Nonparametric Estimation of the Potential Impact Fraction and the Population Aggregate Fraction

Colleen Chan

Ph.D. Candidate, Dept. of Statistics and Data Science, Yale University

Collaborators: Rodrigo Zepeda-Tello¹, Dalia Camacho García Formentí¹, Frederick Cudhea², Rafael Meza³, Eliane Rodrigues⁴, Tonatiuh Barrientos Gutierrez¹, Donna Spiegelman⁵, Xin Zhou⁵

¹National Institute of Public Health of Mexico, ²Tufts University Friedman School of Nutrition Science and Policy, ³University of Michigan School of Public Health, ⁴Universidad Nacional Autonoma de Mexico, ⁵Yale School of Public Health

CMIPS-YCAS Seminar

October 29, 2021

Motivating Question: SSB's and type 2 diabetes

Sugar-sweetened beverages (SSB's)

- Drinks with added sugar
- The largest source of added sugar in our diets. Per-capita availability of SSB's has tripled since 1954¹
- SSB consumption linked to increased risk of T2D, obesity²

Q: What fraction of type 2 diabetes cases can be attributed to SSB consumption? What if SSB consumption were entirely eliminated? What if it were halved?

¹U.S. Department of Agriculture, U.S. Department of Health and Human Services

²American Heart Association

Outline

- The PIF and PAF
 - Standard Approach
 - Mixture Approach
- Methods
 - Empirical Method
 - Approximate Method
- 3 Illustrative Example
- 4 Simulation Studies

The PIF and PAF

- The potential impact fraction, or the attributable fraction, is the proportion of incidents attributable to a given risk factor
- It requires a relative risk function, RR that depends on exposure levels \pmb{X} and regression coefficients $\pmb{\beta}$
 - Most common form $RR(X; \beta) = \exp(X\beta)$

Definition

The potential impact fraction (PIF) is defined as

$$PIF = \frac{\mathbb{E}_{\boldsymbol{X}}^{obs} \left[RR(\boldsymbol{X}; \boldsymbol{\beta}) \right] - \mathbb{E}_{\boldsymbol{X}}^{cft} \left[RR(\boldsymbol{X}; \boldsymbol{\beta}) \right]}{\mathbb{E}_{\boldsymbol{X}}^{obs} \left[RR(\boldsymbol{X}; \boldsymbol{\beta}) \right]},$$
(1)

where $\mathbb{E}_{\mathbf{X}}^{\mathrm{obs}}[RR(\mathbf{X};\boldsymbol{\beta})]$ represents the expected value of the relative risk under the observed exposure distribution. =

The PIF and PAF

• The population attributable fraction (PAF), or the attributable fraction for the population, is a specific case of the PIF when the counterfactual exposure is 0 ($\mathbb{E}_{\boldsymbol{X}}^{\mathrm{cft}}[RR(\boldsymbol{X};\boldsymbol{\beta})]=1$)

Definition

The population attributable fraction (PAF) is defined as

$$\mathsf{PAF} = 1 - \frac{1}{\mathbb{E}_{\boldsymbol{X}}^{\mathrm{obs}} \left[\mathsf{RR}(\boldsymbol{X}; \boldsymbol{\beta}) \right]}, \tag{2}$$

where $\mathbb{E}_{\boldsymbol{X}}^{\mathrm{obs}}[RR(\boldsymbol{X};\boldsymbol{\beta})]$ represents the expected value of the relative risk under the observed exposure distribution in a given population and $\mathbb{E}_{\boldsymbol{X}}^{\mathrm{cft}}[RR(\boldsymbol{X};\boldsymbol{\beta})]$ is the expected value of the relative risk under a counterfactual distribution of the exposure.

Standard Approach

- $oldsymbol{1}$ Assume a parametric distribution for exposure $oldsymbol{X}$ (e.g. Log Normal, Weibull, Gamma)
- 2 Fit the parameters using method of moments estimation, matching the mean and variance of the observed exposure data
- 3 Estimate the PIF from Eq. 1 or the PAF from Eq. 2 using analytic or numerical integration

Issues with the standard approach:

- PIF is undefined for heavy-tailed exposure distributions
- 2 PIF can be heavily biased if exposure distribution is misspecified

Standard Approach

 ${\bf Table~1} \\ Relative~Bias~Percentage~of~the~PAF~under~different~distributional~assumptions~for~the~standard~method.$

