

CSE 331

Trees, Structural Induction, Exceptions, Generics

Binary Trees

Binary Trees

type Tree := empty | node(x : \mathbb{Z} , L : Tree, R : Tree)

Inductive definition of binary trees of integers

node(1, node(2, empty, empty), node(3, empty, node(4, empty, empty))))

Height of a Tree

type Tree := empty | node(x: \mathbb{Z} , L: Tree, R: Tree)

Height of a tree: "maximum steps to get to a leaf"

Height of a Tree

```
type Tree := empty | node(x: \mathbb{Z}, L: Tree, R: Tree)
```

Mathematical definition of height

Height of a Tree

```
type Tree := empty | node(x: \mathbb{Z}, L: Tree, R: Tree)
```

Mathematical definition of height

Using Definitions in Calculations

```
func height(empty) := -1 
height(node(x, L, R)) := 1 + \max(\text{height(L)}, \text{height(R)})
for any x \in \mathbb{Z} and any L, R \in Tree
```

- Suppose "T = node(1, empty, node(2, empty, empty))"
- Prove that height(T) = 1

```
height(T)
```

Using Definitions in Calculations

```
func height(empty) := -1
height(node(x, L, R)) := 1 + \max(\text{height(L)}, \text{height(R)})
for any x \in \mathbb{Z} and any L, R \in Tree
```

- Suppose "T = node(1, empty, node(2, empty, empty))"
- Prove that height(T) = 1

```
height(T)
             = height(node(1, empty, node(2, empty, empty))
                                                                                 since T = ...
             = 1 + max(height(empty), height(node(2, empty, empty))) def of height
              = 1 + \max(-1, \text{height}(\text{node}(2, \text{empty}, \text{empty})))
                                                                                 def of height
              = 1 + \max(-1, 1 + \max(\text{height}(\text{empty}), \text{height}(\text{empty})))
                                                                                 def of height
             = 1 + \max(-1, 1 + \max(-1, -1))
                                                                                 def of height (x 2)
             = 1 + \max(-1, 1 + -1)
                                                                                 def of max
             = 1 + \max(-1, 0)
                                                                                 def of max
             = 1 + 0
             = 1
```

Trees

- Trees are inductive types with a constructor that has 2+ recursive arguments
- These come up all the time...
 - no constructors with recursive arguments = "generalized enums"
 - constructor with 1 recursive arguments = "generalized lists"
 - constructor with 2+ recursive arguments = "generalized trees"
- Some prominent examples of trees:
 - HTML: used to describe UI
 - JSON: used to describe just about any data

Recall: HTML

Nesting structure describes the tree

```
<div>
   Some Text 
  <br/>br>
  <div>
                         div
    Hello
  </div>
</div>
                                div
                         br
```

- The React library lets you write "custom tags"
 - functions that return HTML

can become

The React library lets you write "custom tags"

makes two calls to this function

```
const SayHi = (props: {name: string}): JSX.Element => {
  return Hi, {props.name};
};
```

attributes are passed as a record argument ("props")

makes two calls to this function

```
type SayHiProps = {name: string, lang?: string};

const SayHi = (props: SayHiProps): JSX.Element => {
  if (props.lang === "es") {
    return Hola, {props.name};
  } else {
    return Hi, {props.name};
  }
};
```

- The React library lets you write "custom tags"
 - attributes are passed as a record argument ("props")
- In render, React will paste the parts together:

```
<div>
     <SayHi name={"Alice"} lang={"es"}/>
     <SayHi name={"Bob"}/>
</div>
```

becomes

```
<div>
  Hola, Alice!
  Hi, Bob!
</div>
```

HTML literal syntax allows any tags

- evaluates to a tree with two nodes with tag name "SayHi"
- this matters when testing (comes up in HW3)
- React's render method is what calls SayHi
 - HTML returned is substituted where the "SayHi" tag was

React Render

React's render pastes strings together

```
const name: String = "Fred";
return Hi, {name} ;
```

returns a different tree than

```
return Hi, Fred;
```

- in first tree, "p" tag has one child
- in second tree, "p" tag has two children
- render method concatenates text children into one string
- These differences matter for testing!

