סיכומי הרצאות ⁻ חדו"א 1א

מיכאל פרבר ברודסקי

		עניינים	זוכן
2	: כלליות	נוסחאוח	1
2	עליונים ותחתונים	חסמים י	2
2		. סדרות	3
2	הגדרת הגבול	3.1	
3		3.2	
3	טענות על גבולות	3.3	
3	מבחן ה[(שורש)(מנה)] (הגבולי)?	3.4	
4		3.5	
4	תתי סדרות	3.6	
4	3.6.1 גבולות חלקיים		
5		. טורים	4
5	טור חיובי	4.1	
5	מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? לטורים חיוביים	4.2	
6	טור מתכנס בהחלט	4.3	
6	טורי חזקות	4.4	
7	על טורים טענות נוספות על טורים	4.5	
7		פונקציור	5
7	הגדרת הגבול	5.1	
7	חשבון גבולות (דומה לסדרות)	5.2	
8	, גבולות שימושיים	5.3	
8	רציפות	5.4	
9	רציפות במ"ש (במידה שווה)	5.5	
9	נגזרת	5.6	
11	חקירת פונקציות	5.7	
11			
11	עליה וירידה 5.7.2		
11	בלל לופיטל	5.8	
11			
11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
12			6
12	היי זה לא הזה ממבוא מורחב?		J
12	יור און כאו וווון בובובות בוון ווב:	4.3	

1 נוסחאות כלליות

בינום:

א"ש הממוצעים:

 $rac{a_1+\cdots+a_n}{n}\geq \sqrt[n]{a_1\cdot\cdots\cdot a_n}\geq rac{n}{rac{1}{a_1}+\cdots+rac{1}{a_n}}$ לכל $(1+x)^n\geq 1+nx$ מתקיים $x>-1,n\in\mathbb{N}$

 $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

א"ש ברנולי: א"ש המשולש:

 $|a+b| \le |a| + |b|$

2 חסמים עליונים ותחתונים

 $.x \leq M$, $x \in A$ יקרא חסם מלעיל של A אם לכל M יקרא חסם מלרע של A אם לכל A יקרא חסם מלרע של A

אקסיומת השלמות: לכל קבוצה לא ריקה וחסומה מלעיל קיים חסם עליון קטן ביותר, ונסמן $\sup A$ אותו ב־

a < b < a < b כך ש־a < a < b כד שימושית: אם $b = \sup A$ אז לכל b < b < b < b

|b-a|<arepsilon בך ש־ $a\in A$ קיים קיים אברה: נאמר ש־B אם לכל אם לכל אם ולכל הגדרה: נאמר ש־

 $s(a,b)\cap S
eq \emptyset$, $a< b\in \mathbb{R}$ לכל R צפופה ב־ $S\subseteq \mathbb{R}$ צפופה ב

 $.q \in (a,b)$ טענה: לכל קיים q קיים a < b

a>0הוכחה: נניח ש־0. a>0 היי a>0 פ"- a>0. יהי a>0 המספר הקטן ביותר כך ש־a>0. יהי a<0 המספר הקטן אז a>0 אז בנוסף, בנוסף, $a+\frac{1}{k}<a+(b-a)=b$ ולכן $a+\frac{m-1}{k}<a+(b-a)=b$ וסיימנו. אם $a>\frac{m-1}{k}<a+(b-a)=b$ בנוסף, אם בוסף, אז a>0 בנוסיף אם $a+\frac{1}{k}<a+(b-a)=b$ ולכן אם $a+\frac{1}{k}<a+(b-a)=b$ בנוסיף את בנוסיף את בנוסיף את בוסיף את בוסי

[a,b]ענה: \mathbb{Q} צפופה ב־ \mathbb{R} ו־ $[a,b] \cap \mathbb{Q}$ צפופה ב

3 סדרות

 $(a_n)_{n=1}^\infty$ או ב־ (a_n) או

 $a_n \leq M$, מער שסדרה **חסומה מלעיל** אם קיים M כך שלכל

 $M \leq a_n$, אם כך שלכל M כל מלרע, אם היים M כל שלכל מסדרה אסומה נאמר

 $|a_n| \leq M$, אם כך שלכל M כד שסדרה מסומה אם קיים M

3.1 הגדרת הגבול

 $a_n o L$ אם: או $\lim_{n o \infty} a_n = L$ ונסמן, ונסמן, הוא (a_n) או נאמר שהגבול של

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. |a_n - L| < \varepsilon$$

 $\lim_{n \to \infty} a_n = \infty$ אם, אם, אוו $\lim_{n \to \infty} a_n = \infty$ ונסמן, הוא או (a_n) אוו נאמר שהגבול של

$$\forall M > 0. \exists n_0 \in \mathbb{N}. \forall n > n_0. a_n > M$$

L=L' אז $\lim_{n o\infty}a_n=L,\lim_{n o\infty}a_n=L'$ משפט (יחידות הגבול): אם

 $:\!L$ את בשבילו את בריך לדעת בשבילו את סדרות קושי: זהו תנאי שקול להתכנסות, שלא צריך לדעת בשבילו

$$\forall \varepsilon > 0. \exists n_0 \in \mathbb{N}. \forall m, n \geq n_0. |a_m - a_n| < \varepsilon$$

