

Memória virtual Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

- O que é memória virtual?
 - É uma organização lógica da memória para abstrair os endereços físicos da hierarquia de memória
 - Cada processo possui seu próprio espaço de endereçamento que é contínuo e dedicado

- Como a memória virtual é implementada?
 - A memória física é dividida em blocos chamados de páginas que são alocadas para diferentes processos
 - Esta organização cria um esquema de proteção dos dados, pois cada processo tem suas próprias páginas

- Por que a memória virtual foi desenvolvida?
 - Para eliminar a responsabilidade do programador de gerenciamento situações onde o software e seus dados não cabem na memória física
 - Este gerenciamento consiste em dividir o software em partes que são substituídas sob demanda na memória ao longo da execução do software

- Por que a memória virtual foi desenvolvida?
 - Os dados da memória são contíguos e esta organização pode causar fragmentação da memória
 - Na memória virtual, o mapeamento não contíguo dos endereços evita a fragmentação externa dos dados

Quem vai realizar o gerenciamento de memória?

- Quem vai realizar o gerenciamento de memória?
 - Hardware: é suportado pela Memory Management Unit (MMU), realizando a tradução de endereço, controle de cache e proteção de memória

- Quem vai realizar o gerenciamento de memória?
 - Hardware: é suportado pela Memory Management Unit (MMU), realizando a tradução de endereço, controle de cache e proteção de memória
 - Software: o sistema operacional mantém na memória uma tabela de páginas para armazenar o endereço físico onde a página está armazenada

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória
 - A melhoria da taxa de faltas pode ser obtida com algoritmos de substituição das páginas

- Pontos chave do projeto de memória virtual
 - Utilização de uma técnica associativa de páginas para minimizar a taxa de falta na memória
 - A melhoria da taxa de faltas pode ser obtida com algoritmos de substituição das páginas
 - A política de escrita na hierarquia deve ser atrasada (write back), uma vez que o acesso dos dispositivos de memória pode ser muito demorado

- Estrutura da tabela de páginas
 - Endereços virtuais de 32 bits e páginas com 4 KiB
 - ► Com $2^{32} \div 2^{12} = 2^{20}$ páginas, a tabela de páginas possui até $2^{20} \times 4 = 4$ *MiB* para cada processo

Tabela de páginas

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar de página está disponível na memória principal

Endereço virtual

000000000000000000000000000000000000000	010001001000
---	--------------

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar de página está disponível na memória principal

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar de página está disponível na memória principal

- Estrutura da tabela de páginas
 - Necessidade de campo de validade para indicar de página está disponível na memória principal

- Estrutura da tabela de páginas
 - Se o conteúdo da página foi modificado, o conteúdo precisa ser salvo antes de ser substituído

- Estrutura da tabela de páginas
 - Visão geral da organização da memória

- Estrutura da tabela de páginas
 - Visão geral da organização da memória

O que acontece se todos os *N* processos utilizarem a capacidade total de suas memórias?

- Gerenciamento de memória
 - Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - Registradores < Cache < Memória < Disco</p>

- Gerenciamento de memória
 - Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - Registradores < Cache < Memória < Disco</p>
 - Quando uma página solicitada não possui um endereço físico, ou seja, não está na memória principal, ocorre uma falta de página
 - É decorrente da limitação de capacidade de armazenamento da memória física
 - Se a capacidade é excedida e esta informação foi modificada, é necessário realizar a transferência para o nível inferior da hierarquia (write back)

- Gerenciamento de memória
 - Todos os componentes da hierarquia de memória apresentam limitações quanto a capacidade
 - Registradores < Cache < Memória < Disco</p>
 - Quando uma página solicitada não possui um endereço físico, ou seja, não está na memória principal, ocorre uma falta de página
 - É decorrente da limitação de capacidade de armazenamento da memória física
 - Se a capacidade é excedida e esta informação foi modificada, é necessário realizar a transferência para o nível inferior da hierarquia (write back)
 - \uparrow %Faltas \longleftrightarrow \downarrow Desempenho

- Falta de página
 - A página solicitada não está disponível na memória
 - É preciso acessar a memória externa (swap space)

Endereço virtual

010001001000

- Falta de página
 - A página solicitada não está disponível na memória
 - É preciso acessar a memória externa (swap space)

- ▶ Falta de página
 - A página solicitada não está disponível na memória
 - É preciso acessar a memória externa (swap space)

- ▶ Falta de página
 - O endereço físico da memória recebe o dado
 - A página solicitada foi escrita na tabela

