— Plano de Ensino 2022.2 —

Código	DCC024
Disciplina	Linguagens de Programação
Turma	SI
Professor	Haniel Barbosa
Horário	2a/4a 19:00-20:40
Sala	2010, ICEx

Ementa. The purpose of this course is to study fundamentals concepts in programming languages and major tools and techniques to implement them. This includes a number of programming paradigms, namely: functional, imperative, and logic, as well as general aspects such as syntax specification and informal semantic models; binding and scoping; types and type systems; control structures; data abstraction; procedural abstraction and parameter passing; higher-order functions; and memory management. The course has a strong implementation component, with three languages being covered: SML, Python, and Prolog. No prior familiarity with these languages is assumed in this course. Learning them will have the secondary effect of exposing students to the different programming paradigms.

Programa.

Class	Date	Content	Category
1	22/08 (Mon)	Course Introduction & Overview	
2	24/08 (Wed)	SML Introduction	
3	29/08 (Mon)	Pattern Matching in SML	
4	31/08 (Wed)	ADTs in SML	
5	05/09 (Mon)	Polymorphism (via Zoom)	
-	12/09 (Mon)	No class	
6	14/09 (Wed)	Higher-Order Functions & Combinators	
7	19/09 (Mon)	Syntax and Semantics (Part 1)	
8	21/09 (Wed)	Syntax and Semantics (Part 2)	
9	26/09 (Mon)	Bindings and scope	
10	28/09 (Wed)	Closures	
11	03/10 (Mon)	Formal Semantics: Operational Semantics	
12	$05/10 \; (Wed)$	Program Equivalence as SMT	
_	$05/10 \; (Wed)$	Project 1 out	
13	$10/10 \; (Mon)$	Formal Semantics: λ -calculus	
14	$15/10 \; (Sat)$	Revision on Formal languages (async)	
15	$17/10 \; (Mon)$	Exam 1	
16	$19/10 \; (Wed)$	Tutorial Project 1	
17	22/10 (Sat)	Python Introduction (async)	
18	$24/10 \; (Mon)$	Memory Management (Part 1)	
19	$26/10 \; (Wed)$	Memory Management (Part 2)	
20	$31/10 \; (Mon)$	Abstraction, Abstract Data Types and Object Orientation	
_	31/10 (Mon)	Project 2 out	
_	06/11 (Sun)	Project 1 due	
21	07/11 (Mon)	Tutorial Project 2	
22	09/11 (Wed)	Error Handling	
23	14/11 (Mon)	Parameter Passing	
24	16/11 (Wed)	Prolog Introduction	
25	21/11 (Mon)	Unification and Resolution	
26	23/11 (Wed)	Numeric Predicates in Prolog	
27	26/11 (Sat)	Problem solving with Prolog (async)	

Bibliografia. Modern Programming Languages: A Practical Introduction, by Adam Webber.

Material de apoio. https://homepages.dcc.ufmg.br/~hbarbosa/teaching/ufmg/2022-2/lp/

Avaliações.

1	Prova 1	25	17/10
2	Prova 2	30	23/11
3	Projeto 1	15	06/11
3	Projeto 2	20	04/12
4	Listas de exercício	10	