Convex and Non-Convex Optimisation

Aayush Bajaj

Version 0.1

2025-05-08

Table of Contents

1.	Mathematical Background	. 3
2.	Convexity	. 4
	Unconstrained Optimisation	
	3.1. Standard Form	
4.	Equality Constraints	. 6
5.	Inequality Constraints	. 7
6.	General Constrained Optimisation	. 8
7.	Numerical Methods (unconstrained)	. 8
8.	Penalty Methods	. 8
9.	Optimal Control Theory	. 9

1. Mathematical Background

Definition 1.1 Mathspeak

1. Axiom: A foundational statement accepted without proof. All other results are built ontop.

- 2. Proposition: A proved statement that is less central than a theorem, but still of interest.
- 3. Lemma: A helper' proposition proved to assist in establishing a more important result.
- 4. Corollary: A statement following from a theorem or proposition, requiring little to no extra proof.
- 5. Definition: A precise specification of an object, concept or notation.
- 6. Theorem: A non-trivial mathematical statement proved on the basis of axioms, definitions and earlier results.
- 7. Remark: An explanatory or clarifying note that is not part of the formal logical chain but gives insight / context.
- 8. Claim / Conjecture: A statement asserted that requires a proof.

Definition 1.2 Vector Norm

A vector norm on \mathbb{R}^n is a function $\|\cdot\|$ from \mathbb{R}^n to \mathbb{R} such that:

- a) $\|\mathbf{x}\| \ge 0, \forall \mathbf{x} \in \mathbb{R}^n$ and $\|\mathbf{x}\| = 0 \Longleftrightarrow \mathbf{x} = \mathbf{0}$
- b) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \ \forall \ \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ (Triangle Inequality)
- c) $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \ \forall \alpha \in \mathbb{R}, \mathbf{x} \in \mathbb{R}^n$

Theorem 1.3

Cauchy Shwarz-Inequality

$$|\mathbf{x}^T \mathbf{y}| \le ||\mathbf{x}||_2 ||\mathbf{y}||_2 \tag{1}$$

Definition 1.4

Closed and Bounded Sets

Functions

Definition 1.5

- a) Linear:
- b) Affine:
- c) Quadratic:

Definition 1.6

Symmetric

Definition, plus trace and determinant properties

Definition 1.7

Principal Minors

2. Convexity

Definition 2.1

Convex Set

 $\Omega \subset \mathbb{R}^n$ is **convex** if $\theta x + (1 - \theta)y \in \Omega$ for every $x, y \in \Omega$ and $\theta \in [0, 1]$.

Proposition 2.2

Intersection of Convex Sets

Definition 2.3

Extreme Points

Definition 2.4

Convex Combination

Definition 2.5

Convex Hull

Theorem 2.6

Separating Hyperplane

Definition 2.7

Convex Hull

Definition 2.8

Convex / Concave Functions

A function $f:\Omega \to \mathbb{R}$ (with Ω convex) is

- convex if $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y);$ strictly convex if strict inequality holds whenever $x \ne y;$
- **concave** if -f is convex.

3. Unconstrained Optimisation

3.1. Standard Form

Definition 3.1

Standard Form

$$\underset{\mathbf{x} \in \Omega}{\text{minimise}} f(\mathbf{x}) \tag{2}$$

Remark: $\max f(x) = -\min\{-f(x)\}$

Theorem 3.2

First order necessary conditions

Definition 3.3

Stationary point

Definition 3.4

Saddle point

Theorem 3.5

Second order necessary conditions

Corollary 3.6

Local maximiser

 $\bar{\bf x}$ is a local maximiser $\Longrightarrow \nabla f(\bar{\bf x})={\bf 0}$ and $\nabla^2 f(\bar{\bf x})$ negative semi-definite.

Note: As the definiteness of the Hessian changes, so does the nature of the maximiser.

Theorem 3.7

Second order sufficient conditions

4. Equality Constraints

Definition 4.1 Standard Form

Definition 4.2 Lagrangian

Definition 4.3 Regular Point

Definition 4.4 Matrix of Constraint Gradients

$$A(\mathbf{x}) = \left[\nabla \mathbf{c}_i(\mathbf{x}) \ \dots \ \mathbf{c}_m(\mathbf{x})\right] \tag{4}$$

Definition 4.5 Jacobian

$$\begin{split} J(\mathbf{x}) &= A(\mathbf{x})^T \\ &= \begin{bmatrix} \nabla \, \mathbf{c}_i \, (\mathbf{x})^T \\ \vdots \\ \mathbf{c}_m \, (\mathbf{x})^T \end{bmatrix} \end{split} \tag{5}$$

Proposition 4.6 First order necessary optimality conditions

Corollary 4.7 Constrained Stationary Point

Proposition 4.8 Second order sufficient conditions

5. Inequality Constraints

Definition 5.1 Standard Form

$$\begin{array}{ll} \underset{\mathbf{x} \in \Omega}{\text{minimise}} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{c}_i(\mathbf{x}) = 0, \qquad i = 1, ..., m_E \\ & \mathbf{c}_i(\mathbf{x}) \leq 0, \qquad i = m_E + 1, ..., m \end{array} \tag{6}$$

Definition 5.2 Convex Problem

The problem (NLP) is a standard form convex optimisation problem if the objective function f is convex on the feasible set, \mathbf{c}_i is affine for each $i \in E$, and \mathbf{c}_i is convex for each $i \in I$.

Definition 5.3 Active Set

The set of active constraints at a feasible point \mathbf{x} is $\mathcal{A}(\mathbf{x}) = \{i \in 1, ..., m : \mathbf{c}_i(\mathbf{x}) = 0\}$ Note that this concept only applies to inequality constraints.

Definition 5.4 Regular Point

Proposition 5.5

Constrained Stationary Point

Theorem 5.6 Karush Kuhn Tucker (KKT) necessary optimality conditions

kkt generalises lagrange multipliers

Theorem 5.7 Second-order sufficient conditions for strict local minimum

Theorem 5.8 KKT sufficient conditions for global minimum

Theorem 5.9

Wolfe Dual Problem

strong duality, weak duality?

Note Reduced Hessian

The reduced Hessian W_Z^{\ast} is the projection of the Lagrandian's Hessian onto the tangent space of the constraints at the point x^{\ast}

6. General Constrained Optimisation

why does the reduced hessian exist for both? is there any difference when solving?

7. Numerical Methods (unconstrained)

Definition 7.1 Rates of convergence of iterative methods

Algorithm 7.2 Line Search Algorithms

Algorithm 7.3 Steepest Descent Method

Algorithm 7.4 Newton's Method

Algorithm 7.5 Conjugate Gradient Method

8. Penalty Methods

Definition 8.1 Penalty function

Remark

a) $c:\mathbb{R}^n\to\mathbb{R}$ is a convex function $\Longrightarrow\max{\{\mathbf{c}(\mathbf{x}),0\}^2}$ is a convex function

b)
$$\frac{\partial}{\partial x_i}[\max\{\mathbf{c}(\mathbf{x}),0\}]^2 = 2\max\{\mathbf{c}(\mathbf{x}),0\}\frac{\partial}{\partial x_i}$$

Theorem 8.2

Convergence Theorem

9. Optimal Control Theory

Definition 9.1

Standard Form

Definition 9.2

Hamiltonian

break this up so it is understandable

Definition 9.3

Co-state Equations

Theorem 9.4

Pontryagin Maximum Principle

partially free target

 $non\hbox{-}auton mous\ problem$