West Nile Virus Prediction

By: Solomon Heng, Ng Jun Kang, Preety Bhogal, Vaishnavi, Zoey Cheng Disease And Treatment Agency (DATA)

Division of Societal Cures In Epidemiology and New Creative Engineering

Background

- West Nile Virus (WNV) is most commonly spread to humans through infected mosquitos
- In response to the recent epidemic in City of Chicago, Chicago Department of Public Health (CDPH) had established a surveillance and control program. The program entails setting mosquito traps, testing for WNV and spraying of airborne pesticides in the city
- Centres for Disease Control and Prevention (CDC) has engaged DATA for the following services:
 - o To conduct a review on the surveillance and control program through data analytics
 - To conduct a cost-benefit analysis on the annual cost projections for various levels of pesticide coverage and the effect of of these various levels of pesticide coverage

Presentation Scope

- 1. Aim
- 2. DATA's Problem Statement
- 3. Intro to Datasets
- 4. EDA
- 5. Modeling and ROC AUC Curve
- 6. Cost Benefit Analysis & Possible Inferences
- 7. Conclusion & Recommendations

Aim

 To provide CDC and CDPH an update on the data analytics study and cost-benefit analysis

• To review the pesticide deployment plan

• To seek CDC's and CPDH's support on DATA's recommendations

DATA's Problem Statement

 To build a classification model with high sensitivity & specificity on the presence of WNV at a specific place and time so as to aid CDC in deriving an effective pesticide deployment plan

 To conduct a cost-benefit analysis on the annual cost projections for various levels of pesticide coverage and the effect of of these various levels of pesticide coverage

Intro to Datasets

- Datasets provided:
 - o Data of 2007, 2009, 2011 & 2013
 - Data to predict on: 2008, 2010, 2012, 2014
 - Weather data: 2007 2014
 - Spray data: 2011 & 2013

EDA

 Notice how the number of mosquitoes usually picks up in July and start decreasing after September/October. Perhaps there is some sort of monthly seasonality when it comes to the mosquito counts.

EDA

Higher temperatures -> Higher chance of WnvPresence

 At low wetbulb temperature, there is no presence of WnV as well.

EDA

• WNV is only present in 3 species groups of mosquitoes

	WnvPresent	
Species		
CULEX PIPIENS/RESTUANS	225	
CULEX PIPIENS	184	
CULEX RESTUANS	48	
CULEX TERRITANS	0	
CULEX TARSALIS	0	
CULEX SALINARIUS	0	
CULEX ERRATICUS	0	

Modeling

- Modeling Process
 - Train-Test Split
 - Hyperparameter Tuning
 - Cross Validation
 - Test Prediction
- Models and ROC AUC score

	Cross Validation	Test
Logistic Regression	0.893	0.737
Random Forest	0.972	0.719
XGBoost	0.984	0.635

Kaggle score for Logistic Regression model with L1 Regularization: ~ 0.75

ROC AUC Curve

Cost Benefit Analysis-Possible Inferences

Based on the graph presence of, WNV has an inverse relationship with Spray

Possible Inferences

 It might be because spraying was done on locations that does not have that many mosquitoes and WNV present.

Cost Benefit Analysis

The product used to control the adult mosquitoes in Chicago, Zenivex™

 As per our calculations, the total estimated cost for Mosquito control spray is \$6877.7 for an estimated area of 7037.14 acres and spray cost at unwanted locations is \$4011.99(SPRAY COSTS)

 A typical household with employer health coverage spends about USD 800 a year in out-of-pocket costs (MEDICAL COSTS)

• BENEFIT - decreases medical expenses for residents in Chicago, fewer people being infected with mosquitos, people taking few or no medical leaves.

Conclusion

DATA's EDA, Modeling & CBA arrives at the following conclusion:

- EDA shows that while it is true that dry condition (low wet bulb temperature) and hot temperature is more favourable for presence of WNV,
- High mosquito counts (approx 1500) shows that the presence of WNV is almost guaranteed
- 2 species (CULEX PIPIENS & CULEX PIPIENS/RESTUANS) of mosquitos exceeded the count of 1000
- WNV is only seen in 3 mosquito species groups: CULEX PIPIENS/RESTUANS, CULEX PIPIENS and CULEX RESTUANS
- High likelihood that not all species of mosquitoes found in the trap will carry WNV
- Effectiveness of current pesticide deployment plan might not be optimal as the emphasis is not on areas with high mosquito counts or presence of WNV

Recommendations

CDC and CDPH to support the following recommendations:

- New pesticide deployment plan which places more emphasis on areas with high mosquito counts or presence of WNV
- DATA to further narrow the study to the control of CULEX PIPIENS & RESTUANS mosquitoes for a period of 12 months as the EDA shows these are the main carriers of WNV
- Attachment of 2 x DATA data warehouse engineers to aid in the data collection process for spray datasets for a period of 12 months