Learning Compositional Visual Concepts with Mutual Consistency

Yunye Gong, Srikrishna Karanam, Ziyan Wu, Kuan-Chuan Peng, Jan Ernst, and Peter C. Doerschuk

CVPR 2018 (spotlight)

Image Translation (Pix to Pix and Cycle GAN)

Cycle GAN

Source: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial

New Unseen Samples from Translations?

- Colored Bags
- Edge Bags
- Colored Shoes
- Edge Shoes

Overview: Cycle GAN

Cycle GAN: Learn and Compose concepts separately

Losses: Adversarial

Losses: Cycle Consistency

$$\mathcal{L}_{\text{cyc2}}(G1, F1)$$

$$\mathcal{L}_{\text{cyc2}}(G1, F1)$$

 $\mathcal{L}_{\text{cyc2}}(G2, F2)$

$$\mathcal{L}_{\text{cyc2}}(G1, F1) = \mathbb{E}_{\sigma_{00} \sim P_{00}}[||(F_1 \circ G_1)\sigma_{00} - \sigma_{00}||_1] + \mathbb{E}_{\sigma_{10} \sim P_{10}}[||(G_1 \circ F_1)\sigma_{10} - \sigma_{10}||_1]$$

Can we generate sketch shoes by combining them?

Proposed Model: Concept GAN

Cycle GAN: Learn and Compose concepts **separately**

Concept GAN: Learn and Compose concepts simultaneously

Losses: Cycle Consistency

Losses: Cycle Consistency (Dist=4)

Losses: Cycle Consistency (Dist=4)

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{00})$$

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{01})$$

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{00})$$

$$= \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (F_2 \circ F_1 \circ G_2 \circ G_1)(\sigma_{00}) - \sigma_{00} \|_1]$$

$$+ \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (F_1 \circ F_2 \circ G_1 \circ G_2)(\sigma_{00}) - \sigma_{00} \|_1].$$

Losses: Cycle Consistency (Dist=4)

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{00})$$

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{01})$$

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{10})$$

$$\mathcal{L}_{cyc4}(G, F, \Sigma_{00})$$

$$= \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (F_2 \circ F_1 \circ G_2 \circ G_1)(\sigma_{00}) - \sigma_{00} \|_1]$$

$$+ \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (F_1 \circ F_2 \circ G_1 \circ G_2)(\sigma_{00}) - \sigma_{00} \|_1].$$

Loss: Commutative

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00})$$

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00}) = \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (G_2 \circ G_1)(\sigma_{00}) - (G_1 \circ G_2)(\sigma_{00}) \|_1]$$

Loss: Commutative

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00})$$

$$\mathcal{L}_{comm}(G_1, F_2, \Sigma_{01})$$

$$\mathcal{L}_{comm}(F_1, G_2, \Sigma_{10})$$

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00})$$

$$= \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (G_2 \circ G_1)(\sigma_{00}) - (G_1 \circ G_2)(\sigma_{00}) \|_1]$$

Loss: Commutative

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00})$$

$$\mathcal{L}_{comm}(G_1, F_2, \Sigma_{01})$$

$$\mathcal{L}_{comm}(F_1, G_2, \Sigma_{10})$$

$$\mathcal{L}_{comm}(G_1, G_2, \Sigma_{00})$$

$$= \mathbb{E}_{\sigma_{00} \sim P_{00}} [\| (G_2 \circ G_1)(\sigma_{00}) - (G_1 \circ G_2)(\sigma_{00}) \|_1]$$

Concept GAN

$$\mathcal{L}(G, F, D, \Sigma) = \mathcal{L}_{ADV} + \lambda \mathcal{L}_{CYC} + \mu \mathcal{L}_{COMM}$$
$$\mathcal{L}_{CYC} = \mathcal{L}_{CYC2} + \mathcal{L}_{CYC4}$$

$$G^*, F^* = \arg\min_{G, F} \max_{D} \mathcal{L}(G, F, D, \Sigma)$$

no training data edgeedgecolorcolorreconstrbags shoes shoes bags uctions

Proposed: ConceptGAN

Comparing Results

Baseline CycleGAN

Proposed: ConceptGAN

Qualitative Results

Qualitative Results

Quantitative Results (Classification)

