# 1. Metric spaces

#### 1.1. Metrics

- **Definition**: **metric space** is (X, d), X is set,  $d: X \times X \to [0, \infty)$  is **metric** satisfying:
  - $d(x,y) = 0 \iff x = y$
  - Symmetry: d(x,y) = d(y,x)
  - Triangle inequality:  $d(x,y) \le d(x,z) + d(z,y)$
- Example:
  - p-adic metric: for  $p \in [1, \infty)$

$$d_p(x,y) = \left(\sum_{i=1}^n \lvert x_i - y_i \rvert^p\right)^{\frac{1}{p}}$$

• Extension of the p-adic metric:

$$d_{\infty}(x,y) = \max\{|x_i - y_i| : i \in [n]\}$$

• Metric of C([a,b]):

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\}$$

• Discrete metric:

$$d(x,y) = \begin{cases} 0 \text{ if } x = y\\ 1 \text{ if } x \neq y \end{cases}$$

• Definition: open ball of radius *r* around *x*:

$$B(x;r) := \{ y \in X : d(x,y) < r \}$$

• Definition: closed ball of radius r around x:

$$D(x;r)\coloneqq\{y\in X:d(x,y)\leq r\}$$

### 1.2. Open and closed sets

• **Definition**:  $U \subseteq X$  is **open** if

$$\forall x \in U, \exists \varepsilon > 0 : B(x; \varepsilon) \subset U$$

- **Definition**:  $A \subseteq X$  is **closed** if X A is open.
- Sets can be neither closed nor open, or both.
- With standard metric on  $\mathbb{R}$ , any singleton  $\{x\} \in \mathbb{R}$  is closed and not open (same holds for  $\mathbb{R}^n$ ).
- **Definition**: let X be metric space,  $x \in N \subseteq X$ . N is **neighbourhood** of x if

$$\exists$$
 open  $V \subseteq X : x \in V \subseteq N$ 

- Corollary: let  $x \in X$ , then  $N \subseteq X$  neighbourhood of x iff  $\exists \varepsilon > 0 : x \in B(x; \varepsilon) \subseteq N$ .
- **Proposition**: open balls are open, closed balls are closed.
- Lemma: let (X, d) metric space.
  - X and  $\emptyset$  are both open and closed.

- Arbitrary unions of open sets are open.
- Finite intersections of open sets are open.
- Finite unions of closed sets are closed.
- Arbitrary intersections of closed sets are closed.
- Example: if X has discrete metric, any  $A \subseteq X$  is open and closed.

### 1.3. Continuity

- Definition:
  - Sequence in X is  $a : \mathbb{N}_0 \to X$ , written  $(a_n)_{n \in \mathbb{N}}$ .
  - $(a_n)$  converges to a,  $\lim_{n\to\infty} a_n = a$ , if

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} : \forall n \ge n_0, d(a, a_n) < \varepsilon$$

- **Proposition**: let X, Y metric spaces,  $a \in X, f : X \to Y$ . The following are equivalent:
  - $\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in X, d_X(a, x) < \delta \Longrightarrow d_Y(f(a), f(x)) < \varepsilon.$
  - For every sequence  $(a_n)$  in X with  $a_n \to a$ ,  $f(a_n) \to f(a)$ .
  - For every open  $U \subseteq Y$  with  $f(a) \in U$ ,  $f^{-1}(U)$  is a neighbourhood of a.

If f satisfies these, it is **continuous at** a.

- **Definition**: f continuous if continuous at every  $a \in X$ .
- **Proposition**:  $f: X \to Y$  continuous iff  $f^{-1}(U)$  open for every open  $U \subseteq Y$ .
- Example: let d be discrete metric,  $d_2$  be 2-adic metric.
  - Any  $f:(X,d)\to(\mathbb{R},d_2)$  is continuous.
  - id :  $(\mathbb{R}, d_2) \to (\mathbb{R}, d)$  is not continuous.

# 2. Topological spaces

## 2.1. Topologies

- Definition: power set of X:  $\mathcal{P}(X) \coloneqq \{A : A \subseteq X\}$ .
- **Definition**: **topology** on set X is  $\tau \subseteq \mathcal{P}(X)$  with:
  - $\emptyset \in \tau, X \in \tau$ .
  - Closure under arbitrary unions: if  $\forall i \in I, U_i \in \tau$ , then

$$\bigcup_{i\in I} U_i \in \tau$$

• Closure under finite intersections:  $U_1, U_2 \in \tau \Longrightarrow U_1 \cap U_2 \in \tau$  (this is equivalent to  $U_1, ..., U_n \in \tau \Longrightarrow \bigcap_{i \in [n]} U_i \in \tau$ ).

 $(X, \tau)$  is **topological space**. Elements of  $\tau$  are **open** subsets of X.  $A \subseteq X$  **closed** if X - A is open.

- **Definition**:  $\tau = \mathcal{P}(X)$  is the **discrete topology** on X.
- **Definition**:  $\tau = \{\emptyset, X\}$  is the **indiscrete topology** on X.
- Example:
  - For metric space (M, d), let  $\tau_d$  exactly contain sets which are open with respect to d. Then  $(M, \tau_d)$  is a topological space. d induces topology  $\tau_d$ .

- Let  $X = \mathbb{N}_0$  and  $\tau = \{\emptyset\} \cup \{U \subseteq X : X U \text{ is finite}\}$ , then  $(X, \tau)$  is topological space.
- **Proposition**: for topological space *X*:
  - X and  $\emptyset$  are closed
  - Arbitrary intersections of closed sets are closed
  - Finite unions of closed sets are closed
- Proposition: for topological space  $(X, \tau)$  and  $A \subseteq X$ , the induced (subspace) topology on A

$$\tau_A = \{ A \cap U : U \in \tau \}$$

is a topology on A.

