Министерство науки и высшего образования Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

Национальный исследовательский университет ИТМО

Мегафакультет трансляционных информационных технологий Факультет информационных технологий и программирования

Прикладная математика

Лабораторная работа 1

Выполнили: Кутузов Михаил (М32001) Капанин Лимтрий (М32021

Капанин Дмитрий (M32021) Соколов Денис (M32021)

Преподаватель: Москаленко Мария Александровна

> Ссылка на код: GitHub

Содержание

Цель работы

Описание задачи

Исходные данные

Метод Дихотомии Описание

Описание Реализация Результат

Метод Золотого Сечения Описание

Описание Реализация Результат

Метод Фибоначчи Описание

Описание Реализация Результат

Метод Парабол Описание

Описание Реализация Результат

Комбинированный метод Брента Описание

Описание Реализация Результат

Общие результаты

Цель работы

- 1. Решить задачу в соответствии с номером варианта. Для решения реализовать алгоритмы одномерной минимизации функции без проихводной: метод дихотомии, метод золотого сечения, метод Фибоначчи, метод парабол и комбинированный метод Брента.
- 2. Сравнить методы по количеству итераций и количеству вычислений функции в зависимости от разной точности. Для каждого метода обязательно указывайте, как изменяется отрезок при переходе к следующей итерации.
- 3. Протестировать реализованные алогоритмы для задач минимизации многомодальных функций, например, на различных полиномах. Могут ли метод золотого сечения/Брента не найти локальный минимум многомодальной функции?

Описание задачи

Вариант 5

Разделение моря

«И простер Моисей руку свою на море, и гнал Господь море сильным восточным ветром всю ночь и сделал море сушею, и расступились воды. И пошли сыны Израилевы среди моря по суше: воды же были им стеною по правую и по левую сторону». Моисеевой рукой раздвинулись воды, и для его спутников со стороны берега море описывалось следующей функцией:

$$y(x) = e^{\sin(x)} \cdot x^2$$

Чтобы успешно пересечь море, необходимо найти наиболее низкую точку расступившихся волн, чтобы выйти максимально сухим из воды.

Исходные данные

$$\varepsilon = 10^{-5}$$

$$a = -\pi + \varepsilon$$

$$b = \pi$$

$$f(x) = e^{\sin(x)} * x^2$$

Метод Дихотомии

Описание

- 1. Суть метода: строить вложенные отрезки $[a_i, b_i]$ до тех пор, пока соблюдаются некоторые условия. При i=0 мы полагаем, что $a_0=a,\,b_0=b$.
- 2. Для каждого i-ого отрезка мы находим его середину $x_i = \frac{a_i + b_i}{2}$ и строим две дополнительные точки

$$c_i=x_i-rac{arepsilon}{2},$$
 $d_i=x_i+rac{arepsilon}{2}.$ Если $f(c_i)< f(d_i),$ то
$$a_{i+1}=a_i,$$
 $b_{i+1}=d_i,$ иначе
$$a_{i+1}=c_i,$$
 $b_{i+1}=b_i.$

- 3. Для каждого построенного отрезка вычисляется его длина и проверяется условие. Если $l_i < 2\varepsilon$, то процесс построения завершается и за искомую точку выбирается $x_* = \frac{a_i + b_i}{2}$.
- 4. Также на каждом шаге должно проверяться условие $a_i < c_i < d_i < b_i$. Если оно не выполняется, то это значит, что решение задачи не может быть найдено.

Реализация

import math

```
class Dichotomy:
    def __init__(self , func):
        self ._func = func

    @staticmethod
    def do_method(func , left , right , e):
        i = 0
        while abs(right - left) > e:
        i += 1
        middle = (right + left) / 2
```

```
fml = func(middle - e / 2)
fmr = func(middle + e / 2)
if (fml < fmr) > 0:
    right = middle
else:
    left = middle
return (left + right) / 2, i, right - left

def do(self, left, right, e):
    return Dichotomy.do_method(self._func, left, right, e)

print(Dichotomy.do_method((lambda x: x**2 * math.e ** math.sin(x)),
-math.pi + 0.00001, math.pi, 0.00001))
```

