Supplementary: Boundary Multiple Measurement Vectors for Multi-Coset Sampler

Dong Xiao, Jian Wang and Yun Lin

This supplementary material is dedicated to the proofs for Theorems 1-3 in our main paper.

Before proceeding to the proofs, we review some useful notations. For a complex matrix $\mathbf{X} \in \mathbb{C}^{n \times L}$ and a set $S \subseteq \{1, \cdots, n\}$, \mathbf{X}_S (or \mathbf{X}^S) denotes the submatrix of \mathbf{X} with columns (or rows) indexed by S; $\mathbf{X}_{i,j}$, $\mathbf{X}_{i,:}$ and $\mathbf{X}_{:,i}$ are the (i,j)th entry, ith row and ith column of \mathbf{X} , respectively; \mathbf{X}^{\dagger} , \mathbf{X}^H and \mathbf{X}^T mean the Moore-Penrose pseudo-inverse, conjugate transpose and transpose of \mathbf{X} , respectively; $\sup(\mathbf{X})$ is the non-zero row indices (i.e., joint sparsity) of \mathbf{X} ; $\|\mathbf{X}\|_F$ and $\|\mathbf{X}\|_2$ signify the Frobenius and Euclidean norm of \mathbf{X} , respectively. Moreover, S^c is the complement of set S; \mathbf{I}_L is an $L \times L$ identity matrix.

I. Proof of Theorem 1

Theorem 1. The actual sampling rate of (4) is $\min (pf_s, f_{nyq})$, which attains the theoretical lower bound of sampling rate in MCS when $|supp(\mathbf{X})| \leq \frac{N_{sig}B}{f_s}$.

Proof. In the *i*th channel of a multi-coset sampler, the sampling sequence is given by

$$x_{c_i}[n] = x(LTn + \tau_i), \quad n = 0, 1, \cdots$$
 (S.1)

The sampling rate of each channel is determined by the sampled signal sequence. To be specific, since the sampling time interval is LT, the sampling rate of each channel is

$$f_s = \frac{1}{LT} = \frac{f_{\text{nyq}}}{L},\tag{S.2}$$

i.e., one-Lth of the Nyquist sampling rate.

Moreover, as the multi-coset sampler is assumed to have p channels, the overall sampling rate of p channels is p times that of each channel (i.e. $\frac{pf_{\rm nyq}}{L}$). If this sampling rate is greater than the Nyquist rate $f_{\rm nyq}$, then the advantage of sub-Nyquist sampling structure no longer exists. In this case, we only need to sample at Nyquist sampling rate $f_{\rm nyq}$. Thus, the actual sampling rate can be given by

$$\min\left(\frac{p}{LT}, f_{\text{nyq}}\right).$$
 (S.3)

The theoretical lower bound of the sampling rate is given in [17], which is determined directly by the true bandwidth of the signal:

$$\min(2\lambda(\mathcal{T}), f_{\text{nyq}}).$$
 (S.4)

Thus, the theoretical lower bound on the sampling rate is achieved when

$$\min\left(\frac{p}{LT}, f_{\text{nyq}}\right) \le \min(2\lambda(T), f_{\text{nyq}}).$$
 (S.5)

In most cases, $2\lambda(\mathcal{T})$ and $\frac{p}{LT}$ do not exceed f_{nyq} . (If violated, the sampling rate would just be f_{nyq} .) Therefore, the condition (S.5) holds whenever

$$\frac{p}{LT} \le 2\lambda(\mathcal{T}). \tag{S.6}$$

Furthermore, to ensure an unique-solution reconstruction, the number p of channels should not be too small. In particular, it's lower bound is twice the signal sparsity without the priori information about the signal X [17],

$$p \ge 2|\operatorname{supp}(\mathbf{X})|. \tag{S.7}$$

For the worst case where $p=2|\mathrm{supp}(\mathbf{X})|$, (S.6) can be rewritten as

$$|\operatorname{supp}(\mathbf{X})| \le \lambda(\mathcal{T})LT = \frac{N_{\operatorname{sig}}B}{f_{\circ}},$$
 (S.8)

which completes the proof.

II. PROOF OF THEOREM 2

Theorem 2. When $r \in [\lceil \frac{f_s}{\lfloor (D-1)f_s-B \rfloor} \rceil, N]$ and $B > f_s$, we have $\max_{j \in \{1, \dots, r\}} \left| supp(\bar{\mathbf{X}}_{S_j}) \right| < \frac{N_{sig}B}{f_s}$.

Proof. Recall that the MMV model Y = AX + E is decomposed into r sub-MMV problems:

$$\mathbf{Y}_{S_i} = \mathbf{A} \mathbf{X}_{S_i} + \mathbf{E}_{S_i}, \quad j = 1, \cdots, r \tag{S.9}$$

and each problem is solved individually. Our goal is to determine the number r of sub-MMV problems that ensures the actual sampling rate to reach the lower bound of the theoretical sampling rate.

For all row blocks $\{\mathbf{X}^{U_1}, \dots, \mathbf{X}^{U_M}\}$ in \mathbf{X} , assume that each block has consecutive frequency points of length B (i.e., the sub-band's width is B) if occupied and zero otherwise. In this work, we are primarily interested in the case where

$$B > f_s. (S.10)$$

since the remaining case where $B \leq f_s$ has been studied thoroughly in existing works (see. e.g., [16]).

Let D denote the height (i.e., number of rows) in each row block \mathbf{X}^{U_i} , which can be determined properly according to B and f_s . Specifically, we choose a $D \geq 3$ such that

$$(D-2)f_s < B \le (D-1)f_s.$$
 (S.11)

In this case, the frequency points of each PU signal (i.e., occupied row block) occupy D-1 or D rows. An example of D=5 is illustrated in Fig. 1, where PU signals 1 and 2 occupy 4 rows while PU signal 3 occupies 5 rows.

