CMOS II

Andrew Lukefahr Indiana University - Bloomington

Calculator.py

- Lets you interact with the FPGA via the keyboard
 - Translates ASCII <--> Binary for you

```
$ python3 calculator.py -s /dev/ttyUSB1
```

\$ python3 calculator.py --help

python3 (not "python")

Review: The Compute Stack

Solive

Review: All logic is NAND

• It's not magic, it's an electronic circuit

MOSFFTS

n FET

NAND with Complimentary MOS (CMOS)

B441 **Basic Electronics** 8/25

Both nFET and pFET transistors are used to implement the gate.

Advantage: no current from V_{dd} to GND in either state, thus extremely low power dissipation.

Α	В	MF1	MF2	MF3	MF4	I	Υ
LV	LV	off	off	on	on	0	HV
LV	HV	off	on	on	off	0	HV
HV	LV	on	off	off	on	0	HV
HV	HV	on	on	off	off	0	LV

Because there is no current in either state, the CMOS gates have extremely low power dissipation.

Dissipation is due to following effects:

- When the output switches from one logic level to another, there is a short period of time when all output transistors are ON, and the current flows from V_{dd} to GND.
- Gates have some parasitic capacitance, and during the switching of output from one voltage level to another, the output has to charge and discharge gates that are connected to the output.

As the working frequency of CMOS gates increase, so will the power dissipation.

Both *nFET* and *pFET* transistors are used to implement the gate.

Advantage: no current from V_{dd} to GND in either state, thus extremely low power dissipation.

Α	В	MF1	MF2	MF3	MF4	I	Υ
LV ()	LV ()	off	off	on	on	0	HV (
LV	HV	off	on	on	off	0	LV
HV	LV	on	off	off	on	0	LV
HV	HV	on	on	off	off	0	LV

CMOS NOT

CMOS inverter:

Α	MF1	MF2	I _{dd}	Υ
LV	off	on	0	HV
HV	on	off	0	LV

Α	Υ	
0	1	
1	0	

CMOS AND?

B441

Basic Electronics

CMOS XOR?

CMOS XOR? (NOT ON EXAM)

How a MOSFET works

7

- Yea, I'm not going to pretend I'm better than this guy...
- https://www.youtube.com/watch?v=lcrBqCFLHIY

Closer to physical reality:

- https://www.youtube.com/watch?v=tz62t-q KEc
- @0.45
- Add FinFETs
- https://www.youtube.com/watch?v=TXxw1kdF5 Q

Next Time

- Setup + Hold Times
- Pipelining