Im2win: An Efficient Convolution Paradigm on GPU

Shuai Lu 1 , Jun Chu 1 , Luanzheng Guo 2 , and Xu T. Liu $^{3[0000-0003-3980-9803]}$

Nanchang Hangkong University, Nanchang, Jiangxi Province, China 2016085400101@stu.nchu.edu.cn, chuj@nchu.edu.cn

² University of California Merced, California, USA 1guo4@ucmerced.edu

³ University of Washington, Seattle, Washington, USA x0@uw.edu

1 ARTIFACT DESCRIPTION

Our package has 4 parts: source code (src), unit test (test), log, and gnuplot for plotting figures (plot). Please refer to the Readme file in each part in the package.

2 Software Prerequisites

CMake >= 3.10 GCC >= 7.5.0 PyTorch == 1.10.0a0 CUDA == 11.1 cuBLAS == 11.2 cuDNN == 8.0.1 gnuplot bash

Where pytorch requires a compiled version in C++, using cublas or cuDNN to compile pytorch corresponding to different convolutional algorithm implementations.

3 Compiling and Running

The benchmark experiments used 12 different convolutions and we compared our im2win convolution algorithm with naive direct convolution, PyTorch's im2col-based algorithm using cuBLAS and cuDNN's convolution implementation on the benchmark.

3.1 How to compile.

Out of dir compilation: \$ cd im2win-CUDA \$ mkdir build \$ cd build \$ cmake .. \$ make Or run the script: \$ bash build.sh

3.2 How to run.

The compiled test benchmark can be run using the following command:

\$ cd im2win-CUDA

\$./build/demo

After executing this command, different convolutional algorithms will be run on the test benchmark and performance will be recorded, with the results output to the log folder.

3.3 Benchmarks.

In the test experiments, we use the wall-clock time in the standard C++ library to measure the runtime of different algorithms. The batch size of each benchmark input data is 128. All tensor data is generated by functions in PyTorch.

Plotting

After collecting the raw data into log files, we plotted the figures as they appeared in the paper. We have provided some gnuplot plotting scripts in the **plot** folder.