Intro to NLP Assignment - 2

Soumodipta Bose

2021201086

Files Structure:

```
Assignment 2 Report.pdf
config.json
en_atis-ud-dev.conlu
en_atis-ud-test.conlu
en_atis-ud-train.conllu

dataset.py
model.py
pos_tagger.py
readme.md
tags.json
utils.py
```

Configurable Script:

The scripts parameters are configurable using config.json:

```
"DATA_FOLDER": "data/UD_English-Atis/",
"TRAIN_FILE": "en_atis-ud-train.conllu",
"TEST_FILE": "en_atis-ud-test.conllu",
"DEV FILE": "en atis-ud-dev.conllu",
"WORD EMBEDDINGS FILE": "data/glove.6B.100d.txt",
"BATCH SIZE": 32,
"SEED":159,
"EPOCHS": 100,
"EMBEDDING_DIM": 100,
"HIDDEN DIM": 128,
"DROPOUT": 0.8,
"N_LAYERS": 2,
"LEARNING RATE": 0.0005,
"MODEL PATH": "pos tagger2.pt",
"MAX SEQ_LENGTH": 50,
"VOCAB_SIZE": 50000,
"BIDIRECTIONAL": true
```

Exploring Data and Pre-processing

Preparing the dataset from the conllu form:

```
IGNORE_TAG_INDEX = 0
def create data(sentences, vocab, tags, max seq len=50):
    sents idx=[]
   sent_tags=[]
   #present=0
   #not present=0
    for sent in sentences:
        sent idx=[]
        sent tag=[]
        for token in sent:
            if (token["form"].lower() in vocab):
                sent idx.append(vocab[token["form"].lower()])
                sent_idx.append(vocab["<UNK>"])
            sent_tag.append(tags[token["upos"]])
        sents_idx.append(sent_idx)
        sent_tags.append(sent_tag)
    for i in range(len(sents_idx)):
        if len(sents idx[i]) < max seq len:</pre>
            sents_idx[i]=sents_idx[i]+[vocab["<PAD>"] for _ in range(max_seq_len - len(sents_idx[i]))]
            sent_tags[i]=sent_tags[i]+[tags["PAD"] for _ in range(max_seq_len - len(sent_tags[i]))]
     print(not present)
    return sents_idx,sent_tags
```

Making the dataset compatible for data loading

```
class POSDataSet(Dataset):
    def __init__(self, x, y):
        self.sent = torch.LongTensor(x)
        self.sent_tags = torch.LongTensor(y)

def __getitem__(self, idx):
        return self.sent[idx], self.sent_tags[idx]

def __len__(self):
    return len(self.sent)
```

Using Pytorch's Data loader to create mini-batches

```
train_dataset = POSDataSet(x_train,y_train)
dev_dataset = POSDataSet(x_dev,y_dev)
test_dataset = POSDataSet(x_test,y_test)
```

```
BATCH_SIZE =32
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
dev_dataloader = DataLoader(dev_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
```

Model Creation

The model was created using Pytorch. The model consisted of an initial embedding layer that used pre-trained embedding embeddings using Glove. Then was fed into an LSTM and finally a Linear Fully connected layer with output dimensions of the tag set size.

```
class POSTagger(nn.Module):
    def __init _(self,max_seq_len,embeddings,hidden_dim,n_layers,tagset_size):
        super().__init__()
        self.max_seq_len = max_seq_len
        self.num_labels = tagset_size
        self.hidden_dim = hidden_dim
        self.embeddings = nn.Embedding.from_pretrained(embeddings,padding_idx=0)
        self.lstm = nn.LSTM(input_size=embeddings.size()[1], hidden_size= self.hidden_dim , num_layers=n_layers)
        self.hidden2tag = nn.Linear(self.hidden_dim,self.num_labels)

def forward(self,input_seq):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        input_seq = input_seq.to(device)
        embed_out = self.embeddings(input_seq)
        lstm_out,_ = self.lstm(embed_out)
        logits = self.hidden2tag(lstm_out)
        return logits
```

Hyper Parameter Tuning

I experimented with different learning rates, hidden dimensions, embedding sizes and hidden layers to find the best fit for the model.

