Lecture 2: Exploration and Exploitation

Hado van Hasselt

Reinforcement learning, 2021

Background

Recommended reading: Sutton & Barto 2018, Chapter 2

Further background material:
Bandit Algorithms, Lattimore & Szepesvári, 2020
Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi, Fischer, 2002

Recap

- ▶ Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- ► The general problem involves taking into account time and consequences
- ▶ Decisions affect the **reward**, the **agent state**, and **environment state**
- ► Learning is active: decisions impact data

This Lecture

In this lecture, we simplify the setting

- ► The environment is assumed to have only a **single state**
- actions no longer have long-term consequences in the environment
- ► ⇒ actions still do impact immediate reward
- other observations can be ignored
- We discuss how to learn a policy in this setting

Blackboard:

Example

Exploration vs. Exploitation

- Learning agents need to trade off two things
 - **Exploitation**: Maximise performance based on current knowledge
 - **Exploration**: Increase knowledge
- We need to gather information to make the best overall decisions
- ▶ The best long-term strategy may involve short-term sacrifices

Formalising the problem

The Multi-Armed Bandit

- ▶ A multi-armed bandit is a set of distributions $\{\mathcal{R}_a|a\in\mathcal{A}\}$
- \triangleright \mathcal{A} is a (known) set of actions (or "arms")
- $ightharpoonup \mathcal{R}_a$ is a distribution on rewards, given action a
- ▶ At each step t the agent selects an action $A_t \in \mathcal{A}$
- ► The environment generates a reward $R_t \sim \mathcal{R}_{A_t}$
- ► The goal is to maximise cumulative reward $\sum_{i=1}^{t} R_i$
- ightharpoonup We do this by learning a **policy**: a distribution on $\mathcal A$

Values and Regret

► The action value for action *a* is the expected reward

$$q(a) = \mathbb{E}\left[R_t|A_t = a\right]$$

► The optimal value is

$$v_* = \max_{a \in \mathcal{A}} q(a) = \max_{a} \mathbb{E} \left[R_t \mid A_t = a \right]$$

Regret of an action *a* is

$$\Delta_a = v_* - q(a)$$

▶ The regret for the optimal action is zero

Regret

► We want to minimise total regret:

$$L_t = \sum_{n=1}^t v_* - q(A_n) = \sum_{n=1}^t \Delta_{A_n}$$

- Maximise cumulative reward ≡ minimise total regret
- ► The summation spans over the full 'lifetime of learning'

Algorithms

- ► We will discuss several algorithms:
 - Greedy
 - ightharpoonup ϵ -greedy
 - ► UCB
 - ► Thompson sampling
 - Policy gradients
- ▶ The first three all use action value estimates $Q_t(a) \approx q(a)$

Action values

► The action value for action *a* is the expected reward

$$q(a) = \mathbb{E}\left[R_t|A_t = a\right]$$

► A simple estimate is the average of the sampled rewards:

$$Q_t(a) = \frac{\sum_{n=1}^{t} I(A_n = a) R_n}{\sum_{n=1}^{t} I(A_n = a)}$$

 $I(\cdot)$ is the **indicator** function: I(True) = 1 and I(False) = 0

► The **count** for action *a* is

$$N_t(a) = \sum_{n=1}^t \mathcal{I}(A_n = a)$$

Action values

► This can also be updated incrementally:

$$Q_t(A_t) = Q_{t-1}(A_t) + \alpha_t \underbrace{\left(R_t - Q_{t-1}(A_t)\right)}_{\text{error}},$$

$$\forall a \neq A_t : Q_t(a) = Q_{t-1}(a)$$

with

$$\alpha_t = \frac{1}{N_t(A_t)}$$
 and $N_t(A_t) = N_{t-1}(A_t) + 1$,

where $N_0(a) = 0$.

