

Számítógépes hálózatok #02 – Ethernet, PPP, PPPoE

2024. szeptember 20.

Naszlady Márton Bese

naszlady@itk.ppke.hu

A valódi adatok bitekből állnak.

bit binary digit, jele b (kis b)

Az információ legkisebb, oszthatatlan egysége.

Értéke 0 vagy 1 lehet.

byte jele B (nagy B)

Nagyobb információegység, ami általában 8 bitből áll (oktett).

Értéke binárisan (10100110) decimálisan (166), hexadecimálisan (A6) is

kifejezhető.

Az egyértelműség kedvéért 0b10100110 és 0xA6 jelöléseket is használunk.

Ezeknek a bitsorozatoknak rengetek különféle értelmezése lehet.

01001110<mark>01100101</mark>01110110<mark>01100101</mark>01110010...

ASCII N e v e r

Ezeknek a bitsorozatoknak rengetek különféle értelmezése lehet.

ASCII N e v e r

2 bites szín

Ezeknek a bitsorozatoknak rengetek különféle értelmezése lehet.

010011100110010111011001100101<mark>01110010...</mark>

A bitek sorozatában bekövetkező legkisebb változás is hatalmas hibát okozhat.

A valóságban az adatok bitek sorozataként jelennek meg.

0100111001100101111011001100101011110010...

Cél:

Az adat ne sérüljön!

Ugyanazt kapjuk meg a címzett oldalán, amit a küldő elküldött.

Adatsérülés elkerülése

Négy kérdésünk van:

- Honnan tudom, hogy mikor kezdődik az adatátvitel?
- Honnan tudom, hogy mikor ért véget az adatátvitel?
- Honnan tudom, hogy minden bit megérkezett?
- Honnan tudom, hogy nem változott meg egyetlen bit értéke sem véletlenül?

Adatsor elejének és végének jelzése

Hol kezdődik az adat?

- Például egy speciális bitsorozattal jelzem, hogy itt kezdődik az adat.
- Például mindig várok t időt két adat között, és ebből kiderül, hogy hol kezdődik az új.

Hol van vége az adatnak? Megérkezett minden bit?

- Például egy speciális bitsorozattal jelzem, hogy itt ér véget az adat.
- Például tudom, hogy milyen hosszú az adat, és számolom az érkezett biteket.

Adatsor hibájának jelzése

Nem sérült-e meg az adat útközben?

- Például paritásbitet használok; kiegészítem az adatsort plusz egy bittel, aminek értékét úgy állítom be, hogy az átvitt adatban összesen páros darab 1-es legyen. Ha a fogadó oldalon nem páros darab 1-est látok az üzenetben, akkor baj van.
- Például ellenőrző összeget (CRC) használok; kiegészítem az adatsort egy byte-tal, aminek értékét algoritmikusan számolom az adatból. A fogadó oldalon is kiszámolom ezt az értéket és összevetem a kettőt; ha egyezik, akkor nincs baj.

Keretezés

Az eredeti adatsort kiegészítem az átvitelt könnyítő jelzésekkel. Például elé fűzök egy kezdet-jelzést, a végére rakok egy CRC adatot stb.

Keretezés

Az adatot így bekereteztem mindenféle egyéb dolgokkal. Az így kapott "keret" szaknyelven

frame

kezdet-jel	adat	CRC adat
1 byte	5 byte	1 byte

Keretek keretezése

Az adat sokféle módon keretezhető, többféle frame-szerkezet lehet.

Az egyes eljárások által használt frame-szerkezeteket írják le a szabványokban, RFC-kben.

Az enkapszuláció elvén egy frame egy másik frame-be is betehető:

#02/1 – Összefoglalás

Fogalmak

- bit, byte
- paritásbit, ellenőrző összeg
- frame

Elvek

Adatsérülés elkerülése:

- hol kezdődik?
- hol végződik / milyen hosszú?
- sérült?

#02/2 - A physical layer

A physical layer szerepe

Feladata az eszközök fizikai összekötéséhez szükséges feltételek megteremtése.

Tipikusan ennek a rétegnek a része:

- a médium és csatlakozók specifikációja
- digitális logikai adat (bináris bitsor) átalakítása fizikai jelenséggé
- a zajmentes átvitel érdekében betartandó szabályok megfogalmazása

A médium specifikációja

- Vezetékes közeg
 - csavart érpár (twisted-pair)
 - koaxiális kábel (coax)
 - üvegszálas (optikai) kábel (fiber)
- Vezeték nélküli közeg
 - elektromágneses sugárzás, ami hullámhossztól függően
 - rádióhullám,
 - látható vagy láthatatlan fény
 - ultrahang

Csavart érpár

Két szigetelt vezető egymással összecsavarva alkot egy érpárt. Több csavart érpár együtt alkot egy kábelt.

