MATH237 Lecture 02

Peter He

January 8 2020

1 Scalar functions and graphs continued

1.1 Example of graphing: z = 2x + y

Recall that we should sketch the level curves and cross-sections, then consider the symmetry.

- If z = c for some constant c, we have the line y = -2x + c. So our level curves will look like lines with negative slope.
- Consider the cross sections z = 2x + c and z = 2c + y. The cross sections are also lines (on the z x and z y plane). They are also lines, both with positive slope, with the first one being steeper than the other.
- Now we sketch the entire graph.

1.2 Example 2: $z = x^2 + y^2$

- Level curves: $c = x^2 + y^2$ circle
- $\bullet\,$ Now we sketch the entire graph it's a parabolic cone, infinite paraboloid

1.3 Example 3: $z = \sqrt{x^2 + y^2}$

- Cross Sections: $z^2 = x^2 + c^2$ what shape is this? If c = 0 then the graph looks like z = |x| on the z x plane.
- The shape is a cone hyperbola

1.4 Example 4: z = xy

• Level curves: c = xy - shape of the reciprocal function

• Cross Sections: z = cx and z = cy - lines with different slopes

Matching with images from the slide 1.5

• Figure 1 corresponds to example 4

• Figure 2 corresponds to example 1

• Figure 3 corresponds to example 3

• Figure 4 corresponds to example 2

2 Limits

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is **continuous** at a if $\lim f(x) = f(a)$.

Definition: A function $f: \mathbb{R}^2 \to \mathbb{R}$ is **continuous** at (a,b) if $\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$.

What does this mean? For a function $f: \mathbb{R} \to R$, $\lim_{x \to a} f(x) = L$ means as x gets close to a, f(x) gets close to L. More precisely, for every interval around L, we can construct an interval around a such that f maps every element in that interval to L's interval.

How about for $f: \mathbb{R}^2 \to \mathbb{R}$?.

Definition: $\lim_{(x,y)\to(a,b)} f(x,y) = L$ means that for any $\varepsilon > 0$, there is a $\delta > 0$ such that if $||\underline{x} - \underline{a}|| < \delta \text{ then } |f(\underline{x}) - L| < \varepsilon.$

2.1Example

$$f(x,y) = \begin{cases} \frac{\sin xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$