Agenda

3. Graphentheorie

- 3.1 Einführung
- 3.2 Kruskal-Algorithmus

3.3 Bellman-Ford-Algorithmus

- 3.4 Yen-Algorithmus
- 3.5 Flüsse in Netzwerken

Richard Bellman

Leben:

- ▶ *29.08.1920 (New York) †19.03.1984 (Los Angeles)
- Studium der Mathematik am Brooklyn College und der University of Wisconsin
- ▶ 1946: Promotion an der Princeton University
- forschte an der Wasserstoffbombe und beteiligte sich am "Manhatten Project" (Bau der Atombombe)

Hauptwerk:

"Dynamic Programming" (1957)

Wirkung:

- ▶ Erfinder der Dynamischen Optimierung
- ► Bellman-Ford-Algorithmus
- ► Auszeichnungen:

 - ▷ Dickson Prize in Science (1970)

Lester Randolph Ford junior

Leben:

- ► *23.09.1927 (Houston) †27.02.2017
- ► Sohn von Lester Randolph Ford senior (Mathematiker)
- ► Arbeitete für CEIR Inc. und Rand Corporation

Hauptwerk:

▶ "Flows in Networks" mit D.R. Fulkerson (1962)

Wirkung:

- ► Algorithmus von Ford und Fulkerson
- Bellman-Ford-Algorithmus

Bellman-Ford-Algorithmus

Der Bellman-Ford-Algorithmus hat gegenüber dem Dijkstra-Algorithmus den Vorteil, dass er auch bei Graphen angewendet werden kann, welche negative Kantengewichte haben. Der Algorithmus terminiert jedoch nicht, wenn ein negativer Zyklus existiert.

Bewertungsmatrix

Die Bewertungsmatrix $B(g) = b_{ij}$ des Graphen g(V, E, w) gibt an, welches Gewicht eine Kante zwischen den Knoten i und j hat.

► Es handelt sich um eine [n x n]-Matrix.

Die Einträge b_{ij} der Matrix ergeben sich wie folgt:

- ightharpoonup Existiert die Kante $e(i,j), b_{ij} = w(i,j)$
- Falls i = j, $b_{ij} = 0$
- ▶ Sonst $b_{ij} = \infty$

Bewertungsmatrix

Die Bewertungsmatrix $B(g) = b_{ij}$ des Graphen g(V, E, w) gibt an, welches Gewicht eine Kante zwischen den Knoten i und j hat.

► Es handelt sich um eine [n x n]-Matrix.

Die Einträge bij der Matrix ergeben sich wie folgt:

- ightharpoonup Existiert die Kante $e(i,j), b_{ij} = w(i,j)$
- Falls i = j, $b_{ij} = 0$
- ▶ Sonst $b_{ij} = \infty$

$$B(g) = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix}$$

Die Tree-Matrix $T(g) = t_{ij}$ des Graphen g(V, E, w) speichert den direkten Vorgängerkonten auf dem kürzesten Weg von Knoten i zu Knoten j.

► Es handelt sich um eine [n x n]-Matrix.

Die Einträge der Matrix bei der Initialisierung ergeben sich wie folgt:

- ▶ Falls $(i,j) \in E$, $t_{ij} = i$
- ► Sonst -1

Tree-Matrix

Die Tree-Matrix $T(g) = t_{ij}$ des Graphen g(V, E, w) speichert den direkten Vorgängerkonten auf dem kürzesten Weg von Knoten i zu Knoten j.

► Es handelt sich um eine [n x n]-Matrix.

Die Einträge der Matrix bei der Initialisierung ergeben sich wie folgt:

- ▶ Falls $(i,j) \in E$, $t_{ii} = i$
- ► Sonst -1

$$T(g) = \begin{pmatrix} -1 & -1 & -1 & a & -1 \\ b & -1 & -1 & b & -1 \\ c & -1 & -1 & -1 & -1 \\ -1 & -1 & d & -1 & -1 \\ -1 & e & -1 & e & -1 \end{pmatrix}$$

Bellman-Ford-Algorithmus

Voraussetzungen:

► Gewichteter Digraph (auch negative Kantengewichte sind zugelassen)

Variablen:

- ► Anzahl der betrachteten Kanten m
- lacktriangle Matrix der kürzesten Wege mit maximal m Kanten $U^{(m)}(g)$ mit den Einträgen u_{ij}
- lacktriangle Tree-Matrix nach Betrachtung der Wege mit maximal m Kanten $T^{(m)}(g)$

Initialisierung:

$$ightharpoonup m=0$$

$$ightharpoonup U^{(0)}$$
 mit $u_{ij}=\infty$

►
$$T^{(0)}$$
 mit $t_{ij} = -1$

Ziel:

Berechnung aller kürzesten Weglängen uij, sofern diese existieren, sowie die zugehörigen kürzesten Wege

Prinzip der optimalen Substruktur

Ein kürzester Weg zwischen zwei beliebigen Knoten i und j in einem Graphen g(V, E, w) setzt sich immer aus kürzesten Teilwegen zusammen.

kürzester Weg von a nach d

kürzester Weg von b nach c

Dies gilt nur bei Graphen ohne negativen Zyklus!

Das Prinzip der optimalen Substruktur wird im Bellman-Ford-Algorithmus ausgenutzt, um u_{ij} zu bestimmen.

Die Bellman-Gleichung

Mit Hilfe der Bellman-Gleichung können die kürzesten Weglängen $u_{ij}^{(m)}$ mit maximal m Kanten zwischen den zwei Knoten i und j iterativ berechnet werden, sofern der kürzeste Weg existiert.

Der Wert $u_{ij}^{(m+1)}$ ergibt sich wie folgt:

- $\qquad \qquad b_{ij}^{(1)} = b_{ij}$
- $\qquad \qquad \bullet \quad u_{ij}^{(m+1)} = \min_{k} \left[u_{ik}^{(m)} + b_{kj} \right] \forall m \geq 1$

Interpretation:

- ▶ Die Länge des kürzesten Wegs von *i* nach *j* mit höchstens m+1 Kanten ergibt sich aus der kürzesten Weglänge zu allen Vorgängerknoten k von j mit höchstens m Kanten plus die Länge der Kante von k nach j.
- lackbox Ausnutzung des Prinzips der optimalen Substruktur

Matrixschreibweise der Bellman-Gleichung

Gegeben sei folgender Graph, dann ergibt sich für $U^{(1)}$, die Matrix aller kürzesten Weglängen:

$$U^{(1)} = B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix}$$

Um nun z. B. die kürzeste Weglängen von e nach d zu berechnen, geht man nach der Bellman-Gleichung wie folgt vor:

$$\begin{aligned} U_{ed}^{(2)} &= \min_{k} \left[u_{ek}^{(1)} + b_{kd} \right] \\ &= \min \left[u_{ea}^{(1)} + b_{ad}; u_{eb}^{(1)} + b_{bd}; u_{ec}^{(1)} + b_{cd}; u_{ed}^{(1)} + b_{dd}; u_{ee}^{(1)} + b_{ed} \right] \end{aligned}$$

Matrixschreibweise der Bellman-Gleichung

Die Berechnung von $u_{ed}^{(2)}$ entspricht einer Verknüpfung von Zeile "e" aus $U^{(1)}$ mit Spalte "d" aus B.

$$U^{(1)} \otimes B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \hline \infty & -1 & \infty & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \hline \infty & \infty & 1 & 0 & \infty \\ \hline \infty & -1 & \infty & 2 & 0 \end{pmatrix}$$

Somit ergibt sich $U^{(2)}$ als Verknüpfung der Matrizen $U^{(1)}$ und B.

- ▶ Die Vorgehensweise der Verknüpfung erfolgt durch die Bellman-Multiplikation.

Um nicht nur die kürzesten Weglängen zu berechnen, sondern auch den kürzesten Weg, muss t_{ij} immer dann mit den verwendeten Vorgängerknoten k aktualisiert werde, wenn sich u_{ij} verbessert.

1. Iteration: $U^{(1)} = B$ (wie im obigen Beispiel)

$$U^{(1)} = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix}$$

$$T^{(1)} = \begin{pmatrix} -1 & -1 & -1 & a & -1 \\ b & -1 & -1 & b & -1 \\ c & -1 & -1 & -1 & -1 \\ -1 & -1 & d & -1 & -1 \\ -1 & e & -1 & e & -1 \end{pmatrix}$$

2. Iteration: $U^{(2)} = U^{(1)} \otimes B$

$$U^{(1)} \otimes B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} =$$

2. Iteration: $U^{(2)} = U^{(1)} \otimes B$

$$U^{(1)} \otimes B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} U_{aa}^{(2)} & U_{ab}^{(2)} & U_{ac}^{(2)} & U_{aa}^{(2)} & U_{ab}^{(2)} \\ U_{ba}^{(2)} & U_{bb}^{(2)} & U_{bc}^{(2)} & U_{bc}^{(2)} & U_{bc}^{(2)} \\ U_{ca}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} \\ U_{ca}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} & U_{cb}^{(2)} \\ U_{ca}^{(2)} & U_{cb}^{(2)} & U_{$$

