Versuchsbericht zu

E2 – Millikan

Gruppe Mi 10

Alex Oster(a_oste16@uni-muenster.de)

Jonathan Sigrist(j_sigr01@uni-muenster.de)

durchgeführt am 17.01.2018 betreut von Johann Preuß

19. Januar 2018

Inhaltsverzeichnis

1	Kurzfassung Bestimmung der Elementarladung nach Millikan		1
2			1
	2.1 Method	en	1
	2.1.1	Aufbau	1
	2.1.2	Unsicherheiten	1
	2.2 Datena	nalyse	1
	2.3 Diskuss	ion	1
3	Schlussfolgerung		2
4	Anhang		3
	4.1 Unsiche	rheitsrechnung	3

1 Kurzfassung

2 Bestimmung der Elementarladung nach Millikan

- 2.1 Methoden
- 2.1.1 Aufbau
- 2.1.2 Unsicherheiten
- 2.2 Datenanalyse
- 2.3 Diskussion

3 Schlussfolgerung

4 Anhang

4.1 Unsicherheitsrechnung

$$x = \sum_{i=1}^{N} x_i; \quad u(x) = \sqrt{\sum_{i=1}^{N} u(x_i)^2}$$

Abbildung 1: Formel für kombinierte Unsicherheiten des selben Typs nach GUM.

$$f = f(x_1, \dots, x_N); \quad u(f) = \sqrt{\sum_{i=1}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$

Abbildung 2: Formel für sich fortpflanzende Unsicherheiten nach GUM.