		EXTENDED LEAST		PARALLEL PREDICTOR WITH	PARALLEL PREDICTOR WITH
PAA NAME	SERIES-PARALLEL PREDICTOR	squares(ELS)	PARALLEL PREDICTOR	FIXED COMPENSATOR	ADJUSTABLE COMPENSATOR
OTHER NAMES	RECURSIVE LEAST SQUARES (RLS) OR STANDARD EQUATION ERROR METHOD	/	OUTPUT ERROR METHOD	OUTPUT ERROR METHOD WITH FIXED COMPENSATOR (O.E.M.F.C)	OUTPUT ERROR METHOD WITH ADJUSTABLE COMPENSATOR (O.E.M.A.C)
Common Eq C.T.	$\dot{y}(t) = \theta^T \phi(t); \ \dot{\hat{y}}(t) = \hat{\theta}^T(t)\phi(t)$	$\tilde{ heta}(t) = \hat{ heta}(t) - heta$	$\dot{\hat{ heta}}(t) = F$		
Common Eq D.T.	$y(k+1), \ \hat{y}^{o}(k+1), \ \hat{y}(k+1)$ see below	$\tilde{\theta}(k) = \hat{\theta}(k) - \theta$	$\hat{\theta}(k+1) = \hat{\theta}(k) + \frac{F(k)\phi(k)}{1 + \phi^{T}(k)F(k)\phi(k)}\nu^{o}(k+1) = \hat{\theta}(k) + F(k)\phi(k)\nu(k+1)$		$F(k+1) = \frac{1}{\lambda_1(k)} \left[F(k) - \frac{F(k)\phi(k)\phi^T(k)F(k)}{\frac{\lambda_1(k)}{\lambda_2(k)} + \phi^T(k)F(k)\phi(k)} \right]$
PLANT + NOISE MODEL	$y(k+1) = \frac{B(z^{-1})}{A(z^{-1})}u(k) + \frac{1}{A(z^{-1})}w(k+1)$	$y(k+1) = \frac{B(z^{-1})}{A(z^{-1})}u(k) + \frac{C(z^{-1})}{A(z^{-1})}n(k+1)$	$y(k+1) = \frac{B(z^{-1})}{A(z^{-1})}u(k) + \frac{1}{A(z^{-1})}w(k+1)$	$y(k+1) = \frac{B(z^{-1})}{A(z^{-1})}u(k) + n(k+1)$	$y(k+1) = \frac{B(z^{-1})}{A(z^{-1})}u(k) + n(k+1)$
PARAMETER VECTOR	$\theta^T = [a_1 \cdots a_n b_0 \cdots b_m]; ^1$	$\theta_e^T = [\theta^T c_1 \cdots c_n]; ^2$	$\theta^T = [a_1 \cdots a_n b_0 \cdots b_m]$	$\theta^T = [a_1 \cdots a_n b_0 \cdots b_m]$	$ heta_e^T = [heta^T a_1 \cdots a_n]$
ESTIMATED PARAMETER VECTOR	$\hat{\theta}^T(k) = \\ \left[\hat{a}_1(k)\cdots\hat{a}_n(k)\hat{b}_0(k)\cdots\hat{b}_m(k)\right]$	$\hat{\theta}_e^T(k) = \\ \left[\hat{\theta}(k)\hat{c}_1(k)\cdots\hat{c}_n(k)\right]$	$\hat{\theta}^T(k) = \\ \left[\hat{a}_1(k)\cdots\hat{a}_n(k)\hat{b}_0(k)\cdots\hat{b}_m(k)\right]$	$\hat{\theta}^{T}(k) = \left[\hat{a}_{1}(k)\cdots\hat{a}_{n}(k)\hat{b}_{0}(k)\cdots\hat{b}_{m}(k)\right]$	$\hat{\theta}_e^T(k) = \left[\hat{\theta}(k)\hat{c}_1(k)\cdots\hat{c}_n(k)\right]$
OBSERVATION VECTOR	$\phi^{T}(k) = [-y(k) \cdots - y(k + 1 - n) u(k) \cdots u(k - m)]$	$\phi_e^T(k) = [\phi^T(k)\varepsilon^o(k)\cdots\varepsilon^o(k+1-n)]$	$\phi^{T}(k) = [-\hat{y}(k)\cdots - \hat{y}(k + 1 - n)u(k)\cdots u(k - m)]$	$\phi^{T}(k) = [-\hat{y}(k) \cdots - \hat{y}(k + 1 - n) u(k) \cdots u(k - m)]$	$\phi_e^T(k) = [\phi^T(k), -\varepsilon(k) \cdots - \varepsilon(k+1-n)]$
