Optimization techniques

• Probabilistic data structure, check membership for a value in a set.

• How it works: S, set of n values \rightarrow const * n bits calculate hash(v) \in [1, const * n] set bit hash(v) to 1

Test $w \in S \rightarrow h(w) = 1$?

Small probability of false positive. w1 ∈ S, w2 ∉ S h(w1) = h(w2)

• To reduce the probability of false positives use k > 1 independent hash functions.

• How it works: S, set of n values \rightarrow const * n bits calculate h₁(v), h₂(v) ... h_k(v) \in [1, const * n] set bits h₁(v), h₂(v) ... h_k(v) to 1

Test $w \in S \rightarrow h_1(v) = 1$ and $h_2(v) = 1$... and $h_k(v) = 1$?

Small probability of false positive.

Probability of **false negative** = 0.

Used only to add elements or the test membership.

Once an element is added to the filter it cannot be removed.

- If all bits are set to 1, the probability of false positives increases.
 More space → more accuracy.
- More hash functions

Latency → more accuracy.

Bloom filters – independent hashing

• A family of hash functions $H = \{h: U \rightarrow [1..m]\}$ is k-independent if $\forall (x_1, x_2 ... x_k) \in U^k$ and $\forall (y_1, y_2 ... y_k) \in [1..m]^k$:

•
$$Pr_{h \in H} [h(x_1) = y_1 \land h(x_2) = y_2 ... \land h(x_k) = y_k] = \frac{1}{m^k}$$

- $h(x_1)$ uniformly distributed.
- $h(x_1)$, $h(x_2)$, ... $h(x_k)$ independent random variables.

Small probability of false positive.

Probability of **false negative** = 0.

false positive. Value w: B[h1(w)] = 1 B[h2(w)] = 1 ... B[hk[w]] = 1

Each hash of w equals a hash of an element in the set

- m size of array, n number of elements in S, k number of hash functions.
- Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or }$$

$$P = \left(1 - e^{-\frac{kn}{m}}\right)^k$$

- m size of array, n number of elements in S, k number of hash functions.
 h(w) != h1(v1)
- Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or }$$

• m size of array, n number of elements in S, k number of hash functions.

h1(w) != h1(v1)

Probability of false positive:

se positive:
$$h1(w) != h1(v1)$$

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or } \begin{array}{l} h1(w) != h1(v1) \\ h1(w) != hn(v1) \\ h1(w) != h1(v2) \\ ... \\ h1(w) != hn(v2) \\ ... \\ \end{array}$$

• m size of array, n number of elements in S, k number of hash functions. h1(w) = h1(v1)

Probability of false positive:

$$P = \left(1 - \left(1 - \frac{1}{m}\right)^{kn}\right)^k \text{ or }$$

or h1(w) = h1(v1)h1(w) = hn(v1)or h1(w) = h1(v2)

h1(w) = hn(v2)...

Log Structured Merge-tree

Log Structured Merge Trees

Optimize I/O operations.

• Used by: Bigtable, LevelDB, Apache Cassandra etc.

• Data organized in B+ trees.

 Advantages: leaves sequentially located, leaves are full.

B+ tree

https://commons.wikimedia.org/wiki/File:Btree.png

LSMT

in memory

on disk

•••••

LSMT insert

in memory

insert if memory available

on disk

•••••

LSMT stepped-merge

... in memory

on disk

•••••

Materialized views

Materialized views

• redundant data, contents can be inferred from the definition

immediate view refresh

deferred view refresh

 incremental update: modify only the affected parts of the materialized view

Materialized views

Join operation

Selection

Projection

Aggregation