

Overcoming Biases in Toxicity Models for Inclusive Conversations

Ruchi, Caroline, Nikhil

AGENDA

-) Framing the Problem
- Gathering and Exploring Data
- Modeling
- Results And Recommendations
- Project Plan for Version 2

Framing the Problem

21%

Tweens (9-12 Years Old) have been **cyberbullied**, cyberbullied others, or seen cyberbullying

25%

Students indicated experiencing cyberbullying from mean & hurtful comments

33%

Adolescents reported bias-based school bullying

Problem FramingWhy this project was undertaken

- **Context**: School online forums contain toxic behavior and cyberbullying.
- Challenge: Manual moderation process is time-consuming, inefficient, and subject to human biases.
- Goal: Minimize unintended biases towards certain identities with automated toxicity detection and filtering solutions like ML, and NLP.

Problem Framing

Unintended biases in machine learning models can lead to unfair treatment of certain groups or identities.

Gender Bias

The model may incorrectly label statements like "I am a feminist and support equal rights for all" as toxic if it associates gender-related terms with negative connotations.

Religious Bias

The model may exhibit biases against religious affiliations, wrongly classifying comments like "I am a practicing Muslim and proud of my faith" as toxic if associating the term "Muslim" with negative sentiments.

Problem Framing

- Decision: How to accurately identify and filter toxic comments in online school forums while minimizing unintended bias towards certain identities, with a goal to automate the process.
- Decision Maker: School administrators, forum moderators, and an Al system.
- Value: Improve safety and inclusivity of the online forum, enhancing the overall learning experience for students.

Data Source

Kaggle Dataset: Jigsaw Unintended Bias in Toxicity Classification

• **Data Shape**: 1,804,874 rows x 45 columns.

 Variables: comment id, comment text content, toxicity score, toxicity category scores, identity targeted scores, and sentiment scores.

Target: toxicity score

Input: comment text content, toxicity category

scores, identity targeted scores

 Data Types: numeric, categorical/string, timestamp

Data Preparation

Remove columns that are not highly relevant to the problem statement e.g. comment_id, publication_id, parent_id, article_id

Handle Missing Values

Mainly Identity target scores columns Replace nulls with 0 E.g. asian, atheist, bisexual, black, buddhist, female, muslim,etc

Summary Statistics & Univariate Analysis

Divide dataset into Categorical-only & Numerical-only datasets

To perform summary statistics, univariate analysis

		obscene	severe_toxicity	target		
		1.804874e+06	1.804874e+06	1.804874e+06	ount	cou
		1.387721e-02	4.582099e-03	1.030173e-01	ean	me
		6.460419e-02	2.286128e-02	1.970757e-01	std	s
		0.000000e+00	0.000000e+00	0.000000e+00	min	m
		0.000000e+00	0.000000e+00	0.000000e+00	25%	25
		0.000000e+00	0.000000e+00	0.000000e+00	50%	50
		0.000000e+00	0.000000e+00	1.666667e-01	75%	75
		1.000000e+00	1.000000e+00	1.000000e+00	max	m
funny	rating	eated date	cr	omment text	et co	target
1804874	04874	1804874 18		1804874	4	1804874
61	2	1804362		1780823	3	2913
0	proved	.757707+00 app	015-10-13 18:40:35	Well said. 2	0	0.0
1549879	84758	4 16		184	4	1264764

10-10-5-0 0.0 0.2 0.4 uspst 0.6 0.8 1.0

Summary Statistics

Univariate Analysis

No outliers treatment conducted: each separate value represents a certain evaluation of the toxicity for each comment text.

Tradeoff between data quality & cost: prioritize data & training quality over cost

Bivariate Analysis

Toxicity category scores are more correlated with **Toxicity target score**→ input columns for model training

Comment Preprocess

1. Convert To Lower Case

2. Tokenize Words

3. Remove Stopwords

4. Lemmatization

Before preprocessing:

Canada is north of the USA border, its colder in Canada.

After preprocessing:

canada north usa border colder canada

Word Level Comment Analysis

A lot of toxic comments are associated with "Trump" and political discussions.

 \rightarrow policy or rules on political discussion in school forum

Modeling

Word-Level Classification Techniques

Considered word frequencies and importance in the text, by utilizing word-level features like term frequency-inverse document frequency (TF-IDF) representations.

Context-Level Classification Techniques

Captured contextual information, taking into account not only individual words but also their relationships with surrounding words or phrases in a sentence or text.

Gave better results 🗸

Transformer Models: BERT, RoBERTa, and DistilBERT

Metrics

Generalized Mean

of Bias AUCs

performance

Overall AUC

Measures model's ability to distinguish toxic and non-toxic comments for all examples.

Assess model's performance for specific groups of people.

Combines Bias
AUCs for different
groups, prioritizing
groups with worse

Final Metric

Combines Overall AUC
(25% weight) and
Generalized Mean of
Bias AUCs (25% weight)
to improve model
performance and reduce
unintended bias.

