Numerische Mathematik - Übungsblatt #1

Amir Miri Lavasani (7310114, Gruppe 6), Bent Müller (7302332, Gruppe 6), Johan Kattenhorn (7310602, Gruppe 7)

November 13, 2020

Aufgabe 3. Rechenaufwand

(a)

Beweis. Anzugeben war der notwendige Rechenaufwand um die LR-Zerlegung der Matrix A aus Aufgabe 2 durch elementare Zeilenumformungen zu realisieren.

Wir gehen Aufgabe 2 noch einmal Schritt für Schritt durch: Pro Zeilenumformungen benötigen wir also bei unserer 3x3 Matrix jeweils genau 3 Subtraktionen mit gegebenfalls noch jeweils 3 Multiplikationen falls wir eine Zeile mehrfach subtrahieren.

$$A = A^{(1)} = \begin{pmatrix} 1 & 4 & 5 \\ 1 & 6 & 11 \\ 2 & 12 & 31 \end{pmatrix} \tag{1}$$

$$A^{(2)} = L^{(1)}A^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 5 \\ 1 & 6 & 11 \\ 2 & 12 & 31 \end{pmatrix}$$
 (2)

$$A^{(3)} = L^{(2)}A^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 4 & 21 \end{pmatrix} = R$$
 (3)

$$L = (L^{(1)})^{-1}(L^{(2)})^{-1} \tag{4}$$

Nun brauchen wir nur noch die Anzahl an Zeilenumformungen zählen und dann haben wir auch schon den Rechenaufwand der LR-Zerlegung.

In der ersten Operation (1) haben wir einmal die erste Zeile von der mittleren abgezogen und zweimal die erste von der letzten. Das macht für diesen Schritt genau: 0+3 Multiplikationen und 3+3 Subtraktionen also insgesamt 3 Multiplikationen und 6 Subtraktionen. Wohlgemerkt haben wir das selbe für die Matrix $A^{(2)}$.

Im nächsten Schritt (2) haben wir

(b)

Beweis. Anzugeben war hier der Rechenaufwand den es braucht um das lineare Gleichungssystem Ly=c zu lösen falls L schon eine untere linke normierte Dreiecksmatrix ist.

Wir kennen nun schon die Matrix L aus der vorherigen Aufgabe:

$$L = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$$

Nun können wir das Gleichungssystem iterativ lösen:

Aus der erste Gleichung wissen wir direkt: $c_1 = L_{1,1} \cdot y_1$

Da die Matrix aber normiert ist gilt: $L_{1,1} = 1$ und somit auch $c_1 = y_1$

Hierfrür braucht es also keine Rechenoperation.

In der zweiten Gleichung steht dann:

$$c_2 = L_{2,1} \cdot y_1 + y_2 = L_{2,1} \cdot c_1 + y_2$$
 durch umstellen erhalten wir: $y_2 = c_2 - L_{2,1} \cdot c_1$

Hier war der Rechenaufwand eine Multiplikation und eine Subtraktion.

Nun können wir die dritte Gleichung lösen wie folgt:

$$c_3 = L_{3,1} \cdot y_1 + L_{3,2} \cdot y_2 + y_3 \Rightarrow y_3 = c_3 - L_{3,1} \cdot y_1 - L_{3,2} \cdot y_2$$

Hier benötigen wir also 2 Multiplikationen und zwei Subtraktionen (oder auch eine Subtraktion und eine Addition je nach dem welches sich schneller implementieren lässt). Insgesamt brauchen wir hier also:

3 Multiplikationen und 3 Subtraktionen \Rightarrow 6 Operationen also insgesamt.

(c)

Beweis. Hier war der Rechenaufwand bei der Lösung des LGS Rx = d wobei R die obere rechte Dreiecksmatrix aus der LR-Zerlegung der Aufgabe 2 war. Bemerke dass diesmal die Matrix R nicht normiert ist.

$$R = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 2 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

Diesmal lösen wir von der letzten Reihe an auf, wir subsituieren also rückwärts. In der letzten Gleichung steht dann also:

$$d_3 = 3 \cdot x_3 \Rightarrow y_3 = \frac{d_3}{3}$$

Die Lösung dieser simplen Gleichung erfordert also schon eine Division.

Dann steht in der 2. Gleichung:

$$d_2 = 2 \cdot x_2 + 6 \cdot x_3 \Rightarrow x_2 = \frac{d_3 - 6 \cdot x_3}{2}$$

Hier benötigen wir also eine Multiplikation, eine Subtraktion und eine Division. Die erste Gleichung sieht demnacht also wie folgt aus:

$$d_1 = x_1 + 4 \cdot x_2 + 5 \cdot x_3 \Rightarrow x_1 = d_1 - 4 \cdot x_2 - 5 \cdot x_3$$

Nun würde man hier eine Division mehr brauchen wenn $R_{1,1} \neq 1$, da wir uns aber unseren Spezialfall anschauen brauchen wir diese hier nicht. Also sind es hier 2 Multiplikationen und 2 Subtraktionen. Insgesamt kommen wir auf einen Rechenaufwand von:

3 Multiplikationen, 2 Divisionen und 3 Subtraktionen ⇒ insgesamt also 8 Operationen