Plan

- Review of Last Lecture
- Section 16. Group Action on a Set (continued)

Yongchang Zhu Short title 2 / 25

Review of Last Lecture

Definition 16.1. Let X be a set and G a group. An **action of** G **on** X is a map

$$*: G \times X \rightarrow X$$
,

we will write the image of (g, x) as g * x or simply gx such that

- (1) e * x = x for all $x \in X$.
- (2) $(g_1g_2) * x = g_1 * (g_2 * x)$ for all $g_1, g_2 \in G$ and $x \in X$.

We also say G acts on X or X is a G-set.

Yongchang Zhu Short title 3/25

If the action is written as gx instead of g * x, the two axioms are

$$ex = x$$
, $(g_1g_2)x = g_1(g_2x)$

Yongchang Zhu Short title 4/

Example. $G = GL(2,\mathbb{R})$ acts on \mathbb{R}^2 as follows.

For $g \in GL(2,\mathbb{R})$, $x \in \mathbb{R}^2$, gx is a just the matrix multiplication of g by x.

Note that g is a 2×2 matrix, x is a 2×1 matrix, the multiplication gx is a 2×1 matrix.

Yongchang Zhu Short title 5/25

Example. More generally, for every positive integer n, the group $GL(n,\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication.

Example. The group S_n acts on $X = \{1, 2, ..., n\}$, for $g \in S_n$, $i \in X$, gi = g(i), the outcome of the permutation g applying to i.

Yongchang Zhu Short title 7/2

Let G act on set X, for each $x \in G$, we introduce

$$G_{x} = \{g \in G \mid gx = x\}$$

That is, G_x is the subset of G that consists of all elements in G fixing x.

Yongchang Zhu Short title 8/25

Theorem 16.12. Suppose X is a G-set, $x \in X$, then G_X is a subgroup of G

The subgroup G_x is called the **isotropy subgroup** of x.

Yongchang Zhu Short title 9 / 25

Example. Let $G = S_3$ act on $X = \{1, 2, 3\}$. The isotropy subgroup of 2 has two elements:

$$G_2 = \{e, (13)\}$$

Yongchang Zhu Short title 10 / 25

Definition 16.15. Let X be a G-set, $x \in X$, the **orbit of** x is the following subset Gx of X:

$$Gx = \{gx \mid g \in G\}$$

Yongchang Zhu Short title 11 / 25

Example. $G = S_5$ acts on $X = \{1, 2, 3, 4, 5\}$. The orbit of 1 is

$$G1 = \{1, 2, 3, 4, 5\}.$$

The orbit of 2 is

$$G2 = \{1, 2, 3, 4, 5\}.$$

Yongchang Zhu Short title 12 / 25

Section 16. Group Action on a Set (continued)

Let X be a G-set, for any $a, b \in X$, the orbits Ga and Gb are either equal or disjoint.

And the set X is a disjoint union of orbits.

Yongchang Zhu Short title 13 / 25

Example. S_n acts on $X = \{1, 2, ..., n\}$, there is only one orbit. For every $i \in X$,

$$Gi = X$$

Yongchang Zhu Short title 14/25

Example. S_5 acts on $X = \{1, 2, 3, 4, 5\}$. Let

$$Y = X \times X = \{(i,j) | 1 \le i, j \le 5\}$$

Y has 25 elements. S_5 acts on Y as

$$g(i,j)=(gi,gj)$$

An example is, for g = (325) (cycle of length 3)

$$g(1,5) = (g1,g5) = (1,3)$$

Questoins: how many orbits are there?

Yongchang Zhu Short title 15 / 25

Answer: there are two orbits:

$$S_5(1,2) = \{(i,j) | 1 \le i, j \le 5, i \ne j\}$$

and

$$S_5(1,1) = \{(1,1),(2,2),(3,3),(4,4),(5,5)\}$$

The first orbit has 20 elements, the second has 5 elements.

Yongchang Zhu Short title 16/25

Theorem 16.16. Let G be a finite group, X be a G-set. Then for every $x \in X$,

$$|Gx|\cdot |G_x|=|G|.$$

Sketch of Proof. We define a map $\psi: G/G_x \to Gx$ by

$$\psi(gG_x)=gx.$$

Then we prove

- (1). ψ is well-defined.
- (2). ψ is 1-1 and onto.
- (2) implies that $|Gx| = |G/G_x| = \frac{|G|}{|G_x|}$.

Yongchang Zhu Short title 17 / 2

Example. Application of Group Action.

Let G be the symmetry group of a regular tetrahedron, find the order |G|?

Yongchang Zhu Short title 19 / 3

$$|G| = 12.$$

G acts on the set $X = \{1, 2, 3, 4\}$ of vertices. It is easy to see that the orbit

$$G1 = \{1, 2, 3, 4\} = X$$

An explanation of the above fact is that a regular tetrahedron is very symmetric so all the vertices have equal footing.

The isotropy subgroup G_1 has 3 elements,

By Theorem 16.16, we have

$$|G| = |G1| |G_1| = 4 \cdot 3 = 12$$

Yongchang Zhu Short title 20 / 25

The following are the 12 elements in G:

e: the identity symmetry,

R(1,120), R(1,240): the rotations along axis 1 by angles 120 and 240 respectively,

R(2,120), R(2,240): the rotations along axis 1 by angles 120 and 240 respectively,

R(3, 120), R(3, 240): the rotations along axis 1 by angles 120 and 240 respectively,

R(4, 120), R(4, 240): the rotations along axis 1 by angles 120 and 240 respectively.

There are 3 extra symmetries that we denote by

the notations for these three elements agree with their permutations on the set of vertices $\{1, 2, 3, 4\}$

Example. Application of Group Action.

Let G be the symmetry group of a cube, find the order |G|?

Let G act on the set X of the faces of the cube, |X|=6. Let $1\in X$ be the top face.

Then the orbit G1 = X, the isotropy subgroup G_1 has order 4, i.e., $|G_1| = 4$.

By Theorem 16.16,

$$|G| = |G1| |G_1| = 6 \cdot 4 = 24$$

Yongchang Zhu Short title 24 / 25

The end

Yongchang Zhu Short title