RS/Conference2020

San Francisco | February 24 – 28 | Moscone Center

SESSION ID: CRYP-R02

Efficient FPGA Implementations of LowMC and Picnic

Roman Walch

PhD Student IAIK / Know-Center GmbH, Graz University of Technology @rw0x0

Post-Quantum Digital Signatures

- Shor's algorithm for factoring and discrete logarithm
- Quantum computer breaks:
 - Most asymmetric cryptography
 - RSA, DSA, ECDSA, ...
- NIST Standardization Project for PQ Signatures
 - Currently second round
 - Picnic [Cha+17; Cha+19] (using LowMC [Alb+15])
 - Performance optimized implementations required

Contribution

- First efficient VHDL implementation of LowMC
- First VHDL implementation of Picnic
 - Picnic1-L1-FS: 128 (64) bit security (PQ)
 - Picnic1-L5-FS: 256 (128) bit security (PQ)
- Coprocessors accessible via PCIe interface
 - Communication protocol confrom with NIST recommendation

RSA*Conference2020

The LowMC Block Cipher

LowMC - Round

 Substitution-Permutation Network (SPN) with reduced SboxLayer:

LowMC – Details

- Designed to minimize AND gates (3 ANDs / Sbox)
 - $-S(a,b,c) = (a \oplus (b \wedge c), a \oplus b \oplus (a \wedge c), a \oplus b \oplus c \oplus (a \wedge b))$
- Linear Layer:
 - State multiplied with matrix over GF(2)
 - $-n \times n$ matrix per round
- Roundkey schedule
 - Key multiplied with matrix over GF(2)
 - $-n \times k$ matrix per round + inital key whitening

n ... blocksize

k ... keysize

LowMC – Constants per Instance

Naive implementaion:

 $- L1: \sim 82 \text{ kiB}$

 $- L5: \sim 617 \text{ kiB}$

Optimizations by [Din+19]:

 $- L1: \sim 29 \text{ kiB}$

 $- L5: \sim 117 \text{ kiB}$

Impact on hardware utilization

	LowMC				without opt.		with opt.		Improv.
nr.	n	k	m	r	LUTs	% LUTs	LUTs	% LUTs	%
L1	128	128	10	20	42 395	20.80%	13 558	6.65%	68.02%
L5	256	256	10	38	209 348	102.72%	44 431	21.8 %	78.78%

RSA*Conference2020

The Picnic Signature Scheme

Σ-protocol and Fiat-Shamir

- Σ-protocol for proof of knowledge
- Fiat-Shamir (FS) transformation:
 - Proof becomes non-interactive
 - Secure in the random oracle model (ROM)

Verifier

4) verify

Picnic – Building Blocks

- FS transformed Σ-protocol
- Σ-protocol: ZKB++ or KKW
- Proof system:
 - Multi-party computation (MPC) of LowMC
 - Random oracle: SHAKE (Keccak)
- Keys:
 - Relation: C = LowMC(p, k)
 - Public Key: pk = (C, p)
 - Secret Key: sk = k

Picnic - MPC

MPC of 3 LowMC encryptions

$$-sk = sk_0 \oplus sk_1 \oplus sk_2$$

$$-C_i = \text{LowMC}_{\text{MPC}}(p, sk_i)$$

$$-C_0 \oplus C_1 \oplus C_2 = C$$

- Repeat T times
 - Reduce probability to cheat
 - **Picnic1-L1-FS:** T = 219
 - Picnic1-L5-FS: T = 438

Picnic - MPC contd.

- 3 players calculate:
 - $-C_i = \text{LowMC}_{\text{MPC}}(p, ski)$
- MPC rules to ensure $C_0 \oplus C_1 \oplus C_2 = C$:
 - XOR with constant only for one player
 - Players calculate AND gates $(c = a \land b)$ jointly:
 - $-c_i = (ai \wedge bi_{+1}) \oplus (a_{i+1} \wedge b_i) \oplus (ai \wedge bi) \oplus (r_i \wedge r_{i+1})$
- ⇒ Special Sbox implementation

Picnic – MPC Implementation

- 3 players calculated in parallel
- Further improvement
 - Precomputation of one share
 - Only 2 LowMC instances on FPGA
- Sign / Verify use same LUTs for matrices
 - But different Sbox implementation

