

Introducción

- Profesor : Suren Keushkerian
 - Email: <u>sk141534@fi365ort.edu.uy</u>
 - Teams.
- CV Profesional
 - https://www.linkedin.com/in/surensebastian/
- Background Alumnos
 - · Conocimiento en el área

Introducción - Dictado y Evaluación

Dictado

- 10 Clases Teórica
- 4 Prácticas de Laboratorio

• Evaluación:

•	Parcial	50 pts.
•	Obligatorio	40 pts.
•	Participación	10 pts.

Exonera

- $86 \le Puntaje$
- Derecho Examen
 - $70 \le Puntaje \le 85$

Recursa

• *Puntaje* < 70

SEMANA	TEMA	FECHA
1	TEORICO	16-Ago
2	TEORICO	23-Ago
3	LABORATORIO 1 - Presencial	30-Ago
4	LECTURA OBLIGATORIO - TEORICO	06 Sep
5	TEORICO	13 Sep.
6	LABORATORIO 2 - Virtual	20 Sep
7	UNIVERSIDAD CERRADA	27 Sep
8	UNIVERSIDAD CERRADA	4-Oct
9	TEORICO	11-Oct
10	TEORICO - (LABORATORIO 3)	18-Oct
11	PARCIAL	25-Oct
12	TEORICO	1-Nov
13	TEORICO	8-Nov
14	LABORATORIO 4 - Virtual	15-Nov
15	TEORICO	22-Nov
16	TEORICO	29-Nov
17	ENTREGA OBLIGATORIO	6-Dic

Introducción

PBX Analógica (Centralitas)

Voz sobre Ip (VoIP)

Comunicaciones Unificadas - UC

Introducción – Objetivos del Curso

- Comprender integralmente el funcionamiento de un sistema telefónico basado en IP.
- Determinar requerimientos de una internetwork IP para servicios de telefonía
- Comprender la interconexión de componentes de un sistema de C.U.
- Poner en operación un sistema unificado de Telefonía IP y Colaboración CISCO.

Unified Communications

Telefonía Analógica – Línea

- Es una conexión tradicional telefónica del hogar a la
 - PSTN (Public Switched Telephone Network)
 - ANTEL
- Generalmente usa cable de cobre y se conoce como "local loop"

Telefonía Analógica – Off Hook

- Cuando se descuelga el teléfono (off-hook) se escucha un tono(tone)
- Luego se le dice al "switch" de la compañía mediante los botones, a donde se quiere llegar

¿Qué es lo que sucede realmente para que esto funcione?

Señalizaciones (Signaling)

- ¿Como se da cuenta la compañía telefónica que estamos off hook?
 - Supervisory signaling
- Luego tenemos tono, y lo escuchamos
 - Information signaling
 - Cuando discamos y escuchamos que esta ocupado (busy)
 - Me esta dando información de que el otro extremo no esta disponible.
- Al Discar dígitos
 - Address Signaling
 - Estoy discando "una dirección", a donde quiere conectarme.

Señalizaciones – Circuito Tip and Ring

- El rj 11 tiene 4/6 conectores. en general se usan 2
- Se conocen como Tip and Ring.
- Salen del teléfono análogo y va a la pared a un rj11

Señalizaciones – Tip and Ring

- El termino Tip and Ring se origina en referencia a los antiguos conectores de teléfono
- Eran usados para conectar las llamadas telefónicas en las centralitas manuales.

Telefonía Analógica

- Cuando se hace un off-hook, hay un switch mecánico que se cierra y permite que empiece a circular corriente
 - Circuito abierto cuando estoy on-hook
 - Circuito cerrado cuando estoy off-hook

- Paradoja del circuito tip and ring
 - ¿Cuándo estoy on-hook, como hace la corriente para circular por el teléfono para que este suene?

Componentes de Red para Telefonía

• El sistema mundial de telefonía esta hecho de una interconexión entre múltiples compañías telefónicas conocidas como **Public Switched Telephone Network** (PSTN)

Signaling:

- Supervisory
- Address
- Information

Señalizaciones - Supervisory

- Le permite a la compañía de teléfono saber cuando levantamos el tubo (off-hook)
- También envía un voltaje de "ring al teléfono"
- El método de **Supervisory signaling** se llama "**Loop Start**", se tienen -48v de DC en la líneas de tip and ring. Cuando se levanta el tubo, eso permite que la corriente empiece a circular ("**Loop Current**").
- Cuando el switch del CO ve que hay corriente circulando, es la indicación que el teléfono esta off-hook, así que le indica al switch que tiene que brindar un TONO de DISCADO

Ringing Circuit

Señalizaciones - Address

- ¿Cómo sabe la compañía que números se discan?
- La manera tradicional era con Pulse Dialing
 - El método usa las aperturas y clausuras rápidas del circuito Tip and Ring para indicar el digito discado
 - "Como si fuera en on-hook y off-hook tan rápido que la compañía estaba programada para interpretarlo como un digito.

