Physique Statistique

I. Statistiques classiques

QUELQUES QUESTIONS

- 1. Expliquer ce qu'est le principe ergodique.
- **2.** Les ensembles statistiques
- 2.1. Quel type de système décrit-on via l'ensemble microcanonique ? Quel est le postulat qui y est associé ? Comment s'exprime sa fonction de partition ? Quel est le potentiel thermodynamique associé à cet ensemble ?
- 2.2. Quels contraintes sont imposées pour une étude dans l'ensemble canonique ? Donner la formule décrivant la probabilité d'être dans un micro-état σ d'énergie E_{σ} . Comment l'obtient-on ? Donner la fonction de partition et l'expression du potentiel thermodynamique associé à cet ensemble.
 - 2.3. Répondre aux mêmes questions dans le cas de l'ensemble grand canonique.
- **3.** Énoncer le théorème d'équipartition de l'énergie. Quelles sont les hypothèses nécessaires à sa validité ?

I. Généralités sur l'ensemble canonique

On étudie ici le cas général d'un système $\mathscr S$ à l'équilibre thermique avec un thermostat à la température T. L'ensemble des énergies propres de $\mathscr S$ est noté $\{E_l\}$ et son énergie moyenne $\overline E$. On note P_l la probabilité du système d'être dans l'état l.

- 1. Donner la fonction de partition Z du système \mathscr{S} . Exprimer \overline{E} en fonction de Z.
- **2.** Montrer que l'on a $(\Delta E)^2 = k_B T^2 C_v$ avec C_v la capacité thermique à volume constant. En déduire toutes les significations de la quantité \overline{E} . Dans quelle mesure obtiendrait-t-on les mêmes prédictions physiques si l'on faisait l'étude de ce système dans l'ensemble microcanique ?
- **3.** On définit dans l'ensemble canonique l'énergie libre F par : $F \triangleq -k_BT \ln Z$. Exprimer l'énergie moyenne en fonction de l'énergie libre et retrouver une formule de Helmholtz.
- **4.** À partir de la définition statistique de l'entropie, vérifier la cohérence avec la thermodynamique classique de la définition de l'énergie libre.

II. GAZ PARFAIT MONOATOMIQUE

On considère un gaz parfait monoatomique classique en équilibre avec un thermostat à la température T. Le gaz est contenu dans une enceinte cubique macroscopique de taille L. On note m la masse des particules. On souhaite alors déduire les grandeurs thermodynamiques macroscopiques du gaz parfait à partir de l'étude statistique des états microscopiques.[Attention ici au terme "classique", il veut dans ce cas indiquer qu'on considère les énergies propres du systèmes dans le cadre quantique mais que l'on se place dans le cas du gaz parfait non dégénéré en mettant de côté le caractère fermionique ou bosonique des particules.]

- 1. Rappeler les deux types de conditions aux limites les plus utilisés pour la fonction d'onde d'une particule dans une enceinte macroscopique. Quelles sont leurs conséquences sur le vecteur d'onde?
- **2.** En déduire l'énergie d'une particule pour des conditions aux limites type onde stationnaire. À température ambiante, estimer l'ordre de grandeur des nombres quantiques associés.
- 3. On souhaite calculer la fonction de partition z d'une particule en fonction du volume et de la longueur d'onde thermique de Broglie donnée par $\lambda_{th} = \sqrt{2\pi\hbar^2\beta/m}$.
- 3.1. *Première méthode*: Utiliser l'expression de l'énergie trouvée à la question précédente pour écrire z puis transformer la somme correspondante en intégrale pour parvenir au résultat en précisant au passage quelle approximation est faite pour cette transformation.
- 3.2. Seconde méthode : Définir et calculer la densité d'état en énergie g(E). Réécrire z sous la forme d'une somme sur les énergies. Retrouver alors la même expression de z après calcul.

Note : on donne $\int_0^\infty \sqrt{X} e^{-X} dX = \sqrt{\pi}/2$. Les initiés reconnaîtront la fonction gamma d'Euler calculée en 3/2.

- **4.** Que vaut la fonction de partition Z pour N particules ? On discutera les approximations nécessaires.
- **5.** On rappelle l'approximation de Stirling : pour N grand, $\ln(N!) \approx N \ln N N$. En déduire les grandeurs thermodynamiques suivantes : énergie libre (est-elle extensive?), énergie interne, pression, entropie et potentiel chimique.

II. STATISTIQUES QUANTIQUES

INTRODUCTION

On considère un système de particules indépendantes, identiques et indiscernables. On désigne les états individuels possibles pour chacune des particules du système par (λ) , l'énergie correspondante étant ϵ_{λ} . Chaque état microscopique (l) du système est entièrement caractérisé par la distribution $\{N_{\lambda}\}$ correspondant aux nombres d'occupation des divers états individuels.

