Arquitetura de Redes de Computadores

Dr. Edson Moreira Silva Neto

Professor/Redes de Computadores

Camada Física

Agenda

- 1) Introdução
- 2) Processo de Transmissão
- 3) Características do Sinal
- 4) Problemas na Transmissão
 - 1) Ruídos
 - 2) Atenuação
- 5) Largura de Banda e Capacidade de Transmissão
- 6) Meios de Transmissão
 - 1) Características dos Meios de Transmissão
 - 2) Par Trançado
 - 3) Cabo Coaxial
 - 4) Fibra Óptica
 - 5) Rádio
 - 6) Micro-ondas
 - 7) Satélite
 - 8) Infravermelho

Agenda

- 7) Digitalização
- 8) Sinalização Digital
- 9) Sinalização Analógica
- 10) Sinalização Multinível
- 11) Multiplexação
 - 7) Multiplexação por Divisão de Frequencia (FDM)
 - 8) Multiplexação por Divisão de Tempo (TDM)
- 12) Transmissão Simplex, Half-Duplex e Full-Duplex
- 13) Transmissão Serial e Paralela
- 14) Transmissão Assíncrona e Síncrona
- 15) Topologias de Rede

Introdução

- Camada Física
 - Responsável pela efetiva transmissão dos dados
- Visão Geral do processo
- Características de um sinal
- Problemas relacionados à transmissão
- Largura de Banda
- Capacidade máxima de transmissão

- O processo de comunicação envolve a transmissão de informação (dado) de um ponto a outro através de uma sucessão de processos
 - 6 processos: geração descrição codificação transmissão decodificação – recriação
- Dado: é a informação armazenada no dispositivo de origem que se deseja transmitir para o dispositivo de destino.
- Para ser transmitido, o dado precisa ser codificado em um sinal que percorrerá o canal de comunicação, até chegar ao destino, onde será decodificado.
- ▲ A codificação e decodificação do sinal são implementadas pela interface de comunicação.

Informação e Sinal

- Informações estão, em geral, associadas às ideias ou aos dados manipulados pelos agentes que as criam, manipulam e processam.
- Sinais, por outro lado, correspondem à materialização específica dessas informações utilizada no momento da transmissão.

Analógico

• Ideia de valores que variam continuamente no tempo dentro de um conjunto infinito de valores.

Digital

• Ideia de valores que variam de forma discreta em função do tempo dentro de um conjunto finito de valores.

Sinais analógico e digital

- ► Em RC, os dados estão sempre no formato digital, porém esses dados, para serem transmitidos, devem ser codificados em sinais analógicos ou digitais.
- ♦ A C-1 tem como principal função a transmissão efetiva dos dados, representados por uma sequência de bits que formam a PDU da Camada Física.

Camada física

Camada física

- ♦ A escolha do tipo de sinal que será utilizado na codificação depende de alguns fatores, como, por exemplo, o meio de tranmissão utilizado.
- ♦ Alguns meios aceitam apenas sinalização analógica (Ex: FO e transmissões sem fio).

- ▶ Para entendermos as técnicas de codificação utilizadas na camada física é necessário compreender, inicialmente, as características de um sinal, pois é a partir dessas características que o processo de sinalização é implementado.
- ♦ A seguir, apresentamos dois tipos de sinal periódico:
 - Suas características se repetem ao longo do tempo
 - ♦ Onda senoidal → Sinal analógico
 - ♦ Onda quadrada → Sinal digital

Sinal periódico

- 3 características fundamentais em um sinal:
 - Amplitude
 - Frequência
 - Fase

♦ Amplitude

- Está relacionada à sua potência
- ♦ Geralmente, medida em volts
- Diferença entre sinal digital e analógico
 - Como a amplitude varia em função do tempo
 - Sinal analógico (varia continuamente)
 - Sinal digital (varia discretamente, abruptamente)

♦ Frequência

- ♦ É o número de vezes que o ciclo se repete no interval de 1s.
- O ciclo representa a variação completa da amplitude do sinal, ou seja, a variação de zero a um valor máximo, passando por um valor mínimo e retornando novamente a zero.
- ♦ É medida em Hz.

Frequência de um sinal analógico

♦ Frequência

- ♦ As variações de frequência são especialmente importantes para a audição e visão humanas.
- ♦ Ouvido: capta entre 20 Hz e 20000 Hz
 - F. Baixas: Sons Graves
 - F. Altas: Sons agudos

A Frequência do Som

Infrassom: sons com frequências abaixo de 20 Hz.

Ultrassom: sons com frequências acima de 20 KHz.

Som audível: sons com frequências perceptíveis ao ser humano (20 Hz a 20

KHz).

