Deskriptive Programmierung

Operationelle Semantik von Prolog

Motivation: Beobachtung einiger nicht so schöner (nicht so "logischer"?) Effekte

```
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- direct(X, Y).
connection(X, Y) :- direct(X, Z), connection(Z, Y).
```

```
?- connection(frankfurt,maui).
true.

?- connection(san_francisco,X).
X = honolulu;
X = maui;
false.

?- connection(maui,X).
false.
```

Motivation: Beobachtung einiger nicht so schöner (nicht so "logischer"?) Effekte

```
direct(frankfurt,san_francisco).
direct(frankfurt,chicago).
direct(san_francisco,honolulu).
direct(honolulu,maui).

connection(X, Y) :- connection(X, Z), direct(Z, Y).
connection(X, Y) :- direct(X, Y).
```

```
?- connection(frankfurt,maui).
ERROR: Out of local stack
```

- Offenbar sind die impliziten logischen Operationen nicht kommutativ.
- Hinter der Programmausführung steckt also mehr als die rein logische Lesart.

Etwas subtiler...

```
add(0,X,X).
add(s(X),Y,s(Z)) := add(X,Y,Z).
sub(X,Y,Z) := add(Z,Y,X).
```

```
?- sub(N,M,s(0)).
N = s(M) ;
false.
```



```
add(X,0,X).

add(X,s(Y),s(Z)) := add(X,Y,Z).

sub(X,Y,Z) := add(Z,Y,X).
```

```
?- sub(s(s(0)),s(0),N).
N = s(0);
false.
?- sub(N,M,s(0)).
N = s(0),
M = 0;
N = s(s(0)),
M = s(0);
```

Die Wahl/Behandlung der Reihenfolge von Argumenten in Definitionen beeinflusst also die Qualität der Ergebnisse.

• •

... und (daher) manchmal weniger Flexibilität als gewünscht

Die schön deskriptive Lösung:

```
add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,_,0).
mult(s(X),Y,Z) :- mult(X,Y,U),add(U,Y,Z).
```

funktioniert sehr gut für eine Reihe von Anfragemustern:

```
?- mult(s(s(0)),s(s(s(0))),N).
N = s(s(s(s(s(s(0)))))).

?- mult(s(s(0)),N,s(s(s(s(0))))).
N = s(s(0));
false.
```

```
Man sagt, mult unterstützt die "Aufrufmodi" mult (+X,+Y,?Z) und mult (+X,?Y,+Z)
```

Aber es gibt auch "Ausreißer":

```
?- mult(N,M,s(s(s(s(0))))).
N = s(0),
M = s(s(s(s(0))));
N = s(s(0)),
M = s(s(0));
abort
```

```
... aber nicht
mult(?X,?Y,+Z).
```

sonst Endlossuche

... und (daher) manchmal weniger Flexibilität als gewünscht

Hingegen bei nur der Addition:

```
add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).
```

hatte das ja gut geklappt:

```
?- add(N,M,s(s(s(0)))).

N = 0,

M = s(s(s(0)));

N = s(0),

M = s(s(0));

N = s(s(0)),

M = s(0);

N = s(s(s(0))),

M = 0;

false.
```

In der Tat unterstützt add alle Aufrufmodi, sogar add (?X,?Y,?Z).

- Warum der Unterschied?
- 2. Was kann man tun, um mult auch so funktionieren zu lassen?

Außerdem Vorsicht bei Verwendung/Positionierung negativer Aussagen nötig

Und, nun wird es ganz "komisch":

```
loves(vincent,mia).
loves(marsellus,mia).
loves(mia,vincent).

jealous(X,Y) :- loves(X,Z), loves(Y,Z), X \= Y.
```


kleine Änderung

```
...
jealous(X,Y) :- X \= Y, loves(X,Z), loves(Y,Z).
```

```
?- jealous(marsellus,X).
false.
?- jealous(X,_).
false.
?- jealous(X,Y).
false.
```

Hingegen hatten wir vor der kleinen Änderung hier jeweils sinnvolle Ergebnisse gekriegt!

