Дифференциальные уравнения. Домашнее задание №1

Lev Khoroshansky

Задача 1. Дано уравнение вида $\dot{x} = \frac{t}{3x}$.

а. Поле направлений выглядит следующим образом:

b. Найдём общее решение:

$$\dot{x} = \frac{t}{3x} \rightarrow \frac{dx}{dt} = \frac{t}{3x} \rightarrow 3x \, dx = t \, dt \rightarrow 3 \int x \, dx = \int t \, dt \rightarrow 3x^2 = t^2 + C$$

$$x_1(t) = \frac{1}{\sqrt{3}} \sqrt{t^2 + C}, \quad x_2(t) = -\frac{1}{\sqrt{3}} \sqrt{t^2 + C}$$

Точка x = 0 не входит в область определения исходной функции.

с. Разберёмся с каждым начальным условием по отдельности:

 $\underline{x(0) = 2}$ уравнение с неположительной правой частью нам не подходит, поэтому рассмотрим первое:

$$x_1(0) = \frac{1}{\sqrt{3}}\sqrt{C} = 2 \implies C = 12$$

 $x(t) = \frac{1}{\sqrt{3}}\sqrt{t^2 + 12} = \sqrt{\frac{t^2}{3} + 4}$

Видно, что $Domain(x) = \mathbb{R}$.

 $\underline{x(0) = -1}$: в данном случае нам не подходит неотрицательная правая часть, поэтому:

$$x_2(0) = -\frac{1}{\sqrt{3}}\sqrt{C} = -1 \implies C = 3$$

 $x(t) = -\frac{1}{\sqrt{3}}\sqrt{t^2 + 3} = -\sqrt{\frac{t^2}{3} + 1}$

Также абсолютно очевидно, что $Domain(x) = \mathbb{R}$.

Построим интегральные кривые для этих начальных условий:

b.
$$x_1(t) = \frac{1}{\sqrt{3}}\sqrt{t^2 + C}, \ x_2(t) = -\frac{1}{\sqrt{3}}\sqrt{t^2 + C}.$$

c.
$$x(t) = \sqrt{\frac{t^2}{3} + 4}$$
, Domain $(x) = \mathbb{R}$ и $x(t) = -\sqrt{\frac{t^2}{3} + 1}$, Domain $(x) = \mathbb{R}$.

Задача 2. Дано уравнение вида $\dot{x} = \frac{-4t}{x}$.

а. Поле направлений выглядит следующим образом:

b. Найдём общее решение:

$$\dot{x} = \frac{-4t}{x} \to \frac{dx}{dt} = \frac{-4t}{x} \to x \, dx = -4t \, dt \to \int x \, dx = -4 \int t \, dt \to x^2 = -4t^2 + C$$
$$x_1(t) = \sqrt{-4t^2 + C}, \quad x_2(t) = -\sqrt{-4t^2 + C}$$

Несложно заметить, что $x \neq 0$ из условия.

с. Разберёмся с каждым начальным условием по отдельности:

x(0) = 2: неположительная правая часть не подходит:

$$x_1(0) = \sqrt{C} = 2 \implies C = 4$$

 $x(t) = \sqrt{-4t^2 + 4} = 2\sqrt{-t^2 + 1}$

Таким образом, Domain(x) = (-1, 1).

 $\underline{x(0) = -1}$: неотрицательная правая часть не подходит:

$$x_2(0) = -\sqrt{C} = -1 \implies C = 1$$

 $x(t) = \sqrt{-4t^2 + 1}$

В данном случае,
$$Domain(x) = \left(-\frac{1}{2}; \frac{1}{2}\right)$$
.

Построим интегральные кривые для этих начальных условий:

b.
$$x_1(t) = \sqrt{-4t^2 + C}$$
, $x_2(t) = -\sqrt{-4t^2 + C}$.

c.
$$x(t) = 2\sqrt{-t^2 + 1}$$
, Domain $(x) = (-1; 1)$ и $x(t) = \sqrt{-4t^2 + 1}$, Domain $(x) = \left(-\frac{1}{2}; \frac{1}{2}\right)$.

