

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road, Tianliao,Gongming,Shenzhen,China Phone: 86-755-26748019 Fax: 86-755-26748089 http://www.szhtw.com.cn

TEST REPORT

Report Reference No.....:: TRE17070255 R/C..... 17699

FCC ID.....: 2ACZ2-770G

Applicant's name.....: **Worldex International Ltd**

3A-8A, Mont Orchid Riverlet, Gongye 3rd Rd, Nanshan, Address.....

Shenzhen, China

Manufacturer....: Shenzhen Iproda Technology Co.,Ltd

4F-5F,C Building,Gongming Tang Wei Village Wanfeng Industrial Address....:

Zone, Guangming New District Shenzhen, China.

Test item description: **3G Tablet PC**

Trade Mark: TOUCH+

Model/Type reference....: 770G

Listed Model(s):

FCC 47 CFR Part2.1093 Standard:

ANSI/IEEE C95.1: 1999

IEEE 1528: 2013

Date of receipt of test sample..... Jul. 26, 2017

Date of testing..... Jul. 27, 2017- Aug.3, 2017

Date of issue..... Aug.14, 2017

Result....: **PASS**

Testing Laboratory Name:

Compiled by

(position+printedname+signature)...: File administrators: SiyuanRao

Supervised by

(position+printedname+signature)...: Test Engineer: SiyuanRao Siyuan Rao Siyuan Rao

Approved by

(position+printedname+signature)...: Hans Hu Manager:

Shenzhen Huatongwei International Inspection Co., Ltd

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE17070255 Page: 2 of 64 Issued: 2017-08-14

Contents

<u>1.</u>	Test Standards and Report version	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	Summary	4
2.1.	Client Information	4
2.2.	Product Description	4
<u>3.</u>	Test Environment	6
3.1. 3.2.	Address of the test laboratory Test Facility	6 6
4 <u>.</u>	Equipments Used during the Test	
<u>5.</u>	Measurement Uncertainty	_
<u>6.</u>	SAR Measurements System Configuration	
6.1.	SAR Measurement Set-up	10
6.2.	DASY5 E-field Probe System	11
6.3.	Phantoms	12
6.4.	Device Holder	12
<u>7.</u>	SAR Test Procedure	13
7.1.	Scanning Procedure	13
7.2.	Data Storage and Evaluation	14
<u>8.</u>	Position of the wireless device in relation to the phantom	16
8.1.	Head Position	16
8.2.	Body Position	17
8.3.	Hotspot Mode Exposure conditions	17
<u>9.</u>	System Check	18
9.1.	Tissue Dielectric Parameters	18
9.2.	SAR System Check	20
<u>10.</u>	SAR Exposure Limits	28
<u>11.</u>	Conducted Power Measurement Results	29
<u>12.</u>	Maximum Tune-up Limit	35
<u>13.</u>	Antenna Location	37
<u>14.</u>	SAR Measurement Results	38
<u>15.</u>	Simultaneous Transmission analysis	56
<u>16.</u>	TestSetup Photos	61
17	External and Internal Photos of the EUT	64

Report No: TRE17070255 Page: 3 of 64 Issued: 2017-08-14

1. Test Standards and Report version

1.1. Test Standards

The tests were performed according to following standards:

FCC 47 Part 2.1093 Radiofrequency Radiation Exposure Evaluation:Portable Devices

<u>IEEE Std C95.1, 1999:</u> IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 KHz to 300 GHz.

<u>IEEE Std 1528™-2013:</u> IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04: SAR Measurement Requirements for 100 MHz to 6 GHz

KDB 865664 D02 RF Exposure Reporting v01r02: RF Exposure Compliance Reporting and Documentation Considerations

KDB 447498 D01 General RF Exposure Guidance v06: Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies

KDB248227 D01 802 11 Wi-Fi SAR v02r02: SAR Measurement Proceduresfor802.11 a/b/g Transmitters

KDB 648474 D04 Handset SAR v01r03: SAR Evaluation Considerations for Wireless Handsets

KDB 616217 D04 SAR for laptop and tablets v01r02:SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers

KDB941225 D01 3G SAR Procedures v03r01: SAR Measurement Procedures for 3G Devices

<u>KDB 941225 D06 Hotspot Mode v02r01:</u> SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

KDB941225 D05 SAR for LTE Devices v02r04: SAR Evaluation Considerations for LTE Devices

1.2. Report version

Version No.	Date of issue	Description
00	Aug.14, 2017	Original

Report No: TRE17070255 Page: 4 of 64 Issued: 2017-08-14

2. **Summary**

2.1. Client Information

Applicant:	Worldex International Ltd				
Address:	3A-8A,Mont Orchid Riverlet,Gongye 3rd Rd,Nanshan, Shenzhen,China				
Manufacturer:	Shenzhen Iproda Technology Co .,Ltd				
Address:	4F-5F,C Building,Gongming Tang Wei Village Wanfeng Industrial Zone,Guangming New District Shenzhen,China.				

2.2. Product Description

Name of EUT:	3G Tablet PC							
Trade Mark:	TOUCH+							
Model No.:	770G							
Listed Model(s):	-							
Power supply:	DC 3.7V From int	ernal battery						
Device Category:	Portable							
Product stage:	Production unit							
RF Exposure Environment:	General Populatio	n / Uncontrolled						
IMEI:	863666754668410)						
Device Class:	В							
Hardware version:	E706J_V1_2017xx	ххх						
Software version:	770G2017xx_Vxx							
Maximum SAR Value								
Separation Distance:	Head: 0mm							
	Body: 0mm							
Max Report SAR Value (1g):	Test location:	PCE	DTS	Simultaneous				
	Head:	0.097 W/Kg	0.169W/Kg	0.266W/Kg				
	Body:	0.664 W/Kg	0.483W/Kg	1.147W/Kg				
	Hotspot:	0.664 W/Kg	0.483W/Kg	1.147W/Kg				
GSM								
Support Network:	GSM, GPRS, EGF	PRS						
Support Band:	GSM850, DCS190	00						
Modulation:	GSM/GPRS: GMS EGPRS: GMSK 8							
Transmit Frequency:	GSM850: 824.20N PCS1900: 1850.20		Z					
Receive Frequency:	GSM850: 869.20MHz-893.80MHz PCS1900: 1930.20MHz-1989.80MHz							
GPRS Class:	12							
EGPRS Class:	12	12						
Antenna type:	Intergal Antenna							

Report No: TRE17070255 Page: 5 of 64 Issued: 2017-08-14

WCDMA	
Operation Band:	FDD Band II and FDD Band V
Power Class:	Power Class 3
Modilation Type:	QPSK/16QAM/HSUPA/HSDPA
DC-HSUPA Release Version:	Not Supported
Antenna type:	Intergal Antenna
WIFI	
Supported type:	802.11b/802.11g/802.11n(H20)/802.11n(H40)
Modulation:	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11g/n(H20)/ n(H40): OFDM (BPSK / QPSK / 16QAM / 64QAM)
Operation frequency:	802.11b/g/n(H20): 2412MHz~2462MHz 802.11n(H40): 2422MHz~2452MHz
Channel number:	802.11b/g/n(H20): 11 802.11n(H40):7
Channel separation:	5MHz
Antenna type:	Internal Antenna
Bluetooth	
Version:	Supported BT4.0+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Integral Antenna
Bluetooth	
Version:	Supported BT4.0+BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40
Channel separation:	2MHz
Antenna type:	Integral Antenna
Remark: The EUT battery must be	fully charged and checked periodically during the test to ascertain uniform power

Note:

- 1. Per FCC KDB Publication 616217 D04v01r03, Regardless of device dimensions, when next to the ear voice calls are supported the smart phone and phablets procedures in KDB 648474 must be applied.
- 2. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet". Therefore, phablet SAR tests are required whenwireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for licensed technologies since wireless router 1g SAR was < 1.2 W/kg for these modes.

Report No: TRE17070255 Page: 6 of 64 Issued: 2017-08-14

3. Test Environment

3.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China

Phone: 86-755-26748019 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories

(identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Labo ratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for tec hnical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional progra m requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully descri bed in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FC C is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Aust ralian C-Tick mark as a result of our A2LA accreditation.

Report No: TRE17070255 Page: 7 of 64 Issued: 2017-08-14

4. Equipments Used during the Test

				Calibration		
Test Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Interval	
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2017/07/26	1	
E-field Probe	SPEAG	ES3DV3	3292	2016/09/02	1	
System Validation Dipole D750V3	SPEAG	D750V3	1156	2016/02/02	3	
System Validation Dipole D835V2	SPEAG	D835V2	4d134	2014/07/24	3	
System Validation Dipole D1750V2	SPEAG	D1750V2	1062	2015/07/25	3	
System Validation Dipole D1900V2	SPEAG	D1900V2	5d150	2015/12/12	3	
System Validation Dipole D2450V2	SPEAG	D2450V2	884	2015/09/01	3	
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/	
Power meter	Agilent	E4417A	GB41292254	2015/10/26	1	
Power sensor	Agilent	8481H	MY41095360	2015/10/26	1	
Power sensor	Agilent	E9327A	US40441621	2015/10/26	1	
Network analyzer	Agilent	8753E	US37390562	2015/10/25	1	
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2015/10/23	1	
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMW500	1556902	2015/12/28	1	
Signal Generator	ROHDE & SCHWARZ	SMBV100A	258525	2015/10/23	1	
Power Divider	ARRA	A3200-2	N/A	N/A	N/A	
Dual Directional Coupler	Agilent	778D	50783	No	ote	
Attenuator 1	PE	PE7005-10	N/A	No	ote	
Attenuator 2	PE	PE7005-10	N/A	No	ote	
Attenuator 3	PE	PE7005-3	N/A	Note		
Power Amplifier	AR	5S1G4M2	0328798	No	ote	

Note:

^{1.} The Probe, Dipole and DAE calibration reference to the Appendix A.

