Asynchronous Fault Diagnosis of Discrete-Event Systems With **Partially Observable Outputs**

Deguang Wang and Xi Wang Member, IEEE

APPENDIX

The proofs of the following lemmas are omitted because they follow directly from the definitions of $\hat{\mathcal{D}}_{oc}^{l_o^o}$ and $\hat{\mathcal{D}}_{do}^{l_o^o}$

Lemma 1. For any path $p=q_{-1}\stackrel{l^0}{\xrightarrow{\circ}} q_0\stackrel{l^1}{\xrightarrow{\circ}} q_1\cdots q_{k-1}\stackrel{l^k}{\xrightarrow{\circ}}$ $q_k \cdots q_n \xrightarrow{l_o^{n+1}} q_k$ in $\hat{\mathcal{D}}_{oc}^{l_o^0}$ ending with a cycle, The following

1) $\kappa(q_j) = \kappa(q_r)$ for any $j, r \in [k, n]$;

12

13

21

22

23

24

27

2) There exists a path $\bar{p} = \bar{q}_0 \xrightarrow{\sigma_1} \bar{q}_1 \xrightarrow{\sigma_2} \bar{q}_2 \cdots \bar{q}_{b-1} \xrightarrow{\sigma_b}$ There exists a pain $p=q_0$, q_1 , q_2 , $q_{\bar{q}_0}$ and $q_{\bar{q}_0}$ and $q_{\bar{q}_0}$ are the set of states composed of paths p and p, respectively.

In a cycle, all states correspond to the same condition, which is either normal or F_i ($i \in [1, m]$), owing to the assumption that all failure modes are permanent. We know that $\hat{\mathcal{D}}_{oc}^{l_o}$ is defined on the basis of $\hat{\mathcal{D}}_{dm}^{l_o}$ and $\hat{\mathcal{D}}_{dm}^{l_o}$ derives from **G**. Thus, there exists a transition path \bar{p} in **G** corresponding to the indication path p in $\hat{\mathcal{D}}_{oc}^{l_o}$.

Lemma 2. For any path $p = (q_{-1}, q_{-1}) \xrightarrow{l_o^0} (q_0^1, q_0^2) \xrightarrow{l_o^1} (q_1^1, q_1^2) \cdots (q_{k-1}^1, q_{k-1}^2) \xrightarrow{l_o^k} (q_k^1, q_k^2) \cdots (q_n^1, q_n^2) \xrightarrow{l_o^{n+1}}$ (q_k^1, q_k^2) (k < n) in $\hat{\mathcal{D}}_{dc}^{l_0^0}$ ending with a cycle, the following

1) There exist a path p_{noc}^1 in $\hat{\mathcal{D}}_{\text{noc}}$ and a path p_{foc}^2 in $\hat{\mathcal{D}}_{\text{foc}}$ ending with cycles, namely, $p_{\mathsf{noc}}^1 = q_{-1} \xrightarrow{l_o^0} q_0^1 \xrightarrow{l_o^1} q_1^1$ $\cdots q_{k-1}^1 \xrightarrow{l_o^k} q_k^1 \cdots q_n^1 \xrightarrow{l_o^{n+1}} q_k^1 \text{ and } p_{\mathsf{foc}}^2 = q_{-1} \xrightarrow{l_o^0} q_0^2$ $\begin{array}{c} \stackrel{l_0^1}{\longrightarrow} q_1^2 \, \cdots \, q_{k-1}^2 \stackrel{l_o^k}{\longrightarrow} q_k^2 \, \cdots \, q_n^2 \stackrel{l_o^{n+1}}{\longrightarrow} q_k^2; \\ 2) \ \kappa(q_j^1) = \kappa(q_r^1) = N \ \ \text{and} \ \ \kappa(q_j^2) = \kappa(q_r^2) \ \ \text{for any } j, \end{array}$

Based on Lemmas 1 and 2. the proof of Theorem 1 is shown as follows.

