Exercise 1 for MA-INF 2201 Computer Vision WS23/24

15.10.2023

Submission deadline: 22.10.2023

In this assignment, you are required to write code for the programming tasks listed below. The tasks should be completed using the *opencv* library, similarly to Exercise 0. Please submit your python file (.py or a Jupyter notebook) with clear comments indicating which part refers to which task. In addition, you are required to submit a separate file called tasks_3_6.pdf with answers for the theoretical questions 3 and 6. Good luck!

1. Rectangles and Integral Images

Read the image bonn.png and convert it into a gray image.

- Compute and display the integral image without using the function *integral*.
- Compute the mean grey value of the image by:
 - summing up each pixel value in the image, i.e. $\frac{1}{|R|} \sum_{p \in \mathcal{R}} I(p)$
 - computing an integral image using the function integral
 - computing an integral image with your own function
- Select 10 random squares of size 100×100 within the image and compute the mean gray value using the three versions. Output the runtime of this task for the three versions in seconds using *time*.

(3 Points)

2. Histogram Equalization

Read the image bonn.png. Convert the image into a gray image and perform histogram equalization:

- using equalizeHist
- using your own implementation of the function equalizeHist

and display both results. Compute the absolute pixelwise difference between the results and print the maximum pixel error.
(2 Points)

3. Convolution Theorem

Proof that convolutions are in the continuous case associative. (2 Points)

4. 2D Filtering

Read the image bonn.png, convert it into a gray image, and display it. Filter the image with a Gaussian kernel with $\sigma = 2\sqrt{2}$

- \bullet using GaussianBlur
- using filter2D without using getGaussianKernel
- using sepFilter2D without using getGaussianKernel

and display the three results. Compute the absolute pixel-wise difference between all pairs (there are three pairs) and print the maximum pixel error for each pair. (2 Points)

5. Multiple Gaussian Filters

Read the image bonn.png, convert it into a gray image, and display it. Filter the image

- twice with a Gaussian kernel with $\sigma = 2$
- once with a Gaussian kernel with $\sigma = 2\sqrt{2}$

and display both results, compute the absolute pixel-wise difference between the results, and print the maximum pixel error.

(1 Point)

6. More on Convolution

Proof that convolution two times with a Gaussian kernel with standard deviation σ is the same as convolution once with a Gaussian kernel with standard deviation $\sqrt{2}\sigma$.

(2 Points)

7. Denoising

Read the image bonn.png, convert it into a gray image, add 30% (the chance that a pixel is converted into a black or white pixel is 30%) salt and pepper noise, and display it. Filter the image by

- a Gaussian kernel
- \bullet Median filter medianBlur
- Bilateral filter bilateralFilter

and display the three results. Select the filter size from the range [1, 3, 5, 7, 9] that minimizes the mean gray value distance to the original image.
(3 Points)

8. Separability of Filters

Read the image bonn.png and convert it into a gray image.

- Filter the images using the two 2D filter kernels given below
- Use the class SVD of OpenCV to separate each kernel. If a kernel is not separable, use an approximation by taking only the highest singular value. Filter the images with the obtained 1D kernels and display the results.
- Compute the absolute pixel-wise difference between the results of (a) and (b), and print the maximum pixel error.

(5 Points)