MA-105 Tutorial-5 – Solutions

Daksh Maahor

August 2025

1. Find the volume of the solid obtained by revolving the given shaded region about the x-axis.

The given region is bounded by the curves:

$$x = y^2$$
, $x = 3y^2 - 2$

Their intersection points occur when:

$$y^2 = 3y^2 - 2 \implies 2y^2 = 2 \implies y = \pm 1$$

The limits for y are from -1 to 1. Revolving around the x-axis means each horizontal strip at height y generates a disk of radius y and thickness dx. However, since our equations are in terms of y, we use the shell method:

$$V = 2\pi \int_{y=-1}^{1} y(x_{right} - x_{left}) dy = 2\pi \int_{-1}^{1} y[(3y^2 - 2) - (y^2)] dy = 2\pi \int_{-1}^{1} y(2y^2 - 2) dx$$

Because the integrand is odd, the volume is twice the integral from 0 to 1:

$$V = 4\pi \int_0^1 y(2y^2 - 2)dy = 4\pi \left[\frac{y^4}{2} - y^2\right]_0^1 = 4\pi \left(\frac{1}{2} - 1\right) = -2\pi$$

Since volume is positive:

$$V = 2\pi$$

2. Prove that if $f:[a,b]\to\mathbb{R}$ is continuous, then $\exists c\in[a,b]$ such that

$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

and deduce that $\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t)dt = f(x)$.

Since f is continuous on [a, b], it attains its maximum M and minimum m. By the properties of integrals:

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

Dividing both sides by (b-a) gives:

$$m \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le M$$

By the Intermediate Value Theorem, there exists $c \in [a, b]$ such that:

 $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x)dx$

Multiplying both sides by (b-a), we obtain:

$$\int_{a}^{b} f(x)dx = (b-a)f(c)$$

To deduce $\frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f(t)dt = f(x)$, define $F(x) = \int_a^x f(t)dt$. For any h > 0,

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t)dt$$

By the Mean Value Theorem for integrals, there exists $c_h \in [x, x+h]$ such that:

$$\frac{F(x+h) - F(x)}{h} = f(c_h)$$

Taking $h \to 0$, continuity of f implies $c_h \to x$ and thus:

$$F'(x) = f(x)$$

3. Prove that the set $\left\{(x,y)\mid \frac{x^2}{44}-\frac{y^2}{37}<1\right\}$ is open.

Let $g(x,y) = \frac{x^2}{44} - \frac{y^2}{37}$. This function is continuous everywhere. The set can be written as:

$$S = g^{-1}((-\infty, 1))$$

Since $(-\infty, 1)$ is open in \mathbb{R} and g is continuous, the preimage S is open in \mathbb{R}^2 .

S is open.

4. Is the set $\{(x,y) \mid \frac{x^2}{4} + \frac{y^2}{9} < 1\}$ convex?

Let S be the given set. For any two points $(x_1, y_1), (x_2, y_2) \in S$, we must show that every point on the line segment joining them is also in S.

Consider $(x,y) = t(x_1,y_1) + (1-t)(x_2,y_2)$, where $0 \le t \le 1$. Then:

$$\frac{x^2}{4} + \frac{y^2}{9} \le t \left(\frac{x_1^2}{4} + \frac{y_1^2}{9}\right) + (1 - t) \left(\frac{x_2^2}{4} + \frac{y_2^2}{9}\right) < t + (1 - t) = 1$$

using convexity of the quadratic function. Hence the set is convex.

S is convex.

5. Prove that a polynomial in two variables is a continuous function.

Let $p(x,y) = \sum_{i,j} a_{ij} x^i y^j$. Each monomial $x^i y^j$ is continuous as it is a product of continuous functions. A finite linear combination of continuous functions is continuous, hence p(x,y) is continuous on \mathbb{R}^2 .

p is continuous everywhere.

6. Prove that if f(x,y) is continuous then the level set $\{(x,y) \mid f(x,y) = c\}$ is closed.

Let $A = \{(x, y) \mid f(x, y) = c\}$. Then $A = f^{-1}(\{c\})$. The singleton set $\{c\}$ is closed in R and f is continuous, so the preimage of a closed set under a continuous map is closed. Hence:

A is closed.

7. Sketch the level sets of $f(x, y, z) = x^2 + y^2 - z^2$.

We have $f(x, y, z) = k \implies x^2 + y^2 - z^2 = k$.

- For k > 0, we get a **two-sheeted hyperboloid**. - For k = 0, we get a **double cone**. - For k < 0, we get a **one-sheeted hyperboloid**.

These represent the level surfaces for f(x, y, z) = 1 and f(x, y, z) = -1, respectively.