Content

- Overview of SA
- MNB approach
- CNN approach
- Multi-modal SA in dialog systems

SENTIMENT ANALYSIS

hieunk@soict.hust.edu.vn

Hanoi - 12/2019

Overview of SA Opinion Opinion time Object/entity positive negative neutral object of entity

Overview of SA

- Customer service
- Marketing
- An ninh quốc phòng
- Tài chính cá nhân

Overview of SA

Bài toán 1: Nhận diện cảm xúc

- Tích cực
- Tiêu cực
- Trung tính

"BPhone 3 chất đến từng chi tiết."

Bài toán 2: Tóm tắt quan điểm

- Nhân diên khía canh
- Nhận diện cảm xúc của từng khía cạnh

(A) Feature-based summary of opinions on a digital camera

Overview of SA

Bài toán 3: So sánh quan điểm

- So sánh quan điểm về hai hay nhiều đối tượng

(B) Opinion comparison of two digital cameras

Overview of SA

5

Bài toán 4: Tìm kiếm quan điểm

 Tìm kiếm quan điểm (của một chủ thể) về một đối tượng

Overview of SA

<u>Bài toán 5</u>: Lọc quan điểm

- Lọc các quan điểm "nhiễu"

	Hype spam	Defaming spam
Sản phẩm tốt	1	2
Sản phẩm tồi	3	4
Sản phẩm trung bình	5	6

Cảm xúc	Ví dụ	Cảm xúc
Tình cảm hướng nội	Thật <u>vinh dự</u> và <u>tự hào</u> cho tôi khi được xem bóng đá Việt Nam chơi ở sân World Cup	tích cực
Tình cảm hướng ngoại	Nur Farahain còn nổi tiếng là giáo viên <u>thân thiện</u> và <u>hòa đồng</u> với học sinh.	tích cực
Tâm trạng	Thí sinh <u>hồi hộp</u> , gục trên bàn vì mệt mỏi	tiêu cực
Thái độ	Hết lòng vì nhà chồng nhưng tôi vẫn bị mẹ chồng <u>ghét</u>	tiêu cực
Tính cách	Em tự thấy mình khá <u>năng động</u> , biết đàn.	tích cực

Overview of SA

- Yêu cầu nhận diện cảm xúc của một chủ thể đối với đối tượng được nhắc đến trong văn bản
- Đơn giản hóa bài toán với giả thiết chủ thể và đối tượng đã biết

Văn bản	Cảm xúc
Logitech pin <u>trâu</u> thôi rồi, mua 1 con B175 cùi mà cực pin theo chuột 3 năm chưa phải thay! ai chê thì chê chứ tôi thấy chuột Logitech xài hơi bị <u>thích</u> !	Tích cực
Hàng <u>cùi bắp</u> giá <u>đắt</u> . Lại còn <u>nhái i</u> phone để loa bên dưới nữa.	Tiêu cực
Đang dùng Logitech G502 mà nhìn thấy con này mà	Trung tính

Overview of SA

Phương pháp	Y/c cơ sở tri thức	Y/c tùy chỉnh theo lĩnh vực	Y/c dữ liệu huấn luyện
Từ điển cảm xúc	√	€	<u>&</u>
Không giám sát	<u>×</u>	<u> </u>	<u>×</u>
Có giám sát	<u>×</u>	€	•

Overview of SA

thực_sự là mình rất sợ trà_sữa trân_châu . hầu_hết các cửa_hàng toàn nhập nguyên_liệu từ trung_quốc với giá rất rẻ, vì mình có thẳng bạn nó cũng làm quán trà sữa nó toàn lấy từ trung quốc, thế mới có lãi cao vì thuê mặt bằng rất đắt_đỏ rồi . nên các bạn hãy cân_nhắc có nên dùng trà_sữa ko nhé

https://github.com/stopwords/vietnamese-stopwords

13

Overview of SA

- Precision
- Recall
- F1 = 2*P*R / (P+R)

Overview of SA

	Positive	Negative	Neutral
Precision	$\frac{3}{6}$ =0.5	$\frac{1}{2}$ =0.5	$\frac{1}{2}$ =0.5
Recall	$\frac{3}{5}$ =0.6	$\frac{1}{2}$ =0.5	3
F1	=0.55	0.5	0.4

 Với văn bản d, tìm phân lớp c có xác suất sau lớn nhất

$$P(c|d) \propto P(c)P(d|c)$$

 Văn bản d được biểu diễn dưới dạng túi từ, không quan tâm đến vị trí các từ trong văn bản d = {t₁,t₂,...t_n}

$$P(c|d) \propto P(c)P(t_1,t_2,...t_n|c)$$

17

MNB approach

 $P(t_1,t_2,...t_n|c) = P(t_1|t_2..t_n,c)P(t_2|t_3..t_n,c)...P(t_{n-1}|t_n,c)P(t_n|c)$ Giả thiết các từ trong cùng một văn bản không phụ thuộc lẫn nhau (độc lập xác suất), ta có:

$$P(t_1,t_2,...t_n|c) = P(t_1|c)P(t_2|c)...P(t_{n-1}|c)P(t_n|c)$$

suy ra:

$$P(c|d) \propto P(t_1|c)P(t_2|c)..P(t_{n-1}|c)P(t_n|c)P(c)$$

MNB approach

• Tìm c dựa trên nguyên lý Maximum A Posterior

$$c_{\mathrm{map}} = \operatorname*{arg\,max}_{c \in \mathbb{C}} \hat{P}(c|d) = \operatorname*{arg\,max}_{c \in \mathbb{C}} \hat{P}(c) \prod_{1 \leq k \leq n_d} \hat{P}(t_k|c).$$

