Electric Circuits Chapter 1-2

SI Prefixes

These are used throughout the curriculum and by engineers

Multiplier Prefix Symbol Example

10^12	tera	T	TB
10^9	giga	G	GB
10^6	mega	M	MHz
10^3	kilo	k	$k\Omega$
10^0			V
10^-3	milli	m	mΗ
10^-6	micro	μ	μA
10^-9	nano	n	ns
10^-12	pico	р	рF
10^-15	femto	f	
10^-18	atto	а	

Circuit Analysis: Introduction

- An electric circuit is an interconnection of electrical elements
- Charge is an electrical property of the atomic particles which matter consists, measured in coulombs (C)
- 1 C of charge requires 6.24 × 10^18 electrons
- Law of conservation of charge: charge cannot be created or destroyed, only transferred

Flashlight Circuit

A flashlight circuit has 4 circuit elements

- We will use symbols for circuit elements
- Facilitates analysis

Electric Current

 Electric Current is the rate of change of charge, measured in

amperes (A)

- 1 A = 1 C/s
- Two main types
- Direct Current (DC): Current remains constant
- Alternating Current (AC): Current varies sinusoidally with time

i = dq/dt

where

i = current in amperes

q =charge in coulombs

t = time in seconds

Notes on Current

- Current in circuits physically realized by movement of electrons
- Direction of current must be specified by an arrow
- By convention, current direction defined as flow of **positive** charge
- Note positive charge is not flowing physically
- Electrons have a negative charge
- They move in the opposite direction of current

Voltage

Voltage is the energy absorbed or expended as a unit charge moves through a circuit element

- Analogous to pressure in a hydraulic system
- Sometimes called potential difference
- Can be created by a separation of charge
- Is a measure of the potential between two points
- Voltage pushes charge in one direction
- We use polarity (+ and on batteries) to indicate which direction the charge is being pushed

v = dw/dq

where

v = voltage in volts

w = energy in Joules

q = charge in coulombs

Voltage Concept

The voltage sources push current through the circuit

- The current is the rate of flow of charge (i.e. electrons)
- The light bulb (resistor) resists the flow of current

Power

- Power: time rate of expending or absorbing energy
- Denoted by p
- By convention
- Circuit elements that absorb power have a positive value of p
- Circuit elements that **produce** power have a **negative** value of

```
p
p = dw/dt
p = \pm vi
where
p = power in watts (W = J/s)
w = energy in joules (J)
t = time in seconds (s)
v = voltage in volts (V)
i = current in amperes (A)
```

Energy

- Law of Conservation of Energy: the net power absorbed by a circuit is equal to 0
- In other words
- The total energy produced in a circuit is equal to the total energy absorbed
- Every Watt absorbed by an element must be produced by someother element(s)
- Energy: capacity to do work, measured in joules (J)

$$w = \int_{t_0}^t p(t) dt = \int_{t_0}^t \pm v(t)i(t) dt$$

If current and voltage are constant (DC),

$$w = \int_{t_0}^t p \, \mathrm{d}t = p(t - t_0)$$

Passive Sign Convention

- Passive Sign Convention (PSC): Current enters the positive terminal of an element
- Equivalent: Current leaves the negative terminal
- Most two-terminal circuit elements (e.g. batteries, light bulbs, resistors, switches) are characterized by a single equation that relates voltage to current: v = ±f(i) or i = ±g(v)

• Suppose the circuit element shown below is characterized by $v = \pm f(i)$ and $i = \pm g(v)$. Determine whether the PSC is satisfied and write the equations for the voltage, current, and power for each of the diagrams below.

• Find the power (absorbed) for each element.

• Example : Passive Sign Convention

Find the total power absorbed in the circuit.

	Voltage (V)	(A)	Power (W)	v_a v_d v_d v_d
а	-18	-51		' j + v _c - ↑ +
b	-18	45		i _d
С	2	-6		
d	20	-20		$i_{\mathbf{f}} \rightarrow i_{\mathbf{f}}$
е	16	-14		- i _b · · · · · · · · · · · · · · · · · · ·
f	36	31		$v_{\rm b}$ b $v_{\rm e}$ e
				+

Passive Sign Convention Remarks

- Failure to comply with the PSC will result in a wrong equation in the early stages of circuit analysis
- All of the results that follow will be wrong
- This translates to many lost points on exams
- One of the key ideas is that the defining equations depend on the voltage polarity and current direction
- Example: $p = \pm vi$
- You must examine how the polarity of v and the direction of i is labeled on the circuit diagram to determine the sign

Voltage Drops & Rises Defined

- The following statements are true and equivalent
- There is a 5 V drop from a to b
- There is a 5 V rise from b to a
- − There is a −5 V rise from a to b
- There is a -5 V **drop** from b to a
- The first expression is the most common
- In most cases, we will be concerned with voltage drops

Chapter 2- Circuit Elements

- We begin the study of circuit with five ideal circuit elements:
- voltage sources
- Current sources
- Resistors
- Inductors and
- capacitors

- A source is a device which is capable of converting nonelectric energy to electric energy and vice versa. (e.g ,batteries, dynamos, motors, etc.
- Maintains either voltage or current.
- Led to the creation of ideal voltage source and ideal current source as basic circuit elements.
 - ideal voltage sources and ideal current sources can be divided into two categories: independent and dependant sources.
 - An indepent source is indepent of any other voltage or current.
 - A dependent source depend on a voltage or current somewhere else in the circuit.