On donne la probabilité d'avoir N_{λ} particules dans l'état (λ) :

$$P(N_{\lambda}) = \frac{e^{-\beta N_{\lambda}(\epsilon_{\lambda} - \mu)}}{\sum\limits_{N_{\lambda}} e^{-\beta N_{\lambda}(\epsilon_{\lambda} - \mu)}} = \frac{e^{-\beta N_{\lambda}(\epsilon_{\lambda} - \mu)}}{\xi_{\lambda}}$$

- 1. Distribution statistisque de Fermi-Dirac
- 1.1. Rappeler l'expression de cette distribution. Quel est son sens physique ?
- 1.2. Représenter son allure en fonction de l'énergie pour T=0 K et pour plusieurs T'>0 K.
- **2.** Donner la loi de distribution statistique de Bose-Einstein. Quel est son sens physique ? Que remarque-t-on ?

I. Gaz de fermions idéal

- 1. Gaz de fermions à température nulle
- 1.1. Dans l'hypothèse de conditions aux limites périodiques, quelles sont les contraintes sur le vecteur d'onde? En déduire la densité d'état en énergie g(E).
- 1.2. Comment exprimer le nombre de fermions en fonction de g(E), et de la fonction de distribution de Fermi-Dirac notée f(E) ?
- 1.3. Dans le cas du gaz à température nulle, simplifier cette expression. En déduire alors l'expression du potentiel chimique à T = 0.

Le potentiel chimique à T=0 correspond à l'énergie de Fermi du gaz, énergie de l'état le plus élevé atteignable par les particules du gaz à température nulle.

Attention, il n'y a qu'à température nulle que l'on a automatiquement $\mu = E_F$.

- 1.4. Définir alors le vecteur d'onde de Fermi k_F et la température de Fermi T_F . Les exprimer en fonction de n. Quelle est leur signification physique ?
 - 1.5. Exprimer l'énergie totale E_0 du gaz à température nulle en fonction de E_F .
 - 1.6. Pourquoi la pression du gaz de fermions n'est pas nulle à T=0 ? On admettra que cette pression peut s'écrire $P_0=\frac{2}{3}\frac{E_0}{V}$
 - 2. Température de Fermi
- 2.1. On considère le gaz d'électrons libres d'un métal typique. Calculer la température de Fermi typique du gaz d'électrons libres d'un métal. Commenter. Evaluer la vitesse de ces électrons.
- 2.2. On considère un gaz d'atomes froids. On prendra par exemple un gaz de Lithium 6, avec une densité typique $n \simeq 10^{19} \text{ m}^{-3}$, préparés de sorte à avoir deux valeurs de spins possibles. À quelle température doit-il être refroidi pour avoir un ratio $T/T_F \simeq 0,1$? Est-ce réalisable ? Quel intérêt cela peut-il y avoir ?

3. Naine blanche.

Les naines blanches sont des étoiles vieilles, parvenues au stade ultime de leur évolution : elles ont épuisé tout leur combustible et se sont considérablement contractées sous l'effet des forces de gravitation.

Leur rayon R est typiquement de l'ordre de celui de la Terre (on prendra $R=5.10^6$ m) et leur masse de l'ordre de celle du soleil (on prendra $M=10^{30}$ kg), leur densité est donc énorme! Leur température est estimée à $T\sim 10^7$ K. On considérera que les atomes qui la composent ont un nombre de masse moyen A=15 et un rapport moyen A/Z=2 où Z est le numéro atomique (cela correspond bien aux éléments entre le carbone et l'oxygène).

Les forces gravitationnelles au sein d'un tel corps ont tendance à provoquer sa contraction. Pour une étoile classique comme le Soleil, l'effondrement gravitationnel est contrebalancé par une pression d'origine thermique, entretenue par les réactions nucléaires. Pour des naines blanches, dont la densité est bien plus importante mais la température plus faible, cela ne peut pas être le cas!

Montrer, avec un calcul d'ordres de grandeur, que les naines blanches ne sont pas condamnées à s'effondrer sur elles-mêmes.

II. RAYONNEMENT DU CORPS NOIR (CF COMPO 1996 ET 2011)

On considère le rayonnement électromagnétique à l'intérieur d'une enceinte cubique de volume $V=L^3$. Cette enceinte est assimilée à un corps noir idéal de température T.

- 1. Dans l'hypothèse de conditions aux limites périodiques, quelles sont les contraintes sur le vecteur d'onde? En déduire la densité g(v) de modes dans la cavité en fonction de la fréquence v.
- **2.** En mécanique statistique classique, quelles sont les conditions d'application du théorème d'équipartition de l'énergie aux modes du champ électromagnétique? En supposant que l'on puisse appliquer ici ce théorème, montrer que la densité volu-

mique classique d'énergie électromagnétique par unité de fréquence s'écrit :

$$u_{\text{Class}}(v,T) = \frac{8\pi v^2}{c^3} k_B T$$

Commenter.

