有限元方法 II 上机报告 (二)

陈伟 1901110037

对 Stokes 方程

$$\begin{cases}
-\mu\Delta\underline{u} + \nabla p = \underline{f} & \text{in } \Omega \subset \mathbb{R}^2 \\
-\nabla \cdot \underline{u} = 0 & \text{in } \Omega \\
\underline{u} = \underline{g}_D & \text{on } \Gamma_D \\
2\mu\varepsilon(\underline{u})\underline{n} - p\underline{n} = \underline{g}_N & \text{on } \Gamma_N = \partial\Omega \backslash \Gamma_D
\end{cases}$$

其弱形式为:

$$Find: (\underline{u}, p) \in V_{\Gamma_D(g_D)} \times Q, s.t: \forall (\underline{v}, q) \in V_{\Gamma_D(0)} \times Q,$$
$$a(\underline{u}, \underline{v}) + b(\underline{v}, p) - b(\underline{u}, q) = (f, \underline{v}) + (\underline{g}_N, v)_{\Gamma_N}$$

其中

$$V_{\Gamma_D(g_D)} = \{ \underline{v} \in \underline{\mathcal{H}}^1(\Omega) : \underline{v}|_{\Gamma_D} = \underline{g}_D \}$$
$$a(\underline{u}, \underline{v}) = 2\mu \int_{\Omega} \varepsilon(u) : \varepsilon(v) dx$$

Problem 1

问题描述

取
$$\Omega = (0,1)^2$$
, 令 $\Gamma_D = \{(x,y) \in \mathbb{R}^2 : x = 0 \text{ or } y = 0 \text{ or } y = 1\}$, 取真解:

$$\begin{cases} \underline{u}(x,y) = (e^x \cos \pi y, -\frac{1}{\pi} e^x \sin \pi y)^T \\ p = (x - 1/2)^3 \end{cases}$$

这样对 $\mu = 1$ 时, 有

$$\underbrace{f} = \begin{pmatrix} (\pi^2 - 1)e^x \cos \pi y + 3(x - 1/2)^2 \\ (1/\pi - \pi)e^x \sin \pi y \end{pmatrix}, \quad \underbrace{g}_N = \begin{pmatrix} 2e^x \cos \pi y - (x - 1/2)^3 \\ -\frac{(1+\pi^2)}{\pi}e^x \sin \pi y \end{pmatrix}$$

分别取 MINI, $\mathcal{P}_2 - \mathcal{P}_0^{-1}$, Taylor - Hood, $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 元, 得到的速度项的 L^2 , H^1 和压力项的 L^2 误差及收敛阶得到如下表格.

数值结果

表 1: MINI 元误差表

农工工工工 为 战										
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u}-\underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate				
5.00e-01	2.66e-01		2.29e+00		4.37e+00					
2.50e-01	7.25e-02	1.88	1.11e+00	1.05	1.02e+00	2.10				
1.25 e-01	1.83e-02	1.99	5.48e-01	1.02	3.00e-01	1.76				
6.25 e-02	4.61e-03	1.99	2.72e-01	1.01	1.02e-01	1.56				
3.12e-02	1.15e-03	2.00	1.36e-01	1.01	3.55e-02	1.52				
1.56e-02	2.88e-04	2.00	6.77e-02	1.00	1.24e-02	1.52				

表 2: $\mathcal{P}_2 - \mathcal{P}_0^{-1}$ 元误差表

$\overline{}$	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u} - \underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	3.33e-02		4.31e-01		7.50e-02	
2.50 e-01	4.11e-03	3.02	1.12e-01	1.95	2.16e-02	1.80
1.25 e-01	5.34e-04	2.95	2.87e-02	1.96	9.89e-03	1.13
6.25 e-02	7.71e-05	2.79	7.54e-03	1.93	4.94e-03	1.00
3.12e-02	1.37e-05	2.49	2.17e-03	1.80	2.47e-03	1.00
1.56e-02	2.99e-06	2.20	7.61e-04	1.51	1.24e-03	1.00

表 3: Taylor - Hood 元 (k=2) 误差表

			/ 3 (1 00		
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u} - \underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	3.44e-02		4.36e-01		2.39e-01	
2.50 e-01	4.17e-03	3.04	1.12e-01	1.96	3.26e-02	2.87
1.25 e-01	5.14e-04	3.02	2.84e-02	1.98	4.23e-03	2.95
6.25 e-02	6.40 e - 05	3.01	7.14e-03	1.99	5.72e-04	2.88
3.12e-02	7.98e-06	3.00	1.79e-03	1.99	8.99e-05	2.67
1.56e-02	9.98e-07	3.00	4.49e-04	2.00	1.77e-05	2.35

