Math 240B: Real Analysis, Winter 2020 Homework Assignment 4 Due Friday, February 7, 2020

- 1. Let $n \in \mathbb{N}$ and $-\infty < a = x_0 < x_1 < \cdots < x_n = b < \infty$. Denote by \mathcal{P}_n the set of all real polynomials of degree $\leq n$.
 - (1) Define $l_j \in \mathcal{P}_n$ by $l_j(x) = \prod_{i=0, i \neq j}^n (x-x_i)/(x_j-x_i)$ $(j=0,\ldots,n)$. Show that $l_j(x_k) = \delta_{jk}$ $(\delta_{jk} = 1 \text{ if } j = k \text{ and } 0 \text{ if } j \neq k)$.
 - (2) Let $f \in C([a,b])$ and define $L_n f \in \mathcal{P}_n$ by $(L_n f)(x) = \sum_{j=0}^n f(x_j) l_j(x)$ (called the Lagrange interpolation of f). Prove that $L_n f$ is the unique polynomial in \mathcal{P}_n that satisfies $(L_n f)(x_j) = f(x_j)$ (j = 0, 1, ..., n).
 - (3) Prove that the operator norm of the linear operator $L_n: C([a,b]) \to C([a,b])$ (where C([a,b]) is equipped with the maximum norm) is given by $||L_n|| = \max_{x \in [a,b]} \sum_{j=0}^n |l_j(x)|$.
- 2. Consider the Banach space $L^{\infty}([0,1])$ and its subspace C([0,1]).
 - (1) Let $x_0 \in (0,1)$ and define $F: C([0,1]) \to \mathbb{C}$ by $F(f) = f(x_0)$. Prove that $F \in C([0,1])^*$.
 - (2) By Hahn–Banach Theorem, there exists $\tilde{F} \in L^{\infty}([0,1])^*$ such that $\tilde{F} = F$ on C([0,1]) and $\|\tilde{F}\|_{L^{\infty}([0,1])^*} = F_{C([0,1])^*}$. Prove that there exists no $g \in L^1([0,1])$ such that $\tilde{F}(f) = \int_0^1 f(x)g(x) dx$ for all $f \in L^{\infty}([0,1])$.
- 3. Let \mathcal{X} be a normed vector space and \mathcal{X}^* its dual space.
 - (1) Suppose $x_n \to x$ weakly in \mathcal{X} (i.e., $f(x_n) \to f(x)$ for any $f \in \mathcal{X}^*$). Prove that $\sup_{n \ge 1} ||x_n|| < \infty$.
 - (2) Assume in addition that \mathcal{X} is a Banach space. Suppose $f_n \to f$ weak-* in \mathcal{X}^* (i.e., $f_n(x) \to f(x)$ for any $x \in \mathcal{X}$). Prove that $\sup_{n \geq 1} \|f_n\| < \infty$.
- 4. Let \mathcal{X} be an infinite-dimensional normed vector space. Prove that there exist $x_k \in \mathcal{X}$ (k = 1, 2, ...) such that $||x_k|| = 1$ for all $k \geq 1$ and $||x_j x_k|| \geq 1/2$ for all j, k = 1, 2, ... with $j \neq k$. (See the hint in Exercise 19 on page 160.)
- 5. Let \mathcal{X} be a Banach space. Assume \mathcal{X}^* is separable. Prove that \mathcal{X} is also separable. (See the hint in Exercise 25 on page 160.)
- 6. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on a vector space \mathcal{X} such that $\|x\|_1 \leq \|x\|_2$ for any $x \in \mathcal{X}$. Assume that \mathcal{X} is complete with respect to both norms. Prove that these norms are equivalent.
- 7. Let \mathcal{X} and \mathcal{Y} be Banach spaces. Let $T: \mathcal{X} \to \mathcal{Y}$ be a linear map such that $f \circ T \in \mathcal{X}^*$ for every $f \in \mathcal{Y}^*$. Prove that T is bounded.
- 8. Let \mathcal{X} and \mathcal{Y} be Banach spaces. Let $T_n \in L(\mathcal{X}, \mathcal{Y})$ (n = 1, 2, ...) be such that $\lim_{n \to \infty} T_n x$ exists for every $x \in \mathcal{X}$. Define $Tx = \lim_{n \to \infty} T_n x$ $(x \in \mathcal{X})$. Prove that $T \in L(\mathcal{X}, \mathcal{Y})$.