Espectro Sonoro

Imagens: (aranha) Autor johnny automatic / CC0 1.0 Universal Public Domain Dedication; (orelha) Autor David Berbennick / GNU Free Documentation License; (morcego) Autor Ebaychatter0 / Creative Commons CC0 1.0 Universal Public Domain Dedication.

ALTURA DO SOM

Imagem obtida no site: http://www.somaovivo.mus.br/artigos.php?id=86

♦ Frequência

- ♦ Visão: entre 4,3*10¹⁴ Hz e 7*10¹⁴
 - F. Baixa: cor vermelha
 - ♦ F. Alta: violeta
 - ♦ Infravermelho e Ultravioleta: não são visíveis ao olho

• Fase

- ♦ A fase de um sinal está relacionada ao conceito de período.
- ♦ É o tempo correspondente à duração de um ciclo do sinal.
- ♦ Pode ser definida como o deslocamento do sinal dentro do seu período de tempo. Sendo medido em graus, variando de 0° a 360°.

Fase de um sinal analógico

Comprimento da Onda

- Representado pela letra grega lambda (λ)
- É a distância entre dois pontos na mesma fase do sinal em dois ciclos consecutivos.
- Exemplo a seguir:
 - ♦ 3 sinais analógicos com comprimentos de ondas diferentes, medidos na fase de 90°.

Comprimento de onda

Quanto mais alta a frequência, menor o comprimento!

Problemas na Transmissão

Problemas na Transmissão

- Qualquer transmissão está sujeita a problemas que podem modificar a forma original e, consequentemente, alterar o significado do dado transmitido.
- ♠ Existem diversos tipos de problemas envolvendo a transmissão de dados.
 - Dois dos principais problemas que podem afetar a integridade dos dados são: RUÍDO e ATENUAÇÃO.

Ruídos

◆ Consequência de interferências eletromagnéticas indesejadas que provocam distorções nos sinais transmitidos e alteram o seu significado.

Exemplo de efeito do ruído

Ruídos

- ♦ O nível de ruído em uma transmissão é medido como uma relação entre a potência do sinal e a potência do ruído, chamada de relação sinal-ruído (RSR).
 - Quanto maior a relação sinal-ruído, mehor a qualidade do sinal.
 - ♦ É medido em decibel (dB)
 - Fórmula: $RSR_{db} = 10 log_{10} RSR$

Relação sinal/ruído

```
RSR_{dB} = 10 log_{10} RSR

RSR_{dB} = 10 * log_{10} (1000/10)

RSR_{dB} = 10 * log_{10} 100

RSR_{dB} = 10 * log_{10} 10^2

RSR_{dB} = 10 * 2

RSR_{dB} = 20 dB
```

♦ RUÍDO TÉRMICO ou RUÍDO BRANCO

- Está presente na maioria dos canais de comunicação e é uma consequência do aquecimento do meio em função da movimentação dos elétrons.
 - Não tem como eliminar esse ruído. Mas, pode-se tratar.

♦ RUÍDO DE INTERMODULAÇÃO

- Pode ser encontrado em canais de comunicação que utilizem a técnica de multiplexação por divisão de frequência.
 - As faixas adjacentes podem interferir umas nas outras, causando ruídos na transmissão.

♦ RUÍDO DO TIPO CROSSTALK

- ♦ Consequencia da proximidade física de cabos e antenas.
- ♦ Lembram da "linha cruzada"?

RUÍDO IMPULSIVO

- Os ruídos anteriores são previsíveis e podem ser tratados de forma a não comprometer o sistema de comunicação.
- O ruído impulsivo é imprevisível quanto a sua ocorrência e intensidade.
- É o maior problema nas transmissões de dados.
- São consequencia de descargas elétricas que produzem um ruído com amplitude maior que o sinal transmitido.
 - Motores, raios, etc.

- **♦** Taxa de Erro de Bit (BER − Bit Error Rate)
 - Usada para medir a qualidade de um canal de comunicação.
 - Divide-se o número de bits recebidos com erro pelo número total de bits transmitidos.

Atenuação

- ▲ É consequência da perda de potência do sinal transmitido à medida que o sinal percorre o canal de comunicação até atingir o destino.
- O meio age como um filtro, reduzindo a amplitude e impedindo que o receptor decodifique corretamente o sinal recebido.

Atenuação de um sinal digital

Atenuação

- ♦ O nível de atenuação depende do tipo de meio de transmissão utilizado.
- O efeito da atenuação limita diretamente o comprimento máximo de cabos e a distância máxima entre antenas.

Atenuação

- Estes problemas podem ser resolvidos utilizando-se equipamentos especiais que recuperam a potência original do sinal.
- Amplificadores
 - Para sinais analógicos
- Regeneradores ou Repetidores
 - Para sinais digitais

Regeneração de um sinal digital

Ruído na Transmissão e Recuperação de Erros

- O Problema
 - ♦ A presença de interferências no canal de transmissão (ruído) pode provocar, eventualmente, uma leitura errada.
 - Para detectar a ocorrência de erros foram desenvolvidos vários métodos, baseados na utilização de informações redundantes na comunicação.
 - Uma vez detectado um erro, o procedimento normal é a retransmissão da mensagem.
 - A redundância pode ser colocada a nível de caracter, ou a nível de bloco de caracteres.

♦ Ruído na Transmissão e Recuperação de Erros

- Detecção de Erros à Nível de Caracter
 - Um método simples e de baixo custo é o código de paridade.
 - ▶ Pode-se ter paridade **par** ou **impar**, obtida pela adição de um bit por caracter, fazendo com que o caracter codificado tenha um número par ou impar, respectivamente, de bits 1. Esse tipo de controle é chamado **VRC** ("*Vertical Redundancy Check*").
 - ♦ A seguir, vemos alguns caracteres codificados em ASCII, com os bits de paridade correspondentes.

		A		F		W
	1		1		1	
	0	4	0	4	0	5
	0		0		1	
	0		0		0	
	0	1	1	6	1	7
	0		1		1	
	1		0		1	
Bit de paridade par	0		1		1	

- O método do bit de paridade consegue detectar um byte errado, desde que o número de bits errados no mesmo seja ímpar.
- No entanto, se um byte tiver um número par de bits errados, o erro não é detectado.

- Ruído na Transmissão e Recuperação de Erros
 - ♦ Detecção de Erros à Nível de Bloco (BCC "Block Check Character")
 - ♦ É feita anexando um byte redundante no final de um bloco de bytes de informação. Normalmente, realiza-se por dois processos:
 - **♦** LRC ("Longitudinal Redundancy Check")
 - **♦** CRC ("Cyclical Redundancy Check")
 - O LRC, ou <u>paridade horizontal</u>, consiste na aplicação do processo de paridade em todos os bits que ocupam a mesma posição nos caracteres do bloco, obtendo os bits do BCC.
 - ▲ A figura seguinte mostra um bloco codificado em BAUDOT, onde foi aplicado o **VRC** e o **LRC** (ímpares).
 - É comum utilizarem-se os dois métodos simultaneamente.

Posição dos bits	Caracteres						
nos caracteres	A	В	H	Z	F	G	BCC
1	1	1	0	1	1	0	1
2	1	0	0	0	0	1	1
3	0	0	1	0	1	0	1
4	0	1	0	0	1	1	0
5	0	1	1	1	0	1	1
VRC	1	0	1	1	0	0	0

A sequência enviada seria:

110001	100110	001011	100011	101100	010110	111010
${f A}$	В	H	${f Z}$	${f F}$	\mathbf{G}	BCC

- O receptor, além de conferir um por um os bits de paridade dos caracteres, gera também o caracter BCC e compara com o recebido.
 - Se forem iguais ele envia uma mensagem ACK (acknowledge), informando que o bloco foi recebido sem erro.
 - Se forem diferentes, ele envia uma mensagem, informando que houve erro.
- Além do método de LRC, existe também o CRC, que consiste na aplicação de operações aritméticas em todos os bits do bloco, para gerar dois bytes de controle de erro, que são transmitidos ao final do bloco.
- Quando se usa o CRC, não é utilizado o bit de paridade nos caracteres, visto que a segurança desse método é bem maior do que a do LRC.

- Largura de banda: define o número máximo de frequências que podem ser sinalizadas em um canal de comunicação sem que haja perdas expressivas na transmissão.
- É uma característica física do meio.

- Linhas telefônicas convencionais:
 - ♦ Frequências entre 300 Hz e 3.400 Hz
- ♦ O espectro de frequências possíveis nesse intervalo é definido como *banda passante* do canal de comunicação.
- ♦ O ouvido humano pode captar entre: 20 Hz e 20.000 Hz.
- ♦ O sistema telefônico, por razões econômicas, oferece uma largura de apenas 3.100 Hz.

- Existe uma relação entre a largura de banda e a capacidade máxima de transmissão do canal de comunicação, ou seja, quantos bits por segundo (bps) o canal pode transportar.
- Um canal de comunicação com largura de banda W é possível transportar no máximo 2*W sinais, na ausência de qualquer tipo de ruído.

- ♦ Exemplo de Aplicação do Teorema de Nyquist
 - ♦ Largura de banda de uma linha convencional: **3.100 Hz**
 - **♦** CMT (Capacidade Máxima de Transmissão) = 2*W
 - \bullet CMT = 2 * 3.100
 - CMT = 6.200 bps

Para alcançar taxas de transmissão maiores que as impostas pelo teorema, é necessário enviar um número maior de bits por sinal, implementando a técnica de sinalização multinível.

