Verilog 搭建流水线 CPU 设计报告

一、 数据通路设计

1.PC

(1)接口定义

信号名称	方向	描述
reset	I	PC 复位至 0x00003000
NPC[31:0]	I	下一个 PC 值(下一个时钟上升沿的时候要写入 PC 寄
		存器的值)
PC[31:0]	О	PC 输出

(2) PC 功能定义

序号	功能名称	描述
1	复位	当 reset 有效时,PC 寄存器被赋值为
		0x00003000
2	输出指令地址	在时钟上升沿的时候更新 PC

2.ADD4 模块

(1)接口定义

信号名		方	描述
	向		
PC[31: 0]	I		当前 PC 值
PC4[31: 0]	O		=PC+4
(2) 功能定义	Z		
			LILVE

序号	功能名称	描述
1	输出 PC+4	纯组合逻辑. 永远输出 PC4=PC+4

3. IM 模块

(1)接口定义

信号名	方向	描述
clk,reset	I	时钟,复位信号

PC[31:0]	I	要读取的指令的地址
instr[31:0]	O	从 IM 中取出来的 32 位指令

(2) 功能定义

序号	功能名称	描述
1	取指令	根据输入的 PC 值输出相应位置的指令

4, RF

GRF 由 32 个寄存器构成(其中 0 号寄存器恒为 0)。首先计算 RegA、RegB、RegD 信号的值,再进行读或写操作:读操作时,将编号为 RegA、RegB 的两个寄存器的值读出到 busA、busB。写操作时,在 RegWr 信号为 1 时,将 dataWr 写入 RegD 编号对应的寄存器中。

表格 1 GRF 端口说明

端口名	方向	说明
IR_D[31:0]	I	D 级指令,用来提取 rs,rt
R3[4:0]	I	待写入寄存器的编号
RFIn[31:0]	I	待写入寄存器的数据
RegWr	I	寄存器写使能信号
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号
PC4[31:0]	I	PC+4 值,\$display 时-4 后使用
RFOut1[31:0]	O	读出数据 1(\$rs 的值)
RFOut2[31:0]	O	读出数据 2(\$rt 的值)

表格 2 GRF 功能定义

序号	功能名称	功能描述
1	读寄存器	将编号为R1的寄存器中的数据输出到RFOUt1端口;
		将编号为 R2 的寄存器中的数据输出到 RFOut2 端口

2 写寄存器 RegWr=1 时,在时钟上升沿将 RFIn 写入到编号为 R3 的寄存器中;写入寄存器时进行输出操作

5、EXT (扩展器)

EXT 根据 ExtOp 对 16 位立即数 imm16 进行各类扩展。

表格 3 EXT端口说明

端口名	方向	说明
IR_D[31:0]	I	D 级指令,用来提取 16 位立即数 imm16
ExtOp[1:0]	I	进行何种扩展的选择信号。
		00: 无符号扩展
		01: 有符号扩展
		10: 加载到高 16 位, 低 16 位补 0
		11: (未定义)
ExtOut[31:0]	O	扩展后的数据。

表格 4 EXT 功能定义

序号	功能名称	功能描述
1	无符号扩展	ExtOp=00 时,对 imm16 进行无符号扩展并输出到
		ExtOut。
2	有符号扩展	ExtOp=01 时,对 imm16 进行有符号扩展并输出到
		ExtOut。
3	后补 16 位 0	ExtOp=10 时,将 imm16 加载到高 16 位,在低 16 位补
		0,并输出到 ExtOut。

