Examen de calcul différentiel ISIMA première année, 21 juin 2011, feuille recto verso

1 Exercice

Soit Ω le demi-disque supérieur centre $\vec{0}$ et de rayon R, et soit Γ son bord (à dessiner). Soit :

$$I = \int_{\Gamma} x^3 \, dy - y^3 \, dx.$$

- 1. Paramétrer Γ .
- 2. Calculer directement I. Vous vérifierez que $\cos^4 t + \sin^4 t = \frac{3}{4} + \frac{1}{4}\cos(4t)$.
- 3. Paramétrer Ω .
- 4. Calculer I à l'aide de la formule de Green-Riemann. On rappelle que $\int_{\Gamma} \vec{f} \, d\vec{r} = \int_{\Omega} \operatorname{rot} \vec{f} \, d\Omega$, et vous donnerez \vec{f} et $\operatorname{rot} \vec{f}$.

2 Exercice

Soit $f \in \mathcal{C}^0([-1,1])$. On considère la formule d'intégration numérique :

$$J(f) = \alpha f(-\frac{2}{3}) + \beta f(0) + \gamma f(\frac{2}{3}) \approx \int_{-1}^{1} f(s) \, ds \tag{1}$$

- 1. Déterminer les coefficients α , β et γ de sorte que la formule (1) soit exacte pour les polynômes de degré 3. La formule est-elle alors exacte pour les polynômes de degré 4?
- 2. Soit P le polynôme d'interpolation de Lagrange de f aux points $-\frac{2}{3}$ et $\frac{2}{3}$. Donner les deux polynômes de Lagrange de base et l'expression de P dans cette base.
- 3. Retrouver l'expression du polynôme P par l'algorithme de Newton.
- 4. On ajoute le point (0, f(0)). Donner le polynôme de Newton associé.

3 Exercice

Dans cet exercice on considère le problème suivant, pour $t \in [0,1]$:

$$y' = -ty^2, \quad y(0) = 2,$$

dont la solution exacte est $y(t) = \frac{2}{1+t^2}$. Vous noterez h le pas de temps.

- 1. Représenter sur [0, 1].
- 2. Donner le schéma d'Euler explicite.
- 3. Donner le schéma d'Euler implicite dont on rappelle qu'il est basé sur le développement limité $u(t_1) = u(t_0) + (t_1 t_0)u'(t_1) + o(t_1 t_0)$ qu'on justifiera. On rappelle que nécessairement $y_{n+1} \xrightarrow[h\to 0]{} y_n$.
- 4. Pour un pas de temps h=0.1, calculer les valeurs y_1 données par Euler explicite, implicite. ainsi que la valeur exacte. On donne $\sqrt{1.08} \simeq 1.039$ et $\frac{2}{1.01} \simeq 1.98$. Commentez.

.../...

4 Exercice

Soit la courbe
$$\vec{r}:[a,b] \to \mathbb{R}^3$$
, où $a < b$, définie par $\vec{r}(t) = \begin{pmatrix} x(t) = t \\ y(t) = \frac{t^2}{\sqrt{2}} \\ z(t) = \frac{t^3}{3} \end{pmatrix}$.

On note s un paramètre intrinsèque de la courbe, et on note \vec{q} la courbe définie par $\vec{q}(s) = \vec{r}(t)$ quand s = s(t).

- 1. Montrer que $s'(t) = 1 + t^2$.
- 2. Calculer $\vec{q}''(s(t))$ en fonction de $\vec{r}'(t)$.
- 3. Calculer $\vec{q}''(s(t))$ en fonction de $\vec{r}'(t)$ et de $\vec{r}''(t)$. On ne demande de calculer ni $||\vec{q}''(t)||$ ni $\vec{n}(t)$.
- 4. Sachant que $\vec{q}'(s(t))$ est parallèle à $\vec{r}'(t)$, calculer $\vec{q}'(s) \wedge \vec{q}''(s)$ en fonction de t.
- 5. Calculer $||\vec{q}''(s) \wedge \vec{q}'''(s)||$ et en déduire que $\vec{b}(s) = \frac{1}{(1+t^2)^{\frac{1}{W}}} \begin{pmatrix} t^2 \\ -\sqrt{2}t \\ 1 \end{pmatrix}$ quand s = s(t).
- 6. Calculer $\vec{b}'(s)$ et en déduire la torsion (le signe de la torsion sera donné par comparaison avec $\vec{q}''(t)$).