Operationelle Semantik von Prolog

Um all diesen Phänomenen nachzugehen, müssen wir uns mit dem konkreten Prolog-Ausführungsmechanismus beschäftigen.

"Zutaten" für diese Diskussion der operationellen Semantik, im folgenden betrachtet:

- 1. Unifikation
- 2. Resolution
- 3. Ableitungsbäume

Deskriptive Programmierung

Unifikation

Analogie zu Haskell: Pattern Matching

```
add(0,X,X).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

?- add(s(s(s(0)),s(0),s(s(s(0)))).
?- add(s(0),s(0),s(s(0))).
?- add(0,s(0),s(0)).
?- .
true.
```

Aber was ist mit "Ausgabevariablen"?

```
add(0,X,X).
add(s(X),Y,s(Z)):-add(X,Y,Z).

?-add(s(s(0)),s(0),N).
```

Unifikation als "bidirektionales Pattern Matching"

Gleichheit "=" als zweistelliges Prolog-Prädikat, das eine Menge leistet:

• Vergleiche auf Grundtermen (Terme ohne Variablen) durchführen, zum Beispiel:

$$s(0)=s(0)$$
 \Rightarrow true
 $s(0)=s(s(0))$ \Rightarrow false

• Bindung von Variablen akzeptieren, zum Beispiel:

$$N=0$$
 \Rightarrow true
 $N=s(U)$ \Rightarrow true
 $s(0)=N$ \Rightarrow true
 $M=V$ \Rightarrow true

• strukturell matchen und binden, zum Beispiel:

$$s(s(0))=s(V) \Rightarrow V=s(0)$$

 $s(U)=s(0) \Rightarrow U=0$

• Bindungen "aufsammeln"/verknüpfen, zum Beispiel:

$$N=s(V)$$
, $M=V$ \Rightarrow $N=s(M)$

Gleichheit von Termen (1)

• Überprüfung der Gleichheit von Grundtermen:

⇒ Gleichheit von Termen bedeutet strukturelle Gleichheit.

Terme werden vor einem Vergleich nicht "ausgewertet"!

Gleichheit von Termen (2)

• Überprüfung der Gleichheit von Termen mit Variablen:

- Für eine Variable darf jeder beliebige Term eingesetzt werden:
 - insbesondere mueller für Nachname und 11 für MM
 - Nach dieser Ersetzung sind beide Terme gleich.

Gleichheit von Termen (3)

Welche Variablen müssen wie ersetzt werden, um die Terme anzugleichen?

Zur Erinnerung, Listensyntax:

$$[1,2,a] = [1|[2,a]] = [1,2|[a]] = [1,2|.(a,[])] = .(1,.(2,.(a,[])))$$

Und was ist mit:

$$p(X) = p(q(X)) ?$$

"occurs check" (siehe später)

Gleichheit von Termen (4)

Einige weitere (problematische) Fälle:

```
loves(vincent, X) = loves(X, mia) ?
loves(marcellus, mia) = loves(X, X) ?
a(b,C,d(e,F,g(h,i,J))) = a(B,c,d(E,f,p(H,i,K))) ?
p(b,b) = p(X) ?
...
```

Unifikation, formal (1)

Substitution:

- Ersetzen von Variablen durch andere Variablen oder andere Formen von Termen (Konstanten, Strukturen, ...)
- Abbildung, die jedem Term eindeutig einen neuen Term zuordnet, wobei sich der neue vom alten Term nur durch die Ersetzung von Variablen unterscheidet.

```
• Notation: U = \{ \text{Nachname / mueller, MM / 11} \}
```

- Die Substitution U verändert nur die Variablen Nachname und MM, alles andere bleibt unverändert!
- U(person(fritz, Nachname, datum(27, 11 2007)))
 == person(fritz, mueller, datum(27, 11, 2007))

