☐ TaaviSalum / Digital-electronics-1

README.md

Digital-electronics-1

Laboratory #5

Exercise 1: Preparation tasks

Connection of push buttons on Nexys A7 board

Table with calculated values

Time interval	Number of clk periods	Number of clk periods in hex	Number of clk periods in binary
2 ms	200 000	x"3_0d40"	b"0011_0000_1101_0100_0000"
4 ms	400 000	x"6_1A80"	b"0110_0001_1010_1000_0000"
10 ms	1 000 000	x"F_4240"	b"1111_0100_0010_0100_0000"
250 ms	25 000 000	x"17D_7840"	b"0001_0111_1101_0111_1000_0100_0000"
500 ms	50 000 000	x"2FA_F080"	b"0010_1111_1010_1111_0000_1000_0000"
1 sec	100 000 000	x"5F5_E100"	b"0101_1111_0101_1110_0001_0000_0000"

Exercise 2: Bidirectional counter

VHDL code of the process:

VHDL reset and stimulus processes from testbench file:

```
-- Reset generation process
______
p_reset_gen : process
begin
   s_reset <= '0';
  wait for 12 ns;
   -- Reset activated
   s_reset <= '1';</pre>
   wait for 73 ns;
   s reset <= '0';
   wait;
end process p reset gen;
______
-- Data generation process
p stimulus : process
begin
   report "Stimulus process started" severity note;
   -- Enable counting
   s en <= '1';
   s_cnt_up <= '1';
   wait for 380 ns;
   s_cnt_up <= '0';
   wait for 380 ns;
   -- Disable counting
```

```
s_en <= '0';

report "Stimulus process finished" severity note;
wait;
end process p_stimulus;</pre>
```

Simulated time waveforms

Exercise 3: Top level

VHDL code from source file

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity top is
    Port ( CLK100MHZ : in STD LOGIC;
           BTNC : in STD LOGIC;
           SW : in STD LOGIC VECTOR (0 downto 0);
           LED: out STD LOGIC VECTOR (3 downto 0);
           CA : out STD LOGIC;
           CB : out STD_LOGIC;
           CC : out STD LOGIC;
           CD : out STD LOGIC;
           CE : out STD_LOGIC;
           CF : out STD LOGIC;
           CG : out STD_LOGIC;
           AN : out STD_LOGIC_VECTOR (7 downto 0));
end top;
-- Architecture body for top level
architecture Behavioral of top is
    -- Internal clock enable
    signal s en : std logic;
    -- Internal counter
    signal s cnt : std logic vector(4 - 1 downto 0);
```

begin

```
-- Instance (copy) of clock enable entity
    clk_en0 : entity work.clock_enable
        generic map(
            g_MAX \Rightarrow 10
        )
        port map(
            clk
                 => CLK100MHZ,
            reset => BTNC,
            ce_o => s_en
        );
    ______
    -- Instance (copy) of cnt up down entity
    bin_cnt0 : entity work.cnt_up_down
        generic map(
            g CNT WIDTH => 4
        )
        port map(
            clk
                       => CLK100MHZ,
            reset
                       => BTNC,
            en i
                       => s_en,
            cnt_up_i \Longrightarrow SW(0),
            cnt o
                        => s_cnt
        );
    -- Display input value on LEDs
    LED(3 downto 0) <= s_cnt;</pre>
    -- Instance (copy) of hex 7seg entity
    hex2seg : entity work.hex 7seg
        port map(
            hex i => s_cnt,
            seg_o(6) \Rightarrow CA,
            seg o(5) \Rightarrow CB,
            seg o(4) \Rightarrow CC,
            seg_o(3) \Rightarrow CD,
            seg o(2) \Rightarrow CE,
            seg_o(1) \Rightarrow CF,
            seg o(0) \Rightarrow CG
        );
    -- Connect one common anode to 3.3V
    AN <= b"1111_1110";
end architecture Behavioral;
```

Sketch of the top layer:

