Anhang 2: Realisierungsregeln

Althochdeutsch

Substantive

- (1) RR A, {NUM:PL}, N[IC: $3 \vee 9 \vee 14$] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}', \sigma \rangle$
- (2) RR B, {NUM:PL}, N[IC: 9] (<X, $\sigma>$) = def <Xir', $\sigma>$
- (3) RR C, {CASE:NOM \vee ACC, NUM:SG}, N[IC: $2 \vee 4 \vee 10$] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (4) RR C, {CASE:NOM \veebar ACC, NUM:SG}, N[IC: 5] (\lt X, σ >) = def \lt Xu', σ >
- (5) RR C, {CASE:NOM \veebar ACC, NUM:SG}, N[IC: 11 \veebar 12] (\lt X, σ \gt) = def \lt Xa', σ \gt
- (6) RR C, {CASE:NOM, NUM:SG}, N[IC: 6] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$
- (7) RR C, {CASE:ACC, NUM:SG}, N[IC: 6] ($\langle X, \sigma \rangle$) = def $\langle Xun', \sigma \rangle$
- (8) RR c, {CASE:ACC, NUM:SG}, N[IC: 13] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (9) RR C, {CASE:NOM, NUM:SG}, N[IC: 15] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (10) RR _{C, {CASE:ACC \(\) DAT \(\) GEN, NUM:SG}, N[IC: 15] ($\langle X, \sigma \rangle$) = def $\langle Xun', \sigma \rangle$}
- (11) RR _{C, {NUM:SG}, N[IC: 16]} ($\langle X, \sigma \rangle$) = _{def} $\langle X\bar{l}', \sigma \rangle$
- (12) RR C, {CASE:DAT, NUM:SG}, N[IC: $1 \le 2 \le 3 \le 4 \le 5 \le 7 \le 8 \le 9 \le 10$] ($< X, \sigma >$) = def $< Xe', \sigma >$
- (13) RR _{C, {CASE:DAT V GEN, NUM:SG}, N[IC: $6 \le 11$] ($< X, \sigma >$) = $def < Xin', \sigma >$}
- (14) RR C, {CASE:DAT V GEN, NUM:SG}, N[IC: 14] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (15) RR _{C, {CASE:DAT, NUM:SG}, N[IC: 12 \vee 13] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$}
- (16) RR C, {CASE:GEN, NUM:SG}, N[IC: $12 \lor 13$] (<X, $\sigma>$) = def <Xa', $\sigma>$
- (17) RR C, {CASE:GEN, NUM:SG}, N[IC: $1 \le 2 \le 3 \le 4 \le 5 \le 7 \le 8 \le 9 \le 10$] ((X,σ)) = def (Xes',σ)
- (18) RR _{C, {CASE:INSTR, NUM:SG}, N[IC: $1 \le 2 \le 3 \le 5 \le 8 \le 9 \le 10$] ($< X, \sigma >$) = def $< Xu', \sigma >$}
- (19) RR C, {CASE:NOM \vee ACC, NUM:PL}, N[IC: $1 \vee 2 \vee 7 \vee 12 \vee 13$] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (20) RR C, {CASE:NOM \vee ACC, NUM:PL}, N[IC: $3 \vee 4 \vee 5 \vee 10 \vee 14$] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (21) RR _{C, {CASE:NOM \(\sigma \) ACC, NUM:PL}, N[IC: 6×11] ($\langle X, \sigma \rangle$) = $def \langle Xun', \sigma \rangle$}
- (22) RR C, {CASE:NOM \veebar ACC, NUM:PL}, N[IC: 15] (\lt X, σ \gt) = def \lt X $\bar{u}n'$, σ \gt
- (23) RR C, {CASE:NOM \veebar ACC, NUM:PL}, N[IC: 16] (\lt X, σ >) = def \lt X $\bar{\iota}'$, σ >

- (24) RR C, {CASE:DAT, NUM:PL}, N[IC: $1 \le 2 \le 7 \le 8 \le 9 \le 17 \le 18$] ($\langle X, \sigma \rangle$) = def $\langle Xum', \sigma \rangle$
- (26) RR _{C, {CASE:DAT, NUM:PL}, N[IC: 15]} ($\langle X, \sigma \rangle$) = _{def} $\langle X\bar{o}m', \sigma \rangle$
- (27) RR C, {CASE:DAT, NUM:PL}, N[IC: 16] ($\langle X, \sigma \rangle$) = def $\langle X\bar{\imath}m', \sigma \rangle$
- (28) RR C, {CASE:GEN, NUM:PL}, N[IC: $6 \ge 11 \ge 12 \ge 13 \ge 15$] ($(< X, \sigma >) = def < X \bar{o} no', \sigma >$
- (29) RR C, {CASE:GEN, NUM:PL}, N[IC: 16] ($\langle X, \sigma \rangle$) = def $\langle X\bar{\imath}no', \sigma \rangle$
- (30) RR C, {CASE:GEN, NUM:PL}, N[IC: $1 \le 2 \le 3 \le 4 \le 5 \le 7 \le 8 \le 9 \le 10 \le 14 \le 17 \le 18$] ($(< X, \sigma >) = def < Xo', \sigma >$
- (31) RR D. {CASE:NOM \veebar ACC. NUM:PL}. NIIC: 191 (<X, σ >) = def <X * $\bar{\imath}\rightarrow \varnothing$ / VV', σ >
- (32) RR D, {CASE:DAT \vee GEN, NUM:SG}, NIC: 19] ($\langle X, \sigma \rangle$) = def $\langle Xn'/V', \sigma \rangle$

- (33) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG, STEM:A \vee JA] ($\langle X, \sigma \rangle$) = def $\langle X\bar{e}r', \sigma \rangle$
- (34) RR A, {CASE:NOM, NUM:SG, GEND:M \veebar F}, ADJ[STRONG, STEM:A] (<X, $\sigma>$) = def <X', $\sigma>$
- (35) RR A, {CASE:NOM, NUM:SG, GEND:M $\precein F$ }, ADJ[STRONG, STEM:JA] ($\precein X_i$, $\precein S$) = def $\precein X_i$, $\precein S$)
- (36) RR A, {case:nom, num:sg, gend:f}, adj[strong, stem:a \vee ja] ($\langle X, \sigma \rangle$) = def $\langle Xiu', \sigma \rangle$
- (37) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG, STEM:A \vee JA] ($\langle X, \sigma \rangle$) = def $\langle Xaz', \sigma \rangle$
- (38) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG, STEM:A] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (39) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG, STEM:JA] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (40) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xan', \sigma \rangle$
- (41) RR A, {CASE:ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (42) RR A, {CASE:DAT, NUM:SG, GEND: $M \le N$ }, ADJ[STRONG] ($< X, \sigma >$) = def $< Xemu', \sigma >$
- (43) RR A, {CASE:GEN, NUM:SG, GEND: $M \le N$ }, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xes', \sigma \rangle$
- (44) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xeru', \sigma \rangle$
- (45) RR A, {CASE:GEN, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xera', \sigma \rangle$
- (46) RR A, {CASE:INSTR, NUM:SG, GEND: $M \le N$ }, ADJ[STRONG] ($< X, \sigma >$) = def $< Xu', \sigma >$
- (47) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X\bar{e}m', \sigma \rangle$
- (48) RR A, {CASE:GEN, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xero', \sigma \rangle$

- (49) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (50) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xiu', \sigma \rangle$
- (51) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$
- (52) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$
- (53) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xun', \sigma \rangle$
- (54) RR A, {CASE: DAT \vee GEN, NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xin', \sigma \rangle$
- (55) RR A, {CASE: NOM \veebar ACC, NUM:SG, GEND:N}, ADJ[WEAK] ($\lt X, \sigma \gt$) = def $\lt Xa', \sigma \gt$
- (56) RR A, {CASE: NOM, NUM:SG, GEND:F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (57) RR A, {CASE: ACC \vee DAT \vee GEN, NUM:SG, GEND:F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X\bar{u}n', \sigma \rangle$
- (58) RR A, {CASE:NOM \veebar ACC, NUM:PL, GEND:M \veebar N}, ADJ[WEAK] (<X, σ >) = def <Xun', σ >
- (59) RR A, {CASE:DAT, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \bar{o} m', \sigma \rangle$
- (60) RR A, {CASE:GEN, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \bar{o} no', \sigma \rangle$
- (61) RR A, {CASE:NOM \veebar ACC, NUM:PL, GEND:F}, ADJ[WEAK] (<X, $\sigma>$) = def <X $\bar{u}n'$, $\sigma>$

- (62) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (63) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (64) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (65) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}n', \sigma \rangle$
- (66) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (67) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (69) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{i}n', \sigma \rangle$
- (70) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle wir', \sigma \rangle$
- (71) RR A, {CASE:ACC, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle unsich', \sigma \rangle$
- (72) RR A, {CASE:DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle uns', \sigma \rangle$
- (73) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle uns\bar{e}r', \sigma \rangle$

- (74) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (75) RR A, {CASE:ACC. NUM:PL. PERS:2}, PRON.PERS(STRESS:+) ($\langle X, \sigma \rangle$) = def $\langle iuwich', \sigma \rangle$
- (76) RR A, {CASE:DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iu', \sigma \rangle$
- (77) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iuw\bar{e}r', \sigma \rangle$
- (78) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (79) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inan', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] (\leq X, σ >) = def \leq imu', σ >
- (81) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sin', \sigma \rangle$
- (82) RR A, {CASE:NOM \leq ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def <iz', $\sigma>$
- (83) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:N}, PRON, PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle es', \sigma \rangle$
- (84) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle siu', \sigma \rangle$
- (85) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sia', \sigma \rangle$
- (86) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iru', \sigma \rangle$
- (87) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ira', \sigma \rangle$
- (88) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in', \sigma \rangle$
- (89) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iro', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sie', \sigma \rangle$
- (91) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle siu', \sigma \rangle$
- (92) RR A, {CASE:NOM \leq ACC, NUM:PL, PERS:3, GEND:F}, PRON.PERS[STRESS:+] (<X, σ >) = def <sio', σ >
- (93) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (94) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nan', \sigma \rangle$
- (95) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mu', \sigma \rangle$
- (96) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle z', \sigma \rangle$
- (97) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (98) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (99) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle sa', \sigma \rangle$
- (100) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ru', \sigma \rangle$

- (101) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ra', \sigma \rangle$
- (102) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n', \sigma \rangle$
- (103) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ro', \sigma \rangle$
- (104) RR A, {CASE:NOM \leq ACC, NUM:PL, PERS:3, GEND:M}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <se', $\sigma>$
- (105) RR A, {CASE:NOM \leq ACC, NUM:PL, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (106) RR A, {CASE:NOM \leq ACC, NUM:PL, PERS:3, GEND:F}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <so', $\sigma>$

- (107) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wer', \sigma \rangle$
- (108) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wenan', \sigma \rangle$
- (109) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wemu', \sigma \rangle$
- (110) RR A, {CASE:GEN, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wes', \sigma \rangle$
- (111) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle waz', \sigma \rangle$
- (112) RR A, {CASE:DAT \vee INSTR, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wiu', \sigma \rangle$

Bestimmter Artikel / Demonstrativpronomen

- (113) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (114) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle den', \sigma \rangle$
- (115) RR A, {CASE:DAT, NUM:SG, GEND:M V N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle demu', \sigma \rangle$
- (116) RR A, {CASE:GEN, NUM:SG, GEND:M V N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (117) RR A, {CASE:INSTR, NUM:SG, GEND:M V N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle diu', \sigma \rangle$
- (118) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle daz', \sigma \rangle$
- (119) RR A, {CASE:NOM, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle diu', \sigma \rangle$
- (120) RR A, {CASE:ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dia', \sigma \rangle$
- (121) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle deru', \sigma \rangle$
- (122) RR A, {CASE:GEN, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dera', \sigma \rangle$
- (123) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}m', \sigma \rangle$

- (124) RR A, {CASE:GEN, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dero', \sigma \rangle$
- (125) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:M}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle die', \sigma \rangle$
- (126) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq diu', σ >
- (127) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:F}, DETI[PRON.DEM] (<X, $\sigma>$) = def <dio', $\sigma>$

- (128) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X\bar{e}r', \sigma \rangle$
- (129) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xan', \sigma \rangle$
- (130) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] (\leq X, σ >) = def \leq Xemu', σ >
- (131) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xes', \sigma \rangle$
- (132) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xaz', \sigma \rangle$
- (133) RR A, {CASE:INSTR, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (134) RR A, {CASE:NOM, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (135) RR A, {CASE:ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (136) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xeru', \sigma \rangle$
- (137) RR A, {CASE:GEN, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xera', \sigma \rangle$
- (138) RR A, {CASE:NOM, NUM:SG}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (139) RR A, {CASE:ACC, NUM:SG, GEND:N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (140) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X\bar{e}m', \sigma \rangle$
- (141) RR A, {CASE:GEN, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xero', \sigma \rangle$
- (142) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (143) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:N}, DET2[PRON.POSS] (<X, $\sigma>$) = def <Xu', $\sigma>$
- (144) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$

Mittelhochdeutsch

Substantive

- (1) RR A, {CASE:DAT \veebar GEN, NUM:SG}, N[IC:10] (\lt X, σ \gt) = def \lt \ddot{X} ', σ \gt
- (2) RR A, {NUM:PL}, N[IC:3 V 5 V 10 V 12] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:5] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (4) RR B, {NUM:PL}, N[IC:6 V 7 V 11] (<X, $\sigma>$) = def <Xn', $\sigma>$
- (5) RR C, {CASE:NOM, NUM:SG}, N[IC:2] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (6) RR C, {CASE:DAT, NUM:SG}, N[IC:1 $\veebar 2 \veebar 3 \veebar 4 \veebar 5$] ($\lt X, \sigma \gt$) = def $\lt X \vartheta', \sigma \gt$
- (7) RR C, {CASE:GEN, NUM:SG}, N[IC: $1 \vee 2 \vee 3 \vee 4 \vee 5$] ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$
- (8) RR c, {CASE:ACC, NUM:SG}, N[IC:6] ($\langle X, \sigma \rangle$) = def $\langle X \ni n', \sigma \rangle$
- (9) RR C, {CASE:DAT \veebar GEN, NUM:SG}, N[IC:6 \veebar 7] (\lt X, σ >) = def \lt X \ni n', σ >
- (10) RR C, {CASE:DAT \vee GEN, NUM:SG}, N[IC:10] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (11) RR C, {CASE:DAT \veebar GEN, NUM:SG}, N[IC:10] (\lt X, σ >) = def \lt X', σ >
- (12) RR C, {CASE:DAT, NUM:PL}, N[IC:1 $\le 2 \le 3 \le 4 \le 5 \le 8 \le 10 \le 12$] (<X, σ >) = def <Xn', σ >
- (13) RR C, {CASE:GEN, NUM:PL}, N[IC:8] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (14) RR C, {CASE:NOM \vee ACC V GEN, NUM:PL}, N[IC:1 \vee 2 \vee 3 \vee 10] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (15) RR C, {CASE:GEN, NUM:PL}, N[IC:4] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (16) RR D, {}, N[IC:1 \veebar 3] (<X, σ >) = def <X * $w \rightarrow \emptyset$ / #', σ >>

