极客大学算法训练营 期末复习

覃超

Sophon Tech 创始人,前 Facebook 工程师

数据结构

- 一维:
 - 基础: 数组 array (string), 链表 linked list
 - 高级:栈 stack, 队列 queue, 双端队列 deque, 集合 set, 映射 map (hash or map), etc
- 二维:
 - 基础: 树 tree, 图 graph
 - 高级:二叉搜索树 binary search tree (red-black tree, AVL), 堆 heap, 并查集 disjoint set, 字典树 Trie, etc
- 特殊:
 - 位运算 Bitwise, 布隆过滤器 BloomFilter
 - LRU Cache

时间复杂度

Data Structure	Time Complexity								Space Complexity
	Average				Worst				Worst
	Access	Search	Insertion	Deletion	Access	Search	Insertion	Deletion	
<u>Array</u>	Θ(1)	Θ(n)	Θ(n)	<mark>Θ(n)</mark>	0(1)	0(n)	0(n)	0(n)	<mark>0(n)</mark>
<u>Stack</u>	<mark>Θ(n)</mark>	<mark>Θ(n)</mark>	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
<u>Queue</u>	Θ(n)	<mark>Θ(n)</mark>	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Singly-Linked List	<mark>Θ(n)</mark>	<mark>Θ(n)</mark>	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
Doubly-Linked List	<mark>Θ(n)</mark>	Θ(n)	Θ(1)	Θ(1)	0(n)	0(n)	0(1)	0(1)	0(n)
<u>Skip List</u>	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	O(n log(n))
<u>Hash Table</u>	N/A	Θ(1)	Θ(1)	Θ(1)	N/A	0(n)	0(n)	0(n)	0(n)
Binary Search Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	0(n)
Cartesian Tree	N/A	Θ(log(n))	Θ(log(n))	Θ(log(n))	N/A	0(n)	0(n)	0(n)	0(n)
B-Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	O(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
Red-Black Tree	Θ(log(n))	Θ(log(n))	Θ(log(n))	Θ(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
<u>Splay Tree</u>	N/A	Θ(log(n))	Θ(log(n))	Θ(log(n))	N/A	0(log(n))	O(log(n))	0(log(n))	0(n)
<u>AVL Tree</u>	Θ(log(n))	Θ(log(n))	θ(log(n))	Θ(log(n))	0(log(n))	0(log(n))	O(log(n))	0(log(n))	0(n)
KD Tree	Θ(log(n))	θ(log(n))	Θ(log(n))	Θ(log(n))	0(n)	0(n)	0(n)	0(n)	<mark>0(n)</mark>

算法

- If-else, switch —> branch
- for, while loop —> Iteration
- 递归 Recursion (Divide & Conquer, Backtrace)
- 搜索 Search: 深度优先搜索 Depth first search, 广度优先搜索 Breadth first search, A*, etc
- 动态规划 Dynamic Programming
- 二分查找 Binary Search
- 贪心 Greedy
- 数学 Math , 几何 Geometry

注意: 在头脑中回忆上面每种算法的思想和代码模板

脑图

- https://naotu.baidu.com/file/
 b832f043e2ead159d584cca4efb19703?token=7a6a56eb2630548c
- https://naotu.baidu.com/file/
 0a53d3a5343bd86375f348b2831d3610?
 token=5ab1de1c90d5f3ec

化繁为简的思想

- 1. 人肉递归低效、很累
- 2. 找到最近最简方法,将其拆解成可重复解决的问题
- 3. 数学归纳法思维

本质: 寻找重复性—> 计算机指令集

学习要点

- 基本功是区别业余和职业选手的根本。深厚功底来自于 过遍数
- 最大的误区: 只做一遍
- 五毒神掌
- 刻意练习 练习缺陷弱点地方、不舒服、枯燥
- 反馈 看题解、看国际版的高票回答

经典习题

爬楼梯、硬币兑换

括号匹配、括号生成、直方图最大面积、滑动窗口

二叉树遍历、分层输出树、判断二叉排序树

股票买卖、偷房子、字符串编辑距离、最长上升子序列、最长公共子序列

异位词(判断和归类)、回文串(最大回文串)、regex和通配符匹配

高级数据结构(Trie、BloomFilter、LRU cache、etc)

五毒神掌

第一遍:不要死磕,要看代码学习(一定要看国际版的高票回答)

第二遍:自己写

第三遍: 24小时后

第四遍: 一周后

第五遍: 面试前

面试技巧

- 1. Clarification:明确题目意思、边界、数据规模
- 2. Possible solutions: 穷尽所有可能的解法
- compare time/space
- optimal solution
- 3. Coding:代码简洁、高性能、美感 https://shimo.im/docs/rHTyt8hcpT6D9Tj8
- 4. Test cases

恭喜完成训练课程

师傅领进门,修行在个人

Commencement

Steve Jobs: https://www.youtube.com/watch?v=Hd_ptbiPoXM

