Opium Tutorial 3: Copper

Goal: The purpose of this tutorial is to introduce the concept of ghosts and the choice of the local potential.

Let's calculate the all-electron wavefunctions for copper to see what a reasonable cutoff radius could be. We will use the following param file as a starting point:

```
[Atom]
Cu
8
    2.00
100
200
    2.00
    6.00
210
    2.00
300
    6.00
310
    0.10
    0.10
    9.80
[XC]
lda
[Pseudo]
3 2.20 2.20 2.20
[Optinfo]
5.50 10
5.50 10
7.07 10
[Configs]
3
400 0.00 -
410 0.00
320 10.00 -
400 0.50 -
410
    0.00
    9.50
320
400 1.00
410
    0.00
320
    9.00
  This is a reasonable starting guess for the cutoff radii since the interatomic distance of is about 2.55 Å(4.82 a.u.)
in the fcc solid. Let's construct this potential, run the test configurations, and analyze the report file:
  %> ./opium cu cu.log ae ps nl tc rpt
  %> cat cu.rpt
```

Pseudopotential convergence error
Orbital [mRy/e] [meV/e] [mRy] [meV] Ghost

========Optimized pseudopotential method=============

						-
no	0.013979	0.001027	0.139794	0.010275	400	
no	0.009432	0.000693	0.094322	0.006933	410	
yes	3.316582	0.243764	0.338427	0.024874	320	
	3.339994	0.245485	=	Tot. error		

320 SHOULD NOT be used as the local potential

NL:Orbital	Filling	Eigenvalues[Ry]	Norm	Ghost
100 210 320	0.100 0.100 9.800	-0.9063858437 -0.5124462749 -1.1214340941	0.6167386735 0.8177457148 0.0485556830	no no no
320	3.000	1.1214540541	0.0403330030	110

======= No ghosts in potential!!=======

E_tot = -81.5567915983 Ry

.

The PS section shows that there is very small convergence error at 50 Ry (q_c^2) . Also, clearly stated is the fact that the d potential can not be used as the local potential in the Kleinman-Bylander form. Either s or p is a possible choice. The default is always the s potential if an alternative is not specified in the [KBdesign] block.

Let's see how the transferability looks for s as the local potential:

%> grep AE-NL cu.rpt

AE-NL:Orbit	al Fil	ling	Eigenvalues[mRy]		Norm[1e-3]
AE-NL					
					-1.0426483517
AE-NL- 210	(0.000	-1.1	.629364086	-0.6419028506
					0.5374671553
AE-NL- tot	tal err	ror =	3.5	247285395	2.2220183576
					Norm[1e-3]
AE-NL					
AE-NL- 100	(.500	2.9	682975732	1.4511497784
AE-NL- 210		0.000	1.3	667767587	0.9211954180
AE-NL- 320	9	9.500	-4.3	912481717	-0.9258354236
AE-NL- tot	tal err	or =	8.7	263225036	3.2981806200
AE-NL:Orbit	al Fil	ling	Eigenvalues[mRy]		Norm[1e-3]
AE-NL- 100	1	.000	6.3	379012046	3.3986335790
					1.9173981438
					-2.3438768499
AE-NL- tot	tal err	or =	29.5	272908230	7.6599085727
AE-NL- i	j		DD[mRy]	DD[meV]	
AE-NL					
AE-NL- O	1		-0.196901	-2.678978	
AE-NL- O	2		-1.106071	-15.048872	
AE-NL- O	3		-9.248366	-125.830492	
AE-NL- 1	2		-0.909170	-12.369894	
AE-NL- 1	3		-9.051465	-123.151514	
AE-NL- 2	3			-110.781620	

Let's specify the p channel as local and see how this affects the output:

[Atom]

```
8
100 2.00 -
200 2.00 -
210 6.00 -
300 2.00 -
310 6.00 -
400 0.10 -
410 0.10 -
320 9.80 -
[XC]
lda
[Pseudo]
3 2.20 2.20 2.20
```

opt

Cu

[Optinfo] 5.50 10 5.50 10 7.07 10

[KBdesign]

% ./opium cu cu.log ae ps nl tc rpt %> cat cu.rpt

======Optimized pseudopotential method=======

Pseudopotential convergence error						
Orbital	[mRy/e]	[meV/e]	[mRy]	[meV]	Ghost	
400	0.010275	0.139794	0.001027	0.013979	no	
410	0.006933	0.094322	0.000693	0.009432	no	
320	0.024874	0.338427	0.243764	3.316582	yes	
	Tot. error	• =	0.245485	3.339994		

 $320\ \text{SHOULD}\ \text{NOT}$ be used as the local potential

NL:Orbital	Filling	Eigenvalues[Ry]	Norm	Ghost
100	0.100	-0.9063858437	0.6167386735	no
210	0.100	-0.5124462749	0.8177457148	no
320	9.800	-1.1214340941	0.0485556830	no

======= No ghosts in potential!!======

```
E_{tot} = -81.5567915983 \text{ Ry}
```

.