	True distribution $p_0 + (1 - p_0)f(x)$		Distribution assumed			
p_0	f(x)	true PAF	Gamma	Lognormal	Normal	Weibull
0	$Gamma(k = 1.15, \theta = 0.78)$	0.2315	0	332	-37.6	-0.1
0.05	,	0.2225	-1.1	349.4	-41.2	-1.2
0.25		0.1843	-5	442.6	-62.3	-5.1
0.5		0.1309	-8.8	663.9	-129.8	-8.7
0.75		0.07	-11.3	1327.9	-437.9	-11
0	Weibull($k = 1.2, \lambda = 1.66$)	0.3818	0.3	161.9	-12.9	0
0.05		0.3698	-1.5	170.4	-15.2	-1.8
0.25		0.3166	-7.8	215.9	-26.4	-8
0.5		0.2359	-14.1	323.8	-55.2	-14.1
0.75		0.1338	-18.8	647.7	-186	-18.5

(Kehoe) Mixture Approach

To avoid undefined PIF values, Kehoe et al. (2012) proposes:

- Truncate the assumed exposure distribution by an upper bound M
- Fit the exposure data using maximum likelihood estimation. Separate out 0 and positive values of the exposure

$$\mathsf{PAF} = 1 - \frac{1}{p_0 R R_0 + \int_0^M R R(\boldsymbol{X}; \boldsymbol{\beta}) f(\boldsymbol{X}) \mathrm{d}\boldsymbol{X}}$$

Mixture Approach

PAF value now depends on truncation bound!

Population Attributable Fraction as a function of the truncation limit M considering \boldsymbol{X} to be lognormally distributed with parameters $\log \mu = 0.05$, $\log \sigma = 0.49$ and an exponential relative risk function $RR(\boldsymbol{X};\beta) = \exp(\beta \boldsymbol{X})$, where $\beta = \log(1.3)$. Parameters are taken from the illustrative example.

Methods - Empirical Method

Let
$$\hat{\mu}_n^{\mathrm{obs}}(\hat{\boldsymbol{\beta}}) = \frac{1}{n} \sum_{i=1}^n RR(\boldsymbol{X}_i; \hat{\boldsymbol{\beta}})$$
 and $\hat{\mu}_n^{\mathrm{cft}}(\hat{\boldsymbol{\beta}}) = \frac{1}{n} \sum_{i=1}^n RR(g(\boldsymbol{X}_i); \hat{\boldsymbol{\beta}})$. We define the empirical estimators of PAF and PIF as:

$$\widehat{\mathsf{PAF}} := 1 - \frac{1}{\hat{\mu}^{\mathrm{obs}}_n(\hat{\pmb{\beta}})}, \quad \mathsf{and} \quad \widehat{\mathsf{PIF}} := 1 - \frac{\hat{\mu}^{\mathrm{cft}}_n(\hat{\pmb{\beta}})}{\hat{\mu}^{\mathrm{obs}}_n(\hat{\pmb{\beta}})}.$$

Theorem

Suppose that $\hat{\beta}$ is a consistent and asymptotically normal estimator from an independent study. That is, $\sqrt{m}(\hat{\beta} - \beta)$ is asymptotically mean-zero multivariate normal with covariance matrix Σ_{β} , where m is the sample size of the independent study estimating β . Then PAF and PIF converge in probability to PAF and PIF, respectively, and both $\sqrt{n}(PAF - PAF)$ and $\sqrt{n(PIF - PIF)}$ are asymptotically mean-zero multivariate normal.

Methods - Empirical Method

Sketch of proof:

- **1** First show asymptomic normality for $\hat{\mu}_n^{\text{obs}}(\hat{\beta})$ (and $\hat{\mu}_n^{\text{cft}}(\hat{\beta})$).
 - Note that

$$\begin{split} \hat{\mu}_{n}^{\text{obs}}(\hat{\beta}) &- \mathbb{E}(RR(X;\beta)) \\ &= \left(\hat{\mu}_{n}^{\text{obs}}(\hat{\beta}) - \mathbb{E}(RR(X;\hat{\beta}))\right) + \left(\mathbb{E}(RR(X;\hat{\beta})) - \mathbb{E}(RR(X;\beta))\right) \end{split}$$

- Show that each term is asymptotically normal
- Show that the covariance between these terms is 0
- 2 Derive the asymptotic normality for PIF and PAF by Delta Method

Methods - Empirical Method

We derive confidence intervals for \widehat{PIF} and \widehat{PAF} .

