

Academia de Studii Economice din București Facultatea de Cibernetică, Statistică și Informatică Economică Specializarea Informatică Economică

Proiect la disciplina Dezvoltare Software pentru Analiza Datelor

Profesor coordonator:

Cadru didactic asociat Obretin Alexandru-Marius

Student:
Petrică Miruna-Alexandra
Anul III
Grupa 1094E

Cuprins

Introducere	
1. Clusterizare	2
2. Reducerea dimensionalității setului de date	5
Concluzii	

Introducere

Acest proiect urmărește să reprezinte și să elaboreze o analiză detaliată a datelor culese, prin realizarea atât a aplicării clusterizării datelor, cât și a reducerii dimensionalității setului specific de date. De asemenea, în cadrul proiectului vor fi realizare diagrame, pentru a ilustra cât mai bine relațiile dintre variabile. Atât algoritmii de implementare, cât și generarea graficelor se vor realiza în limbajul Python.

Setul de date pe care l-am ales pentru acest proiect prezintă numărul nașterilor în Japonia, între anii 1996 și 2022, în funcție de anumite criterii. Criteriile reprezintă variabilele independente utilizate, iar numărul de observații este dat de numărul anilor analizați, respectiv 27. De asemenea, datele descrise sunt relevante pentru perioada de timp respectivă din care au fost culese.

După cum am menționat anterior, observațiile sunt constituite din ani, pentru a putea urmări evoluția acestor date în timp și variațiile dintre ele.

Variabilele independente inițial utilizate sunt în număr de 11 :

- birth total: numărul total de nașteri în Japonia, în anul respectiv
- birth male: numărul total de copii de sex masculin născuți
- birth female: numărul total de copii de sex feminin născuți
- populațion total: populația totală
- populațion male: populația de sex masculin
- populațion female: populația de sex feminin
- firstborn: Numărul de copii născuți ca primii într-o familie
- secondborn: Numărul de copii din a doua naștere într-o familie
- thirdborn: Numărul de copii din a treia naștere într-o familie
- forthborn: Numărul de copii născuți în a patra naștere într-o familie
- fifthborn and above: Numărul de copii născuți în a cincea naștere sau mai mult

Pentru întregirea setului de date în scopul unei analize cât mai precise, la acestea se mai adaugă, în capitolul al doilea, respectiv în cazul aplicării metodei de redimensionare, următoarele:

- mother_age_20-24: Numărul de nașteri asociate mamelor cu vârsta cuprinsă între 20 și 24 de ani, în Japonia, în perioada respectivă
- mother_age_25-29: Numărul de nașteri asociate mamelor cu vârsta cuprinsă între 20 si 24 de ani

- mother_age_30-34: Numărul de nașteri asociate mamelor cu vârsta cuprinsă între 20 și 24 de ani
- mother_age_35-39: Numărul de nașteri asociate mamelor cu vârsta cuprinsă între 20 și 24 de ani

Toate datele au fost preluate de pe site-ul:

https://www.kaggle.com/datasets/webdevbadger/japan-birth-statistics.

În primul capitol am aplicat o metodă de clusterizare asupra primului set de date. Am folosit în acest scop analiza de cluster. Metoda de clusterizare este folosită în analiza datelor pentru a grupa observațiile sau obiectele similare între ele. Prin identificarea și formarea clusterelor, această tehnică ajută la evidențierea structurilor și a tiparelor subiacente în seturile de date.

În cel de-al doilea capitol am aplicat o metodă de reducere a dimensionalității datelor, folosind setul extins de date, cu 15 variabile independente. Pentru aceasta am utilizat formulele de analiză în componentele principale. Analiza în componentele principale (ACP) este o tehnică de reducere a dimensionalității și extragere a caracteristicilor dintr-un set de date, care se aplică, în general, în contextul explorării datelor. Componentele principale pot fi adesea interpretate mai ușor decât variabilele inițiale.

1. Clusterizare

Pentru clusterizare am folosit Analiza de cluster, aplicată pe primul set de date, prezentat în figura de mai jos. Am ales acest tip de analiză pentru a identifica grupuri omogene de populație în funcție de caracteristicile urmărite și pentru a compara și evidenția diferențele între acestea în funcție de momentul de timp.

