myAHRS

9/9/2013

myAHRS 는 3 차원 공간상의 방위각(Heading)과 자세(Attitude) 정보를 UART/I2C/USB 인터페이스로 출력하는 센서 모듈입니다. 또한 다양한 프로젝트에 사용하실 수 있도록 가로 15.4mm x 세로 19.2mm x 높이 2.6mm 초소형으로 제작되었습니다. MCU 를 사용하여 임베디드 시스템을 꾸미려는 사용자를 위하여는 쓰기 편하면서 친근한 UART 인터페이스를 기본으로 제공하며, 1kHz 고속 임베디드 시스템을 위한 I2C 인터페이스를 제공합니다

1. 제품 소개

제품 특징

myAHRS 는 3 차원 공간상의 방위각(Heading)과 자세(Attitude) 정보를 UART/I2C/USB 인터페이스로 제공해 주는 센서 모듈 입니다. . 다양한 프로젝트에 적용 가능하도록 초소형으로 제작되었습니다.

MCU 를 사용하여 임베디드 시스템을 꾸밀 수 있도록, UART 인터페이스와 더불어 1kHz 고속임베디드 시스템을 위한 I2C 인터페이스를 제공합니다.

UART/USB 인터페이스를 통해 PC 와 직접 연결하여 사용할 수 있습니다. myAHRS 를 사용한다양한 PC 프로그램도 만들 수 있습니다.

가속도/자이로 센서에 익숙하지 않은 초보 사용자도 쉽게 사용할 수 있는 myMotion 커맨드센터(myMotionCC)프로그램을 지원합니다. myMotionCC 로 센서 값을 그래프로 확인할 수 있습니다.

기능상의 특징

- myMotion 커맨드 센터 지원
 - ▶ 센서 테스트 및 출력 값 확인
 - ▶ 손쉬운 설정 변경
 - ▶ 간편한 F/W 업데이트
- 고속 데이터 출력(UART/USB: 100Hz, I2C: 1kHz)
- myARS-USB 와 pin to pin 호환
- myMotion 제품군은 모두 같은 pin map 을 가짐
- Heading angle 측정범위: 자북기준 -180° ~ 180°
- Roll angle 측정범위 : 지표면 기준 -180° ~ 180°
- Pitch angle 측정범위 : 지표면 기준 -90° ~ 90°
- UART/I2C/USB 인터페이스 지원
- Data ready 인터럽트 출력
- 저전력 sleep mode 지원
- -40 도에서 +85 도까지의 넓은 동작 온도 범위
- 브레드 보드에 연결이 편리한 2.54mm 간격의 헤더핀 인터페이스
- 14.84mm x 19.94mm 의 초소형 크기

응용분야

- 쿼드로터(Quad-rotor) 등 모형 비행체의 자세 및 이동방향 측정
- 차량의 자세 및 이동방향 측정
- 모션 컨트롤러의 자세 측정
- 기타 동체의 자세와 방위각을 측정하여, 가상 공간에 반영하는 분야 (ex: 사람 손의 자세 캡쳐)

제품 소개 홈페이지

http://withrobot.com/myAHRS/에 접속하면 myAHRS 관련 최신 소식을 접하실 수 있으며, sensor 카테고리 항목을 보시면 다양한 가속도 센서 및 각속도(자이로) 센서에 관한 자료를 얻을 수 있습니다.

그림 1-1 제품 소개 홈페이지

2. 외형 치수 및 보드 설명

그림 2-1 외형치수(단위 mm)

핀 설명

핀번호	이름	구분	설명
1	INT	0	DATA READY 인터럽트 출력
2	SLEEP	I	슬립 모드 선택 입력. L-슬립 모드, H-일반 모드. 연결하지 않을 경우 일반 모드로 동작.
3	I2C_SCL	I	I2C 클록 입력
4	I2C_SDA	I/O	I2C 데이터 입출력
5	USB_DM	I/O	USB D-
6	USB_DP	I/O	USB D+
7	GND	PWR	파워 그라운드. 0V
8	UART_RX	I	UART 수신
9	UART_TX	0	UART 송신
10	NC	NC	아무것도 연결하지 않음
11	nRST	I	리셋 입력. L-리셋, H-정상
12	VDD	PWR	+5V전원 입력

표 2-1 핀 설명

좌표축 정의

그림 2-2 좌표축 정의

가속도계가 측정하는 값은 가속도계의 가속도입니다. 예를 들어 그림 2-2(a)에서 가속도계가 x 축 방향으로 1G 의 가속도로 가속하고 있다면, 측정된 x 축 방향 가속도는 1G 라는 의미입니다. 즉 어떤 축 방향 가속도 값을 적분하면 가속도계의 해당 축 방향 속도와 변위(위치)를 알 수 있습니다. 각속도의 방향은 오른손 법칙(그림 2-2.(b))으로 정의됩니다.