$$\begin{split} \widehat{Var}(\widehat{\mu}_{n}^{\mathrm{obs}}(\widehat{\boldsymbol{\beta}})) &\approx \frac{1}{n} \left(\frac{1}{n} \sum_{i=1}^{n} (RR(X_{i}; \widehat{\boldsymbol{\beta}}))^{2} - \left(\widehat{\mu}_{n}^{\mathrm{obs}}(\widehat{\boldsymbol{\beta}}) \right)^{2} \right) + \\ & \left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\beta}} RR(X_{i}; \boldsymbol{\beta}) \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}} \right) \widehat{Var}(\widehat{\boldsymbol{\beta}}) \left(\frac{1}{n} \sum_{i=1}^{n} \nabla_{\boldsymbol{\beta}} RR(X_{i}; \boldsymbol{\beta}) \Big|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}} \right)^{T}. \end{split}$$

By the delta method, the variance of PAF can be estimated by

$$\widehat{Var}(\widehat{\mathsf{PAF}}) pprox rac{\widehat{Var}(\hat{\mu}^{\mathrm{obs}}_n(\hat{oldsymbol{eta}}))}{(\hat{\mu}^{\mathrm{obs}}_n(\hat{oldsymbol{eta}}))^4}.$$

Then the $(1-\alpha)\%$ confidence interval for $\widehat{\mathsf{PAF}}$ is estimated as $\widehat{\mathsf{PAF}} \pm z_{1-\frac{\alpha}{2}} \sqrt{\widehat{\mathit{Var}}(\widehat{\mathsf{PAF}})}$ with $z_{1-\frac{\alpha}{2}}$ being the z-score corresponding to the $1-\frac{\alpha}{2}$ quantile of the standard normal distribution.

Suppose we only had the mean and variance of the exposure. This is often what is reported in publications, where individual-level data is not available.

To derive a point estimate using only the mean and variance of the exposure, we can use a second-order Taylor expansion.

For a twice-differentiable h(X),

$$h(\mathbf{X}) \approx h(\widehat{\mu}) + \mathbf{D}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu}) + \frac{1}{2}(\mathbf{X} - \widehat{\mu})^{\mathsf{T}}\mathbf{H}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu})$$

= $h(\widehat{\mu}) + \mathbf{D}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu}) + \frac{1}{2}tr\left[(\mathbf{X} - \widehat{\mu})(\mathbf{X} - \widehat{\mu})^{\mathsf{T}}\mathbf{H}h(\widehat{\mu})\right],$

where ${\it Dh}(\widehat{\mu})$ and ${\it Hh}(\widehat{\mu})$ are the first and second derivatives of $h(\widehat{\mu})$ w.r.t. to ${\it X}$

Using this, we can approximate

$$\begin{split} \hat{\mu}_{n}^{\text{obs}}(\hat{\boldsymbol{\beta}}) &:= \frac{1}{n} \sum_{i=1}^{n} RR(\boldsymbol{X}_{i}; \hat{\boldsymbol{\beta}}) \\ &\approx RR(\bar{\boldsymbol{X}}; \hat{\boldsymbol{\beta}}) + \frac{1}{2} \sum_{i,j} \hat{\sigma}_{i,j} \frac{\partial^{2} RR\left(\boldsymbol{X}; \hat{\boldsymbol{\beta}}\right)}{\partial X_{i} \partial X_{j}} \big|_{\boldsymbol{X} = \bar{\boldsymbol{X}}} \\ &\approx \exp(\hat{\boldsymbol{\beta}} \bar{\boldsymbol{X}}) \left(1 + \frac{1}{2} \hat{\boldsymbol{\beta}}^{2} \sqrt{\widehat{\mathsf{Var}}(\boldsymbol{X})}\right), \end{split}$$

leading to the following PAF estimate

$$\widehat{\mathsf{PAF}} = 1 - rac{1}{\mathsf{exp}(\hat{eta}ar{X})\left(1 + rac{1}{2}\hat{eta}^2\sqrt{\widehat{\mathsf{Var}}(X)}
ight)}.$$

Repeat for $\hat{\mu}_n^{\mathrm{cft}}(\hat{\beta})$ for PIF estimate.

For the variance, we can apply the multivariate delta method.

