湖南大学 2010 年招收攻读硕士学位研究生 入学考试命题专用纸

招生专业名称:软件工程
考试科目代码:
注: 答题(包括填空题、选择题)必须答在专用答卷纸上,否则无效。
一、单项选择题(每小题 3 分, 共 30 分)
1. 下面程序段的时间复杂度是 ()
i=s=0;
while($s < n$)
i++; s+=i;
(A) $O(\log n)$ (B) $O(n^{1/2})$ (C) $O(n)$ (D) $O(n^2)$
2. 若用单链表来表示队列,则应该选用()。 (A) 带头指针的非循环链表 (B) 带头指针的循环链表
(C) 带指针的非循环链表 (D) 带尾指针的循环链表
3. 若已知一棵二叉树先序序列为 ABCDEFG,中序序列为 CBDAEGF,则其后序序列为((A) CDBGFEA (B) CDBFGEA (C) CDBAGFE (D) BCDAGFE
4. 如果只想得到 2009 个元素组成的序列中的前 3 个最小元素,那么用()方法最快。
(A)起泡排序 (B) 直接选择排序 (C) 堆排序 (D) 快速排序
5. 一颗完全二叉树上有 2010 个结点,其中叶子结点的个数是 ()。 (A)1004 (B)1005 (C) 1006 (D) 1007
6. 若需要利用形参直接访问实参,则应把形参变量说明为()参数。
(A) 指针 (B) 引用 (C) 传值 (D) 常值
7. 带头结点 head 的单链表为空的判定条件是()。
(A) head == NULL; (B) head->next == NULL;
(C) head->next ==head; (D) head != NULL;
8. 在有向图中每个顶点的度等于该顶点的()。

设有一个递归算法如下 9.

int fact(int n) { //n 大于等于 0

if($n \le 0$) return 1;

else return n*fact(n-1);

}

则计算 fact(n)需要调用该函数的次数为______次。

三、解析题 (每题 15 分。共 60 分)

- 1. 给出一组关键值集合 T={17, 21, 15, 3, 28, 8, 34, 16, 2, 76, 18, 9, 45, 63, 1, 54}, 完成 下列小题:
 - (1) 用希尔排序将上述关键值集合排成升序序列(增量序列为5、3、2、1);
 - (2) 将上述关键值集合调整为一个大顶堆。

- 2. 有 10 个带权结点,其权值分别为 19, 25, 33, 7, 18, 21, 16, 17, 13, 54; 试以它们为叶子结点生成一棵哈夫曼树,求出该树的带权路径长度、高度以及度为 2 的结点数。
- 3. 对于如图 1 所示的图,画出该图的邻接表存储结构图,并根据该图的邻接表存储结构图给出该图进行深度优先搜索的结果。

4. 画出利用逐点插入法为序列(50,70,48,89,75,20,35,45,65,30,66)建立的二叉排序树(不需要调整为AVL树),并画出在该排序二叉树中依次删除关键字20,70后的二叉排序树的结构。

四、算法设计题 (每题 15 分, 共 30 分)

- 1. 试写一个算法,在带头结点的按升序排列的单链表中查找值为 X 的结点,如果存在,算法返回 True;如果不存在,则将值为 X 的结点加入单链表中,并保持单链表有序,算法返回 False。
- 2. 试写一个算法, 判断给定的二叉树中是否存在度为1的结点。