MODELISER LE COMPORTEMENT DES SYSTEMES MECANIQUES DANS LE BUT D'ETABLIR UNE LOI DE COMPORTEMENT OU DE DETERMINER DES ACTIONS MECANIQUES EN UTILISANT LES METHODES ENERGETIQUES

PSI - PSI *

MODELISATION D'UN SYSTEME PLURITECHNOLOGIQUE

CONTROL'X

1 OBJECTIFS

1.1 Objectif technique

Objectif:

L'objectif de ce TP est de réaliser un modèle multiphysique du ControlX en utilisant deux outils de modélisation :

- ☐ la modélisation multiphysique (par composants);
- ☐ la modélisation par schéma-blocs.

1.2 Contexte pédagogique

Analyser:

■ A3 – Conduire l'analyse

Modéliser:

- Mod2 Proposer un modèle
- Mod3 Valider un modèle

Résoudre:

- Rés2 Procéder à la mise en œuvre d'une démarche de résolution analytique
- Rés3 Procéder à la mise en œuvre d'une démarche de résolution numérique

1.3 Évaluation des écarts

L'objectif de ce TP est de vérifier si le moteur du ControlX est compatible avec le besoin du client en analysant les résultats des simulations.

OUVRIR MATLAB ET SIMULINK.

2 MODELISATION DE LA MOTORISATION

Le Control'X est entrainé par un moteur à courant continu. On donne le modèle électrique équivalent et les équations associées.

$$u(t) = r.i(t) + L. \frac{di(t)}{dt} + e'(t)$$

$$r = 5.1 \Omega, L = 3.2 \cdot 10^{-3} H$$

<u>Paramétrage:</u>

 \vec{C} (moteur \rightarrow rotor) = $C_m(t)$. \vec{y}_0 : couple

électromagnétique

 $\overrightarrow{C}_{\text{(moteur-utile} o charge)}$ = $C_{\text{m-utile}}(t)$. \vec{y}_0 : couple moteur

propre à entraîner la charge

$$\vec{C}$$
 (ext \rightarrow charge) = - $C_r(t)$. \vec{y}_0

$$\vec{\Omega}_{1/0} = \omega(\dagger).\vec{y}_0$$

Equations dynamiques:

$$\begin{split} C_{m\text{-utile}}(t) &= C_m(t) - C_{frott\text{-moteur}} - f_{\omega\text{-moteur}}.\omega(t) - J_{mot}.\ \dot{\omega}(\uparrow) \\ J_{mot} &= 0.037\ 10^{-3}\ kgm^2 \end{split}$$

$$k_c = 0.21 \text{ N m } A^{-1}$$

 $k_e = 0.21 \text{ V rad } s^{-1}$

Activité 1 - Moteur à courant continu

- Réaliser la modélisation du moteur à courant continu (de la source d'alimentation à l'entrainement de l'arbre moteur) en utilisant une modélisation par composants technologiques.
 - Ajouter une mesure de la tension, du courant de la vitesse de rotation et du couple moteur.
- ☐ En utilisant la même feuille, réaliser le modèle en utilisant des schéma-blocs.
 - Ajouter une mesure de la tension, du courant de la vitesse de rotation et du couple moteur.
- ☐ Vérifier que les différents signaux sont identiques pour les 2 modélisations.

Remarque :

- moment d'inertie de la génératrice tachymétrique : Jg = 0,012 10⁻³ kgm²;
- moment d'inertie du codeur incrémental : Jc = 8 10⁻⁸ kgm².

3 MODELISATION DE LA TRANSMISSION

Le moteur du Control'X entraine un réducteur (train épicycloïdal de rapport de transmission i = 3, moment d'inertie ramené sur l'arbre d'entrée : $Jr = 0,135 \ 10^{-4} \ kgm^2$.). En sortie du réducteur, un système poulie courroie (rayon de la poulie $R = 24,7 \ mm$) permet de transformer la rotation en translation et de faire translater un chariot.

Le moment d'inertie du joint d'accouplement entre le réducteur et la poulie est donné par Ja = 2,53 10⁻⁵ kgm².

Le moment d'inertie d'une poulie crantée est donné par $Jp = 4,2 \ 10^{-5} \ kgm^2$.

La masse totale du chariot est donnée par M = 1,74 kg.

Activité 2 – Modélisation de la transmission

- ☐ Sur le modèle multiphysique, ajouter les systèmes de transmission ainsi que les moments d'inertie ou masse de chacun.
 - Ajouter une mesure de la position et de la vitesse du chariot.
- ☐ En utilisant la même feuille, ajouter la transmission sur le schéma-blocs.

Sciences Industrielles
de l'ingénieur

- Ajouter une mesure de la position et de la vitesse du chariot.
- ☐ Vérifier que les différents signaux sont identiques pour les 2 modélisations.

4 MODELISATION DES FROTTEMENTS

Les efforts dus au frottement sec ramenés au chariot sont donnés par Ffrot = 28N.

Le coefficient de frottement visqueux ramenés sur le chariot est donné par fv = 20 N/(m/s).

Activité 3 - Modélisation des frottements

- ☐ Sur le modèle multiphysique, ajouter les frottements secs et les frottements visqueux.
- ☐ Sur le modèle schéma-blocs, ajouter les frottements secs et les frottements visqueux.
- ☐ Vérifier que les différents signaux sont identiques pour les 2 modélisations.

5 MODELISATION DE LA COMMANDE

Activité 4 - Modélisation de l'asservissement

- ☐ Modifier le modèle multiphysique, pour réaliser un asservissement en position du Control'X. Ajouter un correcteur proportionnel.
- ☐ Modifier le schéma-blocs, pour réaliser un asservissement en position du Control'X. Ajouter un correcteur proportionnel.
- ☐ Vérifier que les différents signaux sont identiques pour les 2 modélisations.

Activité 5 - Modélisation de la commande

- ☐ La tension de commande est saturée à 40V. Intégrer cette non linéarité dans les modèles.
- ☐ Modifier la commande du modèle multiphysique pour intégrer un hacheur.

6 POUR ALLER PLUS LOIN

Activité 6 - Modélisation d'un asservissement en effort

On souhaite utiliser le Control'X pour réguler l'effort exercé par le chariot. Modifier le modèle multiphysique en conséquence.