

Grundbegriffe der Informatik Tutorium 38

Vollständige Induktion, Formale Sprachen, Übersetzungen/Kodierungen Patrick Fetzer, uxkln@student.kit.edu | 08.11.2018

Häufige Fehler

- Set comprehension: $B = \{x \in A | P(x)\}$ mit A eine Menge und P eine Aussage
- Beispiel: $M = \{n \in \mathbb{N} | n \text{ gerade}\}$
- Sei A ein Alphabet; $x, y \in A$; $v \in A*$
- Warum ist f(xvy) = xf(v) wohldefiniert, auch für f(xy)?

Wahrheitsgehalt von unendlich Aussagen

Beispielsituation: Wir haben unendlich viele Dominosteine. Behauptung: Alle Dominosteine fallen um.

- Wir haben Aussagen: {"1. Stein fällt um", "2. Stein fällt um", ...}
- Wie zeigen wir unendlich viele Aussagen?
- Stelle Aussagen in Abhängigkeit einer Laufvariable *n* dar:
 - A(n) :="n-ter Stein fällt um" $\forall n \in \mathbb{N}$.
- Aussage A := "Alle Steine fallen um" $\equiv A(i)$ ist wahr $\forall i \in \mathbb{N}$.

Wir haben immernoch unendlich viele Aussagen...

- Zeige: A(1) ist wahr, sowie A(i) gilt $\rightarrow A(i+1)$ gilt für beliebiges $i \in \mathbb{N}$.
- Also: Der erste Stein fällt, sowie: falls der i-te Stein fällt, so fällt auch der i + 1-te Stein.
- Nach dem Prinzip der vollständigen Induktion fallen dann alle Steine um.

Vollständige Induktion

- Beweisverfahren
- In der Regel zu zeigen: Eine Aussage gilt für alle $n \in \mathbb{N}_+$, manchmal auch für alle $n \in \mathbb{N}_0$
- Man schließt "induktiv" von einem n auf n+1
- Idee: Wenn die Behauptung für ein beliebiges festes n gilt, dann gilt sie auch für den Nachfolger n+1 (und somit auch für dessen Nachfolger und schließlich für alle n)

Struktur des Beweises

Behauptung: (kurz Beh.:)

Beweis: (kurz Bew.:)

- Induktionsanfang: (kurz IA:)
 - **Teigen**, dass Behauptung für Anfangswert gilt (oft n = 1)
 - Auch mehrere (z.B. zwei) Anfangswerte möglich
- Induktionsvoraussetzung: (kurz IV:)
 - Sei $n \in \mathbb{N}_+$ (bzw. $n \in \mathbb{N}_0$) fest aber beliebig und es gelte [Behauptung einsetzen]
- Induktionsschritt: (kurz IS:)
 - Behauptung für n+1 auf n zurückführen
 - Wenn induktive Definition gegeben: verwenden!
 - Sonst: Versuche Ausdruck, in dem (n+1) vorkommt umzuformen in einen Ausdruck, in dem nur n vorkommt

Vorhin:

$$\underbrace{A(1) \text{ ist wahr}}_{A}$$
, sowie $\underbrace{A(i) \text{ gilt}}_{IV} \to \underbrace{A(i+1) \text{ gilt}}_{IS}$ für beliebiges i $\in \mathbb{N}$

Übung zu Vollständiger Induktion

Aufgabe

$$x_0 := 0$$

Für alle
$$n \in \mathbb{N}_0 : x_{n+1} := x_n + 2n + 1$$

Zeige mithilfe vollständiger Induktion, dass für alle $n \in \mathbb{N}_0$

$$x_n = n^2$$

gilt.

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Übung zu vollständiger Induktion

Übungsaufgaber

Zeige die Wahrheit folgender Aussagen mit vollständiger Induktion:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \ \forall n \in \mathbb{N}.$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \ \forall n \in \mathbb{N}$$

7/26

Formale Sprache

- Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.
- Was war nochmal eine formale Sprache?

