DAVID WIEDEMANN

ANALYSEI

Table des matières

1	Introduction 4	
	1.1 Buts du Cours 4	
2	Definir $ m m m m m m m m m m m m m $	
	2.1 Exemple d'utilisation	7

List of Theorems

1	■ Theorem (env400)	4
2	♣ Lemme (Lemme)	4
		4
		5
3	• Axiom (Nombres Reels)	5
	♣ Lemme (Theorem name)	6
		6
5	• Proposition (Annulation de l'element neutre)	6
		6
6	► Corollaire (x fois moins 1 egale -x)	6
		7
7	• Axiom (Nombres Reels II)	7
1	■ Definition (valeur absolue)	7
8	• Proposition (Inegalite du triangle)	8
		8

2	■ Definition (Bornes)	8
9	lacktriangle Axiom (Axiome de completude)	8
3	■ Definition (Supremum)	9
14	♦ Proposition	9
	ℰ Proof	9
15	Corollaire (Propriete archimedienne)	10
	ℰ Proof	10
16	■Theorem (La racine de deux existe)	10
	ℰ Proof	10
18	$lacktriangle$ Proposition (Q est dense dans $\mathbb R$)	11
19	♣ Lemme	11
	ℰ Proof	11
	Proof (Preuve de la densite)	11

1.1 Buts du Cours

Officiel:

Suites, series, fonctions, derivees, integrales, ...

Secrets

Apprendre le raisonnement rigoureux

Creativite

Esprit Critique

Ne croyez rien tant que c'est pas prouve

On construit sur ce qu'on a fait, on recommence pas toujours a 0, par rapport a d'autres domaines(lettres par exemple)

■Theorem 1 (env. -400)

Il n'existe aucin nombre (fraction) x tel que $x^2 = 2$.

Ca contredit pythagore nn?

On va demontrer le theoreme. 1

1. On demontre d'abord un lemme

Lemme 2 (Lemme)

Soit $n \in \mathbb{N}$ Alors n pair $\iff n^2$ pair.

Proof

$$\Rightarrow$$
 Si n pair $\Rightarrow n^2$ pair.

Hyp.
$$n = 2m(m \in \mathbb{N})$$

Donc
$$n^2 = 4m^2$$
, pair.

Par l'absurde, n impair. $n = 2k + 1(k \in \mathbb{N})$.

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

impair. Donc si n est impair, alors n^2 est forcement impair. Absurde.

Proof

Supposons par l'absurde $\exists x$ t.q. $x^2 = 2$ et $x = \frac{a}{b}(a, b \in \mathbb{Z}, b \neq 0)$.

On peut supposer a et b non tous pairs.(sinon reduire).

$$x^2 = 2 \Rightarrow \frac{a^2}{b^2} = 2 \Rightarrow a^2 = 2b^2 \Rightarrow a^2$$

pair.

Lemme : a pair, i.e. $a = 2n(n \in \mathbb{N})$.

$$a^2 = 4n^2 = 2b^2 \Rightarrow 2n^2 = b^2$$
, i.e. b^2 vair.

Lemme : *b* pair.

Donc *a* et *b* sont les deux pairs, on a une contradiction.

En conclusion, le theoreme est bel et bien vrai, et contredit donc pythagore. Donc les fractions (Q) ne suffisent pas a decrire/mesurer les longueurs geometriques. Il faut les nombres reels, on les comprends seulement vraiment depuis 2 siecles.

C'est important de chercher ce genre d'erreurs.

Prochain but : definir les nombres reels (R). L'interaction entre les fractions et les nombres reels.

 $oldsymbol{ extit{ iny Definir}}$ $\mathbb R$

On commence avec la definition axiomatique des nombres reels.

• Axiom 3 (Nombres Reels)

 \mathbb{R} est un corps, en d'autres termes :

Ils sont munis de deux operations : plus et fois.

- Associativite $x + (y + z) = (x + y) + z(x, y, z \in \mathbb{R})^{1}$
- Commutativite x + y = y + x.
- Il existe un element neutre 0 t.q. 0 + x = x, $x \in \mathbb{R}$. ²
- Distributivite x(yz) = (xy)z
- Il existe un element inverse, unique $-x \in \mathbb{R}$ t.q. x + (-x) = 0
- 1. L'associativite n'est pas forcement vraie(octonions)
- 2. Il y a aucune difference entre les regles pour l'addition que pour la multiplication.

