Index

Abelson, H., 19, 384, 622, 624, 663	approximation algorithms, 617
abstraction, 524, 526-527, 531, 533-534,	Armoni, M., 390, 533, 537, 553, 556, 561, 562
555–557, 622, 784	artifacts, 183
CRA, 784–786	assessment, 284–286, 358, 414, 415, 416, 421–423,
academic development, 282–283	425–426, 431–433, 435
academic integrity, 421, 429, 430, 431, 434–435	automated, 427, 433, 643, 648-650
academic misconduct, 415, 421, 428-429, 434,	computational thinking, 534-537
435	K–12 education, 563
access, 482, 483-484, 489	learning outcomes, 416–417
accounts, 183	plagiarism, 416
ACM (Association for Computing	assessment design, 414, 415, 418, 429–430
Machinery), 293, 327, 328, 329	assessment literacy, 424–425
active learning, 304–305, 448–449, 451–452,	assessment repositories, 426
491–492, 502	assurance of learning, 284, 288
activities, 182–183, 456–457	ASSYST, 648, 649
activity theory, 217	attention, 234–235
Adaptive Control of Thought (ACT / ACT-R)	attitudes, 804, 812
model, 246	emotions, 816–817
Advanced Placement (AP) exams, 425	engagement, 814–816
Ahadi, A., 680, 686	interest, 813–814
Aivaloglo, E., 562	automated assessment, 427, 433, 643, 648–650
algorithm animations, 28–29	
algorithm visualization (AV), 650, 651–652	Ball, D. L., 715, 729
algorithmic thinking, 524, 525–526, 531	Bandura, A., 299, 806
algorithms, 29, 256, 380, 513-514, 520, 525-526,	Barnett, S. M., 250
530, 615–617, 786	BASIC, 11, 15, 21, 343
approximation, 617	Basso, K. H., 197–198
aliasing, 379, 388	batch programs, 382
Alice programming environment, 394, 756	Batista, A. L. F., 462
Almstrum, V., 532–533	Bayesian analysis, 133–134
alpha bloat, 168–169	beacons, 22
AlSulaiman, S., 670, 671	Bebras (international competition), 535, 537
Amos, D. M., 790–791	Beck, L., 454–455
analogical encoding, 253	behavioral psychology, 446–447
Anderson, G. L., 728	behaviorism, 244–245, 278–279, 447
Anderson, J. R., 22, 23, 210, 342	Ben-Ari, M., 390, 553, 556, 560, 561, 562, 788,
Anderson, R., 26	793–794
Angel, P., 464, 501	Ben-Bassat Levry, R., 560
Angotti, J. A. P., 462	Bennedsen, J., 71, 249, 260, 330, 331, 341–342,
animated representations, 28–29	345, 347, 354, 355, 357
ANOVA (analysis of variance), 144, 147, 150–157	Benotti, L., 560
Anton, G., 464, 501	Berland, M., 66, 67, 68, 337
Apa Pura, 627	Berlin Model, 549–550, 551, 563
APIs (Application Programming Interfaces),	Berliner, D. C., 730
612–613, 700	Berry, M., 341, 529