1

Fig. 1. An illustrative example of MCS signal X with 3 PU signals.

• When D-1 rows in PU signal \mathbf{X}^{U_i} are occupied, only one row of $\bar{\mathbf{X}}^{U_i}$ is occupied, since $\bar{\mathbf{X}}^{U_i}$ only keeps the boundary non-zeros of \mathbf{X}^{U_i} . In this case, we can easily see that

$$\left|\operatorname{supp}(\bar{\mathbf{X}}_{S_i}^{U_i})\right| \le \left|\operatorname{supp}(\bar{\mathbf{X}}^{U_i})\right| = 1.$$
 (S.12)

Since there are N_{sig} sub-band signals in \mathbf{X} , and also noting that $B > f_s$, we have

$$\max_{j \in \{1, \dots, r\}} \left| \operatorname{supp}(\bar{\mathbf{X}}_{S_j}) \right| \le N_{\operatorname{sig}} < \frac{N_{\operatorname{sig}} B}{f_s}. \quad (S.13)$$

• When D rows in PU signal \mathbf{X}^{U_i} are occupied, the length l of the frequency points in $\bar{\mathbf{X}}^{U_i}$ obeys

$$l = B - (D - 2)f_s \stackrel{\text{(S.11)}}{\leq} f_s.$$
 (S.14)

As a result, the column indices of non-zeros in any PU signal $\bar{\mathbf{X}}^{U_i}$ do not overlap. In other words, the total length of frequency points in each PU signal $\bar{\mathbf{X}}^{U_i}$ does not exceed f_s , as shown in Fig. 1.

Recall that $\bar{\mathbf{X}} \in \mathbb{R}^{L \times N}$ is column-partitioned into r sub-matrices (i.e., $\{\bar{\mathbf{X}}_{S_i}\}_{i=1,\cdots,r}$).

– We first consider an extreme case where r=N. In this case, $\bar{\mathbf{X}}_{S_j}$ only have one column (i.e., $|S_j|=|\{j\}|=1$), and so each column-partitioned PU signal $\bar{\mathbf{X}}_{S_j}^{U_i}$ satisfies

$$\left|\operatorname{supp}(\bar{\mathbf{X}}_{S_{i}}^{U_{i}})\right| = \left|\operatorname{supp}(\bar{\mathbf{X}}_{i}^{U_{i}})\right| \le 1.$$
 (S.15)

Similar to (S.13), we further have

$$\begin{array}{lcl} \max_{j \in \{1, \cdots, r\}} \left| \operatorname{supp}(\bar{\mathbf{X}}_{S_j}) \right| & \leq & N_{\operatorname{sig}} \\ & < & \frac{N_{\operatorname{sig}}B}{f_s}. \end{array} \tag{S.16}$$

– We then consider the general case where r < N. In this case, the length of frequency points in each submatrix $\bar{\mathbf{X}}_{S_j}^{U_i}$ does not exceed $\lceil \frac{f_s}{r} \rceil$. In the following, we shall prove that

$$\begin{split} \max_{j\in\{1,\cdots,r\}} &|\mathrm{supp}(\bar{\mathbf{X}}_{S_j})| \leq N_{\mathrm{sig}} \\ \text{when } &r\in [\lceil \frac{f_s}{\lfloor (D-1)f_s-B\rfloor}\rceil, N). \end{split}$$

Fig. 2. An illustrative example of the PU signal $\bar{\mathbf{X}}^{U_{i^*}}$, which has a length l that is greater than $f_s - \lceil \frac{f_s}{r} \rceil$.

Assume that there exists some a sub-matrix, say, $\bar{\mathbf{X}}_{S,*}$, such that

$$|\operatorname{supp}(\bar{\mathbf{X}}_{S_{i^*}})| > N_{\operatorname{sig}}. \tag{S.18}$$

Then, there exists at least a row-partitioned block of $\bar{\mathbf{X}}_{S_{i^*}}$, say, $\bar{\mathbf{X}}_{S_{i^*}}^{U_{i^*}}$, that satisfies

$$|\text{supp}(\bar{\mathbf{X}}_{S_{i^*}}^{U_{i^*}})| = 2.$$
 (S.19)

This implies that the length l of the frequency points in PU signal $\bar{\mathbf{X}}^{U_{i^*}}$ must be greater than $f_s - \lceil \frac{f_s}{r} \rceil$, as illustrated in Fig. 2. That is,

$$\left\lceil \frac{f_s}{r} \right\rceil > f_s - l, \tag{S.20}$$

which, together with the fact that $l = B - (D-2)f_s$ (see (S.14)), leads to

$$\left\lceil \frac{f_s}{r} \right\rceil > (D-1)f_s - B$$

$$> \lfloor (D-1)f_s - B \rfloor. \quad (S.21)$$

Since $\lfloor (D-1)f_s - B \rfloor$ is a integer, we have

$$r < \frac{f_s}{\lfloor (D-1)f_s - B \rfloor}. ag{S.22}$$

Thus, if

$$r \ge \frac{f_s}{|(D-1)f_s - B|},\tag{S.23}$$

the assumption of (S.18) must not be true, which implies (S.17).

To sum up, when $r \in [\lceil \frac{f_s}{\lceil (D-1)f_s-B \rceil} \rceil, N]$, we have

$$\max_{j \in \{1, \dots, r\}} \left| \operatorname{supp}(\bar{\mathbf{X}}_{S_j}) \right| \le N_{\operatorname{sig}} < \frac{N_{\operatorname{sig}} B}{f_s}. \tag{S.24}$$

The proof is thus complete.

