

BUNDESREPUBLIK DEUTSCHLAND
09/720761

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

REC'D 08 JUN 2000
WIPO PCT

Bescheinigung

4

DE 00/00821

Die ROBERT BOSCH GMBH in Stuttgart/Deutschland hat eine Patentanmeldung unter der Bezeichnung

"Verfahren zum Plasmaätzen von Silizium"

am 29. April 1999 beim Deutschen Patent- und Markenamt eingereicht.

Das angeheftete Stück ist eine richtige und genaue Wiedergabe der ursprünglichen Unterlage dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patent- und Markenamt vorläufig das Symbol C 23 F 4/00 der Internationalen Patentklassifikation erhalten.

München, den 25. Mai 2000

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Aktenzeichen: 199 19 469.6

Ebert

26.04.99 Kut

5 ROBERT BOSCH GMBH, 70442 Stuttgart

Verfahren zum Plasmaätzen von Silizium

10

Stand der Technik

15

Die Erfindung betrifft Verfahren zum Plasmaätzen, insbesondere zum anisotropen Plasmaätzen, von Silizium nach der Gattung der unabhängigen Ansprüche.

Stand der Technik

20

Aus DE 197 06 682 C2 ist ein Verfahren zum anisotropen Hochratenplasmaätzen von Silizium bekannt, wobei zur Seitenwandpassivierung als passivierendes Material SiO_2 verwendet wird, das aus dem Zusatz von SiF_4 und O_2 zur eigentlichen Ätzchemie von SF_6 gebildet wird. Gleichzeitig werden dem Ätzgas als SiO_2 -verzehrende Additive („Scavenger“) kontinuierlich oder getaktet CHF_3 , CF_4 , C_2F_6 oder C_4F_8 zugesetzt, um auf dem Strukturgrund befindliches SiO_2 selektiv abzutragen.

30

Ein weiteres Hochratenätzverfahren für Silizium wird beispielsweise in DE 42 41 045 C2 vorgeschlagen, wobei eine hochdichte Plasmaquelle mit induktiver Hochfrequenzanregung (ICP-Quelle) oder einer speziellen Mikrowellenanregung (PIE-Quelle) dazu benutzt wird, um aus einem fluorliefernden Ätzgas Fluorradikale und aus einem teflonbildende Monomere liefernden Passiviergas $(\text{CF}_2)_x$ - Radikale freizusetzen, die ein

teflonartiges, passivierendes Material bilden, wobei Ätz- und Passiviergas alternierend eingesetzt werden.

5 Schließlich ist aus der Anmeldung DE 43 17 623 A1 bekannt, ein Gemisch aus SF₆ oder einem anderen fluorliefernden Ätzgas und CHF₃ oder einem anderen, teflonartige Monomere bildenden Passiviergas, einem hochdichten Plasma auszusetzen, so daß die Fluorradikale den Siliziumstrukturgrund ätzen und gleichzeitig die teflonartige Monomere ein passivierendes Material auf den Strukturseitenwänden bilden, und somit für
10 ein anisotropes Verhalten des Ätzprozesses sorgen.

Aufgabe der vorliegenden Erfindung ist es, bestehende Plas-
15 maätzverfahren für Silizium dahingehend zu verbessern, daß durch Einsatz neuer Prozeßgase höhere Ätzraten, geringere Profilabweichungen beim Ätzen und eine bessere Umweltver-träglichkeit des Prozeßgases gewährleistet sind.

Vorteile der Erfindung

20 Die erfindungsgemäßen Verfahren mit den kennzeichnenden Merkmalen der unabhängigen Ansprüche haben gegenüber dem Stand der Technik den Vorteil, daß damit eine Verbesserung der Profilkontrolle und eine höhere Ätzrate bei Plasmaätz-
verfahren von Silizium, insbesondere bei anisotropen Hochra-
tenplasmaätzverfahren, erreicht wird. Gleichzeitig sind die eingesetzten Prozeßgase insbesondere hinsichtlich des Treib-
hauseffektes wesentlich umweltverträglicher als bisher ein-
gesetzte Ätzgase oder Additive und damit auch langfristig
30 verfügbar.