- (17) RR A, {CASE:NOM, NUM:SG}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (18) RR A, {CASE:ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (19) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (20) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (21) RR A, {CASE:DAT, NUM:SG, GEND:M V N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (22) RR A. {CASE:GEN, NUM:SG, GEND:M V N}, ADJISTRONG! ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$
- (23) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$

- (24) RR A, {CASE:NOM, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xiu', \sigma \rangle$
- (25) RR A, {CASE:ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (26) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (27) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (28) RR A, {CASE:GEN, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (29) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:M \vee F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X, \sigma \rangle$
- (30) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xiu', \sigma \rangle$
- (31) RR A, {CASE:DAT \vee GEN, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \ni n', \sigma \rangle$
- (32) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (34) RR A, {CASE:ACC, NUM:SG, GEND:N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, GEND:M V F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (36) RR B, {}, ADJ (<X, σ >) = def <X * $w \rightarrow \omega$ /_#', σ >

- (37) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (38) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (39) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (40) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}n', \sigma \rangle$
- (41) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (42) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (43) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (44) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle d\bar{t}n', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle wir', \sigma \rangle$
- (46) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle uns', \sigma \rangle$
- (47) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle unsar', \sigma \rangle$
- (48) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$

- (49) RR A, {CASE: ACC, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{u}ch', \sigma \rangle$
- (50) RR A, {CASE:DAT, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{u}', \sigma \rangle$
- (51) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{u}w \partial r', \sigma \rangle$
- (52) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \varepsilon r', \sigma \rangle$
- (53) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in', \sigma \rangle$
- (54) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (55) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS [STRESS:+] (\leq X, σ >) = def \leq sīn', σ >
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \varepsilon S', \sigma \rangle$
- (57) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle siu', \sigma \rangle$
- (58) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle si\partial', \sigma \rangle$
- (59) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (60) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (61) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \veebar N}, PRON.PERS [STRESS:-] (<X, σ >) = def < $\partial s'$, σ >
- (64) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (65) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}', \sigma \rangle$
- (66) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (67) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma r', \sigma \rangle$
- (68) RR A, {CASE:NOM \lor ACC, NUM:PL, PERS:3, GEND:M \lor F}, PRON.PERS [STRESS:-] (<X, $\sigma>$) = def <si ϑ' , $\sigma>$
- (69) RR A, {CASE:NOM \lor ACC, NUM:PL, PERS:3, GEND:N}, PRON.PERS [STRESS:-] (<X, $\sigma>$) = def <siu', $\sigma>$
- (70) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle in', \sigma \rangle$
- (71) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (72) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:M \vee F}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (73) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:N}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}', \sigma \rangle$
- (74) RR A. {CASE:DAT. NUM:PL. PERS:3}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n', \sigma \rangle$
- (75) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS [STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$

- (76) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon r', \sigma \rangle$
- (77) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon n', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon m', \sigma \rangle$
- (79) RR A, {CASE:GEN, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon s', \sigma \rangle$
- (80) RR A, {CASE:NOM \vee ACC, NUM:SG; ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

Bestimmter Artikel / Demonstrativpronomen

- (81) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r', \sigma \rangle$
- (82) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon m', \sigma \rangle$
- (84) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon mo', \sigma \rangle$
- (85) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (86) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (87) RR A, {CASE:NOM, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle diu', \sigma \rangle$
- (88) RR A, {CASE:ACC, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle di\sigma', \sigma \rangle$
- (89) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r', \sigma \rangle$
- (90) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon ro', \sigma \rangle$
- (91) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:M \vee F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (92) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle diu', \sigma \rangle$
- (93) RR A, {CASE:DAT, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n', \sigma \rangle$
- (94) RR A, {CASE:DAT, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle dian', \sigma \rangle$
- (95) RR A, {CASE:GEN, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r', \sigma \rangle$
- (96) RR A, {CASE:GEN, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon ro', \sigma \rangle$

(97) RR A, {CASE:NOM, NUM:SG}, DET2 (
$$\langle X, \sigma \rangle$$
) = def $\langle X', \sigma \rangle$

(98) RR A, {CASE:ACC, NUM:SG, GEND:N
$$\forall$$
 F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$

(99) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2 (
$$\langle X, \sigma \rangle$$
) = def $\langle X an', \sigma \rangle$

(100) RR A, {CASE:DAT, NUM:SG, GEND:
$$M \le N$$
}, $DET2$ ($\langle X, \sigma \rangle$) = $def \langle X \partial m', \sigma \rangle$

(101) RR A, {CASE:GEN, NUM:SG, GEND:
$$M \vee N$$
}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial S', \sigma \rangle$

(102) RR A, {CASE:ACC, NUM:SG, GEND:F}, DET2 (
$$\langle X, \sigma \rangle$$
) = def $\langle X \partial', \sigma \rangle$

(103) RR A, {CASE:DAT
$$\vee$$
 GEN, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$

(104) RR A, {CASE:NOM
$$\vee$$
 ACC, NUM:PL, GEND:M \vee F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

(105) RR A, {CASE:NOM
$$\vee$$
 ACC, NUM:PL, GEND:N}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xiu', \sigma \rangle$

(106) RR A, {CASE:DAT, NUM:PL}, DET2 (
$$\langle X, \sigma \rangle$$
) = def $\langle X \ni n', \sigma \rangle$

(107) RR A, {CASE:GEN, NUM:PL}, DET2 (
$$\langle X, \sigma \rangle$$
) = def $\langle X \partial r', \sigma \rangle$

(108) RR A, {CASE:DAT
$$\vee$$
 GEN, NUM:SG}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$

(109) RR A, {CASE:NOM, NUM:SG}, DET2[PRON.POSS] (
$$\langle X, \sigma \rangle$$
) = def $\langle X \sigma', \sigma \rangle$

(110) RR A, {CASE:ACC, NUM:SG, GEND:M
$$\veebar$$
 F}, DET2[PRON.POSS] ($<$ X, σ >) = def $<$ X $\partial n'$, σ >

(111) RR A, {CASE:ACC, NUM:SG, GEND:N}, DET2[PRON.POSS] (
$$\langle X, \sigma \rangle$$
) = def $\langle X \partial', \sigma \rangle$

(112) RR A, {NUM:PL}, DET2[PRON.POSS] (
$$\langle X, \sigma \rangle$$
) = def $\langle X \partial n', \sigma \rangle$

Neuhochdeutsch

Substantive

- (1) RR _{A, {NUM:PL}, N[IC:1 \veebar 3 \veebar 7 \veebar 8] (\lt X, σ >) = _{def} \lt \ddot{X} ', σ >}
- (2) RR B, {NUM:PL}, N[IC:9 ≤ 10] ($\leq X, \sigma >$) = def $\leq Xs', \sigma >$
- (3) RR B, {NUM:PL}, N[IC:3] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (4) RR _{B, {NUM:PL}, N[IC:4 $\le 5 \le 6$]} ($< X, \sigma >$) = _{def} $< X \ge n', \sigma >$
- (5) RR C, {CASE:GEN, NUM:SG}, N[IC:1 $\veebar 2 \veebar 3 \veebar 5 \veebar 9$] ($\lt X, \sigma \gt$) = def $\lt Xs', \sigma \gt$
- (6) RR C. {CASE:ACC \vee DAT \vee GEN. NUM:SG}. NIIC:4] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (7) RR C, {CASE:NOM \vee ACC \vee GEN, NUM:PL}, N[IC:1 \vee 2 \vee 7] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (8) RR _{C, {CASE:DAT, NUM:PL}}, $N[IC:1 \le 2 \le 3 \le 4 \le 5 \le 6 \le 7 \le 8]$ ($< X, \sigma >$) = _{def} $< X \ge n', \sigma >$
- (9) RR C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$

- (10) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (11) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (13) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (14) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <X $\partial s'$, $\sigma>$
- (15) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$, $\sigma \rangle$
- (16) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (17) RR A, {CASE:NOM \veebar ACC, NUM:PL}, ADJ[STRONG] ($\lt X, \sigma \gt$) = def $\lt X \vartheta', \sigma \gt$
- (18) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \ni n', \sigma \rangle$
- (19) RR A, {CASE:GEN, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (20) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (21) RR A, {CASE:DAT \vee GEN, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (22) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N \vee F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (23) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

- (24) RR A. {CASE:NOM. NUM:SG. PERS:1}. PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (25) RR A. {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (26) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (27) RR A. {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle meinar', \sigma \rangle$
- (28) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (29) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (30) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (31) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle deinar', \sigma \rangle$
- (32) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (33) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{i}n', \sigma \rangle$
- (34) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \overline{i}m', \sigma \rangle$
- (35) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle seinar', \sigma \rangle$
- (36) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle s\vec{i}', \sigma \rangle$
- (37) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{l}r', \sigma \rangle$
- (38) RR A. {CASE:GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r \partial r', \sigma \rangle$
- (39) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (40) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{n}nn', \sigma \rangle$
- (41) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r \partial r', \sigma \rangle$
- (42) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle wir', \sigma \rangle$
- (43) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle uns', \sigma \rangle$
- (44) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle uns \partial r', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r', \sigma \rangle$
- (46) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle euch', \sigma \rangle$
- (47) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle eurar', \sigma \rangle$

- (48) RR A. {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wer', \sigma \rangle$
- (49) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wen', \sigma \rangle$
- (50) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$
- (51) RR A. {CASE:DAT. NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wem', \sigma \rangle$
- (52) RR A, {CASE:GEN, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wessan', \sigma \rangle$

Bestimmter Artikel / Demonstrativpronomen

- (53) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1 ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (54) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1 ($\langle X, \sigma \rangle$) = def $\langle den', \sigma \rangle$
- (55) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle dem', \sigma \rangle$
- (56) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq m', σ >
- (57) RR A, {CASE:GEN, NUM:SG, GEND: $M \vee N$ }, DET1 ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (58) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1 ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (59) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (60) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (61) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\bar{l}', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle den', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$

- (64) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (65) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (66) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (68) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (69) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

- (70) RR A, {CASE:DAT, NUM:PL}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \ni n', \sigma \rangle$
- (71) RR A, {CASE:GEN, NUM:PL}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$

Issime

Substantive

- (1) RR A, {NUM:PL}, N[IC:5 \veebar 11 \veebar 13 \veebar 17] (<X, $\sigma>$) = def $<\ddot{X}'$, $\sigma>$
- (2) RR _{B, {NUM:PL}, N[IC:2]} (<X, $\sigma>$) = _{def} <Xn', $\sigma>$
- (3) RR B, {NUM:PL}, N[IC:15 \(\neq 16\)] (<X, $\sigma>$) = def <Xin', $\sigma>$
- (4) RR B, {NUM:PL}, N[IC:8] (<X, $\sigma>$) = def <Xw', $\sigma>$
- (5) RR B, {NUM:PL}, N[IC:10 \leq 11] (\leq X, σ >) = def \leq Xer', σ >
- (6) RR C. {CASE:NOM \vee ACC, NUM:PL}, N[IC:1 \vee 2 \vee 8] (\langle X, σ \rangle) = def \langle Xa', σ \rangle
- (7) RR C, {CASE:NOM \vee ACC, NUM:PL}, N[IC:3 \vee 4 \vee 6 \vee 9 \vee 12 \vee 13 \vee 14 \vee 15 \vee 16] (\langle X, σ >) = def \langle Xi', σ >
- (8) RR C, {CASE:DAT \vee GEN, NUM:PL}, N[IC:4 \vee 9 \vee 12 \vee 13 \vee 14 \vee 15 \vee 16] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (9) RR _{C, {CASE:DAT \subseteq GEN, NUM:PL}, N[IC:6]} (<X, σ >) = _{def} <Xe', σ >
- (10) RR C, {CASE:DAT, NUM:PL}, N[IC:1 \vee 2 \vee 3 \vee 5 \vee 7 \vee 8 \vee 10 \vee 11 \vee 17 \vee 18] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (11) RR C, {CASE:GEN, NUM:PL}, N[IC: $1 \vee 2 \vee 3 \vee 5 \vee 7 \vee 8 \vee 10 \vee 11 \vee 17 \vee 18$] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (12) RR C, {CASE:NOM \vee ACC \vee DAT, NUM:SG}, N[IC:2 \vee 3] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (13) RR _{C, {CASE:NOM \(\precedes \) ACC, NUM:SG}, N[IC:4 \(\precedes \) 6] (<X, σ >) = def <Xu', σ >}
- (14) RR _{C, {CASE:NOM \(\subseteq\) ACC, NUM:SG}, N[IC:13]} ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (15) RR C, {NUM:SG}, N[IC:12] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (16) RR _{C, {CASE:DAT, NUM:SG}, N[IC:4]} ($\langle X, \sigma \rangle$) = _{def} $\langle Xe', \sigma \rangle$
- (17) RR _{C, {CASE:DAT \(\subseteq \) GEN, NUM:SG}, N[IC:6] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$}
- (18) RR _{C, {CASE:DAT \(\sup \) GEN, NUM:SG}, N[IC:13] (\(\sup \) (\(\sup \), \(\sup \) = def \(\sup \) \times}
- (19) RR C, {CASE:GEN, NUM:SG}, N[IC:1 \veebar 5 \veebar 7 \veebar 8 \veebar 9 \veebar 10 \veebar 11] (\rightthreetimes X, σ >) = def \rightthreetimes Xsch', σ >
- (20) RR C, {CASE:GEN, NUM:SG}, N[IC:2 \veebar 3 \veebar 4] (<X, σ >) = def <Xendsch', σ >

- (21) RR A, {CASE:NOM \vee ACC V DAT, NUM:SG, GEND:M}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (22) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (23) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$

- (24) RR A, {CASE:GEN, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (25) RR A, {CASE:GEN, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (26) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (27) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (28) RR A, {CASE:DAT, NUM:SG, GEND:N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (29) RR A, {NUM:SG, GEND:F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (30) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (31) RR A, {CASE:DAT, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$

- (32) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (33) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (34) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{i}r', \sigma \rangle$
- (35) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle meir', \sigma \rangle$
- (36) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (37) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mer', \sigma \rangle$
- (39) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dou', \sigma \rangle$
- (40) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (41) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (42) RR A. {CASE:GEN. NUM:SG. PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle deir', \sigma \rangle$
- (43) RR A. {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (44) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (45) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle eer', \sigma \rangle$
- (47) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (48) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}s', \sigma \rangle$

- (49) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (50) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dscheir', \sigma \rangle$
- (51) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (52) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ne', \sigma \rangle$
- (53) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (54) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \veebar N}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <mu', $\sigma>$
- (55) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (57) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle irra', \sigma \rangle$
- (58) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (59) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dscha', \sigma \rangle$
- (60) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ara', \sigma \rangle$
- (61) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle wir', \sigma \rangle$
- (62) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{u}ndsch', \sigma \rangle$
- (63) RR A. {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle indsch', \sigma \rangle$
- (64) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle wer', \sigma \rangle$
- (65) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \ddot{u}nsch', \sigma \rangle$
- (66) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (67) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle auw', \sigma \rangle$
- (68) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle auw', \sigma \rangle$
- (69) RR A. {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ni', \sigma \rangle$
- (70) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (71) RR A, {CASE:DAT \vee GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{u}rj', \sigma \rangle$
- (72) RR A, {CASE:NOM, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (73) RR A, {CASE:ACC, NUM:PL, PERS:3, GEND:M \veebar F}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <dschu', $\sigma>$
- (74) RR A, {CASE:ACC, NUM:PL, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dschi', \sigma \rangle$
- (75) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ne', \sigma \rangle$

