Chapter 5 Similarity-based Learning

Prof. Chang-Chieh Cheng

Dept. Computer Science

National Chiao Tung University, Taiwan

Vectors

Using a vector to represent a set of numbers

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

- x is an n-dimension vector
- In data analysis, we can use a vector to describe a data instance that consist of a set of features

- The speed and agility ratings for 20 college athletes labelled with the decisions for whether they were drafted or not.
- Two features:
 - Speed
 - Agility

ID	Speed	Agility	Draft	ID	Speed	Agility	Draft
1	2.50	6.00	No	11	2.00	2.00	No
2	3.75	8.00	No	12	5.00	2.50	No
3	2.25	5.50	No	13	8.25	8.50	No
4	3.25	8.25	No	14	5.75	8.75	Yes
5	2.75	7.50	No	15	4.75	6.25	Yes
6	4.50	5.00	No	16	5.50	6.75	Yes
7	3.50	5.25	No	17	5.25	9.50	Yes
8	3.00	3.25	No	18	7.00	4.25	Yes
9	4.00	4.00	No	19	7.50	8.00	Yes
10	4.25	3.75	No	20	7.25	5.75	Yes

• $\mathbf{x_2}$ and $\mathbf{x_{10}}$ are two college athletics of ID = 2 and ID = 10

$$\mathbf{x_2} = \begin{bmatrix} 3.75 \\ 8.00 \end{bmatrix}$$

$$\mathbf{x_{10}} = \begin{bmatrix} 4.25 \\ 3.75 \end{bmatrix}$$

Weather observation

Day	MinTemp	MaxTemp	Humidity	Rain
1	24	31	0.7	0.4
2	24	33	0.65	0.3
3	23	30	0.6	0.3
4	24	32	0.8	0.7
5	23	29	0.8	0.8
6	22	29	0.7	0.6
7	21	27	0.6	0.2

x₃ and x₆ are data instances of day 3 and day 6

$$\mathbf{x_3} = \begin{bmatrix} 23 \\ 30 \\ 0.6 \\ 0.3 \end{bmatrix}$$

$$\mathbf{x_6} = \begin{bmatrix} 22 \\ 29 \\ 0.7 \\ 0.6 \end{bmatrix}$$

Difference between two vectors

•
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$\bullet \mathbf{x} - \mathbf{y} = \begin{bmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \vdots \\ x_n - yn \end{bmatrix}$$

- How to quantize the difference? How do we estimate a number to describe the difference?
 - For measurement
 - For Comparison

- Given two vectors of n-dimension, x and y, a distance function d must conform to the following four criteria:
 - Non-negativity

$$d(\mathbf{x}, \mathbf{y}) \ge 0$$

Identity

$$d(\mathbf{x}, \mathbf{y}) = 0 \leftrightarrow \mathbf{x} = \mathbf{y}$$

Symmetry

$$d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$$

Triangular Inequality

$$d(\mathbf{x}, \mathbf{y}) \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{y}, \mathbf{z})$$

 We can use a distance function to describe similarity of two vectors

• *L*^p-norm

$$\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{1}|^{p} + \dots + |x_{n}|^{p})^{\frac{1}{p}}$$

- *p* is a rational number and, in reduced form, has an even numerator.
 - *L*⁰-norm
 - *L*¹-norm
 - L²-norm
 - *L*[∞]-norm
- Minkoski distance

• L²-norm

$$\|\mathbf{x}\|_{2} = \sqrt{|x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}} = \sqrt{\sum_{i=1}^{n} |x_{i}|^{2}}$$

- Euclidean distance
- Euclidean norm

•
$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

$$\bullet \ \frac{\partial \|\mathbf{x}\|_2}{\partial \mathbf{x}} = \frac{\mathbf{x}}{\|\mathbf{x}\|_2}$$

$$\bullet \ \frac{\partial \|\mathbf{x}\|_2}{\partial x_i} = \frac{x_i}{\|\mathbf{x}\|_2}, 1 \le i \le n$$

• *L*¹-norm

•

$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n| = \sum_{i=1}^n |x_i|$$

Manhattan distance

• *L*¹-norm

•
$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

• $\|\mathbf{x}\|_2 = \sqrt{2} \approx \mathbf{1}.414$
• $\|\mathbf{x}\|_1 = 2$

•
$$\mathbf{y} = \mathbf{x} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

•
$$\|\mathbf{y}\|_2 = \sqrt{5} \approx 2.236$$

•
$$\|\mathbf{y}\|_1 = 3$$

•
$$\mathbf{z} = \mathbf{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

•
$$\|\mathbf{z}\|_2 = \sqrt{8} \approx 2.828$$

•
$$\|\mathbf{z}\|_1 = 4$$

An element of x moves away from 0 by d the L₁ norm increases by d

→ the difference between zero and nonzero elements is very important.

