Atividade nº 04 - Importação de Dados e Gráficos

Lucas Henrique Nogueira

28/05/2024

Lista de Exercícios

1) Importação online e local de data frames

• Conjunto de dados utilizados nessa primeira parte da lista foi extraído do link abaixo:

Census at School

Contexto: O conjunto de dados "Census at School-500.csv" provém do projeto internacional Census at School. Este projeto educacional global tem como objetivo envolver alunos em atividades estatísticas usando dados reais coletados por eles mesmos. Os alunos respondem a uma série de perguntas sobre diversos aspectos de suas vidas, como características físicas, hábitos, preferências e atividades. O objetivo é tornar o aprendizado de estatística mais interessante e relevante, utilizando dados coletados pelos próprios alunos.

a) Utilizando as funções read.csv() e read.table() para importar os dados diretamente da URL:

```
url <- "https://www.stat.auckland.ac.nz/~wild/d2i/FutureLearn/Census.at.School.500_ages9-15.csv"
census_csv <- read.csv(url)</pre>
dim(census_csv)
                    # Dimensão do conjunto (Linha X Coluna)
## [1] 483 10
names(census_csv)
                    # Nomes das variáveis
                                                  "getlunch"
                                                                 "height"
    [1] "cellsource" "rightfoot"
                                    "travel"
    [6] "gender"
                      "age"
                                    "year"
                                                  "armspan"
                                                                 "cellcost"
census_table <- read.table(url, sep = ",", header = TRUE)</pre>
head(census_table)
##
     cellsource rightfoot travel getlunch height gender age year armspan cellcost
## 1
         pocket
                        20
                              walk
                                       home
                                                152
                                                      male
                                                             12
                                                                   7
                                                                          150
                                                                                     30
                                                                                     50
## 2
         parent
                        25
                            other
                                     friend
                                                153 female
                                                             11
                                                                    6
                                                                          152
## 3
         parent
                        21
                            motor
                                       home
                                                137
                                                       male
                                                             10
                                                                    6
                                                                          132
                                                                                     55
## 4
                        20
                                                115
                                                              9
                                                                   5
                                                                          130
                                                                                     60
         pocket
                              walk
                                       home
                                                       male
## 5
         pocket
                        23
                             other
                                       home
                                                165 female
                                                                   10
                                                                          160
                                                                                     20
## 6
         parent
                        19
                            motor
                                       home
                                                137 female
                                                             11
                                                                           50
                                                                                     50
```

b) Utilizando a função file.choose() para fazer uma importação local dos dados:

```
census_local <- read.csv(file.choose()) # Importando o arquivo local do diretório do PC.
dim(census_local)
                      # Dimensão do conjunto (Linha X Coluna)
## [1] 483 10
names(census_local)
                        # Nomes das variáveis
                                                  "getlunch"
                                                               "height"
##
    [1] "cellsource" "rightfoot"
                                    "travel"
    [6] "gender"
                      "age"
                                    "year"
                                                  "armspan"
                                                               "cellcost"
census_table2 <- read.table(file.choose(), sep = ",", header = TRUE)</pre>
head(census table2)
##
     cellsource rightfoot travel getlunch height gender age year armspan cellcost
## 1
                        20
                                                                  7
                                                                         150
         pocket
                             walk
                                       home
                                               152
                                                     male
                                                            12
## 2
                        25
                            other
                                     friend
                                               153 female
                                                                   6
                                                                         152
                                                                                    50
         parent
                                                            11
## 3
         parent
                        21
                            motor
                                       home
                                               137
                                                      male
                                                            10
                                                                   6
                                                                         132
                                                                                   55
## 4
         pocket
                        20
                             walk
                                       home
                                               115
                                                     male
                                                             9
                                                                  5
                                                                         130
                                                                                   60
                        23
                                                                                   20
## 5
         pocket
                            other
                                       home
                                               165 female
                                                            14
                                                                 10
                                                                         160
## 6
         parent
                        19
                            motor
                                       home
                                               137 female
                                                            11
                                                                          50
                                                                                    50
```

Observação: A função file.choose() oferece uma maneira simples e direta para os usuários selecionarem um arquivo no sistema, navegando através das pastas do computador de forma interativa. Porém como a seleção do arquivo é feita manualmente pelo usuário, não é possível automatizar esse processo em scripts ou tarefas programadas, o que pode limitar a eficiência em cenários de automação, além de ser mais adequada para uso em ambientes interativos, como o RStudio.

