Poznámka

The previous semester we work with linear equation (L-M, Fredholm, Minimizing quadratic function). This semester we will have non-linear equations like $((\partial_t u)) - \Delta u + \arctan u = f$ or $f = -\Delta_p u := -\operatorname{div}(|\nabla u|^{p-2}\nabla u)$.

We don't work with $\partial_{tt}u - \Delta_p u = f$, because nobody know how to proof it has solution (for $d \ge 2, p > 2$).

Poznámka (Credit)

Two homework. -10 to 10 points to exam from each. (If we hand anything we get credit.)

What we must know

Poznámka

Lebesgue spaces.

Fixed point theorem: 1) Let F be continuous mapping from \mathbb{R}^d to \mathbb{R}^d . Assume that \exists convex compact set in \mathbb{R}^d such that $F(\Omega) \subseteq \Omega$. Then $\exists x \in \Omega$ such that F(x) = x. 2) Let $F: X \to X$, where X is Banach space and F is continuous and compact and let $\exists \Omega \subseteq X$ convex and closed such that $F(\Omega) \subseteq \Omega$. Then $F(\Omega) \subseteq \Omega$. Then $\exists x \in X : F(x) = x$.

Luzin: Let Ω be a measurable set and $f \in L^1_{loc}(\Omega)$. Then $\forall \varepsilon > 0 \ \exists U \in \Omega, \ \mu(U) \leqslant \varepsilon, f \in C(\Omega \setminus U)$.

Egorov: Let Ω be a measurable set and $f^n \to f$ in $L^1_{loc}(\Omega)$. Then $\forall \varepsilon > 0 \ \exists U, \mu(U) \leqslant \varepsilon$ $f^n \to f$ in $C(\Omega \setminus U)$.

Lebesgue dominated convergence theorem.

Vitali convergence theorem: Let $\Omega \subseteq \mathbb{R}^d$ be bounded measurable, f^n a sequence of measurable functions, $f^n \to f$ almost everywhere in Ω . Then $\lim_{n\to\infty} \int_{\Omega} f^n = \int_{\Omega} f$, provided f^n is uniformly equi-integrable $(\forall \varepsilon > 0 \ \exists \delta \ \forall U, \mu(U) \leqslant \varepsilon)$.

Fatou lemma: $f^n \to f$ almost everywhere in Ω and $f^n \ge 0$, then $\liminf_{n\to\infty} \int_{\Omega} f^n \ge \int_{\Omega} f$.

Regularization: $\eta \in C_0^{\infty}(B_1(\mathbf{o}))$ non-negative, radially symmetric and $\int_{\mathbb{R}^d} \eta(x) dx = 1$. Then $\forall f \in L^1_{loc}(\Omega)$ we extend f by "0" to \mathbb{R}^d and $f_{\varepsilon} := \eta_{\varepsilon} * f$, where $\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^d} \eta(x/\varepsilon)$. Then $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^d)$ and $\forall p \in [1, \infty)$ $f \in L^p(\Omega) \implies f_{\varepsilon} \to f$ in $L^p(\Omega)$. (And for $p = \infty$: $f \in L^{\infty}(\Omega) \implies f_{\varepsilon} \to f$ in $L^q(\Omega)$ $\forall q \in [1, \infty)$).

Reflexive and separable spaces. $(L^p(\Omega))$ is a Banach space, separable for $p \in [1, \infty)$, reflexive for $p \in (1, \infty)$.

Nemytsky operator: (Assume that for almost all $x \in \Omega$ and , $|f(x,y)| \leqslant g(x)$ +

 $C\sum_{i=1}^{N}|y_1|^{p_i/p}$ for some $p_i\in[1,\infty), p\in(1,\infty), g\in L^p(\Omega)$. Then $\forall u_i\in L^{p_i}$, the function $f(\cdot,u_1,\ldots,u_n)$ is measurable, $(u_1,\ldots,u_n)\mapsto f(\cdot,u_1,\ldots,u_n)$ is continuous $L^{p_1}(\Omega)\times\ldots\times L^{p_N}(\Omega)\to L^p(\Omega)$. This mapping is called N.O.)

