

Transformer-Style Relational Reasoning with Dynamic Memory Updating for Temporal Network Modeling

Dongkuan Xu¹, Junjie Liang¹, Wei Cheng², Hua Wei¹, Haifeng Chen², Xiang Zhang¹

¹The Pennsylvania State University, ²NEC Laboratories America, Inc.

Agenda

- Motivations
- Challenges
- Problem Definition
- Proposed Model: TRRN
- Experiments

Motivations

• Networks are often dynamic and evolve over time

Temporal Financial Network

Existing Approaches

• Three architectures for temporal network modeling

• However, their capacity for learning complicated temporal dependency is limited

Challenges

- Complicated temporal dependency
 - How to relate the information of different time steps
- Contextualized representations of nodes
 - Node behaviors are determined by various factors
 - How to embed them into node representations and differentiate their influence
- Sparse dynamics in the evolution of temporal networks
 - Dynamic systems are characterized by independent and sparsely interacting dynamic processes [1]
 - How to model the hidden dynamic processes

Problem Definition

Temporal network

$$\mathbb{G}=(\mathcal{G}^1,\,\mathcal{G}^2,\,\cdots,\,\mathcal{G}^T)$$
 , where $\mathcal{G}^t=(\mathcal{V},\,\mathbf{A}^t,\,\mathbf{X}^t)$

Node set $\,\mathcal{V}$, Adjacency matrix $\mathbf{A}^t \in \mathbb{R}^{N imes N}$, Node attributes $\,\mathbf{X}^t \in \mathbb{R}^{N imes d}$

- Temporal network modeling
 - The goal is to learn the latent representation for every node at different time steps
 - The latent representations should preserve various factors related to nodes

Proposed Model: TRRN

Four architectures for temporal network modeling

Step-by-step Analysis of TRRN

• Step 1. Activate memories separately

Step-by-step Analysis of TRRN

• Step 1. Activate memories separately; Step 2. Sparsity constrains

Activate Memories

- Policy network estimates the probability of each memory being activated
- Output of policy network, i.e., B
 - Fed into Routers to produce the binary activation decisions
 - Rows correspond to different memories
 - Columns represent two categories (activate and inactivate)

Illustration of activating memories selectively

Update Memories

• Self-Attention

Attention(Q, K, V) = softmax
$$\left(\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}\right)\mathbf{V}$$

- Mask inactivated memories
- Concatenate memories and factors

z is the mask

$$\mathbf{Q} = \underbrace{(\mathbf{M} * \mathbf{z})} \mathbf{W}^q,$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{M}; \mathbf{f}_1^\top; \mathbf{f}_2^\top; \cdots; \mathbf{f}_{n_F}^\top \end{bmatrix} \mathbf{W}^s,$$

$$\mathbf{V} = \begin{bmatrix} \mathbf{M}; \mathbf{f}_1^\top; \mathbf{f}_2^\top; \cdots; \mathbf{f}_{n_F}^\top \end{bmatrix} \mathbf{W}^v,$$

$$\mathbf{\tilde{M}} = \operatorname{softmax} \left(\frac{\mathbf{Q} \mathbf{K}^\top}{\sqrt{d_s}} \right) \mathbf{V} + \mathbf{M} * (\mathbf{1} - \mathbf{z}) + \mathbf{M},$$
Updated memories
Inactivated memories A residual connection

Experiments

• Data sets

Statistics	Task-fMRI	DBLP5	Epinions	Reddit
# Nodes	5000	6606	16025	8291
# Edges	1955488	42815	1144258	264050
# Attributes	20	100	20	20
# Time Steps	12	10	11	10
# Node Categories	10	5	10	4

• Node classification comparison¹

Table 3: Node classification results (%).

Method	Task-fMRI		DBLP5		Epinions		Reddit	
	ACC	AUC	ACC	AUC	ACC	AUC	ACC	AUC
DeepWalk	71.4±1.3	97.2±1.0	35.4±1.2	61.0±1.8	30.1±1.6	68.4±1.8	47.5±1.7	71.9±2.4
GAT	43.8 ± 2.5	86.2 ± 3.4	32.5 ± 2.4	48.6 ± 2.9	22.5 ± 1.5	63.1 ± 1.8	29.6 ± 1.9	52.4 ± 2.6
GCN	65.0 ± 1.4	86.7 ± 0.9	33.7 ± 1.3	50.0 ± 1.2	20.9 ± 0.7	62.4 ± 1.4	27.7 ± 0.8	54.0 ± 1.0
GraphSAGE	69.4 ± 2.6	96.7 ± 2.1	71.0 ± 1.1	90.7 ± 1.9	24.5 ± 2.9	63.9 ± 2.0	42.5 ± 2.1	66.8 ± 2.5
node2vec	71.0 ± 1.5	96.8 ± 1.8	36.9 ± 1.1	64.2 ± 1.1	32.8 ± 1.5	70.2 ± 1.6	48.0 ± 1.3	72.2 ± 1.1
LSTM	83.6±1.8	98.6±1.5	74.1±0.6	91.4±0.8	17.9±1.0	61.5±1.2	40.2±1.4	66.5±1.6
GRU	80.4 ± 1.7	98.2 ± 1.7	75.6 ± 1.0	91.5 ± 1.1	17.3 ± 1.1	61.7 ± 1.6	42.1 ± 1.4	67.2 ± 1.7
DynGEM	71.0 ± 2.7	97.2 ± 2.7	52.3 ± 3.2	59.0 ± 3.4	31.6 ± 2.4	54.6 ± 2.5	39.9 ± 3.5	66.2 ± 2.8
DANE	85.2 ± 1.3	94.8 ± 2.9	82.5 ± 1.7	92.3 ± 1.0	31.8 ± 1.8	67.1 ± 1.8	45.7 ± 1.9	70.0 ± 1.6
STAR	89.2 ± 1.2	99.2 ± 0.8	80.3 ± 1.5	95.5 ± 0.7	32.6 ± 1.6	67.4 ± 1.5	50.8 ± 1.3	75.0 ± 1.7
TRRN	91.5±1.0	99.8 \pm 0.8	$88.9 {\pm} 1.5$	97.6±1.8	34.6±1.3	$\textbf{72.8} {\pm} \textbf{1.2}$	52.0 ± 1.7	79.2 \pm 1.8

^{1.} Link prediction comparison is summarized in paper

Analysis of memory activating & updating

The visualization of self-attention matrix of a node from DBLP5 at two time steps.

Thanks!

Q & A