April 19, 2019

Neural Computers

 Controller (RNN or fullyconnected) has access to external memory

 On each iteration, controller writes some data into the memory and then reads from it

Memory Model

• Memory is a matrix $M \in \mathbb{R}^{K \times C}$

Models learn useful read/write patterns

Read Weights

- Controller produces a key k
- Generate wights $v_i = K[k, M[i]]$

• Where
$$K[u, v] = \frac{u^T v}{\|u\| \cdot \|v\|}$$

This recalls associative arrays

M[1]
M[2]
M[]
M[K]

Reading From The Memory

• Controller produces a temperature β

Normalize the distribution with softmax:

$$w_i = \frac{e^{\beta v_i}}{\sum_{j=1}^K e^{\beta v_j}}$$

Return a weighted sum over the memory elements

M[1]	0
M[2]	0.3
M[]	0
M[15]	0.5
M[]	0
M[]	0
M[K]	0.2

$$r = 0.3 \cdot M[2] + 0.5 \cdot M[15] + 0.2 \cdot M[K]$$

Writing To The Memory

- Controller produces erase e_t and addition a_t vectors and weights \widetilde{w}_t
- Update the memory with

M[1]
M[2]
M[]
M[K]

Key Idea 1: Memory model

Key Idea 1: Memory model

- Slot-based memory (read/write to one row):
 - Can collapse to read/write operations with few rows
 - Or stores each object in its own row

Key Idea 1: Memory model

- Slot-based memory (read/write to one row):
 - Can collapse to read/write operations with few rows
 - Or stores each object in its own row
- Distributed memory (read/write to multiple rows):
 - Overlapping representations
 - Some rows may encode class-specific representations, others will store object-specific variations

Key Idea 2: Memory as inference

Already computed

- Memory is a latent variable
- Writing is inference: $p(M \mid X)$
- Iterative writing: $p(M \mid x_{< T}, x_T) \propto p(M \mid X_{< T}) p(x_T \mid M)$

Sparse Distributed Memory

Model works only with binary (-1, 1) vector data, contains: A—table of addresses (fixed), M—memory _

$$w_k = \begin{cases} 1, & h(x, A_k) \leq \tau \\ 0, & \text{otherwise} \end{cases}$$

• Reading: $\widehat{x}_i = \begin{cases} 1, & \sum_{k=1}^K w_k M_{k,i} > 0 \\ -1, & \text{otherwise} \end{cases}$

Writing:

$$M_k \leftarrow M_{k-1} + w_k x$$

Sparse Distributed Memory

Model works only with binary (-1, 1) vector data, contains: A—table of addresses (fixed), M-memory

$$w_k = \begin{cases} 1, & h(x, A_k) \leq \tau \\ 0, & \text{otherwise} \end{cases}$$

• Reading:
$$\widehat{x}_i = \begin{cases} 1, & \sum_{k=1}^K w_k M_{k,i} > 0 \\ -1, & \text{otherwise} \end{cases}$$

Writing:

$$M_k \leftarrow M_{k-1} + w_k x$$

Application:

Denoising with iterative queries

The Kanerva Machine: A Generative Distributed Memory

Yan Wu, Greg Wayne, Alex Graves, Timothy Lillicrap

 Few-shot learning task: store an exchangeable episode and recall all stored patterns

Reading inference

$$q_{\phi}(Y, Z | X, M) = \prod_{t=1}^{T} q_{\phi}(y_t, z_t | x_t, M) = \prod_{t=1}^{T} q_{\phi}(z_t | x_t, y_t, M) q_{\phi}(y_t | x_t)$$

$$\begin{split} q_{\phi}(M|X) &= \int p_{\theta}(M,Y,Z|X) \mathrm{d}Z \mathrm{d}Y \\ &= \int p_{\theta}(M|\{y_1,...,y_T\},\{z_1,...,z_T\}) \prod_{t=1}^T q_{\phi}(z_t|x_t) q_{\phi}(y_t|x_t) \mathrm{d}z_t \mathrm{d}y_t \\ &\approx p_{\theta}(M|\{y_1,...,y_T\},\{z_1,...,z_T\}) \bigg|_{y_t \sim q_{\phi}(y_t|x_t), z_t \sim q_{\phi}(z_t|x_t)} \end{split}$$

$$p_{\theta}(M \mid Y, Z) = ?$$

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

Distribution over matrices

Matrix normal distribution

Distribution over matrices

Matrix normal distribution

Covariance of rows

Covariance of columns

Distribution over matrices

Matrix normal distribution

$$p(M) = \mathcal{M}\mathcal{N}(R, U, V) \propto \exp\left(-\frac{1}{2}Tr\left(V^{-1}(X - R)^T U^{-1}(X - R)\right)\right)$$
$$= \exp\left(-\frac{1}{2}\left\langle (X - R)V^{-1}, U^{-1}(X - R)\right\rangle\right)$$

