CP1402/CP5631 - Binary and Revision

Converting binary to decimal

bits	1	0	1	1	0	1	0	1
power	128	64	32	16	8	4	2	1
to add	128	0	32	16	0	4	0	1

bits	1	0	0	0	0	0	0	1
power	128	64	32	16	8	4	2	1
to add	128	0	0	0	0	0	0	1

128 + 1 = 129

Task 1

- 1. Fill in the powers of two, left to right
- 2. Write down the powers of two for each 1 bit

bits	1	0	1	1	0	1	1	1	0
power	256	128	64	32	16	8	4	2	1
to add	256	0	64	32	0	8	4	2	0

256+64+32+8+4+2=366

Task 2

Your turn. Without referring back to the table, convert the following binary numbers – **You must show your working**:

1) 11001110 128+64+8+4+2=206

2) 00100101 32+4+1=37

3) 11010101 128+64+16+4+1=213

4) 0001 1=1 5) 11 2+1=3

Converting decimal to binary

Subtraction method

Number	Power of two	Difference	Bit
355	256 fits	355 - 256 = 99	1
99	128 doesn't fit		0 =
99	64 fits	99 - 64 = 35	1 E E E E E E E E E E E E E E E E E E E
35	32 fits	35 - 32 = 3	
3	16 doesn't fit		0 0 0
3	8 doesn't fit		Read top
3	4 doesn't fit		0 8
3	2 fits	3 - 2 = 1	1
1	1 fits	1 - 1 = 0	1

Read top to bottom: 101100011

Remainder method

Number	Remainder	Division
152		152 / 2 = 76 r 0
76	0	76 / 2 = 38 r 0
38	0	38 / 2 = 19 r 0
19	0	
9	1	9/2=9r1 9/2=4r1
4	1	
2	0	2/2=1r0
1	0	1 / 2 = 0 r 1
0	1	done

Read bottom to top: 10011000

Task 3

Use the subtraction method to convert the following numbers – **You must show your working**:

1) 235

Number Power of two Difference Bit

235	128 fits	235-128=107	1
107	64 fits	107-64=43	1
43	32 fits	43-32=11	1
11	16 doesn't fit		0
11	8 fits	11-8=3	1
3	4 doesn't fit		0
3	2 fits	3-2=1	1
1	1 fits	1-1=0	1

11101011

2) 182

Number	Power of two	Difference	Bit
182	128 fits	182-128=54	1
54	64 doesn't fits		0
54	32 fits	54-32=22	1
22	16 fits	22-16=6	1
6	8 doesn't		0
6	4 fits	6-4=2	1
2	2 fits	2-2=0	1
0	1 doesn't fit		0

10110110

3) 410

Number	Power of two	Difference	Bit
410	256 fits	410-256=154	1
154	128 fits	154-128=26	1
26	64 doesn't fit		0
26	32 doesn't fit		0
26	16 fits	26-16=10	1
10	8 fits	10-8=2	1
2	4 doesn't fit		0
2	2 fits	2-2=0	1
0	1 doesn't fit		0

110011010

Check your answers by converting back to decimal from the binary representation.

Next Page

Task 4 Use the remainder method to convert the following numbers – Y

Use the remainder method to convert the following numbers – **You must show your working**:

1) 152

Number	Remainder	Division
152		152/2 = 76 r 0
76	0	76/2 = 38 r 0
38	0	38/2 = 19 r 0
19	0	19/2 = 9 r 0
9	1	9/2 = 4 r 1
4	1	4/2 = 2 r 0
2	0	2/2 = 2 r 0
1	0	1/2 = 0 r 1
0	1	done

10011000

2) 234

Number	Remainder	Division
234		234/2 = 117 r 0
117	0	117/2 =58 r 1
58	1	58/2 = 29 r 0
29	0	29/2 = 14 r 1
14	1	14/2 = 7 r 0
7	0	7/2 =3 r 1
3	1	3/2 = 1 r 1
1	1	1/2 =0 r 1
0	1	done

11101010

3) 81

Number	Remainder	Division
81		81/2=40 r 1
40	1	40/2=20 r 0
20	0	20/2=10 r 0
10	0	10/2=5 r 0
5	0	5/2=2 r 1
2	1	2/2= 1 r 0
1	0	1/2=0 r 1
0	1	done

1010001

Review

Answer the following

- 1. Fill out the seven layers of the OSI model:
- 1- Physical layer
- 2- Data link layer
- 3- Network layer
- 4- Transport layer
- 5- Session layer
- 6- Presentation layer
- 7- Application layer

2. Explaining Logical link Control (LLC) and Media Access Control (MAC) sublayers

Logical Link Control (LLC) sublayer remains relatively independent of the physical equipment and

provides an interface between the MAC layer and the Network layer independent of the hardware

The MAC sub-layer is concerned with the physical components that will be used to communicate the information

Which computer can access the network when multiple computers are trying to access it simultaneously

Physical addressing (MAC addresses) and access control methods.

- 2. Which of the following devices **separate** networks into multiple **collision domains**?
 - Repeaters
 - Switches THIS ONE
 - Hubs
 - Routers
 - Amplifiers
- 4. Which of the following devices **separate** networks into multiple **broadcast domains**?
 - Repeaters
 - Switches
 - Hubs
 - Routers THIS ONE
 - Amplifiers

Next Page

5. Match the following descriptions to the correct cable type:

A relatively short length of cabling with connectors at both ends.

Backbone cabling

Cables or wireless links that provide interconnection between the entrance facility and MDF and between MDF and IDFs.

Horizontal cabling

Connects workstations to the closest data room and to switches housed in the room.

Patch cable

- 6. Define the following network infrastructure terms:
 - Demarc

the device that marks where a telecommunications service provider's network ends and the organisation's network begins.

• Patch panel

a panel of data receptors which can be mounted to a wall or a rack, A patch panel provides a central termination point when many patch cables converge in a single location.

MDF

the centralised point of interconnection for an organisation's LAN or WAN (also called MC or main cross connect)

IDF

An intermediate distribution frame (IDF) is a free-standing or wall-mounted rack for managing and interconnecting a telecommunications cable between end-user devices and the main distribution frame