Bers, M. U., 519	cognitive factors, 802–803
biased statements, 494–496	cognitive load, 242, 256-259, 261, 343-344, 391
Biggs, J., 280, 282	notional machines, 388
Black, P., 416-417	Parsons' problems, 261
black students, 489, 492	subgoal labels, 253, 260–261
blended learning, 449, 457, 458–459	worked examples, 259–260
Blikstein, P., 665	cognitive processes, 279, 790–791
blocks-based languages, 19–20, 28, 382, 388,	Adaptive Control of Thought model, 246
389–391, 594	Soar Cognitive Architecture, 246
BlockyTalky project, 223–224, 620–621	cognitive psychology, 446, 447–449
Bodner, G. M., 299–300	cognitive science, 12, 20, 22, 209–210, 231, 232
Bonferroni correction, 169	cognitivism, 246–247, 279, 298, 423
Boolean operators, 783	Cohen's d, 130–131
Booth, S. E., 23, 24, 759	coherence, study design, 98-99
Bootstrap project, 26, 244, 566, 590	collaborative learning, 452–454, 502, 562–563,
Boustedt, J., 198–199, 449, 451, 757	829–830
Boxer programming language, 19–20, 586, 663	collusion, 419
Boyer, E. L., 276–277, 563	Common Lisp, 788
Boys' Needlework, 174-178, 179, 181, 186,	community engagement, 758–759
194–196, 201	comparison groups, 128
Brady, C. E., 464, 501, 591	computation, 513–514, 517, 608–609
Brennan, K., 519, 536, 628	computational agents, 515, 516, 517–518, 520,
Brooks, F. P., 329	591
Brooks, R. E., 14, 17, 22, 337, 357	computational design, 532–533
Brown, M. H., 28	computational literacy, 19, 27, 61–63, 585, 587,
Brown, N., 426, 430, 759	597, 670
Bruner, J. S., 212, 278	computational literacy rationale, 2, 59, 61–63
Buechley, L., 64, 66, 67–68, 71–72	computational modelling, 513, 524, 529–530
Burke, Q., 567	computational systems, 514, 516, 627–628
Butler, M., 434–435	computational thinking (CT), 61, 211, 513,
	514–517, 518–519, 522–525, 530–531,
Campos, P. G., 454	537–539, 540–541, 587–588, 625, 626–627,
camps, 755–756	631–632, 722–723
Cannara, A. B., 16, 17	abstraction, 524, 526-527, 533-534
Carbone, A., 418, 424, 453	algorithmic thinking, 524, 525-526
Carroll, J., 431	assessment, 534–537
Carver, S., 21, 587, 588	computational agents, 515, 516, 517-518, 520
case comparison, 196, 200-201	computational design, 532-533
Caspersen, M. E., 249, 260, 330, 331, 345, 347,	computational literacy, 62–63
357	computational modelling, 529–530
Catrambone, R., 348	decomposition, 524, 528-529
Ceci, S. J., 250	evaluation, 529
childhood education, early, 668-670	generalization, 524, 527-528
chi-squared test, 144, 159	K–12 education, 555–557
Chizhik, A., 454–455	logical thinking, 524, 526
Christopher (vignette), 492, 493	Papert, 30, 516
chunking, 236, 344, 780-781	programming, 532–533, 585
Clancy, M. J., 27, 66, 73, 344, 788	unplugged activities, 532
CLT (cognitive load theory), 84, 257, 258–259,	Wing, 60–61, 513, 516, 520–521, 587–588
298–299, 344–345	computational thinking rationale, 2, 59, 60–61
COBOL, 11, 17	Computational Thinking Test (CTt), 536, 537
Cochrane, J., 741, 742	computer education, 209–211, 216, 557–559,
code reuse, 419, 433–434	588–589
coding, 14–15, 72	computer music, 628–630
cognition, 711	computer science (CS), 59-60, 64, 65, 66-68, 70,
cognitive apprenticeship, 211, 213–215	72–73, 208, 547–549, 550–551, 594–596,
cognitive constructivism, 448	622–625, 631–632, 670–671
cognitive development, 242–244, 346–347	K-12 education, 569-570
- / /	•

Crosby, M. E., 453
CS1 (Computer Science 1), 328, 330–333,
356–358, 359–360, 617
Csizmadia, A. P., 422, 426
CSP (contributing student pedagogy), 455-457
CSTA (Computer Science Teachers
Association), 56, 57
Cullen, R., 815
cultural narratives, 494–497
cultural–historical activity theory (CHAT), 217
curricula, 70–72, 394, 521–522, 547–548, 550, 709
curricular materials, 70
Curzon, P., 518–519, 532
CWSEI (Carl Wieman Science Education
Initiative), 862–863
D. II 7. 454
Dalbey, J., 354
Darmstadt Model, 550, 570
data analysis, 97, 187, 193–194, 196–197, 201
Boys' Needlework, 186, 201
case comparison, 192-193, 196, 200-201
ethnographic adequacy, 192, 199-200, 201
inductive categorization, 191-192, 196,
198–199, 201
thick description, 190-191, 196, 197-198, 201
data collection, 97, 182–186, 201
Boys' Needlework, 181, 195
IDE, 686–695, 699–700
data scales, 106–107
Davis, E. A., 337, 788
Davis, M., 431
de Croock, M. B. M., 344
de Raadt, M., 261
debugging, 12, 14, 21, 22, 391, 399
declarative (explicit) memory, 239–240
decomposition, 524, 528–529, 531
DeLyser, L. A., 565
demonstration languages, 666–667
Denning, P. J., 516, 517, 518, 529, 534, 537
dependent variable (DV), 104–106
*
descriptive statistical techniques, 107,
131, 133
graphical, 107–112
numerical, 113–118
design thinking, 469
design-based research (DBR), 219–222
Dewey, J., 279
Diaz, D., 532–533
Digital Beads, 664
direct instruction, 212–213, 254
DiSalvo, B. J., 223, 391
discipline-based education research (DBER),
292, 295
diSessa, A. A., 19, 27, 61–62, 63, 72, 384, 585,
663
Boxer programming language, 586
student misconceptions, 792
dispositions, 289, 804, 817–819

