Coloreo de Grafos

Algoritmos y Estructuras de Datos III

Definiciones:

- ▶ Un **coloreo (válido) de los nodos** de un grafo G = (V, X) es una asignación $f : V \to C$, tal que $f(v) \neq f(u) \ \forall (u, v) \in E$.
- ▶ Los elementos de *C* son llamados **colores**. Muchas veces los colores son enteros positivos.
- ▶ Para todo entero positvo *k*, un *k*-**coloreo** de *G* es un coloreo de los nodos de *G* que usa exactamente *k* colores.
- ▶ Un grafo *G* se dice *k*-coloreable si existe un *k*-coloreo de *G*.
- El número cromático de G, χ(G), es el menor número de colores necesarios para colorear los nodos de G.
- ▶ Un grafo G se dice k-cromático si $\chi(G) = k$.

$$\lambda$$
 $\chi(K_n) =$

- $ightharpoonup \chi(K_n) = n.$
- ▶ Si G es un grafo bipartito con m > 0, entonces $\chi(G) =$

- $\lambda(K_n) = n.$
- ▶ Si *G* es un grafo bipartito con m > 0, entonces $\chi(G) = 2$.
- ▶ Si H_{2k} es un circuito simple par, entonces $\chi(H_{2k}) =$

- $\lambda(K_n) = n.$
- ▶ Si *G* es un grafo bipartito con m > 0, entonces $\chi(G) = 2$.
- ▶ Si H_{2k} es un circuito simple par, entonces $\chi(H_{2k}) = 2$.
- ▶ Si H_{2k+1} es un circuito simple impar, entonces $\chi(H_{2k+1}) =$

- $\lambda(K_n) = n.$
- ▶ Si *G* es un grafo bipartito con m > 0, entonces $\chi(G) = 2$.
- ▶ Si H_{2k} es un circuito simple par, entonces $\chi(H_{2k}) = 2$.
- ▶ Si H_{2k+1} es un circuito simple impar, entonces $\chi(H_{2k+1}) = 3$.
- ▶ Si T es un árbol con n > 1, entonces $\chi(T) =$

- $\lambda(K_n) = n.$
- ▶ Si *G* es un grafo bipartito con m > 0, entonces $\chi(G) = 2$.
- ▶ Si H_{2k} es un circuito simple par, entonces $\chi(H_{2k}) = 2$.
- ▶ Si H_{2k+1} es un circuito simple impar, entonces $\chi(H_{2k+1}) = 3$.
- ▶ Si T es un árbol con n > 1, entonces $\chi(T) = 2$.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

Proposición: Si H es un subgrafo de G entonces $\chi(H) \leq \chi(G)$.

Definición: Una clique en un grafo es un subgrafo completo maximal. El número clique $\omega(G)$ de un grafo es el número de nodos de una clique máxima de G.

¿Es buena esta cota?

Definición (por inducción):

- 1. $M_1 = K_1$
- 2. $M_2 = K_2$
- 3. Para $i \ge 2$, M_{i+1} se construye a partir de M_i de la siguiente forma:
 - Si M_i tiene p nodos, v_1, \ldots, v_p , M_{i+1} tendrá 2p+1 nodos, $v_1, \ldots, v_p, u_1, \ldots, u_p, w$, donde u_i es copia de v_i .
 - ▶ El conjunto de aristas de M_{i+1} tendrá todas las aristas de M_i , las aristas uniendo u_i con los vecinos de v_i en M_i y las aristas uniendo w con cada u_i .

$$\chi(M_i) = i$$

¿Cuál es el número cromático de M_i ?

$$\chi(M_i)=i$$

¿Cuál es la clique máxima de M_i ?

¿Cuál es el número cromático de M_i ?

$$\chi(M_i) = i$$

¿Cuál es la clique máxima de M_i ?

$$\omega(M_i)=2$$

Proposición: Si $\Delta(G)$ es el grado máximo de G entonces

$$\chi(G) \leq \Delta(G) + 1.$$

Proposición: Si $\Delta(G)$ es el grado máximo de G entonces

$$\chi(G) \leq \Delta(G) + 1.$$

Teorema (Brooks): Sea G un grafo conexo que no es un circuito impar ni un grafo completo. Entonces

$$\chi(G) \leq \Delta(G)$$
.