2) Operações com o conjunto de dados skulls{ade4}.

```
data(skulls, package = "ade4")
 head(skulls)
##
     V1 V2 V3 V4
## 1 131 138 89 49
## 2 125 131 92 48
## 3 131 132 99 50
## 4 119 132 96 44
## 5 136 143 100 54
## 6 138 137 89 56
      a) Manipulando os dados do conjunto de dados:
      - Renomeando as variáveis: V1 por ACr, V2 por BBr, V3 por BAl e V4 por ANs.
 names(skulls) <- c("ACr", "BBr", "BAl", "ANs")</pre>
 head(skulls)
     ACr BBr BAl ANs
## 1 131 138 89
## 2 125 131 92
                  48
## 3 131 132 99
                  50
## 4 119 132 96 44
## 5 136 143 100 54
## 6 138 137 89 56
- Criando uma variável categórica 'periodo':
 periodo <- factor(rep(1:5, each = 30), labels = c("período pré-dinástico primitivo",
                                                  "período pré-dinástico antigo",
                                                  "12ª e 13ª dinastias",
                                                  "período Ptolemaico",
                                                  "período Romano"))
  skulls$periodo <- periodo</pre>
  head(skulls)
##
     ACr BBr BAl ANs
                                             periodo
## 1 131 138 89 49 período pré-dinástico primitivo
## 2 125 131 92 48 período pré-dinástico primitivo
## 3 131 132 99 50 período pré-dinástico primitivo
## 4 119 132 96 44 período pré-dinástico primitivo
                  54 período pré-dinástico primitivo
## 5 136 143 100
## 6 138 137 89 56 período pré-dinástico primitivo
```

• Criando uma variável quantidade idade:

```
idade <- rep(c(-4000, -3300, -1850, -200, 150), each = 30)
skulls$idade <- idade
head(skulls)</pre>
```

```
## ACr BBr BA1 ANs periodo idade
## 1 131 138 89 49 período pré-dinástico primitivo -4000
## 2 125 131 92 48 período pré-dinástico primitivo -4000
## 3 131 132 99 50 período pré-dinástico primitivo -4000
## 4 119 132 96 44 período pré-dinástico primitivo -4000
## 5 136 143 100 54 período pré-dinástico primitivo -4000
## 6 138 137 89 56 período pré-dinástico primitivo -4000
```

- b) Ampliando a análise exploratória desses dados:
 - Calculando a média de cada uma das medidas por período:

```
medias_periodo <- aggregate(cbind(ACr, BBr, BAl, ANs) ~ periodo, data = skulls, mean)
rownames(medias_periodo) <- c("Primitivo", "Antigo", "Dinastias", "Ptolemaico", "Romano")
medias_periodo # Matriz (tabela)</pre>
```

```
## Primitivo período pré-dinástico primitivo 131.3667 133.6000 99.16667 50.53333 ## Antigo período pré-dinástico antigo 132.3667 132.7000 99.06667 50.23333 ## Dinastias 12ª e 13ª dinastias 134.4667 133.8000 96.03333 50.56667 ## Ptolemaico período Ptolemaico 135.5000 132.3000 94.53333 51.96667 ## Romano período Romano 136.1667 130.3333 93.50000 51.36667
```

• Gráfico de linhas das médias de cada uma das medidas por idade:

```
medias_idade <- aggregate(cbind(ACr, BBr, BAl, ANs) ~ idade, data = skulls, mean)

plot(medias_idade$idade, medias_idade$ACr, type = "o", col = "blue",
    ylim = range(medias_idade[,2:5]), xlab = "Idade", ylab = "Médias das Medidas",
    main ="Médias das Medidas ao longo do Tempo")

lines(medias_idade$idade, medias_idade$BBr, type = "o", col = "red")

lines(medias_idade$idade, medias_idade$BAl, type = "o", col = "green")

lines(medias_idade$idade, medias_idade$ANs, type = "o", col = "purple")

legend("topright", legend = c("ACr", "BBr", "BAl", "ANs"),
    col = c("blue", "red", "green", "purple"), lty = 1)</pre>
```

Médias das Medidas ao longo do Tempo

c) Conclusão da análise do gráfico:

Visualizando o gráfico das médias das medidas dos crânios ao longo do tempo, podemos observar as seguintes tendências:

1. ACr (Amplitude máxima do crânio):

 A linha correspondente à ACr mostra uma variação ao longo dos diferentes períodos. Podemos ver que, do período pré-dinástico primitivo para os períodos subsequentes, há uma ligeira tendência de aumento e depois uma estabilização.

2. BBr (Altura basilobregmática do crânio):

• A altura basilobregmática (BBr) também apresenta mudanças ao longo do tempo, com variações menos pronunciadas comparadas à ACr, mas ainda assim com algumas flutuações.

3. BAl (Comprimento basiloalveolar do crânio):

O comprimento basiloalveolar (BAl) dos crânios parece ter uma tendência de aumento gradual
ao longo dos períodos históricos, indicando uma possível mudança nas características faciais das
populações.

