Section 7.3: Recursion

CS1231S Discrete Structures

Wong Tin Lok

National University of Singapore

18 September 2020

- ► LumiNUS > Forum > Suggestions for Tin Lok (anonymous)
- open until 23:59 on Sunday27 September, 2020

$$a_{n+1} = a_n + (n+1)$$
 for all

Exercise 7.3.3 Let $a_1=1$ and $a_{n+1}=a_n+(n+1)$ for all $n\in\mathbb{Z}_{\geqslant 1}$. Find a general formula for a_n in terms of n that does not involve a_0,a_1,\ldots,a_{n-1} .

Tell me your answer at https://pollev.com/wtl.

Solution

$$a_n = a_{n-1} + n$$
 by the definition of a_{n-1} ;
 $= a_{n-2} + (n-1) + n$ by the definition of a_{n-2} ;

:

$$=a_1+2+3+\cdots+(n-1)+n$$

by the definition of a_2 ;

$$= 1 + 2 + 3 + \cdots + (n-1) + n$$

by the definition of a_1 ;

$$=\frac{1}{2}n(n+1)$$
 by Example 7.1.3.

- LumiNUS > Forum > Suggestions for Tin Lok (anonymous)
- open until 23:59 on Sunday 27 September, 2020

Exercise 7.3.3

Let $a_1 = 1$ and $a_{n+1} = a_n + (n+1)$ for all

$$n \in \mathbb{Z}_{\geqslant 1}$$
. Find a general formula for a_n in terms of n that does not

involve $a_0, a_1, \ldots, a_{n-1}$.

Tell me your answer at https://pollev.com/wtl.

Recursion

What we saw

- Mathematical Induction (MI)
- Strong Mathematical Induction (Strong MI)
- ► Well-Ordering Principle

Now

- recursively defined sequences
- recursively defined sets
- structural induction

Why recursion

- ▶ Induction and recursion are inseparable partners.
- Recursive processes appear naturally and ubiquitously.
- ▶ Recursion is a central concept in computations.

https://tex. stackexchange. com/a/146583

Recursively defined sequences

Terminology 7.3.1

A sequence a_0, a_1, a_2, \ldots is said to be *recursively defined* if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{\geqslant 0}$.

Example 7.3.2

(1) Define $0!,1!,2!,\ldots$ by setting, for each $n\in\mathbb{Z}_{\geqslant 0}$,

$$0! = 1$$
 and $(n+1)! = (n+1) \times n!$.

Then
$$1! = 1 \times 1 = 1$$
, $2! = 2 \times 1 = 2$, $3! = 3 \times 2 = 6$, $4! = 4 \times 6 = 24$,

(2) The *Fibonacci sequence* F_0, F_1, F_2, \ldots is defined by setting, for each $n \in \mathbb{Z}_{\geqslant 0}$,

$$F_0 = 0$$
 and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$.

Then
$$F_2=1+0=1$$
, $F_3=1+1=2$, $F_4=2+1=3$, $F_5=3+2=5$, ...

Recursively defined sequences

Terminology 7.3.1

A sequence a_0, a_1, a_2, \ldots is said to be recursively defined if the definition of a_n involves $a_0, a_1, \ldots, a_{n-1}$ for all but finitely many $n \in \mathbb{Z}_{\geq 0}$.

Example 7.3.2

(3) Fix
$$r \in [0,4]$$
 and $p_0 \in [0,1]$. Define p_1, p_2, \ldots by setting, for each $n \in \mathbb{Z}_{\geq 0}$, $p_{n+1} = r(p_n - p_n^2)$.

If r=3 and $p_0=1/2$, then

$$p_{n+1} = r(p_n - p_n).$$
Search for "logistic map".
$$p_1 = 3\left(\frac{1}{2} - \left(\frac{1}{2}\right)^2\right) = \frac{3}{4}, \qquad p_2 = 3\left(\frac{3}{4} - \left(\frac{3}{4}\right)^2\right) = \frac{9}{16}, \qquad \dots$$

(4) Fix
$$a_0\in\mathbb{Z}^+$$
. Define a_1,a_2,a_3,\ldots by setting, for each $n\in\mathbb{Z}_{\geqslant 0}$,

(4) Fix
$$a_0 \in \mathbb{Z}^+$$
. Define a_1, a_2, a_3, \ldots by setting, for each $n \in \mathbb{Z}_{\geqslant 0}$, $a_{n+1} = \begin{cases} a_n/2, & \text{if } a_n \text{ is even;} \\ 3a_n+1, & \text{if } a_n \text{ is odd.} \end{cases}$ Search for "Collatz Conjecture".

If
$$a_0 = 1$$
, then $a_1 = 3 \times 1 + 1 = 4$, $a_2 = 4/2 = 2$, $a_3 = 2/2 = 1$,

Well definition of the Fibonacci sequence

Definition 7.2.2

The *Fibonacci sequence* F_0, F_1, F_2, \ldots is defined by setting, for each $n \in \mathbb{Z}_{\geq 0}$,

$$F_0 = 0$$
 and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$.