• L[∞] -norm

$$\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$$

Bounded sequence

$$|x_i| \leq ||\mathbf{x}||_{\infty}$$

Supremum

$$\|\mathbf{x}\|_{\infty} = \sup(|x_1|, |x_2|, ..., |x_n|)$$

- The supremum of a subset S of a partially ordered set T is the least element in T that is greater than or equal to all elements of S
- Infimum
 - The infimum of a subset S of a partially ordered set T is the greatest element in T that is less than or equal to all elements of S

- *L*⁰ -norm
 - Banach's definition:

$$\|\mathbf{x}\|_{\mathbf{0}} = \sum_{i=1}^{n} 2^{-i} \frac{|x_i|}{1 + |x_i|}$$

•
$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}$$

• $\|\mathbf{x}\|_0 = \frac{1}{2} \frac{1}{1+1} + \frac{1}{4} \frac{0}{1+0} + \frac{1}{8} \frac{4}{1+4}$
= $0.25 + 0 + 0.1$
= 0.35

- *L*⁰ -norm
 - Donoho's definition:

$$\|\mathbf{x}\|_{\mathbf{0}} = \sum_{i=1}^{n} |x_i|^0$$

$$\bullet \mathbf{x} = \begin{bmatrix} 1 \\ -4 \\ 0 \\ -2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Homogeneous:

$$f(\alpha \mathbf{x}) = \alpha^k f(\mathbf{x})$$

However, it is not a norm because it is not **homogeneous**.

This L^0 -norm is used in information theory.

 α is a nonzero factor and k is an integer

•
$$||x||_0 = 3$$

• The spaces of one-distance of L^1 , L^2 , and L^{∞}

• $\cos\theta$

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \cos \boldsymbol{\theta}$$

• where θ is the angle between **x** and **y**.

 A dataset listing the salary and age information for customers and whether or not the purchased a pension plan

ID	Salary	Age	Purchased
1	53700	41	No
2	65300	37	No
3	48900	45	Yes
4	64800	49	Yes
5	44200	30	No
6	55900	57	Yes
7	48600	26	No
8	72800	60	Yes
9	45300	34	No
10	73200	52	Yes

x₁, x₈, and x₁₀ are three data instances of ID = 1, ID = 6, and ID 10.

$$\mathbf{x_1} = \begin{bmatrix} 53700 \\ 41 \end{bmatrix}, \mathbf{x_8} = \begin{bmatrix} 72800 \\ 60 \end{bmatrix}, \mathbf{x_{10}} = \begin{bmatrix} 73200 \\ 52 \end{bmatrix}$$

$$\mathbf{x_1} - \mathbf{x_8} = \begin{bmatrix} -19100 \\ -19 \end{bmatrix}$$

$$\|\mathbf{x_1} - \mathbf{x_8}\|_2 \approx 19100.01$$

$$\|\mathbf{x_1} - \mathbf{x_8}\|_1 = 19119$$

$$\cos\theta = 0.099$$

 $\mathbf{x_1}$ is more similar to $\mathbf{x_8}$ than $\mathbf{x_{10}}$

$$\mathbf{x_1} - \mathbf{x_{10}} = \begin{bmatrix} -19500 \\ -11 \end{bmatrix}$$
$$\|\mathbf{x_1} - \mathbf{x_{10}}\|_2 \approx 19500.003$$
$$\|\mathbf{x_1} - \mathbf{x_{10}}\|_1 = 19511$$
$$\cos\theta = 0.093$$

- Range normalization
 - Given a value x in a range of $[x_{min}, x_{max}]$, the normalized value of x, x', can be estimated by the following equation

$$x' = \frac{x - x_{min}}{x_{max} - x_{min}} (x'_{max} - x'_{min}) + x'_{min}$$

• where $[x'_{min}, x'_{max}]$ is the range of normalization. In the most cases, $[x'_{min}, x'_{max}] = [0.0, 1.0], [-0.5, 0.5], or [-1.0, 1.0]$

Normalized data

Normalized Dataset										
ID	Salary	Age	Purch.							
1	0.3276	0.4412	No							
2	0.7276	0.3235	No							
3	0.1621	0.5588	Yes							
4	0.7103	0.6765	Yes							
5	0.0000	0.1176	No							
6	0.4034	0.9118	Yes							
7	0.1517	0.0000	No							
8	0.9862	1.0000	Yes							
9	0.0379	0.2353	No							
10	1.0000	0.7647	Yes							

•

$$\mathbf{x_1} = \begin{bmatrix} 0.3276 \\ 0.4412 \end{bmatrix}, \mathbf{x_8} = \begin{bmatrix} 0.9862 \\ 1.0 \end{bmatrix}, \mathbf{x_{10}} = \begin{bmatrix} 1.0 \\ 0.7647 \end{bmatrix}$$

$$\mathbf{x_1} - \mathbf{x_6} = \begin{bmatrix} -0.6586 \\ -0.5588 \end{bmatrix}$$
$$\|\mathbf{x_1} - \mathbf{x_6}\|_{2} \approx 0.864$$
$$\|\mathbf{x_1} - \mathbf{x_6}\|_{1} \approx 1.21$$
$$\cos\theta = 0.99$$

$$\mathbf{x_1} - \mathbf{x_{10}} = \begin{bmatrix} -0.6724 \\ -0.3235 \end{bmatrix}$$
$$\|\mathbf{x_1} - \mathbf{x_{10}}\|_2 \approx 0.746$$
$$\|\mathbf{x_1} - \mathbf{x_{10}}\|_1 \approx 0.9959$$
$$\cos\theta = 0.96$$

L1 and L2:

 $\mathbf{x_1}$ is more similar to $\mathbf{x_{10}}$ than $\mathbf{x_8}$

$\cos\theta$:

 $\mathbf{x_1}$ is more similar to $\mathbf{x_8}$ than $\mathbf{x_{10}}$

- Input:
 - Training dataset
 - A query to be classified
- Algorithm
 - Iterate across the instances in memory and find the instance that is shortest distance from the query position in the feature space.
 - 2. Make a prediction for the query equal to the value of the target feature of the nearest neighbor

- Input:
 - Training dataset
 - A query to be classified
- Algorithm
 - Iterate across the instances in memory and find the instance that is shortest distance from the query position in the feature space.
 - 2. Make a prediction for the query equal to the value of the target feature of the nearest neighbor

• Training dataset:

	ID	Speed	Agility	Draft	ID	Speed	Agility	Draft	
_	1	2.50	6.00	No	11	2.00	2.00	No	
	2	3.75	8.00	No	12	5.00	2.50	No	
	3	2.25	5.50	No	13	8.25	8.50	No	
	4	3.25	8.25	No	14	5.75	8.75	Yes	
	5	2.75	7.50	No	15	4.75	6.25	Yes	
	6	4.50	5.00	No	16	5.50	6.75	Yes	
	7	3.50	5.25	No	17	5.25	9.50	Yes	
	8	3.00	3.25	No	18	7.00	4.25	Yes	
	9	4.00	4.00	No	19	7.50	8.00	Yes	
_	10	4.25	3.75	No	20	7.25	5.75	Yes	

- Query:
 - Should we draft this guy?
 - SPEED= 6.75, AGILITY= 3

- Figure of the training dataset
 - Δ: Draft = NO
 - +: Draft = YES
 - ?: the query

 The L2 distances between the training data and the query

ID	SPEED	A GILITY	DRAFT	Dist.	ID	SPEED	A GILITY	DRAFT	Dist.
18	7.00	4.25	yes	1.27	11	2.00	2.00	no	4.85
12	5.00	2.50	no	1.82	19	7.50	8.00	yes	5.06
10	4.25	3.75	no	2.61	3	2.25	5.50	no	5.15
20	7.25	5.75	yes	2.80	1	2.50	6.00	no	5.20
9	4.00	4.00	no	2.93	13	8.25	8.50	no	5.70
6	4.50	5.00	no	3.01	2	3.75	8.00	no	5.83
8	3.00	3.25	no	3.76	14	5.75	8.75	yes	5.84
15	4.75	6.25	yes	3.82	5	2.75	7.50	no	6.02
7	3.50	5.25	no	3.95	4	3.25	8.25	no	6.31
16	5.50	6.75	yes	3.95	17	5.25	9.50	yes	6.67

• The L1 distances

• ID 18: 1.5

• ID 12: 2.25

• ID 10: 3.25

• The cosine distances

• ID 12: 0.999

• ID 18: 0.992

• ID 10: 0.954

Voronoi tessellation

Perpendicular bisector

Order *k* with *N* samples:

Construction time: $O(k^2N\log N)$

Search time: $O(k + \log N_k)$, where N_k is the number of polygons.

Der-Tsai Lee, "On k-Nearest Neighbor Voronoi Diagrams in the Plane," *IEEE Transactions on Computers*, vol. C-31, no. 6, pp. 478-487, June 1982.

Updating

ID	SPEED	AGILITY	DRAFT	ID	SPEED	AGILITY	DRAFT
1	2.50	6.00	no	12	5.00	2.50	no
2	3.75	8.00	no	13	8.25	8.50	no
3	2.25	5.50	no	14	5.75	8.75	yes
4	3.25	8.25	no	15	4.75	6.25	yes
5	2.75	7.50	no	16	5.50	6.75	yes
6	4.50	5.00	no	17	5.25	9.50	yes
7	3.50	5.25	no	18	7.00	4.25	yes
8	3.00	3.25	no	19	7.50	8.00	yes
9	4.00	4.00	no	20	7.25	5.75	yes
10	4.25	3.75	no	21	6.75	3.00	yes
11	2.00	2.00	no	i			i

Updating

8 Agility 9 Δ Δ α 2 3 Speed

- Noisy
 - Query 1(blue ?):
 - Speed = 8.0
 - Agility = 8.0
 - → The NN is ID13 (8.25, 8.50)
 - → Draft = No
 - Query 2 (white ?):
 - Speed = 7.0
 - Agility = 7.0
 - → The NN is ID19 (7.5, 8.0)
 - → Draft = Yes

The K Nearest Neighbors, KNN

• KNN predicts the target level with the majority vote from the set of *k* nearest neightbors to the query **q**:

$$\mathbf{M}_{k}(\mathbf{q}) = \arg \max_{l \in levels(t)} \sum_{i=1}^{k} \delta(t_{i}, l)$$

