Probability and Statistics 1 Notes

Francesco Chotuck

Contents

1.1	Axiomatic approach to probability	3 4
Some	e more combinatorics	4
Prob	ability rules	5
Cond	litional probability	5
Baye	s' theorem	6
6.1 6.2	Expectation value of a random variable	6 7 8 8 8 9 9
Mon	nent generating functions 1	0
8.1 8.2 8.3	Expectation values for a continuous random variable	1 2 12 12 13 13
	1.1 1.2 Some Prob Cond Baye Discr 6.1 6.2 Some Mon Some Mon Some Source	1.1 Axiomatic approach to probability 1.2 The Basic Principle of Counting Some more combinatorics Probability rules Conditional probability Bayes' theorem Discrete random variables and their probability distributions 6.1 Expectation value of a random variable 6.2 Standard discrete distributions 6.2.1 Binomial distribution 6.2.2 Bernoulli distribution 6.2.3 Geometric distribution 6.2.4 Hypergeometric distribution 6.2.5 Poisson distribution 1 Moment generating functions Continuous random variable (C.R.V.) 8.1 Expectation values for a continuous random variable 8.2 Quantiles 8.3 Probability distribution of continuous random variable 8.3.1 The uniform random variable on an interval [a,b] 8.3.2 The Gaussian or Normal distributed random variables 8.3.3 Normal approximation to the Binomial

	8.3.5 I'-Distributed random variable	
9	Chebyshev's theorem	15
10	Bivariate probability distributions	15
	10.1 Independent random variables	16
	10.2 Conditional distribution	17
11	DRAFT 2	18
12	Bivariate probability distributions	18
	12.1 Joint distribution functions	18

1 Elementary probability theory

1.1 Axiomatic approach to probability

Definition 1.1. An **experiment** is the process by which observations are made.

Definition 1.2. The outcome of an individual observation is called an **elementary event**, we associate points called **sample points** to each elementary event.

Definition 1.3. The **sample space** S is the set of all elementary observation. Note, this could be finite or countably infinite.

Definition 1.4. An event is any subset of S.

Definition 1.5. The intersection of the set A and B is given by

$$A \cup B = \{ E_i \in S : A \land E_i \in B \}.$$

Definition 1.6. The union of the set A and B is given by

$$A \cap B = \{ E_i \in S : E_i \in A \lor E_i \in B \}.$$

Definition 1.7. The **complement** of the set A is given by

$$\bar{A} = \{ E_i \in S : E_i \notin A \}.$$

Remark. Unions and intersection of events are still events i.e. subsets of S.

Axioms of probability

Given a sample space S, a probability P(E) is assigned to every event $E \subset S$ such that:

- 1. $P(E) \ge 0$;
- 2. P(S) = 1;
- 3. If A_1, A_2, \ldots, A_k is a collection of mutually exclusive events (i.e. if $A_i \cap A_j = \emptyset$ for $j \neq i$), then $P(A_1 \cup A_2 \cup \ldots \cup A_k) = \sum_{i=1}^k P(A_i)$. We also have the same result for an infinite sequence of events.

1.2 The Basic Principle of Counting

Theorem 1.1. With m elements a_1, a_2, \ldots, a_m and n elements b_1, b_2, \ldots, b_n one can exactly form $m \times n$ (ordered) pairs (a_k, b_l) .

Proof. Arrange the elements in an $m \times n$ array and count the number of elements in the array.

Theorem 1.2. With n_1 elements $a_1, a_2, \ldots, a_{n_1}$; n_2 elements $b_1, b_2, \ldots, b_{n_2}$ and n_k elements $l_1, l_2, \ldots, l_{n_k}$, one can exactly form $n_1 \times n_2 \times \ldots \times n_k$ multiplets of k elements.

Definition 1.8. Given n different objects, the complete set of possible arrangements of these objects is called the set of **permutations**.

Theorem 1.3. The number of permutations of n objects (all different and distinguishable) is given by

$$n! = n(n-1)(n-2)\dots 1.$$

Theorem 1.4. The number of ordered arrangements of r objects taken (without replacement) from a set of n distinguishable objects is $P_r^n = \frac{n!}{(n-r)!} = n(n-1)\dots(n-r+1)$.

Definition 1.9. A **combination** is a subset of n objects taken from some larger set of n distinguishable objects (where the order is irrelevant).

