ABG and Acid-Base Status

By Joseph M. Parker, MD

INDICATION

- Oxygenation
- Ventilation
- Acid-Base Status

Blood Gas Report

pH (No Units)

7.35-7.45

• **PaCO**₂ (mm Hg)

35-45

• PaO₂ (mm Hg) 0.5(age) **110** -

• HCO_{3} (mmol/L): calc. 22-26

• B.E. (mmol/L): Nomo. -2 to 2

• O_2 saturation: calc. >90%

ANALYSIS OF OXYGENATION

- Alveolar Gas Equation
 - $-PAO_2 = FIO_2(P_B 47) 1.2(PaCO_2)$
 - PAO₂ defines upper limit of PaO₂
 - $PAO_2 = 102$
 - FIO₂ is 21% at all altitudes
 - Factor 1.2 determined by RQ varies with FIO₂
 - Water vapor pressure = 47 mm Hg
 - $-PAO_2 = 150 1.2(PaCO_2)$ at room air

Alveolar-Arterial P0₂ Difference

- $A-aDo_2 = PAO_2-PaO_2$ (from ABG)
- Insight in the patients state of gas exchange
 - If elevated, defect in gas exchange
 - Proper interpretation of the PaO₂
- Ideal conditions $PAO_2 = PaO_2$
 - Every alveolus perfectly ventilated
 - No diffusion impairment
 - All pulmonary capillaries perfused
 - No shunt present

Arterial Oxygen Values

• Age	L.L. PaO2	U.L. A-
aDo2		
20	84	17
30	81	21
40	78	24
50	75	27
60	72	31

- Max A-aDo2 = 2.5 + Age/5
- Hypoxemia PaO2 < 70 (relative)

Causes of a low PaO₂ and A-a Do₂

- V/Q mismatch
- Shunt
- Diffusion Impairment
- Alveolar Hypoventilation(Nl A-a Do2)
- Decreased mixed venous O₂
 content
- P(B): Altitude

Alveolar Hypoventilation

- Muscle weakness
- Neuromuscular Junction Disease
- Reduced Respiratory Drive
- Chest wall elastic loads

V/Q Mismatch

- Asthma
- COPD
- Pneumonia
- Pulmonary Embolism
- Pulmonary Edema

Reduced Diffusion Capacity

- Interstitial Lung Disease
- Pulmonary Edema
- Reduced Lung Volume
- Emphysema
- Pulmonary Resection
- Anemia

Shunt

- Intrapulmonary
 - ARDS
 - Pneumonia
 - Pulmonary Edema
- Extrapulmonary
 - Congenital Heart Disease
 - Pulmonary Vascular Disease
- % Shunt = (700 -PaO2)*0.05 (Nl < 5%)
 - 100 % oxygen

Pitfalls

- Venous Sample: PaO2 = 40, PaCO2 = 45
 - Free flow into syringe
- Air-bubble in syringe
 - Falsely elevated PaO2
- High number of WBC
 - Consumption by metabolism
- Transported on ice under anaerobic conditions

Approach To Hypoxemia

Problems: Oxygenation

- Room Air, PaO2 = 45, PaCO2 = 30
 - -PAO2 = 150 1.2(30) = 114 mm Hg
 - -A-aDo2 = 114 45 = 69 elevated
- 100% O2, PaO2 = 65, PaCO2 = 32
 - minimal elevation in PaO2
 - shunt major cause of hypoxemia
 - % shunt = 32%

Problems: Oxygenation

- Room Air, PaO2 = 45, PaCO2 = 45
 - -PAO2 = 150 1.2(45) = 96
 - -A-aDO2 = 96 45 = 51
- 100% O2, PaO2 = 555, PaCO2 = 48
 - -PAO2 = 1.0(760 47) 1.2(48) = 655
 - A-aDO2 = 655 555 = 100
 - Dramatic increase in PaO2
 - V/Q mismatch major cause of hypoxemia

OXIMETRY

- Binding sites for O2 are heme groups
- OXYGEN SATURATION
 - % of all heme sites saturated with O2
- Measures the difference in the light absorbance characteristics between Oxy Hb and Deoxy Hb
- SpO2 = $\frac{Oxy Hb}{Oxy Hb}$ x 100 Oxy Hb + Deoxy Hb
- ABG SaO2 is a calculated value from PaO2

Oximetry

- 54 yo WM with headaches, dyspnea and a Kerosene heater at home
 - ABG: PaO2 = 89, PaCO2 = 38, pH = 7.43
 - -SaO2 = 98%
 - Whats the problem?

Oximetry

- Carboxyhemoglobin: Hb +CO
 - Does not affect PaO2 only SaO2
 - Pulse oximetry reads CO-HB as OxyHb
- Follow Up:
 - -PaO2 = 79, PaCO2 = 31, SpO2 = 53%, pH = 7.36
 - CO-Hb46%

Problem

- 42 yo HIV pt with fevers, chills, SOB, cough
 - Taking Dapsone for PCP prophylaxis
 - ABG: PaO2 82.5, PaCO2 35.2, pH 7.43, SaO2 89%
 - PCP Pneumonia, started onPrimaquine, Clinda, and Prednisone
 - ABG: PaO2 378, PaCO2 of 35, pH 7.42, SaO2 80%
 - Whats Happening?

Methemoglobin

- Oxidation of Fe++ to Fe+++ state
- Unlike CO-Hb, Met-Hb does depress the SpO2 reading
- Both Dapsone and Primaquine are oxidants
- Met-Hb depresses the SpO2 to 80's
 - Further increaeses in Met-Hb do not depress SpO2
- Methylene Blue administration is Rx

Co-oximetry

• SpO2 = Oxy-Hb
Oxy-Hb+Deoxy-Hb+COHb+Met-Hb

ANALYSIS OF VENTILATON

• $PaCO2 = VCO2 \times K$ VA

Hypercapnea > 45 mm Hg (Hypoventilation) Respiratory Acidosis Hypocapnea < 35 mm Hg (Hyperventilation) Respiratory Alkalosis

Respiratory Acid-Base Status

- Respiratory Disturbances
 - $-CO2+H20 \rightarrow H2CQ3 + H+HCO3$
 - Acute changes:
 - Delta 10 mm Hg pCO2, pH changes by 0.08
 - Chronic change: 40 + B.E.
 - Alveolar Ventilation
 - **TVA L** CO2 **T** pH
- Respiratory Acidosis pCO2 > 45
- Respiratory Alkalosis pCO2 < 35

Dead Space Ventilation

- Minute Ventilation:Volume of air breathed / minute
 - -MV = VA + Vd(dead space ventilation)
 - Increased Vd increases the work of breathing
 - MV-PaCO2 disparity
 - MV(L/M) PaCO2
 - **6 40**
 - **12 30**
 - 24 20

Dead Space Pathology

- Anatomic
 - Rapid shallow breathing
- Alveolar Deadspace
 - Acute pulmonary embolus
 - Decrease Cardiac Output
 - Acute Pulmonary Hypertension
- Positive Pressure Ventilation
- Alveolar Septal Destruction (COPD)