전기적 특성

항목	최소	최대	단위
전원 전압 VDD	-0.3	6.0	V
UART 핀 전압, UART_TX/UART_RX	-0.3	5.3	V
USB 핀 전압, USB_DM/USB_DP	-0.3	5.3	V
I2C 핀 전압 , I2C_SCL/I2C_SDA	-0.3	5.3	V
소비전류		52	mA
동작온도	-40	85	°C
NV 메모리 쓰기 횟수		100,000	

표 2-2 전기적 특성 1

3. 동작 개요

myMotion 커맨드 센터

myMotion 커맨드 센터(myMotionCC)를 통해 myAHRS 의 각종 설정 값을 변경하며 테스트할 수 있습니다. <4 장 myMotion 커맨드 센터> 에서 자세히 설명합니다.

사용자 인터페이스

UART/USB/I2C 를 통해 센서 값을 읽고 myAHRS 의 각종 설정을 바꿀 수 있습니다. <5 장 UART/USB 인터페이스>와 <6 장 I2C 인터페이스> 에서 자세히 설명합니다.

Sleep Mode

myAHRS 의 2 번 핀(SLEEP)에 LOW 를 인가하면 sleep mode 로 전환합니다. Sleep mode에서는 모든 기능이 정지하며 10uA 이하의 소비전력만을 사용합니다. SLEEP 핀에 HIGH 를 인가하면 Normal mode로 전환합니다. SLEEP 핀에 아무런 연결도 하지 않은 경우 Normal mode로 동작합니다.

Data Ready 인터럽트

myAHRS 는 센서 값 읽기를 마치면 INT 핀으로 펄스를 출력합니다. I2C 인터페이스를 사용하는 경우 INT 핀의 rising edge 시점에 새로운 데이터를 읽을 수 있습니다.

LED 출력

myAHRS 의 LED 로 동작상태를 확인할 수 있습니다.

적색 LED	녹색 LED	상태	설 명			
OFF	점멸	정상	정상 동작 중 (USB 연결되어있지 않았을 때)			
ON	점멸	정상	정상 동작 중 (USB 연결되었을 때)			
점멸	OFF	비정상	센서 초기화 에러			
기타 다	른 상태	비정상	불량			

표 3-1 LED 와 myAHRS 의 상태

4. MYMOTION 커맨드 센터

myMotion Command Center

다음의 절차에 따라 myAHRS 의 설정 값을 바꾸고 테스트 할 수 있습니다.

(1) 준비

∓ 4-1

(2) myAHRS 를 PC 와 연결

myMotionCC 는 PC 의 COM 포트를 통해 myAHRS 과 통신합니다. myAHRS 의 UART 와 USB 모두 사용 가능합니다. myMotion-IF 보드를 함께 사용하면 편리합니다.

myMotion-IF TypeB 와 함께 사용할 때 다음의 두 가지 방식의 연결이 가능합니다.

그림 4-1 myUSB2UART 를 통해 PC 와 연결

그림 4-2 myMotion-IF 의 USB 포트를 통해 PC 와 직접연결

myAHRS 를 PC 에 연결하고 <표 3-1. LED 와 myAHRS 의 상태>를 참고하여 myAHRS 의 상태를 확인합니다. myUSB2UART 를 통해 연결하였을 경우 녹색 LED 만 점멸하며, myMotion-IF 의 USB 포트로 연결했을 때는 적색 LED 가 켜지고 녹색 LED 는 점멸합니다.

(3) myMotionCC 실행

다운로드 한 mymotioncc.exe 를 실행하고 스캔 버튼을 눌러서 myAHRS 를 검색합니다. PC 가 myAHRS 를 USB 장치로 인식한 이후에 myAHRS 의 녹색 LED 는 점멸합니다. 때때로 PC 가 myAHRS 를 인식하는 시간이 길어질 수 있으므로 myAHRS 의 녹색 LED 가 점멸하기를 기다린 다음 스캔 해야 합니다.

그림 4-3

스캔이 완료되면, myMotion Control Center 의 화면에 인식된 myAHRS 가 표시됩니다.

그림 4-4

센서 값 모니터링

이 상태에서 센서 값을 그래프로 출력할 수 있습니다.

- 그림 4-5 에서 streams 이하 원하는 항목을 마우스 오른쪽 버튼으로 클릭하고 "Attach plot" 메뉴를 선택합니다.

