Algorithms and Data Structures with Applications in Machine Learning

Graph Representation Learning

December 30, 2024

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Introduction to Graphs

Definition

A graph is defined as:

$$G = (V, E, u)$$

- ▶ **Nodes (Vertices):** The set *V* represents the nodes in the graph.
- ▶ **Edges:** The set $E \subseteq V \times V$ represents the connections (relationships) between the nodes.
- **Features:** Each node can have a feature vector u(v) representing its attributes.
- ► Labels: Nodes (or edges) can also have labels, which are used for tasks like classification.

Example Graph

Example: The graph below has 7 connected nodes $(V = \{0, 1, 2, 3, 4, 5, 6\})$ and their edges (E).

Example Graph: Node Labels

Example: Nodes in a graph can be associated with labels.

Blue nodes: Label 0 Red nodes: Label 1

Example Graph: Node Features

Example: Each node in the graph can have associated features. In this case: Each node has a feature vector of dimension 3.

Adjacency Matrix

7 / 14

Definition

The adjacency matrix A of a graph G = (V, E) is a matrix of size $|V| \times |V|$, where:

- ightharpoonup A[i][j] = 1 if there is an edge between node i and node j.
- ▶ A[i][j] = 0 if there is no edge between node i and node j.

Example: A graph and its corresponding adjacency matrix:

Adjacency Matrix:

$$A = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Weighted Adjacency Matrix

Definition

The adjacency matrix A can be extended to a weighted matrix W, where:

W[i][j] represents the weight of the edge between node i and node j.

Example: A graph and its a weighted adjacency matrix:

Weighted Matrix:

$$W = \begin{bmatrix} 0 & 0 & 2.1 & 0 & 0 & 1.5 & 0 \\ 0 & 0 & 3.4 & 1.8 & 0 & 0 & 0 \\ 2.1 & 3.4 & 0 & 0 & 2.5 & 0 & 0 \\ 0 & 1.8 & 0 & 0 & 0 & 0 & 4.2 \\ 0 & 0 & 2.5 & 0 & 0 & 1.2 & 3.0 \\ 1.5 & 0 & 0 & 0 & 1.2 & 0 & 0 \\ 0 & 0 & 0 & 4.2 & 3.0 & 0 & 0 \end{bmatrix}$$

Applications of Machine Learning on Graphs

Applications: Machine Learning on graphs enables a variety of tasks, including:

- Node Prediction: Predict properties or labels of nodes in a graph (e.g., user classification in social networks).
- ▶ Link Prediction: Predict the existence or strength of a connection between two nodes (e.g., recommendation systems).
- ► **Graph Classification:** Assign labels to entire graphs (e.g., chemical compound classification).
- Clustering: Group nodes into communities or clusters based on their properties or structure.

Objective: Node Classification

Objective: The objective of this course is two-fold:

- Learning a *D*-dimensional representation: Create embedding vectors for nodes that capture the structure of the graph.
- Node Classification:
 Use the learned embeddings to predict the labels of the nodes.

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

Graph Terminology and Representation

Graph Representation Learning: DeepWalk and Node2Vec

Graph Neural Networks