- (76) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle eru', \sigma \rangle$
- (77) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:PL}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (79) RR _{B, {CASE:DAT $\,^{\vee}$ GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+, FORM:SIMPLE] (<X, $\sigma>$) = _{def} <Xu', $\sigma>$}
- (80) RR B, {CASE: GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+, FORM:SIMPLE] ($\langle X, \sigma \rangle$) = def $\langle Xuru', \sigma \rangle$
- (81) RR _{B, {CASE: NOM \leq ACC, NUM:PL}, PRON.PERS[STRESS:+, FORM:COMPOSED]} ($\langle X, \sigma \rangle$) = _{def} $\langle Xendri', \sigma \rangle$
- (82) RR B, {CASE: DAT, NUM:PL}, PRON.PERS[STRESS:+, FORM:COMPOSED] ($\langle X, \sigma \rangle$) = def $\langle Xenandre', \sigma \rangle$
- (83) RR B, {CASE: GEN, NUM:PL}, PRON.PERS[STRESS:+, FORM:COMPOSED] ($\langle X, \sigma \rangle$) = def $\langle Xerandru', \sigma \rangle$

- (84) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wer', \sigma \rangle$
- (85) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wem', \sigma \rangle$
- (86) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wem', \sigma \rangle$
- (87) RR A. {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <was', σ >

Bestimmter Artikel / Demonstrativpronomen

- (88) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (89) RR A, {CASE:GEN, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle da', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle da', \sigma \rangle$
- (91) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (92) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:N}, DET1[ART.DEF] (<X, $\sigma>$) = def <ds', $\sigma>$
- (93) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (94) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dam', \sigma \rangle$
- (95) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ds', \sigma \rangle$
- (96) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (97) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle da', \sigma \rangle$

- (98) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] (\leq X, σ >) = def \leq d α' , σ >
- (99) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (100) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] (<X, $\sigma>$) = def <dei', $\sigma>$
- (101) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dei', \sigma \rangle$
- (102) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq dem', σ >
- (103) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq desch', σ >
- (104) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dene', \sigma \rangle$

- (105) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:N}, DET2[PRON.POSS, NUM:SG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (106) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS, NUM:SG] (\leq X, σ >) = def \leq Xsch', σ >
- (107) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (108) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (109) RR A, {CASE:GEN, NUM:PL}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (110) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (111) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (112) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xem', \sigma \rangle$
- (113) RR A, {CASE:DAT \veebar GEN, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:PL] (<X, $\sigma>$) = def <Xer', $\sigma>$
- (114) RR A, {CASE:GEN, NUM:PL}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (115) RR A, {CASE:DAT, NUM:PL, GEND:M \precent{Y} F}, DET2[PRON.POSS, NUM:PL] (\precent{X} , \precent{X}) = def \precent{X} e', \precent{S}
- (116) RR A, {CASE:DAT, NUM:PL, GEND:N}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xene', \sigma \rangle$
- (117) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (119) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[NUM:SG] (\leq X, σ >) = def \leq Xm', σ >
- (120) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET2[NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$

- (121) RR B, {}, DET2[PRON.POSS, PERS:1 \veebar 2, NUM:SG] (\lt X, σ >) = def \lt X * $n \rightarrow \emptyset$ /_K', σ >
- (122) RR B, {}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \veebar N] (\lt X, σ >) = def \lt X * $n \rightarrow \varnothing$ /_K', σ >
- (123) RR _B, {}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X * u \rightarrow \emptyset / V', \sigma \rangle$

Visperterminen

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 \veebar 6 \veebar 10 \veebar 17] (\rightthreetimes X, σ >) = def \rightthreetimes X', σ >
- (2) RR B, {NUM:PL}, N[IC:10 \leq 11] (\leq X, σ >) = def \leq Xer', σ >
- (3) RR B, {NUM:PL}, N[IC:3] (<X, $\sigma>$) = def <Xm', $\sigma>$
- (4) RR C, {CASE:DAT, NUM:PL}, N[IC:9] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (5) RR C, {CASE:GEN, NUM:PL}, N[IC:1 $\stackrel{\vee}{}$ 2 $\stackrel{\vee}{}$ 3 $\stackrel{\vee}{}$ 5 $\stackrel{\vee}{}$ 6 $\stackrel{\vee}{}$ 7 $\stackrel{\vee}{}$ 8 $\stackrel{\vee}{}$ 9 $\stackrel{\vee}{}$ 10 $\stackrel{\vee}{}$ 11 $\stackrel{\vee}{}$ 12 $\stackrel{\vee}{}$ 13 $\stackrel{\vee}{}$ 14 $\stackrel{\vee}{}$ 15 $\stackrel{\vee}{}$ 16 $\stackrel{\vee}{}$ 17 $\stackrel{\vee}{}$ 18] ($\stackrel{\langle}{}$ X, σ >) = def $\stackrel{\langle}{}$ Xo', σ >
- (6) RR C, {CASE:DAT, NUM:PL}, N[IC:1 \vee 2 \vee 3 \vee 5 \vee 6 \vee 7 \vee 8 \vee 9 \vee 10 \vee 11 \vee 12 \vee 13 \vee 14 \vee 15 \vee 16 \vee 17 \vee 18] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (7) RR _{C, {CASE:NOM \(\sigma \) ACC, NUM:PL}, N[IC:1 \(\sigma \) 3 \(\sigma \) 15] (<X, σ >) = def <Xa', σ >}
- (8) RR C. {CASE:NOM \vee ACC, NUM:PL}, N[IC:5 \vee 6 \vee 14 \vee 18] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (9) RR C, {CASE:NOM \vee ACC, NUM:PL}, N[IC:7 \vee 9 \vee 13 \vee 16] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (10) RR _{C, {CASE:NOM \(\subseteq\) ACC, NUM:PL}, N[IC:12] (\(\subseteq\)X,\(\subseteq\)) = def \(\subseteq\)Xi',\(\subseteq\)}
- (11) RR _{C, {CASE:NOM \(\sigma \) ACC, NUM:SG}, N[IC:3 \(\sigma \) 5 \(\sigma \) 6 \(\sigma \) 7] (<X,\(\sigma \)) = def <X\(o',\(\sigma \)}
- (12) RR _{C, {CASE:NOM \(\subseteq\) ACC, NUM:SG}, N[IC:9]} ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (13) RR _{C, {CASE:NOM \veebar ACC, NUM:SG}, N[IC:18]} ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (14) RR C, {CASE:DAT \vee GEN, NUM:SG}, N[IC:3 \vee 5 \vee 6 \vee 7 \vee 18] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (15) RR C, {CASE:GEN, NUM:SG}, N[IC:1 $\veebar 2 \veebar 4 \veebar 8 \veebar 9 \veebar 10 \veebar 11 \veebar 12 \veebar 13]$ (<X, σ >) = def <Xsch', σ >

- (16) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (17) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (18) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xum', \sigma \rangle$
- (19) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (20) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (21) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (22) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$

- (23) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (24) RR A, {CASE:GEN, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (25) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$
- (26) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N \vee F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (27) RR A, {CASE:DAT \vee GEN, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (28) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (29) RR A, {CASE:GEN, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xo', \sigma \rangle$

- (30) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}ch', \sigma \rangle$
- (31) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{i}ch', \sigma \rangle$
- (32) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mi \partial r', \sigma \rangle$
- (33) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{i}ne', \sigma \rangle$
- (34) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (36) RR A. {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (37) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (38) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}ch', \sigma \rangle$
- (39) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle diar', \sigma \rangle$
- (40) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}ne', \sigma \rangle$
- (41) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (42) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (43) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (44) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (45) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inu', \sigma \rangle$
- (46) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle imu', \sigma \rangle$
- (47) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sch\bar{t}ne', \sigma \rangle$

- (48) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}s', \sigma \rangle$
- (49) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \alpha r', \sigma \rangle$
- (50) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nu', \sigma \rangle$
- (51) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mu', \sigma \rangle$
- (52) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND: $M \le N$ }, PRON.PERS[STRESS:-] ($< X, \sigma >$) = def $< schi', \sigma >$
- (53) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \alpha s', \sigma \rangle$
- (54) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle sus', \sigma \rangle$
- (55) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, σ >) = def <s', σ >
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sch\bar{i}', \sigma \rangle$
- (57) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ira', \sigma \rangle$
- (58) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle schi', \sigma \rangle$
- (59) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle scha', \sigma \rangle$
- (60) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ra', \sigma \rangle$
- (61) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle wiar', \sigma \rangle$
- (62) RR A. {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}sch', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}sche', \sigma \rangle$
- (64) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle wr', \sigma \rangle$
- (65) RR A. {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle schi', \sigma \rangle$
- (66) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i \partial r', \sigma \rangle$
- (67) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ew', \sigma \rangle$
- (68) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ewe', \sigma \rangle$
- (69) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (70) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sch\bar{t}', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ine', \sigma \rangle$
- (72) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iro', \sigma \rangle$
- (73) RR A. {CASE:NOM \veebar ACC. NUM:PL. PERS:3}. PRON.PERS[STRESS:-] ($\lt X, \sigma \gt$) = def $\lt schi', \sigma \gt$
- (74) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ne', \sigma \rangle$

(75) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ro', \sigma \rangle$

Interrogativpronomen

- (76) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \alpha r', \sigma \rangle$
- (77) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wem', \sigma \rangle$
- (79) RR A, {CASE:GEN, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle weschi', \sigma \rangle$

Bestimmter Artikel / Demonstrativpronomen

- (80) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (81) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dun', \sigma \rangle$
- (82) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dum', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (84) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ds', \sigma \rangle$
- (85) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ds', \sigma \rangle$
- (86) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (87) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (88) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART,DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (89) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (90) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (91) RR A, {CASE:GEN, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (92) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (93) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon nu', \sigma \rangle$
- (94) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq d ϵ m', σ >
- (95) RR A, {CASE:GEN, NUM:SG, GEND: $M \le N$ }, DETI[PRON.DEM] ($< X, \sigma >$) = def $< des', \sigma >$
- (96) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON,DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (97) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$

- (98) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (99) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (100) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon ne', \sigma \rangle$
- (101) RR A, {CASE:GEN, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$

- (102) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, DET2 (<X, σ >) = def <Xs', σ >
- (103) RR A, {CASE:GEN, NUM:SG, GEND:M \leq N}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (104) RR A, {CASE:NOM \leq ACC, NUM:PL}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (105) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xum', \sigma \rangle$
- (106) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xam', \sigma \rangle$
- (107) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xmu', \sigma \rangle$
- (108) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xanar', \sigma \rangle$
- (109) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (110) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (111) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$
- (112) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (113) RR A, {CASE:GEN, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xer', \sigma \rangle$

Jaun

Substantive

- (1) RR A, {NUM:PL}, N[IC:1 \veebar 6 \veebar 9 \veebar 13] (<X, $\sigma>$) = def < \ddot{X}' , $\sigma>$
- (2) RR A, {NUM:PL}, N[IC:3] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:4 \(\perp\) 14 \(\perp\) 16] ((X,σ)) = def $(X \ni n',\sigma)$
- (4) RR B, {NUM:PL}, N[IC:7] (<X, σ >) = def <X ∂ ', σ >
- (5) RR B, {NUM:PL}, N[IC:9 \(\text{10}\)] ((X,σ)) = def $(X \Rightarrow r',\sigma)$
- (6) RR C, {CASE:DAT \vee GEN,NUM:PL}, N[IC:1 \vee 2 \vee 3 \vee 4 \vee 8 \vee 9 \vee 10 \vee 11 \vee 12 \vee 13 \vee 14 \vee 15 \vee 16] (\langle X, σ >) = def \langle X σ ', σ >
- (7) RR C, {CASE:DAT \vee GEN,NUM:PL}, N[IC:5 \vee 6] ($\langle X, \sigma \rangle$) = def $\langle Xn\partial', \sigma \rangle$
- (8) RR C, {CASE:NOM \veebar ACC,NUM:PL}, N[IC:1] (<X, σ >) = def <Xa', σ >
- (9) RR C, {CASE:NOM \vee ACC,NUM:PL}, N[IC:5 \vee 6] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (10) RR C, {CASE:NOM \vee ACC,NUM:PL}, N[IC:4 \vee 11 \vee 12 \vee 14 \vee 15 \vee 16] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (11) RR C, {CASE:NOM \vee ACC,NUM:SG}, N[IC:15 \vee 16] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (12) RR C, {CASE:DAT \veebar GEN,NUM:SG}, N[IC:15 \veebar 16] (\lt X, σ >) = def \lt X ϑ ', σ >
- (13) RR C, {CASE:GEN,NUM:SG}, N[IC:1 $\veebar 2 \veebar 3 \veebar 4 \veebar 5 \lor 6 \veebar 7 \lor 8 \lor 9 \lor 10 \lor 11]$ (<X, σ >) = def <Xs', σ >

- (14) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (15) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:M}, ADJ[STRONG] (<X, $\sigma>$) = def <Xa', $\sigma>$
- (16) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (17) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (18) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (19) RR A, {CASE:GEN, NUM:SG, GEND:M \veebar N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (20) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (21) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (22) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (23) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

- (24) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xu', \sigma \rangle$
- (25) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (26) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (27) RR A, {CASE:DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (28) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (29) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (30) RR A, {CASE:ACC \vee DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (31) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mina', \sigma \rangle$
- (32) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}n\partial r\partial', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (34) RR A. {CASE:ACC \vee DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (36) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (37) RR A, {CASE:ACC \vee DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (38) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dina', \sigma \rangle$
- (39) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}n \partial r \partial', \sigma \rangle$
- (40) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (41) RR A, {CASE:ACC \vee DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (42) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (43) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \alpha r', \sigma \rangle$
- (44) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}', \sigma \rangle$
- (45) RR A, {CASE:ACC \vee DAT, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (46) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sina', \sigma \rangle$
- (47) RR A. {CASE:GEN, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}n\partial r\partial', \sigma \rangle$
- (48) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def < $\bar{e}s'$, $\sigma>$

