El problema de existencia y regularidad para las ecuaciones de Navier-Stokes: uno de los siete problemas del milenio

Nicolás Bourbaki

Departamento de Matemáticas Universidad de Antioquia

Copyleft © 2008. Reproducción permitida bajo los términos de la licencia de documentación libre GNU.

- 1 Introducción
 - ¿Qué son las ecuaciones de Navier-Stokes?
 - ¿Cómo surgen?
 - Problema matemático
- 2 Descripción del problema
 - Las ecuaciones de Euler
 - Las Ecuaciones de Navier-Stokes
 - El desafío
- 3 Enunciado del problema
- 4 Referencias

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas
 - aerodinámica

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas
 - aerodinámica
 - movimiento de estrellas

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas
 - aerodinámica
 - movimiento de estrellas
- No se conoce una fórmula que resuelva las ecuaciones (solución analítica) excepto en algunos tipos de flujos concretos.

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas
 - aerodinámica
 - movimiento de estrellas
- No se conoce una fórmula que resuelva las ecuaciones (solución analítica) excepto en algunos tipos de flujos concretos.
- Es necesario recurrir al análisis numérico para determinar soluciones aproximadas.

- Son un conjunto de ecuaciones en derivadas parciales no lineales que describen el movimiento de un fluido (liquidos y gases).
- Modelan una gran variedad de fenómenos físicos complejos:
 - clima
 - corrientes oceánicas
 - aerodinámica
 - movimiento de estrellas
- No se conoce una fórmula que resuelva las ecuaciones (solución analítica) excepto en algunos tipos de flujos concretos.
- Es necesario recurrir al análisis numérico para determinar soluciones aproximadas.

; Cómo surgen?

¿Cómo surgen?

Daniel Bernoulli (1700 - 1782)

Durante la primera mitad del siglo XVIII el matemático suizo Daniel Bernoulli muestra cómo adaptar los métodos del cálculo para analizar cómo fluyen los fluidos.

Leonhard Euler (1707 - 1783)

Basado en el trabajo de Bernoulli, Leonhard Euler formula un conjunto de ecuaciones cuyas soluciones decriben precisamente el movimiento de un fluido hipotético no viscoso.

•0

¿Cómo surgen?

Daniel Bernoulli (1700 - 1782)

Durante la primera mitad del siglo XVIII el matemático suizo Daniel Bernoulli muestra cómo adaptar los métodos del cálculo para analizar cómo fluyen los fluidos.

Leonhard Euler (1707 - 1783)

Basado en el trabajo de Bernoulli, Leonhard Euler formula un conjunto de ecuaciones cuyas soluciones decriben precisamente el movimiento de un fluido hipotético no viscoso.

¿Cómo surgen?

¿Cómo surgen?

Claude-Louis Navier (1785 - 1836)

En 1822 Navier modifica las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad. Aunque su razonamiento matemático fue incorrecto, obtuvo las ecuaciones correctas.

George Gabriel Stokes (1819 - 1903)

En 1842 Stokes deduce por medio de un razonamiento correcto las ecuaciones que 20 años antes Navier había obtenido y extendió la teoría.

¿Cómo surgen?

¿Cómo surgen?

Claude-Louis Navier (1785 - 1836)

En 1822 Navier modifica las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad. Aunque su razonamiento matemático fue incorrecto, obtuvo las ecuaciones correctas.

George Gabriel Stokes (1819 - 1903)

En 1842 Stokes deduce por medio de un razonamiento correcto las ecuaciones que 20 años antes Navier había obtenido y extendió la teoría.

- Los matemáticos aun **no** consiguen demostrar si para el caso en tres dimensiones siempre existirán soluciones (existencia).
- En caso de existir, ¿contendrán dichas soluciones discontinuidades o

00

- Los matemáticos aun **no** consiguen demostrar si para el caso en tres dimensiones *siempre* existirán soluciones (*existencia*).
- En caso de existir, ¿contendrán dichas soluciones discontinuidades o singularidades (regularidad)?
- El instituto Clay de Matemáticas ha denominado a éste como uno de los siete problemas del milenio.

