PHƯƠNG PHÁP GRADIENT

TRẦN HÀ SƠN

Ngày 14 tháng 4 năm 2024

Overview

- Bài toán quy hoạch không ràng buộc
- 2 Khái niệm và cách tìm hướng giảm
- 3 Xác định độ dài bước theo quy tắc Armijo
- 4 Thuật toán gradient với thủ tục quay lui

Bài toán quy hoạch không ràng buộc

Bài toán

Cho hàm số $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, khả vi trên \mathbb{R}^n . Tìm giá trị nhỏ nhất của f(x) với $x \in \mathbb{R}^n$.

Bài toán quy hoạch không ràng buộc

Bài toán

Cho hàm số $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, khả vi trên \mathbb{R}^n . Tìm giá trị nhỏ nhất của f(x) với $x \in \mathbb{R}^n$.

Ý tưởng: Xuất phát từ một điểm $x^0 \in \mathbb{R}^n$ bất kì, ta xây dựng một dãy điểm $x^1, x^2, \dots, x^k, \dots$ sao cho

$$f(x^0) > f(x^1) > f(x^2) > \cdots$$

và dãy số $\{x^k\}$ hội tụ đến điểm dừng $x^* \in \mathbb{R}^n$ của hàm f, thỏa $\nabla f(x^*) = 0$.

Bài toán quy hoach không ràng buôc

Mô hình chung

- Bước khởi đầu: Chon một điểm $x^0 \in \mathbb{R}^n$ tùy ý. Gán k := 0.
- Bước lặp k (k = 0, 1, 2, ...)
 - If x^k thỏa điều kiên dừng:

Dừng thuật toán.

Flse:

$$X$$
ác định $x^{k+1} := x^k + t_k d^k$ sao cho $f(x^{k+1}) < f(x^k)$.

a Gán k := k + 1 và quay lại Bước lặp k.

Lưu ý:

- Điều kiện dừng tại Bước (k_1) thường là $\nabla f(x^k) \approx 0$ hoặc $\|x^k - x^{k-1}\|$ đủ nhỏ.
- $d^k \in \mathbb{R}^n$ là hướng giảm của f tại x^k và $t_k > 0$ được gọi là độ dài bước.

Định nghĩa

Cho $x^0 \in \mathbb{R}^n$. Ta gọi vector $d \in \mathbb{R}^n$, khác vector không là hướng giảm của hàm f tại x^0 nếu tồn tại $\epsilon > 0$ sao cho với mọi t thỏa $0 < t < \epsilon$ thì $f(x^0 + td) < f(x^0)$.

Đinh lý

Cho hàm f khả vi trên \mathbb{R}^n , điểm $x^0 \in \mathbb{R}^n$ và hướng $d \in \mathbb{R}^n/\{0\}$. Nếu $< \nabla f(x^0), d > < 0$ thì d là hướng giảm của f tại x^0 .

Hệ quả

Cho hàm f khả vi trên \mathbb{R}^n , điểm $x^0 \in \mathbb{R}^n$. Nếu $\nabla f(x^0) \neq 0$ thì $d = -\nabla f(x^0)$ là một hướng giảm của f tại x^0 .

Hệ quả

Cho hàm f khả vi trên \mathbb{R}^n , điểm $x^0 \in \mathbb{R}^n$ và $\nabla f(x^0) \neq 0$. Trong các hướng giảm d của hàm f tại x^0 có $\|d\| = 1$ thì hàm f giảm nhanh nhất theo hướng $d = -\frac{\nabla f(x^0)}{\|\nabla f(x^0)\|}$.

Ví du

Cho điểm $x^0=(2,1)$, vector d=(3,-1) và hàm số

$$f(x_1,x_2)=x_2e^{-(x_1+x_2)}.$$

- **①** Vẽ tập hợp các điểm $\{x = x_0 + td | t \ge 0\}$.
- Niểm tra xem vector d có phải là hướng giảm của hàm f tại x^0 không? Vì sao?

Xác định độ dài bước theo quy tắc Armijo

Thuật toán (Thủ tục quay lui)

Input Điểm $x^k \in \mathbb{R}^n$ và hướng giảm d^k của hàm f tại x^k . Ouput Điểm x^{k+1} trên tia $\{x^k + td^k | t > 0\}$ thỏa $f(x^{k+1}) < f(x_k)$.

- Chọn tùy ý $m_1 \in (0,1)$ và $\alpha \in (0,1)$ và đặt $t_k := 1$.
- 2 $T inh x^{k+1} = x^k + t_k d^k v in f(x^{k+1}).$
- If $f(x^{k+1}) \le f(x^k) + m_1 t_k < \nabla f(x^k), d^k > Then Dùng thuật toán
 Else <math>t_k = \alpha t_k$ và quay về Bước 2.

Thuật toán gradient với thủ tục quay lui

Thuật toán (Thủ tục quay lui)

Bước khởi đầu Chọn $m_1 \in (0,1)$ và $\alpha \in (0,1)$, chọn số thực $\epsilon > 0$ đủ nhỏ, chọn một điểm xuất phát tùy ý $x^0 \in \mathbb{R}^n$ sao cho $\nabla f(x^0) \neq \overrightarrow{0}$. Đặt k := 0.

Bước lặp k với k = 0, 1, 2...

- Dăt $t_k := 1$.
- Tính $x^{k+1} = x^k t_k \nabla f(x^k)$ và $f(x^{k+1})$.
- If

$$f(x^{k+1})-f(x^k) \leq +m_1t_k \langle \nabla f(x^k), -\nabla f(x^k) \rangle = -m_1t_k \|\nabla f(x^k)\|^2$$

Then Chuyến qua Bước k4 Else $t_k = \alpha t_k$ và quay về Bước k_2 .

Thuật toán gradient với thủ tục quay lui

Thuật toán (Thủ tục quay lui)

Bước lặp k với $k=0,1,2\dots$

- If

$$f(x^{k+1})-f(x^k) \leq +m_1t_k < \nabla f(x^k), -\nabla f(x^k) > = -m_1t_k \|\nabla f(x^k)\|^2$$

Then Chuyến qua Bước k_4 Else $t_k = \alpha t_k$ và quay về Bước k_2 .

- If $\| \nabla f(x^{k+1}) \| < \epsilon$ Then Dừng thuật toán. Else k = k + 1, quay về Bước lặp k.

Thuật toán gradient với thủ tục quay lui

Ví dụ

Tìm giá trị nhỏ nhất của các hàm số sau trên \mathbb{R}^2 .

- $f(x_1,x_2) = x_1^3 + x_2^2 3x_1 2x_2 + 12.$
- $f(x_1,x_2) = x_1^2 + x_1x_2 + x_2^2 + 3(x_1 + x_2 2).$