Smart usage of context information for the analysis, design and generation of power-aware policies for mobile sensing apps

Rafael Pérez Torres

Dr. César Torres Huitzil Dr. Hiram Galeana Zapién LTI Cinvestav

Doctoral seminar, 2017

Structure

Introduction

Problem statement

Objectives

Methodology

Solution

Introduction Background

Figure: The advances in the communication, computing and sensing dimensions of mobile devices contribute to their acceptance by society.

Background

- Smart devices, such as the smartphone, become popular after the advances on many of its components.
- The sensing dimension enables context-awareness in mobile device, for new interaction ways with users and enhanced operation.
- Battery advances are slower than those of other smartphone components [1], growing 5-10% yearly [2, 3].
- The energy constraint is critical when continuous access to sensors is needed, as in mobile sensing applications.

Introduction

Motivation

- For the sensing dimension, scientific efforts have been done for achieving the energy efficiency of the GPS location provider.
- The understanding of mobility could augment the location-awareness of the smartphone for many purposes, such as energy savings and the development of Mobility Based Services (MBS).
- As a high level of abstraction, mobility can be characterized as a sequence of frequently visited places (stay points).

Problem statement

• The understanding of mobility is possible at different spatial-temporal scales:

Fine-grain mobility patterns identification

- They refer to the transportation mode employed by user when moving between stay points.
- **3** Given a set of values $\mathcal{V} = \{v_{acc\ 1}, v_{acc\ 2}, \dots, v_{acc\ n}\}$ obtained from accelerometer in the time interval $[t_1, t_2]$, identify fine-grain mobility information:

FineGrainMobilityIdentifier(\mathcal{V}) $\rightarrow p_S \in \{\text{static, walking, biking, vehicle}\}$

with each $v_{acc,i} \in \mathcal{V}$ composed as $\langle acc_x, acc_y, acc_z, t \rangle$.

Coarse-grain mobility patterns identification

- They refer to motion at a large spatial scale related to user visiting stay points.
- Given a set of values $\mathcal{V} = \{v_{gps\ 1}, v_{gps\ 2}, \dots, v_{gps\ n}\}$ obtained from GPS location provider in time interval $[t_1, t_2]$, identify coarse-grain mobility information:

CoarseGrainMobilityIdentifier(V) $\rightarrow p_S \in \{\text{new stay point, arrival, departure}\}$

with each $v_{qps\ i} \in \mathcal{V}$ composed associated $\langle lat, lon, t \rangle$.

Hypothesis

Hypothesis

• The energy consumption of continuous and extended location tracking could be reduced by means of a cognitive dynamic system that learns an expanded spatial-time model from mobility events detected from sensors data and that employs such model in a cognitive controller for dynamically adapting GPS sampling rate through sampling policies tailored to current mobility state.

Objectives

Main objective

To reduce the energy consumption of mobile sensing apps, which perform continuous sensor sampling, through self-adapting power-aware policies generated from context information obtained from sensors data.

Particular objectives

- To detect mobility patterns from context information obtained from an inertial sensor (accelerometer) and location provider (GPS).
- To generate an accurate representation of detected patterns for summarizing user mobility.
- To dynamically adapt GPS sampling rate by means of a cognitive controller that employs the learned mobility representation and accuracy requirements for implementing power-aware sampling policies.
- To ease the development of mobile sensing applications that require user location tracking, i.e., LBSs and MBSs, isolating the complexity of sensors access and the associated efficient energy management.

Contributions

Contributions

- An on-device mobility patterns detector that works with streams of raw data collected by smartphone's sensors (GPS and accelerometer).
- An on-device mobility analyzer that incrementally builds a model of user mobility from the detected mobility patterns.
- A cognitive controller inspired on CDSs that, based on the mobility information learned, dynamically adapts GPS sampling rate through power-aware policies.
- A middleware with the previous modules embedded for easing the development of LBSs and MBSs for the Android mobile platform.

