DN: Doctoral Notebook

This is my doctoral notebook where I will add clean information regarding whatever I'm learning about at the moment. It should serve as a starting point for writing. ¿Writing what? You may ask, I don't know.

Contents

Contents		
A Study of <i>The Green Book</i> and the Moduli of Curves 1.1 Introduction and Prologue of <i>The Green Book</i>	3	
Index	7	
Bibliography	9	

Chapter 1

A Study of *The Green Book* and the Moduli of Curves

1.1 Introduction and Prologue of The Green Book

The main objective of the green book is to prove the formula for the number N_d of rational curves of degree d passing through 3d-1 points in general position in $\mathbb{P}^1_{\mathbb{C}}$. Let's begin by unwrapping some concepts:

Definition 1.1.1. A projective curve \mathcal{C} is the zero locus of points in \mathbb{P}^2_k which satisfy a homogeneous polynomial equation. Formally, for a homogeneous polynomial $f \in k[X,Y,Z]$, the projective curve determined by f is

$$V(f) = \{ p \in \mathbb{P}_k^2 : f(p) = 0 \}.$$

If f has degree d, then the curve ${\mathfrak C}$ is said to be a curve of degree d.

Example 1.1.2. Consider the polynomial

$$f(X, Y, Z) = X - Y - Z.$$

Inside the affine plane $\{Z=1\}$, this contains all the points of the form (X:X-1:1). This is the line y=x-1 in \mathbb{A}^2 . But it also contains the point at infinity (1:1:0). The degree 1 curve being described here is a projective line.

Example 1.1.3. The degree 2 curve described by the equation $XY - Z^2 = 0$ is an affine hyperbola containing two points at infinity (1:0:0) and (0:1:0).

Definition 1.1.4. A parametrization of a curve \mathcal{C} is a generically injective function

$$\phi: \mathbb{P}^1_k \to \mathbb{P}^2_k, \ (S:T) \mapsto (P(S:T), Q(S:T), R(S:T)), \quad P, Q, R \in k[S, T]_h.$$

A projective plane curve admitting a parametrization is called a <u>rational curve</u>.

Example 1.1.5. The line X-Y-Z=0 can be parametrized with $\phi(S:T)=(S,T,S-T)$. ¿Is the other curve rational?

Example 1.1.6. Degree d curves with a d-1-tuple point are rational. As they can be parametrized by a line passing through the singular point.

The dimension of maps from \mathbb{P}^1 to \mathbb{P}^2 of degree d

The number 3d-1 sounds like an arbitrary number. It certainly did to me at least; this number corresponds to the dimension of the space of maps from \mathbb{P}^1 to \mathbb{P}^2 of degree d. There's this very important question,

which vector space is the space of maps from \mathbb{P}^1 *to* \mathbb{P}^2 *of degree d?*

Proposition 1.1.7. The aforementioned space has dimension 3d-1.

Proof

A map $F:\mathbb{P}^1\to\mathbb{P}^2$ is defined via homogeneous, degree d polynomials. This means that

$$F(s:t) = (X:Y:Z) = (F_1(s:t), F_2(s:t), F_3(s:t)),$$

where each F_i is a homogeneous degree d polynomial. Explicitly we may write

$$F_j(s:t) = \sum_{i=0}^d a_i s^{d-i} t^i = a_0 s^d + a_1 s^{d-1} t + \dots + a_{d-1} s t^{d-1} + a_d t^d$$

which allows us to see that every F_j has d + 1 degrees of freedom. But we have to take of changes in the input and output spaces:

- \diamond 3 dimensions off for $Aut(\mathbb{P}^1) = PGL_2$.
- ⋄ 1 dimension off for projective quotients: $(X : Y : Z) = \lambda(X : Y : Z)$.

This leaves us with 3d + 3 - 3 - 1 = 3d - 1 dimensions.

There's another way to prove this by counting the general number of degree d curves and then making sure they are rational. For this we need the genus-degree formula.

Proposition 1.1.8. A projective curve of degree d has genus $\binom{d-1}{2}$.

The proof of the genus-degree formula will be written down at a later point when we have to talk about Bézout's theorem. For now, the second proof of the dimension question:

Proof

Consider a general degree d curve defined by a homogeneous polynomial F. Such a polynomial can be written as a combination of monomials $X^aY^bZ^c$ where a+b+c=d. So to count the number of monomials, we must find the number of triples (a,b,c) of non-negative integers whose sum is d. This is precisely

$$\begin{pmatrix} 3 \\ d \end{pmatrix} = \begin{pmatrix} 3+d-1 \\ d \end{pmatrix} = \begin{pmatrix} d+2 \\ d \end{pmatrix} = \begin{pmatrix} d+2 \\ 2 \end{pmatrix},$$

and we have to take off 1 dimension due to projective quotients.

Hold on, how did we reduce dimension by removing arithmethic genus? But in essence what happens is that

$$\binom{d+2}{2} - 1 - \binom{d-1}{2} = (d+1) + d + (d-1) - 1 = 3d - 1.$$

Remark 1.1.9. Recall $\binom{n}{k}$ is the number of ways that I can distribute k cookies amongst n friends.

The whole idea is to use the moduli space of maps from \mathbb{P}^1 to \mathbb{P}^r , $\overline{\mathbb{M}}_{0,3d-1}(\mathbb{P}^r,d)$, to show the formula. Isomorphism classes inside this set look like classes of bundles. And the formula is derived from intersection theory of this space.

Index

curve of degree d, 3

genus-degree formula, 5

parametrization, 4 projective curve, 3

rational curve, 4

Bibliography

[1] Joachim Kock and Israel Vainsencher. *An Invitation to Quantum Cohomology: Kontsevich's Formula for Rational Plane Curves*. Progress in Mathematics. Birkhäuser Boston, 2006.