《金属箔式应变片与电容式传感器》实验报告

实验者姓名: 李昭阳 学号: 2021013445 实验日期: 2023/10/19 实验组号: A3

实验 A(一) 金属箔式应变片——单臂电桥性能实验

一、实验目的

了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。

二、实验原理

通过弹性元件,可以将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片做成各种参数检测的传感器。

三、实验仪器

传感器实验模块、砝码、万用表、 $\pm 15V$ 电源、 $\pm 5V$ 电源、传感器调理电路挂件应变式传感器实验单元、热风枪。

四、实验数据处理与分析

实验(一)数据记录表格如下表所示:

单臂电桥输出电压与所加负载重量值

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	5. 5	11. 1	16.8	22.6	28. 1	33.8	39. 5	45. 2	50. 9	56. 5

利用最小二乘法绘制出单臂电桥传感器的特性曲线,如下图所示:

由图可知系统灵敏度为 $S_1=rac{dy}{dx}=0.284mV/g$,同时求得残差如下表所示:

最小二乘拟合残差表

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	5. 5	11. 1	16.8	22.6	28.1	33.8	39. 5	45. 2	50.9	56. 5
拟合电压	5. 47272	11. 14544	16.81816	22. 49088	28. 1636	33.83632	39. 50904	45. 18176	50.85448	56. 5272
残差∆/mV	0.02728	-0.04544	-0.01816	0.10912	-0.0636	-0.03632	-0.00904	0.01824	0.04552	-0.0272

系统非线性误差 $\delta_{f1}=rac{|\Delta|_{max}}{2000}=rac{0.10912}{56.5}=0.193\%$

二、从理论上分析产生非线性误差的原因

实验原理图如图所示:

实验原理图

电源输入 $V_+=5V$, $V_-=-5V$,设差分放大电路的输入 u_i ,

$$u_{i+} = rac{R_6 V_+}{R_6 + R_7} + rac{R_7 V_-}{R_6 + R_7} = 0$$

$$u_{i-} = rac{R_5 V_+}{R_5 + R_1} + rac{R_1 V_-}{R_5 + R_1} = rac{R_5 - R_1}{R_5 + R_1} U_i$$

得到

$$u_i = u_{i+} - u_{i-} = rac{R_1 - R_5}{R_5 + R_1} U_i$$

设 R_1 受压力影响电阻变化为 ΔR ,那么

$$u_i = rac{\Delta R}{2R + \Delta R} U_i$$

差分放大电路放大倍数为 A_{uu} ,可得 u_o 与 ΔR 关系为

$$u_o = A_{uu} rac{\Delta R}{2R + \Delta R} U_i$$

应变片的电阻值R与应变 ε 之间有如下关系:

$$R = R_0(1 + K\varepsilon)$$

K为常数,由弹性元件性质知应变与压力F成正比,有

$$\varepsilon = \frac{F}{k_0} = \frac{m}{k}$$

则测量电压 u_o 与放在砝码盘上砝码质量m的关系式为:

$$u_o = rac{5KA_{uu}}{700k + Kkm}m$$

由于Km << 700, u_o 与m可用线性关系拟合,但也因此引入了非线性误差。

三、思考题

- (a). 单臂电桥时,作为桥臂电阻应变片应选用: (1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以
- 答: (3)正、负应变片均可以。这个变化仅仅影响灵敏度的符号,对结果的数值不造成影响。
- (b). 说明步骤 5 的实验现象,并分析该现象出现的原因。

答:随着吹风机对应变片的加热,输出电压从0开始迅速下降。分析其原因是应变片电阻随温度升高而减小导致的。

表 1-1 单臂电桥输出电压与所加负载重量值

重量 (g)	20	40	60	80	100	120	140	160	180	200
电压 (mV)	1.7	1). [16.8	22.6	28.1	33.8	39.5	41.2	50.3	165

