{\hat{t}+1} = \frac{\hat{t}}{2}$$

- Example: your friends waited for 0, 2, 4, 5, 10, 0, 2, 1, 3, 1 minutes.
- MLE: trains every 10 minutes
- Your friends waited on average
   2.8 minutes

You'll have to wait 5 minutes

- Takes values from 1 to n with equal Typical example: rolling a probabilities:
  - fair die

- Takes values from 1 to n with equal **Typical example:** rolling a probabilities:
  - fair die

$$P(X = k) = \begin{cases} \frac{1}{n}, & 1 \le k \le n \\ 0, & otherwise \end{cases}$$

$$E(X) =$$

- Takes values from 1 to n with equal Typical example: rolling a probabilities:
  - fair die

$$P(X = k) = \begin{cases} \frac{1}{n}, & 1 \le k \le n \\ 0, & otherwise \end{cases}$$

$$E(X) = \sum_{k=1}^{n} \frac{k}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

- Takes values from 1 to n with equal Typical example: rolling a probabilities:
  - fair die

$$P(X = k) = \begin{cases} \frac{1}{n}, & 1 \le k \le n \\ 0, & otherwise \end{cases}$$

 And if we roll two dice and consider a sum of the values we get?

$$E(X) = \sum_{k=1}^{n} \frac{k}{n} = \frac{1}{n} \cdot \frac{n(n+1)}{2} = \frac{n+1}{2}$$

## LOOKING FOR A BETTER MODEL

#### WE NEED A BETTER MODEL

- A model used in the previous example was too simple: waiting time can be not just 0, 1, 2, ... t minutes.
- We need a distribution that takes more values.

#### WE NEED A BETTER MODEL

- A model used in the previous example was too simple: waiting time can be not just 0, 1, 2, ... t minutes.
- We need a distribution that takes more values.

• In fact, we need out random variable to take infinite number of values...

#### FINITE SET OF VALUES

X ~ Bernoulli(p)

• X ~ Bi(n, p)

X ~ Uniform discrete (k)

#### FINITE SET OF VALUES

- X ~ Bernoulli(p)
  - 2 values
- X ~ Bi(n, p)
  - n+1 values
- X ~ Uniform discrete (k)
  - k (or k+1 as in our example) values

#### FINITE SET OF VALUES

- X ~ Bernoulli(p)
  - 2 values
- X ~ Bi(n, p)
  - n+1 values
- X ~ Uniform discrete (k)
  - k (or k+1 as in our example) values

#### **INFINITE SET OF VALUES**

- $X \sim Po(\lambda)$ 
  - 0, 1, 2, 3, ...
  - countable set of values

#### FINITE SET OF VALUES

- X ~ Bernoulli(p)
  - 2 values
- X ~ Bi(n, p)
  - n+1 values
- X ~ Uniform discrete (k)
  - k (or k+1 as in our example) values

#### **INFINITE SET OF VALUES**

- $X \sim Po(\lambda)$ 
  - 0, 1, 2, 3, ...
  - countable set of values
- ?
- uncountably many values

#### FINITE SET OF VALUES

- X ~ Bernoulli(p)
  - 2 values
- X ~ Bi(n, p)
  - n+1 values
- X ~ Uniform discrete (k)
  - k (or k+1 as in our example) values

#### **INFINITE SET OF VALUES**

- $X \sim Po(\lambda)$ 
  - 0, 1, 2, 3, ...
  - countable set of values
- Continuous distributions
  - uncountably many values

# CONTINUOUS UNIFORM DISTRIBUTION

• We want to model a random variable X that takes any value between a and b with equal probability.

• We want to model a random variable X that takes any value between a and b with equal probability.

• For example, let a = 0 and b = 10:



• We want to model a random variable X that takes any value between a and b with equal probability.

• For example, let a = 0 and b = 10:



• What's the expected value of such a variable?

• We want to model a random variable X that takes *any* value between a and b with equal probability.

