Solution /

Homogenous mixture of two or more pure substances

Solvent (max.amount)

Solute (min.amount)

= Solution

Types of Solutions

Based on physical state

- Gas in Gas (Air)
- ➤ Gas in liquid (soda water)
- ➤ Gas in solid (Hydrogen in Pd)
- ➤ Liquid in gas (Fog)
- ➤ Liquid in liquid (Alcohol in H₂O)
- ➤ Liquid in solid (Amalgams)
- ➤ Solid in gas (Smog)
- ➤ Solid in liquid (sugar in water)
- ➤ Solid in solid (alloys)

Based on Concentration

- Dilute Solution
- Concertated solution
- Saturated solution
- Super Saturated solution

Concentration terms

Mole fraction (x)

No. of moles of solute Total No. of moles in solution

Mass Percentage (w/w)

Mass of solute Total mass of solution x 100

Parts per million (PPM)

No. of parts of solute Total no. of parts of all components of solution

Volume Percentage (V/V)

Volume of solute Total volume of solution ×100

Molarity (M) No. of moles of solute

No. of moles of solute weight of the solvent in Kg

Molality (m)

Mass by volume %

mass of solute x 100 Total volume of solution

Solubility

Liquid in liquid

Effect of pressure

Partial vapour pressure = vapour pressure of pure component × Mole fraction $p_t = p_A^{\circ} X_A + p_B^{\circ} X_B$

Solid in liquid

Effect of nature of solute and solvent

Like dissolves Like.

Effect of temp.

Exothermic process:-

Solubility decreases with rise in temp.

Endothermic process:-

Solubility increases with rise in temp.

Effect of pressure

No effect

Effect of pressure

Solubility increases with increase in pressure.

Henry's Law

Partial pressure of gas in vapour of the gas (x) Mole fraction phase.

$$p = K_{H}X$$

Solubility of gases increases with decrease of temperature.

Ideal and non ideal solution

Obey Raoult's Law

$$p_s = p_A x_A + p_B x_B$$

Non Ideal

Does not Obey Raoult's Law -

$$p_s \neq p_A x_A + p_B x_B$$

Positive deviation

Negative deviation

Azeotropes

Constant boiling mixtures

- Positive deviation mixture.
- Ex. 95% Ethanol in water

Maximum boiling azeotropes

➤ Ex. 68% HNO₃ in water

1. Osmotic pressure

Pressure applied to stop the flow of solvent through semi permeable memberane.

$$\pi = \mathsf{CRT}$$

3. Depression in freezing point

$$\Delta \mathbf{T}_{f} = \frac{\mathbf{K}_{f} \times \mathbf{W}_{2} \times 1000}{\mathbf{M}_{2} \times \mathbf{W}_{1}}$$

2. Elevation of Boiling point

$$\Delta \mathbf{T_b} = \frac{\mathbf{K_b} \times 1000 \times \mathbf{W_2}}{\mathbf{M_2} \times \mathbf{W_1}}$$

4. Relative lowering of vapour pressure

$$\frac{W_2 \times M_1}{M_2 \times W_1} = \frac{P_A - P_S}{P_A}$$

Van't hoff factor (i)

Ratio of the normal mass to the observed molecular mass of the solute.

$$i = \frac{\text{Normal molar mass}}{\text{Abnormal molar mass}}$$