Proposición: Si $\Delta(G)$ es el grado máximo de G entonces

$$\chi(G) \leq \Delta(G) + 1.$$

Teorema (Brooks): Sea G un grafo conexo que no es un circuito impar ni un grafo completo. Entonces

$$\chi(G) \leq \Delta(G)$$
.

Proposición: Si $\Delta(G)$ es el grado máximo de G entonces

$$\chi(G) \leq \Delta(G) + 1.$$

Teorema (Brooks): Sea G un grafo conexo que no es un circuito impar ni un grafo completo. Entonces

$$\chi(G) \leq \Delta(G)$$
.

Proposición: Si $\Delta(G)$ es el grado máximo de G entonces

$$\chi(G) \leq \Delta(G) + 1.$$

Teorema (Brooks): Sea G un grafo conexo que no es un circuito impar ni un grafo completo. Entonces

$$\chi(G) \leq \Delta(G)$$
.

Lema 1: En todo $\Delta(G)$ -coloreo de G - v, los vecinos de v en G usan todos los colores y $d_G(v) = \Delta(G) \ \forall v \in V$.

Lema 1: En todo $\Delta(G)$ -coloreo de G - v, los vecinos de v en G usan todos los colores y $d_G(v) = \Delta(G) \ \forall v \in V$.

Sean $N(v) = \{v_1, \dots, v_{\Delta(G)}\}$ los vecinos de v y consideremos un $\Delta(G)$ -coloreo de G - v donde el nodo v_i es pintado con color i. Para $i \neq j$, sea H_{ij} el subgrafo inducido por los nodos de G - v pintados con colores i o j en ese $\Delta(G)$ -coloreo.

Lema 1: En todo $\Delta(G)$ -coloreo de G - v, los vecinos de v en G usan todos los colores y $d_G(v) = \Delta(G) \ \forall v \in V$.

Sean $N(v) = \{v_1, \ldots, v_{\Delta(G)}\}$ los vecinos de v y consideremos un $\Delta(G)$ -coloreo de G-v donde el nodo v_i es pintado con color i. Para $i \neq j$, sea H_{ij} el subgrafo inducido por los nodos de G-v pintados con colores i o j en ese $\Delta(G)$ -coloreo.

Lema 2: v_i y v_j pertenecen a la misma componente conexa de H_{ij}

Lema 1: En todo $\Delta(G)$ -coloreo de G - v, los vecinos de v en G usan todos los colores y $d_G(v) = \Delta(G) \ \forall v \in V$.

Sean $N(v) = \{v_1, \ldots, v_{\Delta(G)}\}$ los vecinos de v y consideremos un $\Delta(G)$ -coloreo de G-v donde el nodo v_i es pintado con color i. Para $i \neq j$, sea H_{ij} el subgrafo inducido por los nodos de G-v pintados con colores i o j en ese $\Delta(G)$ -coloreo.

Lema 2: v_i y v_j pertenecen a la misma componente conexa de H_{ij}

Lema 3: Si P_{ij} es la componente conexa de H_{ij} que contiene a v_i y a v_j , entonces P_{ij} es un camino en H_{ij} .

Lema 1: En todo $\Delta(G)$ -coloreo de G - v, los vecinos de v en G usan todos los colores y $d_G(v) = \Delta(G) \ \forall v \in V$.

Sean $N(v) = \{v_1, \ldots, v_{\Delta(G)}\}$ los vecinos de v y consideremos un $\Delta(G)$ -coloreo de G-v donde el nodo v_i es pintado con color i. Para $i \neq j$, sea H_{ij} el subgrafo inducido por los nodos de G-v pintados con colores i o j en ese $\Delta(G)$ -coloreo.

Lema 2: v_i y v_j pertenecen a la misma componente conexa de H_{ij}

Lema 3: Si P_{ij} es la componente conexa de H_{ij} que contiene a v_i y a v_j , entonces P_{ij} es un camino en H_{ij} .

Lema 4: $P_{ij} \cap P_{ik} = \{v_i\}$, para colores $i \neq j \neq k$.

Problema de los cuatro colores

Teorema de los 4 colores (Appel, Haken, 1976): Si G es un grafo planar, entonces

$$\chi(G) \leq 4$$
.

Teorema (Heawood, 1890): Si G es un grafo planar, entonces

$$\chi(G) \leq 5$$
.