- ▶ Falta de página
 - O endereço físico da memória recebe o dado
 - A página solicitada foi escrita na tabela

- ▶ Falta de página
 - O endereço físico da memória recebe o dado
 - A página solicitada foi escrita na tabela

- Falta de página
 - Não existem mais posições disponíveis na tabela
 - A página foi modificada e será substituída

- Falta de página
 - Não existem mais posições disponíveis na tabela
 - A página foi modificada e será substituída

- Falta de página
 - Não existem mais posições disponíveis na tabela
 - A página foi modificada e será substituída

- Falta de página
 - Política de substituição LRU
 - Campo de idade associado a cada página

- O que acontece quando os processos utilizam muito mais memória do que está disponível?
 - As faltas de páginas são constantes e recorrentes para cada processo, mesmo com políticas sofisticadas de substituição de páginas
 - O sistema consome maior parte do tempo realizando acesso e troca de páginas (trashing)

- O que acontece quando os processos utilizam muito mais memória do que está disponível?
 - As faltas de páginas são constantes e recorrentes para cada processo, mesmo com políticas sofisticadas de substituição de páginas
 - O sistema consome maior parte do tempo realizando acesso e troca de páginas (trashing)

Como melhorar o desempenho no acesso da tabela de páginas armazenadas na memória?

- Translation-Lookaside Buffer (TLB)
 - Cache para tradução de endereços com mapeamento das linhas totalmente associativo
 - Evita que a memória seja acessada diretamente para obtenção dos endereços físicos da tabela de páginas

Endereço virtual							
0 00 00 00 00		010001001000					
•							
Validade	Modificado	ldade	ldentificador		Endereço da página		
S	S	1	0110010010		110110011100110011		
S	N	0	01001110010				
N	N	1	?		?		
N	Ν	3	?		?		
_							

Endereço físico

010001001000
00000000

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- Translation-Lookaside Buffer (TLB)
 - Fluxo de tradução de endereço virtual e de acesso da tabela de páginas na memória principal

- ► Translation-Lookaside Buffer (TLB)
 - Cache com endereçamento virtual

- ► Translation-Lookaside Buffer (TLB)
 - Cache com endereçamento físico

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O processador acessa um endereço virtual

- ► Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A tradução do endereço virtual está na TLB (acerto)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A página solicitada está na memória principal (acerto)

- ► Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A cache não possui o bloco do endereço físico (falta)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O processador acessa um endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O endereço virtual não está na TLB (falta)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A página solicitada está na memória principal (acerto)

- ► Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A cache possui o bloco do endereço físico (acerto)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O processador acessa um endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O endereço virtual não está na TLB (falta)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A página solicitada está na memória principal (acerto)

- ► Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A cache não possui o bloco do endereço físico (falta)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O processador acessa um endereço virtual

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

O endereço virtual não está na TLB (falta)

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A página solicitada não está na memória principal (falta)

- ▶ Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

É necessário acessar a memória externa

- Translation-Lookaside Buffer (TLB)
 - Cenários de tradução de endereços virtuais

A cache não possui o bloco do endereço físico (falta)

- Translation-Lookaside Buffer (TLB)
 - Resumo dos cenários de tradução de endereços virtuais e acesso às páginas na memória principal

TLB	Página	Cache	Descrição	
Acerto	Acerto	Falta	A tradução para endereço físico está na TLB,	
Aceno			mas a o dado não está disponível na cache	
Falta	Acerto	Acerto	A TLB gera uma falta, causando o acesso para	
Falla			tabela de páginas para endereçar a cache	
Falta	Acerto	Falta	Com a falta na TLB, é necessário acessar a	
			tabela de páginas que gera falta na cache	
Falta	Falta	Falta	É o pior caso onde todos os níveis apresentam	
Fulla			faltas, causando acesso até a memória externa	

Por que a organização de memória virtual em páginas cria uma proteção de memória?

- Por que a organização de memória virtual em páginas cria uma proteção de memória?
 - Previne que acessos intencionais ou causados por falhas modifiquem indevidamente o conteúdo da memória principal alocada para outros processos

- Por que a organização de memória virtual em páginas cria uma proteção de memória?
 - Previne que acessos intencionais ou causados por falhas modifiquem indevidamente o conteúdo da memória principal alocada para outros processos
 - É essencial em sistemas com múltiplos processos (multitarefa) que compartilham a mesma memória
 - O sistema operacional é responsável pelo controle de acesso das páginas utilizadas pelos processos
 - Proteção de escrita da tabela de páginas, através de modos de operação (supervisor e usuário)
 - Chaveamento de modos de operação através de chamadas de sistema para tratamento de faltas

