Residuals

Emilija Perković

Dept. of Statistics University of Washington Mean Function:

$$\mathsf{E}[Y|X=x]=\beta_0+\beta_1x,$$

Residuals

Variance Function:

$$Var[Y|X=x]=\sigma^2,$$

where

OLS Estimation

•000000000

Mean Function:

$$\mathsf{E}[Y|X=x]=\beta_0+\beta_1x,$$

Residuals

Variance Function:

$$Var[Y|X=x]=\sigma^2,$$

where

OLS Estimation

•000000000

 \triangleright β_0 is the intercept,

Simple linear regression in Weisberg's notation

Mean Function:

$$\mathsf{E}[Y|X=x]=\beta_0+\beta_1x,$$

Residuals

Variance Function:

$$Var[Y|X=x]=\sigma^2,$$

where

- \triangleright β_0 is the intercept,
- \triangleright β_1 is the slope, and

Simple linear regression in Weisberg's notation

Mean Function:

$$\mathsf{E}[Y|X=x]=\beta_0+\beta_1x,$$

Variance Function:

$$Var[Y|X=x]=\sigma^2,$$

where

- $\triangleright \beta_0$ is the intercept,
- $\triangleright \beta_1$ is the slope, and
- ▶ $0 < \sigma^2 < \infty$ is the variance of Y.

Simple linear regression in Weisberg's notation

Mean Function:

$$\mathsf{E}[Y|X=x]=\beta_0+\beta_1x,$$

Variance Function:

$$Var[Y|X=x]=\sigma^2,$$

where

- \triangleright β_0 is the intercept,
- $\triangleright \beta_1$ is the slope, and
- ▶ $0 < \sigma^2 < \infty$ is the variance of Y .

Other common notation:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, where $i = 1, ..., n, \epsilon_i$ iid, with

$$E[\epsilon_i|X=x]=0$$
 and $Var[\epsilon_i|X=x]=\sigma^2$.

$$y = f(x) + \epsilon$$

Regression Assumptions:

OLS Estimation

$$y = f(x) + \epsilon$$

Regression Assumptions:

OLS Estimation

- Variance of Y does not depend on X (homoscedasticity).
- ▶ Errors $\epsilon = y E[Y|X = x]$ have zero mean, i.e., $E[\epsilon|X = x] = 0$.

$$y = f(x) + \epsilon$$

Regression Assumptions:

OLS Estimation

- ▶ Variance of Y does not depend on X (homoscedasticity).
- ightharpoonup Errors $\epsilon = y E[Y|X = x]$ have zero mean, i.e., $E[\epsilon|X = x] = 0$.
- \triangleright Errors ϵ are independent (the error for one case gives no information about the error for another case).

Simple linear regression: Assumptions

$$y = f(x) + \epsilon$$

Regression Assumptions:

- Variance of Y does not depend on X (homoscedasticity).
- ▶ Errors $\epsilon = y E[Y|X = x]$ have zero mean, i.e., $E[\epsilon|X = x] = 0$.
- \triangleright Errors ϵ are independent (the error for one case gives no information about the error for another case).
- Errors are assumed to be normally distributed. Note: The normality assumption is much stronger than we need in many cases (e.g., see Weisberg p.22). It is used primarily for inference (tests and confidence intervals) with small sample sizes.

OLS Estimation

000000000

Given a set of data points $(x_1, y_1), \ldots, (x_n, y_n)$, we learn about β_0 and β_1 by obtaining estimates of β_0 and β_1 from the data.

Given a set of data points $(x_1, y_1), \ldots, (x_n, y_n)$, we learn about β_0 and β_1 by obtaining estimates of β_0 and β_1 from the data.

One way to estimate β_0 and β_1 is to find values $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize the residual sum of squares:

$$\frac{\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2}{\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)]^2}$$

$$= \sum_{i=1}^{n} \epsilon_i^2$$

OLS estimation

OLS Estimation

000000000

One can obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ by

000000000

One can obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ by

setting the partial derivatives of RSS (residual sum of squares) with respect to β_0 and β_1 equal to zero

Residuals

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^n (2\beta_0 - 2y_i + 2\beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = \sum_{i=1}^n (2\beta_1 x_i^2 - 2y_i + 2\beta_0 x_i) = 0$$

000000000

One can obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ by

setting the partial derivatives of RSS (residual sum of squares) with respect to β_0 and β_1 equal to zero

Residuals

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^n (2\beta_0 - 2y_i + 2\beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = \sum_{i=1}^n (2\beta_1 x_i^2 - 2y_i + 2\beta_0 x_i) = 0$$

and solving these normal equations.

One can obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ by

setting the partial derivatives of RSS (residual sum of squares) with respect to β_0 and β_1 equal to zero

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^{n} (2\beta_0 - 2y_i + 2\beta_1 x_i) = 0$$

$$\frac{\partial RSS}{\partial \beta_1} = \sum_{i=1}^{n} (2\beta_1 x_i^2 - 2y_i + 2\beta_0 x_i) = 0$$

- and solving these normal equations.
- \Longrightarrow The values of \hat{eta}_0 and \hat{eta}_1 obtained in such a way are called **ordinary least squares estimates** (OLS estimates) of β_0 and β_1 .

OLS Estimation

0000000000

Question: What is the conceptual difference between β_0 and $\hat{\beta}_0$?

The 'hat' operator

Question: What is the conceptual difference between β_0 and $\hat{\beta}_0$?

We use the hat operator to distinguish between parameters and their estimates.

0000000000

Question: What is the conceptual difference between β_0 and $\hat{\beta}_0$?

Residuals

We use the hat operator to distinguish between parameters and their estimates.

For example:

- ► Errors: $\epsilon_i = y_i \beta_0 \beta_1 x_i$, i = 1, ..., n,
- Residuals: $\hat{\epsilon}_i = y_i \hat{\beta}_0 \hat{\beta}_1 x_i$, i = 1, ..., n.

The 'hat' operator

Question: What is the conceptual difference between β_0 and $\hat{\beta}_0$?

We use the hat operator to distinguish between parameters and their estimates.

For example:

- \triangleright Errors: $\epsilon_i = v_i \beta_0 \beta_1 x_i$, i = 1, ..., n,
- ► Residuals: $\hat{\epsilon}_i = v_i \hat{\beta}_0 \hat{\beta}_1 x_i$, i = 1, ..., n.

And also:

- ▶ Observed value: y_i , i = 1, ..., n,
- Fitted value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, i = 1, ..., n.

The OLS estimates for slope and intercept

$$\hat{\beta}_{1} = \underbrace{\frac{SXY}{SXX}}_{\hat{\beta}_{0}} = \underbrace{\hat{y}}_{\hat{\beta}_{1}} \underbrace{\hat{\beta}_{1}}_{X},$$

where SXY is the sum of cross-products of the deviations of x_i and y_i from their means:

$$\underbrace{SXY} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}),$$

and SXX is the sum of squared deviations of x_i from the sample mean of x:

$$\underbrace{SXX} \neq \sum_{i=1}^{n} (x_i - \overline{x})^2$$

0000000000

Note that since the sampling variance of *X* is

$$SD_x^2 = \frac{SXX}{n-1} = \frac{1}{1-2} \cdot \frac{1}{1-2} \left(\frac{1}{1-2} \cdot \frac{1}{1-2} \right)^2$$

Residuals

Note that since the sampling variance of *X* is

$$SD_x^2 = \frac{SXX}{n-1}.$$

Residuals

And the sampling covariance is:

OLS Estimation

$$s_{xy}=\frac{SXY}{n-1}.$$

The OLS estimates for slope and intercept

Note that since the sampling variance of X is

$$SD_x^2 = \frac{SXX}{n-1}.$$

Residuals

And the sampling covariance is:

$$s_{xy}=\frac{SXY}{n-1}.$$

Then

OLS Estimation

$$\hat{\beta}_1 = \frac{s_{XY}}{SD_Y^2} = \frac{SXY(n-1)}{(n-1)SXX} = \frac{SXY}{SXX}.$$

The OLS estimates for slope and intercept

Note that the OLS regression line goes through the point $(\overline{x}, \overline{y})$, the center mass of the data.

$$\frac{\overline{y} - f(\overline{x}) = \overline{y} - (\underline{\beta}_0 + \underline{\beta}_1 \overline{x})}{= \overline{y} - (\underline{\beta}_0 + \underline{\beta}_1 \overline{x})} = 0$$

Residuals

The OLS estimates for slope and intercept

Note that the OLS regression line goes through the point $(\overline{x}, \overline{y})$, the center mass of the data.

Verify by plugging in \overline{x} , \overline{y} and the OLS estimates into the mean function for the simple regression:

$$\overline{y} = \overline{y} - \hat{\beta}_1 \overline{x} + \hat{\beta}_1 \overline{x}.$$

0000000000

Note that the OLS regression line goes through the point $(\overline{x}, \overline{y})$, the center mass of the data.

Verify by plugging in \bar{x} , \bar{y} and the OLS estimates into the mean function for the simple regression:

$$\overline{y} = \overline{y} - \hat{\beta}_1 \overline{x} + \hat{\beta}_1 \overline{x}.$$

Interpretation of $\hat{\beta}_0$ **and** $\hat{\beta}_1$: Fitting the regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, ϵ_i iid,

we obtain estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$.

0000000000

Note that the OLS regression line goes through the point (\bar{x}, \bar{y}) , the center mass of the data.

Verify by plugging in \overline{x} , \overline{y} and the OLS estimates into the mean function for the simple regression:

$$\overline{y} = \overline{y} - \hat{\beta}_1 \overline{x} + \hat{\beta}_1 \overline{x}.$$

Interpretation of $\hat{\beta}_0$ **and** $\hat{\beta}_1$: Fitting the regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
, with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$, ϵ_i iid,

we obtain estimates for $\hat{\beta}_0$ and $\hat{\beta}_1$.

- $\hat{\beta}_0$ The estimated average value of y for x=0,
- $\hat{\beta}_1$ For every unit increase of x, we estimate that y increases by $\hat{\beta}_1$ on average.

Example: Forbes data

Find the OLS estimates for the regression of pressure on temperature, given:

$$\hat{\beta}_{1} = \frac{Sxy}{Sxx}$$

$$\hat{\beta}_{0} = y - \hat{\beta}_{1} \cdot x$$

$$\overline{x} = 202.9529$$

Residuals

$$\overline{y} = 25.05882$$

$$SXX = 530.7824$$

$$SXY = 277.5421$$

Example: Forbes data

Find the OLS estimates for the regression of pressure on temperature, given:

$$\overline{x} = 202.9529$$
 $\overline{y} = 25.05882$
 $SXX = 530.7824$
 $SXY = 277.5421$

Using the formulae for OLS estimates of $\hat{\beta}_0$ and $\hat{\beta}_1$, we obtain

$$\hat{\beta}_1 = \frac{277.5421}{530.7824} \approx 0.523$$

$$\hat{\beta}_0 = 25.05882 - 0.523 * 202.9529 \approx -81.064$$

OLS Estimation

Property 1.

 $\hat{\beta}_0$ and $\hat{\beta}_1$ can be written as linear functions of y_1, \ldots, y_n , e.g.,

$$\hat{\beta}_1 = \underbrace{\sum_{i=1}^n c_i y_i}_{SXX}$$
, where $c_i = \frac{x_i - \overline{x}}{SXX}$.

Residuals

OLS properties

Property 1.

 $\hat{\beta}_0$ and $\hat{\beta}_1$ can be written as linear functions of y_1, \ldots, y_n , e.g.,

$$\hat{\beta}_1 = \sum_{i=1}^n c_i y_i$$
, where $c_i = \frac{x_i - \overline{x}}{SXX}$.

Proof:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{SXX}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})y_{i}}{SXX} - \overline{y} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})}{SXX}$$

$$= \sum_{i=1}^{n} c_{i}y_{i} - \frac{\overline{y}}{SXX} \left(\frac{n \sum_{i=1}^{n} x_{i}}{n} - n\overline{x}\right) = \sum_{i=1}^{n} c_{i}y_{i}$$

For OLS estimate of the intercept $\hat{\beta}_0$ recall

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}.$$

Residuals

For OLS estimate of the intercept $\hat{\beta}_0$ recall

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}.$$

Residuals

Since the sample mean of y, \overline{y} , is a linear combination of y_1, \ldots, y_n , and we just showed that $\hat{\beta}_1$ is a linear combination of y_1, \ldots, y_n , then $\hat{\beta}_0$ is a linear combination of y_1, \ldots, y_n as well.

For OLS estimate of the intercept $\hat{\beta}_0$ recall

$$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}.$$

Since the sample mean of y, \overline{y} , is a linear combination of y_1, \ldots, y_n , and we just showed that $\hat{\beta}_1$ is a linear combination of y_1, \ldots, y_n then $\hat{\beta}_0$ is a linear combination of y_1, \ldots, y_n as well.

Exercise: Find d_i , i = 1, ..., n such that $\hat{\beta}_0 = \sum_{i=1}^n d_i y_i$.

