

Семинар 3

Изменение таблиц в Pandas

Цели семинара №14:

Научиться создавать, изменять и удалять признаки Изучить группировку данных и объединение таблиц Познакомиться со встроенными визуализациями

Минутка самопроверки

Функция join в pandas объединяет по индексам?

- Нет
- **2**. Да

Функция join в pandas объединяет по индексам?

- **1**. Нет
- **2**. Да

Какой атрибут how стоял при объединение двух датафреймов с помощью merge по колонке col_1?

PECILIT DE

'LE	'LEFT DF'				
	col_1	col_2			
0	1	30			
1	2	30			
2	3	30			
3	4	30			

'RIG	'RIGHT DF'		
- 0	col_1	col_3	
0	1	40	
1	3	50	
2	5	50	

	col_1	col_2	col_3
0	1	30.0	40.0
1	2	30.0	NaN
2	3	30.0	50.0
3	4	30.0	NaN
4	5	NaN	50.0

- 1. Left
- 2. Right
- 3. Outer
- 4. Inner

Какой атрибут how стоял при объединение двух датафреймов с помощью merge по колонке col_1?

'RESULT DF'

LF	FELL DE.			
	col_1	col_2		
0	1	30		
1	2	30		
2	3	30		
3	4	30		

'RI	'RIGHT DF'		
	col_1	col_3	
0	1	40	
1	3	50	
2	5	50	

	col_1	col_2	col_3
0	1	30.0	40.0
1	2	30.0	NaN
2	3	30.0	50.0
3	4	30.0	NaN
4	5	NaN	50.0

- 1. Left
- 2. Right
- Outer
- 4. Inner

По умолчанию метод .drop() возвращает новый датафрейм и не изменяет исходный?

- Нет
- **2**. Да

По умолчанию метод .drop() возвращает новый датафрейм и не изменяет исходный?

- Нет
- 2. <mark>Да</mark>

Каким методом можно посчитать частотность появления уникальных значений в датафрейме/серии?

- count_values()
- value_counts()
- count_unique()
- 4. value_unique()

Каким методом можно посчитать частотность появления уникальных значений в датафрейме/серии?

- count_values()
- 2. value_counts()
- 3. count_unique()
- 4. value_unique()

Каким аргументом можно изменять исходный датафрейм, а не возвращать новый при использовании метода .drop()?

- drop(keep=True)
- drop(inplace=True)
- 3. drop(origin=True)
- 4. drop(new=False)

Каким аргументом можно изменять исходный датафрейм, а не возвращать новый при использовании метода .drop()?

- drop(keep=True)
- 2. drop(inplace=True)
- drop(origin=True)
- 4. drop(new=False)

Функция merge в pandas объединяет по индексам?

- Нет
- **2**. Да

Функция merge в pandas объединяет по индексам?

- Нет
- **2**. Да

Какой атрибут how стоял при объединение двух датафреймов с помощью merge по колонке col_1?

'LEFT DF'		
	col_1	col_2
0	1	30
1	2	30
2	3	30
3	4	30

'RIGHT DF'		
col_1	col_3	
1	40	
3	50	
5	50	
	1 3	

'RE	'RESULT DF'		
	col_1	col_2	col_3
0	1	30	40.0
1	2	30	NaN
2	3	30	50.0
3	4	30	NaN

- 1. Left
- 2. Right
- 3. Outer
- 4. Inner

Какой атрибут how стоял при объединение двух датафреймов с помощью merge по колонке col_1?

L	LEFT DF		
	col_1	col_2	
0	1	30	
1	2	30	
2	3	30	
3	4	30	

ILEET DE

'RI	'RIGHT DF'		
	col_1	col_3	
0	1	40	
1	3	50	
2	5	50	

	2000	100 Ex 100	ASSESS AND A
	col_1	col_2	col_3
0	1	30	40.0
1	2	30	NaN
2	3	30	50.0
3	4	30	NaN

- 1. Left
- 2. Right
- 3. Outer
- 4. Inner

Ваши вопросы?

Изменение таблиц в Pandas

Практика

Изменение таблиц в Pandas

Задание 1.

- 1. Скачать данные по ссылке https://drive.google.com/file/d/1MpAdHAl727fO3oW32NO4FpSRhUBUfifS/edit
- 2. Считать данные с помощью pandas
- 3. Вывести на экран первые 5 строк
- 1.1 Создать новый признак Cpu_Company, который будет содержать только название фирмы, которая произвела CPU
- 1.2 Создать новый признак Memory_Amount, который будет содержать только количество Gb памяти без указания типа носителя
- 1.3 Создать новый признак Memory_Туре, который будет содержать только тип носителя (HDD/SDD/др.)
- 1.4 Удалите признаки Memory и ScreenResolution

Задание 1.

- 1. Скачать данные по ссылке https://drive.google.com/file/d/1MpAdHAl727fO3oW32NO4FpSRhU
 BUfifS/edit
- 2. Считать данные с помощью pandas
- 3. Вывести на экран первые 5 строк
- 1.1 Создать новый признак Cpu_Company, который будет содержать только название фирмы, которая произвела CPU
- 1.2 Создать новый признак Memory_Amount, который будет содержать только количество Gb памяти без указания типа носителя
- 1.3 Создать новый признак Memory_Туре, который будет содержать только тип носителя (HDD/SDD/др.)
- 1.4 Удалите признаки Memory и ScreenResolution

Перерыв

Перерыв

<<5:00->>

Задание 2.

- 2.1 Создайте признак SSD, который изначально равен 0
- 2.2 Поставьте в признаке SSD 1, если ноутбук действительно с типом носителя SSD
- 2.3 Уберите в признаке Weight значения 'kg' и поменяйте его тип данных на вещественный

Задание 2.

- 2.1 Создайте признак SSD, который изначально равен 0
- 2.2 Поставьте в признаке SSD 1, если ноутбук действительно с типом носителя SSD
- 2.3 Уберите в признаке Weight значения 'kg' и поменяйте его тип данных на вещественный

Задание 3.

Создайте датафрейм с клиентами:

```
clients = pd.DataFrame({
   'client_id': [45, 32, 67, 33, 43],
   'laptop_id': [506, 398, 710, 120, 1999]
})
```

laptop іd - это индексы датафрейма с ноутбуками

- 3.1 Присоедините к таблице clients данные по ноутбукам через метод join
- 3.2 Присоедините к таблице clients данные по ноутбукам через метод merge

Это нужно, чтобы понимать, какие ноутбуки покупались клиентами

Задание 3.

Создайте датафрейм с клиентами:

```
clients = pd.DataFrame({
   'client_id': [45, 32, 67, 33, 43],
   'laptop_id': [506, 398, 710, 120, 1999]
})
```

laptop іd - это индексы датафрейма с ноутбуками

- 3.1 Присоедините к таблице clients данные по ноутбукам через метод join
- 3.2 Присоедините к таблице clients данные по ноутбукам через метод merge

Это нужно, чтобы понимать, какие ноутбуки покупались клиентами

Задание 4.

Составьте несколько сводных таблиц

4.1 Найдите среднюю стоимость ноутбуков в зависимости от компании производителя

Отсортируйте от меньшей стоимости к большей

- 4.2 Найдите минимальную, среднюю и максимальную стоимости ноутбуков в зависимости от производителя процессора
- 4.3 Постройте таблицу с подсчетом количества ноутбуков в данных в зависимости от производителя CPU и ОЗУ
- 4.4 Постройте таблицу с подсчетом средней стоимости ноутбуков в данных в зависимости от операционной системы и GB памяти

Задание 4.

Составьте несколько сводных таблиц

4.1 Найдите среднюю стоимость ноутбуков в зависимости от компании производителя

Отсортируйте от меньшей стоимости к большей

- 4.2 Найдите минимальную, среднюю и максимальную стоимости ноутбуков в зависимости от производителя процессора
- 4.3 Постройте таблицу с подсчетом количества ноутбуков в данных в зависимости от производителя CPU и ОЗУ
- 4.4 Постройте таблицу с подсчетом средней стоимости ноутбуков в данных в зависимости от операционной системы и GB памяти

Задание 5*.

Ответьте на несколько вопросов

5.1 Ноутбуков каких компаний и с каким процессором больше?

5.2 С каким типом памяти и с каким объемом памяти больше ноутбуков?

Задание 5*.

Ответьте на несколько вопросов

5.1 Ноутбуков каких компаний и с каким процессором больше?

5.2 С каким типом памяти и с каким объемом памяти больше ноутбуков?

Ваши вопросы?

Подведем итоги

Загрузите данные из файла kc-house-data.csv Считать данные с помощью pandas Вывести на экран первые 5 строк

- 1.1 Создать новый признак price_per_sq_lot, который будет содержать среднюю стоимость за один кв. метр общей площади
- 1.2 Создать новый признак delta_renovated, который будет содержать разницу в годах между годом реновацией дома и годом постройки дома

Если реновации дома не было, то в новом признаке поставьте 0

- **1.3** Создайте признаки года продажи, месяца продажи
- 1.4 Удалите признаки date, zipcode, lat, long

Создайте датафрейм с клиентами:

```
clients = pd.DataFrame({
    'client_id': [1459, 4684, 3498, 3942, 4535, 2308, 2866, 2765, 1472, 4236, 2295, 939, 3840, 280, 20, 4332, 3475, 4213, 3113, 4809, 2134, 2242, 2068, 4929, 1384, 1589, 3317, 2260, 1727, 1764, 1611, 1474],
    'house_id': [8965450190, 6823100225, 5104540330, 2131701075, 1522700060, 1189000207, 6821600300, 7137950720, 9510920050, 6131600255, 5428000070, 1788800910, 8100400160, 3123049142, 6306800010, 5083000375, 7920100025, 1951600150, 809001400, 339600110, 1622049154, 1099600250, 8563000110, 2768100205, 3995700435, 8861700030, 3303980210, 7731100066, 8146100580, 825069097, 3889100029, 9524100196]
})
```

house_id - это индексы датафрейма с домами

- 2.1 Присоедините к таблице clients данные по домам через метод join
- 2.2 Присоедините к таблице clients данные по домам через метод merge

Составьте несколько сводных таблиц

3.1 Найдите среднюю стоимость домов в зависимости от количества спален

Отсортируйте от меньшей стоимости к большей

- 3.2 Найдите минимальную, среднюю и максимальную стоимости домов в зависимости от состояния дома
- 3.3 Постройте таблицу с подсчетом количества домов в данных в зависимости от вида на набережную и оценкой вида

- 3.4 Каких домов в зависимости от этажности и количества спален больше?
- 3.5 Постройте таблицу с подсчетом медианной стоимости домов в данных в зависимости от состояния дома и оценки дома

Спасибо // за внимание /