Response to Ramesh & Vinay, (2003) String Matching in $\tilde{O}(\sqrt{n} + \sqrt{m})$ Quantum Time

Matthew Evans, Ariz Siddiqui, Nathan Puskuri

April 26, 2025

Outline

Introduction

Preliminaries

Grover's Algorithm
Deterministic Sampling
Tight bounds on quantum searching
Minimum Finding Oracle

Quantum String Matching

The Algorithm Concerning Periodicity Constant Two-Sided Failure Probability Achieving $\tilde{O}(\sqrt{n}+\sqrt{m})$

Conclusion

String Matching in $\tilde{O}(\sqrt{n} + \sqrt{m})$ Quantum Time

H. Ramesh & V. Vinay (IISc Bangalore, 2000)

Problem Statement

Given a text t of length n and a pattern p of length m, decide whether p occurs in t.

- ▶ Classical bound: $\Theta(n+m)$ via KMP, Boyer-Moore, etc.
- Quantum goal: Exploit amplitude amplification to beat linear time.
- ▶ Main result: A quantum algorithm running in

$$\widetilde{O}(\sqrt{n} + \sqrt{m})$$

with constant two-sided error probability.

Figure: Conceptual dependencies in the $\widetilde{O}(\sqrt{n} + \sqrt{m})$ quantum string-matching algorithm.

Grover's Algorithm

- Problem: Given a database of N elements and oracle f(x) = 1 for marked items, find an x with f(x) = 1.
- Steps:
 - 1. Initialize n qubits into uniform superposition over $N = 2^n$ states.
 - 2. Apply the oracle to flip the phase of marked states.
 - 3. Perform the diffusion (inversion-about-the-mean) operator.
 - 4. Repeat oracle + diffusion $\left| \frac{\pi}{4} \sqrt{N/t} \right|$ times (t=# marked).
 - 5. Measure to obtain a marked element with high probability.
- ▶ Time Complexity: $\mathcal{O}(\sqrt{N/t})$.
- Why it works: Oracle phase-flips mark targets; diffusion amplifies their amplitudes.
- Significance: Core building block for quantum search algorithms.

Deterministic Sampling

What it is

- ▶ Given an aperiodic pattern p of length m, and a text block of length m/2, there are m/2 possible alignments.
- ▶ DS picks O(log m) indices in the pattern so that at most one alignment can match all sampled positions.

Steps

- 1. Form m/2 "copies" of the pattern, each shifted by one position.
- 2. Find a column where at least two copies differ.
- Select one of the symbols at that column as the sample and discard copies that don't match.
- 4. After $O(\log m)$ rounds, one copy remains; its chosen columns form the sample S.

Deterministic Sampling

Why it works

- Instead of a full pattern check per alignment (O(m) classically, $\tilde{O}(\sqrt{m})$ quantum), only $O(\log m)$ sampled positions are tested.
- Only the single surviving alignment requires the expensive full check.

Why it matters

▶ Enables the overall quantum string matching to run in $\tilde{O}(\sqrt{n} + \sqrt{m})$ by reducing costly \sqrt{m} checks to one per text block.

BBHT96: Tight bounds on quantum searching

What it is

- Even when the number of target $t \ge 1$ items in a database is unknown, you can still find a marked item in $\tilde{O}(\sqrt{N/t})$ oracle calls.
- ▶ BBHT96 describes a procedure which, given an oracle flagging at least t marked elements among n candidates, returns one solution in $O(\sqrt{n/t})$ time with constant success probability.

BBHT96: Tight bounds on quantum searching

Why it matters

- It underpins the claimed time bound in our string-matching algorithm.
- When checking a text block (size m/2) for any matching alignment, t is unknown.
- ▶ BBHT96's procedure lets us invoke Grover's search reliably in this setting.
- Every oracle in the string-matching pipeline (e.g. f, h) relies on BBHT96's bound to guarantee the $\tilde{O}(\sqrt{n} + \sqrt{m})$ runtime.

DH96: Minimum Finding Oracle

What it is

- Given a database of size n and a comparison oracle that, for any two indices i, j, indicates which element is smaller.
- ▶ Finds the index of the minimum element in $O(\sqrt{n})$ time.
- Serves as the backbone for all "pick the smallest (or leftmost) index satisfying a condition" steps.

Steps

- 1. Pick a random starting position k.
- Use Grover's search to find any index i with database[i] < database[k].
- 3. If such an *i* is found, set $k \leftarrow i$ and repeat.
- 4. Otherwise, k is the index of the minimum element.

DH96: Minimum Finding Oracle

Why it matters

- ▶ Building the deterministic sampling set: Repeatedly eliminate half of the m/2 pattern copies by finding the leftmost and rightmost survivor via DH96 in $O(\sqrt{m}\log m)$ time.
- After locating the matching text-block with the h(i) oracle, invoke DH96 over block indices to pinpoint the earliest occurrence, preserving the overall $\tilde{O}(\sqrt{n}+\sqrt{m})$ bound.

The Algorithm (Part 1)

1. Deterministic-Sampling Preprocessing.

- ► Run Vishkin's deterministic-sampling on p of length m to obtain an O(log m)-sized sample set S.
- ightharpoonup Cost: $\widetilde{O}(\sqrt{m}\log^2 m)$.

2. Partition the text.

Divide the text t into

$$B = \left\lceil \frac{2(n-m+1)}{m} \right\rceil$$

blocks, each of size $\approx m/2$.

3. Quantum search for a "hit" block.

- ▶ Define oracle h(i): tests if block i has at least one alignment matching on all positions in S in $\widetilde{O}(\sqrt{m} \log m)$ time.
- Use Grover search over $i=1,\ldots,B$ with oracle h; time $\widetilde{O}(\sqrt{n}\log m)$. If none found, conclude "no occurrence."

The Algorithm (Part 2)

4. Locate surviving alignment in block.

- ▶ Define oracle $k(i^*, j)$: checks alignment at shift j in block i^* on sample S in $O(\log m)$ time.
- Use Grover search over $j=0,\ldots,\lfloor m/2\rfloor$ with oracle k; time $\widetilde{O}(\sqrt{m}\log m)$. If none survives, conclude "no occurrence."

5. Full quantum verification.

- ▶ Run Grover search over $\ell = 1, ..., m$ with oracle " $t[i^* + j^* + \ell] \neq p[\ell]$ " to find any mismatch; time $\widetilde{O}(\sqrt{m})$.
- If no mismatch is found, report occurrence at $i^* + j^*$; otherwise, conclude "no occurrence."

Concerning Periodicity

Constant Two-Sided Failure Probability

Achieving $\tilde{O}(\sqrt{n} + \sqrt{m})$

Conclusion