Role of the Z polarization in the $pp \to ZH$, $H \to b\bar{b}$ measurement.

Junya Nakamura

Universität Tübingen

Based on

D. Gonçalves and JN (arXiv:1805.06385) and

D. Gonçalves and JN (in preparation).

テラスケール研究会, 27.07.2018, Nagoya.

Introduction

Introduction: VH, $H o b\bar{b}$ channels.

- \bullet $H \rightarrow b\bar{b}$ は、標準模型ヒッグスの最大の崩壊モード, $\sim 58\%$.
- The boosted VH production (V=W,Z)が、H o bar bの観測には最も有力. (Butterworth et al 2008)
- The VH, $H \rightarrow b\bar{b}$ の現在の結果は、4.9 σ (ATLAS 2018), 3.8 σ (CMS 2018).
- V崩壊からの、charged leptonsの数に応じて、3つのチャンネル: $ZH \to \nu\nu\nu bar{b}$, $WH \to \ell\nu bar{b}$, $ZH \to \ell\ell bar{b}$.

Channel	Significance			
Chamiei	Exp.	Obs.		
VBF+ggF	0.9	1.5		
$t\bar{t}H$	1.9	1.9		
VH	5.1	4.9		
$H \to bb$ Combination	5.5	5.4		

Signal strength parameter	Signal strength	p	Significance		
Signai strength parameter		Exp.	Obs.	Exp.	Obs.
0-lepton	$1.04^{+0.34}_{-0.32}$	$9.5 \cdot 10^{-4}$	$5.1 \cdot 10^{-4}$	3.1	3.3
1-lepton	$1.09^{+0.46}_{-0.42}$	$8.7 \cdot 10^{-3}$	$4.9 \cdot 10^{-3}$	2.4	2.6
2-lepton	$1.38^{+0.46}_{-0.42}$	$4.0 \cdot 10^{-3}$	$3.3 \cdot 10^{-4}$	2.6	3.4
$VH, H \rightarrow b\bar{b}$ combination	$1.16^{+0.27}_{-0.25}$	$7.3 \cdot 10^{-6}$	$5.3 \cdot 10^{-7}$	4.3	4.9

(ATLAS 2018)

Introduction: $Z(\ell^+\ell^-)H(b\bar{b})$ channel.

- 以降は、2-lepton channel $Z(\ell^+\ell^-)H(b\bar{b})$ に注目。
- Zがboostしているチャンネルが、よりsignal sensitivityが高い。
- $Z(\ell^+\ell^-)b\bar{b}$ (part of the $\mathcal{O}(\alpha_s^2)$ correction to the Drell-Yan Z production)が、backgroundの大部分を占める。

Process	0-lepton	1-lepton	2-lepton low- $p_T(V)$	2-lepton high- $p_{\rm T}({\rm V})$
Vbb	216.8	102.5	617.5	113.9
Vb	31.8	20.0	141.1	17.2
V+udscg	10.2	9.8	58.4	4.1
tī	34.7	98.0	157.7	3.2
Single top quark	11.8	44.6	2.3	0.0
VV(udscg)	0.5	1.5	6.6	0.5
VZ(bb)	9.9	6.9	22.9	3.8
Total background	315.7	283.3	1006.5	142.7
VH	38.3	33.5	33.7	22.1
Data	334	320	1030	179
S/B	0.12	0.12	0.033	0.15

2/15

Introduction: $Z(\ell^+\ell^-)b\bar{b}$ background v.s. $Z(\ell^+\ell^-)H(b\bar{b})$.

• $Z(\ell^+\ell^-)b\bar{b}$ は、irreducible background:

- $Z \to \ell^+ \ell^-$ 崩壊角度分布は、Z polarizationの状態で一意に決まる。
- Z polarizationは、Zがどう生成されたかに依存する (i.e. process-dependent)
 なので、signalとbackgroundで異なる状態を取る可能性はある。

In this work,

- signalとbackgroundで、Z polarizationが非常に異なる、ということをまず示す。
- 次に、この情報を最大限利用する方法を示し、実際にはどれくらいのsignal sensitivityの向上が期待出来るかを示す。

production and decay

Kinematics and frame for Z

Kinematics and frame for Z production and decay

 $Z \to \ell^+\ell^-$ 崩壊を含めた散乱断面積は、一般的に以下のfactorized formで書ける:

$$\begin{split} \frac{d\sigma}{dq_{\mathrm{T}}^{2}d\cos\theta d\phi} &= \textit{\textbf{F}}_{1}(1+\cos^{2}\theta) + \textit{\textbf{F}}_{2}(1-3\cos^{2}\theta) + \textit{\textbf{F}}_{3}\sin2\theta\cos\phi + \textit{\textbf{F}}_{4}\sin^{2}\theta\cos2\phi \\ &+ \textit{\textbf{F}}_{5}\cos\theta + \textit{\textbf{F}}_{6}\sin\theta\cos\phi + \textit{\textbf{F}}_{7}\sin\theta\sin\phi + \textit{\textbf{F}}_{8}\sin2\theta\sin\phi + \textit{\textbf{F}}_{9}\sin^{2}\theta\sin2\phi. \end{split}$$

9つの $F_i = F_i(q_{\mathrm{T}}^2)$ は、productionで決まり、 $(\cos \theta, \phi)$ 分布を決める。積分すると

$$\frac{d\sigma}{dq_{\rm m}^2} = \frac{16\pi}{3} F_1:$$

 F_1 はZの生成断面積に対応し、 $(\cos\theta, \phi)$ 分布のnormalizationを決定. 残りの係数 F_i (i=2 to 9)の数が8個なのは、Spin1粒子のPolarizationの自由度が一般的に8だから.

