ТеорВер, 3 семестр, теормин

Ирина Ткаченко (:

22 января 2020 г.

Содержание

1	1.1 1.2	сиомы Колмогорова, аксиомы непрерывности, их связь Аксиомы Колмогорова	4 4 4
	1.3	1.2.3 Связь аксиом непрерывности	4
2	Сво	рйства вероятностной меры	5
3	Ди	скретные схемы: классическая схема, геометрическая схема, схема Бер-	
	нул	ли, схема Пуассона. Определение, моменты	6
	3.1	Дискретные схемы	6
		3.1.1 Классическая схема	6
		3.1.2 Геометрическая схема	6
		3.1.3 Схема Пуассона	6
		3.1.4 Схема Бернулли повторения опыта	6
	3.2	Случайные величины, основные определения	7
	3.3	Определение моментов	7
4	Φy	нкции распределения, плотности, моменты нормального, показательного,	
	рав	вномерного распределений	8
	4.1	Функция распределения	8
		4.1.1 Определение	8
		4.1.2 Свойства	8
	4.2	Плотность распределения	8
		4.2.1 Определения	8
		4.2.2 Свойства	8
	4.3	Виды распределений и их моменты	8
		4.3.1 Нормальное распределение	8
		4.3.2 Показательное	ę
		4.3.3 Равномерное	ę
5		вависимость событий и случайных величин. Необходимые и достаточные	11

	5.1	Эпределения	11
	5.2	Условия независимости	11
		5.2.1 Дискретный случай	11
		5.2.2 Просто так	11
		5.2.3 Непрерывный случай	11
6	Сво	ство отсутствия последействия и показательное распределение	12
	6.1	Определение отсутствия последействия	12
	6.2	Токазательное распределение	12
7	Пов	тие условной вероятности, условное распределение	13
•	7.1	Условная вероятность	13
	1.1	7.1.1 Определение	13
		7.1.2 Формула Байеса	13
		7.1.3 Случай с несовместными гипотезами	13
	7.2	Условное распределение	13
	1.4		13
		1 //	
		7.2.2 Дискретные случайные величины	13
		7.2.3 Абсолютно непрерывные случайные величины	14
8		щия регрессии. Геометрический смысл	15
	8.1	Эпределение	15
		3.1.1 Первое	15
		В.1.2 Второе (вроде более каноничное)	15
	8.2	Сеометрический смысл	15
9	Фор	ула полного математического ожидания, её связь с формулой полной	
	вер	тности	16
	9.1	Рормула полного математического ожидания	16
	9.2	Связь с ФПВ	16
10	Усл	вное математическое ожидание $E[Y X]$. Геометрический смысл	17
		Условное математическое ожидание	17
		0.1.1 Определение	17
		0.1.2 Определение для дискретных	17
		0.1.3 Определение для непрерывных	17
		0.1.4 Интересная ссылка	17
		0.1.5 Теорема о разложении дисперсии	17
	10.2		17
11		йная регрессия	18
		Эпределение	18
	11.2	Іругое определение))	18
12	Hep	венство для моментов	19
	12.1	${ m Hepasehctbo}$ Шварца (все моменты E)	19
		Неравенство Йенсена	19
		2.2.1 Борелевская дичь	19
		2.2.2 Формулировка	19

	12.3 Следствие из Иенсена (неравенство для моментов)
13	Закон больших чисел
	13.1 Слабый закон больших чисел
	13.2 Усиленный закон больших чисел
	13.3 Теорема Колмогорова
14	Центральная предельная теорема
	14.1 Классическая центральная предельная теорема
	14.2 Локальная центральная предельная теорема

1 Аксиомы Колмогорова, аксиомы непрерывности, их связь

1.1 Аксиомы Колмогорова

 (Ω, Σ) – измеримое пространство. Введём функцию $P: \Sigma \to [0, 1]$ такую, что

- 1. **Аксиома I** (существование вероятности событий): $\forall A \in \Sigma : P(A) \geq 0$
- 2. **Аксиома II** (нормировка вероятности): $P(\Omega) = 1$
- 3. **Аксиома III** (аддитивность вероятности): пусть A счетный набор попарно дизъюнктных подмножеств, тогда $P(\sum A) = \sum P(A)$

P – вероятностная мера, тройка (Ω, Σ, P) – вероятностное пространство.

