

Programação Orientada a Objetos Exercícios

Exercício 01 - Classe Livro

Implemente a classe Livro, conforme o diagrama a seguir. No programa principal, crie dois objetos da classe Livro.

Atributos:

- titulo
- autor
- quantidade_paginas

Métodos:

- Essa classe não possui métodos

Veja abaixo um trecho de programa que utiliza a classe:

```
livro1 = Livro("Harry Potter e a Pedra Filosofal", "J. K. Rowling", 264)
livro2 = Livro("Poeira em alto mar", "Alan Bida", 100)
```

Exercício 02 - Classe Triangulo

Crie uma classe que representa um triângulo.

Triangulo
lado_a
lado_b
lado_c
calcular_perimetro

Atributos:

- lado_a
- lado_b
- lado_c

Métodos:

- **calcular_perimetro**: retorna o perímetro do triângulo (soma dos três lados).

Crie um programa que utilize esta classe. O programa deve pedir ao usuário que informe as medidas dos três lados de um triângulo. Depois deve criar um objeto com essas medidas e exibir seu perímetro.

Exercício 03 - Classe Televisão

Implemente a classe Televisao.

Televisao
canal volume
aumentar_volume() diminuir_volume() alterar_canal(canal)

Atributos:

- canal (o canal inicial da tv deve ser None)
- volume (o volume inicial da tv deve ser zero)

Métodos:

- **aumentar_volume**: aumenta o nível de volume em uma unidade.
- diminuir_volume: diminui o nível de volume em uma unidade.
- alterar_canal: recebe o número do canal que será sintonizado e altera o canal da tv.

Faça um programa para criar um objeto da classe Televisao e testar a sua classe. Veja abaixo um trecho de programa que utiliza a classe:

```
tv = Televisao()
tv.alterar_canal(5)
tv.aumentar_volume()
tv.aumentar_volume()
tv.aumentar_volume()
tv.diminuir_volume()
print(f'A tv está no canal {tv.canal}')  # A tv está no canal 5
print(f'A tv está no volume {tv.volume}')  # A tv está no volume 2
```

Exercício 04 - Classe Funcionário

Implemente uma classe Funcionario.

Atributos:

- nome
- salario

Métodos:

- **aumentar_salario**: recebe como parâmetro de entrada um percentual e altera o salário do funcionário, de acordo com o percentual recebido.

Crie um programa que utilize esta classe.

Ele deve pedir ao usuário o nome e o salário do funcionário e criar um objeto da classe Funcionario. Depois, deve solicitar ao usuário o percentual de aumento e executar o método aumentar salario. Na sequência deve imprimir o salário do funcionário atualizado.

Exercício 05 - Classe Carro

Implemente uma classe Carro

Carro
quantidade_combustivel
adicionar_combustivel(litros)
obter_combustivel()
andar(distancia)

Atributos:

 quantidade_combustivel (quantidade de litros de combustível no tanque do carro): a quantidade inicial deve ser zero.

Métodos:

- **adicionar_combustivel**: recebe uma quantidade de litros de combustível para abastecer o tanque.
- **obter_combustivel**: retorna a quantidade atual de combustível.
- andar: recebe uma distância em km e simula o ato de dirigir o veículo por essa distância, reduzindo o nível de combustível no tanque de gasolina. Considere que o veiculo consome 0.20 litros de combustivel por quilômetro percorrido.

Faça um programa para testar a classe Carro. Veja abaixo um trecho de programa que utiliza a classe:

```
meu_carro = Carro()
meu_carro.adicionar_combustivel(20)  # Adiciona 20 litros
meu_carro.andar(80)  # Andar 80 quilômetros
print('Litros de combustível no tanque:', meu_carro.obter_combustivel())
# deve imprimir: "Litros de combustível no tanque: 4.0"
```