 $N_{\underline{0}}$ ит l_i $\frac{a_i + b_i}{2}$

```
1 3.1415876535897933 -1.5707888267948964
2 1.5707938267948964 -0.7853919133974482
3 0.7853969133974482 -0.3926934566987241
4 0.3926984566987241 -0.19634422834936202
5 0.19634922834936205 -0.098169614174681
6 0.09817461417468103 -0.04908230708734048
7 0.04908730708734051 -0.024538653543670224
8 0.024543653543670257 -0.012266826771835096
9 0.012271826771835128 -0.006130913385917531
10 0.006135913385917564 -0.0030629566929587493
11 0.003067956692958782 -0.0015289783464793583
12 0.001533978346479391 -0.0007619891732396628
13 0.0007669891732396955 -0.000378494586619815
14 0.00038349458661984776 -0.00018674729330989112
15 0.00019174729330992388 -9.087364665492918e-05
16 9.587364665496194e-05 -4.2936823327448214e-05
17 4.793682332748097e-05 -1.896841166370773e-05
18 2.3968411663740485e-05 -6.9842058318374865e-06
19 1.1984205831870243e-05 -9.921029159023653e-07
20 5.992102915935121e-06 2.0039485420651954e-06
```

 $x_* = 2.0039485420651954e - 06$

Метод Золотого Сечения

Описание

- 1. Суть метода: строить вложенные отрезки $[a_i, b_i]$ до тех пор, пока соблюдаются некоторые условия. При i=0 мы полагаем, что $a_0=a, b_0=b$.
- 2. Для каждого *i*-ого отрезка (i > 0) мы находим одну из двух дополнительных точек как одну из границ будущего отрезка (вторая граница соответственно будет либо a_i , либо b_i , а другая дополнительная точка на следующей итерации будет равна нынешней выбранной, поэтому мы всегда будем знать $f(c_i)$ и $f(d_i)$

$$c_i = a_i + r(b_i - a_i),$$

$$d_i = b_i - r(b_i - a_i).$$

где
$$r = \frac{3-\sqrt{5}}{2}$$

Если
$$f(c_i) < f(d_i)$$
, то

$$a_{i+1} = a_i,$$

$$b_{i+1} = d_i,$$

$$d_{i+1} = c_i,$$

иначе

$$a_{i+1} = c_i,$$

$$b_{i+1} = b_i,$$

$$c_{i+1} = d_i.$$

- 3. Для i=0 вычисляются обе точки
- 4. Для каждого построенного отрезка вычисляется его длина и проверяется условие. Если $l_i < 2\varepsilon$, то процесс построения завершается и за искомую точку выбирается $x_* = \frac{a_i + b_i}{2}$.
- 5. Также на каждом шаге должно проверяться условие $a_i < c_i < d_i < b_i$. Если оно не выполняется, то это значит, что решение задачи не может быть найдено.

Реализация

import math

```
class GoldenRatio:
    def __init__(self , func):
        self ._func = func

        @staticmethod
    def do_method(func , left , right , e):
        i = 0
        phi = (1 + 5**0.5) / 2
        resphi = 2 - phi
        x1 = left + resphi * (right - left)
        x2 = right - resphi * (right - left)
        f1 = func(x1)
        f2 = func(x2)
```

```
while abs(right - left) > e:
             i += 1
             if (f1 < f2) > 0:
                 right = x2
                 x2 = x1
                 x1 = left + resphi * (right - left)
                 f2 = f1
                 f1 = func(x1)
             {f else}:
                 left = x1
                 x1 = x2
                 x2 = right - resphi * (right - left)
                 f1 = f2
                 f2 = func(x2)
        return (x1 + x2) / 2, i, right - left
    def do(self, left, right, e):
        return GoldenRatio.do_method(self._func, left, right, e)
print(GoldenRatio.do method((lambda x: x**2 * math.e ** math.sin(x)),
-\text{math.pi} + 0.00001, \text{ math.pi}, 0.00001)
```

