

$$\lambda = 2d \sin \theta \qquad \cdots (1)$$

λ: X-RAY WAVELENGTH

d: LATTICE SPACING

 θ : BRAGG'S DIFFRACTION ANGLE

$$\frac{\partial d}{d} = -\cot \theta \ \partial \theta \qquad \dots (2)$$

$$\varepsilon = \frac{d - d_0}{d_0} \qquad \cdots (3)$$

 ε : STRAIN

d₀: LATTICE SPACING IN NON-STRAIN STATE

$$\varepsilon = -\cot\theta_0 (\theta - \theta_0) \qquad \dots (4)$$

FIG. 3

P: SPECIMEN COORDINATE SYSTEM

X: CRYSTAL COORDINATE SYSTEM

L: LABORATORY COORDINATE SYSTEM

FIG. 4

FIG. 5

	S	σ	8
CRYSTAL COORDINATE SYSTEM	S _{ijkl}	σ* _{ij}	* ε ij
SPECIMEN COORDINATE SYSTEM	S ^P ijkl	σ _{ij}	ε _{ij}
LABORATORY COORDINATE SYSTEM	S ^L ijkl	σ^{L}_{ij}	L ε ij

S: ELASTIC COMPLIANCE CONSTANT

 σ : STRESS

ε: STRAIN

FIG. 6

ELASTIC COMPLIANCE CONSTANT IN TENSOR NOTATION

S
$$ijkl$$
 (i, j, k, 1 = 1, 2, 3)

RELATIONSHIP

6×6 MATIRIX IN MATRIX NOTATION

$$S_{pq}$$
 (p, q = 1, 2, 3, 4, 5, 6)

i j kl	11	22	33	23	32	13	31	12	21
p q	1	2	3	4	4	5	5	6	6

	p = 1, 2, 3	p = 4, 5, 6
q = 1, 2, 3	$S_{ijkl} = S_{pq}$	$S_{ijkl} = \frac{1}{2} S_{pq}$
q = 4, 5, 6	$S_{ijkl} = \frac{1}{2} S_{pq}$	$S_{ijkl} = \frac{1}{4} S_{pq}$

$$\pi = R3(-\beta) \qquad ...(3)$$

$$\omega = R2(-\psi)R3(-\phi) \qquad ...(6)$$

$$\gamma = \omega \pi \qquad ...(7)$$

$$R1(\delta) = \begin{pmatrix} 1 & 0 & 0 & & & \\ 0 & \cos \delta & -\sin \delta & & \\ 0 & \sin \delta & \cos \delta & & \\ 0 & 1 & 0 & & \\ -\sin \delta & 0 & \cos \delta & & \\ 0 & 0 & 1 & & \\ & \sin \delta & \cos \delta & & 0 & \\ 0 & 0 & 1 & & \\ & & \sin \delta & \cos \delta & & 0 \\ 0 & 0 & 1 & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

FIG. 8

TETRAGONAL SYSTEM WITH LAUE SYMMETRY 4/mmm

$$S = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & 0 \\ S_{12} & S_{11} & S_{13} & 0 & 0 & 0 \\ S_{13} & S_{13} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & S_{66} \end{bmatrix} \cdots (15)$$

TETRAGONAL SYSTEM WITH LAUE SYMMETRY 4/m

$$S = \begin{bmatrix} S_{11} & S_{12} & S_{13} & 0 & 0 & S_{16} \\ S_{12} & S_{11} & S_{13} & 0 & 0 & -S_{16} \\ S_{13} & S_{13} & S_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & S_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & S_{44} & 0 \\ S_{16} - S_{16} & 0 & 0 & 0 & S_{66} \end{bmatrix} \cdots (16)$$

FIG. 9

$$\sigma_{11} = \sigma_{22} = \sigma \qquad \cdots (17)$$

$$\sigma_{12} = \sigma_{13} = \sigma_{23} = \sigma_{33} = 0 \qquad \cdots (18)$$

$$\epsilon_{33}^{L} = (S_{11} + S_{12} - 2S_{13}) \sigma \sin^{2} \psi + 2S_{13} \sigma \cdots (19)$$

$$\sigma_{13} = \sigma_{23} = \sigma_{33} = 0 \qquad \cdots (20)$$

When
$$\phi = 0^{\circ}$$

 $\epsilon_{33}(0^{\circ}) = \frac{1}{8} \{ (6S_{11} + 2S_{12} - 8S_{13} + S_{66}) \sigma_{11} + (2S_{11} + 6S_{12} - 8S_{13} - S_{66}) \sigma_{22} + (2S_{11} - 2S_{12} - S_{66}) (\sigma_{11} - \sigma_{22}) \cos 4\beta$

$$- 2(S_{11} - 2S_{12} - S_{66}) \sigma_{12} \sin 4\beta \} \sin^2 \psi$$

$$+ S_{13}(\sigma_{11} + \sigma_{22})$$
...(21)

When
$$\phi = 90^{\circ}$$

 $\epsilon_{33}(90^{\circ}) = \frac{1}{8} \{ (2S_{11} + 6S_{12} - 8S_{13} - S_{66}) \sigma_{11} + (6S_{11} + 2S_{12} - 8S_{13} + S_{66}) \sigma_{22} - (2S_{11} - 2S_{12} - S_{66}) (\sigma_{11} - \sigma_{22}) \cos 4\beta + 2(S_{11} - 2S_{12} - S_{66}) \sigma_{12} \sin 4\beta \} \sin^2 \psi$
 $+ S_{13}(\sigma_{11} + \sigma_{22})$
...(22)

