EMAp Summer Course

Topological Data Analysis with Persistent Homology

https://raphaeltinarrage.github.io/EMAp.html

Lesson 3: Homotopies

Last update: January 28, 2021

Homeomorphism equivalence

Homotopy equivalence

 \approx

 \approx

2

 Ω

 Ω

I - Homotopy equivalence between maps

II - Homotopy equivalence between topological spaces

III - Link with homeomorphic spaces

VI - Invariants

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g: X \to Y$ two continuous maps. A *homotopy* between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $F(\cdot,0)$ is equal to f,
- $F(\cdot,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any $t \in [0,1]$, the notation $F(\cdot,t)$ refers to the map

$$F(\cdot,t)\colon X\longrightarrow Y$$

$$x\longmapsto F(x,t)$$

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g \colon X \to Y$ two continuous maps. A *homotopy* between f and g is a map $F \colon X \times [0,1] \to Y$ such that:

- $F(\cdot,0)$ is equal to f,
- $F(\cdot,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any $t \in [0,1]$, the notation $F(\cdot,t)$ refers to the map

$$F(\cdot,t)\colon X\longrightarrow Y$$

$$x\longmapsto F(x,t)$$

Example: Homotopy $F: \mathbb{R} \times [0,1] \to \mathbb{R}$ between $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$.

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g: X \to Y$ two continuous maps. A *homotopy* between f and g is a map $F: X \times [0,1] \to Y$ such that:

- $F(\cdot,0)$ is equal to f,
- $F(\cdot,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

If such a homotopy exists, we say that the maps f and g are homotopic.

For any $t \in [0,1]$, the notation $F(\cdot,t)$ refers to the map

$$F(\cdot,t)\colon X\longrightarrow Y$$

 $x\longmapsto F(x,t)$

Example: Homotopy $F \colon [0,1] \times [0,1] \to \mathbb{R}^2$ between $f \colon [0,1] \to \mathbb{R}^2$ and $g \colon [0,1] \to \mathbb{R}^2$.

Definition: Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces, and $f, g \colon X \to Y$ two continuous maps. A *homotopy* between f and g is a map $F \colon X \times [0,1] \to Y$ such that:

- $F(\cdot,0)$ is equal to f,
- $F(\cdot,1)$ is equal to g,
- $F: X \times [0,1] \to Y$ is continuous.

Example: Let X=Y=[-1,1] endowed with the Euclidean topology, and consider the maps $f,g\colon X\to Y$ defined as

$$f \colon x \mapsto 0$$
$$q \colon x \mapsto x$$

Let us prove that they are homotopic. Consider the map

$$F \colon X \times [0,1] \longrightarrow Y$$

 $(x,t) \longmapsto tx$

We see that $F(\cdot,0)\colon x\mapsto 0$ is equal to f, and $F(\cdot,1)\colon x\mapsto x$ is equal to g. Moreover, F is continuous. Hence, F is an homotopy between f and g. Thus these two maps are homotopic.

Example: Let X=Y=[-1,1] endowed with the Euclidean topology, and consider the maps $f,g\colon X\to Y$ defined as

$$f \colon x \mapsto 0$$

$$g: x \mapsto x$$

Let us prove that they are homotopic. Consider the map

$$F \colon X \times [0,1] \longrightarrow Y$$

 $(x,t) \longmapsto tx$

We see that $F(\cdot,0)\colon x\mapsto 0$ is equal to f, and $F(\cdot,1)\colon x\mapsto x$ is equal to g. Moreover, F is continuous. Hence, F is an homotopy between f and g. Thus these two maps are homotopic.

Example: The map

$$F: \mathbb{S}_1 \times [0,1] \longrightarrow \mathbb{R}^2$$

$$\theta \longmapsto (\cos(\theta) + t, \sin(\theta) + t)$$

is a homotopy between the maps $f\colon \mathbb{S}^1 \to \mathbb{R}^2$ and $g\colon \mathbb{S}^1 \to \mathbb{R}^2$ defined as

$$f \colon \theta \mapsto (\cos(\theta), \sin(\theta))$$
 and $g \colon \theta \mapsto (\cos(\theta) + 1, \sin(\theta) + 1)$

(Notation: \mathbb{S}_1 denotes the unit circle of \mathbb{R}^2 .)

Definition

4/16 (7/7)

Non-example: Between \mathbb{S}_1 and $\mathbb{R}^2 \setminus \{(0,0)\}$, the plane without the origin, there is no homotopy between the maps

$$f \colon \theta \mapsto (\cos(\theta), \sin(\theta))$$
 and $g \colon \theta \mapsto (\cos(\theta) + 1, \sin(\theta) + 1)$

The homotopy F would pass through the point (0,0) at some point, which is impossible.