1.2 Аксиомы непрерывности для системы множеств

1.2.1 Первая аксиома

Пусть (Ω, Σ, P) – вероятностное пространство. Выделено событие $B_1 \supseteq B_2 \supseteq \ldots$ – невозрастающая последовательность событий. $B_i \in \Sigma, \ \forall i = 1, \ldots, +\infty$

$$B = \bigcap_{n=1}^{\infty} B_n = \lim_{n \to \infty} B_n, \ B \in \Sigma$$

$$P(B) = P(\lim_{n \to \infty} B_n) = \lim_{n \to \infty} P(B_n)$$

1.2.2 Вторая аксиома

Пусть (Ω, Σ, P) – вероятностное пространство. Выделено событие $A_1 \subseteq A_2 \subseteq \ldots$ – неубывающая последовательность событий. $A_i \in \Sigma, \, \forall \, i=1,\ldots,+\infty$

$$A = \bigcup_{n=1}^{\infty} A_n = \lim_{n \to \infty} A_n, \ A \in \Sigma$$

$$P(A) = P(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n)$$

1.2.3 Связь аксиом непрерывности

Аксиомы непрерывности эквивалентны.

1.3 Связь аксиом Колмогорова и аксиом непрерывности

Аксиома счетной аддитивности (3-я аксиома Колмогорова) эквивалентна аксиоме конечной аддитивности плюс 1 аксиома непрерывности.

2 Свойства вероятностной меры

- 1. $p(\emptyset) = 0$
- 2. Аксиомы конечной аддитивности Для любого конечного набора попарно несовместных событий $A_1, \dots, A_n \in \Sigma, \ A_i \cap A_j = \varnothing \ \forall i \neq j$ имеет место равенство:

$$P\left(\sum_{i=1}^{n} A_i\right) = P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- 3. Для любого события A выполнено: $P(\overline{A})=1-P(A)$
- 4. Если $A \subseteq B$, то $P(B \setminus A) = P(B) P(A)$
- 5. Для любого события A выполнено $0 \le P(A) \le 1$
- 6. Всегда $P(A \cap B) = P(A) + P(B) P(A \cup B)$

3 Дискретные схемы: классическая схема, геометрическая схема, схема Бернулли, схема Пуассона. Определение, моменты

чет я уже устала(

3.1 Дискретные схемы

Дискретная схема — частный случай общей. Ω — не более чем счётно, Σ — σ -алгебра всех подмножеств Ω .

1. Для события A верно:

$$\sum_{\omega \in A} p(\omega) \ge 0$$

2. Верно:

$$p(\Omega) = \sum_{\omega \in \Omega} p(\omega) = 1$$

3. Если A_1, \ldots, A_n – дизъюнктный набор подмножеств, то что-то непонятное

3.1.1 Классическая схема

Пусть $|\Omega|=n$ и ω_1,\ldots,ω_n — равновозможные, т.е. $p(\omega_i)=\frac{1}{n},\ p(A)=\frac{|A|}{|\Omega|}$. $p(\Omega)=1$ — всё верно.

3.1.2 Геометрическая схема

Параметр схемы $p \in (0; 1)$. Пусть A – событие, $p = p(A) \in (0; 1)$ и A – результат опыта с двумя исходами. Проводятся независимые испытания до первого появления A. $\Omega = \{\omega_1, \ldots, \omega_n, \ldots\}$, где $\omega_k = \overline{AA \ldots} A$, то есть A выпало на k-ом ходе. $p(\omega_k) = (1-p)^{k-1}p = q^{k-1}p$. Тогда $\sum p(\omega_k) = 1$, как и должно быть.