^{2.} Referring to KDB865664 D01, the dipole calibration interval can be extended to 3 years with justificatio. The dipole are also not physically damaged or repaired during the interval.

Report No: TRE17070255 Page: 8 of 64 Issued: 2017-08-14

5. Measurement Uncertainty

•	Measurement Uncertainty											
Measurement System	No	No. Error Description Type Uncertainty Probably Div. (Ci) Std. Unc. Std. Unc. Degree of										
Probe calibration			Турс	Value	Distribution	DIV.	1g	10g	(1g)	(10g)	freedom	
Sorticity B 9.60% R √3 0.7 0.7 3.90% 3.90% =			В	6.0%	N		1	1	6.0%	6.0%	∞	
Boundary B 1.00% R √3 1 1 0.60% 0.60% ∞	2		В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	80	
Effects Frobe Probe B	3		В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8	
Combined standard uncertainty R	4		В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8	
TRE ambient conditions-noise RE ambient con	5		В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8	
Response time B 0.00% R √3 1 1 0.00% 0.00% ∞	6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8	
8 conditions- reflection 9 Response time B 0.80% R √3 1 1 0.00% 0.00% ∞ 10 Integration time B 5.00% R √3 1 1 2.90% 2.90% ∞ 11 RF ambient B 3.00% R √3 1 1 2.90% 2.90% ∞ 11 RF ambient B 3.00% R √3 1 1 1.70% 1.70% ∞ 12 Probe positioned mech. restrictions B 0.40% R √3 1 1 0.20% 0.20% ∞ 13 Probe positioning with respect to phantom shell 14 Max.SAR B 3.90% R √3 1 1 1.70% 1.70% ∞ 15 Probe positioning with respect to phantom shell 16 Device holder uncertainty 17 Drift of output power B 5.00% R √3 1 1 1 2.30% 2.30% ∞ 18 Phantom and Set-up 19 Conductivity (target) 10 Integration time 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞	
10 Integration time B 5.00% R √3 1 1 2.90% 2.90% ∞ 11 RF ambient B 3.00% R √3 1 1 1.70% 1.70% ∞ 12 Probe positioned mech. restrictions B 0.40% R √3 1 1 0.20% 0.20% ∞ 13 Probe positioning with respect to phantom shell B 2.90% R √3 1 1 1.70% 1.70% ∞ 14 Max_SAR evalation B 3.90% R √3 1 1 1.70% 1.70% ∞ 15 Positioning A 1.86% N 1 1 1 1.86% 1.86% ∞ 16 Device holder uncertainty A 1.70% N 1 1 1 1.70% 1.70% ∞ 17 Drift of output power B 5.00% R √3 1 1 2.90% 2.90% ∞ Phantom and Set-up 18 Phantom uncertainty B 4.00% R √3 1 1 2.30% 2.30% ∞ Phantom and Set-up 18 Phantom uncertainty B 4.00% R √3 1 1 2.30% 2.30% ∞ 20 conductivity B 5.00% R √3 1 1 2.30% 2.30% ∞ 21 Liquid conductivity A 0.50% N 1 0.64 0.43 1.80% 1.20% ∞ 22 cyclic departitivity R 5.00% R √3 0.64 0.43 1.80% 1.20% ∞ Combined standard uncertainty R 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 0.16% N 1 0.64 0.43 0.10% 0.07% ∞	8	conditions-	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞	
11 RF ambient B 3.00% R √3 1 1 1.70% 1.70% ∞ 12 Probe positioned mech, restrictions B 0.40% R √3 1 1 0.20% 0.20% ∞ 13 Probe positioning with respect to phantom shell B 2.90% R √3 1 1 1.70% 1.70% ∞ 14 Max_SAR B 3.90% R √3 1 1 2.30% 2.30% ∞ 15 Test sample Related 15 Test sample A 1.86% N 1 1 1 1.86% 1.86% ∞ positioning positioning A 1.70% N 1 1 1 1.70% 1.70% ∞ 16 Device holder uncertainty B 4.00% R √3 1 1 2.90% 2.90% ∞ Phantom and Set-up 18 Phantom power B 5.00% R √3 1 1 2.30% 2.30% ∞ 20 conductivity B 5.00% R √3 1 1 2.30% 2.30% ∞ 21 Liquid conductivity B 5.00% R √3 0.64 0.43 1.80% 1.20% ∞ 22 Liquid conductivity B 5.00% R √3 0.64 0.43 1.80% 1.20% ∞ Liquid conductivity (target) B 5.00% R √3 0.64 0.43 1.80% 1.20% ∞ 21 Liquid permittivity (target) B 5.00% R √3 0.64 0.43 1.80% 1.20% ∞ 22 Combined standard uncertainty R 5.00% R √3 0.64 0.43 0.10% 0.07% ∞ Combined standard uncertainty R 5.00% R √3 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 5.00% R √3 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 5.00% R √3 0.64 0.43 0.10% 0.07% ∞ Expanded uncertainty R 5.00% R 0.10% 0.10% 0.07% ∞	9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	8	
12	10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞	
Test	11		В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8	
13	12		В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞	
Test Sample Related 15	13	with respect to	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	8	
Test sample positioning A 1.86% N 1 1 1 1 1.86% 1.86% ∞ Device holder uncertainty A 1.70% N 1 1 1 1 1.70% 1.70% ∞ 17 Drift of output power B 5.00% R $\sqrt{3}$ 1 1 2.90% 2.90% ∞ Phantom and Set-up B 4.00% R $\sqrt{3}$ 1 1 2.30% 2.30% ∞ 18 Phantom uncertainty B 4.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 19 Conductivity (target) Conductivity A 0.50% N 1 0.64 0.43 0.32% 0.26% ∞ 12 Liquid conductivity (meas.) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 12 Liquid conductivity (arget) B 5.00% N 1 0.64 0.43 1.80% 1.20% ∞ 12 Conductivity (meas.) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 1.20% ∞ 10 Combined standard uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / / 9.79% 9.67% ∞ 10 Combined standard uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / 9.79% 9.67% ∞ 10 Expanded uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / / 9.79% 9.67% ∞ 10 Expanded uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / / 9.79% 9.67% ∞ 10 Expanded uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / / 9.79% 9.67% ∞ 10 Expanded uncertainty $\omega_c = \sqrt{\sum_{i=1}^{2} c_i^2 \omega_i^2}$ / / / / 9.79% 9.67% ∞		evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	8	
15 positioning A 1.06% N 1 1 1 1.06% 1.06% $\frac{1}{8}$ $\frac{1}{1}$ $\frac{1}$ $\frac{1}{1}$ $$	Test Sampl		1		I	1	1	1				
16 uncertainty A 1.70% N 1 1 1 1.70% 1.70% ∞ 17 Drift of output power B 5.00% R $\sqrt{3}$ 1 1 2.90% ∞ Phantom uncertainty B 4.00% R $\sqrt{3}$ 1 1 2.30% 2.30% ∞ 19 Liquid conductivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 20 conductivity (target) A 0.50% N 1 0.64 0.43 0.32% 0.26% ∞ 21 Liquid permittivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 22 Liquid conductivity (meas.) A 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ / / /	15	positioning	Α	1.86%	N	1	1	1	1.86%	1.86%	8	
Phantom and Set-up 18	16		А	1.70%	N	1	1	1	1.70%	1.70%	8	
18 Phantom uncertainty B 4.00% R $\sqrt{3}$ 1 1 2.30% 2.30% ∞ 19 Liquid conductivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 20 Liquid conductivity (meas.) A 0.50% N 1 0.64 0.43 0.32% 0.26% ∞ 21 Liquid permittivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 22 Liquid cpermittivity (meas.) A 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ / / / / / / 9.79\% 9.67% ∞		power	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	8	
19	Phantom ar		<u> </u>		ı		l	l				
19 conductivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 20 Conductivity (meas.) A 0.50% N 1 0.64 0.43 0.32% 0.26% ∞ 21 Liquid permittivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ ∞ Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ $v_c = \sqrt{\sum_{i=1}^{22} c_i^$	18	uncertainty	В	4.00%	R	√3	1	1	2.30%	2.30%	8	
20 conductivity (meas.) A 0.50% N 1 0.64 0.43 0.32% 0.26% ∞ 21 Liquid permittivity (target) B 5.00% R $\sqrt{3}$ 0.64 0.43 1.80% 1.20% ∞ 22 combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}}$ $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}}$	19	conductivity (target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	80	
Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$	20	conductivity	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	8	
22 cpermittivity (meas.) A 0.16% N 1 0.64 0.43 0.10% 0.07% ∞ Combined standard uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ / / / 9.79% 9.67% ∞ Expanded uncertainty $u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ P $K=2$ / 19.57% 19.34% ∞	21	(target)	В	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞	
$u_c = \sqrt{\frac{2}{i-1}} $ Expanded uncertainty $u_c = \sqrt{\frac{2}{i-1}} $ $v_c = \sqrt{\frac{2}{i-1}} $	22	cpermittivity	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞	
			$u_c = 1$	$\sum_{i=1}^{22} c_i^2 u_i^2$	/	/	/	/	9.79%	9.67%	80	
(contraction interval of octoo)			u_{ϵ}	$=2u_c$	R	K=2	/	/	19.57%	19.34%	∞	

