II.6. Laaditaan Mathcad-dokumentti paksuseinäisen sylinteriputken jännityksien ja säteittäissiirtymän tutkimiseen. Lähtötietoina annetaan dokumentin alussa kimmomoduuli E, Poissonin vakio ν , sisäsäde a, ulkosäde b, sisäpaine p_s , ulkopaine p_u sekä tieto siitä, onko putken pituuden muutos estetty vai ei.

Dokumentti tekee lähtötiedot saatuaan seuraavaa:

- a) Piirtää samaan kuvaan jännitysten σ_r , σ_θ ja σ_z kuvaajat säteen r funktiona putken paksuuden matkalta.
- b) Piirtää samaan kuvaan vertailujännitysten σ_{vert} /MLJH ja σ_{vert} /VVEH kuvaajat säteen r funktiona putken paksuuden matkalta ja etsii niiden maksimiarvot.
- c) Piirtää säteittäissiirtymän u_r kuvaajan säteen r funktiona putken paksuuden matkalta ja etsii sen maksimiarvon.

Ratkaisu:

Pituudenmuutos vapaa: $pm \neq 0$ Pituudenmuutos estetty: pm = 0 pm := 1

Jännityskomponenttien lausekkeet:

$$\sigma_r(r) := \frac{a^2 \cdot p_s - b^2 \cdot p_u}{b^2 - a^2} - \frac{a^2 \cdot b^2 \cdot \left(p_s - p_u\right)}{r^2 \cdot \left(b^2 - a^2\right)} \qquad \quad \sigma_\theta(r) := \frac{a^2 \cdot p_s - b^2 \cdot p_u}{b^2 - a^2} + \frac{a^2 \cdot b^2 \cdot \left(p_s - p_u\right)}{r^2 \cdot \left(b^2 - a^2\right)}$$

$$\sigma_{z}(r) := if \left(pm = 0, 2 \cdot \nu \cdot \frac{a^{2} \cdot p_{s} - b^{2} \cdot p_{u}}{b^{2} - a^{2}}, 0 \cdot MPa \right)$$

Vertailujännitykset:

$$\begin{split} \text{MLJH:} & \sigma_{I}(r) := \text{max} \big(\sigma_{r}(r) \,, \sigma_{\theta}(r) \,, \sigma_{z}(r) \big) & \sigma_{III}(r) := \text{min} \big(\sigma_{r}(r) \,, \sigma_{\theta}(r) \,, \sigma_{z}(r) \big) \\ & \sigma_{\text{vert1}}(r) := \sigma_{I}(r) - \sigma_{III}(r) \end{split}$$

$$\text{VVEH:} \qquad \sigma_{vert2}(r) := \sqrt{\frac{1}{2} \cdot \left[\left(\sigma_{\theta}(r) - \sigma_{r}(r) \right)^{2} + \left(\sigma_{r}(r) - \sigma_{z}(r) \right)^{2} + \left(\sigma_{\theta}(r) - \sigma_{z}(r) \right)^{2} \right]}$$

Maksimiarvot:

MLJH:
$$r_1 := \frac{a+b}{2}$$
 (alkuarvaus)

Given
$$r_1 \ge a$$
 $r_1 \le b$ $p := Maximize(\sigma_{vert1}, r_1)$

$$p = 0.1 \,\text{m}$$
 $\sigma_{\text{vert1}}(p) = 13.333 \,\text{MPa}$

VVEH:
$$r_1 := \frac{a+b}{2}$$
 (alkuarvaus)

$$\label{eq:continuous_section} \text{Given} \quad r_1 \geq a \qquad r_1 \leq b \qquad p := \text{Maximize} \big(\sigma_{\text{vert2}} \,, r_1 \big)$$

$$p = 0.1 \,\text{m}$$
 $\sigma_{\text{vert2}}(p) = 12.019 \,\text{MPa}$

Säteittäissiirtymä:

$$u_r(r) := \frac{1}{E} \cdot \left[(1-\nu) \cdot \frac{a^2 \cdot p_s - b^2 \cdot p_u}{b^2 - a^2} \cdot r + (1+\nu) \cdot \frac{a^2 \cdot b^2 \cdot \left(p_s - p_u\right)}{r \cdot \left(b^2 - a^2\right)} \right]$$

$$u_{r1}(r) := \frac{1+\nu}{E} \cdot \left[(1-2\cdot\nu) \cdot \frac{a^2 \cdot p_s - b^2 \cdot p_u}{b^2 - a^2} \cdot r + \frac{a^2 \cdot b^2 \cdot \left(p_s - p_u\right)}{r \cdot \left(b^2 - a^2\right)} \right]$$

$$U_r(r) := if(pm = 0, u_{r1}(r), u_r(r))$$

Maksimiarvo: $r_1 := \frac{a+b}{2}$ (alkuarvaus)

Given $r_1 \ge a$ $r_1 \le b$ $p := Maximize(U_r, r_1)$

 $p = 0.1 \,\text{m}$ $U_r(p) = 0.003016 \,\text{mm}$