Introduction to Machine Learning

Lecture 8
Tree-based models I

Goker Erdogan 26 – 30 November 2018 Pontificia Universidad Javeriana

Decision trees

- A popular technique for supervised learning
 - Both for regression and classification
- Idea
 - Split the input space into rectangular regions
 - Predict using a constant value for each region

Decision trees

- Advantages
 - Easy to interpret
 - Easy to display graphically
 - Non-linear
- Terminology
 - Internal nodes
 - Branches
 - Leaves or terminal nodes

Regression trees

- Given N training samples of $\{x, y\}_{n=1...N}$
- Split the input space into rectangles
- For each leaf (region)
 - prediction = the mean of the target values in that region
 - Why? Because that is the prediction that minimizes error (sum-of-squares).

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log salary of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year. At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$. For instance, the split at the top of the tree results in two large branches. The left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds to Years>4.5. The tree has two internal nodes and three terminal nodes, or leaves. The number in each leaf is the mean of the response for the observations that fall there.

- Regression tree with M leaves (regions)
 - Given x, our prediction is f(x)

$$f(x) = \sum_{m=1}^{M} \bar{y}_m I(x \in R_m)$$

- where \bar{y}_m is the average of all y in R_m
- Given a training set $\{x, y\}_{n=1...N}$
 - Find the partitioning of space (i.e., rectangles) that minimizes error

$$RSS = \sum_{m} \sum_{i \in R_m} (y_i - \bar{y}_m)^2$$

- Why not consider all possible partitionings?
 - The number of possible partitionings is huge!

We consider only (recursive) binary splits on single variables

- Various algorithms
 - CART
 - C4.5 (C5.0)
- These are usually
 - Top-down: Start from all data at the root
 - Greedy: At each point, pick the split that maximizes reduction in error

General outline for regression tree fitting procedure

- For each feature j
 - Find the best split position t
 - Calculate the reduction in RSS
- Pick the feature j that reduces the error the most
- Add a new node splitting feature j at value t
- Repeat until reached a stopping criteria

How do we find the best split point t for a feature?

$$R_1(j,t) = \{X | X_j < t\} \text{ and } R_2(j,t) = \{X | X_j \ge t\}$$

$$\min_{t} \sum_{i:x_i \in R_1} (y_i - \bar{y}_{R_1})^2 + \sum_{i:x_i \in R_2} (y_i - \bar{y}_{R_2})^2$$

- No easy method
- Try every possible (or a subset of all) t
 - Look at the training data, find all unique y values and sort them
 - Try each y one by one and calculate the error
 - Pick the one that has the minimum error

When do we stop?

- Popular stopping criteria
 - Stop when there are fewer than K samples in each region
 - Stop when tree reaches a maximum depth
- Another idea
 - Split if only reduction in RSS > R
 - Empirically not a good rule
 - Too short-sighted
- We don't want a very large tree
 - Risk of overfitting
 - Think of tree size as a complexity parameter
- Build a large tree then prune it

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree that results from top-down greedy splitting on the training data is shown.

How to prune the tree

- Weakest link pruning
 - For each internal node
 - Calculate the increase in error if we removed that node
 - Remove the node with smallest increase in error
 - Evaluate the new tree on a validation set
 - Repeat
- Note we evaluate on a validation set
 - e.g., use k-fold cross-validation

FIGURE 8.5. Regression tree analysis for the Hitters data. The training, cross-validation, and test MSE are shown as a function of the number of terminal nodes in the pruned tree. Standard error bands are displayed. The minimum cross-validation error occurs at a tree size of three.

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log salary of a baseball player, based on the number of years that he has played in the major leagues and the number of hits that he made in the previous year. At a given internal node, the label (of the form $X_j < t_k$) indicates the left-hand branch emanating from that split, and the right-hand branch corresponds to $X_j \ge t_k$. For instance, the split at the top of the tree results in two large branches. The left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds to Years>4.5. The tree has two internal nodes and three terminal nodes, or leaves. The number in each leaf is the mean of the response for the observations that fall there.

Classification tree

- Classification tree with M leaves (regions)
 - Given x, our prediction is f(x)

$$f(x) = \sum_{m=1}^{M} k_m I(x \in R_m)$$

- where k_m is the majority class in R_m

How to split nodes

We want to minimize misclassification rate

$$R_1(j,t) = \{X|X_j < t\} \text{ and } R_2(j,t) = \{X|X_j \ge t\}$$

$$\min_t N_{R_1}E(R_1,k) + N_{R_2}E(R_2,k)$$

- N_{Ri} is the number of samples falling in region R_i
- E(R, k) is some error function
- What can E be?

- Misclassification rate:
$$1 - \max_k(\bar{p}_{R,k})$$

– Gini index:
$$\sum_k ar{p}_{R,k} (1-ar{p}_{R,k})$$

- Entropy:
$$-\sum_k \bar{p}_{R,k} \log(\bar{p}_{R,k})$$

$$\overline{p}_{R,k} = \text{Ratio of points} \\ \text{from class k in} \\ \text{region R}$$

FIGURE 9.3. Node impurity measures for two-class classification, as a function of the proportion p in class 2. Cross-entropy has been scaled to pass through (0.5, 0.5).

Why Gini or entropy?

- Gini and entropy works better in practice
- They care more about purity
 - Split 1: Left → (300, 100), Right → (100, 300)
 - Split 2: Left → (200, 400), Right → (200, 0)
 - Misclassification rate: 0.25 for both
 - But split 2 is purer
- Gini and entropy are differentiable
- Classification tree fitting
 - Use the same algorithm as regression trees
 - Using Gini/entropy instead of RSS to split nodes
 - Prune
 - Use misclassification rate to do the pruning

FIGURE 8.6. Heart data. Top: The unpruned tree.

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-validation error, training, and test error, for different sizes of the pruned tree. Bottom Right: The pruned tree corresponding to the minimal cross-validation error.

Advantages/disadvantages

- Advantages
 - Easy to interpret
 - Easy to display graphically
 - Non-linear
 - Can handle qualitative predictors
 - Can handle missing data
- Disadvantages
 - Does not perform very well
 - High variance, mostly because the tree is built sequentially
 - Various improvements: bagging/boosting/random forests

Disadvantages

Non-smooth

Disadvantages

• Assumption of rectangular regions might be problematic

Summary

- Decision trees
- Regression trees
 - Fitting algorithm
 - Stopping criteria
 - Pruning
- Classification trees
 - Splitting criteria: Gini, entropy
- Advantages/disadvantages
- Exercises
 - Do the labs in Section 8.3.1 and 8.3.2 in ISLR

References

- [1] James, Witten, Hastie, and Tibshirani. An Introduction to Statistical Learning with Applications in R. Chapter 8.
- [2] Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning. Chapter 9.
- [3] Bishop. Pattern Recognition and Machine Learning. Chapter 14.
- [4] Murphy. Machine Learning: A Probabilistic Perspective. Chapter 16.
- [5] https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15381-s06/www/DTs.pdf