<u>definition</u> + notation we say that a sequence (x_n) weakly converges to x if for all y we have $\lim \langle x_n, y \rangle = \langle x, y \rangle$. we write this as $x_n \xrightarrow{w} x$.

example any orthonormal sequence (in particular, say, e_n in ℓ^2) weakly converges to 0.

exercises

- i. weak convergence is linear.
- ii. $x_n \longrightarrow x$ implies $x_n \stackrel{w}{\longrightarrow} x$. namely regular convergence implies weak convergence.
- iii. moreover, $x_n \longrightarrow x$ iff $x_n \stackrel{w}{\longrightarrow} x$ and $\lim ||x_n|| = ||x||$
- iv. in finite dimensional Hilbert spaces, weak and regular convergence are equivalent.
- v. if $\lim \langle x_n, y \rangle = \langle x, y \rangle$ for all $y \in \overline{\operatorname{span}(x_n, x)}$ then $x_n \stackrel{w}{\longrightarrow} x$.
- vi. $x_n \xrightarrow{w} x$ implies $x_{n_k} \xrightarrow{w} x$ for any subsequence n_k .
- vii. $x_n \xrightarrow{w} x$ implies $||x|| \le \liminf ||x_n||$.

weak sequential compactness theorem any bounded sequene has a weakly convergent subsequence.

theorem (Banach-Saks) if x_n weakly converges to x then it has a subsequence x_{n_k} which is Cesàro convergent to x. in particular, a convex closed set in a Hilbert space is closed under weak convergence.

<u>definition</u> we say that a sequence (x_n) is weakly Cauchy if for all y the scalar sequence $\langle x_n, y \rangle$ is Cauchy (ie convergent).

proposition a sequence is weakly convergent iff it is weakly Cauchy.

lemma any weakly Cauchy sequence is bounded.

proof of lemma let $V_m = \{y : |\langle x_n, y \rangle| \le m \ \forall n\}$ so that each V_m is closed and their union is the entire Hilbert space. applying the Baire category theorem, fix $B(y, \varepsilon) \subseteq V_m$. this yields that $||x_n|| = \frac{1}{\varepsilon} \left| \left\langle x_n, \varepsilon \frac{x_n}{||x_n||} + y - y \right\rangle \right| \le \frac{2m}{\varepsilon}$ is bounded.

<u>proof of proposition</u> fix x_n weakly Cauchy. let $\phi(y) = \lim \langle x_n, y \rangle$. then ϕ is a linear functional, which is bounded because x_n is. applying Riesz theorem, there exist x so that $\lim \langle x_n, y \rangle = \langle x, y \rangle$ for all y.

proof of weak sequential compactness let $||x_n|| \leq M$ be any bounded sequence. applying v, we assume H is separable, and let (d_n) be a dense sequence. we let $x_{0,n} = x_n$ and generally $x_{k,n}$ be a subsequence of $x_{k-1,n}$ so that $\langle x_{k,n}, d_k \rangle$ converges. let $x_n^* = x_{n,n}$ be the diagonal subsequence. then $\langle x_n^*, d_k \rangle$ converges for all k. we show that x_n^* is weakly Cauchy. fix y and ε , let k be st $||y - d_k|| \leq \varepsilon/M$ and let N be such that $|\langle x_n^* - x_m^*, d_k \rangle| \leq \varepsilon$ for all $n, m \geq N$. then we have $|\langle x_n^* - x_m^*, y \rangle| \leq 3\varepsilon$ for all $n, m \geq N$ as we wanted.

proof of Banach Saks by linearity we assume x = 0. applying the lemma, let $||x_n|| \le M$. now, $n_1 = 1$, and generally let n_k be such that $|\langle x_{n_k}, x_{n_m} \rangle| \le 1/k$ for m = 1, ..., k-1. then

$$\left\| \frac{1}{k} \sum_{j=1}^{k} x_{n_j} \right\|^2 = \frac{1}{k^2} \left(\sum_{j=1}^{k} \left\| x_{n_j} \right\|^2 + 2 \sum_{i < j} \Re \left\langle x_{n_i}, x_{n_j} \right\rangle \right) \le \frac{M^2}{k} + \frac{2}{k^2} \left(\frac{1}{2} + \frac{2}{3} + \dots + \frac{k-1}{k} \right)$$

converges to 0 as $k \longrightarrow \infty$.