$12n_{0139} \ (K12n_{0139})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1444693149u^{23} - 2063776507u^{22} + \dots + 9741443072b + 4111548169, \\ &\quad 7418361699u^{23} - 17994094933u^{22} + \dots + 19482886144a + 41117831143, \\ &\quad u^{24} - 2u^{23} + \dots + 4u + 1 \rangle \\ I_2^u &= \langle 8.06000 \times 10^{26}u^{27} + 4.92381 \times 10^{27}u^{26} + \dots + 6.21532 \times 10^{28}b + 1.24378 \times 10^{29}, \\ &\quad - 1.07145 \times 10^{29}u^{27} - 9.17959 \times 10^{29}u^{26} + \dots + 6.02886 \times 10^{30}a - 5.28882 \times 10^{31}, \\ &\quad u^{28} + 6u^{27} + \dots + 542u + 97 \rangle \\ I_3^u &= \langle -u^3 - u^2 + 2b - 2u + 1, \ u^3 + 3u^2 + 4a + 2u + 1, \ u^4 + u^2 - u + 1 \rangle \\ I_4^u &= \langle -u^5 - u^3 - u^2 + b - u - 1, \ -u^4 - u^2 + a - u, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle \\ I_5^u &= \langle -91a^2u - 12a^2 + 564au + 337b - 570a + 147u - 188, \ a^3 - 7a^2u - 5a^2 - 4au - a + u - 2, \ u^2 + 1 \rangle \\ I_6^u &= \langle 3b + 4a + 2, \ 4a^2 - 2a - 11, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 70 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.44 \times 10^9 u^{23} - 2.06 \times 10^9 u^{22} + \dots + 9.74 \times 10^9 b + 4.11 \times 10^9, \ 7.42 \times 10^9 u^{23} - 1.80 \times 10^{10} u^{22} + \dots + 1.95 \times 10^{10} a + 4.11 \times 10^{10}, \ u^{24} - 2u^{23} + \dots + 4u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.380763u^{23} + 0.923585u^{22} + \dots + 30.4809u - 2.11046 \\ -0.148304u^{23} + 0.211855u^{22} + \dots - 1.81073u - 0.422068 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0171864u^{23} + 0.103403u^{22} + \dots + 13.2528u - 2.04858 \\ -0.192725u^{23} + 0.324632u^{22} + \dots + 2.24962u + 0.0941446 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.175538u^{23} + 0.428035u^{22} + \dots + 15.5024u - 1.95444 \\ -0.192725u^{23} + 0.324632u^{22} + \dots + 2.24962u + 0.0941446 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.000122070u^{23} + 0.000366211u^{22} + \dots - 3.00037u + 1.99988 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.343412u^{23} + 0.752066u^{22} + \dots + 21.0006u - 1.27837 \\ -0.0361944u^{23} - 0.0124158u^{22} + \dots - 3.46335u - 0.593642 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.000244141u^{23} - 0.000732422u^{22} + \dots + 4.00073u - 1.99976 \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.421620u^{23} + 0.978405u^{22} + \dots + 30.4126u - 2.01569 \\ -0.0958427u^{23} + 0.0837108u^{22} + \dots - 1.89080u - 0.543727 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.000122070u^{23} + 0.000366211u^{22} + \dots - 2.00037u + 0.999878 \\ u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{53447126663}{77931544576}u^{23} - \frac{86145029121}{77931544576}u^{22} + \dots + \frac{1245910362157}{77931544576}u - \frac{821525338933}{77931544576}u^{23} + \dots + \frac{1245910362157}{77931544576}u^{23} + \dots + \frac{1245910362157}{77931546576}u^{23} + \dots + \frac{1245910362157}{77931564576}u^{23} + \dots + \frac{1245910362157}{77931564576}u^{23} + \dots + \frac{1245910362157}{77931566}u^{23} + \dots + \frac{1245910362157}{77931566}u^{23} + \dots + \frac{1245910362157}{77931566}u^{23}$$

Crossings	u-Polynomials at each crossing
c_1	$u^{24} + 26u^{23} + \dots - 7007u + 256$
c_2, c_4	$u^{24} - 6u^{23} + \dots + u + 16$