V = I — no covariance between columns

$$p_{\theta}(M \mid Y, Z) = ?$$

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

$$p(M) = \mathcal{MN}(R, U, V)$$

$$p_{\theta}(M \mid Y, Z) = ?$$

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

$$p(M) = \mathcal{MN}(R, U, V)$$

$$\Delta \leftarrow Z - WR$$

$$\Sigma_c \leftarrow WU$$

$$R \leftarrow R + \Sigma_c^T \Sigma_z^{-1} \Delta$$

$$\Sigma_{z} \leftarrow WUW^{T} + \Sigma_{\xi}$$

$$U \leftarrow U - \Sigma_{c}^{T} \Sigma_{z}^{-1} \Sigma_{c}$$

$$p_{\theta}(M \mid Y, Z) = ?$$

K x C

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

$$\begin{split} p(M) &= \mathcal{M} \mathcal{N}(R, U, V) & \mathbf{K} \times \mathbf{C} \\ & \mathbf{K} \times \mathbf{K} \quad \Delta \leftarrow Z - WR \\ \Sigma_c \leftarrow WU & \uparrow \quad \Sigma_z \leftarrow WUW^T + \Sigma_\xi \\ R \leftarrow R + \Sigma_c^T \Sigma_z^{-1} \Delta & \mathbf{T} \times \mathbf{K} & U \leftarrow U - \Sigma_c^T \Sigma_z^{-1} \Sigma_c \end{split}$$

$$p_{\theta}(M \mid Y, Z) = ?$$

K x C

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

$$p(M) = \mathcal{M} \mathcal{N}(R, U, V) \qquad \qquad \mathbf{K} \times \mathbf{C}$$

$$\mathbf{K} \times \mathbf{K} \quad \Delta \leftarrow Z - WR$$

$$\Sigma_c \leftarrow WU \qquad \qquad \uparrow \qquad \Sigma_z \leftarrow WUW^T + \Sigma_\xi$$

$$R \leftarrow R + \Sigma_c^T \Sigma_z^{-1} \Delta \qquad \qquad \mathbf{T} \times \mathbf{K} \qquad U \leftarrow U - \Sigma_c^T \Sigma_z^{-1} \Sigma_c$$

TxT

$$p_{\theta}(M \mid Y, Z) = ?$$

K x C

$$w_t = f^T(y_t) \cdot A$$

$$p_{\theta}(z_t | y_t, M) = \mathcal{N} \left(z_t | w_t^T \cdot M, \sigma^2 I \right)$$

$$p(M) = \mathcal{M} \mathcal{N}(R, U, V) \qquad \mathbf{K} \times \mathbf{C}$$

$$\mathbf{K} \times \mathbf{K} \quad \Delta \leftarrow Z - WR$$

$$\Sigma_c \leftarrow WU \qquad \qquad \uparrow \qquad \Sigma_z \leftarrow WUW^T + \Sigma_\xi$$

$$R \leftarrow R + \Sigma_c^T \Sigma_z^{-1} \Delta \qquad \mathbf{T} \times \mathbf{K} \qquad U \leftarrow U - \Sigma_c^T \Sigma_z^{-1} \Sigma_c$$

Iterative writing reduces complexity!

Training

$$\mathcal{J} = \text{const} + \mathbb{E}_{p(X)p(M|X)} \sum_{t=1}^{T} \log p_{\theta}(x_t \mid M) dM dX \ge \text{const} + \mathcal{L}$$

$$\begin{split} \mathcal{L} &= \mathbb{E}_{q_{\phi}(M|X)p(X)} \sum_{t=1}^{T} \left\{ \mathbb{E}_{q_{\phi}(y_{t}, z_{t}|x_{t}, M)} \log p_{\theta}(x_{t}|z_{t}) \right. \\ &\left. - \text{KL}(q_{\phi}(y_{t}|x_{t}) || p_{\theta}(y_{t})) - \text{KL}(q_{\phi}(z_{t}|x_{t}, y_{t}, M) || p_{\phi}(z_{t}|y_{t}, M)) \right\} \end{split}$$