6.CMP 模块

(1) 模块接口

信号名称	方	描述
	向	

CMPIn1[31: 0] I 第一个操作数

CMPIn2[31: 0] I 第二个操作数

BrType[2: 0] I Br 指令类型,比较方式选择

BrTrue O 比较结果,用于是否做 br 跳转的判断

(2) 功能定义

序号	功能名称	描述(C 为 BrType;A,B 为
		CMPIn1,CMPIn2)
1	==(BrType=000)	C=(A==B)
2	!=(BrType=001)	C=(A!=B)
3	A>B(BrType=010)	C=(A>B)
4	A<=B(BrType=011)	$C=(A\leq B)$
5	A <b(brtype=100)< td=""><td>C=(A < B)</td></b(brtype=100)<>	C=(A < B)
6	A>=0(BrType=101)	C=(A>=0)

7.NPC 模块

(1)接口定义(计算下一个 PC 的值,纯组合逻辑)

信号名	方向	描述
PC4[31: 0]	I	当前 PC 值
IR_D[31: 0]	I	D级指令,用于提取 imm16 和 imm26
BrTrue	I	从 CMP 块得到的是否满足 br 指令跳转条件的信号
jPC[31:0]	O	j 指令的下一个 PC
brPC[31:0]	O	br 指令的下一个 PC
(a) 270 c = 1 (4)	× 	

(2) NPC 功能定义

序号	功能名称	描述
1	计算 brPC	BrTrue=0 时, brPC=PC4+4
		BrTrue=1 时, brPC=PC4+sign_extend(offset 00)
2	计算 jPC	jrPC= PC4[31:28] imm26 00

8、ALU(算术逻辑单元)

ALU 由何种算数逻辑组成。根据 ALUctr 对 ALUin1 和 ALUin2 进行加、减、或、相等比较等操作并输出。

表格 5 ALU 端口说明

端口名	方向	说明
ALUIn1[31:0]	I	第一个待操作数。
ALUIn2[31:0]	I	第二个待操作数。
ALUOp[2:0]	I	进行何种运算的选择信号。
		00: ALUIn1+ALUIn2
		01: ALUIn1-ALUIn2
		10: ALUIn1 ALUIn2
		11: ALUIn2 << ALUIn1[4:0]
ALUOut[31:0]	O	运算后的结果。

表格 6 ALU 功能定义

序号	功能名称	功能描述
1	加 (无溢出)	ALUOut=ALUin1 + ALUin2
2	减 (无溢出)	ALUOut=ALUin1 - ALUin2
3	或	ALUOut=ALUin1 ALUin2

9、DM(数据存储器)

表格 7 DM 端口说明

端口名	方向	说明
DMAddr[31:0]	I	DM 中的读出/写入地址,即 ALU 的输出端 ALUOut
DMIn[31:0]	I	待写入 DM 的数据,即 GRF 的输出端 RFOut2
MemWr	I	将 DMdata 写入 DM 的写使能信号。
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号
PC4[31:0]	I	PC4 值,\$display 时-4 后使用

DMOut[31:0] O DM 输出数据

表格 8 DM 功能定义

序号	功能名称	功能描述
1	读出	DMOut=DM 中 DMAddr 地址中的数据。
2	写入	MemWr=1 时,将 DMIn 写入 DM 的 DMaddr 地址中。

10、电路图总览

二、 Controller (控制器)设计

1、基本描述

Controller 根据指令中的 opcode 段和 funct 段,先利用与门确定该指令类型,再利用或门确定各控制信号。

端口名	方向	说明
instr[31:0]	I	指令

ALUSrc1	O	
ALUSrc2	O	
MemWr	O	
RegWr	O	
ExtOp[1:0]	O	控制信号
ALUOp[2:0]	O	说明见 Excel
NPCsel[1:0]	O	
RegDst[1:0]	O	
MemtoReg[1:0]	O	
BrType	O	
calr	O	指令类型
cali	O	说明见 Excel
br	O	
load	O	
store	O	
jal	O	
jr	O	
jalr	0	

