Numerical Methods Lecture 1: Basics

Zachary R. Stangebye

University of Notre Dame

Fall 2017

Traditional Trade-off: Language Choice

1. Ease of development: **Dynamic Languages**

- Examples: Matlab, R, Python, Stata, etc.
- Line-by-line execution in real-time
- No variable declarations
- User-friendly features built-in (packages, plotting, etc.)

2. Speed: **Static Languages**

- Examples: Fortran, C, C++, Java
- Packages (compiles) entire source code before executing
- Painful user interface (gives .exe file)
- · Long development time

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chains

Recent Improvements

- Julia is making pretty successful attempts at eliminating trade-off
 - Novel Feature: Just-in-Time (JIT) Compilation
 - Runs dynamically but compiles as it goes
 - First time execution slow, but subsequent executions very fast
- Easy to develop like a dynamic language, but fast like a static one
- We'll use Julia in this course
 - Increasingly popular in profession
 - Still relatively new (constant updates)

Getting Started in Julia: 3 Ways

- 1. Julia terminal/shell/REPL
 - Most basic implementation: Runs on your machine line-by-line
 - "Read-Eval-Print-Loop"
- 2. JuliaBox portal
 - Runs like terminal, but in browser
 - On a cloud instead of your machine
- 3. Juno IDE (Integrated Development Environment)
 - Similar to Matlab
 - 3.1 Text/script editor
 - 3.2 Command line interface: REPL
 - 3.3 Workspace/plotting function/documentation/etc.
 - We'll use this most often

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chains

Storing Information

- Information stored in variables
- Variables have many different types
 - 1. Real numbers ("Float": 64-bit and 32-bit)
 - 2. Integers ("Int": 64-bit and 32-bit)
 - 3. Characters
 - 4. Strings (sequences of characters)
 - 5. Vectors
 - 6. Arrays
 - 7. Functions
 - 8. ...
- Assign variables with an equal sign e.g. x = 2
- Static languages: Must state variable type when declaring variable
- Dynamic languages: Figures it out on its own (Julia)

Storing Information: Arrays

- Be a bit careful. Array assignment initially treated as shared memory (pointers)
- More efficient, but be aware of it
- Let A be an array...
 - B = A means they share memory. Changes in assigned values of A translate to B
 - Not true for mathematical operations on A
 - To avoid this, use B = copy(A), which gives values but not memory
- Not an issue with scalars (Float64 and Int64)

Storing Information: Functions

- Defining functions: Several ways to do it in Julia
 - 1. In-line: $myfunc(x) = x^2$
 - \rightarrow myfunc(2) = 4
 - 2. In a block:

```
function myfunc(x)
   return x^2
end
```

- \rightarrow myfunc(2) = 4
- JIT-compilation: After initial definition of a function
 - Julia compiles a new function each time you pass it different argument types
 - Alternative: Pre-specify argument types to boost speed, but can cause errors

Subroutines

- Julia functions in some instances can be interpreted as *subroutines*
 - Subroutines modify their arguments; functions leave them alone
 - Subroutines tend to be more memory-efficient, especially with larger arrays (don't create new variables)
- Julia functions will naturally modify their array-type arguments if told to do so
 - Won't modify scalars (Ints or Floats)
- Julia Nomenclature: Denote subroutines with a '!' after the function name and have it return nothing e.g.

```
function myfunc!(y,x)

y[1] = x^2

return nothing

end
```

Conditional Statements and Executions

- Important variable type: Boolean
 - Takes one of two types: true or false
 - Used to evaluate conditionals
- Two ways of defining them
 - Directly: myTrueBoolean = true
 - Condition: myFalseBoolean = 1 == 2
 - Sets myFalseBoolean to false, since 1 and 2 are not equal
- Multiple conditions
 - Use 'elseif' after first conditional
 - In-line: Use and i.e. & or &&
 - In-line: Use *or* i.e. | or ||

Conditional Statements and Executions

- 'If' statement used to run code sections based on boolean values
- Example:

```
if myTrueBoolean
    println("It is true")
else
    println("It is false")
end
```

• Can also feed conditionals directly e.g. if $x \le 2$

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chains

Loops

- Often need to perform the same operation many times or access many different elements of an array
- Done in loops: Two kinds

Definite: for loops
 Indefinite: while loops

2. Indefinite: while loops

- For loops execute an operation a pre-specified number of times
 - Can nest loops, use alternative indexing schemes, count backward, etc.
 - Tremendous flexibility
- Unlike Matlab, Julia does not punish you for writing in loops!
 - In fact, Julia runs loops slightly faster than array operations, since they tend to require less memory

While loops

- while loops execute indefinitely until a pre-specified condition is satisfied
- Format
 while boolean condition
 Do stuff...
 eventually boolean condition set to false...
 end
- Exercise caution: while loops most common way of stalling programs
 - If condition is never met, it will go on forever!

