CSCI 470: Lower Bounds for Sorting, Practice Exam

Vijay Chaudhary September 21, 2023

Department of Electrical Engineering and Computer Science Howard University

Overview

1. A quick update

2. Lower bounds of sorting

3. Exam 01

A quick update

Quick Update

- Homework 01 should be graded by Friday.
- · You can collect your homework 01 at my office
- · Practice exam is ready. We will go over it today.
- · Exam 01 will be on Monday, Sep 25, 2023, 9:10 AM EDT

Lower bounds of sorting

Decision Tree Model

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node annotated by i:j indicates a comparison between a_i and a_j . A leaf annotated by the permutation $\langle \pi(1), \pi(2), \ldots, \pi(n) \rangle$ indicates the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \cdots \leq a_{\pi(n)}$. The shaded path indicates the decisions made when sorting the input sequence $\langle a_1 = 6, a_2 = 8, a_3 = 5 \rangle$; the permutation $\langle 3, 1, 2 \rangle$ at the leaf indicates that the sorted ordering is $a_3 = 5 \leq a_1 = 6 \leq a_2 = 8$. There are 3! = 6 possible permutations of the input elements, and so the decision tree must have at least 6 leaves.

Decision tree model for inseriton sort

- For instance, say, $A = \langle 4, 7, 10 \rangle$, then we first compare A[1] and A[2], which follows the left subtree.
- Then we compare A[2] and A[3], which also satisfies $a_i \le a_j$, thus leading towards the left subtree.
- Finally, leading to A[1] \leq A[2] \leq A[3], making $\langle 1, 2, 3 \rangle$ as the leaf.

Decision tree model

- If we have an array $A = \langle 6, 8, 5 \rangle$, first A[1] and A[2] is compared, leading to left subtree.
- Then, A[2] and A[3] are compared, where the $a_2 \le a_3$ fails, therefore, it leads to the right subtree. Here, A[1] and A[3] are compared, which leads to the right subtree again for $a_1 > a_3$.
- The final ordering is $A[3] \le A[1] \le A[2]$, making the leaf $\langle 3, 1, 2 \rangle$.

Lower bound

Theorem: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Lower bound: Proof

Proof Consider a decision tree of height h and l reachable leaves corresponding to a comparison sort on n elements. Because each of the n! permutations of the input appears as some leaf, we have $n! \leq l$. Since a binary tree of height h has no more than 2^h leaves, we have

$$n! \le l \le 2^h$$

,

which, by taking logarithms, implies

$$h \ge lg(n!)$$

= $\Omega(n \lg n)$ using eq. 3.19 from the book

Exam 01

Topics/Chapters from CLRS to review for Exam 01

- 1. Chapter 1; Algorithms a technology
- 2. Chapter 2; insertion sort, merge sort
- 3. Chapter 3; O-notation, Ω -notation, Θ -notation
- 4. Chapter 4; Divide-and-conquer, substitution method for solving recurrences, recurison tree, master method
- 5. Chapter 6; Heapsort, Priority Queues
- 6. Chapter 7; Quicksort (upto section 7.2 Performance of quicksort)