Algoritmos para coloreo de grafos

- Problema "difícil", computacionalmente no resuelto.
- ► Hay muchísimo trabajo en desarrollo de algoritmos, especialmente heurísticas para coloreo de grafos.

Algoritmo (heurística) secuencial (S)

Entrada: Un grafo G con un orden en los nodos v_1, \ldots, v_n .

4D > 4A > 4B > 4B > B 990

Algoritmo secuencial (S)

Definimos

$$u_S(G, v_1, v_2, \dots, v_n) = \max_{1 \le i \le n} \min\{i, d(v_i) + 1\}.$$

Proposición: Si $\chi_S(G)$ es el número de colores usado por el algoritmo secuencial para colorear G cuando los nodos son considerados en el orden v_1, \ldots, v_n , entonces

$$\chi(G) \leq \chi_S(G) \leq u_S(G, v_1, v_2, \ldots, v_n).$$

¿Importa el orden en que se colorean los nodos con el algoritmo secuencial?

Algoritmo secuencial (LFS)

Orden Largest First **(LF):** los nodos son ordenados de mayor grado a menor grado, $d(u_1) \ge d(u_2) \ge ... \ge d(u_n)$.

Proposición: Si $u_{LF}(G) = u_S(G, u_1, u_2, ..., u_n)$ donde $u_1, u_2, ..., u_n$ están ordenados según LF. Entonces

$$u_{LF}(G) \leq \min u_S(G, v_1, v_2, \ldots, v_n)$$

donde el mínimo está tomado sobre todos los ordenes posibles, v_1, \ldots, v_n .

¿Esto implica que siempre el algoritmo secuencial da un resultado mejor si se usa LF?

Algoritmo secuencial

Otra cota (mejor) para el número de colores usados por el algoritmo secuencial es:

$$u_S'(G, v_1, v_2, \dots, v_n) = 1 + \max_{1 \le i \le n} \{d_{G_i}(v_i)\}$$

donde $d_{G_i}(v_i)$ es el grado del nodo v_i en el grafo inducido por v_1, v_2, \ldots, v_i .

Algoritmo secuencial (SLS)

Orden Smallest Last (SL):

- 1. poner como v_n el nodo de mínimo grado de G.
- 2. para i = n 1, ..., 1 poner como v_i el nodo de grado mínimo en el subgrafo de G inducido por $V \setminus \{v_n, v_{n-1}, ..., v_{i+1}\}$.

Definimos

$$u_{SL}(G) = 1 + \max_{1 \leq i \leq n} \min_{1 \leq j \leq i} \{d_{G_i}(v_j)\}$$

donde $d_{G_i}(v_j)$ es el grado del nodo v_j en el grafo inducido por $V \setminus \{v_n, v_{n-1}, \dots, v_{i+1}\}.$

Algoritmo secuencial - Cotas

Se puede demostrar (ejercicio) que:

- ▶ $u'_S(G) \le u_S(G)$ para cualquier orden de los nodos.
- $\lambda_{SL}(G) \leq u_{SL}(G).$
- $\triangleright u_{SL}(G) \leq u_{LF}(G).$
- SLS colorea un grafo planar con 6 colores o menos.

Supongamos que tenemos un coloreo parcial de G, donde los nodos v₁,..., v_{i-1} ya han sido coloredos y es el turno de colorear a v_i. Si todos los colores ya utilizados están en la vecindad de v_i, será necesario utilizar un nuevo color.

- Supongamos que tenemos un coloreo parcial de G, donde los nodos v₁,..., v_{i-1} ya han sido coloredos y es el turno de colorear a v_i. Si todos los colores ya utilizados están en la vecindad de v_i, será necesario utilizar un nuevo color.
- Si existen p y q dos colores utilizados en el coloreo parcial, tal que en todas las componenetes conexas de H_{pq} los nodos adyacentes a v_i tienen el mismo color, podemos intercambiar los colores p y q en las componentes de H_{pq} con nodos adyacentes a v_i con color p. De esta manera, obtendremos un coloreo parcial de G con el color p no utilizado en la vecindad de v_i.

