The lead-lag transformation

Remy Messadene

A rough path between mathematics and data science

The Alan Turing Institute

Imperial College London

Outline

- ① Definitions
- Defining the Levy area between paths Levy area as a measure of auto-correlation Levy area and signature
- 3 Recovering statistical properties of $\hat{\gamma}$ using lead-lag transform and signatures
- 4 Signatures as statistical properties

Definitions

Let Λ denote the lead-lag transform. We will see three variations of it:

- ① Discrete-discrete lead-lag
 - $\Lambda_{dd}: \{ \text{Sequences in } \mathbb{R}^d \} \to \{ \text{Sequences in } \mathbb{R}^2 d \}$
- Discrete-continuous lead-lag
 - $\Lambda_{dc}: \{\text{Sequences in } \mathbb{R}^d\} \to \{\text{Continuous paths in } \mathbb{R}^2 d\}$
- 3 Continuous-continuous lead-lag
 - $\Lambda_{\operatorname{cc}}:\{\operatorname{Sequences in}\,\mathbb{R}^d\} o\{\operatorname{Continuous}\,\operatorname{paths in}\,\mathbb{R}^2d\}$

Definition (*p*-lead lag transformation (Discrete-discrete version))

Let $\hat{\gamma} := \{x_{t_i}\}_{i \in \{1,...,n\}}$ be a sequence of n points in \mathbb{R}^d . Define by the **discrete-discrete** p-**lead-lag transform** $\Lambda_{dd}(\hat{\gamma}; p)$ of $\hat{\gamma}$ the following sequence of points,

$$\Lambda_d(\hat{\gamma}, p) = \left\{ (X_{t_{s+p-1}}, X_{t_s}), (X_{t_{s+p}}, X_{t_s}) \right\}_{s \in \{1, \dots, n-p\}} \tag{1}$$

for $p \in \{1, ..., n-1\}$.

Remark (Length and dimension)

 $\Lambda_{dd}(\hat{\gamma}; p)$ transform a sequence of n points in \mathbb{R}^d into one of 2n-2p points in \mathbb{R}^{2d} .

Examples (Discrete-discrete version)

1 Take $\hat{\gamma} = (1, 4, 2, 6)$. Then,

$$\Lambda_{dd}(\hat{\gamma}, 1) = ((1, 1), (4, 1), (4, 4), (2, 4), (2, 2), (6, 2), (6, 6)) \tag{2}$$

$$\Lambda_{dd}(\hat{\gamma}, 2) = ((4, 1), (2, 1), (2, 4), (6, 4), (6, 2)) \tag{3}$$

$$\Lambda_{dd}(\hat{\gamma},3) = ((2,1),(6,1),(6,4)) \tag{4}$$

Examples (Discrete-discrete version)

Definition (continuous)

Definition (*p*-lead lag transformation (Discrete-continuous version))

Let $\hat{\gamma} := \{x_{t_i}\}_{i \in \{1,...,n\}}$ be a sequence of n points in \mathbb{R}^d . Define by the **discrete-continuous** p**-lead-lag transform** $\Lambda_{dc}(\hat{\gamma}; p)$ of $\hat{\gamma}$ the following continuous path in \mathbb{R}^{2d} ,

$$\Lambda_{dc}(\hat{\gamma}; \rho)(t) := \begin{cases}
(x_{t_{i+\rho-1}}, x_{t_i}), & t \in [i, i + \frac{1}{3}) \\
(x_{t_{i+\rho-1}} + 3(t - (i + \frac{1}{3}))(x_{t_{i+\rho}} - x_{t_{i+\rho-1}}), x_{t_i}), & t \in [i + \frac{1}{3}, i + \frac{2}{3}) \\
(x_{t_{i+\rho}}, x_{t_i} + 3(t - (i + \frac{2}{3}))(x_{t_{i+1}} - x_{t_i})), & t \in [i + \frac{2}{3}, i + 1)
\end{cases}$$
(6)

for $p \in \{1, ..., n-1\}$ and $t \in [1; n-p]$.