c_3, c_6	$u^{24} + 2u^{23} + \dots - 96u + 256$
c_5	$u^{24} + 6u^{23} + \dots + 624u + 64$
c_7, c_9, c_{10} c_{12}	$u^{24} - 2u^{23} + \dots + 4u + 1$
c_8, c_{11}	$4(4u^{24} - 10u^{23} + \dots + 56u + 8)$

Crossings	Riley Polynomials at each crossing
c_1	$y^{24} - 50y^{23} + \dots - 51129153y + 65536$
c_2, c_4	$y^{24} - 26y^{23} + \dots + 7007y + 256$
c_3, c_6	$y^{24} - 18y^{23} + \dots - 185344y + 65536$
c_5	$y^{24} + 4y^{23} + \dots - 69376y + 4096$
c_7, c_9, c_{10} c_{12}	$y^{24} + 24y^{23} + \dots - 110y + 1$
c_8, c_{11}	$16(16y^{24} - 412y^{23} + \dots - 64y + 64)$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.08185		
a = -2.32289	0.548623	-54.0530
b = 4.49933		
u = 0.148994 + 0.783883I		
a = -0.500058 - 0.355404I	0.55362 + 3.41152I	0.86412 - 8.64734I
b = -1.153660 - 0.222767I		
u = 0.148994 - 0.783883I		
a = -0.500058 + 0.355404I	0.55362 - 3.41152I	0.86412 + 8.64734I
b = -1.153660 + 0.222767I		
u = 0.358870 + 1.163880I		
a = 0.293497 + 0.216350I	-0.73599 - 1.30879I	-8.68561 - 1.94237I
b = 1.49300 - 0.50044I		
u = 0.358870 - 1.163880I		
a = 0.293497 - 0.216350I	-0.73599 + 1.30879I	-8.68561 + 1.94237I
b = 1.49300 + 0.50044I		
u = -0.512568 + 1.179470I		
a = 0.1243150 + 0.0579838I	-3.85211 - 7.19847I	-3.15942 + 2.00992I
b = 0.480003 + 0.040159I		
u = -0.512568 - 1.179470I		
a = 0.1243150 - 0.0579838I	-3.85211 + 7.19847I	-3.15942 - 2.00992I
b = 0.480003 - 0.040159I		
u = 0.592376 + 0.366960I		
a = -0.643909 + 0.233654I	1.12915 + 1.02062I	4.27770 - 4.63248I
b = 0.688451 + 0.658630I		
u = 0.592376 - 0.366960I		
a = -0.643909 - 0.233654I	1.12915 - 1.02062I	4.27770 + 4.63248I
b = 0.688451 - 0.658630I		
u = -0.541907		
a = 2.23521	-7.92944	-16.4750
b = -0.103995		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.05535 + 1.55193I		
a = -0.211228 + 1.127990I	-11.34610 - 0.73612I	-10.72969 + 0.24360I
b = -0.858668 + 0.189081I		
u = -0.05535 - 1.55193I		
a = -0.211228 - 1.127990I	-11.34610 + 0.73612I	-10.72969 - 0.24360I
b = -0.858668 - 0.189081I		
u = 0.31630 + 1.54928I		
a = 0.269994 - 1.060220I	-19.0579 + 6.6137I	-10.93484 - 2.97293I
b = -0.207846 - 0.286463I		
u = 0.31630 - 1.54928I		
a = 0.269994 + 1.060220I	-19.0579 - 6.6137I	-10.93484 + 2.97293I
b = -0.207846 + 0.286463I		
u = -0.36560 + 1.55447I		
a = 0.044155 - 1.334510I	-11.7462 - 9.1224I	-9.90926 + 4.97595I
b = 1.73078 - 0.39028I		
u = -0.36560 - 1.55447I		
a = 0.044155 + 1.334510I	-11.7462 + 9.1224I	-9.90926 - 4.97595I
b = 1.73078 + 0.39028I		
u = -0.21985 + 1.60526I		
a = -0.227686 - 0.153857I	-14.1758 - 4.9325I	-11.00051 + 2.57629I
b = -1.58817 - 0.13159I		
u = -0.21985 - 1.60526I		
a = -0.227686 + 0.153857I	-14.1758 + 4.9325I	-11.00051 - 2.57629I
b = -1.58817 + 0.13159I		
u = 0.280085 + 0.207328I		
a = 2.76775 + 0.68817I	-1.26399 + 0.69429I	-5.88235 + 2.63444I
b = -1.15139 - 0.84730I		
u = 0.280085 - 0.207328I		
a = 2.76775 - 0.68817I	-1.26399 - 0.69429I	-5.88235 - 2.63444I
b = -1.15139 + 0.84730I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.62229 + 1.54349I		
a = 0.33089 + 1.38912I	19.7035 - 15.6516I	-10.07185 + 6.64115I
b = -2.20818 + 0.76804I		
u = -0.62229 - 1.54349I		
a = 0.33089 - 1.38912I	19.7035 + 15.6516I	-10.07185 - 6.64115I
b = -2.20818 - 0.76804I		
u = 1.71472		
a = 1.29940	-8.86122	-11.8540
b = -4.00128		
u = -0.0966119		
a = -5.95715	-0.870307	-11.9670
b = -0.342701		

II.