1 Sobolev spaces (and Bochner spaces)

Poznámka

 Ω is open bounded subset of \mathbb{R}^d .

Věta 1.1 (Local approximation by smooth functions)

Let $f \in W^{k,p}(\Omega)$ and extend it by "0" outside. Define $f_{\varepsilon} := \eta_{\varepsilon} * f$ and set $\Omega_{\varepsilon} := \{x \in \Omega | B(x,\varepsilon) \subseteq \Omega\}$. Then $D^{\alpha}(f_{\varepsilon}) = (D^{\alpha}f)_{\varepsilon}$ almost everywhere in $\Omega_{\varepsilon} \ \forall \alpha, |\alpha| \leqslant k$ and $\forall \Omega' \subseteq \overline{\Omega'} \subseteq \Omega$ and $p \in [1,\infty)$ $f_{\varepsilon} \to f$ in $W^{k,p}(\Omega')$. (If $p = \infty$, then $f_{\varepsilon} \to f$ in $W^{1,\infty}(\Omega')$.)

 $D\mathring{u}kaz$

$$\frac{\partial}{\partial x_{i}} (f_{\varepsilon}(x)) = \frac{\partial}{\partial x_{i}} \int_{\mathbb{R}^{d}} \eta_{\varepsilon}(x - y) f(y) dy =$$

$$= \int_{\mathbb{R}^{d}} \frac{\partial}{\partial x_{i}} (\eta_{\varepsilon}(x - y)) f(y) dy = -\int_{\mathbb{R}^{d}} \frac{\partial}{\partial y_{i}} (\eta_{\varepsilon}(x - y)) f(y) dy =$$

$$= -\int_{B(x,\varepsilon)} \frac{\partial}{\partial y_{i}} (\eta_{\varepsilon}(x - y)) f(y) dy = -\int_{\Omega} \frac{\partial}{\partial y_{i}} (\eta_{\varepsilon}(x - y)) f(y) dy =$$

$$= \int_{\Omega} \eta_{\varepsilon}(x - y) \frac{\partial f(y)}{\partial y_{i}} dy = \int_{\mathbb{R}^{d}} \eta_{\varepsilon}(x - y) \frac{\partial f(y)}{\partial y_{i}} = \left(\frac{\partial f(y)}{\partial y_{i}}\right)_{\varepsilon} (x).$$

Now we take sufficiently small ε , such that $\Omega_{\varepsilon} \subseteq \Omega'$. Then $D^{\alpha} f_{\varepsilon} = (D^{\alpha} f)_{\varepsilon} \to D^{\alpha} f$ in $L^{p}(\Omega')$.

Věta 1.2 (Composition of Lipschitz and Sobolev functions)

Let $\Omega \subseteq \mathbb{R}^d$ be open and $f: \mathbb{R} \to \mathbb{R}$ be Lipschitz. Assume that $u \in W^{1,p}(\Omega)$. Then $(f(u) - f(0)) \in W^{1,p}(\Omega)$ and $\nabla f(u) = f'(u) \nabla u \chi_{x,u(x) \notin S_f}$, where S_f are points where f'(s) doesn't exists.

Moreover define $\Omega_a := \{x \in \Omega | u(x) = a\}$, then $\nabla u = 0$ almost everywhere in Ω_a .

Důkaz

We know, that $f \in C^1(\mathbb{R})$, $f_{lip} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty$.

So $|f(u(x)) - f(0)|^p \le f_{lip}^p \cdot |u(x)|^p$, if $u \in L^p(\Omega) \implies f(u) - f(0) \in L^p(\Omega)$.

