Day 2 Predicates, quantifiers, relations

Lecturer: Msc. Minh Tan Le

Outline

- I. Predicates, quantifiers
- II. Sets, tuples, Cartesian products
- III. Relations and their properties
- IV. Matrix of relation

I. Predicates, quantifiers

 In calculus, we can define y using a <u>function</u> with <u>parameter(s)</u> and variable(s):

$$y = x^2 + 1$$

- There are multiple y that satisfy by setting values for x.
- Is there any method to define a group of propositions?

Predicate is a part of propositional function.

$$P(x) = x$$
 is greater than 3

- x is the **variable** (subject of statement).
- is greater than 3 is the **predicate** (property).
- The function matches these propositions and truth values:
 - 5 is greater than 3. \rightarrow 1.
 - 5.5 is greater than 3. \rightarrow 1.
 - 1 is greater than 3. \rightarrow 0.

- What if we don't want to set specific x? How about all, none, few,... as x?
- Quantifier comes to the rescue!

$$\exists x P(x)$$
 = There exists an x that is greater than 3

• In case of using domain to narrow the possibility of x:

$$\exists x \in \mathbb{R}, P(x) = \text{There exists a real number } x \text{ that is}$$

$$greater \text{ than } 3$$

$$\forall x > 4, P(x)$$
 = For every $x > 4, x$ is greater than 3

- Propositional functions do not have truth value(s).
- Propositions, quantifiers have truth value(s).
- Quantifiers can be:
 - Universal quantification: $\forall x P(x)$.
 - Existential quantification: $\exists x P(x)$.
 - Uniqueness quantification (one & only one): $\exists ! P(x)$ or $\exists_1 P(x)$.

Not all the students finished the exercise. (1)

There is at least 1 student who didn't finish the exercise. (2)

- 1. With x as student and P(x) as propositional function for (1), rewrite (1) and (2) as expressions.
- 2. Are (1) and (2) equivalent?

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Negating quantified expressions

II. Sets, tuples, Cartesian products

- A set is an unordered collection of objects/members/elements.
- There can be:
 - ... multiple same elements in a set.
 - ... infinite number of elements.
 - ... number, set or anything in set.
- Examples:
 - $O = \{1, -2, 3, 2.5, 7\}$
 - $Z = \{..., -2, -1, 0, 1, 2, ...\}$ is a set of integers.
 - $P = \{1,3,3,3\}$ is the same as $Q = \{1,3\}$, or P = Q.

Name	Description	Expression
Equal sets	Two sets are equal if and only if they have the same element.	$A = B$ $\forall x (x \in A \leftrightarrow x \in B)$ $A \subseteq B \land B \subseteq A$
Subset	A is a subset of B if and only if every element of A is also an element of B.	$A \subseteq B$ $\forall x (x \in A \to x \in B)$
Proper subset	A is a subset of B, but not equal to B.	$A \subset B$ $\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A)$
Size	If there are exactly n distinct elements in S then S is a finit set and n is the cardinality.	n = S
Power set	The power set of <i>S</i> contains all the possible subsets of it.	$\mathcal{P}(S)$

Tuples

An ordered collection of n objects is a n-tuple.

$$(a_1, a_2, \ldots, a_n)$$

- Two tuples $(a_1, a_2, ... a_n)$, $(b_1, b_2, ... b_m)$ are unequal if:
 - $n \neq m$
 - Otherwise, $\exists a_i (a_i \neq b_i)$ is true.

Cartesian products

• The Cartesian product of sets A and B is the set of all ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

What is the Cartesian product of $A = \{1, 2\}$ and $B = \{a, b, c\}$?

- It's not really useful having multiple separated sets.
- Relation is the structure that represent relationships.

Relations and their properties

• A binary relation from A to B, which is a subset of $A \times B$, consists of some ordered pairs of objects: First element from A and second from B.

$$R = \{(C, 1), (B, 2)\} \subseteq A \times B$$

Special case of relation

• A **relation on a set** A is a relation from A to A.

$$R \subseteq A \times A$$

• Example: Given $A = \{1, 3\}$, a relation on A can be:

$$R = \{(1,1), (1,3), (3,1)\}$$

As R is the subset of $A \times A$:

$$A \times A = \{(1,1), (1,3), (3,1), (3,3)\}$$

Can we have relations for multiple sets?

Yes! It's called n-ary relation.

$$R = A_1 \times A_2 \times \cdots \times A_n$$

• $A_1, A_2, ..., A_n$ are the **domains** of the relation, n is the **degree**.

