Université Tunis ElManar

ENIT

Programmation Fonctionnelle & Logique

2ème Année Filière Informatique

Dr. Maledh MARRAKCHI m.maledh@gmail.com

1

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

BIBLIOGRAPHIE

- Programmation: Concepts, techniques et modèles, de Peter Van Roy et Seif Haridi, édité par Dunod, sept. 2007,
- Approche fonctionnelle de la programmation, de Guy Cousineau et Michel Mauny, édité par Ediscience International, collection informatique,
- PROLOG: programmation par l'exemple, de Louis Gacôgne, édité par Hermann,
- Lambda Calcul, types et modèles, de Jean-Louis Krivine, éd. Masson, 1990.
- Logique, réduction, résolution, de René Lalement, éd. Masson,
 1990

Objectifs du Cours

Donner une vue globale sur les langages et les paradigmes de programmation avec une focalisation sur deux paradigmes qui sont la programmation fonctionnelle et la programmation logique.

1. Introduction

- 2. Aperçu Historique
- 3. Paradigmes de Programmation
- 4. Programmation logique
- 5. Programmation fonctionnelle

Introduction:

Qu'est-ce qu'un Langage de Programmation (L.P)?

- Première Définition:
 - « Un langage de programmation est un système d'annotation qui sert à communiquer à un ordinateur ce que nous voulons qu'il fasse ».
- Nouvelle Définition:
 - ➤ Un langage de programmation est un système d'annotation pour décrire un traitement à faire de façon lisible par la machine et lisible par l'homme.

Qu'est-ce qu'un Langage de Programmation (L.P)?(suite)

- Traitement à faire « computation »:
 - > formellement: référence à la Machine de Turing et à la thèse de Church selon laquelle il n'est pas possible de disposer d'une machine plus puissante que la machine de Turing,
 - tout traitement réalisable par un ordinateur: calcul mathématique, manipulation de données, traitement de texte, stockage et restitution d'information, ... etc,
 - > certains langages de programmation sont définis dans une perspective de traitement spécifique mais peuvent réaliser d'autres traitements,
- Lisible par la machine:
 - > une structure du langage suffisamment simple pour permettre une traduction efficiente (non ambiguë et réalisable en un temps fini) en un langage compréhensible par la machine cible,
 - recours, en général, à une restriction de la structure du LP à un langage hors contexte « context-free »

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Introduction:

Qu'est-ce qu'un Langage de Programmation (L.P)?(suite)

- Lisible par l'homme:
 - ➤ le LP doit fournir une « abstraction » des actions que l'ordinateur doit accomplir qui permette une compréhension par des personnes non familiarisées avec les détails de fonctionnement de la machine cible: effort de rester aussi proche que possible du langage naturel,
 - Durant les 2 dernières décennies, avec l'augmentation de la taille des programmes, un travail important a été mis en œuvre pour offrir des mécanismes de réduction des détails nécessaires à la compréhension d'un programme, ex: structuration des informations en groupes d'informations locales, utilisables par tout le programme,...
 - Environnement de développement logiciel: évolution due à la nécessité d'intervention d'un groupe de programmeurs, apparition d'approches méthodologiques: Génie Logiciel

Abstraction dans un Langage de Programmation

- Différents types d'abstraction:
 - Abstraction dans les Données:
 - > par référence aux propriétés des données, ex: caractère, nombre, arbre de recherche,
 - Abstraction dans le contrôle:
 - par référence aux propriétés de transfert du contrôle (modification du chemin d'exécution dans un programme, ex: les boucles, les conditionnelles, les appels de procédures,
- Différents niveaux d'abstraction: par référence à la quantité d'information contenue dans l'abstraction
 - Abstraction de base: informations sur la localisation au niveau machine
 - Abstraction de structure: informations sur la structure du programme
 - Abstraction d'unité: informations sur des parties complètes d'un programme

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Introduction:

Abstraction dans un Langage de Programmation (suite)

Abstractions dans les LP	Données	Contrôle
de Base	Représentation interne des valeurs des données, ex: var x: integer; en Pascal ou int x; en C	Affectation, ex: $x := x + 3$ Branchement, ex: $GOTO\ 10$ (aujourd'hui très peu utilisée)
de Structure	Approche d'abstraction de collection de données reliées entre elles, ex: integer a(10) en Fortran Type intarray = array [110] integer; en Pascal	Approche de division d'un programme en groupes d'instructions imbriquées dans des tests qui gouvernent l'exécution, ex: If-then-else en Pascal ou while et for en C procedure, ou subprogram, ou subroutine
d'Unité	Encapsulation des données ou mécanisme d'abstraction de type de données, ex: <i>module</i> dans Modula2 ou <i>package</i> dans Ada	Approche de regroupement au sein d'unités, des procédures pour rendre des services liés logiquement,

