Reinforcement Learning and REINFORCE

David S. Rosenberg

NYU: CDS

April 7, 2021

Contents

- Markov Decision Processes
- 2 Episodic Learning
- Olicies and Value Functions
- REINFORCE
- 5 The Policy Gradient Theorem
- 6 Monte Carlo for implementation
- Proof of Policy Gradient Theorem
- 8 Proof of Policy Gradient Theorem II

Markov Decision Processes

[Online] Stochastic k-armed contextual bandit

Stochastic k-armed contextual bandit

Environment samples context and rewards vector jointly, iid, for each round:

$$(X,R),(X_1,R_1),\ldots,(X_T,R_T)\in \mathfrak{X}\times\mathbb{R}^k$$
 i.i.d. from P ,

where
$$R_t = (R_t(1), ..., R_t(k)) \in \mathbb{R}^k$$
.

- ② For t = 1, ..., T,
 - **0** Our algorithm **selects action** $A_t \in \mathcal{A} = \{1, ..., k\}$ based on X_t and history

$$\mathcal{D}_t = \Big((X_1, A_1, R_1(A_1)), \dots, (X_{t-1}, A_{t-1}, R_{t-1}(A_{t-1})) \Big).$$

- ② Our algorithm receives reward $R_t(A_t)$.
- We never observe $R_t(a)$ for $a \neq A_t$.

Generalizing from contextual bandits

- Contextual bandits: contexts $X_1, ..., X_T$ are i.i.d.
- What about playing a video game, driving a car, moving a robot arm?
- Next context depends on previous context and action selected.
- We now want to allow dependence between consecutive X_i 's.
- This is the main difference between reinforcement learning and contextual bandits.

Markov decision processes (MDPs)

"MDPs are a mathematically idealized form of the reinforcement learning problem for which precise theoretical statements can be made." [SB18, p. 47]

Markov decision processes

- Learner / decision maker is called the agent
- Agent interacts with the environment
- Each round t = 0, 1, 2, 3, ...,
 - agent receives a **state** $X_t \in \mathcal{X}$.
 - agent selects an action $A_t \in \mathcal{A}$
 - ullet agent receives a reward $R_t \in \mathbb{R}$
- We get a **trajectory**: X_0 , A_0 , R_0 , X_1 , A_1 , R_1 , X_2 , A_2 , R_2 , X_3 , ...

MDPs, continued

• The dynamics of the MDP are given by

$$\mathbb{P}(X_{t+1} = x', R_t = r \mid X_t = x, A_t = a) = p(x', r \mid x, a),$$

for any x', $x \in \mathcal{X}$, $r \in \mathbb{R}$, $a \in \mathcal{A}$.

- Gives distribution of reward and next state given previous state and action.
- Note: For simplicity, below we assume that rewards and states are discrete
 - The final algorithms will not require this. (Still need finite action space.)

Key points

- The reward and the next state are generated jointly.
 - Why? e.g. allows next state to contain information about reward
- Note that the transition probabilities have no explicit dependence on time.
 - Though we can always include time into the state x.

Episodic Learning

Episodic learning

- Often problem breaks up into "episodes" or "trials".
- For an episode there is a final time step T
 - need not be the same in every episode
 - it's typically random.
- Sometimes the task just continues, without natural breaks.
- These are called continuing tasks.
- In episodic learning, we typically update our policy after every episode.
- In continuing tasks, we have to update as we go
- We'll consider the episodic case, but things are similar for continuing case.

Notation

We can denote the trajectories for each episode as

```
Episode 1: X_{1,0}, A_{1,0}, R_{1,0}, X_{1,1}, A_{1,1}, R_{1,1}, X_{1,2}, A_{1,2}, R_{1,2}, X_{1,3}

Episode 2: X_{2,0}, A_{2,0}, R_{2,0}, X_{2,1}, A_{2,1}, R_{2,1}, X_{2,2}, A_{2,2}, R_{2,2}, X_{2,3}, A_{2,3}, R_{2,3}, X_{2,4}

Episode 3: X_{3,0}, A_{3,0}, R_{3,0}, X_{3,1}, A_{3,1}, R_{3,1}, X_{3,2}

\vdots
```

- However, we'll find we usually only need to refer to one episode at a time.
- So we'll usually leave off the epsiode subscript, and just use a subscript for roundya

• I think of each episode as the analogue of a single round of a contextual bandit. In fact, if each episode ends after round 1, it's exactly the contextual bandit setting (assuming we set things up as described in a previous note, where round 0 starts in a fixed start state, but the state distribution in round 1 is the same as the context distribution in the contextual bandit). So an episode is kind of an expanded version of a contextual bandit round.