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

Als Beispiel von vorigen Folien:

- $A := \{b, n, a\}.$
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$ = $\{w : w = bana(na)^k, k \in \mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$

Produkt von Sprachen

Produkt von formalen Sprachen

Von zwei formalen Sprachen L_1, L_2 lässt sich das Produkt $L_1 \cdot L_2$ bilden mit $L_1 \cdot L_2 = \{w_1 w_2 : w_1 \in L_1 \text{ und } w_2 \in L_2\}.$

Sei
$$A := \{a, b\}, B := \{\alpha, \beta, \gamma, \varepsilon, \delta\}.$$

- Sprache L₁ ⊆ A*, die zuerst drei a's enthält und dann entweder zwei b's oder vier a's? L₁ = {aaa} · {bb, aaaa}.
- Sprache $L_2 \subseteq A^*$, die alle Wörter über A enthält außer ε ? $L_2 = A \cdot A^* = A^* \setminus \{\varepsilon\}.$
- Sprache $L_3 \subseteq B^*$, die alle Wörter über B enthält, mit:
 - Zwei beliebigen Zweichen aus B.
 - **Dann** einem ε oder zwei δ 's.
 - Dann vier Zeichen aus A.
- $L_3 = B \cdot B \cdot \{\varepsilon, \delta\delta\} \cdot A \cdot A \cdot A \cdot A.$

Produkt von Sprachen

Übung zu Produkt von formalen Sprachen

Sei A ein beliebiges Alphabet und $M := \{L : L \text{ ist formale Sprache über } A\} = 2^A$. Produkt von Sprachen lässt sich auch als Abbildung bzw. Verknüpfung $\cdot : M \times M \to M$ darstellen.

Zeige:

- Die Verknüpfung · ist assoziativ.
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (Neutrales Element)
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

Produkt von Sprachen

Seien $L_1, L_2, L_3 \in M$.

- Die Verknüpfung · ist assoziativ:
 - $(L_1 \cdot L_2) \cdot L_3 = (\{w_1 \cdot w_2 : w_1 \in L_1, w_2 \in L_2\}) \cdot L_3 = \{w_1 w_2 w_3 : w_1 \in L_1, w_2 \in L_2, w_3 \in L_3\} = L_1 \cdot (\{w_2 w_3 : w_2 \in L_2, w_3 \in L_3\}) = L_1 \cdot (L_2 \cdot L_3).$
- Es gibt (mindestens) ein Element $e \in M$, sodass für alle $x \in M$ gilt: $x \cdot e = e \cdot x = x$. (neutrales Element)
 - $e := \{\varepsilon\}.$
 - $L_1 \cdot \{\varepsilon\} = L_1 = \{\varepsilon\} \cdot L_1$
- Es gibt ein Element $o \in M$, sodass für alle $x \in M$ gilt:

$$x \cdot o = o = o \cdot x$$
. (Absorbierendes Element)

- $o := \emptyset$
- $L_1 \cdot \emptyset = \emptyset = \emptyset \cdot L_1$

 (M, \cdot) ist damit trotzdem keine Gruppe, denn es existieren keine Invers-Element.

Potenz von Sprachen

Potenz von Sprachen

Potenz von formellen Sprachen ist wie folgt definiert:

- $L^0 := \{\varepsilon\}$
- $L^{i+1} := L^i \cdot L \text{ für } i \in \mathbb{N}_0.$
- $L_1 := \{a\}.$
 - $L_1^0 = \{\varepsilon\}$. $L_1^1 = \{\varepsilon\} \cdot L_1 = L_1$.
 - $L_1^2 = (\{\varepsilon\} \cdot L_1) \cdot L_1 = \{aa\}.$
- $L_2 := \{ab\}^3 \{c\}^4$
 - $L_2^0 = \{\varepsilon\}, L_2^1 = ...$
 - $L_2^2 = (\{ab\}^3\{c\}^4)^2 = (\{ab\}^3\{cccc\})^2 = \{abababccccabababcccc\}$.
- $L_3 := (\{a\} \cup \{b\})^2 = \{aa, ab, ba, bb\}$

Konkatenationsabschluss bei formalen Sprachen

Konkatenationsabschluss

Zu einer formalen Sprache L ist der Konkatenationsabschluss L^* definiert als $L^*:=\bigcup_{i\in\mathbb{N}_0}L^i$.