	System Check Uncertainty									
No.	Error Description	Туре	Uncertainty Value	Probably Distribution	Div.	(Ci)	(Ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	Degree of freedom
Measureme						. 9	.09			
1	Probe calibration	В	6.0%	N	1	1	1	6.0%	6.0%	∞
2	Axial isotropy	В	4.70%	R	$\sqrt{3}$	0.7	0.7	1.90%	1.90%	∞
3	Hemispherical isotropy	В	9.60%	R	$\sqrt{3}$	0.7	0.7	3.90%	3.90%	8
4	Boundary Effects	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	8
5	Probe Linearity	В	4.70%	R	$\sqrt{3}$	1	1	2.70%	2.70%	8
6	Detection limit	В	1.00%	R	$\sqrt{3}$	1	1	0.60%	0.60%	∞
7	RF ambient conditions-noise	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
8	RF ambient conditions-reflection	В	0.00%	R	$\sqrt{3}$	1	1	0.00%	0.00%	∞
9	Response time	В	0.80%	R	$\sqrt{3}$	1	1	0.50%	0.50%	∞
10	Integration time	В	5.00%	R	$\sqrt{3}$	1	1	2.90%	2.90%	∞
11	RF ambient	В	3.00%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
12	Probe positioned mech. restrictions	В	0.40%	R	$\sqrt{3}$	1	1	0.20%	0.20%	∞
13	Probe positioning with respect to phantom shell	В	2.90%	R	$\sqrt{3}$	1	1	1.70%	1.70%	∞
14	Max.SAR evalation	В	3.90%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
System vali	dation source-dipole				1					
15	Deviation of experimental dipole from numerical dipole	А	1.58%	N	1	1	1	1.58%	1.58%	∞
16	Dipole axis to liquid distance	А	1.35%	N	1	1	1	1.35%	1.35%	∞
17	Input power and SAR drift	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
Phantom ar	nd Set-up				I –	ı	ı	T	T	T
18	Phantom uncertainty	В	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
20	Liquid conductivity (meas.)	А	0.50%	N	1	0.64	0.43	0.32%	0.26%	00
22	Liquid cpermittivity (meas.)	А	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
	standard uncertainty	$u_c = 1$	$\int_{i=1}^{22} c_i^2 u_i^2$	/	/	/	/	8.80%	8.79%	00
	ded uncertainty e interval of 95 %)	u_{ϵ}	$u_c = 2u_c$	R	K=2	/	/	17.59%	17.58%	∞

Report No: TRE17070255 Page: 10 of 64 Issued: 2017-08-14

6. SAR Measurements System Configuration

6.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.

Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld Mobile Phones.

Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

Report No: TRE17070255 Page: 11 of 64 Issued: 2017-08-14

6.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency 10 MHz to 4 GHz;

Linearity: ± 0.2 dB (30 MHz to 4 GHz)

Directivity \pm 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

Dynamic Range 5 μ W/g to > 100 mW/g;

Linearity: ± 0.2 dB

Dimensions Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.0 mm

Application General dosimetry up to 4 GHz

Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Compatibility DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

Report No: TRE17070255 Page: 12 of 64 Issued: 2017-08-14

6.3. Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SPEAG. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.

SAM Twin Phantom

6.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

Report No: TRE17070255 Page: 13 of 64 Issued: 2017-08-14

7. SAR Test Procedure

7.1. Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. \pm 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1 \text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x5 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x5 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x5 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

Report No: TRE17070255 Page: 14 of 64 Issued: 2017-08-14

7.2. Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors),s together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

Media parameters:

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity: Normi, ai0, ai1, ai2

Conversion factor: ConvFi
Diode compression point: Dcpi

Diode compression point: Dcp s: Frequency: f

Device parameters: Frequency: f
Crest factor: cf

Crest factor: cf
Conductivity: σ

Density: ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

Vi: compensated signal of channel (i = x, y, z)

Ui: input signal of channel (i = x, y, z)

cf: crest factor of exciting field (DASY parameter) dcpi: diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E – fieldprobes :
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$\mbox{H} - \mbox{fieldprobes}: \qquad \ \mbox{H_i} = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1} f + a_{i2} f^2}{f}$$

Vi: compensated signal of channel (i = x, y, z) Normi: sensor sensitivity of channel (i = x, y, z),

[mV/(V/m)2] for E-field Probes

ConvF: sensitivity enhancement in solution

aij: sensor sensitivity factors for H-field probes

f: carrier frequency [GHz]

Ei: electric field strength of channel i in V/m
Hi: magnetic field strength of channel i in A/m

Report No: TRE17070255 Page: 15 of 64 Issued: 2017-08-14

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.
$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

local specific absorption rate in mW/g SAR:

Etot: total field strength in V/m

conductivity in [mho/m] or [Siemens/m] σ: equivalent tissue density in g/cm3 ρ:

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

Report No: TRE17070255 Page: 16 of 64 Issued: 2017-08-14

8. Position of the wireless device in relation to the phantom

8.1. Head Position

The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.

W_t Width of the handset at the level of the acoustic

W_b Width of the bottom of the handset

A Midpoint of the widthwt of the handset at the level of the acoustic output

B Midpoint of the width wb of the bottom of the handset

Cheek position

Picture 2 Cheek position of the wireless device on the left side of SAM

Tilt position

Picture 3 Tilt position of the wireless device on the left side of SAM

Report No: TRE17070255 Page: 17 of 64 Issued: 2017-08-14

8.2. Body Position

Devices that support transmission while used with body-worn accessories must be tested for body-worn accessory SAR compliance, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics.

Devices that are designed to operate on the body of users using lanyards and straps or without requiring additional body-worn accessories must be tested for SAR compliance using a conservative minimum test separation distance ≤ 5 mm to support compliance

Picture 4 Test positions for body-worn devices

8.3. Hotspot Mode Exposure conditions

The hotspot mode and body-worn accessory SAR test configurations may overlap for handsets. When the same wireless mode transmission configurations for voice and data are required for SAR measurements, the more conservative configuration with a smaller separation distance should be tested for the overlapping SAR configurations. This typically applies to the back and front surfaces of a handset when SAR is required for both hotspot mode and body-worn accessory exposure conditions. Depending on the form factor and dimensions of a device, the test separation distance used for hotspot mode SAR measurement is either 10 mm or that used in the body-worn accessory configuration, whichever is less for devices with dimension > 9 cm x 5 cm. For smaller devices with dimensions \leq 9 cm x 5 cm because of a greater potential for next to body use a test separation of \leq 5 mm must be used.

Picture 5 Test positions for Hotspot Mode

Report No: TRE17070255 Page: 18 of 64 Issued: 2017-08-14

9. System Check

9.1. Tissue Dielectric Parameters

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.The table 3 and table 4 show the detail solition.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
				For He	ad			
835	40.3	57.9	0.2	1.4	0.2	0	0.9	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.4	40
2450	55	0	0	0	0	45	1.8	39.2
				For Bo	dy			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800.1900.2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

Tissue dielectric parameters for head and body phantoms								
Target Frequency	He	ad	E	Body				
(MHz)	٤r	σ(s/m)	εr	σ(s/m)				
750	41.94	0.89	55.5	0.96				
835	41.5	0.90	55.2	0.97				
1800-2000	40.0	1.40	53.3	1.52				
2450	39.2	1.80	52.7	1.95				
2600	39.0	1.96	52.5	2.16				

Report No: TRE17070255 Page: 19 of 64 Issued: 2017-08-14

Check Result:

CHECK INESUI									
Dielectric performance of Head tissue simulating liquid									
Frequency	Description	DielectricP	arameters	Temp					
(MHz)	Description	εr	σ(s/m)	$^{\circ}$					
	Recommended result	41.50	0.90	/					
835	±5% window	39.43 to 43.58	0.86 to 0.95	/					
033	Measurement value 2017-07-27	41.62	0.92	21					
	Recommended result	40.0	1.40	,					
	±5% window	38.00 to 42.00	1.33 to 1.47	/					
1900	Measurement value 2017-08-01	40.05	1.42	21					
	Recommended result	39.2	1.80	,					
2450	±5% window	37.24 to 41.16	1.71 to 1.89	/					
	Measurement value 2017-08-03	39.11	1.79	21					

	Dielectric performance of Body tissue simulating liquid								
Frequency	Description	DielectricPa	arameters	Temp					
(MHz)	Description	εr	σ(s/m)	°C					
	Recommended result	55.2	0.97	/					
835	±5% window	52.44 to 57.96	0.92 to 1.02	,					
033	Measurement value 2017-07-28	55.15	0.96	21					
	Recommended result	53.3	1.52	/					
1000	±5% window	50.64 to 55.97	1.44 to 1.60	/					
1900	Measurement value 2017-08-02	53.12	1.53	21					
	Recommended result	52.7	1.95	/					
2450	±5% window	50.07 to 55.34	1.85 to 2.05	/					
	Measurement value 2017-08-03	52.52	1.94	21					

Report No: TRE17070255 Page: 20 of 64 Issued: 2017-08-14

9.2. SAR System Check

The purpose of the system check is to verify that the system operates within its specifications at the decice test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system (±10 %).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

The output power on dipole port must be calibrated to 24 dBm (250mW) before dipole is connected.

Report No: TRE17070255 Page: 21 of 64 Issued: 2017-08-14

Check Result:

CHECK RESUIT		Uood		
		Head		
Frequency	Description	SAR(\	W/kg)	Temp
(MHz)	Description	1g	10g	$^{\circ}$ C
025	Recommended result ±5% window	2.41 2.29 - 2.53	1.57 1.49 - 1.65	/
835	Measurement value 2017-07-27	2.34	1.52	21
	Recommended result ±5% window	9.71 9.22 - 10.20	5.08 4.83 - 5.33	/
1900	Measurement value 2017-08-01	9.62	4.96	21
- 1	Recommended result ±5% window	13.1 11.79 - 14.41	6.17 5.56 - 6.78	/
2450	Measurement value 2017-08-03	12.40	5.80	21

	Body								
Frequency	Description	SAR(V	V/kg)	Temp					
(MHz)	Description	1g	10g	${\mathbb C}$					
835	Recommended result ±5% window	2.47 2.35 - 2.59	1.64 1.55 - 1.71	/					
033	Measurement value 2017-07-28	2.47	1.59	21					
1000	Recommended result ±5% window	9.98 9.48 – 10.48	5.26 5.00 – 5.52	/					
1900	Measurement value 2017-08-02	10.3	5.34	21					
2450	Recommended result ±5% window	13.1 11.79 -14.41	6.11 5.50 -6.72	/					
2430	Measurement value 2017-08-03	12.5	5.76	21					

Note:

1. the graph results see follow.

