FOSS FPGA

Martin Hubáček

@hubmartin
martinhubacek.cz
youtube.com/hubmartin

Q = I0 & I1 & I2 & I3

Combinatorial logic

10 - 13	Q
0000	0
0001	0
0010	0
0011	0
0100	0
0101	0
0110	0
0111	0

10 - 13	Q
1000	0
1001	0
1010	0
1011	0
1100	0
1101	0
1110	0
1111	1

```
Q = I0 & I1 & I2 & I3

if(Q != Q_previous)
{ ... }
```

Q previous = Q

Sequential logic

Register

Memory

Counter

FPGA fabric

IO, BRAM, PLL, DSP

Hard-core/Soft-core peripherals or CPUs

Official tools

Xilinx Vivado (ISE WebPACK)

Intel Quartus (Altera)

Lattice Diamond

Official tools negatives

Complex many gigabyte tools

License installations

Non-effective IPs

Highest FPGA lines needs licenses

Generic low-cost FPGA boards

Altera MAX2 + JTAG \$10

Altera Cyclone II + \$15

Lattice IceStick \$25

Lattice MachXO2 (FLASH) \$30

Cyclone III / IV / V

Intel (Altera) CYC1000 / MAX \$40

How to reverse engineer an FPGA?

No details of programming internal logic and bitstream

Compare small gradual code changes (change > synthesize > compare bitstream)

Fuzzing

"de-synthethis"

Project IceStorm – iCE40 HX1K Overview

Project IceStorm aims at documenting the bitstream format of Lattice iCE40 FPGAs and providing simple to

LOGIC LOGIC LOGIC RAMT LOGIC

(88) (98)

RAMT LOGIC

RAMB LOGIC

RAMT LOGIC

(10.0)(11 0)

(11 2) (12 2)

(12 1)

RAMB LOGIC LOGIC

(111)

	is auto-generated by icebox	
A machine-readable	form of the database can be	downloaded here.

RAMT LOGIC LOGIC

(22) (32)

(21) (31)

(10)

LOGIC RAMB LOGIC LOGIC

(3.0) (40)

(013) (113) (213) (313) (413) (513) (613) (713) (813) (913) (1013) (1113)

(0.11) (1.11) (2.11) (3.11) (4.11) (5.11) (6.11) (7.11) (8.11) (9.11) (10.11) (11.11) LOGIC LOGIC RAMT LOGIC LOGIC LOGIC LOGIC LOGIC RAMT LOGIC LOG (1 10) (2 10) (3 10) (4 10) (5 10) (6 10) (7 10) (8 10) (9 10) (10 10) (11 10) (12 1 | LOGIC | RAMB | LOGIC | RAMB | LOGIC | LOGIC | LOGIC | (109) | (119) | (129) |

> (68) (78)

RAMT LOGIC LOGIC LOGIC LOGIC LOGIC

(6.3)

(62)

(60)

LOGIC LOGIC

(7.6) (86)

(7.5) (8.5) LOGIC RAMT LOGIC LOGIC LOGIC LOGIC LOGIC RAMT LOGIC LOGIC (34) (44) (54) (64) (74) (84) (94) LOGIC RAMB LOGIC LOGIC LOGIC LOGIC LOGIC LOGIC

(83)

(8.2)

LOGIC LOGIC

(81) (91) (10 I)

(80) (9.0)

(17) (27) (37) (47) (57) (67) (77) (87) (97)

(46) (56) (66)

(45) (55) (65)

(51)

(5.0)

Click on a highlighted tile below to view the bitstream details for the tile. The highlighted tiles (617)

Project IceStorm – iCE40 HX1K LOGIC Tile (79)

The iCE40 FPGA fabric is organized into tiles. The configuration bits themself have the same if Project JeeStorm aims at documenting the bitstream format of Lattice iCE40 FPGAs and providing simple tools for analyzing and creating bitstream files. This is work in progress.

This page describes the LOGIC Tile (79), what nets and configuration bits it has and how it is connected to its neighbourhood.

	10 (1 17)	10 (2 17)	10 (3 17)	10 (4 17)	10 (5 17)	10 (6 17)	10 (7 17)	1O (8 17)	IO (9 17)	10 (10 17)	10 (11 17)	10 (12 17)	LOGIC Tile (5 11)		LOGIC Tile	LOGIC Tile	LOGIC Tile	LOGIC Tile
	LOGIC (1 16)	LOGIC (2 16)	RAMT (3 16)	LOGIC (416)	LOGIC (5 16)	LOGIC (6·16)	LOGIC (7 16)	LOGIC (8 16)	LOGIC (9 16)	RAMT (10 16)	LOGIC (11 16)	LOGIC (12 16)		11) (6 11)	(7 11)	(8 11)	(9 11)	
	LOGIC (1 15)	LOGIC (2 15)	RAMB (3 15)	LOGIC (415)	LOGIC (5 15)	LOGIC (6 15)	LOGIC (7 15)	LOGIC (8 15)	LOGIC (9 15)	RAMB (10 15)	LOGIC (11 15)	LOGIC (12 15)	LOGIC Tile (5 10)	LOGIC Tile (6 10)	LOGIC Tile (7 10)	LOGIC Tile (8 10)	LOGIC Tile (9 10)	
	LOGIC (1 14)	LOGIC (2 14)	RAMT (3 14)	LOGIC (414)	LOGIC (5 14)	LOGIC (614)	LOGIC (7 14)	LOGIC (8 14)	LOGIC (9 14)	RAMT (10 14)	LOGIC (11 14)	LOGIC (12 14)	LOGIC Tile (5 9)	LOGIC Tile	LOGIC Tile	LOGIC Tile	LOGIC Tile	
	LOGIC (113)	LOGIC (2 13)	RAMB (3 13)	LOGIC (413)	LOGIC (5 13)	LOGIC (6 13)	LOGIC (7 13)	LOGIC (8 13)	LOGIC (913)	RAMB (10 13)	LOGIC (11 13)	LOGIC (12 13)				(8 9)	(99)	
	LOGIC (1 12)	LOGIC (2 12)	RAMT (3 12)	LOGIC (412)	LOGIC (5 12)	LOGIC (612)	LOGIC (7 12)	LOGIC (8 12)	LOGIC (9 12)	RAMT (10 12)	LOGIC (11 12)	LOGIC (12 12)	LOGIC Tile (5 8)	LOGIC Tile	LOGIC Tile	LOGIC Tile	LOGIC Tile	
	LOGIC (111)	LOGIC (2 II)	RAMB (3 11)	LOGIC (411)	LOGIC (5 11)	LOGIC (6 11)	LOGIC (711)	LOGIC (8 11)	LOGIC (911)	RAMB (10 11)	LOGIC (11 11)	LOGIC (12 11)		(0.0)	(7.0)	(0.0)	(3.0)	
	LOGIC (1 10)	LOGIC (2 10)	RAMT (3 10)	LOGIC (410)	LOGIC (5 10)	LOGIC (6 10)	LOGIC (710)	LOGIC (8 10)	LOGIC (9 10)	RAMT (10 10)	LOGIC (11 10)	LOGIC (12 10)	LOGIC Tile (5 7)	LOGIC Tile (67)	LOGIC Tile (7 7)	LOGIC Tile (8 7)	LOGIC Tile (9 7)	
Ī	Locic	Locac	DAME	Locac	Locac	Locic	Locic	Logic	Locic	DAME	Locac	Locac						

Configuration Bitmap

A LOGIC Tile has 864 config bits in 16 groups of 54 bits each: B0[53:0], B1[53:0], B2[53:0], B3[53:0], B4[53:0], B5[53:0], B6[53:0], B7[53:0], B8[53:0], B9[53:0], B10[53:0], B11[53:0], B12[53:0], B13[53:0], B14[53:0], B15[53:0] BII B12 B13 B14

10 (7.0)

FOSS FPGA chips/boards

IceStorm - iCE40 (ICE40, 8k, 128kb, PLL)

- TinyFPGA BX \$38
- <u>iCEBreaker</u>
- Glasgow
- Olimex iCE40HX8K-EVB
- ICOboard (Rpi HAT) <u>OpenTechLab YouTube</u>
- Alhambra (Arduino footprint)

Trellis - ECP5

(85k, 3.7Mb BRAM, 156 18x18 DSPs, 5Gbps SERDES)

- TinyFPGA EX
- ULX3S

X-Ray - Xilinx 7-series

Icestudio

Demo 01 - Icestudio

APIO

Apio is a multiplatform toolbox, with static pre-built packages, project configuration tools and easy command interface to verify, synthesize, simulate and upload your verilog designs.

```
pip install apio==0.4.0b5 tinyprog
apio install system scons icestorm iverilog
apio drivers --serial-enable
apio [build|sim|upload]
```


ATOM IDE

Demo 02 - APIO

WS2812B Module

Digital RGB(W) LED strips

Single wire, precise timing

Demo 03 - WS2812B

Simulation

Testbench (*_tb.v)

Test each module

Icarus Verilog - simulation and synthesis tool (iverilog)

Gtkview - Waveform view

Verilator - Compile Verilog to C++

EDA Playground https://www.edaplayground.com/x/2bRW

Demo 04 - Simulation

PicoSOC

Soft-core RISC-V

When is soft-core useful

Compilation is faster than synthetis

Riscv-none-embed-gcc toolchain

Custom peripherals

Two PicoSOCs place&route

https://twitter.com/q3k/status/1024623710165237760

Demo 05 - RISC-V

Migen, Litex

Migen, nMigen - python nástroj pro generování komplexního hardware

Nekompiluje python, pomáhá tvořit HDL kód

LiteX - LiteX is a MiSoC-based SoC builder using Migen as Python DSL that can be used to create SoCs and full FPGA designs.

HDMI2USB.tv

Future

SERDES 5G

Partial reconfiguration

Glasgow

. . .

AT&THACKATHON 22,-23,11, 2019

Registrace zdarma \$7000 Prize money 22.-23.listopad Brněnské výstaviště E

https://www.hackathons.cz/

TECHNOLOGIES FOR THE FUTURE

- Smart Village
- Smart Factory
- Smart Office
- · Device, Grid & Infrastructure security

24 hour marathon for developers, coders, geeks and enthusiasts who have great ideas, want to broaden them and bring innovative solutions.

PRIZE MONEY: USD 4,000 | USD 2,000 | USD 1,000

AT&THACKATHON
22.-23.11.2019

Hardware Development Podcast se zaměřuje na zajímavá témata z oblasti vývoje, výroby a oživování elektroniky.

https://soundcloud.com/hwdevpodcast

Top played tracks

1		#1 Vývoj hardware není nákup rohlíku	1,763
2		#6 loT sítě Sigfox, LoRa a NB-loT	1,576
3		#3 Žádné kecy, dnes pájíme v peci!	960
4		#2 Bez měření není vědění	952
5		#4 Low Power	799
6	() S	#9 Digitrony	781
7		#7 RTOSy, plánovače, tasky	779
8		#8 Elektronická odysea	700
9		#5 Distribuce křemíku	697

HWDEV Podcast

Hardware Development Podcast se zaměřuje na zajímavá témata z oblasti vývoje, výroby a oživování elektroniky.

https://soundcloud.com/hwdevpodcast

@hubmartin

martinhubacek.cz

www.youtube.com/hubmartin