Remark (Trivial recovery)

The discrete-continuous lead lag path $\Lambda_{dc}(\hat{\gamma};p)(t)$ evaluated at the times $\{k+\frac{s}{3}\}_{k\in\{1,...,n\},s\in\{1,2\}}$ exactly recovers the discrete-discrete lead lag $\Lambda_{dd}(\hat{\gamma})$.

Examples (Discrete-continuous version)

Definition (continuous-continuous)

Definition (p-lead lag transformation (continuous version))

Let $\gamma: [a,b] \to \mathbb{R}^d$ be a path in \mathbb{R}^d . The **continuous-continuous** p-**lead-lag path** Λ_{cc} of γ is simply

$$\Lambda_{cc}(\gamma; p)(t) := (\gamma(t+p), \gamma(t)) \tag{7}$$

for $p \in [a; b]$ and $t \in [a, b - p]$.

Remark (Λ_{cc} is the limit of Λ_{dc} for large n)

Let $\hat{\gamma} := \{x_{t_i}\}_{i \in \{1,...,n\}}$ be a set of n points and consider its linear interpolation γ_L^n . If there exists a path $\gamma : [a,b] \to \mathbb{R}^d$ such that $\hat{\gamma}$ is the evaluation of γ on the set of times $\{t_i\}_{i \in \{1,...,n\}}$, then

$$\lim_{n\to\infty} \Lambda_{dc}(\hat{\gamma}_n; \lfloor \frac{p_n}{n} \rfloor)(\frac{t}{n}) = \Lambda_{cc}(\gamma; (b-a)c+a)((b-a)t+a), \ \forall t \in [0; 1]$$
(8)

where p_n is such that $\frac{p_n}{n} = c$ for a constant $c \in [0,1]$, $n \in \mathbb{N}$.

Outline

- 1 Definitions
- 2 Levy area Defining the Levy area between paths Levy area as a measure of auto-correlation Levy area and signature
- 3 Recovering statistical properties of $\hat{\gamma}$ using lead-lag transform and signatures
- 4 Signatures as statistical properties

Levy area and convexity

• One can think of the correlation of γ'' with itself in terms of the Levy area A of its lead-lag path with respect to the straight line linking endpoints.

Levy area

Definition

Denote by $A_{[0,t]}$ the Levy area drawn by (X_1,X_2) between [0,t] wrt. straight dashed line linking start and end points,

$$A_{[0,t]} := \frac{1}{2} \left(\int_0^t X_1(s) dX_2(s) - \int_0^t X_2(s) dX_1(s) \right)$$
 (9)

Signs of the Levy area in terms of the windig number

Using **Green's theorem** (to express *A* as a double integral with respect to the area) **and then Kelvin-Stokes theorem** (to express the integral of the signed area w.r.t. to windig number of the curve around the areas) **gives the following sign rules,**

Levy area and auto-correlation

Let $\gamma: [a,b] \to \mathbb{R}$ be a path in \mathbb{R} .

Consider the p-lead-lag transform $\Lambda_{cc}(\gamma; p) : [a; b-p] \to \mathbb{R}^{2d}$ of γ whose components are denoted as $\Lambda_{cc}(\gamma; p) = (X_1, X_2)$.

(Plot from¹)

Levy area and auto-correlations between second derivatives:

$$\frac{d}{dt}A_{[0,t]} \stackrel{\geq}{\leq} 0 \quad \Longrightarrow \quad sign(\gamma''(t)\gamma''(t-p)) = \pm 1 \tag{10}$$

if both second-derivatives are non-null and well-defined.

Signature and Levy area

Finally, Levy area and signature are related.

