

Sudoku is Hard

Eve Routledge

Durham University

NP complete

Reduction

karp reduction

Sudoku \leq_p Latin Square \leq_p Triangulate a Tripartite Graph \leq_p 3-SAT \leq_p SAT

Defⁿ: A valid **Sudoku** puzzle is a function $S: i, j \to x$ for values i,j $\in \{1, ..., D^2\}$ and $x \in \{0, ..., D^2\}$ satisfying the following:

- for all $a, b, c \in \{1, ..., D^2\}$ with $S(a, b) \neq 0$ and $S(a, c) \neq 0$, then $S(a, b) \neq S(a, c)$
- for all $a,b,c\in\{1,...,D^2\}$ with $S(a,b)\neq 0$ and $S(c,b)\neq 0$, then $S(a,b)\neq S(c,b)$
- for all $a, b, c, d \in \{1, ..., D^2\}$ with $a \mod D = c \mod D$, $b \mod D = d \mod D$, $S(a, b) \neq 0$ and $S(c, d) \neq 0$, then $S(a, b) \neq S(a, c)$

It is completed if $x \in \{1, ..., D\}$.

Defⁿ: A valid **Latin Square** puzzle is a function $L:i,j\to x$ for values $i,j\in\{1,..,D\}$ and $x\in\{0,...,D\}$ satisfying the following:

- for all $a, b, c \in \{1, ..., D\}$ with $L(a, b) \neq 0$ and $L(a, c) \neq 0$ then $L(a, b) \neq L(a, c)$
- for all $a, b, c \in \{1, ..., D\}$ with $L(a, b) \neq 0$ and $L(c, b) \neq 0$ then $L(a, b) \neq L(c, b)$

It is complete or solved if for all $i, j \in \{1, ..., D\}$, $L(i, j) \neq 0$.

Defⁿ: A graph G = (V, E) is tripartite if a partition V_1, V_2, V_3 exists such that the vertices are split into three sets with no edges between vertices that belong to the same set, i.e for all $(v_i, v_j) \in E$ if $v_i \in V_i$ then $v_j \notin V_i$.

Defⁿ: A **Triangulation** T of a graph G is a way to divide all edges into disjoint subsets T_i , each forming a triangle $(T_i = \{(v_1, v_2), (v_2, v_3), (v_3, v_1)\})$.

Defⁿ: A **boolean expression** With a set of boolean variables B and a collection of clauses C, with at most 3 literals (a literal is any $b \in B$ or its negation \bar{b}) in each, does a valid truth assignment exist that satisfies all clauses in C?

Cook Levin Theorem

SAT is NP-complete.

https://www.example.com

Sudoku \leq_v Latin Square

Lemma: Let S be a Sudoku problem with the following construction

$$S(i,j) = \begin{cases} 0 & \text{when } (i,j) \in S_l \\ ((i-1 \bmod n)n + \lfloor i-1/n \rfloor + j-1) \bmod n^2 + 1 & \text{otherwise} \end{cases}$$
 (1)

where $S_l = \{(i,j) | \lfloor i-1/n \rfloor = 0 \text{ and } (j \mod n) = 1\}$. Then there exists an augmentation S' to complete the sudoku puzzle if and only if the square L such that L(i,j/n) = (S'(i,j)-1)/n+1 for all $(i,j) \in S_l$ is a Latin square.

1	2	2	1	5	6	7	Q	Q		
1		J	4)	0	/	0	7		
4	5	6	7	8	9	1	2	3		
7	8	9	1	2	3	4	5	6		
2	3	4	5	6	7	8	9	1		
5	6	7	8	9	1	2	3	4		
8	9	1	2	3	4	5	6	7		
3	4	5	6	7	8	9	1	2		
6	7	8	9	1	2	3	4	5		
9	1	2	3	4	5	6	7	8		
$\overline{(i,i)}$	(i,j), n=3, blanks removed									

	2	3		5	6		8	9		
	5	6		8	9		2	3		
	8	9		2	3		5	6		
2	3	4	5	6	7	8	9	1		
5	6	7	8	9	1	2	3	4		
8	9	1	2	3	4	5	6	7		
3	4	5	6	7	8	9	1	2		
6	7	8	9	1	2	3	4	5		
9	1	2	3	4	5	6	7	8		
S(i,j)										

Latin Square \leq_p Triangulated Tripartite Graph

Observe completing a partial Latin square is equivalent to triangulating tripartite graph, we map the Latin square to this through the following: given tripartite graph G=(V,E) label vertices in V_1 with distinct lables $\{c_1,...c_n\}$ and label vertices in V_3 with distinct lables $\{e_1,...e_n\}$. Add edges such that:

- If L(i, j) = 0 then add the edge (r_i, c_j)
- If for all $i \in [0,...,n]$ and constant j, $L(i,j) \neq k$ then add the edge (r_i,e_k)
- If for all $j \in [0,...,n]$ and constant i, $L(i,j) \neq k$ then add the edge (c_j,e_k)

This graph has a triangulation iff L(i,j) can be solved.

Let us show every uniform tripartite graph is the above formulation of a Latin square.

Defn: A Latin framework LF for tripartite graph G, size (r,s,t) is a r by s array with values [1,...,t]. With constraints:

- Each row/column contain each element only once.
- If $(r_i, c_j) \in E$ then LF(i,j)=empty else LF(i,j)= k $k \in [1, ..., t]$
- If $(r_i, e_k) \in E$ then for constant i $LF(i, j) \neq k$
- If $(c_i, e_k) \in E$ then for constant j $LF(i, j) \neq k$

If r=s=t then LF is a latin square which can be completed iff G has a triangle partition.

Lemma: For graph G=(V,E) with |V|=n, there's a Latin framework of size (n,n,2n).

Define LF an n by n array. For $(r_i, c_j) \in E$ LF(i, j) = 0 else LF(i, j) = 1 + n + ((i + j)modn). LF is a latin framework. \square

Lemma: Latin framework L (r,s,t) for uniform tripartite graph G. R(k) = the number of times k appears in L plus half $|e_k|$. Whenever $R(k) \ge r+s-t$ for $1 \le k \le t$, L can be extended to (r,s+1,t) to give L' in which $R'(k) \ge r+s+1-t$ for all $1 \le k \le t$. Lemma: Latin framework of size (r,s,s) can be extended to a Latin framework size (s,s,s).

Given a tripartite graph G, if it is not uniform then no triangulation exists, else we apply above to produce a latin framework of size (2n,2n,2n) in polynomial time. This is a Latin square which can be completed iff G has a triangulation. The latin square problem has been reduced to the triangulating a tripartite graph problem. \square

Triangulated Tripartite Graph \leq_{v} 3 SAT

3 SAT \leq_p SAT

Given a truth assignment t check each clause is satisfied, if all are satisfied return True else False,

Stochastic Methods

References

eve.routledge@durham.ac.uk