1 Algebra

Let $F: C \to C$ be an endofunctor on category C. An F-algebra is a pair (A, φ) , where A is an object and $\varphi: FA \to A$ is an arrow in the category C. The object A is the *carrier* and the functor F is the *signature* of the algebra.

2 Algebra Homomorphism

Let (C, φ) and (D, ψ) be two F-algebras. An F-homomorphism from (C, φ) to (D, ψ) is an arrow $f: C \to D$ in the category C, such that $f \circ \varphi = \psi \circ Ff$. This means that the following diagram commutes.

Figure 1: f is the algebra homomorphism

2.1 What does it mean for a diagram to commute

In the above diagram, each path is an arrow. If for every pair of vertices (A and B) in a diagram for a particular category C, all paths between A and B are equal, then the diagram commutes. Path equality means equality of arrows, since every path is an arrow. In the diagram above, we have 2 paths between vertices FC and D. They are equal means $f \circ \varphi$ (the top path) is equal to $\psi \circ Ff$ (the bottom one), which is precisely the criterion for homomorphism of the 2 algebras defined above.

3 Category of Algebras

If F is a functor $F:C\to C$, then category of F-algebras over C, denoted by Alg(F) is defined as follows :-

- Objects as F-algebras
- Arrows as F-homomorphisms

- Identities as in C
- Composition as in C

3.1 Properties of Alg(F)

For this definition to be valid, we need to have the following conditions satisfied:

• Identities must be F-homomorphisms, i.e. the following diagram should commute for each ϕ .

Figure 2: Identities as F-homomorphisms

This should hold if $id_A \circ \varphi = \phi \circ F(id_A)$, which is true since F is a functor and $F(id_A) = id_{FA}$.

- Composition of F-algebras must preserve F-homomorphisms. Consider the following diagram, where we have
 - 3 F-algebras, φ_1 , φ_2 and φ_3 as the signatures
 - f and g are the F-homomorphisms between $\varphi_1 \varphi_2$ and $\varphi_2 \varphi_3$ respectively

In order to prove that the composition of the F-algebras is a homomorphism, we need to show that the outer diagram commutes.

Proof. f is an F-homomorphism $\Rightarrow f \circ \varphi_1 = \varphi_2 \circ F(f) \dots (1)$ g is an F-homomorphism $\Rightarrow g \circ \varphi_2 = \varphi_3 \circ F(g) \dots (2)$

```
 \begin{split} &(g \circ f) \circ \varphi_1 \\ &= g \circ f \circ \varphi_1 \\ &= g \circ \varphi_2 \circ F(f) \text{ (from (1))} \\ &= \varphi_3 \circ F(g) \circ F(f) \text{ (from (2))} \\ &= \varphi_3 \circ F(g \circ f) \text{ ($F$ is a functor)} \end{split}
```


Figure 3: F-homomorpisms preserved under composition

Hence the outer diagram commutes. Also intuitively:

- diagram (1) commutes (f is an F-homomorphism)
- diagram (2) commutes (g is an F-homomorphism)
- diagram (3) commutes (by composition)
- diagram (4) commutes (F is a functor)

Hence the outer diagram commutes and $g\circ f$ is also an F-homomorphism.

4 Initial object

An initial object of a category C is an object I in C such that for every object X in C, there exists precisely one *unique* arrow of type $I \to X$. Here are examples of initial objects in some categories:

- The empty set is the unique initial object in the category of sets since $\{\} \to A$ is the empty function for any object A in the set
- In the category of semigroups, the empty semigroup is the unique initial object

It's not mandatory that every category has an initial object. For example, a non-empty set does not have an initial object.

4.1 Uniqueness of initial objects

If I1 and I2 are both initial objects in the category C, then there's exactly one unique arrow $I1 \rightarrow I2$ and that arrow is an isomorphism. i.e. the initial objects are uniquely isomorphic.

```
Proof. I1 is an initial object in C \Rightarrow for each object X in C, there's a unique arrow I1 \to X \Rightarrow For X = I2 (substituting I2 for X), we have the unique arrow f: I1 \to I2 I2 is also initial \Rightarrow for each object X in C, there's a unique arrow I2 \to X \Rightarrow For X = I1 (substituting I1 for X), we have the unique arrow g: I2 \to I1 f \circ g = I2 \to I2 (by composition) g \circ f = I1 \to I1 (by composition)
I2 \to I2 = id_{I2} \text{ and } I1 \to I1 = id_{I1} \text{ (by initiality)}
\Rightarrow f \circ g = id_{I2} \text{ and } g \circ f = id_{I1}
```

 \Rightarrow There's a bidirectional inverse between f and g since the arrow $I1 \to I2$ has an inverse arrow $I2 \to I1$. Hence the unique arrows f and g establish the unique isomorphism.

But there's something more. When we say that 2 objects are isomorphic, there may be many isomorphisms establishing that fact between the two objects. But for initial objects, there's only one - hence all initial objects are indistinguishable. So we call *the* initial object rather than an initial object of a category. The initial object is usually denoted by 0 and the unique arrow $0 \to X$ is denoted by !(rev)X (gnab).

5 Terminal object

A terminal object of a category C is an object T in C if for every object X in C there exists a unique arrow $X \to T$. A category may have more than one terminal objects, but all are isomorphic (like initial objects) and hence we call the terminal object. The terminal object is usually denoted by 1 and the unique arrow $X \to 1$ is denoted by !X (bang).

Here are examples of terminal objects in some categories:

- Every one-element set (singleton) is a terminal object in this category
- In the category of semigroups, any singleton semigroup is a terminal object

It's not mandatory that every category has a terminal object. For example, The category of simple graphs ¹ does not have a terminal object.

 $^{^1\}mathrm{A}$ simple graph is an undirected graph that has no loops and no more than one edge between any two different vertices

6 Initial Algebra

An initial F-algebra is an initial object in the category of F-algebras (Alg(F) defined above). Let's look at it in a bit more detail. In Alg(F) if there exists an F-algebra $(\mu F, in)$ such that for any F-algebra (C, φ) in that category, there exists a unique arrow $\{\varphi\}: \mu F - > C$ making the following diagram commute.²

Figure 4: $\{\varphi\}$ is the catamorphism

In the diagram, the unique arrow $\{\varphi\}$ is known as *Catamorphism*. We say that the initial algebra $(\mu F, in)$ is an initial object in the category Alg(F), and the catamorphism $\{\varphi\}$ is the mediating arrow out of it.

6.1 Properties of initial F-algebra

Let $(\mu F, in)$ be an initial F-algebra. Here are some of the laws that apply to initial algebras.

- 1. Cancellation: For any F-algebra $\varphi : FC \to C$, $\{\varphi\} \circ in = \varphi \circ F\{\varphi\}$ (follows straight from the diagram)
- 2. **Reflection:** $id = \{in\}$. Follows from the diagram below, since $\mu F \to \mu F$ is the id of the algebra.

Figure 5: Reflection in initial F-algebra

 $^{^2\}mathrm{Isn't}$ this the precise definition of an initial object?

3. **Universality:** The diagram for initial F-algebra commutes and we get the following equivalence:

$$f \circ in = \varphi \circ Ff \Leftrightarrow f = \{\varphi\}$$

This is known as the *Universal Property* and finds extensive use in proving various properties of catamorphism.

4. **Fusion:** For any two F-algebras $f:FC\to C$ and $g:FD\to D$ and an arrow $h:C\to D$, we have:

$$h \circ f = g \circ Fh \Rightarrow h \circ \{f\} = \{g\}$$

Proof. Consider the following diagram:

Figure 6: Fusion

Here

- $(\mu F, in)$ is an initial F-algebra
- (C, f) and (D, g) are F-algebras
- $h:(C,f)\to (D,g)$ is an F-homomorphism

