PHSX 425, HW 07

William Jardee

October 28, 2021

Question 1:

a) We are given

$$\rho(\mathbf{r},t) = \rho(\mathbf{r},0)e^{-\sigma t/\epsilon_0}$$

Thus,

$$\rho(\mathbf{r},0) = \frac{Q}{\frac{4}{3}\pi a^3}$$

$$\rho(\mathbf{r},t) = \frac{3Q}{4\pi a^3} e^{-\sigma t/\epsilon_0}$$
(1)

b) We can use Guass's Law to calculate the E

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\varepsilon_0} \int_V \rho \, dV$$

$$E(4\pi r^2) = \frac{3Q}{4\pi a^3} \frac{4\pi r^3}{3\varepsilon_0} e^{-\sigma t/\varepsilon_0}$$

$$\mathbf{E}(\mathbf{r},t) = \left\{ \begin{array}{ll} \frac{Qr}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} \hat{r} & r \leq a \\ \frac{Q}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} \hat{r} & r \geq a \end{array} \right\}_1$$
 (2)

Using the fact that $J = \sigma E$:

$$\mathbf{J}(\mathbf{r},t) = \left\{ \begin{array}{ll} \frac{Q\sigma r}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} \hat{r} & r \leq a \\ \frac{Q\sigma}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} \hat{r} & r \geq a \end{array} \right\}$$
(3)

Finally, using $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$

$$\nabla \times \mathbf{B} = \left\{ \begin{array}{l} \mu_0 \left(\frac{Q\sigma r}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} + \varepsilon_0 \frac{Qr}{\varepsilon_0 4\pi a^3} \frac{-\sigma}{\varepsilon_0} e^{-\sigma t/\varepsilon_0} \right) \hat{r} & r \leq a \\ \mu_0 \left(\frac{Q\sigma}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} + \varepsilon_0 \frac{Q}{\varepsilon_0 4\pi a^2} \frac{-\sigma}{\varepsilon_0} e^{-\sigma t/\varepsilon_0} \right) \hat{r} & r \geq a \end{array} \right\}$$

¹Sorry that these aren't boxed. I tried to do that boxing that I have done in the past. However, with doing a piecewise it wasn't playing nice. If I do LaTeX solutions in the future I will get that figured out.

$$\nabla \times \mathbf{B} = 0 \tag{4}$$

We already know from Maxwell's equations that $\nabla \cdot \mathbf{B} = 0$. Putting these two together, we know that

$$\mathbf{B}(\mathbf{r},t) = 0$$

c) Checking Maxwell's Equations:

• For
$$x \le a$$
: $\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{Qr}{4\pi a^3 \varepsilon_0} e^{-\sigma t/\varepsilon_0} \right) = \frac{1}{r^2} \frac{3r^2}{4\pi a^3 \varepsilon_0} e^{-\sigma t/\varepsilon_0} = \frac{\rho}{\varepsilon_0}$
For $x > a$: $\nabla \cdot \mathbf{E} = \frac{1}{r^2} \frac{\partial}{\partial t} \left(\frac{Q}{4\pi \varepsilon_0} \right) = 0$

- $\nabla \cdot \mathbf{B} = \frac{1}{r \sin \theta} \frac{\partial \mathbf{B}_{\phi}}{\partial \phi} = 0$
- $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} = 0$

• For
$$x \leq a$$
: $\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) = \mu_0 \left(\frac{Q\sigma r}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} + \varepsilon_0 \left(\frac{-\sigma}{\varepsilon_0} \frac{Qr}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} \right) \right) = 0$
For $x < a$: $\nabla \times \mathbf{B} = \mu_0 \left(\frac{Q\sigma}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} + \varepsilon_0 \left(\frac{-\sigma}{\varepsilon_0} \frac{Q}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} \right) \right) = 0$

So, it seems that all our equations are consistent with Maxwell's Equations.

Question 2:

a) We know that $\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H})$. So, if $\mathbf{H} = 0$

$$\mathbf{B} = M\hat{z}$$

b) We can use the equation that $\mathbf{J} = en\mathbf{v}$; where e is the charge of an electron, n is number volume-density, and \mathbf{v} is the average velocity. Then (remembering Eq. 3)

$$J = env$$

$$\mathbf{v} = \frac{\mathbf{J}}{ne} = \left\{ \begin{array}{ll} \frac{Q\sigma r}{\varepsilon_0 4\pi a^3 e n} e^{-\sigma t/\varepsilon_0} \hat{r} & r \le a \\ \frac{Q\sigma}{\varepsilon_0 4\pi a^2 e n} e^{-\sigma t/\varepsilon_0} \hat{r} & r \ge a \end{array} \right\}$$
 (5)

c) Putting together Eq. 3 and Eq. 5 and recognizing that $\mathbf{v} \times \mathbf{B} = -|\mathbf{v}||\mathbf{B}|\sin(\theta)\hat{\phi}$

$$\mathbf{J} = \sigma \left\{ \begin{array}{l} \frac{Q\sigma r}{\varepsilon_0 4\pi a^3} e^{-\sigma t/\varepsilon_0} \left(\hat{r} - \frac{M\sin(\theta)\hat{\phi}}{ne} \right) & r \le a \\ \frac{Q\sigma}{\varepsilon_0 4\pi a^2} e^{-\sigma t/\varepsilon_0} \left(\hat{r} - \frac{M\sin(\theta)\hat{\phi}}{ne} \right) & r \ge a \end{array} \right\}$$
 (6)