Lineaire Algebra en differentiaalvergelijkingen

College 1: Determinanten

J. Vermeer Les 1

Faculteit EWI

Standaard kennis en §4.2

De volgende paragrafen uit Poole worden bekend verondersteld.

- §1.1 §1.2; en §2.1 §2.2 §2.3;
- §3.1 §3.2 §3.3 §3.5; en §5.1

Stelling 3.8. Als $A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$ dan: A is inverteerbaar als en

slechts als $ad - bc \neq 0$. Er geldt:

$$A^{-1} = \frac{1}{ad - bc} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right]$$

Het getal ad - bc heet de determinant van A.

Notatie:
$$det(A)$$
 of $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$.

L ac 1

TUDelft

§4.1 Eigenwaarden en eigenvectoren

Definitie Laat A een $n \times n$ matrix zijn.

- 1. De vector $\mathbf{v} \in \mathbb{R}^n$ heet een eigenvector van A als $\mathbf{v} \neq \mathbf{0}$ en er bestaat $\lambda \in \mathbb{R}$ zodat $A\mathbf{v} = \lambda \mathbf{v}$
- 2. Dan heet λ een eigenwaarde van A.
- 3. Dus λ is eigenwaarde van $A \Leftrightarrow \text{er is } \mathbf{v} \neq \mathbf{0} \text{ met } A\mathbf{v} = \lambda \mathbf{v}$.
- 4. Doel: gegeven een matrix A eigenwaarden en eigenvectoren te vinden.

Voorbeelden:

Definitie Laat λ een eigenwaarde van A zijn. De eigenruimte $E_{\lambda} \subset \mathbb{R}^n$ is de verzameling:

$$E_{\lambda} = \{ \mathbf{v} \in \mathbb{R}^n | A\mathbf{v} = \lambda \mathbf{v} \}.$$

Faculteit EWI

Ondermatrices

Beschouw de $n \times n$ matrix $A = [a_{i,j}]_{i=1...n}^{j=1...n}$ of:

$$A = \begin{bmatrix} a_{1,1} & \dots & a_{1,j} & \dots & a_{1,n} \\ \vdots & & \vdots & & \vdots \\ a_{i,1} & \dots & a_{i,j} & \dots & a_{i,n} \\ \vdots & & \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,j} & \dots & a_{n,n} \end{bmatrix}$$

Definitie: De i, j^{de} ondermatrix $A_{i,j}$ van A is de matrix uit Averkregen door de i^{de} rij en de j^{de} kolom weg te laten.

Voorbeeld: Als
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \operatorname{dan} A_{2,1} = ?? \operatorname{en} A_{3,2} = ??. \ \Box$$

TUDelft

Determinanten

Definitie Laat A een 3×3 matrix zijn. Dan:

$$\det(A) = a_{1,1} \det(A_{1,1}) - a_{1,2} \det(A_{1,2}) + a_{1,3} \det(A_{1,3})$$

Voorbeeld: Bepaal $\left| \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right|$. Evenzo voor een 4×4 matrix:

 $t(A) = a_{1,1} \det(A_{1,1}) - a_{1,2} \det(A_{1,2}) + a_{1,3} \det(A_{1,3}) - a_{1,4} \det(A_{1,4})$

Definitie Laat A een $n \times n$ matrix zijn. Dan:

$$\det(A) = a_{1,1} \det(A_{1,1}) - a_{1,2} \det(A_{1,2}) + a_{1,3} \det(A_{1,3}) - + \dots = \sum_{k=1}^{n} (-1)^{1+k} a_{1,k} \det(A_{1,k})$$

Dit heet: "berekenen van $\det(A)$ door Laplace ontwikkeling naar de eerste rij van A.

Les 1

Faculteit EWI

Laplace ontwikkeling naar de i^{de} rij van A

Beschouw de i^{de} rij van een $n \times n$ matrix.

$$A = \left[\begin{array}{cccc} \cdot & \cdot & \cdot & \cdot \\ a_{i,1} & a_{i,2} & \dots & a_{i,n} \\ \cdot & \cdot & \cdot & \cdot \end{array} \right].$$

Stelling:
$$\det(A) = (-1)^{i+1} a_{i,1} \det(A_{i,1}) + (-1)^{i+2} a_{i,2} \det(A_{i,2}) + \dots + (-1)^{i+n} a_{i,n} \det(A_{i,n})$$

Dus $\det(A) = \sum_{k=1}^n (-1)^{i+k} a_{i,k} A_{i,k}$. Dit heet de ontwikkeling

naar de i^{de} rij.

Bepaal opnieuw $\left| \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right|$, nu door ontwikkelen naar de tweede

Liels 1

Laplace ontwikkeling naar de j^{de} kolom van A

$$\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & a_{n,j} & \cdot \end{bmatrix}$$

Stelling:
$$\det(A) = (-1)^{1+j} a_{1,j} \det(A_{1,j}) + (-1)^{2+j} a_{2,j} \det(A_{2,j}) + \dots + (-1)^{n+j} a_{n,j} \det(A_{n,j}) = \sum_{k=1}^{n} (-1)^{k+j} a_{k,j} \det(A_{k,j})$$

Let bij het ontwikkelen op, op het schaakbord patroon

$$\begin{bmatrix} + & - & + & \dots \\ - & + & - & \dots \end{bmatrix}.$$

Faculteit EWI

Voorbeelden

Bepaal opnieuw $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 0 \end{bmatrix}$, nu door ontwikkelen naar de

tweede kolom.

Bepaal $\left| egin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & -2 & -2 & 1 \\ 2 & 1 & 0 & 5 \end{array} \right|$ door ontwikkelen naar welke rij of ko-

lom? I.h.a. is het bij matrix met weinig of geen nullen veel werk om de determinant te bepalen. Bij onderdriehoeksmatrices en bij bovendrieohoeksmatrices is het makkelijk de determinant te bepalen.

Faculteit EWI

Determinanten en vegen

Stelling: Laat A een $n \times n$ matrix zijn. Stel B uit A verkregen door:

- Verwisseling van rijen, dan det(B) = -det(A).
- één rij van A met k te vermenigvuldigen, dan det(B) = k det(A).
- $k \times$ ene rij bij andere rij op te tellen, dan det(B) = det(A).

De manier om de determinant van een matrix te bepalen: een combinatie van vegen en ontwikkelen.

Les 1

Faculteit EWI

TUDelft

Eigenschappen determinanten

Stelling: Laat A en B vierkante $n \times n$ matrices zijn. Dan geldt:

- 1. det(AB) = det(A) det(B).
- 2. $\det(A+B) = ????$.
- 3. $\det(kA) = k^n \det(A)$.
- 4. $\det(A^T) = \det(A)$.

Stelling: Laat A een vierkante $n \times n$ matriix zijn. Dan geldt:

- 1. A is inverteerbaar $\Leftrightarrow \det(A) \neq 0$.
- 2. Als $det(A) \neq 0$ dan $det(A^{-1}) = \frac{1}{det(A)}$

 \Box

Les 1

10

Faculteit EWI

Regel van Cramer

Definitie: Laat A een $n \times n$ matrix zijn en $\mathbf{b} \in \mathbb{R}^n$. Dan: $A_i(\mathbf{b})$ is de matrix A met de i^{de} kolom vervangen door de vector \mathbf{b} . Stelling: De lineaire vergelijking $A\mathbf{x} = \mathbf{b}$, met A een inverteerbare matrix, heeft een unieke oplossing $\mathbf{x} = A^{-1}\mathbf{b}$. Er geldt:

$$x_i = \frac{\det(A_i(\mathbf{b}))}{\det(A)}$$

Opmerking In de praktijk wordt de regel van Cramer niet meer gebruikt.

Les 1

Faculteit EWI

TUDelft

Formule voor de inverse matrix I

Definitie Laat A een $n \times n$ matrix zijn met $n \geq 2$.

- 1. De i, j^{de} minor van A is het getal $\det(A_{i,j})$.
- 2. De i, j^{de} cofactor $C_{i,j}$ van A is het getal $C_{i,j} = (-1)^{i+j} \det(A_{i,j})$.
- 3. De formule $\det(A) = \sum_{k=1}^{n} (-1)^{i+k} a_{i,k} \det(A_{i,k})$ wordt in het

boek als $\det(A) = \sum_{k=1}^n a_{i,k} C_{i,k}$ geschreven: "cofactor expansie langs i^{de} rij.

Les 1

2

TUDelft

Formule voor de inverse matrix II

Definitie Laat A een $n \times n$ matrix zijn met $n \geq 2$.

- 1. De matrix $[\det(A_{i,j}]_{i=1...n}^{j=1...n}$ heet de de minoren matrix van A
- 2. $C = [C_{i,j}]_{i=1...n}^{j=1...n}$ heet de cofactoren matrix van A
- 3. C^T heet de adjoint van A: adj(A).

Stelling: Als A een inverteerbare $n \times n$ met $n \ge 2$, dan geldt:

$$A^{-1} = \frac{1}{\det(A)} adjoint(A)$$

Les 1

Faculteit EWI

Aanbevolen opgaven

College 1	behandeld	aanbevolen opgaven
	§4.1	§1.2: 1-12
	§4.2	§4.2: zie schema

Les 1 14

Faculteit EWI

