Семинар 1. Функции нескольких переменных

Первая большая тема этого семестра — функции нескольких переменных.

Если в случае одномерного анализа функция f(x) зависела только от одной переменной x, определенной в некой области действительных чисел X ($x \in X$), где X вложено в \mathfrak{R} ($X \subseteq \mathfrak{R}$), то в случае увеличения размерности наша функция уже начинает зависеть от нескольких переменных x_1, x_2, \ldots, x_m : $u = f(x_1, x_2, \ldots, x_m)$. Упорядоченная совокупность чисел (x_1, x_2, \ldots, x_m) является точкой в n-мерном координатном пространстве E^m (m-пространство, в котором определено понятие расстояния между двумя любыми точками), числа же называются координатой точки в n-мерном пространстве. Будем обозначать точку вот так: $M(x_1, x_2, \ldots, x_m)$.

Определение 1. Пусть $\{M\}$ - множество точке в пространстве E^m . Если каждой точке $M\in\{M\}$ поставлено в соответствие некоторое число u, то говорят, что определена функция u=f(M) или $u=f(x_1,x_2,\ldots,x_m)$ на множестве $\{M\}$. $\{M\}$ называется областью определения функции f(M) и обозначают как D(f). Совокупность значений функции $\{u\}$ называется областью значений функции f(M).

Замечание. В реальной жизни функции многих переменных встречаются гораздо чаще функций одной переменной. Мы живем в трехмерном (+ время) пространстве; функция температуры зависит не только от времени дня, но и от сезона, широты и т.д.; стоимость акции компании Apple зависит не только от их уровня продаж, но и от имиджа компании, психологии масс хомячков на рынке и политической ситуации в мире.

Многомерный анализ в точности повторяет все теоремы пределов, последовательностей и прочей базовой теории одномерного анализа. Подробности будут появляться по мере необходимости, также всю теорию можно найти в приложении.

Области определения и линии уровня

Перейдем к первому мини-разделу. Здесь нам понадобится еще несколько определений:

Определение 2. Точка A называется *внутренней точкой* множества $\{M\}$, если существует сколь угодно малая область, содержащая точку A и принадлежащая множеству.

Определение 3. Точка A называется *граничной точкой* множества $\{M\}$, если какую бы малую область, содержащая точку A, вы бы ни выбрали, выбранная область все равно будет частично выходить за пределы множества $\{M\}$. Граничная точка может как принадлежать множеству, так и не принадлежать.

Определение 4. Множество называется $\{M\}$ называется *ограниченным*, если все его точки содержатся в некотором шаре. Что такое шар в многомерном пространстве, додумайте сами C:

Определение 5. Множество называется $\{M\}$ называется *открытым*, если все его точки внутренние. Иными словами, если граничных точек в этом множестве нет.

Определение 6. Множество называется $\{M\}$ называется замкнутым, если оно содержит все свои граничные точки.

Определение 7. Линией уровня функции называется уравнение

$$u=f(x_1,x_2,\ldots,x_m)=c,$$

где c — произвольное число.

Линий уровня бесконечно много, и через каждую точку области определения можно провести линию уровня. Линии уровня легко понять, если вспомнить, как на различных картах отмечается высота рельефа:

Непрерывные линии показывают, где высота имеет одну и ту же величину. И все это на двумерной плоскости! Здесь высота является функцией широты и долготы: h = h(x, y).

Приступим теперь к первому заданию.

Задание 1

- **1.** Дана функция $z(x; y) = \lg(2 xy)$.
- а) Найдите область определения функции D(f). Уточните, каково множество граничных точек этой области. Определите, является ли D(f) открытым или замкнутым множеством. Изобразите область D(f) на чертеже.
- б) Выпишите уравнения линий уровня этой функции для нескольких значений функции и изобразите их на чертеже.

Первый пункт. Область определения ищется точно так же, как и в одномерном анализе. Смотрим, какие ограничения есть у функции. Ограничение лишь одно — аргумент логарифма не может быть отрицательным или равным нулю:

$$D(f) = \{x, y : 2 - xy > 0\}.$$

Множеством граничных точек этой области будет множество всех точек, удовлетворяющих уравнению

$$2 - xy = 0$$
.

Иными словами, это множество является обычной гиперболой $y=\frac{2}{x}$. Из-за *строгого* неравенства в области определения множество граничных точек не принадлежит области определения, поэтому область определения является *открытым* множеством. Сама же область определения — это просто пространство *между* двумя ветками гиперболы.

Второй пункт. Линии уровня рисуются следующим образом. У нас есть уравнение линий уровня:

$$\lg(2-xy)=c$$

В качестве c выбираем несколько различных чисел и рисуем график полученной функции, например, lg(2-xy)=1. Вот что получается:

На линиях уровня указаны соответствующие им значения c. По сути, это и есть значение искомой функции, которое оно не изменяет вдоль какой-то линии.