3.1.3 Схема Пуассона

Параметр схемы $\lambda > 0$. $\Omega = \{\omega_0, \dots, \omega_n, \dots\}$. Вероятностная мера (или вероятность?) $p(\omega_n) = \frac{\lambda^n}{n!} e^{-\lambda}$. Есть положительная определённость

$$\sum_{n=0}^{\infty}\frac{\lambda^n}{n!}e^{-\lambda}=e^{-\lambda}\sum_{n=0}^{\infty}\frac{\lambda^n}{n!}=e^{-\lambda}e^{\lambda}=1$$

3.1.4 Схема Бернулли повторения опыта

Параметр схемы $n \ge 0, \ p \in [0; 1].$ $\Omega = \{\omega_1, \dots, \omega_n\}, \ p(\omega) = p^{k(\omega)}q^{n-k(\omega)},$ где $k(\omega)$ – число успехов в серии из n испытаний. $\omega_n = B_{n,p}(m) = \sum \omega$ – ровно m успехов. $|B_{n,p}(m)| = C_n^m, \ p(\omega_m) = C_n^m p^m q^{n-m}$.

$$\sum_{m=0}^{n} p^{m} q^{n-m} = (p+q)^{n} = 1$$

3.2 Случайные величины, основные определения

Случайной называют **величину**, которая в результате испытания примет одно и только одно числовое значение, зависящее от случайных факторов и заранее непредсказуемое.

Формальное математическое определение следующее: пусть (Ω, Σ, P) — вероятностное пространство, тогда случайной величиной называется функция $X:\Omega\to\mathbb{R}$, измеримая относительно Σ и борелевской σ -алгебры на \mathbb{R} . Другими словами, функция $X:\Omega\to\mathbb{R}$ называется случайной величиной, если для любых вещественных чисел a и b множество событий ω , таких что $X(\omega)\in(a,b)$, принадлежит Σ .

Математическое ожидание EX — мера среднего значения случайной величины, равная $EX = \sum X(\omega) \cdot p(\omega).$

Дисперсией случайной величины называется математическое ожидание квадрата отклонения этой случайной величины от её математического ожидания $DX = E[[X - EX]^2]$ или $DX = E[X^2] - (EX)^2$.

Среднее квадратичное отклонение равняется корню из дисперсии.

Ковариация двух случайных величин равняется

$$cov(X,Y) = \frac{D[X+Y] - DX - DY}{2} = E[XY] - EX \cdot EY$$

3.3 Определение моментов

Дана случайная величина X, определённая на некотором вероятностном пространстве.

- 1. k-м **начальным** моментом случайной величины X при $k \in \mathbb{N}$ называется величина $\nu_k = E[X^k]$, если математическое ожидание E[*] определено.
- 2. k-м **центральным** моментом сл. в. X называется величина $\mu_k = E[(X EX)^k]$
- 3. k-м **абсолютным** моментом сл. в. X называется величина $\nu_k = E[|X|^k]$
- 4. k-м **центральным абсолютным** моментом случайной величины X называется величина $\mu_k = E[|X EX|^k]$
- 5. **НЕ НАДО** k-м факториальным моментом X называется величина $\mu_k = E[X(X-1)\dots(X-k+1)]$

4 Функции распределения, плотности, моменты нормального, показательного, равномерного распределений

4.1 Функция распределения

4.1.1 Определение

Функция распределения — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное x.

$$F(t) = F_X(t) = P_X(X < t) = P_x((-\infty, t))$$

4.1.2 Свойства

- 1. $F_X(t)$ не убывает.
- 2. $\exists \lim_{t \to \infty} F_X(t) = 1$ и $\exists \lim_{t \to -\infty} F_X(t) = 0$
- 3. $F_X(t)$ непрерывна слева.

4.2 Плотность распределения

4.2.1 Определения

 $P_X=P_X(dx)$ абсолютно непрерывна, если $\exists\, f_X(x)\geq 0\, orall\, A\in \Sigma\,:\, P_X(A)=\int\limits_A f_X(x)dx.$

Плотность распределения вероятностей представляет собой производную функцию распределения: $f_X(x) = F_X'(x)$. $f_X(x)$ — вероятность попадания случайной величины X в отрезок $[x, x + \Delta x]$.

4.2.2 Свойства

Плотность распределения вероятностей:

- 1. неотрицательна;
- 2. интегрируема;
- 3. нормирована: $\int\limits_{\mathbb{R}} f_X(x) dx = 1$.

