Übung zur Vorlesung Berechenbarkeit und Komplexität

Blatt 3

Tutoriumsaufgabe 3.1

Geben Sie das Programm einer Registermaschine zur Berechnung des Zweierlogarithmus $|\log_2 n|$ für eine Eingabe $n \in \mathbb{N}$ an.

Tutoriumsaufgabe 3.2

Welche der folgenden Mengen sind abzählbar? Welche sind gleichmächtig mit \mathbb{R} ? Welche sind endlich?

- (a) Menge der endlichen Automaten mit Zustandsmenge $\{1, 2, ..., 100\}$ über $\{a, b\}$
- (b) Menge der endlichen Sprachen über $\{a, b, c\}$
- (c) Menge der regulären Sprachen über $\{a, b, c\}$
- (d) Menge der unentscheidbaren Sprachen über $\{a, b\}$
- (e) Menge der unentscheidbaren Sprachen über $\{a\}$
- (f) Menge der entscheidbaren Sprachen über $\{a\}$
- (g) Menge aller Polynome vom Grad 2 mit ganzzahligen Koeffizienten
- (h) Menge aller Funktionen $f: \mathbb{N} \to \mathbb{N}$
- (i) Menge aller Funktionen $f: \mathbb{R} \to \mathbb{R}$

Tutoriumsaufgabe 3.3

Welche der folgenden Sprachen sind entscheidbar? Beweisen Sie die Korrektheit Ihrer Antwort.

- (a) $H_{\leq 42} = \{\langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach höchstens } 42 \text{ Schritten}\}$
- (b) $H_{\geq 42} = \{\langle M \rangle w \mid M \text{ hält auf Eingabe } w \text{ und zwar nach mindestens 42 Schritten}\}$

Hausaufgabe 3.1 (5 Punkte)

Sei

 $L_{\text{self}} = \{ \langle M \rangle \mid M \text{ akzeptiert nicht } \langle M \rangle \}.$

Zeigen Sie durch Diagonalisierung, dass L_{self} nicht entscheidbar ist.

Hausaufgabe 3.2 (5 Punkte)

Zeigen Sie, dass die Menge $\mathbb{N}^* = \bigcup_{n \in \mathbb{N}} \mathbb{N}^n$ der endlichen Wörter über den natürlichen Zahlen abzählbar ist.

Hinweis: Die Menge N* ist die Menge von endlichen Tupeln über den natürlichen Zahlen.

Hausaufgabe 3.3 (3 + 2 Punkte)

Für eine Turingmaschine M über dem Eingabealphabet $\Sigma = \{0,1\}$ und ein Wort $w \in \Sigma^*$ sei M_w^* eine Turingmaschine, die bei Eingabe ϵ zunächst das Wort w auf das Band schreibt und dann M auf w simuliert. Bei anderen Eingaben darf sich M_w^* beliebig verhalten.

- (a) Geben Sie eine **formale** Definition für M_w^* an.
- (b) Beschreiben Sie grob die Funktionsweise einer Turingmaschine N, die bei Eingabe $\langle M \rangle w$ die Gödelnummer von M_w^* berechnet. Sollte die Eingabe nicht das vorgegebene Format haben, darf sich die Turingmaschine N beliebig verhalten.

Hinweis: Sie können für N eine Mehrband-TM verwenden.

Bemerkung: Diese Aufgabe ist Teil des Beweises für die Unentscheidbarkeit des speziellen Halteproblems H_{ϵ} (siehe Vorlesung).