- **Example**: let  $X = \mathbb{R}$  with standard topology induced by metric d(x, y) = |x y|. Let A = [1, 5]. Then  $[1, 3) = A \cap (0, 3)$  and  $[1, 5] = A \cap (0, 6)$  are open in A.
- **Example**: consider  $\mathbb{R}$  with standard topology  $\tau$ . Then
  - $\tau_{\mathbb{Z}}$  is the discrete topology on  $\mathbb{Z}$ .
  - $\tau_{\mathbb{Q}}$  is not the discrete topology on  $\mathbb{Q}$ .
- **Proposition**: metrics  $d_p$  for  $p \in [1, \infty)$  and  $d_\infty$  all induce same topology on  $\mathbb{R}^n$ , alled the **standard topology** on  $\mathbb{R}^n$ .
- **Definition**:  $(X, \tau)$  is **Hausdorff** if

$$\forall x \neq y \in X, \exists U, V \in \tau : U \cap V = \emptyset \land x \in U, y \in V$$

- Lemma: any metric space (M, d) with topology induced by d is Hausdorff.
- **Example**: let  $|X| \ge 2$  with indiscrete topology. Then X is not Hausdorff, since  $\tau = \{X, \emptyset\}$  and if  $x \ne y \in X$ , only open set containing x is X (same for y). But  $X \cap X = X \ne \emptyset$ .
- Definition: Furstenberg's topology on  $\mathbb{Z}$ : define  $U \subseteq \mathbb{Z}$  to be open if

$$\forall a \in U, \exists 0 \neq d \in \mathbb{Z} : a + d\mathbb{Z} := \{a + dn : n \in \mathbb{Z}\} \subseteq U$$

• Furstenberg's topology is Hausdorff.

### 2.2. Continuity

- **Definition**: let X, Y topological spaces.
  - $f: X \to Y$  is **continuous** if

$$\forall V$$
 open in  $Y, f^{-1}(V)$  open in  $X$ 

• f is continuous at  $a \in X$  if

 $\forall V \text{ open in } Y \text{ with } f(a) \in V, \exists U \text{ open in } X : a \in U \subseteq f^{-1}(V)$ 

- Lemma:  $f: X \to Y$  continuous iff f continuous at every  $a \in X$ . (Key idea for proof:  $\bigcup_{a \in f^{-1}(V)} U_a \subseteq f^{-1}(V) = \bigcup_{a \in f^{-1}(V)} \{a\} \subseteq \bigcup_{a \in f^{-1}(V)} U_a$ )
- Example: inclusion  $i:(A,\tau_A)\to (X,\tau_X),\ A\subseteq X$ , is always continuous.
- Lemma: compositions of continuous functions are continuous.
- Lemma: let  $f: X \to Y$  be function between topological spaces. Then f is continuous iff

$$\forall A \text{ closed in } Y, \quad f^{-1}(A) \text{ closed in } X$$

- Remark: we can use continuous functions to decide that sets are open or closed.
- Definition: n-sphere is

$$S^n \coloneqq \left\{ \left(x_1,...,x_{n+1}\right) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x_i^2 = 1 \right\}$$

- **Example**: in the standard topology, the *n*-sphere is a closed subset of  $\mathbb{R}^{n+1}$ . (Consider the preimage of  $\{1\}$  which is closed in  $\mathbb{R}$ ).
- Example:
  - Can consider set of square matrices  $M_{n,n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$  and give it the standard topology.
  - Note

$$\det(A) = \sum_{\sigma \in \operatorname{sym}(n)} \left( \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \right)$$

is a polynomial in the entries of A so is continuous function from  $M_n(\mathbb{R})$  to  $\mathbb{R}$ .

- $\mathrm{GL}_n(\mathbb{R})=\{A\in M_n(\mathbb{R}): \det(A)\neq 0\}=\det^{-1}(\mathbb{R}-\{0\})$  is open.
- $SL_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) : \det(A) = 1\} = \det^{-1}(\{1\}) \text{ is closed.}$
- $O(n) = \{A \in M_n(\mathbb{R}) : AA^T = I\}$  is closed:  $f_{i,j}(A) = (AA^T)_{i,j}$  is continuous and

$$O(n) = \bigcap_{1 < i, j < n} (f_{i,j})^{-1}(\{\delta_{i,j}\})$$

- $SO(n) = O(n) \cap SL_n(\mathbb{R})$  is closed.
- **Definition**: for X,Y topological spaces,  $h:X\to Y$  is **homeomorphism** if h is bijective, continuous and  $h^{-1}$  is continuous. X and Y are **homeomorphic**,  $X\cong Y$ . h induces bijection between  $\tau_X$  and  $\tau_Y$  which commutes with unions and intersections.
- **Proposition**: compositions of homeomorphisms are homeomorphisms.
- **Example**: in standard topology, (0,1) is homeomorphic to  $\mathbb{R}$ . (Consider  $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to (-\infty, \infty), f = \tan, g: (0,1) \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), g(x) = \pi\left(x \frac{1}{2}\right)$  and  $f \circ g$ ).
- Example:  $\mathbb{R}$  with standard topology  $\tau_{\mathrm{st}}$  is not homoeomorphic to  $\mathbb{R}$  with the discrete topology  $\tau_d$ . (Consider  $h^{-1}(\{a\}) = \{h^{-1}(a)\}, \{a\} \in \tau_{\mathrm{st}}$  but  $\{h^{-1}(a)\} \notin \tau_{\mathrm{st}}$ ).
- Example: let  $X = \mathbb{R} \cup \{\overline{0}\}$ . Define  $f_0 : \mathbb{R} \to X$ ,  $f_0(a) = a$  and  $f_{\overline{0}} : \mathbb{R} \to X$ ,  $f_{\overline{0}}(a) = a$  for  $a \neq 0$ ,  $f_{\overline{0}}(0) = \overline{0}$ . Topology on X has  $A \subseteq X$  open iff  $f_0^{-1}(A)$  and  $f_{\overline{0}}^{-1}(A)$  open. Every point in X lies in open set: for  $a \notin \{0, \overline{0}\}$ ,  $a \in (a \frac{|a|}{2}, a + \frac{|a|}{2})$  and both pre-images of this are same open interval, for 0, set  $U_0 = (-1, 0) \cup \{0\} \cup (0, 1) \subseteq X$  then  $f_0^{-1}(U_0) = (-1, 1)$  and  $f_0^{-1}(U_0) = (-1, 0) \cup \{\overline{0}\} \cup (0, 1)$  are both open. For  $\overline{0}$ , set  $U_{\overline{0}} = (-1, 0) \cup \{\overline{0}\} \cup (0, 1) \subseteq X$ , then  $f_{\overline{0}}^{-1}(U_{\overline{0}}) = (-1, 1)$  and  $f_0^{-1}(U_{\overline{0}}) = (-1, 0) \cup (0, 1)$  are both open. So  $U_0$  and  $U_{\overline{0}}$  both open in X. X is not Hausdorff since any open sets containing 0 and  $\overline{0}$  must contain "open intervals" such as  $U_0$  and  $U_{\overline{0}}$ .

