

INFO 251: Applied Machine Learning

### **Gradient Descent**

A pen and paper might be useful for today's lecture (to sketch graphs)

### **Course Outline**

- Causal Inference and Research Design
  - Experimental methods
  - Non-experiment methods
- Machine Learning
  - Design of Machine Learning Experiments
  - Linear Models and Gradient Descent
  - Non-linear models
  - Fairness and Bias in ML
  - Neural models
  - Deep Learning
  - Practicalities
  - Unsupervised Learning
- Special topics

# Key Concepts (previous lecture)

- Decision boundaries
- Voronoi diagrams
- (K-)Nearest Neighbors
- Similarity and Distance metrics
- Normalization and Standardization
- Feature weighting

# Key Concepts (today's lecture)

- Cost Functions
- Gradient Descent
- Local and global minima
- Convex functions
- Incremental vs. Batch GD
- Learning rates
- Feature scaling

### **Cost minimization**

- In general:
  - We make a prediction of Y using some function f(X)
  - To choose the best model:
    - Define a loss function J(Y, f(X))
    - Minimize the expected loss of J
- With linear regression:
  - f is a linear function (e.g.,  $\alpha + \beta X$ )
  - OLS regression minimizes squared-error loss  $E(Y-f(X))^2$

# **Linear Regression**

- OLS as Maximum Likelihood Estimation:
  - $Y_i = \alpha + \beta X_i + \epsilon_i$
  - Idea: Choose  $\alpha$  and  $\beta$  so that  $\alpha + \beta X_i$  is "as close as possible" to  $Y_i$  for training data
- In other words
  - $\min_{\alpha,\beta} \sum_{i=1}^{N} (\alpha + \beta X_i Y_i)^2$
- In general, we are minimizing a Cost Function J
  - $\min_{\alpha,\beta} J(\alpha,\beta)$
  - In the case of OLS, we use a "squared error" cost function
  - $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i Y_i)^2$



### General formulation (OLS)

- Model ("hypothesis")
  - $Y_i = \alpha + \beta X_i$
- Parameters
  - $\alpha, \beta$
- Cost Function

• 
$$J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)^2$$

- Objective
  - $= \min_{\alpha,\beta} J(\alpha,\beta)$



## **OLS** with no intercept

- Model ("hypothesis")
  - $Y_i = \beta X_i$
- Parameters
  - β
- Cost Function

• 
$$J(\beta) = \frac{1}{2N} \sum_{i=1}^{N} (\beta X_i - Y_i)^2$$

- Objective
  - $-\min_{\beta} J(\beta)$



### Fill in the blanks

- Model ("hypothesis")
  - Income is a linear function of education and also eduction<sup>2</sup>, i.e. nonlinearities exist
  - $Y_i = \alpha + \beta X_i + \gamma X_i^2$
- Parameters
  - α, β, γ
- Cost Function
  - Use "absolute error" cost function
  - $J(\alpha, \beta, \gamma) = \frac{1}{N} \sum_{i=1}^{N} |\alpha + \beta X_i + \gamma X_i^2 Y_i|$
- Objective
  - $\min_{\alpha,\beta,\gamma} J(\alpha,\beta,\gamma)$



# **Exercise: Computing Cost**

- Assume our data look like this (N = 3)
  - $X_1 = 1$ ,  $Y_1 = 1$
  - $X_2 = 2$ ,  $Y_2 = 2$
  - $X_3 = 3$ ,  $Y_3 = 3$
- Our model is  $Y_i = \beta X_i$ 
  - Our cost function is squared error:  $J(\beta) = \sum_{i=1}^{N} (\beta X_i Y_i)^2$
- Your task is to compute  $J(\beta)$ , given these 3 points, for:
  - $\beta = 1$
  - $\beta = 0$
  - $\beta = 2$
  - $\beta = 0.5$  (you might need a calculator)
- Draw a plot of  $J(\beta)$  as a function of  $\beta$



# Visualizing Cost (1 parameter)

• Where is  $J(\beta)$  minimized?



