HW4: CNN

109511219 林錦樑

整個 classifier 的架構參考 PyTorch 官方教學

1. CNN

i. Baseline

Baseline 的 CNN model 我使用了四層 convolution 與 max pooling, 萃取出特徵後再使用五層 FC layer, 其結構如下圖。

```
class simpleCNN(nn.Module):
   def __init__(self):
        super().__init__()
        self.conv2 = nn.Conv2d(6, 12, 5) #58*58*12
        self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(20 * 5 * 5, 256)
        self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 64)
        self.fc4 = nn.Linear(64, 32)
        self.fc5 = nn.Linear(32, 10)
   def forward(self, x):
        x = self.pool(F.relu(self.conv1(x))) #62*62*5
        x = self.pool(F.relu(self.conv2(x))) #29*29*5
        x = self.pool(F.relu(self.conv3(x))) #13*13*5
        x = self.pool(F.relu(self.conv4(x))) #5*5*20
x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc2(x))
        x = F.relu(self.fc3(x))
         x = F.relu(self.fc4(x))
         x = self.fc5(x)
         return x
```

Hyperparameters 的選擇上包括 batch size 為 256,optimizer 使用 Adam,learning rate 設為 0.001,總共訓練 50 個 epochs。資料的部分圖 片輸入大小為 128*128,各種類圖片資料量如下表格。

類別	數量
butterfly	2012
cat	1528
chicken	2998
cow	1766
dog	4763
elephant	1346
horse	2523
sheep	1720
spider	4721
squirrel	1762

經過 50 個 epochs 後,其 accuracy 與 loss 趨勢如下圖。可以看出 loss 隨 epoch 增加持續下降,accuracy 在大概第 15 個 epoch 後,training accuracy 能持續上升,而 validation accuracy 在 55~60%震盪,可以推測 訓練過程出現 overfitting 的現象。

從全部資料得出的各類別的 accuracy 與 confusion matrix 來看, cat 的表現最差,常常誤分到 dog,其可能原因除了兩者相似之外, cat 的訓練資料最少也會導致 model 對 cat 的分類能力較差。而其他訓練圖片少於兩千張的類別,其準確率皆低於 70%;訓練圖片大於四千張的類別,其準確率可大於 85%,可見訓練圖片數量會影響模型分類表現。

ii. L2 Regularization

由於出現 overfitting 的現象,我先利用 L2 Regularization 的方式限制參數大小,試著減緩 overfitting 的情形。在 optimizer 的參數上加上 1e-5 的 weight_decay,並將 learning rate 調為 0.005,訓練結果如下圖。

但其結果並不盡理想,不論是 training 或是 validation 的 accuracy 都降低了約 10%左右,loss 的部分則是由於加入了 Regularization term,有出現增加的情況。

從全部資料得出的各類別的 accuracy 與 confusion matrix 來看, cat 的表現有變好,但誤分到 dog 的情況有增加,反倒是分類到其他類別的情況有減少。其他類別的準確率大部分下降,尤其以 squirrel 下降最多,最容易誤分到 dog。從以上實驗可看出 L2 Regularization 的方法無法提升模型準確度。

iii. Dropout

由於 L2 Regularization 無法解緩 overfitting 的問題,甚至帶來更差的結果,我決定改用 dropout 的方式來處理問題。Dropout 會在前向傳播時,依照設定的機率關閉神經元,降低對於特定神經元的依賴,如下圖所示。在實作上我在每層 Fully Connected Layer 都加上了機率為 0.3的 dropout。

加入 dropout 後的實驗結果如下, validation 的 accuracy 回到跟 baseline 差不多水準,但 training accuracy 有下降, loss 也有上升,可能需要經過更多 epoch 的訓練才能得出較 baseline 好的 model。

從全部資料得出的各類別的 accuracy 與 confusion matrix 來看,進步與退步的類別各占一半。其中將 cat 誤分到 dog 的狀況變得更加嚴重。

從以上結果來看,L2 Regularization與dropout都無法解決 overfitting的問題,甚至會帶來更差的結果。我推測可能的原因來自訓練圖片不夠多,導致一些處理 overfitting的方法不夠有效。也有可能嘗試改變這些方法的 hyperparameter 後,能帶來更好的效果。

2. ResNet18

i. Baseline

由於可能因訓練資料不足,而造成前面使用處理 overfitting 的方法 來提升 validation accuracy 的效果都不盡理想,我嘗試使用一個更大的 模型來同時提升 training 和 validation accuracy,這邊以 ResNet18 來進行實驗。

ResNet18 包含 17 層的 convolutional layer 與 1 層的 FC layer, 共 18 層,其中由兩層 convolutional layer 所形成的 residual block 可以透過增加一條加法路線的方式,解決梯度消失的問題。整體架構如下圖,其中上方連線部分即為 residual block 的加法路線。

整個 model 的部分是經過一個 ResNet18 萃取出特徵後,再使用四層 FC layer 進行分類任務,其結構如下圖。

```
class ResNet(nn.Module):
    def __init__(self):
        super().__init__()
        #self.resnet18 = models.resnet18(weights='IMAGENET1K_V1')
        self.resnet18 = models.resnet18()
        self.fc = nn.Linear(self.resnet18.fc.in_features, 512)
        self.fc2 = nn.Linear(512, 128)
        self.fc3 = nn.Linear(128, 32)
        self.fc4 = nn.Linear(32, 10)
        self.resnet18.fc = self.fc
        #self.dropout = nn.Dropout(0.3)

def forward(self, x):
        x = self.resnet18(x)
        #x = self.dropout(x)
        x = F.relu(self.fc2(x))
        #x = self.dropout(x)
        x = F.relu(self.fc3(x))
        #x = self.fc4(x)
        return x
```

從整體 accuracy 來看,training accuracy 比一般簡單的 CNN 上升速度還快,validation accuracy 也增加了約 10%左右。Loss 的收斂速度也增加許多。從個別的 accuracy 來看,整體表現大幅提升,各類別 accuracy 都有大於 88%,且各類別表現較為平均。可以看出使用更大的模型能帶來更好的效果,但仍舊存在 overfitting 的問題。

Pretrained model 的部分是使用了 IMAGENET1K_V1 這個 weight,從整體與個別的 accuracy 來看皆有提升,validation 的 accuracy 增加了 10%~15%,各類別的 accuracy 均能大於 90%,可以看出使用 pretrained model 能對這個分類任務帶來更好的效果。

ii. L2 Regularization

以下為使用 L2 Regularization 後的 ResNet18 model 的表現。從 accuracy 曲線、各類別 accuracy 與 confusion matrix 來看,皆無太大變化。

以下為使用 L2 Regularization 後的 pretrained ResNet18 model 的表現。從 accuracy 曲線來看,validation accuracy 掉了約 10%左右。從各類別 accuracy 與 confusion matrix 來看,大部分類別的 accuracy 皆下降。

iii. Dropout

以下為使用 Dropout 後的 ResNet18 model 的表現。從 accuracy 曲線、各類別 accuracy 與 confusion matrix 來看,皆無太大變化。

以下為使用 Dropout 後的 pretrained ResNet18 model 的表現。從 accuracy 曲線來看,validation accuracy 掉了約 10%左右。從各類別 accuracy 與 confusion matrix 來看,無太大變化。

