1 Reihen

Vertauschen der Summanden Für unendliche Reihen gilt, dass die einzelnen Summen untereinander nicht vertauscht werde der Summanden $a = \sum_{k=1}^{\infty} a_k b = \sum_{k=1}^{\infty} b_k \text{sind konvergente Reihen} a_k \leq b_k \forall n \in \mathbb{N} \Rightarrow a \leq b$ $ \hline $		Grundlegendes				
Existicit der Grenzwert nicht, so ist die Reihe divergent. Wenn man in einer Reihe endlich viele Summanden hinzu/weglässt, so bleibt sie Konvergent ode Divergent. (nicht so bei Fölge) Vertauschen der Summanden Für unendliche Reihen gilt, dass die einzelnen Summen untereinander nicht vertauscht werde können Für unendliche Reihen gilt, dass die einzelnen Summen untereinander nicht vertauscht werde können Konvergenzkriterien $s = 0$ by $s = 0$	Reihe	Folge $\langle a_n \rangle = a_1, a_2a_n$ Folge $\langle s_1 \rangle = a_1$ und $\langle s_2 \rangle = a_1 + a_2$ Eine Reihe ist eine Folge ihrer Partialsummen: $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k = \sum_{k=1}^\infty a_k = s$				
Es gilt ausserden $a = \sum_{k=1}^{\infty} a_k b = \sum_{k=1}^{\infty} b_k \text{ sind konvergente Reihen} a_k \le b_k \forall n \in \mathbb{N} \Rightarrow a \le b$ $\begin{array}{c} \mathbf{E} \text{Suth ausserden} \\ \mathbf{E} \text{Suth Konvergenzkriterien} \\$	Konvergenz/Divergenz	Konvergiert die unendliche Reihe $\langle s_n \rangle$ so besitzt sie die Summe s. $s = \sum_{k=1}^{\infty} a_k$ Existiert der Grenzwert nicht, so ist die Reihe divergent. Wenn man in einer Reihe endlich viele Summanden hinzu/weglässt, so bleibt sie Konvergent oder				
		Für unendliche Reihen gilt, dass die einzelnen Summen untereinander <u>nicht</u> vertauscht werden können				
Cauchyches Konvergenzer den solution of the second part of the second	Es gilt ausserdem	$a = \sum_{k=1}^{\infty} a_k$ $b = \sum_{k=1}^{\infty} b_k$ sind konvergente Reihen $a_k \leq b_k$ $\forall n \in \mathbb{N}$ \Rightarrow $a \leq b$				
Reziprokkrit $s = \sum_{n=1}^{\infty} \frac{1}{n^2} \begin{cases} \text{konvergent für } \alpha > 1 \\ \text{divergent für } \alpha \leq 1 \end{cases}$ Trivialkriterium $S. 473 (7.2.1.2)$ $\sum_{n=1}^{\infty} a_n \begin{cases} \lim_{n \to \infty} a_n \neq 0 & \text{divergent für } \alpha \leq 1 \end{cases}$ Majorantenkrit. $S. 479 (7.2.5.1)$ Majorantenkrit. $S. 479 (7.2.5.1)$ Dies gilt auch für $ a_n \leq c_n$ konvergent, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n \text{ und somit auch } \sum_{n=1}^{\infty} a_n \text{ für für } a_n = 0 \end{cases}$ Minorantenkrit. Ist die Reihe $\sum_{n=1}^{\infty} d_n \text{ gegen } + \infty \text{ divergent, so gilt dies auch für die Reihe } \sum_{n=1}^{\infty} a_n \text{ bei } a_n \geq d_n.$ Dies gilt auch für $a_n \geq d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$. Quotientenkrit. $S. 474 (7.2.2.2)$ Wurzelkrit. $S. 474 (7.2.2.2)$ Wurzelkrit. $S. 474 (7.2.2.3)$ $\lim_{n \to \infty} \frac{ a_{n+1} }{ a_n } = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n \geq 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n \geq 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n \geq 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n \geq 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n \geq 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ a_n = 1 \text{ divergent} \end{cases}$ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \text{ divergent} $ $\int_{-f(x)}^{\infty} a_n = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \text{ ist konvergent, wenn die Folge } \langle a_n \rangle \text{ eine monoton fallende Nullfolg } \langle a_n \rangle \text{ der monoton fallende Reihe } \sum_{n=1}^{\infty} a_n \text{ der Reihe } \sum_{n=1}^{\infty} a_n \text{ der Reihe } a_n \rangle \text{ der Reihe } a_n \text{ der Reihe } a_n \rangle \text{ der Reihe } a_n \text{ der Reihe } a_n$		Konvergenzkriterien $S.472-476$				
