Глава 1

Собственные значения и собственные векторы

Пусть $\mathcal{A} \in \operatorname{End} V$. Скаляр $\lambda \in K$ называется собственным значением оператора \mathcal{A} , если $\exists v \in V, \ v \neq 0 : \mathcal{A}v = \lambda v$. Можно написать иначе: $\mathcal{A}v = \lambda v \Leftrightarrow \mathcal{A}v - (\lambda \varepsilon)v = 0 \Leftrightarrow (\mathcal{A} - \lambda \varepsilon)v = 0 \Leftrightarrow v \in \operatorname{Ker}(\mathcal{A} - \lambda \varepsilon), \ \varepsilon = \operatorname{id}$

Определение 1.1. Таким образом, λ - собственное значение $\mathcal{A} \Leftrightarrow \mathrm{Ker}(\mathcal{A} - \lambda \varepsilon) \neq 0$

Если $K=\mathbb{R}$ или \mathbb{C} и т.д., то "собственное число = собственное значение"

Определение 1.2. Пусть $v\in V$, λ - собственное значение \mathcal{A} . Говорят, что v - собственный вектор \mathcal{A} , принадлежащий собственному значению λ , если $v\neq 0$ и $\mathcal{A}v=\lambda V$, т.е. $v\in \mathrm{Ker}(\mathcal{A}-\lambda\varepsilon)\backslash\{0\}$ $V_{\lambda}=\mathrm{Ker}(\mathcal{A}-\lambda\varepsilon)$ - собственное подпространство \in собственное значение λ

Определение 1.3. $\mathcal{A} \in \operatorname{End} V$ называется диагонализируемым, если в V существует базис E, такой что $[\mathcal{A}]_E$ диагональна

Предложение 1.1. Пусть $\mathcal{A} \in \operatorname{End} V$. Тогда: \mathcal{A} диагонализируем $\Leftrightarrow V$ существует из собственных векторов \mathcal{A}

Доказательство.
$$\Rightarrow$$
: $[\mathcal{A}]_E = diag(\lambda_1,\dots,\lambda_n) = \begin{pmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix}, \ E = (e_1,\dots,e_n), \ \mathcal{A}e_i = \lambda_i e_i, \ i=1,\dots,n, \ e_i \neq 0$

так как входит в базис $\Rightarrow e_i$ - собственный \Leftarrow : Пусть $E = (e_1, \dots, e_n)$ - базис из собственных векторов.

 \Leftarrow : Пусть $E=(e_1,\ldots,e_n)$ - базис из собственных векторов. $\mathcal{A}e_i=\lambda_ie_i$ для некоторых $\lambda_i\in K,\ i=1,\ldots,n\Rightarrow [\mathcal{A}]_E=diag(\lambda_1,\ldots,\lambda_n)$

Лемма 1.2. Пусть $\mathcal{A} \in \operatorname{End} V$. Тогда: 0 - собственное значение $\mathcal{A} \Leftrightarrow \mathcal{A} \notin \operatorname{GL}(V)$

Доказательство. 0 - собственное значение оператора $\mathcal{A} \Leftrightarrow \operatorname{Ker}(\mathcal{A} - 0\varepsilon) \neq 0 \Leftrightarrow \operatorname{Ker} \mathcal{A} \neq 0 \Leftrightarrow \mathcal{A} \notin \operatorname{GL}(v)$

Определение 1.4. Пусть λ - собственное значение \mathcal{A} . Его геометрической кратностью назывется $g_y=\dim \mathrm{Ker}(\mathcal{A}-\lambda\varepsilon), \lambda\leqslant g_\lambda\leqslant n=\dim V$

Предложение 1.3. Пусть $\lambda_1,\dots,\lambda_k$, где k - конечное число, - различные собственные значения $\mathcal{A}.\ v_1,\dots,v_k$ - принадлежащие им собственные векторы. Тогда v_1,\dots,v_k - ЛНЗ

Доказательство. Индукция по k.

