

# LSM330DL

# Linear sensor module 3D accelerometer sensor and 3D gyroscope sensor

Preliminary data

#### **Features**

- Analog supply voltage 2.4 V to 3.6 V
- Digital supply voltage I/Os, 1.8V
- Low-power mode
- Power-down mode
- 3 independent acceleration channels and 3 angular rate channels
- $\pm 2g/\pm 4g/\pm 8g/\pm 16g$  dynamic, selectable fullscale acceleration range
- ±250/±500/±2000 dps dynamic, selectable fullscale angular rate
- SPI/I<sup>2</sup>C serial interface (16-bit data output)
- Programmable interrupt generator for free-fall and motion detection
- ECOPACK®, RoHS, and "Green" compliant

### **Applications**

- GPS navigation systems
- Impact recognition and logging
- Gaming and virtual reality input devices
- Motion-activated functions
- Intelligent power saving for handheld devices
- Vibration monitoring and compensation
- Free-fall detection
- 6D-orientation detection

# **Description**

The LSM330DL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope.



| Part number | Temperature range [°C] | Package | Packing     |
|-------------|------------------------|---------|-------------|
| LSM330DL    | -40 to +85             | LGA-28  | Tray        |
| LSM330DLTR  | -40 to +85             | LGA-28  | Tape & reel |



ST's family of modules leverages a robust and mature manufacturing process already used for the production of micromachined accelerometers.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are based on CMOS technology that allows designing a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LSM330DL has a dynamic, user-selectable full-scale acceleration range of  $\pm 2g/\pm 4g/\pm 8g/\pm 16g$  and an angular rate of  $\pm 250/\pm 500/\pm 2000$  deg/sec.

The accelerometer and gyroscope sensors can be either activated or put in low-power / power-down mode separately for power-saving optimized applications. The LSM330DL is available in a plastic land grid array (LGA) package.

Several years ago ST successfully pioneered the use of this package for accelerometers. Today, ST has the broadest manufacturing capability in the world and unrivalled expertise for the production of sensors in a plastic LGA package.

July 2011 Doc ID 022018 Rev 1 1/54

Contents LSM330DL

# **Contents**

| 1 | Bloc | diagram and pin description             | 9         |
|---|------|-----------------------------------------|-----------|
|   | 1.1  | Block diagram                           | 9         |
|   | 1.2  | Pin description                         | 0         |
| 2 | Mod  | lle specifications                      | 2         |
|   | 2.1  | Mechanical characteristics              | 2         |
|   | 2.2  | Electrical characteristics              | 3         |
|   | 2.3  | Temperature sensor characteristics      | 3         |
|   | 2.4  | Communication interface characteristics | 4         |
|   |      | 2.4.1 SPI - serial peripheral interface | 14        |
|   |      | 2.4.2 I2C - inter-IC control interface  | 15        |
|   | 2.5  | Absolute maximum ratings                | 6         |
|   | 2.6  | Terminology 1                           | 7         |
|   |      | 2.6.1 Sensitivity                       | 17        |
|   |      | 2.6.2 Zero level                        | 17        |
| 3 | Fund | tionality1                              | 8         |
|   | 3.1  | Factory calibration                     | 8         |
| 4 | Арр  | cation hints                            | 9         |
|   | 4.1  | External capacitors                     | 9         |
|   | 4.2  | Soldering information                   | 20        |
| 5 | Digi | al interfaces                           | <b>21</b> |
|   | 5.1  | I2C serial interface                    | 21        |
|   |      | 5.1.1 I2C operation                     | 22        |
|   | 5.2  | SPI bus interface                       | 24        |
|   |      | 5.2.1 SPI read                          | 25        |
|   |      | 5.2.2 SPI write                         | 25        |
|   |      | 5.2.3 SPI read in 3-wire mode           | 26        |
| 6 | Regi | ster mapping 2                          | 27        |

| 7 | Regis | sters description                | 29 |
|---|-------|----------------------------------|----|
|   | 7.1   | CTRL_REG1_A (20h)                | 29 |
|   | 7.2   | CTRL_REG2_A (21h)                | 30 |
|   | 7.3   | CTRL_REG3_A (22h)                | 31 |
|   | 7.4   | CTRL_REG4_A (23h)                | 31 |
|   | 7.5   | CTRL_REG5_A (24h)                | 32 |
|   | 7.6   | CTRL_REG6_A (25h)                | 32 |
|   | 7.7   | REFERENCE/DATACAPTURE_A (26h)    | 32 |
|   | 7.8   | STATUS_REG_A (27h)               | 33 |
|   | 7.9   | OUT_X_L_A (28h), OUT_X_H_A (29h) | 33 |
|   | 7.10  | OUT_Y_L_A (2Ah), OUT_Y_H_A (2Bh) | 33 |
|   | 7.11  | OUT_Z_L _A(2Ch), OUT_Z_H_A (2Dh) | 33 |
|   | 7.12  | FIFO_CTRL_REG_A (2Eh)            | 33 |
|   | 7.13  | FIFO_SRC_REG_A (2Fh)             | 34 |
|   | 7.14  | INT1_CFG_A (30h)                 | 34 |
|   | 7.15  | INT1_SRC_A (31h)                 | 35 |
|   | 7.16  | INT1_THS_A (32h)                 | 36 |
|   | 7.17  | INT1_DURATION_A (33h)            | 36 |
|   | 7.18  | CLICK_CFG _A (38h)               | 36 |
|   | 7.19  | CLICK_SRC_A (39h)                | 37 |
|   | 7.20  | CLICK_THS_A (3Ah)                | 38 |
|   | 7.21  | TIME_LIMIT_A (3Bh)               | 38 |
|   | 7.22  | TIME_LATENCY_A (3Ch)             | 38 |
|   | 7.23  | TIME WINDOW_A (3Dh)              | 38 |
|   | 7.24  | CTRL_REG1_G (20h)                | 39 |
|   | 7.25  | CTRL_REG2_G (21h)                | 40 |
|   | 7.26  | CTRL_REG3_G (22h)                | 41 |
|   | 7.27  | CTRL_REG4_G (23h)                | 41 |
|   | 7.28  | CTRL_REG5_G (24h)                | 42 |
|   | 7.29  | REFERENCE/DATACAPTURE_G (25h)    | 43 |
|   | 7.30  | OUT_TEMP_G (26h)                 | 43 |
|   | 7.31  | STATUS_REG_G (27h)               | 44 |
|   | 7.32  | OUT_X_L_G (28h), OUT_X_H_G (29h) | 44 |

Contents LSM330DL

| 9 | Revis | sion history 53                  |
|---|-------|----------------------------------|
| 8 | Packa | age information                  |
|   | 7.45  | INT1_DURATION_G (38h)            |
|   | 7.44  | INT1_THS_ZL_G (37h)              |
|   | 7.43  | INT1_THS_ZH_G (36h)              |
|   | 7.42  | INT1_THS_YL_G (35h)              |
|   | 7.41  | INT1_THS_YH_G (34h)              |
|   | 7.40  | INT1_THS_XL_G (33h)              |
|   | 7.39  | INT1_THS_XH_G (32h)              |
|   | 7.38  | INT1_SRC_G (31h)                 |
|   | 7.37  | INT1_CFG_G (30h)                 |
|   | 7.36  | FIFO_SRC_REG_G (2Fh)             |
|   | 7.35  | FIFO_CTRL_REG_G (2Eh) 45         |
|   | 7.34  | OUT_Z_L_G (2Ch), OUT_Z_H_G (2Dh) |
|   | 7.33  | OUT_Y_L_G (2Ah), OUT_Y_H_G (2Bh) |

LSM330DL List of tables

# List of tables

| Table 1.  | Device summary                                                                | . 1 |
|-----------|-------------------------------------------------------------------------------|-----|
| Table 2.  | Pin description                                                               | 10  |
| Table 3.  | Mechanical characteristics                                                    | 12  |
| Table 4.  | Electrical characteristics                                                    | 13  |
| Table 5.  | Temperature sensor characteristics                                            | 13  |
| Table 6.  | SPI slave timing values                                                       | 14  |
| Table 7.  | I2C slave timing values                                                       | 15  |
| Table 8.  | Absolute maximum ratings                                                      | 16  |
| Table 9.  | Part list                                                                     | 19  |
| Table 10. | Serial interface pin description                                              | 21  |
| Table 11. | Serial interface terminology                                                  | 21  |
| Table 12. | Transfer when master is writing one byte to slave                             | 22  |
| Table 13. | Transfer when master is writing multiple bytes to slave                       | 22  |
| Table 14. | Transfer when master is receiving (reading) one byte of data from slave       | 22  |
| Table 15. | Transfer when master is receiving (reading) multiple bytes of data from slave | 22  |
| Table 16. | Linear acceleration SAD+Read/Write patterns                                   |     |
| Table 17. | Angular rate SAD+Read/Write patterns                                          |     |
| Table 18. | Register address map                                                          | 27  |
| Table 19. | CTRL_REG1_A register                                                          | 29  |
| Table 20. | CTRL_REG1_A description                                                       | 29  |
| Table 21. | Data rate configuration                                                       | 29  |
| Table 22. | Operating mode selection                                                      | 30  |
| Table 23. | CTRL_REG2_A register                                                          | 30  |
| Table 24. | CTRL_REG2_A description                                                       | 30  |
| Table 25. | High-pass filter mode configuration                                           | 30  |
| Table 26. | CTRL_REG3_A register                                                          | 31  |
| Table 27. | CTRL_REG3_A description                                                       | 31  |
| Table 28. | CTRL_REG4_A register                                                          | 31  |
| Table 29. | CTRL_REG4_A description                                                       | 31  |
| Table 30. | CTRL_REG5_A register                                                          | 32  |
| Table 31. | CTRL_REG5_A description                                                       | 32  |
| Table 32. | CTRL_REG6_A register                                                          |     |
| Table 33. | CTRL_REG6 description                                                         | 32  |
| Table 34. | REFERENCE/DATACAPTURE_A register                                              | 32  |
| Table 35. | REFERENCE/DATACAPTURE_A register description                                  |     |
| Table 36. | STATUS_REG_A register                                                         |     |
| Table 37. | STATUS_REG_A register description                                             |     |
| Table 38. | FIFO_CTRL_REG_A register                                                      | 33  |
| Table 39. | FIFO_CTRL_REG_A register description                                          |     |
| Table 40. | FIFO mode configuration                                                       |     |
| Table 41. | FIFO_SRC_REG_A register                                                       |     |
| Table 42. | INT1_CFG_REG_A register                                                       |     |
| Table 43. | INT1_CFG_REG_A description                                                    |     |
| Table 44. | Interrupt mode                                                                |     |
| Table 45. | INT1_SRC_A register                                                           |     |
| Table 46. | INT1_SRC_A description                                                        |     |
| Table 47. | INT1_THS_A register                                                           |     |
| Table 48. | INT1 THS A description                                                        | 36  |