Beispiel:

$$\begin{split} U_{bc}^{(2)} &= \min_{k} \left[u_{bk}^{(1)} + b_{kc} \right] \\ &= \min \left[u_{ba}^{(1)} + b_{ac}; u_{bb}^{(1)} + b_{bc}; u_{bc}^{(1)} + b_{cc}; u_{bd}^{(1)} + b_{dc}; u_{be}^{(1)} + b_{ec} \right] \\ &= \min \left[3 + \infty; 0 + \infty; \infty + 0; 2 + 1; \infty + \infty \right] \\ &= u_{bd}^{(1)} + b_{dc} = 3 \end{split}$$

2. Iteration: $U^{(2)} = U^{(1)} \otimes B$

$$U^{(1)} \otimes B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 3 & 1 & 0 \end{pmatrix}$$

Beispiel:

$$\begin{aligned} U_{bc}^{(2)} &= \min_{k} \left[u_{bk}^{(1)} + b_{kc} \right] \\ &= \min \left[u_{ba}^{(1)} + b_{ac}; u_{bb}^{(1)} + b_{bc}; u_{bc}^{(1)} + b_{cc}; u_{bd}^{(1)} + b_{dc}; u_{be}^{(1)} + b_{ec} \right] \\ &= \min \left[3 + \infty; 0 + \infty; \infty + 0; 2 + 1; \infty + \infty \right] \\ &= u_{bd}^{(1)} + b_{dc} = 3 \end{aligned}$$

2. Iteration: $U^{(2)} = U^{(1)} \otimes B$

$$U^{(1)} \otimes B = \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 3 & 1 & 0 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} -1 & -1 & d & a & -1 \\ b & -1 & d & b & -1 \\ c & -1 & -1 & a & -1 \\ c & -1 & d & -1 & -1 \\ b & e & d & b & -1 \end{pmatrix}$$

3. Iteration: $U^{(3)} = U^{(2)} \otimes B$

$$U^{(3)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 3 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} =$$

3. Iteration: $U^{(3)} = U^{(2)} \otimes B$

$$U^{(3)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 3 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix}$$

3. Iteration: $U^{(3)} = U^{(2)} \otimes B$

$$U^{(3)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 3 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix}$$

$$T^{(3)} = \begin{pmatrix} -1 & -1 & d & a & -1 \\ b & -1 & d & b & -1 \\ c & -1 & -1 & a & -1 \\ c & -1 & d & -1 & -1 \\ b & e & d & b & -1 \end{pmatrix}$$

4. Iteration: $U^{(4)} = U^{(3)} \otimes B$ (letzte Iteration, da 5 Knoten)

$$U^{(4)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} =$$

4. Iteration: $U^{(4)} = U^{(3)} \otimes B$ (letzte Iteration, da 5 Knoten)

$$U^{(4)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix}$$

4. Iteration: $U^{(4)} = U^{(3)} \otimes B$ (letzte Iteration, da 5 Knoten)

$$U^{(4)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & \infty & \infty & 0 & \infty \\ 3 & 0 & \infty & 2 & \infty \\ 1 & \infty & 0 & \infty & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & \infty & 1 & 0 & \infty \\ \infty & -1 & \infty & 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix}$$

Es gibt keine Aktualisierung

- $T^{(4)} = T^{(3)}$
- ► Abbruch des Algorithmus
- ► Kürzeste Wege wurden gefunden (es gibt keine negativen Zykel)

Der Bellman-Ford-Algorithmus

Interpretation

- Die L\u00e4nge des k\u00fcrzesten Weges zwischen allen Punkten des Graphen kann aus der U^{(|V|-1)}-Matrix abgelesen werden, sofern dieser existiert.
- Für die Darstellung des Weges müssen die Vorgänger aus der Tree-Matrix abgelesen werden.

$$U^{(|V|-1)} = \begin{pmatrix} 0 & \infty & 1 & 0 & \infty \\ 3 & 0 & 3 & 2 & \infty \\ 1 & \infty & 0 & 1 & \infty \\ 2 & \infty & 1 & 0 & \infty \\ 2 & -1 & 2 & 1 & 0 \end{pmatrix}$$

$$T^{(|V|-1)} = \begin{pmatrix} -1 & -1 & d & a & -1 \\ b & -1 & d & b & -1 \\ c & -1 & -1 & a & -1 \\ c & -1 & d & -1 & -1 \\ c & -1 & d & -1 & -1 \end{pmatrix}$$

Der Bellman-Ford-Algorithmus

Abbruchkriterien

► Treten auf der Hauptdiagonalen negative Einträge auf, kann der Algorithmus abgebrochen werden, da dies ein Hinweis auf einen negativen Zyklus ist.

