

Sponsors

Gold

Having fun with Raspberry(s) and Apache projects

par Jean-Frederic Clere @jfclere

- Who I am
- How does it started
- OK now I have my demo for HTTP/2 what next.
- Get Astro Hat and have fun.
- Get another Hat and have another fun.
- More serious people using Industrino
- Questions

Jean-Frederic Clere Red Hat Years writing JAVA code and server software Tomcat committer since 2001 Doing OpenSource since 1999 Cyclist/Runner etc Lived 15 years in Spain (Barcelona) Now in Neuchâtel (CH)

Trying to make a demo:D

- first localhost (failed)
- remote server (failed)
- try local + configurable:
 - Need a very small hardware:
 - Need real OS (no Arduino)
 - Fast
 - With WIFI

Raspberry PI3 / basics

- Hardware: sd card / wifi access point
- Most distributions requires for installation:
 - Screen
 - Keyboard
 - Solution:
 - mount root
 - remove autostart (tricky SystemD)
 - add ssh keys
- Next yum install java/openssl/gcc etc...
- Done in a few hours...

Raspberry PI3 / basics

- Fedora 24 (with RPI kernel and modules)
- Drivers from https://github.com/raspberrypi/firmware
- wifi access point from (free since September 2016)
 https://raw.githubusercontent.com/RPi-Distro/firmware-nonfree/master/
- dhcp (server)
- bind (name server to make captive portal)
- Oracle JDK 8 for ARM (Java Openjdk version "1.8.0" too slow)
- Tomcat apache-tomcat-8.5.6
- Apache httpd (the fedora one)
- http://10.0.0.201/

Raspberry PI3 / demo

- HTTP/2
- Tomcat-8.5.6 (bin tar)
- Tomcat-native-1.2.10 (sources compiled on the Raspberry)
- Openssl 1.0.2j (from Fedora 24)
- http://10.0.0.203:8080/(normal tomcat)
- http://10.0.0.203:8080/http2.html
- https://10.0.0.203:8443/http2.html https normal
- https://10.0.0.203:8002/http2.html https HTTP/2
- So play with latency:
 - tc gdisc add dev eth0 delay 85ms 20ms (to get something that isn't localhost).
 - tc gdisc del dev eth0 root (remove it).
 - tc qdisc add dev eth0 root netem delay 185ms 120ms
- https://10.0.0.202:8443/http2.html https normal
- https://10.0.0.202:8002/http2.html https HTTP/2

Let's start the fund

- Hats...
- lot experimentation boxes
- Use Astro Hat
- Sensors:
 - Magnetometer
 - Humidity sensor
 - Temperature
 - Accelerometer
 - Joystick
 - And a DISPLAY!!!

- Servlet
- Frame Buffer
- HTLM5 scripts
- Read the display / write / reset etc
- Note the following:
 - Openjdk no JIT compiler (slow, so I use Oracle VM).
 - Openidk (arm version: memory map file ~ broken)
 - Or frame buffer problem.

 http://10.0.0.239:8080/demo-1.0-SNAPSHOT/FrameBuffer http://10.0.0.203:8080/demo-1.0-SNAPSHOT/FrameBuffer

ActiveMQ fun

- Broker easy to collect information
- The Raspberry library are in Python
- Easy to make STOMP (on the PI)
 - Topic to send temperature in the example.
 - Queue on the PI to display a message
- Websocket STOMP on the client
 - html page with java script
 - jquery

ActiveMQ demo

- First the client (java script): http://10.0.0.201/client.html
- bin/activemq console
- http://10.0.0.201:8161/admin/ (the activeMQ console admin/admin)
- The object Raspberry have STOMP python application running. (autostarted):
- root@localhost ROOT]# ps -ef | grep pytho
- root 371 1 0 17:28? 00:00:07 /usr/bin/python3 -Es /usr/sbin/firewalld --nofork --nopid
- root 2007 1 118:09? 00:00:01/usr/bin/python/root/tomcatPl/python/sendtemprecvmess.py
- root 2047 745 018:11 pts/0 00:00:00 grep --color=auto pytho

- Based on Arduino but for electricians.
- Powered with 24 volts
- No OS programmed via USB
- Industrial format
- To control pumps, heaters etc
- Measures 2 temperatures
- Connected to ActiveMQ via RPI3 using Modbus
- Mostly OpenSource and OpenHardware

- Internet of Things (IoT).
- http://mynewt.apache.org/ Arduino
- https://edgent.apache.org/RPI
- Problems with hardware:
 - Partially OpenSource / OpenHardware :-(
 - Hard to explain to the players the Apache Way

Do it your self?

- PI 3 + memory + power = 2 lunches
- http://mynewt.apache.org/
- https://edgent.apache.org/
- Blog: http://jfclere.blogspot.com.es/
- Github: https://github.com/jfclere/tomcatPl
- Fedora 25: https://fedoraproject.org/wiki/Raspberry_Pi
- Industruino code (you need Industruino libs too): https://github.com/jfclere/Industruino_HVAC_Functions
- Hardware controler: http://econtrols.org

Question?

Merci!

carbon®

SOFTEAM Cadextan

