Dataset and Preprocessing

I am using the MNIST dataset to evaluate and compare model architecture and parameters. Both networks presented take an image (28x28 pixels) of a handwritten digit (between 0 and 9) and it will try to predict its class. Below is an example of a handwritten letter and the correct label.

After loading the MNIST dataset, all images were normalized from 0–255 pixel data to 0-1 to allow for faster learning of input node parameters (normalized to avoid exploding gradients). Before using the dataset, the labels (0-9) had to be converted from ordinal values to sets (this mean that value 1 is not smaller than 2, they are just two different sets of classification), this was done by one hot encoding the labels, resulting in 10 output nodes which was easier to code than how thecscikit-learn library handles it.

ANN Design

- Both models have the same input nodes. Input layer is defined as a vector with 784 entries (from the 28x28 image).
- This model has 1 hidden layer with 64 nodes and uses the sigmoid activation function
- The output layer is 10 nodes corresponding to numbers, it layer uses the softmax activation function to normalize all values between 0 and 1 (sum of 1), this way output values exist as probabilities and the largest probability is chosen as the prediction.
- Backpropagation or gradient descent was used to find best results (minima of curve). By implementing this algorithm, possibly underfitted graphs could be fitted more optimally.

Model 1 – No Library Multilayer Neural Net

- Initial weights = Initial weights and biases were randomized. I chose to randomly initialize all weights since the data has been normalized and the spread is in a very small distribution. The initial weights can be a factor in accuracy since a model can converge to a local minima, but I feel that this is mitigated by normalizing the dataset and training until the model converges.
- Hidden layer = Since the data is not linearly separable, a hidden layer is required. I
 avoided adding more hidden layers as one is usually sufficient for majority of simple
 problems.
- Nodes = I initially started with only 12 neurons in the hidden layer, keeping all other
 parameters the same, it seemed the model was underfitting because the training
 accuracies were quite low. I then increased the number of nodes to 32 and then 64. In my
 experience 64 nodes was enough to observe a significant improvement in accuracy and
 sufficient enough as loss started to level off.
- Learning rate = This is a parameter of gradient descent, learning rate informs the model
 on the level of change depending on the estimated error after weight update. I first chose
 a very small learning rate of 0.001, however it resulted in a very long training time,
 therefore I chose the value of 1 as it is also not too big where it would result in suboptimal set of weights.
- Momentum = I decided to add momentum which replaces gradient with a momentum which is an aggregation of all gradients, after adding momentum and trying various values I noticed a decent improvement in training time.
- **Epochs** = When a dataset, such as this one, is large, epochs and batches can be used to divide the data into smaller sizes and given to the model in steps and updates the weights at the end of every step to fit the given data, therefore only having one epoch could lead to underfitting. However, having too many epochs could also lead to overfitting so I used various values to observe changes in model performance. It seemed that after 200-250 epochs the model could be overfitting, so I set the epoch number to 200.
- Batches = Batch represents the subset of training examples in a single batch before the model's internal parameters are updated. I decided to include batch in my network because it requires less memory and improves gradient descent. A large batch number will make coarse updates to the weights whereas a smaller batch number implies the model updates often. I noticed that a very large batch size (1000) decreased training time significantly, however it also does much worse with test data compared to smaller batch numbers. Another factor I noticed was that using very high batch numbers took much longer for loss to converge. Using batch, allows the model to converge faster and avoid excessive number of epochs if correctly set.
- Weight updates = instead of loops, I used matrix multiplication during back propagation to reduce training time. Doing so reduced my model training time from approximately 90+ minutes to 1-5 minutes

Model 1 (100 epochs)

