Ludwig-Maximilians-Universität München Institut für Informatik Lehrstuhl für Mobile und Verteilte Systeme Prof. Dr. Linnhoff-Popien

Tutoriumsblatt 6 Rechnerarchitektur im SoSe 2020

Zu den Modulen I, J

Tutorium: Die Aufgaben werden in Tutorien-Videos vorgestellt, die am 28. Mai 2020 (17 Uhr)

veröffentlicht werden.

Aufgabe T18: Darstellung ganzer Zahlen

(- Pkt.)

- a. Geben Sie die folgenden Dezimalzahlen als Dualzahlen in ihrer 1er-Komplement-, 2er-Komplement- und in Sign/Magnitude-Darstellung an (jeweils 10 Bit). Bei der Sign/Magnitude-Darstellung wird das hochwertigste Bit als Vorzeichen interpretiert: $(b_9...b_1b_0)_2 = (-1)^{b_9} * \sum_{i=0}^8 b_i 2^i$
 - (i) $(123)_{10}$
 - (ii) $(-123)_{10}$
- b. Wandeln Sie folgende Dualzahlen in ihre Dezimaldarstellung um. Interpretieren Sie die Dualzahlen jeweils als in 1er- und 2er-Komplement-Darstellung sowie in Sign/Magnitude-Darstellung gegeben.
 - (i) $(11111101011)_2$
 - (ii) (0001011010)₂

- c. Geben Sie jeweils in 1er- und 2er-Komplement-Darstellung und in Sign/Magnitude-Darstellung bei Verwendung von 10 Bits an:
 - (i) die größte darstellbare positive Zahl,
 - (ii) die kleinste darstellbare positive Zahl,
 - (iii) die größte darstellbare negative Zahl (d.h. die negative Zahl, die den geringsten Abstand zur Null hat),
 - (iv) die kleinste darstellbare negative Zahl (d.h. die negative Zahl, die den größten Abstand zur Null hat),
 - (v) die Zahl Null.
- d. Gibt es einen Unterschied zwischen "2er-Komplement" und "2er-Komplement-Darstellung"? Wenn ja, welchen?

Aufgabe T19: Addition von Dualzahlen

(- Pkt.)

In dieser Aufgabe sollen die Grundlagen der Addition in Einer- bzw. Zweierkomplement-Darstellung vertieft werden. Verwenden Sie zur binären Darstellung sämtlicher vorkommenden Zahlen jeweils 8 Bits.

- a. Gegeben seien die Zahlen $(-17)_{10}$ sowie $(7)_{10}$.
 - (i) Geben Sie die Einerkomplement-Darstellung der beiden Zahlen an.
 - (ii) Geben Sie die Zweierkomplement-Darstellung der beiden Zahlen an.
- b. Addieren Sie die Zahlen $(-17)_{10}$ und $(7)_{10}$ binär. Verwenden Sie dazu
 - (i) die Einerkomplement-Darstellung.
 - (ii) die Zweierkomplement-Darstellung.
- c. Addieren Sie nun die Zahlen $(-56)_{10}$ und $(-72)_{10}$ binär. Verwenden Sie dazu
 - (i) die Einerkomplement-Darstellung.
 - (ii) die Zweierkomplement-Darstellung.

Beantworten Sie zusätzlich jeweils die Frage, ob ein Überlauf stattgefunden hat. Begründen Sie ihre Antwort kurz.

Aufgabe T20: Gleitkommazahlen

(- Pkt.)

Nach dem IEEE 754 Standard gilt:

$$(-1)^{S} \cdot (1 + Signifikant) \cdot 2^{(Exponent-Bias)}$$

wobei der Standard

- für das Vorzeichen S ein Bit,
- für den Signifikanten (Mantisse) 23 Bit bei einfacher und 52 Bit bei doppelter Genauigkeit,
- für den Exponenten 8 Bit bei einfacher und 11 Bit bei doppelter Genauigkeit

reserviert und den Bias auf $127 = 2^{8-1} - 1$ bei einfacher bzw. auf $1023 = 2^{11-1} - 1$ bei doppelter Genauigkeit setzt.

- a. Geben Sie die Darstellung folgender Zahlen als Gleitkommazahl nach IEEE 754 in einfacher (32-Bit) Genauigkeit an:
 - (i) $(11, 25)_{10}$
 - (ii) $(0,2)_{10}$
- b. Wandeln Sie folgende Zahl, die in Gleitkommadarstellung (IEEE 754) gegeben ist, in ihre Dezimaldarstellung um.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
1	1	0	0	0	0	1	1	0	1	0	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0 0
S	Exponent									Significand																				