TUTORATO

- 1. Dati $a,b \in \mathbb{R}$, $\mathbf{v},\mathbf{w},\mathbf{u} \in \mathbb{R}^3$, A,B,C le matrici associate nella base canonica a due applicazioni lineari $\mathbb{R}^3 \to \mathbb{R}^3$, g, h le matrici associate nella base canonica a due forme bilineari $\mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ e I la matrice identità, scrivere in notazione di Einstein le seguenti operazioni:
 - (a) $\mathbf{v} + \mathbf{w} = \mathbf{u}$
- (d) C = AB
- (g) $\mathbf{w} = A\mathbf{v}$

- (b) $\mathbb{I}\mathbf{v} = \mathbf{v}$
- (e) $h = A^{\mathbf{T}}gA$
- (h) $h(\mathbf{v}, \mathbf{w}) = \frac{1}{2}g(\mathbf{w}, \mathbf{v})$

- (c) $\mathbf{v}^{\mathbf{T}} g \mathbf{w} = a$
- (f) $C = B^{-1}AB$ (i) $a\mathbf{v} + b\mathbf{w} = C\mathbf{u}$
- a) v'' + w'' = u'' a) $C''_{\nu} = A''_{\nu}B''_{\nu}$ g) $v'' = A''_{\nu}v''$ b) $S''_{\nu}v'' = v''$ e) $h_{\mu\nu} = A^{\nu}_{\nu}g_{\rho\sigma}B''_{\mu}$ h) $g_{\mu\nu}v''_{\nu}v'' = \frac{1}{2}h_{\mu\nu}w''_{\nu}v''$ c) $v''_{\nu}g_{\mu\nu}w''=a$ f) $C''_{\nu} = (B'')_{\nu}^{\mu}A^{\nu}_{\nu}B^{\nu}_{\nu}$ i) $av''_{\nu}+bw''_{\nu}=C''_{\nu}v''$
 - 2. Un punto materiale \mathbf{P} di massa m scivola senza attrito, soggetto alla forza peso, all'interno di un cono di semiapertura angolare α , con asse verticale e vertice verso il basso.
 - (a) Dopo aver scelto opportune coordinate, scrivere la Lagrangiana del sistema.
 - (b) Scrivere le equazioni del moto.
 - (c) Caratterizzare i moti ad altezza costante.

C)
$$z = z_0$$
 costante \Rightarrow $\dot{z} = v$, $\dot{z} = 0$ \Rightarrow $0 = \alpha z_0 \dot{\theta} - g$ \Rightarrow $0 = q$ \Rightarrow $0 = z_0 \dot{\theta} = cost$

$$0 = \alpha z_0 \dot{\theta} - g$$

- 3. Si considerino, in un piano orizzontale, due rette incidenti che formano un angolo $0 < \alpha < \frac{\pi}{2}$. Due punti materiali \mathbf{P} e \mathbf{Q} di ugual massa m sono vincolati a muoversi lungo le rette, rispettivamente, e sono collegati da una molla di costante elastica k e lunghezza a riposo nulla. \mathbf{P} , inoltre, è collegato al punto di intersezione delle rette tramite una molla di costante elastica 2k e lunghezza a riposo nulla.
 - (a) Dopo aver scelto opportune coordinate, scrivere la Lagrangiana del sistema.
 - (b) Scrivere le equazioni del moto.

b)
$$\frac{\partial L}{\partial s} = -k(s - q \cos \alpha)$$
 $\frac{\partial L}{\partial s} = m \dot{s}$ $\frac{d}{dt} \frac{\partial L}{\partial \dot{s}} = m \dot{s}$

$$\frac{\partial L}{\partial q} = -\kappa (3q - s\cos\alpha) \qquad \frac{\partial L}{\partial \dot{q}} = m\dot{\dot{q}} \qquad \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = m\ddot{\dot{q}}$$

$$\Rightarrow \begin{cases} s = \frac{k}{m} (q \cos x - s) \\ q = \frac{k}{m} (s \cos x - 3q) \end{cases}$$