SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics & Communication Engineering B. Tech. 4th Minor-I Examination (Even) 2018-19

Entry No:

Date:

13 EC

Total Number of Pages: [01]

Total Number of Questions: [06]

Course Title: Digital System Design using VERILOG

Course Code: ECL 2073

Time Allowed: 1.5 Hours

Max Marks: [20]

Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- Assume an appropriate data / information, wherever necessary / missing. iii.
- iv. Use of IS Code (Mention Number) is permissible in examination

	is permissione in examination.		
	Section - A		
€ 1.	Verilog HDL is a programming Language (TRUE/ FALSE) (b) Verilog HDL is case-insensitive (TRUE/ FALSE)	[03]	CO1
	(ex Default data-type of port names is		
	(A) An object of REG data-type can assigned a value in		
Q2.	(a) Name the value sets used in Verilog HDL, and describe in one line how they are used in Verilog.	[02]	CO2
	What values are assigned to left hand side object on its execution if		
	$B = 'b \ 0101_1101_1011 \text{ and } C = 'h \ ABCD$?	[03]	CO2
23.	Describe the capabilities of Verilog-HDL (write point-wise)	[03]	CO1
	Section – B		
04.	Design a Verilog-HDL module for 3:8 Decoder using data-flow modeling.	[03]	CO2
Q5.	Write a Verilog Test-Bench code to apply inputs to a 2-bit full adder	[02]	CO4
	α in, b in, c_in)	50.17	000
Q6.	Design a Verilog module for 2:1 mux using gate-level modeling. Then use	[04]	CO3
	that 2:1 mux to design a module for 3:1 mux. (Must be supported with		
	Block/circuit diagrams)		
		(b) Verilog HDL is case-insensitive (TRUE/ FALSE) (c) Default data-type of port names is (d) Object names must be started with (e) An object of REG data-type can assigned a value in (f) Name the two Verilog primitives which has more than one output. (a) Name the value sets used in Verilog HDL, and describe in one line how they are used in Verilog. (b) What values are assigned to left hand side object on its execution if B = 'b 0101_1101_1011 and C = 'h ABCD ? (c) A = ~& (B); (d) A = & (~B); (e) An object names must be started with (f) An object names must be started with (f) An object name is fa_2bit with ports in this sequence (sum, cout, a in, b in, c in) Ob. Design a Verilog module for 2:1 mux using gate-level modeling. Then use that 2:1 mux to design a module for 3:1 mux. (Must be supported with)	(a) Verilog HDL is a programming Language (TRUE/ FALSE) (b) Verilog HDL is case-insensitive (TRUE/ FALSE) (c) Default data-type of port names is (d) Object names must be started with (e) An object of REG data-type can assigned a value in (f) Name the two Verilog primitives which has more than one output. (a) Name the value sets used in Verilog HDL, and describe in one line how they are used in Verilog. (b) What values are assigned to left hand side object on its execution if (f) B = 'b 0101_1101_1011 and C = 'h ABCD ? (g) A = & (B); (g) A = & (C); (g) A = B &

Course Outcomes

CO 1: Describe Verilog hardware description languages (HDL).

CO 2: Design Digital Circuits and Write behavioral models of digital circuits.

CO 3: Write Register Transfer Level (RTL) models of digital circuits.

CO 4: Verify behavioral and RTL models.

СО	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
001	01 03	06	61
COI	Q1, Q3	08	61
CO2	Q2, Q4	04	61
CO3	Q6	02	61
CO4	05	32	

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics & Communication Engineering B. Tech. 4th Minor-II Examination (Even) 2018-19

Entry No: Date:

0 3

Total Number of Pages: [01]

Course Title: Digital System Design using VERILOG

Total Number of Questions: [05] Course Code: ECL-2073

Max Marks: [20]

Time Allowed: 1.5 Hours

Instructions / NOTE

i. Attempt All Questions.

ii.