Theorem 1.5. The number of ways of selecting combinations of r objects from a set of $n \ge r$ distinguishable objects is

$$C_r^n = \binom{n}{r} = \frac{n!}{(n-r)!r!}.$$

2 Some more combinatorics

Definition 2.1. A partition is an arrangements of n elements into k groups containing n_1, n_2, \ldots, n_k objects respectively, with $0 \le n_j \le n$ and $n \sum_{j=1}^k n_j$. (Every element is assigned exactly to one group).

Remark. The definition of partition is in the context of probability.

Theorem 2.1. (Number of partitions). The number of partitions into k distinct groups, containing n_1, n_2, \ldots, n_k elements is

$$P_{n_1 n_2 \dots n_k}^n = \binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \dots n_k!}.$$

3 Probability rules

Definition 3.1. We say, A_1, \ldots, A_k are **mutually exclusive** events if $A_i \cap A_j = \emptyset$, $i \neq j$.

Distributive Law:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

De Morgan's Law:

$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
 and $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

Theorem 3.1. (Law of addition of probabilities)

$$P(A \cap B) = P(A) + P(A) - P(A \cup B).$$

4 Conditional probability

Definition 4.1. Probability of an event A given an event B has occurred is defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

In the above definition, we should specify that P(B) > 0.

Definition 4.2. The event A is **independent** of the event B if P(A|B) = P(A).

Theorem 4.1. The following statement are equivalent:

- 1. P(A|B) = P(A), if A is independent of B;
- 2. P(B|A) = P(B), if B is independent of A;
- 3. $P(A \cap B) = P(A)P(B)$.

Definition 4.3. The Multiplicative Law of Probability:

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$
, and if A and B are independent, $P(A \cap B) = P(A)P(B)$.

Definition 4.4. A family of sets A_1, A_2, \ldots, A_n consisting of mutually exclusive and exhaustive events is called a **partition of the sample space** S. (Recall that this means that $A_i \cap A_j = \phi$ for $i \neq j$, and that $S = A_1 \cup A_2 \ldots \cup A_n$.

Note: Exhaustive events cover the probability of the whole sample space.

Theorem 4.2. Properties of Independence

- 1. If A is independent of B, then \overline{A} is independent of B.
- 2. If A is independent of B, then A is independent of \overline{B} .

Theorem 4.3. (Normalization of conditional probabilities.) If A_1, A_2, \ldots, A_n is a partition of S, then $\sum_{i=1}^{n} P(A_i|B) = 1$.

5 Bayes' theorem

Theorem 5.1. Given 2 events A and B, then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

Theorem 5.2. (Bayes' theorem, general version.) Given an event A and the family B_1, B_2, \ldots, B_n that is a partition of S,

$$\frac{P(A|B_j)P(B_j)}{\sum_{i=1}^n P(A|B_i)P(B_i)}.$$

6 Discrete random variables and their probability distributions

Definition 6.1. A random variable (sometimes r.v.) is a function defined on the sample space S mapping each element of S to a real number.

Definition 6.2. A **discrete random variable** is a random variable that can only take finitely or countably infinitely many distinct values. Note that, for any discrete random variable, we have the following two properties

- 1. $0 \le p(x) \le 1$;
- 2. $\sum_{x} p(x) = 1$.

6.1 Expectation value of a random variable

Definition 6.3. Given a random variable X with probability distribution/probability mass function (p.m.f.) p(x) its **expectation**, or expected value is defined as:

$$\sum_{x} x p(x).$$

The above sum is over all values x that X can take.

The expectation of any function X is given by

$$E(f(x)) = \sum_{x} f(x)p(x).$$

Similarly, the expectation of X^n is

$$E(X^n) = \sum_{x} x^n p(x).$$

Definition 6.4. The variance of X is defined as

$$V(X) \equiv Var(X) = E((X - E(X))^{2}) = E(X^{2}) - E(X)^{2}.$$

Theorem 6.1. (Properties of Expectations). For any constants a and b, and any function f and g, we have:

- 1. E(a) = a;
- 2. $E(g(x)) = \sum_{x} g(x)p(x);$
- 3. E(af(X)) = aE(f(X));
- 4. (Linearity) E(af(X) + bg(X)) = aE(f(X)) + bE(f(X)).

Theorem 6.2. (Properties of Variance). For any constants a we have:

- 1. Var(a) = 0;
- 2. Var(X + a) = Var(X);
- 3. $Var(aX) = a^2Var(X)$:
- 4. $Var(aX \pm b) = a^2 Var(X)$.

6.2 Standard discrete distributions

6.2.1 Binomial distribution

A random variable X follows a binomial distribution if the following 5 conditions are satisfied:

- 1. There is a fixed number of trials (n).
- 2. Each trial results in either 'success' or 'failure'.
- 3. All the trials are independent.
- 4. The probability of 'success' (p) is the same in each trial.
- 5. The variable, X, is the total number of successes in the n trials.

Then we can say that the probability mass function is $X \sim Bin(n, p)$, where n is the number of trials and p is the probability of the event being a 'success'. The probability mass function is given by,

$$P(X = x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, \dots, n.$$

The expectation and variance are:

$$E(X) = np,$$

$$Var(X) = np(1 - p).$$

6.2.2 Bernoulli distribution

A special case of the binomial distribution where n = 1. A discrete random variable which takes on only 2 values, typically $S = \{0, 1\}$.

$$p(x) = \begin{cases} p, & y = 1; \\ 1 - p, & y = 0. \end{cases}$$

The expectations and variance are:

$$E(X) = x$$
$$Var(X) = p(1 - p).$$

6.2.3 Geometric distribution

A random variable X follows a geometric distribution if the following 3 conditions are satisfied:

- 1. There is a sequence of independent trials with only two possible outcomes 'success' and 'failure'.
- 2. The probability of 'success',p, is constant.
- 3. X is the number of trials until the first success occurs (including the 'successful' trial itself).

Then the p.m.f. is $X \sim Geo(p)$, for X = 1, 2, 3... with probability:

$$P(X = x) = p(1 - p)^{x-1}$$
.

The expectation and variance are:

$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{(1-p)}{p^2}.$$

6.2.4 Hypergeometric distribution

The hypergeometric distribution concerns the case of sampling from a set containing a mixture of 2 different elements (red, black) without replacement. Suppose we have a set of size N with r red elements and N-r black elements. Then the number of different ways of finding x red elements in a draw of n is $\binom{r}{x}\binom{N-r}{n-x}$. Hence the probability of finding x red elements is, for $x=0,1,\ldots,n$,

$$p(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}.$$

The expectation and variance are

$$E(X) = \frac{nr}{N}$$

$$Var(X) = \frac{nr(N-r)(N-n)}{N^2(N-1)}.$$

6.2.5 Poisson distribution

If X represents the number of events that occur in a particular space or time, then X will follow a Poisson distribution as long as:

- 1. The events occur randomly, and are independent of each other.
- 2. The events happen singly i.e. one at a time.
- 3. The events happen (on average) at a constant rate (either in space or time).

The Poisson parameter λ is then the average rate at which these events occur (i.e. the average number of events in a given interval of space or time). Then the p.m.f. is $X \sim Po(\lambda)$, for $X = 0, 1, 2, \ldots$ with probability:

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}.$$

The expectation and variance are:

$$E(X) = \lambda$$
$$Var(X) = \lambda.$$

7 Moment generating functions

Definition 7.1. The n^{th} moment of a random variable X is given by

$$\mu_n = \sum_x x^n p(x).$$

In particular, $\mu_0 = 1$, and $\mu_1 = E(X)$. Recall that the variance of X is given by

$$V(X) \equiv Var(X) = E(X^2) - (E(X))^2 = \mu_2 - \mu_1^2$$
.

Definition 7.2. The moment generating function of X is defined as

$$M_X(t) = E(e^{tX}) = \sum_x e^{tx} p(x).$$

Theorem 7.1. Moments of a distribution can be computed via derivatives of the moment generating functions.

$$\mu_k = E(X^k) = \frac{\mathrm{d}^k M_X(t)}{\mathrm{d}t^k} \Big|_{t=0}.$$

8 Continuous random variable (C.R.V.)

Definition 8.1. Let X be a random variable whose set of possible values S is a continuum of numbers such as an interval, i.e. the set of possible values is uncountable. We say that X is a **continuous random variable** if there exists a non-negative function f, such that the following property holds for any set B of real numbers:

$$P(X \in B) = \int_{B} f(x) \, dx.$$

Definition 8.2. The function $f \geq 0$, piecewise continuous (i.e. continuous perhaps except for finitely many values of x) in the definition above is called the probability density function (p.d.f.) of the random variable X.

Proposition 1. The piecewise continuous function f, defined for every $x \in \mathbb{R}$ is a probability density function (p.d.f.) if

- $f(x) \ge 0$;
- $\int_{-\infty}^{\infty} f(x) dx = 1$;
- $P(X = a) = \int_a^a f(x) dx = 0.$

Definition 8.3. Let X be a c.r.v. with p.d.f. f. Then, the cumulative distribution function (c.d.f.) is given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt.$$

Consequently, F is continuous and the relationship between the p.d.f. and the cumulative distribution function F is expressed by

$$f(x) = \frac{\mathrm{d}}{\mathrm{d}x} F(x).$$

Theorem 8.1. (Properties of the C.D.F.)