Final loss: 0.7298848203148632												Final loss: 0.6927345992527022												
	_											Test data stats:												
				tats:			067					[[86	7	0	31	13	5	43	32	10	21	9]		
	ιį:	131	1	179	89	40	267	126	80	116	54]	i	0 1	1052	31	2	3	4	3	27	11	5 j		
	Ţ		6293	135	48	21	45	46	148	207	17]	ii	1	19	763	30	13	24	52	31	25	11 j		
	Ţ	116		4376	223	99	111	287	170	230	65]	i		4	53	806	2	95	2	19	93	14]		
	Ţ	83	14		4592	28	538	18	72	480	124]	i	5	1	26	4	762	23	33	25	29	82]		
	Ţ	16	12	165	34	4480	155	140	221	169	491]	i 4	0	3	10	78	7	591	27	10	57	27]		
	ij	242	28	65	522	63	3445	173	85	399	141]	i a	:5	2	43	2	35	27	786	3	28	6 j		
	ij	190	12	265	30	220		4969	36	134	62]	i		5	28	12	17		6	815	16	58 j		
	ļ	53	29 204	179 307	75	114 188	47 451	26 82	4976	77	490]	i	9	48	41	52	27	59	12	28	627	13]		
	ļ	78 13	16	40	415 103	589	174	82 51	100 377	3715	167] 433811	i		1	6	11	111	19	5	60	67	784]]		
	ι	13	10		cisio		recal		3// L-scoi						pre	cisio	n	recall	l fl	-score	e s	upport		
				Pre	SCIBIC	J11	recar		-5001		support													
				,	0.8	27	0.8	ı.	0.8	25	6083			0		0.8	8	0.84	1	0.86	5	1031		
			,		0.9		0.9		0.9		6961			1		0.9	3	0.92	2	0.93		1138		
			2	,	0.73		0.75		0.74		5810	2			0.74		0.77	7	0.76		989			
			3		0.7		0.7		0.7		6196			3		0.8	0	0.74	l l	0.77		1095		
			4		0.77		0.76		0.76		5883	4			0.78		0.77		0.77		990			
			5		0.6		0.6		0.6		5163			5		0.6		0.70		0.68		850		
			ě		0.8		0.8		0.8		6106			6		0.8		0.82		0.82		957		
			7		0.7		0.8		0.8		6066			7		0.7		0.84		0.82		969		
			έ		0.6		0.6		0.6		5707			8		0.6		0.68		0.66		916		
			9		0.7		0.7		0.7		6025			9		0.7	8	0.74	l .	0.76	5	1065		
		acc	uracy	,					0.7	17	60000			ıracy						0.79		10000		
		macr			0.7	77	0.7	7	0.7		60000			avg		0.7		0.78		0.78		10000		
١	wei	ghte			0.7		0.7		0.7		60000	weigh	ited	i avg		0.7	9	0.79	•	0.79	•	10000		

(left is train, right is test)

Model 1 (200 epochs)

Final loss: 0.5518701951222055											Pic	1 1	logga	n E26	42522	26707	1062					
											Final loss: 0.5264352336787862 Test data stats:											
Train	n da	ta s	tats:																			
[[53	43	1	124	69	28	197	100	56	69	42]	ш	901	0	26	8	4	38	27	7	17	6]	
ij	1 6	400	92	41	15	43	37	115	166	15]	Ţ	0	1073	16	3	2	1	3	27	7	4]	
· i	71	70	4777	201	64	82	175	147	164	62]	ι	14	8	841	29	9	14	24	34	21	7]	
i i	56	18	182	4919	18	416	13	49	355	112]	ι	3	4	33	851		69		12	71	9]	
ાં :	12	11	153	19	4855	108	107	142	109	399 j	ι	2	2	22	2	826	21	26	18	19	70]	
j 1	91	30	48	385	44	3933	133	44	318	991	ι	32	2	4	61	7	662	25	4	54	22]	
i 1	36	11	193	31	165	153	5257	16	90	321	ι	18	3	31	4	21	25	841	2	23	5]	
· i	41	26	143	69	67	39	17	5318	59	3091	ι	3	3	23	9	10	5	2	853	18	42]	
i :	57	156	212	320	121	319	60	65	4284	144]	ι		39	30	35	17	46	6	21	700	16]	
•	15	19	34	77	465	131	19	313		473511	ι		1	6	8	85	11	3	50	44	828]]	
•	precision recall fl-score support											pre	cisio	n	recal	l f1	-scor	e s	upport			
		0		0.9	0	0.8	9	0.8	39	6029			0		0.9	2	0.8	7	0.8	9	1034	
		ĭ		0.95		0.92		0.94		6925			1		0.9	5	0.9	4	0.9	4	1136	
		2		0.80		0.82		0.81		5813		2			0.8	1	0.8	4	0.8	3	1001	
		3		0.80		0.80		0.80		6138	3				0.84		0.81		0.82		1054	
		4		0.83		0.82		0.83		5915	4				0.84		0.82		0.83		1008	
		5		0.7		0.75		0.74		5225			5	0.74		4	0.76		0.75		873	
		6		0.8		0.75		0.74		6084			6	0.88		8	0.86		0.87		973	
		7		0.8		0.8		0.8		6088			7		0.8	3	0.8	В	0.8	5	968	
		8		0.7		0.7		0.7		5738			8		0.7	2	0.7	6	0.7	4	917	
		9		0.8		0.7		0.7		6045			9		0.8	2	0.8	0	0.8	1	1036	
		,		0.0	, 0	0.,	•	0.,	, ,	6045												
									22	60000		aco	curacy						0.8	4	10000	
		racy		0.83		0.83		0.83 0.83		60000			o avq		0.8	4	0.8	3	0.8		10000	
		avg									we:		ed avg		0.8		0.8		0.8		10000	
weig	nted	avg		0.8	53	0.8	13	0.8	5.5	60000		,										