| Table 49.  | INT1_DURATION_A register                             |    |
|------------|------------------------------------------------------|----|
| Table 50.  | INT1_DURATION_A description                          |    |
| Table 51.  | CLICK_CFG_A register                                 |    |
| Table 52.  | CLICK_CFG_A description                              | 37 |
| Table 53.  | CLICK_SRC_A register                                 |    |
| Table 54.  | CLICK_SRC_A description                              | 37 |
| Table 55.  | CLICK_THS_A register                                 | 38 |
| Table 56.  | CLICK_SRC_A description                              | 38 |
| Table 57.  | TIME_LIMIT_A register                                | 38 |
| Table 58.  | TIME_LIMIT_A description                             | 38 |
| Table 59.  | TIME_LATENCY_A register                              | 38 |
| Table 60.  | TIME_LATENCY_A description                           | 38 |
| Table 61.  | TIME_WINDOW_A register                               | 38 |
| Table 62.  | TIME_WINDOW_A description                            | 38 |
| Table 63.  | CTRL_REG1_G register                                 | 39 |
| Table 64.  | CTRL_REG1_G description                              | 39 |
| Table 65.  | DR and BW configuration setting                      | 39 |
| Table 66.  | Power mode selection configuration                   | 40 |
| Table 67.  | CTRL_REG2_G register                                 | 40 |
| Table 68.  | CTRL_REG2_G description                              | 40 |
| Table 69.  | High-pass filter mode configuration                  | 40 |
| Table 70.  | High-pass filter cutoff frequency configuration [Hz] | 40 |
| Table 71.  | CTRL_REG3_G register                                 |    |
| Table 72.  | CTRL_REG3_G description                              |    |
| Table 73.  | CTRL_REG4_G register                                 |    |
| Table 74.  | CTRL_REG4_G description                              |    |
| Table 75.  | CTRL_REG5_G register                                 |    |
| Table 76.  | CTRL_REG5_G description                              | 42 |
| Table 77.  | Out_Sel configuration setting                        | 43 |
| Table 78.  | INT_SEL configuration setting                        | 43 |
| Table 79.  | REFERENCE/DATACAPTURE_G register                     | 43 |
| Table 80.  | REFERENCE/DATACAPTURE_G register description         | 43 |
| Table 81.  | OUT_TEMP_G register                                  |    |
| Table 82.  | OUT_TEMP_G register description                      | 44 |
| Table 83.  | STATUS_REG_G register                                | 44 |
| Table 84.  | STATUS_REG_G description                             | 44 |
| Table 85.  | FIFO_CTRL_REG_G register                             | 45 |
| Table 86.  | FIFO_CTRL_REG_G register description                 | 45 |
| Table 87.  | FIFO mode configuration                              | 45 |
| Table 88.  | FIFO_SRC_REG_G register                              |    |
| Table 89.  | FIFO_SRC_REG_G register description                  | 45 |
| Table 90.  | INT1_CFG_G register                                  | 46 |
| Table 91.  | INT1_CFG_G description                               | 46 |
| Table 92.  | INT1_SRC_G register                                  | 47 |
| Table 93.  | INT1_SRC_G description                               |    |
| Table 94.  | INT1_THS_XH_G register                               | 47 |
| Table 95.  | INT1_THS_XH_G description                            | 47 |
| Table 96.  | INT1_THS_XL_G register                               | 47 |
| Table 97.  | INT1_THS_XL_G description                            |    |
| Table 98.  | INT1_THS_YH_G register                               | 48 |
| Table 99.  | INT1_THS_YH_G description                            | 48 |
| Table 100. | INT1_THS_YL_G register                               | 48 |

LSM330DL List of tables

| Table 101  | INT1_THS_YL_G description                | /Ω |
|------------|------------------------------------------|----|
|            |                                          |    |
| Table 102. | INT1_THS_ZH_G register                   | 48 |
| Table 103. | INT1_THS_ZH_G description                | 48 |
| Table 104. | INT1_THS_ZL_G register                   | 48 |
| Table 105. | INT1_THS_ZL_G description                | 48 |
| Table 106. | INT1_DURATION_G register                 | 49 |
| Table 107. | INT1_DURATION_G description              | 49 |
| Table 108. | LLGA 7.5 x 4.4 x 1.1 28L mechanical data | 52 |
| Table 109. | Document revision history                | 53 |

List of figures LSM330DL

# **List of figures**

| Figure 1.  | Block diagram                                       | . 9  |
|------------|-----------------------------------------------------|------|
| Figure 2.  | Pin connections                                     | . 10 |
| Figure 3.  | SPI slave timing diagram (2)                        | . 14 |
| Figure 4.  | I2C slave timing diagram (3)                        | . 15 |
| Figure 5.  | LSM330DL electrical connections                     | . 19 |
| Figure 6.  | Read and write protocol                             | 24   |
| Figure 7.  | SPI read protocol                                   | 25   |
| Figure 8.  | Multiple bytes SPI read protocol (2 bytes example)  | 25   |
| Figure 9.  | SPI write protocol                                  | 25   |
| Figure 10. | Multiple bytes SPI write protocol (2 bytes example) | 26   |
| Figure 11. | SPI read protocol in 3-wire mode                    | 26   |
| Figure 12. | INT1_Sel and Out_Sel configuration block diagram    | 42   |
| Figure 13. | Wait disabled                                       | 49   |
| Figure 14. | Wait enabled                                        | 50   |
| Figure 15  | LLGA 7.5 x 4.4 x 1.1.28L package drawing            | 52   |

# 1 Block diagram and pin description

# 1.1 Block diagram

Figure 1. Block diagram



# 1.2 Pin description

Figure 2. Pin connections



Table 2. Pin description

| iable 2. F | iii description |                                                                                                                         |
|------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|
| Pin#       | Name            | Function                                                                                                                |
| 1          | SDA/SDI_A       | Accelerometer: I <sup>2</sup> C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) |
| 2          | Res             | Reserved, connect to GND                                                                                                |
| 3          | SDO_A           | Accelerometer: SPI serial data output (SDO) I <sup>2</sup> C least significant bit of the device address (SA0)          |
| 4          | SCL_A           | Accelerometer: I <sup>2</sup> C serial clock (SCL) SPI serial port clock (SPC)                                          |
| 5          | DRDY_G/INT2_G   | Gyroscope data ready/interrupt signal 2                                                                                 |
| 6          | INT1_A          | Accelerometer interrupt signal                                                                                          |
| 7          | SDO_G           | Gyroscope: SPI serial data output (SDO) I <sup>2</sup> C least significant bit of the device address (SA0)              |
| 8          | INT2_A          | Accelerometer interrupt signal                                                                                          |
| 9          | SDA/SDI_G       | Gyroscope: I <sup>2</sup> C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)     |

Table 2. Pin description (continued)

| Pin# | Name     | Function                                                                                                                                                                           |
|------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10   | CS_G     | Gyroscope:  SPI enable  I <sup>2</sup> C/SPI mode selection (1: SPI idle mode / I <sup>2</sup> C communication enabled; 0: SPI communication mode / I <sup>2</sup> C disabled)     |
| 11   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 12   | Vdd_IO_G | Gyroscope power supply for I/O pins                                                                                                                                                |
| 13   | SCL_G    | Gyroscope: I <sup>2</sup> C serial clock (SCL) SPI serial port clock (SPC)                                                                                                         |
| 14   | Res      | Reserved connect to GND                                                                                                                                                            |
| 15   | Vdd      | Power supply                                                                                                                                                                       |
| 16   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 17   | CS_A     | Accelerometer:  SPI enable  I <sup>2</sup> C/SPI mode selection (1: SPI idle mode / I <sup>2</sup> C communication enabled; 0: SPI communication mode / I <sup>2</sup> C disabled) |
| 18   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 19   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 20   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 21   | INT1_G   | Gyroscope interrupt signal 1                                                                                                                                                       |
| 22   | Vdd      | Power supply                                                                                                                                                                       |
| 23   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 24   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 25   | GND      | 0 V power supply                                                                                                                                                                   |
| 26   | VCONT    | PLL filter connection                                                                                                                                                              |
| 27   | Res      | Reserved, connect to GND                                                                                                                                                           |
| 28   | Vdd_IO_A | Accelerometer power supply for I/O pins                                                                                                                                            |

# 2 Module specifications

#### 2.1 Mechanical characteristics

The values given in the following table are for the conditions Vdd = 3 V,  $T = 25 \, ^{\circ}C$  unless otherwise noted. (a)

Table 3. Mechanical characteristics

| Symbol   | Parameter                                              | Test conditions                                    | Min. | Typ. <sup>(1)</sup> | Max. | Unit              |  |  |
|----------|--------------------------------------------------------|----------------------------------------------------|------|---------------------|------|-------------------|--|--|
|          |                                                        | FS bit set to 00                                   |      | ±2                  |      |                   |  |  |
| LA FS    | Linear acceleration                                    | FS bit set to 01                                   |      | ±4                  |      | <i>a</i>          |  |  |
| LA_F3    | measurement range <sup>(2)</sup>                       | FS bit set to 10                                   |      | ±8                  |      | g                 |  |  |
|          |                                                        | FS bit set to 11                                   |      | ±16                 |      |                   |  |  |
|          |                                                        | FS bit set to 00                                   |      | ±250                |      |                   |  |  |
| G_FS     | Angular rate measurement range <sup>(2)</sup>          | FS bit set to 01                                   |      | ±500                |      | dps               |  |  |
|          |                                                        | FS bit set to 10                                   |      | ±2000               |      |                   |  |  |
|          |                                                        | FS bit set to 00                                   |      | 1                   |      |                   |  |  |
| LA_So    | Linear acceleration sensitivity                        | FS bit set to 01                                   |      | 2                   |      | m a/digit         |  |  |
| LA_S0    | Linear acceleration sensitivity                        | FS bit set to 10                                   |      | 4                   |      | m <i>g</i> /digit |  |  |
|          |                                                        | FS bit set to 11                                   |      | 12                  |      |                   |  |  |
|          | Angular rate sensitivity                               | FS bit set to 00                                   |      | 8.75                |      | mdps/             |  |  |
| G_So     |                                                        | FS bit set to 01                                   |      | 17.5                |      |                   |  |  |
|          |                                                        | FS bit set to 10                                   |      | 70                  |      |                   |  |  |
| LA_So    | Linear acceleration Sensitivity change vs. temperature | FS bit set to 00                                   |      | ±0.05               |      | %/°C              |  |  |
| G_So     | Angular rate sensitivity change vs. temp.              | from -40 to +85°C                                  |      | ±2                  |      | %                 |  |  |
| LA_TyOff | Typical zero- $g$ level offset accuracy <sup>(3)</sup> | FS bit set to 00                                   |      | ±60                 |      | m <i>g</i>        |  |  |
| G_TyOff  | Typical zero-rate level <sup>(4)</sup>                 | FS bit set to 00                                   |      | 10                  |      | LSb               |  |  |
| LA_TCOff | Zero- $g$ level change vs. temperature                 | Max delta from 25 °C                               |      | ±0.5                |      | m <i>g</i> /°C    |  |  |
| G_TCOff  | Zero-rate level change vs. temperature                 | FS bit set to 00<br>from -40 to +85°C              |      | ±0.03               |      | dps/°C            |  |  |
| An       | Acceleration noise density                             | FS bit set to 00, normal mode, ODR bit set to 1001 |      | 220                 |      | μ <i>g</i> /√Hz   |  |  |
| Rn       | Rate noise density                                     | FS bit set to 00, BW = 50 Hz                       |      | 0.03                |      | dps/√Hz           |  |  |
| Тор      | Operating temperature range                            |                                                    | -40  |                     | +85  | °C                |  |  |

<sup>1.</sup> Typical specifications are not guaranteed.

