Chapter 1 벡터, 파트1: 벡터와 벡터의 기본 연산

- ▶ 벡터의 정의, 해석 방법,
- ▶ 파이썬으로 벡터 활용
- ▶ 벡터 대수학과 내적(dot product) 등 주요 연한
- ▶ 벡터 분해

1.1 NumPy로 벡터 생성 및 시각화하기

1	선형대수학에서 [a]는 <mark>수를 순서대로 나열</mark> 한 것을 의미한다.	a. 벡터(vector)
	(벡터는 함수 등 다른 수학적 대상을 갖을 수 있으나 교재에서	
	는 다루지 않는다)	
2	벡터는 다음의 두 가지 특징을 갖는다.	a. 차원(dimensionality)
	① [a]: 벡터가 가진 원소의 수	b. 방향(orientation)
	② [b]: 벡터가 열 방향인지 행 방향인지를 나타낸다.	
	+00.4 . 7 . 7 . 7 . 1	- N
3	차원은 [a] 로 표기하며 R은 실수(Real number), N은 차원	a. R ^N
	을 나타낸다. 참고로 C 는 복소수(실수와 허수의 합으로 이루어	
	진 수)이다.	
	** example **	
	$x = \begin{bmatrix} 1 \\ 4 \\ 5 \\ 6 \end{bmatrix} 4 차원 열 벡터, x \in R^4$	
	$\begin{bmatrix} 5 \\ 6 \end{bmatrix}$	
4	수학에서의 차원과 파이썬에서 차원은 다른 의미를 갖는다. 수	a. 원소의 수
	학에서 차원은 [a]인 반면 파이썬에서 벡터와 행렬의 차원	
	은 [b]이다.	b. 기하학적 차원
	예를 들어 NumPy는 원소의 수에 상관없이 2차원 배열 로 간주	
	한다.	
5	특정 방향이 없는 경우 파이썬에서 [a]로 설정된다. 출력은	a. 1차원 배열
	행으로 출력되나 이는 [b]는 아니다.	
		b. 행 벡터

6	수학적 차원인 벡터의 원소 수는 파이썬에서는 [a] 혹은	a. 길이(length)
	[b]이라 한다.	
		b. 모양(shape)
7	벡터는 다음과 같이 표기한다.	a. v
	① 진한 로마자 : [a]	b. <i>v</i>
	② 이탤릭체 : [b] or [c]	
		C. \vec{v}
8	선형대수학에서 보통 벡터에 표시가 없다면 [a]을 가정한다.	a. 열 방향
9	행 벡터의 경우 [a]로 표기한다. T 는 전치 연산(transpose	a. w^T
	operation)을 나타낸다.	
10	파이썬 벡터는 여러 데이터 타입으로 나타낼 수 있다. 리스트	a. NumPy 배열
	타입이 가장 간편하기는 하지만 선형대수학 연산은 리스트에	
	잘 동작하지 않기 때문에 [a]로 생성하는 것이 가장 좋다.	
11	** 벡터의 방향은 중요한가? **	
	▶ 벡터는 세 개의 방향이 있다. ① 열 방향, ② 행 방향, (
	▶ 데이터를 저장할 때에는 벡터의 방향이 중요하지 않다	
	▶ 그러나 연산을 할 때에 벡터의 방향이 잘못되면 원하·	는 결과가 나오지 않는 경우가
	발생할 수 있다.	

1.1.1 벡터의 기하학적 해석

1	< 벡터의 해석 >	a. 나열
	① 대수학적 해석	b. 길이(크기, magnitude) c. 방향(양의 x 축의 각도, angle)
	② 기하학적 해석	

2	벡터의 두 점은 꼬리(시작)와 머리(끝)으로 불리며 일반적으로 머리에 [a]가 달려있다.	a. 화살표
3	벡터는 직선의 형태로 <mark>좌표</mark> 가 인코딩 것으로 착각할 수 있다. 그러나 벡터와 좌표는 다른 개념이다. 단, 원점에서 시작하는 벡터는 좌표와 동일하며 이를 [a]이 라 한다.	a. 기준 위치 (standard position)
4	다양한 위치의 벡터 v 1	on)로 좌표와 동일한

1.2 벡터 연산

벡터는 이야기의 주인공이다. 이러한 벡터(주인공)에게 부여되는 움직임을 연산(operation)이라 한다. 연산에는 간단한 덧셈부터 조금 어려운 특잇값 분해 등이 있다.

