Tema 5 (II) - Conjuntos ortogonales. El proceso de Gram-Schmidt.

- **1.** a) Comprobar que $\mathcal{B} = \{ (\frac{4}{5}, \frac{3}{5}, 0), (-\frac{3}{5}, \frac{4}{5}, 0), (0, 0, 1) \}$ es una base ortonormal de \mathbb{R}^3 .
 - b) Hallar las coordenadas del vector $\mathbf{v} = (5, -5, 2)$ en la base \mathcal{B} .
 - c) Hallar (rápidamente) la matriz de paso de la base canónica a la base B.
- **2.** a) Normalizar (ya es ortogonal) la base $\{(1,0,-1),(1,1,1),(1,-2,1)\}$. Llamar \mathcal{B}_1 a la base obtenida.
 - b) Hallar la matriz de cambio de la base $\mathcal{B} = \left\{ \left(\frac{4}{5}, \frac{3}{5}, 0 \right), \left(-\frac{3}{5}, \frac{4}{5}, 0 \right), (0, 0, 1) \right\}$ a \mathcal{B}_1 y de \mathcal{B}_1 a \mathcal{B} .
 - c) La matriz de cambio de una base ortonormal a otra también ortonormal, ¿es necesariamente ortogonal?
- **3.** Para cada $\mathbf{v} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, a la matriz $H_{\mathbf{v}} = I_n \frac{2}{\|\mathbf{v}\|^2} \mathbf{v}^t \times \mathbf{v}$ se le llama matriz de Householder.
 - a) Probar que $H_{\mathbf{v}}$ es simétrica y ortogonal, esto es, $H_{\mathbf{v}}^{-1} = H_{\mathbf{v}}^t = H_{\mathbf{v}}$.
 - b) Construir la matriz de Householder para $\mathbf{v} = (-1, 1, 2)$ y comprobar las afirmaciones anteriores.
- **4.** a) Hallar, en la base canónica, la matriz de la proyección P_H sobre el subespacio $H = \langle (1, 0, -1), (1, 1, 1) \rangle$.
 - b) Comprobar que $P_H^2 = P_H$.
 - c) Comprobar, para $\mathbf{v} = (2, 1, -1)$, que $\mathbf{v} \notin H$ y que $\mathbf{v} \mathsf{P}_H(\mathbf{v}) \in H^{\perp}$.
- **5.** a) Hallar la matriz de la proyección P_H sobre el subespacio $H = \langle (1,2,0,-1), (0,1,1,0), (1,1,-1,1) \rangle$ en la base canónica.
 - b) Comprobar que $\mathbf{v} = (1, 1, 1, 1) \notin H$ y que $\mathbf{v} \mathsf{P}_H(\mathbf{v}) \in H^{\perp}$.
 - c) Comprobar que $\mathbf{w} = (1, 1, -1, -1) \in H$ y que $\mathsf{P}_H(\mathbf{w}) = \mathbf{w}$.
- 6. Usar el procedimiento de Gram-Schmidt para hallar, en cada caso, una base ortonormal de H.
 - a) $H = \langle (-8, 3, 5) \rangle$
 - b) $H = \langle (3,4,0), (1,0,0) \rangle$
 - c) $H = \langle (1, 2, 2, -1), (1, 1, -5, 3), (3, 2, 8 7) \rangle$
- 7. El siguiente ejercicio pretende ilustrar el hecho de que el procedimiento de Gram-Schmidt puede aplicarse a conjuntos L.D. Hallar, en cada caso, una base ortogonal de H partiendo del sistema generador dado.
 - a) $H = \langle (2, -1, 3, -2), (4, -2, 5, 1), (2, -1, 1, 8) \rangle$
 - b) $H = \langle (3, -1, 3, 2), (5, -3, 2, 3), (1, -3, -5, 0), (3, -1, 1 3) \rangle$
- 8. a) Hallar una base ortonormal del subespacio H de \mathbb{R}^4 cuyas ecuaciones son: $\begin{cases} x_1 + x_2 & +7x_4 = 0 \\ 2x_1 + x_2 + 2x_3 + 6x_4 = 0 \end{cases}$

 - c) Hallar (rápidamente) una base de H^{\perp} .
- 9. Hallar unas ecuaciones implícitas de H^{\perp} siendo $H \equiv \begin{cases} 2x_1 + x_2 + 3x_3 x_4 = 0 \\ 3x_1 + 2x_2 2x_4 = 0 \\ 3x_1 + x_2 + 9x_3 x_4 = 0 \end{cases}$
- **10.** Sea $H = \langle (1,0,2,1), (2,1,2,3), (0,1,-2,1) \rangle$.
 - a) Hallar sendas bases ortonormales, \mathcal{B}_1 y \mathcal{B}_2 , de H y H^{\perp} .
 - b) Considerar en \mathbb{R}^4 la base $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ y hallar la matriz del cambio de la base canónica a \mathcal{B} .
- 11. Hallar una base ortonormal de H^{\perp} si $H \equiv \begin{cases} 2x_1 + x_2 6x_3 + x_4 = 0 \\ x_1 + 2x_2 3x_3 + 4x_4 = 0 \\ x_1 + x_2 3x_3 + 2x_4 = 0 \end{cases}$ 12. La aplicación lineal $T: \mathbb{R}^4 \longmapsto \mathbb{R}^4$, en la base canónica, viene dada por la matriz $\begin{pmatrix} 1 & 2 & 0 & -1 \\ 1 & -1 & 3 & 2 \\ 1 & -1 & 3 & 2 \\ -1 & 1 & -3 & 1 \end{pmatrix}.$ a) Obtener una base ortonormal de ker(T) y otra de Im(T).
 - b) Comprobar que $T(\ker(T)^{\perp}) = \operatorname{Im}(T)$; Se cumple siempre la igualdad anterior?
- **13.** Ampliar el conjunto $\left\{\left(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2},0\right),\,\left(0,-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right)\right\}$ para obtener una base ortonormal de \mathbb{R}^4 .