Chapter 5 Advanced Text Representations

Overview

- Latent semantic topic models: probabilistic models of content
 - Probabilistic Latent Semantic Analysis (pLSA)
 - Latent Dirichlet Allocation (LDA)
- Approximate inference: examples of use of:
 - Expectation maximization algorithm
 - Variational inference
 - Gibbs sampling
- Integration of the probabilistic topic models in retrieval models

Latent semantic topic models

= a class of unsupervised (or semi-supervised) models in which the semantic properties of words and documents are expressed in terms of topics

models are also called aspect models

Latent Semantic Indexing:

the semantic information can be derived from a word-document matrix

But, LSI is unable to capture multiple senses of a word

Probabilistic topic models

Panini

Panini = Indian grammarian (6th-4thcentury B.C. ?) who wrote a grammar for **sanskrit**

Realizational chain when creating natural language texts:

Ideas -> broad conceptual components of a text -> subideas -> sentences -> set of semantic roles-> set of grammatical and lexical concepts -> character sequences

Probabilistic topic model

= Generative model for documents: probabilistic model by which documents can be generated document = probability distribution over topics topic = probability distribution over words

To make a new document, one chooses a distribution over topics, for each topic one draws words according to a certain distribution:

```
select a document d_j with probability P(d_j) pick a latent class z_k with probability P(z_k|d_j) generate a word w_i with probability P(w_i|z_k)
```


Figure 2. Illustration of the generative process and the problem of statistical inference underlying topic models

[Steyvers & Griffiths 2007]

Probabilistic graphical models

- Node represents a random variable (or group of random variables)
- Edge represents probabilistic relationships between these variables
- Bayesian network:
 - directed graphical model

Plate notation

Plate:

- graphical notation that allows multiple nodes to be expressed more compactly
- represents N nodes of which only a single example is shown

- shaded node: observed variable
- non-shaded node: hidden variable
- directed edge: conditional dependency of head node on tail node

- Observed node/variable:
 - we know the current value, as it is observable
- Hidden node/variable:
 - variable whose state can not be observed: its existence and value can only be inferred by observing the outcome of the observed variables

- Imagine a graphical model, describing a process with observable nodes X and hidden nodes Θ where the dependency probabilities of X on Θ are unknown
- The process runs for several times, which yields a collection of observed variables x: this can be used to estimate the values θ of variables Θ
- The best guess that can be made about θ , is to claim that since it generated the observations x, this x is the most likely outcome of θ
- In terms of probabilities: we are looking for the value of θ that gives the highest probability for $P(x \mid \theta)$: called $L(\theta \mid x)$ or the likelihood of θ given x

Maximum Likelihood Estimation (MLE):

$$\theta^* = \operatorname*{arg\,max}_{\theta} P(x|\theta)$$

If the model is relatively simple, the maximum can be searched analytically, using the formula:

$$\frac{dP(\theta|x)}{d\theta} = 0$$

- Problems in complex models:
 - Most likely values of parameters: maximum likelihood of model
 - Exact likelihood with dependence of variables: likelihood impossible to calculate in full

- We have to approximate the calculations: e.g., by
 - Expectation Maximization algorithm: iterative method to estimate the probability of unobserved, latent variables: until local optimum is obtained
 - Variational inference: approximate model by easier one
 - Gibbs sampling: update parameters sample-wise

See below examples of these approximate inference methods

If θ has a known prior distribution (i.e. P(θ) is known):
Maximum A Posteriori Estimation (MAP)

$$\theta^* = \underset{\theta}{\operatorname{arg\,max}} P(x|\theta)P(\theta)$$

If a conditional dependency is said to follow a specific distribution, a **conjugate prior** is placed over the parameters: If $P(\theta)$ is a conjugate prior to $P(x \mid \theta)$,

it makes
$$\frac{dP(\theta|x)P(\theta)}{d\theta} = 0$$
 much easier to calculate

Probabilistic Latent Semantic Analysis (pLSA)

Generative story for pLSA

For each *j* of the *M* documents:

Select a document d_i with probability $P(d_i)$

For each word position *i* of the *N* word positions of d_i :

Choose a **latent class** z_k with probability $P(z_k|d_j)$

Choose a word w_i with probability $P(w_i|z_k)$

Probabilistic Latent Semantic Analysis (pLSA)