• Example (Furstenberg's proof of infinitude of primes): since  $a + d\mathbb{Z}$  is infinite, any nonempty finite set is not open, so any set with finite complement is not closed. For fixed d, sets  $d\mathbb{Z}$ ,  $1 + d\mathbb{Z}$ , ...,  $(d-1) + d\mathbb{Z}$  partition  $\mathbb{Z}$ . So the complement of each is the union of the rest, so each is open and closed. Every  $n \in \mathbb{Z} - \{-1,1\}$  is prime or product of primes, so  $\mathbb{Z} - \{-1,1\} = \bigcup_{p \text{ prime}} p\mathbb{Z}$ , but finite unions of closed sets are closed, and since  $\mathbb{Z} - \{-1,1\}$  has finite complement, the union must be infinite.

## 3. Limits, bases and products

### 3.1. Limit points, interiors and closures

- **Definition**: for topological space  $X, x \in X, A \subseteq X$ :
  - Open neighbourhood of x is open set  $N, x \in N$ .
  - x is **limit point** of A if every open neighbourhood N of x satisfies

$$(N - \{x\}) \cap A \neq \emptyset$$

• Corollary: x is not limit point of A iff exists neighbourhood N of x with

$$A \cap N = \begin{cases} \{x\} & \text{if } x \in A \\ \emptyset & \text{if } x \notin A \end{cases}$$

- Example: let  $X = \mathbb{R}$  with standard topology.
  - $0 \in X$ , then (-1/2, 1/2) is open neighbourhood of 0.
  - If  $U \subseteq X$  open, U is open neighbourhood for any  $x \in U$ .
  - Let  $A = \left\{ \frac{1}{n} : n \in \mathbb{Z} \{0\} \right\}$ , then only limit point in A is 0.
- **Definition**: let  $A \subseteq X$ .
  - **Interior** of *A* is largest open set contained in *A*:

$$A^{\circ} \coloneqq \bigcup_{\substack{U \text{ open} \\ U \subset A}} U$$

• Closure of A is smallest closed set containing A:

$$\overline{A} \coloneqq \bigcap_{\substack{F \text{ closed} \\ A \subseteq F}}$$

If  $\overline{A} = X$ , A is **dense** in X.

- Lemma:
  - $\overline{X-A} = X A^{\circ}$
  - $\overline{A} = X (X A)^{\circ}$
- Example: let  $\mathbb{Q} \subset \mathbb{R}$  with standard topology. Then  $\mathbb{Q}^{\circ} = \emptyset$  and  $\overline{\mathbb{Q}} = \mathbb{R}$  (since every nonempty open set in  $\mathbb{R}$  contains rational and irrational numbers).
- Lemma:  $\overline{A} = A \cup L$  where L is the set of limit points of A.
- Dirichlet prime number theorem: let a, d coprime, then  $a + d\mathbb{Z}$  contains infinitely many primes.

• Example: let A be set of primes in  $\mathbb{Z}$  with Furstenberg topology. By above lemma, only need to find limit points in  $\mathbb{Z} - A$  to find  $\overline{A}$ .  $10\mathbb{Z}$  is an open neighbourhood of 0 for 0 inside  $\mathbb{Z} - A$ . For  $a \notin \{-1,0,1\}$ ,  $a+10a\mathbb{Z}$  is an open neighbourhood of a. These sets have no primes so the corresponding points are not limit points of A. For  $\pm 1$ , any open neighbourhood of 1 contains a set  $\pm 1 + d\mathbb{Z}$  for some  $d \neq 0$ , but by the Dirichlet prime number theorem, this set contains at least one prime. So  $\overline{A} = A \cup \{\pm 1\}$ .

#### • Lemma:

- Let  $A \subseteq M$  for metric space M. If x is limit point of A then exists sequence  $x_n$  in A such that  $\lim_{n\to\infty} x_n = x$ .
- If  $x \in M A$  and exists sequence  $x_n$  in A with  $\lim_{n \to \infty} x_n = x$  then x is limit point of A.

### 3.2. Bases

• **Definition**: a basis for topology  $\tau$  on X is collection  $\mathcal{B} \subseteq \tau$  such that

$$\forall U \in \tau, \exists B \subseteq \mathcal{B} : U = \bigcup_{b \in B} b$$

(every open U is a union of sets in B).

#### • Example:

- For metric space (M,d),  $\mathcal{B} = \{B(x;r): x \in M, r > 0\}$  is basis for the induced topology. (Since if U open,  $U = \bigcup_{u \in U} \{u\} \subseteq \bigcup_{u \in U} B(u,r_u) \subseteq U$ .)
- In  $\mathbb{R}^n$  with standard topology,  $\mathcal{B} = \{B(q; 1/m) : q \in \mathbb{Q}^n, m \in \mathbb{N}\}$  is a **countable** basis. (Find  $m \in \mathbb{N}$  such that  $\frac{1}{m} < \frac{r}{2}$  and  $q \in \mathbb{Q}^n$  such that  $q \in B(p; \frac{1}{m})$ , then  $B(q; \frac{1}{m}) \subseteq B(p; r) \subseteq U$  using the triangle inequality).
- **Theorem**: let  $f: X \to Y$  be map between topological spaces. The following are equivalent:
  - f is continuous.
  - If  $\mathcal{B}$  is basis for topology  $\tau$  on Y then  $f^{-1}(B)$  is open for every  $B \in \mathcal{B}$ .
  - $\bullet \quad \forall A\subseteq X, f(\overline{A})\subseteq \overline{f(A)}.$
  - $\bullet \quad \forall V \subseteq Y, \overline{f^{-1}(V)} \subseteq f^{-1}(\overline{V}).$
  - $f^{-1}(C)$  closed for any closed set  $C \subseteq Y$ .
- Theorem: let X be a set and collection  $\mathcal{B} \subseteq \mathcal{P}(X)$  be such that:
  - $\forall x \in X, \exists B \in \mathcal{B} : x \in B$
  - If  $x \in B_1 \cap B_2$  with  $B_1, B_2 \in \mathcal{B}$ , then  $\exists B_3 \in \mathcal{B} : x \in B_3 \subseteq B_1 \cap B_2$ .