序号	功能名称	功能描述
1	译码	将 instr 根据上表所述进行译码

- 2、控制信号真值表(见 Excel)
- 3、控制信号含义(见 Excel)
- 三、 中断异常设计模块
- 1, BRIDGE

端口名	方向	说明

DMAddr[31:0] I DM 中的读出/写入地址,即 ALU 的输出端 ALUOut 待写入 DM 的数据,即 GRF 的输出端 RFOut2 DMIn[31:0] I 将 DMdata 写入 DM 的写使能信号。 MemWr Ι 0: 不写入 1: 写入 时钟信号 clk I 复位信号 I reset PC4 值, \$display 时-4 后使用 PC4[31:0] I DM 输出数据 DMOut[31:0] O

2. TimerCounter

端口名	方向	说明
DMAddr[31:0]	I	DM 中的读出/写入地址,即 ALU 的输出端 ALUOut
DMIn[31:0]	I	待写入 DM 的数据,即 GRF 的输出端 RFOut2
MemWr	I	将 DMdata 写入 DM 的写使能信号。
		0: 不写入 1: 写入
clk	I	时钟信号
reset	I	复位信号
PC4[31:0]	I	PC4 值,\$display 时-4 后使用
DMOut[31:0]	O	DM 输出数据

3, CPO

端口名	方向	说明
A1[4:0]	I	读 CP0 寄存器编号(MFC0 产生)
A2[4:0]	I	写 CP0 寄存器编号(MTC0 产生)
CP0In[31:0]	I	CP0 写入数据(MTC0 产生,来自 GPR)
PC	I	
ExcCode[6:2]	I	中断异常类型
HWInt[5:0]	I	6个设备中断(外设 TC0/TC1 产生)
CP0Wr	I	CP0 写使能

EXLSet	I	用于置位 SR 的 EXL(流水线在 M 阶段产生)
EXLClr	I	用于清楚 SR 的 EXL(ERET 产生)
clk	I	时钟信号
reset	I	复位信号
IntReq	O	中断请求,输出至 CPU 控制器(是 HWInt/IM/EXL/IE
		的函数)
EPC[31:0]	O	EPC 寄存器输出至 NPC
CP0Out[31:0]	O	CP0 输出数据(MFC0 产生,输出至 GPR)

序号	功能名称	功能描述
1	读出	DMOut=DM 中 DMAddr 地址中的数据。
2	写入	MemWr=1 时,将 DMIn 写入 DM 的 DMaddr 地址中。

四、 测试 CPU (见文档)

- 1、 P6 测试
- 2、 P7 新增冲突+异常+中断

四、思考题

1. 我们计组课程一本参考书目标题中有"硬件/软件接口"接口字样,那么到底什么是"硬件/软件接口"?

软件/硬件(RW/HW)接口:在接口之上是中断处理程序和用于不同设备的设备驱动程序,在此之下是各种设备的控制器,如 CD-ROM 控制器、硬盘控制器、键盘控制器、打印机控制器、网络控制器等,它们都属于硬件。由于设备种类繁多,故该接口相当复杂

2.在我们设计的流水线中, DM 处于 CPU 内部,请你考虑现代计算机中它的位置应该在何处。

现代计算机由于时钟频率十分高,但是 DM 的读写周期根本降不不到 CPU 其他部件能接受的时钟周期,因此现代 CPU 采用将 DM 从 CPU 之中分离出来的方法,在 CPU 之中加上一个高速缓存器(cache)这样可以提高时钟频率。

3.BE 部件对所有的外设都是必要的吗?

不是。比如这次教程要求的 Timer 不支持 sb/sh 这两条指令,那么就不需要 BE。

- 4.请开发一个主程序以及定时器的 exception handler。整个系统完成如下功能:
- ①定时器在主程序中被初始化为模式 0;
- ②定时器倒计数至0产生中断;
- ③handler 重置初值寄存器从而再次启动定时器的计数器。②及③被无限重复。
- ④主程序在初始化时将定时器初始化为模式 0,设定初值寄存器的初值为某个值,如 100 或 1000。(注意,主程序可能需要涉及对 CP0.SR 的编程,推荐阅读过后文后再进行。)

.text

#写初值寄存器

ori \$10,\$0,0x7f10

ori \$2,100

sw \$20,4(\$10)

#加载模式0

ori \$2,9

sw \$2,0(\$10)

#中断处理程序

.ktext 0x00004180

ori \$10,0x7f10

ori \$2,9

sw \$2,0(\$10)

eret

5.请查阅相关资料,说明鼠标和键盘的输入信号是如何被 CPU 知晓的?