4

Niveau de complexité d'un Langage de Programmation

- Langages de bas niveau (langage machine, assembleur).
- Langages de haut niveau (les langages les plus utilisés).
- Langages de très haut niveau (Prolog, ainsi que certains langages spécialisés tels que R,).
- Au delà des langages de programmation: Environnements de programmation et frameworks

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Introduction:

Domaines d'application d'un Langage de Programmation

- Traitement de données ("applications de gestion").
 - >Important dans le passé, maintenant largement remplacé par les bases de données, tableurs, et logiciels spécialisés.
- Calcul scientifique (incluant l'ingénierie).
 - Aujourd'hui, largement influencé par la conception de nouveaux hardwares tel que les superordinateurs ou les ordinateurs vectoriels, et actuellement le cloud..

Domaines d'application d'un Langage de Programmation (suite)

- Intelligence artificielle et autres applications en marge de l'informatique.
 - Logiciels éducatifs, jeux...
 - De nouveaux hardware sont proposés (actuellement surtout simulés) pour l'intelligence artificielle: réseaux de neurones, ordinateurs à connexion, et aussi des architectures en cloud.
- Applications en interne
 - compilateurs, systèmes d'exploitation, GUI, API.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

SOMMAIRE

- 1. Introduction
- 2. Aperçu Historique
- 3. Paradigmes de Programmation
- 4. Programmation fonctionnelle
- 5. Programmation logique

Les pionniers de la programmation

• Charles Babbage (1791-1871):

Invente la « machine analytique ». Sa compagne, Ada Augusta Lovelace, est considérée comme la première programmeur.

• Konrad Zuse (1942):

Développe Plankalkül. Cette notation (implémentée seulement en 1975 à titre historique) fut un précurseur des langages de programmation.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Langages de très bas niveau

- Ces langages machines et assembleurs sont dépendant du hardware. Initialement binaires, puis éventuellement symboliques.
- Il y a un unique langage machine, et habituellement un seul langage assembleur pour chaque type de processeur.
- La compatibilité ascendante est souvent très difficile: Aller des 386 vers 486, ou du 486 aux Pentium,

Fortran: 1954-1990

- Le premier langage de haut niveau à avoir été implémenté et ayant introduit les variables, tel que nous les connaissons, les boucles, procédures, étiquettes...
- Développé pour le calcul scientifique.
- La première version avait plusieurs caractéristiques uniques, souvent disgracieuses, mais conservées pour maintenir une compatibilité descendante.
- Encore utilisé pour des applications d'ingénierie nécessitant beaucoup de manipulations de tableaux et bénéficiant d'une bibliothèque importante de programmes
- La dernière version, Fortran 90, converge vers les autres langages de programmation.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Algol 60

- Le premier langage à introduire les blocs et la récursivité, et à être défini formellement. N'est plus utilisé mais est un ancêtre de plusieurs langages contemporains.
- Souvent considéré comme le langage le plus innovateur de l'histoire des langages de programmation.

Cobol

- Orienté vers le traitement de données (applications de gestion)
 - ➤ Organisation très stricte
 - >Structures de contrôles faibles
 - >Structures de données élaborées, les enregistrements (records) sont introduits.
- Populaire dans le monde des affaires et des services gouvernementaux, moins dans les universités.
- A vécu un regain d'intérêt lors de la « crise » du bug du passage à l'an 2000.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

PL/I

- Une combinaison des meilleurs éléments (tel qu'on pensait à l'époque) de Fortran, Algol 60 et Cobol.
 - Conçu pour être complètement général, pour être utilisé pour toute application de l'époque.
 - ► Encouragé par IBM
 - ▶Peu utilisé aujourd'hui.
- Introduit la manipulation d'événements (event handling).

Basic

- Le premier langage utilisé en informatique personnelle (personal computing).
- Le premier langage appris par plusieurs programmeurs: Conçu pour être facile à apprendre.
- Très simple, puissance limitée, mais peut être utilisé dans plusieurs domaines d'applications.
- Les versions de Basic utilisées aujourd'hui sont plus complexes.

19

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Simula 67

- Une extension d'Algol 60 conçu pour la simulation de processus concurrents.
- Introduit les concepts de programmation orientée objet: classes et encapsulation.
- Prédécesseur de Smalltalk et C++.
- N'est plus très utilisé.

20

Algol 68

- Sa conception est d'une élégance toujours inégalée.
- Très difficile à implémenter.
- Une description formelle habile, mais difficile à comprendre.
- Jamais vraiment utilisé.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Pascal

- Une version simplifiée d'Algol 68.
- Populaire pour l'enseignement de la programmation structurée.
- Un « bon » « premier langage » à apprendre, favorise de bonnes habitudes de programmation.
- Ses extensions (comme Delphi) sont des systèmes de programmation complets, aussi puissant que des environnements Java, par exemple.

Modula-2

- Un successeur de Pascal, plus conceptuellement uniforme.
- Mécanismes de programmation concurrente (plusieurs processus en parallèle).
- Peu utilisé, bien que ce soit un bon langage.
- Ses successeurs, Modula-3 et Oberon, sont encore plus attrayants, pratiques — et peu utilisés, (supplantés par C++.)

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Ada

- Le résultat d'un processus de conception très élaboré,
 à plusieurs étapes, et une tentative plus réussie que PL/I d'obtenir un langage général.
- Complètement standardisé: ne possède aucun dialecte (tout comme Java).
- 2 standards: Ada 83 (original), et Ada 95.
- Permet la concurrence de façon élégante et systématique.

C

- Utilisé pour implémenter Unix.
- Utile pour la programmation système et le développement pour les ordinateurs personnels.
- Populaire dans le passé, toujours utilisé, mais supplanté par C++.
- De bas niveau / haut niveau.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

LISP

- Un des premiers langages de programmation.
- Basé sur l'évaluation de fonctions. Utile pour le calcul symbolique.
- Initialement l'unique langage de l'intelligence artificielle (Prolog est plus jeune de 12 ans).
- Plusieurs dialectes: Scheme, Common Lisp.
- Des successeurs très élégants (Miranda, ML, Haskell) mais peu utilisés.

Prolog

- Un langage de très haut niveau.
- Déclaratif, basé sur un sous-ensemble de la logique, les preuves sont interprétées comme les calculs.
- Puissant:
 - > Gère le Non-déterminisme (backtracking intégré).
 - > Appariement flexible et élaboré.
 - Mémoire Associative: accès par le contenu
- Un outil puissant, entre des mains habiles.

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Smalltalk

- Programmation orientée objet très pure (plus que Java, beaucoup plus que C++).
- Intégré à un environnement de programmation et une interface usagée.
- Un outil puissant, entre des mains habiles.

C++

- L'extension orientée objet du langage impératif C.
- De conception hybride, avec les concepts orientés objet ajoutés à un langage qui n'était pas conçu pour cela.
- Syntaxe compliquée, sémantique difficile.
- Très en vogue et en demande. Java ne l'a pas encore supplanté, classé comme le langage le plus demandé en 2016,

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Java

- Une version modifiée de C++ beaucoup plus élégante.
- Pleinement orienté objet (Quoi que pas aussi consistant que Smalltalk)
- Conçu pour la programmation pour Internet, mais d'utilisation générale.
- En vogue.

Langage Script

- Traitement de fichiers texte
 - Perl
 - Python
- Programmation du web
 - JavaScript
 - PHP

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Historique:

Spécialisation d'un Langage

- Langages à usage général:
 - ➤ la plupart des langages que vous connaissez,
- Langages spécialisés: par exemple
 - Matlab; Octave (mathématiques),
 - Cobol (production de rapports),
 - > SQL (bases de données),
 - ➤ Perl (adapté au traitement et à la manipulation de fichiers texte, langage interprété intermédiaire entre C et des langages script comme Shell ou Sed) ,

Historique: Classement des Langages de Programmation (2) - Se limiter aux dix premiers est un choix très difficile dans la mesure où la suite du classement est également intéressante. - On retrouve par exemple de la 11e à la 20e place : - Arduino (#11), - Ruby (#12), - Assembleur (#13), - Scala (#14), - Matlab (#15), - HTML (#16), - Shell (#17), - Perl (#18), - Visual Basic (#19) - Cuda (#20). 2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