Message: 8 個の関数 $F_i/F_1(i=2\ ext{to}\ 9)$ がPolarizationをuniqueにparametrizeし、さらに崩壊角度 $(\cos\theta,\phi)$ 分布を決定する。 $F_1(=Z$ の生成断面積)と同様に、 F_i $(i=2\ ext{to}\ 9)$ も全て、Z bosonがどう生成されたかに依存(i.e. process-dependent).

Kinematics and frame for Z production and decay

Z rest frameの座標系はuniqueではない。 Helicity frameと Collins-Soper frameが有名。 Helicity frame:

- 理論家にとっては、お馴染みのframe。
- Helicity amplitudeをそのまま使って計算可能だから、比較的に楽。

Collins-Soper frame (Collins, Soper 1977) (今回は、これを選択):

- Z+jets過程では標準的であり、実験家にとって、お馴染みのframe (のはず)。
- Lab. frameでのleptonの観測量 $(p_{\top}$ など)が、 θ と ϕ を使って単純な形で書ける。
- 下の図に示すように、2回boostする。

Message: Z rest frameの座標系として、Collins-Soper frameを採用すると色々と都合が良い。

Kinematics and frame for Z production and decay

Z rest frameの座標系はuniqueではない。 Helicity frameとCollins-Soper frameが有名。 Helicity frame:

- 理論家にとっては、お馴染みのframe。
- Helicity amplitudeをそのまま使って計算可能だから、比較的に楽。

Collins-Soper frame (Collins, Soper 1977) (今回は、これを選択):

- Z+jets過程では標準的であり、実験家にとって、お馴染みのframe (のはず)。
- Lab. frameでのleptonの観測量 $(p_{T}$ など)が、 θ と ϕ を使って単純な形で書ける。
- 下の図に示すように、2回boostする。

 θ $(0 \le \theta \le \pi)$ と ϕ $(0 \le \phi \le 2\pi)$ は簡単に得られる(全て、Lab. frameでの運動量):

$$\begin{split} \cos\theta &= \frac{2 \big(q^0 p_{\ell}^3 - q^3 p_{\ell}^0\big)}{Q \sqrt{Q^2 + |\vec{q}_{\rm T}|^2}}, \cos\phi = \frac{2}{\sin\theta} \frac{\big(Q^2 \vec{p}_{{\rm T}\ell} \cdot \vec{q}_{{\rm T}} - |\vec{q}_{{\rm T}}|^2 p_{\ell} \cdot q\big)}{Q^2 |\vec{q}_{{\rm T}}| \sqrt{Q^2 + |\vec{q}_{{\rm T}}|^2}}, \\ \sin\phi &= \frac{2}{Q \sin\theta} \frac{\vec{p}_{{\rm P}_{\rm L}} \times \vec{q}_{{\rm T}}}{|\vec{p}_{{\rm P}_{\rm L}} \times \vec{q}_{{\rm T}}|} \cdot \vec{p}_{\ell}. \end{split}$$

Message: Z rest frameの座標系として、Collins-Soper frameを採用すると色々と都合が良い.

the $Zb\bar{b}$ background.

Z polarization in the ZH signal and

Z polarization in ZH and $Zb\bar{b}$: coefficients in the ZH signal

Signal process qar q o ZHの、 $F_i(i=1\ {
m to}\ 9)$ を計算。CS frameでの、散乱振幅は、

$$\mathcal{M}_{\sigma}^{\lambda=\pm}(q\bar{q}) = -4m_Z^3 G_F(v_q + \sigma a_q) \frac{\sqrt{\hat{s}}}{\hat{s} - m_Z^2 + im_Z \Gamma_Z} \sigma \left(1 + \sigma \lambda \sqrt{1 + q_T^2/m_Z^2}\right),$$

$$\mathcal{M}_{\sigma}^{\lambda=0}(q\bar{q}) = 0,$$

where λ (= ±,0) are the eigenvalues of J_z for the Z boson. 結果として、 F_1 と F_4 だ

けが残る: $\frac{d\sigma}{dq_T^2 d\cos\theta d\phi} = \mathbf{F_1}(1+\cos^2\theta) + \mathbf{F_4}(1-3\cos^2\theta) + \mathbf{F_4}\sin^2\theta\cos\phi + \mathbf{F_4}\sin^2\theta\cos\phi$

$$\frac{d}{d\cos\theta d\phi} = \mathbf{F_1}(1+\cos^2\theta) + \mathbf{F_3}(1-3\cos^2\theta) + \mathbf{F_3}\sin 2\theta \cos \phi + \mathbf{F_4}\sin^2\theta \cos 2\phi + \mathbf{F_5}\cos\theta + \mathbf{F_5}\sin\theta \cos \phi + \mathbf{F_5}\sin\theta \sin \phi + \mathbf{F_5}\sin\theta \sin 2\theta \sin 2\phi.$$

