CollaGAN: Collaborative GAN for Missing Image Data Imputation

Dongwook Lee¹, Junyoung Kim¹, Won-Jin Moon², Jong Chul Ye¹
¹: Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

{dongwook.lee, junyoung.kim, jong.ye}@kaist.ac.kr

²: Konkuk University Medical Center, Seoul, Korea

mdmoonwj@kuh.ac.kr

Presented by 이창선

Image Imputation

Image Translation vs. Imputation

CollaGAN

- **ONE** algorithm
- Estimate the Missing Data in ANY domain
- Exploits the data for the REST of the domains

Method (Overview)

Multiple Cycle Consistency Loss

e.g) Four types (N = 4) of domains: a, b, c, d

Let's synthesize the fake image in the target domain a using b, c and d, called \hat{x}_{a}

In general,

$$\mathcal{L}_{mcc,\kappa} = \sum_{\kappa' \neq \kappa} ||x_{\kappa'} - \tilde{x}_{\kappa'|\kappa}||_1$$

- Discriminator Loss
 - Adversarial Loss of LSGAN
 - Overcome vanishing gradient problem

$$\mathcal{L}_{gan}^{dsc}(D_{gan}) = \mathbb{E}_{x_{\kappa}}[(D_{gan}(x_{\kappa})-1)^{2}] + \mathbb{E}_{\tilde{x}_{\kappa|\kappa}}[(D_{gan}(\tilde{x}_{\kappa|\kappa}))^{2}].$$

$$\mathcal{L}_{gan}^{gen}(G) = \mathbb{E}_{\tilde{x}_{\kappa|\kappa}}[(D_{gan}(\tilde{x}_{\kappa|\kappa}) - 1)^2]$$

- Discriminator Loss
 - Domain Classification Loss

$$\mathcal{L}_{clsf}^{real}(D_{clsf}) = \mathbb{E}_{x_{\kappa}}[-\log(D_{clsf}(\kappa; x_{\kappa}))]$$

$$\mathcal{L}_{clsf}^{fake}(G) = \mathbb{E}_{\hat{x}_{\kappa|\kappa}}[-\log(D_{clsf}(\kappa; \hat{x}_{\kappa|\kappa}))]$$

Structural Similarity Index Loss

$$SSIM(p) = \frac{2\mu_X \mu_Y + C_1}{\mu_X^2 + \mu_Y^2 + C_1} \cdot \frac{2\sigma_{XY} + C_2}{\sigma_X^2 + \sigma_Y^2 + C_2}$$

• Luminance

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Contrast

$$\sigma_x = \left(\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2\right)^{\frac{1}{2}}$$

Structure

$$\mu_x = \frac{1}{N} \sum_{i=1}^{N} x_i$$

$$l(\mathbf{x}, \mathbf{y}) = \frac{2\mu_x \mu_y + C_1}{\mu_x^2 + \mu_y^2 + C_1}$$

$$\sigma_x = \left(\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \mu_x)^2\right)^{\frac{1}{2}}$$

$$c(\mathbf{x}, \mathbf{y}) = \frac{2\sigma_x \sigma_y + C_2}{\sigma_x^2 + \sigma_y^2 + C_2}$$

$$SSIM(\mathbf{x}, \mathbf{y}) = [l(\mathbf{x}, \mathbf{y})]^{\alpha} \cdot [c(\mathbf{x}, \mathbf{y})]^{\beta} \cdot [s(\mathbf{x}, \mathbf{y})]^{\gamma}$$

$$vucture$$

$$s(\mathbf{x}, \mathbf{y}) = \frac{\sigma_{xy} + C_3}{\sigma_x \sigma_y + C_3}$$

$$\mathcal{L}_{\text{SSIM}}(X,Y) = -\log \left(\frac{1}{2|P|} \sum_{p \in P(X,Y)} (1 + \text{SSIM}(p)) \right) \qquad \qquad \mathcal{L}_{mcc-\text{SSIM},\kappa} = \sum_{\kappa' \neq \kappa} \mathcal{L}_{\text{SSIM}} \left(x_{\kappa'}, \tilde{x}_{\kappa'|\kappa} \right)$$

