

Laboratório - Criptografando e descriptografando dados usando OpenSSL

Objetivos

Parte 1: Criptografando mensagens com OpenSSL

Parte 2: Descriptografando mensagens com OpenSSL

Histórico/Cenário

O OpenSSL é um projeto de código aberto que fornece um kit de ferramentas robusto, de nível comercial e completo para os protocolos TLS (Transport Layer Security) e Secure Sockets Layer (SSL). É também uma biblioteca de criptografia de uso geral. Neste laboratório, você usará o OpenSSL para criptografar e descriptografar mensagens de texto.

Observação: Embora o OpenSSL seja a biblioteca de criptografia de fato hoje, o uso apresentado neste laboratório NÃO é recomendado para proteção robusta. Abaixo estão dois problemas de segurança com este laboratório:

- O método descrito neste laboratório usa uma função de derivação de chave fraca. A ÚNICA segurança é introduzida por uma senha muito forte.
- 2) O método descrito neste laboratório não garante a integridade do arquivo de texto.

Este laboratório deve ser usado apenas para fins de instrução. Os métodos aqui apresentados NÃO devem ser usados para proteger dados verdadeiramente sensíveis.

Recursos necessários

Máquina virtual CyberOps Workstation

Instruções

Parte 1: Criptografando mensagens com OpenSSL

OpenSSL pode ser usado como uma ferramenta autônoma para criptografia. Embora muitos algoritmos de criptografia possam ser usados, esse laboratório se concentra no AES. Para usar o AES para criptografar um arquivo de texto diretamente da linha de comando usando o OpenSSL, siga as etapas abaixo:

Etapa 1: Criptografando um arquivo de texto

- a. Log into CyberOPS Workstation VM.
- b. Open a terminal window.
- c. Como o arquivo de texto a ser criptografado está no diretório /home/analyst/lab.support.files/, mude para esse diretório:

```
[analyst@secOps ~]$ cd ./lab.support.files/
[analyst@secOps lab.support.files]$
```

d. Digite o comando abaixo para listar o conteúdo do arquivo de texto criptografado **letter_to_grandma.txt** na tela:

```
[analyst@secOps lab.support.files] $ cat letter_to_grandma.txt Oi vovó,
```

Estou escrevendo esta carta para agradecer pelos biscoitos de chocolate que você me enviou. Comprei-os esta manhã e já comi metade da caixa! Eles são absolutamente deliciosos!

```
Desejo-lhe tudo de bom. Amor,
Seu neto comedor de biscoitos.
[analyst@secOps lab.support.files]$
```

e. Na mesma janela de terminal, execute o comando abaixo para criptografar o arquivo de texto. O comando usará AES-256 para criptografar o arquivo de texto e salvar a versão criptografada como **message.enc**. O OpenSSL pedirá uma senha e confirmação de senha. Forneça a senha conforme solicitado e lembre-se da senha.

```
[analyst @secOps lab.support.files] $ openssl aes-256-cbc -in letter_to_grandma.txt -out message.enc digite a senha de criptografia aes-256-cbc:

Verificando - digite a senha de criptografia aes-256-cbc:

[analyst@secOps lab.support.files]$
```

Documente a senha.

f. Quando o processo for concluído, use o comando **cat** novamente para exibir o conteúdo do arquivo **message.enc**.

```
[analyst @secOps lab.support.files] $ cat message.enc
```

O conteúdo do arquivo message.enc foi exibido corretamente? O que é que se parece? Explique.

g. Para tornar o arquivo legível, execute o comando OpenSSL novamente, mas desta vez adicione a opção
 -a. A opção -a diz ao OpenSSL para codificar a mensagem criptografada usando um método de codificação diferente do Base64 antes de armazenar os resultados em um arquivo.

Nota: Base64 é um grupo de esquemas de codificação binária a texto semelhantes usados para representar dados binários em um formato de string ASCII.

```
[analyst @secOps lab.support.files] $ openssl aes-256-cbc -a -in letter_to_grandma.txt -out message.enc digite a senha de criptografia aes-256-cbc:

Verificando - digite a senha de criptografia aes-256-cbc:
```

h. Mais uma vez, use o comando cat para exibir o conteúdo do arquivo message.enc, agora regerado:

Nota: O conteúdo de message.enc irá variar.

```
[analyst@secOps lab.support.files]$ cat message.enc
U2FsdGVkX19ApWyrn8RD5zNpORPCuMGZ98wDc26u/vmj1zyDXobGQhm/dDRZasG7
rfnth5Q8NHValEw8vipKGM66dNFyyr9/hJUzCoqhFpRHgNn+Xs5+TOtz/QCPN1bi
08LGTSzOpfkg76XDCk8uPy1h1/+Ng92sM5rgMzLXfEXtaYe5UgwOD42U/U6q73pj
a1ksQrTWsv5mtN7y6mh02Wobo3A1ooHrM7niOwK1a3YKrSp+ZhYzVTrtksWD16Ci
XMufkv+FOGn+SoEEuh714fk0LIPEfGsExVFB4TGdTiZQApRw74rTAZaE/dopaJn0
```

```
sJmR3+3C+dmgzZIKEHWsJ2pgLvj2Sme79J/XxwQVNpw=
[analyst@secOps lab.support.files]$
```

Message.enc é exibido corretamente agora? Explique.

Você pode pensar em um benefício de ter message.enc codificado Base64?

Parte 2: Descriptografando mensagens com OpenSSL

Com um comando OpenSSL semelhante, é possível descriptografar message.enc.

a. Use o comando abaixo para descriptografar message.enc:

```
[analyst @secOps lab.support.files] $ openssl aes-256-cbc -a -d -in message.enc -out decrypted_letter.txt
```

- b. O OpenSSL pedirá a senha usada para criptografar o arquivo. Enter the same password again.
- c. Quando o OpenSSL terminar de descriptografar o arquivo message.enc, ele salva a mensagem descriptografada em um arquivo de texto chamado decrypted_letter.txt. Use o gato exibir o conteúdo de decrypted_letter.txt:

```
[analyst @secOps lab.support.files] $ cat decrypted_letter.txt A carta foi descriptografada corretamente?
```

O comando usado para descriptografar também contém uma opção. Você pode explicar?