SIMRAN KAUR

skaur@princeton.edu | kaursim.com

EDUCATION

Princeton University

Ph.D. student in Computer Science Department.

Princeton, NJ

2022 - Present

Carnegie Mellon University

B.S. Artificial Intelligence, School of Computer Science.

GPA: 3.95/4.00

Pittsburgh, PA 2018-2022

Senior Thesis: "On the Dubious Relationship between Flatness and Generalization" Advised by Zachary Lipton.

PUBLICATIONS

[1] Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability [Link]
Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, Zico Kolter, Ameet Talwalkar. In Proceedings of the 9th International Conference on Learning Representations (ICLR), 2021.

[2] GD on Neural Networks Typically Occurs at the Edge of Stability [Link]
Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, Zico Kolter, Ameet Talwalkar. In Opt2020: 12th Annual Workshop on Optimization for Machine Learning (NeurIPS), 2020.

[3] Are Perceptually-Aligned Gradients a General Property of Robust Classifiers? [Link]

Simran Kaur, Jeremy Cohen, Zachary C. Lipton. In the Science Meets Engineering of Deep Learning Workshop (NeurIPS), 2019.

EXPERIENCE

RESEARCH ASSISTANT, ACMI LAB (CMU)

June 2019 - Aug 2022

- Investigated targeted adversarial attacks against a robust classifier trained under randomized smoothing
- Demonstrated that the behavior of gradient descent in non-convex settings is inconsistent with conventional optimization theory
- Currently investigating (i) why minibatch stochastic gradient descent generalizes better than full-batch gradient descent (GD) and (ii) the role of the train loss Hessian in the generalization ability of models trained via stochastic gradient descent (SGD) and full-batch gradient descent (GD) and (ii) why minibatch SGD generalizes better than GD

RESEARCH INTERN, ABRIDGE INC

Summer 2021

 Used machine learning and NLP to extract and classify symptom mentions from doctor patient transcripts; working towards automating ROS section of SOAP Notes for doctors

TEACHING

Carnegie Mellon University

Teaching Assistant for 15281 Artificial Intelligence: Representation and Problem Solving.
 Spring 2020, Fall 2020, Spring 2021*, Fall 2021*, Spring 2022*.
 Instructors: Stephanie Rosenthal, Patrick Virtue, Zico Kolter.

* - denotes semester serving as Head Teaching Assistant

Teaching Assistant for 10301/10601 Introduction to Machine Learning (Undergraduate and Graduate Level).
 Summer 2020.
 Instructors: Patrick Virtue.

HONORS

CMU Senior Leadership Recognition Recipient
Phi Beta Kappa
CMU SCS College Honors (successful completion of senior thesis)
Dean's List

May 2022

May 2022

May 2022

Spring 2019 - May 2022

SKILLS

Programming: Python, C, Java, Standard ML, R, LaTeX

Frameworks & Softwares: PyTorch, Matlab, Jupyter Notebook, Git

RELEVANT COURSEWORK

10-315 Machine Learning15-281 Artificial Intelligence11-485 Deep Learning11-711 Algorithms for NLP16-385 Computer Vision36-218 Probability Theory15-210 Parallel & Sequential Algorithms15-251 Great Theoretical Ideas in CS15-122 Data Structures & Algorithms15-213 Computer Systems15-150 Functional Programming36-401 Modern Regression

10-725 Convex Optimization

HOBBIES