Bilinearformen, euklidische und unitäre Vektorräume, normale Endomorphismen

Übungen

25. März 2011

Aufgabe 1: Geben Sie die symmetrische Matrix an, die zu jedem der folgenden quadratischen Polynome gehört:

1.
$$q(x,y) = 4x^2 - 6xy - 7y^2$$

2.
$$q(x,y) = xy + y^2$$

3.
$$q(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$$

4.
$$q(x, y, z) = x^2 - 2yz + xz$$

Aufgabe 2: Seien $u = (x_1, x_2)$ und $v = (y_1, y_2)$. Bestimmen Sie, welche der folgenden Ausdrücke bilineare Formen auf \mathbb{R}^2 sind.

1.
$$f(u,v) = 2x_1y_2 - 3x_2y_1$$

2.
$$f(u,v) = x_1 + y_2$$

3.
$$f(u,v) = 3x_2y_2$$

4.
$$f(u,v) = x_1x_2 + y_1y_2$$

5.
$$f(u, v) = 1$$

6.
$$f(u, v) = 0$$

Aufgabe 3:

1. Bestimmen Sie, welche der folgenden Matrizen hermitesch sind:

$$A = \begin{pmatrix} 2 & 2+3i & 4-5i \\ 2-3i & 5 & 6+2i \\ 4+5i & 6-2i & -7 \end{pmatrix} , B = \begin{pmatrix} 3 & 2-i & 4+i \\ 2-i & 6 & i \\ 4+i & i & 3 \end{pmatrix}$$

$$C = \left(\begin{array}{rrr} 4 & -3 & 5 \\ -3 & 2 & 1 \\ 5 & 1 & -6 \end{array}\right)$$

2. Bestimmen Sie, welche der folgenden Matrizen normal ist:

$$A = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} , B = \begin{pmatrix} 1 & i \\ 1 & 2+i \end{pmatrix}$$

Aufgabe 4: Sei $V = \mathbb{R}[x]_2$ der Vektorraum der reellen Polynome vom Grad höchstens 2. Zeigen Sie, dass $\langle f|g\rangle = \int_0^1 f(t)g(t)dt$ ein Skalarprodukt auf V definiert.

Aufgabe 5:

- 1. Zeigen Sie, dass jedes skalare Vielfache von u ebenfalls zu v orthogonal ist, wenn u zu v orthogonal ist. Geben Sie einen Einheitsvektor v_3 an, der senkrecht zu $v_1 = (1, 1, 2)$ und $v_2 = (0, 1, 3)$ steht.
- 2. Wenden Sie das Gram-Schmidt-Orthogonalisierungsverfahren auf die 3 Vektoren an.
- 3. Sei W ein Untervektorraum von \mathbb{R}^5 , der durch u=(1,2,3,-1,2) und v=(2,4,7,2,-1) aufgespannt wird. Geben Sie eine Basis des orthogonalen Komplements W^{\perp} von W an.

Aufgabe 6: Sei T auf \mathbb{C}^3 definiert durch T(x,y,z)=(2x+(1-i)y,(3+2i)x-4iz,2iz+(4-3i)y-3z). Geben Sie $T^*(x,y,z)$ an.

Aufgabe 7: Entscheiden Sie ob die folgenden Aussagen wahr oder falsch sind (kurze Begründung).

- a) Für jede unitäre Matrix A gilt det(A)=1
- b)Die Matrix

$$B = \begin{pmatrix} 23 & 11 & -450 \\ 11 & -7 & 3 \\ -450 & 3 & 78 \end{pmatrix}$$

ist diagonalisierbar.

Aufgabe 8: Für $A, B \in \mathbb{R}^{2 \times 2}$ sei F(A, B) = Spur(AB).

- 1. Zeigen Sie, dass F eine symmetrische Bilinearform ist.
- 2. Für die Standardbasis E von $\mathbb{R}^2 \times 2$ berechne man die Grammatrix $G_E(F)$.

Aufgabe 9: Überprüfen Sie die folgenden Matrizen auf Definitheit:

$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} , B = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} , C = \begin{pmatrix} 3 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 1 \end{pmatrix} , D = \begin{pmatrix} 10 & -3 \\ -3 & 1 \end{pmatrix}$$

Aufgabe 10: Es seien die Standardbasis $S := \{(1,0),(0,1)\} \subseteq \mathbb{R}^2$ sowie die Basen

$$B = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^3 \text{und } C = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\} \subseteq \mathbb{R}^4$$

Ferner seien $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ und $\psi: \mathbb{R}^3 \to \mathbb{R}^4$ definiert durch:

$$\varphi((x_1, x_2)) := \begin{pmatrix} x_1 - x_2 \\ 0 \\ 2x_1 - x_2 \end{pmatrix} \text{und}\psi((x_1, x_2, x_3)) = \begin{pmatrix} x_1 + 2x_3 \\ x_2 - x_3 \\ x_1 + x_2 \\ 2x_1 + 3x_3 \end{pmatrix}$$

Bestimmen Sie die Darstellungsmatrizen $_B[\varphi]_S,\ _C[\psi]_B$ und $_C[\psi\circ\varphi]_S.$

Aufgabe 11: Sei $V = \mathbb{R}[z]_2$ und $f : V \leftarrow \mathbb{R}^2$ die Abbildung $p(z) \mapsto^t (p(1), p'(1))$, wobei p(1) bzw. p'(1) die Auswertung bzw. die Ableitung von p an der Stelle z = 1 bezeichnet.

Berechnen Sie $_R[f]_B$ mit $B=(1,z-1,(z-1)^2)$ und $R=(^t(1,0),^t(0,1))$ den Basen von V bzw. \mathbb{R}^2 .

Aufgabe 12: Es sei V der \mathbb{R} -Vektorraum $V = \mathbb{R}^{n \times n}$, und es sei

$$S := \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) \right\}$$

die Basis von V.

Es sei ferner $\varphi: V \mapsto V, \varphi(X) := X +^t X$.

Bestimmen Sie die Darstellungsmatrix $_{S}[\varphi]_{S}$.