Auteur : Abdoulage DABO

Diplômé de la licence de Mathématiques (Université Cheikh Anta Diop de Dakar - F.S.T)

Sommaire

1	Pri	mitive	2
	1.1	Définitions et Proprietés	2
	1.2	Primitives de fonctions usuelles	3
	1.3	Primitives et Opérations	3
2	Inté	égrales	4
	2.1	Définitions et Proprietés	4
	2.2	Techniques de calcule :	5
	2.3	Intégration et fontions trigonométrique	6

1 Primitive

1.1 Définitions et Proprietés

Définition 1.1

Une fonction F est une primitive d'une fonction f sur un intervalle I si F est dérivable sur I et $F'(x) = f(x), \forall x \in I$.

Théorème 1.1

Toute fonction continue sur un intervalle I, y admet une infinité de primitives.

Exemple:

La fonction f définie sur \mathbb{R} par f(x) = 2x a pour primitive F definie sur \mathbb{R} par $F(x) = x^2$.

En effet F est dérivable sur \mathbb{R} et F' = f

 $F(x)=x^2+1,\,F(x)=x^2-\frac{1}{2}$ sont aussi des primitives de f.

Toutes fonctions F qui s'ecrit $F(x) = x^2 + C$ avec C un contante est une primitive de f.

Proprietés

- Si f est une fonction qui admet F comme primitive sur un intervalle I, alors
 - \bullet toutes les primitives de f sont de la forme F + k où k est une constate réelle.
 - pour tout couple $(x_0; y_0)$ où $x_0 \in I$ et $y_0 \in \mathbb{R}$, f admet une et une seule primitive F_0 qui prend la valeur y_0 en x_0 .
- Si u est une fonction dérivable sur un intervalle I et si v est une fonction dérivable sur un intervalle contenant u(I), alors la fonction u'(v'ou) admet sur I la fonction vou comme primitive.

1.2 Primitives de fonctions usuelles

Ici k est une constante réelle.

Foncion	Primitives
f(x) = 0	F(x) = k
f(x) = 1	F(x) = x + k
$f(x) = a \text{ avec } a \in \mathbb{R}$	F(x) = ax + k
f(x) = x	$F(x) = \frac{1}{2}x^2 + k$
$f(x) = x^n \text{ avec } n \in \mathbb{Z} - \{-1\}$	$F(x) = \frac{1}{n+1}x^{n+1} + k$
$f(x) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + k$
$f(x) = \frac{1}{x^n} \text{ avec } n \in \mathbb{Z} - \{1\}$	$F(x) = -\frac{1}{(n-1)x^{n-1}} + k$
$f(x) = \frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x} + k$
$f(x) = \frac{1}{x}$	$F(x) = \ln x + k$
$f(x) = e^x$	$F(x) = e^x + k$
$f(x) = \sin x$	$F(x) = -\cos x + k$
$f(x) = \cos x$	$F(x) = \sin x + k$
$f(x) = 1 + \tan^2(x)$	$F(x) = \tan x + k$

1.3 Primitives et Opérations

Soient u, v des fonctions continue sur leurs domaines de définitions de primitives respectives U, V et a, b des réels.

Foncions	Primitives
u+v	U+V
$au \text{ avec } a \in \mathbb{R}$	aU
$u'u^n$ avec $n \in \mathbb{Z} - \{-1\}$	$\frac{u^{n+1}}{n+1}$
$f(x) = \frac{u'}{u^n}$ avec $n \in \mathbb{Z} - \{1\}$	$-\frac{1}{(n-1)u^{n-1}}$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$
$\frac{u'}{u}$	$\ln(u)$
u(ax+b)	$\frac{1}{a}U(ax+b)$

2 Intégrales

2.1 Définitions et Proprietés

Définition 2.1

Soit f une fonction continue et positive sur un intervalle I = [a, b]. L'intégrale de f sur I est l'aire comprise entre la courbe C de f, l'axe des abscisses et les deux droites d'équations respectives x = a et x = b.

Ce nombre est noté $\int_a^b f(x)dx$.

