Name: Pranay Chavhan Roll No: 41411

Mini Project: Gender and Age Detection using Computer Vision and Deep Learning

Title:

Gender and Age Detection using Computer Vision and Deep Learning

Problem Statement:

In real-time applications like surveillance, marketing, and social media analytics, it's important to predict demographic details such as gender and age. Manually identifying these attributes is time-consuming and impractical. This project aims to use computer vision and deep learning techniques to automatically predict a person's gender and age based on facial features from images or video.

Objective:

- To detect a person's face from an image or video.
- To classify the gender as male or female.
- To estimate the age group of the person.
- To implement the solution using a pre-trained deep learning model.

Expected Outcome:

- A system that takes an image as input and predicts gender and age.
- Accuracy assessment of the model for both gender and age predictions.
- A GUI or command-line tool for testing and demonstration.

Theory:

Gender and age detection is a computer vision task that involves identifying the gender and estimating the age of a person by analyzing their facial features. These features are extracted using deep learning models that have been trained on large datasets such as IMDB-WIKI, Adience, and UTKFace.

The project typically uses a Convolutional Neural Network (CNN), which is highly effective in image classification tasks. For this task, pre-trained models are used to reduce training time and improve accuracy.

Face Detection:

OpenCV provides a DNN module or Haar cascades to detect faces in an image or video frame.

^{**}Preprocessing:**

The detected face region is resized and normalized to match the input requirements of the deep learning models.

Gender and Age Classification:

Two separate models are used:

- Gender Model: Predicts probabilities for 'Male' or 'Female'.
- Age Model: Predicts age group like (0–2), (4–6), (8–12), ..., (60–100).

Display Results:

Predicted age and gender are displayed as labels over the detected face in the image or video.

Steps to Perform the Project:

- 1. **Setup Environment:**
 - Install Python, OpenCV, and NumPy.
 - Download pre-trained models for gender and age detection (Caffe or ONNX models).
- 2. **Load Models:**
 - Use OpenCV DNN to load the gender and age models.
- 3. **Face Detection:**
 - Use Haar cascades or DNN face detector to find faces in the input.
 - Extract the face region from the image.
- 4. **Preprocess Face Image:**
 - Resize to 227x227 or as required by the model.
 - Normalize pixel values.
- 5. **Gender Prediction:**
 - Feed the face image to the gender model.
 - Interpret output as 'Male' or 'Female'.
- 6. **Age Prediction:**
 - Feed the face image to the age model.
 - Output is the predicted age group.
- 7. **Display Output:**
 - Draw bounding boxes on the face.
 - Display predicted gender and age above the box.
- 8. **Run on Multiple Images or Live Camera (Optional):**
 - Extend the script to work on webcam or video input for real-time prediction.

Pseudocode:

Input: Image or video frame

- 1. Detect face in the input
- 2. For each detected face:
 - a. Extract and resize the face
 - b. Predict gender using gender model
 - c. Predict age using age model
 - d. Display predicted gender and age on the image

Output: Image with gender and age labels

Test Case:

Input:

Image containing a person's face

Expected Output: Gender: Male Age: 25-32

Test multiple images with different gender and age to evaluate model accuracy.

Conclusion:

The gender and age detection system provides a fast and efficient way to estimate demographic information from facial images. It is useful for real-time applications and demonstrates the power of deep learning and computer vision when combined with pre-trained models. With further training on diverse datasets, accuracy can be improved even more.