(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-78649 (P2002-78649A)

(43)公開日 平成14年3月19日(2002.3.19)

(51) Int.Cl.7		識別記号	FΙ	テーマコード(参考)			
A47L	9/00		A47L 9/00	Н 3В006			
F 0 4 D	29/00		F04D 29/00	в 3Н022			
	29/44		29/44	W 3H034			
	29/58		29/58	P 3H035			
H02K	5/02		H 0 2 K 5/02	5 H 6 O 5			
		審查請求	未請求 請求項の数10 〇)L (全 10 頁) 最終頁に続く			
(21)出願番号		特願2000-269814(P2000-269814)	(71)出顧人 000005821 松下電器	蜜業株式会社			
(22)出願日 平成12年9月6日(2000.9.6)			大阪府門3	官市大字門真1006番地			
			(72)発明者 徳田 剛	•			
			大阪府門	東市大字門真1006番地 松下電器			
			産業株式	会社内			
			(72)発明者 山口 誠				
			大阪府門真市大字門真1006番地 松下電器				
			産業株式	会社内			
			(74)代理人 10009744				
			弁理士 :	岩橋 文雄 (外2名)			
				且故百计物之			

最終頁に続く

(54) 【発明の名称】 電動送風機及びそれを用いた電気掃除機

(57) 【要約】

【課題】 モータ部を制御する回路部の発熱素子を効率よく、かつ省スペースで冷却することを可能にし、電気掃除機の小型、軽量化を図り、使用性の高い電気掃除機を提供する。

【解決手段】 モータ部11と、前記モータ部11の電力制御を行なうインバータの駆動回路部12と、モータ部11の筺体を構成するブラケットと、前記モータ部11により回転するインペラ32を備え、前記ブラケットのインペラ32側に形成したモータ11の軸方向に略平行なる面35に、前記インバータの駆動回路部12の回路基板27に実装された発熱素子28を効率よく冷却し、かつ回路部12を省スペースで構成できる。

 10
 電助送風機
 17
 シャフト
 24
 ステーター

 11
 モータ部
 18
 ローター
 27
 回路基板

 12
 回路部
 19
 軸受
 34
 ハウジング部

 13
 ファン部
 20
 負荷側ブラケット
 35
 略平面部

 16
 永久磁石
 21
 反負荷側ブラケット
 36
 連通孔

【特許請求の範囲】

【請求項1】 モータ部と、前記モータ部の電力制御を行なうインバータ回路部と、モータ部の筺体を構成するブラケットと、前記モータ部により回転するインペラを備え、前記インバータ回路部を前記インペラの外周から排出される空気の流路に配設するとともに、前記ブラケットのインペラ側に形成したモータの軸方向に略平行なる面に、前記インバータ回路部の回路基板に実装された発熱素子を固定した電動送風機。

【請求項2】 インバータ回路部の回路基板に実装された発熱素子と対向するブラケットのインペラ側に発熱素子と相似状なる連通孔を設けた請求項1記載の電動送風機。

【請求項3】 連通孔と発熱素子が形成する隙間が5mm以上の距離を保つ請求項2記載の電動送風機。

【請求項4】 ブラケットのインペラ側を金属で形成した請求項1~3のいずれか1項に配載の電動送風機。

【請求項5】 ブラケットのインペラ側を鍋、またはアルミで形成した請求項4記載の電勤送風機。

【請求項6】 ブラケットのインペラ側をマグネシウム 合金で形成した請求項4記載の電動送風機。

【請求項7】 ブラケットのインペラ側に複数の凹凸を 設けた請求項1~6のいずれか1項に配載の電動送風 機

【請求項8】 モータ部の筺体を負荷側ブラケットと反 負荷側ブラケットで構成し、前記反負荷側ブラケットに 複数の凹凸を設けた請求項1~7のいずれか1項に記載 の電動送風機。