1 3.8832158971110458 -1.1999747050342706 2 2.399959410068541 -0.4583464615130179 3 1.4832564870425053 5.000000000310312e-06 4 0.9167029230260364 -0.2832717820082343 5 0.5665535640164692 -0.10819710250345059 6 0.3501493590095669 5.0000000001992895e-06 7 0.21640420500690158 -0.06686757700133247 8 0.13374515400266535 -0.025538051499214356 9 0.08265905100423648 5.000000000282556e-06 10 0.05108610299842928 -0.015781474002903324 11 0.03157294800580721 -0.006024896506592288 12 0.019513154992621906 5.000000000233117e-06 13 0.012059793013185043 -0.0037216809897181995 14 0.007453361979436865 -0.0014184654728441105 15 0.004606431033748278 5.00000000026445e-06 16 0.0028469309456887497 -0.0008747500440294999 17 0.0017595000880595286 -0.000331034615214889 18 0.0010874308576291592 5.0000000002452054e-06 19 0.0006720692304302684 -0.0002026808135992003 20 0.000415361627198891 -7.432701198351158e-05 21 0.000256707603231416 5.000000000257145e-06 22 0.00015865402396753744 -4.402678963168215e-05 23 9.80535792638786e-05 -1.3726567279852718e-05 24 6.060044470363501e-05 5.000000000249776e-06 25 3.745313456020499e-05 -6.573655071465238e-06 26 2.314731014343003e-05 5.792571369222428e-07 27 1.4305824416774962e-05 -3.841485726405292e-06 28 8.84148572665507e-06 -1.1093163813453444e-06

№ит

 l_i

 $\frac{a_i+b_i}{2}$

 $x_* = -1.1093163813453444e - 06$

Метод Фибоначчи

Описание

1. Суть метода: строить вложенные отрезки $[a_i, b_i]$ до тех пор, пока соблюдаются некоторые условия. Для i числа Фибоначчи имеем формулу:

$$F_i = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^i - \left(\frac{1 - \sqrt{5}}{2} \right)^i \right)$$

2. Для i=0 вычисляются две точки, симметричные относительно середины отрезка

$$c_0 = a_0 + \frac{F_i}{F_{i+2}}(b_0 - a_0)$$

$$d_0 = a_0 + \frac{F_{i+1}}{F_{i+2}}(b_0 - a_0)$$

3. Новый отрезок получается путём исключения отрезков аналогично методу Золотого Сечения

Если
$$f(c_i) < f(d_i)$$
, то

$$a_{i+1} = a_i,$$

$$b_{i+1} = d_i,$$

$$d_{i+1} = c_i,$$

иначе

$$a_{i+1} = c_i,$$

$$b_{i+1} = b_i,$$

$$c_{i+1} = d_i.$$

- 4. Особенность метода Фибоначчи в том, что у нас есть фиксированное N, и, когда мы доходим до этапа i=N, вычисления прекращаются и за искомую точку берётся $x_*=\frac{a_i+b_i}{2}$.
- 5. Также на каждом шаге должно проверяться условие $a_i < c_i < d_i < b_i$. Если оно не выполняется, то это значит, что решение задачи не может быть найдено.

Реализация

import math

class Fibonacci:

@staticmethod

$$\begin{array}{lll} \textbf{def} & _\texttt{get}_\texttt{fibonacci}_\texttt{list}(\texttt{left}\;,\; \texttt{right}\;,\; \texttt{e}\,) \colon \\ & \texttt{a} = [1\;,\; 1] \\ & \texttt{b} = (\texttt{right}\;-\; \texttt{left}\,) \; / \; \texttt{e} \\ & \textbf{while} \; \texttt{a}[-1] < \texttt{b} \colon \\ & \texttt{a} . \, \texttt{append}(\texttt{a}[-1] \; + \; \texttt{a}[-2]) \\ & \textbf{return} \; \texttt{a} \end{array}$$

```
@staticmethod
      def last part(func, left, right, e, x1, f1, n):
            \bar{x}2 = x1 + e
            f2 = func(x2)
            if f1 - e < f2 < f1 + e:
                  \textbf{return} \hspace{0.1cm} (\hspace{0.1cm} \mathtt{x1} \hspace{0.1cm} + \hspace{0.1cm} \mathtt{right} \hspace{0.1cm} ) \hspace{0.1cm} / \hspace{0.1cm} 2 \hspace{0.1cm} , \hspace{0.1cm} \mathtt{n} \hspace{0.1cm} , \hspace{0.1cm} \mathtt{right} \hspace{0.1cm} - \hspace{0.1cm} \mathtt{x1}
            else:
                  \textbf{return} \hspace{0.1cm} (\hspace{0.1cm} \texttt{left} \hspace{0.1cm} + \hspace{0.1cm} \texttt{x2}\hspace{0.1cm}) \hspace{0.1cm} / \hspace{0.1cm} 2\hspace{0.1cm}, \hspace{0.1cm} \texttt{n}\hspace{0.1cm}, \hspace{0.1cm} \texttt{x2}\hspace{0.1cm} - \hspace{0.1cm} \texttt{left}
      @staticmethod
      def do method(func, left, right, e):
            fibonacci\_list = Fibonacci\_get\_fibonacci\_list(left \ , \ right \ , \ e)
            n = len(fibonacci list)
            x1 = left + (right - left) * fibonacci_list[-3] / fibonacci_list[-1]
            x2 = left + (right - left) * fibonacci_list[-2] / fibonacci_list[-1]
            f1 = func(x1)
            f2 = func(x2)
            for i in range (0, n):
                  \mathbf{if} f1 \leq f2:
                        right = x2
                        x2\ =\ x1
                        x1 = left + (right - left) * fibonacci list[-3 - i] / fibonacci list[-1 - i]
                        f2 = f1
                        f1 = func(x1)
                        if i = n - 3:
                              return Fibonacci._last_part(func, left, right, e, x1, f1, n)
                  else:
                        left = x1
                        x1 = x2
                        x2 = left + (right - left) * fibonacci_list[-2 - i] / fibonacci_list[-1 - i]
                        f1 = f2
                        f2 = func(x2)
                        if i = n - 3:
                              return Fibonacci. last part(func, left, right, e, x1, f1, n)
      def do(self, left, right, e):
            return Fibonacci.do method(self. func, left, right, e)
print(Fibonacci.do method((lambda x: x**2 * math.e ** math.sin(x)),
-\text{math.pi} + 0.00001, \text{ math.pi}, 0.00001)
```

0 -3.8832158971151047 -1.1999747050322407 0.6180339887505408 1 -2.399959410073558 -0.4583464615114673 0.6180339887505409 2 -1.4832564870506229 5.0000000000254801e-06 0.6180339887519853 3 -0.9167029230376207 -0.2832717820065008 0.6180339887543226 4 -0.5665535640130023 -0.10819710249419162 0.618033988738303 5 -0.3501493590190088 5.00000280512225e-06 0.6180339887703414 6 -0.21640420498491703 -0.06686757701424076 0.6180339886704432 7 -0.13374515403409176 -0.025538051538828134 0.618033988957902 8 -0.08265905095429216 5.0000010716755305e-06 0.6180339882312468 9 -0.05108610308540918 -0.015781473933369813 0.6180339901755971 10 -0.03157294786888298 -0.0060248963251067125 0.618033985017358 11 -0.01951315521438355 5.000002143002585e-06 0.6180339984539399 12 -0.01205979265103255 -0.003721681279532497 0.6180339631667066 13 -0.007453362563350999 -0.0014184662356917215 0.6180340557275541 14 -0.00460643008900578 5.000001480888125e-06 0.618033813577794 15 -0.002846932476487868 -0.0008747488047780678 0.6180344478216819 16 -0.0017594976125179119 -0.00033103137279308966 0.6180327868852459 17 -0.0010874348631515372 5.0000018900976835e-06 0.6180371348133711

18 -0.0006720627480421518 -0.000202686055664595 0.6180257510729614
19 -0.0004153721151093855 -7.434073919821183e-05 0.6180555555555556
20 -0.00025669063343857043 5.000001637195709e-06 0.6179775293076009
21 -0.0001586814824892981 -4.4004573837440463e-05 0.6181818181818182
22 -9.800915094927234e-05 -1.3668408067427592e-05 0.6176470588235294
23 -6.067233122734685e-05 5.000001793535155e-06 0.619047615857316
24 -3.733681921682883e-05 -6.667754211723856e-06 0.6153846153846153