$$I_2^u = \langle 8.06 \times 10^{26} u^{27} + 4.92 \times 10^{27} u^{26} + \dots + 6.22 \times 10^{28} b + 1.24 \times 10^{29}, \ -1.07 \times 10^{29} u^{27} - 9.18 \times 10^{29} u^{26} + \dots + 6.03 \times 10^{30} a - 5.29 \times 10^{31}, \ u^{28} + 6 u^{27} + \dots + 542 u + 97 \rangle$$

(i) Arc colorings

$$a_8 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0177720u^{27} + 0.152261u^{26} + \dots + 51.0589u + 8.77250 \\ -0.0129680u^{27} - 0.0792205u^{26} + \dots - 10.1162u - 2.00116 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ u^3 + u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0.0199647u^{27} + 0.149393u^{26} + \dots + 34.2789u + 5.74653 \\ 0.00250162u^{27} - 0.00246621u^{26} + \dots + 4.44438u - 0.719728 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0.0224663u^{27} + 0.146927u^{26} + \dots + 29.8346u + 5.02680 \\ 0.00250162u^{27} - 0.00246621u^{26} + \dots + 4.44438u - 0.719728 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.153415u^{27} + 0.834186u^{26} + \dots - 54.2701u - 12.9847 \\ -0.0420845u^{27} - 0.221294u^{26} + \dots - 19.3117u - 4.11126 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0.0235732u^{27} + 0.167215u^{26} + \dots + 33.8050u + 6.19640 \\ -0.00721990u^{27} - 0.0332133u^{26} + \dots - 0.910549u - 0.565518 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0.0217420u^{27} + 0.116081u^{26} + \dots + 1.22632u + 0.0581123 \\ u^3 + u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0.0203435u^{27} + 0.162178u^{26} + \dots + 41.7784u + 6.36296 \\ 0.000121206u^{27} - 0.0139096u^{26} + \dots - 3.57361u - 0.126255 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -0.128091u^{27} - 0.908242u^{26} + \dots - 122.754u - 18.4433 \\ 0.0312135u^{27} + 0.163253u^{26} + \dots + 18.6986u + 3.08220 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0158847u^{27} 0.109997u^{26} + \cdots 3.88785u 3.25341$

Crossings	u-Polynomials at each crossing
c_1	$(u^{14} + 20u^{13} + \dots + 25u + 1)^2$
c_2, c_4	$(u^{14} - 4u^{13} + \dots - u - 1)^2$
c_{3}, c_{6}	$(u^{14} + u^{13} + \dots + 20u + 8)^2$
<i>C</i> ₅	$(u^{14} - 2u^{13} + \dots + 4u - 1)^2$
c_7, c_9, c_{10} c_{12}	$u^{28} + 6u^{27} + \dots + 542u + 97$
c_8, c_{11}	$u^{28} + 2u^{27} + \dots - 12530u + 4603$

Crossings	Riley Polynomials at each crossing
c_1	$(y^{14} - 48y^{13} + \dots - 153y + 1)^2$
c_2, c_4	$(y^{14} - 20y^{13} + \dots - 25y + 1)^2$
c_3, c_6	$(y^{14} - 21y^{13} + \dots - 144y + 64)^2$
c_5	$(y^{14} - 6y^{13} + \dots - 8y + 1)^2$
c_7, c_9, c_{10} c_{12}	$y^{28} + 22y^{27} + \dots + 47288y + 9409$
c_8, c_{11}	$y^{28} - 22y^{27} + \dots + 76721028y + 21187609$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.121798 + 1.022010I		