他の $F_{2,3,5,6,7,8,9}$ がゼロな理由は、

- F_{7,8,9}は、散乱振幅の複素位相に比例.
- $F_{2,3,6,7,8}$ は、 $\mathcal{M}^{\lambda=0}_{\sigma}(q\bar{q})$ (= 0)に比例.
- F_5 は、 $q\bar{q}$ の寄与と、 $\bar{q}q$ の寄与が、逆符号で、キャンセル.

Message: Signalの、Zボソン崩壊角度 $(\cos heta,\phi)$ 分布は、 $F_4/F_1=-rac{q_{
m T}^2}{2m_{
m Z}^2+q_{
m T}^2}$ で、完全に決定.

• q_{T} に伴って、負の方向に大きくなる。Boost regionで重要!

Z polarization in ZH and $Zb\bar{b}$: difference between ZH and $Zb\bar{b}$.

Signal process $gg \to ZH$ と、background $Zb\bar{b}$ は、解析的に調べるのは面倒だから、数値的に $F_i(i=1 \text{ to } 9)$ を評価。

MadGraph5.aMC@NLO (Alwall et al 2014)で、LO event samplesを作り、以下のboost regimeのsignal selection cutsをかけてから計算:

$$\begin{split} &75 < m_{\ell\ell} < 105 \text{ GeV}, & 115 < m_{bb} < 135 \text{ GeV}, \\ & \rho_{\mathrm{Tb}} > 25 \text{ GeV}, & |y_b| < 2.5, & 0.3 < \Delta R_{bb} < 1.2, & q_{\mathrm{T}} > 200 \text{ GeV}. \end{split}$$

結果的に、 $F_1
ewline F_2
ewline F_4$ だけが残る:

$$\frac{d\sigma}{dq_{\mathrm{T}}^2 d\cos\theta d\phi} = \mathbf{F_1}(1+\cos^2\theta) + \mathbf{F_2}(1-3\cos^2\theta) + \mathbf{F_4}\sin^2\theta\cos2\phi,$$

	$ZH_{ m DY}$	$ZH_{ m GF}$	Zbb
$A_2(=F_2/F_1)$	0.001(1)	0.026(1)	0.470(1)
$A_4(=F_4/F_1)$	-0.825(2)	-0.972(2)	0.447(2)

- Z崩壊角度(cos θ, φ)分布は、signal, background共に、Z
 polarizationをparametrizeしているA₂とA₄だけで、完全に決定.
- A₂とA₄は、signalとbackgroundで、非常に異なる.
- θ , ϕ の領域が制限される: $0 \le \cos \theta \le 1$, $0 \le \phi \le \pi/2$. (もともとは、 $-1 < \cos \theta < 1$, $0 < \phi < 2\pi$.)

Z polarization in ZH and $Zb\bar{b}$: $(\cos\theta,\phi)$ distribution.

Ratio of the normalized $(\cos\theta,\phi)$ distribution for ZH_{DY} to that for $Zb\bar{b}$:

 $\theta(0 \le \cos \theta \le 1)$, $\phi(0 \le \phi \le \pi/2)$ は以下を使って計算(全てLab. frameでの運動量)

$$|\cos\theta| = \frac{2|q^0p_\ell^3 - q^3p_\ell^0|}{Q\sqrt{Q^2 + |\vec{q}_{\mathrm{T}}|^2}}, |\cos\phi| = \frac{2}{\sin\theta} \frac{|Q^2\vec{p}_{\mathrm{T}\ell} \cdot \vec{q}_{\mathrm{T}} - |\vec{q}_{\mathrm{T}}|^2p_\ell \cdot q|}{Q^2|\vec{q}_{\mathrm{T}}|\sqrt{Q^2 + |\vec{q}_{\mathrm{T}}|^2}}$$

実は、 $\ell^- \, \& \, \ell^+$ を区別する必要がない。理由は単純で、 $\ell^- \, \leftrightarrow \, \ell^+$ corresponds to $\theta \to \pi - \theta$ and $\phi \to \phi + \pi$ (i.e. $\cos \theta \to -\cos \theta$ and $\cos \phi \to -\cos \phi$). この事実は、charge misidentificationが無視出来ない $Z \to e^- e^+$ では、結構重要。

Message: ZH signalと $Zb\bar{b}$ backgroundの、Z polarizationの違いは、この制限された 2 次元 $(\cos\theta,\phi)$ 分布に100%現れている。

この分布を上手く使えば、Zbb̄ irreducible BGを落とせそう.

