курс «Прикладные задачи анализа данных»

Выделение сообществ (Community Detection)

Александр Дьяконов

11 декабря 2020 года

План

Сообщество в графе
Методы выделения сообществ
Тестирование различных методов
саse: выделение кругов в эго-подграфах

Сообщество в графе

нет чёткого определения рёбер внутри сообщества много, рёбер соединяющих сообщество с остальными вершинами мало

малый радиус сообщества

Какие бывают определения сообщества

- 1. Чёткие
- 2. Нечёткие (не определения, см. выше)
 - 3. Алгоритмические

(то что получается в результате действия алгоритма)

Примеры сообществ: сеть социальных отношений в high-school

Примеры сообществ: эго-сеть фейсбука

Примеры сообществ

Сообщество в графе

Идеальный кандидат – клика

Не может быть расширена

Не клика

Клика наибольшего размера

Но вычислительные сложности...

k-ядра

Alvarez-Hamelin et.al., 2005

k-ядро = степень каждой вершины >= k

Наибольшие клики (Карате клуб)

Ядра (Карате клуб)

Датасет Карате-клуб

Конфликт привёл к разделению членов клуба на 2 сообщества связи – общение вне клуба

Приз за первое упоминание на конференциях по SNA

Выделение сообществ: Ой способ

Разбиение графа: Kerninghan-Lin Algorithm

1. Разбиваем вершины на два множества 2. Выбираем ребро между множествами Пытаемся «перекинуть вершины», чтобы уменьшить число рёбер между сообществами

http://networksciencebook.com/chapter/9

Выделение сообществ: 1й способ

Обычная кластеризация с мерой схожести вершин

Выделение сообществ: 1й способ

недостаток

формально не пытаемся выполнить условия «сообщности»: много рёбер внутри сообщества слабые связи между сообществами

Выделение сообществ: 2-й способ – Edge betweenness (Girvan-Newmann's method)

Edge betweenness – число кратчайших путей, проходящих через ребро

Повторять пока есть рёбра удаление ребра с максимальным значением ЕВ Получаем иерархическое разложение графа

Edge betweenness (Girvan-Newmann's method)

Edge betweenness: когда останавливаться (в иерархическом делении)

Как в кластеризации: ввести функционал качества

Число рёбер в группе – ожидаемое число рёбер

Почему не оптимизировать этот функционал напрямую?

Выделение сообществ: 3-й способ – модулярность

тоже Girvan и Newman

Сравниваем число рёбер в сообществе с ожидаемым числом рёбер

$$Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} - \frac{\deg(i)\deg(j)}{2m} \right) \cdot I[x_i = x_j]$$

 \mathcal{X}_i – метка i-й вершины

обоснование - след. слайд

как минимизируется

- симуляция отжига
- спектральные методы и т.п.
- жадные алгоритмы
- попытки объединять/перетаскивать сообщества

Обоснование модулярности

Уже был приём...

Есть матрица смежности $A = \mid a_{ij} \mid_{n \times n}$ Если просуммировать – вектор степеней $sum(A, axis = any) = d = (d_1, \ldots, d_n)^{\mathrm{T}}$

Хотим «случайную матрицу» вероятностей с такими же суммами:

$$\frac{d \cdot d^{\mathrm{T}}}{\mathrm{sum}(d)} = \frac{1}{2m} \| d_i d_j \|_{n \times n}$$

+ нормализация, чтобы была на отрезке [-1, +1]

Модулярность: иллюстрация

OPTIMAL PARTITION

SUBOPTIMAL PARTITION

SINGLE COMMUNITY

NEGATIVE MODULARITY

http://networksciencebook.com/chapter/9

Иногда модулярность подводит...

У модулярности есть порог чувствительности: маленькие сообщества не обнаруживает! $\leq \sqrt{2n_e}$

Иногда модулярность подводит...