表	4:	Taulor	-Hood 元	(k=3)) 误差表
1		± agoor	110000	(11	

	//C		> 0 (9 000	L-1/	
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \underline{u}-\underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	2.90e-03		5.90e-02		3.03e-02	
2.50e-01	1.88e-04	3.95	7.61e-03	2.96	2.06e-03	3.88
1.25 e-01	1.19e-05	3.98	9.62e-04	2.98	1.75e-04	3.55
6.25 e-02	7.46e-07	4.00	1.21e-04	2.99	1.60e-05	3.45
3.12e-02	4.66e-08	4.00	1.51e-05	3.00	1.57e-06	3.35
1.56e-02	2.91e-09	4.00	1.89e-06	3.00	1.66e-07	3.24

表 5: Taylor – Hood 元 (k=4) 误差表

	· ·					
h	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u} - \underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	2.31e-04		6.14e-03		5.46e-03	
2.50e-01	7.37e-06	4.97	3.94e-04	3.96	2.18e-04	4.65
1.25 e-01	2.31e-07	5.00	2.49e-05	3.98	9.96e-06	4.45
6.25 e- 02	7.21e-09	5.00	1.56e-06	3.99	5.33e-07	4.23
3.12e-02	2.25e-10	5.00	9.78e-08	4.00	3.11e-08	4.10
1.56e-02	7.18e-12	4.97	6.12e-09	4.00	1.89e-09	4.04

表 6: Taylor - Hood 元 (k=5) 误差表

	• •	· ·	/ - (, , , , , , , ,		
h	$\ \underline{u}-\underline{u}_h\ _{L^2}$	rate	$\ \underline{u}-\underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	1.51e-05		4.95e-04		4.55e-04	
2.50 e-01	2.42e-07	5.96	1.57e-05	4.98	6.60 e-06	6.11
1.25 e-01	3.80e-09	6.00	4.93e-07	4.99	1.47e-07	5.48
6.25 e-02	5.92e-11	6.00	1.54e-08	5.00	3.90e-09	5.24
3.12e-02	5.47e-12	3.43	4.84e-10	4.99	1.14e-10	5.10
1.56e-02	2.55e-11	-2.22	1.36e-09	-1.49	3.02e-09	-4.73

表 7: $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 元误差表

$\overline{}$	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u}-\underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate
5.00e-01	4.65e-05	_	9.21e-04		3.57e + 11	
2.50e-01	5.20e-07	6.48	2.65e-05	5.12	4.15e+09	6.43
1.25 e-01	8.05e-09	6.01	8.33e-07	4.99	1.88e + 07	7.79
6.25 e- 02	1.25e-10	6.01	2.64e-08	4.98	1.78e + 05	6.73
3.12e-02	5.29e-12	4.56	8.33e-10	4.99	8.74e + 02	7.67
1.56e-02	4.20e-11	-2.99	8.01e-10	0.06	4.73e + 03	-2.44

关于 $\mathcal{P}_1 - \mathcal{P}_1$ 元的结果如下:

$\overline{}$	$\ \underline{u} - \underline{u}_h\ _{L^2}$	rate	$\ \underline{u}-\underline{u}_h\ _{H^1}$	rate	$ p-p_h _{L^2}$	rate					
5.00e-01	5.70e+00		2.86e + 01	_	nan						
2.50 e-01	3.27e-01	4.12	2.27e+00	3.65	nan	nan					
1.25 e-01	2.90e-01	0.17	5.51e+00	-1.28	nan	nan					
6.25 e-02	9.18e-02	1.66	4.20e+00	0.39	nan	nan					
3.12e-02	1.94e-02	2.24	8.61e-01	2.28	nan	nan					
1.56e-02	5.39e-04	5.17	8.36e-02	3.36	nan	nan					

