

Description

The VSM80N03 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} =30V,I_D =80A

 $R_{DS(ON)}$ <6.5m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 10m Ω @ V_{GS} =5V

- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM80N03-T2	VSM80N03	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	30	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	80	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	56.5	Α	
Pulsed Drain Current	I _{DM}	240	Α	
Maximum Power Dissipation	P _D	83	W	
Derating factor		0.56	W/℃	
Single pulse avalanche energy (Note 5)	E _{AS}	200	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R _{eJC}	1.8	°C/W
---	------------------	-----	------

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics			•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	30	-	-	V
Zero Gate Voltage Drain Current	ero Gate Voltage Drain Current I _{DSS} V _{DS} =30		-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =250μA	1.5	2.0	2.5	V
Drain-Source On-State Resistance	-	V _{GS} =10V, I _D =20A	-	5	6.5	m0
	R _{DS(ON)}	V _{GS} =5V, I _D =20A	-	7	9.5	mΩ
Forward Transconductance	g Fs	V _{DS} =5V,I _D =20A	20	-	-	S
Dynamic Characteristics (Note4)		•				
Input Capacitance	C _{lss}	\/ -45\/\/ -0\/	-	1331	-	PF
Output Capacitance	C _{oss}	V_{DS} =15V, V_{GS} =0V, F=1.0MHz	-	246.5	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0IVIHZ	-	120.2	-	PF
Switching Characteristics (Note 4)	·					
Turn-on Delay Time	t _{d(on)}		-	15	-	nS
Turn-on Rise Time	t _r	V _{DD} =10V,I _D =20A	-	12	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =2.7 Ω	-	38	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Qg	\/ -40\/1 -20A	-	23.5	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS}=10V,I_{D}=20A,$ $V_{GS}=10V$	-	4.5	-	nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	4.7	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	80	А
Reverse Recovery Time	t _{rr}	TJ = 25°C, IF = 20A	-	22	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	16	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- $\textbf{1.} \ \textbf{Repetitive Rating: Pulse width limited by maximum junction temperature.}$
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width ≤ $300\mu s$, Duty Cycle ≤ 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=15V,V_G=10V,L=0.5mH,Rg=25 Ω , I_{AS}=30A

Test Circuit

1) E_{AS} Test Circuits

2) Gate Charge Test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance Normalized

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 ID Current- Junction Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance