

#### Structural vector autoregressive models

Kevin Kotzé

#### Contents

- 1. Introduction
- 2. Estimation & Identification
- 3. Impulse Response Functions
- 4. Variance Decompositions
- 5. Alternative restrictions for coefficient matrix
- 6. Long-run restrictions

tsm

#### Introduction

- SVAR models allow for:
  - o contemporaneous variables that may be treated as explanatory variables
  - specific restrictions on the parameters in the coefficient and residual covariance matrices
- Allowing for contemporaneous variables is important in many economic studies, where we often deal with quarterly data
- Allows for the identification of specific independent shocks that are not affected by covariance terms

#### Introduction

- With the VAR model, errors must have positive definite covariance matrix
- This leads to difficulties when trying to evaluate the effect of an independent shock
- SVAR models become an indispensable tool for studying relationships and the effects of shocks in macroeconomics

tsm

## Incorporating contemporaneous

#### variables

- Start off by assuming that each variable is symmetrical
- For the two variable case let,
  - $\circ \ y_{1,t}$  be affected by current and past realizations of  $y_{2,t}$
  - $\circ \ y_{2,t}$  be affected by current and past realizations of  $y_{1,t}$

$$egin{aligned} y_{1,t} &= b_{10} - b_{12} y_{2,t} + \gamma_{11} y_{1,t-1} + \gamma_{12} y_{2,t-1} + arepsilon_{1,t} \ y_{2,t} &= b_{20} - b_{21} y_{1,t} + \gamma_{21} y_{1,t-1} + \gamma_{22} y_{2,t-1} + arepsilon_{2,t} \end{aligned}$$

- $\circ$  where both  $y_{1,t}$  and  $y_{2,t}$  are stationary
- $\circ \ \varepsilon_{1,t}$  and  $\varepsilon_{2,t}$  are white noise with  $\sigma_1$  and  $\sigma_2$  std
- $\circ$   $arepsilon_{1,t}$  and  $arepsilon_{2,t}$  are uncorrelated, since we want to identify the effect of each independent shock
- $\circ$  Hence covariance elements in  $\Sigma_{arepsilon}$  are set to zero
- ullet Note:  $b_{12}$  describes the contemporaneous effect of a change in  $y_{2,t}$  on  $y_{1,t}$  and vice versa for  $b_{21}$

## Incorporating contemporaneous

#### variables

Given the model:

$$egin{aligned} y_{1,t} &= b_{10} - b_{12} y_{2,t} + \gamma_{11} y_{1,t-1} + \gamma_{12} y_{2,t-1} + arepsilon_{1,t} \ y_{2,t} &= b_{20} - b_{21} y_{1,t} + \gamma_{21} y_{1,t-1} + \gamma_{22} y_{2,t-1} + arepsilon_{2,t} \end{aligned}$$

- $\circ$  There will be an indirect contemporaneous effect of  $arepsilon_{1,t}$  on  $y_{2,t}$  if  $b_{21} 
  eq 0$
- $\circ$  Similarly,  $arepsilon_{2,t}$  affects  $y_{1,t}$  if  $b_{12} 
  eq 0$
- Much richer characterisation of dynamics than in previous lecture
  - $\circ$  In previous model,  $\varepsilon_{2,t}$  could only affect  $y_{1,t-1}$ , and v.v.
- However, the inclusion of contemporaneous parameters does present some challenges with parameter estimation

#### Standard VAR: Structural Form

• To express the above *structural-form* of the model as a *reduced-form* expression:

$$Boldsymbol{y}_t = \Gamma_0 + \Gamma_1oldsymbol{y}_{t-1} + arepsilon_t$$

where

$$B = egin{bmatrix} 1 & b_{12} \ b_{21} & 1 \end{bmatrix}, \quad oldsymbol{y}_t = egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix}, \quad \Gamma_0 = egin{bmatrix} b_{10} \ b_{20} \end{bmatrix} \ \Gamma_1 = egin{bmatrix} \gamma_{11} & \gamma_{12} \ \gamma_{21} & \gamma_{22} \end{bmatrix}, \quad ext{and} \quad arepsilon_t = egin{bmatrix} arepsilon_{1,t} \ arepsilon_{2,t} \end{bmatrix}$$