Start and terminal states

- For simplicity (and w.l.o.g.), assume we always start in a special start state $x_0 \in \mathcal{X}$.
- We'll also assume we have a **terminal state** $x_{\text{stop}} \in \mathcal{X}$.
- The terminal state is an "absorbing" state: once we arrive, we never leave.
- We get no reward in the terminal state.
- Formally, this means:

$$p(x', r \mid x_{\text{stop}}, a) = 1 [x' = x_{\text{stop}}] 1 [r = 0].$$

• So we'll say that T is the last round of the MDP if $X_T \neq x_{\text{stop}}$ and

$$X_{T+1} = X_{T+2} = \dots = x_{\text{stop}}$$

 $R_{T+1} = R_{T+2} = \dots = 0$

- How can we say that starting in start state x_0 is not a loss in generality? Suppose we want to start in a random state given by $p_0(x)$. Then we can define $p(x_1, r_0 \mid x_0, a_0) = p_0(x_1) \mathbb{1}[r_0 = 0]$. In words, no matter what action is taken in round 0, the state distribution in round 1 is $p_0(x)$, as desired, and the reward received in round 0 is 0. That way the MDP is equivalent to the MDP that starts at round 1 with initial state distribution $p_0(x)$.
- Note that with our stop state convention, we can write the total reward received in an episode in two ways:

$$\sum_{t=0}^{T} R_t = \sum_{t=0}^{\infty} R_t$$

Assumption: Bounded episode lengths

ullet We will assume there is some known integer $T_0 < \infty$ such that

$$\mathbb{P}\left(\,T\leqslant\,T_{0}\right)=1.$$

- In words: every episode terminates at or before T_0 rounds.
- ullet This seems reasonable from a practical perspective. We can take T_0 arbitrarily large.
- From a theoretical perspective, I don't see another clean way to make the derivations rigorous.
- Specifically, the points of concern would be
 - interchanging expectations with a sum over the rounds of a random episode and
 - solving the recurrence relation in the proof of the Policy Gradient Theorem.

Policies and Value Functions

Policies

- A policy for an MDP at round t
 - gives a conditional distribution over action A_t
 - conditioned on the state X_t .
- In this module, we consider policies parameterized by θ : $\pi_{\theta}(a \mid x)$, for $\theta \in \mathbb{R}^d$.
- At round t, action $A_t \in \mathcal{A} = \{1, ..., k\}$ is chosen according to

$$\mathbb{P}(A_t = a \mid X_t = x) = \pi_{\theta}(a \mid x).$$

- Our policy parameter θ will be **fixed** for each episode.
- However, our policy can still "learn", in a certain sense, within an episode.
- Unlike contextual bandit setting, in each round of an episode,
 - the state X_t can summarize the history of play since the beginning of the episode.

The state-value function

- In contextual bandits, the **value** of a policy is the expected reward.
- In MDPs, we define a couple different value functions for a policy.

Definition (State-value function)

The state-value function for policy π , denoted $v_{\pi}(x)$ is the expected reward starting in state x and following π thereafter:

$$v_{\pi}(x) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} R_k \mid X_0 = x\right] \quad \forall x \in \mathfrak{X}.$$

• With the convention that $X_0 = x_0$, the value of a policy is $v_{\pi}(x_0)$.

The action-value function

Definition (Action-value function)

The action-value function for policy π , denoted $q_{\pi}(x, a)$ is the expected reward starting in state x, taking action a, and following π thereafter:

$$q_{\pi}(x,a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} R_k \mid X_0 = x, A_0 = a\right] \quad \forall x \in \mathcal{X}, a \in \mathcal{A}.$$

• Since the dynamics are time-indepenent, it would be equivalent to make the definition

$$q_{\pi}(x,a) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} R_{k+t} \mid X_t = x, A_t = a\right],$$

and similarly for the definition of the state-value function.

The value functions

• Exercise: Write $v_{\pi}(x)$ in terms of $q_{\pi}(x,a)$. (Let $G = \sum_{t=0}^{\infty} R_t$.):

$$v_{\pi}(x) = \mathbb{E}_{\pi}[G \mid X_{0} = x]$$

$$= \mathbb{E}_{\pi}[\mathbb{E}_{\pi}[G \mid A_{0}, X_{0} = x] \mid X_{0} = x]$$

$$= \sum_{a} \pi(a \mid x) \mathbb{E}_{\pi}[G \mid A_{0} = a, X_{0} = x]$$

$$= \sum_{a} \pi(a \mid x) q_{\pi}(x, a)$$

- Concept checks: In this inner expectation: $\mathbb{E}_{\pi}[G \mid A_0, X_0 = x]$, why did we indicate a dependency on π in the expectation?
 - Answer: Although the reward R_0 has nothing to do with the policy distribution, since we're conditioning on A_0 and X_0 , all subsequent rewards will be affected by the policy distribution.

Intuition builder / lemma for later

Show: $q_{\pi}(x, a) = \mathbb{E}[R_t \mid (X_t, A_t) = (x, a)] + \sum_{x'} p(x' \mid x, a) v_{\pi}(x').$

$$q_{\pi}(x,a) = \mathbb{E}_{\pi} \left[R_{0} + \sum_{k=1}^{\infty} R_{k} | (X_{0}, A_{0}) = (x, a) \right]$$

$$= \mathbb{E}_{\pi} \left[\mathbb{E}_{\pi} \left[R_{0} + \sum_{k=1}^{\infty} R_{k} | X_{1}, R_{0}, (X_{0}, A_{0}) = (x, a) \right] | (X_{0}, A_{0}) = (x, a) \right]$$

$$= \mathbb{E}_{\pi} \left[R_{0} + \mathbb{E}_{\pi} \left[\sum_{k=1}^{\infty} R_{k} | X_{1} \right] | (X_{0}, A_{0}) = (x, a) \right]$$

$$= \mathbb{E} [R_{0} | (X_{0}, A_{0}) = (x, a)] + \mathbb{E} [v_{\pi}(X_{1}) | (X_{0}, A_{0}) = (x, a)]$$

$$= \mathbb{E} [R_{0} | (X_{0}, A_{0}) = (x, a)] + \sum_{k=1}^{\infty} p(x' | x, a) v_{\pi}(x')$$

REINFORCE

Policy gradient for contextual bandits

- We took a "policy gradient" approach to contextual bandits.
- The idea was to find the policy $\pi_{\theta}(a \mid x)$ that optimized

$$J(\theta) = \mathbb{E}_{\theta} \left[R(A) \right].$$

We found that

$$R_t(A_t)\nabla_{\theta}\log \pi_{\theta_t}(A_t\mid X_t)$$

was an unbiased estimate of $\nabla J(\theta)$.

• We used that to form an SGD-style optimization algorithm:

$$\theta_{t+1} \leftarrow \theta_t + \eta R_t(A_t) \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t)$$

Policy gradient for MDPs

- What if we think about each action in an episode as a separate round of a contextual bandit?
- Then our update would be

$$\theta_{t+1} \leftarrow \theta_t + \eta R_t \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- The problem: action now may affect reward many rounds later, but update does not reflect this
- Another approach: use the total episode reward for each round of an episode:

$$\theta_{t+1} \leftarrow \theta_t + \eta \left[\sum_{i=1}^{\infty} R_t \right] \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

This could work...

Rewards-to-go

• But one thing doesn't seem quite right with

$$\theta_{t+1} \leftarrow \theta_t + \eta \left[\sum_{i=1}^{\infty} R_t \right] \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

- Action A_t can be penalized by poor rewards received at time t-1.
- Seems to make more sense to only include rewards received after A_t :

$$\theta_{t+1} \leftarrow \theta_t + \eta \left[\sum_{i=t}^{\infty} R_t \right] \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t).$$

• This is the basic REINFORCE update, which we will derive in the next section.

The Policy Gradient Theorem

Policy gradient theorem for MDPs (I)

The policy gradient theorem states¹ that

$$\nabla J(\theta) = \sum_{x} \eta(x) \sum_{a} [q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x)]$$

where

$$\eta(x) := \mathbb{E}_{\theta} \left[\sum_{k=0}^{\infty} \mathbb{1} [X_k = x] \mid X_0 = x_0 \right].$$

- Note that $\eta(x)$ is the expected number of visits to state x in an episode,
 - when we start in state $X_0 = x_0$ and
 - select actions according to π_{θ} .

¹Our convention here and below is that \sum_{x} excludes x_{stop} .

Interpretation (I)

- For any state x, $\nabla_{\theta} \pi_{\theta}(a \mid x)$ is the direction to move θ
 - to make a more likely (in state x).
- $q_{\theta}(x, a)$ is the expected future rewards for action a in state x, and $A \sim \pi_{\theta}$ after that.
- So $\sum_a [q_\theta(x,a) \nabla_\theta \pi_\theta(a \mid x)]$ is a weighted average of policy updates
 - where we make action a more likely (in state x)
 - in proportion to the future rewards associated with that action.
- That's a sensible improvement to the policy π_{θ} for state x.
- How do we improve the policy for all states?

$$\nabla J(\theta) = \sum_{x} \eta(x) \sum_{a} [q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x)]$$

takes a weighted average of the updates that improve each state x, in proportion to how often we expect to be in state x.

Policy gradient theorem for MDPs (II)

We'll also show that

$$abla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T_0} \sum_{a} \left[q_{\theta}(X_t, a) \nabla_{\theta} \pi_{\theta}(a \mid X_t) \right] \right],$$

where the expectation is over a single episode X_1, \ldots, X_T played according to π_{θ} .

- Recall that $T_0 < \infty$ is our assumed maximum episode length.
- This is the form of the policy gradient theorem most amenable to deriving REINFORCE.
 - (At least that I'm aware of.)

Monte Carlo for implementation

Episode-level Monte Carlo

Consider

$$\nabla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T_0} \sum_{a} \left[q_{\theta}(X_t, a) \nabla_{\theta} \pi_{\theta}(a \mid X_t) \right] \right].$$

where the expectation is over a single episode X_1, \ldots, X_T played according to π_{θ} .

• We can do a one-episode Monte Carlo estimate of $\nabla J(\theta)$:

$$\sum_{t=0}^{T} \sum_{a} \left[q_{\theta}(X_t, a) \nabla_{\theta} \pi_{\theta}(a \mid X_t) \right].$$

• This will be an unbiased estimate of $\nabla J(\theta)$.

All-actions method

• We don't know $q_{\theta}(X_t, a)$, but we can plug-in an action-value estimate $\hat{q}_{\theta}(x, a)$, fit to historical data:

$$\sum_{t=0}^{T} \sum_{a} \left[\hat{q}_{\theta}(X_t, a) \nabla_{\theta} \pi_{\theta}(a \mid X_t) \right].$$

- This is called an all-actions method.
- This estimate is biased, since \hat{q}_{θ} will generally be biased,
 - but we expect it to have lower variance than the REINFORCE method discussed next.
- If the action space is too large to sum over,
 - we can sample actions $A_t \sim \pi_{\theta}(a \mid X_t)$ as we did for contextual bandits.

REINFORCE

• For an unbiased estimate, we use our "clever trick" with logs:

$$\nabla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \sum_{a} \left[q_{\theta}(X_{t}, a) \nabla_{\theta} \pi_{\theta}(a \mid X_{t}) \right] \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \sum_{a} \left[q_{\theta}(X_{t}, a) \pi_{\theta}(a \mid X_{t}) \nabla_{\theta} \log \pi_{\theta}(a \mid X_{t}) \right] \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \mathbb{E}_{A_{t} \sim \pi_{\theta}(a \mid X_{t})} \left[q_{\theta}(X_{t}, A_{t}) \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \mid X_{t} \right] \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \mathbb{E}_{A_{t} \sim \pi_{\theta}(a \mid X_{t})} \left[\mathbb{E}_{\theta} \left[\sum_{k=t}^{\infty} R_{k} \mid X_{t}, A_{t} \right] \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \mid X_{t} \right] \right]$$

REINFORCE (II)

$$\nabla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \mathbb{E}_{A_{t} \sim \pi_{\theta}(a|X_{t})} \left[\mathbb{E}_{\theta} \left[\sum_{k=t}^{\infty} R_{k} \mid X_{t}, A_{t} \right] \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \mid X_{t} \right] \right]$$

$$= \sum_{t=0}^{T_{0}} \mathbb{E}_{\theta} \left[\mathbb{E}_{A_{t} \sim \pi_{\theta}(a|X_{t})} \left[\mathbb{E}_{\theta} \left[\nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \sum_{k=t}^{\infty} R_{k} \mid X_{t}, A_{t} \right] \mid X_{t} \right] \right]$$

$$= \sum_{t=0}^{T_{0}} \mathbb{E}_{\theta} \left[\nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \sum_{k=t}^{\infty} R_{k} \right] \quad \text{(Adam's rule)}$$

$$= \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \sum_{k=t}^{\infty} R_{k} \right]$$

REINFORCE (III)

We've derived

$$\nabla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \sum_{k=t}^{\infty} R_{k} \right]$$

- The expectation is over an episode played according to π_{θ} , starting in $X_0 = x_0$.
- We can get a one-episode Monte Carlo unbiased estimate of $\nabla J(\theta)$ as

$$\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(A_t \mid X_t) \sum_{k=t}^{\infty} R_k.$$

REINFORCE in Sutton and Barto

• Our proposed REINFORCE makes a single update per episode:

$$\theta \leftarrow \theta + \eta \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(A_{t} \mid X_{t}) \sum_{k=t}^{\infty} R_{k}$$

- REINFORCE in [SB18, p. 328] has an update for every round of the episode,
 - but after the full episode has been run with parameter setting θ_0 .
- For each round of the episode, they make an update

$$\theta_{t+1} \leftarrow \theta_t + \eta \nabla_{\theta} \log \pi_{\theta_t}(A_t \mid X_t) \sum_{k=t}^{\infty} R_k.$$

- One concern: each A_t is sampled from $\pi_{\theta_0}(a \mid X_t)$,
 - but treating it like it was sampled from π_{θ_t} .

Proof of Policy Gradient Theorem

The objective

- Consider policy space $\pi_{\theta}(a \mid x)$.
- We'd like to find θ maximizing

$$J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{i=0}^{\infty} R_i \mid X_0 = x_0 \right]$$
$$= v_{\pi_{\theta}}(x_0).$$

• Since we're only dealing with policies π_{θ} , we'll write

$$v_{\theta}(x) := v_{\pi_{\theta}}(x)$$
 $q_{\theta}(x, a) := q_{\pi_{\theta}}(x, a)$ $\mathbb{E}_{\theta} := \mathbb{E}_{\pi_{\theta}}(x, a)$

Policy gradient theorem: product rule

- Recall: $q_{\theta}(x, a) = \mathbb{E}[R_t \mid (X_t, A_t) = (x, a)] + \sum_{x'} p(x' \mid x, a) v_{\theta}(x').$
- So $\nabla_{\theta} q_{\theta}(x, a) = \sum_{x'} p(x' \mid x, a) \nabla_{\theta} v_{\theta}(x')$.
- Then

$$\nabla_{\theta} v_{\theta}(x) = \nabla_{\theta} \left[\sum_{a} \pi_{\theta}(a \mid x) q_{\theta}(x, a) \right]$$

$$= \sum_{a} \left[q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x) + \pi_{\theta}(a \mid x) \nabla_{\theta} q_{\theta}(x, a) \right]$$

$$= \sum_{a} \left[q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x) + \pi_{\theta}(a \mid x) \sum_{x'} p(x' \mid x, a) \nabla_{\theta} v_{\theta}(x') \right]$$

• Note that this is a recurrence relation! ($\nabla_{\theta} v_{\theta}(\cdot)$ shows up on the LHS and RHS).

Cleaning up the recurrence

- Let $\mathbb{P}_{\theta}(x \to x', k)$ be the prob of being in state x' in k steps:
 - conditioned on starting in state x (under policy π_{θ}).

$$\mathbb{P}_{\theta}(x \to x', k) := \mathbb{P}_{\theta}(X_k = x' \mid X_0 = x)$$

• Let $\phi(x) = \sum_{a} [q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x)]$. Then

$$\nabla_{\theta} v_{\theta}(x) = \sum_{a} \left[q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x) + \pi_{\theta}(a \mid x) \sum_{x'} p(x' \mid x, a) \nabla_{\theta} v_{\theta}(x') \right]$$

$$= \phi(x) + \sum_{a} \pi_{\theta}(a \mid x) \sum_{x'} p(x' \mid x, a) \nabla_{\theta} v_{\theta}(x')$$

$$= \phi(x) + \sum_{x'} \left[\sum_{a} p(x' \mid x, a) \pi_{\theta}(a \mid x) \right] \nabla_{\theta} v_{\theta}(x')$$

$$= \phi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \nabla_{\theta} v_{\theta}(x')$$

Unrolling the recurrence

$$\begin{split} &\nabla_{\theta} v_{\theta}(x) \\ &= & \varphi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \nabla_{\theta} v_{\theta}(x') \\ &= & \varphi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \left[\varphi(x') + \sum_{x''} \mathbb{P}_{\theta}(x' \to x'', 1) \nabla_{\theta} v_{\theta}(x'') \right] \\ &= & \varphi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \varphi(x') + \sum_{x''} \left[\sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \mathbb{P}_{\theta}(x' \to x'', 1) \right] \nabla_{\theta} v_{\theta}(x'') \\ &= & \varphi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \varphi(x') + \sum_{x''} \mathbb{P}_{\theta}(x \to x'', 2) \nabla_{\theta} v_{\theta}(x'') \end{split}$$

Putting it together

$$\begin{split} \nabla_{\theta} v_{\theta}(x) &= & \varphi(x) + \sum_{x'} \mathbb{P}_{\theta}(x \to x', 1) \varphi(x') + \sum_{x''} \mathbb{P}_{\theta}(x \to x'', 2) \varphi(x'') \\ &+ \sum_{x'''} \mathbb{P}_{\theta}(x \to x''', 3) \varphi(x''') + \sum_{x''''} \mathbb{P}_{\theta}(x \to x'''', 4) \nabla_{\theta} v_{\theta}(x'''') \\ &= & \sum_{k=0}^{T_0} \sum_{x'} \mathbb{P}_{\theta}\left(x \to x', k\right) \varphi(x') + \sum_{x'} \underbrace{\mathbb{P}_{\theta}\left(x \to x', T_0 + 1\right)}_{=0} \nabla_{\theta} v_{\theta}(x') \\ &= & \sum_{k=0}^{T_0} \sum_{x'} \mathbb{P}_{\theta}\left(x \to x', k\right) \varphi(x') \end{split}$$

- To get the 2nd equality, we continue to expand the recursion for T_0+1 steps.
- In the last equality, we use our assumption that for $t > T_0$ we're always in state x_{stop} .
- And the our sum over states excludes the stop state.

Back to the objective

• We now bring in the start state:

$$\nabla J(\theta) = \nabla_{\theta} v_{\theta}(x_{0}) = \sum_{x} \left(\sum_{k=0}^{T_{0}} \mathbb{P}_{\theta} (x_{0} \to x, k) \right) \phi(x)$$

$$= \sum_{x} \left(\sum_{k=0}^{T_{0}} \mathbb{P}_{\theta} [X_{k} = x \mid X_{0} = x_{0}] \right) \phi(x)$$

$$= \sum_{x} \left(\sum_{k=0}^{T_{0}} \mathbb{E} \left[\mathbb{1} \left[X_{k} = x \right] \mid X_{0} = x_{0} \right] \right) \phi(x)$$

$$= \sum_{x} \left(\mathbb{E}_{\theta} \left[\sum_{k=0}^{T_{0}} \mathbb{1} \left[X_{k} = x \right] \mid X_{0} = x_{0} \right] \right) \phi(x),$$

where the inner expectation is over a full episode X_1, \ldots, X_T played according to π_{θ} .

