Assignment-3

Submit to Manohar at CSTAR on 11^{th} April, 2014 before 3 p.m. (Only 11^{th} , no prior/post submissions allowed)

List of notations

- 1. We say that a divides b if b is a integer multiple of a (i.e b = ka for some $k \in \mathbb{Z}$) and it is denoted by a|b.
- 2. For $n \in \mathbb{N}$, $a \equiv b \mod n$, if $n \mid (a b)$.
- 3. Addition Modulo $n \oplus_n : a \oplus_n b = a + b \mod n$.
- 4. Multiplication Modulo $n \otimes_n a \otimes_n b = a \times b \mod n$.
- 5. For $n \in \mathbb{N}$, $\mathbb{Z}_n = \{1, 2, 3, ..., n\}$.
- 6. For $n \in \mathbb{N}$, $\mathbb{Z}_n^* = \{ a \in \mathbb{Z} | 1 \le a \le n \text{ and } \gcd(a, n) = 1 \}.$
- 7. Lagrange Theorem : If G is a finite group and H is a subgroup of G then o(H)|o(G), Where o(G) is the number of elements of G.

Problems

- 1. Prove or Disprove the following statements
 - (a) Let (G, *) be a group such that $a^2 = e, \forall a \in G$, where e is identity element of G, then (G, *) is cyclic group.
 - (b) Let H_1, H_2 are two subgroups of a cyclic group (G, *) then $(H_1 \cap H_2, *)$ is always a cyclic subgroup of G.
 - (c) Let H_1, H_2 are two subgroups of a cyclic group (G, *) such that $(H_1 \bigcup H_2, *)$ is a subgroup of G then $(H_1 \bigcup H_2, *)$ is cyclic.
 - (d) Let (G, *) be a group and center of G is defined as $Z = \{x \in G | xa = ax, \forall a \in G\}$ then Z is a cyclic subgroup of G.
 - (e) (\mathbb{Z}_n, \oplus_n) is a cyclic group for any $n \in \mathbb{N}$.
 - (f) $(\mathbb{Z}_n, \otimes_n)$ is a cyclic group for any $n \in \mathbb{N}$.
 - (g) $(\mathbb{Z}_n^*, \otimes_n)$ is a cyclic group for any $n \in \mathbb{N}$.
 - (h) $(\mathbb{Z}_n \setminus \{0\}, \otimes_n)$ is a cyclic group if and only if n is prime.

- (i) Let H is a subgroup of a group (G, *) then H is cyclic if G is cyclic.
- (j) Let G be a cyclic group of order n generated by $a \in G$ then a^i is also a generator of G if and only if gcd(i, n) = 1.
- (k) Let H, K are two subgroups of a group (G, *) whose orders are relatively prime then $H \cap K = \{e\}$.
- (l) Let H, K are two subgroups of a group (G, *) of orders p, n respectively, where p is prime, then either $H \cap K = \{e\}$ or H is subgroups of a group K.
- (m) The elements of finite order in an abelian group G forms a subgroup.
- (n) If G is a group of even order then there are exactly an odd number of elements of order 2.
- (o) A group G has no proper subgroups if and only if it is a cyclic group of prime order.
- (p) There exists a non-abelian group such that each of its proper subgroups is cyclic.
- (q) Let H is a subgroup of a group (G, *) then $\forall x \in H, x^{-1}Hx$ is a subgroup of G of the same order as that of H.
- 2. Find all possible sets of generators of the subgroups of orders 3,4, and 12 of $(\mathbb{Z}_{12},\oplus_{12}).$
- 3. Calculate the following values.
 - (a) $5^{52} \mod 11$
 - (b) $7^{41} \mod 12$
 - (c) $3^{88} \mod 20$
 - (d) $4^{22} \mod 27$
 - (e) $9^{96} \mod 19$