• For example, let a = 0 and b = 10:



• What's the expected value of such a variable?

$$E(X) = (10 - 0)/2 = 5$$

• 
$$P(X \le 5) =$$



• 
$$P(X \le 5) = (5 - 0) / (10 - 0) =$$
  
= 0.5



• 
$$P(X \le 3) =$$



• 
$$P(X \le 3) = (3 - 0) / (10 - 0) =$$
  
= 0.3



• 
$$P(X \le -1) =$$



• 
$$P(X \le -1) = 0$$



• 
$$P(X \le 15) =$$



• 
$$P(X \le 15) = 1$$



• CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

• CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

$$F(x) = \begin{cases} 0, & x < a \\ & x = a \end{cases}$$

• CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

$$F(x) = \begin{cases} 0, & x < a \\ \end{cases}$$



 CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \end{cases}$$



• CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \end{cases}$$



 CUMULATIVE DISTRIBUTION FUNCTION (CDF):

$$F(x) = P(X \le x)$$

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$$



• Cumulative Distribution Function:

$$F(x) = P(X \le x)$$

• Which basic properties such a function has?

Cumulative Distribution Function:

$$F(x) = P(X \le x)$$

- Which basic properties such a function has?
  - $0 \le F(x) \le 1$
  - F(x) is non-decreasing

• Cumulative Distribution Function:

$$F(x) = P(X \le x)$$

- Which basic properties such a function has?
  - $0 \le F(x) \le 1$
  - F(x) is non-decreasing
- CDF defines a continuous distribution!

• 
$$P(X > 7) =$$

• 
$$P(X > 7) = 1 - P(X \le 7) =$$



• 
$$P(X > 7) = 1 - P(X \le 7) =$$
  
=  $1 - F(7) =$ 



• 
$$P(X > 7) = 1 - P(X \le 7) =$$

$$= 1 - F(7) =$$

$$= 1 - (7 - 0)/(10 - 0) =$$

$$= 1 - 0.7 = 0.3$$

• What's the probability  $P(3 < X \le 7)$ ?

• 
$$P(3 < X \le 7) =$$



• What's the probability  $P(3 < X \le 7)$ ?

• 
$$P(3 < X \le 7) = (7-3)/(10-0) =$$

$$= 0.4$$

• What's the probability  $P(3 < X \le 7)$ ?

• 
$$P(3 < X \le 7) = (7 - 3)/(10 - 0) =$$
  
= 0.4



In terms of CDF:

$$P(3 \le X \le 7) =$$

• What's the probability  $P(3 < X \le 7)$ ?

• 
$$P(3 < X \le 7) = (7 - 3)/(10 - 0) =$$
  
= 0.4



In terms of CDF:

$$P(3 \le X \le 7) =$$
  
=  $P(X \le 7) - P(X \le 3) =$ 

• What's the probability  $P(3 < X \le 7)$ ?

• 
$$P(3 < X \le 7) = (7 - 3)/(10 - 0) =$$
  
= 0.4



In terms of CDF:

$$P(3 \le X \le 7) =$$

$$= P(X \le 7) - P(X \le 3) =$$

$$= F(7) - F(3)$$

• What's the probability  $P(1 < X \le 2 \text{ or } 7 < X \le 9)$ ?

• 
$$P(1 < X \le 2 \text{ or } 7 < X \le 9) =$$



• What's the probability  $P(1 < X \le 2 \text{ or } 7 < X \le 9)$ ?

• 
$$P(1 < X \le 2 \text{ or } 7 < X \le 9) =$$

$$= F(2) - F(1) +$$

$$+ F(9) - F(7) =$$



• What's the probability  $P(1 < X \le 2 \text{ or } 7 < X \le 9)$ ?

• 
$$P(1 < X \le 2 \text{ or } 7 < X \le 9) =$$

$$= F(2) - F(1) +$$

$$+ F(9) - F(7) =$$

$$= 0.2 - 0.1 + 0.9 - 0.7 =$$

$$= 0.3$$



We've figured out so far that

• 
$$P(X \le x) = F(x)$$

We've figured out so far that

- $P(X \le x) = F(x)$
- $\cdot P(X > x) =$

We've figured out so far that

- $P(X \le x) = F(x)$
- P(X > x) = 1 F(x)

## **CDF**

We've figured out so far that

- $P(X \le x) = F(x)$
- P(X > x) = 1 F(x)
- $P(x1 < X \le x2) =$

## **CDF**

We've figured out so far that

- $P(X \le x) = F(x)$
- P(X > x) = 1 F(x)
- $P(x1 < X \le x2) = F(x2) F(x1)$

## **CDF**

We've figured out so far that

• 
$$P(X \le x) = F(x)$$

• 
$$P(X > x) = 1 - F(x)$$

• 
$$P(x1 < X \le x2) = F(x2) - F(x1)$$

But what's, for example, P(X = 5)?



