

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Contents

- Back to warping: image homographies
- Computing with homographies
- The direct linear transform (DLT)
- Random Sample Consensus (RANSAC)

Back to warping: image homographies

Classification of 2D transformations

Name	Matrix	# D.O.F.
translation	$egin{bmatrix} ig[egin{array}{c c} I & t \end{bmatrix}_{2 imes 3} \end{array}$	2
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8

Classification of 2D transformations

Classification of 2D transformations

Warping with different transformations

translation affine

projective (homography)

View warping

original view

synthetic top view

synthetic side view

what are these black areas near the boundaries?

Virtual camera rotations

original view

synthetic rotations

Image rectification

two original images

rectified and stitched

Street art

Understanding geometric patterns

• What is the pattern on the floor?

magnified view of floor

Understanding geometric patterns

• What is the pattern on the floor?

magnified view of floor

rectified view

reconstruction from rectified view

Understanding geometric patterns

• Very popular in renaissance drawings (when perspective was discovered)

rectified view of floor

reconstruction

• Holbein, "The Ambassadors"

• Holbein, "The Ambassadors"

what's this???

• Holbein, "The Ambassadors"

rectified view

skull under anamorphic perspective

• Holbein, "The Ambassadors"

DIY: use a polished spoon to see the skull

We can use homographies when...

1. The scene is planar

We can use homographies when...

2. The scene is very far or has small (relative) depth variation → scene is approximately planar

We can use homographies when...

3. The scene is captured under camera rotation only (no translation or pose change)

More on why this is the case in a later lecture.

Computing with homographies

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \Rightarrow P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Multiply by the homography matrix (H):

$$P' = H \cdot P$$

3. Convert back to heterogeneous coordinates:

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

 What is the size of the homography matrix?

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Multiply by the homography matrix (H):

$$P' = H \cdot P$$

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

- What is the size of the homography matrix?
- Answer: 3 x 3

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Multiply by the homography matrix (H):

$$P' = H \cdot P$$

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

- What is the size of the homography matrix?
- Answer: 3 x 3
- How many degrees of freedom does the homography matrix have?

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Multiply by the homography matrix (H):

$$P' = H \cdot P$$

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

- What is the size of the homography matrix?
- Answer: 3 x 3
- How many degrees of freedom does the homography matrix have?
- Answer: 8

1. Convert to homogeneous coordinates:

$$p = \begin{bmatrix} x \\ y \end{bmatrix} \quad \Rightarrow \quad P = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2. Multiply by the homography matrix (H):

$$P' = H \cdot P$$

- What is the size of the homography matrix?
- Answer: 3×3
- How many degrees of freedom does the homography matrix have?
- Answer: 8
- How do we compute the homography matrix?

$$P' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \Rightarrow p' = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

The direct linear transform (DLT)

Create point correspondences

• Given a set of matched feature points $\{p_i, p_i'\}$ find the best estimate of H such that

original image

target image

• How many correspondences do we need?

• Write out linear equation for each correspondence:

$$P'=H\cdot P$$
 or $\left[egin{array}{c} x' \ y' \ 1 \end{array}
ight]=lpha \left[egin{array}{cccc} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{array}
ight] \left[egin{array}{c} x \ y \ 1 \end{array}
ight]$

• Write out linear equation for each correspondence:

$$P'=H\cdot P$$
 or $\left|egin{array}{c|c} x' \ y' \ 1 \end{array}
ight|=lpha\left|egin{array}{c|c} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{array}
ight|\left|egin{array}{c|c} x \ y \ 1 \end{array}
ight|$

• Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

• Write out linear equation for each correspondence:

$$P'=H\cdot P$$
 or $\left[egin{array}{c} x' \ y' \ 1 \end{array}
ight]=lpha\left[egin{array}{c} h_1 & h_2 & h_3 \ h_4 & h_5 & h_6 \ h_7 & h_8 & h_9 \end{array}
ight]\left[egin{array}{c} x \ y \ 1 \end{array}
ight]$

• Expand matrix multiplication:

$$x' = \alpha(h_1x + h_2y + h_3)$$
$$y' = \alpha(h_4x + h_5y + h_6)$$
$$1 = \alpha(h_7x + h_8y + h_9)$$

Divide out unknown scale factor:

$$x'(h_7x + h_8y + h_9) = (h_1x + h_2y + h_3)$$
$$y'(h_7x + h_8y + h_9) = (h_4x + h_5y + h_6)$$

how do you rearrange terms to make it a linear system?

• How do you rearrange terms to make it a linear system?

$$x'(h_7x + h_8y + h_9) = (h_1x + h_2y + h_3)$$
$$y'(h_7x + h_8y + h_9) = (h_4x + h_5y + h_6)$$

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

• Re-arrange terms:

$$h_7xx' + h_8yx' + h_9x' - h_1x - h_2y - h_3 = 0$$

$$h_7xy' + h_8yy' + h_9y' - h_4x - h_5y - h_6 = 0$$

• Re-write in matrix form:

$$egin{aligned} m{A_ih} = m{0} \ m{A_i} = egin{bmatrix} -x & -y & -1 & 0 & 0 & 0 & xx' & yx' & x' \ 0 & 0 & 0 & -x & -y & -1 & xy' & yy' & y' \end{bmatrix} \ m{h} = egin{bmatrix} h_1 & h_2 & h_3 & h_4 & h_5 & h_6 & h_7 & h_8 & h_9 \end{bmatrix}^{ op} \end{aligned}$$

How many equations from one point correspondence?

