## Práctica 4

# Cálculo Simbólico.

#### 4.1. Cálculo de Límites. Valoración de funciones.

Para definir una función en Matlab, se usa el comando syms seguido del nombre de la/s variable/s que tenga la función:

```
syms x y
f = x * sin(x)/cos(y);
```

Con esas dos líneas, hemos definido la función  $f(x,y) = \frac{xsen(x)}{cos(y)}$ . Para valorar una función en un punto dado, se usa el comando subs, por ejemplo, si queremos sustituir en la función anterior x por  $\frac{\pi}{3}$  e y por  $\pi$ , escribiremos:

$$g = subs(f, x, pi/3)$$
 Con esto, sustituimos  $x$  por  $\frac{\pi}{3}$ , y lo almacenamos en la función  $g$ .

Para substituir el valor en y, escribimos:

$$h = subs(g, y, pi)$$

Es recomendable recordar el comando vpa(h,n), que redondeaba un resultado numérico h a tantas cifras como indique el valor n.

Ejercicio 4.1.1.— Calcular el valor que toman las siguientes funciones en los puntos indicados, con un máximo de 5 cifras.

- 1.  $f(x) = x^2 sen(x)$  cuando  $x = \frac{\pi}{3}$ .
- 2.  $f(x) = \frac{\ln(3\sqrt{x})}{\tan(x)}$  cuando x = 3.

Para calcular límites, Matlab cuenta con el comando limit, permite calcular límites en un punto, en el infinito y laterales, por ejemplo, si queremos calcular el límite de una función f(x) en un punto  $x_0$ , bastará escribir  $limit(f,x,x_0)$ , si lo queremos sólo por la derecha, añadiremos  $limit(f, x, x_0, 'right')$ , mientras que si es por la izquierda, escribiremos  $limit(f, x, x_0, 'left')$ . Para calcular límites en el infinito, baste recordar que Matlab lo reconoce al escribir in f.

**Ejemplo 4.1.2.**— Para calcular el límite cuando x tiende a 0 de la función  $\frac{sen(x)}{x}$ , escribimos:

$$syms x f = sin(x)/x;$$

```
limit(f, x, 0)
```

Para calcular el límite cuando x tiende a 0 por la derecha de la función  $\frac{ln(x)}{x}$ , escribimos:  $syms\ x$ 

```
f = log(x)/x;

limit(f, x, 0, 'right')
```

Si queremos calcular el límite cuando x tiende a  $\infty$  de la función anterior, cambiamos la última expresión por limit(f, x, inf)

#### Ejercicio 4.1.3.— Calcular los siguientes límites:

1. 
$$\lim_{x \to \infty} \frac{x}{e^{x^2}}$$

$$2. \quad \lim_{x \to 0} \frac{|x|}{x^2 + x}$$

$$3. \quad \lim_{x \to 1} \frac{x\sqrt{x} - x}{x - 1}$$

4. 
$$\lim_{x \to 0} \frac{\ln(1+x) - sen(x)}{x - sen(x)}$$

5. 
$$\lim_{x \to 1} \frac{sen(x^2 - 1)}{|x - 1|}$$

6. 
$$\lim_{x \to -\infty} \frac{1 - x^2}{x^2 + \sqrt{x} - \cos(x)}$$

## 4.2. Derivadas. Taylor.

Para derivar, Matlab cuenta con el comando diff, este comando, permite calcular la derivada de cualquier orden de una determinada función f, su sintaxis es diff(f,x,n), donde n es el grado de la derivada que se desea calcular (si el queremos la primera derivada, no hay que poner n), y x, la variable con respecto a la que se deriva.