- We will later consider other step sizes α
- For instance, constant α would lead to tracking, rather than averaging

Algorithms: greedy

The greedy policy

- ► One of the simplest policies is **greedy**:
 - ► Select action with highest value: $A_t = \operatorname{argmax} Q_t(a)$
 - Equivalently: $\pi_t(a) = I(A_t = \operatorname{argmax} Q_t(a))$ (assuming no ties are possible)

Example:

Regret of the greedy policy

Algorithms: ϵ -greedy

ϵ -Greedy Algorithm

- Greedy can get stuck on a suboptimal action forever
 - ⇒ linear expected total regret
- ▶ The ϵ -greedy algorithm:
 - With probability 1ϵ select greedy action: $a = \operatorname{argmax}_{a \in \mathcal{A}} Q_t(a)$
 - ightharpoonup With probability ϵ select a random action
 - **Equivalently:**

$$\pi_t(a) = \begin{cases} (1 - \epsilon) + \epsilon/|\mathcal{A}| & \text{if } Q_t(a) = \max_b Q_t(b) \\ \epsilon/|\mathcal{A}| & \text{otherwise} \end{cases}$$

- ightharpoonup ϵ -greedy continues to explore
 - $\Rightarrow \epsilon\text{-greedy}$ with constant ϵ has linear expected total regret

Algorithms: Policy gradients

Policy search

- \triangleright Can we learn policies $\pi(a)$ directly, instead of learning values?
- ▶ For instance, define action preferences $H_t(a)$ and a policy

$$\pi(a) = \frac{e^{H_t(a)}}{\sum_b e^{H_t(b)}}$$
 (softmax)

- ▶ The preferences are not values: they are just learnable policy parameters
- ► Goal: learn by optimising the preferences

Policy gradients

- ▶ Idea: update policy parameters such that expected value increases
- ► We can use gradient ascent
- In the bandit case, we want to update:

$$\theta_{t+1} = \theta_t + \alpha \nabla_\theta \mathbb{E}[R_t | \pi_{\theta_t}],$$

where θ_t are the current policy parameters

Can we compute this gradient?

Gradient bandits

Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$\nabla_{\theta} \mathbb{E}[R_{t}|\pi_{\theta}] = \nabla_{\theta} \sum_{a} \pi_{\theta}(a) \underbrace{\mathbb{E}[R_{t}|A_{t} = a]}$$

$$= \sum_{a} q(a) \nabla_{\theta} \pi_{\theta}(a)$$

$$= \sum_{a} q(a) \frac{\pi_{\theta}(a)}{\pi_{\theta}(a)} \nabla_{\theta} \pi_{\theta}(a)$$

$$= \sum_{a} \pi_{\theta}(a) q(a) \frac{\nabla_{\theta} \pi_{\theta}(a)}{\pi_{\theta}(a)}$$

$$= \mathbb{E}\left[R_{t} \frac{\nabla_{\theta} \pi_{\theta}(A_{t})}{\pi_{\theta}(A_{t})}\right] = \mathbb{E}\left[R_{t} \nabla_{\theta} \log \pi_{\theta}(A_{t})\right]$$

Gradient bandits

Log-likelihood trick (also known as REINFORCE trick, Williams 1992):

$$\nabla_{\theta} \mathbb{E}[R_t | \theta] = \mathbb{E}\left[R_t \nabla_{\theta} \log \pi_{\theta}(A_t)\right]$$

- We can sample this!
- So

$$\theta = \theta + \alpha R_t \nabla_\theta \log \pi_\theta(A_t),$$

this is stochastic gradient ascent on the (true) value of the policy

► Can use sampled rewards — does not need value estimates

Gradient bandits

For soft max:

$$H_{t+1}(a) = H_t(a) + \alpha R_t \frac{\partial \log \pi_t(A_t)}{\partial H_t(a)}$$
$$= H_t(a) + \alpha R_t (I(a = A_t) - \pi_t(a))$$

ightharpoonup

$$H_{t+1}(A_t) = H_t(A_t) + \alpha R_t(1 - \pi_t(A_t))$$

$$H_{t+1}(a) = H_t(a) - \alpha R_t \pi_t(a)$$
 if $a \neq A_t$

Preferences for actions with higher rewards increase more (or decrease less), making them more likely to be selected again

Theory: what is possible?

