Prueba del Teorema de Bell y violación desigualdad CHSH

Seminario 3

Lic. Julio A. Medina¹

¹ Universidad de San Carlos, Escuela de Ciencias Físicas y Matemáticas

Maestría en Física

julioantonio.medina@gmail.com

Resumen

El Teorema de Bell y las desigualdades asociadas fueron de gran importancia para establecer la validez de las correlaciones que se dan en la mecánica cuántica, con este se logró esclarecer la paradoja de Einstein-Podolsky-Rosen sobre teorías de variables ocultas y la no-localidad de la teoría cuántica. Para establecer la validez experimental de los resultados de Bell, Clauser, Horne, Shimony y Holt derivaron las desigualdades CHSH que al igual que las desigualdades de Bell poné restricciones en las ocurrencias estadísticas de una "prueba de Bell". Estas confirmaciones experimentales pueden realizarse por medio de un circuito cuántico, en este reporte se expande en todo el desarrollo teórico y se implementan los circuitos por medio de Qiskit para comprobar que la naturaleza viola las desigualdades CHSH.

1. Correlaciones en las mediciones de spin y las desigualdades de Bell

El ejemplo más simple de adición de momento angular en sistemas compuestos de varias partículas en Mecánica Cuántica es el caso de spin $\frac{1}{2}$ ver por ejemplo [10], este sistema se usa para demostrar uno de los efectos de la mecánica cuántica más sorprendentes y que ha causado controversias y discusiones científicas famosas i.e. La paradoja de Eistein, Podolsky y Rosen, ver [4], [2].

Considerando un sistema de dos electrones en un estado spin-singlet, i.e. con spin total igual a 0. El estado puede escribirse cómo

$$|spin\text{-}singlet\rangle = \frac{1}{\sqrt{2}} (|\hat{\mathbf{z}}+;\hat{\mathbf{z}}-\rangle - |\hat{\mathbf{z}}-;\hat{\mathbf{z}}+\rangle)$$
 (1)

donde se ha especificado explícitamente la dirección de cuantización, para hacer una reseña se recuerda que en $|\hat{\mathbf{z}}+;\hat{\mathbf{z}}-\rangle$ se interpreta que el primer electrón está en el estado spin "arriba" y el segundo está en el estado spin "abajo" de manera análoga para $|\hat{\mathbf{z}}-;\hat{\mathbf{z}}+\rangle$ se tiene al primer electrón en el estado spin "abajo" y al el segundo está en el estado spin "arriba".

Ahora si se realiza una medición sobre el estado definido en 1 hay una probabilidad p=0,5 de encontrar al sistema en un estado "arriba" o "abajo" ya que el sistema tiene la misma probabilidad de estar en el estado $|\hat{\mathbf{z}}+;\hat{\mathbf{z}}-\rangle$ o $|\hat{\mathbf{z}}-;\hat{\mathbf{z}}+\rangle$. En esta medición si se encuentra a uno de los electrones con un spin "arriba" el

otro necesariamente tiene que estar en con el spin "abajo" y viceversa. Cuando se halla al primer electrón en el estado spin "arriba" el aparato de medición a colapsado la función de onda del sistema al estado(en otras palabras el aparato de medición ha seleccionado) el primer término de 1, $|\hat{\mathbf{z}}+;\hat{\mathbf{z}}-\rangle$ una medición subsecuente en el spin del segundo electrón debe reafirmar que estado compuesto está dado por $|\hat{\mathbf{z}}+;\hat{\mathbf{z}}-\rangle$.

Es impresionante que este tipo de correlación pueda persistir incluso cuando las 2 partículas del sistema estén bastante alejadas una de otro y hayan dejado de interactuar localmente dado que cuando mientras se alejan el movimiento no cambia el spin de las partículas. Este es el caso de un sistema con momento angular J=0 que se desintegra espontáneamente es dos partículas de spin $\frac{1}{2}$ sin momento angular orbital relativo, debido a que el momento angular se debe conservar en el proceso de desintegración. Un ejemplo experimental de esto se da en un proceso escaso o raro en el que un mesón η con masa $549\frac{\rm MeV}{c^2}$ decae un par de muones

$$\eta \to \mu^+ + \mu^- \tag{2}$$

Referencias

- [1] George Arfken. Mathematical Methods for Physicists.
- [2] J.S. Bell. On the Einstein Podolski Rosen Paradox. https://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
- [3] John F. Clauser, Michael A. Horne, Abner Shimony, Richard Holt. *PROPO-SED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEO-RIES.*. Physical Review Letters,. 23(15):880-4, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.23.880.
- [4] Einstein A., B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?. Physical Review. doi:10.1103/PhysRev.47.777
- [5] J. Medina. Reporte de Seminario 1. Computación Cuántica https://github.com/Julio-Medina/Seminario/blob/main/Reporte_ final/reporte_final.pdf
- [6] Michael A. Nielsen, Isaac L. Chuang. *Quantum Computation adn Quantum Information*. Cambridge University Press 2010. 10th. Anniversary Edition.
- [7] Richard P. Feynman. Simulating Physics with Computers. https://doi.org/10.1007/BF02650179.
- [8] Qiskit Textbook. https://qiskit.org/textbook-beta
- [9] N. David Mermin Quantum Computer Science: An Introduction. Cambridge University Press, 2007.
- [10] J.J. Sakurai Modern Quantum Mechanics. The Benjamin/Cummings Publishing Company, 1985.

- [11] Viktor Dotsenko. An Introduction to the Theory of Spin Glasses and Neural Networks. World Scientific 1994.
- [12] Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S. Schoenholz, Jascha Sohl-Dickstein, Surya Ganguli. Statistical Mechanics of Deep Learning. https://www.annualreviews.org/doi/pdf/10.1146/ annurev-conmatphys-031119-050745
- [13] OpenQASM. https://github.com/openqasm/openqasm.