Weiterhin werden bei der Verwendung der fluorliefernden Ätz-
gase ClF₃, BrF₃ oder IF₅ schon bei relativ geringer Plasmaan-
regung große Fluormengen freigesetzt, so daß diese sehr ef-

fizient hinsichtlich der Anregung und der erreichten hohen Siliziummätraten sind und gleichzeitig nur geringe Anforderungen an den Leistungsbedarf einer beispielsweise induktiven Plasmaquelle oder einer Mikrowellen-Plasmaquelle stell. 5 Weiterhin ist sehr vorteilhaft, daß insbesondere ClF, beim Zerfall zu ClF oder BrF, beim Zerfall zu BrF leichter und in größerer Zahl Fluorradikale freisetzt, als das bekannte SF₆ über dessen vorrangigen Zerfallskanal zu SF₄. Überdies benötigt die Reaktion von ClF, zu ClF und 2F' bzw. 10 BrF, beim Zerfall zu BrF und 2F' auch eine sehr viel geringere Aktivierungsenergie als die Reaktion von SF₆ zu SF₄ und 2F'. Somit treten infolge geringerer benötigter Hochfrequenz- bzw. Mikrowellenleistungen an der Plasmaquelle zur 15 Erzeugung der benötigten großen Fluorradikalmengen dort sehr vorteilhaft auch weniger Störeffekte auf, die im weiteren die erzeugten Ätzprofile beeinträchtigen könnten.

Weitere Vorteile resultieren aus der Tatsache, daß bei Verwendung von Interhalogenfluoriden als fluorliefernde Ätzgase 20 keine Schwefelausscheidungen im Abgasbereich der Ätzanlage auftreten können, die andernfalls beseitigt bzw. unterdrückt werden müssen.

Schließlich sind insbesondere ClF₃ und BrF₃ chemisch instabil und hydrolyseren an Luft mit der Luftfeuchtigkeit leicht zu HF und HCl bzw. HBr. Daher entsteht mit diesen Verbindungen oder Gasen kein Treibhauseffekt, so daß ihre großtechnische Verfügbarkeit unter Umweltgesichtspunkten auch langfristig gesichert ist, was beispielsweise für SF₆ 30 nicht uneingeschränkt gilt.

Das als das passivierende Material, insbesondere SiO₂ oder ein teflonartiges Material, verzehrende Additiv im Prozeßgas zeitweilig eingesetzte NF₃ hat gegenüber aus dem Stand der

Technik bekannten Additiven auf Basis von Fluor-Kohlenstoff-Verbindungen den Vorteil, daß ein wesentlich stärkerer Abtrag von dielektrischen Schichten, die den Strukturgrund maskieren, erreicht wird, so daß dieses im jeweiligen Plasmätsverfahren in gegenüber bekannten Additiven deutlich geringerer Menge eingesetzt werden muß und damit auch insgesamt geringere negative Auswirkungen auf den Gesamtprozeß, insbesondere hinsichtlich einer damit zwangsläufig verbundenen Verdünnung der übrigen aktiven Reaktanten, hat.

10

15

20

30

Weiter hat das Additiv NF_3 im Gegensatz zu Fluorkohlenwasserstoffen (CHF_3 , CF_4 , C_3F_8 , C_4F_8 , C_2F_6 usw.) dank schwacher Hydrolysewirkung eine relativ kurze Lebensdauer an Luft, so daß ebenfalls kein Treibhauseffekt auftritt. NF_3 wird in der Atmosphäre bereits nach kurzer Zeit durch Luftfeuchtigkeit gebunden. Im Gegensatz zu den als Treibhausgasen wirkenden Fluorkohlenwasserstoffen ist also auch hier die großtechnische Verfügbarkeit langfristig gesichert.

Die Zugabe eines leichten und leicht ionisierbaren Gases, d.h. eines Gases mit geringer Atommasse, wie He , H_2 oder Ne , aus dem leicht positiv geladene Ionen erzeugbar sind, zu dem Ätzgas hat den Vorteil, daß damit Aufladungseffekte, die sich insbesondere an Übergängen zwischen dem elektrisch leitfähigen Silizium und elektrisch isolierenden Dielektrika, die beispielsweise als Maskenmaterial oder vergrabene Opferschichten verwendet werden, störend bemerkbar machen, erheblich vermindert werden. Somit wird eine deutliche Profilverbesserung der erzeugten Ätzprofile, insbesondere beim Übergang von Silizium auf eine vergrabene Oxidschicht, eine Polymerstoppschicht oder am Maskenrand, d.h. am Übergang von der dielektrischen Maskierschicht (Photolack oder Hartstoffmaske aus SiO_2) zu dem zu ätzenden Silizium, erzielt.

Dieser Aufladungseffekt beruht darauf, daß negativ geladene Elektronen, die ungerichtet auf die Waferoberfläche einwirken, vorzugsweise auf den Seitenwänden der zuätzenden Struktur landen, so daß die Seitenwände relativ zum Ätzgrund negativ aufgeladen werden. Innerhalb des elektrisch leitfähigen Siliziums sind diese Elektronen weitgehend frei beweglich, während auf dem elektrisch isolierenden Ätzgrund befindliche positiv geladene Ionen dort fixiert sind. Insgesamt ziehen somit die beweglichen Elektronen in die Übergangszone zwischen Silizium und Dielektrikum, so daß dort große elektrische Feldstärken entstehen, die im stationären Fall schließlich dazu führen, daß im Mittel genausoviele Ionen zur Seitenwand gelangen, wie zuvor Elektronen, weil sie von entsprechend großen elektrischen Feldern zur Seitenwand abgelenkt werden. Dieser Effekt ist als "Notching Phänomen" in die Literatur eingegangen und führt zur Ausbildung großer, in die Seitenwand eingätzter Taschen.

Die Zugabe eines leichten, leicht ionisierbaren Gases wie beispielsweise He vermindert diese Taschenbildung sehr vorteilhaft erheblich.

Ein anderes Problem, das auf elektrische Aufladungseffekte zurückzuführen ist, und das durch die Zugabe des leichten, leicht ionisierbaren Gases ebenfalls gelöst wird, tritt am oberen Maskenrand auf. Die Oberfläche einer dielektrischen Maskierschicht auf dem Siliziumwafer wird durch sogenanntes "Self-Biasing" vielfach als Folge einer an einer üblichen Substratelektrode angelegten hochfrequenten Spannung negativ aufgeladen („DC-Bias“). Diese Aufladung erklärt sich aus der unterschiedlichen Beweglichkeit von Elektronen und Ionen, d.h. um im Zeitmittel genausoviele der unbeweglicheren Ionen wie der hochbeweglichen Elektronen zur Oberfläche zu ziehen, muß sich dort eine negative elektrische Vorspannung aufbau-

en. Wird nun in den Öffnungen einer Maskierschicht in das Silizium hineingeätzt, führen diese Aufladungen der Oberfläche gegenüber der neu erzeugten Siliziumseitenwand zur Konzentration von Elektronen im Übergang von Silizium zur dielektrischen Maskierschicht. Durch Ionenablenkung werden daher verstärkt Ionen in diesen oberen Teil des geätzten Siliziumtrenchgrabens gelenkt, was dort ebenfalls zur Ausbildung von Profilunregelmäßigkeiten oder Taschen führt. Schließlich hat die Zugabe eines leichten, leicht ionisierbaren Gases zu dem Ätzgas den Vorteil, daß der aus DE 42 41 045 bekannte Seitenwandfilmtransportmechanismus dahingehend verbessert wird, daß mehr Polymerabtrag vom Ätzgrund und weniger Polymerabtrag von den Seitenwänden erfolgt, die Selektivität also verbessert wird.

15 Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den Unteransprüchen genannten Maßnahmen.

20 So ist es besonders vorteilhaft, daß die erfindungsgemäßen Verfahren auch untereinander kombiniert werden können, wobei die Vorteile der einzelnen Verfahren jeweils weitgehend erhalten bleiben. Im übrigen kann es vorteilhaft sein, dem Ätzgas, dem das passivierende Material bildenden Gas, insbesondere dem SiF₄, dem Additiv oder einem als Reaktionspartner verwendeten Gas wie beispielsweise Sauerstoff, Stickstoff, Kohlendioxid oder einem Stickoxid zusätzlich zur Verdünnung Argon zuzusetzen.