Az elektromos tulajdonságoktól (pl. áthallás) függően a kábelt kategorizáljuk:

pl. Cat3, Cat5e, Cat6, ...

Az érpárak közösen vagy külön-külön igény szerint árnyékolhatók (shield):

pl. UTP, FTP, S/FTP

Előfordulás: telefonhálózat, LAN

Moduláris csatlakozó

NPMC alakú nevek, ahol N a helyek száma, M az érintkezők száma (pl. 8P8C). Oldható csatlakozás.

Előfordulás: fali csatlakozó, eszközön lévő port, LAN kábel

Behasított fém lemez, a drótot ebbe a hasítékba nyomjuk be. Állandó kötés kialakítására való.

Előfordulás: patch panel, telefon elosztószekrény

Koaxiális kábel

Egy középső vezető magból, az azt követő szigetelésből és árnyékolásból áll.

A kábel pontos hullámimpedanciára van gyártva pl. 50 ohm, 75 ohm

Létezik baseband (digiális jelhez) és boradband (analóg jelhez) gyártott kábel.

Előfordulás: antennák és berendezések összekötése, kábel TV, DOCSIS rendszerben (pl. Vodafone [UPC])

BNC csatlakozó

Bajonettzáras csatlakozó, gyors kötést és bontást tesz lehetővé.

Előfordulás: műszereken, ősrégi Ethernet hálózatban

Menetes csatlakozók

A menetes csatlakozás miatt körülményesebb, de biztonságosabb csatlakozás. Pl. F-csatlakozó vagy SMA

Előfordulás: kábel TV hálózaton, WiFi antenna

Optikai szál

Egy középső, fényvezető magból és az azt körbevevő, visszaverődést előidéző héjból, valamint a mechanikai védelmet nyújtó anyagokból áll.

Egy kábelben több párhuzamos fényvezető szál is lehet.

A belső mag átmérője meghatározza a fény terjedésének módját (módus): pl. multimódusú, egymódusú szál

Előfordulás: Ipari környezetben, kültéri hálózatokban, FTTx rendszerekben (Telekom, DIGI)

Vezetékes közegek SC, LC csatlakozók

Beakadó füles kivitel, könnyű csatlakoztathatóság. Van szimpla és dupla kivitelben is.

Előfordulás: GPON hálózaton, SFP modulokban

Menetes csatlakozók

A menetes csatlakozás miatt körülményesebb, de biztonságosabb csatlakozás. Pl. ST és FC csatlakozók

Előfordulás: patch paneleken, ipari környezetben

Vezeték nélküli közegek

Infravörös átvitel

Jellemzően 750–1600 nm közötti hullámhossz

Infravörös fényt kibocsájtó és érzékelő elemek között szabadon terjed a jel.

Probléma lehet az interferencia (belesüt a nap) vagy a blokkolás (belelóg a faág a jelútba).

Előfordulás: távirányító, villanyóra, lézeres átvitel, LiFi

Alamy Stock Photo, http://kevin.hwai.edu.tw/~kevin/material/ComputerNetwork/part2/WirelessTransmission.htm

Vezeték nélküli közegek

Rádióhullámok

Jellemzően 0,3–300 GHz tartományú mikrohullám

Adó és vevő (adóvevő) antennák közt terjed a jel.

Probléma lehet az interferencia (villám, mikró), vagy a blokkolás (vasbeton)

Előfordulás: WiFi, Bluetooth, GSM, műholdas átvitel

Vezeték nélküli közegek Hanghullámok

Jellemzően 100 Hz – 100 kHz

Adó hangszóró és vevő mikrofon közt terjed a levegőben vagy egyéb anyagban (pl. víz).

Probléma lehet az interferencia (beszéd, denevér), vagy a jelerősség-csökkenés.

Előfordulás: akusztikus modem, kémkedés, madárriasztó

A digitális adat jelekké való alakításának módja

- Line code (vonali kódolás)
 - Non-Return-to-Zero Level (NRZ-L)
 - Non-Return-to-Zero Mark (NRZ-M)
 - Non-Return-to-Zero Space (NRZ-S)
 - Return-to-Zero (RZ)
 - Manchester
 - Bipolar
 - •
- Modulation (moduláció)
 - ASK
 - FSK
 - PSK
 - QAM
 - ...