Full Objective

 Finally, the objective (loss) functions to optimize G and D are written, respectively, as

Generator

$$\mathcal{L}_{mcc,\kappa} = \sum_{\kappa' \neq \kappa} ||x_{\kappa'} - \tilde{x}_{\kappa'|\kappa}||_1$$

$$\mathcal{L}_{gan}^{gen}(G) = \mathbb{E}_{\tilde{x}_{\kappa|\kappa}}[(D_{gan}(\tilde{x}_{\kappa|\kappa}) - 1)^2]$$

$$\mathcal{L}_{clsf}^{fake}(G) = \mathbb{E}_{\hat{x}_{\kappa|\kappa}}[-\log(D_{clsf}(\kappa; \hat{x}_{\kappa|\kappa}))]$$

$$\mathcal{L}_{\text{SSIM}}(X,Y) = -\log \left(\frac{1}{2|P|} \sum_{p \in P(X,Y)} (1 + \text{SSIM}(p)) \right)$$

Discriminator

$$\mathcal{L}_{gan}^{dsc}(D_{gan}) = \mathbb{E}_{x_{\kappa}}[(D_{gan}(x_{\kappa})-1)^{2}] + \mathbb{E}_{\tilde{x}_{\kappa|\kappa}}[(D_{gan}(\tilde{x}_{\kappa|\kappa}))^{2}]$$

$$\mathcal{L}_{clsf}^{real}(D_{clsf}) = \mathbb{E}_{x_{\kappa}}[-\log(D_{clsf}(\kappa; x_{\kappa}))]$$

Method (Mask Vector)

Selecting the Target Domain


```
self.a img = tf.placeholder(dtype,[self.nB,self.nCh out, self.nY, self.nX])
self.b img = tf.placeholder(dtype,[self.nB,self.nCh out, self.nY, self.nX])
self.c img = tf.placeholder(dtype,[self.nB,self.nCh out, self.nY, self.nX])
self.d img = tf.placeholder(dtype,[self.nB,self.nCh out, self.nY, self.nX])
self.a mask = tf.placeholder(dtype,[self.nB,1, self.nY, self.nX])
self.b mask = tf.placeholder(dtype,[self.nB,1, self.nY, self.nX])
self.c mask = tf.placeholder(dtype,[self.nB,1, self.nY, self.nX])
self.d mask = tf.placeholder(dtype,[self.nB,1, self.nY, self.nX])
''' generate inputs ( imag + mask ) '''
tmp_zeros = tf.zeros([self.nB,self.nCh_out,self.nY,self.nX],dtype)
inp1 = tf.cond(self.bool0, lambda:tmp zeros, lambda:self.a img)
inp2 = tf.cond(self.bool1, lambda:tmp zeros, lambda:self.b img)
inp3 = tf.cond(self.bool2, lambda:tmp zeros, lambda:self.c img)
inp4 = tf.cond(self.bool3, lambda:tmp zeros, lambda:self.d img)
input contrasts = tf.concat([inp1,inp2,inp3,inp4],axis=ch dim)
self.inputs = tf.concat([input_contrasts, self.a_mask, self.b_mask,self.c_mask,self.d_mask],axis=ch_dim)
```

Experiments

1) MR Contrast Synthesis

2) CMU Multi-PIE

3) RaFD

Network Implementation

- Generator
 - U-net structure
 - Instance normalization and Leaky-Relu
- Discriminator
 - PatchGAN

MR contrast translation

- Network Implementation (Generator)
 - Each pixel determined by MR parameters
 - MR parameters is a voxel-wise property

MR contrast translation

Network Implementation (Discriminator)

