- 1. $\mathcal{L}_1 = \{ v_1 z v_2 z \mid |z| \ge 2 \& z, v_2 \in \{a, b, c\}^* \& v_1 \in \{a, b\}^* \}$
- 2. Множество троичных чисел, кратных 5.
- 3. Множество трасс грамматик с правилами вида $N_i \to \gamma N_j, \, N_i \to N_j \gamma, \, N_i \to \epsilon.$
- 4. Множество трасс грамматики G_k с правилами вида $S \to S_1S_1, S_1 \to S_2S_2\dots, S_k \to \mathfrak{a}, S_k \to SS.$

Решение задачи І

«Интуитивно» язык не регулярный — есть требование вхождения одинаковых подслов, которые «по идее» можно как-то отделить от аморфных значений v_1 и v_2 . Попробуем провести это отделение более последовательно.

Два момента в данном языке обращают на себя внимание:

- словарь (язык) v_1 отличается от словаря смежного с ним слова z. Это значит, что если взять первую букву z из разности языка z и языка v_1 , то никакое значение v_1 не сможет её поглотить.
- словарь (язык) v_2 точно такой же, как у смежных вхождений z. Поэтому в принципе v_2 может поглотить любой суффикс первого вхождения z, а также любой префикс второго вхождения.

Чтобы слово v_2 не могло поглотить префикс второго вхождения z, надо сделать так, чтобы его положение определялось однозначно. Мы уже знаем, что выгодно взять z начинающимся c буквы c (это исключит поглощение префикса z значением v_1). Значит, если в слове будет всего две буквы c, то ровно одна из них должна начинать первое вхождение z, и ровно одна должна начинать второе вхождение. Осталось дополнить z достаточно длинными суффиксами, исключающими возможность «накачки» их одновременно.

Кандидат на контрпример — серия слов с \mathfrak{a}^{n+2} с \mathfrak{a}^{n+2} , где \mathfrak{n} — длина накачки.

Теперь можно доказать нерегулярность языка посредством теоремы Майхилла— Нероуда. Действительно, слова вида с $\alpha^m c \alpha^{m+k+1}$ языку не принадлежат, а с $\alpha^{m+k} c \alpha^m$ — точно принадлежат (при этом $z = c \alpha^m, v_2 = \alpha^k$), что порождает нижнетреугольную матрицу принадлежности: наименования строк здесь — это префиксы слов, а столбцов — соответствующие суффиксы.

Также можно использовать этот контрпример для построения короткого доказательства нерегулярности \mathcal{L}_1 , если пересечь его с языком (регулярным) $R = c \alpha^* c \alpha^*$. В слове $c \alpha^{n+2} c \alpha^{n+2}$, принадлежащем пересечению $R \cap \mathcal{L}_1$, можно накачивать лишь фрагмент, состоящий только из букв α , чтобы не выйти из языка R. Пусть такой фрагмент имеет длину k (где k>0). Тогда при отрицательной накачке получится слово $c \alpha^{n-k+2} c \alpha^{n+2}$, которое не входит в \mathcal{L}_1 .

Наиболее неприятный путь — прямое применение леммы о накачке к слову $ca^{n+2}ca^{n+2}$ без использования свойств замыканий. На этом пути придётся разобрать два случая.

- Фрагмент накачки имеет вид \mathfrak{a}^k . Этот случай аналогичен уже рассмотренному в решении с пересечением.
- Фрагмент накачки имеет вид ca^k . Отметим, что k < n. Тогда при положительной накачке в одну итерацию получим слово $ca^kca^{n+2}ca^{n+2}$. Поскольку это слово начинается c c, то значение z должно начинаться c c, а значит, должно заканчиваться на a^{n+2} (потому что первое c конца вхождение c уж точно будет относиться k e). Но это значит, что e должна содержать также и фрагмент e0 (иначе первое вхождение e1 не сможет заканчиваться на e1), а он в этом слове не повторяется.

В этой задаче у большинства возникла одна из двух проблем:

- Или взято значение z с префиксом в языке $\{a,b\}$, из-за чего оно смешалось со значением v_1 .
- Или взято значение z, равное c^n (очевидно, вы заметили, что в противном случае анализу мешает v_1). Тогда мы можем весь суффикс z, кроме двух первых букв, положить в v_2 . Вообще, в этой задаче не стоит брать значения z, значение префикс-функция у которых больше, чем 0 (и осторожнее с такими словами в других задачах).