4.3 Виды распределений и их моменты

4.3.1 Нормальное распределение

 $X \sim N(a, \sigma^2), a \in \mathbb{R}$ – параметр, $\sigma \in \mathbb{R}$ – стандартное отклонение.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{(x-a)^2}{2\sigma^2}}$$

$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(x-a)^2}{2\sigma^2}} dt$$

Стандартным нормальным распределением называется нормальное распределение с параметром a=0 и стандартным отклонением $\sigma=1$.

Математическое ожидание EX = a, дисперсия $DX = \sigma^2$.

Моменты.

Первый начальный момент EX=a, второй начальный момент $E[X^2]=a^2+\sigma^2.$

Если X имеет нормальное распределение, то для неё существуют (конечные) моменты при всех p с действительной частью больше -1. Для неотрицательных целых p, центральные моменты таковы:

$$E[X^p] = \begin{cases} 0 & p = 2n + 1, \\ \sigma^p(p-1)!! & p = 2n. \end{cases}$$

Центральные абсолютные моменты для неотрицательных целых p таковы:

$$E[|X - EX|^p] = \sigma^p(p-1)!! \cdot \begin{cases} \sqrt{\frac{2}{\pi}} & p = 2n+1, \\ 1 & p = 2n. \end{cases}$$

4.3.2 Показательное

 $Exp_{\lambda}, \lambda > 0$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0, \\ 0 & x \le 0. \end{cases}$$

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0, \\ 0 & x \le 0. \end{cases}$$

Обладает Марковским свойством (при известном настоящем – будущее не зависит от прошлого).

Математическое ожидание $EX=rac{1}{\lambda}$, дисперсия $DX=rac{1}{\lambda^2}$, моменты $E[X^n]=rac{n!}{\lambda^n}$.

4.3.3 Равномерное

 $X \sim U(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a} & x \in [a; b), b > a, \\ 0 & x \notin [a; b) \end{cases}$$

$$F_X(x) = \begin{cases} 0 & x \le a, \\ \frac{x-a}{b-a} & a < x \le b, \\ 1 & x \ge b \end{cases}$$

Математическое ожидание $EX=\dfrac{a+b}{2},$ дисперсия $DX=\dfrac{(b-a)^2}{12},$ моменты:

$$E[X^n] = \frac{1}{n+1} \sum_{k=0}^{n} a^k b^{n-k} = \frac{b^{n+1} - a^{n+1}}{(b-a)(n+1)}$$

5 Независимость событий и случайных величин. Необходимые и достаточные условия независимости дискретных и непрерывных случайных величин

5.1 Определения

События называются независимыми, если $P(A \cap B) = P(A) \cdot P(B)$.

Случайные величины X_1, \ldots, X_n называют независимыми (в совокупности), если для любого набора борелевских множеств $B_1, \ldots, B_n \in \mathbb{B}(\mathbb{R})$ имеет место равенство:

$$P((X_1 \in B_1) \cap \ldots \cap (X_n \in B_n)) = P(X_1 \in B_1) \cdot \ldots \cdot P(X_n \in B_n)$$

5.2 Условия независимости

5.2.1 Дискретный случай

Случайные величины X и Y независимы тогда и только тогда, когда имеет место $P_{ij} = P_{xi} \cdot P_{yj}$, где P_{ij} – вероятность случайного вектора (X,Y), то есть $P_{ij} = P(\{\omega : X(\omega) = x_i\} \cap \{\omega : Y(\omega) = y_i\})$.

5.2.2 Просто так

Для того, чтобы случайные величины X и Y были независимы, необходимо и достаточно, чтобы функция распределения системы (X,Y) была равна произведению функций распределения составляющи, то есть $F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$.

5.2.3 Непрерывный случай

Для того, чтобы случайные величины X и Y Были независимы, необходимо и достаточно, чтобы плотность совместного распределения системы (X,Y) была равна произведению плотностей распределения составляющих, то есть $f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$.