Unifikation, formal (2)

• <u>Unifikator</u>:

- Substitution, die zwei Terme "gleichmacht".
- z.B., Anwendung der Substitution $U = \{ \text{Nachname/mueller}, \text{MM/11} \}$:

```
U(person(fritz, Nachname, datum(27,11 2007)))
== U(person(fritz, mueller, datum(27, MM, 2007)))
```

- <u>allgemeinster Unifikator</u>:
 - Unifikator, der möglichst viele Variablen unverändert lässt.
 - Beispiel: datum (TT, MM, 2007) und datum (T, 11, J)

```
- U_I = \{ \text{ TT/27, T/27, MM/11, J/2007} \}
```

-
$$U_2 = \{ TT/T, MM/11, J/2007 \}$$

• Prolog sucht immer einen allgemeinsten Unifikator.

Unifikation, formal (3) - Berechnung eines allgemeinsten Unifikators

Eingabe: zwei Terme T_1 und T_2 (im allgemeinen mit ggfs. gemeinsamen Variablen)

Ausgabe: ein allgemeinster Unifikator U für T_1 und T_2 , falls T_1 und T_2 unifizierbar sind, ansonsten Fehlschlag

Methode:

- 1. Wenn T_1 und T_2 gleiche Konstanten oder Variablen sind, dann ist $U = \emptyset$
- 2. Wenn T_1 eine Variable ist, die nicht in T_2 vorkommt, dann ist $U = \{T_1 / T_2\}$ "occurs check"
- 3. Wenn T_2 eine Variable ist, die nicht in T_1 vorkommt, dann ist $U = \{T_2 / T_1\}$

Unifikation, formal (4) - Berechnung eines allgemeinsten Unifikators

Methode (Forts.):

- 4. Falls $T_1 = f(T_{1,1},...,T_{1,n})$ und $T_2 = f(T_{2,1},...,T_{2,n})$ Strukturen mit dem gleichen Funktor und der gleichen Anzahl von Komponenten sind, dann
 - 1. Finde einen allgemeinsten Unifikator U_I für $T_{I,I}$ und $T_{2,I}$
 - 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(T_{1,2})$ und $U_1(T_{2,2})$

. . .

n. Finde einen allgemeinsten Unifikator U_n für

$$U_{n-1}(...(U_1(T_{1,n})...) \text{ und } U_{n-1}(...(U_1(T_{2,n}))...)$$

Falls alle diese Unifikatoren existieren, dann ist

$$U = U_n \circ U_{n-1} \circ ... \circ U_1$$
 (Komposition der Unifikatoren)

5. Sonst: T_1 und T_2 sind nicht unifizierbar.

Unifikation - Beispiele

$$datum(1, 4, 1985) = datum(1, 4, Jahr)$$
?

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U_I für **1** und **1**
 - \Rightarrow gleiche Konstanten, daher $U_1 = \emptyset$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(4)$ und $U_1(4)$
 - \Rightarrow gleiche Konstanten, daher $U_2 = \emptyset$
- 3. Finde einen allgemeinsten Unifikator U_3 für $U_2(U_1(1985))$ und $U_2(U_1(Jahr))$
 - \Rightarrow Konstante vs. Variable, daher $U_3 = \{ \text{Jahr} / 1985 \}$

Ein allgemeinster Unifikator insgesamt ist:

$$U = U_3 \circ U_2 \circ U_1 = \{ \text{\tt Jahr} / \text{\tt 1985} \}$$

Unifikation - Beispiele

```
loves(marcellus, mia) = loves(X, X) ?
```

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U_I für marcellus und X
 - \Rightarrow Konstante vs. Variable, daher $U_I = \{x / \text{marcellus}\}$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(\mathbf{mia})$ und $U_1(\mathbf{x})$
 - \Rightarrow verschiedene Konstanten, daher existiert U_2 nicht!

