

DEFI-IA 2022

Prédire les précipitations cumulées en des stations météorologiques

Tuteurs : David Bertoin
Adil Zouitine

Quentin DOUZERY Alexia GHOZLAND Dario MOED

> Vendredi 7 Janvier 2022 Année Académique 2021/2022

Sommaire

0. Jeux de données

Observations météorologiques au jour **J-1** : wind speed, wind dir., temperature, dew point temp., humidity, precip

 $X_{forecast}$

Prévisions de METEO FRANCE pour le jour J

Précipitations cumulées pour le jour J

I. Pré-traitement

Ajout des coordonnées géographiques

Latitude, longitude, altitude

Alignement des échantillons entre eux

Alignement de X_{train} et y_{train} Alignement de X_{test} sur X_{train} Gestion des données manquantes

Suppression des *NaNs* ou Méthode *backfill*

Suppression des outliers

Suppression des valeurs impossibles Suppression des valeurs extrêmes Suppression de certaines stations Normalisation des données

Normalisation de X_{test} avec μ_{train} et σ_{train}

Transformation des variables initiales

Somme des précipitations sur la journée

Moyenne des variables (excepté *precip*)

- Journée entière
- Distinction nuit/journée/soir
- 2 méthodes: all/just24

Récupérer la dernière valeur enregistrée de la journée

- Uniquement si la journée comporte 24 heures
- Capter une certaine temporalité

Ajout de nouvelles variables

Récupération du mois et de la saison

Saisons définies en fonction des précipitations

Calcul de la *smooth mean* associée \

- Estimateur Bayésien
- Calculée sur la variable precip
- Éviter le surapprentissage

$$\mu = \frac{n \times \bar{x} + m \times w}{n + m}$$

n: nombre de valeurs

 \bar{x} : estimation de la moyenne

w : globale moyenne

m: poids attribué à la moyenne globale

Conversion de la variable month

Expression de *month* sous la forme d'une combinaison d'un sinus et d'un cosinus

- Fonctions cycliques (2π -périodiques)
- Récupérer l'information temporelle

Observation	month
x_0	1
x_1	1
x_n	12

Observation	cos_month	sin_month
x_0	0.87	0.50
x_1	0.87	0.50
x_n	1	0

Incorporation du modèle physique

Ajout de la prévision météo

- Utilisation de la baseline forecast
- Récupération au point le plus proche de la station

Prévisions du modèle physique

Station

Prévision attribuée à la station

III. Modèles et apprentissage

Les différents modèles implémentés

III. Modèles et apprentissage

Méthode de validation et paramètres d'apprentissage

Hyperparamètres

Époques = 20 Batch size = 200

« Optimisation » à la main, en tâtonnant

Discussion

K-means

Partitionnement des stations en clusters Entraînement/Test sur chacun des clusters

 $X_{forecast}$

Prise en compte des prévisions météo du jour J Considérer les **N** prévisions **les** plus proches

Distance [station – mer]

Ajout d'une feature pour considérer l'influence maritime

MAPE comme fonction coût

La MAPE pénalise surtout les surestimations Intérêt de n'avoir que des petites prédictions

Discussion

Évolution de la MAPE en fonction des méthodes utilisées

Quentin DOUZERY Alexia GHOZLAND Dario MOED

5^{ème} année – Mathématiques appliquées

Tuteurs : David Bertoin Adil Zouitine Vendredi 7 Janvier 2022 Année Académique 2021/2022