Sample Inference on a Mean Difference Homework-week 8

- 1. An article reported on an experiment in which 13 computer-proficient medical professionals were timed retrieving images from a library of slides and then retrieving the same image from a computer database.
- a. Assuming that the differences are normally distributed and that this is a paired situation, test the hypothesis that the mean difference is 14 at =0.10
- b. Assume that the data come from two normal distribution, these distributions are independent and the variances are not equal, test the hypothesis that the mean difference is 14 at =0.10
- c. Assume that the data come from two normal distribution, these distributions are independent and the variances are equal, test the hypothesis that the mean difference is 14 at =0.10
- d. Do the decisions agree? If they don't agree, explain why you think that this is happening and which test is valid.

Solution:

a. Assuming that the differences are normally distributed and that this is a paired situation, test the hypothesis that the mean difference is 14 at =0.10

Statistic	Value
Mean	20.923
Median	19
Sample Size	13
Q1	12
Q3	26.5
Min	5
Max	46
IQR	14.5
Range	41
Variance	136.24
Standard Deviation	11.672
Lower Fence	-9.75
Upper Fence	48.25

Null and alternative hypothesis,

 α =0.10,n=13, D_i=14, df=n-1=13-1=12,

Tstat = \bar{x} -D_i/(S_D/ \sqrt{n})

Tstat = $20.923 - 14/(11.672/\sqrt{13})$

Tstat = 20.923-14/3.237

 $T_{stat} = 2.139$

To calculate p-value,

P-value approach= $P(t_{df} \ge t_{stat}) = P(t_{12} \ge 2.139) = 0.0537$

tcrit=t0.95,12= 1.782

We reject Ho

b. Assume that the data come from two normal distribution, these distributions are independent and the variances are not equal, test the hypothesis that the mean difference is 14 at =0.10

 α = 0.10; H0 = μ 1- μ 2= 14; HA \neq 14; variance is not equal.

```
t_{stat}= 0.771; p-value = 0.4481; t0.95,24 = 1.711
We fail to reject H0, as t_{stat} < t0.95,24 & p-value >\alpha
```

c. Assume that the data come from two normal distribution, these distributions are independent and the variances are equal, test the hypothesis that the mean difference is 14 at =0.10

```
\alpha= 0.10; H0 = \mu1-\mu2= 14; HA\neq14; variance is not equal.
```

```
t_{stat}= 0.771; p-value = 0.4481; t0.95,24 = 1.711
We fail to reject H0, as t_{stat} < t0.95,24 & p-value >\alpha
```

d. Do the decisions agree? If they don't agree, explain why you think that this is happening and which test is valid

The decision does not agree. Because we are perfromning independent t-test on both part. This indicates that the images would be same in both cases hence we can perform 2 means paired T-test in such scenario. Performing 2 means paired test would be correct choice for such examples.

- 2. Fusible interlinings are being used with increasing frequency to support outer fabrics and improve the shape and drape of various pieces of clothing. The accompanying data on extensibility (%) at 100g/cm for both high quality (H) and poor quality (P) is given.
- a. Explain why we should consider these independent distributions
- b. Create normal probability plots for both samples to assess normality
- c. Test to see if the variances are equal
- d. Test to see if the means are equal vs. HA : μ 1 \neq μ 2
- e. Give the real-world answer
- f. Create a 95% confidence interval for the mean difference and use it to test the hypothesis from part d
- g. Do you get the same answers for parts d and f? Explain why this works.

Solution:

a. Explain why we should consider these independent distributions.

We should have to consider independent distribution because variance of both distributions need to be compared. The data is experienced with two quality of fabric i.e high and poor quality. Therefore, we should consider these as independent distributions.

b. Create normal probability plots for both samples to assess normality.

2: Normal probability plot for poor quality(P)

From the above figure we can say that data comes from normal distribution. From the plot we can see that lines are quite parallel and the assumption of variance is valid.

c. Test to see if the variances are equal.

Statistic	Value	Statistic	Value
Mean	1.508	Mean	1.588
Median	1.6	Median	1.5
Sample Size	24	Sample Size	8
Q1	1.15	Q1	1.2
Q3	1.85	Q3	1.85
Min	0.7	Min	1
Max	2.3	Max	2.6
IQR	0.7	IQR	0.65
Range	1.6	Range	1.6
Variance	0.1973	Variance	0.2812
Standard Deviation	0.4442	Standard Deviation	0.5303
Lower Fence	0.1	Lower Fence	0.225
Upper Fence	2.9	Upper Fence	2.825