First Problem

- We have enough tools to start some application
- Problem 1: Market clearing in general equilibrium
 - Two consumers (i), two goods (j)
 - Normalize $p_1 = p$, $p_2 = (1 p)$
 - Endowments: $e_i^i > 0$ for all agents
 - Consumption: $c_i^i \ge 0$ for all agents
- Perfect competition: Agents take prices as given and maximize utility
- Market clearing determines prices:

$$c_j^1 + c_j^2 = e_j^1 + e_j^2$$

for i = 1, 2

Demand Problem

Agent i solves

$$\max_{c_1^i,c_2^i\geq 0}\ u_i(c_1^i,c_2^i)$$
 s.t. $pc_1^i+(1-p)c_2^i\leq pe_1^i+(1-p)e_2^i$

- Solution implies demand function: $c'_i(p)$
- Equilibrium price: p* such that

$$c_j^1(p^*) + c_j^2(p^*) = e_j^1 + e_j^2$$

for i = 1, 2

• Walras' law: If p^* clears market for good 1, then market for good 2 clears automatically

Equilibrium Price

Suppose that preferences are Cobb-Douglas i.e.

$$u_i(c_1^i, c_2^i) = \beta_1^i \log(c_1^i) + \beta_2^i \log(c_2^i)$$

 Demand function is known analytically (Cobb-Douglas shares \implies Expenditure shares)

$$c^i_j(p) = rac{eta^i_j}{eta^i_1 + eta^i_2} imes rac{pe^i_1 + (1-p)e^i_2}{p_j}$$

Need to find eq'm price such that

$$c_2^1(p^*) + c_2^2(p^*) - (e_2^1 + e_2^2) = 0$$

Strategy: Interval Bisection

- Need to find the zero of a non-trivial, one-dimensional, continuous function e.g. f(x) = 0
- Suppose we know $\exists x_L, x_H$ such that $f(x_L) < 0$ and $f(x_H) > 0$
 - IVT tells us that $\exists x \in (x_L, x_H)$ such that f(x) = 0
- To find x, we iteratively split [x_L, x_H] into smaller and smaller intervals until we find it
 - 1. Compute $y_{new} = f\left(\frac{x_L + x_H}{2}\right)$ 2. If $y_{new} > 0$, set $x_H = \frac{x_L + x_H}{2}$
 - 3. If $y_{new} < 0$, set $x_L = \frac{x_L + x_H}{2}$
 - 4. Repeat until either $|y_{new}|$ or $|x_H x_L|$ sufficiently small
- Adjust algorithm slightly if function is decreasing instead (flip 2 and 3)

Interval Bisection in Practice

Implementation

- We can use interval bisection to get our market clearing price
- $f(p) = c_2^1(p^*) + c_2^2(p^*) (e_2^1 + e_2^2)$
- Demand theory tells us
 - 1. $f(0) = \frac{\beta_2^1}{\beta_1^1 + \beta_2^1} e_2^1 + \frac{\beta_2^2}{\beta_1^2 + \beta_2^2} e_2^2 (e_2^1 + e_2^2) < 0$
 - 2. $f(1) = \infty + \infty (e_2^1 + e_2^2) > 0$ (this good is free)
- Set $p_I = 0$ and $p_H = 1$ and we can find eg'm price

Measuring Time

- Can use in-built clock to measure time
- Two lines sandwich code:
 - 1. start = time()
 - 2. elapsed = time()-start
- Delivers execution time between (1) and (2)

Storing Information: Memory

- Some variables do not need to be used all the time. Each variable has a scope of use
 - Global variables can be accessed by any entity, anywhere in your program
 - Local variables can only be accessed by the local environment (function, loop, etc.)
- Speed and memory tradeoffs in choosing variable types
 - Local variables preferred for each (sometimes vastly), but leads to more decentralized code
 - Local variables greatly simplify machine level code
- Dynamic languages generally assume everything is global
 - Some exceptions e.g. Matlab's separate-script functions
- Static languages generally assume everything is local
- Julia straddles a (sometimes uncomfortable) middle-ground

Variable Scope: Julia

- Where does Julia fall? JIT compilation ⇒ in the middle
 - All variables defined in 'body' of a file are considered global
 - All variables defined in a structure e.g. function, loop, are considered local
- Global variables can be seen in the workspace following execution
- Can undo this with the variable types: 'local' and 'global'
 - Instead of x = 3.0, set global x = 3.0
- More details on scopes: https://docs.julialang.org/en/v1/manual/variables-and-scoping/index.html

