AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1. (Currently Amended) A silicone composition which can be crosslinked by dehydrogenative condensation, this composition comprising:
 - o -A- at least one organosiloxane monomer, oligomer and/or polymer having, per molecule, at least one reactive ≡SiH unit;
 - o -B- at least one organosiloxane monomer, oligomer and/or polymer exhibiting, per molecule, at least one reactive ≡SiOH unit;
 - o -C- at least one catalytic complex;
 - o -D-optionally at least one crosslinking inhibitor or retarder;
 - o -E- optionally at least one polyorganosiloxane (POS) resin;
 - o -F- optionally at least one filler;

characterized in that the catalytic complex -C- is an iridium complex eapable of being obtained by reacting together <u>-C1- and -C2-, wherein -C1- and -C2- are defined below</u>: -C1-, on the one hand, is an iridium complex of formula (I):

 $(Ir\Sigma\Sigma'_2)_n$

in which:

1/ n is 1 or 2 and:

-if n is 1, Σ is a 3-electron radical ligand LX, preferably a ligand derived from acetylacetone, from a β -keto ester, from a malonic ester, from an allyl compound, from a carbamate, from a dithiocarbamate or from a carboxylic acid;

[[- if]] wherein n is 2[[,]]

 Σ is a 1-electron radical ligand [[X]] which bridges the 2 iridium atoms, having a function of 1-electron ligand [[X]] for 1 iridium atom and of 3-electron ligand [[LX]] for the combination of the 2 iridium atoms, in particular a wherein the ligand ehosen from is halo, alkoxy or aryloxy;

[[2/]] Σ ', which are identical or different, each represent a 2-electron ligand [[L]] ehosen in particular selected from: donors of a π bond pair, such as wherein the π bond pair is

olefins, alkynes, C=O double bonds of an aldehyde or of a ketone, C=N or C=S; donors of a σ bond pair, such as wherein the σ bond pair is H-H (dihydrogen) bonds or H-Si bonds, in particular in silanes (H-SiR₃); and organophosphorus, R₂O, R₂S, NR₃ or THF ligands;

-C2-, on the other hand, is a ligand Σ_d ehosen selected from (i) R_2S , (ii) R_2O , (iii) NR_3 , (iv) carbenes, wherein R is alkyl, aryl, or arylalkyl, [[or]] and (v) organophosphorus compounds of formula $P(OR)_p(R)_q$ with p and q ranging from 0 to 3, it being known that and p+q=3, in which the R radicals are identical or different, and are linear or branched alkyl radicals having from 1 to 30 carbon atoms; alkyl radicals comprising one or more rings, wherein a ring has from 4 to 14 carbon atoms; or aryl or aralkyl radicals comprising one or more fused or nonfused aromatic or heteroaromatic rings, wherein a ring has 4 to 14 carbon atoms; the ring or rings are optionally substituted by one or more groups selected from alkoxy, halide, amino and linear or branched alkyl having 1 to 12 carbon atoms.

2. (Currently Amended) The composition as claimed in claim 1, characterized in that n=2 and the iridium complex is a dimeric complex of following formula (I'):

$$\sum_{\Sigma'} \sum_{\Sigma'} \sum_{\Sigma'}$$

in which:

- Σ is a 1-electron radical ligand [[X]] which bridges the 2 iridium atoms, having a function of 1-electron ligand [[X]] for 1 iridium atom and of 3-electron ligand [[LX]] for the combination of the 2 iridium atoms, in particular a wherein the ligand chosen from is halo, alkoxy or aryloxy,
- Σ ' are 2-electron ligands [[L]] formed of hydrocarbon groups comprising at least one unit

preferably of hydrocarbon groups comprising the second unit, more preferably with

the two Σ ' ligands carried by the same Ir atom being carried by the same molecule.