3.2 חשבון גבולות

ייהיו $a_n \rightarrow a, b_n \rightarrow b$ ש"ל סדרות כך ש"ל $(a_n), (b_n)$ יהיו

- $a_n + b_n \to a + b \bullet$
 - $a_n \cdot b_n \to a \cdot b$ •
- $b \neq 0$ אם $b_n \neq 0$ אם $\frac{a_n}{b_n} o \frac{a}{b}$

$$rac{1}{b_n}
ightarrow\infty$$
 אז $b=0$ לכל n לכל $b_n
eq 0$ אז b

- $|a_n| \rightarrow |a| \bullet$
- n לכל $a_n \geq 0$ אם $\sqrt{a_n} o \sqrt{a}$

3.3 טענות על גבולות

 $a \leq b$ אז: $a_n \leq b_n$ שינה: יהיו $a_n \leq b$ סדרות מתכנסות כך שי $a_n \in b$ אז:

 $x_n o x, y_n o x$ אם $x_n o x$ אם $x_n o x_n o x_n$ (כמעט) לכל הסנדוויץ': יהיו אם x_n, y_n, z_n סדרות כך ש־ x_n, y_n, z_n יהיו יהיו אז $x_n o x_n o x_n$

 $x_n o \infty$ אז $y_n o \infty$ ו ג $y_n o x_n \geq y_n$ הרחבה: אם

 $|a_n| > r$, $n > n_0$ כך שלכל n_0 כיים n_0 אז קיים $a_n \to L
eq 0$ טענה: תהי $a_n \to L
eq 0$

משפט (שטולץ): יהיו a_n,b_n סדרות כך ש־ a_n,b_n סדרות ווכ a_n,b_n או ש־ a_n,b_n סדרות מחנוטוניות מתכנסות ל-0.

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L$$
 אזי, אם
$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=L$$
 אזי, אם

3.4 מבחן ה[(שורש)(מנה)] (הגבולי)?

 $\lim_{n \to \infty} a_n = 0$ אזי $(a_n)^{1/n} \le \alpha$ כך ש־ $0 \le \alpha < 1$ וקיים $a_n \ge 0$ וקיים $a_n \ge 0$ לכל השורש $\lim_{n \to \infty} a_n^{1/n} = L^{-1}$ ו $a_n > 0$ מבחן השורש הגבולי: $a_n > 0$ ו־ $a_n > 0$ ר

- $\lim_{n o \infty} a_n = 0$ th L < 1 or ullet
- $\lim_{n \to \infty} a_n = \infty$ th L > 1 on ullet

אזי, $\lim_{n o \infty} rac{a_{n+1}}{a_n} = L$ ו וי $a_n > 0$ אזי,

- $\lim_{n \to \infty} a_n = 0$ th L < 1 or ullet
- $\lim_{n o\infty}a_n=\infty$ th L>1 o

משפט (דלאמבר): תהי (a_n) סדרה חיובית כך שי $\frac{a_{n+1}}{a_n}=c$ שיכחופי. אזי, תהי (a_n) משפט (דלאמבר): תהי (a_n) סדרה חיובית כך שי $\frac{n}{a_n}=c$

 $a_n > 0$ משפט המנה הכללי:

- $\lim_{n \to \infty} a_n = 0$ אז $a_{n+1} < La_n$ מסוים מסוים L < 1 כך שהחל
- $\lim_{n \to \infty} a_n = \infty$ אם קיים L > 1 כך שהחל ממקום מסוים L > 1 סיים •

סדרות מונוטוניות 3.5

 $a_n o \sup a_n$: מונוטונית עולה וחסומה מלעיל. אזיי מונוטונית עולה מונוטונית עולה וחסומה $a_n o \infty$:מונוטונית עולה ולא חסומה מלעיל. אזי: מונוטונית עולה ולא

תתי סדרות 3.6

 (a_n) סדרה ו (n_k) סדרה עולה ממש של טבעיים. אז $b_k=a_{n_k}$ תת סדרה של תולה ממש $(a_{n_k})_{k=1}^{\infty}$ ונסמן ב

משפט הירושה: תהי (a_n) סדרה ו־ (a_{n_k}) תת־סדרה.

- $a_{n_k} \to L$ th $a_n \to L$ dh ullet
- אם a_{n_k} מונוטונית עולה a_n מונוטונית עולה \bullet
 - אם a_{n_k} אם חסומה a_n •

משפט בולצנו־ויירשטראס: לכל סדרה חסומה יש תת־סדרה מתכנסת ומונוטונית. $\pm\infty$ אם הסדרה לא חסומה יש תת־סדרה מונוטונית מתבדרת ל

גבולות חלקיים 3.6.1

, האדרה: את קבוצת הגבולות קיימת $\hat{\mathcal{P}}\left(a_{n}\right)$ ביסמן בי $.a_{n_{k}}
ightarrow L$ אם קיימת הגבולות החלקיים, $\pm\infty$ את קבוצת הגבולות החלקיים בלי $\mathcal{P}(a_n)$ ונסמן

> $\lim \sup a_n = \overline{\lim} a_n = \sup \hat{\mathcal{P}}(a_n),$ $\liminf a_n = \underline{\lim} a_n = \inf \hat{\mathcal{P}}(a_n)$ בנוסף, נגדיר:

הערה: על פי בולצנו־ויירשטראס, תמיד קיים גבול חלקי

 $:\iff L=\limsup a_n$. חסומה (a_n) מענה שימושית: תהי

(חוץ ממספר סופי של איברים) כמעט ממיד $a_n < L + arepsilon$,arepsilon > 0 לכל |.1|

(באינסוף איברים) תופעה שכיחה $L-\varepsilon < a_n$, $\varepsilon > 0$ לכל .2

 $\{n \mid |a_n-L|<arepsilon\}$ אינסופית לכל $\iff (a_n)$ אינסופית גבול חלקי של

 \mathbf{o} טענה: (a_n) חסומה \mathbf{o} וווו \mathbf{o} \mathbf{o} \mathbf{o} ווווו \mathbf{o} ווווו סענה: \mathbf{o} וווווו סענה:

טענה: $-\infty/\infty \iff$ טענה מלעיל/מלרע אינה חסומה אינה מלעיל (a_n)

טענה: (a_n) מתכנסת במובן הרחב \iff יש גבול חלקי יחיד

 $\inf a_n \leq \liminf a_n \leq \limsup a_n < \sup a_n$ טענה: בסדרה חסומה,

 $(x_n)\subseteq B$ קבוצה סגורה אם לכל סדרה $B\subseteq \mathbb{R}$ קבוצה. נאמר שB $x_n \to x \implies x \in B$

. משפט: אם $\mathcal{P}\left(a_{n}
ight)$ קבוצה סגורה (a_{n}) אם משפט:

טורים 4

 $.s_n = \sum_{k=1}^n a_k$ החלקיים החכומים סדרת עדיר את סדרה. נגדיר את סדרת הסכומים s_n מתכנסת החלקיים החלקיים מתכנסת. באמר האדרה: נאמר ש־ $\sum_{k=1}^\infty a_k$

הערה: הטור הוא עצם נפרד מסדרת הסכומים החלקיים, אסור לבלבל ביניהם

|q|<1 עבור $\sum_{n=0}^{\infty}q^n=rac{1}{1-q}$ אבור הגיאומטרי:

 $a_n o 0$ טענה: אם $\sum a_n$ מתכנס

 $orall arepsilon>0. \exists n_0. orall m\geq n_0. orall p\in \mathbb{N}. \left|\sum_{k=m}^{m+p}a_k
ight|<arepsilon$ טורים:

חשבוו טורים:

- מתכנסי מתכנס $\sum (a_n+b_n)=K+L$ אם מתכנסים $\sum a_n=K, \sum b_n=L$
 - מתכנס אז $\sum aa_n=aL$ מתכנס $\sum a_n=L, lpha\in\mathbb{R}$

טור חיובי 4.1

n לכל $a_n \geq 0$ אם סור חיובי טור $\sum a_n$

משפט: טור חיובי מתכנס \iff חסומה מלעיל

משפט: יהי $\sum a_n$ טור חיובי. אם $\sum a_n$ מתכנס, אז כל טור שמתקבל מסידור מחדש של האיברים בו גם מתכנס ולאותו הגבול.

4.2 מבחן ה[(השוואה)(שורש)(מנה)] (הגבולי)? לטורים חיוביים

 $\sum a_n\succcurlyeq \sum b_n$ נסמן, $a_n\ge b_n$ נסמוים, אם החל ממקום טורים. אם החל $\sum a_n,\sum b_n$ ניהיו יהיו $\sum a_n\succcurlyeq \sum b_n$ שימון: יהיו ההשוואה לטורים חיוביים: יהיו $\sum a_n,\sum b_n$ טורים חיוביים כך שי

- מתכנס, $\sum b_n$ מתכנס $\sum a_n$ מתכנס.1
- מתבדר, מתבדר $\sum a_n$ מתבדר .2

 $\lim_{n o \infty} rac{a_n}{b_n} = L$ מבחן ההשוואה הגבולי לטורים חיוביים: יהיו יהיו יהיו יהיו יהיו מבחן ההשוואה הגבולי לטורים חיוביים:

- מתבדר אז גם $\sum b_n$ מתבדר אז גם בדר הם $\sum a_n$ מתכנס גם בתרה אז גם $\sum b_n$ מתבדר אז גם .1
- מתכנס אז גם הוא בה $\sum b_n$ מתכנס אז גם בדר אם הוא בה בדר גם המבדר מתבדר בה בה בה הוא גם $\sum b_n$ מתכנס אז גם .2
 - . אם יחדים מתכנסים ומתבדרים יחדיו. $L \in (0,\infty)$

0 < q < 1 יוהי חיובי טור חיובי יהי יהי חיוביים: מבחן השורש לטורים חיוביים: יהי

. אז $\sum a_n$ אז $\sum a_n$ אז מתכנס מסוים, אם החל ממקום מסוים,

מבחן השורש הגבולי לטורים חיוביים: יהי $\sum a_n$ טור חיובי.