distributed computing, 609, 612–615, 618–622, 625–627	expectancy-value theory (EVT), 211, 217–218, 219, 300
diversity, 463-464, 482-483, 500, 501	experimental hypothesis (H ₁), 139, 140, 146
diversity of activity, 686	experts, 299
DLCI (Digital Logic Concept Inventory), 308 Doorenbos, J., 754	Exploring Computer Science (ECS) curriculum, 563–564
Dorn, B., 345, 594–595, 742, 753	
Driscoll, M. P., 279	external validity, study design, 95–96 externally compiled languages, 666, 667
Druin, A., 20 du Boulay, J. B. H., 13, 26, 341, 355	extraneous cognitive load, 84, 257, 258, 298, 343
Duval, E., 679	Facione, P. A., 289
Dwyer, H. A., 553, 568	factorial design, 128
Dynabook, 586	factorial plots, 109–112
Dynabook, 380	Falkner, K., 434–435, 460, 502, 741
e-books, 645, 647–648, 761	Falkner, N., 460, 502, 741
Eckerdal, A., 449, 451, 757, 817	FCI (Force Concept Inventory), 308
EDM (educational data mining), 679	feasibility, study design, 92–94
educational research, 20, 21, 276–277, 297 Ehrlich, K., 22, 23, 337, 386	Feaster, Y., 561, 568 feedback, 255, 283–284, 286, 287, 416, 643
El Ioini, N., 554–555	informal learning, 762
embedded programming, 402	Felleisen, M., 566
emotions, 816–817	Fenwick, J. B., 451
Emrich, C., 487	Feynman, R. P., 615
Enbody, R., 809	Fiebrink, R., 629–630
engagement, 814–816	file drawer problem, 169–170
Engeström, Y., 217	Fincher, S. A., 26, 68, 84, 97, 338, 339, 354,
engineering assessment, 303, 308–309	415, 422, 426, 759
engineering design, 305	Fisher, A., 463
engineering education, 292, 293–295, 299–301,	Fisler, K., 355, 396, 566, 776, 793
303, 307–308	Fitzgerald, S., 787, 793
engineering education research, 292–293,	Fletcher, G. H., 518
295–297, 301–303, 309–312	flipped classrooms, 304, 449, 457, 458–459
engineering assessment, 303, 308–309	Flot, J., 560
engineering epistemologies, 303–304	Follman, D. K., 299–300
engineering learning mechanisms, 303,	Foreman, B., 535
304–305	formative analytics, 469, 470
engineering learning systems, 303, 305–306	formative assessments, 286, 358, 416–417, 432
learning theories, 298–299, 301	FORTRAN, 11, 15, 17
mixed methods, 302	Franklin, D., 553, 568
qualitative methods, 302	frequencies, 158–159
systematic literature reviews, 302	frequency distributions (FDs), 107–109, 113,
engineering epistemologies, 303–304	115
engineering identity, 297–298, 307–308	Friend, J., 14, 16
engineering learning mechanisms, 303,	Fronza, I., 554–555
304–305	functional (FP) paradigms, 380, 381, 382
engineering learning systems, 303, 305–306	functional context transfer, 251
episodic memory, 239–240	functional languages, 383
epistemological pluralism, 70	fundamental ideas, 338
equity, 482, 484, 500-502	
equity of participation rationale, 2, 59, 63-65	Galison, P., 3
error messages, 399-400, 650	Garrison, L., 790–791
Esmail, A., 451	Gasson, J., 118
ESP (empirical studies of programmers), 24–25	Geertz, C., 190
ethical study design, 96	Gellenbeck, E., 386
ethnographic adequacy, 192, 199-200, 201	gender narratives, 497–498
evaluation, 284, 286–288, 529	gender participation gap, 803, 804-805
Evans, C., 424–425	generalizability, 223
event-driven programs, 382	generalization, 224, 524, 527-528, 531