Then there is unique topology  $\tau_{\mathcal{B}}$  on X for which  $\mathcal{B}$  is a basis. We say  $\mathcal{B}$  generates  $\tau_{\mathcal{B}}$ . We have  $\tau_{\mathcal{B}} = \{ \bigcup_{i \in I} B_i : B_i \in \mathcal{B}, I \text{ indexing set} \}$ .

### 3.3. Product topologies

- Definition: Cartesian product of topological spaces X, Y is  $X \times Y := \{(x, y) : x \in X, y \in Y\}$ . We give it the **product topology** which is generated by  $\mathcal{B}_{X \times Y} := \{U \times V : U \in \tau_X, V \in \tau_Y\}$ .
- Example:
  - Let  $X = Y = \mathbb{R}$ , then product topology is same as standard topology on  $\mathbb{R}^2$ .

• Let  $X = Y = S^1$ , then  $X \times Y = T^2 = S^1 \times S^1$  is the **2-torus**. *n***-torus** is defined for  $n \ge 3$  by

$$T^n := S^1 \times T^{n-1}$$

- **Definition**: if  $\tau_1 \subseteq \tau_2$  are topologies, then  $\tau_1$  is **smaller** than  $\tau_2$  ( $\tau_2$  is **larger** than  $\tau_1$ ).
- **Definition**: for topological spaces X, Y, **projection maps**  $\pi_X : X \times Y \to X$  and  $\pi_Y : X \times Y \to Y$  are

$$\pi_X(x,y) = x, \quad \pi_Y(x,y) = y$$

- **Proposition**: for  $X \times Y$  with product topology,
  - $\pi_X$  and  $\pi_Y$  are continuous.
  - $\pi_X$  and  $\pi_Y$  map open sets to open sets.
  - Product topology is smallest topology for which  $\pi_X$  and  $\pi_Y$  are continuous.
- **Proposition**: let X, Y, Z topological spaces, then  $f: Z \to X \times Y$  (with product topology on  $X \times Y$ ) continuous iff both  $\pi_X \circ f: Z \to X$  and  $\pi_Y \circ f: Z \to Y$  are continuous.
- Example: let  $f: X \to \mathbb{R}^n$ ,  $\pi_i: \mathbb{R}^n \to \mathbb{R}$ ,  $\pi_i(x) = x_i$ ,  $f_i = \pi_i \circ f$ , then f is continuous iff all  $f_i$  are continuous.
- **Proposition**: let X, Y nonempty topological spaces. Then  $X \times Y$  with product topology is Hausdorff iff X and Y are both Hausdorff.

### 4. Connectedness

### 4.1. Clopen sets and examples

- **Definition**: let X topological space, then  $A \subseteq X$  is **clopen** if A is open and closed.
- **Definition**: X is **connected** if the only clopen sets in X are X and  $\emptyset$ .
- Example:
  - $\mathbb{R}$  with standard topology is connected.
  - $\mathbb{Q}$  with induced topology from  $\mathbb{R}$  is not connected (consider  $L = \mathbb{Q} \cap (-\infty, \sqrt{2})$  and  $\mathbb{Q} L = \mathbb{Q} \cap (\sqrt{2}, \infty)$ ).
  - The connected subsets of  $\mathbb{R}$  are the intervals.
- **Definition**:  $A \subseteq \mathbb{R}$  is an interval iff  $\forall x, y, z \in A, x < z < y \Longrightarrow z \in A$ .
- Example:
  - $X = \{0, 1\}$  with discrete topology is not connected ( $\{1\}$  and  $\{0\}$  both open so both closed).
  - $X = \{0, 1\}$  with  $\tau = \{\emptyset, \{1\}, \{0, 1\}\}$  is connected.
  - Z with Furstenberg topology is not connected.
- Theorem (continuity preserves connectedness): if  $h: X \to Y$  continuous and X connected, then  $h(X) \subseteq Y$  is connected.
- Corollary: if  $h: X \to Y$  is homeomorphism and X is connected then Y is connected.
- **Theorem**: let *X* topological space. The following are equivalent:
  - X is connected.

- X cannot be written as disjoint union of two non-empty sets.
- There exists no continuous surjective function from X to a discrete space with more than one point.

#### • Example:

- $\operatorname{GL}_n(\mathbb{R})$  is not connected (since  $\det : \operatorname{GL}_n(\mathbb{R}) \to \mathbb{R} \{0\}$  is continuous and surjective and  $\mathbb{R} \{0\} = (-\infty, 0) \cup (0, \infty)$ ).
- O(n) is not connected.
- (0,1) is connected (since  $\mathbb{R} \cong (0,1)$  and  $\mathbb{R}$  is connected).
- X = (0,1] and Y = (0,1) are not homeomorphic (if they are, then (0,1] is connected since (0,1) is).
- **Definition**: let  $A = B \cup C$ ,  $B \cap C = \emptyset$ , then B and C are **complementary** subsets of A.
- Remark: if complementary B and C open in A, then B and C clopen in A. So if  $B, C \neq \emptyset$  then A not connected.

### 4.2. Constructing more connected sets, components, pathconnectedness

- **Proposition**: let X topological space,  $Z \subseteq X$  connected. If  $Z \subseteq Y \subseteq \overline{Z}$  then Y is connected. In particular, with  $Y = \overline{Z}$ , the closure of a connected set is connected.
- **Proposition**: let  $A_i \subseteq X$  connected,  $i \in I$ ,  $A_i \cap A_j \neq \emptyset$  and  $\bigcup_{i \in I} A_i = X$ . Then X is connected.
- **Theorem**: if X and Y are connected then  $X \times Y$  is connected.
- Example:
  - $\mathbb{R}^n$  is connected.
  - $B^n=\{x\in\mathbb{R}^n: d_2(0,x)<1\}$   $(B^n$  is homeomorphic to  $\mathbb{R}^n).$
  - $D^n = \{x \in \mathbb{R}^n : d_2(0, x) \le 1\} = \overline{B^n}$  is connected.

#### • Example:

- $\forall n \in \mathbb{N}, S^n$  is connected.
- $\forall n \in \mathbb{N}, T^n \text{ is connected.}$
- **Definition**: **component** of topological space *X* is maximal connected subset of *X*.
- **Proposition**: in a topological space X:
  - Every  $p \in X$  is in a unique component.
  - If  $C_1 \neq C_2$  are components, then  $C_1 \cap C_2 = \emptyset$ .
  - X is the union of its components.
  - Every component is closed in X.

