Discrete Math Problem Set 10

Will Krzastek

April 22nd, 2024

- 1. Construct the explicit functions requested below.
 - (a) A bijection from $\{x \in \mathbb{R} \mid -1 < x < 1\}$ to $\{x \in \mathbb{R} \mid -\pi < x < \pi\}$.

Proof. Let $A := \{x \in \mathbb{R} \mid -1 < x < 1\}$ and let $B := \{x \in \mathbb{R} \mid -\pi < x < \pi\}$. Let $f : A \to B$. We will define f as $f(a) = a \cdot \pi$ where $a \in A$. Now, we will show that f is a bijection.

Injective:

Let $a, b \in A$. Assume f(a) = f(b). Thus by the definition of f, $a\pi = b\pi$. So, a = b. Thus, f is injective.

Surjective:

Let $c \in B$. Let $d := \frac{c}{\pi}$. By the definition of B, we know that $-\pi < c < \pi$, thus -1 < d < 1. So, $d \in A$. Thus, we obtain $f(d) = d\pi = \frac{c}{\pi}\pi = c$. Because we chose an arbitrary element of B, we know that every element of B has an element of the domain which maps to it.

Thus, f is surjective.

Thus, f is a bijection.

(b) A surjection from \mathbb{N} to $\{p \mid p \text{ is prime}\}.$

Proof. Let $P := \{p \mid p \text{ is prime}\}.$

Let $f: \mathbb{N} \to P$ be defined as f(n) := p such that $|\{q \in P \mid q \leq p\}| = n$. We will show that f is a surjection.

Let $k \in P$ where $k \in \mathbb{N}$. This means that k is prime by definition of P. Observe, k is finite. This lets us know that there are finitely many prime numbers less than k. As such, $|\{q \in P \mid q \leq k\}|$ is finite, which allows us to say that $|\{q \in P \mid q \leq k\}| = m$ for some $m \in \mathbb{N}$. Then by the definition of f, we know that f(m) = k. Because we showed this for an arbitrary element of P, we know that every element of P has an element of the domain which maps to it.

Therefore, f is surjective.

(c) An injection from X to $\mathbb{P}(X)$ for every set X.

Proof. Let X be a set.

Let $f: X \to \mathbb{P}(X)$ be defined as $f(x) := \{x\}$. We will show that f is injective.

Let $a, b \in X$. Assume f(a) = f(b).

This means that $\{a\} = \{b\}$. By definition, we know $\forall c (c \in \{a\} \iff c \in \{y\})$.

Therefore, all elements of a and b are the same. So, a = b.

Therefore, f is injective.

(d) A surjection from $\mathbb{P}(X)$ to X for every set $X \neq \emptyset$.

Proof. Let X be a set where $X \neq \emptyset$. Let $x \in X$.

Let $f: \mathbb{P}(X) \to X$ be defined

$$f(a) = \begin{cases} \bigcup a & |a| = 1\\ x & |a| \neq 1 \end{cases}$$

We will show that f is surjective.

Let $y \in X$. By the definition of a subset, we know that $\{y\} \subseteq X$, which means that $\{y\} \in \mathbb{P}(X)$ by the definition of a power set. We also know that $|\{y\}| = 1$ because there is only one element. Therefore by the definition of f, we know that $f(\{y\}) = \bigcup \{y\} = y$.

Because we showed this for an arbitrary element of X, we know that f is surjective for every set X where $X \neq \emptyset$.

2. Let A be an arbitrary finite set of cardinality |A| = n, where $n \in \mathbb{N}$. How many finite strings over A are there?

Proof. Let A be a set, where |A| = n for some $n \in \mathbb{N}$. Let $s := \{z \mid (\exists c \in \mathbb{N})(z = \{s \mid s : c \to A\})\}$. Observe, $\cup s = \bigcup_{i \in \mathbb{N}}^{\infty} \{s \mid s : i \to A\}$. Let's define $B \in s$ for some $m \in \mathbb{N}$. So, $B = \{s \mid s : m \to A\}$. Thus, $|B| = |A|^m = n^m$ by Theorem 6.10. So, |B| is finite thus B is countable. This means that $\cup s$ is a countable collection of countable sets. Therefore by Theorem 8.8, we know that $|\cup s|$ is countable, meaning $|\cup s| \leq |\mathbb{N}|$.