#### Standard VAR: Reduced-Form

• Premultiplication by  $B^{-1}$  gives us the VAR in *reduced-form*:

$$oldsymbol{y}_t = A_0 + A_1 oldsymbol{y}_{t-1} + oldsymbol{u}_t$$

- ullet where  $A_0=B^{-1}\Gamma_0$ ,  $A_1=B^{-1}\Gamma_1$  and  $oldsymbol{u}_t=B^{-1}arepsilon_t$
- Now where:
  - $\circ \ a_{i0}$  is the i element in  $A_0$
  - $\circ \ a_{ij}$  is row i column j of matrix  $A_1$
  - $\circ$   $oldsymbol{u}_t$  has elements  $u_{1,t}$  and  $u_{2,t}$

$$egin{aligned} y_{1,t} &= a_{10} + a_{11} y_{1,t-1} + a_{12} y_{2,t-1} + u_{1,t} \ y_{2,t} &= a_{20} + a_{21} y_{1,t-1} + a_{22} y_{2,t-1} + u_{2,t} \end{aligned}$$

#### Standard VAR: Reduced-Form

• By using the relationship  $oldsymbol{u}_t = B^{-1} arepsilon_t$ , or:

$$egin{bmatrix} u_{1,t} \ u_{2,t} \end{bmatrix} = egin{bmatrix} 1 & b_{12} \ b_{21} & 1 \end{bmatrix}^{-1} egin{bmatrix} arepsilon_{y,t} \ arepsilon_{2,t} \end{bmatrix}$$

• We can show that,

$$u_{1,t} = (arepsilon_{1,t} - b_{12}arepsilon_{2,t})/(1 - b_{12}b_{21}) \ u_{2,t} = (arepsilon_{2,t} - b_{21}arepsilon_{1,t})/(1 - b_{12}b_{21})$$

#### Standard VAR: Variance/covariance

- Since  $\varepsilon_{1,t}$  and  $\varepsilon_{2,t}$  are white noise processes
  - $\circ$  The residuals  $u_{1,t}$  and  $u_{2,t}$  have zero means, constant variances, and have little autocorrelation
  - $\circ$  However, as  $u_t$  is dependent upon both  $\varepsilon_{1,t}$  and  $\varepsilon_{2,t}$ , there may be some evidence of covariation
- The covariance of the two terms is:

$$egin{aligned} \mathsf{cov}\left[u_{1,t},u_{2,t}
ight] &= \mathbb{E}\left[(arepsilon_{1,t}-b_{12}arepsilon_{2,t})(arepsilon_{2,t}-b_{21}arepsilon_{1,t})
ight]/(1-b_{12}b_{21})^2 \ &= -\left[\left(b_{21}\sigma_1^2+b_{12}\sigma_2^2
ight)
ight]/(1-b_{12}b_{21})^2 \end{aligned}$$

• Since they are all time invariant, the variance/covariance matrix will be,

$$\Sigma_{m{u}} = egin{bmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

ullet where  $\mathsf{var}[u_{i,t}] = \sigma_{ii}$  and  $\sigma_{12} = \sigma_{21} = \mathsf{cov}ig[u_{1,t}, u_{2,t}ig]$ 

#### Estimation

- Note that in the *Reduced-Form*:
  - RHS contains only predetermined variables
  - o Error terms are serially uncorrelated with constant variance
- Hence we can use OLS consistent and asymptotically efficient

tsm

#### Identification

- The structural equations can't be estimated directly (due to feedback effects from contemporaneous variables)
  - However, we can estimate the *reduced-form* of the VAR model
  - $\circ$  This would allow for us to obtain the residuals  $u_{1,t}$  and  $u_{2,t}$  and the coefficients in the  $A_0$  and  $A_1$  matrices
  - Could we use these to recover the *structural-form* parameter estimates given the relationships between the structural and reduced forms?