- מתכנס $\sum a_n$ אז $\limsup \sqrt[n]{a_n} < 1$ מתכנס.1
- מתבדר $\sum a_n$ אז $\lim \sup \sqrt[n]{a_n} > 1$ מתבדר .2

 $a_n>0$ שבחן המנה לטורים חיוביים: יהי $a_n>0$ טור חיובי כך

- מתכנס מחור אז הטור מחור מסוים מסוים פר ט
 0 < q < 1 מתכנס מחור אם כל 0 < q < 1
 - מתבדר מחל אז הטור מחלים מסוים מסוים אז הטור מתבדר .2

 $a_n>0$ ש־ $a_n>0$ לכל מבחן המנה הגבולי לטורים חיוביים: יהי

- מתכנס $\sum a_n$ אז $\limsup rac{a_{n+1}}{a_n} < 1$ מתכנס .1
- מתבדר $\sum a_n$ אז $\lim\inf rac{a_{n+1}}{a_n} > 1$ מתבדר .2

(מונוטוני יורד חלש). $a_n \geq a_{n+1} \geq 0$ ש־ס טור חיובי יהי יהי חיוביים: יהי אוי, $\sum a_n$ מתכנס אם ורק אם $\sum 2^n a_{2^n}$ מתכנס אם ורק אם ורק אם יורק אם $\sum a_n$

4.3 טור מתכנס בהחלט

נאמר ש־ a_n מתכנס בהחלט אם $\sum |a_n|$ מתכנס. אם טור לא מתכנס בהחלט נאמר שהוא "מתכנס בתנאי"

טענה: אם $\sum a_n$ מתכנס בהחלט אז $\sum a_n$ מתכנס

$$.\overline{a}_n=rac{|a_n|+a_n}{2}, \underline{a}_n=rac{|a_n|-a_n}{2}$$
 טענה שימושית: נסמן

$$a_n \ge 0$$
 $\overline{a}_n = a_n$ $\underline{a}_n = 0$
 $a_n \le 0$ $\overline{a}_n = 0$ $\underline{a}_n = -a_n$

 $.a_n=\overline{a}_n-\underline{a}_n$ ומתקיים ש

.טענה: אם $\sum a_n$ מתכנסים אז $\sum \overline{a}_n, \sum \underline{a}_n$ מתכנס בהחלט. $\sum \overline{a}_n, \sum \underline{a}_n \to \infty$ אז מתכנס בתנאי, אז $\sum a_n$

4.4 טורי חזקות

.(או מתייחסים מחות מחליו), $\sum a_n \left(x-x_0\right)^n$ טור מהצורה מהצורה הוא טור מהצורה $\sum a_n x^n$

0 טור חזקות בהכרח מתכנס באיזשהו x, למשל

משפט (שנקרא רדיוס ההתכנסות) קיים "מספר" קיים ההתכנסות) לכל טור חזקות לכל ההתכנסות קיים "מספר" בהחלט, ולx>R, x<-R הטור מתבדר.

בנפרד בנפרד אבורם בנפרד לבדוק אמתייחס לה $\pm R$ לא מתייחס לבדוק משפט

טענות נוספות על טורים 4.5

 $A_1=$ טענה (הכנסת סוגריים): יהי $\sum a_n$ טור מתכנס ו־ n_k סדרה עולה של אינדקסים. נסמן $\sum a_n$ יהי יהי $\sum A_n$ אז הטור $\sum A_n$ אז הטור $\sum A_n$ אז הטור $\sum A_n$ אז הטור אז הטור מתכנס ולאותו הגבול.

טענה הפוכה: תהי (a_n) סדרה ור n_k מתכנס אז n_k מתכנס אז n_k מתכנס מחגריים, מתכנס מחגריים, בעלי אותו סימן אז הטענה ההפוכה נכונה המוכה בעלי אותו סימן אז הטענה ההפוכה נכונה מחגריים.

 $\sum a_n = (a_1+a_2) + (a_3+a_4+a_5) + \dots$ שימוש: בתנאים הנכונים,

 $\sum {(-1)}^n \, a_n$ אזי הטור ל־0. אי־שלילית אי־שלילית תהי תהי תהי תהי מתכנסים: תהי תהי משפט לייבניץ על טורים מתכנסים: תהי (a_n) סדרה אי־שלילית יורדת ל־0

 $\sum a_n b_n$ סענה: יהיו $(a_n)\,,(b_n)$ סדרות. כמתקיים: $\sum a_n b_n$ סדרות.

 $|s_n^a| < M$ ו היאי וה $b_n \nearrow 0$ וי Dirichlet תנאי

תנאי $\sum a_n$ מתכנס מונוטונית וחסומה ו b_n : Abel

משפט יהי היי לסדר את יהי ויתן לסדר את איברי ויהי אזי לכל הערכנס בתנאי. אזי לכל יהי ג $\sum a_n$ יהי וויהי וויהי ויהי איברי וויהי איברי את שאפילו איתכנס במובן הרחב. הטור כך שיתכנס ל־sאו שאפילו לא יתכנס במובן הרחב.

5 פונקציות

5.1 הגדרת הגבול

בשביל נקובה נקובה ש־ $f\left(x
ight)$ מוגדרת בסביבה נקובה כלשהי.

