实分析第八周作业

涂嘉乐 PB23151786

2025年4月17日

周一

T1.

证明 (a). 首先我们有 $|f(x)| \leq ||f||_{\infty}$ a.e $x \in E$, 由 $\lim_{n \to \infty} ||f_n - f||_{\infty} = 0$ 知, 对 $\forall \varepsilon > 0, \exists N_{\varepsilon} \gg$ $1, \text{s.t.} \forall n \geq N_{\varepsilon}$,有

$$||f_n - f|| < \varepsilon \Longrightarrow |f_n(x) - f(x)| \le ||f_n - f|| < \varepsilon \text{ a.e } x \in E$$

由 ε 的任意性知,对 a.e $x\in E, \lim_{n\to\infty}|f_n(x)-f(x)|=0$,即 $f_n(x)\to f(x)$ a.e $x\in E$ (b). 我们考虑将 [-n,n] 进行 n^2 等分,并且对每一个 n 以及区间 $\left[-n+\frac{i-1}{n},-n+\frac{i}{n}\right],i=1$ $1, 2, \cdots, n^2$, 记

$$f_{n,i}(x) = \chi_{\left[-n + \frac{i-1}{n}, -n + \frac{i}{n}\right]}$$

我们将所有 $\{f_{n,i}\}$ 如下排列

 $f_{1,1}$ $f_{2,1}$ $f_{2,2}$ $f_{2,3}$ $f_{2,4}$ $f_{3,1}$ $f_{3,2}$ $f_{3,3}$ $f_{3,4}$ $f_{3,5}$ $f_{3,6}$ $f_{3,7}$ $f_{3,8}$ $f_{3,9}$

记新的函数列为 $\{f_n\}$, 对于 $\forall n \in \mathbb{N}^*$, 都存在 N, 使得

$$||f_N||_p^p = \int f_N^p \mathrm{d}x = \frac{1}{n}$$

且对于 $\forall n'\geq N, ||f_{n'}||_p^p\leq \frac{1}{n}$ 这就说明 $||f_n||_p^p\rightarrow 0$,故 $||f_n||_p\rightarrow 0$,取 $f\equiv 0$,则

$$\lim_{n \to \infty} ||f_n - f||_p = 0$$

但是对于 $\forall x \in \mathbb{R}^n$, 它一定出现在 $\{[-n,n]\}$ 中无穷多次,所以存在无穷多个 f_{n_k} , s.t. $f_{n_k}(x)=1$, 这 就说明 $f_{n_k}(x) \rightarrow f(x) = 0$

T2.

证明 (a). 首先,若 $\varepsilon_1 > \varepsilon_2$,则若 $x \in E_n(\varepsilon_1)$,则 $|f_n(x) - f(x)| > \varepsilon_1 > \varepsilon_2$,故 $x \in E_n(\varepsilon_2)$,所以 $E_n(\varepsilon_1) \subseteq E_n(\varepsilon_2)$

$$x \in \limsup_{n \to \infty} E_n(\varepsilon_1) \iff \exists$$
 无穷多个 n_j , s.t. $x \in E_{n_j}(\varepsilon_1)$
 $\Longrightarrow \exists$ 无穷多个 n_j , s.t. $x \in E_{n_j}(\varepsilon_2)$
 $\iff x \in \limsup_{n \to \infty} E_n(\varepsilon_2)$

因此 $\limsup E_n(\varepsilon_1) \subseteq \limsup E_n(\varepsilon_2)$, 接下来证明

$$\bigcup_{k=1}^{\infty} \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right) = \bigcup_{\epsilon > 0} \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right) \tag{1}$$

若 $x \in LHS$, 则 $\exists k, \text{s.t.} \ x \in \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right)$, 取 $\varepsilon < \frac{1}{k}$, 则 $x \in \limsup_{n \to \infty} E_n(\varepsilon) \subseteq RHS$ 若 $x \in RHS$, 则 $\exists \varepsilon, \text{s.t.} \ x \in \limsup_{n \to \infty} E_n(\varepsilon)$, 再取 $\frac{1}{k} < \varepsilon$, 则 $x \in \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right) \subseteq LHS$ $(\longleftarrow):$ 取 $\varepsilon=\frac{1}{k}, \forall k\in\mathbb{N}^*, \ \mathbb{M}\ m\left(\limsup_{n\to\infty}E_n\left(\frac{1}{k}\right)\right)=0, \forall k\geq0, \$ 所以

$$m\left(\bigcup_{k=1}^{\infty} \limsup_{n\to\infty} E_n\left(\frac{1}{k}\right)\right) = 0$$

