

Formularium

 $Academieja ar\ 2024-2025$

Timo Vandevenne

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	$\mathbf{P} \text{ Druk } [1 \text{ atm} = 1013\text{hPa} = 760 \text{ mmHg}]$
	V Volume
	n Aantal deeltjes [mol]
	R Gasconstante
	T Temperatuur [K]
$\Delta U = U_{prod.} - U_{reag.} = q + w$	ΔU Verandering van interne energie [J]
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH^0_{rxn} Reactieenthalpie [kJ/mol]
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0)$: endotherme reactie)
	$\mathbf{H_f^0}$ Standaardvormingsenthalpie [kJ/mol]
	\mathbf{i}, \mathbf{j} coefficiënten in reactievergelijking
$q = ms\Delta T = C\Delta T$	m massa [g]
	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	ΔT Temperatuurverandering [K]
$q_{rxn} = n\Delta H_{rxn}^0$	C Warmtecapaciteit [J/K]
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\mathbf{v} = h\frac{c}{\lambda}}$	E Energie [J]
^	h constante van Planck = $6.62 \cdot 10^{-34}$ Js
	$ \mathbf{v} $ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\nu - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
•	m Massa bewegend deeltje [kg]
	u Snelheid [m/s]
Wet van Dalton: $P_i = y_i P_{tot}$	$\mathbf{P_i}$ Partieeldruk
•	$\mathbf{y_i}$ Molfractie \mathbf{gas} [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
~	$\mathbf{P_{i}^{0}}$ Dampdruk
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	$\mathbf{C_i}$ Concentratie
10	H _i Henry constante
	${f k}$ gegeven constante bij bep. temp

Formule	Variabelen en uitleg
$\Delta T_b = iK_b m$	ΔT _b Kookpuntsverhoging
$\Delta T_f = iK_f m$	$\Delta T_{ m f}$ Vriespuntsverlaging
, ,	i Van 't Hoff factor: aantal opgeloste deeltjes waarin een
	verbinding voorkomt in oplossing
	$\mathbf{K_b}, \mathbf{K_f}$ karakteristiek van het oplosmiddel
	m Molaliteit [mol/kg]
$\pi=iMRT$	1
	π Osmotische druk
$\frac{\Delta P = x_{\text{opgeloste stof}} P_{\text{oplosmiddel}}^0}{v = k[A]^x[B]^y}$	ΔP Dampdrukverlaging
$v = k[A]^x[B]^y$	$aA+bB \rightleftharpoons cC+dD$
	v Reactiesnelheid [M/s]
	k Snelheidsconstante [Eenheid afh. van reactieorde]
Arrhenius vergelijking:	$\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{b}$ indien elementaire stap
$k = Ae^{\frac{-Ea}{RT}}$	$\mathbf{E_a}$ Activeringsenergie [kJ/mol]
$\ln k = \frac{-E_a}{RT} + \ln A$	A Botsingsfrequentiefactor
$\frac{\ln \frac{k_2}{k_1} = \frac{-E_a}{R} (\frac{1}{T_2} - \frac{1}{T_1})}{K = \frac{[C]^c [D]}{[A]^a [B]^b}}$	Dezelfde reactie op verschillende temperaturen vergelijken
$K = \frac{\lfloor \bigcup \rfloor \lfloor D \rfloor}{\lceil A \rceil a \lceil D \rceil b}$	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
$[A]^{u}[B]^{v}$	K_p bij gassen (druk), K_c bij concentraties
	[X] Concentratie van stof $X[M] = [mol/l]$
	Q Reactieconstante, K met actuele concentraties
	(Q>K: systeem naar links voor evenwicht)
$K_p = K_c(RT)^{\Delta n}$	$\Delta \mathbf{n} = (c+d)-(a+b)$ bij $aA+bB \rightleftharpoons cC+dD$
Principe van Le Châtelier	System compenseert uitwendige stress gedeeltelijk
Timospe van Ze Ghatoner	Concentratieverandering
	• Druk & volumeverandering
	• Temperatuursverandering \rightarrow K verandert
	• Katalysator & inert gas hebben geen invloed
$pH = -\log[H^+] = -\log[H_3O^+]$	• Katalysatol & mert gas hebben geen myloed
$pH = -\log[H] = -\log[H_3O]$ $pOH = -\log[OH^-] = 14 - pH$	
$pOII = -\log[OII] = 14 - pII$	
$K_a = \frac{[H^+][A^-]}{[B^-]}$	$\mathbf{K_a}$ Aciditeitsconstante $(pK_a = -\log K_a)$
$K_a = \frac{[H^+][A^-]}{[HA]}$ $K_b = \frac{[OH^-][B^+]}{[B]}$	
	$\mathbf{K_b}$ Basiciteitsconstante $(\mathbf{pK_b} = -\log K_b)$
$K_a K_b = K_w$	K _w Dissociatieconstante van water
$pK_a + pK_b = pK_w$	$K_{\rm w} = [H^+][OH^-] = 10^{-14} \text{ bij } 25^{\circ}\text{C}$
$K_{sp} = [C]^c [D]^d$	$\mathbf{K_{sp}}$ Oplosbaarheidsproduct: beschrijf het oplossen van
	een ionische verbinding in water
$Q = [C]_0^c [D]_0^d$	\mathbf{Q} Reactiequotiënt, \mathbf{K}_{sp} met actuele concentraties
	[X] ₀ Concentratie voor reactie
	• Q< K_{sp} : Onverzadigde oplossing \rightarrow Geen neerslag
	\bullet Q= K_{sp} : Verzadigde oplossing \to Net geen neerslag
	• Q> K_{sp} : Oververzadigde oplossing \rightarrow Neerslag onstaat
Nernst: $E = E^0 - \frac{RT}{\log Q}$	F Faraday constante: lading 1 mol e
$A(s) \mid A^{a+} (xM) \mid B^{b+} (yM) \mid B(s)$	Notatie celdiagram
Nernst: $E = E^{0} - \frac{RT}{nF} \log Q$ $A(s) \mid A^{a+}(xM) \mid B^{b+}(yM) \mid B(s)$ Anode: oxidatie RT Kathode: reductie	
$E_{cel}^{0} = \frac{RT}{nF} \log K$ $E_{cel}^{0} = E_{ox}^{0} + E_{red}^{0} = E_{red,anode}^{0} + E_{red,kathode}^{0}$	$\mathbf{E_{cel}^0}$ Celpotentiaal ($E_{cel}^0 > 1$: Formatie producten)
$E_{cel}^0 = \overline{E}_{ox}^{0} + E_{red}^0 = E_{red,anode}^0 + E_{red,kathode}^0$	$\mathbf{E_{red}^0}$ Reductiepotentiaal (afleesbaar in de tabel) $\mathbf{E_{ox}^0}$ Oxidatiepotentiaal $E_{ox}^0 = -E_{red}^0$

Timo Vandevenne 2/2