Part II - Number Theory Lectured by Prof. T. A. Fisher

Artur Avameri

Lent 2022

Contents

0	Introduction	2
1	Euclid's algorithm and factoring	3
2	Congruences	5
	2.1 Polynomial congruences	9

0 Introduction

06 Oct 2022, Books: Lecture 1

• A. Baker, A concise introduction to the theory of numbers, CUP 1984

- N. Koblitz, A course in number theory & cryptography, Springer 1994
- H. Davenport, The higher arithmetic, CUP 2008

Number theory studies the hidden and mysterious properties of the integers and the rational numbers.

It has always been an experimental science. Examining numerical data leads to **conjectures**, many of which are very old and still unproven today.

Example 0.1. (i) Let $N \ge 1$ be an integer of the form 8n + 5, 8n + 6 or 8n + 7. Does there exist a right-angled triangle of area N, all of whose sides have rational length? We don't know.

- (ii) Let $\pi(x)$ be the number of primes less than or equal to x and define $\operatorname{li}(x) = \int_2^x \frac{dt}{\log t}$. Then for all $x \geq 3$, $|\pi(x) \operatorname{li}(x)| \leq \sqrt{x} \log x$. This is in fact equivalent to the Riemann hypothesis.
- (iii) There are infinitely many twin primes. We now know there is an integer $N \leq 246$ such that there are infinitely many pairs of primes the form p,p+N.

1 Euclid's algorithm and factoring

Definition 1.1 (Division algorithm). Given $a, b \in \mathbb{Z}$, with b > 0, there exist $q, r \in \mathbb{Z}$ such that a = qb + r, and $0 \le r < b$.

Notation. If r = 0, then we write b|a, else $b \nmid a$.

Proof. Let $S = \{a - nb \mid n \in \mathbb{Z}\}$. This certainly contains integers ≥ 0 , so take the smallest one r. We claim r < b. Indeed, if not, then $r - b \geq 0$, contradicting minimality. \Box

Given $a_1, \ldots, a_n \in \mathbb{Z}$ not all zero, let $I = \{\lambda_1 a_1 + \ldots + \lambda_n a_n \mid \lambda_i \in \mathbb{Z}\}.$

Lemma 1.2. $I = d\mathbb{Z}$ for some d > 0.

Proof. I certainly contains integers ≥ 0 . Let d be the least positive element of I. We claim it works. Take $a \in I$, then a = qd + r with $0 \leq r < d$. But $r = a - qd \in I \implies r = 0$.

Remark. We get from this that d divides each a_i , and any common divisor of the a_i must divide d. Why?

We write $d = \gcd(a_1, \ldots, a_n)$ for the **greatest common divisor** (or **highest common factor**), or just use the shorthand $d = (a_1, \ldots, a_n)$.

Corollary 1.3. Let $a, b, c \in \mathbb{Z}$. Then there exist $x, y \in \mathbb{Z}$ such that ax + by = c if and only if (a, b)|c.

The division algorithm gives a very efficient way to compute (a, b). Assume a > b > 0. Apply the division algorithm recursively to get

$$a = q_1b + r_1 \qquad 0 \le r_1 < b$$

$$b = q_2r_1 + r_2 \qquad 0 \le r_2 < r_1$$

$$r_1 = q_3r_2 + r_3 \qquad 0 \le r_3 < r_2$$

$$\vdots$$

$$r_{k-2} = q_kr_{k-1} + r_k \qquad 0 \le r_k < r_{k-1}, r_k \ne 0$$

$$r_{k-1} = q_{k+1}r_k + 0$$

Claim. $r_k = (a, b)$. Indeed, $(a, b) = (b, r_1) = (r_1, r_2) = \dots = (r_{k-1}, r_k) = r_k$. This is called **Euclid's algorithm**.

Remark. If d=(a,b), then by Lemma 1.2, there exist $r,s\in Z$ such that ra+st=d. Euclid's algorithm gives us a way to find r and s.

In the following table, x and y stand for 34 and 25, and we then compute remainders as linear combinations of them.

