Homework

Jon Allen

September 2, 2015

1.1 5. Let ℓ be the line given parametrically by $\mathbf{x} = (1,3) + t(-2,1), t \in \mathbb{R}$. Which of the following points lie on ℓ ? Give your reasoning.

No magic, just algebra, if we can work out a true equation it's on the line. If we work out a false equation, it's not.

(a)
$$\mathbf{x} = (-1, 4)$$

$$(-1,4) = (1,3) + t(-2,1)$$
 $(-1-1,4-3) = (-2,1) = t(-2,1)$ $t=1$

lies on the line

(b)
$$\mathbf{x} = (7, 0)$$

$$(7-1,0-3) = (6,-3) = t(-2,1)$$
 $t=-3$

also lies on the line

(c)
$$\mathbf{x} = (6, 2)$$

$$(6-1,2-3) = (5,-1) \neq t(-2,1)$$

- 6. Find a parametric equation of each of the following lines:
 - (a) $3x_1 + 4x_2 = 6$

$$x_2 = -\frac{3}{4}x_1 + \frac{6}{4}$$
$$(x_1, x_2) = (0, \frac{6}{4}) + t(-3, 4)$$
$$\mathbf{x} = (2, 0) + t(-3, 4)$$

(c) the line with the slope 2/5 that passes through A = (3,1)

$$\mathbf{x} = (3,1) + t(5,2)$$

(d) the line through A = (-2, 1) parallel to $\mathbf{x} = (1, 4) + t(3, 5)$

$$\mathbf{x} = (-2, 1) + t(3, 5)$$

(h) the line through (1, 1, 0, -1) parallel to $\mathbf{x} = (2 + t, 1 - 2t, 3t, 4 - t)$

$$\mathbf{x} = (2+t, 1-2t, 3t, 4-t)$$

$$= (2, 1, 0, 4) + t(1, -2, 3, -1)$$

$$\mathbf{x}' = (1, 1, 0, -1) + t(1, -2, 3, -1)$$

7. Suppose $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ and $\mathbf{y} = \mathbf{y}_0 + s\mathbf{w}$ are two parametric representations of the same line ℓ in \mathbb{R} .

- (a) Show that there is a scalar t_0 so that $\mathbf{y}_0 = \mathbf{x}_0 + t_0 \mathbf{v}$ By definition 2.2 the line goes through \mathbf{y}_0 and \mathbf{x}_0 . Because $\mathbf{y}_0 \in \ell = {\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_0 + t\mathbf{v}}$ for some $t \in \mathbb{R}$ } then there is some $t_0 \in \mathbb{R}$ such that $\mathbf{y}_0 = \mathbf{x} = \mathbf{x}_0 + t_0 \mathbf{v}$
- (b) Show that \mathbf{v} and \mathbf{w} are parallel. Let us choose some point $\mathbf{z} \in \ell$ other than \mathbf{y}_0 . Then there exists some $t_1, s_1 \in \mathbb{R}$ such that $\mathbf{y}_0 + s_1 \mathbf{w} = \mathbf{z} = \mathbf{x}_0 + t_1 \mathbf{v}$. We just saw that there exists some $t_0 \in \mathbb{R}$ such that $\mathbf{y}_0 = \mathbf{x}_0 + t_0 \mathbf{v}$. So then letting the algebra work itself out:

$$\mathbf{y}_0 + s_1 \mathbf{w} = \mathbf{x}_0 + t_1 \mathbf{v}$$

$$(\mathbf{x}_0 + t_0 \mathbf{v}) + s_1 \mathbf{w} = \mathbf{x}_0 + t_1 \mathbf{v}$$

$$s_1 \mathbf{w} = t_1 \mathbf{v} - t_0 \mathbf{v}$$

$$\mathbf{w} = \frac{t_1 - t_0}{s_1} \mathbf{v}$$
A1 and A4
S1, S3, and S4

Now obviously $\frac{t_1-t_0}{s_1} \in \mathbb{R}$ and so by definition 1.7 we know that \mathbf{v} and \mathbf{w} are parallel.

- 10. Find a parametric equation of each of the following planes:
 - (a) the plane containing the point (-1,0,1) and the line $\mathbf{x} = (1,1,1) + t(1,7,-1)$

$$\begin{array}{l} (-1,0,1)=(1,1,1)+t(1,7,-1)+\mathbf{u} & \text{let } t=0 \\ (-2,-1,-2)=\mathbf{u} & \text{By A3 and Theorem 11} \\ \mathcal{P}(\mathbf{x}_0,\mathbf{u},\mathbf{v})=(1,1,1)+t(1,7,-1)+s(-2,1,-2) \end{array}$$

- (d) the plane in \mathbb{R}^4 containing the points (1,1,-1,4),(2,3,0,1) and (1,2,2,3)
- 20. Assume that **u** and **v** are parallel vectors in \mathbb{R}^n . Prove that $\mathrm{Span}(\mathbf{u},\mathbf{v})$ is a line.
- 21. Suppose $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and c is a scalar. Prove that $\mathrm{Span}(\mathbf{v} + c\mathbf{w}, \mathbf{w}) = \mathrm{Span}(\mathbf{v}, \mathbf{w})$. (See the blue box on p. 12.)
- 22. Suppose the vectors \mathbf{v} and \mathbf{w} are both linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_k$.
 - (a) Prove that for any scalar $c, c\mathbf{v}$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$.
 - (b) Prove that $\mathbf{v} + \mathbf{w}$ is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_k$
- 23. Consider the line $\ell : \mathbf{x} = \mathbf{x}_0 + r\mathbf{v}(r \in \mathbb{R})$ and the plane $\mathcal{P} : \mathbf{x} = s\mathbf{u} + t\mathbf{v}(s, t \in \mathbb{R})$. Show that if ℓ and \mathcal{P} intersect, then $\mathbf{x}_0 \in \mathcal{P}$
- 24. Consider the lines $\ell : \mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$ and $m : \mathbf{x} = \mathbf{x}_1 + s\mathbf{u}$. Show that ℓ and m intersect if and only if $\mathbf{x}_0 \mathbf{x}_1$ lies in $\mathrm{Span}(\mathbf{u}, \mathbf{v})$.
- 25. Suppose $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are nonparallel vectors. (Recall definition on p.3.)
 - (a) Prove that if $s\mathbf{x} + t\mathbf{y} = \mathbf{0}$ then s = t = 0. (*Hint:* Show that neither $s \neq 0$ nor $t \neq 0$ is possible.)
 - (b) Prove that if $a\mathbf{x} + b\mathbf{y} = c\mathbf{x} + d\mathbf{y}$, then a = c and b = d
- 28. Verify algebraically that the following properties of vector arithmetic hold. (Do so for n=2 if the general case is too intimidating.) Give the geometric interpretation of each property.
 - (d) For each $\mathbf{x} \in \mathbb{R}^n$, there is a vector $-\mathbf{x}$ so that $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$