Matemática Discreta 2

2° Examen curso 2004 16 de Diciembre de 2004

N° Examen =

Apellidos Nombre C.I.

Nota Importante: Redactar con cuidado. La presentación y justificación de los resultados forman parte de la calificación final.

- 1) a) Encontrar dos enteros a y b tales que ab=1008 y mcm(a,b)=168.
 - b) Encontrar el natural n más pequeño tal que dividido por 2 da resto 1, dividido 3 da resto 2, dividido 4 da resto 3, dividido 5 da resto 4, dividido 6 da resto 5, dividido 7 da resto 6, dividido 8 da resto 7 y dividido 9 da resto 8 (Sug.: Considere n + 1)
 - c) Mostrar que $2^{340} \equiv 1$ (341)
- **2)** Sea (ZxZ,+) con + definido como (a,b)+(a',b')=(a+a',b+b').
 - a) Probar que (ZxZ,+) es un grupo abeliano.
 - b) Sea f: $ZxZ \rightarrow Z$ definida por f(x,y)=x-3y (Z con la suma).
 - i- Probar que f es un homomorfismo de grupos y que f es sobreyectiva. ¿ Es f inyectiva?
- ii ii- Hallar N=Ker f y hallar todos los elementos de ZxZ/N.
 - iii- Probar que ZxZ / N y Z son isomorfos. Hallar la imagen de [(1,2)] por ese isomorfismo.
- 3) En S_8 se considera $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ a & 5 & 7 & 2 & b & 8 & c & 1 \end{pmatrix}$
 - a) Hallar a, b, c para que σ tenga el mayor orden posible.
 - b) Para la σ que cumple a) y tal que $\sigma(1) > 4$, calcular σ^{1037}
- **4)** Un anillo (A , + , .) se dice booleano si $a^2 = a \quad \forall a \in A$ Demostrar que si A es anillo booleano entonces:
 - a) A es de característica 2 y es conmutativo
 - b) \forall a, b \in A se tiene ab(a + b) = z
 - c) Sólo hay un anillo booleano de 4 elementos. Hallarlo.
- **5)** Encontrar un polinomio irreducible de grado 3 en $Z_5[x]$. Justificar que lo es.

Puntajes:

- 1) 30: a) 10 b) 10 c) 10
- 2) 16: a) 3 b) 13: i) 4 ii) 4 iii) 5
- 3) 18: a) 9 b) 9
- 4) 21: a) 7 b) 7 c) 7
- 5) 15