CMPE 110 Laboratory Exercise 2 Ohm's Law

Andrei Tumbar

Performed: September 05, 2019 Submitted: September 19, 2019

Lab Section: 05

Instructor: Mark Byers

TA: Rickie Yeung Tommy Li

Lecture Section: 01 Professor: Dr. Soldavini

By submitting this report, you attest that you neither have given nor have received any assistance (including writing, collecting data, plotting figures, tables or graphs, or using previous student reports as a reference), and you further acknowledge that giving or receiving such assistance will result in a failing grade for this course.

Your Signature:		
Vour Signafure		
Tour Digitature.		

Abstract

Understanding Ohm's Law as well as Kirchoff's loop laws is an important This labratory exercise exposes the relationship between voltage, current, and resistance in both a parallel and series configuration. A powersupply supplied a variable voltage across 3 resistors, two in parallel and the third in series. An effective resistance was calculated and compared to a measured resistance. Potential drop across resistors was measured at every integer voltage from 2-5V. A Voltage vs. Current graph was generated illustrating the linear relationship between the two variables for ohmic resistors.

Design Methodology

The three smallest resistors were determined. Resistors were named R_1 , R_2 , and R_3 in order by increasing resistance. The actual resistance was measured using the multimeter's ohmeter function (See table 1).

Figure 1: Circuit configuration given R_1 , R_2 , and R_3 have accending resistances.

A circuit was wired on a breadboard such that R_2 and R_3 were placed in parallel to each other and in series to R_1 . Figure 1 shows an example circuit in the correct configuration. With the power supply voltage set to 5V, potential drop across R_1 and R_2 was taken. This step was repeated for 2V, 3V, and 4V across the power supply (table 2).

Current through all three resistors was measured at a 5V total potential (see table 3). An effective resistance for the entire circuit was calculated. First the two parallel branches were combined through the following formula:

$$R_{eq} = \frac{1}{\sum \frac{1}{R_i}}$$

Resistance of R_1 was added to the value about yielding a total effective resistance of the circuit.

Finally, current through R_3 was measured from 2-5V at 1V intervals from the power supply and recorded (See table 4). Using this data, a graph was generated for Voltage vs. Current through R_3 (See figure 2).

Results and Analysis

Resistance

Measured resistance in R_1 R_2 and R_3 showed great accuracy to the rated resistance. Table 1 shows that all measured resistances are with the tolerance rated for each resistor.

Table 1: Measurements taken for all three resistors.

	Banded Values		Measured Values	
	Rated Resistance Rated Tolerance		Actual Resistance	
	(Ω)	(%)	(Ω)	
R_1	330	± 5	328.00	
R_2	3330	± 5	3396.00	
R_3	5600	± 5	5598.80	

Voltage

As expected, the voltage across R_1 and R_2 scale proportionally to the voltage across the power supply.

Table 2: Voltage measured across R_1 and R_2 .

	V_{PS}	V_{R_1}	V_{R_2}
~2V	1.997	0.268	1.728
~3V	2.997	0.402	2.592
$^{\sim}4\mathrm{V}$	3.998	0.536	3.457
~5V	4.999	0.670	4.320

Current

Table 3: Voltage measured across R_1 and R_2 .

Current through any of the three resistors yielded very low numbers because the effective resistance was so high. Effective resistance came out to be 2441.84Ω calculated from:

$$R_{eq} = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = 2441.84\Omega$$

Results

Table 4 was generated by measuring the current through R_3 and the power supply at every 1V interval from 2-5V. The last column was generated by applying Ohm's Law V = IR.

Table 4: Table to test captions and labels

Voltage	$ m V_{PS}$	V_{R_3}	$ m I_{PS}$	$ m I_{R_3}$	R_3
(V)	(V)	(V)	(mA)	(mA)	(Ω)
2	1.997	1.728	0.815	0.308	5616.88
3	2.997	2.592	1.220	0.463	5593.95
4	3.998	3.475	1.630	0.617	5607.78
5	4.999	4.320	2.040	0.771	5603.11

Figure 2: Voltage over R_3 vs Current through R_3

Figure 2 displays the data from table 4 for I_{R_3} on the X-axis and V_{R_3} on the Y-axis. The slope in figure 2 represents the resistance of R_3 in $k\Omega$ because according to Ohm's Law $R = \frac{V}{I}$.

Conclusion

The linear relationship between voltage and current through an ohmic resistor is an important concept in circuits.