ASSIGNMENT 3

NAME: PRANAV ANAND LEELARAM

REG: 21BCE0464

EMAIL: pranavanand.leelaram2021@vitstudent.ac.in

CAMPUS: VIT VELORE

INSTALLATION:

pip install pandas seaborn scikit-learn matplotlib

CODE:

Import necessary libraries import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from sklearn.cluster import KMeans from sklearn.metrics import classification report from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # Load the dataset penguins = pd.read_csv("C:/Users/prana/Downloads/penguins_size.csv") # Check the first few rows of the dataset print(penguins.head()) # Perform data preprocessing # Handle missing values if any

```
penguins.dropna(inplace=True)
# Encode categorical variables (Species and Sex) using Label Encoding
label encoder = LabelEncoder()
penguins['Species'] = label encoder.fit transform(penguins['Species'])
penguins['Sex'] = label encoder.fit transform(penguins['Sex'])
# Visualizations
# Pairplot to visualize relationships between features
sns.pairplot(penguins, hue='Species')
plt.show()
# Correlation heatmap
correlation matrix = penguins.corr()
sns.heatmap(correlation matrix, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
# Clustering
# Select relevant features for clustering
X = penguins[['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm', 'body_mass_g']]
# Perform K-Means clustering to group penguins based on their physical characteristics
kmeans = KMeans(n clusters=3, random state=42)
penguins['Cluster'] = kmeans.fit_predict(X)
# Visualize the clusters
sns.scatterplot(x='culmen length mm', y='culmen depth mm', hue='Cluster', data=penguins,
palette='Set1')
plt.title('K-Means Clustering')
plt.show()
# Classification
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, penguins['Species'], test_size=0.2, random_state=42)
# Train a Random Forest classifier
rf classifier = RandomForestClassifier(random state=42)
rf classifier.fit(X train, y train)
rf_predictions = rf_classifier.predict(X_test)
# Evaluate the classifier
print("Random Forest Classification Report:")
print(classification_report(y_test, rf_predictions))
# Train a Support Vector Machine (SVM) classifier
svm classifier = SVC(random state=42)
svm classifier.fit(X train, y train)
```

```
svm_predictions = svm_classifier.predict(X_test)

# Evaluate the classifier
print("SVM Classification Report:")
print(classification_report(y_test, svm_predictions))
```

OUTPUT:

PS C:\Users\prana\OneDrive\Documents\Python venv\VisionAPIDemo> & "c:/Users/prana/OneDrive/Documents/Python (VisionAPIDemo) PS C:\Users\prana\OneDrive\Documents\Python venv\VisionAPIDemo> & 'c:\Users\prana\OneDrive\Documents\Python venv\VisionAPIDemo> & 'c:\Users\prana\OneDrive\Documents\Python.python-2023.16.0\pythonFiles\lib\python\debugpy\adapter/../..\debugpy venv\VisionAPIDemo\assignment_3.py'
species island culmen length mm culmen depth mm flipper length mm body mass g sex

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	MALE
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	FEMALE
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	FEMALE
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	FEMALE
Traceback (most recent call last):							