1.2.1 두 벡터의 덧셈

1	벡터의 덧셈과 뺔셈	 은 동일한 [a]을 갖는	· 벡터끼리만 기	l 는	a. 차원
•	하다($R^N \pm R^N$).		1-171-12		u. · 1 <u>c</u>
2	벡터의 덧셈과 뺔셈	 은 서로 [a]되는 원소		반해	a. 대응
_	진다.	_		- "	u. 110
		** example **			
		import numpy as np			
		v = np.array([4, 5, 6]) w = np.array([10, 20, 30]) vPlus₩ = v + w			
		print(vPlus₩)			
		[14 25 36]			
3	벡터의 방향이 다른	벡터의 덧셈과 뺄셈을	시행하는 경우	파이	a. 브로드캐스팅
	썬에서는 [a]이라	는 연산을 시행한다.			(broadcasting)
	** example **				
	v = np.array([[4, 5, 6]]) # 행벡터 w = np.array([[10, 20, 30]]).T # 열벡터 '.T'는 전치 연산. v + w array([[14, 15, 16],				
	[24, 25, [34, 35,				
4		< 결론 >			
		향이 같을 때에만 벡터!	의 덧셈과 뺄셈	이가	
	능하다.				

1.2.2 벡터의 덧셈과 뺄셈의 기하학적 해석

1.2.3 스칼라-벡터 곱셈

1	선형대수학에서 [a]란 벡터나 행렬에 포함된 숫자가 아닌수 그 자체이다.	a. 스칼라(scalar)
2	스칼라는 일반적으로 [a] 그리고 [b]와 같은 그리스어 소문자로 나타낸다.	a. α b. λ
3	스칼라와 벡터의 곱은 다음처럼 매우 간단한다.	5. n
	$\lambda = 4, \qquad w = \begin{bmatrix} 9 \\ 4 \\ 1 \end{bmatrix}, \qquad \lambda w = \begin{bmatrix} 4 \times 9 \\ 4 \times 4 \\ 4 \times 1 \end{bmatrix}$	
4	스칼라를 곱할 때에는 data type이 중요하다. 다음의 두 가지	a. 반복
	경우는 파이썬 연산에서 자주 사용되므로 알아 두자.	
	① list에 스칼라 연산을 하면 list의 요소를 [a]한다. ② NumPy 배열에 스칼라 연산을 하면 기존의 방식대로 스칼라를 [b]한다.	b. 곱
	※ int와 float의 type 또한 맞추어 주어야 함을 주의하자	
	** example **	
	import numpy as np	
	s = 2 a = [3, 4, 5] # 리스트 b = np.array(a) # np 배열	
	# typeOl list인 경우와 array인 경우 스칼라 연산이 다르다. print(a+s) # 리스트의 경우 반복 print(b+s) # NumPy 배열의 경우 원래대로 스칼라 곱	
	[3, 4, 5, 3, 4, 5] [6 8 10]	

1.2.4 스칼라-벡터 덧셈

기본적으로 <mark>선형대수학</mark>에서 스칼라와 벡터를 더하는 것은 <mark>불가</mark>하다. 그 이유는 스칼라와 벡터는 서로 다른 개념이기 때문이다.

그러나 파이<mark>썬</mark>에서는 벡터와 스칼라를 <mark>더할 수 있다</mark>. 더하는 방법은 스칼라-벡터 곱과 같이 벡터의 각 원소에 스칼라를 더한다.