12/54 Doc ID 022018 Rev 1

<sup>2.</sup> Verified by wafer level test and measurement of initial offset and sensitivity.

<sup>3.</sup> Typical zero-g level offset value after MSL3 preconditioning.

<sup>4.</sup> Offset can be eliminated by enabling the built-in high-pass filter.

a. The product is factory calibrated at 3 V. The operational power supply range is from 2.4 V to 3.6 V.

#### 2.2 Electrical characteristics

The values given in the following table are for the conditions Vdd = 3 V,  $T = 25 \,^{\circ}C$  unless otherwise noted.

Table 4. Electrical characteristics

| Symbol     | Parameter                                      | Test conditions | Min.       | Typ. <sup>(1)</sup> | Max.       | Unit |
|------------|------------------------------------------------|-----------------|------------|---------------------|------------|------|
| Vdd        | Supply voltage                                 |                 | 2.4        |                     | 3.6        | V    |
| Vdd_IO     | Power supply for I/O                           |                 | 1.71       |                     | Vdd+0.1    | V    |
|            | LA current consumption in                      | ODR = 50 Hz     |            | 11                  |            |      |
| LA_ldd     | normal mode                                    | ODR = 1 Hz      |            | 2                   |            | μΑ   |
| LA_lddLowP | LA current consumption in low-power mode       | ODR = 50 Hz     |            | 6                   |            | μΑ   |
| LA_lddPdn  | LA current consumption in power-down mode      | T = 25 °C       |            | 0.5                 |            | μΑ   |
| G_ldd      | AR current consumption in normal mode          |                 |            | 6.1                 |            | mA   |
| G_lddLowP  | AR supply current in sleep mode <sup>(2)</sup> |                 |            | 1.5                 |            | mA   |
| G_lddPdn   | AR current consumption in power-down mode      | T = 25 °C       |            | 5                   |            | μΑ   |
| VIH        | Digital high-level input voltage               |                 | 0.8*Vdd_IO |                     |            | V    |
| VIL        | Digital low-level input voltage                |                 |            |                     | 0.2*Vdd_IO | V    |
| VOH        | High-level output voltage                      |                 | 0.9*Vdd_IO |                     |            | V    |
| VOL        | Low-level output voltage                       |                 |            |                     | 0.1*Vdd_IO | V    |
| Тор        | Operating temperature range                    |                 | -40        |                     | +85        | °C   |

<sup>1.</sup> Typical specifications are not guaranteed.

# 2.3 Temperature sensor characteristics

The values given in the following table are for the conditions Vdd = 3.0 V, T=25 °C, unless otherwise noted.

Table 5. Temperature sensor characteristics (1)

| Symbol | Parameter                                        | Test condition | Min. | Typ. <sup>(2)</sup> | Max. | Unit     |
|--------|--------------------------------------------------|----------------|------|---------------------|------|----------|
| TSDr   | Temperature sensor output change vs. temperature |                |      | -1                  |      | °C/digit |
| TODR   | Temperature refresh rate                         | -              |      | 1                   |      | Hz       |
| Тор    | Operating temperature range                      |                | -40  |                     | +85  | °C       |

<sup>1.</sup> The product is factory calibrated at 3.0 V.

<sup>2.</sup> Sleep mode introduces a faster turn-on time compared to power-down mode.

<sup>2.</sup> Typical specifications are not guaranteed.

### 2.4 Communication interface characteristics

### 2.4.1 SPI - serial peripheral interface

The values given in the following table are subject to the general operating conditions for Vdd and  $T_{\mbox{\scriptsize OP}}$ 

Table 6. SPI slave timing values

| Cumbal               | Parameter               | Valu | Value <sup>(1)</sup> |     |  |  |  |
|----------------------|-------------------------|------|----------------------|-----|--|--|--|
| Symbol               | Parameter               | Min  | Min Max              |     |  |  |  |
| t <sub>c(SPC)</sub>  | SPI clock cycle         | 100  |                      | ns  |  |  |  |
| f <sub>c(SPC)</sub>  | SPI clock frequency     |      | 10                   | MHz |  |  |  |
| t <sub>su(CS)</sub>  | CS setup time           | 6    |                      |     |  |  |  |
| t <sub>h(CS)</sub>   | CS hold time            | 8    |                      |     |  |  |  |
| t <sub>su(SI)</sub>  | SDI input setup time    | 5    |                      |     |  |  |  |
| t <sub>h(SI)</sub>   | SDI input hold time     | 15   |                      | ns  |  |  |  |
| t <sub>v(SO)</sub>   | SDO valid output time   |      | 50                   |     |  |  |  |
| t <sub>h(SO)</sub>   | SDO output hold time    | 9    |                      |     |  |  |  |
| t <sub>dis(SO)</sub> | SDO output disable time |      | 50                   |     |  |  |  |

<sup>1.</sup> Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production.

Figure 3. SPI slave timing diagram (b)



<sup>3.</sup> Data on CS, SPC, SDI and SDO concern the following pins: CS\_A/G, SCL\_A/G, SDA/SDI\_A/G, SDO\_A/G

4

b. Measurement points are done at 0.2·Vdd\_IO and 0.8·Vdd\_IO, for both input and output ports.

### 2.4.2 I<sup>2</sup>C - inter-IC control interface

The values given in the following table are subject to the general operating conditions for Vdd and  $T_{\mbox{\scriptsize OP}}$ 

Table 7. I<sup>2</sup>C slave timing values

| Symbol                                  | Parameter <sup>(1)</sup>                       | I <sup>2</sup> C stand | ard mode | I <sup>2</sup> C fast                 | mode <sup>(1)</sup> | Unit |
|-----------------------------------------|------------------------------------------------|------------------------|----------|---------------------------------------|---------------------|------|
| Symbol                                  | Parameter                                      | Min                    | Max      | Min                                   | Max                 | Unit |
| f <sub>(SCL)</sub>                      | SCL clock frequency                            | 0                      | 100      | 0                                     | 400                 | kHz  |
| t <sub>w(SCLL)</sub>                    | SCL clock low time                             | 4.7                    |          | 1.3                                   |                     |      |
| t <sub>w(SCLH)</sub>                    | SCL clock high time                            | 4.0                    |          | 0.6                                   |                     | μs   |
| t <sub>su(SDA)</sub>                    | SDA setup time                                 | 250                    |          | 100                                   |                     | ns   |
| t <sub>h(SDA)</sub>                     | SDA data hold time                             | 0.01                   | 3.45     | 0                                     | 0.9                 | μs   |
| t <sub>r(SDA)</sub> t <sub>r(SCL)</sub> | SDA and SCL rise time                          |                        | 1000     | 20 + 0.1C <sub>b</sub> <sup>(2)</sup> | 300                 |      |
| t <sub>f(SDA)</sub> t <sub>f(SCL)</sub> | SDA and SCL fall time                          |                        | 300      | 20 + 0.1C <sub>b</sub> <sup>(2)</sup> | 300                 | ns   |
| t <sub>h(ST)</sub>                      | START condition hold time                      | 4                      |          | 0.6                                   |                     |      |
| t <sub>su(SR)</sub>                     | Repeated START condition setup time            | 4.7                    |          | 0.6                                   |                     |      |
| t <sub>su(SP)</sub>                     | STOP condition setup time                      | 4                      |          | 0.6                                   |                     | μs   |
| t <sub>w(SP:SR)</sub>                   | Bus free time between STOP and START condition | 4.7                    |          | 1.3                                   |                     |      |

<sup>1.</sup> SCL (SCL\_A/G pin), SDA (SDA\_A/G pin)

Figure 4. I<sup>2</sup>C slave timing diagram <sup>(3)</sup>



- 1. Data based on standard  $I^2C$  protocol requirement, not tested in production.
- 2 Cb = total capacitance of one bus line, in pF
- 3. Measurement points are done at 0.2·Vdd\_IO and 0.8·Vdd\_IO, for both ports.

### 2.5 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 8. Absolute maximum ratings

| Symbol           | Ratings                                                                  | Maximum value       | Unit |
|------------------|--------------------------------------------------------------------------|---------------------|------|
| Vdd              | Supply voltage                                                           | -0.3 to 4.8         | V    |
| Vdd_IO           | I/O pins supply voltage                                                  | -0.3 to 4.8         | V    |
| Vin              | Input voltage on any control pin (SCL_A/G, SDA/SDI_A/G, SDO_A/G, CS_A/G) | -0.3 to Vdd_IO +0.3 | V    |
| Δ.               | Acceleration (any axis, powered, Vdd = 3 V)                              | 3000 g for 0.5 ms   |      |
| A <sub>POW</sub> | Acceleration (any axis, powered, vdd = 5 v)                              | 10000 g for 0.1 ms  |      |
| ^                | Acceleration (any axis tuppoured)                                        | 3000 g for 0.5 ms   |      |
| A <sub>UNP</sub> | Acceleration (any axis, unpowered)                                       | 10000 g for 0.1 ms  |      |
| T <sub>OP</sub>  | Operating temperature range                                              | -40 to +85          | °C   |
| T <sub>STG</sub> | Storage temperature range                                                | -40 to +125         | °C   |
| ESD              | Electrostatic discharge protection                                       | 2 (HBM)             | kV   |

Note: Supply voltage on any pin should never exceed 4.8 V



This is a device sensitive to mechanical shock, improper handling can cause permanent damage to the part



This is an ESD-sensitive device, improper handling can cause permanent damage to the part

### 2.6 Terminology

#### 2.6.1 Sensitivity

Linear acceleration sensitivity can be determined by applying 1 g acceleration to the device. As the sensor can measure DC accelerations, this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (point to the sky) and then noting the output value again. By doing so,  $\pm 1$  g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and also very little over time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors.

Angular rate sensitivity describes the angular rate gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and also very little over time.

#### 2.6.2 Zero level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on the X-axis and 0 g on the Y-axis whereas the Z-axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to the MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Zero-g level change vs. temperature" (refer to  $Table\ 3$ ). The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a population of sensors.

The angular rate zero-rate level describes the actual output value if there is no angular rate present. Zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and also very little over time.

Functionality LSM330DL

# 3 Functionality

The LSM330DL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope.

The complete device includes specific sensing elements and two IC interfaces able to measure both the acceleration and angular rate applied to the module and to provide a signal to the external world through an SPI/I<sup>2</sup>C serial interface.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are based on CMOS technology that allows designing a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LSM330DL may also be configured to generate an inertial wake-up and free-fall interrupt signal according to a programmed acceleration event along the enabled axes.

### 3.1 Factory calibration

The IC interface is factory calibrated for sensitivity and zero level. The trimming values are stored inside the device in non-volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be used during normal operation. This allows using the device without further calibration.