a = 2.24497 - 1.77780I	-4.07000	-8.52950 + 0.I
b = 0.448883		
u = -0.121798 - 1.022010I	4.05000	0 50050 + 0 5
a = 2.24497 + 1.77780I	-4.07000	-8.52950 + 0.I
b = 0.448883 $u = -0.730722 + 0.738022I$		
a = -0.750722 + 0.738022I $a = -1.55264 - 0.66750I$	-6.39368 - 1.41191I	0.07210 + 2.015007
	-0.59508 - 1.411911	-9.87318 + 3.81508I
$\frac{b = 1.94409 + 0.00042I}{u = -0.730722 - 0.738022I}$		
a = -1.55264 + 0.66750I	-6.39368 + 1.41191I	-9.87318 - 3.81508I
b = 1.94409 - 0.00042I	0.55500 1.411511	3.07310 3.013001
$\frac{v = 1.94403 - 0.00042I}{u = -0.961372 + 0.440888I}$		
a = 1.47427 + 0.61493I	-5.27322 - 4.24963I	-9.14655 + 5.18533I
b = -1.88899 + 0.49296I		·
u = -0.961372 - 0.440888I		
a = 1.47427 - 0.61493I	-5.27322 + 4.24963I	-9.14655 - 5.18533I
b = -1.88899 - 0.49296I		
u = 0.778733 + 0.476869I		
a = -0.560712 + 1.159950I	-12.49530 + 2.45847I	-7.50081 - 0.42962I
b = 0.091282 + 0.179107I		
u = 0.778733 - 0.476869I		
a = -0.560712 - 1.159950I	-12.49530 - 2.45847I	-7.50081 + 0.42962I
b = 0.091282 - 0.179107I		
u = 0.396592 + 1.073210I		
a = -0.365767 - 0.144675I	-0.91573 + 2.69540I	0.31936 - 2.88879I
b = -0.597039 + 0.103194I		
u = 0.396592 - 1.073210I		
a = -0.365767 + 0.144675I	-0.91573 - 2.69540I	0.31936 + 2.88879I
b = -0.597039 - 0.103194I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.014446 + 1.158610I		
a = 1.74504 + 1.57039I	-3.95002 - 0.09061I	-6.51478 + 0.23122I
b = 0.620567 - 0.112346I		
u = -0.014446 - 1.158610I		
a = 1.74504 - 1.57039I	-3.95002 + 0.09061I	-6.51478 - 0.23122I
b = 0.620567 + 0.112346I		
u = -0.120439 + 0.677633I		
a = -0.99346 - 2.55992I	-3.95002 + 0.09061I	-6.51478 - 0.23122I
b = 0.620567 + 0.112346I		
u = -0.120439 - 0.677633I		
a = -0.99346 + 2.55992I	-3.95002 - 0.09061I	-6.51478 + 0.23122I
b = 0.620567 - 0.112346I		
u = -0.663607 + 0.149430I		
a = 0.173852 + 0.543824I	-0.91573 + 2.69540I	0.31936 - 2.88879I
b = -0.597039 + 0.103194I		
u = -0.663607 - 0.149430I		
a = 0.173852 - 0.543824I	-0.91573 - 2.69540I	0.31936 + 2.88879I
b = -0.597039 - 0.103194I		
u = -0.148951 + 1.396910I		
a = -0.44526 - 1.43020I	-12.49530 - 2.45847I	-7.50081 + 0.42962I
b = 0.091282 - 0.179107I		
u = -0.148951 - 1.396910I		
a = -0.44526 + 1.43020I	-12.49530 + 2.45847I	-7.50081 - 0.42962I
b = 0.091282 + 0.179107I		
u = -0.01413 + 1.43483I		
a = 1.178910 - 0.382253I	-6.39368 + 1.41191I	-9.87318 - 3.81508I
b = 1.94409 - 0.00042I		
u = -0.01413 - 1.43483I		
a = 1.178910 + 0.382253I	-6.39368 - 1.41191I	-9.87318 + 3.81508I
b = 1.94409 + 0.00042I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.47648 + 0.13393I		
a = -1.255590 - 0.017191I	-14.4866 - 8.3929I	-9.39875 + 4.58852I
b = 2.70698 - 0.92539I		
u = -1.47648 - 0.13393I		