- (49) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (50) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}s', \sigma \rangle$
- (51) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}s', \sigma \rangle$
- (52) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sia', \sigma \rangle$
- (53) RR A. (CASE:DAT \vee GEN. NUM:SG. PERS:3. GEND:F), PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ira', \sigma \rangle$
- (54) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (55) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle na', \sigma \rangle$
- (56) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mu', \sigma \rangle$
- (57) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND: $M \le N$ }, PRON.PERS[STRESS:-] ($< X, \sigma >$) = def $< si', \sigma >$
- (58) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:-] (<X, σ >) = def < σ ', σ >
- (59) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (60) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (61) RR A,{CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X,\sigma \rangle$) = def $\langle si',\sigma \rangle$
- (62) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle sa', \sigma \rangle$
- (63) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ra', \sigma \rangle$
- (64) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle wir', \sigma \rangle$
- (65) RR A. {CASE:ACC \leq DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}s', \sigma \rangle$
- (66) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}sa', \sigma \rangle$
- (67) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}s \partial r \partial', \sigma \rangle$
- (68) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle w \partial r', \sigma \rangle$
- (69) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nus', \sigma \rangle$
- (70) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (71) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}ch', \sigma \rangle$
- (72) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}wa', \sigma \rangle$
- (73) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}wara', \sigma \rangle$
- (74) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (75) RR A, {CASE:ACC \veebar DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <nuch', $\sigma>$

- (76) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (77) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle siu', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in \sigma', \sigma \rangle$
- (79) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iru', \sigma \rangle$
- (80) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iraru', \sigma \rangle$
- (81) RR A, {CASE:NOM \lor ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] (<X, σ >) = def <si', σ >
- (82) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (83) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ru', \sigma \rangle$

- (84) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle war', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon m', \sigma \rangle$
- (86) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon m', \sigma \rangle$
- (87) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <was', σ >

Bestimmter Artikel / Demonstrativpronomen

- (88) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (89) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle e', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (91) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dam', \sigma \rangle$
- (92) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def \leq $\delta m'$, σ >
- (93) RR A, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (94) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (95) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (96) RR A, {CASE:DAT \vee GEN, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (97) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (98) RR A, {CASE:NOM \leq ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$

- (99) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (100) RR A, {CASE:GEN, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (101) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[RPON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (102) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[RPON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (103) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[RPON.DEM] (\leq X, σ >) = def \leq dem', σ >
- (104) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[RPON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r', \sigma \rangle$
- (105) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:M \vee N}, DET1[RPON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (106) RR A, {CASE:NOM \leq ACC, NUM:PL, GEND:F}, DET1[RPON.DEM] (\leq X, σ >) = def \leq diu', σ >
- (107) RR A, {CASE:DAT, NUM:PL}, DETI[RPON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n\sigma', \sigma \rangle$

- (108) RR A, {CASE:ACC, NUM:SG}, DET2[ART:INDEF] ($\langle X, \sigma \rangle$) = def $\langle \partial nX', \sigma \rangle$
- (109) RR B, {CASE:NOM \veebar ACC, NUM:SG, GEND:M \veebar F}, DET2[ART:INDEF] (<X, $\sigma>$) = def <Xa', $\sigma>$
- (110) RR B, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, DET2[ART:INDEF] (<X, $\sigma>$) = def <Xas', $\sigma>$
- (111) RR B, {CASE:DAT. NUM:SG. GEND: $M \ge N$ }, DET2[ART:INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ amana', $\sigma >$
- (112) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART:INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (113) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART:INDEF] ($\langle X, \sigma \rangle$) = def $\langle X$ and $\partial r\partial', \sigma \rangle$
- (114) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART:INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (115) RR B, {CASE:NOM \veebar ACC, NUM:SG, GEND:M}, DET2[ART:INDEF, PERS:1 \veebar 2] (\lt X, σ >) = def \lt Xa', σ >
- (116) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET2[ART:INDEF, PERS:1 \vee 2] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (117) RR B, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, DET2[ART:INDEF, PERS:1 \vee 2] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (118) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART:INDEF, PERS:1 \vee 2] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (120) RR B, {CASE:DAT, NUM:PL}, DET2[ART:INDEF, PERS:1 \leq 2] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (121) RR b, {case:nom \vee acc, num:sg, gend:n}, det2[art:indef, pers:1 \vee 2, num:sg] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (122) RR B, {CASE:GEN, NUM:SG, GEND:M \leq N}, DET2[ART:INDEF, PERS:1 \leq 2, NUM:SG] (\leq X, σ >) = def \leq Xs', σ >
- (123) RR B, {CASE:GEN, NUM:SG, GEND:F}, DET2[ART:INDEF, PERS:1 $\,^{\vee}$ 2, NUM:SG] (<X, $\sigma>$) = def <Xr', $\sigma>$

- (125) RR B, {Case:nom \vee acc, num:sg, gend:m \vee f}, det2[art:indef, pers:1 \vee 2, num:sg] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (126) RR b, {case:nom \leq acc, num:sg, gend:m}, det2[art:indef, pers:3, num:sg, gend:m \leq n] (\leq X, σ >) = $_{def}$ \leq Xa', σ >
- (127) RR B, {case:nom \leq acc, num:sg, gend:n}, det2[art:indef, pers:3, num:sg, gend:m \leq n] (<X, σ >) = $_{def}$ <Xs', σ >
- (128) RR B, {case:nom \leq acc, num:sg, gend:f}, det2[art:indef, pers:3, num:sg, gend:m \leq n] (<X, σ >) = def <Xi', σ >
- (129) RR B, {Case:nom \lor acc, num:sg, gend:f}, det2[art:indef, pers:3, num:sg, gend:m \lor n] (<X, σ >) = $_{def}$ <X', σ >
- (130) RR B, {case:nom \vee acc, num:pl, gend:n}, det2[art:indef, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (131) RR B, {Case:dat, num:sg, gend:m \leq n}, det2[art:indef, pers:3, num:sg, gend:m \leq n] (\leq X, σ >) = def \leq Xm', σ >
- (132) RR b, {case:gen, num:sg, gend:m \vee n}, det2[art:indef, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (133) RR b, {case:dat \vee gen, num:sg, gend:f}, det2[art:indef, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (134) RR B, {CASE:DAT, NUM:PL}, DET2[ART:INDEF, PERS:3, NUM:SG, GEND:M \veebar N] (<X, σ >) = def <X ∂ ', σ >
- (135) RR B, {CASE:GEN, NUM:PL}, DET2[ART:INDEF, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (136) RR C, {CASE:AKK \veebar DAT, NUM:SG}, DET2[ART.INDEF] (<X, $\sigma>$) = def <*V X $\rightarrow \phi$ /V_', $\sigma>$

Sensebezirk

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 \veebar 9] (\lt X, σ >) = def \lt X', σ >
- (2) RR A, {NUM:PL}, N[IC:1 \veebar 8] (\lt X, σ >) = def \lt X[$a \rightarrow e$]', σ >
- (3) RR B, {NUM:PL}, N[IC:3 ≤ 4] (<X, σ >) = def <X ∂' , σ >
- (4) RR B, {NUM:PL}, N[IC:6] ($\langle X, \sigma \rangle$) = def $\langle X \partial ni', \sigma \rangle$
- (5) RR B, {NUM:PL}, N[IC:7] (<X, $\sigma>$) = def <Xi', $\sigma>$
- (6) RR B, {NUM:PL}, N[IC:8 $\le 9 \le 10$] ($< X, \sigma >$) = def $< X \ni r', \sigma >$
- (7) RR B, {POSS:+, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (8) RR _{C. {NUM:PL}, N[IC:4]} ($\langle X, \sigma \rangle$) = _{def} $\langle X * a \rightarrow \emptyset / \vartheta', \sigma \rangle$

Adjektive

- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (10) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:M}, ADJ[STRONG] (<X, $\sigma>$) = def <Xa', $\sigma>$
- (11) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:M \veebar N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xum', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (14) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (15) RR A, {CASE:NOM \veebar ACC, NUM:PL, GEND:F}, ADJ[STRONG]($\lt X, \sigma \gt$) = def $\lt Xu', \sigma \gt$
- (16) RR A. {CASE:NOM \vee ACC. NUM:PL. GEND:F}. ADJISTRONGI($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (17) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG]($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (18) RR _{A, {CASE:DAT, NUM:SG}, ADJ[WEAK]}($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (19) RR A, {NUM:PL ADJ[WEAK]}($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (30) RR A. {CASE:NOM. NUM:SG. PERS:1}. PRON.PERSISTRESS:+] $(\langle X, \sigma \rangle) = _{\text{def}} \langle \bar{i}', \sigma \rangle$
- (31) RR A, {CASE:ACC \leq DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$

- (32) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle min \partial r \partial', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (34) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (35) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mar', \sigma \rangle$
- (36) RR A. {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (37) RR A, {CASE:ACC \leq DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def <diar', $\sigma>$
- (38) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dinara', \sigma \rangle$
- (39) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (40) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (41) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (42) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \alpha r', \sigma \rangle$
- (43) RR A, {CASE:ACC \veebar DAT, NUM:SG, PERS:3, GEND:M \veebar N, ANIM:-}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def < $\bar{t}m'$, $\sigma>$
- (44) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \alpha s', \sigma \rangle$
- (45) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <es', $\sigma>$
- (46) RR A, {case:dat, num:sg, pers:3, gend:n, anim:+}, pron.pers[stress:-] ($\langle X, \sigma \rangle$) = $def \langle \bar{l}m', \sigma \rangle$
- (47) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (48) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sia', \sigma \rangle$
- (49) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ira', \sigma \rangle$
- (50) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sinara', \sigma \rangle$
- (51) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}ra', \sigma \rangle$
- (52) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}r \partial', \sigma \rangle$
- (53) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (54) RR A, {CASE:ACC \vee DAT, NUM:SG, PERS:3, GEND:M \vee N, ANIM:-}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mu', \sigma \rangle$
- (55) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (56) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def < $>s',<math>\sigma>$

- (57) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mu', \sigma \rangle$
- (58) RR A. {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle sa', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial ra', \sigma \rangle$
- (60) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle wiar', \sigma \rangle$
- (61) RR A. {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (62) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}s', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{u}s\partial r\partial', \sigma \rangle$
- (64) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle w \partial r', \sigma \rangle$
- (65) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (66) RR A. {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nis', \sigma \rangle$
- (67) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i \partial r', \sigma \rangle$
- (68) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{o}ch', \sigma \rangle$
- (69) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{o}w \partial r \partial', \sigma \rangle$
- (70) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (71) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nuch', \sigma \rangle$
- (72) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{l}', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}n \sigma', \sigma \rangle$
- (74) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r\partial', \sigma \rangle$
- (75) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r \partial r \partial', \sigma \rangle$
- (76) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (77) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (78) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r\sigma', \sigma \rangle$

- (79) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle war', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wam', \sigma \rangle$
- (81) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <was', σ >

Bestimmter Artikel / Demonstrativpronomen

- (82) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (84) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1 ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (85) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (86) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dum', \sigma \rangle$
- (88) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def \leq um', σ >
- (89) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (91) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (92) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (93) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\alpha', \sigma \rangle$
- (94) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (95) RR A, {CASE:DAT. NUM:SG. GEND:M \vee N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon m', \sigma \rangle$
- (96) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n\sigma', \sigma \rangle$

- (97) RR A, {CASE:ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle \partial nX', \sigma \rangle$
- (98) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:M \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (99) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xas', \sigma \rangle$
- (99) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xama', \sigma \rangle$
- (100) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xima', \sigma \rangle$
- (101) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xamana', \sigma \rangle$
- (102) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Ximana', \sigma \rangle$
- (103) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ amana', $\sigma \rangle$
- (104) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xan\partial ra', \sigma \rangle$

- (105) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xn \partial ra', \sigma \rangle$
- (106) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial ra', \sigma \rangle$
- (107) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ anara', $\sigma \rangle$
- (108) RR B, {Case:nom \vee acc, num:sg, gend:n}, det2[pron.poss, pers:1 \vee 2, num:sg] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (109) RR B, {Case:nom \vee acc, num:sg, gend:n}, det2[pron.poss, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = $_{\text{def}} \langle Xs', \sigma \rangle$
- (110) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xum', \sigma \rangle$
- (111) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[PRON.POSS; PERS:1 \veebar 2, NUM:SG] (\lt X, σ >) = def \lt Xm', σ >
- (112) RR b, {case:dat, num:sg, gend:m \leq n}, det2[pron.poss; pers:3, num:sg, gend:m \leq n] (\leq X, σ >) = def \leq Xm', σ >
- (113) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (114) RR B, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (115) RR B, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS; PERS:1 \vee 2, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (115) RR B, {CASE:NOM \veebar ACC, NUM:PL}, DET2[PRON.POSS; PERS:3, NUM:SG, GEND:M \veebar N] (<X, $\sigma>$) = def <X', $\sigma>$
- (116) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (117) RR b, {case:nom \vee acc, num:sg, gend:m}, det2[pron.poss; pers:1 \vee 2, num:pl] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (118) RR B, {Case:nom \vee acc, num:sg, gend:n}, det2[pron.poss; pers:1 \vee 2, num:pl] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$
- (119) RR B, {Case:nom \vee acc, num:sg, gend:f}, det2[Pron.poss; pers:1 \vee 2, num:pl] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (120) RR B, {}, DET2[PRON.POSS; PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (121) RR B, {}, DET2[PRON.POSS; PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (122) RR C, {}, DET2[PRON.POSS; PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (123) RR C, {}, DET2[PRON.POSS; PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (124) RR D, {CASE:AKK \veebar DAT, NUM:SG}, DET2[ART.INDEF] (<X, σ >) = def <*V X $\rightarrow \phi$ /V_', σ >

Uri

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 $\veebar 5 \veebar 7 \veebar 10 \veebar 13]$ (<X, σ >) = def < \ddot{X}' , σ >
- (2) RR A, {NUM:PL}, N[IC:1 \leq 9] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:4 \veebar 5 \veebar 7 \veebar 8] (<X, σ >) = def <Xp', σ >
- (4) RR _{B, {NUM:PL}, N[IC:6]} (<X, σ >) = _{def} <Xm', σ >
- (5) RR _{B, {NUM:PL}, N[IC:8]} $(\langle X, \sigma \rangle) = _{def} \langle X \partial s', \sigma \rangle$
- (6) RR _{B, {NUM:PL}, N[IC:9 ≤ 10] ($< X, \sigma >$) = def $< X \ni r', \sigma >$}
- (7) RR C, {CASE:NOM \vee ACC, NUM:PL}, N[IC:11 \vee 12] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (8) RR C, {CASE:DAT, NUM:PL}, N[IC: $1 \le 2 \le 3 \le 4 \le 5 \le 6 \le 7 \le 8 \le 9 \le 10 \le 12$] ($(< X, \sigma >) = def < X p', \sigma >$
- (10) RR _{C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN]} ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (11) RR _{C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN]} ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (12) RR D, {}, N[IC:7 \leq 11] (\leq X, σ >) = def \leq X * $i\rightarrow$ ϕ /_V', σ >

Adjektive

- (13) RR _{A, {CASE:DAT, NUM:PL}, ADJ} ($\langle X, \sigma \rangle$) = _{def} $\langle X v', \sigma \rangle$
- (14) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (15) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (16) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (17) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (18) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (19) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (20) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (21) RR _{A, {CASE:DAT, NUM:SG}, ADJ[WEAK]} ($\langle X, \sigma \rangle$) = _{def} $\langle X v', \sigma \rangle$

