ES120 Spring 2018 - Section 4 Notes

Matheus Fernandes

February 22, 2018

Problem 1:

Figure 1: 3.1

For the cylindrical shaft shown, determine the maximum shearing stress caused by a torque of magnitude T=1.5 kN·m.

Solution 1

In order to determine the maximum shear stress caused by a torque onto the shaft we must convert the physical torque (which is equivalent to a force) to a stress. The relationship between torque and maximum shear stress is given by:

$$au_{max} = rac{Tr}{J_{\star}}$$
 (1)

where J is the polar moment of inertia for a cylinder

February 22, 2018 ES120 Section Notes

Problem 2:

Figure 2: 3.3

Knowing that the internal diameter of the hollow shaft shown is d=0.9 in., determine the maximum shearing stress caused by a torque of magnitude T=9 kip·in.

Solution 2

Problem 3:

Figure 3: 3.9

The torques shown are exerted on pulleys A and B. Knowing that each shaft is solid, determine the maximum shearing stress (a) in shaft AB, (b) in shaft BC.

February 22, 2018 ES120 Section Notes

Solution 3	
Part A	
Part B	

	Description	Figure	Area moment of inertia	Comment
	A filled circular area of radius <i>r</i>		$I_x=rac{\pi}{4}r^4 \ I_y=rac{\pi}{4}r^4 \ I_z=rac{\pi}{2}r^4$ [1]	I_z is the Polar moment of inertia.
4/8	An <u>annulus</u> of inner radius r_1 and outer radius r_2		$egin{aligned} I_x &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4 ight) \ I_y &= rac{\pi}{4} \left({r_2}^4 - {r_1}^4 ight) \ I_z &= rac{\pi}{2} \left({r_2}^4 - {r_1}^4 ight) \end{aligned}$	For thin tubes, $r\equiv r_1 pprox r_2$ and $r_2\equiv r_1+t$. So, for a thin tube, $I_x=I_ypprox \pi r^3 t$. I_z is the Polar moment of inertia.
	A filled circular sector of angle θ in radians and radius r with respect to an axis through the centroid of the sector and the center of the circle		$I_x = (heta - \sin heta) rac{r^4}{8}$	This formula is valid only for $0 \le \theta \le \pi$