When
$$\phi = 45^{\circ}$$

 $\epsilon_{33}(45^{\circ}) = S_{13}(\sigma_{11} + \sigma_{22}) + \frac{1}{8} \{4(S_{11} + S_{12} - 2S_{13}) + (\sigma_{11} + \sigma_{22}) + 2(2S_{11} - 2S_{12} + S_{66})\sigma_{12}\cos 4\beta + 2(S_{11} - 2S_{12} + S_{66})(\sigma_{11} - \sigma_{22})\sin 4\beta \}\sin^2 \psi \dots (23)$

When
$$\phi = 0^{\circ}$$

 $\frac{L}{\varepsilon^{33}(0^{\circ})} = \frac{1}{8} \{ (6S_{11} + 2S_{12} - 8S_{13} + S_{66}) \sigma_{11} + (2S_{11} + 6S_{12} - 8S_{13} - S_{66}) \sigma_{22} + (2S_{11} - 2S_{12} - S_{66}) (\sigma_{11} - \sigma_{22}) \cos 4\beta \}$

$$\sin^2 \psi + S_{13} (\sigma_{11} + \sigma_{22}) \qquad \cdots (24)$$

When
$$\phi = 90^{\circ}$$

 $\frac{L}{\epsilon} \frac{1}{33} (90^{\circ}) = \frac{1}{8} \{ (2S_{11} + 6S_{12} - 8S_{13} - S_{66}) \sigma_{11} + (6S_{11} + 2S_{12} - 8S_{13} + S_{66}) \sigma_{22} - (2S_{11} - 2S_{12} - S_{66}) (\sigma_{11} - \sigma_{22}) \cos 4\beta \}$

$$\sin^2 \psi + S_{13} (\sigma_{11} + \sigma_{22}) \qquad \cdots (25)$$

 $\frac{L}{\epsilon_{33}(45^{\circ})} = S_{13}(\sigma_{11} + \sigma_{22}) + \frac{1}{8} \{4(S_{11} + S_{12} - 2S_{13})\}$ + $2(2S_{11} - 2S_{12} - S_{66}) \sigma_{12} \cos 4\beta \sin^2 \psi$ $(\sigma_{11} + \sigma_{22}) + 2(2S_{11} - 2S_{12} + S_{66}) \sigma_{12}$ When $\phi = 45^{\circ}$

F1 =
$$\left(\frac{L}{\epsilon_{33}(0^{\circ})} + \frac{L}{\epsilon_{33}(90^{\circ})}\right)/2$$

= $\frac{1}{2} \left(S_{11} + S_{12} - 2S_{13}\right) \left(\sigma_{11} + \sigma_{22}\right) \sin^2 \psi + S_{13} \left(\sigma_{11} + \sigma_{22}\right)$
...(27)

F2 =
$$\left(\frac{L}{\epsilon_{33}(0^{\circ})} - \frac{L}{\epsilon_{33}(90^{\circ})}\right)/2$$

= $(\sigma_{11} - \sigma_{22})V$

$$F3 = \frac{L}{\epsilon _{33} (45^{\circ})} - F1$$

$$= 2 \sigma_{12} V$$

$$V = \frac{1}{8} \{ 2S_{11} - 2S_{12} + S_{66} + (2S_{11} - 2S_{12} - S_{66}) \cos 4 \beta \} \sin^2 \psi$$
 ...(30)

FIG. 15

LAUE SYMMETRY 4/mmm

FIG. 16

ļ								
	(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)
	В	- β	$-\beta + \frac{\pi}{2}$	$\beta - \frac{\pi}{2}$	$\beta + \frac{\pi}{2}$	$-\beta - \frac{\pi}{2}$	$-\beta + \pi$	β – π
φ =45°	$\beta - \frac{\pi}{4}$	$-\beta - \frac{\pi}{4}$	$-\beta + \frac{\pi}{4}$	$\beta - \frac{3\pi}{4}$	$\beta + \frac{\pi}{4}$	$-\beta - \frac{3\pi}{4}$	$-\beta + \frac{3\pi}{4}$	$\beta - \frac{5\pi}{4}$
°06= ф	β - 1 π	$-\beta - \frac{\pi}{2}$	β -	$\beta - \pi$	β	-β-π	$-\beta + \frac{\pi}{2}$	$\beta - \frac{3\pi}{2}$

FIG. 17

hkl	ψ (°)	β (°)	$d_0(nm)$	θ ₀ (°)
002	0.00	0.00	0. 2078	21. 76
011	46. 81	0.00	0. 2845	15. 71
112	36. 98	45.00	0. 1668	27. 50
022	46.81	0.00	0. 1422	32. 79
211	67. 22	26. 57	0. 5151	28. 60
111	56. 42	45.00	0. 2299	19. 58
013	19. 55	0.00	0. 1305	36. 16
222	56. 42	45. 00	0. 1149	42.08
301	72. 62	0.00	0. 1241	38. 36

FIG. 18