#### • Example:

- If X connected, then its only component is itself.
- If X discrete, then each singleton in  $\tau_X$  is a component.
- In  $\mathbb{Q}$  with induced standard topology from  $\mathbb{R}$ , every singleton is a component.
- **Definition**: **path** in topological space X is continuous function  $\gamma : [0,1] \to X$ .  $\gamma$  is said to be path from  $\gamma(0)$  to  $\gamma(1)$ .
- **Definition**: X is **path-connected** if for every  $p, q \in X$ , there is a path from p to q.

- **Proposition**: every path-connected topological space is connected.
- Example: let

$$Z = \{(x, \sin(1/x)) \in \mathbb{R}^2 : 0 < x \le 1\}$$

Z is path-connected, as a path from  $(x_1, \sin(1/x_1))$  to  $(x_2, \sin(1/x_2))$  is given by

$$\gamma(t) = \left(x_1 + (x_2-x_1)t, \sin\left(\frac{1}{x_1 + (x_2-x_1)t}\right)\right)$$

So then Z is connected by the above proposition, and since the closure of a connected set is connected,  $\overline{Z}$  is connected.

Every point  $(0,y), y \in [-1,1]$  is a limit point of Z. Assume  $\overline{Z}$  is path-connected. Then there is a path  $\gamma:[0,1] \to \overline{Z}$  from (0,0) to  $(1,\sin(1))$ . Since  $(\pi_X \circ \gamma)(0) = 0$  and  $(\pi_X \circ \gamma)(1) = 1$  and  $\pi_X \circ \gamma$  is continuous, by the Intermediate Value Theorem,  $\exists t_1 \in [0,1]: (\pi_X \circ \gamma)(t_1) = 2/\pi$ . By IVT again,  $\exists t_2 \in [0,t_1]: (\pi_X \circ \gamma)(t_2) = \frac{2}{2\pi}$ . We obtain a strictly decreasing sequence  $(t_n) \subseteq [0,1]$  where  $(\pi_X \circ \gamma)(t_n) = \frac{2}{n\pi}$  which is bounded below by 0, so must converge with limit  $t^*$ .

Now  $\pi_Y \circ \gamma$  is continuous, so  $\lim_{n \to \infty} (\pi_Y \circ \gamma)(t_n) = (\pi_Y \circ \gamma)(t^*)$ . But  $(\pi_Y \circ \gamma)(t_n) = \sin(\frac{n\pi}{2})$ , and as  $n \to \infty$ , this oscillates between -1 and 1 and does not converge, so contradiction.

## 5. Compactness

• **Definition**: let X topological space, **cover** of X is collection  $(U_i)_{i\in I}$  of subsets of X with

$$\bigcup_{i\in I} U_i = X$$

If every  $U_i$  is open, it is an **open cover**. If  $J \subseteq I$ , then  $(U_i)_{i \in J}$  is a **subcover** of  $(U_i)_{i \in I}$  if it is also a cover.

- **Definition**: X is **compact** if every open cover of X admits a finite subcover.
- Example:
  - If X is finite then X is compact.
  - $\mathbb{R}$  is not compact.
  - If X infinite with  $\tau = \{U \subseteq X : X U \text{ is finite}\} \cup \{\emptyset\}$ , then X is compact.
- **Proposition**: let X have topology with basis  $\mathcal{B}$ . Then X is compact iff every cover  $(B_i)_{i\in I}$  of X,  $B_i \in \mathcal{B}$ , admits a finite subcover of X.
- Remark: to determine compactness of  $Y \subseteq X$  with induced topology, consider open covers  $Y = \bigcup_{i \in I} (U_i \cap Y)$  for  $U_i$  open in X, which is equivalent to  $Y \subseteq \bigcup_{i \in I} U_i$ .
- **Example**: [0,1] is compact.
- **Proposition**: if  $f: X \to Y$  continuous, X compact, then f(X) is compact.
- **Proposition**: if X compact,  $A \subseteq X$  closed in X, then A is compact.
- Theorem: if X is Hausdorff and  $A \subseteq X$  is compact then A is closed.

- Corollary: if X compact, Y is Hausdorff,  $f: X \to Y$  continuous bijection, then f is homeomorphism.
- **Theorem**: if X, Y compact, then  $X \times Y$  is compact.
- Definition:  $S \subseteq \mathbb{R}^n$  is bounded if

$$\exists r \in \mathbb{R} : S \subseteq B(0;r)$$

- Theorem (Heine-Borel):  $A \subseteq \mathbb{R}^n$  is compact iff it is closed and bounded.
- Example:
  - $S^n$  is compact.
  - $T^n$  is compact.
  - $X = \{x \in \mathbb{R}^3 : x_1^2 + x_2^2 x_3^3 = 1\}$  is not compact, since  $\forall n \in \mathbb{N}$ ,  $(n, 0, (n^2 1)^{1/3}) \in X$ , so  $X \nsubseteq B(n)$ , so is unbounded, so not compact by Heine-Borel.
- Corollary: let  $f: X \to \mathbb{R}$ , X compact, f continuous. Then f attains its maximum and minimum.
- Theorem (Bolzano-Weierstrass): an infinite subset A of a compact space X has a limit point in X.

## 6. Quotient spaces

• **Definition**: let X topological space,  $\sim$  equivalence relation on X. Write  $X/\sim$  for the set of equivalence classes of  $\sim$ : for  $x \in X$ ,

$$[x]\coloneqq\{y\in X:y\sim x\},\quad X/\sim\coloneqq\{[x]:x\in X\}$$

There is a surjective map, the **quotient map**,  $\pi: X \to X/\sim$ ,  $\pi(x) = [x]$ .

• Example: let  $X = \mathbb{R}^3$ , define equivalence relation

$$(x_1, y_1, z_1) \sim (x_2, y_2, z_2) \Leftrightarrow z_1 = z_2$$

Then  $\pi(a,b,c)=[(a,b,c)]=\{(x,y,z)\in\mathbb{R}^3:z=c\}$ . Elements of  $\mathbb{R}^3/\sim$  are horizontal planes.

