

<u>Augmented Reality visualisation on site:</u> BIM semantics and communication

Linked Data

Master's dissertation submitted in order to obtain the academic degree of

Master of Science in de ingenieurswetenschappen: architectuur

Supervisor: Prof. ir.-arch. Paulus Present

Counselors: Ir.-arch. Jeroen Werbrouck

Prof. dr. ir. arch. Ruben Verstraeten

Philippe Soubrier 01702837 philippe.soubrier@ugent.be

Academic year: 2022-2023

Contents

1	Introduction					
	1.1	Contex	xt	6		
		1.1.1	3D viewers	6		
		1.1.2	BIM geometry	6		
		1.1.3	LDBIM	6		
		1.1.4	Computing power dilemma	6		
	1.2	Resear	rch questions	7		
		1.2.1	Can LDBIM be culled?	7		
		1.2.2	Can existing semantic be used?	7		
	1.3	Resear	rch objectives	7		
		1.3.1	Advantages of LDBIM	7		
		1.3.2	Showcase the fisability	7		
2	State	e of the	art	8		
	2.1	Softwa	are and hardware	8		
		2.1.1	Autodesk Atom headset	8		
		2.1.2	Unreal Engine	8		
	2.2	Viewe	rs	8		
		2.2.1	File based viewers	8		
		2.2.2	Linked data based viewers	9		
3	Cull	ing app	proaches	10		
	3.1		elated ontologies	10		
		3.1.1	BOT	10		
		3.1.2	FOG and OMG	10		
	3.2	GIS rel	lated ontologies	10		
			geoSPARQL	10		
4	Setu	p		11		
	4.1	_	ipants	11		
	4.2		ework	12		
			Nevtis	12		

4.3	Query	ring	12			
	4.3.1	Front-end	12			
	4.3.2	Back-end	12			
4.4	Rendering					
	4.4.1	Xeokit SDK	12			

List of Figures

4.1	Sequence diagram	1

Short abstract

This is my short abstract.

Abstract

This is my abstract

Introduction

1.1 Context

1.1.1 3D viewers

- -> Applications?
- -> Who uses them?
- -> What for?

1.1.2 BIM geometry

- -> What is Building Information Modeling (BIM)? (short)
- -> Extend of BIM geometry?
- -> Complexity of BIM geometry?

1.1.3 LDBIM

- ->! Focus on geometry!
- -> What is Linked Data BIM (LDBIM)?
- -> Why the need / What are the advantages of LDBIM?
- -> Context od enrichment and complexity

1.1.4 Computing power dilemma

-> What is the hardware problem?

-> Why is it that important for the Architecture, Engineering and Construction (AEC) industry?

->

1.2 Research questions

- -> Why the need for this thesis? (why a LDBIM viewer?)
- -> What is the possible solution? (Culling algorithms)
- -> Why the need for research questions? (culling algorithms are not new, always progress, see later)

1.2.1 To which extent can LDBIM geometry be culled to be streamed to lightweight viewers?

- -> What can be culled exactly?
- -> What needs to be streamed?
- -> What is the impact of culling on the viewing experience?

1.2.2 Can existing semantic and ontologies be used to feed possible culling algorithms?

- -> What are ontologies?
- -> Can GIS ontologies be used too?
- -> What are the advantages of using ontologies?

1.3 Research objectives

1.3.1 Bring forward the advantages of LDBIM for visualization of big 3D models

-> Showcase that existing models are already mature enough for these usecases.

->

1.3.2 Showcase the fisability of LDBIM for visualization of big 3D models

->

State of the art

2.1 Software and hardware

- -> Both explanation as highlighting the problems
- -> About the CPU problem (explanation in following two examples)
- -> Overview of on the market software and hardware solutions
- -> Why lightweight viewers

2.1.1 Autodesk Atom headset

- -> Explanation of the hardware
- -> Highlighting the visible problems / limitations
- -> Presenting HHD as the solution / alternative

2.1.2 Unreal Engine

- -> Explanation of the software
- -> Highlighting the RAM problem and how it's related to the aec industry
- -> Use cases (model type and size)

2.2 Viewers

2.2.1 File based viewers

-> What I mean by file based viewers

-> Present it as some examples of cutting edge viewers, both from there intensive use in the industry as the quality of the results / technologies

2.2.1.1 BIM360 Autodesk

- -> Why I chose this one (why special)
- -> Overview of the features / capabilities
- -> Probably present it as a goal but in the older framework (for interactivity)

2.2.1.2 Qonic

- -> Why I chose this one (why special)
- -> LOD streaming principle
- -> Probably present it as a goal but in the older framework (for effectiveness(esthetics and performance))

2.2.2 Linked data based viewers

-> What I mean by linked data based viewers

2.2.2.1 ld-bim.web.app

- -> Where does it come from
- -> Detailed explanation of the features / capabilities
- -> Detailed fragmentation of missed opportunities / how this thesis positions itself to it

Culling approaches

- 3.1 AEC related ontologies
- 3.1.1 BOT
- 3.1.2 FOG and OMG
- 3.2 GIS related ontologies
- 3.2.1 geoSPARQL

Setup

4.1 Participants

This is a diagram:

Figure 4.1: Sequence diagram

- 4.2 Framework
- 4.2.1 Nextjs
- 4.3 Querying
- 4.3.1 Front-end
- 4.3.2 Back-end
- 4.4 Rendering
- 4.4.1 Xeokit SDK

List of Acronyms

AEC	Architecture, Engineering and Construction	7
BIM	Building Information Modeling	6
ВОТ	Building Topology Ontology	
FOG	File Ontology for Geometry formats	
GIS	Geographic Information System	
LDBIM	Linked Data BIM	6
OMG	Object Management Group	
SDK	Software Development Kit	