Qy	/	11.		1-4	ч		yel	0)	2	1 -					Ø0(+)=	=1,							-
0	We	1/9	Ve		1	ð:+1				01	f (8	5, 9	Si(8))	de	;								
	Find	· 9	824	-),																				
	Here	,	Ş	(+	,4)	E	+	14	,	TV	\en		G	\$00	+)	= 1								
		0,(+)	=	Ct	F	(5,	, 1) (15			-											
				_	10	+(9	5 +	()	ds															-
				=		2 52	45]	1				Q	3,(1) =	2	12.	+ +						
		Ø2(+)	-	5	F(9	5,	152	45) ds														
				=	- 1	8+	1 2	S3	+5) d	S													
				_		125	+	28	2)	ds														
					[52	+	6	53	1	1			Q	020	+)=	6	13	+	12					
		\$30	(+)	H	So	F(5	5,	53	18) (13													
				=		(8	+	68	3 +	82) ds												,	
777				-	[]	52	+	24	54	+ 1	53]	10	+	Ø2	(+)	= 2	if th	+	13	7	+	12+	2	
																								_

Q4/		(2)	(2+1)	y"	_	4x	41	+1	44 =	0,			
(5)	Y(x) = x		ther			1'(x) = 1		24	4 1	(x)	=0,	
	Hence	1											
		22+1	(0)		Ну	()	+	Ч	(x)	=0			
) (0)										
					- (/x -	4						
	Thus y())=X	13	5	sol	utida	,	0 =	=0				
6)	,	= V(
		x) =		\ \	+	V(K)							
		(X) =						VI (x					
	C.C y		VII(X					V C.					
					2 0	(4),							
	-> Substituti			DE!									
	(v"(x)x												
2x3 V	$u(x) + v_{u}(x)$	() X+ L	X2 V	(X)+	2ν	(x) -	Llx	344	x) -	YXVI	(X)+	HXV(x)=(
(2 x ²	+ X) V''(x)	+ 2	V ()	() =	= Ō.							
Le-	+ p(x) =	Λ, (X											
Th	en	p'()			2	- p	(x)	=0	>,				
10	,				-X24	X,							450
	b(x)							C	1				
Th	en J Pi	x) dx	= 1	104	P(x)	1 =	-2		2×3+x				

MATZYY PSZ Q6/ (+2-2+) 4" + 4(+-1) 4" + 24 = e2+ a) Let $F(+) = (+^2 - 2+)y' + (2+-2)y'$ Then $d\Gamma = y''(t^2-2t) + y(2t-2) + y'(2t-2) + y(2)$ = y"(+2-2+) + 4 4 (+1) + 24 $=e^{2+1}$ Since dF is our initial ODF. b) dF = 1c2+ from part (2) Than $\int \frac{dF}{dt} dt = \int e^{2t} dt$ $F(t) = \frac{1}{2}e^{2t} + C$ for some constant C which implies that $|(+^2-2+)y| + (2+-2)y| = \frac{1}{2}e^{2+} + c$ 25 desired. c) Solve the equetion from pert (b). Let M(t,y) = (2+-2)yand $N(+,y) = (+^2 + 2+)$ -This equation is exact since 2, M(+,4) = 2+-2 = 2, N(+,4).

Clearly, by the product rule, $(+^2-2+)y'+(2+-2)y=\frac{d}{dt}[(+^2-2+)y]=\frac{e^{2t}}{2}+c.$ This implies $(+^2-2+)y = (e^{2+}+c)d+$ = e2+ c, + c, for some c, c26 R. Our general solution is then given implicitly by (+2-2+) y = 1 e2+ + C1+ + C2 d) Find the unique solution if y(0)=1 and y'(0)=1? (02-2(0))(1) = 1 e2(0) + C1(0) + C2 0 = 1 + C2 Then C2 = - 4. Similarly, when we differentiate, Cimplicity), C[(+2-2+)4] = C [4 e2+ + (+ - +) (2+-2) y + (+2-2+) y' = = = = = + + c, $(2(0)-2)(1) + (69-2(0))(1) = \frac{1}{2}e^{2(0)} + C_1$ -2 = \frac{1}{2} + C, So then C, = -4. our solution to the IVP is then implicitly given by (+2-2+)4 = = = e2+ -4+ - =

Notes	1 du	giving solution	Aus n y:	tiers	- 44 -	ty because	Buse the	
	morly		defined		- 24]		formally,	
	y(0)	suf	4(2)	Sec	both (andefined	solutione.	
	Hence	1 2m	giving	the	Solution	ingo licit	-lq.	
								6
								-
								(