Si F est une primitive de f sur I, alors $\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a)$

Proprietés

Soientt f et g deux fonctions continues sur un intervalle I; a, b et c des éléments de I et α une constante.

- $\bullet \int_a^a f(x) \, dx = 0$
- $\int_a^b f(x) dx = -\int_b^a f(x) dx$
- $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
- $\int_a^b [f(x) + g(x)] dx = \int_a^b f(x) dx + \int_a^b g(x) dx$
- $\int_a^b \alpha f(x) dx = \alpha \int_a^b f(x) dx$

2.2 Techniques de calcule :

• Calcul direct

Si F est une primitive de f sur I = [a, b], alors $\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$

• Intégration par partie :

Soientt u et v des fonctions dérivables sur un intervalle I et a, b des éléments de I.

$$\int_{a}^{b} u'(x) v(x) dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x) v'(x) dx$$

Exemple Calculons l'intégrale suivante : $\int_0^1 xe^x dx$.

on pose :
$$\begin{cases} u(x) = x \\ v'(x) = e^x \end{cases} \Leftrightarrow \begin{cases} u'(x) = 1 \\ v(x) = e^x \end{cases}$$

La formule d'intégration par parties donne

$$\int_0^1 x e^x dx = \int_0^1 u(x)v'(x) dx$$

$$= [u(x)v(x)]_0^1 - \int_0^1 u'(x)v(x) dx$$

$$= [xe^x]_0^1 - \int_0^1 1 \cdot e^x dx$$

$$= (1 \cdot e^1 - 0 \cdot e^0) - [e^x]_0^1$$

$$= e - (e^1 - e^0)$$

$$= 1$$

• Décomposition en éléments simples

Cette technique ne s'applique que pour les fractons rationnelles.

Fraction rationnelles du type :
$$f(x) = \frac{P(x)}{\prod_{i=1}^n (x-x_i)}$$

ò P est un polynome de degré strictement inférieure à n et $x_1, ..., x_n$ sont des réels deux a deux distincts.On dit alors qu'il y a seulement des poles simples et la fraction se décompose en éléments simples de la facon suivante : $f(x) = \frac{a_1}{x - x_1} + \frac{a_2}{x - x_2} + + \frac{a_n}{x - x_n}$ puis on cherches les a_i .

Exemple:

Nous voulons calculer l'intégrale suivante : $\int_1^2 \frac{1}{x(x+1)} dx$.

Pour cela allons faire la décomposition en elements simples de la fraction rationelle $f(x) = \frac{1}{x(x+1)}$

La formule (1) donne $f(x) = \frac{a}{x} + \frac{b}{x+1}$ ò a et b sont deux nombres réels à déterminer.

On a :
$$f(x) = \frac{1}{x(x+1)} = \frac{a}{x} + \frac{b}{x+1}$$

En réduisant au même dénominateur le dernier terme, on obtient : $\frac{a}{x} + \frac{b}{x+1} = \frac{a(x+1)+bx}{x(x+1)} = \frac{x(a+b)+a}{x(x+1)}$.

Cette fraction rationelle est égale à f(x) si et seulement si : a + b = 0 et a = 1.

En effet deux polynômes sont égaux si et seulement si leur coéfficients de même degré sont égaux deux à deux. On obtient donc ici a = 1 et b = -1.

Ainsi
$$f(x) = \frac{1}{x} - \frac{1}{x+1}$$
.

$$\int_{1}^{2} \frac{1}{x(x+1)} dx = \int_{1}^{2} (\frac{1}{x} - \frac{1}{x+1}) dx = \int_{1}^{2} \frac{1}{x} dx - \int_{1}^{2} \frac{1}{x+1} dx$$

$$\int_{1}^{2} \frac{1}{x} dx = [\ln x]_{1}^{2} = \ln(1) - \ln(2) = -\ln(2)$$

$$\int_{1}^{2} \frac{1}{x+1} = [\ln(x+1)]_{1}^{2} = \ln(2) - \ln(3)$$
Ainsi : $\int_{1}^{2} \frac{1}{x(x+1)} dx = -\ln(2) - [\ln(2) - \ln(3)] = -2 \ln 2 + \ln 3$

2.3 Intégration et fontions trigonométrique

La linéarisation

La linéarisation permet de remplacer des produits de fonctions par des sommes de fonctions plus faciles à intégrer.