实验 A(二) 金属箔式应变片——半桥性能实验

一、实验目的

- 1. 了解半桥的工作原理。
- 2. 比较半桥与单臂电桥的不同性能,了解其特点。

二、实验原理

把不同受力方向的两只应变片接入电桥作为邻边, 电桥输出灵敏度提高, 非线性得到改善。

三、实验仪器

传感器实验模块、传感器调理电路挂件应变式传感器实验单元、砝码、万用表、 $\pm 15V$ 电源、 $\pm 5V$ 电源、热风枪。

四、实验数据处理与分析

实验(二)数据记录表格如下表所示:

半桥测量时,输出电压与加负载重量值

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	10.2	20.5	30.8	41	51.2	61.4	71.6	81.9	92. 2	102.4

利用最小二乘法绘制出半电桥时传感器的特性曲线,如下图所示:

由图可知系统灵敏度为 $S_2=rac{dy}{dx}=0.512mV/g$,残差如下表所示:

最小二乘拟合残差表

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	10.2	20. 5	30.8	41	51.2	61.4	71.6	81.9	92. 2	102.4
拟合电压	10.25091	20. 48849	30.72607	40.96365	51. 20123	61.43881	71.67639	81.91397	92. 15155	102.3891
残差∆/mV	-0.05091	0.011507	0.073927	0.036347	-0.00123	-0.03881	-0.07639	-0.01397	0.048447	0.010867
可求	得系统	非线性误	差 $\delta_{f2}=$	$rac{ \Delta _{max}}{ ext{量程}}$ =	$=\frac{0.07639}{102.4}$	$\frac{9}{} = 0.0$	75%			

二、半桥的输出灵敏度比单臂电桥时提高一倍、非线性误差得到改善的分析

实验原理图如图所示:

电源输入 $V_+=5V$, $V_-=-5V$,考虑差分放大电路的输入 u_i ,

$$u_{i+} = rac{R_6 V_+}{R_6 + R_7} + rac{R_7 V_-}{R_6 + R_7} = 0V$$

$$u_{i-} = rac{R_2 V_+}{R_1 + R_1} + rac{R_1 V_-}{R_2 + R_1} = rac{R_2 - R_1}{R_2 + R_1} U_i$$

得到

$$u_i = u_{i+} - u_{i-} = rac{R_1 - R_2}{R_2 + R_1} U_i$$

设 R_1 受压力影响电阻变化为 ΔR ,则 R_2 变化为 $-\Delta R$,那么

$$u_o = A_{uu} \frac{\Delta R}{R} U_i$$

对比实验中(一)

$$u_o = A_{uu} rac{\Delta R}{2R + \Delta R} U_i$$

由于 $\Delta R << 700$,可知实验(二)的灵敏度为 $\frac{U_i}{R}$,是实验(一)的灵敏度 $\frac{U_i}{2R}$ 的两倍,同时分母中 ΔR 的消去排除了理论层面引入的非线性误差。

三、思考题

(a). 半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在: (1)对边(2)邻边(3)其他(具体说明)

答:对边,两个应变片电阻的非线性误差得以相互抵消。

- (b). 桥路(差动电桥)测量时存在非线性误差,是因为: (1)电桥测量原理上存在非线性 (2)应变片应变效应是非线性的(3)调零值不是真正为零。
 - 答: (1) 电桥测量原理上存在非线性
- (c). 说明步骤 2 的实验现象,并分析该现象出现的原因。

答:均匀加热两个应变片,发现输出电压的绝对值幅度较小,测量电压在0附近范围波动而非单调下降。这是由于差动电路,两个应变片随着温度变化而产生的阻值变化基本相同,测量电压变化幅度不大。

表 2-1 半桥测量时,输出电压与加负载重量值

重量 (g)	20	40	60	80	100	120	140	160	180	200
电压 (mV)	10.2	>0. j	20.8	41.0	5/2	61.4	71.6	8/19	92,2	102.4

