

Text Analytics

Ch6: Dimensionality Reduction

- 텍스트 데이터의 일반적인 특징(Bag of Words 를 가정)
 - 단어의 수(Terms)가 문서의 수(Documents)보다 많다.
 - ✓ 변수가 관측치 보다 많으면 기존 통계의 방법이 사용 불가능 하다.
 - ❖ 과적합의 문제가 발생하기 때문이다.
 - ✓ 희소성의 문제가 발생한다.

Term Variables	Documents										
Term 1	Document1 1	Document2		Document n							
Term 2											
:		Data									
Term m											

- Problem 1: High dimensionality (N. terms >> N. documents)
- Problem 2: Sparseness (Most elements in a term-document matrix are zero)
- 왜 dimensionality reductio이 필요할까?
 - 계산 효율성을 높이기 위함이다.
 - 텍스트 마이닝의 정확도를 높이기 위함이다.

- Dimension Reduction의 테크닉
 - 크게 보면 Feature Selection과 Feature Extraction이 있다.
 - ✓ 둘의 차이점은 차원을 단순히 축소하느냐, 데이터셋의 특징을 가지고 새로운 셋을 만드느냐에 따라 차이가 있다.
 - Feature Selection
 - ✓ 지도학습이다.
 - ✓ 알고리즘 사용 유무에 따라 Filter와 Wrapper가 있다.

Feature Extraction

✓ 비지도 학습이다.

- ▶ Dimension Reduction의 테크닉
 - 크게 보면 Feature Selection과 Feature Extraction이 있다.
 - ✓ 둘의 차이점은 차원을 단순히 축소하느냐, 데이터셋의 특징을 가지고 새로운 셋을 만드느냐에 따라 차이가 있다.

- Dimension Reduction의 테크닉
 - Feature Selection
 - ✓ 지도학습이다.
 - ✓ 알고리즘 사용 유무에 따라 Filter와 Wrapper가 있다.

Feature

Selection

- 10개의 문서와 10개의 단어
 - 긍부정 판별 문제이다.
 - 6개의 긍정 문서와 4개의 부정 문서가 있다.

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DI0
Term I	- 1	- 1	- 1	- 1	- 1	- 1	0	0	0	0
Term 2	0	0	0	0	0	0	- 1	- 1	- 1	- 1
Term 3	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1	- 1
Term 4	- 1	- 1	1	- 1	- 1	- 1	- 1	- 1	0	0
Term 5	0	0	0	- 1	- 1	- 1	- 1	- 1	- 1	- 1
Term 6	- 1	- 1	- 1	0	0	0	0	0	0	0
Term 7	0	0	0	0	0	0	- 1	- 1	0	0
Term 8	- 1	0	1	0	- 1	0	- 1	0	1	0
Term 9	- 1	- 1	- 1	0	0	0	- 1	0	0	0
Term 10	- 1	0	0	0	0	0	0	0	1	1
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg

Feature Selection Metric

- Document frequency(DF)
 - ✓ 단어가 나타나는 횟수를 센다.
 - ❖ Term1 : DF(w) = 6
 - ❖ Term2 : DF(w) = 4
 - ❖ Term3 : DF(w) = 10
 - ✓ Accuracy(Acc)
 - ❖ 정확도를 본다. Acc(w) = N(Pos, w) N(Neg, w)
 - \sim Term1 : N(Pos,w) = 6,N(Neg,w) = 0, ACC(w) = 6
 - \sim Term2 : N(Pos,w) = 0,N(Neg,w) = -4, ACC(w) = -4
 - \sim Term3 : N(Pos,w) = 6,N(Neg,w) = 4, ACC(w) = 2

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DIO
Term I	1	1	1	1	-1	1	0	0	0	0
Term 2	0	0	0	0	0	0	1	1	1	1
Term 3	1	1	1	1	1	1	1	1	1	1
Term 4	1	1	1	1	1	1	1	1	0	0
Term 5	0	0	0	1	1	1	1	1	1	1
Term 6	1	1	1	0	0	0	0	0	0	0
Term 7	0	0	0	0	0	0	1	1	0	0
Term 8	-	0	1	0	1	0	1	0	1	0
Term 9	1	1	1	0	0	0	1	0	0	0
Term 10	1	0	0	0	0	0	0	0	1	1
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg

Feature Selection Metric

Accuracy ration(AccR)

$$AccR(w) = \left| \frac{N(Pos, w)}{N(Pos)} - \frac{N(Neg, w)}{N(Neg)} \right|$$

■ For Term I:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{6}{6} = 1, \frac{N(Neg,w)}{N(Neg)} = \frac{0}{4} = 0, AccR(w) = 1$$

■ For Term 2:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{0}{6} = 0, \frac{N(Neg,w)}{N(Neg)} = \frac{4}{4} = 1, AccR(w) = 1$$

■ For Term 3:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{6}{6} = 1, \frac{N(Neg,w)}{N(Neg)} = \frac{4}{4} = 1, AccR(w) = 0$$

- ✓ 성능이 나타나는 것을 확인할 수 있다.
- Probability Ratio(PR)
 - √ P(Pos,w|Pos)/P(Neg,w|Neg)

■ For Term I:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{6}{6} = 1, \frac{N(Neg,w)}{N(Neg)} = \frac{0}{4} = 0, PR(w) = \infty$$

■ For Term 2:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{0}{6} = 0, \frac{N(Neg,w)}{N(Neg)} = \frac{4}{4} = 1, AccR(w) = 0$$

■ For Term 3:
$$\frac{N(Pos,w)}{N(Pos)} = \frac{6}{6} = 1$$
, $\frac{N(Neg,w)}{N(Neg)} = \frac{4}{4} = 1$, $AccR(w) = 1$

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DIO
Term I	1	1	1	1	1	1	0	0	0	0
Term 2	0	0	0	0	0	0	1	-1	1	1
Term 3	1	1	1	1	1	1	1	1	1	1
Term 4	1	1	1	I	I	I	1	I	0	0
Term 5	0	0	0	1	1	1	1	-1	1	1
Term 6	1	1	1	0	0	0	0	0	0	0
Term 7	0	0	0	0	0	0	1	1	0	0
Term 8	1	0	1	0	-1	0	-1	0	1	0
Term 9	1	1	1	0	0	0	1	0	0	0
Term 10	1	0	0	0	0	0	0	0	1	1
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg

Feature Selection Metric

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DI0	DF	Acc	AccR	PR
Term I	-1	-1	-1	-1	-1	-1	0	0	0	0	6	6	1.00	Inf
Term 2	0	0	0	0	0	0	-1	-1	- 1	-1	4	-4	1.00	0.00
Term 3	-1	-1	-1	-1	-1	- 1	-1	-1	-1	-1	10	2	0.00	1.00
Term 4	-1	-1	-1	-1	-1	- 1	-1	-1	0	0	8	4	0.50	2.00
Term 5	0	0	0	-1	-1	- 1	-1	-1	-1	-1	7	-1	0.50	0.50
Term 6	-1	-1	-1	0	0	0	0	0	0	0	3	3	0.50	Inf
Term 7	0	0	0	0	0	0	-1	-1	0	0	2	-2	0.50	0.00
Term 8	-1	0	-1	0	-1	0	-1	0	-1	0	5	1	0.00	1.00
Term 9	-1	-1	-1	0	0	0	-1	0	0	0	4	2	0.25	2.00
Term 10	-1	0	0	0	0	0	0	0	-1	-1	3	-1	0.33	0.33
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg				

Feature Selection Metric

- Odds ratio(OddR)
 - ✓ 동일 집단 내에서 어떤 사건이 발생할 확률과 발생하지 않을 확률의 비교값이다.
 - ❖ 예시로 흡연자가 폐암에 걸릴 확률이 20%, 비흡연자가 폐암에 걸릴 확률이 1%라고 하면 OddR은 20/80,1/99이다.
 - For Term 8: $\frac{N(Pos,w)}{N(Neg,w)} = \frac{3}{2}, \frac{N(Neg,\overline{w})}{N(Pos,\overline{w})} = \frac{2}{3}, OddR(w) = 1$
 - For Term 9: $\frac{N(Pos,w)}{N(Neg,w)} = \frac{3}{1}, \frac{N(Neg,\overline{w})}{N(Pos,\overline{w})} = \frac{3}{3}, OddR(w) = 3$
 - ✓ Odds ratio Numerator(OddN)
 - ❖ 분자만 가져왔다.
 - For Term 8: $N(Pos, w) = 3, N(Neg, \overline{w}) = 2, OddN(w) = 6$
 - For Term 9: N(Pos, w) = 3, $N(Neg, \overline{w}) = 3$, OddN(w) = 9

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DIO
Term I	1	1	1	1	-1	1	0	0	0	0
Term 2	0	0	0	0	0	0	1	1	1	1
Term 3	1	1	1	1	1	1	1	1	1	1
Term 4	1	1	1	1	1	1	1	1	0	0
Term 5	0	0	0	1	1	1	1	1	1	1
Term 6	1	1	1	0	0	0	0	0	0	0
Term 7	0	0	0	0	0	0	1	1	0	0
Term 8	1	0	1	0	1	0	1	0	1	0
Term 9	1	1	1	0	0	0	1	0	0	0
Term 10	1	0	0	0	0	0	0	0	I	1
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg

Feature Selection Metric

F1 – Measure

$$F1(w) = \frac{2 \times Recall(w) \times Precision(w)}{Recall(w) + Precision(w)}$$

$$Recall(w) = \frac{N(Pos, w)}{N(Pos, w) + N(Pos, \overline{w})}, \qquad Precision(w) = \frac{N(Pos, w)}{N(Pos, w) + N(Neg, w)}$$

$$F1(w) = \frac{2 \times N(Pos, w)}{N(Pos) + N(w)}$$

• For Term I:
$$F1(w) = \frac{2 \times 6}{6+6} = 1$$

• For Term 2:
$$F1(w) = \frac{2 \times 0}{6+4} = 0$$

• For Term 3:
$$F1(w) = \frac{2 \times 6}{6+10} = 0.75$$

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DIO
Term I	1	1	1	1	1	1	0	0	0	0
Term 2	0	0	0	0	0	0	1	1	1	1
Term 3	1	1	1	1	1	1	1	1	1	1
Term 4	1	1	1	1	1	1	1	1	0	0
Term 5	0	0	0	1	1	1	1	1	1	1
Term 6	1	1	1	0	0	0	0	0	0	0
Term 7	0	0	0	0	0	0	1	1	0	0
Term 8	1	0	1	0	1	0	1	0	I	0
Term 9	1	1	1	0	0	0	1	0	0	0
Term 10	1	0	0	0	0	0	0	0	1	-1
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg

Feature Selection Metric

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DI0	OddR	OddN	FI
Term I	-1	- 1	- 1	- 1	- 1	-1	0	0	0	0	24.00	24	1.00
Term 2	0	0	0	0	0	0	-1	-1	-1	1	0.00	0	0.00
Term 3	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	0.00	0	0.75
Term 4	-1	-1	-1	-1	-1	-1	-1	-1	0	0	4.00	12	0.86
Term 5	0	0	0	-1	-1	-1	-1	-1	-1	1	0.00	0	0.46
Term 6	-1	-1	-1	0	0	0	0	0	0	0	4.00	12	0.67
Term 7	0	0	0	0	0	0	-1	-1	0	0	0.00	0	0.00
Term 8	-1	0	-1	0	-1	0	-1	0	-1	0	1.00	6	0.55
Term 9	-1	-1	-1	0	0	0	-1	0	0	0	3.00	9	0.60
Term 10	-1	0	0	0	0	0	0	0	-1	1	0.20	2	0.22
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg			

Feature Selection Metric

- Information Gain(IG)
 - ✓ 엔트로피 감소량을 측정한다.

$$Entropy(absent\ w) = \sum_{C \in \{Pos, Neg\}} -P(C) \times \log(P(C))$$

$$Entropy(given \ w) = P(w) \left[\sum_{C \in \{Pos, Neg\}} -P(C|w) \times \log(P(C|w)) \right] \\ +P(\overline{w}) \left[\sum_{C \in \{Pos, Neg\}} -P(C|\overline{w}) \times \log(P(C|(\overline{w}))) \right]$$

IG(w) = Entropy(absent w) - Entropy(given w)

- Feature Selection Metric
 - Information Gain(IG)
 - ✓ 엔트로피 감소량을 측정한다.

$$Entropy(absent w) = -P(Pos) \times \log(P(Pos)) - P(Neg) \times \log(P(Neg))$$
$$= -0.6 \times \log(0.6) - 0.4 \times \log(0.4)$$
$$= 0.29$$

$$Entropy(given\ w) = P(w)[-P(Pos|w) \times \log(P(Pos|w)) - P(Neg|w) \times \log(P(Neg|w))]$$

$$+ P(\overline{w})[-P(Pos|\overline{w}) \times \log(P(Pos|\overline{w})) - P(Neg|\overline{w}) \times \log(P(Neg|\overline{w}))]$$

$$= 0.6[-1 \times \log(1) - 0 \times \log(0)] + 0.4[-0 \times \log(0) - 1 \times \log(1)]$$

$$= 0$$
Convert log(o) to zero

$$IG(w) = 0.29 - 0 = 0.29$$

- Feature Selection Metric
 - 카이제곱 통계량
 - ✓ 클래스와 독립적이다.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(E_{i} - O_{i})^{2}}{E_{i}}$$

k: 범주의 수, O_i : 실제 도수, E_i : 기대 도수

- . 데이터의 분포와 사용자가 선택한 기대값 또는 가정된 분포 사이의 차를 나타낸 측정값
- . (기대도수) = (열의 합계) X (행의 합계) / (전체 합계)

Term 1	Pos	Neg	Total
w	6	0	6
\overline{w}	0	4	4
total	6	4	10

Term 4	Pos	Neg	Total
w	6	2	8
\overline{w}	0	2	2
total	6	4	10

$$\chi^{2}(T1) = \frac{10 \times [0.6 \times 0.4 - 0 \times 0]^{2}}{0.6 \times 0.4 \times 0.6 \times 0.4} = 10.00 \quad \chi^{2}(T4) = \frac{10 \times [0.6 \times 0.2 - 0.2 \times 0]^{2}}{0.8 \times 0.2 \times 0.6 \times 0.4} = 3.75$$

- Feature Selection Metric
 - Bi-Normal Separation(BNS)
 - ✓ 정규분포를 가정하고, 누적 분포함수를 따른다고 한다.

$$BNS(w) = \left| F^{-1} \left(\frac{N(Pos, w)}{N(Pos)} \right) - F^{-1} \left(\frac{N(Neg, w)}{N(Neg)} \right) \right|$$

F: c.d.f of the standard normal distribution

Term 4	Pos	Neg	Total
w	6	2	8
\overline{w}	0	2	2
total	6	4	10

$$BNS(w) = |F^{-1}(1) - F^{-1}(0.5)|$$

$$\approx |F^{-1}(0.9995) - F^{-1}(0.5)|$$

$$= |3.29 - 0| = 3.29$$

- Feature Selection Metric
 - IG랑 x^2으로 충분하다.

