Assignment - Regression Algorithm

1.Problem Statement or Requirement:

Multiple input parameters are provided to predict insurance charges. As the input and output are numeric and the requirement deals with numeric values, selecting the **Machine Learning domain**.

Looking at the dataset, the following are observed:

- Requirement is clear with input(s) and Output
- Independent and Dependent variable are present.

Based on the above observation, **Supervised Learning** is adopted.

The output values are numeric hence proceeding with Regression.

2. Basic Info about dataset:

The dataset has multiple inputs such as age, gender, children, smoker, bmi and ouput charges (insurance charges)...total 1338 rows x 6 columns

- 3. The inputs such as gender and smoker columns holds the categorical (nominal data) hence these values are converted in to numeric using the get_dummies.
- 4. Using Machine Learning Algorithm, created the following:
 - Multiple Linear Regression
 - Support Vector Machine
 - Decision Tree
 - Random Forest
- 5. Accuracy of the Research Models:
 - Multiple Linear Regression: r2_score = 1.0
 - Support Vector Machine(without standardization): r2_score = 0.9999999999605653
 - Decision Tree (with default parameters): r2_score = 0.9982364920332555
 - Random Forest: r2_score = 0.999679694289922
- 6. The final model selected was Multiple Linear regression with 100% Accuracy when compared to the other models.

SVM(after Standardization)

Hyper Parameter	Linear (r Value)	Rbf(Non Linear)(r Value)	Poly(r Value)	Sigmoid(r Value)
C=1	0.1008799457	-0.080825646	-0.041298004	-0.063665375
	2886794	0270218	53972243	37679862
C=10	0.8529720560	-0.008006791	0.3355578386	0.1488034906
	922177	942225089	035505	1986875
C=100	0.999999999	0.4627044357	0.9086496487	0.7958333486
	619384	461626	205619	9026
C=500	0.999999999	0.9072503636	0.9423885132	0.6082403582
	802569	707163	46426	150155
C=1000	0.9999999999	0.9635426982	0.9541513072	-0.086276648
	814986	159025	972456	21740333
C=2000	0.999999999	0.9858899155	0.9710280758	-2.667309996
	825486	822013	19288	4651152
C=3000	0.999999999	0.9933146265	0.9822555307	-6.458271017
	857418	127804	105733	41801

Decision Tree:

Criterion	Splitter	max_depth	max_leaf_ nodes	min_samples_ split	min_samples_ leaf	R score
Friedman_mse	best	int	int	min	min	0.9989409 919072885
Absolute_error	Best	Int	int	min	min	0.9996490 574735933
poisson	best	int	int	min	min	0.9996835 23863742
Friedman_mse	random	int	int	min	min	0.9994120 464222314
Absolute_error	random	int	int	min	min	0.9980370 731835224
poisson	random	int	int	min	min	0.9985792 862032016

Random Forest

N_estimators	Criterion	Max_features	R_score
50	Absolute error	Sqrt	0.9966520724500993
50	Friedman_mse	sqrt	0.9957778930918343
50	poisson	sqrt	0.996078065629805
50	Absolute error	Log2	0.9966520724500993
50	Friedman_mse	Log2	0.9957778930918343
50	poisson	Log2	0.996078065629805