HP-Exploratory analysis

preethi 11/23/2019

```
Loaded the required packages
library(googledrive)
## Warning: package 'googledrive' was built under R version 3.6.1
library(lubridate)
## Warning: package 'lubridate' was built under R version 3.6.1
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.1
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.1
library(scales)
## Warning: package 'scales' was built under R version 3.6.1
library(reshape2)
library(cowplot)
## Warning: package 'cowplot' was built under R version 3.6.1
Download file and read it
temp <- tempfile(fileext = ".zip")</pre>
dl <- drive download(</pre>
  as_id("https://drive.google.com/open?id=1dyKTsCDegBCDDBDVJRJAf_JIUxd8YcET"), path = temp, overwrite =
out <- unzip(temp, exdir = tempdir())</pre>
expenditure <- read.csv(out, header = TRUE, stringsAsFactors = FALSE)</pre>
unlink(temp)
budget <- read.csv("hoa_wise_prep_data.csv", header = TRUE, stringsAsFactors = FALSE)</pre>
I cannot seem to download and extract the budget file from the drive through R so I have downloaded it and
saved it locally
##temp <- tempfile(fileext = ".zip") ##dl <- drive_download( as_id("https://drive.google.com/open?id=
1LQNEV3vQDI3nkofVwADHrTZdPIh29oAg"), path = temp, overwrite = TRUE) ##out1 <- unzip(temp,
exdir = tempdir()) ##budget <- read.csv(out1, header = TRUE, stringsAsFactors = FALSE)
Convert the format of the date from factor to date format
## change date format
expenditure TRANSDATE <- as.Date(expenditure TRANSDATE, format = "%Y-%m-%d")
```

Add a month year column to sort by month year

budget\$date <- as.Date(budget\$date, format = "%Y-%m-%d")</pre>

I am going to assume that the revised and sanctioned data is in 100000's and do the following.

```
budget$Revisedlakh <- budget$REVISED *100000</pre>
budget$SanctionedLakh <- budget$SANCTION * 100000</pre>
##budget and expenditure data is then grouped by month year
## expenditure data grouped by month and netpayment
expenditure <- expenditure %>% mutate(month year = format(TRANSDATE, "%Y-%m"))
Sumpayment <- expenditure %>% group_by(month_year) %>% summarise(total = sum(NETPAYMENT, na.rm = TRUE))
BudgetSum <- budget %>% mutate(month_year = format(date, "%Y-%m")) %>%
group_by(month_year) %>% summarise_at(c("Revisedlakh", "SanctionedLakh"), sum, na.rm = TRUE)
## budget data grouped by medical budget
medical_budget <- budget %>% mutate(month_year = format(date, "%Y-%m")) %>%
group_by(month_year) %>% filter(major == 2210)
medical_budget_month <- budget %>% mutate(month_year = format(date, "%Y-%m")) %>%
group_by(month_year) %>% filter(major == 2210) %>% summarise_at(c("Revisedlakh", "SanctionedLakh"), sum,
medical_exp_distric <- expenditure %>% mutate(month_year = format(TRANSDATE, "%Y-%m")) %>%
group_by(month_year) %>% filter(major == 2210)
medical_expenditure <- expenditure %>% mutate(month_year = format(TRANSDATE, "%Y-%m")) %>% group_by(mon
filter(major == 2210) %>% summarise(total = sum(NETPAYMENT, na.rm = TRUE))
Melt the data so we can visualize the revised and sanctioned estimates as variables
BudgetSum.long <- melt(BudgetSum, id = "month_year", measure = c("Revisedlakh", "SanctionedLakh"))</pre>
medical_budget.long <- melt(medical_budget_month, id = "month_year", measure = c("Revisedlakh", "Sanction</pre>
## plot of total expenditure monthly for state
plot1 <- ggplot (data = Sumpayment, aes(x = month_year, y=total, group = 1)) + geom_line(color = "red",</pre>
print (plot1)
```

Plot of monthly netpayment over 2018-2019 in HP


```
##plot of monthly budget data
plot2a <- ggplot (data = BudgetSum.long,aes(x = month_year, y=value, color = variable, group = variable
print (plot2a)</pre>
```

Plot of monthly budget (Revised & Sanctioned) over 2018–2019


```
##plot of budget and expenditure data

plot3 <- ggplot() + geom_line(data = Sumpayment, aes(x = month_year, y=total, group = 1), color = "red"
    geom_line(data = BudgetSum.long, aes(x= month_year,y=value,colour = variable, group = variable),size
geom_point(size=3)+
    scale_y_continuous(labels = scales::comma)+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    ggtitle("Plot of monthly budget (Revised & Sanctioned) & expenditure over 2018-2019 in HP") + xlab("t
print(plot3)</pre>
```

Plot of monthly budget (Revised & Sanctioned) & expenditure o

##plot of monthly medical budget estimates (revised and sanctioned)
plot4a <- ggplot(data = medical_budget.long, aes(x= month_year, y=value, color=variable, group = variab
print(plot4a)</pre>

