ON THE INTEGER-MAGIC SPECTRA OF GRAPHS

RICHARD M. LOW AND W.C. SHIU

ABSTRACT. Let A be a non-trivial abelian group and $A^* = A - \{0\}$. A graph is A-magic if there exists an edge-labeling using elements of A^* which induces a constant vertex labeling of the graph. Although a fair amount of research has been done on A-magic labelings of graphs, there is much which is still unknown. In this paper, we construct a large collection of non-intuitive examples and counterexamples, which provide further insight into the integer-magic spectra of graphs. Particular attention is devoted to the integer-magic spectra of products of graphs.

1. Introduction

Let G=(V,E) be a connected simple graph. For any non-trivial abelian group A (written additively), let $A^*=A-\{0\}$. A function $f:E\to A^*$ is called a labeling of G. Any such labeling induces a map $f^+:V\to A$, defined by $f^+(v)=\Sigma f(u,v)$, where the sum is over all $(u,v)\in E$. If there exists a labeling f whose induced map on V is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. The corresponding constant is called an A-magic value. The integer-magic spectrum of a graph G is the set $\mathrm{IM}(G)=\{k:G\text{ is }\mathbb{Z}_k\text{-magic and }k\geq 2\}$. Note that the integer-magic spectrum of a graph is not to be confused with the set of achievable magic values. \mathbb{Z} -magic graphs were considered by Stanley [23, 24], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [1, 2, 3] and others [7, 9, 15, 16, 21] have studied A-magic graphs and \mathbb{Z}_k -magic graphs were investigated in [4, 6, 8, 10, 11, 12, 13, 14, 17, 18, 22].

2. Some results

The main thrust of this paper is to provide non-intuitive examples and counter-examples regarding the integer-magic spectra of graphs. We first recall some important results from [16].

Date: September 01, 2008: Version 0.8.

²⁰⁰⁰ Mathematics Subject Classification. 05C15.

 $[\]it Key\ words\ and\ phrases.$ group-magic graphs, integer-magic graphs, integer-magic spectra.

Theorem A. Every eulerian graph is \mathbb{Z}_2 -magic.

Theorem B. Let G be an eulerian graph with an even number of edges. Then, G is A-magic, for every non-trivial abelian group A.

Theorem C. Let G be a \mathbb{Z}_k -magic graph, with k|n. Then, G is a \mathbb{Z}_n -magic graph.

What more can be said about the integer-magic spectra of graphs? Let us look at the integer-magic spectra from some different points of view.

Definition. Suppose that graph G is A-magic, for some non-trivial abelian group A. If G is A_1 -magic for all non-trivial subgroups A_1 of A, then G is an A-divisible magic graph.

We immediately note that if G is fully-magic, then G is an A-divisible magic graph, for any non-trivial A. The natural question to ask is the following: Are there ways to construct infinite classes of \mathbb{Z}_k -divisible magic graphs which are not fully-magic? Indeed, the answer to this question is yes. In a later section of the paper, some results are established which allow for this type of construction. For now, we leave the reader with the following example.

Example. In [18], Salehi and Bennett proved the following result: If $n \geq 3$ and $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ is the prime factorization of n-1, then $\text{IM}(K_{1,n}) = \bigcup_{i=1}^k p_i \mathbb{N}$. Thus, this result gives us infinite classes of \mathbb{Z}_{n-1} -divisible magic graphs, where $n \geq 3$. For example, $K_{1,37}$ is a \mathbb{Z}_{36} -divisible magic graph.

Of course, one can view the integer-magic spectra in another way.

Definition. Suppose that graph G is A-magic, for some non-trivial abelian group A. If G is not A_1 -magic for all non-trivial subgroups A_1 of A, then G is an A-indivisible magic graph.

To begin with, let us construct some infinite classes of \mathbb{Z}_n -indivisible magic graphs. The derived graph D(G) of a graph G is the graph obtained from G by deleting all pendants of G. A caterpillar is a tree T such that D(T) = P is a path. Namely, suppose $P = x_1 \cdots x_t$ and suppose n_i pendants are adjacent with x_i in T, where $n_1 \geq 1$, $n_t \geq 1$ and $n_i \geq 0$ for $1 \leq i \leq t-1$. Then, we denote $1 \leq t \leq t-1$. Then, we denote $1 \leq t \leq t-1$. Then, we denote $1 \leq t \leq t-1$. Then, we denote $1 \leq t \leq t-1$.