Proof. (only if): Suppose G is F_i -asynchronously diagnosable w.r.t. $l_o^0 \in \Lambda_o$, but there exists a cycle cl in $\hat{\mathcal{D}}_{dc}^{l_o^0}$, $cl = (q_k^1, q_k^2)$ $\begin{array}{c} \frac{l_o^{k+1}}{\longrightarrow} \; (q_{k+1}^1, q_{k+1}^2) \; \cdots \; (q_n^1, q_n^2) \xrightarrow[l_o^{n+1}]{l_o^{n+1}} \; (q_k^1, q_k^2) \; (k < n) \; \text{such that} \; \kappa(q_j^2) = F_i \; (i \in [1, m], j \in [k, n]). \end{array}$

Since $\hat{\mathcal{D}}_{dc}^{l_o^o}$ is reachable, there exists a path p in $\hat{\mathcal{D}}_{dc}^{l_o^o}$ ending with the cycle cl, i.e., $p = (q_{-1}, q_{-1}) \xrightarrow{l_0^0} (q_0^1, q_0^2) \xrightarrow{l_0^1}$ $(q_1^1, q_1^2) \cdots (q_{k-1}^1, q_{k-1}^2) \xrightarrow{l_o^k} (q_k^1, q_k^2) \cdots (q_n^1, q_n^2)$

D. Wang is with the School of Electrical Engineering, Guizhou University, Guiyang 550025, China (e-mail: dgwang@gzu.edu.cn, wdeguang1991@163.com).

X. Wang is with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China. (e-mail: wangxi@xidian.edu.cn).

 (q_k^1, q_k^2) . Based on Lemma 2, we know that there exist one path p_{noc}^1 in $\hat{\mathcal{D}}_{noc}$ and one path p_{foc}^2 in $\hat{\mathcal{D}}_{foc}$ ending with cycles, namely, $p_{\text{noc}}^1 = q_{-1} \xrightarrow{l_o^0} q_0^1 \xrightarrow{l_o^1} q_1^1 \cdots q_{k-1}^1 \xrightarrow{l_o^k} q_k^1 \cdots q_n^1 \xrightarrow{l_o^{n+1}}$ q_k^1 and $p_{foc}^2 = q_{-1} \xrightarrow{l_o^0} q_0^2 \xrightarrow{l_o^1} q_1^2 \cdots q_{k-1}^2 \xrightarrow{l_o^k} q_k^2 \cdots q_n^2$ $\xrightarrow[]{l_o^{n+1}} q_k^2 \text{ with } \kappa(q_j^1) = \kappa(q_r^1) = 0 \text{ and } \kappa(q_j^2) = \kappa(q_r^2) = i \text{ for any } j, \ r \in [k,n]. \text{ Further from Lemma 1, we know that for } 1$ the path $p_{\text{f}oc}^1$ there exists a path $\bar{p}^2 = \bar{q}_0^2 \xrightarrow{\sigma_1^2} \bar{q}_1^2 \xrightarrow{\sigma_2^2} \bar{q}_2^2 \cdots$
$$\begin{split} & \bar{q}_{b-1}^2 \xrightarrow{\sigma_b^2} \bar{q}_b^2 \cdots \bar{q}_c^2 \xrightarrow{\sigma_c^2} \bar{q}_b^2 \text{ in } \mathbf{G} \text{ such that } O(\lambda(\bar{q}_0^2 \bar{q}_1^2 \cdots \bar{q}_c^2 \bar{q}_b^2)) \\ &= l_o^0 l_o^1 \cdots l_o^n l_o^k \text{ and } Q_{p_{\text{foc}}^2} \subseteq Q_{\bar{p}^2}. \\ & \text{Let } \mathcal{Q}_e(q,n) \text{ denote the set of state estimations calculated} \end{split}$$