Note that the PAF is a function of three components

$$\widehat{\mathsf{PAF}} = 1 - \frac{1}{\exp(\hat{\beta}\bar{X})\left(1 + \frac{1}{2}\hat{\beta}^2\sqrt{\widehat{\mathsf{Var}}(X)}\right)} = h(\bar{X},\widehat{\mathsf{Var}}(X),\hat{\beta})$$

Illustrative Example

- Q: What proportion of type 2 diabetes cases can be attributed to sugar-sweetened beverage consumption in Mexico?
- Data from:
 - ENSANUT 2016, a national nutrition survey of the Mexican population
 - Mexican Teacher's Cohort, a longitudinal study of female Mexican teachers

Illustrative Example

	Parameters	PAF (95% CI)
Standard Gamma	$k = 1.152, \theta = 1.287$	0.2310
Mixture Gamma	$k = 1.407, \theta = 0.903$	0.3058
Mixture Gamma $(M = 12)$	$k = 1.407, \theta = 0.903$	0.3058
Standard Lognormal	$\log \mu = 0.082, \log \sigma = 0.312$	1
Mixture Lognormal	$\log \mu = 0.048, \log \sigma = 0.980$	1
Mixture Lognormal $(M = 12)$	$\log \mu = 0.048, \log \sigma = 0.980$	0.4177
Standard Normal	$\mu = 1.483, \sigma = 1.381$	1
Mixture Normal	$\mu = 1.558, \sigma = 1.374$	0.4060
Mixture Normal $(M = 12)$	$\mu = 1.558, \sigma = 1.374$	0.4060
Standard Weibull	$k = 1.075, \lambda = 1.525$	0.3772
Mixture Weibull	$k = 1.201, \lambda = 1.662$	0.3704
Mixture Weibull $(M = 12)$	$k = 1.201, \lambda = 1.662$	0.3702
Empirical	-	$0.3779 \ (0.2655, \ 0.4903)$
Approximate	-	$0.3641 \ (0.2879, \ 0.4403)$

Simulation Studies

- Define true exposure as a mixture $p_0 + (1 p_0)f(x)$, where f(x) is a known parametric distribution, truncated at M = 12. Get true PAF value.
- For each simulation b = 1, ..., B, varying N
 - Generate data from true underlying exposure distribution
 - Estimate the PAF and 95% confidence interval using the approximate and empirical methods
- Report coverage and average percent relative bias over the B simulations

Simulation Studies

		N	true PAF	Avg % Relative Bias		Coverage	
f(x)	p_0			empir.	approx.	empir.	approx.
Lognormal($\log \mu = 0.05, \log \sigma = 0.49$)	0.00	100	0.2778	-0.23	1.45	0.9427	0.9386
0 (0, , 0 ,		1000		-0.21	1.47	0.9479	0.9416
		10000		-0.22	1.46	0.9484	0.9441
	0.05	100	0.2677	-0.29	1.41	0.9546	0.9514
		1000		-0.18	1.51	0.9483	0.9454
		10000		-0.22	1.47	0.9474	0.9425
	0.25	100	0.2239	-0.27	1.46	0.9504	0.9502
		1000		-0.03	1.66	0.9491	0.9466
		10000		-0.18	1.50	0.9501	0.9471
	0.50	100	0.1613	-0.18	2.27	0.9349	0.9406
		1000		0.09	2.45	0.9488	0.9451
		10000		0.27	2.61	0.9457	0.9438
	0.75	100	0.0877	0.38	6.94	0.9219	0.9244
		1000		0.20	6.74	0.9471	0.9408
		10000		0.27	6.81	0.9482	0.9408
$Normal(\mu = 1.56, \sigma = 1.37)$	0.00	100	0.3937	-0.52	-0.76	0.9425	0.9453
		1000		-0.35	-0.64	0.9471	0.9475
		10000		-0.37	-0.67	0.9471	0.9482
	0.05	100	0.3815	-0.48	-1.01	0.9533	0.9565
		1000		-0.32	-0.91	0.9481	0.9491
		10000		-0.36	-0.96	0.9454	0.9473
	0.25	100	0.3275	-0.45	-2.29	0.9479	0.9481
		1000		-0.12	-2.05	0.9486	0.9494
		10000		-0.30	-2.23	0.9498	0.9479
	0.50	100	0.2451	-0.15	-3.35	0.9385	0.9283
		1000		0.02	-3.33	0.9490	0.9424
		10000		0.22	-3.17	0.9451	0.9419
	0.75	100	0.1397	0.02	-1.96	0.9178	0.9062
		1000		0.27	-1.92	0.9461	0.9405
		10000		0.39	-1.83	0.9474	0.9444

Recap

- PIF estimation requires an assumed distribution for the exposure
 - Biased when exposure distribution is misspecified and undefined when a heavily-tailed distribution is chosen
- We propose two nonparametric methods to estimate the PIF, both of which do not require making any distributional assumptions
 - Empirical method: Requires individual-level data
 - Approximate method: Requires only the mean and variance
- Conducted simulation studies of our methods
- Applied to PAF estimate of SSB consumption on type 2 diabetes incidence (≈ 0.37)

Thank you!

