Assignment 6 DMA

Mikkel Luc Carlsen

October 31, 2020

Part 1 The statement "f(x) is O(g(x))" can be expressed using logical operators as the following:

$$\exists c > 0 \ \exists x_0 \in \mathbb{R}^+ \ \forall x \ge x_0 \ f(x) \le cg(x) \tag{1}$$

(a) The negation of this expression can simply be expressed as:

$$\sim [\exists c > 0 \ \exists x_0 \in \mathbb{R}^+ \ \forall x \ge x_0 \ f(x) \le cg(x)] \tag{2}$$

I will now use theorem 3 from KBR chapter 2.2 in order to simplyfy it. Now the equation will look like this:

$$\forall c > 0 \ \forall x_0 \in \mathbb{R}^+ \ \exists x \ge x_0 \ \sim [f(x) \le cg(x)] \tag{3}$$

now all thats left is to remove the \sim notation, this is done as follows:

$$\forall c > 0 \ \forall x_0 \in \mathbb{R}^+ \ \exists x \ge x_0 \ f(x) > cg(x) \tag{4}$$

and now we have the negation of the former expression.

- (b) To express this very shortly and directly in danish one could say: "For enhver konstant c > 0 og for ethvert x_0 i mængden \mathbb{R}^+ , findes der et $x \geq x_0$, sådan at f(x) > cg(x).
- Part 2 The statement "If r is an irrational number, then $r^{1/5}$ is an irrational number" can be proven by proving the contrapositive statement.

Impliation $p \Rightarrow q$: If r is an irrational number, then $r^{1/5}$ is an irrational number.

Contrapositive $\sim q \Rightarrow \sim p$: If $r^{1/5}$ is a rational number, then r is a rational number.

Now if we assume that $r^{1/5}$ is a rational number, then it means that we can write it as a/b so $r^{1/5} = a/b$ for some intergers a as a numerator and b as a non-zero denominator. So from this we can also conclude that:

$$(r^{1/5})^5 = (a/b)^5 \leftrightarrow r = a^5/b^5 \tag{5}$$

Now from this we get an expression for r, which is a^5/b^5 where both a and b are intergers meaning that a^5 and b^5 is also intergers and therefore we might aswell express it as r = p/q, where $p = a^5$ and $q = b^5$ meaning that r is rational number and we have therefor proved the contrapositive of our original statement.

Part 3 By the definition of Big-O then 4^n is not $O(2^n)$. This can be proven by doing a proof of contradiction.

The definition of big-O is as follows: "We say that f(x) is O(g(x)) if there exists a constant c > 0 and x_0 such that $f(x) \leq cg(x)$ for all $x \geq x_0$.

Now because this is a proof of contradiction, then we want to try to proof the negation of our original statement and meet a contradiction for this, which we can use to conclude that our original statement is true since the negation then is false. Therefore we wish to prove the negation of " 4^n is not $O(2^n)$ " which is " 4^n is $O(2^n)$ " meaning that we can find a constant c > 0 and n_0 such that $4^n \le c * 2^n$ for all $n \ge n_0$. So we have:

$$4^n < c * 2^n \tag{6}$$

By dividing each side of the equation with 2^n then we get

$$2^n \le c \tag{7}$$

Now this expression has to count for all $n \ge n_0$, which is a contradiction because no matter which c we chose, there will eventually be an $n \ge n_0$ that will overcome this expression so that $2^n \ge c$ will count instead and therefor 4^n is not $O(2^n)$

Part 4 (a) An equivalent expression for $(\sim P)$ using \odot is showed in the following table:

P	Q	P	\odot	Q	$ (\sim P)$	P	\odot	Ρ
Τ	Т		F		F		F	
T	F		Τ		F		\mathbf{F}	
F	Т		Τ		Т		\mathbf{T}	
F	F		Τ		Т		Τ	

 \odot can be considered the following way to support the result of the truth table above:

$$T\odot T=F$$

$$T \odot F = T$$

$$F \odot T = T$$

$$F \odot F = T$$

(b) An equivalent expression for each of the two expressions can be expressed as following:

(i)
$$P \lor Q \leftrightarrow (\sim P) \odot (\sim Q)$$

Р	Q	P V	Q	P (• Q	(~P)	$(\sim Q)$	$(\sim P)$	\odot	$(\sim Q)$
Т	Т	Т]	7	F	F		Т	
Τ	F	T		-	Γ	F	Γ		Τ	
F	Т	Τ		-	Γ	T	F		T	
F	F	F		-	Γ	T	Γ		F	

(ii)
$$P \operatorname{xor} Q \leftrightarrow \sim ((P \odot Q) \odot ((\sim P) \odot (\sim Q)))$$

Р	Q	P	xor	Q	$\sim ((P \odot Q)$	\odot	$((\sim P)\odot(\sim Q)))$
\mathbf{T}	Τ		F			F	
Τ	F		Τ			Τ	
F	Τ		T			\mathbf{T}	
F	F		F			F	

The former truth tables can be used to see that this expression holds.