Al Tradeoff Team A

Chenxi Li, Kartik Moudgil, Yuchen Wang, Zhouyi Yang

Which model is better in Primary Scenario

Random Forest vs Linear Regression Lasso

Which model is better in Primary Scenario

Goal:

- 1. Predict the popularity of movies for planning royalty payments and future movie acquisitions.
- 2. Show the popularity to users.

Requirement:

- 1. **Accurately** predict the popularity of movies **daily** (accurate enough for making proper acquisition decision and capture user interest) -> Normalized Popularity MSE less than 0.3
- 2. **Training time** and **Inference time** together must be less than one day (only want a movield-popularity mapping daily)
- 3. Model size less than 1GB
- 4. Less need for interpretability

Popularity Prediction

Code for comparison between LR-Lasso and RFR

```
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model selection import GridSearchCV
# Calculate accuracy of linear regression lasso
parameters = \{'alpha':np.arange(0.001,100,0.001)\}
linear model = Lasso()
clf = GridSearchCV(linear_model, parameters, cv=5, scoring='neg_mean_squared_error')
clf.fit(X train, y train)
print(clf.best_params_, clf.best_score_)
print("The MSE of linear regression is: %f"%(-clf.best_score_))
# Calculate accuracy of random forest regression
parameters = {'max_depth':range(1,10),'n_estimators':range(1,10)}
clf = GridSearchCV(RandomForestRegressor(), parameters, cv=5, scoring='neg_mean_squared_error')
clf.fit(X_train, y_train.ravel())
print(clf.best_params_, clf.best_score_)
print("The MSE of random forest regression is: %f"%(-clf.best_score_))
```

Accuracy Training time & Inference Time 3 Model Size Interpretability Linear / Non-linear

Split the data into train-test split of 70%: 30%

Linear Regression Lasso MSE: 0.496426

Random Forest MSE: 0.283986

* MSE: Mean Square Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Training Time

#sample

#feature

Lower: Linear Regression

Inference Time

#sample

#feature

Lower: Linear Regression

Model Size

#sample

#feature

Lower: Linear Regression

Interpretability:

Better: Linear Regression

1. More intuitive visualizations for low-dimension data

- 2. Clearer relationship between features and parameters
- 3. Low interpretability for large random forests with tall trees.

Linear / Non-Linear:

Better: Random Forest

The linear regression can only capture linear relationship in the data if you do not use tricks like polynomial terms. However, for a random forest, it has the ability to detect the non-linear relationship in the data.

Recommendation - Random Forest

	Accuracy	Training / Inference Time	Model Size	Interpretibility	Linear / Non- Linear
Linear Regression (Lasso)		√	√	\(\)	
Random Forest	√		J		√

Accuracy has a high priority

The training and inference time may not necessarily require on-the-fly speed of response. It can be done in the back-end once in a while

The model size of the models depend on different things: one is number of features in data, another is hyper-parameters.

The interpretibility and linear / non-linear are the properties of the models themselves

Alternative Scenario

Linear Regression is Better

Consider Attributes + Constraints

This Scenario Inspired By...

User continuously watching new movies -> Model required to be frequently trained

User see the recommendation result right after they visit the website (or APP) -> **Inference time** should be as **low** as unnoticeable

Privacy Issue -> User not want to upload their age or gender information to server -> Model may not be able to deployed on server or cloud side -> deploy on users' local device -> **light-scale**, **small-size** model

Output is numerical -> Movie Rate is numerical

Why Linear Regression Better?

1.Low Training 2.Short Inference 3.Small ModelCost Time Size

Linear Regression

1.Low Training Cost

2.Low Inference Time

3.Small Model Size

Linear Regression

1.Low Training Cost

2.Low Inference Time

3.Small Model Size

Linear Regression

2.Low Inference Time

3. Small Model Size

Split the data into train-test split of 75%: 25%

Linear Regression Lasso MSE: 0.533825

Random Forest MSE: 0.533390

* MSE: Mean Square Error

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$$

Recommendation - Linear Regression

	Accuracy	Training / Inference Time	Model Size	Interpretibility
Linear Regression (Lasso)	Tie	√	√	$\sqrt{}$
Random Forest	Tie			

Short Training Time / Short Inference Time / Small Model Size has a high priority

Accuracy are almost the same

Summary

When doing Al tradeoff, we should alway consider from attributes and constraints.

- Quality Attributes
- Project Attributes
- Design Attributes
 - * ML Task
 - * Accuracy
 - * Training Time
 - * Inference Time
 - * Memory Usage

Linear Regression

- OAdvantages:
 - The model size is very concise
 - Faster to run
 - Easy to understand
- Disadvantages:
 - Accuracy is relatively low
 - cannot capture non-linear relationship

Random Forest

- Randomly construct lots of decision trees
- Final output is the mode or mean of individual trees
- High accuracy and reduced overfitting, incremental
- Reduced interpretability, large number of trees can take up space

THANK YOU

Q&A