Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #10-11

2023/05/04

Student Number:			_	
1 Suppose that T	is a normal operator on	V and that 3 and 4	are eigenvalues of T	Prove that there exists.

1. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

设 T 是 V 上的正规算子且 3 和 4 是 T 的本征值. 证明存在向量 $v \in V$ 使得 $||v|| = \sqrt{2}$ 且 ||Tv|| = 5.

Proof. Let v_1, v_2 be the eigenvectors of T corresponding to eigenvalues 3, 4 respectively, and $||v_1|| = ||v_2|| = 1$, since T is normal, v_1 and v_2 are orthogonal.

Let
$$v = v_1 + v_2$$
, then $||v|| = ||v_1 + v_2|| = \sqrt{1+1} = \sqrt{2}$, $||Tv|| = ||Tv_1 + Tv_2|| = ||3v_1 + 4v_2|| = \sqrt{3^2 + 4^2} = 5$.

2. Suppose U and W are finite-dimensional subspaces of V. Prove that $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for all $u \in U$ and $w \in W$.

all $u \in U$ and $w \in W$. 设 U 和 W 均为 V 的有限维子空间. 证明 $P_U P_W = 0$ 当且仅当对所有 $u \in U$ 和 $w \in W$ 均有 $\langle u, w \rangle = 0$.

Proof. " \Rightarrow ": $\forall w \in W, \ 0 = P_U P_W w = P_U w \Rightarrow w \in U^{\perp} \Rightarrow W \subseteq U^{\perp}$, so $\forall u \in U, w \in W, \langle u, w \rangle = 0$.

" \Leftarrow ": $\forall v \in V$, $\exists w_1 \in W$, $w_2 \in W^{\perp}$, s.t. $v = w_1 + w_2$, then $P_U P_W v = P_U P_W (w_1 + w_2) = P_U w_1$. And since $\forall u \in U$, $w \in W$, $\langle u, w \rangle = 0 \Rightarrow W \subseteq U^{\perp} \Rightarrow P_U w_1 = 0 \Rightarrow P_U P_W v = 0$, $\forall v \in V$, so $P_U P_W = 0$.

3. Give an example of an operator T on complex vector space such that $T^9 = T^8$ but $T^2 \neq T$.

找出复向量空间的一个算子 T 使得 $T^9 = T^8$ 但 $T^2 \neq T$.

Proof. Consider $V = \mathbf{F}^8$, let $T \in \mathcal{L}(V)$ satisfying $Te_i = e_{i+1}, i = 1, 2, \dots, 7, Te_8 = 0$, then $T^9 = T^8 = 0$, $T^2e_1 = e_3 \neq e_2 = Te_1$.

- 4. Suppose $T \in \mathcal{L}(V)$. Let \hat{s} denote the smallest singular of T, and let s denote the largest singular value of T.
 - 1. Prove that $\hat{s}||v|| \leq ||Tv|| \leq s||v||$ for every $v \in V$.
 - 2. Suppose λ is an eigenvalue of T. Prove that $\hat{s} \leq |\lambda| \leq s$.

设 $T \in \mathcal{L}(V)$. 设 \hat{s} 表示 T 的最小奇异值, s 表示 T 的最大奇异值.

- 1. 证明对每个 $v \in V$ 均有 $\hat{s}||v|| \leq ||Tv|| \leq s||v||$.
- 2. 设 $\lambda \in T$ 的一个本征值. 证明 $\hat{s} \leq |\lambda| \leq s$.

Proof. Assume all singular values of T are s_1, \dots, s_n , and $\hat{s} = s_1 \leqslant s_2 \leqslant \dots \leqslant s_n = s$, the singular value decomposition of T is $Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n$, $\forall v \in V$, then

$$||Tv||^2 = s_1^2 \langle v, e_1 \rangle^2 + \dots + s_n^2 \langle v, e_n \rangle^2 \leqslant s^2 (\langle v, e_1 \rangle^2 + \dots + \langle v, e_n \rangle^2) = s^2 ||v||^2 \Rightarrow ||Tv|| \leqslant s ||v||$$

Similarly, $||Tv|| \ge \hat{s}||v||$, so $\hat{s}||v|| \le ||Tv|| \le s||v||$ for every $v \in V$.

Let v be the eigenvector of λ , then $||Tv|| = |\lambda| ||v||$, then $\hat{s}||v|| \leqslant |\lambda| ||v|| \leqslant s ||v|| \Rightarrow \hat{s} \leqslant |\lambda| \leqslant s$.