Sinalização multinível

Sinalização Multinível

- Assim, o teorema fica:

 - ♦ W é a largura de banda
 - N é o número de níveis implementados na sinalização

Sinalização Multinível

- Exemplo da linha telefônica:
 - ♦ Com uma sinalização de 16 níveis:
 - \bullet CMT = 2 * 3.100 * $\log_2 16$
 - CMT = $6.200 * \log_2 2^4$
 - ◆ CMT = 6.200 * 4
 - CMT = 24.800 bps

Teorema de Shannon

- O Teorema de Shannon permite calcular a capacidade máxima de transmissão na presença de ruído conforme a fórmula CMT = W * log ₂ (1 + RSR)
- ♦ Obviamente, está levando em conta apenas a existência do ruído térmico.

Teorema de Shannon

O Primeiro passo é converter a relação sinal-ruído em sua forma não logarítimica.

Meios de Transmissão

Meios de transmissão

- O meio de transmissão serve para transportar fisicamente os sinais codificados entre o transmissor e receptor.
- Podem ser:
 - Cabeados (wired)
 - Sem fio (wireless)

Meios de transmissão

Meios com fio	Meios sem fio
Par trançado	Rádio
Cabo coaxial	Microondas
Fibra ótica	Satélite
	Infravermelho

Características dos Meios de Transmissão

- ♦ As principais características dos meios de transmissão e que permitem diferenciá-los são relacionados ao:
 - Tipo de sinalização
 - Largura de banda e capacidade de transmissão
 - Confiabilidade
 - Segurança
 - Facilidade de instalação e Manutenção
 - Custo do meio

Características dos Meios de Transmissão

- - Um determinado meio de transmissão pode suportar sinalização analógica, digital ou ambas.
 - Notar que a FO, por exemplo, permite apenas sinalização analógica, porém permite que os dados sejam transmitidos digitalmente.
 - Outro exemplo: telefones celulares digitais.

Tipos de sinalização

Meio de transmissão	Sinalização analógica	Sinalização digital
Par trançado	√	√
Cabo coaxial		
Fibra ótica		
Rádio, microondas e satélite		
Infravermelho		

Características dos Meios de Transmissão

- ▲ Largura de Banda e Capacidade de Transmissão
 - A partir do espectro de frequências é possível verificar a largura de banda do meio e calcular sua capacidade de transmissão máxima.
 - Frequencias mais altas oferecem maior largura de banda e, consequentemente, maiores taxas de transmissão.
 - O espectro é administrado internacionalmente pelo ITU e, no Brasil, pela ANATEL.

Espectro de frequências

Características dos Meios de Transmissão

- ▲ Largura de Banda e Capacidade de Transmissão
 - O espectro é particularmente importante em transmissões sem fio.
 - Frequencias mais baixas: mais fácil para o sinal ultrapassara barreiras físicas (paredes, montanhas). Estas frequencias são menos susceptíveis ao problema de atenuação do sinal.
 - Frequências mais altas: precisam de antenas menores e o sinal pode ser mais facilmente direcionado.

♦ Confiabilidade

- Está associada à sua capacidade de ser menos susceptível a problemas na transmissão, como ruído e atenuação.
- Sem fio < Par Trançado < Cabo Coaxial < FO

Segurança

- Está associada à sua capacidade de garantir a confidencialidade das informações trafegadas ou, pelo menos, dificultar o processo de escuta indevida dos dados.
- ♦ Com fio x Sem Fio
- Sem fio: exige criptografia

- ♦ Instalação e Manutenção
 - A complexidade da instalação e manutenção do meio de transmissão vai depender, basicamente, do tipo do meio e interfaces de comunicação, número de dispositivos e distância que os separam.
 - Redes Cabeadas: problema da passagem dos cabos, prédios históricos, áreas industriais, etc
 - Redes sem fio tem suas vantagens neste aspecto.

Custo

- Além do próprio meio, tem os custos de instalação e manutenção, os custos das interfaces de comunicação, dos ativos de rede (roteadores, switches etc).
- Em redes metropolitanas tem os custos das operadoras, que fazem o transporte dos dados.