У модулярности нет чётко выраженного максимума ~ плато с пиками

http://networksciencebook.com/chapter/9

Fast community unfolding: Louvain method / Multilevel

- 1. Каждая вершина приписывается в своё сообщество
- 2. Пока возможно:
 - а. Для каждой вершины изменение модулярности при перемещении её в сообщество (каждого) соседа
 - **b.** Максимальное изменение реализуем
- 3. Пока увеличивается модулярность: вершины сообществ превращаем в мета-вершины

Fast community unfolding: Louvain method / Multilevel

http://networksciencebook.com/chapter/9

Fast community unfolding: Louvain method / Multilevel

Такая жадная оптимизация обычно, когда граф очень большой

Все вершины нумеруются и проходятся в порядке номеров (пытаемся отнести каждую в соседнее сообщество)

Веса при сворачивании – сумма весов рёбер между сообществами

На практике высокая скорость O(n)

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Stat. Mech., 2008.

https://sites.google.com/site/findcommunities/

Выделение сообществ: 4-й способ – Label Propagation

- 1. Случайно приписать метки вершинам
- 2. Цикл по вершинам (в случайном порядке)
- а. Метка вершины заменяется на самую частую метку соседей

Zhu, Xiaojin. «Learning From Labeled and Unlabeled Data With Label Propagation». CiteSeerX 10.1.1.14.3864

Выделение сообществ: 4-й способ – Label Propagation

Выделение сообществ: 5-й способ – Walktrap

- 1. Приписать каждую вершину к своему сообществу
- 2. Пока можно: слить 2 самых ближайших сообщества

Как измеряется близость сообществ

$$r_{A,B}(t) = \sqrt{\sum_{i=1}^{n} \frac{(P_{A,i}^{t} - P_{B,i}^{t})^{2}}{\deg(i)}} = ||D^{-0.5}P_{A}^{t} - D^{-0.5}P_{B}^{t}||_{L}$$

$$P_{A,i}^{t} = \frac{1}{|A|} \sum_{j \in A} P_{ij}^{t}$$

 P_{ij}^{t} – вероятность попасть из i в j за t шагов

(можно вычислить приближённо – случайными блужданиями)

Walktrap

Выделение сообществ: 6-й способ – Выделение сообществ: Infomap

Идея: когда случайно блуждаем (а) надо иметь возможность эффективно кодировать маршрут (d). Для этого кодируются сообщества, вершины в них (эти коды могут пересекаться) + спецсимвол смены сообщества
Как и раньше, специальной оптимизацией минимизируем среднюю длину кода

$$L = qH(Q) + \sum\limits_{c=1}^{n_c} p_{\odot}^c H(P_c)$$

Map Equation:

Другая идея выделения сообществ

Разбиение графа!

Выделение сообществ: 7-й способ – спектральная теория графов

Матрица смежности

	1	2	3	4	5	6	7	8
1		1	1					
2	1		1	1				
3	1	1			1			
4		1			1	1	1	
5			1	1		1	1	
6				1	1		1	
7				1	1	1		1
8							1	

Матрица Лапласа

	1	2	3	4	5	6	7	8
1	2	-1	-1					
2	-1	3	-1	-1				
3	-1	-1	3		-1			
4		-1		4	-1	-1	-1	
5			-1	-1	4	-1	-1	
6				-1	-1	3	-1	
7				-1	-1	-1	4	-1
8							-1	1
U							- 1	

-0.3536	0.4758	0.4032	0.6744	0.0000	0.1498	-0.0938	-0.0000
-0.3536	0.3271	0.1388	-0.4363	0.6015	-0.1862	0.1540	-0.3717
-0.3536	0.3271	0.1388	-0.4363	-0.6015	-0.1862	0.1540	0.3717
-0.3536	-0.0261	-0.3076	-0.1099	0.3717	0.3132	-0.4117	0.6015
-0.3536	-0.0261	-0.3076	-0.1099	-0.3717	0.3132	-0.4117	-0.6015
-0.3536	-0.1307	-0.4737	0.3524	0.0000	-0.7131	0.0292	0.0000
-0.3536	-0.2583	-0.1846	0.1162	0.0000	0.4336	0.7568	0.0000
-0.3536	-0.6889	0.5926	-0.0506	-0.0000	-0.1244	-0.1767	-0.0000

Всё содержится в одном векторе! И на одном слайде!

