

A novel differentiable unification of least absolute deviations and least squares

Kevin Burke | University of Limerick

LEAST SQUARES VS ABSOLUTE DEVIATIONS

$$\min_{\beta} \sum_{i} (y_i - x_i^T \beta)^2 \leftarrow \text{Gaussian}$$

Least *absolute deviations*

$$\min_{\beta} \sum_{i} |y_i - x_i^T \beta| \leftarrow \text{Laplace}$$

Model

$$y_i = x_i^T \beta + \sigma \varepsilon_i$$

SQUARE VS ABSOLUTE VALUE FUNCTION

DIFFERENTIABLE APPROXIMATION

Jaouimaa, Ha, & Burke (2019). Penalized Variable Selection in Multi-Parameter Regression Survival Modelling. arXiv. Burke & Patilea (2021). A likelihood-based approach for cure regression models. TEST.

SMOOTH LAPLACE DISTRIBUTION

$$y = x^T \beta + \sigma \varepsilon$$

LIKELIHOOD ESTIMATION

Log-likelihood function

$$\ell(\beta, \sigma) = n \log c_{\tau} - n \log \sigma - \sum_{i} a_{\tau} \left(\frac{y_{i} - x_{i}^{T} \beta}{\sigma} \right)$$

- Differentiable in β and σ
- Standard, gradient-based optimisation can proceed, e.g., nlm

STACK LOSS DATA FIT

- "stackloss": data on industrial process for oxidising ammonia to nitric acid
- Response: stack loss (inefficiency)
- Inputs: air_flow, water_temp, acid_conc

STACK LOSS DATA FIT

- "stackloss": data on industrial process for oxidising ammonia to nitric acid
- Response: stack loss (inefficiency)
- Inputs: air_flow, water_temp, acid_conc

..tending to least squares?

INCREASING au

$$f_{\tau}(\varepsilon) = c_{\tau}e^{-a_{\tau}(\varepsilon)}$$

Small τ $a_{\tau}(\varepsilon) \sim |\varepsilon|$

Large τ $a_{\tau}(\varepsilon) \sim \varepsilon^2$?

BEHAVIOUR FOR LARGE au

- Expand at $\tau = \infty$: $a_{\tau}(\varepsilon) \approx \varepsilon^2/(2\tau)$
- Suggest using: $\tilde{a}_{\tau}(\varepsilon) = (\tau + 1) a_{\tau}(\varepsilon)$
 - $-\lim_{\tau\to 0}\tilde{a}_{\tau}(\varepsilon)=|\varepsilon|$
 - $\lim_{\tau \to \infty} \tilde{a}_{\tau}(\varepsilon) = \varepsilon^2/2$
- $\tilde{f}_{\tau}(\varepsilon) = \tilde{c}_{\tau}e^{-\tilde{a}_{\tau}(\varepsilon)} = \tilde{c}_{\tau}e^{-(\tau+1)(\sqrt{\varepsilon^2+\tau^2}-\tau)}$
 - $-\lim_{ au o 0} ilde{f}_{ au}(arepsilon)=\mathsf{Laplace}$
 - $\lim_{ au o\infty} ilde{f}_{ au}(arepsilon) = ext{Gaussian}$

NEW PARAMETERISATION

STACKLOSS: LOG-LIKELIHOOD

STACKLOSS: BETA COEFFICIENTS

STACKLOSS: STANDARD ERRORS

SIMULATION: SE ESTIMATION

- $y = \beta_0 + \mathbf{1}x_1 + \mathbf{0}.\mathbf{5}x_2 + \mathbf{0}x_3 + \sigma\varepsilon_{\tau}$
- **▶** $\tau \in \{0.01, 0.1\}, x_j \sim N(0,1), n \in \{100, 500, 1000, 5000\}$

SIMULATION: 95% CI COVERAGE

- $y = \beta_0 + \mathbf{1}x_1 + \mathbf{0}.\mathbf{5}x_2 + \mathbf{0}x_3 + \sigma\varepsilon_{\tau}$
- **▶** $\tau \in \{0.01, 0.1\}, x_j \sim N(0,1), n \in \{100, 500, 1000, 5000\}$

SUMMARY

- New differentiable approximation to L1 regression / Laplace
- Extension includes L2 regression / Gaussian
- Smoothly joins two common regression approaches
- SEs can be improved
- References
 - O'Neill & Burke (2022). Robust Distributional Regression with Automatic Variable Selection. arXiv.
 - O'Neill & Burke (2021) Variable Selection Using a Smooth Information Criterion for Multi-Parameter Regression Models. arXiv.
 - Burke & Patilea (2021). A likelihood-based approach for cure regression models. TEST.
 - Jaouimaa, Ha, & Burke (2019). Penalized Variable Selection in Multi-Parameter Regression Survival Modelling. arXiv.
 - Also see: kevinburke.ie and arxiv.org/a/burke_k_1

Session EC814Room: S-1.04Variable selectionSunday 18.12.202208:15 - 09:55Chair: Asaf WeinsteinOrganizer: CMStatistics

B1717: M. ONeill, K. Burke

<u>Distributional regression models with automatic variable selection</u>