(Notation: \mathbb{S}_1 denotes the unit circle of \mathbb{R}^2 .)

From a homotopic point a view, a *trivial map* is a map that is homotopic to a constant map.

Proposition: Let (X, \mathcal{T}) be a topological space and $f: X \to \mathbb{R}^n$ a continuous map. Then f is homotopic to a constant map.

Proof: Consider the continuous application

$$F: X \times [0,1] \longrightarrow \mathbb{R}^n$$

 $x \longmapsto t f(x)$

We have that $F(\cdot,1)=f$, and $F(\cdot,0)\colon x\mapsto 0$ is a constant map. Hence F is a homotopy between f and the constant map $g\colon X\to \mathbb{R}^n$ $x\mapsto 0$

From a homotopic point a view, a *trivial map* is a map that is homotopic to a constant map.

Proposition: Let (X, \mathcal{T}) be a topological space and $f: X \to \mathbb{R}^n$ a continuous map. Then f is homotopic to a constant map.

Proof: Consider the continuous application

$$F: X \times [0,1] \longrightarrow \mathbb{R}^n$$

 $x \longmapsto t f(x)$

We have that $F(\cdot,1)=f$, and $F(\cdot,0)\colon x\mapsto 0$ is a constant map. Hence F is a homotopy between f and the constant map $g\colon X\to \mathbb{R}^n$ $x\mapsto 0$

Exercise: Let $f: \mathbb{R}^n \to X$ be a continuous map. Then f is homotopic to a constant map.

I - Homotopy equivalence between maps

II - Homotopy equivalence between topological spaces

III - Link with homeomorphic spaces

VI - Invariants

Defintion Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $ullet g\circ f\colon X o X$ is homotopic to the identity map $\mathrm{id}\colon X o X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map $\mathrm{id} \colon Y \to Y$.

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

Defintion Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two topological spaces. A homotopy equivalence between X and Y is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that:

- $ullet g\circ f\colon X o X$ is homotopic to the identity map $\mathrm{id}\colon X o X$,
- $f \circ g \colon Y \to Y$ is homotopic to the identity map $\mathrm{id} \colon Y \to Y$.

If such a homotopy equivalence exists, we say that X and Y are homotopy equivalent.

Determining whether two topological spaces are homotopy equivalent may be difficult. When one is a subset of the other, we have a handy tool:

Definition: Let (X, \mathcal{T}) be a topological space and $Y \subset X$ a subset, endowed with the subspace topology $\mathcal{T}_{|Y}$.

A retraction is a continuous map $r: X \to Y$ such that $\forall y \in Y, r(y) = y$.

A deformation retraction is a homotopy $F: X \times [0,1] \to Y$ between the identity map $\mathrm{id}\colon X \to X$ and a retraction $r\colon X \to Y$.

Deformation retractions

Determining whether two topological spaces are homotopy equivalent may be difficult. When one is a subset of the other, we have a handy tool:

Definition: Let (X, \mathcal{T}) be a topological space and $Y \subset X$ a subset, endowed with the subspace topology $\mathcal{T}_{|Y}$.

A retraction is a continuous map $r\colon X\to Y$ such that $\forall y\in Y, r(y)=y$. A deformation retraction is a homotopy $F\colon X\times [0,1]\to Y$ between the identity map

id: $X \to X$ and a retraction $r: X \to Y$.

Proposition: If a deformation retraction exists, then X and Y are homotopic equivalent.

Proof: Let $r: X \to Y$ denote the retraction, and consider the inclusion map $i: Y \to X$. Let us prove that r, i is a homotopy equivalence.

First, let us prove that $i \circ r \colon X \to X$ is homotopic to the identity map $\mathrm{id} \colon X \to X$. This is clear because $i \circ r = r$, and r is homotopic to the identity by definition of a deformation retraction.

Second, let us prove that $r \circ i \colon Y \to Y$ is homotopic to the identity map $\mathrm{id} \colon Y \to Y$. This is obvious because $i \circ r = \mathrm{id}$ by definition of a retraction.

Definition: Let (X,\mathcal{T}) be a topological space and $Y\subset X$ a subset, endowed with the subspace topology $\mathcal{T}_{|Y}$. A retraction is a continuous map $r\colon X\to Y$ such that $\forall y\in Y, r(y)=y$. A deformation retraction is a homotopy $F\colon X\times [0,1]\to Y$ between the identity map $\mathrm{id}\colon X\to X$ and a retraction $r\colon X\to Y$.

Example: For any $n \ge 1$, the Euclidean space \mathbb{R}^n is homotopy equivalent to the point $\{0\} \subset \mathbb{R}^n$. To prove this, consider the retraction

$$r \colon \mathbb{R}^n \longrightarrow \{0\}$$
$$x \longmapsto 0$$

It is homotopic to the identity id: $\mathbb{R}^n \to \mathbb{R}^n$ via the deformation retraction

$$F: \mathbb{R}^n \times [0,1] \longrightarrow \mathbb{R}^n$$

 $x \longmapsto (1-t)x$

Indeed, we have $F(\cdot,0)=\operatorname{id}$ and $F(\cdot,1)=r$.

