# PROYECTO COMPILANDO CONOCIMIENTO

# ALGEBRA LINEAL

# Transformaciones Lineales

Transformaciones Lineales

### AUTOR:

Rosas Hernandez Oscar Andres

# Índice general

| 1. | Trai | nsform  | naciones Lineales    | 2  |
|----|------|---------|----------------------|----|
|    | 1.1. | Definic | ción                 | 3  |
|    | 1.2. | Propie  | edades               | 5  |
|    | 1.3. | Kernel  | el e Imágen          | 6  |
|    |      | 1.3.1.  | Kernel               | 6  |
|    |      | 1.3.2.  | Imágen               | 8  |
|    |      | 1.3.3.  | Propiedades de Ambas | 10 |

# Capítulo 1

Transformaciones Lineales

## 1.1. Definición

Sea V y W dos espacios vectoriales sobre un **mismo** campo K. Una transformación lineal de  $V \to W$  es una función que cumpla con esto:

 $\mathcal{T}: V \to W$  tal que  $\forall v_1, v_2 \in V$  y  $\forall \alpha \in K$  tenemos que se cumple que:

- $\mathscr{T}(v_1 + v_2) = \mathscr{T}(v_1) + \mathscr{T}(v_2)$
- $\mathcal{T}(\alpha v_1) = \alpha \mathcal{T}(v_1)$

#### Combinación Lineal

Podemos tambien tener que como consecuencia de lo que tenemos arriba que podemos encontrar que  $\mathcal{T}$  es una transformación lineal si y solo si se cumple que:

 $\forall v_1, v_2 \in V \text{ y } \forall \alpha, \beta \in K \text{ se cumple que:}$ 

$$\mathscr{T}(\alpha v_1 + \beta v_2) = \alpha \mathscr{T}(v_1) + \beta \mathscr{T}(v_2) \tag{1.1}$$

## Saber si algo es una ${\mathscr T}$

Así que para probar que una  $\mathcal T$  es o no transformación lineal basta con verificar que se cumplan las 2 propiedades originales.

#### **Ejemplos**

Sea  $\mathbb{R}^3 \to \mathbb{R}^2$  tal que:

$$\mathscr{T}\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x - z \\ y + z \end{pmatrix}$$

Probemos la primera propiedad como:

$$\mathcal{T}(v_1 + v_2) = \mathcal{T} \begin{pmatrix} x_1 & x_2 \\ y_1 + y_2 \\ z_1 & z_2 \end{pmatrix} 
= \mathcal{T} \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix} = \frac{(x_1 + x_2) - (z_1 + z_2)}{(y_1 + y_2) + (z_1 + z_2)} = \frac{(x_1 - z_1)}{(y_1 + z_1)} + \frac{(x_2 - z_2)}{(y_2 + z_2)} = \mathcal{T} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \mathcal{T} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} 
= \mathcal{T}(v_1) + \mathcal{T}(v_2)$$

Probemos la segunda propiedad:

$$\mathcal{T}(\alpha v_1) = \mathcal{T} \begin{pmatrix} x \\ \alpha \cdot y \\ z \end{pmatrix}$$

$$= \mathcal{T} \begin{pmatrix} \alpha x \\ \alpha y \\ \alpha z \end{pmatrix} = \frac{\alpha x - \alpha z}{\alpha y + \alpha z} = \alpha \cdot \frac{x - z}{y + z} = \alpha \mathcal{T} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$= \alpha \mathcal{T}(v_1)$$

Por lo tanto las 2 propiedades se cumplen así que si que es una transformación lineal.

# 1.2. Propiedades

## El $0_v$ se preserva

Una Transformación Lineal debe llevar al  $0_v$  de V al  $0_v$  de WSu demostración es muy sencilla, pues  $\mathscr{T}(0_v) = \mathscr{T}(v_v - v_v) = \mathscr{T}(v_v) - \mathscr{T}(v_v) = 0_w$ 

## Operador Lineal

Decimos que  $\mathcal T$  (alguna transformación lineal) es un operador lineal en V si y solo si su dominio y su contradominio son el mismo.

# 1.3. Kernel e Imágen

#### 1.3.1. Kernel

#### Definición

**El Kernel** de una Transformación Lineal o **Núcleo** es el conjunto de todos los vectores originales (osea  $v \in V$ ) tales que al momento de aplicarles la transformación estos son llevados al origen (osea  $0_w$ )

O dicho con el bello lenguaje de matemáticas:

$$Kernel(\mathcal{T}) = \{ v \in V | \quad \mathcal{T}(v) = 0_w \}$$
 (1.2)

Recuerda que un Kernel siempre sera un Subespacio Vectorial y solemos llamar a su dimensión la 'Nulidad'.

