Kernel Methods in Machine Learning Homework 1

Master Data Science – Université Paris-Saclay

Peter MARTIGNY: peter.martigny@gmail.com

Wednesday, January 25th 2017

1 Kernel Examples

Are the following kernels positive definite?

1. 1.

$$\forall x, y \in \mathbb{R}, K_1(x, y) = 10^{xy}, K_2(x, y) = 10^{x+y}$$

2. 2.

$$\forall x, y \in [0, 1), K_3(x, y) = -log(1 - xy)$$

3. 3. Let X be a set and $f, g: X \to \mathbb{R}_+$ two non-negative functions :

$$\forall x, y \in X, K_4(x, y) = min(f(x)g(y), f(y)g(x))$$

1. 1.

We know that the function $(x, y) \mapsto xy$ is a positive definite kernel. Moreover, we know that a p.d. kernel multiplied by a positive constant is still a p.d. kernel. Hence, $(x, y) \mapsto xyln(10)$. is a p.d. kernel. We also know that the multiplication and the addition of p.d. kernels gives still a p.d. kernel, hence the exponential of $(x, y) \mapsto xyln(10)$ (which can be written as a Taylor infinite expansion, with strictly positive factors for each power of $(x, y) \mapsto xyln(10)$) is still a p.d. kernel, which means that K_1 is a p.d. kernel.

Let $\Phi: x \mapsto 10^x$. Then, we have $: K_3(x,y) = \Phi(x)\Phi(y)$. According to the Aronszajin Theorem, this shows that K_3 is a p.d. kernel.

2. 2. Let us write the Taylor Expansion of $x \mapsto log(1-x)$. We have :

$$-log(1-x) = \sum_{i=1}^{\infty} \frac{x^k}{k}$$

Hence, as $(x,y) \mapsto xy$ ias p.d. kernel, we know that $(x,y) \mapsto \sum_{i=1}^{\infty} \frac{(xy)^k}{k}$ is also a p.d. kernel. Therefore, $(x,y) \mapsto -log(1-xy)$ is a positive definite kernel.

3. 3.

Because f and g are non negative, we show with Aronszajin Theorem that the function $(x,y) \mapsto f(x)g(y)$ is a p.d. kernel. Let us show now that K_4 is also a p.d. kernel.

Let $N \in \mathbb{N}$, $(\alpha_i, ..., \alpha_N) \in \mathbb{R}^N$ and $(x_i, ..., x_N) \in \mathbb{X}^N$. We have :

$$\sum_{i,j} \alpha_i \alpha_j \min(f(x_i)g(x_j), f(y)g(x)) = \sum_{i,j} \alpha_i \alpha_j \delta_{f(x_i)g(x_j) < f(x_j)g(x_i)} f(x_i)g(x_j) + \sum_{i,j} \alpha_i \alpha_j \delta_{f(x_j)g(x_i) < f(x_i)g(x_j)} f(x_j)g(x_i)$$

Hence, since we know that $(x,y) \mapsto f(x)g(y)$ is a p.d. kernel (Aronszajin theorem), we have that:

$$\sum_{i,j} \alpha_i \alpha_j \delta_{f(x_i)g(x_j) < f(x_j)g(x_i)} f(x_i)g(x_j) \ge 0$$

$$\sum_{i,j} \alpha_i \alpha_j \delta_{f(x_j)g(x_i) < f(x_i)g(x_j)} f(x_j) g(x_i) \ge 0$$

Hence we have:

$$\sum_{i,j} \alpha_i \alpha_j \min(f(x_i)g(x_j), f(y)g(x)) \ge 0$$

Therefore, K_4 is a p.d. kernel.

2 Combining Kernels

1. For $x, y \in \mathbb{R}$, let

$$K_1(x,y) = (xy+1)^2$$

$$K_2(x,y) = (xy-1)^2$$

What is the RKHS of K_1 ? Of K_2 ? Of $K_1 + K_2$?

- 2. Let K_1 and K_2 be two positive definite kernels on a set X and α , β two positive scalars. Show that $\alpha K_1 + \beta K_2$ is positive definite, and describe its RKHS.
- 1. Because $(x, y) \mapsto xy$ is a p.d. kernel and 1 is a positive scalar, hence $(x, y) \mapsto xy + 1$ is also a p.d. kernel. Then, K_1 is a p.d. kernel, as the square of a p.d. kernel. Let's now describe its (unique) RKHS.