Потом – теоретическое обоснование

Спектральная теория графов

Первый с.в. – константный Второй с.в. – отражает разбиение графа

Но когда граф несвязный...


```
0.2673
                                                                       0.7715
       L =
                               0.5774
       full(diag(sum(S))-
                               0.5774
                                                            -0.8018
                                                                       -0.1543
                               0.5774
                                                             0.5345
                                                                       -0.6172
       S);
                                        -0.4472
                                                  -0.2887
                                                                                  0.1274
                                                                                           -0.8065
                                                                                                      0.2236
                                                                                           0.5136
       [X,Y] = eig(L);
                                        -0.4472
                                                  -0.2887
                                                                                 0.6348
                                                                                                      0.2236
                                        -0.4472
                                                  -0.2887
                                                                  0
                                                                                 -0.7621
                                                                                            0.2929
                                                                                                      0.2236
                                        -0.4472
                                                 0.0000
                                                                                                     -0.8944
                                                                  0
                                                                             0
                                        -0.4472
                                                                                                      0.2236
                                                   0.8660
diaq(Y)' =
           -0.0000
                         0.0000
                                   1.0000
                                             3.0000
                                                       3.0000
                                                                  4.0000
                                                                            4.0000
                                                                                      5.0000
```

Теперь два «константных» вектора!

Проблема разбиения графа [не совсем из теоретической части]

$$x^{\mathrm{T}}Lx = \sum_{(i,j)} (x_i - x_j)^2 \longrightarrow \min_{x}$$

если $x = (x_1, ..., x_n) \in \{\pm 1\}^n$, то минимизация логична для разбиения (надо избежать очевидного константного решения).

Но это сложная переборная задача, поэтому вместо $x=(x_1,\dots,x_n)\in \{\pm 1\}^n$ решают вещественную задачу с ограничениями

$$\tilde{1}^{T} x = 0$$
, $||x|| = 1$

(ортогональность, чтобы не подходила константа).

Решение – собственный вектор, соответствующий второму по величине с.з. матрицы Лапласа.

Потом
$$(sgn(x_1),...,sgn(x_n))$$
.

Совмещение идей

- 1. Найти второй собственный вектор
- 2. По его значениям упорядочить вершины

3. Как именно делить решаем по отдельному функционалу (ех: модулярность), надо перебрать всего n-1 деление.

SVD над матрицей смежности

Неотрицательные матричные разложения

Spectral modularity maximization [Newman, 2006]

Если
$$x_i \in \{\pm 1\}$$
, то
$$Q = \frac{1}{2n} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) (x_i x_j + 1)$$
, тогда
$$\frac{1}{2n} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) x_i x_j \to \min .$$

Вычислить
$$k = \deg(A)$$
, $B = A - \frac{1}{2m}kk^{\mathrm{T}}$,

Найти max с.в.
$$Bv = \lambda v$$
 $sgn(v)$

т.е. в задаче на с.з. используют разные матрицы...

Тестирование разных методов

1) Можно на реальных графах, где есть мета-информация о реальных сообществах

сеть книг о политике [источник?]

2) Можно на модельных графах

Стабильность разбиения

Если блуждаем по графу, то должны долго быть в пределах одного сообщества

J.-C. Delvenne, S. Yaliraki & M. Barahona, Stability of graph communities across time scales. arXiv:0812.1811.

Пример модельной задачи

Girvan-Newman (GN) Benchmark

Lancichinetti-Fortunato-Radicchi (LFR) Benchmark

http://networksciencebook.com/chapter/9

Enter/Merge by

Задача

Выделение кругов пользователей в эго-подграфах графов социальной сети

Knowledge • 122 teams

Learning Social Circles in Networks

Tue 6 May 2014

Tue 28 Oct 2014 (27 days to go)

Competition Details » Get the Data » Make a submission

Model friend memberships to multiple circles

Social Circles help users organize their personal social networks. These are implemented as "circles" on Google+, and as "lists" on Facebook and Twitter. Each circle consists of a subset of a particular user's friends. Such circles may be disjoint, overlap, or be hierarchically nested.

