

SkyDiveUnmanned Aerial System

Bartosz Nawrot

Parts of the system

- Controller board
- Communication protocol
- User application
 - Desktop
 - Mobile
- Drone over LTE forwarding server
- Test environment
 - Legacy security
 - Flight simulator

Controller board - hardware

- Internal IMU
 - Accelerometer
 - Gyroscope
 - Magnetometer
 - Barometer
- 400Hz control frequency
- Data logger support
- Only 43x43 millimetres size

Controller board - algorithms

- Multiple multirotor configurations
- Sensors calibration
- Full state estimation
- Rotation control
 - Rotation rate
 - Rotation angles
- Position (autopilot)
 - Altitude
 - Position change rate
 - Position (specific position or sequence Via-Route)

Flight movie – 1:48

Move with black hexacopter with hold position and rotation

Communication protocol

Preamble

Payload

CRC

- Preamble contains 3 the same bytes and '0', example: {\$, \$, \$, 0}
- Payload length varies in case of preamble type 38 8 FF 74
- Payload contains serialized protocol data structures
- 16 bits CRC sum is computed only from payload

Control $-\{\$,\$,\$,0\}$

- Size: 48 bytes
- Control
- Telemetry
- Payload data layout depends on transmission direction
- UDP transport layer

Signal – {%, %, %, 0}

- Size: 8/58 bytes
- Configuration and synchronization
- Settings transmission
- TCP transport layer

Autopilot – {^, ^, ^, 0}

- Size: 32 bytes
- Position management in autopilot mode
- Autopilot events
- TCP transport layer

Communication protocol

- Can be transmitted over any binary interface
- Can be encapsulated in any IP layer
- Open source accessible from GitHub
 - https://github.com/skydiveuavs/skydive
- Wide documentation and use cases
- MIT license
- Allows to create your own application evolves drones powered by SkyDive controller board

User application - desktop

User application - mobile

- https://github.com/nawbar23/AdDroneApplication
- WiFi interface (RB Pi2 vs. phone)

Drone over LTE – forwarding server

Test environment – legacy security

- Automated environment with most critical cases covered
- Tests based on multirotor model
- Model parameters identified in experiments

Test environment – flight simulator