Georgia Computes! project, 755, 756	identity development, 790, 791
germane cognitive load, 257, 258, 298, 343	IDEs (integrated development environments),
Gick, M. L., 252	391, 392, 644–645
Gidget programming game, 84, 399, 646, 761	data collection, 686-695, 699-700
Giordano, D., 422, 426	interventions, 680-682, 695-699
Glitch Game Testers, 223, 391	learning analytics, 683–690, 700–701
Go, S., 742	Ihantola, P., 680, 686
goal orientation, 809–810	importance, research questions, 86–87
Gomez, M. J., 560	indirection, 777–778
Good, J., 809	inductive categorization, 195, 196, 198–199,
Goodwin, C., 199, 200	201
Gordon, M., 754	inferential hypothesis
graduate attributes, 288–289	morning coffee, 135
graphical descriptive statistics, 107–112	pair programming, 136–137
graphical languages, 592, 593–594, 665	inferential statistical techniques, 107, 113, 115,
Green, T. R. G., 13, 14, 28, 334–336, 593	131, 133–134, 137, 143–145, 146
Grissom, S., 787, 793	ANOVA, 150–157
Grossman, P. L., 729	chi-squared test, 159
ground truth annotation, 686	confidence interval, 157–158
Grover, S., 60, 61, 63, 65, 68–69, 70, 72, 389,	correlation, 159–160
460, 553, 555, 556, 559, 564	frequencies, 158–159
Guo, P. J., 754, 757	hypothesis testing, 136
Guzdial, M., 26, 61, 63, 67, 69, 71, 73, 345,	predictions, 146, 160–163
425, 463, 530, 532–533, 558, 590, 591,	t-tests, 144, 146, 147–150
680, 753	informal learning, 749–751, 756, 760–763
	camps, 755–756
hackathons, 758	community engagement, 758–759
Haden, P., 118, 422, 452	CPD, 759–760
Hagan, H., 532–533	feedback, 762
Hallstrom, J. O., 561, 568	MOOCs, 754, 761
Hancock, C., 336–337	online communities, 759–760
Hansen, A. K., 553, 568	online learning, 751–754
Hansen, E. R., 568	peer learning, 757–758
HAR (human activity recognition), 685	self-directed learning, 757
Hardin, G., 200	innate ability, 489, 495
Harel, I., 589	Instructional Design Software Project, 589
Harlow, D. B., 553, 568	intelligence, 248, 300–301, 350
Hattie, J., 283, 739	intended learning outcome (ILO), 280–281,
Hazzan, O., 424, 554	285–286
heapsort, 775–776	interactive games, 645–647, 761
Heimann, P., 549	interactive machine learning (IML), 628, 630–631
Herman, G. L., 783	interclass similarity, 686
Hermans, F., 562	interest, 813–814
hierarchical linear modelling, 167	internal validity, study design, 94–95
	International Computing Education Research
Hobbs, R., 336–337 Hodges, S., 559–560	(ICER) Conference (2005), 11, 26
Holyoak, K. J., 247, 252	International Computing Education Research (ICER) Conference (2017), 40–54
Horn, M. S., 60, 62, 63, 591, 670, 671	
House, E. R., 731, 740	Internet, 27
Huang, SL., 560	interventions, 358–359
human languages, 27	IDEs, 680–682, 695–699
Hundhausen, C. D., 28, 392, 453, 593	interviews, 57–59
Hutchins, E., 514, 711	intraclass variability, 685
Hutchison-Green, M. A., 299–300	intrinsic cognitive load, 257, 258, 298, 343, 344
hypothesis testing, 134–135, 136, 139,	intrinsic motivation, 300, 538
141–143	introductory computing course, 490–491
morning coffee, 135, 139, 140	introductory programming, 12, 260, 327, 353–356
pair programming, 136–137, 138–139, 140	intuition, 778–780, 791

IQ (intelligence quotient), 243, 248, 350	language acquisition, 244, 403
Ishii, H., 664	language design, 13, 14–15
Israel, M., 562–563	language tools, 639, 641
iteration, 394–396	Lash, T., 562–563
ITSs (intelligent tutoring systems), 683	Lave, J., 216, 278, 790
IVs (independent variables), 109, 125-128	Laxer, C., 532-533
multiple, 128	lead teachers, 734–737
	Leake, M., 760
Jadud, M., 84, 680	learning analytics, 449, 469–470, 654, 679–682,
Java, 17, 213, 341, 381, 388, 390, 392, 403	683
Jaylisha (vignette), 492, 493	IDE, 683–690, 700–701
Jocuns, A., 790–791	learning communities, 448
John (vignette), 494, 495, 496	learning outcomes, 352–353, 416–417, 801–802
	learning programming, 11, 12–13, 20–23, 584,
K-10 education, 548	639–640
K-12 education, 218, 547-550, 551, 552,	learning sciences, 208–211, 218–219, 222–223,
569–570, 616	224–225
assessment, 563	cognitive apprenticeship, 211, 213–215
Berlin Model, 549-550, 551, 563	constructivism, 211-213, 218
collaborative learning, 562–563	expectancy-value theory, 211, 217-218
computational thinking, 555-557	sociocultural theory, 211, 216-217, 219
computing devices, 559–561	learning sciences research, 209, 219
course design, 565–568	design-based research, 219-222
Darmstadt Model, 550, 570	learning theories, 246, 277–280, 423, 700–701,
distributed computing, 619	709
programming, 552–554	engineering education research, 298-299,
software engineering, 554–555	301
Kaczmarczyk, L. C., 783	sociocultural theory, 211, 216–217, 219,
Kafai, Y. B., 174, 175, 181, 186, 194–196, 501,	710–712
519, 558, 567, 589	Lee, I., 501, 518, 538
Kahney, H., 16, 787–788	Lee, M. J., 83–84, 399
Kanaparan, G., 815	LEM (learning edge momentum), 351–352,
Kastl, P., 555	359–360
Kay, A., 18, 19, 586, 588	lesson study, 738–741
Keating, D. P., 814–815	levels of analysis, 232–234, 262–263
Kelleher, C., 356, 643, 756	Lewis, C. M., 389, 564, 760
Kellogg, S. B., 759	Likert scales, 114, 115
Kemeny, J. G., 584, 589	linear regression, 161, 162–166
Khayarallah, H., 564	hierarchical linear modeling, 167
Kiara (vignette), 488–489, 490	logistic regression, 167
KIBO, 667, 668–670, 671	multiple linear regression, 167
Kiesler, S., 756	Linn, M. C., 27, 344, 354, 788
KIesmüller, U., 555	Lishinski, A., 809
Kim, A. S., 754	LISP, 22, 23
Kim, J., 754	literacy, 597
Kinnunen, P., 808, 817	Liu, A., 560
knowledge domain transfer, 250–251	Lloyd, M., 741, 742
Ko, A. J., 83–84, 96, 97, 383, 399, 754	logic paradigms, 380
Koh, J., 670, 671	logical thinking, 524, 526, 531
Kolikant, Y. B., 532–533, 730	logistic regression, 167
Kölling, M., 335, 341, 426, 759, 760	Logo programming language, 13, 15–16, 17,
Krishnamurthi, S., 566, 776	18, 20, 21, 56, 210, 585–586, 587, 663,
Kurland, D. M., 20–21	787–788
Kurtz, B. L., 451	Logo turtle, 15, 18, 20, 663
Kurtz, T. E., 584, 589	long-term memory (LTM), 237–240, 251
	Loui, M. C., 783
labor market rationale, 2, 59, 60	Lu, J. J., 518
Lane, D. M., 487	Luria, A. R., 189–190

