第四章 实验五

模拟最近最久未使用(LRU)页面置换算法

■ **置换策略:** 选择最近最久未使用的页面予以淘汰,系统在每个页面设置一个访问字段,用以记录这个页面自上次被访问以来所经历的时间 T , 当要淘汰一个页面时, 选择 T 最大的页面。

顺序	7	0	1	2	0	3	0	4	2	3	0	3	2	1	2	0	1	7	0	1
内	7	7	7	2		2		4	4	4	0			1		1		1		
存块		0	0	0		0		0	0	3	3			3		0		0		
			1	1		3		3	2	2	2			2		2		7		
缺页 否	√	√	√	√		√		√	√	√	√			√		√		√		

缺页率=12/20=60%

■ 使用**数组**来模拟最近最久未使用(LRU)页面置换算法。

int a[M]; /*存放已装入内存的页号序列, M 为系统分配给作业的主存页面数*/

int b[N]; /*存放作业页号序列, N 为要装入作业的页面总数*/

int c[N]; /*存放被淘汰的页号序列*/

- **算法思想:** a[0]始终存放最近最久未使用的页面,a[M-1]存放最近刚被使用的页面。
 - (1) 当待访问页面 b[i]在内存数组 a 中下标 k 时, **处理过程:** ①将页面 a[k+1]...a[M-1] 全部前移一位; ②将页面 b[i]放置在 a[M-1]位置。
 - (2) 当待访问页面 b[i]不在内存,发生缺页且内存已满时,**置换过程:**①每次置换出 a[0]页面;②将页面 a[1]...a[M-1]全部前移一位;③将新页面插入到 a[M-1]位置。
- 输入作业页号序列:

输入:

请输入作业序号: 70120304230321201701

● 输出如下结果:

输出:

发生缺页的次数=12 缺页中断率=60.00% 驻留内存的页号分别为: 1.0.7. 被淘汰的页号分别为: 7.1.2.3.0.4.0.3.2.

● 使用 Micrsoft Visual Studio C++ 6.0 或 CodeBlocks 编程:程序 4_5_LRU_page.cpp。完善如下程序代码:

#define M 3 /*M 为系统分配给作业的主存页面数*/

#define N 20 /*N 为要装入作业的页面总数*/

int a[M]; /*存放已装入内存的页号序列*/