Señalizaciones - Address

- En la actualidad de usa DTMF
 - Dual-Tone Multi-Frequency Dialing
 - Usa 2 frecuencias generadas simultáneamente para indicar el digito discado
 - Cuando la compañía ve esas frecuencias y lo identifica como el numero 5

Frequency	1209 Hz	1336 Hz	1477 Hz
697 Hz	1	2	3
770 Hz	4	5	6
852 Hz	7	8	9
941 Hz	*	0	#

Señalizaciones – Informational

- También se usa DTMF
 - Para obtener información del usuario
 - Cuando se pide un "feedback"
 - Digite numero

Ejemplos DTMF

Señalizacion – Informational	Descripcion	Frecuencia
Dial Tone	Se escucha cuando se esta en off-hook	350 y 440
Ring Back	Indicación que la llamada esta sonando en destino	440 y 480
Busy Signal	Indicación que el lunero discado esta off-hook	480 y 620
Reorder Tone (Fast Busy)	Indicación que la llamada no puede ser completada(EJ trunks completos)	480 y 620

Ej: Un Dial Tone es un DTMF – un tono constante de 350hz y 440hz (Puede variar según el país)

Voice over IP (VOIP)

La transmisión de <u>protocolos de señalización</u>, <u>de voz y contenidos multimedia</u> a través de una red ip.

Voice over IP (VoIP)

Туре	Analog Cards in Routers
FXS	Foreign Exchange Station
FXO	Foreign Exchange Office

RTP / RTCP

- Real Time Transport Protocol
- Layer 4 UDP (voice/video)

FXS — Foreign Exchange Station

- Puerto de voz analógico que se conecta a un equipo:
 - Teléfono
 - Modem
 - Maquina de Fax
- Puede generar un dial-tone y mandar un voltaje de ring.
- Interpreta los dígitos discados.

FXO — Foreign Exchange Office

- Puerto de voz analógico que se conecta a una CO:
- Similar a un Teléfono
- Se puede realizar llamadas,

DIGITALIZACION DE LA VOZ

Teorema de Nyquist

Digitalización

- El habla humana es una **onda análoga** (waveform), pero queremos convertirla en una **onda digital**
- El sonido puede describirse mediante 5 características
 - 1. Longitud de Onda
 - 2. Amplitud
 - 3. Periodo
 - 4. Frecuencia
 - 5. Velocidad

Digitalización - Onda

1. Longitud de Onda

• Distancia mínima en que la onda se repite a si misma.

Amplitud

- Cuando una onda pasa a través de un medio, las partículas del medio se desplazan temporalmente de sus posiciones originales.
- La amplitud es el desplazamiento máximo de las partículas del medio desde sus posiciones originales no perturbadas y se usa para describir el tamaño de la onda. Se mide en m (metros)

Periodo 3.

• El tiempo que se requiere para completar un ciclo, y se mide en s (segundos)

4. Frecuencia

La cantidad de ciclos producidos en 1s, se mide en Hz (Hertz)

•
$$f = \frac{1}{T}$$

- f es la frecuencia
- T es el periodo

LONGITUD DE ONDA

VALLE

PERÍODO

NODO

AMPLITUD DE ONDA

Digitalización

• La amplitud es la que determina el volumen

Digitalización

• La "sensibilidad al volumen" no es lineal.

• Somos muy sensibles a las diferencias en el volumen de los sonidos suaves, pero a medida que el sonido se vuelve más fuerte, se hace más difícil diferenciar entre pequeños cambios en el

volumen

 Las mediciones de sonoridad que tienen en cuenta esta característica, se expresan como "nivel de presión acústica" o simplemente "SPL"(sound pressure level), y la unidad utilizada para medir SPL es el decibelio, abreviado como "dB".

