

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

8. Secondo Assignment - Dataflow analysis

Compilatori – Middle end [1215-014]

Corso di Laurea in INFORMATICA (D.M.270/04) [16-215] Anno accademico 2024/2025 **Prof. Andrea Marongiu** andrea.marongiu@unimore.it

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati

	Dataflow Problem X	
Domain	Sets of Uprision	
Direction	BOCHWERD in[b] = Jb(out[b]) out[b]= 1 in(succ[b])	espression dalk inventor
Transfer function	in Cot Geny ((out Co) Kill b)	ogni allegn Willa l'esp -> in wi la
Meet Operation (△)	Λ	'è un oper
Boundary Condition	in [dit] = Ø	
Initial interior points	in(b) = U (universal set)	
·		

Dataflow Analysis Assignment

Per ciascuno dei seguenti tre problemi di analisi

 Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema

	Iterazione 1		Iterazione 2		Iterazione 3	
	IN[B]	OUT[B]	IN[B]	OUT[B]	IN[B]	OUT[B]
BB1	<>	<>				
BB2						
BB3						

1) Very Busy Expressions very busy in questo punto?

Quali espressioni sono

- Un'espressione è *very busy* in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga C definito.
 - Un'espressione *a+b* è **very busy** in un punto p se a+b è valutata in tutti i percorsi da p a EXIT e non c'è una definizione di a o b lungo tali percorsi
 - Ci interessa l'insieme di espressioni disponibili (available) all'inizio del blocco B
 - L'insieme dipende dai percorsi che cominciano al punto p prima di B

ENABLES CODE HOISTING

2) Dominator Analysis

- In un CFG diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco ENTRY al blocco Y
- Annotiamo ogni basic block Bi con un insieme DOM[Bi]
 - Bi ∈ DOM[Bj] se e solo se Bi domina Bj
- Per definizione un nodo domina sé stesso
 - Bi ∈ DOM[Bi]

 $DOM[F] = \{A,C,F\}$

	Dataflow Problem X
Domain	Sets of BB
Direction	Forward out(b)= fb(in(b)) in(b)= nout[pred(b])
Transfer function	out(b) = Buin(b)
Meet Operation (∧)	Λ
Boundary Condition	out[entry] = ENTRY
Initial interior points	out(b) = universal set

Dobbios agrivagere Entry e Elit Cho & gla SE: LEVILL

3) Constant Propagation

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo n del CFG è un insieme di coppie del tipo <variabile, valore costante>.
- Se abbiamo la coppia <x, c> al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

RIPORTA (GE FACCIAMO

3) Constant Propagation

 NOTA: L'analisi di CP riesce a determinare il valore costante di espressioni binarie in cui uno o entrambi gli operandi siano delle variabili il cui valore costante sia noto:

•
$$w = 5$$

• $x = 12$
• $y = x - 2 \rightarrow y = 10$
• $z = w + x \rightarrow z = 17$

 Tenere conto di questo aspetto nel determinare le equazioni

Deadline per la consegna

- La deadline per la consegna del secondo assignment è martedì 15 aprile 2025
- Usate preferibilmente lo stesso link già comunicato per il primo assignment, organizzando il vostro repository in cartelle strutturate per assignment