Download (right-click, save target as ...) this page as a jupyterlab notebook from: Lab24

Laboratory 24: "Predictor-Response Data Models"

Medrano, Giovanni

R11521018

ENGR 1330 Laboratory 24

Exercise: Watershed Response Metrics

Background

Rainfall-Runoff response prediction is a vital step in engineering design for mitigating flood-induced infrastructure failure. One easy to measure characteristic of a watershed is its drainage area. Harder to quantify are its characteristic response time, and its conversion (of precipitation into runoff) factor.

Study Database

The watersheds.csv dataset contains (measured) drainage area for 92 study watersheds in Texas from Cleveland, et. al., 2006, and the associated data:

	Columns	Info.					
STATION_ID		USGS HUC-8 Station ID code					
	TDA	Total drainage area (sq. miles)					
	RCOEF	Runoff Ratio (Runoff Depth/Precipitation Depth)					
	TPEAK	Characteristic Time (minutes)					
	FPEAK	Peaking factor (same as NRCS factor)					
	QP_OBS	Observed peak discharge (measured)					
	QP_MOD	Modeled peak discharge (modeled)					

:

Using the following steps, build a predictor-response type data model.

Step 1:

Read the "watersheds.csv" file as a dataframe. Explore the dataframe and in a markdown cell briefly describe the summarize the dataframe.

```
In [42]: # import packages
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import math

df = pd.read_csv("watersheds.csv")
   # read data file
   # summarize contents + markdown cell as needed
   df.describe()
```

Out[42]:	42]: TDA		RCOEF	TPEAK	FPEAK	QP_OBS	QP_MOD	
	count	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	
	mean	16.809130	0.321473	234.292174	4.228043	0.007499	0.004811	
	std	29.272612	0.162198	211.798151	2.997854	0.005721	0.004245	
	min	0.260000	0.011400	18.000000	1.310000	0.000393	0.000089	
	25%	3.037500	0.183400	88.767500	2.455000	0.002800	0.001830	
	50%	6.965000	0.308000	189.735000	3.365000	0.005720	0.003250	
	75%	13.815000	0.424450	282.222500	4.617500	0.010575	0.006713	

In [12]:	<pre>df.head()</pre>								
Out[12]:	STATION_ID	TDA RCOE	ТРЕАК	FPEAK	QP_OBS	QP_MOD			

0.023000

0.022400

0.712900 1150.500000 17.940000

	STATION_ID	IDA	KCOEF	IPEAR	FPEAR	QP_UB3	QP_IVIOD
0	08158920	6.3	0.3083	127.43	1.61	0.00932	0.005150
1	08158930	19.0	0.2108	190.44	3.69	0.00521	0.002680
2	08158970	27.6	0.1838	339.06	5.59	0.00454	0.001910
3	08154700	22.3	0.1803	266.64	2.86	0.00498	0.003080
4	08155200	89.7	0.1876	722.50	2.25	0.00184	0.000745

the data ub watersheds.csv has 92 entries of 6 columnds each, the first being an id integer and the rest being floats (measurements)

max 166.000000

Step 2:

Make a data model using **TDA** as a predictor of **TPEAK** ($T_{peak} = \beta_{0}+\beta_{1}*TDA$) Plot your model and the data on the same plot. Report your values of the parameters.

```
In [30]: #
    fig, ax = plt.subplots()
    tdaSet = np.array(df['TDA'])
    tpeakSet = np.array(df['TPEAK'])

    data = pd.DataFrame({'TPEAK':tpeakSet, 'TDA':tdaSet})

    data.plot(ax=ax)
    tdaSet
Out[30]: array([ 6.3 , 19. , 27.6 , 22.3 , 89.7 , 116. , 124. , 166. ,
```

```
Out[30]: array([
                                             22.3 ,
                                                      89.7 , 116. , 124. , 166.
                    8.24,
                           23.1,
                                     4.61,
                                             12.6,
                                                      37.71,
                                                                5.57,
                                                                                51.3,
                                                                       12.1 ,
                   13.1 ,
                                                      12.3 ,
                             2.79,
                                     7.03,
                                              7.56,
                                                                3.12,
                                                                         3.58,
                                                                                 2.31,
                                                      21. ,
                    4.13,
                             5.22,
                                    12.2,
                                             24. ,
                                                                7.83,
                                                                       13.42,
                                                                                 1.22,
                    1.94,
                             7.51,
                                     9.42,
                                              9.03,
                                                       4.17,
                                                                9.94,
                                                                        4.75,
                                                                                 6.77,
                    8.5,
                            13.4,
                                                       2.53,
                                                                        7.98,
                                                                                 5.91,
                                    23.
                                              1.25,
                                                                6.92,
                   11.26,
                             8.05,
                                     3.26,
                                              9.54,
                                                       4.05,
                                                                2.45,
                                                                         2.33,
                                                                                 0.26,
                                              5.57,
                    0.45,
                             0.33,
                                     2.43,
                                                      15.
                                                                1.19,
                                                                        1.08,
                                                                                 2.15,
                   17.7,
                             0.97,
                                     1.35,
                                              0.38,
                                                       5.64,
                                                               12.3,
                                                                        5.41,
                                                                                 3.42,
                   21.8,
                             4.02,
                                    70.4 ,
                                              3.29,
                                                       8.43,
                                                               7.01,
                                                                         3.18,
                                                                                22.2,
                   48.6 ,
                                              1.26,
                             5.25,
                                     2.14,
                                                       6.82,
                                                               21.6 ,
                                                                         0.77,
                                                                                17.6,
                    2.1,
                           75.5 , 116.
                                              1.94])
```



```
In [41]: b0 = int(input('Please enter an input for b0'))
b1 = int(input('Please enter an input for b1'))

sorted_df = df.sort_values(by = 'TPEAK')
sorted_df.head()

#print(range(0, len(sorted_df)))

fig, ax = plt.subplots()
sortedTdaPeakSet = np.array(sorted_df['TPEAK'])

sortedTdaSet = [] #np.array(sorted_df['TDA'])

for i in (range(0 , len(sorted_df))):
```

```
#print(i)
#print(sorted_df['TDA'][i])

sortedTdaSet.append(b0 + b1* sorted_df['TDA'][i])
data = pd.DataFrame({'TPEAK':sortedTdaPeakSet, 'TDA':sortedTdaSet})

data.plot(ax=ax)
```

Out[41]: <AxesSubplot:>

Step 3:

Make a data model using **log(TDA)** as a predictor of **TPEAK** (\$T_{peak} = \beta_{0}+\beta_{1}*log(TDA)\$)

In your opinion which mapping of **TDA** (arithmetic or logarithmic) produces a more useful graph?

```
In [45]:
    b0 = int(input('Please enter an input for b0'))
    b1 = int(input('Please enter an input for b1'))

sorted_df = df.sort_values(by = 'TPEAK')
sorted_df.head()

#print(range(0, Len(sorted_df)))

fig, ax = plt.subplots()
sortedTdaPeakSet = np.array(sorted_df['TPEAK'])

sortedTdaSet = [] #np.array(sorted_df['TDA'])

for i in (range(0 , len(sorted_df))):
    #print(i)
    #print(sorted_df['TDA'][i])

sortedTdaSet.append(b0 + b1*math.log(sorted_df['TDA'][i]))
data = pd.DataFrame({'TPEAK':sortedTdaPeakSet, 'Predicted TPEAK (USING'+ str(b0)+ '+'+s)
data.plot(ax=ax)
```


In []: