

Sequências de DNA na identificação de espécies e análise filogenética de microrganismos

Dra. Chirlei Glienke

Dra. Desirrê Petters-Vandresen

Que genes usar?

- O que usar para procariotos?
 - Para gêneros: gene 16S do rRNA
 - Para espécies: Sequenciamento parcial de genes house-keeping:
 - Exemplos: genes *atpD* (ATP synthase F1, beta subunit), *gyrB* (DNA gyrase B subunit), *rpoB* (RNA polymerase beta subunit), *recA* (recombinase A) and *trpB* (tryptophan synthetase, beta subunit).

Que genes usar?

- O que usar para eucariotos?
- Para fungos:
 - Para gêneros: LSU (28S do rRNA)
 - ITS1-5.8S-ITS2 do rDNA, Segmento α1 do Fator de Elongação da Tradução;
 Sequencias parciais dos genes: β-tubulina, GPDH, Histona, Actina, rpb2 e
 Mating Type
- Para trypanosomas:
- glucose-6-phosphate isomerase (GPI), 18S ribosomal RNA (SSU rRNA), glycosomal GAPDH (gGAPDH), DNA Mitocondrial

SEQUENCIAS DE DNA PARA FILOGENIA DE LEVEDURAS - YeastIP

Marker	Description	Position in the gene*	Length (bp)
LSU	Complete sequence of the large subunit 26S ribosomal RNA gene	65–3364	3300
D1/D2 LSU	Partial sequence of the 26S ribosomal gene comprising the D1/D2 region	65–636	570
SSU	Complete sequence of the small subunit 18S ribosomal RNA gene	1–1800	1700
ITS	Ribosomal RNA region containing the intergenic region 1 (between 18S and 5.8S), the 5.8S ribosomal RNA gene and the intergenic region 2 (between 5.8S and 26S)	First base of ITS1 to last base of ITS2	400–600
mtSSU	Mitochondrial small subunit 15S ribosomal RNA gene	383–1006	400–600
RPB1	Partial sequence of the RNA polymerase II largest subunit coding gene	253–873	620
RBP2	Partial sequence of the RNA polymerase II second largest subunit coding gene	1645–2319	680–1000
TEF1- alpha	Partial sequence of the translation elongation factor 1-alpha coding gene	64–1190	930
ACT1	Partial sequence of the exon2 of the actin coding gene	405–1383	980†
mtCOX II	Partial sequence of mitochondrial cytochrome C oxidase subunit 2 coding gene	121–707	590

DNA BARCODING

A TOOL FOR SPECIMEN IDENTIFICATION AND SPECIES DISCOVERY

https://ibol.org/about/dna-barcoding/

DNA BARCODING

Como funciona?

Step 1: Isolate DNA from the sample

Step 2: Amplify the target DNA barcode region using PCR

Step 3: Sequence the PCR products

Step 4: Compare the resulting sequences against reference databases to find the matching species

https://ibol.org/about/dna-barcoding/

THE DNA BARCODE

DNA BARCODING

THE LIBRARY

unknown origin.

ME ABOUT V PROGRAMS V NEWS & MEDIA V

JOIN

Barcode sequences are placed in the Barcode of Life
Data Systems (BOLD) database – an online workbench
that includes a reference library of DNA barcodes that
can be used to assign identities to sequences of

BOLD is a searchable repository for barcode records, storing specimen data and images as well as sequences and trace files. It provides an identification engine based on the current barcode library and monitors the number of barcode sequence records and species coverage.

DNA BARCODING

Fungos: nuclear internal transcribed spacer (ITS) do RNA ribossomal – Barcoding primário

Fusarium e Trichoderma necessidade de translation elongation factor 1 alpha (TEF- 1α) como barcode secundário

Arbuscular mycorrhizal (AM) and in rust fungi: small subunit (nuSSU) and the large subunit (nuLSU) do RNA ribossomal RNA

Oomycota: mitochondrial cytochrome oxidase c subunits (COX1 and COX2).