Plot of monthly medical budget (Revised & Sanctioned) over 201


```
##plot of monthly medical expenditures
plot5 <- ggplot (data = medical_expenditure, aes(x = month_year, y=total, group = 1)) + geom_line(color
print (plot5)</pre>
```


For plot 1: January and march seem to have higher values than the other months, we can subset that data to see why

time(month-year)

```
expenditure_jan_2018 <- filter(expenditure,expenditure$TRANSDATE >= "2018-01-01" & expenditure$TRANSDAT.
expenditure_jan_2019 <- filter(expenditure,expenditure$TRANSDATE >= "2019-01-01" & expenditure$TRANSDAT.
expenditure_mar_2018<- filter(expenditure,expenditure$TRANSDATE >= "2018-03-01" & expenditure$TRANSDATE
expenditure mar 2019 <- filter(expenditure, expenditure $TRANSDATE >= "2019-03-01" & expenditure $TRANSDAT.
expenditure_jan_2018 <- expenditure_jan_2018 %>% group_by(SOE_description) %>% summarise(total = sum(N
expenditure_jan_2019 <- expenditure_jan_2019 %>% group_by(SOE_description) %>% summarise(total = sum(N
expenditure_mar_2018 <- expenditure_mar_2018 %>% group_by(SOE_description) %>% summarise(total = sum(N
expenditure_mar_2019 <- expenditure_mar_2019 %>% group_by(SOE_description) %>% summarise(total = sum(N
##expenditure_mar <- expenditure[expenditure$TRANSDATE >= "2018-03-01" & expenditure$TRANSDATE >= "2018
hist1 <- ggplot(data = expenditure_jan_2018, aes(x = SOE_description,y=total))+
  geom_bar(stat = "identity", color = "red")+
  theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  scale_y_continuous(labels = scales::comma)+
  ggtitle("January 2018 Expenditure") +
  xlab("SOE Description") + ylab("payment in Rs")
hist2 <- ggplot(data = expenditure_jan_2019, aes(x = SOE_description,y=total))+
  geom_bar(stat = "identity", color = "red")+
 theme(axis.text.x = element_text(angle = 90, hjust = 1))+
```

```
scale_y_continuous(labels = scales::comma)+
ggtitle("Jan2019 Expenditure") +
xlab("SOE Description") + ylab("payment in Rs")
print (hist1)
```

January 2018 Expenditure

print(hist2)

Jan2019 Expenditure


```
hist3 <- ggplot(data = expenditure_mar_2018, aes(x = SOE_description,y=total))+
    geom_bar(stat = "identity", color = "red")+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    scale_y_continuous(labels = scales::comma)+
    ggtitle("mar 2018 Expenditure") +
    xlab("SOE Description") + ylab("payment in Rs")

hist4 <- ggplot(data = expenditure_mar_2019, aes(x = SOE_description,y=total))+
    geom_bar(stat = "identity", color = "red")+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    scale_y_continuous(labels = scales::comma)+
    ggtitle("mar 2019 Expenditure") +
    xlab("SOE Description") + ylab("payment in Rs")

print (hist3)
```


print(hist4)

mar 2019 Expenditure

It looks it is mainly accounted by salaries and pensions for the month of jannuary and by misc? for March Now we can look at districtwise spending

Districtwise Spending

print(hist dist)

There are supposed to be 12 districts in Himachal. There is a lot more data here.

Maybe by subsetting the treasury code letters of the alphabet we may come across some semblance of district wise spend

```
expenditure$District_code <- substr(expenditure$Treasury_Code,1,3)

expenditure_district <- expenditure %>% group_by(District_code) %>% summarise(total = sum(NETPAYMENT, :
hist_dist <- ggplot(data = expenditure_district , aes(x = District_code,y=total))+
    geom_bar(stat = "identity", color = "red")+
    theme(axis.text.x = element_text(angle = 90, hjust = 1))+
    scale_y_continuous(labels = scales::comma)+
    ggtitle("District wise expenditure") +
    xlab("district") + ylab("payment in Rs")</pre>
```


data that is not working yet

Districtspend <- expenditure %>% group_by(District)%>% summarise(Total = sum(NETPAYMENT, na.rm = TRUE))

 $\label{lem:control_problem} District_spending_month <- expenditure \%>\% group_by(month,District,SOE_description) \%>\% summarise(Total = sum(NETPAYMENT, na.rm = TRUE))$

##total expenditure monthly per district

district_plot <- ggplot(data = District_spending_month, aes(x=month,y=Total, group =1))+ geom_line(color = "darkorchid4") + facet_wrap(~ District, ncol = 7) + labs(title = "Total Expenditure by district", subtitle = "Data plotted by month", y = "total expenditure", x = "month") + theme_bw(base_size = 15) + scale_y_continuous(labels = scales::comma)

print(district_plot)

##pie chart with district wise spending

 $barplot <- ggplot(subset(District_spending_month, \ District == "AMB"), \ aes(x="",y = Total, \ fill = SOE_description)) + geom_bar(stat="identity", width = 1)$

pie <- barplot + coord_polar("y", start=0)

pie

##not clean