

COMP9020

Foundations of Computer Science Term 3, 2024

Lecture 13: Combinatorics

Combinatorics in Computer Science

Informally, combinatorics is the mathematics of counting.

More formally, **combinatorics** is about understanding finite systems of discrete objects.

For example:

• How many different ways are there of getting a flush in poker?

In computer science, we use combinatorics when:

- Computing cost functions in algorithmic analysis
- Identifying (in-)efficiencies in data management
- Developing effective techniques for enumerating objects
- Probability calculations

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

Counting Techniques

General idea: find methods, algorithms or precise formulae to count the number of elements in various sets or collections derived, in a structured way, from some basic sets.

Examples

Single base set $S = \{s_1, \dots, s_n\}$, |S| = n; find the number of

- all subsets of S
- ordered selections of r different elements of S
- unordered selections of r different elements of S
- selections of *r* elements from *S* such that . . .
- functions $S \longrightarrow S$ (onto, 1-1)
- partitions of *S* into *k* equivalence classes

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

- 3 course meals (Starter-Main-Dessert) are possible?
- 3 course meals (Any item for each course) are possible?
- 3 course meals (Any item, no duplicates) are possible?
- Meals consisting of 3 items (order is unimportant)?

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

- Starter-Main-Dessert?
- Any item for 3 courses?
- Any item, no duplicates, for 3 courses?
- Meals of 3 different items?

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

• Starter-Main-Dessert?

$$2 \times 4 \times 3 = 24$$

- Any item for 3 courses?
- Any item, no duplicates, for 3 courses?
- Meals of 3 different items?

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

Starter-Main-Dessert?

$$2 \times 4 \times 3 = 24$$

• Any item for 3 courses?

$$9 \times 9 \times 9 = 729$$

• Any item, no duplicates, for 3 courses?

• Meals of 3 different items?

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

Starter-Main-Dessert?

$$2 \times 4 \times 3 = 24$$

• Any item for 3 courses?

$$9 \times 9 \times 9 = 729$$

• Any item, no duplicates, for 3 courses?

$$9 \times 8 \times 7 = 504$$

• Meals of 3 different items?

Example

A restaurant has the following menu:

Starter	Main Course	Dessert
Soup	Fish	Ice-cream
Bread	Beef	Fruit
	Pork	Cheese
	Chicken	

How many:

• Starter-Main-Dessert?	$2 \times 4 \times 3 = 24$
• Any item for 3 courses?	$9 \times 9 \times 9 = 729$
• Any item, no duplicates, for 3 courses?	$9 \times 8 \times 7 = 504$
• Meals of 3 different items?	504/6 = 84

Basic Counting Rules: Principles

Two simple rules:

- Union rule ("or"): If S and T are disjoint $|S \cup T| = |S| + |T|$
- **Product rule** ("followed by"): $|S \times T| = |S| \cdot |T|$

These cover many examples, though the rule application is not always obvious.

Common strategies:

- Direct application of the rule
- Relate unknown quantities to known quantities (e.g. $|S| + |T| = |S \cup T| + |S \cap T|$)
- Find a bijection to a set that can be counted

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

The Union Rule

Union rule — *S* and *T disjoint*

$$|S \cup T| = |S| + |T|$$

$$S_1, S_2, \dots, S_n$$
 pairwise disjoint $(S_i \cap S_j = \emptyset \text{ for } i \neq j)$

$$|S_1 \cup \ldots \cup S_n| = \sum |S_i|$$

Example

How many numbers in A = [1, 2, ..., 999] are divisible by 31 or 41?

The Union Rule

Union rule — *S* and *T disjoint*

$$|S \cup T| = |S| + |T|$$

$$S_1, S_2, \dots, S_n$$
 pairwise disjoint $(S_i \cap S_j = \emptyset \text{ for } i \neq j)$
 $|S_1 \cup \dots \cup S_n| = \sum |S_i|$

Example

How many numbers in A = [1, 2, ..., 999] are divisible by 31 or 41?

