	Equation 3: $G((a 0\rangle+b 1\rangle)\otimes 1\rangle)= 1\rangle\otimes 1\rangle= 11\rangle$ Equation 3: $G((a 0\rangle+b 1\rangle)\otimes(\frac{1}{\sqrt{2}} 0\rangle+\frac{1}{\sqrt{2}} 1\rangle))=(\frac{1}{\sqrt{2}} 0\rangle+\frac{1}{\sqrt{2}} 1\rangle)\otimes(\frac{1}{\sqrt{2}} 0\rangle+\frac{1}{\sqrt{2}} 1\rangle)$ $=\frac{1}{2} 00\rangle+\frac{1}{2} 01\rangle+\frac{1}{2} 10\rangle+\frac{1}{2} 11\rangle$ We can also derive equation 3 as follows:
	We can also derive equation 3 as follows: $G((a 0\rangle+b 1\rangle)\otimes(\frac{1}{\sqrt{2}} 0\rangle+\frac{1}{\sqrt{2}} 1\rangle))=G(\frac{a}{\sqrt{2}} 00\rangle+\frac{a}{\sqrt{2}} 01\rangle+\frac{b}{\sqrt{2}} 10\rangle+\frac{b}{\sqrt{2}} 11\rangle)\\=G(\frac{1}{\sqrt{2}}((a 0\rangle+b 1\rangle)\otimes 0\rangle)+\frac{1}{\sqrt{2}}((a 0\rangle+b 1\rangle)\otimes 1\rangle))$ Since matrix multiplication satisfies distributivity: $G(\frac{1}{\sqrt{2}}((a 0\rangle+b 1\rangle)\otimes 0\rangle)+\frac{1}{\sqrt{2}}((a 0\rangle+b 1\rangle)\otimes 1\rangle))=\frac{1}{\sqrt{2}}(G((a 0\rangle+b 1\rangle)\otimes 0\rangle))+\frac{1}{\sqrt{2}}(G((a 0\rangle+b 1\rangle)\otimes 1\rangle))$ From equation 1 and 2 we know that:
	The results form a different equation from equation 3 above. Thus demonstrating the contradiction. $\frac{1}{\sqrt{2}}(G((a 0\rangle+b 1\rangle)\otimes 0\rangle) + \frac{1}{\sqrt{2}}(G((a 0\rangle+b 1\rangle)\otimes 1\rangle) = \frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle$ The results form a different equation from equation 3 above. Thus demonstrating the contradiction. $\text{Section 2 An alternative Teleportation Protocol}$ In the original Teleportation Protocol, a third party prepares a pair of entangled qubits with the state $\frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle$, and then ser Alice one qubit from the pair and sends Bob the other. In this task, you are asked to replace the entangled state $\frac{1}{\sqrt{2}} 00\rangle + \frac{1}{\sqrt{2}} 11\rangle$ w $\frac{1}{\sqrt{2}} 01\rangle + \frac{1}{\sqrt{2}} 10\rangle$, and make the Teleportation still work.
	Task 2.1 Give the protocol and the circuit for it first. You should detail what operations (e.g., gates or measurements) are taken in each step by Markdown and Code cells. In the Markdown cells, manual calculation should be given to show what will happen in each step by assurt that the qubit to teleport has a general state $a 0\rangle+b 1\rangle$. In the Code cells, the circuit for this Teleportation Protocol should be constructed by step with barriers introduced between steps. Step 1 A third party, Telamon, creates an entangled pair of qubits and gives one to Bob and another to Alice.
	The pair Telamon creates is a special pair called a Bell pair. In quantum circuit, the way to create a Bell pair between two qubits is to a the Bell Circuit consisting of H gate and CNOT gate. In the case that we are doing we have set the value for q_1 to be the default $ 0\rangle$ are to $ 1\rangle$ thus producing the following state: $\frac{1}{\sqrt{2}} 01\rangle + \frac{1}{\sqrt{2}} 10\rangle$ # For source code reuse, we create a function for this def create_bell_pair(qc, ctrl, target):
	ctrl: the index of the control qubit in CNOT target: the index of the target qubit in CNOT """ $qc.h(ctrl)$ # Put qubit ctrl into state $ +>$ $qc.cx(ctrl,target)$ # Apply CNOT gate Let's say Alice owns q_1 and Bob owns q_2 . Step 2 Alice applies Reverse Bell Circuit to q_0 and q_1 , with q_0 being the qubit to teleport to Bob. def reverse bell (gc, ctrl, target):
	$ \begin{array}{c} \textbf{def} \ \ \text{reverse_bell}(qc,\ ctrl,\ target): \\ \ \ \text{"""} \\ \ \ \text{qc: the circuit to work on} \\ \ \ \text{ctrl: the index of the control qubit in CNOT} \\ \ \ \text{target: the index of the target qubit in CNOT} \\ \ \ \text{"""} \\ \ \ \text{qc.cx}(\text{ctrl},\ \text{target}) \\ \ \ \text{qc.h}(\text{ctrl}) \\ \end{array} $
	<pre>def measure_and_send(qc, ctrl, target): # Measures qubits ctrl & target qc.measure(ctrl, cr[0]) qc.measure(target, cr[1]) # In simulation, 'sending' the results to Bob can be omitted. # We simply assume that Bob can access cr.</pre> Step 4 In this step it is different from the lecture notes, and because of this a new set of steps is required to complete this task proficiently. Treason is because we are using the entangled qubit state:
	$\frac{1}{\sqrt{2}} 01\rangle+\frac{1}{\sqrt{2}} 10\rangle$ This changes the way in which we need to tackle this problem. Therefore, below we have tried to identify how to determine which gat need to be applied by following the lecture notes: Step 1: Tensor Product with qubit $=(\frac{1}{\sqrt{2}} 01\rangle+\frac{1}{\sqrt{2}} 10\rangle)\otimes(a 0\rangle+b 1\rangle)$ $=\frac{a}{\sqrt{2}} 010\rangle+\frac{b}{\sqrt{2}} 011\rangle+\frac{a}{\sqrt{2}} 100\rangle+\frac{b}{\sqrt{2}} 101\rangle$
	$=\frac{a}{\sqrt{2}} 010\rangle+\frac{b}{\sqrt{2}} 011\rangle+\frac{a}{\sqrt{2}} 100\rangle+\frac{b}{\sqrt{2}} 101\rangle$ Step 2: Reverse Bell $=ReverseBell(\frac{a}{\sqrt{2}} 010\rangle+\frac{b}{\sqrt{2}} 011\rangle+\frac{a}{\sqrt{2}} 100\rangle+\frac{b}{\sqrt{2}} 101\rangle)$ $=ReverseBell(\frac{a}{\sqrt{2}} 0\rangle\otimes 10\rangle+\frac{b}{\sqrt{2}} 0\rangle\otimes 11\rangle+\frac{a}{\sqrt{2}} 1\rangle\otimes 00\rangle+\frac{b}{\sqrt{2}} 1\rangle\otimes 01\rangle)$ We apply this on the former two qubits, consequently this equals:
	$=ReverseBell(\frac{a}{\sqrt{2}} 0\rangle\otimes 10\rangle+\frac{b}{\sqrt{2}} 0\rangle\otimes 11\rangle+\frac{a}{\sqrt{2}} 1\rangle\otimes 00\rangle+\frac{b}{\sqrt{2}} 1\rangle\otimes 01\rangle)$ $=\frac{a}{\sqrt{2}} 0\rangle\otimes(\frac{1}{\sqrt{2}} 10\rangle+\frac{1}{\sqrt{2}} 11\rangle)+\frac{b}{\sqrt{2}} 0\rangle\otimes(\frac{1}{\sqrt{2}} 00\rangle-\frac{1}{\sqrt{2}} 01\rangle)+\frac{a}{\sqrt{2}} 1\rangle\otimes(\frac{1}{\sqrt{2}} 00\rangle+\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 1\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 1\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 1\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 11\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle)+\frac{b}{\sqrt{2}} 01\rangle\otimes(\frac{1}{\sqrt{2}} 01\rangle\otimes(\frac{1}{2$
	00 o b 0 angle + a 1 angle o Apply X gate $01 o -b 0 angle + a 1 angle o$ Apply X and then Z $10 o a 0 angle + b 1 angle o$ Do nothing $11 o a 0 angle - b 1 angle o$ Apply Z gate. In the bottom below we implemented a sufficient gate which allows to solve this problem. This is more complicated than the initial problem and so required a different approach. Because of this, we applied the gates according to the total value of both the registers
	qc: the circuit to work on qubit: the index of the qubit to apply X or Z gate crz: the crz register crx: the crx register """ # Here we use c_if() to control our gates by the cr register. # Apply the gates if cr has that decimal value. qc.x(qubit).c_if(cr, 0) qc.x(qubit).c_if(cr, 1) qc.z(qubit).c_if(cr, 1) qc.z(qubit).c_if(cr, 3)
	In this notebook, we will initialize Alice's q_0 to a random state $ \psi\rangle$ (named as psi). This random state is created as follows. Next, we need to create a gate that initializes a qubit to the state of $ \psi\rangle$. Note that: Here we need a gate, because we need to get an inverse gate for this gate later. The Initialize used below is a class from the qiskit.extensions module, while the initialize() you saw in previous notebooks is a function of the QuantumCircuit class. They have different the names in Python is case-sensitive. # Create the two random amplitudes of psi p0 = random.uniform(0,1) p1 = np.sqrt(1 - p0*p0) psi = [p0, p1]
	$\begin{array}{l} \texttt{psi} = \texttt{[p0, p1]} \\ \# \textit{Display psi} \\ \texttt{psi} \\ \# \textit{Create a gate that initializes a qubit to the state of psi} \\ \texttt{init_gate} = \texttt{Initialize}(\texttt{psi}) \\ \texttt{init_gate.label} = \texttt{"Init"} \\ \\ \\ \hline \\ 0\rangle \xrightarrow{\text{Initialize gates}} \psi\rangle \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	This operation has the property: $ \psi\rangle \xrightarrow{\text{Inverse Initialize gates}} 0\rangle$ To prove the qubit $ q_0\rangle$ has been teleported to $ q_2\rangle$, we can do this inverse operation on $ q_2\rangle$. If the measurement result is $ 0\rangle$ with certainty, then the teleportation protocol is verified. In the following circuit we have initialized q_2 to be in the state $ 1\rangle$.