【請求項9】 塵埃を捕集する集塵室と、請求項1~8 のいずれか1項に記載の電動送風機とを備えた電気掃除 機。

【請求項10】 電動送風機を直流電源で駆動する請求 項9記載の電気掃除機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、主に電気掃除機に 使用される電動送風機に関するものであり、特に、電気 掃除機本体の小型化を実現し、使用性の向上を図るもの である。

[0002]

【従来の技術】近年、電気掃除機は、電動送風機にインパーターモータを採用したものが市場に導入されている。

【0003】従来のインパーターモータを搭載した電気 掃除機を、図11、図12を用いて説明する。図11に 示すように、電気掃除機1は、掃除機本体2に、ホース 3が着脱自在に接続され、ホース3の他端には操作部4 を形成する先端パイプ5が備えられている。先端パイプ 5には延長管6と、その延長管6には吸込具7が接続さ れた構成になっている。本体2には、ホース3に連通し て集廢室8が形成され、集廢室8後方には吸気口9を集 塵室8側に面するよう配されたインパーター制御で駆動 する電動送風機10が備えられている。

【0004】次に、電動送風機10について、図12を 用いて説明する。

【0005】図12に示すように、電動送風機10は、モータ部11と、インバーター制御を行う回路部12と、ファン部13によって構成され、電動送風機10は、ケーシング14の外周部に配されたサポートゴム15を介して本体2内に内蔵されている。

【0006】モータ部11は、所望極数に着磁された永久磁石16をシャフト17に固定して構成されたローター18が、軸受け19を介して負荷側ブラケット20と反負荷側ブラケット21に保持されている。また、前記モータ部11内には、前記永久磁石16に相対するように複数のスロットを設けたコア22に所望相数の巻線23が施されたステーター24が内蔵されている。

【0007】モータ部11をインパーター制御して駆動させる回路部12は、電源供給部に接続される電源線25や、モータ部11への電力供給、回転数制御信号などを伝達する信号線26などが接続された回路基板27に実装され、電動送風機10の近傍に配置されている。回路部12のスイッチング素子28などの発熱素子は、冷却用の巨大な放熱フィン29に取り付けられて電動送風機10の吸気口9近傍の通風路上に配されていた。

【0008】また、インバーター制御に必要なローター18の位置を検出する位置検出手段は、ローター18に設けられたセンサーマグネット30と、このセンサーマグネット30の磁極を検知するホール素子などの位置検出素子31によって構成されている。

【0009】ファン部13は、モータ部11のシャフト17に備えられたインペラ32と、インペラ32の外周部に配され、インペラ32から流出する気流を徐々に圧力回復しながらモータ部11内部へ導く通風路を形成するエアガイド33と、これらを覆うケーシング14が備えられ、モータ部11の負荷側ブラケット20に一体的に取り付けられている。

【0010】電気掃除機1を運転すると、回路部12によるインパーター制御でモータ部11が駆動してローター18が高速で回転する。従ってローター18のシャフト17に固定されたインペラ32も高速で回転するので吸引力が発生し、塵埃などを含む汚れた空気は、吸込具7から吸引され、延長管6、ホース3を介して、本位2の集塵室8にて塵埃などを捕獲した後、電動送風機10内へと導かれる。また、電動送風機10の吸気口9は、電動送風機10へ流入する空気流にさらされるので、回路部12の発熱素子であるスイッチング素子28を効率良く冷却できるものである。

[0011]

【発明が解決しようとする課題】しかしながら上記の従来の電気掃除機1は、電動送風機10の回路部12のスイッチング素子28などの発熱素子を放熱フィン29で効率よく冷却するために、前記放熱フィン29を電動送風機10の吸気口9近傍の通風路上に配していたが、エアータイト性を確保したり、回路部21の配置位置が制限されたり、組立性が非常に困難であった。また、回路部12は発熱素子が多く、放熱フィンを大きくするなど本体の小型化を困難にする原因となっていた。

【0012】本発明は、以上のような従来の課題を解決しようとするものであって、モータ部11を制御する回路部21の発熱素子を効率よく、かつ省スペースで冷却することを可能にし、電気掃除機1の小型、軽量化を図り、使用性の高い電気掃除機1を提供することを目的としている。

