Квантово-химическое моделирование молекулярных систем

курс лекций

2025г

Содержание

1	M_{H}	огоэлектронные волновые функции и операторы	1
	1.1	Постановка задачи. Атомные единицы. Многоэлектронная проблема	1
	1.2	Приближение Борна-Оппенгеймера. Поверхность потенциальной энергии	2
	1.3	Электронное уравнение Шрёлингера. Летерминанты слейтера	F

1 Многоэлектронные волновые функции и операторы

1.1 Постановка задачи. Атомные единицы. Многоэлектронная проблема

Нашей задачей является нахождение решений стационарного уравнения Шрёдингера в нерелятивстском приближении

$$\hat{H}|\psi\rangle = E|\psi\rangle \tag{1.1}$$

В СГС для атома водорода:

$$\left[-\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{r} \right] \psi = E\psi \tag{1.2}$$

Чтобы обезразмерить данное уравнение в атомных единицах принято полагать: $m_e=1, e=1, \hbar=1$ (скорость света тогда равна обратной постоянной тонкой сктруктуры)

$$\left[-\frac{1}{2}\nabla^2 - \frac{1}{r} \right] \psi = E\psi \tag{1.3}$$

Энергия атома водорода в таком случае равна $-\frac{me^4}{2\hbar^2}=-0.5$ ед. Хартри =-13.6 эВ. В случае нескольких ядер и электронов:

$$\psi = \psi(\mathbf{R}_1, \dots, \mathbf{R}_K, \mathbf{r}_1, \dots, \mathbf{r}_N, \sigma_1, \dots, \sigma_N)$$
(1.4)

Для молекулы воды возникает 43 независимых координаты, поэтому сетка параметров в 100 точек на каждой координате приведёт к общему числу точек: $100^{43} = 10^{86}$, что не позволяет решать уравнение численно.

Решать систему дифференциальных уравнений можно несколькими способами:

- 1) Функции Грина. Например, метод GW. Хорошо предсказывает bandgap, используется для твердого тела и молекул.
- 2) Метод рядов Фурье $\psi = \sum_k c_k \phi_k$. Такой ортогональный базис можно получить через детерминанты Слейтера, о чём будет сказано далее.

Покажем основные обозначения для компонент гамильтониана:

$$\hat{H} = \hat{T} + \hat{V} = \hat{T}_n + \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee} + \hat{V}_{nn}$$
(1.5)

где

$$\hat{T}_n = -\frac{1}{2} \sum \frac{1}{M_{\alpha}} \nabla_{\alpha}^2, \ \hat{T}_e = -\frac{1}{2} \sum \nabla_i^2$$
 (1.6)

$$\hat{V}_{nn} = \sum_{\alpha < \beta} \frac{Z_{\alpha} Z_{\beta}}{|\vec{R}_{\alpha} - \vec{R}_{\beta}|} \hat{V}_{ne} = -\sum_{\alpha, i} \frac{Z_{\alpha}}{|\vec{R}_{\alpha} - \vec{r}_{i}|} \hat{V}_{ee} = \sum_{i < j} \frac{1}{|\vec{r}_{i} - \vec{r}_{j}|}$$
(1.7)

Помимо этого есть спин-спиновое взаимодействие (например, в уране, это взаимодействие может иметь вклад до 5% от ответа, что очень много для расчётов в химии)

Также есть и спин-орбитальное взаимойствие (например, в органике практически нет необходимости его учитывать). Для учёта данного взаимодействия существует *гамильтониан Брейта*.

Учёта выше перечисленных взаимодействий не требуется для первых двух периодов таблицы Менделеева.

1.2 Приближение Борна-Оппенгеймера. Поверхность потенциальной энергии

Поскольку ядра значительно тяжелее эелктронов, их движение происходит медленнее, чем у электронов. Поэтому хорошей аппроксимацией можно считать, что электроны в молекуле движутся в поле неподвижных ядер. Следовательно, в (1.6) можно пренебречь вкладом \hat{T}_n , а \hat{V}_{nn} можно считать константой, что не влияет на собственные функции гамильтониана, поэтому он приводится к виду

$$\hat{H}_e = \hat{T}_e + \hat{V}_{ne} + \hat{V}_{ee} + V_{nn}, \tag{1.8}$$

Потенциал V_{nn} часто включают в гамильтониа, чтобы корректнее интерпретировать спектр с точки зрения физического смысла. Таким образом приходим к электронному уравнению Шрёдингера

Рис. 1: Поверхность потенциальной энергии ${\rm H}_2$

$$\hat{H}_e \psi_e(\mathbf{r}|\mathbf{R}) = E_e(\mathbf{R}) \psi_e(\mathbf{r}|\mathbf{R}), \tag{1.9}$$

где положение ядер R является параметром.

