[2019-10-03]

Напоминание

$$M(x,y)dx + N(x,y)dy = 0$$
 (1) $M,N \in C(G)$ $y = \varphi(x)$ - реш (1), $x \in (a,b) \Leftrightarrow \Leftrightarrow M(x,\varphi(x)) + N(x,\varphi(x))\varphi'(x) \equiv 0$ на (a,b)

Опр

$$u(x,y) \in C^1(G)$$

Интл (1), если

- 1. хоть одна из $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ не 0 в \forall обыкн. точке G
- 2. $N \cdot \frac{\partial u}{\partial x} M \frac{\partial u}{\partial y} \equiv 0 \text{ B } G$ (4)

(5)
$$u(x,y) = u(x_0,y_0)$$
 $(x_0,y_0) \in G$ u - инт-л (1) в G

Teopeмa (2)

$$N(x_0, y_0) \neq 0 \Rightarrow$$

рав-во (5) разрешимо отн y: его решение

$$y=arphi(x)$$
 опред на (a,b) $x_0\in (a,b)$ $arphi(x_0)=y_0$

y=arphi(x) непр дифф на (a,b) и явля реш ур (1)

Док-во

$$N(x_0,y_0) \neq 0 \Rightarrow N(x,y) \neq 0$$
 в нек. окр-ти $V(x_0,y_0)$ $\Rightarrow \frac{\partial u(x_0,y_0)}{\partial y} \neq 0$ (из (4): если $\frac{\partial u(x_0,y_0)}{\partial y} = 0$, то $\frac{\partial u(x_0,y_0)}{\partial x} = 0$)

Противореч. с тем, что (x_0, y_0) - обыкн

$$\Rightarrow \frac{\partial u(x,y)}{\partial y} \neq 0$$
 в нек. окр $\widetilde{V}(x_0,y_0)$

$$\Rightarrow$$
 теорема о неявн. функции $\exists y=\varphi(x)$ - реш $(5):y_0=\varphi(x_0)$ $\varphi(x)$ - непр дифф $x\in(a,b)$ $(x_0\in(a,b))$ $u(x,\varphi(x))=u(x_0,y_0)$ на (a,b)
$$\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}\cdot\varphi'(x)=0\Rightarrow\varphi'(x)=-\frac{\frac{\partial u(x,\varphi(x))}{\partial x}}{\frac{\partial u(x,\varphi(x))}{\partial y}}$$
 В (2) $M(...)+N(...)$ $\left(-\frac{\frac{\partial u(...)}{\partial x}}{\frac{\partial u}{\partial y}(...)}\right)=$ $=-\frac{1}{\frac{\partial u}{\partial y}(...)}[N(...)\frac{\partial u}{\partial x}(...)-M(...)\frac{\partial u(...)}{\partial y}]\equiv 0$ в G

Теорема (2)

Следствие

$$(x_0, y_0)$$
 - обыкн точка G , то рав-во (5)

разреши. отн y или отн x и его реш - реш (1)

$$(M \neq 0$$
 или $N \neq 0)$

Опр

равн-во
$$u(x,y) = c$$
 - общ. инт-л (1)

Пример

$$xdx + ydy = 0$$

$$\underbrace{x^2 + y^2}_{u(x,y)} = c$$

1 Уравнения в полных дифф.

$$M(x,y)dx + N(x,y)dy = 0 (1)$$

Опр

(1) - ур в полных дифф, если

$$\exists u(x,y): \quad du(x,y) = M(x,y)dx + N(x,y)dy \qquad (2)$$

$$((1): du = 0)$$

Теорема (1)

(1) - ур в полных дифф $\Rightarrow u(x,y)$ - инт-л (1)

Док-во

- 1. u(x,y) непр дифф.
- 2. $\frac{\partial u}{\partial x} = M$, $\frac{\partial u}{\partial y} = N$ (3)
- 3. $N \frac{\partial u}{\partial x} M \frac{\partial u}{\partial y} = N \cdot M M \cdot N \equiv 0$

Теорема

если
$$\exists \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x} \in C(G)$$
 (1) - ур. в полных дифф то $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ в G (4)

Док-во

(1) - ур в п. дифф
$$\Rightarrow \exists u(x,y)$$
 (2), (3)
 $\Rightarrow \frac{\partial M}{\partial u} = \frac{\partial^2 u}{\partial u \partial x} = \frac{\partial^2 u}{\partial x \partial u} = \frac{\partial N}{\partial x}$

$$G = \{(x,y): \ a < x < b, c < y < d\}$$
 (м.б $a = -\infty, \ c = -\infty$ $b = +\infty, \ d = +\infty$)

Теорема (3)

$$\exists \frac{\partial M}{\partial y}, \frac{\partial N}{\partial x} \in C(G)$$

И вып $(4) \Rightarrow (1)$ - ур. в п. д.