^{2.} Recommended Values used derive from the calibration certificate and 250 mW is used asfeeding power to the calibrated dipole.

Report No: TRE17070255 Page: 22 of 64 Issued: 2017-08-14

System Performance Check at 835 MHz Head

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date:2017-07-27

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.92$ S/m; $\epsilon r = 41.62$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.53, 6.53, 6.53); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm Maximum value of SAR (interpolated) = 2.834 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 49.865 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 3.286 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.52 mW/g

System Performance Check 835MHz Head 250mW

Report No: TRE17070255 Page: 23 of 64 Issued: 2017-08-14

System Performance Check at 835 MHz Body

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d134

Date:2017-07-28

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.96 \text{ S/m}$; $\epsilon_r = 55.15$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.27, 6.27, 6.27); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 2.888 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 50.236 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.339 W/kg

SAR(1 g) = 2.47 mW/g; SAR(10 g) = 1.59 mW/g

Maximum value of SAR (measured) = 2.871 mW/g

System Performance Check 835MHz Body 250mW

Report No: TRE17070255 Page: 24 of 64 Issued: 2017-08-14

System Performance Check at 1900 MHz Head

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date:2017-08-01

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.42 \text{S/m}$; $\epsilon r = 40.05$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.26,5.26,5.26); Calibrated: 02/09/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 10.61 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 94.79 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 12.34 W/kg

SAR(1 g) = 9.62 W/kg; SAR(10 g) = 4.96 W/kg

Maximum value of SAR (measured) = 12.44 W/kg

System Performance Check 1900MHz Head 250mW

Report No: TRE17070255 Page: 25 of 64 Issued: 2017-08-14

System Performance Check at 1900 MHz Body

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d150

Date:2017-08-02

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1900 MHz; $\sigma = 1.53 \text{S/m}$; $\epsilon r = 53.12$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(5.05,5.05,5.05); Calibrated: 02/09/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=15.00 mm, dy=15.00 mm

Maximum value of SAR (interpolated) = 15.187 mW/g

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 87.679 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 19.027 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.34 mW/g

Maximum value of SAR (measured) = 15.09 mW/g

System Performance Check 1900MHz Body250mW

Report No: TRE17070255 Page: 26 of 64 Issued: 2017-08-14

System Performance Check at 2450 MHz Head

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Date:2017-08-03

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.79 \text{S/m}$; $\epsilon r = 39.11$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(4.97,4.97,4.97); Calibrated: 02/09/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm

Maximum value of SAR (interpolated) = 19.313 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.314 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 25.703 W/kg

SAR(1 g) = 12.4 mW/g; SAR(10 g) = 5.8 mW/g

Maximum value of SAR (measured) = 18.871 mW/g

System Performance Check 2450MHz Head250mW

Report No: TRE17070255 Page: 27 of 64 Issued: 2017-08-14

System Performance Check at 2450 MHz Body

Date:2017-08-03

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 884

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.94 \text{S/m}$; $\epsilon r = 52.52$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: ES3DV3 - SN3292; ConvF(4.70,4.70,4.70); Calibrated: 02/09/2016;

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Area Scan (61x91x1):Measurement grid: dx=10.00 mm, dy=10.00 mm

Maximum value of SAR (interpolated) = 19.266 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.170 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 26.174 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.76 mW/g

Maximum value of SAR (measured) = 19.27mW/g

System Performance Check 2450MHz Body250mW

Report No: TRE17070255 Page: 28 of 64 Issued: 2017-08-14

10. SAR Exposure Limits

SAR assessments have been made in line with the requirements of ANSI/IEEE C95.1-1992

	Limit (W/kg)				
Type Exposure	General Population / Uncontrolled Exposure Environment	Occupational / Controlled Exposure Environment			
Spatial Average SAR (whole body)	0.08	0.4			
Spatial Peak SAR (1g cube tissue for head and trunk)	1.60	8.0			
Spatial Peak SAR (10g for limb)	4.0	20.0			

Population/Uncontrolled Environments: are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments: are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

Report No: TRE17070255 Page: 29 of 64 Issued: 2017-08-14

11. Conducted Power Measurement Results

GSM Conducted Power

1. Per KDB 447498 D01, the maximum output power channel is used for SAR testing and further SAR test reduction

- 2. Per KDB 941225 D01, considering the possibility of e.g. 3rd party VoIP operation for Head and Bodyworn SAR test reduction for GSM and GPRS modes is determined by the source-base time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.
- 3. Per KDB941225 D01, for hotspot SAR test reduction for GPRS modes is determined by the source-based time-averaged output power including tune-up tolerance, For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the EUT was set in GPRS (4Tx slots) for GSM850 and GPRS (4Tx slots) for PCS1900.

			cted Power	(dBm)	D.	Avera	ager Power (dBm)
Mode:	GSM850	CH128	CH190	CH251	Division Factors	CH128	CH190	CH251
		824.2MHz	836.6MHz	848.8MHz	1 401010	824.2MHz	836.6MHz	848.8MHz
G:	SM	32.85	32.76	32.71	-9.03	23.82	23.73	23.68
	1TXslot	32.82	32.75	32.69	-9.03	23.79	23.72	23.66
GPRS	2TXslots	30.29	30.25	30.20	-6.02	24.27	24.23	24.18
(GMSK)	3TXslots	28.54	28.56	28.46	-4.26	24.28	24.30	24.20
	4TXslots	27.36	27.40	27.24	-3.01	24.35	24.39	24.23
		Condu	Conducted Power (dBm)			Avera	ager Power (dBm)
Mode: F	PCS1900	CH512	CH661	CH810	Division Factors	CH512	CH661	CH810
		1850.2MHz	1880.0MHz	1909.8MHz	1 401010	1850.2MHz	1880.0MHz	1909.8MHz
G	SM	30.32	30.23	30.04	-9.03	21.29	21.20	21.01
	1TXslot	30.29	30.22	30.03	-9.03	21.26	21.19	21.00
GPRS	2TXslots	27.95	27.91	27.73	-6.02	21.93	21.89	21.71
(GMSK)	3TXslots	26.34	26.35	26.13	-4.26	22.08	22.09	21.87
	4TXslots	25.26	25.28	25.02	-3.01	22.25	22.27	22.01

Note:

1) Division Factors

To average the power, the division factor is as follows:

1TX-slot = 1 transmit time slot out of 8 time slots=> conducted power divided by (8/1) => -9.03dB

2TX-slots = 2 transmit time slots out of 8 time slots=> conducted power divided by (8/2) => -6.02dB

3TX-slots = 3 transmit time slots out of 8 time slots=> conducted power divided by (8/3) => -4.26dB

4TX-slots = 4 transmit time slots out of 8 time slots=> conducted power divided by (8/4) => -3.01dB

Report No: TRE17070255 Page: 30 of 64 Issued: 2017-08-14

WCDMA Conducted Power

- The following tests were conducted according to the test requirements outlines in 3GPP TS34.121 specification.
- 2. The procedures in KDB 941225 D01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode to determine SAR test exclusion

A summary of thest setting are illustrated belowe:

HSDPA Setup Configureation:

- The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- c) A call was established between EUT and base station with following setting:
 - Set Gain Factors (βc and βd) and parameters were set according to each specific sub-test in the following table, C10.1.4, Quoted from the TS 34.121
 - ii. Set RMC 12.2Kbps + HSDPA mode
 - iii. Set Cell Power=-86dBm
 - iv. Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - v. Select HSDPA uplink parameters
 - vi. Set Delta ACK, Delta NACK and Delta CQI=8
 - vii. Set Ack-Nack repetition Factor to 3
 - viii. Set CQI Feedback Cycle (K) to 4ms
 - ix. Set CQI repetition factor to 2
 - x. Power ctrl mode= all up bits
- d) The transmitter maximum output power waw recorded.

Table C.10.1.4:

ß values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	β _d (SF)	β₀/β₫	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: \triangle_{ACK} , \triangle_{NACK} and $\triangle_{CQI} = 30/15$ with $\beta_{bs} = 30/15 * \beta_c$.
- Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, $\Delta_{\rm ACK}$ and $\Delta_{\rm NACK}$ = 30/15 with β_{hs} = 30/15 * β_c , and $\Delta_{\rm CQI}$ = 24/15 with β_{hs} = 24/15 * β_c .
- Note 3: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HSDPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.

