武汉大学 2015-2016 学年第二学期期末考试

线性代数 B(A 卷解答)

1、(10 分)设 $A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix}$,问A是否可逆?如可逆求 A^{-1} ,如不可逆,求A的伴随

矩阵 A^* .

解
$$|A| = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 3 & -2 \\ -3 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 3 & 0 \\ -3 & -1 & -2 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 3 & 0 \\ -2 & -3 & 0 \end{pmatrix} = 0$$
 A不可逆
$$A^* = \begin{pmatrix} 1 & 1 & 1 \\ 4 & 4 & 4 \\ 7 & 7 & 7 \end{pmatrix}$$

2、(10 分) 已知矩阵
$$\begin{pmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
与 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 可交换. 试求 $\begin{vmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ 的值.

解 由
$$\begin{pmatrix} 1 & 2 & 3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix}$$
与 $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ 可交换. 得 $a_2 = b_3 = 1, b_1 = a_3 = 2, a_1 = b_2 = 3$.

所求行列式为
$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{vmatrix} = 6 \begin{vmatrix} 1 & 1 & 1 \\ 3 & 1 & 2 \\ 0 & 3 & 0 \end{vmatrix} = 18$$

3、(10 分) 向量 α 在基 α_1 = (1,1,1), α_2 = (0,1,1), α_3 = (1,-1,1) 下的坐标(4,2,-2),求 α 在基 β_1 = (1,2,2), β_2 = (1,0,2), β_3 = (2,0,2) 下的坐标。

解 法一 由 $\alpha = 4\alpha_1 + 2\alpha_2 - 2\alpha_3$ 令 $\alpha = x\beta_1 + y\beta_2 + z\beta_3$ 则有:

$$\alpha_{1}+2\alpha_{2}+\alpha_{3}=x\beta_{1}+y\beta_{2}+z\beta_{3}, \quad \mathcal{A} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 0 \\ 2 & 2 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

它有唯一解: $(x_1, x_2, x_3) = (4, -2, 0)$. 故 α 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标为: (4, -2, 0)

法二 由 $\beta_1 = \alpha_1 + \alpha_2$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = \alpha_3 + \alpha_1$

有题设知 $\alpha_1 + 2\alpha_2 + \alpha_3 = x(\alpha_1 + \alpha_2) + y(\alpha_2 + \alpha_3) + z(\alpha_3 + \alpha_1)$

故有
$$\begin{cases} x+z=4\\ x+y=2\\ y+z=-2 \end{cases}$$
 解得:
$$\begin{cases} x=4\\ y=-2\\ z=0 \end{cases}$$

故 α 在基 β_1 , β_2 , β_3 下的坐标为: (4,-2,0)

4、(12 分)设 3 阶方阵 A 的特征值分别为1,-1,0,方阵 $B = 2A^2 - 3A - 4E$

1) 试求矩阵 B 的特征值及与 B 相似的对角矩阵; 2) 验证 B 可逆, 并求 B^{-1} 的特征值及 行列式 $|B^{-1}|$ 之值。

解 1)
$$B$$
的特征值分别为 $u_1 = -5$; $u_2 = 1$; $u_3 = -4$ 与 B 相似的对角矩阵为 $\Lambda = \begin{pmatrix} -5 & 1 & 1 \\ & -4 \end{pmatrix}$ 2) $|B| = (-5) \times 1 \times (-4) = 20 \neq 0$ 故 B 可逆。 B^{-1} 的 3 个特征值分别为 $-\frac{1}{5}$, 1 , $-\frac{1}{4}$

2)
$$|B| = (-5) \times 1 \times (-4) = 20 \neq 0$$
 故 B 可逆。 B^{-1} 的 3 个特征值分别为 $-\frac{1}{5}, 1, -\frac{1}{4}$

$$|B^{-1}| = -\frac{1}{5} \times 1 \times (-\frac{1}{4}) = \frac{1}{20}$$

5、(10 分)设 $\alpha_1 = (2,1,3,1)$, $\alpha_2 = (1,2,0,1)$, $\alpha_3 = (-1,1-3,0)$, $\alpha_4 = (1,1,1,1)$, 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的一个最大无关组,并用最大无关组线性表示该组中其它向量。

故 $\alpha_1,\alpha_2,\alpha_4$ 是该向量组的一个最大无关组,且有 $\alpha_3 = -\alpha_1 + \alpha_2 + 0\alpha_3$ 6、(10 分)设二次型 $f = x_1^2 + 2x_2^2 + (1-k)x_3^2 + 2kx_1x_2 + 2x_1x_3$ 其中 k 为参数,确定 k 的取 值范围使 f 为正定的。

解
$$A = \begin{bmatrix} 1 & k & 1 \\ k & 2 & 0 \\ 1 & 0 & 1-k \end{bmatrix}$$
 由 $\Delta_1 = 1 > 0$ $\Delta_2 = 2 - k^2 > 0$ $\Delta_3 = |A| = k(k-2)(k+1) > 0$

可得-1 < k < 0

7、(10 分)设A是 4×4 矩阵且A的秩为2,B是 4×1 的非零矩阵,若 a_1,a_2,a_3 是方程组 AX = B的解向量,且设 $a_1 = (1,1,1,1)^T$, $a_1 + a_2 = (1,2,3,4)^T$, $a_2 + a_3 = (1,0,4,3)^T$, 求方程组 AX = B 的通解.

则 $Ab_1 = 0$, $Ab_2 = 0$, 且 b_1 , b_2 , 线性无关。又 A 的秩为2,故 AX = B 的通解为:

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = k_1 b_1 + k_2 b_2 + a_1 = k_1 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ -2 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, (k_1, k_2 \in R)$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = k_1 b_1 + k_2 b_2 + a_1 = k_1 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \end{pmatrix} + k_2 \begin{pmatrix} 0 \\ -2 \\ 1 \\ -1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, (k_1, k_2 \in R)$$

$$8 \cdot (12 \, \%) \, 已知方程组(I) \begin{cases} x_1 + a x_2 + x_3 + x_4 = 1 \\ 2x_1 + x_2 + b x_3 + x_4 = 4 \\ 2x_1 + 2x_2 + 3x_3 + c x_4 = 1 \end{cases} = 5$$
 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ -x_2 + 2x_3 - x_4 = 2 \end{cases}$ 同 $\begin{cases} x_1 + 2x_2 + 3x_3 + c x_4 = 1 \\ x_3 + 2x_4 = -1 \end{cases}$

解, 试确定a,b,c之值.

解 方程组(II)的
$$\overline{A} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & -1 & 2 & -1 & 2 \\ 0 & 0 & 1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -6 & 6 \\ 0 & 1 & 0 & 5 & -4 \\ 0 & 0 & 1 & 2 & -1 \end{bmatrix}$$

$$\therefore X = k_1 \begin{bmatrix} 6 \\ -5 \\ -2 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ -4 \\ -1 \\ 0 \end{bmatrix}$$
 将特解 $\eta_0 = \begin{bmatrix} 6 \\ -4 \\ -1 \\ 0 \end{bmatrix}$ 代入(I)入得到
$$\begin{cases} 6 - 4a - 1 = 1 \\ 12 - 4 - b = 4 \Rightarrow \begin{cases} a = 1 \\ b = 4 \end{cases}$$

$$\diamondsuit k_1 = -1 将 X = \begin{bmatrix} -6 \\ 5 \\ 2 \\ -1 \end{bmatrix} + \begin{bmatrix} 6 \\ -4 \\ -1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ -1 \end{bmatrix} 代入(I)$$

$$2+3-c=1 \Rightarrow c=4$$
 : $a=1,b=4,c=4$.

9、(10 分) 用正交变换化二次型 $f=2x_1^2+x_2^2+x_3^2+2x_1x_3+2x_1x_2$ 为标准形,并写出所用正交变换及 f 的标准形。

解
$$\lambda_1 = 0$$
, $\lambda_2 = 1$, $\lambda_3 = 3$

$$e_1 = \left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right), \ e_2 = \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T, \ e_3 = \left(\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)^T$$

经正交变换
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad f \text{ 化为标准形:} \quad y_2^2 + 3y_3^2$$

10、(6分)设 $\alpha_1, \dots, \alpha_{n-1}$ 是 R^n 中n-1线性无关的向量, β_i 与 $\alpha_1, \dots, \alpha_{n-1}$ 均正交(i=1,2),证明: β_1, β_2 线性相关。

证明 因为 $\alpha_1,\cdots,\alpha_{n-1}$, β_1,β_2 是n+1个n维向量,故必线性相关,存在 $k_1,\cdots,k_{n-1},\ell_1,\ell_2$ 使

得
$$k_1\alpha_1 + \dots + k_{n-1}\alpha_{n-1} + \ell_1\beta_1 + \ell_2\beta_2 = 0$$
 ······(1)

因 $\alpha_1, \cdots, \alpha_{n-1}$ 线性无关,故 ℓ_1, ℓ_2 不全为 0 用 $\ell_1 \beta_1 + \ell_2 \beta_2$ 与 (1) 式两边作内积得

$$\left[\ell_1\beta_1+\ell_2\beta_2\;,\,\ell_1\beta_1+\ell_2\beta_2\right]=0\quad 故\,\ell_1\beta_1+\ell_2\beta_2=0\;,\,\ell_1,\ell_2$$
不全为 $0\;,\;\;\beta_1,\beta_2$ 线性相关。