ADVANCED MACHINE LEARNING

REPORT ASSIGNMENT #3

Giugliano Mirko

matricola: 800226

INTRODUZIONE

Il terzo assignment per il corso di "Advanced Machine Learning" consiste nella classificazione di numeri dallo 0 al 9, sviluppando una rete neurale convoluzionale, a partire dal dataset MNIST. Inoltre vi era tenere conto del numero di parametri utilizzati dalla rete per non superare il limite massimo di 7500.

ANALISI ESPLORATIVA e PREPROCESSING

Durante l'esplorazione del dataset si nota subito che la dimensione del train set è di 60000 record, mentre di 10000 per il test set, ognuno contenente l'immagine di un numero da 0 a 9 in una matrice 28x28, che sta ad indicare la scala di grigi di ogni pixel dell'immagine. La normalizzazione per questo motivo è stata effettuate semplicemente dividendo ogni numero per 255, dato che il range dei numeri delle suddette matrici va da 0 a 255. Dopodichè viene effettuato un reshape, poiché i layer convoluzionali necessitano di sapere quanti canali vi sono per ogni immagine, in questo caso uno trattandosi di foto in bianco e nero. Quindi si è proceduto con la categorizzazione della variabile da classificare, tramite one hot encoding si sono ottenute 10 variabili di comodo necessarie per il problema.

MODELLI

RETE NEURALE:

- 50 epoche
- 2 layer convoluzionali, con 10 filtri, di dimensione 3x3, no padding
- 2 pooling layer (MaxPooling2D) di dimensione 2x2, padding "same"
- 1 layers dense da 44 neuroni
- 2 dropout layer
- activation function layers: ReLU
- activation function output layer: Softmax
- optimizer: Adambatch size:252
- loss function: categorical_crossentropy
- regularization: 3 dropout layers

Il numero di epoche è stato scelto in base a quando l'accuracy del train set e del test set arrivavano a convergenza, evitando overfitting e/o underfitting. Rispettando il limite imposto sui parametri, sono state effettuate le scelte sul numero di neuroni e sulla dimensione dei filtri nei layer convoluzionali. L'activation function ReLU è una scelta abbastanza standard e risultava la più performante mentre per l'activation function dell'output layer la Softmax è stata una scelta obbligata dal fatto che fosse una classificazione multiclasse. L'optimizer utilizzato per questo modello è stato RMSprop, algoritmo che risulta essere molto

utilizzato in letteratura quando si sviluppano reti neurali convoluzionali e che risultava infatti il più performante. Per evitatare l'overfitting inoltre si sono introdotti due dropout layer.

VALUTAZIONE MODELLO E CONCLUSIONI

SUMMARY DEL MODELLO PER VERIFICARE CHE SIANO RISPETTATI I VINCOLI SUI PARAMETRI

Layer (type)	Output Shape	Para	am #
conv2d_9 (Conv2D)	(None, 26, 26,	10) 100	
max_pooling2d_9 (MaxPooling2	(None, 13, 13,	10) 0	
batch_normalization_9 (Batch	(None, 13, 13,	10) 40	
dropout_13 (Dropout)	(None, 13, 13,	10) 0	
conv2d_10 (Conv2D)	(None, 11, 11,	4) 364	
max_pooling2d_10 (MaxPooling	(None, 6, 6, 4)	0	
batch_normalization_10 (Batc	(None, 6, 6, 4)	16	
dropout_14 (Dropout)	(None, 6, 6, 4)	0	
flatten_5 (Flatten)	(None, 144)	0	
dense_9 (Dense)	(None, 44)	6386)
dense_10 (Dense)	(None, 10)	450	
Total params: 7,350 Trainable params: 7,322 Non-trainable params: 28			

VALORI DELLA LOSS FUNCTION E DELLA ACCURACY SU TRAIN SET, VALIDATION SET E TEST SET

Train

accuracy: 0.9877loss: 0.0369

Validation

accuracy: 0.9878loss: 0.0397

Test

accuracy: 0.0381loss: 0.9880

CONFUSION MATRIX E CLASSIFICATION REPORT

con:	fusi	on ma	atrix									precision	recall	f1-score	support
11	975	. (9 0	0	0	9	4	1	0	0]	9	0.99	0.99	0.99	980
Γ	0	1132	1	0	0	1	1	0	0	0]	1	0.99	1.00	0.99	1135
r	2		1021	0	2	0	0	1	2	01	2	0.99	0.99	0.99	1032
L	2		1021		2		0	4	2	,	3	0.99	0.99	0.99	1010
[0	1	2	997	0	6	1	2	1	0]	4	0.99	1.00	0.99	982
Г	0	0	0	0	978	0	- 1	0	- 1	21	5	0.98	0.99	0.98	892
L	0		0	_			_	0	_	-1	6	0.99	0.99	0.99	958
[1	0	0	5	0	881	2	1	1	1]	7	0.98	0.99	0.98	1028
г	4	2	0	0	3	3	945	0	1	0]	8	0.99	0.98	0.98	974
L	4	~	0	0	-	-	343				9	0.99	0.98	0.98	1009
[0	4	7	0	0	0	0	1014	1	2]					
Γ	1	0	4	3	0	3	2	4	951	61	accuracy			0.99	10000
L	1		4		0		2	-	231		macro avg	0.99	0.99	0.99	10000
[0	1	1	1	9	3	0	6	2	986]]	weighted avg	0.99	0.99	0.99	10000

ANDAMENTO ACCURACY E LOSS FUNCTION

COMMENTO:

Le performance del modello sono ottime pur utilizzando pochi parametri, il rapporto fra complessità del modello e risultati, utilizzando questo tipo di rete per questo problema, è veramente apprezzabile.