We already know that its RKHS contains linear combinations of the function :

$$K_x: t \mapsto K_1(x,t)$$

A function f in this RKHS can be written as:

$$f(x) = \sum_{i} \alpha_i K_1(x_i, x) = \sum_{i} \alpha_i x_i^2 x^2 + 2 \sum_{i} \alpha_i x_i x + \sum_{i} \alpha_i$$

Let's define $a = \sum_i \alpha_i x_i^2$, $b = \sum_i \alpha_i x_i$ and $c = \sum_i \alpha_i$. We have then :

$$f(x) = ax^2 + bx + c$$

Hence, our candidate RKHS H will be the set of polynomial function of order 2:

$$f_{a,b,c}(x) = ax^2 + bx + c$$

endowed with the inner-product $\langle f_{a,b,c}, f_{a',b',c'} \rangle_H = aa' + bb' + cc' = \langle A, A' \rangle_{\mathbb{R}^3}$ where A is the vector in \mathbb{R}^3 composed of a, b and c and similarly for A'.

Hence, each K_x can be seen in the RKHS as $f_{x^2,x,1}$ and therefore we have the reproducive property:

$$f_{a,b,c}(x) = ax^2 + bx + c = \langle f_{a,b,c}, K_x \rangle_H$$

Furthermore, the set of polynomial functions of order 2 is a vector space of finite dimension, hence it is complete.

Hence, the RKHS of K_1 is the set of polynomial functions of order 2, assigned to its inner product defined before.

Now, let's focus on K_2 . In fact, this is not a p.d. kernel. For example, if we take $x=1, y=0, \alpha_1=1, \alpha_2=-1$, we have $\alpha_1^2K(x,x)+\alpha_2K(y,y)+2\alpha_1\alpha_2K(x,y)=0+1-2=-1$. Hence, this is not a p.d. kernel and there is no associated RKHS.

However, if we look at the sum $K_1 + K_2$ we obtain : $K(x,y) = x^2y^2 + 1$, and here K is a p.d. kernel (with the same arguments as previously). So, let's find its (unique) RKHS.

We already know that its RKHS contains linear combinations of the function:

$$K_x: t \mapsto K(x,t)$$

A function f in this RKHS can be written as:

$$f(x) = \sum_{i} \alpha_i K(x_i, x) = \sum_{i} \alpha_i x_i^2 x^2 + \sum_{i} \alpha_i$$

Let's define $a = \sum_{i} \alpha_{i} x_{i}^{2}$, and $b = \sum_{i} \alpha_{i}$. We have then:

$$f(x) = ax^2 + b$$

Hence, our candidate RKHS H will be the set of polynomial function of order 2 with no first order component:

$$f_{a,b}(x) = ax^2 + b$$

endowed with the inner-product $\langle f_{a,b}, f_{a',b'} \rangle_H = aa' + bb' = \langle A, A' \rangle_{\mathbb{R}^2}$ where A is the vector in \mathbb{R}^2 composed of a and b, and similarly for A'.

Hence, each K_x can be seen in the RKHS as $f_{x^2,1}$ and therefore we have the reproducive property:

$$f_{a,b}(x) = ax^2 + b = \langle f_{a,b}, K_x \rangle_H$$

Furthermore, the set of polynomial functions of order 2 with no first order component is a vector space of finite dimension, hence it is complete.

Hence, the RKHS of $K_1 + K_2$ is the set of polynomial functions of order 2 with no first order component, assigned to its inner product defined before.

2. If K_1 is a p.d. kernel and α is a positive scalar, then αK_1 is a p.d. kernel. Similarly, βK_2 with β a positive scalar, is a p.d. kernel. Hence, as the sum of 2 p.d. kernels is still a p.d. kernel, $K_1 + K_2$ is p.d. kernel. Let's find now its (unique) RKHS.

First, the RKHS contains all the following functions:

$$f(.) = \sum_{i} K_1(x_i, .) + K_2(x_i, .)$$

Hence, the RKHS contains all the functions $f_1 + f_2$ where $f_1 \in H_1$ and $f_2 \in H_2$. The set $H_1 + H_1$ composed of such functions is a complete space, as it is the sum of 2 complete spaces (any cauchy sequence in H_1 converges in H_1 , any cauchy sequence in H_2 converges in H_2 , hence any cauchy sequence in $H_1 + H_2$ converges in $H_1 + H_2$). Hence, we have to find an inner product to describe the RKHS.