- 센서를 움직여가며 <그림 2-2. 좌표축 정의>대로 값이 출력되는지 확인합니다.

그림 4-5. 가속도 센서값 출력 예

옵션 이름	단위	내 용
ACCEL	g	보정되지 않은 가속도
ACCEL(C)	g	보정된 가속도
GYRO	dps	보정되지 않은 각속도
GYRO(C)	dps	보정된 각속도
MAGNET	gauss	보정되지 않은 지자기
MAGNET(C)	없음(무차원)	보정된 지자기
TEMP	섭씨	보드 온도
EULER ANGLE	degree	자세

표 4-2 myAHRS 의 stream 항목

주의) myAHRS 로 측정한 온도는 보드 발열로 인해 실내 온도와 차이가 있습니다.

3D 모델로 자세 출력

myAHRS 자세를 3D 모델로 출력할 수 있습니다.

- 그림 4-6 에서 Euler angle 항목을 마우스 오른쪽 버튼으로 클릭하고 "Attach 3D model" 메뉴를 선택합니다.
- 센서를 움직여가며 모델의 자세가 센서의 자세와 동일하게 출력되는지 확인합니다.
- 모델 뷰어 하단의 "update view point" 버튼을 누르면 화면 속의 3D 모델을 바라보는 시점을 사용자가 센서를 바라보는 시점과 일치시켜 사용자로 하여금 센서의 자세를 파악하기 쉽도록 만들어 줍니다.

그림 4-6 자세 출력 예

(4) 센서 설정 변경

myMotionCC 화면에 보이는 options 항목의 하위 항목들을 변경합니다. 변경 사항은 myAHRS 의 NV RAM 에 저장되므로 myAHRS 를 리셋해도 갱신한 값이 유지됩니다.

그림 4-7. OUTPUT RATE 변경 예

옵션 이름	내 용
SENSOR ID	여러 개의 myAHRS 센서를 동시에 사용할 때, 센서를 구분할 수 있도록 사용자가 부여하는 ID.
OUTPUT RATE	continuous 모드에서 센서 값 출력 주기
ATTITUDE	자세 출력 켜기/끄기. 출력을 끄면 그래프 출력도 멈춘다
ACCEL	가속도 출력 켜기/끄기. 출력을 끄면 그래프 출력도 멈춘다.
GYRO	자이로 출력 켜기/끄기. 출력을 끄면 그래프 출력도 멈춘다.
MAGNET	지자기 출력 켜기/끄기. 출력을 끄면 그래프 출력도 멈춘다
TEMP	온도 출력 켜기/끄기. 출력을 끄면 그래프 출력도 멈춘다

표 4-3 myAHRS 의 옵션 항목

(5) 출하 시 상태로 복구

myMotionCC 화면에서 myAHRS 를 마우스 오른쪽 버튼으로 클릭하여 "Factory Setting"을 클릭하면 양산시 초기설정으로 복구됩니다. 캘리브레이션 값들도 함께 초기화되므로 주의해야합니다.

그림 4-8

(6) 여러 개의 센서 사용

스캔 버튼을 누르면 PC 에 연결된 모든 myMotion 센서 제품이 검색됩니다. 이 상태에서 myMotionCC 를 통해 여러 개의 센서를 동시에 테스트할 수 있습니다.

그림 4-9 여러 센서 동시 사용 예

5. UART/USB 인터페이스

UART/USB 를 통해 센서 데이터를 읽어오고 센서 설정을 변경할 수 있습니다.

UART 인터페이스

- 115,200bps, No parity bit, 8 data bit, 1 stop bit.
- 3.3V IO(5V tolerant)
- 데이터 출력.
- 커맨드 입력/결과 출력.

myAHRS 의 UART 포트는 3.3V 전압 레벨에서 동작하며, 5V IO 를 사용하는 MCU 와 별도의 회로 없이 바로 연결해서 사용할 수 있습니다. PC 의 직렬포트와 같은 RS-232C 인터페이스로 연결하기 위해서는 별도의 레벨 쉬프터 회로가 필요합니다. myUSB2UART 를 함께 사용하면 편리합니다.

USB 인터페이스

- USB 2.0 Full speed
- Microsoft Windows 에서 가상 직렬 포트(VCP, Virtual COM Port)로 인식
- 데이터 출력.
- 커맨드 입력/결과 출력.

USB 를 통한 VCP 는 baudrate 를 자유롭게 사용할 수 있습니다.

메시지 정의

• 메시지 프레임

- myAHRS 메시지는 텍스트(문자,특수문자,숫자)로 구성됩니다.
- 프레임의 시작은 header 로 구분합니다.
- 모든 프레임은 tail('₩n'-개행문자)로 끝납니다.

