电工技术与电子技术

第4章压弦交流电路

主讲教师: 刘玉英

阻抗的串联与并联

主讲教师: 刘玉英

阻抗的串联与并联

主要内容:

阻抗的串联与并联的概念及电路分析计算

重点难点:

阻抗串联与并联电路的电压电流的分析计算。

1. 阻抗的串联

$$\dot{U} = \dot{U}_1 + \dot{U}_2 = Z_1 \dot{I} + Z_2 \dot{I}$$
$$= (Z_1 + Z_2)\dot{I}$$

$$Z = Z_1 + Z_2 \qquad \dot{I} = \frac{\dot{U}}{Z}$$

通式:
$$Z = \sum Z_k = \sum R_k + j \sum X_k$$

注意: 对于阻抗模一般 $|Z| \neq |Z_1| + |Z_2|$

分压公式:

$$\dot{U}_1 = \frac{Z_1}{Z_1 + Z_2} \dot{U}$$
 $\dot{U}_2 = \frac{Z_2}{Z_1 + Z_2} \dot{U}$

例1: 有两个阻抗 $Z_1 = 6.16 + \mathbf{j}9\Omega$, $Z_2 = 2.5 - \mathbf{j}4\Omega$, 它们串联接 在 $\dot{U} = 220 / \underline{30}^{\circ}$ V的电源上,求: \dot{I} 和 \dot{U}_1 , \dot{U}_2 , 并作相量图。

解:
$$Z = Z_1 + Z_2 = (6.16 + 2.5) + j(9 - 4)$$

 $= 8.66 + j5 = 10/30^{\circ}\Omega$
 $\dot{I} = \frac{\dot{U}}{Z} = \frac{220\angle 30^{\circ}}{10\angle 30^{\circ}} = 22/0^{\circ}A$
 $\dot{U}_1 = Z_1\dot{I} = (6.16 + j9) \times 22$
 $= 10.9\angle 55.6^{\circ} \times 22$
 $= 239.8\angle 55.6^{\circ}V$

有两个阻抗 $Z_1 = 6.16 + j9\Omega$, $Z_2 = 2.5 - j4\Omega$, 它们串联接 在 $\dot{U}=220$ **/30°**V的电源上,求: \dot{I} 和 \dot{U}_1 , \dot{U}_2 ,并作相量图。

同理:
$$\dot{U}_2 = Z_2 \dot{I} = (2.5 - \text{j4}) \times 22 \text{V} = 103.6 / -58 \text{°V}$$

$$\dot{U} = 220 \angle 30^{\circ} \text{ V}$$

 $\dot{U}_1 = 239.8 \angle 55.6^{\circ} \text{V}$

$$\dot{U}_2 = 103.6 \angle -58^{\circ} \text{V}$$

注意:
$$\dot{U} = \dot{U}_1 + \dot{U}_2$$

$$U \neq U_1 + U_2$$

相量图

$$|Z| = 7\Omega$$
 $U = 14V$?

$$|Z| = \sqrt{3^2 + 4^2} = 5 \Omega$$

$$U = \sqrt{6^2 + 8^2} = 10 \text{ V}$$

$$|Z| = 10\Omega U = 70V$$
?

$$|Z| = 14 \Omega$$

$$U = 70V$$

两个阻抗串联时,在什么情况下: $|Z| = |Z_1| + |Z_2|$ 成立?

2. 阻抗并联

$$\dot{I} = \dot{I}_1 + \dot{I}_2 = \frac{\dot{U}}{Z_1} + \frac{\dot{U}}{Z_2} = \dot{U}(\frac{1}{Z_1} + \frac{1}{Z_2})$$

$$\dot{I} = \frac{\dot{U}}{Z}$$
 $\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2}$ $Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$

通式:
$$\frac{1}{Z} = \sum \frac{1}{Z_k}$$

注意: 对于阻抗模一般
$$\frac{1}{|Z|} \neq \frac{1}{|Z_1|} + \frac{1}{|Z_2|}$$

分流公式:
$$\dot{I}_1 = \frac{Z_2}{Z_1 + Z_2} \dot{I}$$
 $\dot{I}_2 = \frac{Z_1}{Z_1 + Z_2} \dot{I}$

例2: 有两个阻抗 $Z_1 = 3 + \mathbf{j}4\Omega$, $Z_2 = 8 - \mathbf{j}6\Omega$,它们并联接在 $\dot{U} = 220 / 0$ °V的电源上;求: \dot{I}_1 、 \dot{I}_2 和 \dot{I} ,并作相量图。