III. PROOF OF THEOREM 3

Theorem 3. Consider the column-partitioned MMV model (5) with $\min_{i,j} \|(\mathbf{X}_{S_i})_{j,:}\|_2 / \|\mathbf{X}_{S_i}\|_F = \eta$ and $|\operatorname{supp}(\mathbf{X}_{S_i})| \leq s$. Let $s_1 := \min_{i,k} |\Lambda_{S_i}^k \cap \operatorname{supp}(\mathbf{X}_{S_i})|$, $s_2 := \min_{i,k} |\Lambda_{S_i}^k \cap$

 $supp(\mathbf{X}_{S_i}) \cap \tilde{S}_{S_i}^k$ and $s_3 := \min_{i,k} |\Lambda_{S_i}^k \cap supp(\mathbf{X}_{S_i}) \cap \tilde{S}_{S_i}^k \setminus S_{S_i}^k$. Then, if the sensing matrix \mathbf{A} obeys the RIP with

$$\delta_{3s} \le \sqrt{\frac{\nu_1 \sqrt{\nu_1^2 + 4\nu_2^2 - \nu_1^2 - 1}}{4\nu_1^2 \nu_2^2 - 2\nu_1^2 - 1}}$$
 (S.25)

where $\nu_1 := \frac{1+\omega}{1+\eta\omega\sqrt{s_2}}$ and $\nu_2 := \frac{1+\omega}{1+\eta\omega\sqrt{s_3}}$, SI-SSP produces an signal estimate $\mathbf{X}^k = [\mathbf{X}_{S_1}^k, \cdots, \mathbf{X}_{S_r}^k]$ satisfying

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho^k \|\mathbf{X}\|_F + \tau \|\mathbf{E}\|_F,$$
 (S.26)

where $\rho \in (0,1)$ and τ are constants depending on δ_{3s} , ν_1 and ν_2 . Furthermore, after at most $k^* = \lceil \log_{\rho} \frac{\|\mathbf{X}\|_F}{\tau \|\mathbf{E}\|_F} \rceil$ iterations, SI-SSP estimates \mathbf{X} with

$$\|\mathbf{X} - \mathbf{X}^{k^*}\|_F \le (\tau + 1)\|\mathbf{E}\|_F.$$
 (S.27)

To prove Theorem 3, we first introduce six useful Lemmas, whose proofs are left to the appendices.

Lemma 1. ([25]): For nonnegative numbers a, b, c, d, x, y, $(ax+by)^2 + (cx+dy)^2 \le (\sqrt{a^2+c^2}x + (b+d)y)^2$. (S.28)

Lemma 2. Consider the system model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, where $supp(\mathbf{X}) = T$ and |T| = s. Let $S \subseteq \{1, 2, ..., n\}$ be an index set with |S| = t and \mathbf{W}_{T_0} be a side-information matrix with diagonal entries indexed by $T_0 \subseteq \{1, 2, ..., n\}$ being $\omega \geq 0$ and zero otherwise. Also, let $\mathbf{X} := \arg\min_{\mathbf{Z}: supp(\mathbf{Z}) \subset S} \|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_2$. If $\delta_{3s} < 1$, then

$$\|\mathbf{W}_{T_0}(\mathbf{X} - \tilde{\mathbf{X}})_S\|_F \le \omega \delta_{s+t} \|\mathbf{X} - \tilde{\mathbf{X}}\|_F + \omega \sqrt{1 + \delta_t} \|\mathbf{E}\|_F$$
(S.29)

and

$$\|\mathbf{X} - \tilde{\mathbf{X}}\|_F \le \sqrt{\frac{1}{1 - \delta_{s+t}^2}} \|\mathbf{X}_{S^c}\|_F + \frac{\sqrt{1 + \delta_t}}{1 - \delta_{s+t}} \|\mathbf{E}\|_F.$$
 (S.30)

Furthermore, if t > s, define T_{∇} as the row-indices of the smallest t - s row-norm entries of $\tilde{\mathbf{X}}$ in S, we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{2}\delta_{s+t}\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{2}\sqrt{2(1+\delta_{t})}\|\mathbf{E}\|_{F}.$$
(S.31)

Remark 1. When we consider the atom selection strategy of $\|\tilde{\mathbf{X}}_{T_{\nabla}} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{T_{\nabla}}\|_F \le \|\tilde{\mathbf{X}}_{S'} + \mathbf{W}_{T_0}\tilde{\mathbf{X}}_{S'}\|_F$, we can also obtain another upper bound for $\|\mathbf{X}_{T_{\nabla}}\|_F$ in (S.31). In this case, we should allocate $2\|\mathbf{X}_{T_{\nabla}}\|_F$ to the left hand side of (A.55), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{3}\delta_{s+t}\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \nu_{4}\sqrt{2(1+\delta_{t})}\|\mathbf{E}\|_{F}.$$
(S.32)

where $\nu_3 = (1 - \omega + \omega \delta_{s+t} + \delta_{s+t})/(2\delta_{s+t})$ and $\nu_4 = (1 + \omega)/(2\delta_{s+t})$.

