

TERNA ENGINEERING COLLEGE

NERUL, NAVI MUMBAI

AN ISO 9001: 2000 | NBA ACCREDITATION

TEC 237

FH 2021 EXAMINATION

MCQ_TE-B_ML_R16_Block2

The name, username and photo associated with your Google account will be recorded when you upload files and submit this form.

Not ameythakur@ternaengg.ac.in? Switch account

* Required

MCQ	
Q1 *	
1.	Which of the following are examples of unsupervised learning? i. Modeling a spam filter from a set of labeled emails as spam and not spam ii. Given a set of news articles found on the web, group them into articles under different categories iii. Given a database of customer data, automatically discover market segments and group customers into different market segments iv. Given a database of patients diagnosed as either having diabetes or not, learn to classify new patients as having diabetes or not
Option A:	Both j and iv
Option B:	Both i and iii
Option C:	Both ii and iii
Option D:	Both iii and iv
O A	·
ОВ	
C	
OD	

Q2 * 2. Which of the following options are true about Machine Learning? Machine learning is automatic learning based on experience 2. Machine learning is programmed so that it learns, and past experience is not required. 3. It can learn and improve from the past experience without being explicitly programmed. 4. Machines can learn from past experience, but it must be explicitly programmed. Option A: 1 and 2 2 and 4 Option B: Option C: 1 and 4 3 and 4 Option D: D

Q3 *		
3.	Which of the following is an example of reinforcement learning?	
Option A:	Stock price prediction	
Option B:	Sentiment analysis	
Option C:	Customer segmentation	
Option D:	Robot in a maze	
О А		
В		
ОС		

△2 *

4. In Downhill Simplex method, if f(x) at the reflected point is greater than f(x) at worst point (N) then the new point is obtained by

Option A: Contraction
Option B: Multiple Reflection
Option C: Expansion
Option D: Multiple contraction

A

B

C

C

D

5.	In classical Newton's Method, having Hessian Matrix H, Gradient G, XK+1 is		
	computed using		
Option A:	$X_{K+1} = X_K + H_{K-1} * G_K$		
Option B:	$X_{K+1} = X_K - H_K^{t*}G_K$		
Option C:	$X_{K+1}=X_K-H_K*G_K$		
Option D:	$X_{K+1}=X_K+H_K*G_K$		

ABC

6. Which of the following is not true about the derivative free techniques?

Option A: They use evolutionary concepts.

Option B: The objective function has to be differentiable

Option C: These methods use an empirical approach for analysis.

Option D: Random search and Downhill Simplex are examples of Derivative free techniques.

A

B

C

C

D

Q7 *

7.	Given X=[1 2 3 4] W=[1 1 -1 -1] compute f(net) given lambda = 0.5 using		
	i. Bipolar continuous		
	ii. Unipolar continuous activation function		
Option A:	į. 0.7615	ii. 0.880	
Option B:	į. 0.880	ii. 0.7615	
Option C:	į0.7615	ii. 0.1192	
Option D:	į. 0.119	ii0.7615	

 \bigcap A

 \bigcap E

() [

8.	Hebbian learning is an example of and perceptron learning i		
	an example of		
Option A:	Feedforward supervised learning, supervised binary response		
Option B:	Feedforward unsupervised learning, supervised binary response		
Option C: Option D:	Feedback supervised learning, unsupervised binary response Feedback unsupervised learning, supervised multivariate response		
option D.	Tecourie disapervises realing, supervises montraline response		
) A			
_			
B			
\sim 0			
) c			
D			
20.*			
Q9 *			
Q9 *			
9.	is a type of learning rule which works with a layer of neurons.		
9. Option A:	Perceptron		
9. Option A: Option B:	Perceptron Hebbian		
9. Option A:	Perceptron		
Option A: Option B: Option C: Option D:	Perceptron Hebbian Widrow Hoff		
9. Option A: Option B: Option C:	Perceptron Hebbian Widrow Hoff		
9. Option A: Option B: Option C: Option D:	Perceptron Hebbian Widrow Hoff		
9. Option A: Option B: Option C: Option D:	Perceptron Hebbian Widrow Hoff		
9. Option A: Option B: Option C: Option D: A B	Perceptron Hebbian Widrow Hoff		
9. Option A: Option B: Option C: Option D:	Perceptron Hebbian Widrow Hoff		

Description B: Both A and B are false Option B: Both B and C are false Option D: Only D is false A B C B C B C B C C B C C D

