

Burak Can Kuş Giray Budan

Danışman: Dr. Öğr. Üyesi Mete Eminağaoğlu

Sunum Plani

- Projenin Tanımı
- Amaç
- Kapsam
- Kullanılan Araçlar ve Yöntemler
- Uygulama
- Testler
- Sonuçlar
- Değerlendirme
- Demo
- Kaynakça

Projenin Tanımı

- İngilizce metinleri 6 farklı duygu kategorisine göre sınıflandıran LSTM temelli bir derin öğrenme modeli oluşturulması
- Saima Aman'ın blog yazılarından ürettiği veri seti kullanılmıştır.

Amaç

- Projenin amacı, yazı ile iletişimde cümle düzeyinde aktarılmak istenen duygunun tespit edilmesidir.
- Sınıflandırma için Paul Ekman'ın 1992 yılında kategorize ettiği 6 farklı duygu (happiness, sadness, anger, disgust, surprise, fear) temel alınır.

Proje Kapsamındaki Ana Konular

- Deep Learning
- LSTM (Long Short-Term Memory)
- Word2Vec
- Çoklu Sınıflandırma

Recurrent Neural Network (RNN)

- Verilerde sıralamanın önemli olduğu veri türleri ile çalışılırken kullanılır.
- Metinden duygu analizi veya Google Translate gibi yapay zeka destekli çeviri hizmeti verilen programların altyapılarında bulunur.
- Örnek RNN modeli:

Long Short-Term Memory (LSTM)

- RNN'lerin çok önceden olan olayları aklında tutabilmesi için farklı bir mimari yapıya ihtiyaçları vardır. Bu tür problemlerde, RNN'lerin bir çeşidi olan LSTM kullanılır.
- Aman veri setinden bir örnek;

"It was crazy, it was drunken, it was new and it was damn fun and I realized that there is less to learn from happy things but there are important messages you gain from good experiences."

Kullanılan Araç ve Yöntemler

- Stanford Tokenizer
- GloVe: Global Vectors for Word Representation
- FastText
- PyTorch
- scikit-learn
- Batch Normalization
- Dropout
- Early Stopping

Stanford Tokenizer

- Bir tokenizer, kabaca metni kelimelere karşılık gelen token'lara böler. Yani cümlenin kelimelerini ayırır.
- Projede, cümledeki her bir kelimenin vektörü kullanılacağı için Stanford Tokenizer ile bu ihtiyaç giderildi.

Tokenization öncesi:

I have to look at life in her perspective, and it would break anyones heart.

Tokenization sonrası:

['I', 'have', 'to', 'look', 'at', 'life', 'in', 'her', 'perspective', ',', 'and', 'it', 'would', 'break', 'anyones', 'heart', '.']

GloVe: Global Vectors for Word Representation

- GloVe, kelimeler için vektör gösterimleri elde etmek amacıyla geliştirilen unsupervised bir öğrenme algoritmasıdır.
- "you" ve "years" kelimeleri için kelime vektörü gösterimi;

```
you -0.0010919 0.33324 0.35743 -0.54041 0.82032 -0.49391 -0.32588 0.001 9972 -0.23829 0.35554 -0.60655 0.98932 -0.21786 0.11236 1.1494 0.73284 0.51182 0.29287 0.28388 -1.359 -0.37951 0.50943 0.7071 0.62941 1.0534 -2.1756 -1.3204 0.40001 1.5741 -1.66 3.7721 0.86949 -0.80439 0.1839 -0.3 4332 0.010714 0.23969 0.066748 0.70117 -0.73702 0.20877 0.11564 -0.1519 0.85908 0.2262 0.16519 0.36309 -0.45697 -0.048969 1.1316 years 0.16962 0.4344 -0.042106 -0.63324 -0.1278 0.53668 -1.0662 -0.3262 9 -0.50079 0.10247 -0.021968 -0.35105 -0.64153 -0.42454 1.3836 -0.13543 -0.24754 0.22156 -0.65563 0.44424 0.17017 0.35816 0.56379 -0.48044 -0.14765 -1.629 -0.31308 -0.47217 0.02659 0.47603 3.4619 0.12069 -0.045344 -0.47303 0.28569 -0.077584 -0.16447 0.7181 0.2617 -0.16841 -1.245 -0.0 76188 0.17493 0.24507 -0.63801 -0.21096 -0.49918 -0.50108 -0.7704 -0.32
```


FastText

- FastText de GloVe gibi kelimeler için vektör gösterimleri elde etmeye yarayan açık kaynaklı bir kütüphanedir.
- GloVe'dan farkı, sözlükte olmayan kelimeler için yakın bir vektör üretebilir.
- Projede FastText, GloVe ile karşılaştırmalı olarak kullanılmıştır ve kötü sonuç verdiği için GloVe tercih edilmiştir.

