

Faculty Of Engineering and Technology

Electrical and Computer Engineering Department

CIRCUITS AND ELECTRONICS LABORATORY

ENEE 2103

Experiment #: 3

First and Second Order Circuit

Prepared by:

Rahaf Naser 1201319

Instructor:

Dr. Mahran Quraan

Teacher assistant:

Eng. Rafah Rahhal

Date: 8/4/2023

Table of contents:

1.RC Circuit	ĺ
2.RL Circuit	3
3.RLC Circuit	.8
3.1.Response type	8
3.1.1.over damped response	3
3.1.2.critical damped response	9
3.1.3.under damped response	10
3.2.Response parameters	.11

Table of Figures: Fig(1.1)......1 Fig(1.2)...... Fig(1.3)......2 Fig(2.1)......3 Fig(2.2)......3 Fig(2.3)......4 Fig(2.4)......5 Fig(2.5)......5 Fig(2.6)......7 Fig(2.7)......7 Fig(3.1.1.1)......8 Fig(3.1.1.2)......8 Fig(3.1.2.1).....9 Fig(3.1.2.2)......9 Fig(3.2.1)......11

1.RC Circuits

Circuit using Pspice->

Fig(1.1)

Fig(1.2)

Fig(1.3)

To find T:

First we find that Vmax (experimentally) = 4.9454 v

0.63*4.9454=3.1v

at v = 3.1v -> t = 2.2 ms

so T =2.212ms

To find the time constant theoretically, we have $R=22k\Omega$, and C=100nF

- → T (theoretically) = RC = 22 * 103 * 100 * 10-9 = 2.2 ms
- Steady state voltage value on the capacitor:

The capacitor voltage reaches its steady state value at Vc(0), C appears as an open circuit.

- \rightarrow Vc steady state = 5 v
- The value of the capacitor:
- o C(experimentally) =T(experimentally)/R=2.5814 ms/ 22K= 117.3nF
- o C(theoretically) = 100nF

2.RL Circuit

Circuit using Pspice->

Fig(2.1)

Result->

Fig(2.2)

Fig(2.3)

Vmax = 9.879v

$$V(t)$$
 discharging = 0.37 Vmax $\rightarrow V(t) = 0.37 * 9.87 = 3.5619v$

t when v = 3.6519 = 1.2348ms

so
$$T = 1.2348$$
ms -1 ms $= 0.2348$ ms

To find the time constant theoretically, we have $R=2.2k\Omega$, and L=500mH

so
$$\rightarrow$$
 T (theoretically) =L/R=500m/2.2k = 0.227ms

Steady state voltage value on the inductor:

The capacitor voltage reaches its steady state value VL(0), C appears as a short circuit.

 \rightarrow VL steady state = 10 v

- The value of the inductor:
- o L(experimentally) = T (experimentally) * R = 0.2268ms *2.2K =498.96 mH
- o L(theoretically) = 500 mH

Current response:

Fig(2.4)

Fig(2.5)

Imax (experimentally) = 4.4897A

- Time constant:
- To find the time constant experimentally, we find the time at charging

$$I(t)$$
charging = 0.63 Imax $\rightarrow I(t) = 0.63 * 4.4897 = 2.8285 mA$

$$t (at I = 2.8285mA) = 1.2230ms$$

so, T (experimentally) =
$$1.2230$$
ms -1 ms = 0.2230 ms

• Steady state current value on the inductor:

The inductor current reaches its steady state value at VL(0), L appears as a short circuit..

 \rightarrow IL steady state = 10/2.2k = 4.545 mA

RL circuit after change the period of the periodic square wave to T=2* time constant of inductor:

$$T = 2 *L/R = 500 m/2.2k = 0.454 ms$$

$$F = 1/T = 2.2 \text{ KHz}.$$

Voltage response->

Fig(2.6)

Current response->

Fig(2.7)

3.RLC Circuits

3.1.Response type

3.1.1.over damped response

Circuit using Pspice->

Fig(3.1.1.1)

Result->

Fig(3.1.1.2)

The response is over damped since we have $\alpha \geq w$

$$\alpha = R/2L = 22K/2*500m = 22000 \text{ rad/s}$$

$$w = 1/(LC)^0.5 = 1/(500m*100n)^0.5 = 4472.13 \text{ rad/s}$$

3.1.2. critical damped response

To get critically damped response we have $\alpha = w$.

Therefore, the value of the resistance to give critically damped response will be:

$$R/2L=1/(L*C)^0.5 \rightarrow R/(2*500m)=1/(500m*100n)^0.5 \rightarrow R=4472.13$$

Circuit using Pspice->

Fig(3.1.2.1)

Result->

Fig(3.1.2.2)

3.1.3 under damped response:

→ Circuit using PSpice:

Fig(3.1.3.1)

Result->

Fig(3.1.3.2)

The response is under damped since we have $\alpha \! < \! w$

$$\alpha = R/2L = 750\Omega/2*500m = 750 \text{ rad/s}$$

$$w = 1/(LC)^0.5 = 1/(500m*100n)^0.5 = 4472.13 \text{ rad/s}$$

3.2.Response Parameters

Circuit using Pspice->

Fig(3.2.1)

ta=1,747 ms to=3,4036 ms Va= 7,9912 V Vb=5,969 V VO(20) = 5,0 V $T = \frac{tb - ta}{\ln(Va - Vo(\infty))} = \frac{3,4036 - 1,747 = 1,2496 \text{ ms}}{\ln[7,9912 - 5,0]}$ (5,969 - 5,0)damping coefficient &= 1 = 0,8 Kval/see. damped vadious brequency wd=2T = 2T = 3,8 Had/sec damped vadian trequency (theole tically) & Wd=__= __ = 4,47213 Kvool/s 1LC [500m*100n