

La prévision de consommation d'électricité à RTE

PLAN DE LA PRESENTATION

- RTE, le gestionnaire du réseau d'électricité
- Présentation d'une méthodologie de prévision d'électricité
- Le métier d'ingénieur statisticien
- Questions, discussions

L'ouverture du marché de l'électricité

- Ouverture progressive du marché de l'électricité :
 - **✓ 2004** : ouverture à l'ensemble des consommateurs professionnels
 - ✓ Juillet 2007: ouverture totale
- Conséquence : changement du statut d'EDF, qui devient une société anonyme
- Dans un contexte concurrentiel, certaines parties du système électrique restent par nature des monopoles
 => Création de RTE

Le système électrique français

Un Arbitre : la commission de régulation de l'énergie (CRE)

RTE, gestionnaire du transport d'Électricité

- Les principales missions :
 - ✓ Gérer les infrastructures du réseau = entretien et développements du réseau ex : projet de ligne 400000 Volt en région PACA
 - ✓ Gérer les flux d'électricité sur le réseau, et assurer la sécurité de fonctionnement du réseau électrique :
 - Sérer les infrastructures de réseau
 - Limiter le nombre des incidents et d'éviter les grands incidents,
 - Limiter les consequences d'un grand incident (« black out ») s'il survenait malgré tout
 - ✓ Contribuer au bon fonctionnement du marché de l'électricité
 - un traitement sans discrimination de tous les utilisateurs du réseau électrique

Enjeux de la prévision de consommation d'électricité pour RTE

- Long Terme (plusieurs années):
 - ✓ Investissements de réseaux
- Moyen terme (Hebdomadaire) :
 - ✓ Gestion des entretiens de lignes ou de postes
 - ✓ Achat des pertes
- Court terme (la veille pour le lendemain) :
 - **✓** Équilibre entre production et consommation

PLAN DE LA PRESENTATION

- RTE, le gestionnaire du réseau d'électricité
- Présentation d'une méthodologie de prévision d'électricité
- Le métier d'ingénieur statisticien
- Questions, discussion

Pourquoi un modèle statistique ?

- La consommation électrique, à l'échelle d'une région ou d'un pays, est une variable très aléatoire, dépendant de nombreux facteurs :
 - ✓ Météorologie (Température, nébulosité)
 - ✓ L'activité économique (jours d'activité des entreprises)
 - ✓ Les offres commerciales
 - ✓ Autres facteurs, difficiles à expliquer
- Un modèle statistique développé à RTE, permet de prévoir la consommation électrique pour toutes les heures du lendemain
- Les résultats de ce modèle, fournis au Centre National d'Exploitation du Système, sont des éléments importants d'aide à la décision

Analyse de la courbe de consommation électrique (1) : Les saisonnalités

Cycle annuel :

Exemple de cycles hebdomadaire et journalier en période d'été

Analyse de la courbe de consommation électrique (2)

cycle hebdomadaire

Analyse de la consommation électrique (3)

Cycle journalier

Sensibilité de la consommation électrique à la température (1)

Sensibilité de la consommation électrique à la température (2)

La modélisation retenue (très simplifiée)

$$P_{h,j,n}(T,k) = (PHC_{h,j,n}) f_h(k) + PCH_{h,j,n}(T) + \varepsilon_{h,j,n}$$

- P_{h,j,n} (T,k): Puissance
 Heure j, jour j (Lundi, Mardi), année n (2005)
 k = numéro du jour dans l'année
 T = Température
- (PHC_{h,j,n}) f_h (k): puissance indépendante de l'aléa climatique
 - ➤ PHC_{h,j,n} : représente les cycles journaliers et hebdomadaires
 - ➤ f_h (k), où k est le numéro du jour dans l'année, est une série de Fourier, pour représenter le cycle annuel
- ε_{h.i.n}: résidu du modèle

Puissance dépendant de l'aléa climatique aux températures froides

◆ PCH_{h,j,n} (T) = gradient_{h,j,n} * (Température ressentie (h,j,n) – Température Seuil)

 Température ressentie = combinaison linéaire de la température instantanée, des retards de la température, et de la nébulosité