Maximization Techniques

- Many problems don't have closed-form solutions
- Want to let the computer do the maximization (minimization) for you
- Consider simple problem from before
 - Know the solution: Can compare speed and accuracy of different methods

$$\max_{c_1^i, c_2^i \geq 0} \ eta_1^i \log(c_1^i) + eta_2^i \log(c_2^i)$$

s.t.
$$pc_1^i + (1-p)c_2^i \le pe_1^i + (1-p)e_2^i$$

$$\implies c_j^i(p) = \frac{\beta_j^i}{\beta_1^i + \beta_2^i} \times \frac{pe_1^i + (1-p)e_2^i}{p_i}$$

Approach 1: Grid-Search

- Discretize options into a grid on feasible space
- 2. Evaluate objective at each point
- Find largest value
- Start with substitution to get rid of constraint

$$U(c_1^i) = \beta_1^i \log(c_1^i) + \beta_2^i \log\left(rac{p(e_1^i - c_1^i) + (1 - p)e_2^i}{1 - p}
ight)$$

- Bounds: $c_1^i \in \left[0, \frac{pe_1^i + (1-p)e_2^i}{p}\right]$
- Break into N, equidistant gridpoints
 - Requires N evaluations of the function
 - Accuracy: Within (upper bound lower bound)/(N-1)

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chain

Variant on Approach 1

- Many benefits of grid-search
 - Finds a global max (regardless of curvature)
 - Super-simple/intuitive
- Drawbacks
 - Pretty slow: Time scales exponentially with dimensions (really bad)
 - Must evaluate function at every point
- If function concave: Alternative
 - 1. Evaluate gridpoints in ascending order
 - 2. Stop when objective begins to decrease (must be max)
 - Necessarily uses fewer evaluations than grid-search: Often substantial
 - In small applications, not always better than built-in max functions...

Modified Grid-Search

Need only evaluate points on grid less than 7

Approach 2: Golden-Search

- Alternative approach: Similar to interval bisection
- Idea: Want a max in between two points, [a, b]
 - 1. Check two other points in that range, $x_1 < x_2$
 - 2. If $f(x_1) < f(x_2)$, must be a max in range $[x_1, b]$
 - 3. If $f(x_2) \le f(x_2)$, must be a max in range $[a, x_2]$
 - 4. Adjust range and pick two new points
 - Continue until interval shrinks small enough
- How to pick the points? Two criteria. Want
 - 1. To use an old point. Each new iteration takes only 1 new function evaluation
 - 2. Distance to shrink by same fraction each time
- Unique set of points does this: Chosen by Golden Ratio

$$x_i = a + \alpha_i(b - a)$$

where
$$\alpha_1 = \frac{3-\sqrt{5}}{2}$$
 and $\alpha_2 = \frac{\sqrt{5}-1}{2}$

Golden-Search Example (Minimization)

Golden-Search

- Advantages
 - Pretty fast and accurate
 - If tolerance is $\epsilon > 0$, converges in

$$N = int \left(rac{\log(\epsilon) - \log(lpha_1 lpha_2[b-a])}{\log(lpha_2)}
ight)$$

- Example: If a=0, b=1, and $\epsilon=1e-4$, then N=17
 - Can increase precision by 100x ($\epsilon=1e-6$) with only 9 more evaluations i.e. N=26
- Drawbacks
 - Only finds local maxima. Could miss global optimum

Digression: Plotting in Julia

- Several different packages in Julia that allow you to see plots in real time or save them as PDFs/PNGs
- Packages give Julia extra functionality and are easy to install:
 - 1. ']' + add PackageName [done only once in terminal, ever]
 - using PackageName [done every time you run your code (include in script)]
- Package "Plots" enables basic plot functionality
 - Basic Syntax: plot(x, y, option1=option1set, option2=option2set, ...)
 - Details/specifics in lecture code
- We'll use a bunch of extra packages throughout the course

Approach 3: Newton-Raphson Method

- Based on Newton's root-finding approach: y = f(x)
- Tangent line at x_k : $y = f'(x_k)(x x_k) + f(x_k)$
 - Idea: Each update x_{k+1} is zero of the current tangent line
- To find f(x) = 0...
 - 1. Evaluate $f(x_k)$; stop if close to zero
 - 2. If not, evaluate $f'(x_k)$
 - 3. Updated guess: $x_{k+1} = x_k f(x_k)/f'(x_k)$
- Tends to work pretty well on well-behaved problems (though there are pathological cases)
- Converges quadratically in the neighborhood of the true zero

