Digital Logic Circuits

Michael Brodskiy

Professor: S. Shazli

January 18, 2023

- About a dozen logical operations
 - Similar to algebraic operators (+, *, -, /)
- In the following examples:
 - p = "Today is Friday"
 - -q = "Today is my birthday"
- A not operation switches (negates the truth value)
- Symbol: \neg , \sim , '
- In C and C++ the operand is!
- Ex. $\neg p =$ "Today is not Friday"
- $\bullet \ \neg p = p'$
- An and operation is true if both operands are true
- Symbol: \wedge ,
 - It's like the "A" in And
- In C and C++, the operand is &&
- \bullet $A \wedge B = A \bullet B = AB$

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- An or operation is true if either operand is true
- Symbol: \vee , +
- In C and C++, the operand is ||
- $p \lor q =$ "Today is Friday or today is my birthday (or possible both)"

p	q	$p \lor q$
T	Т	T
Т	F	Т
F	Т	Т
F	F	F

- An exclusive or operation is true if one of the operands are true, but false if both are true
- \bullet Symbol: \oplus
- Often called XOR
- $p \oplus q = (p \lor q) \land \neg (p \land q)$
- $p \oplus q =$ "Today is Friday or today is my birthday, but not both"

p	q	$p \oplus q$	
Т	Т	F	
Т	F	Т	
F	Т	Т	
F	F	F	

• Logical Operator Summary Table:

		not	not	and	or	xor	nand	nor
p	q	$\neg p$	$\neg q$	$p \wedge q$	$p \lor q$	$p \oplus q$	p q	$p \downarrow q$
Τ	Т	F	F	Т	Т	F	F	F
Τ	F	F	Τ	F	Т	Т	Т	F
F	Т	Т	F	F	Т	Т	Т	F
F	F	Т	Τ	F	F	F	Т	Т

• Precedence Order (from highest to lowest):

$$\neg, \land, \lor, \rightarrow, \leftrightarrow$$

- Not is always performed before any other operation
- Tautology is a statement that is always true:

$$p \lor \neg p$$
 will always be true $p \land \neg p$ will always be false

• $p \wedge T \equiv p$ — Identity Law

p	T	$p \wedge T$
Τ	Τ	Τ
F	Т	F

• $p \wedge F \equiv F$ — Domination Law

p	F	$p \wedge F$
Τ	F	Т
F	F	F

• $p \wedge p \equiv p$ — Idempotent Law

p	p	$p \wedge p$
Т	Τ	Τ
F	F	F

p	q	$p \wedge q$	$q \wedge p$
Т	Т	Τ	Τ
Т	F	F	F
F	Т	F	F
F	F	F	F

• $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ — Associative Law

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
Τ	Τ	Τ	Т	T	Т	T
Τ	Т	F	Т	F	F	F
Τ	F	Τ	F	F	F	F
Т	Т	F	F	F	F	F
T	F	F	F	F	F	F
F	Т	Т	F	F	Т	F
F	Т	F	F	F	F	F
F	F	Τ	F	F	F	F
F	F	F	F	F	F	F

- $p \lor T \equiv T$ Identity Law
- $p \lor F \equiv p$ Domination Law
- $p \lor p \equiv p$ Idempotent Law
- $p \lor q \equiv q \lor p$ Commutative Law
- $(p \lor q) \lor r \equiv p \lor (q \lor r)$ Associative Law