a = -1.255590 + 0.017191I	-14.4866 + 8.3929I	-9.39875 - 4.58852I
b = 2.70698 + 0.92539I		
u = 0.23016 + 1.48936I		
a = -0.53820 - 1.43603I	-5.27322 + 4.24963I	-9.14655 - 5.18533I
b = -1.88899 - 0.49296I		
u = 0.23016 - 1.48936I		
a = -0.53820 + 1.43603I	-5.27322 - 4.24963I	-9.14655 + 5.18533I
b = -1.88899 + 0.49296I		
u = 0.64679 + 1.68867I		
a = -0.104403 + 1.260500I	-14.4866 + 8.3929I	-9.39875 - 4.58852I
b = 2.70698 + 0.92539I		
u = 0.64679 - 1.68867I		
a = -0.104403 - 1.260500I	-14.4866 - 8.3929I	-9.39875 + 4.58852I
b = 2.70698 - 0.92539I		
u = -0.80033 + 1.70926I		
a = -0.068025 + 0.960101I	-19.1114	-12.24106 + 0.I
b = -3.20267		
u = -0.80033 - 1.70926I		
a = -0.068025 - 0.960101I	-19.1114	-12.24106 + 0.I
b = -3.20267		

III. $I_3^u = \langle -u^3 - u^2 + 2b - 2u + 1, \ u^3 + 3u^2 + 4a + 2u + 1, \ u^4 + u^2 - u + 1 \rangle$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{4}u^{3} - \frac{3}{4}u^{2} - \frac{1}{2}u - \frac{1}{4} \\ \frac{1}{2}u^{3} + \frac{1}{2}u^{2} + u - \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3} + u^{2} - u + 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{5}{4}u^{3} - \frac{3}{4}u^{2} - \frac{1}{2}u - \frac{1}{4} \\ -\frac{1}{2}u^{3} + \frac{1}{2}u^{2} - \frac{1}{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ -u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{3} - \frac{3}{4}u^{2} - \frac{1}{2}u - \frac{1}{4} \\ \frac{1}{2}u^{3} + \frac{1}{2}u^{2} + u - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{3} \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-\frac{79}{16}u^3 \frac{85}{16}u^2 + \frac{21}{8}u \frac{99}{16}$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_6	u^4
C ₄	$(u+1)^4$
<i>C</i> ₅	$u^4 + 3u^3 + 4u^2 + 3u + 2$
c_{7}, c_{9}	$u^4 + u^2 + u + 1$
c_8, c_{11}	$u^4 + 2u^3 + 3u^2 + u + 1$
c_{10}, c_{12}	$u^4 + u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_6	y^4
<i>C</i> ₅	$y^4 - y^3 + 2y^2 + 7y + 4$
c_7, c_9, c_{10} c_{12}	$y^4 + 2y^3 + 3y^2 + y + 1$
c_8, c_{11}	$y^4 + 2y^3 + 7y^2 + 5y + 1$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.547424 + 0.585652I		
a = -0.391417 - 0.855136I	-0.66484 + 1.39709I	-2.54919 - 3.47689I
b = -0.173850 + 1.069070I		
u = 0.547424 - 0.585652I		
a = -0.391417 + 0.855136I	-0.66484 - 1.39709I	-2.54919 + 3.47689I
b = -0.173850 - 1.069070I		
u = -0.547424 + 1.120870I		
a = 0.266417 + 0.460085I	-4.26996 - 7.64338I	-11.9196 + 11.4393I
b = -0.576150 + 0.307015I		
u = -0.547424 - 1.120870I		
a = 0.266417 - 0.460085I	-4.26996 + 7.64338I	-11.9196 - 11.4393I
b = -0.576150 - 0.307015I		