6 Свойство отсутствия последействия и показательное распределение

6.1 Определение отсутствия последействия

Случайная величина обладает свойством отсутствия последствия (Марковское), если:

- 1. $P(x \ge 0) = 1$
- 2. $P(X > x) > 0 \,\forall x > 0$
- 3. $P(X > x + y | X \ge y) = P(X > x) \forall x, y > 0$

Свойством отсутствия последствия обладает только показательное распределение.

6.2 Показательное распределение

 $Exp_{\lambda}, \lambda > 0$

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x > 0, \\ 0 & x \le 0. \end{cases}$$

$$F_X(x) = \begin{cases} 1 - e^{-\lambda x} & x > 0, \\ 0 & x \le 0. \end{cases}$$

7 Понятие условной вероятности, условное распределение

7.1 Условная вероятность

7.1.1 Определение

Пусть задано вероятностное пространство (Ω, P) . **Условной вероятностью** события A при условии, что произошло событие B, называется число $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$, где A и $B \subset \Omega$.

7.1.2 Формула Байеса

Формула Байеса вытекает из определения условной вероятности. Вероятность совместного события AB выражается через условные вероятности: $P(AB) = P(A \mid B)P(B) = P(B \mid A)P(A)$. Следовательно,

$$P(A | B) = \frac{P(AB)}{P(B)} = \frac{P(B | A)P(A)}{P(B)}$$

7.1.3 Случай с несовместными гипотезами

Вероятность события B выражается (если A – подмножество объединений гипотез H_i) как

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B \mid A_i)$$

Формула Байеса

$$P(A_j | B) = \frac{P(A_j) \cdot P(B | A_j)}{\sum_{i=1}^{n} P(A_i) \cdot P(B | A_i)}$$

7.2 Условное распределение

7.2.1 Определение

Условное распределение – распределение случайной величины при условии, что другая случайная величина принимает определённое значение.

Пусть задано вероятностное простриаство (Ω, Σ, P) .

7.2.2 Дискретные случайные величины

Пусть X и Y – случайные величины, такие что случайный вектор $(X,Y)^T$ имеет дискретное распределение, задаваемое функцией вероятности $p_{X,Y}(x,y)$. Пусть $y_0 \in \mathbb{R}$ такой, что $P(Y=y_0)>0$, тогда функция

$$p_{X|Y}(x|y_0) = P(X = x|Y = y_0) = \frac{p_{X,Y}(x,y_0)}{p_Y(y_0)}$$

где p_y – функция вероятности случайно величины Y, называется условной функцией вероятности случайно величины X при условии, что $Y=y_0$. Распределение, задаваемое такой функцией, называется условным распределением.

7.2.3 Абсолютно непрерывные случайные величины

Пусть X и Y — случайные величины, такие что случайный вектор $(X,Y)^T$ имеет абсолютно непрерывное распределение, задаваемое плотностью вероятности $f_{X,Y}(x,y)$. Пусть $y_0 \in \mathbb{R}$ такой, что $f_Y(y_0)>0$, где f_Y — плотность случайной величины Y. Тогда функция

$$f_{X \mid Y}(x \mid y_0) = \frac{f_{X,Y}(x, y_0)}{f_Y(y_0)}$$

называется условной плотностью вероятности случайной величины X при условии, что $Y=y_0$. Распределение, задаваемое такой плотностью, называется условным распределением.

8 Функция регрессии. Геометрический смысл

8.1 Определение

8.1.1 Первое

Регрессия — зависимость математического ожидания (например, среднего значения) случайной величины от одной или нескольких других случайных величин (свободных переменных), то есть E[y | x] = f(x).

НЕ НАДО Регрессионным анализом называется поиск такой функции f, которая описывает эту зависимость. Регрессия может быть представлена в виде суммы неслучайной и случайной составляющих: $y = f(x) = \nu_1$, где f – функция регрессионной зависимости, а ν – аддтивная случайная величина с нулевым матожиданием.

В отличие от чисто функциональной зависимости y = f(x), когда каждому значению независимой переменной x соответствует одно определённое значение величины y, при регрессионной связи одному и тому же значению x могут соответствовать в зависимости от случая различные значения величины y.

