referd

CONTROLE DE VERSÃO				
Autor	Versão	Data	Descrição	
Alexandre Barbosa Linhares	1.0	25/03/2023	Criação do documento	

Sumário

1	Introdução	3
2	Solicitação	3
3	Premissas da Solução	3
	3.1 Origem e especificação dos dados:	3
	3.2 Ambiente de Desenvolvimento:	3
4	Modelo da Arquitetura Sugerida	4
	4.1 Arquitetura Bruta	4
	4.2 Arquitetura Final	5

1 Introdução

Este documento visa detalhar todos os objetivos do teste da Refera de um ponto de vista técnico, listando as soluções, premissas e atividades de execução durante a elaboração do projeto.

2 Solicitação

Com o objetivo de transformar um banco de dados OLTP (Online Transaction Process) convertendo o mesmo em um banco de dados OLAP (Online Analytical Processing).

3 Premissas da Solução

Nesta seção discutiremos as premissas da solução.

3.1 Origem e especificação dos dados:

Teremos uma conexão aos dados por meio do Docker Compose yml, onde os mesmos se encontram armazenados em 15 tabelas no PostgreSQL em formato transacional.

3.2 Ambiente de Desenvolvimento:

Jupyter Notebook, DBeaver, PostgreSQL, Docker Compose, Python e Pandas.

4 Modelo da Arquitetura Sugerida

4.1 Arquitetura Bruta

Arquitetura Bruta foi elaborada inicialmente através do Docker Compose, onde os dados se encontram armazenados, usaremos o Dbeaver para acessar os Dados transacionais.

Figura 1: Arquitetura Bruta.

4.2 Arquitetura Final

A Arquitetura final foi elaborada após o serem tratado e convertidos em dimensão e fato no Python(Pandas).

Figura 2: Arquitetura Final.