PyTorch

- PyTorch, Python için geliştirilmiş açık kaynaklı bir makine öğrenimi kütüphanesidir. Doğal dil işleme gibi alanlarda kullanımı yaygındır.
- PyTorch, iki adet high-level özellik sunar:
- Tensor işlemlerinin GPU üzerinde yapılabilmesi
- Derin sinir ağlarının otomatik olarak diferansiyel ağaçlarının oluşturulması ve backpropagation yapılması

scikit-learn

- Scikit-learn, Python programlama dili için ücretsiz makine öğrenimi kütüphanesidir.
- Projemizde cross validation ve sınıflandırma raporlarını hazırlamak için PIL (Pillow) kütüphanesi ile ortaklaşa kullanılmıştır.

Batch Normalization

 Batch normalization, yapay sinir ağlarının hızını, performansını, dengesini arttırmak ve aktivasyonları ayarlayarak ve ölçekleyerek giriş katmanını normalleştirmek için kullanılır.

Dropout

- Dropout, overfitting (aşırı öğrenme) olduğu durumlarda verileri dengeleyip bu sorunu çözmek amacıyla kullanılan bir tekniktir.
- Dropout, rastgele seçilen nöronların eğitim sırasında ihmal edildiği bir tekniktir. Bazı nöronlar rastgele bir şekilde çıkarılır.

Early Stopping

- Early stopping, makine öğreniminde bir sinir ağını eğitirken overfitting'i engellemek için kullanılan bir yöntemdir. Patience değeri alır.
- Ağın overfitting'e başlamadan önce kaç kez çalıştırılabileceğini belirlemeye yarar.

Yazılım Dili ve Geliştirme Ortamı

- Python projenin tamanında yazılım dili olarak kullanılmıştır.
- Proje, ortak çalışma yürütülebilmesi açısından Google Colaboratory üzerinde yazılmıştır.
- Anaconda platformu ile de bilgisayarlarımızda Python kullanımının daha pratik hale getirilmesi sağlanmıştır.

Eğitimde Kullanılan Veri Setleri

- Emotion Annotated Dataset: Saima Aman tarafından üretilen ve sadece akademik araştırmalar için kullanıma açık olan bir veri setidir. Blog yazılarından üretilmiştir.
- Twitter Dataset: J. Yang ve J.Leskovec tarafından Twitter kullanıcıları tarafından atılan 467 milyon tweet içeren veri setidir. Bu tweetler arasından elle 373 duygu cümlesi seçilip ek bir veri seti oluşturulmuştur.

UYGULAMA

Veri Seti

- Kullanılan veri setinde, ilk etapta 536
 happiness, 173 sadness, 179 anger, 172
 disgust, 115 surprise ve 115 fear cümlesi
 olmak üzere toplam 1290 cümle vardır.
- Bu veri seti grup üyeleri tarafından filtrelenerek cümle sayısı 1011'e düşürülmüştür.

Eğitim

- Veri setindeki her bir cümle Stanford Tokenizer ile tokenlarına ayrılır.
- Elde edilen tüm tokenlara karşılık gelen kelime vektörleri GloVe vektörlerinden bulunur.
- Bu kelime vektörleri de LSTM modeline girdi olarak verilir ve eğitim yapılır.