Then the *fusion* law states that the composition of a homomorphism and catamorphism is again a catamorphism. Here's how we can derive it:

$$h \circ \{f\} = \{g\}$$

$$\Leftrightarrow \{\text{universal property}\} \\ h \circ \{f\} \circ in = \{g\} \circ F(h \circ \{f\})$$

$$\Leftrightarrow \{F \text{ is a functor}\} \\ h \circ \{f\} \circ in = \{g\} \circ Fh \circ F\{f\}$$

$$\Leftrightarrow \{\{f\} \text{ is an F-homomorphism}\}$$

$$h \circ f \circ F\{f\} = \{g\} \circ Fh \circ F\{f\}$$

```
\Leftrightarrow \{\text{cancellation}\} h \circ f = \{g\} \circ Fh \Leftrightarrow \{\text{h is an F-homomorphism}\} true
```

5. **Isomorphism:** The initial algebra $(\mu F, in)$ for an endofunctor F in category C defined as $in : F\mu F \to \mu F$ is an isomorphism. i.e μF is isomorphic to $F\mu F$ via in, with the inverse defined as $in^{-1} : \{Fin\}$. This is the Lambek's theorem.

Proof. We need to show that in is the pre and post inverse of in^{-1} .

```
in\circ in^{-1}
=in\circ\{Fin\}
= \{ \text{fusion law} \}
\{in\}
= \{ reflection \}
id
\Longrightarrow post
in^{-1} \circ in
= \{F \, in\} \circ in
= \{cancellation\}
Fin \circ F\{Fin\}
= \{F \text{ is a functor}\}\
F(in \circ \{Fin\})
= from pre
Fid
= F is a functor
id
```

In the above initial algebra we have μF as the carrier and it defines an isomorphism. This means the carrier of the initial algebra is (up to isomorphism) a fixed point of the functor.

7 Initial Algebra and Recursive Data Types

An initial algebra generalizes the notion of a recursive data type. Consider a List data type which can be represented by the following Sum type:

```
// nil takes no arguments and returns a List data type nil: 1 \rightarrow List[A]
// cons takes 2 arguments and returns a List data type cons: (A \times List[A]) \rightarrow List[A]
```

Combining the 2 functions we get:

 $in = [nil, cons] : 1 + (A \times List[A]) \rightarrow List[A]$, which translates to the functor $LA(X) = 1 + (A \times X)$. So the data type of lists over the set A can be represented as an initial F-algebra $(\mu LA, in)$ over the functor LA. Here we write μLA for List[A]. Let's prove it.

In order that $(\mu LA, in)$ is an initial algebra, we need to show that for an arbitrary F-algebra (C, φ) , where φ is an arrow out of the sum type given by :

```
c: 1 \to C
 h: (A \times C) \to C
and the join gives : [c, h]: 1 + (A \times C) \to C
```

Here's the category diagram In order for $(\mu LA, in)$ to be an initial F-algebra,

Figure 7: List as initial F-algebra

we need to find a homomorphism $f: \mu LA \to C$ and show that it is unique. Doing this we will be able to find the initial object for the initial algebra. f will be a homomorphism if the above diagram commutes, for which we need:

```
f \circ nil = c and f \circ cons = h \circ (idxf)
```

From the Universal property of initial F-algebras discussed above, it's easy to see that this system of equations has a unique solution which is fold(c, h) [try it as an exercise]. It's the catamorphism represented by:

$$f:\{[c,h]\}:List[A]\to C$$

This proves our initial hypothesis that μLA is an initial F-algebra over the endofunctor $F: LA(X) = 1 + (A \times X)$.

Treating List as an initial F-algebra lets us define many of the list properties algebraically in terms of catamorphism. Consider length of a List, which is defined as $length: List[A] \to Nat$, where Nat is the set of natural numbers defined with its zero and successor functions as follows:

 $zero: 1 \rightarrow Nat$ $succ: Nat \rightarrow Nat$

We can define length as a catamorphism : $length = \{[zero, \lambda(a, n).succ(n)]\}.$

Similarly for $concat: List[A] \times List[A] \to List[A]$, we can define it in terms of catamorphism as:

$$concat(xs, ys) = \{ [\lambda(x).ys, cons] \} (xs)$$

When we talk about algebraic data types, we need to understand the algebra that goes with it. We can consider any algebraic data type as an initial F-algebra on the endofunctor F.