- 1. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0$;
- 2. $F(+\infty) = \lim_{x \to +\infty} F(x) = 1$;
- 3. F(x) is a non decreasing function of x, i.e. if $x_1 < x_2$, then we have $F(x_1) \le F(x_2)$.

Remark. When drawing the c.d.f. you must draw the lines for which the function takes 0 and 1.

8.1 Expectation values for a continuous random variable

Definition 8.4. The expectation value of a continuous random variable with p.d.f. f(x) is

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

Theorem 8.2. (Properties of Expectations) For any constant a and b, and any function f and g,

- 1. E(a) = a;
- 2. E(af(X)) = aE(f(X));
- 3. E(af(X)+bg(X)) = aE(f(X))+bE(g(X)), where $E(g(X)) = \int_{-\infty}^{\infty} g(x)p(x) dx$.

8.2 Quantiles

Definition 8.5. Given any random variable X, and 0 , the <math>p-quantile of X, Φ_p , is the smallest number such that

$$P(X \le \Phi_p) = F(\Phi_p) \ge p.$$

8.3 Probability distribution of continuous random variable

8.3.1 The uniform random variable on an interval [a,b]

Definition 8.6. A random variable X is **uniform** on the interval [a, b], with a < b, if its p.d.f. is given by

$$f(x) = \frac{1}{b-a}, \quad a \le x \le b.$$

[Notation: $X \sim U[a, b]$].

Theorem 8.3. If X is a uniform random variable on the interval [a, b] then

- $E(X) = \frac{a+b}{2}$;
- $Var(X) = \frac{(b-a)^2}{12}$;
- the c.d.f, F is given by

$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0, & y < a; \\ \frac{x-a}{b-a}, & a \le x < b; \\ 1, & x \ge b. \end{cases}$$

8.3.2 The Gaussian or Normal distributed random variables

Definition 8.7. A random variable X is said to be a **normal random variable**, or simply X is normally distributed, with parameters $\mu \in \mathbb{R}$ and $\sigma^2 > 0$ if the p.d.f. of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

[Notation: $X \sim N(\mu, \sigma^2)$]. The p.d.f. is a bell-shaped curve that is symmetric about μ .

Theorem 8.4. If $X \sim N(\mu, \sigma^2)$ then

- $E(X) = \mu$;
- $Var(X) = \sigma^2$;
- if Y = aX + b then $Y \sim N(a\mu + b, a^2\sigma^2)$.

Corollary 8.4.1. If $X \sim N(\mu, \sigma^2)$, then

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1).$$

Such a random variable is said to be a **standard normal random variable.** It is customary to denote the c.d.f. of Z by $\Phi(x)$. That is,

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt.$$

The values of the standard c.d.f. for are given in Statistical tables.

8.3.3 Normal approximation to the Binomial

Theorem 8.5. If S_n denotes the number of successes that occur when n independent trials, each resulting in a success with probability p, are performed, then, for any $x \in \mathbb{R}$,

$$P\left(\frac{S_n - np}{\sqrt{np(1-p)}}\right) \to_{n\to\infty} \Phi(x).$$

In general, this approximation is quite good when $np(1-p) \ge 10$.

8.3.4 Exponentially distributed random variable

Definition 8.8. A random variable X whose probability density function is given, for some $\lambda > 0$, by

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0,$$

is said to be an **exponential random variable** with parameter λ [notation: $X \sim Exp(\lambda)$].

Remark. In practice, the exponential distribution often arises as the distribution of the amount of time until some specific event occurs.

Theorem 8.6. If X is an exponential random variable with parameter λ then

- $E(X) = \frac{1}{\lambda}$;
- $Var(X) = \frac{1}{\lambda^2}$;
- the c.d.f., F is given by

$$F(X) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

Theorem 8.7. The exponential distribution satisfies the memoryless property. That is, if $X \sim Exp(\lambda)$ then

$$P(X > t + s | X > t) = P(X > s),$$

for all s, t > 0.

Proposition 2. The time interval T between two consecutive Poisson occurrences at the rate $\lambda > 0$ is exponentially distributed with mean value $\frac{1}{\lambda}$.

8.3.5 Γ-Distributed random variable

Definition 8.9. A random variable X with p.d.f. given by

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad x > 0,$$

is said to be a **gamma distributed** random variable with parameters (α, β) [notation: $X \sim Gamma(\alpha, \beta)$].