表 8: $\mathcal{P}_1 - \mathcal{P}_1$ 元误差表

结果分析

可以看出,对于稳定的 MINI, $\mathcal{P}_2 - \mathcal{P}_0^{-1}$ 以及 Taylor - Hood 元, 其 u 的收敛阶与理论上的大致相符,但也有部分会出现掉阶的情况. 甚至如 k=5 的 Taylor - Hood 元, 在后面的甚至都没有阶了,可能是形成的矩阵规模过大导致矩阵条件是很大进而求解不精确. 对于 $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 元, 其收敛结果就很迷,关于 p 的误差更是非常大! 关于 $\mathcal{P}_1 - \mathcal{P}_1$, 其 u 是有解的,但 p 的数值解为 nan,由存在 $q_h \in \mathcal{P}_1$, q_h 不为常数,使得 $(u,q_h) = 0$, $\forall u \in \mathcal{P}_1$,故其不是满射,也即不稳定,甚至出现无解的情况. 对于 $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 中 p 的误差会这么大,可能是选取函数的原因,其数值解的积分平均分别为:

$$8.420e + 09, -4.886e + 07, -1.107e + 05, 5.230e + 02, -1.287e + 00, 3.484e + 00$$

但其 u 的解还是比较符合的.

Problem 2

问题描述

对 $\boldsymbol{u} = \boldsymbol{0}, p = y^3 - y^2/2 + y - 7/12, \Gamma_D = \partial\Omega$, 取 $\mu = 1, 10^{-2}, 10^{-4}, 10^{-6}$, 用 Problem 1 中的稳定对元, 报告 $\|\nabla(y - y_h)\|_{L^2}$ 误差并分析结果.

Problem 1 中的 MINI, $\mathcal{P}_2 - \mathcal{P}_0^{-1}$, Taylor - Hood 和 $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 元为稳定的, 对其做数值实验得到的数值实验结果如下.

数值结果

表 9: MINI 元误差表

	衣 9. M1N1 儿趺左衣											
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1		10^{-2}		10^{-4}		10^{-6}					
h	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate				
5.00e-01	7.99e-03		7.99e-01		7.95e + 01		7.97e + 03					
2.50 e-01	2.12e-03	1.92	2.12e-01	1.92	2.12e+01	1.91	2.11e+03	1.92				
1.25 e-01	5.34e-04	1.99	5.34e-02	1.99	5.34e+00	1.99	5.26e + 02	2.00				
6.25 e-02	1.34e-04	2.00	1.34e-02	2.00	1.34e+00	2.00	1.31e+02	2.01				
3.12e-02	3.35e-05	2.00	3.35e-03	2.00	3.35e-01	2.00	3.25e + 01	2.01				
1.56e-02	8.37e-06	2.00	8.37e-04	2.00	8.37e-02	2.00	8.12e+00	2.00				

表 10: $\mathcal{P}_2 - \mathcal{P}_0^{-1}$ 元误差表

μ	1		10^{-2}		10^{-4}		10^{-6}	
h	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate
5.00e-01	7.84e-02		7.61e+00		7.54e + 02		7.55e + 04	
2.50e-01	4.39e-02	0.84	4.39e+00	0.79	4.18e+02	0.85	4.17e + 04	0.86
1.25e-01	2.30e-02	0.93	2.30e+00	0.93	2.17e+02	0.94	2.17e + 04	0.94
6.25 e-02	1.17e-02	0.97	1.17e + 00	0.97	1.11e+02	0.97	1.11e+04	0.97
3.12e-02	5.92e-03	0.99	5.92e-01	0.99	5.92e+01	0.90	5.59e + 03	0.99
1.56e-02	2.97e-03	0.99	2.97e-01	0.99	2.97e+01	0.99	2.81e+03	0.99

表 11: Taylor - Hood 元 (k=2) 误差表

μ	1		10^{-2}		10^{-4}		10^{-6}	
h	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate
5.00e-01	5.30e-03		5.30e-01	_	4.88e+01	_	4.89e + 03	_
2.50e-01	7.97e-04	2.73	7.97e-02	2.73	7.97e+00	2.62	7.80e + 02	2.65
1.25e-01	1.09e-04	2.88	1.09e-02	2.88	1.09e+00	2.88	1.07e + 02	2.86
6.25 e-02	1.41e-05	2.94	1.41e-03	2.94	1.41e-01	2.94	1.40e + 01	2.94
3.12e-02	1.80e-06	2.97	1.80e-04	2.97	1.80e-02	2.97	1.78e + 00	2.97
1.56e-02	2.27e-07	2.99	2.27e-05	2.99	2.27e-03	2.99	2.27e-01	2.98

