Ensemble non mesurable

Polisano Kévin

2 novembre 2010

Introduction : Nous allons présenter un exemple d'ensemble *non mesurable* de la droite réelle, découvert par Giuseppe Viviati en 1905. Cet exemple s'appuie fortement sur *l'axiome du choix*.

On considère la relation d'équivalence $\mathcal R$ sur l'ensemble des réels $\mathbb R$:

$$x\mathcal{R}y \iff x - y \in \mathbb{Q}$$

On rappelle que la classe d'équivalence d'un réel x est définie par :

$$\bar{x} = \{ y \in \mathbb{R} \text{ tel que } x - y \in \mathbb{Q} \}$$

On note \mathbb{R}/\mathcal{R} (ou par abus \mathbb{R}/\mathbb{Q}) l'ensemble quotient définit par :

$$\mathbb{R}/\mathbb{Q} = \{\bar{x}, x \in \mathbb{R}\}$$

Remarquons que pour tout $x \in \mathbb{R}$ la partie fractionnaire de $x: y = x - E(x) \in \bar{x}$ avec $0 \le y < 1$ car : $x - y = E(x) \in \mathbb{Q}$ et par définition de la partie entière $E(x) \le x < E(x) + 1 \Leftrightarrow 0 \le x - E(x) < 1$. Ainsi :

$$\forall x \in \mathbb{R}, \bar{x} \cap [0,1] \neq \emptyset$$

Énoncons maintenant l'axiome du choix :

Axiome du choix : Étant donné un ensemble X d'ensembles non vides, il existe une fonction f définie sur X, qui à chacun d'entre eux associe un de ses éléments.0

Supposons maintenant V mesurable. Puisque V est borné sa mesure de Lebesgue est finie.

Considérons la réunion dénombrable suivante :

$$A = \bigcup_{\substack{r \in \mathbb{Q} \\ -1 \leqslant r \leqslant 1}} (V+r)$$

De plus les ensembles $V + r_i = \{v + r_i, v \in V\}$ sont disjoints, car pour $i \neq j$ s'il existait $v, w \in V$ tels que $v + r_i = w + r_j$ alors $v - w \in \mathbb{Q}$ i.e $\bar{v} = \bar{w}$ contradictoire car v et w sont des représentants de classes distinctes.

On a donc (sachant que $\mu(V+r) = \mu(V)$) :

$$\mu(A) = \sum_{\substack{r \in \mathbb{Q} \\ -1 \le r \le 1}} \mu(V)$$

Si $\mu(V) = 0$ alors $\mu(A) = 0$ sinon si $\mu(V) > 0$ alors $\mu(A) = +\infty$. Distinguous les cas :

$$\mu(V) = 0$$

Pour tout $x \in [0,1]$ on a vu grâce à *l'axiome du choix* qu'il existe $y \in V$ tel que $\bar{x} = \bar{y} \Leftrightarrow x-y \in \mathbb{Q}$. Comme $y \in [0,1]$ on a $-1 \leqslant x-y \leqslant 1$. Par ailleurs x appartient à V+(x-y) (car y+(x-y)=x avec $y \in V$) qui est lui-même élément de A. On a donc montré que :

$$[0,1] \subset A \Longrightarrow 1 = \mu([0,1]) \leqslant \mu(A) = 0$$

D'où la contradiction.

$$\mu(V) > 0$$

Comme $V \subset [0,1]$ alors les $V+r \subset [-1,2]$ car $-1 \leqslant r \leqslant 1$.

Donc leur réunion A est aussi incluse dans [-1,2], or A est de mesure infinie, absurde.

Dans tous les cas on obtient une contradiction, donc on en déduit que :

V est non mesurable