Conclusion (I)

• Recalling the definitions of $\eta(x)$ and then $\phi(x)$, we can write

$$\nabla J(\theta) = \nabla_{\theta} v_{\theta}(x_{0}) = \sum_{x} \left(\mathbb{E}_{\theta} \left[\sum_{k=0}^{T_{0}} \mathbb{1} \left[X_{k} = x \right] \mid X_{0} = x_{0} \right] \right) \phi(x)$$

$$= \sum_{x} \eta(x) \phi(x)$$

$$= \sum_{x} \eta(x) \sum_{a} \left[q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x) \right]$$

The last expression is the first part of our Policy Gradient Theorem.

Proof of Policy Gradient Theorem II

Towards writing as an expectation

We can write

$$\nabla J(\theta) = \sum_{x} \eta(x) \phi(x)$$

$$= \left[\frac{\sum_{x' \in \mathcal{X}'} \eta(x')}{\sum_{x' \in \mathcal{X}'} \eta(x')} \right] \sum_{x} \eta(x) \phi(x)$$

$$= \left[\sum_{x'} \eta(x') \right] \sum_{x} \frac{\eta(x)}{\sum_{x' \in \mathcal{X}'} \eta(x')} \phi(x)$$

$$= \left[\sum_{x'} \eta(x') \right] \sum_{x} \mu(x) \phi(x),$$

where $\mu(x) := \eta(x) / \sum_{x' \in \mathcal{X}'} \eta(x')$.

• How should we interpret $\mu(x)$?

Interpreting $\mu(x)$ (I)

- Suppose we run E episodes with policy π_{θ} .
- Take the states visited in all those episodes and put them into a bag.
- Let X_E the a state drawn randomly from this bag. Let $\mu_E(x) := \mathbb{P}(X_E = x)$.
- Let \mathcal{D}_E be all the trajectories in those E episodes. Then

$$\begin{split} \mathbb{P}(X_E = x) &= \mathbb{E}\left[\mathbb{1}\left[X_E = x\right]\right] &= \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}\left[X_E = x\right] \mid \mathcal{D}_E\right]\right] \\ &= \mathbb{E}\left[\mathbb{P}\left(X_E = x \mid \mathcal{D}_E\right)\right] \\ &= \mathbb{E}\left[\frac{\sum_{e=1}^E \left(\# \text{ of visits to state } x \text{ in episode } e\right)}{\sum_{e=1}^E T(e)}\right], \end{split}$$

where T(e) = (# rounds in episode e).

- Isn't sampling from $\mu(x)$ the same as sampling a random round from a single random episode? Why do we have to say all this stuff about "putting all rounds from all episodes into a bag?"
- Type 1: Episode ends immediately after the start state x_0 .

Suppose we have two types of episodes that occur with equal probability:

- Type 2: Episode has length 1000, state x_0 followed by 999 other states, not x_0 .
- Then the probability of state x₀ under μ(x) is μ(x₀) = 1/1001/2 = 2/1001.
 The probability of state x₀ under the second approach is 1/2 (1 + 1/1000) = 1/1001/2 ≈ 1/2.
- The probability of state x_0 under the second approach is $\frac{1}{2}(1+\frac{1}{1000})=\frac{1}{2000}\approx$ • VERY DIFFERENT.
- - Second approach makes states that occur in shorter epsiodes are more likely.

Interpreting $\mu(x)$ (II)

• So $\mathbb{P}(X_E = x) = \mathbb{E}[V_E(x)/L_E]$ where

$$V_E(x) = \frac{1}{E} \sum_{e=1}^{E} (\# \text{ of visits to state } x \text{ in episode } e)$$

$$L_E = \frac{1}{E} \sum_{e=1}^{E} T(e).$$

- By the SLLN, as $E \to \infty$, $V_E(x) \stackrel{\text{a.s.}}{\to} \eta(x)$ and $L_E \stackrel{\text{a.s.}}{\to} \sum_x \eta(x)$.
- Since $L_E(x) > 0$, the continuous mapping theorem implies $\frac{V_E(x)}{L_E(x)} \stackrel{\text{a.s.}}{\to} \frac{\eta(x)}{\sum_x \eta(x)} = \mu(x)$.
- Since $|V_E(x)/L_E| \le 1$, by the dominated convergence theorem, we get

$$\lim_{E \to \infty} \mu_E(x) = \lim_{E \to \infty} \mathbb{P}(X_E = x) = \lim_{E \to \infty} \mathbb{E}[V_E(x)/L_E] = \mu(x).$$

• So drawing X from $\mu(x)$ is like sampling from the bag above, when $E \to \infty$.

