Page 2

Amendments to Claims

(original) A compound of Formula I, its N-oxide or suitable salts thereof

$$(\mathbb{R}^{1})_{n} \xrightarrow{2} \mathbb{N}_{\mathbb{R}^{2}}$$

$$\mathbb{R}^{3} \xrightarrow{N} (\mathbb{C}\mathbb{R}^{4}\mathbb{R}^{5}) \cdot (\mathbb{C}\mathbb{R}^{6}\mathbb{R}^{7}) - A - (\mathbb{C}\mathbb{R}^{8}\mathbb{R}^{9})_{r} \cdot \mathbb{S}i(\mathbb{R}^{10}\mathbb{R}^{11}\mathbb{R}^{12})$$

$$\mathbb{I}$$

wherein:

A is O or $S(O)_m$;

J is a phenyl optionally substituted with one to four substituents independently selected from the group R^{15} ; or

J is a heterocyclic ring selected from the group consisting of

each R¹ is independently selected from the group consisting of C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, C₂-C₆ haloalkenyl, C₂-C₆ haloalkynyl, C₃-C₆ halocycloalkyl, halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, C₂-C₄ alkoxycarbonyl, C₂-C₄ alkylaminocarbonyl, C₃-C₅

Page 3

- dialkylaminocarbonyl, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino and C3-C6 trialkylsilyl; or
- each R1 is independently selected from the group consisting of phenyl, benzyl and phenoxy, each optionally substituted with C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino, C_3 - C_6 cycloalkylamino, C_4 - C_7 (alkyl)cycloalkylamino, C2-C4 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C3-C6 trialkylsilyl;
- R^2 is H; or C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl or C_3 - C_6 cycloalkyl, each optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO₂, hydroxy, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C1-C4 alkylsulfonyl, C2-C4 alkoxycarbonyl, C1-C4 alkylamino, C2- C_8 dialkylamino and C_3 - C_6 cycloalkylamino; or
- R² is C₂-C₆ alkylcarbonyl, C₂-C₆ alkoxycarbonyl, C₂-C₆ alkylaminocarbonyl or C3-C8 dialkylaminocarbonyl;
- R^3 is H, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy, C₁-C₄ alkylamino, C₂-C₈ dialkylamino, C₃-C₆ cycloalkylamino, C₂-C₆ alkoxycarbonyl or C2-C6 alkylcarbonyl;
- R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are each independently H, C₁-C₄ alkyl or C₁-C₄ haloalkyl; R^{10} and R^{11} are each independently C_1 - C_4 alkyl or C_1 - C_4 alkoxy;
- R12 is C1-C4 alkyl, C1-C4 alkoxy or phenyl optionally substituted with one to three substituents selected from the group R¹⁷;
- each R13 is independently selected from the group consisting of H, C1-C6 alkyl, C3-C6 cycloalkyl, C_1 - C_6 haloalkyl, halogen, CN, C_1 - C_4 alkoxy, C_2 - C_4 alkoxycarbonyl, C_1 - C_4 alkylthio, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl and C1-C4 haloalkylsulfonyl;
- R^{14} is C_1 - C_6 alkyl optionally substituted with one or more substituents selected from the group consisting of halogen, CN, NO2, hydroxy, C1-C4 alkoxy, C1-C4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_2 - C_4 alkoxycarbonyl, C_1 - C_4 alkylamino, C_2 - C_8 dialkylamino and C_3 - C_6 cycloalkylamino; or phenyl optionally substituted with one to three substituents selected from R17; or

Page 4

Application No.: 10/527863 Docket No.: BA9311USPCT

R 14 is

 R^{15} is C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_6 haloalkyl, halogen, CN, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C1-C4 haloalkylsulfonyl; or

R¹⁵ is phenyl or pyridyl optionally substituted with one to three R¹⁷;

 R^{16} is H, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_3 - C_6 alkenyl, C_3 - C_6 haloalkenyl, C_3 - C_6 alkynyl or C3-C6 haloalkynyl;

each R¹⁷ is independently C₁-C₆ alkyl, C₃-C₆ cycloalkyl, C₁-C₆ haloalkyl, halogen, CN, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl;

m is 0, 1 or 2;

n is 0, 1, 2, 3 or 4;

r is 0 or 1; and

s is 0, 1 or 2.

