Spis treści

1	$\mathbf{W}\mathbf{p}$	prowadzenie	1
2	Pos	stać problemu	1
	2.1	Maszyny	1
	2.2	Zadania	1
	2.3	Parametry zadań	2
	2.4	Uszeregowanie	2
		2.4.1 Parametry uszeregowania	2
		2.4.2 Kryteria optymalizacji	2
	2.5	Notacia Tróipolowa	2

1 Wprowadzenie

Teoria szeregowania zadań zajmuje się problemami polegającymi na przydzieleniu pewnych zadań do dostępnych maszyn w taki sposób, aby pewne kryterium było optymalizowane. Będziemy się zajmować deterministycznymi problemami, czyli takimi, w których wszystkie dane są znane z góry.

2 Postać problemu

Standardowo, problem jest skonstruowany z następujących składowych:

- zadania $\mathcal{J} = \{J_1, \dots, J_n\}$
- maszyny $\mathcal{P} = \{P_1, \dots, P_m\}$
- zasoby $\mathcal{R} = \{R_1, \dots, R_s\}$ dostępnych w m_1, \dots, m_s jednostkach

2.1 Maszyny

W problemie w zależności od wykonywanego zadania i maszyn mogą występować różne ograniczenia i różnice między maszynami. Jeśli mamy do czynienia z kilkoma maszynami równoległymi to te maszyny mogą być:

- P identycznościowe czyli z jednakową szybkością
- $\bullet \ Q$ jednorodne czyli z różną szybkością między maszynami
- R dowolne czyli z różniącą się szybkością między zadaniami i maszynami

Jeśli mamy do czynienia z maszynami dedykowanymi, gdzie każde zadanie składa się z operacji wykonywanych na różnych maszynach to maszyny moga być:

- $\bullet\,$ F system przepływowy czyli każde zadanie przechodzi przez maszyny w tej samej kolejności
- O system otwarty czyli kolejność wykonywania operacji jest dowolna
- $\bullet\,$ J system gniazdowy czyli każde zadanie ma ustaloną własną kolejność przechodzenia przez maszyny

2.2 Zadania

Zadanie J opisują następujące atrybuty:

- p_j czas wykonania zadania J_j
- r_j czas przygotowania zadania J_j
- ullet d_j pożądany czas zakończenia zadania J_j
- w_i waga zadania J_i

2.3 Parametry zadań

Zbiór zadań \mathcal{J} jako całość opisują ograniczenia kolejnościowe (acykliczny graf skierowany), oraz podzielność czyli czy zadania można przerywać i wznawiać.

2.4 Uszeregowanie

Uszeregowaniem nazywamy przypisanie każdemu zadaniu maszyny i zasobów w czasie. Koniecznym jest aby następujące warunki były spełnione:

- w każdej chwili maszyna wykonuje tylko jedno zadanie
- w każdej chwili każde zadanie jest wykonywane przez jedną maszynę
- Każde zadanie jest wykonywane w całości
- Spełnione są ograniczenia kolejnościowe
- Jeśli zadania są podzielne to są one przerywane skończoną ilość razy

2.4.1 Parametry uszeregowania

- moment rozpoczęcia S_i
- moment zakończenia C_i
- \bullet czas przepływu $F_j = C_j S_j$
- opóźnienie $L_i = C_i d_i$
- spóźnienie $T_i = \max(0, L_i)$
- przyspieszenie $E_j = \max(0, d_j C_j)$

2.4.2 Kryteria optymalizacji

Typowo w szeregowaniu optymalizujemy jakąś funkcję składającą się z parametrów uszeregowania. Przykładowe funkcje to: $C_{max} = \max(C_j)$, $C_{sum} = \sum C_j$ czy $T_{sum} = \sum T_j$.

2.5 Notacja Trójpolowa

$$\alpha |\beta| \gamma$$

gdzie α określa ograniczenia maszyn, β określa ograniczenia zadań, a γ określa kryterium optymalizacji.