 $\lfloor 999/31 \rfloor = 32$ numbers are divisible by 31 $\lfloor 999/41 \rfloor = 24$ numbers are divisible by 41 No number in A divisible by both 31 and 41 Hence, 32 + 24 = 56 divisible by 31 or 41

Consequences of the Union Rule

Fact

For any sets X, Y, Z:

$$|Y \setminus X| = |Y| - |X \cap Y|$$

$$|X \cup Y| = |X| + |Y| - |X \cap Y|$$

$$|X \cup Y \cup Z| = |X| + |Y| + |Z|$$

$$-|X \cap Y| - |Y \cap Z| - |Z \cap X|$$

$$+|X \cap Y \cap Z|$$

Fact

- (1) If $|S \cup T| = |S| + |T|$ then S and T are disjoint
- (2) If $|\bigcup_{i=1}^n S_i| = \sum_{i=1}^n |S_i|$ then S_i are pairwise disjoint
- (3) If $|T \setminus S| = |T| |S|$ then $S \subseteq T$

These properties can serve to identify cases when sets are disjoint (resp. one is contained in the other).

Fact

- (1) If $|S \cup T| = |S| + |T|$ then S and T are disjoint
- (2) If $|\bigcup_{i=1}^n S_i| = \sum_{i=1}^n |S_i|$ then S_i are pairwise disjoint
- (3) If $|T \setminus S| = |T| |S|$ then $S \subseteq T$

These properties can serve to identify cases when sets are disjoint (resp. one is contained in the other).

Proof.

We can prove these facts using the inclusion-exclusion identity for two sets. Namely, that $|S \cap T| + |S \cup T| = |S| + |T|$.

- (1) Suppose $|S| + |T| = |S \cup T|$. Then inclusion-exclusion gives $|S \cap T| = |S| + |T| |S \cup T| = 0$, so $S \cap T = \emptyset$.
- (3) Suppose $|T \setminus S| = |T| |S|$. Then inclusion-exclusion gives $|S \cap T| = |S|$, so $S \subseteq T$.

Exercises

RW: 5.3.1 200 people. 150 swim or jog, 85 swim and 60 do both. How many jog?

RW: 5.6.38 (Supp) There are 100 problems, 75 of which are 'easy' and 40 'important'. What's the smallest possible number of problems that are both easy *and* important?.

Exercises

RW: 5.3.1 200 people. 150 swim or jog, 85 swim and 60 do both. How many jog?

Let $S := \{\text{people who swim}\}\$ and $J := \{\text{people who jog}\}\$. Then $|S \cup J| = |S| + |J| - |S \cap J|$; thus 150 = 85 + |J| - 60 hence |J| = 125.

Note that the answer *does not* depend on the number of people overall (200).

RW: 5.6.38 (Supp) There are 100 problems, 75 of which are 'easy' and 40 'important'. What's the smallest possible number of problems that are both easy *and* important?.

Exercises

RW: 5.3.1 200 people. 150 swim or jog, 85 swim and 60 do both. How many jog?

Let $S := \{ \text{people who swim} \}$ and $J := \{ \text{people who jog} \}$. Then $|S \cup J| = |S| + |J| - |S \cap J|$; thus 150 = 85 + |J| - 60 hence |J| = 125.

Note that the answer *does not* depend on the number of people overall (200).

RW: 5.6.38 (Supp) There are 100 problems, 75 of which are 'easy' and 40 'important'. What's the smallest possible number of problems that are both easy *and* important?.

$$|E \cap I| = |E| + |I| - |E \cup I| = 75 + 40 - |E \cup I| \ge 75 + 40 - 100 = 15$$

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

The Product Rule

Product rule:

$$|S_1 \times \ldots \times S_k| = |S_1| \cdot |S_2| \cdots |S_k| = \prod_{i=1}^k |S_i|$$

Take Notice

This counts the number of sequences where the first item is from S_1 , the second is from S_2 , and so on.

Special case of the product rule: If all $S_i = S$ for all i and |S| = m then

$$|S_1 \times S_2 \times \cdots \times S_k| = |S \times S \times \cdots \times S| = |S^k| = m^k$$

Example

Let $\Sigma = \{a, b, c, d, e, f, g\}.$

Question. How many 5-letter words can we make?

$$|\Sigma \times \Sigma \times \Sigma \times \Sigma \times \Sigma| = |\Sigma^{5}| = |\Sigma|^{5} = 7^{5} = 16,807$$

Question. How many words with no letter repeated?

Question

How can we count sequences when the underlying set changes?

Question

How can we count sequences when the underlying set changes?

To count sequences *without replacement*:

- Define an order on the whole underlying set
- Select from [1, n], where n is the size of the "remaining" set, and a selection of i represents choosing the i-th element in that set

Question

How can we count sequences when the underlying set changes?

To count sequences without replacement:

- Define an order on the whole underlying set
- Select from [1, n], where n is the size of the "remaining" set, and a selection of i represents choosing the i-th element in that set

Example

Let $\Sigma = \{a, b, c, d, e, f, g\}.$

How many 5-letter words with no letter repeated?

Question

How can we count sequences when the underlying set changes?

To count sequences without replacement:

- Define an order on the whole underlying set
- Select from [1, n], where n is the size of the "remaining" set, and a selection of i represents choosing the i-th element in that set

Example

Let $\Sigma = \{a, b, c, d, e, f, g\}.$

How many 5-letter words with no letter repeated?

$$\prod_{i=0}^{4} (|\Sigma| - i) = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 = 2,520$$

Exercises

S, T finite. How many functions $S \longrightarrow T$ are there?

Exercises

S, T finite. How many functions $S \longrightarrow T$ are there?

$$|T|^{|S|}$$

Exercise

RW: 5.3.2
$$S = [100...999]$$
, thus $|S| = 900$.

(a) How many numbers in S contain a 3 or 7 in their digits?

(b) How many numbers in S have a 3 and a 7?

Exercise

RW: 5.3.2
$$S = [100...999]$$
, thus $|S| = 900$.

(a) How many numbers in S contain a 3 or 7 in their digits? Let $A_3 = \{ \text{at least one '3'} \}$ and $A_7 = \{ \text{at least one '7'} \}$. Then

$$(A_3 \cup A_7)^c = \{ n \in [100, 999] : n \text{ digits } \in \{0, 1, 2, 4, 5, 6, 8, 9\} \}$$

Note that for each number in \mathcal{S} , there are 7 choices for the first digit and 8 choices for the later digits. So

$$|(A_3 \cup A_7)^c| = |\{1, 2, 4, 5, 6, 8, 9\}| \cdot |\{0, 1, 2, 4, 5, 6, 8, 9\}|^2$$

Therefore
$$|A_3 \cup A_7| = |S| - |(A_3 \cup A_7)^c| = 900 - 448 = 452.$$

(b) How many numbers in S have a 3 and a 7?

Exercise

RW: 5.3.2
$$S = [100...999]$$
, thus $|S| = 900$.

(a) How many numbers in S contain a 3 or 7 in their digits? Let $A_3 = \{ \text{at least one '3'} \}$ and $A_7 = \{ \text{at least one '7'} \}$. Then

$$(A_3 \cup A_7)^c = \{ n \in [100, 999] : n \text{ digits } \in \{0, 1, 2, 4, 5, 6, 8, 9\} \}$$

Note that for each number in \mathcal{S} , there are 7 choices for the first digit and 8 choices for the later digits. So

$$|(A_3 \cup A_7)^c| = |\{1, 2, 4, 5, 6, 8, 9\}| \cdot |\{0, 1, 2, 4, 5, 6, 8, 9\}|^2$$

Therefore
$$|A_3 \cup A_7| = |S| - |(A_3 \cup A_7)^c| = 900 - 448 = 452.$$

(b) How many numbers in S have a 3 and a 7?

$$|A_3 \cap A_7| = |A_3| + |A_7| - |A_3 \cup A_7|$$

$$= (900 - 8 \cdot 9 \cdot 9) + (900 - 8 \cdot 9 \cdot 9) - 452$$

$$= 2 \cdot 252 - 452 = 52$$

Combinatorial Symmetry

A **symmetry** of a mathematical object is a bijective mapping from the object to itself which preserves "structure".

