from IPython.display import Audio sound_file = 'files/Geigenton.wav' Audio(sound_file) • 0:00 / 0:06 • 10:00 • 1		
Unter der Fourier-Analysis versteht man im All meistens aus dem Zeitbereich, in den Spektral Fouriertransformation rekonstruieren Bei Fouriertransformationen unterscheidet ma	bereich transformiert wird. Der Spektralbereich beschreibt die frequentiell n zwischen der Zerlegung in eine Fourierreihe, der kontinuierlichen Fourie uität der Schwingung und der daraus resultierenden Spektralfunktion (vgl	n in einfachere Sinus/Cosinus-Schwingungen. Der dabei wichtigeste Aspekt ist die sogenannte Fouriertransformation, wobei eine Schwile Komposition der Schwingungsfunktion. Anhand dieser frequentiellen Signatur lässt sich das Ausgangssignal durch eine Fouriersynthe ertransformation, der diskreten Fouriertransformation (DFT) und Fouriertransformationen für zeitdiskrete Signale (DTFT). Diese Type I. Abbildung 1). Im Folgenden wird die diskrete Fouriertransformation, ihre Bedeutung, Anwendung und Theorie näher erläutert.
Theorie Bei der diskreten Fouriertransformation liegt da	is Aussgangssignal als diskrete Funktion $x(n)$ vor. Um eine Fouriertrans die gemessenen Sample-Werte äquidistant vorliegen, also mit einer zei	oformation durchzuführen gehen wir davon aus, dass alle vorliegenden Sample-Werte genau eine Schwingungsperiode des Ausgangssig itlich konstanten Samplefrequenz abgetastet wurden. Das Ergebnis der Transformation ist eine diskret Funktion $c(k)$ aufgetragen über o $c_k = \sum_{n=0}^{n-1} y_n * e^{\frac{-ij2\pi kn}{N}}$
Mit der eulerschen Formel lässt sich das komplexe Ergebnis in einen Sin	s und Cosinus Anteil zerlgen. Dies bedeutet, dass man für jede Frequen:	werden. Das führt dazu dass die Ergebnisfunktion $c(k)$ ebenfalls komplex ist. $e^{iy}=cos(y)+isin(y)$ z k eine zugehörige Sinus und Cosinus Schwingung erhält. Der Betrag des komplexen Ausdrucks entspricht hierbei der Amplitude der Verschiebung der Schwingungsanteile für die jeweillige Frequenz . Damit ist die Amplitude ein Maß dafür mit welchem Faktor die jeweilli
können maximal genau so viele Frequenzen b wenn es mit einer Frequenz von größer als 2 $\!\!\!\!/$ Gehen wir davon aus, dass unser zu transform werden können. Daraus folgt dass aus N Sam	erechnen wie Sample-Werte vorliegen. Dazu kommt, dass nach dem Ny q f_{max} abgetastet wurde. f_{max} abgetastet wurde. f_{max} abgetastet wurde, ergole Werten nur $\frac{N}{2}$ anteilige Frequenzen bestimmt werden können. Die Au	$Frequenzabstand = rac{f_s}{N}$
Einfaches Beispielsignal Im folgenden Codebeispiel wird die im oberen Sinusschwingung tasten wir mit 50 Samplepur import numpy as np import matplotlib.pyplot as plt #Anzahl SamplePunkte N=100	oektrum betrachten müsste man N gegen unendlich laufen lassen, was in Abschnitt beschriebene Mathematik in ein Python-Programm übersetzt. A kten über einen Zeitraum von 1s ab, also mit einer Samplingfrequenz vor	Als diskretes Ausgangssignal nehmen wir eine einfach Sinusschwingung mit der Frequenz $f_0=2Hz$ und einer Amplitude von $a=1cr$
<pre># MEssbereich t_start=0 t_ende=2 #Samplingfrequenz f_s=N/(t_ende-t_start) # Erstellung der X-Achse x = np.linspace(t_start,t_ende,N) #Deklarieren von y_sin = np.zeros(N) f=2 for n in range(N): y_sin[n]=np.sin((t_ende-t_start plt.plot(x,y_sin,'k.') plt.ylabel('Amplitude in cm')</pre>	*f*2*np.pi*n/N)	
plt.xlabel('Zeit in s') plt.show() 100 - 0.75 - 0.50 - 0.25 - 0.000.250.50 -		
-0.75 - -1.00 - 0.00 0.25 0.50 0.75 1.00 1.25 Zeit in s	g der diskreten Fouriertransformation definiert. Dazu wird über alle Frequ	ienzen k iteriert,auch wenn die zweite Hälfte der Frequenzen nach dem Nyquist-Abtasttheorems unwichtig ist. Für jede Frequenz k wird
<pre>n=np.arange(N) #Diskrete Transformation mit For for k in range(N): c[k]=np.sum(y*np.exp(-2j*np) return c #print(abs(c)) #Diskrete Transformation mit MA #k= np.arange(N)[:,None] #c = np.sum(y*np.exp(-2j*np.pi*ne)</pre> Wendet man nun die diskrete Fouriertransformation ####################################	pi*k*n/N)) rix r*n/N), axis=1)	te aufgrund des Nyquist-Limits ab ergibt sich ein Schaubild, dass wie Erwartet zeigt, dass die Sinusfunktion mit der Frequenz $f_0=2Hz$ tor $rac{1}{N}$ normieren würde auch die Amplitude $a=1cm$ richtig angezeigt.