Решение задачи II

Если x кратно 5, то $\exists y(x=5\cdot y)$. Что указывает: можно использовать метод построения автоматов для пар $\binom{x}{y}$, таких что $x=5\cdot y$, а потом взять в нём проекцию по x.

Для этого сначала найдём все пути, ведущие в ловушки, а именно, определим критическую разницу между x и y снизу и сверху, которая не может быть исправлена приписыванием никаких младших разрядов. Если x-5y=k, то максимально большой выигрыш в пользу x в следующем разряде будет, если k х припишется k а k у — k 0. Тогда очередное значение k'-k у будет k 3k 2 k 4 2 k 4 k 6 если k 6 если k 9 то критическая разница в пользу k 9, которая гарантирует, что все пути в автомате, на которых получено это значение, будут тупиковыми.

Обратно, максимально большой выигрыш в пользу у в следующем разряде будет при приписывании к х нуля, а к у — двойки. Тогда x' - 5y' = 3x - 15y - 10 = 3k - 10. Если $3k - 10 \geqslant k$, то $k \geqslant 5$, поэтому все пути в автомате, на которых встретится такая разница между х и 5y, также будут тупиковыми.

Значит, в состояниях, не являющихся ловушками, величина x-5y варьирует от 0 до 4. Дальнейшее построение автомата — техническая процедура.

Автомат-проекция указанного ДКА по первому компоненту также будет детерминированным (вообще говоря, это не гарантируется для проекций).

К аналогичному решению задачи можно было прийти и без проекций. Действительно, рассмотрим, как будут изменяться остатки от деления x на 5 при приписывании очередного разряда.

Остаток	Приписан 0	Приписана 1	Приписана 2	
	$0 \cdot 3 + 0 = 0$	$0 \cdot 3 + 1 = 1$	$0 \cdot 3 + 2 = 2$	
1	$1 \cdot 3 + 0 = 3$	$1 \cdot 3 + 1 = 4$	$1 \cdot 3 + 2 = 0$	
2	$2 \cdot 3 + 0 \equiv 1$	$2 \cdot 3 + 1 \equiv 2$	$2 \cdot 3 + 2 \equiv 3$	
3	$3 \cdot 3 + 0 \equiv 4$	$3 \cdot 3 + 1 \equiv 0$	$3 \cdot 3 + 2 \equiv 1$	
4	$4 \cdot 3 + 0 \equiv 2$	$4 \cdot 3 + 1 \equiv 3$	$4 \cdot 3 + 2 \equiv 4$	

Минимальность ДКА почти очевидна: состояния $\equiv 1, \equiv 3$ различимы друг от друга и от остальных состояний на переходах по 2 и 1 соответственно; если состояния $\equiv 1, \equiv 3$ доказуемо различимы, то $\equiv 2$ и $\equiv 4$ после этого можно различить поведением на переходах по любому значению. На основе этих наблюдений построим таблицу классов эквивалентности.

	00		02		11
ε	+	_	_	_	_
1	—	+	_	_	_
2	_	_	_ +	_	_
10	_	_	_	+	_
11	—	_	_	_	+

Она не только свидетельствует, что построенный ДКА минимален, но и обосновывает, что никакой НКА для этого языка не может иметь меньше 5 состояний (согласно расширенному критерию Глайстера—Шаллита, нижняя граница на число состояний в НКА — число строк в верхнетреугольной матрице).

Осталось разобраться с вопросом о регулярном выражении для данного языка. Минимальность представленного ДКА даже в классе недетерминированных автоматов наводит на мысль, что регулярка может получиться очень длинной. И действительно, после устранения состояний $\equiv 3$ и $\equiv 4$ мы получаем ДКА, представляющий собой полный граф переходов из трёх вершин, а языки таких ДКА порождают максимальное разрастание длины при переходе к регулярным выражениям. Таким образом, мы имеем дело именно с таким языком, когда представление в форме ДКА оказывается экспоненциально более выгодным, чем в форме регулярного выражения (как минимум, при применении алгоритма устранения состояний напрямую).