Доказать, что оптимальные направления РСА совпадают с собственными векторами матрицы ковариаций

Дано

- X центрированная матрица признаков размера $n \times m$, где n количество объектов, m количество признаков.
- Ковариационная матрица Σ данных X симметрическая матрица $\frac{1}{n-1}X^TX$ размера $n\times n$.

Доказательство

Так как X – центрированная матрица (средние значения признаков равны нулю) \Rightarrow дисперсия вычисляется как сумма квадратов. Нам нужно найти такой единичный вектор u, который максимизирует дисперсию проекции данных Xu. Несмещенная дисперсия равна:

$$var(Xu) = \frac{1}{n-1} \cdot (Xu)^T (Xu),$$
$$var(Xu) = \frac{1}{n-1} \cdot u^T X^T X u$$
$$var(Xu) = u^T \left(\frac{1}{n-1} \cdot X^T X\right) u = u^T \Sigma u$$

Получается, нам нужно максимизировать $u^T \Sigma u$, при условии $u^T u = 1$.

Для этого введем некую функцию $L(u) = u^T \Sigma u - \lambda (u^T u - 1)$, где λ – некая константа. Второе слагаемое в этой функции «штрафует» первое, если u не является единичным вектором.

Теперь нам нужно максимизировать L(U), для этого найдем градиент L по u и приравняем его к нулю:

$$\nabla_u L = \nabla_u (u^T \Sigma u) - \nabla_u (\lambda (u^T u - 1)) = 0$$

Используем правила дифференцирования матричных выражений:

- $\nabla_u(u^T \Sigma u) = 2\Sigma u$ (если Σ симметрична)
- $\bullet \ \nabla_u(\lambda u^T u) = 2\lambda u$

Получаем:

$$2\Sigma u - 2\lambda u = 0$$
$$\Sigma u - \lambda u = 0$$
$$\Sigma u = \lambda u$$

Уравнение $\Sigma u = \lambda u$ является определением собственного вектора и собственного значения для матрицы Σ . Это означает, что вектор u, который максимизирует дисперсию $u^T \Sigma u$ при условии $u^T u = 1$, должен быть собственным вектором ковариационной матрицы Σ .

Если u – собственный вектор, удовлетворяющий $\Sigma u = \lambda u$ и $u^t u = 1$, то дисперсия равна:

$$var(Xu) = u^T \Sigma u = u^T (\lambda u) = \lambda (u^T u) = \lambda$$

Таким образом, дисперсия проекции на собственный вектор u равна соответствующему собственному значению λ . Чтобы максимизировать дисперсию, мы должны выбрать собственный вектор u_1 , соответствующий наибольшему собственному значению λ_1 матрицы Σ . Этот вектор u_1 и есть первая главная компонента.

Вторая главная компонента u_2 ищется так, чтобы максимизировать $u_2^T \Sigma u_2$ при условиях:

- $u_2^T u = 1$ (единичный вектор)
- $u_2^T u_1 = 0$ (ортогональность первой компоненте)

Снова применяя тот же метод, можно показать, что u_2 должен быть собственным вектором Σ , соответствующим второму по велечине собственному значению λ_2 .

Далее этот процесс продолжается. k-ая главная компонента u_k является собственным вектором Σ , соответствующим k-ому по велечине собственному значению λ_k , и ортогональным всем предыдущим компонентам u_1, \ldots, u_{k-1} (собственные векторы симметрической матрицы, соответствующие разным собственным значениям, автоматически ортогональны, а если есть кратные собственные значения, то можно выбрать ортогональный базис в соответствующем собственном подпространстве). \Rightarrow чтд

Вывод

Оптимальные направления PCA, которые последовательно максимизируют дисперсию проекций данным при условии ортогональности к предыдущим, являются собственными векторами ковариационной матрицы Σ , упорядоченных по убыванию соответствующих им собственных значений – наибольшему собственному значению соответствует первая главная компонента, второму по велечине – вторая и тд.