函数及其运算

离散数学一集合论

南京大学计算机科学与技术系

内容提要

- 函数的定义
- 子集的像
- 单射与满射
- 反函数
- 函数的复合
- 函数加法与乘法

函数(function)的定义

- 设A和B为非空集合,从集合A到B的函数f是对元素的一种指派,对A的每个元素恰好指派B的一个元素。记作 $f:A\to B$ 。
 - f 的定义域(domain)是A
 - f 的伴域(codomain)是B
 - 如果f 为A中元素a指派的B中元素为b,就写成 f(a)=b。 此时,称 b是a的像,而a是b的一个原像。
 - A中元素的像构成的集合称为f的值域(f的像)。
- 函数也称为映射(mapping)或变换(transformation)

函数(function)的定义

- 备注
 - 函数在其定义域中的每个元素都有唯一的取值
 - 函数的值域是其伴域的子集
 - 函数相等 f=g iff
 - dom(f)=dom(g)
 - $\forall x (x \in \text{dom}(f) \rightarrow f(x) = g(x))$
 - $\operatorname{codom}(f) = \operatorname{codom}(g)$
 - 若A和B皆是非空的有限集合,从A到B的不同的函数有 $|B|^{|A|}$ 个。($a_1, a_2, ..., a_{|A|}$ 的像,均有|B|种选择)

函数举例

• 某课程成绩

函数举例

• 下取整函数 $\lfloor x \rfloor$: $\mathbf{R} \to \mathbf{Z}$

• 函数f的图像: $\{(a,b) \mid a \in A \land f(a)=b\}$

函数举例

- 设A为非空集合,A上的恒等函数ι_A:A→A定义为
 - $\iota_{\mathbf{A}}(x) = x$, $x \in \mathbf{A}$
- 设U为非空集合,对任意的A⊆U,特征函数 $\chi_{\Lambda}:U\to\{0,1\}$ 定义为:
 - $\chi_{\Lambda}(x)=1$, $x \in A$
 - $\chi_{\Lambda}(x)=0$, $x \in \mathbf{U}-\mathbf{A}$

子集在函数下的像

- 设f是从集合A到B的函数,S是A的一个子集。S在f下的像,记为f(S),定义如下:
 - $f(S)=\{t \mid \exists s \in S (t=f(s))\}$
- 备注: f(A)即为f的值域。

S的像

S的像

并集的像

- 设函数 $f: A \rightarrow B$,且X,Y是A的子集,则 $f(X \cup Y)$ = $f(X) \cup f(Y)$
- 证明:
 - $f(X \cup Y) \subseteq f(X) \cup f(Y)$ 对任意的t,若te $f(X \cup Y)$,则存在se $X \cup Y$,满足f(s)=t;假设seX,则tef(X),假设seY,则tef(Y),∴te $f(X) \cup f(Y)$
 - f(X)∪f(Y)⊆f(X∪Y)
 对任意的t, 若t∈f(X)∪f(Y)
 情况1: t∈f(X),则存在s∈X⊆X∪Y,满足f(s)=t,∴t∈f(X∪Y)
 情况2: t∈f(Y),同样可得t∈f(X∪Y)
 ∴ t∈f(X∪Y)

交集的像

- 设函数 $f: A \rightarrow B$,且X,Y是A的子集,则
 - $f(X \cap Y) \subseteq f(X) \cap f(Y)$

函数性质

- $f:A \rightarrow B$ 是单射(一对一的)
 - $\forall x_1, x_2 \in A, \exists x_1 \neq x_2, \ \bigcup f(x_1) \neq f(x_2)$
 - //等价的说法: $\forall x_1, x_2 \in A$, 若 $f(x_1) = f(x_2)$, 则 $x_1 = x_2$
- *f*:A→B是满射(映上的)
 - $\forall y \in \mathbf{B}, \exists x \in \mathbf{A},$ 使得f(x) = y
 - //等价的说法: f(A)=B
- 双射(一一对应)
 - 满射+单射

函数性质的证明

- 判断 $f:R\times R\to R\times R$, f((x,y))=(x+y,x-y)的性质
- 单射?
 - $\Leftrightarrow f((x_1, y_1)) = f((x_2, y_2))$
 - $x_1 + y_1 = x_2 + y_2$ 且 $x_1 y_1 = x_2 y_2$,易见: $x_1 = x_2$ 且 $y_1 = y_2$
 - $(x_1, y_1) = (x_2, y_2)$
- 满射?
 - 任取 $(a,b) \in \mathbb{R} \times \mathbb{R}$,总存在((a+b)/2,(a-b)/2),使得
 - f((a+b)/2,(a-b)/2)=(a, b)

• 设A有限集合,f是从A到A的函数。f是单射当且仅当f是满射。

反函数

- 设f 是从A到B的一一对应,f 的反函数是从B到A的函数,它指派给B中元素b的是A中满足f(a)=b的(唯一的)a。f 的反函数记作 f^{-1} 。
 - f(a)=b 当且仅当f⁻¹(b)=a
- 备注: 切勿将f-1与1/f混淆。
- 例子
 - $f: N \times N \to N$, $f(i,j)=2^{i}(2j+1)-1$ 是双射,
 - $f^{-1}(2^{i}(2j+1)-1)=(i,j)$

函数的复合(组合)

- 设g是从A到B的函数,f是从B到C的函数,f和g的 复合用f。g表示,定义为:
 - $(f \circ g)(x) = f(g(x)), x \in A$

复合运算的性质

- 函数的复合满足结合律
 - $(f \circ g) \circ h = f \circ (g \circ h)$
- 满射的复合是满射
- 单射的复合是单射
- 双射的复合是双射
- 设f是从A到B的双射

•
$$f^{-1} \circ f = \iota_{\mathbf{A}}$$

•
$$f \circ f^{-1} = \iota_{\mathbf{B}}$$

但是...

- 若f。g是满射,能推出f和g是满射吗?
 - *f一定*是满射,*g不一定*是满射。
- 若f。g是单射,能推出f和g是单射吗?
 - *g一定*是单射,*f不一定*是单射。

函数的加法、乘法

- 设f和g是从A到R的函数,那么 f+g 和 f g也是从A 到R的函数,其定义为
 - (f+g)(x) = f(x) + g(x), $x \in A$
 - fg(x) = f(x)g(x), $x \in A$

递增(递减)函数

- 设f的定义域和伴域都是实数的子集,
- ƒ是递增的
 - $\forall x \ \forall y \ (x < y \rightarrow f(x) \le f(y))$
- ƒ是严格递增的
 - $\forall x \ \forall y \ (x < y \rightarrow f(x) < f(y))$

一个例子

- 自然数1,2,3,..., n^2+1 的任何一种排列中,必然含一个长度不小于n+1的严格递增链或严格递减链。
- 给定一种排列,假设严格递增与递减序列最大长度 均不大于*n*:
 - 在所给的序列中,以k开始的严格递增序列长度为I(k),以k开始的严格递减序列长度为D(k)。
 - F: $k \to (I(k), D(k)), k \in \{1, 2, ..., n^2 + 1\}$
 - 对于 $k_1 < k_2$,如果 k_1 排在 k_2 前面,则 $I(k_1) > I(k_2)$,如果 k_2 排在 k_1 前面,则 $D(k_2) > D(k_1)$ 。因此,F是单射。
 - 然而, F的值域只有n²个元素。矛盾。

作业

- 教材[2.3]
 - P107-110: 18, 30, 32, 39, 40

