Definitions, results and examples

Abel Doñate Muñoz

Contents

1	Rings	2
2	Modules	2
3	D-modules	2
4	F-modules	3

1 Rings

Definition 1 (Krull dimension). Supremum of the lengths of all chains of prime ideals.

$$\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_n \Rightarrow \dim R = n$$

Definition 2 (Regular ring). The minimal number of generators of its maximal ideal is the Krull dimension.

Definition 3 (Simple ring). Ring with no two-sided ideal besides zero and itself.

2 Modules

Definition 4 (Projective module). P is projective if and only if for every surjective homomorphism $f: N \to M$ and every homomorphism $g: P \to M$, there exists a lifting $h: P \to N$ with the diagram commuting:

$$P \xrightarrow{g} M$$

Proposition 1 (Characterizations of projective modules). The following are equivalent:

- 1. P is projective.
- 2. The SES $0 \rightarrow A \rightarrow B \rightarrow P \rightarrow 0$ splits.
- 3. Hom(P, -) is an exact functor.
- 4. P is the direct sum of free modules.

Definition 5 (Flat module). M is flat if and only if for every injective homomorphism $f: K \to L$, the map $f \otimes_R id: K \otimes_R M \to L \otimes_R M$ is injective, that is:

$$\begin{array}{ccc} K & \Rightarrow & K \otimes_R M \\ \int_f & & \int_f \otimes id \\ L & \Rightarrow & L \otimes_R M \end{array}$$

Proposition 2 (Characterizations of flat modules). The following are equivalent:

- 1. M is flat.
- 2. $\otimes_R M$ is an exact functor.

Definition 6 (Torsion-free module). M is torsion free if and only if its torsion submodule (the module with all the zero-divisors) is $\{0\}$:

Proposition 3. In general we have the following implications of modules

$$Free \Rightarrow Projective \Rightarrow Flat \Rightarrow Torsion-free$$

Example 1 (Counterexamples of implications). Some counterexamples

- Projective \Rightarrow Free. $\mathbb{Z}/2\mathbb{Z}$ as $\mathbb{Z}/6\mathbb{Z}$ -module.
- Flat \Rightarrow Projective. \mathbb{Q} as \mathbb{Z} -module.
- Torsion-free \Rightarrow Flat. The ideal I = (x, y) as K[x, y]-module.

3 D-modules

Definition 7 (Ring / Module/ Weyl algebra). $A_n = \{\mathbb{C}\langle x_1, \ldots, x_n, \partial_1, \ldots, \partial_n \rangle\}$ that has the structure of a ring a module or an algebra.

Proposition 4. A_n is:

- A simple ring
- Noetherian

Proposition 5. Set of monomials $\mathcal{B} = \{x^{\alpha}\partial^{\beta} : \alpha, \beta \in \mathbb{N}^n\}$ is a basis of A_n . Then we can write every element as

$$P = \sum_{\alpha,\beta} p_{\alpha\beta} x^{\alpha} \partial^{\beta} = \sum_{\beta} p_{\beta}(x) \partial^{\beta}$$

We denote $|\beta| = \sum \beta_i$.

Definition 8 (Order and total order). .

Order
$$ord(P) = \max \beta$$
 $\sigma(P) = \sum_{|\beta| = ord(P)} p_{\beta}(x) \xi^{\beta}$
Total Order $ord^{T} = \max |\alpha + \beta|$ $\sigma(P) = \sum_{|\alpha + \beta| = ord^{T}(P)} p_{\alpha\beta} x^{\alpha} \xi^{\beta}$

Definition 9 (Filtrations). Respectively Order and Total order filtrations:

$$F_k(A_n) = \{P \in A_n : ord(P) \le k\}, \qquad B_k(A_n) = \{P \in A_n : ord^T(P) \le k\}$$

4 F-modules

For all this section R is a commutative Noetherian ring with prime characteristic p.

Definition 10 (Frobenius endomorphism). homomorphism $f: R \to R$ where $f(r) = r^p$

Definition 11 (Frobenius module). $M^{(e)}$ is the R-module M endowed with the action $r \cdot m = f^e(r)m$. We denote $M' := M^{(1)}$.

Definition 12 (Frobenius functor). The application F that sends $M \to R' \otimes_R M$ and $\varphi : M \to N$ to $Id \otimes \varphi : R' \otimes_R M \to R' \otimes_R N$ is a functor.

Definition 13 (Frobenius powers). If $I = (x_1, ..., x_n)$ is an ideal or R. We define

$$I^{[p^e]} := (x_1^{p^e}, \dots, x_n^{p^e})R$$

Proposition 6. $F^e(R/I) \cong R/I^{[p^e]}$