

Data Science Program

Session -2

Session - 2 Content

Content

- Graphical Represent
 - Patterns
 - Frequency Table
 - Bar Chart
 - Pie Chart
 - Histogram

RECAP

Herkes önceki dersten hatırladığı 1 cümle yazabilir mi?

LMS Pre-Class'ta bu dersle ilgili kısma çalıştım

Data Visualization - Graphical Represent

- Graphical Representation of Data
 - Center
 - Spread
 - Shape
 - Unusual Features

Data Patterns

- Data Patterns
 - Center
 - Spread
 - Shape
 - · Symmetric
 - · Number of peaks
 - Skewness
 - Uniform
 - Unusual Features
 - Gaps
 - Outliers

Graphical Representation of Data

Center

- Dağılımın merkezi, grafiksel olarak dağılımın medyanında olur
- Gözlemlerin yarısı her iki taraftadır
- Sütunun yüksekliği, gözlemlerin sıklığını gösterir.

Graphical Representation of Data

Spread

- verilerin varyasyonu
- Gözlem kümesi geniş bir aralığa yayılıyorsa
- Gözlemler daha dar bir aralıkta tek bir değer etrafında ortalanırsa......

Normally Distribution Videos

Video-1

 https://www.you tube.com/watc h?v=Bampgm0H KDU

Video-2

 https://www.you tube.com/watc h?v=4HpvBZnHO VI

Video-3

 https://www.you tube.com/watc h?v=Ph2DmwZM hGo

Figure 6A.15: Distributional Choices

Data Patterns

Skewed right

Non-symmetric, bimodal

Hangi pattern'e uygundur?

- a. Right-skewed with no outliers
- **c.** Left-skewed with no outliers
- b. Right-skewed with one outliers
- d. Symmetric

Frequency

Descriptive istatistikte kullanılan yöntemler:

- Frekans Tabloları
- Şekiller ve Grafikler
- Histogram ve Frekans Poligonları
- Sütun ve Pasta Grafikleri

Developer Type	Frequency	Relative Frequency
Front-end Developer	25	0.25
Backend Developer	15	0.15
Full-stack Developer	20	0.20
Data Scientist	40	0.40

	Sınıflar	Frekans, f	
	1 = 4	4	
Üst Sınıf	5-8	5 🖊	
Limiti	9 → 12	3 ←	Sıklıklar
	13 → 16	4 -	
	17 - 20	2	

Cumulative

Frequency

 $\frac{3}{20}$ or 0.15 $\frac{5}{20}$ or 0.25

 $\frac{3}{20}$ or 0.15

 $\frac{6}{20}$ or 0.30

 $\frac{2}{20}$ or 0.10

 $\frac{1}{20}$ or 0.05

0.15 + 0.25 = 0.40

0.40 + 0.15 = 0.55

0.55 + 0.30 = 0.85

0.85 + 0.10 = 0.95

0.95 + 0.05 = 1.00

Frequency

Frequency

• Bir veri değerinin meydana gelme sayısı

DATA VALUE	FREQUENCY
3	5
4	3
5	6
6	2
7	1

Relative Frequency

ALUE FREQUENCY RELATIVE FREQUENCY	THE EDECLIENCY RELATIVE CUMULATIVE RELATIVE
gerçekleştiğinin tüm sonuçlara bölünmesi	frekansların birikimi
bir şeyin ne sıklıkla	 Onceki relative

FREQUENCY	RELATIVE PREQUENCY	DATA VALUE	FREQUE
3	$\frac{3}{20}$ or 0.15		2
5	5/20 or 0.25		5
3	$\frac{3}{20}$ or 0.15	4	3
6	$\frac{6}{20}$ or 0.30	5	6
2	$\frac{2}{20}$ or 0.10	6	2
1	1/20 or 0.05	7	1
	3 5 3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3 0 or 0.15 2 2 3 or 0.15 4 5 6 6 20 or 0.10 5 6

QUESTION

En fazla 12 yıla kadar (at most) yaşayanların oranı nedir ?

Data	Frequency	Relative Frequency	Cumulative Relative Frequency
0	2	2 19	0.1053
2	3	3 19	0.2632
4	1	19	0.3158
5	3	3 19	0.4737
7	2	2 19	0.5789
10	2	2 19	0.6842
12	2	2 19	0.7895
15	1	19	0.8421
20	1	19	1.0000

Graphs and Charts

Why Charts?