因此我们有

$$m\left(\bigcup_{k=1}^{\infty} \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right)\right) = m\left(\bigcup_{\varepsilon > 0} \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right)\right)$$

 (\Longrightarrow) : 已经证明了 (1) 式,即已知 $m\left(\bigcup_{k=1}^{\infty}\limsup_{n\to\infty}E_n\left(\frac{1}{k}\right)\right)=0$,则对 $\forall k\in\mathbb{N}^*$,有

$$m\left(\limsup_{n\to\infty} E_k\left(\frac{1}{k}\right)\right) \le m\left(\bigcup_{k=1}^{\infty} \limsup_{n\to\infty} E_n\left(\frac{1}{k}\right)\right) = 0$$

因此对 $\forall \varepsilon > 0$,取 $\frac{1}{k} < \varepsilon$,则 $\limsup_{n \to \infty} E_n(\varepsilon) \subseteq \limsup_{n \to \infty} E_n\left(\frac{1}{k}\right)$,所以 $m\left(\limsup_{n \to \infty} E_n(\varepsilon)\right) = 0$ (b). 选取单调递减的数列 $\{b_j\}_{j=1}^{\infty}$, s.t. $\lim_{j \to \infty} b_j = 0$,因为 $f_n \stackrel{m}{\longrightarrow} f$,所以 $E_n(\varepsilon) \to 0$ as $n \to \infty$

 $\infty, \forall \varepsilon > 0$

対
$$\varepsilon_1 = b_1, \exists n_1 \gg 1, \text{ s.t. } m(E_{n_1}(b_1)) < \frac{1}{2}$$

対 $\varepsilon_2 = b_2, \exists n_2 > n_1, \text{ s.t. } m(E_{n_2}(b_2)) < \frac{1}{2^2}$

依此类推,对每个 $\{b_j\}_{j=1}^\infty$,得到一列单调递增的 $\{n_j\}_{j=1}^\infty$,所以

$$m\left(\bigcup_{j=1}^{\infty} E_{n_j}(b_j)\right) \le \sum_{j=1}^{\infty} \frac{1}{2^j} = 1 < +\infty$$

由 Borel-Cantelli 引理, $m\left(\limsup_{j\to\infty}E_{n_j}(b_j)\right)=0$,对 $\forall \varepsilon>0$,由 $b_j \searrow 0$ 知, $\exists K\gg 1, \mathrm{s.t.}\ \forall k>K, b_k<\varepsilon$,所以 $\forall k>K$,由 (a) 知 $E_{n_k}(\varepsilon)\subseteq E_{n_k}(b_k)$,所以

$$x \in \limsup_{j \to \infty} E_{n_j}(\varepsilon) \iff \exists$$
 先 旁 多 个 n_j , s.t. $x \in E_{n_j}(\varepsilon)$ $\Longrightarrow \exists$ 无 穷 多 个 n_j , s.t. $x \in E_{n_j}(b_j)$ $\Longrightarrow x \in \limsup_{j \to \infty} E_{n_j}(b_j)$

因此
$$\limsup_{j\to\infty} E_{n_j}(\varepsilon) \subseteq \limsup_{j\to\infty} E_{n_j}(\varepsilon)$$

T3.

证明

Case 1. 若 $m(E) < +\infty$, 由 Lebesgue 定理知, $f_n \to f$ a.e $x \in E \Longrightarrow f_n \stackrel{m}{\to} f$, 再由作业 4b 可知 f = g a.e $x \in E$

Case 2. 若 $m(E) = +\infty$, 因为

$$E = \bigcup_{k=1}^{\infty} [-k, k]^d \cap E$$

所以对于任意一个 $[-k,k]^d \cap E$,由 $Case\ 1$ 知,f=g a.e $x \in [-k,k]^d \cap E$,即存在零测集 $N_k \subseteq [-k,k]^d \cap E$,s.t. $\forall x \in N_k, f(x) \neq g(x), \forall x \in ([-k,k]^d \cap E) \setminus N_k, f(x) = g(x)$,所以

$$\{f \neq g\} \subseteq \bigcup_{k=1}^{\infty} N_k \Longrightarrow m(f \neq g) \le \sum_{k=1}^{\infty} m(N_k) = 0$$

所以 f = g a.e $x \in E$

周三

T1.