$\lim_{x \to x_0} f(x) = L$	$\forall \varepsilon > 0. \exists \delta > 0. \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\} . f(x) - L < \varepsilon$	Cauchy
$x \rightarrow x_0$	$f\left(x_{n} ight) ightarrow L$ אז אז $x_{n} ightarrow x_{0}$ אם נכל הפיבה I יו ווון סביבה $I\left(x_{n} ight)\subseteq I\setminus\{x_{0}\}$	Heine
$\lim_{x \to x_0^+} f(x) = L$	$\forall \varepsilon > 0. \exists \delta > 0. \forall x \in (x_0, x_0 + \delta). f(x) - L < \varepsilon$	Cauchy
	$f\left(x_{n} ight) ightarrow L$ れ $x_{0} < x_{n} ightarrow x_{0}$ つ $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine
$\lim_{x \to \infty} f(x) = L$	$\forall \varepsilon > 0. \exists M > 0. \forall x > M. f(x) - L < \varepsilon$	Cauchy
$x \rightarrow \infty$	$f\left(x_{n} ight) ightarrow L$ th $x_{n} ightarrow\infty$	Heine
$\lim_{x \to x_0^+} f(x) = -\infty$	$\forall M > 0.\exists \delta > 0. \forall x \in (x_0, x_0 + \delta). f(x) < -M$	Cauchy
$x \rightarrow x_0^+$	$f\left(x_{n} ight) ightarrow -\infty$ でれ $x_{0} < x_{n} ightarrow x_{0}$ つ $\left(x_{n} ight) \subseteq I \setminus \left\{x_{0} ight\}$	Heine

5.2 חשבון גבולות (דומה לסדרות)

 $\lim_{x o x_{0}}f\left(x
ight)=L_{1},\lim_{x o x_{0}}g\left(x
ight)=L_{2}$ יהיו $f,g:I\setminus\{x_{0}\} o\mathbb{R}$ יהיו

- $\lim_{x \to x_0} f(x) + g(x) = L_1 + L_2 \bullet$
 - $\lim_{x \to x_0} f(x) \cdot g(x) = L_1 \cdot L_2 \bullet$
- $\lim_{x o x_0}rac{f\left(x
 ight)}{g\left(x
 ight)}=rac{L_1}{L_2}$:($g\left(x
 ight)
 eq0$ אם $L_2
 eq0$ אם $L_2
 eq0$

 $f:I\setminus\{x_0\} o J\setminus\{y_0\}$ תהיינה $x_0\in I,y_0\in J$ ים פתוחים ו־ $x_0\in I,y_0\in J$ י קטעים פתוחים ו- $\lim_{x o x_0}g\left(f\left(x
ight)
ight)=L$, $\lim_{y o y_0}g\left(y
ight)=L$ ו־ $\lim_{x o x_0}f\left(x
ight)=y_0$ אם $g:J\setminus\{x_0\} o\mathbb{R}$ ו־ $g:J\setminus\{x_0\}$

5.3 גבולות שימושיים

- .(מחשבון גבולות) $\lim_{x \to x_0} \frac{p\left(x\right)}{q\left(x\right)} = \frac{p\left(x_0\right)}{q\left(x_0\right)}$, $\lim_{x \to x_0} x = x_0$ פולינומים: בגלל ש
 - $\lim_{x\to\infty}a^{1/x}=1$,a>0 עבור
 - $\lim_{x \to 0} \frac{\sin(x)}{x} = 1 \quad \bullet$

5.4 רציפות

 $f:I
ightarrow \mathbb{R}$ יהי I קטע פתוח ויהי $x_0 \in I$ יהי להי יהי הגדרה:

- $\lim_{x\to x_0}f\left(x\right)=f\left(x_0\right)$ אם x_0 רציפה ב־f רציפה ב-
- Iבים בכל נקודה ב־f אם f רציפה בכל נקודה ב־ \bullet

חשבון רציפות (נכון גם לחד־צדדי), ויהיו קטע פתוח וי $x_0\in I$ יהי ויהיו יהי לחד־צדדי), ויהיו $f,g:I\to\mathbb{R}$

- x_0 רציפה ב־ f+g .1
- x_0 רציפה ב־ $f \cdot g$.2
- x_0 בסביבת אז $rac{f}{g}$ רציפה ב־ $g\left(x
 ight)
 eq0$ אם 3.3

gבר x_0 ב אם f רציפה ב־ $f:A o\mathbb{R},g:B o\mathbb{R},x_0\in A$ אם אם הרכבה): יהיו $g\circ f:A o\mathbb{R},g:B o\mathbb{R}$ רציפה ב־ $g\circ f$ אם אם $g\circ f$ רציפה ב־ $g\circ f$ רציפה ב־

 $\lim_{x \to a^+} f\left(x
ight) = f\left(a
ight) \iff a$ רציפה מימין fר איז $f:[a,b) \to \mathbb{R}$ תהי תהי תימין/שמאל: $f:[a,b) \to \mathbb{R}$ רציפה בי $f:[a,b) \to \mathbb{R}$ רציפה בי $f:[a,b) \to \mathbb{R}$ רציפה מימין ומשמאל בי

מיון נקודות אי רציפות: תהי f מוגדרת ב־I ו־ x_0 נקודה פנימית.

- נאמר שיש ב־ x_0 אי רציפות סליקה כי $\lim_{x\to x_0}f(x)\neq f(x_0)$ אבל $\lim_{x\to x_0}f(x)$ נאמר שיש ב־1. אפשר לסלק אותה עם החלפת ערך אחד.
- נאמר שיש $\lim_{x\to x_0^+}f(x)\neq\lim_{x\to x_0^-}f(x)$ אבל $\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)$ נאמר שיש .2 נקודת אי־רציפות ממין ראשון.
 - .3 אינו קיים מכל סיבה אחרת, היא $\lim_{x \to x_0} f(x)$ אינו אינו פיים מכל

 $f:(a,b) o\mathbb{R}$ עולה.