Probabilistic Latent Semantic Analysis

Translating the document or text generation process into a joint probability model: $P(d_i, w_i) = P(d_i)P(w_i|d_i)$

$$P(w_i|d_j) = \sum_{k=1}^K P(w_i|z_k)P(z_k|d_j)$$

where K = number of topics (a priori defined)

Training: maximizing the likelihood function:

$$L = \prod_{j=1}^{M} \prod_{i=1}^{N} P(d_j, w_i)^{n(d_j, w_i)} = \sum_{j=1}^{M} \sum_{i=1}^{N} n(d_j, w_i) \log P(d_j, w_i)$$

where $n(d_j, w_i)$ = frequency of w_i in d_j (e.g. trained with EM algorithm)

Probabilistic Latent Semantic Analysis

Initial estimates of the parameters $P(w_i|z_k)$ and $P(z_k|d_j)$

E-step: posterior probabilities are computed for the latent variables *z*, based on the current estimates of the parameters:

$$P(z_k|d_j,w_i) = \frac{P(w_i|z_k)P(z_k|d_j)}{\sum_{l=1}^K P(w_i|z_l)P(z_l|d_j)}$$

M-step: parameters are re-estimated in order to maximize the likelihood function:

$$P(w_{i}|z_{k}) = \frac{\sum_{j=1}^{M} n(d_{j},w_{i})P(z_{k}|d_{j},w_{i})}{\sum_{l=1}^{N} \sum_{j=1}^{M} n(d_{j},w_{l})P(z_{k}|d_{j},w_{l})}$$

$$P(z_{k}|d_{j}) = \frac{\sum_{i=1}^{N} n(d_{j},w_{i})P(z_{k}|d_{j},w_{i})}{\sum_{l=1}^{K} \sum_{i=1}^{N} n(d_{j},w_{i})P(z_{l}|d_{j},w_{i})}$$

Iterating the E-step and M-step defines a convergent procedure that approaches a local maximum

Disadvantages of the pLSA model:

- learns $P(z_k|d_j)$ only for those documents on which it is trained except for some limited folding in
 - folding in: repeat EM by clamping the word-topic model
- number of hidden variables (topics) to learn grows linearly with the growth of the number of documents

Generative story for LDA

For each d_j of the M documents Choose $\theta \sim Dir(\alpha)$

For each word position *i* of the *N* word positions of d_i :

Choose a latent topic $z_k \sim Multinomial(\theta)$

Choose a word w_i from $P(w_i | z_k, \beta)$, a multinomial probability distribution conditioned on topic z_k

(1)

[Blei et al. JMLR 2003]

© 2011 M.-F. Moens

■ Latent Dirichlet Allocation (LDA) treats topic mixture weights as a k-parameter hidden random variable θ

Training

- Key inferential problem: computing the distribution of the hidden variables θ and z given a document, i.e., $P(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta)$: intractable for exact inference (model1)
- α : Dirichlet prior, can be interpreted as a prior observation count for the number of times a topic is sampled in a document, before having observed any actual words from that document

- Model 2 = simple modification of the original graphical model 1: the chain $\alpha \to \theta \to z$ is replaced by $\gamma \to \theta$ and $\phi \to z$
- Compute approximation of model 1 by model 2 for which the KL divergence between the two models $p(\theta,z|\gamma,\phi)$ and $P(\theta,z|w,\alpha,\beta)$ is minimal
- Iterative updating of γ (topic distribution) and ϕ (word distribution) for each document and recalculation of corpus-level variables α and β by means of EM algorithm
- Inference for new document:
 - Given α and β : we infer γ (topic distribution) and ϕ (word distribution) of the new document

Dirichlet prior

- Prior:
 - captures our initial uncertainty about the parameters
 - e.g., conjugate prior
- One such prior is the **Dirichlet distribution**, which which is characterized by a set of hyperparameters $\alpha_1, \ldots, \alpha_k$, so that:
 - $\theta \sim \text{Dirichlet}(\alpha_1, ..., \alpha_k) \text{ if } P(\theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k 1}$

 Variational inference requires a simplified model to approximate the real one: calculation is based on variables whose dependencies have been removed: altering the original model

- Gibbs sampling is an inference technique that works directly with the original model
 - = simple widely applicable Markov Chain Monte Carlo (MCMC) algorithm
 - A Markov chain is a random process, consisting of different states
 - Each state j has a probability P_{ij} of being reached from state i (P_{ij} can be 0), called the transition probability: a Markov chain has the first order Markov property in that P_{ii} is only dependent on state i