Setup Configuration

Report No: TRE17070255 Page: 31 of 64 Issued: 2017-08-14

HSUPA Setup Configureation:

- a) The EUT was connected to base station RS CMU200 referred to the setup configuration
- b) The RF path losses were compensated into the measurements
- A call was established between EUT and base station with following setting:
 - i. Call configs = 5.2b, 5.9b, 5.10b, and 5.13.2B with QPSK
 - ii. Set Gain Factors (βc and βd) and parameters (AG index) were set according to each specific subtest in the following table, C11.1.3, Quoted from the TS 34.121
 - iii. Set Cell Power=-86dBm
 - iv. Set channel type= 12.2Kbps + HSPA mode
 - v. Set UE Target power
 - vi. Set Ctrl mode=Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal the target E-TFCI of 75 for Sub-test 1, and other subtest's E-TFCI
- d) The transmitter maximum output power waw recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βε	βd	β _d (SF)	β _c /β _d	βнs (Note1)	βec	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{ks} = 30/15 * β_c .
- Note 2: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: βed can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

General Note:

- Per KDB 941225 D01, SAR for Head / Hotsport / Body-worn Exposure is measured using a 12.2Kbps RMC with TPC bit ocnfigured to all 1s
- Per KDB 941225 D01 RMC12.2Kbps setting is used to evaluate SAR. If the maximum output power and Tune-up tolerance specified for production units in HSDPA/HSUPA is ≤ 1/4dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio fo specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC 12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

Report No: TRE17070255 Page: 32 of 64 Issued: 2017-08-14

		W	WCDMA Band V			WCDMA Band II			
			ucted Power	(dBm)	Conducted Power (dBm)				
Мо	de	CH4132	CH4183	CH4233	CH9262	CH9400	CH9538		
		826.4	836.6	846.6	1852.4	1880.0	1907.6		
AMR	12.2K	22.47	22.40	22.14	22.86	22.68	22.66		
RMC	12.2K	22.49	22.43	22.15	22.89	22.71	22.67		
	Subtest-1	20.66	20.60	20.36	21.02	20.85	20.83		
HSDPA	Subtest-2	20.49	20.43	20.19	20.85	20.68	20.66		
ПОДРА	Subtest-3	20.49	20.43	20.18	20.85	20.69	20.65		
	Subtest-4	20.22	20.16	19.93	20.57	20.41	20.39		
	Subtest-1	20.11	20.05	19.82	20.46	20.30	20.28		
	Subtest-2	19.95	19.89	19.66	20.30	20.14	20.12		
HSUPA	Subtest-3	19.86	19.80	19.57	20.21	20.05	20.03		
	Subtest-4	19.81	19.74	19.51	20.15	19.99	19.97		
	Subtest-5	19.75	19.69	19.46	20.10	19.94	19.92		

Report No: TRE17070255 Page: 33 of 64 Issued: 2017-08-14

WLAN Conducted Power

For 2.4GHz WLAN SAR testing, highest average RF output power channel for the lowest data rate for 802.11b were for SAR evaluation. 802.11g/n were not investigated since the average putput powers over all channels and data rates were not more than 0.25dB higher than the tested channel in the lowest data rate of 802.11b mode.

			WIFI		
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)	Data rate
	01	2412	12.66	10.80	1 Mbps
802.11b	06	2437	11.43	9.75	1 Mbps
	11	2462	11.18	9.53	1 Mbps
	01	2412	13.98	10.95	6 Mbps
802.11g	06	2437	14.60	11.41	6 Mbps
	11	2462	14.25	11.15	6 Mbps
	01	2412	13.81	10.53	6.5 Mbps
802.11n(H20)	06	2437	14.65	11.15	6.5 Mbps
	11	2462	14.21	10.82	6.5 Mbps
	3	2422	15.11	11.52	13.5 Mbps
802.11n(H40)	6	2437	14.86	11.31	13.5 Mbps
	9	2452	14.38	10.95	13.5 Mbps

Note: The output power was test all data rate and recorded worst case at recorded data rate.

Report No: TRE17070255 Page: 34 of 64 Issued: 2017-08-14

Bluetooth Conducted Power

	Bluetooth								
Mode	Channel	Frequency (MHz)	Conducted power (dBm)						
	0	2402	-2.01						
GFSK	39	2441	-1.89						
	78	2480	-2.42						
	0	2402	-2.05						
π/4QPSK	39	2441	-1.96						
	78	2480	-2.47						
	0	2402	-1.93						
8DPSK	39	2441	-1.79						
	78	2480	-2.29						
	0	2402	-9.23						
BLE	19	2440	-9.57						
	39	2480	-10.14						

Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances ≤50mm are determined by:

[(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

Band/Mode	F(GHz)	Position	SAR test exclusion	RF output	power	SAR test exclusion
			threshold (mW)	dBm	mW	
Dluotooth	2.45	Head	9.6	-1	0.794	Yes
Bluetooth	2.45	Body	19.2	-1	0.794	Yes
\\/; - ;	2.45	Head	9.6	12	15.85	No
WiFi	2.45	Body	19.2	12	15.85	No

Per KDB 447498 D01, when the minimum test separation distance is <5mm, a distance of 5mm is applied to determine SAR test exclusion.

The test exclusion thereshold is ≤ 3 , SAR testing is not required.

Report No: TRE17070255 Page: 35 of 64 Issued: 2017-08-14

12. Maximum Tune-up Limit

Mode	Burst Average Power (dBm)			
Wode	GSM850	PCS1900		
GSM (GMSK, 1Tx Slot)	33.00	30.50		
GPRS (GMSK, 1Tx Slot)	33.00	30.50		
GPRS (GMSK, 2Tx Slot)	31.00	28.50		
GPRS (GMSK, 3Tx Slot)	29.00	27.00		
GPRS (GMSK, 4Tx Slot)	27.50	25.50		

Mada	Burst Average	Power (dBm)
Mode	WCDMA Band V	WCDMA Band II
AMR 12.2Kbps	23.00	23.00
RMC 12.2Kbps	23.00	23.00
HSDPA Subtest-1	21.00	21.50
HSDPA Subtest-2	21.00	21.50
HSDPA Subtest-3	21.00	21.50
HSDPA Subtest-4	21.00	21.50
HSUPA Subtest-1	20.50	20.50
HSUPA Subtest-2	20.50	20.50
HSUPA Subtest-3	20.50	20.50
HSUPA Subtest-4	20.50	20.50
HSUPA Subtest-5	20.50	20.50

Report No: TRE17070255 Page: 36 of 64 Issued: 2017-08-14

WLAN		
Mode	Peak Power (dBm)	Burst Average Power (dBm)
802.11b	13.00	11.00
802.11g	15.00	11.50
802.11n(HT20)	15.00	11.50
802.11n(HT40)	15.50	12.00

Mode	Conducted Peak Power (dBm)
GFSK	-1.00
π/4QPSK	-1.00
8DPSK	-1.00
BLE	-9.00

Report No: TRE17070255 Page: 37 of 64 Issued: 2017-08-14

13. Antenna Location

Positions for SAR tests; Hotspot mode												
Antenna	Antenna Back Front Top side Bottom side Right side Left side											
WWAN	Yes	Yes	No	Yes	Yes	Yes						
WIFI / BT	Yes	Yes	Yes	No	No	Yes						

General note:

1. Referring to KDB616217 D04, SAR is tested at the normal full power for the tablet edges, if an antenna is located near the corner of a tablet, the adjacent edges within 50 mm from the corner antenna must be tested for sensor triggering coverage.

Report No: TRE17070255 Page: 38 of 64 Issued: 2017-08-14

14. SAR Measurement Results

Head SAR

					GSM850					
	Tool	Free	quency	Conducted	Tune	Tune	Davier	Measured	Report	Tast
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		128	824.2	27.36	27.50	1.03	•	•	-	-
	Left- Cheek	190	836.6	27.40	27.50	1.02	-0.11	0.095	0.097	H1
		251	848.8	27.24	27.50	1.06	-	-	-	-
		128	824.2	27.36	27.50	1.03	-	-	-	-
	Left-Tilt	190	836.6	27.40	27.50	1.02	0.12	0.073	0.074	-
GPRS		251	848.8	27.24	27.50	1.06	-	-	-	-
(4Tx slot)		128	824.2	27.36	27.50	1.03	-	-	-	-
	Right- Cheek	190	836.6	27.40	27.50	1.02	0.05	0.088	0.090	-
	Cheek	251	848.8	27.24	27.50	1.06	-	-	-	-
		128	824.2	27.36	27.50	1.03	•	•	-	ı
	Right-Tilt	190	836.6	27.40	27.50	1.02	-0.06	0.070	0.072	-
		251	848.8	27.24	27.50	1.06	-	-	-	-

	PCS1900												
	Tool	Fre	quency	Conducted	Tune	Tune	Davier	Measured	Report	Test			
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot			
		512	1850.2	25.26	25.50	1.06	-	-	-				
	Left- Cheek	661	1880.0	25.28	25.50	1.05	0.07	0.053	0.056	H2			
	G ille Gill	810	1909.8	25.02	25.50	1.12	•	•	-	-			
		512	1850.2	25.26	25.50	1.06	-	-	-	-			
	Left-Tilt	661	1880.0	25.28	25.50	1.05	0.05	0.039	0.041	ı			
GPRS		810	1909.8	25.02	25.50	1.12	-	-	-	-			
(4Tx slot)		512	1850.2	25.26	25.50	1.06	•	•	-	-			
	Right- Cheek	661	1880.0	25.28	25.50	1.05	-0.04	0.043	0.045	-			
	Cheek	810	1909.8	25.02	25.50	1.12	-	-	-	-			
	512	1850.2	25.26	25.50	1.06	-	-	-	-				
	Right-Tilt	661	1880.0	25.28	25.50	1.05	-0.04	0.033	0.035	1			
l l	810	1909.8	25.02	25.50	1.12	-	-	-	-				

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

Report No: TRE17070255 Page: 39 of 64 Issued: 2017-08-14

				wc	DMA Ba	nd V				
	Toot	Fred	quency	Conducted	Tune	Tune	Power	Measured	Report	Toot
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		4132	826.4	22.47	23.00	1.13	-	-	-	ı
	Left- Cheek	4183	836.6	22.40	23.00	1.15	-0.08	0.064	0.073	Н3
	J. J	4233	846.6	22.14	23.00	1.22	-	-	-	ı
		4132	826.4	22.47	23.00	1.13	-	-	-	1
	Left-Tilt	4183	836.6	22.40	23.00	1.15	-0.07	0.053	0.060	ı
RMC 12.2K		4233	846.6	22.14	23.00	1.22	-	-	-	-
bps		4132	826.4	22.47	23.00	1.13	-	-	-	-
	Right- Cheek	4183	836.6	22.40	23.00	1.15	-0.11	0.061	0.070	-
	Cheek _	4233	846.6	22.14	23.00	1.22	-	-	-	-
		4132	826.4	22.47	23.00	1.13	-	-	-	1
	Right-Tilt	4183	836.6	22.40	23.00	1.15	0.03	0.051	0.059	1
		4233	846.6	22.14	23.00	1.22	-	-	-	-