• 
$$P(4 < X \le 6) =$$

• 
$$P(4 < X \le 6) =$$
  
=  $(6-4)/(10-0) = 0.2$ 



• 
$$P(4 < X \le 6) =$$
  
=  $(6-4)/(10-0) = 0.2$ 



• 
$$P(4.5 < X \le 5.5) =$$

• 
$$P(4 < X \le 6) =$$
  
=  $(6-4)/(10-0) = 0.2$ 



• 
$$P(4.5 < X \le 5.5) =$$
  
=  $(4.5 - 5.5)/(10 - 0) = 0.1$ 



• 
$$P(4 < X \le 6) =$$
  
=  $(6-4)/(10-0) = 0.2$ 



• 
$$P(4.5 < X \le 5.5) =$$
  
=  $(4.5 - 5.5)/(10 - 0) = 0.1$ 



• 
$$P(4.9 < X \le 5.1) =$$

• 
$$P(4 < X \le 6) =$$
  
=  $(6-4)/(10-0) = 0.2$ 



• 
$$P(4.5 < X \le 5.5) =$$
  
=  $(4.5 - 5.5)/(10 - 0) = 0.1$ 



• 
$$P(4.9 < X \le 5.1) =$$
  
=  $(4.9 - 5.1)/(10 - 0) = 0.02$ 



• 
$$P(X = 5) = ...$$
?

- We want to model a random variable X that takes any value between 0 and 10 with equal probability.
- But what's, for example, P(X = 5)?

• We want to model a random variable X that takes any value between 0 and 10 with equal probability.

- But what's, for example, P(X = 5)?
- Let's start with the discrete uniform distribution between 0 and 10: X takes n values between 0 and 10 with probability p = 1/n:

| n   | 2   | 3    |  |  |  |
|-----|-----|------|--|--|--|
| 1/p | 0.5 | 0.33 |  |  |  |

- We want to model a random variable X that takes any value between 0 and 10 with equal probability.
- But what's, for example, P(X = 5)?
- Let's start with the discrete uniform distribution between 0 and 10: X takes n values between 0 and 10 with probability p = 1/n:

| n   | 2   | 3    | 10  | 1000  | 100000  | • • • |  |
|-----|-----|------|-----|-------|---------|-------|--|
| 1/p | 0.5 | 0.33 | 0.1 | 0.001 | 0.00001 | •••   |  |

- We want to model a random variable X that takes any value between 0 and 10 with equal probability.
- But what's, for example, P(X = 5)?
- Let's start with the discrete uniform distribution between 0 and 10: X takes n values between 0 and 10 with probability p = 1/n:

| n   | 2   | 3    | 10  | 1000  | 100000  | • • • | $\infty$ |
|-----|-----|------|-----|-------|---------|-------|----------|
| 1/p | 0.5 | 0.33 | 0.1 | 0.001 | 0.00001 | •••   | 0        |

Continuous random variables can take uncountably many values, but...

The probability that a continuous random variable is equal to a particular value is 0!

So far, we've learned that:

Continuous random variables take uncountably many values.

• If X is a continuous random variable, P(X = x) = 0.

• Continuous distribution can be defined with a CDF.

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) =$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X \le x) = \sum_{i=1}^{n} I(x_i \le x) \cdot P(X = x_i)$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X \le x) = \sum_{i=1}^{n} I(x_i \le x) \cdot P(X = x_i)$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X \le x) = \sum_{i=1}^{n} I(x_i \le x) \cdot P(X = x_i)$$

$$F(x) = P(X \le x) =$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X \le x) = \sum_{i=1}^{n} I(x_i \le x) \cdot P(X = x_i)$$

$$F(x) = P(X \le x) = \begin{cases} x < 0 \\ 0 \le x < 1 \\ x \ge 1 \end{cases}$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X < x) = \sum_{i=1}^{n} I(x_i < x) \cdot P(X = x_i)$$

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0 \le x < 1 \\ x \ge 1 \end{cases}$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X < x) = \sum_{i=1}^{n} I(x_i < x) \cdot P(X = x_i)$$

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ x \ge 1 \end{cases}$$

- Actually, CDF can be defined also for a discrete random variable.
- X discrete, takes values  $x_1, x_2, ... x_n$

$$F(x) = P(X < x) = \sum_{i=1}^{n} I(x_i < x) \cdot P(X = x_i)$$

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

# EXPERIMENT WITH CDFs IN PYTHON

Google Classroom -> Probability mass functions and CDFs

#### TO SUM UP

- MLE for discrete uniform distribution
- Discrete vs continuous random variables
- CDF
  - for discrete
  - for continuous