Lásd még:

Infocommunication Systems (P-ITTAV-0004)

#02/2 – Összefoglalás

Fogalmak Physical layer feladatai

Eszközök réz és optikai szálak felismerése (UTP, koax, optika) néhány csatlakozó felismerése (8P8C, BNC, optika)

#02/3 - Ethernet physical layer

Ethernet physical layer

Nevének eredete:

Az a hipotetikus közeg amiben a XIX. századi tudósok szerint az elektromágneses hullámok terjednek.

Ethernet physical layer

Az ethernet physical layer szabványokat az IEEE adja ki. A szabványoknak van IEEE formátumú száma és beszédes neve is.

Például:

IEEE 802.3ab \rightarrow 1000BASE-T

szabványos név

beszédes név

Ethernet szabványok beszédes nevének részei

pl. 1000BASE-T

Sebesség: 1, 10, 100, 1000, 10G és hasonló jelölésekkel

Átviteli sáv: BASE, BROAD, PASS jelöléssel (baseband, broadband, passband)

Médium: T, S, L, Z, C, K, H stb. jelölésekkel, ahol a betű jelzi a technológiát.

Pl.: T – twisted pair, S – short wavelength, L – long wavelength, K – koax

Kódolás: X, R jelöléssel; hogyan alakítjuk a bitet jellé

Sávszám: 1, 2, 4, ... az összeköttetéshez használt külön vezetékek (sávok) száma

vagy a WAN hálózatban áthidalható legnagyobb távolság (km-ben)

Néhány Ethernet példa

10BASE2

10 Mbit/s, baseband, koaxiális kábelen, BNC csatlakozóval. Multipoint link, az 1980-as évek technológiája, mára elavult.

Néhány Ethernet példa

100BASE-TX 1000BASE-T 100 Mbit/s, baseband, csavart érpáron (1-1 pár a full-duplexhez) 1 Gbit/s, baseband, csavart érpáron (2-2 pár a full-duplexhez) Manapság is használatos, Cat5+ kábelen, 8P8C csatlakozóval

https://www.howtogeek.com/795727/what-is-an-ethernet-cable/, https://nexconec.com/cat5e-u-utp-cable.html

Néhány Ethernet példa

10GBASE-SR

10 Gbit/s, baseband, optikai szálon, 850 nm-es hullámhosszú fény Manapság is használt nagy sebességű technológia.

https://en.wikipedia.org/wiki/File:LR-Link 10GBASE-SR SFP%2B transceiver.jpg, https://www.cables.com/fiber-optic-cable-single-mode-lc-to-lc-os2-9125-duplex-yellow-3-meter.html

Physical layer szinten működő eszközök

Létezhet olyan eszköz, ami nem rendelkezik physical interface-szel (nem csinál a fizikai jelenségből adatot), de a fizikai jelenséget megváltoztatja.

- Repeater (jelismétlő)
- **Hub** (sokszorozó)

Physical layer szinten működő eszközök

Repeater (jelismétlő)

- A kapott fizikai jelenséget megismétli.
- Segít egy hosszú vezeték vagy nagy kiterjedésű rádiós hálózat esetén az erősítésben.
- Mivel a fizikai jelenséget ismétli, sérült, hibás adatot is átvisz.

Physical layer szinten működő eszközök

Hub (sokszorozó)

- A kapott fizikai jelenségét minden irányba megismétli.
- · Használható egy link többfelé osztására vagy több link egyesítésére.
- Mivel a fizikai jelenséget ismétli, sérült, hibás adatot is átvisz.
- Mivel több kapcsolódási pontja is van, ütközés szempontjából kritikus eszköz.

#02/3 – Összefoglalás

Szabvány

100BASE-T, 10GBASE-SR, és hasonló alakból megmondani a sebességet és az átviteli közeg típusát (réz vagy üveg)

Eszköz Repeater és hub feladata

#02/4 - Ethernet data link layer

A data link layer szerepe

Feladata az adat linken keresztüli átvitele két szomszédos eszköz között.

Tipikusan ennek a rétegnek a feladata:

- megoldani, hogy a frame-ek el legyenek különítve egymástól,
- megoldani, hogy az adat épségben kerüljön átvitelre,
- megoldani, hogy az adatot az (is) kapja meg, akinek szánták.

