SUPPORT VECTOR MACHINES

2

Outline

- Decision boundary
- Linearly separable dataset
- Maximal Margin classifier (linear) hard-margin classifier
- Support vector classifier (linear) soft-margin classifier
- Support vector machines (nonlinear) classifier

Cesar Acosta Ph.D.

3

Non-Linearly separable dataset

.

Non-Linearly separable dataset

How to deal with non-linearly separable datasets?

Non-Linearly separable dataset

How to deal with

non-linearly

separable datasets?

Convert dataset into a linearly separable dataset

6

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

one-feature dataset

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

not linearly separable

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

create new feature x_2

$$x_2 = x_1^2$$

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

Cesar Acosta Ph.D.

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

actually x_1 not needed (y is linearly separable on x_2 alone)

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

not linearly separable

Non-Linearly separable dataset

To convert into a linearly separable dataset add more features (polynomial, exponential, etc.)

add new feature x_3

$$x_3 = x_1^2 + x_2^2$$

Radial Basis Function (RBF)

new exponential features

$$x_2$$
 and x_3

$$x_2 = e^{-\gamma (x_1 - a)^2}$$

$$x_2 = e^{-\gamma (x_1 - a)^2}$$

 $x_3 = e^{-\gamma (x_1 - b)^2}$

Radial Basis Function (RBF)

new exponential features

$$x_2$$
 and x_3

$$x_2 = e^{-\gamma (x_1 - a)^2}$$

 $x_3 = e^{-\gamma (x_1 - b)^2}$

$$x_2 = e^{-\gamma (x_1 - b)^2}$$

Example:

$$\gamma = 0.3$$
, $a = -2$, $b = 1$

Radial Basis Function (RBF)

Radial Basis Function (RBF)

Radial Basis Function (RBF)

Cesar Acosta Ph.D.

Linearly separable dataset

.

Linearly separable dataset

Many linear boundaries

Maximal Margin Classifier

Find the separating hyperplane that makes the biggest gap (or margin) between the two classes

Maximal Margin Classifier

Find the separating hyperplane that makes the biggest gap (or margin) between the two classes

Objective is to maximize the Margin

Maximal Margin Classifier

Think of fitting the widest possible street between the classes

Hard Margin Classifier

Restrict that all observations must be off the street and on the correct side

Hard Margin Classifier

Restrict that all observations must be off the street and on the correct side
Points on the left and right margins are called support vectors

Hard Margin Classifier

Restrict that all observations must be off the street and on the correct side
Only works if data is linearly separable

Soft Margin Classifier

- Keep the street as wide as possible
- Allowing for some margin violations
- Observations lying on the street (even on the wrong side)

Support Vector Classifier

SVC predicts the class of *y* with a linear decision function *h*

$$h = \mathbf{w}^T \cdot \mathbf{x} + b = w_1 x_1 + \dots + w_p x_p + b$$

$$\hat{y} = \begin{cases} 0 & \text{if} \quad h < 0 \\ 1 & \text{if} \quad h \ge 0 \end{cases}$$

 w_1, \ldots, w_p feature weights, b bias term

Linearly separable dataset

Suppose boundary is

$$x_2 = 2x_1 + 1$$

Linearly separable dataset

Suppose boundary is

$$x_2 = 2x_1 + 1$$

or

$$2x_1 - x_2 + 1 = 0$$

Cesar Acosta Ph.D.

Linearly separable dataset

Suppose boundary is

$$x_2 = 2x_1 + 1$$

or

$$2x_1 - x_2 + 1 = 0$$

Let

$$h(x_1, x_2) = 2x_1 - x_2 + 1$$

Linearly separable dataset

$$h(x_1, x_2) = 2x_1 - x_2 + 1$$

Cesar Acosta Ph.D.

Linearly separable dataset

$$h(x_1, x_2) = 2x_1 - x_2 + 1$$

If

h = 0 (x_1, x_2) on bound

h < 0 (x_1, x_2) on side 1

h > 0 (x_1, x_2) on side 2

Linearly separable dataset

$$h(x_1,x_2) = 2x_1 - x_2 + 1$$

If

$$h = 0$$
 (x_1, x_2) on bound

$$h < 0$$
 (x_1, x_2) on side 1

$$h > 0$$
 (x_1, x_2) on side 2

Let

$$\hat{y} = \begin{cases} 0 & \text{if} \quad h < 0 \\ 1 & \text{if} \quad h \ge 0 \end{cases}$$

Decision function

Cesar Acosta Ph.D.

