PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 01

MAT1106 — Introducción al Cálculo Fecha: 2020-08-19

Problema 1:

Sean a, b tales que ab = 1. Demuestre que $a^2 + b^2 \ge 2$.

Solución problema 1: Se recuerda que $(a-b)^2 \ge 0$, por lo que $(a^2+b^2)-2ab \ge 0$, como ab=1 se tiene que $(a^2+b^2)-2\ge 0$ por lo que usando la definición de \ge se tiene que $a^2+b^2\ge 2$.

Problema 2:

Sean $a, b \in \mathbb{R}$

- 1) Demuestre que $a^2 + ab + b^2 \ge 0$, y determine cuando se cumple la igualdad.
- 2) Demuestre que $a^3 b^3 = (a b)(a^2 + ab + b^2)$.
- 3) Concluya que $a^3 > b^3$ si y solo si a > b.

Solución problema 2:

1) Se nota que $a^2 + ab + b^2 = \frac{a^2 + b^2}{2} + \frac{(a+b)^2}{2}$, por lo que $a^2 + ab + b^2 \ge 0$. Dado eso, se tiene que $a^2 + ab + b^2 = 0$ si y solo si $a^2 + b^2 = 0$ por lo que a = b = 0.

2) Se ve lo siguiente:

$$(a - b)(a^{2} + ab + b^{2}) = a(a^{2} + ab + b^{2}) - b(a^{2} + ab + b^{2})$$
$$= a^{3} + a^{2}b + ab^{2} - ba^{2} - ab^{2} - b^{3}$$
$$= a^{3} - b^{3}$$

3) Con lo anterior, se nota que si $a^3 > b^3$ o a > b, se tiene que $a \neq b$, por lo que $a^2 + ab + b^2 > 0$. Por ende

$$a^{3} > b^{3} \iff a^{3} - b^{3} > 0$$

$$\iff (a - b)(a^{2} + ab + b^{2}) > 0$$

$$\iff a - b > 0 \cdot (a^{2} + ab + b^{2})^{-1}$$

$$\iff a - b > 0$$

$$\iff a > b$$

Problema 3:

Sean $a, b, c, d \in \mathbb{R}$ tales que a < b y c < d. Pruebe que ad + bc < ac + bd

Solución problema 3: Notar que 0 < b - a y 0 < d - c, por lo que

$$0 < (b-a)(d-c) \iff 0 < b(d-c) - a(d-c)$$
$$\iff 0 < bd - bc - ad + ac$$
$$\iff ad + bc < ac + bd$$

Con lo que se tiene lo pedido.

Problema 4:

Demuestre que si $L - \varepsilon \leq M$ para todo $\varepsilon > 0$, entonces $L \leq M$

Solución problema 4: Por contradicción, se asume que L>M, luego sea $\varepsilon=\frac{L-M}{2}>0$, entonces

$$L - \varepsilon \le M \iff L - \frac{L - M}{2} \le M$$

$$\iff 2L - (L - M) \le 2M$$

$$\iff 2L - L + M \le 2M$$

$$\iff L + M \le 2M$$

$$\iff L \le M$$

Lo último es una contradicción, por lo que $L \leq M$.

Problema 5:

Se define el mínimo entre a y b como

$$\min(a, b) = \begin{cases} a & \text{si } a \le b \\ b & \text{si } a > b \end{cases}$$

Demuestre que $|x| = -\min(x, -x)$.

Solución problema 5: Por casos, si $x \ge 0$ se tiene que |x| = x, ahora como $x \ge 0$ se tiene que $-x \le 0 \le x$, por lo que $\min(x, -x) = -x$, más aún $-\min(x, -x) = x = |x|$. Si x < 0, se tiene que |x| = -x y -x > 0 > x, por lo tanto $\min(x, -x) = x$, y $-\min(x, -x) = -x = |x|$.

Problema 6:

Se define el máximo entre a y b como

$$\max(a, b) = \begin{cases} a & \text{si } a \ge b \\ b & \text{si } a < b \end{cases}$$

Demuestre que $máx(a,b) = \frac{a+b}{2} + \frac{|a-b|}{2}$.

Solución problema 6: De nuevo, por casos, si $a \ge b$ se tiene que |a-b| = a-b, por lo que

$$\frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{a-b}{2}$$
$$= \frac{a+b+a-b}{2}$$
$$= \frac{2a}{2}$$
$$= a$$
$$= \max(a,b)$$

Si a < b se tiene que absa - b = b - a, entonces

$$\frac{a+b}{2} + \frac{|a-b|}{2} = \frac{a+b}{2} + \frac{b-a}{2}$$
$$= \frac{a+b+b-a}{2}$$
$$= \frac{2b}{2}$$
$$= b$$
$$= \max(a,b)$$

Con lo que se tiene lo pedido.