

Redes Cognitivas com Oportunidades Dinâmicas de Acesso ao Espectro

Defesa de Tese

Marcel William Rocha da Silva

Orientador: José Ferreira de Rezende

Roteiro

- Introdução e motivação
 - Rádios cognitivos
 - Oportunidades dinâmicas
 - Roteamento em redes cognitivas dinâmicas
- Propostas e avaliações
 - Arquitetura de rede em malha híbrida
 - Protocolo RoAD (Roteamento de Alta Disponibilidade)
- Conclusões e trabalhos futuros

Problema: Escassez de Espectro

- Uso ineficiente
 - Faixas não-licenciadas
 - Altos índices de utilização por tecnologias muito populares na atualidade (IEEE 802.11 e Bluetooth)
 - Faixas licenciadas
 - Baixos índices de utilização por tecnologias pouco utilizadas na maioria das regiões
- Solução
 - Acesso Oportunista → Rádios Cognitivos

Rádios Cognitivos

- Reconfiguração
 - Controle das características de operação por software
- Percepção do ambiente
 - Detecção da atividade de outros dispositivos através de sensoriamento ou consulta à entidade central

- Uso oportunista do espectro licenciado
 - Acesso não-prioritário (secundário) em relação aos licenciados (primários)

Acesso Secundário

Acesso Secundário

Acesso Secundário

Oportunidades Dinâmicas

- Grande dependência da atividade dos rádios primários
- Em cenários com atividade dinâmica dos primários
 - Frequentes interrupções nos enlaces entre rádios cognitivos
 - Problemas para o roteamento em redes de múltiplos saltos

Roteamento em Redes Cognitivas com Oportunidades Dinâmicas

- - Sobrecarga de informação de controle
 - Rotas com curto tempo de vida
 - Destinos inalcançáveis

 Demanda por novas soluções para minimizar o impacto da disponibilidade dinâmica dos enlaces sobre o roteamento em redes cognitivas

Duas Propostas

- 1. Arquitetura de rede em malha híbrida
 - Rádios 802.11 em conjunto com rádios cognitivos

- 2. Protocolo de roteamento (RoAD)
 - Redes formadas apenas por rádios cognitivos

Proposta 1: Arquitetura Híbrida

• IEEE 802.11

- Alternativa imediata para períodos de indisponibilidade dos rádios cognitivos
 - Acesso ao espectro independente da atividade dos primários

Rádios cognitivos

- Adoção gradual
- Melhorias de desempenho
 - Maior alcance de transmissão > menor freq. de operação

Topologia da Rede Híbrida

- Criada a partir de uma rede 802.11 preexistente
 - Comunicação em múltiplos saltos

Topologia da Rede Híbrida

- Criada a partir de uma rede 802.11 preexistente
 - Comunicação em múltiplos saltos
- Interface de rádio cognitivo adicional
 - Nós cognitivos
 - Duas interfaces (802.11 + cognitiva)

Rede Sobreposta

"Enlaces Cognitivos de Atalho"

"Enlaces Cognitivos de Atalho"

Mecanismo de Criação de Atalhos

- 1. Comunicação se inicia por uma rota na rede 802.11
 - "Rota 802.11"
- Nós cognitivos da rota 802.11 se coordenam através de sondas
 - Descobrir todos os enlaces cognitivos de atalho
- Algoritmo SPF
 - Entrada → Enlaces da rota 802.11 + enlaces cognitivos de atalho
 - Resultado → Rota híbrida com o melhor conjunto de atalhos
 - Pesos dos enlaces determinam quais atalhos serão utilizados
 - Pesos iguais

 rotas híbridas mais curtas
- 4. Escolha é notificada aos demais nós cognitivos

Influência do Protocolo de Roteamento da Rede 802.11

- Roteamento na rede 802.11 pode criar rotas que passem preferencialmente por nós cognitivos
 - Maior probabilidade de enlaces de atalho

- Estado do enlace → Novas métricas de atribuição de pesos aos enlaces 802.11
 - Pesos iguais (EQUAL)
 - Número de nós cognitivos no enlace (NRC)
 - Percentual de canais livres (POP)

