- 5 複素平面上の点列 A_n $(n \ge 0)$ が複素数列 $a_n + ib_n(a_n$, b_n は実数 , i は虚数単位)を表すとする.極限値 $\lim_{n \to \infty} a_n = a_\infty$, $\lim_{n \to \infty} b_n = b_\infty$ がともに存在するとき , 複素数 $a_\infty + ib_\infty$ を表す点 A_∞ を A_n の極限点ということにする.このとき次の問いに答えよ.
- (1) 複素平面上の点列 P_n $(n \ge 0)$ を次のように定める. $P_0 \text{ は } 0 \text{ を表す点とし }, P_1 \text{ は } 1+i \text{ を表す点とする }.$ 以下 $n \ge 2$ に対しては , ベクトル $\overrightarrow{P_{n-2}P_{n-1}}$ を反時計まわりに $\frac{\pi}{3}$ 回転し , 長さを $\frac{2}{3}$ 倍したベクトルが $\overrightarrow{P_{n-1}P_n}$ となるように P_n を定める. P_n の極限点 P_∞ が表す 複素数を求めよ.
- (2) 点列 Q_n $(n \ge 0)$ は次のように定める. Q_0 は 0 を表す点とし, Q_1 は z=x+iy を表す点とする. 以下 $n \ge 2$ に対しては,ベクトル $\overline{Q_{n-2}Q_{n-1}}$ を反時計まわりに $\frac{\pi}{6}$ 回転し,長さを $\frac{1}{2}$ 倍したベクトルが $\overline{Q_{n-1}Q_n}$ となるように Q_n を定める. Q_n の極限点 Q_∞ と (1) の P_∞ が一致するとき z を求めよ.