• Stack together constraints from multiple point correspondences:

$$\mathbf{A}h = \mathbf{0}$$

$$egin{bmatrix} -x & -y & -1 & 0 & 0 & 0 & xx' & yx' & x' \ 0 & 0 & 0 & -x & -y & -1 & xy' & yy' & y' \ \end{bmatrix} \ egin{bmatrix} -x & -y & -1 & 0 & 0 & 0 & xx' & yx' & x' \ 0 & 0 & 0 & -x & -y & -1 & xy' & yy' & y' \ \end{bmatrix} \ egin{bmatrix} h_1 \ h_2 \ h_3 \ h_4 \ h_5 \ \end{bmatrix} \ egin{bmatrix} h_3 \ h_4 \ h_5 \ \end{bmatrix} \ egin{bmatrix} h_6 \ h_7 \ h_8 \ \end{bmatrix} \ egin{bmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ \end{bmatrix}$$

• Homogeneous linear least squares problem

Reminder: Determining affine transformations

• Affine transformation:

• Stack equations from point correspondences:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 \\ p_4 & p_5 & p_6 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ x' \\ y' \end{bmatrix} = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \\ x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_5 \\ p_6 \end{bmatrix}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$$

Notation in system form:

 \mathbf{A}

Ax = b

Reminder: Determining affine transformations

• Convert the system to a linear least-squares problem:

$$E_{\mathrm{LLS}} = \|\mathbf{A}\boldsymbol{x} - \boldsymbol{b}\|^2$$

• Expand the error:

$$E_{\text{LLS}} = \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \mathbf{A}) \boldsymbol{x} - 2 \boldsymbol{x}^{\top} (\mathbf{A}^{\top} \boldsymbol{b}) + \|\boldsymbol{b}\|^{2}$$

• Minimize the error:

$$(\mathbf{A}^{\top}\mathbf{A})\boldsymbol{x} = \mathbf{A}^{\top}\boldsymbol{b}$$
 in matlab $\times = A \setminus b$

• Set derivative to 0, solve for x

$$\boldsymbol{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\boldsymbol{b}$$

note: you almost <u>never</u> want to compute the inverse of a matrix.

Determining the homography matrix

• Stack together constraints from multiple point correspondences:

$$\mathbf{A}h = \mathbf{0}$$

Homogeneous linear least squares problem

How do we solve this?

Determining the homography matrix

• Stack together constraints from multiple point correspondences:

$$\mathbf{A}h = \mathbf{0}$$

Homogeneous linear least squares problem

• How do we solve this? Solve with SVD

Singular value decomposition

Singular value decomposition

• General form of total least squares (warning: change of notation. x is a vector of parameters!)

$$E_{
m TLS} = \sum_i (m{a}_i m{x})^2$$
 $= \|m{A}m{x}\|^2$ (matrix form) $\|m{x}\|^2 = 1$ constraint $\|m{A}m{x}\|^2$ subject to $\|m{x}\|^2 = 1$ minimize $\|m{A}m{x}\|^2$

(equivalent)

• Solution is the eigenvector corresponding to smallest eigenvalue of A^TA

• Solution is the column of V corresponding to smallest singular value $A = U\Sigma V^T$

Solving for H using DLT

- Given $\{x_i, x_i'\}$ solve for H such that X' = HX
 - 1. For each correspondence, create 2×9 matrix A_i
 - 2. Concatenate into single $2n \times 9$ matrix A
 - 3. Compute SVD of $A = U\Sigma V^T$
 - 4. Store singular vector of the smallest singular value $h=oldsymbol{v}_{\hat{i}}$
 - 5. Reshape to get H

Create point correspondences

original image

target image

How do we automate this step?

The image correspondence pipeline

- Feature point detection
 - Detect corners using the Harris corner detector.

- Feature point description
 - Describe features using the multi-scale oriented patch descriptor.

Feature matching

The image correspondence pipeline

- Feature point detection
 - Detect corners using the Harris corner detector.

- Feature point description
 - Describe features using the multi-scale oriented patch descriptor.

Feature matching

- Sample (randomly) the number of points required to fit the model
- Solve for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model
- Repeat 1-3 until the best model is found with high confidence

- Sample (randomly) the number of points required to fit the model
- Solve for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model
- Repeat 1-3 until the best model is found with high confidence

- Sample (randomly) the number of points required to fit the model
- Solve for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model
- Repeat 1-3 until the best model is found with high confidence

- Sample (randomly) the number of points required to fit the model
- Solve for model parameters using samples
- Score by the fraction of inliers within a preset threshold of the model
- Repeat 1-3 until the best model is found with high confidence

- Algorithm:
 - Sample (randomly) the number of points required to fit the model
 - Solve for model parameters using samples
 - Score by the fraction of inliers within a preset threshold of the model
 - Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points s
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

$$N = \frac{\log(1-p)}{\log\left(1 - (1-e)^s\right)}$$

	proportion of outliers e						
S	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Given two images...

find matching features (e.g., SIFT) and a translation transform

Matched points will usually contain bad correspondences

how should we estimate the transform?

LLS will find the 'average' transform

solution is corrupted by bad correspondences

Use RANSAC

how many correspondences to compute translation transform?

need only one correspondence, to find translation model

pick the model with the highest number of inliers!

Estimating homography using RANSAC

- RANSAC loop
 - Get four point correspondences (randomly)
 - Compute H using DLT
 - Count inliers
 - Keep H if largest number of inliers
- Recompute H using all inliers

Estimating homography using RANSAC

• Useful for...

Estimating homography using RANSAC

• Useful for...

The image correspondence pipeline

- Feature point detection
 - Detect corners using the Harris corner detector.

- Feature point description
 - Describe features using the multi-scale oriented patch descriptor.

- Feature matching and homography estimation
 - Do both simultaneously using RANSAC.