实验 A(三) 金属箔式应变片——全桥性能实验

一、实验目的

了解全桥测量电路的原理及优点。

二、实验原理

全桥测量电路中,将受力性质相同的两个应变片(共四个)分别接入电桥对边,应变片初始

阻值相同,其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到明显改善。

三、实验仪器

传感器实验模块、传感器调理电路挂件应变式传感器实验单元、砝码、万用表、 $\pm 15V$ 电源、 $\pm 5V$ 电源、热风枪。

四、实验数据处理与分析

实验(三)全桥输出电压与加负载重量值数据记录表格如下表所示:

全桥输出电压与加负载重量值

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	22.4	45.8	66. 6	88.4	110.4	132.4	154. 5	176.6	203.3	225. 2

利用最小二乘法绘制出全桥时传感器的特性曲线,如下图所示:

由图可知系统灵敏度为 $S_3=rac{dy}{dx}=1.12mV/g$ (保留三位有效数字),进一步得残差如下所示:

最小二乘拟合残差表

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	22.4	45.8	66. 6	88.4	110.4	132.4	154. 5	176. 6	203.3	225. 2
拟合电压	21.7053	44. 1173	66. 5293	88.9413	111.3533	133.7653	156. 1773	178. 5893	201.0013	223. 4133
残差∆/mV	0.6947	1.6827	0.0707	-0.5413	-0. 9533	-1. 3653	-1.6773	-1. 9893	2. 2987	1.7867
可求	? 得系统=	非线性误	差 $\delta_{f3}=$	$rac{ \Delta _{max}}{oxedsymbol{ ilde{B}}}$:	$= \frac{2.2287}{225.2}$	= 0.99	90%			

设计为电子称后,实验(三)电桥输出电压与加负载重量值数据记录表格如下表所示:

电桥输出电压与加负载重量值

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	20. 1	39. 6	59.8	79. 7	99. 2	118.6	138.7	157. 7	177.5	196. 5

利用最小二乘法绘制出全桥时传感器的特性曲线,如下图所示:

由图可知系统灵敏度为 $S_4=rac{dy}{dx}=0.981mV/g$ (保留三位有效数字),进一步得残差如下所示:

最小二乘拟合残差表

重量(g)	20	40	60	80	100	120	140	160	180	200
电压(mV)	20. 1	39.6	59.8	79. 7	99. 2	118.6	138. 7	157. 7	177. 5	196. 5
拟合电压	20.4091	40.0382	59. 6673	79. 2964	98. 9255	118. 5546	138. 1837	157.8128	177. 4419	197.071
残差∆/mV	-0.3091	-0.4382	0. 1327	0.4036	0.2745	0.0454	0. 5163	-0.1128	0.0581	-0. 571

可求得系统非线性误差 $\delta_{f4}=rac{|\Delta|_{max}}{ extbf{ extit{B}}R}=rac{0.571}{196.5}=0.291\%$

二、比较单臂、半桥、全桥输出时的灵敏度和非线性误差,并从理论上加以分析比较,得出相应的结论。

从计算结果上看, $\delta_{f3}=2\delta_{f2}=4\delta_{f1}$ 。

进行理论分析,同实验(一)中详细分析,可得实验(一)、(二)、(三)的输入电压分别为:

$$u_{i1} = rac{\Delta R}{2R + \Delta R} U_i$$

$$u_{i2}=rac{2\Delta R}{2R}U_{i}$$

$$u_{i3} = \frac{4\Delta R}{2R} U_i$$

从理论分析上看,单臂电桥理论部分引入了非线性误差,而半桥、全桥理论公式未引入非线性误差,导致 δ_{f3} 偏高的原因可能是由于应变片数目增多,两对应变片产生的非线性应变误差增大,以及读数时未达到稳定从而造成 δ_{f3} 偏高。