- Anlaşılabilirlik artırılır.
- Dikkat çekilecek hususlar belirtilir.
- Dağılımın biçimi hakkında bilgi sağlanır.
- Tahmin kolaylaşır

Pie Charts

- Genelde nominal ve ordinal değişkenlerle kullanılır
- Daire toplamda %100 ü tamamlayacak şekilde pasta dilimleri şeklinde kesilerek gösterilir
- Her dilim değişkenin niteliğini sunmuş olur

Pie Chart Examples

1	Expenses	Amount
2	Rent	7000
3	Grocery	3000
4	Transport	800
5	Current	300
6	School fee	2000
7	Savings	1900
8		
9		
10		
11		
12		
13		

Pie Chart

Örnek

• Dilim yüzdesi hesaplama

Activity	No. of Hours	Measure of central angle
School	6	$(^{6}/_{24} \times 360)^{\circ} = 90^{\circ}$
Sleep	8	(8/ ₂₄ × 360)° = 120°
Playing	2	$(^2/_{24} \times 360)^\circ = 30^\circ$
Study	4	$(^4/_{24} \times 360)^\circ = 60^\circ$
T. V.	1	$(^{1}/_{24} \times 360)^{\circ} = 15^{\circ}$
Others	3	$(^{3}/_{24} \times 360)^{\circ} = 45^{\circ}$

Bar Charts

- Genelde nominal ve ordinal değişkenlerle kullanılır
- Barların (sütunların) her biri bir değişkenin farklı değerlerini temsil eder
- Her bar yüksekliği her niteliğin frekansını gösterir

Histogram

- Interval / Ratio değişkenlerle kullanılır
- Bir değişken için herbir niteliğin frekansını temsil eder
- Datanızın dağılımına iyi bir kuşbakışı bakma imkanı verir

Histogram

 Örnek bir Histogram çizim aşamaları

Interval's Lower Limit	Interval's Upper Limit	Class Frequency
32	38.4	1
38.4	44.8	4
44.8	51.2	19
51.2	57.6	22
57.6	64	49
64	70.4	50
70.4	76.8	38
76.8	83.2	48
83.2	89.6	13
89.6	96	6

Bar Chart vs. Histogram

Bar Chart

- Kategoriler vardır
- ayrık değişkenlerin şematik bir karşılaştırması
- Kategorik veriler sunar
- Barlar arası boşlukludur

Histogram

- Grafik gösterime atıfta bulunur
- sürekli değişkenlerin frekans dağılımı
- Sayısal veriler sunar
- Barlar arası boşluk olmaz

LMS Pre-Class'ta bu dersle ilgili kısma çalıştım

Populations & Samples

Populations & Samples

• İstatistiki bir çalışma tamamen veri kümesi veya çözüm uzayının incelenmesine dayanır.

Popülasyon

POPULATION

• Sample

!! Sample'ları gözlemliyoruz ama popülasyonlarla ilgileniyoruz

Bir parametre, popülasyonun sayısal bir özetidir ve bir istatistik, örneklemin sayısal bir özetidir.

Central Tendency
(Measure of Centre)

Merkezi Eğilim ve Dağılım Ölçüleri

Content

Central Tendency (Measure of Centre

Merkezi Eğilim Ölçüleri

- Mean
- Median
- Mode

Dispersion (Measure of Spread)

Dağılım Ölçüleri

- Range
- IQR
- Standart Deviation
- Variation

Central Tendency

Merkezi Eğilim

Tek değerle verileri en iyi tanımlama

- Ortalama
- Medyan (Ortanca)
- Mode (Tepe Değeri)

Mean (Average)

- Dataların toplamını, toplam gözlem sayısına bölmek
- Dağılımın yerinin belirlenmesinde kullanılır

Staff	Salary (thousand \$)
1	102
2	33
3	26
4	27
5	30
6	25
7	33
8	33
9	24

Population Mean	Sample Mean
$\mu = \frac{\sum_{i=1}^{N} x_i}{N}$	$\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$
N = number of items in	n = number of items in
the population	the sample

Kitle Ortalaması:
$$\mu = \frac{\sum x}{N}$$
 Örneklem Ortalaması: $\bar{x} = \frac{\sum x}{n}$

"x-bar"

Mean Example

Örnek:

Aşağıdakiler küçük bir şirketin yedi çalışanının yaşlarıdır:

Kitle ortalamasını hesaplayın.

$$\mu = \frac{\sum x}{N} = \frac{343}{7}$$
 Yaşları yoplayın ve 7'ye bölün.