React Render

React's render pastes arrays into child list

```
const L = [<span>Hi</span>, <span>Fred</span>];
return {L};
```

returns a different tree than

```
return <span>Hi</span><span>Fred</span>;
```

- in first tree, "p" tag has one child
- in second tree, "p" tag has two children
- render method turns the first into the second
- These differences matter for testing!

Proof by Calculation

- Our proofs so far have used fixed-length lists
 - e.g., len(twice(cons(a, cons(b, nil)))) = len(cons(a, cons(b, nil)))
 - problems in HW3 restrict to this case
- Would like to prove correctness on <u>any</u> list L
- Need more tools for this...
 - structural recursion calculates on inductive types
 - structural induction reasons about structural recursion or more generally, to prove facts containing variables of an inductive type
 - both tools are specific to inductive types

Structural Induction

Consider the following function:

```
\begin{aligned} & \textbf{func} \ echo(nil) & := nil \\ & echo(cons(x, L)) & := cons(x, cons(x, echo(L))) & for \ any \ x : \mathbb{Z}, \ L : List \end{aligned}
```

Produces a list where every element is repeated twice

```
echo(cons(1, cons(2, nil)))
= cons(1, cons(1, echo(cons(2, nil)))) def of echo
= cons(1, cons(1, cons(2, cons(2, echo(nil))))) def of echo
= cons(1, cons(1, cons(2, cons(2, nil)))) def of echo
```

Structural Induction

Let P(S) be the claim "len(echo(S)) = 2 * len(S)"

To prove P(S) holds for <u>any</u> list S, prove two implications

Base Case: prove P(nil)

use any known facts and definitions

Inductive Step: prove P(cons(x, L)) for any $x : \mathbb{Z}$, L : List

- x and L are variables
 if this all you need, then we have "direct proof" (by cases)
- use any known facts and definitions plus one more fact...
- make use of the fact that L is also a List

Structural Induction

To prove P(S) holds for any list S, prove two implications

Base Case: prove P(nil)

use any known facts and definitions

Inductive Step: prove P(cons(x, L)) for any $x : \mathbb{Z}$, L : List

- direct proof
- use known facts and definitions and <u>Inductive Hypothesis</u>

Inductive Hypothesis: assume P(L) is true use this in the inductive step, but not anywhere else

Why This Works

With Structural Induction, we prove two facts

```
P(nil) 	 len(echo(nil)) = 2 * len(nil) 
P(cons(x, L)) 	 len(echo(cons(x, L))) = 2 * len(cons(x, L)) 
(second assuming len(echo(L)) = len(L))
```

Why is this enough to prove P(S) for any S: List?

Why This Works

Build up an object using constructors:

```
nil
cons(2, nil)
cons(1, cons(2, nil))
```

first constructor second constructor second constructor

Why This Works

Build up a proof the same way we built up the object

```
P(nil) \qquad len(echo(nil)) = len(nil) \\ P(cons(x, L)) \qquad len(echo(cons(x, L))) = len(cons(x, L)) \\ (second assuming len(twice(L)) = len(L))
```


"We go together"

structural induction

inductive types

Structural Induction in General

General case: assume P holds for constructor arguments

type
$$T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)$$

To prove P(t) for any t, we need to prove:

Structural Induction in General

General case: assume P holds for constructor arguments

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

- To prove P(t) for any t, we need to prove:
 - P(A)
 - P(B(x)) for any $x : \mathbb{Z}$
 - P(C(y, t)) for any $y : \mathbb{Z}$ and t : T assuming P(t) is true
 - P(D(z, u, v)) for any $z : \mathbb{Z}$ and u, v : T assuming P(u) and P(v)
- These four facts are enough to prove P(t) for any t
 - for each constructor, have proof that it produces an object satisfying P

Structural Induction in General

General case: assume P holds for constructor arguments

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

- To prove P(t) for any t, we need to prove:
 - P(A)
 - P(B(x)) for any $x : \mathbb{Z}$
 - P(C(y, t)) for any $y : \mathbb{Z}$ and t : T assuming P(t) is true
 - P(D(z, u, v)) for any $z : \mathbb{Z}$ and u, v : T assuming P(u) and P(v)
- Each inductive type has its own form of induction
 - special way to reason about that type