База: k=1. по определению $v_1\neq 0\Rightarrow v_1$ - ЛНЗ Переход: $k-1\to k$. Пусть v_1,\ldots,v_k - собственные векторы, принадлежащие $\lambda_1,\ldots,\lambda_k$ Предположим, $\lambda_1v_1+\ldots+\lambda_kv_k=0(*).\mathcal{A}(\lambda_1v_1+\ldots+\lambda_kv_k)=\alpha_1\lambda_1v_1+\ldots+\alpha_k\lambda_kv_k+\ldots=\alpha_1(\lambda_1-\lambda_2)v_1+\ldots+\alpha_{k-1}(\lambda_{k-1}-\lambda_k)v_{k-1}=0$

 $(*)\cdot\lambda:\lambda_1\lambda_kv_1+\ldots+\lambda_k\lambda_kv_1$

По индукционному предположению: v_1,\ldots,v_{k-1} - ЛНЗ $\Rightarrow \alpha_1 \underbrace{(\lambda_1-\lambda_k)}_{\neq 0} = \ldots = \alpha_{k-1} \underbrace{(\lambda_{k-1}-\lambda_k)}_{\neq 0} = 0 \Rightarrow \alpha_1 = \ldots = \alpha_{k-1} = 0 \Rightarrow \alpha_k \lambda_k v_k = 0 \Rightarrow \alpha = 0 \Rightarrow v_1,\ldots,v_k$ - ЛНЗ

Следствие 1.3.1. Пусть $\lambda_1,\dots,\lambda_k$ - различные собственные значения $\mathcal{A}.$ Тогда $V_{\lambda_1}+\dots+V_{\lambda_k}=V_{\lambda_1}\oplus\dots\oplus V_{\lambda_k}$

Доказательство. Нужно доказать: если $v_1 + ... + v_k = v_1' + ... + v_k'$ (где $v_1, v_1' \in V_{\lambda_i}, i = 1, ..., k$). Таким образом, $v_1 = v_1', ..., v_k = v_k'$.

$$(v_1 - v_1') + \dots + (v_k - v_k') = 0 \tag{**}$$

Предположим, $\exists i: v_i = v_i'$. Тогда в (**) есть ненулевое слагаемое: $v_i - v_i' \in V_{\lambda_i}$. Оставим в (**) только ненулевые слагаемые противоречие с линейной независимостью.

Следствие 1.3.2. Пусть $\dim V = n, \mathcal{A} \in \operatorname{End} V$. Тогда у $\mathcal{A} \leqslant n$ собственных значений.

Следствие 1.3.3. Пусть $\lambda_1,\dots,\lambda_m$ - все собственные значение $\mathcal{A}.$ Тогда $g_{\lambda_1}+\dots+g_{\lambda_m}\leqslant n=\dim V$

Доказательство. $V_{\lambda_1}+...+V_{\lambda_m} < V \Rightarrow \dim(V_{\lambda_1}+...+V_{\lambda_k}) \leq n$

Предложение 1.4. Критерий диагональности оператора в терминах геометрических разностей.

Пусть $\mathcal{A}\in \mathrm{End}\,V,\lambda_1,\ldots,\lambda_m\,\dim V=n$ Тогда: \mathcal{A} диагонализируем $\Leftrightarrow g_{\lambda_1}+\ldots+g_{\lambda_m}=n$

Доказательство. \Rightarrow найдется базис E такой что: $[\mathcal{A}]_E = diag(\underbrace{\lambda_1,\dots,\lambda_1}_{c_1},\underbrace{\lambda_2,\dots,\lambda_2}_{c_2},\dots,\underbrace{\lambda_m,\dots,\lambda_m}_{c_m}),\ c_1,\dots,c_m \geq 0$ Первые c_1 векторов - собственные, принадлежащие собственным значениям λ_1 . Они ЛНЗ $\Rightarrow c_1 \leq g_{\lambda_1}$ Аналогично, $c_i \leq g_{\lambda_i}, m \leq i \leq 2$. $n=c_1+\dots+c_m \leq g_{\lambda_1}+\dots+g_{\lambda_m}=n \Rightarrow g_{\lambda_1}+\dots+g_{\lambda_m}=n \Leftrightarrow \dim(V_{\lambda_1}+\dots+V_{\lambda_m})=g_{\lambda_1}+\dots+g_{\lambda_m}=n \Rightarrow V=V_{\lambda_1}\oplus\dots\oplus V_{\lambda_m}$ E_1 - любой базис V_{λ_1} E_m - любой базис V_{λ_m} E - диагонализирующий базис для \mathcal{A}

Замечание. При этом получим $[\mathcal{A}]_E=diag(\underbrace{\lambda_1,\ldots,\lambda_1}_{c_1},\underbrace{\lambda_2,\ldots,\lambda_2}_{c_2},\ldots,\underbrace{\lambda_m,\ldots,\lambda_m}_{c_m})$ Таким образом, $c_1=g_{\lambda_1},\ldots,c_m=g_{\lambda_m}$