КРАТКОЕ ОПИСАНИЕ УСТРОЙСТВА GRAVITON S-600

ОГЛАВЛЕНИЕ

- 1. Описание устройства
- 2. Общий принцип работы устройства
- 3. Условия выхода микроконтроллера из режима Sleep Mode
- 4. Алгоритм действий микроконтроллера при выходе из режима Sleep Mode.
- 5. Формат передаваемых сообщений для каждого замера
- 6. Условия радиообмена
- 7. Дистанционный мониторинг и настройка параметров
- 8. Активация устройства, после установки на контролируемую конструкцию
- 9. Настраиваемые пользователем значения

1. Описание устройства

GRAVITON S-550 представляет собой инклинометр с радиомодемом, автономным питанием и дополнительными датчиками. Прибор предназначен для дистанционного мониторинга угла наклона и амплитуды раскачивания различных инженерных сооружений. Он позволяет в режиме реального времени детектировать выход контролируемых значений за установленные пороги, передавать сигнал тревоги в сетях NB IoT \ 3G, а также накапливать данные периодических измерений.

2. Общий принцип работы устройства

В режиме функционирования устройство максимально экономит электроэнергию. Под напряжением питания находятся только, акселерометр (в режиме sleep mode) и усилители электрохимического датчика газа. Периферийные устройства отключены от цепей питания при помощи транзисторных ключей. Микроконтроллер переведён в режим sleep mode (поддерживается работа часов реального времени).

3. Условия выхода микроконтроллера из режима Sleep Mode

Микроконтроллер выходит из режима sleep mode по двум условиям:

- 1. Командой внутренних часов, через установленные временные промежутки (настраивается пользователем дистанционно).
- 2. Командой акселерометра, выходящего из режима Sleep Mode, при превышении установленных порогов (настраивается пользователем дистанционно).

4. Алгоритм действий микроконтроллера при выходе из режима Sleep Mode.

- 1. Включение всей периферии (устанавливается пользователем)
- 2. Замер температуры воздуха
- 3. Замер влажности воздуха
- 4. Замер освещённости
- 5. Замер атмосферного давления
- 6. Замер температуры инклинометра
- 7. Замер угла наклона инклинометром в осях X,Y
- 8. Замер уровня содержания СО
- 9. Замер уровня относительного качества воздуха
- 10. Замер напряжения встроенной батареи.
- 11. Запись всех полученных значений в энергонезависимую память

Для датчиков, требующих времени, для выхода на рабочий режим, замер должен происходить по истечении необходимого времени.

5. Формат передаваемых сообщений для каждого замера

№ устройства, дата, время, угол наклона в осях X,Y, максимальная амплитуда раскачивания (уровень воздействия, выражающийся в единицах ускорения), температура инклинометра, температура воздуха, влажность воздуха, атмосферное давление, уровень освещённости, содержание СО, качество воздуха, напряжение встроенной батареи.

6. Условия радиообмена

В случае превышения любого из установленных порогов по любому из контролируемых параметров (определяются микроконтроллером после выхода из режима sleep mode), осуществляется включение радиомодема, передача текущих значений, а также архива событий, накопленных с момента последнего радиообмена с последующим переходом в режим Sleep Mode.

Если для устройства были заданы новые пороги контролируемых параметров, то они записываются в устройство после передачи им всех текущих и архивных событий. После записи новых значений, устройство передаёт вновь установленные значения порогов и переходит в режим Sleep Mode.

В случае, если превышения порогов отсутствуют, производится только запись параметров в энергонезависимую память и переход в режим Sleep Mode.

При отсутствии тревожных событий, модем устройства выходит на связь каждые 1-1440 минут (устанавливается пользователем) и передаёт архив событий, накопленных с последнего сеанса связи. Если для устройства были заданы новые пороги контролируемых параметров, то они записываются в устройство после передачи им всех текущих и архивных событий. После записи новых значений, устройство передаёт вновь установленные значения порогов и переходит в режим Sleep Mode.

7. Дистанционный мониторинг и настройка параметров

При радиообмене, устройство передаёт данные и принимает команды конфигурирования в протоколе MQTT. В начале сеанса связи, при соединении с сервером, устройство делает запрос на наличие изменений настроек порогов контролируемых параметров и переходит к передаче текущих и архивных событий. Если изменения были, то происходит запись новых значений и отправка данных об изменённых значениях.

8. Активация устройства, после установки на контролируемую конструкцию

Процедура активации устройства производится после подачи на него напряжения питания. Напряжение питания подаётся на устройство, при удалении защитной пломбы. После подачи напряжения питания и активации устройства, запускается специальная программа конфигурирования, во время которой устройство отображает происходящие процессы, состоянием светового индикатора. Режим конфигурирования длится 1 час. В течении этого времени устройство выходит на связь и передаёт данные каждую минуту, а также указывает свечением светового индикатора правильность установки устройства на конструкции (Устройство должно быть установлено на конструкции с отклонением от вертикальной оси не более 10 градусов в осях X,Y. Если отклонение от вертикальной оси находится в допустимых пределах-горит зелёный индикатор, если отклонение выходит за допустимые пределы-горит красный индикатор.

9. Настраиваемые пользователем значения

Наименование	Параметры	Диапазон	Создаваемые триггеры
	запуска		
Время опроса	По расписанию, по	0-86400 секунд	Создание события в случае
инклинометра	триггеру		превышения значений,
	акселерометра		триггер передачи.
Время опроса	По расписанию	0-86400 секунд	Создание события в случае
акселерометра			превышения, триггер
			инклинометра.
Время опроса датчика	По расписанию	0-86400 секунд	Создание события в случае
температуры			превышения.
Время опроса датчика	По расписанию	0-86400 секунд	Создание события в случае
давления			превышения.
Время передачи	По расписанию, по	0-86400 секунд	Создание события в случае
модема	триггеру передачи.		ошибки.
Триггер передачи	Превышение	Моментально, но	
	порогов	не чаще чем в 0-	
	инклинометра,	86400 секунд	
	критическая		
	ошибка.		
Индикация	По расписанию, по	0-86400 секунд	
	триггеру ошибки.		
Запись усредненных	По расписанию	Усреднение или	
значений		пик детектор за	
		0-86400 секунд	
Время измерения	По расписанию	0-86400 секунд	Создание события в случае
напряжения батареи			ошибки, триггер передачи.
Время опроса датчика	По расписанию	0-86400 секунд	
освещенности			
Время опроса датчика	По расписанию	0-86400 секунд	Создание события в случае
чистоты воздуха			превышения, триггер
Время опроса датчика	По расписанию	0-86400 секунд	передачи.
CO			