[0013]

【課題を解決するための手段】上記目的を違成するために本発明は、モータ部と、前配モータ部の電力制御を行なうインパータ回路部と、モータ部の筺体を構成するブラケットと、前記モータ部により回転するインペラを備え、前記インパータ回路部を前記インペラの外周から計出される空気の流路に配設するとともに、前記ブラケットのインペラ側に形成したモータの軸方向に略平行なり、のインペラ側に形成したモータの軸方向に略平行なり、前記インパータ回路部の回路基板に実装された発熱素子を固定したものであり、回路部の発熱素子を効率よく冷却し、かつ回路部を省スペースで構成できるので、電気掃除機の小型、軽量化が図れ、使用性の高い電気掃除機を提供することができる。

[0014]

【発明の実施の形態】本発明の請求項1記載の発明は、モータ部と、前記モータ部の電力制御を行なうインパータ回路部と、モータ部の筺体を構成するブラケットと、前記モータ部により回転するインペラを備え、前記インパータ回路部を前記インペラの外周から排出される空気の流路に配設するとともに、前記ブラケットのイン気の流路に配設するとともに、前記ブラケットのイン気の流路に配設するとともに、前記ブラケットのイン気の流路に配設するとともに、前記ブラケットのインへ気の流路に配設するとともに、前記ブラケットのインへ気の地方に略平行なる面に、前記ブラケットのインパータ回路部の自路が表表された発熱素子を対したものであり、回路部を小型化することができるので、電動送風機を提供することができるものである。

【〇〇15】本発明の請求項2記載の発明は、上記請求項1記載の発明において、インパータ回路部の回路基板に実装された発熱素子と対向するブラケットのインペラ側に発熱素子と相似状なる連通孔を設けたもので、インペラで発生させた気流を効率よく発熱素子に当てられるので、冷却効果を向上させた小型の電動送風機を提供することができる。

【0016】本発明の請求項3記載の発明は、上記請求 項2記載の発明において、連通孔と発熱素子が形成する 隙間が5mm以上の距離を保つもので、ブラケットのインペラ側との絶縁距離と、冷却風の通路を確保したもので、信頼性の高い小型の電動送風機を提供することができる。

【0017】本発明の請求項4記載の発明は、上記請求項1~3のいずれか1項に記載の発明において、ブラケットのインペラ側を金属で形成したもので、ブラケットのインペラ側を放熱フィンとすることにより、発熱素子の冷却効果を向上できる。

【〇〇18】本発明の請求項5記載の発明は、上記請求項4記載の発明において、ブラケットのインペラ側を銅、またはアルミで形成したもので、更に発熱素子の冷却効果を向上できるものである。

【0019】本発明の請求項6記載の発明は、上記請求 項4記載の発明において、ブラケットのインペラ側をマ グネシウム合金で形成したもので、発熱素子の冷却効果 を向上できると共に、ブラケットのインペラ側の軽量化 が図れ、小型で軽量な電動送風機を提供することができ る。

【〇〇2〇】本発明の請求項7記載の発明は、上記請求項1~6のいずれか1項に記載の発明において、ブラケットのインペラ側に複数の凹凸を設けたもので、ブラケットのインペラ側の表面積を大きくすることにより、発熱素子の冷却効果を更に向上できる。

【〇〇21】本発明の請求項8記載の発明は、請求項1~7のいずれか1項に記載の発明において、モータ部の 筺体を負荷側ブラケットと反負荷側ブラケットで構成 し、前記反負荷側ブラケットに複数の凹凸を設けたもの で、反負荷側ブラケットの表面積を大きくすることによ り、発熱素子の冷却効果を更に向上できる。

【0022】本発明の請求項9記載の発明は、塵埃を捕集する集塵室と、請求項1~8のいずれか1項に記載の電動送風機とを備えた電気掃除機で、小型で使用性が向上した交流式の電気掃除機を提供することができる。

