Feb 5th
Problem Set 3 $Q + V_1 W_1 = Spaces over = 0$ $Q = V_1 V_2, ..., V_n$ and $Q = V_1, W_2, ..., W_n$ $V_1 = V_2 W_1$ inear transformation
Prove that $V_1 = V_2 W_1$ is an isomorphism iff $V_1 = V_2 W_2$ is an invertible matrix.

(a) $V_1 = V_2 W_1 = V_2 W_2$ (b) $V_2 = V_2 W_2 W_2$ (c) $V_3 = V_2 W_2$ (d) $V_4 = V_2 W_2$ (e) $V_1 = V_2 W_2$ (f) $V_2 = V_2 W_2$ (f) $V_3 = V_2 W_2$ (f) $V_4 = V_2 W_2$ (f) $V_2 = V_2 W_2$ (f) $V_3 = V_3 W_2$ (f) $V_4 = V_2 W_2$ (f) $V_4 = V_4 W_4$ (f) $V_4 = V_4 W$

 $[T \cdot T^{-1}]_{\beta}^{\beta} = [Idv]_{\beta}^{\beta} \qquad [T^{-1} \cdot T]_{\alpha}^{\alpha} = [Idv]_{\alpha}^{\alpha}$ $I_{\alpha}^{\beta} \qquad I_{\alpha}^{\beta} \qquad I_{\alpha}^{\beta} = [Idv]_{\alpha}^{\alpha}$

In In [NOT YET DONE]

(=) Assume that $[T]_{d}^{\beta}$ is an invertible matrix

Try to prove directly that $T:V\to W$ is 1-1 and onto injective surjective

Injective: Suppose that $v\in V$ and T(v)=0 $0=[T(v)]_{e}=[T]_{d}^{\beta}[v]_{d} \Longrightarrow [v]_{d}=0$ $\Longrightarrow V=0\Longrightarrow \ker(T)=\{0\}$

Swjective: Supose WEW

 $S: W=\text{span} \{1+x^2+x^3,1+x^4x^2,3+x^4+3x^2+2x^2,-x^4x^3\}$ Determine the dimension of W and find an isomorphism $T: W \to R^0$. We would like to "modify" the whole spanning set to obtain another spanning set consisting of linearly independent vectors, since the new spanning set would then be a basis of W.

W=span $\{1+x^2+x^3,x-x^3\}$ Note that $1+x^2+x^3$ and $x-x^3$ are linearly indep. So these vectors from a basis of W.