	DI	D2	D3	D4	D5	D6	D7	D8	D9	DI0	IG	χ²	BNS
Term I	-1	-1	-1	-1	-1	-1	0	0	0	0	0.29	10.00	6.58
Term 2	0	0	0	0	0	0	-1	- 1	-1	-1	0.29	10.00	6.58
Term 3	-1	-1	-1	-1	-1	-1	-1	-1	-1	1	0.00	0.00	0.00
Term 4	-1	-1	-1	-1	-1	-1	-1	-1	0	0	0.10	3.75	3.29
Term 5	0	0	0	-1	-1	-1	-1	-1	-1	-1	0.08	2.86	3.29
Term 6	-1	-1	-1	0	0	0	0	0	0	0	0.08	2.86	3.29
Term 7	0	0	0	0	0	0	-1	- 1	0	0	0.10	3.75	3.29
Term 8	-1	0	-1	0	-1	0	-1	0	-1	0	0.00	0.00	0.00
Term 9	-1	-1	-1	0	0	0	-1	0	0	0	0.01	0.63	0.67
Term 10	-1	0	0	0	0	0	0	0	- 1	-1	0.03	1.27	0.97
Class	Pos	Pos	Pos	Pos	Pos	Pos	Neg	Neg	Neg	Neg			

Feature

Extraction

- Feature Extraction
 - SVD
 - ✓ 특이값 분해이다.
 - \checkmark U_k T U_k = 1, U_i T U_j = 0

- Feature Extraction
 - SVD의 장점
 - ✓ 하나의 차원에서 직교 하는 것은 항상 항등원이다.

$$\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{V}^{\mathsf{T}}\mathbf{V} = \mathbf{I}$$

✓ Rank(A)는 0이 아닌 최대의 차원수를 의미한다. zero singular value(시그마 벡터에서)

Feature Extraction

Reduces SVDs

1) full SVD

위에서 설명된 내용들은 모두 full SVD이며 A행렬이 SVD를 진행하였을때 얻는 그대로의 과정을 의미합니다.

3) Compact SVD

Compact SVD는 대각선에 위치하지 않은 원소들을 제거할 뿐만 아니라 0인 singular value까지 제거된 SVD를 의미합니다.

2) Thin SVD

Thin SVD는 Σ 행렬에서 대각 원소가 아닌 0으로 구성된 부분이 제거되었으며 이에 따라서 U에서 제거된 부분과 대응되는 열 벡터들이 제거된 U_s 로 이뤄지는 SVD를 의미합니다.

$$A = \begin{bmatrix} U_s & & & & \\ & \ddots & & \\ & & \sigma_S & & \end{bmatrix} V^T$$

4) Truncated SVD

Truncated SVD는 Σ 행렬의 대각원소 가운데 상위 t개만 골라낸 형태입니다. 해당 방법은 행렬 A를 원복 하지 못하게 되지만 데이터를 상당히 압축해도 행렬 A에 근사할 수 있는 장점이 있습니다.

$$A' = \begin{bmatrix} U_t \end{bmatrix} \begin{bmatrix} \sigma_1 \\ \vdots \\ \sigma_t \end{bmatrix} \begin{bmatrix} V_t^T \end{bmatrix}$$

Feature Extraction

Reduces SVDs

√ SVD decomposition

√ Truncated SVD

$$A' = U_1 \times S_1 \times V_1^T = \begin{bmatrix} 0.82 \\ 0.58 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 5.47 \end{bmatrix} \times \begin{bmatrix} 0.40 & 0.91 \end{bmatrix} = \begin{bmatrix} 1.79 & 4.08 \\ 1.27 & 2.89 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

- Reduces SVDs
 - ✓ 불분명한 관계도 찾을 수 있다.
 - ✓ 차원을 축소 해도 거리 관계가 보존된다.

- Reduces SVDs
 - ✓ 불분명한 관계도 찾을 수 있다.
 - ✓ 차원을 축소 해도 거리 관계가 보존된다.
 - √ Visualize the project in the reduced 2-D space

- Stochastic Neighbor Embedding
 - 차원을 줄이더라도 데이터 간의 거리(이웃)는 유사해야 한다.
 - 확률적 결정을 한다.
 - 데이터 간의 거리는 유클리드 거리를 이용해 정의한다. $D_{ij} = \|\mathbf{x_i} \mathbf{x_j}\|$
 - 데이터의 분산 정도에 따라, 달라짐으로 정규화를 해야한다.

