First Order Logic

First Order Logic (FOL)

Propositional logic (PL)

- Not expressive enough
- Need huge amount of rules
- No power to handle groups of similar objects
- Object is specified individually

First order logic (FOL)

- Introduce objects and properties concepts
- Overcome PL weak expressiveness

New Concepts

Relations

- Links among objects
- Functions are also relations
 - Unique output for a given input

Examples:

- Objects (Nouns)
 - People, houses, number, colors, baseball
- Relations (Adjectives)
 - Unary: involves only 1 object (called property)
 - Tall, large, small, red, round
 - N-ary: involves 2 objects or more
 - Brother of, greater than, part of, inside
- Functions: father of, best friend

New Concepts

Fact (sentences) can be thought of

- Objects
- Properties or relations
- "One plus two equals three"
- Objects: one, two, three, one plus two
- Function: plus
- Relation: equals
- "Squares neighboring the wumpus are smelly."
- Objects: Squares, wumpus
- Property: smelly
- Relation: neighboring

A name of the object obtained by applying the function *plus* to the objects *one* and *two*

Not a function because many squares may satisfy the constraints, but there is only one three

First Order Logic (FOL)

FOL is important

Express almost any concept/knowledge

Drawbacks

- Categories / Classification
- Time (Temporal Logic)
- Events

Advantages

- Express anything that can be programmed
- Directly translated to Prolog programs

Difference between FOL and PL

PL

- Fact x = True or False
- Semantic interpretation
 - Sentence is true or false

FOL

- Consider relations with objects
 - Brother(x, y) = True or False
 - where x, y = any object, not only True or False
- Semantic interpretation

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Models for FOL

PL model

- Combination of truth values
 - For variables in sentence
- Only True or False exists for the variables

FOL model

- Values for variables
 - Not only True or False
 - Also objects
- E.g. father(X, Y) \Rightarrow male(X)
 - Objects that make father(X, Y) true
 - X = peter? Y = john? ... over the whole world?
- Domain of FOL model
 - Set of possible objects

P	Q	$\neg P$	$P \wedge Q$
false	false	true	false
false true	true false	false	$false \\ false$
true	true	false	true

Domain of FOL

Domain of the figure

Five objects (domain elements)

Relations

- Two binary relations: brother, onhead
- Three unary relations: person, king, crown

One unary function: left-leg

Syntax of FOL

Atomic sentence

- Relation + Objects
- Facts in Prolog
 - Predicate symbol + Term
 - E.g. brother(richard, john)
 - married(father(richard), mother(john))

Term

- Logical expression of object
- Term =
 - function symbols
 - fatherof(peter), plus(1,2)
 - constant symbols (1, A, B, Peter)
 - variables (x, y, human)

```
Sentence \rightarrow AtomicSentence
                             (Sentence Connective Sentence)
                             Quantifier Variable,... Sentence
                             \neg Sentence
AtomicSentence \rightarrow Predicate(Term,...) \mid Term = Term
              Term \rightarrow Function(Term,...)
                             Constant
                             Variable
      Connective \rightarrow \Rightarrow | \land | \lor | \Leftrightarrow
       Quantifier \rightarrow \forall \mid \exists
         Constant \rightarrow A \mid X_1 \mid John \mid \cdots
          Variable \rightarrow a \mid x \mid s \mid \cdots
        Predicate \rightarrow Before \mid HasColor \mid Raining \mid \cdots
         Function \rightarrow Mother \mid LeftLeg \mid \cdots
```

Syntax of FOL

Complex sentences

- Multiple atomic sentences
- Combined with logical connectives
- Example
 - brother(richard, john) ∧ brother(john, richard)
 - older(john, 30) \Rightarrow ¬younger(john, 30)

Quantifiers

Quantifiers

Expressing properties / constraints

For entire collection of objects

Universal quantification (\forall)

- All domain elements
 - Read as "For all"
- Example: "All Kings are Persons" $\forall x \ King(x) \Rightarrow Person(x)$ If x is a King, then x is a Person

- •a variable,
- •if it's a constant, a **ground term**

Universal Quantification (∀)

$\forall x \ King(x) \Rightarrow Person(x)$ is true

- x = any domain element, sentence is still true
 - $\circ x \rightarrow Richard$
 - $\circ x \rightarrow John$
 - $x \rightarrow$ Richard's left leg
 - $x \rightarrow$ John's left leg
 - $x \rightarrow$ the crown
- List is called extended interpretation

Richard the Lionheart is a king \Rightarrow Richard the Lionheart is a person.