Consider the following function:

```
func echo(nil) := nil 
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

Produces a list where every element is repeated twice

```
echo(cons(1, cons(2, nil)))
= cons(1, cons(1, echo(cons(2, nil)))) def of echo
= cons(1, cons(1, cons(2, cons(2, echo(nil))))) def of echo
= cons(1, cons(1, cons(2, cons(2, nil)))) def of echo
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

Suppose we have the following code:

- spec says to return len(echo(S)) but code returns 2 len(S)
- Need to prove that len(echo(S)) = 2 len(S)

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Base Case (nil): 

Need to prove that len(echo(nil)) = 2 len(nil)

len(echo(nil)) =
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

Base Case (nil):

```
len(echo(nil)) = len(nil) def of echo
= 0 def of len
= 2 \cdot 0
= 2 len(nil) def of len
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Step (cons(x, L)):
```

Need to prove that len(echo(cons(x, L))) = 2 len(cons(x, L))

Get to assume claim holds for L, i.e., that len(echo(L)) = 2 len(L)

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)
Inductive Step (cons(x, L)):
len(echo(cons(x, L)))
```

```
= 2 len(cons(x, L))
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that len(echo(S)) = 2 len(S) for any S : List

```
Inductive Hypothesis: assume that len(echo(L)) = 2 len(L)
```

Inductive Step (cons(x, L)):

```
\begin{split} \operatorname{len}(\operatorname{echo}(\operatorname{cons}(x,L))) &= \operatorname{len}(\operatorname{cons}(x,\operatorname{cons}(x,\operatorname{echo}(L)))) & \operatorname{def} \operatorname{of} \operatorname{echo} \\ &= 1 + \operatorname{len}(\operatorname{cons}(x,\operatorname{echo}(L))) & \operatorname{def} \operatorname{of} \operatorname{len} \\ &= 2 + \operatorname{len}(\operatorname{echo}(L)) & \operatorname{def} \operatorname{of} \operatorname{len} \\ &= 2 + 2\operatorname{len}(L) & \operatorname{Ind}.\operatorname{Hyp}. \\ &= 2(1 + \operatorname{len}(L)) & \operatorname{def} \operatorname{of} \operatorname{len} \\ &= 2\operatorname{len}(\operatorname{cons}(x,L)) & \operatorname{def} \operatorname{of} \operatorname{len} \end{split}
```

Structural Induction in General

General case: assume P holds for constructor arguments

```
type T := A \mid B(x : \mathbb{Z}) \mid C(y : \mathbb{Z}, t : T) \mid D(z : \mathbb{Z}, u : T, v : T)
```

- To prove P(t) for any t, we need to prove:
 - P(A)
 - P(B(x)) for any $x : \mathbb{Z}$
 - P(C(y, t)) for any $y : \mathbb{Z}$ and t : T assuming P(t) is true
 - P(D(z, u, v)) for any $z : \mathbb{Z}$ and u, v : T assuming P(u) and P(v)
- Each inductive type has its own form of induction
 - special way to reason about that type

```
\begin{aligned} & \textbf{func} \ echo(nil) & := nil \\ & echo(cons(x, L)) & := cons(x, cons(x, echo(L))) & \text{for any } x : \mathbb{Z}, L : List \end{aligned}
```

Suppose we have the following code:

- spec says to return sum(echo(S)) but code returns 2 sum(S)
- Need to prove that sum(echo(S)) = 2 sum(S)

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Base Case (nil):

sum(echo(nil)) =

= 2 sum(nil)
```

```
func sum(nil) := 0

sum(cons(x, L)) := x + sum(L) for any x \in \mathbb{Z} and any L \in List
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

Base Case (nil):

```
sum(echo(nil)) = sum(nil) def of echo
= 0 def of sum
= 2 \cdot 0
= 2 sum(nil) def of sum
```

Inductive Step (cons(x, L)):

```
Need to prove that sum(echo(cons(x, L))) = 2 sum(cons(x, L))
Get to assume claim holds for L, i.e., that sum(echo(L)) = 2
sum(L)
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)
Inductive Step (cons(x, L)):
sum(echo(cons(x, L))) =
```

```
= 2 sum(cons(x, L))
```

```
func sum(nil) := 0

sum(cons(x, L)) := x + sum(L) for any x \in \mathbb{Z} and any L \in List
```

```
func echo(nil) := nil
echo(cons(x, L)) := cons(x, cons(x, echo(L))) for any x : \mathbb{Z}, L : List
```

• Prove that sum(echo(S)) = 2 sum(S) for any S : List

```
Inductive Hypothesis: assume that sum(echo(L)) = 2 sum(L)
```

Inductive Step (cons(x, L)):

```
sum(echo(cons(x, L))) = sum(cons(x, cons(x, echo(L)))) 	 def of echo
= x + sum(cons(x, echo(L))) 	 def of sum
= 2x + sum(echo(L)) 	 def of sum
= 2x + 2 sum(L) 	 Ind. Hyp.
= 2(x + sum(L))
= 2 sum(cons(x, L)) 	 def of sum
```

Recall: Concatenating Two Lists

Mathematical definition of concat(S, R)

```
\begin{array}{ll} \textbf{func} \; \mathsf{concat}(\mathsf{nil},\mathsf{R}) & := \; \mathsf{R} & \qquad \qquad \mathsf{for} \; \mathsf{any} \; \mathsf{R} \in \mathsf{List} \\ & \mathsf{concat}(\mathsf{cons}(\mathsf{x},\mathsf{L}),\mathsf{R}) \; := \; \mathsf{cons}(\mathsf{x},\mathsf{concat}(\mathsf{L},\mathsf{R})) & \qquad \mathsf{for} \; \mathsf{any} \; \mathsf{x} \in \mathbb{Z} \; \mathsf{and} \\ & \qquad \qquad \mathsf{any} \; \mathsf{L}, \; \mathsf{R} \in \mathsf{List} \end{array}
```

concat(S, R) defined by pattern matching on S (not R)


```
\begin{aligned} \text{func} & \operatorname{concat}(\operatorname{nil}, R) & := R & & \operatorname{for} & \operatorname{any} R : \operatorname{List} \\ & \operatorname{concat}(\operatorname{cons}(x, L), R) & := \operatorname{cons}(x, \operatorname{concat}(L, R)) & & \operatorname{for} & \operatorname{any} x : \mathbb{Z} & \operatorname{and} \\ & & & \operatorname{any} L, R : \operatorname{List} \end{aligned}
```

Suppose we have the following code:

- spec returns len(concat(S, R)) but code returns len(S) + len(R)
- Need to prove that len(concat(S, R)) = len(S) + len(R)

```
func concat(nil, R) := R for any R : List concat(cons(x, L), R) := cons(x, concat(L, R)) for any x : \mathbb{Z} and any L, R : List
```

- Prove that len(concat(S, R)) = len(S) + len(R)
 - prove by induction on S
 - prove the claim for any choice of R (i.e., R is a variable)

```
Base Case (nil):

len(concat(nil, R))=
```

$$= len(nil) + len(R)$$

```
func concat(nil, R) := R for any R : List concat(cons(x, L), R) := cons(x, concat(L, R)) for any x : \mathbb{Z} and any L, R : List
```

- Prove that len(concat(S, R)) = len(S) + len(R)
 - prove by induction on S
 - prove the claim for any choice of R (i.e., R is a variable)

Base Case (nil):

```
len(concat(nil, R)) = len(R) def of concat
= 0 + len(R)
= len(nil) + len(R) def of len
```

```
func concat(nil, R) := R for any R : List concat(cons(x, L), R) := cons(x, concat(L, R)) for any x : \mathbb{Z} and any L, R : List
```

Prove that len(concat(S, R)) = len(S) + len(R)

Inductive Step (cons(x, L)):

Need to prove that

$$len(concat(cons(x, L), R)) = len(cons(x, L)) + len(R)$$

Get to assume claim holds for L, i.e., that

$$len(concat(L, R)) = len(L) + len(R)$$

```
\begin{aligned} \text{func} & \operatorname{concat}(\operatorname{nil}, R) & := R & & \operatorname{for} & \operatorname{any} R : \operatorname{List} \\ & \operatorname{concat}(\operatorname{cons}(x, L), R) & := \operatorname{cons}(x, \operatorname{concat}(L, R)) & & \operatorname{for} & \operatorname{any} x : \mathbb{Z} & \operatorname{and} \\ & & & \operatorname{any} L, R : \operatorname{List} \end{aligned}
```

