MATHEMATICS:

Max. Marks: 60

SECTION - I (MULTIPLE CORRECT CHOICE TYPE)

This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONE OR MORE is/ are correct

Let $f(x) = 1 - x - x^3$ then real value of x satisfying the inequality

 $1-f(x)-f^{3}(x) > f(1-5x)$ is

- A) 3
- C) 5/2
- D) 6
- The solution set of the equation $||x-2012| + \log_2^a| = 3$ has exactly four elements then 42. range of a is
- A) $\left(0, \frac{1}{8}\right)$ B) $\left(\frac{1}{8}, \infty\right)$ C) $\left(-\infty, -\frac{1}{8}\right)$ D) none
- Let $f(x) = \min(\{x+1\}, \{x-1\}, \{x+2\}), \forall x \in R$ where $\{.\}$ denotes the fractional part 43. function then which is necessarily true
 - A) $\lim_{x \to \frac{\pi}{2}} f(x) = \frac{\pi}{2} 1$
 - B) $\lim_{x \to 2} f(x) = 1$
 - C) f(2x) is periodic function having period $\frac{1}{2}$
 - D) f(x) = f(-x) has infinite number of solutions

Sr. IPLCO P2 Advanced

space for rough work

- If a(>0), c, d, u, v are non-zero constants and if the graphs of f(x) = |ax + c| + d, and 44. g(x) = -|ax + u| + v intersect at exactly two points (1,4) and (3,1) then
- A) 4a + 2c = -3 B) 4a + 2u = 3 C) $\frac{u+c}{a} = -4$ D) 2a + c = 1
- Let $f(x) = ([k]^2 5[k] + 4)x^3 (6\{k\}^2 5\{k\} + 1)x \tan x \cdot \operatorname{sgn} x$ be an even function then k 45. can be (where $x \in R$,[.] is G.I.F and $\{.\}$ denotes fractional part of function) (sgn is signum)
 - A) 3/2
- B) 7/2
- C) 4/3
- D) 13/3

- Which is correct 46.
 - A) $\lim_{n \to \infty} \left(\frac{2n^2 3}{2n^2 n + 1} \right)^{\frac{n^2 1}{n}} = \sqrt{e}$
- B) $\lim_{x\to\infty} x \left(\frac{1}{e} \left(\frac{x}{x+1} \right)^x \right) = -\frac{1}{2e}$

C) $\lim_{x \to 1} \sin(\sin^{-1} x) = 1$

D) $\lim_{x\to 0^+} \left(1^{1/x} + 2^{1/x} + \pi^{1/x}\right)^x = \pi$

47. Possible integral values of x which can be in the domain of definition of the

function $f(x) = \ln(ax^3 + (a+b)x^2 + (b+c)x + c)$ if $b^2 - 4ac < 0$ and a > 0 is____

- A) -1
- B) 0
- C) 1
- D) 2
- 48. Let $f: R \to [1, \infty)$ be defined as $f(x) = \log_{10} \left(\sqrt{3x^2 4x + k + 1} + 10 \right)$. If f(x) is a

surjection then k can be

- A) 1/3
- B) 2/3
- C) 4/3
- D) 1

SECTION - II (COMPREHENSION TYPE)

This section contains 4 groups of questions. Each group has 2 multiple choice questions based on a paragraph. Each question has 4 choices A), B), C) and D) for its answer, out of which ONLY ONE is correct.

Paragraph for Question 49 and 50

Let A and B are two sets such that $A \cup B = \{1, 2, 3, 4, 5, 6\}$, $A \cap B = \{4, 5\}$ then

- 49. The maximum number of possible functions from set A to set B is N then sum of digits of N is
 - A) 9
- B) 8
- C) 10
- D) 13

 $Sr.\ IPLCO_P2_Advanced$

space for rough work

50. The minimum number of possible functions from set B to set A is M then product of digits of M is

A)18

B) 10

C) 24

D) 60

Paragraph for Question 51 and 52

Let $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{4x^2 - 1}$, $h(x) = \frac{5x}{x + 2}$ be three functions and $\phi(x) = h(g(f(x)))$

51. If the domain of $\phi(x)$ is $R - \{a_1, a_2, a_3, ..., a_n\}$ then the value of $\left(\sum_{i=1}^n a_i\right) + n$ equals

A) 4

B) 5

C) 6

D) 7

52. If the range of $\phi(x)$ is R-A where R is set of real numbers then the number of integers in set A is

A) 5

B) 6

C) 7

D) 8

 $Sr.\ IPLCO_P2_Advanced$

space for rough work

Paragraph for Question 53 and 54

Consider the limit given by $\lim_{x\to 0} \frac{1}{x^3} \left(\frac{1}{\sqrt{1+x}} - \frac{1+x\sin\alpha}{1+x\sin\beta} \right)$ exists and has finite value where $\alpha, \beta \in [-\pi, 2\pi]$ then

- 53. The number of value of α is
 - A) 2
- B) 3
- C) 4
- D) 0

- The number of values of β is 54.
 - A) 1
- B) 4
- C)0
- D) 2

Paragraph for Question 55 and 56

Let $f: R \to [1, \infty)$ be a quadratic function which is surjective, such that f(2+x) = f(2-x) and f(1) = 2. If $g: (-\infty, \ln 2] \to [1,5]$ is given by $g(\ln x) = f(x)$ then

- 55. $g^{-1}(x)$ is given by
- A) $\ln(2-\sqrt{x-1})$ B) $\ln(2+\sqrt{x-1})$ C) $\ln(2-\sqrt{1-x})$ D) $\ln(2+\sqrt{1-x})$
- The sum of the values of x satisfying the equation f(x) = 5 is 56.
 - A) 2
- B) 4
- D) -2

Sr. IPLCO_P2_Advanced

space for rough work

SECTION – III (MATRIX MATCH TYPE)

This section contains **4 multiple choice questions.** Each question has matching lists. The codes for the lists have choices (A), (B), (C), and (D) out of which **ONLY ONE** is correct.

57. Let $\lim_{x \to \infty} (2^x + e^x + a^x)^{1/x} = L$ then match the range of values of 'a' with 'L' value (e is

exponent a is constant)

(P)
$$a \in \left(\frac{\pi}{2}, e\right)$$

(Q)
$$a \in (e, \infty)$$

(R)
$$a \in (0,e)$$

(S)
$$a \in \{2e\}$$

Sr. IPLCO_P2_Advanced

space for rough work

58. Match the following

List – I

List – II

(P)
$$lt \left(\frac{1+\sqrt[n]{16}}{2}\right)^n =$$

(1) 1

(Q) If
$$\lim_{x\to 0} \frac{\ln\left(\cot\left(\frac{\pi}{4} - \beta x\right)\right)}{\tan \alpha x} = 1$$
 then $\frac{\alpha}{\beta} = 1$

(2) 2

(R)
$$\lim_{x \to 0} \frac{\pi \sin(\pi \cos^2(\tan(\sin x)))}{\sin^2(\pi x)} =$$

(3) 3

If
$$\lim_{x \to \infty} \left[\left(x^5 + 10x^4 + 3 \right)^c - x \right]$$
 is finite non-zero, for certain (S)

(4) 4

value of c then value of the limit is

Sr. IPLCO_P2_Advanced

space for rough work

59.

List - I

List - II

The number of values of a such that $\lim_{x \to a} \left[\sin^{-1} \left(\frac{2x}{1+x^2} \right) \right]$ (where

[.] is G.I.F) doesn't exist is

If
$$f(x) = \{x + \lfloor \log_2(2016 + x) \rfloor \} + \{x + \lfloor \log_2(2016 + x^2) \rfloor \}$$

- (Q) +...+ $\left\{x+\left[\log_2\left(2016+x^{10}\right)\right]\right\}$ then f(e) equals (where [.] is (2) 8 G.I.F {.} F.P.F)
- The number of solutions of $f(f(f(x))) = \frac{x}{4}$ where $f(x) = 4x(1-x), 0 \le x \le 1 \text{ is}$ (3) 7

The number of elements in the range of

- (S) $f(x) = \operatorname{sgn}([|\sin x| + |\cos x|])$ is, k then 4k (where [.] is G.I.F, (4) 5 sgn is signum)
- A) P-4,Q-1,R-2,S-3

B) P-4,Q-2,R-3,S-1

C) P-4,Q-3,R-2,S-1

D) P-1,Q-3,R-2,S-4

Sr. IPLCO_P2_Advanced

space for rough work

Sri	Chaitanva	IIT A	∆ cademv
JII.	Chananya	111 /	Academy

06-09-15_Sr.IPLCO_JEE-ADV_(2013_P2)_RPTA-5_Q'Paper

13

60.

List – I	List – Il
----------	-----------

The number of integers in the range of the function,

(P)
$$f(x) = \cos^3 x - 6\cos^2 x + 11\cos x - 6, (x \in R)$$

(R)
$$A = \{1,3,5,7\}, B\{2,4,6,8\}$$
 then the number of functions from A to B such that $i + f(i) < 10$

Let f(x) be a function such that

(S)
$$f(x+2)+6f(x) = 5f(x+1) \forall x \in R \text{ where}$$
 (4) 15
 $f(0) = 2, f(1) = 5 \text{ then } f(2) \text{ equals}$

Sr. IPLCO_P2_Advanced

space for rough work