Residuals

OLS properties

Property 2. If $E[\epsilon_i|X=x]=0$, for all $i=1,\ldots,n$, $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , that is, $E[\hat{\beta}_0|X = x] = \beta_0 \text{ and } E[\hat{\beta}_1|X = x] = \beta_1.$

OLS properties

Property 2. If $E[\epsilon_i|X=x]=0$, for all $i=1,\ldots,n$, $\hat{\beta}_0$ and $\hat{\beta}_1$ are unbiased estimators of β_0 and β_1 , that is, $E[\hat{\beta}_0|X=x]=\beta_0$ and $E[\hat{\beta}_1|X=x]=\beta_1$.

Proof:

$$E[\hat{\beta}_{1}|X = x] = E[\sum_{i=1}^{n} c_{i}y_{i}|X = x] = \sum_{i=1}^{n} c_{i}E[y_{i}|X = x]$$

$$= \sum_{i=1}^{n} c_{i}(\beta_{0} + \beta_{1}x_{i}) = \beta_{0}\sum_{i=1}^{n} c_{i} + \beta_{1}\sum_{i=1}^{n} c_{i}x_{i}$$

$$= \frac{\beta_{0}}{SXX}\sum_{i=1}^{n} (x_{i} - \overline{x}) + \beta_{1}\sum_{i=1}^{n} \frac{x_{i}(x_{i} - \overline{x})}{SXX}$$

OLS properties

Proof continued: (For $\hat{\beta}_1$, given X = x)

$$E[\hat{\beta}_{1}|X=x] = \frac{\beta_{0}}{SXX} \sum_{i=1}^{n} (x_{i} - \overline{x}) + \beta_{1} \sum_{i=1}^{n} \frac{x_{i}(x_{i} - \overline{x})}{SXX}$$

$$= \beta_{1} \frac{\sum_{i=1}^{n} x_{i}(x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})}$$

$$= \beta_{1} \frac{\left[\sum_{i=1}^{n} x_{i}(\underline{x_{i} - \overline{x}}) - \overline{x}(x_{i} - \overline{x}) + \overline{x}(x_{i} - \overline{x})\right]}{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})}$$

$$= \beta_{1} \frac{\left[\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})\right]}{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})} + \beta_{1} \frac{\sum_{i=1}^{n} \overline{x}(x_{i} - \overline{x})}{SXX}$$

$$= \beta_{1} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})}{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{x})} + \beta_{1} \frac{\sum_{i=1}^{n} \overline{x}(x_{i} - \overline{x})}{SXX}$$

For the last step, we use the same trick as before to show that the second term is 0.

OLS Estimation

Exercise: Show that $\hat{\beta}_0$ is an unbiased estimator of β_0 .

Residuals

Residuals

OLS properties

Exercise: Show that $\hat{\beta}_0$ is an unbiased estimator of β_0 .

Property 3. If $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all $i=1,\ldots,n$, then the variances of the OLS estimators are:

$$\operatorname{Var}[\hat{\beta}_{1}|X=x] = \frac{\sigma^{2}}{SXX},$$

$$\operatorname{Var}[\hat{\beta}_{0}|X=x] = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{SXX}\right),$$

$$\operatorname{Cov}[\hat{\beta}_{0}, \hat{\beta}_{1}|X=x] = -\sigma^{2}\frac{\overline{x}}{SXX}.$$

Exercise: Show that $\hat{\beta}_0$ is an unbiased estimator of β_0 .

Property 3. If $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all i = 1, ..., n,

then the variances of the OLS estimators are:

$$\operatorname{Var}[\hat{\beta}_{1}|X=x] = \frac{\sigma^{2}}{SXX},$$

$$\operatorname{Var}[\hat{\beta}_{0}|X=x] = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{SXX}\right),$$

$$\operatorname{Cov}[\hat{\beta}_{0}, \hat{\beta}_{1}|X=x] = -\sigma^{2}\frac{\overline{x}}{SXX}.$$

Proof: Exercise.

OLS Estimation

Property 4.

The sum of residuals form an OLS fit is zero (as long as $\beta_0 \neq 0$):

$$\sum_{i=1}^n \hat{\epsilon}_i = 0.$$

Residuals

Proof: Exercise.

Gauss-Markov Theorem. Assume $E[\epsilon_i|X=x]=0$,

 $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all $i=1,\ldots,n$.

Among all unbiased estimators that are linear combinations of y's, the OLS estimators of regression coefficients have the smallest variance, i.e., they are **b**est linear **u**nbiased **e**stimators (BLUE).

Residuals

OLS properties

Gauss-Markov Theorem. Assume $E[\epsilon_i|X=x]=0$,

 $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all $i=1,\ldots,n$.

Among all unbiased estimators that are linear combinations of y's, the OLS estimators of regression coefficients have the smallest variance, i.e., they are **b**est linear **u**nbiased **e**stimators (BLUE).

▶ Note 1: The Gauss-Markov Theorem as stated does not require the assumption of normality of the error terms.

 $i=1,\ldots,n$.

Gauss-Markov Theorem. Assume $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all

Among all unbiased estimators that are linear combinations of y's, the OLS estimators of regression coefficients have the smallest variance, i.e., they are **b**est linear **u**nbiased **e**stimators (BLUE).

▶ Note 1: The Gauss-Markov Theorem as stated does not require the assumption of normality of the error terms. Adding the assumption of normality of the errors, one can show that OLS estimators are BLUE estimators among all unbiased estimators (not only linear functions of y's).

OLS properties

Gauss-Markov Theorem. Assume $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all

 $Var[\epsilon_i|X=x] = \sigma^2$ and the errors ϵ_i are uncorrelated for al $i=1,\ldots,n$.

Among all unbiased estimators that are linear combinations of y's, the OLS estimators of regression coefficients have the smallest variance, i.e., they are **b**est **l**inear **u**nbiased **e**stimators (BLUE).

- ▶ Note 1: The Gauss-Markov Theorem as stated does not require the assumption of normality of the error terms. Adding the assumption of normality of the errors, one can show that OLS estimators are BLUE estimators among all unbiased estimators (not only linear functions of y's).
- ▶ Note 2: The Gauss-Markov Theorem does not tell one to use least squares all the time, but it strongly suggests it.

$$\hat{\epsilon}_i = \mathbf{v}_i - \hat{\beta}_0 - \hat{\beta}_1 \mathbf{x}_i$$

Residuals

00000

Let's examine plot of residuals versus fitted values for the Snow Geese data for violations of the regression assumptions.

Things we are looking for:

- Curvature of the mean trend (indicates that the mean function is inappropriate);
- Increase or decrease in magnitude when fitted values are increasing (indicates non-constant variance);
- Residuals that are large in magnitude compared to the rest (indicates outliers).

OLS Estimation

Snow geese data: Residuals versus fitted

Residuals 00000

Residuals

00000

OLS Estimation

OLS Estimation

Weisberg, Figure 2.5

Residuals

00000

Residual assumption violations

OLS Estimation

Outliers: What to do with outliers?

In some cases we may know about specific reasons why an outlier was observed. You should not simply remove an outlier from your data without careful consideration.

Residuals

0000

Residual assumption violations

Outliers: What to do with outliers?

In some cases we may know about specific reasons why an outlier was observed. You should not simply remove an outlier from your data without careful consideration.

Mean trend and non-constant variance:

We will address some remedies for dealing with curvature in the mean trend and with non-constant variance later in the class.

Normality:

To check for the normality of the errors you can use histograms or normal qq-plots, these will be discussed later in the course.

Independence:

Plot residuals versus index and look for trends. Alternatives: turning point test, runs test, portmanteau test, Durbin-Watson test etc.

OLS Estimation

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown.

Residuals

OLS Estimation

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown. Solution: Estimate σ^2 .

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown. Solution: Estimate σ^2 .

Assuming the errors are uncorrelated and have zero mean and common variance σ^2 , an unbiased estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{RSS}{d.f.}$$

where d.f. stands for degrees of freedom.

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown. Solution: Estimate σ^2 .

Assuming the errors are uncorrelated and have zero mean and common variance σ^2 , an unbiased estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{RSS}{d.f.}$$

where d.f. stands for degrees of freedom.

residual d.f. = ([number of samples] - [number of parameters we are estimating])

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown. Solution: Estimate σ^2 .

Assuming the errors are uncorrelated and have zero mean and common variance σ^2 , an unbiased estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{RSS}{d.f.}$$

where d.f. stands for degrees of freedom.

residual d.f. = ([number of samples] - [number of parameters we are estimating])

Why?

The distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$ depends on σ^2 (see e.g., Property 3.). However, in many cases σ^2 is unknown. Solution: Estimate σ^2 .

Assuming the errors are uncorrelated and have zero mean and common variance σ^2 , an unbiased estimate of σ^2 is given by

$$\hat{\sigma}^2 = \frac{RSS}{d.f.}$$

where d.f. stands for degrees of freedom.

residual d.f. = ([number of samples] - [number of parameters we are estimating])

Why? Because estimating parameters imposes constraints, e.g.,

$$\frac{\partial RSS}{\partial \beta_0} = \sum_{i=1}^n (2\beta_0 - 2y_i - 2\beta_1 x_i) = 0$$

OLS Estimation

How many residual degrees of freedom does a simple regression with *n* samples have?

Residuals

OLS Estimation

How many residual degrees of freedom does a simple regression with *n* samples have?

Residuals

For simple linear regression with *n* samples, the number of residual degrees of freedom is n-2.

How many residual degrees of freedom does a simple regression with *n* samples have?

Residuals

For simple linear regression with *n* samples, the number of residual degrees of freedom is n-2.

Our estimate of the residual variance for simple regression is then:

$$\hat{\sigma}^2 = \frac{RSS}{n-2},$$

Residuals

Estimating the Residual Variance

How many residual degrees of freedom does a simple regression with *n* samples have?

For simple linear regression with n samples, the number of residual degrees of freedom is n-2.

Our estimate of the residual variance for simple regression is then:

$$\hat{\sigma}^2 = \frac{RSS}{n-2},$$

If $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all $i=1,\ldots,n$, then

How many residual degrees of freedom does a simple regression with *n* samples have?

For simple linear regression with n samples, the number of residual degrees of freedom is n-2.

Our estimate of the residual variance for simple regression is then:

$$\hat{\sigma}^2 = \frac{RSS}{n-2},$$

If $E[\epsilon_i|X=x]=0$, $Var[\epsilon_i|X=x]=\sigma^2$ and the errors ϵ_i are uncorrelated for all $i=1,\ldots,n$, then

$$\mathsf{E}[\hat{\sigma}^2|X=x]=\sigma^2,$$

the estimate is unbiased.

Residuals

Estimating the Residual Variance

Note also that

$$RSS = RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = SYY - \hat{\beta}_1^2 SXX = SYY - \frac{SXY^2}{SXX},$$

Note also that

$$RSS = RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n \hat{\epsilon}_i^2 = SYY - \hat{\beta}_1^2 SXX = SYY - \frac{SXY^2}{SXX},$$

Residuals

where

► $SYY = \sum_{i=1}^{n} (y_i - \overline{y})^2$ is the total sum of squares (total amount of variability in the response) and

Note also that

$$RSS = RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n \hat{\epsilon}_i^2 = SYY - \hat{\beta}_1^2 SXX = SYY - \frac{SXY^2}{SXX},$$

where

- SYY = $\sum_{i=1}^{n} (y_i \overline{y})^2$ is the total sum of squares (total amount of variability in the response) and
- $ightharpoonup \frac{SXY^2}{CVV}$ is the regression sum of squares (the difference between the total and the residual sums of squares).

Note also that

$$RSS = RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = SYY - \hat{\beta}_1^2 SXX = SYY - \frac{SXY^2}{SXX},$$

where

- SYY = $\sum_{i=1}^{n} (y_i \overline{y})^2$ is the *total sum of squares* (total amount of variability in the response) and
 - $ightharpoonup rac{SXY^2}{SXX}$ is the regression sum of squares (the difference between the total and the residual sums of squares).

Then for the Forbes' data with

$$RSS = 0.813143, \ n = 17,$$

the estimated residual variance is

Note also that

$$RSS = RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = SYY - \hat{\beta}_1^2 SXX = SYY - \frac{SXY^2}{SXX},$$

where

- ► $SYY = \sum_{i=1}^{n} (y_i \overline{y})^2$ is the *total sum of squares* (total amount of variability in the response) and
- $ightharpoonup \frac{SXY^2}{SXX}$ is the regression sum of squares (the difference between the total and the residual sums of squares).

Then for the Forbes' data with

$$RSS = 0.813143, n = 17.$$

the estimated residual variance is

$$\hat{\sigma}^2 = \frac{0.813143}{17 - 2} \approx 0.054.$$

OLS Estimation

The square root of an estimated variance is called *standard error*.

Residuals

The square root of an estimated variance is called *standard error*.

Residuals

Since the true value of σ^2 is unknown, we replace σ^2 with its unbiased estimate, $\hat{\sigma}^2$, to obtain standard errors of the regression coefficients:

Standard Errors of the OLS Estimators

The square root of an estimated variance is called standard error.

Since the true value of σ^2 is unknown, we replace σ^2 with its unbiased estimate, $\hat{\sigma}^2$, to obtain standard errors of the regression coefficients:

$$SE(\hat{\beta}_1|X=x) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

$$SE(\hat{\beta}_0|X=x) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}.$$

Standard Errors of the OLS Estimators

The square root of an estimated variance is called standard error.

Since the true value of σ^2 is unknown, we replace σ^2 with its unbiased estimate, $\hat{\sigma}^2$, to obtain standard errors of the regression coefficients:

$$SE(\hat{\beta}_1|X=x) = \frac{\hat{\sigma}}{\sqrt{SXX}}$$

$$SE(\hat{\beta}_0|X=x) = \hat{\sigma}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{SXX}}.$$

OLS Estimation

Residuals

Let us come back to simple linear regression:

$$y = \beta_0 + \beta_1 x + \epsilon, \text{ where } \underbrace{\epsilon \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)}.$$

Let us come back to simple linear regression:

$$y = \beta_0 + \beta_1 x + \epsilon$$
, where $\epsilon \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

Residuals

Then,

OLS Estimation

$$Y|X = x \sim \mathcal{N}(\beta_0 + \beta_1 x, \sigma^2).$$

Distribution of estimates

Let us come back to simple linear regression:

$$y = \beta_0 + \beta_1 x + \epsilon$$
, where $\epsilon \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$.

Then.

$$Y|X = x \sim \mathcal{N}(\beta_0 + \beta_1 x, \sigma^2).$$

Since $\hat{\beta}_0$ and $\hat{\beta}_1$ are linear combinations of y_1, \ldots, y_n (Property 1), then $(\hat{\beta}_0, \hat{\beta}_1)$ follows a **bivariate normal** distribution.

OLS Estimation

Because $(\hat{\beta}_0, \hat{\beta}_1)$ follow a bivariate normal distribution, when σ^2 is known, the marginal distributions for $\hat{\beta}_0$ and $\hat{\beta}_1$ are univariate normal.

Residuals

Confidence Intervals

Because $(\hat{\beta}_0, \hat{\beta}_1)$ follow a bivariate normal distribution, when σ^2 is known, the marginal distributions for $\hat{\beta}_0$ and $\hat{\beta}_1$ are univariate normal.

$$\hat{\beta}_0|X=x \sim \mathcal{N}(\beta_0, \sigma^2(\frac{1}{n}+\frac{\overline{x}^2}{SXX})),$$

given that $\epsilon_i|X=x$ iid $\mathcal{N}(0,\sigma^2)$, $i=1,\ldots,n$.

Confidence Intervals

Because $(\hat{\beta}_0, \hat{\beta}_1)$ follow a bivariate normal distribution, when σ^2 is known, the marginal distributions for $\hat{\beta}_0$ and $\hat{\beta}_1$ are univariate normal.

$$\hat{\beta}_0|X=x \sim \mathcal{N}(\beta_0, \sigma^2(\frac{1}{n}+\frac{\overline{x}^2}{SXX})),$$

given that $\epsilon_i|X=x$ iid $\mathcal{N}(0,\sigma^2)$, $i=1,\ldots,n$. Then

$$\hat{\beta}_0 - \beta_0$$

$$\sigma^2(\frac{1}{p} + \frac{\overline{x}^2}{5XX})$$
| $X = x \sim \mathcal{N}(0, 1)$.

Since σ^2 is usually not known and is instead estimated as $\hat{\sigma}^2$

$$\hat{\beta}_0 - \beta_0 \over \hat{\sigma}^2(\frac{1}{n} + \frac{\overline{x}^2}{SXX})} | X = x \sim t_{n-2}.$$

The t-distribution with n-2 degrees of freedom is the appropriate reference distribution for constructing the confidence intervals for $\hat{\beta}_0$ and $\hat{\beta}_1$.

n = 17 and we are interested in a 90% CI for β_0

$$P(\frac{\hat{\beta}_0 - \beta_0}{\sqrt{\hat{\beta}^2 / 5 X X}} \le |t^*| | X = X) = 0.9$$
, so $t^* = t_{0.95, 15}$. Then
$$P(-t^* \le \frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0 | X = X)} \le t^*) = 0.9.$$

Since

OLS Estimation

$$P(-t^* \le \frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0|X = x)} \le t^*|X = x) = 0.9,$$

