Даны алгебраическая системы одной сигнатуры $\Sigma=(P^{(2)})$ $A=(\{a,b,c\};P_A^{(2)})$ и $B=(\{a,b,c\};P_B^{(2)})$

P_A	a	b	c
a	1	0	1
b	1	1	1
c	0	1	1

P_B	a	b	c
a	1	0	1
b	1	1	0
c	0	1	1

Найти формулу φ такую, что $\sigma_A((\exists x)(\forall y)\varphi)=0$ и $\sigma_B((\forall y)(\exists x)\varphi)=1$. Этой формулой является

$$\varphi = P(x, y) \wedge P(y, x)$$

Доказательство. Рассмотрим $\sigma_A((\exists x)(\forall y)\varphi)$.

- 1. если $\sigma_A(x)=a$, то при $\sigma_A(y)=c$ будет $\sigma_A(P(x,y))=1$, а $\sigma(P(y,x))=0$, следовательно $\sigma(\varphi)=0$
- 2. если $\sigma_A(x)=b$, то при $\sigma_A(y)=a$ будет $\sigma_A(P(x,y))=1$, а $\sigma(P(y,x))=0$, следовательно $\sigma(\varphi)=0$
- 3. если $\sigma_A(x)=c$, то при $\sigma_A(y)=a$ будет $\sigma_A(P(x,y))=0$, а $\sigma(P(y,x))=1$, следовательно $\sigma(\varphi)=0$

Из этого следует, что $\sigma_A((\exists x)(\forall y)\varphi) = 0$. Рассмотрим $\sigma_B((\forall y)(\exists x)\varphi)$.

- 1. если $\sigma_B(y)=a$, то при $\sigma_B(x)=a$ будет $\sigma_A(P(x,y))=1$, а $\sigma(P(y,x))=1$, следовательно $\sigma(\varphi)=1$
- 2. если $\sigma_B(y)=b$, то при $\sigma_B(x)=b$ будет $\sigma_A(P(x,y))=1$, а $\sigma(P(y,x))=1$, следовательно $\sigma(\varphi)=1$
- 3. если $\sigma_B(y)=c$, то при $\sigma_B(x)=c$ будет $\sigma_A(P(x,y))=1$, а $\sigma(P(y,x))=1$, следовательно $\sigma(\varphi)=1$

Из этого следует, что $\sigma_B((\forall y)(\exists x)\varphi)=1.$

1. Формула, которая истинна на состояниях σ таких, что $\sigma(x)$ - чётное

$$(\exists z) 2 \cdot z \approx x$$

2. Формула, которая истинна на состояниях σ таких, что $\sigma(x)$ - простое

$$(\forall z)(\forall y)(z \cdot y \approx x \rightarrow (z \approx 1 \lor y \approx 1))$$

3. Формула, которая истинна на состояниях σ таких, что $\sigma(x) < \sigma(y)$

$$(\exists z)(\neg(z\approx 0) \land x+z\approx y)$$

4. Формула, которая истинна на состояниях σ таких, что $\sigma(z)$ делит $\sigma(x)$ и $\sigma(y)$

$$(\exists a)(\exists b)(a \cdot z \approx x \wedge b \cdot z \approx y)$$

5. Формула, которая истинна на состояниях σ таких, что $\sigma(x)$ и $\sigma(y)$ - взаимно простые

$$(\forall z)(\exists a)(\exists b)((a \cdot z \approx x \land b \cdot z \approx y) \rightarrow z \approx 1)$$

6. Формула, которая истинна в алгебраических системах, в которых выполняется дистрибутивность сложения относительно умножения

$$(\forall a)(\forall b)(\forall c)((a+b)\cdot c \approx (a\cdot c) + (b\cdot c))$$

7. Формула, которая истинна в алгебраических системах, в которых существует самое большое простое число

$$(\exists x)((\forall z)(\forall y)(z \cdot y \approx x \to (z \approx 1 \lor y \approx 1)) \to (\forall u)((\forall z)(\forall y)(z \cdot y \approx u \to (z \approx 1 \lor y \approx 1)) \to (\exists v)(\neg(v \approx 0) \land u + v \approx x)))$$