Trivialkriterium $S. 473 \ (7.2.1.2)$ $\sum_{n=1}^{\infty} a_n \begin{cases} \lim_{n\to\infty} a_n \neq 0 & \text{divergent} \\ \lim_{n\to\infty} a_n = 0 \end{cases}$ konvergent oder divergent \Rightarrow weitere Tests notwendig! Majorantenkrit. $S. 479 \ (7.2.5.1)$ Ist die Reihe $\sum_{n=1}^{\infty} c_n$ konvergent, so konvergiert auch die Reihe $\sum_{n=1}^{\infty} a_n $ und somit auch $\sum_{n=1}^{\infty} a_n$ fü $ a_n \leq c_n$ (absolut). Dies gilt auch für $ a_n \leq c_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$. Minorantenkrit. Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \geq d_n$. Dies gilt auch für $a_n \geq d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$. Quotientenkrit. $S.474 \ (7.2.2.2)$ $\lim_{n\to\infty} \sqrt[n]{ a_n } = \alpha$ der Reihe $\sum_{n=1}^{\infty} a_n$ a_n $a_n = 1$ keine Aussage! $a_n = 1$ divergent $a_n = 1$ diver		Dann Konvergiert die Reihe, ansonsten divergiert sie. $(s_m - s_n < \epsilon)$				
Trivialkriterium $S. 473 \ (7.2.1.2)$ $\sum_{n=1}^{\infty} a_n \begin{cases} \lim_{n\to\infty} a_n \neq 0 & \text{divergent} \\ \lim_{n\to\infty} a_n = 0 & \text{konvergent oder divergent} \Rightarrow \text{weitere Tests notwendig!} \end{cases}$ Majorantenkrit. $S. 479 \ (7.2.5.1)$ $\text{Ist die Reihe} \sum_{n=1}^{\infty} c_n & \text{konvergent, so konvergiert auch die Reihe} \sum_{n=1}^{\infty} a_n & \text{und somit auch} \sum_{n=1}^{\infty} a_n & \text{fü} \\ a_n \leq c_n & \text{dassolut} . \\ \text{Dies gilt auch für } a_n \leq c_n & \text{erst ab einer Stelle } n_0 \in \mathbb{N}. \end{cases}$ Minorantenkrit. Ist die Reihe $\sum_{n=1}^{\infty} d_n & \text{gegen} + \infty & \text{divergent, so gilt dies auch für die Reihe} \sum_{n=1}^{\infty} a_n & \text{bei } a_n \geq d_n. \end{cases}$ Quotientenkrit. $S. 474 \ (7.2.2.2)$ $\lim_{n\to\infty} \sqrt{ a_n } = \alpha & \text{der Reihe} \sum_{n=1}^{\infty} a_n & \text{der Reihe} \sum_{n=1}^{\infty} a_n & \text{der Ruihe} \sum_{n=1}^{\infty} a_n & der Ruihe$	Reziprokkrit	$s = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \text{konvergent für} & \alpha > 1\\ \text{divergent für} & \alpha \le 1 \end{cases}$				
Minorantenkrit. Dies gilt auch für $ a_n \le c_n$ (absolut). Dies gilt auch für $ a_n \le c_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$. Minorantenkrit. Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$. Quotientenkrit. S.474 (7.2.2.2) $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \begin{cases} \alpha < 1 \text{(aboslut) konvergent} \\ \alpha = 1 \text{keine Aussage!} \\ \alpha > 1 \text{divergent} \end{cases}$ Integralkrit. S.474 (7.2.2.3) $\lim_{n \to \infty} \sqrt[n]{a_n} = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \begin{cases} \alpha < 1 \text{(aboslut) konvergent} \\ \alpha = 1 \text{keine Aussage!} \\ \alpha > 1 \text{divergent} \end{cases}$ $\int_{-f(x)}^{\infty} \int_{-f(x)}^{\infty} \int_{-f(x)}^{\infty}$		$\begin{bmatrix} \sum_{n=1}^{\infty} a_n \\ \lim_{n \to \infty} a_n \neq 0 \\ \lim_{n \to \infty} a_n = 0 \end{bmatrix}$ divergent $\begin{cases} \lim_{n \to \infty} a_n \neq 0 \\ \lim_{n \to \infty} a_n = 0 \end{cases}$ konvergent oder divergent \Rightarrow weitere Tests notwendig!				
Quotientenkrit. S.474 (7.2.2.2) $ \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \left\{ \begin{array}{l} \alpha < 1 \text{(aboslut) konvergent} \\ \alpha = 1 \text{keine Aussage!} \\ \alpha > 1 \text{divergent} \end{array} \right. $ Integralkrit. S.474 (7.2.2.3) $ \left\{ \begin{array}{l} \lim_{n \to \infty} \sqrt[n]{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \left\{ \begin{array}{l} \alpha < 1 \text{(aboslut) konvergent} \\ \alpha = 1 \text{keine Aussage!