** example **

```
import numpy as np
s = 2
v = np.array([3, 6])
s + v
```

array([5, 8])

** 스칼라-벡터 곱셉의 기하학적 해석 **

1	스칼라를 scalar라고 부르는 이유는 스칼라는 벡터의 [a]을 바꾸지 않고 벡터의 [b]만 조정하기 때문이다.	a. 방향
	(scalar는 '방향의 구별은 없고 하나의 수치만으로 완전히 표시되는'의 의미가 있다.	b. 크기
2	스칼라-벡터 곱셈 결과는 스칼라가 ① 1 보다 크다, ② 0과 1사이이다, ③ 0 이다, ④ 음수이다 에 따라 다르다.	

3 스칼라가 음수인 경우 벡터가 음의 방향으로 바뀌는 듯 보이는데 아래의 흐름을 따라가면 그 렇지 않다는 것을 알 수 있다.

< 왜 음의 스칼라-벡터 곱은 방향이 바뀌는 것이 아닌가 >

벡터는 원점을 통과하여 **양방향의 무한대로 가는 무한히 긴 선**이라는 해석이 존재한다.

- → '회전된'벡터는 위의 의미에서 여전히 동일한 <mark>무한한 선</mark>을 가리킨다.
- → 음의 스칼라로 인하여 회전된 벡터 또한 여전히 **동일한 방향**이다.
- ※ 위의 해석은 행렬 공간, 고유벡터, 그리고 특이벡터에서 중요하다.

 4
 벡터 덧셈과 스칼라-벡터 곱셈을 이용하면 벡터의 평균(vector average)를 구할 수 있다. N개의 벡터를 가정하면 N개의 벡터 를 모두 더하고 스칼라 [a]을 곱해준다.
 a. ½

 [b]
 b. ½* N 개의 벡터 합

1.2.5 전치

1	[a] 연산은 열 벡터를 행 벡터로 혹은 반대로 변환한다.	a. 전치(transpose)
2	예를 들어 i 행, j 열을 갖는 행렬 m 의 전치(transpose) 결과는	a. $m_{j,i}$
	다음과 같다.	
	$m_{i,j}^T = \left[egin{array}{cc} a \end{array} ight]$	
	$m_{i,j}$ [α]	
_	T 0 T 1	
3	< 중요 규칙 >	a. <i>v</i>
	벡터에 두 번 전치(transpose) 연산을 하면 벡터는 원래 방향이	
	된다. 즉, 다음과 같다.	
	$v^{TT} = [a]$	
	※ 위의 규칙은 데이터 과학과 머신러닝에서 중요한 증명의 핵	
	심 근거가 된다. 예를 들면 <i>데이터 행렬 $A \times G$이터 행렬 $A^T = G$칭</i>	
	<i>공분산 행렬</i> 이 된다.	

1.2.6 파이썬에서 벡터 브로드캐스팅

브로드캐스팅 연산은 전통적인 선형대수학 교과서에는 존재하지 않으며 **현대 컴퓨터 기반 선형대수** 학에만 존재하는 연산이다.

** example **

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 \\ 10 & 20 \\ 10 & 20 \end{bmatrix} = \begin{bmatrix} 11 & 21 \\ 12 & 22 \\ 13 & 23 \end{bmatrix}$$

1.3 벡터 크기와 단위벡터

) 리드(Euclidean)
리드(Euclidean)
ınit vector)

5		향의 단위벡터로 만들 수 있다. 방 역수를 곱하며 [b]로 표기한다.	a. 벡터 노름
			b. <i>v̂</i>
6	단위벡터 생성을 수식으로	표현하면 다음과 같다.	a. $\frac{1}{ v }v$
	í	ớ = [a]	
	※ 단, 모든 비단위벡터가 연주의해야 한다.	변관된 단위벡터를 갖는 것은 아님을	
7		** 비단위벡터의 단위벡터화 **	