LSM330DL Application hints

# 4 Application hints

Reserved pins have to be connected to GND ○ Vdd\_IO Vdd\_IO SDA/SDI ACCELERATIONS GND INT2\_A 0 28 Vdd IO A LSM330DL DIRECTION OF DETECTABLE ANGULAR RATE -Vdd\_IO\_G Res (TOP VIEW) SCL G VCONT 14 Res GND GND Vdd GND Digital signal from/to signal controller. Signals levels are defined by proper selection of Vdd AM09287v1

Figure 5. LSM330DL electrical connections

Table 9. Part list

| Component | Typical value |
|-----------|---------------|
| C1        | 10 nF         |
| C2        | 470 nF        |
| СЗ        | 10 μF         |
| C4        | 100 nF        |
| C5        | 100111        |
| R2        | 10 kOhm       |

### 4.1 External capacitors

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C4=100 nF ceramic, C3=10  $\mu F$  Al) should be placed as near as possible to the supply pin of the device (common design practice).

All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to *Figure 5*).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I<sup>2</sup>C interface.

Application hints LSM330DL

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user though the SPI/I<sup>2</sup>C interface.

### 4.2 Soldering information

The LGA package is compliant with the ECOPACK<sup>®</sup>, RoHS and "Green" standards. It is qualified for soldering heat resistance according to JEDEC J-STD-020D.

Leave "Pin 1 Indicator" unconnected during soldering.

The landing pattern and soldering recommendations are available at <a href="www.st.com/mems">www.st.com/mems</a>.

LSM330DL Digital interfaces

# 5 Digital interfaces

The registers embedded inside the LSM330DL may be accessed through both the  $I^2C$  and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode.

To select/exploit the I<sup>2</sup>C interface, the CS line must be tied high (i.e. connected to Vdd\_IO).

Table 10. Serial interface pin description

| Pin name               | Pin description                                                                                                                   |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| CS_A                   | Linear acceleration SPI enable Linear acceleration I <sup>2</sup> C/SPI mode selection (1: I <sup>2</sup> C mode; 0: SPI enabled) |
| CS_G                   | Angular rate SPI enable Angular rate I <sup>2</sup> C/SPI mode selection (1: I <sup>2</sup> C mode; 0: SPI enabled)               |
| SCL_A<br>SCL_G         | I <sup>2</sup> C serial clock (SCL)<br>SPI serial port clock (SPC)                                                                |
| SDA/SDI_A<br>SDA/SDI_G | I <sup>2</sup> C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)                          |
| SDO_A<br>SDO_G         | I <sup>2</sup> C least significant bit of the device address (SA0)<br>SPI serial data output (SDO)                                |

### 5.1 I<sup>2</sup>C serial interface

The LSM330DL I<sup>2</sup>C is a bus slave. The I<sup>2</sup>C is employed to write data into the registers whose content can also be read back.

The relevant I<sup>2</sup>C terminology is given in the table below.

Table 11. Serial interface terminology

| Term Description |                                                                                          |  |  |  |  |  |
|------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|
| Transmitter      | The device which sends data to the bus                                                   |  |  |  |  |  |
| Receiver         | The device which receives data from the bus                                              |  |  |  |  |  |
| Master           | The device which initiates a transfer, generates clock signals and terminates a transfer |  |  |  |  |  |
| Slave            | The device addressed by the master                                                       |  |  |  |  |  |

There are two signals associated with the  $I^2C$  bus: the serial clock line (SCL) and the serial data line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface.

Digital interfaces LSM330DL

### 5.1.1 I<sup>2</sup>C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the Master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the Master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its own address. If they match, the device considers itself addressed by the Master.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I<sup>2</sup>C embedded inside the LSM330DL behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) will be transmitted: the 7 LSb represents the actual register address while the MSB enables the address auto increment. If the MSb of the SUB field is '1', the SUB (register address) will be automatically increased to allow multiple data read/writes.

Table 12. Transfer when master is writing one byte to slave

| Master | ST | SAD + W |     | SUB |     | DATA |     | SP |
|--------|----|---------|-----|-----|-----|------|-----|----|
| Slave  |    |         | SAK |     | SAK |      | SAK |    |

Table 13. Transfer when master is writing multiple bytes to slave

| Master | ST | SAD + W |     | SUB |     | DATA |     | DATA |     | SP |
|--------|----|---------|-----|-----|-----|------|-----|------|-----|----|
| Slave  |    |         | SAK |     | SAK |      | SAK |      | SAK |    |

Table 14. Transfer when master is receiving (reading) one byte of data from slave

| Master | ST | SAD + W |     | SUB |     | SR | SAD + R |     |      | NMAK | SP |
|--------|----|---------|-----|-----|-----|----|---------|-----|------|------|----|
| Slave  |    |         | SAK |     | SAK |    |         | SAK | DATA |      |    |

Table 15. Transfer when master is receiving (reading) multiple bytes of data from slave

| Master | ST | SAD+W |     | SUB |     | SR | SAD+R |     |      | MAK |      | MAK |      | NMAK | SP |
|--------|----|-------|-----|-----|-----|----|-------|-----|------|-----|------|-----|------|------|----|
| Slave  |    |       | SAK |     | SAK |    |       | SAK | DATA |     | DATA |     | DATA |      |    |

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait

LSM330DL Digital interfaces

state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function), the data line must be left HIGH by the slave. The Master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

#### **Default address**

The **SDO/SA0** pad can be used to modify the least significant bit of the device address. If the SA0 pad is connected to a voltage supply, LSb is '1' (ex. address 0011001b), else if the SA0 pad is connected to ground, the LSb value is '0' (ex address 0011000b).

The slave address is completed with a Read/Write bit. If the bit was '1' (Read), a repeated START (SR) condition will have to be issued after the two sub-address bytes. If the bit is '0' (Write), the Master will transmit to the slave with the direction unchanged. *Table 16* and *Table 17* explain how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

# Linear acceleration address: the default (factory) 7-bit slave address is 001100xb

| Table 16. | Linear acceleration SAD+Read/Write patterns |
|-----------|---------------------------------------------|
|-----------|---------------------------------------------|

| Command | SAD[6:1] | SAD[0] = SA0 | R/W | SAD+R/W        |
|---------|----------|--------------|-----|----------------|
| Read    | 001100   | 0            | 1   | 00110001 (31h) |
| Write   | 001100   | 0            | 0   | 00110000 (30h) |
| Read    | 001100   | 1            | 1   | 00110011 (33h) |
| Write   | 001100   | 1            | 0   | 00110010 (32h) |

#### Angular rate sensor: the default (factory) 7-bit slave address is 110100xb

Table 17. Angular rate SAD+Read/Write patterns

| Command | SAD[6:1] | SAD[0] = SA0 | R/W | SAD+R/W        |
|---------|----------|--------------|-----|----------------|
| Read    | 110100   | 0            | 1   | 11010001 (D1h) |
| Write   | 110100   | 0            | 0   | 11010000 (D0h) |
| Read    | 110100   | 1            | 1   | 11010011 (D3h) |
| Write   | 110100   | 1            | 0   | 11010010 (D2h) |

Digital interfaces LSM330DL

#### 5.2 SPI bus interface

The LSM330DL SPI is a bus slave. The SPI allows to write and read the registers of the device.

The Serial Interface interacts with the outside world with 4 wires: **CS**, **SPC**, **SDI** and **SDO** (SPC, SDI, SD0 are common).

Figure 6. Read and write protocol



**CS** is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. These lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS**, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

**bit 0**:  $R\overline{W}$  bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In the latter case, the chip will drive **SDO** at the start of bit 8.

**bit 1**: MS bit. When 0, the address will remain unchanged in multiple read/write commands. When 1, the address will be auto-incremented in multiple read/write commands.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

*bit 8-15*: data DI(7:0) (write mode). This is the data that will be written into the device (MSb first).

**bit 8-15**: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

In multiple read/write commands, further blocks of 8 clock periods will be added. When the  $M\overline{S}$  bit is '0', the address used to read/write data remains the same for every block. When the  $M\overline{S}$  bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of **SDI** and **SDO** remain unchanged.

LSM330DL Digital interfaces

#### **5.2.1** SPI read

Figure 7. SPI read protocol



The SPI Read command is performed with 16 clock pulses. The multiple byte read command is performed, adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

**bit 1**:  $\overline{MS}$  bit. When 0, this bit does not increment the address. When 1, it increments the address in multiple reads.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

*bit 8-15*: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 8. Multiple bytes SPI read protocol (2 bytes example)



#### 5.2.2 SPI write

Figure 9. SPI write protocol



Digital interfaces LSM330DL

The SPI Write command is performed with 16 clock pulses. The multiple byte write command is performed adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1: MS bit. When 0, this bit does not increment the address, when 1, it increments the address in multiple writes.

bit 2 -7: address AD(5:0). This is the address field of the indexed register.

**bit 8-15**: data DI(7:0) (write mode). This is the data that will be written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 10. Multiple bytes SPI write protocol (2 bytes example)



#### 5.2.3 SPI read in 3-wire mode

The 3-wire mode is entered by setting to '1' bit SIM (SPI serial interface mode selection) in CTRL\_REG4.

Figure 11. SPI read protocol in 3-wire mode



The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

**bit 1**:  $\overline{MS}$  bit. When 0, this bit does not increment the address, when 1, it increments the address in multiple reads.

bit 2-7: address AD(5:0). This is the address field of the indexed register.

**bit 8-15**: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

The multiple read command is also available in 3-wire mode.

LSM330DL Register mapping

# 6 Register mapping

The table given below provides a listing of the 8-bit registers embedded in the device and their respective addresses.

Table 18. Register address map

| Nome                     | Slave    | Turne | Register | address  | Default   | Commont  |
|--------------------------|----------|-------|----------|----------|-----------|----------|
| Name                     | address  | Type  | Hex      | Binary   | - Default | Comment  |
| Reserved (do not modify) | 001100xb |       | 00 - 1F  |          |           | Reserved |
| CTRL_REG1_A              | 001100xb | rw    | 20       | 010 0000 | 00000111  |          |
| CTRL_REG2_A              | 001100xb | rw    | 21       | 010 0001 | 00000000  |          |
| CTRL_REG3_A              | 001100xb | rw    | 22       | 010 0010 | 00000000  |          |
| CTRL_REG4_A              | 001100xb | rw    | 23       | 010 0011 | 00000000  |          |
| CTRL_REG5_A              | 001100xb | rw    | 24       | 010 0100 | 00000000  |          |
| CTRL_REG6_A              | 001100xb | rw    | 25       | 010 0101 | 00000000  |          |
| REFERENCE/DATACAPTURE_A  | 001100xb | rw    | 26       | 010 0110 | 00000000  |          |
| STATUS_REG_A             | 001100xb | r     | 27       | 010 0111 | 00000000  |          |
| OUT_X_L_A                | 001100xb | r     | 28       | 010 1000 | output    |          |
| OUT_X_H_A                | 001100xb | r     | 29       | 010 1001 | output    |          |
| OUT_Y_L_A                | 001100xb | r     | 2A       | 010 1010 | output    |          |
| OUT_Y_H_A                | 001100xb | r     | 2B       | 010 1011 | output    |          |
| OUT_Z_L_A                | 001100xb | r     | 2C       | 010 1100 | output    |          |
| OUT_Z_H_A                | 001100xb | r     | 2D       | 010 1101 | output    |          |
| FIFO_CTRL_REG_A          | 001100xb | rw    | 2E       | 010 1110 | 00000000  |          |
| FIFO_SRC_REG_A           | 001100xb | r     | 2F       | 010 1111 |           |          |
| INT1_CFG_A               | 001100xb | rw    | 30       | 011 0000 | 00000000  |          |
| INT1_SRC_A               | 001100xb | r     | 31       | 011 0001 | 00000000  |          |
| INT1_THS_A               | 001100xb | rw    | 32       | 011 0010 | 00000000  |          |
| INT1_DURATION_A          | 001100xb | rw    | 33       | 011 0011 | 00000000  |          |
| INT2_CFG_A               | 001100xb | rw    | 34       | 011 0100 | 00000000  |          |
| INT2_SOURCE_A            | 001100xb | r     | 35       | 011 0101 | 00000000  |          |
| INT2_THS_A               | 001100xb | rw    | 36       | 011 0110 | 00000000  |          |
| INT2_DURATION_A          | 001100xb | rw    | 37       | 011 0111 | 00000000  |          |
| CLICK_CFG_A              | 001100xb | rw    | 38       | 011 1000 | 00000000  |          |
| CLICK_SRC_A              | 001100xb | rw    | 39       | 011 1001 | 00000000  |          |
| CLICK_THS_A              | 001100xb | rw    | 3A       | 011 1010 | 00000000  |          |
| TIME_LIMIT_A             | 001100xb | rw    | 3B       | 011 1011 | 00000000  |          |