Let's write the RKHS as $Span(\alpha K_1(x,.) + K_2(x,.))$. Then, any functions f and g can be written as:

$$f(x) = \sum_{i} \alpha_i K_1(x_i, x) + \beta_i K_2(x_i, x)$$

$$g(x) = \sum_{i} \alpha'_{i} K_{1}(x_{i}, x) + \beta'_{i} K_{2}(x_{i}, x)$$

Let's define the inner product between f and g as:

$$\langle f, g \rangle_H = \sum_{i,j} \frac{\alpha_i}{\sqrt{\alpha}} \frac{\alpha_i'}{\sqrt{\alpha}} K_1(x_i, x_j) + \frac{\beta_i}{\sqrt{\beta}} \frac{\beta_i'}{\sqrt{\beta}} K_2(x_i, x_j)$$

We check that this is an inner product, now let us check the reproducing property. We have:

$$\langle f, \alpha K_1(x, .) + \beta K_2(x, .) \rangle_H = \langle \sum_i \alpha_i K_1(x_i, .) + \beta_i K_2(x_i, .), \alpha K_1(x, .) + \beta_i K_2(x, .) \rangle_H = \sum_i \alpha_i K_1(x_i, x) + \beta_i K_2(x_i, x) = f(x)$$

Hence, the reproducive property holds.

All in all, we have found the (unique) Hilbert space associated to $\alpha K_1 + \beta K_2$, wioth its associated inner product.

3 Uniqueness of the RKHS

Prove that if K: XxX is a positive definite function, then it is the r.k. of a unique RKHS. To prove it, you can consider two possible RKHS H and H', and show that (i) they contain the same elements and (ii) their inner products are the same. Hint: consider the linear space spanned by the functions $K_x: t \mapsto K(x,t)$, and use the fact that a linear subspace F of a Hilbert space H is dense in H if and only if 0 is the only vector orthogonal to all vectors in F.

Suppose there are 2 RKHS for the p.d. kernel K, H_1 and H_2 . Let H_0 the space composed of linear combinations of functions $K_x(x, .)$. First, we know that $H_0 \in H_1$ and $H_0 \in H_2$.

Now, let us show that H_0 is dense in H_1 , by using the hint given : H_0 is dense in H_1 if and only if the vector orthogonal to all elements in H_0 is the null vector.

Let f a vector in H_0 orthogonal to all elements in H_0 . Hence we have :

$$\forall g \in H_0, \langle f, g \rangle_{H_0} = 0$$

Then, we have:

$$\forall x, \langle f, K(x, .) \rangle_{H_0} = 0$$

By the reproducive property, this implies that:

$$\forall x, f(x) = 0$$

Hence, H_0 is dense in H_1 . We prove also similarly that H_0 is dense in H_2 .

Then, we show that both norms coincide on H_0 :

$$\forall f,g \in H_0, \langle f,g \rangle_{H_1} = \langle \sum_i \alpha_i K(x_i,.), \sum_j \beta_j K(x_j,.) \rangle_{H_1} = \sum_{i,j} \alpha_i \alpha_j K(x_i,x_j) = \langle \sum_i \alpha_i K(x_i,.), \sum_j \beta_j K(x_j,.) \rangle_{H_2}$$

Now, let f a function in H_1 . Because H_0 is dense in H_1 , there exists a sequence of functions in H_0 which converges to f. Because the elements of this sequence are also in H_2 , there exists a sub sequence which converges in H_2 . However, the limit is unique so the limit of the sub sequence in H_2 is the same as the limit of the initial sequence in H_1 , which is f. Hence, $F \in H_2$. We have proven that elements from H_1 are also in H_2 . We prove also the opposite side. Hence the elements in H_1 and H_2 are the same.

Now, we prove that the inner product are the same. Let $f \in H_1$ and $g \in H_2$. Let (f_n) and (g_n) the sequences of H_0 converging to f and g respectively. Then we have :

$$\langle f,g\rangle_{H_1}=\langle lim_nf_n,lim_mg_m\rangle_{H_1}=lim_nlim_m\langle f_n,g_m\rangle_{H_1}=lim_nlim_m\langle f_n,g_m\rangle_{H_0}=lim_nlim_m\langle f_n,g_m\rangle_{H_2}=\langle lim_nf_n,lim_mg_m\rangle_{H_2}=\langle lim_$$

Hence, the inner products are the same.

Therefore, we have $H_1 = H_2$.