Residuals

Confidence Interval for $\hat{oldsymbol{eta}}_0$

Since

$$P(-t^* \le \frac{\beta_0 - \beta_0}{SE(\hat{\beta}_0|X = x)} \le t^*|X = x) = 0.9,$$

$$P(\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x) \le \beta_0 \le \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x) | X = x) = 0.9,$$

a 90% confidence interval for $\hat{\beta}_0$ when n = 17 is:

$$\begin{array}{cccc}
t & t \\
0.95, n-2 \\
\hline
\end{array} \left[\hat{\beta}_0 - t^* \right] SE(\hat{\beta}_0 | X = x), \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x) \right]$$

Confidence Interval for $\hat{oldsymbol{eta}}_0$

Since

$$P(-t^* \le \frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0|X = x)} \le t^*|X = x) = 0.9,$$

$$P(\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x) \le \beta_0 \le \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x) | X = x) = 0.9,$$

a 90% confidence interval for $\hat{\beta}_0$ when n = 17 is:

$$\left[\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x), \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x)\right]$$

The general form of a two-sided $(1-\alpha) \times 100\%$ confidence interval for a symmetric probability distribution is:

Estimate \pm (1 – α /2)-quantile of the prob. dist. \times SE of estimate.

Confidence Interval for $\hat{oldsymbol{eta}}_0$

Since

$$P(-t^* \le \frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0|X = x)} \le t^*|X = x) = 0.9,$$

$$P(\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x) \le \beta_0 \le \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x) | X = x) = 0.9,$$

a 90% confidence interval for $\hat{\beta}_0$ when n = 17 is:

$$\left[\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x), \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x)\right]$$

The general form of a two-sided $(1-\alpha) \times 100\%$ confidence interval for a symmetric probability distribution is:

Estimate \pm (1 – α /2)-quantile of the prob. dist. \times SE of estimate.

The interpretation of confidence intervals is based on repeated sampling.

Confidence Interval for $\hat{oldsymbol{eta}}_0$

Since

$$P(-t^* \le \frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0|X = x)} \le t^*|X = x) = 0.9,$$

$$P(\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x) \le \beta_0 \le \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x) | X = x) = 0.9,$$

a 90% confidence interval for $\hat{\beta}_0$ when n = 17 is:

$$\left[\hat{\beta}_0 - t^* \cdot SE(\hat{\beta}_0 | X = x), \hat{\beta}_0 + t^* \cdot SE(\hat{\beta}_0 | X = x)\right]$$

The general form of a two-sided $(1-\alpha) \times 100\%$ confidence interval for a symmetric probability distribution is:

Estimate \pm (1 – α /2)-quantile of the prob. dist. \times SE of estimate.

The interpretation of confidence intervals is based on repeated sampling. If samples of size n are drawn repeatedly and, say, 95% confidence intervals are estimated for the intercept, then 95% of those intervals (on average) would contain the true parameter β_0 .

Example: Confidence Interval for $\hat{oldsymbol{eta}}_0$

Forbes data (n = 17), regression of pressure on temperature.

Example: Confidence Interval for $\hat{\beta}_0$

Forbes data (n = 17), regression of pressure on temperature.

Given that

$$\hat{eta}_0 = -81.064,$$
 $SE(\hat{eta}_0|X=x) = \hat{\sigma}\sqrt{rac{1}{n} + rac{\overline{x}^2}{SXX}} = 2.052$ and $t_{0.95,15} = 1.753,$

find the 90% confidence interval for the intercept.

Example: Confidence Interval for $\hat{\beta}_0$

Forbes data (n = 17), regression of pressure on temperature.

Given that

$$\hat{eta}_0 = -81.064,$$
 $SE(\hat{eta}_0|X=x) = \hat{\sigma}\sqrt{rac{1}{n} + rac{\overline{x}^2}{SXX}} = 2.052$ and $t_{0.95,15} = 1.753,$

find the 90% confidence interval for the intercept.

The 90% confidence interval for the intercept is

$$-84.661 \le \beta_0^* \le -77.467$$

Example: Confidence Interval for $\hat{\beta}_0$

Forbes data (n = 17), regression of pressure on temperature.

Given that

$$\hat{eta}_0 = -81.064,$$
 $SE(\hat{eta}_0|X=x) = \hat{\sigma}\sqrt{rac{1}{n} + rac{\overline{x}^2}{SXX}} = 2.052$ and $t_{0.95,15} = 1.753,$

find the 90% confidence interval for the intercept.

The 90% confidence interval for the intercept is

$$-84.661 \le \beta_0^* \le -77.467$$

Interpret.