1.4 벡터-내적

1	[a](점곱 & 스칼라곱)는 하나의 숫자로 두 벡터 사이의 관계를 나타내며 선형대수학에서 가장 중요한 연산이다.	a. 내적(dot product)
2	내적의 표기는 $[a]$, $a \cdot b$, 그리고 $< a, b >$ 등이 있으며 교재에서는 $[a]$ 를 사용한다.	a. a^Tb
3	내적을 계산하는 방법은 두 벡터의 대응되는 원소끼리 곱한 다음 모든 결과를 더한다.	a. $\sum_{i=1}^{n} a_i b_i$
	$[1, 2, 3, 4] \cdot [5, 6, 7, 8]$ $= 1 \times 5 + 2 \times 6 + 3 \times 7 + 4 \times 8$ $= 5 + 12 + 21 + 32$ $= 70$	
	두 벡터 a와 b가 있을 때 a와 b의 내적을 식으로 표현하면 다음과 같다.	
	$\delta = [a]$	
	※ 내적은 <mark>동일한 차원</mark> 의 두 벡터 사이에서만 성립한다.	
4	파이썬에서 벡터의 내적은 [a] 함수를 통해 쉽게 구할 수 있다.	a. np.dot()
	※ 단, [a]는 실제로 벡터-내적을 구현하지는 않으며 첫 번째 입력이 행벡터이고, 두 번째 입력이 열벡터인 경우에만 결과를 출력한다.	
5	벡터에 스칼라를 곱하면 내적도 그만큼 커지는 특성을 갖는다. 예를 들어 $a^Tb=70$ 일 때 $10a^Tb$ 는 [a]이 된다.	a. 700
6	내적은 두 벡터 사이의 [a] 또는 [b]의 척도로 해석할 수 있다.	a. 유사성(similarity)
	예를 들어 몸무게와 키는 상관관계가 있을 것이므로 내적 또한 클 것이다.	b. 매핑(mapping)

7	데이터에서 두 변수의 벡터의 내적을 구할 경우 [a]에 영향	a. 단위
	을 받을 수 있다.	
8	두 변수의 벡터의 내적을 구할 때 단위의 영향을 받는다면 정	a. 피어슨 상관계수 (Pearson
	규화 계수 로 단위의 차이를 제거할 수 있다.	correlation coefficient)
	이렇게 <mark>정규화 된 내적</mark> 은 [a]라 불리며 데이터 과학에서 가	
	장 중요한 분석이다.	

1.4.1 내적의 분배 법칙

1 내적의 분배 법칙은 다음과 같다.

$$a^{T}(b+c) = [\ a \]$$

** example **

import numpy as np

a = np.array([0, 1, 2])
b = np.array([3, 5, 8])
c = np.array([13, 21, 34])

내적 분배 법칙
res1 = np.dot(a, b+c)
res2 = np.dot(a, b) + np.dot(a, c)

print(f'*(res1), {res2}')

110, 110

1.4.2 내적의 기하학적 해석

1	다음은 벡터 내적의 기하학적 정 그 모양이 다르지만 원래 벡터	a. $\cos(\theta_{v,w}) v w $	
	내적 식 기하학적 내적 식		
	$\delta = \sum_{i=1}^{n} a_i b_i$	α = [a]	
2	벡터의 크기는 양수이다. 그러니	a. 음수	
	1과 1사이의 값을 갖기에 [a]		
		b. 내적의 부호	
	이는 기하학적 정의에서 [b]		
	<mark>의임</mark> 을 보인다.		

3	두 벡터 사이의 각에 따라 내적 부호는 다섯 가지의 사례가 존재한다.							
	예각 둔각		직각	공선		공선		
	θ < 90°	θ > 90°	θ = 90°	$\theta = 0^{\circ}$		$\theta=180^{\circ}$		
	a b				/			
	$COS(\theta) > 0$ $\alpha > 0$	$COS(\theta) < 0$ $\alpha < 0$	$COS(\theta)=0$ $\alpha = 0$	$COS(\theta)=1$ $\alpha = \alpha b $		$COS(\theta)=-1$ $\alpha = - \alpha b $		
4	< 암기하세요. 직교벡터의 내적은 0입니다 >				a. 직교			
	① 두 벡터가 [a]한다.				b. 0			
	* ② 두 벡터는 내적이 [b]이다. ↑			c. 90°				
	→ ③ 두 벡터 사이의 각은 [c]이다.							