- Several Monte Carlo Markov Chain algorithms are possible that perform a random walk over a Markov chain: e.g., Gibbs sampling
 - The states that are reachable from a given state are those where only one variable differs in value
 - The values of other variables are held fixed, and the transition probabilities are the posterior probabilities for the updated variable
 - By cycling through each variable until convergence, the equilibrium state is reached.
 - The samples are then coming from the full joint distribution

- $P(\mathbf{z}) = P(z_1,...,z_L)$: distribution from which we want to sample
- Consider initial state for the Markov chain
- Each step of the Gibbs sampling: replaces the value of one of the variables by a value drawn from the distribution of that variable conditioned on the values of the remaining variables
- Procedure is repeated either by cycling through the variables in a particular order, or by choosing the variable to be updated at each step at random from the distribution
- After burn-in period, samples are saved at regular intervals

```
1. Initialize \{z_{i}: i=1,...,L\}
2. For \tau=1,...,T

- Sample z_{1}^{(\tau+1)} \sim P(z_{1}|z_{2}^{(\tau)},z_{3}^{(\tau)},...,z_{L}^{(\tau)})

- Sample z_{2}^{(\tau+1)} \sim P(z_{2}|z_{1}^{(\tau+1)},z_{3}^{(\tau)},...,z_{L}^{(\tau)})

:

- Sample z_{j}^{(\tau+1)} \sim P(z_{j}|z_{1}^{(\tau+1)},...,z_{j-1}^{(\tau+1)},z_{j+1}^{(\tau)},...,z_{L}^{(\tau)})

:

- Sample z_{L}^{(\tau+1)} \sim P(z_{L}|z_{1}^{(\tau+1)},z_{2}^{(\tau+1)},...,z_{L-1}^{(\tau+1)})
```

 The sampling is done sequentially and proceeds until the sampled values approximate the target distribution

- Estimating the LDA model is here done with Gibbs sampling
- The Gibbs sampling procedure
 - considers each word token in the text collection in turn
 - estimates the probability of assigning the current word token to each topic, conditioned on the topic assignments of all other word tokens
 - from this conditional distribution, a topic is sampled and stored as the new topic assignment for this word token

[Steyvers & Griffiths 2007]

- Use of a symmetric Dirichlet prior for α and β (smoothed topic distribution):
 - Symmetric Dirichlet distribution, where all of the elements making up the vector α or β have the same value)
 - Good estimates depend on the number of topics (K) and the vocabulary size (N): e.g., α = 50/K and β = 200/N (often β = 0.01 in a realistic text collection)

- $lacksquare C_{NxK}^{NK}$ and C_{MxK}^{MK} : matrices of counts
- \blacksquare Gibbs sampling considers each word token w_i in the text collection in turn
- C_{wik}^{NK} = number of times some word token w is assigned to topic k, not including the current word i
- C_{dik}^{MK} = number of times topic k is assigned to some word token w in d, not including the current word i
- We compute:

$$P(z_{i} = k | \mathbf{z}_{-i}, w_{i}, d_{i},.) \propto \frac{C_{w_{i}k}^{NK} + \beta}{\sum_{w=1}^{N} C_{wk}^{NK} + N\beta} \frac{C_{d_{i}k}^{MK} + \alpha}{\sum_{l=1}^{K} C_{d_{i}l}^{MK} + K\alpha}$$

where

 $z_i = k$ represents the topic assignment of word *i* to topic *k*

 \mathbf{z}_{-i} = topic assignment of all other word tokens

"." refers to all other observed or known information, such as all other words and document indices \mathbf{w}_{-i} and \mathbf{d}_{-i} and the hyperparameters α and β

Normalize by the sum over all topics

- Count matrices are updated
- Sampling and updating are iterated until the equilibrium state is reached
- The sampling algorithm gives direct estimates of z for every word token i
- Many applications require estimates of ϕ' (word-topic distributions) and θ' (topic-document distributions), which can be obtained from the above count matrices:

$$\phi_{i}^{(k)} = \frac{C_{ik}^{NK} + \beta}{\sum_{l=1}^{N} C_{lk}^{NK} + N\beta} \qquad \theta_{k}^{(d)} = \frac{C_{dk}^{MK} + \alpha}{\sum_{l=1}^{K} C_{dl}^{MK} + K\alpha}$$

