

Replacement Sheet

1/16

FIG. 1A

FIG. 1B

3/16

FIG. 1C

Replacement Sheet

5/16

SIGNAL GENERATION ALGORITHM

FIG. 3A

FIG. 3B

FIG. 3C

MEASURE TIME BETWEEN
AVALANCHES FOR
POWDERS IN
ROTATING DRUM

CONVERT TIME
TO FREQUENCY SPACE

PLOT DISTRIBUTION
OF FREQUENCIES

RECORD TOP SIX MOST
OBSERVED FREQUENCIES,
TYPICALLY REPRESENTING
75% OF DISTRIBUTION

SUPERPOSE THESE SIX
FREQUENCIES TO CONSTRUCT
A SINGLE SUPERPOSITION
SIGNAL (CAN INCLUDE
STEP OF ADJUSTING RELATIVE
AMPLITUDES)

FIG. 3D

FIG. 3E

Replacement Sheet

6/16

FIG. 4

7/16

FIG. 5A

FIG. 5B

8/16

NON-LINEAR VIBRATION / CENTRIFUGATION PRINCIPLE OF POWDER FILLING

BASIC PRINCIPLE:

COMBINE NON-LINEAR FUNCTION
WITH CENTRIFUGAL MOTION

THIS CAN BE ADAPTED
TO LOCAL NON-LINEAR
VIBRATION.

FIG. 6

OSCILLATE ON
AXIS

FIG. 7

VIBRATE
HEAD

FIG. 8

DIAGRAM OF
OSCILLATING
INSERT

VIBRATION CAN BE
APPLIED TO A
RACK OF HEADS. FILLING
FROM SINGLE HOPPER

FIG. 9

VIBRATION
RACK

RADIUS (OR EXTREMES) OF MOTION CAN BE VERY SMALL. AT HIGH FREQUENCY
THE ANGULAR VELOCITY WILL BE SUFFICIENT TO GIVE DIRECTIONAL
ACCELERATION TO PARTICLES.

9/16

FIG. 10A

FIG. 10B

510
DETECTION
SYSTEM

10/16

FIG. 11

11/16

FIG. 12

12/16

Replacement Sheet

14/16

Replacement Sheet

15/16

PART 3: PIEZOELECTRIC POLYMER

FIG. 16A

FIG. 16B

16/16

FIG. 17A

FIG. 17B