

Analyse des ventes en ligne de nos vins et alcools

Thierry Monjo

Business Intelligence analyst

Juin 2024

Analyses Exploratoires des Données

- Création du DataFrame « **erp** » par import du fichier Excel erp.xlsx
- Caractéristiques : 825 lignes sur 6 colonnes
- Traitements réalisés :
 - Nettoyage des données : mise en cohérence de la variable « stock_status » et « stock_quantity »
 - **Features engineering** : correction de deux valeurs négatives « stock_quantity » en valeurs positives, correction des valeurs négatives de la variable « price »
- A noter : validation des données par mise en cohérence des variables et corrections des valeurs négatives inattendues avant étude

Analyses Exploratoires des Données

- Création du DataFrame « **web** » par import du fichier Excel web.xlsx
- **Caractéristiques** : 1513 lignes sur 29 colonnes, dont nombre de champs portant sur des commentaires
- Traitements réalisés :
 - Nettoyage des données : les lignes d'index « sku » (Stock Keeping Unit) pour une même variable « total_sales » apparaissent deux fois -> conservation d'une ligne sur deux
 - Features engineering: suppression des lignes avec un « sku » non valide et simplification du DataFrame -> 3 variables « sku » , « total_sales » et « product_type » sur 713 lignes conservées
- A noter: repérage et suppression des doublons et simplification du DataFrame

Analyses Exploratoires des Données

- Création du DataFrame « liaison » par import du fichier Excel liaison.xlsx
- Caractéristiques: 825 lignes sur 2 colonnes, 91 valeurs de correspondance
 « product_id » et « id_web » sont manquantes et seraient à compléter
- Traitements réalisés :
 - **Features engineering** : changement de nom de colonne de « id_web » en « sku » afin de préparer la fusion des DataFrames à venir
- A noter: identification du champ commun entre liaison et web: « id_web » de liaison est « sku » de web

Fusion ou consolidations des données

- Création du DataFrame « erp_liaison » par **fusion** de « erp » et « liaison »
- erp_liaison = pd.merge(erp, liaison, how='outer', on='product_id',
 in alianta = Turna)
 RangeIndex: 825 entries, 0 to 824

indicator=True)

```
Data columns (total 7 columns):
    Column
                   Non-Null Count Dtype
    product id
                   825 non-null
                                  int64
 1 onsale web
                                int64
                   825 non-null
 2 price
                   825 non-null
                                  float64
3 stock_quantity 825 non-null
                                  int64
 4 stock_status
                   825 non-null
                                  object
    purchase price 825 non-null
                                  float64
                   825 non-null
                                  object
dtypes: float64(2), int64(3), object(2)
```

• A noter : les 825 lignes générées sont communes

Fusion ou consolidations des données

- Création du DataFrame « produits_web » par fusion de « erp_liaison » et « web »
- produits_web = pd.merge(erp_liaison, web, how='outer', on='sku', indicator=True)
 Index: 713 entries, 0 to 824

```
Data columns (total 8 columns):
     Column
                    Non-Null Count Dtype
     product id
                    713 non-null
                                    int32
    onsale web
                    713 non-null
                                    int64
     price
                    713 non-null
                                    float64
    stock quantity 713 non-null
                                    int64
     stock status
                    713 non-null
                                    object
    purchase price 713 non-null
                                    float64
     total sales
                    713 non-null
                                    float64
     product type
                    713 non-null
                                    object
```

A noter:

- o 112 valeurs de erp_liaison n'ont pas donné lieu à des ventes -> suppression des lignes -> de 825 à 713 lignes
- o Correction d'une valeur « onsale_web » non cohérente -> de 0 à 1

Analyses univariées du prix

- Méthodes statistiques employées :
 - o Exploration visuelle avec plotly express : boxplot

O Limites de l'analyse : un certain nombre de prix « outliers », mais comment les évaluer ?

Analyses univariées du prix

- Méthodes statistiques employées :
 - O Identification des valeurs aberrantes (outliers) par le z-score : z-score = (x - moyenne) / écart-type

Outliers ~ z-score > 3 (ou 2)

13 valeurs retenues

	product_id	price
0	4352	225.0
1	5001	217.5
2	5892	191.3
3	4402	176.0
4	5767	175.0
5	4406	157.0
6	4904	137.0
7	6126	135.0
8	5612	124.8
9	5917	122.0
0	6213	121.0
1	6216	121.0
2	6202	116.4

O Limites de l'analyse : quel seuil retenir 2 ou 3 (34 valeurs retenues contre 13) ?

Analyses univariées du prix

- Méthodes statistiques employées :
 - o Identification des outliers par **l'intervalle interquartile** : valeurs supérieures à la valeur du 3ème quartile plus 1.5 fois l'intervalle interquartile.