【0023】本発明の請求項10記載の発明は、上記請求項9記載の発明において、電動送風機を直流電源で駆動する電気掃除機で、小型でコードレスの更に使用性が向上した電気掃除機を提供することができる。

[0024]

【実施例】(実施例1)以下に本発明の第1の実施例を図1、図2を用いて説明する。なお、従来例と同一構成部分については、同一符号を付してその説明を省略する。

【0025】図1に示すように、電動送風機10は、回路部12が内蔵されたモータ部11と、ファン部13によって構成されている。

【0026】前記モータ部11は、インペラ32側の負荷側ブラケット20と、反負荷側ブラケット21により 筺体を構成しており、その内部には所望極数に着磁され た永久磁石16と、軸受け19で軸支されるシャフト1 7に固定して成るローター18と、前配永久磁石16に 相対するように複数のスロットを設けたコア22に所望 相数の巻線23が施されたステーター24が内蔵されて いる。

【〇〇27】次に、モータ部11内に内蔵したインパーターの駆動回路部12は、複数の発熱素子を実装した回路基板27で成っており、その外形は反負荷側ブラケット21の内周に略沿った円形で、中心部にはシャフト17を貫くドーナツ状の孔が設けられている。また、ローター18のシャフト17に固定されたセンサーマグネット30の磁極を検知するホール素子などの位置検出素子31も前記回路基板27上に実装されている。

【0028】ファン部13は、モータ部11のシャフト17に備えられたインペラ32と、インペラ32の外周部に配され、インペラ32から流出する気流を徐々に圧力回復しながらモータ部11内部へ導く通風路を形成するエアガイド33と、これらを覆うケーシング14が備えられ、モータ部11の負荷側ブラケット20に一体的に取り付けられている。

【〇〇29】次に、負荷側ブラケット20の軸受け19を保持するハウジング部34には、モータ部11の軸方向に略平行なる略平面部35を形成していると共に、ファン部13とモータ部11を連通する連通孔36を設けており、前記回路基板27上に実装されたスイッチング素子28などの発熱素子が、前記連通孔36内を貫通して前記ハウジング部34の略平面部35に固定されている。また、26はモータ部11に電力を供給したり、ローター18の回転数制御信号などを伝達する信号線である。

【0030】上記構成による作用は以下の通りである。 【0031】まず、モータ部11に電力が供給される と、ステーター24で発生した磁界と、ローター18に 固定した永久磁石の磁界との反発、吸引力でローター1 8が回転し始める。

【〇〇32】次に、センサーマグネット30と、ホール素子などの位置検出素子31でローター18の位置を検出しながら、回路部12でステーター24の巻線23に流れる電流の向きを切り換えて発生する磁界の向きを切替えることにより、磁力の反発、吸引力を利用してローター18を継続して回転し続けさせるものである。

【0033】そして、上配のように電動送風機10のローター18が高速で回転すると、ローター18のシャフト17に固定されたインペラ32が高速で回転して吸引力を発生させる。吸引された気流はケーシング14の吸気口9からインペラ32内に流入し、その外周より排出される。その後気流はエアガイド33内の通路を通って減速、圧力回復されながら負荷側ブラケット20に設けた連通孔36からモータ部11内へと導かれる。

【0034】このとき、ファン部28から排出された気 流は、回路基板27上に実装され、負荷側ブラケット2 0のハウジング部34に固定されたスイッチング素子28などの発熱素子を通過するので、大風量の外気の冷たい空気で冷却することができ、非常に効率よく発熱素子を冷却することができると共に省スペース化が図れ、小型でコンパクトな電動送風機10を実現できるものである。

【0035】(実施例2)以下に本発明の第2の実施例を、図3を用いて説明する。なお上記第1の実施例と同一構成部分については、同一符号を付してその説明を省略する。

【0036】図3に示すように、電動送風機10のモータ部11を構成する負荷側ブラケット20に形成した連通孔36を、スイッチング素子28などの発熱素子の形状と相似形状にしたものである。

