TA section 1

JERRY C.

Email: 108354501@nccu.edu.tw

Website: jerryc520.github.io/teach/MS.html

September 27, 2024

Attention

- 為鼓勵學生進班上課,助教課簡報只會放在我的 github 網頁上,有來上課的同學就會知曉,不會放在 moodle 上。
- 簡報隨時都可能取下, 盡可能不缺席。
- 簡報裡的作業解答不保證沒打字錯誤, 還請見諒。若有發現錯誤, 歡迎來信告知。

Homework 1

§1.1 #5, #13, #20, #25, #26

5. 設 $\Omega = \{1, 2, 3, 4\}$ 。試寫出包含 $\{2\}$ 及 $\{1, 4\}$ 之最小的 σ -體。

Definition

A class of subsets of Ω , denoted as \mathcal{F} , is a σ -algebra (information set) if

- (i) $\Omega \in \mathcal{F}$;
- (ii) if $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$;
- (iii) $A_i \in \mathcal{F}$, $\forall i$, then $\cup_i A_i \in \mathcal{F}$.

A σ -algebra is closed under countable unions and complements.

- The σ -algebra generated by \mathcal{C} , denoted by $\sigma(\mathcal{C})$, is the smallest σ -algebra in \mathcal{F} , which includes all elements of \mathcal{C} , i.e., $\mathcal{C} \in \mathcal{F}$.
- "Roughly" speaking, a $\sigma(\mathcal{C})$ is the smallest set of subsets, which contains every element which is in the intersection and in the union, by De Morgan's Law.

イロト イ御ト イラト イラト

4/10

De Morgan's Law:

$$(A\cap B)^c=A^c\cup B^c,\ \ (A\cup B)^c=A^c\cap B^c.$$

- $\Omega := \{1, 2, 3, 4\}.$
- $\sigma(\{2\},\{1,4\}) = \{\phi,\Omega,\{2\},\{1,4\},\{1,3,4\},\{2,3\},\{1,2,4\},\{3\}\}.$
- $\{2\}^c = \{1,3,4\}, \{1,4\}^c = \{2,3\}, \{2\} \cap \{1,4\} = \phi, \{2\} \cup \{1,4\} = \{1,2,4\}, \{1,3,4\} \cap \{2,3\} = \{3\}, \{1,3,4\} \cup \{2,3\} = \{1,2,3,4\} = \Omega.$
- total $\# = 2^{1+2} = 8$.

Proposition

設 A_1, A_2, \cdots, A_k 為樣本空間 Ω 中之互斥非空子集。

- (i) 若 $\bigcup_{i=1}^k A_i = \Omega$, 則包含 A_1, A_2, \dots, A_k 之最小 σ -algebra, 共有 2^k 個元素;
- (ii) 若 $\bigcup_{i=1}^k A_i \neq \Omega$, 則包含 A_1, A_2, \cdots, A_k 之最小 σ -algebra, 共有 2^{1+k} 個元素。

- 13. 投擲一般子一次,並觀測所得之點數。試給出兩個不同的機率空間。
- Sample space: $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- σ -algebra: $\mathcal{F} = \{ \mathcal{A} : \mathcal{A} \subseteq \Omega \}$, 包含樣本空間 Ω 的所有可能事件 (子集) 的集合。
- Probability function: consider $\mathbb{P}_1(\omega) := 1/6$, $\forall \ \omega \in \{1,2,3,4,5,6\}$, and

$$\mathbb{P}_2(\omega) := \begin{cases} 0.1, & \omega \in \{1, 2, 3, 4, 5\} \\ 0.5, & \omega \in \{6\}. \end{cases}$$

 $\mathbb{P}(\Omega) = 1.$

• $(\Omega, \mathcal{F}, \mathbb{P}_1)$ and $(\Omega, \mathcal{F}, \mathbb{P}_2)$ are two possible probability spaces.

20. 設
$$P(A) = 1/3$$
, $P(B^c) = 1/4$, 試問 A, B 可否爲互斥事件。

• No. If yes, $\mathbb{P}(A \cap B) = 0$. But, $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) = 13/12 > 1(\rightarrow \leftarrow)$. So, the two events cannot be disjoint.

- 25. 某家庭有10位成員, 試求其生日皆相異的機率。
- 26. 設事件 $A_1 \subset A_2 \subset A_3$, 且 $P(A_1) = 1/4$, $P(A_2) = 5/12$, $P(A_3) = 7/12$ 。試求下述各事件之機率: $A_1^c \cap A_2$, $A_1^c \cap A_3$, $A_2^c \cap A_3$, $A_1 \cap A_2^c \cap A_3^c$, $A_1^c \cap A_2^c \cap A_3^c \cap A_3^c$

$$\mathbb{P}(\text{所有人生日相異}) = \frac{365}{365} \times \frac{364}{365} \times \cdots \frac{356}{365}.$$

• 或

•

$$IP(所有人生日相異) = \binom{365}{10}/365^{10}.$$

- Key: $A_1 \subset A_2 \subset A_3$.
- $\mathbb{P}(A_2) = \mathbb{P}(\{A_1 \cup A_1^c\} \cap A_2) = \mathbb{P}(\{A_1 \cap A_2\} \cup \{A_1^c \cap A_2\}) = \mathbb{P}(A_1 \cap A_2) + \mathbb{P}(A_1^c \cap A_2)$ $\Rightarrow \mathbb{P}(A_1^c \cap A_2) = \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2) = 5/12 - 1/4 = 1/6.$ Similary,
- $\mathbb{P}(A_1^c \cap A_3) = \mathbb{P}(A_3) \mathbb{P}(A_1 \cap A_3) = 7/12 1/4 = 1/3.$
- $\mathbb{P}(A_2^c \cap A_3) = \mathbb{P}(A_3) \mathbb{P}(A_2 \cap A_3) = 7/12 5/12 = 1/6.$
- $\mathbb{P}(A_1^c \cap A_2^c \cap A_3^c) = \mathbb{P}(A_2^c \cap A_3^c) \mathbb{P}(A_1 \cap A_2^c \cap A_3^c) = \mathbb{P}(A_2^c \cap A_3^c)$ = $\mathbb{P}((A_2 \cup A_3)^c) = 1 - \mathbb{P}(A_2 \cup A_3) = 1 - \mathbb{P}(A_3) = 1 - 7/12 = 5/12.$