year	birth_total	birth_mak	birth_fem po	opulation_tot	population	population	firstborn	secondbo	thirdborn	forthborn	fifthborn_and
1996	1206555	619793	586762	124709000	61115000	63594000	574054	444571	154457	26532	6941
1997	1191665	610905	580760	124963000	61210000	63753000	571608	437120	150257	25845	6835
1998	1203147	617414	585733	125252000	61311000	63941000	583588	439459	148163	25230	6707
1999	1177669	604769	572900	125432000	61358000	64074000	579150	427385	140682	23738	6714
2000	1190547	612148	578399	125612633	61488005	64124628	583220	434964	141011	24644	6708
2001	1170662	600918	569744	125908000	61595000	64313000	573918	428197	137814	24058	6675
2002	1153855	592840	561015	126008000	61591000	64417000	571501	421042	131636	23037	6639
2003	1123610	576736	546874	126139000	61620000	64520000	547170	419100	128083	22615	6642
2004	1110721	569559	541162	126176000	61597000	64579000	537913	417647	126117	22458	6586
2005	1062530	545032	517498	126204902	61617893	64587009	512412	399307	122501	21841	6469
2006	1092674	560439	532235	126154000	61568000	64586000	524581	408531	129555	23164	6843
2007	1089818	559847	529971	126085000	61511000	64574000	519767	403656	134951	24203	7241
2008	1091156	559513	531643	125947000	61424000	64523000	517724	402152	137945	25804	7531
2009	1070036	548994	521042	125820000	61339000	64481000	512743	390073	134171	25303	7746
2010	1071305	550743	520562	126381728	61571727	64810001	509736	390213	136302	26885	8169
2011	1050807	538271	512536	126180000	61453000	64727000	494713	383666	136687	27280	8461
2012	1037232	531781	505451	125957000	61328000	64630000	484711	382461	134339	27218	8503
2013	1029817	527657	502160	125704000	61186000	64518000	481418	379467	133183	27193	8556
2014	1003609	515572	488037	125431000	61041000	64391000	474229	364787	129687	26449	8457
2015	1005721	515468	490253	125319299	61022756	64296543	478101	363244	129708	26271	8397
2016	977242	502012	475230	125020252	60866773	64153479	459873	355876	126570	26427	8496
2017	946146	484478	461668	124648471	60675736	63972735	439295	348859	123050	26230	8712
2018	918400	470851	447549	124218285	60454898	63763387	426407	338094	119732	25546	8621
2019	865239	443430	421809	123731176	60208034	63523142	400952	315713	114630	25106	8838
2020	840835	430713	410122	123398962	60002838	63396124	392538	304028	110818	24788	8663
2021	811622	415903	395719	122780487	59686643	63093844	372434	294444	109953	25549	9242
2022	770759	395257	375502	122030523	59313678	62716845	355523	281418	101233	23677	8908

în primul rând, am realizat ierarhia de clusterizare. În urma acesteia a rezultat că diferența maximă este de 24, ceea ce a indicat alegerea a doi clusteri în acest caz. Indexul diferenței maxime de 24 indică punctul în ierarhie unde diferența între clustere a atins o valoare maximă. Este ales ca punct de tăiere pentru formarea clusterelor.

Numărul de clusteri, respectiv 2, indică tăierea setului de date la observația cu numărul 24. Cei doi clusteri reprezenta două grupuri diferite de observații în funcție de atributele folosite. De exemplu, în contextul nașterilor, acești doi clusteri indică două modele diferite legate de nașteri în setul de date, observațiile 24-27 fiind cele mai recente, din anii 2020-2022. Se remarcă astfel faptul că diferența dintre cei doi clusteri este dată de anul 2020.

Ulterior, am realizat o partiție optimă și o partiție pentru 3 clusteri și le-am reprezentat prin dendrograme.

Partitie optima (cu 2 clusteri): ['cod2' 'cod2' 'cod1' 'cod1' 'cod1' 'cod1']

Dendrograma este rezultată dintr-o analiză de cluster ierarhică.

Observațiile sunt împărțite în două clustere mari. Clusterul cu linii verzi conține majoritatea observațiilor, indicând o omogenitate între acestea. Observațiile din acest cluster poate reprezinta ani în care s-a înregistrat un număr de nașteri similar cu anii precedenți.

Clusterul cu linii portocalii include doar câteva observații și este separat semnificativ de restul, indicând o diferență distinctă între caracteristicile acestor observații și restul setului de date.

Partitie cu 3 clusteri: ['cod2' 'cod2' 'cod2' 'cod2' 'cod1' 'cod2' 'cod2' 'cod2' 'cod2' 'cod2' 'cod3' 'cod3' 'cod3' 'cod3']

Aici, observațiile sunt împărțite în trei clustere. Primul cluster este același ca și în partiționarea cu 2 clustere, sugerând că aceste observații sunt foarte diferite de restul.

Clusterul verde este împărțit în două: un cluster verde și unul roșu. Această divizare arată că, chiar și în cadrul grupului mare de observații anterioare, există suficientă variație pentru a justifica subdivizarea în clustere suplimentare. Cu alte cuvinte, dinamica populației în Japonia diferă semnificativ în funcție de perioada de timp.

2. Reducerea dimensionalității setului de date

Pentru acest capitol am utilizat setul extins de date, cu cele 15 variabile independente, după cum sunt prezentate și în figura următoare

year	birth_total	birth_male	birth_female	population_total	population_male	population_female	firstborn	secon dborn	thirdborn	forthborn	fifthborn_and_above	mother_age_20	mother_age_25-	mother_age_30m	other_age_35
1996	1206555	619793	586762	124709000	61115000	63594000	574054	444571	154457	26532	6941				
1997	1191665	610905	580760	124963000	61210000	63753000	571608	437120	150257	25845	6835				
1998	1203147	617414	585733	125252000	61311000	63941000	583588	439459	148163	25230	6707				
1999	1177669	604769	572900	125432000	61358000	64074000	579150	427385	140682	23738	6714				
2000	1190547	612148	578399	125612633	61488005	64124628	583220	434964	141011	24644	6708	161361	470833	396901	126409
2001	1170662	600918	569744	125908000	61595000	64313000	573918	428197	137814	24058	6675				
2002	1153855	592840	561015	126008000	61591000	64417000	571501	421042	131636	23037	6639				
2003	1123610	576736	546874	126139000	61620000	64520000	547170	419100	128083	22615	6642				
2004	1110721	569559	541162	126176000	61597000	64579000	537913	417647	126117	22458	6586				
2005	1062530	545032	517498	126204902	61617893	64587009	512412	399307	122501	21841	6469	128135	339328	404700	153440
2006	1092674	560439	532235	126154000	61568000	64586000	524581	408531	129555	23164	6843				
2007	1089818	559847	529971	126085000	61511000	64574000	519767	403656	134951	24203	7241				
2008	1091156	559513	531643	125947000	61424000	64523000	517724	402152	137945	25804	7531				
2009	1070036	548994	521042	125820000	61339000	64481000	512743	390073	134171	25303	7746	116808	307765	389 793	209707
2010	1071305	550743	520562	126381728	61571727	64810001	509736	390213	13 6302	26885	8169	110956	306910	384386	220101
2011	1050807	538271	512536	126180000	61453000	64727000	494713	383666	13 6687	27280	8461	104060	300384	373 490	221272
2012	1037232	531781	505451	125957000	61328000	64630000	484711	382461	134339	27218	8503	95805	292464	367715	225480
2013	1029817	527657	502160	125704000	61186000	64518000	481418	379467	133183	27193	8556	91251	282794	365 404	229741
2014	1003609	515572	488037	125431000	61041000	64391000	474229	364787	129687	26449	8457	86600	267866	359348	225899
2015	1005721	515468	490253	125319299	61022756	64296543	478101	363244	129708	26271	8397	84465	262266	364887	228302
2016	977242	502012	475230	125020252	60866773	64153479	459873	355876	126570	26427	8496	82194	250715	355018	223329
2017	946146	484478	461668	124648471	60675736	63972735	439295	348859	123050	26230	8712	79272	240959	345 441	216954
2018	918400	470851	447549	124218285	60454898	63763387	426407	338094	119732	25546	8621	77023	233754	334906	211021
2019	865239	443430	421809	123731176	60208034	63523142	400952	315713	114630	25106	8838	72092	220933	312 582	201010
2020	840835	430713	410122	123398962	60002838	63396124	392538	304028	110818	24788	8663	66751	217804	303436	196321
2021	811622	415903	395719	122780487	59686643	63093844	372434	294444	109953	25549	9242	59896	210433	292 439	193177
2022	770759	395257	375502	122030523	59313678	62716845	355523	281418	101233	23677	8908	52850	202505	279517	183327

Pentru reducerea dimensionalității setului de date am folosit analiza de componente principale (ACP). Aceasta oferă o modalitate de a simplifica și sintetiza informații complexe, menținând o mare parte a variației inițiale a datelor.

.Am optat pentru această metodă deoarece Analiza de Componente Principale permite reducerea numărului de variabile inițiale, transformând datele într-un set de componente principale. Pe scurt, componentele respective capturează cea mai mare variație a datelor, permițând astfel o reprezentare mai compactă. Prin urmare, ACP poate ajuta la identificarea variabilelor care contribuie cel mai mult la variația datelor.

Reducerea dimensionalității permite vizualizarea mai ușoară a datelor în spații bidimensionale sau tridimensionale.