Задача 3. Дано уравнение вида $\dot{x} = \frac{-3x}{t}$.

а. Поле направлений выглядит следующим образом:

b. Найдём общее решение:

$$\dot{x} = \frac{-3x}{t} \ \to \ \int \frac{dx}{x} = -3 \ \int \frac{dt}{t} \ \to \ \ln|x| = -3 \ln|t| + C' \ \to \ |x| = C|t|^{-3} \ \to \ x = \frac{C}{t^3}$$

Отметим, что $C \in \mathbb{R}$ из-за модулей и очевидного решения x=0. Также, $t \neq 0$, что даёт разбиение каждого из трёх (в зависимости от константы) решений на два, различающихся областью определения.

с. Разберёмся с каждым начальным условием по отдельности:

$$\underline{x(1) = 1:} \qquad x(1) = \frac{C_1}{1} = 1 \implies C_1 = 1 \implies x = \frac{1}{t^3}. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(1) = -1:} \qquad x(1) = \frac{C_2}{1} = -1 \implies C_2 = -1 \implies x = \frac{-1}{t^3}. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(-1) = 1:} \qquad x(-1) = \frac{C_3}{-1} = 1 \implies C_3 = -1 \implies x = \frac{-1}{t^3}. \quad \text{Domain}(x) = (-\infty; 0).$$

$$\underline{x(-1) = -1:} \qquad x(-1) = \frac{C_4}{-1} = -1 \implies C_4 = 1 \implies x = \frac{1}{t^3}. \quad \text{Domain}(x) = (-\infty; 0).$$

$$\underline{x(1) = 0:} \qquad x(1) = \frac{C_5}{1} = 0 \implies C_5 = 0 \implies x = 0. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(-1) = 0:} \qquad x(-1) = \frac{C_6}{-1} = 0 \implies C_6 = 0 \implies x = 0. \quad \text{Domain}(x) = (-\infty; 0).$$

Построим интегральные кривые для этих начальных условий:

b.
$$x_1(t) = \frac{C}{t^3}$$
, $t > 0$; $x_2(t) = \frac{C}{t^3}$, $t < 0$; $x_3(t) = 0$, $t > 0$; $x_4(t) = 0$, $t < 0$.

c.
$$x(t) = \frac{1}{t^3}$$
, Domain $(x) = (0; +\infty)$;

$$x(t) = \frac{-1}{t^3}, \text{ Domain}(x) = (0; +\infty);$$

$$x(t) = 0$$
, Domain $(x) = (0; +\infty)$;

$$x(t) = \frac{1}{t^3}$$
, Domain $(x) = (-\infty; 0)$;

$$x(t)=\frac{-1}{t^3}, \ \operatorname{Domain}(x)=(-\infty;0);$$

$$x(t) = 0$$
, Domain $(x) = (-\infty; 0)$.

Задача 4. Дано уравнение вида $\dot{x} = \frac{2x}{5t}$.

а. Поле направлений выглядит следующим образом:

b. Найдём общее решение:

$$\dot{x} = \frac{2x}{5t} \rightarrow 5 \int \frac{dx}{x} = 2 \int \frac{dt}{t} \rightarrow 5 \ln|x| = 2 \ln|t| + C' \rightarrow |x| = C|t|^{2/5} \rightarrow x = C|t|^{2/5}$$

Отметим, что $C \in \mathbb{R}$ из-за модулей и очевидного решения x=0. Также, $t \neq 0$, что даёт разбиение каждого из трёх (в зависимости от константы) решений на два, различающихся областью определения.

