Whatever the progress of human knowledge, there will always be room for ignorance, hence for chance and probability - Émile Borel

1 Review Topics

Compactness, extreme value theorem (again!)

2 Exercises

2.1 Which of the following sets are compact?

• $\mathbb{Q} \cap [0, 1]$, in \mathbb{R} .

This set is not compact. It is bounded, but it is not closed.

• $\{x \in \mathbb{Q} : 2 < x^2 < 3\}$, in \mathbb{Q} .

This set is closed in \mathbb{Q} . To see this, consider that the complement is open in \mathbb{Q} (since $\sqrt{2}$ and $\sqrt{3}$ are not in \mathbb{Q}). Also, the set is clearly bounded, however it is not compact. To see this, consider the open cover $\bigcup_n \left(2 + \frac{1}{n}, 3 - \frac{1}{n}\right)$. There is no finite sub-cover.

• $f^{-1}([2, 3])$, where $f(x) = x^2$ on \mathbb{R} .

This set is compact; note that it is closed because x^2 is continuous and [2, 3] is a closed set in \mathbb{R} . It is also bounded; for any $\epsilon > 0$, we can use finitely many $B_{\epsilon}(x)$ to cover the set.

2.2 Prove that any closed set of a compact space is compact.

Let K be our closed set in a space X which is compact. Thus, $X \setminus K$ is open. Let \mathcal{O} be an open cover for K. Then, $\mathcal{O} \cup (X \setminus K)$ is an open cover for X. Thus, there exists a finite sub-cover; note that we can remove $X \setminus K$ from this sub-cover (if it is a member), since $K \notin X \setminus K$ by definition. This finite sub-cover is then a finite sub-cover for K.

2.3 Prove that if K is a compact set, then f(K) is compact whenever $f: X \to Y$ is continuous.

Let y_n be a sequence in f(K). Then, $y_n = f(x_n)$, x_n a sequence in K. Since K is compact, there exists a subsequence $x_{n_k} \to x \in K$. Since f is continuous, then $y_{n_k} := f(x_{n_k})$ is a convergent subsequence of $y_n \in f(K)$. Thus, f(K) is compact.

2.4 Let K be a compact subset of \mathbb{R} . Prove that $\inf K$ and $\sup K$ exist and are in K.

Since K is compact, it must be bounded. Therefore, $l := \inf K$ and $u := \sup K$ exist. Supposed $u \notin K$. Then $\mathbb{R}\backslash K$ is open. Thus, there exists $\epsilon > 0$ such that $B_{\epsilon}(u) \subset \mathbb{R}\backslash K$. Thus, there is a point $x < u, x \notin K$, x > k for all $k \in K$, a contradiction. Thus, $u \in K$. Treatment of l is similar.

2.5 Prove that $\sin x - \cos y$ attains a maximum on $[0, 2\pi] \times [0, 2\pi]$.

 $[0, 2\pi] \times [0, 2\pi]$ is a compact set by Heine-Borel. Since $\sin x - \cos y$ is continuous, we know that the maximum is achieved.

2.6 Prove that if a space (X, d) is compact, then it is complete.

Let x_n be a Cauchy sequence in X. Since X is compact, we have a convergent subsequence, say $x_{n_k} \to x \in X$. Consider now that since x_n is Cauchy, and x_{n_k} is convergent, then there exists N such that whenever n, $n_k \geq N$, $|x_n - x| < \epsilon/2$ and $|x_n - x_{n_k}| < \epsilon/2$. Thus, $|x_n - x| \leq |x_{n_k} - x| + |x_n - x_{n_k}| < \epsilon$, and thus $x_n \to x \in X$, so X is complete.