Before turning to the proof of Theorem 3.15, we gather a few facts relating hyperplanes and relative contact complexes.

Proposition 3.17. Let X be a quasi-median graph and \mathbb{G} be a collection of gated subgraphs. For a finite collection of hyperplanes \mathcal{J} of X, the following statements are equivalent:

- \mathcal{J} is a simplex of $Cont^{\triangle}(X,\mathbb{G})$;
- there exists $Y \in \mathbb{G}$ and $x \in Y \cap \bigcap_{J \in \mathcal{J}} N(J)$ such that Y contains the clique of J containing x for each $J \in \mathcal{J}$.

Moreover, if \mathbb{G} is a star-covering collection of gated subgraphs, the above statements are equivalent to:

• for every $x \in \bigcap_{J \in \mathcal{J}} N(J)$, there exists $Y \in \mathbb{G}$ that contains the clique of J containing x for each $J \in \mathcal{J}$.

Proof. Suppose $\mathcal{J} = \{J_1, \ldots, J_n\}$ is a simplex of $\operatorname{Cont}^{\triangle}(X, \mathbb{G})$. Then there exists $Y \in \mathbb{G}$ such that $\{N(J_1), \ldots, N(J_n)\} \cup \{Y\}$ is a collection of pairwise intersecting gated subgraphs, and the Helly property implies that $Y \cap \bigcap_{i=1}^n N(J_i)$ is non-empty. Let $x \in Y \cap \bigcap_{i=1}^n N(J_i)$. Since J_i crosses Y, the clique of J_i containing x is contained in Y by Corollary 2.6. That the second and third statements imply the first one follows directly from the definitions.

Let us prove that the first statement implies the third one assuming that \mathbb{G} is star-covering. Let $\mathcal{J} = \{J_1, \ldots, J_n\}$ be a simplex of $\operatorname{Cont}^{\triangle}(X, \mathbb{G})$ and $x \in \bigcap_{J \in \mathcal{J}} N(J)$. The hyperplanes in \mathcal{J} are pairwise in contact, and there exists $Z \in \mathbb{G}$ such that each $J \in \mathcal{J}$ crosses Z. If $x \in Z \cap \bigcap_{i=1}^n N(J)$, then Corollary 2.6 implies that the clique of J containing x is contained in Z for each $J \in \mathcal{J}$; in this case, it suffices to set Y := Z. Suppose that $x \notin Z \cap \bigcap_{i=1}^n N(J_i)$ and let J be a hyperplane separating x from Z, which we can choose to be tangent to x. Let C be the clique of J containing x. Since \mathbb{G} is star-covering, there exists $Y \in \mathbb{G}$ containing all the prisms that contain C. For every $1 \le i \le n$, let C_i be the clique of C_i containing C_i span a prism containing C_i and hence C_i is contained in C_i .

The rest of the section is dedicated to the proof of Theorem 3.15. We fix a quasi-median graph X and a collection \mathbb{G} of gated subgraphs. The equivalence of the two statements of Theorem 3.15 will be proven in Lemma 3.20 by showing that for each vertex $x \in X$, $\mathrm{sL}_{\mathbb{G}}(x)$ is homotopy equivalent to $\mathrm{L}_{\mathbb{G}}(x)$.

Let X^{\odot} be the *perforation* of X, i.e. the space obtained from the prism-completion X^{\square} of X by removing a small open ball around each vertex of a fixed radius $\epsilon < 1/2$, if we endow X^{\square} with a length metric that extends the Euclidean metrics on its prisms. Given a vertex $x \in X$, the sphere $S(x, \epsilon)$ can be identified with the link of x in the prism-completion X^{\square} . In other words, we can think of $S(x, \epsilon)$ as the simplicial complex whose vertices are the edges of X containing x and whose simplices are given by collections of edges contained in a common prism of X.

When \mathbb{G} is prism-covering, the complex $L_{\mathbb{G}}(x)$ naturally contains $S(x,\epsilon)$ as a subcomplex, which allows us to define

$$X^{\mathbb{G}} := X^{\odot} \cup \bigcup_{x \in X} \mathcal{L}_{\mathbb{G}}(x)$$

where each $L_{\mathbb{G}}(x)$ is glued to X^{\odot} over $S(x, \epsilon)$.