18.01A Recitation Solutions — Monday, Sept. 24, 2018

Practice problems:

1.

$$\int \sin^3(x) dx$$

Solution.

$$\int \sin^3(x)dx = \int \sin^2(x) \cdot \sin(x)dx.$$

Make the substitution $u = \cos(x)$. Then

$$\int \sin^2(x) \cdot \sin(x) dx = -\int (1 - u^2) du = -u + \frac{1}{3}u^3 + C = -\cos x + \frac{1}{3}\cos^3 x + C.$$

2.

$$\int \frac{dx}{x\sqrt{a^2 - x^2}}$$

Solution. Make the substitution $x = a \sin \theta$. We have

$$\int \frac{dx}{x\sqrt{a^2 - x^2}} = \int \frac{a\cos\theta d\theta}{a\sin\theta a\cos\theta} = \int \frac{1}{a\sin\theta} d\theta = \frac{1}{a} \int \frac{1}{\sin\theta} d\theta.$$

Let us now compute $\int \frac{1}{\sin \theta} d\theta$. Make the substitution $\theta = 2t$

$$\int \frac{1}{\sin \theta} d\theta = \int \frac{1}{\sin 2t} 2dt = \int \frac{1}{2 \sin t \cos t} 2dt = \int \frac{1}{\sin t \cos t} dt$$

$$= \int \frac{\sin^2 t + \cos^2 t}{\sin t \cos t} dt = \int \frac{\sin^2 t}{\sin t \cos t} dt + \int \frac{\cos^2 t}{\sin t \cos t} dt$$

$$= \int \frac{\sin t}{\cos t} dt + \int \frac{\cos t}{\sin t} dt$$

$$= -\ln|\cos t| + \ln|\sin t| + C$$

$$= \ln|\tan t| + C$$

$$= \ln|\tan \frac{\theta}{2}| + C.$$

Since the original integral is in terms of x, we need to express $\tan \frac{\theta}{2}$ in terms of x. Notice that we know $\sin \theta = \frac{x}{a}$.

$$\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}} = \frac{\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos^2 \frac{\theta}{2}} = \frac{\frac{1}{2} \sin \theta}{\frac{1}{2} (\cos \theta + 1)} = \frac{\sin \theta}{\cos \theta + 1} = \frac{\frac{x}{a}}{\sqrt{1 - \frac{x^2}{a^2} + 1}} = \frac{x}{\sqrt{a^2 - x^2} + a}.$$

Hence,

$$\int \frac{dx}{x\sqrt{a^2 - x^2}} = \frac{1}{a} \ln \left| \frac{x}{\sqrt{a^2 - x^2} + a} \right| + C.$$

3.

$$\int_{1}^{\sqrt{2}} \frac{dx}{x^3 \sqrt{x^2 - 1}}$$

Solution. Make the substitution $x = \sec \theta$.

$$\int_{1}^{\sqrt{2}} \frac{dx}{x^3 \sqrt{x^2 - 1}} = \int_{0}^{\pi/4} \frac{\sec \theta \tan \theta}{\sec^3 \theta |\tan \theta|} d\theta.$$

Notice that like we talked about in class, when you are doing definite integrals, you do care about the absolute value! In this case, however, $\tan \theta$ when $0 < \theta < \pi/4$ is always positive. Hence, we may lose the absolute value sign.

$$\int_{0}^{\pi/4} \frac{\sec \theta \tan \theta}{\sec^{3} \theta |\tan \theta|} d\theta = \int_{0}^{\pi/4} \frac{\sec \theta \tan \theta}{\sec^{3} \theta \tan \theta} d\theta = \int_{0}^{\pi/4} \frac{1}{\sec^{2} \theta} d\theta$$

$$= \int_{0}^{\pi/4} \cos^{2} \theta d\theta = \int_{0}^{\pi/4} \frac{1}{2} (1 + \cos 2\theta) d\theta = \left[\frac{1}{2} \theta + \frac{\sin 2\theta}{4} \right]_{0}^{\pi/4} = \frac{\pi}{8} + \frac{1}{4}.$$

4.

$$\int_{-\sqrt{2}}^{-1} \frac{dx}{x^3 \sqrt{x^2 - 1}}$$

Solution. You need to compare this question with the previous one.

Make the substitution $x = \sec \theta$.

$$\int_{-\sqrt{2}}^{-1} \frac{dx}{x^3 \sqrt{x^2 - 1}} = \int_{\frac{3}{4}\pi}^{\pi} \frac{\sec \theta \tan \theta}{\sec^3 \theta |\tan \theta|} d\theta.$$

Note that when $\frac{3}{4}\pi < \theta < \pi$, $\tan \theta$ is negative. Hence, $|\tan \theta| = -\tan \theta$.

$$\begin{split} \int_{\frac{3}{4}\pi}^{\pi} \frac{\sec \theta \tan \theta}{\sec^3 \theta |\tan \theta|} d\theta &= -\int_{\frac{3}{4}\pi}^{\pi} \frac{\sec \theta \tan \theta}{\sec^3 \theta \tan \theta} d\theta = -\int_{\frac{3}{4}\pi}^{\pi} \frac{1}{\sec^2 \theta} d\theta \\ &= -\int_{\frac{3}{4}\pi}^{\pi} \cos^2 \theta d\theta = -\int_{\frac{3}{4}\pi}^{\pi} \frac{1}{2} (1 + \cos 2\theta) d\theta = -\left[\frac{1}{2}\theta + \frac{\sin 2\theta}{4}\right]_{\frac{3}{4}\pi}^{\pi} = -\frac{\pi}{8} - \frac{1}{4}. \end{split}$$

5.

$$\int \sqrt{a^2 + x^2} dx$$

(Hint: $\int \frac{1}{\cos^3 \theta} d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln|\sec \theta + \tan \theta| + C.$)

Solution. Make the substitution $x = a \tan \theta$.

$$\int \sqrt{a^2 + x^2} dx = \int a \sec \theta a \sec^2 \theta d\theta = a^2 \int \sec^3 \theta d\theta.$$

Using the hint, we have

$$\int \sqrt{a^2 + x^2} dx = \frac{a^2}{2} \sec \theta \tan \theta + \frac{1}{2} \ln|\sec \theta + \tan \theta| + C.$$

Now we need to write our final answer in terms of x. Notice that $\tan \theta = \frac{x}{a}$. Hence $\sec \theta = \sqrt{1 + \frac{x^2}{a^2}}$. Thus,

$$\int \sqrt{a^2 + x^2} dx = \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} \ln \left| \frac{x}{a} + \sqrt{1 + \frac{x^2}{a^2}} \right| + C = \frac{1}{2} x \sqrt{a^2 + x^2} + \frac{1}{2} \ln \left| x + \sqrt{a^2 + x^2} \right| + C.$$

6. (If time permits.) If the circle $(x-b)^2 + y^2 = a^2(0 < a < b)$ is revolved about the y-axis, the resulting solid of revolution is called a *torus*. Find the volume of this torus.

Solution. We will only set up the integral. If we use the shell method (partition the x-axis), the volume element is given by

$$dV = 2\pi x 2y dx = 4\pi x \sqrt{a^2 - (x - b)^2} dx.$$

Hence, the integral is:

$$\int_{b-a}^{b+a} 4\pi x \sqrt{a^2 - (x-b)^2} dx.$$

It's a good exercise to try and evaluate this integral.