- 284 -

- ► Verändern sich die Einträge der *U*-Matrix von einer Iteration zur nächsten nicht, so kann der Algorithmus abgebrochen werden, da bereits eine optimale Lösung vorliegt.
- ▶ Der Algorithmus muss maximal |V| 1 mal durchlaufen werden, danach noch ein weiteres Mal zum Test auf einen negativen Zyklus.

Agenda

3. Graphentheorie

- 3.2 Kruskal-Algorithmus
- 3.4 Yen-Algorithmus

Der Dijkstra- und der Bellman-Ford-Algorithmus berechnen den kürzesten Weg. In der Realität könnten aber auch der zweit- und/oder drittkürzeste Weg eine Rolle spielen:

 \Rightarrow k-kürzeste-Wege-Problem

Der Dijkstra- und der Bellman-Ford-Algorithmus berechnen den kürzesten Weg. In der Realität könnten aber auch der zweit- und/oder drittkürzeste Weg eine Rolle spielen:

⇒ k-kürzeste-Wege-Problem

 $a \rightarrow b \rightarrow c$

2

Der Dijkstra- und der Bellman-Ford-Algorithmus berechnen den kürzesten Weg. In der Realität könnten aber auch der zweit- und/oder drittkürzeste Weg eine Rolle spielen:

⇒ k-kürzeste-Wege-Problem

Iteration	Weg	Kosten	Bemerkung
1	a o b o c	2	
2	a ightarrow b ightarrow a ightarrow b ightarrow c	4	Zyklus

Der Dijkstra- und der Bellman-Ford-Algorithmus berechnen den kürzesten Weg.

In der Realität könnten aber auch der zweit- und/oder drittkürzeste Weg eine Rolle spielen:

\Rightarrow k-kürzeste-Wege-Problem

Iteration	Weg	Kosten	Bemerkung
1	a o b o c	2	
2	a ightarrow b ightarrow a ightarrow b ightarrow c	4	Zyklus
3	a o c	5	

Der Dijkstra- und der Bellman-Ford-Algorithmus berechnen den kürzesten Weg. In der Realität könnten aber auch der zweit- und/oder drittkürzeste Weg eine Rolle spielen:

 \Rightarrow k-kürzeste-Wege-Problem

I	teration	Weg	Kosten	Bemerkung
	1	a o b o c	2	
	2	a ightarrow b ightarrow a ightarrow b ightarrow c	4	Zyklus
	3	a ightarrow c	5	

Mögliche Fragestellungen

- lacktriangle Zyklen/Schlingen zulässig ightarrow unendlich viele Alternativwege möglich
- $\blacktriangleright \ \ \, \text{Zyklen/Schlingen unzul\"{a}ssig} \rightarrow \text{Yen-Algorithmus anwendbar}$

Algorithmus von Yen

Idee: Berechne minimale Wegalternative (Deviation) eines Weges bezüglich eines Abzweigpunktes und einer Ausschlussmenge an Wegen.

Yen顕法

思路: 计算相对于分支点和一组排除路径的路径的最小偏差 (Deviation) 。

Jin Y. Yen

Hauptwerk:

▶ 1971 "Finding the k Shortest Loopless Paths in a Network" herausgegeben von der Monterrey California Naval Postgraduate School

Wirkung:

▶ Yen-Algorithmus zur Bestimmung k-kürzester Wege als Erweiterung des Bellman-Ford-Algorithmus

Algorithmus von Yen

Variablen:

- ▶ Liste der kürzesten Wege $P = \{p_1, p_2, \dots, p_k\}$
- ► Kandidatenliste K für den nächstkürzesten Weg
- ► Iteration k (k-kürzester Weg)

Initialisierung:

- \triangleright k=1
- ightharpoonup $K=p_1$ (kürzester Weg, ermittelt mit bekanntem Algorithmus)
- $ightharpoonup P = \emptyset$

