

- 1. CephFS @ SIS
- 2. CephFS best practices
- 3. CephFS in production
- 4. What we would do differently

- 1. CephFS @ SIS
- 2. CephFS best practices
- 3. CephFS in production
- 4. What we would do differently

SIS: Scientific IT Services

- A section of ETH Zürich IT Services
- Composed of ~40 experts in various areas of scientific computing
- Background in different areas of science

CephFS context

LeonhardMed Trusted Research Environment

> 10 Data Providers (DPs) Swiss (e.g. USZ, EOC) and international (UCSF)

- 1. CephFS @ SIS
- 2. CephFS best practices
- 3. CephFS in production
- 4. What we would do differently

Ceph(FS) guidelines we followed

- If using spindles, separated WAL+DB on fast devices
- Metadata pool on fast devices
- Filesystem root (default data pool) on a replicated (fast?!) pool
- Evaluate the selection of the EC algorithm (nice presentations at Cephalocon 2024)
- Validate hardware components (slow disks, faulty NICs w/ high error rates)

Always validate your hardware performance

On one node a NVME device seems to be outperforming the other:

Looking closer at the Y axis it turns out the exact opposite is true!

- 1. CephFS @ SIS
- 2. CephFS best practices
- 3. CephFS in production
- 4. What we would do differently

CephFS in production

Where synthetic benchmarks go to die

- System benchmarked with the default Pacific releases settings and 1 active MDS
- More than 1 PB of data migrated from the previous storage system
- Gradual ramp up by migrating individual projects to the new system
- It became soon clear that a single MDS daemon could not cope with the amount of requests originating from the clients.

Some tuning needed

- Incrementally increase max_mds to help the metadata service to cope with the requests, up to the current value of 7
- After the first increase to 3 we noticed a sudden increase of the Req/s counters that we later realized was due to the mds balancer exporting subtrees.
- We pinned the most active project directories to dedicated MDS demons (later we pinned them all).

Cache configuration

Doc page: https://docs.ceph.com/en/pacific/cephfs/cache-configuration/

- Lowered mds_max_caps_per_client to 524288 from 1000000
- Incrementally increase mds_cache_memory_limit up to the current value of 110 GB
- Increase the mds mds_cache_reservation from 5% to 10% (i.e. 0.10)
- Lowered the mds_cache_threshold value from 1.5 to 1.1
- Lowered mds_cache_trim_decay_rate to 0.8 from 1.0
- Increased mds_cache_trim_threshold to 393216 from 256K for Quincy and 64K for Pacific

Throttle deletion operation

Issue: deletion of millions of files caused the MDS to report being behind on trimming, eventually causing slow metadata ops.

Fix:

- Decrease mds_max_purge_files to 64
- Decrease mds_max_purge_ops_per_pg to 0.500000

Deletes would take longer but without ill effects on the MDS demon.

Adjust MDS Recall

- mds_recall_max_caps to 20000 (from 5k in Pacific and 30k in Quincy)
- mds_recall_max_decay_rate to 2.000000 (from 2.5 Pacific and 1.5 in Quincy)
- mds_recall_max_decay_threshold to 65536 (from 16K in Pacific and 128K in Quincy)
- mds_recall_global_max_decay_threshold to 262144 (from 64K in Pacific and 128K in Quincy)
- mds_recall_warning_threshold to 131072 (from 32K in Pacific and 256K in Quincy)

MDS failover

When an MDS demon fails in a busy system like ours, the newly MDS assigned to the failed rank needs more time then the default value of 60 seconds to replay the journal and join the cluster. After several attempts mds beacon grace is set to 300 seconds

CephFS production

Configuration

advanced	mds bal interval	0
advanced	mds beacon grace	300.000000
basic	mds cache memory limit	110000000000
advanced	mds cache reservation	0.100000
advanced	mds cache trim decay rate	0.800000
advanced	mds cache trim threshold	393216
advanced	mds health cache threshold	1.100000
advanced	mds log max segments	128
advanced	mds max caps per client	524288
advanced	mds max purge files	64
advanced	mds max purge ops per pg	0.500000
advanced	mds recall global max decay threshold	262144
advanced	mds recall max caps	20000
advanced	mds recall max decay rate	2.000000
advanced	mds recall max decay threshold	65536
advanced	mds recall warning threshold	131072

- 1. CephFS @ SIS
- 2. CephFS best practices
- 3. CephFS in production
- 4. What we would do differently

CephFS data pool on a replicated flash pool

Replication required since Nautilus because of the tiny objects that are created on the root of the filesystem with backtrace information (used in Disaster Recovery) and hardlinks references.

Problem:

- Currently around 560 M inodes in our 480 OSDs filesystem
- 3.5M tiny objects per disk that needs to be rebalanced if a drive breaks.

In our system it takes **as much time** to rebalance the default "empty" cephfs datapool as it tkes to rebalance the actual data.

Evaluate the selection of the EC algorithm with more care

Presentations at Cephalocon 2024 by Jamie Pryde from IBM shows how performance is highly dependent on the chosen Erasure Coding algorithm and debunk the belief that ISA-L only works only on Intel CPUs.

Reference:

Erasure Coding: 5 Ways to Split a Squid

https://www.youtube.com/watch?v=aM8sJgDD-x4

Thanks for your attention

Questions?

Mattia Belluco Cloud Architect mattia.belluco@id.ethz.ch

ETH Zurich IT Services OCT G 35 Binzmühlestrasse 130 8092 Zürich, Switzerland https://sis.id.ethz.ch