Par Trançado

- Fios de cobre envoltos em material plástico, enrolados em forma de espiral para reduzir o efeito de ruídos e manter constants suas propriedades elétricas.
- Dois tipos:
 - ♦ Par Trançado blindado (STP Shielded Twisted Pair)
 - ♦ Par Trançado não blindado (UTP − *Unshielded Twisted Pair*)

 - Muito utilizado em redes Ethernet

Categorias de cabos UTP

Categoria	Largura de banda	Taxa de transmissão
Cat. 3	16 MHz	Até 10 Mbps.
Cat. 5	100 MHz	Até 100 Mbps.
Cat. 5e	100 MHz	Até 1 Gbps.
Cat. 6	250 MHz	Acima de 1 Gbps.
Cat. 6a	500 MHz	Até 10 Gbps.
Cat. 7	600 MHz	Acima de 10 Gbps.

Cabo UTP e conector RJ-45

Cabo Coaxial

- ♦ É formado por dois condutores, um interno e um externo, e entre os condutores existe um material isolante.
- O conductor externo é uma malha metálica que serve de blindagem para o condutor interno feito de cobre.
- ♦ O cabo é revestido por uma proteção plástica.

Cabo coaxial

Fibra Óptica

- Utiliza a luz para a transmissão de dados
- Para que a luz possa ser enviada pela FO sem que haja dispersão, utiliza-se um princípio da ótica chamado refração.
- O exemplo a seguir mostra um feixe de luz passando de um meio para o outro com índices de refração diferentes.

Refração e reflexão da luz

Dependendo do ângulo de incidência do raio, a luz pode ser refratada (a) ou refletida (b) de volta para o meio do qual partiu o feixe.

Fibra Óptica

- O cabo de FO consiste em um núcleo feito de vidro ou plástico, da espessura aproximada de um fio de cabelo.
- O núcleo é envolvido por um revestimento (**cladding**) feito de um material que possui um índice de refração menor que o núcleo.
- O núcleo e o revestimento são envoltos por uma proteção plástica.

Fibra ótica

Fibra Óptica

- São classificadas em dois tipos, de acordo com o número de feixes de luz que são encaminhados pela fibra
 - SM: Fibra SingleMode ou **MonoModo**
 - Apenas um feixe de luz é transportado
 - Para longas distâncias
 - MM: Fibra MultiModo
 - Diversos feixes são encaminhados
 - Para distâncias curtas

Sistema de Transmissão Ótico

- **♦** Composto por 3 elementos:
 - Fonte de Luz

 - Laser
 - Cabo de FO
 - Detector Ótico
 - ◆ Tem a função de receber o sinal de luz e converter para sinal elétrico

Sistema de transmissão ótico

Rádio

- O espectro de frequências de rádio inclui as faixas AM, FM e TV aberta e telefonia móvel celular.
- Nesse espectro as ondas passam facilmente por obstáculos e podem alcançar longas distâncias, especialmente quando refratadas na ionosfera.
- As transmissões via radio utilizam antenas omnidirecionais.
 - Os sinais são transmitidos em todas as direções
 - Não há necessidade de alinhamento (visada) entre o transmissor e o receptor.

Refração do sinal na ionosfera

Micro-ondas

- ♦ A transmissão na faixa de micro-ondas utiliza antenas direcionais (funcionam no esquema ponto-a-ponto)
- ▶ Em função da curvatura da terra, a distância máxima entre antenas de micro-ondas pode ser de no máximo 48 km, sem nenhum tipo de obstáculo entre elas.

Conexão ponto a ponto utilizando microondas

Satélite

♦ A comunicação via satélite utiliza estações terrestres e satélites que ficam em órbita da Terra e funcionam como repetidores.

Comunicação via satélite

Infravermelho

- Frequências que ficam logo abaixo da luz visível.
- Não ultrapassa obstáculos.
- ♦ É indicado para redes PAN (geralmente, dentro de um ambiente)
- Utilizado para conexões de periféricos:
 - ♦ Teclado e mouse sem fios
 - Controle remoto

Digitalização

Digitalização

- Os dados transmitidos em RC estão sempre no formato digital e podem ser transmitidos utilizando-se sinais analógicos ou digitais.
- O processo de converter dados analógicos (como áudio e vídeo) para o formato digital é chamado
 DIGITALIZAÇÃO.

Digitalização

- ◆ O processo de digitalização utiliza um dispositivo chamado
 CODEC (COdificador-DECodificador)
 - Realiza a conversão analógico-digital-analógico.

Processo de digitalização

- O processo de digitalização utiliza um dispositivo chamado
 CODEC (COdificador-DECodificador)
 - Realiza a conversão analógico-digital-analógico.

Processo de digitalização

- ▲ A técnica mais utilizada para a digitalização de áudio é conhecida como PCM (**Pulse Code Modulation**).
- O sinal analógico é amostrado periodicamente, formando um sinal no formato de pulsos estreitos, chamados pulsos modulados por amplitude ou PAM (*Pulse Amplitude Modulation*).

