ARITHMETIC Chapter 24

Teoría de Probabilidades

Motivating Strategy

¿Quién crees que lavará los platos?

HELICO THEORY

PROBABILIDAD

$$0 \leq P(A) \leq 1$$

Espacio muestral (Ω)

Es el conjunto formado por todos los resultados posibles de un experimento aleatorio.

Evento o suceso (A)

Un evento o suceso es cualquier subconjunto de un espacio muestral.

Probabilidad Clásica

$$\mathbf{P(A)} = \frac{casos\ favorables}{casos\ posibles}$$

Ejemplo 1: ¿Cuál es la probabilidad de que al lanzar un dado común salga un número primo?

Ω: Lanzar un dado

$$\Omega = \{1, 2, 3, 4, 5, 6\} \longrightarrow 6$$

 $A = \text{obtener N}^0 \text{ impar} = \{2, 3, 5\} \longrightarrow 3$

$$P(A) = \frac{1}{2}$$

Eventos Excluyentes

$$P(A \cup B) = P(A) + P(B)$$

Ejemplo 2: Al lanzar un dado común. Halle la probabilidad de obtener un nº impar o 6 puntos.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $A = \text{obtener N}^{\circ} \text{ impar} = \{1, 3, 5\}$

B = obtener 6 puntos = { 6 }

Observamos: $(A \cap B) = \emptyset$.

Aplicamos la Regla de la adición:

$$P(A \cup B) = \frac{3}{6} + \frac{1}{6} = \frac{2}{3}$$

Eventos No Excluyentes

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Ejemplo 3: Al Lanzar un dado, hallar la probabilidad de obtener un nº par o 6 puntos.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

 $A = obtener n^{0} par = \{ 2, 4, 6 \}$

B = obtener 6 puntos = { 6 }

Observamos: $A \cap B = \{ 6 \}$.

Aplicamos la Regla de la adición: .

$$P(A \cup B) = \frac{3}{6} + \frac{1}{6} - \frac{1}{6} = \frac{1}{2}$$

HELICO THEORY

Eventos Dependientes

$P(A \cap B) = P(A) \times P(B/A)$

Ejm 4: En una baraja hay 52 cartas de las cuales 4 son ases. Si realizamos dos extracciones, una a continuación de otra sin devolverlas, ¿Cuál es la probabilidad de obtener 2 ases?

Aplicamos la Regla de la multiplicación :

$$P(A \cap B) = \frac{4}{52}X \frac{3}{51} = \frac{1}{221}$$

Eventos Independientes

$$P(A \cap B) = P(A) \times P(B)$$

Ejm 5: Lanzar al aire dos veces una moneda son eventos independientes por que el resultado del primer evento no afecta sobre las probabilidades efectivas de que ocurra cara o sello, en el segundo lanzamiento.

Aplicamos la Regla de la multiplicación :

$$P(A \cap B) = \frac{1}{2}X\frac{1}{2} = \frac{1}{4}$$

HELICO THEORY

Probabilidad Condicional

$$P(B/A) = \frac{P(A \cap B)}{P(A)}$$

Ejm 6: Al lanzar un dado, ¿cuál es la probabilidad de obtener un 4 sabiendo que ha salido par?

 $A = número par = \{ 2, 4, 6 \}$

 $\mathbf{B} = \operatorname{sacar} \operatorname{cuatro} = \{ 4 \}$

Observamos: $(A \cap B) = 1$

$$P(B/A)=\frac{1}{3}$$

Propiedades:

Si A es un suceso definido en Ω , entonces:

$$0 \leq P(A) \leq 1$$

consecuencias:

$$P(\Omega) = 1$$

$$P(\emptyset) = 0$$

Suceso complementario de A

$$P(A) = 1 - P(A^c)$$

Una pareja de esposos desea tener 4 hijos. ¿Cuál es la probabilidad que solo uno de los 4 sea

varón?

Resolución

$$P(A) = 4(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}) = \frac{1}{4}$$

Rpta: 1/4

De un grupo de estudiantes. La probabilidad de no llevar Matemáticas es 0,49 y la probabilidad de no llevar Física es 0,27. ¿Cuál es la probabilidad de llevar solo uno de los cursos si al menos llevan un curso?