- 1. 设置 k=1 来表示当前正在查找的是最短路径。
- 2. 用某个已知的算法(如Dijkstra算法)计算最短路径 p_1 。
- 3. 初始化路径列表 P 为一个空集,它将用来存储找到的最短路径。

Algorithmus von Yen

Iteration für k > 1:

- \blacktriangleright Wähle denjenigen Weg aus K mit minimaler Weglänge als k-kürzesten Weg p_k
- $\triangleright P = P \cup \{p_k\}$
- $ightharpoonup K = K \setminus \{p_k\}$
- Für jeden Knoten von p_k , mit Ausnahme des Zielknotens (Abzweigknoten):
 - ▷ Berechne minimale schleifenlose Wegalternative p' zu p_{k-1} für Abzweigknoten und Ausschlussmenge $\{p_1, p_2, \dots, p_{k-1}\}$
 - \triangleright Wenn p' existiert: $K = K \cup \{p'\}$

Abbruchkriterien:

- ▶ k = Anzahl gewünschter kürzester Wege
- $ightharpoonup K = \emptyset$

- 1. 从候选路径集合 K 中选择一个最短的路径 p_k ,这个路径的长度比已找到的最短路 径 p_{k-1} 要长。
- 2. 将新找到的路径 p_k 添加到路径列表 P 中。
- 3. 从候选路径集合 K 中移除路径 p_k 。
- 4. 对路径 p_k 中的每个节点(除了终点),做以下操作:
 - 计算绕过已知最短路径 $\{p_1, p_2, \ldots, p_{k-1}\}$ 的替代路径 p'。
 - ・如果这样的路径 p^\prime 存在,将其添加到候选路径集合 K 中。

算法结束的条件:

- $_{1.}$ 当已经找到了所需数量的最短路径,即 $_{k}$ 等于所希望找到的最短路径的数量。
- 2. 当没有更多的候选路径可用时,即候选

Kandidatenliste	
Weg	Länge
afe	4

Kandidatenliste	
Weg	Länge
afe	4

k	p_{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	a f		

Kandidatenliste	
Weg	Länge
afe	4

k	p_{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	a f	af	abcde

Kandidatenliste	
Weg	Länge
afe	4

分支点和排除路径				
k	<i>p</i> _{k-1}	Abzweig Ausschluss		Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge

Kandidatenliste	
Weg	Länge
afe	4

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	a f	af afe	abcde afge

Kandida	Kandidatenliste		
Weg	Länge		
afe	4		
abcde	5		
afge	5,5		

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge
3	abcde (5)	а	af,ab	
		b	abc	abde
		С	abcd	abce
		d	abcde	

Kandidatenliste		
Weg	Länge	
afe	4	
abcde	5	
afge	5,5	
abde	6	
abce	5	

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge
3	abcde (5)	а	af,ab	
		b	abc	abde
		С	abcd	abce
		d	abcde	
4	abce (5)	а	af,ab	
		b	abc	(abde)
		С	abcd,abce	

Kandidatenliste		
Weg	Länge	
afe	4	
abcde	5	
afge	5,5	
abde	6	
abce	5	

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge
3	abcde (5)	а	af,ab	
		b	abc	abde
		С	abcd	abce
		d	abcde	
4	abce (5)	а	af,ab	
		b	abc	(abde)
		С	abcd,abce	
5	afge (5,5)	a/f/g		_

Kandidatenliste		
Weg	Länge	
afe	4	
abcde	5	
afge	5,5	
abde	6	
abce	5	

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge
3	abcde (5)	а	af,ab	
		b	abc	abde
		С	abcd	abce
		d	abcde	
4	abce (5)	а	af,ab	
		b	abc	(abde)
		С	abcd,abce	
5	afge (5,5)	a/f/g		_
6	abde (6)	a/b/d		_

Kandidatenliste		
Weg	Länge	
afe	4	
abcde	5	
afge	5,5	
abde	6	
abce	5	

k	<i>p</i> _{k-1}	Abzweig	Ausschluss	Minimale Wegalternative
2	afe (4)	а	af	abcde
		f	afe	afge
3	abcde (5)	а	af,ab	
		b	abc	abde
		С	abcd	abce
		d	abcde	
4	abce (5)	а	af,ab	
		b	abc	(abde)
		С	abcd,abce	
5	afge (5,5)	a/f/g		_
6	abde (6)	a/b/d		_

Kandidatenliste		
Weg	Länge	
afe	4	
abcde	5	
afge	5,5	
abde	6	
abce	5	