Absolute camera localization

Advanced Deep Learning for Computer Vision Leonhard Feiner, Alexander Ziller

 $\mathcal{L}_{semantics}^{weighted} = \frac{1}{\sigma_{v}^{2}} \mathcal{L}_{X} + \log(\sigma_{X})$

Pose Accuracy on Validation Set

		Translation		Rotation	
Model	Source	Median	Mean	Median	Mean
Posenet	Our	3.64m	4.44m	3.13°	4.27°
Posenet	[2]	2.42m		3.66°	
MapNet	Our	3.42m	3.91m	3.23°	4.48°
Dual-Input	Our	3.26m	3.54m	2.82°	4.32°
Multitask	Our	1.07m	1.31m	2.96°	4.32°
VLocNet	[2]	0.68m		3.43°	
VLocNet++	[2]	0.37m		1.93°	

Initialization influences results significantly

Activation Maps of Residual Blocks [4]

Conclusion

- · Semantic information improves pose regression Useful as additional semantic input or output
- Multitask learns further insights about environment

[1] Brahmbhatt, Samarth, et al. "Mapnet: Geometry-aware learning of maps for camera localization." arXiv preprint arXiv:1712.03342 (2017).

 $X \in \{(trans, abs); (rot, abs); (trans, rel); (rot, rel)\}$

 α and $\log(\sigma)$ are learnable weights

- [2] Radwan, Noha, Abhinav Valada, and Wolfram Burgard. "Vlocnet++: Deep multitask learning for semantic visual localization and odometry." arXiv preprint arXiv:1804.08366 (2018).
- [3] Kendall, Alex, Yarin Gal, and Roberto Cipolla. "Multi-task learning using uncertainty to weigh losses for scene geometry and semantics." arXiv preprint arXiv:1705.07115 3 (2017).
- [4] Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks." 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2018.