4. ANs (Altura nasal do crânio):

• A altura nasal (ANs) apresenta variações significativas, com um aumento visível em alguns períodos e uma leve queda em outros. Esse padrão sugere que as características nasais dos crânios sofreram mudanças ao longo do tempo.

Com base nas observações feitas a partir do gráfico, podemos levantar algumas conjecturas sobre as possíveis razões para as mudanças nas medidas dos crânios ao longo do tempo:

1. Influências Ambientais e Culturais:

 As variações nas medidas dos crânios podem ser atribuídas a mudanças nos ambientes e práticas culturais das populações ao longo dos diferentes períodos históricos. Por exemplo, alterações na dieta, práticas de trabalho e condições de vida podem ter impactado o desenvolvimento físico das pessoas.

2. Evolução Biológica:

• As mudanças nas características dos crânios também podem refletir um processo de evolução biológica, onde diferentes pressões seletivas ao longo do tempo resultaram em alterações nas características físicas das populações.

3. Migrações e Misturas Populacionais:

• A chegada de novas populações e a mistura genética com grupos locais podem ter introduzido novas características físicas, resultando em mudanças observáveis nas medidas dos crânios.

3) Operações com os comandos scan() e lower.tri().

```
dados <- scan("E9-14.DAT")</pre>
  dados
  [1] 1.000 0.505 1.000 0.569 0.422 1.000 0.602 0.467 0.926 1.000 0.621 0.482
## [13] 0.877 0.874 1.000 0.603 0.450 0.878 0.894 0.937 1.000
# Número de variáveis
n <- 6
# Criar uma matriz vazia de 6x6
R <- matrix(0, n, n, byrow = TRUE)</pre>
# Preencher a matriz com os dados fornecidos
R[upper.tri(R, diag = TRUE)] <- dados</pre>
R[lower.tri(R)] <- t(R)[lower.tri(R)]</pre>
R
         [,1] [,2] [,3] [,4] [,5]
##
## [1,] 1.000 0.505 0.569 0.602 0.621 0.603
## [2,] 0.505 1.000 0.422 0.467 0.482 0.450
## [3,] 0.569 0.422 1.000 0.926 0.877 0.878
## [4,] 0.602 0.467 0.926 1.000 0.874 0.894
## [5,] 0.621 0.482 0.877 0.874 1.000 0.937
## [6,] 0.603 0.450 0.878 0.894 0.937 1.000
```

• a) Calculando o traço e o determinante da matriz de correlações R:

```
(traco <- sum(diag(R)))</pre>
                                      # Traço da matriz R.
## [1] 6
 (determinante <- det(R))</pre>
                                      # Determinante da matriz R.
## [1] 0.00116952
     b) Calculando os autovetores com o comando eigen() e calculando a proporção com o traço da
        matriz R:
 eigen <- eigen(R)
  (autovetores <- eigen_$vectors)</pre>
                                      # Autovetores da matriz R.
##
             [,1]
                       [,2]
                                  [,3]
                                              [,4]
                                                         [,5]
                                                                    [,6]
## [3,] -0.4399784 -0.2632446 -0.11051604 0.50466755 -0.59955835 -0.33278818
## [4,] -0.4468851 -0.1972029 -0.09896293 0.47037458 0.59797472 0.41567414
## [5,] -0.4488806 -0.1614667 -0.06586761 -0.54823826 -0.36866442 0.57586240
## [6,] -0.4474933 -0.2134503 -0.06906640 -0.46947138 0.38290503 -0.61838409
 proporcao_autovetores <- autovetores / sum(autovetores)</pre>
 proporcao_autovetores
                                      # Proporção em relação ao traço.
                                               [,4]
##
            [,1]
                       [,2]
                                   [,3]
                                                           [,5]
                                                                      [,6]
## [1,] 0.1702901 -0.19206700 -0.41100980 -0.025158045 0.007047247
                                                                0.01243479
## [2,] 0.1389357 -0.39546140 0.24370676 -0.009757554 0.007127053
                                                                0.02056411
## [3,] 0.2135843 0.12779020 0.05364921 -0.244987227 0.291051283 0.16154962
## [4,] 0.2169372 0.09573075 0.04804084 -0.228339954 -0.290282522 -0.20178602
## [5,] 0.2179059 0.07838283 0.03197496 0.266138312 0.178965489 -0.27954825
## [6,] 0.2172324 0.10361793 0.03352778 0.227901501 -0.185878488 0.30019010
      c) Comparando o traço da matriz R com a soma de seus autovalores e o determinante da matriz R
        com o produto de seus autovalores:
 (autovalores <- eigen_$values); (soma_autovalores <- sum(autovalores)) # Autovalores e soma.
## [1] 4.45644850 0.78240991 0.45842506 0.16883257 0.07908774 0.05479622
## [1] 6
                                      # Traço.
 traco
```

