

MSE6701H Multiscale Materials Modeling and Simulation

Lecture 06

Molecular Dynamics Simulations

Lingti Kong (孔令体)
Shanghai Jiao Tong University

What is MD?

• Dynamics: a branch of mechanics that deals with forces and their relation primarily to the **motion** of bodies

• MD: Method that simulates the "real" dynamics of a collection of atoms,

molecules, particles, or other objects.

- Method widely used in
 - ➤ Materials Science
 - ➤ Biological Sciences
 - ➤ Physics, Chemistry, Mechanics
- Method widely used for
 - ➤ Metal, ceramics, polymers, composites
 - ➤ Solids, liquids, gasses, and interfaces

MD: History

k .	
	Metropolis et al.
1953	Metropolis Monte Carlo
	Alder and Wainwright
1956	Molecular dynamics simulation of hard spheres
	A Rahman
1964	MD for liquid Argon
	Stillinger and Rahman,
1974	MD of liquid water
	H. C. Andersen
1980	 MD method for NPH, NVT, NPT ensembles
	R. Car and M. Parrinello
1986	Ab initio MD

MD: Basic Idea

Solution of Newton's equations of motions for the particles

$$F = ma = m\ddot{r}$$

LingTi Kong, konglt@sjtu.edu.cn

MD: Basic Idea

Experiment

Molecular Simulation

$$\langle A \rangle_{\text{ensemble}} = \int \int d\mathbf{p}^N d\mathbf{r}^N A(\mathbf{p}^N, \mathbf{r}^N) \rho(\mathbf{p}^N, \mathbf{r}^N)$$

$$\rho(\mathbf{p}^N, \mathbf{r}^N) = \frac{1}{Q} \exp\left[-\frac{H(\mathbf{p}^N, \mathbf{r}^N)}{k_B T}\right]$$

$$Q = \int \int d\mathbf{p}^N d\mathbf{r}^N \exp\left[-\frac{H(\mathbf{p}^N, \mathbf{r}^N)}{k_B T}\right]$$

$$\langle A \rangle_{\text{time}} = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t=0}^{\tau} A\left(\mathbf{p}^{N}(t), \mathbf{r}^{N}(t)\right) dt = \frac{1}{M} \sum_{t=1}^{M} A(\mathbf{p}^{N}, \mathbf{r}^{N})$$

MD: General procedure

Initialization

- > Initial atomic configuration
- > Initial velocity (temperature)
- > Boundary condition
- > Controlling parameters

Maxwell-Boltzmann Distribution

$$p(v) = \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left[-\frac{1}{2}\frac{mv^2}{k_B T}\right]$$

$$\sum_{i=1}^{N} m_i \mathbf{v}_i = 0 \qquad T = \frac{1}{3Nk_B} \sum_{i=1}^{N} \frac{|\mathbf{p}_i|^2}{2m_i}$$

Force calculation

$$U(\overrightarrow{r}_1,\overrightarrow{r}_2,\cdots,\overrightarrow{r}_N)$$

$$\vec{f}_{i} = -\frac{\partial U}{\partial \vec{r}_{i}}$$

$$= -\sum_{j \neq i} \frac{\partial U}{\partial r_{ij}} \frac{\partial r_{ij}}{\partial \vec{r}_{i}}$$

Interatomic distance (arb. units)

Integration algorithm: Verlet algorithm

$$x = x_0 + v_0 t + \frac{1}{2}at^2 + \frac{1}{6}bt^3 + \cdots$$

$$x(t+\Delta t)=x(t)+v(t)\Delta t+rac{1}{2}a(t)\Delta t^2+rac{1}{6}b(t)\Delta t^3+\mathcal{O}(\Delta t^4)$$

$$x(t-\Delta t)=x(t)-v(t)\Delta t+rac{1}{2}a(t)\Delta t^2-rac{1}{6}b(t)\Delta t^3+\mathcal{O}(\Delta t^4)$$

$$x(t+\Delta t)=2x(t)-x(t-\Delta t)+a(t)\Delta t^2+\mathcal{O}(\Delta t^4)$$

Integration algorithm: Verlet algorithm

$$v(t) = rac{x(t+\Delta t) - x(t-\Delta t)}{2\Delta t} + \mathcal{O}(\Delta t^2)$$

Disadvantages

- Error in velocity is $O(\Delta t^2)$
- Need $x(t+\Delta t)$ to get v(t)
- Numerical imprecision in adding small and big numbers

$$O(\Delta t)$$
 $O(\Delta t)$ $O(\Delta t^2)$ $O(\Delta t^2)$ $O(\Delta t^2)$ $O(\Delta t^2)$ $O(\Delta t^2)$

 $v(t + \Delta t) = \frac{x(t + \Delta t) - x(t)}{\Delta t} + O(\Delta t)$

Integration algorithm: velocity Verlet

$$x(t+\Delta t) = x(t) + v(t)\Delta t + \frac{1}{2}a(t)\Delta t^2$$
 $a(t+\Delta t) = f(x(t+\Delta t))$
 $v(t+\Delta t) = v(t) + \frac{1}{2}(a(t) + a(t+\Delta t))\Delta t$

$$egin{aligned} v(t+rac{1}{2}\Delta t) &= v(t) + rac{1}{2}a(t)\Delta t \ x(t+\Delta t) &= x(t) + v(t+rac{1}{2}\Delta t)\Delta t \ a(t+\Delta t) &= f(x(t+\Delta t)) \ v(t+\Delta t) &= v(t+rac{1}{2}\Delta t) + rac{1}{2}a(t+\Delta t)\Delta t \end{aligned}$$