Энергия $E_e(\mathbf{R})$ может быть использована как потенциал при решении задачи движения ядер. Множество её значений в зависимости от координат называется поверхностью потенцильной энергии Её график в случае молекулы H_2 указан на рисунке 1. Имеется всего лишь одна координата - расстояние между ядрами, причём нижняя кривая соответствтует синглетному состоянию (S=0), или основному состоянию для спектра электронного гамильтониана в каждой точке \mathbf{R} , а верхняя - триплентному (S=1).

Стоит отметить, что хотя массы электронов и ядер отличаются на порядки $(10^3 \div 10^5)$ имеются и случаи, когда пренебрегать такой разницей уже нельзя. Например, при исследовании лёгких веществ с помощью мюонов. Помимо этого, приближение Борна-Оппенгеймера часто предполагает большое расстояние между поверхностями потенциальной энергии, и в связи с этим приводит к невозможности системы переходить между ними. Такое, в частности, наблюдается в молекулах ретиналя, отвечающих за детектирования света клетками нашего глаза. В условиях адиабатичности они бы не могли менять конформацию.

Рис. 2: Поверхность потенциальной энергии ретиналя в двух наиболее распространённых моделях. 0° соответствтует транс-конформации, 180° цис-конформации При поглощении фотона состояние системы переходит с ППЭ S_0 на S_1 , где далее релаксирует до точки так называемого квазипересечения (avoided crossing) или точки квазивырождения, где учет неадиабатичности становится очень критичным, как читать может установить после прочтения данного параграфа.

Поправки в приближении Борна-Оппенгеймера

Волновую функцию всей системы можно представить 1 как

$$\psi = \sum_{k=0}^{\infty} \chi_k(\mathbf{R}) \psi_k(\mathbf{r}|\mathbf{R})$$
(1.10)

где $\chi_k({m R})$ - ядерные волновые функции

 $^{^{1}}$ При каждом фиксированном R функция $\psi(R)$ раскладывается по ортонормированному базису собственных функций электронного гамильтониана (1.8): $\langle \psi_i | \psi_j \rangle = \delta_{ij}$.

Тогда уравнение Шредингера 1.1 примет вид:

$$(\hat{T}_n + \hat{H}_e) \sum_k \chi_k(\mathbf{R}) \psi_k(\mathbf{r}|\mathbf{R}) = E \sum_k \chi_k(\mathbf{R}) \psi_k(\mathbf{r}|\mathbf{R})$$
(1.11)

Домножим слева на $\langle \psi_m |$:

$$\langle \psi_m | \hat{T}_n | \sum_k \chi_k \psi_k \rangle + \langle \psi_m | \hat{H}_e | \sum_k \chi_k \psi_k \rangle = E \langle \psi_m | \sum_k \chi_k \psi_k \rangle$$
 (1.12)

Воспользуемся ортонормированностью базиса: $\langle \psi_m | \sum_k \chi_k \psi_k \rangle = \sum_k \chi_k \delta_{mk} = \chi_m$, а также тем, что $\langle \psi_m | \hat{H}_e = \langle \psi_m | E_m$.

$$-\frac{1}{2}\sum_{k}\left[\sum_{\alpha}\frac{1}{M_{\alpha}}\langle\psi_{m}|\nabla_{\alpha}^{2}|\psi_{k}\chi_{k}\rangle\right] + E_{m}\chi_{m} = E\chi_{m}$$
(1.13)

Распишем лапласиан:

$$\nabla_{\alpha}\nabla_{\alpha}\chi_{k}\psi_{k} = \nabla_{\alpha}\left[(\nabla_{\alpha}\chi_{k})\psi_{k} + \chi_{k}(\nabla_{\alpha}\psi_{k})\right] = (\nabla_{\alpha}^{2}\chi_{k})\psi_{k} + 2(\nabla_{\alpha}\chi_{k})(\nabla_{\alpha}\psi_{k}) + \chi_{k}(\nabla_{\alpha}^{2}\psi_{k})$$

