

همطراحی سختافزار نرمافزار

جلسه ششم: توصیف سیستم-معماری

ارائهدهنده: آتنا عبدی a_abdi@kntu.ac.ir

مباحث این بخش

• توصیف یک سیستم (System Specification)

- معماريها
- زبانهای توصیف

توصيف سيستم

- در ابتدای فرایند طراحی لازم است سیستم، براساس الزامات آن توصیف شود
 - فرایند توصیف سیستم توسط مدلها، معماریها و زبانها انجام می گیرد
 - مدل: دید مفهومی از رفتار و عملکرد سیستم
 - توصیف عملکرد، ساختار داده و کنترل سیستم
- معماری: پیادهسازی کلی مدل در قالب عملیاتی (Functional) یا مبتنی بر بستر (Platform)
 - تکمیل مدل با مشخص کردن نوع اجزای موردنیاز، تعداد آنها، اتصالات و
 - زبان: نگاشت مدل محاسباتی به معماری سیستم در سطح سختافزار، نرمافزار و سیستم

معماري

- هدف از معماری، کامل کردن مدل سیستم براساس مشخص کردن جزئیات پیادهسازی است
 - برحسب نوع سیستم و کاربرد آن معماری می تواند:
 - وابسته به کاربرد باشد
 - سیستمهای DSP
 - متشکل از پردازندههای عاممنظوره باشد
 - پردازندههای RISC و CISC
 - متشکل از پردازندههای موازی باشد
 - سیستمهای MIMD ،SIMD و ...

معماریهای خاصمنظوره

• کنترلر (Sequential Circuit)

- ساده ترین نوع معماری وابسته به کاربرد است و برای مدلهای مبتنی بر حالت استفاده می شود
 - کنترلر از یک ثبات و دو واحد منطق ترکیبی تشکیل میشود
 - ثبات: نگهداری مجموعه حالتها
 - دو بلوک منطق برای تولید حالت بعدی و خروجی
 - برحسب نوع ماشین حالت (میلی/مور) در تولید خروجی کنترلر از ورودی استفاده میشود.

كنترلر

معمارىهاى محاسباتي

- مسیر داده (Data Path)
- در تمامی پردازندهها برای اعمال محاسباتی و تغییرات داده استفاده میشود
- در پیادهسازی سیستمهای مدل شده توسط گراف جریان داده (DFG) استفاده میشود
- این سیستمها داده محور هستند و عملیات مشخصی برروی دادههای مختلف انجام می گیرد
 - کاربردهای پردازش سیگنال دیجیتال مانند فیلترها، پردازش تصویر، چندرسانهای و
 - این معماری متشکل از واحد محاسبات سرعتبالا میباشد
 - بهبود سرعت با تقسیم محاسبات به واحدهای خطلوله
 - هر عملیات در یک مرحله خطلوله

مسیر داده

Model:

$$y(i) = \sum_{k=0}^{N-1} x(i-k)b(k)$$

مسیر داده

- معماری مسیر داده علاوه بر واحد محاسبات می تواند شامل:
- ثبات، شمارنده، حافظههای متصل به باس جهت ارتباطات نیز باشد

مسير داده

- در برخی موارد لازم است در مسیر داده، واحد کنترلی پیشبینی شود
 - مسیر داده می تواند از تجمیع چندین DFG ایجاد شود
 - اجزایی در مسیر داده بین چندین عملیات مشترک باشد
- در این موارد، کنترلر داده را راهبری نموده و عملیات مناسب را انتخاب می کند
 - در این حالت کنترلری به صورت سری به مسیر داده افزوده می شود
 - معماری FSMD

معماریهای خاصمنظوره

FSMD: Finite State Machine with Datapath •

• ماشین حالتی که مسیر داده را کنترل می کند: Controller + Data path

- سیستم از دو بخش مجزای داده و کنترل تشکیل میشود
- هر بخش ورودی هایی از بیرون و ورودی از واحد دیگر دارند
- ورودیهای کنترلی نوع عملیات و شیوه جریان یافتن داده را معین می کند
- ورودیهای وضعیت، اطلاعاتی از ذخیره دادههای خاص و ارتباط بین آنها میدهد

