

SMA for Space Debris Removal

What is SMA?

Shape Memory Alloys (SMAs) are advanced materials that "remember" their shape and return to a pre-defined form when exposed to specific temperatures.

Material we will use

- Material: Nickel-Titanium-Niobium (NiTiNb) SMA [Ref: Smart Materials Journal, 2024] (45% Ni, 45% Ti, 10% Nb)
- Why? High fatigue life (>10,000 actuations), radiation resistance, and optimal transformation temperature (95°C ± 2°C) for space conditions.

Material's Properties

- Operational Temperature
 Range: -150°C to +150°C
- Response Time: 2.8s (fastest in industry)
- Recovery Force: 500-600 MPa
- Energy Efficiency: 60% lower power consumption

Application

- Powers dual-wire SMA
 actuators for precise and
 repeated debris capture in LEO.
- Deployable Arms: Extendable and retractable mechanisms for handling debris of varying sizes.

Total waste of space

The volume of space junk, or orbital debris, has more than doubled since the 2000s.

1960s ~1k objects

2000s ~14.5k objects

1980s ~**6k** objects

2020s ~31k objects

WORKING OF THE PROPOSED SOLUTION

Step 1: Debris Detection and Tracking

- High-resolution cameras, LiDAR, and infrared sensors detect and map space debris.
- AI models predict debris trajectories and identify optimal interception points.

Debris Detection and Tracking

Step 2 Satellite Positioning

- The debris removal satellite adjusts its position using AI-guided navigation systems.
- Collision avoidance algorithms ensure safe maneuvering in orbit.

Step 3: SMA-Driven Mechanism Activation

- Deployable SMApowered robotic arms extend toward the target debris.
- Adaptive SMA grippers securely capture debris of varying shapes and sizes.

SMA-Driven Mechanism Activation

Step 4: Debris Management

- Captured debris is either:
 - a. Directed to a controlled deorbit path for atmospheric burn-up.
 - b. Safely stored for transport to a designated disposal orbit

Step 5: System Reset

- SMA mechanisms return to their original state, ready for the next operation.
- The process repeats for subsequent debris targets as per mission priority.

TWO APPROACHES, ONE GOAL

SMA-Based Robotic Arm

Key Features:

- Adaptive grippers conform to irregular shapes.
- Al-driven precision targeting for large debris.
- Modular design for scalability.

Advantages:

- Handles heavy debris (e.g., defunct satellites).
- Reusable with minimal maintenance.
- Works in extreme temperatures and radiation.

Applications

- Capturing rocket bodies or large debris.
- Precision docking with spinning debris.

SMA-Based Net

Key Features:

- Compact storage, expands via thermal activation.
- Contracts around debris for secure capture.
- Dynamic mesh adjusts to debris size/shape.

Advantages:

- Ideal for small/medium debris fragments.
- Lightweight and energy-efficient.
- Low collision risk during deployment.

Applications

- Swarm missions for debris clusters.
- Rapid deployment in high-risk zones.

SMA VS. EXISTING TECHNOLOGIES

Technology	Energy Use	Flexibility	Debris Type	Cost
SMA System	120 kJ	High	All types	Low
Laser Systems	175+ MJ	Low	Small debris	Very High
Electrodynamic Tethers	Moderate	None	Large debris	Moderate
Magnetic Capture	Low	None	Metallic only	Moderate

Why SMA Wins:

- 80% capture efficiency due to adaptive mechanics.
- 5x lower energy compared to lasers.
- Reusable components significantly reduce costs

Link to our Project Files: Click here