Distributions of unramified extensions of global fields

David Zureick-Brown (Emory University)
Yuan Liu (University of Illinois Urbana-Champaign)
Melanie Matchett Wood (Harvard University)

Slides available at http://www.math.emory.edu/~dzb/slides/

Joint Mathematics Meetings Special session on Arithmetic Statistics January 5, 2023

Main problem: variation of K^{ur}

Fix a finite group Γ (e.g., $\Gamma = \mathbb{Z}/2\mathbb{Z}$).

Fix a finite group
$$\Gamma$$
 (e.g., $\Gamma = \mathbb{Z}/2\mathbb{Z}$).
$$\begin{cases} K^{\mathrm{ur}} \\ \\ \\ H \\ \\ \\ Gal(H/K) \cong Gal(K^{\mathrm{ur}}/K)^{\mathrm{ab}} \cong \mathrm{Cl}(K) \\ \\ K \\ \\ \\ \Gamma \cong \mathrm{Gal}(K/\mathbb{Q}) \\ \\ \mathbb{Q} \end{cases}$$

Problem

- How do K^{ur} and $Gal(K^{ur}/K)$ vary as K varies over Γ extensions?
- 2 How should we model K^{ur} and $Gal(K^{ur}/K)$?

Class field towers

Setup

- **1** Let $K_0 = K$.
- 2 Let K_i = the Hilbert class field of K_{i-1} .
- 3 Let $K_H = \bigcup_i K_i \subset K^{ur}$.
- Note that if $K_2 \neq K_1$ then $Gal(K_2/K)$ is nonabelian.

$$\mathbb{Q} \subset K = K_0 \subset K_1 \subset \cdots \subset K_n \subset \cdots \subset K_H \subset K^{ur}$$

Examples (Hermite–Minkowski; Schoof, 1986; Lang)

$$K = \mathbb{Q}$$
 \Rightarrow $\mathbb{Q} = \mathbb{Q}^{ur}$
 $K = \mathbb{Q}(\zeta_{877})$ \Rightarrow $[K^{ur} : K] = \infty$
 $K = \mathbb{Q}(\sqrt{2869})$ \Rightarrow $K_H \neq K^{ur}$

Class field towers

Theorem (Golod-Shaferevich, 1964)

Let
$$K=\mathbb{Q}(\sqrt{-|D|}).$$
 Suppose that $\mathrm{rk}(\mathsf{Cl}\,K)_2\geq 5.$ Then $[(K_H)_2:K]=\infty.$

Theorem (Furuta, 1972)

Fix ℓ . Let $K = \mathbb{Q}(\zeta_n)$ and suppose that n is divisible by at least 8 primes p such that $\ell \mid p-1$. Then $[(K_H)_\ell : K] = \infty$.

Main problem: variation of K^{ur}

Fix a finite group Γ (e.g., $\Gamma = \mathbb{Z}/2\mathbb{Z}$).

Fix a finite group
$$\Gamma$$
 (e.g., $\Gamma = \mathbb{Z}/2\mathbb{Z}$).
$$\begin{cases} K^{\mathrm{ur}} \\ \\ \\ H \\ \\ \\ Gal(H/K) \cong Gal(K^{\mathrm{ur}}/K)^{\mathrm{ab}} \cong \mathrm{Cl}(K) \\ \\ K \\ \\ \\ \Gamma \cong \mathrm{Gal}(K/\mathbb{Q}) \\ \\ \mathbb{Q} \end{cases}$$

Problem

- How do K^{ur} and $Gal(K^{ur}/K)$ vary as K varies over Γ extensions?
- 2 How should we model K^{ur} and $Gal(K^{ur}/K)$?

Variation (v.1)

Let $E_{\Gamma}(D)$ be the set of Γ -extensions K of \mathbb{Q} with rDisc K=D. Let H be a profinite group.

Moments

$$\lim_{B \to \infty} \frac{\sum_{D \le B} \sum_{K \in \mathcal{E}_{\Gamma}(D)} |\operatorname{Sur}_{\Gamma}(\operatorname{Gal}(K^{\operatorname{ur}}/K), H)|}{\sum_{D \le B} |\mathcal{E}_{\Gamma}(D)|} = ?$$

Let $\mathcal C$ be a finite set of finite groups.

Let $G^{\mathcal{C}}$ be the pro- \mathcal{C} completion of G with respect to \mathcal{C} .

Characteristic functions

$$\lim_{B \to \infty} \frac{\sum_{D \le B} |\{K \in E_{\Gamma}(D) | \operatorname{Gal}(K^{\operatorname{ur}}/K)^{\mathcal{C}} \simeq H^{\mathcal{C}}\}|}{\sum_{D \le B} |E_{\Gamma}(D)|} = ?$$

Admissible groups

Restrict to K/\mathbb{Q} totally real, and $K^{\#} = K^{ur,2|\Gamma|'}$ (prime to $2|\Gamma|$ part).