Morgan, M., 434–435
morning coffee (hypothesis testing), 135, 139, 140
Morrison, B. B., 225, 247, 261, 345
Moström, J. E., 757
motivation, 299-301, 644, 804, 805, 812
expectancy-value theory, 217-218, 219
multinational, multi-institutional (MNMI)
studies, 82, 96, 97
multiple independent variables, 128
multiple linear regression, 167
multi-way ANOVA, 150-151
Murphy, L., 787, 793
Narayanan, N. H., 453
narratives, 481, 485, 488
unconscious bias, 485–488
National Teachers' Centers (NTCs), Israel, 737
NCTM (National Council of Teachers of
Mathematics), 57
Nelson, G. L., 383
neo-Piagetian theories, 243, 347, 350
NetLogo, 591, 626
neural networks, 610–612
NHST (null hypothesis significance testing),
133–134
Ni, L., 595
Nia (vignette), 488–489, 490
noncognitive factors, 802, 803, 819–820
attitudes, 804, 812
dispositions, 804, 817–819
gender participation gap, 803, 804–805
motivation, 804, 805, 812
nonparametric tests, 168
normalization, 115–118
notional machines, 12, 15, 17, 26–27, 248, 358,
382–384, 385–386, 387–388, 651, 786
mental models, 341–342, 387, 465, 466–467
object-oriented (OO) languages, 383, 393
pedagogic practices, 464–467
programming languages, 383, 398
novelty, research questions, 87–89
novice programmers, 23, 29, 217, 247, 251–252,
327, 335–337, 348–352, 356
engineering education research, 299
language design, 14–15
notional machines, 383
programming difficulties, 13–14, 18, 242, 334–336
programming knowledge, 337–339
programming knowledge, 337–337 programming strategies, 339–340
NSTA (National Science Teachers
Association), 57
null hypothesis (\mathbf{H}_0), 139, 140, 141, 142–143,
144–145, 146
numerical descriptive statistics, 113–118
namerical descriptive statistics, 115–110
O'Connor, K., 790–791
Obama, B., 1, 709, 722, 736

