Exercícios: Logaritmos

Prof. André Augusto

1. CÁLCULO DE LOGARITMOS

Exercício 1. Calcule:

- (a) $\log_2 16$ (b) $\log_3 81$ (c) $\log_5 125$ (d) $\log_6 1296$ (e) $\log_{12} 1728$ (f) $\log_2 4096$ (g) $\log_{28} 1$ (h) $\log_5 625$ (i) $\log_2 \sqrt{2}$ (j) $\log 100$ (k) $\log_2 1024$ (l) $\log_\pi \pi$ (m) $\log_4 16$ (n) $\log_3 \left(\frac{1}{9}\right)$ (o) $\log_{81} 3$ (p) $\log_{\frac{1}{2}} 8$ (q) $\log_7 \left(\frac{1}{7}\right)$ (r) $\log_{125} 5$ (s) $\log_{\frac{1}{2}} 32$ (t) $\log_9 \left(\frac{1}{27}\right)$ (u) $\log_{27} 81$ (v) $\log_{\sqrt{8}} \sqrt{32}$

Exercício 2. Usando apenas que $\log 2 = 0, 30, \log 3 = 0, 47$ e $\log 5 = 0, 69$, calcule:

- (a) $\log 4$ (b) $\log \left(\frac{2}{5}\right)$ (c) $\log 12$ (d) $\log 25$ (e) $\log \sqrt{2}$ (f) $\log 0.5$ (g) $\log \left(\frac{3}{2}\right)$ (h) $\log 20$ (i) $\log_2 3$ (j) $\log 20 + \log 40 + \log 1600$ (k) $\log 30$ (l) $\log 32$ (m) $\log \left(\frac{10}{9}\right)$ (n) $\log 10$ (o) $\log_2 5$ (p) $\log 30 + \log 90$ (q) $\log \sqrt{5}$ (r) $\log 15$ (s) $\log_3 5$ (t) $\log 50 \log 250$ (u) $\log \left(\frac{32}{15}\right)$ (v) $\log \sqrt{6}$

Exercício 3. Usando apenas que $\log 20 = 1, 30, \log 30 = 1, 47$ e $\log 60 = 1, 79$, calcule:

- (a) $\log 4 + \log 5$ (b) $\log 5 + \log 6$ (c) $\log 150 \log 5$ (d) $\log 120 \log 6$
- (e) $\log 5 + \log 12$ (f) $\log 180 \log 9$ (g) $\log 16 + 2 \log 5$ (h) $\log 600 \log 30$
- (i) $2 \log 15 + \log 4$ (j) $\log 1800 \log 60$ (k) $\log 225 + 2 \log 4$ (l) $\log 1200 \log 20$
- (m) $\log 15 + \log 40$ (n) $\log 1800 \log 30$ (o) $\log 20 + \log 45$ (p) $\log 6000 \log 30$

TESTES DE VESTIBULARES

Exercício 4 (UEL). Supondo que exista, o logaritmo de a na base b é:

- (a) o número ao qual se eleva a para se obter b
- (b) o número ao qual se eleva b para se obter a
- (c) a potência de base b e expoente a
- (d) a potência de base a e expoente b
- (e) a potência de base 10 e expoente a

Exercício 5 (FUVEST). Se $\log_2 b - \log_2 a = 5$, o quociente $\frac{b}{a}$ vale:

(a) 10 (b) 25 (c) 32 (d) 64 (e) 128

Exercício 6 (FEI). Se $\log 2 = a$ e $\log 3 = b$, escrevendo $\log \left(\frac{32}{27}\right)$ em função de a e b obtemos: (a) 2a + b (b) 2a - b (c) 2ab (d) $\frac{2a}{b}$ (e) 5a - 3b

(a)
$$2a + b$$
 (b) $2a - b$ (c) $2ab$ (d) $\frac{2a}{b}$ (e) $5a - 3b$

Exercício 7 (ENEM). A Escala de Magnitude de Momento (abreviada como MMS e denotada como M_W), introduzida em 1979 por Thomas Haks e Hiroo Kanamori, substituiu a Escala de Richter para medir a magnitude dos terremotos em termos de energia liberada. Menos conhecida pelo público, a MMS é, no entanto, a escala usada para estimar as magnitudes de todos os grandes terremotos da atualidade. Assim como a escala Richter, a MMS é uma escala logarítmica. M_W e M_0 se relacionam pela fórmula:

$$M_W = -10.7 + \frac{2}{3} \cdot \log_{10} (M_0)$$

onde M_0 é o momento sísmico (usualmente estimado a partir dos registros de movimento da superfície, através dos sismogramas), cuja unidade é o dina·cm.

O terremoto de Kobe, acontecido no dia 17 de janeiro de 1995, foi um dos terremotos que causaram maior impacto no Japão e na comunidade científica internacional. Teve magnitude $M_W = 7.3$.