Register mapping LSM330DL

Table 18. Register address map (continued)

| Nama                     | Slave    | <b>T</b> | Registe | r address | Defeat    | 0        |  |
|--------------------------|----------|----------|---------|-----------|-----------|----------|--|
| Name                     | address  | Type     | Hex     | Binary    | - Default | Comment  |  |
| TIME_LATENCY_A           | 001100xb | rw       | 3C      | 011 1100  | 00000000  |          |  |
| TIME_WINDOW_A            | 001100xb | rw       | 3D      | 011 1101  | 00000000  |          |  |
| Reserved (do not modify) | 001100xb |          | 3E-3F   |           |           | Reserved |  |
| Reserved                 | 110100xb | -        | 00-1E   | -         | -         | Reserved |  |
| CTRL_REG1_G              | 110100xb | rw       | 20      | 010 0000  | 00000111  |          |  |
| CTRL_REG2_G              | 110100xb | rw       | 21      | 010 0001  | 00000000  |          |  |
| CTRL_REG3_G              | 110100xb | rw       | 22      | 010 0010  | 00000000  |          |  |
| CTRL_REG4_G              | 110100xb | rw       | 23      | 010 0011  | 00000000  |          |  |
| CTRL_REG5_G              | 110100xb | rw       | 24      | 010 0100  | 00000000  |          |  |
| REFERENCE/DATACAPTURE_G  | 110100xb | rw       | 25      | 010 0101  | 00000000  |          |  |
| OUT_TEMP_G               | 110100xb | r        | 26      | 010 0110  | output    |          |  |
| STATUS_REG_G             | 110100xb | r        | 27      | 010 0111  | output    |          |  |
| OUT_X_L_G                | 110100xb | r        | 28      | 010 1000  | output    |          |  |
| OUT_X_H_G                | 110100xb | r        | 29      | 010 1001  | output    |          |  |
| OUT_Y_L_G                | 110100xb | r        | 2A      | 010 1010  | output    |          |  |
| OUT_Y_H_G                | 110100xb | r        | 2B      | 010 1011  | output    |          |  |
| OUT_Z_L_G                | 110100xb | r        | 2C      | 010 1100  | output    |          |  |
| OUT_Z_H_G                | 110100xb | r        | 2D      | 010 1101  | output    |          |  |
| FIFO_CTRL_REG_G          | 110100xb | rw       | 2E      | 010 1110  | 00000000  |          |  |
| FIFO_SRC_REG_G           | 110100xb | r        | 2F      | 010 1111  | output    |          |  |
| INT1_CFG_G               | 110100xb | rw       | 30      | 011 0000  | 00000000  |          |  |
| INT1_SRC_G               | 110100xb | r        | 31      | 011 0001  | output    |          |  |
| INT1_THS_XH_G            | 110100xb | rw       | 32      | 011 0010  | 00000000  |          |  |
| INT1_THS_XL_G            | 110100xb | rw       | 33      | 011 0011  | 00000000  |          |  |
| INT1_THS_YH_G            | 110100xb | rw       | 34      | 011 0100  | 00000000  |          |  |
| INT1_THS_YL_G            | 110100xb | rw       | 35      | 011 0101  | 00000000  |          |  |
| INT1_THS_ZH_G            | 110100xb | rw       | 36      | 011 0110  | 00000000  |          |  |
| INT1_THS_ZL_G            | 110100xb | rw       | 37      | 011 0111  | 00000000  |          |  |
| INT1_DURATION_G          | 110100xb | rw       | 38      | 011 1000  | 00000000  |          |  |

Registers marked as *Reserved* must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory-calibrated values. Their content is automatically restored when the device is powered up.

# 7 Registers description

The device contains a set of registers which are used to control its behavior and to retrieve acceleration, angular rate and temperature data. The register addresses, composed of 7 bits, are used to identify them and to write the data through the serial interface.

# 7.1 CTRL\_REG1\_A (20h)

Table 19. CTRL\_REG1\_A register

| ODF | ODR2 | ODR1 | ODR0 | LPen | Zen | Yen | Xen |
|-----|------|------|------|------|-----|-----|-----|
|-----|------|------|------|------|-----|-----|-----|

Table 20. CTRL\_REG1\_A description

| ODR3-0 | Data rate selection. Default value: 0 (0000: power-down; Others: Refer to <i>Table 21: Data rate configuration</i> |
|--------|--------------------------------------------------------------------------------------------------------------------|
| LPen   | Low-power mode enable. Default value: 0 (0: normal mode, 1: low-power mode)                                        |
| Zen    | Z-axis enable. Default value: 1<br>(0: Z-axis disabled; 1: Z-axis enabled)                                         |
| Yen    | Y-axis enable. Default value: 1<br>(0: Y-axis disabled; 1: Y-axis enabled)                                         |
| Xen    | X-axis enable. Default value: 1<br>(0: X-axis disabled; 1: X-axis enabled)                                         |

**ODR<3:0>** is used to set power mode and ODR selection. The following table gives the frequency for all combinations of ODR<3:0>.

Table 21. Data rate configuration

| ODR3 | ODR2 | ODR1 | ODR0 | Power mode selection                            |
|------|------|------|------|-------------------------------------------------|
| 0    | 0    | 0    | 0    | Power-down mode                                 |
| 0    | 0    | 0    | 1    | Normal / low-power mode (1 Hz)                  |
| 0    | 0    | 1    | 0    | Normal / low-power mode (10 Hz)                 |
| 0    | 0    | 1    | 1    | Normal / low-power mode (25 Hz)                 |
| 0    | 1    | 0    | 0    | Normal / low-power mode (50 Hz)                 |
| 0    | 1    | 0    | 1    | Normal / low-power mode (100 Hz)                |
| 0    | 1    | 1    | 0    | Normal / low-power mode (200 Hz)                |
| 0    | 1    | 1    | 1    | Normal / low-power mode (400 Hz)                |
| 1    | 0    | 0    | 0    | Low-power mode (1.620 kHz)                      |
| 1    | 0    | 0    | 1    | Normal (1.344 kHz) / low-power mode (5.376 kHz) |

Table 22. Operating mode selection

| Operating mode | CTRL_REG1[3]<br>(LPen bit) | CTRL_REG4[3]<br>(HR bit) | BW [Hz] | Turn-on time<br>[ms] |
|----------------|----------------------------|--------------------------|---------|----------------------|
| Low-power mode | 1                          | 0                        | ODR/2   | 1                    |
| Normal mode    | 0                          | 1                        | ODR/9   | 7/ODR                |

# 7.2 CTRL\_REG2\_A (21h)

#### Table 23. CTRL\_REG2\_A register

| HPM | HPM0 | HPCF2 | HPCF1 | FDS | HPCLICK | HPIS2 | HPIS1 |
|-----|------|-------|-------|-----|---------|-------|-------|
|-----|------|-------|-------|-----|---------|-------|-------|

#### Table 24. CTRL\_REG2\_A description

| HPM1 -HPM0       | High-pass filter mode selection. Default value: 00 Refer to Table 25: High-pass filter mode configuration                              |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| HPCF2 -<br>HPCF1 | High-pass filter cutoff frequency selection                                                                                            |
| FDS              | Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO) |
| HPCLICK          | High-pass filter enabled for CLICK function (0: filter bypassed; 1: filter enabled)                                                    |
| HPIS2            | High-pass filter enabled for AOI function on interrupt 2, (0: filter bypassed; 1: filter enabled)                                      |
| HPIS1            | High-pass filter enabled for AOI function on interrupt 1, (0: filter bypassed; 1: filter enabled)                                      |

#### Table 25. High-pass filter mode configuration

| HPM1 | НРМ0 | High-pass filter mode                       |
|------|------|---------------------------------------------|
| 0    | 0    | Normal mode (reset reading HP_RESET_FILTER) |
| 0    | 1    | Reference signal for filtering              |
| 1    | 0    | Normal mode                                 |
| 1    | 1    | Autoreset on interrupt event                |

# 7.3 CTRL\_REG3\_A (22h)

#### Table 26. CTRL\_REG3\_A register

| I1_CLICK | I1_DRDY1 I | I1_DRDY2 I1_WTM | I1_OVERRUN |  | Ī |
|----------|------------|-----------------|------------|--|---|
|----------|------------|-----------------|------------|--|---|

<sup>1.</sup> This bit has to be set '0' for correct operation.

#### Table 27. CTRL\_REG3\_A description

| I1_CLICK   | CLICK interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable)          |
|------------|------------------------------------------------------------------------------|
| I1_AOI1    | AOI1 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable)           |
| I1_DRDY1   | DRDY1 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable)          |
| I1_DRDY2   | DRDY2 interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable)          |
| I1_WTM     | FIFO watermark interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable) |
| I1_OVERRUN | FIFO overrun interrupt on INT1_A. Default value 0. (0: Disable; 1: Enable)   |

# 7.4 CTRL\_REG4\_A (23h)

#### Table 28. CTRL\_REG4\_A register

| BDU | BLE | FS1 | FS0 | HR | 0 <sup>(1)</sup> | 0 <sup>(1)</sup> | SIM |  |
|-----|-----|-----|-----|----|------------------|------------------|-----|--|
|-----|-----|-----|-----|----|------------------|------------------|-----|--|

#### Table 29. CTRL\_REG4\_A description

| BDU     | Block data update. Default value: 0(0: continuous update; 1: output registers not updated until MSB and LSB reading) |
|---------|----------------------------------------------------------------------------------------------------------------------|
| BLE     | Big/little endian data selection. Default value 0. (0: Data LSB at lower address; 1: Data MSB at lower address)      |
| FS1-FS0 | Full-scale selection. default value: 00 (00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)                            |
| HR      | Normal mode: default value: 0<br>(0: normal mode disable; 1: normal mode enable                                      |
| SIM     | SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface)                     |

### 7.5 CTRL\_REG5\_A (24h)

#### Table 30. CTRL\_REG5\_A register

| BOOT | FIFO_EN |  |  | LIR_INT1 | D4D_INT1 | 0 <sup>(1)</sup> | 0 <sup>(1)</sup> |
|------|---------|--|--|----------|----------|------------------|------------------|
|------|---------|--|--|----------|----------|------------------|------------------|

<sup>1.</sup> This bit has to be set '0' for correct operation.

