

Chair of Computer Graphics and Visualization

Accurate Depth Extraction from 3DGS Models

Evelyn Regina Sidarta, 23.04.2025

Motivation – 3D Reconstruction

- Visualization and reconstruction of 3D scenes used to aid multiple fields, e.g. medical imaging, aerospace, aviation
- NeRF (2020): accurate 3D reconstruction from collection of 2D images using neural networks

Motivation – 3D Gaussian Splatting

• 3DGS (2023): 3D Gaussians instead of traditional meshes to reconstruct scene.

Idea: skip conversion into surface or line primitives, directly "splat" Gaussians to paint a scenery.

Optimization: adjust distribution of Gaussians, minimize resource consumption in bland areas

photogrammetry vs. 3DGS

Motivation – 3D Gaussian Splatting

 Limitations: "fuzzy" representation, hard to determine geometry of the scene.

How to create accurate geometric representation?

How to identify depth accurately?

Contribution

Review mechanisms of current available state-of-art methods for depth estimation:

MDE models vs. Gaussian Splatting derivatives

Provide statistical and visual comparison of select MDE and Gaussian Splatting models

2

Model Overview - MDE: ZoeDepth

- Pioneering MDE model: combines Relative Depth Estimation and Metric Depth Estimation
- better generalization ability, high accuracy, zero-shot capability

Model Overview – MDE: DepthAnything v1

- idea #1: use data augmentation tools to develop more complex scenarios as training materials
- idea #2: use pre-trained encoders to ensure model inherits rich semantics
- overall better depth estimation in broader scenarios

Model Overview – MDE: DepthAnything v2

- improvement #1: synthetic data instead of labeled real images
- improvement #2: improve capacity of teacher model
- improvement #3: generate large amount of pseudo-labeled real images for training to enhance generality
- Even more detailed depth estimation

Model Overview - GS: 2DGS

- main goal: multi-view accurate surface representation
 - 3DGS: lack of accurate surface representation due to lack of explicit representation
- main idea: use 2D Gaussians instead of 3D Gaussians

Model Overview – GS: 2DGS

notable problem: oversmoothing leads to loss of details

Model Overview - GS: RaDe-GS

- main goal: improve geometric reconstruction details
- main idea: use rasterized approach to render depth map and surface normal maps of 3D Gaussians
- Closed-form solution in calculating intersection between light ray and splats
- Similar efficiency, more detailed results and clear geometry

Model Overview - GS: GS2Mesh

- main idea: extract depth and geometry through pre-trained stereo-matching model
- After 3DGS step: generate stereo-calibrated images from the training image inputs and apply stereo matching algorithm for depth (DLNR model).
- Mesh extraction using TSDF and marching cubes algorithm

Model Overview - GS: GS2Mesh

• Limitations: retains weakness of 3DGS (noisy results), TSDF is inefficient for larger inputs (exponential amount of points to check), inefficient rendering

Methodology - Dataset Creation

- model: chocolate bunny
- preprocessing: adding lighting and creating script for input creation

Methodology - Dataset Creation

- Extraction of Synthetic Depth Data (GT data) and input dataset creation from model
- Systematically capture model from multiple angles with Python script.
- output: set of 120 images (6 different height values, 20 images per height value) complete with camera poses and depth data

Methodology - Dataset Creation

code adaption:

https://github.com/evelynsidarta/gaussia n-splatting-thesis

training:

10,000 iterations each, depth extraction with the help of 2DGS rendering script

Methodology - Postprocessing

 All depth map outputs converted into inverted depth map for better numerical stability: infinite background = 0

• normalization using min-max scaling: range [0, 1]

Methodology – Evaluation Metrics

- Absolute Relative Error (REL) ↓: absolute difference between output and GT compared to GT value
- Scale Invariant Logarithmic Loss (SiLog) ↓: minimize impact of scaling, relative error considered in logarithmic space
- Threshold Accuracy \uparrow (δ_1 , δ_2 , δ_3): % of pixels that lie within a certain value of the GT:
 - δ_1 : 25%
 - δ_2 : 56.25%
 - δ_3 : 95.31%