Codificação PCM

Nível	Código
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

100 110 111 001 001 101 111 011 001 000 010

Código PCM

Sinalização Digital

Sinalização Digital

- É a técnica que utiliza sinais digitais para a transmissão de dados digitais ou analógicos.
 - No caso de dados digitais, a informação já está pronta para ser transmitida.
 - No caso de dados analógicos, as informações devem, primeiramente, ser convertidas através do processo de digitalização.

Sinalização digital

Codificação NRZ-L

Codificação NRZ-I

Codificação Manchester

Transmissão à Distância

Elementos Básicos

- Se dois equipamentos de dados estão próximos entre si, a comunicação entre eles pode ser feita por meio de sinais digitais, mas se a distância entre eles é grande, a comunicação é feita modulando-se uma portadora de áudio, a qual vai transitar por um canal telefônico.
- A adaptação do sinal é feita pelos MODEM (Modulador Demodulador).

MODEM

- Modulação: É o processo pelo qual algumas características de uma onda é variada, de acordo com outra onda ou sinal. Esta técnica é usada em MODEM, a fim de tornar o sinal digital dos equipamentos de processamento de dados compatível com as facilidades de comunicação.
- **Demodulação**: é o processo inverso da modulação, ou seja, separa o sinal de informação de uma onda portadora modulada. Converte os sinais de comunicação para uma forma compatível com os equipamentos de processamento de dados.

MODEM

• Dizemos que os MODEM tem a função básica de transformar o sinal digital em analógico e vice-versa, como ilustrado na figura abaixo:

- O sinal analógico que será transmitido pelo MODEM, possui o sinal digital embutido na portadora.
- A portadora é uma onda cuja freqüência está dentro da Largura de Banda do Canal. E dessa forma, o sinal analógico poderá trafegar sem sofrer atenuações elevadas.
- O sinal digital não poderia ser transmitido diretamente pelo canal, porque ele é composto por diversas ondas, cujas freqüências estão fora da **Largura de Banda** do Canal.
- A largura de banda é a faixa de freqüência disponível para registrar um sinal, representado pela diferença entre a freqüência mais alta e a mais baixa, e é expressa em termos de ciclos por segundo ou Hertz (HZ).

SINAL MODULANTE

O sinal modulante é o próprio sinal que se deseja transmitir, mas, que devido a suas características de baixa freqüência, deve ser superposto a uma onda portadora de freqüência mais alta de tal forma que possa se propagar através dos meios físicos de transmissão.

PORTADORA

Para facilitar a transmissão do sinal através dos meios físicos, e adequar as freqüências aos sistemas de comunicação, se utiliza a chamada onda portadora, em cima da qual viaja o sinal a ser transmitido.

PORTADORA

- A onda portadora é um sinal senoidal caracterizado por três variáveis: Amplitude, Freqüência e Fase. Por definição este sinal existe ao longo de todo o tempo, ou seja com "t" variando de menos infinito a mais infinito.
- A equação de uma onda portadora é dada por: F=A sen (W t + O)
 - F, é a amplitude instantânea da onda para o instante t.
 - A, é a amplitude máxima da onda.
 - W, é a freqüência angular da portadora W = 2*PI*f (onde f é a freqüência da onda em Hertz).
 - O, é a fase da onda portadora.
- As três características observadas ao início, podem ser variadas em função do sinal modulante e do tipo de modulação que está sendo utilizado.

- ♦ É a técnica que utiliza sinais analógicos para a transmissão de dados digitais ou analógicos.
- Nesse esquema de sinalização, os dispositivos são conectados ao meio através de um MODEM (MOdulador-DEModulador), que tem a função de realizar a modulação do sinal na origem e demodulação do sinal no destino.

Modulação e demodulação

♦ TÉCNICAS DE MODULAÇÃO

- As ondas são formadas por repetições de curvas senoidais. As técnicas de modulação nada mais são do que variar os parâmetros que compõe uma onda: **amplitude**, **freqüência** e **fase**, através dos sinais digitais.
- ♦ **Amplitude**: Valor máximo que a onda pode alcançar.
- **Freqüência**: Número de ciclos transmitidos durante a unidade de tempo.
- ♦ **f** = 1/**T** : Onde T é o tempo que a onda leva para completar um cliclo e **f** é a freqüência medida em "Hertz" (Hz) ou ciclos/segundo.
- Fase: Ponto onde a curva começou em relação ao tempo.