Эго-подграфы

окрестность порядка 1 (не обязательно связный граф – без порождающей вершины)

Задача определения кругов

Здесь: соцсеть = граф + признаки вершин

Круг – подмножество друзей Определяет пользователь Себя в круг не включает

Круги могут пересекаться Не все друзья в кругах

Что в данных говорит о круге?

Обучение

для 60 пользователей – круги всего: 110 эго-сетей

всего: 27520 пользователей (основных + друзей + друзей друзей)
57 признаков для описания этих пользователей

Контроль 50 пользователей

Файл ответа

UserId, Predicted 25708, 25709 25710; 25711 25712 2473, 2474 2475 2476 2477; 2478 2479

Качество «редакторское расстояние»

Качество – редакторское расстояние

```
операции (стоимость = 1)
добавление к кругу
создание круга с одним «юзером»
удаление из круга
удаление круга с одним «юзером»
```

```
1 2 3;4 5;6
1 2 3; 4 5 [delC]
2 3; 4 5 [del]
2 3; 4 5; 1 [insC]
2 3; 4 5 6; 1 [ins]
```

```
4 операции = 1 + 1 + 2
```

```
% редакторское расстояние
function cost = myeditloss(list1,list2)
n = max(length(list1),length(list2));
M = zeros(n); % матрица отличий кругов
for i = 1:n
    if i<=length(list1)</pre>
        set1 = list1{i};
    else
        set1 = [];
    end;
    for j = 1:n
        if j<=length(list2)</pre>
            set2 = list2{j};
        else
            set2 = [];
        M(i,j) = length(setxor(set1, set2));
    end;
end;
% венгерский алгоритм
[assignment,cost] = munkres(M);
```

	2 3	4 5 6	1
1 2 3	1	6	2
4 5	4	1	3
6	3	2	2

Описание метода решения -

сингулярное разложение матрицы смежности

Есть возможность использовать признаковые описания

Просто добавляется признаковая матрица

один категориальный признак

$$[U L V] = svds(M*M' + alpha*X*X', k_svd);$$

К сожалению, нет хорошего эффекта...

Вопрос: какую матрицу раскладывать,

смежности, Лапласа, с нормировками...

Оправдание алгоритма

Матрица смежности (упорядоченность вершин по первой компоненте) действительно, есть факторизация

Идея: ввести рейтинг принадлежности к компоненте

- значение в векторе сингулярного разложения

1. Получение матрицы смежности (симметризация)

не все матрицы были симметричными

2. Удаление висячих вершин

3. SVD разложение, k=90

```
[U, \sim, \sim] = svds(M, min(min(size(M)), ksvd));
U = abs(U);
U = bsxfun(@rdivide,U,sqrt(sum(U.^2)));
RU = U'*U;
RUp = (RU>pcorr);
ans1 = \{\};
for i=1:size(U,2)
    Irup = RUp(i,:);
    if any(Irup)
        x = mean(U(:,Irup),2);
        circ 4ans = getcircleit2(M, x, fI, gc1, gc2, gc3);
        [ans1, isadd] = addcircle2ans(ans1, circ_4ans, padd);
        RUp(:,Irup) = false;
    end;
end;
ans1 = delintersects(ans1);
```


объединяем похожие компоненты, корреляция > порога = 0.44

4. Добавление круга

Принадлежность круга > порога = 0.04

Идём по убыванию рейтинга, пока

связь с предыдущими вершинами > порог = 0.15

```
x(x < q) = -Inf;
[my, c] = max(x);
if isinf(my)
    c = [];
    return;
end;
while true
    y = alpha*sum(M(:,c),2) + x;
    y(c) = -Inf;
    [my,j] = max(y);
    if (isinf(my))
        break;
    end;
    if mean(M(c,j))<p</pre>
        break:
    end;
    c = [c, j];
end;
c = fI(c);
```


Рейтинг = лк числа связей с предыдущими вершинами + SVD-коэффициенты 5. Окончательное добавление

Если большое пересечение с уже существующим – не добавлять

```
function [anss, isadd] = addcircle2ans(anss, circle, p)
if isempty(circle)
    isadd = false;
    return;
end;
for j=1:length(anss)
    a = anss{j};
    p jac = length(intersect(a,circle))/length(union(a,circle));
    if p jac > p
        isadd = false;
        return;
    end
end
anss{end+1} = circle;
isadd = true;
```


6. Удаление пересечений

следует из функционала качества

1) Настройка параметров

Типичная картинка

порог в добавлении кругов.