Частные производные (ЧП)

Идем дальше.

Пусть $M(x_1,x_2,\ldots,x_m)$ — внутренняя точка области определения функции $u=f(x_1,x_2,\ldots,x_m).$ Рассмотрим *частное приращение* этой функции в точке M по аргументу x_k после приращения этого аргумента на Δx_k :

$$\Delta_{x_k} u = f(x_1, \dots, x_{k-1}, x_k + \Delta x_k, x_{k+1}, \dots, x_m) \ - f(x_1, \dots, x_{k-1}, x_k, x_{k+1}, \dots, x_m)$$

Определение 8. Частной производной (ЧП) функции $u=f(x_1,x_2,\ldots,x_m)$ по аргументу x_k в точке M называется

$$\lim_{\Delta x_k o 0} rac{\Delta_{x_k} u(M)}{\Delta x_k}$$

В случае функции двух переменных z=f(x,y) ЧП по x и y обозначаются так:

$$\frac{\partial z}{\partial x}(M)$$
 и $\frac{\partial z}{\partial y}(M).$

Замечание. Чтобы найти ЧП функции по какой-то переменной, надо зафиксировать все остальные переменные (т.е. сделать вид, что они постоянные величины) и найти производную так, как это делают с функцией одной переменной.

Определение 9. Первым дифференциалом функции $u=f(x_1,x_2,\ldots,x_m)$ в точке M называется следующее выражение:

$$du = rac{\partial u}{\partial x_1}(M) dx_1 + \ldots + rac{\partial u}{\partial x_m}(M) dx_m$$

В случае двух переменных x, y:

$$dz = rac{\partial z}{\partial x}(M)dx + rac{\partial z}{\partial y}(M)dy$$

Любая задача на поиск дифференциала является всего лишь задачей на поиск всех ЧП функции.

Определение 10. ЧП второго порядка называется ЧП от ЧП первого порядка (no way...).

Это значит, что мы можем взять сначала ЧП по одной переменной, а затем по другой, или дважды по одной. В первом случае вторая ЧП обозначается вот так и называется смешанной:

$$\frac{\partial^2 u}{\partial x_k \partial x_l}(M)$$

Во втором случае вот так:

$$\frac{\partial^2 u}{\partial x_k^2}(M)$$

Интересно, а, например, $\frac{\partial^2 u}{\partial x_k \partial x_l}(M) = \frac{\partial^2 u}{\partial x_l \partial x_k}(M)$? Равны ли вторые производные, которые взяты в разных порядках?

Теорема (о равенстве смешанных производных): Достаточным условием равенства смешанных производных функции в некоторой окрестности точки является их непрерывность.

Получается, что в большинстве задач мы можем почти не волноваться о том, в каком порядке брать производные, разницы не будет.

Определение 9. Вторым дифференциалом функции z=f(x,y) (ввиду экономии бумаги и нервов запишем для функции двух переменных) в точке M(x,y) называется следующее выражение:

$$|d^2z|_M=rac{\partial^2z}{\partial x^2}(M)dx^2+2rac{\partial^2z}{\partial x\partial y}(M)dxdy+rac{\partial^2z}{\partial x^2}(M)dy^2$$

Итого, чтобы найти второй дифференциал, нужно найти вторые ЧП функции.

Задание 2

Найдите первый и второй дифференциалы функции $f(x;y)=2x^3-4x^2y-4y-5$ в точке A(1;-2) .

1. Сначала ищем ЧП первого порядка (фиксируем переменные, по которым не дифференцируем!):

$$rac{\partial f(x,y)}{\partial x} = 6x^2 - 8xy, \ rac{\partial f(x,y)}{\partial y} = -4x^2 - 4.$$

2. Получаем формулу для дифференциала первого порядка:

$$df = (6x^2 - 8xy)dx + (-4x^2 - 4)dy.$$

3. Теперь находим df в точке A(1;-2):

$$df|_{A(2;-1)}=(6\cdot 2^2-8\cdot 2\cdot (-1))dx+(-4\cdot 2^2-4)dy=40dx-20dy.$$

4. Находим ЧП второго порядка:

$$egin{aligned} rac{\partial^2 f(x,y)}{\partial x^2} &= 12x - 8y, \ rac{\partial^2 f(x,y)}{\partial y^2} &= 0, \ rac{\partial^2 f(x,y)}{\partial x \partial y} &= -8x. \end{aligned}$$

5. Получаем формулу для дифференциала второго порядка:

$$d^2f = (12x - 8y)dx^2 + 0 \cdot dxdy + (-8x)dy^2 = (12x - 8y)dx^2 - 8xdy^2.$$

6. Теперь находим d^2f в точке A(1;-2):

$$d^2f|_{A(2;-1)}=(12\cdot 2-8\cdot (-1))dx^2-8\cdot 1\cdot dy^2=32dx^2-8dy^2.$$

Вот и все.

