High-resolution climate and Community Earth System Model

John Dennis dennis@ucar.edu

What is CESM?

- Consists of a set of 4->6 geo-components
 - ATM, OCN, LND, CICE, GLC, WAVE
 - Run on potentially different grids
 - Exchange boundary data with each other via coupler
 - hub and spoke architecture
- Large code base: >1.3M lines
 - Fortran 90 (mostly)
 - Developed over 20+ years
 - 200-300K lines are critically important
 - Communication, not computational kernels
- CESM is an interdisciplinary collaborative effort
 - DOE, NSF, NOAA, University Community
 - Applied Math, CS, software engineering, climate scientists

NWSC-Yellowstone is now operational

Compute Nodes

- Processor: 2.6 GHz Intel Sandy Bridge EP processors
- Node: dual socket; 32 GB memory; 2
 GB/core
- 4,518 nodes, 72,288 cores total 1.5
 PFLOPs peak
- 144.6 TB total memory

High-Performance Interconnect

- Mellanox FDR InfiniBand full fat-tree
- 13.6 GB/sec bidirectional bw/node
- <2.5 usec latency (worst case)</p>

Central File System

- 2012: 11 PB
- 2014: 16.4 PB
- Bandwidth: 90 GB/sec

Advanced Scientific Discovery (ASD) project

- Opportunity to use a large piece of newly installed Yellowstone
- "Meso- to planetary-scale processes in a global ultra-high resolution model"
- R. Justin Small, Bailey, Bryan, Danabasogla, Holland, Jochum, Lawrence, Park, Peacock, Tomas, Tribbia, Dennis (NCAR), Saravanan (Texas A&M), Schneider (Hawaii), Kwon (WHOI)
- 47.1 M core hours
 - 25.2 M (2 months) [tuning]
 - 21.9 M (18 months)

High-resolution ASD simulation

- Currently: ~35 years complete
- CAM5-SE (atmosphere model)
 - 28km resolution
 - Scalable spectral-element dynamical core
 - CAM5 physics
 - Fully prognostic aerosol (~50 tracers)
- POP (ocean model)
 - 11km resolution
 - 62 vertical levels
- CICE (sea-ice model)
 - 11km resolution
- CLM (land model)
 - 28km resolution

High-resolution ASD simulation

- Improved meanclimate then previous HR runs
- Improved Arctic seaice extent
- Ocean temperature bias in the Southern ocean ACC

Computational Aspects of ASD simulation

- General statistics:
 - 2.0 simulated years per day (SYPD)
 - 23,404 cores
 - 1 TB of data generated per day
- Component configuration
 - 11km Ocean model (6,124 cores)
 - 11km Sea-ice model (16,295 cores)
 - 28km Atmosphere (17,280 cores)
 - 28km Land (900 cores)
 - Coupler (10,800 cores)

Execution time for ASD simulation

Execution time for ASD on Yellowstone

Write bandwidth for ASD simulation on Yellowstone

Why are we not using more of Yellowstone?

- System stability
 - Significant performance loss (8x) in MPI_Allreduce on occasion (~1%)
 - Collective communication offload failures (33%)
- Queue access for larger then 22k cores
- OS jitter sensitivity [CAM-SE,POP,CICE] (See travel guide)
- Suboptimal CICE partitioning (See travel guide)
- Supoptimal CPL scaling
- Infiniband routing table imbalances
- ► I/O overhead (6.4%)

Travel Guide

G8-Enabling Climate simulations at Extreme Scale

(See presentation by Marc Snir)

Aachen (Aix-la-Chapelle), Germany German Research School for Simulation Science (GRS)

- Felix Wolf (f.wolf@fz-juelich.de)
- Scalasca (JSC)
- Research questions:
 - How do you make non-trivial partitioning algorithm development easier? [Monika Luecke]
 - CICE partitioning algorithm: balance communication/computational imbalance
 - Simulated annealing for IFS model
 - Can you identify scaling bottlenecks on large core counts through performance prediction? [Alexandru Calotolu]

Barcelona, Spain Polytechnic University of Catalonia (UPC)

- Jesus Labata (jesus.labarta@bsc.es)
- paraver, extrae
- Use traces to identify on-node performance problem
- Identified 400 µsec OS jitter affect on Yellowstone
- Identified subtle CPU resource issues -> code restructuring to enable better cache utilization

Conclusions

- CESM has High-resolution capability in release code
- "Yellowstone" has enabled very large scale simulation capability at NCAR
- Challenging issues still remain for large scale simulations
- Engaging CS community through G8 initiative

Acknowledgements

- NCAR:
 - D. Bailey
 - F. Bryan
 - T. Craig
 - B. Eaton
 - J. Edwards [IBM]
 - N. Hearn
 - K. Lindsay
 - N. Norton
 - M. Vertenstein
- COLA
 - J. Kinter
 - C. Stan
- U. Miami
 - B. Kirtman
- U.C. Berkeley
 - W. Collins
 - K. Yelick (NERSC)
- U. Washington
 - C. Bitz

- NICS:
 - M. Fahey
 - P. Kovatch
- ANL:
 - R. Jacob
 - R. Loy
- LANL:
 - E. Hunke
 - P. Jones
 - M. Maltrud
- LLNL
 - D. Bader
 - D. Ivanova
 - J. McClean (Scripps)
 - A. Mirin
- ORNL:
 - P. Worley

- Grant Support:
 - DOE
 - DE-FC03-97ER62402 [SciDAC]
 - DE-PS02-07ER07-06 [SciDAC]
 - NSF
 - Cooperative Grant NSF01
 - OCI-0749206 [PetaApps]
 - CNS-0421498
 - CNS-0420873
 - CNS-0420985
- Computer Allocations:
 - TeraGrid TRAC @ NICS
 - DOE INCITE @ NERSC
 - LLNL Grand Challenge
- Thanks for Assistance:
 - Cray, NICS, and NERSC

and many more...

Questions?

dennis@ucar.edu