Lemma 3. In steps 4 and 5 of SI-SSP, we have

$$\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F \le \sqrt{2\nu_1}\delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \nu_1\sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_F.$$
(S.33)

Remark 2. When we consider the atom selection strategy in select step that

$$\left\| ((\mathbf{I}_{L} + \mathbf{W}_{T_{0}}) \mathbf{A}^{H} (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{T} \right\|_{F}$$

$$\leq \left\| ((\mathbf{I}_{L} + \mathbf{W}_{T_{0}}) \mathbf{A}^{H} (\mathbf{Y} - \mathbf{A} \mathbf{X}^{k-1}))_{\Delta S} \right\|_{F}. \quad (S.34)$$

We can also obtain another upper bound for $\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F$ in (S.33). In this case, we should allocate $2\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F$ to the left hand side of (A.68), we have

$$\|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} \leq \sqrt{2}\nu_{3}\delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_{F} + \nu_{4}\sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_{F}.$$
 (S.35)

where $\nu_3 = (1 - \omega + \omega \delta_{3s} + \delta_{3s})/(2\delta_{3s})$ and $\nu_4 = (1 + \omega)/(2\delta_{3s})$. Based on conclusions (S.32) and (S.35), we know that the sensing matrix **A** obeys the RIP with

$$\delta_{3s} \le \sqrt{\frac{\nu_3\sqrt{\nu_3^2 + 4\nu_4^2 - \nu_3^2 - 1}}{4\nu_3^2\nu_4^2 - 2\nu_3^2 - 1}}.$$
 (S.36)

Lemma 4. Let $T_0 \subseteq \{1, 2, ..., n\}$, for two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, if $|supp(\mathbf{u}) \cup supp(\mathbf{v})| \leq t$,

$$\left|\left\langle \mathbf{u}, (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right\rangle \right| \le \omega \delta_t \|\mathbf{u}\| \|\mathbf{v}\|;$$
 (S.37)

Moreover, if $U \subseteq \{1, 2, ..., n\}$ and $|U \cup supp(\mathbf{v})| \leq t$, then

$$\left| (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \right| \le \omega \delta_t \| \mathbf{v} \|. \tag{S.38}$$

Lemma 5. For SMV model $\mathbf{y} = \mathbf{\Phi} \mathbf{x} + \mathbf{e}$, let $T_0 \subseteq \{1, 2, ..., n\}$, let $U \subseteq \{1, 2, ..., n\}$ and $|U \cap T_0| \leq u$, we have

$$\|(\mathbf{W}_{T_0}\mathbf{A}^H\mathbf{e})_U\|_2 \le \omega \delta_u \|\mathbf{e}\|_2.$$
 (S.39)

Lemma 6. Consider the MMV model $\mathbf{Y} = \mathbf{A}\mathbf{X} + \mathbf{E}$, let $\tilde{\mathbf{X}}$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{ \|\mathbf{Y} - \mathbf{A}\mathbf{Z}\|_F, supp(\mathbf{Z}) \subseteq S \}$, then

$$\langle \mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A} \mathbf{Z} \rangle + \omega \langle \mathbf{E}, \mathbf{A} \mathbf{Z} \rangle = \mathbf{0}.$$
 (S.40)

Now we have all ingredients to prove Theorem 3.

Proof of Theorem 3. First, in Steps 4 and 5 of SI-SSP, Lemma 3 implies

$$\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F \le \sqrt{2}\nu_1 \delta_{3s} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \nu_1 \sqrt{2(1+\delta_{3s})} \|\mathbf{E}\|_F.$$
(S.41)

Note that Step 6 of SI-SSP solves a least squares problem. Let $S = \tilde{S}^k$ and $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}^k$, t = 2s, by (S.30) we have

$$\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} \le \sqrt{\frac{1}{1 - \delta_{3s}^{2}}} \|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} + \frac{\sqrt{1 + \delta_{2s}}}{1 - \delta_{3s}} \|\mathbf{E}\|_{F}.$$
(S.42)

Combining (S.41) and (S.42) and also magnifying δ_{2s} to δ_{3s} , we further have

$$\|\mathbf{X} - \tilde{\mathbf{X}}^k\|_F \le \nu_1 \sqrt{\frac{2\delta_{3s}^2}{1 - \delta_{3s}^2}} \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + \tau_1 \|\mathbf{E}\|_F.$$
 (S.43)

Next, after Step 7 of SI-SSP, let $S_{\nabla} = \tilde{S}^k \setminus S^k$ be the row-indices of the smallest t-s row norm entries in $\tilde{\mathbf{X}}^k$. Also, let $T = \tilde{S}^k$, $\tilde{\mathbf{X}} = \tilde{\mathbf{X}}^k$, $T_{\nabla} = S_{\nabla}$ and t = 2s. Then, by (A.54) we have

$$\|\mathbf{X}_{S_{\nabla}}\|_{F} \leq \sqrt{2}\nu_{2}\delta_{3s}\|\mathbf{X} - \tilde{\mathbf{X}}^{k}\|_{F} + \nu_{2}\sqrt{2(1+\delta_{2s})}\|\mathbf{E}\|_{F}.$$
(S.44)

Let $\tau_1 = (\nu_1 \sqrt{2(1-\delta_{3s})} + \sqrt{1+\delta_{3s}})(1-\delta_{3s})^{-1}$ and $\tau_2 = \sqrt{1+\delta_{3s}}$. Dividing $(S^k)^c$ into two disjoint subsets: $(\tilde{S}^k)^c$ and S_{∇} , we get

$$\left\| \mathbf{X}_{(S^k)^c} \right\|_F^2 = \left\| \mathbf{X}_{S_{\nabla}} \right\|_F^2 + \left\| \mathbf{X}_{(\tilde{S}^k)^c} \right\|_F^2$$