三、分析什么因素会导致电子秤的非线性误差增大,怎么消除,若要增加输出灵敏度,应采取哪些措施。

- (1)应变片的产生非线性应变可能导致电子秤的非线性误差增大,所以要控制测量物体的重量在一定范围内,防止重量过大产生非弹性应变:
 - (2) 应变片电阻受到温度影响,测量时所有应变片应处于同一温度下;

增加灵敏度:测量电压与重物 m的关系式为

$$u_o = rac{20KA_{uu}}{700k}m$$

实验可通过增大差分放大器增益 A_{uu} 进行调节,具体可通过调节 R_{W5} 实现。

四、思考题

(a). 全桥测量中,当两组对边(R_1 、 R_3 为对边)值R相同时,即 $R_1=R_3$, $R_2=R_4$,而 $R_1 \neq R_2$,时,是否可以组成全桥: (1)可以(2)不可以。

答:可以。这种电阻值组合下,输入电压

$$u_i = (rac{R_1}{R_1 + R_2} - rac{R_3}{R_3 + R_4})(V_+ - V_-) = rac{20\Delta R}{R_1 + R_2}$$

系统灵敏度发生了改变,但依旧存在差动互补。

(b). 如图所示,某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,图展示的两种方式中哪种更为合理,分析原因并说明如何利用这四片电阻应变片组成电桥,是否需要外加电阻。

应变式传感器受拉时传感器周面展开图

答:右侧的方法更为合理,因为结合了拉力的方向,我们可以以不同的方向粘贴应变片,使得在受到相同的拉伸时,电阻的变化大小也会不同。这样就会产生电压差,从而实现了不同的电压输出。

相比之下,左侧的方式由于应变片的方向相同,因此在受到相同的拉伸时,电阻的变化大小也会相同。这样无法实现电桥的效果。然而,通过右侧的粘贴方式,我们可以直接构成全桥电路,无需额外添加电阻。这种方式更为合理。

(c). 若用热风枪加热全桥电路中的四片应变片,分析应该会有什么现象并说明原因。

- 答: 当加热温度均匀时,输出电压不变。因为全桥电路差动结构可以使两对应变片的阻值变化互相抵消。
- (d). 对比分析单臂电桥、半桥和全桥电路是否受温度影响,并解释背后的原因。
- 答:单臂电桥会受到温度的影响,而半桥和全桥不会。这是因为半桥和全邻边电阻受温度的影响会差动抵消,而单臂电桥受温度的影响无法抵消。

表 3-1 全桥输出电压与加负载重量值

										200
电压 (mV)	22.4	45.8	66.6	88.4	112.4	132.4	154.7	176.6	203.5	225.5

表 3-2 电桥输出电压与加负载重量值

重量 (g)	20	40	60	80	100	12	140	160	180	למל
电压 (mV)	20.1	39.6	59.8	78.7	33.2	1186	138.7	157.7	177.5	136.5

实验 A(四) 电容式传感器的位移特性实验

一、实验目的

了解电容式传感器结构及其特点。

二、实验原理

利用平板电容 $C=\varepsilon S/d$ 和其它结构的关系式通过相应的结构和测量电路可以选择 ε 、S、d中三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度 $(\varepsilon$ 变)测微小位移(变d)和测量液位(变 S)等多种电容传感器。

三、实验仪器

传感器实验模块、传感器调理电路挂件电容式传感器实验单元、测微头、万用表、 $\pm 15V$ 电源。

四、实验数据处理与分析

实验(四)电容传感器位移与输出电压值数据记录表格如下表所示:

电容传感器位移与输出电压值

X (mm)	3. 56	3.76	3.96	4. 16	4. 36	4. 56	4.76	4.96	5. 16	5. 36	5. 56
电压V(mV)	-240.7	-193.8	-149.6	-105. 3	-55	0	60.3	100.9	145	190. 1	242. 1

利用最小二乘法绘制出电容传感器的特性曲线,如下图所示:

由图可知系统灵敏度为 $S_3=rac{dy}{dx}=243.69mV/mm$,进一步得残差如下表所示:

最小二乘拟合残差表

X (mm)	3. 56	3. 76	3. 96	4. 16	4. 36	4. 56	4. 76	4. 96	5. 16	5. 36	5. 56
电压V(mV)	-240.7	-193.8	-149.6	-105.3	-55	0	60.3	100.9	145	190. 1	242.1
拟合电压(mV)	-244. 264	-195. 526	-146. 788	-98.0496	-49. 3116	-0.5736	48. 1644	96.9024	145.6404	194. 3784	243. 1164
残差△/mV	3. 5636	1.7256	-2.8124	-7.2504	-5.6884	0.5736	12. 1356	3.9976	-0.6404	-4. 2784	-1.0164
残差 Δ/mV 3.5636 1.7256 -2.8124 -7.2504 -5.6884 0.5736 12.1356 3.9976 -0.6404 -4.2784 -1.0164 可求得系统非线性误差 $\delta_{f3}=\frac{ \Delta _{max}}{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline}\overline{\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline}\overline{\overline \overline{\overline}\overline{\overline}$											

二、 根据实验结果,分析引起这些非线性的原因,并说明怎样提高传感器的线性度。

首先,内外极简原始覆盖长度不够长,边缘效应使得非线性产生;其次,实验过程中由于电容的敏感性,抖动、温度、光照、周围电子仪器的辐射、人和仪器的相对位置都可能影响到测量结果,因此周围环境的稳定性也会造成系统的非线性性。

为了提高传感器的线性度,我认为首先需要保持环境的稳定性,尽可能保证周围的电子 仪器等不要对对电容造成影响;同时我认为还需要克服边缘效应,因此可以采用一些补偿方 式使得电容边沿磁场均匀。

三、思考题

(a). 简述什么是电容式传感器的边缘效应,它会对传感器的性能带来哪些不利影响。

答:边缘效应:在理想条件下,电容式传感器两极板间的静电场是均匀的。但实际上,极板边缘处的电场线弯曲并且向外发散,由此形成了边缘的附加电容,这就叫边缘效应。对于传感器而言,边缘效应指在电容式传感器边缘和角落处,由于电场的分布不均匀,导致测量结果的不准确。

不利影响: 传感器在边缘处的灵敏度较低,可能会导致在某些实际应用场景下无法满足要求的精度要求;由于传感器边缘的结构与中心结构不同,导致传感器初始温度与温度变化时的响应不一致,从而产生温漂影响;由于边缘区域电场的较大不均匀性,可能会导致信号失真,从而丧失部分传感器所必需的信号清晰度和可靠性,不利于信息的准确和稳定。

(b). 电容式传感器和电感式传感器相比,有哪些优缺点?

答: 优点: 电容式传感器应用范围更广泛, 电感式传感器只能用于金属被测物体; 电容式传感器的灵敏度更高, 对微小的输入变化更敏感。

缺点:电容式传感器对使用环境十分敏感,灰尘、油污和水等因素都会改变介电常数, 从而改变测量结果,电感式传感器对环境要求相对低很多。

表 4-1 电容传感器位移与输出电压值

X (mr	n)	3.560	3.760	3.960	4.160	4.360	4,560	4.760	4.960	5.160	5.3h	1.2	·60
V (mV	<i>V</i>)	2407	-193.8	-149.6	-105.3	-55.0	0.0	60.3	100.9	145.0	190.1	24	2.

反思

本次实验中,各项试验的完成度较好,同时收集的各项数据也比较精准、易于分析结论。我在之前对实验的顺序策略有错误估计,重复搭建了各类测量电路,降低了实验速度。同时在预估计时存在一些失误。在以后的实验过程中,我会更认真地进行预习规划,同时也会在以后的实验过程中更加谨慎,以保证实验结果更加准确。