- (22) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (23) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (24) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (25) RR A. {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{i}nv', \sigma \rangle$
- (26) RR A, {CASE:GEN, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle minartnv', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \sigma r', \sigma \rangle$
- (30) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (31) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}v', \sigma \rangle$
- (32) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle diar', \sigma \rangle$
- (34) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{l}nv', \sigma \rangle$
- (35) RR A, {CASE:GEN, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dinartne', \sigma \rangle$
- (36) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\ddot{u}', \sigma \rangle$
- (37) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (39) RR A. {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}r', \sigma \rangle$
- (40) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inv', \sigma \rangle$
- (41) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (42) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\imath}nv', \sigma \rangle$
- (43) RR A, {CASE:GEN, NUM:SG, PERS:3, GEND: $M \le N$ }, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sinartnv', \sigma \rangle$
- (44) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def < $\bar{a}s'$, $\sigma>$
- (45) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}s', \sigma \rangle$
- (46) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inas', \sigma \rangle$
- (47) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$

- (48) RR A, {CASE:DAT \vee GEN, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle irv', \sigma \rangle$
- (49) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (50) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle a', \sigma \rangle$
- (51) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (52) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (53) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] (<X, σ >) = def <si', σ >
- (54) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial rv', \sigma \rangle$
- (55) RR A. {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (56) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}s', \sigma \rangle$
- (57) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\iota} s \partial r v', \sigma \rangle$
- (58) RR A, {CASE:GEN, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}sartnv', \sigma \rangle$
- (59) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (60) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (61) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle iar', \sigma \rangle$
- (62) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}ch', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}w \partial r v', \sigma \rangle$
- (64) RR A, {CASE:GEN, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}wartnv', \sigma \rangle$
- (65) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (66) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ach', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\iota}', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inv', \sigma \rangle$
- (69) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir\partial r', \sigma \rangle$
- (70) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle irartnv', \sigma \rangle$
- (71) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (72) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle nv', \sigma \rangle$

- (73) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{e}r', \sigma \rangle$
- (74) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon m', \sigma \rangle$
- (75) RR A, {CASE:GEN, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wesse', \sigma \rangle$
- (76) RR A, {NUM:SG, ANIM:--}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

- (77) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (78) RR A, {CASE: ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (79) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (80) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (81) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (82) RR A, {CASE:NOM \leq ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (83) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (84) RR A, {CASE:DAT. NUM:SG. GEND: $M \subseteq N$ }, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \ni m', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def $\leq \partial m'$, σ >
- (86) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (88) RR A, {POSS:+, NUM:SG}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (89) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (91) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] (<X, $\sigma>$) = def <div', $\sigma>$
- (92) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle div', \sigma \rangle$
- (93) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq dem', σ >
- (94) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r\varepsilon', \sigma \rangle$
- (95) RR A, {CASE:DAT. NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n\varepsilon', \sigma \rangle$

- (96) RR A, {CASE:ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle \partial nX', \sigma \rangle$
- (97) RR B, {CASE:NOM \veebar ACC, NUM:SG, GEND:M \veebar F}, DET2[ART.INDEF] (<X, $\sigma>$) = def <Xp', $\sigma>$
- (98) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xps', \sigma \rangle$
- (99) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xamanv', \sigma \rangle$
- (100) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[ART.INDEF] (<X, σ >) = def <Xame', σ >
- (101) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ ama', $\sigma \rangle$
- (102) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xan\partial rv', \sigma \rangle$
- (103) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r v', \sigma \rangle$
- (104) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xn\partial rv', \sigma \rangle$
- (105) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (106) RR B, {CASE:NOM \veebar ACC, NUM:SG, GEND:N}, DET2[PRON.POSS, PERS:1 \veebar 2] (<X, σ >) = def <Xs', σ >
- (107) RR B, {Case:nom \vee acc, num:sg, gend:n}, det2[pron.poss, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = $_{\text{def}} \langle Xs', \sigma \rangle$
- (108) RR B, {Case:nom \leq acc, num:sg, gend:n}, det2[pron.poss, pers:3, num:sg, gend:f] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ ($\langle X, \sigma \rangle$)
- (109) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X \partial SS', \sigma \rangle$
- (110) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (111) RR B, {CASE:NOM \vee ACC, NUM:SG}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (112) RR B, {Case:nom \vee acc, num:sg}, det2[pron.poss, pers:3, num:sg, gend:m \vee n] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (113) RR B, {CASE:NOM \leq ACC, NUM:PL}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (114) RR B, {CASE:NOM \leq ACC, NUM:PL}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (115) RR B, {Case:nom \vee acc, num:pl, gend:n}, det2[pron.poss, pers:1 \vee 2, num:pl] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (116) RR B, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET2[PRON,POSS, PERS:1 \vee 2, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (117) RR B, {CASE:GEN, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle X_S', \sigma \rangle$
- (118) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$

- (119) RR _B, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (120) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:1 \leq 2, NUM:SG] (\leq X, σ >) = def \leq Xp', σ >
- (121) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \veebar N] (<X, σ >) = def <Xv', σ >
- (122) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xnv', \sigma \rangle$
- (123) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle Xnv', \sigma \rangle$
- (124) RR C, {CASE:AKK \vee DAT, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle V X \rightarrow \emptyset / V_{_}', \sigma \rangle$

Vorarlberg

Substantive

- (1) RR A, {NUM:PL}, N[IC:1 $\veebar 2 \veebar 5 \veebar 7$] (<X, σ >) = def <X', σ >
- (2) RR _{B, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = _{def} $\langle X \partial r', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:6 ≤ 7] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$, $\sigma \rangle$
- (4) RR _{C, {CASE:DAT, NUM:PL}, N[IC:2 \veebar 4] (\lt X, σ >) = def \lt X ϑ ', σ >}
- (5) RR C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (6) RR C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

Adjektive

- (7) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (8) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (10) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (11) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (14) RR A, {CASE: ACC, NUM: SG, GEND: M}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (16) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (17) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (18) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (19) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath} \sigma r', \sigma \rangle$
- (20) RR A. {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (21) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$

- (22) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (23) RR A. {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (24) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (25) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} a r', \sigma \rangle$
- (26) RR A. {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (30) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (31) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (32) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i a n', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (34) RR A, {CASE:NOM \leq ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def <ēs', $\sigma>$
- (35) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\vec{i}', \sigma \rangle$
- (36) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] (<X, σ >) = def <si', σ >
- (37) RR A. {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} ara', \sigma \rangle$
- (38) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (39) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n', \sigma \rangle$
- (40) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (41) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (42) RR A. {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (43) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$
- (44) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath} ar', \sigma \rangle$
- (45) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}s', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (47) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (48) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} \partial r', \sigma \rangle$

- (49) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{o}u', \sigma \rangle$
- (50) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (51) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (52) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <ni', $\sigma>$
- (53) RR A. {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{l}', \sigma \rangle$
- (54) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (55) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}n \sigma', \sigma \rangle$
- (56) RR A. {CASE:NOM \vee ACC. NUM:PL. PERS:3}. PRON.PERSISTRESS:-1 ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (57) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$

- (58) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{e}r', \sigma \rangle$
- (59) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{e}', \sigma \rangle$
- (60) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wem', \sigma \rangle$
- (61) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <was', σ >

- (62) RR A, {CASE:DAT, NUM:SG, GEND: $M \vee N$ }, DET1 ($\langle X, \sigma \rangle$) = def $\langle dem', \sigma \rangle$
- (63) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (64) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (65) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (66) RR A, {CASE:DAT, NUM:SG, GEND: $M \subseteq N$ }, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (68) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (69) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, DETI[ART.DEF] (<X, $\sigma>$) = def <t', $\sigma>$
- (70) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (71) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$

- (72) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (74) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}r', \sigma \rangle$
- (75) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}', \sigma \rangle$
- (76) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (77) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] (<X, $\sigma>$) = def <di α' , $\sigma>$
- (78) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (79) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle den \sigma', \sigma \rangle$

- (81) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (82) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (83) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:N \veebar F}, DET2[ART.INDEF] (<X, σ >) = def <X ∂' , σ >
- (84) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (85) RR A, {case:dat, num:sg, gend: $m \le n$ }, det2[art.indef] ($< X, \sigma >$) = def $< X \ge n \ge n \ge n$, $\sigma >$
- (86) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n \partial r \partial', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (88) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (89) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (90) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (91) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (92) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (93) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (94) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:1 \leq 2, NUM:PL] (\leq X, σ >) = def \leq X $n\sigma$ ', σ >
- (95) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$

(96) RR A, {Case:nom \lor acc, num:sg, gend:n}, det2[pron.poss, pers:1 \lor 2, num:pl] (<X, $\sigma>$) = def <X * $r \rightarrow \varnothing'$, $\sigma>$

Zürich

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 $\veebar 5 \veebar 6$] ($< X, \sigma >$) = def $< \ddot{X}', \sigma >$
- (2) RR A, {NUM:PL}, N[IC:1 \veebar 4] (\lt X, σ \gt) = def \lt $\ddot{X}[a \rightarrow e]', \sigma \gt$
- (3) RR A, {NUM:PL}, N[IC:3] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[\bar{a} \rightarrow \bar{o}]', \sigma \rangle$
- (4) RR _B, {NUM:PL}, N[IC:4 \leq 5] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (5) RR B, {NUM:PL}, N[IC:6 \leq 7] (\leq X, σ >) = def \leq X ∂ ', σ >
- (6) RR c, {CASE:DAT, NUM:PL}, N ($\langle X, \sigma \rangle$) = def $\langle X \vartheta', \sigma \rangle$
- (7) RR C, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (8) RR c, {Poss:+, Num:sg, Anim:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

Adjektive

- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (10) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (11) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, ADJ[STRONG] (<X, $\sigma>$) = def <Xi', $\sigma>$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (14) RR A, {CASE:NOM \vee ACC, NUM:PL, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (16) RR A, {CASE:DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (17) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (18) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (19) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (20) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (21) RR A. {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (23) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \sigma r', \sigma \rangle$
- (24) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (25) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (26) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (28) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (29) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (30) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (31) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (32) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (34) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle es', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ins', \sigma \rangle$
- (36) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle es', \sigma \rangle$
- (37) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (39) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, σ >) = def <s', σ >
- (40) RR A, {CASE:NOM \leq ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, σ >) = def < $\partial s'$, σ >
- (41) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS (<X, σ >) = def <si', σ >
- (42) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir \sigma', \sigma \rangle$
- (43) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (44) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (46) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{o}is', \sigma \rangle$
- (47) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (48) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$

- (49) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (50) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{o}i', \sigma \rangle$
- (51) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (52) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (53) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (54) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (55) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ina', \sigma \rangle$
- (56) RR A. {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n \partial', \sigma \rangle$

- (57) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:+}, PRON.INTER (<X, σ >) = def <w ε' , σ >
- (58) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \partial m', \sigma \rangle$
- (59) RR A. {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

- (60) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (61) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (62) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (63) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (64) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def \leq am', σ >
- (65) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (66) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (67) RR A, {POSS:+, NUM:SG, ANIM:+}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (68) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] (<X, $\sigma>$) = def <d $\bar{\epsilon}'$, $\sigma>$
- (69) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] (<X, $\sigma>$) = def <d $\bar{a}s'$, $\sigma>$
- (70) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (71) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$

- (72) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq dem', σ >
- (73) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r\sigma', \sigma \rangle$
- (74) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n\sigma', \sigma \rangle$

- (75) RR A, {CASE:ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle \partial nX', \sigma \rangle$
- (76) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (77) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$
- (78) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (79) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ ama', $\sigma >$
- (80) RR B, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ amana', $\sigma \rangle$
- (81) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n \partial r \partial', \sigma \rangle$
- (82) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (83) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (84) RR b, {case:nom \leq acc, num:sg, gend:m}, det2[pron.poss, pers:3, num:sg, gend:f] (\leq X, σ >) = def \leq X σ ', σ >
- (85) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$, $\sigma \rangle$
- (86) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (87) RR b, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:3, num:sg, gend:m $\[\le X, \sigma > \] = def \]$ $\[< X > r = \] / \sigma > \]$
- (88) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (89) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (90) RR B, {CASE:NOM \leq ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (91) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (92) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (93) RR C, {}, DET2[PRON.POSS, PERS:1 \veebar 2, NUM:SG] (\lt X, σ >) = def \lt X * $n \rightarrow \emptyset$ _K', σ >
- (94) RR c, {}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle X * n \rightarrow \emptyset K', \sigma \rangle$
- (95) RR D, {CASE:AKK \vee DAT, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle V X \rightarrow \phi/V_{\perp}', \sigma \rangle$

Bern

Substantive

- (1) $RR_{A, \{NUM:PL\}, N[IC:2 \lor 4 \lor 7]} (\langle X, \sigma \rangle) = _{def} \langle \ddot{X}', \sigma \rangle$
- (2) RR A, {NUM:PL}, N[IC:3 \leq 5] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:4 \leq 5] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (4) RR _{B, {NUM:PL}, N[IC:6 \veebar 7] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$}
- (5) RR B, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$

Adjektive

- (6) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (7) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (8) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (9) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (10) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (11) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (14) RR A. {CASE:NOM \vee ACC. NUM:SG. GEND:N}. ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (16) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (17) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (18) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}g', \sigma \rangle$
- (19) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (20) RR A. {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath}r', \sigma \rangle$
- (21) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (23) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \sigma r', \sigma \rangle$
- (24) RR A. {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (25) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{t}', \sigma \rangle$
- (26) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}r', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (30) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\alpha}r', \sigma \rangle$
- (31) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}n', \sigma \rangle$
- (32) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \overline{i}m', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}s', \sigma \rangle$
- (34) RR A. {CASE:ACC. NUM:SG. PERS:3. GEND:N. ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}ns', \sigma \rangle$
- (35) RR _{A, {CASE:NOM $\,^{\vee}$ ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def < $\bar{e}s'$, $\sigma>$}
- (36) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (37) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (39) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (40) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (41) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def < $>s',<math>\sigma>$
- (42) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle seia', \sigma \rangle$
- (43) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (44) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}r \partial', \sigma \rangle$
- (45) RR A. {CASE:NOM, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (46) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s \sigma', \sigma \rangle$
- (47) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$

- (48) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}r', \sigma \rangle$
- (49) RR A. {CASE:NOM. NUM:PL. PERS:1}. PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (50) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}s', \sigma \rangle$
- (51) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mar', \sigma \rangle$
- (52) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (53) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}r', \sigma \rangle$
- (54) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{o}ich', \sigma \rangle$
- (55) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (56) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ech', \sigma \rangle$
- (57) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sei\partial', \sigma \rangle$
- (58) RR A, {CASE:ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}n \sigma', \sigma \rangle$
- (60) RR A, {CASE:NOM, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (61) RR A, {CASE:ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s \sigma', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (63) RR A, {CASE:GEN, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r\sigma', \sigma \rangle$

- (65) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:+}, PRON.INTER (<X, σ >) = def <wær', σ >
- (66) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w@m', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was \partial m', \sigma \rangle$

- (69) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1 ($\langle X, \sigma \rangle$) = def $\langle dar', \sigma \rangle$
- (70) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (71) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$

