1

APPENDIX

PROOF OF THEOREM 1

We begin with the analysis of push operations. Define $\tau_{push}^{1\sim l}$ as the timestamp when $push^1$, $push^2$, ..., $push^l$ (written as $push^{1\sim l}$ as a whole) all finish. Obviously, there has

$$\tau_{push}^{1 \sim l} = \max_{1 \le i \le l} (\tau_{push}^i). \tag{1}$$

Claim 1. Mercury obtains the minimum $\tau_{push}^{1\sim l}$, $(1\leq l\leq L)$.

Mercury prioritizes $push_m$ over $push_n$ when m < n, for all $1 \le m, n \le L$. Hence, $push^{1 \sim l}$ are scheduled before $push^{l+1 \sim L}$. Given the assumption that the preemption action happens immediately, Mercury obtains minimum $\tau_{push}^{1 \sim l}$.

We next investigate the scheduling priority of pull operations. Let $\tau_{pull}^{1\sim l}$ be the timestamps when $pull^1$, $pull^2$, ..., $pull^l$ (denoted by $pull^{1\sim l}$ as a whole) all finish. Then, there exists

$$\tau_{pull}^{1\sim l} = \max_{1\leq i\leq l} (\tau_{pull}^i). \tag{2}$$

Lemma 1. Mercury obtains minimum the $\tau_{pull}^{1\sim l}$, $(1 \leq l \leq L)$.

Proof. For any feasible policy of scheduling pull operations, τ_{pull}^l can only be the same as or later than τ_{push}^l . Mercury obtains $\tau_{pull}^l = \tau_{push}^l$, which means $\tau_{pull}^{1\sim l} = \tau_{push}^{1\sim l}$. Then Lemma 1 is proved based on Claim 1.

We then move on to τ_{fp}^l calculated in Section 5.1, and repeated as below

$$\tau_{fp}^{l} = \begin{cases} \tau_{pull}^{l} + t_{upd}^{l} + t_{fp}^{l}, & l = 1; \\ \max\{\tau_{pull}^{l}, \tau_{fp}^{l-1}\} + t_{upd}^{l} + t_{fp}^{l}, & 2 \le l \le L. \end{cases}$$
(3)

We will show that the above equation can be represented equivalently as follows

$$\tau_{fp}^{l} = \begin{cases} \tau_{pull}^{l} + t_{upd}^{l} + t_{fp}^{l}, & l = 1; \\ \max\{\tau_{pull}^{1 \sim l}, \tau_{fp}^{l-1}\} + t_{upd}^{l} + t_{fp}^{l}, & 2 \le l \le L. \end{cases}$$
(4)

First of all, fp^l relies on $pull^l$ and fp^{l-1} , and fp^{l-1} relies on $pull^{l-1}$ and fp^{l-2} . Based on their recurrence relations, fp^l can not be executed before the accomplishment of $pull^1$, $pull^2$, ..., $pull^l$. Thus we have

$$\tau_{pull}^{1\sim l} < \tau_{fp}^{l}, 1 \le l \le L. \tag{5}$$

Case 1: $au_{pull}^{l} \leq au_{pull}^{1 \sim l-1} \; (2 \leq l \leq L).$ There exists

$$\tau_{pull}^{1\sim l} = \max\{\tau_{pull}^{1\sim l-1}, \tau_{pull}^{l}\} = \tau_{pull}^{1\sim l-1}.$$
 (6)

With Equation (5) and (6), we have

$$\begin{cases} \tau_{pull}^{l} \le \tau_{pull}^{1 \sim l-1} < \tau_{fp}^{l-1}, \\ \tau_{pull}^{1 \sim l} = \tau_{pull}^{1 \sim l-1} < \tau_{fp}^{l-1}. \end{cases}$$
 (7)

Equation (3) and (4) are equivalent by eliminating *max* using Equation (7).

Case 2: $\tau_{pull}^{l} > \tau_{pull}^{1 \sim l-1} \ (2 \leq l \leq L)$. There has

$$\tau_{pull}^{1\sim l} = \max\{\tau_{pull}^{1\sim l-1}, \tau_{pull}^{l}\} = \tau_{pull}^{l}.$$
(8)

Then Equation (3) and (4) are equivalent accordingly.

Lemma 2. Mercury obtains minimum τ_{fp}^l , $(1 \le l \le L)$.

Proof. It can be proved by induction on l using Equation (4). When l=1, substituting τ_{pull}^l by $\tau_{pull}^{1\sim l}$ in Equation (4), we have $\tau_{fp}^l=\tau_{pull}^{1\sim l}+t_{upd}^l+t_{fp}^l$. Then, considering

Lemma 1, Mercury obtains minimum τ_{fp}^l when l=1. Next we assume Lemma 2 holds true for l=n-1, which means Mercury obtains minimum τ_{fp}^{n-1} . We know Mercury obtains minimum $\tau_{pull}^{1\sim n}$ from Lemma 1. We have $\tau_{fp}^n = \max\{\tau_{pull}^{1\sim n}, \tau_{fp}^{n-1}\} + t_{upd}^n + t_{fp}^n$ from Equation (4). Therefore, Mercury obtains the minimum τ_{fp}^n , i.e., Lemma 2 holds true for l=n.

Given $t_{iter} = \tau_{fp}^L$, Mercury obtains the minimum t_{iter} , thus completing the proof of Theorem 1.