Podemos decir que el Kernel es el espacio solución del Sistema Homogeneo.

$$\{x \in K^m | Ax = 0_{m \times 1}\}$$

#### **Ejemplo**

Encuentra el Kernel de la siguiente Transformación Lineal:  $\mathscr{T}: \mathbb{R}^3 \to \mathbb{R}_2[x]$  tal que:  $\mathscr{T}(a,b,c) = (a+b) + (a-c)x + (2a+b-c)x^2$ 

Lo que nos estan pidiendo es:

$$Kernel(\mathscr{T}) = \{(a, b, c) \in \mathbb{R}^3 | \mathscr{T}(a, b, c) = 0 + 0x + 0x^2\}$$

Veamos que para hacerlo solo basta con que cumplan que:

$$a+b=0$$

$$a-c=0$$

$$2a+b+c=0$$

Podemos hacer Gauss - Jordan:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Por lo tanto podemos ver que:

$$a+b=0 \rightarrow a=-b$$
  
 $a-c=0 \rightarrow a=c$ 

Por lo tanto podemos ver que:

$$Kernel(\mathcal{T}) = \{(a,b,c) \in R^3 | \quad a = -b, a = c\}$$

Finalmente aplicamos la transformación con estas propiedades y tenemos que:

$$Kernel(\mathcal{T}) = \{(a, -a, a) \in \mathbb{R}^3 | \quad a \in \mathbb{R} \}$$

Y si te das cuenta estas ya describiendo un espacio vectorial que esta definido como:

$$Kernel(\mathcal{T}) = \{\alpha(1, -1, 1) | \alpha \in \mathbb{R}\}$$

Sera tal vez una linea, pero no deja de ser espacio vectorial, cuyo vector base es:

$$Kernel(\mathcal{T}) = <(1, -1, 1)>$$

### 1.3.2. Imágen

Tambien tenemos a la hermana perdida del Kernel, la llamamos la **Imágen**, la cual la definimos así:

#### Definición

La imágen de una Transformación Lineal es el conjunto de todos los vectores nuevos (osea  $w \in W$ ) que podemos 'crear' desde los vectores originales (osea  $v \in V$ ) usando la Transformación Lineal.

O dicho con el bello lenguaje de matemáticas:

$$Imagen(\mathcal{T}) = \{ w \in W | \exists v \in V, \quad \mathcal{T}(v) = w \}$$

$$(1.3)$$

Recuerda que una Imagen siempre sera un Espacio Vectorial y solemos llamar a su dimensión 'Rango'.

Podemos decir que el Imagen es el conjunto de terminos independientes para los cuales hay solución.

$$\{b \in K^m | \exists x \in K^m, Ax = b\}$$

#### **Ejemplo**

Encuentra la Imagen de la siguiente Transformación Lineal:  $\mathscr{T}: \mathbb{R}^3 \to \mathbb{R}_2[x]$  tal que:  $\mathscr{T}(a,b,c) = (a+b) + (a-c)x + (2a+b-c)x^2$ 

Lo que nos estan pidiendo es:

$$Imagen(\mathscr{T}) = \{a_0 + a_1 x + a_2 x^2 \in R_2[x] | \exists (a, b, c) \in \mathbb{R}^3, \quad \mathscr{T}(a, b, c) = a_0 + a_1 x + a_2 x^2 \}$$

Es decir, lo que se nos esta pidiendo es que:

$$a + b = a_0$$
$$a - c = a_1$$
$$2a + b + c = a_2$$

Y pos preguntas para que valores de  $a_0, a_1, a_2$  tiene solución el sistema que planteamos allá arriba.

Es decir lo que tenemos que hacer es ver las soluciones de este sistema de ecuaciones, podemos hacer Gauss - Jordan:

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & -1 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \end{pmatrix} \rightarrow_{Usando:Gauss-Jordan} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a_1 \\ a_0 - a_1 \\ a_2 - a_1 - a_0 \end{pmatrix}$$

Por lo tanto podemos ver que:

$$a_2 - a_1 - a_0 = 0 \rightarrow a_2 = a_1 + a_0$$

Y ya solo sustituyendo tenemos que:

$$Imagen(\mathcal{T}) = \{a_0 + a_1 x + (a_0 + a_1)x^2 \in R_2[x] | a_2 = a_0 + a_1, | a_0, a_1 \in \mathbb{R} \}$$
$$= \{a_0(1 + x^2) + a_1(x + x^2) \in R_2[x] | a_0, a_1 \in \mathbb{R} \}$$

Y si te das cuenta estas ya describiendo un espacio vectorial que esta definido como:

$$Imagen(\mathcal{T}) = \{\alpha(1+x^2) + \beta(x+x^2) | \alpha, \beta \in \mathbb{R}\}$$

Y cuyos vectores base son:

$$Imagen(\mathcal{T}) = \langle (1+x^2), (x+x^2) \rangle$$

## 1.3.3. Propiedades de Ambas

Podemos hablar de que ambas paracen ser como hermanas perdidas, veamos que propiedades tenemos:

- Llamemos Rango a  $Dim(Imagen(\mathcal{T}))$
- Llamemos Nulidad a  $Dim(Kernel(\mathcal{T}))$
- Ambas Son SubEspacios Vectoriales.
- Estas deacuerdo que todos los vectores o bien son llevados al cero vector o no, así que tiene sentido hablar de que La Suma de la Nulidad con el Rango te da la dimensión de V

# Bibliografía

[1] ProbRob Youtube.com