45

70

72

73

after the occurrence of n events from state q. Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(\bar{q}_s^2, 0)$ $(s \in [1, b])$, where \bar{q}_s^2 $(\kappa(\bar{q}_s^2) =$ F_i) is the first faulty state in the path \bar{p}^2 , is given. When the system evolves along the path \bar{p}^2 , there exists a state estimation $x_e^{n'} \in \mathcal{Q}_e(\bar{q}_s^2, n') \ (n' = d + m_2 * k_2, \ d = b - s, \ \text{and} \ m_2 = s$ c-b+1 is the length of $\bar{q}_b^1\cdots\bar{q}_c^1$) such that $q_k^1\in x_e^{n'}$ and $q_k^2\in x_e^{n'}$ for any nonnegative integer k_2 . Then $\mathbf{D}(x_e^{n'})=-1$. Since **G** is asynchronously diagnosable w.r.t. l_o^0 , there exists an integer N_i such that for any $x_e^n \in \mathcal{Q}(q_s^2, n)$, $x_e^n \subseteq Q_{F_i}$ holds for $n \ge N_i$. We choose an integer k_2 such that $n' \ge N_i$. Then we have that $x_e^{n'} \subseteq Q_{F_i}$, i.e., $\mathbf{D}(x_e^{n'}) = i$, which leads to a contraction. So the necessity holds.

(if): Suppose for every cycle $cl = (q_k^1, q_k^2) \xrightarrow{l_o^{k+1}}$ $(q_{k+1}^1,q_{k+1}^2) \cdots (q_n^1,q_n^2) \xrightarrow{l_o^{n+1}} (q_k^1,q_k^2) \ (k < n) \ \text{in} \ \hat{\mathcal{D}}_{dc}^{l_o^0},$ we have $\kappa(q_j^1) = \kappa(q_j^2) = N \ (j \in [k,n])$. From the second clause of Lemma 2, we can infer that for any $q^d = (q^1, q^2)$ in $\hat{\mathcal{D}}_{dc}^{l_0}$, q^d is not contained in a loop if $\kappa(q^1) \neq \kappa(q^2)$, which further implies that for any state sequence $q_1^d q_2^d \cdots q_k^d$ in $\hat{\mathcal{D}}_{dc}^{l_o^0}$ with $q_r^d=(q_r^1,q_r^2) \ (r\in [1,k])$ if $\kappa(q_r^1)\neq \kappa(q_r^2),$ then the length of this state sequence is finite, which is less than the number of states in $\hat{\mathcal{D}}_{dc}^{l_o}$.

Suppose the state estimation $x_{0e} \in \mathcal{Q}_e(q_{F_i}, 0) \ (i \in [1, m])$ is given when the system first reaches the fault state q_{F_i} $(\kappa(q_{F_i}) = F_i)$. For any $x_e^n \in \mathcal{Q}_e(q_{F_i}, n)$ with $n > |\hat{Q}_d| \times$ (|Q|-1), we claim that $\mathbf{D}(x_e^n)=i$. After n transitions from state q_{F_i} , we have the state sequence $s = q_{F_i} q_{F_i}^1 \cdots q_{F_i}^n$ with the observed output sequence $O(\lambda(s))$ $(n' = |O(\lambda(s))|)$. From above, for any state $q^d \in \hat{Q}_d$ that can be reached from (q_{-1},q_{-1}) in $\hat{\mathcal{D}}_{dc}^{l_o^o}$, we have that for any state sequence starting from q^d , a state $\hat{q}^d = (\hat{q}^1, \hat{q}^2) \in \hat{Q}_d$ with $\kappa(\hat{q}^1) = \kappa(\hat{q}^2)$ can be reached within $|Q_d|-1$ transitions. This implies that for any $n' > |\hat{Q}_d| - 1$ and $x_e^{n'} \in \mathcal{Q}_e(q_{F_i}, n')$, we have that $\mathcal{D}(x_e^{n'}) = i$. From the assumption in Remark 2, each observed output can be followed by at most |Q|-1 unobserved outputs. It follows that for the above state sequence $s, n \leq (n'+1) \times (|Q|-1),$ i.e., $n' \geq n/(|Q|-1)-1$. So if $n > |\hat{Q}_d| \times (|Q|-1)$,

then $n' \geq n/(|Q|-1)-1 > |\hat{Q}_d|-1$, establishing our claim. Note that we have assumed implicitly that |Q|>1; otherwise if |Q|=1, then from the assumption of no path cycles, no transition labeled by a failure event exists, so that the system is trivially diagnosable. Based on Definition 9, we can conclude that ${\bf G}$ is diagnosable w.r,t, l_o^0 . So the sufficiency also holds.