Let $A = \{2, 4, 5, 6, 8\}$

Find all the elements of relation $R = \{(a, b) | b \text{ completely divided by } a\}$

Let
$$A = \{2, 4, 5, 6, 8\}$$

Find all the elements of relation $R = \{(a, b) | b \text{ completely divided by } a\}$

Answer: $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

Properties

- With $a, b, c \in A$, a relation R on set A is called:
 - Reflexive: $\forall a \rightarrow (a, a) \in R$.
 - Symmetric: $\forall a \forall b ((a,b) \in R, a \neq b) \rightarrow (b,a) \in R$
 - Antisymmetric: $\forall a \forall b ((a,b) \in R, a \neq b) \rightarrow (b,a) \notin R$
 - Transitive: $\forall a \forall b \forall c ((a,b) \in R \land (b,c) \in R, a \neq b, b \neq c) \rightarrow (a,c) \in R$

$$A = \{2, 4, 5, 6, 8\}$$

$$R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$$

Reflexive? $\forall a((a, a) \in R)$

$$A = \{2, 4, 5, 6, 8\}$$

$$R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$$

Symmetric?
$$\forall a \forall b ((a,b) \in R \rightarrow (b,a) \in R)$$

$$A = \{2, 4, 5, 6, 8\}$$

$$R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$$

Antisymmetric?
$$\forall a \forall b ((a,b) \in R \rightarrow (b,a) \notin R)$$

$$A = \{2, 4, 5, 6, 8\}$$

$$R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$$

Transitive?
$$\forall a \forall b \forall c ((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$$

$$A = \{1, 2, 3, 4\}$$

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},\$$

Determine and prove the properties of the above relations.

What if we can't find any false statement?

Does that mean it's true?

IV. Matrix of relation

- In order to demonstrate relation, we build a matrix.
 - Each row & column represents .
 - Each scalar contains binary value.

	a_1	•••	a_n
a_1			
•••			
a_n			

 $A = \{2, 4, 5, 6, 8\}$ $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

	2	4	5	6	8
2	1	1	0	1	1
4	0	1	0	0	1
5	0	0	1	0	0
6	0	0	0	1	0
8	0	0	0	0	1

	2	4	5	6	8
2	1	1	0	1	1
4	0	1.	0	0	1
5	0	0	·*.	0	0
6	0	0	0	1	0
8	0	0	0	0	٦.,

Reflexive

Diagonal

Symmetric

Diagonal

Antisymmetric

$$A = \{2, 4, 5, 6, 8\}$$

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

Transitive

$$A = \{2, 4, 5, 6, 8\}$$

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

Transitive

$$A = \{2, 4, 5, 6, 8\}$$

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (5,5), (6,6), (8,8)\}$

Transitive

	1	1	0	1	1
	0	1	0	0	1
AA =	0	0	1	0	0
	0	0	0	1	0
	0	0	0	0	1

1	1	0	1	1
0	1	0	0	1
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

	1	1	0	1	0
	0	1	0	0	1
AA =	0	0	1	0	0
	0	0	0	1	0
	0	0	0	0	1

1	1	0	1	0
0	1	0	0	1
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

 $B_{red} > 0$ means (a, b) and (b, c) exists!

 $B_{red} > 0$ means (a, b) and (b, c) exists! Moreover, if $A_{red} \neq 0$, R is transitive.

Step-by-step

- 1. Square matrix B = AA.
- 2. Check if there is any entry equal non-zero in B

At the equivalent position in A, does the entry has zero? If yes => Non-transitive.

3. If no entry meets (2) => Transitive.

There's more...

- A relation is equivalent if it's reflexive, symmetric and transitive.
- A relation is partial ordering if it's reflexive, antisymmetric and transitive.
- You can <u>use directed graph</u> instead of matrix, but it can be tough in some situations.

Operators for relations

- Union:
 - $a \in (R_1 \cup R_2)$ if $\forall a (a \in R_1 \lor a \in R_2)$
- Intersection:
 - $a \in (R_1 \cap R_2)$ if $\forall a (a \in R_1 \land a \in R_2)$
- Minus:
 - $a \in (R_1 R_2)$ if $\forall a (a \in R_1 \land a \notin R_2)$

 Propositional function = Predicate(s) + variable(s). the function becomes a proposition if: u variable(s) are set. Quantifier(s) are used: All, some, at least one, none of,... m Sets and tuples are collections: • Sets are unordered. m Tuples are in order. a Relation is a subset (or equal) of Cartesian product. • 4 properties of relation, which can be proved by: • A false statement from the function $(f(...) \rightarrow 0)$. Matrix of relation.

Homework

- 1. Write a C/C++ console app that:
 - Read set *A* (2pt).
 - Read relation R on set A from input in matrix form (2pt).
 - Verify these properties: Reflexive & symmetric (1pt).

#2

$$A = \{1, 2, 3, 4\}$$

$$R_2 = \{(1, 1), (1, 2), (2, 1)\},$$

$$R_3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$$

$$R_4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$$

$$R_5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$$

$$R_6 = \{(3, 4)\}$$

Determine and prove the properties of the above relations by giving a false statement.