	<pre>qr = QuantumRegister(3, name="q") cr = ClassicalRegister(2, name="cr") qc = QuantumCircuit(qr, cr) initial_state = [0, 1] qc.initialize(initial_state, 2) ## STEP 0 # First, let's initialize Alice's q0 qc.append(init_gate, [0]) qc.barrier() ## STEP 1 # Now begins the teleportation protocol</pre>
	<pre>create_bell_pair(qc, 1, 2) qc.barrier() ## STEP 2 # Send q1 to Alice and q2 to Bob reverse_bell(qc, 0, 1) qc.barrier() ## STEP 3 # Alice then sends her classical bits to Bob measure_and_send(qc, 0, 1) qc.barrier() ## STEP 4</pre>
]:	<pre># Bob decodes qubits bob_gates(qc, 2, cr) qc.barrier() ## STEP 5 # reverse the initialization process qc.append(inverse_init_gate, [2]) # Display the circuit qc.draw()</pre>
]:	qc.barrier() # Need to add a new ClassicalRegister to see the result cr_result = ClassicalRegister(1)
]:	cr_result = ClassicalRegister(1) qc.add_register(cr_result) # Measure q_2 and store it in ClassicalRegister 2, which is cr_result qc.measure(2,2) qc.draw() q0 — Init q2 — \psi H
]:	Task 2.2 Then, verify the above circuit by running it under the QasmSimulator, with randomness introduced to the qubit to teleport. The verific technique should be the same as the one used in the notebook NB05.
]:	<pre>counts = execute(qc, backend, shots=1000).result().get_counts() plot_histogram(counts)</pre>
	We can see that there is a 100% chance of measuring q_2 (the leftmost bit in the string) in the state $ 0\rangle$. This is the expected result, and
	Section 3 Proof of Probability in Ekert Protocol In the variant of the Ekert Protocol taught in our Lecture 7, if Eve eavesdrops every pair of entangled qubits, then for those entangled where Alice and Bob pick different bases, the probability for them to see the same measurement outcome is $\frac{3}{8}$. In this task, you are a to prove this fact. Note: We have added more scenarios where eve measures first and second, the first case is when eve measures second. The second cafter this one where eve measures first.
	We are going to pick the two bases as recommended for Alice and Bob: $\theta=\frac{2\pi}{3}, \theta=\frac{4\pi}{3}$ Whilst Eve picks: $\theta=0, \frac{2\pi}{3}, \frac{4\pi}{3}$ This is the case where Eve measures Second:
	Case 1: $\theta=0$ Alice measures first and gets either the following results: $ \searrow\rangle=\left[\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]$ $ \nwarrow\rangle=\left[-\frac{\sqrt{3}}{\frac{1}{2}}\right]$
	We will test for both, firstly: $ \searrow\rangle=c 0\rangle+d 1\rangle$ We get the dot product of the following: $c=\langle 0 \searrow\rangle=\begin{bmatrix}1\\0\end{bmatrix}\begin{bmatrix}\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}=\frac{1}{2}$ $d=\langle 1 \searrow\rangle=\begin{bmatrix}0\\1\end{bmatrix}\begin{bmatrix}\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}=\frac{\sqrt{3}}{2}$
	There are two cases since Eve can get $ 0\rangle$ with probability $\frac{1}{4}$ and $ 1\rangle$ with probability $\frac{3}{4}$. If She gets state $ 0\rangle$ the following would be not be calculated in the $\theta=\frac{4\pi}{3}$ basis of Bob. $ 0\rangle=c \swarrow\rangle+d \nearrow\rangle$ We get the dot product of the following: $c=\langle\swarrow 0\rangle=\left[\frac{1}{2}\\\frac{\sqrt{3}}{2}\right]\left[\frac{1}{0}\right]=-\frac{1}{2}$
	$d = \langle \nearrow 0 \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -\frac{\sqrt{3}}{2}$ These are two cases similar to the previous, however, if we want both of them to get the same value, then Bob must get the value of with probability $\frac{1}{4}$. Thus, there is a $\frac{1}{4} * \frac{1}{4}$ to get the same value correct. If She gets state $ 1\rangle$, it will be with the probability $\frac{3}{4}$ and the following would be needed to be calculated in the $\theta = \frac{4\pi}{3}$ basis of Bob. $ 1\rangle = c \swarrow \rangle + d \nearrow \rangle$ We get the dot product of the following:
	$c = \langle \swarrow 1 \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{\sqrt{3}}{2}$ $d = \langle \nearrow 1 \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\frac{1}{2}$ To get zero just as alice did this would be with the probability of $\frac{3}{4}$, thus there would be a $\frac{3}{4} * \frac{3}{4}$ probability to get 0. This is the same for the other state $ \nwarrow \rangle$. The total probability would be $\frac{1}{4} * \frac{1}{4} + \frac{3}{4} * \frac{3}{4} = \frac{5}{8}$
	Case 2: $\theta=\frac{2\pi}{3}$ Alice measures first and gets either the following results: $ \searrow\rangle=\left[\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]$ $ \nwarrow\rangle=\left[-\frac{\sqrt{3}}{\frac{1}{2}}\right]$
	We will test for both, firstly: $ \searrow\rangle=c \searrow\rangle+d \nwarrow\rangle$ In both cases it will be a 100% chance of getting any state since the base is the same. Thus the focus of the calculation would be on the third measurment made by Bob. $ \searrow\rangle=c \swarrow\rangle+d \nearrow\rangle$ We get the dot products for the case:
	$c = \langle \swarrow \searrow \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{1}{2}$ $d = \langle \nearrow \searrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = -\frac{\sqrt{3}}{2}$ There is thus a $\frac{1}{4}$ chance of it being the same. If on the other case, the Alice chooses the other measurement: $ \nwarrow \rangle = c \searrow \rangle + d \nwarrow \rangle$
	Since there is a 100% chance of getting the same direction because they have picked the same base, then for Bob's measurement we the following: $ \nwarrow\rangle=c \swarrow\rangle+d \nearrow\rangle$ We get the dot products for the case: $c=\langle\swarrow\mid\nwarrow\rangle=\left[\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]\left[\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right]=\frac{\sqrt{3}}{2}$
	$d = \langle \nearrow \mid \nwarrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2}$ Thus there is a $\frac{1}{4}$ chance of getting it correct. $\textbf{Case 3: } \theta = \frac{4\pi}{3}$ Alice measures first and gets either the following results: $ \searrow \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$
	$ \searrow\rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$ $ \nwarrow\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$ We will test for both, firstly: $ \searrow\rangle = c \swarrow\rangle + d \nearrow\rangle$ We get the dot products for the case:
	We get the dot products for the case: $c = \langle \swarrow \searrow \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{1}{2}$ $d = \langle \nearrow \searrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = -\frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Similarly the other case would be:
	Similarly the other case would be: $ \nwarrow\rangle = c \swarrow\rangle + d \nearrow\rangle$ We get the dot products for the case: $c = \langle\swarrow \nwarrow\rangle = \begin{bmatrix} -\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix} = \frac{\sqrt{3}}{2}$ $d = \langle\nearrow \nwarrow\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix}\begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix} = \frac{1}{2}$
	The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. To calculate the total percentage of the values we need to look at all configurations: $S-V-N \to \frac{5}{8}*\frac{1}{3} = \frac{5}{24}$ $S-S-N \to \frac{1}{4}*\frac{1}{3} = \frac{2}{24}$ $S-N-N \to \frac{1}{4}*\frac{1}{3} = \frac{2}{24}$ Thus, the probability equals $\frac{3}{8}$.
	This is the case where Eve measures first: We are going to pick the two bases as recommended for Alice and Bob: $\theta=\frac{2\pi}{3}, \theta=\frac{4\pi}{3}$ Whilst Eve picks: $\theta=0,\frac{2\pi}{3},\frac{4\pi}{3}$
	Case 1: $\theta=0$ Eve measures first and gets either the following results: $ 0\rangle=\begin{bmatrix}1\\0\end{bmatrix}$ $ 1\rangle=\begin{bmatrix}0\\1\end{bmatrix}$ We will test for both, firstly: $ 0\rangle=a x\rangle+d x\rangle$
	$ 0\rangle=c \searrow\rangle+d \nwarrow\rangle$ We get the dot product of the following: $c=\langle\searrow 0\rangle=\left[\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]\left[\frac{1}{0}\right]=\frac{1}{2}$ $d=\langle\nwarrow 0\rangle=\left[-\frac{\sqrt{3}}{\frac{1}{2}}\right]\left[\frac{1}{0}\right]=-\frac{\sqrt{3}}{\frac{1}{2}}$ There are two cases since Alice can get $ \searrow\rangle$ with probability $\frac{1}{2}$ and $ \searrow\rangle$ with probability $\frac{3}{2}$. If She gets state $ \searrow\rangle$ the following would be supported by the following by the following would be supp
	There are two cases since Alice can get $ \searrow\rangle$ with probability $\frac{1}{4}$ and $ \nwarrow\rangle$ with probability $\frac{3}{4}$. If She gets state $ \searrow\rangle$ the following wound needed to be calculated in the $\theta=\frac{4\pi}{3}$ basis of Bob. The entanglement is broken and Bob's state is in state $ 0\rangle$. $ 0\rangle=c \swarrow\rangle+d \nearrow\rangle$ We get the dot product of the following: $c=\langle\swarrow 0\rangle=\begin{bmatrix}-\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=-\frac{1}{2}$ $d=\langle\nearrow 0\rangle=\begin{bmatrix}-\frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}=-\frac{\sqrt{3}}{2}$
	$d = \langle \nearrow 0 \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -\frac{\sqrt{3}}{2}$ These are two cases similar to the previous, however, if we want both of them to get the same value, then Bob must get the value of with probability $\frac{1}{4}$, and $ \nearrow\rangle$ with probability of $\frac{3}{4}$. Thus, there is a $\frac{1}{4}*\frac{1}{4}$ to get the value of '0' and $\frac{3}{4}*\frac{3}{4}$ to get the value of '1'. Calcuating the two there is a total of $\frac{1}{4}*\frac{1}{4}+\frac{3}{4}*\frac{3}{4}=\frac{5}{8}$ Eve measures first and gets either the following results:
	Eve measures first and gets either the following results: $ \searrow\rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$ $ \nwarrow\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix}$ We will test for both, firstly: $ \searrow\rangle = c \searrow\rangle + d \nwarrow\rangle$
