第七讲 优化方法 I 线性规划

二维线性规划的图解法

加入松弛变量/剩余变量将不等式变为等式。线性规划标准形式:

$$\min z = c^{T} x$$

$$s. t. Ax = b, x \ge 0$$

$$A \in R^{m \times n}, m \le n$$

基本可行解:设 B 是秩为m的约束矩阵 A 的一个m阶满秩子方阵,则称 B 为一个基; B 中m个线性无关的列向量称为基向量,变量x中与之对应的m个分量称为基变量,其余的变量为非基变量。令所有的非基变量取值为 0,得到的解 $x = {B^{-1}b \choose 0}$ 称为相应于 B 的基本解。 $3B^{-1}b \ge 0$ 则称基本解为基本可行解,这时对应的基阵 B 为可行基。

最优解只需在有限个可行解(基本可行解)中寻找。

LP 的通常解法: 单纯形法:

用迭代法从一个顶点(基可行解)转换到另一个顶点(称为一次旋转),每一步转换只将一个非基变量(指一个分量)变为基变量,称为进基,同时将一个基变量变为非基变量,称为出基,进基和出基的确定需要使目标函数下降(至少不增加)。

基本步骤:

选取初始基可行解(顶点);

判断当前解是否最优;

选择进基和出基变量;

防止迭代过程出现循环。

线性规划的对偶问题,对偶问题的最优解:

原始问题(P):

$$\min z = c^T x$$

$$s. t. Ax = b, x \ge 0$$

对偶问题(D):

$$\max b^T y$$

$$s. t. A^T y \le c$$

定理: 原问题和对偶问题互为对偶问题。

对偶定理:如果x是原问题的可行解(原可行解),y是对偶问题的可行解(对偶可行解),则 $b^T y \leq c^T x$ 。

若x和y还满足 $b^Ty = c^Tx$,则分别是(P)和(D)的最优解;

若原问题无下界,则对偶问题不可行;

若对偶问题无上界,则原问题不可行。

影子价格:考虑在最优解处右端项 b_i 的微小变动对目标函数值的影响。

由于 $f^* = c^T x^* = b^T y^* = y_1^* b_1 + y_2^* b_2 + \dots + y_m^* b_m$,假设 b_1, b_2, \dots, b_m 是变化的,则 $\frac{\partial f^*}{\partial b_1} = y_1^*, \frac{\partial f^*}{\partial b_2} = y_2^*, \dots, \frac{\partial f^*}{\partial b_m} = y_m^*$ 。 y_i^* 可以理解为当资源 b_i 变化 1 单位时极小化问题的目标函数值的变化量。

 $B^{-1}b>0$,对充分小的需求增量 Δb , $B^{-1}(b+\Delta b)>0$ 仍为最优解,此时相应最优费用变化为 $C_R^TB^{-1}\Delta b$,对偶变量 $y^*=(C_R^TB^{-1})^T$ 被称为边际价格或影子价格。

y*可以看成最优解时,为了第*i*种需求提供一个单位需求的边际费用,即当达到最优时,为 了满足附加的需求,必须向顾客索取的最小单位价格。

MATLAB 求解 LP: linprog 命令

[x, fval, exitflag, output, lambda] = linprog(c,A1,b1,A2,b2,v1,v2,x0,opt);

exitflag:

1	Function converged to a solution x.					
0	Number of iterations exceeded options.MaxIterations.					
-2	No feasible point was found.					
-3	Problem is unbounded.					
-4	NaN value was encountered during execution of the algorithm.					
-5	Both primal and dual problems are infeasible.					
-7	Search direction became too small. No further progress could be made.					

lambda: Lagrange 乘子,对偶问题的最优解。

lambda.ineqlin: 对应 $A_1x \leq b_1$

lambda.eqlin: 对应 $A_1x = b_1$

lambda.lower: 对应 $v_1 \leq x$

lambda.upper: 对应 $x \leq v_2$

第八讲 整数线性规划

$$\min z = c^T x$$
$$s. t. Ax = b$$

 $x \ge 0, x$ 为整数

分枝定界算法:

