Q-1 Create the relationship model for the given data as shown below and find the relationship b/w height 2 wight of TIET Students. ALSO, unknown entry of CSED wight of TIET Students used having height 18)cm, used having height 18)cm, and Dataset of CSED-TIET Students then Determine its weight

weight (7) kg Height (X) cm | 8) 13)

Q-2 The rent of a property in a particular area is provided to you. Find the relationship between area 4 rent using the concept of LR. Also, predict when area is 790 ft then what is estimated rent?

when are	1112)	[Rent (d)
Entries	Area (5+2)	500
6.0	340	1700
2	1080	
3	640	1100
y	880	800
-	990	1400
7	5/0	500
0		

Q-3 The marks obtained by a student in an examination of according to spending study time in minutes.

Total Marks or marks out of 2000 is given. Find the relationship blu Study time & marks by the relationship blu Study time & marks by using the concept of linear regression. Also using the concept of linear regression. Also predict the marks for a student if helphe predict the marks for a student if helphe

Study To	Study time (Minutes)	Marks obtained
1 2 3 4 5 6	350 1070 630 890 940 500	520 1600 1000 850 1350 490

(b) Let the least sq. regression line as a mostle to estimate the calls of the company in 2012.

(b) $f(x; \theta) = \frac{1}{2}e^{-(x-\theta)}, -\omega \angle x \angle \omega$ In each case find MLE $\hat{\theta}$ for θ .

0

	Numerical	on Multiple	Linear	Rignession (MLR)		
	iet of f	ollowing typ	se >I.Vs		111	
Y(D.V)	*,	X2	A.T.	Egm of	1	
-2.7	4 5	7		MIR		
4.5		6		, +b, X,+		
10,5	5	7 2 2		V C		
6.7	, 3	1 2	رل لـ	1 (1)	5	
CONTRACTOR OF THE PARTY OF THE		our objec	five is,	to Comman		
the	approxim	ate value 8	£ 60, 6, 5	62	4	
	1	our object ate value 8 $7-b,X_1-b_2$	X ₂		#	
· (A)	to -	$\frac{(2)(\Sigma x, y)^{-2}}{(2^{2})(\Sigma x^{2})}$	1-	15.4	1	
	1-157	(2).([x,y)-	(\(\times x1. x2	-). (Tyrs)	H	
(8)-	6, - (2	2 1 - 27	K~	No)2	H	
	(2	χ^2) $(\Sigma \chi^2)$	- (2 4)	"	3	
		22 1- 11	152	いんかなり		
(c) -	b2 = []	x2).(\(\S\x2\f))-(2"	1 2/2/10		
	- 1	- 21/5 x2	1-15	74. X2 }	0	
e this in A	(E) (Σx²)(Σx²	2) (7	A	
N	2 _ 2 _	5 xi - ()	5 x;) 2			
Now, \(\sum_{\chi_1}^2 = \(\sum_{\chi_2}^2 - (\sum_{\chi_2}^{\chi_1})^2 \)						
Let $i=1$, then $\Sigma x_1^2 = \Sigma x_1^2 - (\Sigma x_1^2)^2$						
is 2, then $\Sigma x^2 = \Sigma x^2 - (\Sigma x_2)^T N$.						
1211	1,000 %			V .	2	

* Also,
$$\sum x_i y = \sum x_i y - (\sum x_i)(\sum y)$$

Let, i=1, then $\sum x_1 y = \sum x_1 y - (\sum x_1)(\sum y)$

i=2, then $\sum x_2 y = \sum x_2 y - (\sum x_1)(\sum y)$

Also, $\sum x_1 \cdot x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 Use above in E_1^M . A, B 2 C.

4 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

1 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_2)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)(\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 - (\sum x_1)/N$

2 $x_1 x_2 = \sum x_1 x_1 x_2 -$

Now, Let's us get stairted by putting the calculated values in formula's.

Consider

$$= 100 - (22)^2$$

$$\sum x_1^{\dagger} = \sum x_2^{\dagger} - \left(\sum x_2\right)^2$$

$$=\frac{710-576}{5}=\frac{134}{5}$$

Consider [x2y=[x2]-[x2]-[x2] $\sum x_1 y = \sum x_1 y - (\sum x_1)(\sum y)$ $= 60 - 24 \times 21.5$ = 96.8 - 22×21.5 = 9618 - 94.6 = -43.2 NOW, [x1. x2 = [x1. x2 - [x1. [x2] = 109 - 22.24 - 109-105.6 - 3.4 Now Consider the Eqn. B 6, = (\(\Sigma\chi_1\gamma\)^2(\(\Sigma\chi_1\gamma\))-(\(\Sigma\chi_1\gamma\chi_2\).(\(\Sigma\chi_1\gamma\) (\(\Sigma_{1}^{2}\) (\(\Sigma_{1}^{2}\)) - (\(\Sigma_{1}^{2}\), \(\Sigma_{1}^{2}\)) 26.8 + (2.2) - (3.4) + (-43.2) $(3.2) \cdot (26.8) - (3.4)^2$

$$= \frac{58.96 + 146.88}{85.76 - 11.56} = \frac{205.89}{74.2} = 2.774$$

$$\therefore |b_1 = 2.774|$$
Similarly. $b_2 = (\sum x_1^2) \cdot (\sum x_2 y) - (\sum x_1 x_2) x \cdot (\sum x_1 y)$

$$(\sum x_1^2) \cdot (\sum x_2^2) - (\sum x_1 x_2)^2$$

$$= \frac{3.2}{(3.2) \cdot (-43.2)} - \frac{3.4}{(2.2)} \cdot (2.2)$$

$$= \frac{-138.24 - 7.48}{85.76 - 11.56} = \frac{-145.72}{74.2}$$

$$= \frac{-1964}{62}$$

$$\therefore Eq^{24} \Rightarrow b_0 = \frac{1}{4} = \frac{1}{4} \cdot \frac$$

Eq. D be come

M = bo + 6, X, + 62 × 2

Y = 1.522 + 2.744 X, + (-).964). X2

) Y = 1.522 + 2.744 X, - 1.964 X2

is the required multiple

Linear regression Eq. n.

Factor Analysis Model

Extracting Commonfector

Determining number of factors

Transformation of factor analysis

Factor Scores.