30 Insgesamt hängt bei den beschriebenen Mechanismen die Größe der elektrischen Felder, die benötigt werden, um das dynamische Gleichgewicht zwischen Ionen- und Elektroneneinfall herzustellen, unmittelbar davon ab, wie leicht sich ankommende Ionen durch elektrische Felder ablenken lassen. Es ist daher offensichtlich, daß relativ schwere Ionen erst durch

relativ große Felder abgelenkt werden, während relativ leichte Ionen schon bei relativ kleinen Feldstärken abgelenkt werden und den Ladungsausgleich vollziehen können. Durch das Einbringen einer Ionensorte von kleiner Atommasse wird insofern sehr vorteilhaft erreicht, daß sich nur noch kleine Feldstärken in den beschriebenen Bereichen aufbauen und bereits bei diesen kleinen Feldstärken genügend viele der leichten Ionen so abgelenkt werden, daß sie den Ladungsausgleich vollziehen können.

10

15

20

Die ebenfalls im Ätzverfahren, beispielsweise als ionisierte Moleküle oder Molekülbruchstücke des Ätzgases oder Additivs, auftretenden schweren Ionen werden aufgrund ihrer Masse und damit verbundenen Trägheit von diesen elektrischen Feldern nicht mehr abgelenkt, sondern fliegen ungehindert durch bis zum Ätzgrund, wo sie vorteilhaft beispielsweise eine Ätzreaktion oder einen Ätzgrundpolymerabtrag vorantreiben können. Es findet somit durch die Zugabe des leichten, leicht ionisierbaren Gases insgesamt sehr vorteilhaft eine Trennung zwischen leichten Ionen, welche den Ladungsausgleich durchführen, und schweren Ionen statt, welche vorzugsweise auf den Ätzgrund einwirken.

30

Neben dem Edelgas Helium als leichtes Gas ist bei einigen Plasmaätzprozessen auch die Verwendung von Wasserstoff (H_2) vorteilhaft, sofern dieser mit der Prozeßchemie verträglich ist. Wasserstoff hat als Molekül in ionisierter Form eine Atommasse von lediglich 2 und dissoziiert überdies im Plasma besonders leicht zu positiv geladenen Atomen mit der Atommasse 1.

Ausführungsbeispiele

Das erste Ausführungsbeispiel geht zunächst vom einem anisotropen Plasmaätzprozeß mit einer hochdichten Plasmaquelle, beispielsweise einer ICP-Plasmaquelle, einer ECR-Plasmaquelle oder einer PIE-Plasmaquelle aus, wie er aus DE 197 06 682 C2 bekannt ist.

Anstelle des dort eingesetzten fluorliefernden Ätzgases SF₆ oder NF₃ wird jedoch dem Prozeßgas als Ätzgas in einem ersten Ausführungsbeispiel gasförmiges Chlortrifluorid ClF₃, Bromtrifluorid BrF₃, oder Iodpentafluorid IF₅, oder eine Mischung dieser Gase zugesetzt. Bevorzugt wird Chlortrifluorid oder Bromtrifluorid eingesetzt, das direkt über einen Massenflußregler zugeführt werden kann, da es einen ausreichend hohen Dampfdruck besitzt. Im Fall der Verwendung von flüssigen Bromtrifluorid wird zu dessen Überführung in die Gasphase dessen Temperatur vorzugsweise auf oberhalb von 20°C gehalten. Es ist dabei weiter möglich, zusätzlich in an sich bekannter Weise ein inertes Trägergas, beispielsweise Argon, beizumischen. Anstelle von Argon kann auch Helium verwendet werden.

Weiter werden die aus DE 197 06 682 C2 bekannten SiO₂-verzehrenden Additive (CHF₃, CF₄, C₂F₆ usw.) durch Stickstofftrifluorid NF₃ ersetzt, das dem Prozeßgas kontinuierlich oder bevorzugt getaktet zugesetzt wird. Dieses Additiv dient insbesondere einer beschleunigten Entfernung des passivierenden Materials vom Ätzgrund.

