Say whether the following is true or false and support your answer by a proof.

$$(\exists m \in N)(\exists n \in N)(\exists m + 5n = 12)$$

If
$$3m + 5n = 12$$
, then $n = \frac{12-3m}{5}$

 $n \in N \text{ if } 12\text{-}3m\text{-}5k \text{ , } k \in N$

If,
$$m=1, 12-3 = 9 \neq 5k$$

$$m=2, 12-5=7 \neq 5k$$

$$m=3, 12-9=3 \neq 5k$$

∴
$$\forall$$
m∈ N, \nexists n∈ N s.t 3m-5n=12

So the statement is False

2. Say whether the following is true or false and support your answer by a proof: The sum of any five consecutive integers is divisible by 5 (without remainder).

Five consecutive integers: n,(n+1),(n+2),(n+3),(n+4),

$$n+(n+1)+(n+2)+(n+3)+(n+4)=5n+10=5k$$
 (let k be "something") $5n+10=5k$ $\forall n \in Z$

By PMI

First case:

If
$$n=1$$
, $5(1)+10=15=5(3)$, so $5n+10=5k$

Hypothesis:

$$n=p, 5p+10 = 5k_1$$

Thesis:

For
$$p+1$$
, $5(p+1)+10 = 5k_2$

$$5(p+1)+10 = 5p+5+10 = \underbrace{5p+10}_{\text{our hypothesis}} + 5k_1 + 5 = 5(k_1+1) = 5 \text{ k (for some other k aside k1 and k2)}_{\text{our hypothesis}}$$

3. Say whether the following is true or false and support your answer by a proof: For any integer n, the number $n\ 2+n+1$ is odd.

By PMI, we show that : $\forall n \in \mathbb{Z}$, $n^2 + n + 1$ has the form 2a+1

We take the expression $n^2 + n + 1$ as n(n+1)+1, and we focus in the term n(n+1). We know that the product of two consecutive integers is an even number.

First case:

$$n=1$$
, $(1)(1+1)+1=2+1=3=2(1)+1$, so it has the form $2a+1$

Hypothesis:

$$n=q$$
; $q^2 + q + 1 = q(q+1) + 1$ and assume that $2q+1$

Thesis:

For q+1
$$(q+1)^2 + (q+1) + 1 = q^2 + 2q + 1 + q + 1 + 1 = q^2 + 2q + 2q + 2 + 1 = 2a_1 + 2q + 2 + 1$$
 this is part of our hypothesis wich equals 2a

$$2a_1+2q+2+1=2(a_1+q+1)+1=2a_2+1$$

So, for any integer $n - n^2 + n + 1$ has the form 2k (k be something) plus 1, wich means is odd_

4. Prove that every odd natural number is of one of the forms 4n + 1 or 4n + 3, where n is an integer.

Since we are looking for every odd natural number, $(\forall n \in \mathbb{Z})(n \ge 0) \exists r \ge 0 [(4n+1 \land 4n+3) \Rightarrow (2r+1)]$

We have three forms types of numbers, 0, 2k,2k+1 or 2k-1

If, n=0;
$$4(0)+1=1$$
; $4(0)+3=3$
n=2k; $4(2k)+1=8k+1=2(4k)+1$ (form 2r+1); $4(2k)+3=8k+2+1=2(2k+1)+1$ (form 2r+1)
n=2k+1; $4(2k+1)+1=8k+4+1=2(4k+2)+1$ (form 2r+1)
 $4(2k+1)+3=8k+4+3=8k+6+1=2(4k+3)+1$ (form 2r+1)

So, every odd in natural set can be in the form 4n+1 or 4n+3

5. Prove that for any integer n, at least one of the integers n, n + 2, n + 4 is divisible by 3.

By PMI

from hypothesis 3b=n+2

$$\forall n \in \mathbb{Z}[n \lor (n+2) \lor (n+4) = 3x]$$
 *v as inclusive or First case: r=remainder n=1; 1/3 r=1 False; (1+2)/3 r=0 True so, statement pass the first test Hypothesis: Assume that, $\exists n \in \mathbb{Z}[(n=3a) \lor (n+2=3b) \lor (n+4=3c)]$ Thesis: For n+1 $3 \mid n+1 \lor 3 \mid ((n+1)+2) \lor ((n+1)+4)$ $n+1=3a+1, r=1$ False, $n+3=\underbrace{3a+3}_{from \ hypothesis} = 3(a+1), r=0$ True, $from \ hypothesis} = 3(b+1), r=0$ True.

∴ allways we can find some n in set Z for n,n+2 and n+4 with the form 3x wich makes the statement $\forall n \in Z[n \lor (n+2) \lor (n+4)=3x]$ True

6. A classic unsolved problem in number theory asks if there are infinitely many pairs of 'twin primes', pairs of primes separated by 2, such as 3 and 5, 11 and 13, or 71 and 73. Prove that the only prime triple (i.e. three primes, each 2 from the next) is 3, 5, 7.

We know that the first triplet is 3,5,7 If, 3+5+7=15=3(5)=3q seen as variables p+(p+2)+(p+4)=3p+6=3(p+2)=3q,

By the problem 5 we know that (nV(n+2)V(n+4))=3q, this means that at least one is divisible by 3. (n+(n+2)+(n+4)=3n+6=3(n+2)=3k)

So for any other triplet where number 3 is not involved, we will still get the 3q form from at least one of his members.