Док-во

$$(x_0,y_0),(x,y)\in G$$
 $orall t\in [x_0,x]\quad (t,y)\in G$ $rac{\partial u(t,y)}{\partial x}=M(t,y)$ - инт от x_0 до x

$$u(x,y) - u(x_0,y) = \int_{x_0}^{x} M(t,y)dt$$
 (5)

$$\forall t \in [y_0,y] \quad (x_0,y) \in G$$

$$\frac{\partial u(x_0,t)}{\partial y} = N(x_0,t) - \text{инт от } y_0 \text{ до } y$$

$$u(x_0,y) - \underbrace{u(x_0,y_0)}_{\text{HYO}=0} = \int_{y_0}^{y} N(x_0,t)dt$$
 (6)

$$u(x,y) = \int_{x_0}^{x} M(t,y)dt + \int_{y_0}^{y} N(x_0,t)dt$$
 (7)

Проверяем, что это та функция, которая нужна

$$\frac{\partial u(x,y)}{\partial x} = M(x,y)$$

$$\frac{\partial u(x,y)}{\partial y} = \frac{\partial}{\partial y} \int_{x_0}^x M(t,y)dt + N(x_0,y) = \int_{x_0}^x \frac{\partial M(t,y)}{\partial y}dt + N(x_0,y) = \int_{x_0}^x \frac{\partial N(t,y)}{\partial t}dt + N(x_0,y) = N(x,y) - N(x_0,y) + N(x_0,y)$$

Замечание (1)

$$u(x,y) = \int_{x_0}^{x} M(t,y_0)dt + \int_{y_0}^{y} N(x,t)dt$$
 (7')

$\mathbf{y}_{\mathbf{TB}}$

$$du(x,y) = M(x,y)dx + N(x,y)dy \quad \text{Выш (4)} \quad G \text{ - односвяз.}$$

$$\Rightarrow u(x,y) = \int_{\Gamma} M(x,y)dx + N(x,y)dy \qquad \text{(8) - криволин. инт}$$

$$\Gamma \text{ - любая кривая, соед } (x_0,y_0), (x,y)$$

Условие (4) гарантирует нам, что криволин. интеграл не зависит от кривой интегрирования

Замечание (2)

Прямоугольность области G не требуется по-существу, нужна только односвязность (отсутсвие дырок или возможность стянуть любой путь в точку)

Опр

(1)
$$\mu = \mu(x, y) \in C(G) \qquad \mu(x, y) \neq 0 \quad \forall (x, y) \in G$$

 μ - интегр мн-ль для (1), если

(9)
$$(\mu M)dx + (\mu N)dy = 0$$
 - ур. в п. д

$$\exists M,N,\mu\in C^1(G)\quad (G\text{ - односвяз})$$
 (9) - ур в п.д. $\Leftrightarrow \frac{\partial}{\partial y}(\mu M)=\frac{\partial}{\partial x}(\mu N)$

$$\frac{\partial \mu}{\partial y}M + \mu \frac{\partial M}{\partial y} = \frac{\partial \mu}{\partial x}N + \mu \frac{\partial N}{\partial x} \qquad (1)$$

Частный случай 1

$$\mu = \mu(x)$$
из (10) : $\frac{d\mu}{dx}N = \mu(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x})$

$$\frac{1}{\mu} \cdot \frac{d\mu}{dx} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} \qquad (11)$$

$$N = f(x)$$

$$\frac{d\mu}{\mu} = f(x)dx$$

$$\mu = e^{\int f(x)dx}$$

$$\mu(x) = e^{\int_{x_0}^x f(t)dt}$$

Частный случай 2

$$\frac{\mu = \mu(y)}{\frac{1}{\mu} \frac{d\mu}{dy}} = \frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} \qquad (12)$$

$$M = g(y)$$