• where $\delta(t_i, l) = 1$ if t_i equals to l and 0 otherwise

The K Nearest Neighbors, KNN

- K = 3
 - Query: Speed = 8.0, Agility = 8.0
 - Neighbors:
 - ID13 (8.25, 8.50, NO)
 - ID19 (7.5, 8.0, Yes)
 - ID13 (7.25, 5.75, Yes)
 - 2 Yes: 1 No
 - → Draft = Yes

The K Nearest Neighbors, KNN

Weighted KNN

$$\mathbf{M}_{k}(\mathbf{q}) = \arg\max_{l \in levels(t)} \sum_{i=1}^{k} \frac{1}{d(\mathbf{q}, \mathbf{x}_{i})^{2}} \delta(t_{i}, l)$$

• where $d(\mathbf{q}, \mathbf{x}_i)$ is a distance function

- Weighted KNN
 - K = 21

- KNN with data normalization
 - Customer dataset:

ID	Salary	Age	Purchased
1	53700	41	No
2	65300	37	No
3	48900	45	Yes
4	64800	49	Yes
5	44200	30	No
6	55900	57	Yes
7	48600	26	No
8	72800	60	Yes
9	45300	34	No
10	73200	52	Yes

- KNN without data normalization
 - Δ: Purchase = NO
 - +: Purchase = YES
 - ?: the query $\mathbf{q} = (56000, 35)$
 - L²-norm distance:
 - $d(\mathbf{q}, \mathbf{x}_1) = 2300.0078$
 - $d(\mathbf{q}, \mathbf{x}_6) = 102.3914$

KNN without data normalization

				Salary and	Salar	y Only	Age Only		
ID	Salary	Age	Purch.	Dist.	Neigh.	Dist.	Neigh.	Dist.	Neigh.
1	53700	41	No	2300.0078	2	2300	2	6	4
2	65300	37	No	9300.0002	6	9300	6	2	2
3	48900	45	Yes	7100.0070	3	7100	3	10	6
4	64800	49	Yes	8800.0111	5	8800	5	14	7
5	44200	30	No	11800.0011	8	11800	8	5	5
6	55900	57	Yes	102.3914	1	100	1	22	9
7	48600	26	No	7400.0055	4	7400	4	9	3
8	72800	60	Yes	16800.0186	9	16800	9	25	10
9	45300	34	No	10700.0000	7	10700	7	1	1
10	73200	52	Yes	17200.0084	10	17200	10	17	8

KNN with data normalization

	Normali	zed Data	set	Salary a	and Age	Salary	/ Only	Age (Only
ID	Salary	Age	Purch.	Dist.	Neigh.	Dist.	Neigh.	Dist.	Neigh.
1	0.3276	0.4412	No	0.1935	1	0.0793	2	0.17647	4
2	0.7276	0.3235	No	0.3260	2	0.3207	6	0.05882	2
3	0.1621	0.5588	Yes	0.3827	5	0.2448	3	0.29412	6
4	0.7103	0.6765	Yes	0.5115	7	0.3034	5	0.41176	7
5	0.0000	0.1176	No	0.4327	6	0.4069	8	0.14706	3
6	0.4034	0.9118	Yes	0.6471	8	0.0034	1	0.64706	9
7	0.1517	0.0000	No	0.3677	3	0.2552	4	0.26471	5
8	0.9862	1.0000	Yes	0.9361	10	0.5793	9	0.73529	10
9	0.0379	0.2353	No	0.3701	4	0.3690	7	0.02941	1
10	1.0000	0.7647	Yes	0.7757	9	0.5931	10	0.50000	8

- In the most cases, the data should be normalized before the machine learning training
- Notice that the normalized data could lose the real data meaning

- k-d tree (k-dimensional tree)
 - A space-partitioning data structure for organizing points in a kdimensional space.
 - Searching with multidimensional search key
 - A special case of binary space partitioning trees.
 - Performance:

Space	O(n)	O(<i>n</i>)
Search	O(log <i>n</i>)	O(<i>n</i>)
Insert	$O(\log n)$	O(<i>n</i>)
Delete	$O(\log n)$	O(u)

Bentley, J. L. "Multidimensional binary search trees used for associative searching". Communications of the ACM. 18 (9): 509, 1975

- Building a k-d tree
 - Dataset: college athletes
 - Dimension order:
 - 1. Speed
 - 2. Agility

ID	Speed	Agility	Draft	ID	Speed	Agility	Draft
1	2.50	6.00	No	12	5.00	2.50	No
2	3.75	8.00	No	13	8.25	8.50	No
3	2.25	5.50	No	14	5.75	8.75	Yes
4	3.25	8.25	No	15	4.75	6.25	Yes
5	2.75	7.50	No	16	5.50	6.75	Yes
6	4.50	5.00	No	17	5.25	9.50	Yes
7	3.50	5.25	No	18	7.00	4.25	Yes
8	3.00	3.25	No	19	7.50	8.00	Yes
9	4.00	4.00	No	20	7.25	5.75	Yes
10	4.25	3.75	No	21	6.75	3.00	Yes
11	2.00	2.00	No				

- Building a k-d tree
 - Splitting the first dimension: Speed
 - Using the median as the splitting pivot

- Building a k-d tree
 - Splitting the second dimension: Agility

- Building a k-d tree
 - 1. Splitting d_1
 - 2. Splitting d_2
 - 3. ...
 - 4. Splitting d_k
 - 5. If the number of items in a cell > 1, Repeat step 1; otherwise stop.

- Building a K-d tree
 - Final result

- Building a K-d tree
 - Final result

- Input:
 - Query: q
 - The root node of a K-d tree: r
- Algorithm
 - 1. The nearest neighbor, $\mathbf{t} = \text{null}$
 - 2. The distance between **q** and **t**, $d_t = \infty$
 - 3. x = descendTree(r, q)
 - 4. while **x** != NULL do
 - 5. if $d(\mathbf{q}, \mathbf{x}) < d_t \rightarrow \mathbf{t} = \mathbf{x}$; $d_t = d(\mathbf{q}, \mathbf{x})$
 - 6. if boundaryDist(q, x) < $d_t \rightarrow x = descendTree(x, q)$
 - 7. else \rightarrow x = parent(x)
 - 8. return t

descendTree(x, q): simple search from the node x to leaf
parent(x): returns the parent node of x and prune x
boundaryDist(q, x): comparing the distance between q and the hyperplane
of x if x is a non-leaf node; otherwise, returns false.

• $\mathbf{q} = (6.0, 3.5)$

- K-NN by k-d tree
 - Let t be a ordered set with the capacity of k
- Given a radius R, finding the neighbors within a hypersphere $x_1^2 + x_2^2 + \dots + x_k^2 = R$

the average value in the neighborhood

$$\mathbf{M}_k(\mathbf{q}) = \frac{1}{k} \sum_{i=1}^k t_i$$

• Example:

 A dataset of whiskeys listing the age (in years) and the rating (between 1 and 5, with 5 being the best) and the bottle price of each whiskey.

ID	Age	Rating	Price	ID	Age	Rating	Price
1	0	2	30.00	11	19	5	500.00
2	12	3.5	40.00	12	6	4.5	200.00
3	10	4	55.00	13	8	3.5	65.00
4	21	4.5	550.00	14	22	4	120.00
5	12	3	35.00	15	6	2	12.00
6	15	3.5	45.00	16	8	4.5	250.00
7	16	4	70.00	17	10	2	18.00
8	18	3	85.00	18	30	4.5	450.00
9	18	3.5	78.00	19	1	1	10.00
10	16	3	75.00	20	4	3	30.00

• Normalized data:

ID	Age	Rating	Price		ID	Age	Rating	Price
1	0.0000	0.25	30.00	_	11	0.6333	1.00	500.00
2	0.4000	0.63	40.00		12	0.2000	0.88	200.00
3	0.3333	0.75	55.00		13	0.2667	0.63	65.00
4	0.7000	0.88	550.00		14	0.7333	0.75	120.00
5	0.4000	0.50	35.00		15	0.2000	0.25	12.00
6	0.5000	0.63	45.00		16	0.2667	0.88	250.00
7	0.5333	0.75	70.00		17	0.3333	0.25	18.00
8	0.6000	0.50	85.00		18	1.0000	0.88	450.00
9	0.6000	0.63	78.00		19	0.0333	0.00	10.00
10	0.5333	0.50	75.00		20	0.1333	0.50	30.00

- Query: AGE = 0.0667 and RATING = 1.00
- K = 3

• Result

$$\frac{200.00 + 250.00 + 55.00}{3} = 168.33$$

Weighted KNN for continuous targets

$$\mathbf{M}_{k}(\mathbf{q}) = \frac{\sum_{i=1}^{k} \frac{1}{d(\mathbf{q}, \mathbf{x}_{i})^{2}} t_{i}}{\sum_{i=1}^{k} \frac{1}{d(\mathbf{q}, \mathbf{x}_{i})^{2}}}$$

• Example:

 A binary dataset listing the behavior of two individuals on a website during a trial period and whether or not they subsequently signed-up for the website.

ID	Profile	FAQ	Help Forum	Newsletter	Liked	Signup
1	1	1	1	0	1	Yes
2	1	0	0	0	0	No

Example:

 A binary dataset listing the behavior of two individuals on a website during a trial period and whether or not they subsequently signed-up for the website.

ID	Profile	FAQ	Help Forum	Newsletter	Liked	Signup
1	1	1	1	0	1	Yes
2	1	0	0	0	0	No

• signup = ? if $\mathbf{q} = (1, 0, 1, 0, 0)$

- *CP*: co-presence <1, 1>
- *CA*: co-absence <0, 0>
- PA: presence-absence <1, 0>
- *AP*: absence-presence <0, 1>

		(1				(7
		Pres.	Abs.				Pres.	Abs.
٨	Pres.	CP=2	PA=0	-	٨	Pres.	CP=1	PA=1
\mathbf{u}_1	Abs.	AP=2	CA=1		\mathbf{d}_2	Abs.	AP=0	CA=3

- Russel-Rao similarity
 - The ratio between the number of CP and the total number of binary features considered.

$$S_{RR}(\mathbf{q}, \mathbf{x}) = \frac{CP(\mathbf{q}, \mathbf{x})}{|\mathbf{q}|}$$

- where |q| is the total number of binary features
- Example:

$$S_{RR}(q, d_1) = \frac{2}{5} = 0.4$$

$$S_{RR}(q, d_2) = \frac{1}{5} = 0.2$$

• **q** is more similar to **d**₁ then **d**₂.