NF₃ zerfällt unter nicht zu intensiver Plasmaanregung, d.h. typischen ICP-Anregungsbedingungen, vorrangig in radikalische Bruchstücke NF_x (mit x = 1, 2), welche äußerst aggressiv gegenüber dielektrischen Materialien reagieren und somit

beispielsweise gegenüber SiO_2 , SiN , SiO_xNy (Siliziumoxynitrid) oder teflonartigen Materialien als sehr effiziente abtragende Reaktionspartner wirken.

5 Die dabei gleichzeitig freigesetzten Fluormengen aus der Dissoziation von NF_3 fallen gegenüber den Fluormengen aus den fluorliefernden Ätzgasen, beispielsweise ClF_3 oder BrF_3 , kaum ins Gewicht und tragen außerdem zur Siliziumätzreaktion bei.

10 Die Passivierung der Strukturseitenwände im Prozeß wird gegenüber der Lehre der DE 197 06 682 C2 unverändert durch den zumindest zeitweiligen Zusatz von SiF_4 und einem Reaktionspartner, ausgewählt aus der Gruppe O_2 , N_2O , NO , NO_x , CO_2 , NO_2 oder N_2 zu dem Prozeßgas erreicht. Bevorzugt ist Sauerstoff.

15 Hinsichtlich der weiteren Prozeßparameter (insbesondere Gasflüsse, Prozeßdrücke, Ionenenergie und eingestrahlte Plasmaleistungen), sei auf die entsprechenden, bereits aus DE 197 06 682 C2 bekannten Parameter verwiesen, die weitgehend beibehalten werden können.

20 Eine bevorzugte Zusammensetzung des Prozeßgases ausgehend von dem aus DE 197 06 682 C2 bekannten Verfahren ist beispielsweise, durch folgende Rezepturen gegeben:

30 60 sccm ClF_3 + 50 sccm O_2 + 50 sccm SiF_4 + 70 sccm He + 5 sccm NF_3 , bei konstanter Zugabe, 20 mTorr Druck, 1000 Watt Hochfrequenzleistung bei einer Frequenz von 13.56 MHz an der Plasmaquelle, 5 Watt bis 20 Watt Hochfrequenzleistung an der Substratelektrode

oder:

100 sccm BrF₃ + 50 sccm O₂ + 50 sccm SiF₄ + 70 sccm He; zusätzliche Zugabe von 30 sccm NF₃, periodisch alle 30 bis 60 Sekunden, vorzugsweise alle 45 Sekunden über eine Zeitdauer von jeweils 5 Sekunden, Druck 20 mTorr, 1000 Watt Hochfrequenzleistung an der Plasmaquelle, 5 Watt bis 30 Watt Hochfrequenzleistung an der Substratelektrode

5

In einem weiteren Ausführungsbeispiel der Erfindung wird zunächst von einem Verfahren ausgegangen, wie es aus DE 42 41 045 C1 bekannt ist. In diesem bekannten Verfahren wird eine anisotrope Ätzung von Silizium mittels eines Plasmas, insbesondere mittels eines Mikrowellenplasmas oder eines über eine induktive Plasmaquelle erzeugten Plasmas, vorgenommen, wobei der anisotrope Ätzvorgang in separaten, jeweils alternierend aufeinanderfolgenden Ätz- und Polymerisations- bzw. Passivierschritten getrennt voneinander durchgeführt wird, welche unabhängig voneinander gesteuert sind. Dabei wird während der Polymerisationsschritte auf eine durch eine Ätzmaske definierte laterale Begrenzung von Strukturen ein Polymer aufgebracht, das während der nachfolgenden Ätzschritte jeweils wieder abgetragen wird.

10

15

20

30

Dazu wird dem Prozeßgas zumindest zeitweilig, insbesondere während der Ätzschritte, SF₆ als fluorlieferndes Ätzgas zugesetzt. Während der Polymerisationsschritte wird dem Prozeßgas weiter, insbesondere im Fall einer induktiv gekoppelten Plasmaquelle, Octafluorcyclobutan C₄F₈ oder Hexafluorpropen C₃F₆ als ein teflonbildende Monomere lieferndes Passiviergas zugesetzt. Dieses Passiviergas baut insbesondere auf den Seitenwänden der geätzten Strukturen als passivierendes Material einen teflonartigen Schutzfilm auf, der diese vor einem Ätzangriff durch Fluorradikale schützt.