Definition: Let (X,\mathcal{T}) be a topological space and $Y\subset X$ a subset, endowed with the subspace topology $\mathcal{T}_{|Y}$. A retraction is a continuous map $r\colon X\to Y$ such that $\forall y\in Y, r(y)=y$. A deformation retraction is a homotopy $F\colon X\times [0,1]\to Y$ between the identity map $\mathrm{id}\colon X\to X$ and a retraction $r\colon X\to Y$.

Example: For any $n \ge 1$, the Euclidean space without origin, $\mathbb{R}^n \setminus \{0\}$, is homotopy equivalent to the sphere $\mathbb{S}(0,1) \subset \mathbb{R}^n$. To prove this, consider the retraction

$$r: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{S}(0,1)$$

$$x \longmapsto \frac{x}{\|x\|}$$

It is homotopic to the identity id: $\mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ via the deformation retraction

Indeed, we have $F(\cdot,0) = \text{id}$ and $F(\cdot,1) = r$.

Being homotopic equivalent is an equivalence relation. That is:

- (Reflexivity) $X \approx X$
- (Symmetry) $X \approx Y \implies Y \approx X$.
- (Transitivity) $X \approx Y$ and $Y \approx Z \implies X \approx Z$.

We can classify topological spaces according to this relation, and obtain *classes of homotopy equivalence*:

Being homotopic equivalent is an equivalence relation. That is:

- (Reflexivity) $X \approx X$
- (Symmetry) $X \approx Y \implies Y \approx X$.
- (Transitivity) $X \approx Y$ and $Y \approx Z \implies X \approx Z$.

We can classify topological spaces according to this relation, and obtain *classes of homotopy equivalence*:

the class of circles

Being homotopic equivalent is an equivalence relation. That is:

- (Reflexivity) $X \approx X$
- (Symmetry) $X \approx Y \implies Y \approx X$.
- (Transitivity) $X \approx Y$ and $Y \approx Z \implies X \approx Z$.

We can classify topological spaces according to this relation, and obtain *classes of homotopy equivalence*:

the class of circles

the class of points

Being homotopic equivalent is an equivalence relation. That is:

- (Reflexivity) $X \approx X$
- (Symmetry) $X \approx Y \implies Y \approx X$.
- (Transitivity) $X \approx Y$ and $Y \approx Z \implies X \approx Z$.

We can classify topological spaces according to this relation, and obtain *classes of homotopy equivalence*:

the class of circles

the class of points

the class of spheres, the class of torii, the class of Klein bottles, ...

I - Homotopy equivalence between maps

II - Homotopy equivalence between topological spaces

III - Link with homeomorphic spaces

VI - Invariants

Homeomorphic implies homotopic

11/16 (1/4)

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they are homotopic equivalent.

In other words:

$$X \simeq Y \implies X \approx Y$$
.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough to show that they are homeomorphic.

Proposition: Let X, Y be two topological spaces. If they are homeomorphic, then they are homotopic equivalent.

In other words:

$$X \simeq Y \implies X \approx Y$$
.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough to show that they are homeomorphic.

Proof: Let $h: X \to Y$ be a homeomorphism.

We have to build a homotopy equivalence $f \colon X \to Y$, $g \colon Y \to X$.

Define f=h and $g=h^{-1}$. Let us show $g\circ f$ is homotopic to id: $X\to X$ and $f\circ g$ is homotopic to id: $Y\to Y$.

We have $g \circ f = h^{-1} \circ h = \text{id}$. But id: $X \to X$ is homotopic to id: $X \to X$ (any map is homotopic to itsef.)

Similarly, $f \circ g = h \circ h^{-1} = \mathrm{id}$, and $\mathrm{id} \colon Y \to Y$ is homotopic to $\mathrm{id} \colon Y \to Y$.

Conclusion: f,g is a homotopy equivalence between X and Y, hence X and Y are homotopy equivalent.

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they are homotopic equivalent.

In other words:

$$X \simeq Y \implies X \approx Y$$
.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough to show that they are homeomorphic.

Example: The letter L and the letter Z are homeomorphic:

Hence they are homotopy equivalent.

Proposition: Let X,Y be two topological spaces. If they are homeomorphic, then they are homotopic equivalent.

In other words:

$$X \simeq Y \implies X \approx Y$$
.

Consequence: In order to prove that two spaces are homotopy equivalent, it is enough to show that they are homeomorphic.

This strategy does not always work: some spaces are homotopy equivalent but not homeomorphic!