- **1** (Γ -group) Γ acts on H continuously.
- ② (Admissible) $GCD(|H|, |\Gamma|) = 1$ and

$$H = \overline{\langle g^{-1}\gamma(g) : g \in H \,|\, \gamma \in \Gamma \rangle}$$

1 (Property E) For all $p \nmid 2|\Gamma|$, for all non-split central Γ -extensions

Proposition

The group $H = Gal(K^{\#}/K)$ is admissible, and property E holds.

How to model $Gal(K^{\#}/K)$?

Let $F_n(\Gamma)$ be the free pro- $|\Gamma|'$ -group on $\{x_{i,\gamma} \mid i=1,\ldots,n \text{ and } \gamma \in \Gamma\}$.

Let $\mathcal{F}_n = \langle x_{i,\mathrm{id}}^{-1} \gamma(x_{i,\mathrm{id}}) \mid i = 1, \ldots, n \rangle \subset \mathcal{F}_n(\Gamma)$ be the free admissible Γ -group on n generators.

Proposition

A quotient of \mathcal{F}_n has Property E if and only if it is isomorphic to

$$\mathcal{F}_n/[r^{-1}\gamma(r)]_{r\in\mathcal{S},\gamma\in\Gamma}$$

for some $S \subset \mathcal{F}_n$

Definition

We thus define a random group $X_{\Gamma,n} := \mathcal{F}_n/[r^{-1}\gamma(r)]_{r \in S, \gamma \in \Gamma}$, where (s_1, \ldots, s_{n+1}) is random from Haar measure on \mathcal{F}_n^{n+1} and $S = \{s_1, \ldots, s_{n+1}\}$.

Main theorem

Theorem

There exists a measure μ_{Γ} on the set X of isomorphism classes of admissible Γ groups.

Specify the measure on the "basic opens" $U_{\mathcal{C},H} := \{G \mid G^{\mathcal{C}} \simeq H^{\mathcal{C}}\}.$

This measure specializes to the "usual" Cohen–Lenstra measure.

"Conjecture"

 $Gal(K^{\#}/K)$ equidistributes with respect to μ_{Γ} .

Theorem

This conjecture is true for moments over $\mathbb{F}_q(t)$ as $q \to \infty$.

Main conjecture

Let $E_{\Gamma}(D)$ be the set of **totally real** Γ -extensions K/\mathbb{Q} with rDisc K=D.

Recall that $K^{\#} = K^{\operatorname{ur},2|\Gamma|'}$ (prime to $2|\Gamma|$ part).

Let H be an admissible profinite group.

Moments

$$\lim_{B \to \infty} \frac{\sum_{D \le B} \sum_{K \in E_{\Gamma}(D)} |\operatorname{Sur}_{\Gamma}(\operatorname{Gal}(K^{\#}/K), H)|}{\sum_{D \le B} |E_{\Gamma}(D)|} = \int_{X} |\operatorname{Sur}_{\Gamma}(X, H)| d\mu_{\Gamma}(X)$$
$$= [H : H^{\Gamma}]^{-1}$$

Let C be a finite set of finite Γ -groups, each with order coprime to $2|\Gamma|$.

Characteristic Functions

$$\lim_{B\to\infty} \frac{\sum_{D\leq B} |\{K\in E_{\Gamma}(D) \, | \, \mathsf{Gal}(K^\#/K)^{\mathcal{C}} \simeq H^{\mathcal{C}}\}|}{\sum_{D\leq B} |E_{\Gamma}(D)|} = \mu_{\Gamma}(U_{\mathcal{C},H})$$

Function fields: $\mathbb{F}_q(t) \subset \mathbb{F}_q(C)$

Function fields: $\mathbb{F}_q(t) \subset \mathbb{F}_q(C)$

More Geometry

$$Cl(K) = Pic(Spec \mathcal{O}_K)$$

VS

$$0 \to \mathsf{Pic}^0(\mathit{C}) \to \mathsf{Pic}(\mathit{C}) \xrightarrow{\mathsf{deg}} \mathbb{Z} \to 0$$

Function fields: $\mathbb{F}_q(t) \subset \mathbb{F}_q(C)$

More Geometry

$$\mathsf{CI}(K) = \mathsf{Pic}(\mathsf{Spec}\,\mathcal{O}_K)$$

VS

$$0 \to \mathsf{Pic}^0(C) \to \mathsf{Pic}(C) \xrightarrow{\mathsf{deg}} \mathbb{Z} \to 0$$

Different tools: $Jac_C = Pic^0(C)$

$$\mathsf{Frob} \in \mathsf{Gal}_{\mathbb{F}_q} o \mathsf{Aut} \ T_\ell(\mathsf{Jac}_C) \cong \mathbb{Z}_\ell^{2g}$$

$$\operatorname{\mathsf{coker}}(\operatorname{\mathsf{Frob}}-\operatorname{\mathsf{Id}})\cong\operatorname{\mathsf{Jac}}_{\mathcal{C}}(\mathbb{F}_q)_\ell=\operatorname{\mathsf{Pic}}^0(\mathcal{C})_\ell$$

Weil conjectures

Let X be an algebraic variety over \mathbb{Z}_p .

