ОПР(Искажение типа "Пропуск")

Искажение типа "Пропуск" это Б.О $\alpha : \mathcal{M} \times \mathcal{M}$:

 $(u,v) \in \alpha \Leftrightarrow \mathrm{v}$ - получено из и вычеркиванием одной буквы

Определим также Б.О $\rho: \mathcal{M} \times \mathcal{M}$:

$$(u,v)\in \rho\Leftrightarrow \begin{cases} \text{либо }(u,v)\in \alpha \\ \text{либо }u=v \end{cases}$$

ОПР(шифр, не распрастраняющий искажений типа "пропуск")

шифр (\mathcal{M}, E) , не распрастраняет искажений типа "пропуск" - если $\forall e \in E, \forall \vec{x}, \vec{y} \in \mathcal{M}, \forall k \leq |\vec{x}|$:

$$\vec{x}\rho^k\vec{y} \Rightarrow e(x)\rho^k e(y)$$

- ullet e это как функция расшифрования так и расшифрования, т.к e это биекция $e:\mathcal{M}> woheadrightarrow \mathcal{M}$
- тогда \vec{x}, \vec{y} -это 2 криптограммы(настоящая и испорченная)
- если при передачи или шифровании пропало не более k букв, то после расшифрования пропадёт тоже не более k букв

Лемма 1

 $\forall e: \mathcal{M} \to \mathcal{M}, \rho \in \mathcal{M} \times \mathcal{M}:$

$$\forall x, y \ x \rho y \Rightarrow e(x) \ \rho \ e(y) \Leftrightarrow (\rho \circ e \subseteq e \circ \rho)$$

• ρ - произвольное Б.О

$\mathbf{\mathcal{L}}$ -ВО \Rightarrow

 $(x,y) \subseteq \rho \circ e \Rightarrow$

• по опр произведения бинарных отношений

 $\exists z: (x \rho z)$ и $(z \ e \ y)$

- из $(x\rho z) \Rightarrow e(x)\rho \ e(z)$
- ullet из $(z \ e \ y) \Rightarrow y = e(z)$, т.к е однозначная функция $(e(x),y) \in \rho$
- $\Rightarrow e(x)\rho\ y, (x,e(x)) \in e \Rightarrow (x,y) \in e \circ \rho$

Д-ВО ⇐

$$x \ \rho \ y \to x \ \rho \ y \ e \ e(y) \to x \ (\rho \circ e) \ e(y) \to x \ (e \circ \rho) \ e(y) \to \exists z, \ x \ e \ z, z \ \rho \ e(y) \Rightarrow e(x) \ \rho \ e(y)$$

Рис. 1: alt text

Свойство стабильности ⊆ относительно ∘

ОПР(стабильность)

Отношение α стабильно относительно $\star \Leftrightarrow \forall (x,y) \in \alpha \Rightarrow \begin{cases} (x\star z,y\star z) \in \alpha \\ (z\star x,z\star y) \in \alpha \end{cases}$

• это рефлексивное, транзитивное Б.О

Д-во

Есть пара отношений $\alpha \subseteq \beta$, γ Покажем, что $\alpha \circ \gamma \subseteq \beta \circ \gamma$

Пусть
$$(x,y)\subseteq \alpha\circ\gamma\Rightarrow\exists\ z: \begin{cases} (x,z)\in\alpha\Rightarrow(x,z)\in\beta\\ (z,y)\in\gamma\Rightarrow(z,y)\in\gamma \end{cases}$$
 \Rightarrow $(x,y)\in\beta\circ\gamma$

левая стабильность аналогично доказывается

Замечание

$$\begin{split} \forall e \in E, \forall \vec{x}, \vec{y} \in \mathcal{M}, \forall k \leq |\vec{x}| : \vec{x} \rho^k \vec{y} \Rightarrow e(x) \rho^k e(y) \\ \Leftrightarrow \\ \forall x, y : x \rho y \ \rightarrow e(x) \rho \ e(y) \end{split}$$

