Hard Drives

Glenn Bruns CSUMB

Lecture Objectives

After this lecture, you should be able to:

- explain performance characteristics of hard drives
- calculate the rotational delay of a hard drive given its RPM value
- calculate the time for a read or write operation
- calculate the time for a group of read or write operations – random or sequential
- describe the operation of some I/O schedulers

Hard drives

Usually one head for each surface of a platter.

Sectors toward the outside of a platter are bigger.

Physical unit of storage = a block

Photo detail

Seagate video

Seagate video https://www.youtube.com/watch?v=NtPc0jI21i0

- About 300,000 tracks per inch (along radius)!
- There is actually aerodynamics involved in the design of the head so it will float over the disk surface

Head stack assembly, from Seagate video

A drive in operation

https://youtu.be/p-JJp-oLx58?t=406 (Van Svenson)

A hard drive is a block device

In early disk interfaces, "CHS addressing" was used:

- Cylinder
- Head
- **S**ector

Now "logical block addressing" (LBA) is used. A "linear addressing scheme"

Analogy:

- CHS is like street number/street/city
- LBA is like giving every home a single number

multi-zoned drive

Drive performance

Reading/Writing of a drive involves 3 steps:

- wait for sector to rotate underneath head (rotational delay)
- 2. move the head to the right track (seek)
- 3. actually transfer the data (transfer)

Calculating average rotational delay

If a disk spins at 7200 RPM, what is the average rotational delay?

$$7200 RPM = \frac{7200 \, rev}{min}$$

$$\frac{7200 \, rev}{min} * \frac{min}{60 \, sec} = \frac{120 \, rev}{sec}$$

$$\frac{1 \, sec}{120 \, rev} * \frac{1000 \, ms}{sec} = 8.3 \frac{ms}{rev}$$

so about 4.2 ms per ½ revolution

in one go:

$$\frac{min}{7200 \ rev} * \frac{60 \ sec}{min} * \frac{1000 \ ms}{sec} = \frac{600 \ ms}{72} = 8.3 \frac{ms}{rev}$$

How long to transfer data?

- ☐ if a drive spins at 7200 RPM, rotational delay is about 4 ms
- typical seek time is about 5 ms
- typical max transfer rate is about100MB/sec

"access time" = rotational delay + seek time

Calculating time for a read or write

- wait for sector to rotate underneath head (rotational delay)
- 2. move the head to the right track (seek)
- 3. actually transfer the data (transfer)

How long will it take to read 2 MB, assuming:

- \square rotational delay = 4 ms
- \square seek time = 5 ms
- □ transfer rate = 100 MB/s

Access time = 4 ms + 5 ms = 9 ms

Transfer time = $\frac{1 \text{ s}}{100 \text{ MB}} * 2 \text{ MB} = 0.02 \text{ s} * \frac{1000 \text{ ms}}{\text{s}} = 20 \text{ ms}$

Total = 9 ms + 20 ms = 29 ms

Seagate Barracuda performace

Specifications	3TB1
Model Number	ST3000DM001
Interface Options	SATA 6Gb/s NCQ
Performance	
Spindle Speed (RPM)	7200
Cache, Multisegmented (MB)	64
SATA Transfer Rates Supported (Gb/s)	6.0/3.0/1.5
Seek Average, Read (ms)	<8.5
Seek Average, Write (ms)	<9.5
Average Data Rate, Read/Write (MB/s)	156
Max Sustained Data Rate, OD Read (MB/s)	210
Configuration/Organization	
Heads/Disks	6/3
Bytes per Sector	4096

(seagate.com)

Workload analysis

Drive performance will depend a lot on how drive is used.

Consider two cases:

Random workload:

read 32 KB from each of 100 random locations

Sequential workload:

read 3.2 MB sequentially

Assume access time is 10 ms, transfer rate is 100 MB/sec

Exercise

Given: access time is 10 ms, transfer rate is 100 MB/s We need to read 3.2 MB.

1. How long to do a sequential read of 3.2 MB?

2. How long to do 100 random reads of 32 KB each?

Random vs. Sequential workload

Sequential workload:

- time: access time + transfer time ~ 42 ms
- overall rate: 3.2 MB/0.042 s ~ 76 MB/sec

Random workload:

- time: 100 * (access time + transfer time) ~ 1030 ms
- overall rate: 3.2 MB/1.03 s ~ 3.2 MB/sec

Overall rate is about 24x better for sequential workload

Disk scheduling (aka "I/O scheduling")

Sending requests to a disk in the order the OS receives them → terrible performance

The disk scheduler decides the order in which disk requests should be processed.

Shortest Seek Time First (SSTF)

One way to do I/O scheduling: put requests closest to current track at front of queue.

Problem 1: the block address doesn't give track number.

Problem 2: ...?

Visualization of SSTF

A request arrives to read a block on cylinder 11. While the seek is in progress, new requests come in for cylinders 1, 36, 16, 34, 9, and 12, in that order.

Elevator scheduling

I/O scheduling is like elevator scheduling

What would happen if an elevator always picked up people from the closest floor?

starvation

Linux I/O schedulers

- □ Linus Elevator
 - performs merging and sorting (replaced in 2.6)
- □ Deadline I/O Scheduler
 - gives up elevator approach if old requests exist
- □ Anticipatory I/O Scheduler
 - waits a few ms after a seek for more read requests (Linux 2.6 default)
- ☐ Completely Fair Queuing I/O Scheduler
 - one queue for each process
 - designed for multimedia workloads
- □ Noop I/O Scheduler
 - maintains request queue in FIFO order

Summary

- □ disk drive hardware
- ☐ disk drive performance specs
- workload analysis
- □ I/O scheduling