Chương 3: TÍCH PHÂN ĐƯỜNG VÀ TÍCH PHÂN MẶT

GV: Nguyễn Thị Huyên

BM Toán Giải tích - ĐHGTVT

2021

Mục lục

- Tích phân đường loại 1
 - Định nghĩa và các tính chất
 - Cách tính tính phân đường loại 1
- 2 Tích phân đường loại 2
 - Định nghĩa và các tính chất
 - Cách tính tích phân đường loại 2
 - Công thức Green
 - Định lý 4 mệnh đề tương đương
- Tích phân mặt loại 1
- 4 Tích phân mặt loại 2

1. Tích phân đường loại 1

Cho cung đường cong $\mathbb L$ đi từ điểm A tới điểm B và hàm f(x,y) xác định trên cung \widetilde{AB} . Chia cung \widetilde{AB} thành n cung nhỏ bởi các điểm chia

$$A \equiv A_0, A_1, A_2, \dots, A_i, \dots, A_n \equiv B.$$

1. Tích phân đường loại 1

Cho cung đường cong \mathbb{L} đi từ điểm A tới điểm B và hàm f(x,y) xác định trên cung \widetilde{AB} . Chia cung \widetilde{AB} thành n cung nhỏ bởi các điểm chia

$$A \equiv A_0$$
 \emptyset A_i A_i A_i A_i A_i A_i

$$A \equiv A_0, A_1, A_2, \dots, A_i, \dots, A_n \equiv B.$$

Lấy
$$M_i(x_i, y_i) \in \widetilde{A_{i-1}A_i}$$
 và đặt $|\widetilde{A_{i-1}A_i}| = \Delta s_i, \forall i = \overline{1, n}$. Lập tổng tích phân

$$I_n = \sum_{i=1}^n f(x_i, y_i) \Delta s_i$$

$$I = \int_{\widetilde{AB}} f(x, y) ds = \lim_{n \to +\infty, \lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i.$$

$$I = \int_{\widetilde{AB}} f(x, y) ds = \lim_{n \to +\infty, \lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i.$$

- \bullet \widetilde{AB} là đường cong lấy tích phân.
- \bullet ds là vi phân theo độ dài cung.

$$I = \int_{\widetilde{AB}} f(x, y) ds = \lim_{n \to +\infty, \lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i.$$

- \bullet \widetilde{AB} là đường cong lấy tích phân.
- \bullet ds là vi phân theo độ dài cung.
- Nếu tích phân này tồn tại thì ta nói rằng hàm f(x,y) khả tích trên đường cong \widetilde{AB} .

$$I = \int_{\widetilde{AB}} f(x, y) ds = \lim_{n \to +\infty, \lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i.$$

- \bullet \widetilde{AB} là đường cong lấy tích phân.
- \bullet ds là vi phân theo độ dài cung.
- Nếu tích phân này tồn tại thì ta nói rằng hàm f(x,y) khả tích trên đường cong \widetilde{AB} .
- Nếu cung \widetilde{AB} trơn (tại mọi điểm đều có tiếp tuyến biến thiên liên tục) và hàm f(x,y) liên tục trên đường cong \widetilde{AB} thì tích phân tồn tại.

$$I = \int_{\widetilde{AB}} f(x, y) ds = \lim_{n \to +\infty, \lambda \to 0} \sum_{i=1}^{n} f(x_i, y_i) \Delta s_i.$$

- ullet \widetilde{AB} là đường cong lấy tích phân.
- \bullet ds là vi phân theo độ dài cung.
- ullet Nếu tích phân này tồn tại thì ta nói rằng hàm f(x,y) khả tích trên đường cong \widetilde{AB} .
- Nếu cung \widetilde{AB} trơn (tại mọi điểm đều có tiếp tuyến biến thiên liên tục) và hàm f(x,y) liên tục trên đường cong \widetilde{AB} thì tích phân tồn tại.
- Nếu \widetilde{AB} có khối lượng riêng tại mỗi điểm là f(x,y) thì khối lượng của cả dây cung là $m=\int\limits_{-\infty}^{\infty}f(x,y)ds=$ khối lượng của dây cung \widetilde{AB} .

$$ullet$$
 $\int\limits_{\widetilde{AB}}ds=$ độ dài của đường cong $\widetilde{AB}.$

• $\int ds = d\hat{0}$ dài của đường cong \widetilde{AB} .

- $\int ds = d\hat{0}$ dài của đường cong \widetilde{AB} .
- $\bullet \int_{L} [f(x,y) \pm g(x,y)] ds = \int_{L} f(x,y) ds \pm \int_{L} g(x,y) ds.$

- $\int ds = d\hat{0}$ dài của đường cong \widetilde{AB} .
- $\int_{L} [kf(x,y)]ds = k \int_{L} f(x,y)ds$ (với k là hằng số).
- Nếu $L = L_1 \cup L_2$ (không dẫm lên nhau) thì $\int\limits_L f(x,y)ds = \int\limits_{L_1} f(x,y)ds + \int\limits_{L_2} f(x,y)ds$.

- $\int ds = d\hat{0}$ dài của đường cong \widetilde{AB} .
- $\bullet \int_{L} [f(x,y) \pm g(x,y)] ds = \int_{L} f(x,y) ds \pm \int_{L} g(x,y) ds.$
- $\int [kf(x,y)]ds = k \int f(x,y)ds$ (với k là hằng số).
- Nếu $L=L_1\cup L_2$ (không dẫm lên nhau) thì $\int\limits_L f(x,y)ds=\int\limits_{L_1} f(x,y)ds+\int\limits_{L_2} f(x,y)ds.$
- Tích phân đường loại 1 không phụ thuộc vào chiều của đường cong lấy tích phân,

$$\int_{\widetilde{AB}} f(x,y)ds = \int_{\widetilde{BA}} f(x,y)ds.$$

Xét

$$I = \int_{\widetilde{AB}} f(x, y) ds.$$

 ${\color{red} \bullet}$ Nếu \widetilde{AB} có phương trình $y=y(x),\,a\leq x\leq b$

Xét

$$I = \int_{\widetilde{AB}} f(x, y) ds.$$

Nếu \widetilde{AB} có phương trình $y=y(x),\ a\leq x\leq b$ thì $ds=\sqrt{1+y'(x)^2}\cdot dx$ và đưa tích phân về 1 biến x

$$I = \int_{a}^{b} f[x, y(x)] \sqrt{1 + y'(x)^{2}} \cdot dx$$

Xét

$$I = \int_{\widetilde{AB}} f(x, y) ds.$$

• Nếu \widetilde{AB} có phương trình $y=y(x),\ a\leq x\leq b$ thì $ds=\sqrt{1+y'(x)^2}\cdot dx$ và đưa tích phân về 1 biến x

$$I = \int_{a}^{b} f[x, y(x)] \sqrt{1 + y'(x)^{2}} \cdot dx$$

 ${\color{red} \bullet}$ Nếu \widetilde{AB} có phương trình $x=x(y),\,c\leq x\leq d$

Xét

$$I = \int_{\widetilde{AB}} f(x, y) ds.$$

• Nếu \widetilde{AB} có phương trình $y=y(x),\ a\leq x\leq b$ thì $ds=\sqrt{1+y'(x)^2}\cdot dx$ và đưa tích phân về 1 biến x

$$I = \int_{a}^{b} f[x, y(x)] \sqrt{1 + y'(x)^{2}} \cdot dx$$

Nếu \widetilde{AB} có phương trình x=x(y), $c\leq x\leq d$ thì $ds=\sqrt{1+x'(y)^2}\cdot dy$ và đưa tích phân về 1 biến y

$$I = \int_{c}^{d} f[x(y), y] \sqrt{1 + x'(y)^{2}} \cdot dy$$

• Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ $(t_1 \le t \le t_2)$ thì

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ thì $ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt \text{ và đưa tích phân về 1 biến } t$

$$I = \int_{t_1}^{t_2} f[x(t), y(t)] \sqrt{x'(t)^2 + y'(t)^2} \cdot dt.$$

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases} (t_1 \le t \le t_2) \text{ thì}$ $ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt \text{ và đưa tích phân về 1 biến } t$

$$I = \int_{t_1}^{t_2} f[x(t), y(t)] \sqrt{x'(t)^2 + y'(t)^2} \cdot dt.$$

 ${\color{red} 2}$ Nếu \widetilde{AB} có phương trình trong tọa độ cực $r=r(\varphi),\,\alpha\leq\varphi\leq\beta$ thì

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x = x(t) \\ y = y(t) \end{cases}$ thì $ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt \text{ và đưa tích phân về 1 biến } t$

$$I = \int_{t_1}^{t_2} f[x(t), y(t)] \sqrt{x'(t)^2 + y'(t)^2} \cdot dt.$$

② Nếu \widetilde{AB} có phương trình trong tọa độ cực $r=r(\varphi),\,\alpha\leq\varphi\leq\beta$ thì $ds=\sqrt{r(\varphi)^2+r'(\varphi)^2}\cdot d\varphi$ và đưa tích phân về 1 biến φ

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x=x(t)\\ y=y(t) \end{cases}$ ($t_1 \leq t \leq t_2$) thì $ds=\sqrt{x'(t)^2+y'(t)^2}\cdot dt \text{ và đưa tích phân về 1 biến } t$

$$I = \int_{t_1}^{t_2} f[x(t), y(t)] \sqrt{x'(t)^2 + y'(t)^2} \cdot dt.$$

② Nếu \widetilde{AB} có phương trình trong tọa độ cực $r=r(\varphi),\,\alpha\leq\varphi\leq\beta$ thì $ds=\sqrt{r(\varphi)^2+r'(\varphi)^2}\cdot d\varphi$ và đưa tích phân về 1 biến φ

$$I = \int_{\alpha}^{\beta} f[r\cos\varphi, r\sin\varphi] \sqrt{r(\varphi)^2 + r'(\varphi)^2} \cdot d\varphi$$

Ví du 1.1.

Tính
$$I = \int x^2 ds$$
, \widetilde{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

Ví dụ 1.1.

Tính
$$I = \int_{\widehat{A}} x^2 ds$$
, \widetilde{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

 \bullet Phương trình của đường cong \widetilde{AB} là $y=\ln x,\, 1\leq x\leq e.$

Ví du 1.1.

Tính
$$I = \int x^2 ds$$
, \widetilde{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

 \bullet Phương trình của đường cong \widetilde{AB} là $y=\ln x,\, 1\leq x\leq e.$

•
$$ds = \sqrt{1 + y'(x)^2} \cdot dx = \sqrt{1 + \frac{1}{x^2}} \cdot dx$$
.

Ví dụ 1.1.

Tính
$$I = \int x^2 ds$$
, \widetilde{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

• Phương trình của đường cong \widetilde{AB} là $y = \ln x$, $1 \le x \le e$.

•
$$ds = \sqrt{1 + y'(x)^2} \cdot dx = \sqrt{1 + \frac{1}{x^2}} \cdot dx$$
.

•
$$I = \int_{1}^{e} x^{2} \cdot \sqrt{1 + \frac{1}{x^{2}}} \cdot dx = \int_{1}^{e} \sqrt{x^{2} + 1} \cdot x dx = \frac{1}{2} \int_{1}^{e} \sqrt{x^{2} + 1} \cdot d(1 + x^{2}).$$

Ví dụ 1.1.

Tính
$$I = \int x^2 ds$$
, \widetilde{AB} là cung $y = \ln x$ và $A(1,0)$, $B(e,1)$.

- Phương trình của đường cong \widetilde{AB} là $y = \ln x$, $1 \le x \le e$.
- $ds = \sqrt{1 + y'(x)^2} \cdot dx = \sqrt{1 + \frac{1}{x^2}} \cdot dx$.
- $I = \int_{1}^{e} x^2 \cdot \sqrt{1 + \frac{1}{x^2}} \cdot dx = \int_{1}^{e} \sqrt{x^2 + 1} \cdot x dx = \frac{1}{2} \int_{1}^{e} \sqrt{x^2 + 1} \cdot d(1 + x^2).$
- $I = \frac{1}{2} \left[\frac{(x^2+1)^{3/2}}{3/2} \right] \Big|_1^e = \frac{1}{3} \left[(e^2+1)^{3/2} 2\sqrt{2} \right].$

Tính tích phân đường
$$I = \int_{L} (x+2y)ds;$$

L là cung
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

Tính tích phân đường
$$I = \int_{L} (x+2y)ds;$$

L là cung
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

Tính tích phân đường
$$I = \int\limits_L (x+2y)ds;$$

L là cung
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

•
$$x'(t) = -3\cos^2 t \sin t$$
; $y'(t) = 3\sin^2 t \cos t$; $0 \le t \le \frac{\pi}{2}$

Tính tích phân đường
$$I = \int_L (x+2y)ds;$$

$$L \text{ là cung } \begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

•
$$x'(t) = -3\cos^2 t \sin t$$
; $y'(t) = 3\sin^2 t \cos t$; $0 \le t \le \frac{\pi}{2}$

•
$$ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt = \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} dt = 3\sin t \cos t dt$$

Ví dụ 1.2.

Tính tích phân đường
$$I = \int_{L} (x+2y)ds;$$

L là cung
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

•
$$x'(t) = -3\cos^2 t \sin t$$
; $y'(t) = 3\sin^2 t \cos t$; $0 \le t \le \frac{\pi}{2}$

•
$$ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt = \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} dt = 3\sin t \cos t dt$$

•
$$I = \int_{0}^{\frac{\pi}{2}} (\cos^3 t + 2\sin^3 t) 3\sin t \cos t dt = 3 \int_{0}^{\frac{\pi}{2}} (\cos^4 t \sin t + \sin^4 t \cos t) dt$$

Ví dụ 1.2.

Tính tích phân đường
$$I = \int_{L} (x+2y)ds;$$

L là cung
$$\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases} \quad \left(0 \le t \le \frac{\pi}{2}\right).$$

•
$$x'(t) = -3\cos^2 t \sin t$$
; $y'(t) = 3\sin^2 t \cos t$; $0 \le t \le \frac{\pi}{2}$

•
$$ds = \sqrt{(x'(t))^2 + (y'(t))^2} dt = \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} dt = 3\sin t \cos t dt$$

•
$$I = \int_{0}^{\frac{\pi}{2}} (\cos^3 t + 2\sin^3 t) 3\sin t \cos t dt = 3 \int_{0}^{\frac{\pi}{2}} (\cos^4 t \sin t + \sin^4 t \cos t) dt$$

•
$$I = 3\left(-\frac{1}{5}\cos^5 t + \frac{2}{5}\sin^5 t\right)\Big|_0^{\frac{\pi}{2}} = \frac{9}{5}.$$

Ví du 1.3.

 $(0 \le t \le 2\pi).$

Tính
$$I = \int_{I} (x+y)ds$$
; $L: x^2 + y^2 = ax$, $a > 0$.

Phương trình tham số của đường cong L $\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos t \\ y = \frac{a}{2}\sin t, \end{cases}$ $(0 \le t \le 2\pi)$

$$\begin{cases} x = \frac{1}{2} + \frac{1}{2} & \text{or} \\ y = \frac{a}{2} \sin t, \end{cases}$$

Ví du 1.3.

Tính
$$I = \int_{Y} (x+y)ds$$
; $L: x^2 + y^2 = ax$, $a > 0$.

Phương trình tham số của đường cong L $\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos t \\ y = \frac{a}{2}\sin t, \end{cases}$

$$(0 \le t \le 2\pi).$$

$$\begin{array}{c|c}
a/2 & y \\
\hline
0 & \frac{a}{2} & \\
-a/2 & --- & x
\end{array}$$

•
$$ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt = \sqrt{\frac{a^2}{4}} \sin^2 t + \frac{a^2}{4} \cos^2 t \cdot dt = \frac{a}{2} \cdot dt.$$

Ví dụ 1.3.

Tính
$$I = \int_{\Gamma} (x+y)ds$$
; $L: x^2 + y^2 = ax$, $a > 0$.

Phương trình tham số của đường cong L $\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos t \\ y = \frac{a}{2}\sin t, \end{cases}$

$$(0 \le t \le 2\pi).$$

•
$$ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt = \sqrt{\frac{a^2}{4}\sin^2 t + \frac{a^2}{4}\cos^2 t} \cdot dt = \frac{a}{2} \cdot dt.$$

•
$$I = \int_{1}^{2\pi} \left(\frac{a}{2} + \frac{a}{2}\cos t + \frac{a}{2}\sin t\right) \cdot \frac{a}{2}dt.$$

Ví dụ 1.3.

Tính
$$I = \int_{-\infty}^{\infty} (x+y)ds$$
; $L: x^2 + y^2 = ax$, $a > 0$.

Phương trình tham số của đường cong L $\begin{cases} x = \frac{a}{2} + \frac{a}{2}\cos t \\ y = \frac{a}{2}\sin t, \end{cases}$

$$(0 \le t \le 2\pi).$$

•
$$ds = \sqrt{x'(t)^2 + y'(t)^2} \cdot dt = \sqrt{\frac{a^2}{4}\sin^2 t + \frac{a^2}{4}\cos^2 t} \cdot dt = \frac{a}{2} \cdot dt$$
.

•
$$I = \int_{0}^{2\pi} \left(\frac{a}{2} + \frac{a}{2}\cos t + \frac{a}{2}\sin t\right) \cdot \frac{a}{2}dt.$$

•
$$I = \frac{a^2}{4} [t + \sin t - \cos t] \Big|_0^{2\pi} = \frac{\pi a^2}{2}.$$

Ví du 1.4.

Tính
$$I = \int_C \sqrt{x^2 + y^2} \, ds$$
; $C: x^2 + y^2 = 2y$.

Ví du 1.4.

Tính
$$I = \int_C \sqrt{x^2 + y^2} \, ds$$
; $C: x^2 + y^2 = 2y$.

•
$$ds = \sqrt{r(\varphi)^2 + r'(\varphi)^2} \cdot d\varphi = \sqrt{(2\sin\varphi)^2 + (-2\cos\varphi)^2} \cdot d\varphi = 2d\varphi$$
.

Ví du 1.4.

Tính
$$I = \int_C \sqrt{x^2 + y^2} \, ds$$
; $C: x^2 + y^2 = 2y$.

•
$$ds = \sqrt{r(\varphi)^2 + r'(\varphi)^2} \cdot d\varphi = \sqrt{(2\sin\varphi)^2 + (-2\cos\varphi)^2} \cdot d\varphi = 2d\varphi$$
.

•
$$x^2 + y^2 = r^2 = (2\sin\varphi)^2 \Rightarrow \sqrt{x^2 + y^2} = 2\sin\varphi$$
.

Ví dụ 1.4.

Tính
$$I = \int_{C} \sqrt{x^2 + y^2} ds$$
; $C: x^2 + y^2 = 2y$.

•
$$ds = \sqrt{r(\varphi)^2 + r'(\varphi)^2} \cdot d\varphi = \sqrt{(2\sin\varphi)^2 + (-2\cos\varphi)^2} \cdot d\varphi = 2d\varphi$$

•
$$x^2 + y^2 = r^2 = (2\sin\varphi)^2 \Rightarrow \sqrt{x^2 + y^2} = 2\sin\varphi$$
.

•
$$I = \int_C \sqrt{x^2 + y^2} ds = \int_0^\pi (2\sin\varphi) \cdot 2d\varphi = -4\cos\varphi \Big|_0^\pi = 8.$$

Bài tập

Tính các tích phân đường loại 1

(2)
$$I = \int_{\widehat{OA}} \frac{ds}{\sqrt{x^2 + y^2 + 4}}$$
, \widehat{OA} là đoạn thẳng nối gốc $O(0,0)$ với điểm $A(1,2)$.

- (3) $I = \int_L (x^2 + y^2) ds$, L là biên của tam giác OAB với O(0,0), A(1,1), B(-1,1).
- (5) $I = \int_{L} (x + y + z) ds$; L là đường cong $x = 2\cos t, \ y = 2\sin t, \ z = t, \ 0 \le t \le 2\pi$.
- (6) $I = \int_C (x^{\frac{4}{3}} + y^{\frac{4}{3}}) ds$; $C: x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, \ a > 0$.

2. Tích phân đường loại 2

Cho cung đường cong $\mathbb L$ đi từ điểm A tới điểm B và hai hàm P(x,y), Q(x,y) xác định trên cung \widetilde{AB} . Chia cung \widetilde{AB} thành n cung nhỏ bởi các điểm chia

$$A \equiv A_0, A_1, A_2, \dots, A_i, \dots, A_n \equiv B.$$

2. Tích phân đường loại 2

Cho cung đường cong $\mathbb L$ đi từ điểm A tới điểm B và hai hàm P(x,y), Q(x,y) xác định trên cung \widetilde{AB} . Chia cung \widetilde{AB} thành n cung nhỏ bởi các điểm chia

$$A \equiv A_0, A_1, A_2, \dots, A_i, \dots, A_n \equiv B.$$

Lấy $M_i(x_i, y_i) \in \widetilde{A_{i-1}A_i}$ và gọi Δx_i , Δy_i lần lượt là hình chiếu của $\overrightarrow{A_{i-1}A_i}$ xuống các trục Ox, $Oy \ \forall i = \overline{1, n}$.

2. Tích phân đường loại 2

Cho cung đường cong \mathbb{L} đi từ điểm A tới điểm B và hai hàm P(x,y), Q(x,y) xác định trên cung \widehat{AB} . Chia cung \widehat{AB} thành n cung nhỏ bởi các điểm chia

$$A \equiv A_0, A_1, A_2, \dots, A_i, \dots, A_n \equiv B.$$

Lấy $M_i(x_i, y_i) \in \widetilde{A_{i-1}A_i}$ và gọi Δx_i , Δy_i lần lượt là hình chiếu của $\overrightarrow{A_{i-1}A_i}$ xuống các trục Ox, $Oy \ \forall i = \overline{1, n}$. Lập tổng tích phân

$$I_n = \sum_{i=1}^n \left[P(x_i, y_i) \Delta x_i + Q(x_i, y_i) \Delta y_i \right]$$

$$I = \int_{\widetilde{AB}} P(x, y)dx + Q(x, y)dy.$$

$$I = \int_{\widetilde{AB}} P(x, y)dx + Q(x, y)dy.$$

 \bullet \widetilde{AB} gọi là đường cong lấy tích phân.

$$I = \int_{\widetilde{AB}} P(x, y)dx + Q(x, y)dy.$$

- \bullet \widetilde{AB} gọi là đường cong lấy tích phân.
- Nếu cung \overrightarrow{AB} trơn và các hàm P(x,y); Q(x,y) liên tục trên \overrightarrow{AB} thì tích phân đường loại hai tồn tại.

$$I = \int_{\widetilde{AB}} P(x, y)dx + Q(x, y)dy.$$

- \bullet \widetilde{AB} gọi là đường cong lấy tích phân.
- Nếu cung AB trơn và các hàm P(x,y); Q(x,y) liên tục trên AB thì tích phân đường loại hai tồn tại.
- Tích phân đường loại hai cũng có các tính chất tương tự như tích phân xác định.

• Tích phân đường loại hai phụ thuộc vào chiều của đường cong lấy tích phân,

$$I = \int_{\widetilde{BA}} P(x,y)dx + Q(x,y)dy = -\int_{\widetilde{AB}} P(x,y)dx + Q(x,y)dy$$

• Tích phân đường loại hai phụ thuộc vào chiều của đường cong lấy tích phân,

$$I = \int_{\widetilde{BA}} P(x,y)dx + Q(x,y)dy = -\int_{\widetilde{AB}} P(x,y)dx + Q(x,y)dy$$

• Nếu $A \equiv B$ (điểm đầu trùng với điểm cuối) thì đường cong kín.

$$\oint_{L^+} Pdx + Qdy = -\oint_{L^-} Pdx + Qdy.$$

• Tích phân đường loại hai phụ thuộc vào chiều của đường cong lấy tích phân,

$$I = \int_{\widetilde{BA}} P(x,y)dx + Q(x,y)dy = -\int_{\widetilde{AB}} P(x,y)dx + Q(x,y)dy$$

• Nếu $A \equiv B$ (điểm đầu trùng với điểm cuối) thì đường cong kín.

$$\oint\limits_{L^+} Pdx + Qdy = - \oint\limits_{L^-} Pdx + Qdy.$$

Quy ước

Chiều dương L^+ : ngược chiều KĐH

Cách tính tích phân đường loại 2

• Nếu \widetilde{AB} có phương trình $y = y(x), x : x_A \to x_B$ thì $dy = y'(x) \cdot dx$ và

$$I = \int_{x}^{x_B} [P(x, y(x)) + Q(x, y(x))y'(x)] dx.$$

Cách tính tích phân đường loại 2

0 Nếu \widetilde{AB} có phương trình $y=y(x),\,x:x_A\to x_B$ thì $dy=y'(x)\cdot dx$ và

$$I = \int_{x_A}^{x_B} [P(x, y(x)) + Q(x, y(x))y'(x)] dx.$$

 $oldsymbol{eta}$ Nếu \widetilde{AB} có phương trình $x=x(y),\,y:y_A o y_B$ thì $dx=x'(y)\cdot dy$ và

$$I = \int_{y_A}^{y_B} [P(x(y), y)x'(y) + Q(x(y), y)] dy.$$

Cách tính tích phân đường loại 2

 \bullet Nếu \widetilde{AB} có phương trình $y=y(x),\,x:x_A\to x_B$ thì $dy=y'(x)\cdot dx$ và

$$I = \int_{x_A}^{x_B} [P(x, y(x)) + Q(x, y(x))y'(x)] dx.$$

 ${\color{red} oldsymbol{\Theta}}$ Nếu \widetilde{AB} có phương trình $x=x(y),\,y:y_A\to y_B$ thì $dx=x'(y)\cdot dy$ và

$$I = \int_{y_{A}}^{y_{B}} \left[P(x(y), y)x'(y) + Q(x(y), y) \right] dy.$$

Nếu \widetilde{AB} có phương trình tham số $\begin{cases} x=x(t) \\ y=y(t) \end{cases} (t:t_A\to t_B) \text{ thì } \begin{cases} dx=x'(t)dt \\ dy=y'(t)dt \end{cases}$ và

$$I = \int_{-\infty}^{a_B} \{ P[x(t), y(t)] x'(t) + Q[x(t), y(t)] y'(t) \} dt.$$

Ví du 2.1.

Tính tích phân đường:
$$I = \int_{L} (e^{x} + y)dx + (y + 2)dy;$$

trong đó L là cung đường cong $x^2 - y + 2x = 1$ từ A(0, -1) đến B(1, 2).

Ví dụ 2.1.

Tính tích phân đường:
$$I = \int_{L} (e^{x} + y)dx + (y + 2)dy;$$

trong đó L là cung đường cong $x^2 - y + 2x = 1$ từ A(0, -1) đến B(1, 2).

- Đường cong có phương trình $y = x^2 + 2x 1$; x từ 0 đến 1
- dy = (2x + 2)dx

•
$$I = \int_{0}^{1} \left[(e^x + x^2 + 2x - 1) + (x^2 + 2x - 1 + 2)(2x + 2) \right] dx$$

•
$$I = \left[e^x + \frac{x^3}{3} + x^2 - x + \frac{(x+1)^4}{2} \right]_0^1 = e + \frac{41}{6}$$

Ví dụ 2.2.

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Ví dụ 2.2.

Tính tích phân đường:

$$I = \int_{L} x^2 y dx + x^3 dy;$$

L là đoạn thẳng từ A(0,1) đến B(2,5).

Đoạn thẳng AB có phương trình y=2x+1; x từ 0 đến 2, dy=2dx.

$$I = \int_{0}^{2} \left[x^{2}(2x+1) + x^{3}.2 \right] dx$$

$$I = \int_{0}^{2} \left[4x^{3} + x^{2} \right] dx = \left[4 \cdot \frac{x^{4}}{4} + \frac{x^{3}}{3} \right] \Big|_{0}^{2} = \frac{56}{3}$$

Ví du 2.3.

Tính tích phân đường $\int_C xy^2 dy - x^2 y dx,$

C là nửa trên của đường tròn : $x^2+y^2=4,\ y\geq 0$ từ A(2,0) đến B(-2,0).

Ví dụ 2.3.

Tính tích phân đường
$$\int\limits_C xy^2 dy - x^2 y dx,$$

C là nửa trên của đường tròn : $x^2+y^2=4,\ y\geq 0$ từ A(2,0) đến B(-2,0).

• Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$

Ví dụ 2.3.

Tính tích phân đường
$$\int_C xy^2 dy - x^2 y dx,$$

C là nửa trên của đường tròn : $x^2+y^2=4,\ y\geq 0$ từ A(2,0) đến B(-2,0).

- Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$
- $I = \int_{0}^{\pi} \left[(2\cos t)(2\sin t)^{2}(2\cos t) (2\cos t)^{2}(2\sin t)(-2\sin t) \right] dt = 2^{5} \int_{0}^{\pi} \cos^{2} t \cdot \sin^{2} t \cdot dt$

Ví dụ 2.3.

Tính tích phân đường $\int_{-\infty}^{\infty} xy^2 dy - x^2 y dx$,

C là nửa trên của đường tròn : $x^2+y^2=4,\ y\geq 0$ từ A(2,0) đến B(-2,0).

- Phương trình tham số của C là $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases}, \quad 0 \le t \le \pi \Longrightarrow \begin{cases} dx = -2\sin t dt \\ dy = 2\cos t dt \end{cases}$
- $I = \int_{0}^{\pi} \left[(2\cos t)(2\sin t)^{2}(2\cos t) (2\cos t)^{2}(2\sin t)(-2\sin t) \right] dt = 2^{5} \int_{0}^{\pi} \cos^{2} t \cdot \sin^{2} t \cdot dt$
- $I = 2^5 \int_0^{\pi} \frac{(\sin 2t)^2}{4} dt = 4 \int_0^{\pi} (1 \cos 4t) dt = (4t \sin 4t) \Big|_0^{\pi} = 8\pi.$

Ví du 2.4.

Tính tích phân đường $\int_{L^+} (x+y)dx + (3x-2y)dy$, L^+ là biên của tam giác ABC với $A(0,0),\ B(6,-3),\ C(1,2).$

Ví dụ 2.4.

Tính tích phân đường
$$\int_{L^+} (x+y)dx + (3x-2y)dy$$
, L^+ là biên của tam giác ABC với $A(0,0),\ B(6,-3),\ C(1,2).$

Viết phương trình 3 cạnh của tam giác ABC

- \bullet Phương trình của cạnh AB là $x=-2y,\ y:0\to -3$
- \bullet Phương trình của cạnh BC là $y=3-x,\ x:6\to 1$
- \bullet Phương trình của cạnh CA là $y=2x,\ x:1\to 0$
- $\mathbb{L}^+ = \overline{AB} \cup \overline{BC} \cup \overline{CA}$ và $I = I_1 + I_2 + I_3$.

+) Phương trình của cạnh
$$AB$$
 là $x = -2y, y: 0 \to -3$

$$\implies I_1 = \int_{AB} = \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

+) Phương trình của cạnh
$$AB$$
 là $x = -2y, y: 0 \to -3$ $\Longrightarrow I_1 = \int_{\overline{AB}} \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$

+) Phương trình của cạnh
$$BC$$
 là $y = 3 - x$, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{BC}} = \int_6^1 \{(x+3-x) - (3x-6+2x)\} dx = \int_6^1 (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

$$\implies I_1 = \int_{\overline{AB}} \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh BC là y = 3 - x, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{BC}} \int_{6}^{1} \{(x+3-x) - (3x-6+2x)\} dx = \int_{6}^{1} (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh CA là $y=2x, x:1\to 0$

$$\implies I_3 = \int_{CA} (x+y)dx + (3x-2y)dy = \int_1^0 \{(x+2x) + (3x-2.2x) \, 2\}dx = \int_1^0 xdx = -\frac{1}{2}$$

+) Phương trình của cạnh
$$AB$$
 là $x=-2y,\ y:0\to -3$

$$\implies I_1 = \int_{\overline{AB}} \int_0^{-3} \{-2(-2y+y) + (-6y-2y)\} dy = \int_0^{-3} (-6y) dy = -27$$

+) Phương trình của cạnh BC là y = 3 - x, $x: 6 \rightarrow 1$

$$\implies I_2 = \int_{\overline{BC}} = \int_6^1 \{(x+3-x) - (3x-6+2x)\} dx = \int_6^1 (-5x+9) dx = \frac{85}{2}$$

+) Phương trình của cạnh CA là $y=2x, x:1\to 0$

$$\implies I_3 = \int_{\overline{CA}} (x+y)dx + (3x-2y)dy = \int_1^0 \{(x+2x) + (3x-2.2x) \ 2\}dx = \int_1^0 xdx = -\frac{1}{2}$$

Vậy $I = I_1 + I_2 + I_3 = 15$.

Ví du 2.5.

Tính tích phân đường:
$$\oint\limits_{\mathbb{L}^+} (3x+x^2+xy)dx + (4y+y^2+5x)dy,$$

$$\mathbb{L}^+ \text{ là biên của } \Delta ABC \text{ với } A(2,0), \, B(1,1), \, C(1,-1), \text{ theo chiều dương.}$$

Ví du 2.5.

Tính tích phân đường:
$$\oint\limits_{\mathbb{L}^+} (3x+x^2+xy)dx + (4y+y^2+5x)dy,$$

 \mathbb{L}^+ là biên của $\triangle ABC$ với A(2,0), B(1,1), C(1,-1), theo chiều dương.

• Vẽ hình và viết phương trình 3 canh của tam giác $AB: y = 2 - x, \ x: 2 \to 1.$ $BC: x = 1, y: 1 \to -1,$

$$CA: y = x - 2, y: 1 \rightarrow 2$$

$$CA: y = x - 2, \ y: 1 \to 2.$$

$$\mathbb{L}^+ = \overline{AB} \cup \overline{BC} \cup \overline{CA}$$
 và $I = I_1 + I_2 + I_3$.

•
$$I_1 = \int_{\overline{x}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_{2}^{1} (-x^2 + 8x - 12)dx = \frac{7}{3}$$
.

•
$$I_1 = \int_{\overline{AR}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_2^1 (-x^2 + 8x - 12)dx = \frac{7}{3}.$$

•
$$I_2 = \int_{\overline{PC}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{-1} (y^2 + 4y + 5)dy = -\frac{32}{3}$$
.

•
$$I_1 = \int_{\overline{AB}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_2^1 (-x^2 + 8x - 12)dx = \frac{7}{3}.$$

•
$$I_2 = \int_{\overline{BC}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{-1} (y^2 + 4y + 5)dy = -\frac{32}{3}.$$

•
$$I_3 = \int_{CA} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{\infty} (3x^2 + 6x - 4)dx = 12.$$

•
$$I_1 = \int_{\overline{AB}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_2^1 (-x^2 + 8x - 12)dx = \frac{7}{3}.$$

•
$$I_2 = \int_{\overline{BC}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{-1} (y^2 + 4y + 5)dy = -\frac{32}{3}.$$

•
$$I_3 = \int_{\overline{CA}} (3x + x^2 + xy)dx + (4y + y^2 + 5x)dy = \int_1^{\infty} (3x^2 + 6x - 4)dx = 12.$$

•
$$I = I_1 + I_2 + I_3 = \frac{7}{3} + 12 - \frac{32}{3} = \frac{11}{3}$$
.

Công thức Green

Nếu các hàm P(x,y) và Q(x,y) xác định liên tục cùng với các đạo hàm riêng của chúng trên D (liên thông, bị chặn) thì

$$\oint\limits_{L^+} P dx + Q dy = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

với L là đường cong kín, là biên của miền D lấy theo chiều dương.

Công thức Green

Nếu các hàm P(x,y) và Q(x,y) xác định liên tục cùng với các đạo hàm riêng của chúng trên D (liên thông, bị chặn) thì

$$\oint\limits_{L^+} P dx + Q dy = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

với L là đường cong kín, là biên của miền D lấy theo chiều dương.

Chú ý 1.

• Công thức Green cho ta liên hệ giữa tích phân đường loại 2 và tích phân 2 lớp.

Công thức Green

Nếu các hàm P(x,y) và Q(x,y) xác định liên tục cùng với các đạo hàm riêng của chúng trên D (liên thông, bị chặn) thì

$$\oint\limits_{L^+} P dx + Q dy = \iint\limits_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy,$$

với L là đường cong kín, là biên của miền D lấy theo chiều dương.

Chú ý 1.

- Công thức Green cho ta liên hệ giữa tích phân đường loại 2 và tích phân 2 lớp.
- Điều kiện để áp dụng được công thức Green là đường cong L^+ kín và lấy theo chiều dương, các hàm P,Q liên tục cùng với các đạo hàm riêng của chúng trên miền D.

