Lycée pilote Sousse Date : le 29 / 01 / 2025

Devoir de contrôle N°3 Durée : 1 heure

Prof: Slah Saoudi Classes: 2 sc 1 et 2 sc 2

Exercice 1: (6 points)

Soit (U_n) la suite définie sur \mathbb{N} telle que $U_0=2$ et $U_{n+1}=\frac{2\,U_n-16}{U_n-6}$

1) Justifier que la suite (U_n) est ni arithmétique, ni géométrique.

2)On suppose que pour tout entier naturel n , $U_n \neq 4$. On pose : $V_n = \frac{1}{U_n - 4}$.

b-Montrer que (V_n) est une suite arithmétique.

c-En déduire que pour tout $n \in \mathbb{N}$, $U_n = \frac{4n+2}{n+1}$

3) Exprimer la somme $S = 2U_1 + 3U_2 + \cdots + (n+1)U_n$

Exercice 2: (62.AB = points)

Soit (U_n) la suite définie sur \mathbb{N} par : $U_0 = \frac{3}{2}$ et $U_{n+1} = \frac{1}{3}U_n + n + \frac{7}{6}$. On pose : $V_n = 4U_n - 6n + 2$

2)a- Montrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme .

b-Exprimer V_n en fonction de n.

c-En déduire que pour tout $n \in \mathbb{N}$, $U_n = 2\left(\frac{1}{3}\right)^n + \frac{3}{2}n - \frac{1}{2}$.

3) Soit la somme $S_n = U_0 + U_1 + \dots + U_n$. Montrer que $S_n = 3 - \left(\frac{1}{3}\right)^n + \frac{3n^2 + n - 2}{4}$

Exercice 3: (8 points)

Soit ABCD un rectangle de centre I tel que : AB = 2 cm et AD = 4 cm

On désigne par G le barycentre des points (B, 2) et (D, 1). H le projeté orthogonal de G sur (AD)

I) On considère l'application :

$$f: \mathsf{P} {\rightarrow} \mathsf{P}$$

$$\mathsf{M} {\mapsto} \mathsf{M} \overset{\cdot}{\mathsf{tel}} \ \mathsf{que} \ : 3 \overrightarrow{AM'} \ + 2 \ \overrightarrow{\mathsf{MA}} \ + \overrightarrow{\mathsf{DA}} = \overrightarrow{\mathsf{O}}$$

- 1) Montrer que f admet un unique point invariant que l'on précisera.
- 2) En déduire que f est une homothétie dont on précisera le centre et le rapport.
- II) Soit h l'homothétie de centre D et de rapport $\frac{2}{3}$.
- 1)a-Montrer que h(B) = G. b- En déduire que h(A) = H.
- 2)La parallèle à (BC) et passant par G coupe (DC) en E. Déterminer h(C).
- 3)Soit (C) l'ensemble des points M du plan d'images M' par h vérifiant : $M'G^2 + M'D^2 = GD^2$.

Soit (C') l'ensemble des points M du plan d'images M' par h vérifiant $MM' = \frac{4}{3}$

a- Montrer que (C) est le cercle circonscrit au rectangle ABCD.

b-Montrer que (C') est un cercle passant par A.

