Cairo University
Faculty of Engineering
Computer Engineering

Computer Architecture

Lab 1

You are required to design a 8-bit ALU that accepts a 2 8-bit input values "A" and "B" and provides a 8-bit output "F" and a 1-bit output Cout. The ALU has 4-bit selection inputs "S" (S0->S3) and Cin input. The ALU will provide 16 operations according to the following table:

	S3	S2	S1	S0					
	0	0	0	0					
	0	0	0	1					
Part A	0	0	1	0	Next time				
	0	0	1	1					
	0	1	0	0	F = A xor B, Cout = 0				
	0	1	0	1	F = A nand B, Cout = 0				
Part B	0	1	1	0	F = A or B, Cout = 0				
	0	1	1	1	F = Not A, Cout = 0				
	1	0	0	0	F = Logic shift left A, Cout = shifted bit				
	1	0	0	1	F = Rotate left A, Cout = rotated bit				
Part C	1	0	1	0	F = Rotate Left A with carry (cin), Cout = rotated bit				
	1	0	1	1	F = 0000, Cout = 0				
	1	1	0	0	F = Logic shift right A, Cout = shifted bit				
	1	1	0	1	F = Rotate right A, Cout = rotated bit				
Part D	1	1	1	0	F = Rotate right A with carry (cin), Cout = rotated bit				

1	1	1	1	F = Arithmetic Shift A

Requirement:

- 1- Implement part B
- 2- Compile your code without any errors or warning
- 3- Simulate the code with the given inputs below
- 4- Save the do files to submit
- 5- Write a testbench to test the code you implemented

S	Operation	Α	В	Cin	F	Cout
0100	XOR	F0	В0	-	40	0
0101	NAND	F0	ОВ	-	FF	0
0110	OR	F0	В0	1	F0	0
0111	NOT	F0	-	-	OF	0

Assignment:

- 1- Implement part C and part D each one in a separate file
- 2- Compile your code without any errors or warning
- 3- Create a new component to integrate part B,C,D using a multiplexer
- 4- Write a testbench to test the code you implemented using the testcases in the table below "in order" where S = 01 chooses part B, S= 10 chooses part C, S = 11 chooses part D.

	Operation	Α	В	Cin	F	Cout
1000	Logic shift left	F0	-	-	EO	1
1001	Rotate left	F0	-	-	E1	1
1010	Rotate left with cin	F0	-	0	E0	1
1011	F=0000	F0	1	ı	00	0
1100	Logic shift right	F0	-	-	78	0
1101	Rotate right	F0	-	1	78	0
1110	Rotate right with cin	F0	-	0	78	0
1111	Arithmetic shift right	F0	-	-	F8	0
1010	Rotate left with cin	F0	1	1	E1	1
1110	Rotate right with cin	FO	-	1	F8	0