=49 years

Çalışanların yaş ortalaması 49'dur.

x	frequency
10	3
12	5
15	2
17	6
20	1
24	4

$\bar{x} = \frac{\sum x_i f_i}{\sum f_i}$	
$\bar{x} = \frac{10 \times 3}{10}$	+ 12 × 5 + 15 × 2 + 17 × 6 + 20 × 1 + 24 × 4
338	3+5+2+6+1+4
$\bar{x} = \frac{330}{21}$	
$\bar{x} = 16.095$	

Median

- küçükten büyüğe sıralanmış bir veri kümesinin orta puanıdır
- Data sayısı tek ise median 1 değerdir ama çift sayı ise medianı bulurken ortadaki 2 değerin ortalaması alınır
- Medyan, orta puandır. Örneklem büyüklüğü 9 ise, beşinci eleman medyandır.

Median Formula

Median Example

Örnek:

Yedi çalışanın ortanca yaşını hesaplayın.

32 61 57

Medyanı bulmak için verileri sıralayın. 53 57 61

Çalışanların ortanca yaşı 53'tür.

57

\$15.000 \$20.000 \$33,000

\$1.800.000

Mean:

\$4000 + \$15000 + \$20000 + \$33000 + \$1800000 $\mu = \frac{\$1872000}{5} = \374400

Median:

\$20000

Mode

- · Mode tepe değeri diye adlandırlir
- Mode: Data setinde nn fazla karşılaşılan, en popüler değer
- hem numeric hem kategorik değişkenler için kullanılabiliyor
- Avantaj- Dezavantajları

Mode Example

Örnek-1

Yedi çalışanın yaş grubunu bulun..

57 32 61 39

Mod 57, çünkü diğer veriler bir kez varken 57 iki kez tekrarlanıyor.

Ortalama-Mod-Medyan Karşılaştırılması

Örnek:

29 yaşında bir çalışan şirkete katılıyor ve çalışanların yaşları şimdi:

61 57 39 44

Ortalama, medyan ve modu yeniden hesaplayın. Bu yeni yaş eklendiğinde hangi merkezî eğilim ölçüsü etkilendi?

Mean = 46.5

Ortalama her değeri hesaba katar, ancak aykırı değerden etkilenir.

Median = 48.5

Ortanca ve mod uç değerlerden etkilenmez.

Mode = 57

Örnek 4:

Aşağıdaki verilerin modunu ve medyanını belirleyiniz.

120 100 130 100 160 130

Çözüm 3:

Verileri küçükten büyüğe sıralayalım.

1.değer	2.değer	3.değer	4.değer	5.değer	6.değer	7.değer	8.değer	9.değer	10.değer
86	90	94	100	100	100	120	130	130	160

100

Veri grubunda en çok tekrarlanan değer 100 olduğu için Mod=100

Veri sayısı n=10 → çift

$$\frac{n}{2} = \frac{10}{2} = 5. \text{deger} \rightarrow 100$$

$$\Rightarrow \text{Medyan} = \frac{100 + 100}{2} = 100$$

$$\frac{n}{2} + 1 = \frac{10}{2} + 1 = 6. \text{deger} \rightarrow 100$$

Statistic with Python

• Input

import numpy as np
from scipy import stats

salary = [102, 33, 26, 27, 30, 25, 33, 33, 24]

mean_salary = np.mean(salary)
print("mean:", mean_salary)

median_salary = np.median(salary)
print("median:", median_salary)

mode_salary = stats.mode(salary)
print("mode:", mode_salary)

Output

mean: 37.0 median: 30.0

mode: ModeResult(mode=array([33]), count=array([3]))

Calculate Mean, Median and Mode with Python

YouTube Öneri Video

Mode, Median, Mean, Range, and Standard Deviation

https://www.youtube.com/watc h?v=mk8tOD0t8M0

Dispertion (Measure of Spread)

Dağılım Ölçüleri

- merkezi eğilim) ölçüleri tek başına dağılımı karakterize etmez
- İki veri grubu ortalamasının eşit olması dağılımlarının aynı olmasını gerektirmez
- bir dağılım, merkezi eğilimin yaptığından daha fazlasını açıklar

Range

Aralık-Açıklık – Değişim Genişliği

- Bir veri kümesinin aralığı, kümedeki maksimum ve minimum veri girişleri arasındaki farktır
- Değişkenliğin en basit ölçüsüdür.

