Functional and logic programming written exam -

Important:

- 1. Subjects are graded as follows: By default 1p; A − 2p; B 4p; C 3p.
- 2. Prolog problems will be resolved using SWI Prolog. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for all the predicates used; (3) specification of every predicate (parameters and their meaning, flow model, type of the predicate deterministic/non-deterministic).
- 3. Lisp problems will be resolved using Common Lisp. The following are required: (1) explanation of the code and of the reasoning behind it; (2) recursive model that solves the problem, for each function used; (3) specification of every function (parameters and their meaning).
- **A.** Given the following PROLOG predicate definition **f(list, integer)**, with the flow model (i, o): f([], -1):-!.

```
f([_|T], Rez):- <u>f(T,S)</u>, S<1, !, Y is S+2.
f([H|T], Rez):- <u>f(T,S)</u>, S<0, !, Y is S+H.
f([_|T], Rez):- <u>f(T,S)</u>, Y is S.
```

Rewrite the definition in order to avoid the recursive call **f(T,S)** in all clauses. Do NOT redefine the predicate. Justify your answer.

B. Write a PROLOG program that generates the list of all subsets with values between the [a, b] interval such that the sum of elements from each subset is an odd value. Write the mathematical models and flow models for the predicates used. For example, for $\mathbf{a}=2$ and $\mathbf{b}=4$ \Rightarrow [[2,3],[3,4],[2,3,4]] (not necessarily in this order).

C. Write a Lisp function to substitute all numerical values at any level of a given nonlinear list with a given value **e**. **A MAP function shall be used. Example**, for the list (1 d (2 f (3))), **e**=0 the result is (0 d (0 f (0))).