3. (Cancelled)

- 4. (Currently Amended) The composition as claimed in claim 1 or 2, characterized in that n is 2 and Σ is a ligand chosen from halo, more particularly chloro, and or alkoxy ligand.
- 5. (Currently Amended) The composition as claimed in one of claims 1 to 4 claim 1, characterized in that the Σ ' ligands, which are identical or different, preferably identical, each represent a 2-electron ligand L chosen selected from hydrocarbon groups comprising at least one unit

the hydrocarbon groups being linear, branched, aromatic or (poly)cyclic, optionally interrupted by one or more heteroatoms (e.g., O, S or N) and comprising from 2 to 18 carbon atoms.

- 6. (Original) The composition as claimed in claim 5, characterized in that the two Σ ' ligands bonded to the same Ir atom are functionalities carried by the same molecule.
- 7. (Original) The composition as claimed in claim 6, characterized in that this molecule is 1,5-cyclooctadiene.
- 8. (Currently Amended) The composition as claimed in one of claims 1 to 4 claim 1, characterized in that the Σ ' ligands are of $P(OR)_p(R)_q$ type with p and q ranging from 0 to 3, it being known that and p+q=3, preferably phosphines PR_3 and phosphites $P(OR)_3$.
- 9. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the ligand Σ_d is an organophosphorus compound of formula $P(OR)_p(R)_q$ with p and q ranging from 0 to 3, it being known that and p+q=3, preferably a

phosphine PR₃ or a phosphite P(OR)₃; in which formulae the R radicals, which are identical or different, are linear or branched alkyl radicals having in particular from 1 to 30 carbon atoms, preferably from 1 to 12 carbon atoms; alkyl radicals comprising one or more rings, in particular 1 or 2 rings, it being possible for a ring to have in particular from 4 to 14 carbon atoms, preferably from 5 to 8 carbon atoms; or aryl or aralkyl radicals comprising one or more fused or nonfused aromatic or heteroaromatic rings, in particular 1 or 2 rings, it being possible for a ring to comprise from 4 to 14 carbon atoms, preferably from 5 to 8 carbon atoms; the ring or rings are optionally substituted by one or more groups, in particular from 1 to 2 groups, such as alkoxy, halide, amino or linear or branched alkyl having in particular from 1 to 12 carbon atoms, preferably from 4 to 12 carbon atoms.

- 10. (Currently Amended) The composition as claimed in one of claims 1-2 and 4-9 claim 1, characterized in that n=2 and the dimeric iridium complex is bis(1,5-cyclooctadiene)diiridium(I) dichloride.
- 11. (Currently Amended) The composition as claimed in one of claims 1 to 10 claim 1, characterized in that the ligand Σ_d is chosen selected from the group consisting of triphenylphosphine and tris(para-methoxyphenyl)phosphine.
- 12. (Currently Amended) The composition as claimed in claim 1, characterized in that the catalytic complex -C- is the product of the mixing of reacting bis(1,5-cyclooctadiene)diiridium(I) dichloride and [[of]] triphenylphosphine.
- 13. (Currently Amended) The composition as claimed in any one of the preceding elaims claim 1, characterized in that it comprises from 1 ppm to 1000 ppm, preferably from 1 ppm to 300 ppm, of iridium metal with respect to the body composed of the mixture of the oils possessing ≡SiH and ≡SiOH.
- 14. (Currently Amended) The composition as claimed in any one of the preceding elaims claim 1, characterized in that the catalytic complex employs from 0.5 to 10, especially from 0.5 to 5, more particularly from 0.5 to 2, mol of ligand Σ_d per 1 mol of Ir.

- 15. (Currently Amended) The composition as claimed in claim 14, characterized in that the catalytic complex employs from 0.75 to 1.5, in particular from 0.75 to 1.25 and better still 1 mol of ligand Σ_d per 1 mol of Ir.
- 16. (Currently Amended) The composition as claimed in any one of the preceding elaims claim 1, characterized in that the organosiloxane monomers, oligomers and/or polymers -A- possessing reactive ≡SiH units have at least one unit of formula (II) and are terminated by units of formula (III) or are cyclic and are composed of units of formula (II) represented below:

- the symbols R¹ are identical or different and represent:
 - a linear or branched alkyl radical comprising from 1 to 8 carbon atoms which is optionally substituted by at least one halogen, preferably fluorine, the alkyl radicals preferably being selected from methyl, ethyl, propyl, octyl and 3,3,3-trifluoropropyl,
 - an optionally substituted cycloalkyl radical comprising between 5 and 8 cyclic carbon atoms,
 - an optionally substituted aryl radical comprising between 6 and 12 carbon atoms,
 - an aralkyl radical having an alkyl part comprising between 5 and 14 carbon atoms and an aryl part comprising between 6 and 12 carbon atoms which is optionally substituted on the aryl part by halogens, alkyls and/or alkoxyls comprising from 1 to 3 carbon atoms,
- the symbols Z' are alike or different and represent:
 - a hydrogen radical,
- a group corresponding to the same definition as that given above for R¹, with, per molecule, at least one of the symbols Z' representing H.

17. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers and/or polymers -B-possessing reactive ≡SiOH units have at least one unit of formula (IV) and are terminated by units of formula (V) or are cyclic and are composed of units of formula (IV) represented below:

- the symbols R² are identical or different and represent:
 - a linear or branched alkyl radical comprising from 1 to 8 carbon atoms which is optionally substituted by at least one halogen, preferably fluorine, the alkyl radicals preferably being selected from methyl, ethyl, propyl, octyl and 3,3,3-trifluoropropyl,
 - an optionally substituted cycloalkyl radical comprising between 5 and 8 cyclic carbon atoms,
 - an optionally substituted aryl radical comprising between 6 and 12 carbon atoms,
 - an aralkyl radical having an alkyl part comprising between 5 and 14 carbon atoms and an aryl part comprising between 6 and 12 carbon atoms which is optionally substituted on the aryl part by halogens, alkyls and/or alkoxyls comprising from 1 to 3 carbon atoms,
- the symbols Z' are alike or different and represent:
 - a hydroxyl group,
- a group corresponding to the same definition as that given above for R², with, per molecule, at least one of the symbols Z' representing OH.
- 18. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers -A-possessing reactive ≡SiH units correspond to the general formula (VI):

$$R''^{1} - SiO - Si - O - Si - R''^{1}$$

$$R''^{1} - SiO - Si - O - Si - R''^{1}$$

$$R''^{1} - R''^{1}$$

- x and y each represent an integer or fractional number varying between 0 and 200,
- R' and R' represent, independently of one another:
 - a linear or branched alkyl radical comprising from 1 to 8 carbon atoms which is optionally substituted by at least one halogen, preferably fluorine, the alkyl radicals preferably being selected from methyl, ethyl, propyl, octyl and 3,3,3-trifluoropropyl,
 - an optionally substituted cycloalkyl radical comprising between 5 and 8 cyclic carbon atoms,
 - an optionally substituted aryl radical comprising between 6 and 12 carbon atoms,
 - an aralkyl radical having an alkyl part comprising between 5 and 14 carbon atoms and an aryl part comprising between 6 and 12 carbon atoms which is optionally substituted on the aryl part,
- it being possible for $R^{"1}$ also to correspond to is hydrogen[[,]] with the condition according to which at least one of the $R^{"1}$ radicals (preferably both) correspond to that $R^{"1}$ is hydrogen when x = 0.
- 19. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers -B-possessing reactive ≡SiOH units correspond to the general formula (VII):

$$R^{"2} = \begin{cases} R^{"2} & R^{"2} \\ S & S \\ R^{"2} & OH \end{cases} = \begin{cases} R^{"2} & R^{"2} \\ S & S \\ R^{"2} & R^{"2} \end{cases}$$

