1. Let $R = \mathbb{Z}[\sqrt{-n}] = \{a + b\sqrt{-n} \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$, where n is any integer greater ≥ 2 . Let

$$N: R \longrightarrow \mathbb{Z}^{\geq 0}$$
 by $N(a + b\sqrt{-n}) = a^2 + b^2 n$.

Note that N is a norm on R (called the "field norm"). Check for yourself that $N(\alpha\beta) = N(\alpha)N(\beta)$, for all $\alpha, \beta \in R$ (do not hand in this exercise; but do hand in the following ones).

- (a) Prove that ± 1 are the only units in R.
- (b) Prove that if p is a positive prime in \mathbb{Z} with p < n, then p is irreducible in R. Prove also that $\sqrt{-n}$ is irreducible in R. [Hint: Consider all cases at once by contradiction—apply N to a factorization.]
- (c) Prove that that $R/(\sqrt{-n}) \cong \mathbb{Z}/n\mathbb{Z}$. [Hint: Let $\phi: R \to \mathbb{Z}/n\mathbb{Z}$ by $\phi(a+b\sqrt{-n}) = a \pmod{n}$. Show that ϕ is a surjective ring homomorphism with $\ker \phi = (\sqrt{-n})$.]
- (d) Deduce from (c) that if n is not a prime, then R is not a U.F.D.
- (e) y: Show if n is an odd prime then R is not a UFD as well. [Hint: Use the methods above with $1 + \sqrt{-n}$ in place of $\sqrt{-n}$.]
- 2. Prove that the quotient ring $\mathbb{Z}[i]/(1+i)$ is isomorphic to the field $\mathbb{Z}/2\mathbb{Z}$.
- 3. Prove that the ideals (x) and (x, y) are prime ideals in the polynomial ring $\mathbb{Q}[x, y]$ but only the latter ideal is maximal.
- 4. Exhibit all the ideals in the quotient ring F[x]/(p(x)), where F is a field and p(x) is a polynomial of degree ≥ 1 in the polynomial ring F[x] (describe them in terms of the factorization of p(x)). [Hint: Suppose the nonconstant polynomial p(x) factors (uniquely) as

$$p(x) = cq_1(x)^{e_1}q_2(x)^{e_2}\cdots q_r(x)^{e_r}$$

where $c \in F^{\times}$, q_1, q_2, \ldots, q_r are distinct irreducibles in F[x] and $e_i \in \mathbb{Z}^+$. Use Lattice Isomorphism Theorem for rings and the fact that F[x] is a P.I.D.]