		C	1					7
		Pres.	Abs.				Pres.	Abs.
d ₁	Pres.	CP=2	PA=0	-	d_2	Pres.	CP=1	PA=1
u ₁	Abs.	CP=2 AP=2	CA=1		u ₂	Abs.	CP=1 AP=0	CA=3

- Sokal-Michener similarity
 - the ratio between the total number of CP and CA, and the total number of binary features considered.

$$S_{SM}(\mathbf{q}, \mathbf{x}) = \frac{CP(\mathbf{q}, \mathbf{x}) + CA(\mathbf{q}, \mathbf{x})}{|\mathbf{q}|}$$

Example:

$$S_{SM}(q, d_1) = \frac{2+1}{5} = 0.6$$

$$S_{SM}(q, d_2) = \frac{1+3}{5} = 0.8$$

• **q** is more similar to **d**₂ then **d**₁.

		C	1				(7
		Pres.	Abs.				Pres.	Abs.
4	Pres.	CP=2	PA=0	-	d_2	Pres.	CP=1	PA=1
d ₁	Abs.	CP=2 AP=2	CA=1		u ₂	Abs.	CP=1 AP=0	CA=3

- Jaccard similarity
 - ignoring CA

$$S_J(\mathbf{q}, \mathbf{x}) = \frac{CP(\mathbf{q}, \mathbf{x})}{CP(\mathbf{q}, \mathbf{x}) + PA(\mathbf{q}, \mathbf{x}) + AP(\mathbf{q}, \mathbf{x})}$$

• Example:

$$S_J(q, d_1) = \frac{2}{2+0+2} = 0.5$$

$$S_J(q, d_2) = \frac{1}{1+1+0} = 0.5$$

• **q** is equally similar to **d**₁ and **d**₂.

		q				q		
		Pres.	Abs.				Pres.	Abs.
d ₁	Pres.	CP=2	PA=0	-	d ₂	Pres.	CP=1	PA=1
	Abs.	CP=2 AP=2	CA=1			Abs.	CP=1 AP=0	CA=3

Other Similarity

Cosine similarity

$$S_{cos}(\mathbf{q}, \mathbf{x}) = \frac{\mathbf{q} \cdot \mathbf{x}}{|\mathbf{q}||\mathbf{x}|}$$

Other Similarity

Mahalanobis distance

$$d_M(\mathbf{q}, \mathbf{x}) = \sqrt{(\mathbf{q} - \mathbf{x})^T \mathbf{\Sigma}^{-1} (\mathbf{q} - \mathbf{x})}$$

• where **Σ** is a covariance matrix

$$\boldsymbol{\Sigma} = \begin{bmatrix} var(x_1) & cov(x_1, x_2) & \dots & cov(x_1, x_k) \\ cov(x_2, x_1) & var(x_2) & \dots & cov(x_2, x_k) \\ \vdots & \ddots & \vdots & \vdots \\ cov(x_n, x_1) & cov(x_n, x_2) & \dots & var(x_k) \end{bmatrix},$$

if the number of features is k,

$$cov(a,b) = \frac{1}{n-1} \sum_{i=1}^{n} ((a_i - \overline{a}) \times (b_i - \overline{b})),$$

$$var(a) = cov(a, a)$$

- *n* is the number of data;
- \bar{a} and \bar{b} are the averages of feature a and b respectively.

Covariance matrix generalizes the notion of variance to multiple dimension

Other Similarity

- Mahalanobis distance
 - Similar to Euclidean distance, the mahalanobis distance squares the differences of the features.
 - But it also rescales the differences (using the inverse covariance matrix) so that all the features have unit variance and the effects of covariance is removed.

• Clustering n data points \mathbf{X} into k disjoint subsets S_i containing n_i data points so as to minimize the sum-of-squares criterion.

$$X = \{x_1, x_2, ..., x_n\}, S = \{S_1, S_2, ..., S_k\}$$

$$\underset{S}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2$$

- where μ_i is the center of S_i
- K-means clustering is a type of unsupervised learning, which is used when data without defined categories.
- References:
 - https://en.wikipedia.org/wiki/K-means_clustering
 - http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html
 - https://www.datascience.com/blog/k-means-clustering
 - http://www.saedsayad.com/clustering_kmeans.htm

Standard algorithm

Input: **X** and *k*.

- 1. Select *k* points at random as cluster centers.
 - These k points may not $\in X$
- 2. Assign data instances to their closest cluster center according to the Euclidean distance function.
 - Generating S
 - Voronoi diagram
- 3. Updating the cluster center by the mean of data instances in each cluster.
- 4. Repeat steps 2 and 3 until a stopping criteria is met:
 - No data points change clusters.
 - The sum of the distances is minimized.
 - Some maximum number of iterations is reached.