с. Разберёмся с каждым начальным условием по отдельности:

$$\underline{x(1) = 1:} \qquad x(1) = C_1 = 1 \implies C_1 = 1 \implies x = t^{2/5}. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(1) = -1:} \qquad x(1) = C_2 = -1 \implies C_2 = -1 \implies x = -t^{2/5}. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(-1) = 1:} \qquad x(-1) = C_3 = 1 \implies C_3 = 1 \implies x = |t|^{2/5}. \quad \text{Domain}(x) = (-\infty; 0).$$

$$\underline{x(-1) = -1:} \qquad x(-1) = C_4 = -1 \implies C_4 = -1 \implies x = -|t|^{2/5}. \quad \text{Domain}(x) = (-\infty; 0).$$

$$\underline{x(1) = 0:} \qquad x(1) = C_5 = 0 \implies C_5 = 0 \implies x = 0. \quad \text{Domain}(x) = (0; +\infty).$$

$$\underline{x(-1) = 0:} \qquad x(-1) = C_6 = 0 \implies C_6 = 0 \implies x = 0. \quad \text{Domain}(x) = (-\infty; 0).$$

Построим интегральные кривые для этих начальных условий:

7

$$\text{b. } x_1(t) = C \, t^{2/5}, \ t>0; \quad x_2(t) = C |t|^{2/5}, \ t<0; \quad x_3(t) = 0, \ t>0; \quad x_4(t) = 0, \ t<0 \ .$$

c.
$$x(t) = t^{2/5}$$
, Domain $(x) = (0; +\infty)$;

$$x(t) = -t^{2/5}$$
, Domain $(x) = (0; +\infty)$;

$$x(t) = 0$$
, Domain $(x) = (0; +\infty)$;

$$x(t)=|t|^{2/5},\ \operatorname{Domain}(x)=(-\infty;0);$$

$$x(t)=-|t|^{2/5}, \ \operatorname{Domain}(x)=(-\infty;0);$$

$$x(t) = 0$$
, Domain $(x) = (-\infty; 0)$.

Задача 5. Даны две системы уравнений:

a.
$$\begin{cases} \dot{x} = -3x, \\ \dot{y} = y; \end{cases}$$
 b.
$$\begin{cases} \dot{x} = 2x, \\ \dot{y} = 5y. \end{cases}$$

Очевидно, что нулевые решения подходят, поэтому $x \neq 0$ и $y \neq 0$ при последующих вычислениях. Рассмотрим их по отдельности:

a.
$$\begin{cases} \dot{x} = -3x, \\ \dot{y} = y; \end{cases} \rightarrow \begin{cases} \int \frac{dx}{x} = -3 \int dt, \\ \int \frac{dy}{y} = \int dt; \end{cases} \rightarrow \begin{cases} x = C_1 e^{-3t}, \\ y = C_2 e^t. \end{cases}$$
b.
$$\begin{cases} \dot{x} = 2x, \\ \dot{y} = 5y; \end{cases} \rightarrow \begin{cases} \int \frac{dx}{x} = 2 \int dt, \\ \int \frac{dy}{y} = 5 \int dt; \end{cases} \rightarrow \begin{cases} x = C_1 e^{2t}, \\ y = C_2 e^{5t}. \end{cases}$$

Далее, найдём уравнения фазовых кривых, выражая x через y ($y \neq 0 \implies C_2 \neq 0$):

a.
$$\begin{cases} x = C_1 e^{-3t}, \\ y = C_2 e^t; \end{cases} \rightarrow \begin{cases} x = C_1 e^{-3t}, \\ y^{-3} = C_2^{-3} e^{-3t}; \end{cases} \rightarrow \begin{cases} x = \frac{C_1 (C_2)^3}{y^3}, \\ e^{-3t} = (C_2)^3 y^{-3}; \end{cases} \rightarrow x(y) = \frac{C}{y^3}.$$
b.
$$\begin{cases} x = C_1 e^{2t}, \\ y = C_2 e^{5t}; \end{cases} \rightarrow \begin{cases} x = C_1 e^{2t}, \\ |y|^{2/5} = |C_2|^{2/5} e^{2t}; \end{cases} \rightarrow \begin{cases} x = \frac{C_1 |C_2|^{-2/5}}{|y|^{2/5}}, \\ e^{2t} = |C_2|^{-2/5} |y|^{2/5}; \end{cases} \rightarrow x(y) = C |y|^{2/5}.$$

Легко видеть, что эти уравнения совпадают с уравнениями из задач под номерами 3 и 4 соответственно. Далее, изобразим векторное поле и фазовые кривые:

Теперь найдём фазовую кривую с начальными условиями x(0) = 0, y(0) = -1:

a.
$$\begin{cases} x = C_1 e^{-3t}, \\ y = C_2 e^t; \end{cases} \rightarrow \begin{cases} 0 = C_1 e^0 \implies C_1 = 0, \\ -1 = C_2 e^0 \implies C_2 = -1; \end{cases} \rightarrow \begin{cases} x(t) \equiv 0, \\ y(t) = -e^t. \end{cases}$$
b.
$$\begin{cases} x = C_1 e^{2t}, \\ y = C_2 e^{5t}; \end{cases} \rightarrow \begin{cases} 0 = C_1 e^0 \implies C_1 = 0, \\ -1 = C_2 e^0 \implies C_2 = -1; \end{cases} \rightarrow \begin{cases} x(t) \equiv 0, \\ y(t) = -e^t. \end{cases}$$

В обоих случаях получается горизонтальный луч $(-\infty; 0)$ по оси Ox (он изображен на графиках).

1. Решения систем представимы следующим образом:

a.
$$\begin{cases} x = C_1 e^{-3t}, \\ y = C_2 e^t; \end{cases}$$
 b.
$$\begin{cases} x = C_1 e^{2t}, \\ y = C_2 e^{5t}. \end{cases}$$

2. Уравнения фазовых кривых выглядят так:

a.
$$x(y) = \frac{C}{y^3}$$
; b. $x(y) = C |y|^{2/5}$.

3. Они совпадают с интегральными кривыми из задач под номерами 3 и 4 соответственно.

Задача 6. Дано уравнение вида $\dot{x} = (20t - 5x - 3)^2 + 3$.

а. Сделаем следующую замену и посмотрим на результат:

$$z = 20t - 5x - 3 \rightarrow \dot{z} = 20 - 5\dot{x} \rightarrow \dot{z} = \frac{1}{5}(20 - \dot{z}) \rightarrow 5z^2 + 15 = 20 - \dot{z} \rightarrow \dot{z} = 5(1 - z^2)$$

Видно, что полученное уравнение является автономным. Также заметим, что прямые z=1 и z=-1 являются решениями, поэтому далее $z\neq\pm 1$ при любых вычислениях.

Изобразим поле направлений и эскизы интегральных кривых:

Исходное уравнение.

Автономное уравнение.

Из курса линейной алгебры можно заключить, что эти два графика связаны между собой аффинным преобразованием.

с. Найдём решения этого уравнения:

$$\begin{split} \dot{z} &= 5 \left(1 - z^2 \right) \quad \rightarrow \quad \frac{dz}{dt} = 5 \left(1 - z^2 \right) \quad \rightarrow \quad \int \frac{dz}{1 - z^2} = 5 \int dt \quad \rightarrow \quad \ln \left| \frac{1 + z}{1 - z} \right| = 10t + C' \\ &\quad \rightarrow \quad \left| \frac{1 + z}{1 - z} \right| = e^{10t + C'} \quad \rightarrow \quad \frac{1 + z}{1 - z} = C \, e^{10t} \quad \rightarrow \quad 1 + z = C \, e^{10t} - z \cdot C \, e^{10t} \\ &\quad \rightarrow \quad z(t) = \frac{C \, e^{10t} - 1}{C \, e^{10t} + 1} \end{split}$$

Раскрытие модуля и знак левой части регулируется константой C. Далее, восстановим замену и выразим x через t:

(1)
$$20t - 5x_1 - 3 = \frac{Ce^{10t} - 1}{Ce^{10t} + 1} \rightarrow x_1(t) = \frac{1}{5} \left(20t - 3 + \frac{1 - Ce^{10t}}{1 + Ce^{10t}} \right)$$

И не забудем про прямые $z=\pm 1$:

(2)
$$z = 1 \rightarrow 20t - 5x_2 - 3 = 1 \rightarrow x_2(t) = \frac{20t - 4}{5}$$

