Тема. Повторення. Теореми синусів і косинусів. Розв'язування трикутників

<u>Мета:</u> вдосконалювати вміння знаходити невідомі сторони і кути трикутника за відомими сторонами і кутами

Повторюємо

- Сформулюйте теорему Піфагора.
- Сформулюйте теорему косинусів.
- Сформулюйте теорему синусів.
- Чому дорівнює сума кутів трикутника?
- Як знайти кути трикутника, знаючи довжини всіх його сторін?

Ознайомтеся з інформацією та зробіть конспект

Розв'язати трикутник – означає знайти невідомі сторони і кути трикутника за відомими сторонами і кутами.

Теореми, які використовують при розв'язуванні трикутників.

Теорема косинусів

$$a^2 = b^2 + c^2 - 2bc \cdot cos \propto$$

Теорема синусів

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{a}{\sin\gamma} = 2R$$

При розв'язуванні задач використовуються такі позначення:

a,b і c – сторони трикутника, α,β і γ – кути протилежні відповідно сторонам a,b і c.

Виконайте вправу

https://learningapps.org/18276942

Розв'язування задач

Задача 1

Дано: $a = 1 \, c_M$, $b = \sqrt{2} \, c_M$, $\angle \beta = 45^\circ$

Знайти ∠у

🔼 Розв'язання

За теоремою синусів $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta}$

$$sin\alpha = \frac{a \cdot sin\beta}{b} = \frac{\sqrt{2}}{2 \cdot \sqrt{2}} = \frac{1}{2}$$

Проте в умові задачі не вказано вид трикутника. Тому α може бути як гострим, так і тупим кутом.

При α = 30° за сумою кутів трикутника

$$\gamma = 180^{\circ} - (30^{\circ} + 45^{\circ}) = 105^{\circ}$$

При
$$\alpha$$
=150°

$$\gamma = 180^{\circ} - (150^{\circ} + 45^{\circ}) = -15^{\circ}$$

Тоді задача має лише один розв'язок.

Відповідь: $\angle y = 105^{\circ}$.

Задача 2

Розв'яжіть трикутник за двома сторонами й кутом між ними, якщо

$$b = 7 \, c_M, \ c = 6 \, c_M \, i \, \angle \alpha = 40^\circ$$

Розв'язання

За теоремою косинусів

$$a^2 = b^2 + c^2 - 2bc \cdot cos\alpha = 49 + 36 - 2 \cdot 7 \cdot 6 \cdot cos40^\circ \approx 20{,}652$$

Отже, для знаходження невідомих кутів можна застосувати як теорему косинусів, так і теорему синусів. Розглянемо обидва способи.

1. За теоремою косинусів

$$b^2 = c^2 + a^2 - 2ac \cdot cos\beta$$

$$cos\beta = \frac{c^2 + a^2 - b^2}{2ac} \approx \frac{7,25}{54} \approx 0,134$$
$$\angle \beta \approx 82^{\circ}$$

 $\angle \gamma = 180^{\circ} - (40^{\circ} + 82^{\circ}) \approx 58^{\circ}$ за сумою кутів трикутника.

2. За теоремою синусів

$$\frac{a}{\sin\alpha} = \frac{c}{\sin\gamma}$$

$$sin\gamma = \frac{c \cdot sin\alpha}{a} \approx 0.85$$

Оскільки сторона с не є найбільшою у даному трикутнику, тому кут ү - гострий.

Тоді за сумою кутів трикутника $\angle \beta = 180^{\circ} - (40^{\circ} + 58^{\circ}) = 82^{\circ}$

Відповідь: $c \approx 4.5 \, cm$, $\angle \beta \approx 82^{\circ}$, $\angle \gamma \approx 58^{\circ}$.

Поміркуйте

За малюнком знайдіть відношення $\frac{sinA}{sinB}$ у трикутнику ABC

Домашне завдання

- Опрацювати конспект
- Виконати письмово вправу: №664,683

Фото виконаних робіт надсилайте у HUMAN або на електронну пошту

Джерело

Всеукраїнська школа онлайн