Prova 3

César Galvão - 19/0011572

2022-09-21

Contents

1	I Questão 1					
	1.1	Modelo e estimativas	3			
	1.2	ANOVA	3			
	1.3	Erro tipo 2	4			
2	Questão 2					
_			5			
	2.1	Análise do experimento e descrição dos componentes	5			
	2.2	Tukey	6			
	0.0	Maximização da resposta	_			

1 Questão 1

1.1 Modelo e estimativas

Utiliza-se o modelo de experimento fatorial com parcela dividida, expresso da seguinte forma

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \gamma_k + (\beta \gamma)_{jk} + \epsilon_{ijk}$$
(1)

Em que τ_i representa o efeito do bloco ou repetição (dia) i, β_j o efeito de parcela do fator Temperatura, $(\tau\beta)_{ij}$ o resíduo da parcela Temperatura, γ_k o efeito de subparcela do fator Pressão, $(\beta\gamma)_{jk}$ a interação entre Pressão e Temperatura e, finalmente, ϵ_{ijk} é o resíduo.

Nas tabelas de estimadores a seguir, a variância é o quadrado médio do resíduo combinado, que é uma ponderação entre os quadrados médios dentro e entre blocos. Ponderação semelhante é feita para os graus de liberdade do resíduo combinado.

\bar{X}	S^2	eta_1	β_2	β_3	γ_1	γ_2	γ_3
88.7944	0.916	85.7833	89.0667	91.5333	88.5167	88.3	89.5667

interacoes	medias
lo 250	86.20
mid 250	84.60
hi 250	86.55
lo 260	88.95
mid 260	88.60
hi 260	89.65
lo 270	90.40
mid 270	91.70
hi 270	92.50
lo 250	86.20
mid 250	84.60
hi 250	86.55
lo 260	88.95
mid 260	88.60
hi 260	89.65
lo 270	90.40
mid 270	91.70
hi 270	92.50

1.2 ANOVA

A tabela de análise variância é apresentada a seguir. A primeira hipótese testada é se há, na estrutura de temperatura/bloco ou temperatura/dia, diferença entre nos níveis de temperatura. A segunda hipótese testada ocorre na estrutura dentro dos blocos/dias, na qual se avalia se há efeito significativo do fator pressão e se há efeito significativo na interação entre pressão e temperatura dentro dos blocos.

summary(modelo)

```
##
## Error: dia
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 1 13.01
                       13.01
##
## Error: dia:temp
            Df Sum Sq Mean Sq F value Pr(>F)
##
             2 99.85 49.93
                               39.26 0.0248 *
## temp
## Residuals 2
               2.54
                        1.27
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
##
               Df Sum Sq Mean Sq F value Pr(>F)
                1 3.308
                          3.308
                                  4.480 0.0634
## pressao
## pressao:temp 2 1.715
                           0.857
                                  1.162 0.3558
## Residuals
                9 6.644
                           0.738
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

De fato, para a divisão em parcelas do experimento, parece haver efeito do fator principal temperatura, dado seu pvalor de 0,0248. Para a divisão em subparcelas, nenhum dos fatores parece ter efeito significativo. No entanto, pressão tem p-valor próximo a 0,05, o que poderia sinalizar a necessidade de avaliação mais acurada desse fator em uma etapa subsequente.

1.3 Erro tipo 2

Calcula-se a probabilidade de erro tipo 2 considerando:

```
 \begin{split} \bullet \ \tau_i &= \{0,1,-1\}, i = 1,2,3; \\ \bullet \ n &= 1, a = 3, b = 3; \\ \bullet \ \phi^2 &= n \cdot a \cdot b \cdot \frac{\sum_{QM \text{res Comb}} \tau^2}{QM \text{res Comb}}; \\ \bullet \ gl_{comb} &= \frac{[QM res_A^2 + (k+1)QM res_B]^2}{\frac{QM res_A^2}{gl res_A} + \frac{QM res_B^2}{gl res_B}} \end{split}
```

Obtém-se erro tipo II igual a 0.399 utilizando a distribuição F com graus de liberdade (a-1)(b-1) e gl_{comb} e ϕ^2 como parâmetro de não centralidade.

2 Questão 2

