Accident Severity Prediction In Seattle, WA

Coursera Capstone Project
Abhineet Sharma

Business Understanding

Seattle DMV is interested in knowing possibility of an accident given weather and other road conditions.

Problem Statement

At any given day, predict the severity of accident given,

- Weather Conditions
- Road Conditions
- Light Conditions
- Mode of Travel
- Area of Travel

Data Understanding

- Available Data: Accident Data collected
- Format: CSV
- Data Size: 194673 rows x 38 columns
- Redundant or Not useful Data: 24 columns

- 70.11% Severity 1 Accidents
- 29.89% Severity 2 Accidents

Location Heat Map

Address Type Data Segregation

Block: 65.85%

Intersection: 33.76%

Alley: 0.39%

Box Plot: Person, Pedestrian, Cyclist & Vehicles Count

Distribution By Weather

By Road Conditions

By Light Conditions

By Neighborhood

Data Modelling

Target Variable: SEVERITYCODE

Independent Variables:

- WEATHER
- ROADCOND
- LIGHTCOND
- HITPARKEDCAR
- NEIGHBORHOOD
- PED
- CYCLIST
- VEHICLE
- DAY_PART
- SEASON

Using 70-30 train-test split

KNN

Optimal Nearest Neighbors, k = 4. Accuracy: 70.58%

Decision Tree

Optimal Depth, d=2. Accuracy: 70.58%

Logistic Regression

Accuracy Score: 74.54%

SVM

Kernel: RBF

Accuracy: 74.60%

Model Evaluation

Model	Accuracy	Jaccard Similarity score	F1-Score	Log Loss Score
KNN	70.58%	66.21%	79.67%	2
Decision Tree	70.58%	72.95%	84.36%	8
Logistic Regression	74.54%	72.92%	84.33%	53.86%
SVM	74.60%	72.95%	84.36%	-

Best accuracy is achieved on SVM. SVM with RBF kernel is the model of choice.