AAMEG - MATEMÁTICA DISCRETA

O presente questionário é um resultado do projeto de ensino "Ações de apoio à melhoria do ensino de Matemática Discreta", que foi concluído e associado ao programa "Ações de Apoio à Melhoria do Ensino de Graduação (AAMEG)", sob a coordenação da Pró-Reitoria de Graduação (PROGRAD). Este formulário tem como propósito primordial identificar as principais questões enfrentadas pelos estudantes de Matemática Discreta, com enfoque específico no conteúdo de sequências definidas recursivamente — demonstração por indução matemática.

* Indica uma pergunta obrigatória		
1.	E-mail *	
2.	Nome *	-
3.	Matrícula *	
Dara		

Recomendação

Caso tenha dificuldade para entender as questões a seguir, consulte o link.

4. 1 - Tendo como base o enunciado a seguir, "Seja t_0, t_1, t_2, ... uma sequência definida recursivamente da seguinte forma:

* 0 pontos

- Relação de recorrência: Para todo x ≥ 1, t_x = 2t_(x-1) + 1
- Condição inicial: t_o = 1

Use o método da iteração para achar uma fórmula explícita para essa sequência. ", quais alternativas correspondem corretamente ao t_3?

Marque todas que se aplicam.

- $t_3 = 2 * (2 * (2 + 1) + 1) + 1$
- t_3 = 8 + 4 + 2 + 1
- t 3 = 16
- $t_3 = 2^2 + 2^1 + 2^0$
- $t_3 = 2^3 + 2^2 + 2^1 + 2^0$
- 5. 2 Tendo como base o enunciado presente na questão 1, qual é a possível fórmula explícita?

* 0 pontos

Marcar apenas uma oval.

- Para todo $x \ge 0$, $t_x = 1 + 2 + 2^2 + 2^3 + \dots + 2^x$
- Para todo $x \ge 0$, $t_x = 1 + 2 + 2^2 + 2^3 + \dots + [2^{(x-1)}]$
- Para todo $x \ge 0$, $t_x = [2^{(x+1)}] 1$
- Para todo $x \ge 0$, $t_x = [2^{(x-1)}] 1$
- Para todo $x \ge 1$, $t_x = [2^{(x+1)}] 1$

6. 3 - Tendo como base o enunciado a seguir, "Seja t_0, t_1, t_2, ... uma sequência definida recursivamente da seguinte forma:

* 0 pontos

- Relação de recorrência: Para todo x ≥ 1 ,t_x =t_(x-1) + 3x²
- Condição inicial: t_0 = 0

Use o método da iteração para achar uma fórmula explícita para essa sequência.", quais alternativas correspondem corretamente ao t_3?

Marque todas que se aplicam.

- $t_3 = 3 * 3^2$
- $t_3 = 0 + 3 * 1^2 + 3 * 2^2 + 3 * 3^2$
- t_3 = 42
- $t_3 = 3 * 2^2 + 3 * 3^2$
- 7. 4 Tendo como base o enunciado presente na questão 3, qual é a possível fórmula explícita?

* 0 pontos

Marcar apenas uma oval.

- Para todo $x \ge 0$, $t_x = 3 * (0^2 + 1^2 + 2^2 + \dots + x^2)$
- Para todo $x \ge 0$, $t_x = 3 * (0^2 + 1^2 + 2^2 + x^2)$.
- Para todo $x \ge 0$, $t_x = (x(x+1)(2x+1)) / 2$
- Para todo $x \ge 1$, $t_x = (x(x+1)(2x+1)) / 2$
- Para todo $x \ge 0$, $t_x = (3(x^3 1)) / ((x 1))$.

8.

5 - Tendo como base o enunciado a seguir, "Seja t_1, t_2, t_3, ... uma * 0 pontos seguência definida recursivamente da seguinte forma: Relação de recorrência: Para todo $x \ge 2$, $t_x = t_{(x-1)} + 4x - 1$ Condição inicial: t_1 = 3" , e sabendo que a possível fórmula explícita de uma sequência é que "Para todo $x \ge 1$, $t_x = 2x^2 + x$ ", qual alternativa corresponde corretamente ao começo do passo indutivo da questão? Marcar apenas uma oval. (P.I.) Temos que demonstrar que para todo $y \ge 1$, se $t_y = 2y^2 + y$ então $t_y = 2y^2 + y$ $2(y^2+1^2) + y + 1$. (P.I.) Temos que demonstrar que para todo $y \ge 1$, $t_{y+1} = 2(y+1)^2 + y + 1$. (P.I.) Temos que demonstrar que para todo $y \ge 1$, se $t_y = 2y^2 + y$ então $t_y = 2y$ então $t_y =$ $2(y+1)^2 + y + 1$. (P.I.) Temos que demonstrar que $t_1 = 2 * 1^2 + 1$. (P.I.) Seja $k \in N_0$ um elemento particular e arbitrário, tal que $t_x = 2x^2 + x$, onde x ≥1.

Este conteúdo não foi criado nem aprovado pelo Google.

Google Formulários