• **Definition**: let X topological space,  $\sim$  equivalence relation on X. Then  $X/\sim$  is given **quotient topology** defined by

$$U \subseteq X/\sim \text{\rm open} \Longleftrightarrow \pi^{-1}(U)$$
open in  $X$ 

- **Proposition**: quotient topology defines a topology on  $X/\sim$ .
- Proposition: quotient topology on  $X/\sim$  is largest such that  $\pi$  is continuous.
- **Proposition**: let X topological space with equivalence relation  $\sim$ , Y topological space. Then  $f: X/\sim \to Y$  continuous iff  $f\circ \pi: X\to Y$  is continuous.
- **Example**: in  $\mathbb{R}$ , let  $x \sim y \iff x y \in \mathbb{Z}$ . Define  $\exp : \mathbb{R} \to S^1 \subseteq \mathbb{C}$ ,  $\exp(t) = e^{2\pi i t}$  and  $\overline{\exp} : \mathbb{R} / \sim \to S^1$ ,  $\overline{\exp}([t]) = \exp(t)$ . Then

$$[s] = [t] \iff s - t = k \in \mathbb{Z} \iff \overline{\exp}(s) = e^{2\pi i k} e^{2\pi i t} = e^{2\pi i t} = \overline{\exp}(t)$$

Hence  $\overline{\exp}$  is well-defined and injective, and is surjective since  $\exp$  is. Also,  $\overline{\exp}$  is continuous since  $\exp = \overline{\exp} \circ \pi$  is.  $\mathbb{R}^2$  is a metric space and so is Hausdorff, so  $S^1 \subset \mathbb{R}^2$  with the induced topology is Hausdorff. Now e.g.  $\pi([-10, 10]) = \mathbb{R}/\sim$ ,

[-10, 10] is compact and  $\pi$  continuous so  $\mathbb{R}/\sim$  is compact. Since  $\overline{\exp}$  is a continuous bijection, these three properties imply  $\overline{\exp}$  is a homeomorphism. Hence  $\mathbb{R}/\sim\cong S^1$ .

- **Definition**: let  $A \subseteq X$ , define  $x \sim y \iff x = y \text{ or } x, y \in A$ . Then define  $X/A := X/\sim$ .
- Example:  $S^n \cong D^n/S^{n-1}$ . Any point in  $D^n$  can be written as  $t \cdot \varphi$ ,  $t \in [0,1]$ ,  $\varphi \in S^{n-1}$ . Define

$$f: D^n \to S^n, \quad f(t \cdot \varphi) \coloneqq (\cos(\pi t), \varphi \sin(\pi t)) \in \mathbb{R} \times \mathbb{R}^n = \mathbb{R}^{n+1}$$

$$\Longrightarrow f(0 \cdot \varphi) = (1, \mathbf{0}), f(1/2 \cdot \varphi) = (0, \varphi), f(1 \cdot \varphi) = (-1, \mathbf{0})$$
Define  $\overline{f}: D^n/S^{n-1} \to S^n, \overline{f}([t \cdot \varphi]) = f(t \cdot \varphi)$ . If  $t_1 \cdot \varphi_1 \neq t_2 \cdot \varphi_2$ , then

$$\begin{split} [t_1 \cdot \varphi_1] &= [t_2 \cdot \varphi_2] \Longleftrightarrow t_1 \cdot \varphi_1, t_2 \cdot \varphi_2 \in S^{n-1} \Longleftrightarrow t_1 = t_2 = 1 \\ &\iff f(t_1 \cdot \varphi_1) = (-1, \mathbf{0}) = f(t_2 \cdot \varphi_2) \\ &\iff \overline{f}([t_1 \cdot \varphi_1]) = \overline{f}([t_2 \cdot \varphi_2]) \end{split}$$

f is surjective, so  $\overline{f}$  is also. Now  $\overline{f} \circ \pi = f$  which is continuous, so by above proposition,  $\overline{f}$  is continuous.  $S^n \subset \mathbb{R}^{n+1}$  is Hausdorff,  $D^n \subset \mathbb{R}^n$  is closed and bounded so is compact by Heine-Borel, and so  $D^n/S^{n-1}$  is compact (since  $\pi$  continuous). Also, f is a continuous bijection. These imply that  $\overline{f}$  is homeomorphism.

## 7. Topological groups

## 7.1. Examples

• **Definition**: a **topological group** G is Hausdorff space which is also a group such that

$$\bullet: G \times G \to G, \ \bullet(g,h) = gh \ \text{and} \ i: G \to G, \ i(g) = g^{-1}$$

are continuous.

- Example:
  - $\mathbb{R}^n$  with addition is topological group.
  - $GL_n(\mathbb{R})$  with multiplication and its subgroups O(n) and SO(n) are topological groups (each entry in AB is sum of products of entries of A and B, so matrix multiplication is continuous, matrix inversion also continuous).

#### • Proposition:

- Any group with discrete topology is topological group.
- Any subgroup of topological group is also topological group.

#### • Example:

- $\mathbb{C} \{0\}$  with multiplication has topological subgroup  $S^1 \subset \mathbb{C} \{0\}$ .
- Define **quaternions** as vector space  $\mathbb{H} := \langle 1, i, j, k \rangle$ , with topology taken from  $\mathbb{R}^4$ .  $\mathbb{H} \{0\}$  is a multiplicative group with  $S^3$  a topological subgroup. For  $q = a + bi + cj + dk \in \mathbb{H}$ ,  $a, b, c, d \in \mathbb{R}$ , we have ij := k, jk := i, ki := j, ji := -k, kj := -i, ik := -j. For  $q \neq 0$ ,

$$q^{-1} = \frac{a - bi - cj - dk}{a^2 + b^2 + c^2 + d^2}$$

- Note however that  $S^2$  is not a topological group.
- **Definition**: for topological group  $G, x \in G$ , define **left translation by** x as

$$L_x:G o G,\quad L_x(g)\coloneqq xg$$

Similarly, **right translation by** x is

$$R_x:G o G,\quad R_x(g)\coloneqq gx$$

- Proposition:  $L_x$  has inverse  $(L_x)^{-1} = L_{x^{-1}}$  and is homeomorphism. Similarly for  $R_x$ .
- **Notation**: a specified inclusion  $G \stackrel{x}{\hookrightarrow} G \times G$  is the map  $G \to \{x\} \times G$  composed with the inclusion map  $\{x\} \times G \to G \times G$ . (similarly for  $G \times \{x\}$ ).
- **Proposition**: let G topological group, K the component containing identity of G. Then K is normal subgroup of G.
- Example: O(n) is not connected, but SO(n) is connected and contains  $I_n$ , so is a normal subgroup of O(n)

