靜宜大學資訊工程學系

畢業專題計畫書

一、封面内容包括:

專題名稱:應用 AI 動作姿態辨識技術於 CPR 訓練輔助系統之開發與應用

指導教師:詹毓偉

專題學生: 資工三 A 410928270 張瑞蘢 s1092827@gm.pu.edu.tw

資工三 A 410903660 顔仁炫 s1090366@gm.pu.edu.tw

資工三 A 410919182 陳家禾 s1091918@gm.pu.edu.tw

資工三 A 410918908 陳柏諺 s1091890@gm.pu.edu.tw

資工三 A 410928173 黄凱軒 s1092817@gm.pu.edu.tw

繳交日期:112/2/24

二、内容包括:

● 摘要

CPR 這項技能是從國小就開始學習的,雖然國高中可能會有 CPR 測驗的部分,但大多數的人都無法以正確的 CPR 動作實施,而且在同時有多個測試員進行測驗 CPR 實施時,同時也必須考慮到 CPR 監考員及疲勞的問題。因此我們突發起想可以實作一項有關 CPR 教學輔助系統,協助 CPR 監考員和醫護人員克服在 CPR 測驗中可能遇到的人力和精準度問題,並減輕醫護人員的工作負擔。

我們的目標是提供一個易於使用且精準度高的 CPR 輔助系統,使不太會實施 CPR 的人可以在突發緊急情況下獲得協助。我們的程式將根據急救時所收集的數據,及時 更改和修正 CPR 實施動作,以提高辨識精準度,並大大提高急救成功率。

● 進行方法及步驟

1.流程圖

2.預計可能遭遇之困難及解決途徑

目前所遇到的問題是,在進行影像辨識壓胸時,我們發現所得到的深度數據與實際放在測距儀上的深度有所落差。為了解決這個問題,我們正在尋找解決方案。其中,我們嘗試到了去碩博士論文網站上查找類似或相關的論文,並向老師和助教尋求協助。

為了更全面地解決這個問題,我們可能需要進一步探討影像辨識壓胸的技術原理以及 與測距儀的數據校準等相關技術的知識。此外,我們也可以考慮嘗試不同的影像辨識算法或者 使用其他型號的壓力感測器,以尋求更準確的測量結果。

(附圖為理想上測距儀之轉換深度)

● 設備需求 (硬體及軟體需求)

硬體:

- ❖ 筆記型電腦
- ❖ 羅技 BCC950 ConferenceCam 攝影機
- ❖ CPR 復甦安妮
- ❖ 紅外線測距儀

軟體:

- Openpose
- **♦** QT
- Android
- YOLO
- Pycharm

經費預算需求表 (執行中所需之經費項目單價明細)

編列預算範本

項目名稱	說明	單位/ 數量	單價 (NTD)	小計 (NTD)	備註
個人電腦	編譯程 式、影 像辨識 及設計 UI 使用	1/台	30000	30000	系上實驗室提供
羅技 BCC950 ConferenceCam 攝影機	專題實 作使用	1/台	7500	7500	系上實驗室提供
CPR 復甦安妮	專題實 作使用	1/個	12000	12000	台中榮總提供
紅外線測距儀	專題實 作使用	1/ 個	500	500	系上實驗室提供
共計				50000	

● **工作分配 (**詳述參與人員分工**)**

	姓名	工作項目
組長	張瑞蘢	1.監督提醒組員 2.Labeling 3.影像機器學習(YOLO)
組員	顏仁炫	1.Openpose 辨識人體關鍵點 2.Labeling
組員	陳柏諺	1.Labeling 2.手機的 UI 設計(Android studio)
組員	陳家禾	1.UI 設計(QT) 2.Labeling
組員	黄凱軒	1.Labeling 2.手機的 UI 設計(Android studio)

• 預期完成之工作項目及具體成果

1.可以進行實時的偵測按壓頻率、按壓深度、按壓姿勢、按壓位置

	AI CPR	8
Compression Depth	CPR Screen	Round O 編號
deepLabel	imgLabet	開始餘影結束餘影
Depth 0.0		(B)平 能物
Compression Rate		
frequenceLabel	electrocardiogram	Compression Position
Rate ω	Depth Abnormal Posture Abnormal Rate Abnormal Position Abnormal	ImgYOLOLabel

(附圖為初期概念介面)

2.目標做成像 QCPR 版本介面

(* 書面審查文件至少為2頁。不含封面,請依上述格式撰寫。)

(*字型:「本文」使用「標楷體及 Times12 點」;行距 1.5。

「標題」使用「**粗體標楷體及 Times14 點」**;行距 1.5。)

(*上下左右的邊界至多 2.5 公分,至少 1 公分。