Homework 4

Nathaniel Hamovitz Math 108B, Sung, F22

due 2022-11-10

1. Fix a field k. Given k-vector spaces U, V, and W, and k-linear maps $f: U \mapsto V$ and $G: V \mapsto W$, the diagram
$0 \longrightarrow U \longrightarrow^f$
Axler 2e, Exercise 7.4 Suppose $P \in \mathcal{L}(V)$ is such that $P^2 = P$. Prove that P is an orthogonal projection iff P is self-adjoint.
Proof.
Axler 2e, Exercise 7.21 Prove or give a counterexample: if $S \in \mathcal{L}(V)$ and there exists an orthogonal basis (e_1, \ldots, e_n) of V such that $ Se_j = 1$ for each e_j , then S is an isometry.
Proof.
Axler 2e, Exercise 7.23 Define $T \in \mathcal{L}(\mathbb{F}^3)$ by
$T(z_1, z_2, z_3) = (z_3, 2_z 1, 3z_2).$
Find (explicitly) an isometry $S \in \mathcal{L}(\mathbb{F}^3)$ such that $T = S\sqrt{T^*T}$.
Consider.
Axler 2e, Exercise 7.29 Suppose $T \in \mathcal{L}(V)$. Prove that dim range T equals the number of nonzero singular values of T .
Proof.
Axler 2e, Exercise 7.30 Suppose $S \in \mathcal{L}(V)$. Prove that S is an isometry iff all the singular values of S equal 1.

 ${\it Proof.}$