A (combinatorial) symmetry defines an equivalence relation where the equivalence classes all have the same size.

We are often interested in counting a set "up to symmetry". That is, counting the number of equivalence classes.

This can also be stated as a constraint that identifies a specific item in each equivalence class (**symmetric constraint**).

Combinatorial Symmetry

A **symmetry** of a mathematical object is a bijective mapping from the object to itself which preserves "structure".

A (combinatorial) symmetry defines an equivalence relation where the equivalence classes all have the same size.

We are often interested in counting a set "up to symmetry". That is, counting the number of equivalence classes.

This can also be stated as a constraint that identifies a specific item in each equivalence class (**symmetric constraint**).

Definition

A k-to-1 function is a function that maps exactly k inputs to an output.

Take Notice

A k-to-1 function defines the equivalence relation of a combinatorial symmetry and vice-versa.

Product rule: Symmetries and duplications

Question

- How can we count sequences when we have symmetric constraints?
- How can we count sequences when we have duplicates?

Example

Let $\Sigma = \{a, b, c, d, e\}$.

- How many 5-letter words with no letter repeated and a before b before c?
- How many 5-letter words can be made from a, a, a, d, e?

Product rule: Symmetries and duplications

Question

- How can we count sequences when we have symmetric constraints?
- How can we count sequences when we have duplicates?

Example

Let $\Sigma = \{a, b, c, d, e\}$.

- How many 5-letter words with no letter repeated and a before b before c?
- How many 5-letter words can be made from a, a, a, d, e?

Take Notice

The answer will be the same.

Product rule: Symmetries and duplications

- $S_1 = \{\text{sequences accounting for symmetry}\},$
- $S_2 = \{\text{symmetries}\},\$
- *S* = {sequences without symmetry}

$$S = S_1 \times S_2$$
,

so

$$|S_1| = |S|/|S_2|$$

Alternatively, $\frac{1}{|S_2|}$ of the |S| sequences meet the symmetric constraint.

Product rule: Symmetries and duplications

Example

Question. Let $\Sigma = \{a, b, c, d, e\}$. How many 5-letter words with no letter repeated and a before b before c?

Product rule: Symmetries and duplications

Example

Question. Let $\Sigma = \{a, b, c, d, e\}$. How many 5-letter words with no letter repeated and a before b before c?

Answer. Let $\Sigma' = \{a, b, c\}$. Then

$$|S| = |\{5 \text{ letter words using letters from } \Sigma \text{ with no repeats}\}|$$

$$= \prod_{i=1}^{4} (|\Sigma| - i) = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$$

and

$$|S_2| = |\{\text{orderings of elements in } \Sigma'\}|$$

= $\prod_{i=0}^{2} (|\Sigma'| - i) = 3 \cdot 2 \cdot 1 = 6$

So

$$|S_1| = |\{\text{words in } S \text{ containing } a, b, c \text{ in order}\}| = \frac{120}{6} = 20$$

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

Combinatorial Objects: How Many?

permutations

Ordering of all objects from a set S; equivalently: Selecting all objects while *recognising* the order of selection.

The number of permutations of n elements is

$$n! = n \cdot (n-1) \cdot \cdot \cdot 1, \quad 0! = 1! = 1$$

r-permutations (sequences without repetition)

Selecting any r objects from a set S of size n without repetition while *recognising* the order of selection.

Their number is

$$(n)_r = {}^n P_r = n \cdot (n-1) \cdots (n-r+1) = \frac{n!}{(n-r)!}$$

Example

How many anagrams of ASSESS?

Example

How many anagrams of ASSESS?

Label S's: $AS_1S_2ES_3S_4$: 6!

In each anagram we can label the S's in 4! ways.

Suppose there are m anagrams. So $m \cdot 4! = 6!$, i.e. $m = \frac{6!}{4!}$

Example

How many anagrams of ASSESS?

Label S's: AS₁S₂ES₃S₄: 6!

In each anagram we can label the S's in 4! ways.