#### Identification

• Unfortunately not, since the *structural-form* contains 10 parameters:

$$\circ b_{10}, b_{20}, \gamma_{11}, \gamma_{12}, \gamma_{21}, \gamma_{22}, b_{12}, b_{21}, \sigma_1, \sigma_2$$

• while the *reduced-form* contains 9 parameters:

$$\circ \ a_{10}, a_{20}, a_{11}, a_{12}, a_{21}, a_{22}, \mathsf{var}[u_{1,t}], \mathsf{var}[u_{2,t}], \mathsf{cov}[u_{1,t}, u_{2,t}]$$

• And there is no mapping that enables us to obtain the *structural-form* parameters from the *reduced-form* parameters

#### Identification

- However, it may be possible to show that:
  - If one variable in the *structural-form* is restricted to a calibrated value then the structural system could be exactly identified?????

tsm

#### Recursive estimation

- Consider the method of recursive estimation (Sims, 1980)
  - $\circ$  Suppose that you are willing to assume that  $b_{21}=0$  in the structural system:

$$egin{align} y_{1,t} &= b_{10} - b_{12} y_{2,t} + \gamma_{11} y_{1,t-1} + \gamma_{12} y_{2,t-1} + arepsilon_{1,t} \ y_{2,t} &= b_{20} &+ \gamma_{21} y_{1,t-1} + \gamma_{22} y_{2,t-1} + arepsilon_{2,t} \ & ext{such that} \ B^{-1} &= egin{bmatrix} 1 & -b_{12} \ 0 & 1 \end{bmatrix} \end{split}$$

• Premultiplying by  $B^{-1}$  yields

$$egin{aligned} egin{aligned} y_{1,t} \ y_{2,t} \end{bmatrix} &= egin{bmatrix} b_{10} - b_{12}b_{20} \ b_{20} \end{bmatrix} + egin{bmatrix} \gamma_{11} - b_{12}\gamma_{21} & \gamma_{12} - b_{12}\gamma_{22} \ \gamma_{21} & \gamma_{22} \end{bmatrix} \cdot \ & egin{bmatrix} y_{1,t-1} \ y_{2,t-1} \end{bmatrix} + egin{bmatrix} arepsilon_{1,t} - b_{12}arepsilon_{2,t} \ arepsilon_{2,t} \end{bmatrix} \end{aligned}$$

#### Recursive estimation

• Take note of the previous expression:

$$\left[egin{array}{c} y_{1,t} \ y_{2,t} \end{array}
ight] = \cdots + \left[egin{array}{c} arepsilon_{1,t} - b_{12}arepsilon_{2,t} \ arepsilon_{2,t} \end{array}
ight]$$

- ullet Hence, by setting  $b_{21}=0$ , the shocks from  $arepsilon_{1,t}$  do not effect contemporaneous values of  $y_{2,t}$
- ullet However both  $arepsilon_{1,t}$  and  $arepsilon_{2,t}$  affect  $y_{1,t}$
- ullet Note also that  $arepsilon_{1,t-1}$  could still influence  $y_{2,t}$  through its effect on  $y_{1,t-1}$
- ullet Furthermore, by returning to the relationship  $oldsymbol{u}_t = B^{-1}arepsilon_t$ ,

$$egin{bmatrix} u_{1,t} \ u_{2,t} \end{bmatrix} = egin{bmatrix} 1 & b_{12} \ 0 & 1 \end{bmatrix}^{-1} egin{bmatrix} arepsilon_{1,t} \ arepsilon_{2,t} \end{bmatrix}$$

• We have  $arepsilon_{2,t}=u_{1,t}$ , and using  $b_{12}=-{\sf cov}[u_{1,t},u_{2,t}]/\sigma_2^2$ , which allows us to get  $arepsilon_{1,t}=b_{12}arepsilon_{2,t}+u_{1,t}$ 

## Mapping the reduced to structural form

• From the reduced form (where all the coefficient matrices are premultiplied by  $B^{-1}$ );

$$y_{1,t} = a_{10} + a_{11}y_{1,t-1} + a_{12}y_{2,t-1} + u_{1,t}$$
 $y_{2,t} = a_{20} + a_{21}y_{1,t-1} + a_{22}y_{2,t-1} + u_{2,t}$ 
 $a_{10} = b_{10} - b_{12}b_{20}$   $a_{11} = \gamma_{11} - b_{12}\gamma_{21}$ 
 $a_{12} = \gamma_{12} - b_{12}\gamma_{22}$   $a_{20} = b_{20}$ 
 $a_{21} = \gamma_{21}$   $a_{22} = \gamma_{22}$ 
 $ext{var}[u_1] = \sigma_1^2 + b_{12}^2\sigma_2^2$ 
 $ext{var}[u_2] = \sigma_2^2$ 
 $ext{cov}[u_1, u_2] = -b_{12}\sigma_2^2$ 

