Applied Category Theory

Caleb Hill

Fall 2025

Contents

2025
7hy?
lan°
roups
hings that came up
/2025
, lore groups
ubgroups
omomorphisms

Caleb Hill UNH Mathematics

9/3/2025

Why?

Why should you care about studying the coming content and applying it to your field? Physicists:

- The particles in the standard model are irreducible representations. So rep theory is crucial to you.
- Monoidal categories give a good framework for understanding QM.

Computer scientists:

• It gives a framework for the Curry-Howard correspondence (proofs are programs).

Me:

- Began as a study of "analogies" and turned into a study of nifty algebraic gadgets.
- It's written in a wild language, and learning languages is fun.

As a great motivation, see https://arxiv.org/abs/0903.0340

Plan

The **first goal** is to define monoidal categories with some context. The **second goal** is to describe a "skeletal" category defined by diagrammatics. To accomplish the first goal, we will study things including:

- Algebraic objects (groups, vector spaces, ...) and maps between them
- Subobjects, images, combining objects $(\times, \otimes, \oplus, ...)$
- Categories (Grp, Set, PoSet, \mathbb{N} , Vec, ...)

I'd like to have as little fat on this as necessary. That is, not get sidetracked studying, for instance, too much of the internal structure of these objects. I want to give many examples and try to build intuition. For the second goal we'll study things including:

- Representations and maps (T(gv) = gT(v))
- $Rep(D_3)$ in detail

Up to this point I have a strong vision of where we're going. After this we can go where the interest steers us.

This plan is incomplete and non-exhaustive.

Groups

This is the best onramp to categories I know of, so bear with me through some basics.

Definition 1. A group is a triple

$$(G, \mu, e)$$

where G is a set, $\mu: G \times G \to G$ is a function, and $e \in G$, such that

$$\forall a, b, c \in G, \quad \mu(\mu(a, b), c) = \mu(a, \mu(b, c))$$
 (Associativity)

$$\forall a \in G, \quad \mu(a, e) = \mu(e, a) = a$$
 (Identity)

$$\forall a \in G, \exists b \in G, \quad such \ that \quad \mu(a,b) = \mu(b,a) = e$$
 (Inverse)

We often call the element b from 1 by a^{-1} . We also often use the following shorthands:

• $\mu(a,b) = a \cdot b = a \star b = ab$

Caleb Hill UNH Mathematics

•
$$\underbrace{a \cdot a \cdot \cdot \cdot a}_{n \text{ conies}} = a^n$$

Exercise 1. Translate the three axioms above into the ab notation.

Exercise 2. Prove the identity element in a group is unique. That is, if e and e' both satisfy Axiom 1, show that e' = e.

Now some examples. As an excercise, prove that each of the following is a group. The notation := reads as "is defined to be."

Example 1 (General linear group). (G, μ, e) , where

- $G = GL_2(\mathbb{C}) := \{invertible \ 2 \times 2 \ matrices \ with \ entries \ in \ \mathbb{C} \}$
- $\mu(A,B) := AB$
- $\bullet \ e = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Example 2 (General linear group). (G, μ, e) , where

- $G = \mathrm{GL}_n(\mathbb{C}) := \{invertible \ n \times n \ matrices \ with \ entries \ in \ \mathbb{C} \}$
- $\mu(A,B) := AB$
- $e = I_n$ (the $n \times n$ identity matrix)

Example 3 (Integers). (G, μ, e) , where

- $G = \mathbb{Z}$
- $\mu(a,b) \coloneqq a+b$
- e = 0

Example 4 (Not a group! Why?). (G, μ, e) , where

- $G = \mathbb{Z}$
- $\mu(a,b) \coloneqq a \times b$
- e = 1

Example 5 (Braid group). $B_n := (G, \mu, e)$, where

- ullet G=n-strand braid diagrams (up to isotopy/wiggling)
- $\mu = vertical\ concatenation$
- \bullet e = n unbraided strands

Steve pointed out that when n = 2, B_n is isomorphic to \mathbb{Z} . We'll get to that in the next lecture I hope.

Things that came up

- Generators and relations presentations
- Free group/group of words
- Symmetric group/permutation groups
- The natural numbers game: https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/index2.html
- Peano arithmetic: https://en.wikipedia.org/wiki/Peano_axioms

Caleb Hill UNH Mathematics

9/10/2025

UNSTABLE

More groups

Example 6 (Symmetric groups). Let X be a set. Then (G, μ, e) is a group, where

- $G = \{ \sigma : X \to X \mid \sigma \text{ is bijective } \}$
- $\mu(\sigma_1, \sigma_2) := \sigma_1 \circ \sigma_2$
- $e = id_X$, defined by $\forall x \in X$, $id_X(x) = x$

Subgroups

There is rich literature about the structure of subgroups of a group. We won't get into it more than necessary.

Definition 2. Let G and H be two groups...

Homomorphisms

Example 7 (det).

Example 8 $(n \mapsto kn)$.