<pre>def plot_fourier_data(c,f_s): N=c.size plt.figure(figsize=(12,4)) plt.subplot(1,2,1) # Es wird nur die Hälfte der From x = np.linspace(0,int(f_s/2),int) plt.plot(x,np.imag(c[:int(N/2)+1) plt.plot(x,np.real(c[:int(N/2)+1) plt.ylabel('Amplitude in cm') plt.xlabel('Frequenz in Hz') plt.legend() plt.subplot(1,2,2)</pre>	.]), label="Imaginär")	ulässig ist
<pre>if N/2>50: plt.plot(x,abs(c[:int(N/2)+: else: plt.plot(x,abs(c[:int(N/2)+: plt.ylabel('Amplitude in cm') plt.xlabel('Frequenz in Hz') plt.legend() plt.show() # Berechnung der Fouriertransformatic c_sin=discrete_fourier_transformatic #Ploten der Ergebnisse plot_fourier_data(c_sin,f_s)</pre>]), "k.", label="Betrag") on on(y_sin)	
-50	50 - • Betrag 40 - W	
	on/Fouriersynthese (IDFT) ne inverse Fouriertransformation durchgeführt. Dabei wird das Originalsi c	gnal aus der Fourierfunktion mit folgender Formel synthetisiert. $r\ddot{u}ck_n=rac{1}{N}*\sum_{n=0}^{n-1}c*e^{rac{ij2\pi kn}{N}}$ stantes Signal transformiert wird und im nachhinein synthetisiert, entsteht sogenanntes weißes Rauschen. Dieser Fall lässt sich in späte
<pre>def discrete_fourier_synthese(c): N=c.size c_rück=np.zeros(N,complex) k= np.arange(N) for n in range(N): c_rück[n]=1/N*np.sum(c*np.ex) return c_rück</pre> def plotcomparesignals(y,c_rück,t_s)		
else:	<pre>iginales Signal") label="Synthetisiertes Signal") k.", label="Synthetisiertes Signal") e(c_sin)</pre>	
1.00 - 0.75 - 0.50 - 0.50 - 0.00 - 0.25 - 0.00 - 0.25 - 0.50 -	ginales Signal nthetisiertes Signal	
_	Originalsignal und synthetisiertem Signal netisierten Signal und dem Originalsignal wird die Standardabweichung s	berechnet. Es gilt: $s = \sqrt{\sum_{i=0}^{N-1} (c r \ddot{\mathbf{u}} c k_n - y_n)^2}$
-	y(c_rück)	
Testen der DFT mit Cos Signal fromfuture import print_function import time import numpy as np import matplotlib.pyplot as plt from ipywidgets import interact, interport ipywidgets as widgets	Signals zum synthetisierten Signal beträgt: 1.176214079343: ynalen on	
<pre>def cosinus(N, f, intervall): intervall_start, intervall_ende=: #Samplingfrequenz f_s=N/(t_ende-t_start) # Erstellung der X-Achse x = np.linspace(t_start, t_ende, t) #Deklarieren von y_cos = np.zeros(N) for n in range(N): y_cos[n]=np.cos((t_ende-t_s: plt.plot(x, y_cos) plt.ylabel('Amplitude in cm') plt.xlabel('Zeit in s') plt.show()</pre>		
<pre>plt.show() #DFT c_cos=discrete_fourier_transform plot_fourier_data(c_cos,f_s) #Intervall festlegen #positive Frequenzen eliminiered c_cos[0:intervall_start]=0 c_cos[intervall_ende+1:int(c_cos) #negative Frequenzen eliminiered offset=int(c_cos.size/2) c_cos[c_cos.size-intervall_start c_cos[int(c_cos.size/2):c_cos.size/2)</pre>	s.size/2)]=0 s+1:c_cos.size]=0	
<pre>c_rück_cos=discrete_fourier_syna plotcomparesignals(y_cos,c_rück_ print("Die Standardabweichung de # MEssbereich t_start=0 t_ende=1 #Samplingfrequenz Sample_Points_slider=widgets.IntSlid value=100, min=2, max=4000, step=1, description='Anzahl Samplepoints</pre>	cos,t_start,t_ende) es original Signals zum synthetisierten Signal beträgt: "+s	str(standardabweichung(c_rück_cos,y_cos)))
<pre>disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') Intervall_slider=intervall=widgets. value=[0, f_s], min=0, max=2056, step=1, description='Frequenzintervall: disabled=False, continuous_update=False,</pre>	ntRangeSlider(