Q11 * The graph below represents a regression line predicting Y from X. The values on 11. the graph shows the residuals for each predicted value. Use this information to compute the Sum of squared errors (SSE) Option A: 4.02 Option B: 3.02 Option C: 1.01 Option D: 0) D

Q12 *

12.				
			Actual True	Actual False
	Predicted Tru	ie	156	20
	Predicted Fal	se	14	50
	Compute the s	pecificity and	I the precision?	
Option A:	Specificity =	88.6%	Precision = 71.4%	
Option B:	Specificity =	71.4 %	Precision = 88.6%	
Option C:	Specificity =	28.5%	Precision = 11.36%	
Option D:	Specificity =	71.4%	Precision = 11.36%	

O A

B

O C

O D

Q13 *

13.	Which is not true statement about Kernel Trick
Option A:	A Kernel Trick is a method where a Non Linear data is projected onto a higher dimension space so as to make it easier to classify the data where it could be linearly divided by a plane.
Option B:	A Kernel Trick is a method of transforming the original (non-linear) input data into a higher dimensional space (as a linear representation of data).
Option C:	The Kernel Trick allows us to take linear Support Vector Machines and extend their functionality to classify non-linear data sets.
Option D:	A Kernel Trick is a method which can easily separates the data points in a lower dimensionality space

O A

Q14 *

14.	The difference between naïve Bayesian classifier and Bayesian belief networks is	
Option A:	The joint conditional probability distributions are considered in Bayesian Belief	
	networks	
Option B:	The joint conditional probability distribution is not considered in Bayesian Belief	
	networks	
Option C:	Class conditional independence is always considered in Bayesian Belief	
	networks	
Option D:	Class conditional independence is sometimes considered in Bayesian Belief	
	Networks	

O A

ОВ

C

O D

Q15 *

15.

Today's weather | Tomorrow's weather Initial Probability values

Sunny 0.25

Rainy 0.75

Foggy 0.30

Given that today is sunny what is the probability that tomorrow is sunny and the day after is rainy

Option A:	0.01
Option B:	
Option C:	0.04
Option D:	0.32

- $\bigcap A$
- \bigcap E
- O D

Q16 *

16.	What is true about Markov Property			
	 I. Markov Property is very useful for explaining events, and it cannot be the true model of the underlying situation in most cases. II. The state of the system at time t+1 depends only on the state of the system at time t III. The advantages of Markov property are complexity and forecasting accuracy. IV. Markov property is used to forecast the value of a variable whose predicted value is influenced only by its current state 			
Option A:	į and ii			
Option B:	ii and iii			
Option C:	ii and iv			
Option D:	iii and iv			
_ A				
В				
O c				
O D				

Q17 *

17.	A square matrix is	if all eigen values are
	Negative definite, positive	
Option A:	Both ii and j are correct	
Option B:	Both iii and iv are correct	
Option C:	All four options are wrong	
Option D:	Either iii or iv is right	
	1	

	. ,
U) F

ОВ

O c

O D

Q18 *

18.	Identify the correct options regarding Principal Component Analysis (a) Principal component analysis (PCA) can be used with variables of any mathematical types: quantitative, qualitative, or a mixture of these types (b) The major principal component axis has dimensions having the maximum variance. (c) The major principal component axis has dimensions having the minimum variance (d) The most information is retained among the top few principal axes.
Option A:	Both a and b
Option B:	Both b and d
Option C:	Both a and d
Option D:	Both c and d

 $\bigcup P$

() E

 \bigcirc

Q19 *

19.	Compute the eigen values for matrix $A = \begin{bmatrix} 7 & 3 \\ 3 & -1 \end{bmatrix}$
Option A:	$\lambda 1 = 8; \ \lambda 2 = -2$
Option B:	$\lambda I = -8; \ \lambda 2 = 2$
Option C:	$\lambda I = 4; \lambda 2 = -4$
Option D:	$\lambda I = -4; \ \lambda 2 = 4$

- A
- ОВ
- O C
- O D

Q20 *

20.	1 2 2 MANYAN
	In the graphs 1, 2 and 3 which is best fitted and which is overfitted?
Option A:	2 is best-fitted and 1 is over-fitted
Option B:	1 is best-fitted and 2 is over-fitted
Option C:	2 is best-fitted and 3 is over-fitted
Option D:	1 is best-fitted and 3 is over-fitted

- O A
- ОВ
- C
- O D

Submit

Never submit passwords through Google Forms.

This form was created inside of Terna. Report Abuse

Google Forms