$$\stackrel{\text{(S.44)}}{\leq} 2 \left(\nu_{2} \delta_{3s} \| \mathbf{X} - \tilde{\mathbf{X}}^{k} \|_{F} + \nu_{2} \tau_{2} \| \mathbf{E} \|_{F} \right)^{2} \\
+ 2 \left(\nu_{1} \delta_{3s} \| \mathbf{X} - \mathbf{X}^{k-1} \|_{2} + \nu_{1} \tau_{2} \| \mathbf{E} \|_{F} \right)^{2} \\
\stackrel{\text{(S.43)}}{\leq} 2 \left(\sqrt{\frac{2\nu_{1}^{2}\nu_{2}^{2}\delta_{3s}^{4}}{1 - \delta_{3s}^{2}}} \| \mathbf{X} - \mathbf{X}^{k-1} \|_{F} + \nu_{2} (\tau_{1}\delta_{3s} + \tau_{2}) \right. \\
\times \| \mathbf{E} \|_{F} \right)^{2} + 2 \left(\nu_{1}\delta_{3s} \| \mathbf{X} - \mathbf{X}^{k-1} \|_{F} + \nu_{1}\tau_{2} \| \mathbf{E} \|_{F} \right)^{2} \\
\stackrel{\text{(S.28)}}{\leq} 2 \left(\sqrt{\frac{2\nu_{1}^{2}\nu_{2}^{2}\delta_{3s}^{4}}{1 - \delta_{3s}^{2}}} + \nu_{1}^{2}\delta_{3s}^{2} \| \mathbf{X} - \mathbf{X}^{k-1} \|_{F} \right. \\
\left. + ((\nu_{1} + \nu_{2})\tau_{2} + \nu_{2}\delta_{3s}\tau_{1}) \| \mathbf{E} \|_{F} \right)^{2}. \qquad (S.45)$$

Squaring both sides, we get

$$\begin{aligned} \left\| \mathbf{X}_{(S^{k})^{c}} \right\|_{F} &\leq \sqrt{\frac{4\nu_{1}^{2}\nu_{2}^{2}\delta_{3s}^{4}}{1-\delta_{3s}^{2}} + 2\nu_{1}^{2}\delta_{3s}^{2}} \left\| \mathbf{X} - \mathbf{X}^{k-1} \right\|_{F} \\ &+ \sqrt{2} \left((\nu_{1} + \nu_{2})\tau_{2} + \nu_{2}\delta_{3s}\tau_{1} \right) \left\| \mathbf{E} \right\|_{F}. (S.46) \end{aligned}$$

Step 9 of SI-SSP also solves a least squares problem. Letting $T = S^k$, $\tilde{\mathbf{X}} = \mathbf{X}^k$ and t = s, by (S.30), we have

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \sqrt{\frac{1}{1 - \delta_{2s}^2}} \|\mathbf{X}_{(S^k)^c}\|_F + \frac{\sqrt{1 + \delta_s}}{1 - \delta_{2s}} \|\mathbf{E}\|_F.$$
(S.47)

Finally, combining (S.46) and (S.47) yields

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho \|\mathbf{X} - \mathbf{X}^{k-1}\|_F + (1 - \rho)\tau \|\mathbf{E}\|_F$$
 (S.48)

where $\rho := \sqrt{2}\delta_{3s}\sqrt{2\nu_1^2\nu_2^2\delta_{3s}^2 + \nu_1^2 - \nu_1^2\delta_{3s}^2}(1 - \delta_{3s}^2)^{-1}$ and $\tau := \sqrt{2}\delta_{3s}\nu_2(\nu_1\sqrt{2(1 - \delta_{3s}) + \sqrt{1} + \delta_{3s}})(1 - \delta_{3s}^2)^{-1/2}(1 - \delta_{3s})^{-1}(1 - \rho)^{-1} + (\nu_1\nu_2\sqrt{2(1 - \delta_{3s})} + \sqrt{1 + \delta_{3s}})(1 - \delta_{3s})^{-1}.$

We recursively apply (S.48) to obtain

$$\|\mathbf{X} - \mathbf{X}^k\|_F \le \rho^k \|\mathbf{X}\|_F + \tau \|\mathbf{E}\|_F$$
 (S.49)

where $\rho < 1$ under (S.25). When $k^* = \lceil \log_{\rho} \frac{\|\mathbf{X}\|_F}{\tau \|\mathbf{E}\|_F} \rceil$, we have $\rho^k \|\mathbf{X}\|_F \le \tau \|\mathbf{E}\|_F$, and thus the stability result (S.27).

APPENDIX A PROOF OF LEMMA 2

• First, we give a upper bound of $\|\mathbf{X}_{T_{\nabla}}\|_{F}$, by Lemma 6, let $\mathbf{Z} = (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S}$, we have

$$\left\langle \mathbf{W}_{T_0}(\mathbf{X} - \tilde{\mathbf{X}}), \mathbf{A}^H \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle + \left\langle \mathbf{W}_{T_0} \mathbf{E}, \mathbf{A} (\mathbf{W}_{T_0} \mathbf{X} - \mathbf{W}_{T_0} \tilde{\mathbf{X}})_S \right\rangle = \mathbf{0}. \quad (A.50)$$

Noticing that supp $(\tilde{\mathbf{X}}) \subseteq S$, we have

$$\|(\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S}\|_{F}^{2}$$

$$= \left\langle \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\rangle$$

$$\stackrel{\text{(A.50)}}{=} \left\langle \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}}), (\mathbf{I}_{L} - \mathbf{A}^{H}\mathbf{A})(\mathbf{X} - \tilde{\mathbf{X}})_{S} \right\rangle$$

$$- \left\langle \mathbf{W}_{T_{0}}\mathbf{E}, \mathbf{A}(\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\rangle$$

$$\stackrel{\text{(7)}}{\leq} \omega \delta_{s+t} \left\| (\mathbf{W}_{T_{0}}\mathbf{X} - \mathbf{W}_{T_{0}}\tilde{\mathbf{X}})_{S} \right\|_{F} \left\| \mathbf{X} - \tilde{\mathbf{X}} \right\|_{F}$$

$$+ \omega \left\| \mathbf{E} \right\|_{F} \sqrt{1 + \delta_{t}} \left\| \mathbf{W}_{T_{0}}(\mathbf{X} - \tilde{\mathbf{X}})_{S} \right\|_{F}. (A.51)$$

Divide both sides by $\|(\mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}})_S\|_F$ to obtain (S.29).

