Computability and Complexity theory Assignment # 2

May 5, 2023

Roy, Akash | CS22M007 M.Tech CS | Indian Institute of Technology, Madras

1. Recall the definition of \overline{HP} defined in the class. Let $HP' = \Sigma^* \setminus HP$ (i.e. the settheoretic compliment). Show that \overline{HP} is recursively enumerable if and only if HP' is recursively enumerable.

Ans: $\overline{\mathbf{HP}}$ defined in the class was $\{M\#x \mid M \text{ does not halt on } x\}$. We can write the set-theoretic compliment HP as $\overline{\mathbf{HP}}$ defined in the class was $\{M\#x \mid M \text{ does not halt on } x\} \bigcup A$ where $A = \{M\#x \mid M \text{ is not a valid encoding of turing machine and x is some arbitrary string}.$

Now from the question we need to show that

$$\overline{\mathbf{HP}} \in \mathbf{REL} \iff \Sigma^* \setminus HP \in \mathbf{REL}$$

Forward direction: We get that $\overline{\mathbf{HP}} \in \mathbf{REL}$ so there exists a non total turing machine \mathbb{M} accepting $\overline{\mathbf{HP}}$. So for all the strings in $A = \{M \# x \mid \mathbb{M} \text{ is not a valid encoding of turing machine and x is some arbitrary string}\}$ we define a fixed turing machine \hat{M} such that no matter what the input is \hat{M} is always accepting. We begin by constructing a new turing machine M^{α} that simulates \mathbb{M} on x for input M # x where M is valid and if some $M \# x \in A$ comes where \mathbb{M} is not a valid encoding of a turing machine and x some random input we convert that to \hat{M} and accept x. So then $\overline{\mathbf{HP}} \bigcup \mathbf{A}$ also becomes \mathbf{REL} . $\Longrightarrow \Sigma^* \setminus HP \in \mathbf{REL}$

Backward direction It is in the statement that $\Sigma^* \setminus HP \in \mathbf{REL}$ and our class defined $\overline{\mathbf{HP}}$ is a subset of $\Sigma^* \setminus HP \in \mathbf{REL}$. Any subset of \mathbf{REL} will always will be \mathbf{REL} .

Hence proved $\overline{\mathbf{HP}} \in \mathbf{REL} \iff \Sigma^* \setminus HP \in \mathbf{REL}$.

2. Show that the relation \leq_m is transitive, i.e., if $A \leq_m B$, and $B \leq_m C$, then $A \leq_m C$.

Ans: It is given that $A \leq_m B$ holds good, this implies there exists some function $f: \Sigma^* \to \Delta^*$ for which

$$\forall x \in A \iff f(x) \in B$$

and f is computable.

So a similar statement is also true for $B \leq_m C$. So there exists some function $g: \Sigma^* \to \Delta^*$ for which

$$\forall x_1 \in B \iff g(x_1) \in C$$

and g is computable.

So now let's take an element k from set A. For k present in A there must be some element j present in B, and for that element $j \in B$ there must exists an element $l \in C$. So for every element $k \in A$, there exists an element $l \in C$.

Similar statement can be said for non-membership also.

$$\forall x \notin A \iff f(x) \notin B \& \forall x_1 \notin B \iff g(x_1) \notin C$$

The two statements up above means membership in A is many to one reducible to membership in C.

So we can draw the conclusion that if $A \leq_m B$ and $B \leq_m C$ then $A \leq_m C$.

3. Show that if a language $A \subseteq \{0,1\}^*$ is recursive, then so is the concatenation $AA \stackrel{\triangle}{=} \{xy \mid x,y \in A\}$.

Ans: This problem is equivalent to proving whether recursive languages are closed under operation concatenation?