• During training, $q_{\phi}(M|X) = \delta(R)$

Experiments

The Kanerva Machine: A Generative Distributed Memory

Reading

$$q_{\phi}(Y, Z | X, M) = \prod_{t=1}^{T} q_{\phi}(y_t, z_t | x_t, M) = \prod_{t=1}^{T} q_{\phi}(z_t | x_t, y_t, M) q_{\phi}(y_t | x_t)$$

Iterative Reading

$$q_{\phi}(Y, Z | X, M) = \prod_{t=1}^{T} q_{\phi}(y_t, z_t | x_t, M) = \prod_{t=1}^{T} q_{\phi}(z_t | x_t, y_t, M) q_{\phi}(y_t | x_t)$$

Kanerva Machine vs DNC

Kanerva Machine vs DNC

Learning Attractor Dynamics for Generative Memory

Yan Wu, Greg Wayne, Karol Gregor, Timothy Lillicrap

Attractor dynamics

- Iterative reading improves samples during evaluation, but is not used during training
- Idea: use iterative reading during training

Propagating through «repeat until converged» is hard—vanishing gradients

Dynamic Kanerva Machine

$$\ln p(x_{\leq T}) = \mathcal{L}_T + \sum_{t=1}^T \mathbb{E}_{q(M)} KL(q(w_t) || p(w_t | x_t, M)) + KL(q(M) || p(M | x_{\leq T}))$$

$$\mathcal{L}_{T} = \sum_{t=1}^{T} \left(\mathbb{E}_{q(w_{t}) \, q(M)} \log p(x_{t} | w_{t}, M) - KL(q(w_{t}) || p(w_{t})) \right) - KL(q(M) || p(M))$$

$$\ln p(x_{\leqslant T}) = \mathcal{L}_T + \sum_{t=1}^T \mathbb{E}_{q(M)} KL(q(w_t) || p(w_t | x_t, M)) + KL(q(M) || p(M | x_{\leq T}))$$
 Step 2

$$\mathcal{L}_T = \sum_{t=1}^T \left(\mathbb{E}_{q(w_t) \, q(M)} \log p(x_t \, | \, w_t, M) - KL(q(w_t) \| p(w_t)) \right) - KL(q(M) \| p(M))$$
 Step 3

Step 1. Dynamic addressing

$$\min_{\mu_{w_t}} KL\left(q(w_t) \| p(w_t | x_t, M)\right) \quad q(w_t) \sim \mathcal{N}(\mu_{w_t}, \sigma_w^2 I)$$

Step 1. Dynamic addressing

$$\min_{\mu_{w_t}} KL\left(q(w_t) || p(w_t | x_t, M)\right) \quad q(w_t) \sim \mathcal{N}(\mu_{w_t}, \sigma_w^2 I)$$

$$KL(q(w)||p(w|x,M)) \approx -\frac{||e(x) - M^T \cdot \mu_w||^2}{2\sigma_{\xi}^2} - \frac{1}{2}||\mu_w||^2 + \dots$$

Step 1. Dynamic addressing

$$\min_{\mu_{w_t}} KL\left(q(w_t) || p(w_t | x_t, M)\right) \quad q(w_t) \sim \mathcal{N}(\mu_{w_t}, \sigma_w^2 I)$$

$$KL(q(w)||p(w|x,M)) \approx -\frac{||e(x) - M^T \cdot \mu_w||^2}{2\sigma_{\xi}^2} - \frac{1}{2}||\mu_w||^2 + \dots$$

$$\mu_w \leftarrow (MM^T + \sigma_{\xi}^2 \cdot I)^{-1}M^T e(x)$$

$$\ln p(x_{\leqslant T}) = \mathcal{L}_T + \sum_{t=1}^T \mathbb{E}_{q(M)} KL(q(w_t) || p(w_t | x_t, M)) + KL(q(M) || p(M | x_{\leq T}))$$
 Step 2

$$\mathcal{L}_T = \sum_{t=1}^T \left(\mathbb{E}_{q(w_t) \, q(M)} \log p(x_t \, | \, w_t, M) - KL(q(w_t) \| p(w_t)) \right) - KL(q(M) \| p(M))$$
 Step 3

Step 2. Bayesian Memory Update

 $\min_{q(M)} KL\left(q(M)||p(M|x_{\leq T})\right)$

Step 2. Bayesian Memory Update

$$\min_{q(M)} KL \left(q(M) || p(M | x_{\leq T}) \right)$$

$$\min_{q(M)} KL\left(q(M) \| p(M | x_{\leq T}, w_{\leq T})\right) \Leftrightarrow q(M) = p(M | x_{\leq T}, w_{\leq T})$$

