A Fully Bayesian Model for Gene Expression Heterosis in RNA-seq Data

Will Landau

Department of Statistics Iowa State University

March 26, 2014

Landau i

Contents

1	Introduction	1
2	The Model	2
3	The Full Conditional Distributions	2
4	A Metropolis-Hastings Algorithm for Sampling ν	4
5	A Metropolis-Hastings Algorithm for Sampling $\rho_n, \ \phi_g, \ \alpha_g, \ \delta_g,$ and $\varepsilon_{g,n}$	6
6	The Full Metropolis-Within-Gibbs Sampler	9
7	Diagnostics7.1 Gelman Factors	10 10 11
A	$\begin{array}{lllll} \textbf{Derivations of the Full Conditionals} \\ \textbf{A.1 Transformations of Standard Deviations} \\ \textbf{A.2} & p(\nu \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.3} & p(\rho_n \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.4} & p(\varepsilon_{g,n} \mid \cdots) \text{ Metropolis} \\ \textbf{A.5} & p(\phi_g \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.6} & p(\alpha_g \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.7} & p(\delta_g \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.7} & p(\delta_g \mid \cdots) \colon \text{Metropolis} \\ \textbf{A.8} & p(\theta_\phi \mid \cdots) \colon \text{Normal} \\ \textbf{A.9} & p(\theta_\alpha \mid \cdots) \colon \text{Normal} \\ \textbf{A.10} & p(\theta_\delta \mid \cdots) \colon \text{Normal} \\ \textbf{A.11} & p(\tau^2 \mid \cdots) \colon \text{Gamma} \\ \textbf{A.12} & p\left(\frac{1}{\gamma_g^2} \mid \cdots\right) \text{ Gamma} \\ \textbf{A.13} & p\left(\frac{1}{\sigma_\phi^2} \mid \cdots\right) \text{ Truncated Gamma} \\ \textbf{A.14} & p\left(\frac{1}{\sigma_\phi^2} \mid \cdots\right) \colon \text{Truncated Gamma} \\ \textbf{A.15} & p\left(\frac{1}{\sigma_\alpha^2} \mid \cdots\right) \colon \text{Truncated Gamma} \\ \end{array}$	13 14 15 16 16 17 18 19 21 22 22 23 23 24 24
	A.16 $p\left(\frac{1}{\sigma_{\alpha}^2} \mid \cdots\right)$: Truncated Gamma	

1 Introduction

This writeup explains a fully Bayesian Markov chain Monte Carlo method for modeling RNA-seq data. The hierarchical model featured focuses on heterosis, or hybrid vigor, a phenomenon that concerns two parental genetic lines and an hybrid line. For each gene in an RNA-seq dataset, we consider three types of heterosis at the level of gene expression:

- 1. High parent heterosis: the gene is significantly more expressed in the hybrid than in either of the parent lines.
- 2. Low parent heterosis: the gene is significantly less expressed in the hybrid than in either of the parent lines.
- 3. Mid parent heterosis: the expression level of the gene in the hybrid is significantly different from the average of the parental expression levels.

Let $y_{g,n}$ be the expression level of gene g (g = 1, ..., G) in sample n (n = 1, ..., N). The samples come from one of three groups: group 1, the first parent, group 2, the hybrid, and group 3, the second parent. Hence, we define:

- μ_{g1} : mean expression level of gene g in the first parent
- μ_{q2} : mean expression level of gene g in the hybrid
- μ_{g3} : mean expression level of gene g in the second parent

In the model below, there are three quantities of primary interest:

- $\phi_g = \frac{\mu_{g1} + \mu_{g3}}{2}$, the parental mean expression level of gene g.
- $\alpha_g = \frac{\mu_{g1} \mu_{g3}}{2}$, half the parental difference in expression levels of gene g.
- $\delta_g = \mu_{g2} \phi_g$, the overexpression of gene g in the hybrid relative to the parental mean.

With MCMC samples of these quantities, for some threshold $\varepsilon > 0$, we can calculate empirical estimates of the following probabilities of interest:

- $P(|\alpha_q| \geq \varepsilon \mid \boldsymbol{y})$, the probability of differential expression.
- $P(\delta_q > |\alpha_q| \mid \boldsymbol{y})$, the probability of high parent heterosis.
- $P(\delta_q < -|\alpha_q| \mid \mathbf{y})$, the probability of low parent heterosis.
- $P(|\delta_g| \ge \varepsilon \mid \boldsymbol{y})$, the probability of mid parent heterosis.

2 The Model

$$y_{g,n} \overset{\text{ind}}{\sim} \operatorname{Poisson}(\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)))$$

$$\rho_n \overset{\text{ind}}{\sim} \operatorname{N}(0, \sigma_\rho^2)$$

$$\sigma_\rho \sim \operatorname{U}(0, s_\rho)$$

$$\varepsilon_{g,n} \overset{\text{ind}}{\sim} \operatorname{N}(0, \gamma_g^2)$$

$$\gamma_g^2 \overset{\text{ind}}{\sim} \operatorname{Inv-Gamma} \left(\operatorname{shape} = \frac{\nu}{2}, \operatorname{scale} = \frac{\nu\tau^2}{2}\right)$$

$$\nu \sim \operatorname{U}(0, d)$$

$$\tau^2 \sim \operatorname{Gamma}(\operatorname{shape} = a, \operatorname{rate} = b)$$

$$\phi_g \overset{\text{ind}}{\sim} \operatorname{N}(\theta_\phi, \sigma_\phi^2)$$

$$\theta_\phi \sim \operatorname{N}(0, c_\phi^2)$$

$$\sigma_\phi \sim \operatorname{U}(0, s_\phi)$$

$$\alpha_g \overset{\text{ind}}{\sim} \operatorname{N}(\theta_\alpha, \sigma_\alpha^2)$$

$$\theta_\alpha \sim \operatorname{N}(0, c_\alpha^2)$$

$$\sigma_\alpha \sim \operatorname{U}(0, s_\alpha)$$

$$\delta_g \overset{\text{ind}}{\sim} \operatorname{N}(\theta_\delta, \sigma_\delta^2)$$

$$\theta_\delta \sim \operatorname{N}(0, c_\delta^2)$$

$$\sigma_\delta \sim \operatorname{U}(0, s_\delta)$$

where:

- Conditional independence is implied unless otherwise specified.
- The parameters to the left of the "~" are implicitly conditioned on the parameters to the right.
- $\eta(g, n)$ is the function given by:

$$\eta(g,n) = \begin{cases} \phi_g - \alpha_g & \text{library } n \text{ is in treatment group 1 (parent 1)} \\ \phi_g + \delta_g & \text{library } n \text{ is in treatment group 2 (hybrid)} \\ \phi_g + \alpha_g & \text{library } n \text{ is in treatment group 3 (parent 2)} \end{cases}$$

3 The Full Conditional Distributions

Define:

• k(n) = treatment group of library n.

- $\lambda_{g,n} = \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n))$)
- G_{α} = number of genes for which $\alpha_g \neq 0$
- G_{δ} = number of genes for which $\delta_g \neq 0$

Then:

$$p(\nu \mid \cdots) \propto \exp\left(-\log \Gamma(\nu/2) + \frac{\nu}{2} \log\left(\frac{\nu\tau^2}{2}\right) - \nu \frac{1}{G} \sum_{g=1}^{G} \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2}\right]\right)^G \times I(0 < \nu < d)$$

$$\times I(0 < \nu < d)$$

$$p(\rho_n \mid \cdots) \propto \exp\left(\rho_n G \overline{y}_{.n} - \frac{\rho_n^2}{2\sigma_\rho^2} - \exp(\rho_n) \sum_{g=1}^{G} \exp(\varepsilon_{g,n} + \eta(g,n))\right)$$

$$p(\varepsilon_{g,n} \mid \cdots) \propto \exp\left(y_{g,n} \varepsilon_{g,n} - \frac{\varepsilon_{g,n}^2}{2\gamma_g^2} - \exp(\varepsilon_{g,n}) \exp(\rho_n + \eta(g,n))\right)$$

$$p(\phi_g \mid \cdots) \propto \exp\left(\phi_g N \overline{y}_{g,-} - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} - \exp(\phi_g) \left[\exp(-\alpha_g) \sum_{k(n)=1} \exp(\rho_n + \varepsilon_{g,n}) + \exp(\delta_g) \sum_{k(n)=2} \exp(\rho_n + \varepsilon_{g,n}) + \exp(\alpha_g) \sum_{k(n)=3} \exp(\rho_n + \varepsilon_{g,n})\right]\right)$$

$$p(\alpha_g \mid \cdots) \propto \exp\left(\alpha_g \left(\sum_{k(n)=3} y_{g,n} - \sum_{k(n)=1} y_{g,n}\right) - \frac{(\alpha_g - \theta_\alpha)^2}{2\sigma_\alpha^2} - \exp(\alpha_g) \exp(\phi_g) \sum_{k(n)=3} \exp(\rho_n + \varepsilon_{g,n})\right)$$

$$- \exp(\alpha_g) \exp(\phi_g) \sum_{k(n)=3} \exp(\rho_n + \varepsilon_{g,n})$$

$$- \exp(-\alpha_g) \exp(\phi_g) \sum_{k(n)=1} \exp(\rho_n + \varepsilon_{g,n})$$

$$p(\delta_g \mid \cdots) \propto \exp\left(\delta_g \sum_{k(n)=2} y_{g,n} - \frac{(\delta_g - \theta_\delta)^2}{2\sigma_\delta^2} - \exp(\delta_g) \exp(\phi_g) \sum_{k(n)\neq2} \exp(\rho_n + \varepsilon_{g,n})\right)$$

$$\begin{split} p(\theta_{\phi} \mid \cdots) &= \mathcal{N}\left(\theta_{\phi} \mid \frac{c_{\phi}^2 \sum_{g=1}^G \phi_g}{Gc_{\phi}^2 + \sigma_{\phi}^2}, \ \frac{c_{\phi}^2 \sigma_{\phi}^2}{Gc_{\phi}^2 + \sigma_{\phi}^2}\right) \\ p(\theta_{\alpha} \mid \cdots) &= \mathcal{N}\left(\theta_{\alpha} \mid \frac{c_{\alpha}^2 \sum_{g=1}^G \alpha_g}{G_{\alpha} c_{\alpha}^2 + \sigma_{\alpha}^2}, \ \frac{c_{\alpha}^2 \sigma_{\alpha}^2}{G_{\alpha} c_{\alpha}^2 + \sigma_{\alpha}^2}\right) \\ p(\theta_{\delta} \mid \cdots) &= \mathcal{N}\left(\theta_{\delta} \mid \frac{c_{\delta}^2 \sum_{g=1}^G \delta_g}{G_{\delta} c_{\delta}^2 + \sigma_{\delta}^2}, \ \frac{c_{\delta}^2 \sigma_{\delta}^2}{G_{\delta} c_{\delta}^2 + \sigma_{\delta}^2}\right) \\ p(\tau^2 \mid \cdots) &= \mathcal{G} \text{amma}\left(\tau^2 \mid \text{shape} = a + \frac{G\nu}{2}, \ \text{rate} = b + \frac{\nu}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2}\right) \\ p\left(\frac{1}{\gamma_g^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\frac{1}{\gamma_g^2} \mid \text{shape} = \frac{N+\nu}{2}, \ \text{rate} = \frac{1}{2} \left(\nu\tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2\right)\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\frac{1}{\sigma_{\phi}^2} \mid \text{shape} = \frac{N-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{n=1}^N \rho_n^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\sigma_g - \theta_{\phi})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\sigma_g - \theta_{\phi})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\text{shape} = \frac{G-1}{2}, \ \text{rate} = \frac{1}{2} \sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) I\left(\frac{1}{\sigma_{\phi}^2} > \frac{1}{s_{\phi}^2}\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G} \text{amma}\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) \\ p\left(\frac{1}{\sigma_{\phi}^2} \mid \cdots\right) &= \mathcal{G}$$

4 A Metropolis-Hastings Algorithm for Sampling ν

The full conditional distribution of ν is of the form,

$$p(\nu \mid \cdots) \propto \exp\left(-\log \Gamma(\nu/2) + \frac{\nu}{2}\log\left(\frac{\nu\tau^2}{2}\right) - \nu \frac{1}{G} \sum_{g=1}^{G} \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2}\right]\right)^G$$

$$\times I(0 < \nu < d)$$

$$= \exp(h(\nu))$$

where

$$h(\nu) = G \cdot \left(-\log \Gamma(\nu/2) + \frac{\nu}{2} \log \left(\frac{\nu \tau^2}{2} \right) - \nu \frac{1}{G} \sum_{g=1}^{G} \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2} \right] \right)$$

Using GPUs to accelerate computation, $\exp(G^{-1}h(\nu))$ can be easily approximated (up to a proportionality constant) by a step function with thick tails, such as the one in the example below.

In practice, the step function will have a finer partition. Letting $q(\nu)$ be the log of the step function, we have a Metropolis-Hastings algorithm for sampling ν .

- 1. Sample a proposal ν^* from a $q(\nu)$.
- 2. The acceptance probability is

$$p = \min \left\{ 1, \ \frac{\exp(h(\nu^*))}{\exp(h(\nu^{(i)}))} \frac{\exp(q(\nu^{(i)}))}{\exp(q(\nu^*))} \right\}$$

In practice, calculate p on a log scale.

$$\log p = \min \left\{ 0, \ h(\nu^*) - h(\nu^{(i)}) + q(\nu^{(i)}) - q(\nu^*) \right\}$$

- 3. Sample $u \sim U(0,1)$
- 4. If $\log u < \log p$, set $\nu^{(i+1)} = \nu^*$ (accept ν^*).. Otherwise, set $\nu^{(i+1)} = \nu^{(i)}$ (do not except ν^*).

5 A Metropolis-Hastings Algorithm for Sampling ρ_n , ϕ_q , α_q , δ_q , and $\varepsilon_{q,n}$

 $\rho_n,\,\phi_g,\,\alpha_g,\,\delta_g,\,$ and $\varepsilon_{g,n}$ all have full conditional distributions of the form,

$$p(\theta \mid \cdots) \propto \exp \left(A\theta - B(\theta - C)^2 - De^{\theta} - Ee^{-\theta}\right)$$

where θ is the parameter of interest, A, B, C, D, and E are constants, and $B, D, E \geq 0$. Note that E is guaranteed to be 0 except when $\theta = \alpha_g$ for some h. Let $h(\theta)$ be the log kernel of $p(\theta \mid \cdots)$. Then,

$$h(\theta) = A\theta - B(\theta - C)^2 - De^{\theta} - Ee^{-\theta}$$

In addition, let $\widehat{\theta}$ be a mode of $h(\theta)$ found via Newton-Raphson. We will need:

$$h_0 = h(\widehat{\theta}) = A\widehat{\theta} - B(\widehat{\theta} - C)^2 - De^{\widehat{\theta}} - Ee^{-\widehat{\theta}}$$

$$h_1 = h'(\widehat{\theta}) = A - 2B(\widehat{\theta} - C) - De^{\widehat{\theta}} + Ee^{-\widehat{\theta}}$$

$$h_2 = h''(\widehat{\theta}) = -2B - De^{\widehat{\theta}} - Ee^{-\widehat{\theta}}$$

Now, we can approximate $h(\theta)$ with the quadratic Taylor approximation.

$$h(\theta) \approx h_0 + h_1(\theta - \widehat{\theta}) + \frac{h_2}{2}(\theta - \widehat{\theta})^2$$

 $\widehat{\theta}$ was found by setting the first derivative equal to 0, so h_1 must be 0. Hence,

$$h(\theta) \approx h_0 + \frac{h_2}{2}(\theta - \widehat{\theta})^2$$

$$= \left(h_0 + \frac{h_2}{2}\widehat{\theta}^2\right) - h_2\widehat{\theta}\theta + \frac{h_2}{2}\widehat{\theta}^2$$

$$= -\frac{1}{2|h_2|^{-1}} \left(\theta - \widehat{\theta}\right)^2 + \text{constant}$$

Thus, one proposal distribution for θ in the Metropolis might be

$$N\left(\widehat{\theta}, |h_2|^{-1}\right)$$

whose density has the log kernel,

$$k(\theta) = -\frac{1}{2|h_2|^{-1}} \left(\theta - \widehat{\theta}\right)^2$$

However, this proposal is inefficient. To see this, consider the log ratio of the kernel of the proposal to the kernel of the full conditional.

$$\begin{split} \log \frac{\exp(k(\theta))}{p(\theta \mid \cdots)} &= \log q(\theta) - \log p(\theta \mid \cdots) \\ &= -\frac{1}{2|h_2|^{-1}} \left(\theta - \widehat{\theta}\right)^2 - \left[A\theta - B(\theta - C)^2 - De^{\theta} - Ee^{-\theta}\right] \\ &= -\frac{1}{2|h_2|^{-1}} \left(\theta - \widehat{\theta}\right)^2 - A\theta + B(\theta - C)^2 + De^{\theta} + Ee^{-\theta} \\ &= -\frac{1}{2|-2B - De^{\widehat{\theta}} - Ee^{-\widehat{\theta}}|^{-1}} \left(\theta - \widehat{\theta}\right)^2 - A\theta + B(\theta - C)^2 + De^{\theta} + Ee^{-\theta} \\ &= -\left(B + \frac{D}{2}e^{\widehat{\theta}} + \frac{E}{2}e^{-\widehat{\theta}}\right) \left(\theta - \widehat{\theta}\right)^2 - A\theta + B(\theta - C)^2 + De^{\theta} + Ee^{-\theta} \end{split}$$

If E > 0, then

$$\lim_{\theta \to -\infty} \log \frac{\exp(k(\theta))}{p(\theta \mid \cdots)} = \lim_{\theta \to -\infty} \left(-\left(B + \frac{D}{2}e^{\widehat{\theta}}\right) \left(\theta - \widehat{\theta}\right)^2 - A\theta + B(\theta - C)^2 + De^{\theta} \right)$$

$$= \lim_{\theta \to -\infty} \left(-\left(B + \frac{D}{2}e^{\widehat{\theta}}\right) \theta^2 + B\theta^2 \right)$$

$$= \lim_{\theta \to -\infty} \left(-\frac{D}{2}e^{\widehat{\theta}}\theta^2 \right)$$

$$= -\infty$$

With a tail ratio of $-\infty$, this proposal is inefficient. A better proposal would be a Laplace $(\widehat{\theta}, s)$ distribution, which has the log kernel,

$$q(\theta) = -\frac{|\theta - \widehat{\theta}|}{s}$$

The variance of this distribution is $2s^2$. The variance of the normal approximation was $|h_2|^{-1}$, so we can set those variances equal. Solving for s, we get $s = \frac{1}{2\sqrt{|h_2|}}$. This proposal is safer because

$$\lim_{|\theta| \to \infty} \log \frac{\exp(q(\theta))}{p(\theta \mid \cdots)} = \lim_{|\theta| \to \infty} \left(-\frac{|\theta - \widehat{\theta}|}{s} - A\theta + B(\theta - C)^2 + De^{\theta} + Ee^{-\theta} \right)$$

$$\geq \lim_{|\theta| \to \infty} \left(-\frac{|\theta - \widehat{\theta}|}{s} - A\theta + B(\theta - C)^2 \right)$$

$$= \lim_{|\theta| \to \infty} \left(-\frac{|\theta - \widehat{\theta}|}{s} - A\theta + B(\theta - C)^2 \right)$$

$$= \infty$$

whether or not E = 0.

We easily can simulate from the Laplace distribution using the inverse cdf method. The cdf of the Laplace $(\widehat{\theta}, s)$ distribution is

$$F(\theta) = \begin{cases} F_1(\theta) = \frac{1}{2} \exp\left(\frac{\theta - \widehat{\theta}}{s}\right) & \theta < \widehat{\theta} \\ F_2(\theta) = 1 - \frac{1}{2} \exp\left(-\frac{\theta - \widehat{\theta}}{s}\right) & \theta \ge \widehat{\theta} \end{cases}$$

Note that for $0 < u < \frac{1}{2}$,

$$u = \frac{1}{2} \exp\left(\frac{F_1^{-1}(u) - \widehat{\theta}}{s}\right)$$
$$\log(2u) = \frac{F_1^{-1}(u) - \widehat{\theta}}{s}$$
$$s \log(2u) = F_1^{-1}(u) - \widehat{\theta}$$
$$F_1^{-1}(u) = s \log(2u) + \widehat{\theta}$$

And for $\frac{1}{2} \le u < 1$,

$$u = 1 - \frac{1}{2} \exp\left(-\frac{F_2^{-1}(u) - \widehat{\theta}}{s}\right)$$
$$2(1 - u) = \exp\left(-\frac{F_2^{-1}(u) - \widehat{\theta}}{s}\right)$$
$$\log(2(1 - u)) = -\frac{F_2^{-1}(u) - \widehat{\theta}}{s}$$
$$-s\log(2(1 - u)) = F_2^{-1}(u) - \widehat{\theta}$$
$$F_2^{-1}(u) = \widehat{\theta} - s\log(2(1 - u))$$

We can easily simulate from the Laplace distribution by taking $u \sim U(0,1)$ and letting our simulated value, θ^* , equal $F_1^{-1}(u)$ if $0 < u < \frac{1}{2}$ and $F_2^{-1}(u)$ if $\frac{1}{2} \le u < 1/1$

For the full sampler, let $\theta^{(i)}$ be the current value of θ at iteration i of the algorithm. To get $\theta^{(i+1)}$,

- 1. Sample a proposal θ^* from a $q(\theta)$.
- 2. The acceptance probability is

$$p = \min \left\{ 1, \ \frac{\exp(h(\theta^*))}{\exp(h(\theta^{(i)}))} \frac{\exp(q(\theta^{(i)}))}{\exp(q(\theta^*))} \right\}$$

In practice, calculate p on a log scale.

$$\log p = \min \left\{ 0, \ h(\theta^*) - h(\theta^{(i)}) + q(\theta^{(i)}) - q(\theta^*) \right\}$$

- 3. Sample $u \sim U(0,1)$
- 4. If $\log u < \log p$, set $\theta^{(i+1)} = \theta^*$ (accept θ^*).. Otherwise, set $\theta^{(i+1)} = \theta^{(i)}$ (do not except θ^*).

6 The Full Metropolis-Within-Gibbs Sampler

By inspecting the full conditional distributions, one can see which parameters are conditionally independent. The plot below summarizes this conditional dependence.

Has a full conditional that depends on...

Using this information, I can construct Gibbs steps within each of which the sampled parameters are conditionally independent.

1.
$$\rho_n \ (n=1,\ldots,N)$$

2.
$$\gamma_g \ (g = 1, \dots, G)$$

3.
$$\varepsilon_{q,n}$$
 $(g = 1, \dots, G), (n = 1, \dots, N)$

4.
$$\phi_g \ (g = 1, \dots, G)$$

5.
$$\alpha_g \ (g = 1, \dots, G)$$

6.
$$\delta_q \ (g = 1, \dots, G)$$

7.
$$\nu$$
, θ_{ϕ} , θ_{α} , θ_{δ}

8.
$$\tau$$
, σ_{ρ} , σ_{ϕ} , σ_{α} , σ_{δ}

7 Diagnostics

7.1 Gelman Factors

The potential scale reduction factor introduced in the textbook by Gelman ? monitors the lack of convergence of a single variable in an MCMC. Let η_{ij} be the i'th MCMC draw of a single variable in chain j. Then, the potential scale reduction factor, \hat{R} , compares the within-chain variance, W, to the

between-chain variance, B. Suppose there are J chains, each with I iterations. Then,

$$\widehat{R} = \sqrt{1 - \frac{1}{I} \left(\frac{B}{W} - 1 \right)}$$

$$B = \frac{I}{J - 1} \sum_{j=1}^{J} (\overline{\eta}_{.j} - \overline{\eta}_{..})^2, \qquad \overline{\eta}_{.j} = \frac{1}{I} \sum_{i=1}^{I} \eta_{ij}, \quad \overline{\eta}_{..} \sum_{j=1}^{J} \overline{\eta}_{.j}$$

$$W = \frac{1}{J} \sum_{j=1}^{J} s_j^2, \qquad s_j^2 = \frac{1}{I - 1} \sum_{i=1}^{I} (\eta_{ij} - \overline{\eta}_{.j})^2$$

 $\widehat{R} \to 1$ as $I \to \infty$. An \widehat{R} value far above 1 indicates a lack of convergence, but an \widehat{R} value near 1 does not imply convergence.

The Gelman factor used in this analysis is not actually the one given above, but a degrees-of-freedom-adjusted version implemented in the gleman.diag() function in the coda package in R:

$$\widehat{R} = \sqrt{\frac{d+3}{d+1}} \frac{\widehat{V}}{W}$$

where

$$d = 2\frac{\widehat{V}^2}{\operatorname{Var}(\widehat{V})}, \qquad \widehat{V} = \widehat{\sigma}^2 + \frac{B}{IJ}, \qquad \widehat{\sigma}^2 = \left(1 - \frac{1}{I}\right)W + \frac{B}{I}$$

7.2 Deviance Information Criterion

The deviance information criterion (DIC) is a model selection heuristic for hierarchical models much like the Akaike information criterion, AIC, and the Bayesian information criterion, BIC. As with AIC and BIC, given a set of models for \boldsymbol{y} , the one with the minimum DIC is preferred. DIC is based on the deviance,

$$D(\boldsymbol{y}, \boldsymbol{\eta}) = -2\log p(\boldsymbol{y} \mid \boldsymbol{\eta})$$

where y is the data and η is the collection of model parameters. DIC itself is

$$DIC = 2E(D(\boldsymbol{y}, \boldsymbol{\eta}) \mid \boldsymbol{y}) - D(\boldsymbol{y}, \widehat{\boldsymbol{\eta}})$$

where $\hat{\eta}$ is a suitable point estimate of η . If η_i is the collection of parameter estimates of iteration i of the chain and $\bar{\eta}$ is the collection of within-chain parameter means, then we can estimate DIC by

$$\begin{split} \widehat{\mathrm{DIC}} &= \sum_{i=1}^{I} [2D(\boldsymbol{y} \mid \boldsymbol{\eta}_i)] - D(\boldsymbol{y}, \widehat{\boldsymbol{\eta}}) \\ &= -4 \sum_{i=1}^{I} \log p(\boldsymbol{y} \mid \boldsymbol{\eta}_i) + 2 \log p(\boldsymbol{y} \mid \overline{\boldsymbol{\eta}}) \end{split}$$

All that remains is to find $\log p(\boldsymbol{y} \mid \boldsymbol{\eta})$ for a given set of parameters, $\boldsymbol{\eta}$. Let $\lambda_{g,n} = \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n))$, where

$$\eta(g,n) = \begin{cases} \phi_g - \alpha_g & \text{library } n \text{ is in treatment group 1} \\ \phi_g + \delta_g & \text{library } n \text{ is in treatment group 2} \\ \phi_g + \alpha_g & \text{library } n \text{ is in treatment group 3} \end{cases}$$

$$\log p(\boldsymbol{y} \mid \boldsymbol{\eta}) = \log \prod_{n=1}^{N} \prod_{g=1}^{G} \operatorname{Poisson}(y_{g,n} \mid \lambda_{g,n})$$

$$= \sum_{n,g} \log \operatorname{Poisson}(y_{g,n} \mid \lambda_{g,n})$$

$$= \sum_{n,g} \log \left(\frac{\exp(-\lambda_{g,n}) \lambda_{g,n}^{y_{g,n}}}{y_{g,n}!} \right)$$

$$= \sum_{n,g} (-\lambda_{g,n} + y_{g,n} \log \lambda_{g,n} - \log(y_{g,n}!))$$

Given the size of the data, calculating $\sum_{n,g} -\log(y_{g,n}!)$ is intractable. Hence, in practice, we use

$$DIC = -4\sum_{i=1}^{I} L(\boldsymbol{y} \mid \boldsymbol{\eta}_i) + 2L(\boldsymbol{y} \mid \overline{\boldsymbol{\eta}})$$

where

$$L(\boldsymbol{y}, \boldsymbol{\eta}) = \sum_{n,g} (-\lambda_{g,n} + y_{g,n} \log \lambda_{g,n}).$$

This approach is reasonable because removing the $-\log(y_{g,n}!)$ term inside the sum merely offsets the DIC values of all the models under comparison by the same constant.

A Derivations of the Full Conditionals

Recall:

- k(n) = treatment group of library n.
- $\lambda_{g,n} = \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n))$
- G_{α} = number of genes for which $\alpha_q \neq 0$
- G_{δ} = number of genes for which $\delta_g \neq 0$

Then from the model in Section 2, we get:

$$\begin{split} p(\nu \mid \cdots) &\propto \left[\prod_{g=1}^{G} \operatorname{Inv-Gamma} \left(\gamma_{g}^{2} \mid \operatorname{shape} = \frac{\nu}{2} , \operatorname{scale} = \frac{\nu\tau^{2}}{2} \right) \right] \cdot \operatorname{U}(\nu \mid 0, d) \\ p(\rho_{n} \mid \cdots) &\propto \left[\prod_{g=1}^{G} \operatorname{Poisson}(y_{g,n} \mid \exp(\rho_{n} + \varepsilon_{g,n} + \eta(g,n))) \right] \cdot \operatorname{N}(\rho_{n} \mid 0, \sigma_{\rho}^{2}) \\ p(\phi_{g} \mid \cdots) &\propto \left[\prod_{n=1}^{N} \operatorname{Poisson}(y_{g,n} \mid \exp(\rho_{n} + \varepsilon_{g,n} + \eta(g,n))) \right] \cdot \operatorname{N}(\phi_{g} \mid \theta_{\phi}, \sigma_{\phi}^{2}) \\ p(\alpha_{g} \mid \cdots) &\propto \left[\prod_{k(n) \neq 2} \operatorname{Poisson}(y_{g,n} \mid \exp(\rho_{n} + \varepsilon_{g,n} + \eta(g,n))) \right] \cdot \operatorname{N}(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2}) \\ p(\delta_{g} \mid \cdots) &\propto \left[\prod_{k(n) = 2} \operatorname{Poisson}(y_{g,n} \mid \exp(\rho_{n} + \varepsilon_{g,n} + \eta(g,n))) \right] \cdot \operatorname{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2}) \\ p(\varepsilon_{g,n} \mid \cdots) &\propto \operatorname{Poisson}(y_{g,n} \mid \exp(\rho_{n} + \varepsilon_{g,n} + \eta(g,n))) \cdot \operatorname{N}(\varepsilon_{g,n} \mid 0, \gamma_{g}^{2}) \end{split}$$

$$\begin{split} p\left(\sigma_{\rho}\mid\cdots\right) &= \left[\prod_{n=1}^{N}\mathrm{N}(\rho_{n}\mid0,\sigma_{\rho}^{2})\right]\cdot\mathrm{U}(\sigma_{\rho}\mid0,s_{\rho}) \\ p\left(\gamma_{g}^{2}\mid\cdots\right) \propto \left[\prod_{n=1}^{N}\mathrm{N}(\varepsilon_{g,n}\mid0,\gamma_{g}^{2})\right]\cdot\mathrm{Inv\text{-}Gamma}\left(\gamma_{g}^{2}\mid\mathrm{shape} = \frac{\nu}{2}\;,\mathrm{scale} = \frac{\nu\tau^{2}}{2}\right) \\ p\left(\tau^{2}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{Inv\text{-}Gamma}\left(\gamma_{g}^{2}\mid\mathrm{shape} = \frac{\nu}{2}\;,\mathrm{scale} = \frac{\nu\tau^{2}}{2}\right)\right]\cdot\mathrm{Gamma}(\tau^{2}\mid\mathrm{shape} = a,\mathrm{rate} = b) \\ p\left(\theta_{\phi}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\phi_{g}\mid\theta_{\phi},\sigma_{\phi}^{2})\right]\cdot\mathrm{N}(\theta_{\phi}\mid0,c_{\phi}^{2}) \\ p\left(\theta_{\alpha}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\alpha_{g}\mid\theta_{\alpha},\sigma_{\alpha}^{2})\right]\cdot\mathrm{N}(\theta_{\alpha}\mid0,c_{\alpha}^{2}) \\ p\left(\theta_{\delta}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\delta_{g}\mid\theta_{\delta},\sigma_{\delta}^{2})\right]\cdot\mathrm{N}(\theta_{\delta}\mid0,c_{\delta}^{2}) \\ p\left(\sigma_{\phi}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\phi_{g}\mid\theta_{\phi},\sigma_{\phi}^{2})\right]\cdot\mathrm{U}(\sigma_{\phi}\mid0,s_{\phi}) \\ p\left(\sigma_{\alpha}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\alpha_{g}\mid\theta_{\alpha},\sigma_{\alpha}^{2})\right]\cdot\mathrm{U}(\sigma_{\alpha}\mid0,s_{\alpha}) \\ p\left(\sigma_{\delta}\mid\cdots\right) \propto \left[\prod_{g=1}^{G}\mathrm{N}(\delta_{g}\mid\theta_{\delta},\sigma_{\delta}^{2})\right]\cdot\mathrm{U}(\sigma_{\delta}\mid0,s_{\delta}) \end{split}$$

A.1 Transformations of Standard Deviations

Let σ be a standard deviation parameter and let $p(\sigma \mid \cdots)$ be its full conditional distribution. Then, by a transformation of variables,

$$p(\sigma^2 \mid \cdots) = p(\sqrt{\sigma^2} \mid \cdots) \cdot \left| \frac{d}{d\sigma^2} \sqrt{\sigma^2} \right|$$
$$= p(\sigma \mid \cdots) \frac{1}{2} (\sigma^2)^{-1/2}$$

I use this transformation several times in the next sections.

A.2 $p(\nu \mid \cdots)$: Metropolis

$$\begin{split} p(\nu \mid \cdots) &= \left[\prod_{g=1}^G \text{Inv-Gamma} \left(\gamma_g^2 \mid \text{shape} = \frac{\nu}{2}, \text{ scale} = \frac{\nu \tau^2}{2} \right) \right] \cdot \text{U}(\nu \mid 0, d) \\ &= \prod_{g=1}^G \left[\Gamma \left(\nu/2 \right)^{-1} \left(\frac{\nu \tau^2}{2} \right)^{\nu/2} \left(\gamma_g^2 \right)^{-(\nu/2+1)} \exp \left(-\frac{1}{\gamma_g^2} \frac{\nu \tau^2}{2} \right) \right] I(0 < \nu < d) \\ &= \Gamma \left(\nu/2 \right)^{-G} \left(\frac{\nu \tau^2}{2} \right)^{G\nu/2} \left(\prod_{g=1}^G \gamma_g^2 \right)^{-(\nu/2+1)} \exp \left(-\frac{\nu \tau^2}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) I(0 < \nu < d) \\ &\propto \Gamma \left(\nu/2 \right)^{-G} \left(\frac{\nu \tau^2}{2} \right)^{G\nu/2} \left(\prod_{g=1}^G \gamma_g^2 \right)^{-\nu/2} \exp \left(-\frac{\nu \tau^2}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) I(0 < \nu < d) \\ &= \exp \left(-G \log \Gamma (\nu/2) + \frac{G\nu}{2} \log \left(\frac{\nu \tau^2}{2} \right) - \nu \sum_{g=1}^G \log \gamma_g - \frac{\nu \tau^2}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) \\ &\times I(0 < \nu < d) \\ &= \exp \left(-G \log \Gamma (\nu/2) + \frac{G\nu}{2} \log \left(\frac{\nu \tau^2}{2} \right) - \nu \sum_{g=1}^G \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2} \right] \right) \\ &\times I(0 < \nu < d) \\ &= \exp \left(-G \log \Gamma (\nu/2) + \frac{G\nu}{2} \log \left(\frac{\nu \tau^2}{2} \right) - G\nu \frac{1}{G} \sum_{g=1}^G \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2} \right] \right) \\ &\times I(0 < \nu < d) \\ &= \exp \left(-\log \Gamma (\nu/2) + \frac{\nu}{2} \log \left(\frac{\nu \tau^2}{2} \right) - \nu \frac{1}{G} \sum_{g=1}^G \left[\log \gamma_g + \frac{\tau^2}{2} \frac{1}{\gamma_g^2} \right] \right)^G \\ &\times I(0 < \nu < d) \end{split}$$

A.3 $p(\rho_n \mid \cdots)$: Metropolis

$$\begin{split} p(\rho_n \mid \cdots) &\propto \left[\prod_{g=1}^G \operatorname{Poisson}(y_{g,n} \mid \lambda_{g,n}) \right] \cdot \operatorname{N}(\rho_n \mid 0, \sigma_\rho^2) \\ &\propto \left[\prod_{g=1}^G \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \right] \exp\left(-\frac{\rho_n^2}{2\sigma_\rho^2}\right) \\ &= \exp\left(\sum_{g=1}^G \left[y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} \right] - \frac{\rho_n^2}{2\sigma_\rho^2} \right) \\ &= \exp\left(\sum_{g=1}^G \left[y_{g,n} (\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] - \frac{\rho_n^2}{2\sigma_\rho^2} \right) \\ &= \exp\left(\rho_n G \overline{y}_{,n} + \sum_{g=1}^G \left[y_{g,n} (\varepsilon_{g,n} + \eta(g,n)) - \sum_{g=1}^G \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \frac{\rho_n^2}{2\sigma_\rho^2} \right) \right. \\ &\propto \exp\left(\rho_n G \overline{y}_{,n} - \exp(\rho_n) \sum_{g=1}^G \exp(\varepsilon_{g,n} + \eta(g,n)) - \frac{\rho_n^2}{2\sigma_\rho^2} \right) \\ &\propto \exp\left(\rho_n G \overline{y}_{,n} - \frac{\rho_n^2}{2\sigma_\rho^2} - \exp(\rho_n) \sum_{g=1}^G \exp(\varepsilon_{g,n} + \eta(g,n)) \right) \end{split}$$

A.4 $p(\varepsilon_{g,n} \mid \cdots)$ Metropolis

$$\begin{split} p(\varepsilon_{g,n} \mid \cdots) &= \operatorname{Poisson}(y_{g,n} \mid \lambda_{g,n}) \cdot \operatorname{N}(\varepsilon_{g,n} \mid 0, \gamma_g^2) \\ &\propto \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \exp\left(-\frac{\varepsilon_{g,n}^2}{2\gamma_g^2}\right) \\ &= \exp\left(y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} - \frac{\varepsilon_{g,n}^2}{2\gamma_g^2}\right) \\ &= \exp\left(y_{g,n}(\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \frac{\varepsilon_{g,n}^2}{2\gamma_g^2}\right) \\ &= \exp\left(y_{g,n}\varepsilon_{g,n} - \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \frac{\varepsilon_{g,n}^2}{2\gamma_g^2}\right) \\ &= \exp\left(y_{g,n}\varepsilon_{g,n} - \frac{\varepsilon_{g,n}^2}{2\gamma_g^2} - \exp(\varepsilon_{g,n}) \exp(\rho_n + \eta(g,n))\right) \end{split}$$

A.5 $p(\phi_g \mid \cdots)$: Metropolis

$$\begin{split} p(\phi_g \mid \cdots) &= \left[\prod_{n=1}^N \operatorname{Poisson}(y_{g,n} \mid \lambda_{g,n}) \right] \cdot \operatorname{N}(\phi_g \mid \theta_\phi, \sigma_\phi^2) \\ &\propto \left[\prod_{n=1}^N \lambda_{g,n}^{y_{g,n}} \exp(-\lambda_{g,n}) \right] \cdot \exp\left(-\frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right) \\ &= \exp\left(\sum_{n=1}^N \left[y_{g,n} \log \lambda_{g,n} - \lambda_{g,n} \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right) \\ &= \exp\left(\sum_{n=1}^N \left[y_{g,n} (\rho_n + \varepsilon_{g,n} + \eta(g,n)) - \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right) \\ &\propto \exp\left(\sum_{n=1}^N \left[y_{g,n} \eta(g,n) - \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right) \\ &\propto \exp\left(\sum_{n=1}^N \left[y_{g,n} \eta(g,n) \right] - \sum_{n=1}^N \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} \right) \\ &= \exp\left(\sum_{n=1}^N \left[y_{g,n} \eta(g,n) \right] - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} - \sum_{n=1}^N \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] \right) \end{split}$$

and

$$\begin{split} \sum_{n=1}^{N} \left[y_{g,n} \eta(g,n) \right] &= \sum_{k(n)=1} \left[y_{g,n} \eta(g,n) \right] + \sum_{k(n)=2} \left[y_{g,n} \eta(g,n) \right] + \sum_{k(n)=3} \left[y_{g,n} \eta(g,n) \right] \\ &= \sum_{k(n)=1} \left[y_{g,n} (\phi_g - \alpha_g) \right] + \sum_{k(n)=2} \left[y_{g,n} (\phi_g + \delta_g) \right] + \sum_{k(n)=3} \left[y_{g,n} (\phi_g + \alpha_g) \right] \\ &= \phi_g N \overline{y}_{g.} + \text{ constant} \end{split}$$

and

$$\begin{split} \sum_{n=1}^{N} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] &= \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] + \sum_{k(n)=2} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] \\ &+ \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] \\ &= \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n} + \phi_g - \alpha_g) \right] + \sum_{k(n)=2} \left[\exp(\rho_n + \varepsilon_{g,n} + \phi_g + \delta_g) \right] \\ &+ \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n} + \phi_g + \alpha_g) \right] \\ &= \exp(\phi_g) \left[\sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n} - \alpha_g) \right] + \sum_{k(n)=2} \left[\exp(\rho_n + \varepsilon_{g,n} + \delta_g) \right] \right] \\ &+ \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n} + \alpha_g) \right] \right] \\ &= \exp(\phi_g) \left[\exp(-\alpha_g) \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] + \exp(\delta_g) \sum_{k(n)=2} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] \right] \end{split}$$

so

$$p(\phi_g \mid \cdots) \propto \exp\left(\phi_g N \overline{y}_{g.} - \frac{(\phi_g - \theta_\phi)^2}{2\sigma_\phi^2} - \exp(\phi_g) \left[\exp(-\alpha_g) \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] \right] \exp(\delta_g) \sum_{k(n)=2} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] + \exp(\alpha_g) \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] \right]$$

A.6 $p(\alpha_q \mid \cdots)$: Metropolis

Similar to ϕ_g ,

$$p(\alpha_g \mid \cdots) \propto \exp\left(\sum_{k(n)\neq 2} [y_{g,n}\eta(g,n)] - \frac{(\alpha_g - \theta_\alpha)^2}{2\sigma_\alpha^2} - \sum_{k(n)\neq 2} [\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n))]\right)$$

and

$$\begin{split} \sum_{k(n) \neq 2} \left[y_{g,n} \eta(g,n) \right] &= \sum_{k(n) = 1} \left[y_{g,n} \eta(g,n) \right] + \sum_{k(n) = 3} \left[y_{g,n} \eta(g,n) \right] \\ &= \sum_{k(n) = 1} \left[y_{g,n} (\phi_g - \alpha_g) \right] + \sum_{k(n) = 3} \left[y_{g,n} (\phi_g + \alpha_g) \right] \\ &= \alpha_g \left(\sum_{k(n) = 3} y_{g,n} - \sum_{k(n) = 1} y_{g,n} \right) + \text{ constant} \end{split}$$

and

$$\sum_{k(n)\neq 2} \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) = \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right] + \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) \right]$$

$$= \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n} + \phi_g - \alpha_g) \right] + \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n} + \phi_g + \alpha_g) \right]$$

$$= \exp(-\alpha_g) \exp(\phi_g) \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n}) \right] + \exp(\alpha_g) \exp(\phi_g) \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n}) \right]$$

so

$$p(\alpha_g \mid \cdots) \propto \exp\left(\alpha_g \left(\sum_{k(n)=3} y_{g,n} - \sum_{k(n)=1} y_{g,n}\right) - \frac{(\alpha_g - \theta_\alpha)^2}{2\sigma_\alpha^2} - \exp(-\alpha_g) \exp(\phi_g) \sum_{k(n)=1} \left[\exp(\rho_n + \varepsilon_{g,n})\right] - \exp(\alpha_g) \exp(\phi_g) \sum_{k(n)=3} \left[\exp(\rho_n + \varepsilon_{g,n})\right]\right)$$

A.7 $p(\delta_g \mid \cdots)$: Metropolis

Similar to ϕ_q ,

$$p(\delta_g \mid \cdots) \propto \exp\left(\sum_{k(n)=2} \left[y_{g,n}\eta(g,n)\right] - \frac{(\delta_g - \theta_\delta)^2}{2\sigma_\delta^2} - \sum_{k(n)\neq 2} \left[\exp(\rho_n + \varepsilon_{g,n} + \eta(g,n))\right]\right)$$

and

$$\begin{split} \sum_{k(n)=2} \left[y_{g,n} \eta(g,n) \right] &= \sum_{k(n)=2} \left[y_{g,n} (\phi_g + \delta_g) \right] \\ &= \delta_g \sum_{k(n)=2} y_{g,n} + \text{ constant} \end{split}$$

and

$$\sum_{k(n)\neq 2} \exp(\rho_n + \varepsilon_{g,n} + \eta(g,n)) = \sum_{k(n)\neq 2} \exp(\rho_n + \varepsilon_{g,n} + \phi_g + \delta_g)$$
$$= \exp(\delta_g) \exp(\phi_g) \sum_{k(n)\neq 2} \exp(\rho_n + \varepsilon_{g,n})$$

so

$$p(\delta_g \mid \cdots) \propto \exp\left(\delta_g \sum_{k(n)=2} y_{g,n} - \frac{(\delta_g - \theta_\delta)^2}{2\sigma_\delta^2} - \exp(\delta_g) \exp(\phi_g) \sum_{k(n)\neq 2} \exp(\rho_n + \varepsilon_{g,n})\right)$$

A.8 $p(\theta_{\phi} \mid \cdots)$: Normal

$$\begin{split} p(\theta_{\phi} \mid \cdots) &= \left[\prod_{g=1}^{G} \mathcal{N}(\phi_{g} \mid \theta_{\phi}, \sigma_{\phi}^{2}) \right] \cdot \mathcal{N}(\theta_{\phi} \mid 0, c_{\phi}^{2}) \\ &\propto \left[\prod_{g=1}^{G} \exp\left(-\frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \right] \exp\left(-\frac{\theta_{\phi}^{2}}{2c_{\phi}^{2}}\right) \\ &= \exp\left(-\sum_{g=1}^{G} \frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \exp\left(-\frac{\theta_{\phi}^{2}}{2c_{\phi}^{2}}\right) \\ &= \exp\left(-\frac{\sum_{g=1}^{G} \phi_{g}^{2} - 2\theta_{\phi} \sum_{g=1}^{G} \phi_{g} + G\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}}\right) \exp\left(-\frac{\theta_{\phi}^{2}}{2c_{\phi}^{2}}\right) \\ &= \exp\left(-\frac{\sum_{g=1}^{G} \phi_{g}^{2} - 2\theta_{\phi} \sum_{g=1}^{G} \phi_{g} + G\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}c_{\phi}^{2}} - \frac{\theta_{\phi}^{2}}{2c_{\phi}^{2}}\right) \\ &= \exp\left(-\frac{c_{\phi}^{2} \sum_{g=1}^{G} \phi_{g}^{2} - 2c_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})\theta_{\phi} + Gc_{\phi}^{2}\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}c_{\phi}^{2}}\right) \\ &= \exp\left(-\frac{c_{\phi}^{2} \sum_{g=1}^{G} \phi_{g}^{2} - 2c_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})\theta_{\phi} + (Gc_{\phi}^{2} + \sigma_{\phi}^{2})\theta_{\phi}^{2}}{2\sigma_{\phi}^{2}c_{\phi}^{2}}\right) \\ &\propto \exp\left(-\frac{(Gc_{\phi}^{2} + \sigma_{\phi}^{2}) \left(\theta_{\phi} - \frac{c_{\phi}^{2} (\sum_{g=1}^{G} \phi_{g})}{Gc_{\phi}^{2} + \sigma_{\phi}^{2}}\right)^{2}}{2\sigma_{\phi}^{2}c_{\phi}^{2}}\right) \end{split}$$

Hence:

$$p(\theta_{\phi} \mid \cdots) = \mathcal{N}\left(\theta_{\phi} \mid \frac{c_{\phi}^2 \sum_{g=1}^G \phi_g}{Gc_{\phi}^2 + \sigma_{\phi}^2}, \frac{c_{\phi}^2 \sigma_{\phi}^2}{Gc_{\phi}^2 + \sigma_{\phi}^2}\right)$$

A.9 $p(\theta_{\alpha} \mid \cdots)$: Normal

$$p(\theta_{\alpha} \mid \cdots) \propto \left[\prod_{g=1}^{G} N(\alpha_{g} \mid \theta_{\alpha}, \sigma_{\alpha}^{2})] \right] \cdot N(\theta_{\alpha} \mid 0, c_{\alpha}^{2})$$

From algebra similar to the derivation of $p(\theta_{\phi} \mid \cdots)$,

$$p(\theta_{\alpha} \mid \cdots) = N \left(\theta_{\alpha} \mid \frac{c_{\alpha}^{2} \sum_{g=1}^{G} \alpha_{g}}{G_{\alpha} c_{\alpha}^{2} + \sigma_{\alpha}^{2}}, \frac{c_{\alpha}^{2} \sigma_{\alpha}^{2}}{G_{\alpha} c_{\alpha}^{2} + \sigma_{\alpha}^{2}} \right)$$

A.10 $p(\theta_{\delta} \mid \cdots)$: Normal

$$p(\theta_{\delta} \mid \cdots) \propto \left[\prod_{g=1}^{G} \mathrm{N}(\delta_{g} \mid \theta_{\delta}, \sigma_{\delta}^{2})] \right] \cdot \mathrm{N}(\theta_{\delta} \mid 0, c_{\delta}^{2})$$

From algebra similar to the derivation of $p(\theta_{\phi} \mid \cdots)$,

$$p(\theta_{\delta} \mid \cdots) = N\left(\theta_{\delta} \mid \frac{c_{\delta}^2 \sum_{g=1}^{G} \delta_g}{G_{\delta} c_{\delta}^2 + \sigma_{\delta}^2}, \frac{c_{\delta}^2 \sigma_{\delta}^2}{G_{\delta} c_{\delta}^2 + \sigma_{\delta}^2}\right)$$

A.11 $p(\tau^2 \mid \cdots)$: Gamma

$$\begin{split} p(\tau^2 \mid \cdots) &= \left[\prod_{g=1}^G \text{Inv-Gamma} \left(\gamma_g^2 \mid \text{shape} = \frac{\nu}{2}, \text{scale} = \frac{\nu \tau^2}{2} \right) \right] \cdot \text{Gamma}(\tau^2 \mid \text{shape} = a, \text{rate} = b) \\ &\propto \left[\Gamma \left(\nu/2 \right)^{-G} \left(\frac{\nu \tau^2}{2} \right)^{G\nu/2} \left(\prod_{g=1}^G \gamma_g^2 \right)^{-(\nu/2+1)} \exp \left(-\frac{\nu \tau^2}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) \right] \cdot (\tau^2)^{a-1} \exp \left(-b\tau^2 \right) \\ &\propto \left[\left(\tau^2 \right)^{G\nu/2} \exp \left(-\tau^2 \cdot \frac{\nu}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) \right] \cdot (\tau^2)^{a-1} \exp \left(-b\tau^2 \right) \\ &= (\tau^2)^{G\nu/2+a-1} \exp \left(-\tau^2 \left(b + \frac{\nu}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2} \right) \right) \end{split}$$

Hence:

$$p(\tau^2 \mid \cdots) = \text{Gamma}\left(\tau^2 \mid \text{shape} = a + \frac{G\nu}{2}, \text{ rate} = b + \frac{\nu}{2} \sum_{g=1}^G \frac{1}{\gamma_g^2}\right)$$

