Statistical Analysis of Networks

Network Data Structures

Learning Goals

- * At the end of the lecture, you should be able to answer these questions:
 - * How can we represent networks using graphs and graph notation?
 - * How can we represent undirected and directed networks using matrices?

Here is a problem for you...

Konigsberg Bridge Problem

Devise a route in which you could cross all seven bridges.

Konigsberg Bridge Problem

Devise a route in which you could cross all seven bridges, <u>but</u> crossing each of the seven bridges only once.

Konigsberg Bridge Problem

- * Leonard Euler worked on this problem in the mid 18th century, eventually representing the solution with a set of points and lines.
 - * See: https://www.youtube.com/watch?
 v=nZwSo4vfw6c
 - * Graph theory provides a foundation for operationalizing concepts of interest among network scientists.

Graph Notation

- * Definition of a **graph**: G = (N, L)
 - * Node/Vertex set: $N = \{n_1, n_2, \dots, n_g\}$
 - * Line/Edge set: $L = \{l_1, l_2, ..., l_L\}$
 - * There are *N* nodes/vertices and *L* lines/edges in a graph.

Graph Notation

- * Two nodes, n_i and n_j are **adjacent** if the line $l_k = (n_i, n_j)$
 - * What this means is that in the graph, there exists a line between nodes *i* and *j*.

In an **undirected** graph, the order of the nodes does not matter.

In other words,

$$l_k = (n_i, n_j) = (n_j, n_i)$$

Let g represent the number of nodes in the graph (i.e. g = N).

In an **undirected** graph, there are:

g(g-1)/2 possible ordered pairs.

How many ordered pairs or ties could exist in this graph?

$$g(g-1)/2 = 5(5-1)/2 = 10$$

In a **directed** graph, the order of the nodes <u>does</u> matter.

$$l_{k1} = (n_i, n_j) \neq (n_j, n_i) = l_{k2}$$

As a result, there are g(g-1) possible ordered pairs.

How many ordered pairs or ties could exist in this graph?

$$g(g-1) = 5(5-1) = 5(4) = 20$$

Sociometric Notation

- * For a set of relations, *X*, we can define a matrix which represents these relations.
- * We commonly use an *adjacency matrix*, where each node/vertex is listed on the row and the column.
- * The i_{th} row and the j_{th} column X_{ij} records the value of a tie from i to j.
- * In this approach, *X*, can be thought of as a variable.
 - * The presence or absence of values in the cells represent variation.

Sociometric Notation

* Definitions

- * Scalar: a single number
- Column vector: a column of numbers
- * Row vector: a row of numbers
- * Matrix: a rectangular array of numbers
- Order: number of rows and columns defining the matrix
- * Square matrix: number of rows and columns of matrix are equal

	Jen	Tom	Bob	Leaf	Jim
Jen					
Tom					
Bob					
Leaf					
Jim					

	Jen	Tom	Bob	Leaf	Jim
Jen					
Tom					
Bob					
Leaf					
Jim					

We don't allow (in the simple case) selfnominations, so the diagonal is undefined.

	Jen	Tom	Bob	Leaf	Jim
Jen		1	O	O	O
Tom					
Bob					
Leaf					
Jim					

In the first row, i sends to the second row only: $X_{12} = 1$; $X_{15} = 0$

Since this is *undirected*, it is **symmetric** about the diagonal.

This means that the *ith* column is the transposition of the *ith* row.

	Jen	Tom	Bob	Leaf	Jim
Jen		1	0	0	0
Tom	1				
Bob	0				
Leaf	0				
Jim	0				

	Jen	Tom	Bob	Leaf	Jim
Jen		1	0	0	0
Tom	1				
Bob	0				
Leaf	0				
Jim	0				

What does the rest of the matrix look like?

	Jen	Tom	Bob	Leaf	Jim
Jen		1	0	0	0
Tom	1		1	0	0
Bob	0	1		1	1
Leaf	O	O	1		1
Jim	0	0	1	1	

It looks like this.

It looks like this.

Let's add zeros to the diagonals. (will explain this later...)

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	0	0	0
Tom	1	0	1	0	0
Bob	0	1	O	1	1
Leaf	0	O	1	O	1
Jim	0	0	1	1	O

The highlighted section here is called the **lower triangle** of the matrix.

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	0	0	0
Tom	1	0	1	0	0
Bob	O	1	0	1	1
Leaf	0	0	1	0	1
Jim	O	O	1	1	0

The **sum** of the lower triangle should equal the number of edges in the graph.

The other highlighted section here is called the **upper triangle** of the matrix.

The **sum** of the upper triangle should also equal the number of edges in the graph.

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	O	O	O
Tom	1	0	1	O	O
Bob	O	1	O	1	1
Leaf	O	O	1	0	1
Jim	O	O	1	1	O

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	0	0	0
Tom	1	0	1	0	0
Bob	0	1	0	1	1
Leaf	0	0	1	0	1
Jim	0	0	1	1	0

Alternatively, we could sum all the elements and divide by 2.

	Jen	Tom	Bob	Leaf	Jim
Jen					
Tom					
Bob					
Leaf					
Jim					

What's different about a directed network?

	Jen	Tom	Bob	Leaf	Jim
Jen		1			
Tom					
Bob					
Leaf					
Jim					

In the first row, *i* sends to the second row:

$$X_{12} = 1$$

	Jen	Tom	Bob	Leaf	Jim
Jen		1			
Tom	0				
Bob					
Leaf					
Jim					

But in the second row, *j* does not send:

$$X_{21} = 0$$

The Jen/Tom dyad is **asymmetric**. So, directed graphs permit asymmetry.

	Jen	Tom	Bob	Leaf	Jim
Jen		1			
Tom	0				
Bob					
Leaf					
Jim					

What about the Leaf/Bob dyad? Is it asymmetric or is it symmetric?

	Jen	Tom	Bob	Leaf	Jim
Jen		1			
Tom	0				
Bob				1	
Leaf			1		
Jim					

	Jen	Tom	Bob	Leaf	Jim
Jen		1			
Tom	0				
Bob				1	
Leaf			1		
Jim					

What does the rest of the matrix look like?

It looks like this.

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	0	0	0
Tom	0	0	1	0	0
Bob	0	0	0	1	1
Leaf	0	0	1	0	1
Jim	0	0	1	1	0

Let's add zeros to the diagonals. (will explain this later...)

Note that, because we are allowing directionality to matter, the total number of edges in the network is just the **sum** of the entire matrix.

	Jen	Tom	Bob	Leaf	Jim
Jen	0	1	0	0	0
Tom	0	0	1	0	0
Bob	0	0	0	1	1
Leaf	0	0	1	0	1
Jim	0	0	1	1	0

Edgelists

- * Very large networks are sometimes represented with an edgelist.
 - * An edgelist lists the edges in a graph with the head of the edge in the first column and the tail of the edge in the second column.
 - * Note: *isolates* (nodes without incident edges) are excluded from edgelists.

Learning Goals

- * At the end of the lecture, you should be able to answer these questions:
 - * How can we represent networks using graphs and graph notation?
 - * How can we represent undirected and directed networks using matrices?

Questions?