Calculus with Parametric Curves

- 1. **Quote.** "If you have a procedure with 10 parameters, you probably missed some." (Alan Perlis, American computer scientist and mathematician, 1922-1990)
- 2. Problem. Find the arc length of one arch of the cycloid

$$x = r(t - \sin t), y = r(1 - \cos t), 0 \le t \le 2\pi.$$

Also find the area under this arch.

3. Parametric Curves

Parametrization gives us a curve (path), but at the same time describes the position of a particle as a function of time: (x(t), y(t)).

Velocity is (x'(t), y'(t));

Acceleration is (x''(t), y''(t)).

Clearly, the curve to the left cannot be the graph of a function; parametrization allows path crossings, and closed curves.

A particle could trace part or all of its path more than once.

You will study curves like these in 2D and 3D in more detail in Math 251.

4. Some previous results in a new context.

Calculus for Parametric Curves.

Suppose the function y(x), for $x \in [a, b]$, is defined by the parametric equations

$$x = f(t)$$
 and $y = g(t)$ for $t \in [\alpha, \beta]$

and let C be the corresponding parametric curve.

(We assume that f and g satisfy all conditions that will guarantee that the function y(x) has the necessary properties that allow for the existence of all listed integrals.)

- 1. If f and g are differentiable with $f'(t) \neq 0$, then $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}$.
- 2. If $y(x) \ge 0$, then the **area** under the curve C is given by

$$A = \int_a^b y(x) dx = \int_{\alpha}^{\beta} g(t) f'(t) dt$$

3. If f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the **length of the curve** C is given by

$$s = \int_a^b \sqrt{1 + \left[\frac{dy}{dx}\right]^2} \ dx = \int_{\alpha}^{\beta} \sqrt{[f'(t)]^2 + [g'(t)]^2} \ dt$$

4. If $g(t) \ge 0$ then the **area of the surface** obtained by rotating C about the x-axis is given by

$$S = \int_a^b 2\pi y \sqrt{1 + \left[\frac{dy}{dx}\right]^2} dx = \int_{\alpha}^{\beta} 2\pi g(t) \sqrt{[f'(t)]^2 + [g'(t)]^2} dt$$

5. Going back to going around in circles

"Canonical" parametrization of the circle:

$$(x,y) = (r\cos t, r\sin t).$$

Particle moves around circle with speed 1.

Note: $(x,y) = (r\cos(t^2), r\sin(t^2))$ traces the same curve, but particle moves with speed 2t.

Velocity remains **tangent** to the circle.

Velocity (x', y') is tangent to the circle, i.e., **orthogonal** to the *vector* (x, y).

This follows directly from $x(t)^2 + y(t)^2 = r^2$.

Acceleration is (x'', y'') = Hence,

$$x'' + = 0, \qquad y'' + = 0.$$

$$(x', y') = (-r\sin t, r\cos t)$$

$$(r\cos t, r\sin t)$$

$$y = r\sin t$$

 $x = r \cos t$

1. Slope at (x(t), y(t)):

2. Area under the quarter circle: $\int_0^r y(x)dx = -\int_0^{\pi/2} y(t)x'(t)dt =$

3. Arc length of semicircle: $\int_0^{\pi} \sqrt{[x'(t)]^2 + [y'(t)]^2} dt =$

4. Rotate upper semicircle about x axis, surface area: $\int_0^{\pi} 2\pi y(t) \sqrt{[x'(t)]^2 + [y'(t)]^2} dt =$

6. **Example.** Find the slope of the tangent to the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$ as a function of the parameter θ . At what points is the tangent horizontal. Vertical? At what points does that tangent have slope 1. What about slope -1?

7. **Example.** Find the area under one arch of the cycloid:

$$x = r(t - \sin t), y = r(1 - \cos t), 0 \le t \le 2\pi.$$

Also find the arc length of this arch.

8. Example. Find the area of the surface obtained by rotating the curve

$$x = 3t - t^3, \ y = 3t^2, \ 0 \le t \le 1$$

about the x-axis.

9. Polar Coordinates are just parametric equations, really...

Find the arc length s of the cardioid with polar equation

$$r = 1 + \cos \theta$$
.

Also, find also the surface area S generated by revolving the cardioid around the x-axis. This will look very much like an apple – without a stem.