King John is a king \Rightarrow King John is a person.

Richard's left leg is a king \Rightarrow Richard's left leg is a person.

John's left leg is a king \Rightarrow John's left leg is a person.

The crown is a king \Rightarrow the crown is a person.

Universal Quantification (∀)

All the models are true

Only for interpretation

- Implication (\Rightarrow)
 - Whenever premise is false
 - Result is true, regardless of the conclusion

Universal quantifier

- Asserts / produces a list of similar sentences
- In PL, all of these sentences are made ourselves
- Reduce our works

Existential Quantification (∃)

Some domain elements

Read as "There exist" or "For some"

Example

• $\exists x \ Crown(x) \land OnHead(x, John)$

True if at least one domain element satisfies the sentence

Richard the Lionheart is a crown \land Richard the Lionheart is on John's head; King John is a crown \land King John is on John's head; Richard's left leg is a crown \land Richard's left leg is on John's head; John's left leg is a crown \land John's left leg is on John's head; The crown is a crown \land the crown is on John's head.

Quantifiers

 $\forall x \ King(x) \land Person(x)$

would be equivalent to asserting

Richard the Lionheart is a king \land Richard the Lionheart is a person, King John is a king \land King John is a person, Richard's left leg is a king \land Richard's left leg is a person,

If \wedge with \forall , too strong

If => with \exists , too weak

Hence

- $\circ \Rightarrow$ is natural connective with \forall
- while ∧ with ∃

Nested Quantifiers

Using multiple quantifiers

- $\forall x \forall y \text{ Brother}(x, y) \Rightarrow \text{Sibling } (x, y)$
- Can be written as $\forall x, y$

$\forall x \exists y \text{ Loves } (x, y)$

- Everybody x loves somebody y
- $\exists y \forall x \text{ Loves } (x, y)$? Any difference?
- There is somebody y, whom is loved by everybody x.

Quantifiers are not commutative

Order cannot be interchanged

To specify precedence

• Should use (), e.g. $\exists y (\forall x \text{ Loves } (x, y))$

Connections between \forall and \exists

- \forall is a conjunction over the universe
- ∃ is a disjunction
 - DeMorgan rules can apply to them

$$\bullet \forall x \neg P \equiv \neg \exists x P$$

•
$$\forall x P \equiv \neg \exists x \neg P$$

$$\circ \neg \forall x P \equiv \exists x \neg P$$

$$\circ \exists x P \equiv \neg \forall x \neg P$$

They are equivalent

- \circ Only one of \forall or \exists is necessary
- Do not need both, PROLOG uses only ∀

Uniqueness Quantifier ∃!

∃ specifies

One or more objects

\exists ! is used to specify

A unique one object

Example: "There is only one king"

- ∘ ∃!x King(x)
- $\exists x \ King(x) \land \exists y \ King(y) \Rightarrow (x = y)$
- If X is a King & Y is a King, then X must be Y

Equality

Represented as "="

• Example: *FatherOf(John) = Henry*

Ensure two objects are not the same

- Negation with equality is used
- E.g. $\exists x,y \ Sister(Felix,x) \land Sister(Felix,y) \land \neg(x=y)$

Using First Order Logic

Using First Order Logic

Domain

- Application or a section of the world
 - In expressing knowledge

Examples

- The kinship domain
- The domain of numbers
- The domain of sets and lists

The Kinship Domain

Family relationships

- Objects in the domain are people
- Properties of the objects
 - Gender (Male or female)
 - Age
 - Height, ...
- Relations
 - Parenthood
 - Brotherhood
 - Marriage, ...