Header	
\$	데이터 메시지
<	커맨드 메시지
>	커맨드에 대한 응답 메시지

丑 5-1.

• 데이터 메시지

센서 데이터를 담고 있는 메시지이며 일반적인 형식은 다음과 같습니다.

 $\\ $sensor_id, seq, roll, pitch, yaw, a_x, a_y, a_z, g_x, g_y, g_z, m_x, m_y, m_z, temp \\$

- 데이터 메시지 헤더(\$)에 연이어 사용자가 지정한 센서 ID 가 자리합니다.
- 데이터 값은 숫자 문자열(Numeric)이며 실수 값입니다.
- 값과 값 사이 구분자(',')로 필드를 구분합니다.
- 메시지 안에 공백은 없습니다.
- 값이 비활성(OFF) 상태라면 구분자(',')만 출력합니다.
- myAHRS 의 데이터 메시지

field	
seq	순번, 0~63
roll	오일러각, -180° ~ 180°
pitch	오일러각, -90° ~ 90°
yaw	오일러각, -180° ~ 180°
a_x(y,z)	각 축 방향 가속도 (g)
g_x(y,z)	각 축 방향 각속도 (dps)
m_x(y,z)	각 축 방향 자기 (gauss)
temp	온도 (℃)

센서 데이터 메시지에 출력할 데이터의 종류는 사용자가 선택할 수 있습니다. 가령 환경변수의 가속도 출력(ACCEL)과 지자기 출력(MAGNET)을 끈다면 myAHRS의 데이터 메시지 예는 아래와 같이 출력됩니다.

• 데이터 메시지 출력 모드

myAHRS 는 다음 두 가지의 데이터 출력 모드를 지원합니다.

- Continuous 모드 : 사용자가 지정한 주기로 데이터 메시지를 연속적으로 출력합니다.
- Single 모드 : 사용자가 데이터 요청 명령(D)으로 요청할 때만 데이터 메시지를 출력합니다.

리셋시 기본 설정은 Single 모드입니다. 따라서 보드를 리셋하면 어떤 메시지도 출력하지 않습니다.

• 커맨드 메시지

표 5-2.에 열거한 명령을 사용하여 myAHRS 의 설정을 변경하거나 필요한 정보를 읽어올 수 있습니다.

커맨드		응답
R	보드 리셋(Soft reset)	없음.
F	출하 상태로 초기화	>F OK (ERROR)
s	변경사항을 NV RAM 에 저장	>S OK (ERROR)
v	버전 정보 출력	>v##
MC	데이터 메시지 출력 모드를 Continuous 모드로 전환	>M OK (ERROR)
MS	데이터 메시지 출력 모드를 Single 모드로 전환	>M OK (ERROR)
D	데이터 요청(Single 모드일 때)	데이타 메시지
0	환경 변수 읽기	>O 값 (ERROR. ##)
I	환경 변수 쓰기	>I OK (ERROR)

표 5-2. 커맨드 목록

- 모든 커맨드는 대문자입니다.
- 사용 예

- 버전 정보 출력 : "**<v** " + 엔터키(\\+\mun)

- 데이터 요청 : "<D " + 엔터키(\\n)

• 환경 변수 읽기/쓰기

myAHRS 의 환경변수를 변경하여 myAHRS 의 각종 설정을 변경할 수 있습니다.

- 읽기 명령: "<o 환경변수_이름"
- 쓰기 명령 : "<I 환경변수_이름 값"
 - 값: 10 진수 이며, 값의 범위는 표 5-3. 환경변수 목록의 내용을 참조.
 - 센서 ID 의 경우 0~255 사이의 값을 사용.
- 변수 이름은 '변수명'과 'I2C 주소(16 진수)' 혼용 가능.
 - I2C 주소는 16 진수이며 주소 앞에 'h' 혹은 '0x' 등의 접두사는 사용하지 않는다.
 - 예컨대 "<I SENSOR ID 35" 와 "<I 12 35" 는 동일한 명령
- 명령과 변수 이름 그리고 값은 공백으로 구분

• 환경 변수

myAHRS 의 환경변수와 옵션은 아래와 같습니다. 환경변수 값은 I2C 레지스터와 동기화가됩니다. 따라서 환경변수 값을 변경하면 대응하는 I2C 레지스터 값도 함께 변경됩니다.