A.12
$$p\left(\frac{1}{\gamma_q^2}\mid\cdots\right)$$
 Gamma

$$\begin{split} p(\gamma_g^2 \mid \cdots) &= \left[\prod_{n=1}^N \mathrm{N}(\varepsilon_{g,n} \mid 0, \gamma_g^2) \right] \cdot \mathrm{Inv\text{-}Gamma} \left(\gamma_g^2 \mid \mathrm{shape} = \frac{\nu}{2}, \mathrm{scale} = \frac{\nu \tau^2}{2} \right) \\ &\propto \left[\prod_{n=1}^N (\gamma_g^2)^{-1/2} \exp \left(-\frac{1}{\gamma_g^2} \frac{\varepsilon_{g,n}^2}{2} \right) \right] \cdot \left(\gamma_g^2 \right)^{-(\nu/2+1)} \exp \left(-\frac{1}{\gamma_g^2} \frac{\nu \tau^2}{2} \right) \\ &= \left[(\gamma_g^2)^{-N/2} \exp \left(-\frac{1}{\gamma_g^2} \frac{1}{2} \sum_{n=1}^N \varepsilon_{g,n}^2 \right) \right] \cdot \left(\gamma_g^2 \right)^{-(\nu/2+1)} \exp \left(-\frac{1}{\gamma_g^2} \frac{\nu \tau^2}{2} \right) \\ &= (\gamma_g^2)^{-((N+\nu)/2+1)} \exp \left(-\frac{1}{\gamma_g^2} \frac{1}{2} \left(\nu \tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2 \right) \right) \end{split}$$

which is the kernel of an inverse gamma distribution. Hence:

$$p\left(\frac{1}{\gamma_g^2} \mid \cdots\right) = \text{Gamma}\left(\frac{1}{\gamma_g^2} \mid \text{shape} = \frac{N+\nu}{2}, \text{ rate} = \frac{1}{2}\left(\nu\tau^2 + \sum_{n=1}^N \varepsilon_{g,n}^2\right)\right)$$

A.13 $p\left(\frac{1}{\sigma_{\rho}^2} \mid \cdots\right)$ Truncated Gamma

$$\begin{split} p(\sigma_{\rho}^2 \mid \cdots) &= p(\sigma_{\rho} \mid \cdots) \frac{1}{2} (\sigma_{\rho}^2)^{-1/2} \qquad \text{(transformation in Section A.1)} \\ &\propto \left[\prod_{n=1}^N \mathcal{N}(\rho_n \mid 0, \sigma_{\rho}^2) \right] \cdot \mathcal{U}(\sigma_{\rho} \mid 0, s_{\rho}) \frac{1}{2} (\sigma_{\rho}^2)^{-1/2} \\ &\propto \prod_{n=1}^N \left[\frac{1}{\sqrt{\sigma_{\rho}^2}} \exp\left(-\frac{\rho_n^2}{2\sigma_{\rho}^2}\right) \right] \cdot \mathcal{I}(0 < \sigma_{\rho} < s_{\rho}) (\sigma_{\rho}^2)^{-1/2} \\ &= (\sigma_{\rho}^2)^{-N/2} \exp\left(-\frac{1}{\sigma_{\rho}^2} \frac{1}{2} \sum_{n=1}^N \rho_n^2\right) \cdot \mathcal{I}(0 < \sigma_{\rho} < s_{\rho}) (\sigma_{\rho}^2)^{-1/2} \\ &= (\sigma_{\rho}^2)^{-(N/2-1/2+1)} \exp\left(-\frac{1}{\sigma_{\rho}^2} \frac{1}{2} \sum_{n=1}^N \rho_n^2\right) \cdot \mathcal{I}(0 < \sigma_{\rho} < s_{\rho}) \end{split}$$

which is the kernel of a truncated inverse gamma distribution. Hence:

$$p\left(\frac{1}{\sigma_{\rho}^2}\mid \cdots\right) = \operatorname{Gamma}\left(\frac{1}{\sigma_{\rho}^2}\mid \operatorname{shape} = \frac{N-1}{2}, \ \operatorname{rate} = \frac{1}{2}\sum_{n=1}^N \rho_n^2\right) I\left(\frac{1}{\sigma_{\rho}^2} > \frac{1}{s_{\rho}^2}\right)$$

A.14 $p\left(\frac{1}{\sigma_{\phi}^2} \mid \ldots\right)$: Truncated Gamma

$$\begin{split} p(\sigma_{\phi}^{2} \mid \cdots) &= p(\sigma_{\phi} \mid \cdots) \frac{1}{2} (\sigma_{\phi}^{2})^{-1/2} & \text{(transformation in Section A.1)} \\ &\propto \left[\prod_{g=1}^{G} \mathcal{N}(\phi_{g} \mid \theta_{\phi}, \sigma_{\phi}^{2}) \right] \cdot \mathcal{U}(\sigma_{\phi} \mid 0, s_{\phi}) (\sigma_{\phi}^{2})^{-1/2} \\ &\propto \left[\prod_{g=1}^{G} (\sigma_{\phi}^{2})^{-1/2} \exp\left(-\frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \right] \mathcal{I}(0 < \sigma_{\phi}^{2} < s_{\phi}^{2}) (\sigma_{\phi}^{2})^{-1/2} \\ &= (\sigma_{\phi}^{2})^{-G/2} \exp\left(-\sum_{g=1}^{G} \frac{(\phi_{g} - \theta_{\phi})^{2}}{2\sigma_{\phi}^{2}}\right) \mathcal{I}(0 < \sigma_{\phi}^{2} < s_{\phi}^{2}) (\sigma_{\phi}^{2})^{-1/2} \\ &= (\sigma_{\phi}^{2})^{-(G/2-1/2+1)} \exp\left(-\frac{1}{\sigma_{\phi}^{2}} \frac{1}{2} \sum_{g=1}^{G} (\phi_{g} - \theta_{\phi})^{2}\right) \mathcal{I}(0 < \sigma_{\phi}^{2} < s_{\phi}^{2}) \end{split}$$

which is the kernel of a truncated inverse gamma distribution. Hence:

$$p\left(\frac{1}{\sigma_{\phi}^{2}} \mid \cdots\right) = \operatorname{Gamma}\left(\operatorname{shape} = \frac{G-1}{2}, \text{ rate} = \frac{1}{2}\sum_{g=1}^{G}(\phi_{g} - \theta_{\phi})^{2}\right) \operatorname{I}\left(\frac{1}{\sigma_{\phi}^{2}} > \frac{1}{s_{\phi}^{2}}\right)$$

A.15 $p\left(\frac{1}{\sigma_{\alpha}^2} \mid \cdots\right)$: Truncated Gamma

Analogously to σ_{ϕ} ,

$$p\left(\frac{1}{\sigma_{\alpha}^{2}} \mid \cdots\right) = \operatorname{Gamma}\left(\operatorname{shape} = \frac{G-1}{2}, \text{ rate} = \frac{1}{2}\sum_{g=1}^{G}(\alpha_{g} - \theta_{\alpha})^{2}\right)\operatorname{I}\left(\frac{1}{\sigma_{\alpha}^{2}} > \frac{1}{s_{\alpha}^{2}}\right)$$

A.16 $p\left(\frac{1}{\sigma_{\delta}^2} \mid \cdots\right)$: Truncated Gamma

Analogously to σ_{ϕ}

$$p\left(\frac{1}{\sigma_{\delta}^2} \mid \cdots\right) = \operatorname{Gamma}\left(\operatorname{shape} = \frac{G-1}{2}, \text{ rate} = \frac{1}{2}\sum_{g=1}^G (\delta_g - \theta_{\delta})^2\right) \operatorname{I}\left(\frac{1}{\sigma_{\delta}^2} > \frac{1}{s_{\delta}^2}\right)$$