Tính tích phân
$$I = \oint_{I+} xy^2 dy - x^2 y dx$$
,

trong đó L là đường tròn $x^2 + y^2 = a^2$ lấy theo chiều dương.

Dặt
$$P(x,y) = -x^2y$$
 và $Q(x,y) = xy^2$ và miền $D = \{(x,y) : x^2 + y^2 \le a^2\}.$

Tính tích phân
$$I = \oint_{L^+} xy^2 dy - x^2 y dx$$
,

trong đó L là đường tròn $x^2 + y^2 = a^2$ lấy theo chiều dương.

Đặt
$$P(x,y) = -x^2y$$
 và $Q(x,y) = xy^2$ và miền $D = \{(x,y) : x^2 + y^2 \le a^2\}.$

• Áp dụng công thức Green, ta có
$$I = \iint_D (Q'_x - P'_y) dx dy = \iint_D (y^2 + x^2) dx dy$$
.

Tính tích phân
$$I = \oint_{L^+} xy^2 dy - x^2 y dx$$
,

trong đó L là đường tròn $x^2 + y^2 = a^2$ lấy theo chiều dương.

Dặt
$$P(x,y) = -x^2y$$
 và $Q(x,y) = xy^2$ và miền $D = \{(x,y) : x^2 + y^2 \le a^2\}.$

- Áp dụng công thức Green, ta có $I = \iint_D (Q'_x P'_y) dx dy = \iint_D (y^2 + x^2) dx dy$.
- Chuyển sang tọa độ cực $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow J = r \text{ và } D = \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le a. \end{cases}$

Tính tích phân
$$I = \oint_{I_+} xy^2 dy - x^2 y dx$$
,

trong đó L là đường tròn $x^2 + y^2 = a^2$ lấy theo chiều dương. Đặt $P(x,y) = -x^2y$ và $Q(x,y) = xy^2$ và miền $D = \{(x,y) : x^2 + y^2 \le a^2\}.$

- Áp dụng công thức Green, ta có $I = \iint_D (Q'_x P'_y) dx dy = \iint_D (y^2 + x^2) dx dy$.
- Chuyển sang tọa độ cực $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow J = r \text{ và } D = \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le a. \end{cases}$
- $I = \int_{0}^{2\pi} d\varphi \int_{0}^{a} r^{2} \cdot r dr = 2\pi \cdot \frac{r^{4}}{4} \Big|_{0}^{a} = \frac{\pi a^{4}}{2}.$

Ví du 2.7.

Tính tích phân đường : $\oint_{C+} (x+2y)dx + (x^2+3y)dy,$

C là biên của ΔOAB với $O(0,0),\ A(-2,2),\ B(2,0).$

Phương trình các canh
$$OA: y = -x$$
, $AB: x + 2y - 2 = 0$.

Ví dụ 2.7.

Tính tích phân đường :
$$\oint\limits_{C^+} (x+2y) dx + (x^2+3y) dy,$$

C là biên của $\triangle OAB$ với $O(0,0),\ A(-2,2),\ B(2,0).$ Phương trình các canh OA: y=-x,

Finding trian cae cann
$$OA: y = -x$$
, $AB: x + 2y - 2 = 0$.

Áp dụng công thức Green ta có

•
$$I = \iint_{\Delta OAB} (Q'_x - P'_y) dx dy = \iint_{\Delta OAB} (2x - 2) dx dy = \int_{0}^{2} dy \int_{-y}^{2-2y} (2x - 2) dx$$

Ví du 2.7.

Tính tích phân đường :
$$\oint_{C^+} (x+2y)dx + (x^2+3y)dy,$$

C là biên của $\triangle OAB$ với $O(0,0),\ A(-2,2),\ B(2,0).$ Phương trình các canh OA: y=-x,

AB:
$$x + 2y - 2 = 0$$
.

Áp dụng công thức Green ta có

•
$$I = \iint_{\Delta OAB} (Q'_x - P'_y) dx dy = \iint_{\Delta OAB} (2x - 2) dx dy = \int_{0}^{2} dy \int_{-y}^{2-2y} (2x - 2) dx$$

•
$$I = \int_{0}^{2} (x^2 - 2x) \Big|_{-y}^{2-2y} dx = \int_{0}^{2} (3y^2 - 6y) dy = (y^3 - 3y^2) \Big|_{0}^{2} = -4$$

Ví du 2.8.

Tính tích phân
$$\oint_{C^+} (e^x - x^2y + y)dx + (2xy + x - \sin y)dy$$
,

trong đó C là biên hình phẳng giới hạn bởi: $y=x^2, y=1$ theo chiều dương.

Ví dụ 2.8.

Tính tích phân
$$\oint_{C^+} (e^x - x^2y + y)dx + (2xy + x - \sin y)dy$$
,

trong đó C là biên hình phẳng giới hạn bởi: $y=x^2, y=1$ theo chiều dương.

• Gọi
$$D$$
 là miền trong có biên C , ta có: $D = \begin{cases} -1 \le x \le 1 \\ x^2 \le y \le 1. \end{cases}$

Ví dụ 2.8.

Tính tích phân
$$\oint_{C^+} (e^x - x^2y + y)dx + (2xy + x - \sin y)dy$$
,

trong đó C là biên hình phẳng giới hạn bởi: $y=x^2, y=1$ theo chiều dương.

- Gọi D là miền trong có biên C, ta có: $D = \begin{cases} -1 \le x \le 1 \\ x^2 \le y \le 1. \end{cases}$
- Đặt $P(x,y)=(e^x-x^2y+y); Q(x,y)=(2xy+x-\sin y).$ Ta có $P'_y=-x^2+1; Q'_x=2y+1$

Ví du 2.8.

Tính tích phân
$$\oint_{C^+} (e^x - x^2y + y)dx + (2xy + x - \sin y)dy$$
,

trong đó C là biên hình phẳng giới hạn bởi: $y=x^2, y=1$ theo chiều dương.

- Gọi D là miền trong có biên C, ta có: $D = \begin{cases} -1 \le x \le 1 \\ x^2 \le y \le 1 \end{cases}$
- Dăt $P(x,y) = (e^x x^2y + y)$; $Q(x,y) = (2xy + x \sin y)$. Ta có $P'_y = -x^2 + 1; Q'_x = 2y + 1$
- $I = \iint (Q'_x P'_y) dx dy = \int_0^1 dx \int_0^1 (2y + x^2) dy = \int_0^1 (1 + x^2 2x^4) dx = \frac{28}{15}.$

Ví du 2.9.

Tính tích phân
$$I=\oint\limits_{L^+} \frac{(x-y)dx+(x+y)dy}{x^2+y^2};$$

$$L:\ x^2+y^2=a^2.$$

Chú ý: Mặc dù đường cong kín, nhưng bài này không áp dụng được Công thức Green.

Ví du 2.9.

Tính tích phân
$$I=\oint\limits_{L^+}\frac{(x-y)dx+(x+y)dy}{x^2+y^2};$$

$$L:\ x^2+y^2=a^2.$$

$$L: \ x^2 + y^2 = a^2.$$

Chú ý: Mặc dù đường cong kín, nhưng bài này không áp dụng được Công thức Green.

Tính trực tiếp

- L có phương trình dang tham số: $x = a \cos t$; $y = a \sin t$; $0 < t < 2\pi$
- $dx = -a \sin t. dt$; $dy = a \cos t. dt$

Ví dụ 2.9.

Tính tích phân
$$I = \oint_{L^+} \frac{(x-y)dx + (x+y)dy}{x^2 + y^2};$$

 $L: \ x^2 + y^2 = a^2.$

 $\mathbf{Ch\acute{u}}$ \acute{y} : Mặc dù đường cong kín, nhưng bài này không áp dụng được Công thức Green.

Tính trực tiếp

- L có phương trình dạng tham số: $x = a \cos t; y = a \sin t; 0 \le t \le 2\pi$
- $dx = -a \sin t. dt$; $dy = a \cos t. dt$

•
$$I = \int_{0}^{2\pi} \frac{a(\cos t - \sin t).(-a\sin t) + a(\cos t + \sin t).a\cos t}{a^2} dt = \int_{0}^{2\pi} dt = 2\pi$$

Định lý 4 mệnh đề tương đương

Giả sử các hàm P(x,y), Q(x,y) liên tục cùng với các đạo hàm riêng của nó trên miền D (kín, đơn liên). Khi đó 4 mệnh đề sau là tương đương:

- $\oint_{L^+} P dx + Q dy = 0 \text{ dọc theo mọi đường cong kín } L^+ \text{ nằm trong miền } D.$
- 3 $\int Pdx + Qdy$ không phụ thuộc vào hình dạng đường cong lấy tích phân, chỉ phụ thuộc vào hai điểm nút A và B.
- lacktriangle Biểu thức Pdx+Qdy là vi phân toàn phần của một hàm hai biến u(x,y) nào đó.

Tính
$$I = \int_{A(0,1)}^{B(2,3)} (2x+3y-1)dx + (3x+4y-5)dy.$$

Tính
$$I = \int_{A(0,1)}^{B(2,3)} (2x+3y-1)dx + (3x+4y-5)dy.$$

•
$$P = 2x + 3y - 1$$
; $Q = 3x + 4y - 5 \Rightarrow P'_y = Q'_x$ (tích phân không phụ thuộc đường đi).