【0037】上記構成による作用は以下の通りである。 【0038】負荷側ブラケット20に設けた連通孔36は、スイッチング素子28などの発熱素子の外形に沿った形状をしているので、インペラ32が回転して発生した気流を効率よく発熱素子に当てて冷却効果を向上させることができる。

[0039] (実施例3)以下に本発明の第3の実施例を、図4、図5を用いて説明する。なお上配第1、第2の実施例と同一構成部分については、同一符号を付してその説明を省略する。

【0040】図に示すように、電動送風機10のモータ部11を構成する負荷側ブラケット20に形成した連通孔36を、スイッチング素子28などの発熱素子の形状と相似形状にすると共に、発熱素子と負荷側ブラケット20の隙間Sを5mm以上の空間距離を設けたものである。

【0041】上記機成による作用は以下の通りである。 【0042】負荷側ブラケット20に設けた連通孔36 は、スイッチング索子28などの発熱索子の形状と相似 形状をしていると共に、スイッチング索子28と負荷側 ブラケット20の間に5mm以上の空間距離を設けてい るので、負荷側ブラケット20と発熱索子の絶縁距離が 確保できると共に、インペラ32が回転して発生したが 流を発熱索子に当てながらスムーズに気流を通すので排 気圧損が抑制でき、電動送風機の吸い込み性能を低下さ せることなく発熱索子の冷却効果を向上させるものであ

【0043】(実施例4)以下に本発明の第4の実施例を、図6を用いて説明する。なお上記実施例と同一構成部分については、同一符号を付してその説明を省略する。

【0044】ブラケットのインペラ32側にあたる負荷 側ブラケット20を飼、アルミなどの熱伝導性の良い金 風材料で形成したものである。

【0045】上記構成による作用は以下の通りである。 【0046】スイッチング素子28などの発熱素子が、 鋼、又はアルミなどの熱伝導性の良い金属材料で形成された負荷側ブラケット20に固定されているので、負荷側ブラケット20自体が放熱フィンの役割をするので、発熱素子の冷却効果を更に向上させることができるものである。特に電動送風機の吸気口が絞られて風量が低下した時でも少ない冷却風で発熱素子の温度上昇を抑制することができ、信頼性の高い小型でコンパクトな電動送風機10を実現できるものである。

【0047】(実施例5)以下に本発明の第5の実施例を、図7を用いて説明する。なお従来例と同一構成部分については、同一符号を付してその説明を省略する。

【 O O 4 8 】 ブラケットのインペラ32 側にあたる負荷 側ブラケット20をマグネシウム合金で形成したもので ある。

【〇〇49】上記構成による作用は以下の通りである。

【0050】負荷側ブラケット20を、鋼、又はアルミなどの金属材料で形成すると、比重が大きいために負荷側ブラケット20の重量が重くなり、電動送風機の軽量化を妨げる欠点となっていた。しかし、マグネシウム合金は他の実用金属中最も比重が小さい(アルミの2/3)ので負荷側ブラケット20を軽量化することができる。また、マグネシウム合金はリサイクル性、放熱性、加工性に優れた材料であることが知られている。

【0051】特に、近年ではマグネシウム合金の成形 (チクソモールディング法)の成形技術が向上してきており、家電製品など幅広い分野で採用されてきている。 【0052】(実施例6)以下に本発明の第6の実施例を、図8を用いて説明する。なお従来例と同一構成部分については、同一符号を付してその説明を省略する。

【0053】負荷側ブラケット20、反負荷側ブラケット21のどちらか一方、または両方を金属材料で形成すると共に、その表面に多数個の凹凸部37を設けたものである。

【0054】上記構成による作用は以下の通りである。 【0055】負荷側ブラケット20、反負荷側ブラケット21の表面に多数個の凹凸部37を設けることにより、表面積が大きくなるので放熱性が向上し、発熱素子の冷却効果を更に高めることができる。