orientation='horizontal', readout=True, readout_format='d',) Frequenz_Slider=widgets.IntSlider(value=1, min=0, max=50, step=1, description='Frequenz in Hz:', disabled=False, continuous_update=False, orientsation='horizontal',		
<pre># linking the two sliders to dynamic def on_value_change(change): new_Sample_Points_slider = chang Intervall_slider.max = int(new_s) Sample_Points_slider.observe(on_value)</pre>	<pre>sample_Points_slider/2) ue_change, names='value')</pre>	e-Points gsgraph entsteht. Dieses Signal nennt man weißes Rauschen und entsteht bei einer IDFT auf einen konstanten Faktor.
fromfuture import print_function import numpy as np import matplotlib.pyplot as plt from ipywidgets import interact, interprint interact, interprint interval import interval inte	eractive, fixed, interact_manual	
<pre>f_s=N/(t_ende-t_start) # Erstellung der X-Achse x = np.linspace(t_start,t_ende,I #Deklarieren von y_rechteck = np.zeros(N) for n in range(N): if np.sin((t_ende-t_start)** y_rechteck[n]=1 else: y_rechteck[n]=0 plt.plot(x,y_rechteck) plt.ylabel('Amplitude in cm') plt.xlabel('Zeit in s') plt.show()</pre>		
#DFT c_rechteck=discrete_fourier_trans # Plotten der Ergebnisse plot_fourier_data(c_rechteck,f_s) #Intervall festlegen #positive Frequenzen eliminieren c_rechteck[0:intervall_start]=0 c_rechteck[intervall_ende+1:int #negative Frequenzen eliminieren offset=int(c_rechteck.size/2) c_rechteck[c_rechteck.size-inte c_rechteck[int(c_rechteck.size/2)	c_rechteck.size/2)]=0	
<pre>######### #IDFT c_rück_rechteck=discrete_fourie # Plotten der Ergebnisse plotcomparesignals(y_rechteck,c # Fehler berechnen print("Die Standardabweichung de # MEssbereich t_start=0 t_ende=1 #Samplingfrequenz</pre>	rück_rechteck,t_start,t_ende) es original Signals zum synthetisierten Signal beträgt: "+s	str(standardabweichung(c_rück_rechteck,y_rechteck)))
<pre>Sample_Points_slider=widgets.IntSlid value=4000, min=2, max=4000, step=1, description='Anzahl Samplepoints disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d') Intervall_slider=intervall=widgets.iden=[0,8],</pre>	::',	
<pre>min=0, max=2000, step=1, description='Frequenzintervall: disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d',) Frequenz_Slider=widgets.IntSlider(value=1, min=0, max=50,</pre>		
<pre>plt.tight_layout() # linking the two sliders to dynamic</pre>	der,f=Frequenz_Slider,intervall=Intervall_slider) Fally change the border of the slider Fally change the border of the slider on half of the Sample	e-Points
Intervall_slider.max = int(new_s Sample_Points_slider.observe(on_value) <figure 0="" 432x288="" axes="" size="" with=""> Komplexes Tonsignal</figure>	cample_Points_slider/2)	hat folgende Daten:
44100 Hz gesampeltes Signal lässt sich nach Der oben implementierte Algorithmus besitzt e	der oben beschriebenen Mathematik in 21500 Frequenzen zerlegen, was	is Nyquist-Abtasttheorem betrachten, fällt auch auf warum. Das menschliche Ohr kann Frequenzen zwischen 20 und 20 000 Hz erfasser im Groben unserem Hörspektrum entspricht. Zur diskreten Fouriertransformation wird dazu der FFT (Fast Fourier Transform) Algorithm amplexität von $O(n*log(n))$ besitzt. Im Folgenden wird daher ein Tonsignal verwendet, welches mit ausschlieslich $f_s=16000Hz$ ge
<pre>import numpy as np import matplotlib.pyplot as plt #Abspielen der Audiodatei sound_file = 'files/Geigenton_small display(Audio(sound_file)) D:000/0:01</pre>		