$\mathbf{\mathcal{L}}$ -ВО \Rightarrow

Очевидно

Д-ВО ←

По лемме 1

- $\forall x, y : x \rho y \rightarrow e(x) \rho \ e(y) \Leftrightarrow \rho \circ \ e \subseteq e \circ \rho$
- $\bullet \ \, \forall e \in E, \forall \vec{x}, \vec{y} \in \mathcal{M}, \forall k \leq |\vec{x}| : \vec{x} \rho^k \vec{y} \Rightarrow e(x) \rho^k e(y) \Rightarrow \forall k \leq |x| : \rho^k \circ e \subseteq e \circ \rho^k$

По стабильности

•
$$ho\circ e\subseteq e\circ
ho\Rightarrow \forall k\leq |x|:
ho^k\circ e\subseteq e\circ
ho^k$$
 для k=2
$$ho^2\circ e=(
ho\circ
ho)\circ e=$$

• по стабильности

$$\rho \circ (\rho \circ e) \subseteq \rho \circ (e \circ \rho) =$$

• по стабильности

$$(\rho \circ e) \circ \rho \subseteq (e \circ \rho) \circ \rho = e \circ \rho^2$$

повторяем процесс по индукции, пока не добъем до нужного k

ОПР(Централизатор)

$$Z(\rho)=\{e:\mathcal{M}> \twoheadrightarrow \mathcal{M}| \rho\circ\ e\subseteq e\circ \rho\}$$
 -централизатор ρ

Лемма 2 $Z(\rho) = \{e : M \mapsto M \mid \rho \circ e \subseteq e \circ \rho\}$ - централизатор. $Z(\rho) \leq S_M$ - группа всех биекций на множестве (с операцией суперпозиции \circ)

Рис. 2: alt text

ullet S_M - подгруппа всех перестановок на ${\mathcal M}$

Д-во Проверим устойчивость операций

Есть $e, f \in Z(\rho)$. Покажем, что

- 1. $e \circ f \in Z(\rho)$
- 2. $e^{-1} \in Z(\rho)$

Покажем 1)

$$\rho\circ(e\circ f)=(\rho\circ e)\circ f\subseteq$$

• стабильность e. т.к $e \in Z(\rho)$

$$(e\circ\rho)\circ f=e\circ(\rho\circ f)\subseteq$$

• стабильность f. т.к $f \in Z(\rho)$

$$e \circ (f \circ \rho) = (e \circ f) \circ \rho$$

Получаем, что $\rho \circ (e \circ f) = (e \circ f) \circ \rho \Rightarrow e \circ f \in Z(\rho)$

Покажем 2)

т.к
$$|M|<\infty\Rightarrow |S_M|<\infty$$
 Если G - конечная группа, $g\in G$, то g^{-1} = g^{k}, где $k=\mathrm{ord}(g)$ - 1 \Rightarrow если $e\in Z(\rho)$, то $e^k\in Z(\rho)$

Следствие из Лемм 1 и 2

 $\forall x,y \in \mathcal{M}$:

$$(x\rho y) \to e(x) \ \rho \ e(y) \Leftrightarrow e \circ \rho = \rho \circ e$$

Д-ВО ←

Следует из леммы 1

$\mathbf{\mathcal{L}}$ -ВО \Rightarrow

В лемме 1 показали $(\rho \circ e \subseteq e \circ \rho)$ нужно показать $(\rho \circ e \supseteq e \circ \rho)$ $\rho \circ e \subseteq e \circ \rho \Rightarrow e \in Z(\rho) \to e^{-1} \in Z(\rho)$ по лемме 2 $\rho \circ e^{-1} \subseteq e^{-1} \circ \rho \Rightarrow$

• по стабильности умножаем на е слева и справа дважды

Рис. 3: alt text

 $e\circ\rho\subseteq\rho\circ e$

В частности $Z(\rho)=\{e:\mathcal{M}> \twoheadrightarrow \mathcal{M}| \rho\circ e=e\circ \rho\}$ - в силу следствия