(3) 是同态,同态像是⟨{0},⋅⟩。

证明: $\forall x, y \in \mathbb{C}$,

$$\varphi(x \cdot y) = 0 \tag{φ 定义}$$

$$=0\cdot 0 \tag{0\cdot 0=0}$$

$$=\varphi(x)\cdot\varphi(y)\tag{φ 定义}$$

(4) 不是同态。

证明:由于 $1 \in \mathbb{C}$,但 $\varphi(1 \cdot 1) = \varphi(1) = 2$,而 $\varphi(1) \cdot \varphi(1) = 2 \cdot 2 = 4$,从而 $\varphi(1 \cdot 1) \neq \varphi(1) \cdot \varphi(1)$ 。这就证明了 φ 不是同态。

15.25 显然 I_A 是 V 的一个自同构。下面证明,V 上不存在其它的自同构。

证明: 设 $\varphi: A \to A$ 是 V 的一个自同态且 $\varphi(5^1) = \varphi(5^k)$ 。则 $\varphi(5^2) = \varphi(5^1 \cdot 5^1) = 5^k \cdot 5^k = 5^{2k}$ 。对 n 施归纳可证, $\forall n \in \mathbb{Z}^+, \varphi(5^n) = \varphi(5^{kn})$ 。此时 V 在 φ 下的同态像是 $\langle \{5^{kn} \mid n \in \mathbb{Z}^+\}, \cdot \rangle$ 。若 $k \notin \mathbb{Z}^+$,则 $\varphi(A) \not\subseteq A$,与 $\varphi: A \to A$ 矛盾。若 k = 1,则 $\varphi = I_A$,是恒等函数。若 k > 1,则 $5^1 \notin \{5^{kn} \mid n \in \mathbb{Z}^+\}$,从而 φ 不是满射,也就不是同构。

这就证明了
$$I_A$$
 是 V 上唯一的自同构。

15.26

证明: 显然, φ 是函数, 且为满射。下面证明 φ 是同态。

 $\forall x, y \in \mathbb{Z}^+, \varphi(x \cdot y),$

$$\varphi(x \cdot y) = 1 \iff x \cdot y = 1$$
 $\iff x = 1 \land y = 1$
 $\iff \varphi(x) = 1 \land \varphi(y) = 1$
 $\iff \varphi(x) \cdot \varphi(y) = 1$
 $(\varphi 定义)$
 $\iff \varphi(x) \cdot \varphi(y) = 1$
(非负整数性质)

从而由 $1 \in \mathbb{Z}_2, \forall x, y \in \mathbb{Z}^+(\varphi(x \cdot y) = 1 \Leftrightarrow \varphi(x) \cdot \varphi(y) = 1)$ 和引理 15.1 有: $\forall x, y \in \mathbb{Z}^+(\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y))$ 。

这就证明了
$$\varphi$$
 是 V_1 到 V_2 的满同态。

15.27

- (1) 不是。例如 $(-1)R(-3) \wedge 2R2$,但 (-1+2)R(-3+2)。
- (2) 不是。因为 R 不具有传递性(例如 1R5, 5R9, 但 1R9),所以不是等价关系。
- (3) 不是。例如 $(-1)R1 \wedge 1R1$,但 (-1+1)R(1+1)。
- (4) 不是。因为 R 不是等价关系。

15.28

证明:由教材定理 15.11 知,自然映射 $g:A\to A/\sim$, g(a)=[a], $\forall a\in A$ 是从 V 到 V/\sim 上的同态映射。又由等价类的定义知,g 是满射。从而 g 是 V 到 V/\sim 的满同态。再利用教材定理 15.8 即证原题。

15.29

(1)