Tính
$$I = \int_{A(0,1)}^{B(2,3)} (2x+3y-1)dx + (3x+4y-5)dy.$$

• P = 2x + 3y - 1; $Q = 3x + 4y - 5 \Rightarrow P'_y = Q'_x$ (tích phân không phụ thuộc đường đi).

• Gọi
$$C(2,1) \Rightarrow I = \int_{AC} Pdx + Qdy + \int_{CB} Pdx + Qdy.$$

Tính
$$I = \int_{A(0,1)}^{B(2,3)} (2x+3y-1)dx + (3x+4y-5)dy.$$

- P = 2x + 3y 1; $Q = 3x + 4y 5 \Rightarrow P'_y = Q'_x$ (tích phân không phụ thuộc đường đi).
- Gọi $C(2,1) \Rightarrow I = \int_{AC} Pdx + Qdy + \int_{CB} Pdx + Qdy$.
- $I = \int_{0}^{2} (2x+2)dx + \int_{1}^{3} (1+4y)dy = (x^{2}+2x)\Big|_{0}^{2} + (y+2y^{2})\Big|_{1}^{3} = 26.$

Tính
$$I = \int_{A(0,1)}^{B(2,3)} (2x+3y-1)dx + (3x+4y-5)dy.$$

- P = 2x + 3y 1; $Q = 3x + 4y 5 \Rightarrow P'_y = Q'_x$ (tích phân không phụ thuộc đường đi).
- Gọi $C(2,1) \Rightarrow I = \int_{AC} Pdx + Qdy + \int_{CB} Pdx + Qdy$.
- $I = \int_{0}^{2} (2x+2)dx + \int_{1}^{3} (1+4y)dy = (x^{2}+2x)\Big|_{0}^{2} + (y+2y^{2})\Big|_{1}^{3} = 26.$

Cho mặt cong S hữu hạn trong Oxyz và hàm ba biến f(x, y, z) xác định trên mặt cong S.

Cho mặt cong S hữu hạn trong Oxyz và hàm ba biến f(x,y,z) xác định trên mặt cong S. Chia mặt S thành n phần nhỏ. Gọi tên các mảnh nhỏ cùng với diện tích của chúng là ΔS_1 , $\Delta S_2, \dots, \Delta S_n$. Trên mỗi mảnh nhỏ lấy điểm $M_i(x_i, y_i, z_i) \in \Delta S_i$ ($\forall i = \overline{1, n}$).

Cho mặt cong S hữu hạn trong Oxyz và hàm ba biến f(x,y,z) xác định trên mặt cong S. Chia mặt S thành n phần nhỏ. Gọi tên các mảnh nhỏ cùng với diện tích của chúng là ΔS_1 , $\Delta S_2, \dots, \Delta S_n$. Trên mỗi mảnh nhỏ lấy điểm $M_i(x_i, y_i, z_i) \in \Delta S_i$ ($\forall i = \overline{1, n}$). Lập tổng tích phân

$$I_n = \sum_{i=1}^n f(x_i, y_i, z_i) \Delta S_i$$

Cho $n \to \infty$, sao cho max $d_i \to 0$, nếu giới hạn I_n dần đến I hữu hạn (không phụ thuộc vào cách chia S và cách chọn M_i) thì giới hạn đó được gọi là tích phân mặt loại 1 của hàm f(x,y) trên mặt cong S.

Cho mặt cong S hữu hạn trong Oxyz và hàm ba biến f(x,y,z) xác định trên mặt cong S. Chia mặt S thành n phần nhỏ. Gọi tên các mảnh nhỏ cùng với diện tích của chúng là ΔS_1 , ΔS_2 , \cdots , ΔS_n . Trên mỗi mảnh nhỏ lấy điểm $M_i(x_i,y_i,z_i)\in\Delta S_i$ ($\forall i=\overline{1,n}$). Lập tổng tích phân

$$I_n = \sum_{i=1}^n f(x_i, y_i, z_i) \Delta S_i$$

Cho $n \to \infty$, sao cho max $d_i \to 0$, nếu giới hạn I_n dần đến I hữu hạn (không phụ thuộc vào cách chia S và cách chọn M_i) thì giới hạn đó được gọi là tích phân mặt loại 1 của hàm f(x,y) trên mặt cong S. Kí hiệu là

$$I = \iint_{S} f(x, y, z) dS = \lim_{n \to \infty, \max d_i \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta S_i.$$

S được gọi là mặt cong lấy tích phân.

Để tính tích phân mặt loại 1, ta đưa về tích phân 2 lớp.

Để tính tích phân mặt loại 1, ta đưa về tích phân 2 lớp.

• Giả sử mặt cong S có phương trình z = z(x, y).

Để tính tích phân mặt loại 1, ta đưa về tích phân 2 lớp.

- Giả sử mặt cong S có phương trình z = z(x, y).
- Hình chiếu của mặt cong S xuống mặt phẳng Oxy là miền phẳng $D \subset Oxy$.

Để tính tích phân mặt loại 1, ta đưa về tích phân 2 lớp.

- Giả sử mặt cong S có phương trình z = z(x, y).
- \bullet Hình chiếu của mặt cong S xuống mặt phẳng Oxy là miền phẳng $D\subset Oxy.$
- $dS = \sqrt{1 + (z_x')^2 + (z_y')^2} dx dy$.
- $I = \iint_D f[x, y, z(x, y)] \sqrt{1 + (z'_x)^2 + (z'_y)^2} dxdy.$

Ví du 3.1.

Tính tích phân mặt $I = \iint_S z dS$, trong đó S là

phần của mặt phẳng x+y+z=1với $x \geq 0, y \geq 0, z \geq 0$.

Như vậy, phương trình của mặt S là z = 1 - x - y.

Ví dụ 3.1.

Tính tích phân mặt
$$I = \iint_S z dS$$
, trong đó S là

phần của mặt phẳng x+y+z=1với $x \geq 0, y \geq 0, z \geq 0.$

Như vậy, phương trình của mặt S là z = 1 - x - y.

- Tính $dS = \sqrt{1 + (z'_x)^2 + (z'_y)^2} dx dy = \sqrt{3} dx dy$.
- Đưa về tích phân 2 lớp $I = \iint_D (1-x-y)\sqrt{3}dxdy$, với $D = \{(x,y): 0 < x < 1, 0 < y < 1-x \}.$

Ví du 3.1.

Tính tích phân mặt $I = \iint_S z dS$, trong đó S là

phần của mặt phẳng x + y + z = 1với $x \ge 0, y \ge 0, z \ge 0$.

Như vậy, phương trình của mặt S là z = 1 - x - y.

• Tính
$$dS = \sqrt{1 + (z'_x)^2 + (z'_y)^2} dxdy = \sqrt{3} dxdy$$
.

• Đưa về tích phân 2 lớp
$$I=\iint\limits_D \left(1-x-y\right)\sqrt{3}dxdy$$
, với
$$D=\{(x,y):0\leq x\leq 1,0\leq y\leq 1-x\ \}.$$

• Tính
$$I = \sqrt{3} \int_{0}^{1} dx \int_{0}^{1-x} (1-x-y)dy = \frac{\sqrt{3}}{2} \int_{0}^{1} (1-x)^2 dx = -\frac{\sqrt{3}}{2} \frac{(1-x)^3}{3} \Big|_{0}^{1} = \frac{\sqrt{3}}{6}.$$

Ví du 3.2.

Tính
$$I = \iint_{S} x(z + 6x + 3y)dS;$$

S là phần của mặt phẳng $x+\frac{y}{2}+\frac{z}{6}=1$ nằm trong góc phần tám thứ nhất.

Ví dụ 3.2.

$$Tinh I = \iint_{S} x(z + 6x + 3y)dS;$$

S là phần của mặt phẳng $x + \frac{y}{2} + \frac{z}{6} = 1$ nằm trong góc phần tám thứ nhất.

- \bullet Hình chiếu của (S) xuống $Oxy \colon D = \left\{ x + \frac{y}{2} \le 1; x \ge 0; y \ge 0 \right\}$
- z = 6 6x 3y; $z'_x = -6$; $z'_y = -3 \Rightarrow dS = \sqrt{1 + (-6)^2 + (-3)^2} dx dy = \sqrt{46} dx dy$.

Ví dụ 3.2.

$$Tinh I = \iint_{S} x(z + 6x + 3y)dS;$$

S là phần của mặt phẳng $x + \frac{y}{2} + \frac{z}{6} = 1$ nằm trong góc phần tám thứ nhất.