		1 12	2. 1 agioi – 1100i	ι)L (κ -	一切,庆左衣			
${\mu}$	1		10^{-2}		10^{-4}		10^{-6}	
h	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate
5.00e-01	8.89e-04	_	8.89e-02	_	8.89e+00		8.89e + 02	_
2.50e-01	1.70e-04	2.39	1.70e-02	2.39	1.70e+00	2.39	1.70e + 02	2.38
1.25 e-01	2.52e-05	2.76	2.52e-03	2.76	2.52e-01	2.76	2.52e + 01	2.76
6.25 e- 02	3.39e-06	2.89	3.39e-04	2.89	3.39e-02	2.89	3.39e+00	2.89
3.12e-02	4.38e-07	2.95	4.38e-05	2.95	4.38e-03	2.95	4.38e-01	2.95
1.56e-02	5.57e-08	2.98	5.57e-06	2.98	5.57e-04	2.98	5.57e-02	2.98

表 12: Taylor - Hood 元 (k=3) 误差表

表 13: Taylor - Hood 元 (k=4) 误差表

		12 10	. 1 agror 1100a) L (IX—	以及足水			
μ	1		10^{-2}		10^{-4}		10^{-6}	
h	$\ \nabla(\underbrace{u}-\underbrace{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate
5.00e-01	1.45e-15		nan		1.20e-11		1.20e-09	
2.50e-01	5.24e-15	-1.86	1.93e-13	nan	1.80e-11	-0.59	1.61e-09	-0.42
1.25e-01	2.81e-15	0.90	4.39e-13	-1.19	1.94e-11	-0.11	4.31e-09	-1.43
6.25 e-02	5.14e-15	-0.87	6.55e-13	-0.58	5.78e-11	-1.57	3.41e-09	0.34
3.12e-02	4.34e-15	0.24	5.13e-13	0.35	4.17e-11	0.47	4.15e-09	-0.29

表 14: $\mathcal{P}_4 - \mathcal{P}_3^{-1}$ 误差表

μ	1		10^{-2}		10^{-4}		10^{-6}	
h	$\ \nabla(\underbrace{u}-\underbrace{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L_2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate	$\ \nabla(\underline{u}-\underline{u}_h)\ _{L^2}$	rate
5.00e-01	2.77e-14		8.44e-02		9.99e-12		9.96e-10	
2.50e-01	3.15e-15	3.13	2.16e-13	38.51	1.37e-11	-0.46	1.42e-09	-0.51
1.25 e-01	2.23e-15	0.50	9.22e-03	-35.32	7.65e-11	-2.48	4.44e-08	-4.97
6.25 e-02	2.92e-15	-0.39	3.92e-04	4.55	1.38e-08	-7.50	3.69e-06	-6.38
3.12e-02	4.48e-15	-0.62	5.39e-13	29.44	7.44e-11	7.54	4.57e-09	9.66

结果分析

可以看出,即是是对于稳定的元,当 μ 非常小的时候,虽然收敛阶没有受影响,但 $\|\nabla u - u_h\|_{L^2}$ 也会非常大. 记 u_h^μ 为对应 μ 的数值解,由于

$$a_{\mu}(\underline{u},\underline{v}) = 2\mu(\varepsilon(\underline{u}),\varepsilon(\underline{v}))$$

故 a 的强制性系数 $\alpha_{\mu} = \mu \alpha$, 其中 α 为 $\mu = 1$ 的时候的 a 的强制性系数, 并设 α_{μ}^{h} 为对应剖分的 α_{μ}^{h} 的强制性系数再由基本误差估计 ():

$$\|\underline{u} - \underline{u}_h^{\mu}\|_V \leqslant \frac{4\|a_{\mu}\|\|b\|}{\alpha_{\mu}^h} E_u + \frac{\|b\|}{\alpha_{\mu}^h} E_p = \frac{4\|a\|\|b\|}{\alpha^h} E_u + \frac{1}{\mu} \frac{\|b\|}{\alpha^h} E_p$$

且 $\underline{u} = \underline{0}$ 也是落在 V_h 中的,故 $E_u = 0$. 故 $\|\underline{u} - \underline{u}_h^{\mu}\|_V \approx \frac{1}{\mu} \|\underline{u} - \underline{u}_h\|_V \leqslant \frac{1}{\mu} \frac{\|\underline{b}\|}{\alpha^h} E_p$,进而随着 μ 的减小,误差会逐渐增大.

