

Electric Solar Wind Sail tether payloads onboard CubeSats

Jouni Envall, Petri Toivanen, Pekka Janhunen

Finnish Meteorological Institute, Helsinki, Finland (jouni.envall@fmi.fi)

Outline

- E-sail & Coulomb drag propulsion.
- Missions enabled by E-sail.
- E-sail tether payloads in CubeSats, general.
- Flight history: ESTCube-1 and Aalto-1.
- Tether production.
- ESTCube-2/3.
- Conclusions.

E-sail

- Charged tether taps momentum by deflecting ion flow of solar wind → "Coulomb drag".
- One or more tethers.
- Centrifugal force to stretch tethers.
- Auxiliary tethers to stabilize dynamics.
- For 20 kV voltage, F/I = 0,5 mN/km.
- Positive or negative voltage. With positive V, electron gun(s) used to oust excess electrons.
- For $100 \times 20 \text{ km}$ tethers, F = 1 N @1 au.
- Thrust scales as 1/r.
- For 1000 kg spacecraft (propulsion system mass <200kg), Δv = 30 km/s/year.
- Power consumption 700 W @1 au.
- Power consumption scales as $1/r^2$.

E-sail mission examples

- Science missions to the outskirts of the Solar System (or beyond).
- Spiraling inwards to the inner parts of the Solar System.
- Asteroid tours with scientific or commercial outcome.
- Plan: multi-asteroid touring mission by a fleet of (up to 50) CubeSats. (Next presentation by laroslav lakubivskyi)

3.2-year asteroid tour, ac0=1 mm/s2

E-sail & CubeSats

 Typical E-sail mission with CubeSat: 1-3U satellite, single tether (length tens to hundreds of meters; voltage ~1 kV).

Orbit: so far LEO (ionospheric plasma instead of solar wind).

 Mission objectives: tether deployment by spinning the satellite; observing the Coulomb drag force with a suitable method.

Spin clockwise S/C

Left Cycle	Right Cycle	Spin Rate
V ON	V OFF	Down
V OFF	V ON	Up

Previous launches, ESTCube-1

- Launched in 2013.
- 1U CubeSat.
- Two filament tether, 16 m.
- Tether voltage ±500 V.
- Two cold cathode e-guns.
- Result of tether mission: failed due to jammed tether deployment system.

Previous launches, Aalto-1

- Launched in 2017.
- 3U CubeSat.
- Four filament tether, 100 m.
- Tether voltage ±1000 V.
- Four cold cathode e-guns.
- Result of tether mission: Pending.

Aalto-1

Tether board

High voltage board

Tether production

- E-sail tether requirements: high electrical conductivity; sufficient mechanical strength; suitable thermal characteristics; low mass; *multifilament* etc.
- Novel tether production facility under development (PI Envall).
 Ladder shaped tether, metal wires, cold welded bonds. Wire thickness 20 µm to 35 µm.

Tether production (2)

ESTCube-2/3

- Both Coulomb drag test CubeSats thus far have remained at LEO → no solar wind plasma.
- ESTCube-3 to be the first to reach solar wind, e.g. lunar orbit or Lagrange point (L1, L2).
- ESTCube-2 will test novel key technologies of EC-3 in LEO.
 These include CubeSat compatible cold gas thrusters, star tracker based attitude determination system and high speed telecommunications system.
- Also additional LEO data received from ESTCube-2 (plasma brake).
- Satellites are close to identical by design.
- Tether length 300 m, voltage −1 kV...+6 kV.
- Expected Coulomb drag force in solar wind: 60 μN.

ESTCube-2/3 (2)

ESTCube-2/3, tether PL mass

Item	Mass, g
Supporting structure	133
Control board PCB	29
Control Board Electronics	20
Launch Locks	12
Tether Chamber	68
Diagnostics	10
Tip mass	3
Tether Reel, incl. Tether	34
Reel Adapter	2
Reel Motor	48
Bus Connector(s)	8
HV PCB and electronics	58
Screws and Fasteners	25
Misc (cabling, adhesives etc.)	15
Sum	465
Margin, 20%	93
Total with margin	558

Conclusions

- Test missions of E-sail tether hardware have begun in 2013 (launch of ESTCube-1).
- A lot of progress has taken place on ground (novel tether topology, in-house production of tether, improved flight mechanics and diagnostics etc.)
- First proper test results from orbit are still waited for.
- Tether mission of Aalto-1 expected to start during summer.
- Next ESTCube satellites are already in development phase.
- ESTCube-3 is expected to be the first spacecraft to demonstrate the use of solar wind for spacecraft propulsion.