Vitesse d'invasion pour un modèle de reproduction et dispersion

Augustin Lenormand Basile Bruneau

24 juin 2014

1 Grandes déviations d'une marche aléatoire

1

• Soit $\alpha < 1$ et λ_1, λ_2 dans \mathbb{R} .

$$\mathbb{E}(e^{(\alpha\lambda_1 + (1-\alpha)\lambda_2)X}) = \mathbb{E}((e^{\lambda_1 X})^{\alpha}(e^{\lambda_2 X})^{1-\alpha} \\ \leq (\mathbb{E}(e^{\lambda_1 X}))^{\alpha}(\mathbb{E}(e^{\lambda_2 X}))^{1-\alpha}$$

Ici la dernière inégalité viens de l'inégalité de Hölder. En passant au logarithme il viens donc naturellement :

$$\Lambda((\alpha\lambda_1 + (1 - \alpha)\lambda_2)X) \leqslant \alpha\Lambda(\lambda_1 X) + (1 - \alpha)\Lambda(\lambda_2 X)$$

Donc Λ est convexe.

• De même les fonctions f_{λ} telles que $f_{\lambda}(x) = \lambda x - \Lambda(\lambda)$ sont toutes convexes. Donc par définition leurs épigraphes sont convexes.

Or l'épigraphe du supremum pour λ dans $\mathbb R$ de ces fonctions est l'intersection des épigraphes de toutes ces fonctions. Comme intersection d'ensemble convexes , il est donc convexe lui aussi. Donc l'épigraphe de Ψ est convexe.

Donc Ψ est convexe.

• $\Lambda(0) = 0 \text{ donc}$:

$$\forall x \in \mathbb{R}, \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda(\lambda)) \geqslant 0x - \Lambda(0) = 0$$

 $\frac{\text{Donc } \Psi \geqslant 0.}{\text{Soit } \lambda \text{ dans } \mathbb{R}.}$

$$e^{f_{\lambda}(m)} = \frac{e^{\lambda \mathbb{E}(X)}}{\mathbb{E}(e^{\lambda X})}$$

Or la fonction $x\mapsto \mathrm{e}^{\lambda x}$ est convexe, donc d'après l'inégalité de Jensen, $\mathrm{e}^{\lambda\mathbb{E}(X)}\leqslant \mathbb{E}(\mathrm{e}^{\lambda X})$. Ainsi $\mathrm{e}^{f_{\lambda}(m))}\leqslant 1$ et $\lambda\mathbb{E}(X)-\Lambda(\lambda)\leqslant 0$.

Donc $\Psi(\mathbb{E}(X)) \leq 0$. Or $\Psi \geq 0$.

Donc Ψ admet un minimum en m et $\Psi(m) = 0$.

• Soit $x \ge m$ et $\lambda < 0$. Alors on peut écrire :

$$\begin{split} \lambda x - \Lambda(\lambda) &\leqslant \lambda m - \Lambda(\lambda) = 0 \\ \lambda x - \Lambda(\lambda) &\leqslant 0 \leqslant \sup_{\lambda \in \mathbb{R}} (\lambda x - \Lambda(\lambda)) \end{split}$$

Donc prendre le supremum des f_λ pour $\lambda \geqslant 0$ est suffisant pour définir Ψ