## Cholesky decomposition

- In the above example, we were able to recover the  $\varepsilon_{1,t}$  and  $\varepsilon_{2,t}$  sequences use the relationship  $u_{1,t}=\varepsilon_{1,t}-b_{12}\varepsilon_{2,t}$  and  $u_{2,t}=\varepsilon_{2,t}$ 
  - $\circ$  When  $b_{21}=0$ ,  $y_{1,t}$  does not have a contemporaneous effect on  $y_{2,t}$  and  $arepsilon_{1,t}$  does not affect  $y_{2,t}$
  - $\circ$  Observed values of  $u_{2,t}$  are attributed to pure shocks in  $y_{2,t}$
  - $\circ$  This procedure of setting the the lower triangle of the B coefficient matrix equal to zero is termed applying the Cholesky decomposition
  - $\circ$  It turns out that the number of restrictions that we need to impose is equivalent to the number of terms in the lower (or upper) triangle of the B matrix, which is  $[(K^2-K)/2]$
  - $\circ$  The alternative ordering of the Cholesky decomposition is to let  $b_{12}=0$  (i.e. the upper triangle)

## IRF: MA representation

- ullet In many cases it is useful to express a AR(p) process as a MA(q) process
  - $\circ$  For example, the stationary univariate AR(1) model:

$$y_t = \phi y_{t-1} + arepsilon_t$$

 $\circ$  has the  $MA(\infty)$  representation,

$$y_t = \sum_{i=0}^\infty heta_i arepsilon_{t-i}$$

• This representation is particularly useful for calculating impact multipliers and impulse response functions

- $\bullet\,$  Just as every stable AR(p) has a MA(q) representation; every VAR(p) has a VMA(q) representation
- From;

$$egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix} = egin{bmatrix} a_{10} \ a_{20} \end{bmatrix} + egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix} \cdot egin{bmatrix} y_{1,t-1} \ y_{2,t-1} \end{bmatrix} + egin{bmatrix} u_{1,t} \ u_{2,t} \end{bmatrix}$$

• Where  $\mu_1$  and  $\mu_2$  are mean values for  $y_{1,t}$  and  $y_{2,t}$ ;

$$egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix} = egin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix} + \sum_{i=0}^\infty egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}^i \cdot egin{bmatrix} u_{1,t-i} \ u_{2,t-i} \end{bmatrix}$$

ullet Now since,  $oldsymbol{u}_t = B^{-1} arepsilon_t$ , and where,

$$B^{-1} = rac{1}{\det}egin{bmatrix} 1 & -b_{12} \ -b_{21} & 1 \end{bmatrix} = rac{1}{1-b_{12}b_{21}}egin{bmatrix} 1 & -b_{12} \ -b_{21} & 1 \end{bmatrix}$$

• We have:

$$\left[egin{array}{c} u_{1,t} \ u_{2,t} \end{array}
ight] = rac{1}{1-b_{12}b_{21}} \sum_{i=0}^{\infty} \cdot \left[egin{array}{cc} 1 & -b_{12} \ -b_{21} & 1 \end{array}
ight] \left[egin{array}{c} arepsilon_{1,t} \ arepsilon_{2,t} \end{array}
ight]$$

such that the SVAR model can be written as,

$$egin{bmatrix} y_{1,t} \ y_{2,t} \end{bmatrix} = egin{bmatrix} \mu_1 \ \mu_2 \end{bmatrix} + rac{1}{1-b_{12}b_{21}} \sum_{i=0}^\infty egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}^i \cdot egin{bmatrix} 1 & -b_{12} \ -b_{21} & 1 \end{bmatrix} egin{bmatrix} arepsilon_{1,t-i} \ arepsilon_{2,t-i} \end{bmatrix}$$

ullet This expression may be used to describe the effect of a shock in  $arepsilon_t$  on the endogenous variables

ullet The impact multipliers, which describe the effect of shocks on the endogenous variables, are summarised in matrix  $\Theta_i$ 