ε -freie Konkatenationsabschluss

Zu einer formalen Sprache L ist der ε -freie Konkatenationsabschluss L^+ definiert als $L^+:=\bigcup_{i\in\mathbb{N}_+}L^i$.

- Warum gilt $\varepsilon \notin L^+$ bei formalen Sprache $L \subseteq A^* \setminus \{\varepsilon\}$?
- $L := \{a, b, c\}.L^* = \{\varepsilon, a, aa, ab, ac, aaa, aab, ..., b, ba, bb, ...\}$
- $L := \{aa, bc\}.L^* = \{\varepsilon, aa, bc, aa \cdot aa, aa \cdot bc, bc \cdot aa, bc \cdot bc, aa \cdot aa \cdot aa, \ldots\}$

Hinweise

Übung zu Konkatenationsabschluss

Sei $A := \{a, b\}, B := \{A, B, C, D, E, F\}.$

- Sprache $L_1 \subseteq A^*$, die das Teilwort *ab* nicht enthält? $L_1 = \{b\}^*\{a\}^*$.
- Sprache $L_2 \subseteq B^*$, die alle erlaubten Java Variablennamen enthält.
 - $B := \{_, a, b, ..., z, A, B, ..., Z\}$
 - lacksquare $C := B \cup \mathbb{Z}_9$
 - $L_2 \subseteq C = (B \cdot C^*) \setminus \{if, class, while, ...\}$

Übung zu Konkatenationsabschluss

Sei
$$L := \{a\}^* \{b\}^*$$
.

- Was ist alles in L drin?
 - aaabbabbaaabba? Nein.
 - aaabb, abb, aaabba, a? Ja, ja, nein, ja.
- Was ist alles in L* drin?
 - aaabbabbaaabba? Ja.
 - aaabb, abbaaabba? Ja.
 - abb, aaabba, a? Ja.
 - Alle Wörter aus $\{a,b\}^*! \rightarrow L^* = \{a,b\}^*$.

Übung 1

- $L_1 = \{a^k | k \in \mathbb{N}\}$
- $L_2 = \{b^k | k \in \mathbb{N}\}$
- Was ist $L_1 \cdot L_2$? $\{a^i b^j | i, j \in \mathbb{N}\}$

08.11.2018

Übung 2

- $L_1 = \{a\} * \{b\} *$
- $L_2 = \{a, b\} *$
- $L_3 = \{a\} * \cup \{b\} *$
- $L_4 = (\{a\} \cup \{b\})*$
- Welche Sprachen sind identisch? L₂ und L₄

Übung 3

 L_1, L_2 seien formale Sprachen.

- Wie sieht L₁ · L₂ aus?
- Wie sieht L₁³ aus?
- Wie sieht $L_1^2 \cdot L_2 \cdot L_2^0 \cdot L_1^*$ aus?
- Wie sieht $(L_1^*)^0 \cdot L_2^+$ aus?

Herführung zu Zahlendarstellungen

Wir betrachten die Alphabete $A_{dez} := \mathbb{Z}_{10}, A_{bin} := \{0, 1\}, A_{oct} := \mathbb{Z}_8.$

- Was können wir daraus machen?
- $A_{dez}^* \supset \{42, 1337, 999\}.$
- $A_{bin}^* \supset \{101010, 10100111001, 11111100111\}.$
- $A_{oct}^* \supset \{52, 2471, 1747\}.$
- Wir suchen eine Möglichkeit, diese Zahlen zu deuten.
- Aber irgendwie so, dass $42_{\in A_{dez}} \stackrel{Deutung}{=} 101010_{\in A_{bin}} \stackrel{Deutung}{=} 52_{\in A_{oct}}$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Definition von Zahlendarstellungen

Num_k

Einer Zeichenkette Z_k aus Ziffern wird mit Num_k eine eindeutige Zahl zugeordnet:

$$Num_k(\varepsilon) = 0$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

num_k

Einer einzelnen Ziffer $x \in Z_k$ aus einem Alphabet von Ziffern Z_k wird mit $num_k(x)$ der Wert der Zahl zugewiesen.

