Introduction to Bioinformatics CSC 314

Spring 2017

Dr. Garrett Dancik

What is bioinformatics

• Bioinformatics:

- Biology + information
- the study and
 utilization of
 methods for storing,
 retrieving and
 analyzing biological
 data
- Falls under the category of Big Data

- How much information:
 - Human genome: 3 billion nucleotides
 - ~20,000 genes
 - many more when considering "junk DNA" and alternative splicing
 - >10 million sites of DNA variation
 - Countless possible interactions between DNA, RNA, and proteins

Bioinformatics is interdisciplinary

What is Big Data?

- Datasets that are "large" or at least complex
- Generated by scientific studies, technology, and commerce
- From technology
 - http://www.domo.com/learn/infographic-data-neversleeps
 - In one day, FB will receive 500 terabytes of data
 - 2.7 billion likes
 - 300 million photo uploads
 - From business
 - On Black Friday (2013), Walmart processed 10 million transactions in 4 hours

Big Data Examples

- What does FB know about you?
 - http://www.nbcnews.com/science/gay-conservative-high-iq-your-facebook-likes-can-reveal-traits-1C8805606
- What does Target know about you?
 - http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html
- What information does your genome reveal about you?
 - Gender
 - Paternity and ancestry
 - Eye color
 - Relative Risk of breast cancer
 - Relative Risk of alcoholism

(Note that many genetic predictions are complex, not well understood, and can be difficult to interpret; genetic traits are often not black/white, and can be influenced by environmental factors)

What is this?

```
#include <iostream>
using namespace std;
int main {
   cout << "hello world\n";
   return 0;
}</pre>
```

Bioinformatics is an information science

- Computer code is a set of instructions that tells a computer how to process data and output results
- The genetic code is also a set of instructions, that tells a cell how to produce a molecule (such as a protein)
 - Information flows from DNA \rightarrow RNA \rightarrow protein
 - This information determins the structure/function of RNA and protein

Central Dogma of Molecular Biology

- The function of a protein can be predicted from its DNA or protein sequence
- Just like C++ is a language for computers, genetics is the language of life (DNA is the alphabet)
 - This is a fundamental concept in bioinformatics

Bioinformatics example

- Let's look briefly at the gene *BRCA1* (breast cancer type 1 susceptibility protein)
 - http://www.ncbi.nlm.nih.gov
 - Search Nucleotide for BRCA1
 - Click on the Genomic reference sequence
- This is a preview and will make much more sense by the end of the semester

Intro to Genetics (Genetics 101)

- What are genes?
 - http://www.youtube.com/watch?v=ubq4eu_TDFc
 - Genes are part of what molecule?
 - How many bases is DNA composed of?
 - How are genes organized?
 - How many pairs of chromosomes do humans have?
- What are SNPs?
 - http://www.youtube.com/watch?v=tJjXpiWKMyA
 - What is the human genome?
 - What is a SNP?

Intro to Genetics (Genetics 101)

- Where do your genes come from?
 - http://www.youtube.com/watch?v=-Yg89GY61DE
 - Where do your genes come from?
 - What are homologous chromosomes?
 - What determines your sex?