Abordagem Alternativa: Criação Direta de Rotas Híbridas

- Usar grafo completo no roteamento da rede 802.11
 - Todos os enlaces 802.11 e cognitivos
- Vantagem
 - Descoberta de rotas híbridas ótimas
- Desvantagem
 - Enlaces cognitivos não possuem backups 802.11
- Possível solução
 Descoberta de backups 802.11 para cada enlace cognitivo da rota híbrida
 - Também não resolve → Formação de loops de roteamento

Avaliação de Desempenho

Simulador próprio em TCL

- Análises dos grafos e das rotas de cenários de rede híbrida
- Implementação simplificada dos mecanismos
- Número de saltos das rotas

Algoritmo SPF

- Protocolo de roteamento de estado de enlace na rede 802.11
- Mecanismo de criação de atalhos
- Criação direta de rotas híbridas (OPTIMAL)
 - Algoritmo guloso para a descoberta de backups 802.11

Cenários no Simulador Próprio

- 30 cenários
- Posicionamento aleatório de 200 nós
- Área quadrada de 1000 metros de lado
- Alcance dos rádios 802.11: 80 metros
- Alcance dos rádios cognitivos: 320 metros
- Pesos dos enlaces 802.11: EQUAL, NRC e POP
- Faixa licenciada: 9 canais
- 2 pares de rádios primários em cada canal
 - Influência estática sobre os rádios cognitivos
- Métrica de desempenho
 - Número médio de saltos de todas as rotas entre todos os nós
 - N*(N-1) rotas

Número de Saltos Médio

Avaliação com ns-2

- Outras métricas de desempenho
 - Vazão e atraso
 - Validar ganhos da redução do número de saltos
- Diversas modificações no ns-2 original
 - Múltiplos canais e múltiplas interfaces
 - Protocolo MAC específico para rádios cognitivos
 - [Yuan *et.al.* 2007]
 - Influência dos primários
 - Pares de rádios primários
 - Atividade do tipo ON-OFF de média exponencial

Cenários no ns-2

- Mesmos cenários do simulador próprio
- Simulação de um fluxo de dados
 - Fonte e destino em cantos opostos do cenário
 - Tráfego CBR
 - Taxa de 1 Mbps
 - Pacotes de 512 bytes
 - Duração de 500s
- Métricas → Vazão e atraso
- Dois conjuntos de resultados
 - Sem influência dos primários
 - Todos os enlaces cognitivos disponíveis
 - Apenas com caminhos de backup
 - Com influência dos primários
 - Caso prático

Sem Influência dos Primários

Com Influência de Primários

- 9 pares de primários
- $\mu_{on} = 1s e \mu_{off} = 5s$

Conclusões (Arquitetura Híbrida)

- Arquitetura Híbrida
 - Imunidade às instabilidades dos enlaces cognitivos
 - Rotas de backup 802.11
- Mecanismo de Criação de Atalhos
 - Viabiliza o uso oportunista dos enlaces cognitivos
 - Garante a existência dos caminhos de backup 802.11
 - Melhorias de desempenho
 - Reduz o tamanho das rotas 802.11

Redes Formadas Somente por Rádios Cognitivos

 Roteamento deve encontrar alternativas para a topologia dinâmica na própria rede cognitiva

- Proposta 2: Protocolo RoAD
 - RoAD Roteamento de Alta Disponibilidade
 - Objetivo
 Descobrir rotas muito disponíveis e minimizar os impactos da disponibilidade dinâmica dos enlaces cognitivos

Protocolo RoAD

- Protocolo de roteamento pela fonte
 - Canal de controle dedicado
- Funcionamento
 - Inundação periódica
 - Identificadores dos vizinhos
 - Percentual de tempo que cada canal k está disponível ($Disp_i^k$)
 - Grafo da rede
 - Pesos dos enlaces > Nível de indisponibilidade e capacidade

$$Peso_{ij} = \sum_{k=1}^{N} Indisp_{ij}^{k} \qquad Indisp_{ij}^{k} = -\log(Disp_{i}^{k} \times Disp_{j}^{k} \times 0.9 + 0.1)$$