Prove that len(concat(S, R)) = len(S) + len(R)

```
Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)

Inductive Step (cons(x, L)):

len(concat(cons(x, L), R)) =
```

$$= len(cons(x, L)) + len(R)$$

```
func concat(nil, R) := R for any R : List concat(cons(x, L), R) := cons(x, concat(L, R)) for any x : \mathbb{Z} and any L, R : List
```

Prove that len(concat(S, R)) = len(S) + len(R)

```
Inductive Hypothesis: assume that len(concat(L, R)) = len(L) + len(R)
```

Inductive Step (cons(x, L)):

```
len(concat(cons(x, L), R)) = len(cons(x, concat(L, R)))  def of concat = 1 + len(concat(L, R))  def of len = 1 + len(L) + len(R)  lnd. Hyp. = len(cons(x, L)) + len(R)  def of len
```

Recall: Reversing a List

Mathematical definition of rev(S)

```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, L))} & := \text{concat(rev(L), cons(x, nil))} & \text{for any } x \in \mathbb{Z} \text{ and} \\ & & \text{any } L \in \text{List} \end{array}
```

note that rev uses concat as a helper function


```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, L))} & := \text{concat(rev(L), cons(x, nil))} & \text{for any } x : \mathbb{Z} \text{ and} \\ & & \text{any } L : \text{List} \end{array}
```

Suppose we have the following code:

- spec returns len(rev(S)) but code returns len(S)
- Need to prove that len(rev(S)) = len(S) for any S : List

```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, L))} & := \text{concat(rev(L), cons(x, nil))} & \text{for any } x : \mathbb{Z} \text{ and} \\ & & \text{any } L : \text{List} \end{array}
```

Prove that len(rev(S)) = len(S) for any S : List

```
Base Case (nil): len(rev(nil)) = len(nil) \qquad def of rev Inductive Step (cons(x, L)): Need to prove that len(rev(cons(x, L))) = len(cons(x, L)) Get to assume that len(rev(L)) = len(L)
```

```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, L))} & := \text{concat(rev(L), cons(x, nil))} & \text{for any } x : \mathbb{Z} \text{ and} \\ & & \text{any } L : \text{List} \end{array}
```

Prove that len(rev(S)) = len(S) for any S : List

```
= len(cons(x, L))
```

```
\begin{array}{ll} \text{func rev(nil)} & := \text{ nil} \\ & \text{rev(cons(x, L))} & := \text{concat(rev(L), cons(x, nil))} & \text{for any } x : \mathbb{Z} \text{ and} \\ & & \text{any } L : \text{List} \end{array}
```

Prove that len(rev(S)) = len(S) for any S : List

```
Inductive Hypothesis: assume that len(rev(L)) = len(L)

Inductive Step (cons(x, L)):
len(rev(cons(x, L)))
= len(concat(rev(L), cons(x, nil))) \qquad def of rev
= len(rev(L)) + len(cons(x, nil)) \qquad by Example 3
= len(L) + len(cons(x, nil)) \qquad lnd. Hyp.
= len(L) + 1 + len(nil) \qquad def of len
= len(L) + 1 \qquad def of len
= len(cons(x, L)) \qquad def of len
```

Finer Points of Structural Induction

- Structural Induction is how we reason about recursion
- Reasoning also follows structure of code
 - code uses structural recursion, so reasoning uses structural induction
- Note that rev is defined in terms of concat
 - reasoning about len(rev(...)) used fact about len(concat(...))
 - this is common

Defining Functions by Cases

- Usually combine pattern matching with recursion
- Can use pattern matching on its own

```
func empty(nil) := T
empty(cons(x, L)) := F for any x : \mathbb{Z}, L : List
```

- every list is either nil or cons(x, L) for some x and L
- rule can be applied to any list
- Pattern matching is one way to define <u>by cases</u>
 - we've seen another way to do this...