- x' and y' each represent an integer or fractional number varying between 0 and 1200,
- R² and R² represent, independently of one another:
 - a linear or branched alkyl radical comprising from 1 to 8 carbon atoms which is optionally substituted by at least one halogen, preferably fluorine, the alkyl radicals preferably being selected from methyl, ethyl, propyl, octyl and 3,3,3-trifluoropropyl,
 - an optionally substituted cycloalkyl radical comprising between 5 and 8 cyclic carbon atoms,
 - an optionally substituted aryl radical comprising between 6 and 12 carbon atoms,
 - an aralkyl radical having an alkyl part comprising between 5 and 14 carbon atoms and an aryl part comprising between 6 and 12 carbon atoms which is optionally substituted on the aryl part,
- it being possible for R^{2} also to correspond to is OH[[,]] with the condition according to which at least one of the R^{2} -radicals (preferably both) correspond to that R^{2} is OH when x' = 0.
- 20. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers possessing reactive =SiH units comprise from 1 to 50 active =SiH units per molecule.
- 21. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers possessing reactive ≡SiOH units comprise from 1 to 50 active ≡SiOH units per molecule.
- 22. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers -A-possessing reactive =SiH units are chosen selected from the compounds of formulae:

with a, b, c, d and e representing a number varying from:

- in the polymer of formula S1:

$$0 \le a \le 150$$
, preferably $0 \le a \le 100$, preferably $0 \le a \le 20$, and

$$1 \le b \le 55$$
, preferably $10 \le b \le 55$, preferably $30 \le b \le 55$,

- in the polymer of formula S2:

$$0 \le c \le 15$$
,

- in the polymer of formula S3:

$$5 \le d \le 200$$
, preferably $20 \le d \le 50$, and

$$2 \le e \le 50$$
, preferably $10 \le e \le 30$.

23. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the organosiloxane monomers, oligomers or polymers -B-possessing reactive ≡SiOH units are chosen selected from the compounds of formula:

$$\begin{array}{c|c} \mathsf{CH}_3 & \mathsf{CH}_3 & \mathsf{CH}_3 \\ \mathsf{HO} - \mathsf{S} & \mathsf{OS} & \mathsf{OS} & \mathsf{OS} \\ \mathsf{CH}_3 & \mathsf{CH}_3 & \mathsf{CH}_3 \end{array}$$

54

with $1 \le f \le 1200$, preferably $50 \le f \le 400$, preferably $150 \le f \le 250$.

- 24. (Currently Amended) The composition as claimed in one of the preceding claims claim 1, characterized in that the =SiH/=SiOH ratio is between 1 and 100, preferably between 10 and 50 and more preferably still between 15 and 45.
- 25. (Currently Amended) A process for polymerizing and/or crosslinking [[a]] the composition as claimed in any one of the preceding claims claim 1, characterized in that a dehydrogenative condensation is carried out between said compounds -A- and -B- and in that

said dehydrogenative condensation is initiated by thermal activation of the catalytic complex -C-.

- 26. (Currently Amended) A process for producing at least one release coating on a support, preferably a flexible support, characterized in that [[it]] the process comprises the application, applying to this support, of a the composition as claimed in any one of claims 1 to 24 claim 1 and then ensuring that crosslinking occurs by dehydrogenative condensation.
- 27. (Currently Amended) A process for producing at least one article made of crosslinked silicone foam, characterized in that it comprises applying, to this support, a composition as claimed in any one of claims 1 to 24 claim 1 and then ensuring that crosslinking occurs by dehydrogenative condensation.
- 28. (Currently Amended) A coating, obtained by crosslinking a composition as claimed in any one of claims 1 to 24 claim 1.
- 29. (Original) An article composed of a solid material, at least one surface of which is coated with a coating as claimed in claim 28.
- 30. (Currently Amended) A crosslinked silicone foam, obtained by crosslinking a composition as claimed in any one of claims 1 to 24 claim 1.
- 31. (Currently Amended) A process for the preparation of a branched polyorganosiloxane comprising at least two polyorganosiloxane chains connected to one another via an Si-O-Si siloxyl group in which a dehydrogenative condensation reaction is carried out between an organosiloxane monomer, oligomer or polymer A' comprising reactive =SiH units and an organosiloxane monomer, oligomer or polymer B' comprising reactive =SiOH units, characterized in that said dehydrogenative condensation reaction is carried out in the presence of the catalytic complex C defined according to one of claims 1 to 15 claim 1 and is optionally initiated by thermal activation.

32. (Original) The process for the preparation of a branched polyorganosiloxane as claimed in claim 31, in which the ≡SiH/≡SiOH ratio is greater than 1.