Уже по картинке видно: Мало статистики!!!

Работа алгоритма

Визуализация по 1й и 2й SVD-компоненте

300 250 200 50 100 150 300 200 250 350

правильный ответ

ответ алгоритма

Хитрость: координаты – не значения компонент, a tiedrank...

Работа алгоритма

Визуализация по 3й и 4й SVD-компоненте

MDS

Можно проецировать граф на плоскость с сохранением расстояний

Но получается не очень информативно

Что можно было сделать ещё...

1) кластеризация в пространстве первых компонент SVD

(испугался трудоёмкости и неочевидности)

2) грамотное выделение кластеров

(шёл от самой рейтинговой вершины – на модельных примерах может быть провальной стратегией)

3) можно было попробовать восстанавливать число кругов...

но, как правило, это не работает!

4) объединение ответов кластеризаторов

(собственно, уже делал через SVD – хорошая тема)

Case: анализ фанатских сообществ Проект Dutch National Police

Статистика преступлений футбольных фанатов

Case: анализ фанатских сообществ

Строим граф фанатов находим самые важные вершины

http://liacs.leidenuniv.nl/~takesfw/SNACS/lecture3.pdf

Case: детектирование эпилепсии Приступы ~ ненормальная нейронная активность

Electrocorticogram (ECoG)

M. A. Kramer et al, «Emergent network topology at seizure onset in humans» // Epilepsy Res.,vol. 79, pp. 173-186, 2008

Case: детектирование эпилепсии

Два 10-сек периода: до эпилепсии, после начала Граф: корреляция сигналов > порога

Хорошо различаются графы в признаковом пространстве (степень, центральность, коэф. кластеризации и т.п.)

Итог

выделение сообществ – задача похожа на кластеризацию, но есть специфика графов

Есть возможность проверять решение...

Опять много методов...

Что полезно: программирование

igraph - The network analysis package

http://igraph.org/

NetworkX: Python software for network analysis (v1.5)

http://networkx.lanl.gov

Gephi: Java interactive visualization platform and toolkit

http://gephi.org

Что полезно: курсы

Классная курс-книга

http://networksciencebook.com/

Очень хороший

Hadi Amiri «Social Media Computing - CMSC 498J»

http://legacydirs.umiacs.umd.edu/~hadi/cmsc498j/syllabus.html

Очень хороший

Gonzalo Mateos «Network Science Analytics»

http://www2.ece.rochester.edu/~gmateosb/ECE442.html

Л.Жуков «Structural Analysis and Visualization of Networks» в ВШЭ

http://leonidzhukov.net/hse/2015/socialnetworks/

Неплохой курс

Frank Takes «Social Network Analysis for Computer Scientists»

http://liacs.leidenuniv.nl/~takesfw/SNACS/

Что полезно: книги

David Easley, Jon Kleinberg «Networks, Crowds, and Markets: Reasoning About a Highly Connected World»

https://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman «Mining of Massive Datasets»

http://infolab.stanford.edu/~ullman/mmds/book.pdf

Eric D. Kolaczyk «Statistical Analysis of Network Data: Methods and Models» M. E. J. Newman «Networks: An Introduction» Oxford U. Press

Д3

Исследовать свою социальную сеть

Цель-максимум: изучить все-все-все понятия, которые успели пройти

- Распределение степеней
- Является ли «малым миром»
- Коэффициенты кластеризации
- Разреженность, сильные/слабые связи
 - Разбиение на сообщества
 - Найти центральные вершины
- +) попытка поставить и решить задачу появления рёбер