Lemma 1. Let A be an abelian group and let $k_1, ..., k_s$ be s fixed positive integers. If $G = cat(k_1 + 1, ..., k_s + 1, k + 1)$ is A-magic with A-magic value

m, then

$$km = m \sum_{j=1}^{s} (-1)^{s+j} k_j.$$

Proof. Let the edges of the central path are labeled by a_1, \ldots, a_s in the natural order. Then by considering each vertex of the central path, we get G is A-magic with A-magic value m if and only if

$$a_1 = -k_1 m$$
; $a_i = -k_i m - a_{i-1}, 2 \le i \le s$; and $km = -a_s$

is solvable in A^* . Thus, we have

$$a_i = m \sum_{j=1}^{i} (-1)^{i+j-1} k_j$$
 for $1 \le i \le s$, and $km = m \sum_{j=1}^{s} (-1)^{s+j} k_j$.

Theorem 4. Let l_1, l_2, \ldots, l_s be distinct positive integers. Suppose $n \geq 2$ is not a factor of l_i for all i. Let $k_1 = l_1$ and $k_i = l_i + l_{i-1}$ for $2 \leq i \leq s$. Let k be a positive integer such that $k \equiv \sum_{j=1}^{s} (-1)^{s+j} k_j = l_s \pmod{n}$. Then, $G = cat(k_1 + 1, \ldots, k_s + 1, k + 1)$ is \mathbb{Z}_n -magic but not \mathbb{Z}_{l_i} -magic for each $i \ (1 \leq i \leq s)$, if $l_i \geq 2$.

Proof. Let us keep the notation defined in Lemma 1. From the proof of Lemma 1, we choose m=1. Then, we get $a_i=\sum\limits_{j=1}^i (-1)^{i+j-1}k_j=-l_i\not\equiv 0$ (mod n). Hence we have a \mathbb{Z}_n -magic labeling for G with \mathbb{Z}_n -magic value 1. Suppose there is a \mathbb{Z}_{l_i} -magic labeling of G with \mathbb{Z}_{l_i} -magic value m. By the proof of Lemma 1, we have $a_i=-l_im\equiv 0\pmod{l_i}$ if $l_i\geq 2$.

Example. Suppose n=6. Using the notation introduced in Theorem 4, $l_1=3$ and $l_2=2$. Hence $k_1=3$, $k_2=5$ and k=2. One can verify that cat(4,6,3) is \mathbb{Z}_6 -magic with \mathbb{Z}_6 -magic value 1, but it is neither \mathbb{Z}_3 -magic nor \mathbb{Z}_2 -magic.

Example. Suppose n=12. Using the notation introduced in Theorem 4, $l_1=6$, $l_2=3$ and $l_3=2$. Hence $k_1=6$, $k_2=9$, $k_3=5$ and k=2. One can verify that cat(7,10,6,3) is \mathbb{Z}_{12} -magic with \mathbb{Z}_{12} -magic value 1, but it is neither \mathbb{Z}_6 -magic, \mathbb{Z}_3 -magic nor \mathbb{Z}_2 -magic.

A natural question to ask is the following: Is there a way to construct a graph G, where $\mathrm{IM}(G)=\{k:k\geq n\}$ for a fixed n? The following corollary answers this in the affirmative.

Corollary 1. For any positive integer $n \geq 2$, there is a caterpillar T with $IM(T) = \{k : k \geq n\}$. Hence, T is an \mathbb{Z}_n -indivisible magic graph.

Proof. Choose $\{l_1, l_2, \ldots, l_{n-2}\} = \{2, \ldots, n-1\}$ in Theorem 4. From this, the corollary follows.

Example. Let G = cat(3, 6, 8, 5). Then, $IM(G) = \{5, 6, 7, \dots\}$.

FIGURE 1. $IM(cat(3,6,8,5)) = \{5,6,7,\ldots\}.$

Of course, an A-magic graph might be A_1 -magic for some (but not all) non-trivial subgroups A_1 of A. In particular, the converse of Theorem C is not true in general.

Example. Graph H in Figure 2 is eulerian and hence, is \mathbb{Z}_2 -magic. By Theorem C, H is \mathbb{Z}_6 -magic. However, it is straight-forward to show that H is not \mathbb{Z}_3 -magic.

3. Integer-magic spectra of graph products

Now, we focus on the integer-magic spectra of certain types of graph products. In [15], the following theorems were established.

Theorem E. Let A be an abelian group. If G_1 and G_2 are A-magic graphs, then $G_1 \times G_2$ is an A-magic graph.

Theorem F. Let A be an abelian group. Then, the lexicographic product of two A-magic graphs is A-magic.

From Theorems E and F, we immediately get the following two corollaries.

FIGURE 2. Graph H.

Corollary 2. The Cartesian product of two A-divisible magic graphs is an A-divisible magic graph.