- Wichtig: $Num_k(w) \neq num_k(w)!$
- Was ist: $num_{10}(3) = 3$, $num_{10}(7) = 7$, $num_{10}(11) = nicht definiert.$
- Für Zahlen $\geq k$: Benutze Num_k !

Beispiel zu Zahlendarstellungen

$$Num_k(\varepsilon) = 0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Was ist $Num_{10}(123)$?

■
$$Num_{10}(123) = 10 \cdot Num_{10}(12) + num_{10}(3) =$$

 $10 \cdot (Num_{10}(1) + num_{10}(2)) + num_{10}(3) =$
 $10 \cdot (num_{10}(1) + 10 \cdot num_{10}(2)) + num_{10}(3) = 10 \cdot (1 + 10 \cdot 2) + 3 = 123.$

Yav?

Was ist der dezimale Zahlenwert der Binärzahl 1010? Diesmal Basis k=2.

- Num₂(1010) = $2 \cdot Num_2(101) + num_2(0) =$
 - $2 \cdot (2 \cdot Num_2(10) + num_2(1) + num_2(0) =$
 - $2 \cdot (2 \cdot (2 \cdot Num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$
 - $2 \cdot (2 \cdot (2 \cdot num_2(1) + num_2(0)) + num_2(1)) + num_2(0) =$
 - $2 \cdot (2 \cdot (2 \cdot 1 + 0) + 1) + 0) = 10.$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Yav!

Aufgaben zu Zahlendarstellungen

$$Num_k(\varepsilon) = 0.$$

$$Num_k(wx) = k \cdot Num_k(w) + num_k(x)$$
 mit $w \in Z_k^*$ und $x \in Z_k$.

Übungen zu Zahlendarstellungen

Berechne den numerischen Wert der folgenden Zahlen anderer Zahlensysteme nach dem vorgestellten Schema:

- Num₈(345).
- Num₂(11001).
- Num₂(1000).
- Num₄(123).
- Num₁₆(4DF). (Zusatz)

Anmerkung: Hexadezimalzahlen sind zur Basis 16 und verwenden als Ziffern (in aufsteigender Reihenfolge:

1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

Aufgaben zu Zahlendarstellungen

Lösungen:

- $Num_8(345) = 229.$
- $Num_2(11001) = 25$.
- $Num_2(1000) = 8$.
- $Num_4(123) = 27.$
- $Num_{16}(4DF) = 1247$.

Einfachere Umrechnung von Zahlendarstellungen

Es gilt:

$$2(2(2(2(2(2\cdot 1+0)+1)+0)+1)+0=2^5\cdot 1+2^4\cdot 0+2^3\cdot 1+2^2\cdot 0+2^1\cdot 1+2^0\cdot 0.$$

Daher, einfachere Rechenweise:

$$Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$$

Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_2(10101) = 21.$
- $Num_2(11101) = 29.$
- $Num_2(11111111111) = 1023.$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Einfachere Umrechnung von Zahlendarstellungen

 $Num_k(w) = k^0 \cdot w(0) + k^1 \cdot w(1) + k^2 \cdot w(2) +$ Was sind folgende Zahlen in Dezimal im Kopf gerechnet?

- $Num_{16}(A1) = 161.$
- $Num_{16}(BC) = 188.$
- $Num_{16}(14) = 20.$

Patrick Fetzer, uxkln@student.kit.edu - Grundbegriffe der Informatik

Hinweise

Vollständige Induktion

Formale Sprache

Übersetzung und Kodierung ○○○○○○●