#### Table 31. CTRL\_REG5\_A description

| BOOT     | Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content)                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FIFO_EN  | FIFO enable. Default value: 0<br>(0: FIFO disable; 1: FIFO enable)                                                                                                                                |
| LIR_INT1 | Latch interrupt request on INT1_SRC_A register, with INT1_SRC_A register cleared by reading INT1_SRC_A itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) |
| D4D_INT1 | 4D enable: 4D detection is enabled on INT1_A when 6D bit on INT1_CFG_A is set to 1.                                                                                                               |

# 7.6 CTRL\_REG6\_A (25h)

#### Table 32. CTRL\_REG6\_A register

| I2_CLICKen | I2_INT1 | 0 <sup>(1)</sup> | BOOT_I2 | 0 <sup>(1)</sup> | <br>H_LACTIVE |  |
|------------|---------|------------------|---------|------------------|---------------|--|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 33. CTRL\_REG6 description

| I2_CLICKen | Click interrupt on INT2_A. Default value 0.        |
|------------|----------------------------------------------------|
| I2_INT1    | Interrupt 1 function enabled on INT2_A. Default 0. |
| BOOT_I2    | Boot on INT2_A.                                    |
| H_LACTIVE  | 0: interrupt active high; 1: interrupt active low. |

# 7.7 REFERENCE/DATACAPTURE\_A (26h)

#### Table 34. REFERENCE/DATACAPTURE\_A register

| Ref7 | Ref6 | Ref5 | Ref4 | Ref3 | Ref2 | Ref1 | Ref0 |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |

#### Table 35. REFERENCE/DATACAPTURE\_A register description

| Ref 7-Ref0 | Reference value for interrupt generation. Default value: 0 |
|------------|------------------------------------------------------------|
|------------|------------------------------------------------------------|

### 7.8 **STATUS\_REG\_A** (27h)

#### Table 36. STATUS\_REG\_A register

| ZYXOR ZOR | YOR | XOR | ZYXDA | ZDA | YDA | XDA |  |
|-----------|-----|-----|-------|-----|-----|-----|--|
|-----------|-----|-----|-------|-----|-----|-----|--|

#### Table 37. STATUS\_REG\_A register description

|       | •                                                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ZYXOR | X-, Y- and Z-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: a new set of data has overwritten the previous ones) |
| ZOR   | Z-axis data overwrite. Default value: 0 (0: no overrun has occurred; 1: a new data for the Z-axis has overwritten the previous one)       |
| YOR   | Y-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: new data for the Y-axis has overwritten the previous data)      |
| XOR   | X-axis data overwrite. Default value: 0 (0: no overwrite has occurred; 1: new data for the X-axis has overwritten the previous data)      |
| ZYXDA | X-, Y- and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available)     |
| ZDA   | Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)    |
| YDA   | Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)    |

# 7.9 OUT\_X\_L\_A (28h), OUT\_X\_H\_A (29h)

This register contains X-axis acceleration data. Values are expressed in two's complement.

# 7.10 OUT\_Y\_L\_A (2Ah), OUT\_Y\_H\_A (2Bh)

This register contains Y-axis acceleration data. Values are expressed in two's complement.

# 7.11 OUT\_Z\_L \_A(2Ch), OUT\_Z\_H\_A (2Dh)

This register contains Z-axis acceleration data. Values are expressed in two's complement.

# 7.12 FIFO\_CTRL\_REG\_A (2Eh)

Table 38. FIFO\_CTRL\_REG\_A register

|     |     |    | •    |      |      |      |      |
|-----|-----|----|------|------|------|------|------|
| FM1 | FM0 | TR | FTH4 | FTH3 | FTH2 | FTH1 | FTH0 |

#### Table 39. FIFO\_CTRL\_REG\_A register description

| FM1-FM0 | FIFO mode selection. Default value: 00 (see <i>Table 40: FIFO mode configuration</i> )                                                      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|
| TR      | Trigger selection. Default value: 0 0: Trigger event linked to trigger signal on INT1_A 1: Trigger event linked to trigger signal on INT2_A |
| FTH4:0  | Default value: 0                                                                                                                            |

#### Table 40. FIFO mode configuration

| FM1 | FM0 | FIFO mode    |
|-----|-----|--------------|
| 0   | 0   | Bypass mode  |
| 0   | 1   | FIFO mode    |
| 1   | 0   | Stream mode  |
| 1   | 1   | Trigger mode |

# 7.13 FIFO\_SRC\_REG\_A (2Fh)

#### Table 41. FIFO\_SRC\_REG\_A register

| WTM OVRN_FIFO EN | MPTY FSS4 | FSS3 F | FSS2 | FSS1 | FSS0 |
|------------------|-----------|--------|------|------|------|
|------------------|-----------|--------|------|------|------|

# 7.14 INT1\_CFG\_A (30h)

#### Table 42. INT1\_CFG\_REG\_A register

| AOI | 6D | ZHIE/ | ZLIE/  | YHIE/ | YLIE/  | XHIE/ | XLIE/  |
|-----|----|-------|--------|-------|--------|-------|--------|
|     |    | ZUPE  | ZDOWNE | YUPE  | YDOWNE | XUPE  | XDOWNE |

#### Table 43. INT1\_CFG\_REG\_A description

| AOI             | And/Or combination of Interrupt events. Default value: 0. Refer to <i>Table 44: Interrupt mode</i>                                                     |  |  |  |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 6D              | 6-direction detection function enabled. Default value: 0. Refer to <i>Table 44: Interrupt mode</i>                                                     |  |  |  |
| ZHIE/<br>ZUPE   | Enable interrupt generation on Z high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request)  |  |  |  |
| ZLIE/<br>ZDOWNE | Enable interrupt generation on Z low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request)   |  |  |  |
| YHIE/<br>YUPE   | Enable interrupt generation on Y high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) |  |  |  |
| YLIE/<br>YDOWNE | Enable interrupt generation on Y low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)  |  |  |  |

#### Table 43. INT1\_CFG\_REG\_A description (continued)

| XHIE/<br>XUPE   | Enable interrupt generation on X high event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.) |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| XLIE/XDO<br>WNE | Enable interrupt generation on X low event or on direction recognition. Default value: 0 (0: disable interrupt request; 1: enable interrupt request.)  |

The contents of the INT1\_CFG\_REG\_A register are loaded at boot.

A write operation at this address is possible only after system boot.

Table 44. Interrupt mode

| AOI | 6D | Interrupt mode                      |
|-----|----|-------------------------------------|
| 0   | 0  | OR combination of interrupt events  |
| 0   | 1  | 6-direction movement recognition    |
| 1   | 0  | AND combination of interrupt events |
| 1   | 1  | 6-direction position recognition    |

The difference between AOI-6D = '01' and AOI-6D = '11' is defined as follows:

AOI-6D = '01' is movement recognition. An interrupt is generated when the orientation moves from an unknown zone to a known zone. The interrupt signal stays for a duration determined by ODR.

AOI-6D = '11' is direction recognition. An interrupt is generated when the orientation is inside a known zone. The interrupt signal stays until orientation is inside the zone.

### 7.15 INT1\_SRC\_A (31h)

Table 45. INT1\_SRC\_A register

| 0 <sup>(1)</sup> | IA | ZH | ZL | YH | YL | XH | XL |
|------------------|----|----|----|----|----|----|----|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 46. INT1\_SRC\_A description

| IA | Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) |
|----|------------------------------------------------------------------------------------------------------------------------|
| ZH | Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)                                               |
| ZL | Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)                                                 |
| YH | Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)                                               |
| YL | Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)                                                 |

#### Table 46. INT1\_SRC\_A description

| ХН | X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) |
|----|--------------------------------------------------------------------------|
| XL | X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)   |

The Interrupt 1 source register is a read-only register.

Reading at this address clears the INT1\_SRC\_A IA bit (and the interrupt signal on the INT1\_A pin) and allows the refreshment of data in the INT1\_SRC\_A register if the latched option was chosen.

### 7.16 INT1\_THS\_A (32h)

#### Table 47. INT1\_THS\_A register

| 0 <sup>(1)</sup> | THS6 | THS5 | THS4 | THS3 | THS2 | THS1 | THS0 |
|------------------|------|------|------|------|------|------|------|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 48. INT1\_THS\_A description

| THS6 - THS0 |
|-------------|
|-------------|

### 7.17 INT1\_DURATION\_A (33h)

#### Table 49. INT1\_DURATION\_A register

| 0 <sup>(1)</sup> | D6 | D5 | D4 | D3 | D2 | D1 | D0 |  |
|------------------|----|----|----|----|----|----|----|--|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 50. INT1\_DURATION\_A description

|         | <u> </u>                                |
|---------|-----------------------------------------|
| D0 D0   | D 11                                    |
| D6 - D0 | Duration value. Default value: 000 0000 |
|         |                                         |

The **D6 - D0** bits set the minimum duration of the Interrupt 1 event to be recognized. The duration of the steps and maximum values depend on the ODR chosen.

# 7.18 CLICK\_CFG \_A (38h)

#### Table 51. CLICK CFG A register

| <br> |    |    |    |    |    |    |
|------|----|----|----|----|----|----|
| <br> | ZD | ZS | YD | YS | XD | XS |

### Table 52. CLICK\_CFG\_A description

|    | •                                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ZD | Enable interrupt double CLICK on Z-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| ZS | Enable interrupt single CLICK on Z-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| YD | Enable interrupt double CLICK on Y-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| YS | Enable interrupt single CLICK on Y-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| XD | Enable interrupt double CLICK on X-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| XS | Enable interrupt single CLICK on X-axis. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |

## 7.19 CLICK\_SRC\_A (39h)

### Table 53. CLICK\_SRC\_A register

| IA DCLICK SCLICK Sign Z Y X |  |
|-----------------------------|--|
|-----------------------------|--|

### Table 54. CLICK\_SRC\_A description

| IA     | Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated)        |
|--------|-------------------------------------------------------------------------------------------------------------------------------|
| DCLICK | Double CLICK-CLICK enable. Default value: 0 (0: double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable) |
| SCLICK | Single CLICK-CLICK enable. Default value: 0 (0: single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable) |
| Sign   | CLICK-CLICK Sign. 0: positive detection, 1: negative detection                                                                |
| Z      | Z CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Z high event has occurred)                                     |
| Υ      | Y CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: Y high event has occurred)                                     |
| Х      | X CLICK-CLICK detection. Default value: 0 (0: no interrupt, 1: X high event has occurred)                                     |

## 7.20 CLICK\_THS\_A (3Ah)

#### Table 55. CLICK\_THS\_A register

| LIR Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 | Ths0 |
|-----------------------------------|------|
|-----------------------------------|------|

#### Table 56. CLICK\_SRC\_A description

|           | ·                                                                            |
|-----------|------------------------------------------------------------------------------|
| Ths6-Ths0 | CLICK-CLICK threshold. Default value: 000 0000                               |
| LIR       | Latch interrupt request for CLICK-CLICK function enable. 0 disable, 1 enable |

