David Shuster: Math & Related Coursework

Note: All courses were taken at Amherst College.

Title	Number	Description Description	Textbook	Grade
Multivariable Calculus	MATH-211	1		A
Linear Algebra	MATH-271	vector spaces, subspaces, linear independence, basis, and dimension; systems of linear equations and Gaussian elimination, matrix operations; linear transformations as matrices; eigenvalues and eigenvectors; inner product spaces		A
Intro Computer Science I	COSC-111			A
Groups, Rings and Fields	MATH-350	theory of groups and rings including the principal theorems on homomorphisms and the related quotient structures; integral domains, fields, polynomial rings	Abstract Algebra: A First Course (Dan Saracino), 2nd ed.	A
Intro to Stat Modeling	MATH-135			A+
Intro to Analysis	MATH-355	Completeness of the real numbers; convergence, bounded monotone sequences, Cauchy sequences, Bolzano-Weierstrass Theorem; countability, open and closed sets, compactness, Heine-Borel Theorem; Functions and continuity, Intermediate Value Theorem, continuous functions on a compact set, uniform continuity; Derivatives, Rolle's Theorem and Mean Value Theorem; Riemann integration; Uniform convergence of sequences and series of functions, continuity of the limit, derivatives and integrals of series, Weierstrass M-Test, power series	Understanding Analysis (Stephen Abbott), 2nd ed.	A +
Mathematical Logic	MATH-385	first-order languages, formal deductive systems; Completeness Theorem for first- order logic; Gödel Numbering and Incompleteness; Peano Arithmetic and the Second Incompleteness Theorem	A Friendly Introduction to Mathematical Logic (Leary & Kristiansen)	A+
Intro Comp Science II	COSC-112	data abstraction, inheritance, and polymorphism; stacks, queues, linked lists, programming for graphical user interfaces, and basic topics in probability		A+
Mathematics of Public-Key Cryptography	MATH-252	Several topics from number theory, abstract algebra, and algorithms, including discrete logarithms, integer factorization algorithms, and elliptic curves	An Introduction to Mathematical Cryptography	A+

Game Theory & Applicatn	ECON-420	applications-focused upper-level Economics Department course: Nash equilibrium, Stackelberg equilibrium, repeated games, evolutionary game theory, moral hazard, adverse selection, incomplete information and signaling, signaling with continuous actions	Game Theory: An Introduction (Steven Tadelis)	A
Voting and Elections: A Mathematical Perspective		majority rule, plurality rule, Borda count, and approval voting; Banzhaf power index; Arrow's Theorem	The Mathematics of Voting and Elections: A Hands-On Approach (Hodge, Klima) & 2 other books	A +
Topology	MATH-455	topological spaces and continuous functions; subspace, quotient and product topologies; connectedness and compactness; separation axioms and metrizability; homotopy and the fundamental group; classification of surfaces	Topology (James Munkres), 2nd ed.	A+
Intermediate Statistics	STAT-230	parametric and nonparametric methods, resampling approaches, analysis of variance models, multiple regression, model selection, and logistic regression		A