TN MARGINAL WORKERS

INTRODUCTION

Marginal workers in Tamil Nadu, as in many other parts of India, are a significant segment of the labor force. They represent individuals who are employed in various economic activities for only part of the year, often due to seasonal, casual, temporary, or underemployment reasons. Marginal workers in Tamil Nadu play a crucial role in various sectors, including agriculture, construction, and informal labor markets.

DATA PROCESSING PROCEDURE:

To create a data visualization and perform machine learning analysis on a water quality dataset using Python libraries like pandas, NumPy, matplotlib, seaborn, and scikit-learn for decision tree classification, follow these steps:

- 1. **Data Collection and Pre-processing**: Obtain the water quality dataset with relevant parameters Import necessary Python libraries: pandas, NumPy, matplotlib, seaborn, and scikit-learn. Load and pre-process the dataset using pandas to handle missing values, outliers, and data cleaning.
- 2. **Data Visualization**: Utilize matplotlib and seaborn to create visualizations of the data. Some common plots include scatter plots, histograms, and box plots to understand data distributions.
- 3. **Correlation Analysis**: Use pandas to calculate the correlation between different parameters in the dataset. Create correlation matrices and visualize them using heatmap plots from seaborn to identify relationships between variables.
- 4. **Machine Learning Preparation**: Select the target variable (e.g., marginal workers)and features (marginal workers parameters) for the machine learning model. Split the dataset into training and testing sets.
- 5. **Decision Tree Classifier**: Train a decision tree classifier using the Decision Tree Classifier from scikit-learn. Fit the model to the training data and evaluate its performance on the testing data.
- 6. **Model Evaluation**: Calculate performance metrics such as accuracy, precision, recall, and F1-score to assess the model's classification performance.
- 7. **Visualization of Decision Tree**: Visualize the decision tree structure using tools provided by scikit-learn, such as the plot tree function.

8. **Interpretation**: Analyse the decision tree to understand the rules and features that are most important for classification

OPERATION

• Importing python lib function and given data set:

• Identififying number of null values and calculation mean, max, min and data types

	Worked for 3 months or more but less than 6 months - Persons	Worked for 3 months or more but less than 6 months - Males	Worked for 3 months or more but less than 6 months - Females	Worked for less than 3 months - Persons	Worked for less than 3 months - Males	Worked for less than 3 months - Females	Industrial Category - A - Cultivators - Persons	Industrial Category - A - Cultivators - Males	Industrial Category - A - Cultivators - Females	Industrial Category - A - Agricultural labourers - Persons	 Industr Categor N to Fema
count	5.940000e+02	594.000000	594.000000	594.000000	594.000000	594.000000	594.000000	594.000000	594.000000	594.000000	 594.000
mean	1.617277e+04	7932.700337	8240.067340	2981.629630	1338.289562	1643.340067	865.117845	466.424242	398.693603	12225.616162	 48.01
std	7.607172e+04	36864.822704	39259.545337	13909.621137	6127.047670	7808.832522	4274.458077	2298.072295	1978.682322	60458.382586	 222.55
min	0.000000e+00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	 0.00
25%	2.872500e+02	147.250000	144.000000	27.000000	14.250000	13.000000	9.000000	5.000000	4.000000	79.250000	 0.00
50%	2.225500e+03	1147.000000	1076.000000	430.000000	198.500000	213.000000	69.500000	35.500000	32.000000	1094.000000	 2.00
75%	9.628500e+03	4770.500000	4887.500000	1775.250000	774.250000	946.500000	466.000000	244.250000	204.750000	6279.750000	 18.00
max	1.200828e+06	589003.000000	611825.000000	221386.000000	99368.000000	122018.000000	64235.000000	34632.000000	29603.000000	907752.000000	 3565.00

Identifying null value and replacing it with mean value for accuracy

After replacement the null data set is plotted individually for analysis:

Company of the Com

• Exploring the data using box plot to show the importance of not removing solid data from graph set:

• Now its time to prepare the data set , divide the data set into independent and dependent

```
[ ] df = pd.get_dummies(df, columns=['Area Name'])
[ ] from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    df['worked for 3 months or more but less than 6 months - Females'] = scaler.fit_transform(df[['worked for 3 months or more but less than 6 months - Wales']])
X = df.drop('State Code', axis=1)
    y = df['State Code']
[ ] from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
[ ] print("X_train shape:", X_train.shape)
    print("y_train shape:", y_train.shape)
    print("X_test shape:", X_test.shape)
    print("y_test shape:", y_test.shape)
    X_train shape: (475, 100)
    y_train shape: (475,)
    X_test shape: (119, 100)
    y_test shape: (119,)
```

CONCLUSION

In conclusion, data analytics in the context of Tamil Nadu (TN) marginal workers serves as a valuable tool for gaining insights into the characteristics, challenges, and economic impact of this specific group of laborers. By analyzing data related to marginal workers, policymakers, researchers, and organizations can make informed decisions to enhance the well-being of these workers and strengthen the labor market. Some key takeaways from the objectives of data analytics in this area include:

- 1. Understanding employment patterns and identifying vulnerable groups are essential for targeted interventions and support.
- 2. Seasonal variations in marginal employment should be considered in planning programs and policies.
- 3. Evaluating economic impact and monitoring labor market trends are crucial for informed decision-making.
- 4. Assessing the effectiveness of policies and forecasting future labor force dynamics helps in achieving desired outcomes.
- 5. Policy formulation should be data-driven and tailored to the specific needs of marginal workers.
- 6. Identifying barriers to full employment is vital for creating pathways to stable, year-round work.
- 7. Data analytics can also contribute to improving data collection methods for more accurate information.

In essence, data analytics is a powerful tool for shedding light on the dynamics of TN marginal workers and guiding efforts to improve their economic stability and well-being. It aids in developing evidence-based policies and programs that can bring positive changes to the lives of marginal workers and promote inclusive economic growth in the region.