 \bar{x} =1.508, \bar{y} =1.588, variance 1= 0.1973, variance 2=0.2812, m=24,n=8,S1=0.442, S2=0.5303 H₀ = σ 1 $^2/\sigma$ 2 2 = 1 - The null hypothesis, we assume the variance to be the same for both H and P H_A= σ 1 $^2/\sigma$ 2 2 ≠ 1 --The alternate hypothesis, where the variance is not the same for both H and P

Fstat= $S1^2/S2^2 * \sigma2^2/\sigma1^2$

p-value approach :- 2 * min (P(F≥Fstat), P(F≤Fstat))

p-value= 2 * min(1 - P(F≥Fstat),P(F≤Fstat))

p-value= 2 * min(1 - P(F≤0.7015), P(F≤0.7015))

p-value= 2 * min(1 - 0.2431, 0.2431)

p-value= 2 * min(0.7569, 0.2431)

p-value= 2 * 0.2431

p-value= 0.4862

p-value= 0.05; p-value = 0.4862; p-value > α

We fail to reject H0

There is not enough evidence to support the claim of the alternate hypothesis.

d. Test to see if the means are equal vs. HA : $\mu1 \neq \mu2$, assume α =0.05

 \bar{x} =1.508, \bar{y} =1.588, m=24, n=8, S1=0.442, S2=0.5303

Assume equal variances.

Null and alternative hypothesis,

*H*0: μ 1 = μ 2

*H*1: *µ*1 ≠ *µ*2

$$\mathbf{S}p = \sqrt{(m-1)S1^2 + (n-1)S2^2/m + n - 2}$$

$$\mathbf{S}p = \sqrt{23 * (0.442)^2 + 7(0.5303)^2/24 + 8 - 2}$$

$$\mathbf{S}p = \sqrt{23 * 0.1953 + 7 * 0.2812/30}$$

$$\mathbf{S}p = \sqrt{4.4919 + 1.9684/30}$$

$$\mathbf{S}p = \sqrt{4.4919 + 1.9684/30}$$

$$\mathbf{S}p = \sqrt{6.4603/30}$$

$$\mathbf{S}p = \sqrt{0.2153}$$

$$\mathbf{S}p = 0.4640$$

Now, we will calculate test statistic.

$$t = \bar{x} - \bar{y} - \Delta 0/\sqrt{Sp^2}[1/m + 1/n]$$

$$t = 1.508 - 1.588/\sqrt{0.4640^2}[1/24 + 1/8]$$

$$t = -0.08/\sqrt{0.2152}[0.0416 + 0.125]$$

$$t = -0.08/\sqrt{0.2152} * 0.1666$$

$$t = -0.08/\sqrt{0.03585}$$

$$t = -0.08/0.1893$$

$$t = -0.4226$$

Now, we will calculate p-value, p-value=2*P(t>0.4226) p-value= 0.675504

Critical Value $t_{31,0.025}$ = ± 2.1448 , Reject Region is anything smaller than -2.1448 or bigger than 2.1448

Since our p-value is 0.675504, We failed to reject null hypothesis.

There is not enough evidence to support alternative hypothesis.

e. Give the real-world answer

At the 5% level of significance, there is not enough evidence to claim a difference between the two population means (although, it is close...). This indicates that the extensibility does not differ significantly when fused with H and P fabric.

f. Create a 95% confidence interval for the mean difference and use it to test the hypothesis from part d

$$\bar{x}$$
=1.508, \bar{y} =1.588, m=24, n=8, S1=0.442, S2=0.5303 $\bar{x} - \bar{y} \pm t_{v,\alpha/2}$. $\mathbf{S}p\sqrt{1/m}+1/n$ 1.508-1.588 $\pm 2.04*0.4640\sqrt{1/24}+1/8$ -0.08 $\pm 0.94656\sqrt{0.04166}+0.125$

-0.08±0.94656√0.166

-0.08±0.94656*0.407

-0.08≤µ1-µ2≤0.3852

From stathelper calculation, we get, Degree of freedom is 30 Critical point= $t_{0.975,30}$ =2.042 μ 1- μ 1∈(-0.467,0.307)

g. Do you get the same answers for parts d and f? Explain why this works.

Yes, since the confidence interval contains zero, we arrive at the same conclusion as the hypothesis test, that we cannot claim the two means are different. These two tests are equivalent.

3. Two different hardening processes, (1) saltwater quenching and (2) oil quenching, are used on samples of a particular type of metal alloy. Assume that different alloy samples were used for each test. Do you believe that the mean hardness level for the saltwater is less than the mean hardness level for the oil? Test this hypothesis at =0.01. If need be, give a range of plausible values for the true mean difference. You need to include all of the steps that we do for a hypothesis test to get full credit.

Statistic	Value	Statistic	Value
Mean	147.6	Mean	153.4
Median	148	Median	154.5
Sample Size	10	Sample Size	10
Q1	145	Q1	150
Q3	152	Q3	156
Min	139	Min	144
Max	154	Max	162
IQR	7	IQR	6
Range	15	Range	18
Variance	24.711	Variance	29.822
Standard Deviation	4.971	Standard Deviation	5.461
Lower Fence	134.5	Lower Fence	141
Upper Fence	162.5	Upper Fence	165

 \bar{x} =147.6, \bar{y} =153.4, m=10, n=10, S1=4.971, S2=5.461, α =0.01

Assume equal variances.

Null and alternative hypothesis,

*H*0: μ 1 = μ 2

*H*1: μ 1 $\neq \mu$ 2

$$\mathbf{S}_p = \sqrt{(m-1)S1^2 + (n-1)S2^2/m + n - 2}$$

S
$$p = \sqrt{9} * 4.971^2 + 9 * 5.461^2/18$$

S $p = \sqrt{9} * 24.7108 + 9 * 29.822/18$
S $p = \sqrt{222.3972 + 268.398/18}$
S $p = \sqrt{490.7952/18}$
S $p = \sqrt{27.26}$
S $p = 5.2217$

Now, we will calculate test statistic,

$$t = \bar{x} - \bar{y} - \Delta 0 / \sqrt{Sp^2} [1/m + 1/n]$$

$$t = 147.6 - 153.4 / \sqrt{5.2217^2} [1/10 + 1/10]$$

$$t = -5.8 / \sqrt{27.2661} [0.2]$$

$$t = -5.8 / \sqrt{5.5432}$$

$$t = -5.8 / 2.3544$$

$$t = -2.4634$$

Now, we will calculate p-value, p-value=2*P(t>2.4634) p-value= 0.024067

Critical Value t_{18} , 0.005 = ± 2.1448 , Reject Region is anything smaller than -2.1448 or bigger than 2.1448

t_{0.975.18}=2.101

Since our p-value is 0.024067 and tstat<to.975,18, We failed to reject null hypothesis.

There is not enough evidence to support alternative hypothesis

Therefore, we can conclude that the mean hardness for the salt water is not less than the mean hardness of oil.

Degree of freedom= 10+10-2= 18

to.975,18=2.101,

We are 95 % confidence that the mean difference value range from, $(\mu 1 - \mu 2) \in (-10.706, -0.8938)$

4. Snee (1981) determined the octane ratings of 32 gasoline blends by two standard methods: motor (method 1) and research (method 2). Each of the 32 blends was tested by each method. Is the difference between the research blend and the motor blend equal to 5? If need be, give a range of plausible values for the true mean difference. You need to include all of the steps that we do for a hypothesis test to get full credit.

Solution:

*H***0**: μD = **5** *H***1**: μD \neq **5**

$di = research_i - motor_i$

 $T\mathbf{0} = \mathbf{D}_{i} - \Delta 0 / \mathbf{S}_{D} / \sqrt{\mathbf{n}}$

Statistic	Value	Statistic	Value
Mean	93.428	Mean	96.531
Median	92	Median	97.2
Sample Size	32	Sample Size	32
Q1	89.55	Q1	93.75
Q3	95.4	Q3	99.6
Min	85.4	Min	83.3
Max	109.5	Max	106.6
IQR	5.85	IQR	5.85
Range	24.1	Range	23.3
Variance	30.586	Variance	26.694
Standard Deviation	5.53	Standard Deviation	5.167
Lower Fence	80.775	Lower Fence	84.975
Upper Fence	104.17	Upper Fence	108.37

Assume α =0.01

di = researchi - motori di =96.531-93.428 di = 3.103

 $T\mathbf{0} = \mathbf{D}_{i} - \Delta 0 / \mathbf{S}_{D} / \sqrt{\mathbf{n}}$

T0= 3.1031 − 5 /3.040 √32 T0= -1.8969/(3.040/5.65) T0= -1.8969/0.5380 T0= -3.5298

 $p - value = 2 \cdot P(t31 > -3.5298) = 0.0013$

T critical region is= $t_{0.975,31}$ =1.696, Since p-value 0.0013 is smaller than 0.01 and $|T_{stat}|$ > t_{crit} , we reject null hypothesis.

There is strong evidence to support alternative hypothesis.

At the 10% level of significance, there is strong evidence to claim the difference between the two methods does not equal 5.

90 % confidence interval, (µ1−µ2)∈(2.192,4.014)

The true mean difference value could be between 2.192 and 4.014.