Suppose there are m anagrams. So $m \cdot 4! = 6!$, i.e. $m = \frac{6!}{4!}$

Example

Number of anagrams of MISSISSIPPI?

Example

How many anagrams of ASSESS?

Label S's: AS₁S₂ES₃S₄: 6!

In each anagram we can label the S's in 4! ways.

Suppose there are m anagrams. So $m \cdot 4! = 6!$, i.e. $m = \frac{6!}{4!}$

Example

Number of anagrams of MISSISSIPPI? $\frac{11!}{4!4!2!}$

r-selections (or: *r*-combinations)

Collecting any r distinct objects without repetition; equivalently: selecting r objects from a set S of size n and not recognising the order of selection.

Their number is

$$\binom{n}{r} = \frac{(n)_r}{r!} = \frac{n!}{(n-r)!r!} = \frac{n \cdot (n-1) \cdots (n-r+1)}{1 \cdot 2 \cdots r}$$

Take Notice

These numbers are usually called binomial coefficients due to

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \ldots + b^n = \sum_{i=0}^n \binom{n}{i}a^{n-i}b^i$$

Also defined for any
$$\alpha \in \mathbb{R}$$
 as $\begin{pmatrix} \alpha \\ r \end{pmatrix} = \frac{\alpha(\alpha-1)\cdots(\alpha-r+1)}{r!}$

Simple Counting Problems

Example

RW: 5.1.2 Give an example of a counting problem whose answer is

- (a) $(26)_{10}$
- (b) $\binom{26}{10}$

Simple Counting Problems

Example

RW: 5.1.2 Give an example of a counting problem whose answer is

- (a) $(26)_{10}$
- (b) $\binom{26}{10}$

Draw 10 cards from a half deck (eg. black cards only)

- (a) the cards are recorded in the order of appearance
- (b) only the complete draw is recorded

Examples

- Number of diagonals in a convex polygon
- Number of poker hands
- Decisions in games, lotteries etc.

Exercises

Exercises

RW: 5.1.6 From a group of 12 men and 16 women, how many committees can be chosen consisting of

- (a) 7 members?
- (b) 3 men and 4 women?
- (c) 7 women or 7 men?

RW: 5.1.7 As above, but any 4 people (male or female) out of 9 and two, Alice and Bob, unwilling to serve on the same committee.

Exercises

Exercises

RW: 5.1.6 From a group of 12 men and 16 women, how many committees can be chosen consisting of

- (a) 7 members? $\binom{12+16}{7}$
- (b) 3 men and 4 women? $\binom{12}{3}\binom{16}{4}$
- (c) 7 women or 7 men? $\binom{12}{7} + \binom{16}{7}$

RW: 5.1.7 As above, but any 4 people (male or female) out of 9 and two, Alice and Bob, unwilling to serve on the same committee.

{all committees} - {committees with both
$$A$$
 and B } = $\binom{9}{4} - \binom{7}{2} = 126 - 21 = 105$

equivalently, {A in, B out} + {A out, B in} + {none in} =
$$\binom{7}{3} + \binom{7}{3} + \binom{7}{4} = 35 + 35 + 35 = 105$$

Counting Poker Hands

Exercises

RW: 5.1.15 A poker hand consists of 5 cards drawn without replacement from a standard deck of 52 cards

$$\{A, 2-10, J, Q, K\} \times \{\mathsf{club} \, \, \blacklozenge, \mathsf{spade} \, \, \blacklozenge, \mathsf{heart} \, \, \blacktriangledown, \mathsf{diamond} \, \, \blacklozenge\}$$

- (a) Number of "4 of a kind" hands (e.g. 4 Jacks)
- (b) Number of non-straight flushes, i.e. all cards of same suit but not consecutive (e.g. 8,9,10,J,K)

Counting Poker Hands

Exercises

RW: 5.1.15 A poker hand consists of 5 cards drawn without replacement from a standard deck of 52 cards

$$\{A, 2-10, J, Q, K\} \times \{\mathsf{club} \ \clubsuit, \mathsf{spade} \ \spadesuit, \mathsf{heart} \ \blacktriangledown, \mathsf{diamond} \ \blacklozenge\}$$