object-oriented (OO) languages, 380–381,	pedagogy, 445–446, 461, 501–502
392–394	behavioral psychology, 446–447
notional machines, 383, 393	cognitive psychology, 446, 447–449
object-oriented (OO) paradigms, 380–381, 382	peer assessment, 455–456
object-oriented (OO) programming, 18–19,	peer instruction (PI), 451, 453, 827, 834–842,
788, 793–794	861–864, 869, 870–873
one-tailed t-tests, 149	UC San Diego, 863-868, 869-870
one-way ANOVA, 150, 154	peer learning, 757–758
online communities, 759–760	peer review, 456
online learning, 751–754	PeerWise system, 457
online professional communities, 741–742	perception, 234
online Q&A communities, 753	Perkins, D. N., 336–337
operational definition (OD), 104, 105	Perlis, A. J., 27, 29, 589
order effects, 126–127	Perlman, R., 20, 665
Orton, K., 464, 501	personal learning environment (PLE), 751
Ostrom, E., 200–201	personality traits, 804, 817–819
outcomes-based education (OBE), 280, 281	Petersen, A., 418, 422, 424
outliers, 121	Petre, M., 26, 28, 422, 593
P. P. 720	p-hacking, 170–171
Page, B., 728	Phelps, G., 715, 729
pair programming (PP), 160, 422, 451, 455,	phenomenography, 23–24, 198–199, 281
827–829, 830–834	physical context transfer, 251
hypothesis testing, 136–137, 138–139, 140	Piaget, J., 212, 243, 346–347, 350, 533
Palumbo, D. J., 21, 71, 354, 587, 588	plagiarism, 414, 416, 418–421, 427–428,
Pane, J. F., 387, 593	430–431, 433–434, 435
Papert, S., 18, 21, 30, 56, 70, 557, 622–623, 624,	contract cheating, 421, 428, 434
627, 628, 631, 720–721	plugin IDE, 687, 699–700
computational thinking, 30, 516	Portillo, J. A. P., 454
constructionism, 213	Pournaghshband, V., 464, 501
learning programming, 12, 584, 623	PPIG (Psychology of Programming Interest
Logo programming language, 13, 15, 56,	Group), 24
210, 585–586, 663	predictions, 146, 160–163
paradigms, 377, 379–382, 386, 402–403	predictor variables, 161
parametric tests, 168	probabilistic thinking, 617–618
Parsons' problems, 261, 355, 422, 452, 781	problem-solving, 71, 247, 248–249, 354
Parsons, D., 118, 422, 452	analogical encoding, 253
Pascal, 11, 15, 16–17, 22, 23, 401	schemata, 22, 253–254
Pasternak, A., 565	worked examples, 252-253
Pausch, R., 356, 394, 643, 756	problem-based learning (PBL), 282,
PCK (pedagogical content knowledge), 728-731,	305, 451
732, 734–735, 742–743	procedural (implicit) memory, 239
CoRe, 732–733	process-oriented guided inquiry learning
TPACK model, 733–734	(POGIL), 827, 848–853
Pea, R., 17, 20–21, 26, 30, 386, 460, 559, 586,	productive failure, 215–216, 468
587	professional communities, 216
Pearson product moment correlation (r), 119–121,	professional learning community (PLC),
159–160	737–742
pedagogic practices, 446, 449–451, 461–464,	program visualization (PV), 28–29, 642, 647,
467–470, 716–718	650–652
active learning, 304–305, 448–449, 451–452,	programmer aptitude tests (PATs), 328–329
491–492, 502	programming, 12–13, 27–29, 327–330, 333–334,
blended learning, 449, 457, 458–459	352, 360–362, 377, 584–585, 587, 588–589,
collaborative learning, 452–454, 502, 562–	591–592, 596–598, 623, 625, 790
563, 829–830	computational thinking, 532–533, 585
cooperative learning, 454–455, 829–830	difficulties, 13–14, 18, 242, 334–336
CSP, 455–457	programming knowledge, 337–339
notional machines, 464–467	programming languages, 11, 17, 20–23, 28,
pedagogical code reviews (PCRs), 845	71–72, 327, 334, 352, 355–356, 377–378,
peaugogicui code ieviews (i Civs), 073	.1 12, 321, 331, 332, 333 330, 311–310,