- ▲ **A onda portadora** é um sinal de frequência constante e contínuo que funciona como um meio de transporte para o dado a ser enviado.
- ▲ A modulação é o processo que envolve alterar uma ou mais característica da onda portadora, como a amplitude, a frequência ou a fase, de forma a que o dado possa ser transmitido.
- Basicamente, 3 técnicas:
 - ASK
 - FSK
 - PSK

- ♦ ASK (*Amplitude Shift-Keying*) é a técnica de modulação mais simples entre as utilizadas para modular sinais discretos (digitais).
- ♦ A modulação em amplitude translada o espectro de freqüencia baixa do sinal binário, para uma freqüencia alta como é a da onda portadora.

- ▲ A amplitude da portadora é comutada entre dois valores, usualmente ligado e desligado (na modulação em amplitude multinível podem ser utilizados mais valores).
- ▲ A onda resultante consiste então em pulsos de rádio freqüência (RF), que representam o sinal binário "1" e espaços representando o dígito binário "0" (supressão da portadora).

- ♦ O processo de modulação FSK (Frequency Shift-Keying), consiste em variar a freqüência da onda portadora em função do sinal modulante, no presente caso, o sinal digital a ser transmitido.
- ♦ Este tipo de modulação pode ser considerado equivalente à modulação em FM para sinais analógicos.

- ♦ A amplitude da onda portadora modulada é mantida constante durante todo o processo da modulação; quando ocorrer a presença de um nível lógico "1" no sinal digital, a freqüência da portadora é modificada para poder ser depois compreendida no processo de demodulação. A freqüência resultante transmitida será a freqüência da onda portadora fp diminuída de uma freqüência de desvio fd. Matematicamente a onda resultante modulada será: fr = fp − fd.
- ♦ Se registrada a ocorrência de um nível lógico "0" no sinal digital, a freqüência resultante aplicada será a freqüência da onda portadora acrescida da freqüência de desvio: **fr** = **fp** + **fd**.

- ▲ técnica de modulação conhecida por PSK (*Phase Shift-Keying*), é o processo pelo qual se altera a fase da <u>onda</u> <u>portadora</u> em função do sinal digital a ser transmitido. Para este processo são usados pulsos bipolares de altura **A/2** e **-A/2** no sinal senoidal da onda portadora em lugar de dois pulsos de altura **0** e **A**.
- ♦ Quando ocorrer uma transição de nível lógico do sinal digital a ser transmitido (sinal modulante), haverá uma mudança de 180° na fase da onda portadora com relação ao ângulo anterior. A transição observada pode ser tanto de nível lógico "0" para "1" como de nível lógico "1" para "0".

▶ Para este tipo de modulação deve se usar a detecção síncrona, já que esta tem como base o conhecimento preciso a respeito da fase da onda portadora recebida, bem como da sua freqüência. Esta técnica de modulação devido ao fato mencionado, envolve circuitos de recepção (demodulação) mais sofisticados; em compensação oferece melhor desempenho que as técnicas ASK e FSK

Outros tipos de Modulação

- ▶ Existem outros tipos de modulação, tais como: Modulação em Diferença de Fase, que consiste em variar a fase da portadora (não o valor instantâneo da fase, mas a diferença de fase), de acordo com o valor binário da informação; Modulação Multibit, que é um recurso utilizado para aumentar a velocidade de uma comunicação. Consiste em adotar mais de dois níveis de sinal na modulação, possibilitando a representação de mais de um bit na unidade de informação. A transmissão dibit, por exemplo, adota 4 estados elétricos distintos da portadora para poder representar dois bits (22=4). Transmissão tribit (8 estados) e quadribit (16 estados).
- ♦ A transmissão multibit é feita em DPSK, AM, ou ainda poderá ser uma mistura de ambas. A seguir, uma transmissão dibit em AM.

Sinalização Multinível

Sinalização Multinível

- Sinalização Monobit
 - Codifica apenas 1 bit por sinal
- É possível aumentar a taxa de transmissão enviando um maior número de bits por sinal
- ♦ É uma técnica que pode ser aplicada tanto em sinais digitais quanto analógicos.

Sinalização Multinível

Na sinalização multinível existe uma relação entre o número de bits que se deseja transmitir e o número de sinais distintos que devem ser codificados para alcançar o nível de sinalização desejado.

Sinalização digital dibit

Sinalização analógica dibit

Sinalização Digital

- ♦ A taxa de transmissão dos modems pode ser especificada em bps ou em baud.
- O baud representa o número de amostras que o modem realiza por segundo, ou seja, quantas vezes em um intervalo de 1 s o modem sinaliza o meio.

Multiplexação

Multiplexação

- ▶ Permite que diversas transmissões independentes sejam realizadas utilizando o mesmo meio de transmissão.
- Principal objetivo:
 - Maximizar a utilização do meio, reduzindo o custo de comunicação.
- ♦ A técnica de multiplexação é possível por dois motivos:
 - Parte da banda fica ociosa
 - O meio não é utilizado na sua capacidade máxima o tempo todo

Subutilização do meio

Multiplexação

- ♦ É implementada utilizando-se um equipamento chamado multiplexador (mux).
- - O mux combina os dados a serem transmitidos e os encaminha usando o mesmo meio de transmissão.
- No destino:
 - Separa os dados de cada dispositivo individualmente.