1.5 그 외 벡터 곱셈

1.5.1 아다마르곱

1	[a]은 두 벡터의 대응되는 각 원소를 곱한다. 곱의 결과는 두	a. 아다마르곱	
	벡터와 [b] 차원의 벡터이다.	(Hardamard product)	
	※ <mark>동일한 차원</mark> 의 벡터만 아다마르곱을 할 수 있다.	b. 같은	
2	아다마르곱(Hardamard product)는 여러 [a]를 곱할 때 편리	a. 스칼라	
	하다. 예를 들면 다음과 같다.		
	소형 장치의 수 변수 × 장치당 가격 변수		

1.5.2 외적

1	외적은 열벡터와 행벡터를 이용해 [a]을 만든다.				a. 행렬	
	✓ 외적 행렬의 각 행 : [b] 스칼라에 대응되는 열벡 터 원소의 곱				b. 행벡터	
	✓ 외적 행렬의 각 열 : [c] 스칼라에 대응되는 행벡터 원소의 곱.				c. 열벡터	
2	< 외적과 내적의 차이 >					
						1
			외적		내적	İ
		결과 행렬			스칼라	
		동일 차원 필요	X		0	İ
		표기	vw^T		$v^T w$	
3	외적의	적의 표기는 vw^T 이고 내적의 표기는 v^Tw 로 표기가 다르다.			a. <i>열벡터× 행벡트</i>	7
	이는 외적은 [a]이고, 내적은 [b]임을 의미하며 교재 중반 부에 이해하면 된다.			b. <i>행벡터× 열벡E</i>	7	
	※ 기본적으로 아무런 처리가 없다면 <mark>열벡터임을 가정</mark> 한다(기 억).					
4	< 브로드캐스팅과 외적 >				a. 코딩 연산	
	 ✓ 브로드캐스팅 : 덧셈, 곱셈, 나눗셈과 같은 산술 연산을 벡터로 확장한 일반적인 [a]. 			b. 수학적 기법		
	✓ 외적 : 두 벡터를 곱하는 특수한 [b].					
5			과 행방향인 두 벡터를 [a]	또는	a. np.outer()	
	[b] 함수에 입력하여 외적을 계산할 수 있다.			b. np.dot()		

1.5.3 교차곱과 삼중곱

기하학과 물리학에서 사용되지만 기술 관련 응용 분야에서 자주 등장하지는 않기에 교재에서 다루지는 않는다.

1.6 직교벡터 분해

1 벡터 또는 행렬을 [a]한다는 것은 여러 간단한 조각들로 나뉘어 짐을 의미한다.

a. 분해

example)

 $42.01 \rightarrow 42 + 0.01$

 $42 \rightarrow 2 \times 3 \times 7$ (소인수 분해, Prime factorization)

a. (b-βa)

2

< 직교 투영법, Orthogonal projection >

b. 0

C.
$$\frac{a^T b}{a^T a}$$

d. 최소 거리

① 목표

두 벡터 a와 b가 있음을 가정할 때 벡터 a에서 벡터 b의 머리와 최 대한 가까운 점을 찾는다.

② 최적화 문제로 변환

투영 거리가 최소가 되도록 b를 a에 투영

- \rightarrow 벡터 a에 b를 투영한 점은 벡터 a의 크기를 줄인 β a (β 는 스칼라)
- \rightarrow 스칼라 β 를 찾는 것이 최종 목표

③ 핵심은 벡터의 뺄셈

벡터 b의 머리와 벡터 a가 직각으로 만나도록 그리면 벡터 b와가장 가까운 벡터 a 위의 점 β a를 찾을 수 있다.

- → 벡터의 뺄셈은 두 벡터의 머리 사이의 직선 = [a].
- → 벡터 a와 벡터 b-βa는 직교.
- → 벡터 a와 벡터 b-βa의 내적은 [b].

위를 수식으로 풀어 쓰면 다음과 같다.

$$a^{T}(b - \beta a) = 0$$

$$a^{T}b - \beta a^{T}a = 0$$

$$\beta a^{T}a = a^{T}b$$

$$\beta = [c]$$

④ 결론

직교 투영법(Orthogonal projection)은 점을 [d]로 선에 투영하는 공식. 이는 선형 모델을 푸는 데 잘 알려진 최소제곱식, 통계학, 머신러닝 등의 많은 응용분양의 기초가 된다.