U.S. GEOLOGICAL SURVEY. Historic Earthquakes.

Disponível em: http://www.earthquake.usgs.gov. Acesso em: 1 maio 2010 (adaptado). U.S. GEOLOGICAL SURVEY. USGS Earthquake Magnitude Policy.

Disponível em: http://www.earthquake.usgs.gov. Acesso em: 1 maio 2010 (adaptado).

Mostrando que é possível determinar a medida por meio de conhecimentos matemáticos, qual foi o momento sísmico M_0 do terremoto de Kobe (em dina·cm)? (a) $10^{-5,10}$ (b) $10^{-0,73}$ (c) $10^{12,00}$ (d) $10^{21,65}$ (e) 1

Exercício 8. Se $\log E = 2\log a + 3\log b - \log c - \log d$, então E é igual a:

(a)
$$a^2 + b^3 - c - d$$

(c)
$$\frac{a^2b^3}{cd}$$

(a) $a^2 + b^3 - c - d$ (b) $a^2b^3 - cd$ (c) $\frac{a^2b^3}{cd}$ (d) $\frac{a^2b^3d}{c}$ (e) a^2b^3cd

Exercício 9 (ESPM-SP). Se $\log_{20} 4 = A$ e $\log_{20} 6 = B$, então o valor de $\log_{20} 5$ é:

(a)
$$\sqrt{A \cdot B}$$

(a) $\sqrt{A \cdot B}$ (b) $\frac{A+B}{2}$ (c) $\frac{A \cdot B}{2}$ (d) 1-A (e) 1-B

Exercício 10 (UEL). O valor da expressão $\frac{\log_3 1 + \log 0, 01}{\log_2 \left(\frac{1}{64}\right) \cdot \log_4 \sqrt{8}}$ é igual a:

(a) $\frac{4}{15}$ (b) $\frac{1}{2}$ (c) $\frac{4}{0}$ (d) $\frac{3}{5}$ (e) $\frac{2}{2}$

Exercício 11 (UFLA-MG). O valor da expressão $3^{(\log_3 5) \cdot (\log_5 3)}$ é:

(a) -1 (b) 0 (c) 3 (d) 5 (e) 8

Exercício 12. Se $\log_8 225 = a$, então $\log_2 15$ vale:

(a) $\frac{\sqrt{a}}{4}$ (b) $\frac{a}{4}$ (c) $\frac{3a}{2}$ (d) $\frac{2a}{3}$ (e) 3a-1

Exercício 13 (FUVEST). O número real a é o menor dentre os valores de x que satisfazem a equação

 $2\cdot\log_2{(1+\sqrt{2}x)}-\log_2{(\sqrt{2}x)}=3.$ Então, $\log_2{\left(\frac{2a+4}{3}\right)}$ é igual a:

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) $\frac{3}{2}$ (e) 2

Exercício 14 (Mackenzie). O produto $\log_2 3 \cdot \log_3 4 \cdot \log_4 5 \cdot \ldots \cdot \log_{62} 63 \cdot \log_{63} 64$ é igual a:

(a) $\log_3 64$ (b) $\log_2 63$ (c) 2 (d) 4 (e) 6

Exercício 15 (FGV). O preço p de um terreno daqui a t anos é estimado pela relação $p = a \cdot (b)^t$.

- (a) Se hoje o terreno vale R\$ 80 000, 00 e o valor estimado daqui a 10 nos é de R\$ 120 000, 00, obtenha a e
- (b) Se a estimativa fosse dada por $p = a \cdot (1,02)^t$, daqui a quantos anos o preço do terreno dobraria?

Exercício 16 (FUVEST). O número real x que satisfaz a equação $\log_2{(12-2^x)}=2x$ é:

(a) $\log_2 5$ (b) $\log_2 \sqrt{3}$ (c) 2 (d) $\log_2 \sqrt{5}$ (e) $\log_2 3$

Exercício 17 (VUNESP). Em que base o logaritmo de um número natural n, n > 1, coincide com o próprio número n?

(a) n^n (b) $\frac{1}{n}$ (c) n^2 (d) n (e) n^n

Exercício 18 (FUVEST). Se x é um número real, x > 2 e $\log_2(x-2) - \log_4 x = 1$, então o valor de x é: (a) $4 - 2\sqrt{3}$ (b) $4 - \sqrt{3}$ (c) $2 + 2\sqrt{3}$ (d) $4 + 2\sqrt{3}$ (e) $2 + 4\sqrt{3}$

Exercício 19 (VUNESP). O nível sonoro N, medido em decibéis (dB) e a intensidade I de um som , medida em watt por metro quadrado (W/m²) estão relacionados pela expressão $N=120+10\cdot\log_{10}I$. Suponha que foram medidos em certo local os níveis sonos N_1 e N_2 , de dois ruídos com intensidades I_1 e I_2 , respectivamente. Sendo $N_1-N_2=20$ dB, a razão $\frac{I_1}{I_2}$ é: (a) 10^{-2} (b) 10^{-1} (c) 10 (d) 10^2 (e) 10^3