Domain Axioms (Rules)

```
\forall m,c Mother(c)=m \Leftrightarrow Female(m) \land Parent(m,c)
```

 \forall w,h Husband(h,w) \Leftrightarrow Male(h) \land Spouse(h,w)

Disjoint categories:

 \circ \forall x Male(x) \Leftrightarrow ¬Female(x)

Inverse relations:

• \forall p,c Parent(p,c) \Leftrightarrow Child(c,p)

 \forall g,c Grandparent(g,c) $\Leftrightarrow \exists$ p Parent(g,p) \land Parent(p,c)

 $\forall x,y \; Sibling(x,y) \Leftrightarrow x \neq y \land \exists p \; Parent(p,x) \land Parent(p,y)$

Many more axioms like these

Defining Axioms

A set of primitive predicates is firstly identified

- Male, Female, Parent, ...
 - i.e., Prolog facts
 - E.g., location(kitchen, apple), door(office, kitchen), ...
- Other predicates can be used
 - as the primitive set
 - Ensure axioms can later be defined correctly

Some domains

No clearly identifiable primitive set

Domain of Numbers

Basic theory of natural numbers

- Natural Number $N \in Z_0^+$
- Check if a number is natural
 - NatNum: N → {True, False}
 - Constant symbol (basis)
 - · 0
 - Function symbol S, meaning successor
 - i.e. S(0) = 0 + 1 = 1.

```
NatNum(0).
 \forall n \ NatNum(n) \Rightarrow NatNum(S(n)).
```

Domain of Numbers

Constraints about the function S

$$\forall n \ S(n) \neq 0$$

 $\forall m, \ n \ m \neq n \Leftrightarrow S(m) \neq S(n)$

Addition of natural numbers

```
\forall m \ NatNum(m) \Rightarrow (+(m, 0) = m)
\forall m, n \ NatNum(m) \land NatNum(n) \Rightarrow +(S(m), n) = S(+(m,n))
```

Defined base on idea of Natural number

Express the idea in FOL

Domain of Sets

Represent sets, including empty set

- Way to build up a set
 - Add element to a set (adjoining)
 - Union of two sets
 - Intersection of two sets
- Checking of an object
 - A set?
 - Member of a set?
 - Subset of a certain set?

Constant symbol: {}

Predicates: Set, Member, Subset

Functions: Adjoining, Union, Intersection

1. The only sets are the empty set and those made by adjoining something to a set:

$$\forall s \ Set(s) \Leftrightarrow (s = \{\}) \lor (\exists x, s_2 \ Set(s_2) \land s = \{x | s_2\}).$$

2. The empty set has no elements adjoined into it, in other words, there is no way to decompose *EmptySet* into a smaller set and an element:

$$\neg \exists x, s \ \{x|s\} = \{\}.$$

3. Adjoining an element already in the set has no effect:

$$\forall x, s \ x \in s \Leftrightarrow s = \{x|s\} .$$

4. The only members of a set are the elements that were adjoined into it. We express this recursively, saying that x is a member of s if and only if s is equal to some set s_2 adjoined with some element y, where either y is the same as x or x is a member of s_2 :

$$\forall x, s \ x \in s \Leftrightarrow [\exists y, s_2 \ (s = \{y | s_2\} \land (x = y \lor x \in s_2))].$$

5. A set is a subset of another set if and only if all of the first set's members are members of the second set:

$$\forall s_1, s_2 \ s_1 \subseteq s_2 \Leftrightarrow (\forall x \ x \in s_1 \Rightarrow x \in s_2)$$
.

