AIL 862

Lecture 3

Usual Recipe

- Understand your task: domain, classes etc.
- Collect a lot of images accordingly.
- (Somehow) annotate those images.
- Use images and the labels (annotations) to train a (CNN) model.
- Deploy: use trained model from now on the test data.

Does Recipe Always Work?

Label

Automobile

Bird

Examples from CIFAR-10 dataset, source: https://www.cs.toronto.edu/~kriz/cifar.html

Label

Building, also road, cars

Example from UC Merced

Annotation: difficulty and ambiguity

Domain knowledge is needed

Weak Supervision

Example of OSM-based building annotation

Weak Supervision

Often misaligned

• In case of the OSM example, georeferencing issue

Multi-source/sensor/modality data

Challenge or complementary information?

Improving temporal resolution using multisensor information

Time axis

Multi-Sensor EO

• Differences in spatial and temporal resolution.

• Differences in spectral characteristics.

Multi-modality

• Building type classification: images + tweets.

Geographic localization of non-EO data is challenging.

Can they be processed using similar architectures?

Multi-sensor Medical Image Analysis

Figure from A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics

Multi-modality in medical image processing

 Images + medical text data + maybe patient history (text or tabular format)

Domain Differences

DomainNet dataset

Clipart: collection of clipart images

Real: photos and real world images

Sketch: sketches of specific objects

Infograph: infographic images with specific object

Painting artistic depictions of objects in the form of paintings

Quickdraw: drawings of the worldwide players of game "Quick Draw"

Domain Differences

Concept In-domain Target domain

Sensor Sentinel-2 Worldview-2, Sentinel-1, ...

Season Summer Winter, Autumn, Fall

Geography Munich HongKong, New York, ...

Domain Differences

Think of autonomous driving

Sunny

Rainy

Foggy

OOD

Concept	In-domain	Target domain
Sensor	Sentinel-2	Worldview-2, Sentinel-1,
Season	Summer	Winter, Autumn, Fall
Geography	Munich	HongKong, New York,

OOD

Two options

- Identify and leave out OOD domains
- Generalize to OOD domains?

Big Noisy Data

Visual data continuously collected

Generally challenging to annotate

 No straightforward labeling mechanism (however, many implicit mechanisms available)

Supervised Learning: 4 components

Training data

Learner

Learning algorithm

Performance

Supervised Learning: 4 components

- Training data: input features, target/feedback
- Learner: parameters θ
- Learning algorithm: changes the parameters and improves performance
- Performance: cost function
- Predict Score Learn ...

Deep Learning

Analogy to our multi-year education

Supervised Learning: various issues

Dependence on training data

Overfitting and complexity (complex models overfit)

Choice of (hyper)parameters

Starting from pretrained model

LR - good

Starting from pretrained model

LR - comparatively low

Starting from pretrained model

LR – comparatively high

Data Split

Training

Validation

Test

Supervised Learning

1				
		- T		ize
	atas			1745
				_

UC Merced 2100

AID 10000

Optimal-31 1860

RSSCN7 2800

Cifar-10	60000
Cifar-100	60000

Training Data Amount

Using Models Trained in Supervised Fashion For Some Other Task

Just use as feature extractor

Just use the features extracted from particular layer(s) without any tuning

Fine tuning on target data

Further train particular layers of the network

Unsupervised domain adaptation

Adapt the network with unlabeled target data

Just as Feature Extractor

Some Aspects

Which layer?

Do we have a validation dataset?

Hypercolumn?

Any unsupervised way to rank features from different layers?

Using Models Trained in Supervised Fashion For Some Other Task

Just use as feature extractor

Just use the features extracted from particular layer(s) without any tuning

Fine tuning on target data

Further train particular layers of the network

Unsupervised domain adaptation

Adapt the network with unlabeled target data

Fine Tuning

Further train particular layers of the network

Red layers are frozen.

Train from ImageNet trained model

Train from scratch

Fine tuning

• Pre-training + finetuning does not always work.

• Generally: initial layers are somewhat domain specific.