Remarque : Il existe beaucoup d'autres corps que R, par exemple

 $\mathbb{Q}, \mathbb{C}, \{0, 1, 2\} \mod 3$

Attention: $\{0,1,2,3\} \mod 4$ n'est pas un corps!

Presque tous marchent, ils satisfont 8 des 9 axiomes.

♣ Lemme 4 (Theorem name)

 $\forall x \exists ! y \ t.q. \ x + y = 0.$

Proof

Supposons x + y = 0 = x + y'

A voir : y = y'.

$$y = y + 0 = y + (x + y') = (y + x) + y'$$
$$= (x + y) + y' = 0 + y' = y'$$

CQFD.

Exercice

Demontrer que 0 est unique.

♦ Proposition 5 (Annulation de l'element neutre)

 $0 \cdot x = 0$

Proof

$$x = x \cdot 1 = x(1+0) = x \cdot 1 + x \cdot 0 = x + x \cdot 0$$

$$0 = x + (-x) = x + (-x) + x \cdot 0$$

$$\Rightarrow 0 = x \cdot 0$$

3

3.
$$a - b = a + (-b)$$

Corollaire 6 (x fois moins 1 egale -x)

$$x + x \cdot (-1) = 0$$

A voir : $x \cdot (-1)$ satisfait les proprietes de -x.

Or

$$x + x(-1) = x(1-1) = x \cdot 0 = 0.$$

Exercice

Montrer que $\forall x : -(-x) = x$ et que ceci implique (-a)(-b) =ab.

Rien de tout ca n'a quelque chose a voir avec \mathbb{R} .

Il nous faut plus d'axiomes!!

Axiom 7 (Nombres Reels II)

R est un corps ordonne. Ce qui revient a dire que les assertions suivantes sont verifiees.

—
$$x \le y$$
 et $y \le z$ impliquent $x \le z$

$$-(x \le yety \le x) \Rightarrow x = y$$

— pour tout couple de nombres reels x et y : ou bien $x \le y$ ou bien $x \ge y$.

Exemple de corps ordonnnes :

(1) \mathbb{R} , (2) \mathbb{Q} , (3) $\{0,1,2\}$ mod 3 n'est pas un corps ordonne.

Exercice

$$x \le y \iff -x \ge -y$$
 Exercice

$$x \le y \text{ et } z \ge 0 \Rightarrow xz \le yz$$

$$x \le y \text{ et } z \le 0 \Rightarrow xz \ge yz.$$

Il nous manque encore un axiome, et c'est le dernier : pour mercredi!

Lecture 2: Cours Mercredi

Wed 16 Sep

2.1 Exemple d'utilisation

■ Definition 1 (valeur absolue)

$$|x| = \begin{cases} x \sin x \ge 0 \\ -x \sin x < 0 \end{cases}$$

♦ Proposition 8 (Inegalite du triangle)

Elle dit que

$$\forall x, y : |x + y| \le |x| + |y|$$

Proof

Cas $x, y \ge 0$: alors $x + y \ge 0$

$$\iff x + y \le x + y$$

Ce qui est toujours vrai.

Cas
$$x \ge 0$$
 et $y < 0$.

Si $x + y \ge 0$, alors

$$\iff |x+y| \le x - y$$

$$\iff x + y \le x - y$$

$$y \le -y$$

c'est vrai car y < 0.

Si x + y < 0, alors

$$\iff -x - y \le x - y$$

Donc $-x \le x$ vrai car $x \ge 0$.

■ Definition 2 (Bornes)

Terminologie : Soit $A \subseteq E$, E corps ordonne.

— Une borne superieure (majorant) pour A et un nombre b tq

$$a < b \forall a \in A$$
.

— Une borne inferieure (minorant) pour A et un nombre b tq

$$a \ge b \forall a \in A$$
.

On dira que l'ensemble A est borne si il admet une borne.

• Axiom 9 (Axiome de completude)

$$\forall A \subseteq \mathbb{R} \neq \emptyset$$

et majoree $\exists s \in \mathbb{R} \ t.q$

- 1. s est un majorant pour A.
- 2. \forall majorant b de A, $b \geq s$.

Cet axiome finis la partie axiomatique du cours.

Remarque 10

- 1. $\forall s' < s \exists a \in A : a > s'$.
- 2. s est unique.

■ Definition 3 (Supremum)

Ce s s'appelle le supremum de A, note sup(A).

