

Procédés de fabrication mécanique

Ensemble de techniques visant l'obtention d'une pièce ou d'un objet par transformation de matière brute. Obtenir la pièce désirée nécessite parfois l'utilisation successive de différents procédés de fabrication. Les procédés de fabrication font partis de la Construction mécanique. Les techniques d'assemblage ne font pas partis des procédés de fabrication, elles interviennent une fois que les différentes pièces ont été fabriqués.

Obtention par enlèvement de matière

Consiste à obtenir la forme finale par arrachements de petits morceaux de matière (Copeaux) De manière générale on appelle Usinage ces procédés. On y distigue :

- Le Tournage
- Le Fraisage
- La Rectification
- L'électro-érosion
- Les découpages :
 - Le Sciage
 - L'oxycoupage
 - Le Découpage laser
 - Le Découpage jet d'eau
 - Le Découpage plasma
 - Le Forgeage liquide

Courses X * Y * Z

Obtention par déformation

Consiste à déformer plastiquement le matériau jusqu'à obtention de la forme désirée.

- Estampage
- Matriçage
- Tréfilage
- Forgeage
- Hydroformage
- Laminage
- Filage
- Cintrage
- Emboutissage

Obtention par fusion

 Le Moulage consiste à rendre liquide un matériau afin qu'il prenne la forme d'un moule.

 Le Soudage consiste à fusionner deux pièces en les rendant localement liquide; ce procédé peut aussi être considéré comme une technique d'assemblage.

Productique

La productique est une démarche qui vise à améliorer l'ensemble des méthodes et des moyens de production industrielle.

Pour atteindre ce but, la productique agit sur :

- la formation des hommes (opérateurs)
- la qualité des produits
- la qualité des procédés
- le respect des délais
- le respect des coûts prévus

Elle recouvre la production, la fabrication de pièces (usinage, moulage, etc.), la gestion et l'ordonnancement de la fabrication, l'optimisation des moyens de production et leur rentabilité, le contrôle des pièces produites (métrologie), etc.

Métiers de la Production Mécanique Informatisée.

Métiers de la définition de produits

Métiers du décolletage

Métiers de l'outillage

Métiers de la Production Mécanique Informatisée

Métiers de la microtechnique

Métiers de la productique usinage

Métiers du modelage Les maillons de la chaîne numérique sont composés de différentes applications logiciels qui sont reliées par des passerelles informatiques.

CAO

- Concevoir les pièces
- Concevoir les montages
- Concevoir les composants machines (bati, axes, changeur d'outils, ...)

FAO

Définir le processus d'usinage

- ♦ Définir les origines
- ♦ Choisir les outils (types jauges)
- ♦ Choisir les paramètres de coupe
- Choisir les cycles
- Choisir les trajectoires
- Sortir le programme ISO

MOCN

- Charger le montage, les outils, la pièce
- Charger le programme
- Charger les décalages
- Usiner

Interface de transfert

- *Transférer les pièces, les montages,
 Simulation les outils, les programme
- Concevoir la machine (cinématique)
- Charger les pièces, les montages, les outils, les programme, les décalages
- ♦ Tester le programme

Les pièces sont conçues au plus près de la réalité. La pièce brute permet de simuler l'enlèvement matière et les collisions des trajectoires outils dans NCSIMUL.

La pièce usinée peut être comparée à celle obtenue par la simulation. Des outils de comparaison quantifie les surépaisseurs

CAO

- Concevoir les pièces
- Concevoir les montages
- **♦**Concevoir les composants machines (bati, axes, changeur d'outils, ...

pièce brute

nièce usinée

Le test du programme vérifie les trajectoires et assure une mise en œuvre rapide de la machine d'atelier

Simulation

- ❖Concevoir la machine (cinématique)
- Charger les pièces, les montages, les outils, les programme, les décalages
- ♦ Tester le programme

La position de l'origine pièce est confondue avec le repère des constantes des axes de la machine (PREF pour NUM)

L'origine programme est défini selon des critères liées à la mesure de l'origine et des paramètres de calage dans la machine (Translation rotation du repère)

Définir le processus d'usinage

- ♦ Définir les origines

Les valeurs des paramètres de décalages issus de la FAO validés par la simulation doivent être transférés à l'identique.

L'assemblage des outils et leur jauge doivent être conforme aux outils testés en simulation

25. 418 461 464 X-10. 56.5 PRSS \$510

Modèle réel / Modèle CAO

REP	QTE	DESIGNATION	
1	1	Carter	
33	1	Arbre lent	
41	1	Vis sans fin	
51	1	Roue bronze	
61	1	Roulement gauche	
62	1	Roulement droit	
63	/1	Roulement E vis	
64	/ 1	Roulement OE vis	
86	1	Clavette de roue	

REP	QTE	DESIGNATION	
91	1	Joint gauche	
92	1	Joint droit	
93	1	Joint d'entrée	
117	1	Entretoise	
119	1	Circlips I gauche	
120	- 1	Circlips I droit	
127	2	Circlips E d'entrée	
135	1	Circlips I d'entrée	
253	1	Obturateur	

Dessin de définition

Mise en Plan

ANTE NOMAD

Système de palettisation standard sur l'ensemble des moyens

Porte pièce dans l'environnement machine.

Moyen de Production

Capacité Capabilité

MAPIER NOMAD

Présentation de la machine

Centre d'usinage 5 axes UGV 18000 tours

		DMU 50 eVo linear
Capacité d'usinage		
Course en X (longitudinale)	mm	500
Course en Y (transversale)	mm	450
Course en Z (verticale)	mm	400
Entraînement principal		
Motobroche c.a. (f. d. s. 40 % / régime permanent)	k/W	35 / 25
Vitesse maxi	tr/min	18.000
Couple (f. d. s. 40 % / régime permanent)	Nm	130 / 87
Broche de travail, attachement d'outil		SK 40
Entraînement des avances		
Vitesse rapide axes linéaires X / Y / Z	m/min	80 / 50 / 50
Vitesse d'avance axes linéaires X/Y/Z	m/min	20 / 20 / 20
Poussée	kN	5/5/5
Précision de positionnement selon VDI / DGQ 3441 P _{nx.} X / Y	/Z μm	8
Magasin d'outils		
Nombre d'emplacements	unitás	30
Longueur d'outil maxi	mm	300
Diamètre d'outil max i	mm	80 / 130
Temps de copeau à copeau	5	5
Tables de travail		
Table fixe*, surface de bridage	mm	800 x 500
Nombre / entraxe des rainures à T	mm	7 / 63 - 14 H 7
Charge de la table	ka	500
Table circulaire pivotante CN*, surface de bridage	mm	Ø 500 x 380