## 7.21 TIME\_LIMIT\_A (3Bh)

#### Table 57. TIME\_LIMIT\_A register

#### Table 58. TIME\_LIMIT\_A description

| TLI7-TLI0 | CLICK-CLICK time limit. Default value: 000 0000 |
|-----------|-------------------------------------------------|
|-----------|-------------------------------------------------|

## 7.22 TIME\_LATENCY\_A (3Ch)

#### Table 59. TIME\_LATENCY\_A register

| TLA7 | TLA6 | TLA5 | TLA4 | TLA3 | TLA2 | TLA1 | TLA0 |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |

#### Table 60. TIME\_LATENCY\_A description

| TLA7-TLA0 |
|-----------|
|-----------|

## 7.23 TIME WINDOW\_A (3Dh)

#### Table 61. TIME\_WINDOW\_A register

| TW7 TW6 TW5 TW4 TW3 | TW2 T | TW1 TW0 |
|---------------------|-------|---------|
|---------------------|-------|---------|

#### Table 62. TIME\_WINDOW\_A description

|         | <u> </u>                |
|---------|-------------------------|
| TW7-TW0 | CLICK-CLICK time window |

## 7.24 CTRL\_REG1\_G (20h)

Table 63. CTRL\_REG1\_G register

Table 64. CTRL\_REG1\_G description

| DR1-DR0 | Output data rate selection. Refer to Table 65: DR and BW configuration setting              |
|---------|---------------------------------------------------------------------------------------------|
| BW1-BW0 | Bandwidth selection. Refer to Table 65: DR and BW configuration setting                     |
| PD      | Power-down mode enable. Default value: 0 (0: power-down mode, 1: normal mode or sleep mode) |
| Zen     | Z-axis enable. Default value: 1<br>(0: Z-axis disabled; 1: Z-axis enabled)                  |
| Yen     | Y-axis enable. Default value: 1<br>(0: Y-axis disabled; 1: Y-axis enabled)                  |
| Xen     | X-axis enable. Default value: 1<br>(0: X-axis disabled; 1: X-axis enabled)                  |

DR<1:0> is used to set the ODR selection. BW <1:0> is used to set bandwidth selection.

The following table gives the frequencies for all combinations of the  $\ensuremath{\mathsf{DR}}$  /  $\ensuremath{\mathsf{BW}}$  bits.

Table 65. DR and BW configuration setting

| DR <1:0> | BW <1:0> | ODR [Hz] | cutoff [Hz] |
|----------|----------|----------|-------------|
| 00       | 00       | 100      | 12.5        |
| 00       | 01       | 100      | 25          |
| 00       | 10       | 100      | 25          |
| 00       | 11       | 100      | 25          |
| 01       | 00       | 200      | 12.5        |
| 01       | 01       | 200      | 25          |
| 01       | 10       | 200      | 50          |
| 01       | 11       | 200      | 70          |
| 10       | 00       | 400      | 20          |
| 10       | 01       | 400      | 25          |
| 10       | 10       | 400      | 50          |
| 10       | 11       | 400      | 110         |
| 11       | 00       | 800      | 30          |
| 11       | 01       | 800      | 35          |
| 11       | 10       | 800      | 50          |
| 11       | 11       | 800      | 110         |

Combination of **PD**, **Zen**, **Yen**, **Xen** are used to set device in different modes (power-down / normal / sleep mode) according to the following table.

Table 66. Power mode selection configuration

| Mode       | PD | Zen | Yen | Xen |
|------------|----|-----|-----|-----|
| Power-down | 0  | -   | -   | -   |
| Sleep      | 1  | 0   | 0   | 0   |
| Normal     | 1  | -   | -   | -   |

### 7.25 CTRL\_REG2\_G (21h)

Table 67. CTRL\_REG2\_G register

| 0 <sup>(1)</sup> | 0 <sup>(1)</sup> | HPM1 | HPM1 | HPCF3 | HPCF2 | HPCF1 | HPCF0 |
|------------------|------------------|------|------|-------|-------|-------|-------|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

Table 68. CTRL\_REG2\_G description

| HPM1-<br>HPM0   | High-pass filter mode selection. Default value: 00 Refer to Table 69: High-pass filter mode configuration           |
|-----------------|---------------------------------------------------------------------------------------------------------------------|
| HPCF3-<br>HPCF0 | High-pass filter cutoff frequency selection Refer to Table 70: High-pass filter cutoff frequency configuration [Hz] |

Table 69. High-pass filter mode configuration

| HPM1 | HPM0 High-pass filter mode |                                             |
|------|----------------------------|---------------------------------------------|
| 0    | 0                          | Normal mode (reset reading HP_RESET_FILTER) |
| 0    | 1                          | Reference signal for filtering              |
| 1    | 0                          | Normal mode                                 |
| 1    | 1                          | Autoreset on interrupt event                |

Table 70. High-pass filter cutoff frequency configuration [Hz]

| HPCF3-0 | ODR = 100 Hz | ODR = 200 Hz | ODR = 400 Hz | ODR = 800 Hz |
|---------|--------------|--------------|--------------|--------------|
| 0000    | 8            | 15           | 30           | 56           |
| 0001    | 4            | 8            | 15           | 30           |
| 0010    | 2            | 4            | 8            | 15           |
| 0011    | 1            | 2            | 4            | 8            |
| 0100    | 0.5          | 1            | 2            | 4            |
| 0101    | 0.2          | 0.5          | 1            | 2            |

Table 70. High-pass filter cutoff frequency configuration [Hz] (continued)

| HPCF3-0 | ODR = 100 Hz | ODR = 200 Hz | ODR = 400 Hz | ODR = 800 Hz |
|---------|--------------|--------------|--------------|--------------|
| 0110    | 0.1          | 0.2          | 0.5          | 1            |
| 0111    | 0.05         | 0.1          | 0.2          | 0.5          |
| 1000    | 0.02         | 0.05         | 0.1          | 0.2          |
| 1001    | 0.01         | 0.02         | 0.05         | 0.1          |

### 7.26 CTRL\_REG3\_G (22h)

#### Table 71. CTRL\_REG3\_G register

| I1_Int1 | I1_Boot | H_Lactive | PP_OD | I2_DRDY | I2_WTM | I2_ORun | I2_Empty |
|---------|---------|-----------|-------|---------|--------|---------|----------|

#### Table 72. CTRL\_REG3\_G description

|           | <b>!</b>                                                                             |
|-----------|--------------------------------------------------------------------------------------|
| I1_Int1   | Interrupt enable on INT1_G pin. Default value 0. (0: Disable; 1: Enable)             |
| I1_Boot   | Boot status available on INT1_G. Default value 0. (0: Disable; 1: Enable)            |
| H_Lactive | Interrupt active configuration on INT1_G. Default value 0. (0: High; 1:Low)          |
| PP_OD     | Push-Pull / Open drain. Default value: 0. (0: Push-Pull; 1: Open drain)              |
| I2_DRDY   | Date Ready on DRDY_G/INT2_G. Default value 0. (0: Disable; 1: Enable)                |
| I2_WTM    | FIFO watermark interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable) |
| I2_ORun   | FIFO overrun interrupt on DRDY_G/INT2_G Default value: 0. (0: Disable; 1: Enable)    |
| I2_Empty  | FIFO empty interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)     |

## 7.27 CTRL\_REG4\_G (23h)

### Table 73. CTRL\_REG4\_G register

| BDU | BLE | FS1 | FS0 |  | 0 <sup>(1)</sup> | 0 <sup>(1)</sup> | SIM |
|-----|-----|-----|-----|--|------------------|------------------|-----|
|-----|-----|-----|-----|--|------------------|------------------|-----|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 74. CTRL\_REG4\_G description

| BDU | Block data update. Default value: 0<br>(0: continuous update; 1: output registers not updated until MSB and LSB have been read) |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| BLE | Big/little endian data selection. Default value 0.<br>(0: Data LSB at lower address; 1: Data MSB at lower address)              |

Table 74. CTRL\_REG4\_G description (continued)

| FS1-FS0 | Full-scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)    |
|---------|---------------------------------------------------------------------------------------------------|
| SIM     | SPI serial interface mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface). |

## 7.28 CTRL\_REG5\_G (24h)

Table 75. CTRL\_REG5\_G register

| BOOT FIFO_ | V | HPen | INT1_Sel1 | INT1_Sel0 | Out_Sel1 | Out_Sel0 |
|------------|---|------|-----------|-----------|----------|----------|
|------------|---|------|-----------|-----------|----------|----------|

Table 76. CTRL\_REG5\_G description

| BOOT                    | Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content)                                                          |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| FIFO_EN                 | FIFO enable. Default value: 0<br>(0: FIFO disable; 1: FIFO Enable)                                                                          |
| HPen                    | High-pass filter enable. Default value: 0 (0: HPF disabled; 1: HPF enabled See Figure 12: INT1_Sel and Out_Sel configuration block diagram) |
| INT1_Sel1-<br>INT1_Sel0 | INT1 selection configuration. Default value: 0 (See Figure 12: INT1_Sel and Out_Sel configuration block diagram)                            |
| Out_Sel1-<br>Out_Sel1   | Out selection configuration. Default value: 0 (See Figure 12: INT1_Sel and Out_Sel configuration block diagram)                             |

Figure 12. INT1\_Sel and Out\_Sel configuration block diagram



Table 77. Out\_Sel configuration setting

| Hpen | OUT_SEL1 | OUT_SEL0 | Description                                                          |  |  |
|------|----------|----------|----------------------------------------------------------------------|--|--|
| х    | 0        | 0        | Data in DataReg and FIFO are non-high-<br>pass-filtered              |  |  |
| х    | 0        | 1        | Data in DataReg and FIFO are high-pass-filtered                      |  |  |
| 0    | 1        | х        | Data in DataReg and FIFO are low-pass-<br>filtered by LPF2           |  |  |
| 1    | 1        | х        | Data in DataReg and FIFO are high-pass and low-pass-filtered by LPF2 |  |  |

### Table 78. INT\_SEL configuration setting

| Hpen | INT_SEL1 | INT_SEL2 | Description                                                            |
|------|----------|----------|------------------------------------------------------------------------|
| х    | 0        | 0        | Non-high-pass-filtered data are used for interrupt generation          |
| х    | 0        | 1        | High-pass-filtered data are used for interrupt generation              |
| 0    | 1        | х        | Low-pass-filtered data are used for interrupt generation               |
| 1    | 1        | х        | High-pass and low-pass-filtered data are used for interrupt generation |

## 7.29 REFERENCE/DATACAPTURE\_G (25h)

#### Table 79. REFERENCE/DATACAPTURE\_G register

|  | Ref7 | Ref6 | Ref5 | Ref4 | Ref3 | Ref2 | Ref1 | Ref0 |
|--|------|------|------|------|------|------|------|------|
|--|------|------|------|------|------|------|------|------|

#### Table 80. REFERENCE/DATACAPTURE\_G register description

| Ref 7-Ref0 | Reference value for interrupt generation. Default value: 0 |
|------------|------------------------------------------------------------|
|------------|------------------------------------------------------------|

## 7.30 **OUT\_TEMP\_G** (26h)

#### Table 81. OUT\_TEMP\_G register

| Temp7 | Temp6 | Temp5 | Temp4 | Temp3 | Temp2 | Temp1 | Temp0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
|-------|-------|-------|-------|-------|-------|-------|-------|

