UNIVERSIDAD DE GRANADA E.T.S. DE INGENIERÍAS INFORMÁTICA y DE TELECOMUNICACIÓN

Departamento de Ciencias de la Computación e Inteligencia Artificial

Algorítmica

Guión de Prácticas

Práctica 2: Algoritmos Divide y Vencerás

Curso 2017-2018

Grado en Informática

Objetivo

El objetivo de esta práctica es que el estudiante aprecie la utilidad de la técnica "divide y vencerás" para resolver problemas de forma más eficiente que otras alternativas más sencillas o directas. Para ello cada equipo de estudiantes deberá resolver uno de los problemas (escogido al azar) que se detallan más adelante, así como exponer y defender su propuesta en clase.

1. Eliminar elementos repetidos

Dado un vector de n elementos, de los cuales algunos pueden estar duplicados, el problema es obtener otro vector donde todos los elementos duplicados hayan sido eliminados.

Diseñar, analizar la eficiencia e implementar un algoritmo sencillo para esta tarea, y luego hacer lo mismo con un algoritmo más eficiente, basado en "divide y vencerás", de orden $O(n \log n)$. Realizar también un estudio empírico e híbrido de la eficiencia de ambos algoritmos.

2. El elemento en su posición

Dado un vector ordenado (de forma no decreciente) de números enteros v, todos distintos, el objetivo es determinar si existe un índice i tal que v[i] = i y encontrarlo en ese caso. Diseñar e implementar un algoritmo "divide y vencerás" que permita resolver el problema. ¿Cuál es la complejidad de ese algoritmo y la del algoritmo "obvio" para realizar esta tarea? Realizar también un estudio empírico e híbrido de la eficiencia de ambos algoritmos.

Supóngase ahora que los enteros no tienen por qué ser todos distintos (pueden repetirse). Determinar si el algoritmo anterior sigue siendo válido.

3. Cálculo de potencias

Diseñar un algoritmo "divide y vencerás" para calcular x^n , $n \in N$, con un coste $O(\log n)$ en términos del número de multiplicaciones necesarias.

Haced un estudio comparativo de la eficiencia empírica e híbrida del algoritmo propuesto y del algoritmo obvio que hace la misma tarea.

4. Producto de tres

Se pretende diseñar un algoritmo que determine si un cierto número natural n puede expresarse como producto de tres números naturales consecutivos.

Construir un algoritmo sencillo para realizar esta tarea, así como otro algoritmo más eficiente basado en "divide y vencerás". Realizad un estudio empírico e híbrido de la eficiencia de esos dos algoritmos.

5. Subsecuencias iguales

Dado un vector de números enteros, se quiere diseñar un algoritmo para encontrar la subsecuencia (consecutiva) más larga de números iguales. Por ejemplo, si el vector es

 $5\ 7\ 7\ 4\ 4\ 4\ 5\ 4\ 6\ 6\ 6\ 5\ 6\ 6\ 6\ 6\ 8\ 7$

la subsecuencia más larga es de longitud 4, formada por 6 6 6 6 (posiciones de la 12 a la 15).

Construir un algoritmo sencillo y otro más eficiente basado en la técnica divide y vencerás para resolver este problema, y realizar un estudio empírico e híbrido de la eficiencia de ambos algoritmos.

NOTA: Para la realización de los experimentos con los algoritmos de las secciones 1, 2 y 5 se proporcionarán generadores de datos de entrada para cada problema.