Ethernet data link layer implementáció

Jellemzői

- CSMA/CD-t használ
- keretezi az adatot → frame-et visz át
- a fair hálózat érdekében...
 - felülről korlátozza a frame-ek hosszát (jellemzően 1518 byte), és
 - előír minimális várakozási időt két frame átvitele között.

... és még néhány szabály ...

Late collision

Az A node képes volt rövidebb idő alatt elküldeni a teljes frame-et, minthogy az eljutott volna a B node-hoz.

Az A node nem érzi úgy, hogy ütközés történt volna.

Late collision

Ha az A node által küldendő frame hosszabb lett volna, akkor már észlelné az ütközést. Így nem hinné – tévesen – azt, hogy sikerült a küldés.

Late collision

Ha elindul egy frame, akkor azt a hálózat legtávolabbi pontján is észre kell venni.

Ha nem vesszük észre, akkor nem tudjuk detektálni az ütközést.

Ennek elkerülésére az Ethernet még a továbbiakat is megszabja:

- · korlátozza a kábelek hosszát,
- korlátozza a repeaterek és hubok számát,
- alulról korlátozza a frame-ek hosszát (slot time)
 jellemzően 512 bit (64 byte), gigabitnél lehet 4096 bit (512 byte) is.

Ethernet frame

Az Ethernet frame formátuma a következő:

preamble	SFD	DA	SA	len/type	data	pad	CRC
7 byte	1 byte	6 byte	6 byte	2 byte	max. 1500 byte	n byte	4 byte

- **preamble** 10101010 váltakozó 0/1, szinkronizál a két eszköz
- SFD 10101011 Start of Frame Delimiter, jelzi a frame kezdetét
- **DA** Destination Address a címzett physical interface címe
- **SA** Source Address a küldő physical interface címe
- len/type az adat hossza (pad-del együtt) vagy típusa
- pad ha az adat rövid (< 46 byte), akkor legalább ekkorára kiegészítjük
- CRC a DA mezőtől az adat (pad) végéig számolt ellenőrző összeg.

Miért kell címzés?

Semmi nem tiltja, hogy a hálózatban multipoint link legyen. Semmi nem tiltja, hogy a hálózatban hub legyen.

A PCO eszköz physical interface-e által a PC4 eszköz physical interface-e részére szánt üzenetet az összes többi physical interface is megkapja.

Honnan tudják a physical interface-ek, hogy ez most nekik szól-e vagy sem?

MAC cím

Az Ethernet szabvány a physical interface-eknek a hozzáférést kontrolláló címet oszt.

Media Access Control (MAC) address

A MAC címek 6 byte-nyi méretűek. Hexadecimális számként, kettősponttal, kötőjellel vagy ponttal elválasztva írjuk.

Példa:

MAC cím

A MAC cím első byte-jának második fele jelzi, hogy milyen címről van szó:

```
- \times : - - : - - : - - : - -
```

- Világállandó (globálisan egyedi): $X \in \{0, 4, 8, C\}$
- Lokálisan kiosztható: $X \in \{2, 6, A, E\}$
- Multicast címek: $X \in \{1, 3, 5, 7, 9, B, D, F\}$

A multicast címek közül az FF:FF:FF:FF:FF:FF címet broadcast címzésre használjuk.

MAC cím

- az eszköz a saját memóriájában tárolja,
- a hálózaton belül egyedinek kell lennie,
- a világállandó címtartományokat az IEEE osztja ki a gyártóknak, például minden 00:00:0C kezdetű cím a Ciscohoz tartozik
- a gyártó megváltoztathatatlanul beírja a címet az eszközbe, vagy nem...
- a physical interface csak a saját címére érkező frame-eket adja át az oprendszernek, kivéve, ha kémkedik...
- a physical interface átadja az oprendszernek a broadcast címre címzett frame-eket is,
- az oprendszer utasíthatja az interfészt, hogy mely multicast címekre érkező üzeneteket is kéri.

Valódi Ethernet frame

A physical interface az Ethernet frame-ben szereplő adatot jellemzően a preamble, SFD és CRC részek nélkül adja tovább az operációs rendszernek.

preamble	SFD	DA	SA	len/type	data	pad	CRC
7 byte	1 byte	6 byte	6 byte	2 byte	max. 1500 byte	n byte	4 byte
,	,	,		1		,	

Példa egy valódi Ethernet frame adattartalmára:

```
        cc
        05
        0e
        88
        00
        0e
        88
        64
        11
        00
        00
        11
        00
        0e

        c0
        21
        0a
        01
        0c
        01
        fc
        cb
        fb
        01
        fc
        cb
        fb
        00
        00
        00
        00
        00

        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00
        00</t
```

Miért csak 60 byte hosszú? (A szabványban előírt minimum 64 byte.)

Ethernet Type mező

A type mező lehetséges értékeit az IEEE foglalja szabványba és pl. az IANA nyilvántartásában is elérhető a lista:

https://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml

Néhány példa:

0x0800	IPv4 protocol

0x0806 ARP protocol

0x0842 Wake-on-LAN

0x86DD IPv6

0x8808 Ethernet Flow Control

0x8863 PPPoE Discovery

Data link layer szinten működő eszközök

Létezhet olyan eszköz, aminek van physical interface-e, és ami a data link layer szintjén működik. (Az Ethernet frame-ben lévő adat mezőt nem bántja, de a frame egyéb részeit módosíthatja, vizsgálhatja).

- **Bridge** (híd)
- Switch (kapcsoló)

Data link layer szinten működő eszközök

Bridge (híd)

- Pontosan két physical interface-e van, ezzel pontosan két hálózatot köt össze.
- Az egyik oldalon kapott frame-eket a másik oldalon feltételesen ismétli.
- Dönthet úgy, hogy egy frame-et nem visz át a másik oldalra.
- Esetleg megtanulja, hogy milyen MAC címek vannak az egyik és másik oldalán.

Data link layer szinten működő eszközök

Switch (kapcsoló)

- Legalább két physical interface-e van, ezzel több hálózati eszközt köt össze.
- A kapott frame-et megpróbálja a címzett számára (is) továbbítani.
- Figyeli a címzést, a broadcast címre érkező frame-et lemásolja és mindenkinek kiküldi.
- Megtanulhatja, hogy melyik physical interface-én mely MAC című eszköz(ök) van(nak).

Flow control

Előfordulhat, hogy a küldő túl gyorsan küld, a címzett a kapott adatot nem képes ilyen sebességgel feldolgozni.

A címzett kérheti a küldőt, hogy álljon meg egy kicsit. A címzett küld egy speciális PAUSE frame-et, amiben benne van, hogy mennyi ideig kér adásszünetet.

A szünet ideje alatt adat nem küldhető.

Link aggregation

Két eszköz között két vagy több fizikai link is kiépíthető, melyek logikailag közösíthetők.

Az aggregált összeköttetések "egynek látszanak", azaz pl. az egyik eszköz 2 közösített physical interface-e ugyanazt a MAC címet viseli.

Nagyobb átviteli sebesség, nagyobb hibatűrés (vezetékszakadás) érhető el.

Autonegotiation

Jellemző, hogy két, ebben a pillanatban összekötött physical interface többféle Ethernet szabványt is támogat.

A két eszköz ekkor megbeszéli egymással, hogy mi az a leginkább preferált közös protokoll, amit mindketten ismernek.

A prioritás a sebességen és a full-duplex átvitelen van.

A sikeres megegyezést követően a kapcsolat azonnal használható.

40GBASE	-T	full duplex	
25GBASE	-T	full duplex	
10GBASE	-T	full duplex	
5GBASE	-T	full duplex	
2.5GBASE	-T	full duplex	
10000005	-T	full duplex	
TOUODASE		half duplex	
	-T2	full duplex	
	-TX	full duplex	
100BASE	-T2	half duplex	
	-T4	half duplex	
	-TX	half duplex	
10000	т	full duplex	
IUDASE	- 1	half duplex	
	25GBASE 10GBASE 5GBASE 2.5GBASE 1000BASE	25GBASE -T 10GBASE -T 5GBASE -T 2.5GBASE -T 1000BASE -T -T2 -TX 100BASE -T2 -TX -TX	

Spanning Tree Protocol

Előfordulhat, hogy három vagy több switchet úgy kötünk hálózatba, hogy kör keletkezik.

Ez az összeköttetés jól jöhet majd (pl. vezetékszakadás esetén), de a kör jelenléte bajt okoz az átvitelben (körbe-körbe tud keringeni egy frame az örökkévalóságig).

A switchek feladata, hogy speciális üzenetekkel felfedezzék a köröket és megszüntessék azokat úgy, hogy bizonyos switchek letiltják a kört okozó physical

interface-eiket.

#02/4 – Összefoglalás

Fogalmak Data link layer feladatai

Címzés szükségessége

MAC címek

Képesség Az Ethernet frame szerkezet leírásának megtalálása, értelmezése

Eszköz Bridge és switch feladata

Elvek Link aggregation, Autonegotiation, Spanning Tree Protocol

#02/5 - Forgalomirányítás data link layer szinten

A PCO eszköz (0000.0c00.0000) küldeni akar a PC5-nek (0000.0c00.5555).

Mivel a PCO-nak csak egy physical interface-e van, ezért azon küldi ki a frame-et.

A switchnek több physical interface-e is van. Melyiken kell kiküldeni a frame-et?

Frame-ek továbbítása több interface esetén

Ha több physical interface is van, melyiken kell kiküldeni a frame-et?

Az eszközök nyilvántartást vezetnek az egyes physical interface-eiken elérhető eszközökről.

MAC address	iface
0000.0c00.aaaa	Fa1
0000.0c00.bbbb	Fa2
0000.0c00.cccc	Fa2

MAC address	iface
0000.0c00.aaaa	Fa1
0000.0c00.bbbb	Fa2
0000.0c00.cccc	Fa3

Frame-ek továbbítása több interface esetén

A táblába kétféle módon kerülhet bejegyzés:

static entry

"Statikus" (állandó) bejegyzés, kézzel beírt fix érték.

dynamic entry

"Dinamikus" (változó) bejegyzés.

Tanulási folyamat során kerül be a táblába, és idővel "elfelejtjük".

MAC address-table tanulása

A tanulási folyamat a beérkező frame-ekben szereplő Source Addresst figyeli.

A beérkezéshez használt physical interface és a küldő MAC címe alapján:

- Ha még nincs ilyen MAC címmel bejegyzés, akkor beírjuk a MAC-iface párost.
- Ha már van pont ilyen bejegyzés, akkor azt "megerősítjük" (frissítjük a lejárati idejét).
- Ha már van ez a MAC cím, de más iface-hez van beírva, akkor átírjuk az iface-t.
- Ha egy MAC címet már rég hallottunk, akkor elfelejtjük az ehhez tartozó bejegyzést.

A Switch0 dinamikusan megtanulja, hogy a PC0 a Fa1 physical interface-en van (új bejegyzést vesz fel a táblába).

A Switch0 továbbra sem tudja, hogy merre kell továbbítani az üzenetet. Azt gondolva, hogy úgyis csak a címzett olvassa majd azt el, lemásolja azt, és mindenki felé kiküldi.

A Switch1 is dinamikusan megtanulja, hogy a PC0 a Fa5 physical interface-en keresztül érhető el (új bejegyzést vesz fel a táblába).

A Switch1 sem ismeri, hogy merre van a PC5. Ez a switch is lemásolja és továbbítja az üzenetet mindenki másnak. Így a frame végre eljut a PC5-höz (a többiek eldobják).

Hogyan jut el egy frame a feladótól a címzettig?

A hálózat folyamatos használata során feltöltődnek a MAC address táblák, a frame-ek célba juttatásához kevesebb fölöslegesen kiküldött üzenet kell.

Data link layer forgalomirányítás

Mindaddig nincs baj, amíg a hálózat változatlan.

Nehézséget okoz viszont...

- új eszköz csatlakozása ezt is meg kell majd tanulni,
- meglévő eszköz átcsatlakozása máshova az eddigi tudásunk tévútra vezet,
- meglévő eszköz lecsatlakoztatása hiába hisszük, hogy ott van, mert nincs.

A MAC címekkel való címzés csak azt mondja meg, hogy *kicsoda* a címzett, azt nem, hogy *merre* keressük.

#02/5 – Összefoglalás

Fogalmak MAC address-table

dynamic és static bejegyzések

Elvek Frame-ben szereplő feladó címének tanulása

Ismeretlen továbbítási útvonal esetén broadcast

MAC address-table bejegyzések öregedése (és miért)

#02/6 - Point-to-Point Protocol data link layer

A data link layer szerepe

(ismétlés)

Feladata az adat linken való átvitele két szomszédos eszköz között.

Tipikusan ennek a rétegnek a feladata:

- megoldani, hogy a frame-ek el legyenek különítve egymástól,
- megoldani, hogy az adat épségben kerüljön átvitelre,
- megoldani, hogy az adatot az (is) kapja meg, akinek szánták.