6. Two sets are equal if and only if each is a subset of the other:

$$\forall s_1, s_2 \ (s_1 = s_2) \Leftrightarrow (s_1 \subseteq s_2 \land s_2 \subseteq s_1) .$$

7. An object is in the intersection of two sets if and only if it is a member of both sets:

$$\forall x, s_1, s_2 \ x \in (s_1 \cap s_2) \Leftrightarrow (x \in s_1 \land x \in s_2).$$

8. An object is in the union of two sets if and only if it is a member of either set:

$$\forall x, s_1, s_2 \ x \in (s_1 \cup s_2) \Leftrightarrow (x \in s_1 \lor x \in s_2).$$

Domain of Lists

Similar to sets

Differences

- Element can appear more than once
- Ordered

$\emptyset = \{ \}$	[] = Nil
$\{x\} = \{x \mid \{\}\}$	[x] = Cons(x, Nil)
${x, y} = {x {y { } { } { } { } { } { } }$	[x,y] = Cons(x, Cons(y, Nil))
${x, y s} = {x {y s}}, s is a set$	[x,y I] = Cons(x, Cons(y, I))
$r \cup s = Union(r, s)$	
$r \cap s = Intersection(r, s)$	
$x \in s = Member(x, s)$	
$r \subseteq s = Subset(r, s)$	24

First Order Logic in Wumpus World

The Wumpus World

Agent percept vector

[Stench, Breeze, Glitter, Bump, Scream]

Percept is time critical

- Add a time step
- percept([S, B, G, None, None], 5)

Action

- Turn(Right), Turn(Left), Forward, Grab...
- Objective: Take best action for any time

Best Action

BestAction(a, t)

- E.g. glitter is perceived at t
- a = Grab

Tell KB what happens

- Transform perception
 - \forall s,g,u,c,t Percept([s, Breeze, g, u, c], t) \Rightarrow Breeze(t)
 - ∀ s,b,u,c,t Percept([s, b, Glitter, u, c], t) ⇒ Glitter(t)

With "telled" information

- Additional rules are defined
- $\forall t \ Glitter(t) \Rightarrow BestAction(Grab, t)$

Define Environment

Objects

- Squares
- Pits
- Wumpus

Square

S_{1,1}, S_{1,2}, so on

Adjacent squares

$$\forall x, y, a, b \ Adjacent([x, y], [a, b]) \Leftrightarrow$$
 $[a, b] \in \{[x+1, y], [x-1, y], [x, y+1], [x, y-1]\}$

Define Environment

Pits

- No need to name individually
- Use unary predicate
 - Pit([S_{3,1}, S_{3,3}, S_{4,4}])

Wumpus

- Only one square
- Function: Home(wumpus)
 - Return the square S_{1,3}
- Multiple wumpuses
 - Similar to Pit(), i.e. Wumpus([W_{1,3}, W_{3,4}])

Define Environment

Agent moves

- \circ Changes location $L_{x,y}$ over time
- At(agent, s, t)
 - At time step t, agent is at s

Properties of environment

- Constant
- Square is breezy $\forall s, t \text{ At(agent, s, t)} \land \text{Breeze(t)} \Rightarrow \text{Breezy(s)}$
- Same for smelly $\forall s, t \ At(agent, s, t) \land Stench(t) \Rightarrow Smelly(s)$

Diagnostic Rules (→)

From given facts, find reason/cause

- E.g. square is breezy
 - Some adjacent square has a pit
 - \forall s Breezy(s) $\Rightarrow \exists$ r Adjacent(r, s) \land Pit(r)
 - Percept → Cause
- Reverse direction is true
 - \forall s Breezy(s) $\Leftrightarrow \exists$ r Adjacent(r, s) \land Pit(r)

Causal Rules (←)

From given cause, conclude with facts/results

- Cause → Percept
- or is a pit
 - All adjacent squares of r are breezy
 - \forall r Pit(r) \Rightarrow [\forall s Adjacent(r, s) \Rightarrow Breezy(s)]
- All squares adjacent to square s are not pits
 - s is not breezy
 - \forall s [\forall r Adjacent(r, s) $\Rightarrow \neg$ Pit(r)] $\Rightarrow \neg$ Breezy(s)

Equivalent to previous bidirectional rule

Conclusion

No matter which kind of representation

Axioms are correct and complete

- The way the world works
- The way percepts are produced

Complete logical inference procedure

- With given available percepts
- Infer strongest possible description of the world state