00%| 50/50 [00:21<00:00, 2.38it/s] # Model: Training Accuracy: 0.9444250333984174 Validation Accuracy: 0.9430091185410334 # # Model Parameters | Learning Rate: 0.0001 Layers: 1 Hidden Dim: 32 # # Analysis | : Test Accuracy : 0.9430091185410334 # # Model: Training Accuracy: 0.9526872880485048 Validation Accuracy: 0.952887537993921 # # Model Parameters | Learning Rate: 0.0001 Layers: 1 Hidden Dim: 64 # # Analysis | : Test Accuracy : 0.952887537993921 # _____ 100%| 50/50 [00:23<00:00, 2.16it/s] # Model: Training Accuracy: 0.9576816360086322 Validation Accuracy: 0.9592705167173252 # 100% 50/50 [00:51<00:00, 1.02s/it] # Model: Training Accuracy: 0.9641968965162881 Validation Accuracy: 0.9630699088145896 # _____ # Model Parameters | Learning Rate: 0.0001 Layers: 2 Hidden Dim: 256 # # Analysis | : Test Accuracy : 0.9630699088145896 # 100%| 50/50 [01:12<00:00, 1.45s/it] # Model: Training Accuracy: 0.9637652861987462 Validation Accuracy: 0.9629179331306991 # # Model Parameters | Learning Rate: 0.0001 Layers: 2 Hidden Dim: 512# # Analysis | : Test Accuracy : 0.9629179331306991 # Finally the best configuration was chosen to be: Learning rate = 0.0005 Hidden Dimensions = 128 Hidden layers = 2 Embedding Size = 100

Analyzing the scores of the tags

Calculating the precision, recall and f1-score of all the different tags. As we can see pad has a f1-score of zero because we ignore the pad tag during gradient calculation in the model, this greatly saves us from miss-classification errors where words were being incorrectly tagged as pads.

	precision	recall	f1-score	support
PAD	0.00	0.00	0.00	0
ADJ	0.93	0.97	0.95	220
ADP	0.98	0.99	0.98	1434
ADV	0.95	0.72	0.82	76
AUX	0.96	1.00	0.98	256
CCONJ	1.00	1.00	1.00	109
DET	0.98	0.87	0.92	512
INTJ	0.97	1.00	0.99	36
NOUN	0.99	0.97	0.98	1166
NUM	0.95	0.96	0.95	127
PART	0.72	0.52	0.60	56
PRON	0.85	0.98	0.91	392
PROPN	0.98	0.99	0.99	1567
SYM	0.00	0.00	0.00	0
VERB	0.98	0.97	0.98	629
micro avg	0.97	0.97	0.97	6580
macro avg	0.82	0.80	0.80	6580
weighted avg	0.97	0.97	0.97	6580

Test dataset

Output

Following is the output of the pos tagger:

```
> python3 pos_tagger.py
Mary has a little lamb
Mary PROPN
has VERB
a DET
little ADJ
lamb VERB
```

Model Exploration

Improving the version of the model using Dropout and Bi-directional LSTM.

```
class ImprovedPOSTagger(POSTagger):
    def __init__(self,max_seq_len,embeddings,hidden_dim,n_layers,tagset_size,dropout=0.8,bidirectional|=True):
        super().__init__(max_seq_len,embeddings,hidden_dim,n_layers,tagset_size)
        self.lstm = nn.LSTM(input_size=embeddings.size()[1], hidden_size=hidden_dim, dropout=dropout, num_layers=n_layers, bidirectional=bidirectional)
        self.hidden2tag = nn.Linear(self.hidden_dim*2,self.num_labels)
```

By improving the model two more parameters were added:

Dropout = 0.3

Bidirectional = True

Final Accuracy:

Dataset	Accuracy	
Training	0.9687801870311376	
Validation	0.9614689945815773	
Test	0.9667173252279635	

7