Linear Model Selection and Regularization

ISLR 2nd Ed., Chapter 06

Outline

Subset Selection

- Best Subset Selection
- Stepwise Selection
- Choosing the Optimal Model

Shrinkage Methods

- Ridge Regression
- The Lasso

Improving on the Least Squares Regression Estimates?

We want to improve the Linear Regression model,

- by replacing the least square fitting with some alternative fitting procedure,
- i.e., the values that minimize the mean square error (MSE)

There are 2 reasons we might not prefer to just use

- the ordinary least squares (OLS) estimates
- Prediction Accuracy
- Model Interpretability

1. Prediction Accuracy

The least squares estimates have relatively low bias and low variability

- especially when the relationship between Y and X is linear
- and the number of observations n is way bigger
- •than the number of predictors p (n >> p)

But, when $n \approx p$,

- then the least squares fit can have high variance
- and may result in over fitting
- and poor estimates on unseen observations,

And, when n < p,

- then the variability of the least squares fit increases dramatically,
- and the variance of these estimates in infinite

2. Model Interpretability

When we have a large number of variables X in the model

there will generally be many that have little or no effect on Y

Leaving these variables in the model

- makes it harder to see the "big picture",
- i.e., the effect of the "important variables"

The model would be easier to interpret

- by removing (i.e. setting the coefficients to zero)
- the unimportant variables

Solution

Subset Selection

- Identifying a subset of all p predictors X
 that we believe to be related to the response Y,
 and then fitting the model using this subset
- E.g. best subset selection and stepwise selection

Shrinkage

- Involves shrinking the estimates coefficients towards zero
 This shrinkage reduces the variance
- Some of the coefficients may shrink to exactly zero,
 and hence shrinkage methods can also perform variable selection
- E.g. Ridge regression and the Lasso

Dimension Reduction

- Involves projecting all p predictors into an M-dimensional space where M < p, and then fitting linear regression model
- •E.g. Principle Components Regression

6.1 Subset selection

6.6.1 Best Subset Selection

In this approach, we run a linear regression

for each possible combination of the X predictors

How do we judge which subset is the "best"?

One simple approach is to take the subset

- with the smallest RSS
- or the largest R²

Unfortunately, one can show that the model that includes all the variables

- will always have the largest R²
- (and smallest RSS)

Credit Data: R² vs. Subset Size

The RSS/R² will always decline/increase

- as the number of variables increase
- so they are not very useful

The red line tracks the best model

- for a given number of predictors,
- according to RSS and R²

Other Measures of Comparison

To compare different models, we can use other approaches:

- Adjusted R²
- AIC (Akaike information criterion)
- •BIC (Bayesian information criterion)
- •C_p (equivalent to AIC for linear regression)

These methods add penalty to RSS

for the number of variables (i.e. complexity) in the model

None are perfect

Credit Data: Cp, BIC, and Adjusted R2

A small value of C_p and BIC

- indicates a low error,
- and thus a better model

A large value for the Adjusted R²

indicates a better model

6.1.2 Stepwise Selection

Best Subset Selection is computationally intensive

especially when we have a large number of predictors (large p)

More attractive methods:

- Forward Stepwise Selection:
 Begins with the model containing no predictor,
 and then adds one predictor at a time that improves the model the most until no further improvement is possible
- Backward Stepwise Selection:
 Begins with the model containing all predictors,
 and then deleting one predictor at a time that improves the model the most until no further improvement is possible

6.2 Shrinkage Methods

6.2.1 Ridge Regression

Ordinary Least Squares (OLS) estimates β'_{S} by minimizing

RSS =
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$
.

Ridge Regression uses a slightly different equation

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

Ridge Regression Adds a Penalty on $\beta's!$

The effect of this equation is to add a penalty of the form

$$\lambda \sum_{j=1}^{p} \beta_j^2,$$

Where the tuning parameter λ is a positive value.

- This has the effect of "shrinking" large values of β 's towards zero.
- It turns out that such a constraint should improve the fit, because shrinking the coefficients can significantly reduce their variance
- Notice that when $\lambda = 0$, we get the OLS!

Credit Data: Ridge Regression

As λ increases,

- the standardized coefficients
- shrinks towards zero.

Why can shrinking towards zero be a good thing to do?

It turns out that the OLS estimates

- generally have low bias
- but can be highly variable.

In particular when n and p are of similar size

- or when n < p,
- then the OLS estimates will be extremely variable

The penalty term makes the ridge regression estimates biased

but can also substantially reduce variance

Thus, there is a bias / variance trade-off

Ridge Regression Bias/ Variance

Black: Bias

Green: Variance

Purple: MSE

Increase λ increases bias but decreases variance

Bias/ Variance Trade-off

In general, the ridge regression estimates

- will be more biased than the OLS ones
- but have lower variance

Ridge regression will work best in situations

- where the OLS estimates
- have high variance

Model Complexity

Computational Advantages of Ridge Regression

If p is large, then using the best subset selection approach

requires searching through enormous numbers of possible models

With Ridge Regression, for any given λ ,

- we only need to fit one model
- and the computations turn out to be very simple

Ridge Regression can even be used

- when p > n,
- a situation where OLS fails completely!

6.2.2. The LASSO

Ridge Regression isn't perfect

One significant problem is that the penalty term

will never force any of the coefficients to be exactly zero.

Thus, the final model will include all variables,

which makes it harder to interpret

A more modern alternative is the LASSO

The LASSO works

- in a similar way to Ridge Regression,
- except it uses a different penalty term

LASSO's Penalty Term

Ridge Regression minimizes

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = RSS + \lambda \sum_{j=1}^{p} \beta_j^2,$$

The LASSO estimates the β 's by minimizing the

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

What's the Big Deal?

This seems like a very similar idea but there is a big difference

Using this penalty, it could be proven mathematically

that some coefficients end up being set to exactly zero

With LASSO,

- we can produce a model that has high predictive power
- and it is simple to interpret

Credit Data: LASSO

6.2.3 Selecting the Tuning Parameter λ

We need to decide on a value for λ Select a grid of potential values,

- use cross validation to estimate the error rate on test data
- •(for each value of λ)
- and select the value that gives the least error rate

