31 August 2025 17:53

Agenda
Data flow layer
Generalised Stocaming Architecture
Collection ter Date flav ter Down stream activities
amma-interaction
Comma-In patturns patturns Client - Sever (Reguest - Response Battern). [When client must have an immediate response.
-> Jub-substitut (Broducer - Continuer Battern)
Complexity interms of variety of Date Sources / framats events Slogned grouping of events
product $\beta_1 \longrightarrow m_1 \longrightarrow fopic(T_1) \longrightarrow Subtribut A \longrightarrow C_1$
producer by Sweriter B -> C2
$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$
producer by M4 T3 Sulvaribuse (3
Tolker Consumers Consumers
Data flow tier
message Delivery Semantics Analysitin

New Section 1 Page 1

New Section 1 Pag

What if he events are lost? Archiketure Derign Berufedne

- Impact on Buriner of The Communication between collection ter and analysis ter is interrupted Significantly
- 1 How many dep (Tolerance fatin menage loss) of Data The burns can tolerate
- 3 Need for storage of historical data

ceeds card trans date	
Cliteria Inference	
(1) Burring Im faul-	
(11°) Tolerance for event lows	
(111) Need for stroing Hindraid Data	
semantin:	

Number of partitions Needs: max { \frac{T_t}{T_p}, \frac{T_t}{T_c}}

te: Throughput of the Synthin

Tp: Max. throughout & fooderer writing evenly onto single partition

To: Max throughful of a Continuous reading events from a single faithful

System throughout = $6B/min = 6\times10^3 MB/min = 6\times10^3/(60 lm)$ tp = 5MB/lm $\frac{T_t}{T_p} = \frac{100 MB/8mc}{5MB/min} = \frac{20}{5MB/min}$ $\frac{T_t}{T_t} = \frac{100 MB/8mc}{5MB/min} = \frac{20}{5MB/min}$ $\frac{T_t}{T_t} = \frac{100 MB/8mc}{5MB/min} = \frac{6\times10^3/(60 lm)}{100 MB/min}$ $\frac{T_t}{T_t} = \frac{100 MB/8mc}{5MB/min} = \frac{100 MB/8mc}{5MB/min} = \frac{6\times10^3/(60 lm)}{100 MB/min}$ $\frac{T_t}{T_t} = \frac{100 MB/8mc}{5MB/min} = \frac{100 MB/8mc}{5MB/min} = \frac{6\times10^3/(60 lm)}{100 MB/min}$ $\frac{T_t}{T_t} = \frac{100 MB/8mc}{5MB/min} = \frac{100 MB/min}{5MB/min} = \frac{100 MB/min}{5MB/min}$

 $R_{i} = \frac{24 \, \text{MB}}{\text{Ko min}}$ $R_{i} = \frac{24 \, \text{MB}}{\text{min}}$ $R_{i} = \frac{24 \, \text{MB}}{\text{min}}$ $R_{i} = \frac{34 \, \text{MB}}{\text{min}}$

New Section 1 Page 4

$$R_{i} = 120 \text{ MB/min}$$

$$R_{i} = \frac{4}{10} = 0.4 \text{ MB/min}$$

$$R_{i} = \frac{120 \text{ MB/min}}{0.4 \text{ MB/min}} = \frac{4}{10} = 300$$

$$R_{i} = \frac{360 \text{ Rp}}{64 \text{ MB/min}} = \frac{320 \text{ MB/min}}{4} = 300$$

$$R_{i} = \frac{360 \text{ Rp}}{64 \text{ MB/min}} = \frac{320 \text{ MB/min}}{164 \text{ MB/min}} = \frac{320 \text{ MB/min}}{164 \text{ MB/min}}$$

$$R_{i} = \frac{24 \text{ MB/min}}{64 \text{ MB/min}} = \frac{320 \text{ MB/min}}{164 \text{ MB/min}}$$

$$R_{i} = 2000$$

$$R_{i} = 4200 \text{ MB/min}$$

$$R_{i} = 4200 \text{ MB/min}$$

$$R_{i} = 4200 \text{ MB/min}$$

$$R_{i} = 4200 \text{ MB/min}$$