9/1/

Lepton p_{T} in terms of the

Collins-Soper angles

Lepton p_{T} in terms of the CS angles: general formula

Lab. frameでのlepton p_{T} が、 θ と ϕ を使って単純な形で書ける:

In the CS frame : $\left(p_{\ell^-(\ell^+)}^*\right)^{\mu} = \frac{Q}{2}\left(1, \pm \sin\theta\cos\phi, \pm \sin\theta\sin\phi, \pm\cos\theta\right).$

x-axisの向きに、 $\beta=q_{\mathrm{T}}/\sqrt{Q^2+q_{\mathrm{T}}^2}$ でboost:

In the Lab. frame : $\vec{p}_{\mathrm{T}\ell^-(\ell^+)} = \frac{1}{2} \Big(q_{\mathrm{T}} \pm \sqrt{Q^2 + q_{\mathrm{T}}^2} \sin\theta \cos\phi, \ \pm Q \sin\theta \sin\phi \Big).$

このままでは、Lab. frameのx-axisの向きに依存してしまうから、絶対値を計算:

$$p_{{\rm T}\ell^-(\ell^+)} \equiv \left| \vec{p}_{{\rm T}\ell^-(\ell^+)} \right| = \frac{1}{2} \sqrt{q_{\rm T}^2 + Q^2 \sin^2 \theta + q_{\rm T}^2 \sin^2 \theta \cos^2 \phi \pm 2 q_{\rm T} \sqrt{Q^2 + q_{\rm T}^2} \sin \theta \cos \phi}.$$
 That's all!

Lepton p_{T} in terms of the CS angles: difference between ZH and $Zb\bar{b}$

 θ , ϕ が、 $0 \le \cos \theta \le 1$, $0 \le \phi \le \pi/2$ と、制限されている我々の場合には、harder lepton (ℓ_1) とsofter lepton (ℓ_2) の ρ_T と読むことが出来る:

$$p_{\mathrm{T}\ell1(2)} = \frac{1}{2}\sqrt{q_{\mathrm{T}}^2 + Q^2\sin^2\theta + q_{\mathrm{T}}^2\sin^2\theta\cos^2\phi \pm 2q_{\mathrm{T}}\sqrt{Q^2 + q_{\mathrm{T}}^2}\sin\theta\cos\phi}.$$

Signal は、 $\phi \sim \pi/2$ を多く予言: 2つのleptonの p_T が同じ,

$$p_{{
m T}\ell 1} = p_{{
m T}\ell 2} = rac{1}{2} \sqrt{q_{{
m T}}^2 + Q^2 \sin^2 heta}.$$

Background は、 $\phi \sim 0$ を多く予言: 1つはすごくhardで、もう一つはすごくsoft,

$$p_{\mathrm{T}\ell 1(2)} = \frac{1}{2} \Big| q_{\mathrm{T}} \pm \sqrt{Q^2 + q_{\mathrm{T}}^2} \sin \theta \Big|. \label{eq:pt_T}$$

Message: Polarizationの違いは、lepton p_{T} に既に大きく現れ、 q_{T} が大きいほど顕著 $^{11/15}$

Analysis at the hadron level

Analysis at the hadron level: simulation setup.

- SignalとBackgroundは、hadron levelで、Sherpa+OpenLoops (Gleisberg et al 2009, Cascioli et al 2012, Denner et al 2017)を使ってシミュレート.
- H o bar b sideは、jet substructure analysisを使用 (Butterwirth et al 2008): $p_{\mathrm TJ} > 200$ GeV, $|\eta_J| < 2.5$, $|m_H^{\mathrm{BDRS}} m_H| < 10$ GeV.
- $Z \to \ell\ell$ side $\mathcal{O}_{\rm v}$ selection cuts/\$\ddots\$, two charged leptons (e or μ) with $|\eta_\ell| < 2.5$, which reconstruct a boosted Z boson: 75 $< m_{\ell\ell} < 105$ GeV, $q_{
 m T} \equiv p_{{
 m T}\ell\ell} > 200$ GeV.
- 70% b-tagging efficiency and 1% misstag rate を考慮。
- Lepton p_{T} cutを、 $p_{\mathrm{T}\ell} >$ 30 GeVとした場合の、signalとbackgroundのrateは、

	$ZH_{ m DY}$				
Rates (fb), $p_{\mathrm{T}\ell} >$ 30 GeV	0.16	0.03	0.35	0.02	0.02

• Finally, we perform a two dimensional binned log-likelihood analysis based on the $(\cos\theta,\phi)$ distribution, invoking the CL_s method (Read 2002).

Message: $H o b\bar{b}$ taggingで、何をやろうが、Zのpolarizationには無関係.

Analysis at the hadron level: results.

縦軸: 5σ observationに要求されるLuminocity (ただし、2-lepton channelだけ).

