Задача 19.27

$$\frac{P \rightarrow \neg M, S \rightarrow M, \neg S}{S \& \neg P}$$
 (P \rightarrow -M) & (S \rightarrow M) & -S \rightarrow (S & -P)

S	М	Р	$(P \rightarrow -M)$	$(S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M) \& -S$	(S & -P)	F
0	0	0	1	1	1	1	0	0
0	0	1	1	1	1	1	0	0
0	1	0	1	1	1	1	0	0
0	1	1	0	1	0	0	0	1
1	0	0	1	0	0	0	1	1
1	0	1	1	0	0	0	0	1
1	1	0	1	1	1	0	1	1
1	1	1	0	1	0	0	0	1

F=1 на любом наборе - не верно

Задача 20.27 Установить правильность или неправильность правил вывода, используя естественный вывод Генцена.

$$\frac{P \to \neg M, S \to M, S}{S \& \neg P}.$$

$$(P \rightarrow -M) \& (S \rightarrow M) \& S \rightarrow (S \& -P)$$

S	М	Р	$(P \rightarrow -M)$	$(S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M)$	$(P \rightarrow -M) \& (S \rightarrow M) \& S$	(S & -P)	F
0	0	0	1	1	1	0	0	1
0	0	1	1	1	1	0	0	1
0	1	0	1	1	1	0	0	1
0	1	1	0	1	0	0	0	1
1	0	0	1	0	0	0	1	1
1	0	1	1	0	0	0	0	1
1	1	0	1	1	1	1	1	1
1	1	1	0	1	0	0	0	1

F = 1 на любом наборе - верно

Строим дерево разбора для F

$$|= (P \rightarrow -M) \& (S \rightarrow M) \& S \rightarrow (S \& -P) \\ (P \rightarrow -M) \& (S \rightarrow M) \& S |= (S \& -P) \\ P \rightarrow -M, S \rightarrow M, S |= S, -P$$

$$P \rightarrow -M, \ S \rightarrow M, \ S \mid = S$$

$$P \rightarrow -M, \ S \rightarrow M, \ S \mid = -P$$

$$-M, \ S \rightarrow M, \ S \mid = S$$

$$P, \ S \rightarrow M, \ S \mid = S; \ -M$$

$$-M, \ S \rightarrow M, \ S \mid = -P$$

$$P, \ S \rightarrow M, \ S \mid = -P; \ -M$$

Все листья - аксиомы, значит вывод верен

Задача 21.27

Установить правильность или неправильность правил вывода, используя естественный вывод Генцена. Задание взять из задачи 19.

$$\frac{P \to \neg M, S \to M, \neg S}{S \& \neg P}$$

$$|= (P \to -M) \ \& \ (S \to M) \ \& \ -S \to (S \ \& \ -P)$$

$$(P \to -M) \ \& \ (S \to M) \ \& \ -S \ |= (S \ \& \ -P)$$

$$P \to -M, \ S \to M, \ -S \ |= S$$

$$P \to -M, \ S \to M, \ -S \ |= S$$

$$P \to -M, \ S \to M, \ -S \ |= -P$$

$$-M, \ S \to M, \ -S \ |= S; \ -M \ -M, \ S \to M, \ -S \ |= -P; \ -M$$

Листья не являются аксиомами, значит вывод неверен.

Задача 22.27 Установить правильность или неправильность правил вывода, используя метод резолюций. Задание взять из задачи 18.

$$\frac{P \to \neg M, S \to M, S}{S \& \neg P}.$$

$$\frac{P \to -M, S \to M, S}{S \& \neg P} = \frac{-P \ v \ M, -M \ v \ S, S}{S \& \neg P}$$
 эквивалентно, что одновременно выводимы
$$\frac{-P \ v \ M, -M \ v \ S, S}{S}$$
 выводимо (S|=S) и
$$\frac{-P \ v \ M, -M \ v \ S, S}{-P}$$
 выводимо по методу резолюций для (-P v M) и S)

Задача 23.27 Установить правильность или неправильность правил вывода, используя метод резолюций. Задание взять из задачи 19.

Хотим проверить:

$$\frac{P \rightarrow \neg M, S \rightarrow M, \neg S}{S \& \neg P}$$

Доказываем метод резолюций вывод

$$\frac{P \to -M, S \to M, -S}{S \& -P} = \frac{-P \lor M, -M \lor S, -S}{S \& -P} = \frac{-P \lor M, -M \lor S, -S, S \& -P}{\emptyset}$$