

CHULA ENGINEERING COMPUTER

Data Preparation with Python

2110446: Data Science and Data Engineering

Peerapon Vateekul, Ph.D.

Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University Peerapon.v@chula.ac.th

Previous class

- Be able to explore data
- Be able to identify issues in data
- But do **NOT** process data yet
 - Cleansing & pre-processing

Data Science Process

Terminology: Data table

inputs |

Age	Income	Gender	Province	Purchase
25	25,000	Female	Bangkok	Yes
35	50,000	Female	Nontaburi	Yes
32	35,000	Male	Bangkok	No

■ Row

Example, instance, case, observation, subject

- Column
 - Feature, variable, attribute
- Input
 - Predictor, independent, explanatory variable

target

- Target
 - Output, outcome, response, dependent variable

Terminology: Kinds of data

Analytics workflow

Define analytic objective

Analytic workflow

Select cases Selec

enair innut data

Repair input data

Transform input data

Apply analysis

Generate deployment methods Integrate deployment

Gather results

Assess observed results

Refine analytic objective

Data preparation challenges

■ Temporal infidelity

■ Transaction and event data

■ Non-numeric data

$$\hat{y} = \widehat{w}_0 + \widehat{w}_1 x_1 + \widehat{w}_2 x_2$$

■ Exceptional, extreme, and missing values

■ Stationarity

28 DECEMBER 2016 / DATA CLEANING

Preparing and Cleaning Data for Machine Learning

- 1) Examining the Data Set
- 2) Narrowing down columns manually
 - Remove Id's
 - Irrelevant variables
 - Remove zipcode & date
 - Temporal infidelity (data from future)
 - Calculated variables
 - Decide target
 - Select studied cases
 - Distribution of target variables
 - Remove flat values

- 3) Preparing features for ML
 - Preview data
 - Handling missing values
 - Drop unqualified features
 - Investigate categorical features
 - Drop too many unique values (treat as Id)
 - Convert ordinal to numeric
 - Convert categorical to numeric
 - Check all numeric variables

https://www.dataquest.io/blog/machine-learning-preparing-data/

1) Examining the Data Set

- Numerical variables
 - Out of ranges
 - Distribution: histogram

- Categorical variables
 - Miscodes
 - Distribution: frequency table, bar chart
- Target variable
 - Understand proportion of each class: bar chart, pie chart

2) Narrowing down columns: Feature understanding is extremely important!

Remove irrelevant features <u>manually</u>

2) Narrowing down columns (cont.): Remove unqualified features

- Id's (lack of generalization; overfit)
- Variables with missing values > 50%
- Categorical variables
 - Too many unique values (treat as Id's)
 - Flat values (underfit)
 - Recode, consolidation (grouping)

- Special ways to treat these data
 - Zip code
 - Distance to closet branch
 - Date/time
 - Recency

2) Narrowing down columns (cont.): Temporal Infidelity

- Occurs when the input variables contain information that will be unavailable at the time that the prediction model is deployed.
- Assume that the model will be deployed in July-2017
 - Should we include a variable called "FICO2017", which is calculated at the end of the year?

3) Preparing features for ML (cont.): Impute missing values

$$\hat{y} = \widehat{w}_0 + \widehat{w}_1 x_1 + \widehat{w}_2 x_2$$

- Mean
- Median
- Categorical variables:
 - Mode

$$\hat{y} = \widehat{w}_0 + \widehat{w}_1 x_1 + \widehat{w}_2 x_2$$

3) Preparing features for ML (cont.): Categorical to numeric variables

- Ordinal variable
 - Enumerate

```
"emp_length": {
"10+ years": 10,
"9 years": 9,
"8 years": 8,
"7 years": 7,
"6 years": 6,
"5 years": 5,
"4 years": 4,
"3 years": 3,
"2 years": 2,
"1 year": 1,
"< 1 year": 0,
"n/a": 0</pre>
```

- Nominal variable
 - One-hot vector (dummy codes)
 - Smoothed weight of evidence (SWoE)

Level	D_A	D _B	D _C	D_D	D _E	D _F	D_G	D _H	Dı
Α	1	0	0	0	0	0	0	0	0
В	0	1	0	0	0	0	0	0	0
C	0	0	1	0	0	0	0	0	0
D	0	0	0	1	0	0	0	0	0
E	0	0	0	0	1	0	0	0	0
F	0	0	0	0	0	1	0	0	0
G	0	0	0	0	0	0	1	0	0
H	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	1

3) Preparing features for ML (cont.): Truncate outliers

■ Outlier, leverage points, extreme values

Percentile				
1st				
2.5th				
5th				
10th				
25th				
50th				
75th				
90th				
95th				
97.5th				
99th				

$$\hat{y} = \widehat{w}_0 + \widehat{w}_1 x_1 + \widehat{w}_2 x_2$$

3) Preparing features for ML (cont.): Feature transformation

Original Input Scale

skewed input distribution

high leverage points

- Skewness
- Example: Salary, Balance in bank account
- Solutions: Log, Binning

3) Preparing features for ML (cont.): Feature engineering

- Feature engineering
 - Calculated variables
 - Behavior from transactional data (RFM/RFA)

4) Other preprocessing steps: Train/Test/Validate

Training Data

Validation Data

Testing Data

		outs	target	
Age	Income	Gender	Province	Purchase
25	25,000	Female	Bangkok	Yes
35	50,000	Female	Nontaburi	Yes
32	35,000	Male	Bangkok	No

Age	Income	Gender	Province	Purchase
25	25,000	Female	Bangkok	Yes
35	50,000	Female	Nontaburi	Yes

Age	Income	Gender	Province	Purchase
25	25,000	Female	Bangkok	?

4) Other preprocessing steps: Train/Test/Validate (cont.)

Simple random sample

Other data preparation processes

- Impute missing values
- Outlier detections
- Feature transformation
 - Skewness
- Split train/test
 - Simple random sampling
 - Stratification

- Feature clustering
- Feature selection