$$IV. \\ I_4^u = \langle -u^5 - u^3 - u^2 + b - u - 1, \ -u^4 - u^2 + a - u, \ u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{4} + u^{2} + u \\ u^{5} + u^{3} + u^{2} + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{4} + u^{2} + u + 1 \\ -u^{5} - 2u^{3} - u^{2} - u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{3} + u^{2} + u \\ u^{5} + u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} \\ -u^{3} - u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + u \\ u^{5} + u^{3} + u^{2} + u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{5} + u^{3} + u + 1 \\ -u^{3} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^5 5u^3 2u^2 5u 12$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^6$
c_3, c_6	u^6
C4	$(u+1)^6$
<i>C</i> ₅	$(u^3 - u^2 + 1)^2$
c_7, c_9	$u^6 - u^5 + 2u^4 - 2u^3 + 2u^2 - 2u + 1$
c_8, c_{11}	$u^6 + 3u^5 + 4u^4 + 2u^3 + 1$
c_{10}, c_{12}	$u^6 + u^5 + 2u^4 + 2u^3 + 2u^2 + 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^6$
c_{3}, c_{6}	y^6
<i>C</i> ₅	$(y^3 - y^2 + 2y - 1)^2$
c_7, c_9, c_{10} c_{12}	$y^6 + 3y^5 + 4y^4 + 2y^3 + 1$
c_8,c_{11}	$y^6 - y^5 + 4y^4 - 2y^3 + 8y^2 + 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.498832 + 1.001300I		
a = -0.684695 + 0.494282I	-1.91067 + 2.82812I	-8.69240 - 3.35914I
b = 0.662359 + 0.562280I		
u = 0.498832 - 1.001300I		
a = -0.684695 - 0.494282I	-1.91067 - 2.82812I	-8.69240 + 3.35914I
b = 0.662359 - 0.562280I		
u = -0.284920 + 1.115140I		
a = -0.50000 + 1.95694I	-6.04826	-9.61520 + 0.I
b = -1.32472		
u = -0.284920 - 1.115140I		
a = -0.50000 - 1.95694I	-6.04826	-9.61520 + 0.I
b = -1.32472		
u = -0.713912 + 0.305839I		
a = -0.315305 - 0.494282I	-1.91067 + 2.82812I	-8.69240 - 3.35914I
b = 0.662359 + 0.562280I		
u = -0.713912 - 0.305839I		
a = -0.315305 + 0.494282I	-1.91067 - 2.82812I	-8.69240 + 3.35914I
b = 0.662359 - 0.562280I		

$$V. \\ I_5^u = \langle -91a^2u + 564au + \dots -570a - 188, \ a^3 - 7a^2u - 5a^2 - 4au - a + u - 2, \ u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.270030a^{2}u - 1.67359au + \dots + 1.69139a + 0.557864 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0207715a^{2}u - 0.486647au + \dots + 0.0237389a - 0.504451 \\ 0.121662a^{2}u - 0.721068au + \dots + 0.718101a + 0.240356 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.100890a^{2}u - 1.20772au + \dots + 0.741840a - 0.264095 \\ 0.121662a^{2}u - 0.721068au + \dots + 0.718101a + 0.240356 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.136499a^{2}u - 0.516320au + \dots + 0.415430a + 0.172107 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0207715a^{2}u - 0.486647au + \dots + 0.0237389a - 0.504451 \\ 0.121662a^{2}u - 0.721068au + \dots + 0.718101a + 0.240356 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.270030a^{2}u - 1.67359au + \dots + 2.69139a + 0.557864 \\ 0.270030a^{2}u - 1.67359au + \dots + 1.69139a + 0.557864 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.201780a^{2}u + 0.415430au + \dots + 0.516320a + 0.528190 \\ -1 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{56}{337}a^2u - \frac{200}{337}a^2 + \frac{1312}{337}au + \frac{1284}{337}a + \frac{428}{337}u - \frac{2684}{337}au + \frac{1284}{337}au + \frac{428}{337}au + \frac{1284}{337}au + \frac{128$$