Notice that the PS and NL output is independent of the local potential. The only differences will occur in the transferability section:

%> grep AE-NL cu.rpt

AE-NL:Orbital	_	Eigen	nvalues[mRy]	Norm[1e-3]
AE-NL- 100	0.000		2875427618	
			2272016240	
			832868859	
AE-NL- total			980312717	
AE-NL:Orbital	Filling	Eigen	ıvalues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	0.500	2.8	3906600607	5.0170138322
AE-NL- 210	0.000	1.1	359464819	1.0082096546
AE-NL- 320	9.500	-4.6	3464395788	-1.0110498468
AE-NL- total	error =	8.6	730461215	7.0362733335
AE-NL:Orbital	Filling	Eigen	values[mRy]	Norm[1e-3]
AE-NL			·	
AE-NL- 100	1.000	5.1	852169822	15.7437947372
			3293516258	
			5975860427	
			121546507	
AE-NL- i				
AE-NL	-			
AE-NL- O		-0.135678	-1.845999	
			-14.908263	
			-140.696549	
			-13.062264	
	_		-138.850550	
AE-NL- 2	3	-9.245264	-125.788286	

Using the s potential as the local potential yields moderately better transferability. But both could use some improvement. Therefore, let's stick with p as the local potential and try to improve the transferability. The most direct way to fix transferability is to simply reduce the cutoff radius. Let's try reducing the radius from 2.2 to 1.8 a.u. for the s and p states. For the d state we will try 2.0 a.u. since it is a much more localized orbital and, therefore, reducing the cutoff radius will increase the energy cutoff rapidly.

```
Cu
8
100 2.00 -
200 2.00 -
210 6.00 -
300 2.00 -
310 6.00 -
400 0.10 -
410 0.10 -
320 9.80 -

[XC]
lda

[Pseudo]
3 1.80 1.80 2.0
opt
```

[Atom]

.

```
\%> ./opium cu cu.log ae ps nl rpt \%> cat cu.rpt
```

Again, let's check the PS and NL report:

.

======Optimized pseudopotential method========

		onvergence error	lopotential cor	Pseud	
Ghost	[meV]	[mRy]	[meV/e]	[mRy/e]	Orbital
no	0.019546	0.001437	0.195463	0.014366	400
yes	0.123180	0.009054	1.231800	0.090536	410
yes	21.947688	1.613125	2.239560	0.164605	320
	22.090414	1.623615	· =	Tot. error	

410 SHOULD NOT be used as the local potential 320 SHOULD NOT be used as the local potential

NL:Orbital	Filling	Eigenvalues[Ry]	Norm	Ghost
100	0.100	-0.9063858437	0.7924724901	yes
210	0.100	-0.5124462749	0.9145820216	no
320	9.800	-1.1214340941	0.0679081466	no

- !!ERROR!! Ghosts are present in pseudopotential
- !!ERROR!! See log file for more information

 $E_{tot} = -83.0732014322 \text{ Ry}$

.

We see that by reducing the cutoff radii makes the s potential develop a ghost state. Remember that the PS report tells whether a particular state has ghosts if it is used as the local potential (notice that the only "no" is the s state). The NL section shows, for a given choice of local potential, whether a state has a ghost or not (notice that choosing p as local results in the s state having a ghost). To put it simply, one of the rows in the PS report needs to be "no", and all of the rows in the NL report need to be "no".

So, let's switch back to s as the local potential and check the transferability.

[Atom] Cu

8

100 2.00 -

200 2.00 -

210 6.00 -300 2.00 -

310 6.00 -

400 0.10 -

```
410 0.10 -
320 9.80 -

[XC]
lda

[Pseudo]
3 1.80 1.80 2.00
opt

[Optinfo]
5.50 10
5.50 10
7.07 10

[KBdesign]
s
.
.
.
.
.
.
./opium cu cu.log ae ps nl tc rpt
```

%> cat cu.rpt

AE-NL:Orbital			values[mRy]	Norm[1e-3]
			218297632	-0.7345680920
				-0.4446581528
AE-NL- 320	10.000	-1.09	984873723	0.5367412494
AE-NL- total	error =	3.73	350151141	1.7159674942
AE-NL:Orbital	Filling	Eigenv	alues[mRy]	Norm[1e-3]
AE-NL				
AE-NL- 100	0.500	2.51	195280715	1.0950077643
				0.6963348560
AE-NL- 320	9.500	-1.43	355442651	-0.9647392378
				2.7560818580
		Eigenv	alues[mRy]	Norm[1e-3]
AE-NL				
				2.8177084976
				1.7614992801
				-2.5674015420
				7.1466093197
AE-NL- i		DD[mRy]	DD[meV]	
AE-NL				
AE-NL- O				
AE-NL- O			-8.193609	
AE-NL- O			-73.204314	
AE-NL- 1			-7.761227	
			-72.771932	
AE-NL- 2	3	-4.778196	-65.010704	

We see that the transferability has improved significatly, espescially in the s^1d^9 configuration.

To Explore: Can you find a reference state and cutoff radii that ever yield a ghostless pseuopotential for the d state being local?