} \\ \alpha > 1 \text{divergent} \end{array} \right. $ Integralkrit. S.475 (7.2.2.4) $ \left\{ \begin{array}{l} -f(x) \text{ auf dem Intervall } [1, \infty) \text{ definiert} \\ \text{(bzw. } [k, \infty)) \\ -f(x) \geq 0 \\ -f(x) \text{ monoton fallend} \end{array} \right. $ Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $\langle a_n \rangle$ eine monoton fallende Nullfolg ($\lim_{n \to \infty} a_n = 0$) ist. Monotonie mittels Verhältnis ($\left \frac{a_{n+1}}{a_n} \right $), Differenz ($ a_{n+1} - a_n $) oder vollständiger Induktion beweiser Abschützung Restglied einer alternierenden konvergenten Reihe: $ R_n = s - s_n \leq a_n + 1 $ Absolute und Bedinge Konvergenz 7.2.3 S.475 Absolute Konvergenz Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent , wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist. Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wir divergiert.	· ·	$ a_n \le c_n \text{ (absolut)}.$				
	Minorantenkrit.	Ist die Reihe $\sum_{n=1}^{\infty} d_n$ gegen $+\infty$ divergent, so gilt dies auch für die Reihe $\sum_{n=1}^{\infty} a_n$ bei $a_n \ge d_n$. Dies gilt auch für $a_n \ge d_n$ erst ab einer Stelle $n_0 \in \mathbb{N}$.				
Integralkrit. S.475 (7.2.2.4) Wenn $\begin{cases} -f(x) \text{ aut dem Intervall } [1,\infty) \text{ definiert} \\ (\text{bzw. } [k,\infty)) \\ -f(x) \geq 0 \\ -f(x) \text{ monoton fallend} \end{cases} \Rightarrow \begin{cases} \int_{1}^{\infty} f(x) dx \text{ konvergent} \Leftrightarrow \text{Reihe konvergent} \\ \int_{1}^{\infty} f(x) dx \text{ divergent} \Leftrightarrow \text{Reihe divergent} \end{cases}$ Leibniz Krit. S.476 (7.2.3.3) Die alternierende Reihe $\sum_{n=1}^{\infty} a_n$ ist konvergent, wenn die Folge $\langle a_n \rangle$ eine monoton fallende Nullfolg $(\lim_{n \to \infty} a_n = 0)$ ist. Monotonie mittels Verhältnis $\left(\left \frac{a_{n+1}}{a_n}\right \right)$, Differenz $(a_{n+1} - a_n)$ oder vollständiger Induktion beweiser Abschätzung Restglied einer alternierenden konvergenten Reihe: $ R_n = s - s_n \leq a_n + 1 $ Absolute und Bedinge Konvergenz 7.2.3 S.475 Absolute Konvergenz Unbedingt Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wirdivergiert.	S.474 (7.2.2.2) Wurzelkrit.	$\begin{vmatrix} \lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \\ \lim_{n \to \infty} \sqrt[n]{ a_n } = \alpha \text{ der Reihe } \sum_{n=1}^{\infty} a_n \end{vmatrix}$ $\begin{cases} \alpha < 1 \text{ (aboslut) konvergent} \\ \alpha = 1 \text{ keine Aussage!} \\ \alpha > 1 \text{ divergent} \end{cases}$				
$(\lim_{n\to\infty} a_n =0) \text{ ist.}$ $(\lim_{n\to\infty} a_{n+1} - a_n) \text{ oder vollständiger Induktion beweiser}$ $(\lim_{n\to\infty} a_n =0) \text{ ist.}$ $(\lim_{n\to\infty} a_{n+1} - a_n) \text{ oder vollständiger Induktion beweiser}$ $(\lim_{n\to\infty} a_n =0) \text{ ist.}$ $(\lim$	_					
Absolute und Bedinge Konvergenz 7.2.3 S.475 Absolute Konvergenz Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent, wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist. Unbedingt Konvergent Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.						
Absolute und Bedinge Konvergenz 7.2.3 S.475 Absolute Konvergenz Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent, wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist. Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.						
Absolute Konvergenz Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent , wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist. Unbedingt Konvergent Konvergent Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.	Abschätzung Restglied einer alternierenden konvergenten Reihe: $ R_n = s - s_n \le a_n + 1 $					
Unbedingt Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.						
Unbedingt Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird divergiert.	Absolute Konvergenz	Eine Reihe $\sum_{n=1}^{\infty} a_n$ heisst absolut konvergent , wenn die Reihe $\sum_{n=1}^{\infty} a_n $ konvergent ist.				
Bedingt Konvergent Unbedingt kann man umordnen, ohne dass sich konvergenz oder Grenzwert ändert.	_	Unbedingt Konvergent ist eine Reihe die durch umordnen einen anderen Grenzwert hat oder wird				
	Bedingt Konvergent	Unbedingt kann man umordnen, ohne dass sich konvergenz oder Grenzwert ändert.				

