

Faraday's law of electrolysis

51. Answer: (c) Coulomb per equivalent

Explanation:

- Faraday is defined as the charge required to deposit one gram equivalent of a substance.
- Its value is approximately 96500 C per equivalent.
- Hence, the dimension of Faraday is Coulomb per equivalent.

// !!--!

52. (b) For deposition of one equivalent silver required charged is 96500 C.

53. (b)
$$Cu^{++} + 2e^{-} \rightarrow Cu$$
; $E_{Cu} = \frac{63.55}{2} = 31.75 \text{ gm } Cu$.

54. (a)
$$Q = 2.5 \times 386 = 96500 \ C$$

$$2F(2 \times 96500 \ C)$$
 deposited $Cu = 63.5 \ g$

∴ Hence 965 C will deposited;
$$Cu = 0.3175 \ gm$$
.

55. (c)
$$\frac{\text{Wt. of } Cu}{\text{Wt. of } Ag} = \frac{\text{Eq. wt. of } Cu}{\text{Eq. wt. of } Ag}$$
; $\frac{\text{Wt. of } Cu}{1.08} = \frac{63.5/2}{108}$

Wt. of
$$Cu = 0.3177 \ gm$$
.

56. (c) 1 g atom of Al = 3 equivalent of Al = 3 faraday charge 3 mole electrons = 3 N electron.

57. (c) At cathode :
$$Al^{3+} + 3e^- \rightarrow Al$$

$$E_{Al} = \frac{\text{Atomic mass}}{3}$$

At cathode :
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

ELECTROCHEMISATRY

$$E_{Cu} = \frac{\text{Atomic mass}}{2}$$

At cathode : $Na^+ + e^- \rightarrow Na$

$$E_{Na} = \frac{\text{Atomic mass}}{1}$$

For the passage of 3 faraday;

mole atoms of Al deposited = 1

mole atoms of *Cu* deposited = $\frac{1 \times 3}{2}$ = 1.5

mole atoms of Na deposited $= 1 \times 3 = 3$.

58. (d) At cathode:
$$Ag^+ + e^- \rightarrow Ag$$

At Anode: $2OH^- \to H_2O + \frac{1}{2}O_2 + 2e^{-\frac{1}{2}O_2}$

$$E_{Ag} = \frac{108}{1} = 108; E_{O_2} = \frac{\frac{1}{2} \times 32}{2} = 8$$

$$\frac{W_{Ag}}{E_{Ag}} = \frac{W_{O_2}}{E_{O_2}}; \ W_{Ag} = \frac{1.6 \times 108}{8} = 21.6 \ gm \ .$$

60. (d) Number of gm equivalent = Number of faraday pass 4 gm = 4 faraday.

61. (c) Eq. of
$$AI = \frac{13.5}{27/3} = 1.5$$
.

Thus 1.5 Faraday is needed.

62. Answer: (c) 96500 C mol⁻¹

Explanation:

• One Faraday (F) is the total electric charge carried by 1 mole of electrons.

IIT-JEE CHEMISTRY

- Its numerical value is approximately 96500 coulombs per mole of electrons.
- This is used in Faraday's laws of electrolysis to relate charge passed to the mass of substance deposited or liberated.
- **63.** (b) Electricity required
 - = No. of gm equivalent \times 96500 coulombs
 - $= 0.5 \times 96500 = 48250$ *C*.
- **64.** (a) Equivalent weight of silver = 107.870 g.
 - 1 Faraday = 96500 *coulomb*.
- 65. Answer: (b) Coulomb

Explanation:

- Electric charge Q is calculated as: $Q = I \cdot t$
- If I=1 A
- and t=1 st = 1¥,st=1s,then Q=1 · 1=1 C
- Hence, 1 coulomb is the charge transported by a current of 1 ampere in 1 second.

ESTD: 2005

66. Answer: (b) Equivalent weight

Explanation:

 According to Faraday's first law of electrolysis, the mass of substance deposited or liberated at an electrode is directly proportional to its equivalent weight and the total charge passed:

 $m=Z\cdot Q$

Where Z = electrochemical equivalent

$$= \frac{\text{Equivalent weight}}{\text{Faraday}}.$$

67. (a) Equivalent weight and atomic weight of *Na* metal are the same, so 1*g* atom of *Na* is deposited by one Faraday of current.

68. (a)
$$Al \rightarrow Al^{3+} + 3e^{-}$$
.

69.

NEET

Answer: (b) 11.2 g

Step-by-Step Solution:

1. Electrolysis reaction:

$$Fe^{3+} + 3e^-
ightarrow Fe$$

2. Equivalent weight of Fe:

$$Equivalent \ weight = \frac{Atomic \ weight}{Valency} = \frac{56}{3} \approx 18.67 \, g/equiv$$

3. Mass deposited using Faraday's law:

$$m = ext{(Equivalent weight)} imes ext{(No. of Faradays)} = 18.67 imes 0.6 pprox 11.2 ext{ g}$$

- **70.** (c) : 1*F* obtained from 1 g equivalent
 - ∴ 2.5 *F* obtained from 2.5 *g* equivalent.
- **75.** (c) Faraday constant depends upon the current passed.