Функция вида $(\nabla_{\alpha}\chi_k)$ зависит только от параметра R, поэтому её можно выносить из матричного элемента. В итоге слагаемое с суммой из (1.13) преобразуется так:

$$\sum_{k} \left(-\frac{1}{2} \sum_{\alpha} \frac{1}{M_{\alpha}} (\nabla_{\alpha}^{2} \chi_{k}) \delta_{mk} - \sum_{\alpha} \frac{1}{M_{\alpha}} \langle \psi_{m} | \nabla_{\alpha} | \psi_{k} \rangle \nabla_{\alpha} \chi_{k} - \frac{1}{2} \sum_{\alpha} \frac{1}{M_{\alpha}} \langle \psi_{m} | (\nabla_{\alpha}^{2} \psi_{k}) \rangle \chi_{k} \right) = \\
= \underbrace{\left[-\frac{1}{2} \sum_{\alpha} \frac{1}{M_{\alpha}} \nabla_{\alpha}^{2} \right]}_{\hat{\mathcal{R}}} \chi_{m} - \sum_{k} \sum_{\alpha} \frac{1}{M_{\alpha}} \langle \psi_{m} | \nabla_{\alpha} | \psi_{k} \rangle \nabla_{\alpha} \chi_{k} - \frac{1}{2} \sum_{k} \sum_{\alpha} \frac{1}{M_{\alpha}} \langle \psi_{m} | (\nabla_{\alpha}^{2} \psi_{k}) \rangle \chi_{k} \tag{1.14}$$

Таким образом (1.13) переходит в

$$\hat{T}_{n}\chi_{m} + E_{m}\chi_{m} - \sum_{k} \left[\sum_{\alpha} \frac{1}{M_{\alpha}} \overbrace{\langle \psi_{m} | \nabla_{\alpha} | \psi_{k} \rangle}^{A_{mk}} \nabla_{\alpha} \right] \chi_{k} - \frac{1}{2} \sum_{k} \left(\sum_{\alpha} \overbrace{\langle \psi_{m} | \nabla_{\alpha}^{2} | \psi_{k} \rangle}^{B_{mk}} \right) \chi_{k} = E\chi_{m} \quad (1.15)$$

Попробуем упростить данное уравнение. Рассмотрим при каких условиях можно пренебречь недиагональными матричными элементами.

Оценим A_{mk} . При m=k в случае выбора вещественных волновых функций.

$$0 = \nabla_{\alpha} \langle \psi_m | \psi_m \rangle = 2 \langle \psi_m | \nabla_{\alpha} \psi_m \rangle$$

При $m \neq k$

$$0 = \nabla_{\alpha} \langle \psi_m | \hat{H}_e | \psi_k \rangle = E_k \langle \nabla_{\alpha} \psi_m | \psi_k \rangle + \langle \psi_m | (\nabla_{\alpha} \hat{H}_e) | \psi_k \rangle + E_m \langle \psi_m | \nabla_{\alpha} \psi_k \rangle$$

Откуда, пользуясь тем, что $\langle \psi_m | \nabla_\alpha \psi_k \rangle = - \langle \nabla_\alpha \psi_m | \psi_m \rangle$, получаем

$$A_{mk} = \langle \psi_m | \nabla_\alpha \psi_k \rangle = \frac{\langle \psi_m | (\nabla_\alpha \hat{H}_e) | \psi_k \rangle}{E_k - E_m}$$
(1.16)

Уравнение (1.16) называется формулой Борна-Фока. В случае, если $A_{mk} \ll A_{mm}$, $m \neq k$, что характерно для больших расстояний между энергиями E_k и E_m , в уравнении (1.15) можно пренебречь слагаемыми с A_{mk} , $m \neq k$. Аналагично пренебрегаются и B_{mk} , $m \neq k$, как поправки второго порядка к неадиабатичности.

С учётом вышесказанных приближений уравнение (1.15) переходит в

$$\left[\hat{T}_n + E_m(\mathbf{R})\right] \chi_m + \left\langle \psi_m | \hat{T}_n | \psi_m \right\rangle \chi_m = E \chi_m \tag{1.17}$$

Матричный элемент B_{mm} называется диагональной Борн-Оппенгеймееровской поправкой (DBOS). С DBOS уравнение (1.17) записано в адиабатическом приближении. Без DBOS в приближении Борн-Оппенгеймера:

$$\left[\hat{T}_n + E_m(\mathbf{R})\right] \chi_m = E\chi_m \tag{1.18}$$

Задача. Оцените поправку B_{mn} в приближении Борна-Оппенгеймера.

1.3 Электронное уравнение Шрёдингера. Детерминанты слейтера

Напомним вид уравнения Шрёдингера для системы электронов:

$$\hat{H}_e \psi_e(\mathbf{r}|\mathbf{R}) = E_e(\mathbf{R})\psi_e(\mathbf{r}|\mathbf{R}), \tag{1.9}$$

Прежде, чем его решать, нужно потребовать некоторые условия на волновую функцию, а именно

- 1) $\int |\psi_e|^2 d\mathbf{r} d\sigma = 1$
- 2) $\psi(\mathbf{r_1}, \mathbf{r_2}, \dots) = -\psi(\mathbf{r_2}, \mathbf{r_1}, \dots)$ (антисимметричность по перестановкам) Асимптотические свойства:
- 3) $\psi(\mathbf{r} \to \infty) \sim e^{-r}$
- 4) $\psi(\mathbf{r} \to \mathbf{R}_{\alpha}) \sim e^{-\alpha|r-R_{\alpha}|}$
- 5) $\psi(\mathbf{r}_1 \to \mathbf{r}_2) \sim \alpha |r_1 r_2| + C$

Последнее свойство является самой тяжелой преградой для численного решения электронного уравнения Шрёдингера. То есть у функции при стремлении позиций электронов друг к другу должен быть излом и потеря гладкости.

Теперь воспользуемся методом Фурье для решения (1.9). Для этого представим решение в виде

$$\psi_e = \sum_k c_k \Phi_k, \tag{1.19}$$

где базисные функции Φ_k являются многоэлектронными и явля.тся антисимметричными по перестановкам. Помимо этого $\langle \Phi_k | \Phi_l \rangle = \delta_{kl}$.

Рассмотрим в качестве примера систему из двух электронов (атом гелия) Наивная попытка оставить волновую функцию будет следующей:

$$\psi_e = \phi_{1s}(\mathbf{r}_1)\phi_{1s}(\mathbf{r}_2),\tag{1.20}$$

однако такая функция не удовлетворяет запрету Паули и не учитывает спин.

Введём следующие обозначения:

$$\eta = \alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ \eta = \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
(1.21)

Переменная α соответствует состоянию спина вверх, а β — вниз. С помощью скобок $\alpha(i)$ будем обозначать состояние спина i-го электрона. Например, $\alpha(1)$ означает, что первый электрон имеет спин вверх.

Теперь, чтобы создать правильную многоэлектронную волновую функцию вместо (1.20) антисимметризуем её ($\psi_{antisym} = \psi(\boldsymbol{r}_1, \boldsymbol{r}_2) - \psi(\boldsymbol{r}_2, \boldsymbol{r}_1)$) и добавим спин:

$$\psi_{e} = \psi_{1s}(\boldsymbol{r}_{1})\psi_{1s}(\boldsymbol{r}_{2}) = \frac{1}{\sqrt{2}}\phi_{1s}(\boldsymbol{r}_{1})\alpha(1)\phi_{1s}(\boldsymbol{r}_{2})\beta(2) - \frac{1}{\sqrt{2}}\phi_{1s}(\boldsymbol{r}_{2})\alpha(2)\phi_{1s}(\boldsymbol{r}_{1})\beta(1) =$$

$$= \begin{vmatrix} \phi_{1s}(\boldsymbol{r}_{1})\alpha(1) & \phi_{1s}(\boldsymbol{r}_{2})\alpha(2) \\ \phi_{1s}(\boldsymbol{r}_{2})\beta(1) & \phi_{1s}(\boldsymbol{r}_{1})\beta(2) \end{vmatrix} \quad (1.22)$$

В общем случае, вспомнив формулу для определителя, детерминант Слейтера можно записать так:

$$\Phi_e = \frac{1}{\sqrt{N!}} \sum_{K=\sigma(k_1,\dots,k_N)} (-1)^p \psi_{k_1}(1) \dots \psi_{k_N}(N)$$
(1.23)

Большинство задач требуют расчёта матричного элемента:

$$\langle \psi_e | \hat{A} | \psi_e \rangle,$$
 (1.24)

где \hat{A} - произвольный оператор. Это приводит задачу к тому, что нужно считать матричные элементы по детерминантам Слейтера:

$$\langle \psi_e | \hat{A} | \psi_e \rangle = \sum_{K,L} c_K^* c_L \langle \Phi_K | \hat{A} | \Phi_L \rangle, \tag{1.25}$$

чего мы пока что делать не умеем. Напрямую считать это невозможно, поскольку, например, при N=100 (вообще говоря типичное значение для молекул), N!=?.