- (72) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ds', \sigma \rangle$
- (73) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, DET1[ART.DEF] (<X, $\sigma>$) = def <d', $\sigma>$
- (74) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (75) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DET1[ART.DEF] (<X, $\sigma>$) = def <d', $\sigma>$
- (76) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def $\leq \partial m'$, σ >
- (78) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (79) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\alpha', \sigma \rangle$
- (80) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (81) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (82) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dem', \sigma \rangle$
- (84) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r\sigma', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon n\sigma', \sigma \rangle$

- (86) RR A, {CASE:ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle nX', \sigma \rangle$
- (87) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:M \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (88) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial s', \sigma \rangle$
- (89) RR B, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[ART.INDEF] (\rightthreetimes X, σ >) = def \rightthreetimes X \not 2m \not 3', σ >
- (90) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ amənə', $\sigma \rangle$
- (91) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] (\leq X, σ >) = def \leq X ∂ mn ∂ ', σ >
- (92) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (93) RR B, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial nr \partial', \sigma \rangle$
- (94) RR B, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (95) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:1] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (96) RR B, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS, PERS:2 \vee 3] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$

- (97) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:2, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (98) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (99) RR B, {CASE:DAT, NUM:PL}, DET2[PRON.POSS, PERS:2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xn \sigma', \sigma \rangle$
- (100) RR B, {case:dat, num:pl}, det2[pron.poss, pers:3, num:sg, gend: $m \le n$] ($< X, \sigma >$) = def $< Xn \sigma', \sigma >$
- (101) RR B, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (102) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET2[PRON.POSS, NUM:PL] (\leq X, σ >) = def \leq X σ ', σ >
- (103) RR b, {case:nom \pm acc, num:sg, gend:m}, det2[pron.poss, pers:3; num:sg, gend:f] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$, $\sigma \rangle$
- (104) RR B, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:PL] (<X, $\sigma>$) = def <Xi', $\sigma>$
- (105) RR B, {case:nom \lor acc, num:sg, gend:f}, det2[pron.poss, pers:3; num:sg, gend:f] (<X, σ >) = def <Xi', σ >
- (107) RR b, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:3; num:sg, gend:m $\[\le X, \sigma > \] = def \]$ $\[< X, \sigma > \]$
- (109) RR b, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:3; num:sg, gend:f] ($\langle X, \sigma \rangle$) = def $\langle X \rangle \sigma r', \sigma \rangle$
- (110) RR B, {CASE:DAT, NUM:SG, GEND:M \leq N }, DET2[PRON.POSS] (\leq X, σ >) = def \leq Xm', σ >
- (111) RR C, {CASE:DAT, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle V X \rightarrow \emptyset / V ', \sigma \rangle$

Huzenbach

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 \veebar 3 \veebar 5] (\lt X, σ >) = def \lt X', σ >
- (2) RR _{B, {NUM:PL}, N[IC:3]} ($\langle X, \sigma \rangle$) = _{def} $\langle X \partial r', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:4 ≤ 5] (<X, σ >) = def <X ∂' , σ >
- (4) RR _{B, {NUM:PL}, N[IC:6]} $(\langle X, \sigma \rangle) = _{def} \langle X \partial n \partial', \sigma \rangle$
- (5) RR B, {POSS:+, NUM:SG, ANIM:+}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (6) RR C, {NUM:PL}, N[IC: $4 \lor 5$] ($\langle X, \sigma \rangle$) = def $\langle X *e \rightarrow \emptyset/_ \mathfrak{d}', \sigma \rangle$

Adjektive

- (7) RR _{A, {CASE:DAT, NUM:SG}, ADJ} ($\langle X, \sigma \rangle$) = _{def} $\langle X \vartheta', \sigma \rangle$
- (8) RR A, {NUM:PL}, ADJ ($< X, \sigma >$) = def $< Xe', \sigma >$
- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (10) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (11) RR A. {CASE:NOM \lor ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (12) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$

- (13) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (14) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath}r', \sigma \rangle$
- (16) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (17) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle e', \sigma \rangle$
- (18) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle me', \sigma \rangle$
- (19) RR A, {CASE:DAR, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \sigma r', \sigma \rangle$
- (20) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\partial u', \sigma \rangle$
- (21) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (23) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}r', \sigma \rangle$
- (24) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (25) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (26) RR A. {CASE:DAT. NUM:SG. PERS:2}. PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}n', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \veebar N}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def < $\tilde{e}m'$, $\sigma>$
- (30) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}s', \sigma \rangle$
- (31) RR A. {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (32) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r\partial', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (34) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (36) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (37) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (38) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (39) RR A, {CASE:NOM \leq ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] (<X, σ >) = def <se', σ >
- (40) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$
- (41) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}r', \sigma \rangle$
- (42) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{a}\tilde{e}s', \sigma \rangle$
- (43) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (44) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1 \vee 2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ech', \sigma \rangle$
- (45) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1 \vee 2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (47) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}r', \sigma \rangle$
- (48) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle aich', \sigma \rangle$

- (49) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{l}', \sigma \rangle$
- (50) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}n \partial', \sigma \rangle$
- (51) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (52) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (53) RR A. {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n \partial', \sigma \rangle$
- (54) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n\sigma', \sigma \rangle$

- (55) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{e}r', \sigma \rangle$
- (56) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{e}\partial r', \sigma \rangle$
- (57) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\tilde{e}n', \sigma \rangle$
- (58) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\tilde{e}m', \sigma \rangle$
- (59) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}s', \sigma \rangle$
- (60) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wa', \sigma \rangle$

- (61) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (62) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (63) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (64) RR A, {CASE:DAT, NUM:SG, GEND: $M \subseteq N$ }, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (65) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (66) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (67) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DET1[ART.DEF] ($\lt X, \sigma \gt$) = def $\lt d', \sigma \gt$
- (68) RR A, {CASE:NOM \vee ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (69) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (70) RR A, {POSS:+, NUM:SG, GEND:M \leq N, ANIM:+}, DET1[ART.DEF] (\leq X, σ >) = def \leq s', σ >
- (71) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}r', \sigma \rangle$

- (72) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\tilde{e}n', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq d $\tilde{e}m'$, σ >
- (74) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}s', \sigma \rangle$
- (75) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} \sigma', \sigma \rangle$
- (76) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] (<X, $\sigma>$) = def <d $\bar{\iota}'$, $\sigma>$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}r\partial', \sigma \rangle$
- (78) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} \sigma', \sigma \rangle$
- (79) RR A, {CASE:DAT, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\tilde{e} \partial ne', \sigma \rangle$

- (80) RR A, {CASE:NOM, NUM:SG, GEND:M \vee N \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (81) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (82) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (84) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (86) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn\partial r', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xnara', \sigma \rangle$
- (88) RR A, {NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn\partial', \sigma \rangle$
- (90) RR B, {}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \veebar N] (\lt X, σ >) = def \lt X [+V, +nasal] \rightarrow [+V, -nasal]/_V', σ >

Saulgau

Substantive

- (1) RR A, {NUM:PL}, N[IC:3] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}', \sigma \rangle$
- (2) RR A, {NUM:PL}, N[IC:2 \leq 6] (\leq X, σ >) = def < $\ddot{X}[a \rightarrow e]', \sigma$ >
- (3) RR B. {NUM:PL}. NIIC:4 \(\psi \)5] (<X, σ >) = def <X ∂' , σ >
- (4) RR B, {NUM:PL}, N[IC:6] (<X, $\sigma>$) = def <Xr', $\sigma>$
- (5) RR B, {POSS:+, NUM:SG} N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (6) RR B, {POSS:+, NUM:SG} N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (7) RR _{C, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = _{def} $\langle X * e \rightarrow \emptyset / _ \delta', \sigma \rangle$

Adjektive

- (8) RR A, {NUM:PL}, ADJ (<X, $\sigma>$) = def <Xe', $\sigma>$
- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (10) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (11) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (14) RR A. {CASE: ACC. NUM: SG. GEND: M}. ADJIWEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (15) RR _{A, {CASE:DAT, NUM:SG}, ADJ[WEAK]} ($\langle X, \sigma \rangle$) = def $\langle X \vartheta', \sigma \rangle$

- (16) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (17) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (18) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath} \partial r', \sigma \rangle$
- (19) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle e', \sigma \rangle$
- (20) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle me', \sigma \rangle$
- (21) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$

- (22) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (23) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{t}', \sigma \rangle$
- (24) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} ar', \sigma \rangle$
- (25) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (26) RR A. {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (27) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (28) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\epsilon}r', \sigma \rangle$
- (29) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}n', \sigma \rangle$
- (30) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}m', \sigma \rangle$
- (31) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\epsilon}s', \sigma \rangle$
- (32) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\imath}\partial', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} ara', \sigma \rangle$
- (34) RR A. {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n', \sigma \rangle$
- (36) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (37) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <s', $\sigma>$
- (38) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (39) RR A. {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$
- (40) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath} ar', \sigma \rangle$
- (41) RR A, {CASE:ACC \veebar DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \partial is', \sigma \rangle$
- (42) RR A. {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (43) RR A, {CASE:ACC \veebar DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <es', $\sigma>$
- (44) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} \partial r', \sigma \rangle$
- (45) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ui', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (47) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\imath}\partial', \sigma \rangle$
- (48) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \tilde{e}n \sigma', \sigma \rangle$

- (49) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (50) RR A. {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial n \partial', \sigma \rangle$

- (51) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{\varepsilon}\partial r', \sigma \rangle$
- (52) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wear', \sigma \rangle$
- (53) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon m', \sigma \rangle$
- (54) RR A. {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}', \sigma \rangle$
- (55) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <wa', σ >

- (56) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (57) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (58) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle n', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (60) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (61) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (63) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DET1[ART.DEF] ($\lt X, \sigma \gt$) = def $\lt d', \sigma \gt$
- (64) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (65) RR A, {POSS:+, NUM:SG, ANIM:+}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (66) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\epsilon} \partial r', \sigma \rangle$
- (67) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\epsilon} \partial n', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq d \Rightarrow m', σ >
- (69) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] (<X, $\sigma>$) = def <d $\bar{e}s'$, $\sigma>$
- (70) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} \sigma', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\epsilon} \partial r \partial', \sigma \rangle$

- (72) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} \sigma', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle danne', \sigma \rangle$

- (74) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (75) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \tilde{e} m \sigma', \sigma \rangle$
- (76) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (77) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:N \veebar F}, DET2[ART.INDEF] (<X, σ >) = def <X ϑ ', σ >
- (78) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X\tilde{e}n\partial r\partial', \sigma \rangle$
- (80) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (81) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (82) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (83) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (84) RR A, {NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (86) RR A, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:1 \le 2, num:pl] (<X, σ >) = def <X ∂ ', σ >
- (87) RR A, { }, DET2[PRON.POSS, PERS:1 \leq 2, NUM:PL] (\leq X, σ >) = def \leq Xr/_V', σ >
- (88) RR B, {}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X *_{\partial} \rightarrow \emptyset /_{V'}, \sigma \rangle$
- (89) RR B, {}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X *_{\partial} \rightarrow \emptyset / V', \sigma \rangle$

Stuttgart

Substantive

- (1) RR A, {NUM:PL}, N[IC:3 \veebar 4] (\lt X, σ >) = def \lt X', σ >
- (2) RR B, {NUM:PL}, N[IC:2 ≤ 5] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC:4] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (4) RR C, {NUM:PL}, N[IC:2 \veebar 5] ($\langle X, \sigma \rangle$) = def $\langle X * e \rightarrow \emptyset / _ \mathfrak{d}', \sigma \rangle$

Adjektive

- (5) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (6) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (7) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (8) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (9) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, ADJ[STRONG] (<X, $\sigma>$) = def <Xe', $\sigma>$
- (10) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (11) RR A. {NUM:PL}. ADJ ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (12) RR A, {CASE:NOM \vee ACC, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (13) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (14) RR A, {CASE:DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

- (15) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (16) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (17) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}r', \sigma \rangle$
- (18) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (19) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (20) RR A. {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (21) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (23) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}r', \sigma \rangle$
- (24) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle du', \sigma \rangle$
- (25) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (26) RR A. {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}n', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}m', \sigma \rangle$
- (30) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (31) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (32) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i \partial r \partial', \sigma \rangle$
- (34) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle den', \sigma \rangle$
- (36) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:-] (\leq X, σ >) = def \leq dem', σ >
- (37) RR A. {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (38) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (39) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle der \sigma', \sigma \rangle$
- (40) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}r', \sigma \rangle$
- (41) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle ons', \sigma \rangle$
- (42) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (43) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}r', \sigma \rangle$
- (44) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle \partial ich', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (46) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{l}', \sigma \rangle$
- (47) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (48) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}ne', \sigma \rangle$

- (49) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (50) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dene', \sigma \rangle$

- (51) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{\epsilon}r', \sigma \rangle$
- (52) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{\epsilon}n', \sigma \rangle$
- (53) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \bar{m}', \sigma \rangle$
- (54) RR A. {NUM:SG. ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$
- (55) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}s', \sigma \rangle$

- (56) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (57) RR A, {CASE: ACC. NUM: SG. GEND: M}, DETI[ART. DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (58) RR A, {CASE:DAT, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (59) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (60) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (61) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (62) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (63) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (64) RR A, {CASE:NOM, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\epsilon}r', \sigma \rangle$
- (65) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle den', \sigma \rangle$
- (66) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dem', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (68) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] (\leq X, σ >) = def \leq d \bar{t}' , σ >
- (69) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\varepsilon r\partial', \sigma \rangle$
- (70) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dene', \sigma \rangle$

- (72) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \ni n', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (74) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (76) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (78) RR A, {NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (79) RR A, {CASE:DAT; NUM:SG; GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (80) RR a, {case:dat; num:sg; gend:f}, det2[pron.poss, pers:3, num:sg, gend:m $\[\le X, \sigma > \] = def \]$ $\[< X \]$
- (81) RR A, {CASE:DAT; NUM:SG; GEND:F}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (82) RR A, {CASE:DAT; NUM:SG; GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$

Petrifeld

Substantive

(1) RR A, {NUM:PL}, N[IC:3
$$\veebar$$
 6] (\lt X, σ >) = def \lt X', σ >

(2) RR A, {NUM:PL}, N[IC:2 \(\text{S}\)] (
$$\langle X, \sigma \rangle$$
) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$

(3) RR B, {NUM:PL}, N[IC:4
$$\leq 7$$
] ($<$ X, σ >) = def $<$ X ∂' , σ >

(4) RR B, {NUM:PL}, N[IC:5
$$\leq$$
 6] ($<$ X, $\sigma>$) = def $<$ X r' , $\sigma>$

(5) RR B, {NUM:PL}, N[IC:8] (
$$\langle X, \sigma \rangle$$
) = def $\langle Xin\partial', \sigma \rangle$

(9) RR B, {NUM:PL}, N[IC:9] (
$$\langle X, \sigma \rangle$$
) = def $\langle X \partial n \partial', \sigma \rangle$

(10) RR B, {CASE:DAT, NUM:SG}, N[IC:4] (
$$\langle X, \sigma \rangle$$
) = def $\langle X \vartheta', \sigma \rangle$

(11) RR B, {POSS:+, ANIM:+}, N[PROPER NOUN] (
$$\langle X, \sigma \rangle$$
) = def $\langle Xs', \sigma \rangle$

(12) RR B, {POSS:+, ANIM:+}, N[PROPER NOUN] (
$$\langle X, \sigma \rangle$$
) = def $\langle Xe', \sigma \rangle$

(13) RR <sub>C, {NUM:PL}, N[IC:2
$$\le 5$$
] ($<$ X, σ >) = _{def} $<$ X * $e \rightarrow \emptyset$ / V', σ ></sub>

Adjektive

(14) RR A, {NUM:PL}, ADJ (
$$\langle X, \sigma \rangle$$
) = def $\langle Xe', \sigma \rangle$

(15) RR A, {CASE:NOM
$$\vee$$
 ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

(16) RR A, {CASE:NOM
$$\vee$$
 ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$

(17) RR A, {CASE:NOM
$$\vee$$
 ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$

(18) RR A, {CASE:DAT, NUM:SG, GEND:M
$$\leq$$
 N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$

(19) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] (
$$\langle X, \sigma \rangle$$
) = def $\langle Xr', \sigma \rangle$

(20) RR A, {CASE:ACC
$$\vee$$
 DAT, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$

(21) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] (
$$\langle X, \sigma \rangle$$
) = def $\langle \bar{i}', \sigma \rangle$

(22) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] (
$$\langle X, \sigma \rangle$$
) = def $\langle m\bar{\iota}', \sigma \rangle$

(23) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] (
$$\langle X, \sigma \rangle$$
) = def $\langle m\bar{\imath} \sigma r', \sigma \rangle$

(24) RR A. {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] (
$$\langle X, \sigma \rangle$$
) = def $\langle i', \sigma \rangle$

- (25) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle me', \sigma \rangle$
- (26) RR A. {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (27) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath} ar', \sigma \rangle$
- (30) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (31) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (32) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i\bar{e}\partial r', \sigma \rangle$
- (34) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in', \sigma \rangle$
- (35) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (36) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\imath}\partial', \sigma \rangle$
- (37) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} ara', \sigma \rangle$
- (38) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$
- (39) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \sigma', \sigma \rangle$
- (40) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (41) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (42) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (43) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] (<X, σ >) = def <se', σ >
- (44) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r \sigma', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath} ar', \sigma \rangle$
- (46) RR A, {CASE:ACC \veebar DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}iz', \sigma \rangle$
- (47) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (48) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle es', \sigma \rangle$
- (49) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath} \partial r', \sigma \rangle$
- (50) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ui', \sigma \rangle$
- (51) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r', \sigma \rangle$

- (52) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ene', \sigma \rangle$
- (53) RR A, {CASE:NOM, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{\imath}\partial', \sigma \rangle$
- (54) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ine', \sigma \rangle$
- (55) RR A, {CASE:NOM, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (56) RR A, {CASE:ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (57) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ene', \sigma \rangle$

- (58) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wi\bar{e}\partial r', \sigma \rangle$
- (59) RR A. {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wiear', \sigma \rangle$
- (60) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wi\bar{e} \partial m', \sigma \rangle$
- (61) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wieam', \sigma \rangle$
- (62) RR A. {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}', \sigma \rangle$
- (63) RR A, {CASE:NOM \veebar ACC, NUM:SG, ANIM:-}, PRON.INTER (<X, σ >) = def <wa', σ >

- (64) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (65) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (66) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (67) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (68) RR A, {CASE:NOM \vee ACC \vee DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (69) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (70) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def $\leq \partial m'$, σ >
- (71) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (72) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (73) RR A, {POSS:+, ANIM:+}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (74) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di\bar{e}\partial r', \sigma \rangle$

- (75) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}s', \sigma \rangle$
- (76) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dieam', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle di\bar{e} \partial r \partial', \sigma \rangle$
- (79) RR A, {NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle die\partial n\partial', \sigma \rangle$

- (80) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, M \vee N] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (81) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n', \sigma \rangle$
- (82) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (83) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (84) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] (\leq X, σ >) = def \leq Xim σ ', σ >
- (85) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ ama', $\sigma \rangle$
- (86) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xinr\partial', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (88) RR A, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:3, num:pl] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (89) RR A, {NUM:PL}, DET2[PRON.POSS, PERS:1 \leq 2] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (90) RR A, {NUM:PL}, DET2[PRON.POSS, PERS:3, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (91) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle Xra', \sigma \rangle$
- (92) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:1 \leq 2, NUM:PL] (\leq X, σ >) = def \leq X σ ', σ >
- (93) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (94) RR A, {}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X * n \rightarrow \phi', \sigma \rangle$
- (95) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ * $r \rightarrow \phi'$, $\sigma >$
- (96) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$ * $r \rightarrow \phi', \sigma \rangle$

Elisabethtal

Substantive

- (1) RR A, {NUM:PL}, N[IC:3 \veebar 4 \veebar 5 \veebar 6 \veebar 9 \veebar 10] (\lt X, σ \gt) = def \lt \ddot{X} ', σ \gt
- (2) RR A, {NUM:PL}, N[IC:2] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$
- (3) RR B, {NUM:PL}, N[IC: $7 \le 8 \le 9 \le 10 \le 11$] (<X, σ >) = def <Xv', σ >
- (4) RR B, {NUM:PL}, N[IC:5 \veebar 6] (\lt X, σ >) = def \lt Xr', σ >
- (5) RR B, {CASE:ACC \veebar DAT, NUM:SG}, N[IC:7] (<X, $\sigma>$) = def <Xp', $\sigma>$
- (6) RR C, {NUM:PL}, N[IC:11] (<X, $\sigma>$) = def <X * $e \rightarrow \emptyset$ /_V', $\sigma>$

Adjektive

- (7) RR A, {CASE:ACC, NUM:SG, GEND:M}, ADJ ($\langle X, \sigma \rangle$) = def $\langle X v', \sigma \rangle$
- (8) RR A, {CASE:DAT, NUM:SG}, ADJ ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (9) RR A, {NUM:PL}, ADJ ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (10) RR A, {CASE:NOM, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (11) RR A. {CASE:NOM \veebar ACC. NUM:SG. GEND:N}. ADJISTRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (12) RR A, {CASE:NOM, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (13) RR A, {CASE:ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$

- (14) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{i}', \sigma \rangle$
- (15) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\iota}', \sigma \rangle$
- (16) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (17) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (18) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\iota}', \sigma \rangle$
- (19) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle diar', \sigma \rangle$
- (20) RR A. {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle devr', \sigma \rangle$
- (21) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle de\tilde{v}', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}n', \sigma \rangle$
- (23) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] (\leq X, σ >) = def \leq devm', σ >
- (24) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}m', \sigma \rangle$
- (25) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}s', \sigma \rangle$
- (26) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dui', \sigma \rangle$
- (27) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle Sui', \sigma \rangle$
- (28) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i \partial r', \sigma \rangle$
- (29) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle de\tilde{v}rv', \sigma \rangle$
- (30) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle miar', \sigma \rangle$
- (31) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (32) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ons', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle i \partial r', \sigma \rangle$
- (34) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def <uich', $\sigma>$
- (35) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}ne', \sigma \rangle$
- (36) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (37) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle sia', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle devnv', \sigma \rangle$
- (39) RR A, {NUM:SG, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle evr', \sigma \rangle$
- (40) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n', \sigma \rangle$
- (41) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (42) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$

- (43) RR A, {CASE:NOM, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle weer', \sigma \rangle$
- (44) RR A, {CASE:ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle ween', \sigma \rangle$
- (45) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle weem', \sigma \rangle$
- (46) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}s', \sigma \rangle$

(47) RR A. {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w\bar{a}', \sigma \rangle$

Bestimmter Artikel / Demonstrativpronomen

- (48) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (49) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\tilde{v}', \sigma \rangle$
- (50) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def $\leq am'$, σ >
- (51) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (52) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ts', \sigma \rangle$
- (53) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (54) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (55) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DETI[ART.DEF] (<X, $\sigma>$) = def <d', $\sigma>$
- (56) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\tilde{\tilde{e}}', \sigma \rangle$
- (57) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle devr', \sigma \rangle$
- (58) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle de\tilde{v}', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:SG, GEND: $M \vee N$ }, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle devm', \sigma \rangle$
- (60) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{e}s', \sigma \rangle$
- (61) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dui', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle de\tilde{v}rv', \sigma \rangle$
- (63) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dia', \sigma \rangle$
- (64) RR A, {CASE:DAT, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle devn\sigma', \sigma \rangle$

- (65) RR A, {CASE:NOM, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \tilde{v}', \sigma \rangle$
- (66) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N \vee F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \tilde{v}', \sigma \rangle$
- (67) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xen', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xemv', \sigma \rangle$
- (69) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r v', \sigma \rangle$

- (70) RR A, {CASE:ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xn', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] (\leq X, σ >) = def \leq Xm', σ >
- (72) RR A, {NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \rangle$, $\sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xrv', \sigma \rangle$

Kaiserstuhl

Substantive

- (1) RR A, {NUM:PL}, N[IC:2 \veebar 3] (\lt X, σ >) = def \lt X', σ >
- (2) RR _{B, {NUM:PL}, N[IC:3]} ($\langle X, \sigma \rangle$) = _{def} $\langle X \partial r', \sigma \rangle$
- (3) RR _{B. {NUM:PL}. N[IC:4]} (<X, σ >) = _{def} <Xp', σ >
- (4) RR _{B, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = _{def} $\langle Xene', \sigma \rangle$
- (5) RR B, {POSS:+, NUM:SG}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (6) RR B, {POSS:+, NUM:SG}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (7) RR _{C, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = def $\langle X * i \rightarrow \emptyset / V', \sigma \rangle$

Adjektive

- (8) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (10) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (11) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (12) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (14) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X v', \sigma \rangle$
- (16) RR _{A, {CASE:DAT, NUM:SG}, ADJ[WEAK]} ($\langle X, \sigma \rangle$) = _{def} $\langle X v', \sigma \rangle$
- (17) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \varepsilon', \sigma \rangle$

- (18) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (19) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (20) RR A. {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{\imath}r', \sigma \rangle$
- (21) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$

- (22) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (23) RR A. {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (24) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{u}', \sigma \rangle$
- (25) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$
- (26) RR A. {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\bar{\imath}r', \sigma \rangle$
- (27) RR A, {CASE:NOM \vee DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (28) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle di', \sigma \rangle$
- (29) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}r', \sigma \rangle$
- (30) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}nv', \sigma \rangle$
- (31) RR A. {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}m', \sigma \rangle$
- (32) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}s', \sigma \rangle$
- (33) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}n \partial s', \sigma \rangle$
- (34) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def < $\bar{a}s'$, $\sigma>$
- (35) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (36) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle a', \sigma \rangle$
- (37) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (38) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (39) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{t}', \sigma \rangle$
- (40) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}rr', \sigma \rangle$
- (41) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] (<X, σ >) = def <si', σ >
- (42) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle erv', \sigma \rangle$
- (43) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{t}r', \sigma \rangle$
- (44) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle uns', \sigma \rangle$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (46) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (47) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{l}r', \sigma \rangle$
- (48) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \ddot{a}ich', \sigma \rangle$

- (49) RR A. {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (50) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (51) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{l}', \sigma \rangle$
- (52) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\imath}nv', \sigma \rangle$
- (53) RR A. {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (54) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle env', \sigma \rangle$

- (55) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle war', \sigma \rangle$
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$
- (57) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wam', \sigma \rangle$

- (58) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (59) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (60) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (61) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART,DEF] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (63) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (64) RR A, {CASE:DAT, NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle dr', \sigma \rangle$
- (65) RR A, {POSS:+, NUM:SG, ANIM:+}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (66) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] (<X, $\sigma>$) = def <d \bar{a}' , $\sigma>$
- (67) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle des', \sigma \rangle$
- (68) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] (\leq X, σ >) = def \leq div', σ >
- (69) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle div', \sigma \rangle$
- (70) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle dam', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{a}rv', \sigma \rangle$

(72) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle d\bar{a}nv', \sigma \rangle$

- (73) RR A, {CASE:NOM \leq ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xa', \sigma \rangle$
- (74) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] (\leq X, σ >) = def \leq Ximv', σ >
- (75) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xinare', \sigma \rangle$
- (76) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = $_{\text{def}} \langle X p', \sigma \rangle$
- (77) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:M \veebar N}, DET2[PRON.POSS, PERS:3, NUM:PL] (<X, $\sigma>$) = def <Xe', $\sigma>$
- (78) RR a, {case:nom \vee acc, num:sg, gend:f}, det2[pron.poss, pers:3, num:sg, gend:f] ($\langle X, \sigma \rangle$) = def $\langle X p', \sigma \rangle$
- (79) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X e', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r v', \sigma \rangle$
- (81) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle X \partial rv', \sigma \rangle$
- (82) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:1 \vee 2, NUM:SG] ($\langle X, \sigma \rangle$) = def $\langle Xrv', \sigma \rangle$
- (83) RR a, {case:dat, num:sg, gend:f}, det2[pron.poss, pers:3, num:sg, gend:m $\[\le X, \sigma > \] = def \]$
- (84) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:F] ($\langle X, \sigma \rangle$) = def $\langle X v', \sigma \rangle$
- (85) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS, NUM:PL] ($\langle X, \sigma \rangle$) = def $\langle Xp', \sigma \rangle$
- (86) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (87) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS, PERS:1 \leq 2, NUM:SG] (\leq X, σ >) = def \leq Xm', σ >
- (88) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[PRON.POSS, PERS:3, NUM:SG, GEND:M \vee N] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (89) RR A, {Case:dat, num:sg, gend:m $\mbox{$\vee$}$ N}, det2[pron.poss, pers:3, num:sg, gend:f] ($\mbox{$\langle X$,$\sigma \rangle$}$) = def $\mbox{$\langle X$ anam'$,$\sigma \rangle$}$
- (90) RR a, {case:dat, num:sg, gend:m $\underline{\lor}$ n}, det2[pron.poss, pers:3, num:pl] ($\langle X, \sigma \rangle$) = def $\langle X \partial n \partial m', \sigma \rangle$
- (91) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (92) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xp', \sigma \rangle$

Münstertal

Substantive

- (1) RR A, {NUM:PL}, N[IC:3] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}', \sigma \rangle$
- (2) RR A, {NUM:PL}, N[IC:2 \leq 6] (\leq X, σ >) = def \leq X[$a \rightarrow e$]', σ >
- (3) RR A, {NUM:PL}, N[IC: 7] (<X, $\sigma>$) = def < \hat{X}' , $\sigma>$
- (4) RR _{B, {NUM:PL}, N[IC:4]} (<X, σ >) = _{def} <X ∂ ', σ >
- (5) RR B, {NUM:PL}, N[IC:5 ≤ 6] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (6) RR B, {POSS:+, NUM:SG}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle Xs', \sigma \rangle$
- (7) RR B, {POSS:+, NUM:SG}, N[PROPER NOUN] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (8) RR C, {NUM:PL}, N[IC: 7] (<X, σ >) = def <X * $t \rightarrow \emptyset$ /_#', σ >