FSMD

معماری پردازندهها-CISC

- سیستمهای توسعه داده شده در این معماری
- دستورات کمتر که منجر به کاهش تعداد دسترسی به حافظه می گردد
 - مناسب در کاربردها با حافظه کوچک یا کند
 - ویژگی سیستمهای مبتنی بر معماری CISC
 - مسیر داده این سیستمها پیچیده است
 - كنترلر اين سيستمها بهشيوه ريزبرنامه پذير طراحي مي شود

معماری پردازندهها-CISC

معماری پردازندهها-CISC

- این نوع از پردازندهها کارایی بالایی ندارند
- پارامتر CPI برای دستورات مختلف یکسان نیست درنتیجه پیادهسازی خطلوله دشوار می شود
 - کنترلر ریزبرنامه پذیر بدلیل ذات نرمافزاری و دسترسی به حافظه کند است
 - مهمترین ویژگی این معماری پوشش دستورات پیچیده است
 - آمار اجرا نشان داده است دستورات پیچیده بسیار کم استفاده میشوند (تقریبا بیاستفاده)
 - عدم سازگاری زبانهای برنامهنویسی و روشهای نگاشت آنها با دستورات پیچیدهتر

در نتیجه: استفاده از این معماری بسیار کم است

معماری پردازندهها-RISC

- ویژگیهای این نوع از پردازندهها:
- دستورات در تعداد کلاک کم اجرا میشوند
- مكانيزم خطلوله بهطور موثر بر آنها اعمال ميشود
 - پیادهسازی مکانیزم اجرای ۴ مرحلهای در خطلوله
 - طول کلاک کوتاه است
- مسیر داده این نوع از پردازندهها متشکل از ثبات بزرگ برای ذخیره علموندهاست

معماری پردازندهها-RISC

معماری پردازندهها-RISC

- این نوع از پردازندهها کارایی بالایی دارند
- طراحی ساده مسیر داده بهدلیل ذخیره یکپارچه دادهها و محدود بودن شیوه آدرسدهی
 - کنترلر ساده و قابل پیادهسازی در منطق سختافزاری که سریع است

در نتیجه بهدلیل سادگی و کارایی بالا، استفاده از این معماری رایج است

RISC Architecture

معماریهای موازی

- بکارگیری چندین واحد پردازشی که بهصورت موازی کار میکنند
- هر واحد پردازشی می تواند مسیر داده و اجزای مخصوص خود را داشته باشد

- دو نوع معماری در این دسته بررسی میشوند:
- Single Instruction Multiple Data (SIMD) •
- Multiple Instruction Multiple Data (MIMD) •

معماریهای موازی-SIMD

- تمامی واحدهای پردازشی به اجرای یک دستور اشتغال دارند (پردازنده آرایهای)
- بهمنظور کنترل پردازندهها و ارسال دستور، یک واحد کنترل کلی در سیستم تعبیه شده است
 - این واحد به یک پردازنده متصل شده و محاسبات سنگین را تسریع می کند
 - دادههای متنوع به واحدهای پردازشی وارد شده و درنهایت نتایج جمعآوری و تجمیع میشوند
 - دادههای قابل بخشبندی، مانند ماتریسها، پردازش تصویر و اعمال محاسبات روی پیکسلها
 - امكان ارتباط محدود واحدهاى پردازشى همسايه وجود دارد

معماریهای موازی-SIMD

معماریهای موازی-MIMD

- به سیستم چندپردازندهای (Multiprocessor System) معروف است
 - هر پردازنده دستور مجزا با دادههای مجزا اجرا می کند
- هر پردازنده قادر است با سایرین از طریق روشهای مشخصی ارتباط برقرار کند
 - ارسال پیغام (Message Passing)
 - نوشتن در حافظه مشترک (Shared Memory)
 - کاربرد گسترده

معماریهای موازی-MIMD

مباحثی که این جلسه آموختیم

- توصيف سيستم
 - معماريها
- معماریهای وابسته به کاربرد
 - معماریهای عاممنظوره
 - معماریهای موازی

مباحث جلسه آینده

- گام اول فرایند طراحی
 - توصيف سيستم
 - زبان