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5	$u^6 + 5u^4 + 10u^2 + 1$
<i>c</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_9, c_{10} c_{12}	$(u^2+1)^3$
c_8	$u^6 - 4u^5 + 8u^4 + 28u^3 + 36u^2 + 24u + 8$
c_{11}	$u^6 + 4u^5 + 8u^4 - 28u^3 + 36u^2 - 24u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
<i>C</i> ₅	$(y^3 + 5y^2 + 10y + 1)^2$
c_7, c_9, c_{10} c_{12}	$(y+1)^6$
c_8,c_{11}	$y^6 + 360y^4 + 80y^2 + 64$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = -0.567321 - 0.459293I	-0.26574 + 2.82812I	-8.49024 - 2.97945I
b = -1.307140 - 0.215080I		
u = 1.000000I		
a = 0.163008 + 0.300102I	-0.26574 - 2.82812I	-8.49024 + 2.97945I
b = 1.307140 - 0.215080I		
u = 1.000000I		
a = 5.40431 + 7.15919I	-4.40332	-15.0195 + 0.I
b = -0.569840I		
u = -1.000000I		
a = -0.567321 + 0.459293I	-0.26574 - 2.82812I	-8.49024 + 2.97945I
b = -1.307140 + 0.215080I		
u = -1.000000I		
a = 0.163008 - 0.300102I	-0.26574 + 2.82812I	-8.49024 - 2.97945I
b = 1.307140 + 0.215080I		
u = -1.000000I		
a = 5.40431 - 7.15919I	-4.40332	-15.0195 + 0.I
b = 0.569840I		

VI.
$$I_6^u = \langle 3b + 4a + 2, 4a^2 - 2a - 11, u - 1 \rangle$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{4}{3}a - \frac{2}{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{3}a + \frac{5}{6} \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{3}a + \frac{5}{6} \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{1}{2}a + 2 \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{3}a + \frac{7}{6} \\ -\frac{4}{3}a - \frac{2}{3} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a + 3 \\ -2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{3}a + \frac{2}{3} \\ -2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}a - 1 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $\frac{15}{2}a + 7$

Crossings	u-Polynomials at each crossing
c_1	$u^2 - 3u + 1$
c_2, c_3	$u^2 + u - 1$
c_4, c_6	u^2-u-1
<i>C</i> ₅	u^2
c_{7}, c_{9}	$(u+1)^2$
c_8	$4(4u^2 + 6u + 1)$
c_{10}, c_{12}	$(u-1)^2$
c_{11}	$4(4u^2 - 6u + 1)$

Crossings	Riley Polynomials at each crossing
c_1	$y^2 - 7y + 1$
c_2, c_3, c_4 c_6	$y^2 - 3y + 1$
<i>C</i> ₅	y^2
c_7, c_9, c_{10} c_{12}	$(y-1)^2$
c_8, c_{11}	$16(16y^2 - 28y + 1)$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.42705	-7.23771	-3.70290
b = 1.23607		
u = 1.00000		
a = 1.92705	0.657974	21.4530