- Los matemáticos aun **no** consiguen demostrar si para el caso en tres dimensiones siempre existirán soluciones (existencia).
- En caso de existir, ¿contendrán dichas soluciones discontinuidades o singularidades (regularidad)?
- El instituto Clay de Matemáticas ha denominado a éste como uno de los siete problemas del milenio.
- El instituto Clay ofrece la suma de un millón de dólares a quien

Introducción

- Los matemáticos aun **no** consiguen demostrar si para el caso en tres dimensiones *siempre* existirán soluciones (*existencia*).
- En caso de existir, ¿contendrán dichas soluciones discontinuidades o singularidades (regularidad)?
- El instituto Clay de Matemáticas ha denominado a éste como uno de los siete problemas del milenio.
- El instituto Clay ofrece la suma de un millón de dólares a quien presente una solución o un contraejemplo a este difícil problema.

Problema matemático

Anuncio del Instituto Clay de Matemáticas

Navier-Stokes Equation

Waves follow our boat as we meander across the lake, and turbulent air currents follow our flight in a modern jet. Mathematicians and physicists believe that an explanation for and the prediction of both the breeze and the turbulence can be found through an understanding of solutions to the Navier-Stokes equations. Although these equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory which will unlock the secrets hidden in the Navier-Stokes equations.

http://www.claymath.org/millennium/Navier-Stokes_Equations/

- Las ecuaciones de Euler gobiernan el flujo de un fluido hipotético sin viscodidad que se extiende de manera infinita en todas las direcciones.
- Asumimos que cada punto P = (x, y, z) en el fluido está sujeto a fuerzas que varían con el tiempo en cada dirección: $f_x(x, y, z, t)$, $f_y(x, y, z, t)$ y $f_z(x, y, z, t)$.

- Las ecuaciones de Euler gobiernan el flujo de un fluido hipotético sin viscodidad que se extiende de manera infinita en todas las direcciones.
- Asumimos que cada punto P = (x, y, z) en el fluido está sujeto a fuerzas que varían con el tiempo en cada dirección: $f_x(x, y, z, t)$, $f_y(x, y, z, t)$ y $f_z(x, y, z, t)$.
- El fluido experimenta una presión p(x, y, z, t) en el punto P al tiempo t.

- Las ecuaciones de Euler gobiernan el flujo de un fluido hipotético sin viscodidad que se extiende de manera infinita en todas las direcciones.
- Asumimos que cada punto P = (x, y, z) en el fluido está sujeto a fuerzas que varían con el tiempo en cada dirección: $f_x(x, y, z, t)$, $f_y(x, y, z, t)$ y $f_z(x, y, z, t)$.
- El fluido experimenta una presión p(x, y, z, t) en el punto P al tiempo t.
- El movimiento del fluido en el punto P al tiempo t queda determinado por la velocidad con que fluye en cada dirección: $u_x(x,y,z,t)$, $u_y(x,y,z,t)$ y $u_z(x,y,z,t)$.

- Las ecuaciones de Euler gobiernan el flujo de un fluido hipotético sin viscodidad que se extiende de manera infinita en todas las direcciones.
- Asumimos que cada punto P = (x, y, z) en el fluido está sujeto a fuerzas que varían con el tiempo en cada dirección: $f_x(x, y, z, t)$, $f_y(x, y, z, t)$ y $f_z(x, y, z, t)$.
- El fluido experimenta una presión p(x, y, z, t) en el punto P al tiempo t.
- El movimiento del fluido en el punto P al tiempo t queda determinado por la velocidad con que fluye en cada dirección: $u_x(x,y,z,t)$, $u_y(x,y,z,t)$ y $u_z(x,y,z,t)$.

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- \blacksquare La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

4日 > 4周 > 4 差 > 4 差 >

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- \blacksquare La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t = 0, i.e., $u_x(x, y, z, 0)$, $u_y(x, y, z, 0)$ y $u_z(x, y, z, 0)$ son conocidas (condiciones iniciales).

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- \blacksquare La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

- El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t = 0, i.e., $u_x(x, y, z, 0)$, $u_y(x, y, z, 0)$ y $u_z(x, y, z, 0)$ son conocidas (condiciones iniciales).
- Estas funciones iniciales deben satisfacer ciertas hipótesis de "suavidad" o regularidad que más adelante en la sección (3) precisaremos.

- Asumimos que el fluido es *incompresible*: no se puede "comprimir" o "expandir" cuando actúan fuerzas sobre éste.
- La incompresibilidad se expresa matematicamente por medio de

$$\frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z} = 0 \tag{1}$$

- El problema presupone que conocemos cómo es el movimiento del fluido al inicio cuando t = 0, i.e., $u_x(x, y, z, 0)$, $u_y(x, y, z, 0)$ v $u_z(x, y, z, 0)$ son conocidas (condiciones iniciales).
- Estas funciones iniciales deben satisfacer ciertas hipótesis de "suavidad" o regularidad que más adelante en la sección (3) precisaremos.

Al aplicar las leves de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x} \tag{2}$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y} \tag{3}$$

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
 (3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
 (4)

lacktriangle Al aplicar las leyes de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
 (2)

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
(4)

■ Las ecuaciones diferenciales parciales (1) – (4) son conocidas como las ecuaciones de Euler para el movimiento de un fluido.

lacktriangle Al aplicar las leyes de Newton a cada punto P del fluido y la ecuación de la incompresibilidad (1) Euler obtuvo

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
 (2)

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(3)

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$
(4)

 \blacksquare Las ecuaciones diferenciales parciales (1) – (4) son conocidas como las ecuaciones de Euler para el movimiento de un fluido.

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad...
- Introducen una constante positiva ν que mide las fuerzas de fricción en

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad...
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) (4) una fuerza

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) − (4) una fuerza adicional (debido a la viscosidad), dada en el caso de (2) por

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

■ Para (3) y (4) el término a agregar es el mismo pero sustituyendo a u_x por u_y y u_z respectivamente.

- Navier y Stokes modifican las ecuaciones de Euler para abarcar el caso más realista de un fluido con viscosidad..
- Introducen una constante positiva ν que mide las fuerzas de fricción en el interior del fluido.
- Agregan al lado derecho de las ecuciones de Euler (2) − (4) una fuerza adicional (debido a la viscosidad), dada en el caso de (2) por

$$\nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

■ Para (3) y (4) el término a agregar es el mismo pero sustituyendo a u_x por u_y y u_z respectivamente.

■ Las ecuaciones que Navier y Stokes obtienen son

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)$$

$$+ f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$

$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right)$$

$$+ f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$

$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right)$$

$$+ f_z(x, y, z, t) - \frac{\partial p}{\partial z}$$

000

Las Ecuaciones de Navier-Stokes

Las Ecuaciones de Navier-Stokes

■ Las ecuaciones que Navier y Stokes obtienen son

$$\frac{\partial u_x}{\partial t} + u_x \frac{\partial u_x}{\partial x} + u_y \frac{\partial u_x}{\partial y} + u_z \frac{\partial u_x}{\partial z} = \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right)
+ f_x(x, y, z, t) - \frac{\partial p}{\partial x}$$
(5)
$$\frac{\partial u_y}{\partial t} + u_x \frac{\partial u_y}{\partial x} + u_y \frac{\partial u_y}{\partial y} + u_z \frac{\partial u_y}{\partial z} = \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right)
+ f_y(x, y, z, t) - \frac{\partial p}{\partial y}$$
(6)
$$\frac{\partial u_z}{\partial t} + u_x \frac{\partial u_z}{\partial x} + u_y \frac{\partial u_z}{\partial y} + u_z \frac{\partial u_z}{\partial z} = \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right)
+ f_z(x, y, z, t) - \frac{\partial p}{\partial x}$$
(7)

