Simon Chun HUDMSIVY 3/8/2022

1. Y: SAT verbal X1: TeacherPay Xx: Percentating

a) Xi: a+β, XIi + βx Xxi +β; X, Yi + β4 Xzi +β5 Xii · Xzi + Si

a: the awaye value of SAT verbal at the average value of X, and Xx.

β: the effect of a 1-unit increase in X1 on Y in the reighbour hood

of x1 md xx.

Fx the effect of a 1-unit increase in X2 on Y in the reighbour hood

 β_3 : the effect of a 1-unit movense in x_1 on Y in the linear relationship

P3: the effect of a 1-unit increase in X1 on I in the linear relationship between X1 & Y

194= the effect of a 1-unit movense in x2 on Y in the Inem relationship perween x, & x.

 $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of <math>x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fixed value of x_1$, $\beta = -for a fi$

Coefficientsa

between X, & T.

				00000			
		Unstandardized Coefficients		Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	555.737	14.435		38.498	<.001	
	in thousands of dollars	.535	.453	.099	1.182	.243	
	percentTaking	-1.212	.107	944	-11.311	<.001	
2	(Constant)	510.103	63.533		8.029	<.001	
	in thousands of dollars	4.187	3.735	.772	1.121	.268	
	percentTaking	-3.356	.543	-2.613	-6.178	<.001	
	percentTaking_2	.030	.005	1.835	6.681	<.001	
	TeacherPay_2	046	.055	648	847	.401	
	TeacherPay_percentTak ing	005	.017	154	272	.787	

a. Dependent Variable: satVerbal

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Change Statistics				
					R Square Change	F Change	df1	df2	Sig. F Change
1	.888ª	.788	.779	15.858	.788	89.288	2	48	<.001
2	.953 ^b	.909	.899	10.740	.121	19.885	3	45	<.001

- a. Predictors: (Constant), percentTaking, in thousands of dollars
- b. Predictors: (Constant), percentTaking, in thousands of dollars, percentTaking_2, TeacherPay_percentTaking, TeacherPay_2

Sig. F for peranttaking > (0.0) -> is significant. which means x2 should be included in the model.

C> \(\gamma_i = \alpha + \beta_1 \times 1 i + \beta_2 \times \times \times 1 i \times

For a fixed value of tencher pay, les is the eff-t of a 1-unit increuse in percentatorly on the slope of the relationship between tencher pay & SAT verbow.

2. Y: SAT verbal X,: Tember Pay Xz. Percent taking Xr has a non-linear relationship with Y.

a) Yi = 2 + B, Xii + p, Xi + Ei

SAT verborb = 2+B, teucherPay + B, percentenking + 6,

