Contact Details Dr. Mahmud Muhammad

(PhD, MSc, and BSc in Geology) Email: mahmud.geology@hotmail.com Website: mahmudm.com

Objective

The goal of this project is to develop a suite of probability density functions (PDFs) that describe Eruption Source Parameter (ESP) inputs required by the NAME model. These estimations are crucial for accurate volcanic ash dispersion modeling.

Key Tasks:

1. Automated Retrieval and Parsing of Volcanic Advisory Reports (VAA):

• Implement a system to automatically retrieve and parse real-time Volcanic Advisory Reports (VAA) from the Tokyo Volcanic Ash Advisory Center (TVAAC). 2. Annual VEI Probability Parsing:

• Utilize the methodology outlined in Whelley et al. (2015) to extract annual Volcanic Explosivity Index (VEI) probabilities for the volcano of concern using data from VAA reports. 3. Bayesian Sampling for Total Eruption Mass (TEM):

• Estimate the range of Total Eruption Mass (TEM) for a known VEI level using Bayesian probability sampling. This estimation will account for a range of tephra particl densities. 4. Mass Eruption Rate (MER) Estimation:

• Calculate the Mass Eruption Rate (MER) based on the derived Total Eruption Mass (TEM).

5. **Eruption Duration Calculation:**

• Derive the eruption duration by integrating the MER and TEM values.

6. Plume Height Estimation from MER: • Estimate the volcanic plume height using the Mass Eruption Rate (MER).

7. MER Estimation from Plume Height: • Estimate the MER using observed Plume Height.

8. Estimation of Mass fraction of ash particle size below 63 microns:

• Estimate the Mass fraction of ash particle size below 63 microns using the Mass Eruption Rate (MER).

Start: Parse data from VAAC Step 1: Parse Step 4: Compute Step 5: Derive Step 6: Calculate Step 3: Estimate Step 7: Estimate Total Erupted Mass Eruption location and eruption using Whelley et Total Volume plume height volcano name Mass (TEM) Rate (MER) duration al. 2015

Parsing of Volcanic Advisory Reports (VAA)

In [2]: # Using Whelley et al., 2015 paper that calculated VEI Level eruption for 750 volcanoes in southeast Asia we start estimating Eruption source paramerters from VEI and probablistic volume estimates. # first we load Whelley 2015 Volcano Database later will be use to filter Volcanish Ash Advisory Center in realtime (computer need internet connection to parse VAA reports) import vei

data_loader=vei.LOADDATA()

whelley_data=data_loader.whelley_2015(as_geodataframe=True)

In [3]: # import Libraries and classes required to parse VAA reports and filter dataset for later use.

import vep_vaa_text from vep_vaa_text import VEP_TVAAC_VAAText scraper = VEP_TVAAC_VAAText()

scraper.fetch_webpage() tables = scraper.extract_all_tables()

Perform a search Note: for realtime operation set all parameters to None to retrive the latest report VAA report

search_results = scraper.search(query='SINABUNG', date_time=None, advisory_number='2020') # Replace with your query string, set all parameters to None to retrive latest report dates: Note takes longer processing time downloaded_VAA_report, latest_VAA_report , latest_date_data=scraper.download_vaa_text(output_dir="./vaa_texts_2", filtered_results=search_results, csv=True, gdf=whelley_data)

AREA SUMMITELEV ADVISORY NR

downloaded_VAA_report.head(2)

CSV file created: ./vaa_texts_2\vaa_texts.csv Out[3]: **PSN** AREA SUMMIT ELEV ADVISORY NR INFO SOURCE AVIATION COLOUR CODE ... FCST VA CLD +6 HR FCST VA CLD +12 HR FCST VA CLD +18 HR **RMK** NXT ADVISORY Latitude Longitude ADVISORY_YEAR REPORT_NUMBER DTG VAAC VOLCANO VOLCANO CODE **0** 20200810/1635Z DARWIN SINABUNG 261080 N0310 E09824 INDONESIA 2020/12 HIMAWARI-8, CVGHM, PIREP, WEBCAM RED ... 10/2235Z NO VA EXP 11/0435Z NO VA EXP 11/1035Z NO VA EXP VA TO FL320 LAST PARTIALLY OBS ON SAT IMAGERY ... NO LATER THAN 20200810/2235Z= 3.166667 2020

RED ... 10/1630Z SFC/FL140 N0303 E09852 - N0337 10/2230Z SFC/FL140 N0253 E10049 - N0348 11/0430Z NO VA EXP ERUPTION HAS CEASED. VA TO FL320 LAST PARTIALL... NO LATER THAN 20200810/1630Z = 3.166667 **1** 20200810/1030Z DARWIN SINABUNG 261080 N0310 E09824 INDONESIA 2020/10 HIMAWARI-8, CVGHM, PIREP, WEBCAM 2020 10 2020-08-10 10:30:00 2 rows × 23 columns

RMK

NXT ADVISORY Latitude Longitude ADVISORY_YEAR REPORT_NUMBER

DTG_DATETIME

12 2020-08-10 16:35:00

DTG_DATETIME Altitude_Meters

Out[4]: DTG VAAC VOLCANO VOLCANO CODE

In [4]: latest_date_data

0 20200810/1635Z DARWIN SINABUNG 261080 N0310 E09824 INDONESIA 2020/12 HIMAWARI-8, CVGHM, PIREP, WEBCAM RED ... 11/0435Z NO VA EXP 11/1035Z NO VA EXP VA TO FL320 LAST PARTIALLY OBS ON SAT IMAGERY ... NO LATER THAN 20200810/2235Z= 12 2020-08-10 16:35:00 4267.2

