

Projeto em Shiny para aplicação de testes A/B bayesianos

Ianní Muliterno

Testes A/B

Testes A/B

O que é e o que faz?

1

Testes A/B

O que é e o que faz?

• Formato da base de vendas

volum	price	item	date	Invoice	user
			2019-06-27		
		Item 6	2019-08-15	4731421	
		Item 2	2019-02-21	49101421	
	38.02	Item 1	2019-06-06	4771421	
		Item 5	2019-03-21	4151421	
	6.66	Item 5	2019-03-28	3331421	

 Formato da base de teste (dt_teste)

CR ∼ Beta(success, n_{users} − success)

é possível escrever matematicamente a resposta para a pergunta 'B tem melhor performance que A?' como uma função de forma fechada.

$$Pr(p_B > p_A) = \sum_{i=0}^{\alpha_B - 1} \frac{B(\alpha_A + i, \beta_A + \beta_B)}{(\beta_B + i)B(1 + i, \beta_B)B(\alpha_A, \beta_A)}$$

O R deixa isso mais simples

capacidade de 'tunar' a estimação do CR de acordo com o tamanho da amostra (learning from experience)

```
{r , echo=FALSE}
trials <- 100000
prior.alpha <- 6
prior.beta <- 9
success a <- 35
n users a <- 50
success b <- 35
n users b <- 40
a.samples <- rbeta(trials.success a + prior.alpha. (n users a - success a) + prior.beta)
b.samples <- rbeta(trials,success_b + prior.alpha,(n_users_a - success_a) + prior.beta)
p.b superior <- sum(b.samples > a.samples)/trials
p.b superior
 [1] 0.50108
```

Trazendo a rotina para o shiny

Sumário

Visão Geral

Visão Geral

Peek

Sugestões e críticas:

iwmb1@de.ufpe.br

