

SEM

CS 8351

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

UNIT NO.3

3.3 ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS

Version: 1.0

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

ANALYSIS OF CLOCKED SEQUENTIAL CIRCUITS SEQUENTIAL CIRCUITS

- Consist of a combinational circuit to which storage elements are connected to form a feedback path
- State the state of the memory devices now, also called **current state**
- Next states and outputs are functions of inputs and present states of storage elements

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

SEQUENTIAL CIRCUIT ANALYSIS

- The behavior of a clocked sequential circuit is determined from
 - The inputs
 - The outputs
 - The state of its flip-flops
 - The outputs and the next state are both a function of the inputs and the present state
 - To analyze a sequential circuit, we can use
 - State equations
 - State table
 - State diagram
 - Flip-Flop input equations

STATE EQUATIONS

- Specify the next state as a function of present state and inputs.
- Also called transition equation.

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Analyze the combinational part directly

Consider the logic diagram:

EX:

$$A(t+1) = A(t)x(t) + B(t)x(t)$$

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'(t) x(t)$$

(ie)
$$B(t+1) = A'x$$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

$$y(t)=[A(t)+B(t)] x(t)$$

(ie) $y=(A+B)x'$

STATE TABLE

- Enumerate the time sequence of inputs, outputs, and flip-flop states
 - Also called transition table
 - Similar to list the truth table of state equations
- Consist of four sections
 - Present state, input, next state, and output
- A sequential circuit with m flip-flops and n inputs need 2^{m+n} rows in the state table

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Present state		input	Next state		output	
Α	В	х	А В		у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

SECOND FORM OF STATE TABLE

- The state table has only three section: present state, next state, and output
- The input conditions are enumerated under next state and output sections

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Present		Next State				Output	
State		X=	=0	X=1		X=0	X=1
Α	В	Α	В	АВ		Υ	Υ
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

STATE DIAGRAM

- Graphically represent the information in a state table
 - Circle: a state (with its state value inside)
 - Directed lines: state transitions (with inputs/outputs above)
- Ex: starting from state 00
 - If the input is 0, it stays at state 00 with output=0
 - If the input is 1, it goes to state 01 with output=0

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

FLIP-FLOP INPUT EQUATIONS

- To draw the logic diagram of a sequential circuit, we need
 - The type of flip-flops
 - A list of Boolean expressions of the combinational circuits
- The Boolean functions for the circuit that generates external outputs is called output equations
- The Boolean functions for the circuit that generates the inputs to flip-flops is flip-flop input equations
- Sometimes called excitation equations
- The flip-flop input equations provide a convenient form for specifying the logic diagram of a sequential circuit

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Input: $D_A = Ax + Bx$

 $D_B = A'x$

Output:y=(A+B)x'

ANALYSIS WITH OTHER FLIP-FLOPS

- The sequential circuit using other flip-flops such as JK or T type can be analyzed as follows
- Determine the flip-flop input equations in terms of the present state and input variables
- List the binary values of each input equation
- Use the corresponding flip-flop characteristic table to determine the state values in the state table

ANALYSIS WITH JK FLIP-FLOPS (1/2)

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

Step 1: input equations

$$J_A=B$$
,
 $K_A=Bx'$
 $J_B=x'$
 $K_B=A \oplus x'$

Step 2: state equations

$$A(t+1)= JA' + K'A$$

 $= BA' + (Bx')'A$
 $= A'B + AB' + Ax$
 $B(t+1)= JB' + K'B$
 $= x'B' + (A \oplus x)'B$
 $B(t+1)= B'x' + ABx + A'Bx'$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

STEP 3:STATE TABLE

	Present state		Input	Next Flip-Flop state Inputs					
	Α	В	Х	Α	В	$\mathtt{J}_{\mathtt{A}}$	KΑ	J_B	K _B
ı	0	0	0	0	1	0	0	1	0
	0	0	1	0	0	0	0	0	1
	0	1	0	1	1	1	1	1	0
	0	1	1	1	0	1.	0	0	1
ĺ	1	0	0	1	1	0	0	1	1
j	1	0	1	1	0	0	0	0	0
I	1	1	0	0	0	1	1	1	<u>,</u> 1
I	1	1	1	1	1	1	0	0	0

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

STEP 4: STATE DIAGRAM

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

ANALYSIS WITH T FLIP-FLOPS (1/2)

Step 1: input equations

$$T_A = Bx$$

$$T_B = x$$

Step 2: state equations

$$A(t+1) = T'A + TA'$$

= $(Bx)'A + (Bx)A'$
= $AB' + Ax' + A'Bx$

$$B(t+1)=T'B+TB'$$

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

= x'B + xB'

 $= x \oplus B$

STEP 3: STATE TABLE

Present state		Input	Next state		Output
Α	В	X	4	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	1	0	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	1

STEP 4: STATE DIAGRAM

DIGITAL PRINCIPLES AND SYSTEM DESIGN (Common to CSE & IT)

MEALY AND MOORE MODEL

- Mealy model :
 - The output is a function of **both** the present state and input
 - The output may change if the inputs change during a clock cycle

MOOREMODEL

The output is a function of the **present state only**The output are **synchronized** with the clock