What is the

- mean
- Q1
- Q3
- Median
- IQR

27 28 30 32 34 38 41 42 43 44 46 53 56 62

IQR

Outlier Nasıl bulunur

- Outlier, Q1'in altında veya Q3'ün üzerinde 1.5 IQR' den fazla olan veri noktalarıdır
- list = [1, 5, 8, 10, 12, 15, 40]
- Q1 (1.5 * IQR) = 5-15 = -10
- Q3 + (1.5 * IQR) = 15 + 15 = 30

Variance (Population)

Varyans

- Varyans, ortalamadan farkların karelerinin ortalaması olarak tanımlanır
- Her bir skorun mean'den uzaklaştığı miktardır.

Variance

Sample variance

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

$$S^2 = \text{sample variance}$$

$$x_i = \text{value of i th}$$

$$\text{element}$$

$$\overline{x} = \text{sample mean}$$

$$\text{n=sample size}$$

Population variance

 $\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$ $\sigma^2 = \text{population}$ variance $x_i = \text{value of i th}$ element $\mu = \text{population mean}$ N = population size

Variance Example

- Alttaki 4 değer için Varyans
 - 5

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

0 1 5

 $\mu = \frac{\sum X}{N} = \frac{0+1+5+6}{4} = \frac{12}{4} = 3$

Dev Sum of Squares: $SS = \sum (X - \mu)^2$

 $SS = (0-3)^2 + (1-3)^2 + (5-3)^2 + (6-3)^2$

SS = 9 + 4 + 4 + 9 = 26

Variance:

$$\sigma^2 = \frac{\sum (X - \mu)}{N}$$

$$\sigma^2 = \frac{26}{4} = 6.5$$

• Örnek-2

10 12 17 20 25 27 42 45

• Hem sample hem de popülasyon için bulalım.

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

$$S^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$$

Standard Deviation

Standart Sapma

- Varyansın kareköküdür.
- Veriler ne kadar çok yayılırsa, standart sapma o kadar büyük olur.

<u>Sample</u>

Population

$$S = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} \qquad \sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

Std. Dev. Example

Staff	Salary (thousand \$)
1	24
2	25
3	26
4	27
5	30
6	33
7	33
8	33
9	102

```
\begin{split} \mu &= \frac{24+25+26+27+30+33+33+33+102}{9} \\ \mu &= \frac{333}{9} = 37 \\ \sigma &= \sqrt{\frac{\sum (x-\mu)^2}{N}} \\ \sigma &= \sqrt{\frac{(24-37)^2+(25-37)^2+(26-37)^2+(27-37)^2+(30-37)^2+(33-37)^2+(33-37)^2}{9}} \\ \sigma &= \sqrt{\frac{(-13)^2+(-12)^2+(-11)^2+(-10)^2+(-7)^2+(-4)^2+(-4)^2+(-65)^2}{9}} \\ \sigma &= \sqrt{\frac{169+144+121+100+49+16+16+16+4225}{9}} \\ \sigma &= \sqrt{\frac{4856}{9}} \\ \sigma &= \sqrt{5}39,55 \\ \sigma &= 23,22833518 \end{split}
```


Std. Dev. Example - 2

Men: 0 0 0 2 4 4 4

Women: 0 2 2 2 2 2 4

- Bir aile için ideal çocuk saysını cevaplayanlardan oluşan yukardaki 2 grup dağılım için (7 şer kişi),
- Varyansı nedir

Women: s = 1.2

Std. Dev with python

input:

```
import numpy as np

salary = [102, 33, 26, 27, 30, 25, 33, 33, 24]

print("Range: ", (np.max(salary)-np.min(salary)))

print("Variance: ", (np.var(salary)))

print("Std: ", (np.std(salary)))
```

output:

Range: 78

Variance: 539.555555555555

Std: 23.22833518691246

Empirical Rule

3 Sigma Kuralı

- Three Sigma Rule veya 68-95-99.7 kuralı diye de bilinir. .
- · Ampirik Kural:
- 1. % 68'de kural.
- = (Ortalama standart sapma) ve (Ortalama + standart sapma)
- 2. % 95'de kural,
- = (Ortalama 2 × standart sapma) and (Ortalama + 2 × standart sapma)
- 0.0...0....0...
- 3. % 97.7'de kural,
- = (Ortalama 3 × standart sapma) and (Ortalama + 3
- × standart sapma)

The Empirical Rule

• It is time to CODING

Python Notebook zamanı

Do you have any questions?

Send it to us! We hope you learned something new.