$$d_{ij}^2 = \frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2}$$

- ✓ 표준편차가 크면, 멀리 있어도 이웃으로 정의 할 확률이 커진다.
 - ❖ 표준편차가 크면, 엔트로피 값이 커진다. 작다면 엔트로피 값이 낮아진다.
- ✓ q는 우리가 찾아야 하는 것을 의미한다.(축소된 공간)

$$p_{j|i} = \frac{e^{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma_i^2}}}{\sum_k e^{-\frac{||\mathbf{x}_i - \mathbf{x}_k||^2}{2\sigma_i^2}}} \qquad q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_k e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$$

- Stochastic Neighbor Embedding
 - q의 y값을 찾는것이 목표이다.
 - 쿨백 라이블러 발산(KL Divergence)를 이용한다.
 - ✓ 비용함수를 밑과 같이 정의한다.

$$Cost = \sum_{i} KL(P_i||Q_i) = \sum_{i} \sum_{j} p_{j|i} log \frac{p_{j|i}}{q_{j|i}}$$

√ Gradient

$$\frac{\partial C}{\partial \mathbf{y}_i} = 2\sum_{j} (\mathbf{y}_j - \mathbf{y}_i)(p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})$$

- Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.

$$C = \sum_{i} KL(\underline{P_i}||Q_i) = \sum_{i} \sum_{j} \underline{p_{j|i}} log \frac{\underline{p_{j|i}}}{q_{j|i}}$$

$$C = \sum_{i} \sum_{j} \frac{p_{j|i}logp_{j|i}}{p_{j|i}logp_{j|i}} - \sum_{i} \sum_{j} \frac{p_{j|i}logq_{j|i}}{p_{j|i}logq_{j|i}}$$

$$C' = -\sum_{i} \sum_{j} p_{j|i} log q_{j|i} \qquad \left(\frac{\partial C}{\partial y_{t}} = \frac{\partial C'}{\partial y_{t}}\right)$$

$$C' = -\sum_{i} p_{t|i} log q_{t|i} - \sum_{j} p_{j|t} log q_{j|t} - \sum_{i \neq t} \sum_{j \neq t} p_{i|j} log q_{i|j}$$

- Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.

$$p_{j|i} = \frac{e^{-\frac{||\mathbf{x}_i - \mathbf{x}_j||^2}{2\sigma_i^2}}}{\sum_k e^{-\frac{||\mathbf{x}_i - \mathbf{x}_k||^2}{2\sigma_i^2}}} \qquad q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_k e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$$

$$q_{j|i} = \frac{e^{-||\mathbf{y}_i - \mathbf{y}_j||^2}}{\sum_k e^{-||\mathbf{y}_i - \mathbf{y}_k||^2}}$$

$$d_{ti} = exp(-||\mathbf{y}_t - \mathbf{y}_i||^2) = d_{it}$$

$$\frac{\partial d_{ti}}{\partial \mathbf{y}_t} = d'_{ti} = -2(\mathbf{y}_t - \mathbf{y}_i)exp(-||\mathbf{y}_t - \mathbf{y}_i||^2) = -2(\mathbf{y}_t - \mathbf{y}_i)d_{ti}$$

$$q_{t|i} = \frac{exp(-||\mathbf{y}_i - \mathbf{y}_t||^2)}{\sum_{k \neq i} exp(-||\mathbf{y}_i - \mathbf{y}_k||^2)} = \frac{d_{it}}{\sum_{k \neq i} d_{ik}}$$

$$q_{j|t} = \frac{exp(-||\mathbf{y}_t - \mathbf{y}_j||^2)}{\sum_{k \neq t} exp(-||\mathbf{y}_t - \mathbf{y}_k||^2)} = \frac{d_{tj}}{\sum_{k \neq t} d_{tk}}$$

$$q_{i|j} = \frac{exp(-||\mathbf{y}_j - \mathbf{y}_i||^2)}{\sum_{k \neq j} exp(-||\mathbf{y}_j - \mathbf{y}_k||^2)} = \frac{d_{ji}}{\sum_{k \neq j} d_{jk}}$$

