Lecture 16: Thermal Wind

Group: Luo Tong; Liu Yihang; Cheng Rui; Li Hengyu; Wang Yan

Derivation

Assumptions:

1.
$$f = c$$

$$2. - \frac{1}{\rho} \frac{\partial p}{\partial z} = g$$

3.
$$\rho = \rho(x, y)$$

Geostrophic flow:

$$fv = \frac{1}{\rho} \frac{\partial p}{\partial x}$$

$$fu = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$

Thermal wind balance:

$$f\frac{\partial v}{\partial z} = -\frac{g}{\rho_0}\frac{\partial \rho}{\partial x} \qquad \qquad f\frac{\partial u}{\partial z} = \frac{g}{\rho_0}\frac{\partial \rho}{\partial y}$$

$$f\frac{\partial u}{\partial z} = \frac{g}{\rho_0} \frac{\partial \rho}{\partial y}$$

Explanations of Equations

An equatorial thermal wind equation

$$f_0 \sin \theta \frac{\partial \mathbf{v}_{\perp}(r, \theta, \phi)}{\partial r} = \frac{g}{T} \mathbf{\hat{r}} \times \nabla_{\perp} T \Big|_{P}$$
, (written in terms of spherical coordinates)

$$\frac{\nabla P}{P} = \frac{\nabla T}{T} + \frac{\nabla \rho}{\rho}$$
, ideal gas equation

$$-\frac{g'}{r_0 T} \frac{\partial^2 T}{\partial \theta^2} \bigg|_{P} = f_0 \frac{\partial v_{\phi}}{\partial r}, \underline{\text{EQTWE}}$$

Values of some characteristic variables on four planets

-					
	Parameter and description	Jupiter	Saturn	Uranus	Neptune
-	r ₀ Equatorial Radius	7.0×10^{7}	5.8 × 10 ⁷	2.5×10^7	2.5×10^{7}
	g Gravitational Acceleration	25	10	9	11
	Ω_0 Angular velocity	1.7×10^{-4}	1.6×10^{-4}	1.0×10^{-4}	1.1×10^{-4}
	D Vertical Length Scale	2.7×10^{4}	6.0×10^{4}	2.8×10^{4}	2.0×10^{4}
J	L_{ϕ} Longitudinal Length Scale	10 ⁸	10 ⁸	10 ⁸	10 ⁸
	$L_{ heta}$ Latitudinal Length Scale	10 ⁷	10 ⁷	10 ⁷	10 ⁷
	V_r Characteristic Vertical Velocity	1-10	1-10	1-100	1-100
	V_{ϕ} Characteristic Zonal Velocity	100	300	100	300
	$V_{ heta}$ Characteristic Latitudinal Velocity	1-10	1-10	1-100	1-100
	$\overline{Ro} \equiv V_{\phi}/(f_0 L_{\theta})$	0.03	0.09	0.05	0.14
	$\overline{Ro} (r_0/L_\theta) (V_\theta/V_\phi)^2$	0.002	0.0005	0.1	0.04
	$\overline{Ro} (r_0/L_{\phi}) (V_{\theta}/V_{\phi})$	0.002	0.002	0.01	0.01
	$\overline{Ro} r_0/L_{\phi}$	0.02	0.05	0.01	0.04
	$\overline{Ro} D/L_{\theta}$	8×10^{-5}	5×10^{-4}	1×10^{-4}	3×10^{-4}
	$DV_{\phi}^2/(gL_{\phi}^2)$	1×10^{-9}	5×10^{-8}	3×10^{-9}	2×10^{-8}
	$DV_{\theta}^{2}/(gL_{\theta}^{2})$	1×10^{-9}	6×10^{-9}	3×10^{-7}	2×10^{-7}
	$DV_{\theta}V_{\phi}/(gL_{\phi}L_{\theta})$	1×10^{-9}	2×10^{-8}	3×10^{-8}	5×10^{-8}
	Dr_0/L_{θ}^2	2×10^{-2}	3×10^{-2}	7×10^{-3}	5×10^{-3}
	$\widetilde{Ro} \equiv V_{\phi}/(f_0 r_0)$	0.004	0.02	0.02	0.05
-					

An equatorial thermal wind equation

Jet stream in upper atmosphere

Geopotential height:
$$Z = \frac{\Psi}{g_0} = \frac{1}{g_0} \int_0^z g dz$$

Mathematical expression of thermal wind balance

thermal wind balance
$$V_T=rac{1}{f}ec{k} imes
abla_p\left(\Psi_1-\Psi_0
ight)$$
 (1) $V_T=rac{1}{f}ec{k} imes
abla_p\left(\Psi_1-\Psi_0
ight)$ (1)

Hypsometric equation

$$Z_2 - Z_1 = \frac{R \cdot \overline{T_v}}{g_0} ln\left(\frac{p_1}{p_2}\right)$$

R the specific gas constant for dry air

 $\overline{T_v}$ the vertically-averaged temperature

u-component (geostrophic):

$$u_2 - u_1 = -\frac{g_0}{f} \frac{\partial \left(Z_2 - Z_1\right)}{\partial y} \tag{2}$$

The vertical shear in the zonal wind

$$-\frac{\partial u}{\partial p} = -\frac{R}{fp} \frac{\partial T}{\partial y} \quad (3)$$

Temperature gradient generates westerly winds (strengthen with height)

The impact from climate change

Annual-mean temperature trend over the period 1979-2017 (250 hPa)

difference

Vertical profiles of trends in the annual-mean north-south temperature difference

Increased wind shear

Conclusion of analysis on thermal wind balance:

- A statistically significant weakening of $\frac{\partial T}{\partial y}$ (lower atmosphere)
- A statistically significant strengthening of $\frac{\partial T}{\partial y}$ (upper atmosphere)
- No clear annual change in wind speed
- A 15 per cent increase of vertical shear (over 39-year period)

Potential effects:

- Variability on the upper-level jet stream
- A more turbulent environment aloft

Time series of vertical shear (a) and zonal wind speed (b)

Example

(Alexander E. Yankovsky, Continental Shelf Research, 2006)

Example

$$f\frac{\partial v}{\partial z} = -\frac{g}{\rho_0}\frac{\partial \rho}{\partial x}$$

$$\frac{\partial \rho}{\partial x} > 0$$

$$\frac{\partial v}{\partial z} < 0$$

$$\frac{\partial v}{\partial z} < 0$$

$$\frac{\partial \rho}{\partial x} < 0$$

$$\frac{\partial v}{\partial z} > 0$$

Example

Observed vertical shear

Observed vertical shear minus estimated TWE shear

Atmosphere meridional profile example

$$-fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x}$$
$$\frac{\partial p}{\partial z} = -\rho g.$$

$$\frac{\partial u}{\partial z} = + \frac{g}{\rho_0 f} \frac{\partial \rho}{\partial y}$$

$$\frac{\partial v}{\partial z} = - \frac{g}{\rho_0 f} \frac{\partial \rho}{\partial x}$$

Video example