INFO SOURCE AVIATION COLOUR CODE ... FCST VA CLD +12 HR FCST VA CLD +18 HR

1 rows × 24 columns

Initialize the console

from rich.console import Console from rich.table import Table

In [5]: # Retrive data from the latest report date

console = Console() # Create a table for a professional and structured output

table = Table(title="Volcanic Activity Observations", show_lines=True, title_style="bold blue") # Define table columns

table.add_column("Parameter", style="dim", width=25) table.add_column("Value", style="bold white", justify="center")

Populate the table with data, if available if 'VOLCANO' in latest_date_data.columns: volcano_name = latest_date_data['VOLCANO'].to_list()[0]

table.add_row("Site of Volcanic Activity", volcano_name)

if 'Altitude_Meters' in latest_date_data.columns: observed_ash_altitude_meter = latest_date_data['Altitude_Meters'].to_list()[0] table.add_row("Observed Ash Altitude (m ASL)", str(observed_ash_altitude_meter))

if 'Latitude' in latest_date_data.columns: latitude = latest_date_data['Latitude'].to_list()[0] table.add_row("Latitude", str(latitude))

if 'Longitude' in latest_date_data.columns: longitude = latest_date_data['Longitude'].to_list()[0] table.add_row("Longitude", str(longitude))

Call the search_whelley_2015 method on the instance search_results, vei_range = data_loader.search_whelley_2015(Volcano=volcano_name, max_vei_returns=None)

View the search results

#print(f"Potential VEI Levels for Volcano site {volcano_name} is based on Whelley et al. 2015 paper {vei_range}") #print(search_results)

table.add_row(f"Possible VEI Levels for Volcano {volcano_name} based on Whelley et al. 2015 paper", str(vei_range))

Render the table console.print(table)

import pandas as pd import plotly.graph_objects as go

search_results = pd.DataFrame(search_results)

Create a table fig = go.Figure(data=[go.Table(header=dict(values=list(search_results.columns), fill_color='paleturquoise',

align='left'))

align='left'), cells=dict(values=[search_results[col] for col in search_results.columns], fill_color='lavender',

Add a bold title

fig.update_layout(title=dict(

text=f"Search Results for Whelley et al. 2015 show possible VEI activity for the volcano {volcano_name}", x=0.5, # Center the title font=dict(size=20, family="Arial Black", color="black") # Use bold font family

fig.show()

Top VEI values returned: [2, 3, 4, 5] Volcanic Activity Observations

VOICANIC ACTIVITY ODS	ei vacions
Parameter	Value
Site of Volcanic Activity	SINABUNG
Observed Ash Altitude (m ASL)	4267.2
Latitude	3.09
Longitude	9.92
Possible VEI Levels for Volcano SINABUNG based on Whelley et al. 2015 paper	[2, 3, 4, 5]

Search Results for Whelley et al. 2015 show possible VEI activity for the volcano SINABUNG

Volcano Number	GVP Volcano Number	Volcano	Other name or Sub-Feature	Latitude	Longitude	Elevation (m)	Classification	Eruption history source	VEI 2	VEI 3	VEI 4	VEI 5	VEI 6	VEI 7	VEI 8
3	261080	SINABUNG	null	3.166666	98.391666	2460	Semi-plugged	Class	0.022451791	0.002424242	0.001443001	0.0000909091	0	0	0

Step 1: Define Total Eruption Mass (TEM) from VEI

This cell initializes the VEI_BulkVolume_Mass class to perform probabilistic calculations of total eruption mass based on known VEI values.

Key Parameters:

- use_default_densities=True : Applies default density values for tephra deposits. • density_min=800 and density_max=1700 (kg/m³): Define the density range for volcanic materials. • num_samples=1000 : Specifies the number of Monte Carlo samples for probabilistic calculations.

Outcome:

The vei_toMass object enables generating probabilistic TEM values for subsequent calculations.

