Introduction to algorithms

What is Algorithm?

Sequence of finite steps used to solve the particular problem.

Properties of Algorithms:

- It should terminate after finite time
- It should produce at-least one output
- It should be unambiguous [DETERMINISTIC]
 - For same input same output will always come

Types of Analysis:

Aposteriori Analysis	Apriori Analysis
Dependent on Language of compiler and type of hardware used	Independent of Language of compiler and hardware.
Exact Answers	Approximate answers

Few problems:

TimeComplexity = log2(n)

Introduction to algorithms 1

```
main(){
    i = n
    while i > 1{
        i = i / 2
        i = i / 5
        i = 2 * i
}
```

$$i/5^k = 1n/5^k = 1$$

k is number of times my loop is running.

Timecomplexity = log5(n)

```
main(){
    i = n
    while i > 2 {
        i = sqrt(i) }
}
```

$$i=n=n^(1/2)=n^(1/2)(1/2)$$

```
n ^(1/2^k) = 2
log2( n ^(1/2^k) ) = log2(2)
(1/2^k) log2(n) = 1
log2(n) = 2^k
log2(log2(n)) = k log2(2)
```

Timecomplexity = O(log2(log2(n)))

```
main(){
    i = n
    while i > 2 {
        i = (i)**(1/25) }
}
```

Introduction to algorithms 2

TimeComplexity = O(log25(log2(n)))

+/-	O(n)
* or /	logk(n)

Asymptotic Notations:

Big O Notation

W

Let f(n) and g(n) be two positive functions. Then,

$$f(n) = O(g(n))$$

if $f(n) \le c.g(n)$; for all n, $n \ge n_0$ such that there exists two positive constants.

$$c > 0$$
, $n_0 >= 1$

For example : a = O(b)

Meaning: b is somehow greater than a after taking c help.

Graphical Representation of Big O

- F(n) = O(g(n))
- If there exists a positive constant c such that it c >= 0, for sufficiently large value of n.
- For any value of n, the running time of an algorithm does not cross the time provided by O(g(n))

Omega Notation

Let f(n) and g(n) be two positive functions. Then,

$$f(n) = Omega(g(n))$$

if $f(n) \ge c.g(n)$; for all $n, n \ge n_0$ such that there exists two positive constants.

$$c > 0$$
, $n_0 >= 1$

For example : a = Omega(b)

Meaning: b is somehow lesser than a after taking c help.

Graphical Representation of Omega Notation

- If there exists a constant c such that it lies above cg(n), for sufficiently large value of n.
 - For any value of n, the minimum time required by the algorithm is given by Omega(g(n))

Theta Notation

S

Let f(n) and g(n) be two positive functions. Then,

$$f(n) = Theta(g(n))$$

if $f(n) \ge c_1.g(n)$ and $f(n) \le c_2.g(n)$;

for all n, n \geq = n_0 such that there exists two positive constants.

$$c_1 > 0$$
, $c_2 > 0$, $n_0 >= 1$

Graphical Representation of Theta Notation

If there exists positive constants c1 and c2 such that it can be sandwiched between c1g(n) and c2g(n), for sufficiently large value of n.

 $c_{1g(n)} - 0$ regard If a function lies anywhere in between c1g(n) and c2g(n) for all n >= n_0, then f(n) is said to be asymptotically tight bound.

There harding
$$f(n) >= c_1 g(n)$$
 (one ga) (

 $f(n) = n$
 $g(n) = 5n$
 $f(n) = Theta(g(n))$

For what value of c_1 and c_2 above statement holds true?

 $f(n) = 0$
 $f(n)$

Click to add text
$$\frac{5}{M}$$
 (128 $\frac{1091}{N}$, $\frac{1}{N}$) = $\frac{0}{M}$ ($\frac{1}{M}$) = $\frac{1}{M}$ ($\frac{1}{$

Complexity Classes

- 1. O(1) : Constant time complexity
- 2. $O(\log(\log(n)))$
- 3. O(logn): Logarithmic time complexity
- 4. 0(root(n))
- 5. O(n): Linear time complexity
- 6. O(n2): Quadratic Time complexity
- 7. O(n3): Cubic Time Complexity
- 8. $o(c^{**n})$: Exponential Time complexity

Some points: **Important**:

- 1. n! < n^n
- 2. 2^n < n^n
- 3. $n! > 2^n$

$$2^n < n! < n^n$$
 $2^n = O(n!)$ $n! = O(n^n)$ $log(n) < n$ $(log(n))^2 < n$ $log(n)^1 1000 < n$ $(logn)^(logn) > n$

