Reformer: The Efficient Transformer

Nikita Kitaev, Lukasz Kaiser, Anselm Levskaya

HSE Pavel Yurlov

5 March 2020

Outline

- 1 Introduction
- 2 LSH-based attention
- 3 Reversible Transformer
- 4 Results

Introduction

The Transformer (Vaswani et al., 2017)

Transformer's Pros and Cons

- (+) state-of-the-art
- (—) requires too many resources

The Reformer

Modifications:

- (1) reversible layers
- (2) splitting activations inside feed-forward layers
- (3) approximate attention computation

LSH-based attention

Multi-head self-attention in Transformer

- (1) Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$
- (2) MultiHead $(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$, where $\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$
- (3) The main problem is the QK^T term: $[batch_size, length, length]$

Solution

Attention scores calculation:
softmax

we only need the largest elements for an approximation
we have to find the nearest neighbours
we should use locality-sensitive hashing (Andoni et al., 2015)

Locality-sensitive hashing

Goals:

- (1) Nearby vectors get the same hash with high probability.
- (2) Hash-buckets are of similar size with high probability.

Algorithm (b hash-buckets):

- (1) Fix a random matrix R of size $[d_k, b/2]$.
- (2) $h(x) = \operatorname{argmax}([xR; -xR])$

Locality-sensitive hashing

Attention with LSH: the algorithm

Accuracy comparison

Table 2: Accuracies on the duplication task of a 1-layer Transformer model with full attention and with locality-sensitive hashing attention using different number of parallel hashes.

Eval Train	Full Attention	LSH-8	LSH-4	LSH-2	LSH-1
Full Attention	100%	94.8%	92.5%	76.9%	52.5%
LSH-4	0.8%	100%	99.9%	99.4%	91.9%
LSH-2	0.8%	100%	99.9%	98.1%	86.8%
LSH-1	0.8%	99.9%	99.6%	94.8%	77.9%

Reversible Transformer

Further modifications

We need further space optimisation:

- (1) Reversible blocks in order not to store many layers of activations
- (2) Processing feed-forward activations in chunks

RevNet block (Gomez et al., 2017)

$$(x_1, x_2) \to (y_1, y_2)$$

Forward:

$$y_1 = x_1 + \mathcal{F}(x_2)$$

$$y_2 = x_2 + \mathcal{G}(y_1)$$

Backward:

$$x_2 = y_2 - \mathcal{G}(y_1)$$

$$x_1 = y_1 - \mathcal{F}(x_2)$$

RevNet in Transformer

Forward:

$$Y_1 = X_1 + \operatorname{Attention}(X_2)$$

$$Y_2 = X_2 + \text{FeedForward}(Y_1)$$

Backward:

$$X_2 = Y_2 - \text{FeedForward}(Y_1)$$

$$X_1 = Y_1 - Attention(X_2)$$

Chunking activations

Since computations in feed-forward layers are independent across positions in a sequence, they can be split into c chunks:

$$Y_2 = [Y_2^{(1)}; \dots; Y_2^{(c)}] =$$

=
$$[X_2^{(1)} + \text{FeedForward}(Y_1^{(1)}); \dots; X_2^{(c)} + \text{FeedForward}(Y_1^{(c)})]$$

Complexity comparison

Table 3: Memory and time complexity of Transformer variants. We write d_{model} and d_{ff} for model depth and assume $d_{ff} \geq d_{model}$; b stands for batch size, l for length, n_l for the number of layers. We assume $n_c = l/32$ so $4l/n_c = 128$ and we write $c = 128^2$.

Model Type	Memory Complexity	Time Complexity
Transformer	$\max(bld_{ff}, bn_h l^2)n_l$	$(bld_{ff} + bn_h l^2)n_l$
Reversible Transformer	$\max(bld_{ff},bn_hl^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
Chunked Reversible Transformer	$\max(bld_{model}, bn_h l^2)$	$(bn_h ld_{ff} + bn_h l^2)n_l$
LSH Transformer	$\max(bld_{ff}, bn_h ln_r c)n_l$	$(bld_{ff} + bn_h n_r lc)n_l$
Reformer	$\max(bld_{model}, bn_h ln_r c)$	$(bld_{ff} + bn_h n_r lc)n_l$

Results

Sharing QK and reversible layers

Reversible layers in machine translation

	sacreBLEU			
Model	BLEU	$Uncased^3$	$Cased^4$	
Vaswani et al. (2017), base model	27.3			
Vaswani et al. (2017), big	28.4			
Ott et al. (2018), big	29.3			
Reversible Transformer (base, 100K steps)		27.4	26.9	
Reversible Transformer (base, 500K steps, no weight sharing)		27.9	27.4	
Reversible Transformer (big, 300K steps, no weight sharing)		28.9	28.4	

Scores on newstest2014 for WMT English-German

LSH attention 1

LSH attention 2

LSH attention 3

Conclusions

The Reformer:

- (1) Transformer with LSH-based attention and memory optimisations
- (2) Performace on par with Transformer models
- (3) More efficient

Questions

- (1) Что такое locality-sensitive hashing? Запишите формулу схемы хеширования, используемую в статье, поясните обозначения.
- (2) Опишите алгоритм вычисления внимания в статье.
- (3) Зачем нужны обратимые слои? Запишите формулу прямого и обратного прохода по ним.

References

- Kitaev et al., Reformer: The Efficient Transformer: https://openreview.net/forum?id=rkgNKkHtvB
- Vaswani et al., Attention Is All You Need: https://arxiv.org/abs/1706.03762
- Andoni et al., Practical and Optimal LSH for Angular Distance: https://arxiv.org/abs/1509.02897
- Gomez et al., The Reversible Residual Network: Backpropagation Without Storing Activations: https://arxiv.org/abs/1707.04585