3. On rappelle que pour les systèmes bosoniques, le nombre moyen de particules dans un état d'énergie ϵ à l'équilibre thermodynamique à la température T est donné par :

$$\overline{N}(\epsilon) = (\exp(\frac{\epsilon - \mu}{k_B T}) - 1)^{-1}$$

- 3.1. Justifier que le photon est un boson. Citer d'autres exemples de bosons.
- 3.2. Expliquer brièvement le sens physique du potentiel chimique. Quelle est sa valeur dans le cas des photons? Calculer alors la densité d'énergie $u_{\text{Quant}}(v, T)$ dans le cadre quantique.
- **4.** Pour quelle longueur d'onde λ_M observe-t-on un maximum de $u_{\mathrm{Quant}}(\lambda,T)$? Comment s'appelle cette relation? Faire l'application numérique dans le cas du corps humain et du Soleil.
- **5.** Calculer l'énergie totale du rayonnement dans l'enceinte $E(T,V)=V.u_{\text{Tot}}(T).$ On donne $\int_0^\infty \frac{x^3}{e^x-1} \mathrm{d}x = \frac{\pi^4}{15}.$
- **6.** On donne la puissance émise selon l'angle θ par rapport à la normale à la surface, par unité de surface et unité d'angle solide $I(T,\theta)=u_{\text{Tot}}(T)c\cos\theta/4\pi$, en déduire la loi de Stefan-Boltzmann en calculant l'exitance M(T), flux lumineux émis par unité de surface.
- 7. Par un calcul analogue à celui interprétant la pression d'un gaz parfait par les collisions sur les parois, on peut montrer que dans le cas du gaz de photon, p = U/3V [*le refaire chez soi pour s'entraîner, cf compo 2001*]. Comparer cette valeur au cas du gaz parfait et justifier sans calcul la différence de facteur numérique entre U/V et p.

III. CONDENSATION DE BOSE-EINSTEIN (CF COMPO 1993)

1. Décrire brièvement quelques expériences spectaculaires illustrant les propriétés superfluides de l'hélium 4. Justifier que l'hélium 4 est un boson.

On va alors étudier la condensation de Bose-Einstein que F. London a proposé comme interprétation de la transition fluide normal/superfluide de l'hélium 4.

L'hélium 4 est considéré comme un fluide quantique contenu dans une boîte volume V et constitué de particules de spin nul et sans interaction entre elles. On considèrera comme à l'exercice précédent des conditions aux limites périodiques.

On rappelle que le nombre moyen de particules dans un état d'énergie ϵ à l'équilibre thermodynamique à la température T s'écrit pour des bosons :

$$\overline{N}(\epsilon) = (\exp(\frac{\epsilon - \mu}{k_B T}) - 1)^{-1}$$

- **2.** Quel est le lien entre l'énergie ϵ et le vecteur d'onde k dans un mode donné ? Justifier que le potentiel chimique μ est négatif.
 - 3. Montrer que la densité d'état s'écrit en termes d'énergie :

$$D(\epsilon) = \left(\frac{2m}{\hbar^2}\right)^{\frac{3}{2}} V \frac{\sqrt{\epsilon}}{4\pi^2}$$

4. Écrire alors en utilisant $D(\epsilon)$ et $\overline{N}(\epsilon)$ l'intégrale permettant de calculer N en fonction du potentiel chimique μ .

On admettra que le potentiel chimique est une fonction décroissante de la température.

On donne:

$$I = \int_0^\infty \frac{\sqrt{u}}{e^u - 1} du \approx 2{,}315$$

- **5.** En déduire que pour une densité $n = \frac{N}{V}$ donnée, l'expression de N trouvée n'est valable que pour $T > T_C$ où T_C est une température critique pour laquelle le potentiel chimique devient nul. Donner l'expression de T_C en fonction des paramètres du problème.
- **6.** Que se passe-t-il pour $T < T_C$? Quelle approximation faite dans l'expression de $D(\epsilon)$ n'est plus valable ? Expliquer le phénomène de condensation de Bose-Einstein.
- **7.** E London a proposé le modèle suivant : pour $T < T_C$, l'hélium liquide est composé d'une phase "superfluide" correspondant aux atomes dans la fraction condensée, et d'une composante "normale" comportant les atomes restants.
- 7.1. La composante superfluide ne transporte pas d'entropie, quel est le lien avec le modèle de la condensation de Bose ?
- 7.2. Calculer dans le cadre du modèle précédent la température critique de la condensation de Bose pour l'hélium 4 liquide de masse molaire M=4 g.mol⁻¹ et de masse volumique $\rho=146$ kg.m⁻³.
- 7.3. Cette température critique ne correspond pas exactement à la température mesurée expérimentalement ($T_{C, exp} = 2, 17 \text{ K}$) de la transition fluide normal/superfluide de l'hélium 4 et les exposants critiques obtenus pour une condensation de Bose ne sont plus conformes à l'expérience. Que peut-on invoquer pour expliquer ces désaccords?