25 -2.3335512010518018e-05 3.328993914315504e-07 0.625

№ ит

 l_i

 $x_* = 1.2242348284034293e - 06$

Метод Парабол

Описание

1. Суть метода всё та же: строить вложенные отрезки $[a_i, b_i]$ до тех пор, пока соблюдаются некоторые условия. Пусть парабола проходит через 3 точки: $(x_1, f_1), (x_2, f_2), (x_3, f_3)$. Тогда вершина этой параболы вычисляется по формуле:

$$u = x_2 - \frac{(x_2 - x_1)^2 (f_2 - f_3) - (x_2 - x_3)^2 (f_2 - f_1)}{2[(x_2 - x_1)(f_2 - f_3) - (x_2 - x_3)(f_2 - f_1)]}.$$

Если $x_1 < x_2 < x_3, f_2 < f_1$ и $f_2 < f_3$, то вершина параболы точно лежит в (x_1, x_3) .

2. Для i=0

$$a_0 = a,$$

$$b_0 = b,$$

$$e_0 = \frac{a+b}{2},$$

$$x_0 = \frac{a+b}{2}.$$

- 3. Строим параболу, проходящую через точки $(a_i, f(a_i)), (e_i, f(e_i)), (b_i, f(b_i)),$ а вершину обозначим как x_{i+1} .
- 4. Вычислим две точки

$$c_{i+1} = min\{e_i, x_{i+1}\},$$

 $d_{i+1} = max\{e_i, x_{i+1}\}.$

Если $f(c_i) < f(d_i)$, то

$$a_{i+1} = a_i,$$

 $b_{i+1} = d_{i+1},$
 $e_{i+1} = c_{i+1},$

иначе

$$a_{i+1} = c_{i+1},$$

 $b_{i+1} = b_i,$
 $e_{i+1} = d_{i+1}.$

5. Если $|x_{i+1}-x_i|<\varepsilon$, то x_{i+1} - искомая точка. Если $x_{i+1}\notin[a_i,b_i]$, то вычисления прекращаются.

Реализация

import math

class Parabolic:

```
@staticmethod
    def top of parabola (m, 1, r, fm, fl, fr):
         denominator = 2 * ((m-1) * (fm - fr) - (m - r) * (fm - fl))
         if denominator = 0:
             return None
         return m - ((fm - fr) * (m - 1) ** 2 - (fm - fl) * (m - r) ** 2) / denominator
    @staticmethod
    def do method (func, left, right, e):
         middle = (left + right) / 2
         fl = func(left)
         fm = func(middle)
         fr = func(right)
         while fm < fl and fm < fr and right - left > e:
             i += 1
             u = Parabolic.\_top\_of\_parabola(middle, left, right, fm, fl, fr)
             fu = func(u)
             if fu \leq fm:
                 \quad \textbf{if} \ u < \ middle: \\
                      right = middle
                      fr = fm
                  else:
                      left = middle
                      fl = fm
                 middle = u
                 fm = fu
             else:
                  if u < middle:</pre>
                      left = u
                      fl = fu
                 else:
                      right = u
                      fr = fu
             if i > 1 and abs(xi - u) < e:
                 break
             xi = u
         return u, i, right - left
    def do(self, left, right, e):
         return Parabolic.do method(self. func, left, right, e)
print(Parabolic.do method((lambda x: x ** 2 * math.e ** math.sin(x)),
-\text{math.pi} + 0.00001, math.pi, 0.00001))
                                        Результат
       N_{\overline{0}} ит
                     l_i
                                           u_i
```

1 3.1416005075589273 -7.853969133947032e-06 0.500002045775982 2 1.2853969133979788e-05 -2.3707409359717492e-11 4.091535223225286e-06

Комбинированный метод Брента

Описание

- 1. Суть метода заключается в комбинировании методов Парабол и Золотого Сечения.
- 2. Введём параметры:
 - а, b левая и правая граница поиска точки минимума функции соответственно;
 - \bullet x точка, в которой функция принимает наименьшее из всех вычисленных на текущий момент значений:
 - w точка, в которой функция либо принимает второе снизу из всех вычисленных на текущий момент значений, либо принимает значение f(x);
 - v предыдущее значение w;
 - и текущее приближение к точке минимума функции;
 - d_{cur} принимает значение |u-x|;
 - d_{prv} предыдущее значение d_{cur} .
- 3. Начальные значения:

$$x, w, v = a + r(b - a),$$

$$d_{cur}, d_{prv} = b - a.$$

где
$$r = \frac{3-\sqrt{5}}{2}$$
.