横軸: lepton p_{T} lower cut.

実線: Polarizationの違い (i.e. $(\cos \theta, \phi)$ 分布の違い) も考慮して解析。

点線: 上を考慮していない。

- 点線は、lepton p_{T} を上げるにつれて、向上する。理由は、前に見たように、backgroundのleptonの方がsoftだから。ただし、35 GeVまで。
- 一方で、実線は、lepton p_{T} を上げるにつれて悪くなる。理由は、lepton p_{T} cutによって、polarizationの情報が失われるから。

Message: Polarizationの違いを利用した解析は、有効: Luminocityで、10%くらいの向上が見込める。 $(\cos\theta,\phi)$ 分布の違いを厳密に利用する場合は、lepton p_{T} cutは、出来るだけ低めに設定したほうが良い。

Summary

Summary.

- $Z \to \ell\ell$ の角度分布を測ることで得られる、Zのpolarizationの情報を使って、 $Z(\ell\ell)H(b\bar{b})$ 過程へのsensitivityの向上が期待出来るかどうか調べた。
- Irreducibleで且つdominantなbackground $Zb\bar{b}$ は、signalとは、非常に異なるZ polarizationを予言する。この違いは、 $(\cos\theta,\phi)$ 分布に厳格に現れる。
- この違いは、実は、lepton $p_{\rm T}$ にも大きく現れる: Backgroundの方が、hard leptonはよりhardで、soft leptonはよりsoft。 すなわち、lepton $p_{\rm T}$ cutを上手く選ぶことで、polarizationの違いを部分的に考慮することが可能。
- $(\cos\theta,\phi)$ 分布に基づいた、2D binned log-likelihood analysisをすることで、 polarizationの違いを100%考慮することが可能。Luminocityで、10%くらいの向上が見込める。
- この解析で必要なものは、leptonsの運動量だけ。 ℓ^- と ℓ^+ の区別は不要。 $H \to b \bar b$ taggingとは、完全に独立: Maltivariate analysisをしようが、Dijet-mass analysisをしようが、何をやっても良い。

ありがとうございました.

Prospect

Prospect: $WH(b\bar{b})$ search (1-lepton channel).

- 主要backgroundは、Wbb, tt, single t.
- W polarization in WHは、Z polarization in ZH_{DY} にすごく似ている。さらに、W polarization in $Wb\bar{b}$ は、Z polarization in $Zb\bar{b}$ にすごく似ている。故に、我々の手法は、 $Wb\bar{b}$ を落とすのには、利用出来そう。 $t\bar{t}$ と、single tは未確認。
- 1-lepton channelでは、leptonの情報がMVAに使われているから、既にpolarizationの情報が部分的に使われている可能性はある。
- 解析してくれる方、募集中。

Appendix

- Multivariate analysis after basic event selections.
- Only $m(\ell^+\ell^-)$ as the information of the charged leptons:

Variable	0-lepton	1-lepton	2-lepton		
$p_{ m T}^V$	$\equiv E_{\mathrm{T}}^{\mathrm{miss}}$	×	×		
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×		
$p_{\mathrm{T}}^{b_1}$ $p_{\mathrm{T}}^{b_2}$	×	×	×		
$p_{ m T}^{b_2}$	×	×	×		
m_{bb}	×	×	×		
$\Delta R(\vec{b}_1, \vec{b}_2)$	×	×	×		
$ \Delta \eta(ec{b}_1,ec{b}_2) $	×				
$\Delta\phi(\vec{V}, b\vec{b})$	×	×	×		
$ \Delta \eta(ec{V}, bec{b}) $			×		
$m_{ m eff}$	×				
$\min[\Delta\phi(\vec{\ell}, \vec{b})]$		×			
m_{T}^{W}		×			
$m_{\ell\ell}$			×		
$m_{ m top}$		×			
$ \Delta Y(\vec{V}, \vec{bb}) $		×			
	Only in 3-jet events				
$p_{\mathrm{T}}^{\mathrm{jet_3}}$	×	×	×		
m_{bbj}	×	×	×		

(ATLAS 2017)

- Multivariate analysis after basic event selections.
- Only $m(\ell^+\ell^-)$ as the information of the charged leptons:

Variable	Description	Channels
M(jj)	dijet invariant mass	All
$p_{\mathrm{T}}(\mathbf{j}\mathbf{j})$	dijet transverse momentum	All
$p_{T}(j_1), p_{T}(j_2)$	transverse momentum of each jet	0- and 2-lepton
$\Delta R(jj)$	distance in η – ϕ between jets	2-lepton
$\Delta \eta(jj)$	difference in η between jets	0- and 2-lepton
$\Delta \phi(jj)$	azimuthal angle between jets	0-lepton
$p_{\mathrm{T}}(\mathrm{V})$	vector boson transverse momentum	All
$\Delta \phi(V, jj)$	azimuthal angle between vector boson and dijet directions	All
$p_{\mathrm{T}}(\mathbf{j}\mathbf{j})/p_{\mathrm{T}}(\mathbf{V})$	p _T ratio between dijet and vector boson	2-lepton
$M(\ell\ell)$	reconstructed Z boson mass	2-lepton
CMVA _{max}	value of CMVA discriminant for the jet	0- and 2-lepton
	with highest CMVA value	
CMVA _{min}	value of CMVA discriminant for the jet	All
	with second highest CMVA value	
CMVA _{add}	value of CMVA for the additional jet	0-lepton
	with highest CMVA value	
$p_{\mathrm{T}}^{\mathrm{miss}}$	missing transverse momentum	1- and 2-lepton
$\Delta \phi(\vec{p}_{T}^{miss},j)$	azimuthal angle between $\vec{p}_{T}^{\text{miss}}$ and closest jet ($p_{T} > 30 \text{GeV}$)	0-lepton
$\Delta \phi(\vec{p}_{T}^{miss}, \ell)$	azimuthal angle between $\vec{p}_{\mathrm{T}}^{\mathrm{miss}}$ and lepton	1-lepton
$m_{ m T}$	mass of lepton $\vec{p}_T + \vec{p}_T^{miss}$	1-lepton
m_{top}	reconstructed top quark mass	1-lepton
N_{ai}	number of additional jets	1- and 2-lepton
$p_{\rm T}({\rm add})$	transverse momentum of leading additional jet	0-lepton
SA5	number of soft-track jets with $p_T > 5 \text{ GeV}$	Áll

(CMS 2018)

Signal regions	0-le	0-lepton 1-le		pton	oton 2-lepton			
0 0	$p_{\rm T}^V > 150 C$	GeV, 2-b-tag	$p_T^V > 150 GeV$, 2-b-tag		$75 GeV < p_T^V < 150 GeV$, 2-b-tag		$p_T^V > 150 GeV$, 2-b-tag	
Sample	2-jet	3-jet	2-jet	3-jet	2-jet	≥3-jet	2-jet	≥3-jet
Z + ll	17 ± 11	27 ± 18	1.5 ± 1.0	3.4 ± 2.3	13.7 ± 8.7	49 ± 32	4.1 ± 2.8	30 ± 19
Z + cl	45 ± 18	76 ± 30	3.0 ± 1.2	6.9 ± 2.8	43 ± 17	170 ± 67	11.5 ± 4.6	88 ± 35
Z + HF	4770 ± 140	5940 ± 300	179.5 ± 9.1	348 ± 21	7400 ± 120	14160 ± 220	1421 ± 34	5370 ± 100
W + ll	20 ± 13	32 ± 22	31 ± 23	65 ± 48	< 1	< 1	< 1	< 1
W + cl	43 ± 20	83 ± 38	139 ± 67	250 ± 120	< 1	< 1	< 1	< 1
W + HF	1000 ± 87	1990 ± 200	2660 ± 270	5400 ± 670	1.8 ± 0.2	13.2 ± 1.5	1.4 ± 0.2	4.0 ± 0.5
Single top quark	368 ± 53	1410 ± 210	2080 ± 290	9400 ± 1400	188 ± 89	440 ± 200	23.1 ± 7.3	93 ± 26
$t\bar{t}$	1333 ± 82	9150 ± 400	6600 ± 320	50200 ± 1400	3170 ± 100	8880 ± 220	104 ± 6	839 ± 40
Diboson	254 ± 49	318 ± 90	178 ± 47	330 ± 110	152 ± 32	355 ± 68	52 ± 11	196 ± 35
Multi-jet e sub-ch.	-	-	100 ± 100	41 ± 35	-	-	-	_
Multi-jet μ sub-ch.	_	-	138 ± 92	260 ± 270	_	-	_	_
Total bkg.	7851 ± 90	19020 ± 140	12110 ± 120	66230 ± 270	10964 ± 99	24070 ± 150	1617 ± 31	6622 ± 78
Signal (fit)	128 ± 28	128 ± 29	131 ± 30	125 ± 30	51 ± 11	86 ± 22	27.7 ± 6.1	67 ± 17
Data	8003	19143	12242	66348	11014	24197	1626	6686

(ATLAS 2018)