- O que é segmentação de memória?
 - Cria uma organização dos endereços da memória em segmentos que permite a definição de categorias e de atributos de privilégio e de proteção de acesso

- O que é segmentação de memória?
 - Cria uma organização dos endereços da memória em segmentos que permite a definição de categorias e de atributos de privilégio e de proteção de acesso
 - Ao contrário da paginação, o esquema de segmentação é configurável e visível ao programador

- Segmentos de memória
 - Ao contrário das páginas que possuem tamanho fixo, os segmentos possuem tamanho variável que podem ser definidos pelo compilador ou programador, com suas respectivas permissões de acesso

	Endereço virtual									
		0				0000				
	Índice	Validade	Modificado	Privilégio	Permissão	Endereço do segmento				
	:	:	:	:	:	:				
ľ		N	N	и	RW	?				
1	:	:	:	:	:	:				

- Segmentos de memória
 - Ao contrário das páginas que possuem tamanho fixo, os segmentos possuem tamanho variável que podem ser definidos pelo compilador ou programador, com suas respectivas permissões de acesso

	Endereço virtual									
		OIIIIIIIIIIIO				0000				
	Índice	Validade	Modificado	Privilégio	Permissão	Endereço do segmento				
,	:	:	:	:	:	:				
		N	N	u	RW	?				
	÷	:	÷	:	÷	÷				

O endereço virtual faz referência a uma tabela de segmentos para a tradução do endereço do segmento

Memória virtual x Memória física

- Falha de segmentação (segmentation fault)
 - É gerada quando endereços inválidos são acessados
 - ▶ Endereço inexistente
 - Acesso não alinhado

- Falha de segmentação (segmentation fault)
 - É gerada quando endereços inválidos são acessados
 - Endereço inexistente
 - Acesso não alinhado
 - Violação de restrição ou privilégio
 - Tentativa de escrita de segmento somente leitura
 - Acesso de usuário em segmento de supervisor

Segmentação

Comparativo entre paginação e segmentação

Característica	Paginação	Segmentação
Estruturas de dados	×	
dinâmicas		•
Compartilhamento de	×	./
dados entre processos		•
Proteção por atributos	X	_/
de controle		v
Gerenciamento invisível	√	×
ao programador		
Fragmentação externa	_/	×
de memória	•	

Segmentação

Comparativo entre paginação e segmentação

Característica	Paginação	Segmentação
Estruturas de dados	×	./
dinâmicas		•
Compartilhamento de	×	./
dados entre processos		· ·
Proteção por atributos	×	✓
de controle		
Gerenciamento invisível	✓	×
ao programador		
Fragmentação externa	✓	×
de memória		

É possível combinar as características da paginação e da segmentação em um mesmo sistema?

- Endereço virtual
 - Indexação do segmento para obtenção do endereço linear que será usado na paginação

Endereço virtual

Segmento Deslocamento

- ► Endereço virtual
 - Indexação do segmento para obtenção do endereço linear que será usado na paginação

- Endereço linear
 - Indexação do diretório e da tabela de páginas para tradução para o endereço físico

Memória virtual x Memória física

- Segmentação paginada
 - A tabela de segmentos indexa uma posição do diretório de páginas que referencia a tabela de páginas correspondente ao segmento

- Segmentação paginada
 - A tabela de segmentos indexa uma posição do diretório de páginas que referencia a tabela de páginas correspondente ao segmento
 - Todo o espaço de endereçamento pode ser utilizado por cada segmento definido no software

- Segmentação paginada
 - A tabela de segmentos indexa uma posição do diretório de páginas que referencia a tabela de páginas correspondente ao segmento
 - Todo o espaço de endereçamento pode ser utilizado por cada segmento definido no software
 - Combina as características de ambas organizações, sendo utilizada nas principais arquiteturas
 - Multics
 - ► Intel x86
 - ARM
 - · ...

- O que é um sistema embarcado?
 - É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

- O que é um sistema embarcado?
 - É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

Por que não utilizar memória virtual?

- O que é um sistema embarcado?
 - É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real
 - Por que não utilizar memória virtual?
 - Tempo determinístico para execução do software: a falta de páginas não é previsível (não determinismo)

- O que é um sistema embarcado?
 - É um sistema computacional para desempenhar funções de controle especializadas, geralmente com restrições de funcionamento em tempo real

Por que não utilizar memória virtual?

- Tempo determinístico para execução do software: a falta de páginas não é previsível (não determinismo)
- Limitações no hardware: falta de unidade de gerenciamento de memória (MMU) e grande latência no acesso da memória externa