

Binary Trees

SAMUEL GINN COLLEGE OF ENGINEERING

Binary Trees

$Binary\,trees\,are\,trees\,of\,order\,2.$

Examples...

1)

5)

Implementation strategies

Node-and-link based

```
class BTN<T>
{
          This
        T element; implementation
        BTN left; matches our
        BTN right; conceptual picture
}
          of what a tree looks
          like.
```


Array based

```
-Store the root at index 0
-For a node stored at index i
-Left child at 2i + 1
-Right child at 2i + 2
-Parent at (i-1)/2
```


This implementation could use far too much space. Think about a right skewed tree ...

Recursive definition

A binary tree is a tree that is either empty or it is a single node that has two binary trees as its left and right subtrees.


```
if (isEmpty()) {
    // do something trivial
} else {
    // In some order:
    // do something with the node
    // recursively process the left subtree
    // recursively process the right subtree
}
```

Computing height

Height = length of the longest path from a given node to a descendent leaf

Think recursively...

Base case

(empty)

No height (height = 0)

Some define the height of an empty tree as -1. This makes no intuitive sense; our way is better.

Recursive case

The node (N) contributes 1 to the height

Calculate the height of the left subtree (L)

Calculate the height of the right subtree (R)

Height of this node is 1 + maximum of h(L) and h(R)

Computing height

Height = length of the longest path from a given node to a descendent leaf

Think recursively...

Base case

(empty)


```
int height(Node n) {
    if (n == null) {
        return 0;
    } else {
        int leftHeight = height(n.left);
        int rightHeight = height(n.right);
        return 1 + Math.max(leftHeight, rightHeight);
    }
}
```

Computing height

Height = length of the longest path from a given node to a descendent leaf

Think recursively...

Base case

(empty)


```
int height(Node n) {
    if (n == null) {
        return 0;
    }
    int leftHeight = height(n.left);
    int rightHeight = height(n.right);
    return 1 + Math.max(leftHeight, rightHeight);
}
```

Searching in a tree

Search the tree for a particular element. Return true if the value is found, false otherwise.

Think recursively...

Base case

(empty)


```
boolean search(Node n, Object target) {
    if (n == null) {
        return false;
    }
    if (n.element.equals(target)) {
        return true;
    }
    boolean found = search(n.left, target);
    if (!found) {
        found = search(n.right, target);
    }
    return found;
}
```

Traversing a tree

Systematically visit each node in the tree.

Think recursively...

Base case

(empty)

Nothing to traverse

Since there's no action to take in the base case, let the if statement check for it **not** being the base case.

Recursive case

In some order:

- visit the root node of the subtree (N)
- recursively visit the left subtree (L)
- recursively visit the right subtree (R)

NLR

NRL

LNR

LRN

RNL

RLN

Traversing a tree

Systematically visit each node in the tree.

Think recursively...

Base case

(empty)

Nothing to traverse

Since there's no action to take in the base case, let the if statement check for it **not** being the base case.

RLN

Recursive case

In some order:

- visit the root node of the subtree (N)
- recursively visit the left subtree (L)
- recursively visit the right subtree (R)

NLR Preorder
NRL
LNR Inorder
LRN Postorder
RNL

Traversing a tree

Systematically visit each node in the tree.

Think recursively...

Base case

(empty)


```
void preorder(Node n) {
    if (n != null) {
        visit(n);
        preorder(n.left);
        preorder(n.right);
    }
}
```

Binary tree traversals

Recursive Case...

Preorder: NLR

Postorder: LRN

Inorder: LNR

Preorder: ABDGHEICFJ

Postorder: G H D I E B J F C A

Inorder: GDHBEIAFJC

Binary tree traversals

Recursive Case...

Preorder: NLR

Postorder: LRN

Inorder: LNR

Preorder: / * + 2 4 2 - 6 3

Postorder: 2 4 + 2 * 6 3 - /

Inorder: 2 + 4 * 2 / 6 - 3

Level order

Preorder, inorder, and postorder are all **depth-first** strategies. A **breadth-first** strategy would visit the nodes level by level (i.e., top to bottom, left to right).

Level-order (breadth-first) traversal

```
Let q be an initially empty FIFO queue.
q.enqueue(root);
while (q is not empty) {
    n = q.dequeue();
    visit(n);
    if (n has a left child) {
        q.enqueue(n.left);
    }
    if (n has a right child) {
        q.enqueue(n.right);
    }
}
```

If "visit" prints the node elements, then the output for this tree would be: A B C D E F G H I J