Decision function

Decision boundary is the set of points where h = 0

Cesar Acosta Ph.D.

Decision function

Decision boundary is the set of points where h = 0

points where *h* is equal to -1, or, 1

Dash lines are

Decision function

Decision boundary is the set of points where h = 0

Dash lines are points where *h* is equal to -1, or, 1

Margin is between the dash lines

Decision function

Predict

one class when h > 1

or other class if h < -1

The smallest slope

gives widest margin

Slope is

$$\mathbf{w}^T \cdot \mathbf{w}$$

Support Vector Classifier

$$h = \mathbf{w}^T \cdot \mathbf{x} + b = w_1 x_1 + \dots + w_p x_p$$

by changing
$$y = \begin{cases} 0 & \text{if } h < 0 \\ 1 & \text{if } h \ge 0 \end{cases}$$

to
$$y = \begin{cases} -1 & \text{if } h < -1 \\ 1 & \text{if } h \ge 1 \end{cases}$$

we get $yh \ge 1$

or
$$y_i(\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1$$
 $i = 1, \dots, n$

Hard Margin Classifier

Constrained optimization problem

Find b, w_1, \ldots, w_p to

$$Min \qquad \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w}$$

subject to
$$y_i(\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1$$
 $i = 1, ..., n$

Hard Margin Classifier

Constrained optimization problem

Find
$$b, w_1, \ldots, w_p$$
 to

Min
$$\frac{1}{2} \mathbf{w}^T \cdot \mathbf{w}$$

subject to $y_i (\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1$ $i = 1, \dots, n$

a quadratic optimization problem on b, w_1, \ldots, w_p with linear constraints

Soft Margin Classifier

Let $\zeta_i \geq 0$, slack of ith observation

it measures

how much ith observation is allowed to violate the margin

Include ζ_i in the optimization problem

Soft Margin Classifier

Find $b, w_1, \ldots, w_p, \zeta_1, \ldots, \zeta_n$ to

$$\operatorname{Min} \quad \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^n \zeta_i$$

subject to
$$y_i (\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1 - \zeta_i$$
 $i = 1, ..., n$

reducing $\mathbf{w}^T \cdot \mathbf{w}$ increases the margin increasing the margin increases $\sum_{i=1}^n \zeta_i$

Soft Margin Classifier

Find $b, w_1, \ldots, w_p, \zeta_1, \ldots, \zeta_n$ to

$$\min \quad \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^n \zeta_i$$

subject to
$$y_i(\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1 - \zeta_i$$
 $i = 1, ..., n$

reducing $\mathbf{w}^T \cdot \mathbf{w}$ increases the margin increasing the margin increases $\sum_{i=1}^n \zeta_i$

Soft Margin Classifier

Find $b, w_1, \ldots, w_p, \zeta_1, \ldots, \zeta_n$ to

$$\min \quad \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^n \zeta_i$$

subject to
$$y_i (\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1 - \zeta_i$$
 $i = 1, ..., n$

reducing $\mathbf{w}^T \cdot \mathbf{w}$ increases the margin increases $\sum_{i=1}^n \zeta_i$ trade-off

Tune C parameter (cross validation)

Soft Margin Classifier

Primal problem

$$\min \quad \frac{1}{2} \mathbf{w}^T \cdot \mathbf{w} + C \sum_{i=1}^n \zeta_i$$

subject to
$$y_i (\mathbf{w}^T \cdot \mathbf{x}_i + b) \ge 1 - \zeta_i$$
 $i = 1, ..., n$

Dual problem is usually used for efficiency

Support Vector Machine (SVM)

SVM can predict the class of *y* with a nonlinear decision function *h*

Support Vector Machine (SVM)

SVM is an extension of the SVC that results from enlarging the set of predictors by means of kernels

Support Vector Machine (SVM)

Available kernels

- linear
- polynomial
- rbf
- sigmoid

ISE 529 Predictive Analytics 11/16/2019

51

SVM Extension for K classes

Two approaches

One vs. One

One vs. All

SVM for K classes

One vs. One

Fit SVMs (one for each pair of classes)

Classify observation using each SVM

Assign the observation to the class to which it was most frequently assigned

SVM for K classes

One vs. All

Reclassify observations

+1 if belongs to class i

-1 otherwise

Fit SVM and classify the observations

Repeat for i = 1,...,k classes

Assign each observation to the class to which it was most frequently assigned