枚举,求解放松的线性规划问题。

最优值比界坏——舍弃;

最优解为整数最优值比界好/最优值为非整数最优值比界好——分枝。

旅行商问题(TSP)的动态规划算法:

用 $f_k(v_i, V)$ 表示从 v_i 点出发,经过V中的点各一次,最后回到 v_0 点的最短路程,V是一个顶点集合,|V|=k, d_{ij} 是 v_i 到 v_i 的弧长,则:

$$\begin{cases} f_k(v_i, V) = \min_{v_j \in V} \{d_{ij} + f_{k-1}(v_j, V\{v_j\})\}, k = 1, 2, \dots, n \\ f_0(v_i, \emptyset) = d_{i0} \end{cases}$$

第十讲 统计量和 MC 算法

MATLAB 数据描述的常用命令:

命令	名称	输入	输出	
[n v]=higt(v lz)	频数表	x: 原始数据行向量	n: 频数行向量	
[n,y]=hist(x,k)	<i>炒</i> 灰女又~X	k:等分区间数	y: 区间中点行向量	
hist(x,k)	直方图	同上	直方图	
mean(x)	均值	x: 原始数据行向量	样本均值	
median(x)	中位数	同上	中位数	
range(x)	极差	同上	极差	
std(x)	标准差	同上	样本标准差 s	
var(x)	方差	同上	样本方差 s2	
skewness(x)	偏度	同上	偏度	
kurtosis(x)	峰度	同上	峰度	

MATLAB 命令:

分布	均匀分 布	指数分 布	正态分	卡方分 布	t 分布	F 分布	二项分 布	泊松分 布
字符	unif	exp	norm	chi2	t	f	bino	poiss

功能	概率密度	分布函数	逆概率分布	均值与方差	随机数生成
字符	pdf	cdf	inv	stat	rand

Monte Carlo 方法:

一般区间重积分的计算: $\iint_{\Omega} f(x,y)dxdy$

 $x_i, y_i (i=1,...,n)$ 分别为[a,b]和[c,d]区间上的均匀分布随机数,判断每个点是否落在 Ω 域内,将落在 Ω 域内的 m 个点记作: $(x_k, y_k), k=1,...,m$,则:

$$\iint\limits_{\Omega} f(x,y)dxdy = S_{\Omega} \iint\limits_{\Omega} f(x,y) \frac{1}{S_{\Omega}} dxdy = S_{\Omega} \cdot E(f(X,Y))$$

$$\approx \frac{m}{n}(b-a)(d-c)\frac{1}{m}\sum_{k=1}^{m}f(x_{k},y_{k}) = \frac{(b-a)(d-c)}{n}\sum_{k=1}^{m}f(x_{k},y_{k})$$

计算积和式的 MC 方法:

将 0-1 矩阵 A 随机化,0 的位置保持不变,1 的位置以 $\frac{1}{2}$ 的概率取 1 和-1,则:

$$E(\det(B)^2) = per(A)$$

 $\det(B)$ 是一个随机变量。

第十一讲 统计推断

参数估计:

MATLAB 实现:

[mu sigma muci sigmaci] = normfit(x, alpha);

[muhat muci] = expfit(data, alpha);

x 为样本, alpha 为显著性水平(缺省时为 0.05)

mu——均值 μ 的点估计;

sigma——标准差 σ 的点估计;

muci——均值μ的区间估计;

sigmaci——标准差 σ 的区间估计。

假设检验:

基本步骤:

- 1) 建立假设;
- 2) 选择检验统计量,给出拒绝域(W)形式;
- 3) 选择显著性水平α

假设检验的两类错误:

第一类错误: $\alpha = P($ 拒绝 $H_0|H_0$ 为真 $) = P_{\theta}(X \in W), \theta \in \Theta_0$