Potenzreihen S.1075-79, (20), 482-487							
Grundlegend	$\sum_{n=0}^{\infty} a_n (x - x_0)^n$	ist eine Potenzreihe	mit Entwicklungspunkt	x_0 und a_n als Koeffizienten			
Konvergenzkrit	$\sum_{n=0}^{\infty} a_n x^n \text{ Es sei },$	$\lim_{n \to \infty} \sqrt[n]{ a_n } = \beta \Rightarrow \epsilon$	$\begin{cases} \beta = 0 & \text{absolut Ko} \\ \beta > 0 & fr \begin{cases} \beta = 0 \\ x > \\ x = \end{cases} \\ \beta = \pm \infty : & \text{divergent} \end{cases}$	onvergent für alle $x \in \mathbb{R}$: absolut konvergent für alle $x \in \mathbb{R}$ $\frac{1}{\beta}$: divergent $\frac{1}{\beta}$: keine Aussage möglich ausser für $x = 0$			
Konvergenzradius	Wurzelkrit.: $\rho = \frac{1}{\lim_{n \to \infty} \sqrt[n]{ a_n }} = \frac{1}{\beta}$ für: $\begin{cases} \beta = 0 \implies \rho = \infty \\ \beta = \pm \infty \implies \rho = 0 \end{cases}$						
	Quotientenkrit.: $\rho = \lim_{n \to \infty} \left \frac{a_n}{a_{n+1}} \right $						
Mehrere Summen	$\sum_{n=0}^{\infty} a_n x^n \text{ hat } \rho_1 \sum_{n=0}^{\infty} b_n x^n \text{ hat } \rho_2 \qquad \rho = \min\{\rho_1, \rho_2\} \text{Dann gilt:}$ $\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n$ $\left(\sum_{n=0}^{\infty} a_n x^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{n=0}^{\infty} a_k b_{n-k}\right) x^n$						
Ableitung Potreihen	$\sum_{n=0}^{n=0} a_n x^n \cdot \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n$ $\left(\sum_{n=0}^{\infty} a_n x^n\right)' = \sum_{n=1}^{\infty} n \cdot a_n x^{n-1} \qquad \text{(für alle } x \in (-\rho; \rho) \text{Der Konvergenz radius } \rho \text{ bleibt gleich)}$ Dies kann beliebig oft wiederholt werden: $f^{(i)}(x) = \sum_{n=i}^{\infty} n(n-1) \dots (n-i+1) \cdot a_n x^{n-i} \text{(für alle } i \in \mathbb{N})$						
Aufleitung Potreihen	$\int \sum_{n=0}^{\infty} a_n x^n dx = \sum_{n=0}^{\infty} a_n \int x^n dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} \cdot x^{n+1} + C \qquad \text{(für alle x } \in (-\rho; \rho) \rho \text{ bleibt dabei gleich)}$						
Taylor-Reihe	Für eine beliebig oft differenzierbare Funktion gibt es die Taylorreihe $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n$ Für alle Glieder der Taylorreihe muss die folgende Bedingung erfüllt sein $\lim_{n \to 0} T(\xi) = 0$						
	Grenzwerte						
$\lim_{n \to \infty} \left(\sqrt[n]{\frac{K^n}{n!}} \right) = 0$ (K > 0 und const.)	$\lim_{n\to\infty} (\sqrt[n]{n^a}) =$	= 1 (a const.)	$\lim_{n \to \infty} (\sqrt[n]{n}) = 1$	$\lim_{n \to \infty} (\sqrt[n]{a}) = 1$ (a > 0 und const.)			
$\lim_{n \to \infty} \left(\frac{K}{n!} \right) = 0 \ (K \text{ const.})$	$\lim_{n \to \infty} (\sqrt[n]{ p(n) }) = 1 \ (p(n) \neq 0)$		$\lim_{n \to \infty} (\sqrt[n]{n!}) = +\infty$	$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$			
$\lim_{n \to \infty} \left(\frac{n}{\sqrt[n]{n!}} \right) = e$							
	Ве	kannte Reihen	S.19-21, 477-478, (47	8)			
Geometrische: $s_n = \sum_{k=0}^n a_0 \cdot q^k = a_0 \cdot \frac{1 - q^n}{1 - q}$ $s = \sum_{k=0}^\infty a_0 \cdot q^k = \frac{a_0}{1 - q}$ $\sum_{k=0}^\infty a_0 \cdot q^k = \begin{cases} q = 0 & undef \\ q < 1 & 1 \\ q < (-1) & \pm \infty \\ q > 1 & +\infty \end{cases}$		$\sum_{n=0}^{\infty} \frac{1}{n^p} = \begin{cases} p > 1\\ p \le 1 \end{cases}$	$konvergent \ divergent$	$\frac{\text{Potenz-Reihe:}}{\sum\limits_{n=1}^{\infty}\frac{x^n}{n^{\alpha}}} \Rightarrow \rho = \lim_{n \to \infty} \sqrt[n]{n^{\alpha}} = 1$ Randwerte: $x = 1 \Rightarrow \begin{cases} \alpha > 1 & konvergiert \\ \alpha \leq 1 & divergiert \end{cases}$ $x = (-1) \Rightarrow \begin{cases} \alpha > 0 & konvergiert \\ \alpha \leq 0 & divergiert \end{cases}$			
Arithmetische: $s_n = \sum_{k=0}^n a_0 + k \cdot d = \frac{n}{2}(a_1 + a_n)$		Exponential function: $\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots (\rho = \infty)$		Binominal-Reihe $\sum_{n=0}^{\infty} \binom{\alpha}{n} \cdot x^n = (1+x)^{\alpha} \rho = 1$ p.m. $\binom{u}{k} = \frac{u!}{(u-k)!k!}$			
Harmonische: (divergiert) $s_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3}$		alternierende Harmonische: (bedingt konvergent) $\sum_{n=1}^{\infty} (-1)^{(n+1)} \frac{1}{n} = \ln(2)$		Spezialfall (Binominalreihe): $\Rightarrow \alpha = \frac{1}{2}$ $(1+x)^{1/2} = \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} \pm \cdots (\rho = 1)$			