#### Table 82. OUT\_TEMP\_G register description

| Temp7-Temp0 | Temperature data (1LSB/deg - 8-bit resolution). The value is expressed as |
|-------------|---------------------------------------------------------------------------|
|             | two's complement.                                                         |

## 7.31 STATUS\_REG\_G (27h)

#### Table 83. STATUS\_REG\_G register

| ZYXOR | ZOR | YOR | XOR | ZYXDA | ZDA | YDA | XDA |
|-------|-----|-----|-----|-------|-----|-----|-----|
|-------|-----|-----|-----|-------|-----|-----|-----|

#### Table 84. STATUS\_REG\_G description

| ZYXOR | (c. ne everyme has essaired, i her data has everyment the previous data series it was        |
|-------|----------------------------------------------------------------------------------------------|
|       | read)                                                                                        |
| ZOR   | Z-axis data overwrite. Default value: 0                                                      |
|       | (0: no overwrite has occurred; 1: new data for the Z-axis has overwritten the previous data) |
| YOR   | Y-axis data overwrite. Default value: 0                                                      |
| TON   | (0: no overwrite has occurred; 1: new data for the Y-axis has overwritten the previous data) |
| XOR   | X-axis data overwrite. Default value: 0                                                      |
| XUH   | (0: no overwrite has occurred; 1: new data for the X-axis has overwritten the previous data) |
| ZYXDA | X-, Y-, Z-axis new data available. Default value: 0                                          |
|       | (0: a new set of data is not yet available; 1: a new set of data is available)               |
| ZDA   | Z-axis new data available. Default value: 0                                                  |
|       | (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)   |
| YDA   | Y-axis new data available. Default value: 0                                                  |
|       | (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available)   |
| XDA   | X-axis new data available. Default value: 0                                                  |
|       | (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)   |
|       |                                                                                              |

## 7.32 OUT\_X\_L\_G (28h), OUT\_X\_H\_G (29h)

This register contains X-axis angular rate data. Values are expressed as two's complement.

## 7.33 OUT\_Y\_L\_G (2Ah), OUT\_Y\_H\_G (2Bh)

This register contains Y-axis angular rate data. Values are expressed as two's complement.

## 7.34 OUT\_Z\_L\_G (2Ch), OUT\_Z\_H\_G (2Dh)

This register contains Z-axis angular rate data. Values are expressed as two's complement.

## 7.35 FIFO\_CTRL\_REG\_G (2Eh)

#### Table 85. FIFO\_CTRL\_REG\_G register

| FM2 FM1 | FM0 | WTM4 | WTM3 | WTM2 | WTM1 | WTM0 |
|---------|-----|------|------|------|------|------|
|---------|-----|------|------|------|------|------|

#### Table 86. FIFO\_CTRL\_REG\_G register description

| FM2-FM0   | FIFO mode selection. Default value: 00 (see <i>Table 40: FIFO mode configuration</i> |
|-----------|--------------------------------------------------------------------------------------|
| WTM4-WTM0 | FIFO threshold. Watermark level setting                                              |

#### Table 87. FIFO mode configuration

| FM2 | FM1 | FM0 | FIFO mode             |
|-----|-----|-----|-----------------------|
| 0   | 0   | 0   | Bypass mode           |
| 0   | 0   | 1   | FIFO mode             |
| 0   | 1   | 0   | Stream mode           |
| 0   | 1   | 1   | Stream-to-FIFO mode   |
| 1   | 0   | 0   | Bypass-to-Stream mode |

## 7.36 FIFO\_SRC\_REG\_G (2Fh)

#### Table 88. FIFO\_SRC\_REG\_G register

| WT | М | OVRN | EMPTY | FSS4 | FSS3 | FSS2 | FSS1 | FSS0 |
|----|---|------|-------|------|------|------|------|------|
|    |   |      |       |      |      |      |      |      |

#### Table 89. FIFO\_SRC\_REG\_G register description

| WTM       | Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal or higher than WTM level) |
|-----------|----------------------------------------------------------------------------------------------------------------|
| OVRN      | Overrun bit status. (0: FIFO is not completely filled; 1:FIFO is completely filled)                            |
| EMPTY     | FIFO empty bit. ( 0: FIFO not empty; 1: FIFO empty)                                                            |
| FSS4-FSS1 | FIFO stored data level                                                                                         |

## 7.37 INT1\_CFG\_G (30h)

This is the configuration register for the interrupt source.

### Table 90. INT1\_CFG\_G register

| AND/OR LIR ZHIE ZLIE YHIE YLIE XHIE |
|-------------------------------------|
|-------------------------------------|

#### Table 91. INT1\_CFG\_G description

| AND/OR | AND/OR combination of interrupt events. Default value: 0 (0: OR combination of interrupt events 1: AND combination of interrupt events                                          |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIR    | Latch Interrupt Request. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched) Cleared by reading INT1_SRC_G reg.                                   |
| ZHIE   | Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| ZLIE   | Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)   |
| YHIE   | Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| YLIE   | Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)   |
| XHIE   | Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) |
| XLIE   | Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold)   |

47/54

## 7.38 INT1\_SRC\_G (31h)

The interrupt source register is a read-only register.

Reading at this address clears the INT1\_SRC\_G IA bit (and eventually the interrupt signal on the INT1\_G pin) and allows the refreshment of data in the INT1\_SRC\_G register if the latched option was chosen.

#### Table 92. INT1 SRC G register

| O <sup>(1)</sup> | IA | ZH | ZL | ΥH | YL | XH | XL |
|------------------|----|----|----|----|----|----|----|

<sup>1.</sup> This bit has to be set to '0' for correct operation.

#### Table 93. INT1\_SRC\_G description

| IA | Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) |
|----|------------------------------------------------------------------------------------------------------------------------|
| ZH | Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred)                                               |
| ZL | Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred)                                                 |
| YH | Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred)                                               |
| YL | Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred)                                                 |
| XH | X high. Default value: 0 (0: no interrupt, 1: X high event has occurred)                                               |
| XL | X low. Default value: 0 (0: no interrupt, 1: X low event has occurred)                                                 |

## 7.39 INT1\_THS\_XH\_G (32h)

#### Table 94. INT1\_THS\_XH\_G register

|  | THSX14 | THSX13 | THSX12 | THSX11 | THSX10 | THSX9 | THSX8 |
|--|--------|--------|--------|--------|--------|-------|-------|

#### Table 95. INT1\_THS\_XH\_G description

| THSX14 - THSX9 | Interrupt threshold. Default value: 0000 0000 |
|----------------|-----------------------------------------------|
|----------------|-----------------------------------------------|

## 7.40 INT1\_THS\_XL\_G (33h)

#### Table 96. INT1\_THS\_XL\_G register

| THSX7 THSX6 THSX5 THSX4 THSX3 THSX2 THSX1 THS |
|-----------------------------------------------|
|-----------------------------------------------|

#### Table 97. INT1\_THS\_XL\_G description

| THSX7 - THSX0 | Interrupt threshold. Default value: 0000 0000 |
|---------------|-----------------------------------------------|
|---------------|-----------------------------------------------|

## 7.41 INT1\_THS\_YH\_G (34h)

#### Table 98. INT1\_THS\_YH\_G register

#### Table 99. INT1\_THS\_YH\_G description

| THSY14 - THSY9 | Interrupt threshold. Default value: 0000 0000 |
|----------------|-----------------------------------------------|
|----------------|-----------------------------------------------|

## 7.42 INT1\_THS\_YL\_G (35h)

#### Table 100. INT1\_THS\_YL\_G register

| THSR7   THSY6   THSY5   THSY4   THSY3   THSY2   THSY1   THS |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

#### Table 101. INT1\_THS\_YL\_G description

| THSY7 - THSY0 | Interrupt threshold. Default value: 0000 0000 |
|---------------|-----------------------------------------------|
|---------------|-----------------------------------------------|

## 7.43 INT1\_THS\_ZH\_G (36h)

#### Table 102. INT1\_THS\_ZH\_G register

| THSZ14 THSZ13 | THSZ12 | THSZ11 | THSZ10 | THSZ9 | THSZ8 |
|---------------|--------|--------|--------|-------|-------|
|---------------|--------|--------|--------|-------|-------|

#### Table 103. INT1\_THS\_ZH\_G description

| ſ | THSZ14 - THSZ9 | Interrupt threshold. Default value: 0000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                | The state of the s |

## 7.44 INT1\_THS\_ZL\_G (37h)

48/54

#### Table 104. INT1\_THS\_ZL\_G register

| THSZ7 | THSZ6 | THSZ5 | THSZ4 | THSZ3 | THSZ2 | THSZ1 | THSZ0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
|-------|-------|-------|-------|-------|-------|-------|-------|

#### Table 105. INT1\_THS\_ZL\_G description

| THSZ7 - THSZ0 | Interrupt threshold. Default value: 0000 0000 |
|---------------|-----------------------------------------------|
|---------------|-----------------------------------------------|

### 7.45 **INT1\_DURATION\_G** (38h)

Table 106. INT1\_DURATION\_G register

| WAIT D6 D | 5 I D4 I D3 | D2 D1 | D0 |
|-----------|-------------|-------|----|
|-----------|-------------|-------|----|

Table 107. INT1\_DURATION\_G description

| WAIT    | WAIT enable. Default value: 0 (0: disable; 1: enable) |
|---------|-------------------------------------------------------|
| D6 - D0 | Duration value. Default value: 000 0000               |

The **D6 - D0** bits set the minimum duration of the interrupt event to be recognized. The duration of the steps and maximum values depend on the ODR chosen.

The **WAIT** bit has the following meaning:

Wait ='0': the interrupt falls immediately if the signal crosses the selected threshold

Wait ='1': if the signal crosses the selected threshold, the interrupt falls only after the duration has counted the number of samples at the selected data rate, written into the duration counter register.

Figure 13. Wait disabled



Figure 14. Wait enabled



LSM330DL Package information

## 8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

ECOPACK® specifications are available at: www.st.com.

Package information LSM330DL

Table 108. LLGA 7.5 x 4.4 x 1.1 28L mechanical data

| Dim.   |       | mm    |       |
|--------|-------|-------|-------|
| Dilli. | Min.  | Тур.  | Max.  |
| A1     |       |       | 1.100 |
| A2     |       | 0.855 |       |
| A3     |       | 0.200 |       |
| D1     | 4.250 | 4.400 | 4.550 |
| E1     | 7.350 | 7.500 | 7.650 |
| N1     |       | 0.300 |       |
| L1     |       | 5.400 |       |
| L2     |       | 1.800 |       |
| P2     |       | 1.200 |       |
| T1     |       | 0.600 |       |
| T2     |       | 0.400 |       |
| M      |       | 0.100 |       |
| d      |       | 0.3   |       |
| k      |       | 0.050 |       |
| h      |       | 0.100 |       |

Figure 15. LLGA 7.5 x 4.4 x 1.1 28L package drawing



LSM330DL Revision history

# 9 Revision history

Table 109. Document revision history

| Date        | Revision | Changes        |
|-------------|----------|----------------|
| 19-Jul-2011 | 1        | First release. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

54/54 Doc ID 022018 Rev 1

