Алгоритмыг шинжлэх, үнэлэх

Б.Наранчимэг Мэдээлэл, компьютерийн ухааны тэнхим

ХШУИС, МУИС

naranchimeg@seas.num.edu.mn

Өмнөх хичээлээр

- Алгоритмлах үе шат
 - Алгоритмыг зохиох
 - Алгоритмыг шалгах
 - Алгоритмыг шинжлэх

Алгоритм шалгах

- Validation vs. Verification
- Counter example
- Тестийн тохиолдлуудыг тодорхойлох (test case)
- Тестийн өгөгдлийг тодорхойлох (test data)
- Хар хайрцагны тест (Black box testing)
 - Тэнцүү хуваах ба захын утгын шинжилгээний арга
- Цагаан хайрцагны тест (White box testing)
 - Удирдлагын урсгалын тест (Control-flow testing)
 - Өгөгдлийн урсгалын тест (Data-flow testing)

Практикт хэрэглэгдэх аргууд

- Утгын хүснэгтийн арга
- Логик шалгалтын арга
- Хэсэгчилэн шалгах арга

Агуулга

- Алгоритмлах үе шат
 - Алгоритмыг зохиох
 - Алгоритмыг шалгах
 - Алгоритмыг шинжлэх

Алгоритмыг шинжлэх

- Алгоритмын хэмжигдэхүүний нийт тоо буюу санах ойн зарцуулалт (memory)
- Алгоритмын биелэгдэх хугацаа (computational time)
- Алгоритмыг хэрэгжүүлэх үед гарах зардлын тооцоо

Алгоритмыг шинжлэх

- Алгоритмын шинжилгээ яагаад хэрэгтэй вэ?
 - Зөвхөн ажилладаг, зөв програм бичих нь хангалтгүй
 - Хэрвээ програм их хэмжээний өгөгдөлтэй ажилдаг бол ажиллах хугацаа нь асуудал болж хувирна.

• Өгсөн N ширхэг тооны жагсаалтаас K дахь хамгийн их элементийг ол.

• Алгоритм 1

- 1. N тоог массивт уншиж авах
- 2. Зарим энгийн алгоритмыг ашиглан массивын элементийг буурах дарааллаар эрэмбэлэх
- 3. К байрлал дахь элементийг үр дүн болгон буцаах

• Өгсөн N ширхэг тооны жагсаалтаас K дахь хамгийн их элементийг ол.

• Алгоритм 2

- 1. Эхний k ширхэг элементийг массивт оруулж буурах дарааллаар эрэмбэлэх
- 2. Үлдсэн элементийг нэг нэгээр нь уншиж
 - 1. Хэрвээ К дэхь элементээс бага бол алгасах
 - 2. Үгүй бол массивын зөв талбарт байгаа элементийг оруулах
- 3. К байрлал дахь элементийг үр дүн болгон буцаах

- Аль алгоритм нь дээр вэ?
 - N = 100 ба k = 100?
 - N = 100 ба k = 1?
- N = 1,000,000 ба k = 500,000 байхад юу болох вэ?
- Илүү сайн алгоритмууд байдаг

Алгоритмыг шинжлэх

- Энэ шийдэл хэр сайн вэ?
 - "Миний програм 1.37 секундын дотор 2-оос 1,000,000,000 хүртэлх бүх анхны тоог олдог."

Сайжруулах нь

- Энэхүү шинжилгээг хийсний үр дүнд алгоритмыг сайжруулах буюу илүү сайн алгоритм зохиож болно.
- Рекурент томъёо

$$\frac{x^i}{i!} = \frac{x^{i-1}}{(i-1)!} \cdot \frac{x}{i}$$

$$b = b \cdot \frac{x}{i}$$

Actual vs. Simplified

Big O буюу Том Өү

- Алгоритмын гүйцэтгэх хугацааг илэрхийлдэг хамгийн түгээмэл арга
- f(N) = O(g(N))
- $f(N) \le c g(N)$ when $N \ge n_0$
- с болон n₀ тогтмолууд олдож байвал
- F (N) -ийн өсөлтийн хурд g (N) -ээс бага буюу тэнцүү
- g (N) нь f (N) -ийн дээд хязгаар гэж үзнэ

Өсөлтийн хурд

- Хэрвээ f(N) = 4N+ 3 бол
 - f(N) = O(N)
- $f(N) = 2N^2$ бол
 - $f(N) = O(N^2)$
- $f(x) = 6x^4 2x^3 + 5$
 - $f(x) = O(x^4)$

Бусад тооцооллын аргууд

- O: Asymptotic Upper Bound
- Ω: Asymptotic Lower Bound
- θ: Asymptotic Tight Bound

Алгоритмыг шинжлэх

- T (N): алгоритмын бодит өсөлтийн хурд юм
 - програмын эсвэл хэсэгчилсэн кодын гүйцэтгэгдэж болох үйлдлийн тоотой тэнцүү
- F (N): өсөлтийн хурдыг хязгаарлах функц
 - дээд эсвэл доод хязгаар
- T (N) нь заавал F (N) -тэй тэнцүү байж болохгүй.
 - тогтмол ба бага нэр томъёог тооцоолохгүй байж болно.

Бусад тооцооллын аргууд

Analysis Type	Mathematical Expression	Relative Rates of Growth
Big O	T(N) = O(F(N))	$T(N) \leq F(N)$
Big Ω	$T(N) = \Omega(F(N))$	$T(N) \ge F(N)$
Big θ	$T(N) = \theta(F(N))$	T(N) = F(N)

Big O нь дээд хязгаараас бага эсвэл тэнцүү байна

Big Omega нь доод хязгаараас их эсвэл тэнцүү, ижил төстэй байдаг

Big Theta нь тэнцүүтэй төстэй

Big O vs Big omega vs Big theta

Жишээ нь

- $f(n)=4n^3+10n^2+5n+1$
- g(n)= n^3
- Big O
 - $f(n) \leq 5 \cdot g(n)$
 - $O(g(n)) = O(n^3)$

- Big Omega
 - $f(n) \ge 4 \cdot g(n)$
 - $\Omega(g(n)) = \Omega(n^3)$
- Big Theta
 - $4 \cdot g(n) \leqslant f(n) \leqslant 5 \cdot g(n)$ $\theta(g(n)) = \theta(n^3)$

Шинжилгээний аргууд

- Шууд тооцоолох арга
 - Алхам, үйлдлүүдийг шууд тооцоолох
- Ойролцоогоор үнэлэх арга
 - Хамгийн хурдан (best case)
 - Хамгийн удаан (worst case)
 - Дундаж биелэгдэх хугацаа (average case)