386–387, 391–392, 397–398, 586–587,	Resnick, M., 20, 26, 62, 63, 70, 72, 519, 536,
592–594, 597, 598, 639, 644–645	625–626, 628, 664
error messages, 399-400, 650	retrospective memories, 240
notional machines, 383, 398	Riedesel, C., 422, 426, 455, 533
paradigms, 377, 379–382, 386, 402–403	Rist, R. S., 246, 338, 340, 354
problem-solving, 396–397	Robins, A., 247, 351
syntax, 378–379	robots, 463, 528, 560, 671–672
types, 401	KIBO, 667, 670, 671
programming models, 402	Logo turtle, 15, 18, 20, 663
programming paradigms, 12	Rodriguez, S., 464, 501, 563
programming plans, 22	Romeike, R., 555
programming processes, 27	Romero-Zaliz, R., 464, 501
programming strategies, 339–340	Rubin, R., 754
Project Quantum, 426, 535	Rubio, M. A., 464, 501
Prolog language, 22, 788–789	rule systems, 786–789
property of interest (PI), 103-105	
prospective memory, 240	sampling, 180–181
public education, 180	Sanders, K., 449, 451, 455, 757, 794
Pulimood, S. M., 463–464	scaffolding, 214, 215, 219, 243, 393
p-values, 144, 145	scaffolding tools, 643–644
	scatter plots (scattergrams), 112, 119, 121
qualitative research, 4, 201–202, 302, 875–877,	SCCT (Social Cognitive Career Theory), 298
885–886, 888–892	Schaeffer, L. M., 348
data analysis, 879–888	Schanzer, E., 566
data collection, 877–879	schemata, 22, 253–254, 298
qualitative research studies, 173–174,	schemata, memory, 241–242
187–190	Schneider, G. M., 354
Boys' Needlework, 174-178, 179, 181, 186,	Schulte, C., 341–342
187–188, 194–196	Schunn, C., 560
case comparison, 192–193	Scratch projects, 554, 555, 567, 619
ethnographic adequacy, 192	Searle, K., 174, 175, 181, 186, 194–196, 501
inductive categorization, 191–192	Segars, L., 561
sampling, 180–181	Seiter, L., 535, 557
thick description, 190-191	Selby, C., 519, 529, 532
quantitative methods, 188, 301–302	self-determination theory (SDT), 300
quantum computing, 609, 615–616, 617–618,	self-directed learning, 757
621–622, 631	self-efficacy, 298, 299–300, 308, 806–809, 812, 819
racial narratives, 494–496	self-regulated learning theory (SRL), 89–90, 805
Racket language, 620	goal orientation, 809–810
radiation problem (Duncker), 252	metacognitive self-regulation, 811
Ragonis, N., 788, 793–794	self-efficacy, 806-809, 812, 819
Rainfall Problem (Soloway, 1986), 249, 396–	semantic memory, 239–240
397, 793	semantic waves, theory of, 539
reading pedagogy, 789–790	sensory memory (SM), 235–236, 237
reasoning, 189, 232, 247–249, 781–784, 791	Sentance, S., 62–63, 65, 66, 559–560, 737
recursion, 394–396	Shapiro, R. B., 67, 69, 223–224, 621
recursive thinking, 525	Shapka, J. D., 814–815
reductions, 774–775	Sheard, J., 418, 424, 434–435, 453, 455
regression, 161–162	Shehab, S., 562–563
hierarchical linear modelling, 167	Sherin, B. L., 590, 591
linear regression, 161, 162–166	Shoop, R., 560
logistic regression, 167	short-term memory (STM), 236, 237
multiple linear regression, 167	Shulman, L. S., 277, 715, 728–729, 730
Reinecke, K., 754	Siebert, S., 386
Reiser, B. J., 23	SIGCSE (Special Interest Group in Computer
repetition, 394–396	Science Education, ACM), 25, 26,
research questions, 83–91, 173, 178–179	231, 329
1,	,

Sime, M. E., 14 Simmons, R., 336–337	student misconceptions, 303–304, 388, 773–774, 776–777, 779, 791–794
Simon, B., 423, 424, 434–435, 808, 817	heapsort, 775–776
Simon, H. A., 209, 640	indirection, 777–778
Sirkiä, T., 452, 466	reductions, 774–775
Sleeman, D., 17, 27	student participation, 492-493, 494
Smalltalk, 18–19, 586	student-centered teaching, 281–282
smart block languages, 666, 667	students of color, 489
Smetsers, S., 556	studio-based learning (SBL), 451, 453-454,
Smetsers-Weeda, R., 556	827, 842–847
Snow, E., 29, 563	study design, 81-82, 85, 90-92, 96-100, 187
Soar Cognitive Architecture, 246	ethical, 96
social constructivism, 278, 827	feasibility, 92–94
social context transfer, 251	research questions, 83–91
social justice, 484, 500	validity, 94–96
social media, 449, 468	subgoal labels, 225, 253, 260–261, 348
sociocultural constructivism, 448	sublanguages, 398
sociocultural theory, 211, 216–217, 219,	summative assessments, 286
710–712	superbug, 17, 26
software engineering, 554-555, 684	Suzanne (vignette), 497
software tools, 639–641, 650	syntax, 378–379
SOLO taxonomy, 16, 347–348, 350, 422, 423–424,	System Blocks project, 665
535, 589	systematic literature reviews, 302
Soloway, E., 22, 23, 336, 337, 342, 355, 356,	
386, 396	tangibility, 663–664, 667–668, 671
Sorva, J., 28, 29, 341, 343, 344, 346, 389, 466,	tangible computing, 672–674
652	tangible languages, 665–666, 671, 672
notional machines, 387	demonstration languages, 666-667
SOLO taxonomy, 424	externally compiled languages, 666, 667
SOTL (Scholarship of Teaching and	smart block languages, 666, 667
Learning), 222, 294–295	Tashakkori, R., 451
soundness, research questions, 86	Tate, S. R., 451
spaced practice, 255	Taub, R., 561, 562
Spohrer, J. C., 336, 355, 356	taxonomy of learning objectives, Bloom, 346,
spontaneous transfer, 250, 256	348, 422, 423, 424
Stager, G., 69	Teachback, 468
standard deviation, 115	teacher knowledge, 72–74, 595, 714–717, 723,
Stasko, J. T., 28	728
state, 384–385	computing teachers, 709, 710, 712–716,
statistical errors, 168, 171	719–722
alpha bloat, 168–169	PCK, 728–731, 742–743
file drawer problem, 169–170	teaching methods, 17–18
p-hacking, 170–171	technology, 449
statistical techniques, 103, 106, 107, 121, 171	temporal context transfer, 251
descriptive statistical techniques, 131, 133	Tenenberg, J., 26
descriptive statistics, graphical, 107–112	text-based languages, 28, 389, 390, 592, 593,
descriptive statistics, numerical, 113–118	594, 665
inferential statistical techniques, 107, 113,	Thames, M. H., 715, 729
131, 133–134	thick description, 196, 197–198, 201
statistical thinking, 617–618	Thies, R., 551, 561–562
Stefik, A., 386, 392	Thomas, L., 532–533, 757, 794
STEM (science, technology, engineering, and	three-way ANOVA, 153–154
mathematics), 56, 500, 631, 721	threshold concepts, 338–339
stereotype threat, 490, 491	Timperley, H., 283
Stevens, P., 426, 759	Toll, D., 680, 686
Stevens, R., 790–791	tools, 11, 29, 639–644, 645–647, 653–656
structural racism, 487, 489	assessment, 648–650
student feedback, 287	e-books, 645, 647–648, 761

feedback, 648-650 interactive games, 645-647, 761 software tools, 639–641, 650 TPACK (Technological, Pedagogical and Content Knowledge) model, 733-734 trading zones, 3 transfer in learning, 71, 254-256, 355, 385-386, 403, 588 analogical encoding, 253 schemata, 253-254 worked examples, 252-253 translation, 13–14 transparent teaching, 491 Trueman, D., 629–630 Tsai, A., 564 Tseng, I.-C., 560 t-tests, 144, 146, 147-150 Turing machine, 514, 608, 615 Turkle, S., 70, 557, 623, 624, 720-721 turtles, 27 Logo turtle, 15, 18, 20, 663 two-way ANOVA, 151-153, 154-156 types, 401

UC San Diego (UCSD), 863–868, 869–870 Ullmer, B., 664 unconscious bias, 485–488, 489–490, 493, 498–499 underrepresentation, 177, 481–482, 487, 803 units of analysis, 193–194 unplugged activities, 532, 561–562 user interface technologies, 19, 20 Utting, I., 426, 532–533, 759

Vahrenhold, J., 551, 561–562, 565, 809 validity, 92–94, 187, 537 van Merriënboer, J. J. G., 260, 344 variability, 115 Verbert, K., 679 video games, 223, 469 Vihavainen, A., 680, 686 Vinikiene, L., 422, 426 visual languages, 388–389, 665 visualization, 465–467, 644, 652–653 Vivian, R., 460, 502, 741 von Neumann machine, 608 Vygotsky, L. S., 189, 212, 214, 243, 278, 448

Wahba, S. K., 561 Waite, J., 559-560 Warner, J., 754 Wason selection test, 781, 782-783 Web-CAT, 648, 649 Weerasinghe, A., 434–435 Weinberg, G. M., 13, 14, 329, 336 Weintrop, D., 28, 389, 390, 391, 464, 501, 553 Wenger, E., 216, 278, 448, 790 Western Apache, 197-198 Weyer, S. A., 17 Wherfel, Q. M., 562-563 White, J., 754 Wiedenbeck, S., 22, 342, 393, 808, 809 Wilensky, U., 28, 389, 390, 391, 464, 501, 553, 591, 625–626 Wiliam, D., 416-417 Williams, S., 460, 741 Wilson, G., 594 Wilusz, T., 532-533 Wing, J., 60–61, 517 computational thinking, 60-61, 513, 516, 520-521, 587-588 Winslow, L. E., 331, 336, 354 Wolz, U., 463-464, 567, 568 Wood, K., 118, 568 Woollard, J., 519, 529, 532 worked examples, 252-253 subgoal labels, 225, 253 working memory, 236-237, 344 Woszczynski, A. B., 567 Wu, C.-C., 560

Xie, B., 383

Yadav, A., 809 Yeomans, L., 559–560 Yongpradit, P., 61, 66, 67, 69, 72, 73

Zander, C., 449, 451, 757
Zanelatto, R., 754
Zhu, J., 754
Zilles, C. B., 783
Zingaro, D., 418, 422, 424, 840
zone of proximal development (ZPD), 214, 243–244, 448, 712, 716
z-scores (normal scores), 117–118