 Algoritmo SPF seleciona a rota mais disponível e com maior capacidade

Problema

- •Caminho mais disponível pode ficar indisponível temporariamente
- •Comunicação em múltiplos saltos de A para C

Problema

•Influência heterogênea dos primários → Diferentes rotas sobre a influência de primários diferentes

Algoritmo de Descoberta de Caminhos Alternativos (DCA)

- •Nó E fica impedido de se comunicar
- •Nó D é sinalizado através do canal de controle

Algoritmo de Descoberta de Caminhos Alternativos (DCA)

- •Nó E fica impedido de se comunicar
- •Nó D é sinalizado através do canal de controle

Funcionamento do Algoritmo DCA

1. Nó D elimina da topologia todos os enlaces conhecidamente indisponíveis e que podem formar *loops* de roteamento

Funcionamento do Algoritmo DCA

1. Nó D elimina da topologia todos os enlaces conhecidamente indisponíveis e que podem formar *loops* de roteamento

Funcionamento do Algoritmo DCA

1. Nó D elimina da topologia todos os enlaces conhecidamente indisponíveis e que podem formar *loops* de roteamento

- •Aproveitar disponibilidades heterogênea dos caminhos alternativos
 - •Aumento da disponibilidade fim-a-fim

Avaliação no ns-2

- Protocolos de roteamento implementados
 - Protocolo RoAD
 - Roteamento pela fonte (SR Source Routing)
 - Pesos iguais (SR-EQUAL)
 - Métrica de disponibilidade dos enlaces (SR-DISP)
 - Protocolo SAMER [Pefkianakis et.al. 2008]
 - Malha de encaminhamento em torno da rota de menor número de saltos
 - Escolha do próximo salto local de acordo com uma métrica que representa disponibilidade

Cenários de Simulação

- 50 cenários
- 30 nós cognitivos posicionados aleatoriamente
- Área quadrada de 1000 metros de lado
- Alcance de 320 metros
- Um fluxo de dados
 - Fonte e destino em cantos opostos do cenário
 - Tráfego CBR
 - Taxa de 600 Kbps
 - Pacotes de 1500 bytes
 - Duração de 900s

- 1. Número total de pares de primários
- 2. Número de canais na faixa licenciada
- 3. Padrão de atividade dos pares de primários (μ_{on} e μ_{off})

Número de Pares de Primários

- 5 canais
- $-\mu_{on}$ =1s e μ_{off} =1s

Número de Pares de Primários

- 5 canais
- $-\mu_{on}$ =1s e μ_{off} =1s

Número de Canais

- 15 pares de primários
- $-\mu_{on}$ =1s e μ_{off} =5s

Número de Canais

- 15 pares de primários
- $-\mu_{on}$ =1s e μ_{off} =5s

Tempo Médio em OFF (μ_{off})

- 5 canais
- 15 pares de primários, μ_{on} =1s

Tempo Médio em OFF (μ_{off})

- 5 canais
- 15 pares de primários, μ_{on} =1s

Conclusões (RoAD)

 Nível de disponibilidade dos enlaces é um fator importante em redes cognitivas

- Protocolo RoAD
 - Ganhos de desempenho expressivos
 - "Rastrear" a disponibilidade dos enlaces

Conclusões Finais

- Acesso secundário ao espectro
 - Enlaces com disponibilidade dinâmica
 - Problemas para o roteamento
- Contribuições
 - Arquitetura de rede em malha híbrida
 - Solução simples mas ainda não explorada
 - Permite inserção gradual dos rádios cognitivos
 - Garante imunidade às instabilidades dos enlaces cognitivos
 - Protocolo RoAD
 - Aumenta a disponibilidade fim-a-fim das comunicações na rede cognitiva
 - Aproveitamento da influência heterogênea dos primários
 - Desenvolvimento de ferramentas para a avaliação de desempenho de redes cognitivas

Trabalhos Futuros

Arquitetura de rede híbrida

- Métricas para os pesos dos enlaces 802.11
- Métricas para a seleção dos conjuntos de atalhos
- Metodologias para a escolha dos nós cognitivos

Protocolo RoAD

- Proposta de novas métricas
- Comparação de desempenho com outras propostas
- Avaliação do impacto de erros na detecção das oportunidades

Obrigado!