MAT2130: Engineering Mathematical Analysis 1 Midterm 1 Practice Problems

- 1. Let A, B and C be three distinct, noncollinear points in 3D space. Let P, Q and R be the midpoints of AB, BC and AC respectively. Show that A, Q and the midpoint of PR are all collinear.
- 2. Let A=(0,2,1) and $B=(2\sqrt{3},0,1)$. Find a point C in the yz-plane such that ABC is an equilateral triangle.
- 3. Let **u** and **v** be two nonzero vectors. Show that the vector $\hat{\mathbf{u}} + \hat{\mathbf{v}}$ makes equal angles with **u** and **v**.
- 4. Let $\mathbf{v} = (2, -1, 1)$ and $\mathbf{u} = (1, 1, 1)$.
 - (a) Find the component of \mathbf{v} in the direction of \mathbf{u} .
 - (b) Find a vector **w** of length 12 such that the component of **w** in the direction of **v** is $\sqrt{6}$ and the component of **w** in the direction of **u** is $2\sqrt{3}$.
- 5. Define a coordinate system such that the ceiling lies in the xy-plane. There are three hooks in the ceiling at the points (0,0,0), $(2\sqrt{3},0,0)$ and $(\sqrt{3},3,0)$. A mass M hangs from these hooks by three cables of equal length d, where d > 2. The force of gravity on the mass is $|\mathbf{F}_g| = Mg$, in the negative z-direction. Find the tension in each cable as a function of M and d.
- 6. Find parametric, vector and symmetric equations (if applicable) for the following lines.
 - (a) Through the points (3, 4, -5) and (0, 2, 3).
 - (b) The intersection of the planes x + 3y = 0 and 2x y + z = 2.
 - (c) Lying in the plane 2x-y-z-1=0, intersecting the line $\frac{8-x}{3}=y=\frac{z+7}{4}$ at right angles.
 - (d) Through the intersection of the lines (2,4,6) + t(1,1,1) and (-4,3,6) + t(4,-1,-2), perpendicular to both.
- 7. Let $A = (A_x, A_y, A_z)$ and $B = (B_x, B_y, B_z)$ be distinct points in 3D space.
 - (a) Find the equation of the plane perpendicular to \mathbf{AB} and passing through the midpoint of the line segment AB.
 - (b) Let P = (x, y, z) be any point on the plane from part (a). Show that P is equidistant from A and B.
- 8. Find equations for the following planes.
 - (a) Through the point (1,0,1), perpendicular to the vector (-1,1,-1).
 - (b) Containing the points (7,5,12) and (1,-1,-6) and parallel to the vector (0,1,2).
 - (c) Containing the line x = y 1, z = -1 and perpendicular to the plane 3x 4y + z + 7 = 0.
 - (d) Containing the lines (3, 10, -6) + t(1, 3, -2) and (-10, -1, 6) + t(5, 1, -3).
 - (e) Containing the lines $\frac{x-1}{2} = \frac{y}{3} = z 1$ and $x 2 = \frac{2y-1}{3} = 2z 3$.

- 9. Find the following distances.
 - (a) Between the point (-1, 2, 3) and the line $\mathbf{r} = (0, 1, 0) + t(0, 1, 1)$.
 - (b) Between the point (1,1,0) and the point y-2z=0.
 - (c) Between the lines x = 1, $\frac{y-1}{3} = \frac{4-z}{2}$ and $x 1 = \frac{1-y}{2}$, z = 0.
 - (d) Between the line (0,2,0) + t(1,0,-5) and the plane 5x + 2y + z 2 = 0.
- 10. Let ℓ be the line $(3,2,3)+t(1,-1,0), t \in \mathbb{R}$, and let P be the point (5,0,0). Find the distance between P and an arbitrary point Q on ℓ as a function of the parameter t. Use calculus to minimize this function and find the point R on ℓ that is closest to P. Verify that \mathbf{PR} is perpendicular to ℓ .
- 11. Sketch the surface in 3D space described by each equation. Clearly label important features (e.g. cross sections, asymptotes, intercepts...) and show your work.
 - (a) $x^2 + 3z^2 = 27$
 - (b) $x^2 + y^2 + z^2 2x + 8y 4z = 12$
 - (c) $x = \sqrt{(y-2)^2 + z^2}$
 - (d) $z = \sqrt{4 x^2 y^2}$
 - (e) xy = -2
- 12. Sketch each surface in 3D space, and write down an equation in the variables (x, y, z) that describes it.
 - (a) A sphere with radius 5 and center (1,0,-1).
 - (b) A cylinder whose cross section is a circle with radius 2, centered on the line x = 0, z = 5.
 - (c) A cone opening in the negative x-direction, centered on the x-axis, with its vertex at (1,0,0). Its cross sections in the xz- and yz-planes consist of lines of slope ± 1 .
 - (d) A hemisphere, center (0,1,0), radius 1, restricted to the region where $x \geq 0$.
- 13. Find a parametric representation for each curve in 3D space, subject to the given conditions (if any).
 - (a) The intersection of x + y = 1, $y^2 + z^2 = 4$.
 - (b) The intersection of $x = y + z^2$, x = y.
 - (c) The intersection of $x = y + z^2$, x + 2y = 0.
 - (d) The intersection of x + y = 1, $z = x^2 + y^2 + 4$, such that z decreases when y is negative.
 - (e) The intersection of $y = \sqrt{1 (x 1)^2 z^2}$ and x = 1, such that the curve starts with z > 0 and ends with z < 0.
- 14. Perform the indicated calculation.
 - (a) $\frac{d\mathbf{v}}{dt}$, where $\mathbf{v}(t) = \cos t\hat{\mathbf{i}} \cos t\hat{\mathbf{j}} + 3t^2\hat{\mathbf{k}}$.
 - (b) $\frac{d}{dt}(\mathbf{u} \cdot \mathbf{v})$, where $\mathbf{u}(t) = \frac{1}{\sqrt{t}}\hat{\mathbf{i}} + t^{5/2}\hat{\mathbf{j}} + te^{2t}\hat{\mathbf{k}}$ and $\mathbf{v}(t) = (t^2 5)\hat{\mathbf{i}} + \ln(t^2 + 2)\hat{\mathbf{j}} + \sin t\hat{\mathbf{k}}$.
 - (c) $\frac{d}{dt}(\mathbf{u} \times \mathbf{v})$, where $\mathbf{u}(t) = 4\cos t\hat{\mathbf{i}} + 2\sin t\hat{\mathbf{k}}$ and $\mathbf{v}(t) = e^{t^2}\hat{\mathbf{i}} + \frac{t^2}{2}\hat{\mathbf{j}}$.
 - (d) $\int \mathbf{v}(t) dt$, where $\mathbf{v}(t) = (4t^3 + 6t^2)\hat{\mathbf{j}} \frac{1}{t^2}\hat{\mathbf{k}}$.
 - (e) $\int \mathbf{v}(t) dt$, where $\mathbf{v}(t) = \frac{1}{2t} \hat{\mathbf{i}} + \cos \frac{t}{2} \hat{\mathbf{j}} + e^{3t} \hat{\mathbf{k}}$.