Defining Functions by Cases

- Pattern matching is one way to define <u>by cases</u>
- Side conditions also define by cases
 - e.g., define f(m) where $m : \mathbb{Z}$

```
func f(m) := 2m + 1 if m \ge 0
 f(m) := 0 if m < 0
```

- to use the definition on f(x), need to know if x < 0 or not
- Need ways to reason about these functions as well

- New code structure means new proof structure
- Can split a proof into cases
 - e.g., $x \ge 0$ and x < 0
 - need to be sure the cases are exhaustive (don't need to be exclusive in this case)
- If we can prove both cases, it is true in general

$$\begin{aligned} \text{func } f(m) &:= 2m+1 & \text{if } m \geq 0 \\ f(m) &:= 0 & \text{if } m < 0 \end{aligned}$$

Prove that f(m) > m for any m : Z

Case $m \ge 0$: f(m) =

> m

$$\begin{aligned} \text{func } f(m) &:= 2m+1 & \text{if } m \geq 0 \\ f(m) &:= 0 & \text{if } m < 0 \end{aligned}$$

Prove that f(m) > m for any m : Z

Case $m \ge 0$:

$$f(m) = 2m + 1$$
 def of f (since $m \ge 0$)
 $\ge m + 1$ since $m \ge 0$
 $> m$ since $1 > 0$

func
$$f(m) := 2m + 1$$
 if $m \ge 0$
 $f(m) := 0$ if $m < 0$

Prove that f(m) > m for any m : Z

Case $m \ge 0$:

$$f(m) = ... > m$$

Case m < 0:

$$f(m) = 0$$
 def of f (since m < 0)
> m since m < 0

Since these two cases are exhaustive, f(m) > m holds in general.

Recall: Pattern Matching

Define a function by an exhaustive set of patterns

```
type Steps := \{n : \mathbb{N}, \text{ fwd} : \mathbb{B}\}func change(\{n : n, \text{ fwd} : T\}) := nfor any n : \mathbb{N}change(\{n : n, \text{ fwd} : F\}) := -nfor any n : \mathbb{N}
```

- Steps describes movement on the number line
- change(s: Steps) says how the position changes

one of these two rules always applies

More Proof By Cases

```
func change(\{n: n, fwd: T\}) := n for any n : \mathbb{N} change(\{n: n, fwd: F\}) := -n for any n : \mathbb{N}
```

- Prove that |change(s)| = n for any $s = \{n: n, fwd: f\}$
 - we need to know if f = T or f = F to apply the definition!

```
\begin{aligned} &\text{Case } f = T: \\ &| \text{change}(\{n: n, \text{fwd: } f\})| \\ &= | \text{change}(\{n: n, \text{fwd: } T\})| & \text{since } f = T \\ &= |n| & \text{def of change} \\ &= n & \text{since } n \geq 0 \end{aligned}
```

More Proof By Cases

```
func change(\{n: n, fwd: T\}) := n for any n : \mathbb{N} change(\{n: n, fwd: F\}) := -n for any n : \mathbb{N}
```

• Prove that |change(s)| = n for any $s = \{n: n, fwd: f\}$

```
\begin{aligned} \text{Case } f = T \colon | \text{change}(\{n : n, fwd : f\}) | = ... = n \\ \\ \text{Case } f = F \colon \\ | \text{change}(\{n : n, fwd : f\}) | \\ &= | \text{change}(\{n : n, fwd : F\}) | \\ &= | \text{since } f = F \\ &= | -n | \\ &= n \end{aligned} \qquad \qquad \text{since } n \geq 0 \end{aligned}
```

Since these two cases are exhaustive, the claim holds in general.