 Météo France fournit à RTE des prévisions de températures et de nébulosité

Le processus de prévision

 Chaque année, estimation des paramètres du modèle pour l'année suivante, par minimisation de la norme des résidus

```
=> gradient<sub>h,j,n-1</sub>, PHC<sub>h,j,n-1</sub>, fonction f_h(k)
```

- Extrapolation des paramètres pour l'année suivante n
 => gradient_{h,i,n}, PHC_{h,i,n}, fonction f_h (k)
- Le jour J : Estimation de l'équation du modèle, en utilisant comme température la prévision fournie par Météo France
- On obtient alors une puissance modélisée prévue pour le jour J+1 PMP(J+1)

La fonction correctrice

- On suppose que les paramètres estimés sont valides pour l'année entière, ce qui n'est pas complètement vrai
- On corrige « au dernier moment » la puissance modélisée prévue, en fonction des erreurs des 7 derniers jours passés
- Prévision finale (J+1) =
 PMP(J+1) + a₁ (PMP(J)-P(j)) + a₂ (PMP(J-1)-P(j-1))
 + ... + a₇ (PMP(J-6)-P(j-6))
- Question: comment optimiser a₁, a₂, ..., a₇?

Proposition de stage : optimisation des coefficients de la fonction correctrice

- Pour l'instant, les coefficients ne sont pas vraiment optimisés
- La fonction correctrice est très importante, car c'est un des principaux aspects du modèle liant le futur au passé!
- Déroulement de l'étude :
 - ✓ Analyse de la sensibilité du modèle par rapport
 - à ces coefficients, et proposition d'un premier jeu de paramètres « cohérent »
 - ✓ Conception d'une fonction $(a_1, a_2, ..., a_6) \rightarrow PMP(J+1)$, et optimisation numérique de cette fonction, avec pour objectif de réduire l'erreur moyenne de prévision
 - ✓ Réflexion sur d'autres systèmes de correction en temps réel de modèles de prévision

Exemple: prévision du 4/11/2006

Courbe de charge

Courbe de charge de la journée du : 04/11/2006 💌

PLAN DE LA PRESENTATION

- RTE, le gestionnaire du réseau d'électricité
- Présentation d'une méthodologie de prévision d'électricité
- Le métier d'ingénieur statisticien
- Questions, discussion

Travaux autour de la prévision de consommation

- Analyse du comportement du modèle, suivant les différents cas
 - ✓ prouver que le modèle apporte vraiment des éléments intéressants par rapport à d'autres systèmes de prévisions
- Estimation des paramètres
- Enrichissement du modèle
 - ✓ ex : calcul d'intervalles de confiance, apport de nouvelles fonctionnalités
- Amélioration du modèle
 - ✓ Meilleure prise en compte de jours spéciaux, comme par exemple les jours fériés
 - ✓ Optimisation de la fonction correctrice
- Étude d'autres techniques de prévision : estimation non paramétrique, ou semi paramétrique.

Démarche générale

- Documentation sur les processus existants :
 - ✓ Analyse des besoins opérationnels : sur quels sont les points de progrès vraiment importants pour RTE ?
 - ✓ comprendre et synthétiser la documentation existante
 - ✓ Lire des articles de recherche (veille technologique)
- Formaliser et décrire les problèmes, afin de les résoudre le plus efficacement possible :
 - ✓ Ex : décrire la démarche de travail concernant l'optimisation de la fonction correctrice
- Recherche de solutions :
 - ✓ Écrire des petits prototypes en matlab ou SAS
 - **✓** Adapter des codes existants
 - ✓ Réfléchir sur l'amélioration des processus existants

Proposition de solution

- **✓** Description de la solution
- ✓ Définition précise du processus créé, pour les équipes qui programment les logiciels

Analyse et Retour d'expérience

- ✓ Analyse des performances de prévision, a posteriori, sur les années précédentes
- ✓ Comment réagit le modèle suivant le type de jour, les évènements, ...

PLAN DE LA PRESENTATION

- RTE, le gestionnaire du réseau d'électricité
- Présentation d'une méthodologie de prévision d'électricité
- Le métier d'ingénieur statisticien
- Questions, discussion : Sur tous points!