DAILY ASSESSMENT FORMAT

Date:	17 th July 2020	Name:	Poorvi j gowda
Course:	coursera	USN:	4AL17EC077
Topic:	Mathematics for machine	Semester	6 th sem 'B' sec
	learning:Linear Algebra	& Section:	
Github	Poorvi-2000		
Repository:			

FORENOON SESSION DETAILS

Image of session

Eigenvalues of eigenvectors:

Horizontal of three vectors will not be pointing in the same direction after a vertical scaling.

There are I eigenvectors does the transformation have

we can possibly draw I vectors which are not eigenvectors.

Calculating eigen vectors: Ax = bx (A-11)x = 0 clet (A-11) = 0 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ $clet (\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}) = 0$ $clet (\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & A \end{pmatrix}) = 0$

$$dd \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = 0$$

$$\lambda^{2} - (a+d)\lambda + ad \cdot bc = 0$$

$$H = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \quad det \begin{pmatrix} 1 - \lambda & 0 \\ 0 & a - \lambda \end{pmatrix}$$

$$(A - \lambda \pm) \tau = 0 \qquad = \begin{pmatrix} 1 - 1 & 0 \\ 0 & a - 1 \end{pmatrix} \begin{pmatrix} 3t_{1} \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \tau_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 & 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = 0 \qquad = \begin{pmatrix} 1 - 1 & 0 \\ 0 & a - 1 \end{pmatrix} \begin{pmatrix} 3t_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} \begin{pmatrix} \tau_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 - 1 & 0 \\ 0 & a - a \end{pmatrix} \begin{pmatrix} \tau_{1} \\ \tau_{2} \end{pmatrix} = \begin{pmatrix} -\tau_{1} \\ 0 \end{pmatrix} = 0$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$(A - \lambda \pm) \tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$($$

07/17/2020

Poorvi hj

has successfully completed

Mathematics for Machine Learning: Linear Algebra

an online non-credit course authorized by Imperial College London and offered through Coursera

COURSE CERTIFICATE

David Dye and Samuel 1. Cooper

Verify at coursers.org/verify/GGLMSVRCX6J9 Coursers has confirmed the identity of this individual and field participation in the course.