- \bullet Hình chiếu của (S) xuống $Oxy \colon D = \left\{ x + \frac{y}{2} \le 1; x \ge 0; y \ge 0 \right\}$
- z = 6 6x 3y; $z'_x = -6$; $z'_y = -3 \Rightarrow dS = \sqrt{1 + (-6)^2 + (-3)^2} dx dy = \sqrt{46} dx dy$.
- Đưa về tích phân 2 lớp

$$I = 6\sqrt{46} \int_{0}^{1} dx \int_{0}^{2-2x} x dy = 6\sqrt{46} \int_{0}^{1} x(2-2x) dx = 6\sqrt{46} (x^{2} - \frac{2x^{3}}{3}) \Big|_{0}^{1} = 2\sqrt{46}$$

$$\text{Tính} \quad I = \iint_{S} z dS,$$

S là phần mặt paraboloit tròn xoay $z=\frac{1}{2}(x^2+y^2),\ 0\leq z\leq 1.$

$$z = \frac{1}{2}(x^2 + y^2), \ 0 \le z \le 1.$$

$$Tinh I = \iint_{S} z dS,$$

Slà phần mặt paraboloit tròn xoay $z=\frac{1}{2}(x^2+y^2),\ 0\leq z\leq 1.$

$$z = \frac{1}{2}(x^2 + y^2), \ 0 \le z \le 1$$

- Tính $z'_x = x$, $z'_y = y$ và $dS = \sqrt{1 + x^2 + y^2} dx dy$.
- Đưa về tích phân 2 lớp $I = \iint \frac{1}{2} (x^2 + y^2) \sqrt{1 + x^2 + y^2} dx dy$, với $D = \{x^2 + y^2 \le 2\}$.

$$Tinh \quad I = \iint_{S} z dS,$$

$$S$$
là phần mặt paraboloit tròn xoay
$$z=\frac{1}{2}(x^2+y^2),\ 0\leq z\leq 1.$$

- Tính $z'_x = x$, $z'_y = y$ và $dS = \sqrt{1 + x^2 + y^2} dx dy$.
- Đưa về tích phân 2 lớp $I = \iint \frac{1}{2} (x^2 + y^2) \sqrt{1 + x^2 + y^2} dx dy$, với $D = \{x^2 + y^2 \le 2\}$.
- Dặt $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow D = \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le \sqrt{2}. \end{cases} I = \int_{-\infty}^{2\pi} d\varphi \int_{-\infty}^{\sqrt{2}} \frac{1}{2} r^2 \sqrt{1 + r^2} . r dr.$

$$\text{Tính} \quad I = \iint_{S} z dS,$$

Slà phần mặt paraboloit tròn xoay $z=\frac{1}{2}(x^2+y^2),\ 0\leq z\leq 1.$

$$z = \frac{1}{2}(x^2 + y^2), \ 0 \le z \le 1$$

- Tính $z'_x = x$, $z'_y = y$ và $dS = \sqrt{1 + x^2 + y^2} dx dy$.
- Đưa về tích phân 2 lớp $I = \iint \frac{1}{2} (x^2 + y^2) \sqrt{1 + x^2 + y^2} dx dy$, với $D = \{x^2 + y^2 \le 2\}$.
- Dặt $\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \Rightarrow D = \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le \sqrt{2}. \end{cases} I = \int_{-\infty}^{2\pi} d\varphi \int_{-\infty}^{\sqrt{2}} \frac{1}{2} r^2 \sqrt{1 + r^2} . r dr.$

Đặt
$$t = \sqrt{1 + r^2}$$
. Khi đó $I = 2\pi \cdot \frac{1}{2} \int_{-1}^{\sqrt{3}} t^2 (t^2 - 1) dt = \frac{(12\sqrt{3} + 2)\pi}{15}$.

Ví du 3.4.

Tính tích phân
$$I = \iint_{S} (x^2 + y^2 + z) dS;$$

S là mặt biên của vật thể giới hạn bởi $z=\sqrt{x^2+y^2},\ z=1.$

Ví dụ 3.4.

Tính tích phân
$$I = \iint_S (x^2 + y^2 + z)dS$$
;

S là mặt biên của vật thể giới hạn bởi $z = \sqrt{x^2 + y^2}, \ z = 1.$

•
$$S = S_1 \cup S_2$$
 với $S_1 = \{z = 1; x^2 + y^2 \le 1\}; S_2 = \{z = \sqrt{x^2 + y^2}; 0 \le z \le 1\}.$ Ta có:
$$I = \iint_{S_1} (x^2 + y^2 + z) dS + \iint_{S_2} (x^2 + y^2 + z) dS = I_1 + I_2$$

Ví dụ 3.4.

Tính tích phân
$$I = \iint_S (x^2 + y^2 + z)dS$$
;

S là mặt biên của vật thể giới hạn bởi $z = \sqrt{x^2 + y^2}, z = 1.$

- $S = S_1 \cup S_2$ với $S_1 = \{z = 1; x^2 + y^2 \le 1\}; S_2 = \{z = \sqrt{x^2 + y^2}; 0 \le z \le 1\}.$ Ta có: $I = \iint_{S_1} (x^2 + y^2 + z) dS + \iint_{S_2} (x^2 + y^2 + z) dS = I_1 + I_2$
- Đưa về tp 2 lớp $I_1 = \iint_{\Sigma} (x^2 + y^2 + 1) dx dy$; $I_2 = \iint_{\Sigma} (x^2 + y^2 + \sqrt{x^2 + y^2}) \sqrt{2} dx dy$.

Ví dụ 3.4.

Tính tích phân
$$I = \iint_S (x^2 + y^2 + z) dS$$
;

S là mặt biên của vật thể giới hạn bởi $z=\sqrt{x^2+y^2},\ z=1.$

- $S = S_1 \cup S_2$ với $S_1 = \{z = 1; x^2 + y^2 \le 1\}; S_2 = \{z = \sqrt{x^2 + y^2}; 0 \le z \le 1\}.$ Ta có: $I = \iint_{S_1} (x^2 + y^2 + z) dS + \iint_{S_2} (x^2 + y^2 + z) dS = I_1 + I_2$
- Đưa về t
p 2 lớp $I_1 = \iint (x^2 + y^2 + 1) dx dy; I_2 = \iint (x^2 + y^2 + \sqrt{x^2 + y^2}) \sqrt{2} dx dy.$
- Chuyển sang tọa độ cực $I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} \left[(1+\sqrt{2})r^2 + \sqrt{2}r + 1 \right] r dr = \frac{(9+\sqrt{2})\pi}{6}$

Cho mặt cong S (hữu hạn) trong không gian Oxyz, S là mặt định hướng, ứng với phía của véc tơ pháp tuyến của mặt, tại mỗi điểm $M \in (S)$ có véc tơ pháp tuyến $\vec{n_M}$.

Cho mặt cong S (hữu hạn) trong không gian Oxyz, S là mặt định hướng, ứng với phía của véc tơ pháp tuyến của mặt, tại mỗi điểm $M \in (S)$ có véc tơ pháp tuyến $\vec{n_M}$. Cho ba hàm P(x,y,z), Q(x,y,z), R(x,y,z) xác định trên mặt cong S. Chia nhỏ mặt cong S thành n phần $\Delta S_1, \Delta S_2, \dots, \Delta S_n$. Trên mỗi mảnh nhỏ lấy $M_i(x_i, y_i, z_i) \in \Delta S_i$ ($\forall i = 1, \dots, n$).

Cho mặt cong S (hữu hạn) trong không gian Oxyz, S là mặt định hướng, ứng với phía của véc tơ pháp tuyến của mặt, tại mỗi điểm $M \in (S)$ có véc tơ pháp tuyến $\vec{n_M}$. Cho ba hàm P(x,y,z), Q(x,y,z), R(x,y,z) xác định trên mặt cong S. Chia nhỏ mặt cong S thành n phần ΔS_1 , ΔS_2 , \cdots , ΔS_n . Trên mỗi mảnh nhỏ lấy $M_i(x_i,y_i,z_i) \in \Delta S_i$ ($\forall i=1,\cdots,n$). Gọi $\cos \alpha$, $\cos \beta$, $\cos \gamma$ lần lượt là các cosin chỉ hướng của véc tơ pháp tuyến \vec{n} , với $\alpha = g(\vec{n}, \vec{Ox})$, $\beta = g(\vec{n}, \vec{Oy})$, $\gamma = g(\vec{n}, \vec{Oz})$.

Cho mặt cong S (hữu hạn) trong không gian Oxyz, S là mặt định hướng, ứng với phía của véc tơ pháp tuyến của mặt, tại mỗi điểm $M \in (S)$ có véc tơ pháp tuyến $\vec{n_M}$. Cho ba hàm $P(x,y,z), \ Q(x,y,z), \ R(x,y,z)$ xác định trên mặt cong S. Chia nhỏ mặt cong S thành n phần $\Delta S_1, \ \Delta S_2, \cdots, \ \Delta S_n$. Trên mỗi mảnh nhỏ lấy $M_i(x_i,y_i,z_i) \in \Delta S_i \ (\forall i=1,\cdots,n)$. Gọi $\cos\alpha, \ \cos\beta, \ \cos\gamma$ lần lượt là các cosin chỉ hướng của véc tơ pháp tuyến \vec{n} , với $\alpha=g(\vec{n},\vec{Ox}), \ \beta=g(\vec{n},\vec{Oy}), \ \gamma=g(\vec{n},\vec{Oz})$. Khi đó các tích phân sau gọi là các tích phân mặt loại 2:

$$I_{1} = \iint_{S} P(x, y, z) \cos \alpha \cdot dS = \pm \iint_{S} P(x, y, z) \cdot dydz,$$

$$I_{2} = \iint_{S} Q(x, y, z) \cos \beta \cdot dS = \pm \iint_{S} Q(x, y, z) \cdot dzdx,$$

$$I_{3} = \iint_{S} R(x, y, z) \cos \gamma \cdot dS = \pm \iint_{S} R(x, y, z) \cdot dxdy.$$

Vậy tích phân mặt loại 2 tổng quát có dạng

$$I = \iint_{S} P(x, y, z) \cdot dydz + Q(x, y, z) \cdot dzdx + R(x, y, z) \cdot dxdy,$$

trong đó S là mặt cong lấy tích phân ứng với phía của véc tơ pháp tuyến.

