Chapter 10 Worked Examples

1 Cache Hits & Misses

1.1 Direct-Mapped Cache

A notional system has direct-mapped cache that is addressed via 16-bit addresses. The cache uses 8-byte blocks and has 8 total entries.

Direct-Mapped Cache; 8-byte blocks, 8 blocks											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	
0	1DA	1	01	23	45	67	89	AB	CD	EF	
1	345	1	F1	E2	D3	C4	В5	A6	97	80	
2	2B7	0	_	_	_	_	_	_	_	_	
3	09C	1	17	39	28	13	46	79	55	00	
4	18E	0	_	_	_	_	_	_	_	_	
5	2F6	1	11	22	33	44	55	66	77	88	
6	3A4	1	99	00	FF	EE	DD	CC	BB	AA	
7	06B	1	02	31	06	85	88	00	00	00	

How many bits for the block offset? 3

How many bits for the set index? 3

How many bits for the tag? 10

For each of the examples, write address in binary, separate it into the three bitfields, and then re-express those bitfields in hexadecimal to use with the cache tables.

1. Given an address of 0x7687

0b 0111 0110 1000 0111

- What is the block offset? 7
- What is the set index? $\underline{0}$
- What is the tag? 0x1DA

- Do we have a cache hit? If so, what is the value of the byte at that address? yes, 0xEF
- 2. Given an address of 0x1D4E
 - What is the block offset? $\underline{6}$
 - What is the set index? $\underline{1}$
 - What is the tag? 0x075
 - Do we have a cache hit? If so, what is the value of the byte at that address? no
- 3. Given an address of 0x7215
 - What is the block offset? 5
 - What is the set index? $\underline{2}$
 - What is the tag? 0x1C8
 - Do we have a cache hit? If so, what is the value of the byte at that address? no
- 4. Given an address of 0x271C
 - What is the block offset? 4
 - What is the set index? $\underline{3}$
 - What is the tag? 0x09C
 - Do we have a cache hit? If so, what is the value of the byte at that address? yes, 0x46
- 5. Given an address of 0x3FA3
 - What is the block offset? 3
 - What is the set index? 4
 - What is the tag? 0x0FE
 - \bullet Do we have a cache hit? If so, what is the value of the byte at that address? \underline{no}
- 6. Given an address of 0xBDAA
 - What is the block offset? 2
 - What is the set index? 5
 - What is the tag? 0x2F6
 - Do we have a cache hit? If so, what is the value of the byte at that address? yes, 0x33
- 7. Given an address of 0xE931

- What is the block offset? $\underline{1}$
- What is the set index? $\underline{6}$
- What is the tag? 0x3A4
- Do we have a cache hit? If so, what is the value of the byte at that address? yes, 0x00
- 8. Given an address of 0xD638
 - What is the block offset? 0
 - What is the set index? $\underline{7}$
 - What is the tag? 358
 - \bullet Do we have a cache hit? If so, what is the value of the byte at that address? $\underline{\rm no}$

1.2 2-Way Set-Associative Cache

A notional system has a 2-way set associative cance that is addressed via 16-bit addresses. The cache uses 8-byte blocks and has 8 total entries.

2-Way Set-Associative Cache; 8-byte blocks, 8 blocks											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	
0	123	1	01	23	45	67	89	AB	CD	EF	
	4A5	1	F1	E2	D3	C4	B5	A6	97	80	
1	6B7	0	_	_	_	_	_	_	_	_	
	69C	1	17	39	28	13	46	79	55	00	
2	0FE	0	_	_	_	_	_	_	_	_	
	1D2	1	11	22	33	44	55	66	77	88	
3	3A4	1	99	00	FF	EE	DD	CC	BB	AA	
	58B	1	02	31	06	85	88	00	00	00	

How many bits for the block offset? 3

How many bits for the set index? 2

How many bits for the tag? 11

For each of the examples, write address in binary, separate it into the three bitfields, and then re-express those bitfields in hexadecimal to use with the cache tables.

1. Given an address of 0x2460 0b 0010 0100 0110 0000

• What is the block offset? $\underline{0}$

- What is the set index? 0
- What is the tag? 0x123
- Do we have a cache hit? If so, what is the value of the byte at that address? yes, 0x01

2. Given an address of 0x98A1

- What is the block offset? 1
- What is the set index? 0
- What is the tag? 0x4C5
- \bullet Do we have a cache hit? If so, what is the value of the byte at that address? $\underline{\rm no}$

3. Given an address of 0xD6EA

- What is the block offset? 2
- What is the set index? $\underline{1}$
- What is the tag? 0x6B7
- \bullet Do we have a cache hit? If so, what is the value of the byte at that address? \underline{no}

4. Given an address of 0x396B

- What is the block offset? $\underline{3}$
- What is the set index? $\underline{1}$
- What is the tag? 0x1CB
- \bullet Do we have a cache hit? If so, what is the value of the byte at that address? $\underline{\rm no}$

5. Given an address of 0x7F14

- What is the block offset? $\underline{4}$
- What is the set index? $\underline{2}$
- What is the tag? 0x3F8
- \bullet Do we have a cache hit? If so, what is the value of the byte at that address? $\underline{\rm no}$

6. Given an address of 0x3A55

- What is the block offset? 5
- What is the set index? $\underline{2}$
- What is the tag? 0x1D2
- \bullet Do we have a cache hit? If so, what is the value of the byte at that address? yes, $0\mathrm{x}66$

- 7. Given an address of 0xB17E
 - \bullet What is the block offset? $\underline{6}$
 - What is the set index? $\underline{3}$
 - What is the tag? 0x58B
 - \bullet Do we have a cache hit? If so, what is the value of the byte at that address? yes, $0\mathrm{x}00$
- 8. Given an address of 0x749F
 - \bullet What is the block offset? $\underline{7}$
 - What is the set index? $\underline{3}$
 - What is the tag? 0x3A4
 - \bullet Do we have a cache hit? If so, what is the value of the byte at that address? yes, $0\mathrm{xAA}$

Copy of notional caches for overhead projector or for handing out

A notional system has direct-mapped cache that is addressed via 16-bit addresses. The cache uses 8-byte blocks and has 8 total entries.

	Direct-Mapped Cache; 8-byte blocks, 8 blocks											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7		
0	1DA	1	01	23	45	67	89	AB	CD	EF		
1	345	1	F1	E2	D3	C4	B5	A6	97	80		
2	2B7	0	_	_	_	_	_	_	_	_		
3	09C	1	17	39	28	13	46	79	55	00		
4	18E	0	_	_	_	_	_	_	_	_		
5	2F6	1	11	22	33	44	55	66	77	88		
6	3A4	1	99	00	FF	EE	DD	CC	BB	AA		
7	06B	1	02	31	06	85	88	00	00	00		

A notional system has a 2-way set associative cance that is addressed via 16-bit addresses. The cache uses 8-byte blocks and has 8 total entries.

coses. The each assist by the brooks and has a total charles.											
2-Way Set-Associative Cache; 8-byte blocks, 8 blocks											
Index	Tag	Valid	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	
0	123	1	01	23	45	67	89	AB	CD	EF	
0	4A5	1	F1	E2	D3	C4	B5	A6	97	80	
1	6B7	0	_	_	_	_	_	_	_	_	
1	69C	1	17	39	28	13	46	79	55	00	
2	0FE	0	_	_	_	_	_	_	_	_	
	1D2	1	11	22	33	44	55	66	77	88	
3	3A4	1	99	00	FF	EE	DD	CC	BB	AA	
	58B	1	02	31	06	85	88	00	00	00	