A NOVEL METHOD FOR HAND WRITTEN DIGIT RECOGNITION SYSTEM

A project Report

submitted by

MUBASHSHIRA.S (610919104047)
NANDHINI.P (610919104049)
NITHYA.M (610919104051)
SANTHIYA.B (610919104074)

In partial fulfillment for the award of the degree of

BACHELOR OF ENGINEERING
IN
COMPUTER SCIENCE AND ENGINEERING

JAYALAKSHMI INSTITUTE OF TECHNOLOGY THOPPUR, DHARAMAPURI - 636 352

ANNA UNIVERSITY::CHENNAI-600 025
MAY 2022

TABLE OF CONTENTS

1	INTRODUCTION	1
	1.1 PROJECT_OVERVIEW	1
	1.2 PURPOSE	1
	2 LITERATURE SURVEY	2
	2.1 EXISTING_PROBLEM	2
	2.2 REFERENCES	2
	2.3 PROBLEM STATEMENT_DEFINITION	5
	3 IDEATION AND PROPOSED SOLUTION	6
	3.1 EMPATHY MAP CANVAS	6
	3.2 IDEATION & BRAINSTORMING	7
	3.3 PROPOSED_SOLUTION	8
	3.4 PROBLEM SOLUTION_FIT	g
	4REQUIREMENT ANALYSIS	10

	4.1 FUNCTIONAL_REQUIREMENTS	10
	4.2 NON_FUNCTIONAL_REQUIREMENTS	11
	5PROJECT DESIGN	12
	5.1 DATA_FLOW_DIAGRAM	12
	5.2 SOLUTION & TECHNICAL ARCHITECTURE	13
	5.3 USER_STORIES	15
1.	PROJECT PLANNING AND SCHEDULING	16
	a. SPRINT PLANNING AND ESTIMATION	16
	b. SPRINT DELIVERY SCHEDULE	
2.	CODING & SOLUTIONING	18
3.	TESTING	20
	a. TEST_CASES	20
	b. USER ACCEPTANCE TESTINGi. DEFECT ANALYSIS	
	ii. TEST_CASE_ANALYSIS	22
4.	RESULTS	23
5.	a. PERFORMANCE_METRICSADVANTAGES & DISADVANTAGES	23 25
	ADVANTAGES	
	25	
	DISADVANTAGES	
_	25	
6.	CONCLUSION	26
7.	FUTURE SCOPE	27

APPEND	IX		
28			
SOUF 28	RCE_CODE		
GITH 37	UB		
PROJ 37	ECT DEMO		

CHAPTER 1 INTRODUCTION

a. PROJECT OVERVIEW

Machine learning and deep learning play an important role in computer technology and artificialintelligence. With the use of deep learningand machine learning, human effort can be reduced in recognizing, learning, predictions and inmany more areas.

Handwritten Digit Recognition is the ability of computer systems to recognise handwritten digits from various sources, such as images, documents, and so on. This project aims to let users take advantage of machine learning reduce manualtasks in recognizing digits.

b. PURPOSE

Digit recognition systems are capable of recognizing the digits from different sources like emails, bank cheque, papers,images, etc. and in differentreal-worldscenarios for online handwriting recognition on computer tablets or system, recognize number plates of vehicles, processing bank cheque amounts, numeric entries in forms filled up by hand (tax forms) and so on.

CHAPTER 2 LITERATURE SURVEY

a. EXISTING PROBLEM

The fundamental problem with handwritten digit recognition is that handwritten digits do not always have the same size, width, orientation, and marginssince they vary from person to person. Additionally, there would be issues with identifying the numbers because of similarities between numerals like 1 and 7, 5 and 6, 3 and 8, 2 and 5, 2 and 7, etc. Finally, the individuality and variation of each individual's handwriting influence the structureand appearance of the digits.

b. REFERENCES

Improved Handwritten Digit Recognition Using Convolutional Neural Networks(CNN) (2020)

Ahlawat, Savita and Choudhary,Amit and Nayyar,Anand and Singh, Saurabh and Yoon,Byungun

This paper's primarygoal was to enhance handwritten digit recognition ability. Toavoid difficultpre-processing, expensive featureextraction, and a complex ensemble (classifier combination) method of a standard recognition system, they examined different convolutional neural network variations. Their current work makes suggestions on the function of several hyper-parameters through thoroughevaluation utilizing an MNIST dataset. They also confirmed that optimizing hyper-parameters is crucial for enhancing CNN architecture performance. With the Adam optimizer for the MNIST database, they were able to surpassmany previously published results with a recognition rate of 99.89%. Through the trials, it is made

abundantly evident how the performance of handwritten digit recognition is affected by the number of convolutional layers in CNN architecture. According to the paper, evolutionary algorithms can be explored for optimizing convolutional filter kernel sizes, CNN learningparameters, and the quantity of layers and learning rates.

