

	() = ı isótoj	Ma		N _ú		(223)	Ţ	87	133	င္တ	55	85,5	공	37	39,1	~	19	23,0	Na	⇉	6,94	<u>Γ</u> ω	1,01	エユ	
	() = n.º de massa do isótopo mais estável	Massa Atômica	Símbolo	Número Atômico				88	137	Ва	56	87,6	လ	38	40,1	င္မ	20	24,3	Mg	12	9,01	Be ⁴	2		J
	sa do tável			8		Actinidios	Série dos	89-103	Lantanidios	Série dos	57-71	88,9	~	39	45,0	Sc	21	ω					J		
	89 Ac (227)	Série dos	139	57 La	Série dos	(261)	곴	104		゙゙゙゙		91,2	Zr	40	47,9	=!	22	4							
	90 Th 232	Série dos Actinídios	140	င္ပ္က	Série dos Lantanídios	(262)	В	105	181	닯	73	92,9	B	41	50,9	<	23	ហ							
	91 Pa 231	S	141	P 59	ios	(266)	Sg	106	184	8	74	95,9	M o	42	52,0	Ş	24	හ							
	92 U 238		144	N S		(264)	뫄	107	186	Re	75	(97,9)	ਨ	43	54,9	<u>N</u>	25	7							
	93 Np (237)		(145)	Pm 61		(277)	Нs	108	190	တ္တ	76	101	20	44	55,8	Fe	26	œ							
	94 Pu (244)		150	Sm Sm		(268)	₹	109	192	=	77	103	곳	45	58,9	င္ပ	27	9							
	95 Am (243)		152	⊡ ස		(271)	Ds	110	195	₽	78	106	P	46	58,7	Z	28	10							
	96 Cm (247)		157	2 G		(272)	Rg	111	197	A	79	108	Ag	47	63,5	ပ	29	⇉							
	97 Bk (247)		159	급 65					201	돐	8	112	ဂ္ဂ	48	65,4	Zn	30	12							
	98 Cf (251)		163	₽ 8					204	=	81	115	=	49	69,7	Ga	31	27,0	≥	13	10,8	00 0	13		
	99 Es (252)		165	H 67					207	В	82	119	Sn	50	72,6	Ge	32	28,1	<u> </u>	14	12,0	റം	14		
	100 Fm (257)		167	Ţ, &					209	<u>D</u> .	83	122	ဗွ	51	74,9	As	33	31,0	D	15	14,0	Z 7	15		
	101 Md (258)		169	T 89					(209)	Po	84	128	F F	52	79,0	Se	34	32,1	S	6	16,0	0 ∞	16		
(IUPAC, 0	102 No (259)		173	52					(210)	₽	85	127	_	53	79,9	짣	35	35,5	Ω	17	19,0	п 9	17		
(IUPAC, 03.10.2005)	103 Lr (262)		175	E 71					(222)	37	86	131	×e	2	83,8	즉	36	39,9	≱	18	20,2	Z 3	4,00	He 2	18

AULA 1 – TABELA PERIÓDICA

A tabela periódica classifica os elementos químicos em ordem crescente de seus números atômicos (número atômico é o número de prótons no núcleo de um átomo, representado pela letra Z), além de estar dividida em linhas horizontais e colunas verticais.

As **linhas** – que totalizam 7 – são chamadas de **períodos** e estão relacionadas com a quantidade de camadas na distribuição eletrônica de cada átomo. Elementos químicos que se encontrar num mesmo período (ou mesma linha) possuem em comum o mesmo número de camadas em suas distribuições.

As **colunas** – 18 ao todo – representam as **famílias** ou **grupos** dos elementos químicos. Estão separadas de acordo com as características químicas dos elementos e da configuração da *camada de valência* (camada mais externa da distribuição).

Também podemos observar que a tabela periódica está dividida em quatro grandes blocos identificados pelas letras dos subníveis (s, p, d, f). É interessante notar que esta divisão está relacionada com os subníveis das camadas de valência dos elementos em cada bloco.

Os elementos contidos nos blocos s e p são chamados de <u>representativos</u>; os elementos dos blocos d e f são chamados de <u>elementos de transição</u> (<u>metais de transição</u>). Estes últimos subdividem-se em:

- Elementos do bloco d metais de transição externa:
- Elementos do bloco f metais de transição interna.

AULA 2 - METAIS, AMETAIS E SEMIMETAIS

Metais

Grande parte da tabela periódica (dois terços) são elementos metálicos.

- Os metais formam cátions (grande capacidade em perder elétrons da camada de valência), geralmente são sólidos - exceto o mercúrio que é líquido - com alto ponto de fusão, especialmente os metais de transição, situados no meio da tabela periódica.
- São maleáveis principalmente quando aquecidos a certa temperatura.
- São dúcteis: podem ser transformados em fios e folhas. É por isso que os metais costumam ser usados para moldar chamas e fabricar panelas e outros utensílios domésticos, fios elétricos, etc.
- Outra propriedade dos metais é que eles, geralmente, conduzem bem a eletricidade, ao contrário da maioria dos não-metais (carbono, na forma de grafite, é um não-metal que conduz bem a eletricidade). Também conduzem bem o calor.
- Alguns metais podem reagir com ácidos formando sais.
- Os metais, geralmente se encontram combinados a outros elementos (principalmente oxigênio e enxofre), precisando passar por uma transformação química para serem isolados.

Ametais (não-metais)

Cerca da metade dos não-metais são gases.

