National University of Computer and Emerging Sciences Lahore Campus

Sessional-II Exam Compiler Construction Total Time (Hrs): 1 (CS4031)**Total Marks:** 30 Date: April 5th 2024 **Total Questions:** 4 **Course Instructor(s)** Dr. Faisal Aslam Roll No Section **Student Signature** Do not write below this line Attempt all the questions. Using calculator is not allowed Cheat sheet(s) are not allowed

1. **SLR Parsing**: Given CFG:

$$[3+2+3+1=9 \text{ Marks}]$$

$$S \to X \mid ay$$
$$X \to xXy \mid Y$$
$$Y \to a$$

- (a) Create LR(0) automaton
- (b) Specify any conflicts in LR(0) automaton and their types
- (c) Create predictive parsing table for SLR.
- (d) Is the grammar SLR or not? Give reason(s).

a)

Figure 1: IMPORTANT NOTE: In the diagram I4 is incorrect. It should have production $x \to .xXy$ and a self-loop on small x. Otherwise, it is correct. I am too lazy to recreate it. Sorry about it.

- b) There is a shift-reduce conflict in State-3
- **c**)
- d) The grammar is not SLR as the conflict remains in the parsing table.

- · · · · · · · · · · · · · · · · · · ·					IR	OTO		
States	. A	CTIE		#			1 4	
	a	×	7	#	S	X	5	1000
0	53	54	<i>S</i> 5		1	2	5	Follow (Y)
1				A				= Follow (x) (s)
			33	-61	1	1111		_ = {4, \$3
2		-	S6 S6	75				Follow (x)
3	-					7	5	= {y, \$3
4	59	1				1		
5			84	84				Follow (5)
-6				82				= {\$7
7			58					(1) S→X
- 8	-		83	83				-(2) 5 -ay
	1		75	55			A A	3 X-> x Xy
9	-		-				1	1 X -> Y
								⑤ Y→a
CE diseased with Cartificanse								

2. LALR Parsing: Given CFG:

$$S \rightarrow SS + \mid SS * \mid a$$

- (a) Create LR(1) automaton
- (b) Create predictive Parsing table for CLR
- (c) Create predictive Parsing table for LALR
- (d) Use LARL parsing algorithm and create parse tree for string aaa*+. Must show the data structures and all the steps.


```
1: a = 1

2: b = a + 1

3: IF a < b GOTO 7

4: a = a + b

5: c = a + 1

6: k = 5

7: GOTO 10

8: b = b + 1

9: c = c + 1

10: IF c < 10 GOTO 4

11: a = 0

12: b = 0
```

3. Create Control Flow Graph of the three address code given above.

[4 Marks]

	States		Actio	5 × 5		GoTO
	31210)	+	*	a	\$	S
	0			S2		1
	1			S4		3
	2_			₹3	83	
	3	55	56	54		7-
	4	73	73	83		
	5			81	81	
	6			72	82	
7		S8	Sq			7
	8	الا	21	٦١		
9		72	. 82	12		
		1,			•	'Y

National University of Computer and Emerging Sciences

```
1: x = 9 + 2

2: y = sin(90) + cos(90)

3: t1 = x + y

4: t2 = t1 * 2

5: t3 = m

6: t4 = t3 + k

7: a = t3 * 16

8: b = z-(-b)

9: r = m + k
```


4. Given the above basic block, perform 1) constant folding, 2) copy/constant propagation, 3) common subexpression elimination, and 4) arithmetic simplification optimizations. Clearly label each optimization to show your working.

[5 Marks]

8:
$$b = z - (-b)$$

5:
$$t^3 = m$$
6: $t^4 = m + k$
7: $a = m + k$
(2),(4)