Proof. Let G_1 and G_2 be two A-divisible magic graphs. In particular, G_1 and G_2 are A-magic which implies that $G_1 \times G_2$ is A-magic. Now, let A_1 be a non-trivial subgroup of A. Since G_1 and G_2 are A_1 -magic graphs, this implies that $G_1 \times G_2$ is A_1 -magic. Thus, $G_1 \times G_2$ is A-divisible magic. \square

Corollary 3. The lexicographic product of two A-divisible magic graphs is an A-divisible magic graph.

Proof. The result follows from an analogous argument, as found in the proof of Corollary 2. \Box

Also, one should note that the converses of Theorems E and F are not true in general.

Example. The following result was established in [14]: For $n \ge 2$ and $m \ge 3$, $\operatorname{IM}(P_n \times P_m) = \{3, 4, 5, \ldots\}$. However, clearly $\operatorname{IM}(P_k) = \{2, 3, 4, 5, \ldots\}$ for k = 2, and $\operatorname{IM}(P_k) = \emptyset$ for $k \ge 3$.

Let $S_k = K_{1,k}$ be the star graph. The vertex of maximum degree in S_k is called the *center* of S_k .

Theorem 7. There is a \mathbb{Z}_{k+1} -magic labeling with \mathbb{Z}_{k+1} -magic value 0 of the Cartesian product $G = S_k \times S_k$.

Proof. Denote the vertices of the first S_k by c_1, x_1, \ldots, x_k and those of the second S_k by c_2, y_1, \ldots, y_k , where c_i is the center of S_k , i = 1, 2. Define $f: E(G) \to \mathbb{Z}_{k+1}$ by

$$\begin{cases} f((c_1, c_2)(x_i, c_2)) = -1, & 1 \le i \le k; \\ f((c_1, c_2)(c_1, y_j)) = 1, & 1 \le j \le k; \\ f((c_1, y_j)(x_i, y_j)) = 1, & 1 \le i \le k; \\ f((x_i, c_2)(x_i, y_j)) = -1, & 1 \le j \le k. \end{cases}$$

Then
$$f^+(c_1, c_2) = \sum_{i=1}^k f((c_1, c_2)(x_i, c_2)) + \sum_{j=1}^k f((c_1, c_2)(c_1, y_j)) = -k + k = 0;$$
 $f^+(c_1, y_j) = f((c_1, c_2)(c_1, y_j)) + \sum_{i=1}^k f((c_1, y_j)(x_i, y_j)) = 1 + k \equiv 0$ (mod $k + 1$); $f^+(x_i, c_2) = f((c_1, c_2)(x_i, c_2)) + \sum_{j=1}^k f((x_i, c_2)(x_i, y_j)) = -1 - k \equiv 0 \pmod{k+1};$ $f^+(x_i, y_j) = f((c_1, y_j)(x_i, y_j)) + f((x_i, c_2)(x_i, y_j)) = 1 - 1 = 0.$

Example. Note that S_k is not \mathbb{Z}_{k+1} -magic for $k \geq 2$ and that Theorem 7 provides another counter-example to the converse of Theorem E.

Example. Consider the lexicographic product $G = P_4 \circ N_2$, where N_2 is the null graph of order two (see Figure 3). Since G is an eulerian graph with an even number of edges, Theorem B tells us that G is A-magic. Clearly, P_4 and N_2 are not A-magic. This provides a counter-example for the converse of Theorem F.

FIGURE 3. The lexicographic product of P_4 and N_2 .

However, in the case where $A = \mathbb{Z}_2$, the converse of Theorem E is true.

Theorem 8. If $G_1 \times G_2$ is \mathbb{Z}_2 -magic, then G_1 and G_2 are \mathbb{Z}_2 -magic.

Proof. Suppose $G_1 \times G_2$ is \mathbb{Z}_2 -magic. Then, $\deg_{G_1 \times G_2}(u,v) = \deg_{G_1}(u) + \deg_{G_2}(v)$ are of the same parity for all $(u,v) \in V(G_1 \times G_2)$. For a fixed u, $\deg_{G_2}(v)$ are of the same parity for all $v \in V(G_2)$. Similarly, $\deg_{G_1}(u)$ are of the same parity for all $u \in V(G_1)$. Hence, G_1 and G_2 are \mathbb{Z}_2 -magic. \square

We conclude with a few additional results on the integer-magic spectra of $G_1 \times G_2$.

Theorem 9. Let G_1 and G_2 be \mathbb{Z}_m -magic and \mathbb{Z}_n -magic graphs, respectively. Then, $\{kl: k \in \mathbb{N} \text{ and } l = \text{lcm}(m,n)\} \subseteq \text{IM}(G_1 \times G_2)$.