Since number 3 cant be involved anymore in any other possible triplet, but still one of his members is divisible by 3 this shows that there is not another possible prime triplet aside of 3,5,7

7. Prove that for any natural number n,

$$2+2^2+2^3+\ldots+2^n=2^{n+1}-2$$

By PMI

First case:

$$\sum_{i=1}^{1} 2^{i} = 2 = 2^{1+1} - 2 = 2$$

Hypothesis:

Assume: $2^{i} = 2^{n+1} - 2$

Thesis:

$$\sum_{i=1}^{n+1} 2^{i} = 2^{n+2} - 2$$

By hypothesis, $\sum_{i=1}^{n} 2^{i} = 2^{n+1} - 2$ and we add the next number in the sequence wich is 2^{n+2} ... $+ 2^{n+1}$

So,
$$2^{n+1} - 2 + 2^{n+1} = 2(2^{n+1}) - 2$$

By law of exponents,

$$2(2^{n+1}) = 2^{1+n+1} = 2^{n+2}$$

Thus, $2^{n+1} - 2 + 2^{n+1} = 2^{n+2} = 2$ wich proves the statement in our thesis

Prove (from the definition of a limit of a sequence) that if the sequence $\{a_n\}_{n=1}^{\infty}$ tends to limit L as $n \to \infty$, then for any fixed number M > 0, the sequence $\{Ma_n\}_{n=1}^{\infty}$ tends to the limit ML.

We have the sequence $\{a_n\}$ n=1

 $\{a_n\}_{n=1}^{\infty}=a_1,a_2,a_3...$ to "some a" as $n\to\infty$ in other words, we get closer to some value a This means that the value of the sequence get arbitrarily closer and closer to some value a Therefore "some a" is the limit, that is L

Considering M as a value that does not change, let say M=2, we have the following:

$$\{Ma_n\}$$
 $n=1 = \{2a_n\}$ $n=1 = 2a_1, 2a_2, \dots 2a_n$

The sequence goes toward "some a" multiplied by 2. We can see this as: "some a" multiplied by ${\bf M}$

If "Some a"=L and $\{Ma_n^-\}_{n=1}^\infty$ goes to "some a" multiplied by M Then $\{Ma_n^-\}_{n=1}^\infty$ tends to ML

By definition:

$$(\exists \epsilon > 0)(\exists n \in N)(\forall m \ge n)[|a_{\underline{n}}"some a"| < \epsilon]$$

Hypothesis: $|a_{m}$ -some $a''| < \varepsilon_{1}$

Thesis: $|Ma_m - M("some a")| < \epsilon_2$

$$|\mathsf{M} \mathsf{a}_{\mathtt{m}}^{-} \mathsf{M}(\mathsf{"some a"})| = |\mathsf{M}(\mathsf{a}_{\mathtt{m}}^{-}\mathsf{"some a"})| = |\mathsf{M}|^{*}|\mathsf{a}_{\mathtt{m}}^{-}\mathsf{"some a"}| = \mathsf{M}^{*}|\underbrace{\mathsf{a}_{\mathtt{m}}^{-}\mathsf{"some a"}}_{\mathsf{from our hymothesis}} < \mathsf{M}$$

taken ME_1 as E_2

$$|Ma_m - M("some a")| < \varepsilon_2$$

9. Given an infinite collection A_n , $n=1,\,2,\ldots$ of intervals of the real line, their intersection is defined to be

$$\bigcap_{n=1}^{\infty} A_n = \{ x \mid (\forall n)(x \in A_n) \}$$

Give an example of a family of intervals $A_n, n = 1, 2, ...$, such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Prove that your example has the stated property.

$$\bigcap_{n=1}^{\infty}A_n=\left\{x\,|\,(\forall n)(x\in A_n)\right\}$$

$$A_n=\left\{x,4,8,\ldots\right\}=\left\{x/x=2k\right\}\\ n=1$$

$$A_n=\left\{4,8,12,\ldots\right\}=\left\{x/x=4k\right\}\\ n=2$$

$$A_n=\left\{6,12,18,\ldots\right\}=\left\{x/x=6k\right\}\\ n=3$$

$$A_n=\left\{2,2^*2,3^*2,\ldots\right\}\quad\text{"some n" goes to infinty}$$

$$\bigcap_{n=1}^{\infty} A_{2n} = \{x/\forall x \in A_{2kn}\}, k \in \mathbb{N}$$

Suppose that n is infinetely large with n∈N_let n=10 A
$$_{\stackrel{.}{2}}$$
{2,4,6,8,10,12,14,16,18,20}
A $_{\stackrel{.}{4}}$ {={4,8,12,16,20,24,28,32,36,40}
A $_{\stackrel{.}{6}}$ {={6,12,18,24,30,36,42,48,54,60}
A $_{\stackrel{.}{6}}$ {={8,16,24,32,40,48,56,64,72,80}

[A $_{\stackrel{.}{2}}$ A $_{\stackrel{.}{2$

With this example we can say that A (with n goes to infinity) will have at least one element that is not in the previus sequences. Thus, in some point we get a empty set.

10. Give an example of a family of intervals An, $n=1,2,\ldots$, such that An+1 \subseteq An for all n and Tro

n=1 An consists of a single real number. Prove that your example has the stated property

Proved in problem 9