2 Differentialgleichungen

	$egin{array}{ccccc} Grundlegendes & S.553 \end{array}$						
Grundsätzlich	Eine Gleichung zur Bestimmung einer Funktion heisst Differentialgleichung, wenn sie mindestens eine Ableitung der gesuchten Funktion enthält						
Ordnung	Die Ordnung wird bestimmt durch die höchste Ableitung der gesuchten Funktion						
Anfangswertproblem	Funktion: $y^{(n)} = f(x, y, y',, y^{(n-1)})$ Das Anfangswertproblem hat die Aufgabe, eine Funktion zu finden, die folgendes erfüllt: $y(x_0) = y_0 y'(x_0) = y_1 y^{n-1}(x_0) = y_{n-1}$ Anfangswerte: $y_0, y_1,, y_{n-1} \text{mit Anfangspunkt } x_0$						
Existenz/Eindeutigkeit (Piccard-Lindelöf)	Die Funktion $f(x, u, u_1,, u_{n-1})$ sei in einer Umgebung der Stelle $(x_0, y_0, y_1,, y_{n-1}) \in \mathbf{R}^{n+1}$ stetig und besitzt dort stetige partielle Ableitungen nach $u, u_1,, u_{n-1}$ dann existiert in einer geeigneten Umgebung des Anfangspunktes x_0 genau eine Lösung des Anfangswertproblems $y^{(n)} = f(x, y, y',, y^{(n-1)}) \text{ mit } y(x_0) = y_0, y'(x_0) = y_1,, y^{(n-1)}(x_0) = y_{n-1}$ $\boxed{\frac{\partial f}{\partial y} \dots \frac{\partial f}{\partial f^{(n-1)}}} \text{endlich beschränkt} \Rightarrow \text{eindeutige Lösbarkeit}$ $y' = -\frac{x}{2} - \sqrt{y + \frac{x^2}{4}} \qquad \text{ AW: } y(0) = 1$						
	$y' = f(x,y) \iff f(x,y) = -\frac{x}{2} - \sqrt{4 + \frac{x^2}{4}} \implies \frac{\partial f}{\partial y} = \frac{-1}{2\sqrt{y + \frac{x^2}{4}}} \text{ Nenner } \neq 0 \Rightarrow y \neq -\frac{x^2}{4}$ für dieses AW-Problem \rightarrow AW einsetzen: $-\frac{1}{2\sqrt{1+0}} = -\frac{1}{2} \implies \text{ eindeutig lösbar}$						
	Anfangsbedingungen müssen ungabhängig sein: $y_0 = ae^{x_0} + be^{-x_0}$ $y_1 = ae^{x_0} - be^{-x_0} \Rightarrow det \begin{pmatrix} e^{x_0} & e^{-x_0} \\ e^{x_0} & -e^{-x_0} \end{pmatrix} = -2 \neq 0$						
	DGL 1. Ordnung S.554						
Separation S.555 (9.1.1.2)	$y' = f(x) \cdot g(y)$	$y' = f(x) \cdot g(y) \qquad : g(y) \neq 0!!!$ $y' = f(x) \qquad \int_{x_0}^x (\dots) d\tilde{x}$ $\int_{x_0}^x \frac{y'(\tilde{x})}{g(y(\tilde{x}))} d\tilde{x} = \int_{x_0}^x f(\tilde{x}) d\tilde{x} \qquad dy = y'(\tilde{x}) d\tilde{x}$ $\int_{y_0 = y(x_0)}^{y(x)} \frac{1}{g(y)} dy = \int_{x_0}^x f(\tilde{x}) d\tilde{x} \longrightarrow \text{Auflösen} \to \text{Gleichung in } x, y$					
Linearterm	y' = f(ax + by + c)	y' = f(ax + by + c) Substitution: $z = ax + bx + cy' = f(z)$ differenzieren $z' = a + by'z' = a + by'$ $y' = f(z)z' = (a + b \cdot f(z)) \cdot 1 \Rightarrow separiert! Anfangsbedingungen: z_o = ax_0 + by_0 + c$					
Gleichgradigkeit	$y' = f\left(\frac{y}{x}\right)$	$y' = f\left(\frac{y}{x}\right) \qquad \text{Substitution:} z = \frac{y}{x} \iff y = z \cdot x (x \neq 0)$ $y' = f(z) \qquad \text{differenzieren:} y' = z + z' \cdot x$ $y' = z + z' \cdot x \qquad y' = f(z)$ $f(z) = z + z' \cdot x \qquad \text{umformen}$ $z' = (f(z) - z) \cdot \frac{1}{x} \implies \text{separiert!} \text{Anfangsbedingungen:} z_o = \frac{y_0}{x_0}$					
Allgemeine DGL 1. Ordnung	y' + f(x)y = g(x) $y_o = y(x_0)$ g(x): Störterm	Homogene - Rechnung: $g(x) = 0$ Partikuläre - Rechnung: $g(x) \neq 0$ $y_H = k \cdot e^{-\int f(x) dx} \qquad k \in \mathbb{R} \qquad y_P = \int (g(x) \cdot e^{\int f(x) dx}) dx \cdot e^{-\int f(x) dx}$ Superposition: $\mathbb{L} = \left\{ y \mid y = y_H + y_P = e^{-\int f(x) dx} \cdot \left[k + \int (g(x) \cdot e^{\int f(x) dx}) dx \right] \right\} \qquad k \in \mathbb{R}$					