Newton's Method

Newton-Raphson Method

- Useful on its own (rootfinding sometimes necessary in numerical analysis)
- Can be used for optimization: Set f'(x) = 0
- The Newton-Raphson Method
 - 1. Evaluate $f'(x_k)$; stop if close to zero
 - 2. If not, evaluate $f''(x_k)$
 - 3. Updated guess: $x_{k+1} = x_k f'(x_k)/f''(x_k)$
- Pros:
 - Converges pretty quickly (locally quadratically)
 - Works well in practice
- Cons:
 - Doesn't always handle broad sets of constraints well
 - Only finds extrema: Could be local max (or a local min!)
 - Often numerical derivatives needed
 - Sensitive to initial conditions

Newton-Raphson in Practice

Recall our objective:

$$U(c_1^i) = \beta_1^i \log(c_1^i) + \beta_2^i \log\left(\frac{p(e_1^i - c_1^i) + (1 - p)e_2^i}{1 - p}\right)$$

First derivative:

$$U'(c_1^i) = \frac{\beta_1^i}{c_1^i} - \frac{\beta_2^i \frac{p}{1-p}}{\frac{p(e_1^i - c_1^i) + (1-p)e_2^i}{1-p}}$$

Second derivative:

$$U''(c_1^i) = -\frac{\beta_1^i}{(c_1^i)^2} - \frac{\beta_2^i \left(\frac{p}{1-p}\right)^2}{\left(\frac{p(e_1^i - c_1^i) + (1-p)e_2^i}{1-p}\right)^2}$$

Alternative First-Order Approach

- Use interval bisection to find the root of $f'(x^*) = 0$
- Requires $f'(x_L) > 0$ and $f'(x_H) < 0$ (or vice versa)
 - Need not evaluate second derivative, so less error-prone
 - Generally does not converge as quickly
 - Suffers from same key flaw as Newton-Raphson
 - Finds only extrema (could be a local min!)
 - Handles bounds better (naturally)

Numerical Differentiation

- What if you cannot express $f'(\cdot)$ analytically?
- Approximate it numerically: Choose a small step-size, h > 0
- Several ways
 - 1. Forward difference

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

2. Reverse difference

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

Average

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Average tends to work best for most applications

Numerical Second Derivatives

 Second derivatives a little trickier...several valid ways but most versatile is generally the following average

$$f''(x) \approx \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

- Second derivatives notoriously bad for complicated problems...
 - Example: Numerical Hessians generally not symmetric (mathematically they must be)
 - Error introduced by approximation large enough to throw off Hessian value

Implementation

- Step size choice? Tricky...depends on your problem
 - Standard is usually a little less than your optimization tolerance e.g. 1e-4 when tolerance is 1e-6
 - Too large and your approximations are no good (away from Taylor neighborhood)
 - Too small and limits of computer memory become an issue

raditional Trade-off Data Types Flow Control Variable Scopes **Optimization** Numerical Integration Markov Chain.

Autodifferentiation in Julia

- JIT compilation works really well (for technical reasons) for automatic, analytic differentiation
- The ForwardDiff package (among others) implements this
- Can compute analytically for compositions of built-in functions
 - 1. Any order of derivative
 - 2. Gradient
 - 3. Hessian
- Extremely helpful!
 - 1. Many non-linear solvers/algorithms require gradient estimates
 - 2. Numerical derivatives (especially Hessians) often unreliable
 - 3. Gradients by hand for large problems both slow and error-prone
- Limitations: Can handle arrays (and even splines), but not loops
 - Limited functionality for complicated expectations, GMM, etc.

Saving your Work

- Sometimes you will want to save your work for later analysis (or analysis in another program)
- Best way to do this: JLD package (JuliaData)
 - Pkg.add("JLD")
 - 2. using JLD
- Save variables: @save "filename.jld" x y z ...
- Load variables: @load "filename.jld"

Adding Constraints

- Substitute as much as possible to reduce dimension space
- In one dimension, pretty easy
- Only one type: Bounds
 - Built in to many of our algorithms
 - Newton's method doesn't always do so well with bounds
- Several intervals: Solve for each interval and take max across them
- · Several dimensions: Other methods required

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chain

Built-in Packages

- Julia has some nice built-in optimization packages
- Three in particular are useful
 - Roots package
 - Finds zeros: soln = fzero(function, LB, UB)
 - 2. Optim package (minimizer)
 - result = Optim.optimize(function, LB, UB)
 - Really fast
 - Basic algorithms (can choose as an option)
 - Only basic, box-constraints
 - 3. JuMP package (with the NLOpt solver)
 - A bit slower
 - More advanced algorithms
 - · Can handle any constraints
- Generally faster than writing yourself: Exploit advanced machine-level code

