STAT 111

Recitation 3

Mo Huang

Email: mohuang@wharton.upenn.edu

Office Hours: Wednesdays 3:00 - 4:00 pm, JMHH F96

Slides: github.com/mohuangx/STAT111-Spring2019

February 8, 2019

Q1: Let X be a random variable with the below distribution. Find the mean and the variance of X using formula (1) and then formula (2).

X	-3	-1	4	5
P(X=x)	0.1	0.3	0.4	0.2

Table: Probability distribution of X.

Q1: Let X be a random variable with the below distribution. Find the mean and the variance of X using formula (1) and then formula (2).

X	-3	-1	4	5
P(X = x)	0.1	0.3	0.4	0.2

Table: Probability distribution of X.

A1:
$$\mu = -3 \times 0.1 - 1 \times 0.3 + 4 \times 0.4 + 5 \times 0.2 = 2$$
.

$$\sigma^2 = (-3 - 2)^2(0.1) + (-1 - 2)^2(0.3) + (4 - 2)^2(0.4) + (5 - 2)^2(0.2)$$
= 8.6.

$$\sigma^2 = (-3)^2(0.1) + (-1)^2(0.3) + 4^2(0.4) + 5^2(0.2) - 2^2$$

= 8.6.

Q2: Let X be a random variable with the below distribution. Write the probability distribution of Y = 2X in tableau form.

X	-3	-1	4	5
P(X = x)	0.1	0.3	0.4	0.2

Table: Probability distribution of X.

Q2: Let X be a random variable with the below distribution. Write the probability distribution of Y = 2X in tableau form.

X	-3	-1	4	5
P(X=x)	0.1	0.3	0.4	0.2

Table: Probability distribution of X.

A2: Probability distribution of *Y*:

У	-6	-2	8	10
P(Y = y)	0.1	0.3	0.4	0.2

Table: Probability distribution of Y.

- Q4: Suppose we have a company producing a medicine. Each day the *mean* amount of medicine produced is 500 mg and the *variance* is 900 mg². Assume the amount produced each day is independent.
 - (i) Let T_n be the total amount of medicine produced in a week. Find the mean and variance of T_n .

- Q4: Suppose we have a company producing a medicine. Each day the *mean* amount of medicine produced is 500 mg and the *variance* is 900 mg². Assume the amount produced each day is independent.
 - (i) Let T_n be the total amount of medicine produced in a week. Find the mean and variance of T_n .

$$Mean(T_n) = 5 \times 500 = 2500$$

 $Var(T_n) = 5 \times 900 = 4500$

- Q4: Suppose we have a company producing a medicine. Each day the *mean* amount of medicine produced is 500 mg and the *variance* is 900 mg². Assume the amount produced each day is independent.
 - (i) Let T_n be the total amount of medicine produced in a week. Find the mean and variance of T_n .

$$Mean(T_n) = 5 \times 500 = 2500$$

 $Var(T_n) = 5 \times 900 = 4500$

(ii) Let \bar{X} be the average amount of medicine produced in a 5-day week. Find the mean and variance of \bar{X} .

- Q4: Suppose we have a company producing a medicine. Each day the *mean* amount of medicine produced is 500 mg and the *variance* is 900 mg². Assume the amount produced each day is independent.
 - (i) Let T_n be the total amount of medicine produced in a week. Find the mean and variance of T_n .

$$Mean(T_n) = 5 \times 500 = 2500$$

 $Var(T_n) = 5 \times 900 = 4500$

(ii) Let \bar{X} be the average amount of medicine produced in a 5-day week. Find the mean and variance of \bar{X} .

$$Mean(\bar{X}) = 500$$

 $Var(\bar{X}) = 900/5 = 180$

Q6: Suppose the company producing a medicine has different means and variances the amount produced on each day of the week:

Day	Mean	Variance
Monday (X_1)	450	1200
Tuesday (X_2)	550	800
Wednesday (X_3)	600	500
Thursday (X_4)	550	800
Friday (X_5)	350	1200

Q6: Suppose the company producing a medicine has different means and variances the amount produced on each day of the week:

Day	Mean	Variance
Monday (X_1)	450	1200
Tuesday (X_2)	550	800
Wednesday (X_3)	600	500
Thursday (X_4)	550	800
Friday (X_5)	350	1200

Find mean and variance of both the sum T_n and the average \bar{X} .

Q6: Suppose the company producing a medicine has different means and variances the amount produced on each day of the week:

Day	Mean	Variance
Monday (X_1)	450	1200
Tuesday (X_2)	550	800
Wednesday (X_3)	600	500
Thursday (X_4)	550	800
Friday (X_5)	350	1200

Find mean and variance of both the sum T_n and the average \bar{X} .

A6: X_1, X_2, X_3, X_4 , and X_5 are no longer i.i.d.!

$$Mean(T_n) = 450 + 550 + 600 + 550 + 350 = 2500$$

 $Var(T_n) = 1200 + 800 + 500 + 800 + 1200 = 4500$

Q6: Suppose the company producing a medicine has different means and variances the amount produced on each day of the week:

Day	Mean	Variance
Monday (X_1)	450	1200
Tuesday (X_2)	550	800
Wednesday (X_3)	600	500
Thursday (X_4)	550	800
Friday (X_5)	350	1200

Find mean and variance of both the sum T_n and the average \bar{X} .

A6:
$$X_1, X_2, X_3, X_4$$
, and X_5 are no longer i.i.d.!

$$Mean(T_n) = 450 + 550 + 600 + 550 + 350 = 2500$$

 $Var(T_n) = 1200 + 800 + 500 + 800 + 1200 = 4500$

$$Mean(\bar{X}) = 1/n \times Mean(T_n) = 500$$

 $Var(\bar{X}) = 1/n^2 \times Var(T_n) = 4500/25 = 180$

Q7: Let P_1 be the proportion of heads in 50 coin tosses, where P(H) = 0.6. Find $Mean(P_1)$ and $Var(P_1)$.

Q7: Let P_1 be the proportion of heads in 50 coin tosses, where P(H) = 0.6. Find $Mean(P_1)$ and $Var(P_1)$.

A7: $Mean(P_1) = 0.6$ and $Var(P_1) = 0.6 \times 0.4/50 = 0.0048$.

- Q7: Let P_1 be the proportion of heads in 50 coin tosses, where P(H) = 0.6. Find $Mean(P_1)$ and $Var(P_1)$.
- A7: $Mean(P_1) = 0.6$ and $Var(P_1) = 0.6 \times 0.4/50 = 0.0048$.
- Q8: Let P_2 be the proportion of heads in 20 coin tosses, where P(H) = 0.7. From earlier, $Mean(P_2) = 0.7$ and $Var(P_2) = 0.0105$. Let $D = P_1 P_2$. Find the mean and variance of D.

- Q7: Let P_1 be the proportion of heads in 50 coin tosses, where P(H) = 0.6. Find $Mean(P_1)$ and $Var(P_1)$.
- A7: $Mean(P_1) = 0.6$ and $Var(P_1) = 0.6 \times 0.4/50 = 0.0048$.
- Q8: Let P_2 be the proportion of heads in 20 coin tosses, where P(H) = 0.7. From earlier, $Mean(P_2) = 0.7$ and $Var(P_2) = 0.0105$. Let $D = P_1 P_2$. Find the mean and variance of D.
- A8: Mean(D) = 0.6 0.7 = -0.1Var(D) = 0.0048 + 0.0105 = 0.0153