31 valeurs retenues

	product_id	price
0	4352	225.0
1	5001	217.5
2	5892	191.3
3	4402	176.0
4	5767	175.0
5	4406	157.0
6	4904	137.0
7	6126	135.0
8	5612	124.8
9	5917	122.0
10	6213	121.0
11	6216	121.0
12	6202	116.4
13	6212	115.0
14	6215	115.0
15	5918	114.0
16	5025	112.0
17	4582	109.6
18	4404	108.5

Les 20 premières valeurs

O Limites de l'analyse : une méthode au spectre similaire au z-score > 2 une liste plus large de valeurs à contrôler

- Analyse des ventes en ligne en CA
 - O Calcul du CA par produit (quantités vendues * prix de vente)
 - CA total = 143 505,10€

Répartition des CA des produits

	2500								
Ħ	2000								
prod	1500								
bar bar	1000			_					
ð	500						$\overline{}$	$\overline{}$	
	0	0		5		10		15	
					in	idex			

O Calcul des 20/80 du CA - principe de Pareto nombre de produits qui représentent 80% du CA : 433 (60,73% des produits)

	product_id	CA_prod
0	4352	2475.0
1	5892	1147.8
2	4353	1113.0
3	5826	824.0
4	6212	805.0
5	5026	781.2
6	5008	735.0
7	5767	700.0
8	6126	675.0
9	5025	672.0
10	6201	633.6
11	4406	628.0
12	4647	627.0
13	4358	616.0
14	4359	599.2
15	6214	594.0
16	6202	582.0
17	4350	556.5
18	4573	537.6
19	4402	528.0

Les 20 premières valeurs

Analyse des ventes en Quantités

Répartition des quantités des produits

O Visualisation des quantités par produits

Les 20 premières valeurs

O Calcul des 20/80 du CA - principe de Pareto nombre de produits qui représentent 80% des ventes : 432 (60,59% des produits)

	product_id	total_sales
0	4867	36.0
1	4203	27.0
2	4275	24.0
3	4726	22.0
4	4647	22.0
5	5826	20.0
6	6129	20.0
7	4220	18.0
8	5778	17.0
9	6569	17.0
10	5803	17.0
11	4059	16.0
12	4188	16.0
13	4870	16.0
14	4105	16.0
15	5777	16.0
16	4863	16.0
17	5695	16.0
18	4261	15.0
19	4241	15.0

Analyse des stocks

- O Calcul des mois de stocks par produits Principe :
- rotation des stocks = quantités mensuelles vendues/quantité de stocks
- nombre de mois de stocks = 1/rotation de stocks

Répartition des nombres de mois de stocks (les 20 premiers)

Les 20 premières valeurs

O Valorisation des produits en stock (approche comptable) Quantités en stock * valeur d'achat = 277 044,47€

	product_id	Nb_mois_stock
0	4142	31.25
1	6126	27.60
2	4356	27.00
3	4348	25.00
4	4148	23.67
5	4357	23.00
6	4144	22.75
7	5025	22.67
8	4350	20.71
9	4150	20.50
10	4334	20.29
11	4149	20.20
12	5612	19.00
13	4582	18.00
14	5024	17.17
15	4970	16.67
16	5892	16.33
17	4359	16.00
18	4141	15.37
19	4146	14.33

- Analyse des taux de marge
 - Détermination du prix HT et du taux de marge Principe:
 - boissons alcoolisées -> taux TVA de 20%
 - Prix HT = prix de vente / 1,2
 - Taux de marge = (prix HT -prix d'achat)/prix HT

Taux de marge moyen par type de produits

Taux de marge moyen	40 30 20 10							Type de produits Cognac Whisky Gin Vin Champagne Huile d'olive
	0	Cognac	Whisky	Gin	Vin	Champagne	Huile d'olive	
	Type de produits							

	product_type	Taux_marge
0	Champagne	28.48
1	Cognac	45.07
2	Gin	42.80
3	Huile d'olive	25.00
4	Vin	38.01
5	Whisky	44.92

A noter: un Champagne avait une valeur de prix de vente erroné -> estimation à partir de la médiane des taux de marge des Champagnes

Analyse des corrélations entre les variables stock_quantity, total_sales et price
 Heatmap des corrélations

Que peut-on en déduire?

- Que quantités vendues et stocks sont **positivement corrélés** : plus les ventes sont importantes, plus les stocks sont importants
- Que quantités vendues et prix sont négativement corrélés : plus les prix sont élevés, moins les produits sont vendus
- Que les stocks et les prix des produits ne sont **pas corrélés** : les deux variables apparaissent indépendantes

Actions pour la suite

- Une sauvegarde du DataFrame de travail « produits_web » au format Excel est réalisée pour partage des données (produits_web.xlsx)
- Pour rappel, le fichier Excel **liaison.xlsx est incomplet**, il manque 91 lignes de correspondance entre « product_id » et « id_web », il serait à compléter
- Un fichier Excel outliers.xlsx a été créé pour diffusion et contrôle auprès du service concerné, il reprend la liste élargie des 31 valeurs aberrantes relevée par la méthode de l'intervalle interquartile

Point sur les compétences apprises

- La validation des données : contrôles de cohérence, repérage et suppression des doublons, correction des valeurs anormales
- Le repérage des outliers ou valeurs aberrantes par deux méthodes différentes
- Les agrégations des données pour réaliser les regroupements clés (catégories) et leur visualisation
- La visualisation des corrélations entre les variables étudiées