Methodology – Evaluation Metrics

- Root Mean Squared Error (RMSE) ↓: absolute difference between GT and predicted values, highlights discrepancies
- Root Mean Squared Logarithmic Error (RMSLE) ↓: logarithmic difference instead of absolute difference, higher discrepancies more proportionately scaled
- Logarithmic Error ↓
- Relative Square Error (RSE) ↓: magnify error values

Evaluation – Statistical Analysis Results

Methods	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	REL ↓	RSE ↓	$\log_{10} \downarrow$	RMSE ↓	RMSLE ↓	SiLog↓
3DGS	0.851	0.851	0.852	0.139	0.111	0.140	0.311	0.841	77.96
2DGS	0.855	0.855	0.855	0.131	0.107	0.139	0.311	0.838	77.50
RaDe	0.856	0.856	0.856	0.128	0.106	0.138	0.310	0.837	77.34
GS2M	0.853	0.853	0.853	0.155	0.124	0.138	0.309	0.833	77.04
DA1-s	0.807	0.903	0.957	0.143	0.027	0.048	0.097	0.252	24.71
DA1-b	0.828	0.907	0.948	0.154	0.032	0.049	0.095	0.251	24.25
DA1-l	0.725	0.831	0.898	0.278	0.061	0.081	0.118	0.359	33.88
DA2-s	0.561	0.688	0.788	0.502	0.094	0.140	0.127	0.503	43.32
DA2-b	0.583	0.710	0.811	0.443	0.079	0.129	0.127	0.472	41.95
DA2-l	0.613	0.745	0.850	0.354	0.058	0.110	0.124	0.419	38.47
ZoeD	0.472	0.620	0.742	0.679	0.163	0.179	0.159	0.581	47.51

Evaluation – Observations

- MDE performs better than GS models simpler task
- ! DepthAnything v1 models perform better than v2 counterparts (see visual analysis later)
- GS models have high $\delta_1, \delta_2, \delta_3$ scores estimation lie very close to the actual values
- RaDe-GS: best overall performance between the GS derivatives (also overall highest δ_1), consistent with findings of RaDe-GS author.
- However: most likely due to no background bleeding
- Overall performance very close since model is simple.

- Overall smooth shape
- Trying to create a bunny, not flat like the original chocolate bunny model
- Background bleeding weak statistical performance due to this

Ground Truth

- Large model more detailed (see ear splits)
- Small and base models do well on statistical analysis due to "flatter" look

Depth Anything v1 Small

Depth Anything v1 Base

Depth Anything v1 Large

Ground Truth

- Overall a lot sharper than v1
- Ear splits and leg splits apparent even in small model
- However: oversmoothing

Depth Anything v2 Small

Depth Anything v2 Base

Depth Anything v2 Large

Depth Anything v2 Large Depth Anything v1 Small

- v2 models are much sharper (see ear)
- v1 models are flatter in comparison better statistical result since bunny is flat (see wider "yellow" area)

Ground Truth 3DGS

- GT image possess very basic form, very flat
- GS models much rougher: elliptical shape of the Gaussians
- 3DGS very rough, general shape clear, but details missing
- Orientation of the bunny unclear, some splats stick out at a weird angle

- 2DGS: overall best visuals
- Ear folds, legs, and tail distinguishable, orientation also obvious
- Smooth geometry not a problem since base GT model is not too detailed
- Oversmoothing problem in statistical analysis when compared to RaDe-GS

- GS2Mesh weird splats on some places same as 3DGS
- Outline of bunny can be observed but details are entirely gone
- RaDe-GS does not perform as well in visual analysis compared to in statistical analysis
- However: overall maintain flatter look good score statistically

Limitations – Current State-of-Art Methods

- MDE models struggle from background bleeding, not used to dealing with unrealistic situations – poor statistical results even though performance is excellent visually
- GS models suffer from awkward shape of Gaussians: less smooth even though overall shape retained. Also more noisy due to density of Gaussians.
- Low opacity Gaussians still have depth values that needed to be considered for evaluation.

Suggestions – Further Improvements

- Using more variative models in the future
- Also incorporate more realistic data (not just synthetic models with purely silent backgrounds)
- Somehow consider transparency of the Gaussians when looking at the depth map