$$\Theta_i = egin{bmatrix} heta_{11} & heta_{12} \ heta_{21} & heta_{22} \end{bmatrix}_i = rac{a_1^i}{1-b_{12}b_{21}} egin{bmatrix} 1 & -b_{12} \ -b_{21} & 1 \end{bmatrix}$$

ullet where  $\mu=[\mu_1\;\mu_2]'$  and  $oldsymbol{y}_t=[y_{1,t}\;y_{2,t}]'$  we are left with,

$$oldsymbol{y}_t = \mu + \sum_{i=0}^\infty \Theta_i arepsilon_{t-i}$$

• This is a particularly useful expression, as the  $\Theta_i$  matrix describes the effects of the shocks,  $\varepsilon_{1,t}$  and  $\varepsilon_{2,t}$  on the entire paths of  $y_{1,t}$  and  $y_{2,t}$ 

- For example, where the numbers in brackets refer to the lags of  $\theta_{jk}(i)$ :
  - $\circ$   $\; heta_{12}(0)$  is the instant impact of 1 unit change in  $arepsilon_{2,t}$  on  $y_{1,t}$
  - $\circ$   $\; heta_{11}(1)$  is the instant impact of 1 unit change in  $arepsilon_{1,t-1}$  on  $y_{1,t}$
  - $\circ$   $\; heta_{12}(1)$  is the instant impact of 1 unit change in  $arepsilon_{2,t-1}$  on  $y_{1,t}$

tsm

### Impulse response functions

- The impact multipliers  $\theta_{11}(i)$ ,  $\theta_{12}(i)$ ,  $\theta_{21}(i)$  and  $\theta_{22}(i)$  are used to generate the impulse response functions for different values of i
  - $\circ$  Visually represent the behaviour of  $y_{1,t}$  and  $y_{2,t}$  in response to various shocks,  $arepsilon_{1,t}$  and  $arepsilon_{2,t}$
- To avoid the problem of an under-identified system we use the Cholesky decomposition;

$$u_{1,t} = arepsilon_{1,t} - b_{12}arepsilon_{2,t} \ u_{2,t} = arepsilon_{2,t}$$

- $\circ$  Note that all the errors from  $u_{2,t}$  are attributed to  $arepsilon_{2,t}$
- $\circ$  We can then find  $arepsilon_{1,t}$  using  $b_{12}$ ,  $u_{1,t}$  and  $arepsilon_{1,t}$
- Although the Cholesky decomposition constrains the system such that  $\varepsilon_{1,t}$  has no direct effect on  $y_{2,t}$ , you should note that lagged values of  $y_{1,t}$  affect the contemporaneous value of  $y_{2,t}$

# Ordering of Cholesky decomposition

- The ordering of the Cholesky decomposition (i.e. whether to set  $b_{12}$  or  $b_{21}$  to 0) depends on the magnitude of the correlation between  $u_{1,t}$  and  $u_{2,t}$
- When  $ho_{12}=\sigma_{12}/ig(\sqrt{\sigma_{11}}\sqrt{\sigma_{22}}ig)$ ;
  - o If the correlation is zero then ordering is immaterial
  - If the correlation is unity then it is inappropriate to attribute the shock to a single source
  - $\circ$  If the correlation is between 0 and 1 then you usually need to consider both ordering if the results are different then you need to investigate further
- Try where possible to relate ordering to theoretical consideration. (i.e. shock to the US exchange rate may affect SA exchange rate immediately, but not the other way around)

## Impulse response functions

- Note that with zero off-diagonal elements in the variance-covariance matrix we could consider the effect of independent shocks
- Or alternatively we could order the variables from most exogenous to most endogenous when using a Cholenski decomposition

#### Shock from GDP



Figure : IRF - unemployment shock on output

#### Shock from unemployment



Figure: IRF - unemployment shock on unemployment

## Variance Decompositions

- If you knew the coefficients of  $A_0$  and  $A_1$  and wanted to forecast values of  $m{y}_{t+h}$  conditional on  $m{y}_t$ 
  - $\circ$  The conditional expectation of  $oldsymbol{y}_{t+1}$  is

$$\mathbb{E}_t[oldsymbol{y}_{t+1}] = A_0 + A_1oldsymbol{y}_t$$

ullet and the conditional expectation of  $oldsymbol{y}_{t+2}$  is

$$\mathbb{E}_t[oldsymbol{y}_{t+2}] = [I+A_1]A_0 + A_1^2oldsymbol{y}_t$$

ullet such that the conditional expectation of  $oldsymbol{y}_{t+H}$  is

$$\mathbb{E}_t[m{y}_{t+H}] = [I + A_1 + A_1^2 + \ldots + A_1^{H-1}]A_0 + A_1^Hm{y}_t$$