【0056】(実施例7)以下に本発明の第7の実施例を、図9を用いて説明する。なお従来例と同一構成部分については、同一符号を付してその説明を省略する。

【0057】図9に示すように、電気掃除機1の掃除機本体2は、前部に塵埃を捕集する集塵室8を、後部に電動送風機10と、電力供給用のコードリール38を内蔵している。

【0058】また、掃除機本体2の前部には、前配集盛 室8と連通して、ホース3、延長管6、吸込具7が接続 されている。

【0059】上記構成による作用は以下の通りである。 【0060】コードリール38から電力を供給されて電 動送風機10が運転すると、吸込具7から塵埃を含んだ空気が吸い込まれ、延長管6、ホース3を通った後に掃除機本体2内の集塵室8で塵埃が捕獲され、その後の気流は電動送風機10内に導かれるものである。

【0061】上記実施例からも明らかなように、本発明の電動送風機10は小型で、信頼性が高く、従って小型で使用性の高い電気掃除機1を実現できる。

【OO62】(実施例8)以下に本発明の第8の実施例を、図10を用いて説明する。なお従来例と同一構成部分については、同一符号を付してその説明を省略する。

【0063】図10に示すように、電気掃除機1の掃除機本体2は、前部に塵埃を捕集する集塵窒8を、後部に電動送風機10と、電力供給用の充電可能な電池39を内蔵している。

【0064】また、掃除機本体2の前部には、前配集塵室8と連通して、ホース3、延長管6、吸込具7が接続されている。

【0065】上記構成による作用は以下の通りである。

【0066】電池39から電力を供給されて電動送風機10が運転すると、吸込具7から塵埃を含んだ空気が吸い込まれ、延長管6、ホース3を通った後に掃除機本体2内の集塵室8で塵埃が捕獲され、その後の気流は電動送風機10内に導かれるものである。

【0067】上記実施例からも明らかなように、本発明の電動送風機10は小型で、信頼性が高く、かつ電池39で運転しているのでコードが不要であり、更に小型で使用性の高い電気掃除機1を実現できる。

[0068]

【発明の効果】本発明の請求項1記載の発明によれば、モータ部と、前記モータ部の電力制御を行なうインパータ回路部と、モータ部の筺体を構成するブラケットと、前記モータ部により回転するインペラを備え、前記インペラの外周から排出される空の流路に配設するとともに、前記ブラケットのイン気の流路に配設するとともに、前記ブラケットのインへの流路に配設するとともに、前記ブラケットのインへの流路に配設するとともに、前記ブラケットのインへの流路に配設するとともに、前記ブラケットのインへの地方向に略平行なる面に、前記である。

【0069】本発明の請求項2記載の発明によれば、上記請求項1記載の発明において、インパータ回路部の回路基板に実装された発熱素子と対向するブラケットのインペラ側に発熱素子と相似状なる連通孔を設けたもので、インペラで発生させた気流を効率よく発熱素子に当てられるので、冷却効果を向上させた小型の電動送風機を提供することができる。

【〇〇7〇】本発明の請求項3記載の発明によれば、上記請求項2記載の発明において、連通孔と発熱素子が形成する隙間が5mm以上の距離を保つもので、ブラケッ

トのインペラ側との絶縁距離と、冷却風の通路を確保したもので、信頼性の高い小型の電動送風機を提供することができる。

【0071】本発明の請求項4記載の発明によれば、上記請求項1~3のいずれか1項に記載の発明において、ブラケットのインペラ側を金属で形成したもので、ブラケットのインペラ側を放熱フィンとすることにより、発熱素子の冷却効果を向上できる。

【0072】本発明の請求項5記載の発明によれば、上記請求項4記載の発明において、ブラケットのインペラ側を銅、またはアルミで形成したもので、更に発熱素子の冷却効果を向上できるものである。

[0073] 本発明の請求項6記載の発明によれば、上記請求項4記載の発明において、ブラケットのインペラ側をマグネシウム合金で形成したもので、発熱素子の冷却効果を向上できると共に、ブラケットのインペラ側の軽量化が図れ、小型で軽量な電助送風機を提供することができる。

