Fundamentos de Sistemas de Informação (ACH2014)

Prof. Dr. Luciano Vieira de Araújo Escola de Artes, Ciências e Humanidades Universidade de São Paulo (EACH/USP)

Primeiro Semestre de 2015

Conceitos básicos em SI

Programa das aulas

- Conceitos básicos em SI
 - □ Sistema
 - □Informação
 - □ Perspectivas sobre um SI
- Problemas em SI
 - □ Sistemas Legados
 - □ Dimensões de Problemas em SI

O que é um Sistema?

- Conjunto de partes inter-relacionadas e interdependentes que formam um todo
 - □ Partes são padrões na teia de relações
- Um sistema pode incluir software, hardware mecânico, elétrico e eletrônico, e ser operado por pessoas.
- Os componentes de sistema são dependentes de outros componentes de sistema.
- As propriedades e o comportamento dos componentes de sistema são fortemente interligados.

Categorias de sistemas

- Sistemas técnicos baseados em computador
 - □ São aqueles que incluem hardware e software, mas não incluem os operadores e os processos operacionais. O sistema não está ciente que está sendo usado para um determinado fim.
- Sistemas sóciotécnicos
 - □ São aqueles que incluem sistemas técnicos, processos operacionais e pessoas que usam e interagem com esse sistema. Os sistemas sóciotécnicos são regidos por políticas e regras organizacionais.

Exemplos de Sistemas

Faculdade

Entrada:

 estudantes, professores, administradores, livros, equipamentos

Mecanismos de processamento:

ensinar, pesquisar, atender

Saídas:

 formação de estudantes, pesquisa significativa para a comunidade

Meta:

aquisição de conhecimento

Cinema

Entrada:

 atores, diretor, equipe, cenários, equipamentos

Mecanismos de processamento:

 filmar, editar, efeitos especiais, distribuição do filme

• Saídas:

 filme concluído entregue aos cinemas

Meta:

 entretenimento, premiação de filmes, lucros

- **Simples e Complexos**
- Abertos e Fechados
- **Estável e Dinâmicos**
- Adaptáveis e Não-Adaptáveis
- Permanentes e Temporários

- Simples: possui poucos elementos e a relação ou interação entre os mesmos é descomplicada e direta (Bolo)
- Complexos: possui muitos elementos que são altamente relacionados e interdependentes (Fábrica de Foguetes)

Sistemas Complexos

- Sistemas complexos são não-lineares: laços de retroalimentação
- Sistemas evoluem: sistemas abertos afastados do equilíbrio recebem fluxo constante de energia e matéria
 - Emergência de novas estruturas e formas de comportamento

- Abertos: interage com seu ambiente
 - □ Organismos vivos: alto grau de interação com o ambiente
 - □ Empresas: matérias-primas e entradas fluem para dentro do sistema, são processadas e retornam como bens e serviços (saídas) para o ambiente (cliente)
- Fechados: sem interação com o ambiente
 - □ dificilmente encontrado
 - □grupo pequeno reunido para discutir fabricação vinhos clássicos, menor interação

- Estáveis: mudanças no ambiente resultam em pouca ou nenhuma mudança no sistema (fabricante de palitos de fósforo)
- **Dinâmicos**: sofrem mudanças rápidas e constantes devidos às mudanças do ambiente (fabricante de computadores)

- Adaptáveis: preparados para as mudanças do ambiente (empresas pequenas)
- Não-Adaptáveis: não mudam com o ambiente mutável (empresas grandes e pesadas ou muito tradicionais)

w

Características dos sistemas sóciotécnicos

- Propriedades emergentes
 - □ Propriedades do sistema como um todo, que dependem tanto dos componentes do sistema como de seus relacionamentos.
- Não determinísticos
 - □ Não produzem sempre a mesma saída quando apresentados à uma mesma entrada, porque o comportamento do sistema é particularmente dependente dos operadores humanos.
- Relacionamentos complexos com objetivos organizacionais
 - □ A extensão na qual o sistema apóia objetivos organizacionais não depende somente do sistema.

Propriedades Emergentes

- São propriedades do sistema como um todo, e não aquelas que podem ser derivadas das propriedades dos componentes de um sistema.
 - □ O todo é maior do que a soma das partes
 - □ Ex: Vida
- As propriedades emergentes são uma consequência da relação entre os componentes do sistema, i.e. emergem no nível do sistema e não estão presentes nas partes isoladas
- Elas só podem, portanto, ser acessados e medidos uma vez que os componentes estejam integrados no sistema.

Exemplos de Propriedades Emergentes

Tabela 2.1 Exemplos de propriedades emergentes.