By definition 7, the Levy area A^{ij} between the components X_i and X_j of a path γ can be expressed in terms of the 2-order signature terms as

$$A_{[0,t]}^{ij} = \frac{1}{2} \left(S(\gamma)^{2;ij} - S(\gamma)^{2;ji} \right)$$
 (11)

Outline

- 1 Definitions
- Defining the Levy area between paths Levy area as a measure of auto-correlation Levy area and signature
- 3 Recovering statistical properties of $\hat{\gamma}$ using lead-lag transform and signatures
- 4 Signatures as statistical properties

Lead lag and quadratic variation

Recall the following lead-lag path

The total Levy area $A_{[0,T]}$ of the rectangles is

$$|A_{[0,7]}| = \frac{1}{2} [(X_2^2 - X_1^2)(X_2^2 - X_1^2) + (X_3^2 - X_2^2)(X_3^2 - X_2^2) + 2)$$
 (12)

$$+(X_4^2-X_3^2)(X_4^2-X_3^2)] (13)$$

$$= \frac{1}{2}[(4-1)^2 + (2-4)^2 + (6-2)^2]$$
 (14)

Definition (Quadratic variation (discrete version))

Let $\hat{\gamma} := \{X_i\}_{i \in \{1,...,n\}}$ be a set of n points in \mathbb{R}^d . Then, the quadratic variation $QV(\hat{\gamma})$ of $\hat{\gamma}$ is

$$QV(\hat{\gamma}) := \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$
 (15)

For a lead-lag path γ , the Levy area and its quadratic variation are linked,

$$A_{[0,7]} = \frac{1}{2}QV(X) \tag{16}$$

Cumulative lead-lag transform

We now present two transformations that will be used together to recover statistical properties of $\hat{\gamma}$:

- \bullet the k-cumulative sum transformation
- 2 the zero augmentation.

Lead lag and cumulative sum

Definition (*k*-cumulative sum transformation)

Let $\hat{\gamma} := \{X_i\}_{i \in \{1,...,n\}}$ be a set of n points in \mathbb{R}^d . Define the k-cumulative sum transformation C_k as,

$$C_k(\hat{\gamma}) := \{X_1^k, X_1^k + X_2^k, ..., \sum_{i=1}^n X_i^k\}$$
(17)

Remark

 $C_k(\hat{\gamma})$ preserves the length of the sequence.

Zero augmentation

Definition (Zero augmentation)

Let $\hat{\gamma} := \{X_i\}_{i \in \{1,...,n\}}$ be a set of n points in \mathbb{R}^d . Define the **zero** augmentation as $A : \{X_1, X_2, ...\} \mapsto \{0, X_1, X_2, ...\}$.

Remark

The zero augmentation makes the signature sensitive to translations of the time series (if path is translated, the first order term clearly changes).

Cumulative lead-lag transform

We will show how we recover statistical properties of interest using the k-cumulative lead-lag transform Λ^k

Definition (Cumulative lead-lag transform)

Let $\hat{\gamma} := \{X_i\}_{i \in \{1,...,n\}}$ be a set of n points in \mathbb{R}^d . Define the k-cumulative lead lag transformation as

$$\Lambda^{k}(\hat{\gamma}) := (C_{k} \circ A)(\hat{\gamma}) \tag{18}$$

$$= \{0, X_1^k, X_1^k + X_2^k, ..., \sum_{i=1}^{n-1} X_i^k\}$$
(19)

Recovering statistical properties of $\hat{\gamma}$ with cumulative lead-lag

DataSıg

Lemma (Cumulative lead lag and statistical properties)

Let $\hat{\gamma}:=\{X_i\}_{i\in\{1,\dots,n\}}$ be a set of n points in \mathbb{R}^d and $\Lambda^k(\hat{\gamma}):=\{\tilde{X}_i^j\}_{i\in\{0,\dots,n\},j\in\{1,2\}}$ its 1-cumulative lead lag transformation. Then, the total increment $\Delta\Lambda^1(\hat{\gamma})$ and quadratic variation $QV(\Lambda^1(\hat{\gamma}))$ of $\Lambda^1(\hat{\gamma})$ characterise the mean and variance of $\hat{\gamma}$,

$$\Delta \Lambda^{1}(\hat{\gamma})_{j} = \sum_{i=1}^{n} X_{i}, \quad j \in \{1, 2\},$$
 (20)

$$QV(\Lambda^{1}(\hat{\gamma}))_{j} = \sum_{i=0}^{N-1} (\tilde{X}_{i+1}^{j} - \tilde{X}_{i}^{j})^{2} = \sum_{i=1}^{N} X_{i}^{2}, \quad j \in \{1, 2\}.$$
 (21)