	DGL 2. O	ordnung S.564	
Form Lösung			
$y'' + a_1 \cdot y' + a_0 \cdot y = g(x)$	Wie bei 1. Ordnung: $Y = y_H + y_H$ Homogene DGL: $g(x) = 0$	The phomogene DGL: $g(x) \neq 0$	
	Homogene DGL	$y'' + a_1 \cdot y' + a_0 \cdot y = 0$	
Charakt. Polynor		$y'' + a_1 \cdot y' + a_0 \cdot y = 0 \qquad (\lambda_{1,2} = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_0}}{2})$	
D > 0:	$\lambda_{1,2} = -\frac{a_1}{2} \pm \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0}$	$\in \mathbb{R}$ starke Dämpfung	
$D = \left(\frac{a_1}{2}\right)^2 - a_0 = \begin{cases} D = 0 : \end{cases}$	$\lambda = -\frac{a_1}{2}$ $\in \mathbb{R}$ aperiodischer Grenzfall		
D < 0:	$\lambda_{1,2} = -\frac{a_1}{2} \pm \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0}$ $\lambda = -\frac{a_1}{2}$ $\lambda_{1,2} = -\frac{a_1}{2} \pm j\sqrt{a_0 - \left(\frac{a_1}{2}\right)^2}$	$\in \mathbb{C} \backslash \mathbb{R}$ — schwache Dämpfung / Schwingfall	
	and $\lambda_{1,2} \in R$: $Y_H = Ae^{\lambda_1 x} + Be^{\lambda_1 x}$	$e^{\lambda_2 x}$ } starke Dämpfung	
$(D=0)$ Falls: $\lambda_1 = \lambda_2$ t	and $\lambda_{1,2} \in R$: $Y_H = e^{\lambda_1 x} (A + A)$	$(B \cdot x)$ } aperiodischer Grenzfall	
$(D < 0)$ Falls $y_H = A \cdot \epsilon$	$e^{\lambda x} = A \cdot e^{-\frac{a_1}{2}x} \cdot e^{\pm j\sqrt{ D }x} = A \cdot e^{-\frac{a_1}{2}x}$	$\frac{a_1}{2}x \cdot [\cos(\sqrt{ D }x) \pm j\sin(\sqrt{ D }x)]$ } schwache Dämpfung / Schwing	
(Eigen-)Frequenz	$\omega = \alpha = \frac{\sqrt{ a_1^2 - 4a_0 }}{2}$	$\omega = \sqrt{ D } = \sqrt{ \delta^2 - a_0 }$	
Dämpungskonstante $\delta = -\frac{a_1}{2}$			
Resonanz δ und ω stimmen überein mit Störglied		örglied	
	inhomogene DGL	$y'' + a_1 \cdot y' + a_0 \cdot y = g(x)$	
Grundlöseverfahren (Faltungsintegral) 1. Homogene DGL lösen: $g(x)$ 2. Anfangsbedingungen in H $y_H(x_0) = 0$ $y'_H(x_0) = 1$ 3. A, B bestimmen 4. Einsetzen der Hom. Glg. 5. $Y = y_H + y_P$		m. DGL einsetzen. Wenn möglich: $x_0 = 0$	
Ansatz in Form des Störgliedes 1. Homogene DGL lösen: $g(x)$ 2. $g(x)$ in Störgliedtabelle su 3. Fall bestimmen 4. y_P aus Tabelle ablesen 5. $Y = y_H + y_P$			
$\mathbf{g}(\mathbf{x}) = \mathbf{p_n}(\mathbf{x})$		$(p_n(x) \text{ und } q_n(x) \text{ sind Polynome vom gleichen Grad})$	
Fall 1: $a_0 \neq 0$: Fall 2: $a_0 = 0, a_1 \neq 0$:		$y_P = q_n(x)$ $y_P = x \cdot q_n(x)$	
Fall 3: $a_0 = a_1 = 0$: (a_0 und a_1 beziehen sich auf die linke Seite der DGL)		$y_P = x^2 \cdot q_n(x)$	
$\mathbf{g}(\mathbf{x}) = \mathbf{e}^{\mathbf{b}\mathbf{x}} \cdot \mathbf{p_n}(\mathbf{x})$	die linke Seite der DGL)		
Fall 1: b nicht Nullstelle des char. Polynoms:		$y_P = e^{bx} \cdot q_n(x)$	
Fall 2: b einfache Nullstelle des char. Polynoms:		$y_P = e^{bx} \cdot x \cdot q_n(x)$	
Fall 3: b zweifache Nullstelle des char. Polynoms:		$y_P = e^{bx} \cdot x^2 \cdot q_n(x)$	
$\mathbf{g}(\mathbf{x}) = \mathbf{e}^{\alpha \mathbf{x}} (\mathbf{p_n}(\mathbf{x}) \cos \beta \mathbf{x} + \mathbf{q})$ Fall 1: $\alpha + i \cdot \beta$ night Lösung	$\frac{1}{\text{der charakteristischen Gleichung:}}$	$y_p = e^{\alpha x} \cdot (r_n(x) \cdot \cos(\beta \cdot x) + s_n(x) \cdot \sin(\beta \cdot x))$	
$ran 1. \alpha + j \cdot \rho$ ment Losung	charakteristischen Gleichung:	$y_p = e^{\alpha x} \cdot (r_n(x) \cdot \cos(\beta \cdot x) + s_n(x) \cdot \sin(\beta \cdot x))$ $y_p = e^{\alpha x} \cdot \mathbf{x} \cdot (r_n(x) \cdot \cos(\beta \cdot x) + s_n(x) \cdot \sin(\beta \cdot x))$	