We can use a trick here to speed this up: find each row as q the row before it + the second row before it, then figure out signs at the end. (In fact, the minus signs zigzag down).

$$\begin{array}{c|cccc} a = 34 & x & y \\ b = 25 & 0 & 1 \\ 34 = 1 \cdot 25 + 9 & 1 & -1 \\ 25 = 2 \cdot 9 + 7 & -2 & 3 \\ 9 = 1 \cdot 7 + 2 & 3 & -4 \\ 7 = 3 \cdot 2 + 1 & -11 & 15 \end{array}$$

We hence get $-11 \cdot 34 + 15 \cdot 25 = 1$.

Definition 1.4. An integer n > 1 is **prime** if its only positive divisors are 1 and n. Otherwise n is **composite**.

Lemma 1.5. Let p be a prime, and $a, b \in \mathbb{Z}$. If p|ab, then $p \mid a$ or $p \mid b$.

Proof. Assume $p \nmid a$. Then (a, p) = 1. By Lemma 1.2, $\exists r, s \in \mathbb{Z}$ such that $ra + sp = 1 \implies rab + spb = b$. Since $p \mid ab, p \mid b$ follows.

Theorem 1.6 (Fundamental Theorem of Arithmetic). Every integer n > 1 can be written as a product of primes. This representation is unique up to reordering.

Proof. Existence is obvious. For uniqueness, suppose $n = p_1 p_2 \dots p_r = q_1 q_2 \dots q_s$ for p_i, q_i primes. We have $p_1 \mid q_1 q_2 \dots q_r$, so by Lemma 1.5, $p_1 \mid q_j$ for some j, so $p_1 = q_j$. Now cancel these out and induct.

Remark. If $m = \prod_{i=1}^k p_i^{\alpha_i}$ and $n = \prod_{i=1}^k p_i^{\beta_i}$ for p_i distinct primes and $\alpha_i, \beta_i \geq 0$, then

$$(m,n) = \prod_{i=1}^{k} p_i^{\min(\alpha_i,\beta_i)}.$$

However, if m and n are large, it is more efficient to compute (m,n) using Euclid's algorithm.

08 Oct 2022, Lecture 2

Suppose we have some large positive integer N. An obvious algorithm for factoring N is to trial divide by 2 and the odd integers up to \sqrt{N} .

Definition 1.7. An algorithm with input a positive integer N is **polynomial** or a **polynomial time** algorithm if it takes $\leq c(\log N)^b$ **elementary operations** for some constants b and c.

Remark. An elementary operation is just adding/multiplying two numbers in $\{0, 1, \ldots, 9\}$.

Remark. "Polynomial" makes sense here as it takes $\log N$ digits to write N.

Polynomial algorithms are known for:

- Adding and multiplying integers (the usual way);
- Computing gcd's (via Euclid's algorithm);
- Detecting n^{th} powers (compute \sqrt{n} numberically and round)
- More remarkably, primality testing (Agrawal, Kayal, Saxena in 2002)

But trial division up to \sqrt{N} is not polynomial.

Fundamental question: Is there a polynomial time algorithm for factoring? This is unknown.

Later in this course we study the distribution of the prime numbers, in particular the function $\pi(x)$, the number of primes $\leq x$.

Theorem 1.8. There are infinitely many prime numbers, i.e. $\lim_{x\to\infty} \pi(x) \to \infty$.

Proof. Suppose there are only finitely many, say p_1, \ldots, p_k . Consider $N = \prod_{i=1}^k p_i + 1$. Then N must be divisible by some prime other than the p_i , so we're done.

All the largest known primes are of the form $2^n - 1$ for n a prime. These are called **Mersenne primes**. 51 of them are known, the largest being $2^{82589933} - 1$.

2 Congruences

Fix a positive integer n (the modulus).

Definition 2.1. We say $a \equiv b \pmod{n}$, or that a is congruent to $b \pmod{n}$ if n divides a - b.

This defines an equivalence relation on \mathbb{Z} , and we write $\mathbb{Z}/n\mathbb{Z}$ for the set of equivalence classes. We can denote these by $a + n\mathbb{Z}$, or (more commonly) by $a \pmod{n}$. We can check that addition and multiplication are well-defined.

Remark. $n\mathbb{Z}$ is a subgroup/ideal of \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ is the quotient group/ring.

Lemma 2.2. Let $a \in \mathbb{Z}/n\mathbb{Z}$. Then the following are equivalent:

- (i) (a, n) = 1
- (ii) $\exists b \in \mathbb{Z} \text{ such that } ab \equiv 1 \pmod{n}$
- (iii) a is a generator for $\mathbb{Z}/n\mathbb{Z}$.

Proof. (i) \Longrightarrow (ii): $(a,n)=1 \Longrightarrow \exists r,s \in \mathbb{Z} \text{ such that } ra+sn=1, \text{ so } ra\equiv 1 \pmod{n}$.

- (ii) \Longrightarrow (i): $ab \equiv 1 \pmod{n} \implies ab + kn = 1 \text{ for some } k \in \mathbb{Z} \implies (a,b) = 1.$
- (ii) \iff (iii): $\exists b \in \mathbb{Z} \text{ s.t. } ab \equiv 1 \pmod{n} \iff 1 \text{ belongs to the subgroup of } \mathbb{Z}/n\mathbb{Z} \text{ generated by } a.$

Notation. $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is the group of **units** in $\mathbb{Z}/n\mathbb{Z}$, i.e. the elements with an inverse under multiplication.

Definition 2.3. $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$ is called the **Euler totient function**. We also have $\phi(n) = |\{1 \le a \le n \mid (a, n) = 1\}|$.

Remark. $\mathbb{Z}/n\mathbb{Z}$ is a field $\iff \phi(n) = n - 1 \iff n$ is prime.

Theorem 2.4 (Euler-Fermat theorem). If (a, n) = 1, then $a^{\phi(n)} \equiv 1 \pmod{n}$.

Proof. Apply Lagrange's theorem to the group $G = (\mathbb{Z}/n\mathbb{Z})^{\times}$. Then for $a \in G$, its order divides $|G| = \phi(n)$.

As a corollary:

Theorem 2.5 (Fermat's little theorem). If $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$.

Lemma 2.6. Let G be a cyclic group of order n. We have

$$|\{g \in G \mid \operatorname{order}(g) = d\}| = \begin{cases} \phi(d) & \text{if } d \mid n \\ 0 & \text{otherwise} \end{cases}$$

In particular, $\sum_{d|n} \phi(d) = n$.

Proof. WLOG let $G = (\mathbb{Z}/n\mathbb{Z}, +)$. We have $|\{g \in G \mid \operatorname{order}(g) = n\}| \stackrel{(*)}{=} \phi(n)$ by Lemma 2.2. If $d \mid n$, say n = dk, then the elements of order dividing d are the classes $0, k, 2k, \ldots, (d-1)k \pmod{n}$. These form a cyclic subgroup of order d. Applying (*) to this cyclic subgroup shows that there are $\phi(d)$ elements of order d.

Example 2.7. Consider the simultaneous linear congruences $x \equiv 7 \pmod{10}$ and $x \equiv 3 \pmod{13}$. Suppose we can find $u, v \in \mathbb{Z}$ such that

$$\begin{cases} u \equiv 1 \pmod{10} \\ u \equiv 0 \pmod{13} \end{cases}, \begin{cases} v \equiv 0 \pmod{10} \\ v \equiv 1 \pmod{13} \end{cases}.$$

Then x = 7u + 3v is a solution. But $(10, 13) = 1 \implies \exists r, s \in \mathbb{Z}$ such that 10r + 13s = 1, and we can just take u = 13s, v = 10r. To find r, s, we can use Euclid's algorithm to get r = 4, s = -3, so u = -39, v = 40, and so $x \equiv 7 \cdot (-39) + 3 \cdot 40 \equiv 107 \pmod{130}$.

11 Oct 2022, Lecture 3

Theorem 2.8 (Chinese Remainder Theorem). Let m_1, \ldots, m_k be pairwise coprime integers greater than 1. Let $a_1, \ldots, a_k \in \mathbb{Z}$. Let $M = m_1 m_2 \ldots m_k$. Then $\exists x \in \mathbb{Z}$ satisfying

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}$$

Moreover, the solution is unique mod M.

Proof. Uniqueness: Suppose $x \equiv x' \pmod{m_i} \ \forall i$. Then by considering the prime factorization of x-x' and using the fact that the m_i are pairwise coprime, we get $x \equiv x' \pmod{M}$.

Existence: Put $M_i = \frac{M}{m_i}$, so $(M_i, m_i) = 1 \,\forall i$. Hence we can find $u_i \in \mathbb{Z}$ such that $u_i M_i \equiv 1 \pmod{m_i} \,\forall i$. Let $x = \sum_{j=1}^k a_j u_j M_j$. Then $x \equiv a_i u_i M_i \equiv a_i \pmod{m_i}$.

We can write this theorem in one ling using ring theory.

Definition 2.9. Let $R_i = \mathbb{Z}/m_i\mathbb{Z}$, and define $R_1 \times \ldots \times R_k = \{(r_1, \ldots, r_k) \mid r_i \in R_i\}$ with addition and multiplication defined componentwise. This is a ring.

Theorem 2.10 (CRT, ring-theoretic version). Let m_1, \ldots, m_k be pairwise coprime integers greater than 1 and put $M = m_1 \ldots m_k$. Then the map

$$\theta: \mathbb{Z}/M\mathbb{Z} \to \mathbb{Z}/m_1\mathbb{Z} \times \ldots \times \mathbb{Z}/m_k\mathbb{Z}$$

 $a + M\mathbb{Z} \mapsto (a + m_1\mathbb{Z}, \ldots, a + m_k\mathbb{Z})$

is an isomorphism of rings.

Proof. θ is a well defined ring homomorphism since $m_i|M$ $\forall i$. Injectivity of θ follows from uniqueness in CRT, and surjectivity of θ follows from existence in CRT.

Corollary 2.11. θ induces an isomorphism of groups under multiplication

$$(\mathbb{Z}/m\mathbb{Z})^{\times} \cong (\mathbb{Z}/m_1\mathbb{Z})^{\times} \times \ldots \times (\mathbb{Z}/m_k\mathbb{Z})^{\times}$$

 $a + M\mathbb{Z} \mapsto (a + m_1\mathbb{Z}, \ldots, a + m_k\mathbb{Z}).$

Remark. If $a \in \mathbb{Z}$, then $(a, M) = 1 \iff (a, m_i) = 1 \ \forall i$.

In particular, by looking at orders of the LHS and the RHS above, we get $\phi(M) = \phi(m_1) \dots \phi(m_k)$, i.e. the Euler phi function is multiplicative.

Definition 2.12. A function $f: \mathbb{Z}^+ \to \mathbb{C}$ is **multiplicative** if f(m) = f(m)f(n) whenever (m, n) = 1.

Examples:

- $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|;$
- $\tau(n) = \sum_{d|n} 1$, the number of divisors of n;
- $\sigma(n) = \sum_{d|n} d$, the sum of divisors of n;
- more generally, $\sigma_k(n) = \sum_{d|n} d^k$, so $\sigma_0 = \tau$ and $\sigma_1 = \sigma$.

To prove this:

Lemma 2.13. If $f: \mathbb{Z}^+ \to \mathbb{C}$ is multiplicative, then so is $g: \mathbb{Z}^+ \to \mathbb{C}$, defined by $g(n) = \sum_{d|n} f(d)$.

Proof. Let m, n be coprime. Note that every divisor d of mn can be written as $d = d_1 d_2$, where $d_1 \mid m, d_2 \mid n$ and $(d_1, d_2) = 1$. Thus

$$g(mn) = \sum_{d|mn} f(d) = \sum_{d_1|m} \sum_{d_2|n} f(d_1d_2) = \sum_{d_1|m} \sum_{d_2|n} f(d_1)f(d_2) = g(m)g(n).$$

Lemma 2.14. (i) For p a prime, $\phi(p^k) = p^{k-1}(p-1) = p^k(1-\frac{1}{p})$.

(ii)
$$\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$$

Proof. (i): $\phi(p^k)$ counts the number of integers a between 1 and p^k such that $(p^k,a)=(p,a)=1$. So we have p^a numbers, and we don't count the multiples of p, so $\phi(p^k)=p^k-p^{k-1}$.

(ii): Follows from the fact that
$$\phi$$
 is multiplicative.

Alternative proof that $\sum_{d|n} \phi(d) = n$ (cf Lemma 2.6).

Proof. Obviously the RHS is multiplicative. Since $\phi(n)$ is multiplicative, the LHS is multiplicative by Lemma 2.13, so it suffices to check for n a prime power, say $n = p^k$. To this end, compute

$$\sum_{d|p^k} \phi(d) = \phi(1) + \phi(p) + \ldots + \phi(p^k) = 1 + (p-1) + (p^2 - p) + \ldots + (p^k - p^{k-1}) = p^k.$$

2.1 Polynomial congruences

Let $R = \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/n\mathbb{Z}$ (or more generally any commutative ring). Set $R[X] = \{$ **polynomials** with coefficients in $R\}$, i.e. $a_nX^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ for $a_i \in R$.

By definition, two polynomials are equal if and only if they have the same coefficients. We can check that R[X] is a ring (with usual + and \times).

Warning. The map $R[X] \to \{\text{functions } R \to R\}$ by $f \mapsto (\alpha \mapsto f(\alpha))$ is not always injective. For example, if $R = \mathbb{Z}/p\mathbb{Z}$ for p a prime, and $f(X) = X^p - X$, then $f(\alpha) = 0 \ \forall \alpha \in R$, but f is not the zero function.

Question. Can we show that if $f \in R[X]$ has degree n, then f has at most n roots in R?

Answer. No. For example, take $R = \mathbb{Z}/8\mathbb{Z}$, then $f(X) = X^2 - 1$ has 4 solutions in $\mathbb{Z}/8\mathbb{Z}$.

13 Oct 2022, Lecture 4

Let $R = \mathbb{Z}, \mathbb{Q}, \mathbb{Z}/n\mathbb{Z}$ (or any commutative ring).

We have a **division algorithm** on R[X]:

Let $f, g \in R[X]$ and suppose the leading coefficient of g is a unit. Then $\exists q, r \in R[X]$ such that f(X) = Q(X)g(X) + r(X) and $\deg(r) < \deg(g)$.

Proof. By induction on $\deg(f)$. If $\deg(f) < \deg(g)$, take q = 0, r = f. Otherwise, let $f(X) = aX^m + \ldots$ and $g(X) = bX^n + \ldots$ with $m \ge n$ and b a unit.

Let $f_1(X) = f(X) - ab^{-1}X^{m-n}g(X)$. Then $\deg(f_1) < \deg(f)$, so by the induction hypothesis, $f_1(x) = q_1(x)g(x) + r_1(x)$ for some $q_1, r_1 \in R[X]$ and $\deg(r_1) < \deg(g)$. Now take $q(X) = ab^{-1}X^{m-n} + q_1(X)$ and $r = r_1$, so we're done.

Corollary 2.15. If $f \in R[X]$ and $\alpha \in R$ is such that $f(\alpha) = 0$, then $f(X) = (X - \alpha)f_1(X)$ for some $f_1 \in R[X]$.

Proof. By the division algorithm, $f(X) = (X - \alpha)f_1(X) + r$ for some $r \in R$ (as $\deg(r) < \deg(X - \alpha)$). Plug in $X = \alpha$ to get r = 0.

Definition 2.16. R is an **integral domain** if R has no zero divisors, i.e. $\alpha, \beta \in R$, $\alpha\beta = 0 \implies \alpha = 0$ or $\beta = 0$.

Note. Let n > 1. Then $\mathbb{Z}/n\mathbb{Z}$ is an integral domain $\iff n$ is prime.

Theorem 2.17. If R is an integral domain, then any polynomial $f \in R[X]$ of degree n has at most n roots.

Proof. By induction on n, the degree of f. If n = 0, then our polynomial is a nonzero constant and we're done. Now suppose $\exists \alpha \in R$ such that $f(\alpha) = 0$ (otherwise we're done). By Corollary 2.15, $f(X) = (X - \alpha)f_1(X)$. Since R is an integral domain, every root of f, except possibly α is a root of f_1 . By induction, f_1 has at most n - 1 roots, hence f has at most n roots and we're done. \square

Corollary 2.18 (Lagrange's Theorem). Let p be a prime and $a_0, \ldots, a_n \in \mathbb{Z}$ with $p \nmid a_n$. Then the congruence

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \equiv 0 \pmod{p}$$

has at most n solutions mod p.

Proof. Take $R = \mathbb{Z}/p\mathbb{Z}$ in Theorem 2.17.

Remark. In this course, we will refer to the above theorem as Lagrange's Theorem.

Example 2.19. Let p be a prime. We will factor $X^{p-1} - 1 \pmod{p}$. Let $f(X) = X^{p-1} - 1 - \prod_{a=1}^{p-1} (X - \alpha)$ in $\mathbb{Z}/p\mathbb{Z}[X]$. By Fermat's Little Theorem, f has at least p-1 roots mod p. But $\deg(f) < p-1$, since the X^{p-1} terms cancel out, so by Lagrange's Theorem, f = 0, i.e. $X^{p-1} - 1 = \prod_{a=1}^{p-1} (X - a)$ in $\mathbb{Z}/p\mathbb{Z}[X]$. Plugging in X = 0 gives $(p-1)! \equiv -1 \pmod{p}$, i.e. Wilson's Theorem.

Example 2.20. Working mod 7, the powers of 3 (starting from 0) are 1, 3, 2, 6, 4, 5. So $(\mathbb{Z}/7\mathbb{Z})^{\times}$ is cyclic, generated by 3.

Theorem 2.21. Let p be a prime. Then $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Proof. Let $S_d = \{a \in (\mathbb{Z}/p\mathbb{Z})^{\times} \mid \operatorname{ord}(a) = d\}$. Suppose $S_d \neq \emptyset$, say $a \in S_d$. Then $1, a, a^2, \ldots, a^{d-1}$ are distinct elements in $\mathbb{Z}/p\mathbb{Z}$ and they are solutions of $x^d \equiv 1 \pmod{p}$. By Lagrange's theorem, this has at most d solutions, and we found d solutions, so those are all of them, i.e. $S_d \subseteq \{1, a, a^2, \ldots, a^{d-1}\}$. Note that the LHS is a cyclic group of order d, so this has $\phi(d)$ elements of order d.

We conclude that for every d, $|S_d|=0$ or $|S_d|=\phi(d)$. In particular, $|S_d|\leq \phi(d)$. Hence

$$p-1 \stackrel{(\star)}{=} \sum_{d|(p-1)} |S_d| \le \sum_{d|(p-1)} \phi(d) = p-1,$$

where (\star) follows since we just count all the elements in $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Hence $|S_d| = \phi(d) \ \forall d \ | \ (p-1)$. In particular, $S_{p-1} \neq \emptyset$, i.e. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ contains elements of order p-1, i.e. $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic.

Remark. The same argument shows that any finite subgroup of the multiplicative group of a field is cyclic.

Definition 2.22. An integer a such that $a \pmod{n}$ generates $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is called a **primitive root** mod n.

Theorem 2.21 showed that primitive roots exist mod p.

Example 2.23. Let p = 19. Let d be the order of 2 in $(\mathbb{Z}/19\mathbb{Z})^{\times}$. We know $d \mid 18$, so we work out

$$2^{3} \equiv 8 \pmod{19}$$

$$2^{6} \equiv 7 \not\equiv 1 \pmod{19} \implies d \nmid 6$$

$$2^{9} \equiv -1 \not\equiv 1 \pmod{19} \implies d \nmid 9,$$

so d = 18 and hence 2 is a primitive root mod 19.

In general, $g \in \mathbb{Z}$ (coprime to p) is a primitive root mod p if and only if $g^{\frac{p-1}{q}} \not\equiv 1 \pmod{p}$ $\forall \text{primes } q \mid (p-1)$.

15 Oct 2022, Lecture 5

Remark. The number of primitive roots mod p is $\phi(p-1) = \phi(\phi(p))$.

Here are some (open) problems concerning primitive roots:

- (i) Artin's conjecture (1927) Let a > 1 be an integer which is not a square. Then a is a primitive root mod p for infinitely many primes p. This is unknown for a = 2. Hooley (1967) proved this assuming GRH. Heath-Brown (1986) proved that Artin's conjecture holds for at least one of 2, 3 or 5. In fact, he proved something stronger: he proved the conjecture fails for at most 2 prime values of a.
- (ii) How large is the smallest primitive root mod p? Burgess (1962) showed it is $\leq cp^{1/4+\epsilon} \ \forall \epsilon > 0$ and some constant $c = c(\epsilon)$. Shoup (1992) showed it is $\leq c(\log p)^6$ assuming GRH.

We now consider $\mathbb{Z}/p^n\mathbb{Z}$ for n>1. For $n\geq 3$, there is a surjective group homomorphism from $(\mathbb{Z}/2^n\mathbb{Z})^{\times} \to (\mathbb{Z}/8\mathbb{Z})^{\times} = \{\pm 1, \pm 3\} \cong C_2 \times C_2$, so $(\mathbb{Z}/2^n\mathbb{Z})^{\times}$ is not cyclic (since generators map to generators).

Theorem 2.24. Let p be an odd prime. Then $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$ is cyclic $\forall n \geq 1$.