• Next, by expanding [Lemma 2, 25] to the MMV model, we could get a relationship between $\|\mathbf{X} - \tilde{\mathbf{X}}\|_F$ and $\|\mathbf{X}_{S^c}\|_F$. We have

$$\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} \le \sqrt{\frac{1}{1 - \delta_{s+t}^{2}}} \|\mathbf{X}_{S^{c}}\|_{F}^{2} + \frac{\sqrt{1 + \delta_{t}}}{1 - \delta_{s+t}} \|\mathbf{E}\|_{F}.$$
 (A.52)

• Then, we established the relationship between $X_{T_{\nabla}}$ and $X - \tilde{X}$. There exist a subset $S' \subseteq S$ and $S' \cap T = \emptyset$. Since T_{∇} is defined by the set of indices of the t - s smallest row entries of \tilde{X} , we can conclude that

$$\|\tilde{\mathbf{X}}_{T_{\nabla}}\|_{F} + \|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{T_{\nabla}}\|_{F}$$

$$\leq \|\tilde{\mathbf{X}}_{S'}\|_{F} + \|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{S'}\|_{F}. \tag{A.53}$$

By eliminating the contribution from $T_{\nabla} \cap S'$ and noticing that $S' \cap T = \emptyset$, we have

$$\|\tilde{\mathbf{X}}_{T_{\nabla}\backslash S'}\|_{F} + \|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{T_{\nabla}\backslash S'}\|_{F}$$

$$\leq \|(\tilde{\mathbf{X}} - \mathbf{X})_{S'\backslash T_{\nabla}}\|_{F}$$

$$+ \|\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X})_{S'\backslash T_{\nabla}}\|_{F}. \quad (A.54)$$

For the left-hand side of (A.54), we have

$$\|\tilde{\mathbf{X}}_{T_{\nabla}\backslash S'}\|_{F} + \|\mathbf{W}_{T_{0}}\tilde{\mathbf{X}}_{T_{\nabla}\backslash S'}\|_{F}$$

$$= \|(\tilde{\mathbf{X}} - \mathbf{X} + \mathbf{X})_{T_{\nabla}\backslash S'}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}) + \mathbf{W}_{T_{0}}\mathbf{X})_{T_{\nabla}\backslash S'}\|_{F}$$

$$\geq \|\mathbf{X}_{T_{\nabla}}\|_{F} + \|\mathbf{W}_{T_{0}}\mathbf{X}_{T_{\nabla}}\|_{F} \qquad (A.55)$$

$$- \|(\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla}\backslash S'}\|_{F}$$

$$- \|\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla}\backslash S'}\|_{F}. \qquad (A.56)$$

Finally, combining (A.56) and (A.54), and noticing that

$$(T_{\nabla} \setminus S') \cap (S' \setminus T_{\nabla}) = \emptyset \tag{A.57}$$

$$(T_{\nabla} \setminus S') \cup (S' \setminus T_{\nabla}) \subseteq T,$$
 (A.58)

we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} + \|\mathbf{W}_{T_{0}}\mathbf{X}_{T_{\nabla}}\|_{F}$$

$$\leq \|(\tilde{\mathbf{X}} - \mathbf{X})_{T_{\nabla} \setminus S'}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{T_{\nabla} \setminus S'}\|_{F}$$

$$+ \|(\tilde{\mathbf{X}} - \mathbf{X})_{S' \setminus T_{\nabla}}\|_{F} + \|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S' \setminus T_{\nabla}}\|_{F}$$

$$\leq \sqrt{2}\|(\tilde{\mathbf{X}} - \mathbf{X})_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')}\|_{F}$$

$$+ \sqrt{2}\|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{(S' \setminus T_{\nabla}) \cup (T_{\nabla} \setminus S')}\|_{F}$$

$$\leq \sqrt{2}\|(\tilde{\mathbf{X}} - \mathbf{X})_{S}\|_{F} + \sqrt{2}\|(\mathbf{W}_{T_{0}}(\tilde{\mathbf{X}} - \mathbf{X}))_{S}\|_{F}$$

$$\leq \sqrt{2}(1 + \omega)\delta_{s+t}\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F}$$

$$+ (1 + \omega)\sqrt{2(1 + \delta_{t})}\|\mathbf{E}\|_{F}. \tag{A.59}$$

Also, we can obtain the relationship between $\|\mathbf{W}_{T_0}\mathbf{X}_{T_{\nabla}}\|_F$ and $\|\mathbf{X}_{T_{\nabla}}\|_F$:

$$\eta \omega \sqrt{s_3} \| \mathbf{X}_{T_{\nabla}} \|_F \le \| \mathbf{W}_{T_0} \mathbf{X}_{T_{\nabla}} \|_F.$$
 (A.60)

Combining (A.59) and (A.60), we have

$$\|\mathbf{X}_{T_{\nabla}}\|_{F} \leq \frac{\sqrt{2}(1+\omega)\delta_{s+t}}{1+\eta\omega\sqrt{s_{3}}}\|\mathbf{X}-\tilde{\mathbf{X}}\|_{F}$$

$$+ \frac{(1+\omega)\sqrt{2}(1+\delta_{t})}{1+\eta\omega\sqrt{s_{3}}}\|\mathbf{E}\|_{F}. \quad (A.61)$$

Noting the definition of ν_2 , we complete the proof of Lemma 2.