변수명	대응하는 myMotionCC 옵션(항목) 이름	대응하는 I2C Register	내용
STATUS	status	0x03	읽기 전용. 쓰기는 금지됨.
SENSOR_ID	SENSOR ID	0x12	센서 ID(0~255), 사용자가 원하는 값을 부여. 기본값은 0
O_RATE	OUTPUT RATE	0x13	continuous 모드에서 센서 값 출력 주기 그림 4-5 에서 myMotionCC 의 OUTPUT_RATE 옵션에 열거한 값의 인덱스(0 부터 시작)를 선택 Ex) 열거한 값이 1Hz, 10Hz, 20Hz, 50Hz, 100Hz 일 때 100Hz 를 선택하려면 4 를 입력합니다.
EN_ATTI	PRESSURE		자세 출력 옵션 0 : OFF , 1 : ON OFF 일 경우 데이터 메시지에서 자세 값이 제외됩니다.
EN_ACC	ACCEL		가속도 출력 옵션 0 : OFF , 1 : ON OFF 일 경우 데이터 메시지에서 가속도 값이 제외됩니다.
EN_GYR	GYRO		각속도 출력 옵션 0 : OFF , 1 : ON OFF 일 경우 데이터 메시지에서 각속도 값이 제외됩니다.

EN_MAG	MAGNET	지자기 출력 옵션 0 : OFF , 1 : ON OFF 일 경우 데이터 메시지에서 지자기 값이 제외됩니다.
EN_TMP	TEMP	온도 출력 옵션 0 : OFF , 1 : ON OFF 일 경우 데이터 메시지에서 온도 값이 제외됩니다.

표 5-3. 환경변수 목록

- 환경변수를 변경하고 <S 명령으로 변경사항을 저장해야 myAHRS 를 리셋시키더라도 변경
 값이 유지됩니다.
- <F 명령으로 출하 시 값으로 복구할 수 있습니다.

• 테스트 준비

윈도우의 하이퍼터미널 같은 터미널 프로그램에서 myAHRS 의 설정을 변경하고 센서 값을 읽어올 수 있습니다. 하지만 myAHRS 는 사용자 입력의 echo 를 출력하지 않으므로 일반적인 터미널 프로그램의 사용은 아무래도 불편합니다. 위드로봇㈜이 배포하는 ComPortMaster 를 사용하면 myAHRS 의 각종 명령을 쉽고 빠르게 테스트할 수 있습니다. ComPortMaster 는 위드로봇㈜ 홈페이지에서 다운로드 가능합니다.

테스트 순서는 다음과 같습니다.

(a) 그림 5-1. 혹은 그림 5-2. 와 같이 PC 에 myAHRS 를 연결하고 myMotionCC 를 실행하여 myAHRS 를 검색합니다.

그림 5-1.

- (b) 검색된 myAHRS 의 COM 포트 이름을(위 그림에선 COM19) 기록해두고 myMotionCC 를 종료합니다.
- (c) PC 에 myAHRS 를 다시 연결합니다.

- myMotionCC 와 myAHRS 는 전용 프로토콜을 사용하기 때문에 사용자 명령을 테스트하기 위해서는 myAHRS 를 리셋해야 합니다.
- (d) ComPortMaster 를 실행하고 (a)에서 기록해두었던 COM 포트 이름을 그림 5-2.와 같이 입력합니다. 또한 Baudrate, Data bits, Stop bits, Parity 항목 또한 아래 그림처럼 선택하고 Open port 버튼을 누릅니다.

그림 5-2.

(e) ComPortMaster 와 myAHRS 가 정상적으로 연결되면 그림 5-3. 처럼 Open port 버튼이 비활성화 됩니다.

그림 5-3.

myAHRS 버전 확인

위에 설명한 <테스트-(e)> 단계까지 마친 상태에서 그림 5-4 와 같이 ComPortMaster 의 Send 창에 아래와 같이 입력하고 전송 형식과 줄 바꿈 문자를 전송 설정한 후 Send 버튼을 누릅니다.

그림 5-4.

그러면 Recv 창에 아래와 같이 버전 정보가 출력됩니다.

그림 5-5

• myAHRS 데이터 출력 제어와 환경 변수 변경

위에 설명한 <테스트-(e)> 단계까지 마친 상태에서 ComPortMaster 의 Send 창에 **<D** 명령을 입력하고 설정한 후 Send 버튼을 누르면 그에 대한 응답인 데이터 메시지가 출력됩니다.

그림 5-6.

<MC 명령을 전송하여 데이터 전송 모드를 Continuous 모드로 변경하면 데이터가 쏟아져들어옵니다.

그림 5-7.

환경 변수를 수정하여 데이터 출력 주파수를 1Hz로 변경합니다. Send 창에 **<I O_RATE 0**을 입력하고 전송합니다. 센서 값 출력이 느려짐을 확인합니다.