- $\lim_{x\to b^-} f(x) = \sup (f(a,b))$ אם f חסומה מלעיל:
- $\lim_{x \to b^-} f(x) = \infty$:(a,b) ב־מלעיל ה

משפט: יהי f(I) קטע מוכלל ותהי $f:I\to\mathbb{R}$ רציפה ומונוטונית חזק. אזי קטע מוכלל ותהי ו־ $f:I\to\mathbb{R}$ קטע הוכלל ותהי $f^{-1}:f(I)\to I$

 $x_0\in I$ סענה: תהי $f:I\to\mathbb{R}$ אזי קיימים וסופיים $f:I\to\mathbb{R}$ אזי קיימים וסופיים וווו $\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)$

מתקיים ש־ $R\left(x
ight)=0$ שלכל ווכן פונקציית הימן פונקציית אינה ואינה ואינה ואינה רציפה באי־רציונאלים ואינה רציפה ברציונאלים.

משפט ויירשטראס: תהי $\mathbb{R} \to [a,b] \to f$ רציפה. אזי: f חסומה ומשיגה את חסמיה (כלומר משיגה מינימום ומקסימום בקטע).

משפט ערך הביניים של קושי: תהי $f:[a,b] o \mathbb{R}$ תהי של קושי: תהי $f:[a,b] o \mathbb{R}$ משפט ערך הביניים של החיים לואי: תהי $f(a) \leq t \leq f(b)$ מיים לואיים משפט ערך ש־ל קושי: תהי תהי אזי משפט ערך מיים של הביניים של החיים של החיים אזי

. קטע סגור $f\left[a,b
ight]$ קטע אז $f:\left[a,b
ight]
ightarrow\mathbb{R}$ מסקנה: אם

Aגם ב־($\lambda x_1 + (1-\lambda)\,x_2$) גם ביניהם ($\lambda x_1 + (1-\lambda)\,x_2$) גם ב־לי

. משפט: אם $f\left(I\right)$ קטע מוכלל אז $f:I o\mathbb{R}$ קטע מוכלל

5.5 רציפות במ"ש (במידה שווה)

הגדרה: תהי $\varepsilon>0$ קיים $\varepsilon>0$ קיים במידה שווה ב־A אם רציפה לכל , $f:A\to\mathbb{R}$ קיים לכל שלכל שלכל שלכל גיעה אווה ב-

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

 $[a,b] o \mathbb{R}$ במ"ש ב־ $f:[a,b] o \mathbb{R}$ משפט קנטור: תהי

קיים וסופי $\iff (a,b] + f$ רציפה במ"ש ב־ $f:(a,b] \to \mathbb{R}$ קיים וסופי . $\lim_{x \to a^+} f(x)$

. משפט: אם $f:[0,\infty)$ אז או $\lim_{x \to \infty} f(x)$ משפט: אם רציפה כך שקיים וסופי

(a,c)במ"ש ב־(a,b], אז f רציפה במ"ש ב־(a,b) רציפה במ"ש ב־

מסקנה: אפשר לעשות את כל הוריאציות של קטעים באמצעות איחוד קטעים - למשל, אם מסקנה: אפשר לעשות את כל הוריאציות של קטעים באמצעות איחוד במ"ש ב־(a,b) רציפה ב־(a,b) ו־(a,b) ו-(a,b) ו-

טענה: פונקציה רציפה במ"ש בקטע פתוח היא חסומה.

 $|f\left(x_{n}\right)-f\left(y_{n}\right)|
eq0$ אבל אבר ווער $|x_{n}-y_{n}| o 0$ בך שיטת הפרכה: למצוא שתי סדרות $|x_{n}-y_{n}|$ כך שיטת הפרכה:

5.6 נגזרת

 $\lim_{x \to x_0} rac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} rac{f(x_0 + h) - f(x_0)}{h}$ אם קיים וסופי $x_0 \in I$ ו ו $x_0 \in I$ ו ווווא מוגדרת בקטע פתוח $x_0 \in I$ ו ומסמן את הגבול ב־ $x_0 \in I$ ו (הגדרות שקולות), נאמר ש־ $x_0 \in I$ גזירה ב־ $x_0 \in I$ ונסמן את הגבול ב־ $x_0 \in I$

 $.x_0$ טענה: פונקציה גזירה ב־ x_0 רציפה ב

משפט רול: f(a)=f(b) אם f(a,b)=f(a,b) אז קיים $f:[a,b] o \mathbb{R}$ אז קיים f'(c)=0 עד f'(c)=0 כך שי

עבורה $c\in(a,b)$. קיימת (a,b) וגזירה ב־[a,b] וגזירה ב $f:[a,b] \to \mathbb{R}$ ובורה בורה בורה בורה בין נ $f:[a,b] \to \mathbb{R}$ וגזירה בין בורה בין נ $f:[a,b] \to \mathbb{R}$ וגזירה בין בורה בין נ $f:[a,b] \to \mathbb{R}$ וגזירה בין בורה בין נישור בין נ

משפט הערך הממוצע של קושי: יהיו $[a,b] o \mathbb{R}$ רציפות ב־[a,b] וגזירות ב-(a,b), ונניח משפט הערך הממוצע של קושי: יהיו $c \in (a,b)$ קיימת $c \in (a,b)$ קיימת $c \in (a,b)$ קיימת $c \in (a,b)$

f המשפטים האלה חזקים כי הם מקשרים בין הנגזרת לבין ערכים קונקרטיים של

5 פונקציות 5.6 נגזרת

יהי I קטע מוכלל ותהי $f:I \to \mathbb{R}$ גזירה. יהיו f:U כך יהי ניסי משפט ערך הביניים של יהיו f'(u) יהי f'(u) ל־יu בין u ל־יu בין u ל־יu בין u ל־כך בין u ל־כל בין u ל־כל בין u ל־כל בהכרח רציפה, היא עדיין תמיד מקיימת את משפט ערך הביניים.

 x_0 גזירה $f^{(n)}$, ו־ x_0 גזירה בסביבה $f,f^{(1)},\dots,f^{(n-1)}$ גזירה בסביבה f גזירה אז: $f,g:I\to\mathbb{R}$ גזירה בסעמים ב־f אז: יהי f קטע פתוח, f פתוח, f או גזירות f פעמים ב־f

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) \cdot g^{(n-k)}(x_0)$$

 $.(f \cdot g)' = f' \cdot g + g' \cdot f$ שזו הכללה של הכלל

כך $g:V\to\mathbb{R}$ ותהי $x_0\in\mathbb{R}$ ותהי $f:U\to\mathbb{R}$ כך $f:U\to\mathbb{R}$ גזירה של $f:U\to\mathbb{R}$ ותהי $f:U\to \mathbb{R}$ כך $g:V\to\mathbb{R}$ גזירה ב־ $f:U\to\mathbb{R}$ אזי $f:U\to\mathbb{R}$ גזירה ומתקיים:

$$\left(g\left(f\left(x_{0}\right)\right)\right)'=g'\left(f\left(x_{0}\right)\right)\cdot f'\left(x_{0}\right)$$

מדריך למהנדסים

$$\begin{array}{cccc} (\alpha f\left(x\right) + \beta g\left(x\right))' & \alpha f'\left(x\right) + \beta g'\left(x\right) \\ (f\left(g\left(x\right)\right))' & f'\left(g\left(x\right)\right) \cdot g'\left(x\right) \\ (f\left(x\right) \cdot g\left(x\right))' & f'\left(x\right) \cdot g\left(x\right) + g'\left(x\right) \cdot f\left(x\right) \\ & \frac{\left(\frac{f\left(x\right)}{g\left(x\right)}\right)'}{g\left(x\right)} & \frac{f'\left(x\right) \cdot g\left(x\right) - g'\left(x\right) \cdot f\left(x\right)}{\left(g\left(x\right)\right)^{2}} \\ \hline \left(x^{n}\right)' & n \cdot x^{n-1} \\ & \left(\ln x\right)' & \frac{1}{x} \\ & \left(\sin\left(x\right)\right)' & \cos\left(x\right) \\ & \left(\cos\left(x\right)\right)' & -\sin\left(x\right) \end{array}$$

f'(x)=g'(x) אם אם וגזירות בפנימו. אם $f,g:I o\mathbb{R}$ רציפות ב־I וגזירות בפנימו. אם משפט: יהי ועל מוכלל ותהיינה גינה איז קיים ב-c כך שלכל איז קיים ב-

$$f(x) = g(x) + c$$

. $\lim_{x \to a^+} f'(x) = l$ משפט: תהי \mathbb{R} תהי $f:[a,b) \to \mathbb{R}$ רציפה ב־ $f:[a,b) \to \mathbb{R}$ וגזירה ב-f'(a) = l ומתקיים: f'(a) = l אזי f גזירה מימין ב-f ומתקיים: f'(a) = l

 x_0 אם: x_0 אם: x_0 מוגדרת ב־ x_0 מוגדרת ב־ x_0 קטע פתוח ו־ x_0 אם: אם: אם: דיפרנציאביליות: תהי

- x_0 רציפה ב־ $f\left(x\right)$.1
- .($\lim_{x \to x_0} \frac{f(x) (ax + b)}{x x_0} = 0$,כלומר, כלומר, ax + b שהוא פירוב אשון ב-2

 $y = f'(x_0)(x - x_0) + f(x_0)$ ביפרנציאבלית ב־ x_0 גזירה ב־ x_0 גזירה ב- x_0 אירה ב־ x_0 דיפרנציאבלית ב-

. משפט: יהי I קטע פתוח, $f:I \to \mathbb{R}$, $x_0 \in I$ קטע פתוח, ורציפה

 $\left.\left(f^{-1}\left(y_{0}
ight)
ight)'=rac{1}{f'\left(x_{0}
ight)}$:ו $y_{0}=f\left(x_{0}
ight)$ גזירה ב־ $\left(f^{-1}\left(y_{0}
ight)
ight)'=f\left(x_{0}
ight)$ גזירה ב־ $\left(f^{-1}\left(y_{0}
ight)
ight)'=\frac{1}{f'\left(x_{0}
ight)}$ אם $\left(f^{-1}\left(y_{0}
ight)
ight)'=\frac{1}{f'\left(x_{0}
ight)}$