SOMMAIRE

- 1. Introduction
- 2. Aperçu Historique
- 3. Paradigmes de Programmation
- 4. Programmation fonctionnelle
- 5. Programmation logique

Paradigmes de programmation Définition

- Un Paradigme est un modèle de pensée qui oriente la recherche et la réflexion scientifique (Larousse)
- Un paradigme de programmation est une façon de penser qui oriente l'analyse, la conception et le codage d'un programme,
- Chaque paradigme permet d'autres techniques de programmation: Les paradigmes sont complémentaires

Paradigmes de programmation

- Le nombre de paradigmes est de l'ordre de 29 paradigmes réellement utilisés, mais le nombre de LP est beaucoup plus important,
- Chaque paradigme est défini par un ensemble de concepts de programmation,

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Paradigmes de programmation

Classification (suite)

- Programmation impérative:
 - > ce type de programmation présente 3 propriétés:
 - > traitement séquentiel des instructions,
 - > usage de variables représentant des espaces mémoires ou des états,
 - > usage d'affectations pour changer les valeurs des variables, ou les états Exemples: Pascal, C, C++, Java,
- Programmation déclarative:
 - ➤ ce type de programmation permet au programmeur de déclarer diverses entités sans se soucier de la façon dont celles-ci seront utilisées. Le programme pourra ensuite utiliser ces déclarations pour résoudre le problème, exemples: Prolog, Lisp

Paradigmes de programmation Programmation Impérative

- Programmation procédurale:
 - ➤ Le programme est divisé en blocs pouvant contenir des variables locales, ainsi que d'autres blocs: (Fortran, Pascal, C,),
 - ➤ la programmation est basée sur des instructions/commandes "fais quelque chose",
- Programmation orientée objet:
 - Des objets se rapportant au problème sont définis, avec leurs attributs et leur façon de réagir à différents événements,
 - ➤ Le problème est résolu grâce à des structures de contrôles basées sur l'envoi de messages entre ces objets: (Java, Smalltalk, C++, C#, Eiffel)

46

Paradigmes de programmation

Programmation Impérative (suite)

- Programmation concurrente:
 - ➤ Langage permettant la mise en œuvre de plusieurs activités concurrentes pouvant s'exécuter simultanément, communiquer et se synchroniser entre elles. Les données peuvent être partagées ou pas: cas de Ada 95, ou Java
- Programmation évènementielle:
 - la logique du programme est commandée par l'apparition d'évènements auxquels il faut répondre,
 - elle est souvent basée sur l'approche objet,
 - ➤ un événement est souvent le résultat d'une intervention de l'utilisateur: clic, déplacement de souris, ...: cas de Java

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Paradigmes de programmation

Programmation déclarative

- Programmation fonctionnelle:
 - > Un programme consiste en la déclaration de fonctions,
 - La structure de contrôle se résume en l'application et l'évaluation de fonctions,
 - ➤ Un appel à une fonction est fait. Celle-ci retournera un élément qui ne dépend que de la valeur des paramètres de la fonction. Les paramètres peuvent, eux même, être des appels à des fonctions: Lisp, Haskell, Scala, Erlang, Java+Guava, F#
 - ➤ Les paramètres de fonctions peuvent être des appels de fonctions,

Paradigmes de programmation

Programmation Déclarative (suite)

- Programmation logique:
 - ➤ Un programme consiste en la déclaration d'une série d'axiomes et de règles de déduction, avec la présentation d'un théorème à prouver. Le programme répond si le théorème peut être prouvé ou non à partir des déclarations: (Prolog),
 - > Tout est défini en terme de prédicats logiques,
 - La structure de contrôle est implicite: unification et chainage arrière,
- Programmation à base de contraintes:
 - utilise le principe de la programmation logique,
 - orientée but: résolution de contraintes, généralement sous forme arithmétique,

2017-2018- Cours ENIT -ProgF&L- Maledh MARRAKCHI

Paradigmes de programmation

Langages Multi Paradigmes

- De plus en plus de langages sont multi-paradigmes: C++, Python, Oz, Ruby, Ocalm, F#....
- Extensions orienté objet: non seulement C++, mais les dialectes de Lisp (CLOS) et Prolog (XPCE/Prolog, Prolog++).
- Programmation logique combinée à la programmation fonctionnelle (encore expérimental).
- Langages concurrents (comme Ada): au lieu d'avoir un processus sur un processeur, permet plusieurs processus en parallèle.

