Zxam I. Thursday (Feb 25th)

Dynamic Programming

Buildig a table and record du process b indurain

Convertig recursion to iteration

 $F_{n} = F_{n-1} + F_{n-2}$ $F_{i} = 1$ $F_{o} = 1$

F10 = ?

F (int x) if x=0 or x=1, return 1 else return T(X-1) + T(x-2) 1 F(int x) initialize an array Flo. x] Tox 4= 2 Froj = 1, Frij=1

For j=2 to x F(j)=F(j-1)+F(j-2)Team F(x)

Knapsack Porblem.

Given n items S={S1, S2; Sn}

each item Sig has an integer size Kj>0

and an integer value Cj>0

You are given a knapsack of sinteger size

K \$\omega > 20

Find a subset of items $S^* \subseteq S'$ such that:

(1) $\sum_{S \in S^*} K_S \leq K$

(v) \(\sum_{\infty} C_{\infty} \) is maximized. \(\sum_{\infty} C_{\infty} \) is maximized.

max 5 Cs

S,t. ZKS KK

integer linear programmiy.

introdució Xj as indicator variable for item Sj, Xjefo,13

if xj=1, the item Sj is chosen

if xj=0 the irom Sj is not.

 $m \approx \sum_{j=1}^{n} x_j C_j$

 $S,t. \sum_{j=1}^{n} x_j K_j \leq K$

 $x_j \in \{0, 1\}$

KP(K,n) = Fish n-1 items $Max \{$ $KP(K-Kn, \otimes n-1) \downarrow Cn$ KP(K, n-1) First n-1 items KP(0, n) = 0, KP(K, 0) = 0

Sj(kj,Cj)

 $S_{i}(2, 6)$

Sz(4,2)

S3(3,13)

540(2,8)

K= 4

K							
	1	2.	3	>		4	
{si}	00	61	4 6	1 1	6		
(S),S-)	,	86 6	D.				
(Si,Si,S)		6					
{S1,50,55,54}					14	1.	

Runnig time

O(nK)

pseudo-poly nomial

$$KP(1, 1) = max \{$$
 $KP(1-2, 0) + 6$
 $KP(1, 0)$
 $KP(1, 0)$
 $KP(2, 1) = max \{$
 $KP(2-2, 0) + 6$

KP(2,0)