# Visualizing Cost (2 parameters)

- Generalizing to a multi-dimensional loss surface
  - Model ("hypothesis"):  $Y_i = \theta_1 + \theta_2 X_i$
  - Objective:  $\min_{\theta_1,\theta_2} J(\theta_1,\theta_2)$



### Outline

- Cost functions
- Gradient descent
- Feature scaling

### **Gradient Descent**

- Gradient descent provides a principled method/algorithm to minimize the cost function J
- Idea: to solve  $\min_{\alpha,\beta} J(\alpha,\beta)$ 
  - Initialize  $\alpha$ ,  $\beta$
  - Change  $\alpha$ ,  $\beta$  in some way that reduces  $J(\alpha, \beta)$
  - Eventually we will end up at a minimum
- What about analytic solution:  $(X'X)^{-1}X'Y$ 
  - Sometimes not practically feasible (too much data, multicollinearity)

### **Gradient Descent: Visualization**



# **Local Minima**



# **Gradient Descent Algorithm (incremental)**

### In pseudo-code:

```
Choose an initial vector of parameters \alpha, \beta
Choose learning rate \mathbb{R}
Repeat until convergence (i.e., until an approximate minimum is obtained):

For each example i in training set:
\alpha < -\alpha - \mathbb{R} \frac{\partial}{\partial \alpha} J(\alpha, \beta)
\beta < -\beta - \mathbb{R} \frac{\partial}{\partial \beta} J(\alpha, \beta)
Simultaneous update
```

- With multiple predictors/regressors...
  - $Y_i = \alpha + \beta_1 X_{i1} + \beta_2 X_{i2} + ... + \beta_k X_{ik}$

### **Gradient Descent: Derivative**

- In 1-Dimension
- Update Rule:
  - $\quad \beta < \beta R \frac{\partial}{\partial \beta} J(\alpha, \beta)$
- Initialize  $\beta$  at 1.9
  - What's the derivative  $\frac{\partial}{\partial \beta} J(\alpha, \beta)$ ?
  - How does  $\beta$  update?
- Initialize eta at 0.2
  - What's the derivative  $\frac{\partial}{\partial \beta} J(\alpha, \beta)$ ?
  - How does  $\beta$  update?



# Gradient Descent: Learning Rate

- $\beta < \beta \mathbb{R} \frac{\partial}{\partial \beta} J(\alpha, \beta)$
- What does R do?
- Small R:
  - Gradient descent can be slow
- Large R:
  - Can overshoot the minimum
  - May fail to converge
  - May diverge!



# Gradient Descent: Convergence

Do we need to change the learning rate?

```
Choose an initial vector of parameters \alpha, \beta Choose learning rate R Repeat until convergence: For each example i: \alpha < -\alpha - R \frac{\partial}{\partial \alpha} J(\alpha, \beta) \beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)
```

- Not typically.Gradient descent can converge to a local minimum, even with the learning rate fixed
  - As we approach a local minimum, gradient descent takes smaller steps
  - But adaptive learning rates can help speed up convergence, prevent overshooting

# **Gradient Descent: Regression**

### Gradient Descent

Repeat until convergence:

$$\alpha < - \alpha - \mathbb{R} \frac{\partial}{\partial \alpha} J(\alpha, \beta)$$

$$\beta < -\beta - R \frac{\partial}{\partial \beta} J(\alpha, \beta)$$

- Regression cost function
  - $J(\alpha, \beta) = \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i Y_i)^2$
- The missing pieces:  $\frac{\partial}{\partial \alpha} J(\alpha, \beta)$  and  $\frac{\partial}{\partial \beta} J(\alpha, \beta)$

$$\frac{\partial}{\partial \alpha} J(\alpha, \beta) = \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)^2$$

$$\frac{\partial}{\partial \beta} J(\alpha, \beta) = \frac{\partial}{\partial \beta} \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)^2$$

# **Gradient Descent: Regression**

### Partial derivatives:

 $=\frac{1}{N}\sum_{i=1}^{N}(\widehat{Y}_i-Y_i)$ 

$$\frac{\partial}{\partial \alpha} J(\alpha, \beta) = \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (\widehat{Y}_i - Y_i)^2 \qquad \frac{\partial}{\partial \beta} J(\alpha, \beta) = \frac{\partial}{\partial \beta} \frac{1}{2N} \sum_{i=1}^{N} (\widehat{Y}_i - Y_i)^2 \\
= \frac{\partial}{\partial \alpha} \frac{1}{2N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)^2 \qquad = \frac{1}{2N} \sum_{i=1}^{N} \frac{\partial}{\partial \beta} (\alpha + \beta X_i - Y_i)^2 \\
= \frac{1}{2N} \sum_{i=1}^{N} \frac{\partial}{\partial \alpha} (\alpha + \beta X_i - Y_i)^2 \qquad = \frac{1}{2N} \sum_{i=1}^{N} 2(\alpha + \beta X_i - Y_i) \frac{\partial}{\partial \beta} (\alpha + \beta X_i - Y_i) \\
= \frac{1}{2N} \sum_{i=1}^{N} 2(\alpha + \beta X_i - Y_i) \frac{\partial}{\partial \alpha} (\alpha + \beta X_i - Y_i) \qquad = \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i$$