An Efficient And ImprovedScheme For Handwritten Digit Recognition BasedOn Convolutional Neural Network (2019)

Ali, Saqib and Shaukat, Zeeshan and Azeem, Muhammad and Sakhawat, Zareen and Mahmood, Tariq and others

This study uses rectified linear units (ReLU) activation and a convolutional neural network (CNN) that incorporates the

Deeplearning4j (DL4J) architecture to recognize handwritten digits. The proposed CNN framework has all the necessary parameters for a high level of MNIST digit classification accuracy. The system's training takes into account the time factor as well. The system is also tested by altering the number of CNN layersfor additional accuracyverification. It is important note that the CNN architecture consists of two convolutional layers,the first with32 filters and a 5x5 window size and the second with 64 filters and a 7x7 window size. In comparison to earlier proposed systems, the experimental findings show thatthe proposed CNN architecture for the MNIST dataset demonstrates great performance in terms of time and accuracy. As a result, handwritten numbers are detected with a recognition rate of 99.89% and high precision (99.21%) in a short amount of time.

Improved Handwritten Digit Recognition Using Quantum K-NearestNeighborAlgorithm (2019)

Wang, Yuxiang and Wang, Ruijin and Li, Dongfen and Adu-Gyamfi, Daniel and Tian, Kaibin and Zhu, Yixin

The KNN classical machine learning technique is used in this research to enable quantum parallel computing and superposition. They used the KNN algorithm with quantum acceleration to enhance handwritten digit recognition. When dealing with more complicated and sizable handwritten digital data sets, their suggested method considerably lowered the computational time complexity of the traditional KNN algorithm. The paper offered a theoretical investigation of how quantum concepts can be applied to machine learning. Finally, they established a fundamental operational concept and procedure for machine learningwith quantum acceleration.

Handwritten Digit Recognition Using Machine And Deep LearningAlgorithms(2021)

Pashine, Samay and Dixit, Ritikand Kushwah, Rishika

In this study, they developed three deep and machine learning-based models for handwritten digit recognition using MNIST datasets. To determine which model wasthe most accurate, they compared them based on their individual properties.

Support vector machines are among the simplest classifiers, making them faster than other algorithms and providing the highest training accuracy rate in this situation. However, due to their simplicity, SVMs cannot categorize complicated and ambiguous images as accurately as MLP and CNN algorithms can. In their research, they discovered that CNN produced the most precise outcomes for handwritten digit recognition. This led them to the conclusion that CNN is the most effective

solution for all types of prediction issues, including those using picturedata. Next, by comparing the execution times of the algorithms, they determined that increasing the number of epochs without changing the configuration of the algorithm is pointlessdue to the limitation of a certainmodel, and they discovered that beyond a certainnumber of epochs, the model beginsover-fitting the dataset and provides biased predictions.

c. PROBLEM STATEMENT DEFINITION

For years, the traffic department has been combating traffic law violators.

These offenders endanger not only their own lives, but also the lives of other individuals. Punishing these offenders is critical to ensuring that others do not becomelike them. Identification of these offenders is next to impossible becauseitis impossible for the averageindividual to write down the license plateof a reckless driver. Therefore, the goal of this project is to help the traffic department identify these offenders and reduce traffic violations as a result.

CHAPTER3 IDEATION AND PROPOSED SOLUTION

a. EMPATHY MAP CANVAS

b. IDEATION & BRAINSTORMING

c. PROPOSED SOLUTION

S. NO	PARAMETER	DESCRIPTI ON
1	Problem Statement	To create an application that recognizes handwritten digits

2	Idea / Solution Description	The application takes an imageas the input and accurately detectsthe digits in it.
3	Novelty / Uniqueness	Instead of recognizing every text, the application accuratelyrecognizes onlythe digits
4	Social Impact / CustomerSatisfacti on	This application reduces the manual tasks that need to beperformed. This improves productivity in the workplace.
		The application can be integrated with traffic surveillance cameras to recognize vehicle number plates
5	Business Model	The application can be integrated with Postal systemsto recognize the pin codes effectively
6	Scalability of the Solution	The application can easily be scaled to accept multipleinputs and process them parallelly to further increase efficiency

d. PROBLEM SOLUTION FIT

CHAPTER4 REQUIREMENT ANALYSIS

a. FUNCTIONAL REQUIREMENTS

FR.NO	FUNCTIONAL REQUIREMENTS	SUB REQUIREMENTS
		Get access the MNIST dataset
FR-1	Model Creation	
		Analyze the dataset
		Define a CNN model
		Train and Test the Model
		Create a website to let the userrecognize handwritten digits.
FR-2	Application Development	

		Createa home pageto uploadimages
		Createa result pageto displaythe results
		Host the websiteto let the usersuseit from anywhere
		Let users uploadimages ofvarious formats.
FR-3	Input ImageUpload	
		Let users uploadimages ofvarious size
		Preventusers from uploadingunsupported image formats
		Pre-Process the image to use iton the model
		1
		Createa database to store allthe input images

FR-4	Display Results	Displaythe result from themodel
		Display input image
		Display accuracy the result
		Display other possible predictions with their respectiveaccuracy

b. NON FUNCTIONAL REQUIREMENTS

NFR	NON-FUNCTIONAL REQUIREMENTS	DESCRIPTION
NFR-	Usability	The application mustbe usablein all devices
NFR- 2	Security	The application mustprotectuser uploaded image

NFR- 3	Reliability	The application must give anaccurate result as much as possible
NFR-	Performance	The application must be fast andquick to load up
NFR- 5	Availability	The application must be available to use all the time
NFR-	Scalability	The application mustscale alongwith the user base

CHAPTER5 PROJECT DESIGN

a. DATA FLOW DIAGRAM

b. SOLUTION &	TECHNICALAR	CHITECTURE	

c. USER STORIES

User Type	Functional Requirements	User Story Number	User Story / Task	AcceptanceCriteria	Priority	Relea se
Customer	Accessing the Application	USN-1	As a user, I should be able to access the application from anywhere and use on any devices	User can access theapplication using the browser on any device	High	Sprint-4
	Uploading Image	USN-2	As a user, I should beable to upload images to predict the digits	User can uploadimages	High	Sprint-3
	Viewingthe Results	USN-3	As a user, I should be able to view the results	The result of the prediction is displayed	High	Sprint-3

ViewingOther Prediction	USN-4	As a user,I should be able to see other close predictions	The accuracy of othervalues must be displayed	Medium	Sprint-4
Usage Instruction	USN-5	As a user, I should have a usage instruction to knowhow to use the application	The usage instruction is displayed on the home page	Medium	Sprint-4

CHAPTER6 PROJECT PLANNINGAND SCHEDULING

a. SPRINT PLANNINGAND ESTIMATION

SPRI NT	USER STORY / TASK	STORY POIN TS	PRIORI TY	TEAM MEMBERS
Sprint - I	Get the dataset	3	High	Mubashshira S
	Explore the data	2	Medium	Mubashshira S Nithya M
	Data Pre- Processing	3	High	Mubashshira S
	Prepare training and testing data	3	High	Mubashshira S Santhiya B

Sprint - II	Create the model	3	High	Mubashshira S
	Train the model	3	High	Nithya M
	Test the model	3	High	Mubashshira S Nandhini P
Sprint - III	Improve the model	2	Medium	Mubashshira S Nithya M
	Save the	3	High	Mubashshira S
	model			
	Build the Home Page	3	High	Nandhini P Santhiya B
	Setup a database to store input images	2	Medium	Nithya M

Sprint - IV	Build the results page	3	Н	ligh	5	ubashshira S thya M
	Integrate the model withthe application		3	Hiç	gh	Nithya M
	Test the application		3	Hiç	gh	Mubas hshira S Nithya M

b. SPRINT DELIVERYSCHEDULE

SPRI NT	TOTAL STORY POIN TS	DURATI ON	SPRI NT START DATE	SPRINT END DATE (PLANNE D)	STORY POINTSCOMPLET ED (AS ON PLANNED DATE)	SPRINT RELEA SEDATE (ACTUA L)
Sprint -	11	6 Days	24 Oct 2022	29 Oct 2022	11	29 Oct 2022
Sprint -	9	6 Days	31Oct 2022	05 Nov 2022	9	05 Nov 2022

Sprint -	10	6 Days	07 Oct 2022	12 Nov 2022	10	12 Nov 2022
Sprint -	9	6 Days	14Nov 2022	19 Nov 2022	9	19 Nov 2022