Methodology

Steps

- 1 Revision of state of the art power-aware sensing techniques.
- 2 Formal definition and selection of mobility patterns to be identified.
- Research on algorithms for detecting mobility patterns.
- 4 Design of the Mobility Events Detector.
- 5 Design of adaptive policies for energy efficient usage of sensors.
- 6 Design of the Cognitive Controller.
- Development of a middleware involving the Mobility Events Detector and the Cognitive Controller for the Android platform.
- 8 Experimentation in terms of spatial-time accuracy and energy efficiency.

Methodology

		2017					2018							
#	Activity	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
	l Integration of components													
1	Incorporation of the HAR module in the CC	•	•											
2	Incorporation of the accuracy requirement in the CC		•	•										
	II On-device implementation													
3	Implementation of sigmoid-driven sampling				•									
4	Watchdog mechanisms for Geofencing and													
4	Sampling Decision Maker modules				•									
5	Refinement of the list of candidate stay points													
,	employed by the Geofencing module				•	•								
	III Experimentation													
6	Experiments with larger													
0	and heterogeneous mobility						•	•	•					
7	Completion of evaluation framework					•	•	•						
8	Comparison with other solutions									•	•			
	IV Research work activities													
9	Thesis writing-review								•	•	•	•	•	
10	Thesis defense													•

Environment

10/13

References I

[1] Mikkel Kjaergaard.

Location-based services on mobile phones: Minimizing power consumption. *IEEE Pervasive Computing*, 11:67–73, 2012.

[2] Xiao Ma, Yong Cui, and Ivan Stojmenovic.

Energy efficiency on location based applications in mobile cloud computing: A survey. In *Procedia Computer Science*, volume 10, pages 577–584, 2012.

[3] Eric C. Evarts.

Lithium batteries: To the limits of lithium. Nature, 526(7575):S93-S95, oct 2015.

Detailed schedule

				2015			2016	
Work: • Done, • In progress, ∘ To be done			1st	2nd	3rd	1st	2nd	3rd
	Step I							
1	State-of-art reading	•	•					
2	State-of-art works categorization		•	•				
3	Documentation of information found (committee request)			•				
	Step II							
4	Development of a mobile app for accelerometer and location							
4	data collection			•	•			
5	Analysis of data				•			
6	Formal definition of mobility pattern				•			
7	Selection of mobility patterns				•	•		
	Step III							
8	Research on classification algorithms for mobility patterns				•	•		
9	Definition of metrics for evaluating algorithms					•		
10	Implementation of algorithms in mobile platform					•	•	
11	Selection of best algorithms according to metrics						•	
	Step IV							
12	Definition and modeling of parameters needed by the PIE				•	•	•	•
13	Building of the PIE				•	•	•	•

Table: Schedule of activities (each column represents a four months period)

Detailed schedule

		2016			2017		2018	
Work	: • Done, • In progress, ∘ To be done	1st	2nd	3rd	1st	2nd	3rd	1st
	Step V							
14	Formal definition of policy			•				
15	Research and evaluation of techniques for			•				
	generation and adaption of policies							
16 17	Design and execution of experiments applied to use cases			•	•			
1/	Selection of policies				•			
	Step VI							
18	Definition and modeling of PGE parameters					•		
19	Building of the PGE					•		
	Stan VIII							
20	Step VII Analysis of components into software abstractions							
21	Research on Android API for specialized components							
22	Development of middleware					•		
	·							
	Step VIII							
23	Definition of experiments aimed at accuracy						•	
24	and energy consumption metrics Development of experimental sample mobile apps							
25	Experiments execution							0
26	Final results analysis							0

Detailed schedule

		2014		2015			2016			2017		20	018
Wor	Work: • Done, • In progress, ○ To be done		1st	2nd	3rd	1st	2nd	3rd	1st	2nd	3rd	1st	2nd
	Required tasks												
Α	Related courses	•	•	•									
В	Research articles submission				•		•					•	
C	Predoctoral exam preparation									•			
D	Thesis writing	•			•			•			•	0	0

Table: Schedule of required activities