Resolución

- * P_(NO MATEMATICAS) P_(SOLO FISICA) 0.49
- * P_(NO FISICA)= P_(SOLO MATEMATICAS) 0.27

Solo uno de los cursos

$$0,49 + 0,27 =$$

Se tiene 5 libros, 3 de Aritmética y 2 de Química, ordenados en una estante. ¿Cuál es la probabilidad de que los libros de Química sean separados por los 3 libros de Aritmética?

Resolución

$$Q_1 A_1 A_2 A_3 Q_2$$

$$3!$$

$$P_{(A)} = \frac{3! \times 2!}{5!} = \frac{12}{120} = \frac{1}{10}$$

Rpta: 0,10

Se tiene una baraja de 52 cartas y de ella se extrae una. Calcule la probabilidad de que la carta extraída

- a. sea un as de corazones.
- b. sea un as.
- c. sea de figura roja.
- d. represente un valor con una letra.

a. sea un as de corazones.

$$n(A) = 1$$
 $\mathbf{P}(\mathbf{A}) = \frac{n(A)}{n(\Omega)} = \frac{1}{52}$

b. sea un as.

$$n(A) = 4$$
 $P(A) = \frac{n(A)}{n(\Omega)} = \frac{4}{52} = \frac{1}{13}$

Resolución

52 cartas $n(\Omega) = 52$

c. sea de figura roja.

$$n(A) = 26$$
 $P(A) = \frac{n(A)}{n(\Omega)} = \frac{26}{52} = \frac{1}{2}$

c. represente un valor con una letra.

$$n(A) = 12$$
 $P(A) = \frac{n(A)}{n(\Omega)} = \frac{12}{52} = \frac{3}{13}$

Jaimito es un comerciante del centro comercial Las Malvas y tiene 15 celulares a la venta de los cuales 6 son defectuosos; Si Koki es un cliente que le compra 3 de estos aparatos ¿Cuál es la probabilidad que Koki se lleve 2 defectuosos? <u>Resolución</u>

• Casos posibles $n(\Omega)$

Se escogen 3 celulares de 15

$$n(\Omega) = C_3^{15} = \frac{15!}{(15-3)! \ 3!}$$

$$n(\Omega) = \frac{\overset{5}{15.14}.13.12!}{\overset{12!}{12!}.6!}$$

$$n(\Omega) = 5.7.13 \implies n(\Omega) = 455$$

Del dato (Evento A) Se escoge 2 tenemos: defectuosos y 1 bueno

Casos favorables n (A)

$$n(A) = C_2^6 \times C_1^9 = \frac{6!}{4! \ 2!} \times \frac{9!}{8! \ 1!}$$

$$n(A) = \frac{8.5.4!}{4!.2} \times \frac{9.8!}{8!.1}$$

$$n(A) = 3.5.9 \implies n(A) = 135$$

Piden:
$$P(A) = \frac{135}{455}$$

∴
$$P(A) = \frac{27}{91}$$

Rpta:

27/91

Florcita ingresa a la farmacia de Doña Peta y la probabilidad de que compre Desenfriol es 0,60; Mejoral 0,50 y de que compre ambos medicamentos es de 0,30. ¿Cuál es la probabilidad de que compre Desenfriol o Mejoral?

Resolución

Del dato tenemos:

$$U = 1$$

Piden:

Probabilidad de comprar Desenfriol o Mejoral

$$P_{(D \cup M)} = 0.30 + 0.30 + 0.20$$

$$P_{(D \cup M)} = 0.80$$

Rpta:

0,80

En una sección de 50 alumnos se desea formar una comisión de tres miembros. ¿Cuál es la probabilidad de que el alumno delegado Juan Pérez siempre integre la comisión?

Resolución

Casos posibles n(Ω)

Se escogen 3 alumnos de 50

$$n(\Omega) = C_3^{50} = \frac{50.49.48}{3.2.1}$$

$$n(\Omega) = 50.49.8$$

Evento A: El alumno Juan es fijo

$$n(A) = C_2^{49} = \frac{49.48}{2.1}$$

$$n(A) = 49.24$$

Piden:
$$P(A) = \frac{49.24}{50.49.8}$$