Zestaw 8. LOGIKA DLA INFORMATYKÓW - zbiory rozmyte

Z1. Dany jest zbiór X={1,2,3,4,5,6,7,8,9} i zbiory rozmyte:

$$A = \{(2, 0, 3), (4, 0, 5), (5, 0, 8)\}$$

$$B = \{(1, 0, 4), (4, 0, 6), (6, 1), (8, 0, 2)\}$$

$$C = \{(2; 1), (9; 0,1)\}$$

- (a) Dla zbiorów rozmytych A,B,C wyznaczyć: dopełnienie, nośnik, wysokość, rdzeń (jądro zbioru), moc zbioru, koncentrację, rozcieńczenie, α-przekroje (dla α=0,2, α=0,4, α=0,7, α=1)
- (b) Dla par zbiorów (A,B), (A,C), (B,C) wyznaczyć:
 - stopień równości zbiorów,
 - iloczyn zbiorów,
 - sumę zbiorów,
 - iloczyn algebraiczny,
 - sumę algebraiczną,
 - różnicę zbiorów,
 - różnicę symetryczną zbiorów,
 - iloczyn kartezjański zbiorów.
- **Z2.** Przestrzeń rozważań jest zbiorem wartości wzrostu (w cm) w pewnej populacji studentów, $x \in X=[140,220]$. Zbiorem rozmytym A będą te wartości wzrostu, które charakteryzuje pojęcie lingwistyczne "studenci wysocy". Wartość funkcji przynależności określa, w jakim stopniu dana osoba ze zbioru X przynależy do zbioru studentów wysokich. Przyjmijmy funkcję przynależności klasy γ postaci:

$$\mu_{A}(x; a, b) = \begin{cases} 0 & \text{dla } x \le 180\\ \frac{x - 180}{10} & \text{dla } 180 < x \le 190\\ 1 & \text{dla } x > 190 \end{cases}$$

(a) Wyznaczyć stopień przynależności osób z wybranej grupy do zbioru rozmytego A

Student	Imię	Wzrost	Stopień przynależności
1			
2			
3			
4			
5			
6			
7			
8			

- (b) Dla podanego zbioru rozmytego A określić: dopełnienie, nośnik, wysokość, rdzeń, moc zbioru, koncentrację, rozcieńczenie, α-przekroje.
- **Z3.** Dane są zbiory rozmyte A i B, których funkcje przynależności to odpowiednio funkcja trójkątna $\mu_A(x; 2, 4, 5)$ i trapezowa $\mu_B(x; 0, 1, 2, 4)$. Określić dla każdego z nich: dopełnienie, nośnik, wysokość, rdzeń (jądro zbioru), moc zbioru, koncentrację, rozcieńczenie, α -przekroje. Przedstawić graficznie: A', B', A \cap B, A \cup B, A \cup B.