Now, we would like to prove that $\cup s$ is an infinite set. Towards a contradiction, assume $\cup s$ is finite. This means that for some $l \in \mathbb{N}$, $|\cup s| = l$. So, there exists some surjection $f: l \to \cup s$.

Let $a \in A$. Let $h := f(0) + + f(1) + + \dots + f(l-1) + + a$. So, $|h| = \sum_{i=0}^{l-1} |f(i)| + 1$. So by definition,

 $(\forall k \in l)(|f(k)|) \leq \sum_{i=0}^{l-1} |f(i)| < \sum_{i=0}^{l-1} |f(i)| + 1 = |h|. \text{ This tells us that } (\forall k \in l)(|f(k)| \neq |h|).$

Therefore, $(\forall k \in l)(f(k) \neq h)$. So, h is a finite string over A where $h \in \cup s$, but f does

not map to h. Therefore f is not a surjection. However, we assumed f was a surjection ξ . Therefore, $(\forall l \in \mathbb{N})(\cup s \neq l)$, so $\cup s$ is infinite.

Therefore, we know that $\cup s$ is both countable and infinite.

Therefore by definition, we know $|\cup s| = |\mathbb{N}| = \aleph_0$. So, there are \aleph_0 finite strings over A.

3. Imagine that, one day, you encounter a library. At the entrance of this library is an enormous tome \mathcal{B} listing all of the possible sentences in the English language, indexed by natural numbers.

Walking past the entrance, you see that the library has rows of bookshelves numbered $0, 1, 2, \ldots$, so that there is exactly one row of books for each $n \in \mathbb{N}$. A great owl—perched on the pedestal that supports \mathscr{B} —informs you that, for each $n \in \mathbb{N}$, the n^{th} row of bookshelves contains all of the books that could possibly ever be that begin with the n^{th} sentence in \mathscr{B} . With the sound of granite scraping against marble, the doors to the library close behind you. The owl makes you the following proposal: you will be free to go if and only if you can read every book in the library in a countable amount of time.

Will you be set free? The owl demands a proof to justify your answer.

Proof. Observe a few things. There are countibly many sentences in \mathscr{B} because they are numbered. \mathscr{B} is a set of cardinality \mathbb{N} where $n \in \mathbb{N}$ is a sentence at the n^{th} position of \mathscr{B} . We know that every book contains an infinitely countable amount of sentences, because they are indexed. Thus, we will represent the amount of sentences in each book with $|\mathbb{N}|$. Let S be $S := \{s \mid s : \mathbb{N} \to \mathbb{N}\}$ where S is the set of all books of infinite length in the library. Thus, $S \subseteq$ "all of the books in the library".

Towards a contradiction, assume $|\mathbb{N}| \geq |S|$. This means there exists some $f : \mathbb{N} \to S$ such that f is surjective. Let $g \in S$. Consider, $g : \mathbb{N} \to \mathbb{N}$ where:

$$g(i) := \begin{cases} 1 & f(i)(i) \neq 1 \\ 2 & f(i)(i) = 1 \end{cases}$$

Because f is surjective, $(\exists t \in \mathbb{N})(f(t) = g)$. So, $(\forall i \in \mathbb{N})(f(t)(i) = g(i))$. However, observe $f(t)(t) = 1 \Leftrightarrow g(t) = 2 \neq 1$, and $f(t)(t) \neq 1 \Leftrightarrow g(t) = 1$. This means that $f(t)(t) \neq g(t)$, so $(\exists i \in \mathbb{N}) f(t)(i) \neq g(i) \notin$.

Therefore, $|\mathbb{N}| < |S|$. Because $|S| > |\mathbb{N}|$, we know $|S| > \aleph_0$, which means by definition that S is uncountibly infinite. So I will sadly *not* be set free and the owl will own me forever :/