Решение жесткой системы дифференциальных уравнений Робертсона

Докладчик: Пиневич В. Г. Научный руководитель: Котович А. В.

группа ФН2-61Б

7 июня 2023 г.

Постановка задачи

Задача Робертсона

$$\begin{cases} \dot{y_1} = -0.04y_1 + 10^4 y_2 y_3, \\ \dot{y_2} = 0.04y_1 - 10^4 y_2 y_3 - 3*10^7 y_2^2, \\ \dot{y_3} = 3*10^7 y_2^2. \end{cases}$$

Требуется найти решение задачи Робертсона, построить фазовые траектории решений рассмотренных методов и сделать вывод о целесообразности использования каждого из них.

Начальные условия

$$\begin{cases} y_1(0) = 1, \\ y_2(0) = 0, \\ y_3(0) = 0. \end{cases}$$

Интервал интегрирования

$$t \in [0; T], T = 40, 100$$

Метод Адамса-Муолтона

Расчетная формула

$$y_{n+2} = y_{n+1} + h\left(\frac{5}{12}f(t_{n+2}, y_{n+2}) + \frac{8}{12}f(t_{n+1}, y_{n+1}) - \frac{1}{12}f(t_n, y_n)\right)$$

Шаг	Разность	Порядок
0.1	1.66E-07	3.000227306
0.05	2.08E-08	3.00011384
0.025	2.60E-09	3.000061088
0.0125	3.25E-10	

Таблица Порядки аппроксимации двухшажного метода Адамса-Моултона

Рис. Область устйочивости двухшажного метода Адамса-Моултона

Метод BDF

Расчетная формула для метода BDF-2

$$y_{n+2} - \frac{4}{3}y_{n+1} + \frac{1}{3}y_n = \frac{2}{3}hf(t_{n+2}, y_{n+2})$$

Расчетная формула для метода BDF-4

$$y_{n+4} - \frac{48}{25}y_{n+3} + \frac{36}{25}y_{n+2} - \frac{16}{25}y_{n+1} + \frac{3}{25}y_n = \frac{12}{25}hf(t_{n+4}, y_{n+4})$$

Шаг	Разность	Порядок
0.1	2.57E-06	1.948893957
0.05	7.36E-07	1.911532203
0.025	1.96E-07	1.957753587
0.0125	5.04E-08	

Шаг	Разность	Порядок
0.1	1.27E-10	3.926687816
0.05	1.02E-11	3.994735551
0.025	7.06E-13	3.929859553
0.0125	4.64E-14	

Таблица Порядки аппроксимации метода BDF-2 Таблица Порядки аппроксимации метода BDF-4

Области устойчивости методов BDF

Рис. Область устойчивости метода BDF-2

Рис. Область устойчивости метода BDF-4

Фазовые траектории

Рис. Фазовые траектории при T=40 Рис. Фазовые траектории при T=100

- метод BDF-2
- метод BDF-4
- метод Адамса-Моульона

Графики зависимости y_1 от t

Графики зависимости y_2 от t

Графики зависимости y_3 от t

Заключение

В ходе работы получены следующие результаты:

- Метод Адамса-Моултона является плохим выбором при решении жестких задач, так как он не является абсолютно устойчивым.
- В результатах расчетов решение для рассматриваемой задачи удалось получить лишь на интервале [0; 40].
- **3** Методы BDF-2 и BDF-4 позволили получить решение на поставленную задачу