*More details in the appendix

	Final Metric
Logistic Regression	0.5027
Naive Bayes	0.4879
MLP	0.4975
Linear SVC	0.5015
Decision Tree	0.4478
Random Forest	0.4341
KNeighbors	0.5028
bert-base-uncased	0.9210
roberta-base	0.6723
distilbert-base-uncased	0.9346

Results


```
----- MODEL: distilbert-base-uncased -----
----- EPOCH: 1 -----
AUC Score = 0.9562896310967292
----- EPOCH: 2 -----
AUC Score = 0.9449628169101552
----- EPOCH: 3 -----
AUC Score = 0.9356225016283083
----- Model Performance: distilbert-base-uncased -----
                     subgroup subgroup_size subgroup_auc bpsn_auc bnsp_auc
6
                        black
                                               0.812500 0.860606 0.950842
                        white
                                               0.842593 0.869568 0.953896
0
                         male
                                       102
                                               0.906094 0.929049 0.945203
2
      homosexual gay or lesbian
                                        36
                                               0.909091 0.860329 0.976425
1
                       female
                                       160
                                               0.923218 0.925913 0.960829
5
                       muslim
                                        51
                                               0.944444 0.909846 0.969973
3
                    christian
                                               0.980952 0.945448 0.984158
                                       109
                       jewish
                                        20
                                              1.000000 0.918844 0.984448
8 psychiatric_or_mental_illness
                                               1.000000 0.959649 0.981403
                                        10
Final Metric: 0.9346879749831075
```


Model Deployment

Recommendations

Positive Placeholder text

 Connect the deployed Streamlit model to the forum backend to automatically detect toxicity and prevent students from posting by disabling the button.

Project Plan For Version 2

Next Steps ...

Enhance dataset

Optimize model

Broaden capabilities

Stage, Milestone, Deliverables

Data Collection and Preprocessing

Milestone: Acquire additional data & preprocess it.

Deliverable: A processed & cleaned dataset prepared for modeling.

Model Selection and Optimization

Milestone: Assess, choose, and optimize the best model based on performance metrics, additional training data, and hyperparameter tuning.

Deliverable: Performance metrics for all tested models & an optimized model with improved accuracy and minimized bias.

Model Enhancement

Milestone: Expand the model to identify other forms of online toxicity, such as hate speech, harassment, and cyberstalking.

Deliverable: A comprehensive model capable of detecting various forms of online toxicity.

Resources Required

Staffing

Data Scientist, Machine Learning Engineer / NLP Expert, Data Analyst, Data Labeler/Annotator, etc.

Computing Resources

Compute power(GPU) for training and optimizing models. Programing tools like Python, Compiler, etc.

Budget

Budget for potential outsourcing & cloud services. Budget for hiring staff.

Risks and Mitigation Plan

Insufficient data quality or quantity

Collect diverse and representative datasets, and ensure the data is clean, labeled correctly, and balanced before training.

Inadequate computing resources or infrastructure

Consider using cloud computing or distributed training to accelerate training; Optimize the model architecture and hyperparameters; Take advantage of GPU acceleration by using PyTorch.

Lack of Stakeholder Buy-In

Engage stakeholders at all stages of the project, communicate the value of the project to the school's goals, and incorporate stakeholder feedback.

Metrics

Overall AUC:

This score tells us how well the model can tell the difference between toxic and non-toxic comments for all the examples.

Bias AUCs:

These scores tell us how well the model can tell the difference between toxic and non-toxic comments for specific groups of people. There are three types:

- a. Subgroup AUC: This score is for comments that mention a specific group. A low score means the model struggles to tell if comments about that group are toxic or not.
- b. BPSN AUC: This score is for non-toxic comments about a specific group and toxic comments not about that group. A low score means the model mistakes non-toxic comments about the group for toxic comments not about the group.
- c. BNSP AUC: This score is for toxic comments about a specific group and non-toxic comments not about that group. A low score means the model mistakes toxic comments about the group for non-toxic comments not about the group.

Metrics

Generalized Mean of Bias AUCs:

This is a single score that combines all the Bias AUCs for different groups. It gives more importance to groups with worse model performance.

$$M_p(m_s) = \left(\frac{1}{N}\sum_{s=1}^N m_s^p\right)^{\frac{1}{p}}$$

where:

 M_p = the pth power-mean function

 $m_{\rm s}$ = the bias metric m calulated for subgroup s

N = number of identity subgroups

We use a p value of -5 to improve the model for the identity subgroups with the lowest model performance.

Final Metric:

This is the final score for the model. It combines the Overall AUC with the Generalized Mean of Bias AUCs. Each score is equally important (25% weight). The goal is to improve the model for everyone and reduce unintended bias.

$$score = w_0 AUC_{overall} + \sum_{\alpha=1}^{A} w_\alpha M_\beta(m_{s,\alpha})$$

where:

A = number of submetrics (3)

 $m_{s,a}$ = bias metric for identity subgroup s using submetric a

 w_a = a weighting for the relative importance of each submetric; all four w values set to 0.25