关于收敛阶. 上述可以看出是和 E_p 是相关的:

- · 对于 MINI 元, 其 E_n 为 \mathcal{P}_1 元的 L^2 误差, 也即是 2 阶的.
- ·对于 $\mathcal{P}_2 \mathcal{P}_0^{-1}$ 元, E_p 为不连续的 \mathcal{P}_0 元的 L^2 误差, 也即是 1 阶的.
- ·对于 Taylor Hood 元,k = 2 不太能解释, 此时 $Q = \mathcal{P}_1$, 或许和真解 p 为三次多项式有关 (瞎猜的); k = 3, 此时 $Q = \mathcal{P}_2$, E_p 为 \mathcal{P}_2 的 L^2 误差, 为 3 阶的; k = 4, 由于此时 Q 是包含完整的 3 次多项式的, 故就没有收敛阶.
 - ·对于 $\mathcal{P}_4 \mathcal{P}_3^{-1}$ 元,Q 是包含完整的 3 次多项式的, 也就没有收敛阶.

Problem 3

问题描述

选取解为

$$\underline{u} = \begin{pmatrix}
 x^2(1-x)^2y(1-y)(1-2y) \\
 -x(1-x)(1-2x)y^2(1-y)^2
 \end{pmatrix}$$

$$p = 10 \left((x-1/2)^3y^2 + (1-x)^3(y-1/2)^3 \right)$$

用"grad-div stabilization"的变分形式

$$a_h(u_h, v_h) = (2\mu\varepsilon(u_h, \varepsilon(v_h))) + \gamma(\nabla \cdot u_h, \nabla \cdot v_h)$$

用 Taylor - Hood 元 $\mathcal{P}_2 - \mathcal{P}_1, \mu = 1, 10^{-2}, 10^{-4}, 10^{-6},$ 对于不同的 γ , 报告 $\|\nabla(\underline{u} - \underline{u}_h)\|_{L^2}$ 和 $\|\nabla \cdot \underline{u}_h\|_{L^2}$ 值, 讨论数值结果.

分别取 $\gamma = 0, 10^{-2}, 1, 10$ 数值实验结果如下.

数值结果

表 15: Taylor - Hood 元 (k=2), $\gamma = 0$ 误差表 $(err = \|\nabla(\underline{u} - \underline{u}_h)\|_{L^2})$

μ	1		10^{-2}		10^{-4}		10^{-6}	
h	err	rate	err	rate	err	rate	err	rate
5.00e-01	3.86e-02	_	3.44e+00		3.15e+02		3.16e+04	
2.50e-01	9.24e-03	2.06	7.79e-01	2.14	7.79e + 01	2.02	7.76e + 03	2.02
1.25 e-01	1.81e-03	2.35	1.27e-01	2.62	1.27e+01	2.62	1.27e+03	2.62
6.25 e- 02	3.72e-04	2.28	1.78e-02	2.83	1.78e + 00	2.83	1.78e + 02	2.83
3.12e-02	8.55e-05	2.12	2.35e-03	2.92	2.35e-01	2.92	2.35e+01	2.92
1.56e-02	2.08e-05	2.04	3.02e-04	2.96	3.02e-02	2.96	3.02e+00	2.96

表 16: Taylor-Hood 元 (k=2), $\gamma=0$ 误差表 $(err=\|\nabla\cdot(\underline{u}-\underline{u}_h)\|_{L^2})$

μ	1		10^{-2}		10^{-4}		10^{-6}	
h	err	rate	err	rate	err	rate	err	rate
5.00e-01	2.47e-02		2.54e+00		2.35e+02		2.35e+04	
2.50e-01	7.43e-03	1.73	6.92e-01	1.87	6.92e+01	1.77	6.87e + 03	1.78
1.25e-01	1.44e-03	2.36	1.15e-01	2.59	1.15e+01	2.59	1.15e+03	2.58
6.25 e-02	2.85e-04	2.34	1.61e-02	2.83	1.61e+00	2.83	1.61e+02	2.83
3.12e-02	6.35 e-05	2.17	2.13e-03	2.92	2.13e-01	2.92	2.13e+01	2.92
1.56e-02	1.53e-05	2.06	2.74e-04	2.96	2.73e-02	2.96	2.73e+00	2.96