Proposition 7.3.4

There is a unique sequence a_0, a_1, a_2, \ldots satisfying, for each $n \in \mathbb{Z}_{\geq 0}$,

$$a_0 = 0$$
 and $a_1 = 1$ and $a_{n+2} = a_{n+1} + a_n$.

Proof sketch

- \blacktriangleright (Existence) Show by induction on n that a_n exists for every $n \in \mathbb{Z}_{\geq 0}$.
- lackbox (Uniqueness) Let b_0, b_1, b_2, \ldots and c_0, c_1, c_2, \ldots be sequences such that

$$b_0 = 0$$
 and $b_1 = 1$ and $b_{n+2} = b_{n+1} + b_n$; and $c_0 = 0$ and $c_1 = 1$ and $c_{n+2} = c_{n+1} + c_n$.

Show by induction on n that $b_n = c_n$ for every $n \in \mathbb{Z}_{\geq 0}$.

Principle 7.1.1: Mathematical Induction (MI)

To prove that $\forall n \in \mathbb{Z}_{\geq 0}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(0) is true; (induction step) show that $\forall k \in \mathbb{Z}_{\geq 0}$ $(P(k) \Rightarrow P(k+1))$ is true.

Justification

$$P(0)$$
 by the base step;
 $P(0) \Rightarrow P(1)$ by the induction step with $k = 0$;
 $P(1) \Rightarrow P(2)$ by the induction step with $k = 1$;
 \vdots

We deduce that $P(0), P(1), P(2), \ldots$ are all true by a series of modus ponens.

Ultimate reason

- (1) $0 \in \mathbb{Z}_{\geq 0}$. (2) If $x \in \mathbb{Z}_{\geq 0}$, then $x + 1 \in \mathbb{Z}_{\geq 0}$.
- (3) Membership for $\mathbb{Z}_{\geqslant 0}$ can always be demonstrated by (finitely many) successive applications of the clauses above.

Recursive definition of $\mathbb{Z}_{\geqslant 0}$

Example 7.3.6

 $0\in\mathbb{Z}_{\geqslant 0}$

by (1).

 $1\in\mathbb{Z}_{\geqslant 0}$ $2\in\mathbb{Z}_{\geqslant 0}$

by (2) and the previous line. by (2) and the previous line.

Theorem 7.3.5 and Terminology 7.3.8

It can be shown that $\mathbb{Z}_{\geqslant 0}$ is the unique set satisfying (1)–(3). So we can view (1)–(3) as a definition of $\mathbb{Z}_{\geqslant 0}$. This is called a *recursive definition* of $\mathbb{Z}_{\geqslant 0}$.

Remark 7.3.7

(1) and (2) are true when $\mathbb{Z}_{\geqslant 0}$ is changed to \mathbb{Q} , but (3) is not.

Ultimate reason

- (1) $0 \in \mathbb{Z}_{\geqslant 0}$. (base clause)
- (2) If $x \in \mathbb{Z}_{\geqslant 0}$, then $x + 1 \in \mathbb{Z}_{\geqslant 0}$. (recursion clause)
- (3) Membership for $\mathbb{Z}_{\geqslant 0}$ can always be demonstrated by (finitely many) successive applications of the clauses above. (*minimality clause*)

Recursive definition of $2\mathbb{Z}_{\geq 1}$

Example 7.3.9

The set $2\mathbb{Z}_{\geq 1}$ of all positive even integers can be defined recursively as follows.

- (1) $2 \in 2\mathbb{Z}_{\geqslant 1}$. (base clause)
- (2) If $x \in 2\mathbb{Z}_{\geqslant 1}$, then $x + 2 \in 2\mathbb{Z}_{\geqslant 1}$. (recursion clause)
- (3) Membership for $2\mathbb{Z}_{\geqslant 1}$ can always be demonstrated by (finitely many) successive applications of clauses above. (minimality clause)

Theorem 7.3.10 (Structural induction over $2\mathbb{Z}_{\geq 1}$)

To prove that $\forall n \in 2\mathbb{Z}_{\geqslant 1}$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(2) is true; and (induction step) show that $\forall x \in 2\mathbb{Z}_{\geqslant 1}$ $\left(P(x) \Rightarrow P(x+2)\right)$ is true.

Question 7.3.11

Define a set S recursively as follows.

- (1) $1 \in S$. (base clause)
- (2) If $x \in S$, then $2x \in S$ and $3x \in S$. (recursion clause)
- (3) Membership for S can always be demonstrated by (finitely many) successive applications of clauses above. (minimality clause)

Which of the numbers 9, 10, 11, 12, 13 are in S? Which are not? Answer

$$9,12 \in S$$
 and $10,11,13 \not\in S$.

Observation $S = \{2^a 3^b : a, b \in \mathbb{Z}_{\geqslant 0}\}.$

Structural induction over S

To prove that $\forall n \in S$ P(n) is true, where each P(n) is a proposition, it suffices to: (base step) show that P(1) is true; and

(induction step) show that
$$P(1)$$
 is true; and (induction step) show that $\forall x \in S \ (P(x) \Rightarrow P(2x) \land P(3x))$ is true.

and

pollev.com/wtl

Well-formed formulas in propositional logic

Let $\boldsymbol{\Sigma}$ be a nonempty set.

