HETEROGENEOUS PARALLELISM PROJECT FINAL REVIEW

NISHANTH NARENDRA - PES1UG19CS305

Multiplying an n x n matrix with a vector of length n

```
\begin{aligned} \text{Mat\_Vec}(A, \, x) \\ & \quad n = \text{A.rows} \\ & \quad \text{let b be a new vector of length n} \\ & \quad \text{for } i = 0 \text{ to } n-1 \\ & \quad b[i] = 0 \\ & \quad \text{for } j = 0 \text{ to } n-1 \\ & \quad b[i] += A[i][j] * x[j] \\ & \quad \text{return b} \end{aligned}
```

```
Mat_Vec(A, x)

n = A.rows
let b be a new vector of length n

parallel for i = 0 to n - 1

new dot_prod = 0

parallel for new j = 0 to n - 1

dot_prod += A[i][j] * x[j]

b[i] = dot_prod

return b
```

Serial run time = $\Theta(n^2)$

$$Work = T_1 = \Theta(n^2)$$

$$Span = T_{\infty} = \Theta(\lg n)$$

$$Parallelism = \Theta\left(\frac{n^2}{\lg n}\right)$$

$$Work = T_1 = \Theta(n^2)$$

$$Span = T_{\infty} = \Theta(\lg n)$$

$$Parallelism = \Theta\left(\frac{n^2}{\lg n}\right)$$

Multiplying an 4 x 4 matrix with a vector of length 4

Computation dag with the leaves coarsened

In general, for nxn mat-vec by **coarsening the base case** by performing the whole dot product in the leaves:

Work =
$$T_1 = \Theta(n^2)$$

$$Span = T_{\infty} = \Theta(l g n) + \Theta(n) = \Theta(n)$$

$$Parallelism = \Theta(n)$$

Coarsening a parallel loop using grain size G

$$T_1 = n \cdot t_{iter} + \left(\frac{n}{G} - 1\right) \cdot t_{spawn}$$

$$T_{\infty} = G \cdot t_{iter} + lg\left(\frac{n}{G}\right) \cdot t_{spawn}$$

For work I want : $G \gg \frac{t_{spawn}}{t_{iter}}$

For span I want : G small

In Cilk/Cilk++

<u>All Pairs Shortest Paths problem – Parallel Floyd-Warshall</u>

```
Floyd Warshall(W)
     n = W.rows
     let D and P be new matrices of size n x n
     for i = 0 to n - 1
           for j = 0 to n - 1
                 D[i][j] = W[i][j]
                 if i == j or D[i][j] == \infty
                       P[i][i] = -1
                 else
                       P[i][i] = i
     for k = 0 to n - 1
           for i = 0 to n - 1
                 for j = 0 to n - 1
                       if D[i][i] > D[i][k] + D[k][i]
                             D[i][i] = D[i][k] + D[k][i]
                             P[i][i] = P[k][j]
     return (D, P)
```

```
Parallel Floyd Warshall(W)
     n = W.rows
     let D and P be new matrices of size n x n
     parallel for i = 0 to n - 1
           parallel for new j = 0 to n - 1
                 D[i][j] = W[i][j]
                 if i == j or D[i][j] == \infty
                       P[i][i] = -1
                 else
                       P[i][i] = i
     for k = 0 to n - 1
           parallel for i = 0 to n - 1
                 parallel for new j = 0 to n - 1
                       if D[i][i] > D[i][k] + D[k][j]
                             D[i][j] = D[i][k] + D[k][j]
                            P[i][i] = P[k][i]
     return (D, P)
```

Serial run time =
$$\Theta(V^3)$$

$$Work = \Theta(V^{3})$$

$$Span = \Theta(V \lg V)$$

$$Parallelism = \frac{Work}{Span} = \frac{\Theta(V^{3})}{\Theta(V \lg V)} = \Theta\left(\frac{V^{2}}{\lg V}\right)$$

Floyd-Warshall – Example 1

Source 0			
Destination	Shortest path weight	Shortest Path	
0	0	<0>	
1	1	<0, 4, 3, 2, 1>	
2	-3	<0, 4, 3, 2>	
3	2	<0, 4, 3>	
4	-4	<0, 4>	

Source 1			
Destination	Shortest Path		
0	0	<0>	
1	1	<0, 4, 3, 2, 1>	
2	-3	<0, 4, 3, 2>	
3	2	<0, 4, 3>	
4	-4	<0, 4>	

Source 2		
Destination	Shortest path weight	Shortest Path
0	7	<2, 1, 3, 0>
1	4	<2, 1>
2	0	<2>
3	5	<2, 1, 3>
4	3	<2, 1, 3, 0, 4>

Source 3		
Destination	Shortest path weight	Shortest Path
0	2	<3, 0>
1	-1	<3, 2, 1>
2	-5	<3, 2>
3	0	<3>
4	-2	<3, 0, 4>

Source 4			
Destination	Shortest path weight	Shortest Path	
0	8	<4, 3, 0>	
1	5	<4, 3, 2, 1>	
2	1	<4, 3, 2>	
3	6	<4, 3>	
4	-0	<4>	

Floyd-Warshall – Example 2

Source 0			
Destination	Shortest path weight	Shortest Path	
0	0	<0>	
1	1	<0, 4, 3, 2, 1>	
2	-3	<0, 4, 3, 2>	
3	2	<0, 4, 3>	
4	-4	<0, 4>	

			0
	Source 0		
Destination	Shortest path weight	Shortest Path	-4 7
0	0	<0>	2
1	1	<0, 4, 3, 2, 1>	
2	-3	<0, 4, 3, 2>	
3	2	<0, 4, 3>	4
4	-4	<0, 4>	

Source 0				
Destination	Shortest path weight	Shortest Path		
0	0	<0>	-4	7
1	1	<0, 4, 3, 2, 1>		-1
2	-3	<0, 4, 3, 2>		
3	2	<0, 4, 3>		
4	-4	<0, 4>	(3	3 (4)

Source 0		
Destination	Shortest path weight	Shortest Path
0	0	<0>
1	1	<0, 4, 3, 2, 1>
2	-3	<0, 4, 3, 2>
3	2	<0, 4, 3>
4	-4	<0, 4>

Source 0			
Destination	Shortest path weight	Shortest Path	
0	0	<0>	
1	1	<0, 4, 3, 2, 1>	
2	-3	<0, 4, 3, 2>	
3	2	<0, 4, 3>	
4	-4	<0, 4>	