Trace formula

$$X(\mathbb{F}_p) = X(\overline{\mathbb{F}_p})^{\mathsf{Frob}} = \sum_{i=0}^{\infty} (-1)^i \operatorname{\mathsf{Tr}} \operatorname{\mathsf{Frob}} | H^i_{\mathrm{cute{e}t},c}(X_{\mathbb{F}_p},\overline{\mathbb{Q}}_\ell)$$

Weil cohomology

$$H^i_{\mathrm{\acute{e}t},c}(X_{\mathbb{F}_p},\overline{\mathbb{Q}}_\ell)=H^i_{\mathrm{sing}}(X(\mathbb{C}),\overline{\mathbb{Q}}_\ell)$$

Geometric analytic number theory

Idea

Use algebraic topology (over \mathbb{C}) to prove analytic theorems over \mathbb{F}_p .

Example (Ellenberg, AWS)

- Let $sf_k(n)$ be the set of squarefree monic polynomials in k[x] of degree n.
- 2 Exercise: $\#\operatorname{sf}_{\mathbb{F}_q}(n) = q^n q^{n-1}$.
- Note:

$$\frac{\#\operatorname{sf}_{\mathbb{F}_q}(n)}{q^n} = 1 - \frac{1}{q} = \zeta_{\mathbb{A}^1_{\mathbb{F}_q}}(2)^{-1}$$

Configuration space

- $(\operatorname{\mathsf{Conf}}_n \mathbb{A}^1)(k) \cong \operatorname{\mathsf{sf}}_k(n)$

Theorem (Arnol'd)

$$H^i(\mathsf{Conf}_n(\mathbb{C});\mathbb{Q}) = egin{cases} \mathbb{Q} & \textit{if } i = 0,1 \ 0 & \textit{if } i > 1 \end{cases}$$

$$\sum_{i=0}^{\infty} (-1)^i \operatorname{Tr} \operatorname{\mathsf{Frob}} | H^i_{\operatorname{\acute{e}t},c}(X,\overline{\mathbb{Q}}_\ell) = \operatorname{\mathsf{Tr}} \operatorname{\mathsf{Frob}} | H^0 - \operatorname{\mathsf{Tr}} \operatorname{\mathsf{Frob}} | H^1 = q^n - q^{n-1}$$

Hurwitz spaces

$$(C \xrightarrow{f} \mathbb{P}^1, \iota \colon G \cong \operatorname{\mathsf{Aut}} f) \qquad \qquad \operatorname{\mathsf{Hur}}_{G,c}^n \ \downarrow \ \qquad \qquad \downarrow \ \Delta_f \qquad \qquad \operatorname{\mathsf{Conf}}_n(\mathbb{P}^1)$$

- **1** f is a **tamely ramified** G **cover**
- 2 with *n* ramified points
- with an unramified marked point at infinity
- o is a multiset of conjugacy classes of cyclic subgroups of G
- **1** Hur $_{G,c}$ consists of **covers whose inertia agrees** with c.

Main point

Let H be a finite Γ -admissible group with order coprime to $2|\Gamma|q(q-1)$

- $\mathbf{Q} G = H \rtimes \Gamma$

Theorem (Liu-Wood-ZB)

We can compute components of $Hur_{G,c}^n$ "topologically".

In particular, over $\mathbb{F}_q(t)$ we can prove our conjecture for moments as

$$q \to \infty$$
 with $(q, |\Gamma||H|) = 1, (q - 1, |H|) = 1.$

This abelianizes to (suitably modified) versions of the Cohen–Lenstra–Martinet heuristics

Main theorem (over function fields)

Let $E_{\Gamma}(D, \mathbb{F}_q(t))$ denote the set of isomorphism classes of totally real Γ -extensions K of $\mathbb{F}_q(t)$ such that rDisc K=D.

Theorem (Liu-Wood-ZB)

Let H be a finite admissible Γ -group. Then,

$$\lim_{N\to\infty} \lim_{\substack{q\to\infty\\ (q,|\Gamma||H|)=1\\ (q-1,|H|)=1}} \frac{\sum_{n\leq N} \sum_{K\in E_{\Gamma}(q^n,\mathbb{F}_q(t))} \left| \mathsf{surj}_{\Gamma}(\mathsf{Gal}(K^\#/K),H) \right|}{\sum_{n\leq N} \left| E_{\Gamma}(q^n,\mathbb{F}_q(t)) \right|}$$

$$= \int_X |\operatorname{surj}_{\Gamma}(X, H)| d\mu_{\Gamma}(X) = [H : H^{\Gamma}]^{-1}$$

$$\#\operatorname{Hur}_{G,c}^n(\mathbb{F}_p) = \operatorname{Tr}\operatorname{Frob}|H_c^0(\operatorname{Hur}_{G,c}^n) - \operatorname{Tr}\operatorname{Frob}|H_c^1(\operatorname{Hur}_{G,c}^n)\dots$$