	In both cases it will be a 100% chance of getting any state since the base is the same (for Alice). Thus the focus of the calculation wou on the third measurment made by Bob. $ \searrow\rangle=c \swarrow\rangle+d \nearrow\rangle$ We get the dot products for the case: $c=\langle\swarrow \searrow\rangle=\begin{bmatrix}-\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix}\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}=\frac{1}{2}$
	$d = \langle \nearrow \searrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = -\frac{\sqrt{3}}{2}$ There is thus a $\frac{1}{4}$ chance of it being the same. If on the other case Eve gets the other measurement: $ \nwarrow \rangle = c \searrow \rangle + d \nwarrow \rangle$ Since there is a 100% chance of getting the same direction (for Alice) because they have picked the same base, then for Bob's measurement we do the following, Bob's state is in the same state as Eve's since the entanglement is broken:
	measurement we do the following, Bob's state is in the same state as Eve's since the entanglement is broken: $ \nwarrow\rangle = c \swarrow\rangle + d \nearrow\rangle$ We get the dot products for the case: $c = \langle\swarrow \nwarrow\rangle = \begin{bmatrix} -\frac{1}{2}\\\frac{\sqrt{3}}{2}\end{bmatrix}\begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix} = \frac{\sqrt{3}}{2}$ $d = \langle\nearrow \nwarrow\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix}\begin{bmatrix} -\frac{\sqrt{3}}{2}\\\frac{1}{2}\end{bmatrix} = \frac{1}{2}$
	Thus there is a $\frac{1}{4}$ chance of getting it correct. Case 3: $\theta = \frac{4\pi}{3}$ Eve measures first and gets either the following results: $ \swarrow\rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix}$
	$ \nearrow\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix}$ We will test for both, firstly Alice measures in this state after eve gets $ \swarrow\rangle$: $ \swarrow\rangle = c \searrow\rangle + d \nwarrow\rangle$ We get the dot products for the case:
	$c = \langle \searrow \swarrow angle = \left[egin{array}{c} rac{1}{2} \ \sqrt{3} \end{array} ight] \left[egin{array}{c} -rac{1}{2} \ \sqrt{3} \end{array} ight] = rac{1}{2}$
	$c = \langle \searrow \swarrow \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{1}{2}$ $d = \langle \nwarrow \swarrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $ \swarrow \rangle$, this is because Bob's qubit is in the same state as Eve as the entanglement is broken. $ \swarrow \rangle = c \swarrow \rangle + d \nearrow \rangle$ Doing the calculation the probability of being '0' with 100%.
	$d = \langle \nwarrow \swarrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $ \swarrow \rangle$, this is because Bob's qubit is in the same state as Eve as the entanglement is broken.
	$d = \langle \nwarrow \swarrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $ \swarrow \rangle$, this is because Bob's qubit is in the same state as Eve as the entanglement is broken. $ \swarrow \rangle = c \swarrow \rangle + d \nearrow \rangle$ Doing the calculation the probability of being '0' with 100%. $c = \langle \swarrow \swarrow \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 1$ $d = \langle \nearrow \swarrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 0$ This means there is a $\frac{1}{4}$ of getting the same bit. Similarly if on the other hand eve gets the following state, and Alice is to measure, the other case would be: $ \nearrow \rangle = c \searrow \rangle + d \nwarrow \rangle$ We get the dot products for the case: $c = \langle \searrow \nearrow \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} = -\frac{\sqrt{3}}{2}$
	The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $\left \checkmark \right\rangle$, this is because Bob's qubit is in the same state as Eve as the entanglement is broken. $\left \checkmark \right\rangle = c \left \checkmark \right\rangle + d \left \checkmark \right\rangle$ Doing the calculation the probability of being '0' with 100%. $c = \left\langle \checkmark \right \checkmark \right\rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 1$ $d = \left\langle \nearrow \right \checkmark \right\rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 0$ This means there is a $\frac{1}{4}$ of getting the same bit. Similarly if on the other hand eve gets the following state, and Alice is to measure, the other case would be: $ \nearrow \rangle = c \searrow \rangle + d \searrow \rangle$ We get the dot products for the case: $c = \langle \searrow \middle \nearrow \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ $d = \langle \nwarrow \middle \nearrow \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} = \frac{1}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Since measurement that will be calculated by Bob would be in the following state, this is because Bob's qubit is in the same state as Eve as entanglement is broken: $ \nearrow \rangle = c \cancel{\nearrow}\rangle + d \nearrow \rangle$ Doing the calculation manually we get the following result:
	$d = \langle \nwarrow \checkmark \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $\checkmark \rangle$, this is because Bob's qubit is in the same state as Eve as the entanglement is broken. $ \checkmark \rangle = c \checkmark \rangle - d \nearrow \rangle$ Doing the calculation the probability of being 10° with 100%. $c = \langle \checkmark \checkmark \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{3} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 1$ $d = \langle ? \checkmark \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = 0$ This means there is a $\frac{1}{4}$ of getting the same bit. Similarly if on the other hand eve gets the following state, and Alice is to measure, the other case would be: $? \rangle = c \searrow \rangle - d \searrow$ We get the dot products for the case: $c = \langle \searrow \nearrow \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} = \frac{1}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Since measurement that will be calculated by Bob would be in the following state, this is because Bob's qubit is in the same state as Eve as entanglement is broken: $? \rangle = c \checkmark \rangle - d \nearrow \rangle$ Doing the calculation manually we get the following result: $c = \langle \checkmark \nearrow \rangle = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} \end{bmatrix} = 0$ To calculate the total percentage of the values we need to look at all configurations: $V \le N \rightarrow \frac{3}{2} * \frac{1}{3} = \frac{5}{24}$
	The chance of getting this correct is $\frac{1}{4}$; since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $ \checkmark\rangle$, this is because 8ob's qubit is in the same state as Eve as the entanglement is broken. $ \checkmark\rangle = c \checkmark\rangle + d \nearrow\rangle$ Doing the calculation the probability of being 0° with 100%. $c = \langle \checkmark \checkmark \rangle = \left[-\frac{1}{2}, \frac{1}{2}\right] \left[-\frac{1}{2}, \frac{1}{2}\right] = 0$ This means there is a $\frac{1}{4}$ of getting the same bit. Similarly if on the other hand ever gets the following state, and Alice is to measure, the other case would be: $ \checkmark\rangle = c \cancel{>} \Rightarrow 4 \cancel{>} \Rightarrow 4$
	The chance of getting this correct is $\frac{1}{2}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets, (\cdot) , this is because Bob's qubit is in the same state as Eve as the entanglement is broken. $ \cdot = \cdot = \cdot + \cdot = $
	$d = \langle \cdot \mid \cdot \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this correct is $\frac{1}{4}$, since the next base is the same then the probability would be 100% of the current result. Whe measures he will always gets $ \cdot _{-1}$ is its because Bob's qubit is in the same state as Eve as the entanglement is broken. $ \cdot _{-1}\rangle = d \cdot _{-1}\rangle = d \cdot _{-1}\rangle$ Doing the colculation the probability of being 0 with 100%. $c = \langle \cdot \mid \cdot \rangle = \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = 0$ This means there is a $\frac{1}{2}$ or getting the same bit. Similarly if on the other hand ever gets the following state, and Alice is to measure, the other case would be: $ \cdot _{-1}\rangle = d \cdot _{-1}\rangle = d \cdot _{-1}\rangle = d \cdot _{-1}\rangle$ We get the dot products for the case. $c = \langle \cdot \mid \cdot \rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{3}}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{\sqrt{3}}{2}$ The chance of getting this same than the probability would be 100% of the current result. Since measurement that will be calculated by 80b would be in the following state, this is because 80b's qubit is in the same state a . Eve as entanglement is broken: $ \cdot _{-1}\rangle = d \cdot _{-1}\rangle = d \cdot _{-2}\rangle = d \cdot _{$

In [13]:	<pre># Eve generates random bases in [0, 1, 2] eve_bases = randint(3, size=n) # Alice generates random bases in [0, 1, 2] alice_bases = randint(3, size=n) # Bob generates random bases in [0, 1, 2] bob_bases = randint(3, size=n) # For storing the measurement result alice_bits = [] bob_bits = []</pre>
	<pre># Measure each qubit pair for i in range(n): result = execute(circuit_list[i], backend, shots=1, memory=True).result() # Alice and Bob extract their measurement results bit0 = int(result.get_memory()[0][0]) alice_bits.append(bit0) bit1 = int(result.get_memory()[0][1]) bob_bits.append(bit1) """ Step 3 """ # Extracting good bits and bad bits alice_goodbits = [] alice_badbits = []</pre>
	<pre>bob_goodbits = [] bob_badbits = [] for q in range(n): if alice_bases[q] == bob_bases[q]: # Add to the list of 'good' bits alice_goodbits.append(alice_bits[q]) bob_goodbits.append(bob_bits[q]) else: alice_badbits.append(alice_bits[q]) bob_badbits.append(bob_bits[q]) """ Step 4 """ # Calculating the same bit proportion of bad bits</pre>
In [14]: Out[14]:	cricure_rise(z).draw()
	$q_0 - H$ q_1 $c \stackrel{?}{=} 1$