Folglich existiert auch kein Unifikator für die Ausgangsterme!

Unifikation - Beispiele

$$d(E,g(H,J)) = d(F,g(H,E)) ?$$

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U_I für **E** und **F**
 - \Rightarrow verschiedene Variablen, daher $U_1 = \{\mathbf{E}/\mathbf{F}\}$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(g(H,J))$ und $U_1(g(H,E))$

$$g(H,J) = g(H,F)$$
?

- ⇒ Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:
 - Finde einen allgemeinsten Unifikator $U_{2,1}$ für H und H
 - \Rightarrow gleiche Variablen, daher $U_{2,1} = \emptyset$
 - Finde einen allgemeinsten Unifikator $U_{2,2}$ für $U_{2,1}(\mathbf{J})$ und $U_{2,1}(\mathbf{F})$
 - \Rightarrow verschiedene Variablen, daher $U_{2,2} = \{ \mathbf{F}/\mathbf{J} \}$

$$U_2 = U_{2,2} \circ U_{2,1} = \{ \mathbf{F}/\mathbf{J} \}$$

Ein allgemeinster Unifikator insgesamt ist:

$$U = U_2 \circ U_1 = \{\mathbf{E}/\mathbf{J}, \mathbf{F}/\mathbf{J}\}\$$

Bedeutung des "occurs check"

Zur Erinnerung:

- 2. Wenn T_1 eine Variable ist, die nicht in T_2 vorkommt, dann ist $U = \{T_1 / T_2\}$ "occurs check"
- 3. Wenn T_2 eine Variable ist, die nicht in T_1 vorkommt, dann ist $U = \{T_2 / T_1\}$

Also zum Beispiel:

$$X = q(X)$$
 ?

⇒ Es existiert kein Unifikator.

In Prolog wird diese Überprüfung jedoch standardmäßig nicht durchgeführt!

Bedeutung des "occurs check"

Ohne "occurs check":

$$p(X) = p(q(X))$$
?

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

1. Finde einen allgemeinsten Unifikator U_I für \mathbf{X} und $\mathbf{q}(\mathbf{X})$

$$\Rightarrow$$
 Variable vs. Term, daher $U_I = \{ \mathbf{X} / \mathbf{q} (\mathbf{X}) \}$

$$U = U_1 = \{ x / q(x) \} !$$

Obwohl es ja eigentlich <u>nicht</u> stimmt, dass $U(\mathbf{p}(\mathbf{x}))$ und $U(\mathbf{p}(\mathbf{q}(\mathbf{x})))$ gleich sind!

Deskriptive Programmierung

Resolution

Resolution in Prolog (1)

Resolutions-/(Beweis)prinzip in Prolog

Man kann den Beweis der Anfrage

auf den Beweis der Anfrage

$$?-P, L_1, L_2, \ldots, L_n, Q.$$

zurückführen, wenn $\mathbf{L} :- \mathbf{L}_1, \mathbf{L}_2, \ldots, \mathbf{L}_n$. eine Regel ist (wobei $n \ge 0$).

- Die Wahl des Literals L und der Regel dafür sind prinzipiell beliebig.
- Ist n = 0, so wird die Anfrage durch den Resolutionsschritt kürzer.

Resolution in Prolog (2)

Resolutionsprinzip – mit Variablen

Man kann den Beweis der Anfrage

auf den Beweis der Anfrage

?-
$$U(P)$$
, $U(L_1)$, $U(L_2)$, ..., $U(L_n)$, $U(Q)$.

zurückführen, wenn

- es eine Regel \mathbf{L}_0 : \mathbf{L}_1 , \mathbf{L}_2 , ..., \mathbf{L}_n . gibt ($n \ge 0$), mit "zur Sicherheit" umbenannten Variablen (so dass keine Überschneidung mit denen in \mathbf{P} , \mathbf{L} , \mathbf{Q}), und
- U ein allgemeinster Unifikator von **L** und **L**₀ ist.