실험계획과 분석

심송용(한림대학교 데이터과학스쿨)

http://jupiter.hallym.ac.kr

자유도.

$$\mathrm{SST}=\sum_{i=1}^a\sum_{j=1}^{n_i}(y_{ij}-\overline{y}_{..})^2$$
: y_{ij} 는 N 개가 독립적인데 $\overline{y}_{..}=\sum\sum y_{ij}/N$ 으로 1개의 제약이 있음 자유도 $N-1$

SSE
$$=\sum_{i=1}^a\sum_{j=1}^{n_i}(y_{ij}-\overline{y}_i)^2$$
 각 i 에 대해서 n_i 개의 y_{ij} 가 독립적인데 $\overline{y}_i=\sum y_{ij}/n_i$ 인 1개의 제약이 있음. 각 i 에 대해서 (n_i-1) 의 자유도이므로 모두 합하면 $\sum (n_i-1)=N-a$ 개의 자유도

SSTrt
$$=\sum_{i=1}^a\sum_{j=1}^{n_i}(\overline{y}_{i.}-\overline{y}_{..})^2$$
: a 개의 $\overline{y}_{i.}$ 이 독립적인데 이들의 가중평균인
$$\overline{y}_{..}=\frac{n_1\overline{y}_{1.}+n_2\overline{y}_{2.}+\cdots+n_a\overline{y}_a}{N}$$
인 1개의 제약. 따라서 자유도는 $(a-1)$

분산분석표

요인	제곱합	자유도	평균제곱	F	유의확률
처리	SSTrt = $\sum_{i=1}^{a} \sum_{j=1}^{n_i} (\overline{y}_{i.} - \overline{y}_{})^2$	a-1	$MSTrt = \frac{SSTrt}{a-1}$	3.50.50	P=
오차	SSE = $\sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i.})^2$	N-a	$MSE = \frac{SSE}{N-a}$	MSTrt MSE	$\Pr\left[F_{a-1,N-a} > F_0\right]$
전체	$SST = \sum_{i=1}^{a} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{})^2$	N-1			

만일
$$F_0 > F_{a-1,N-a;\alpha} \Leftrightarrow$$
 유의확률 $P < \alpha \Leftrightarrow H_0: \tau_1 = \tau_2 = \cdots = \tau_a = 0$ 를 기각

여기서

- $F_{a-1;N-a}$ 는 자유도 (a-1,N-a)인 F 분포를 따르는 확률변수
- $F_{a-1;N-a;\alpha}$ 는 자유도 (a-1,N-a)인 F 분포의 $100(1-\alpha)$ % 백분위수

제곱합의 기댓값 $(n_1 = n_2 = \dots = n_a = n$ 을 가정)

모형이 $y_{ij}=\mu+ au_i+\epsilon_{ij}$ 이고 $\mu,\; au_i$ 는 상수, 확률변수 ϵ_{ij} 는 모두 독립이며

$$E(\epsilon_{ij})=0$$
, $Var(\epsilon_{ij})=\sigma^2$, $\sum_{i=1}^a \tau_i=0$ 이므로 $\sigma^2=Var(\epsilon_{ij})=E(\epsilon_{ij}^2)-E(\epsilon_{ij})^2=E(\epsilon_{ij}^2)$ 이다.

또, 모든 ϵ_{ij} 는 독립이므로 $0 = Cov(\epsilon_{ij}, \epsilon_{ij'}) = E(\epsilon_{ij}\epsilon_{ij'}) - E(\epsilon_{ij})E(\epsilon_{ij'}) = E(\epsilon_{ij}\epsilon_{ij'})$ 임을 사용하면

$$E(\sum_{j=1}^{n} \epsilon_{ij})^{2} = E(\sum_{j=1}^{n} \epsilon_{ij}^{2} + \sum_{j \neq j'}^{n} \sum_{j' \in ij}^{n} \epsilon_{ij} \epsilon_{ij'}) = n\sigma^{2}$$

모든 ϵ_{ij} 는 독립이므로 $0 = Cov(\epsilon_{ij}, \epsilon_{i'j'}) = E(\epsilon_{ij}\epsilon_{i'j'}) - E(\epsilon_{ij})E(\epsilon_{i'j'}) = E(\epsilon_{ij}\epsilon_{i'j'})$ 임을 사용하면

$$E(\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^2 = E(\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij}^2 + \sum_{i\neq i'}^{a}\sum_{j\neq j'}^{a}\sum_{j\neq j'}^{n}\epsilon_{ij}\epsilon_{i'j'}) = an\sigma^2$$