Multivariate Optimization

- Things get more complicated in higher dimensions...
 - Grid-search suffers from 'curse of dimensionality'
 - K gridpoints along each of N dimensions $\to K^N$ gridpoints
 - Gets really big really fast!
- Variations on Newton-Raphson and Nelder-Mead tend to be most popular approaches
 - 1. Newton-Raphson \rightarrow LFBG-S/Line-Search
 - 2. Nelder-Mead/PatternSearch (more on specifics later)
- Other popular option: Genetic and Simulated Annealing Algorithms
 - Both exploit stochastic search to find global optima
- Will not go into algorithmic details (yet)

Nonlinear Programming with JuMP and NLOpt

- 1. Construct a 'model' i.e. a constrained maximization problem
 - Specify the solver (NLOpt) and/or the algorithm
- 2. Add choice variables (and initial values)
- 3. Add constraints (as many as you want)
- 4. Add an objective function
 - Dictate whether min or max
- 5. "Solve" model
- 6. Pull out results
 - Alternative solvers can be used if you have them

Nonlinear Programming with JuMP and NLOpt

- NLOpt on its own (without JuMP) has a similar functionality
- Useful Algorithms
 - LD₋MMA
 - Simple, gradient-based multivariate optimization with constraints
 - Uses autodifferentiation; be careful
 - LN_COBYLA
 - Gradient-free ("PatternSearch"), but a bit slower
 - Details later in course
- More available at http://ab-initio.mit.edu/wiki/index.php/NLopt_Algorithms

Random Variables

- Random variables pop up all the time in economics
- Most useful ones do not have closed-form PDFs...
- Distributions package provides those (and lots of other stuff)
- Can define random variables as an object
 - 1. Get PDF/CDF at any point
 - 2. Draw from it
 - Compute moments, quantiles, correlations, entropy, likelihood, etc.
 - 4. Multivariate distributions allowed
- Can truncate with the Truncate package
- Can even do MLE estimation to attain parameters for a distribution type

RVs and Computers

- Computers get along great with discrete distributions
 - e.g. Easy to compute moments with the pmf

$$E[m(\tilde{X})] = \sum_{i=1}^{N} m(X_i) p(X_i)$$

- Often need to tweak things a bit for continuous...
 - Cannot evaluate (even if pdf is analytic)

$$E[m(\tilde{X})] = \int_{x_l}^{x_H} m(X) f(X) dX$$

- This is one of the the most common operations in most models
 - Need a way to approximate it

Expectations Method 1: Quadrature

- A Quadrature is a set of discrete weights meant to approximate a continuous pdf
- Idea: $\int_{x_i}^{x_H} m(X) f(X) dX \approx \sum_{i=1}^{N} w_i m(x_i) f(x_i)$
 - w_i is a weight and x_i is some sort of representative point
- Basic Calculus Method:
 - Split into N intervals $\{X_0, X_1, \dots, X_N\}$ and define g(x) = m(x)f(x)
 - 1. Rectangle Rule:

$$\int_{x_L}^{x_H} m(x) f(X) dX \approx \sum_{i=1}^{N} (X_i - X_{i-1}) g\left(\frac{X_i + X_{i-1}}{2}\right)$$

2. Trapezoidal Rule:

$$\int_{x_{l}}^{x_{H}} m(x) f(X) dX \approx \sum_{i=1}^{N} \left(X_{i} - X_{i-1} \right) \left(\frac{g(X_{i}) + g(X_{i-1})}{2} \right)$$

Expectations Method 1: Quadrature

- Newton-Cotes: Approximate g(x) = m(x)f(x) with Lagrange polynomials
 - Integrate over the polynomials (integral known)
 - Pick *n* evenly spaced points over interval $[x_1, x_n]$: $\{x_1, x_2, \dots, x_n\}$: Yields approximating polynomial

$$h_N(x) = \sum_{i=1}^N g(x_i) \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

 Evaluating integral yields closed-form approximations e.g. N = 5 and $t = x_i - x_{i-1}$

$$\int_{x_1}^{x_5} g(x)dx \approx \frac{2}{45}t(7g(x_1)+32g(x_2)+12g(x_3)+32g(x_4)+7g(x_5))$$

Newton-Cotes Quadrature

- Can subdivide into intervals before we begin
 - Tends to provide more accurate estimates
 - e.g. subdivided 4-point Cubic Quadrature aka "Simpson's 3/8 Rule"