键盘、鼠标这类的低速设备是通过中断请求的方式进行 IO 操作的。即当键盘上按下一个按键的时候,键盘会发出一个中断信号,中断信号经过 Bridge 传到 CPU 的 CPO 寄存器,然后 CPO 根据不同的中断号执行不同的中断响应程序,并进行相应的 IO 操作,把按下的按键编码(或者鼠标操作)读到寄存器,最后放入内存中。

7、在本实验中你遇到了哪些不同指令组合产生的冲突?你又是如何解决的?相应的测试样例是什么样的?请有条理的罗列出来。(非常重要) 暂停

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
D #il	ID E DC	1	D	DC	1w \$4,0(\$5)
R型	LD-E-RS	1w	D	RS	addu \$4, \$4, \$5
	LD-E-RT	1w	D	RT	1w \$4,0(\$5)
	LD_E_KI	1W	D	K1	addu \$4, \$5, \$4
I 型	LD-E-RS	$1\mathrm{w}$	D	RS	lw \$4,0(\$5)
1 空	LD E NO	1 W	D	KS	ori \$5,\$4,0xffff
LD 型	LD-E-RS	$1\mathrm{w}$	D	RS	1w \$4,0(\$5)
山至	LD E NO	1 W	D	KS	1w \$3,4(\$4)
ST 型	LD-E-RS	$1\mathrm{w}$	D	RS	1w \$4,0(\$5)
51 主	LD E NO	1 W	D	KS	sw \$3,4(\$4)
JR	R-E-RS	addu	D	RS	addu \$4, \$4, \$5
JK	K E KO	auuu	D	KS	jr \$4
	I-E-RS	ori	D	RS	ori \$4,0xffff
	I E NO				jr \$4
	LD-E-RS	1w	D	RS	1w \$4,0(\$5)
	LD E NO	1 W	D	KS	jr \$4
					1w \$4,0(\$5)
	LD-M-RS	1w	D	RS	nop
					jr \$4
B 型	R-E-RS	addu	D	RS	addu \$4, \$4, \$5
D主	K E KO	auuu			beq \$4, \$5, loop
	I-E-RS	ori	D	RS	ori \$4,0xffff
	T E VO	011	υ	IVO.	beq \$4, \$5, loop
	LD-E-RS	1w	D	RS	1w \$4,0(\$5)
	מו מ עם	1 W	υ U	NO	beq \$4, \$5, loop
					1w \$4,0(\$5)
	LD-M-RS	1w	D	RS	nop
					beq \$4, \$5, loop
	R-E-RT	addu	D	RT	addu \$4, \$4, \$5

				beq \$5, \$4, loop
T_E_DT	ori	D	DT	ori \$4,0xffff
I-E-RT	011	D	RT	beq \$5, \$4, loop
ID E DT	1	D	DT	lw \$4,0(\$5)
LD-E-RT 1w	D	RT	beq \$5, \$4, loop	
				lw \$4,0(\$5)
LD-M-RT	1w	D	RT	nop
				beq \$5, \$4, loop