8.1.2 Второе (вроде более каноничное)

 $\exists \ (\Omega, \Sigma, P)$ — дискретное вероятностное пространство, $X = X(\omega), \ Y = Y(\omega)$ — случайные величины.

$$\exists E[Y] < \infty, \ \exists x = x_1, x_2, \dots, \ \exists B_j = \{\omega : X(\omega) = x_j\} = X^{-1}(x_j), \ \exists P(B_j) > 0.$$
 $\exists T = \{B_j\}_j$ – разбиение $\Omega, \ P_{x_j} = P(x = x_j) = P(B_j).$

Функция m(x) называется функцией регрессии случайной величины Y на случайную величину X:

$$m(x) = m_{Y \mid X}(x) = \begin{cases} E[Y \mid \{\omega : X(\omega) = x\}] & P(X = x) \neq 0 \\ 0 & P(X = x) = 0 \end{cases}$$

8.2 Геометрический смысл

Если мы полагаем, что y зависит от x, причём изменения в y вызываются именно изменениями в x, мы можем определить линию регрессии (регрессия y на x), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии: Y=a+bx. x называется независимой переменной или предиктором. Y – зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x, т.е. это "предсказанное значение y". Другими словами, это функция из Y в усреднённое x.

9 Формула полного математического ожидания, её связь с формулой полной вероятности

9.1 Формула полного математического ожидания

Пусть $T=\{A_x\}$ — разбиение Ω . Пусть EX — конечное, тогда справедлива формула

$$EX = \sum_{k : p(A_k) \neq 0} E[X \mid A_k] \cdot p(A_k)$$

9.2 Связь с ФПВ

Пусть $X=I_A$ — индикаторная случайная величина, тогда

$$p(A) = E[I_A] = \sum_{k : p(A_k) \neq 0} E[I_A \mid A_k] \cdot p(A_k) = \sum_{k : p(A_k) \neq 0} p(A \mid A_k) \cdot p(A_k)$$

То есть формула полной вероятности это частный случай формулы полного математического ожидания.

10 Условное математическое ожидание $E[Y \mid X]$. Геометрический смысл

10.1 Условное математическое ожидание

10.1.1 Определение

Пусть (Ω, Σ, P) – вероятностное простариство, X – случайная величина. **Математическим ожиданием** случайной величины X по множеству B называется величина (если интеграл сходится абсолютно):

$$E[X,B] = \int_{B} X(\omega)p(d\omega)$$

Условным математическим ожиданием случайной величины X относительно события $B \in \Sigma$ с вероятностью $p(B) \neq 0$ называется величина

$$E[X \mid B] = \frac{E[X, B]}{p(B)}$$

10.1.2 Определение для дискретных

Условным математическим ожиданием дискретной случайной величины Y при условии X=x называется величина:

$$E[Y \mid X = x] = \sum_{i=1}^{n} y_i \cdot p(y_i \mid x)$$

10.1.3 Определение для непрерывных

Условным математическим ожиданием непрерывной случайной величины Y при условии X=x называется величина:

$$E[Y \mid X = x] = \int_{-\infty}^{\infty} y \cdot f(y \mid x) dy$$

где $f(y \mid x)$ – условная плотность случайной величины Y пи X=x.

10.1.4 Интересная ссылка

Why not

10.1.5 Теорема о разложении дисперсии

$$DY = D[E[Y \mid X]] + E[D[Y \mid X]]$$

10.2 Геометрический смысл

?

11 Линейная регрессия

11.1 Определение

Линейная регрессия — метод восстановления зависимости одной (объясняемой, зависимой) переменной от другой или нескольких других переменных (факторов, регрессоров, независимых переменных) с линейной функцией зависимости. Данный метод позволяет предсказывать значения зависимой переменной по значениям независимой переменной.