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)- (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

Las Ecuaciones de Navier-Stokes

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)– (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

 $\mathbf{u} = (u_x, u_y, u_z) = \text{campo de velocidades del fluido}$ $\mathbf{f} = (f_x, f_y, f_z) = \text{campo de fuerzas que actúan sobre el fluido}$

Las Ecuaciones de Navier-Stokes

- Durante el siglo XIX los matemáticos desarrollan una notación y un método para analizar cantidades que cambian en cada dirección llamado cálculo vectorial.
- Utilizando la notación del cálculo vectorial las ecuaciones de Navier-Stokes (5)– (7) se pueden escribir de forma más compacta como

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p + \mathbf{f}, \quad \nabla \cdot \mathbf{u} = 0$$
 (8)

donde

 $\mathbf{u} = (u_x, u_y, u_z) = \text{campo de velocidades del fluido}$

p = presión que actúa sobre el fluido

 $\mathbf{f} = (f_x, f_y, f_z) = \text{campo de fuerzas que actúan sobre el fluido}$

En ausencia de fuerzas externas $(f_x = f_y = f_z = 0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
(9)

El instituto Clay ofrece un millón de dólares a quien responda:

En ausencia de fuerzas externas $(f_x=f_y=f_z=0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
 (9)

El instituto Clay ofrece un millón de dólares a quien responda:

Problema del milenio para las ecuaciones de Navier-Stokes

¿Es posible encontrar funciones $u_x(x,y,z,t)$, $u_y(x,y,z,t)$, $u_z(x,y,z,t)$ y p(x,y,z,t) que satisfagan (9) y que se comporten lo suficientemente "bien" para corresponder con la realidad física?

En ausencia de fuerzas externas $(f_x = f_y = f_z = 0)$, las ecuaciones de Navier-Stokes (8) quedan así:

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = \nu \Delta \mathbf{u} - \nabla p, \quad \nabla \cdot \mathbf{u} = 0$$
 (9)

El instituto Clay ofrece un millón de dólares a quien responda:

Problema del milenio para las ecuaciones de Navier-Stokes

¿Es posible encontrar funciones $u_x(x,y,z,t)$, $u_y(x,y,z,t)$, $u_z(x,y,z,t)$ y p(x, y, z, t) que satisfagan (9) y que se comporten lo suficientemente "bien" para corresponder con la realidad física?

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- \blacksquare El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.

CDUITO

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu=0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones $(\mathbf{u} = (u_x, u_y))$, el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu = 0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu = 0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T>0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu = 0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T > 0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$.
 - Esta constante T (tiempo de "blowup") es muy pequeña y por tanto dicha solución no es muy útil en aplicaciones reales.

- Hasta el momento los avances para resolver el problema de las ecuaciones de Navier-Stokes han sido escasos [Devlin, 2002].
- El problema análogo para el caso de viscosidad nula $\nu = 0$ (ecuaciones de Euler) tampoco ha sido hasta ahora resuelto.
- Para el caso de dos dimensiones ($\mathbf{u} = (u_x, u_y)$), el problema de las ecuaciones de Navier-Stokes fue resuelto hace muchos años aunque su solución no ha ayudado a resolver el caso en tres dimensiones
- El problema de las ecuaciones de Navier-Stokes admite solución bajo algunas restricciones.
 - Dadas las condiciones iniciales, es posible encontrar un número T>0 tal que las ecuaciones pueden ser resueltas para todo tiempo $0 \le t \le T$.
 - Esta constante T (tiempo de "blowup") es muy pequeña y por tanto dicha solución no es muy útil en aplicaciones reales.

Las ecuaciones de Euler y Navier-Stokes describen el movimiento de un fluido en \mathbb{R}^n (n=2,3). Las incógnitas del problema vienen dadas por el vector de velocidades $u(x,t) = (u_i(x,t))_{1 \le i \le n} \in \mathbb{R}^n$ y la presión $p(x,t) \in \mathbb{R}$, definidas para toda posición $x \in \mathbb{R}^n$ y todo tiempo t > 0.