Initialize the class

In [25]: from vei import VEI_BulkVolume_Mass

```
vei_toMass = VEI_BulkVolume_Mass(use_default_densities=False, density_min=800, density_max=1200, num_samples=10000000)
 # Generate probabilistic volumes
 vei_toMass.generate_probabilistic_volumes()
 # Calculate masses using probabilistic volumes
 vei_toMass.calculate_mass(calculate_emperical=True, calculate_probabilistic=True)
 vei_toMass.calculate_percentile_bands()
 # # Generate summary statistics
 vei_toMass.generate_summary_statistics()
 # # Visualize the results
 vei_toMass.visualize_statistics()
 # # Calculate and plot percentile bands
 vei_toMass.plot_percentile_bands()
 # # Export results
 #vei_toMass.export_statistics(filename="summary_statistics.csv")
 vei_toMass.export_volumes_and_masses()
 vei_toMass.export_data()
 #vei_toMass.save_outputs_to_pdf()
Generating probabilistic volumes...
Probabilistic volumes successfully generated.
Best density sampling strategy: normal
### Volume Percentiles ###
  VEI emp_Volume_5th Uncertainty_emp_Volume_5th Prob_Volume_5th \
           2300000.0
                                     230000.0
                                                2.528941e+07
0 0
           2300000.0
                                     230000.0
                                                2.528941e+07
           2300000.0
                                     230000.0
                                                2.528941e+07
           2300000.0
                                     230000.0 2.528941e+07
           2300000.0
                                     230000.0 2.528941e+07
           2300000.0
                                     230000.0 2.528941e+07
           2300000.0
                                     230000.0
                                                2.528941e+07
           2300000.0
                                     230000.0
                                                2.528941e+07
                                                2.528941e+07
           2300000.0
                                     230000.0
  Uncertainty_Prob_Volume_5th emp_Volume_25th Uncertainty_emp_Volume_25th
                2.528941e+06
                               100000000.0
                                                           10000000.0
                                                           10000000.0
                2.528941e+06
                               100000000.0
                2.528941e+06
                               100000000.0
                                                           10000000.0
                2.528941e+06
                               100000000.0
                                                           10000000.0
                2.528941e+06
                               100000000.0
                                                           10000000.0
                2.528941e+06
                                100000000.0
                                                           10000000.0
                2.528941e+06
                                100000000.0
                                                           10000000.0
                2.528941e+06
                                100000000.0
                                                           10000000.0
                2.528941e+06
                               100000000.0
                                                           10000000.0
  Prob_Volume_25th Uncertainty_Prob_Volume_25th emp_Volume_50th ... \
                                              3.000000e+10 ...
     5.498412e+08
                                5.498412e+07
      5.498412e+08
                                5.498412e+07
                                              3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                              3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                               3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                              3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                              3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                              3.000000e+10 ...
      5.498412e+08
                                5.498412e+07
                                             3.000000e+10 ...
    5.498412e+08
                                5.498412e+07 3.000000e+10 ...
  Prob_Volume_50th Uncertainty_Prob_Volume_50th emp_Volume_75th \
0 5.496897e+10
                                5.496897e+09 5.000000e+11
      5.496897e+10
                                5.496897e+09 5.000000e+11
      5.496897e+10
                                5.496897e+09 5.000000e+11
      5.496897e+10
                                             5.000000e+11
                                5.496897e+09
     5.496897e+10
                                5.496897e+09 5.000000e+11
     5.496897e+10
                                5.496897e+09 5.000000e+11
      5.496897e+10
                                5.496897e+09
                                              5.000000e+11
      5.496897e+10
                                5.496897e+09 5.000000e+11
      5.496897e+10
                                5.496897e+09
                                              5.000000e+11
  Uncertainty_emp_Volume_75th Prob_Volume_75th \
                               5.499184e+12
                5.000000e+10
                5.000000e+10
                               5.499184e+12
                5.000000e+10
                               5.499184e+12
  Uncertainty_Prob_Volume_75th emp_Volume_95th Uncertainty_emp_Volume_95th \
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
                                                         1.900000e+11
                 5.499184e+11
                               1.900000e+12
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
                                                         1.900000e+11
                 5.499184e+11 1.900000e+12
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
                 5.499184e+11 1.900000e+12
                                                          1.900000e+11
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
                 5.499184e+11 1.900000e+12
                                                         1.900000e+11
  Prob_Volume_95th Uncertainty_Prob_Volume_95th
0 3.519900e+14
                                3.519900e+13
     3.519900e+14
                                3.519900e+13
     3.519900e+14
                                3.519900e+13
     3.519900e+14
                                3.519900e+13
     3.519900e+14
                                3.519900e+13
      3.519900e+14
                                3.519900e+13
      3.519900e+14
                                3.519900e+13
      3.519900e+14
                                3.519900e+13
8 3.519900e+14
                                3.519900e+13
[9 rows x 21 columns]
### Mass Percentiles ###
  VEI Mass_5th Mass_25th Mass_50th Mass_75th Mass_95th \
1 4.318758e+10 5.290707e+10 5.966745e+10 6.643474e+10 7.615098e+10
2 4.320693e+11 5.293171e+11 5.969547e+11 6.646344e+11 7.618763e+11
3 4.321326e+12 5.294734e+12 5.970550e+12 6.647372e+12 7.621213e+12
4 4.318416e+13 5.290895e+13 5.966591e+13 6.642700e+13 7.615413e+13
5 4.319608e+14 5.293744e+14 5.970898e+14 6.647567e+14 7.621085e+14
```

8 3.298367e+17

Generating Summary Statistics Grouped by VEI Level

3.299858e+09
3.296340e+10
3.298070e+11
3.299887e+12
3.296997e+13
3.301477e+14
3.298870e+15
3.296828e+16

Ensuring VEI is a Series...

Flattening and cleaning VEI column...

Unique VEI values after cleaning: ['0' '1' '2' '3' '4' '5' '6' '7' '8']

Performing groupby operation...

6 4.320823e+15 5.293540e+15 5.969779e+15 6.646075e+15 7.619693e+15 7 4.317606e+16 5.291018e+16 5.966578e+16 6.642399e+16 7.614434e+16 8 4.320384e+17 5.293882e+17 5.970276e+17 6.646589e+17 7.618751e+17