Step 2. Bayesian Memory Update

$$\min_{q(M)} KL \left(q(M) || p(M | x_{\leq T}) \right)$$

$$\min_{q(M)} KL\left(q(M)||p(M|x_{\leq T}, w_{\leq T})\right) \Leftrightarrow q(M) = p(M|x_{\leq T}, w_{\leq T})$$

Solve by iteratively writing data to the memory:

•
$$\mu_{w_t} = \arg\min_{\mu_{w_t}} KL \left(q(w_t) || p(w_t | x_t, M_{t-1}) \right)$$

•
$$q(M_t) \approx p(M_t \mid x_t, \mu_{w_t}, M_{t-1})$$

$$\ln p(x_{\leqslant T}) = \mathcal{L}_T + \sum_{t=1}^T \mathbb{E}_{q(M)} KL(q(w_t) || p(w_t | x_t, M)) + KL(q(M) || p(M | x_{\leq T}))$$
 Step 2

$$\mathcal{L}_T = \sum_{t=1}^T \left(\mathbb{E}_{q(w_t) \, q(M)} \log p(x_t \, | \, w_t, M) - KL(q(w_t) \| p(w_t)) \right) - KL(q(M) \| p(M))$$
 Step 3

$$\ln p(x_{\leqslant T}) = \mathcal{L}_T + \sum_{t=1}^T \mathbb{E}_{q(M)} KL(q(w_t) \| p(w_t | x_t, M)) + KL(q(M) \| p(M | x_{\leq T}))$$
 Step 2

$$\mathcal{L}_{T} = \sum_{t=1}^{T} \left(\mathbb{E}_{q(w_{t}) \, q(M)} \log p(x_{t} | w_{t}, M) - KL(q(w_{t}) || p(w_{t})) \right) - KL(q(M) || p(M))$$

Step 3
$$\min \left[\mathscr{L}_T + \mathscr{L}_{AE} \right]$$
 $\mathscr{L}_{AE} = \mathbb{E}_{p(X)} \log d \left(e(x) \right)$

Attractor dynamics

$$\mathcal{L}_{T} = \sum_{t=1}^{T} \left(\mathbb{E}_{q(w_{t}) \, q(M)} \log p(x_{t} | w_{t}, M) - KL(q(w_{t}) || p(w_{t})) \right) - KL(q(M) || p(M))$$

$$\mathscr{E}(x, q(w)) = -\mathbb{E}_{q(M)q(w)} \log p(x \mid w, M) + KL\left(q(w) || p(w)\right)$$

Attractor dynamics

$$\mathcal{L}_{T} = \sum_{t=1}^{T} \left(\mathbb{E}_{q(w_{t}) \, q(M)} \log p(x_{t} | w_{t}, M) - KL(q(w_{t}) || p(w_{t})) \right) - KL(q(M) || p(M))$$

$$\mathscr{E}(x, q(w)) = -\mathbb{E}_{q(M)q(w)} \log p(x \mid w, M) + KL\left(q(w) || p(w)\right)$$

Coordinate descent:

$$x_{t+1} = \arg \max_{x_{t+1}} p(x_{t+1} \mid x_t, M)$$

Attractor dynamics

$$\mathcal{L}_{T} = \sum_{t=1}^{T} \left(\mathbb{E}_{q(w_{t}) \, q(M)} \log p(x_{t} | w_{t}, M) - KL(q(w_{t}) || p(w_{t})) \right) - KL(q(M) || p(M))$$

$$\mathscr{E}(x, q(w)) = -\mathbb{E}_{q(M)q(w)} \log p(x \mid w, M) + KL\left(q(w) || p(w)\right)$$

Coordinate descent:

$$x_{t+1} = \arg \max_{x_{t+1}} p(x_{t+1} \mid x_t, M)$$

$$\begin{cases} \mu_{t,w} \leftarrow (MM^T + \sigma_{\xi}^2 \cdot I)^{-1} M^T e(x_t) \\ x_{t+1} = \arg \max_{x_{t+1}} \left[\log p(x_{t+1} \mid \mu_{t,w}, M) \right] \end{cases}$$

Experiments

Learning Attractor Dynamics for Generative Memory

Capacity

Denoising

Sampling

Denoising

5 10 15

Sampling

Input images

Summary

- The Kanerva Machine: A Generative Distributed Memory
 - Distributed read/write operations
 - Writing as inference
- Learning Attractor Dynamics for Generative Memory
 - Finds «optimal» reading weights
 - Iterative reading to restore written objects