Algoritmo e Estrutura de Dados II

João Gabriel Cavalcante França

Matheus Franco Cascão Costa

Vitor Paulo Eterno Godoi

- Detecção de Ciclos
 - Dirigidos
 - Não dirigidos

Algoritmo de Floyd-Warshall

Detecção de Ciclos em Grafos Não Dirigidos

Definição de Ciclo

Um **ciclo** é um caminho, com três ou mais arestas distintas, cujos pontos de partida e de chegada são iguais.

Exemplo de grafo Acíclico

Para que essa distinção entre um grafo cíclico e acílico fique ainda mais clara, pode-se observar um exemplod e um grafo acíclico, nesse caso, uma **árvore**:

Um grafo é dito **acíclico** se não possui nenhum ciclo.

Não há como fazer um caminho dentro desse grafo em que um **vértice retorne para ele mesmo** com três ou mais arestas distintas.

Objetivo:

Dado um grafo não direcionado, cheque se o grafo contém um ciclo ou não.

Possíveis algoritmos:

- DFS
- BFS
- Disjoint-set

Ideia:

Para cada vértice visitado "v", se existir um vértice adjacente "u" tal que "u" já tenha sido visitado e "u" não seja pai de "v", então há um ciclo no grafo.


```
from collections import defaultdict
     class Graph:
         def _ init (self, vertices):
             self.V = vertices # No. of vertices
             self.graph = defaultdict(list)
         def addEdge(self, v, w):
             self.graph[v].append(w)
             self.graph[w].append(v)
10
11
         def isCyclicUtil(self, v, visited, parent):
12
             visited[v] = True
13
             for i in self.graph[v]:
                 if visited[i] == False:
15
                     if(self.isCyclicUtil(i, visited, v)):
                         return True
                 elif parent != i:
18
19
                     return True
20
             return False
21
22
23
         def isCyclic(self):
             visited = [False]*(self.V)
24
25
             for i in range(self.V):
                 if visited[i] == False:
27
                     if(self.isCyclicUtil
28
                        (i, visited, -1)) == True:
29
30
                         return True
31
             return False
```

Complexidade de tempo: O(V+E)

História

O algoritmo de Floyd-Warshall, da forma que é reconhecido hoje, foi publicado em 1962 por Robert Floyd. Apesar disso, ele é essencialmente igual a alguns algoritmos que foram publicados anteriormente, um por Bernard Roy em 1959 e outro por Stephen Warshall.

Além disso, ele também está relacionado com o algoritmo de Kleene, publicado em 1956.

Definição e aplicação

O algoritmo de Floyd-Warshall é um algoritmo de aplicação em grafos cujo objetivo e principal uso está relacionado à descobrir caminhos mínimos em grafos ponderados e direcionados. Para que funcione corretamente, arestas do grafo podem ter pesos negativos, porém não devem existir ciclos negativos.

Sua representação e retorno geralmente são feitas por matrizes de adjacências, e sua complexidade de tempo é da ordem de O(n^3).

Matriz de Adjacências

Matriz de adjacências é uma das formas computacionais de representar os grafos, isto é, como o computador identifica uma estrutura de grafo. Existem alguns tipos de matrizes, as utilizadas pelo algoritmo de Floyd-Warshall é aquela que representa um grafo direcionado e ponderado.

	1	2	3	4
1	0	8	14	6
2	8	0	7	11
3	14	7	0	4
4	6	11	4	0

Pseudocódigo

```
ROTINA fw(Inteiro[1..n,1..n] grafo)
  # Inicialização
  VAR Inteiro[1..n,1..n] dist := grafo
  VAR Inteiro[1..n,1..n] pred
  PARA i DE 1 A n
    PARA j DE 1 A n
      SE dist[i,j] < Infinito ENTÃO
         pred[i,j] := i
  # Laço principal do algoritmo
  PARA k DE 1 A n
    PARA i DE 1 A n
      PARA j DE 1 A n
        SE dist[i,j] > dist[i,k] + dist[k,j] ENTÃO
           dist[i,j] = dist[i,k] + dist[k,j]
           pred[i,j] = pred[k,j]
  RETORNE dist
```

Código Fonte

```
for (k = 0; k < V; k++) {
    for (i = 0; i < V; i++) {
        for (j = 0; j < V; j++) {
            if (dist[i][k] + dist[k][j] < dist[i][j]) {</pre>
                dist[i][j] = dist[i][k] + dist[k][j];
```


	Α	В	C	D
Α	_	3	4	INF
В	INF	_	INF	5
С	INF	INF	_	3
D	8	INF	INF	_

	A	В	С	D
Α		3	4	INF
В	INF	_	INF	5
С	INF	INF	_	3
D	8	11	12	_

	Α	В	С	D
Α	_	3	4	8
В	INF		INF	5
С	INF	INF	-	3
D	8	11	12	_

	Α	В	C	D	
Α	_	3	4	7	
В	INF	_	INF	5	
С	INF	INF		3	
D	8	11	12	_	

	Α	В	С	D
Α	_	3	4	7
В	13	_	17	5
С	11	14	-	3
D	8	11	12	

Detecção de Ciclos em Grafos Dirigidos

Arestas positivas: DFS (Depth-First-Search) (+)

Extra:

• Arestas negativas: algoritmo de Bellman-Ford

DFS

```
DFS(G)
1 for each vertex u \in G.V
                           O(V)
       u.color = WHITE
       u.\pi = NIL
4 time = 0 O(1)
   for each vertex u \in G.V
                             O(V)
       if u.color == WHITE
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
 1 time = time + 1
                                // white vertex u has just been discovered
   u.d = time
    u.color = GRAY
    for each v \in G.Adj[u]
                                // explore edge (u, v)
        if v.color == WHITE
                              O(E)
            \nu.\pi = u
            DFS-VISIT(G, v)
                                // blacken u; it is finished
    u.color = BLACK
    time = time + 1
    u.f = time
```

Complexidade de tempo: O(V+E)

• Exemplo de detecção de Ciclos em uma DFS

1. Executar o DFS

• Classificação de Arestas na prática:

na implementação do algoritmo, as arestas poderiam receber um atributo de tipo :

é uma aresta pra frente se u.d < v.d é uma aresta cruzada se u.d > v.d

Teorema:

Se G tem um ciclo ⇔ G tem uma aresta para trás – ou seja, pode-se usar DFS para detectar ciclos!