Propriedade	Descrição
Volume	O volume de um sistema (espaço total ocupado) varia dependendo de como a montagem dos componentes está organizada e conectada.
Confiabilidade	A confiabilidade do sistema depende da confiabilidade dos componentes, mas interações inesperadas podem causar novos tipos de falha e, portanto, afetar a confiabilidade do sistema.
Proteção	A proteção do sistema (sua capacidade de resistir a ataques) é uma propriedade complexa que não pode ser facilmente medida. Podem ocorrer ataques não previstos pelos projetistas do sistema e, dessa maneira, as proteções internas podem ser vencidas.
Facilidade de reparos	Esta propriedade reflete a facilidade com que um problema no sistema é resolvido, após sua descoberta. Isso depende da capacidade de diagnosticar o problema, acessar os componentes defeituosos e modificar ou substituir esses componentes.
Usabilidade	Esta propriedade reflete a facilidade com que o sistema pode ser usado. Isso depende dos componentes técnicos do sistema, seus operadores e seu ambiente operacional.

Fonte: Sommerville (2006)

Tipos de propriedades emergentes

- Propriedades emergentes funcionais
 - Aparecem quando todas as partes de um sistema trabalham juntas para atingir algum objetivo. Por exemplo, uma bicicleta tem a propriedade funcional de ser um dispositivo de transporte.
- Propriedades emergentes não funcionais
 - Exemplos de propriedades não funcionais são confiabilidade, desempenho, segurança e proteção. Elas são freqüentemente críticas para sistemas baseados em computadores, pois a falha destas propriedades, para atingir um nível mínimo definido, pode tornar o sistema não utilizável.

Sistemas refletem perspectivas

- Um sistema é uma maneira de ver o mundo
- O que você vê na figura ao lado?

Dados – Informações – Conhecimento

Os **dados** são elementos brutos, **sem significado**, desvinculados da realidade.

"observações sobre o estado do mundo". Davenport, 1998. "descrição elementar". Turban, 2007.

As **informações** são dados com <u>significado</u> - resultado do encontro de uma <u>situação de decisão</u> com um <u>conjunto de dados</u> "São dados dotados de relevância e propósito" (Davenport, 1998). Dados organizados, com valor para o receptor (Turban, 2007)

O **conhecimento** pode então ser considerado como a informação processada pelos indivíduos – entendimento, experiência, aprendizagem acumulada e prática.

o "conhecimento é a informação mais valiosa (...) é valiosa precisamente porque alguém deu à informação um contexto, um significado, uma interpretação (...)". Davenport (1998)

O que é informação?

- É o processamento ou organização de dados de tal forma que represente uma modificação no conhecimento das pessoas que a receberão
- Leva às pessoas uma diversidade de significados, intimamente ligado à instrução, ao conhecimento, (...) gerando estímulo, mudança de padrões, e ampliação da percepção das mesmas.

Dado x Informação

- Informação se refere a dados moldados em um formato útil e significativo
 - □ Dados são seqüências de "fatos brutos" representando eventos e ocorrências
- Informação é a diferença que faz a diferença (Bateson)
- Todas as definições de informação são relacionais e se referem ao significado atribuído por pessoas

Informação x Conhecimento

- Conhecimento não é apenas uma "coisa", mas também um processo
- O processo de conhecimento é um processo de transformação que envolve informações, meios (objetos) e pessoas
 - Conhecimento situado e distribuído
- Tipos de conhecimento:
 - □ Tácito adquirido ao longo da vida
 - □ Explícito é aquele formal, claro, fácil de ser comunicado

Dados – Informações – Conhecimento

O caminho da sociedade da informação para a sociedade do conhecimento é o caminho da informação para o significado, da percepção para o julgamento."

MARKL, Hubert., 1998

Elementos intervenientes na tomada de decisão – uso do conhecimento

- Quanto maior a capacidade das tecnologias da informação e da comunicação, maior a capacidade de inter-relacionamentos e a capacidade de aprender e lucrar com o compartilhamento da informação e do conhecimento.
- Tecnologia: comunicação e armazenamento dos dados, das informações e dos conhecimentos como na integração dos tomadores de decisão.

Exemplo

Os dados sobre os funcionários, seus salários e horário de trabalho são, por exemplo, processados para gerar informações para a folha de pagamento. Já a informação geral sobre essa folha pode alimentar mais tarde outro sistema que esteja preparando um orçamento.

As informações também serão usadas pelo gerente de R.H. que presta assessoria à alta administração da empresa a respeito de um estudo para reavaliar as faixas salariais, gerando novos conhecimentos.