Exercício 20 (FGV). Se m e n são números inteiros tais que $\log_3 m - \log_3 n = 4$ e $800 \le m \le 890$, então o valor de n é:

(c) 6 (d) 4 (e) 2 (a) 10 (b) 8

Exercício 21 (FUVEST). Tendo em vista as aproximações $\log_{10} 2 \simeq 0.30$ e $\log_{10} 3 \simeq 0.48$, então o maior número inteiro n satisfazendo $10^n \le 12^{418}$ é igual a:

(a) 424 (b) 437 (c) 443 (d) 451 (e) 460

Exercício 22 (UNICAMP). Resolva o sistema $\begin{cases} \log_2 x + \log_4 y = 4 \\ x \cdot y = 8 \end{cases}$

Exercício 23 (FUVEST). A intensidade de um terremoto, medida na escala Richter, é um número que varia de I=0 até I=8,9, para o maior terremoto conhecido. A intensidade I é dada pela fórmula $I = \left(\frac{2}{3}\right) \log_{10}\left(\frac{E}{E_0}\right)$, onde E é a energia liberada no terremoto em quilowatt-hora e $E_0 = 7 \times 10^{-3}$

- (a) Qual a energia liberada num terremoto de intensidade 8 na escala Richter?
- (b) Aumentando de uma unidade a intensidade do terremoto, por quanto fica multiplicado a energia liberada?

3. Desafios

Exercício 24 (UFMG). O valor de x que satisfaz a equação $2 \log x + \log b - \log 3 = \log \left(\frac{9b}{x^4}\right)$ pertence

(a) $\left[0, \frac{1}{2}\right]$ (b) $\left[\frac{1}{2}, 1\right]$ (c) [1, 2] (d) [2, 3] (e) [3, 4]

Exercício 25. Seja $a = \log(\operatorname{tg} 1^{\circ}) \cdot \log(\operatorname{tg} 2^{\circ}) \cdot \log(\operatorname{tg} 3^{\circ}) \cdot \ldots \cdot \log(\operatorname{tg} 87^{\circ}) \cdot \log(\operatorname{tg} 88^{\circ}) \cdot \log(\operatorname{tg} 89^{\circ}).$ Quanto vale a?

Exercício 26. Sabendo (e usando) apenas que $\log 2 \simeq 0.3010$, $\log 1.41 \simeq 0.1492$ e $\log 1.42 \simeq 0.1522$, calcule, aproximadamente, $\sqrt{2}$.

Atenção: não há a solução desta questão no gabarito abaixo. Por causa disso, em caso de dúvidas, consulte um livro especializado ou um professor.

Gabarito:

- 1. (a) 4 (b) 4 (c) 3 (d) 4 (e) 3 (f) 12 (g) 0 (h) 4 (i) $\frac{1}{2}$ (j) 2 (k) 10 (l) 1 (n) -2 (o) $\frac{1}{4}$ (p) -3 (q) -1 (r) $\frac{1}{3}$ (s) -5 (t) $\frac{-3}{2}$ (u) $\frac{4}{3}$ (v) $\frac{5}{3}$
- 2. (a) 0,60 (b) -0,39 (c) 1,07 (d) 1,38 (e) 0,15 (f) -0,31 (g) 0,17 (h) 1,30 (i) 1,56(n) 1 (o) 2, 30 (p) 3, 41 (q) 0, 35 (r) 1, 16 (j) 6, 10(k) 1,47 (l) 1,5 (m) 0,06 (s) 1,46 (t) -0,47 (u) 0,34 (v) 0,39

- 3. (a) 1,30 (b) 1,47 (c) 1,47 (d) 1,30 (e) 1,79 (f) 1,30 (g) 2,60 (h) 1,30 (i) 2,94 (j) 1,47 (k) 3,58 (l) 1,79 (m) 3,79 (n) 1,79 (o) 2,94 (p) 3,30
- 4. (B)
- 5. (D)
- 6. (E)
- 7. (E)
- 8. (C)
- 9. (D)
- 10. (C)
- 11. (E)
- 12. (C)
- 13. (B)
- 14. (E)
- 15. (a) $a=80\,000,00; b=\sqrt[10]{\frac{3}{2}}$ (b) $\frac{\log 2}{\log 1,02}$ anos.
- 16. (E)
- 17. (E)
- 18. (D)
- 19. (D)
- 20. (A)
- 21. (D)
- 22. $x = 32, y = \frac{1}{4}$
- 23. (a) 7×10^9 kW/h (b) $10\sqrt{10}$
- 24. (C)
- 25. Zero.