解:
$$Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2} = \frac{5/53^{\circ} \times 10/-37^{\circ}}{3 + j4 + 8 - j6} \Omega$$
$$= \frac{50/16^{\circ}}{11.8/-10.5^{\circ}} \Omega = 4.47/26.5^{\circ} \Omega$$

$$\dot{I} = \frac{U}{Z} = \frac{220 \angle 0^{\circ}}{4.47 \angle 26.5^{\circ}} = 49.2 \angle -26.5^{\circ} A$$

例2: 有两个阻抗 $Z_1 = 3 + \mathbf{j}4\Omega$, $Z_2 = 8 - \mathbf{j}6\Omega$,它们并联接在 $\dot{U} = 220/0^{\circ}\mathrm{V}$ 的电源上; 求: \dot{I}_1 、 \dot{I}_2 ,和 \dot{I}_3 ,并作相量图。

解:
$$\dot{I}_1 = \frac{\dot{U}}{Z_1} = \frac{220/0^{\circ}}{5/53^{\circ}} A = 44/-53^{\circ} A$$

$$\dot{I}_2 = \frac{\dot{U}}{Z_2} = \frac{22000^{\circ}}{102000} A = 222300^{\circ} A$$

$$\dot{I} = \dot{I}_1 + \dot{I}_2 = 44 / -53^{\circ} + 22 / 37^{\circ}$$

= 49.2 / -26.5° A

相量图

注意:
$$\dot{I} = \dot{I}_1 + \dot{I}_2$$

$$I \neq I_1 + I_2$$

$$\dot{I} = 49.2 \angle -26.5^{\circ} A$$

$$\dot{I}_{1} = 44 \angle -53^{\circ} A$$

$$\dot{I}_{2} = 22 \angle 37^{\circ} A$$

下列各图中给定的电路电流、阻抗是否正确?

$$|Z| = 2\Omega$$
 $I = 8A$?

$$|Z| = 4//4 = 2 \Omega I = 8A$$

$$|Z| = 2\Omega I = 8A?$$

$$Z = 4//j4$$
 Ω $|Z| = 4\sqrt{2} \Omega$
 $I = 4\sqrt{2} A$

两个阻抗并联,在什么情况下:
$$\frac{1}{|Z|} = \frac{1}{|Z_1|} + \frac{1}{|Z_2|}$$
 成立?

例3:图示电路中,已知 $X_I = X_{C} = R = 2\Omega$,电流表 A₁的读数为 3A,

- 试问(1) A,和A,的读数为多少?
 - (2) 并联等效阻抗 Z 为多少?

解:
$$X_L = X_C = R$$

所以
$$I_L = I_C = I_R$$
 $\dot{I}_L = -\dot{I}_C$ 因为 $\dot{I}_1 = \dot{I}_L + \dot{I}_R + \dot{I}_C$

所以
$$\dot{I}_1 = \dot{I}_R$$

$$I_{A2} = \sqrt{I_R^2 + I_C^2} = \sqrt{3^2 + 3^2} = 3\sqrt{2}A$$

小结

1. 阻抗串联

分压公式:
$$\dot{U}_1 = \frac{Z_1}{Z_1 + Z_2} \dot{U}$$
 $\dot{U}_2 = \frac{Z_2}{Z_1 + Z_2} \dot{U}$

$$\dot{\boldsymbol{U}}_2 = \frac{\boldsymbol{Z}_2}{\boldsymbol{Z}_1 + \boldsymbol{Z}_2} \dot{\boldsymbol{U}}$$

阻抗:
$$Z = Z_1 + Z_2$$
 对于阻抗模一般 $|Z| \neq |Z_1| + |Z_2|$

2. 阻抗并联

分流公式:
$$\dot{I}_1 = \frac{Z_2}{Z_1 + Z_2} \dot{I}$$
 $\dot{I}_2 = \frac{Z_1}{Z_1 + Z_2} \dot{I}$

$$\dot{I}_2 = \frac{Z_1}{Z_1 + Z_2} \dot{I}$$

阻抗:
$$Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$$

阻抗:
$$Z = \frac{Z_1 \cdot Z_2}{Z_1 + Z_2}$$
 对于阻抗模一般 $\frac{1}{|Z|} \neq \frac{1}{|Z_1|} + \frac{1}{|Z_2|}$