**Ejemplo 4.2.4.**— Calcular la derivada de la función  $f(x,y) = \frac{x^2y}{x^2+y^2}$ , respecto de las variables  $x \in y$ 

```
syms \ x \ y
f = x^2 * y/(x^2 + y^2);
diff(f, x)
pretty(ans)
diff(f, y)
pretty(ans)
```

Calcular la segunda derivada de la función  $f(x) = \frac{sen(x)}{x}$   $syms \ x$  f = sin(x)/x; diff(f, 2)

#### Ejercicio 4.2.5.-

- 1. Calcular la derivada de las siguientes funciones:
  - a)  $f(x) = \frac{1-x^2}{1+x^2}$
  - $f(x) = \sqrt{\frac{sen(x)}{cos(x)-2}}$
  - c)  $f(x) = \ln(\frac{x^2}{x+1})$
- 2. Calcular la tercera derivada de las siguientes funciones:
  - a)  $f(x) = ln(1+x^2)$
  - $f(x) = sen^2(x) x$
  - $c) \quad f(x) = \sqrt{\frac{1 \cos(x)}{1 + \cos(x)}}$

### 4.2.1. Taylor

Para calcular el polinomio de Taylor de una función, Matlab tiene dos comandos, taylor y taylortool. Para utilizar el primero, hay que indicarle la función, el punto  $x_0$  en el que se desea calcular el polinomio, y el grado del polinomio de Taylor que se desea (Matlab considera el número de términos del polinomio, por lo que se debe introducir el grado del polinomio más uno).

**Ejemplo 4.2.1.**— Si queremos el polinomio de Taylor de la función f(x) = ln(1+x) en el punto  $x_0 = 0$  de grado 5, escribiremos:

syms xf = log(1+x)

 $taylor(\hat{f}, 0, 6)$ 

**Ejercicio 4.2.2.**— Calcular el polinomio de Taylor de grado 4 de las siguientes funciones, en los puntos que se indican:

- 1.  $f(x) = sen(x + \frac{\pi}{2})$  en x = 0.
- 2.  $f(x) = \frac{1}{x+1}$  en x = 0.
- 3. f(x) = cos(x) en  $x = \frac{\pi}{2}$ .

Al usar el comando Taylortool, la forma de trabajar es distinta, se empieza escribiendo simplemente el comando Taylortool:

taylor tool

Y sale la siguiente ventana gráfica:



En dicha ventana, nos sale la última función que se estudió con dicho comando, en la ventana f(x), podemos sustituir la función por la nuestra, ln(1+x), en a, hay que poner el punto  $x_0$  en el que se desea desarrollar la función f(x), en nuestro caso, 0, en N, el grado del polinomio, y teníamos grado 5 (pulsamos sobre más o menos, según corresponda). También podemos cambiar el rango en el que se observa la función, cambiémoslo por (-2,10). El resultado será:



En  $T_N(x)$ , tenemos el polinomio de Taylor, en la gráfica, de color azul, tenemos representada la función f(x), y en color rojo, el polinomio de Taylor asociado, lo que permite observar con claridad el grado de aproximación entre ambos y el intervalo más adecuado para realizar dicha aproximación.

## 4.3. Integrales.

Para realizar integrales, tenemos el comando int, que calcula, tanto primitivas de funciones, como integrales definidas.

**Ejemplo 4.3.3.**— Para calcular la primitiva de una función, escribimos int(f,x), por ejemplo, para calcular la primitica de la función  $f(x) = x^2 sen(x)$ , escribiríamos:

$$\begin{array}{l} syms~x\\ f=x\wedge 2*sin(x);\\ int(f,x)\\ \text{Si lo que deseamos es la integral entre los valores 1 y 2, escribiremos:}\\ int(f,x,1,2)\\ vpa(ans,4) \end{array}$$

Ejercicio 4.3.4.— Calcular las siguientes integrales:

1. 
$$\int (x^3 + \frac{x^2}{3} + 2x + \frac{1}{x}) dx$$

2. 
$$\int \cos^2(x) dx$$

3. 
$$\int \frac{x-1}{x^3 - 3x^2 + 3x - 1} \ dx$$

4. 
$$\int \sqrt{x^2 + 25} \ dx$$

5. 
$$\int_{1}^{3} (x^2 + \frac{1}{x^2}) dx$$

6. 
$$\int_0^{\frac{\pi}{2}} \frac{sen(x)}{x^2} dx$$

7. 
$$\int_{1}^{10} \frac{x}{x^2 \ln(x)} dx$$