Summary Statistics Grouped by VEI

90%_interpercentile_Mass_Estimate

VEI_	emperical_Bulk_Volume_m3_mean	emperical_Bulk_Volume_m3_std	emperical_Bulk_Volume_m3_median	Probabilistic_Bulk_Volume_m3_mean	Probabilistic_Bulk_Volume_m3_std	Probabilistic_Bulk_Volume_m3_median	Mean_Mass_emp_kg_mean	Mean_Mass_emp_kg_std	Mean_Mass_emp_kg_median	Mean_Mass_Prob_kg_mean	Mean_Mass_Prob_kg_std	Mean_Mass_Prob_kg_median
0	500000	nan		5.50227e+06	nan	5.50227e+06	4.99982e+08	nan	4.99982e+08	5.97306e+09	nan	5.97306e+09
1 1	5e+06	nan	5e+06	5.49701e+07	nan	5.49701e+07	4.99988e+09	nan	4.99988e+09	5.96691e+10	nan	5.96691e+10
2	1e+08	nan	1e+08	5.49841e+08	nan	5.49841e+08	9.99968e+10	nan	9.99968e+10	5.96962e+11	nan	5.96962e+11
3	3e+09	nan	3e+09	5.50081e+09	nan	5.50081e+09	2.99985e+12	nan	2.99985e+12	5.97108e+12	nan	5.97108e+12
4	3e+10	nan	3e+10	5.4969e+10	nan	5.4969e+10	3.00003e+13	nan	3.00003e+13	5.96677e+13	nan	5.96677e+13
5	1e+11	nan	1e+11	5.50046e+11	nan	5.50046e+11	1.00003e+14	nan	1.00003e+14	5.97059e+14	nan	5.97059e+14
6	5e+11	nan	5e+11	5.49918e+12	nan	5.49918e+12	5.00004e+14	nan	5.00004e+14	5.96994e+15	nan	5.96994e+15
7	1e+12	nan	1e+12	5.49655e+13	nan	5.49655e+13	9.99991e+14	nan	9.99991e+14	5.96664e+16	nan	5.96664e+16
8	2.5e+12	nan	2.5e+12	5.50006e+14	nan	5.50006e+14	2.50005e+15	nan	2.50005e+15	5.9702e+17	nan	5.9702e+17

Overall Dataset Statistics ### | Bulk_Volume_km3 | emperical_Bulk_Volume_m3 | Probabilistic_Bulk_Volume_5th | Uncertainty_emp_Volume_5th | Uncertainty_emp_Volume_5 nty_emp_Volume_50th | Prob_Volume_50th | Uncertainty_Prob_Volume_95th | Uncertainty_Prob_Volume_75th | Uncertainty_emp_Volume_95th | Uncertainty_Prob_Volume_95th | Uncertainty_emp_Volume_75th | Uncertainty_emp_Volume_95th | Uncertainty_emp_Volume 5.49841e+07 5.49841e+07 5.49918e+11 | 1.9e+12 5.49841e+07 5.4969e+10 5.4969e+09 5.49918e+12 5.49918e+11 | 1.9e+12 | 1.9e+11 3.5199e+13 | 4.32069e+11 | 5.29317e+11 | 5.96955e+11 | 6.64634e+11 | 7.61876e+11 | 3.29807e+11 5.49841e+07 5.4969e+10 5.4969e+09 3.5199e+13 | 4.31842e+13 | 5.2909e+13 | 5.96659e+13 | 6.6427e+13 | 7.61541e+13 | 3.297e+13 5.77352e+13 5.4969e+10 5.4969e+09 5.49918e+12 3.5199e+13 | 4.32082e+15 | 5.29354e+15 | 5.96978e+15 | 6.64608e+15 | 7.61969e+15 | 3.29887e+15 5.49918e+11 2.5e+12 2.52894e+07 5.49841e+07 2.88584e+14

c:\Users\mahmud\OneDrive\Singapore_project\data\Modules\phase_1\vei.py:789: UserWarning:
Mismatched number of handles and labels: len(handles) = 0 len(labels) = 4

2. Aubrey: Dataset with parameters for eruption dynamics.

3. IVESPA: Integrated Volcanic Eruption Source Parameters Archive for further modeling.

Purpose:

• These datasets provide observational constraints and inputs for modeling eruption parameters. • Support statistical analysis and correlation studies to validate models.

```
In [7]: import vei
        from vei import analyze_correlations
        data_loader=vei.LOADDATA()
```

Mastin = data_loader.load_Mastin(as_geodataframe=False) Aubrey=data_loader.load_Aubry(as_geodataframe=False) IVESPA=data_loader.load_IVESPA(as_geodataframe=False) Sparks=data_loader.load_Sparks(as_geodataframe=False) mastin_a=data_loader.load_Mastin_a(as_geodataframe=True) # analyze_correlations(Mastin, 'Mastin', threshold=0.7) # analyze_correlations(Aubrey, 'Aubrey', threshold=0.7) # analyze_correlations(Sparks, 'Sparks', threshold=0.7) # analyze_correlations(IVESPA, 'IVESPA', threshold=0.7)

#analyze_correlations(mastin_a, 'IVESPA', threshold=0.9) import pandas as pd

aubrey_datacombined= pd.concat([Aubrey, IVESPA], axis=0, join='inner')

Combined_datasets= pd.concat([Aubrey, IVESPA, mastin_a], axis=0, join='inner')

Step 3: Estimate Mass Eruption Rate (MER)

This cell prepares TEM data for use with the MERPredictor class.

Inputs:

• tem_values : Extracted mean probabilistic TEM values (Mean_Mass_Prob_kg) generated by the VEI model.

Purpose:

• tem_values serve as input to estimate MER, an essential eruption source parameter. • MER will be used in subsequent steps to calculate eruption duration and plume rise.

```
data=vei_toMass.data
       # Drop first row (VEI zero) because VEI zero is None Explosive
       #data = data.drop(index=data.index[0]).reset_index(drop=True)
       # Ensuring the VEI column is numeric
       data['VEI'] = pd.to_numeric(data['VEI'], errors='coerce')
       # Filtering the dataframe based on VEI column and list
       data = data[data['VEI'].isin(vei_range)].reset_index(drop=True)
          VEI Bulk_Volume_km3 emperical_Bulk_Volume_m3 Probabilistic_Bulk_Volume_m3 Probabilistic_Bulk_Volume_m3 Mean_Mass_emp_kg Std_Mass_Estimate |
                                        1.000000e+08
                                                                 5.500434e+08
                                                                                 1.000021e+11
                                                                                                1.154804e+10
                                                                                                                 5.971176e+11
                                                                                                                                 1.003206e+11
                                                                                                                                                                                                                                 3.522455e+14
                                                                                                                                                                                                                                                          3.522455e+13 4.321832e+11 5.294759e+11 5.970752e+11 6.647686e+11 7.621995e+11
                                                                                                                                                 2300000.0
                                                                                                                                                                          230000.0 ...
                                                                                                                                                                                        1.900000e+12
                                                                                                                                                                                                                  1.900000e+11
                                        3.000000e+09
                                                                 5.502371e+09
                                                                                                                                                 2300000.0
                                                                                                                                                                                                                                 3.522455e+14
                          3.0
                                                                                 2.999953e+12
                                                                                                3.464152e+11
                                                                                                                 5.973516e+12
                                                                                                                                 1.003485e+12
                                                                                                                                                                          230000.0
                                                                                                                                                                                         1.900000e+12
                                                                                                                                                                                                                  1.900000e+11
                                                                                                                                                                                                                                                          3.522455e+13 4.323738e+12 5.296897e+12 5.973094e+12 6.650092e+12 7.624805e+12
                         30.0
                                                                                                                                                                                                                                 3.522455e+14
       2 4
                                        3.000000e+10
                                                                 5.500256e+10
                                                                                 2.999957e+13
                                                                                                3.464464e+12
                                                                                                                 5.970940e+13
                                                                                                                                 1.003092e+13
                                                                                                                                                 2300000.0
                                                                                                                                                                          230000.0
                                                                                                                                                                                         1.900000e+12
                                                                                                                                                                                                                  1.900000e+11
                                                                                                                                                                                                                                                          3.522455e+13 4.321492e+13 5.294634e+13 5.970905e+13 6.647528e+13 7.620809e+13
                        100.0
                                        1.000000e+11
                                                                 5.498882e+11
                                                                                 9.999955e+13
                                                                                                1.154736e+13
                                                                                                                 5.969182e+14
                                                                                                                                1.002678e+14
                                                                                                                                                 2300000.0
                                                                                                                                                                          230000.0 ...
                                                                                                                                                                                        1.900000e+12
                                                                                                                                                                                                                  1.900000e+11
                                                                                                                                                                                                                                3.522455e+14
                                                                                                                                                                                                                                                          3.522455e+13 4.319571e+14 5.292828e+14 5.969258e+14 6.645503e+14 7.618505e+14
      4 rows × 34 columns
In [9]: data.columns
Out[9]: Index(['VEI', 'Bulk_Volume_km3', 'emperical_Bulk_Volume_m3',
              'Probabilistic_Bulk_Volume_m3', 'Mean_Mass_emp_kg', 'Std_Mass_emp_kg',
              'Mean_Mass_Prob_kg', 'Std_Mass_Prob_kg', 'emp_Volume_5th',
              'Uncertainty_emp_Volume_5th', 'Prob_Volume_5th',
              'Uncertainty_Prob_Volume_5th', 'emp_Volume_25th',
              'Uncertainty_emp_Volume_25th', 'Prob_Volume_25th',
              'Uncertainty_Prob_Volume_25th', 'emp_Volume_50th',
              'Uncertainty_emp_Volume_50th', 'Prob_Volume_50th',
              'Uncertainty_Prob_Volume_50th', 'emp_Volume_75th',
              'Uncertainty_emp_Volume_75th', 'Prob_Volume_75th',
              'Uncertainty_Prob_Volume_75th', 'emp_Volume_95th',
              'Uncertainty_emp_Volume_95th', 'Prob_Volume_95th',
              'Uncertainty_Prob_Volume_95th', 'Mass_5th', 'Mass_25th', 'Mass_50th',
              'Mass_75th', 'Mass_95th', '90%_interpercentile_Mass_Estimate'],
             dtype='object')
```

3.300163e+11

3.301067e+12

3.299317e+13

3.298934e+14

In [10]: from mer_predict import MERPredictor tem_values=data.Mass_95th.to_list()

#tem_values=[1.998468e+11 , 3.585472e+14]

model = MERPredictor(aubrey_datacombined) percentiles=list(range(5, 96, 5))

model.plot_posterior_predictive() mer_results=model.predict_mer(tem_values, percentiles=percentiles)

#model.plot_percentiles_vs_tem() # durations = model.convert_percentiles_to_duration(tem_values) # print(durations)

WARNING:tensorflow:From c:\Users\mahmud\anaconda3\Lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead.

WARNING:tensorflow:From c:\Users\mahmud\anaconda3\Lib\site-packages\tensorflow_probability\python\internal\backend\numpy_utils.py:48: The name tf.logging.TaskLevelStatusMessage is deprecated. Please use tf.compat.v1.logging.TaskLevelStatusMessage instead.

WARNING:tensorflow:From c:\Users\mahmud\anaconda3\Lib\site-packages\tensorflow_probability\python\internal\backend\numpy_utils.py:48: The name tf.control_flow_v2_enabled is deprecated. Please use tf.compat.v1.control_flow_v2_enabled instead.

Selected model: linear with BIC = 628.8633422851562

Step 4: Correlate VEI with MER Results

This cell adds the VEI values from the processed data into the mer_results DataFrame.

Purpose:

• Ensures that MER results are directly associated with their corresponding VEI values. • Facilitates traceability and cross-comparison during analysis.

In [11]: mer_results["VEI"]=data['VEI']

Step 5: Review Mass Eruption Rate (MER) Results

This cell displays the mer_results DataFrame, which includes the calculated MER values and associated VEI data.