Next,
$$\frac{\partial f(u)}{\partial x_i} = f'(u) \frac{\partial u}{\partial x_i} \implies f(u) - f(0) \in W^{1,p}(\Omega).$$

We take $\eta \in C_0^{\infty}(\Omega)$ and $u \in W^{1,1}(u)$.

$$\int_{\Omega} \frac{\partial \eta}{\partial x_{i}} f(u) = \lim_{\varepsilon \to 0_{+}} \int_{\Omega} \frac{\partial \eta}{\partial x_{i}} f(u_{\varepsilon}) \xrightarrow{\text{IBP, both are smooth}} \lim_{\varepsilon \to 0_{+}} \int_{\Omega} \eta \frac{\partial f(u_{\varepsilon})}{\partial x_{i}} =$$

$$= -\lim_{\varepsilon \to 0_{+}} \int_{\Omega} \underbrace{\eta f'(u_{\varepsilon})}_{\to \eta f(u_{\varepsilon}) \text{ in } L^{1}, \text{ so weakly in } L^{\infty}} \cdot \underbrace{\frac{\partial u_{\varepsilon}}{\partial x_{i}}}_{\to \frac{\partial u_{\varepsilon}}{\partial x_{i}} \text{ in } L^{1}}.$$

TODO?

Věta 1.3 (Characterization of sobolev functions)

Let $\Omega \subseteq \mathbb{R}^d$ open, bounded. Define $\Omega_{\delta} := \{x \in \Omega | B(x, \delta) \subseteq \Omega\}$ and $u_i^h(x) := \frac{u(x+h \cdot e_i) - u(x)}{h}$, $h > 0, i \in [d]$.

- If $u \in W^{1,p}(\Omega)$ then $\forall \delta \ \forall h < \frac{\delta}{2} : \|u_i^h\|_{L^p(\Omega_\delta)} \le \left\|\frac{\partial u}{\partial x_i}\right\|_{L^p}(\Omega)$.
- If $p \in (1, \infty]$ and $\sup_{\delta > 0} \sup_{h < \frac{\delta}{2}} \|u_i^h\|_{L^p(\Omega_\delta)} \le k$, then $\frac{\partial u}{\partial x_i}$ exists and $\left\|\frac{\partial u}{\partial x_i}\right\|_{L^p(\Omega)} \le k$.
- If $p \in [1, \infty)$ and if $u \in W^{1,p}(\Omega)$ then $u_i^h \to \frac{\partial u}{\partial x_i}$ in $L^p_{loc}(\Omega)$.
- (* If p = 1 and $\sup_{\delta>0} \sup_{h<\frac{\delta}{2}} \|u_i^h\|_{L^p(\Omega_\delta)} \leqslant k$, then $u \in BV(\Omega)$. Moreover if $\leqslant k$ and u_i^h is equiintegrable, then $u \in W^{1,1}(\Omega)$.)

Důkaz

"Second point" Fix $\Omega_1 \subset\subset \Omega$. Fix δ_0 , $\Omega_1 \subseteq \Omega_{\delta_0} \Longrightarrow \|u_i^h\|_{L^p(\Omega_1)} \leqslant k$. $u_i^h \to \overline{u}$ in $L^p(\Omega_1)$ and $u_i^h \to^* \overline{u}$ in $L^{\infty}(\Omega_1)$. We want $\|\overline{u}\|_{L^p(\Omega_1)} \leqslant \liminf_{h\to 0_+} \|u_i^h\|_{L^p(\Omega_1)} \leqslant k$.

$$\int_{\Omega_1} \overline{u} \varphi dx = \lim_{h \to 0_+} \int_{\Omega} u_i^h \varphi = \lim_{h \to 0_+} \int_{\Omega_1} \frac{u(x + h \cdot e_i) - u(x)}{h} \varphi(x) dx =$$

$$= \lim_{h \to 0_+} \int_{\Omega} \frac{u(x + h \cdot e_i)}{h} \varphi(x) - \frac{u(x)}{h} \varphi(x) dx =$$

$$= -\lim_{h \to 0_+} \int_{\Omega} u(x) \frac{\varphi(x) - \varphi(x - h \cdot e_i)}{h} dx = -\int_{\Omega_1} \frac{\partial \varphi}{\partial x_i} u.$$