Dieses in soweit an sich bekannte Verfahren wird erfindungsgemäß dadurch verbessert, daß dem Prozeßgas zusätzlich zumindest zeitweilig Helium in Form von He^4 oder He^3 zugesetzt wird, wobei dieser Zusatz entweder kontinuierlich sowohl während der Dauer der Ätzschritte, als auch während der Dauer der Passivierschritte erfolgt, da Helium als Inertgas die Prozeßchemie in keiner Weise beeinflußt. Durch die Zugabe des Heliums wird in beiden Schritten gewährleistet, daß unerwünschte Aufladungen reduziert und ein schädlicher Ioneneinfall auf die Seitenwände geätzter Strukturen, wie erläutert, permanent unterdrückt oder reduziert wird.

Alternativ kann der Heliumsatz jedoch auch nur während der Ätzschritte oder nur während der Polymerisations- bzw. Passivierschritte erfolgen, d.h. der Heliumfluß wird wie das Ätz- bzw. Passiviergas getaktet, wobei der Einsatz von Helium zweckmäßig speziell während der Ätzschritte zugesetzt wird, da es gerade beim Weiterarbeiten darauf ankommt, der Aufbau stärkerer Streufelder in den erzeugten Trenngräben bereits im Entstehen wirksam zu unterdrücken. Bevorzugt wird das Helium in beiden Prozeßschritten durchgehend mit konstantem Gasfluß zugeführt.

Ein geeigneter Heliumgasfluß liegt üblicherweise zwischen 10 und 100 sccm, es sind aber auch kleinere oder insbesondere größere Flüsse möglich, je nach Saugleistung der angeschlossenen Turbomolekularpumpe der Ätzanlage.

Zur Unterstützung des Abtrags des passivierenden Materials vom Ätzgrund kann auch in diesem Fall zumindest zeitweise NF_3 als eine das passivierende Material verzehrende Substanz eingesetzt werden.

Eine bevorzugte Zusammensetzung des Prozeßgases im Fall der Plasmaerzeugung über eine induktiv gekoppelte Plasmaquelle (ICP-Quelle) ist beispielsweise, ausgehend von DE 42 41 045 C1, durch folgende Rezeptur gegeben:

5

Passivierschritt:

100 sccm C_3F_8 oder C_4F_8 + 50 sccm He über 5 Sekunden bei 12 mTorr Druck, 800 Watt Hochfrequenzleistung an der Plasmaquelle, keine Hochfrequenzleistung an der Substrat-

10 elektrode

Ätzschritt:

15 130 sccm SF_6 + 20 sccm O_2 + 50 sccm He über 9 Sekunden bei 20 mTorr Druck, 800 Watt Hochfrequenzleistung an der Plasmaquelle, 5 Watt bis 20 Watt Hochfrequenzleistung an der Substratelektrode

15

20 Weitere Ausführungsbeispiele für die Prozeßgaszusammensetzung, ausgehend von dem Verfahren gemäß DE 42 41 045 C2, sind gegeben durch die folgenden Rezepturen, bei denen in den Ätzschritten jeweils das fluorliefernde Ätzgas SF_6 durch ClF_3 oder BrF_3 ersetzt ist. Zusätzlich wird dem Prozeßgas in den Ätzschritten als das passivierende Teflonmaterial insbesondere vom Ätzgrund bevorzugt abtragendes Additiv zumindest zeitweise NF_3 zugesetzt. Die Verfahrensparameter in den Passivierschritten werden dabei gegenüber dem vorausgehenden Ausführungsbeispiel unverändert beibehalten.

20

Ätzschritt:

30

200 sccm ClF_3 + 10 sccm NF_3 + 50 sccm He über 10 Sekunden bei 20 mTorr Druck, 1000 Watt Hochfrequenzleistung an der Plasmaquelle, 5 Watt bis 20 Watt Hochfrequenzleistung an der Substratelektrode

oder:

Ätzschritt:

200 sccm ClF₃ + 50 sccm He über 10 Sekunden bei 20 mTorr
5 Druck, zusätzlich 30 sccm NF₃ während der ersten 3 Sekunden
der Ätzschritte, 1000 Watt Hochfrequenzleistung an der Plas-
maquelle, 5 Watt bis 20 Watt Hochfrequenzleistung an der
Substratelektrode

10 Weitere Rezepturen setzen anstelle von NF₃ alternativ O₂ als
das teflonartige, passivierende Material insbesondere vom
Ätzgrund bevorzugt abtragende Additiv ein. Da Sauerstoff
deutlich weniger aggressiv agiert als die im Plasma erzeug-
ten NF₃-Bruchstücke, muß dem Ätzgas zumindest zeitweise ein
15 wesentlich höherer Sauerstofffluß zugesetzt werden.