[1] 6

4) Conjunto de dados cars{datasets}.

```
data(cars)
```

• a), b) e c) Construindo um gráfico de dispersão de speed por dist:

```
plot(cars$speed, cars$dist, main = "Gráfico de Dispersão: Velocidade vs. Distância",
xlab = "Velocidade, em mph", ylab = "Distância de Parada, em ft", col= "red", pch = 17)
```

Gráfico de Dispersão: Velocidade vs. Distância

• d), e), f), g) e h) Construindo um gráfico e aplicando os modelos linear e quadrático:

```
modelo.linear <- lm(dist ~ speed, data = cars)

plot(cars$speed, cars$dist,
    xlab = "Velocidade, em mph",
    ylab = "Distância de parada, em ft",
    main = "Ajuste Linear e Quadrático: Velocidade vs. Distância de parada")

abline(modelo.linear, col = "red", lty = "dotted", lwd = 2)

modelo.quadratico <- lm(dist ~ speed + I(speed^2), data = cars)

lines(cars$speed, predict(modelo.quadratico), col = "blue", lty = "longdash", lwd = 2)

legend("topright", legend = c("Linear", "Quadrático"),
    col = c("red", "blue"), lty = c("dotted", "longdash"), lwd = 2)</pre>
```

Ajuste Linear e Quadrático: Velocidade vs. Distância de parada

• i), j), k) e l) Construindo o gráfico de resíduos:

```
plot(cars$speed, modelo.linear$residuals, xlab = "Velocidade, em mph",
    ylab = "Resíduos", main = "Gráfico de Resíduos do Ajuste Linear")

abline(h = 0, col = "blue", lwd = 3)

extremos_positivos <- order(modelo.linear$residuals, decreasing = TRUE)[1:2]
text(cars$speed[extremos_positivos], modelo.linear$residuals[extremos_positivos],
    labels = "POS", col = "blue")

extremo_negativo <- which.min(modelo.linear$residuals)
text(cars$speed[extremo_negativo], modelo.linear$residuals[extremo_negativo],
    labels = "NEG", col = "red")</pre>
```

Gráfico de Resíduos do Ajuste Linear

5) Gráfico com função de probabilidade

• a) Aplicando as função curve() para apresentar as densidades Beta(2,6), Beta(4,4) e Beta(6,2):

```
curve(dbeta(x, 2, 6), from = 0, to = 1, ylab = "Densidade", xlab = "x")
curve(dbeta(x, 4, 4), from = 0, to = 1, add = TRUE)
curve(dbeta(x, 6, 2), from = 0, to = 1, add = TRUE)
```


• b) Adicionando título no gráfico:

```
curve(dbeta(x, 2, 6), from = 0, to = 1, ylab = "Densidade", xlab = "x")
curve(dbeta(x, 4, 4), from = 0, to = 1, add = TRUE)
curve(dbeta(x, 6, 2), from = 0, to = 1, add = TRUE)
title(expression(f(y) == frac(1, B(a, b)) * y^{a-1} * (1-y)^{b-1}))
```

$$f(y) = \frac{1}{B(a, b)} y^{a-1} (1-y)^{b-1}$$

• c) Adicionando rótulos a cada uma das curvas com a função text():

```
curve(dbeta(x, 2, 6), from = 0, to = 1, ylab = "Densidade", xlab = "x")
curve(dbeta(x, 4, 4), from = 0, to = 1, add = TRUE)
curve(dbeta(x, 6, 2), from = 0, to = 1, add = TRUE)

title(expression(f(y) == frac(1, B(a, b)) * y^{a-1} * (1-y)^{b-1}))

text(0.1, dbeta(0.1, 2, 6) + 0.1, "Beta(2, 6)")
text(0.5, dbeta(0.5, 4, 4) + 0.1, "Beta(4, 4)")
text(0.9, dbeta(0.9, 6, 2) + 0.1, "Beta(6, 2)")
```

$$f(y) = \frac{1}{B(a, b)} y^{a-1} (1-y)^{b-1}$$

• d) Refazendo o gráfico do item (a), adicionando cores e tipos de linha diferentes para cada uma das três curvas:

```
curve(dbeta(x, 2, 6), from = 0, to = 1, ylab = "Densidade", xlab = "x", col = "blue", lty = 1)
curve(dbeta(x, 4, 4), from = 0, to = 1, add = TRUE, col = "red", lty = 2)
curve(dbeta(x, 6, 2), from = 0, to = 1, add = TRUE, col = "green", lty = 3)

title(expression(f(y) == frac(1, B(a, b)) * y^{a-1} * (1-y)^{b-1}))
```


Χ

e) Adicionando legenda sem usar a função text():