证明 不妨设 I = [a, a+1]

Case 1. a 为整数, 因为 $\chi_{[a,a+1]}(x+a) = \chi_{[0,1]}(x)$, 所以由平移不变性得

$$\int_{[a,a+1]} f(x) dx = \int f(x) \chi_{[a,a+1]}(x) dx$$
$$= \int f(x+a) \chi_{[0,1]}(x) dx$$
$$= \int_{[0,1]} f(x) dx$$

第二行到第三行是由于 a 为整数时, f(x+a) = f(x)

Case 2. a 不是整数,则 $\exists! n \in [a, a+1] \cap \mathbb{Z}$,所以

$$\begin{split} \int_{[a,a+1]} f(x) \mathrm{d}x &= \int_{[n,a+1]} f(x) \mathrm{d}x + \int_{(a,n]} f(x) \mathrm{d}x \\ &= \int_{[n,a+1]} f(x) \mathrm{d}x + \int f(x) \chi_{(a,n]}(x) \mathrm{d}x \\ &= \int_{[n,a+1]} f(x) \mathrm{d}x + \int f(x-1) \chi_{(a,n]}(x-1) \mathrm{d}x \\ &= \int_{[n,a+1]} f(x) \mathrm{d}x + \int f(x) \chi_{(a+1,n+1]}(x) \mathrm{d}x \\ &= \int_{[n,a+1]} f(x) \mathrm{d}x + \int_{(a+1,n+1]} f(x) \mathrm{d}x \\ &= \int_{[n,a+1]} f(x) \mathrm{d}x \end{split}$$

再由 Case 1 立证

T2.

证明 (a). 因为

$$\chi_E(\mathbf{A}\mathbf{x}) = 1 \iff \mathbf{A}\mathbf{x} \in E \qquad \chi_E(\mathbf{A}\mathbf{x}) = 0 \iff \mathbf{A}\mathbf{x} \notin E$$

$$\iff x \in \mathbf{A}^{-1}(E) \qquad \iff x \notin \mathbf{A}^{-1}(E)$$

所以 $\chi_E = \chi_{\boldsymbol{A}^{-1}(E)}$

(b). Case 1. $f(x) = \chi_E(x)$, 其中 E 为可测集(且由可积知测度有限)

$$\int \chi_E(\mathbf{A}x) dx = \int \chi_{\mathbf{A}^{-1}(E)}(x) dx$$
$$= m(\mathbf{A}^{-1}(E)) = |\det \mathbf{A}|^{-1} m(E)$$
$$= |\det \mathbf{A}|^{-1} \int \chi_E(x) dx$$

Case 2. f(x) 为简单函数, 可设 $f(x) = \sum_{i=1}^{N} a_i \chi_{E_i}$ 为标准表示, 则

$$\int f(\mathbf{A}x) dx = \int \sum_{i=1}^{n} a_i \chi_{E_i}(\mathbf{A}x) dx = \sum_{i=1}^{n} \int a_i \chi_{E_i}(\mathbf{A}x) dx$$
$$= \sum_{i=1}^{n} a_i m(\mathbf{A}^{-1}(E_i)) = |\det \mathbf{A}|^{-1} \sum_{i=1}^{N} a_i m(E_i)$$
$$= |\det \mathbf{A}|^{-1} \int \sum_{i=1}^{N} a_i \chi_{E_i} dx = |\det \mathbf{A}|^{-1} \int f(x) dx$$

Case 3. $f(x) \geq 0$, 由简单函数逼近定理,存在一族简单函数 $\{\varphi_k\}, \varphi_k \nearrow f$, 由 MCT 知

$$\int f(\mathbf{A}x) dx = \int \lim_{k \to \infty} \varphi_k(\mathbf{A}x) dx = \lim_{k \to \infty} \int \varphi_k(\mathbf{A}x) dx$$
$$= \lim_{k \to \infty} |\det \mathbf{A}|^{-1} \int \varphi_k(x) dx = |\det \mathbf{A}|^{-1} \int f dx$$

Case 4. f(x) 为一般函数,由简单函数逼近定理知,存在两族简单函数 $\{\varphi_k^{(1)}\}, \{\varphi_k^{(2)}\}, \varphi_k^{(1)} \nearrow f^+, \varphi_k^{(2)} \nearrow f^-$,由 $Case\ 3$ 知

$$\int f(\mathbf{A}x) dx = \int f^{+}(\mathbf{A}x) dx - \int f^{-}(\mathbf{A}x) dx$$
$$= |\det \mathbf{A}|^{-1} \int f^{+} dx - |\det \mathbf{A}|^{-1} \int f^{-} dx$$
$$= |\det \mathbf{A}|^{-1} \int f dx$$