转发

类型	测试类型	前序指令	冲突位置	冲突寄存器	测试序列
R 型					addu \$4, \$4, \$5
(以	R-W-RS	addu	D	RS	nop
addu	I W KS	aaaa	D	N.S	nop
为例)					addu \$4, \$4, \$5
					ori \$4,\$5,0xffff
	I-W-RS	ori	D	RS	nop
	1 " 115	011	D	, and	nop
					addu \$4, \$4, \$5
					1w \$4,0(\$5)
	LD-W-RS	1w	D	RS	nop
	LD " NS	1"	D	NO.	nop
					addu \$4, \$4, \$5
		-RS jal D RS	D	RS	jal loop
	JAL-W-RS				nop
	JIL " NO				nop
				addu \$1,\$31,\$1	
					addu \$4, \$4, \$5
	R-W-RT addu	D	RT	nop	
	IC W ICI	auuu	D	IV1	nop
					addu \$4, \$5,\$4
					ori \$4,\$5,0xffff
	I-W-RT	ori	D	RT	nop
	1 # 1(1	011	D	KI	nop
					addu \$4, \$5, \$4
					1w \$4,0(\$5)
	LD-W-RT	1w	D	RT	nop
	LD W KI	1W	D	KI	nop
					addu \$4, \$5, \$4
	JAL-W-RT	jal	D	RT	jal loop

				non
				nop nop
				addu \$1, \$1, \$31
				addu \$4, \$4, \$5
				nop
R-W-RS	addu	Е	RS	addu \$4, \$4, \$5
				nop
				ori \$4,\$5,0xffff
		_		nop
I-W-RS	ori	Е	RS	addu \$4, \$4, \$5
				nop
				1w \$4,0(\$5)
ID W DC	1	D	D.C.	nop
LD-W-RS	1w	Е	RS	addu \$4, \$4, \$5
				nop
				jal loop
JAL-W-RS	jal	Е	RS	nop
JAL " KO	Jai	L	KS	addu \$1, \$31, \$1
				nop
	addu	E	RS	addu \$4, \$4, \$5
R-M-RS				addu \$4, \$4, \$5
				nop
T W D0			n.a	ori \$4,\$5,0xffff
I-M-RS	ori	Е	RS	addu \$4, \$4, \$5
				nop
TAL M DC	. 1	D	D.C.	jal loop
JAL-M-RS	jal	Е	RS	addu \$1, \$31, \$1
				addu \$4, \$4, \$5
				nop
R-W-RT	addu	Е	RT	addu \$4, \$5,\$4
				nop
				ori \$4,\$5,0xffff
-				nop
I-W-RT	ori	Е	RT	addu \$4, \$5, \$4
				nop
				1w \$4,0(\$5)
	1	D	DT	nop
LD-W-RT	1w	Е	RT	addu \$4, \$5, \$4
				nop
				jal loop
JAL-W-RT	jal	E	RT	nop
JAL W KI	Jai	Е	KI	addu \$1,\$1,\$31
				nop

					. 1 1
	R-M-RT	addu	Е	RT	addu \$4, \$4, \$5 addu \$4, \$5, \$4 nop
	I-M-RT	ori	Е	RT	ori \$4,\$5,0xffff addu \$4,\$5,\$4
	JAL-M-RT	jal	Е	RT	nop jal loop addu \$1,\$1,\$31
I型 (以 ori为 例)	R-W-RS	addu	D	RS	nop addu \$4, \$4, \$5 nop nop ori \$4, \$4, 0xffff
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop ori \$4,\$4,0x0000
	LD-W-RS	1w	D	RS	<pre>lw \$4,0(\$5) nop nop ori \$4,\$4,0xffff</pre>
	JAL-W-RS	jal	D	RS	jal loop nop nop ori \$1,\$31,0xffff
	R-W-RS	addu	Е	RS	addu \$4, \$4, \$5 nop ori \$4, \$4, 0xffff nop
	I-W-RS	ori	Е	RS	ori \$4, \$5, 0xffff nop ori \$4, \$4, 0x0f0f nop
	LD-W-RS	1w	Е	RS	<pre>lw \$4,0(\$5) nop ori \$4,\$4,0xffff nop</pre>
	JAL-W-RS	jal	E	RS	jal loop nop ori \$1,\$31,0xffff nop
	R-M-RS	addu	Е	RS	addu \$4, \$4, \$5 ori \$4, \$4, 0xffff nop