LSTM Modeli

bidirectional = False num_layers = 3 Sentence Length (3, batch_size, hidden_size) h0 h1 GloVe Vector for Word GloVe Vector for Word GloVe Vector for Word GloVe Vector for Word

Eğitim

- Loss fonksiyonu olarak CrossEntropyLoss
- Optimizer olarak Adam optimizer (L2 Regularization)

Eğitim

- Her fold'da, train/test classification reports ve confidence matrices bir listeye eklenir.
- Her fold'un en iyi modelleri sonuç olarak alınır.
- Örnek:
 "es_n1+b32+e100+lr0.001+hidden256+ly2+bd+bn+dp_h0.2+ dp_o0.4.pth"

Model Sonuçları

 Model değerlendirme dosyaları ise "fold 1.png", "fold 2.png" ... "fold n.png" şeklindedir.

```
es_n5+b128+e1000+lr0.001+hidden512+ly1+bd+dp_h0.0+dp_o0.9
    5 fold average.png
    fold 1.png
    fold 2.png
    fold 3.png
    fold 4.png
   fold 5.png
es_n5+b128+e1000+lr0.003+hidden256+ly1+dp_h0.0+dp_o0.7
    5 fold average.png
   fold 1.png
   fold 2.png
    fold 3.png
    fold 4.png
    fold 5.png
es_n5+b128+e1000+lr0.003+hidden256+lv2+dp_h0.3+dp_o0.9
    5 fold average.png
    fold 1.png
    fold 2.png
    fold 3.png
    fold 4.png
    fold 5.png
```


TESTLER


```
lrlist = [0.001, 0.003, 0,005]
batchsizelist = [8, 16, 32, 64, 128, 256]
hdlist = [70, 128, 256, 300, 512, 768, 1024]
lylist = [1, 2, 4]
bdlist = [True, False]
bnlist = [True, False]
dphlist = [0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
dpolist = [0, 0.2, 0.3 0.4, 0.6, 0.7, 0.8, 0.9]
number_of_epochs = 1000
n_{splits} = 5
early_stopping_patience = 15
(Bu örnekte 60480 x 5 farklı model vardır.)
```


- Veri setindeki büyük-küçük harflerin performansa etkisi olmamıştır.
- Batch size 16 iken ve 2 layer'lı modellerde 64 ve 128 iken performans iyileşmiştir.
- Modelin bidirectional olup olmaması performansa gözle görülür bir etki etmemiştir.
- Learning rate 0.003 iken daha iyi sonuçlar elde edilmiştir.
- Modelin büyüklüğü arttıkça başarı düşmüştür.
- Layer sayısı arttıkça performans olumsuz etkilenmiştir.
- Dropout arttıkça performans da artmıştır.

SONUÇLAR

Alınan En Başarılı 5-Fold Crossover Sonuçları

En Başarılı Fold'un Sonucu

DEĞERLENDİRME

Literatürdeki Benzer Çalışmaların Karşılaştırılması

- Arora'nın ISEAR veri setinde test sonuçları ile bizim Aman veri setindeki test sonuçlarımız Arora'nın en başarılı LSTM modeli: 0.64 accuracy Bizim en başarılı LSTM modelimiz: 0.75 accuracy
- ISEAR veri setinin tamamında (guilt ve shame hariç)
 Agrawal'ın en başarılı modeli: 0.45 avg f-score Bizim en başarılı modelimiz: 0.44 avg f-score
- Aman'ın veri setinde (test sonuçlarında)
 Aman'ın en başarılı ML modeli: 0.58 avg f-score
 Bizim en başarılı modelimiz: 0.70 avg f-score

Demo

Kaynakça

- S. Aman & S. Szpakowicz, 2007, Identifying Expressions of Emotion in Text, V. Matousek, P. Mautner (eds.): Proc 10th International Conf. on Text, Speech and Dialogue TSD 2007, Plzeň, Czech Republic, Lecture Notes in Computer Science 4629, Springer, 196-205.
- S. Aman, 2007, Recognizing Emotions in Text, Master of Computer Science, University of Ottawa.
- S. Hochreiter & J. Schmidhuber, 1997, Long short-term memory, Neural computation, 9(8):1735–1780.
- J. Yang, J. Leskovec, 2011, Patterns of Temporal Variation in Online Media, ACM International Conference on Web Search and Data Mining (WSDM '11)
- Ebba Cecilia Ovesdotter Alm, 2008, Affect in text and speech, PhD Dissertation, Urbana, IL: University of Illinois at Urbana-Champaign.
- Ameeta Agrawal, 2011, Unsupervised emotion detection from text using semantic and syntactic relations, 2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, pages 346-353. IEEE Computer Society, December.
- Jeffrey Pennington et al., 2014, GloVe: Global Vectors for Word Representation, Proceedings of the Empiricial Methods in Natural Language Processing (EMNLP 2014) 12

Teşekkür Ederiz

Sorularınız?