Appunti Tank

Lorenzo Pasqui

4 maggio 2024

Indice

1 Volume del Tank

Il volume del tank deve essere maggiore di quello del volume del propellente richiesto.

Il tank è composto da 4 componenti:

- 1. V_{pu} : volume propellente (extra per emergenze).
- 2. V_{ull} : volume $_{l}ibero_{p}erespansione del propellente o contrazione strutturale (.01/0.03). <math>V_{bo}$: per criogenici, permette l'ebollizione a causa del rifonrnimento e dello scolo.
- 3. V_{trap} : volume del propellente che rimane intrappolato nelle feed lines (tipicamente volume del feed system).

Dunque:

$$V_{tot} = V_{pu} + V_{ull} + V_{bo} + V_{trap}$$

2 Forma del Tank

Di solito sono:

- Sferici
- Cilindrici

I primi massimizzano il volume rispetto all'area, ma i cilindrici hanno forma migliore per razzi e migliorano la rigidità strutturale.

La pressione ha il maggior effetto sui limiti strutturali del tank. Per il design preliminare consideriamo solo i carichi di pressione:

La design burst pressure del tank è:

$$p_b = f_s \text{MEOP}$$

con:

- p_b : design bust pressure (in Pa).
- f_s : fattore sicurezza (2.0 per veicoli pressurizzati)
- MEOP: Maximum Expected Operating Pressure del tank (Pa).

Quale materiale? serve densità (ρ) , sforzo elastico (F_{tu}) . Indice di merito:

$$\frac{F_{tu}}{\rho g_0}$$

Altre cose da considerare nel materiale sono interazione chimica e lavorazione (controllare in appendice B).

2.1 sezione cilindrica

$$t_s = \frac{p_b r_s}{2 F_{all}}$$

$$m_s = A_s t_s \rho_{mat}$$

con:

- r_s raggio della sfera
- A_s superficie della sfera
- V_s volume della sfera
- t_s spessore
- p_b DBP
- \bullet F_all sforzo elastico permesso
- m_s massa
- ρ_{mat} densità del materiale

2.2 Sezione sferica

$$t_c = \frac{p_b r_c}{F_{all}}$$

$$m_c = A_c t_c \rho_{mat}$$

2.2.1 Parti finali cilindriche

Non abbiamo ellissi perchè lo sforzo sul punto di contatto tra ellissi e cilindro si formano sforzi alti. Abbiamo calotte sferiche. Non considerando i diversi loads dati da altri fattori che non siano la pressione interna sottostimiamo di circa 2/2.5 volte.

3 Stima della massa con il metodo pV/W

Approccio puramente empirico. Considero ϕ_{tank} , fattore della massa del tank:

$$\phi_{tank} = \frac{p_b V_{tot}}{g_0 m_{tank}}$$

Per tank completamente metallici questo valore è 2500 metri!! Posso quindi risolvere per la massa del tank.

3.1 Isolazione termica

Devo isolare liquidi criogenici o propellenti che potrebbero congelarsi in orbita. Di solito questo è fatto tramite una lamina di metallo che copre una schiuma isolante (oppure materiale non metallico a nido d'ape).

3.2 Dispositivi di espulsione di cariburante

I serbatoi devono essere in grado di fornire e controllare il propellente in tutte le fasi della missione. Parte di questa capacità deriva anche dalla rimozione di gas dal propellente che viene fornito al sistema propulsivo, e espellere parte del propellente per eliminare i residui. Oltre a questo devono essere evitate forze trasmesse dal propellente alla navicella (slosh). Devo evitare che negli inlet finisca gas.

Posso avere:

- sistemi di espulsione passivi
- sistemi di espulsione positivi

I primi meno costosi ed efficienti sfruttano la tensione superficiale del liquido, e sono dunque meno affidabili ma meno costosi e complicati , mentre i secondi usano barriere fisiche, valvole, pistoni, diaframmi etc. e sono quindi più efficaci a scapito di costo e complessità. PAGINA 299 e precedenti Posso inoltre usare gas per pressurizzare