Test Set: edge Shoes only

Classifier	Val	CycleGAN	Ours
C1: "color/shoe" vs. "edge/shoe"	99	0	99
C2: "edge/handbag" vs. "edge/shoe"	99	99	98
Both C1 and C2	N/A	0	98

Test Set: with eyeglasses, with bangs

Classifier	Val	CycleGAN	Ours
C1: "with" vs. "no" eyeglasses	98	93	98
C2: "with" vs. "no" bangs	93	61	67
Both C1 and C2	N/A	56	66

18 60

 \mathcal{L}_{cyc4} \mathcal{L}_{comm} (Accuracy if L_x removed)

Ablation Study

Re-ID

Attributes	Smiling & Eyeglasses			Bang	s & Eye	glasses	Smiling, Bangs, & Eyeglasses				
Ranking Method	l_2	RNP	SRID	l_2	RNP	RNP SRID		RNP	SRID		
Augmentation	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes		
CaffeFace	8.3	10.7	12.8	7.9	12.3	16.9	11.5	13.3	16.6		
VGGFace	38.6	43.9	49.4	49.8	59.4	61.5	44.4	54.8	58.6		

Euclidean distance No Augmentation Rank=5

RNP
Augmentation
(Eyeglasses and
Bangs)
Rank=1

Ranking method	l_2	SRID
Augmentation	No	Yes
LFW	9.5	13.1
MS-Celeb1M	11.7	14.8

Generalizing to n(=3) Concepts

Learning from 2 attributes in 2 experiments

Experiment1: (smile, eyeglasses)

Experiment2: (bangs, eyeglasses)

(smile, eyeglasses, bangs)

Test data

Synthetic outputs over all possible permutations of 3 concepts learned in two experiments

Mix and match networks: encoderdecoder alignment for zero-pair image translation

Yaxing Wang, Joost van de Weijer, Luis Herranz CVPR 2018

Task

Overview

Losses

$$L = \lambda_R L_{RGB} + \lambda_S L_{SEG} + \lambda_D L_{DEPTH} + \lambda_A L_{LAT}$$

$$L_{LAT} = L_{LAT1} + L_{LAT2}$$

$$L_{LAT1} = \mathbb{E}_{(x,y) \sim p_{\mathcal{D}^{(1)}}(x,y)} [\|f_R(x) - f_S(y)\|_2]$$

$$L_{LAT2} = \mathbb{E}_{(x,z) \sim p_{\mathcal{D}^{(2)}}(x,z)} [\|f_R(x) - f_D(z)\|_2]$$

Depth -to- Semantic segmentation

Depth-to-Semantic segmentation

Method	Conn.	L_{SEM}	Bed	Book	Ceiling	Chair	Floor	Furniture	Object	Picture	Sofa	Table	TV	Wall	Window	Molm	Global
Baselines																	
CycleGAN [34]	SC	CE	2.79	0.00	16.9	6.81	4.48	0.92	7.43	0.57	9.48	0.92	0.31	17.4	15.1	6.34	14.2
2×pix2pix [10]	SC	CE	34.6	1.88	70.9	20.9	63.6	17.6	14.1	0.03	38.4	10.0	4.33	67.7	20.5	25.4	57.6
M&MNet $D \to R \to S$	PI	CE	0.02	0.00	8.76	0.10	2.91	2.06	1.65	0.19	0.02	0.28	0.02	58.2	3.3	5.96	32.3
M&MNet $D \to R \to S$	SC	CE	25.4	0.26	82.7	0.44	56.6	6.30	23.6	5.42	0.54	21.9	10.0	68.6	19.6	24.7	59.7
Zero-pair																	
M&MNet $D \to S$	PI	CE	50.8	18.9	89.8	31.6	88.7	48.3	44.9	62.1	17.8	49.9	51.9	86.2	79.2	55.4	80.4
Multi-modal																	
$\mathbf{M\&MNet}\ (R,D) \to S$	PI	CE	49.9	25.5	88.2	31.8	86.8	56.0	45.4	70.5	17.4	46.2	57.3	87.9	79.8	57.1	81.2