Proof. Let l = lcm(m, n). Since G_1 is \mathbb{Z}_m -magic, Theorem C implies that G_1 is \mathbb{Z}_l -magic. Similarly, G_2 is \mathbb{Z}_l -magic. By Theorem E, $G_1 \times G_2$ is

 \mathbb{Z}_l -magic. Since l|2l, l|3l, etc., the claim is established by using Theorem C.

Theorem 10. Let l be even, and $k_i \geq 3$. Then, $IM(P_{k_1} \times P_{k_2} \times \cdots \times P_{k_l}) = \{3, 4, 5, \dots\}.$

Proof. Let $G = P_{k_1} \times P_{k_2} \times \cdots \times P_{k_l}$. Since G has vertices of even and odd degree, G is not \mathbb{Z}_2 -magic. Because of the result mentioned in an earlier example, $\mathrm{IM}(P_{k_i} \times P_{k_{i+1}}) = \{3,4,5,\dots\}$, for $i=1,3,5,\dots,l-1$. Thus by Theorem E, $\mathrm{IM}(P_{k_1} \times P_{k_2} \times \cdots \times P_{k_l}) = \{3,4,5,\dots\}$.

Theorem 11. Let G be a graph with degree set $\mathcal{D}_{\mathcal{G}} = \{d_1, d_2, \dots, d_l\}$, T a non-trivial tree and $k \geq 4$. If $k \nmid d_i$ for all i, then there exists a \mathbb{Z}_k -magic labeling of $G \times T$.

Proof. We proceed by induction on n, the number of vertices in T. Let the induction hypothesis be the following: If T is a tree of order n, then there exists a \mathbb{Z}_k -magic labeling of $G \times T$ (with magic-value 0), where the edges in each copy G_c of G are labeled with $r_c \in \{-1, -2, 1, 2\}$.

For the base case (n=2), $T=P_2$. Let the vertices of T be v_1 and v_2 . In $G \times T$, label all of the edges in the two copies of G with -1. Label each edge joining vertices (u_j, v_1) and (u_j, v_2) in $G \times T$, with the value $\deg_G(u_j)$. Since $k \nmid \deg_G(u_j)$, this ensures that $\deg_G(u_j) \not\equiv 0 \pmod{k}$. Thus, we have a \mathbb{Z}_k -magic labeling of $G \times P_2$, with magic-value 0.

Now, assume that the induction hypothesis holds for $m=2,3,\ldots,n-1$ and let T be a tree of order n. Suppose that v is a leaf of T and v' is its neighbor. Then, $T'=T-\{v\}$ is a tree of order n-1. By the induction hypothesis, $G\times T'$ has a \mathbb{Z}_k -magic labeling with magic-value 0 (see Figure 4). There, we see that $f^+((u_j,v'))=(a_2+\cdots+a_d)+r\cdot\deg_G(u_j)\equiv 0$ (mod k).

FIGURE 4. \mathbb{Z}_k -magic labeling of $G \times (T - \{v\})$, where r = -1, -2, 1, or 2.

We now use the labeling in Figure 4 to obtain a \mathbb{Z}_k -magic labeling of $G \times T$ with magic-value 0. There are two cases to consider.

CASE 1: Suppose that r=-1 or r=2. Then, Figure 5 gives a \mathbb{Z}_{k} -magic labeling of $G\times T$ satisfying the induction hypothesis. Note that in Figure 5,

$$f^{+}((u_{j}, v)) = \deg_{G}(u_{j}) + (-1) \cdot \deg_{G}(u_{j})$$

$$\equiv 0 \pmod{k},$$

$$f^{+}((u_{j}, v')) = \deg_{G}(u_{j}) + (r - 1) \cdot \deg_{G}(u_{j}) + \sum_{i=2}^{d} a_{i}$$

$$= r \cdot \deg_{G}(u_{j}) + \sum_{i=2}^{d} a_{i}$$

$$\equiv 0 \pmod{k}.$$

FIGURE 5. \mathbb{Z}_k -magic labeling of $G \times T$, for CASE 1.

CASE 2: Suppose that r = -2 or r = 1. Then, Figure 6 gives a \mathbb{Z}_{k} -magic labeling of $G \times T$ satisfying the induction hypothesis. Note that in

Figure 6,

$$f^{+}((u_{j}, v)) = -\deg_{G}(u_{j}) + (1) \cdot \deg_{G}(u_{j})$$

$$\equiv 0 \pmod{k},$$

$$f^{+}((u_{j}, v')) = -\deg_{G}(u_{j}) + (r+1) \cdot \deg_{G}(u_{j}) + \sum_{i=2}^{d} a_{i}$$

$$= r \cdot \deg_{G}(u_{j}) + \sum_{i=2}^{d} a_{i}$$

$$\equiv 0 \pmod{k}.$$

Figure 6. \mathbb{Z}_k -magic labeling of $G \times T$, for CASE 2.