Stochastic Neighbor Embedding

- 비용함수를 최소로 하는 yi값을 찾아야 한다. $= -\sum p_{t|i}logq_{t|i}$
- Gradient of the cost function (1) (Optional)

$$\frac{\partial}{\partial y_t} \Big(- \sum_{i} p_{t|i} log \mathbf{q_{t|i}} \Big) = - \sum_{i} p_{t|i} \cdot \frac{1}{\mathbf{q_{t|i}}} \cdot \frac{\partial \mathbf{q_{t|i}}}{\partial y_t}$$

$$= -\sum_{i} p_{t|i} \cdot \frac{1}{\mathbf{q}_{t|i}} \cdot \frac{d'_{it} \cdot (\sum_{k \neq i} d_{ik}) - d_{it} \cdot d'_{it}}{(\sum_{k \neq i} d_{ik})^{2}}$$

$$= -\sum_{i} p_{t|i} \cdot \frac{1}{q_{t|i}} \cdot \frac{-2(\mathbf{y_t} - \mathbf{y_i}) \cdot d_{it} \cdot (\sum_{k \neq i} d_{ik}) + 2(\mathbf{y_t} - \mathbf{y_i}) \cdot d_{it}^2}{(\sum_{k \neq i} d_{ik})^2} \qquad q_{t|i} = \frac{exp(-||\mathbf{y_i} - \mathbf{y_t}||^2)}{\sum_{k \neq i} exp(-||\mathbf{y_i} - \mathbf{y_k}||^2)} = \frac{d_{it}}{\sum_{k \neq i} d_{ik}}$$

$$= -\sum_{i} p_{t|i} \cdot \frac{1}{q_{t|i}} \cdot \left(-2(\mathbf{y}_t - \mathbf{y}_i) \cdot q_{t|i} + 2(\mathbf{y}_t - \mathbf{y}_i) \cdot q_{t|i}^2 \right)$$

$$= \sum_{i} p_{t|i} \cdot 2(\mathbf{y}_t - \mathbf{y}_i)(1 - q_{t|i})$$

$$-\sum_{i}p_{t|i}logq_{t|i}$$

(1)

$$\frac{\partial d_{ti}}{\partial \mathbf{y_t}} = d'_{ti} = -2(\mathbf{y_t} - \mathbf{y_i})exp(-||\mathbf{y_t} - \mathbf{y_i}||^2) = -2(\mathbf{y_t} - \mathbf{y_i})d_{ti}$$
$$d_{ti} = exp(-||\mathbf{y_t} - \mathbf{y_i}||^2) = d_{it}$$

$$\underline{q_{t|i}} = \frac{exp(-||\mathbf{y}_i - \mathbf{y}_t||^2)}{\sum_{k \neq i} exp(-||\mathbf{y}_i - \mathbf{y}_k||^2)} = \frac{d_{it}}{\sum_{k \neq i} d_{ik}}$$

- Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.

$$\frac{\partial C}{\partial \mathbf{y}_t} = 2\sum_{j} (\mathbf{y}_t - \mathbf{y}_j)(p_{t|j} - q_{t|j} + p_{j|t} - q_{j|t})$$

√ Gradient

$$\frac{\partial C}{\partial \mathbf{y}_i} = 2\sum_j (\mathbf{y}_j - \mathbf{y}_i)(p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})$$

(s18.21 emit) stipib eft1 to pribbedme 3N2-1

- Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.
 - ✓ 거리가 너무 가까워진다.

- T Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.
 - ✓ 거리가 너무 가까워진다.
 - ❖ 해결하기 위해 정규분포 대신 t분포를 사용한다.

✓ Gradient:

$$\frac{\partial C}{\partial \mathbf{y_i}} = 4\sum_{j} (\mathbf{y_j} - \mathbf{y_i})(p_{ij} - q_{ij})(1 + ||\mathbf{y_i} - \mathbf{y_j}||^2)^{-1}$$

- T Stochastic Neighbor Embedding
 - 비용함수를 최소로 하는 yi값을 찾아야 한다.
 - ✓ 거리가 너무 가까워진다.
 - ❖ 해결하기 위해 정규분포 대신 t분포를 사용한다.