Pentru realizarea acestei analize, pentru început am standardizat valorile din setul de date, aducându-le la aceeași scară, astfel încât acestea să aibă media zero și deviația standard egală cu 1. Apoi, am aplicat Analiza în Componentele Principale pe setul de date standardizat. Astfel, am calculat valorile proprii, vectorii proprii și componentele principale rezultate din ACP.

În urma analizei au rezultat următoarele

→ Valorile proprii:

```
[1.9275e+12 4.9488e+10 1.9975e+09 6.8475e+08 1.2650e+08 3.3243e+07 2.0006e+07 9.0236e+06 3.8947e+06 4.4347e+05 9.7458e+04 2.4763e+04 4.1128e+03 1.9158e-21 1.3411e-23]
```

Valorile proprii reprezintă importanța relativă a fiecărei componente principale în explicarea variației datelor. Valorile proprii mai mari indică o contribuție mai semnificativă a componentei respective în explicarea variației.

În acest caz, prima valoare proprie este mult mai mare decât celelalte, sugerând că prima componentă principală explică o parte semnificativă a variației. Valorile proprii mici, cum ar fi cele din partea de jos ale listei, indică componente care contribuie mai puțin la variația datelor.

Componenta principală asociată primei valori proprii mari este cea mai semnificativă și aduce cu sine cea mai mare cantitate de informație.

Ultimele două valori proprii sunt extrem de mici și pot fi considerate aproape zero. Aceasta indică faptul că aceste componente nu aduc o contribuție semnificativă la variația totală și pot fi considerate neglijabile. Acest lucru poate fi evidențiat și de faptul că valorile proprii sunt foarte aproape de zero,, ceea ce sugerează o variație foarte mică asociată acestor componente.

→ Vectorii proprii:

[-0.1113 -0.0538 -0.0575 -0.0084 -0.0062 -0.0028 -0.0418 -0.0434 -0.0243 -0.0017 -0.0001 0.3198 0.8232 0.2456 -0.3698]

 $\begin{bmatrix} -0.5812 & -0.3006 & -0.2806 & 0.0462 & 0.3286 & -0.2838 & -0.2028 & -0.1187 & -0.2009 & -0.0473 & -0.0115 \\ -0.0442 & -0.2315 & -0.1597 & -0.3513 \end{bmatrix}$

[-0.1249 -0.0735 -0.0514 0.0026 0.1154 -0.1164 -0.2754 -0.053 0.1533 0.0404 0.0098 0.177 -0.1983 0.8142 0.3347]

[-0.0425 0.0071 -0.0496 -0.0071 -0.0647 0.0532 0.7623 -0.3295 -0.3644 -0.0917 -0.0192 0.0664 -0.182 0.3165 -0.1404]

[0.2216 0.1015 0.1201 -0.0081 -0.1329 0.1162 -0.1452 0.3839 0.0503 -0.0437 -0.0237 0.0182 -0.3533 0.2636 -0.7259]

[-0.0971 -0.0699 -0.0272 -0.0157 0.0023 0.0134 0.0084 0.6141 -0.5826 -0.1109 -0.0261 -0.3792 0.1857 0.1773 0.2127]

[-0.022 -0.0187 -0.0033 0.0007 -0.0252 0.0122 0.0108 0.3171 -0.2533 -0.0815 -0.015 0.8451 -0.1774 -0.2232 0.1766]

 $\begin{bmatrix} -0.0164 & 0.6962 & -0.7126 & -0.033 & 0.0348 & 0.0317 & -0.034 & 0.0424 & 0.0097 & -0.0284 & -0.006 \\ -0.0038 & -0.002 & 0.0033 & 0.0074 \end{bmatrix}$

 $\begin{bmatrix} -0.1588 & -0.1038 & -0.0549 & -0.0104 & 0.0129 & 0.0083 & 0.2089 & 0.1892 & 0.4524 & -0.7897 & -0.2195 \\ -0.0289 & 0.0359 & -0.0044 & 0.0516 \end{bmatrix}$

 $\begin{bmatrix} 0.0078 & -0.0359 & 0.0437 & -0.5761 & 0.5757 & 0.5764 & -0.0045 & -0.0165 & -0.0034 & 0.0079 & 0.0243 \\ 0.0149 & -0.0079 & -0.0013 & -0.0077 \end{bmatrix}$

[-0.4817 0.5938 0.5938 -0. 0. 0. -0.1121 -0.1121 -0.1121 -0.1121 -0.1121 0. -0. -0. -0.]

Acești vectori proprii reprezintă coeficienții pentru fiecare variabilă în cadrul fiecărei componente principale. Aceștia indică direcția și magnitudinea contribuției fiecărei variabile la formarea fiecărei componente principale. În general, vectorii proprii oferă informații despre cum fiecare variabilă contribuie la fiecare componentă principală.

