





# Learning based Multi-modality Image and Video Compression

Guo Lu<sup>1</sup>, Tianxiong Zhong<sup>1</sup>, Jing Geng<sup>1</sup>, Qiang Hu<sup>2</sup>, and Dong Xu<sup>3</sup> <sup>1</sup>Beijing Institute of Technology <sup>2</sup>ShanghaiTech University <sup>3</sup>University of Sydney



#### **Motivation**

The existing data compression approaches usually adopt individual codecs for each modality without considering the correlation between different modalitie.



### Challenge

- Multi-modality image and video frames are not spatially aligned.
- Images and videos from different modalities may have different intensity distribution.



#### Contribution

- The first end-to-end optimized framework to compress different modalities, e.g. visible-infrared image pairs, by exploiting the crossmodality redundancy.
- Our framework introduces the channel-wise and spatialwise alignment modules to effectively exploit the correlations between different modalities in the feature space.
- The proposed framework is very flexible and can be extended for multi-modality video compression.



# **Visualization Results** FLIR\_09070.jpg (Bpp/MS-SSIM) BPG 4:4:4 (0.1070Bpp/0.9832) Minnen (0.1072Bpp/0.9863) Ours (0.0985Bpp/0.9880)



## **Quantitative Results**

|         | BDBR(%) | results compa | ared with BPG |          |  |  |
|---------|---------|---------------|---------------|----------|--|--|
| Mothodo | FL      | .IR           | KA            | JIST     |  |  |
| Methods | visible | infrared      | visible       | infrared |  |  |
| Minnen  | -22 342 | -14 960       | -3 624        | -8 751   |  |  |

| Ours    | -30.226 | -21.621  | -18.639 | -21.289  |
|---------|---------|----------|---------|----------|
| Minnen  | -22.342 | -14.960  | -3.624  | -8.751   |
| Menious | visible | infrared | visible | infrared |
| Methods | FLIR    |          | KAIST   |          |