第一类错误: $\alpha = P(接受H_0|H_0$ 不真 $) = P_{\theta}(X \in \overline{W}), \theta \in \Theta_1$

总体均值假设检验:

总体方差 σ^2 已知:

 $H_0: \mu = \mu_0; H_1: \mu \neq \mu_0$

$$z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)$$

 $|z| \le u_{1-\frac{\alpha}{2}}$ 时接受 H_0 ; 否则拒绝 H_0 。

 $H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$

 $|z| \ge u_{\alpha} (= -u_{1-\alpha})$ 时接受 H_0 ; 否则拒绝 H_0 。

总体方差 σ^2 未知:

$$H_0$$
: $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$

$$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t(n-1)$$

 $|t| \le t_{1-\frac{\alpha}{2}}$ 时接受 H_0 ; 否则拒绝 H_0 。

 $H_0: \mu \geq \mu_0; H_1: \mu < \mu_0$

 $t \ge t_{\alpha} (= -t_{1-\alpha})$ 时接受 H_0 ; 否则拒绝 H_0 。

两总体的假设检验——均值:

总体方差 σ_1^2, σ_2^2 已知:

$$H_0$$
: $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$

$$z = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0,1)$$

 $|z| \le u_{1-\frac{\alpha}{2}}$ 时接受 H_0 ; 否则拒绝 H_0 。

总体方差 σ_1^2 , σ_2^2 未知($\sigma_1^2 = \sigma_2^2$):

 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$

$$t = \frac{\bar{x} - \bar{y}}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}} \sim t(n_1 + n_2 - 2), S^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

 $|t| \le t_{1-\frac{\alpha}{2}}$ 时接受 H_0 ; 否则拒绝 H_0 。

统计检验中的 P 值:

P 值是在一个假设检验问题中,利用观测值能够做出拒绝原假设的最小显著性水平。即原假设成立条件下,样本量出现在观测值以外的概率的最大值,称为检验的 P 值。利用 P 值做检验比较方便。P 值是异常程度的刻画。

假设检验的 MATLAB 实现:

假设	检验	MATLAB 命令
单个总体均	$H_0: \mu = \mu_0$	h = ztest(x,mu,sigma)
值(σ²已	$H_0: \mu < \mu_0$	
知)	H_0 : $\mu > \mu_0$	[h,sig,ci,zval] = ztest(x,mu,sigma,alpha,tail)
单个总体均	H_0 : $\mu = \mu_0$	h = ttest(x,mu)
值(σ ² 未	$H_0: \mu < \mu_0$	
知)	H_0 : $\mu > \mu_0$	[h,sig,ci] = ttest(x,mu, alpha,tail)
两个总体均	$H_0: \mu_1 = \mu_2$	h = ttest2(x,y)
值(σ_1^2 =	$H_0: \mu_1 < \mu_2$	
σ ₂ ² ,未知)	$H_0: \mu_1 > \mu_2$	[h,sig,ci] = ttest2(x,y, alpha,tail)

输入参数 x 是样本,mu 是 H_0 中的 μ_0 ,sigma 是总体标准差 σ 。

alpha 是显著性水平(缺省时设定为 0.05)

tail 是对双侧检验和两个单侧检验的标识:

'both' (0)— Test against the alternative hypothesis that the population mean is not m.

'right'(1)— Test against the alternative hypothesis that the population mean is greater than m.

'left' (-1)— Test against the alternative hypothesis that the population mean is less than m.