Support your answer with neat freehand sketches/diagrams, wherever appropriate.

iii. Assume an appropriate data / information, wherever necessary / missi

Section - A		
Qt. Explain different loop-statements with using short examples	[04]	COI
Write Verilog code for Figure shown below using case-statement and if-statement. ADD ADD	[05]	CO2
Section – B		
Q3. Design a Verilog module for 8:3 priority encoder using case statement.	[03]	CO2
Design a Verilog module design 5-bit synchronous (+ve edge Triggered) multiplier with asynchronous active HIGH RESET. When reset, the output should be equal to zero. (Draw External-view also)	[04]	CO3
Design a Verilog module for negative edge triggered modulo-12 down- counter with asynchronous active low RESET and synchronous LOAD facility. (When Load = LOW, then output is will be loaded with Data in, else works as normal down-counter). (Draw External-view also)	[04]	CO3

Course Outcomes

CO 1: Describe Verilog hardware description languages (HDL).

CO 2: Design Digital Circuits and Write behavioral models of digital circuits.

CO 3: Write Register Transfer Level (RTL) models of digital circuits.

CO 4: Verify behavioral and RTL models.

CO 1. 1 31.1-3			Total Number of Students (to be		
CO	Questions Mapping	Total Marks	appeared in Exam)		
		04	61		
COI	Q1	08	61		
CO2	Q2, Q3	08	61		
CO3	Q4, Q5				

SHRI MATA VAISHNO DEVI UNIVERSITY, KATRA

School of Electronics & Communication Engineering B. Tech. 4th Major Examination (Even) 2018-19 May-2019

En	try	No:
	J	7 1 62 0

				17.48	ujui	LIAMI	шпа	HUI
1	7	B	C	C	U	3	3	

Total Number of Pages: [02]

Date:

Total Number of Questions: [10]

Max Marks: [29] D

Course Title: Digital System Design using VERILOG

Course Code: ECL-2073

Time Allowed: 1.5 Hours

Instructions / NOTE

- i. Attempt All Questions.
- ii. Support your answer with neat freehand sketches/diagrams, wherever appropriate.
- iii. Assume an appropriate data / information, wherever necessary / missing.

iii.	Assume an app	propriate data / i	nformation, wh	nerever nece	essary / mis	sing.			
			Section	on - A					
<u>Q1</u>	However, when	t f(A,B,C) gives in there occurs a LOW to HIGH a ve? Comment an	change in the i	nput signals back to LO	(i.e., A,B, W. What ty	C), the out pe of hazar	put signal d the	2.5	C01
Q2/	A digital desig	ner has to design	n the following	ROM like	circuit for t	he table giv	en below.	2.5	CO2
		Inputs			Out	nuts			
	A ₂	A ₁	A_0	D_3	D_2	D_1	D_0		
	0	0	0	1	1	1	1		
	0	0	1	1	1	1	0		
	0	1	0	1	1	0	1		
	0	1	1	1	1	0	0		
	1	0	0	1	0	1	1		
	1	0	1	1	0	1	0		
	1	1	0	1	0	0	1		
	1	1	1	1	0	0	0		
93	process. (a) What	module for this	e between a M	oore and M	ealy Machi	ne?		02	CO1
	(b) Wha	t are similarities	and difference	es between 1	orever-100	p and repe	at-100p.		
046		in differences b						04	COI
94		A, B, C) = (0, 1)						03	CO3
Q8	Design $\sum_{i=1}^{n} (A_i)^{-1}$	(0,1)	, 5, 7) using 12	1 1 1 4	ha function	ality of eac	h block.	04	COI
(06)	Draw the bloc	ck diagram of ar	FPGA chip at	nd explain t	ne function	ality of cae	11 0100111		
(09)	Biun			Section – E					
	Write Verilos	g code for Figur	e shown below	using case	-statement a	and if-state	ment and	07	CO4
401	also write a te	est-bench for the	e same.						
	also mito								

Course Outcomes

CO 1: Describe Verilog hardware description languages (HDL).

CO 2: Design Digital Circuits and Write behavioral models of digital circuits.

CO 3: Write Register Transfer Level (RTL) models of digital circuits.

CO 4: Verify behavioral and RTL models.

СО	Questions Mapping	Total Marks	Total Number of Students (to be appeared in Exam)
001	Q1,Q3,Q4,Q6	14.5	61
001		10.5	61
CO2	Q2,Q9	18	61
CO3	Q5,Q8,Q10	07	61
CO4	07	07	