그림 5-8.

이 상태에서 Sensor ID 를 25 로 변경합니다. Send 창에 **<I SENSOR_ID 25** 를 입력하고 전송합니다. 데이터 출력 메시지의 센서 ID 가 변경된 것을 확인합니다.

그림 5-9.

다시 데이터 전송 모드를 Single 모드로 변경합니다. Send 창에 **<MS** 를 입력하고 전송합니다. 센서 값 출력이 멈추는 것을 확인합니다.

그림 5-10.

이러한 과정을 통해 myAHRS 의 동작을 제어하고 각종 설정 값들을 변경할 수 있습니다.

• myAHRS 변경사항 저장

앞에서 설명한 방식으로 myAHRS 의 설정 값들을 변경한 후 변경사항을 NV RAM 에 저장해야 myAHRS 를 리셋해도 변경사항이 유지됩니다. Send 창에 **<s** 를 입력하고 전송합니다.

그림 5-11.

6. I2C 인터페이스

I2C 인터페이스를 통해 센서 데이터를 읽어오고, 센서 설정을 변경할 수 있습니다.

myAHRS 는 I2C slave 로 동작합니다. I2C 버스에는 pull-up 저항이 필요합니다. 일반적인 경우 $4.7k\Omega$ 을 사용하면 되며, 상황에 따라 $1k\Omega\sim10k\Omega$ 의 저항을 사용할 수 있습니다.

그림 6-1. I2C 표준 연결 회로

I2C 포트는 3.3V 전압 레벨에서 동작하며, 5V IO 를 사용하는 MCU 와 별도의 회로 없이 바로 연결해서 사용할 수 있습니다.

• I2C Slave address: 7bit, 0x1C

• Data bit: 8bit

- I2C clock speed
 - Normal mode(100KHz)
 - Fast mode(400KHz)
 - 비표준(최대 1.2MHz)

myAHRS 의 I2C 인터페이스는 4 가지 시퀀스를 지원합니다. 각 시퀀스의 구성은 아래 그림과 같습니다.

- Single Byte Write
- Single Byte Read
- Multiple Byte Write
- Multiple Byte Read

레지스터 정의

레지스터 이름	대응하는 환경변수 이름	대응하는 myMotion CC 옵션(항목) 이름	속성	주소	기본값	설명
RESERVED			Х	0x00		
I_MA_OHW			R	0x01	0xB1	
REV_ID			R	0x02	-	
STATUS	STATUS	status	R	0x03	-	센서 상태에 따라 변경됨
RESERVED			Х			
CONTROL			RW	0x10	0x00	
RESERVED			Х	l		
SENSOR_ID	SENSOR_ID	SENSOR ID	RW	0x12	1	사용자가 설정
RESERVED			Х			
ACC_X_LOW			R	0x60	data	
ACC_X_HIGH			R	0x61	data	
ACC_Y_LOW			R	0x62	data	
ACC_Y_HIGH			R	0x63	data	

레지스터 이름	대응하는 환경변수 이름	대응하는 myMotion CC 옵션(항목) 이름	속성	주소	기본값	설명
ACC_Z_LOW			R	0x64	data	
ACC_Z_HIGH			R	0x65	data	
GYRO_X_LOW			R	0x66	data	
GYRO_X_HIGH			R	0x67	data	
GYRO_Y_LOW			R	0x68	data	
GYRO_Y_HIGH			R	0x69	data	
GYRO_Z_LOW			R	0x6A	data	
GYRO_Z_HIGH			R	0x6B	data	
MAGNET_X_LOW			R	0x6C	data	
MAGNET_X_HIGH			R	0x6D	data	
MAGNET_Y_LOW			R	0x6E	data	
MAGNET_Y_HIGH			R	0x6F	data	
MAGNET_Z_LOW			R	0x70	data	
MAGNET_Z_HIGH			R	0x71	data	
ROLL_LOW			R	0x78	data	
ROLL_HIGH			R	0x79	data	
PITCH_LOW			R	0x7A	data	
PITCH_HIGH			R	0x7B	data	
YAW_LOW			R	0x7C	data	
YAW_HIGH			R	0x7D	data	
TEMP_LOW			R	0x86	data	
TEMP_HIGH			R	0x87	data	

표 6-1. I2C 레지스터 목록

WHO_AM_I 레지스터

read-only 레지스터. 상수이며 값은 0xB1 입니다.

Bit	7	6	5	4	3	2	1	0
Name	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Reset	1	0	1	1	0	0	0	1

표 6-2.

REV_ID 레지스터

read-only 레지스터. 제품 버전을 나타냅니다.

