Appendix

Proof of the bound of T(m)

Suppose T(m) satisfies the following recurrence relations.

$$T(m) \le \begin{cases} c_1 \text{ if } m = 0, \\ 2c_2|V|^2 + \sum_{i=0}^p T(m-1-i) + T(m-d-1) \text{ otherwise.} \end{cases}$$
(1)

where p=k-1 and d=k. In the worst-case, we replace p by k-1 and d by k, thus Recurrence Relation 1 is rewrote

$$T(m) \le \begin{cases} c_1 \text{ if } m = 0, \\ 2c_2|V|^2 + \sum_{i=0}^k T(m-1-i) \text{ otherwise.} \end{cases}$$
 (2)

Lemma 1. Let $H(m) = \alpha_k \gamma_k^m - \beta_k$ where γ_k is the largest real root of $x^{k+2} - 2x^{k+1} + 1 = 0$, $\beta_k = \frac{2c_2|V|^2}{k}$ and $\alpha_k = \max_{i=1}^{k+1} \{ \frac{(2^{i-1}k+1)\beta_k + 2^{i-1}c_1}{\gamma_k^i} \}$, T(m) satisfies Inequality (1). Then, $T(m) \leq H(m)$ for $m \geq 0$.

Proof. We first show that for $m=1,\ldots,k+1,$ $T(m)\leq 2^{m-1}k\beta_k+2^{m-1}c_1$ by induction on m.

- Basis: for $m = 1, T(1) \le 2c_2|V|^2 + T(0) \le k\beta_k + c_1$
- Induction step: We assume that $T(m) \leq 2^{m-1}k\beta_k + 2^{m-1}c_1$ for all $1 \leq m \leq R$ where $1 \leq R \leq k$ and prove that it also holds for m = R + 1. By Recurrence Relation 2, we have

$$T(m) \le 2c_2|V|^2 + T(m-1) + \dots + T(0) \quad \because m \le k+1$$

$$= 2c_2|V|^2 + c_1 + \sum_{i=1}^{m-1} T(i)$$

$$\le 2c_2|V|^2 + c_1 + \sum_{i=1}^{m-1} (2^{i-1}k\beta_k + 2^{i-1}c_1)$$

$$= k\beta_k(1 + \sum_{i=1}^{m-1} 2^{i-1}) + c_1(\sum_{i=1}^{m-1} 2^{i-1} + 1)$$

$$= 2^m k\beta_k + 2^m c_1$$

Then, we prove that $T(m) \leq H(m)$ for any $m \geq 0$, again, by induction on m.

• Basis: For $m = 1, \dots, k + 1$, we have

$$H(m) = \alpha_k \gamma_k^m - \beta_k$$

$$\geq \frac{(2^{m-1}k+1)\beta_k + 2^{m-1}c_1}{\gamma_k^m} \gamma_k^m - \beta_k$$

$$= 2^{m-1}k\beta_k + 2^{m-1}c_1$$

$$\geq T(m)$$

where the first inequality follows the definitions of α_k

• Induction step: We assume that $T(m) \leq H(m)$ for all $1 \leq m \leq L$ where $L \geq k+1$ and prove that it also holds for m=L+1.

First, let us factorize $x^{k+2}-2x^{k+1}+1$ as $(x-1)(x^{k+1}-x^k-\cdots-1)$. Denote $F_k(x)=(x^{k+1}-x^k-\cdots-1)$. We have $F_k(1)<0$ and $F_k(2)>0$, indicating that $F_k(x)=0$ has a root between (1,2). Combining the fact that γ_k is the largest root of $(x-1)F_k(x)=0$, $gamma_k$ is also the root of $F_k(x)=0$, thus i.e., $\gamma_k^k+\cdots+1=\gamma_kk+1$. Multiply both side an item γ_k^{L-k} , we have

$$\gamma_k^L + \dots + \gamma_k^{L-k} = \gamma_k^{L+1}$$

Then, the following inequalities hold.

$$T(L+1) \le T(L) + T(L-1) + \dots + T(L-k) + 2c|V|^{2}$$

$$\le \alpha_{k}(\gamma_{k}^{L} + \dots + \gamma_{k}^{L-k}) - (k+1)\beta_{k} + k\beta_{k}$$

$$\le \alpha_{k}(\gamma_{k}^{L} + \dots + \gamma_{k}^{L-k}) - \beta_{k}$$

$$= \alpha_{k}\gamma_{k}^{L+1} - \beta_{k}$$

$$= H(L+1)$$