Materiais Elétricos e Magnéticos para Engenharia

Professor: Marcus V. Batistuta

Laboratório Extra (30/04/2018)

Gerador de Ruído com Diodo Zener

1º Semestre de 2018

FGA - Universidade de Brasília

Ruído em Dispositivos Eletrônicos

1) Thermal Noise (Johnson)

Presente em Resistores:
$$\overline{v_t^2} = 4kTR\Delta f$$
 $\overline{i_t^2} = \frac{\overline{v_t^2}}{R^2} = \frac{4kT\Delta f}{R}$

2) Shot Noise
$$\ \overline{i_{sh}^2} = 2qI\Delta f$$
 $Schottky\ formula$

Fonte principal de ruído. Causado por fluxo de elétrons emitidos ou trafegando através de barreiras em eventos discretos. Não depende de T.

Presente em Diodos a Vácuo, Tubos de Descargas, Junções polarizadas diretamente ou reversamente (Diodos, Transistores), em efeitos Avalanche ou Zener.

3) Flicker Noise (1 / f)
$$\overline{i_f^2} = \frac{K_f I^m \Delta f}{f^n}$$
 $n \simeq 1$

Efeito inerente aos processos de condução. Presente em materiais resistivos pela flutuação da mobilidade de portadores. Importante em baixas frequências.

Teorema do Limite Central

Gerador de Ruído com Diodo Zener

Gerador de Ruído com Diodo Zener Com Amplificador Operacional

Gerador de Ruído "Branco" com Diodo Zener Amplificado por BJT

- 1) Determine os valores do resistores R₁ e R₂ para maximizar a geração de ruído.
- 2) Troque diferentes Diodos Zener. Como a tensão Zener (V₇) afeta a geração de ruído?

Cuidado para não exceder os valores máximos de tensão e corrente dos componentes!

Gerador de Ruído "Branco" com Diodo Zener Amplificado por BJT

3) Determine se a distribuição do Ruído é Gaussiana como Histograma.

Use o Osciloscópio Digital para gravar o ruído em arquivo.

Gerador de Ruído "Rosa" com Diodo Zener Amplificado por BJT

4) Ao incluir o capacitor C_p e observe o <u>Espectro do Ruído</u> "Rosa" com o pólo definido por R_2 e C_p

Transistor NPN P2N2222A

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Value	Unit
Collector - Emitter Voltage	V _{CEO}	40	Vdc
Collector - Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	600	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

Transistor NPN P2N2222A

$$I_C = h_{fe} I_B$$

Figure 3. DC Current Gain

Transistor NPN 2N2222

Variações do Transistor NPN 2N2222

Gerador com Junção Emissor-Base de Transistor NPN

http://freenrg.info/Physics/Scalar_Vector_Pot_And_Rick_Andersen/Rick_Andersen_Noisegen.htm

Gerador com Diodo Zener e Transistor NPN

"High Power Zener"

http://www.angelfire.com/planet/funwithtransistors/Book_CHAP-3.html