Formulación y comparación de modelos con y sin periodos

February 23, 2023

Modelo con periodos

Este modelo estudia la recuperación de elementos dañados de la red de distribución. Se desarrolla en un momento avanzado de la catástrofe, tras evacuación y rescate; en la fase de recuperación y distribución. La ayuda a enviar se considera discretizada. Se asume que el primer periodo se inicia una vez se ha realizado la reconstrucción de las rutas.

Este modelo es fundamentalmente un problema de rutas con las limitaciones añadidas de los arcos no usables.

Tener en cuenta periodos implica mayor coste computacional. Como ventaja, permitiría implementar el factor seguridad como un problema de rutas así como hacer depender otros factores del tiempo o incluir eventos.

Conjuntos

Variable	Subíndices	Descripción	
j, i	*	Nodos. Representan los asentamientos.	
t	*	Periodos. Se asumen de misma duración ademas de que todos	
		los arcos se pueden recorrer en uno de estos periodos	

Parámetros

Variable	Subíndices	Descripción	
dem	j	Demanda por cada asentamiento de un único recurso en	
		cierta unidad discreta	
max_camiones		Máximo número de camiones que podemos mandar en total	
		a la misión. Se asume que cada camión transporta exacta-	
		mente una unidad del recurso a repartir	
max_puentes		Máximo número de puentes que podemos reconstruir pre-	
		vio paso a los camiones (un puente por cada sentido. con-	
		sideramos un grafo orientado)	
E	i, j	Existe la ruta de i a j	
U	i, j	Al inicio es utilizable la ruta de i a j	

Variables

Variable	Subíndices	Descripción
X	i, j, t	Camiones que van de i a j en el periodo t
Y	j, t	Camiones que hay en j en el periodo t. Se asume que pueden
		seguir su ruta, quedarse en j para proseguir su ruta en otro
		periodo o permanecer en j hasta el final del último periodo
Z	j	Camiones totales emplazados en j al final del último periodo.
		Se asume que en ese momento hacen el reparto a j
auxZ	j	Variable binaria que representa si se reparte al menos una
		unidad de recurso a j
Н	i, j	Variable binaria que determina si habilitamos el puente de i a j

Ecuaciones

Variable	Subíndices	Descripción
definir_Y	j, t	Restricción de almacenamiento. En cierto nodo per-
		manece lo almacenado en el anterior periodo más lo que
		entra a él en el presente menos lo que sale de él. No se
		incluye otra limitación de capacidad pues los nodos son
		asentamientos. El almacenaje debe ser discreto, no se ba-
		jan suministros de los camiones.
$definir_{-}Z$	j	Determina lo repartido como lo ubicado en cierto nodo en
		el último periodo
$definir_auxZ$	j	
lim_salida] j, t	Limita las unidades que pueden salir de un nodo a las
		almacenadas en el mismo
flujo_ini	j	No hay almacenado nada en ningún nodo no inicial
flujo_ini_0		En el nodo inicial esta almacenada la totalidad de los
		camiones
existencia_ruta	i, j, t	
usabilidad_ruta	i, j, t	
orientacion	i, j	Si se habilita un sentido se ha de habilitar el opuesto
lim_puentes		Límite de puentes que podemos reconstruir
lim_demanda	j	No se puede superar la demanda
f_ayuda		Función objetivo 1. Cantidad total del recurso repartida,
		en cierta unidad
f_equidad		Función objetivo 2. Criterio de equidad. Número de nodos
		a los que se les reparte al menos una unidad del recurso

Definición de las ecuaciones

 $\mathbf{definir}_{-}\mathbf{Y}_{j,t}$

$$\mathbf{Y}_{j,t} = \mathbf{Y}_{j,t-1} + \sum_{i} \mathbf{X}_{i,j,t} - \sum_{i} \mathbf{X}_{j,i,t}$$
 $\forall j, t \mid (\text{ord}(\mathbf{t}) > 1)$

