Prove that the following languages are undecidable.

1. $E_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

Solution: E_{TM} is the problem of determining whether the lanuage of a TM is empty. We will reduce $DecideA_{TM}$ to $DecideE_{TM}$.


```
\begin{array}{c} \underline{DecideA_{TM}(\langle M,w\rangle):} \\ \text{Construct } M' \text{ using M and w} \\ \text{Run } \underline{DecideE_{TM}} \text{ on } \langle M' \rangle \\ \text{if } \underline{DecideE_{TM}(\langle M' \rangle)} \\ \underline{reject} \\ \text{else} \\ \underline{accept} \end{array}
```

If $DecideE_{TM}$ were a Decider for E_{TM} , then $DecideA_{TM}$ is a Decider on A_{TM} . But a decider for A_{TM} can not exist, and hence E_{TM} is undecidable.

2. $EQ_{TM}:=\left\{\langle M_1,M_2\rangle\;\middle|\;M_1\text{ and }M_2\text{ are TMs and }L(M_1)=L(M_2)\right\}$

Solution: EQ_{TM} is the problem of determining whether the languages of two TMs are the same. Let us assume that one of the languages is \emptyset , we end up with the problem of determining whether the language of the other machine is empty—that is, problem $1(E_{TM})$. Let's do a reduction from E_{TM} .

The reduction is as follows. Let $Decide_{EQTM}$ decide EQ_{TM} and we construct $Decide_{ETM}$ to decide E_{TM} as follows.

 $\frac{Decide_{ETM}(\langle M \rangle):}{\text{Let M' be a TM that rejects all inputs}(L(M') = \emptyset).}$ if $Decide_{EQTM}(\langle M, M' \rangle)$ return True
else
return FALSE

If $Decide_{EQTM}$ decides EQ_{TM} , $Decide_{ETM}$ decides E_{TM} . But E_{TM} is undecidable as we proved in problem 1, so EQ_{TM} also must be undecidable.

3. $INF_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is an infinite language} \}$

Solution: Let's do a reduction from the accept language:

The reduction is as follows. On input $\langle M, w \rangle$ we encode the following machine:

M'(x)

run M on input w and return True if M accepts w otherwise return false

In this case, if $ORAC_{INF_{TM}}$ output yes, you know taht the language M' represents is infinite which is only possible if M accepts w. If the oracle returns not true, you know M must not accept w

4. $ALL_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \Sigma^* \}$

Solution: Let's do a reduction from A_{TM} .

$$\langle M \rangle$$
 W
 R
 $\langle M' \rangle$
 $DEC2_{ALL_{TM}}$
 No

 $A_{TM} \Rightarrow ALL_{TM}$

The reduction is as follows. On input $\langle M, w \rangle$ we encode the following machine:

2

```
\frac{DEC1_{ATM}(w):}{\text{Let M' be a TM that runs w on M and returns TRUE if M accepts w}}
\text{if } DEC2_{ALL_{TM}}(< M' >)
\text{return TRUE}
\text{else}
\text{return FALSE}
```

If $DEC2_{ALL_{TM}}$ outputs yes, M accepts w and $L(M') = \Sigma^*$ and decides for ALL_{TM} . If $DEC1_{ALL_{TM}}$ decides ALL_{TM} , then $DEC2_{A_{TM}}$ decides A_{TM} . But A_{TM} is undecidable, so $DEC1_{ALL_{TM}}$ cannot exist and hence ALL_{TM} also must be undecidable.

5. $REG_{TM} := \{ \langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is a regular language} \}$

Solution: Let's do a reduction from the accept language:

$$A_{TM} \Rightarrow REG_{TM}$$
 $\langle M \rangle$
 W
 REG_{TM}
 REG_{TM}
 No

The reduction is as follows. On input $\langle M, w \rangle$ we encode the following machine:

```
M'(x):

if x is of the form 0^n 1^n

accept x

elseif M accepts w

accept x

else

reject x
```

This means: If the original M accepts w, then M' will accept every string, this is regular. If the original M rejects w, then M' will only accepts strings 0^n1^n , this is not regular.

So on the input $\langle M' \rangle$, if REG_{TM} returns True then M accepts w and if REG_{TM} returns False then M rejects w.

Therefore REG_{TM} must be undecidable.