- Some known approximation error: Shrinks with N
- Long list of approximation formulas (and errors) at http://mathworld.wolfram.com/Newton-CotesFormulas.html

Gaussian Quadrature

- Most accurate numerical integral approximation
- Similar to Newton-Cotes, but x_i endogenous
 - m-point approximation fits exactly any polynomial up to degree 2m-1
- ullet Start on interval [-1,1]: Idea, find weights/points such that

$$\int_{-1}^{1} x^{k} w(x) dx = \sum_{i=1}^{n} w_{i} x_{i}^{k}, \text{ for } k = 0, 1, ..., 2n - 1$$

then

$$\int_{-1}^{1} g(x)w(x)dx \approx \sum_{i=1}^{N} w_{i}g(x_{i})$$

• $w(x) = 1 \implies x_i$ are roots of Legendre Polynomials

- Constructs a (relatively) low-order polynomial approximation of your function
- Linear combination of an orthogonal class of polynomials
- Polynomial class determined by weighting function
 - $w(x) = 1 \implies \text{Legendre}$
 - $w(x) = \frac{1}{\sqrt{1-x^2}} \implies \text{Chebyshev}$
 - $w(x) = (1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta > -1 \Longrightarrow \mathsf{Jacobi}$
 - $w(x) = e^{-x^2} \implies \text{Hermite}$
 - •
- Evaluates integral of approximate polynomial exactly

Legendre Polynomials

Gauss-Legendre Quadrature

• When w(x) = 1, this implies

N	X _i	Wi
2	$+/-\sqrt{1/3}$	(1, 1)
3	$0, +/-\sqrt{3/5}$	(8/9, 5/9, 5/9)
4	$ +/-\frac{1}{35}\sqrt{525-70\sqrt{30}} +/-\frac{1}{35}\sqrt{525+70\sqrt{30}} $	$\frac{\frac{1}{36}(18+\sqrt{30})}{\frac{1}{36}(18-\sqrt{30})}$

• Fun fact: Weights always sum to 2 for any N

More weights at

http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

- If we want to use a different set of weights than w(x) = 1
 - 1. Change of variables for function

$$\int_{-1}^{1} f(x) dx = \int_{-1}^{1} \hat{f}(x) w(x) dx$$

where
$$\hat{f}(x) = f(x)/w(x)$$

- 2. Apply method to \hat{f}
- Some weighting schemes are more efficient that Gauss-Legendre

- Most problems don't lie in [−1, 1]
- Shift problem and work on translated one

$$\int_{a}^{b} g(x)dx = \frac{b-a}{2} \int_{-1}^{1} g\left(\frac{b-a}{2}x + \frac{a+b}{2}\right) dx$$

- Alternative polynomial sets and weights:
 - 1. $w(x) = \frac{1}{\sqrt{1-x^2}} \implies x_i$ roots of Chebyshev Polynomials
 - 2. $w(x) = (1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta > -1 \implies x_i \text{ roots of Jacobi}$ **Polynomials**
 - 3. $w(x) = e^{-x^2} \implies x_i$ roots of Hermite Polynomials

Approach 2: Monte Carlo Methods

- Alternative approach: Exploit law of large numbers (LLN)
- Suppose we want to compute $E_f[g(\tilde{x})] = \int_{x_t}^{x_H} g(x) f(x) dx$
 - 1. iid sample from $f(\cdot)$: $\{x_1, x_2, \dots, x_N\}$
 - 2. Law of large numbers says (under regularity conditions):

$$plim_{N\to\infty}\frac{1}{N}\sum_{i=1}^{N}g(x_i)=E_f[g(\tilde{x})]$$

- Can set the seed with srand for consistency
- Advantages
 - Tends to be fast, closer to truth when N large
 - More effective when $Var(\tilde{x})$ is low (Central Limit Theorem)
- Drawbacks
 - Random answers. Can fix this with a fixed seed
 - Computers don't always generate random numbers perfectly...
 - Can take up a lot of memory if many expectations required

General Integrals with MC Methods

- What if it's not an expectation? Twist it until it is
- If it's bounded...make it look like a transformation of a uniform

$$\int_{x_{L}}^{x_{H}} g(x)dx = [x_{H} - x_{L}] \int_{x_{L}}^{x_{H}} g(x) \frac{1}{x_{H} - x_{L}} dx$$

- 1. Draw a sample of size N from a uniform random on $[x_L, x_H]$
- 2. Estimate = $[x_H x_L] \frac{1}{N} \sum_{i=1}^N g(x_i) \rightarrow \int_{x_i}^{x_H} g(x) dx$
- If it's unbounded, can set high bounds
 - Drawback: Large bounds ⇒ High variance ⇒ Slow convergence