How well can we do?

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t\to\infty} L_t \ge \log t \sum_{a|\Delta_a>0} \frac{\Delta_a}{KL(\mathcal{R}_a||\mathcal{R}_{a*})}$$

(Note: $KL(\mathcal{R}_a||\mathcal{R}_{a*}) \propto \Delta_a^2$)

- ► Note that regret grows at least logarithmically
- ► That's still a whole lot better than linear growth! Can we get it in practice?
- ► Are there algorithms for which the **upper bound** is logarithmic as well?

Counting Regret

- ightharpoonup Recall $\Delta_a = v_* q(a)$
- ▶ Total regret depends on action regrets Δ_a and action counts

$$L_t = \sum_{n=1}^t \Delta_{A_n} = \sum_{a \in \mathcal{A}} N_t(a)\Delta$$

▶ A good algorithm ensures small counts for large action regrets

- ▶ Which action should we pick?
- More uncertainty about its value: more important to explore that action

Optimism in the Face of Uncertainty

Optimism in the Face of Uncertainty

Optimism in the Face of Uncertainty

Upper Confidence Bounds

- Estimate an upper confidence $U_t(a)$ for each action value, such that $q(a) \le Q_t(a) + U_t(a)$ with high probability
- Select action maximizing upper confidence bound (UCB)

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_t(a) + U_t(a)$$

- ▶ The uncertainty should depend on the number of times $N_t(a)$ action a has been selected
 - ► Small $N_t(a) \Rightarrow$ large $U_t(a)$ (estimated value is uncertain)
 - ► Large $N_t(a)$ \Rightarrow small $U_t(a)$ (estimated value is accurate)
- ► Then *a* is only selected if either...
 - $ightharpoonup ... Q_t(a)$ is large (=good action), or
 - $ightharpoonup ... U_t(a)$ is large (=high uncertainty) (or both)
- Can we derive an optimal bound?

Theory: the optimality of UCB

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_n$ be i.i.d. random variables in [0,1] with true mean $\mu = \mathbb{E}[X]$, and let $\overline{X}_t = \frac{1}{n} \sum_{i=1}^n X_i$ be the sample mean. Then

$$\rho\left(\overline{X}_n + u \le \mu\right) \le e^{-2nu^2}$$

- We can apply Hoeffding's Inequality to bandits with bounded rewards
- ▶ If $R_t \in [0, 1]$, then

$$p(Q_t(a) + U_t(a) \le q(a)) \le e^{-2N_t(a)U_t(a)^2}$$

By symmetry, we can also flip it around

$$p(Q_t(a) - U_t(a) \ge q(a)) \le e^{-2N_t(a)U_t(a)^2}$$

Calculating Upper Confidence Bounds

We can pick a maximal desired probability p that the true value exceeds an upper bound and solve for this bound $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2} = p$$

$$\Longrightarrow U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

We then know the probability that this happens is smaller than p

Idea: reduce p as we observe more rewards, e.g., p = 1/t

$$U_t(a) = \sqrt{\frac{\log t}{2N_t(a)}}$$

This ensures that we always keep exploring, but not too much

UCB

UCB:

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}}$$

- ► Intuition:
 - If Δ_a is large, then $N_t(a)$ is small, because $Q_t(a)$ is likely to be small
 - ▶ So either Δ_a is small or $N_t(a)$ is small
 - ▶ In fact, we can prove $\Delta_a N_t(a) \leq O(\log t)$, for all a

UCB

► UCB:

$$a_t = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \ Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}}$$

where *c* is a hyper-parameter

Theorem (Auer et al., 2002)

UCB with $c = \sqrt{2}$ achieves logarithmic expected total regret

$$L_t \le 8 \sum_{a|\Delta_a>0} \frac{\log t}{\Delta_a} + O(\sum_a \Delta_a), \quad \forall t$$

Blackboard:

UCB derivation

Bayesian approaches

Bayesian Bandits

- ▶ We could adopt Bayesian approach and model distributions over values $p(q(a) \mid \theta_t)$
- ▶ This is interpreted as our **belief** that, e.g., q(a) = x for all $x \in \mathbb{R}$
- \triangleright E.g., θ_t could contain the means and variances of Gaussian belief distributions
- Allows us to inject rich prior knowledge θ_0
- We can then use posterior belief to guide exploration

Bayesian Bandits: Example

- Consider bandits with Bernoulli reward distribution: rewards are 0 or +1
- For each action, the prior could be a uniform distribution on [0, 1]
- This means we think each value in [0, 1] is equally likely
- The posterior is a Beta distribution Beta(x_a, y_a) with initial parameters $x_a = 1$ and $y_a = 1$ for each action a
- Updating the posterior:

 - $x_{A_t} \leftarrow x_{A_t} + 1 \text{ when } R_t = 0$ $y_{A_t} \leftarrow y_{A_t} + 1 \text{ when } R_t = 1$

Bayesian Bandits: Example

Suppose: $R_1 = +1$, $R_2 = +1$, $R_3 = 0$, $R_4 = 0$

Bayesian Bandits with Upper Confidence Bounds

- ▶ We can estimate upper confidences from the posterior
 - e.g., $U_t(a) = c\sigma_t(a)$ where $\sigma(a)$ is std dev of $p_t(q(a))$
- ► Then, pick an action that maximises $Q_t(a) + c\sigma(a)$

Algorithms: Thompson sampling

Probability Matching

► A different option is to use **probability matching**: Select action *a* according to the probability (belief) that *a* is optimal

$$\pi_t(a) = p\left(q(a) = \max_{a'} q(a') \mid \mathcal{H}_{t-1}\right)$$

- Probability matching is optimistic in the face of uncertainty:
 Actions have higher probability when either the estimated value is high, or the uncertainty is high
- \blacktriangleright Can be difficult to compute $\pi(a)$ analytically from posterior (but can be done numerically)

Thompson Sampling

- Thompson sampling (Thompson 1933):
 - ► Sample $Q_t(a) \sim p_t(q(a)), \forall a$
 - Select action maximising sample, $A_t = \operatorname{argmax}_{a \in \mathcal{A}} Q_t(a)$
- ► Thompson sampling is sample-based probability matching

$$\pi_t(a) = \mathbb{E}\left[I(Q_t(a) = \max_{a'} Q_t(a'))\right]$$
$$= p\left(q(a) = \max_{a'} q(a')\right)$$

For Bernoulli bandits, Thompson sampling achieves Lai and Robbins lower bound on regret, and therefore is optimal

Planning to explore

Information State Space

- We have viewed bandits as one-step decision-making problems
- Can also view as sequential decision-making problems
- \triangleright Each step the agent updates state S_t to summarise the past
- Each action A_t causes a transition to a new information state S_{t+1} (by adding information), with probability $p(S_{t+1} \mid A_t, S_t)$
- We now have a Markov decision problem
- The state is fully internal to the agent
- ▶ State transitions are random due to rewards & actions
- ▶ Even in bandits actions affect the future after all, via learning

Example: Bernoulli Bandits

Consider a Bernoulli bandit, such that

$$p(R_t = 1 \mid A_t = a) = \mu_a$$

 $p(R_t = 0 \mid A_t = a) = 1 - \mu_a$

- E.g., win or lose a game with probability μ_a
- Want to find which arm has the highest μ_a
- ▶ The information state is $I = (\alpha, \beta)$
 - $ightharpoonup \alpha_a$ counts the pulls of arm a where reward was 0
 - \triangleright β_a counts the pulls of arm a where reward was 1

Solving Information State Space Bandits

- ▶ We formulated the bandit as an infinite MDP over information states
- This can be solved by reinforcement learning
- E.g., learn a Bayesian reward distribution, plan into the future
- This is known as Bayes-adaptive RL: optimally trades off exploration with respect to the prior distribution
- Can be extended to full RL, by also learning a transition model
- Can be unwieldy... unclear how to scale effectively

Example

End of lecture