5.7 חקירת פונקציות

5.7.1 מינימום ומקסימום מקומי

 $f\left(x
ight)\geq f\left(x_{0}
ight)$, $x\in\left(x_{0}-\delta,x_{0}+\delta
ight)$ לכל מקומי מינימום מינימום מינימום $x_{0}\in I$

משפט היי $f:I\to\mathbb{R}$ יהי יהי $f:I\to\mathbb{R}$ יהי היי ועסע מוכלל ותהי ותהי $x_0\in I$ ותהי ותהי ודרה בכל נקודה בכל נקודה בכל היי יהי ודרה בכל נקודה פנימית ב־1. אם מינימום/מקסימום מקומי אז מרוב ביל ודרה בכל נקודה פנימית ב־1. אם מינימום/מקסימום מקומי אז מרוב ביל נקודה בכל נק

5.7.2 עליה וירידה

 $f'(x)\geq 0$,I קטע מוכלל, $f:I\to\mathbb{R}$ רציפה וגזירה בפנים I. אם לכל x בפנים I קטע מוכלל, $f:I\to\mathbb{R}$ (כ), אז f עולה (ממש) בכל

טענה: תהי $f'(x_0)>0$ ו־ x_0 בימת אם f' רציפה פנימית. אם $f:I\to\mathbb{R}$ אז קיימת $f:I\to\mathbb{R}$ אז קיימת סביבה של f עולה ממש.

5.8 כלל לופיטל

<u>"0"</u> **5.8.1**

יהיו בסביבה התנאים של x_0 של I של מנוקבת בסביבה התנאים היהיו f,g

$$\lim_{x \to x_0} f(x) = 0$$
 .1

$$\lim_{x\to x_0} g(x) = 0$$
 .2

$$x \in I$$
 לכל $g'(x) \neq 0$.3

(טופי או אינסופי)
$$\lim_{x o x_0}rac{f'(x)}{g'(x)}$$
 קיים.

$$\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}$$
 tx

$$\frac{"\infty"}{"\infty"}$$
 5.8.2

יהיו בסביבה מנוקבת I של x_0 כך שמתקיימים התנאים הבאים:

$$\lim_{x\to x_0} g(x) = \pm \infty$$
 .2

$$x \in I$$
 לכל $g'(x) \neq 0$.3

(סופי או אינסופי)
$$\lim_{x o x_0}rac{f'(x)}{g'(x)}$$
 קיים.

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 tx

טורי טיילור 6

6.1 היי זה לא הזה ממבוא מורחב?

(בניגוד לחלקים הקודמים אני לא במצב רוח לכתוב באופן יותר מדי פורמלי)

$$\lim_{x\to x_0} f(x) = 0, \lim_{x\to x_0} g(x) = 0$$
 יהיו

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$
 אס $f(x) = o(g(x))$

$$|f\left(x
ight)|\leq c\cdot|g\left(x
ight)|$$
 , x_{0} שבסביבה של $c>0$ קיים $f\left(x
ight)=O\left(g\left(x
ight)\right)$

(אין באמת שימושים ל־
$$O$$
 (אין באמת $f\left(x
ight) = O\left(g\left(x
ight)
ight) \wedge g\left(x
ight) = O\left(f\left(x
ight)
ight)$

6.2 באמת טורי טיילור אני מבטיח

אם x_0 ב מזדהות עד סדר gו ויgו ויgו האדרה: יהי ווא אם האדרה: היהי ווא הארח. אם האדרה: היהי ווא הארחה האדרה: היהי ווא הארחה הארחה

$$f\left(x
ight)-g\left(x
ight)=o\left(\left(x-x_{0}
ight)^{n}
ight)$$
 אז $\left(x-x_{0}
ight)^{n}$ מזדהות עד סדר $\left(x-x_{0}
ight)^{n}$ מענה: אם

משפט: קיים ויחיד $p_n\left(x\right)$ והנוסחה היא:

$$p_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

 $R_{n}\left(x
ight)=f\left(x
ight)-p_{n}\left(x
ight)$ הגדרה: נגדיר את השארית להיות

 $R_{n}\left(x
ight) =o\left(\left(x-x_{0}
ight) ^{n}
ight)$ משפט פאנו:

 $x_0 \in I$ משפט טיילור עם שארית לגרנז': יהי $x_0 \in I$ קטע פתוח, $x_0 \in I$ משפט טיילור עם שארית לגרנז': יהי $x_0 \in I$ קטע פתוח, $x_0 \neq x \in I$ אז לכל

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} (x - x_0)^{n+1}$$

, x_0 ל x בין x לכל x אולכל x בין אלכל אולכל מסקנה: אם היים ב־x ולכל עמים ב־x ולכל עמים בוות היים אולכל ווות $\lim_{n \to \infty} R_n\left(x\right) = 0$ אולכל אולכל אולכל ווות היים אולכל ווות היים אולכל אולכל אולכל אולכל ווות היים אולכל ווות היים אולכל או

לפי טיעון כזה מוכיחים שהשארית שואפת ל־0 ב- $e^x = \sum_{k=0}^\infty \frac{x^k}{k!}$ ולכן בעצם אפילו, פי $e^x = \sum_{k=0}^\infty \frac{x^k}{k!}$ את השגיאה.