Model 1 (200 batch, 20 epoch)

	m/-	-1 1	ì	0.16	COFC		10.46																			
Final loss: 0.1666956036373846														Final loss: 0.20033133006317197												
														ıta st												
		797	0	27	. 9	7	32	30	8	16	211	11	963	0	9	1		8	10	1	10	6]				
	1		6598	28	12	7	10	7	21	41	9]	ï		1115	2	4	2	1	3	11	3	6 j				
	i	12	45	5648	82	26	23	28	48	38	121	i	1	3	965	13	8	2	4	19		2 j				
	i	8	15	51	5754	6	106	2	17	86	53 j	ĵ	2	2	16	949		34	1	14	18	8]				
	i	7	9	34	5	5570	16	32	27	16	134]	ι		0		1	914	4		5	9	26]				
	i	21		15	125	7	5062	53		81	25]	ι	4	1	1	21		792	8	1	17	8]				
	i	33	6	30	5	42	54 5	736	2	34	4 j	ı	8	5	11	1	16	18	923	0	14	1]				
	ī		20	47	38	20	10		6015	12	98]	ι	2	2	6		3	4		947	4	9]				
	ι	33	27	65	66	25	73	28	16	5478	40]	ι	0	7	13	10	4	21	2	3	880	5]				
	ι	5	15	13	35	132	35	2	104		5553]]	ι	0	0	2	3	33	8	0	27	12	938]]				
				pro	ecisi	on	recall	. f l	l-sco	re :	support				pr€	cisio	n	recal	1 f1	-scor	e s	upport				
																			_		_					
			()	0.9		0.97		0.9		5947			()	0.9		0.9		0.9		1009				
			1		0.5		0.98		0.9		6733]	L	0.9		0.9		0.9		1147				
			2		0.9		0.95		0.9		5962			2		0.9		0.9		0.9		1024				
			3		0.5		0.94		0.9		6098			3		0.9		0.9		0.9		1045				
			4		0.		0.95		0.9		5850			4		0.9		0.9		0.9		973				
			5		0.9		0.94		0.9		5403			5		0.8		0.9		0.9		853 997				
			•		0.9		0.96		0.9		5946			7		0.9		0.9		0.9		984				
			7		0.9		0.96		0.9		6267					0.9		0.9		0.9		945				
			8		0.9		0.94		0.9		5851			9		0.9		0.9		0.9		1023				
			ç	,	0.9	93	0.93		0.9	,3	5943					0.5	_	٠.,		0.7		1023				
		200							0.9) E	60000		acc	uracy	,					0.9	4	10000				
			uracy o avo		0.9	95	0.95		0.9		60000			o avo		0.9	4	0.9	4	0.9		10000				
			d ave	,	0.9		0.95		0.9		60000	we		ed avo		0.9		0.9		0.9		10000				
	wel	duce	a avç	,	0.	,,	0.95		0.	,,,	00000		,													

(left is train, right is test)

Model 2 – scikit-learn MLP Classifier

• First, I ran the MLP model with the same parameters (shown below) that I picked for the above model.