Definition 7.3.12

Define the set $WFF(\Sigma)$ recursively as follows.

- (1) Every element p of Σ is in WFF(Σ). (base clause)
- (2) If x, y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ). (recursion clause)
- (3) Membership for WFF(Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)

Example 7.3.13

Let $\Sigma = \{p, q\}$. Then

Well-formed formulas in propositional logic

Let $\boldsymbol{\Sigma}$ be a nonempty set.

Definition 7.3.12

Define the set $WFF(\Sigma)$ recursively as follows.

- (1) Every element p of Σ is in WFF(Σ). (base clause)
- (2) If x, y are in WFF(Σ), then $\sim x$ and $(x \wedge y)$ and $(x \vee y)$ are in WFF(Σ). (recursion clause)
- (3) Membership for WFF(Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)

Example 7.3.14

Let $\Sigma = \{p, q\}$. Then

Definition 7.3.16

Define the set WFF $^+(\Sigma)$ recursively as follows.

- (1) Every element p of Σ is in WFF⁺(Σ). (base clause)
- (2) If x, y are in WFF⁺(Σ), then \Longrightarrow and $(x \land y)$ and $(x \lor y)$ are in WFF⁺(Σ). (recursion clause)
- (3) Membership for WFF $^+$ (Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)

Question (informal)

Is every element of WFF(Σ) equivalent to one that does not involve \sim ?

Question (formal)

Is it true that $\forall x \in \mathsf{WFF}(\Sigma) \ \exists y \in \mathsf{WFF}^+(\Sigma) \ y \equiv x$?

Let Σ be a nonempty set.

Definition 7.3.16

Define the set $WFF^+(\Sigma)$ recursively as follows.

- (1) Every element p of Σ is in WFF⁺(Σ). (base clause)
- (2) If x, y are in WFF⁺(Σ), then \Longrightarrow and $(x \land y)$ and $(x \lor y)$ are in WFF⁺(Σ). (recursion clause)
- (3) Membership for WFF $^+$ (Σ) can always be demonstrated by (finitely many) successive applications of the clauses above. (minimality clause)

Theorem 7.3.18 (Structural induction over WFF $^+(\Sigma)$)

To prove that $\forall x \in \mathsf{WFF}^+(\Sigma)$ P(x) is true, where each P(x) is a proposition, it suffices to:

(base step) show that P(p) is true for every $p \in \Sigma$; (induction step) show that $\forall x, y \in \mathsf{WFF}^+(\Sigma) \ (P(x) \land P(y) \Rightarrow P((x \land y)) \land P((x \lor y)))$.

All-false assignments

Let Σ be a nonempty set.

If $x \in \mathsf{WFF}^+(\Sigma)$, then assigning **false** to all the elements of Σ makes x evaluate to **false**.

Theorem 7.3.20

 $\exists x \in \mathsf{WFF}(\Sigma) \ \forall y \in \mathsf{WFF}^+(\Sigma) \ y \not\equiv x.$

Proof

- 1. Take $p \in \Sigma$. This is possible since $\Sigma \neq \emptyset$.
- 2. Pick any $y \in WFF^+(\Sigma)$.
- 3. Assigning **false** to all the elements of Σ makes y evaluate to **false** by Lemma 7.3.19, but it makes $\sim p$ evaluate to \sim **false** \equiv **true**.
- 4. So $y \not\equiv \sim p$.

All-false assignments

Let Σ be a nonempty set.

Eemma 7.3.19

P(x)

If $x \in \mathsf{WFF}^+(\Sigma)$, then assigning **false** to all the elements of Σ makes x evaluate to **false**.

Proof

- 2. (Base step) P(p) is true for every $p \in \Sigma$ because assigning **false** to all the elements of Σ in particular assigns **false** to p.
- 3. (Induction step)
 - 3.1. Let $x, y \in \mathsf{WFF}^+(\Sigma)$ such that P(x) and P(y) are true, i.e., assigning **false** to all the elements of Σ makes both x and y evaluate to **false**.
 - 3.2. Then assigning **false** to all the elements of Σ must make $(x \wedge y)$ and $(x \vee y)$ evaluate to **false** by the induction hypothesis because

$$\mathsf{false} \land \mathsf{false} \equiv \mathsf{false} \equiv \mathsf{false} \lor \mathsf{false}.$$

- 3.3. So $P((x \land y))$ and $P((x \lor y))$ are true.
- 4. Hence $\forall x \in \mathsf{WFF}^+(\Sigma)$ P(x) is true by structural induction over $\mathsf{WFF}^+(\Sigma)$.

Summary

What we saw

- how to recursively define a set using base clauses, recursion clauses, and the minimality clause
- how to formulate and use structural induction over recursively defined sets
- how to recursively define functions on a recursively defined set

Next

integers

https://tex. stackexchange. com/a/146583

