DOS PROBLEMAS INDECIDIBLES CLÁSICOS

1. Problema de correspondencia de Post, también conocido como PCP.

Dada una secuencia de pares de cadenas de unos y ceros no vacías $(s_1, t_1), ..., (s_k, t_k)$, ¿existe una secuencia de índices $i_1, ..., i_n$, con $n \ge 1$, tal que las cadenas $s_{i1}...s_{in}$ y $t_{i1}...t_{in}$ sean iguales?

Por ejemplo, para los pares (1, 111), (10111, 10), (10, 0), se cumple que (2, 1, 1, 3) es solución: en ambos casos se obtiene la cadena 101111110.

En cambio, para los pares (10, 101), (011, 11), (101, 011), se puede comprobar que no existe solución. Las soluciones pueden repetir índices; esto significa que el espacio de búsqueda con el que se trata es infinito, lo que es un indicio de la indecidibilidad del problema.

2. Problema de las palabras.

Dadas dos cadenas s, t, y un conjunto finito de igualdades entre cadenas del tipo $s_1 = t_1, ..., s_k = t_k$, determinar si de la cadena s se puede llegar a la cadena t por medio de sustituciones de subcadenas empleando las igualdades definidas.

Por ejemplo, para las igualdades

LAS = AS, ASO = A, NASO = RON, SAN = LIRON, GAS = DEL,

se cumple que se puede llegar de BOA a BOLA:

de BOA a BOASO a BOLASO a BOLA. También se puede llegar de GASOLINA A DEAN.

En cambio, de GASTAR no se puede llegar a DELATAR: una forma de verlo es destacando que en todas las sustituciones planteadas, la suma de las cantidades de A, R y D en las partes izquierda y derecha son iguales, por lo que por ninguna secuencia de sustituciones se logrará llegar a DELATAR desde GASTAR.