Selection	0-lepton	1-1-	epton	2-lepton		
	•	e sub-channel	μ sub-channel			
Trigger	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton	$E_{\mathrm{T}}^{\mathrm{miss}}$	Single lepton		
Leptons	0 loose leptons	1 tight electron	1 medium muon	2 loose leptons with $p_T > 7 \text{ GeV}$		
	with $p_T > 7 \text{ GeV}$	$p_T > 27 \text{ GeV}$	$p_T > 25 \text{ GeV}$	\geq 1 lepton with $p_T > 27 \text{ GeV}$		
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 150 GeV	> 30 GeV	-	-		
$m_{\ell\ell}$	-		-	$81 \text{ GeV} < m_{\ell\ell} < 101 \text{ GeV}$		
Jets	Exactly	2 or 3 jets		Exactly 2 or \geq 3 jets		
Jet p_T	> 20 GeV					
b-jets	Exactly 2 b-tagged jets					
Leading b-tagged jet p_T		>	· 45 GeV			
H_{T}	> 120 (2 jets), >150 GeV (3 jets)	-		-		
$\min[\Delta\phi(\vec{E}_{T}^{miss}, jets)]$	> 20° (2 jets), > 30° (3 jets)		-	-		
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{bb})$	> 120°		-	-		
$\Delta \phi(\vec{b}_1, \vec{b}_2)$	< 140°		-	-		
$\Delta \phi(\vec{E}_{T}^{miss}, \vec{E}_{T,trk}^{miss})$	< 90°	-		-		
p_{T}^{V} regions	> 15	(75, 150] GeV, > 150 GeV				
Signal regions	✓	$m_{bb} \ge 75 \text{ GeV or } m_{\text{top}} \le 225 \text{ GeV}$		Same-flavour leptons		
			-	Opposite-sign charge ($\mu\mu$ sub-channel)		
Control regions	-	$m_{bb} < 75 \text{ GeV ar}$	$m_{top} > 225 \text{ GeV}$	Different-flavour leptons		

(ATLAS 2017)

$p_{\mathrm{T}}(\mathrm{V})$	>170	>100	[50, 150], > 150
$M(\ell\ell)$	_	_	[75, 105]
p_{T}^{ℓ}	_	(> 25, > 30)	>20
$p_{\mathrm{T}}(\mathbf{j}_1)$	>60	>25	>20
$p_{\mathrm{T}}(\mathrm{j}_2)$	>35	>25	>20
$p_{\mathrm{T}}(\mathbf{j}\mathbf{j})$	>120	>100	_
M(jj)	[60, 160]	[90, 150]	[90, 150]
$\Delta \phi(V, jj)$	>2.0	>2.5	>2.5
CMVA _{max}	$>$ CMVA $_{\rm T}$	$>$ CMVA $_{\rm T}$	$>$ CMVA $_{\rm L}$
$CMVA_{min}$	>CMVA _L	>CMVA _L	$>$ CMVA $_{\rm L}$
N_{aj}	<2	<2	_
$N_{\mathrm{a}\ell}$	=0	=0	_
$p_{\mathrm{T}}^{\mathrm{miss}}$	>170	_	_
$\Delta \phi(\vec{p}_{\rm T}^{\rm miss}, j)$	>0.5	_	_
$\Delta \phi(\vec{p}_{T}^{\text{miss}}, \vec{p}_{T}^{\text{miss}}(\text{trk}))$	< 0.5	_	_
$\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \ell)$	_	< 2.0	_
Lepton isolation	_	< 0.06	(< 0.25, < 0.15)

> -0.8

(CMS 2018)

0-lepton

Variable

Event BDT

> 0.3

1-lepton

2-lepton

> -0.8

The amplitudes $\mathcal{M}_{\sigma}^{\lambda}(q\bar{q})$ can be written in general as

$$\mathcal{M}_{\sigma}^{\lambda}(q\bar{q}) = \frac{2m_Z^2}{\nu} \frac{1}{\hat{s} - m_Z^2 + im_Z \Gamma_Z} \Gamma_{\sigma}(q\bar{q}) \cdot \epsilon_{\lambda}.$$

In the c.m. frame of the Z+H system, where the z axis is chosen along the collision axis and the y axis is chosen perpendicular to the scattering plane, we find

$$\Gamma_{\sigma}(q\bar{q})^{\mu} = \frac{2m_{Z}}{v}(v_{q} + \sigma a_{q})\sqrt{\hat{s}} (0, -1, -i\sigma, 0).$$

The currents in the CS frame can be easily obtained by the two boost steps:

$$\Gamma_{\sigma}(q\bar{q})^{\mu} = \frac{2m_Z}{v}(v_q + \sigma a_q)\sqrt{\hat{s}} \left(q_T/m_Z, -\sqrt{1 + q_T^2/m_Z^2}, -i\sigma, 0\right).$$

This procedure is justified because the initial quark and anti-quark are assumed to be massless and the helicity of a massless particle is frame-independent. We choose the following as the Z polarization vectors:

$$\epsilon_{\lambda=\pm}^{\mu} = (0, -\lambda, -i, 0)/\sqrt{2},$$

$$\epsilon_{\lambda=0}^{\mu} = (0, 0, 0, 1).$$

The coefficients F_i (i = 2, 9) can be numerically calculated from

$$\frac{F_2}{F_1} = \frac{1}{3} + \frac{16}{9} \frac{\sigma(1 - 3\cos^2\theta > 1/4) - \sigma(1 - 3\cos^2\theta < 1/4)}{\sigma(1 - 3\cos^2\theta > 1/4) + \sigma(1 - 3\cos^2\theta < 1/4)}, \tag{1a}$$