 $\mathbf{definir}_{-}\mathbf{Z}_{j}$

$$\mathbf{Z}_{j} = \mathbf{Y}_{j,3}$$

 $\mathbf{definir}_{-}\mathbf{aux}\mathbf{Z}_{j}$

$$\operatorname{aux}\mathbf{Z}_j \leq \mathbf{Z}_j$$

 $\mathbf{lim}_{-}\mathbf{salida}_{j,t}$

$$\sum_{i} X_{j,i,t} \le Y_{j,t-1}$$
 $\forall j, t$

 $\mathbf{flujo_ini}_j$

$$Y_{j,0} = 0$$
 $\forall j \mid (\operatorname{ord}(j) > 1)$

flujo_ini_0

 $Y_{0,0} = max_camiones$

existencia_ruta $_{i,j,t}$

$$X_{i,j,t} \leq M \cdot E_{i,j}$$

 $\mathbf{usabilidad_ruta}_{i,j,t}$

$$X_{i,j,t} \le M \cdot (U_{i,j} + H_{i,j})$$
 $\forall i, j, t$

 $orientacion_{i,j}$

$$\mathbf{H}_{i,j} = \mathbf{H}_{j,i}$$

 $lim_puentes$

$$\sum_{i} (\sum_{j} \mathbf{H}_{i,j}) \leq \text{max_puentes}$$

 $lim_demanda_j$

$$\mathbf{Z}_j \leq \mathbf{dem}_j$$

$f_{-}ayuda$

$$\mathrm{Ayuda} = \sum_{j} (\mathrm{Z}_{j} - \mathrm{dem}_{j})$$

$f_equidad$

$$\mathrm{Eq} = \sum_{j} \mathrm{aux} \mathrm{Z}_{j}$$

$$\begin{aligned} \mathbf{Y}_{j,t} &\in \mathbb{Z}_{+} \forall j, t \\ \mathbf{X}_{i,j,t} &\in \mathbb{Z}_{+} \forall i, j, t \\ \mathbf{Z}_{j} &\in \mathbb{Z}_{+} \forall j \\ \mathrm{aux} \mathbf{Z}_{j} &\in \{0, 1\} \ \forall j \\ \mathbf{H}_{i,j} &\in \{0, 1\} \ \forall i, j \end{aligned}$$

Modelo sin periodos

Este modelo es esencialmente un problema de flujo. A diferencia del primer modelo los nodos son catalogados en tres tipos según si emiten o reciben suministros. Además, el flujo es contínuo. Se ha obviado la limitación de no superar la demanda para conseguir mayor factibilidad.

No tener en cuenta periodos ni la mitad de los nodos permite manejar ejemplos más grandes. Sacrificamos determinar en qué instante sucede qué evento. Sin embargo, criterios como el tiempo que tarda en llegar la ayuda se pueden implementar de otras formas más eficientes que incluir convertir muchas restricciones en familias dependientes del periodo.

Esta propuesta es más parecida al modelo RecHADS.

Conjuntos

Variable	Subíndices	Descripción	
j, i	*	Nodos. Representan los asentamientos. En este modelo hemos	
		de distinguir entre transitorios, destino y origen	

Parámetros

Variable	Subíndices	Descripción	
dem	j	Demanda por cada asentamiento de un único recurso en	
		cierta unidad contínua	
max_ayuda		Máxima cantidad de ayuda que podemos mandar en total	
		a la misión. Se asume que se puede transportar cualquier	
		cantidad sin coste temporal o económico alguno	
max_puentes		Máximo número de puentes que podemos reconstruir previo	
		paso al transporte de la ayuda	
E	i, j	Existe la ruta de i a j	
U	i, j	Al inicio es utilizable la ruta de i a j	

Variables

Variable	Subíndices	Descripción	
X	i, j	Flujo de i a j. Es contínuo. Puede ser negativo si el de j a a i	
		es positivo	
Y	j	Flujo que se queda en j	
auxZ	j	Variable binaria que determina si llega alguna ayuda a j	
H	i, j	Variable binaria que determina si habilitamos el puente (i,j)	
Insatisaux		Variable auxiliar para definir la demanda insatisfecha	