Reminders

- "Engineers are paid to think and understand"
 - you should be able to understand all the code in HW3
- Professional programmers are required to
 - understand 100% of the code they write
 - understand what code does on 100% of the allowed inputs
- For Level 1+, this requires reasoning
 - must use reasoning to think about all allowed inputs
 not okay to give the wrong answer on even one allowed input

Exceptions

More List Functions

Functions to return the first or last element of a list

```
\begin{array}{ll} \textbf{func} \ \text{first}(\text{nil}) & := ? \\ & \text{first}(\text{cons}(x,L)) & := x & \text{for any } L : \text{List} \\ \\ \textbf{func} \ \text{last}(\text{nil}) & := ? \\ & \text{last}(\text{cons}(x,\text{nil})) & := x & \text{for any } x : \mathbf{Z} \\ & \text{last}(\text{cons}(x,\text{cons}(y,L)) := \text{last}(\text{cons}(y,L)) & \text{for any } x,y : \mathbf{Z} \ \text{and} \\ & \text{any } L : \text{List} \\ \end{array}
```

- Only makes sense for non-empty lists
 - there is no first or last element of an empty list
- What do we do when the input is nil?

Partial Functions in Math

Some functions do not have answers for some inputs

```
\begin{array}{ll} \textbf{func} \ \text{first}(\text{nil}) & := \ \text{undefined} \\ & \text{first}(\text{cons}(\textbf{x}, \textbf{L})) & := \ \textbf{x} & \text{for any L : List} \\ \\ \textbf{func} \ \text{last}(\text{nil}) & := \ \text{undefined} \\ & \text{last}(\text{cons}(\textbf{x}, \text{nil})) & := \ \textbf{x} & \text{for any x : } \textbf{Z} \\ & \text{last}(\text{cons}(\textbf{x}, \text{cons}(\textbf{y}, \textbf{L})) & \text{for any x, y : } \textbf{Z} \ \text{and} \\ & \text{any L : List} \\ \end{array}
```

- In math, we want functions to always be defined, so we have it return "undefined" in this case
 - return type is **Z** ∪ {undefined}

More List Functions

Functions to return the first or last element of a list

```
\begin{aligned} & \textbf{func} \ \text{first}(\text{cons}(\textbf{x}, \textbf{L})) & := \textbf{x} & \text{for any L : List} \\ & \textbf{func} \ \text{last}(\text{cons}(\textbf{x}, \text{nil})) & := \textbf{x} & \text{for any x : } \textbf{Z} \\ & \text{last}(\text{cons}(\textbf{x}, \text{cons}(\textbf{y}, \textbf{L})) := \text{last}(\text{cons}(\textbf{y}, \textbf{L})) & \text{for any x, y : } \textbf{Z} \ \text{and} \\ & & \text{any L : List} \end{aligned}
```

 You may see partial functions defined by non-exhaustive pattern matches.

Partial Functions in Code

 When programming, we also have invalid inputs, but we can handle them differently: disallow them

```
// L must be a non-empty list
const last = (L: List): bigint => {
  if (L.kind === "nil") {
    throw new Error("empty list! Boooo");
  } else if (L.tl.kind === "nil") {
    return L.hd;
  } else {
    return last(L.tl);
  }
};
```

Partial Functions in Code

 When programming, we also have invalid inputs, but we can handle them differently: disallow them

```
// L must be a non-empty list
const last = (L: List): bigint => {
  if (L.kind === "nil") {
    throw new Error("empty list! Boooo");
    ...
};
```

- Specification says L will not be nil
 - we assume it is not nil when reasoning
 - do not assume it is not nil at run time

```
an example of defensive programming
```

Partial Functions in Code

 When programming, we also have invalid inputs, but we can handle them differently: disallow them

```
// L must be a non-empty list
const last = (L: List): bigint => {
  if (L.kind === "nil") {
    throw new Error("empty list! Boooo");
    ...
};
```

- In this case, we don't want to return undefined
 - better to "fail fast"...
 - debugging is easier if crash is closer to bug

Defensive Programming Rules

- Fine to disallow any inputs you don't want to handle
 - spec can say which inputs are allowed (the type system cannot always express this)
- Should also check that the inputs are valid
 - throw an exception if not
 - skip this only if the check is too expensive:
 if checking would make the function asymptotically slower, then skip it
 - after you spend 4 hours debugging a problem like this, you'll wish you had written the check

Generics

Lots of Lists of Things

We have now seen lists of

integers

squares (Row in HW3)

• rows (Quilt in HW3)

HTML elements (JsxList in HW3)

These are all "the same" in some sense

- have nil and cons
- cons puts a new value at the front

Generic Types

We can describe this pattern with a "generic" list type

- We can pick any type for A
 - TypeScript replaces all the "A"s by the type we give
 - e.g., List
bigint> is this type:

Generic Types

We can describe this pattern with a "generic" list type

Can now have

```
    List<bigint> = List
    List<Square> = Row
    List<List<Square>> = Quilt
    List<JSX.Element> = JsxList
```

Generic Types

We can describe this pattern with a "generic" list type

- "A" is called a type parameter
- List is a function that takes a type as an argument and returns a new type
 - argument is the type of elements, result is list type
 (this is an *analogy* in Java, but it's literally true in TypeScript)
- Illegal to write "List" without its argument

Generic Functions

We also need to update the cons helper function

- This is now a "generic function"
 - it has its own type parameter <A, >
 - extra comma is weird but required

```
compiler thinks < A> is an HTML tag
```

Generic Functions

We also need to update the cons helper function

- Parameters to generic types must be provided
- Parameters to generic functions are usually inferred

```
cons(1n, cons(2n, nil)) // has type List<bigint>
```

Generic Types & Functions

- We won't ask you to write generic types this quarter
- But you will need to use them
 - we will use List<A> in every assignment from now on
 - lists are the basic data structure of functional programming

Type Erasure

Type Checkers

- Type checkers eliminate large classes of bugs
 - e.g., cannot pass a string where an int is expected
 - critical part of ensuring correctness
- Sometimes give you ways to opt out of type checking
 - type casts says "just trust me"
 - "any" type

Run-Time Type Checking

- Java will double-check at run-time that you were right
 - type cast will fail with ClassCastException
 - however, there are cases where it cannot double-check

```
Integer n = (Integer) obj;  // okay
List<Integer> L = (List<Integer>) obj; // okay?
```

- Java can do some checks at run-time
 - can check if obj is an Integer
 - can check if obj is a List<?> (list of something)
 - cannot check if obj is a List<Integer>!

Run-Time Type Checking

- Java will double-check at run-time that you were right
 - type cast will fail with ClassCastException
 - however, there are cases where it cannot double-check

- Cannot check if obj is a List<Integer>
 - all type parameters are "erased"
 - all Lists are List<Object> at run-time
 if it is correct, it is a List<Object> that happens to hold Integers

Type Erasure in Java

```
if (obj instanceof List<Integer>) {      // not okay
```

- Java will give you an error on this line
 - it can tell if L is a List
 - it cannot tell if L is a List<Integer> (vs List<String>)

- Java only gives a warning about the second cast
 - should really be an error
 - programs with these warnings are unsafe

Type Erasure in TypeScript

- In TypeScript, all declared type information is erased!
 - no way to tell what type anything had in the source code
- Type casts are not double-checked at run-time
 - the only run-time type checks are ones <u>you</u> write
- If you use casts or "any" types, expect pain
 - variables will have values of types you didn't expect
 - code will fail in bizarre ways

Handling Type Erasure

Options for avoiding painful debugging

- Do not use (unchecked) type casts or "any" types
 - almost certainly the best option
- 2. Check the types yourself at run-time
 - lots of extra work
 - easy to make mistakes
 - (sometimes the only option)

More Recursion

Example 5: Reversing a List

- This correctly reverses a list but is slow
 - concat takes $\Theta(n)$ time, where n is length of L
 - n calls to concat takes $\Theta(n^2)$ time
- Can we do this faster?
 - yes, but we need a helper function

Example 5: Reversing a List

• Helper function rev-acc(S, R) for any S, R : List

```
\begin{array}{ll} \textbf{func} \ \text{rev-acc}(\text{nil}, R) & := R & \text{for any } R : List \\ \text{rev-acc}(\text{cons}(x, L), R) & := \text{rev-acc}(L, \text{cons}(x, R)) & \text{for any } x : \mathbb{Z} \ \text{and} \\ & \text{any } L, R : List \end{array}
```

Example 5: Reversing a List

```
func rev-acc(nil, R) := R for any R : List rev-acc(cons(x, L), R) := rev-acc(L, cons(x, R)) for any x : \mathbb{Z} and any L, R : List
```

- Can prove that rev-acc(S, R) = concat(rev(S), R)
 - more on this next time...