Lecture 14: Lyapunov Theory Beyond Stability (cont.)

goals =

- · more examples of Lyapunov ideas begond statility
 - · Hz norm computation + control design
 - · Approximate Dynamic Programming
 - · Robust safety guarantees via Barrier Certificates

System Hz norm computation + design rea SDP

· Consider the system $\dot{x} = Ax + Bu$ y = Cx

$$n \rightarrow \{5\}$$

· The system Hz norm is defined by

 $||z||_2^2 = \int_0^\infty y(t)^T y(t) dt$ when x(0) = 0 and u(t) is a unit impulse signal

· Fact: $\|z\|_2^2 = \text{trace}(B^T X_o B) = \text{trace}(C X_c C^T)$

where ATXo + Xo A + CTC = O, AXo+ Xo AT + BBT = O. Lyapunor equations for controllubility + observability Gramians

· LMI Characterization of 1/2 norm
FALT: A is asymp. Stable and $\ Z\ _2^2 < \delta$ (=>
FX=XT to such that AX+XAT+BBTKO, truce (CXCT)
AX + XAT + BBT X O, XCT X JY O and trace(W)
Hz control design
Consider the system $x' = Ax + Bu + Fw$ $y = Cx + Du$
· Godl: Design full state feedback controller Ult) = Kxlt) - that minimizes the Hz system norm from disturbance injut w to performance output y (in closed-loop)
elate use the HINT above for closed-loop system

. Let's use the Hz LMI above for closed-loop system $\dot{x} = (A+T3K) x + Fw$ $\dot{y} = (C+DK) x$

. Let L = KX. Can find optimal Hz controller lither gives smallest closed-loop 8) by solving the SDP in variables Y, X, L, W

minimize
$$X$$

 X_1, X_1, L_1, W
subject to $trace(W) < \emptyset$
 $AX + BL + XA^T + L^TB^T + FF^T < O$
 $TW = CX + DL^T > O$
 $XC^T + L^TD^T = X$

- Recover H_2 optimal controller via $K = L X^{-1}$
- · X, W give certificate that closed-loop

 He norm is less than &

Approximate Dynamic Programming

· Consider the system (stochastic t nonlinear)

$$X_{t+1} = f(X_t, u_t, w_t)$$

where disturbance $w_t \sim P_w$ i.i.d. State $x_t \in R^n$, with $x_0 \sim P_o$ input $u_t \in R^m$, with constraint $u_t \in \mathcal{U} \subseteq R$

- We want to find a state feedback policy $U_t = T(x_t)$ to minimize a cost function 16(0,1) discount factor $J_T(x_0) = E \sum_{w_t}^{\infty} 1 \frac{1}{2} \left(x_t \right) \frac{1}{2} \left(x_t$
- * Denote optimal value function $J^*(x_0) = min J_{\pi}(x_0)$ and optimal value $J^* = E J^*(x_0)$.
 - · an infinite-dimensional nonlinear, stochastic optimal control problem (I is a function, not a rector)
 - extremely difficult in general, but can be often effectively approximated using convex optimization!

• In principle colation via dynamic programming:

optimal value function eatisties Bellman equation $V(x) = \min_{w \in \mathcal{U}} \mathbb{E}\left[g(x,u,w) + \delta V(f(x,u,w))\right]$

then optimal policy is

 $u_t^* = \pi^*(x_t) = \underset{u_t \in \mathcal{U}}{\operatorname{argmin}} \ E\left[g(x_t, u_t, \omega_t) + \forall V(f(x_t, u_t, \omega_t))\right]$

· but difficult/impossible to compute in general

· Let's relax the Bellman equation to an inequality

 $V(x) \leq \min_{u \in \mathcal{U}} \mathbb{E}\left[g(x,u,w) + VV(f(x,u,w))\right] \forall x \in \mathbb{R}^n$

 $(=7 \text{ V(x)} \leq E[g(x,u,w) + 8 \text{ V(f(x,u,w))}] \forall x \in \mathbb{R}^n, \forall u \in \mathcal{U}$

• FALT: Any function $\hat{V}(x)$ satisfying this gives a lower bound on optimal value function $\rightarrow \hat{V}(x) \leq J^*(x)$ $\forall x \in \mathbb{R}^n$

· useful performance bound (for any polecy)

• can often generate very good subopotional policies $\hat{h}_t = \hat{\pi}(x_t) = \underset{u_t \in \mathcal{U}}{\operatorname{argmin}} \, E\left[g(x_t, u_t, w_t) + \hat{V}(f(x_t, u_t, w_t))\right]$

. To find best lower bound, we could solve
maximize EV(x)
subject to $\mathbb{E}\left[g(x,u,w)+W(f(x,u,w))\right]-V(x) \geq 0$ $\forall x \in \mathbb{R}'$
p(x,u) Yueu
· Suppose I and g are polynomials, U is a basic
semialgebraic set, all moments of Pw are assumed Known/given, and we look for polynomial V
with coefficient vector 2): maximize cT2 with coefficient vector 2): use SOS S-Procedure to restrict to 21
subject to $p(x,u) \in SOS$ $\forall x \in \mathbb{R}^n$, $u \in \mathcal{U}$
, an SDP in variable 2.
Expresse $f = A \times + B u + W$, $g = x^T Q x + u^T R u$ $E w = 0$, $E w w^T = W$, $u = I Q^m$, and $V = x^T P x + V$ $E x_0 = 0$, $E x_0 x_0^T = X_0$
maximize $tv(PX_0)$ Subject to $[P+YB^TPB YB^TPA] \geq 0$ $YA^TPB Q+YA^TPA-P$

· Consider the system

$$\dot{x} = f(x, d)$$

where x(t) & IR" is the state

d(t) & D & IR" is an unknown disturbance input

defines bounds assumed on d

· Let Ys CR denote a set of safe states

Let Xu CIR denote a set of uneate states

· encoding e.g. obstacles, collisions, or any constraints on the system state

Ex Drone w/ sense + avoid capatilities llyong through eluttered environment w/ unknown but toumled wind

- · How could we guarantee that if the system starts in Xs, its trajectories would never end up in Xu, regardless of the disturbance of?
 - · NOT easy for nonlinear systems, unknown d

· Let's us	ie a Lurier Cent	Japunov Elecate	approacha tha	ech to	obtain tees sate	ety	ź
Theorem				As flurents	where		<i>د</i> ک
			24		- 1		

Blx) > 0 txe Xn

B(x) & O YXEXS

 $\dot{B}(x) = \nabla B(x)^T f(x, a) \leq 0 \quad \forall x \in \mathcal{X}_s, \forall d \in D.$

Then if $\chi(0) \in \chi_s$ then $\chi(t) \in \chi_s$, $\chi(t) \notin \chi_u \ \forall t \geq 0$. (i.e., robust safety is guaranteed).

- · Once again, it t is polynomial, D, Xs, and Xn are basic semialgebraic sets, and B' is a polynomial barrier certificate candidate, we can automate search for coefficients of B via convex optimization (w/ SOS/SDP)
- · The zero level set of B(x) provides a "barrier" b/t possible system trajectories and the unsafe set
- « Many extensions + variations on recent literature:
 - · Safety verification for stochastic hybrid systems TAC (Prujna, Jankabase, Pappas 2007)
 - · Control Barrier Fundions on & QP (Ames, Mu, Grizzle, Tabuada 2:TAC 2017)
 - · Real-time planning w/ Barrier Functions (Ahmed: + Majumdar 2017)