表 17: Taylor - Hood 元 (k=2), $\gamma = 10^{-2}$ 误差表 $(err = \|\nabla(\underline{u} - \underline{u}_h)\|_{L^2})$

μ	1		10^{-2}		10^{-4}		10-	10^{-6}	
h	err	rate	err	rate	err	rate	err	rate	
5.00e-01	3.85e-02		2.67e + 00		2.04e+01		2.48e + 01		
2.50e-01	9.22e-03	2.06	5.65e-01	2.24	7.87e + 00	1.38	1.61e+01	0.62	
1.25 e-01	1.80e-03	2.35	9.18e-02	2.62	2.19e+00	1.85	9.24e+00	0.80	
6.25 e-02	3.72e-04	2.28	1.30e-02	2.82	4.60e-01	2.25	4.24e+00	1.12	
3.12e-02	8.55e-05	2.12	1.73e-03	2.91	7.77e-02	2.56	8.03e+03	-10.89	
1.56 e-02	2.08e-05	2.04	2.23e-04	2.95	1.13e-02	2.78	3.82e-01	14.36	

表 18: Taylor - Hood 元 (k=2), $\gamma = 10^{-2}$ 误差表 $(err = \|\nabla \cdot (\underline{u} - \underline{u}_h)\|_{L^2})$

μ	1		10^{-2}		10^{-4}		10-	10^{-6}	
h	err	rate	err	rate	err	rate	err	rate	
5.00e-01	2.46e-02		1.81e+00		8.11e+00		8.73e + 00		
2.50 e-01	7.40e-03	1.73	4.70e-01	1.95	1.83e+00	2.15	2.28e+00	1.94	
1.25 e-01	1.44e-03	2.36	7.71e-02	2.61	3.15e-01	2.54	5.57e-01	2.03	
6.25 e- 02	2.84e-04	2.34	1.08e-02	2.84	4.47e-02	2.82	1.28e-01	2.12	
3.12e-02	6.35e-05	2.16	1.42e-03	2.92	5.49e-03	3.02	1.69e+02	-10.36	
1.56e-02	1.53e-05	2.05	1.83e-04	2.96	6.42e-04	3.10	4.58e-03	15.17	

表 19: Taylor - Hood 元 (k=2), $\gamma = 1$ 误差表 $(err = \|\nabla(\underline{u} - \underline{u}_h)\|_{L^2})$

μ	1		10^{-2}		10^{-4}		10^{-6}	5
h	err	rate	err	rate	err	rate	err	rate
5.00e-01	3.29e-02		2.15e-01		2.57e-01		2.58e-01	
2.50e-01	7.70e-03	2.10	8.50e-02	1.34	1.67e-01	0.63	1.69e-01	0.61
1.25 e-01	1.61e-03	2.26	2.42e-02	1.82	9.48e-02	0.81	9.96e-02	0.76
6.25 e-02	3.54e-04	2.18	5.07e-03	2.25	4.36e-02	1.12	5.22e-02	0.93
3.12e-02	8.41e-05	2.07	8.44e-04	2.59	1.54e-02	1.50	2.63e-02	0.99
1.56e-02	2.07e-05	2.02	1.23e-04	2.78	4.14e-03	1.90	1.29e-02	1.03

表 20: Taylor - Hood 元 (k=2), $\gamma = 1$ 误差表 $(err = \|\nabla \cdot (\underline{u} - \underline{u}_h)\|_{L^2})$

$\overline{\mu}$	1		10^{-2}		10^{-4}		10^{-6}	
h	err	rate	err	rate	err	rate	err	rate
5.00e-01	5.28e-02		1.75e-01		1.80e-01		1.80e-01	
2.50e-01	1.18e-02	2.16	4.31e-02	2.02	5.43e-02	1.73	5.45e-02	1.72
1.25 e-01	1.87e-03	2.66	6.85e-03	2.65	1.34e-02	2.02	1.37e-02	1.99
6.25 e-02	3.20e-04	2.55	8.91e-04	2.94	3.10e-03	2.11	3.43e-03	2.00
3.12e-02	6.60e-05	2.28	1.15e-04	2.95	6.28e-04	2.30	8.56e-04	2.00
1.56e-02	1.54e-05	2.09	1.87e-05	2.62	1.03e-04	2.61	2.11e-04	2.02