Las ecuaciones de Navier-Stokes son

$$\frac{\partial u_i}{\partial t} + \sum_{j=1}^n u_j \frac{\partial u_i}{\partial x_j} = \nu \Delta u_i - \frac{\partial p}{\partial x_i} + f_i(x, t) \qquad (x \in \mathbb{R}^n, \ t \ge 0), \tag{10}$$

$$\operatorname{div} u = \sum_{i=1}^{n} \frac{\partial u_i}{\partial x_i} = 0 \qquad (x \in \mathbb{R}^n, \ t \ge 0)$$
 (11)

Enunciado del problema

con condiciones iniciales

$$u(x,0) = u^0(x) \qquad (x \in \mathbb{R}^n).$$

Se asume que $u^0(x)$ es un campo de clase C^∞ y de divergencia nula en \mathbb{R}^n , $f_i(x,t)$ son las componentes de la fuerza externa aplicada (e.g. la gravedad), ν es el coeficiente de viscocidad y $\Delta = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}$ es el laplaciano en las variables espaciales. Las ecuaciones de Euler son las ecuaciones (10), (11), (12) con $\nu=0$.

Se espera que las soluciones satisfagan ciertas propiedades de regularidad que las hagan lo suficientemente "suaves" para que sean soluciones físicamente plausibles y por tanto se establecen las siguientes restricciones sobre las condiciones iniciales y las fuerzas aplicadas:

$$|\partial_x^{\alpha} u^0(x)| < C_{\alpha K} (1+|x|)^{-K}$$
 (1)

en \mathbb{R}^n para todo α y K,

y también

$$\left|\partial_x^{\alpha} \partial_t^m f(x,t)\right| < C_{\alpha m K} \left(1 + |x| + t\right)^{-K} \tag{14}$$

en $\mathbb{R}^n \times [0, \infty)$ para todo α, m, K . Una solución de (10), (11), (12) es físicamente plausible sólo si se satisfacen las propiedades de regularidad

$$p, u \in C^{\infty} \left(\mathbb{R}^n \times [0, \infty) \right) \tag{15}$$

У

$$\int_{\mathbb{R}^n} |u(x,t)|^2 dx < C \qquad \text{para todo } t \ge 0$$

El problema fundamental consiste en determinar si las ecuaciones de Navier-Stokes admiten o no soluciones suaves, físicamente plausibles:

Problema de existencia y regularidad en \mathbb{R}^3

Considere $\nu > 0$ y n = 3. Suponga que el dato inicial $u^0(x)$ es suave, de divergencia nula y satisface la propiedad de decaimiento rápido (13) y asuma f(x,t) = 0. Entonces existen funciones suaves p(x,t) y $u_i(x,t)$ definidas en $\mathbb{R}^3 \times [0,\infty)$ que satisfacen (10), (11), (12), (15), (16).

Problema de colapso de la solución en \mathbb{R}^3

Considere $\nu > 0$ y n = 3. Entonces existe un campo vectorial suave de divergencia nula $u^0(x) \in \mathbb{R}^3$ y una función suave f(x,t) en $\mathbb{R}^3 \times [0,\infty)$ que satisfacen (13), (14) para las cuales **no** existen soluciones (p,u) de (10), (11), (12), (15), (16).

Referencias

A.J. Chorin, J.E. Marsden.

A Mathematical Introduction to Fluid Mechanics Springer-Verlag, 1980.

K. Devlin.

The Millenium Problems. The Seven Greatest Unsolved Mathematical Puzzles of Our Time Basic Books, 2002.

C. Fefferman.

Clay Mathematics Institute, Millenium Problems. Official problem description.

http://www.claymath.org/millennium/Navier-Stokes_Equation

Wikipedia contributors

Navier-Stokes equations

Wikipedia, The Free Encyclopedia., 2008.

http://en.wikipedia.org/wiki/Navier-Stokes_equations