Задание 4

Найдите первый и второй дифференциалы функции $f(x;y) = \sin(4xy)$ в точке $A(1; \frac{1}{2}\pi)$.

Тут все аналогично, так что просто посмотрим, как вычисляются ЧП для такой функции:

$$rac{\partial f(x,y)}{\partial x} = 4y\cos(4xy), \ rac{\partial f(x,y)}{\partial y} = 4x\cos(4xy).$$

В каждом случае любой коэффициент, в котором нет переменной, по которой берется производной, считается константой, а значит, производная берется как обычная сложная функция одной переменной.

Производные по направлению

Как мы помним, производная показывает скорость изменения функции в данной точке. ЧП же показывает скорость изменения функции при изменении переменной, по которой идет дифференцирование. Теперь зададимся таким вопросом: что, если мне надо найти то, как ведет себя функция (возрастает или убывает) при движении вдоль определенного направления? Для решения такой задачи используют производные по направлению.

Пусть мы имеем $\mathit{вектор}\ \vec{l} = (l_x, l_y)$ в двумерном пространстве, вдоль которого мы хотим узнать информацию об изменении функции z = f(x,y). Этот вектор находится в плоскости ХОҮ, мы же двигаемся вдоль направления этого вектора, начиная с точки M, в которой нам и нужно найти производную по направлению. Определим также единичный вектор, коллинеарный (т.е. сонаправленный) вектору $\vec{l} : \vec{e} = \frac{\vec{l}}{|\vec{l}|}$. Производную по направлению будем вычислять следующим образом (формальное определение находится в прилагаемой литературе):

$$rac{\partial z(M)}{\partial ec e} = rac{\partial z(M)}{\partial x} e_x + rac{\partial z(M)}{\partial y} e_y.$$

Для удобства введем еще одно определение.

Определение 9. Градиентом функции z = f(x,y) в точке M(x,y) называется вектор:

$$|gradz|_{M(x,y)} = (rac{\partial z(M)}{\partial x}; rac{\partial z(M)}{\partial y})$$

Градиент показывает направление наибольшего роста функции в данной точке. Тогда можно заметить, что производная по направлению можно переписать в виде скалярного произведения двух векторов:

$$rac{\partial z(M)}{\partial ec e} = gradz|_{M(x,y)} \cdot ec e.$$

Найдите производную функции $f(x;y)=-y^2-4xy^2-4x^4$ в точке A(-2;2) в направлении, составляющем угол $\alpha=5\pi/6$ с положительным направлением оси Ox.

Чтобы найти производную по направлению, необходимо, прежде всего, найти то самое направление, по которому мы ищем производную. То есть нам необходимо найти единичный вектор, составляющий угол $\alpha=5\pi/6$ с положительным направлением оси Ox. Рисуем чертеж с указанием всех углов и используем понятие направляющих косинусов:

Теперь находим ЧП:

$$rac{\partial f(x,y)}{\partial x} = -4y^2 - 16x^3, \ rac{\partial f(x,y)}{\partial y} = -2y - 8xy.$$

Находим ЧП в точке A(-2; 2):

$$rac{\partial f(x,y)}{\partial x}|_{A(-2;2)} = -4\cdot 2^2 - 16\cdot (-2)^3 = -16 + 128 = 112, \ rac{\partial f(x,y)}{\partial y}|_{A(-2;2)} = -2y - 8xy = -2\cdot 2 - 8\cdot (-2)\cdot 2 = -4 + 32 = 28.$$

Теперь все подставляем в формулу для производной по направлению:

$$rac{\partial f}{\partial ec{e}}|_{A(-2;2)} = rac{\partial f(A)}{\partial x}e_x + rac{\partial z(A)}{\partial y}e_y = 112\cdot(-rac{\sqrt{3}}{2}) + 28\cdotrac{1}{2} = -56\sqrt{3} + 14 = 14(-4\sqrt{3}+1).$$

Дополнительно запишем градиент функции в точке A в явном виде:

$$gradf|_{A(-2,2)} = (112, 28).$$

Полезная литература и ссылки

- 1. Ссылка на код с визуализацией
- 2. Mathprofi
- 3. <u>Линии уровня</u>
- 4. *Математический анализ в вопросах и задачах*, Бутузов В.Ф., Крутицкая Н.Ч., Медведев Г.Н., Шишкин А.А.