- **Ideal Voltage Source**: produces *Vs* volts regardless of the current absorbed or produced by the device(i.e,independent source)
- The voltage produced may depend on some other circuit variable (current or voltage) (i.e,dependent source)
- The sign of *Vs* can be negative

Ideal Current Source: produces *Is* amps regardless of the current in the device (i.e independent source)

- The current produced may depend on some other circuit variable (current or voltage) (i.e dependent source)
- Note the sign of Is can be negative

Notes on Ideal Sources

- Ideal sources are models used to simplify analysis
- These devices do not exist physically
- How much power can an ideal source produce?
- How much power can a battery produce?
- Ideal models serve as a good approximation of physical devices, but only over a limited operating range

Ideal Voltage Sources: Series

 Ideal voltage sources connected in series add

Ideal Voltage Sources: Parallel

- Ideal voltage sources cannot be connected in parallel
- Recall: ideal voltage sources guarantee the voltage between two terminals is at the specified potential (voltage)
- In practice, the stronger source would win
- Could easily cause component failure (smoke)
- Ideal sources do not exist
- Technically allowed if V1 = V2, but is a bad idea

Ideal Current Sources: Series

- Ideal current sources cannot be connected in series
- Recall: ideal current sources guarantee the current flowing through source at specified value
- Recall: the current entering a circuit element must equal the current leaving a circuit element, lin = lout
- Could easily cause component failure (smoke)
- Ideal sources do not exist
- Technically allowed if l1 = l2, but is a bad idea

Ideal Current Sources: Parallel

Ideal current sources in parallel add

Ohm's Law

- Many useful electrical devices are designed to convert electric energy to thermal energy.(e.g. Stoves, toasters, irons, etc.)
 - Take advantage of the thermal energy caused by flowing charge carriers through metal.
 - The behavior of metal is the resistance to the flow of electric charge.
 - Model it with the resistor.

Resistance: Defined

- All materials resist the flow of current.
- Resistance is usually represented by the variable R
- Depends on geometry and resistivity of the material
- $R = \rho . (I/A)$

where

R = resistance of an element in ohms (Ω)

 ρ = resistivity of the material in ohm-meters

I = length of cylindrical material in meters

A = Cross sectional area of material in meters^2

Ohm's Law

As with all circuit elements, we need to know how the current through and voltage across the device are related

• Ohm's Law: v = iR

- Recall $p = \pm vi$. Therefore
- $p = v^2/R$
- $p = (iR)i = i^2.R$
- Resistors cannot produce power
- Therefore, the power absorbed by a resistor will always be positive.

Example


```
\begin{array}{ccc} i_2 & = & \\ v_6 & = & \\ R_4 & = & \\ v_2 & = & \\ i_8 & = & \end{array}
```

- An element (or wire) with R = 0 is called a short circuit
- Often just drawn as a wire (line).

- An ideal voltage source Vs = 0 V is also equivalent to a short circuit Since v = iR and R = 0, v = 0 regardless of i
- Could draw a source with Vs = 0 V, but is not done in practice

Open Circuit

- An element with $R = \infty$ is called a **open circuit**
- Often just omitted
- Could draw a resistor with $R = \infty$, but is unnecessary
- An ideal current source I = 0 A is also equivalent to an open circuit

Circuit Building Blocks

- Before we can begin analysis, we need a common language and framework for describing circuits
- Circuits are composed of nodes, branches, and loops

- **Branch**: a single two-terminal element in a circuit
- Segments of wire are not counted as elements (or branches)
- Examples: voltage source, resistor, current source
- Example: How many branches?

- **Node**: the point of connection between two or more branches
- **Essential Node**: the point of connection between three or more Branches
- Example: How many nodes? How many essential nodes?

• **Loop**: any closed path in a circuit Example: How many loops?

Overview of Kirchhoff's Laws

- The foundation of circuit analysis is
- The defining equations for circuit elements (e.g. Ohm's law)
- Kirchhoff's current law (KCL)
- Kirchhoff's voltage law (KVL)
- The defining equations tell us how the voltage and current within a circuit element are related
- Kirchhoff's laws tell us how the voltages and currents in different branches are related

Kirchhoff's Current Law

Kirchhoff's Current Law (KCL): the algebraic sum of currents entering a node is zero

- The sum of currents entering a node is equal to the sum of the currents leaving a node
- Common sense:
- All of the electrons have to go somewhere
- The current that goes in, has to come out some place
- Based on law of conservation of charge

Kirchhoff's Voltage Law

• Kirchhoff's Voltage Law (KVL): the algebraic sum of voltages around a closed path (or loop) is zero

$$\sum_{m=1}^{M} V_m = 0$$

Based on the conservation of energy

Comments on Ohm's Law, KCL, and KVL

Ohm's Law: v = iR

KCL: In = 0

KVL: Vm = 0

- Much of the circuit analysis that we will do is based on these three laws
- These laws alone are sufficient to analyze many circuits

Example

Find $\sqrt{2}$, $\sqrt{6}$ and \sqrt{l} .

example

Find io and vo.

example

Find *i*7, *i*3, *i*2, *v*3, and *vI*.