

## **Description**

The VSM60N04 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

### **General Features**

V<sub>DS</sub> =40V,I<sub>D</sub> =60A

 $R_{DS(ON)}$  <8.5m $\Omega$  @  $V_{GS}$ =10V

 $R_{DS(ON)}$  <18m $\Omega$  @  $V_{GS}$ =4.5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

## **Application**

- Load switching
- Hard switched and high frequency circuits
- Uninterruptible power supply



**Package Marking and Ordering Information** 

| Device Marking | Device   | Device Package | Reel Size | Tape width | Quantity |
|----------------|----------|----------------|-----------|------------|----------|
| VSM60N04-T2    | VSM60N04 | TO-252         | -         | -          | -        |

### Absolute Maximum Ratings (T<sub>c</sub>=25 ℃unless otherwise noted)

| Parameter                                        | Symbol                 | Limit      | Unit                 |  |
|--------------------------------------------------|------------------------|------------|----------------------|--|
| Drain-Source Voltage                             | V <sub>DS</sub>        | 40         | V                    |  |
| Gate-Source Voltage                              | V <sub>G</sub> s       | ±20        | V                    |  |
| Drain Current-Continuous                         | I <sub>D</sub>         | 60         | А                    |  |
| Drain Current-Continuous(T <sub>C</sub> =100 °C) | I <sub>D</sub> (100°C) | 42         | А                    |  |
| Pulsed Drain Current                             | I <sub>DM</sub>        | 200        | А                    |  |
| Maximum Power Dissipation                        | P <sub>D</sub>         | 65         | W                    |  |
| Derating factor                                  |                        | 0.43       | W/°C                 |  |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>        | 400        | mJ                   |  |
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$    | -55 To 175 | $^{\circ}\mathbb{C}$ |  |



## **Thermal Characteristic**

| Thermal Resistance, Junction-to-Case <sup>(Note 2)</sup> | $R_{	heta JC}$ | 2.3 | °C/W |  |
|----------------------------------------------------------|----------------|-----|------|--|
|----------------------------------------------------------|----------------|-----|------|--|

## **Electrical Characteristics (T<sub>C</sub>=25**°C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                            | Min | Тур  | Max  | Unit |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|------|------|------|
| Off Characteristics                |                     |                                                                      |     |      |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250μA                            | 40  | 45   | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =40V,V <sub>GS</sub> =0V                             | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        | ·                   |                                                                      | •   | •    |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | V <sub>DS</sub> =V <sub>GS</sub> ,I <sub>D</sub> =250µA              | 1.2 | 1.6  | 2.0  | V    |
| Drain Source On State Registance   | -                   | V <sub>GS</sub> =10V, I <sub>D</sub> =20A                            | -   | 7.3  | 8.5  | mΩ   |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =4.5V, I <sub>D</sub> =20A                           |     | 15   | 18   |      |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =10V,I <sub>D</sub> =20A                             | 15  | -    | -    | S    |
| Dynamic Characteristics (Note4)    | ·                   |                                                                      | •   |      |      |      |
| Input Capacitance                  | C <sub>lss</sub>    | \/ -20\/\/ -0\/                                                      | -   | 1800 | -    | PF   |
| Output Capacitance                 | C <sub>oss</sub>    | - V <sub>DS</sub> =20V,V <sub>GS</sub> =0V,<br>- F=1.0MHz            | -   | 280  | -    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | F-1.0IVITZ                                                           | -   | 190  | -    | PF   |
| Switching Characteristics (Note 4) | ·                   |                                                                      | •   |      |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  | $V_{DD}=20V,I_{D}=2A,R_{L}=1\Omega$ $V_{GS}=10V,R_{G}=3\Omega$       | -   | 6.4  | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      |                                                                      | -   | 17.2 | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> |                                                                      | -   | 29.6 | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 16.8 | -    | nS   |
| Total Gate Charge                  | Qg                  | \/ -20\/ L -20 A                                                     | -   | 29   |      | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | $V_{DS}=20V,I_{D}=20A,$                                              | -   | 4.5  |      | nC   |
| Gate-Drain Charge                  | Q <sub>gd</sub>     | V <sub>GS</sub> =10V                                                 | -   | 6.4  |      | nC   |
| Drain-Source Diode Characteristics | ·                   |                                                                      | •   | •    |      |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =10A                              | -   |      | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -    | 60   | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, IF = 20A                                                  | -   | 29   | -    | nS   |
| Reverse Recovery Charge            | Qrr                 | di/dt = 100A/µs <sup>(Note3)</sup>                                   | -   | 26   | -    | nC   |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |      |      |      |

#### Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board,  $t \le 10$  sec.
- 3. Pulse Test: Pulse Width  $\leq$  300 $\mu$ s, Duty Cycle  $\leq$  2%.
- **4.** Guaranteed by design, not subject to production
- **5.**  $E_{AS}$  condition :  $Tj=25\,^{\circ}\mathrm{C}$  , $V_{DD}=20V$ , $V_{G}=10V$ ,L=1mH, $Rg=25\Omega$ ,



## **Test circuit**

# 1) E<sub>AS</sub> Test Circuit



# 2) Gate Charge Test Circuit



## 3) Switch Time Test Circuit





## Typical Electrical and Thermal Characteristics (Curves)



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson-Drain Current



Figure 4 Rdson-JunctionTemperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds





Figure 8 Safe Operation Area



Figure 10 V<sub>GS(th)</sub> vs Junction Temperature



Figure 11 Normalized Maximum Transient Thermal Impedance