The function $\Gamma(\alpha)$, called the **Gamma function**, is defined as

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt.$$

Proposition 3.

$$\Gamma(n) = (n-1)!$$

8.3.6 χ^2 distribution

Definition 8.10. A random variable is said to have a χ^2 distribution with ν degrees of freedom if it is a Γ-distributed random variable with $\alpha = \frac{\nu}{2}$ and $\beta = 2$, i.e.

 $Y \sim \chi_{\nu}^2 \iff Y \sim \Gamma\left(\frac{\nu}{2}, 2\right).$

9 Chebyshev's theorem

Theorem 9.1. Let X be a random variable with finite mean μ and variance σ^2 . Then, for any k > 0, we have:

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$
 equivalently $P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}$.

10 Bivariate probability distributions

Definition 10.1. Let (X, Y) be a random pair. We define the **joint cumulative distribution function** (joint c.d.f.) of (X, Y) by

$$F(x,y) = P(X \le x, Y \le y), \quad (x,y) \in \mathbb{R}^2.$$

Definition 10.2. Let (X, Y) be a random pair, where X and Y are both discrete random variables. We define the **joint probability mass function** (joint p.m.f.) of (X, Y) by

$$p(x_i, y_j) = P(X = x_i, Y = y_j), \quad (x_i, y_j) \in X(\Omega) \times Y(\Omega)$$

The joint p.m.f. of (X, Y) is usually given in the form of a table.

Proposition 4. The joint p.m.f. satisfies the conditions:

•
$$p(x_i, x_j) = P(X = x_i, Y = y_j) \ge 0, \quad \forall (x_i, x_j);$$

•
$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} p(x_i, x_j) = P(X = x_i, Y = y_j) = 1.$$

Definition 10.3. The functions

$$p_X(x_i) = \sum_{j=1}^{\infty} p(x_i, y_j)$$
 and $p_Y(y_j) = \sum_{i=1}^{\infty} p(x_i, y_j)$

are called the marginal probability mass functions of X and Y, respectively.

Definition 10.4. The random variables X and Y are called jointly continuous if there exists a function f(x,y) defined for $x,y \in \mathbb{R}$ such that, for every set C of pairs of real numbers

$$P((X,Y) \in C) = \iint_{(x,y)\in C} f(x,y) \, dx dy.$$

The function f(x,y) is called the **joint probability density function** of X and Y.

Proposition 5. The joint p.d.f. satisfies the conditions:

- $f(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$;
- $\iint_{\mathbb{R}^2} f(x,y) \, dx dy = 1.$

Definition 10.5. The functions

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$
 and
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx$$

are called the **marginal probability density functions** of X and Y, respectively.

10.1 Independent random variables

Definition 10.6. The random variables X and Y are said to be independent if, for any two sets of real numbers A and B,

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

In other words, X and Y are independent if the events $E = \{X \in A\}$ and $F = \{Y \in B\}$ are independent.

Proposition 6. The equality $P(X \in A, Y \in B) = P(X \in A)P(Y \in B)$ holds if and only if, for all $x, y \in \mathbb{R}$,

$$P(X \le x, Y \le y) = P(X \le x)P(Y \le y).$$

In terms of the joint c.d.f. F of the random pair (X, Y), X and Y are independent r.v.'s if

$$F(x,y) = F_X(x)F_y(y), \quad x, y \in \mathbb{R}.$$

10.2 Conditional distribution

Definition 10.7. Let X and Y be jointly discrete random variables. It is natural to define the **conditional probability mass function** of X given Y = y by

$$p_{X|Y}(x_i|y) = P(X = x_i|Y = y) = \frac{p(x_i, y)}{p_Y(y)},$$

for all values of Y such that $p_Y(y) > 0$

11 DRAFT 2

12 Bivariate probability distributions

12.1 Joint distribution functions

Definition 12.1. The **joint cumulative distribution function** (or joint c.d.f.) of X and Y, denoted by $F_{XY}(x,y)$, is the function defined by

$$F_{XY} = P(X \le x, Y \le y).$$

Remark. The event $(X \le x, Y \le y)$ is equivalent to the event $A \cup B$, where A and B are events of S defined by $P(A) = F_X(x)$ and $P(B) = F_Y(y)$.

Definition 12.2. Two random variables X and Y are called **independent** if

$$F_{XY}(x,y) = F_X(x)F_Y(y)$$

for every value of x and y.