Essentially Non-Osicillatory Schemes simple guide

Chengsi ZHOU

Table of Contents

One Space Dimension

- 2 The Second Section
 - Example

Definition of One Space Dimension

Given a grid

$$a = x_{\frac{1}{2}} < x_{\frac{3}{2}} < \ldots < x_{N - \frac{1}{2}} < x_{N + \frac{1}{2}} = b$$

We define

Cells
$$I_i = [x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}]$$

Cell centers
$$x_i = \frac{1}{2}(x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}})$$

Cell sizes
$$\Delta x = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$$

Cell Averages

Given the cell averages of a function v(x)

$$\bar{v}_i \equiv \frac{1}{\Delta x_i} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} v(\xi) d\xi$$

find a polynomial $p_i(x)$, of degree at most k-1, for each cell I_i . It is a k-th order accurate approximation to v(x)

$$v(x) = p_i(x) + O(\Delta x^k)$$
$$x \in I_i$$
$$i = 1, \dots, N$$

One Dimensional Reconstruction

 $p_i(x)$ gives approximations to the function v(x) at the cell boundaries:

$$v_{i+\frac{1}{2}}^{-} \leftarrow p_i(x_{i+\frac{1}{2}}) = v(x_{i+\frac{1}{2}}) + O(\Delta x^k)$$

$$v_{i-\frac{1}{2}}^{+} \leftarrow p_i(x_{i-\frac{1}{2}}) = v(x_{i-\frac{1}{2}}) + O(\Delta x^k)$$

$$i = 1, ..., N$$

One Space Dimension CFD-note Feb 2020 4 / 7

This is a Block

This is important information

This is an Alert block

This is an important alert

This is an Example block

This is an example

Example of columns 1

There are two handy environments for structuring a slide: "blocks", which divide the slide (horizontally) into headed sections, and "columns" which divides a slide (vertically) into columns. Blocks and columns can be used inside each other.

There are two handy environments for structuring a slide: "blocks", which divide the slide (horizontally) into headed sections, and "columns" which divides a slide (vertically) into columns. Blocks and columns can be used inside each other.

into two lines

Mathematics

Example

The function $\phi \colon \mathbb{R} \to \mathbb{R}$ given by $\phi(x) = 2x$ is continuous at the point $x = \alpha$, because if $\epsilon > 0$ and $x \in \mathbb{R}$ is such that $|x - \alpha| < \delta = \frac{\epsilon}{2}$, then

$$|\phi(x) - \phi(\alpha)| = 2|x - \alpha| < 2\delta = \epsilon.$$