În prima componentă principală, se regăsesc valori mari și negative pentru variabilele "birth_total", "birth_male", "birth_female", "population_total", "population_male", și "population_female". Acest lucru sugerează că aceste variabile sunt corelate negativ cu prima componentă principală, adică o creștere a acestora este asociată cu o scădere a valorii primei componente principale.

De asemenea, conform vectorului propriu corespunzător primei valori proprii mari, aceasta este influențată în special de variabilele legate de numărul total de nașteri și populație.

Componentele principale rezultate în urma analizei sunt în număr de 13, însă sunt importante și semnificative primele componente principale, deoarece acestea sunt cele care capturează cea mai mare parte a variației din setul de date.

Relațiile dintre variabilele inițiale și elementele rezultate în urma analizei de componentă principală (ACP) pot fi înțelese prin observarea vectorilor proprii ai acestor componente principale. Vectorii proprii, reprezintă direcțiile în spațiul variabilelor originale în care variația este maximă. Astfel, pentru a ști care variabilă are o influență mai mare asupra primei componente principale, examinăm primul vector propriu.

Specific setului de date analizat, pornind de la primul vector propriu, putem ajunge la câteva concluzii. Valorile negative sugerează o relație inversă cu prima componentă principală, în timp ce valorile pozitive indică o relație directă. Variabilele cu coeficienți negativi (birth_total, birth_male, birth_female, firstborn) au o relație inversă cu prima componentă principală. Cu alte cuvinte, scăderea acestor variabile este asociată cu o creștere a valorii primei componente principale. Variabilele cu coeficienți negativi mai mari în magnitudine (population_total, population_male, population_female) au o contribuție mai semnificativă la direcția opusă primei componente principale. Deci, o scădere mai mare în aceste variabile duce la o creștere mai mare a valorii primei componente principale.

În continuare, în acest capitol am utilizat Criteriul Kaiser pentru a alege numărul de componente principale semnificative în analiza componentelor principale (ACP). Criteriul Kaiser sugerează păstrarea tuturor componentelor principale care au o valoare proprie mai mare decât 1. Numărul de componente principale semnificative este determinat de numărul de valori proprii care sunt mai mari decât 1. În urma aplicării Criteriului Kaiser au rezultat 13 componente principale semnificative, deoarece acestea au valori proprii mai mari decât 1.

În cadrul acestei analize am realizat și două grafice, care să evidențieze mai bine componentele.

Primul grafic reprezinta un Scatter Plot realizat între componentele 3 și 4:

Prin acest grafic se poate evidenția dispersia semnificativă între primele două categorii de puncte, iar aceasta poate sugera o variație semnificativă în date în această porțiune.

Ultima categorie de date, depărtată de restul de puncte, poate indica o variație mare pentru această categorie în comparație cu celelalte.

Al doilea grafic reprezintă un Bar Plot :

Un astfel de comportament valorile proprii în cadrul analizei de componentă indică faptul că există o componentă principală dominantă, iar apoi valorile proprii ale celorlalte componente sunt mult mai mici, sugerând că acestea aduc o contribuție mai mică la variabilitatea totală a datelor. Valoarea proprie scade semnificativ de la prima la a doua componentă principală.

Primele componente principale cu valorile proprii mari reprezintă direcțiile principale ale variabilității în date. Cele cu valori proprii mici contribuie la detalii mai fine, dar nu aduc o contribuție semnificativă la variabilitatea globală.

Concluzii

În cadrul acestui proiect, am utilizat cele două metode fundamentale de analiză a datelor: clusterizarea și Analiza Componentelor Principale. Aplicând metoda ierarhică de clusterizare, am identificat doi clusteri semnificativi, dar am evidențiat și posibilitatea de a avea un al treilea cluster. Primii doi clusteri au prezentat caracteristici similare între observații, în timp ce al treilea cluster a evidențiat particularități distincte. Aceste rezultate sugerează existența unor segmente omogene în cadrul setului de date.

Am utilizat Analiza Componentelor Principale (ACP) pentru a reduce dimensionalitatea setului de date și a evidenția direcțiile principale de variație. Valorile proprii și vectorii proprii furnizate de ACP au oferit informații despre importanța relativă a variabilelor și relațiile dintre acestea. Primele componente principale au explicat o proporție semnificativă a variației totale.

În sinteză, clusterizarea și ACP au oferit perspective complementare, contribuind la identificarea diferențelor semnificative și a similarităților la nivelul dinamicii nașterilor din Japonia .