### 7.2. Actions, orbits, orbit spaces

- **Definition**: **action** of group G on topological space X is map :  $G \times X \to X$  such that  $\forall g, h \in G, \forall x \in X$ ,
  - $(hg) \bullet x = h \bullet (g \bullet x)$ .
  - $1 \bullet x = x$ .
  - $g: X \to X$  defined by  $g(x) = g \bullet x$  is continous. Note: g has inverse map  $g^{-1}$  which is also continuous, so both are homeomorphisms.
- **Definition**: **action** of topological group G on topological space X is continuous map :  $G \times X \to X$  such that  $\forall g, h \in G, \forall x \in X$ ,
  - $(hg) \bullet x = h \bullet (g \bullet x)$ .
  - $1 \bullet x = x$ .
- **Remark**: for the above definition, the condition  $g(x) = g \bullet x$  being continuous isn't required since g is the composition of continuous maps:

$$X \stackrel{g}{\hookrightarrow} G \times X \stackrel{\bullet}{\longrightarrow} X, \quad x \to (g, x) \to g \bullet x$$

- Example:
  - Trivial action:  $(g, x) \mapsto g \bullet x = x$ , so  $\bullet = \pi_X$ .
  - Let  $G = GL_n(\mathbb{R})$ ,  $X = \mathbb{R}^n$ , let the action be matrix multiplication:  $(A, \mathbf{x}) \to A \bullet \mathbf{x} = A\mathbf{x}$ . This induces an action of subgroups O(n) or SO(n) on  $X = \mathbb{R}^n$ .
  - Let H subgroup of topological group G, left translation action of H on G is  $\bullet: H \times G \to G, \ h \bullet g = hg$ . Equivalently,  $\varphi(h) = L_h$ .
  - Let N normal subgroup of topological group G, conjugation action of G on N is :  $G \times N \to N$ ,  $g \bullet n = gng^{-1}$ .
- **Definition**: let G act on topological space X, define equivalence relation  $\sim$  on X by

$$x \sim y \iff \exists g \in G : g(x) := g \bullet x = y$$

An equivalence class for this relation is an **orbit**, denoted Gx. **Orbit space**, X/G, is quotient space  $X/\sim$ . Action is **transitive** if X/G is a singleton.

- Example:
  - If G acts trivially, every orbit is singleton and X/G = X.
  - $\mathbb{R}^n/\mathrm{GL}_n(\mathbb{R})$  contains two points and has neither discrete nor indiscrete topology.
  - Action of O(n) on  $S^{n-1}$  is transitive for  $n \in \mathbb{N}$ . Action of SO(n) on  $S^{n-1}$  is transitive for n > 2.
- Lemma: if connected topological group G acts on topological space X, then the orbits are connected.
- **Theorem**: let G connected topological group act on topological space X. If X/G is connected, then X is connected.
- Notation: define specified inclusion  $i_1: M_n(\mathbb{R}) \stackrel{1}{\hookrightarrow} M_{n+1}(\mathbb{R})$  by  $A \to \begin{bmatrix} 1 & 0 \\ 0 & A \end{bmatrix}$ . So  $M_n(\mathbb{R})$  can be regarded as subspace of  $M_{n+1}(\mathbb{R})$ .
- Proposition:
  - Using the inclusion  $\stackrel{1}{\hookrightarrow}$ , SO(n) is subgroup of SO(n + 1).
  - Viewing these as topological groups, if subgroup SO(n) acts on SO(n+1), orbit space is  $SO(n+1)/SO(n) \cong S^n$ .
- Corollary: the topological group SO(n) is connected for  $n \in \mathbb{N}$ .

### 8. Introduction

- **Notation**: let I = [0, 1].
- Definition: closed n-disc is

$$D^n \coloneqq \{ \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x}\| \le 1 \}$$

• Definition: open n-disc is

$$E^n := \{ \boldsymbol{x} \in \mathbb{R}^n : \| \boldsymbol{x} \| < 1 \}$$

• **Definition**: *n*-sphere is

$$S^n := \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \}$$

- Definition: cylinder is  $S^1 \times I$ .
- **Definition**: the **2-torus (torus)** can be defined as  $\mathbb{T} := S^1 \times S^1$  or  $\mathbb{T} := (I \times I) / \sim$  where

$$\forall x \in I, (x,0) \sim (x,1), \quad \forall y \in I, (0,y) \sim (1,y)$$

• **Definition**: **Klein bottle** is given by  $\mathbb{K} := (I \times I) / \sim$  where

$$\forall x \in I, (x, 0) \sim (x, 1), \quad \forall y \in I, (0, y) \sim (1, 1 - y)$$

• **Definition**: map is continuous  $f: X \to Y$  where X, Y are topological spaces.

# 9. Simplicial complexes

# 9.1. Simplicial complexes and triangulations

- Definition: let  $v_0,...,v_n \in \mathbb{R}^N,\, n \leq N.$ 
  - $v_0,...,v_n$  are in **general position** if  $\{v_1-v_0,...,v_n-v_0\}$  are linearly independent.
  - Convex hull of  $v_0,...,v_n$  is set of all convex linear combinations of  $v_0,...,v_n$ :

$$\langle v_0,...,v_n\rangle\coloneqq\left\{\sum_{i=0}^n\lambda_iv_i:\sum_{i=0}^n\lambda_i=1,\forall i\in\{0,...,n\},\lambda_i\geq 0\right\}$$

- An n-simplex,  $\sigma^n = \langle v_0, ..., v_n \rangle$ , is convex hull of  $v_0, ..., v_n$  in general position. The vertices  $v_0, ..., v_n$  span  $\sigma^n$  and  $\sigma^n$  is n-dimensional.
- Example:
  - 0-simplex is a point.
  - 1-simplex is a closed line segment.
  - 2-simplex is closed triangle including its interior.
  - 3-simplex is closed tetrahedron including its interior.
- **Definition**: if  $\sigma^n = \langle v_0, ..., v_n \rangle$  is n-simplex and  $\{i_0, ..., i_r\} \subseteq \{0, ..., n\}$ , then  $\langle v_{i_0}, ..., v_{i_r} \rangle$  is r-simplex and  $\langle v_{i_0}, ..., v_{i_r} \rangle \subseteq \sigma^n$ . Any such sub-simplex is called r-face of  $\sigma^n$ . A **proper face** is an (n-1)-face. The ith face of  $\sigma^n$  is the (n-1)-simplex  $\langle v_0, ..., v_{i-1}, v_{i+1}, ..., v_n \rangle$ .
- Definition: a finite simplicial complex  $K \subset \mathbb{R}^N$  is finite union of simplices in  $\mathbb{R}^N$  such that
  - If  $\sigma^n$  is simplex in K and  $\tau^r$  is r-face of  $\sigma^n$ , then  $\tau^r$  is simplex in K.
  - If  $\sigma_1^n$  and  $\sigma_2^m$  are simplices in K with  $\sigma_1^n \cap \sigma_2^m \neq \emptyset$ , then there exists  $r \in \{0, ..., \min(n, m)\}$  and r-simplex  $\tau^r$  in K such that  $\tau^r$  is r-face of both  $\sigma_1^n$  and  $\sigma_2^m$  and  $\sigma_1^n \cap \sigma_2^m = \tau^r$ .

