

CLAIMS

1. Two-dimensional detector of incident ionizing
5 radiation composed of first particles, this detector
comprising a stack (2) of sheets (4) of a first
material capable of emitting second particles by
interaction with the incident ionizing radiation, this
detector being characterized in that it also comprises:
10 - layers (6) of a semiconducting material that
alternate with sheets of the first material and
may be ionized by the second particles, each of
the layers being associated with one of the
sheets, the stack having opposite first (8) and
15 second (10) faces each containing corresponding
edges (12, 14) of sheets and layers, the
detector being designed to be laid out such that
the ionizing radiation arrives on the first face
(8), the length of each sheet measured from the
20 first as far as the second face being equal to
at least one tenth of the free average path of
the first particles in the first material,
25 - groups of parallel and electrically conducting
tracks (22) extending from the first to the
second face parallel to the layers (6), each
group being associated with one of the layers
and in contact with it, the tracks being
designed to collect charge carriers that are
30 generated in the layers by interaction of the
layers with the second particles and possibly
with the first particles and that are
representative of the first particles in
intensity and in position, and

- means (26) of creating an electric field capable of causing collection of charge carriers through the tracks (22).

2. Detector according to claim 1, in which the
5 first material is electrically conducting, the tracks
(22) are electrically insulated from the sheets and the
means of creating the electric field comprise means
(26) of applying a voltage between the tracks (22) and
the sheets (4), this voltage able to cause collection
10 of charge carriers through the tracks.

3. Detector according to claim 1, in which each
group of tracks (22) is fully located within the layer
(6) with which it is associated.

4. Detector according to claim 3, in which the
15 first material is electrically conducting and the means
of creating the electric field comprise means (26) of
applying a voltage between the tracks (22) and the
sheets (4), this voltage able to cause collection of
charge carriers through the tracks.

20 5. Detector according to either of claims 1 or 3,
in which the sheets (4) are electrically insulating, an
electrically conducting layer (46) is inserted between
each layer (6) of semiconducting material and the sheet
(4) that is associated with it and the means of
25 creating the electric field comprise means (26) of
applying a voltage between the tracks (22) and the
electrically conducting layers (46), this voltage able
to cause collection of charge carriers through the
tracks.

30 6. Detector according to any one of claims 1 or
5, in which the semiconducting material may be chosen
among the group including thin layers of diamond, CdTe,
ZnTe, CdZnTe, AsGa and their alloys, InP, InSb, SiC,

crystalline silicon, amorphous silicon, organic crystals, amorphous selenium and chalcogenic glass (As_2S_3).

5 7. Detector according to any one of claims 1 to
6, also comprising an electronic device (30) for
reading electrical signals output by tracks (22) when
the tracks collect charge carriers.

10 8. Detector according to claim 7, in which one
end (32) of each track is curved to extend onto an edge
14 of the corresponding layer (6) of semiconducting
material, this edge being located on the second face
(10) of the stack (2), and the device (30) comprises
15 electrically conducting pads (34) that are in contact
with the corresponding curved ends (32) of the tracks
(22). |

9. Process for manufacturing the detector
according to any one of claims 1 to 8, in which a layer
(6) of semiconducting material is formed on each sheet
(4), this layer being provided with the group of tracks
20 (22) associated with it, and the sheets provided with
layers of semiconducting material and tracks are
assembled together to obtain a stack (2) in which these
layers of semiconducting material alternate with the
sheets (4).

25 10. Process according to claim 9, in which a first
layer of semiconducting material is formed on each
sheet (4), the thickness being less than the thickness
of the said layer (6) of semiconducting material, the
group of tracks (22) is formed on this first layer and
30 a second layer of semiconducting material that covers
these tracks is formed on the first layer, the total
thickness of the first and second layers being equal to

the thickness of the said layer (6) of semiconducting material.

11. Process for manufacturing the detector according to any one of claims 1 to 8, in which a half
5 layer of semiconducting material is deposited on the two opposite faces of two successive sheets (4), and then the group of tracks (22) is formed on one of the half layers and the sheets thus covered are assembled together to create a stack in which the layers
10 alternate with the sheets.