This is the case for \mathbb{R}^n and $\{0\}$ for instance.

Consider the following letters of the alphabet, endowed with the subspace topology induced from \mathbb{R}^2 :

A

B

C

D

E

F

Classify them into homotopy equivalence classes, then classify them into homeomorphism equivalence classes.

Consider the following letters of the alphabet, endowed with the subspace topology induced from \mathbb{R}^2 :

A B C D E F

Classify them into homotopy equivalence classes, then classify them into homeomorphism equivalence classes.

Homotopy equivalence classes:

Consider the following letters of the alphabet, endowed with the subspace topology induced from \mathbb{R}^2 :

A B C D E F

Classify them into homotopy equivalence classes, then classify them into homeomorphism equivalence classes.

Homotopy equivalence classes:

$$ightharpoonup A \approx D \qquad (\approx \bigcirc)$$
 $ightharpoonup B \qquad (\approx \bigcirc)$
 $ightharpoonup C \approx D \approx E \approx F \qquad (\approx \bullet)$

Homotopy equivalence classes:

I - Homotopy equivalence between maps

II - Homotopy equivalence between topological spaces

III - Link with homeomorphic spaces

VI - Invariants

Proposition: Two homotopy equivalent topological spaces admit the same number of connected components.

Proof: Let X, Y be two topological spaces, and $f: X \to Y, g: Y \to X$ a homotopy equivalence.

Let $F: X \times [0,1] \to X$ be a homotopy between $g \circ f$ and id: $X \to X$. Let $x \in X$, and O the connected component of x.

The space $O \times [0,1]$ is connected. Hence its image $F(O \times [0,1]) \subset X$ is connected too.

Moreover, $O = F(O \times \{1\}) \subset F(O \times [0,1])$.

Hence $F(O \times [0,1])$ is a connected subset of X that contains O, and we deduce that $O = F(O \times [0,1])$.

Last, notice that

$$g \circ f(O) = F(O \times \{0\}) \subset F(O \times [0,1]) = O.$$

Proposition: Two homotopy equivalent topological spaces admit the same number of connected components.

Proof: Let X,Y be two topological spaces, and $f\colon X\to Y,g\colon Y\to X$ a homotopy equivalence.

Let $F: X \times [0,1] \to X$ be a homotopy between $g \circ f$ and id: $X \to X$.

Let $x \in X$, and O the connected component of x.

We have $g \circ f(O) \subset O$.

Suppose that X admits n connected components $O_1, ..., O_n$, and that Y admits m of them.

By contradiction, suppose that m < n. This implies that we have two components O_i, O_j such that $f(O_i)$ and $f(O_j)$ are included in the same connected component O' of Y.

Hence $g \circ f(O_i)$ and $g \circ f(O_j)$ are included in a common connected component of X. This is absurd because $g \circ f(O_i) \subset O_i$ and $g \circ f(O_j) \subset O_j$.

Proposition: Two homotopy equivalent topological spaces admit the same number of connected components.

Proof: Let X,Y be two topological spaces, and $f\colon X\to Y,g\colon Y\to X$ a homotopy equivalence.

Suppose that X admits n connected components $O_1,...,O_n$, and that Y admits m of them.

We have shown that $m \geq n$.

By exchanging the roles of X and Y in the whole reasonning, we obtain that $m \leq n$. We deduce that m = n.

Proposition: Two homotopy equivalent topological spaces admit the same number of connected components.

In other words, *number of connected components* is an invariant of homotopy equivalence.

This allows to show that two spaces are not equivalent.

Example: For any $n, m \ge 0$ such that $n \ne m$, the subspaces $\{1, ..., n\}$ and $\{1, ..., m\}$ of $\mathbb R$ are not homotopic equivalent.

Indeed, the first one admits n connected components, and the second one m components.

Dimension

On the other hand, dimension is **not** an invariant of homotopy equivalence.

Indeed, some homotopic equivalent spaces have different dimensions.

This is the case, for instance, with all the Euclidean spaces \mathbb{R}^n , $n \geq 0$. They are all homotopic equivalent, but all with different dimensions.

Conclusion

We learnt to look at topological spaces from a homotopic-equivalence perspective.

This is a weaker notion than homeomorphism-equivalence.

Between the quantities, *number of connected components* and *dimension*, ony one is invariant for the homotopic-equivalence relation.

Homework for tomorrow: Exercises 12 and 16

Facultative exercise: Exercises 13 and 14

Conclusion

We learnt to look at topological spaces from a homotopic-equivalence perspective.

This is a weaker notion than homeomorphism-equivalence.

Between the quantities, *number of connected components* and *dimension*, ony one is invariant for the homotopic-equivalence relation.

Homework for tomorrow: Exercises 12 and 16

Facultative exercise: Exercises 13 and 14