	WCDMA Band II												
	Test	Free	quency	Conducted	Tune	Tune	Power	Measured	Report	Test			
Mode	Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Plot			
		9262	1852.4	22.86	23.00	1.03	-	-	-	-			
	Left- Cheek	9400	1880.0	22.68	23.00	1.08	0.08	0.049	0.053	H4			
	ooo.k	9538	1907.6	22.66	23.00	1.08	-	-	-				
		9262	1852.4	22.86	23.00	1.03	•	•	-	ı			
	Left-Tilt	9400	1880.0	22.68	23.00	1.08	0.05	0.039	0.042	ı			
RMC 12.2K		9538	1907.6	22.66	23.00	1.08	-	-	-	-			
bps		9262	1852.4	22.86	23.00	1.03	-	-	-	-			
	Right- Cheek	9400	1880.0	22.68	23.00	1.08	-0.11	0.047	0.051	-			
	Cheek	9538	1907.6	22.66	23.00	1.08	-	1	-	ı			
		9262	1852.4	22.86	23.00	1.03	-	-	-	1			
	Right-Tilt	9400	1880.0	22.68	23.00	1.08	-0.04	0.037	0.040	-			
		9538	1907.6	22.66	23.00	1.08	-	-	-	-			

Note:

Per KDB865664 D01v01r04, Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg

Report No: TRE17070255 Page: 40 of 64 Issued: 2017-08-14

					WLAN					
	T4	Fred	quency	Conducted	Tune	Tune	D	Measured	Report	T 4
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		03	2422	11.52	12.00	1.12		-	-	1
	Left- Cheek	06	2437	11.31	12.00	1.17	-0.05	0.132	0.155	H9
	oou.	09	2452	10.95	12.00	1.27	•	•	-	ı
		03	2422	11.52	12.00	1.12	ı	ı	-	ı
	Left-Tilt 802.11	06	2437	11.31	12.00	1.17	0.07	0.112	0.131	ı
		09	2452	10.95	12.00	1.27	•	•	-	ı
n (HT40)		03	2422	11.52	12.00	1.12	-	-	-	-
	Right- Cheek	06	2437	11.31	12.00	1.17	0.03	0.127	0.149	-
	GHOOK	09	2452	10.95	12.00	1.27	-	-	-	-
		03	2422	11.52	12.00	1.12	-	-	-	1
	Right-Tilt	06	2437	11.31	12.00	1.17	-0.04	0.110	0.129	-
		09	2452	10.95	12.00	1.27	-	-	-	-

Note:

- According to the above table, the initial test position for head is "LeftCheek", and its reported SAR is≤
 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because
 the reported SAR of the highest measured maximum output power channel for the exposureconfiguration
 is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.
- 2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg,the 802.11g/n is not required.

WLAN- Scaled Reported SAR											
Mode	Test Position	Frequency		Actual duty factor	maximum	Reported SAR	Scaled reported SAR				
iviode	Test Position	CH	MHz	Actual duty factor	duty factor	(1g)(W/kg)	(1g)(W/kg)				
	Left-Cheek	6	2437	91.77%	100%	0.155	0.169				
802.11n	Left-Tilt	6	2437	91.77%	100%	0.131	0.143				
(HT40)	Right-Cheek	6	2437	91.77%	100%	0.149	0.162				
	Right-Tilt	6	2437	91.77%	100%	0.129	0.141				

Note:

 According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 95.84% is achievable for WLAN in this project. Report No: TRE17070255 Page: 41 of 64 Issued: 2017-08-14

Body SAR

					GSM850					
	-	Freq	uency	Conducted	Tune up	Tune	1	Measured	Report	+
Mode Test Position	СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot	
		128	824.2	27.36	27.50	1.03	-	-	-	-
	Front	190	836.6	27.40	27.50	1.02	-0.04	0.381	0.391	-
GPRS		251	848.8	27.24	27.50	1.06	-	-	-	-
(4Tx slot)		128	824.2	27.36	27.50	1.03	-	-	-	-
	Back	190	836.6	27.40	27.50	1.02	0.08	0.578	0.592	B1
		Buck	251	848.8	27.24	27.50	1.06	-	-	-

					PCS1900					
	-	Frequency		Conducted	Tune up	Tune		Measured	Report	+
Mode Test Position	СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot	
		512	1850.2	25.26	25.50	1.06	-	-	-	-
	Front	661	1880.0	25.28	25.50	1.05	0.09	0.301	0.316	-
GPRS		810	1909.8	25.02	25.50	1.12	-	-	-	-
(4Tx slot)		512	1850.2	25.26	25.50	1.06	-	-	-	-
	Back	661	1880.0	25.28	25.50	1.05	-0.12	0.461	0.485	B2
		810	1909.8	25.02	25.50	1.12	-	-	-	-

	WCDMA Band V												
	- .	Frequency		Conducted	Tune	Tune		Measured	Report	. .			
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot			
		4132	826.4	22.47	23.00	1.13	-	-	-	-			
	Front	4183	836.6	22.40	23.00	1.15	-0.02	0.341	0.391	-			
RMC		4233	846.6	22.14	23.00	1.22	-	-	-	-			
12.2Kbps		4132	826.4	22.47	23.00	1.13	-	-	-	-			
	Back	4183	836.6	22.40	23.00	1.15	0.05	0.479	0.550	B3			
		4233	846.6	22.14	23.00	1.22	-	-	-	-			

	WCDMA Band II												
	Test	Freq	uency	Conducted Power (dBm)	Tune	Tune	Dawar	Measured	Report	Toot			
Mode	Position	СН	MHz		up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot			
		9262	1852.4	22.86	23.00	1.03	-	-	-	-			
	Front	9400	1880.0	22.68	23.00	1.08	-0.04	0.423	0.456	-			
RMC		9538	1907.6	22.66	23.00	1.08	-	-	-	-			
12.2Kbps		9262	1852.4	22.86	23.00	1.03	-	-	-	-			
	Back	9400	1880.0	22.68	23.00	1.08	-0.09	0.617	0.664	B4			
	Dask	9538	1907.6	22.66	23.00	1.08	-	-	-	-			

Report No: TRE17070255 Page: 42 of 64 Issued: 2017-08-14

					WLAN					
	T4	Freq	luency	Conducted	Tune	Tune	D	Measured	Report	T4
Mode	Test Position	СН	MHz	Power (dBm)	up limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Test Plot
		03	2422	11.52	12.00	1.12	-	ı	-	ı
	Front	06	2437	11.31	12.00	1.17	-0.13	0.269	0.316	-
802.11b		09	2452	10.95	12.00	1.27	-	-	-	-
1Mbps		03	2422	11.52	12.00	1.12	-	-	-	-
	Back	06	2437	11.31	12.00	1.17	0.09	0.395	0.463	B5
		09	2452	10.95	12.00	1.27	-	-	-	-

Note:

- According to the above table, the initial test position for body is "Back", and its reported SAR is≤ 0.4W/kg.
 Thus further SAR measurement is not required for the other (remaining) test positions. Because the
 reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤
 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.
- 2. When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - c) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - d) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. the 802.11g/n is not required.

Report No: TRE17070255 Page: 43 of 64 Issued: 2017-08-14

Hotspot SAR

Positions for SAR tests; Hotspot mode								
Antenna Back Front Top side Bottom side Right side Left side								
WWAN	Yes	Yes	No	Yes	Yes	Yes		
WIFI / BT	Yes	Yes	Yes	No	No	Yes		

General note:

1. Referring to KDB616217 D04, SAR is tested at the normal full power for the tablet edges, if an antenna is located near the corner of a tablet, the adjacent edges within 50 mm from the corner antenna must be tested for sensor triggering coverage.

	GSM850											
	- .	Frequ	iency	Conducted	Tune up	Tune	1	Measured	Report			
Mode Test Position	СН	MHz	Power (dBm)	limit (dBm)	up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)				
		128	824.2	27.36	27.50	1.03	•	•	-			
	Front	190	836.6	27.40	27.50	1.02	-0.04	0.381	0.391			
		251	848.8	27.24	27.50	1.06	-	-	-			
		128	824.2	27.36	27.50	1.03			-			
GPRS	Back	190	836.6	27.40	27.50	1.02	0.08	0.578	0.592			
(4Tx slot)		251	848.8	27.24	27.50	1.06	-	-	-			
,	Left	190	836.6	27.40	27.50	1.02	-0.09	0.120	0.123			
	Right	190	836.6	27.40	27.50	1.02	0.03	0.423	0.433			
	Тор	190	836.6	27.40	27.50	1.02	-	-	-			
	Bottom	190	836.6	27.40	27.50	1.02	0.11	0.472	0.483			

	PCS1900											
Mode	Test Position	Frequ CH	uency MHz	Conducted Power (dBm)	Tune up limit (dBm)	Tune up scaling factor	Power Drift(dB)	Measured SAR(1g) (W/kg)	Report SAR(1g) (W/kg)			
		512	1850.2	25.26	25.50	1.06	-	-	-			
	Front	661	1880.0	25.28	25.50	1.05	0.09	0.301	0.316			
		810	1909.8	25.02	25.50	1.12	-	-	-			
		512	1850.2	25.26	25.50	1.06	-	•	-			
GPRS	Back	661	1880.0	25.28	25.50	1.05	-0.12	0.461	0.485			
(4Tx slot)		810	1909.8	25.02	25.50	1.12	-	-	-			
,	Left	661	1880.0	25.28	25.50	1.05	0.01	0.116	0.122			
	Right	661	1880.0	25.28	25.50	1.05	0.03	0.338	0.355			
	Тор	661	1880.0	25.28	25.50	1.05	-	-	-			
	Bottom	661	1880.0	25.28	25.50	1.05	-0.08	0.363	0.382			

