easyMF User Mannual

(version 1.0)

easyMF is a user-friendly web platform that aims to facilitate biological discovery from large-scale transcriptome data through matrix factorization (MF). It offers several functional tools for gene expression matrix generation, expression matrix factorization, and metagene-based exploratory analysis including sample clustering, signature gene identification, functional gene discovery, subtype cell detection, and pathway activity inference.

- easyMF project is hosted on https://github.com/cma2015/easyMF.
- easyMF docker image is available in https://hub.docker.com/r/malab/easymf.
- easyMF demo server can be accessed via http://easymf.omicstudio.cloud.
- The following part shows installation of easyMF docker image and detailed documentation for each function in easyMF.

0. Matrix Factorization

Matrix Factorization can be used to decompose a gene expression matrix into an amplitude matrix (AM) and a pattern matrix (PM) using three different algorithms, i.e., principal component analysis (PCA), independent component analysis (ICA), and non-negative matrix factorization (NMF).

Functions/Tools	Description	Inputs	Outputs	Time (test data)	Program	References
Matrix Factorization	Decompose a gene expression	Gene	Amplitude matrix; n Pattern matrix	~ 1 mins	prcomp (PCA)	This study
	a product of express				ica (ICA)	<u>Helwig,</u> 2015
					bignmf (NMF)	<u>Pan et al.,</u> 2012

Inputs

- **Decomposition options**: Different algorithms used for gene expression matrix decomposition including PCA, ICA, and NMF.
- **Gene expression matrix**: A gene expression matrix (genes in rows and individual samples in columns).
- **Metagene number**: The number of metagenes decomposed from the gene expression matrix. In current version, easyMF provides three options for users to set this number:
- 1) **Scan an optimal metagene number automatically by easyMF**: easyMF can automatically chosen an appropriate number using two methods: internal consistency of Cronbach's α value for **PCA** and inflection point of the rate of the mean residual decline for **ICA** and **NMF**;

- 2) **Set each sample as a metagene**: Setting the number of samples in the gene expression matrix as the number of metagenes;
- 3) **Specify metagene number by users**: A specified metagene number user provided.

Outputs

- **Statistics analysis of the decomposition**: If users need easyMF automatically chosen an optimal metagene number, easyMF would provide a comprehensive report statistics analysis of the decomposition.
- **Amplitude matrix**: Amplitude matrix decomposed from gene expression matrix (genes in rows and metagenes in columns).

	Metagene 1	Metagene 2	•••	Metagene n
Zm00001d053636	0.080	-0.889	•••	2.029
Zm00001d053632	1.338	0.729		-0.049
Zm00001d053635	-1.674	0.036		-0.494

• **Pattern matrix**: Pattern matrix decomposed from gene expression matrix (samples in rows and metagenes in columns).

	Metagene 1	Metagene 2	•••	Metagene n
Sample 1	-2.081	0.663		-0.711
Sample 2	-2.114	0.711		-0.757
Sample 4	-2.185	0.671		-0.719

How to use this function

- Test datum for this function is 01_Gene_expression_matrix in directory

 Test data/02 Matrix Factorization.
- The following screenshots show us how to decompose the gene expression matrix using easyMF.

Step 1: upload test data in directory Test data/02 Matrix Factorization to history panel;

Step 2: input the corresponding files and appropriate parameters, then run the function.

Running time

This step will cost ~ 1 mins for the test data.