In both cases, all of the labels on the edges of $G \times T$ are non-zero. Thus by induction, the theorem is established.

Example. Figure 7 illustrates Theorem 11 for the graph $C_4 \times P_3$.

FIGURE 7. \mathbb{Z}_k -magic labeling of $C_4 \times P_3$, for $k \geq 3$.

Example. Let $H = Q_n \times K_m \times T_1 \times T_2$, where T_1 and T_2 are non-trivial trees and Q_n is the *n*-dimensional hypercube. Suppose $k \geq 4$ where $k \nmid n$ and $k \nmid m-1$. Then, it follows from Theorem 11 that $Q_n \times T_1$ and $K_m \times T_2$ are \mathbb{Z}_k -magic. Thus by Theorem E, H is \mathbb{Z}_k -magic.

REFERENCES

- [1] M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361–374.
- [2] M. Doob, Generalizations of magic graphs, Journal of Combinatorial Theory, Series B, 17 (1974), 205-217.
- [3] M. Doob, Characterizations of regular magic graphs, Journal of Combinatorial Theory, Series B, 25 (1978), 94-104.
- [4] M.C. Kong, S-M Lee, and H. Sun, On magic strength of graphs, Ars Combinatoria, 45 (1997), 193-200.
- [5] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull., 13 (1970), 451-461.
- [6] S-M Lee, Yong-Song Ho and R.M. Low, On the integer-magic spectra of maximal planar and maximal outerplanar graphs, Congressus Numerantium, 168 (2004), 83-90.
- [7] S-M Lee, A. Lee, Hugo Sun, and Ixin Wen, On group-magic graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 38 (2001), 197-207.
- [8] S. M. Lee and F. Saba, On the integer-magic spectra of two-vertex sum of paths, Congressus Numerantium, 170 (2004), 3-15.
- [9] S-M Lee, F. Saba, E. Salehi, and H. Sun, On the V₄-group magic graphs, Congressus Numerantium, 156 (2002), 59-67.
- [10] S-M Lee, F. Saba, and G. C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium, 92 (1993), 177-184.
- [11] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria, 67 (2003), 199-212.
- [12] S-M Lee, E. Salehi and H. Sun, Integer-magic spectra of trees with diameters at most four, JCMCC., 50 (2004), 3-15.

- [13] S. M Lee, L. Valdes, and Yong-Song Ho, On group-magic spectra of trees, double trees and abbreviated double trees, JCMCC., 46 (2003), 85-95.
- [14] R.M. Low and S-M Lee, On the integer-magic spectra of tessellation graphs, Australas. J. Combin., 34 (2006), 195-210.
- [15] R.M. Low and S-M Lee, On the products of group-magic graphs, Australas. J. Combin., 34 (2006), 41-48.
- [16] R.M. Low and S-M Lee, On group-magic eulerian graphs, JCMCC., 50 (2004), 141-148.
- [17] R.M. Low and L. Sue, Some new results on the integer-magic spectra of tessellation graphs, Australas. J. Combin., 38 (2007), 255-266.
- [18] E. Salehi and P. Bennett, On integer-magic spectra of caterpillars, JCMCC., 61 (2007), 65-71.
- [19] J. Sedlácek, On magic graphs, Math. Slov, 26 (1976), 329–335.
- [20] J. Sedlácek, Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. 1976, Proc. Symp. Comb. Anal., Zielona Gora (1976), 247–253.
- [21] W.C. Shiu and R.M. Low, Group-magicness of complete n-partite graphs, JCMCC., 58 (2006), 129 134.
- [22] W.C. Shiu and R.M. Low, Integer-magic spectra of sun graphs, J. Comb. Optim., 14 (2007), 309-321.
- [23] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J., 40 (1973), 607-632.
- [24] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, Duke Math. J., 40 (1976), 511-531.
- [25] W.D. Wallis, Magic Graphs, Birkhauser Boston, (2001).

DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, SAN JOSE, CA 95192, USA

E-mail address: low@math.sjsu.edu

DEPARTMENT OF MATHEMATICS, HONG KONG BAPTIST UNIVERSITY, 224 WATERLOO ROAD, KOWLOON TONG, HONG KONG

E-mail address: wcshiu@hkbu.edu.hk