Exemples

1.
$$\int \sin(x) \cdot \cos(x) \, dx$$
$$\sin(x) \cdot \cos(x) = \frac{1}{2} \sin(2x)$$
$$\int \sin(x) \cdot \cos(x) \, dx = \frac{1}{2} \int \sin(2x) \, dx = -\frac{1}{4} \cos(2x) + C$$
2.
$$\int \cos^{2}(x) \, dx$$
$$\cos^{2}(x) = \frac{1}{2} (1 + \cos(2x))$$
$$\int \cos^{2}(x) \, dx = \frac{1}{2} \int (1 + \cos(2x)) \, dx = \frac{1}{2} \left(x + \frac{1}{2} \sin(2x) \right) + C$$
3.
$$\int \sin^{2}(x) \, dx$$
$$\sin^{2}(x) = \frac{1}{2} (1 - \cos(2x))$$
$$\int \sin^{2}(x) \, dx = \frac{1}{2} \int (1 - \cos(2x)) \, dx = \frac{1}{2} \left(x - \frac{1}{2} \sin(2x) \right) + C$$

De manière générale on uitlise la formule de Moivre et d'Euler pour linéariser.

$$\begin{aligned} \cos\theta &= \frac{e^{i\theta} + e^{-i\theta}}{2i} \\ \sin\theta &= \frac{e^{i\theta} - e^{-i\theta}}{2i} \\ \left(e^{i\theta}\right)^n &= e^{in\theta} \ \forall \ \theta \in \mathbb{R} \ \text{et} \ \forall \ n \in \mathbb{N}^* \end{aligned}$$

Cette formule permet par exemple d'exprimer $\cos(nx)$ et $\sin(nx)$ en fonction de puissances de $\cos(x)$ et/ou $\sin(x)$.

Exemples

1.
$$\int \sin^3(x) \, dx$$

$$\begin{split} \sin^3(x) &= (\frac{e^{ix} - e^{-ix}}{2i})^3 \\ &= -\frac{1}{8i} \cdot \left[(e^{ix} - e^{-ix})^2 \cdot (e^{ix} - e^{-ix}) \right] \\ &= -\frac{1}{8i} \cdot \left[((e^{ix})^2 - 2e^{ix}e^{-ix} + (e^{-ix})^2) \cdot (e^{ix} - e^{-ix}) \right] \\ &= -\frac{1}{8i} \cdot \left[(e^{i2x} - 2 + e^{-i2x}) \cdot (e^{ix} - e^{-ix}) \right] \\ &= -\frac{1}{8i} \cdot \left[(e^{i2x} \cdot e^{ix} - 2e^{ix} + e^{-i2x} \cdot e^{ix} - e^{i2x} \cdot e^{-ix} + 2e^{-ix} - e^{-i2x} \cdot e^{-ix} \right] \\ &= -\frac{1}{8i} \cdot \left[e^{i3x} - 2e^{ix} + e^{-ix} - e^{ix} + 2e^{-ix} - e^{-i3x} \right] \\ &= -\frac{1}{8i} \cdot \left[e^{i3x} - e^{-i3x} - 3e^{ix} + 3e^{-ix} \right] \\ &= -\frac{1}{4} \cdot \left[e^{i3x} - e^{-i3x} \right] + \frac{1}{2} \cdot \left[e^{ix} - e^{-ix} \right] \\ &= -\frac{1}{4} \cdot \left[\sin(3x) \right] + \frac{1}{4} \cdot \left[3\sin(x) \right] \end{split}$$

 $\int \sin^3(x) \, dx = -\frac{1}{4} \int \sin(3x) \, dx + \frac{3}{4} \int \sin(x) \, dx$

Merci de signaler toutes erreurs via WhatsApp: +221777426690