Picnic – Other Submodulues

- Seeds and Tapes
 - Provide Pseudorandomness
- Commitments
 - Players commit to results
 - Part of signature
- Challenge (Random Oracle)
- ⇒ All using SHAKE (different configurations)

Picnic - Implementation

- Custom SHAKE implementation
- 3 players parallel per run t
- BRAM for intermediate values
 - $-\sim 400$ kiB for **Picnic1-L5-FS**
- Picnic1-L1-FS and Picnic1-L5-FS implementations for
 - Sign / Verify only
 - Sign and Verify combined

RSA*Conference2020

Practical Evaluation

FPGA and **PCIe**

- Xilinx Kintex-7 FPGA KC705 Evaluation Kit
- PCIe/DMA subsystem
 - Manages FPGA/PC interface
- AXI4-Stream
 - High data throughput master/slave bus interface
 - Handshake parallel to data transfer
 - Connects our design to PCIe/DMA
- Developed C-Library for PC/FPGA communication

Hardware Utilization

Lookup tables (LUTs) and BRAM utilization (% available)

Design Part	LUTs	%	BRAM	%
LowMC-MPC-L1	32 224	15.81 %	0	0 %
LowMC-MPC-L5	98 319	48.24 %	0	0 %
Picnic1-L1	90 037	44.18 %	52.5	11.80 %
Picnic1-L1-Sign	76 472	37.52 %	52.5	11.80 %
Picnic1-L1-Verify	68 614	33.67 %	33.5	7.53 %
Picnic1-L5	167 530	82.20 %	98.5	22.13 %
Picnic1-L5-Sign	149 456	73.33 %	98.5	22.13 %
Picnic1-L5-Verify	138 547	67.98 %	62.5	14.04 %
PCIe/DMA	22 216	10.90 %	42.5	9.55 %

Runtime Comparison

- Software platform:
 - Ubuntu 18.04.1, GCC 7.3.0, 16 GB RAM
 - CPU: Intel i7-4790, 3.6 GHz

Coprocesor	clock	clock	FPGA	C-Access	Software	
Coprocessor	frequency	cycles	runtime	runtime	SIMD	No SIMD
	MHz	k cycles	ms	ms	ms	ms
Picnic1-L1-Sign	125	~31.3	0.25	0.35	1.44	2.82
Picnic1-L1-Verify	125	~29.6	0.24	0.40	1.15	2.34
Picnic1-L5-Sign	125	~154.5	1.24	1.38	5.87	12.37
Picnic1-L5-Verify	125	~146.6	1.17	2.13	4.92	10.59

Design Choices – Reducing LUT Utilization

- Implementation is optimized for speed
- LowMC matrices encoded in LUTs
 - 1 multiplication per clock cycle
 - High LUT utilization
- Reduce LUT utilization
 - Store LowMC matrices in BRAM
 - ... reduces performance
 - LowMC same matrix each round?
 - GMiMC [Alb+19] instead of LowMC?

Conclusion

- First efficient VHDL implementation LowMC
- First VHDL implementation of Picnic
 - Picnic1-L1-FS and Picnic1-L5-FS
- Extended to FPGA-based coprocessor (PCIe Interface)
- Good runtime
 - Trade off with high hardware utilization

RSA*Conference2020

Efficient FPGA Implementations of LowMC and Picnic

Questions?

Bibliography I

- [Alb+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner. **Ciphers for MPC and FHE.** EUROCRYPT (1). Vol. 9056. LNCS. Springer, 2015, pp. 430–454.
- [Alb+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher, Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofnegger. Feistel Structures for MPC, and More. ESORICS (2). Vol. 11736. LNCS. Springer, 2019, pp. 151–171.
- [Cha+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha.

 Post-Quantum Zero-Knowledge and Signatures from Symmetric-Key Primitives. ACM CCS. ACM, 2017, pp. 1825-1842.

Bibliography II

[Cha+19] Melissa Chase et al. The Picnic Signature Scheme Design Document (version 2). 2019. URL:

https://github.com/microsoft/Picnic/blob/master/spec/design-v2.0.pdf.

[Din+19] Itai Dinur, Daniel Kales, Angela Promitzer, Sebastian Ramacher, and Christian Rechberger. Linear Equivalence of Block Ciphers with Partial Non-Linear Layers: Application to LowMC. EUROCRYPT (1). Vol. 11476. LNCS. Springer, 2019, pp. 343–372.