In [15]:	<pre>""" Setting up """ n = 300 # For storing the n circuits generated circuit_list = [] for i in range(n): qc = QuantumCircuit(2,2) # Entangle qubits with Bell Circuit qc.h(0) qc.cnot(0,1) qc.barrier() qc.ry(math.pi*4/3, [0, 1]) qc.measure([0, 1], [0, 1]) # Restoration qc.ry(math.pi*2/3, [0, 1]) qc.barrier() qc.ry(math.pi*4/3, 0) qc.measure(0, 0) qc.measure(0, 0)</pre>
In [16]:	<pre>qc.ry(math.pi*2/3, 1) qc.measure(1, 1) qc.draw() circuit_list.append(qc)</pre>
	<pre># Measure each qubit pair for i in range(n): result = execute(circuit_list[i], backend, shots=1, memory=True).result() # Alice and Bob extract their measurement results bit0 = int(result.get_memory()[0][0]) alice_bits.append(bit0) bit1 = int(result.get_memory()[0][1]) bob_bits.append(bit1) """ Step 3 """ # Extracting good bits and bad bits alice_goodbits = [] alice_badbits = [] bob_goodbits = [] for q in range(n): if alice_bases[q] == bob_bases[q]: # Add to the list of 'good' bits</pre>
	<pre># Add to the list of 'good' bits alice_goodbits.append(alice_bits[q]) bob_goodbits.append(bob_bits[q]) else: alice_badbits.append(alice_bits[q]) bob_badbits.append(bob_bits[q]) """ Step 4 """ # Calculating the same bit proportion of bad bits length = len(alice_badbits) count = 0 for i in range(length): if alice_badbits[i] == bob_badbits[i]: count += 1 print("Same bit proportion:", count/length)</pre>
<pre>In [17]: Out[17]:</pre>	Same bit proportion: 0.2347417840375587 circuit_list[2].draw() Ry 2n/3 Ry 2n/3 Ry 2n/3 Ry 2n/3
In [18]:	<pre>Case 3: N-S-N → 1/4</pre> """ Setting up """ n = 300 # For storing the n circuits generated circuit_list = [] for i in range(n): qc = QuantumCircuit(2,2) # Entangle qubits with Bell Circuit qc.h(0) qc.cnot(0,1) qc.barrier() qc.ry(math.pi*2/3, [0, 1]) qc.measure([0, 1], [0, 1]) # Restoration qc.ry(math.pi*4/3, [0, 1])
In [19]:	<pre>qc.barrier() qc.ry(math.pi*4/3, 0) qc.measure(0, 0) qc.barrier() qc.ry(math.pi*2/3, 1) qc.measure(1, 1) qc.draw() circuit_list.append(qc)</pre> """ Step 2 """ # Eve generates random bases in [0, 1, 2] eve_bases = randint(3, size=n) # Alice generates random bases in [0, 1, 2] alice_bases = randint(3, size=n) # Bob generates random bases in [0, 1, 2]
	<pre>bob_bases = randint(3, size=n) # For storing the measurement result alice_bits = [] bob_bits = [] # Measure each qubit pair for i in range(n): result = execute(circuit_list[i], backend, shots=1, memory=True).result() # Alice and Bob extract their measurement results bit0 = int(result.get_memory()[0][0]) alice_bits.append(bit0) bit1 = int(result.get_memory()[0][1]) bob_bits.append(bit1)</pre> """ Step 3 """
	<pre># Extracting good bits and bad bits alice_goodbits = [] alice_badbits = [] bob_goodbits = [] bob_badbits = [] for q in range(n): if alice_bases[q] == bob_bases[q]: # Add to the list of 'good' bits alice_goodbits.append(alice_bits[q]) bob_goodbits.append(bob_bits[q]) else: alice_badbits.append(alice_bits[q]) bob_badbits.append(bob_bits[q]) """ Step 4 """ # Calculating the same bit proportion of bad bits length = len(alice_badbits)</pre>
In [20]: Out[20]:	q_0 — H — $\frac{R_Y}{2^{\pi/3}}$ — $\frac{R_Y}{4^{\pi/3}}$ — $\frac{R_Y}{4^{\pi/3}}$ — $\frac{R_Y}{4^{\pi/3}}$
	We have shown in the above that all the probabilities are expected and there is indeed a variation between each circuit and this demonstrates that the calculations are accurate and according to the expected values: The total percentage of the values of all configurations have been demonstrated by experiment to be: $V-S-N \rightarrow \frac{5}{8}*\frac{1}{3}=\frac{5}{24}$
	S-S-N $\rightarrow \frac{1}{4}*\frac{1}{3}=\frac{2}{24}$ N-S-N $\rightarrow \frac{1}{4}*\frac{1}{3}=\frac{2}{24}$ Thus, the probability equals $\frac{3}{8}$ Section 4 A Circuit for Grover's Algorithm Suppose $f(x_3,x_2,x_1,x_0)$ is 4-Boolean-variable function. It outputs 1 only when the input is $x_3=1,x_2=1,x_1=0,andx_0=0,$ otherwise it outputs 0. In this task, you should implement a Grover's circuit that reveals which input will cause $f(x_3,x_2,x_1,x_0)$ to output 1. Task 4.1 Roughly follow the notebook accompanying Lecture 10 to implement this circuit and conduct measurement. Run this circuit for at least
	1000 shots and plot the result. This time we'll use the above function as the oracle. As derived in the Lecture 10, the oracle can be achieved by an X-gate on, an MCT gate, and an X-gate again. The $2A-I$ can be implemented by $H^{\otimes 4}\times X^{\otimes 4}\times CCZ\times X^{\otimes 4}\times H^{\otimes 4}$. Moreover, we need to do the amplitude amplification twice to obtain a high-probability outcome when $n=4$. The number of amplitude amplifications to perform (denoted by k) is calculated by the following formula: $k=\mathrm{floor}\;(\frac{\pi}{4}\sqrt{2^n})$ Thus $k=3$, we can construct the circuit as follows. In the bottom to get the desired oracle, we must implement an X-gate on qubits 0 and 1. And then another X-gate to restore its previous values. This should allow for the value to come out on '1100' as expected.