APPENDIX B PROOF OF LEMMA 3

Proof: From Step 5 of SI-SSP, we have

$$\mathbf{X}_{S_i}^k = \underset{\boldsymbol{\Theta}: \operatorname{supp}(\boldsymbol{\Theta}) = S_{S_i}^k}{\arg\min} \| \mathbf{Y}_{S_i} - \mathbf{A} \boldsymbol{\Theta} \|_F.$$
 (A.62)

From Step 4 of SI-SSP, let $\mathbf{X}^k = [\mathbf{X}_{S_1}^k, \cdots, \mathbf{X}_{S_r}^k]$. We have the following conclusion

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T}\|_{F}$$

$$\leq \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S}\|_{F}. \quad (A.63)$$

By removing the same coordinates $T \cap \Delta S$, we get

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F}$$

$$\leq \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}. \quad (A.64)$$

Because $supp(\mathbf{X}) = T$ and $supp(\mathbf{X}^{k-1}) = S^{k-1}$,

$$(\mathbf{X} - \mathbf{X}^{k-1})_{\Delta S \setminus (T \cup S^{k-1})} = 0. \tag{A.65}$$

For the right-hand side of (A.64), we have

$$\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$= \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})}\|_{F}$$

$$= \|(\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{\Delta S \setminus (T \cup S^{k-1})}\|_{F}$$

$$\leq \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{A}^{H}\mathbf{E})_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S \setminus T}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{\Delta S \setminus T}\|_{F}. \tag{A.66}$$

Note that $\tilde{S}^k = S^{k-1} \cup \Delta S$, we have

$$(\mathbf{X} - \mathbf{X}^{k-1})_{T \setminus \tilde{S}^k} = \mathbf{X}_{(\tilde{S}^k)^c}. \tag{A.67}$$

For the left-hand side of (A.64), we have

$$\begin{split} &\|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F} \\ &+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus \Delta S}\|_{F} \\ &= \|(\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F} \\ &+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{Y} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F} \\ &= \|(\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F} \\ &+ \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}(\mathbf{A}\mathbf{X} + \mathbf{E} - \mathbf{A}\mathbf{X}^{k-1}))_{T \setminus (\Delta S \cup S^{k-1})}\|_{F} \\ &= \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}) \\ &+ \mathbf{A}^{H}\mathbf{E} + \mathbf{X})_{\Delta S \setminus (T \cup S^{k-1})}\|_{F} \\ &+ \|\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}) \\ &+ \mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E} + \mathbf{W}_{T_{0}}\mathbf{X})_{\Delta S \setminus (T \cup S^{k-1})}\|_{F} \\ &\geq \|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} + \|(\mathbf{W}_{T_{0}}\mathbf{X})_{(\tilde{S}^{k})^{c}}\|_{F} \end{split}$$

$$- \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{(\tilde{S}^{k})^{c}}\|_{F}$$

$$- \|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{(\tilde{S}^{k})^{c}}\|_{F}$$

$$- \|(\mathbf{A}^{H}\mathbf{E})_{(\tilde{S}^{k})^{c}}\|_{F} - \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{(\tilde{S}^{k})^{c}}\|_{F}.$$

$$(A.69)$$

Combining (A.70) and (A.69), we have

$$\|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} + \|(\mathbf{W}_{T_{0}}\mathbf{X})_{(\tilde{S}^{k})^{c}}\|_{F}$$

$$\leq \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\backslash\tilde{S}^{k}}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\backslash\tilde{S}^{k}}\|_{F}$$

$$+ \|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S\backslash T}\|_{F}$$

$$+ \|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{\Delta S\backslash T}\|_{F}$$

$$+ \|(\mathbf{A}^{H}\mathbf{E})_{T\backslash\tilde{S}^{k}}\|_{F} + \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{T\backslash\tilde{S}^{k}}\|_{F}$$

$$+ \|(\mathbf{A}^{H}\mathbf{E})_{\Delta S\backslash T}\|_{F} + \|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{\Delta S\backslash T}\|_{F}$$

$$\leq \sqrt{2}\|((\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\cup\Delta S}\|_{F}$$

$$+ \sqrt{2}\|(\mathbf{W}_{T_{0}}(\mathbf{A}^{H}\mathbf{A} - \mathbf{I}_{L})(\mathbf{X} - \mathbf{X}^{k-1}))_{T\cup\Delta S}\|_{F}$$

$$+ \sqrt{2}\|(\mathbf{A}^{H}\mathbf{E})_{T\cup\Delta S}\|_{F} + \sqrt{2}\|(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{E})_{T\cup\Delta S}\|_{F}$$

$$\leq \sqrt{2}(1 + \omega)\delta_{3s}\|\mathbf{X} - \mathbf{X}^{k-1}\|_{F}$$

$$+ (1 + \omega)\sqrt{2}(1 + \delta_{3s})\|\mathbf{E}\|_{F}. \tag{A.70}$$

We can obtain the relationship between $\|\mathbf{X}_{(\tilde{S}^k)^c}\|_F$ $\|(\mathbf{W}_{T_0}\mathbf{X})_{(\tilde{S}^k)^c}\|_F$:

$$\eta \omega \sqrt{s_2} \| \mathbf{X}_{(\tilde{S}^k)^c} \|_F \le \| (\mathbf{W}_{T_0} \mathbf{X})_{(\tilde{S}^k)^c} \|_F.$$
 (A.71)

Combining (A.70) and (A.71), we have

$$\|\mathbf{X}_{(\tilde{S}^{k})^{c}}\|_{F} \leq \frac{\sqrt{2}(1+\omega)\delta_{3s}}{1+\eta\omega\sqrt{s_{2}}}\|\mathbf{X} - \tilde{\mathbf{X}}\|_{F} + \frac{(1+\omega)\sqrt{2(1+\delta_{2s})}}{1+\eta\omega\sqrt{s_{2}}}\|\mathbf{E}\|_{F}.$$
 (A.72)

Noting the definition of ν_1 , we complete the proof of Lemma 3.

