Frühjahr 15 Themennummer 1 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Bestimmen Sie (mit Nachweis) für jedes $a \in \mathbb{R}$ das globale Minimum der Funktion

$$f: H \to \mathbb{R}, \quad f(x,y) := x^2 - ax + y^2, \quad \text{wobei} \quad H := \{(x,y) \in \mathbb{R}^2 \mid x + y \ge 1\},$$

falls f ein solches Minimum besitzt. Geben Sie in diesen Fällen alle Stellen an, an denen das Minimum angenommen wird.

Lösungsvorschlag:

Wir zeigen zunächst, dass für jedes $a \in \mathbb{R}$ ein globales Minimum existiert und angenommen wird. Für jedes $a \in \mathbb{R}$ ist $f(x,y) = (x-\frac{a}{2})^2 - \frac{a^2}{4} + y^2$, wir betrachten die Menge $M = \{(x,y) \in H : f(x,y) \leq f(0,1)\} = H \cap \{(x,y) \in \mathbb{R}^2 : f(x,y) \leq 1\}$. Diese Menge enthält (0,1) ist also nicht leer. Sie ist abgeschlossen als Schnitt der abgeschlossenen Menge H, die das Urbild vom abgeschlossenen Intervall $[1,\infty)$ unter der stetigen Funktion $\mathbb{R}^2 \ni (x,y) \mapsto x+y$ ist, und der abgeschlossenen Menge $f^{-1}((-\infty,1])$, die wieder Urbild eines abgeschlossenen Intervalls unter einer stetigen Funktion ist. Zuletzt ist die Menge beschränkt, denn es gilt $f(x,y) \leq 1 \iff (x-\frac{a}{2})^2 + y^2 \leq 1 + \frac{a^2}{4} \iff (x,y) \in \overline{B_{\sqrt{1+\frac{a^2}{4}}}((\frac{a}{2},0))}$ (beachte $1+\frac{a^2}{4} \geq 1 > 0$), also ist die Menge M in einer abgeschlossenen Kugel enthalten und daher beschränkt. Als Teilmenge des \mathbb{R}^2 ist M also kompakt und die stetige Funktion f nimmt darauf ein Minimum an. Sei $x_0 \in M$ die Stelle an der das Minimum angenommen wird, dann gilt $f(x) \geq f(x_0)$ für alle $x \in M$ und für $x \in H \setminus M$ gilt $f(x) > f(0,1) \geq f(x_0)$, also ist $f(x_0)$ sogar das Minimum von f auf H.

Wir bestimmen nun das Minimum, dafür untersuchen wir $M^{\circ} = \{(x,y) \in \mathbb{R}^2 : x+y>1\}$ und $\partial H = \{(x,y) \in \mathbb{R}^2 : x+y=1\} = \{(x,1-x) \in \mathbb{R}^2 : x \in \mathbb{R}\}$ getrennt. Falls das Minimum in H° angenommen wird, handelt es sich um einen stationären Punkt. Es gilt dann also $\nabla f(x,y) = (2x-a,2y) = 0$, also $x = \frac{a}{2}, y = 0$. Für $\frac{a}{2} + 0 > 1$ liegt der Punkt auch in H° . Tatsächlich gilt $f(x,y) = (x-\frac{a}{2})^2 - \frac{a^2}{4} + y^2 \geq -\frac{a^2}{4}$ für alle $(x,y) \in \mathbb{R}^2$. Der Punkt $(\frac{a}{2},0)$ ist also immer eine globale Minimalstelle und zwar die Einzige, wenn er in H enthalten ist. Das ist genau für $a \geq 2$ der Fall.

Wenn a < 2 ist, kann das Minimum also nicht im Inneren der Menge liegen, sondern muss am Rand angenommen werden. Wir untersuchen die quadratische Funktion $g: \mathbb{R} \to \mathbb{R}, g(x) = f(x, 1-x) = x^2 - ax + (1-x)^2 = 2x^2 - (2+a)x + 1$. Durch quadratische Ergänzung findet man $g(x) = 2(x - (\frac{1}{2} + \frac{a}{4}))^2 + 1 - 2(\frac{1}{2} + \frac{a}{4})^2$. Diese Funktion besitzt die globale Minimalstelle $x = \frac{1}{2} + \frac{a}{4}$ mit Minimalwert $1 - 2(\frac{1}{2} + \frac{a}{4})^2$. Für a < 2 nimmt die Funktion f ihr Minimum auf H also im Punkt $(\frac{1}{2} + \frac{a}{4}, -\frac{1}{2} - \frac{a}{4})$ an und besitzt den Minimalwert $1 - 2(\frac{1}{2} + \frac{a}{4})^2$.

$$\min_{(x,y)\in H} f(x,y) = \begin{cases} -\frac{a^2}{4}, a \geq 2 & \text{mit Minimalstelle } (\frac{a}{2},0), \\ 1-2(\frac{1}{2}+\frac{a}{4})^2, a < 2 & \text{mit Minimalstelle } (\frac{1}{2}+\frac{a}{4},-\frac{1}{2}-\frac{a}{4}). \end{cases}$$
 Man hätte diese Aufgabe auch geometrisch lösen können: Die Niveaulinien von f

Man hätte diese Aufgabe auch geometrisch lösen können: Die Niveaulinien von f sind Kreise um den Mittelpunkt $(\frac{a}{2},0)$, für $a \geq 2$ liegt der Mittelpunkt des Kreises in H. Für a < 2 liegt der Mittelpunkt außerhalb und das Minimum wird angenommen, sobald der Kreis die Gerade y = 1 - x tangiert. Das Minimum wird im Berührpunkt angenommen.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$