In [27]: In [41]:	from qiskit.providers.aer import QasmSimulator from qiskit.visualization import plot_histogram %matplotlib inline # Needed by the construction of the CCZ gate from qiskit.circuit.library import MCMT import math # Construct a circuit with a 5-qubit input, and 4-bit measurement storage. qc = QuantumCircuit(5, 4) # Apply H-gates to q0, q1, q2 and q3 qc.h([0, 1, 2, 3]) # Calculate the number of amplitude amplifications
	<pre>k = math.floor(math.pi*math.sqrt(2**4)/4) print("k=", k) # Repeat k times for i in range(k): # Initialise q3 with 1> initial_state = [0, 1] qc.initialize(initial_state, 4) # Apply H-gate to q4 qc.h(4) # Insert the oracle # And add two barriers to enclose this oracle. qc.barrier() qc.x(0) qc.x(1) qc.mct([0, 1, 2, 3], 4)</pre>
	<pre>qc.x(0) qc.x(1) qc.barrier() # Apply the gates for 2A-I to q0, q1, q2 and q3 # Apply H and X gates first qc.h([0, 1, 2, 3]) qc.x([0, 1, 2, 3]) # Realise the CCZ gate via MCMT circuit qc = qc.compose(MCMT('z', 3, 1)) # Apply X and H gates again qc.x([0, 1, 2, 3]) qc.h([0, 1, 2, 3]) qc.h([0, 1, 2, 3])</pre> # Measure q0, q1, q2, q3
Out[41]:	<pre>qc.measure([0,1,2,3], [0,1,2,3]) # Draw the circuit qc.draw()</pre> k= 3
	$\begin{array}{c} c & \stackrel{4}{\longrightarrow} \\ q_0 & \stackrel{\times}{\longrightarrow} \\ q_1 & \stackrel{\times}{\longrightarrow} \\ q_2 & \stackrel{\times}{\longrightarrow} \\ q_3 & \stackrel{\times}{\longrightarrow} \\ q_4 & \stackrel{\times}{\longrightarrow} \\ q_4 & \stackrel{\times}{\longrightarrow} \\ q_5 & \stackrel{\times}{\longrightarrow} \\ q_6 & \stackrel{\times}{\longrightarrow} \\ q_7 & \stackrel{\times}{\longrightarrow} \\ q_8 & \stackrel{\times}{\longrightarrow} \\ q_8 & \stackrel{\times}{\longrightarrow} \\ q_9 & \times$
In [40]:	
	The counts for different outputs are: {'0011': 3, '1100': 965, '1001': 1, '0001': 4, '1010': 4, '0100': 2, '11
Out[40]:	1.00 0.965 0.75 0.75 0.25
	Task 4.2 Manually calculate the probability for the measurement outcome being '1100' given the above circuit. The probability obtained should roughly mach the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $ x_3\rangle$, $ x_2\rangle$, $ x_3\rangle$ is the derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $ x_3\rangle$, $ x_3\rangle$, $ x_3\rangle$, $ x_3\rangle$ is $ x_3\rangle$, $ x_3\rangle$, $ x_3\rangle$, $ x_3\rangle$ is $ x_3\rangle$, $ x$
	Task 4.2 Manually calculate the probability for the measurement outcome being '1100' given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $ \mathbf{z}_3\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_2\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_2\rangle$, $ \mathbf{z}_1\rangle$, $ \mathbf{z}_2\rangle$ and $ \mathbf{z}_1\rangle$ and $ \mathbf{z}_2\rangle$ and $ \mathbf{z}_1\rangle$ and $ \mathbf{z}_2\rangle$ and
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$
	Task 4.2 Task 4.2 Manually calculate the probability for the measurement outcome being "1100" given the above circuit. The probability obtained should roughly match the result from 4.1. It can be derived that, given the function described in the question, after flipping the sign for the first time, the joint state vector of $[x_3]$; $[x_2]$, $[x_3]$; $[x_3]$; $[x_4]$; $[x_5]$ becomes $[x_4]$, $[x_5]$; $[x_6]$ becomes $[x_6]$