Markov Chains

- One more method very common in economics, but specific to Markov Chains
- A Markov Chain is a sequence of random variables $\{X_t\}_{t=-\infty}^{\infty}$ such that
 - 1. $Pr(X_t|X_{t-1},X_{t-2},...)$ is time-invariant (stationary)
 - 2. $Pr(X_t|X_{t-1}, X_{t-2},...) = Pr(X_t|X_{t-1}, X_{t-2},..., X_{t-n})$ for some $n < \infty$
- Canonical example: AR(1) process

$$z_t = \rho_z z_{t-1} + \epsilon_t$$

 Markov Chains appear all the time in dynamic stochastic models

Discrete Markov Chains

- In a discrete Markov Chain, $X_t \in \mathcal{X}$, where $|\mathcal{X}| = N < \infty$
- If $Pr(X_t|X_{t-1},X_{t-2},\dots)=Pr(X_t|X_{t-1})$, we can construct an $N\times N$ **Transition Matrix**, P
 - $P_{ij} = Pr(X_t = x_j | X_{t-1} = x_i)$
 - Notice $sum(P_{i:}) = 1$ for any row i
- Transition matrix completely characterizes the Markov Chain
 - Sometimes called a Stochastic Matrix as well
- Useful: Very easy to put into a computer!

Discrete Markov Chains: Marginal Distributions

- Current marginal distribution of X_t : $\psi_t \in \Delta_N$ i.e.
 - 1. $\psi_t \in \mathcal{R}_N^+$: $\psi_t(i) = Pr(X_t = x_i)$
 - 2. $\sum_{i=1}^{N} \psi_{t}(i) = 1$
- Can use transition matrix to compute ψ_{t+1}

$$\psi_{t+1}(j) = Pr(X_{t+1} = x_j) = \sum_{i=1}^{N} Pr(X_{t+1} = x_j | X_t = x_i) Pr(X_t = x_i)$$

$$\implies \psi_{t+1}(j) = \underbrace{\psi'_t}_{1 \times N} \times \underbrace{P_{:j}}_{N \times 1}$$

$$\implies \psi'_{t+1} = \psi'_t \times P$$

$$\implies \psi_{t+1} = P'\psi_t$$

Discrete Markov Chains: Limiting Properties

Repeated iteration can give distant marginals

$$\psi_{t+m} = (P')^m \psi_t$$

• Two states, $x, y \in \mathcal{X}$ are said to **communicate** if there exist positive integers k and j such that

$$P^{j}(x,y) > 0$$
 and $P^{k}(y,x) > 0$

i.e. there is some non-zero chance of eventually transitioning back and forth

- A Markov Chain is irreducible if all states communicate
- A Markov Chain is aperiodic if it does not cycle predictably

Discrete Markov Chains: Stationary Distributions

• A **Stationary Distribution** is a marginal distribution, $\psi^* \in \Delta_N$, such that

$$\psi^{\star} = P'\psi^{\star}$$

Proposition

Every transition matrix implies a stationary distribution.

Proposition

If P is both aperiodic and irreducible, then

- 1. ψ^* is unique
- 2. From any $\psi_0 \in \Delta_N$, $\lim_{t\to\infty} ||(P')^t \psi_0 \psi^*|| = 0$

Computing the Stationary Distribution

- Suppose we have P. How can we compute ψ^* ? Two ways
- 1. Repeated application (approximate solution)
 - $\psi^{\star} \approx (P')^k \psi_0$ for any $\psi_0 \in \Delta_N$ and large k
- 2. Eigenvector approach (exact)
 - An **eigenvector** of a matrix A is a vector, v such that $Av = \lambda v$ for some scalar λ (which is called the corresponding eigenvalue)
 - We know $[I P']\psi^* = 0$
 - Compute the eigenvector corresponding to the zero eigenvalue of I - P'
 - Scale it such that it's in Δ_N

Discrete Markov Chains: Ergodicity

 In a Markov Chain, Ergodicity is the equivalent of the law of large numbers

Proposition

If P is irreducible, then for any
$$x_i \in \mathcal{X}$$
, $plim_{N\to\infty} \frac{1}{N} \sum_{t=1}^{N} \mathbf{1}\{X_t = x_i\} = \psi^*(i)$

i.e. over a long simulation, the fraction of time spent in state
 x_i is the same as its weight in the stationary distribution.