Bit	7	6	5	4	3	2	1	0
Name	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
Reset	х	Х	х	х	Х	х	х	Х

표 6-3.

STATUS 레지스터

read-only 레지스터. 센서 상태를 나타냅니다.

Bit	7	6	5	4	3	2	1	0
Name	READY	RES	RES	RES	MAGNET ERROR	TEMP ERROR	GYRO ERROR	ACCEL ERROR
Reset	0	0	0	0	Х	Х	Х	Х

표 6-4.

READY:

정상적으로 초기화 완료되면 SET(1)이 됩니다. 리셋 후 READY 가 SET 된 시점부터 I2C 인터페이스를 통해 읽은 센서 데이터 값이 유효합니다. .

TEMP ERROR:

온도 센서 에러이면 SET(1)

GYRO ERROR:

각속도 센서 에러이면 SET(1)

ACCEL ERROR:

가속도 센서 에러이면 SET(1)

MAGNET ERROR:

지자기 센서 에러이면 SET(1)

CONTROL 레지스터

read-write 레지스터. myAHRS 의 동작을 제어하기 위한 레지스터입니다.

Bit	7	6	5	4	3	2	1	0
Name	RESET	RSTFACT	RES	SAVE	RES	RES	RES	RES
Reset	0	0	0	0	0	0	0	0

표 6-5.

RESET:

myAHRS 리셋

RSTFACT:

출하 시 설정 값으로 복원.

SAVE:

NV RAM 에 설정 값 저장.

SENSOR_ID 레지스터

read-write 레지스터. 사용자가 지정한 센서 ID를 저장합니다.

Bit	7	6	5	4	3	2	1	0
Name	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
출하시 설정	0	0	0	0	0	0	0	0

표 6-6.

ROLL_LOW~YAW_HIGH 레지스터

자세의 출력 값을 저장한 레지스터입니다. 출력 값은 2의 보수(signed 16bit)이며, LOW 레지스터에 하위 8bit 를, HIGH 레지스터에 상위 8bit 를 저장합니다. 다음의 변환식으로 변환할 수 있습니다.

자세(roll, pitch, yaw) = 0.01 × 자세(정수 값)

ACC_X_LOW~ACC_Z_HIGH 레지스터

각속도 센서의 출력 값을 저장한 레지스터입니다. 출력 값은 2의 보수(signed 16bit)이며, LOW 레지스터에 하위 8bit 를, HIGH 레지스터에 상위 8bit 를 저장합니다. 다음의 변환식으로 G 단위의 가속도로 변환할 수 있습니다.

가속도
$$(G) = 16.0/32767 \times ACC_N$$

GYRO_X_LOW~GYRO_Z_HIGH 레지스터

각속도 센서의 출력 값을 저장한 레지스터입니다. 출력 값은 2의 보수(signed 16bit)이며, LOW 레지스터에 하위 8bit 를, HIGH 레지스터에 상위 8bit 를 저장합니다. 다음의 변환식으로 dps(°/s) 단위의 각속도로 변환할 수 있습니다.

각속도(dps) = 2048.0/32767 × GYRO N

MAG_X_LOW~MAG_Z_HIGH 레지스터

지자기 센서의 출력 값을 저장한 레지스터입니다. 출력 값은 2의 보수(signed 16bit)이며, LOW 레지스터에 하위 8bit 를, HIGH 레지스터에 상위 8bit 를 저장합니다. 다음의 변환식으로 gauss 단위의 값으로 변환할 수 있습니다.

지자기(gauss) =
$$8.0/32767 \times MAG N$$

TEMP_LOW~TEMP_HIGH 레지스터

온도 값을 저장한 레지스터입니다. 출력 값은 2의 보수(signed 16bit)이며, LOW 레지스터에 하위 8bit 를, HIGH 레지스터에 상위 8bit 를 저장합니다. 다음의 변환식으로 [℃] 단위의 온도로 변환할 수 있습니다.

온도(°C) = 100.0/32767 × TEMP

7. 펌웨어 업데이트

myMotionCC 로 myAHRS 의 펌웨어 업데이트 하는 방법을 설명합니다.

STEP 1) myMotionCC 에서 다운로더를 실행

그림 7-1.

주의) 펌웨어 업데이트할 myAHRS 센서가 연결되어 있지 않은 상태에서 다운로더를 실행해야합니다.

STEP 2) 다운로더 대화상자에서 펌웨어 선택 후 업데이트 시작

그림 7-2.

STEP 3) 연결 대기 대화상자가 뜨면, PC 의 USB 포트에 myAHRS 를 연결

그림 7-3.