Multiplexação

- Duas técnicas:
- FDM
 - Frequency Division Multiplexing
- ◆ TDM
 - Time Division Multiplexing

Multiplexação por divisão de frequência

Exemplo de FDM

FDM e ADSL

FDM e TV a cabo

Tempo

Fibras Ópticas

- ♦ Um esquema semelhante ao FDM é implementado em transmissões que utilizam FO.
- WDM
 - Wavelength Division Multiplexing
 - Multiplexação por Divisão de Comprimento de Onda
- ◆ Permite criar vários canais de comunicação independentes utilizando a mesma fibra, modulando o comprimento de onda de cada canal em partes diferentes do espectro de frequências da luz.

Multiplexação por divisão de tempo

- Neste caso, a largura de banda não é dividida em canais como no FDM.
- Na TDM, cada dispositivo utiliza toda a largura de banda do meio por um determinado intervalo de tempo, chamado slot.

Multiplexação por divisão de tempo

Multiplexação por divisão de tempo

- O TDM exige que os dados transmitidos sejam digitais, mas permite sinalização digital ou analógica.
- ♦ É possível implementar ambas as técnicas no mesmo meio.
- ♦ O TDM pode ser:
 - Assíncrono: slots de tempo são iguais
 - Síncrono ou estatístico: slots de tempo não são iguais
 - ♦ A alocação pode ser feita dinamicamente de acordo com o tipo do dado ou da prioridade do dispositivo.

Transmissão Simplex, Half-Duplex e Full-Duplex

Transmissão Simplex, Half-Duplex e Full-Duplex

♦ Uma transmissão pode ser classificada como simples, halfduplex ou full-duplex conforme a direção do fluxo de dados entre o transmissor e receptor.

Transmissão simplex

Transmissão half-duplex

Transmissão full-duplex

Transmissão Serial e Paralela

Transmissão Serial e Paralela

▲ A transmissão pode ser definida como serial ou paralela, dependendo da forma com que os sinais são encaminhados entre o transmissor e o receptor.

Transmissão serial

Transmissão serial

♦ Transmissão Serial

Transmissão paralela

Transmissão paralela

♦ Transmissão Paralela

- ♦ Todos os bits do caracter são transmitidos simultaneamente.
- O conjunto de fios que conduzem esses bits é chamado de via.

Transmissão Assíncrona e Síncrona

Transmissão Assíncrona e Síncrona

- O problema da sincronização
 - ▶ Em um sistema de comunicação, o receptor deve ser capaz de identificar exatamente cada sinal que está chegando.
 - ♦ A interface de comunicação do receptor verifica periodicamente o meio para colher o sinal e decodificá-lo para obter o dado transmitido.
 - Se a taxa de amostragem variar muito pode acontecer 2 situações:
 - Não colher um sinal
 - Colher um sinal duas vezes

Transmissão Assíncrona e Síncrona

- ♦ O processo de geração do sinal no transmissor e sua leitura no receptor é credenciado por uma espécie de relógio presente em cada uma das interfaces.
- ♦ 2 técnicas:
 - ♦ Transmissão Assíncrona
 - Transmissão Síncrona

Transmissão assíncrona

Ou transmissão start/stop:

- •Os relógios do transmissor e receptor não estão sincronizados.
- •Trabalha em nível de caracter.
- •Técnica simples de implementar e de baixo custo.
- •Ex: USB

Transmissão Síncrona

- Os relógios estão sincronizados.
- Considera blocos de caracteres.
- Cada bloco é precedido de caracteres de sincronismo.
- É mais eficiente.
- É mais custoso. Exige interfaces mais precisas.
- O sincronismo pode ser obtido utilizando a própria codificação

Topologias de Rede

Topologias de Rede

- ♦ A topologia de uma rede define como os dispositivos estão fisicamente conectados.
- De maneira geral, as topologias de rede podem ser classificadas em ponto-a-ponto ou multiponto.

Topologias ponto a ponto e multiponto

Topologias de rede

Ponto a ponto	Multiponto
Totalmente ligada	Barra
Estrela	Anel
Hierárquica	
Distribuída	

Topologia totalmente ligada

Topologia em estrela

Topologia em estrela utilizando hub ou switch

Topologia hierárquica ou em árvore

Topologia hierárquica utilizando hub ou switch

Topologia distribuída

Topologia em barra

Topologia em anel