Point-to-Point Protocol

1979: High-Level Data Link Control (HDLC) Protocol

Korai protokoll, busz topológiájú hálózatot is támogat, elavul...

1984: Point-to-Point Protocol (PPP)

Sun munkaállomások ARPANET-hez való csatlakoztatására találták ki.

Csak point-to-point összeköttetéseket támogat.

Szempont volt, hogy a frame szerkezet hasonlítson a HDLC-hez.

PPP frame

A PPP frame formátuma a következő:

flag	address control	protocol	data	FCS	flag
1 byte	1 byte 1 byte	1-2 byte	max. 1500 byte	1-2 byte	1 byte

• flag 01111110 speciális jelzés, a frame elejét és végét jelöli

• address HDLC-ből örököltük; PPP esetén értéke 1111111 (mindenkinek szól)

• control HDLC-ből örököltük; PPP esetén értéke 00000011 (számozatlan frame)

protocol milyen protokoll szerinti adat van a data mezőben

data a szállítandó adat, escape-elve

• FCS Frame Check Sequence – ellenőrző összeg

Byte stuffing

A frame-et a 01111110 sorozat indítja és zárja.

Ha az adatban is van ilyen sorozat, az baj: a fogadó oldal azt hinné, hogy itt a frame vége.

Megoldás

Ki kell cserélni az adatban lévő 01111110 sorozatot valami másra, és jelezni kell, hogy ki lett cserélve.

Byte stuffing

A csere általános szabálya:

Ha a byte értéke 01111110, akkor helyettesítjük ezt a 01011110 értékkel.

Azért, hogy jelezzük a cserét, a byte elé begyömöszöljük (stuff) a 01111101 jelzőbyte-ot.

Tehát például:

eredeti adat: 00000111 01111110 01010101

végső adat: 00000111 01111101 01011110 01010101

A fogadó oldal felismeri a 01111101 jelzőbyte-ot, és az utána lévő byte-ot visszaalakítja.

Byte stuffing

Mi van akkor, ha az adatban a jelzőbyte értéke fordul elő? Ezt is cseréljük!

Ha a byte értéke 01111101, akkor helyettesítjük ezt a 01011101 értékkel.

Azért, hogy jelezzük a cserét, a byte elé begyömöszöljük (stuff) a 01111101 jelzőbyte-ot.

Tehát például:

eredeti adat: 00000111 01111101 01010101

végső adat: 00000111 01111101 01011101 01010101

A fogadó oldal felismeri a 01111101 jelzőbyte-ot, és az utána lévő byte-ot visszaalakítja.

A PPP frame-ben lehet:

- a PPP-t vezérlő üzenet,
- a felettes réteg felé továbbítandó adat.

Az érdemi adatátvitel előtt a kapcsolatot vezérlőüzenetekkel fel kell építeni.

1. Dead

"Halott" állapot, nincs kapcsolat.

Átmenet a következő állapotba:

Akkor, ha bedugják a kábelt (érzékeljük a fizikai összeköttetést)

2. Link establishment

Az eszközök vezérlőüzeneteket váltanak:

- mennyi a max frame méret,
- elhagyják-e az address és control mezőket,
- milyen authentikáció legyen

Átmenet a következő állapotba:

A sikeres megegyezést jövetően.

3. Authenticate

Megtörténik az azonosítás az előbbi lépésben választott protokoll szerint.

Siker esetén következik a hálózati réteg beállítása, Kudarc esetén lezárjuk a kapcsolatot.

4. Network layer configuration

További vezérlőüzenetek révén konfiguráljuk a magasabb rétegeket.

Ezt követően a kapcsolat élő (open) állapotba lép.

5. Open

"Élő" állapot, a kapcsolat működik, lehetőség van az adatok átvitelére.

A kapcsolat egy terminate-request vezérlőüzenet küldésével bontható el. Ha ilyen üzenet érkezik, akkor átlépünk a terminating állapotba.

6. Terminating

A fogadó fél visszajelez, hogy vette a bontási szándékot, és ő is elbontja a kapcsolatot.

Visszajutottunk a dead állapotba.

PPP azonosítási protokollok

A PPP az élő kapcsolat engedése előtt azonosítást követel meg a most belépő eszköztől.

Nem lehet "csak úgy rádugni" valamit a hálózatra.

Azonosítási módok: **PAP, CHAP**

PPP azonosítási protokollok

0

Password Authentication Protocol (PAP)

Kétlépéses folyamat:

- az imént csatlakoztatott eszköz elküldi a kódolatlan azonosítóját és jelszavát
- a csatlakozást fogadó eszköz válaszol, hogy rendben van-e.

Nem biztonságos: lehallgatható, felvehető és visszajátszható

PPP azonosítási protokollok

Challenge-Handshake Authentication Protocol (CHAP)

Háromlépéses folyamat:

- a csatlakozást fogadó eszköz elküld egy random számot az azonosítandó eszköznek,
- a csatlakozni kívánó eszköz a számból és a jelszóból választ alkot, ezt küldi vissza,
- a csatlakozást fogadó eszköz kiszámolja ugyanezt, ha a kettő egyezik, akkor rendben.

Biztonságosabb: lehallgatható, de egy következő alkalommal más lesz a random szám és így más lesz a helyes válasz is.

#02/5 – Összefoglalás

Fogalmak Byte stuffing

Eljárás PPP kapcsolat építése és bontása

állapotok

átmenetek

azonosítási eljárások PAP, CHAP

Képesség A PPP frame szerkezet leírásának megtalálása, értelmezése

#02/7 – PPP over Ethernet

Miért van erre szükség?

Azért, mert...

- PPP fizikai réteg?
- nem csak egy helyről akarom használni a hálózatot,
- gyorsaság, megbízhatóság,
- authentikációt szeretnék az Ethernet kapcsolatomba.

Frame a frame-en belül a frame-ben

PPP frame

PPPoE frame

A PPPoE frame formátuma a következő:

version 4 bit

- **version** a PPPoE verziószáma (mindig 0001)
- **type** a PPPoE típusszáma (mindig 0001)
- code a frame tartalmának típusát adja meg (lásd később)
- Session ID a PPP munkamenet azonosítója
- **length** a PPP frame hossza
- PPP frame maga a PPP frame, amit a PPP réteg állított elő

PPPoE discovery

Mivel az Ethernet nem feltétlenül point-to-point összeköttetés, ezért először a két PPP-t akaró eszköznek meg kell találnia egymást a hálózaton.

A felderítés során megismerik egymás MAC címét.

PPP session

Ha a MAC címek már ismertek, akkor indulhat a kapcsolat PPP szerinti felépítése.

PPPoE Active Discovery (PAD)

Négylépcsős folyamat:

1. PADI (Initiation) \rightarrow Kinek van egy tolla?

2. PADO (Offer) ← Nekem van! ← Én is tudok adni egyet!

3. PADR (Request) \rightarrow Tőled kérek akkor egyet.

4. PADS (Session-confirmation) ← Tessék, itt van.

A folyamat a kapcsolódni kívánó eszköz (**client**) és a kapcsolatot fogadó eszköz (**concentrator**) között fog lezajlani.

Egy Ethernet hálózaton több concentrator is kínálhat PPP kapcsolatot.

PADI

PPPoE Active Discovery Initiation – "Kinek van egy tolla?"

A client PPPoE kapcsolatot indítana. Nem ismeri a másik fél MAC címét. Broadcast Ethernet üzenetet küld.

PADO

PPPoE Active Discovery Offer – "Nekem van!"

Válaszol az összes olyan concentrator, aki hallotta a kérést és ajánlatot akar tenni. Ők már unicast Ethernet üzenetet küldenek.

PADR

PPPoE Active Discovery Request – "Tőled kérek akkor egyet!"

A felkínált lehetőségek közül a client eldönti, hogy kivel szeretne kapcsolatot kiépíteni. Unicast üzenetet küld a kiszemelt concentratornak.

PADS

PPPoE Active Discovery Session-confirmation – "Tessék, itt van."

A kifejezett kérésre a concentrator elküldi a most induló PPP session azonosítóját. A PPP kapcsolat kiépítése ezt követően jön létre.

PPPoE Session

A sikeres PAD folyamat után indul a PPPoE Session. A PPP szerinti kapcsolatépítés ezt követően kezdődik el.

A PPP szinten bontott kapcsolat PPPoE szinten való elbontásához PADT (Terminate) üzenetet kell küldeni.

#02/6 – Összefoglalás

Elvek Frame-ek egymásba ágyazása

Eljárások PPPoE discovery lépései

Képesség A PPPoE frame szerkezet leírásának megtalálása, értelmezése

VÉGE

Pázmány Péter Katolikus Egyetem

Információs Technológiai és Bionikai Kar