Purpose:

• Provides an overview of the MER estimates to verify accuracy and consistency.

In [12]: mer_results.columns

Out[12]: Index(['TEM_kg', 'MERPercentile_5', 'MERPercentile_10', 'MERPercentile_15', 'MERPercentile_20', 'MERPercentile_25', 'MERPercentile_30',

'MERPercentile_35', 'MERPercentile_40', 'MERPercentile_45', 'MERPercentile_50', 'MERPercentile_55', 'MERPercentile_60', 'MERPercentile_65', 'MERPercentile_70', 'MERPercentile_75', 'MERPercentile_80', 'MERPercentile_85', 'MERPercentile_90', 'MERPercentile_95', '90%_interpercentile_MERrange_kg/s', 'Duration_hr_P5', 'Duration_hr_P10', 'Duration_hr_P15', 'Duration_hr_P20', 'Duration_hr_P25', 'Duration_hr_P30', 'Duration_hr_P35', 'Duration_hr_P40', 'Duration_hr_P45', 'Duration_hr_P50', 'Duration_hr_P55', 'Duration_hr_P60', 'Duration_hr_P65', 'Duration_hr_P70', 'Duration_hr_P75', 'Duration_hr_P80', 'Duration_hr_P85', 'Duration_hr_P90', 'Duration_hr_P95', 'Duration_hr_90%_interpercentile', 'VEI'],

Step 6: Select Central MER Values for Plume Height Prediction

This cell extracts the 50th percentile (median) MER values from the mer_results DataFrame.

Purpose:

dtype='object')

• Focuses on the central tendency of the MER distribution, minimizing the influence of outliers. • The Best MER values (mer_list) are determined using the range between the (95th and 5th percentiles) and are used as input for plume height predictions...

In [13]: mer_list=mer_results['MERPercentile_95'].to_list() vei_list=mer_results.VEI.to_list() vei_list

Out[13]: [2, 3, 4, 5]

Step 7: Estimate Plume Rise Based on MER

This cell initializes the PlumeHeightPredictor class and calculates plume heights using the median MER values.

Methodology:

• Utilizes the IVESPA dataset for plume height predictions with uncertainty quantification.

• Outputs plume height estimates based on the MER values (mer_list).

Purpose:

• Plume rise estimation is critical for assessing the environmental and aviation impacts of volcanic eruptions.

In [14]: from plume_rise_predict import PlumeHeightPredictor

Initialize the PlumeHeightPredictor predictor = PlumeHeightPredictor(aubrey_datacombined)

heights=predictor.predict_height_with_uncertainty(mer_results['MERPercentile_95'].to_list(), output_file='predicted_height_with_uncertainty.csv', percentiles=percentiles)

heights

MER_kg/s HeightPercentile_5 HeightPercentile_10 HeightPercentile_15 HeightPercentile_25 HeightPercentile_25 HeightPercentile_25 HeightPercentile_25 HeightPercentile_25 HeightPercentile_26 HeightPercentile_27 HeightPercentile_28 HeightPercentile_29 HeightPercentile_30 HeightPercentile_3 **0** 2.637347e+08 20.915370 21.331430 21.846972 22.246575 22.423805 22.583176 22.732437 23.057809 23.387119 23.556670 23.740064 23.975067 24.233409 24.544383 25.037020 4.121650 21.613819 22.059058 23.210690 **1** 1.416006e+09 28.241585 28.951933 29.411540 29.818273 30.170567 30.480591 30.770946 31.029136 31.307137 ... 31.858484 32.126473 32.404716 32.709332 33.020670 33.418236 33.880200 34.440346 35.253662 7.012077 **2** 7.603739e+09 38.076356 39.267137 42.223867 42.638044 44.022723 46.605362 47.372896 49.731648 11.655293 39.994580 40.693994 41.252351 41.756176 43.116196 44.458900 44.939674 45.432922 45.952393 48.301666 **3** 4.087218e+10 51.375579 53.282612 54.406904 55.483776 56.427325 57.193282 57.927141 58.647137 59.370243 60.855017 61.544015 62.330858 63.091283 63.932874 65.033164 66.275561 67.818301 70.117453 18.741874

Step 8: Review Plume Height Estimates

This cell displays the predicted plume heights.

Purpose:

4 rows × 21 columns

• Offers an immediate review of the plume height results for quality control and interpretation.

In [15]: mer_results.columns

Out[15]: Index(['TEM_kg', 'MERPercentile_5', 'MERPercentile_10', 'MERPercentile_15', 'MERPercentile_20', 'MERPercentile_25', 'MERPercentile_30', 'MERPercentile_35', 'MERPercentile_40', 'MERPercentile_45', 'MERPercentile_50', 'MERPercentile_55', 'MERPercentile_60', 'MERPercentile_65', 'MERPercentile_70', 'MERPercentile_75', 'MERPercentile_80', 'MERPercentile_85', 'MERPercentile_90', 'MERPercentile_95', '90%_interpercentile_MERrange_kg/s', 'Duration_hr_P5', 'Duration_hr_P10', 'Duration_hr_P15', 'Duration_hr_P20', 'Duration_hr_P25', 'Duration_hr_P30', 'Duration_hr_P35', 'Duration_hr_P40', 'Duration_hr_P45', 'Duration_hr_P50', 'Duration_hr_P55', 'Duration_hr_P60', 'Duration_hr_P65', 'Duration_hr_P70', 'Duration_hr_P75', 'Duration_hr_P80', 'Duration_hr_P85', 'Duration_hr_P90', 'Duration_hr_P95', 'Duration_hr_90%_interpercentile', 'VEI'],