Vorgehen bei einer DGL in Form des Störgliedes

- 1. Y_H mit λ_1 und λ_2 berechnen
- Ordnung n anhand der r.h.s der DGL bestimmen Koeffizient b anhand der r.h.s der DGL bestimmen (Achtung kann aus mehreren Elementen bestehen z.B. $x^2e^x + x$; Superposition)
- 3. Anhand der Störglied Tabellen y_p bestimmen
- 4. $q_n = ax^n + bx^{n-1} + \dots + cx + d$
- 5. y_p ableiten und in die **l.h.s** der DGL einsetzen. $y_p'' + a_1 y_p' + a_0 y_p = f(x)$
- 6. Koeffizienten bestimmen: $x^2e^x \cdot 18a + xe^x(6a + 12b) + e^x(2b + 6c) = x^2e^x$

18a = 1 18a kommt 1mal in der r.h.s vor

(6a+12b)=0 (6a+12b) kommt 0mal vor auf der r.h.s

(2b+6c)=0 (2b+6c) kommt 0mal vor auf der r.h.s

- 7. Koeffizienten in y_p einsetzen
- 8. Wenn das Störglied f(x) aus mehreren Teilen besteht (z.B. $x^2e^x + x$), Störglied auseinander nehmen und in zwei Teile x^2e^x und x unterteilen und Schritt 3 6 wiederholen
- 9. $y = Y_H + y_{p1} + y_{p2} + \dots$

Superpositionsprinzip

$$\begin{array}{l} f(x) = c_1 f_1(x) + c_2 f_2(x) \\ y_1 \text{ ist spezielle L\"osung der DGL} \\ y_2 \text{ ist spezielle L\"osung der DGL} \\ \text{dann ist } y_P = c_1 y_1 + c_2 y_2 \end{array} \qquad \begin{array}{l} y_1'' + a_1 \cdot y_1' + a_0 \cdot y_1 = c_1 f_1(x) \\ y_2'' + a_1 \cdot y_2' + a_0 \cdot y_2 = c_2 f_2(x) \end{array}$$

DGL 1. Ordnung

Orthagonaltrajektorien

c=0.1 c=0.5 c=0.5

Orthogonaltrajektorien sind die Normalen der DGL. Sie stehen senkrecht auf den Kurven die durch die DGL entstehen.

Die orthogonalen Trajektorien schneiden alle Kurven der gegebenen Kurvenschar y = f(x, c) im rechten Winkel.

Vorgehen:

- 1. y nach c umstellen/ auflösen
- 2. y ableiten $\Rightarrow y'$
- 3. in y' Gleichung (entweder oder) $\begin{cases} c \text{ substitutieren/ ersetzen} \Rightarrow \text{DGL: } F(x,y,y') \\ y \text{ Gleichung in } y' \text{ Gleichung einsetzen} \end{cases}$
- 4. y' durch $-\frac{1}{y}$ ersetzen.
- 5. DGL auflösen (sofern nötig...)

