ESAME CALCOLO NUMERICO PROVA DI LABORATORIO LAUREA IN INFORMATICA TERZO APPELLO 23/08/2022

Consegna Compito: saranno visibili solo i files consegnati in tempo tramite moodle. Consegnare anche i files del docente. Il caricamento dei files deve avvenire con supervisione del docente: in caso constrario si è esclusi dalla prova.

Tempo di svolgimento: 90 minuti.

Supponiamo che $f:[x_{min},x_{max}] \to [y_{min},y_{max}]$ sia una funzione continua strettamente crescente. Esiste allora una funzione $g:[y_{min},y_{max}] \to [x_{min},x_{max}]$ tale per cui f(g(y))=y per ogni $y\in [y_{min},y_{max}]$ e g(f(x))=x per ogni $x\in [x_{min},x_{max}]$ detta inversa di f. Cercheremo di costruire per interpolazione un polinomio p_n che approssimi g nota f basandoci solo su valutazioni di f.

Esercizio 1 (25 p.ti). Si scriva una function avente la chiamata

xeval=InverseFunctionPoly(f,xmin,xmax,toll,n,yeval)

che, dati f function handle della funzione che vogliamo invertire, xmin, xmax estremi di un intervallo ove f è continua e crescente, toll tolleranza per il metodo di bisezione (si veda più sotto), n grado polinomiale da utilizzare, e yeval vettore di punti di valutazione, calcoli le valutazioni $p_n(y_1^{eval}), \ldots, p_n(y_m^{eval})$ del polinomio $p_n \approx g$ che interpola i dati $(y_i^{interp}, x_i^{interp})$ con $i=1,2,\ldots,n+1$ (cioè $p_n(y_i^{interp}) = x_i^{interp})$, dove gli y_i^{interp} sono punti di Chebyshev-Lobatto nell'intervallo

$$[ymin,ymax] = [f(xmin),f(xmax)],$$

e gli x_i^{interp} sono soluzione approssimate di $f(x)=y_i^{interp}$ calcolate tramite bisezione. L'algoritmo di calcolo deve essere il segunte:

- (1) Calcolare ymin e ymax valutando f e costruire un vettore colonna yinterp di n+1 punti di Chebyshev-Lobatto nell'intervallo [ymin,ymax]. Si ricorda che, nell'intervallo [-1,1] i punti di Chebyshev Lobatto sono cos((0:n)'/n*pi).
- (2) Calcolare (una per una all'interno di un ciclo for) le componenti del vettore xinterp, dove xinterp(i) è soluzione approssimata di f(x)-yinterp(i)=0: usare la function Bisezione.m fornita dal docente utilizzando gli estremi dell'intervallo [xmin,xmax], method='s' e tolleranza toll. Consiglio importante: conviene ad ogni iterazione del ciclo for definire un'opportuna anonymous function fi di cui calcolare lo zero.
- (3) Utilizzando la funzione LagrangePoly.m fornita dal docente si creino i polinomi di Lagrange dei nodi di interpolazione yinterp valutati sui punti di valutazione yeval e il vettore contenente le valutazioni di p_n , ossia $(p_n(y_1^{eval}), \ldots, p_n(y_{end}^{eval}))^t$ (con opportuno prodotto matricevettore).

Esercizio 2 (6 p.ti). Si crei uno script Esercizio 2.m che definisca $f(x) = e^x$, ponga l'intervallo di interesse [0,5] e crei 100 punti equispaziati y^{eval} di valutazione nell'immagine di questo intervallo tramite f. Calcoli la valutazione sui punti y^{eval} dell'approssimazione p_n dell'inversa g di f tramite

Inverse FunctionPoly, si usi a tal fine n=8 e toll=1e-10. Poi venga creata un' unica figura con i grafici di p_n e g (l'inversa vera) corredata da legeda.