< 직교 투영법 → 직교 벡터 분해 >

t : 목표벡터, r : 기준벡터,

 $t_{||r}$: 기준벡터 r과 평행 성분, $t_{\perp r}$: 기준벡터 r과 수직 성분

① 목적

목표 벡터(t)를 두 개의 다른 벡터($t_{||r}$ 와 $t_{\perp r}$)로 분해

② 직교 벡터 성질

a. 두 벡터의 합은 목표벡터이다.

[a]

- b. 하나의 벡터는 기준벡터와 [b]이고, 다른 하나의 벡터는 기준벡터와 [c]이다.
- ③ 직교 투영법(Orthogonal projection)을 통한 $t_{||r|}$ 계산.

직교 투영법을 적용하면 다음과 같다.

$$t_{||r} = [d]$$

※ 직교 투영법의 결과는 스칼라이지만 직교 분해의 결과는 크기를 조정한 벡터이다.

a.
$$t_{||r} + t_{\perp r} = t$$

- b. 직교 $(t_{\perp r})$
- c. 평행 $(t_{||r})$
- d. $r \frac{t^T r}{r^T r}$

e.
$$t - r \frac{t^T r}{r^T r}$$

f. 0

④ 직교 벡터의 성질을 통한 $t_{\mid r}$ 계산.

두 벡터의 합은 목표벡터이다.

$$\rightarrow t_{||r} + t_{\perp r} = t$$

$$\rightarrow t_{\perp r} = t - t_{||r}$$

$$\rightarrow t_{\perp r} = [\ e\]$$

⑤ 증명 방법

수직 성분과 기준벡터의 내적이 [f]임을 증명.

$$\rightarrow t_{\perp r}{}^T r = [\ f\]$$

$$\rightarrow (t - r \frac{t^T r}{r^T r})^T r = [f]$$

5 < 요약 >

- ✓ 하나의 수학적 대상을 다른 수학적 대상들로 분해한다.
- ✓ 분해의 세부적인 내용은 제약 조건(현제는 기준벡터와 직교 & 평행)에 따라 달라진다.
- ✓ 다른 제약 조건의 경우(분석 목표가 다름) 동일 벡터라도 다른 방식으로 분 해한다.

1.7 정리

- ✓ 아무리 복잡한 계산이라도 선형대수학에서는 결국 간단한 연산으로 이루어져 있으며 대부분은 기하학적 직관으로 이해할 수 있다.
- ✓ 이번 장에서 배운 내용들은 책의 나머지 부분과 응용 선형대수학자로서 앞으로 많은 도움이 된다.

** 요점정리 **

< 요점정리 >

- ✓ 벡터는 열 또는 행에 숫자를 [a]한 것이다. 벡터의 원소 수를 [b]이라고 하며, 벡터는 차원과 동일한 수의 [c] 을 가진 기하학적 공간에서 **하나의 선**으로 나타낼 수 있다.
- ✓ 덧셈, 뺄셈, 아다마르곱과 같은 벡터 산술 연산은 [d]별 로 계산한다.
- ✓ 내적은 차원이 같은 두 벡터 간의 [e]를 인코딩한 단일 | 숫자로, 원소별로 곱하고 합해서 구한다.
- ✓ 두 벡터가 직교하면 내적은 [f]이며 기하학적으로 벡터 | j. 크기에 대한 매핑 가 [q]으로 만나는 것을 의미한다.
- ✓ 직교벡터 분해는 하나의 벡터를 기준벡터와 [h]하는 벡 터, [i]한 벡터로 나누는 것이다. 분해 공식은 기하학적 으로 도출될 수 있지만, 공식이 내포한 개념인 '[j]'이라 는 문구를 기억해야 한다.

- a. 나열
- b. 차원(dimensionality)
- c. 축
- d. 원소
- e. 관계
- f. 0
- g. 직각
- h. 직교
- i. 평행