CHAPTER 7 CODING & SOLUTIONING

CHAPTER8 TESTING

a. TEST CASES

Test case ID	Featu re Type	Compone nt	Test Scenario	Expected Result	Actual Result	Stat us
HP_TC_0 01	U	Home Page	Verify UI elements inthe Home Page	The Home page must be displayed properly	Working as expected	PASS
HP_TC_0 02	U	Home Page	Check if the UI elements are displayed properly in different screen sizes	The Home page must be displayed properly in all sizes	The UI is not displayed properly in screen size 2560 x 1801 and 768 x 630	FAIL
HP_TC_0 03	Functional	Home Page	Check if usercan upload their file	The inputimage should be uploaded to the application successfully	Working as expected	PASS

HP_TC_0 04	Functional	Home Page	Check if usercannot uploadunsupported files	The application should not allow user to select a non image file	User is able to upload any file	FAIL
HP_TC_0 05	Functional	Home Page	Check if the page redirects to the result page once the input is given	The page should redirect to the results page	Working as expected	PASS

BE_TC_0 01	Functional	Backend	Check if all theroutes are working properly	All the routes should properly work	Working as expected	PA SS
M_TC_0 01	Functional	Model	Check if the model can handle various imagesizes	The model shouldrescale the imageand predict the results	Working as expected	PA SS
M_TC_002	Functional	Model	Check if themodel predicts thedigit	The model shouldpredict the number	Working as expected	PA SS
M_TC_003	Functional	Model	Check if the model can handle complex inputimage	The model shouldpredict the number in the complex image	The model failsto identify thedigit since themodel is not built to handlesuch data	FAIL
RP_TC_0 01	U	Result Page	Verify UI elements inthe Result Page	The Result page must be displayed properly	Working as expected	PA SS

RP_TC_0 02	U	Result Page	Check if the input image isdisplayed properly	The input image should be displayed properly	The size of theinput image exceeds the display container	FAIL
RP_TC_0 03	U	Result Page	Check if the result is displayed properly	The result shouldbe displayed properly	Working as expected	PA SS
RP_TC_0 04	U	Result Page	Check if the other predictions are displayed properly	The other predictions shouldbe displayed properly	Working as expected	PA SS

b. USER ACCEPTANCE TESTING

i. DEFECT ANALYSIS

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Total
By Design	1	0	1	0	2
Duplicate	0	0	0	0	0
External	0	0	2	0	2
Fixed	4	1	0	1	6
Not Reproduced	0	0	0	1	1
Skipped	0	0	0	1	1

Won't Fix	1	0	1	0	2
Total	6	1	4	3	14

ii. TEST CASE ANALYSIS

Section	Total Cas es	Not Tested	Fail	Pa ss
Client Application	10	0	3	7
Security	2	0	1	1
Performance	3	0	1	2
Exception Reporting	2	0	0	2

CHAPTER9 RESULTS

a. PERFORMANCE METRICS

CHAPTER 10 ADVANTAGES & DISADVANTAGES

ADVANTAGES

- i. Reduces manual work
- ii. More accurate than average human
- iii. Capable of handling a lot of data
- iv. Can be used anywhere from any device

DISADVANTAGES

- v. Cannot handle complexdata
- vi. All the data must be in digital format
- vii. Requires a high performance serverfor faster predictions
- viii. Prone to occasional errors

CHAPTER 11 CONCLUSION

This project demonstrated a web application that uses machine learning to recognise handwritten numbers. Flask, HTML, CSS, JavaScript, and a few other technologies were used to create this project. The model predicts the handwritten digit using a CNN network. During testing, the model achieved a 99.61% recognition rate. The proposedproject is scalableand can easilyhandle a huge number of users. Since it is a web application, it is compatible with any device that can run a browser. This project is extremely usefulin realworld scenariossuch as recognizing numberplates of vehicles, processing bank cheque amounts, numeric entries in forms filledup by hand (tax forms) and so on. There is so much room for improvement, which can be implemented insubsequent versions.

CHAPTER 12 FUTURE SCOPE

This project is far from complete and there is a lot of room for improvement.

Someof the improvements that can be made to this project are as follows:

- ix. Add supportto detect from digits multipleimages and save the results
- x. Add supportto detect multipledigits
- xi. Improve model to detect digits from complex images
- xii. Add support to differentlanguages to help users from all over the world

This project has endless potentialand can always be enhanced to become better. Implementing this concept in the real world will benefit several industries and reduce the workloadon many workers, enhancing overall work efficiency.

APPENDIX

SOURCE CODE

FLASK APP

RECOGNIZER

HOME PAGE (JS)

PREDICT PAGE (HTML)

GITHUB

 $\underline{https://github.com/IBM-EPBL/IBM-Project-40041-1660621871}$