• Standard algorithm

- How to decide *k*?
 - There is no perfect method for determining exact value of K.
 - An approximate algorithm
 - Increasing the k will always reduce the distance to data points
 - Calculating

$$\alpha_k = \frac{1}{k} \sum_{i=1}^k \sum_{x \in S_i} ||x - \mu_i||^2$$

• Select k while $\frac{d\alpha_k}{dk}$ less than a small number

K-Means Clustering

- Applications
 - Segment by purchase history
 - Segment by activities on a web-based application
 - Define personas based on interests
 - Detect activity types in motion sensors
 - Group images
 - Separate audio

- The curse of dimensionality
 - $density = k^{\frac{1}{m}}$
 - k = the number of data instances
 - m = the number of dimensions

$$density = 10^{\frac{1}{1}} = 10$$

$$density = 2^{\frac{1}{3}} = 1.2599$$

3D:
$$density = 10^{\frac{1}{3}} = 2.1544$$

- The curse of dimensionality
 - if we fix density = 10
 - 1D: k = 10
 - 2D: $k^{\frac{1}{2}} = 10 \rightarrow k = 100$
 - 3D: $k^{\frac{1}{3}} = 10 \rightarrow k = 1000$

Feature subset

Iterative feature selection

ID	F1	$\mathbf{F2}$	F3	 F150	F151	 F227	F228	 F387	 $\mathbf{F}n$	Target
1	-	-	-	 -	-	 -	-	 -	 -	-
2	-	-	-	 -	-	 -	-	 -	 -	-
_K	-	-	-	 -	-	 -	-	 -	 -	-

- Principal component analysis
 - The main linear technique for **dimensionality reduction**.
 - It performs a linear mapping of the data to a **lower- dimensional space** in such a way that the variance of the data in the low-dimensional representation is maximized.

Each data instance has n features

$$\bullet \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix},$$

•
$$\mathbf{x}^{\mathrm{T}} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

m data instances → m × n matrix

$$\bullet A = \begin{bmatrix} \mathbf{x_1}^{\mathrm{T}} \\ \mathbf{x_2}^{\mathrm{T}} \\ \vdots \\ \mathbf{x_m}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & & \ddots & \\ x_{m1} & x_{m2} & & x_{mn} \end{bmatrix}$$

- M is a symmetric matrix if $M^{T} = M$
 - A^TA is a symmetric matrix
 - Because $(A^{T}A)^{T} = A^{T}A$
- U is an unitary matrix if $U^*U = UU^* = I$
 - where *I* is the identity matrix
 - *: conjugate transpose

• if
$$A = \begin{bmatrix} 1 & -2 - 3i \\ 1 + 4i & 5i \end{bmatrix}$$
, $A^* = \begin{bmatrix} 1 & 1 - 4i \\ -2 + 3i & -5i \end{bmatrix}$

• Q is an orthogonal matrix if $Q^{T}Q = QQ^{T} = I$ and Q is a square matrix with real entries

- A is an $m \times n$ matrix
 - Column space: $A\mathbf{x}$, where $\mathbf{x} = [x_1, x_2, ..., x_n]^T$
 - a space of $m \times 1$ matrices
 - Row space: $\mathbf{x}A$, where $\mathbf{x} = [x_1, x_2, ..., x_m]$
 - a space of 1 × n matrices

- A is an $m \times n$ matrix
 - An eigenvector of *A* is a non-zero vector **v** such that

$$A\mathbf{v} = \lambda \mathbf{v}$$

or

$$\mathbf{v}^{\mathrm{T}} \mathbf{A} = \lambda \mathbf{v}^{\mathrm{T}}$$

• The scalar λ is the eigenvalue corresponding to v

- Given a non-zero real number s, sv and v have the same eigenvalue
 - $A\mathbf{v} = \lambda \mathbf{v}$
 - $A(s\mathbf{v}) = \lambda(s\mathbf{v})$
- We often let every eigenvector is normalized (the length is one)

- Linearly independent
 - A set of *n* vectors, $V = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$
 - *V* is linearly independent if $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \ldots + a_n\mathbf{v}_n = \text{zero vector}$, can only be satisfied by all a_i are zeros
- Suppose that A has n linearly independent eigenvectors,
 - A is an $m \times n$ matrix
 - Q is an $n \times n$ matrix = $[\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n]$
 - Λ is an $n \times n$ diagonal matrix with n eigenvalue
 - $AQ = Q \Lambda$

- Every real symmetric matrix can be decomposed as follows
 - A is an $n \times n$ real symmetric matrix
 - $A = Q\Lambda Q^{\mathrm{T}}$
 - *Q* contains *n* orthogonal eigenvectors
 - $QQ^{\mathrm{T}} = I$
 - Λ is an $n \times n$ diagonal matrix contains n eigenvalues

- Singular value decomposition, SVD
 - Every real matrix has a singular value decomposition
 - A is an $m \times n$ matrix
 - $A = UDV^{\mathrm{T}}$
 - U is an $m \times m$ matrix, $UU^{T} = U^{T}U = I$
 - D is an $m \times n$ diagonal matrix
 - V is an $n \times n$ matrix, $VV^{T} = V^{T}V = I$
 - But the same is not true of the eigenvalue decomposition.
 - For example, if a matrix is not square, the eigendecomposition is not defined, and we must use a singular value decomposition instead.