Back-up Slides

Suppose we only had the mean $\bar{\boldsymbol{X}}=(\bar{X}_1,\bar{X}_2,\ldots,\bar{X}_k)$ and variance $\hat{\sigma}_{i,j}=Cov(X_i,X_j)$ of the exposure.

By the delta method,

$$\hat{\mu}^{\mathrm{obs}}(\hat{\boldsymbol{\beta}}) \approx RR(\bar{\boldsymbol{X}}; \hat{\boldsymbol{\beta}}) + \frac{1}{2} \sum_{i,j} \hat{\sigma}_{i,j} \frac{\partial^2 RR\left(\boldsymbol{X}; \hat{\boldsymbol{\beta}}\right)}{\partial X_i \partial X_j} \big|_{\boldsymbol{X} = \bar{\boldsymbol{X}}},$$

leading to the estimator of the PAF

$$\widehat{\mathsf{PAF}} = 1 - \frac{1}{\mathsf{RR}(\bar{\boldsymbol{X}}; \hat{\boldsymbol{\beta}}) + \frac{1}{2} \sum_{i,j} \hat{\sigma}_{i,j} \frac{\partial^2 \mathsf{RR}(\boldsymbol{X}, \hat{\boldsymbol{\beta}})}{\partial X_i \partial X_j} \big|_{\boldsymbol{X} = \bar{\boldsymbol{X}}}},$$

Consider a general function h(X), which is twice differentiable. Let

$$Dh(X) = \frac{\partial h(X)}{\partial X}$$
 and $Hh(X) = \frac{\partial^2 h(X)}{\partial X \partial X^T}$.

The second-order Taylor polynomial for h(X) is

$$h(\mathbf{X}) \approx h(\widehat{\mu}) + \mathbf{D}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu}) + \frac{1}{2}(\mathbf{X} - \widehat{\mu})^{T}\mathbf{H}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu})$$

$$= h(\widehat{\mu}) + \mathbf{D}h(\widehat{\mu})(\mathbf{X} - \widehat{\mu}) + \frac{1}{2}tr\left[(\mathbf{X} - \widehat{\mu})(\mathbf{X} - \widehat{\mu})^{T}\mathbf{H}h(\widehat{\mu})\right].$$

The first and second moments of \boldsymbol{X} are

$$\mu_{\boldsymbol{X}} = \mathbb{E}(\boldsymbol{X}) \quad \text{ and } \quad \boldsymbol{\Sigma}_{\boldsymbol{X}} = \mathit{Var}(\boldsymbol{X}),$$

and their estimates are

$$\widehat{\mu}_{\boldsymbol{X}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_i)$$
 and $\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}} = \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{X}_i - \widehat{\mu}_{\boldsymbol{X}}) (\boldsymbol{X}_i - \widehat{\mu}_{\boldsymbol{X}})^T$.

Applying the approximation to all subjects X_1 , X_2 , ..., X_n , we have

$$\frac{1}{n}\sum_{i=1}^{n}h(\boldsymbol{X}_{i})\approx h(\widehat{\boldsymbol{\mu}})+\frac{1}{2}tr\left[\widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}\boldsymbol{H}h(\widehat{\boldsymbol{\mu}})\right].$$

Using this, we can approximate the following scalar functions,

$$\hat{\mu}_{n}^{\text{obs}}(\hat{\beta}), \hat{\mu}_{n}^{\text{cft}}(\hat{\beta}), \frac{1}{n} \sum_{i=1}^{n} (RR(X_{i}; \hat{\beta}))^{2}, \frac{1}{n} \sum_{i=1}^{n} (RR(g(X_{i}); \hat{\beta}))^{2}, \frac{1}{n} \sum_{i=1}^{n} RR(X_{i}; \hat{\beta}) RR(g(X_{i}); \hat{\beta}),$$

and the following vector functions, entry by entry,

$$\frac{1}{n}\sum_{i=1}^{n}\nabla_{\beta}RR(X_{i};\beta)\Big|_{\beta=\hat{\beta}}\text{ and }\frac{1}{n}\sum_{i=1}^{n}\nabla_{\beta}RR(g(X_{i});\beta)\Big|_{\beta=\hat{\beta}}.$$

These calculations appear in the confidence intervals for $\widehat{\mathsf{PAF}}$ and $\widehat{\mathsf{PIF}}$.