 El sonido más suave detectable por el oído humano se define como 0 dB. (no se toman en cuenta las diferencias individuales)

140	Jet engine up close	4
120	Rock concert	K
100	Piano	-
80	Passenger car at 80 km/h	00
60	Conversation	Po Q
40	Quiet suburban neighborhood	
20	Empty theater or studio	
0	Lower limit	135551

Digitalización – Conversión a 0 y 1

• Para poder transmitir la voz humana en un medio digital, se debe convertir a una onda digital

• Representamos la voz como una serie de 1 y 0 o (voltajes para el 1 y absencia de voltajes para 0)

Digitalización - Conversión a 0 y 1

¿Cuántas muestras debo tomar para no perder calidad y representar la voz lo mejor posible?

Señal original

Señal solapeado (aliased)

Aliasing

Tomar muy pocas muestras para reproducir una onda, que resulta muy diferente a la original

Harry Nyquist 1889-1976

Físico Ingeniero Electrónico y de Comunicaciones

En 1928 publica un "paper" que establece las bases para lo que mas adelante se conocería como el "Teorema de Nyquist"

- Cuando se hace un muestreo de una onda analógica, el mismo debe ser por lo menos el doble de la frecuencia mas alta de la onda.
- Como no se trata de tener una replica exacta de la voz en alta definición, se usa una frecuencia que ya era usada por las compañías de teléfono, que se maximiza en 4000hz
- ¿Entonces cual es el numero mágico de muestras por segundo?

Digitalización

- Se toman una 8.000 muestras por segundo
- Hay un tema con la diferencias entre la amplitud y el numero exacto si se usa una escala lineal
- Eso crea un ruido audible que se conoce como "Quantization noise"
- Para evitar el problema se usa una escala Logaritímica

Digitalizacion - Conversion 0 a 1

- 1 Bit de Polaridad
 - Numero Positivo
 - Numero Negativo
- 3 Bits para indicar el Segmento
- 4 Bits para indicar el "step"

- 1 Polarity Bit
- 3 Segment Bits
- 4 Step Bits
- **8 Bits Total**

Digitalización

- Como se debe obtener 8000 muestras por segundo
- Cada muestra tiene una carga de 8 bits
- Se necesitan 64.000 bits/s = 64Kb/s

ES LA MANERA DE ENVIAR VOZ SIN COMPRIMIR

AUDIO CODECS

- G711 ulaw/alaw , G729 , G723.
- DSP
- COMPRACIONES

ADC/DAC – Analog Digital / Digital Analog Converter

Compresión con Perdida - Lossy

Elimina data que no se nota

Compresión sin Perdida - Lossless

No se elimina data

Durante la compresión, los datos se limitan a una estructura de paquete propia del algoritmo de compresión.

Al llegar al destino, se descomprime nuevamente en su estado original antes de decodificarse

ADC/DAC

Digitalización – Códecs

- Coder-Decoder (Codec)
 - Un algoritmo que codifica una onda analógica a una información digital y luego decodifica la información digital a una onda analógica.

MOS	Quality	Impairment
5	Excellent	Imperceptible
4	Good	Perceptible but not annoying
3	Fair	Slightly annoying
2	Poor	Annoying
1	Bad	Very annoying

Codec	Bandwidth (Payload Only)	Mean Opinion Score
G.711 ulaw/alaw	64 kbps	MOS 4.1
G.722	48/56/64 kbps	MOS 4.2
iLBC	13.3 kbps o 15.2 kbps	MOS 4.1
G.729	8 kbps	MOS 3.92
G.723	5.3 kbps o 6.3kbps	MOS 3.7

Comparación de Codecs: A-law / U-law

- Son Algoritmos para modificar una señal de entrada para ser digitalizada
 - Están implementados en sistemas telefónicos por todo el mundo.
 - La diferencia entre ambos es muy sutil:
- Rango dinámico de la salida
 - u-law tiene un rango dinámico mas grande que A-law. (rango entre el sonido mas bajo y el mas alto),
 - Esto presenta la desventaja de una distorsión mayor en señales pequeñas
 - a-law suena mejor que u-law cuando el input es muy suave.
- u-law
 - Usado en USA y Japón
 - Wikipedia Ley Mu (u-law)
- a-law
 - Usado en Europa y América
 - Wikipedia Ley A (A-law)

Comparación de Codecs

https://www.youtube.com/watch?v=LNMfDrTka3c

Demo Labs - Cisco Packet Tracer

- Programa en Aulas Microsoft Teams
- Se puede ingresar como Guest o usar una Cuenta de Netacademy Cisco

Demo Lab - Cisco SandBox