- A is an $m \times n$ real matrix
 - $A = UDV^{T}$
- $A^{T}A$ is an $n \times n$ real symmetric matrix
 - $A^{\mathrm{T}}A = (UDV^{\mathrm{T}})^{\mathrm{T}}UDV^{\mathrm{T}} = VDU^{\mathrm{T}}UDV^{\mathrm{T}} = VD^{2}V^{\mathrm{T}}$
 - \bullet Q = V
 - $\Lambda = D^2$
- AAT has the same property

The center of m data instances

$$\bullet \ \overline{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_i$$

- m data instances → m × n matrix
 - m data instances
 - n dimensions (features)

•
$$A = \begin{bmatrix} (\mathbf{x}_1 - \bar{\mathbf{x}})^T \\ (\mathbf{x}_2 - \bar{\mathbf{x}})^T \\ \vdots \\ (\mathbf{x}_m - \bar{\mathbf{x}})^T \end{bmatrix}$$

• $A^{T}A$ $(n \times n)$ is the covariance matrix to describe the data variance of all dimensions (features)

$$A^{\mathrm{T}}A = Q\Lambda Q^{\mathrm{T}}$$

$$\bullet \ \ A^{\mathrm{T}}A = Q \Lambda Q^{\mathrm{T}}$$

$$\bullet \ \ \text{where} \ \Lambda = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & \\ 0 & & \ddots \\ & & & \lambda_n \end{bmatrix}, \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$$

- $Q = [\mathbf{v_1} \quad \mathbf{v_2} \quad \cdots \quad \mathbf{v_n}]$
- The data can be represented by in a space with the basis of Q
 - $\mathbf{v}^{\mathrm{T}} = (\mathbf{x} \bar{\mathbf{x}})^{\mathrm{T}} O$
 - The axis v₁ is more importance than v₂
 - Choose $v_1, v_2, ..., v_k$, where λ_k larger than a threshold, we call these axes are principal components

PCA Example: Face Recognition

• L. Sirovich; M. Kirby (1987). "Low-dimensional procedure for the characterization of human faces". *Journal of the Optical Society of America A*. 4 (3): 519–524.

Eigenfaces

- Eigenvectors of a training set of *m* face images
- Each image: $r \times c$ pixels \rightarrow let $n = r \times c \rightarrow$ a vector of n intensities
- The average of m face images $\rightarrow \bar{x}$
- m face images $\bar{\mathbf{x}} \rightarrow A = m \times n$ matrix
- Finding the eigenvectors of $A^{T}A$
- Each eigenvector consists of *n* intensities
- eigenvectors → eigenfaces

AT&T Laboratories Cambridge

PCA Example: Face Recognition

Choose the principal components

$$\bar{\lambda} = (\lambda_1 + \lambda_n + \dots + \lambda_n)$$

Given a threshold t, we choose k principal components such that

$$\frac{(\lambda_1 + \lambda_n + \dots + \lambda_k)}{\overline{\lambda}} > t$$

- Therefore, each training face image can be represented by
 - $\mathbf{y}^{\mathrm{T}} = (\mathbf{x} \bar{\mathbf{x}})^{\mathrm{T}} Q$
 - $\rightarrow y^T Q^T = (x \bar{x})^T$
 - $\rightarrow x = Qy + \bar{x}$
 - $y_1 \times 1^{st}$ eigenface + $y_2 \times 2^{nd}$ eigenface + ... + $y_k \times k^{th}$ eigenface

PCA Example: Face Recognition

- Face recognition
 - input face: z
 - $\mathbf{w}^{\mathrm{T}} = (\mathbf{z} \overline{\mathbf{x}})^{\mathrm{T}} Q$
 - Find the nearest neighbour of \mathbf{w}^T from the transformed training set (all \mathbf{y})

PCA Example: Feature Analysis

- Reference:
 - Jeff Jauregui "Principal component analysis with linear algebra", 2012.
- Sibley's Bird Database of North American birds
- 100 bird species. $\rightarrow m = 100$
- In studying the size of a bird, each specie should be observed by three features: length, wingspan, and weight. → n = 3

PCA Example: Feature Analysis

•
$$A^{T}A = \begin{bmatrix} 91.43 & 171.92 & 297.99 \\ 545.21 & 373.92 & 545.21 \\ 297.99 & 171.92 & 1297.26 \end{bmatrix}$$

•
$$\rightarrow \lambda_1 = 1626.52$$
, $\lambda_2 = 128.99$, $\lambda_3 = 7.10$

•
$$\rightarrow \mathbf{v}_1 = \begin{bmatrix} 0.22 \\ 0.41 \\ 0.88 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0.25 \\ 0.85 \\ -0.46 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0.97 \\ -0.32 \\ -0.08 \end{bmatrix}$

 Which of the feature is most significant in determining a bird's "size"?

PCA Example: Feature Analysis

- The third entry, weight, of v₁ is the largest
 - Weight is the most significant.
 - Wingspan is the next most important factor in determining a bird's size.
- v₂ is also telling us something
 - Some birds are large size with small wingspan and large weight → stoutness birds