# Big Data Machine Learning Homework

## Data Description:

Dataset is for white wines is taken from UCI, <a href="http://archive.ics.uci.edu/ml/datasets/Wine+Quality">http://archive.ics.uci.edu/ml/datasets/Wine+Quality</a>.

Given data has the following attributes:

Features: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total

sulfur dioxide, density, pH, sulphates, alcohol

Target Variable: quality (score between 0 and 10)

There are no missing values in the given data set

Total no of features: 11

Total no of Rows: 4898,

### Sample of Data:

|   | fixed acidity | volatile acidity | citric acid | residual sugar | chlorides | free sulfur<br>dioxide | total sulfur<br>dioxide | density | рН  | sulphates | alcohol | quality |
|---|---------------|------------------|-------------|----------------|-----------|------------------------|-------------------------|---------|-----|-----------|---------|---------|
| 0 | 7             | 0.27             | 0.36        | 20.7           | 0.045     | 45                     | 170                     | 1.001   | 3   | 0.45      | 8.8     | 6       |
| 1 | 6.3           | 0.3              | 0.34        | 1.6            | 0.049     | 14                     | 132                     | 0.994   | 3.3 | 0.49      | 9.5     | 6       |
| 2 | 8.1           | 0.28             | 0.4         | 6.9            | 0.05      | 30                     | 97                      | 0.9951  | 3.3 | 0.44      | 10.1    | 6       |
| 3 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47                     | 186                     | 0.9956  | 3.2 | 0.4       | 9.9     | 6       |
| 4 | 7.2           | 0.23             | 0.32        | 8.5            | 0.058     | 47                     | 186                     | 0.9956  | 3.2 | 0.4       | 9.9     | 6       |

### Data description:

|                         | count | mean       | Std       | min     | 25%      | 50%     | 75%    | max     |
|-------------------------|-------|------------|-----------|---------|----------|---------|--------|---------|
| fixed acidity           | 4898  | 6.854788   | 0.843868  | 3.8     | 6.3      | 6.8     | 7.3    | 14.2    |
| volatile acidity        | 4898  | 0.278241   | 0.100795  | 0.08    | 0.21     | 0.26    | 0.32   | 1.1     |
| citric acid             | 4898  | 0.334192   | 0.12102   | 0       | 0.27     | 0.32    | 0.39   | 1.66    |
| residual sugar          | 4898  | 6.391415   | 5.072058  | 0.6     | 1.7      | 5.2     | 9.9    | 65.8    |
| chlorides               | 4898  | 0.045772   | 0.021848  | 0.009   | 0.036    | 0.043   | 0.05   | 0.346   |
| free sulfur<br>dioxide  | 4898  | 35.308085  | 17.007137 | 2       | 23       | 34      | 46     | 289     |
| total sulfur<br>dioxide | 4898  | 138.360657 | 42.498065 | 9       | 108      | 134     | 167    | 440     |
| Density                 | 4898  | 0.994027   | 0.002991  | 0.98711 | 0.991723 | 0.99374 | 0.9961 | 1.03898 |
| pН                      | 4898  | 3.188267   | 0.151001  | 2.72    | 3.09     | 3.18    | 3.28   | 3.82    |
| sulphates               | 4898  | 0.489847   | 0.114126  | 0.22    | 0.41     | 0.47    | 0.55   | 1.08    |
| Alcohol                 | 4898  | 10.514267  | 1.230621  | 8       | 9.5      | 10.4    | 11.4   | 14.2    |
| Quality                 | 4898  | 5.877909   | 0.885639  | 3       | 5        | 6       | 6      | 9       |

## Graphical Representation of Data:



# Data Cleaning

#### Class Imbalance

The given data is highly imbalanced:

| Class  | Count of |
|--------|----------|
| Labels | quality  |
| 3      | 20       |
| 4      | 163      |
| 5      | 1457     |
| 6      | 2198     |
| 7      | 880      |
| 8      | 175      |
| 9      | 5        |
| Grand  | 4898     |
| Total  |          |

So, we correct the imbalance by splitting the data to 3 labels

- Low: represented by '0', having 3, 4, 5 labels
- Medium: represented by '1', having 6 label

• High: represented by '2', having 7, 8, 9 labels

#### Correlation

Since the given data is numeric so we will check the correlation between the features

#### Correlation Graph:



After seeing the heat map for correlation, it is clearly visible that

- Density and alcohol
- Residual sugar and Density
- Total sulfur dioxide and Free Sulfur Dioxide

Are highly correlated and it is not very useful to have highly correlated values in the dataset so removing features:

Density and Free sulfur dioxide

#### **Outliers**

Data contained outliers in fixed acidity, volatile acidity, citric acid, residual sugar, chlorides and they were removed.

### Steps Followed

- Balanced the target variable as the classes were highly skewed by grouping the various data into groups and relabeling them as low, medium, high.
- Checked for correlation between the features. Identified 3 pairs of highly correlated variable and removed 2 features which were: Density and Free Sulfur Dioxide
- Checked for outliers by plotting the and removed them to prevent bias.
- Ran the given algorithms with cross validation and 70-30 split.

Performed the following operations:

- Class Balancing
- Feature removal
- Normalization
- used Std Scalar function
- PCA
- Sampling

## Algorithms

the algorithms that are being used are the following:

- a) Logistic Regression
- b) Decision Tree (as Classifier)
- c) Random Forest (as Classifier)
- d) SVM (using One vs Rest approach)

Not using Linear Regressing as the class label is nominal

All the algorithms are used 70-30 split

Summary of Runs:

| Original                    |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.45708155 | 0.26837496 |  |  |
| Random Forest               | 0.53648069 | 0.49638085 |  |  |
| Decision Tree               | 0.43204578 | 0.3582671  |  |  |
| SVM                         | 0.53576538 | 0.49931824 |  |  |

| Class Balaced               |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.45815451 | 0.28676986 |  |  |
| Random Forest               | 0.57796853 | 0.57084327 |  |  |
| Decision Tree               | 0.5944206  | 0.59345141 |  |  |
| SVM                         | 0.56366237 | 0.55540974 |  |  |

| Feature Removed             |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.56008584 | 0.53275927 |  |  |
| Random Forest               | 0.57939914 | 0.57111206 |  |  |
| <b>Decision Tree</b>        | 0.5851216  | 0.58437147 |  |  |
| SVM                         | 0.5658083  | 0.55665389 |  |  |

| Normalization of data       |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.49928469 | 0.44339266 |  |  |
| Random Forest               | 0.57296137 | 0.5336279  |  |  |
| Decision Tree               | 0.55293276 | 0.53866217 |  |  |
| SVM                         | 0.57796853 | 0.56531976 |  |  |

| Standardization of data     |                  |            |  |  |
|-----------------------------|------------------|------------|--|--|
| Algo                        | Accuracy F1 Scor |            |  |  |
|                             |                  |            |  |  |
| <b>Logistics Regression</b> | 0.51716738       | 0.51085441 |  |  |
| Random Forest               | 0.57796853       | 0.57084327 |  |  |
| Decision Tree               | 0.58520601       | 0.59345141 |  |  |
| SVM                         | 0.56938484       | 0.56253066 |  |  |

| With Sampling               |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.4795082  | 0.3878467  |  |  |
| Random Forest               | 0.57991803 | 0.57861787 |  |  |
| Decision Tree               | 0.55122951 | 0.54712298 |  |  |
| SVM                         | 0.56762295 | 0.56648892 |  |  |

| Outliers Removed            |            |            |  |  |
|-----------------------------|------------|------------|--|--|
| Algo                        | Accuracy   | F1 Score   |  |  |
|                             |            |            |  |  |
| <b>Logistics Regression</b> | 0.48284642 | 0.43392659 |  |  |
| Random Forest               | 0.56488011 | 0.55340618 |  |  |
| Decision Tree               | 0.59155148 | 0.59435051 |  |  |
| SVM                         | 0.56981664 | 0.56083061 |  |  |

## Conclusion

- After Balancing the class, we can see that the accuracy and F1 Score has improved for all the classifiers.
- For Classifiers removing outliers led to a marginal decrease in the accuracy and F1 score, this can be accounted to the fact that the outliers were unique values.
- After doing normalization and we can see a clear improvement in the accuracy and F1 score
- After doing sampling we can see a reduction in accuracy and F1 for Decision Tree Classifier which can be because of the sample selection, some unique values might have been lost.