BnB-PEP: A Unified Methodology for Constructing Optimal Optimization Methods

Shuvomoy Das Gupta

MIT Operations Research Center, sdgupta@mit.edu joint work with Bart Van Parys & Ernest K. Ryu

Take home messages

- First-order methods are very popular to solve large-scale optimization + machine learning problems
- We want to find the optimal = fastest first-order methods
- BnB-PEP (Branch-and-Bound Performance Estimation Programming) is a unified methodology to find the optimal first-order methods
 - applicable convex/nonconvex smooth/nonsmooth problems

What is BnB-PEP?

- Shows that optimal first-order methods are themselves solutions to optimization problems
- Proposes a custom branch-and-bound algorithm to solve these optimization to certifiable global optimality and in a practical time scale
- For all the applications considered, finds first-order methods that outperforms state-of-the-art results
- Provides a way to systematically generate mathematical convergence proofs

Setup

- Optimization problem. We want to solve minimize f(x), where $x \in \mathbf{R}^d$ is the decision variable, f lies in some function class \mathcal{F} , and $d \gg N$
- Function class. \mathcal{F} can be smooth/nonsmooth convex/nonconvex etc
- Class of fixed-step first-order methods \mathcal{M}_N . Any method $M \in \mathcal{M}_N$ can be described as:

pick initial point
$$x_0$$

$$x_1 = x_0 - h_{1,0}f'(x_0)$$

$$x_2 = x_1 - h_{2,0}f'(x_0) - h_{2,1}f'(x_1)$$

$$\vdots$$

$$x_N = x_{N-1} - \sum_{i=0}^{N-1} h_{N,i}f'(x_i)$$

for some stepsizes $\{h_{i,j}\}$

• Performance measure \mathcal{E} . \mathcal{E} measures the performance of method $M \in \mathcal{M}_N$ on $f \in \mathcal{F}$, can be $f(x_N) - f(x_\star)$, $\|x_N - x_\star\|^2$, $\|\nabla f(x_N)\|^2$, and so on

Optimal method

• Definition of the optimal method. The optimal method $M_{\star} \in \mathcal{M}_N$ can be constructed by solving the min-max problem:

$$\begin{bmatrix} \min_{f,x_0,\dots,x_N,x_\star} & \mathcal{E}\left(f,\{x_i\}\right) \\ f,x_0,\dots,x_N,x_\star & \text{subject to} \\ f \in \mathcal{F}, \\ x_\star & \text{is a globally optimal solution to } \min_x f(x), \\ \{x_1,\dots,x_N\} & \text{generated by } M & \text{from initial point } x_0, \\ x_0 & \text{is not infinitely bad compared w.r.t. } x_\star. \end{bmatrix} \tag{\mathcal{P}}$$

• (\mathcal{P}) is an infinite-dimensional and intractable problem, BnB-PEP transforms it into an equivalent nonconvex but practically tractable QCQP

Problem transformation

• Inner problem transformation. Transform the inner maximization problem

ullet Outer problem transformation. Transform the min-max problem (\mathcal{P}) into a nonconvex QCQP

BnB-PEP algorithm

- We propose the BnB-PEP algorithm to construct the optimal method by solving the nonconvex QCQP to global optimality and it has three stages
- Stage 1 finds a feasible solution by solving a convex SDP
- **Stage 2** warms-starts with the stage 1 solution and finds a locally optimal solution using a nonlinear interior-point method
- **Stage 3** warm-starts with the stage 1 solution and finds a globally optimal solution using a customized spatial branch-and-bound algorithm

Customized branch-and-bound algorithm

- Computes tighter valid bounds on the variables using SDP-based relaxation
- Finds an improved lower-bound on the objective value via lazy constraints
- Implements custom-heuristics by exploiting structure at each node of the BnB tree

Runtime comparison

Table 1: Runtime comparison between the BnB-PEP Algorithm and off-the-shelf spatial branch-and-bound algorithm of Gurobi executed on MIT Supercloud.

Algorithm	BnB-PEP Algorithm on a core-i7 16 GB laptop	Default Gurobi on MIT Supercloud
N = 1	$0.343~\mathrm{s}$	$7~\mathrm{h}~35~\mathrm{m}$
N=2	$0.493~\mathrm{s}$	1 d 8 h
N = 3	$1.864~\mathrm{s}$	5 d 19 h
N = 4	9.146 s	More than a week

Constructing optimal algorithms numerically

Example. Optimal momentum-less GD $x_i=x_{i-1}-\frac{h_{i-1}}{L}\nabla f(x_{i-1})$ for minimizing L-smooth convex f

 $[\star]$ A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Mathematical Programming, 161(1-2):307-345, 2017.

Generating proofs using BnB-PEP

- The potential function approach is used widely to construct proofs in optimization
- BnB-PEP can construct the best algorithm w.r.t. to a given potential function and systematically generate analytical convergence proof as a by-product
- Example theorem where proof is generated by BnB-PEP. Let f be a 1-weakly convex function with L-bounded subgradients. Assume the initial condition $f(y_0) f(x_{\star}) + ||x_0 x_{\star}||^2 \le R^2$. Then,

$$x_{k+1} = x_k - \frac{\sqrt{1 + 4R^2(N+1)/L^2}}{2(N+1)} f'(x_k),$$

exhibits the rate

$$\frac{1}{N+1} \sum_{i=0}^{N} \|\nabla f_{1/2}(x_i)\|^2 \le \frac{L^2 \left(2\sqrt{1+4R^2(N+1)/L^2}-1\right)}{N+1},$$

which improves upon the prior state-of-the-art rate