Remarque 11

 \exists (pour A minore et $\neq \emptyset$) une borne inferieure plus grande que toutes les autres, notee in f(A) (infimum).

$$\inf(A) = -\sup(-A)$$

Remarque 12

 $Si \operatorname{sup}(A) \in A$, on l'appelle le maximum.

Remarque 13

 $Si \inf(A) \in A$, on l'appelle le minimum.

♦ Proposition 14

 $\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n \ge x.$

Proof

Par l'absurde,

Alors

$$\exists x \in \mathbb{R} \forall n \in \mathbb{N} : n < x$$

 $\Rightarrow \mathbb{N}$ borne et $\neq \emptyset \Rightarrow \exists s = \sup(\mathbb{N})$

$$s - \frac{1}{2} < s \Rightarrow \exists n \in \mathbb{N} : n > s - \frac{1}{2}$$

$$n+1 \in \mathbb{N} \text{ et } n+1 > s - \frac{1}{2} + 1 = s + \frac{1}{2}$$

donc n + 1 > s absurde.

Corollaire 15 (Propriete archimedienne)

1. $\forall x \forall y > 0 \exists n \in \mathbb{N} : ny > x$.

2.
$$\forall \epsilon > 0 \exists n \in \mathbb{N} : \frac{1}{n} < \epsilon$$

Proof

Pour 2, appliquer la proposition a $x=\frac{1}{\epsilon}\exists n\in\mathbb{N}: n>x=\frac{1}{\epsilon}$

Alors

$$\Rightarrow \epsilon > \frac{1}{n}$$

Pour montrer le 1.

Considerer $\frac{x}{y}$

On peut maintenant montrer que la racine de deux existe.

■Theorem 16 (La racine de deux existe)

$$\exists x \in \mathbb{R} : x^2 = 2$$

Proof

$$A:=\{y|y^2<2\}$$

Clairement $A \neq \emptyset$ car $1 \in A$. De plus, A est majore : 2 est une borne. (si y > 2, $y^2 > 4 > 2 \Rightarrow y \notin A$).

Donc $\exists x = \sup(A)$

Supposons (par l'absurde) que $x^2 < 2$

Soit
$$0 < \epsilon < 1, \frac{2-x^2}{4x}$$
.

Clairement, par hypothese $2 - x^2 > 0$ et idem pour 4x car $x \ge 1$. Soit $y = x + \epsilon$, alors

$$y^2 = x^2 + 2\epsilon + \epsilon^2 < x^2 + \frac{2 - x^2}{2} + \frac{2 - x^2}{2} = 2$$

 $\Rightarrow y \in A$ Mais $y = x + \epsilon > x$. Absurde car $x = \sup(A)$. Donc $x^2 \ge 2$. Deuxiemement, supposons (absurde) $x^2 > 2$. Soit $0 < \epsilon < \frac{x^2-2}{2x} > 0$.

Posons $b = x - \epsilon$.

$$b < x \Rightarrow \exists y \in A : y > b$$

$$\Rightarrow y^2 > b^2 = x^2 - 2\epsilon x + \epsilon^2 > x^2 - 2\epsilon x < x^2 - 2\epsilon$$

Conclusion : $y^2 > 2$ contredit $y \in a$.

Donc $x^2 = 2$.

♣ Remarque 17

Preuve similaire:

$$\forall y > 0 \exists ! x > 0 : x^2 = y$$

♦ Proposition 18 (Q est dense dans R)

$$\forall x < y \in \mathbb{R} \exists z \in \mathbb{Q} : x < z < y$$

♣ Lemme 19

$$\forall x \exists n \in \mathbb{Z} : |n - x| \le \frac{1}{2}$$

Ou encore:

$$\forall x \exists [x] \in \mathbb{Z} tq$$

$$\begin{cases} [x] \le x \\ [x] + 1 > x \end{cases}$$

Proof

$$\exists n \in \mathbb{Z} : n > x(Archimede).$$

Soit
$$[x] = \inf\{n \in \mathbb{Z} : n > x\} - 1$$

Proof (Preuve de la densite)

Archimede :
$$\exists q \in \mathbb{N} : q > \frac{1}{y-x}$$
.

Donc

$$qy - qx > 1$$
.

$$\Rightarrow \exists p \in \mathbb{Z} : qx$$

par exemple :

$$p = [qy]$$

si $qy \notin \mathbb{Z}$ ou bien

$$p = qy - 1$$

$$\text{si }qy\in\mathbb{Z}$$