Corollary (Cumulative lead-lag to recover mean and variance)

In particular,

$$Mean(X) = \frac{\Delta \Lambda^{1}(\hat{\gamma})}{N}$$
 (22)

$$Var(X) = \frac{1}{N} \left(QV(\Lambda^{1}(\hat{\gamma}) - \frac{1}{N} (\Delta \Lambda^{1}(\hat{\gamma})^{2}) \right)$$
 (23)

Outline

- Definitions
- 2 Levy area Defining the Levy area between paths Levy area as a measure of auto-correlation Levy area and signature
- 3 Recovering statistical properties of $\hat{\gamma}$ using lead-lag transform and signatures
- 4 Signatures as statistical properties

Signature as statistical properties

Let $\hat{\gamma}:=\{X_i\}_{i\in\{1,\dots,n\}}$ be a set of n points in \mathbb{R}^d and $\Lambda^1(\hat{\gamma}):=\{\tilde{X}_i^j\}_{i\in\{0,\dots,n\},j\in\{1,2\}}$ its 1-cumulative lead lag transformation. Denote the 2-truncated signature of the latter path as

$$S(\Lambda^{1}(\hat{\gamma})|_{L=2} = (1, S^{1;1}, S^{1;2}, S^{2;11}, S^{2;12}, S^{2;21}, S^{2;22})$$
 (24)

Lemma (Truncated signature of 1-cumulative lead lag)

The signature of the 1-cumulative lead lag transformed path satisfies

$$S^{1;1} = S^{1;2} = \sum_{i=1}^{N} X_i$$
 (25)

$$S^{2;11} = S^{2;22} = \frac{1}{2} \left(\sum_{i=1}^{n} X_i^2 \right)$$
 (26)

$$S^{2;12} = \frac{1}{2} \left[\left(\sum_{i}^{n} X_{i} \right)^{2} + \sum_{i}^{n} X_{i}^{2} \right]$$
 (27)

$$S^{2;21} = \frac{1}{2} \left[\left(\sum_{i}^{n} X_{i} \right)^{2} - \sum_{i}^{n} X_{i}^{2} \right]$$
 (28)

Similar equations can be derived for the signature of the raw path $\hat{\gamma}$,

Lemma (Truncated signature of γ)

$$S^{1;1} = S^{1;2} = \sum_{i=1}^{N} X_{i+1} - X_i$$
 (29)

$$S^{2;11} = S^{2;22} = \frac{1}{2} \left(\sum_{i=1}^{n} (X_{i+1} - X_i) \right)^2$$
 (30)

$$S^{2;12} = \frac{1}{2} \left[\left(\sum_{i}^{n} (X_{i+1} - X_i) \right)^2 + \sum_{i}^{n} (X_{i+1} - X_i) \right]$$
 (31)

$$S^{2;21} = \frac{1}{2} \left| \left(\sum_{i}^{n} (X_{i+1} - X_i) \right)^2 + \sum_{i}^{n} (X_{i+1} - X_i) \right|$$
 (32)

(33)

Using the above equations, simple algebra yields the following relationships:

Corollary (Signature as statistical properties)

$$Mean(X) = \frac{1}{n}S^{1;1}$$

$$Var(X) = -\frac{n+1}{n^2}S^{2;1,2} + \frac{n-1}{n^2}S^{2;21}$$
(34)

$$Var(X) = -\frac{n+1}{n^2}S^{2;1,2} + \frac{n-1}{n^2}S^{2;21}$$
(35)

Bibliography