In [16]: heights['VEI']=mer_results['VEI']

dtype='object')

columns_to_assign = ['Duration_hr_P5', 'Duration_hr_P5', 'Duration

Assign values from mer_results to heights for these columns heights[columns_to_assign] = mer_results[columns_to_assign]

heights.to_csv('Final_prediction_results.csv')

heights

MER_kg/s Hei	ightPercentile_5 Heig	ghtPercentile_10 Heig	ghtPercentile_15 Heig	ghtPercentile_20	HeightPercentile_25 Hei	ghtPercentile_30 Hei	ightPercentile_35	HeightPercentile_40 He	ightPercentile_45	. HeightPercentile_90 H	HeightPercentile_95 90%_i	nterpercentile_Height_range_km	VEI D	uration_hr_P5 D	uration_hr_P25	Duration_hr_P50 [uration_hr_P75 Du	ıration_hr_P95 Du	ration_hr_90%_interpercentile
0 2.637347e+08	20.915370	21.331430	21.613819	21.846972	22.059058	22.246575	22.423805	22.583176	22.732437 .	24.544383	25.037020	4.121650	2	451.148534	22.069162	18.531088	15.088152	0.802784	0.804215
1 1.416006e+09	28.241585	28.951933	29.411540	29.818273	30.170567	30.480591	30.770946	31.029136	31.307137 .	34.440346	35.253662	7.012077	3	1445.341002	52.417107	42.635834	30.553609	1.495757	1.497307
2 7.603739e+09	38.076356	39.267137	39.994580	40.693994	41.252351	41.756176	42.223867	42.638044	43.116196 .	48.301666	49.731648	11.655293	4	4628.288861	128.057035	96.568842	63.982951	2.784014	2.785689
3 4.087218e+10	51.375579	53.282612	54.406904	55.483776	56.427325	57.193282	57.927141	58.647137	59.370243 .	67.818301	70.117453	18.741874	5	14822.270572	312.278345	218.349011	139.006366	5.177730	5.179540

4 rows × 28 columns

In [17]: # Add a bold title using Styler styled_table = heights.style.set_caption("VEI and Related Data")
styled table

Styled	_cabie																				
Out[17]:														VEI and Related Da	ta						
	MER_kg/s H	HeightPercentile_5 I	HeightPercentile_10	HeightPercentile_15	HeightPercentile_20	HeightPercentile_25	HeightPercentile_30	HeightPercentile_35	HeightPercentile_40	HeightPercentile_45	HeightPercentile_50 I	HeightPercentile_55	HeightPercentile_60 Hei	ghtPercentile_65 Hei	ghtPercentile_70 H	leightPercentile_75 l	HeightPercentile_80	HeightPercentile_85	leightPercentile_90	HeightPercentile_95 90%_ii	nterpercentile_Height_range_km
0 2	63734738.339319	20.915370	21.331430	21.613819	21.846972	22.059058	22.246575	22.423805	22.583176	22.732437	22.895094	23.057809	23.210690	23.387119	23.556670	23.740064	23.975067	24.233409	24.544383	25.037020	4.121650
1 14	16005871.096091	28.241585	28.951933	29.411540	29.818273	30.170567	30.480591	30.770946	31.029136	31.307137	31.583728	31.858484	32.126473	32.404716	32.709332	33.020670	33.418236	33.880200	34.440346	35.253662	7.012077
2 76	03738971.918003	38.076356	39.267137	39.994580	40.693994	41.252351	41.756176	42.223867	42.638044	43.116196	43.576116	44.022723	44.458900	44.939674	45.432922	45.952393	46.605362	47.372896	48.301666	49.731648	11.655293
3 408	72184089.891838	51.375579	53.282612	54.406904	55.483776	56.427325	57.193282	57.927141	58.647137	59.370243	60.101794	60.855017	61.544015	62.330858	63.091283	63.932874	65.033164	66.275561	67.818301	70.117453	18.741874

In [18]: from rich.console import Console

from rich.table import Table # Ensure VEI is first if "VEI" not in heights.columns: raise KeyError("The 'VEI' column is missing from the DataFrame.")

cols = ["VEI"] + [col for col in heights.columns if col != "VEI"]

heights = heights[cols] # Rich Console for better formatting

console = Console() # Function to print DataFrame in chunks of six columns, keeping VEI first

def print_six_columns_with_vei_first(df): num_cols = len(df.columns)

for i in range(1, num_cols, 3): # 5 because VEI is fixed # Slice five columns at a time, after the first column cols = ["VEI"] + list(df.columns[i:i+3])

Refining Mass Eruption Rate (MER) Estimates Using Observed Plume Height

Duration_hr_90%_interpercentile

0.8042152577221199

1.4973069898304596

2.785689487456169

5.179539563012893

Duration_hr_P50

When plume height is observed through satellite imagery or infrasound data, it provides an opportunity to enhance previously predicted MER values. By leveraging this direct observation of plume height, we can derive a more accurate estimate of the MER, aligning it closely with the actual eruption dynamics.