STEP 4) myAHRS 를 인식하면 자동으로 다운로드 시작

그림 7-4.

이때 myAHRS 의 적색 LED 는 빠르게 점멸하여 펌웨어 갱신중임을 알립니다. 이 상태는 <표 2. LED 와 myAHRS 의 상태> 와 무관합니다.

STEP 5) 다운로드 완료

그림 7-5.

8. 영점 조정

myMotionCC 로 myAHRS 의 영점 조정하는 방법을 설명합니다. 우선 그림 8-1 과 같이 calibration 메뉴를 선택하고 뒤이어 나타나는 대화상자에서 영점 조정할 센서를 선택합니다.

그림 8-1.

가속도 센서 영점 조정

가속도 센서를 영점 조정 하려면 각 축 방향의 가속도 값이 필요합니다. 그러므로 총 6 번의 샘플링을 해야 합니다.

그림 8-2 의 대화상자 좌측 그림이 지시 하는 대로 센서의 자세를 잡고 샘플링을 진행합니다.

그림 8-2.

샘플링이 완료 되면 아래 그림과 같이 Next 버튼이 활성화 됩니다.

그림 8-3.

이런 식으로 센서의 자세를 바꿔가며 총 6 차례 샘플링을 반복합니다.

그림 8-4.

샘플링이 끝나면 그림 8-4 와 같이 Finish 버튼이 활성화 됩니다. Finish 버튼을 누르면 샘플링 한 가속도 값을 바탕으로 센서 보정 값을 계산하고 그림 8-5 와 같이 보정 값 갱신 여부를 묻는 대화상자가 나타납니다.

그림 8-5.

확인 버튼을 누르면 myAHRS 에 보정 값이 적용됩니다. 보정 값은 센서의 NV-RAM 에 저장되어 센서가 리셋 되어도 값이 유지됩니다.

각속도 센서 영점 조정

각속도 센서를 영점 조정 하려면 센서가 움직이지 않는 상태의 각속도 값이 필요합니다. 그림 8-6의 대화상자 좌측 그림이 지시 하는 대로 센서를 가만히 고정시켜놓은 상태로 샘플링을 진행합니다.

그림 8-6.

가속도 센서 영점조정 때와 마찬가지로 센서 보정 값 계산이 끝나면, 그림 8-5 와 같이 보정 값 갱신 여부를 묻는 대화상자가 나타납니다.

지자기 센서 영점 조정

지자기 센서를 영점 조정 하려면 센서를 운용하는 장소에서 모든 방향의 지자기 측정값이 필요합니다.

그림 8-7 의 대화상자 좌측 그림이 지시 하는 대로 샘플링 하는 동안, 각 축 중심으로 여러 방향으로 골고루 센서를 회전시켜 줍니다.

그림 8-7.

가속도 센서 영점조정 때와 마찬가지로 센서 보정 값 계산이 끝나면, 그림 8-5 와 같이 보정 값 갱신 여부를 묻는 대화상자가 나타납니다.

9. 사용상 주의사항

전원은 4.5~5.5 V 범위 내에서 사용해야 합니다. 범위를 벗어나는 전원이 인가되면 내부 회로가 파손될 수 있습니다.

myAHRS 의 출력은 동작 환경(동작 온도, 진동, 전원 잡음)의 영향을 받습니다. 본 제품은 열악한 환경에서의 출력 데이터 신뢰성을 보장하지 않습니다. 고 신뢰도를 요구하는 응용에 본 제품 사용을 자제해 주시기 바랍니다.

UART, I2C 핀의 입출력 전압은 3.3V 이며 5V 시스템에서도 별도 회로가 필요 없이 호환되도록 구성하였습니다. UART 포트를 PC 의 RS-232 포트에 연결하고자 하는 경우에는 MAX-232 와 같은 별도의 레벨 쉬프터를 사용해야만 합니다. I2C 포트를 3.3V 이하의 저 전압 프로세서에 연결하기 위해서는 별도의 전용 레벨 쉬프터를 사용해야 합니다.

USB D-, USB D+ 핀은 USB 케이블을 연결하기 위한 포트이며, 외부 노이즈에 민감합니다. USB 를 사용하는 경우 USB 케이블에서 USB_DM, USB_DP 핀까지의 결선은 가능한 짧게 유지되어야합니다. 연결이 된 상태에서 손으로 만지는 등의 외부 노이즈 유입에 의해 myAHRS 가 정지할 수도 있습니다.

Release Information

The following changes have been made in this document.

Change history

Date	Issue	변동 사항
2013.9	Α	The first draft

Copyright(c) 2003-2013 withrobot team. All right reserved.

www.withrobot.com