- (a) Number of "4 of a kind" hands (e.g. 4 Jacks) | rank of the 4-of-a-kind | \cdot | any other card | = $13 \cdot (52 4)$
- (b) Number of non-straight flushes, i.e. all cards of same suit but not consecutive (e.g. 8,9,10,J,K) |all flush| - |straight flush| = |suit| \cdot |5-hand in a given suit| - |suit| \cdot |rank of a straight flush in a given suit| = $4 \cdot \binom{13}{5} - 4 \cdot 10$

Selecting items summary

Selecting k items from a set of n items:

With	Order	Examples	Formula
replacement	matters		
Yes	Yes	Words of length k (sequences of length k)	n ^k
No	Yes	k-permutations	$(n)_k$
No	No	Subsets of size <i>k</i>	$\binom{n}{k}$
Yes	No		

In a multiset, I am allowed to choose the same number more than once.

Selecting items summary

Selecting k items from a set of n items:

With	Order	Examples	Formula
replacement	matters		
Yes	Yes	Words of length k (sequences of length k)	n ^k
No	Yes	<i>k</i> -permutations	$(n)_k$
No	No	Subsets of size <i>k</i>	$\binom{n}{k}$
Yes	No	Multisets of size k	$\binom{n}{k} = \binom{n+k-1}{k}$

In a multiset, I am allowed to choose the same number more than once.

Have n "distinguishable" boxes.

Have k balls which are either:

- Indistinguishable
- ② Distinguishable

How many ways to place balls in boxes with

- At most one
- **B** Any number of

balls per box?

Take Notice

Suppose K is a set with |K| = k and N is a set with |N| = n:

- 2A counts the number of injective functions from K to N
- 2B counts the number of functions from K to N

Case	Balls	Balls per box	Number
1A	Indist.	At most 1	
1B	Indist.	Any number	
2A	Dist.	At most 1	
2B	Dist.	Any number	

Case	Balls	Balls per box	Number
1A	Indist.	At most 1	$\binom{n}{k}$
1B	Indist.	Any number	
2A	Dist.	At most 1	
2B	Dist.	Any number	

Case	Balls	Balls per box	Number
1A	Indist.	At most 1	$\binom{n}{k}$
1B	Indist.	Any number	$\binom{n+k-1}{k}$
2A	Dist.	At most 1	
2B	Dist.	Any number	

Case	Balls	Balls per box	Number
1A	Indist.	At most 1	$\binom{n}{k}$
1B	Indist.	Any number	$\binom{n+k-1}{k}$
2A	Dist.	At most 1	$(n)_k$
2B	Dist.	Any number	

Case	Balls	Balls per box	Number
1A	Indist.	At most 1	$\binom{n}{k}$
1B	Indist.	Any number	$\binom{n+k-1}{k}$
2A	Dist.	At most 1	$(n)_k$
2B	Dist.	Any number	n ^k

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

Alternative techniques

What if the current techniques are unwieldy? Other techniques for obtaining an exact count:

- Find a different approach for counting
- Make use of symmetries
- Make use of recursion
- Write a program (running time?)

Example

How many sequences of 15 coin flips have an even number of heads?

Example

How many sequences of 15 coin flips have an even number of heads?

• Using "balls in boxes": $\binom{15}{0} + \binom{15}{2} + \ldots + \binom{15}{14}$

34

Example

How many sequences of 15 coin flips have an even number of heads?

- Using "balls in boxes": $\binom{15}{0} + \binom{15}{2} + \ldots + \binom{15}{14}$
- Use symmetry: $\frac{1}{2} \times 2^{15}$

34

Example

How many sequences of 15 coin flips have an even number of heads?

- Using "balls in boxes": $\binom{15}{0} + \binom{15}{2} + \ldots + \binom{15}{14}$
- Use symmetry: $\frac{1}{2} \times 2^{15}$
- Use recursion: Even(n) = Odd(n-1) + Even(n-1); Odd(n) = Even(n-1) + Odd(n-1) where,
 - Even(n) is the number of sequences with an even number of heads after n flips, which comes from Even(n-1) (if the last flip was tail) and Odd(n-1) (if the last flip was head).
 - Odd(n) as the number of sequences with an odd number of heads after n flips, which comes from Even(n-1) (if the last flip was head) and Odd(n-1) (if the last flip was tail).

Example

How many sequences of n coin flips contain HH?

Example

How many sequences of n coin flips contain HH?

$$C(0) = 0$$

 $C(1) = 0$
 $C(n) = C(n-1) + C(n-2) + 2^{n-2}$

35

Example

How many sequences of n coin flips contain HH?

We can summarise all possible outcomes in a recursive tree

Example (cont'd)

[B]

- C(0) = 0: With zero flips, there is no sequence containing "HH".
- C(1) = 0: With one flip, there are two possible sequences ("H" and "T"), but none of them contains "HH".

Example (cont'd)

[1]

- If the last flip is "T": Any sequence of n-1 flips that already contains "HH" can have "T" appended without changing the fact that "HH" appears. This contributes C(n-1) sequences.
- If the last two flips are "HT": Any sequence of n-2 flips that contains "HH" can have "HT" appended, preserving the fact that "HH" appears. This contributes C(n-2) sequences.
- If the last two flips are "HH": The substring "HH" itself forms the required pattern, and any sequence of n-2 flips (even if it does not contain "HH") will satisfy the condition once we append "HH" at the end. There are 2^{n-2} possible sequences of n-2 flips, as each flip can be either "H" or "T".

Example

How many sequences of n coin flips do not contain HH?

$$N(0) = 1$$

 $N(1) = 2$
 $N(2) = 3$
 $N(n) = N(n-1) + N(n-2)$

38

Example

How many sequences of n coin flips do not contain HH?

$$N(0) = 1$$

 $N(1) = 2$
 $N(2) = 3$
 $N(n) = N(n-1) + N(n-2)$

We can summarise all possible outcomes in a recursive tree

Example (cont'd)

[B]

- N(0) = 1: With zero flips, there is one sequence (the empty sequence), which trivially does not contain "HH".
- N(1) = 2: With one flip, there are two possible sequences ("H" and "T"), neither of which contains "HH".
- N(2) = 3: With two flips, there are three possible sequences that do not contain "HH": "HT", "TH", and "TT".

Example (cont'd)

[۱]

This recurrence relation works by considering the last flip in a sequence of n flips:

- If the last flip is "T": The remaining n-1 flips form a sequence of length n-1 that does not contain "HH". So, we can append "T" to any valid sequence of length n-1 without introducing "HH". This contributes N(n-1) valid sequences.
- If the last two flips are "TH": The remaining n-2 flips form a sequence of length n-2 that does not contain "HH". We can append "TH" to any valid sequence of length n-2 without introducing "HH". This contributes N(n-2) valid sequences.

Outline

Counting Principles

Basic Counting Rules: Union

Basic Counting Rules: Product

Combinations and Permutations

Alternative Techniques

Difficult Counting Problems (not assessed)

Using Programs to Count

Two dice, a red die and a black die, are rolled. (Note: one *die*, two or more *dice*)

Write a program to list all the pairs $\{(R, B) : R > B\}$

Similarly, for three dice, list all triples R > B > G

Generally, for n dice, all of which are m-sided ($n \le m$), list all decreasing n-tuples

Take Notice

In order to just find the number of such n-tuples, it is not necessary to list them all. One can write a recurrence relation for these numbers and compute (or try to solve) it.

Approximate Counting

Take Notice

A Count may be a precise value or an estimate.

The latter should be asymptotically correct or at least give a good asymptotic bound, whether upper or lower. If S is the base set, |S| = n its size, and we denote by c(S) some collection of objects from S we are interested in, then we seek constants a, b such that

$$a \le \lim_{n \to \infty} \frac{est(|c(S)|)}{|c(S)|} \le b$$

In other words $est(|c(S)|) \in \Theta(|c(S)|)$.