- Supongamos que tenemos un coloreo parcial de G, donde los nodos v₁,..., v_{i-1} ya han sido coloredos y es el turno de colorear a v_i. Si todos los colores ya utilizados están en la vecindad de v_i, será necesario utilizar un nuevo color.
- Si existen p y q dos colores utilizados en el coloreo parcial, tal que en todas las componenetes conexas de H_{pq} los nodos adyacentes a v_i tienen el mismo color, podemos intercambiar los colores p y q en las componentes de H_{pq} con nodos adyacentes a v_i con color p. De esta manera, obtendremos un coloreo parcial de G con el color p no utilizado en la vecindad de v_i .
- Este procedimiento se llama p, q-intercambio.

```
f(v_1) := 1, k := 1
para i = 2, 3, ..., n hacer
   g := \min\{h/h > 1 \text{ y}\}
         f(v_i) \neq h \ \forall (v_i, v_i) \in E, \ 1 \leq j \leq i-1
   si g < k entonces
      f(v_i) := g
   sino
      si existen 1 \le p < q \le k, tales que
        un p, q-intercambio libera p entonces
           realizar el p, q-intercambio
           f(v_i) := p
      sino
         f(v_i) := g, k := k + 1
```

 \cite{E} s siempre mejor el algoritmo SI que el algoritmo S?

¿Es siempre mejor el algoritmo SI que el algoritmo S?

No, generando grafos al azar se han encontrado algunos ejemplos complicados donde SI usa más colores que S.

Se puede demostrar que:

- SI colorea un grafo bipartito con 2 colores (ejercicio).
- SI con el ordenamiento SL colorea un grafo planar con 5 colores como máximo.

- \triangleright v_1, v_2, \ldots, v_n ordenamiento de los nodos de G.
- ▶ U_i = conjunto de colores posibles para el nodo v_i , una vez que han sido coloreados v_1, v_2, \dots, v_{i-1} .
- Si l_{i-1} es el máximo color usado para v₁,..., v_{i-1} y sólo buscamos coloreos óptimos, evitando coloreos equivalentes, ∀j ∈ U_i se verifica que:
 - ightharpoonup j no es color asignado a un vecino de v_i ya coloreado
 - $j \leq \min\{i, d(v_i) + 1\}$
 - ▶ $1 \le j \le l_{i-1} + 1$
 - lacktriangle si ya se encontró un coloreo del grafo con q colores entonces $j \leq q-1$

- Con estas restricciones se hace una búsqueda completa. En el árbol de búsqueda se abre una rama a partir de cada nodo (correspondiente a un coloreo de v_1, \ldots, v_{i-1}), para cada elemento de U_i .
- ► Se avanza por las ramas coloreando los siguientes nodos hasta que ocurre alguna de las siguientes situaciones:
 - 1. se llegó a un nodo con $U_i = \emptyset$: a partir de esta situación se hace *backtracking* a partir de v_{i-1} .
 - 2. se coloreó v_n : se encontró un nuevo coloreo del grafo, hay que actualizar q y hacer backtracking.

- q: cantidad de colores usados en la mejor solución encontrada hasta el momento.
- k: nodo siendo considerado.
- I: cantidad de colores utilizados en la solución parcial actual.
- $\vdash I_k$: I para el nodo v_k .
- cotalnf: cota inferior para el número cromático del grafo.

```
f(v_1) := 1, \ \ a := n+1, \ \ k := 1, \ \ l := 1
avanzar := VERDADERO
repetir
   si avanzar
       k := k + 1, l_{\nu} := l, determinar U_{\nu}
   si U_{\nu} = \emptyset
      avanzar := FALSO, k := k - 1, l := l_{k}
   sino
      j := \min U_k, U_k := U_k \setminus \{j\}, f(v_k) := j
      si i > l entonces l := l + 1
      si k < n entonces avanzar := VERDADERO
       sino
          almacenar la nueva solución
          encontrar el menor i tal que f(v_i) = I
          borrar l, l + 1, ..., q - 1 de U_1, ..., U_{i-1}
          q := 1, l := q - 1, k := i - 1
          avanzar := FALSO
hasta k = 1 o q = cotalnf
```

Coloreo de aristas

Definiciones:

- ▶ Un coloreo válido de las aristas de un grafo *G* es un asignación de colores a las mismas en la cual dos aristas que tienen un nodo en común no tengan el mismo color.
- ▶ El índice cromático $\chi'(G)$ de un grafo G es el menor número de colores con que se pueden colorear las aristas de un grafo.

Teorema de Vizing: Para todo grafo G se verifica que

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$