### Variance Decompositions: Forecast

#### errors

- ullet One-step ahead forecast error is  $ig(oldsymbol{y}_{t+1} \mathbb{E}_t[oldsymbol{y}_{t+1}]ig)$
- ullet This equals  $m{u}_{t+1}$ , since  $\mathbb{E}_t[\mathbf{y}_{t+1}] = A_0 + A_1m{y}_t$  and  $m{y}_{t+1} = A_0 + A_1m{y}_t + m{u}_{t+1}$
- ullet Two-step ahead forecast error is  $oldsymbol{(u_{t+2}+A_1u_{t+1})}$
- ullet H-step ahead forecast error is  $ig(oldsymbol{u}_{t+H}+A_1oldsymbol{u}_{t+H-1}+A_1^2oldsymbol{u}_{t+H-2}+\ldots+A_1^{H-1}oldsymbol{u}_{t+1}ig)$
- Of course it is possible to write the forecast errors in terms of the *structural-form* errors,  $\varepsilon_{1,t}$  and  $\varepsilon_{2,t}$
- The forecast error variance decomposition tells us the proportion of the expected variance in a variable that is due to each of the shocks in the model
  - $\circ$  If  $arepsilon_{2,t}$  explains none of the forecast error variance of  $y_{1,t}$ ; then  $y_{1,t}$  is exogenous as it evolves independent of  $arepsilon_{2,t}$  and  $y_{2,t}$
  - $\circ$  If  $arepsilon_{2,t}$  explains all the forecast error variance of  $y_{1,t}$ ; then  $y_{1,t}$  is entirely endogenous

## Variance Decomposition

- Variance decomposition also has identification problems (as per above)
  - $\circ$  Cholesky decomposition necessitates that all one period forecast error of  $y_{2,t}$  is due to  $arepsilon_{2,t}$
  - Similarly for alternate ordering
- It is often useful to examine the variance decompositions at different horizons
  - $\circ$  as H increases the decompositions should converge
- Analysis of impulse responses and variance decompositions may be termed innovation accounting





Figure: Variance Decomposition

## Structural Decomposition

ullet In a three variable model, where  $C=B^{-1}$  the Cholesky decomposition would suggest,

$$egin{aligned} u_{1,t} &= arepsilon_{1,t} \ u_{2,t} &= c_{21}arepsilon_{1,t} + arepsilon_{2,t} \ u_{3,t} &= c_{31}arepsilon_{1,t} + c_{32}arepsilon_{2,t} + arepsilon_{3,t} \end{aligned}$$

- Sims (1986) and Bernanke (1986) provide examples of theoretical restrictions that may differ from the upper or lower triangle
  - Involves estimating the relationships among the structural shocks using an economic model
  - For example, they would consider the decomposition,

$$egin{aligned} u_{1t} &= arepsilon_{1t} + c_{13}arepsilon_{3t} \ u_{2t} &= c_{21}arepsilon_{1t} + arepsilon_{2t} \ u_{3t} &= c_{31}arepsilon_{2t} + arepsilon_{3t} \end{aligned}$$

## Structural Decomposition

- Note that with this structural decomposition:
  - We have lost the triangular structure
  - where each variable is affected by its own structural innovation and the structural innovation in one other variable
  - $\circ$  The condition for  $(K^2-K)/2$  restrictions is satisfied, so the conditions for exact identification are maintained