Adjektive

- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (10) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (11) RR A. {CASE:NOM \vee ACC, NUM:PL}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (12) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (14) RR A. {CASE:DAT. NUM:PL}. ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (15) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (16) RR A, {NUM:PL}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (17) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (18) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (19) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{e}r', \sigma \rangle$
- (20) RR A. {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (21) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$

- (22) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \sigma r', \sigma \rangle$
- (23) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle t\bar{u}', \sigma \rangle$
- (24) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle tich', \sigma \rangle$
- (25) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle t\bar{e}r', \sigma \rangle$
- (26) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle t \partial', \sigma \rangle$
- (27) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ti', \sigma \rangle$
- (28) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle t \partial r', \sigma \rangle$
- (29) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{a}r', \sigma \rangle$
- (30) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\alpha}ne', \sigma \rangle$
- (31) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle em', \sigma \rangle$
- (32) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle as', \sigma \rangle$
- (33) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle es', \sigma \rangle$
- (34) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{e}', \sigma \rangle$
- (35) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (36) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (37) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (39) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <s', $\sigma>$
- (40) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle S \partial', \sigma \rangle$
- (41) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle r \sigma', \sigma \rangle$
- (42) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle m\bar{e}r', \sigma \rangle$
- (43) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{u}s', \sigma \rangle$
- (44) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (45) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial S', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (47) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (48) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$

- (49) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <i', $\sigma>$
- (50) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle s\bar{e}', \sigma \rangle$
- (51) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{\alpha}ne', \sigma \rangle$
- (52) RR A, {CASE:NOM \lor ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] (<X, σ >) = def <s σ ', σ >
- (53) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$

- (54) RR A. {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w \varepsilon r', \sigma \rangle$
- (55) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle w@m', \sigma \rangle$
- (56) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

- (57) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t \rangle$ (57)
- (58) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle em', \sigma \rangle$
- (60) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[ART.DEF] (\leq X, σ >) = def \leq $\partial m'$, σ >
- (61) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle ti', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t \sigma', \sigma \rangle$
- (63) RR A, {NUM:PL}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t \sigma', \sigma \rangle$
- (64) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] (\leq X, σ >) = def \leq t $\bar{a}r'$, σ >
- (65) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle t\bar{a}s', \sigma \rangle$
- (66) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq tam', σ >
- (67) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle tie', \sigma \rangle$
- (68) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle t\bar{a}r', \sigma \rangle$
- (69) RR A, {CASE:NOM \leq ACC, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle ti', \sigma \rangle$
- (70) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle t\bar{a}n\sigma', \sigma \rangle$

- (71) RR A, {CASE:NOM \vee ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (72) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] (\leq X, σ >) = def \leq X α m α ', σ >
- (73) RR A, {CASE:DAT, NUM:SG, GEND:M \veebar N}, DET2[ART.INDEF] (<X, σ >) = def <X ∂ m ∂ ', σ >
- (74) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \alpha n \partial r \partial', \sigma \rangle$
- (75) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial n \partial r \partial', \sigma \rangle$
- (76) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (77) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (79) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:PL}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (81) RR B, {CASE:DAT, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle VX \rightarrow \phi/V_{_}', \sigma \rangle$

Colmar

Substantive

- (1) RR A, {NUM:PL}, N[IC:2] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}', \sigma \rangle$
- (2) RR A, {NUM:PL}, N[IC:1 ≤ 5] ($\langle X, \sigma \rangle$) = def $\langle \ddot{X}[a \rightarrow e]', \sigma \rangle$
- (3) RR _{B, {NUM:PL}, N[IC:4]} (<X, σ >) = _{def} <X ∂ ', σ >
- (4) RR _{B, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = _{def} $\langle X \partial r', \sigma \rangle$

Adjektive

- (5) RR A. {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (6) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (7) RR A, {CASE:DAT, NUM:PL}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (8) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (9) RR A, {CASE:NOM \lor ACC, NUM:SG, GEND:N}, ADJ[STRONG] (<X, $\sigma>$) = def <Xs', $\sigma>$
- (10) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (11) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr', \sigma \rangle$
- (12) RR A, {CASE:NOM, NUM:SG}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (13) RR A, {CASE:ACC, NUM:SG, GEND:N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X', \sigma \rangle$
- (14) RR A, {NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (15) RR A, {CASE:ACC \vee DAT, NUM:SG, GEND:F}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$

- (16) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (17) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (18) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mer', \sigma \rangle$
- (19) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (20) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (21) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$

- (22) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle t\bar{u}', \sigma \rangle$
- (23) RR A, {CASE: ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle tich', \sigma \rangle$
- (24) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ter', \sigma \rangle$
- (25) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle te', \sigma \rangle$
- (26) RR A. {CASE: ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ti', \sigma \rangle$
- (27) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle tr', \sigma \rangle$
- (28) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ar', \sigma \rangle$
- (29) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ene', \sigma \rangle$
- (30) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle em', \sigma \rangle$
- (31) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle as', \sigma \rangle$
- (32) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$
- (33) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ere', \sigma \rangle$
- (34) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (35) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ne', \sigma \rangle$
- (36) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \leq N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (37) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <s', $\sigma>$
- (38) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (39) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle re', \sigma \rangle$
- (40) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mer', \sigma \rangle$
- (41) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ons', \sigma \rangle$
- (42) RR A. {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mr', \sigma \rangle$
- (43) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle is', \sigma \rangle$
- (44) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}r', \sigma \rangle$
- (45) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle eich', \sigma \rangle$
- (46) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle er', \sigma \rangle$
- (47) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (48) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle se', \sigma \rangle$

- (49) RR A. {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \bar{e}ne', \sigma \rangle$
- (50) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (51) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle ene', \sigma \rangle$

- (52) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle war', \sigma \rangle$
- (53) RR A, {CASE:DAT, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wam', \sigma \rangle$
- (54) RR A, {NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

- (55) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle tr', \sigma \rangle$
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (57) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (58) RR A, {CASE:DAT, NUM:SG, GEND: $M \ge N$ }, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle em', \sigma \rangle$
- (59) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (60) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle tr', \sigma \rangle$
- (61) RR A, {CASE:NOM \leq ACC, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle t', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle te', \sigma \rangle$
- (63) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle tar', \sigma \rangle$
- (64) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:M}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle ta', \sigma \rangle$
- (65) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle tes', \sigma \rangle$
- (66) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] (\leq X, σ >) = def \leq ti σ ', σ >
- (67) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] (<X, $\sigma>$) = def <te', $\sigma>$
- (68) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DET1[PRON.DEM] (<X, $\sigma>$) = def <ti ∂' , $\sigma>$
- (69) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle te', \sigma \rangle$
- (70) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DETI[PRON.DEM] (\leq X, σ >) = def \leq tam', σ >
- (71) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle tare', \sigma \rangle$

(72) RR A, {CASE:DAT, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle tane', \sigma \rangle$

- (73) RR A, {CASE:NOM \vee ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$
- (74) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xeme', \sigma \rangle$
- (75) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xme', \sigma \rangle$
- (76) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xenre', \sigma \rangle$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2 ($\langle X, \sigma \rangle$) = def $\langle Xre', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] (\leq X, σ >) = def \leq Xm', σ >
- (79) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] (<X, $\sigma>$) = def <Xi', $\sigma>$
- (80) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (81) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xe', \sigma \rangle$

Elsass (Ebene)

Substantive

- (1) RR A, {NUM:PL}, N[IC:1 $\veebar 3 \veebar 4 \veebar 5 \veebar 7$] (<X, σ >) = def <X', σ >
- (2) RR B, {NUM:PL}, N[IC:2 \leq 3] (\leq X, σ >) = def \leq X ϑ ', σ >
- (3) RR B, {NUM:PL}, N[IC:4] ($\langle X, \sigma \rangle$) = def $\langle X \partial r', \sigma \rangle$
- (4) RR _{B, {NUM:PL}, N[IC:5]} ($\langle X, \sigma \rangle$) = _{def} $\langle X \partial r \partial', \sigma \rangle$

Adjektive

- (6) RR A, {CASE:NOM \vee ACC, NUM:PL}, ADJ ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (7) RR A, {CASE:DAT, NUM:PL}, ADJ ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (8) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (9) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (10) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle X \partial m', \sigma \rangle$
- (11) RR A, {CASE:DAT, NUM:SG, GEND:F}, ADJ[STRONG] ($\langle X, \sigma \rangle$) = def $\langle Xr\partial', \sigma \rangle$
- (12) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (13) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, ADJ[WEAK] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$

- (14) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ich', \sigma \rangle$
- (15) RR A, {CASE:ACC, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mich', \sigma \rangle$
- (16) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (17) RR A, {CASE:NOM, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle i', \sigma \rangle$
- (18) RR A. {CASE:ACC. NUM:SG. PERS:1}. PRON.PERSISTRESS:-1 ($\langle X, \sigma \rangle$) = def $\langle mi', \sigma \rangle$
- (19) RR A, {CASE:DAT, NUM:SG, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle mar', \sigma \rangle$
- (20) RR A, {CASE:NOM, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle d\ddot{u}', \sigma \rangle$
- (21) RR A, {CASE:ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dich', \sigma \rangle$

- (22) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle dir', \sigma \rangle$
- (23) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (24) RR A, {CASE:DAT, NUM:SG, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (25) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \alpha r', \sigma \rangle$
- (26) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in \sigma', \sigma \rangle$
- (27) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (28) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \alpha s', \sigma \rangle$
- (29) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:N, ANIM:+}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle inas', \sigma \rangle$
- (30) RR A, {CASE:NOM \veebar ACC, NUM:SG, PERS:3, GEND:N, ANIM:-}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle \&s', \sigma \rangle$
- (31) RR A, {CASE:NOM \lor ACC, NUM:SG, PERS:3, GEND:F}, PRON.PERS (<X, σ >) = def <si', σ >
- (32) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir\partial', \sigma \rangle$
- (33) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (34) RR A, {CASE:ACC, NUM:SG, PERS:3, GEND:M}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$
- (35) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:M \vee N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial m', \sigma \rangle$
- (36) RR A, {CASE:NOM \vee ACC, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (37) RR A, {CASE:NOM, NUM:SG, PERS:3, GEND:N}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial s', \sigma \rangle$
- (38) RR A, {CASE:DAT, NUM:SG, PERS:3, GEND:F}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r \partial', \sigma \rangle$
- (39) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle mir', \sigma \rangle$
- (40) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle uns', \sigma \rangle$
- (41) RR A, {CASE:NOM, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle m \partial r', \sigma \rangle$
- (42) RR A, {CASE:ACC \veebar DAT, NUM:PL, PERS:1}, PRON.PERS[STRESS:-] (<X, $\sigma>$) = def <i', $\sigma>$
- (43) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle ir', \sigma \rangle$
- (44) RR A, {CASE:ACC \leq DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:+] (<X, $\sigma>$) = def <eich', $\sigma>$
- (45) RR A, {CASE:NOM, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle \partial r', \sigma \rangle$
- (46) RR A, {CASE:ACC \vee DAT, NUM:PL, PERS:2}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle uch', \sigma \rangle$
- (47) RR A, {CASE:NOM \vee ACC, NUM:PL, PERS:3}, PRON.PERS ($\langle X, \sigma \rangle$) = def $\langle si', \sigma \rangle$
- (48) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:+] ($\langle X, \sigma \rangle$) = def $\langle in\partial', \sigma \rangle$

(49) RR A, {CASE:DAT, NUM:PL, PERS:3}, PRON.PERS[STRESS:-] ($\langle X, \sigma \rangle$) = def $\langle n \sigma', \sigma \rangle$

Interrogativpronomen

- (50) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wer', \sigma \rangle$
- (51) RR A. {CASE:ACC. NUM:SG. ANIM:+}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wenn \sigma', \sigma \rangle$
- (52) RR A, {CASE:DAT, NUM:SG}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle wenn \sigma', \sigma \rangle$
- (53) RR A, {CASE:NOM \vee ACC, NUM:SG, ANIM:-}, PRON.INTER ($\langle X, \sigma \rangle$) = def $\langle was', \sigma \rangle$

- (54) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d \sigma r', \sigma \rangle$
- (55) RR A, {CASE:ACC, NUM:SG, GEND:M}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\sigma', \sigma \rangle$
- (56) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle s', \sigma \rangle$
- (57) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d', \sigma \rangle$
- (58) RR A, {CASE:NOM \veebar ACC, NUM:PL}, DET1[ART.DEF] (<X, $\sigma>$) = def <d', $\sigma>$
- (59) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DET1[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle im', \sigma \rangle$
- (60) RR A, {CASE:DAT, NUM:SG, GEND:M \vee N}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle m', \sigma \rangle$
- (61) RR A, {CASE:DAT, NUM:SG, GEND:F}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle d\partial r', \sigma \rangle$
- (62) RR A, {CASE:DAT, NUM:PL}, DETI[ART.DEF] ($\langle X, \sigma \rangle$) = def $\langle de', \sigma \rangle$
- (63) RR A, {CASE:NOM \veebar ACC, NUM:SG, GEND:M}, DET1[PRON.DEM] (\rightthreetimes X, σ >) = def \rightthreetimes der', σ >
- (64) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:N}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle das', \sigma \rangle$
- (65) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:F}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (66) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle di \sigma', \sigma \rangle$
- (67) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET1[PRON.DEM] (\leq X, σ >) = def \leq dem', σ >
- (68) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET1[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle der', \sigma \rangle$
- (69) RR A, {CASE:DAT, NUM:PL}, DETI[PRON.DEM] ($\langle X, \sigma \rangle$) = def $\langle den \sigma', \sigma \rangle$

- (70) RR A, {CASE:NOM \vee ACC, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \sigma', \sigma \rangle$
- (71) RR A, {CASE:DAT, NUM:SG, GEND: $M \ge N$ }, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xim \sigma', \sigma \rangle$
- (72) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial m \partial', \sigma \rangle$
- (73) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle Xinara', \sigma \rangle$
- (74) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (75) RR A, {CASE:NOM \vee ACC, NUM:SG, GEND:M}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (76) RR A, {CASE:NOM \leq ACC, NUM:SG, GEND:F}, DET2[PRON.POSS] (<X, $\sigma>$) = def <Xi', $\sigma>$
- (77) RR A, {CASE:DAT, NUM:SG, GEND:M \leq N}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xm', \sigma \rangle$
- (78) RR A, {CASE:DAT, NUM:SG, GEND:F}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial r \partial', \sigma \rangle$
- (79) RR A, {CASE:NOM \vee ACC, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle Xi', \sigma \rangle$
- (80) RR A, {CASE:DAT, NUM:PL}, DET2[PRON.POSS] ($\langle X, \sigma \rangle$) = def $\langle X \partial', \sigma \rangle$
- (81) RR B, {CASE:DAT, NUM:SG}, DET2[ART.INDEF] ($\langle X, \sigma \rangle$) = def $\langle VX \rightarrow \phi/V_{_}', \sigma \rangle$