- Com exceção do bromo, que é líquido, todos os demais são sólidos.
- O oxigênio, o nitrogênio, o cloro e o flúor são não metais gasosos; o carbono, o iodo, o fósforo, o enxofre, o selênio e o astato são não metais sólidos.
- Entre os não metais, há o grupo dos halogênios: flúor, cloro, bromo, iodo e astato.
- Eles reagem com metais e formam sais.
- O sal comum, por exemplo, é formado pela combinação de cloro com sódio.

 Os não metais não são bons condutores de eletricidade ou calor como os metais; os sólidos geralmente quebram com facilidade. Possuem ponto de fusão inferior aos dos metais (com exceção do carbono, na forma de grafite ou diamante).

Semimetais

Têm propriedades intermediárias entre os metais e os nãometais.

Gases Nobres, Gases Raros ou Inertes

Têm comportamento químico específico.

AULA 3 – CONFIGURAÇÃO ELETRÔNICA E TABELA PERIÓDICA

A tabela periódica está diretamente relacionada com a configuração (ou distribuição eletrônica) dos elementos químicos. Os períodos (linhas horizontais) se relacionam com o número de camadas da distribuição.

Exemplo

 $_4\text{Be} \Rightarrow 2$ camadas eletrônicas (K e L): 2° período.

 $1s^2$ $2s^2$ K L

 $_{17}\text{C}\ell \Rightarrow 3$ camadas eletrônicas (K, L e M): 3^{o} período.

Nas famílias, devemos levar em consideração que, para os elementos representativos (bloco s e p), o número da família é condizente com o número de elétrons da camada de valência. Sabendo disso podemos localizar com

precisão os elementos químicos na tabela periódica através da configuração eletrônica. Vejamos alguns exemplos de como se pode localizar o elemento químico a partir da distribuição eletrônica:

 $_{11}$ Na \Rightarrow 1s² 2s²2p⁶ 3s¹

camadas: K = 2; L = 8; M = 1

Características da distribuição eletrônica	Localização e classificação
3 camadas [K, L, M]	3º período
elétron de maior energia	bloco s elemento
situado no subnível s [3s1]	[representativo]
1 elétron na camada de	família IA [metais
valência [3s1]	alcalinos] = 1

 $_{17}\text{Cl} \Rightarrow 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^5$

3 camadas eletrônicas [K, L e M]; 3º período

Características da distribuição eletrônica	Localização e classificação
3 camadas [K, L, M]	3º período
elétron de maior energia	bloco p elemento
situado no subnível p [3p⁵]	[representativo]
7 elétrons na camada de	família VIIA [halogênios]
valência [3s²3p⁵]	= 17

 $_{26}$ Fe \Rightarrow 1s² 2s²2p⁶ 3s²3p⁶ **4s²** 3d⁶

4 camadas eletrônicas [K, L, M e N]; 4º período

	Características da distribuição eletrônica	Localização e classificação
	4 camadas [K, L, M e N]	4º período
	elétron de maior energia situado	bloco d elemento
L	no subnível d [3d ⁶]	[transição]
ſ	2 elétrons na camada de valência	família VIIIB = 8
ı	[4s2] + 6 elétrons no subnível de	
L	maior energia [3d ⁶]	

AULA 4 - DESCRIÇÃO DAS FAMÍLIAS OU GRUPOS

A tabela periódica é constituída por **18 famílias** ou **grupos**. Existem duas maneiras de identificar as famílias ou grupos:

- A mais comum é indicar cada família por um algarismo romano, seguido das letras A e B, por exemplo, IA, IIA, VB. Essas letras A e B indicam a posição do elétron mais energético nos subníveis.
- Na outra maneira, proposta no final da década de 1980 pela IUPAC (União Internacional de Química Pura e Aplicada – www.iupac.org), as

famílias são indicadas por algarismos 1 a 18, eliminando-se as letras A e B.

Famílias A e zero

Os elementos que constituem essas famílias são denominados **elementos representativos**, e seus elétrons mais energéticos estão situados nos subníveis **s** ou **p.**

Grupo ou Família	Nome	Configura- ção do último nível	Nº de e- no último nível	Componentes
1 – IA	metais alcalinos	ns¹	1	Li, Na, K , Rb, Cs, Fr
2 – IIA	metais alcalinos terrosos	ns²	2	Be, Mg, Ca, Sr, Ba, Ra
13 – IIIA	família do boro	ns²np¹	3	B, Aℓ, Ga, In, Tℓ
14 – IVA	família do carbono	ns²np²	4	C, Si, Ge, Sn, Pb
15 – VA	família do nitrogênio	ns²np³	5	N, P, As, Sb, Bi
16 – VIA	calcogênios	ns²np⁴	6	O, S, Se, Te, Po
17 – VIIA	halogênios	ns²np⁵	7	F, Cl, Br, I, At
18 – VIIIA - zero	gases nobres	ns²np ⁶	8	He, Ne, Ar, Kr, Xe, Rn

Atenção: o hélio (He) nega a configuração eletrônica de sua família.

Famílias B

Os elementos dessas famílias são denominados de elementos de transição.

Uma parte deles ocupa o bloco central da tabela periódica, de III B até II B (10 colunas), e apresenta seu **elétron** mais energético em subníveis d [de d^1 a d^{10}]

3	4	5	6	7	8	9	10	11	12
IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB
d ¹	d ²	d^3	d^4	d⁵	d^6	d^7	d ⁸	d^9	d ¹⁰

A outra parte deles está deslocada do corpo central, constituindo as séries dos lantanídeos e dos actinídeos. Essas séries apresentam 14 colunas. O elétron mais energético está contido em **subníveis f [de f¹ a f¹⁴]**.