输出参数 h=0 表示接受 H_0 ,h=1 表示拒绝 H_0 。

sig 表示对假设的接受和拒绝程度, P值。

ci 给出置信区间, zval 是样本统计量 z 的值。

第十二讲 拟合优度检验与伪随机数

拟合优度检验:

设总体服从离散分布:

X	x_1	 x_k
P	p_1	 p_k

进行 k 次独立地检验, k 个取值出现的频次分别为 $N_i(i=1,...,k)$, 则

$$X = \sum_{i=1}^{k} \frac{(N_i - np_i)^2}{np_i}$$

近似服从自由度为 k-1 的 x²分布。

若需要通过样本估计 s 个参数,则

$$X = \sum_{i=1}^{k} \frac{(N_i - np_i)^2}{np_i}$$

近似服从自由度为 k-s-1 的 χ^2 分布。

独立性检验 (列联表检验):

$A \setminus B$	1	2		j		t	行合计
1	n ₁₁	<i>n</i> ₁₂		n_{1j}		n_{1t}	$egin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_i \\ \vdots \\ c_s \end{array}$
2	n ₂₁	n_{22}		n_{2j}	•••	n_{2t}	c_2
÷				•		•	:
i	n _{i1}	n_{i2}	•••	n_{ij}	•••	n_{it}	c_{i}
:				•			:
S	n_{s1}	n_{s2}	•••	n_{sj}	•••	n_{st}	c_s
列合计	d_1	d_2		d _j		d_{t}	n

$$Y = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{\left(n_{ij} - n \cdot \frac{c_i}{n} \cdot \frac{d_j}{n}\right)^2}{n \cdot \frac{c_i}{n} \cdot \frac{d_j}{n}} = \sum_{i=1}^{s} \sum_{j=1}^{t} \frac{\left(nn_{ij} - nc_i d_i\right)^2}{nc_i d_i}$$

近似服从自由度为(s-1)(t-1)的χ²分布。

正态性检验:

	假设检验	MATLAB 命令		
	H_0 :总体服从 $N(\mu,\sigma^2)$	h = jbtest(x)		
总体分	H_0 : 运体版/外 $N(\mu, \sigma)$	[h,p,jbstat,cv] = jbtest(x,alpha)		
布正态	H ₀ :总体服从N(0,1)	h = kstest(x)		
性	11 . 台 /木 眼 川 M/2\	h = lillietest(x)		
	H_0 :总体服从 $N(\mu, \sigma^2)$	[h,p,lstat,cv] = lillietest(x,alpha)		

伪随机数:

平方取中法: 容易出现循环

线性同余生成器(LGG):

$$X_i = BX_{i-1} + A \mod m, i > 1$$

多步同余:

$$x_i \equiv (\alpha_1 x_{i-1} + \dots + \alpha_k x_{i-k}) \mod p, i \geq k$$

多项式同余:

$$x_i \equiv \left(ax_{i-1}^2 + bx_{i-1} + c\right) \bmod m$$

从均匀分布到一般分布:

设随机变量U服从[0,1]上的均匀分布,函数F为定义在实数集合R的连续单调递增函数,且对任何 $x \in R$ 有:

$$F(-\infty) = 0 \le F(x) \le 1 = F(+\infty)$$

则随机变量 $X = F^{-1}(U)$ 的概率分布函数为F(x)。

由均匀分布生成正态随机变量:

Box- Muller 方法: X, Y相互独立, 且均服从U(0,1), 做变换

$$\begin{cases} U = (-2\ln X)^{1/2} \cos 2\pi Y \\ V = (-2\ln X)^{1/2} \sin 2\pi Y \end{cases}$$

则得到的U和V相互独立,且均服从N(0,1)。

MATLAB 伪随机数生成命令:

rand(m,n): 生成 m 行 n 列均匀分布在(0,1)之间的伪随机数

randn(m,n): 生成 m 行 n 列标准正态分布(均值为 0, 方差为 1)的伪随机数

rands(m,n): 生成 m 行 n 列均匀分布在 (-1, 1) 之间的伪随机数

randi(a): 在[1,a]上生成均匀分布的伪随机整数

randi(a,m,n): 在[1,a]上生成均匀分布的 m*n 的随机整数矩阵

randi([a,b],m,n): 在[a,b]上生成均匀分布的 m*n 的随机整数矩阵