Alignement SIMD pour le read-mapping

Quelques slides sur l'alignement SIMD pour le read-mapping ...

Laurent Noé (travail en cours avec Marta Gîrdea)

LIFL, Université Lille 1 - INRIA

Journées au vert

4-5 mai 2009 - Le Cap Hornu

Routhiauvill

Sallenelle

Google

Graines : filtrage des reads/du génome à mapper

Graines : filtrage des reads/du génome à mapper

Alignement : méthode clef de l'algorithme (la plus gourmande)

Graines : filtrage des *reads*/du génome à mapper Alignement : méthode clef de l'algorithme (la plus gourmande)

La recherche exacte est très rapide ... mais ... je préfère la recherche approchée ...

Graines : filtrage des *reads*/du génome à mapper Alignement : méthode clef de l'algorithme (la plus gourmande)

La recherche exacte est très rapide ... mais ... je préfère la recherche approchée ...

Graines : filtrage des *reads*/du génome à mapper Alignement : méthode clef de l'algorithme (la plus gourmande)

La recherche exacte est très rapide ... mais ... je préfère la recherche approchée ...

Raisons : • la taille des *reads* augmente, le taux d'erreur aussi.

Graines : filtrage des reads/du génome à mapper Alignement : méthode clef de l'algorithme (la plus gourmande)

> La recherche exacte est très rapide ... mais ... je préfère la recherche approchée ...

- Raisons: la taille des *reads* augmente, le taux d'erreur aussi.
 - reads plus longs et significativité.

Graines : filtrage des reads/du génome à mapper Alignement : méthode clef de l'algorithme (la plus gourmande)

> La recherche exacte est très rapide ... mais ... je préfère la recherche approchée ...

- Raisons: la taille des *reads* augmente, le taux d'erreur aussi.
 - reads plus longs et significativité.

Approche Mixte: algorithme de mapping étendu:

- 1 ere passe exacte (ou presque) suivie d'une ...
- 2^{eme} passe approchée sur les reads non mappés.

Alignement

dans le contexte du read mapping

Smith-Waterman : Schrimp (utilise la version SIMD de Farrar)

 ${\sf Banded\ (semi-)global\ alignment:\ Maq}$

SIMD

Single Instruction Multiple Data

- Les processeurs courants proposent chacun leur version
 - Altivec (IBM/Motorola Power),
 - NEON (ARM),
 - MAX-2 (HP PA-RISC),
 - MMX/SSEx/AVX (Intel/AMD ix86{_64}),
 - VIS (Sun UltraSPARC).
- Sur ces processeurs, est implémenté par subdivision d'un mot machine en mots plus petits indépendants.
- Jeu d'instructions verticales (très majoritairement)

(1/2) l'utiliser via l'auto-vectorisation

- GCC peut vectoriser automatiquement du code, à condition d'avoir :
 - des données alignées (malloc aligné),
 - des boucles sans dépendances (programmation explicite des diagonales)
 - de la chance ...
- pas de garantie de vectorisation, et assez complexe : même
 Fortran90 est plus adapté à ces aspects ...

$$a[0:N] = b[0:N] + c[0:N];$$

SIMD

(2/2) l'utiliser via les Intrisics d'Intel

```
Manipulation explicite des vecteurs
v4float va = mm_set (ptr_a);
v4float vb = mm_set (ptr_b);
v4float vr = mm_add (va, vb);
v4float vrmax = mm_max (vr, vrmax);
```

- lié à une architecture (Intel SSE2 par exemple),
- garantie de WYCIWYG, quel que soit le compilateur,
- aucun __asm__("movl ...") comme dans l'ancien temps.

pour l'alignement Banded-SW

Un évidence : gérer une diagonale dans un vecteur SIMD.

Mieux encore : faire **plusieurs** alignements "indépendants" dans un **même** vecteur SIMD.

Accès aux données :

Accès aux données :

Calcul:

Calcul:

3 Résultat : un booleen seulement

SIMD Banded-SW

premiers tests

• réalisés avec le logiciel map de Marta:

graine : une graine espacée de poids 9,

reads : 50000 reads de taille 35 (sans facteur qualité), extrait de données

SOLiD

genome: Ecoli K12.

SIMD Banded-SW

premiers tests

• réalisés avec le logiciel map de Marta:

graine : une graine espacée de poids 9,

reads : 50000 reads de taille 35 (sans facteur qualité), extrait de données

SOLiD

genome: Ecoli K12.

• temps de la partie alignement (ignore entrées/indexation/sorties)

nb indels autorisés	sans filtre sse2	avec filtre sse2 (toujours fait sur 16 diagonales)
7	416s	49s
3	203s	$30s$ (possibilité $\times 2$ sur partie filtre)
1	85s	$20s$ (possibilité $\times 4$ sur partie filtre)

(analyse différentielle : facteur d'accélération ≥ 11 pour le filtre)