Technical overview LoRaWAN network

Professor: Dr.Mehdi Rasti

Lecturer: Jaber Babaki

Amirkabir University of Technology Spring 2021

HELLO!

I AM JABER BABAKI

You can find me at:

Email: jaber.babaki@gmail.com

GitHub: https://github.com/JaberBabaki

Linkedin: https://www.linkedin.com/in/jaber-babaki-9b5474102/

Telegram: @jaberALU

		125 (kHz)	NS	Range (Km)		
SF	Sensitivity (dBm) Bit rate (kb/s)		ToA (ms)			SNR (dBm)
7	5.4	-124 56		-7.5	2	
8						
9						
10						
11,	•	•	•			
12	0.29	0.29 -137		-20	15	

Code rate: 4/5 Payload: 14 byte

$$bit \ rate(s) = \frac{BW}{2^{sf}} \times sf \times CR$$

bit rate(s) =
$$\frac{125}{2^7} \times 7 \times \frac{4}{5} = 5.468 \, kb/s$$

$$bit\ rate(s) = \frac{125}{2^{12}} \times 12 \times \frac{4}{5} = 0.2929\ kb/s$$

			_		
		125 (kHz)	NS	Ran	
SF	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	SNR (dBm)	Range (Km)
7	5.4	-124	56	-7.5	2
8					
9					
10					
11,	•	•	•		
12	0.29	-137	1483	-20	15

Code rate: 4/5

Payload: 14 byte

$$T_{on_the_air} = T_{payload} + T_{preamble} \qquad T_{preamble} = (4.25 + 8) \times \frac{2^{SF}}{BW} \qquad T_{payload} = N_{payload} \times \frac{2^{SF}}{BW}$$

$$N_{payload} = 8 + max \left[Ceil \left(\frac{8PL - 4SF + 28 + 16 - 20IH}{4(SF - 2DE)} \right) \times (CR + 4), 0 \right]$$

$$SF = 7$$
 $BW = 125$ kHz $Payload = 14$ byte

$$\begin{split} N_{payload} &= 8 + max \left[Ceil \left(\frac{8 \times 14 - 4 \times 7 + 28 + 16}{4(7 - 2)} \right) \times (1 + 4), 0 \right] = 35 + 8 = 43 \\ T_{payload} &= 43 \times \frac{2^7}{125} = 44.032 \ ms \\ T_{preamble} &= (4.25 + 8) \times \frac{2^7}{125} = 12.544 \ ms \end{split}$$

$$T_{on_the_air} = T_{payload} + T_{preamble} = 44.032 + 12.544 = 56ms$$

	•	125 (kHz)	SN	Ran		
SF	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	SNR (dBm)	Range (Km)	
7	5.4	-124	56	-7.5	2	
8						
9						
10						
11,	·	•	•			
12	0.29	-137	1483	-20	15	

$$SNR(SF) = \frac{SNR_0}{2^{SF}}$$

$$SNR_0 = \frac{E_{bit}}{NF} = 31 \text{ mW (SNR_0 equals 15 dBm for the SX1272 transceiver)}$$

$$SNR(12) = \frac{31}{2^{12}} = 0.007mW = -21dBm$$

$$SNR(7) = \frac{31}{2^7} = 0.24218 \ mW = -6.2 dBm$$

Payload: 14 byte

	•	125 (kHz)	NS	Ran		
SF	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	SNR (dBm)	Range (Km)	
7	5.4	-124	56	-7.5	2	
8						
9						
10						
11,	•	•	•			
12	0.29	-137	1483	-20	15	

Receiving sensitivity = $-174 + 6 + 10 \log BW + SNR$

Receiving sensitivity (12) = -174 + 6 + 51 - 21 = -138

Receiving sensitivity (7) = -174 + 6 + 51 - 6.1 = -123.1

Payload: 14 byte

	125 (kHz)			250 (kHz)		500 (kHz)			NS	Rar	
SF	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	Bit rate (kb/s)	Sensitivity (dBm)	ToA (ms)	SNR (dBm)	Range (Km)
7	5.4	-124	56	110	-122	20	219	-116	10	-7.5	2
8											4
9											6
10											8
11									•		10
12	0.29	-137	1483	0.5	-135	495	0.98	-129	247	-20	15

Reference

- [1] Peter J. Ryan 1 and Richard B. Watson, "Research Challenges for the Internet of Things: What Role Can OR Play?", systems journal, 14 March 2017.
- [2] P.P.Ray, A survey on Internet of Things architectures, Journal of King Saud University Computer and Information Sciences, Volume 30, Issue 3, July 2018, Pages 291-319.
- [3] LPWAN white paper, Leverege LLC, 2020 | www.leverege.com
- [4] J. Babaki, M. Rasti and R. Aslani, "Dynamic Spreading Factor and Power Allocation of LoRa Networks for Dense IoT Deployments," 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, 2020, pp. 1-6, doi: 10.1109/PIMRC48278.2020.9217283.
- [5] What is LoRaWAN® Specification, https://lora-alliance.org/about-lorawan/

Reference

- [6] V. Talla, M. Hessar, B. Kellogg, A. Najafi, J. R. Smith, S. Gollakota, "LoRa Backsca@r: Enabling The Vision of Ubiquitous Connectivity", Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017/9/11.
- [7] LoRaTM Modulation Basics, SEMTECH.
- [8] Link Budget Calculation, Training materials for wireless trainers, ICTP.
- [9] T. Bouguera, J.F. Diouris , J.J Chaillout, R.Jaouadi, G. Andrieux, "Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN", sensors, 30 June 2018.
- [10] E. Ruano, LoRaTM protocol Evaluations, limitations and practical test, May 11, 2016
- [11] WIRELESS NETWORKING IN THE DEVELOPING WORLD, http://wndw.net

THANKS!

You can find me at:

Email: jaber.babaki@gmail.com

GitHub: https://github.com/JaberBabaki

Linkedin: https://www.linkedin.com/in/jaber-babaki-9b5474102/

Telegram: @jaberALU

