

28 de octubre de 2021

Distribución Normal

Normal estándar

Considerando $Z \sim N(0,1)$, con función de densidad

$$f_Z(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}x^2\right\}$$

Con función de densidad acumulada

$$\Phi(x) = F_Z(x) = \int_{-\infty}^x f_Z(x) dx = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

Entonces, considerando una v.a. $X \sim N(\mu, \sigma^2)$ donde:

- $E(X) = \mu$
- $V(X) = \sigma^2$

Se tiene que $X \stackrel{d}{=} \mu + \sigma Z$ pues

$$\begin{split} E(X) &= E(\mu + Z) = \mu + \sigma E(Z) = \mu \\ V(X) &= V(\mu + \sigma Z) = V(\sigma Z) = \sigma^2 V(Z) = \sigma^2 \end{split}$$

En cuanto a la función de densidad de la normal no estándar $X \sim N(\mu, \sigma^2)$:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Se tiene que es función de densidad, pues integra 1:

Asumiendo que $\int_{\mathbb{R}} f_Z(x) dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = 1$

$$\int_{\mathbb{R}} f_X(x)dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

realizando el cambio de variable $u=\frac{x-\mu}{\sigma}$ se sigue:

$$\frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} e^{-u^2/2} du = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-u^2/2} du = 1$$

pues, el último término es justamente $\int_{\mathbb{R}} f_Z(x) dx = 1$

FUNCIÓN GENERADORA DE MOMENTOS

Consderando una v.a. X se define su función generadora de momentos :

Función Generadora de Momentos

$$M_X(t) = E(e^{xt}) = \int e^{xt} f_X(x) dx$$

Esta función tiene la característica que se cumple:

$$m_n = E(x^n) = M_X^{(d)}(0) = \frac{d^n}{dt^n} M_X(x) \Big|_{x=0}$$

Por lo que se tiene una manera alternativa de calcular la esperanza y varianza:

$$E(X) = m_1 = M'_X(0)$$

$$V(X) = E(X^2) - E(X)^2 = m_2 - m_1^2$$

MGF Normal Estándar

si $Z \sim N(0,1)$, entonces

$$M_Z(t) = E(e^{xt}) = \int_{\mathbb{R}} e^{xt} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$

se tiene que

$$e^{xt}e^{-x^2/2} = e^{-x^2/2 + xt} = e^{-1/2(x^2 - 2xt)}$$

entonces, $x^2 - 2xt = (x - t)^2 - t^2$, por lo tanto

$$e^{-1/2(x^2-2xt)} = e^{-1/2(x-t)^2}e^{1/2t^2}$$

luego,

$$\begin{split} M_Z(t) &= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} e^{\frac{1}{2}t^2} dx \\ &= e^{\frac{1}{2}t^2} \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} dx \end{split}$$

Notando que $\int_{\mathbb{R}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-t)^2}{2}} dx = \int_{\mathbb{R}} f_X(x) dx$ con $X \sim N(t,1) \Rightarrow \int f_X(x) dx = 1$, entonces

$$M_Z(t) = e^{\frac{1}{2}t^2}$$

Ahora, considerando una v.a. $X \sim N(\mu, \sigma^2)$ se tiene la MGF:

$$M_X(t) = E(e^{xt}) = \int_{\mathbb{R}} e^{xt} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

realizando el cambio de variable $z=\frac{x-\mu}{\sigma} \ \Rightarrow x=\mu+\sigma z$, entonces

$$\begin{split} M_X(t) = & \int e^{\mu t + \sigma t z} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-z^2/2} \sigma dz \\ = & e^{\mu t} \int e^{z\sigma t} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz \end{split}$$

vemos que $\int e^{z\sigma t} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = M_Z(\sigma t) = e^{\frac{1}{2}^2 t^2}$ entonces se tiene que:

$$M_X(t) = e^{\mu t} e^{\frac{1}{2}\sigma^2 t^2}$$

Calculando E(X) y V(X) para $X \sim N(\mu,^2)$ mediante momentos:

$$E(X) = M_X'(0) = \left(e^{\mu t + \frac{1}{2}\sigma^2 t^2}\right)' = (\mu + \sigma^2 t)e^{\mu t + \frac{1}{2}\sigma^2 t^2}|_{t=0} = \mu$$

$$E(X^2) = M_X''(0) = (\sigma^2 + (\mu + \sigma^2 t^2)^2)e^{\mu t 1/2\sigma^2 t^2}|_{t=0} = \sigma^2 + \mu^2$$

por lo tanto,

$$V(X) = E(X^{2}) - E(X)^{2} = \sigma^{2} + \mu^{2} - \mu^{2} = \sigma^{2}$$

Value at Risk

Value at Risk

Pérdida máxima esperada con una probabilidad α sobre un periodo:

$$VaR_{\alpha}(X) = \inf\{x : F_X(x) \ge \alpha\} = F_X^{-1}(\alpha)$$

es decir, si X es v.a. con densidad f_x entonce el $VaR_\alpha(x)$ es el mínimo valor tal que $P(X \leq t) \leq \alpha$, esto es,

$$VaR_{\alpha}(X) = q$$

donde q satisface que

$$F_X(q) = \int_{-\infty}^q f_X(x)dx = \alpha$$

Considerando que $X \sim N(\mu, \sigma^2)$, entonces $X \stackrel{d}{=} \mu + \sigma Z$ con $Z \sim N(0, 1)$, donde el cuantil de $Z_{0.05} = -1,645$.

Entonces, si $X\sim N(5,2)$ se tiene que el $VaR_{0,05}=5+\sqrt{2}Z_{0,05}=2,67$, en un contexto donde la v.a. X es la rentabilidad de una inversión, la cual tiene un retorno esperado del $5\,\%$ con una desviación estándar de $1,41\,\%$, entonces su $VaR_{0,05}=2,67\,\%$ nos dice que la probabilidad de que la rentabilidad sea mayor a $2,67\,\%$ es del $95\,\%$.