The Real Numbers (TR)

Axioms on R: Axiom 1. Algebraic Properties of R: Binary operations, namely, addition & multiplication. · atb=b+a for all a, b & iR Additive) . (a+b)+c = a+ (b+c) for all a, b, c & R · there exists an element of IR such that ofa = a and a+o = a, for all · for each a & IR, there exists an eliment - a & IR such that a + (-a) = 0 = (-a) + aa.b = b.a for all a, b & R Multiplicative. (a.b).c = a.(b.c) for all a, b, c & IR proporties . there exists an element 1 GIR such that I.a = a = a - 1 for all a GIR. · for each a + 0 in R, there exists an element /a EIR such that $a \cdot (1/a) = 1 = (1/a) \cdot a$ Compatibility addition and • $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ multiplication. Using the above axioms on IR, one can deduce the following: If Z, a & IR with Z+a=a, then Z=0. (i) :wH If $u \in \mathbb{R}$, $b \neq 0$ with $u \cdot b = b$, then u = 1(ii) If a GIR, then a.o = 0. (iii) If a to , b & R such that a b = 1 , then b = 1/a (iv) If a · b = 0 then either a = 0 or b = 0. Axiom 2. Order properties of R: These properties refer to the positivity and inequalities between real nos. There is a nonempty subset IP of R, called the set of positive real nos., that satisfy: (i) If a, b & P, then at b & P. and a · b & IP. (ii) If a ∈ IR, then exactly one of the following holds: (Tricholomy proporty) a EIP, a=0, -a EIP. R=PUFOJU-IP

	Defi: - a t IR is called a positive real no. if a E IP
	at IR is called a negative real no. if -at P
	at PUZo's then a is called a nonnegative real non
	-at IPU For them a is called a nonfrositive real no.
	Defi: Define an order on R as:
	Let a, b & IR.
	Let a, b ∈ R. o If a-b ∈ P, we write a>b or b < a.
	olf a-b∈ PU los then ne write a > b or b≤a.
	1
	Via the Trichotomy Property, exactly one of these hold:
	a>b, a=b, a <b.< th=""></b.<>
	Let 9, b, c & IR.
(i)	If a > b and b > c , then a > c.
(ii)	If ash then atc > b+c
(iii)	If a 7b and c>o, then ca 7 cb; clo, then ca L cb.
	CCO; then Ca C Co.
Question:	Is there a way to describe the elements of IR using the above axioms ??.?
	Recall 1 & R, \$0 does 1+1=2 & R, and so on. N: denote the set of natural nos. nobtained by adding 1 n-times. Similarly adding -1 & IR n-times yield -n
2	Z:= {-n n e M g . U {o} s . U H.
	Elements of IR that can be written as a/b where a, b & I and b \$0
	Q = Sa q, b \ Z, b \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	7-61 113 - 7-1 3

Orghan: Is R = Q ? Discovered by the ancient Greek society of Pythagoveans in the 6 centry B.c. a to square with unit length. Length of the diagonal of a unit square is not a rational ro. !!! Via the Pythagovean thm. for right-angled triangles: at 10= c2 Hen a= b= 1, so c= 2 The fact (which will be proved shortly) that there is no rational number whose square is equal to 2 led to the discovery of irrational numbers. Def. Irrational number: A number in IR that is not in Q. There does not exist a varioual number or such that r=2. pp: Hint: Suppose there is an v such that 2=2. r= P/q where P, q & Z and q + 0. On can assume P, 9, >0 (why?) and no common divisors (why?) P = 291. This implies that p is even. Deduce from this that q is also even! This leads to a contradictory condusion about qu (I find that) and finish the proof. Reall that a EM is even if a= 2n for some n EIN at Mis odd if a= 2n-1 for some nEM

Questio	ni Where does M belong to in the Trichotomy R= IPU 2050-IP. 2
	b and the second se
	MCP Why?
	Q ,
Thus (i)	KaER and a #0, then a >0.
(HW) (%) If a ∈ R and a ≠0, then a²>0.
	Using (i) and (ii), poone that If $n \in \mathbb{N}$, then $n > 0 \cdot (l \cdot e, n \in \mathbb{R})$.
N has the	Well-ordering principle:
→	There is no smallest positive real number in R !!! (Prove it.)
	There is no smallest positive real number in R III (Prove it.) Hint: Note that if a so then 6 < \frac{1}{2} < \a.
Consequently	If a fill such that 0 & a < & for every 200, then a=0.
(The	If a fire such that 0 & a < 2 for every 200, then a=0.
(/**	
	Algebraic and order properties of R are not "enough" to characterize IR.
	Thesan mat mat me the state of
	The fact that there are real nos. That are not rational nos. necessitates
	the existence of a new proporty to characterize IR.
	a contract to the state of the
	De-fis.
0	A < IR is said to be bounded above if there exists some 2 < IR such that
	a < x for all a & A.
	Any number or that satisfies above condition is called an upper bound of A.
•	Tall Mark to the second section of the section of the second section of the sec
•	For A⊆IR a nonempty set, a number u∈IR is said to be a
	subremum (or a least upper bound) of A if it satisfies;
	(i) u is an upper bound of A,
	(ii) If v is any upper bound of A, then u ≤ v.
	Note that subremem of a given set (if finite) is a unique number.
	So "a" supremum is in fact "the" supremum.

It is not possible to prove using Axioms 1-2 that every nonempty subset of R that is bounded above in R has the supremum in IR !!! It is a deep and fundamental property of R. Axiom3 The Completeness property of R:

Every nonempty set of real numbers that is bounded above has the least upper bound (or the expression). An application of Axiom 3: Archimedean property of R: If x and y are positive real numbers, then there is some natural number neith such that nx > y. x y F: Suppose no such nEM exists. That is nx & y for all nEM.

Then the set A:= \{ nx \ n\in m\} is bounded above by y\in R.

So, by the completeness property (Axiom 3), S:= Sup Ax.

Since S-x < S, there is some nx \in Ax such that S-x < nx \in S (why?)

Then, S < (n+1) x. But (n+1) x \in Ax, contradicting S is an apper bound of A! Hw: If a, b & IR st. a < b, then there is a r & Q with a < r < b.

(such that) Completeness Property of IR => Archime dean property of IR. Question: (i) Does Q have the Archimedoan property?

yes! (That is, for x, y & Q such that x, y positive rational numbers,

then thus is some r & Q st. rx > y ?) (i) Does Q have the completeness property? (That is, does every subset of Q that has an upper bound in Q, has the least upper bound?)