b = -3.23607		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)^{10}(u^2 - 3u + 1)(u^3 - u^2 + 2u - 1)^2 $ $ \cdot ((u^{14} + 20u^{13} + \dots + 25u + 1)^2)(u^{24} + 26u^{23} + \dots - 7007u + 256) $
c_2	$((u-1)^{10})(u^2+u-1)(u^3+u^2-1)^2(u^{14}-4u^{13}+\cdots-u-1)^2$ $\cdot (u^{24}-6u^{23}+\cdots+u+16)$
c_3	$ u^{10}(u^2 + u - 1)(u^3 - u^2 + 2u - 1)^2(u^{14} + u^{13} + \dots + 20u + 8)^2 $ $ \cdot (u^{24} + 2u^{23} + \dots - 96u + 256) $
c_4	$((u+1)^{10})(u^2-u-1)(u^3-u^2+1)^2(u^{14}-4u^{13}+\cdots-u-1)^2$ $\cdot (u^{24}-6u^{23}+\cdots+u+16)$
c_5	$u^{2}(u^{3} - u^{2} + 1)^{2}(u^{4} + 3u^{3} + 4u^{2} + 3u + 2)(u^{6} + 5u^{4} + 10u^{2} + 1)$ $\cdot ((u^{14} - 2u^{13} + \dots + 4u - 1)^{2})(u^{24} + 6u^{23} + \dots + 624u + 64)$
c_6	$u^{10}(u^{2} - u - 1)(u^{3} + u^{2} + 2u + 1)^{2}(u^{14} + u^{13} + \dots + 20u + 8)^{2}$ $\cdot (u^{24} + 2u^{23} + \dots - 96u + 256)$
c_7,c_9	$((u+1)^{2})(u^{2}+1)^{3}(u^{4}+u^{2}+u+1)(u^{6}-u^{5}+\cdots-2u+1)$ $\cdot (u^{24}-2u^{23}+\cdots+4u+1)(u^{28}+6u^{27}+\cdots+542u+97)$
c_8	$16(4u^{2} + 6u + 1)(u^{4} + 2u^{3} + 3u^{2} + u + 1)$ $\cdot (u^{6} - 4u^{5} + \dots + 24u + 8)(u^{6} + 3u^{5} + 4u^{4} + 2u^{3} + 1)$ $\cdot (4u^{24} - 10u^{23} + \dots + 56u + 8)(u^{28} + 2u^{27} + \dots - 12530u + 4603)$
c_{10}, c_{12}	$((u-1)^2)(u^2+1)^3(u^4+u^2-u+1)(u^6+u^5+\cdots+2u+1)$ $\cdot (u^{24}-2u^{23}+\cdots+4u+1)(u^{28}+6u^{27}+\cdots+542u+97)$
c_{11}	$16(4u^{2} - 6u + 1)(u^{4} + 2u^{3} + \dots + u + 1)(u^{6} + 3u^{5} + \dots + 2u^{3} + 1)$ $\cdot (u^{6} + 4u^{5} + \dots - 24u + 8)(4u^{24} - 10u^{23} + \dots + 56u + 8)$ $\cdot (u^{28} + 2u^{27} + \dots - 12530u + 4603)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{10}(y^2 - 7y + 1)(y^3 + 3y^2 + 2y - 1)^2$ $\cdot (y^{14} - 48y^{13} + \dots - 153y + 1)^2$ $\cdot (y^{24} - 50y^{23} + \dots - 51129153y + 65536)$
c_2, c_4	$(y-1)^{10}(y^2 - 3y + 1)(y^3 - y^2 + 2y - 1)^2$ $\cdot ((y^{14} - 20y^{13} + \dots - 25y + 1)^2)(y^{24} - 26y^{23} + \dots + 7007y + 256)$
c_3, c_6	$y^{10}(y^2 - 3y + 1)(y^3 + 3y^2 + 2y - 1)^2(y^{14} - 21y^{13} + \dots - 144y + 64)^2$ $\cdot (y^{24} - 18y^{23} + \dots - 185344y + 65536)$
c_5	$y^{2}(y^{3} - y^{2} + 2y - 1)^{2}(y^{3} + 5y^{2} + 10y + 1)^{2}(y^{4} - y^{3} + 2y^{2} + 7y + 4)$ $\cdot ((y^{14} - 6y^{13} + \dots - 8y + 1)^{2})(y^{24} + 4y^{23} + \dots - 69376y + 4096)$
c_7, c_9, c_{10} c_{12}	$((y-1)^{2})(y+1)^{6}(y^{4}+2y^{3}+\cdots+y+1)(y^{6}+3y^{5}+\cdots+2y^{3}+1)$ $\cdot(y^{24}+24y^{23}+\cdots-110y+1)(y^{28}+22y^{27}+\cdots+47288y+9409)$
c_8, c_{11}	$256(16y^{2} - 28y + 1)(y^{4} + 2y^{3} + \dots + 5y + 1)(y^{6} + 360y^{4} + 80y^{2} + 64)$ $\cdot (y^{6} - y^{5} + 4y^{4} - 2y^{3} + 8y^{2} + 1)(16y^{24} - 412y^{23} + \dots - 64y + 64)$ $\cdot (y^{28} - 22y^{27} + \dots + 76721028y + 21187609)$