Taller 1 - Señales y Sistemas Universidad Nacional de Colombia

Estudiante: [Tu Nombre]

2025

Respuestas seleccionadas del Taller

3. Señales de Energía y Potencia

A continuación clasifico cada señal según su tipo, es decir, si es una señal de energía (con energía finita y potencia promedio cero) o de potencia (energía infinita pero potencia finita). Esta clasificación se basa en los conceptos fundamentales de análisis de señales.

1.
$$x(t) = 3t + 2$$
, para $t \in [0, 5]$

Esta señal está definida en un intervalo finito, por lo tanto, su energía también es finita. No se repite periódicamente, por lo que se clasifica como una señal de **energía**.

2.
$$x(t) = A\cos(\omega t) + B\sin(\omega t)$$
, con $A, B, \omega \in \mathbb{R}^+$

Esta es una combinación lineal de funciones senoidales. Es una señal periódica, y como tal, tiene energía infinita pero potencia promedio finita. Por lo tanto, es una señal de **potencia**.

3.
$$x(t) = ae^{-|t|^k}(u(t-t_0) - u(t-t_1))$$

Esta señal es acotada en el intervalo $[t_0, t_1]$ debido al producto con funciones escalón y la forma exponencial que decrece rápidamente. Esto implica que su energía total es finita. Por lo tanto, es una señal de **energía**.

4. $x(t) = ate^{-tk}(u(t) - u(t - t_0))$

Al igual que el caso anterior, esta señal está acotada a un intervalo finito $[0, t_0]$, lo que garantiza que su energía es finita. Se clasifica como una señal de **energía**.

5. x[n] = nu[n], con $n \in \{0, \pm 1, \pm 2, \dots, \pm N\}$

Esta señal es discreta y está acotada a un conjunto finito de valores de n. Su energía es finita, por lo tanto, es una señal de **energía**.

6. x[n] = |n|, con $n \in \{0, \pm 1, \pm 2, \dots, \pm N\}$

Igual que la anterior, tiene un dominio discreto y finito, y la señal es acotada. Es una señal de **energía**.

7. $x[n] = A\cos[n\pi]u[n-n_0]$, con $A \in \mathbb{R}^+$, $n_0 \in \mathbb{Z}$

Esta señal se comporta como una señal periódica a partir de n_0 (debido a $\cos[n\pi]$ que oscila entre ± 1). Sin embargo, está multiplicada por $u[n-n_0]$, que la limita desde un punto en adelante. Si se asume que el número de muestras también es finito (como se da en el enunciado con $n \in \{0, \pm 1, \dots, \pm N\}$), entonces la energía es finita y la señal es de **energía**.

Observaciones finales

Todas las señales analizadas están definidas en intervalos finitos, ya sea en tiempo continuo o discreto, por lo tanto, es natural que la mayoría resulten ser señales de energía. Solo la señal senoidal (ítem 2), al ser periódica y no acotada en el tiempo, se clasifica como una señal de potencia.