Ilustração – google imagem

Conceitos

O homem e suas extensões constituem um sistema interrelacionado. É um erro agir como se os homens fossem uma coisa e sua casa, suas cidades, sua tecnologia, ou sua língua, fossem algo diferente. Devido à interrelação entre o homem e suas extensões é conveniente prestarmos uma atenção bem maior ao tipo de extensões que criamos...

E. Hall, 1966.

Tecnologia de Informação

Qualquer meio computacional (computer-based tool) que as pessoas utilizam para trabalhar com a informação e para suportar as necessidades de processamento de informações dentro de uma organização (e com o ambiente externo)

O que é um SI?

- Perspectiva técnica:
 - □ Um conjunto inter-relacionado de elementos que coletam (ou recuperam), processam, armazenam e distribuem informações para apoiar a tomada de decisões e controle de uma organização.
 - □ Além de dar apoio à tomada de decisões, à coordenação e ao controle, SI também auxiliam a analisar problemas, visualizar assuntos complexos e criar novos produtos

SI sob uma perspectiva técnica

Figura 1.2

Funções de um sistema de informação. Este sistema contém informações sobre uma organização e o ambiente que a cerca. Três atividades básicas — entrada. processamento e saída produzem as informações de que as organizações necessitam. Feedback é a saída que retorna a determinadas pessoas e atividades da organização para análise e refino da entrada. Fatores ambientais. como clientes, fornecedores, concorrentes, acionistas e agências reguladoras, interagem com a organização e seus sistemas de informação.

Abordagem da Computação

Barreira de Dijkstra

Posição da área de SI

Perspectiva sociotécnica de um SI

■ SI = TI + Organização + Pessoas

Áreas – Sistema de Informação

v

Desenvolvimento de SI: projeto sociotécnico

 Projeto de um SI implica uma mudança integrada tecnológica e organizacional

SI: sistema sociotécnico complexo

- SIs possuem propriedades emergentes que não estão nem na parte técnica nem na organizacional isoladamente
- Tanto elementos sociais (humanos, organizacionais) como técnicos devem ser considerados
- Não adianta buscar somente excelência técnica (p. ex. a tecnologia de ponta) se a a adequação à organização não é levada em conta (p. ex. treinamento de usuários, adequação à cultura organizacional)

Organizações/pessoas/ sistemas

- Sistemas sóciotécnicos são sistemas organizacionais com a finalidade de auxiliar na conquista de alguma meta organizacional ou de negócio.
- Se você não compreende o ambiente organizacional onde um sistema é usado, é menos provável que o sistema atenda às reais necessidades de negócio e de seus usuários.

Fatores humanos e organizacionais

- Mudanças de processo
 - O sistema requer mudanças nos processos de trabalho no ambiente?
- Mudanças de trabalho
 - O sistema suplanta as habilidades dos usuário ou obriga-os a mudar a forma como trabalham?
- Mudanças organizacionais
 - □ O sistema muda a estrutura política de poder em uma organização?

Sistemas legados

- Sistemas sóciotécnicos que foram desenvolvidos usando tecnologia antiga ou obsoleta.
- Sistemas críticos para a operação de um negócio; é freqüentemente muito arriscado descartar esses sistemas
 - ☐ Sistema de conta de clientes de banco;
 - □ Sistema de manutenção de aeronaves.
- Sistemas legados restringem novos processos de negócio e consomem uma alta proporção de orçamentos da empresa.

Componentes de sistemas legados

Figura 2.9

Componentes de sistema legado

Componentes de sistemas legados

- Hardware pode ser hardware obsoleto.
- Software de apoio pode contar com software de fornecedores que não estão mais em atividade.
- Software de aplicação pode estar em linguagem de programação obsoleta.
- *Dados de aplicação* freqüentemente incompletos e inconsistentes.
- Processos de negócio podem ser restringidos pela estrutura e pela funcionalidade do software.
- Políticas e regras de negócio podem ser implícitas e incorporadas no software.