# **Gradient Descent: Regression**

Gradient Descent Algorithm (linear regression)

Repeat until convergence:

$$\alpha < -\alpha - R_N^{\frac{1}{N}} \sum_{i=1}^N (\alpha + \beta X_i - Y_i)$$

$$\beta < -\beta - R^{\frac{1}{N}\sum_{i=1}^{N}(\alpha + \beta X_i - Y_i)X_i}$$



















### Outline

- Cost functions
- Gradient descent
  - Local Minima
  - Batch and Incremental versions
- Feature scaling

### **Local Minima?**

- What about local minima in gradient descent for regression?
- No problem!
- Cost function in regression is convex
  - Convex: second derivative is non-negative
  - More intuitively: a continuous function where the midpoint of any interval doesn't exceed the mean of the endpoints



### **Local Minima?**





- Several options
  - Use multiple initialization points
  - Or use "smart" starting points (e.g., Xavier, He initialization)
  - Momentum can help
    - E.g., Nesterov Accelerated Gradient (NAG), RMSprop, Adam
  - Adaptive learning rates can help

# Stopping conditions

```
Choose an initial vector of parameters \alpha, \beta
Choose learning rate R
Repeat until convergence (i.e., until an approximate minimum is obtained): \alpha <-\alpha - R \frac{\partial}{\partial \alpha} J(\alpha,\beta)
\beta <-\beta - R \frac{\partial}{\partial \beta} J(\alpha,\beta)
```

- How to know a minimum has been obtained?
  - Look for small changes in the gradient
  - Look for small improvements in cost
  - Look for no changes in parameters
  - Set a stopping condition!

### Outline

- Cost functions
- Gradient descent
  - Local Minima
  - Batch and Incremental versions
  - Other issues
- Feature scaling

### Incremental vs. Batch Gradient Descent

In "Batch" gradient descent

Repeat until convergence:

Compute 
$$\nabla \alpha = \frac{\partial}{\partial \alpha} J(\alpha, \beta) = \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i)$$
  
Compute  $\nabla \beta = \frac{\partial}{\partial \beta} J(\alpha, \beta) = \frac{1}{N} \sum_{i=1}^{N} (\alpha + \beta X_i - Y_i) X_i$ 

Global gradient, computed over all training data

$$\alpha \leftarrow \alpha - R \nabla \alpha$$
$$\beta \leftarrow \beta - R \nabla \beta$$

Single, simultaneous update

Note: each step uses all training examples!

# **Batch Gradient Descent**



### Incremental vs. Batch Gradient Descent

"Iterative" (stochastic) version of gradient descent:

```
Repeat until an approximate minimum is obtained: Randomly shuffle examples in the training set For each example i: \alpha <-\alpha - R\frac{\partial}{\partial\alpha}J(\alpha,\beta) \qquad // \text{ evaluate } \frac{\partial}{\partial\alpha}J(\alpha,\beta) \text{ at } x_i \text{ and update } \alpha \beta <-\beta - R\frac{\partial}{\partial\beta}J(\alpha,\beta) \qquad // \text{ evaluate } \frac{\partial}{\partial\alpha}J(\alpha,\beta) \text{ at } x_i \text{ and update } \beta
```

- The parameters are adjusted with each training instance, iteratively
- Also: Mini-batch

### **Stochastic Gradient Descent**



### Outline

- Cost functions
- Gradient descent
- Feature scaling

# Feature scaling

- In gradient descent, we "take a step" in the direction where the decrease in cost is greatest
- When some features (axes) are on different scales, gradient descent can be inefficient
  - Putting different features on same scale can make gradient descent much faster





### Feature scaling

- Feature scaling is an important pre-processing step for many common machine learning algorithms
  - Standardization: (mean 0 standard dev. 1)

$$x_{ik}' = \frac{x_{ik} - \bar{x}_k}{s_k}$$

- $s_k$  is typically standard deviation of  $x_k$ , or range (max-min) of  $x_k$
- Also common: force feature to be roughly between -1 and 1:

$$x'_{ik} = \frac{x_{ik}}{\max(|x_k|)}$$

Note: normalization parameters should be learned on training data

# Key Concepts (today's lecture)

- Cost Functions
- Gradient Descent
- Local and global minima
- Convex functions
- Incremental vs. Batch GD
- Learning rates
- Feature scaling