• Epoch was set to 20 at first because MLP by default implements 200 batches just like model 1 (with batch). But I had to increase it to 50 because the solution wasn't optimal

Train data stats:													Test data stats:										
[[5	923									0]	11	968								6	1]		
		6742								0]	ï		1122								2 j		
			5958						0				4	1001	8	4		4	10		0 j		
	0	0		6131	0		0	0	0	- ,					978		11				3]		
ι	0	0	0	0		0	0	0	0					4		961					7]		
ι		0				5421			0						8		863				4]		
ι	0	0		0	0		5918	0	0			4	2			5	4	933	0	2	1]		
ι	0	0			0		0	6265	0	0]				4	2				995		4]		
ι	0	0	0	0	0	0	0		5851	0]					4			1	6	941	5]		
ι		0	0	. 0	0	0_	. 0	. 0		5949]]	ι				. 9	9		0	6	6	982]]		
			pr	ecisi	on	recal	.1 ±	l-scor	re	support				pr	ecisio	n	recal	1 f1	-scor	e s	upport		
										5000								_					
		(,	1.		1.0		1.0		5923					0.9		0.9		0.9		992		
		:	L	1.0		1.0		1.0		6742 5958			1	L	0.9 0.9		0.9		0.9		1136		
		:		1.0		1.0		1.0		6131				2 3	0.9		0.9		0.9		1036 1008		
				1.0		1.0		1.0		5842				5 1	0.9		0.9				985		
				1.		1.0		1.0		5421				± 5	0.9		0.9		0.9		884		
				1.0		1.0		1.0		5918				5	0.9		0.9		0.9		952		
				1.0		1.0		1.0		6265				, 7	0.9		0.9		0.9		1013		
				1.		1.0		1.0		5851				3	0.9		0.9		0.9		978		
				1.0		1.0		1.0		5949				,	0.9		0.9		0.9		1016		
										3,1,									0.7		1010		
	ac	curacy	,					1.0	00	60000		acc	curacy	,					0.9	7	10000		
		ro ave		1.0	00	1.0	10	1.0		60000			co ave		0.9	7	0.9	7	0.9		10000		
wei	ght	ed av	1	1.0	00	1.0	10	1.0	00	60000	wei	ghte	ed av	1	0.9	7	0.9	7	0.9	7	10000		

Then, I decided to use Randomized Search to find optimal hyperparameters, and to also compare these with ones chosen for the above models. I will use these parameters in model 2 to observe performance.

```
param_grid = {
      hidden_layer_sizes':[32,64,96,128],
      activation':['identity','logistic','tanh','relu'],
     'learning_rate':['constant', 'invscaling', 'adaptive'],
'solver':['lbfgs','sgd','adam'],
     batch_size':[100,250,500]
```

Following parameters were picked:

```
[Parallel(n_jobs=1)]: Done 70 out of 70 | elapsed: 177.4min finished
best score 0.9776428571428573
best score {'solver': 'adam', 'learning_rate': 'constant', 'hidden_layer_sizes': 128, 'batch_size': 250, 'activation': 'logistic'
Test data stats:
       0 1122
              4 1009
                        984
                                                                    4 j
                           0 961
                                                                    2 j
1 j
3 j
                                                          941
                                                                 980]]
                   precision
                                  recall f1-score
                                                     0.99
                          0.99
                                                     0.99
                                       0.99
                                                                   1129
                          0.98
                                        0.97
                                                     0.98
                          0.97
                                                     0.97
                                                                   1010
                          0.98
                                        0.97
                                                     0.98
                          0.97
                                        0.98
                                                     0.98
                                                                    885
                          0.98
                                        0.97
                                                     0.98
                                                                    965
                                                                   1025
                          0.98
                                                     0.98
                                        0.98
                                        0.97
                                                     0.98
                                                                 10000
     accuracy
    macro avg
                          0.98
                                                     0.98
                                                                 10000
```

As you can see, after parameter search, model 2's accuracy slightly improved but this was at the cost of additional processing as it took almost 3 hours to find these parameters. A bigger problem or list of parameters to search through will take exponentially longer.

Model Comparison and Critical analysis about possible causes for inaccuracies

- Scores: Model 2 (scikit-learn) overall had a better accuracy than model 1. This could be due to various reasons such as underfitting model 1. Model 1 achieved the best scores with batch implemented, however training scores did not exceed 95% and there are still misclassifications present. Perhaps training model 1 more could result in scores closer to those seen with model 2.
- **Time**: In terms of training time, model 1 variants generally took longer to run than MLP even with batch implemented. This could be because the library has more complex logic implemented such as solvers and adaptive learning rates which could more efficiently train model 2.