1 Összefoglaló

- 1. Függetlenség, feltételes valószínűség
 - A és B független, ha $P(A \cap B) = P(A) \cdot P(B)$
 - A esemény valószínűsége feltéve B: $P(A|B) = \frac{P(A \cap B)}{P(B)}$
 - Teljes valószínűség tétele: A esemény B_1, B_2, \dots teljes esemény rendszer azaz $B_1 \cup B_2 \cup \dots = H$ alaphalmazzal és $B_j \cap B_i = \emptyset$, akkor $P(A) = P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2) + \dots$
 - Bayes-tétel: $P(B_1|A) = \frac{P(A|B_1) \cdot P(B_1)}{P(A)} = \frac{P(A|B_1) \cdot P(B_1)}{P(A|B_1) \cdot P(B_1) + P(A|B_2) \cdot P(B_2) + \dots}$
- 2. Valószínűségi változók, várható érték, szórás
 - X valószínűségi változó, értékei a kísérlet kimenetelei, $\{X=k\}$ elemi esemény, $\{X\geq a\}$, stb. összetett események, P(X=k), $P(X\geq a)$,... valószínűségek.
 - $E(X) = \sum_{k} P(X = k) \cdot k$ várható érték.
 - $D(X)=\sqrt{D^2(X)}$ szórás, ahol $D^2(X)=E(X^2)-E^2(X)$. $E^2(X)=\sum_k P(X=k)\cdot k^2$, $E^2(X)$ pedig a várható érték négyzete.
- 3. Nevezetes eloszlások, várható érték és szórás tulajdonságai
 - E(aX + bY) = aE(X) + bE(Y)
 - $D(aX + bY) = \sqrt{a^2D^2(X) + b^2D^2(Y)}$
 - X egy adott kísérlethez tartozó valószínűségi változó. $\sum X$ az n független kísérlet alapján kapott értékek összege. $E(\sum X) = nE(X)$ és $D(\sum(X)) = \sqrt{n}D(X)$
 - \overline{X} az előbbiek átlaga, azaz $\overline{X} = \frac{\sum X}{n}$, ekkor $E(\overline{X}) = E(X)$ és $D(\overline{X}) = \frac{D(\overline{X})}{\sqrt{n}}$
 - Nevezetes eloszlások

	Értékei	P(X=k)	E(X)	$D^2(X)$
Indikátor	k = 0, 1	1-p illetve p	p	$p \cdot (1-p)$
Binomiális	$k=0,1,\ldots,n$	$\binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$	$n \cdot p$	$n \cdot p \cdot (1-p)$
Geometriai	$k=1,2\ldots$	$(1-p)^{k-1} \cdot p$	$\frac{1}{p}$	_
Hipergeom.	$k=0,1,\ldots,n$	$\frac{\binom{M}{k} \cdot \binom{N-M}{n-k}}{\binom{N}{n}}$	$n \cdot p$	_

4. Markov-láncok

- Véges sok állapottal bíró rendszer, az állapotok között adott valószínűséggel lépünk át egyikből a másikba.
- pl. 2 állapot (A,B) esetén A-ból A-ba lépés valószínűsége a, ekkor A-ból B-be lépésé 1-a. B-ből B-be lépésé b, akkor B-ből A-ba 1-b.
- Átmenet mátrix ekkor: $M = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$
- a jelenlegi generáció aránya $v = (p \ 1-p)$
- \bullet ekkor a következő generáció: $v\cdot M$
- a második: $v \cdot M^2$
- ha tudjuk hogy a jelelegi generációban mindenkire az egyik állapot teljesül, pl. A, akkor $v=\begin{pmatrix} 1 & 0 \end{pmatrix}$
- \bullet létezik egyensúlyi eloszlás, ez a $v\cdot M=v$ egyenlet v megoldása. Hosszútávon mindig ehhez közelít a rendszer viselkedése

1