Other integration algorithms

Leap frog

> Beeman algorithm

$$x(t+\Delta t) = x(t) + v(t)\Delta t + \left(\frac{2}{3}a(t) - \frac{1}{6}a(t-\Delta t)\right)\Delta t^2 + O(\Delta t^4)$$

$$x(t + \Delta t) = x(t) + v(t)\Delta t + \left(\frac{2}{3}a(t) - \frac{1}{6}a(t - \Delta t)\right)\Delta t^{2} + O(\Delta t^{4}) \qquad v(t + \Delta t) = v(t) + \left(\frac{1}{3}a(t + \Delta t) + \frac{5}{6}a(t) - \frac{1}{6}a(t - \Delta t)\right)\Delta t + O(\Delta t^{3})$$

➤ Gear algorithm

Prediction → Correction

Tuckerman, Berne and Martyna

Reversible multiple time scale

Time step

$$x(t+\Delta t)=x(t)+v(t)\Delta t+rac{1}{2}a(t)\Delta t^2$$
Too small
Too large
Just fine

- ◆ As large as needed to generate trajectory sufficient long for problem
- **◆** Can't be too large, otherwise inaccurate or unstable
- **♦** Must be smaller than the smallest time modeled

Time step

First MD: harmonic oscillator


```
def MD Harmonic():
   mass = 1.
                                    Initialization
        = 0.
        = -k * x
       = 0.5
       = f / mass
   period = 2. *np.pi*np.sqrt(mass/k)
   dt = 0.05
   half_dt = dt * 0.5
   nsteps = int(2.*period/dt)
   ioutput = 5
                                           Setup
   thermo = list()
   E_D = 0.5 * k * x * x
   Ek = 0.5*mass*v*v
   Et = E_D + E_k
   thermo.append([0, 0*dt, x, v, Ep, Ek, Et])
   for istep in range(1, nsteps+1):
       v = v + a * half_dt
                              Verlocity-verlet
       f = -k * x
       a = f / mass
       v = v + a * half_dt
       if istep%ioutput == 0:
           Ep = 0.5*k*x*x
                                      Property
           Ek = 0.5*mass*v*v
           Et = E_D + E_k
           thermo.append([istep, istep*dt, x, v, Ep, Ek, Et])
   return thermo
```


Boundary Conditions

Simulation cell: domain within which the simulation is carried out.

- Frequently orthogonal
- Non-orthogonal also possible

Problem: What to do with the atoms at the borders?

Option 1: free boundary

- ✓ Suitable for single molecule, cluster, nanoparticle
- **□** Does not work for bulk materials: dangling bonds

Boundary Conditions

Option 2: fix the boundary atoms

- **✓** Completely unphysical, generally avoided
- **✓** Sometimes needed

Option 3: Periodic boundary condition

- **✓** Atoms passing the boundary comes back on the other side
- **✓ PBC** must be considered when evaluating distances

http://www.acclab.helsinki.fi/~knordlun/moldyn/

Periodic boundary condition

$$\vec{\mathbf{r}}_{ij} = x_{ij}\vec{\mathbf{x}} + y_{ij}\vec{\mathbf{y}} + z_{ij}\vec{\mathbf{z}}$$
$$x_{ij} = x_j - x_i$$

```
if pbc_x:
    while xij > 0.5*xbox:
        xij = xij - xbox
    while xij <= -0.5*xbox:
        xij = xij + xbox</pre>
```

Periodic boundary condition

Pro:

- **✓** Eliminate free surface
- **✓** Model infinite system

Con:

- **□** Artificial interaction across boundary
- **□** Upper limit for phonon wavelength
- ☐ Size scaling test generally required

Mixed boundary conditions

Side	BC
Y+	Free
Y-	Fixed
X	Periodic
Z	Periodic

Minimum Image Convention

$$L > 2*R_{\text{cutoff}}$$

Guarantees that an atom interacts with at most one of the other atoms and its images.

Capability of MD

- ☑ Structural: crystal structure, defects (vacancies, interstitials, dislocations, grain boundaries, precipitates)
- ☑ Thermodynamic: equation of state, heat capacities, thermal expansion, free energies
- ☑ Mechanical: elastic constants, cohesive and shear strength, elastic and plastic deformation, fracture toughness
- ☑ Vibrational: phonon dispersion, vibration frequencies, molecular spectroscopy
- **☑ Transport**: diffusion, viscous flow, thermal conduction

Ag on H-Si(111) vs free standing Ag particle

Limitation of MD

There are properties which classical MD cannot calculate because electrons are involved.

To treat electrons properly one needs quantum mechanics. In addition to electronic properties, optical and magnetic properties also require quantum mechanical (first principles or ab initio) treatments.
Ten sein nelezio DOS

■ Time scale: ns

■ Length scale: *nm*

Yet MD is still a unique tool ...

- > Unified study of all physical properties
- > Several hundred particles are sufficient to simulate bulk matter
- **▶** Direct link between potential model and physical properties
- **Complete control over input, initial and boundary conditions**
- **▶** Detailed atomic trajectories

(adapted from S. Yip, Nuclear Engrg./MIT.)

Popular codes

GROMACS FAST. BLE.

LatGen

BIOVIA MATERIALS STUDIO

AN INTEGRATED, MULTI-SCALE MODELING ENVIRONMENT

Accelrys Discovery Studio Visualizer 3.0

Discovery Studio Visualization tools you can to view molecular data

Atomeye

Home work

Extend the MD_Harmonic_Oscillator code to simulate a one-dimension periodic array of particles, where particles interact with their nearest neighbors only via a spring.

- You can use any programming language; (python, c++, fortran, perl, java, julia...)
- You would need to use arrays;
- You would need to write the thermal info to a file;
- You could visualize the output with gnuplot, matplotlib, xmgrace, origin...
- Due: Nov 10th, 2021

Next Lecture:

Interatomic Potentials