<pre>sound_file = 'files/Geigenton_small f_s, y_geige = wavfile.read(sound_filength=y_geige.size/f_s x = np.linspace(0., length, y_geige plt.plot(x, y_geige) plt.xlabel("Time t in s") plt.ylabel("Amplitude") plt.show() #DFT c_geige=discrete_fourier_transformat plot_fourier_data(c_geige,f_s) print(c_geige[1500]) #IDFT c_rück_geige=discrete_fourier_synthe</pre>	size) size) sion(y_geige)	
plotcomparesignals(y_geige,c_rück_ge		standardabweichung(c_rück_geige,y_geige)))
E -	0.8 1.0 Imaginär Real 2.5 - Betrag 2.0 - Betrag	
0 1000 2000 3000 4000 5000 6000 Frequenz in Hz (-2227.478728949329-15199.2325552733	Frequenz in Hz	
10000 - Synthetisiertes Signal -5000500015000150000.0 0.2 0.4 0.6	0.8 10	
	le)	2622e-16
<pre>plt.show() c_geige=scipy.fft.fft(y_geige) print(c_geige[1500]) plot_fourier_data(c_geige,f_s) c_rück_geige=scipy.fft.ifft(c_geige plotcomparesignals(y_geige,c_rück_geige)</pre>		standardabweichung(c_rück_geige,y_geige)))
Daylow -50001000015000	1e7	
Wb ii no	Betrag	
-3 - 0 1000 2000 3000 4000 5000 6000 Frequenz in Hz 15000 Originales Signal Synthetisiertes Signal Synthetisiertes Signal -5000500010000010000100001000010000100001000010000010000100001000010000100001000010000		
-15000 - 0.0 0.2 0.4 0.6 Zeittins Die Standardabweichung des original Im Folgenden wird das komplexe Tonsignal vo 16000 Sample-Points besitzt und betrachten in import numpy as np import matplotlib.pyplot as plt	n Folgenden nur $\frac{1}{160}$, also 100 Sample-Points davon.	.646e-24 Auschnitt und untersuchen welche Auswirkungen die Anzahl an Samplepoints auf die Genauigkeit des Signals hat. Wir wissen, dass das
<pre>sound_file = 'files/Geigenton_small f_s, y_geige = wavfile.read(sound_f: # Auslesen von 100 Sample-Points y_geige=y_geige[0:100] length=y_geige.size/f_s x = np.linspace(0., length, y_geige plt.plot(x, y_geige) plt.xlabel("Time t in s") plt.ylabel("Amplitude") plt.show() c_geige=scipy.fft.fft(y_geige) plot_fourier_data(c_geige,f_s) c_rück_geige=scipy.fft.ifft(c_geige) plotcomparesignals(y_geige,c_rück_geige)</pre>	size) eige,0,length)	
plotcomparesignals(y_geige,c_rück_ge		scandardabweichung(c_rück_geige,y_geige)))
-1500 -2000 -2500 0.000 0.001 0.002 0.003 0.004 Time t in s	0.005 0.006 Imaginär Real 50000 -	
-20000400000 1000 2000 3000 4000 5000 60 Frequenz in Hz	10000 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
-1500 -2000 -2500 -2500 0.000 0.001 0.002 0.003 0.004 Zeittins Die Standardabweichung des original	0.005 0.006 Signals zum synthetisierten Signal beträgt: 4.786527138398	841e-26
Frequenzintervall Bisher haben wir alle IDFT mit allen vorliegend von $f_s = 44100 Hz$ Bei der Rücktransformation fromfuture import print_function import numpy as np import matplotlib.pyplot as plt from ipywidgets import interact, interport ipywidgets as widgets import scipy.fft	en Frequenzen durchgeführt. Im Folgenden wollen wir die IDFT auf einer on suchen wir uns einen Frequenzbereich in dem vorliegenden Spektrum on eractive, fixed, interact_manual	n gewissen Bereich beschränken. Dazu laden wir uns den gleichen Geigentestton wie im vorherigen Abschnitt, jedoch mit einer Sample
<pre>import scipy.fft from scipy.io.wavfile import write, from IPython.display import Audio def intervall_idft(intervall): intervall_start,intervall_ende= x = np.linspace(0., length, y_good plt.plot(x, y_geige) plt.xlabel("Time t in s") plt.ylabel("Amplitude") plt.show() # DFT umd Frequenzplot zu gener. c_geige=scipy.fft.fft(y_geige) plot_fourier_data(c_geige,f_s)</pre>	ntervall ige.size)	
<pre>plot_fourier_data(c_geige,f_s) #Intervall festlegen #positive Frequenzen eliminieren c_geige[0:intervall_start]=0 c_geige[intervall_ende+1:int(c_e #negative Frequenzen eliminieren offset=int(c_geige.size/2) c_geige[c_geige.size-intervall_sc_geige[c_geige.size-intervall_sc_geige[int(c_geige.size/2):c_geige[int(c_geige.size/2):c_geige[int(c_geige.size/2):c_geige] ############## c_rück_geige=scipy.fft.ifft(c_geige.scipy.fft.ifft(c</pre>	<pre>geige.size/2)]=0 start+1:c_geige.size]=0 sige.size-intervall_ende]=0 sige) sk_geige,0,length) s_geige)/np.max(np.abs(np.real(c_rück_geige)))*32767) c_rück_geige.size, scaled)</pre>	
write('files/own_intervall.wav' print("Das synthetisierte Signa display(Audio('files/own_interva print("Zum Vergleich das Origina	c_rück_geige.size, scaled) Le zum anhören:") Lll.wav')) Llsignal") Lmall_44100.wav')) Les original Signals zum synthetisierten Signal beträgt: "+: L44100.wav'	str(standardabweichung(c_rück_geige,y_geige)))
<pre>display(Audio('files/Geigenton_s print("Die Standardabweichung de sound_file = 'files/Geigenton_small f_s, y_geige = read(sound_file) f_s=44100 length=y_geige.size/f_s interact(intervall_idft,intervall=w. value=[0, 44100], min=0,</pre>		
<pre>display(Audio('files/Geigenton_sprint("Die Standardabweichung de sound_file = 'files/Geigenton_small f_s, y_geige = read(sound_file) f_s=44100 length=y_geige.size/f_s interact(intervall_idft,intervall=w.orderect) value=[0, 44100], min=0, max=22050, step=1, description='Frequenzintervall: disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d',))</pre>		
display(Audio('files/Geigenton_sprint("Die Standardabweichung de sound_file = 'files/Geigenton_small f_s, y_geige = read(sound_file) f_s=44100 length=y_geige.size/f_s interact(intervall_idft,intervall=w. value=[0, 44100], min=0, max=22050, step=1, description='Frequenzintervall: disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout=True, readout_format='d',)) <functionmainintervall_idft(intervall)< td=""><td>nzintervall zu klein macht sich der Ton merklich verändert. Die obere Gre m#:~:text=Das%20Frequenzspektrum%20eines%20Signals%20I%C3%/</td><td>enze des Intervalls lässt sich jedoch bis auf 8khz herunter drücken, ohne hörbare Veränderung des Tones. A4sst,der%20Zeit%20oder%20des%20Ortes.</td></functionmainintervall_idft(intervall)<>	nzintervall zu klein macht sich der Ton merklich verändert. Die obere Gre m#:~:text=Das%20Frequenzspektrum%20eines%20Signals%20I%C3%/	enze des Intervalls lässt sich jedoch bis auf 8khz herunter drücken, ohne hörbare Veränderung des Tones. A4sst,der%20Zeit%20oder%20des%20Ortes.
display(Audio('files/Geigenton_print("Die Standardabweichung de print("Die Standardabweichung de sound_file = 'files/Geigenton_small_f_s, y_geige = read(sound_file) f_s, y_geige = read(sound_file) f_s=44100 length=y_geige.size/f_s interact(intervall_idft,intervall=w.walue=[0, 44100], min=0, max=22050, step=1, description='Frequenzintervall: disabled=False, continuous_update=False, orientation='horizontal', readout=True, readout_format='d',))) <pre> <functionmainintervall_idft(in) 1.https:="" 2.https:="" auf,="" das="" dass="" de.wikipedia.org="" es="" frequenzspektro="" fällt="" man="" quellen="" samplefreque="" watch?v="mkGsMV</pre" wenn="" wiki="" www.youtube.com=""></functionmainintervall_idft(in)></pre>	nzintervall zu klein macht sich der Ton merklich verändert. Die obere Gre m#:~:text=Das%20Frequenzspektrum%20eines%20Signals%20I%C3%/	