Représentation des entiers en machine

1 Notions utiles

On a compris que, dans un ordinateur, toutes les informations sont représentées en chiffres binaires (0 ou 1). O les appelle des (pour <i>binary digits</i> en anglais).
Ils sont regroupés par paquets de 8 qu'on appelle des (bytes en anglais), puis sont organisés en (words en anglais) de 2, 4 ou 8 octets.
Par exemple : une machine en 32 bits manipule des mots de 4 octets ($8 \times 4 = 32 \text{ bits}$) pour effectuer des opérations.
Ces regroupements permettent de représenter autre chose que des 0 ou des 1 comme des nombres entiers, de (approximations de) nombres réels, des caractères alpha-numériques.
Il est nécessaire de définir des pour décrire ces représentations.
2 Codage des entiers non-signés
Les entiers naturels sont usuellement représentés par des mots de 16 bits (2 octets) ou 32 bits (4 octets).
Les entiers naturels sont codés en binaire naturel, en complétant éventuellement avec des zéros à gauche.
Par exemple, sur 8 bits, le nombre 50 est codé par l'octet :
Le nombre 0 est codé par l'octet :
Le plus grand entier représentable sur huit bits est, codé par l'octet
Un octet permet donc de réprésenter tous les nombres entiers de à
Sur 16 bits, on peut coder tous les entiers de à
Sur 32 bits, on peut coder tous les entiers de à
Et donc plus généralement, sur n bits, on peut coder tous les entiers de
Exercice 1
Déterminer l'écriture sur 32 bits de 10^6 .

3 Le système hexadécimal

Afin de simplifier les écritures des octets, on utilise la base hexadécimale dont les 16 chiffres sont, dans l'ordre :

La correspondance entre systèmes de numération décimale, binaire et hexadécimale est la suivante :

base 10	base 2	base 16	base 10	base 2	base 16
0	0	0	8	1000	8
1	1	1	9	1001	9
2	10	2	10	1010	Α
3	11	3	11	1011	В
4	100	4	12	1100	С
5	101	5	13	1101	D
6	110	6	14	1110	E
7	111	7	15	1111	F

Donc en groupant par 4 les bits d'un nombre binaire, on peut trouver sa valeur hexadécimale :

$$\underbrace{1010}^{A} \underbrace{0101}^{5} \underbrace{1111}^{F} \underbrace{0011}^{3}$$

Exercice 2 Compléter le tableau ci-dessous.

Écriture décimale	33	100	106	200	205	255
Écriture binaire						
Écriture hexadécimale				• • • •		• • • •

Exercice 3 Déterminer l'écriture hexadécimale sur 32 bits de 10^6 .

4 L'addition binaire dans un ordinateur

Les micro-processeurs sont tous équipés de circuits permettant d'additionner des octets : ils appliquent l'algorithme d'addition colonne par colonne. Par exemple, sur 8 bits, l'opération 41+77=118 est faite de la manière suivante :

Problème : le résultat renvoyé par le micro-processeur est faux si la somme est supérieure au plus grand entier représentable. Par exemple, l'addition 255+1 sur 8 bits donne 0.

Cette retenue ne peut pas être prise en compte sur 8 bits

Lorsque la somme dépasse le plus grand entier représentable, le micro-processeur ignore donc la retenue mais il peut néanmoins signaler le problème dans un registre (overflow flag, ou carry flag).

Exercice 4 Quel est le résultat de l'addition 236 + 50 renvoyé par un micro-processeur programmé sur 8 bits ?

5 Codage des entiers signés

Codage naïf

On aurait ainsi:

$$20 = \dots$$
 et $-20 = \dots$

Malgré sa simplicité, ce procédé présente deux défauts rédhibitoires.

- Le nombre zéro est représenté de deux manières différentes par les octets 0000 0000 et 1000 0000.
- L'algorithme d'addition colonne par colonne de fournit pas le bon résultat. Par exemple, les opérations

mènent aux égalités (fausses) 20 + (-20) = -40 et 30 + (-20) = -50.

Il est donc indispensable de trouver une autre façon de coder les entiers relatifs, et la solution se trouve précisément dans le fait que, sur k bits, la machine ne fait pas la différence entre 2^k et 0.

Méthode n° 1: le complément à 2

On convient qu'un nombre positif ou mot binaire m est représenté par son écriture binaire sur k bits, et on cherche à coder -m de sorte que le résultat de l'opération m + (-m) soit égal à 0.

Comme, sur k bits, la machine ne fait pas la différence entre 2^k et 0, il suffit que :

$$\operatorname{car} m - m = 0 = 2^k \operatorname{sur} k \text{ bits } \Longrightarrow -m = 2^k - m$$

Illustrations

• Sur un octet, on code le nombre -1 par l'écriture binaire de 256 - 1 = 255, soit 1111 1111.

On a vu que l'opération $1111 \ 1111 + 0000 \ 0001$ donne $0000 \ 0000$, et on a bien -1 + 1 = 0.

• Sur un octet, le nombre -20 est codé par l'écriture binaire de 256-20=236, soit $1110\,1100$.

Vérifions les calculs 20 + (-20) et 30 + (-20):

	0	0	0	1	0	1	0	0
+	1	1	1	0	1	1	0	0

	0	0	0	1	1	1	1	0
+	1	1	1	0	1	1	0	0

Conclusions sur le complément à 2

Si le bit de poids fort vaut 1, alors l'entier représenté est négatif.

Sur 8 bits, le tableau ci-dessous donne les valeurs des entiers signés représentés par les octets.

Octet	Valeur	Octet	Valeur
0000 0000	0	1000 0000	-128
00000001	1	10000001	-127
00000010	2	10000010	-126
0111 1110	126	1111 1110	-2
0111 1111	127	1111 1111	-1

Exercice 5

Décoder le nombre entier relatif représenté par l'octet 1010 1111.

Exercice 6 – (Une autre méthode)

1. Coder sur un octet les nombres -17 et -84.

-17 est codé par l'octet -84 est codé par l'octet -84 est codé par l'octet -84

2. Déterminer l'écriture binaire de 17, 84, ainsi que de 255 - 17 = 238 et 255 - 84 = 171.

3. En déduire ce qui suit :

Méthode n° 2 : l'inversion de bits

Le code sur k bits d'un entier positif $m \le 2^{k-1}$ est son écriture binaire. Pour coder sur k bits un entier négatif $-m \ge 2^{k-1}-1$, il suffit :

•

•

•

Exercice /	
Coder sur $k=16$ bits le nombre -2017 .	
Exercice 8	
Coder sur $k=16$ bits le nombre -32 .	
Exercice 9	
Coder sur un octet les nombres $-100~{ m et}~-64~{ m et}$ effectue	r l'opération machine $-100+(-64)$. Que se passe-t-il ?
-100 est codé par l'octet $$	-64 est codé par l'octet $$