- 15. Find a tangent vector \mathbf{T} to each curve, subject to the given constraints. There may be more than one possible answer.
 - (a) **T** is tangent to the curve $\mathbf{r}(t) = 3\cos t\hat{\mathbf{i}} + 2\sin t\hat{\mathbf{j}} \frac{t^2}{\pi^2}\hat{\mathbf{k}}$ at the point $\left(-\frac{3}{\sqrt{2}}, \sqrt{2}, -\frac{25}{16}\right)$, pointing in the direction of increasing t.
 - (b) **T** is a vector of length 2, tangent to the curve $\mathbf{r}(t) = 3t^2\hat{\mathbf{i}} + (2t 7)\hat{\mathbf{j}} + e^t\hat{\mathbf{k}}$ at t = 0.
 - (c) **T** is tangent to the curve $t \sin 2\pi t \hat{\mathbf{i}} t \cos 2\pi t \hat{\mathbf{j}} + t \ln t \hat{\mathbf{k}}$ at $t = \frac{1}{2}$, pointing in the direction of decreasing t.
 - (d) $\hat{\mathbf{T}}$ is a unit vector tangent to the curve $\mathbf{r}(t) = (3t^3 2t)\hat{\mathbf{i}} + e^{2t}\hat{\mathbf{j}} + (t^2 + 1)^{3/2}\hat{\mathbf{k}}$ at t = 0, pointing in the direction of increasing t.
 - (e) **T** is tangent to the curve $\mathbf{r}(t) = t^{1/2}\hat{\mathbf{i}} t^2\hat{\mathbf{j}} + (t+2)\hat{\mathbf{k}}$ at the point (2, -16, 6), pointing in the direction of increasing t.
- 16. Find the length of each curve over the specified interval.
 - (a) x = -3t, $y = \cos t$, $z = \sin t$, $0 \le t \le 4\pi$.
 - (b) $x = t^2$, $y = \frac{1}{3}t^3$, z = 4, $1 \le t \le 2$.
 - (c) $x = t \cos t$, $y = t \sin t$, $z = \frac{2\sqrt{2}}{3}t^{3/2}$, $0 \le t \le 2$.
- 17. Find a parametric representation for the line through the point $P = (P_x, P_y, P_z)$, parallel to the vector $\mathbf{v} = (v_x, v_y, v_z)$. Let $T \in \mathbb{R}$ be arbitrary. Find the length of the segment of this line between t = 0 and t = T:
 - (a) by finding its endpoints and using the formula for the length of a line segment;
 - (b) using the formula for the length of a curve.
- 18. Consider the curve $\mathbf{r}(t) = t\hat{\mathbf{i}} + 2t^{3/2}\hat{\mathbf{j}} + (2\sqrt{2}t + 1)\hat{\mathbf{k}}$, where $t \ge 0$.
 - (a) Find the length of the curve from t = 0 to an arbitrary t > 0. Let this length be s(t).
 - (b) Solve for t in terms of s, and reparametrize the curve in terms of s.
 - (c) Verify that the new parametrization $\mathbf{r}(s)$ satisfies $|\mathbf{r}'(s)| = 1$ everywhere.