(3)
$$z = -1 \rightarrow 20t - 5x_3 - 3 = -1 \rightarrow x_3(t) = \frac{20t - 2}{5}$$

d. Несложная проверка позволяет убедиться в том, что начальное условие вида x(-3) = -13 не может удовлетворять прямым:

(1)
$$-13 = \frac{1}{5} \left(20 \cdot (-3) - 3 + \frac{1 - C_1 e^{10 \cdot (-3)}}{1 + C_1 e^{10 \cdot (-3)}} \right) \rightarrow C_1 = -3e^{30}$$

Изобразим эту интегральную кривую:

- е. Пусть дано начальное условие $x(t_0) = x_0$. Иными словами, точка (t_0, x_0) , через которую проходит решение. Рассмотрим два случая:
 - 1) Точка попадает на одну из двух прямых x_2 или $x_3 \implies \mathrm{Domain}(x) = (-\infty; +\infty).$
 - 2) Точка не попадает ни на одну из прямых x_2 и x_3 , тогда у нас единственная проблема в знаменателе дроби. Подставляя значения t_0 и x_0 в уравнение с экспонентами, мы можем выразить константу C_0 , тогда:

$$1 + C_0 e^{10t_b} = 0 \rightarrow e^{10t_b} = \frac{-1}{C_0} \rightarrow t_b = \frac{1}{10} \ln \left(\frac{-1}{C_0} \right)$$
 — точка разрыва.

Заметим, что $C_0 \neq 0$, так как иначе точка (t_0, x_0) попадёт на одну из прямых (потому что z будет равен ± 1). В этом случае, прямая распадается на две области: $(-\infty; t_b)$ и $(t_b; +\infty)$. Подойдёт та, которой принадлежит точка t_0 начального условия.

$$(C_0 = \frac{1+z}{(1-z)e^{10t_0}}$$
 при подстановке $z_0 = 20t_0 - 5x_0 - 3.)$

Решения, являющиеся прямыми, неограничены, поэтому они стремятся к $\pm \infty$ при $t \to \pm \infty$. Остальные решения, приближаясь к точке разрыва t_b , так же уходят на бесконечность, в то время как при удалении t на $\pm \infty$ (в зависимости от области определения) они стремятся к решениям-прямым (подробнее это описано далее).

Решения, уходящие на бесконечность за конечное время, есть – например, подойдёт данное в пункте (d.) начальное условие (график изображён выше), оно улетает далеко и надолго в окрестности точки -3.

f. Для решений, не являющихся прямыми, существует две наклонных асимптоты: $x_2(t) = \frac{20t-4}{5}$ и $x_3(t) = \frac{20t-2}{5}$ (исключительные решения). Также у них есть вертикальные асимптоты в точках разрыва t_b . Горизонтальных асимптот нет.

Задача №7. Дано уравнение вида $\dot{x} = 2x^2 + 2$. Найдём его решение:

$$\dot{x} = 2x^2 + 2 \quad \rightarrow \quad \frac{dx}{dt} = 2x^2 + 2 \quad \rightarrow \quad \int \frac{dx}{x^2 + 1} = 2 \int dt \quad \rightarrow \quad \arctan(x) = 2t + C \quad \rightarrow \quad x = \tan(2t + C)$$

Также, дано начальное условие $x(0) = 1 \implies 1 = \tan(C) \implies C = \frac{\pi}{4}$. Таким образом, решение с данным начальным условием будет определено только на множестве $\left[0; \frac{1}{2}\right] \cap \left(-\frac{3\pi}{8}; \frac{\pi}{8}\right) = \left[0; \frac{\pi}{8}\right)$.

а. Посмотрим на различные решения, полученные методом Эйлера:

- b. Теперь, пользуясь достижениями человечества, мы можем вычислить количество шагов, необходимых для получения ответа с хорошей точностью $\varepsilon = 0.01$:
 - $t_1 = 0.25 \implies$ нужно $n_1 = 1024$ шагов.
 - $t_2 = 0.3 \implies$ нужно $n_2 = 2731$ шагов.
 - $t_3 = 0.35 \implies$ нужно $n_3 = 24213$ шагов.
 - $t_3 = 0.4 \implies$ это значение не входит в область определения решения.