• Để thuận tiện khi cài đặt

$$c_{\text{map}} = \underset{c \in \mathbb{C}}{\arg\max} \left[\log \hat{P}(c) + \sum_{1 \leq k \leq n_d} \log \hat{P}(t_k|c) \right].$$

• Dựa trên nguyên lý Maximum Likelihood Estimation, các xác suất P(c) và P(t|c) được ước lượng dựa trên dữ liệu huấn luyện

$$\hat{P}(c) = \frac{N_c}{N},$$

$$\hat{P}(c) = rac{N_c}{N},$$
 $\hat{P}(t|c) = rac{T_{ct}}{\sum_{t' \in V} T_{ct'}},$

• Áp dụng kĩ thuật làm mịn

$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B},$$

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

21

From Information Retrieval by D. Manning et al. 2008

22

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(ves) = 3/4P(no) = 1/4

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(ves) = 3/4

P(no) = 1/4

P(Chineselyes) = (5+1) / (8+6) = 6/14 = 3/7

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(yes) = 3/4P(no) = 1/4

P(Chinese|yes) = (5+1) / (8+6) = 6/14 = 3/7

P(Tokyo|yes) = P(Japan|yes) = (0+1) / (8+6) = 1/14

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(yes) = 3/4P(no) = 1/4

P(Chinese|yes) = (5+1) / (8+6) = 6/14 = 3/7P(Tokyo|yes) = P(Japan|yes) = (0+1) / (8+6) = 1/14

P(Chinese|no) = (1+1) / (3+6) = 2/9 P(Tokyo|no) = P(Japan|no) = (1+1) / (3+6) = 2/9

25

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(yes) = 3/4P(no) = 1/4

P(Chinese|yes) = (5+1) / (8+6) = 6/14 = 3/7P(Tokyo|yes) = P(Japan|yes) = (0+1) / (8+6) = 1/14

P(Chinese|no) = (1+1) / (3+6) = 2/9 P(Tokyo|no) = P(Japan|no) = (1+1) / (3+6) = 2/9

 $P(yes|d_5) \sim 3/4 \times (3/7)^3 \times 1/14 \times 1/14 \sim 0.0003$

MNB approach

	docID	Content	in c = China?
training set	1	Chinese Beijing Chinese	yes
	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
test set	5	Chinese Chinese Tokyo Japan	?

P(yes) = 3/4P(no) = 1/4

P(Chinese|yes) = (5+1) / (8+6) = 6/14 = 3/7 P(Tokyo|yes) = P(Japan|yes) = (0+1) / (8+6) = 1/14

P(Chinese|no) = (1+1) / (3+6) = 2/9 P(Tokyo|no) = P(Japan|no) = (1+1) / (3+6) = 2/9

P(yes|d₅) ~ $3/4 \times (3/7)^3 \times 1/14 \times 1/14 \sim 0.0003$ P(no|d₅) ~ $1/4 \times (2/9)^3 \times 2/9 \times 2/9 \sim 0.0001$

- Giả thiết độc lập hoạt động hiệu quả trong nhiều bài toán phân loại văn bản
- Đưa thông tin trọng số của từ vào:

tfidf
$$\hat{P}(t|c) = \frac{T_{ct} + 1}{\sum_{t' \in V} (T_{ct'} + 1)} = \frac{T_{ct} + 1}{(\sum_{t' \in V} T_{ct'}) + B'}$$

A. M. Kybriya et al. "Multinomial Naive Bayes for Text Categorization Revisited"

CNN-based approach

29

CNN-based approach

Figure 1: Model architecture with two channels for an example sentence.

CNN-based approach

Figure 1: Model architecture with two channels for an example sentence.

Concatenation

$$\mathbf{x}_{1:n} = \mathbf{x}_1 \oplus \mathbf{x}_2 \oplus \ldots \oplus \mathbf{x}_n,$$

Convolution

$$c_i = f(\mathbf{w} \cdot \mathbf{x}_{i:i+h-1} + b).$$

Feature map

$$\mathbf{c} = [c_1, c_2, \dots, c_{n-h+1}],$$

Regularized (drop out) output

$$y = \mathbf{w} \cdot (\mathbf{z} \circ \mathbf{r}) + b$$
,

31

Sample code in Keras

Multi-modal SA in dialog systems

From Mohammad Soleymani et al. A survey of multimodal sentiment analysis. Image and Vision Computing

34

Multi-modal SA in dialog systems

OUTPUT LAYERS MAX-POOLING CONVOLUTION RAW VECTOR EXTRACTION

Figure 1: Convolutional Neural Network model for emotion classification from raw audio samples.

Multi-modal SA in dialog systems

Multi-modal SA in dialog systems

from Chloe Clavel and Zoraida Callejas. Sentiment Analysis: From Opinion Mining to Human-Agent Interaction. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

37

Q&A