We divide the proof into 3 lemmas.

Lemma 2.25. Let $n \geq 2$. Then g is a primitive root mod p^n if and only if the following two conditions hold:

$$\begin{cases} g \text{ is a primitive root mod } p \\ g^{p^{n-2}(p-1)} \not\equiv 1 \pmod{p^n} \end{cases}.$$

Proof. (\Longrightarrow) is clear, as $\phi(p^n) = p^{n-1}(p-1)$.

 (\Leftarrow) : Let d be the order of g in $(\mathbb{Z}/p^n\mathbb{Z})^{\times}$. Then $d \mid \phi(p^n) = p^{n-1}(p-1)$. Since $g^d \equiv 1 \pmod{p^n}$, we have $g^d \equiv 1 \pmod{p}$. Hence by assumption 1, we have $(p-1) \mid d$. Say $d = p^j(p-1)$ for some $0 \le j \le n-1$. If $j \le n-2$, then this contradicts assumption 2. Hence j = n-1, so $d = \phi(p^n)$ is a primtive root mod p^n .

Next we show $\exists g \in \mathbb{Z}$ satisfying conditions 1 and 2 in the case n=2.

Lemma 2.26. $\exists g \in \mathbb{Z}$ a primitive root mod p such that $g^{p-1} \not\equiv 1 \pmod{p^2}$.

Proof. Let g be a primtive root mod p. If $g^{p-1} \equiv 1 \pmod{p^2}$, then consider g + p, which is still a primtive root mod p, but

$$(q+p)^{p-1} = q^{p-1} + (p-1)q^{p-2}p + \dots \equiv 1 + (p-1)q^{p-2}p \pmod{p^2},$$

where the second term is not divisible by p^2 , so $(g+p)^{p-1} \not\equiv 1 \pmod{p^2}$.

Next we show that if g is a primitive root mod p^2 , then it is a primitive root mod $p^n \ \forall n \geq 2$.

Lemma 2.27. If
$$g^{p-1} \not\equiv 1 \pmod{p^2}$$
, then $g^{p^{n-2}(p-1)} \not\equiv 1 \pmod{p^n} \ \forall n \geq 2$.

Proof. By induction on n, the case n=2 being given. Suppose the result is true for n. By Euler-Fermat, $g^{p^{n-2}(p-1)} \equiv 1 \pmod{p^{n-1}}$, so $g^{p^{n-2}(p-1)} = 1 + bp^{n-1}$ for some $b \in \mathbb{Z}$, where $p \nmid b$ by the induction hypothesis. Taking p^{th} powers gives

$$g^{p^{n-1}(p-1)} = (1 + bp^{n-1})^p = 1 + bp^n + \binom{p}{2}b^2p^{2(n-1)} + \dots \equiv 1 + bp^n + \binom{p}{2}b^2p^{2(n-1)} \stackrel{\star}{\equiv} 1 + bp^n \pmod{p^{n+1}},$$

where \star follows since p is odd, so $p \mid \binom{p}{2}$ (and also we use $3(n-1) \geq n+1$ and $2(n-1)+1 \geq n+1$). Thus $g^{p^{n-1}(n-1)} \equiv 1+bp^n \not\equiv 1 \pmod{p^{n+1}}$, so the result follows for n+1.

This completes the proof of Theorem 2.24.

Example 2.28. We saw 3 is a primitive root mod 7. We calculate $3^3 = -1 + 4.7$, so $3^6 \equiv 1 - 8.7 \not\equiv 1 \pmod{7^2}$. Hence 3 is a primitive root mod $7^n \forall n$.

For the case
$$p=2$$
, let $G=\{a\in (\mathbb{Z}/2^n\mathbb{Z})^\times\mid a\equiv 1\pmod 4\}$. Then $(\mathbb{Z}/2^n\mathbb{Z})^\times\cong \{\pm 1\}\times G$ by $a+2^n\mathbb{Z}\mapsto \begin{cases} (1,a+2^n\mathbb{Z}) & \text{if }a\equiv 1\pmod 4\\ (-1,-a+2^n\mathbb{Z}) & \text{if }a\equiv 3\pmod 4. \end{cases}$

Exercise. Show that G is cyclic (and generated by 5).

Exercise. For which n is $(\mathbb{Z}/n\mathbb{Z})^{\times}$ cyclic?