MAT257 PSET 7—Question 6

Jonah Chen

November 19, 2021

If A is a countable union of open intervals, A is an open set. Thus, A^C is closed.

First, we show that $A^C \cap [0,1] \subset \mathrm{bd}A$ and thus $A \cup (A^C \cap [0,1]) \supset [0,1]$.

Consider any point $a \in [0,1]: a \notin A$. Because of the density of \mathbb{Q} , there exists a rational number b in any open set containing a. As $[0,1] \cap \mathbb{Q} \subset A$, then $b \in A$. Since any open set about a has a point in A, which is b; and a point in $A^{\dot{C}}$, which is a. Hence, $a \in \mathrm{bd}A$.

As the union of two closed sets is a closed set, $A^C \cap [0,1]$ is closed. It is also clearly bounded hence $A^C \cap [0,1]$ is compact.

By way of contradiction, suppose $\mathrm{bd}A$ is measure zero. Then $A^C \cap [0,1]$ which is contained in $\mathrm{bd}A$ must also be measure zero, and because $A^C \cap [0,1]$ is also compact, $A^C \cap [0,1]$ must be content zero.

So, there exists a finite collection of sets $D = \{(u_i, v_i)\}$ for $i = 1, \ldots, n$ that covers $A^C \cap [0, 1]$ s.t. $\sum_{i=1}^n (v_i - u_i) < \varepsilon$ for any $\varepsilon > 0$.

 $\text{Choose } \varepsilon = \frac{1}{2} \left(1 - \sum_{i=1}^{\infty} (b_i - a_i) \right). \text{ Then, } \sum_{i=1}^{\infty} (b_i - a_i) + \sum_{i=1}^{n} (v_i - u_i) < \sum_{i=1}^{\infty} (b_i - a_i) + \varepsilon < 1. \text{ However, a set with volume } 1 \text{ cannot be contained in a set with volume less than } 1. \text{ Thus, } [0,1] \not\subseteq A \cup (A^C \cap [0,1]) \text{ which is a contradiction. Hence, } A^C \cap [0,1]$

is not content 0 and hence $\mathrm{bd}A$ is not measure zero.