Multivariable Calculus (MT1008)

Date: 10th April 2025

Course Instructor(s)

Dr. Mazhar Hussain, Dr. Akhlaq Ahmad,

Dr. Hina Firdous, Dr. Sidra Afzal, Tasaduque Hussain,

Muhammad Yaseen.

Sessional-II

Total Time (Hrs.):

1

Muhammad Yaseen.

Do not write below this line

Attempt all the questions.

CLO#2. Evaluation of Multiple Integrals in Different Coordinate Systems and Their Applications to Work, Circulation, Flux, Green's Theorem, and Stokes' Theorem.

Each part contains 10 marks.

1 (i). Change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral $\int_{0}^{1} \int_{\frac{1-x^2}{2}}^{1} \frac{1}{(x^2+y^2)^2} dx dy$

(ii). Find the volume of the solid enclosed by the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 2.

(iii). Convert

 $\int_{0}^{2\pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^2}} 3 \, dz \, r dr \, d\theta, \quad r \ge 0$

to (a) Rectangular coordinates with order of integration dz dx tty/(b) spherical coordinates.

Then (c) evaluate one of the integrals.

[15]

(iv). Find the flux of F = (x - y)i + xj across the circle $x^2 + y^2 = 1$ in the xy-plane. f [10]

(v). Find the centroid $(\overline{x}, \overline{y})$ of the region, with constant density $\delta(x, y)$, in the first quadrant bounded by the x-axis, the parabola $y^2 = 2x$, and the line x + y = 4. [10]

Hint: $\overline{x} = \frac{M_y}{M}$, $\overline{y} = \frac{M_x}{M}$, $M = \iint_R \delta dA$, $M_x = \iint_R y \delta dA$, $M_y = \iint_R x \delta dA$,