Chapter 2

Probability

2.1 Definitions

- Experiment: Some action that takes place in the world
- Outcomes = Sample Space = Ω = the universe, every basic outcome that could happen
- Event $= A \subseteq \Omega$ = something that happened (could be more than one basic outcome
- Probability Distribution = $P: \Omega \to [0,1], \sum_{x \in \Omega} P(x) = 1$, i.e. values sum to 1 and no value is negative

2.2 Example

- Experiment = "toss a coin three times"
- $\Omega = \{HHH, HHT, HTT, HTH, THH, THT, TTT, TTH\}$
- Event A = "exactly two heads" = {HHT, HTH, THH}
- Event B = "first one was heads" = {HHH, HHT, HTT, HTH}
- Distribution: assign a number between 0 and 1 ('probability') to each basic outcome¹; sum of all such numbers = 1
- Uniform Distribution: define $P(x) = c \forall c \in \Omega$...in this case?
- Probability of an event = sum of the probability of its basic outcomes
- So, P(A) = ? and P(B) = ?

¹actually to each event in a partition but we'll get back to that in a minute

Joint and Conditional Probability 2.3

 $P(A,B) = P(A \cap B)$ = 'joint probability of A and B', i.e. probability of the event formed

 $P(A|B) = \frac{P(A \cap B)}{P(B)} =$ 'conditional probability of A given B', i.e. the joint event above, assuming that B is Ω

So P(A) = 3/8, and P(B) = 1/2

P(A, B) = P(A) + P(B)? (No. What is it?)

P(B|A) = "if you've got two heads what's the chance your first was heads" = ?

P(A|B) = "if your first is heads what's the chance you've got two" = ?

Chain Rule of Probability 2.4

(Not to be confused with the chain rule of Calculus)

Since $P(A|B) = \frac{P(A,B)}{P(B)}$ (by definition), we can rewrite terms to get P(A,B) = P(A|B)P(B).

Now consider three events, A_1 , A_2 , A_3 . How can we define $P(A_1, A_2, A_3) = P(A_1 \cap A_2 \cap A_3)$ in terms of conditional probabilities?

Recall that an event is just a set of basic outcomes. So let's define a new event

$$A_{23} = A_2 \cap A_3$$

Then we would write

$$P(A_1, A_{23}) = P(A_1|A_{23})P(A_{23})$$

Now, substitute back in the joint event that A_{23} represents

$$P(A_1, A_2, A_3) = P(A_1 | A_2, A_3) P(A_2, A_3)$$

Now substitute the definition of joint probabilities in terms of conditional probabilities again

$$P(A_1, A_2, A_3) = P(A_1|A_2, A_3)P(A_2|A_3)P(A_3)$$

Of course $P(A_1, A_2, A_3) = P(A_3, A_2, A_1)$ (set intersection is commutative) so you could write this instead as $P(A_3|A_2, A_1)P(A_2|A_1)P(A_1)$

The general chain rule for probabilities is:

$$P(A_1,\ldots,A_N) = P(A_1|A_2,\ldots,A_N) \times \ldots \times P(A_{N-1}|A_N) \times P(A_N)$$

2.5 Independence

A and B are independent if the occurrence of one does not affect the occurrence of the other, i.e. if P(A|B) = P(A). Corollary: P(B|A) = P(B). Corollary: P(A,B) = P(A)P(B). **Exercise:** Prove that these three statements are corollaries of each other.

2.6 Bayes' Rule/Theorem/Law

 $P(A|B) = \frac{P(A,B)}{P(B)}$, by definition. Thus, P(A,B) = P(A|B)P(B).

Because intersection is commutative (see above), P(A, B) = P(B|A)P(A). This also explains the corollary noted in Section 2.5. This leads to Bayes' Rule/Theorem/Law:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

This can be very helpful when you have information about one conditional direction but you want info about the other direction.

2.7 Law of Total Probability

We say events E_1, \ldots, E_n partition Ω if:

$$\forall i, j \in [1, n], E_i \cap E_j = \emptyset$$

and

$$\sum_{i=1}^{n} P(E_i) = 1$$

The Law of Total Probability says, given partitioning events $E_1 \dots E_n$ and event B:

$$P(B) = \sum_{i=1}^{n} P(B, E_i)$$

2.8 Example

Some people can read minds, but not many: P(MR) = 1/100,000 = .00001.

There is a test to read minds; if you are a mind reader I can detect this very well: P(T|MR) = 0.95 and if you're not I can detect this even better: $P(\neg T|\neg MR) = 0.995$. Note: $\{T, \neg T\}$ partition the event space, as do $\{MR, \neg MR\}$.

If Jill gets a positive result on the test, how likely is it she is the mind reader? i.e., P(MR|T) = ?

By Bayes' Law, $P(MR|T) = \frac{P(T|MR)P(MR)}{P(T)}$.

We need to get P(T). By law of total probability, $P(T) = P(T, MR) + P(T, \neg MR)$. By definition of conditional probability, $P(T, MR) = P(T|MR)P(MR) = 0.95 \times .00001$; $P(T, \neg MR) = P(T|\neg MR)P(\neg MR) = 0.005 \times .99999$. P(T) = .00500945 and $P(MR|T) \approx .002$