Report No: TRE17070255 Page: 44 of 64 Issued: 2017-08-14

				WCDM	A Band V				
	- .	Frequ	iency	Conducted	Tune up limit (dBm)	Tune	1	Measured	Report
Mode	Test Position	СН	MHz	Power (dBm)		up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)
	Front	4132	826.4	22.47	23.00	1.13	1	-	1
		4183	836.6	22.40	23.00	1.15	-0.02	0.341	0.391
		4233	846.6	22.14	23.00	1.22	-	-	-
		4132	826.4	22.47	23.00	1.13	-	-	-
RMC	Back	4183	836.6	22.40	23.00	1.15	0.05	0.479	0.550
12.2Kbps		4233	846.6	22.14	23.00	1.22	-	-	-
	Left	4183	836.6	22.40	23.00	1.15	-0.03	0.108	0.124
	Right	4183	836.6	22.40	23.00	1.15	-0.05	0.351	0.403
	Тор	4183	836.6	22.40	23.00	1.15	-	-	-
	Bottom	4183	836.6	22.40	23.00	1.15	-0.02	0.386	0.443

	WCDMA Band II											
	Toot	Frequ	uency	Conducted Power (dBm)	Tune up limit (dBm)	Tune	Dower	Measured	Report			
Mode	Test Position	СН	MHz			up scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)			
		9262	1852.4	22.86	23.00	1.03	ı	-	-			
Fror	Front	9400	1880.0	22.68	23.00	1.08	-0.04	0.423	0.456			
		9538	1907.6	22.66	23.00	1.08	-	-	-			
		9262	1852.4	22.86	23.00	1.03	-	-	-			
RMC	Back	9400	1880.0	22.68	23.00	1.08	-0.09	0.617	0.664			
12.2Kbps		9538	1907.6	22.66	23.00	1.08	-	-	-			
	Left	9400	1880.0	22.68	23.00	1.08	-0.03	0.131	0.141			
	Right	9400	1880.0	22.68	23.00	1.08	-0.11	0.455	0.490			
	Тор	9400	1880.0	22.68	23.00	1.08	-	-	-			
	Bottom	9400	1880.0	22.68	23.00	1.08	-0.05	0.531	0.572			

Report No: TRE17070255 Page: 45 of 64 Issued: 2017-08-14

	WLAN												
	Test	Freq	uency	Conducted	Tune up limit (dBm)	Tune up	Dower	Measured	Report				
Mode	Position	СН	MHz	Power (dBm)		scaling factor	Power Drift(dB)	SAR(1g) (W/kg)	SAR(1g) (W/kg)				
F		3	2422	11.52	12.00	1.12	ı	-	1				
	Front	6	2437	11.31	12.00	1.17	-0.13	0.269	0.316				
		9	2452	10.95	12.00	1.27	-	-	-				
	Back	3	2422	11.52	12.00	1.12	ı	-	1				
802.11n		6	2437	11.31	12.00	1.17	0.09	0.395	0.463				
(HT40)		9	2452	10.95	12.00	1.27	-	-	-				
	Left	6	2437	10.95	12.00	1.27	0.07	0.330	0.421				
	Right	6	2437	10.95	12.00	1.27	-	-	-				
	Тор	6	2437	10.95	12.00	1.27	-0.03	0.303	0.386				
	Bottom	6	2437	10.95	12.00	1.27	-	-	-				

Note:

- 1. According to the above table, the initial test position for body is "Back", and its reported SAR is≤ 0.4W/kg. Thus further SAR measurement is not required for the other (remaining) test positions. Because the reported SAR of the highest measured maximum output power channel for the exposureconfiguration is ≤ 0.8W/kg, no further SAR testing is required for 802.11b DSSS in that exposureconfiguration.
- When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.
 - a) When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b) When the highest *reported* SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. the 802.11g/n is not required

	WLAN- Scaled Reported SAR										
Mode	Test Position	Frequency		Actual duty factor	maximum	Reported SAR	Scaled				
	rest Position	CH	MHz	Actual duty factor	duty factor	(1g)(W/kg)	reported SAR (1g)(W/kg)				
	Front	6	2437	95.84%	100%	0.316	0.329				
802.11n	Back	6	2437	95.84%	100%	0.463	0.483				
(HT40)	Left	6	2437	95.84%	100%	0.421	0.439				
	Тор	6	2437	95.84%	100%	0.386	0.402				

Note:

 According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. A maximum transmission duty factor of 95.84% is achievable for WLAN in this project.

SAR Test Data Plots

Test mode: GSM850-GPRS 4TS Test Position: Left Head Cheek Test Plot: H1

Date:2017-07-27

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2

Medium parameters used (interpolated): f=836.6 MHz; σ=0.91S/m; εr=41.48; ρ=1000 kg/m3

Phantom section: Left Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.53, 6.53, 6.53); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.097 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 3.01V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.136 mW/g

SAR(1 g) = 0.095 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.105 W/kg

Left Head Cheek (GSM850 GPRS 4TS Middle Channel)

Test mode: PCS1900 GPRS 4TS Test Position: Left Head Cheek Test Plot: H2

Date:2017-08-01

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.41 \text{ mho/m}$; $\epsilon = 40.01$; $\rho = 1000 \text{ kg/m } 3$

Phantom section: Left Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(5.26,5.26,5.26); Calibrated: 02/09/2016;

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- •Electronics: DAE4 Sn1315; Calibrated: 26/07/2017
- •Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.067 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.20 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.096 mW/g

SAR(1 g) = 0.053 mW/g; SAR(10 g) = 0.031 mW/g

Maximum value of SAR (measured) = 0.061 W/kg

Left Head (PCS1900 Middle Channel)

Test mode: WCDMA Band V Test Position: Left Head Cheek Test Plot: H3

Date:2017-07-27

Communication System: Customer System; Frequency: 836.6 MHz;Duty Cycle:1:1 Medium parameters used (interpolated): f=836.6 MHz; σ=0.91S/m; εr=41.48; ρ=1000 kg/m3

Phantom section: Left Head Section:

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.53, 6.53, 6.53); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) =0.086 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 2.59 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.104 mW/g

SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.071W/kg

Left Head Cheek (WCDMA Band V Middle Channel)

Test mode: WCDMA Band II Test Position: Left Head Cheek Test Plot: H4

Date:2017-08-01

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f =1880.0 MHz; σ = 1.41 mho/m; ϵ = 40.01; ρ =1000 kg/m3

Phantom section: Left Head Section:

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(5.26,5.26,5.26); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) =0.060W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 2.16 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.071 mW/g

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.062 W/kg

Left Head Cheek (WCDMA Band II Middle Channel)

Test mode: WLAN 802.11n(HT40) Test Position: Left Head Cheek Test Plot: H5

Date:2017-08-03

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f=2437.0 MHz; σ=1.78S/m; εr=39.00; ρ=1000 kg/m3

Phantom section: Left Head Section:

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(4.97,4.97,4.97); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) =0.157 W/kg

Zoom Scan (6x6x6)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.106 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.248 mW/g

SAR(1 g) = 0.132 mW/g; SAR(10 g) = 0.091 mW/g

Maximum value of SAR (measured) = 0.149W/kg

Left Head Cheek (WLAN middle Channel)

Test mode: GSM850 GPRS 4TS Test Position: Body- worn Rear Side Test Plot: B1

Date:2017-07-28

Communication System: Customer System; Frequency:836.6 MHz;Duty Cycle:1:2 Medium parameters used (interpolated): f=836.6 MHz; σ=0.97S/m; εr=55.10; ρ=1000 kg/m3

Phantom section: Flat Section:

DASY 5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.27, 6.27, 6.27); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) =0.611W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm Reference Value = 10.85 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.017 mW/g

SAR(1 g) = 0.578 mW/g; SAR(10 g) = 0.401 mW/g

Maximum value of SAR (measured) = 0.603W/kg

Body- worn Rear Side (GSM850 GPRS 4TS Middle Channel)

Test mode: PCS1900 GPRS 4TS Test Position: Body- worn Rear Side Test Plot: B2

Date:2017-08-02

Communication System: Customer System; Frequency: 1880.0 MHz; Duty Cycle: 1:2

Medium parameters used (interpolated): f = 1880.0 MHz; $\sigma = 1.51 \text{ mho/m}$; $\epsilon = 53.21$; $\rho = 1000 \text{ kg/m } 3$

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(5.05,5.05,5.05); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) =0.518 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 8.05 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.815 mW/g

SAR(1 g) = 0.461 mW/g; SAR(10 g) = 0.256 mW/g

Maximum value of SAR (measured) = 0.506 W/kg

Body- worn Rear Side (PCS1900 GPRS 4TS Middle Channel)

Test mode: WCDMA Band V Test Position: Body- worn Rear Side Test Plot: B3

Date:2017-07-28

Communication System: Customer System; Frequency: 836.6 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f=836.6 MHz; σ=0.97S/m; εr=55.10; ρ=1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(6.27, 6.27, 6.27); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) =0.497 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value =9.78 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.825 mW/g

SAR(1 g) = 0.479 mW/g; SAR(10 g) = 0.295 mW/g

Maximum value of SAR (measured) = 0.488 W/kg

Body- worn Rear Side (WCDMA Band V Middle Channel)

Test mode: WCDMA Band II Test Position: Body- worn Rear Side Test Plot: B4

Date:2017-08-02

Communication System: Customer System; Frequency: 1880.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f=1880.0 MHz; σ =1.51S/m; ϵ r=53.21; ρ =1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(5.05,5.05,5.05); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

•Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) =0.707W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 10.69 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.081 mW/g

SAR(1 g) = 0.617 mW/g; SAR(10 g) = 0.421 mW/g

Maximum value of SAR (measured) = 0.631 W/kg

Body- worn Rear Side (WCDMA Band II Middle Channel)

Test mode: WLAN 802.11n(HT40) Test Position: Body- worn Rear Side Test Plot: B5

Date:2017-08-03

Communication System: Customer System; Frequency: 2437.0 MHz;Duty Cycle:1:1

Medium parameters used (interpolated): f= 2437.0 MHz; σ=1.93S/m; εr=52.65; ρ=1000 kg/m3

Phantom section: Flat Section

DASY5 Configuration:

•Probe: ES3DV3 - SN3292; ConvF(4.70,4.70,4.70); Calibrated: 02/09/2016;

•Sensor-Surface: 4mm (Mechanical Surface Detection)

•Electronics: DAE4 Sn1315; Calibrated: 26/07/2017

•Phantom: SAM 1; Type: SAM;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (81x141x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.441 W/kg

Zoom Scan (5x5x6)/Cube 0: Measurement grid: dx=7mm, dy=7mm, dz=5mm

Reference Value = 7.98 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.654 mW/g

SAR(1 g) = 0.395 mW/g; SAR(10 g) = 0.235 mW/g

Maximum value of SAR (measured) = 0.417 W/kg

Body- worn Rear side (WLAN 802.11n(HT40) Middle Channel)

Report No: TRE17070255 Page: 56 of 64 Issued: 2017-08-14

15. Simultaneous Transmission analysis

No.	Simultaneous Transmission Configurations	Head	Body-worn	Hotspot	Note
1	GSM(voice) + Bluetooth (data)	Yes	Yes		
2	GSM(voice) + WIFI (data)	Yes	Yes		
3	WCDMA(voice) + Bluetooth (data)	Yes	Yes		
4	WCDMA(voice) + WIFI (data)	Yes	Yes		
5	GPRS (data) + Bluetooth (data)	Yes	Yes	NA	
6	GPRS (data) + WIFI (data)	Yes	Yes	Yes	
7	WCDMA (data) + Bluetooth (data)	Yes	Yes	NA	
8	WCDMA (data) + WIFI (data)	Yes	Yes	Yes	

General note:

- 1. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 2. EUT will choose either GSM or WCDMA LTE according to the network signal condition; therefore, they will not operate simultaneously at any moment.
- 3. The reported SAR summation is calculated based on the same configuration and test position
- 4. Per FCC KDB Publication 616217 D04v01r02, Regardless of device dimensions, when next to the ear voice calls are supported the smart phone and phablets procedures in KDB 648474 must be applied.
- 5. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet". Therefore, phablet SAR tests are required whenwireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for licensed technologies since wireless router 1g SAR was < 1.2 W/kg for these modes.
- For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 based on the formula below
 - [(max. Power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] * $[\sqrt{f(GHz)/x}]W/kg$ for test separation distances ≤ 50 mm; whetn x=7.5 for 1-g SAR, and x=18.75 for 10-g SAR.
 - b) When the minimum separation distance is <5mm, the distance is used 5mm to determine SAR test exclusion
 - c) 0.4 W/kg for 1-g SAR and 1.0W/kg for 10-g SAR, when the test separation distances is >50mm.

Bluetooth	Exposure position	Head	Body worn
Max power	Test separation	0mm	0mm
-1.0 dBm	Estimated SAR (W/kg)	0.033W/kg	0.017W/kg

Report No: TRE17070255 Page: 57 of 64 Issued: 2017-08-14

Maximum reported SAR value for Head

		WWAN PCE +	WIFI DTS		
\^/\^/	N Band	Evaceure Position	Max SAR	(W/kg)	Summed SAR
VVVAI	N Dallu	Exposure Position	WWAN PCS	WIFI DTS	(W/kg)
		Left Cheek	0.097	0.169	0.266
	GSM850	Left Tilted	0.074	0.143	0.217
	GSIVIOSU	Right Cheek	0.090	0.162	0.252
GSM		Right Tilted	0.072	0.141	0.213
GSIVI		Left Cheek	0.056	0.169	0.224
	PCS1900	Left Tilted	0.041	0.143	0.184
		Right Cheek	0.045	0.162	0.207
		Right Tilted	0.035	0.141	0.175
		Left Cheek	0.073	0.169	0.242
	Band V	Left Tilted	0.060	0.143	0.203
	Band v	Right Cheek	0.070	0.162	0.232
WCDMA		Right Tilted	0.059	0.141	0.200
VVCDIVIA		Left Cheek	0.053	0.169	0.221
	Band II	Left Tilted	0.042	0.143	0.185
	Band II	Right Cheek	0.051	0.162	0.213
		Right Tilted	0.040	0.141	0.181

Report No: TRE17070255 Page: 58 of 64 Issued: 2017-08-14

		WWAN PCE + BI	uetooth DSS		
١٨/١٨/٨	N Band	Exposure Position	Max SAR	(W/kg)	Summed SAR
VVVA	IN Dallu	Exposure Position	WWAN PCS	BT DTS	(W/kg)
		Left Cheek	0.097	0.033	0.130
	GSM850	Left Tilted	0.074	0.033	0.108
	GSIVIOSU	Right Cheek	0.090	0.033	0.123
GSM		Right Tilted	0.072	0.033	0.105
GSIVI		Left Cheek	0.056	0.033	0.089
	PCS1900	Left Tilted	0.041	0.033	0.075
		Right Cheek	0.045	0.033	0.078
		Right Tilted	0.035	0.033	0.068
		Left Cheek	0.073	0.033	0.107
	Band V	Left Tilted	0.060	0.033	0.094
	Dallu V	Right Cheek	0.070	0.033	0.103
WCDMA		Right Tilted	0.059	0.033	0.092
VVCDIVIA		Left Cheek	0.053	0.033	0.086
	Band II	Left Tilted	0.042	0.033	0.076
	Dang II	Right Cheek	0.051	0.033	0.084
		Right Tilted	0.040	0.033	0.073

Report No: TRE17070255 Page: 59 of 64 Issued: 2017-08-14

Maximum reported SAR value for Body

	WWAN PCE + WIFI DTS										
WWAN Band		Exposure Position	Max SAR	(W/kg)	Summed SAR						
		Exposure Position	WWAN PCS	WIFI DTS	(W/kg)						
	GSM850	Front	0.391	0.329	0.720						
GSM		Back	0.592	0.483	1.075						
GSIVI	PCS1900	Front	0.316	0.329	0.646						
		Back	0.485	0.483	0.968						
	Band V	Front	0.391	0.329	0.721						
WCDMA	Dallu V	Back	0.550	0.483	1.033						
	D III	Front	0.456	0.329	0.785						
	Band II	Back	0.664	0.483	1.147						

WWAN PCE + Bluetooth DSS									
WWAN Band		Exposure Position	Max SAR (W/kg)		Summed SAR				
			WWAN PCS	Bleutooth DTS	(W/kg)				
GSM	GSM850	Front	0.391	0.017	0.407				
		Back	0.592	0.017	0.608				
	PCS1900	Front	0.316	0.017	0.333				
		Back	0.485	0.017	0.501				
WCDMA	Band V	Front	0.391	0.017	0.408				
		Back	0.550	0.017	0.567				
	Band II	Front	0.456	0.017	0.472				
		Back	0.664	0.017	0.681				

Report No: TRE17070255 Page: 60 of 64 Issued: 2017-08-14

Maximum reported SAR value for Hotspot mode

WWAN PCE + WLAN DTS								
WWAN Band		Exposure Position	Max SAR (W/kg)		Summed SAR			
			WWAN PCS	WLAN DTS	(W/kg)			
GSM	GSM850	Front	0.391	0.329	0.720			
		Back	0.592	0.483	1.075			
		Left side	0.123	0.439	0.562			
		Right side	0.433	-	0.433			
		Top side	-	0.402	0.402			
		Bottom side	0.483	-	0.483			
	PCS1900	Front	0.316	0.329	0.646			
		Back	0.485	0.483	0.968			
		Left side	0.122	0.439	0.561			
		Right side	0.355	-	0.355			
		Top side	-	0.402	0.402			
		Bottom side	0.382	-	0.382			
	Band V	Front	0.391	0.329	0.721			
WCDMA		Back	0.550	0.483	1.033			
		Left side	0.124	0.439	0.563			
		Right side	0.403	-	0.403			
		Top side	-	0.402	0.402			
		Bottom side	0.443	-	0.443			
	Band II	Front	0.456	0.329	0.785			
		Back	0.664	0.483	1.147			
		Left side	0.141	0.439	0.580			
		Right side	0.490	-	0.490			
		Top side	-	0.402	0.402			
		Bottom side	0.572	-	0.572			

Report No: TRE17070255 Page: 61 of 64 Issued: 2017-08-14

16. TestSetup Photos

Liquid depth in the head phantom (750MHz)

Liquid depth in the body phantom (750MHz)

Liquid depth in the head phantom (835MHz)

Liquid depth in the body phantom (835MHz)

Liquid depth in the head phantom (1750MHz)

Liquid depth in the body phantom (1750MHz)

Liquid depth in the head phantom (1900MHz)

Liquid depth in the body phantom (1900MHz)

Liquid depth in the head phantom (2450MHz)

Liquid depth in the body phantom (2450MHz)

Left Head Touch

Right Head Touch

Left Head Tilt (15°)

Right Head Tilt (15°)

Body-worn Front Side (0mm)

Body-worn Rear Side (0mm)

Report No: TRE17070255 Page: 64 of 64 Issued: 2017-08-14

Front Side (0mm)

Rear Side (0mm)

Left Side (0mm)

Right Side (0mm)

Top Side (0mm)

Bottom Side (0mm)

17. External and Internal Photos of the EUT

Please reference to the report No.: TRE1707025401

-----End of Report-----