- 4. Параболы строятся по 3м точкам: x, w, v три наилучших приближения к точке минимума. Если парабола не может быть построена или вершина отвергается, то выполняется шаг Золотого Сечения. Вершина параболы может быть отвергнута в двух случаях:
 - $\bullet \ u \notin [a,b]$ вершина вышла за границы отрезка поиска.

x = w = v = left + r * (right - left)

• $|u-x|>\frac{d_{prv}}{2}$ - вершина параболы сильно отдалилась от точки текущего наименьшего значения функции.

Реализация

import math

```
class Brent:
    def __init__(self , func):
        self ._func = func

@staticmethod
def _top_of_parabola(x, w, v, fx, fw, fv):
        denominator = 2 * ((w - x) * (fw - fv) - (w - v) * (fw - fx))
        if denominator == 0:
            return None
        return w - ((fw - fv) * (w - x) ** 2 - (fw - fx) * (w - v) ** 2) / denominator

@staticmethod
def do_method(func, left , right , e):
        r = (3 - 5 ** 0.5) / 2
```

```
fv \; = \; fx
          fw = fx
          d cur = d prv = right - left
          i = 0
          while right - left > e:
               i += 1
               if \max(x - left, right - x) < e:
                    break
               g = d prv / 2
               d prv = d cur
               u = Brent.\_top\_of\_parabola(x, w, v, fx, fw, fv)
               if u is None or abs(u - x) > g/2 or u < left or u > right:
                     if x < (left + right) / 2:
                          u = x + r * (right - x)
                          d prv = right - x
                     else:
                         \mathbf{u} = \mathbf{x} - \mathbf{r} * (\mathbf{x} - \mathbf{left})
                          d_prv = x - left
               fu = func(u)
               d \operatorname{cur} = \mathbf{abs}(\mathbf{u} - \mathbf{x})
               if fu > fx:
                    if u < x:
                          left = u
                     else:
                          right = u
                     \mathbf{if} \ \mathrm{fu} \mathrel{<=} \mathrm{fw} \ \mathbf{or} \ \mathrm{w} \mathrel{=\!\!\!=} \mathrm{x} \colon
                         v = w
                          fv = fw
                         w = u
                          fw = fu
                     else:
                          if fu \le fw or v = x or v = w:
                               v = u
                               fv = fu
               else:
                     if u < x:
                          right = x
                     else:
                          left = x
                    v = w
                    fv = fw
                    w = x
                    fw = fx
                    x = u
                    fx = fu
          return x, i, right - left
     def do(self , left , right , e):
          return Brent.do method(self. func, left, right, e)
print(Brent.do method((lambda x: x**2 * math.e ** math.sin(x))),
-\text{math.pi} + 0.00001, \text{ math.pi}, 0.00001)
```

fx = func(x)

1 3.883215897111045 -0.7416232435212526 0.6180339887498947
2 2.3999594100685404 -0.7416232435212526 0.6180339887498949
3 1.4832564870425047 -0.4826392410157896 0.6180339887498949
4 1.2242724845370416 -0.015008763413919823 0.8253949975827468
5 0.7566420069351717 -0.015008763413919823 0.6180339887498948
6 0.34150378212653526 -0.015008763413919823 0.4513412934999721
7 0.28901152933330193 -0.00973380782127739 0.8462908596022995
8 0.2837365737406595 0.0009535166967194995 0.9817482866347554
9 0.01068732451799689 6.194659541360406e-05 0.03766636206640495
10 0.009795754416690994 -4.9338739612007606e-06 0.9165768663799309
11 6.688046937480482e-05 2.701488955186317e-08 0.006827495517940622
12 4.9608888850752624e-06 -1.520439123792205e-10 0.07417544908291998

 $x_* = -1.520439123792205e - 10$

Общие результаты