An example of the results of applying the LDA model trained with a Gibbs sampling procedure. © 2011 M.-F. Moens

Topic 247		Topic 5		Topic 43	Topic 56
word	prob.	word	prob.	word	prob. word prob.
DRUGS	.069	RED		MIND	.081 DOCTOR .074
DRUG	.060	BLUE	.099	THOUGHT	.066 DR063
MEDICINE	.027	GREEN	.096	REMEMBER	.064 PATIENT .061
EFFECTS	.026	YELLOW	.073	MEMORY	.037 HOSPITAL .049
BODY	.023	WHITE	.048	THINKING	.030 CARE .046
MEDICINES	.019	COLOR	.048	PROFESSOR	.028 MEDICAL .042
PAIN	.016	BRIGHT	.030	FELT	.025 NURSE .031
PERSON	.016	COLORS	.029	REMEMBERED	.022 PATIENTS .029
MARIJUANA	.014	ORANGE	.027	THOUGHTS	.020 DOCTORS .028
LABEL	.012	BROWN	.027	FORGOTTEN	.020 HEALTH .025
ALCOHOL	.012	PINK	.017	MOMENT	.020 MEDICINE .017
DANGEROUS	.011	LOOK	.017	THINK	.019 NURSING .017
ABUSE	.009	BLACK	.016	THING	.016 DENTAL .015
EFFECT	.009	PURPLE	.015	WONDER	.014 NURSES .013
KNOWN	.008	CROSS	.011	FORGET	.012 PHYSICIAN .012
PILLS	.008	COLORED	.009	RECALL	.012 HOSPITALS .011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Determining the number of topics

- The above models rely on a number of topics a priori set:
 - Models that dynamically allocates topics:
 - Chinese Restaurant Franchise topic model, which uses a stochastic mechanism called the Chinese Restaurant Process

[Blei, Griffiths, Jordan & Tenenbaum, NIPS 2003]

Probabilistic topic models

- Probabilistic models of text generation (cf. model of text generation by Panini)
- Understanding by the machine = we infer the latent structure from which the document/text is generated
- Today:
 - Based on bag-of-words representations
 - Addition of other structural information is currently limited (e.g., syntax information)
 - But, acknowledged potential for richly structured statistical models of language and text understanding in general

Probabilistic topic models in retrieval models

- Consider incorporation of a probabilistic topic model into a:
 - A language retrieval model
 - An inference network retrieval model

Language retrieval model

Integration of pLSA or LDA in language retrieval model:

e.g.,
$$P(q_1,...,q_m|D) = \prod_{i=1}^m (\lambda P(q_i|D) + (1-\lambda)P(q_i|C))$$

where

$$P(q_i|D) = \sum_{k=1}^K P(q_i|z_k)P(z_k|D)$$

computed with latent topic model and K = number of topics

What have we learned?

- Advanced text representations offer possibility to probabilistically model content and to integrate the models into retrieval models:
 - language models and inference net models
- Important:
 - concept of latent topics
 - approximate inference methods for parameter estimations in Bayesian networks: EM and Gibbs sampling

Research questions to be solved

- Further investigations into probabilistic content models of retrievable objects:
 - More complex hierarchical structures
 - Integration of other latent variables
 - Integration of good initialization methods for approximate inference algorithms especially when a large number of variables has to be estimated
 - Integration of limited supervision and other external knowledge

Further reading

- Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003). Latent Dirichlet allocation. *Journal of Machine Learning Research*, 3, 993-1022.
- Blei, D. M., Griffiths, T. L., Jordan, M. I., and Tenenbaum, J. B. (2003). Hierarchical topic models and the nested Chinese restaurant process. In *Proceedings NIPS*.
- Hofmann, T. (1999). Probabilistic latent semantic indexing. In *Proceedings of Twenty-second Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval.*
- Koller, D. & Friedman, N. (2010). *Probabilistic Graphical Models: Principles and Techniques.* The MIT Press.
- Steyvers, M. and Griffiths, T. (2007). Probabilistic topic models. In T. Landauer, D.McNamara, S. Dennis& W. Kintsch (Eds.), *The Handbook of Latent Semantic Analysis*. Lawrence Erlbaum Associates.