Implicit Differentiation

A Powerful Technique for Complex Functions

Differential Calculus

Outline

- Introduction
- 2 Basic Examples
- Tangent Line Applications
- 4 Advanced Examples
- Basic Practice Problems
- 6 Intermediate Practice Problems
- Advanced Practice Problems
- Solutions to Basic Practice Problems
- Solutions to Intermediate Practice Problems
- Solutions to Advanced Practice Problems
- Summary

2/59

What is Implicit Differentiation?

- A technique to find derivatives when functions are not explicitly solved for y
- ullet Used when you have an equation relating x and y but can't solve for y easily
- Also useful even when you have an explicit formula but the equation is simpler
- ullet The key idea: differentiate both sides of the equation with respect to x

When to Use Implicit Differentiation

Two Main Cases

- **1** No explicit formula: When you can't solve for y in terms of x
- Complicated explicit formula: When the equation is simpler than the explicit form

Examples:

- $x^2 + y^2 = 25$ (circle)
- $x^3 + y^3 = 6xy$ (folium of Descartes)
- $y = y^3 + xy + x^3$ (cubic equation)

The Basic Method

Step-by-Step Process

- Start with an equation relating x and v
- Differentiate both sides with respect to x
- Remember that y is a function of x, so use the chain rule
- Solve for $\frac{dy}{dx}$ (or y')

Key Rule: When differentiating terms with y, remember to multiply by $\frac{dy}{dx}$

Example 1: Circle

Find
$$\frac{dy}{dx}$$
 for the circle $x^2 + y^2 = 25$

Solution to Example 1

Solution:

$$x^{2} + y^{2} = 25$$

$$\frac{d}{dx}(x^{2} + y^{2}) = \frac{d}{dx}(25)$$

$$2x + 2y \cdot \frac{dy}{dx} = 0$$

$$2y \cdot \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

Example 2: Ellipse

Find
$$\frac{dy}{dx}$$
 for the ellipse $3x^2 + 5y^2 = 7$

Solution to Example 2

Solution:

$$3x^{2} + 5y^{2} = 7$$

$$\frac{d}{dx}(3x^{2} + 5y^{2}) = \frac{d}{dx}(7)$$

$$6x + 10y \cdot \frac{dy}{dx} = 0$$

$$10y \cdot \frac{dy}{dx} = -6x$$

$$\frac{dy}{dx} = -\frac{3x}{5y}$$

Example 3: Cubic Equation

Find
$$\frac{dy}{dx}$$
 for $y = y^3 + xy + x^3$

Solution to Example 3

Solution:

$$y = y^{3} + xy + x^{3}$$

$$\frac{dy}{dx} = 3y^{2} \cdot \frac{dy}{dx} + x \cdot \frac{dy}{dx} + y + 3x^{2}$$

$$\frac{dy}{dx} - 3y^{2} \cdot \frac{dy}{dx} - x \cdot \frac{dy}{dx} = y + 3x^{2}$$

$$\frac{dy}{dx} (1 - 3y^{2} - x) = y + 3x^{2}$$

$$\frac{dy}{dx} = \frac{y + 3x^{2}}{1 - 3y^{2} - x}$$

Finding Tangent Lines

Method

- Find the point (x_0, y_0) on the curve
- ② Use implicit differentiation to find $\frac{dy}{dx}$
- **Solution** Strain Stra
- Use point-slope form: $y = y_0 + m(x x_0)$

Example: Tangent to Circle

Find the tangent line to $x^2 + y^2 = 25$ at (3,4)

Solution: Tangent to Circle

Solution:

From earlier:
$$\frac{dy}{dx} = -\frac{x}{y}$$
At $(3,4)$:
$$\frac{dy}{dx} = -\frac{3}{4}$$
Tangent line:
$$y = 4 - \frac{3}{4}(x - 3)$$

$$y = 4 - \frac{3}{4}x + \frac{9}{4}$$

$$y = -\frac{3}{4}x + \frac{25}{4}$$

Example: Astroid

Find
$$\frac{dy}{dx}$$
 for the astroid $x^{2/3} + y^{2/3} = 1$

Solution:

$$x^{2/3} + y^{2/3} = 1$$

$$\frac{d}{dx}(x^{2/3} + y^{2/3}) = \frac{d}{dx}(1)$$

$$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \cdot \frac{dy}{dx} = 0$$

$$\frac{2}{3}y^{-1/3} \cdot \frac{dy}{dx} = -\frac{2}{3}x^{-1/3}$$

$$\frac{dy}{dx} = -\frac{x^{-1/3}}{y^{-1/3}}$$

$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{1/3}$$

16 / 59

Example: Folium of Descartes

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 6xy$

Solution: Folium of Descartes

Solution:

$$x^{3} + y^{3} = 6xy$$

$$\frac{d}{dx}(x^{3} + y^{3}) = \frac{d}{dx}(6xy)$$

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 6y + 6x \cdot \frac{dy}{dx}$$

$$3y^{2} \cdot \frac{dy}{dx} - 6x \cdot \frac{dy}{dx} = 6y - 3x^{2}$$

$$\frac{dy}{dx}(3y^{2} - 6x) = 6y - 3x^{2}$$

$$\frac{dy}{dx} = \frac{6y - 3x^{2}}{3y^{2} - 6x}$$

$$\frac{dy}{dx} = \frac{2y - x^{2}}{y^{2} - 2x}$$

18 / 59

Practice: 1 and 2

Practice 1:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = 16$

Practice 2:

Find
$$\frac{dy}{dx}$$
 for $4x^2 + 9y^2 = 36$

Practice: 3 and 4

Practice 3:

Find
$$\frac{dy}{dx}$$
 for $x^2 - y^2 = 9$

Practice 4:

Find
$$\frac{dy}{dx}$$
 for $xy = 4$

Practice: 5 and 6

Practice 5:

Find
$$\frac{dy}{dx}$$
 for $x^2 + xy + y^2 = 3$

Practice 6:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 8$

Practice: 7 and 8

Practice 7:

Find the tangent line to $x^2 + y^2 = 25$ at (4,3)

Practice 8:

Find the tangent line to $x^2 - y^2 = 7$ at (4,3)

Practice: 9 and 10

Practice 9:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = 2xy$

Practice 10:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3xy$

Practice: 11 and 12

Practice 11:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = x^2y^2$

Practice 12:

Find
$$\frac{dy}{dx}$$
 for $x^4 + y^4 = 16$

Practice: 13 and 14

Practice 13:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = e^{xy}$

Practice 14:

Find
$$\frac{dy}{dx}$$
 for $\sin(xy) = x + y$

Practice: 15 and 16

Practice 15:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = \ln(xy)$

Practice 16:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 6xy^2$

Practice: 17 and 18

Practice 17:

Find
$$\frac{dy}{dx}$$
 for $x^{2/3} + y^{2/3} = 4$

Practice 18:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3x^2y$

Practice: 19 and 20

Practice 19:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = \sin(xy)$

Practice 20:

Find
$$\frac{dy}{dx}$$
 for $e^{x^2} + e^{y^2} = e^{xy}$

Practice: 21 and 22

Practice 21:

Find
$$\frac{dy}{dx}$$
 for $x^4 + y^4 = x^2y^2$

Practice 22:

Find
$$\frac{dy}{dx}$$
 for $\ln(x^2 + y^2) = 2xy$

Practice: 23 and 24

Practice 23:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3xy + 1$

Practice 24:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = \cos(xy)$

Practice: 25

Practice 25:

Find
$$\frac{dy}{dx}$$
 for $x^5 + y^5 = 5x^2y^3$

Practice 1:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = 16$ **Solution:**

$$x^{2} + y^{2} = 16$$

$$2x + 2y \cdot \frac{dy}{dx} = 0$$

$$2y \cdot \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

Practice 2:

Find
$$\frac{dy}{dx}$$
 for $4x^2 + 9y^2 = 36$ **Solution:**

$$4x^{2} + 9y^{2} = 36$$
$$8x + 18y \cdot \frac{dy}{dx} = 0$$
$$18y \cdot \frac{dy}{dx} = -8x$$
$$\frac{dy}{dx} = -\frac{4x}{9y}$$

Practice 3:

Find
$$\frac{dy}{dx}$$
 for $x^2 - y^2 = 9$

$$x^{2} - y^{2} = 9$$

$$2x - 2y \cdot \frac{dy}{dx} = 0$$

$$-2y \cdot \frac{dy}{dx} = -2x$$

$$\frac{dy}{dx} = \frac{x}{y}$$

Practice 4:

Find $\frac{dy}{dx}$ for xy = 4 **Solution:**

$$xy = 4$$

$$x \cdot \frac{dy}{dx} + y \cdot 1 = 0$$

$$x \cdot \frac{dy}{dx} = -y$$

$$\frac{dy}{dx} = -\frac{y}{x}$$

Practice 5:

Find
$$\frac{dy}{dx}$$
 for $x^2 + xy + y^2 = 3$

Solution:

$$x^{2} + xy + y^{2} = 3$$

$$2x + x \cdot \frac{dy}{dx} + y + 2y \cdot \frac{dy}{dx} = 0$$

$$x \cdot \frac{dy}{dx} + 2y \cdot \frac{dy}{dx} = -2x - y$$

$$\frac{dy}{dx}(x + 2y) = -2x - y$$

$$\frac{dy}{dx} = -\frac{2x + y}{x + 2y}$$

36 / 59

Practice 6:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 8$ **Solution:**

$$x^{3} + y^{3} = 8$$
$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 0$$
$$3y^{2} \cdot \frac{dy}{dx} = -3x^{2}$$
$$\frac{dy}{dx} = -\frac{x^{2}}{y^{2}}$$

Practice 7:

Find the tangent line to $x^2 + y^2 = 25$ at (4,3)

$$\frac{dy}{dx} = -\frac{x}{y}$$
At $(4,3)$: $\frac{dy}{dx} = -\frac{4}{3}$
Tangent line: $y = 3 - \frac{4}{3}(x - 4)$

$$y = 3 - \frac{4}{3}x + \frac{16}{3}$$

$$y = -\frac{4}{3}x + \frac{25}{3}$$

Practice 8:

Find the tangent line to $x^2 - y^2 = 7$ at (4,3)

$$\frac{dy}{dx} = \frac{x}{y}$$
At $(4,3)$: $\frac{dy}{dx} = \frac{4}{3}$

Tangent line: $y = 3 + \frac{4}{3}(x - 4)$

$$y = 3 + \frac{4}{3}x - \frac{16}{3}$$

$$y = \frac{4}{3}x - \frac{7}{3}$$

Practice 9:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = 2xy$ **Solution:**

$$x^{2} + y^{2} = 2xy$$

$$2x + 2y \cdot \frac{dy}{dx} = 2x \cdot \frac{dy}{dx} + 2y$$

$$2y \cdot \frac{dy}{dx} - 2x \cdot \frac{dy}{dx} = 2y - 2x$$

$$\frac{dy}{dx}(2y - 2x) = 2y - 2x$$

$$\frac{dy}{dx} = 1$$

Practice 10:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3xy$ **Solution:**

$$x^{3} + y^{3} = 3xy$$

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 3x \cdot \frac{dy}{dx} + 3y$$

$$3y^{2} \cdot \frac{dy}{dx} - 3x \cdot \frac{dy}{dx} = 3y - 3x^{2}$$

$$\frac{dy}{dx}(3y^{2} - 3x) = 3y - 3x^{2}$$

$$\frac{dy}{dx} = \frac{y - x^{2}}{y^{2} - x}$$

Practice 11:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = x^2y^2$

$$x^{2} + y^{2} = x^{2}y^{2}$$

$$2x + 2y \cdot \frac{dy}{dx} = 2x \cdot y^{2} + x^{2} \cdot 2y \cdot \frac{dy}{dx}$$

$$2y \cdot \frac{dy}{dx} - 2x^{2}y \cdot \frac{dy}{dx} = 2xy^{2} - 2x$$

$$\frac{dy}{dx}(2y - 2x^{2}y) = 2xy^{2} - 2x$$

$$\frac{dy}{dx} = \frac{xy^{2} - x}{y - x^{2}y}$$

Practice 12:

Find
$$\frac{dy}{dx}$$
 for $x^4 + y^4 = 16$
Solution:

$$x^{4} + y^{4} = 16$$

$$4x^{3} + 4y^{3} \cdot \frac{dy}{dx} = 0$$

$$4y^{3} \cdot \frac{dy}{dx} = -4x^{3}$$

$$\frac{dy}{dx} = -\frac{x^{3}}{y^{3}}$$

Practice 13:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = e^{xy}$
Solution:

$$x^{2} + y^{2} = e^{xy}$$

$$2x + 2y \cdot \frac{dy}{dx} = e^{xy} \cdot \left(x \cdot \frac{dy}{dx} + y\right)$$

$$2x + 2y \cdot \frac{dy}{dx} = xe^{xy} \cdot \frac{dy}{dx} + ye^{xy}$$

$$2y \cdot \frac{dy}{dx} - xe^{xy} \cdot \frac{dy}{dx} = ye^{xy} - 2x$$

$$\frac{dy}{dx} (2y - xe^{xy}) = ye^{xy} - 2x$$

$$\frac{dy}{dx} = \frac{ye^{xy} - 2x}{2y - xe^{xy}}$$

Practice 14:

Find $\frac{dy}{dx}$ for $\sin(xy) = x + y$

$$\sin(xy) = x + y$$

$$\cos(xy) \cdot \left(x \cdot \frac{dy}{dx} + y\right) = 1 + \frac{dy}{dx}$$

$$x \cos(xy) \cdot \frac{dy}{dx} + y \cos(xy) = 1 + \frac{dy}{dx}$$

$$x \cos(xy) \cdot \frac{dy}{dx} - \frac{dy}{dx} = 1 - y \cos(xy)$$

$$\frac{dy}{dx} (x \cos(xy) - 1) = 1 - y \cos(xy)$$

$$\frac{dy}{dx} = \frac{1 - y \cos(xy)}{x \cos(xy) - 1}$$

Practice 15:

Find $\frac{dy}{dx}$ for $x^2 + y^2 = \ln(xy)$

$$x^{2} + y^{2} = \ln(xy)$$

$$2x + 2y \cdot \frac{dy}{dx} = \frac{1}{xy} \cdot \left(x \cdot \frac{dy}{dx} + y\right)$$

$$2x + 2y \cdot \frac{dy}{dx} = \frac{1}{y} \cdot \frac{dy}{dx} + \frac{1}{x}$$

$$2y \cdot \frac{dy}{dx} - \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x} - 2x$$

$$\frac{dy}{dx}(2y - \frac{1}{y}) = \frac{1}{x} - 2x$$

$$\frac{dy}{dx} = \frac{\frac{1}{x} - 2x}{2y - \frac{1}{y}}$$

Practice 16:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 6xy^2$

$$x^{3} + y^{3} = 6xy^{2}$$

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 6x \cdot 2y \cdot \frac{dy}{dx} + 6y^{2}$$

$$3y^{2} \cdot \frac{dy}{dx} - 12xy \cdot \frac{dy}{dx} = 6y^{2} - 3x^{2}$$

$$\frac{dy}{dx}(3y^{2} - 12xy) = 6y^{2} - 3x^{2}$$

$$\frac{dy}{dx} = \frac{6y^{2} - 3x^{2}}{3y^{2} - 12xy}$$

Practice 17:

Find
$$\frac{dy}{dx}$$
 for $x^{2/3} + y^{2/3} = 4$ **Solution:**

$$x^{2/3} + y^{2/3} = 4$$

$$\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \cdot \frac{dy}{dx} = 0$$

$$\frac{2}{3}y^{-1/3} \cdot \frac{dy}{dx} = -\frac{2}{3}x^{-1/3}$$

$$\frac{dy}{dx} = -\frac{x^{-1/3}}{y^{-1/3}}$$

$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^{1/3}$$

Practice 18:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3x^2y$
Solution:

$$x^{3} + y^{3} = 3x^{2}y$$

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 6xy + 3x^{2} \cdot \frac{dy}{dx}$$

$$3y^{2} \cdot \frac{dy}{dx} - 3x^{2} \cdot \frac{dy}{dx} = 6xy - 3x^{2}$$

$$\frac{dy}{dx}(3y^{2} - 3x^{2}) = 6xy - 3x^{2}$$

$$\frac{dy}{dx} = \frac{6xy - 3x^{2}}{3y^{2} - 3x^{2}}$$

Practice 19:

Find
$$\frac{dy}{dx}$$
 for $x^2 + y^2 = \sin(xy)$

$$x^{2} + y^{2} = \sin(xy)$$

$$2x + 2y \cdot \frac{dy}{dx} = \cos(xy) \cdot \left(x \cdot \frac{dy}{dx} + y\right)$$

$$2x + 2y \cdot \frac{dy}{dx} = x\cos(xy) \cdot \frac{dy}{dx} + y\cos(xy)$$

$$2y \cdot \frac{dy}{dx} - x\cos(xy) \cdot \frac{dy}{dx} = y\cos(xy) - 2x$$

$$\frac{dy}{dx}(2y - x\cos(xy)) = y\cos(xy) - 2x$$

$$\frac{dy}{dx} = \frac{y\cos(xy) - 2x}{2y - x\cos(xy)}$$

Practice 20:

Find
$$\frac{dy}{dx}$$
 for $e^{x^2} + e^{y^2} = e^{xy}$

$$e^{x^{2}} + e^{y^{2}} = e^{xy}$$

$$e^{x^{2}} \cdot 2x + e^{y^{2}} \cdot 2y \cdot \frac{dy}{dx} = e^{xy} \cdot (x \cdot \frac{dy}{dx} + y)$$

$$2xe^{x^{2}} + 2ye^{y^{2}} \cdot \frac{dy}{dx} = xe^{xy} \cdot \frac{dy}{dx} + ye^{xy}$$

$$2ye^{y^{2}} \cdot \frac{dy}{dx} - xe^{xy} \cdot \frac{dy}{dx} = ye^{xy} - 2xe^{x^{2}}$$

$$\frac{dy}{dx}(2ye^{y^{2}} - xe^{xy}) = ye^{xy} - 2xe^{x^{2}}$$

$$\frac{dy}{dx} = \frac{ye^{xy} - 2xe^{x^{2}}}{2ye^{y^{2}} - xe^{xy}}$$

Practice 21:

Find
$$\frac{dy}{dx}$$
 for $x^4 + y^4 = x^2y^2$
Solution:

$$x^{4} + y^{4} = x^{2}y^{2}$$

$$4x^{3} + 4y^{3} \cdot \frac{dy}{dx} = 2x \cdot y^{2} + x^{2} \cdot 2y \cdot \frac{dy}{dx}$$

$$4x^{3} + 4y^{3} \cdot \frac{dy}{dx} = 2xy^{2} + 2x^{2}y \cdot \frac{dy}{dx}$$

$$4y^{3} \cdot \frac{dy}{dx} - 2x^{2}y \cdot \frac{dy}{dx} = 2xy^{2} - 4x^{3}$$

$$\frac{dy}{dx}(4y^{3} - 2x^{2}y) = 2xy^{2} - 4x^{3}$$

$$\frac{dy}{dx} = \frac{2xy^{2} - 4x^{3}}{4y^{3} - 2x^{2}y}$$

Practice 22:

Find $\frac{dy}{dx}$ for $\ln(x^2 + y^2) = 2xy$

$$\ln(x^{2} + y^{2}) = 2xy$$

$$\frac{1}{x^{2} + y^{2}} \cdot (2x + 2y \cdot \frac{dy}{dx}) = 2x \cdot \frac{dy}{dx} + 2y$$

$$\frac{2x}{x^{2} + y^{2}} + \frac{2y}{x^{2} + y^{2}} \cdot \frac{dy}{dx} = 2x \cdot \frac{dy}{dx} + 2y$$

$$\frac{2y}{x^{2} + y^{2}} \cdot \frac{dy}{dx} - 2x \cdot \frac{dy}{dx} = 2y - \frac{2x}{x^{2} + y^{2}}$$

$$\frac{dy}{dx} (\frac{2y}{x^{2} + y^{2}} - 2x) = 2y - \frac{2x}{x^{2} + y^{2}}$$

$$\frac{dy}{dx} = \frac{2y - \frac{2x}{x^{2} + y^{2}}}{\frac{2y}{x^{2} + y^{2}} - 2x}$$

Practice 23:

Find
$$\frac{dy}{dx}$$
 for $x^3 + y^3 = 3xy + 1$

$$x^{3} + y^{3} = 3xy + 1$$

$$3x^{2} + 3y^{2} \cdot \frac{dy}{dx} = 3x \cdot \frac{dy}{dx} + 3y$$

$$3y^{2} \cdot \frac{dy}{dx} - 3x \cdot \frac{dy}{dx} = 3y - 3x^{2}$$

$$\frac{dy}{dx}(3y^{2} - 3x) = 3y - 3x^{2}$$

$$\frac{dy}{dx} = \frac{y - x^{2}}{y^{2} - x}$$

Practice 24:

Find $\frac{dy}{dx}$ for $x^2 + y^2 = \cos(xy)$

$$x^{2} + y^{2} = \cos(xy)$$

$$2x + 2y \cdot \frac{dy}{dx} = -\sin(xy) \cdot (x \cdot \frac{dy}{dx} + y)$$

$$2x + 2y \cdot \frac{dy}{dx} = -x\sin(xy) \cdot \frac{dy}{dx} - y\sin(xy)$$

$$2y \cdot \frac{dy}{dx} + x\sin(xy) \cdot \frac{dy}{dx} = -y\sin(xy) - 2x$$

$$\frac{dy}{dx}(2y + x\sin(xy)) = -y\sin(xy) - 2x$$

$$\frac{dy}{dx} = \frac{-y\sin(xy) - 2x}{2y + x\sin(xy)}$$

Practice 25:

Find
$$\frac{dy}{dx}$$
 for $x^5 + y^5 = 5x^2y^3$

$$x^{5} + y^{5} = 5x^{2}y^{3}$$

$$5x^{4} + 5y^{4} \cdot \frac{dy}{dx} = 10x \cdot y^{3} + 5x^{2} \cdot 3y^{2} \cdot \frac{dy}{dx}$$

$$5x^{4} + 5y^{4} \cdot \frac{dy}{dx} = 10xy^{3} + 15x^{2}y^{2} \cdot \frac{dy}{dx}$$

$$5y^{4} \cdot \frac{dy}{dx} - 15x^{2}y^{2} \cdot \frac{dy}{dx} = 10xy^{3} - 5x^{4}$$

$$\frac{dy}{dx}(5y^{4} - 15x^{2}y^{2}) = 10xy^{3} - 5x^{4}$$

$$\frac{dy}{dx} = \frac{10xy^{3} - 5x^{4}}{5y^{4} - 15x^{2}y^{2}}$$

Key Points - Implicit Differentiation

- When to use: When functions are not explicitly solved for y
- **Method:** Differentiate both sides with respect to *x*
- **Key rule:** Remember that y is a function of x, so use chain rule
- **Goal:** Solve for $\frac{dy}{dx}$

Common Applications

- Conic sections: Circles, ellipses, hyperbolas
- Curves: Astroids, foliums, and other complex curves
- Tangent lines: Finding slopes and equations
- Related rates: When variables are related by equations

Implicit differentiation is a powerful tool for finding derivatives when explicit formulas are difficult or impossible to obtain.

Questions?

Implicit differentiation opens up a whole new world of functions to differentiate!