Set Intersection with Minimal Support The SIMS-Problem

By Jonas Seiler and Cecilia Knäbchen

1. Problem definition

Given a number $n \in \mathbb{N}$, find the minimal number $k \in \mathbb{N}$ such that there are n sets $A_1,...,A_n$ containing numbers in [k], i.e $A_i \subseteq \{1,...,k\}$ satisfying:

$$|A_i \cap A_j| = |i - j|$$
 for all $1 \le i < j \le n$

For example, for n = 4, the answer would be k = 5, with which we could pick the 4 sets as:

You can try to find sets which only use the numbers 1 to 4 but will hopefully be convinced that k = 5 is optimal.

2. Best known bounds

In the following table, we record our best known values for k.

	optimal value with	optimal value with LP						
n	combinatorial solver	solver						
0	0	0						
1	0	0						
2	1	1						
3	2	2						
4	5	5						
5	9	9						
6	16	16						
7	24	24						
8		36						
9		50						
10		70						
11		91						
12		120						
13		150						
14		189						
15		231						
16		280						
17		336						
18		398						
19		468						
20		547						
21		630						
22		728						
23		≤ 827						
24		≤ 944						
25		≤ 1064						
26		≤ 1198						
27		≤ 1341						
28		≤ 1493						
29		≤ 1661						
30		≤ 1838						
31		≤ 2027						
32		≤ 2232						
33		≤ 2442						
34		≤ 2680						
35		≤ 2918						
36		≤ 3179						

Our strategy in solving this problem combinatorically will be explained in Section 5. Our formulation of this problem as an (I-)LP will be explained in Section 6

3. Upper Bounds

Our current best upper bound comes from an explicit construction. This bound is not tight, there are more optimal solutions starting from n = 6, but we have not yet been able to derive a pattern out of those.

Our construction works as follows:

For each set-distance $i \in \{1, ..., n-1\}$, and for each coset representative $a \in \{0, ..., i-1\}$, if there are at least 2 two set indices $b, c \in \{1, ..., n\}$ with $b \mod i = c \mod i = a$, i.e. they lie in the same coset, then define $\varphi(i)$ new unused numbers to add to all sets with indices in that coset and increase k by $\varphi(i)$, the number of newly added and used numbers.

For example, for n = 6, this constructions yields the following:

	i=1 i	=2			i	=3				i	=4			i	=5	
A1:	1 2		4	5					10	11			14	15	16	17
A2:	1	3			6	7					12	13				
Αз:	1 2						8	9								
A4:	1	3	4	5												
A ₅ :	1 2				6	7			10	11						
A6:	1	3					8	9			12	13	14	15	16	17

From this we can also see that this is not optimal, since for n = 6, there is a solution with k = 16.

```
EXPLICITCONSTRUCTION(n):
 1 \quad A_1, ..., A_n = \{\}
 2 \quad k = 0
 3 For i \in \{1, ..., n-1\}
       5
 6
               A_{a+ji} = A_{a+ji} \cup \{k+b\}
              End
 8
          \mathbf{End}
 9
          k + = \varphi(i)
10
11
       End
12
  \mathbf{End}
13 return A_1, ..., A_n
```

euler identity for $\sum_{d|n} \varphi(d) = n$

4. Lower Bounds

5. Combinatorial approach

6. Linear Programming approach