Given that $A \subseteq \{0,1\}^*$ is recursive means there exists a total Turing machine M accepting A. We construct a new Turing machine \hat{M} in the following way

- For each input y we do the followings, say size of input is n,
- **RUN 1:** We run $y[0] \& y[1 \to n]$ on Turing machine M. M either accepts or rejects y[0] and $y[1 \to n]$. We define the behaviour of turing machine \hat{M} the following way that if both y[0] and $y[1 \to n]$ is rejected by total turing machine M, we go to **RUN: 2**. If either one of them is accepted and other is rejected that means the concatenation is not good we concatenated $x \in A$ with something $y \notin A$, so we reject. Accept if both is accepted means we've found an xy such that $x \in A \& y \in A$, where $x = \text{input}[0] \& y = \text{input}[1 \to n-1]$

- RUN 2: We run y[0 → 1] & y[2 → n] on Turing machine M. M either accepts or rejects y[0 → 1] & y[2 → n]. If both are rejected we go to RUN
 3. Same otherwise, reject if one is accepted and other is rejected (NOT a valid concatenation). Accept if both is accepted.
- So on...
- At RUN K we check if $y[0 \to K] \& y[K+1 \to n]$ is accepted. Same as before if either is accepted and other is rejected then reject, if both of them is accepted accept and if both are rejected go to RUN K + 1,
- We stop when we check $y[0 \to n-1] \& y[n]$. If these 2 are not accepted, if one is accepted and one is rejected we Reject and halt, if both are accepted we accept.

Language of this turing machine \hat{M} is $\{xy \mid x \in A \& y \in A\} = AA$. If we see for all $y \in \Sigma^*$ \hat{M} is always halting. So \hat{M} is total turing machine. So concatenation language AA is recursive.

4. Prove (without using Rice's theorem) that the set

 $\{(M_1, M_2) \mid \text{ there is some input where both } M_1 \text{ and } M_2 \text{ halt}\}$

is not recursive.

Ans: Say D =

 $\{(M_1, M_2) \mid \text{ there is some input where both } M_1 \text{ and } M_2 \text{ halt}\}$

We begin the proof by reduction from H_P . So there should be some computable function f such that $H_p \leq_m D$

We construct \hat{M} . \hat{M} takes input $y \in \Sigma^*$. \hat{M} halts on y if and only if M halts on x.

So construction of \hat{M} and Let M be some turing machine,

- Take input $y \in \Sigma^*$
- Erase y
- \bullet Write x on input tape

- Run M on x
- If M halts on x, halt \hat{M}

M halts on x implies $M \# x \in H_P$. Now for all input $y \in \Sigma^* \hat{M}$ halts y if M halts on x. When M does not halt on x we don't accept anything so $L(\hat{M}) = \phi$

So
$$M \# x \in H_P \iff f(M \# x) \in D$$

 \implies y is some input where \hat{M}, \hat{M} halts. $\implies (\hat{M}, \hat{M}) \in D$.

So $H_p \leq_m D$. So D is not recursive, it is recursively enumerable.

5. An unreachable state is a state which can never be reached from the start state on any input. Show that the language

 $\{M\#q \mid q \text{ is an unreachable state of } M \text{ on any input}\}$

is not recursive. (Your proof should NOT use Rice's theorem.)

Ans: We begin by constructing a new Turing machine \hat{M} . We know what are all its accepting states, rejecting states, say this is a non-total turing machine.

We define a new language **REACHABLE** = $\{M#q \mid q \text{ is reachable state of } M \text{ on any input}\}$. Then our question becomes the language **REACHABLE**.

We assume that **REACHABLE** is decidable hence recursive. Let's construct one more Turing Machine M_B , it'll $\forall x \in \Sigma *$ will run \hat{M} on x. We know what are the accepting states in turing machine \hat{M} . So running \hat{M} on x if we see that for input x accepting states are not reachable (because we assumed REACHABLE is decidable) we halt. So $\forall x \in \Sigma *$ our turing machine \hat{M} becomes a total turing machine which contradicts with our construction. Hence our assumption **REACHABLE** is decidable hence recursive is not true.

REACHABLE is not recursive so it may be \in REL or \in Non-REL. (REL means recursively enumerable). So complement of **REACHABLE** which is our question will not be \in REC. In particular if **REACHABLE** is in REL then **REACHABLE** must not be REL. But whatever is true **REACHABLE** is never recursive.