	Order			Layers			k
Г	1a	C(n4,s1)-L	C(n4,s1)-L	C(n4,s1)-L	C(n4,s1)-L	C(n16,s4)-L	4
	1b	C(n4,s1)-L	C(n8,s2)-L	C(n8,s1)-L	C(n16,s2)-L	C(n16,s1)-L	4
	1c	C(n16,s4)-L	C(n16,s1)-L	C(n16,s1)-L	C(n16,s1)-L	C(n16,s1)-L	4
	2	1a 1b 1c	Cat	C(n32,s2)-L	C(n64,s2)-L	C(n128,s2)-L	4
,	3a	C(n1,s1)	Sigmoid (D_{gan})				3
	3ь	FC(n4)	Softmax (D_{cls})				8

Table 3: Architecture of the descriminator used for MR contrast translation. k is the kernel size for the convolution and C(n,s) represents the convolution layer with n channels and s strides. Cat, L and FC represent the concatenate layer, the leaky-ReLU layer and the fully-connected layer, respectively.

MR Contrast Translation

• Results

Illumination Translation

• Results

	pix2pix	CycleGAN	StarGAN	Proposed
-90°	0.0334	0.0777	0.0545	0.0122
-90	0.799	0.640	0.606	0.876
-45°	0.0181	0.0656	0.0470	0.00873
-40	0.840	0.688	0.644	0.888
45°	0.0151	0.0188	0.0178	0.0150
40	0.607	0.734	0.698	0.800
90°	0.0680	0.0868	0.0481	0.00839
30	0.708	0.665	0.668	0.894

Table 7: Quantitative results for illumination imputation. The NMSE/SSIM (upper/lower part for each row, respectively) are calculated from the target domain.

Facial Expression Translation

- Network Implementation (Generator)
 - Images are not strictly aligned pixel-wise manner
 - Features from each facial expressions mixed up in the middle stage

Facial Expression Translation

Results

Proposed	CycleGAN	StarGAN	Target
0.0204/0.776	0,0352/0.698	0.0395/0.652	-
Same?	Jame)	Jame!	la me
	=	-	-
100		~	

	pix2pix	CycleGAN	StarGAN	Proposed
Α	0.0247	0.0301	0.0306	0.0197
A	0.765	0.732	0.698	0.794
С	0.0283	0.0327	0.0421	0.0105
C	0.724	0.0700	0.696	0.840
D	0.0333	0.0362	0.0397	0.0172
D	0.716	0.694	0.683	0.802
F	0.0395	0.0329	0.0487	0.0213
Г	0.677	0.685	0.670	0.761
Н	0.0345	0.0350	0.0420	0.0211
п	0.697	0.682	0.606	0.778
S	0.0335	0.0268	0.0363	0.0122
3	0.697	0.729	0.692	0.803
Sad	0.0349	0.0352	0.0395	0.0204
Sau	0.679	0.6975	0.652	0.776

Table 6: Quantitative results for facial expression imputation. The NMSE/SSIM (lower/upper part for each facial expression, respectively) are calculated from each target domain (A:angry, C:contemptuous, D:disgusted, F:fearful, H:happy, S:surprised, Sad:sad).

Chosen as	pix2pix	CycleGAN	StarGAN	Proposed
the best	3.8%	17.9%	7.4%	70.8%

Robustness of Collaborative Training

Effect of Input Dropout

Ablation Study

- Investigate the advantage of MCC loss and SSIM loss
- Using RaFD dataset

(Mean±std)	l_1 w/o L_{MCC}	w/o L_{SSIM}	Proposed
NMSE	0.0372 ± 0.00653	0.0200 ± 0.00391	0.0178 ± 0.00419
SSIM	0.714 ± 0.0211	0.779 ± 0.0243	0.793 ± 0.0237

Table 9: Quantitative results for the ablation study.

Q&A

Thank you for listening