**Dimension** of K is maximum value of n for which there is an n-simplex in K.

- Remark: a finite simplicial complex  $K \subset \mathbb{R}^N$  is a topological space when equipped with subspace topology from  $\mathbb{R}^N$ .
- Remark: second condition implies that two simplices can meet in at most one common face (this is important when considering quotient topologies and identifying edges with each other).
- **Definition**: **triangulation** of topological space X is homeomorphism  $h: X \to K$  for some finite simplicial complex K. We say K **triangulates** X. X is **triangulable** if it has at least one triangulation.
- Remark: if a triangulation exists, it is not unique.
- Example: the black and blue figures are simplicial complexes that triangulate  $S^1$ :





### 9.2. Simplicial maps

- **Definition**: a map  $f: K \to L$  between finite simplicial complexes K and L is simplicial if
  - For every vertex v of K, f(v) is a vertex of L.
  - If  $\sigma = \langle v_0, ..., v_n \rangle$  is simplex  $\sigma$  in K,  $f(\sigma)$  is simplex of L with vertices  $f(v_0), ..., f(v_n)$ , where map  $f|_{\sigma}$  is defined as

$$f\!\left(\sum_{i=0}^n \lambda_i v_i\right) = \sum_{i=0}^n \lambda_i f(v_i)$$

- Remark: vertices  $f(v_0), ..., f(v_n)$  of simplex  $f(\sigma)$  may not be distinct, so  $f(\sigma)$  may be simplex of lower dimension than  $\sigma$ .
- Remark: for triangulations  $h_X: X \to K_X$  and  $h_Y: Y \to K_Y$  of topological spaces X and Y, a simplicial map  $f: K_X \to K_Y$  induces a map  $F: X \to Y$  by  $F = h_Y^{-1} \circ f \circ h_X$ .
- Example:  $F: S^1 \to S^1$ ,  $F(e^{i\pi t}) = e^{2i\pi t}$  is the **2 times** map. Let  $f: K_1 \to K_2$ ,  $f(v_i) = w_{i \mod 3}$ , f is simplicial map. Then F is induced by f, where  $K_1$  and  $K_2$  are as below:



# 9.3. Barycentric subdivision and simplicial approximation

• Definition: barycentre of  $\sigma^k = \langle v_0, ..., v_k \rangle \subset \mathbb{R}^N$  is

$$\overline{\sigma^k} = \frac{1}{k+1}(v_0 + \dots + v_k) \in \mathbb{R}^N$$

- Example:
  - Barycentre of 0-simplex is itself.
  - $\bullet\,$  Barycentre of 1-simplex is midpoint of the line.



- **Definition**: let  $K \subset \mathbb{R}^N$  be finite simplicial complex. **First barycentric** subdivision of K is the simplicial complex  $K^{(1)}$  such that:
  - The vertices of  $K^{(1)}$  are the barycentres of  $\overline{\sigma^k}$  for every simplex  $\sigma^k$  in K.
  - The vertices  $\overline{\sigma^{k_0}}, ..., \overline{\sigma^{k_m}} \in K^{(1)}$  span an m-simplex in  $K^{(1)}$  if the original simplices  $\sigma^{k_0}, ..., \sigma^{k_m}$  in K are (up to relabelling) strictly nested:

$$\sigma^{k_0} \prec \cdots \prec \sigma^{k_m}$$

where  $\sigma^i \prec \sigma^j$  iff  $\sigma^i$  is *i*-face of  $\sigma^j$  with i < j (thus  $k_0 < \dots < k_m).$ 

- **Definition**: the rth barycentric subdivision of K is defined inductively for r > 1 by  $K^{(r)} := (K^{(r-1)})^{(1)}$ .
- **Remark**: let *K* be finite simplicial complex.
  - If K is triangulation of topological space X, then so is  $K^{(r)}$  for all  $r \in \mathbb{N}$ .
  - Each simplex in  $K^{(1)}$  is contained in a simplex of K.
- Simplicial approximation theorem: for each  $i \in \{1,2\}$ , let  $h_i: X_i \to K_i$  be triangulation of topological space  $X_i$  by finite simplicial complex  $K_i$ . Let  $f: X_1 \to X_2$  be map. Then  $\forall \varepsilon > 0$  there exist  $n, m \in \mathbb{N}$  and a simplicial map  $s: K_1^{(n)} \to K_2^{(m)}$  such that

$$s \simeq f = h_2 \circ f \circ h_1^{-1} \quad \text{and} \quad \forall x \in K_1, \quad |f(x) - s(x)| < \varepsilon$$

# 10. Surfaces

#### 10.1. Surfaces

- **Definition**: let S be Hausdorff, compact, connected topological space.
  - S is surface if for all  $x \in S$ , there exists  $U \subseteq S$  such that  $x \in U$  and  $U \cong E^2$  or  $U \cong E^2 \cap \mathbb{R} \times \mathbb{R}_{>0}$ .
  - Boundary of S,  $\partial S$ , is set of all  $x \in S$  such that there is not a  $U \subseteq S$  with  $x \in U$  and  $U \cong E^2$ .
  - Interior of S is  $int(S) = S \partial S$ .
  - S is closed surface if  $\partial S = \emptyset$  (S is locally Euclidean of dimension 2).
  - S is surface with boundary if  $\partial S \neq \emptyset$ .
- **Definition**: let K be finite simplicial complex,  $x \in K$ . **Open star** of x in K, St(x, K) is union of  $\{x\}$  and interiors of all simplices containing x.