## Deep Neural Network

#### Sidharth Baskaran

#### July 2021

#### Deep L-layer neural network

- Logistic regression is shallow model, and a deeper network has more hidden layers
- Notation
  - -L number of layers in network
  - $-n^{[l]}$  number of units in layer l

$$\begin{array}{c} n \\ * n^{[0]} = n_x \\ - a^{[l]} = g^{[l]}(z^{[l]}) \\ * a^{[0]} = x, a^{[L]} = \hat{y} \end{array}$$

#### Forward propagation

- Steps
  - $-z^{[l]} = w^{[l]}a^{[l-1]} + b^{[l]}$  $-a^{[l]} = q^{[l]}(z^{[l]})$
- Vectorized across m examples
  - $-Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[\hat{l}]}$  where  $X = A^{[0]}$
  - Z,A,X are stacked columnwise, i.e.  $Z^{[1](1)},\dots,Z^{[L](m)}$

### Matrix Dimension Debugging

• Forward propagation step

$$\begin{split} z^{[l]} &= W^{[l]} a^{[l-1]} + b^{[l]} \\ (n^{[l]}, 1) &= (n^{[l]}, n^{[l-1]}) (n^{[l-1]}, 1) + (n^{[l]}, 1) \end{split}$$

• If vectorized, must modify

$$\begin{split} Z^{[l]} &= W^{[l]} A^{[l-1]} + b^{[l]} \\ (n^{[l]}, m) &= (n^{[l]}, n^{[l-1]}) (n^{[l-1]}, m) + \underbrace{(n^{[l]}, 1)}_{\text{broadcasted}} \end{split}$$

## Why deep representations

- Example of face  $\rightarrow$  composition of simple to complex
  - First layer finds edges
  - Second layer puts edges together to compose face parts
  - Third could detect faces
- Circuit theory and deep learning

- Functions are easier to calculate in a small L-layer deep NN, but shallow NN needs much more hidden layers
- Less layers, need more hidden units

#### Building blocks of deep neural networks

- Forward prop.: input  $a^{[l-1]}$  and output  $a^{[l]}$ 
  - Also cache  $z^{[l]}$  for backprop usage
- Backpropagation
  - Input  $da^{[l]}$  and  $z^{[l]}$  and output  $da^{[l-1]}$



Figure 1: Forward and backwards  $\,$ 

## Forward and backward propagation

- Forward propagation for layer l
  - Input  $a^{[l-1]}$
  - Output  $a^{[l]}$ , cache  $z^{[l]}$ ,  $w^{[l]}$ ,  $b^{[l]}$
- - Input  $da^{[l]}$
  - Output  $da^{[l]}, dW^{[l]}, db^{[l]}$

– Initialize 
$$da^{[l]} = -\frac{y}{a} + \frac{1-y}{1-a}$$

# Parameters vs Hyperparameters

- Hyperparameters learning rate  $\alpha$ , num. iterations, L, num. of hidden units, choice of activation function
- Control the parameters  $W^{[1]},b^{[1]},W^{[2]},b^{[2]},W^{[3]},b^{[3]}\dots$