## Example of identifying restrictions

- Suppose that we have a 2 variable model with a sample size of 5
- ullet This gives us 5 residuals for  $u_{1,t}$  and  $u_{2,t}$

$$u_{1,t}$$
1.0-0.50.0-1.00.5 $u_{2,t}$ 0.5-1.00.0-0.51.0

- Note that both  $u_{1,t}$  and  $u_{2,t}$  sum to zero
- $\sigma_1=0.5, \sigma_{12}=\sigma_{21}=0.4, \ \mathrm{and} \ \sigma_2=0.5$ , which gives a variance/covariance

$$\Sigma_{m{u}} = egin{bmatrix} 0.5 & 0.4 \ 0.4 & 0.5 \end{bmatrix}$$

# Example of identifying restrictions

- Since we premultiplied  $\varepsilon_t$  by  $B^{-1}$  to get  $oldsymbol{u}_t$
- ullet We can derive values for  $\Sigma_{arepsilon}$  from  $\Sigma_{oldsymbol{u}}$  as

$$\Sigma_{arepsilon} = B \Sigma_{m{u}} B'$$

• Hence,

$$egin{bmatrix} \mathsf{var}(arepsilon_1) & 0 \ 0 & \mathsf{var}(arepsilon_2) \end{bmatrix} = egin{bmatrix} 1 & b_{12} \ b_{21} & 1 \end{bmatrix} egin{bmatrix} 0.5 & 0.4 \ 0.4 & 0.5 \end{bmatrix} egin{bmatrix} 1 & b_{21} \ b_{12} & 1 \end{bmatrix}$$

# Example of identifying restrictions

• This leaves us with,

$$egin{aligned} \mathsf{var}(arepsilon_1) &= 0.5 + 0.8 b_{12} + 0.5 b_{12}^2 \ 0 &= 0.5 b_{21} + 0.4 b_{21} b_{12} + 0.4 + 0.5 b_{12} \ 0 &= 0.5 b_{21} + 0.4 b_{21} b_{12} + 0.4 + 0.5 b_{12} \ \mathsf{var}(arepsilon_2) &= 0.5 b_{21}^2 + 0.8 b_{21} + 0.5 \end{aligned}$$

• Since the middle lines are identical we have 3 independent equations to solve for 4 unknowns

# Identification: Cholesky decomposition

• When  $b_{12} = 0$  we have,

$$\mathsf{var}(arepsilon_1)=0.5 \ 0=0.5b_{21}+0.4 ext{ s.t. } b_{21}=-0.8 \ 0=0.5b_{21}+0.4 ext{ s.t. } b_{21}=-0.8 \ \mathsf{var}(arepsilon_2)=0.5b_{21}^2+0.8b_{21}+0.5=0.18$$

ullet Since  $arepsilon_{1,t}=u_{1,t}$  and  $arepsilon_{2,t}=-0.8u_{1,t}+u_{2,t}$ 

|                   | 1    | 2    | 3   | 4    | 5   |
|-------------------|------|------|-----|------|-----|
| $arepsilon_{1,t}$ | 1.0  | -0.5 | 0.0 | -1.0 | 0.5 |
| $arepsilon_{2,t}$ | -0.3 | -0.6 | 0.0 | 0.3  | 0.6 |

#### Alternative identification restrictions

ullet If one shock,  $arepsilon_{2,t}$  has a one-for-one affect on  $y_{1,t}$  s.t.  $b_{12}=1$ 

$$\mathsf{var}(arepsilon_1) = 0.5 + 0.8 b_{12} + 0.5 b_{12}^2 = 1.8$$
 $\vdots$ 
 $\vdots$ 

• From which we could derive  $\varepsilon_t$ 

#### Alternative identification restrictions

- Although there is little theory that informs us on the variance of shocks
- ullet If it is given that  $\mathsf{var}(arepsilon_1) = 1.8$  we could work out values for  $b_{12}$

$$\mathsf{var}(arepsilon_1) = 1.8 = 0.5 + 0.8b_{12} + 0.5b_{12}^2 \ dots \ dots \ dots \ dots$$

ullet From which we could derive  $arepsilon_t$ 

#### Alternative identification restrictions

- ullet If we assume that  $b_{12}=b_{21}$
- Then replacing  $b_{21}$  with  $b_{12}$  in the following

$$0 = 0.5b_{21} + 0.4b_{21}b_{12} + 0.4 + 0.5b_{12}$$
  
 $\vdots$ 

ullet Allows us to derive values for  $b_{12}$  and we can then solve for the rest

#### Long-run restrictions

- Suggested that economic theory does not always provide enough meaningful contemporaneous restrictions
- As an alternative we could impose restrictions on the long-run properties of shocks, allowing for the neutrality of the effects of certain shocks over time
- Blanchard & Quah (1989) consider the use of such restriction on a model for output (demand) and unemployment (supply)
- This bivariate VAR would need a single restriction
- Suggested that output growth and unemployment were driven by two orthogonal structural shocks
- Demand side shocks have a temporary effect on real GNP
- Supply side productivity shocks have a permanent effect on real GNP
- Rate of unemployment is considered stationary, so no shock could change unemployment permanently

42 / 49

## Decomposition using Blanchard-Quah

- ullet If the logarithm of output,  $y_{1,t}$ , is I(1) then output growth,  $\Delta y_{1,t}$ , is I(0)
- ullet Assume rate of unemployment,  $y_{2,t}$ , is affected by the same variables and is I(0)
- ullet The bivariate moving average representation, where  $oldsymbol{y}_t$  is a vector of both variables is

$$oldsymbol{y}_t = \sum_{i=0}^{\infty} \Theta_i arepsilon_{t-i}$$

## Decomposition using Blanchard-Quah

Which may be expanded as

$$egin{aligned} \left[egin{aligned} \Delta y_{1,t}\ y_{2,t} \end{aligned}
ight] = egin{bmatrix} heta_{11}(0) & heta_{12}(0)\ heta_{21}(0) & heta_{22}(0) \end{aligned}
ight] egin{bmatrix} arepsilon_{1,t}\ arepsilon_{2,t} \end{aligned}
ight] + \ldots \ \left[egin{aligned} heta_{11}(1) & heta_{12}(1)\ heta_{21}(1) & heta_{22}(1) \end{aligned}
ight] egin{bmatrix} arepsilon_{1,t-1}\ arepsilon_{2,t-1} \end{aligned}
ight] + \ldots \end{aligned}$$

ullet where the effect of  $arepsilon_{1,t-1}$  on  $\Delta y_{1,t}$  is summarized by  $heta_{11}(1)$ 

## Long-run restrictions

ullet Now, if  $arepsilon_{1,t}$  has no long-run cumulative impact on  $\Delta y_{1,t}$  we could impose the restriction

$$\sum_{i=0}^{\infty} heta_{11}(i)=0$$

 which may be included in the coefficient matrix for the moving average representation,

$$\sum_{i=0}^{\infty}\Theta_i = egin{bmatrix} 0 & \sum_{i=0}^{\infty} heta_{12,i} \ \sum_{i=0}^{\infty} heta_{21,i} & \sum_{i=0}^{\infty} heta_{22,i} \end{bmatrix} = \sum_{i=0}^{\infty} egin{bmatrix} 0 & heta_{12}(i) \ heta_{21}(i) & heta_{22,}(i) \end{bmatrix}$$

#### Restrictions

- Hence, we can impose restrictions on either the short-run contemporaneous parameters, or the long-run moving average components
- Alternatively we could use a combination of the two
- The only condition is that the number of restrictions must equal  $\lceil (K^2 K)/2 \rceil$

#### Limitations of the VAR approach

- A major limitation of the traditional VAR approach is that it is highly parametrised
- In addition all of the effects of omitted variables will be contained in the residuals
- This may lead to major distortions in the impulse responses, making them of little use for structural interpretations
- Measurement errors or mis-specifications of the model make interpretation of the impulse responses difficult
- We can't make use of an infinite number of MA coefficients, since the dataset is finite (this may lead to a bias in the parameter estimates)

## Summary

- Sims (1980) introduced SVAR models as an alternative to the large-scale macroeconometric models that were used during that time
- The SVAR methodology has gained widespread use in applied time series research
- Allows for the incorporation of contemporaneous variables and an investigation into the impact of individual shocks
- To identify the structural VAR model, we need to impose restrictions
- Widely-used identification methods rely on short-run or long-run restrictions
- The short-run restrictions were originally suggested by Sims (1986)
- Blanchard & Quah (1989) introduced long-run restrictions

# Summary

- ullet A system of K variables would require that we impose  $(K^2-K)/2$  identifying restrictions for exact identification
- The use of the Cholesky decomposition would ensure that the identified shocks from the VAR model will be orthogonal (uncorrelated) and unique
- However, the choice of the this method for imposing restrictions could affect the results of the model
- An impulse response function describes how a given (structural) shock affects a variable over time
- The forecast error variance decomposition attributes the forecast error variance to specific structural shocks at different horizons