a priori Predicted Output	$\hat{y}^{o}(k+1) = \hat{\theta}^{T}(k)\phi(k)$	$\hat{y}^o(k+1) = \hat{\theta}_e^T(k)\phi_e(k)$	$\hat{y}^{o}(k+1) = \hat{\theta}^{T}(k)\phi(k)$	$\hat{y}^{o}(k+1) = \hat{\theta}^{T}(k)\phi(k)$	$\hat{y}^{o}(k+1) = \hat{\theta}^{T}(k)\phi(k)$
a posteriori Predicted Output	$\hat{y}(k+1) = \hat{\theta}^T(k+1)\phi(k)$	$\hat{y}(k+1) = \hat{\theta}_e^T(k+1)\phi_e(k)$	$\hat{y}(k+1) = \hat{\theta}^T(k+1)\phi(k)$	$\hat{y}(k+1) = \hat{\theta}^T(k+1)\phi(k)$	$\hat{y}(k+1) = \hat{\theta}^T(k+1)\phi(k);$ ³
a priori Adaptation Error	$\nu^{o}(k+1) = \varepsilon^{o}(k+1)$	$\nu^{o}(k+1) = \varepsilon^{o}(k+1)$	$\nu^{o}(k+1) = \varepsilon^{o}(k+1)$	$\nu^{o}(k+1) = $ $\varepsilon^{o}(k+1) + \sum_{i=1}^{n} c_{i}\varepsilon(k+1-i);^{4}$	$\nu^{o}(k+1) = $ $\varepsilon^{o}(k+1) + \sum_{i=1}^{n} \hat{c}_{i}\varepsilon(k+1-i)$
a posteriori Adaptation Error	$\nu(k+1) = \varepsilon(k+1)$	$\nu(k+1) = \varepsilon(k+1)$	$\nu(k+1) = \varepsilon(k+1)$	$\nu(k+1) = C(z^{-1})\varepsilon(k+1) =$ $\varepsilon(k+1) + \sum_{i=1}^{n} c_i \varepsilon(k+1-i)$	$\nu(k+1) = \varepsilon(k+1) + \sum_{i=1}^{n} \hat{c}_i \varepsilon(k+1-i)$
Deterministic Stability Cond	Always stable	Not covered	$\frac{1}{A(z^{-1})} - \frac{\lambda}{2}$ is SPR	$\frac{C(z^{-1})}{A(z^{-1})} - \frac{\lambda}{2} \text{ is SPR}$	Always stable
Convergence Condition (with 0 mean noise)	1, $u(k)$ rich in frequency 2, $u(k)$ independent from w(k+1) 3, $w(k)$ is white	1, Input rich in frequency 2, $n(k)$ white $+\frac{1}{C(z^{-1})} - \frac{\lambda}{2}$ is SPR	1, Input rich in frequency 2, Input independent from $w(k+1)$ 3, Zero mean noise	Not covered	1, Input rich in frequency 2, $n(k)$ white $+\frac{1}{A(z^{-1})} - \frac{\lambda}{2}$ SPR, or $n(k) = \frac{1}{N(z^{-1})}s(k)$, with $s(k)$ white $+\frac{N(z^{-1})}{A(z^{-1})} - \frac{\lambda}{2}$ SPR
Disadvantage	The whiteness of $w(k)$ is hard to achieve, thus the estimated parameters are usually biased	Deals with only a particular disturbance	Stability is usually not easy to see when poles of plant are unknown	/	/

 $^{^{1}}n$: ORDER OF $A(z^{-1})$; m: ORDER OF $B(z^{-1})$ $^{2}C(z^{-1})=1+c_{1}z^{-1}+\cdots+c_{n}z^{-n}$ $^{3}\underline{\mathrm{NOT}}\ \phi_{e}\ \mathrm{and}\ \theta_{e}!$ $^{4}\underline{\overline{\mathrm{NOT}}}\ \varepsilon^{o}$