

Laborationsinstruktion

ELEKTRONIK

Skapad: Nordlander Aug. 85

138 - Transistorer och förstärkare

Reviderad: nrr Nov. 07

Laborationen omfattar följande moment:

- IC-UCE-karaktäristikor
- UCE-IB-överföringsfunktionen
- Arbetslinje och arbetspunkt
- IC-IB-karaktäristikan och strömförstärkning
- Inställning av arbetspunkten hos ett transistorsteg
- Transistorförstärkare
 - Förstärkningen hos en transistorförstärkare
 - Frekvensgången för en transistorförstärkare

Åter senast:

Namn		Inl. datum	Kommentarer	
Gruppnr.	Period	Läsår		
Kurs		Kurskod		
Handledare				
Godkänd den		Signum		

Syfte

Syftet med denna laboration är att lära sig hantera en bipolär transistor av NPN-typ.

Likspänningskopplingar utförs och karaktäristiska kurvor uppmäts.

Avslutningsvis så görs inställning av arbetspunkt samt mätningar av förstärkning och bandbredd hos ett transistorsteg.

Allmänna instruktioner

Laborationen skall utföras i grupper om maximalt 2 studenter. En fullständig rapport per laborationsgrupp skall lämnas in, kompletterad med nödvändiga diagram och figurer. Denna instruktion är endast till för att göra noteringar i och ska inte lämnas in.

Instruktioner

1 I_C-U_{CE}-karaktäristikor

Koppla upp en NPN-transistor, exempelvis BC108 eller BC547, enligt figur 1.

OBS! Innan spänningarna slås på skall kopplingen noga kontrolleras och spänningarna U1 och U2 nedvridas till noll!

figur 1

I I_{C} - U_{CE} -diagrammet är I_{B} parameter, dvs man ställer in ett värde på U_{1} , som ger konstant I_{B} . U_{2} varieras, I_{C} varierar då till följd av ändringarna på U_{2} .

Mät spänningar med oscilloskop och strömmar med exempelvis digitala universalinstrument.

Observera att I_B << I_C

Transistorns pinnkonfiguration återfinns i t ex ELFA-katalogen.

Kortslut resistorn R_C . Ställ U_{CE} på 5V och avläs I_B då I_C = 0.5 mA, respektive 1.0 mA och 1.8 mA.

$$I_{C} = 0.5 \text{ mA} \qquad I_{B} =$$

$$I_{C} = 1.0 \text{ mA} \qquad I_{B} =$$

$$I_{C} = 1.8 \text{ mA} \qquad I_{B} =$$

Använd sedan dessa värden på I_B vid upptagningen av karaktäristikorna.

Avlägsna kortslutningen över R_C.

Ändra U_{CE} i jämna steg om 1V från 0V upp till 10V. Kontrollera under mätningens gång att inte I_B ändrar sig, om så är fallet måste U, justeras.

Rita ett diagram med de tre kurvorna och ange vid varje kurva vilket värde på I_B som använts. Behåll uppkopplingen till senare uppgifter.

2 Arbetslinje och arbetspunkt

Denna uppgift är en beräkningsuppgift och behöver inte kopplas upp!

Arbetslinjen för kopplingen är en rät linje i I_{C} - U_{CE} -diagrammet (från uppgift 1!) som skär axlarna i bestämda punkter. Skärningspunkten på U_{CE} -axeln är det maximala spänningsvärde (matningsspänningen) i kretsen som kan hamna över CE-övergången, dvs då ingen spänning ligger över kollektorresistorn. Skärningen av I_{C} -axeln är då den maximala strömmen uppnåtts, dvs då hela spänningen ligger över kollektorresistorn.

Rita en transistorkoppling som bara innehåller transistor, kollektorresistor och kollektormatning där:

$$E = 10V$$
 och $R_C = 4.7 \text{ k}\Omega$

Bestäm arbetslinjens ekvation med insatta värden på R_{C} och E.

Arbetspunkten bör lämpligen väljas där arbetslinjen skär någon transistorkurva för $U_{CE} = E/2$. Rita en arbetslinje och markera arbetspunkten i $I_{C-}U_{CE-}$ diagrammet.

$$U_{CE} = \hspace{1cm} I_{C} = \hspace{1cm} I_{B} = \hspace{1cm}$$

Om ingen transistorkurva finns tillgänglig enligt ovanstående råd skall en ny transistorkurva tas fram med hjälp av interpolering.