In [19]: from mer_from_height import MERPredictorFromHeight predictor = MERPredictorFromHeight(Combined_datasets) # Predict MER for specific heights # Save predictions to a CSV Observed_plume_height=[5,8] predictions=predictor.predict_MER_with_uncertainty(Observed_plume_height, output_file='predicted_mer_fromheight.csv') # Visualize the posterior predictive distribution predictor.plot_posterior_predictive() # Visualize percentiles with uncertainty predictor.plot_percentiles_with_uncertainty(Observed_plume_height) predictor.plot_percentiles_vs_mer() predictions

VEI

Duration_hr_P5

2.0 | 15.088151759080407 | 0.8027842183454168

4.0 | 63.98295122142996 | 2.7840138361930653

5.0 | 139.0063660800366 | 5.17773024112124

3.0 | 30.553609033576713 | 1.495757453709167

VEI Duration_hr_P75

Duration_hr_P25

Duration_hr_P95

VEI and Related Data

 2.0
 451.1485341090696
 22.069162047488895
 18.53108808511808

 3.0
 1445.3410022229234
 52.41710686727613
 42.63583418923697

 4.0
 4628.288861281014
 128.05703457866034
 96.56884214551671

 5.0
 14822.270572316527
 312.27834475899505
 218.34901134200308

Height_km.a.v.l MERPercentile_5 Uncertainty_Lower_5 Uncertainty_Lo 19120.265661 11161.969846 78892.286871 72753.555476 80015.857555 82011.604587 81451.349253 82538.735752 83842.317081 86098.898191 87243.454000 88672.015678 99136.123217 90635.425445 8 608619.516516 575831.605351 614226.709984 623748.137283 621135.854514 626352.255729 634947.913629 632969.021044 637016.419802 646340.111457 643765.208387 649292.414642 662707.458575 656473.656001 704862.135429 54087.942059

In [20]: from ParticleSize_MER import Predict_ASH_BELOW_63_Micron

from vei import data_loader
#mastin_a=data_loader.load_Mastin_a(as_geodataframe=True)

psize_model=Predict_ASH_BELOW_63_Micron(mastin_a)

psize_model.set_xvar('MER_kg/s')
psize_model.set_yvar('MASS_FRACTION_ASH_BELOW_63_micron')

psize_model.calculate_percentiles_with_uncertainty(mer_list)
psize_model.predict_with_uncertainty(mer_list)

psize_model.plot_posterior_predictive()

Visualize percentiles with uncertainty
psize_model.plot_percentiles_with_uncertainty(mer_list)

psize_model.plot_percentiles()

psize_predictions=psize_model.predict_with_uncertainty(mer_list)

Model updated with xvar='MER_kg/s' and yvar='MER_kg/s'.

Model updated with xvar='MER_kg/s' and yvar='MASS_FRACTION_ASH_BELOW_63_micron'.

In [21]:	psize_predictions

[]	p====_p:													
Out[21]:	MER_kg/s MASS_FRACTION_ASH_BELOW_63_mici	ron_Percentile_5 U	Incertainty_Lower_5	Uncertainty_Upper_5 MA	ASS_FRACTION_ASH_BELOW_63_micron_Percentile_25	Uncertainty_Lower_25	Uncertainty_Upper_25 I	MASS_FRACTION_ASH_BELOW_63_micron_Percentile_50	Uncertainty_Lower_50	Uncertainty_Upper_50 N	MASS_FRACTION_ASH_BELOW_63_micron_Percentile_75	Uncertainty_Lower_75	Uncertainty_Upper_75 N	MASS_FRACTION_ASH_BELOW_63_micron_
	0 2.637347e+08	3.510268	3.415337	3.525689	3.551713	3.544573	3.557974	3.580712	3.575253	3.586068	3.609362	3.603023	3.616482	
	1 1.416006e+09	8.459594	8.174954	8.506458	8.585589	8.563127	8.604689	8.673290	8.656394	8.690388	8.760266	8.741047	8.782273	
	2 7.603739e+09	20.388173	19.569087	20.524390	20.753400	20.687811	20.809752	21.009633	20.961152	21.058963	21.265665	21.208511	21.330891	
	3 4.087218e+10	49.159041	46.852932	49.545688	50.194972	50.005336	50.353139	50.918376	50.783619	51.057364	51.647173	51.484248	51.832791	

In [22]: columns_to_assign=list(psize_predictions.columns)
 columns_to_assign=columns_to_assign[1:]

Assuming `columns_to_assign` contains column names and `heights` and `psize_predictions` are DataFrames

heights.loc[:, columns_to_assign] = psize_predictions[columns_to_assign]

heights.to_csv('Final_prediction_results.csv')

In [23]: psize_predictions

Out[23]: MER_kg/s MASS_FRACTION_ASH_BELOW_63_micron_Percentile_5 Uncertainty_Lower_5 Uncertainty_Lower_5 Uncertainty_Upper_5 MASS_FRACTION_ASH_BELOW_63_micron_Percentile_75 Uncertainty_Lower_75 Uncertainty_Upper_75 MASS_FRACTION_ASH_BELOW_63_micron_Percentile_50 Uncertainty_Upper_50 MASS_FRACTION_ASH_BELOW_63_micron_Percentile_75 Uncertainty_Upper_75 Uncertaint **0** 2.637347e+08 3.510268 3.415337 3.525689 3.551713 3.544573 3.557974 3.580712 3.575253 3.586068 3.609362 3.603023 3.616482 **1** 1.416006e+09 8.459594 8.174954 8.506458 8.585589 8.604689 8.673290 8.656394 8.690388 8.760266 8.741047 8.782273 8.563127 **2** 7.603739e+09 20.388173 19.569087 20.524390 20.753400 20.687811 20.809752 21.009633 20.961152 21.058963 21.265665 21.208511 21.330891 **3** 4.087218e+10 50.194972 50.353139 51.832791 49.159041 46.852932 49.545688 50.005336 50.918376 50.783619 51.057364 51.647173 51.484248