BARCODE OF LIFE DATA SYSTEM V4

Advancing biodiversity science through DNA-based species identification.

https://www.boldsystems.org/

QBOL – DNA Barcoding para pragas quarentenárias vegetais

Centralizado na Europa https://www.qbol.org/en/qbol.htm

DNA Barcoding

Activities

Q-lists

Databases

Barcoding of Arthropods

Barcoding of Bacteria

Barcoding of Fungi

Barcoding of Nematodes

Barcoding of Phytoplasmas

Barcoding of Viruses

DNA Banks

Library/Database/Informat

Validation/Evaluation

Dissemination

Q-BOL Activities

QBOL Activities:

DNA Barcoding de fungos – CBS na Holanda

DNA Barcoding

Activities

Q-lists

Databases

Collaboration

Partners

Barcoding of Arthropods

Barcoding of Bacteria

Barcoding of Fungi <

Barcoding of Nematodes

Barcoding of **Phytoplasmas**

Barcoding of Viruses

DNA Banks

Library/Database/Informat

Validation/Evaluation

Dissemination

Barcoding of Fungi

In this work package a short list of 19 Q-species were selected for barcoding.

Contact

Ewald Groenewald View profile >>

WP Coordinator: KNAW-CBS (Partner 9)

KNAW-CBS, PRI, FERA and CIP

DNA Barcoding

Activities

Q-lists

Databases

Collaboration

Partners

Barcoding of Arthropods

Barcoding of Bacteria

Barcoding of Fungi

Barcoding of Nematodes

Barcoding of Phytoplasmas

Barcoding of Viruses

DNA Banks

Library/Database/Informat

Validation/Evaluation

Dissemination

Barcoding of Nematodes

In this work package a base list of 32 nematode species was created for which barcodes needed to be collected

Contact

Juerg Frey
View profile >>

WP Coordinator: ACW (Partner 5)

ACW, PRI, VLAGEW (ILVO). INRA and CIP

RNA RIBOSSOMAL EUCARIÓTICO

REGIÃO ITS1-5.8S-ITS2 DO rRNA

ACTIN (1325 bp total; 1128 coding for 376 amino acids)

Primer available
New primer
Published primer

BETA-TUBULIN (1933 bp total; 1344 coding for 448 amino acids)

Primer available
New primer
Published primer

CALMODULIN (970 bp total; 450 coding for 150 amino acids)

ELONGATION FACTOR 1-ALPHA (1975 bp total; 1383 coding for 461 amino acids)

HISTONE H3 (582 bp total; 411 coding for 137 amino acids)

ITS1, ITS2 & 5.8S rRNA GENE (475 bp, 158 coding)

LARGE SUBUNIT (28S) rRNA GENE (3378 bp)

SMALL SUBUNIT (18S) rRNA GENE (2880 bp total, 1803 bp coding)

Coding
Insertion

Primer available
New primer
Published primer

Então, qual gene vou usar?

Depende da pergunta/objetivo/ problema a resolver

Fig. 1. Phylogenetic relationships of the Botryosphaeriales using Bayesian reconstruction and six gene portions (LSU, SSU, ITS, EF1, BT and mtSSU). Numbers above branches indicate bootstrap values/posterior probabilities. Numbers in this highlighted in refe below branches indicate estimated dates in million years with the 95 % Highest Posterior Density interval given in brackets. Clades 1–4, in the Botryosphaeriaceae are indicated by a circled number to corresponding node.

Sequenciando....

COMO FUNCIONA O SEQUENCIAMENTO?

3'-OH necessária para alongamento da cadeia

Precursor normal de DNA 2'-desoxirribonucleosídeo-trifosfato sem o 3'-OH e, portanto, término da cadeia

Percursor de término da cadeira 2',3'-desoxirribonucleosídeo-trifosfato

FIGURA 1. Deoxiribonucleotídeos (dNTP) e dideoxiribonucleotídeos trifosfatados (ddNTP).

Análise dos produtos fluorecentes de sequenciamento em canais separados do gel de poliacrilamida.

Análise dos produtos fluorecentes de sequenciamento em um único canal do gel de poliacrilamida.


```
l gtgcccagtg agcgaggact gca
 61 ggggacccga acaacatgga tag
121 acgttccatg gggccaagga ggt
181 atgggcctca tatacaacag gat
241 tgtgccactt gtgaacagat tgc
301 accaccaatc cactaatcag gca
361 gctatggaac agatggctgg atc
421 cagactaggc agatggtaca tgc
481 ggtctgaaag atgaccttct tga
541 atgcagcgat tcaagtgatc ctc
```


Comparison of BLAST-based (pairwise alignment) vs. tree-based (multiple alignment) identification of a target fungal ITS sequence (DB42771, Vietnam; see Lücking et al. 2020).

(A) A simple sequence alignment

AGCAATGGCCAGACAATAATG AGCTATGGACAGACATTAATG

(B) A more difficult sequence alignment