Ecuaciones

Variable	Subíndices	Descripción
definir_Y	j	Ecuación de flujo
solo_arcos_buenos	i, j	Consideramos de flujo nulo la mitad de los nodos. Así
		consideramos un grafo no orientado
lim_provisiones		Límite en la cantidad de ayuda que podemos enviar
flujo_nulo	j	En los nodos transitorios el flujo es nulo
existencia_ruta	i, j	
usabilidad_ruta	i, j	
existencia_ruta_min	i, j	En este modelo son necesarias 2 restricciones para
		que el flujo sea nulo y no negativo en los arcos no
		existentes
usabilidad_ruta_min	i, j	Ídem con los no usables
$\lim_{ ext{puentes}}$		
def_insatisaux	*	Definimos la demanda insatisfecha
def_auxZ1	j	Definimos los nodos a los que llega alguna ayuda
$def_{aux}Z2$	j	A los nodos transitorios no puede llegar ninguna
		ayuda por lo que no se tienen en cuenta para la
		función objetivo
$f_{insatis}$		Función objetivo 1. Demanda insatisfecha total
f_eq		Función objetivo 2. Criterio de equidad. Número
		de nodos a los que se les reparte alguna cantidad de
		ayuda

Definición de las ecuaciones

$\mathbf{definir}_{-}\mathbf{Y}_{j}$

$$Y_j = \sum_i X_{i,j} - \sum_i X_{j,i}$$

$\mathbf{solo_arcos_buenos}_{i,j}$

$$X_{j,i} = 0$$
 $\forall i, j \mid (\operatorname{ord}(i) \leq \operatorname{ord}(j))$

$lim_{-}provisiones$

 $\mathrm{Y}_0 \geq -\mathrm{max_ayuda}$

$flujo_nulo_j$

$$\mathbf{Y}_j = 0 \qquad \qquad \forall j \mid ((\mathrm{ord}(\mathbf{j}) > 1) \land (\mathrm{ord}(\mathbf{j}) \leq 4))$$

$existencia_ruta_{i,j}$

$$X_{i,j} \leq M \cdot E_{i,j}$$

 $\mathbf{usabilidad_ruta}_{i,j}$

$$X_{i,j} \le M \cdot (U_{i,j} + H_{i,j})$$
 $\forall i, j$

 $existencia_ruta_min_{i,j}$

$$X_{i,j} \ge -(M \cdot E_{i,j})$$

 $usabilidad_ruta_min_{i,j}$

$$X_{i,j} \ge -(M \cdot (U_{i,j} + H_{i,j}))$$
 $\forall i, j$

 $lim_puentes$

$$\sum_{i} (\sum_{j} \mathbf{H}_{i,j}) \leq \text{max_puentes}$$

 $\mathbf{def_insatisaux}_j$

Insatisaux
$$\geq \text{dem}_j - \mathbf{Y}_j$$
 $\forall j \mid (\text{ord}(\mathbf{j}) \geq 5)$

 $\mathbf{def}_{-}\mathbf{aux}\mathbf{Z}\mathbf{1}_{j}$

$$\operatorname{aux} \mathbf{Z}_j \le M \cdot \mathbf{Y}_j \qquad \forall j \mid (\operatorname{ord}(\mathbf{j}) \ge 5)$$

 $\mathbf{def}_{-}\mathbf{aux}\mathbf{Z2}_{j}$

$$\operatorname{auxZ}_j = 0 \qquad \forall j \mid (\operatorname{ord}(j) \le 4)$$

 f_eq

$$\mathrm{Eq} = \sum_{j} \mathrm{aux} \mathbf{Z}_{j}$$

 $f_{-}insatis$

$${\it Insatis} = \sum_j {\it Insatisaux}$$

 $\begin{aligned} \mathbf{H}_{i,j} &\in \{0,1\} \ \forall i,j \\ \text{Insatisaux} &\geq 0 \ \forall \\ \text{aux} \mathbf{Z}_j &\in \{0,1\} \ \forall j \end{aligned}$