$$\frac{F_3}{F_1} = \pi \frac{\sigma(\sin 2\theta\cos\phi > 0) - \sigma(\sin 2\theta\cos\phi < 0)}{\sigma(\sin 2\theta\cos\phi > 0) + \sigma(\sin 2\theta\cos\phi < 0)}, \tag{1b}$$

$$\frac{F_4}{F_1} = \pi \frac{\sigma(\sin^2\theta\cos\phi > 0) - \sigma(\sin^2\theta\cos\phi < 0)}{\sigma(\sin^2\theta\cos\phi > 0) + \sigma(\sin^2\theta\cos\phi < 0)}, \tag{1c}$$

$$\frac{F_5}{F_1} = \frac{8}{3} \frac{\sigma(\cos\theta > 0) - \sigma(\cos\theta < 0)}{\sigma(\cos\theta > 0) + \sigma(\sin\theta\cos\phi < 0)}, \tag{1d}$$

$$\frac{F_6}{F_1} = \frac{8}{3} \frac{\sigma(\sin\theta\cos\phi > 0) - \sigma(\sin\theta\cos\phi < 0)}{\sigma(\sin\theta\cos\phi > 0) + \sigma(\sin\theta\cos\phi < 0)}, \tag{1e}$$

$$\frac{F_7}{F_1} = \frac{8}{3} \frac{\sigma(\sin\theta\sin\phi > 0) - \sigma(\sin\theta\sin\phi < 0)}{\sigma(\sin\theta\sin\phi > 0) + \sigma(\sin\theta\sin\phi < 0)}, \tag{1f}$$

(1h)

which measure the differences in the numbers of events.

 $\frac{F_0}{F_1} = \pi \frac{\sigma(\sin^2\theta\sin 2\phi > 0) - \sigma(\sin^2\theta\sin 2\phi < 0)}{\sigma(\sin^2\theta\sin 2\phi > 0) + \sigma(\sin^2\theta\sin 2\phi < 0)}$

In terms of the scattering amplitudes $\mathcal{M}^{\lambda}_{\lambda_1\lambda_2}$, where $\lambda_{1,2}$ denote the helicity of the initial gluons, the functions f_i can be written as

$$f_1 = \overline{\sum_{\lambda_1, \lambda_2}} \frac{1}{2} \left(|\mathcal{M}_{\lambda_1 \lambda_2}^+|^2 + |\mathcal{M}_{\lambda_1 \lambda_2}^-|^2 + |\mathcal{M}_{\lambda_1 \lambda_2}^0|^2 \right)$$

$$f_2 = \overline{\sum_{\lambda_1, \lambda_2}} \frac{1}{2} |\mathcal{M}_{\lambda_1 \lambda_2}^0|^2$$

$$f_{3} = \frac{\sum_{\lambda_{1},\lambda_{2}} 1}{\sqrt{2}} Re \left[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} - \mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{0})^{*} \right]$$

$$f_{4} = \sum_{\lambda_{1},\lambda_{2}} Re \left[\mathcal{M}_{\lambda_{1}\lambda_{2}}^{-} (\mathcal{M}_{\lambda_{1}\lambda_{2}}^{+})^{*} \right]$$

 $f_5 = \overline{\sum} \left(|\mathcal{M}_{\lambda_1 \lambda_2}^+|^2 - |\mathcal{M}_{\lambda_1 \lambda_2}^-|^2 \right)$

 $f_2 = \overline{\sum_{\lambda_1, \lambda_2}} \frac{1}{2} |\mathcal{M}^0_{\lambda_1 \lambda_2}|^2$

 $\mathit{f}_{6} = \sum \sqrt{2} Re \big[\mathcal{M}^{0}_{\lambda_{1}\lambda_{2}} (\mathcal{M}^{+}_{\lambda_{1}\lambda_{2}})^{*} + \mathcal{M}^{-}_{\lambda_{1}\lambda_{2}} (\mathcal{M}^{0}_{\lambda_{1}\lambda_{2}})^{*} \big]$

 $\mathit{f}_{7} = \overline{\sum} \sqrt{2} \mathit{Im} \big[\mathcal{M}^{0}_{\lambda_{1} \lambda_{2}} (\mathcal{M}^{+}_{\lambda_{1} \lambda_{2}})^{*} + \mathcal{M}^{-}_{\lambda_{1} \lambda_{2}} (\mathcal{M}^{0}_{\lambda_{1} \lambda_{2}})^{*} \big]$

 $f_8 = \overline{\sum_{\lambda = 1}^{N}} \frac{1}{\sqrt{2}} Im \left[\mathcal{M}_{\lambda_1 \lambda_2}^0 (\mathcal{M}_{\lambda_1 \lambda_2}^+)^* - \mathcal{M}_{\lambda_1 \lambda_2}^- (\mathcal{M}_{\lambda_1 \lambda_2}^0)^* \right]$

 $f_9 = \sum Im[\mathcal{M}_{\lambda_1\lambda_2}^-(\mathcal{M}_{\lambda_1\lambda_2}^+)^*].$