이다. 또한

$$E(y_{..}) = E(\sum_{i=1}^{a} \sum_{j=1}^{n} (\mu + \tau_i + \epsilon_{ij})) = \sum_{i=1}^{a} \sum_{j=1}^{n} E(\mu) + n \sum_{i=1}^{a} \tau_i + \sum_{i=1}^{a} \sum_{j=1}^{n} E(\epsilon_{ij}) = an\mu$$

$$E(y_{i.}) = E(\sum_{j=1}^{n} (\mu + \tau_i + \epsilon_{ij})) = \sum_{j=1}^{n} E(\mu) + \sum_{j=1}^{n} \tau_i + \sum_{j=1}^{n} E(\epsilon_{ij}) = n\mu + n\tau_i$$

$$E(y_{ij}^2) = E(\mu + \tau_i + \epsilon_{ij})^2 = E(\mu^2 + \tau_i^2 + \epsilon_{ij}^2 + 2\mu\tau_i + 2\mu\epsilon_{ij} + 2\tau_i\epsilon_{ij})$$
$$= \mu^2 + \tau_i^2 + \sigma^2 + 2\mu\tau_i$$

$$E(y_{..}^{2}) = E(\left[\sum_{i=1}^{a}\sum_{j=1}^{n}(\mu + \tau_{i} + \epsilon_{ij})\right]^{2}) = E(\left[an\mu + n\sum_{i=1}^{a}\tau_{i} + \sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})\right]^{2}) = E(\left[an\mu + \sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij}\right]^{2})$$

$$= E(a^{2}n^{2}\mu^{2} + 2an\mu\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij} + (\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^{2}) \qquad (1)$$
이코
$$E(\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^{2} = an\sigma^{2}$$

$$= E(a^{2}n^{2}\mu^{2} + 2an\mu\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij} + (\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^{2}) = a^{2}n^{2}\mu^{2} + an\sigma^{2}$$

이고
$$E(\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^2 = an\sigma^2$$
이므로

$$= E(a^{2}n^{2}\mu^{2} + 2an\mu\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij} + (\sum_{i=1}^{a}\sum_{j=1}^{n}\epsilon_{ij})^{2}) = a^{2}n^{2}\mu^{2} + an\sigma^{2}$$

같은 방법으로

$$\begin{split} E(y_{i.}^2) &= E([\sum_{j=1}^n (\mu + \tau_i + \epsilon_{ij})]^2) = E([n\mu + n\tau_i + \sum_{j=1}^n \epsilon_{ij})]^2) \\ &= E(n^2\mu^2 + n^2\tau_i^2 + (\sum_{j=1}^n \epsilon_{ij})^2 + 2n^2\mu\tau_i + 2n\mu(\sum_{j=1}^n \epsilon_{ij}) + 2n\tau_i(\sum_{j=1}^n \epsilon_{ij})) \\ &= n^2\mu^2 + n^2\tau_i^2 + E(\sum_{j=1}^n \epsilon_{ij})^2 + 2n^2\mu\tau_i = n^2\mu^2 + n^2\tau_i^2 + n\sigma^2 + 2n^2\mu\tau_i \end{split}$$

이다. 따라서

$$\begin{split} E(SSE) &= E(\sum\sum y_{ij}^2 - \sum\frac{y_{i.}^2}{n}) = \\ &= an\mu^2 + n\sum_{i=1}^a \tau_i^2 + an\sigma^2 + 2\mu\sum_{i=1}^a \tau_i - (an^2\mu^2 + n^2\sum_{i=1}^a \tau_i^2 + an\sigma^2 + 2n^2\mu\sum_{i=1}^a \tau_i)/n \\ &= an\sigma^2 - a\sigma^2 = a(n-1)\sigma^2 \text{ or } . \end{split}$$

a개 그룹 비교-일원배치

$$E(MSE) = \frac{E(SSE)}{a(n-1)} = \sigma^{2}$$

같은 방법으로

문 방법으로
$$E(SSTrt) = E(\sum \frac{y_{i.}^2}{n} - \frac{y_{..}^2}{an}) = (an^2\mu^2 + n^2\sum_{i=1}^a \tau_i^2 + an\sigma^2)/n - \frac{a^2n^2\mu^2 + an\sigma^2}{an}$$

$$= n\sum_{i=1}^a \tau_i^2 + a\sigma^2 - \sigma^2$$

따라서

$$E(MSTrt) = \frac{E(SSTrt)}{a-1} = \sigma^2 + \frac{n\sum_{i=1}^{a} \tau_i^2}{a-1}$$

즉, 귀무가설 $H_0: au_1= au_2=\cdots= au_a=0$ 의 참거짓과 상관없이

 $E(MSE) = \sigma^2$: 불편추정량

이며

귀무가설 $H_0: au_1 = au_2 = \cdots = au_a = 0$ 이 참이면

$$n\sum_{i=1}^a au_i^2$$
 $E(MSTrt)=\sigma^2+rac{n\sum_{i=1}^a au_i^2}{a-1}=\sigma^2$ 으로 MSTrt의 기댓값과 MSE의 기댓값이 모두 σ^2 이라 검정통

계량
$$F = \frac{MSTrt}{MSE}$$
가 1에 가까운 값이 될 것이며

 $H_0: au_1 = au_2 = \cdots = au_a = 0$ 이 거짓이면 au_i 의 값이 0이 아닌 양수/음수가 되므로

$$n\sum_{i=1}^a au_i^2$$
 $E(MSTrt)=\sigma^2+rac{n\sum_{i=1}^a au_i^2}{a-1}>\sigma^2$ 로 MSTrt의 값이 커진다. 결과적으로 검정통계량 F의 값이 커진다.