Квантизация больших языковых моделей в переопределённом базисе

Гладков Андрей

30 декабря 2024

Содержание

- 1. Описание метода
- 2. Проверка на случайных матрицах
- 3. Проверка на Distilbert
- 4. Обсуждение

Идея

Языковые модели содержат большое количество линейных слоёв, которые можно квантизовать для уменьшения их размера и ускорения инференса. Предположим, что возможно разложение:

$$xpprox u+Qv,\quad x,u,v\in\mathbb{R}^n,Q\in\mathbb{R}^{n imes n}$$
 — ортогональная, $\|u\|_{\infty}$ и $\|v\|_{\infty}$ малы.

Тогда есть надежда, что распределение значений этих векторов будет хорошо квантизоваться. Значения u,v можно кластеризовать и заменить каждое из них на среднее по кластеру. Чем более компактными получаются кластеры, тем ниже ошибка аппроксимации.

Цель

- Реализовать квантизацию Кашина.
- Провести эксперимент на случайных матрицах.
- Произвести эксперимент на реальной языковой модели.

Жадный алгоритм для нахождения разложения xpprox u+Qv

Algorithm 1 Vector Decomposition Kashin Algorithm

```
Input: Vector x \in \mathbb{R}^n, Orthogonal matrix Q, Tolerance
\varepsilon > 0
Output: Vectors u, \hat{v} \in \mathbb{R}^n such that x \approx u + \hat{v} = u + Qv,
and both u and v have small infinity norm.
Initialize u \leftarrow 0^n, \hat{v} \leftarrow 0^n
Define projection \pi_x(y) \coloneqq \frac{x^\top y}{\|y\|_2^2} \cdot y
while ||x-u-\hat{v}|| > \varepsilon do
   if ||x||_1 > ||Q^Tx||_1 then
       \pi \leftarrow \pi_x(\operatorname{Sign}(x))
       u \leftarrow u + \pi
    else
       \pi \leftarrow \pi_x(Q \operatorname{Sign}(Q^T x))
       \hat{v} \leftarrow \hat{v} + \pi
    end if
    x \leftarrow x - \pi
end while
Return: x, u, \hat{v}
```

Матричная версия для разложения $X pprox U + Q_1 V Q_2^T$

 $\pi \leftarrow \pi_X(Q_1 \operatorname{Sign}(Y) Q_2^{\top})$

 $\hat{V} \leftarrow \hat{V} + \pi$

else

end if $X \leftarrow X - \pi$ end while Return: X, U, \hat{V}

Algorithm 2 Matrix Decomposition Kashin Algorithm **Input:** Matrix $X \in \mathbb{R}^{m \times n}$, Orthogonal matrices Q_1, Q_2 , Tolerance $\varepsilon > 0$ **Output:** Matrices $U, \hat{V} \in \mathbb{R}^{m \times n}$, such that $X \approx U +$ $\hat{V} = U + Q_1 V Q_2^T$ and both Vec(U) and Vec(V) have small infinity norm. Initialize $U \leftarrow 0^{m \times n}, \hat{V} \leftarrow 0^{m \times n}$ Define projection $\pi_X(Y) := \frac{\operatorname{Vec}(X)^{\top} \operatorname{Vec}(Y)}{\|\operatorname{Vec}(Y)\|_2^2} \cdot Y$ while $||X - U - \hat{V}|| > \varepsilon$ do $Y \leftarrow Q_1^T X Q_2$ **if** $\|Vec(X)\|_1 > \|Vec(Y)\|_1$ **then** $\pi \leftarrow \pi_X(\operatorname{Sign}(X))$ $U \leftarrow U + \pi$

Результаты для разложения случайной матрицы $X_{500 \times 500}$

Результаты для разложения случайной матрицы 500×500

Особенности решения

- Метод кластеризации: *KMeans*, 4 кластера.
- Базис: из случайных матриц, генерируемых из QR-разложения матрицы из нормального распределёния.
- $\varepsilon = 10^{-4}$.
- •
- Pytorch, numpy, sklearn.

Результаты для разложения случайной матрицы $X_{500 \times 500}$

distilbert.transformer.layer[4].attention.v_lin

Результаты для разложения случайной матрицы 500×500

Проблемы

- Метод не всегда сходится за фиксированное число итераций. В таком случае не квантизую слой.
- Некоторые матрицы при разложении не группируются по кластерам. Можно увеличивать количество кластеров.

В обоих случаях можно пробовать брать другие ортогональные матрицы для базиса.

Качество на downstream задаче

• Модель: DistillBERT.

• Датасет: IMDB Movie Reviews Dataset.

• 10000 - train, 2500 - test. Датасет сбалансирован по меткам 0 / 1.

Метрика / модель	DistilBERT	QDistilBERT
Accuracy	92.32%	92.22%
f1 score	92.38%	92.20%
ROC-AUC	92.31%	92.20%
test loss	0.385	0.361

Разложение случайных векторов

- Метод квантизации Кашина как для векторов, так и для матриц, сходится.
- Удалось повторить эксперименты на случайных матрицах с похожими графиками распределения значений матриц.
- Проведена квантизация Distilbert для решения задачи классификации сантимента. Квантизованная модель показывает результаты не хуже исходной.

Спасибо за внимание!