Discrete Markov Chains: Application

- Suppose we have a hand-to-mouth consumer, $C_t = Y_t$
 - $Y_t \in \mathcal{Y}$, where $|\mathcal{Y}| = N < \infty$
 - Y_t transition matrix, P, is both aperiodic and irreducible
 - Time-discount-rate $\beta < 1$ and flow utility, $u(\cdot)$
- Want to compute expected utility:

$$U(y) = E_0\left[\sum_{t=0}^{\infty} \beta^t u(\tilde{C}_t) | Y_0 = y_i\right]$$

- 1. Define a vector, $u = u(\mathcal{Y}) \in \mathcal{R}^N$
- 2. Know $\psi_0(y_i)$: $\psi_0(y_i)_i = 1$ and $\psi_0(y_i)_i = 0$ for all $i \neq i$
- 3. Rewrite: $U(y_i) = \psi_0(y_i)'u + \beta \psi_1(y_i)'u + \beta^2 \psi_2(y_i)'u + \dots$

$$= \psi_0(y_i)'[I + \beta P + (\beta P)^2 + (\beta P)^3 + \dots]u$$

$$\implies U(y_i) = \psi_0(y_i)'[I - \beta P]^{-1}u$$

Last line follows since geometric series works for matrices too!

- Similar idea, but transition probabilities no longer a matrix
 - $X_t \in \mathcal{S}$, which is infinite-dimensional
 - A **Stochastic Kernel** is a function, $p: S \times S \to \mathbb{R}^+$, such that for any $x \in \mathcal{S}$, $\int p(x|y)dy = 1$
 - Stationary distribution: Marginal density ψ^* such that

$$\psi^{\star}(y) = \int p(x|y)\psi^{\star}(x)dx \ \ \forall y \in \mathcal{S}$$

- Examples
 - 1. AR(1) process

$$z_t = \rho_z z_{t-1} + \epsilon_t$$

2. Solow model with production shocks (A_{t+1})

$$k_{t+1} = sA_{t+1}f(k_t) + (1 - \delta)k_t$$

Numerical Integration: Approach 3

- Continuous Markov Chains most common type of numerical integration problem
- Can easily use our former strategies, but there's a new one too
- Intuitive Strategy: Tauchenize the process i.e. approximate it with a discrete Markov Chain of size N
 - Attributed to Tauchen (1986)
- Vast majority of numerical work continues to Tauchenize (even though not the most efficient way)
 - Rouwenhurst method also works and tends to be more efficient (see Kopecky and Suen [2010] for details)

Tauchenizing: Intuitively

$$z_t = (1 - \rho_z)\mu_z + \rho_z z_{t-1} + \sigma_\epsilon \epsilon_t$$

- ϵ_t is iid standard normal; μ_z is unconditional/ergodic mean
- Denote ergodic stdev by $\sigma_z = \sigma_\epsilon / \sqrt{1 \rho_z^2}$
- 1. Define an N-sized grid over z: $z^1 = \mu_z m\sigma_z$, $z^N = \mu_z + m\sigma_z$; space other points evenly in between
- 2. Define a transition matrix, P, as follows for every row i

2.1
$$P_{i1} = \Phi\left(\frac{z_1 + w/2 - (1 - \rho_z)\mu_z - \rho_z z_i}{\sigma_\epsilon}\right)$$

2.2 For
$$j \in \{2, ..., N-1\}$$
,

$$P_{i1} = \Phi\left(\frac{z_{j}+w/2-(1-\rho_{z})\mu_{z}-\rho_{z}z_{i}}{\sigma_{\epsilon}}\right) - \Phi\left(\frac{z_{j}-w/2-(1-\rho_{z})\mu_{z}-\rho_{z}z_{i}}{\sigma_{\epsilon}}\right)$$
2.2 For $j \in \{2, ..., N-1\}$,

2.3
$$P_{iN} = 1 - \Phi\left(\frac{z_N - w/2 - (1 - \rho_z)\mu_z - \rho_z z_i}{\sigma_\epsilon}\right)$$

Traditional Trade-off Data Types Flow Control Variable Scopes Optimization Numerical Integration Markov Chains

Tauchenizing an AR(1)

- We now have a matrix, P, that is a stochastic matrix by construction
- Together with the grid, we have a discrete Markov chain!
- Approximation works pretty well for first moments with only $7-11\ \mathrm{points}$
- Drawbacks
 - 1. Does not always capture higher moments very well
 - 2. Big flaw: Underestimates large transition probabilities for high $\rho_{\rm z}$
 - If ρ_z really close to one, some states can even become absorbing! Lose irreducibility
 - · Rouwenhurst viable alternative discretization for these cases
- Extends easily to higher dimensions (VAR)
 - See Tauchen (1986) for details