Substituição de sistema legado

- Há um risco significativo de negócio em simplesmente descartar sistemas legados e substituí-los por um sistema que foi desenvolvido utilizando uma tecnologia moderna
 - □ Raramente existe uma especificação completa do sistema legado.
 - □ Se existir uma especificação, é pouco provável que ela incorpore todas as mudanças que foram feitas no sistema
 - Os processos corporativos e o modo como os sistemas legados operam estão sempre intrinsecamente entrelaçados
 - Importantes regras corporativas podem estar inseridas no software e podem não estar documentadas em nenhum outro lugar
 - O desenvolvimento de um software novo é arriscado, uma vez que podem ocorrer problemas inesperados com um novo sistema

Alteração de sistemas legados

- O sistema deve mudar para permanecer útil
 - □ No entanto, alterar um sistema legado é muitas vezes dispendioso
 - □ Diferentes partes do sistema foram implementadas por diferentes equipes. Portanto, não há um estilo de programação consistente
 - □ O sistema pode utilizar uma linguagem de programação obsoleta
 - □ Freqüentemente, a documentação do sistema é inadequada e desatualizada
 - □ Em geral, muitos anos de manutenção podem ter corrompido a estrutura do sistema
 - O sistema pode ter sido otimizado para melhorar a utilização de espaço ou a velocidade de execução, em vez de ter sido escrito para facilitar a compreensão
 - Os dados processados pelo sistema podem estar armazenados em diferentes arquivos, que podem ter estruturas incompatíveis

Dilema fundamental

- Se continuarem utilizando os sistemas legados e fazendo alterações, seus custos aumentarão
- Se decidirem substituir seus sistemas legados por novos sistemas, isso será dispendioso
- Muitas empresas estão examinando técnicas de engenharia de software que ampliem o tempo de duração dos sistemas legados e que reduzam os custos de manter esses sistemas em uso, como a evolução de produtos de software e a reengenharia de software.

Modelo em camadas de um sistema legado

Figura 2.10

Modelo em camadas de um sistema herdado

Sistema sociotécnico

Processos de negócios

Software de aplicação

Software de apoio

Hardware

Modificação de sistema

- Em tese, é possível fazer alterações em uma camada sem afetar qualquer uma das camadas adjacentes
- Na prática, isso raramente funciona, as razões são:
 - □ A modificação de uma camada pode introduzir novos recursos e as camadas superiores podem ser modificadas para se beneficiarem desses recursos
 - □ A modificação do software pode torná-lo mais lento, de modo que um novo hardware é necessário, a fim de melhorar o desempenho
 - Muitas vezes, é impossível manter interfaces de hardware, especialmente se for proposta uma mudança radical para um novo tipo de hardware, por exemplo, mudar o hardware de mainframe para sistemas cliente-servidor

Projeto de sistemas legados

- Praticamente todos os sistemas legados utilizados foram projetados antes do desenvolvimento orientado a objetos ser utilizado
- Em vez de serem organizados com um conjunto de objetos interativos, esses sistemas são projetados utilizando uma estratégia de projeto orientado a funções
- Centenas de programas de aplicações foram desenvolvidos utilizando-se esses métodos e as ferramentas CASE associadas

O profissional de SI e as diferentes perspectivas

 O profissional de SI deve dialogar com pessoas com perspectivas diferentes

Problemas em SI

Tabela 1.1

As dimensões dos problemas organizacionais

Dimensão	Descrição
Dimensões organizacionais	Processos organizacionais ultrapassados Atitudes e cultura pouco colaborativas Conflitos internos Ambiente organizacional turbulento ou em mutação Complexidade da tarefa Recursos inadequados
Dimensões tecnológicas	Hardware antigo ou insuficiente Software ultrapassado Administração de dados inadequada Capacidade de telecomunicações insuficiente Incompatibilidade dos velhos sistemas com as novas tecnologias Mudança tecnológica acelerada
Dimensões humanas	Falta de treinamento dos funcionários Dificuldades para avaliar o desempenho Exigências regulatórias e legais Ambiente de trabalho Falta de participação dos funcionários e de apoio a eles Administração indecisa Administração deficiente

Atividade em Grupo

- Considere um exemplo real de SI com o qual você teve contato e analise:
 - □ Descreva o SI e seu objetivo:
 - a) sob uma perspectiva técnica (entradas, processamento, saídas);
 - b) Quais os desafios sociotécnicos do seu sistema?
 - Esse sistema tem comportamentos ou propriedades emergentes? Quais?
 - Pensando nas dimensões organizacionais, tecnológicas, humanas, qual deles possui maior impacto no seu sistema?

Créditos

O material utilizado na disciplina de Fundamentos de Sistema de informação tem sido desenvolvido de forma cooperativa pelos professores que ministram a disciplina. Sua produção inicial foi desenvolvida pelo Prof. Dr.: João Porto de Albuquerque – ICMC –USP no ano de 2009. Dando continuidade a esse trabalho, durante o ano de 2011, o material tem sido adaptado e expandido pelos professores Prof. Dr.: Luciano Vieira de Araújo – EACH-USP, Prof. Dr.: Clodoaldo Moraes Lima – EACH-USP em cooperação com o Prof. Dr.: João Porto de Albuquerque – ICMC –USP.