

MU5MEF16 - (MEC 655) Numerical Methods for Fluid Mechanics

Comp Mech

Collapse of a column of grain

DUVIVIER Valentin

11/08/2021

- I. Collapse rheologies
- II. $\mu(I)$ rheology
 - A. Numerical implementation
 - 1. Level refinement
 - 2. Aspect ratio
 - 3. Size grain
 - B. Consistency model: Discrete solid case
- III. Conclusion

I. Recall 1st problem

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = 0$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \left(\frac{q^2}{h} + \frac{1}{2} g h^2 \right) = -C_f \nu \frac{Q}{h^2}$$
 fig 1b : fluid system
$$\begin{array}{c} \text{Convective} & \text{Poiseuille} \\ \text{terms} & \text{viscous term} \end{array}$$

I. Navier-Stokes

constant viscosity

 stability can't ensure good physics

 not well adapted for our case

fig 2 : Navier-Stokes

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \nabla \cdot (2\eta \mathbf{D}) + \rho \mathbf{g}$$

movement quantity conservation

$$\frac{\partial c}{\partial t} + \nabla \cdot (c\mathbf{u}) = 0$$

color function

$$\eta = \max\left(\frac{\mu(I)}{\sqrt{2}D_2}p, 0\right), \text{ with } I = d\sqrt{2}D_2/\sqrt{(|p|/\rho)}$$

$$\mu(I) = \mu_s + \frac{\Delta\mu}{I_0/I + 1}$$

$$I = \frac{d\frac{\partial u}{\partial y}}{\sqrt{p/\rho}}$$

1. Refinement

fig 3a : LEVEL=5

fig 3c: LEVEL=8

fig 3b : LEVEL=7

fig 3d : LEVEL=10

2. Aspect ratio

fig 4a : ratio 10/1

fig 4c: ratio 1/1

fig 4b: ratio 5/1

- physical behavior for several ratio
 - o LEVEL=10
 - $d_{grains} = 0.04 \text{ m}$

1st Balance sheet

• Refinement adapted from LEVEL = 8

method good for several aspect ratio

What details on solid influence?

2. Size grains

fig 5a : d_{grains} = 0.08 m

fig 5b : $d_{grains} = 0.16 \text{ m}$

fig 5c : $d_{grains} = 0.50 \text{ m}$

B. Discrete solid case

• μ(I) vs discrete mechanics

inner and outer behavior

μ(I) rheology

III. Conclusion

Recovery of most the shape

Model developed last decade → more to come from slender approach

Combinatory behaviors and approaches

Bibliography

• http://www.lmm.jussieu.fr/~lagree/TEXTES/PDF/JFMcollapsePYLLSSP11.pdf#cite. midi04

http://www.lmm.jussieu.fr/~lagree/SOURCES/GERRIS/BAGNOLDP/BAGNOLDP.pdf

http://basilisk.fr/sandbox/M1EMN/Exemples/granular_column_cohesif.c#if-quadtree

http://basilisk.fr/sandbox/M1EMN/Exemples/bingham_collapse_noSV.c