leorema. (4.2.4)
Sea (D,+,0,1) un dominio entero, y P un sub conjunto de D que satisface las
condiciones signientes:
i) \ x, y ∈ P, x+y ∈ P y x · y ∈ P.
ii) Y x ∈ D se cumple una y súlo una de:
$\alpha \chi \epsilon P$
$b)\chi = 0$
c)-xeP.
Si definimos en D la relación < como sigue: Y x, y \in D:
entonces $(D,+,\cdot, \leq), 0, 1)$ es un dominio entero simplemente ordenado y $P=D^+$
Dem:
1005: (D,+,0,1) es dominio entero por hipótesis. Luego (D,<) es simplemente
Ordenado. Probar que:
a) (es tricotúmico
en esencia, ver la det. anterior.

Anotaciones previas al Teorema (4.2.5)	
Seu (D, ⊕, ⊙, <', O, 1) un dominio entero s:mplemente ordenado por <', y sea:	
$P = \{ \eta \mid : \eta \in P \} \subset D$	
el cual es un subconjunto de D. Entonces las operaciones D y O de D, restringidas o	1
P, son cerudus en P. En efecto:	
i) $ml_n 1 \in P \Rightarrow m1 \oplus n1 = (m+n)1 \Rightarrow ml \oplus n1 \in P$	
(i) $m1, n1 \in \mathcal{P} \Rightarrow m10n1 = m(10n1)$	
=m(n1)	
-(mn)1	
$\Rightarrow m \log \epsilon p$	
Memás $P \subset D^+$, en efecto: puesto que $1-11 \lor 0 < 1$, pues $1 \in D^+$, entonces: $0 \oplus 11 < 11 \oplus 11 = 21$	
0011 < 11011=21	
e inductivumente:	
0 <'11 <' 21 <'31 <' 11 <' (n+1)1	
por tanto:	
$0 < 1 $ $1 \forall n \in \mathcal{P}$	
Lueyo PCD+.	
Veamos ahora que:	
$m < n \iff m1 < n1$	
Veamos primero que:	
$m < n \Rightarrow m1 < n1$	
Claro que m <n> 3 v = P tul que:</n>	
$n = m + v \Rightarrow n = (m + v) = m + 0$	
=> m 1-m1 = v1 => 0 < n1 -m1	
pues v1∈P, por tanto:	
m1 <n1< td=""><td></td></n1<>	
Inversumente, probaremos ahora que:	
$m1 < n1 \Rightarrow m < n$	
2	

Suponyamos que mxn, entonces n m ó m=n. S: m=n, entonces m1=
n1, lo que contradice la hipótesis (m1 < n1). Si n < m, entonces por la
parte (i), n1 ('m1) lo que nue vamente contradice la hipótesis. Por tanto:
$m1 < n1 \Rightarrow m < n$
Finalmente $m < n \Leftrightarrow m1 < 'n1$
Teorema (4.2.5)
Sea (D,⊕,⊙,<', o,1) un dominio entero simplemente ordenado por <'. Sea:
$P = \{n : n \in P \mid (\in D)\}$
el cual es un subconjunto de D. Entonces:
$(P,+,o,<,0,1) \cong (D,\oplus,o,<,0,1)$
Dem:
Debemos encontrar una función F:P->P la cual sea bijectiva, preserve operació
$rac{1}{2} = 1$ Sea:
r:P-P
La regla de asociación definida por
F(n) = n1
1) Fes función: Sean $m, n \in P, m = n \Rightarrow m1 = n1 \Rightarrow F(m) = F(n)$.
2) Fes invectiva. Sim, ne Py n +m, entonces n < m ó m < n, entonces, por result-
adus anteriores: n1<'m1 ó m1<'n1, entonces F(n)<'F(m) ó F(m)<'F(n),
por tanto $F(n) \neq F(m)$
3) Fes suprayectiva: YnleP] neP tal que F(n)=n1.
1) F preserva la suma:
$\forall m, n \in P, F(m+n) = (m+n)1$
$= m 1 \oplus n 1$
$=F(m)\oplus F(n)$
5) F preserva el producto:
$\forall m, n \in P: F(m \cdot n) = (m \cdot n) 1$
$= m(\eta 1)$
-5-17-7-17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

Def. Sea (D,+,',<,0,1) un dominio entero simplemente ordenado, y sea x = D. Definim-				
os el valor absoluto de x, denutado por 1x1, como:				
$ \chi = \begin{cases} x & \text{si } 0 \leq \chi \\ -x & \text{si } \chi \leq 0 \end{cases}$				
$\frac{1}{1} \left(-\chi s; \chi < 0 \right)$				
obs: el valor absoluto es una función con dominio D y rango D+U{U} 1:D > D+U{O}				
legrema (4.2.10)				
S. (D,+, ·, <, 0, 1) un dominio entero simplemente ordenado, entonces ∀x,y, z ∈ D:				