Kartesische Koordinaten:

Polarkoordinaten

$$y' = f(x,y)$$
 \Rightarrow $y'_{\perp} = -\frac{1}{f(x,y)}$ $r' = f(r,\varphi)$ \Rightarrow $r'_{\perp} = -\frac{r^2}{f(r,\varphi)}$

Lineare DGL n. Ordnung mit konstanten Koeffizienten S.571

$$\sum_{k=0}^{n} a_k y^{(k)} = y^{(n)} + a_{n-1} \cdot y^{(n-1)} + \dots + a_0 \cdot y = g(x)$$

n-verschiedene Homogene Lösungen

Fall 1: r reelle Lösungen

$$\overline{\lambda_{r-1} \neq \lambda_r}$$

$$y_1 = A_1 \cdot e^{\lambda_1 x}, y_2 = A_2 \cdot e^{\lambda_2 x}, \dots, y_r = A_r \cdot e^{\lambda_r x}$$

$$\lambda_{r-1} = \lambda_r \qquad (\Rightarrow \lambda)$$

$$y_1 = A_1 \cdot e^{\lambda_x}, y_2 = A_2 \cdot x \cdot e^{\lambda x}, \dots, y_r = A_r \cdot x^{r-1} \cdot e^{\lambda x}$$

Fall 2: k komplexe Lösungen

$$\lambda_{1,2} = \alpha \pm j\beta \neq \lambda_{k,k-1}$$

$$y_k = e^{\alpha x} [A_k \cdot \cos(\beta \cdot x) + B_k \cdot \sin(\beta \cdot x)]$$

Schwache Dämpfung / Schwingfall

Starke Dämpfung / Kriechfall

$$\lambda_{1,2} = \alpha \pm j\beta = \lambda_{k,k-1}$$

$$y_1 = e^{\alpha x} [A_1 \cdot \cos(\beta \cdot x) + B_1 \cdot \sin(\beta \cdot x)]$$

$$y_2 = x \cdot e^{\alpha x} [A_2 \cdot \cos(\beta \cdot x) + B_2 \cdot \sin(\beta \cdot x)]$$

$$\dots = \dots$$

$$y_k = x^k \cdot e^{\alpha x} [A_k \cdot \cos(\beta \cdot x) + B_k \cdot \sin(\beta \cdot x)]$$

(k-fache Resonanz)

$$Y_H = y_1 + y_2 + y_3 + \dots + y_n$$

Allgemeinste Lösung des partikulären Teils

$$\sum_{k=0}^{n} a_k y^{(k)} = \underbrace{e^{\alpha x} (p_{m1}(x) \cos(\beta x) + q_{m2}(x) \sin(\beta x))}_{\text{St\"{o}rglied}}$$

 λ aus Homogenlösung

mit m = max(m1, m2)

Fall a: $\alpha + j\beta \neq \lambda$, so ist

 $y_P = e^{\alpha x} (r_m(x)\cos(\beta x) + s_m(x)\sin(\beta x))$

Fall b: $\alpha + j\beta$ ist u-fache Lösung von λ , so ist

Unterscheide die Lösungen des charakteristischen Polynoms (λ):

 $y_P = e^{\alpha x} x^u (r_m(x) \cos(\beta x) + s_m(x) \sin(\beta x))$ u-fache Resonanz

Grundlöseverfahren

$$g(x_0) = 0 =$$

$$Ay_1(x_0) + By_2(x_0) + \ldots + Ny_n(x_0)$$

$$g'(x_0) = 0 =$$

$$g(x_0) = 0 = Ay_1(x_0) + By_2(x_0) + \dots + Ny_n(x_0)$$

 $g'(x_0) = 0 = Ay'_1(x_0) + By'_2(x_0) + \dots + Ny'_n(x_0)$
 $\vdots \qquad \vdots$

$$g^{(n-1)}(x_0) = 1 = Ay_1^{(n-1)}(x_0) + By_2^{(n-1)}(x_0) + \dots + Ny_n^{(n-1)}(x_0)$$

ergibt
$$c_1, \dots, c_n$$
 für
$$y_P(x) = \int_{x_0}^x g(x + x_0 - t) f(t) dt$$

Anfangswertproblem

$$y(x_0) = y_0$$

$$(x_0) = y_1$$

$$y(x_0) = y_0$$
 $y'(x_0) = y_1$ $y''(x_0) = y_2$

$$u^{(n-1)}(x_0) = u_n$$

Lineare Differentialgleichungssysteme erster Ordnung mit konstanten Koeffizienten

Form:

$$\dot{x} = ax + by + f(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}_{M} \begin{pmatrix} x \\ y \end{pmatrix} + \underbrace{\begin{pmatrix} f(t) \\ g(t) \end{pmatrix}}_{St\"{o}rvekto}$$

Die allgem. Lösung ergibt sich aus der DGL:

$$\ddot{x} - (a+d) \cdot \dot{x} + \overbrace{(a \cdot d - b \cdot c)} \cdot x = \dot{f}(t) - d \cdot f(t) + b \cdot g(t)$$
normale DGL 2.Ordnung \to nach x auflösen

$$y = \frac{1}{b}(\dot{x} - ax - f(t))$$

Anfangsbedinungen:

$$x_0(t_0) = x_0$$

$$\dot{x}_0(t_0) = a \cdot x_0(t_0) + b \cdot y_0(t_0) + f(t_0) = a \cdot x_0 + b \cdot y_0 + f(t_0)$$

Anordnung beachten! Gesuchte Grösse immer zu oberst (in diesem Fall ist die gesuchte Grösse x)