	I-M-RS	ori	E	RS	ori \$4, \$5, 0xffff ori \$4, \$4, 0xf0f0 nop
	JAL-M-RS	jal	Е	RS	jal loop ori \$1,\$31,0xfff0 nop
LD 型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop 1w \$5, 0 (\$4)
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop lw \$5,0(\$4)
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop 1w \$5,0(\$4)
	JAL-W-RS	jal	D	RS	jal loop nop nop lw \$5,0(\$31)
	R-W-RS	addu	Е	RS	addu \$4, \$4, \$5 nop lw \$5,0(\$4) nop
	I-W-RS	ori	E	RS	ori \$4,\$5,0xffff nop 1w \$5,0(\$4) nop
	LD-W-RS	1w	E	RS	1w \$4,0(\$5) nop 1w \$5,0(\$4) nop
	JAL-W-RS	jal	Е	RS	jal loop nop lw \$5,0(\$31) nop
	R-M-RS	addu	E	RS	addu \$4, \$4, \$5 lw \$5, 0 (\$4) nop
	I-M-RS	ori	E	RS	ori \$4,\$5,0xffff lw \$5,0(\$4) nop

					jal loop
	JAL-M-RS	jal	Е	RS	1w \$5,0(\$31)
		3			nop
					addu \$4, \$4, \$5
					nop
ST 型	R-W-RS	addu	D	RS	nop
					sw \$5,0(\$4)
					ori \$4,\$5,0xffff
					nop
	I-W-RS	ori	D	RS	nop
					sw \$5,0(\$4)
					1w \$4,0(\$5)
	TD W DC	1	D.	D.C.	nop
	LD-W-RS	1w	D	RS	nop
					sw \$5,0(\$4)
					jal loop
	TAL W DC	:1	D	DC	nop
	JAL-W-RS	jal	D	RS	nop
					sw \$5,0(\$31)
					addu \$4, \$4, \$5
	R-W-RT	addu	D	RT	nop
	IV W IVI		D		nop
					sw \$4,0(\$5)
					ori \$4,\$5,0xffff
	I-W-RT	ori	D	RT	nop
	1 " 1(1	011	D	K1	nop
					sw \$4,0(\$5)
					1w \$4,0(\$5)
	LD-W-RT	1w	D	RT	nop
			2	1(1	nop
					sw \$4,0(\$6)
					jal loop
	JAL-W-RT	jal	D	RT	nop
		542			nop
					sw \$31,0(\$5)
					addu \$4, \$4, \$5
	R-W-RS	addu	Е	RS	nop
					sw \$5,0(\$4)
					nop ori \$4,\$5,0xffff
	I-W-RS	ori	E	RS	nop sw \$5,0(\$4)
	LD-W-RS	1w	E	RS	nop 1w \$4,0(\$5)
	LD W NO	1 W	E	KO	Ι ω ψτ, υ (ψυ)

				nop
				sw \$5,0(\$4)
				nop
				jal loop
JAL-W-RS	jal	Е	RS	nop
JAL W NO	Jai	E	KS	sw \$5,0(\$31)
				nop
				addu \$4, \$4, \$5
				nop
R-W-RT	addu	Е	RT	sw \$4,0(\$5)
				nop
				ori \$4,\$5,0xffff
I-W-RT	ori	Е	RT	nop
				sw \$4,0(\$5)
				nop
				1w \$4,0(\$5)
	1	Г	DÆ	nop
LD-W-RT	1w	E	RT	sw \$4,0(\$6)
				nop
				jal loop
				nop
JAL-W-RT	jal	Е	RT	sw \$31,0(\$5)
				nop
			RT	addu \$4, \$4, \$5
R-W-RT	addu	M		sw \$4,0(\$5)
10 11 111	aaaa	M		nop
				nop
				ori \$4,\$5,0xffff
T III D.M.			D.W.	sw \$4,0(\$5)
I-W-RT	ori	M	RT	nop
				nop
				lw \$4, 0 (\$5)
				sw \$4,0(\$6)
LD-W-RT	1w	M	RT	
				nop
				nop
				jal loop
JAL-W-RT	jal	M	RT	sw \$31,0(\$5)
וו בנונ	Jai	W	KI	nop
				nop
				addu \$4, \$4, \$5
R-M-RS	addu	Е	RS	sw \$5,0(\$4)
				nop
				ori \$4, \$4, \$5
I-M-RS	ori	Е	RS	sw \$5, 0 (\$4)
				SW \$0,0 (\$4)

