Laurea in Informatica A.A. 2021-2022

Corso "Base di Dati"

Esercitazione Normalizzazione

Prof. Massimiliano de Leoni

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

- 1. Mostrare tutte le chiavi candidate di R e motivare perché ognuna lo è
- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

1. Mostrare tutte le chiavi candidate di R e motivare perché ognuna lo è.

B+= {B, C, A, D} e C+= {C, A, D}. Quindi, B è chiave perché la sua chiusura contiene tutti gli attributi della relazione

- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

B è chiave.

- 2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.
- $C \rightarrow D$ e $C \rightarrow A$ violano BCNF perché C non è una superchiave della relazione
- 3. Decomporre in BCNF

Data la relazione R(A,B,C,D) con dipendenze funzionali $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}.$

B è chiave.

2. Dire quale dipendenze violano la forma normale di Boyce Codd (BCNF), spiegandone la ragione.

3. Decomporre in BCNF

Usando C \rightarrow D, si ottiene $R_1(\underline{C},D)$ e, togliendo D da R, si ottiene $\underline{R}(A,B,C)$

Usando C \rightarrow A, si ottiene $R_2(\underline{C},A)$ e, togliendo A da \underline{R} , si ottiene $R_3(\underline{B},C)$

Quindi si ottengo tre relazioni: $R_1(C,D)$, $R_2(C,A)$ e $R_3(B,C)$.

È anche possibile ricomporre R_1 e R_2 ottenendo $R_4(\underline{C},A,D)$ e $R_3(\underline{B},C)$.

Considerare uno schema di relazione R (E, N, L, C, S, D, M, P, A) con le seguenti dipendenze funzionali:

$$E \rightarrow NS$$
,
 $NL \rightarrow EMD$,
 $EN \rightarrow LCD$,
 $C \rightarrow S$,
 $D \rightarrow M$,
 $M \rightarrow D$,
 $EPD \rightarrow A$,
 $NLCP \rightarrow A$.

Calcolare una **copertura ridotta** per tale insieme e decomporre la relazione in **terza forma normale.**

Terza Forma Normale

Una relazione R con chiavi $K_1,...,K_n$ è in Terza Forma Normale se:

Per ogni dipendenza funzionale non banale $X \rightarrow Y$, almeno una delle seguenti condizioni sono valide:

- X è superchiave (BCNF)
- ogni attributo in Y è contenuto in almeno una tra le chiavi K₁,..., K_n.

Compertura Ridotta

- Un insieme di dipendenze F è una copertura ridotta:
 - non ridondante se non esiste dipendenza f ∈ F tale che F
 – {f} implica f;
 - ridotto se
 - non ridondante se non esiste dipendenza f ∈ F tale che F – {f} implica f;
 - non esiste un insieme F' equivalente a F ottenuto eliminando attributi dai primi membri di una o più dipendenze di F.
- Esempio (parte in rosso rimovibile):
 - $\{A \rightarrow B; AB \rightarrow C; A \rightarrow C\}$ è ridondante;
 - {A → B; AB → C} non è ridondante né ridotto;
 - $\{A \rightarrow B; A \rightarrow C\}$ è ridotto

Algoritmo per la copertura ridotta (Reminder)

I passi per calcolare la copertura ridotta di una relazione sono i seguenti:

- 1. Sostituzione dell'insieme dato con quello <u>equivalente</u> che ha tutti i <u>secondi</u> <u>membri</u> costituiti da <u>singoli attributi</u>;
- 2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> <u>membro</u>;
- 3. Eliminazione delle <u>dipendenze ridondanti</u>.

Esercizio 2 (passo 1)

1. Sostituzione dell'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi

 $E \rightarrow NS$

 $NL \rightarrow EMD$

EN → LCD

 $C \rightarrow S$

 $\mathsf{D}\to\mathsf{M}$

 $\mathsf{M} \to \mathsf{D}$

 $EPD \rightarrow A$

 $NLCP \rightarrow A$

Esercizio 2 (passo 1)

1. Sostituzione dell'insieme dato con quello equivalente che ha tutti i secondi membri costituiti da singoli attributi

$$\mathsf{E} \to \mathsf{NS}$$

$$NL \rightarrow EMD$$

$$\mathsf{C}\to\mathsf{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$EPD \rightarrow A$$

$$NLCP \rightarrow A$$

$$E \rightarrow S$$

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$EN \rightarrow L$$

$$EN \rightarrow C$$

$$\mathsf{EN}\to\mathsf{D}$$

$$C \rightarrow S$$

$$\mathsf{D}\to\mathsf{M}$$

$$\mathsf{M} \to \mathsf{D}$$

$$EPD \rightarrow A$$

$$NLCP \rightarrow A$$

Esercizio 2 (passo 2)

2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> membro

$$E \rightarrow S$$

$$\mathsf{E} \to \mathsf{N}$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

 $EN \rightarrow D$

 $C \rightarrow S$

 $\mathsf{D}\to\mathsf{M}$

 $\mathsf{M}\to\mathsf{D}$

 $EPD \rightarrow A$

 $NLCP \rightarrow A$

Esercizio 2 (passo 2)

2. Per ogni dipendenza verifica dell'esistenza di <u>attributi eliminabili dal primo</u> membro

$E \to S$	$E \rightarrow S$	
$E \rightarrow N$	$E \to N$	
L → N NL → E	$NL \to E$	
$NL \rightarrow L$ $NL \rightarrow M$	$NL \to M$	
	$NL \to D$	
$NL \rightarrow D$	E o L	$(EN \to L,E \to N)$
$EN \to L$	E o C	$(EN \rightarrow C, E \rightarrow N)$
EN → C	E o D	$(EN \rightarrow D, E \rightarrow N)$
$EN \to D$	$C \rightarrow S$	
$C \rightarrow S$	$D \rightarrow M$	
$D \to M$		
$M\toD$	$M \rightarrow D$	/
$EPD \to A$	$EP \to A$	$(EPD \to A \; , \; E \to D)$
$NLCP \to A$	$NLP \rightarrow A$	$(NLCP \rightarrow A, NL \rightarrow E, E \rightarrow C)$

Esercizio 2 (passo 3)

3. Eliminazione delle dipendenze ridondanti

$$\mathsf{E} \to \mathsf{S}$$

$$\mathsf{E}\to\mathsf{N}$$

$$\mathsf{NL}\to\mathsf{E}$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$\mathsf{E}\to\mathsf{D}$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$\mathsf{M} \to \mathsf{D}$$

$$\mathsf{EP} \to \mathsf{A}$$

$$\mathsf{NLP} \to \mathsf{A}$$

Esercizio 2 (passo 3)

3. Eliminazione delle <u>dipendenze ridondanti</u>

$$E \rightarrow S$$

$$\mathsf{E}\to\mathsf{N}$$

$$NL \rightarrow E$$

$$NL \rightarrow M$$

$$NL \rightarrow D$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$\mathsf{E} \to \mathsf{D}$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$\mathsf{M} \to \mathsf{D}$$

$$EP \rightarrow A$$

$$\mathsf{NLP} \to \mathsf{A}$$

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$\boldsymbol{E} \to \boldsymbol{C}$$

$$\mathsf{E} \to \mathsf{D}$$

$$\boldsymbol{C} \to \boldsymbol{S}$$

$$D \rightarrow M$$

$$\mathbf{M} \to \mathbf{D}$$

$$NLP \rightarrow A$$

Ho ottenuto una copertura ridotta

- $\boldsymbol{E} \to \boldsymbol{N}$
- $\text{NL} \to \text{E}$
- $\textbf{E} \rightarrow \textbf{L}$
- $\boldsymbol{E} \to \boldsymbol{C}$
- $\boldsymbol{E} \to \boldsymbol{D}$
- $\boldsymbol{C} \to \boldsymbol{S}$
- $\boldsymbol{D} \to \boldsymbol{M}$
- $\boldsymbol{M} \to \boldsymbol{D}$
- $\textbf{NLP} \to \textbf{A}$

Non abbiamo le chiavi → Occorre individuare le chiavi candidate partendo dalla copertura ridotta

	N
\longrightarrow	IN

 $NL \rightarrow E$

 $\textbf{E} \rightarrow \textbf{L}$

 $\mathbf{E} \to \mathbf{C}$

 $\mathbf{E} \to \mathbf{D}$

 $\boldsymbol{C} \to \boldsymbol{S}$

 $D \rightarrow M$

 $\mathbf{M} \to \mathbf{D}$

 $NLP \rightarrow A$

Eseguo le chiusure dei primi membri

E+

NL⁺

C+

D⁺

M+

NLP+

Non abbiamo le chiavi → Occorre individuare le chiavi candidate partendo dalla copertura ridotta

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$\mathbf{E} \to \mathbf{C}$$

$$E \rightarrow D$$

$$\boldsymbol{C} \to \boldsymbol{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$NLP \rightarrow A$$

Eseguo le chiusure dei primi membri

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

Non abbiamo le chiavi → Occorre Individuare le chiavi partendo dalla copertura ridotta

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$\mathbf{E} \to \mathbf{C}$$

$$E \rightarrow D$$

$$\boldsymbol{C} \to \boldsymbol{S}$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$NLP \rightarrow A$$

Eseguo le chiusure dei primi membri

$$E^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

Individuare le chiavi partendo dalla copertura ridotta

 $E \rightarrow N$

 $NL \rightarrow E$

 $E \rightarrow L$

 $E \rightarrow C$

 $E \rightarrow D$

 $C \rightarrow S$

 $D \rightarrow M$

 $\mathbf{M} \to \mathbf{D}$

 $\textbf{NLP} \to \textbf{A}$

Eseguo le chiusure dei primi membri

 $NLP^+ = \{N,L,P,A,E,D,C,S,M\}$ è una chiave candidata

EP + = {E,N,L,D,C,S,M,P,A} anche questa è una chiave candidata!

Ho ottenuto una copertura ridotta

	N
\longrightarrow	I

 $NL \rightarrow E$

 $E \rightarrow L$

 $E \rightarrow C$

 $E \rightarrow D$

 $\mathbf{C} \to \mathbf{S}$

 $D \rightarrow M$

 $\mathbf{M} \to \mathbf{D}$

 $NLP \rightarrow A$

Chiavi NLP, EP

Sintesi di schema in terza forma normale

Sintesi di schema in 3NF (Reminder)

Dati uno schema R(U) e un insieme di dipendenze F su U, con chiavi $K_1, ..., K_n$

- 1. Viene calcolata una copertura ridotta G di F
- 2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A e Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$
- 3. Viene costruita una relazione per ogni sotto-insieme
- 4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata
- 5. Se, per qualche i, non esiste una relazione S(X) con $K_i \subseteq X$, viene aggiunta una relazione $T(K_i)$

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A$ e $Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$E \rightarrow N$$

$$NL \rightarrow E$$

$$E \rightarrow L$$

$$E \rightarrow C$$

$$E \rightarrow D$$

$$C \rightarrow S$$

$$D \rightarrow M$$

$$M \rightarrow D$$

$$\textbf{NLP} \to \textbf{A}$$

$$NL^+ = \{E,N,L,D,C,S,M\}$$
 Non chiave perchè mancano A, P

$$C^+ = \{C,S\}$$
 Non chiave

$$D^+ = \{D,M\}$$
 Non chiave

$$M^+ = \{M,D\}$$
 Non chiave

$$NLP^+ = \{N,L,P,A,E,D,C,S,M\}$$
 è chiave

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A$ e $Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$egin{array}{ccccc} E
ightarrow N & & & \\ E
ightarrow L & & & \\ E
ightarrow C & & & \\ E
ightarrow D & & & \\ \end{array}$$

$$NL \rightarrow E$$

$$NL^{+}=\{E, N, L, C, D, S, M\}$$

$$C \rightarrow S$$

$$CS^+=\{C,S\}$$

$$\begin{array}{c} \mathsf{D} \to \mathsf{M} \\ \mathsf{M} \to \mathsf{D} \end{array}$$

$$D^+=\{ D, M \} ; M^+=\{ D, M \}$$

$$NLP \rightarrow A$$

2. G viene partizionato in sottoinsiemi tali che due dipendenze funzionali $X \rightarrow A$ e $Y \rightarrow B$ sono insieme se $X_G^+ = Y_G^+$

$$\mathbf{E} \rightarrow \mathbf{N}$$
 $\mathbf{E} \rightarrow \mathbf{L}$
 $\mathbf{E} \rightarrow \mathbf{C}$
 $\mathbf{E} \rightarrow \mathbf{D}$

$$E^+ = \{ E, N, L, C, D, S, M \}$$

CHIUSURE COINCIDONO

$$NL \rightarrow E$$

$$NL^{+} = \{ E, N, L, C, D, S, M \}$$

$$C \rightarrow S$$

$$C^+ = \{ C, S \}$$

$$\begin{array}{c} D \to M \\ M \to D \end{array}$$

$$D^+ = \{\ D,\ M\ \}\ ;\ M^+ = \{\ D,\ M\ \}$$

$$NLP \rightarrow A$$

$$NLP^{+} = \{ E, N, L, C, D, C, S, M, A \}$$

3. Viene costruita una relazione per ogni sotto-insieme

3. Viene costruita una relazione per ogni sotto-insieme

4. Se esistono due relazioni S(X) e T(Y) con $X \subseteq Y$, S viene eliminata

5. Se, per qualche i, non esiste una relazione S(X) con $K_i \subseteq X$, viene aggiunta una relazione $T(K_i)$ Chiavi NLP, EP

Le chiavi delle relazioni sono sottolineate:

Dato schema R(A, B, C, D, E, F) con dipendenze:

$$CE \rightarrow A$$
, $C\rightarrow D$, $A\rightarrow B$, $D\rightarrow BE$, $B\rightarrow F$, $AD\rightarrow CF$

- 1. Trovare copertura ridotta G
- 2. Trovare tutte le chiavi
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare lo schema in 3NF
- 5. Lo schema normalizzato al punto 4 è anche in BCNF?

Dato lo schema R (A, B, C, D, E, F, G)

Con dipendenze:

$$AF \rightarrow BE$$
, $EF \rightarrow BCD$, $A \rightarrow F$, $B \rightarrow C$

- 1. Trovare copertura ridotta
- 2. Trovare tutte le altre chiavi, in aggiunta alla chiave primaria data
- 3. Dire se ci sono e quali dipendenze violano 3NF
- 4. Normalizzare in 3NF