Vậy tích phân mặt loại 2 tổng quát có dạng

$$I = \iint\limits_{S} P(x, y, z) \cdot dydz + Q(x, y, z) \cdot dzdx + R(x, y, z) \cdot dxdy,$$

trong đó S là mặt cong lấy tích phân ứng với phía của véc tơ pháp tuyến.

Chú ý:

ullet Nếu S là mặt cong trơn, P, Q, R là các hàm liên tục thì tích phân tồn tại.

Vậy tích phân mặt loại 2 tổng quát có dạng

$$I = \iint\limits_{S} P(x, y, z) \cdot dydz + Q(x, y, z) \cdot dzdx + R(x, y, z) \cdot dxdy,$$

trong đó S là mặt cong lấy tích phân ứng với phía của véc tơ pháp tuyến.

Chú ý:

- ullet Nếu S là mặt cong trơn, P, Q, R là các hàm liên tục thì tích phân tồn tại.
- Tích phân mặt loại 2 phụ thuộc vào phía của mặt cong lấy tích phân. Nếu đổi phía của mặt cong thì tích phân đổi dấu.

Nếu mặt cong S là kín, ta qui ước phía ngoài là phía dương, phía trong là phía âm.

$$I = \iint\limits_{S^+} P \cdot dydz + Q \cdot dzdx + R \cdot dxdy = -\iint\limits_{S^-} P \cdot dydz + Q \cdot dzdx + R \cdot dxdy,$$

Cách tính tích phân mặt loại 2

Để tính tích phân mặt loại 2 tổng quát

$$I = \iint\limits_{S} P(x, y, z) \cdot dydz + Q(x, y, z) \cdot dzdx + R(x, y, z) \cdot dxdy,$$

ta tính riêng từng số hạng và đưa về tích phân 2 lớp.

Để tính $I_3 = \iint\limits_S R(x,y,z) \cdot dxdy$, ta đưa về tích phân hai lớp với biến là x và y.

Giả sử biết phương trình mặt cong (S): z=z(x,y), hình chiếu của mặt S xuống mặt phẳng Oxy là D_{xy} , góc $\gamma=g(\vec{n},Oz)$.

Khi đó

$$I_{3} = \pm \iint_{D_{x,y}} R\left[x, y, z(x, y)\right] \cdot dxdy$$

Lấy dấu " + " trước tích phân nếu γ là góc nhọn, lấy dấu " – " trước tích phân nếu γ là góc tù.

Ví dụ 4.1.

Tính tích phân: $I = \iint_S z^2 \cdot dx dy$,

Slà phía trên của nửa mặt cầu $x^2+y^2+z^2=1,\,z\geq 0.$

Ví du 4.1.

Tính tích phân: $I = \iint_S z^2 \cdot dx dy$,

S là phía trên của nửa mặt cầu $x^2+y^2+z^2=1,\,z\geq 0.$

• Phương trình của mặt S là $z=\sqrt{1-x^2-y^2}$; hình chiếu của mặt S xuống mặt phẳng Oxy là miền $D=\{x^2+y^2\leq 1\}$; góc $\gamma=g(\vec{n},\overrightarrow{Oz})<\frac{\pi}{2}$.

Ví du 4.1.

Tính tích phân:
$$I = \iint_S z^2 \cdot dx dy$$
,

S là phía trên của nửa mặt cầu $x^2+y^2+z^2=1,\,z\geq 0.$

- Phương trình của mặt S là $z=\sqrt{1-x^2-y^2}$; hình chiếu của mặt S xuống mặt phẳng Oxy là miền $D=\{x^2+y^2\leq 1\}$; góc $\gamma=g(\vec{n},\overrightarrow{Oz})<\frac{\pi}{2}$.
- Đưa về tích phân 2 lớp $I = \iint_D (1 x^2 y^2) \cdot dx dy$

Ví dụ 4.1.

Tính tích phân: $I = \iint_S z^2 \cdot dx dy$,

S là phía trên của nửa mặt cầu $x^2+y^2+z^2=1,\,z\geq 0.$

- Phương trình của mặt S là $z=\sqrt{1-x^2-y^2}$; hình chiếu của mặt S xuống mặt phẳng Oxy là miền $D=\{x^2+y^2\leq 1\}$; góc $\gamma=g(\vec{n},\overrightarrow{Oz})<\frac{\pi}{2}$.
- Đưa về tích phân 2 lớp $I = \iint_D (1 x^2 y^2) \cdot dx dy$
- Tính tích phân 2 lớp trong tọa độ cực

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} (1 - r^{2}) r dr = \varphi \Big|_{0}^{2\pi} \cdot \left(\frac{r^{2}}{2} - \frac{r^{4}}{4}\right) \Big|_{0}^{1} = \frac{\pi}{2}$$

Công thức Ostrogradski

Cho V là vật thể hữu hạn, đóng trong không gian có biên S là mặt cong kín, lấy phía ngoài. Các hàm $P(x,y,z),\ Q(x,y,z),\ R(x,y,z)$ xác định và liên tục cùng với các đạo hàm riêng của chúng trong miền V. Khi đó

$$I = \iint\limits_{S^+} P \cdot dy dz + Q \cdot dz dx + R \cdot dx dy = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz.$$

Công thức này gọi là công thức Ostrogradski, cho ta tính tích phân mặt loại 2 bằng cách đưa về tích phân 3 lớp (tương tự như công thức Green).

Chú ý: Khi áp dụng phải kiểm tra điều kiện mặt cong kín, lấy phía ngoài, các hàm phải liên tục cùng các đạo hàm riêng trên toàn miền V.

Ví du 4.2.

$$Tinh I = \iint_{S} z^{2}y dy dz + x^{2}y dz dx + y^{2}z dx dy,$$

S là phía ngoài của biên vật thể giới hạn bởi các mặt $z=x^2+y^2$ và z=1.

Ví du 4.2.

Tính
$$I = \iint_{S} z^2 y dy dz + x^2 y dz dx + y^2 z dx dy,$$

S là phía ngoài của biên vật thể giới hạn bởi các mặt $z = x^2 + y^2$ và z = 1.

• Áp dụng công thức Ostrogradski, đưa về tích phân 3 lớp

$$I = \iint_{\mathbb{R}^2} z^2 y dy dz + x^2 y dz dx + y^2 z dx dy = \iiint_{\mathbb{R}^2} (x^2 + y^2) dx dy dz.$$

Ví du 4.2.

Tính
$$I = \iint_{S} z^2 y dy dz + x^2 y dz dx + y^2 z dx dy$$
,

S là phía ngoài của biên vật thể giới hạn bởi các mặt $z = x^2 + y^2$ và z = 1.

• Áp dụng công thức Ostrogradski, đưa về tích phân 3 lớp

$$I = \iint\limits_{S} z^2 y dy dz + x^2 y dz dx + y^2 z dx dy = \iiint\limits_{V} (x^2 + y^2) dx dy dz.$$

• Tính tích phân 3 lớp trong tọa độ trụ

$$V = \begin{cases} 0 \le \varphi \le 2\pi \\ 0 \le r \le 1 \\ r^2 < z < 1 \end{cases} \Rightarrow I = \int_0^{2\pi} d\varphi \int_0^1 dr \int_{r^2}^1 r^3 dz = \int_0^{2\pi} d\varphi \int_0^1 r^3 \left(1 - r^2\right) dr = \frac{\pi}{6}.$$

Ví du 4.3.

Tính tích phân: $I = \iint_S xy^2 dy dz + yz^2 dx dz + zx^2 dx dy$,

S là phía ngoài của mặt cầu $x^2+y^2+z^2=1. \label{eq:special}$

Ví dụ 4.3.

Tính tích phân:
$$I=\iint_S xy^2dydz+yz^2dxdz+zx^2dxdy,$$
 S là phía ngoài của mặt cầu $x^2+y^2+z^2=1.$

Áp dụng công thức Ostrogradski, đưa về tích phân 3 lớp:

•
$$I = \iiint_V (y^2 + z^2 + x^2) dx dy dz$$
, trong đó $V = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$

• Tính tích phân 3 lớp trong tọa độ cầu, xác định cận $0 \le \varphi \le 2\pi, 0 \le \theta \le \pi, 0 \le r \le 1$

Ví du 4.3.

Tính tích phân:
$$I = \iint_C xy^2 dy dz + yz^2 dx dz + zx^2 dx dy$$
,

S là phía ngoài của mặt cầu $x^2+y^2+z^2=1. \label{eq:special}$

Áp dung công thức Ostrogradski, đưa về tích phân 3 lớp:

•
$$I = \iiint_V (y^2 + z^2 + x^2) dx dy dz$$
, trong đó $V = \{(x, y, z) | x^2 + y^2 + z^2 \le 1\}$

• Tính tích phân 3 lớp trong tọa độ cầu, xác định cận $0 \le \varphi \le 2\pi, 0 \le \theta \le \pi, 0 \le r \le 1$

•
$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} d\theta \int_{0}^{1} r^{2} \cdot r^{2} \sin\theta dr = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta \int_{0}^{1} r^{4} dr = \varphi \Big|_{0}^{2\pi} (-\cos\theta) \Big|_{0}^{\pi} \frac{r^{5}}{5} \Big|_{0}^{1} = \frac{4\pi}{5}$$

Nguyễn Thi Huyên (Toán Giải tích)