```
y <- c(107,89,116,101,90,96, #por linha
117,101,136,110,112,89,
122,98,139,104,99,92,
111,101,122,91,105,78,
90,95,117,100,110,90,
116,90,114,94,114,93)
blocos <- factor(rep(c("I", "II", "IV", "V", "VI"), each = 6))
racao <- rep(rep(c("A", "B", "C"), each = 2),6)
suplemento <- rep(c("M", "P"), 18)
dados2 <- data.frame(y, blocos, racao, suplemento)
modelo <- aov(y ~ racao*suplemento + Error(blocos/racao))</pre>
```

2.1 Análise do experimento e descrição dos componentes

Trata-se de novamente de um modelo de efeitos em parcelas divididas. Existe uma restrição da casualização dada por blocos τ_i , três tratamentos de parcela β_j (rações) e dois tratamentos de subparcela γ_k (suplementos). A interação entre suplemento e ração é representada por $(\beta\gamma)_{jk}$.

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \gamma_k + (\beta \gamma)_{jk} + \epsilon_{ijk}$$
 (2)

As hipóteses testadas na análise de variância são análogas àquelas do exercício 1: a primeira hipótese testada é se há, na estrutura de suplemento/bloco diferença entre nos níveis de suplemento. A segunda hipótese testada ocorre na estrutura dentro dos blocos/racao, na qual se avalia se há efeito significativo do fator racao e se há efeito significativo na interação entre ração e suplemento dentro dos blocos.

Pela tabela de análise de variância, é significativa a diferença entre os tratamentos principais de ração. Além disso, é significativa também a diferença entre os tipos de suplementação.

```
summary(modelo)
```

```
##
## Error: blocos
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 5 658.5
                        131.7
##
## Error: blocos:racao
##
            Df Sum Sq Mean Sq F value Pr(>F)
                        655.4
                                9.601 0.00471 **
## racao
             2 1310.7
## Residuals 10 682.6
                         68.3
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

2.2 Tukey

Calcula-se novamente o QMRES combinado e os graus de liberdade combinados. Supondo exclusivamente o tipo M de suplemento, utiliza-se o modelo aov(y ~ racao + blocos, data = dados_m) como input do teste de Tukey, que tem como hipótese nula que a distância entre os grupos testados não é significativamente diferente. As estatísticas são expostas a seguir, sugerindo que as rações C e A não diferem entre si, mas que B é diferente tanto de B quanto de A

```
qmres_comb <- (tidy(modelo)$meansq[3]+tidy(modelo)$meansq[6])/2</pre>
glcomb <- ((tidy(modelo)$meansq[3]+tidy(modelo)$meansq[6])^2)/ #numerador
  ((tidy(modelo)\$meansq[3]^2/10)+(tidy(modelo)\$meansq[6]^2/15))#denominador
qtukey(.95, 2,glcomb)*sqrt(qmres_comb/2)
## [1] 16.4127
dados_m <- dados2 %>% filter(suplemento == "M")
# tapply(y[suplemento == "M"], racao[suplemento == "M"], mean)
# dist(tapply(y[suplemento == "M"], racao[suplemento == "M"], mean))
modelo <- aov(y ~ racao + blocos, data = dados_m)</pre>
TukeyHSD(modelo) %>% tidy() %>%
  filter(term == "racao")%>%
 select(-`null.value`)
## # A tibble: 3 x 6
##
   term contrast estimate conf.low conf.high adj.p.value
##
     <chr> <chr>
                   <dbl>
                               <dbl>
                                          <dbl>
                                                     <dbl>
                               -1.28
## 1 racao B-A
                     13.5
                                          28.3
                                                     0.0736
## 2 racao C-A
                      -5.50 -20.3
                                           9.28
                                                     0.582
```

2.3 Maximização da resposta

-19

-33.8

3 racao C-B

Com base exclusivamente no teste de Tukey e as médias para cada ração, expostas na tabela abaixo, opta-se pela Ração B, já que possui maior média e é a única que testou como significativamente diferente das demais.

-4.22

0.0139

dados_m %>% group_by(racao) %>% summarise(media = mean(y))