# **Title**

## D. Zack Garza

## Monday 10<sup>th</sup> August, 2020

## **Contents**

| 1 | Mod | Modules |                                                           |  |
|---|-----|---------|-----------------------------------------------------------|--|
|   | 1.1 | Genera  | Questions                                                 |  |
|   |     |         | Fall 2019 Final #2 $\dots$ 1                              |  |
|   |     |         | Spring 2018 #6                                            |  |
|   |     | 1.1.3   | Fall $2018 \# 6 \bowtie \dots $ $2018 \# 6 \bowtie \dots$ |  |
|   |     | 1.1.4   | Spring 2018 #7                                            |  |

## 1 Modules

#### 1.1 General Questions

#### 1.1.1 Fall 2019 Final #2

Consider the  $\mathbb{Z}$ -submodule N of  $\mathbb{Z}^3$  spanned by  $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 = [3, 1, 5]$ . Find a basis for N and describe  $\mathbb{Z}^3/N$ .

#### 1.1.2 Spring 2018 #6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- a. Show that N is a  $\mathbb{Z}$ -submodule of M .
- b. Find vectors  $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$  and integers  $d_1, d_2, d_3, d_4$  such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

c. Use the previous part to describe M/N as a direct sum of cyclic  $\mathbb{Z}$ -modules.

#### 1.1.3 Fall 2018 #6 ⋈

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with  $N \subseteq P \subseteq M$ .

- a. Show that an R-submodule N of M is maximal  $\iff M/N$  is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- b. Let M be a  $\mathbb{Z}$ -module. Show that a  $\mathbb{Z}$ -submodule N of M is maximal  $\iff \#M/N$  is a prime number.
- c. Let M be the  $\mathbb{Z}$ -module of all roots of unity in  $\mathbb{C}$  under multiplication. Show that there is no maximal  $\mathbb{Z}$ -submodule of M.

Solution.

a

By the correspondence theorem, submodules of M/N biject with submodules A of M containing N.

So

- M is maximal:
- $\iff$  no such (proper, nontrivial) submodule A exists
- $\iff$  there are no (proper, nontrivial) submodules of M/N
- $\iff M/N$  is simple.

b

Identify  $\mathbb{Z}$ -modules with abelian groups, then by (a), N is maximal  $\iff M/N$  is simple  $\iff$  M/N has no nontrivial proper subgroups.

By Cauchy's theorem, if |M/N| = ab is a composite number, then  $a \mid ab \implies$  there is an element (and thus a subgroup) of order a. In this case, M/N contains a nontrivial proper cyclic subgroup, so M/N is not simple. So |M/N| can not be composite, and therefore must be prime.

c Let  $G = \{x \in \mathbb{C} \mid x^n = 1 \text{ for some } n \in \mathbb{N} \}$ , and suppose H < G is a proper subgroup.

Then there must be a prime p such that the  $\zeta_{p^k} \notin H$  for all k greater than some constant m – otherwise, we can use the fact that if  $\zeta_{p^k} \in H$  then  $\zeta_{p^\ell} \in H$  for all  $\ell \leq k$ , and if  $\zeta_{p^k} \in H$  for all p and all p then p and all p then p is p and p and p and p and p and p are p in p and p in p in p and p and p in p in p and p in p in

But this means there are infinitely many elements in  $G \setminus H$ , and so  $\infty = [G:H] = |G/H|$  is not a prime. Thus by (b), H can not be maximal, a contradiction.

#### 1.1.4 Spring 2018 #7.

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called  $\langle p \rangle$ -primary if for every  $m \in M$  there exists k > 0 such that  $p^k m = 0$ .

a. Suppose M is  $\langle p \rangle$ -primary. Show that if  $m \in M$  and  $t \in R$ ,  $t \notin \langle p \rangle$ , then there exists  $a \in R$  such that atm = m.

b. A submodule S of M is said to be *pure* if  $S \cap rM = rS$  for all  $r \in R$ . Show that if M is  $\langle p \rangle$ -primary, then S is pure if and only if  $S \cap p^k M = p^k S$  for all  $k \geq 0$ .