## DRAFT: A Family of Sparse, Vertex-Transitive Graphs

Edward L. Platt

August 2015

## 1 Construction

We recursively construct a family of vertex-transitive graphs  $G_n = \langle V_n, E_n \rangle$ . The vertices  $v \in V_n$  are labeled by an n-sequence of integers. We define  $G_0$  and  $G_1$  as:

$$V_0 = \{\langle \rangle \}, \tag{1}$$

$$E_0 = \{\}, \tag{2}$$

$$V_1 = \{\langle 0 \rangle, \langle 1 \rangle\}, \tag{3}$$

$$E_1 = \{\{\langle 0 \rangle, \langle 1 \rangle\}\}. \tag{4}$$

We construct subsequent vertex sets from copies of the previous set, with each copy having a different integer appended to its vertex labels:

$$V_{n+1} = \bigcup_{k=0}^{C_n} \{v | w \in V_n \land v = w \leftrightarrow k\}, \qquad (5)$$

$$C_n \equiv |V_n|, \tag{6}$$

where  $w \leftrightarrow k$  denotes appending element k to the end of sequence w. We note that a one-to-one mapping  $z_n$  exists between the vertices of  $G_n$  and the integers from 0 to  $C_n - 1$ :

$$z_n(v) = \sum_{k=0}^{n-1} C_k v_k. (7)$$

We also define the following mappings on the vertices of  $G_n$ :

$$(\phi(v))_k = \begin{cases} v_k + 1 \mod (C_k + 1) & \text{if } k = n, \\ v_k & \text{otherwise,} \end{cases}$$
 (8)

$$(\phi(v))_k = \begin{cases} v_k + 1 \mod (C_k + 1) & \text{if } k = n, \\ v_k & \text{otherwise,} \end{cases}$$

$$(\psi_n(v))_k = \begin{cases} v_k + 1 \mod (C_k + 1) & \text{if } k = 0 \lor \forall j < k : v_j = C_j, \\ v_k & \text{otherwise,} \end{cases}$$

$$(9)$$

with  $k \leq n$ .

To construct the edges of  $G_{n+1}$  we define a "shortcut" function  $s_n(j,k)$  with  $j \in \{0, 1, C_n - 1\}$  and  $k \in \{0, 1, 2, \dots, C_n\}$  which determines the interconnections between copies of  $G_n$ .

$$s_n(j,k) = \begin{cases} k+1 \mod (C_n+1) & \text{if } j = C_n - 1, \\ k-1 \mod (C_n+1) & \text{if } j = 0, \\ j+k+1 \mod (C_n+1) & \text{if } j \in \{1,3,\dots,C_n-3\}, \\ k-j \mod (C_n+1) & \text{if } j \in \{2,4,\dots,C_n-2\}. \end{cases}$$
(10)

We also define a parity selector function on edges  $e \in E_n$ :

$$p_i(e) = v \quad \text{s.t. } v \in e \land v_0 = i. \tag{11}$$

The edges of  $G_{n+1}$  are then given by:

$$R_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{e \in E_n} \{ p_0(e) \leftrightarrow k, p_1(e) \leftrightarrow k \},$$

$$S_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{v \in A_n} \{ v \leftrightarrow k, \psi_n(v) \leftrightarrow s_n(z_n(v), k) \},$$

$$= \bigcup_{k=0}^{C_n} \bigcup_{v \in B_n} \{ v \leftrightarrow k, \psi_n^{-1}(v) \leftrightarrow s_n(z_n(v), k) \},$$
(12)

$$S_{n+1} = \bigcup_{k=0}^{C_n} \bigcup_{v \in A_n} \{ v \leftrightarrow k, \psi_n(v) \leftrightarrow s_n(z_n(v), k) \},$$
 (13)

$$= \bigcup_{k=0}^{C_n} \bigcup_{v \in B} \{v \leftrightarrow k, \psi_n^{-1}(v) \leftrightarrow s_n(z_n(v), k)\}, \tag{14}$$

$$E_{n+1} = R_{n+1} \cup S_{n+1}, \tag{15}$$

where  $A_n$  and  $B_n$  are the sets of odd and even vertices in  $V_n$ , respectively. Eq. 12 replicates the edges of  $G_n$  among subsets of the vertices, while Eq. 13 creates one edge between each pair of the subsets.

## $\mathbf{2}$ Properties of $G_n$

**Lemma 1.** The graph  $G_n$  is n-regular for all  $n \geq 0$ .

*Proof.* We proceed using induction on n. The base case  $G_1$  is 1-regular by inspection. In the inductive case  $G_{n+1}$  the Eq. 12 reproduces the edges of  $G_n$ , which is n-regular by induction, contributing n to the degree of each vertex. Eq. 13 adds one to the degree of each odd vertex. As  $\psi_n$  is a bijective map between odd and even vertices, Eq. 13 also adds one to the degree of each even vertex, giving a total degree of n+1.

**Lemma 2.** The number of vertices and edges of the graph  $G_n$  are given by the recurrence relations:

$$C_0 = |V_0| = 1, (16)$$

$$C_n = |V_n| = C_{n-1}(C_{n-1} + 1),$$
 (17)

$$C_n = |V_n| = C_{n-1}(C_{n-1} + 1),$$
 (18)  
 $|E_n| = \frac{n}{2}C_n.$  (18)

*Proof.* The vertex set of  $G_n$  (Eq. 5) is a union of  $C_{n-1}+1$  sets. The vertex labels within each set all end with the same element, and this element is unique to each set. The sets are thus disjoint. Each set contains  $C_{n-1}$  elements, giving  $C_{n-1}(C_{n-1}+1)$  elements. By Lemma 1,  $G_n$  is n-regular and has  $\frac{n}{2}|V_n|=\frac{n}{2}C_n$  edges.

**Theorem 1.** The graphs  $G_n$  are vertex-transitive for all  $n \geq 0$ .

*Proof.* We begin by showing that  $\phi_{n-1}$  is an automorphism of  $G_n$ . Let v be a vertex in  $V_n$ .  $\phi_{n-1}$  has no effect on  $v_0^{n-2}$  so it preserves the edges defined in Eq. 12. The vertex  $\phi_{n-1}(v)$  has exactly one other edge, connecting it to:

$$\psi_{n-2}(v_0^{n-2}) \leftrightarrow s_n(z_n(v_0^{n-2}), v_{n-1} + 1), \tag{19}$$

(20)

## References

[1] I. Z. Bower. *The Foster Census*. Charles Babbage Research Centre, Winnipeg, 1988.