ALGORITHMS AND DATA STRUCTURES II

Lecture 12
Randomized Algorithms,

1/25

Lecturer: K. Markov

markov@u-aizu.ac.jp

- An algorithm is called randomized if it uses:
 - a random number to make a decision at least once during the computation and

 its computation time is determined not only by the input data but also by the values of a random number generator.

DETERMINISTIC ALGORITHMS

- Deterministic algorithm always solves the problem correctly.
- Deterministic algorithm runs at least
 O(...) fast, i.e. for the worst case.

- Randomized algorithm takes a source of random numbers and makes random choices during execution.
- Behavior (running time) can vary even with a fixed input.

• Why use randomness?

 To avoid worst-case behavior: randomness can (probabilistically) guarantee average case behavior.

 To achieve efficient approximate solutions to intractable problems.

• Two main types:

Monte Carlo

- Runs for a fixed number of steps.
- If there is no solution, returns "no".
- If there is a solution, finds it with some probability (i.e. > 0.5).

Las Vegas

- Always produces the correct answer.
- Running time is random.

o Example: Find π using randomized algorithm.

Square area = 1 Circle area = $\pi/4$

The probability a random point in square is in circle = $\pi/4$

 $\pi = 4 \times \text{points in circle / points}$

o Example: Find π using randomized algorithm.

```
def PI (n):
   inCircle = 0
   for i = 1 to n:
      x = rand()
      y = rand()
      d = (x - 0.5)^2 + (y - 0.5)^2
      if d < 0.25:
          inCircle = inCircle + 1
   return 4 \times \text{inCircle} / n
```

o Example: Find π using randomized algorithm (result)

n: 1	4.0	4.0	0.0
n: 2	2.0	4.0	4.0
n: 4	3.0	4.0	3.0
n: 64	3.0625	3.125	3.0625
•••			
n: 1024	3.16796875	3.13671875	3.1640625
n: 16384	3.12622070	3.14038085	3.1279296
n: 131072	3.13494873	3.14785766	3.1376647 9/25
n: 1048576	3.14015579	3.14387893	3.1411247

 Example: Randomized quicksort algorithm.

- It is a divide-and-conquer method of sorting.
- It works by partitioning the sequence S into two parts, then sorting the parts independently.

o Example: Randomized quicksort.

```
def quicksort (S):
   if |S| = 0: return
   choose a_i \in S randomly
   for each a \in S:
      if a < a_i: put a in S
      if a > a_i: put a in S^+
   quicksort (S )
   print a_i
   quicksort (S<sup>+</sup>)
```

• Example: Randomized quicksort.

Binary tree representation of splitters.

- Example: Randomized quicksort.
 - Running time for deterministic QS.
 - o[Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
 - •[Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.
 - Randomized QS. Protect against worst case by choosing splitter at random.

- o Example: Primality test.
 - The primality test provides the probability of whether or not a large number is prime.
 - Several theorems including Fermat's theorem provide idea of primality test.
 - Cryptography schemes such as RSA algorithm are heavily based on primality test.

- o Example: Primality test.
 - A Naïve Algorithm (trial test):
 - \circ Pick any integer P that is greater than 2.
 - Try to divide P by all odd integers starting from 3 to square root of P.
 - ullet If P is divisible by any one of these odd integers, we can conclude that P is not prime.
 - The worst case is that we have to go through all odd number testing cases up to square root of P.
 - Time complexity is $O(\sqrt{n})$

- o Example: Primality test.
 - Is 100 prime?
 - All the integer divisors of 100 are:

$$100 = 2 \times 50 = 4 \times 25 = 5 \times 20 = 10 \times 10$$

= $20 \times 5 = 25 \times 4 = 50 \times 2$

- Factors 20, 25, 50 are redundant
- Largest factor $10 = \sqrt{100}$

- o Example: Primality test.
 - Is 17 prime?
 - All the integer divisors up to $\sqrt{17} \approx 4.12$:

2, 3, 4

- If 4 divides 17, then 2 can divide it as well.
 - All even dividers greater than 2 can be removed!
- o17/2 = 8.5, 17/3 = 5.66(6), therefore 17 is a prime number!

- o Example: Primality test.
 - Fermat's Theorem: If P is prime and 0 < A < P then $A^{P-1} = 1 \pmod{P}$.
 - Given a number P, we can choose a particular A (e.g., 2) with 0 < A < P and calculate A^{P-1} (mod P):
 - If $A^{P-1} \neq 1 \pmod{P}$ then P is not prime.
 - If $A^{P-1} = 1 \pmod{P}$ then P is probably prime.

o Example: Primality test.

- We can randomize the above algorithm by choosing 1 < A < P at random.
- For an A chosen at random if $A^{P-1} \neq 1 \pmod{P}$ then we say P is not prime otherwise we accept P is prime.
 - \circ If actually P is not a prime it is a mistake.
 - The probability of mistake is k in each computation. If for m independent computations the algorithm says that P is prime, the probability that P is a prime is at least $1 k^m$.

 Advantages of randomized algorithms:

- Simplicity.
- Performance.
- For many problems, a randomized algorithm is the simplest, the fastest, or both.

Monte Carlo or

Las Vegas?

Applications and scope:

- Number-theoretic algorithms:
 - Primality testing (Monte Carlo).
- Data structures:
 - Sorting quicksort (Las Vegas)
 - Order statistics, searching, computational geometry.
- Algebraic identities:
 - Polynomial and matrix identity verification.
 Interactive proof systems.

Applications and scope:

- Mathematical programming:
 - Faster algorithms for linear programming.
 Rounding linear program solutions to integer program solutions.
- Graph algorithms:
 - Minimum spanning trees, shortest paths, minimum cuts.
- Counting and enumeration:
 - Matrix permanent. Counting combinatorial structures.

- Applications and scope:
 - Parallel and distributed computing:
 - Deadlock avoidance, distributed consensus.

- Probabilistic existence proofs:
 - Show that a combinatorial object arises with non-zero probability among objects drawn from a suitable probability space.

THAT'S ALL FOR TODAY!