APPENDIX C PROOF OF LEMMA 4

Proof: the RIC δ_t can be expressed as [25]

$$\delta_t = \max_{S \subset \{1, 2, \dots, N\}, |S| < t} \|\mathbf{A}_S^* \mathbf{A}_S - \mathbf{I}\|_{2 \to 2}, \quad (A.73)$$

where

$$\|\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I}\|_{2 \to 2} = \sup_{\mathbf{a} \in \mathbb{R}^{|S|} \setminus \{\mathbf{0}\}} \frac{\|(\mathbf{A}_{S}^{*}\mathbf{A}_{S} - \mathbf{I})\mathbf{a}\|_{2}}{\|\mathbf{a}\|_{2}}.$$
 (A.74)

Let $S = \operatorname{supp}(\mathbf{u}) \cup \operatorname{supp}(\mathbf{v})$, then $|S| \leq t$. Let $\mathbf{u}_{|S}, \mathbf{v}_{|S}$ denote respectively the S-dimensional sub-vectors of \mathbf{u} and \mathbf{v} obtained by only keeping the components indexed by S. We have

$$|\langle \mathbf{u}, (\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A}) \mathbf{v} \rangle|$$

$$= |\langle \mathbf{W}_{T_0} \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{A} \mathbf{W}_{T_0} \mathbf{u}, \mathbf{A} \mathbf{v} \rangle|$$

$$= |\langle \mathbf{W}_{T_0} \mathbf{u}_{|S}, (\mathbf{I}_L - \mathbf{A}_S^H \mathbf{A}_S) \mathbf{v}_{|S} \rangle|$$

$$\leq \|\mathbf{W}_{T_0} \mathbf{u}_{|S}\|_2 \|(\mathbf{I}_L - \mathbf{A}_S^H \mathbf{A}_S) \mathbf{v}_{|S}\|_2$$

$$\stackrel{(\mathbf{A}.74)}{\leq} \|\mathbf{W}_{T_0} \mathbf{u}_{|S}\|_2 \|\mathbf{I}_L - \mathbf{A}_S^H \mathbf{A}_S\|_{2 \to 2} \|\mathbf{v}_{|S}\|_2$$

$$\stackrel{(\mathbf{A}.73)}{\leq} \omega \delta_t \|\mathbf{u}_{|T}\|_2 \|\mathbf{v}_{|S}\|_2$$

$$= \omega \delta_t \|\mathbf{u}\|_2 \|\mathbf{v}\|_2, \tag{A.75}$$

moreover, we have

$$\| \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \|_2^2$$

$$= \left\langle \left(\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U,$$

$$\left(\mathbf{W}_{T_0} - \mathbf{W}_{T_0} \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right\rangle$$

$$\leq \delta_t \| \left(\left(\mathbf{W}_{T_0} - \mathbf{A}^H \mathbf{A} \right) \mathbf{v} \right)_U \|_2 \| \mathbf{v} \|_2$$
 (A.76)

which completes the proof of Lemma 4.

APPENDIX D PROOF OF LEMMA 5

Proof: The lemma follows trivially from the fact that

$$\|\left(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{e}\right)_{U}\|_{2}^{2}$$

$$=\left\langle\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{e},\left(\mathbf{W}_{T_{0}}\mathbf{A}^{H}\mathbf{e}\right)_{U}\right\rangle$$

$$=\left\langle\mathbf{e},\mathbf{W}_{T_{0}}\mathbf{A}\left(\left(\mathbf{A}^{H}\mathbf{e}\right)_{U}\right)\right\rangle$$

$$\leq\|\mathbf{e}\|_{2}\|\mathbf{W}_{T_{0}}\mathbf{A}\left(\left(\mathbf{A}^{H}\mathbf{e}\right)_{U}\right)\|_{2}$$

$$\stackrel{(7)}{\leq}\|\mathbf{e}'\|_{2}\omega\sqrt{1+\delta_{u}}\|\left(\mathbf{A}^{H}\mathbf{e}\right)_{U}\|_{2}.$$
(A.77)

APPENDIX E PROOF OF LEMMA 6

Proof: Due to the orthogonality, the residue $\mathbf{Y} - \mathbf{A}\tilde{\mathbf{X}}$ is orthogonal to the space $\mathbf{A}\mathbf{Z}$. This means that for all $\mathbf{Z} \in \mathbb{C}^{L \times N}$ with $\operatorname{supp}(\mathbf{Z}) \subseteq S$,

$$\langle \mathbf{A}(\mathbf{Y} - \mathbf{A}\tilde{\mathbf{X}}), \mathbf{Z} \rangle = \mathbf{0}.$$
 (A.78)

Let $\tilde{\mathbf{X}}'$ be the solution of the least squares problem $\arg\min_{\mathbf{Z}} \{\|\mathbf{Y}' - \mathbf{A}\mathbf{Z}\|_F, \sup(\mathbf{Z}) \subseteq S\}$, where $\mathbf{Y}' = \frac{\mathbf{A}\mathbf{W}_{T_0}\mathbf{X}_{T_0}}{\omega} + \mathbf{E}$. We have

$$\tilde{\mathbf{X}}' = \frac{\mathbf{W}_{T_0} \tilde{\mathbf{X}}}{\omega}.\tag{A.79}$$

Then, by (A.78), we have

$$\mathbf{0} = \left\langle \frac{\mathbf{A}\mathbf{W}_{T_0}\mathbf{X}_{T_0}}{\omega} + \mathbf{E} - \mathbf{A} \frac{\mathbf{W}_{T_0}\tilde{X}}{\omega}, \mathbf{A}\mathbf{Z} \right\rangle$$
$$= \left\langle \mathbf{W}_{T_0}\mathbf{X} - \mathbf{W}_{T_0}\tilde{\mathbf{X}}, \mathbf{A}^H \mathbf{A}\mathbf{Z} \right\rangle + \omega \left\langle \mathbf{E}, \mathbf{A}\mathbf{Z} \right\rangle. \quad (A.80)$$