【〇〇74】本発明の請求項7記載の発明によれば、上記請求項1~6のいずれか1項に記載の発明において、ブラケットのインペラ側に複数の凹凸を設けたもので、ブラケットのインペラ側の表面積を大きくすることにより、発熱素子の冷却効果を更に向上できる。

【〇〇75】本発明の請求項8記載の発明によれば、請求項1~7のいずれか1項に記載の発明において、モータ部の筺体を負荷側ブラケットと反負荷側ブラケットで構成し、前記反負荷側ブラケットに複数の凹凸を設けたもので、反負荷側ブラケットの表面積を大きくすることにより、発熱素子の冷却効果を更に向上できる。

【0076】本発明の請求項9記載の発明によれば、塵埃を捕集する集塵室と、請求項1~8のいずれか1項に記載の電動送風機とを備えた電気掃除機で、小型で使用性が向上した交流式の電気掃除機を提供することができる。

【0077】本発明の請求項10記載の発明によれば、 上記請求項9記載の発明において、電動送風機を直流電 源で駆動する電気掃除機で、小型でコードレスの更に使 用性が向上した電気掃除機を提供することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例を示す電動送風機の断面 図

【図2】図1のA-A断面図

【図3】本発明の第2の実施例を示す図1のA-A断面

【図4】本発明の第3の実施例を示す図1のA-A断面 図

【図5】同電動送風機の断面図

【図6】本発明の第4の実施例を示す電動送風機の断面 図

【図7】本発明の第5の実施例を示す電動送風機の断面 図

【図8】本発明の第6の実施例を示す電動送風機の断面 図

【図9】本発明の第7の実施例を示す電気掃除機の断面 図

【図10】本発明の第8の実施例を示す電気掃除機の断 面図

【図11】従来の電気掃除機の断面図

【図12】同電気掃除機に内蔵された電動送風機の断面 図

【符号の説明】

1 電気掃除機

2 掃除機本体

3 ホース

6 延長管

7 吸込具

8 集廢室

9 吸気口

10 電動送風機

11 モータ部

12 回路部

13 ファン部

14 ケーシング 16 永久磁石

17 シャフト

18 ローター

19 軸受け

20 負荷側ブラケット

2.1 反負荷側ブラケット

24 ステーター

26 信号線

27 回路基板

28 スイッチング案子

30 センサーマグネット

3 1 位置検出素子

32 インペラ

33 エアガイド

34 ハウジング部

35 略平面部

36 連通孔

37 凹凸部

38 コードリール

39 電池

【図5】

【図フ】

[図8]

37 凹凸部

[図9]

延長管 吸込具

[210]

39 雷油

[図12]

フロントページの続き				
(51) Int. CI. ⁷ テーマコート*(参考)	識別記号	FI		
HO2K 5/04		H 0 2 K	5/04	5 H 6 O 7
7/14			7/14	A 5H609
9/02			9/02	B 5H611
9/06			9/06	F
11/00			11/00	X

(72)発明者	村田 吉隆		Fターム(参考)	3B006	FA01	FA02			
(12) 56 91 6	大阪府門真市大字門真1006番地	松下電器		3H022	AA02	BA01	CA50	DA03	DA20
	産業株式会社内			3H034	AA02	AA13	BB02	BB06	CC03
(72) 発明者	西村 剛				DD12	EE03	EË12		
(12/369) 6	大阪府門真市大字門真1006番地	松下電器		3H035	AA03	AA06			
	産業株式会社内	•		5H605	AA01	BB05	CC02	CC05	DD03
(72)発明者	森下 和久				DD07	DD11	DD12	GG21	
(12) 50-91 6	大阪府門真市大字門真1006番地	松下電器		5H607	AA02	BB01	BB14	CC01	CC05
	産業株式会社内				DD03	DD09	DD16	FF04	KK10
	ZAPPOZIZIO			5H609	BB15	BB18	PP02	PP05	PP06
					PP07	PP16	0002	0008	RR02
					RR36	RR74			
				5H611	AA09	BB01	TT01	TT02	UA04
					HR01				