Линейная регрессия предполагает, что функция f зависит от параметров ω линейно. При этом линейная зависимость от свободной переменной x необязательна,

$$y = f(\omega, x) + \nu = \sum_{j=1}^{N} \omega_j \cdot g_j(x) + \nu$$

11.2 Другое определение))

Пусть $L_x = \{ax + b : a, b \in \mathbb{R}\}$ — линейное пространство линейных функций от x. **Линейной** регрессией Y на X называется решение экстремальной задачи

$$inf_{q \in L_x} E[(Y - (ax + b))^2] = E[(Y - a^*x - b^*)^2]$$

To есть найти функцию $g(x) = a^*x + b^*$.

$$a^* = \frac{cov(X,Y)}{DX}$$
 $b^* = EY - a \cdot EX$

12 Неравенство для моментов

12.1 Неравенство Шварца (все моменты E)

мало ли понадобится

$$E[(XY)] \le \sqrt{E[X^2]E[Y^2]}$$

12.2 Неравенство Йенсена

12.2.1 Борелевская дичь

Борелевская сигма-алгебра – минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются борелевскими.

Борелевская функция – отображение одного топологического пространства в другое (обычно оба суть пространства вещественных чисел), для которого прообраз любого борелевского множества есть борелевское множество.

12.2.2 Формулировка

Пусть (Ω, Σ, P) – вероятностное пространство, X – случайная величина с конечным первым моментом, $\varphi: \mathbb{R} \to \mathbb{R}$ – выпуклая вниз борелевская функция. Тогда

$$\varphi(EX) \leq E[\varphi(X)]$$

12.3 Следствие из Йенсена (неравенство для моментов)

Если $E[|X|^t] < \infty$, то для любого $s \in (0, t)$ выполняется

$$\sqrt[s]{E[|X|^s]} \le \sqrt[t]{E[|X|^t]}$$

13 Закон больших чисел

13.1 Слабый закон больших чисел

Слабый закон больших чисел гласит, что среднее значение выборки сходится по вероятности к математическому ожиданию.

$$\overline{X}_n \xrightarrow{P} \mu \quad n \to \infty$$

To есть $\forall \epsilon > 0$:

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu| > \epsilon) = 0$$

Слабый закон утверждает, что для любых ненулевых указанных границ, независимо от того, насколько они малы, при достаточно большой выборке вероятность того, что среднее значение выборки будет близко к математическому ожиданию, очень высока в пределах этих границ.

13.2 Усиленный закон больших чисел

Последовательность X_1, X_2, \dots удовлетворяет усиленному закону больших чисел, если $\forall \epsilon > 0$ вероятность одновременного выполнения всех неравенств $|\overline{X}_n - \mu_n| \le \epsilon, |\overline{X}_{n+1} - \mu_{n+1}| \le \epsilon, \dots$ стремится к 1 при $n \to \infty$.

Таким образом, здесь рассматривается поведение всей последовательности сумм в целом, в то время как в обычном законе больших чисел речь идет лишь об отдельных суммах.

13.3 Теорема Колмогорова

Теорема Колмогорова для случайных величин с конечными дисперсиями утверждает, что из условия

$$\sum_{n=1}^{\infty} \frac{D[X_n]}{n^2} < \infty$$

вытекает приложимость к последовательности X_1, X_2, \dots усиленного закона больших чисел с $A_n = E[\overline{X}_n].$

14 Центральная предельная теорема

14.1 Классическая центральная предельная теорема

Пусть X_1, \ldots, X_n, \ldots – бесконечная последовательность независимых одинаково распределённых случайных величин, имеющих конечное математическое ожидание μ и дисперсию σ^2 . Пусть также $S_n = \sum_{i=1}^n X_i$. Тогда

$$\frac{S_n - \mu n}{\sigma \sqrt{n}} \xrightarrow{n \to \infty} N(0, 1),$$

где N(0,1) – стандартное нормальное распределение.

Неформально говоря, классическая центральная предельная теорема утверждает, что сумма n независимых одинаково распределённых случайных величин имеет распределение, близкое к $N(n\mu, n\sigma^2)$.

14.2 Локальная центральная предельная теорема

В предположениях классической формулировки, допустим в дополнение, что распределение случайных величин $\{X_i\}_{i=1}^\infty$ абсолютно непрерывно, то есть оно имеет плотность. Тогда распределение Z_n также абсолютно непрерывно, и более того,

$$f_{Z_n}(x) \xrightarrow{n \to \infty} \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}},$$

где $f_{Z_n}(x)$ – плотность случайной величины Z_n , а в правой части стоит плотность стандартного нормального распределения.