/K ==:	i agra.	11000) L (== -), /		00.		$(\approx \approx n)$,-)	
μ	1		10^{-2}	10^{-2}		10^{-4}		10^{-6}	
h	err	rate	err	rate	err	rate	err	rate	
5.00e-01	2.60e-02		4.24e-02		4.29e-02		4.29e-02		
2.50e-01	7.87e-03	1.73	2.44e-02	0.80	2.60e-02	0.72	2.60e-02	0.72	
1.25 e-01	1.83e-03	2.10	1.11e-02	1.13	1.39e-02	0.91	1.39e-02	0.90	
6.25 e-02	3.92e-04	2.22	4.09e-03	1.45	7.04e-03	0.98	7.13e-03	0.97	
3.12e-02	8.78e-05	2.16	1.14e-03	1.84	3.42e-03	1.04	3.58e-03	0.99	
1.56e-02	2.10e-05	2.06	2.36e-04	2.27	1.52e-03	1.16	1.79e-03	1.00	

表 21: Taylor - Hood 元 (k=2), $\gamma = 10$ 误差表 $(err = \|\nabla(u - u_h)\|_{L^2})$

表 22: Taylor - Hood 元 (k=2), $\gamma = 10$ 误差表 $(err = \|\nabla \cdot (u - u_h)\|_{L^2})$

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1		10^{-2}	10^{-2}		10^{-4}		5
h	err	rate	err	rate	err	rate	err	rate
5.00e-01	5.51e-03		8.64e-03		8.73e-03		8.74e-03	
2.50e-01	2.25e-03	1.29	2.16e-03	2.00	2.29e-03	1.93	2.29e-03	1.93
1.25 e-01	7.58e-04	1.57	4.42e-04	2.29	5.70e-04	2.01	5.72e-04	2.00
6.25 e-02	2.22e-04	1.77	7.39e-05	2.58	1.41e-04	2.02	1.43e-04	2.00
3.12e-02	5.88e-05	1.91	2.61e-05	1.50	3.36e-05	2.06	3.57e-05	2.00
1.56e-02	1.50e-05	1.97	1.08e-05	1.27	7.23e-06	2.22	8.90e-06	2.00

结果分析

由边界为 Dirichlet 边界, 故 $\varepsilon(\cdot)$ 与 $\nabla(\cdot)$ 诱导的范数是等价的, 由 (***): 有:

$$\begin{split} \mu^{\frac{1}{2}} \left\| \nabla \left(u - u_h \right) \right\| + \gamma^{\frac{1}{2}} \left\| \operatorname{div} \left(u - u_h \right) \right\| + \alpha^{\frac{1}{2}} \left\| u - u_h \right\| + \left\| p - p_h \right\| \\ & \leq 2 \left(1 + \hat{C} \left(\gamma_h, \Gamma \right) \right) \left(\min_{v_h \in V_h} \left(\mu^{\frac{1}{2}} + \gamma^{\frac{1}{2}} \right) \left\| \nabla \left(u - v_h \right) \right\| + \min_{q_h \in Q_h} \left\| p - q_h \right\| \right) \end{split}$$

其中 $\hat{C}(\gamma_h, \Gamma) \leqslant \frac{1}{4\hat{\beta}^2} (\sqrt{5} + 1)^2 \frac{\max\{\hat{\beta}^2, \mu + \gamma\}}{\min\{1, \sqrt{\mu + \gamma}\}}, (\hat{\beta} 为 b 在 V_h \times Q_h 的 inf-sup 系数)$

故当 γ 取得比较大时 (如 $\gamma=10$), $\hat{C}(\gamma_h,\Gamma)$ 是一个与 μ 无关的常数, 进而对于相同的 h, 对于不同的 μ , $\|\operatorname{div}(u-u_h)\|$ 保持不变, 而 $\|\nabla(u-u_h)\|$ 会以 $\mu^{-1/2}$ 倍变大.

对于使用的 k=2 的 Taylor-Hood, 其右端项的条件系数收敛阶是二阶, 从数值结果可以看出 在 $\gamma=1,10$ 时 $\|\operatorname{div}(u-u_h)\|$ 误差的阶是对的, 但是对 $\|\nabla(u-u_h)\|$ 在 μ 较小时就不对.

2 代码说明

文件中的 main-1.py,main-2.py,main-3.py 分别对应 Problem1,Problem2,Problem3. 均用 Python 语法编写, 在 fenics 环境下直接运行即可.