Expectation w.r.t. $\mu(x)$

• Let $f: \mathcal{X} \to \mathbb{R}$ be any function. Then

$$\mathbb{E}_{X \sim \mu(x)} f(X) = \sum_{x} \mu(x) f(x) = \sum_{x'} \frac{\eta(x')}{\sum_{x} \eta(x)} f(x')$$

$$= \frac{1}{\sum_{x} \eta(x)} \sum_{x} \eta(x) f(x)$$

$$= \frac{1}{\sum_{x} \eta(x)} \sum_{x} f(x) \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_{0}} \mathbb{1} [X_{k} = x] \mid X_{0} = x_{0} \right]$$

$$= \frac{1}{\sum_{x} \eta(x)} \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_{0}} \sum_{x} f(x) \mathbb{1} [X_{k} = x] \mid X_{0} = x_{0} \right]$$

$$= \frac{1}{\sum_{x} \eta(x)} \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_{0}} f(X_{k}) \mid X_{0} = x_{0} \right]$$

The policy gradient in terms of an episode

• Applying the previous result to $\phi(x)$, we get

$$\nabla J(\theta) = \left[\sum_{x'} \eta(x') \right] \sum_{x} \mu(x) \phi(x)$$

$$= \left[\sum_{x'} \eta(x') \right] \frac{1}{\sum_{x} \eta(x)} \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_0} \phi(X_k) \mid X_0 = x_0 \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_0} \sum_{a} \left[q_{\theta}(X_k, a) \nabla_{\theta} \pi_{\theta}(a \mid X_k) \right] \mid X_0 = x_0 \right]$$

$$= \mathbb{E}_{\theta} \left[\sum_{k=0}^{T_0} \sum_{a} \left[q_{\theta}(X_k, a) \nabla_{\theta} \pi_{\theta}(a \mid X_k) \right] \mid X_0 = x_0 \right]$$

where the expectation is over a single episode X_1, \ldots, X_T played according to π_{θ} .

Policy gradient theorem for MDPs

Summarizing our results, we have

$$\nabla J(\theta) = \sum_{x} \eta(x) \sum_{a} \left[q_{\theta}(x, a) \nabla_{\theta} \pi_{\theta}(a \mid x) \right],$$

where $\eta(x) := \mathbb{E}_{\theta} \left[\sum_{k=0}^{\infty} \mathbb{1} \left[X_k = x \right] \mid X_0 = x_0 \right].$

We also have a version that's well-suited to episodic REINFORCE:

$$\nabla J(\theta) = \mathbb{E}_{\theta} \left[\sum_{t=0}^{T_0} \sum_{a} \left[q_{\theta}(X_t, a) \nabla_{\theta} \pi_{\theta}(a \mid X_t) \right] \mid X_0 = x_0 \right],$$

where the expectation is over a single episode X_1, \ldots, X_T played according to π_{θ} .

References

Resources

- The development of Markov decision processes (MDPs) is based on [SB18, Ch 3].
- The proof for the policy gradient theorem is based on [SMSM00], which is essentially the same as the proof in [SB18, p. 325]. We deviated in making an "episodic" version.
- The presentation of the recurrence part of the policy gradient theorem proof is based on Lilian Weng's blog, which is a good source for additional detail and discussion [Wen18].

References I

- [SB18] Richard S. Sutton and Andrew G. Barto, *Reinforcement learning: An introduction*, A Bradford Book, Cambridge, MA, USA, 2018.
- [SMSM00] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour, *Policy gradient methods for reinforcement learning with function approximation*, Advances in Neural Information Processing Systems (S. Solla, T. Leen, and K. Müller, eds.), vol. 12, MIT Press, 2000.
- [Wen18] Lilian Weng, Policy gradient algorithms, Apr 2018, https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#proof-of-policy-gradient-theorem.