					nop
	JAL-M-RS	jal	E	RS	jal loop sw \$5,0(\$31) nop
JR	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop jr \$4
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop jr \$4
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop jr \$4
	JAL-W-RS	jal	D	RS	jal loop nop nop jr \$31
	R-M-RS	addu	D	RS	addu \$4, \$4, \$5 nop jr \$4
	I-M-RS	ori	D	RS	ori \$4,\$5,0xffff nop jr \$4
	JAL-M-RS	jal	D	RS	jal loop nop jr \$31
行为未 定义	JAL-E-RS	jal	D	RS	jal loop jr \$31
B型	R-W-RS	addu	D	RS	addu \$4, \$4, \$5 nop nop beq \$4, \$3, loop
	I-W-RS	ori	D	RS	ori \$4,\$5,0xffff nop nop beq \$4,\$3,loop
	LD-W-RS	1w	D	RS	1w \$4,0(\$5) nop nop beq \$4,\$3,100p
	JAL-W-RS	jal	D	RS	jal loop

					nop
					nop
					beq \$31, \$3, loop
	R-W-RT	addu	D	RT	addu \$4, \$4, \$5
					nop
					nop
					beq \$3, \$4, loop
	I-W-RT	ori	D	RT	ori \$4,\$5,0xffff
					nop
					nop
					beq \$3, \$4, loop
	LD-W-RT	1w	D	RT	1w \$4,0(\$5)
					nop
					nop
					beq \$3, \$4, loop
	TAI W DT	jal	D	RT	jal loop
					nop
	JAL-W-RT				nop
					beq \$3,\$31,100p
	R-M-RS	addu	D	RS	addu \$4, \$4, \$5
					nop
					beq \$4, \$3, 100p
	I-M-RS	ori	D	RS	ori \$4,\$5,0xffff
					nop
					beq \$4, \$3, 100p
					jal loop
	JAL-M-RS	jal	D	RS	nop
					beq \$31, \$3, loop
		addu	D	RT	addu \$4, \$4, \$5
	R-M-RT				nop
					beq \$3, \$4, loop
				RT	ori \$4,\$5,0xffff
	I-M-RT	ori	D		nop
	2 1(1	J11	D		beq \$3, \$4, loop
	JAL-M-RT	jal	D	RT	jal loop
					nop
					beq \$3,\$31, loop
行为未 定义	JAL-E-RS	jal	D	RS	jal loop
					beq \$31, \$3, loop
	JAL-E-RT	jal	D	RT	
					jal loop
					beq \$3,\$31,100p

```
附: 比对程序(C)
#include<stdio.h>
#include<string.h>
char a[100];
char b[100];
int main(){
    FILE *fp1=fopen("mips.txt","r");
    FILE *fp2=fopen("verilog.txt","r");
    //freopen("res.txt","w+",stdout);
    while((fscanf(fp1,"%s",a))!=EOF){
        fscanf(fp2,"%s",b);
        if(strcmp(a,b)==0)printf("right:r:%s w:%s\n",b,a);
        else {printf("wrong:r:%s w:%s\n",b,a);break;}
    }
    return 0;
}
```