3 U_{CE}-I_B-överföringsfunktionen

Använd samma uppkoppling som i uppgift 1. För att se hur pass linjärt utsignalen U_{CE} beror av signalen I_B brukar en överföringskurva uppmätas. U_{CE} bestäms alltså som funktion av I_B med konstanta värden på R_C och E (se föregående uppgift). Tag upp överföringsfunktionen genom att variera I_B och rita in den i ett diagram. Observera att basströmmar är små och därför bör I_B hållas under 15 μA .

Markera i diagrammet var man kan finna det linjära området.

4 I_C-I_B-karaktäristikan och strömförstärkning

Behålll uppkopplingen från förra uppgiften med instrument inkopplade så att strömmarna I_B och I_C kan mätas samtidigt. Tag upp I_C som funktion av I_B i en graf.

 I_B bör maximalt ökas till 10 - 15 $\mu A.$

Kommentera utseendet hos kurvan och beräkna strömförstärkningsfaktom $\Delta I_C/\Delta I_B$ i de områden som kan vara av intresse.

5 Inställning av arbetspunkten hos ett transistorsteg

Anslut spänningsaggregatet till kopplingsplattan med den bipolära transistorn BC547B. Anslut ett dekadresistor, ställt på 5 k Ω , som kollektor motstånd R_C . Sätt in ett basresistor R_B på 390 k Ω och ett emitterresistor R_E på 390 Ω . Kondensatorerna behöver inte vara inkopplade. Justera R_C så att V_{CE} blir 10 V.

Varför ska V_{CE} vara just 10V?

Byt ut R_B och mät V_E och justera R_C så att V_{CE} blir 10 V för varje värde.

$R_B = 390 \text{ k}\Omega$	ger	$V_E =$	och	$R_{\rm C} =$
$R_B=470\;k\Omega$	ger	$V_{E} \! = \!$	och	$R_C =$
$R_B=560\;k\Omega$	ger	$V_{\rm E} \! = \!$	och	$R_C =$
$R_B=680\;k\Omega$	ger	$V_{\rm E} \! = \!$	och	$R_C =$
$R_B=820\;k\Omega$	ger	$V_{\rm E} =$	och	$R_C =$
$R_B = 1 M\Omega$	ger	$V_{\rm E}$ =	och	$R_C =$

figur 2

Välj det värde på R_B då V_E är närmast 4 V och trimma åter in V_{CE} till 10 V genom att ändra på dekadresistorn. Vilket R_C behövs för att få det?

6 Transistorförstärkare

6.1 Förstärkningen hos en transistorförstärkare

Använd samma koppling som i uppgift 5, men koppla in vanlig resistor med närmast möjliga standard värde istället för dekadresistorn. Kondensatorerna kan vara av tantaltyp $C_1 = C_2 = 1$ μF . Ställ in funktionsgeneratorns utgång på några mV och anslut utgången till förstärkarens ingång. Om funktionsgeneratorn inte kan leverera så små spänningar kopplas en spänningsdelare till förstärkarens ingång. Därefter ansluts utgången till oscilloskopet (kanal A eller B). Tongeneratorns frekvens inställes på 1000 Hz. Den "lediga" oscilloskopkanalen ansluts till förstärkarstegets ingång. Justera oscilloskopinställningarna så att två sinuskurvor syns på skärmen. Mät upp de båda spänningarnas topp-till-toppvärden och fasvinkeln mellan dem. Räkna ut spänningsförstärkningen.

Sätt in en avkopplingskondensator , $\,C=100~\mu F$, parallellt med R_E enligt figur 3 och upprepa mätningarna. Om förstärkaren klipper måste insignalen minskas.

	Utan avkopplings	Med avkopplings	
	kondensator	kondensator	
Ingångsspänningen U _{in}			mV _{tt}
Utgångsspänningen U _{ut}			V_{tt}
Spänningsförstärkningen			gånger
Spänningsförstärkningen			dB
Fasvinkeln mellan in- och			
utgångsspänning:			grader

figur 3

6.2 Frekvensgången för en transistorförstärkaren

Behåll uppkopplingen i föregående uppgift. Pricka in förstärkningen i dB^1 som funktion av frekvensen i ett diagram. Använd förstärkningen vid 1000 Hz som referens, dvs A=0 dB vid 1000 Hz. Diagrammets frekvensaxel ska vara logaritmisk.

	Utan avkopplings	Med avkopplings	
	kondensator	kondensator	
Förstärkarens undre gränsfrekvens			Hz
Förstärkarens övre gränsfrekvens			Hz
Bandbredd			Hz
Frekvensgången linjär			
(±1 dB) mellan			Hz

Kommentarer?

138 - Transistorer och förstärkare 7 2007-11-15

 $^{^{1}} A_{dB} = 20 \log(V_{ut}/V_{in})$