(original) The compound of Claim 1 wherein

A is $S(0)_m$;

one of the R1 groups is attached to the phenyl ring at the 2-position, and said R1 is $\mathrm{C}_1\text{-}\mathrm{C}_4$ alkyl, $\mathrm{C}_1\text{-}\mathrm{C}_4$ halo
alkyl, halogen, CN, NO₂, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl or C_1 - C_4 haloalkylsulfonyl;

 $\rm R^2$ and $\rm R^3$ are each independently H, $\rm C_1$ - $\rm C_4$ alkyl, $\rm C_2$ - $\rm C_4$ alkenyl, $\rm C_2$ - $\rm C_4$ alkynyl, $\rm C_3$ - $\rm C_6$ cycloalkyl, C_2 - C_6 alkylcarbonyl or C_2 - C_6 alkoxycarbonyl;

 R^4 , R^5 , R^6 and R^7 are each independently H or Me;

R8 and R9 are H;

R10, R11 and R12 are Me;

n is 1 or 2; and

r is 1.

(original) The compound of Claim 2 wherein:

each R1 is independently CH3, CF3, OCF3, OCHF2, S(O)pCF3, S(O)pCHF2, CN or halogen;

R² and R³ are H; and

p is 0, 1 or 2.

(original) The compound of Claim 3 wherein

Page 5

each R¹³ is H, CH₃, CF₃, CH₂CF₃, CHF₂, OCH₂CF₃, OCHF₂ or halogen; R¹⁴ is phenyl optionally substituted with one to two substituents selected from R¹⁷; or R¹⁴ is

 R^{15} and R^{17} are each independently C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, halogen or CN; each R^{16} is CH_2CF_3 or CHF_2 ; and s is 0 or 1.

5. (original) The compound of Claim 4 wherein: each R¹³ is independently halogen, OCH₂CF₃, OCHF₂ or CF₃; R¹⁴ is

R¹⁷ is F, Cl or Br.

6. (original) The compound of Claim 5 wherein: R⁶ and R⁷ are H.

7. (original) The compound of Claim 6 wherein: J is J-1, J-2, J-4 or J-8.

8. (original) The compound of Claim 7 wherein: J is J-1;

the R¹ attached to the phenyl ring at the 2-position is CH₃, F, Cl or Br; a second R¹ group is attached to the phenyl ring at the 4-position position, and said second R¹ is CN, CF₃, F, Cl, Br or I;

R¹³ is independently Cl, Br, OCH₂CF₃, or CF₃; and n is 2.

- 9. (original) A method for controlling an invertebrate pest comprising contacting the invertebrate pest or its environment with a biologically effective amount of a compound of Claim 1.
- 10. (original) The method of Claim 9 wherein the invertebrate pest is cockroach, an ant or a termite which contacts the compound by consuming a bait composition comprising the compound.

Page 6

- 11. (original) The method of Claim 9 wherein the invertebrate pest is a mosquito, a black fly, a stable, fly, a deer fly, a horse fly, a wasp, a yellow jacket, a hornet, a tick, a spider, an ant, or a gnat which is contacted by a spray composition comprising the compound dispensed from a spray container.
- 12. (currently amended) A composition of <u>for</u> controlling an invertebrate pest comprising <u>a</u> biologically effective amount of a compound of Claim 1 and at least one additional component selected from the group consisting of a surfactant, a solid diluent, and a liquid diluent, said composition optionally further comprising an effective amount of at least one additional biologically active compound or agent.
 - (original) A spray composition, comprising:
 - (a) a compound of Claim 1; and
 - (b) a propellant.
 - 14. (currently amended) A bait composition, comprising:
 - (a) a compound of Claim 1;
 - (b) one or more food materials;
 - (c) optionally an attractant; and
 - (c) (d) optionally a humectant.
 - 15. (original) A device for controlling an invertebrate pest, comprising:
 - (a) the bait composition of Claim 14; and
 - (b) a housing adapted to receive the bait composition, wherein the housing has at least one opening sized to permit the invertebrate pest to pass through the opening so the invertebrate pest can gain access to the bait composition from a location outside the housing, and wherein the housing is further adapted to be placed in or near a locus of potential or known activity for the invertebrate pest.
 - 16. (new) A composition comprising a compound of Claim 1 and at least one additional component selected from the group consisting of a surfactant, a solid diluent, and a liquid diluent.