Der deutlich geringere Sauerstoffanteil, der in einer vor-
stehenden Rezeptur dem SF₆ als Ätzgas zugesetzt worden war,
20 diente dort nur zur Unterdrückung einer Schwefelausscheidung
im Abgasbereich. Diese Schwefelausscheidung tritt jedoch bei
der Verwendung von ClF₃ als Ätzgas nicht auf, so daß der dem
ClF₃ zumindest vorübergehend zugesetzte Sauerstoffanteil
voll für den Abtrag des passivierenden Materials insbesonde-
re vom Ätzgrund zur Verfügung steht. Bei weiter hinsichtlich
der Zusammensetzung und der Verfahrensparameter unveränder-
ten Passivierschritten ergibt sich damit als weitere vor-
teilhafte Rezeptur für die Ätzschritte:

Ätzschritt:

30 250 sccm ClF₃ + 50 sccm He über 10 Sekunden, zusätzlich 100
sccm O₂, während der ersten 4 Sekunden, Druck 30 mTorr, 1200
Watt Hochfrequenzleistung an der Plasmaquelle, 5 Watt bis 30
Watt Hochfrequenzleistung an der Substratelektrode

oder:

Ätzschritt:

200 sccm ClF₃ + 50 sccm He + 50 sccm O₂ über 10 Sekunden,
5 Druck 30 mTorr, 1000 Watt Hochfrequenzleistung an der Plas-
maquelle, 5 Watt bis 30 Watt Hochfrequenzleistung an der
Substratelektrode

Hinsichtlich weiterer Prozeßparameter sei auf die entspre-
10 chenden, bereits aus DE 42 41 045 C1 bekannten Parameter
verwiesen, die im übrigen weitgehend beibehalten werden kön-
nen.

15 Sofern Wasserstoff als leichtes, leicht ionisierbares Gas
dem Prozeßgas zugegeben werden soll, ist dieser Zusatz in
einem Verfahren auf Basis der DE 42 41 045 C1 lediglich wäh-
rend der Passivierschritte möglich. Ein Wasserstoffzusatz
zum Ätzgas würde mit den freigesetzten Fluorradikalen zu HF
20 reagieren und diese dadurch neutralisieren, d.h. diese Flu-
orradikale stehen anschließend für eine Ätzreaktion mit Si-
lizium nicht mehr zur Verfügung. Ferner besteht wegen des
Sauerstoffanteils im Ätzschritt Explosionsgefahr durch
Knallgasbildung im Abgasbereich der Ätzanlage. Schließlich
muß der zugegebene Wasserstoff auch im Passivierschritt in
25 der Passivierchemie berücksichtigt werden. Da das als Passi-
viergas in dem Prozeßgas zeitweilig, insbesondere während
der Passivierschritte, eingesetzte Octafluorcyclobutan C₄F₈
oder Hexafluorpropen C₃F₆ durch Wasserstoffzusatz an Fluor
verarmt, ist es in diesem Fall daher zweckmäßig, auf ein
30 fluorreicheres Passiviergas auszuweichen. Dazu sind vor al-
lem Perfluoralkane wie beispielsweise C₂F₆, C₃F₈ oder bevor-
zugt C₄F₁₀ geeignet.

5 Auf diese Weise wird über den Wasserstoffzusatz in den Passivierschritten einerseits ein überschüssiger Fluoranteil unter HF-Bildung gebunden und die gewünschte Polymerisationswirkung erreicht, und andererseits steht stets genügend Wasserstoff für eine Ionisationsreaktion zur Verfügung, um Aufladungsscheinungen zu reduzieren.

10 In Fall der Wasserstoffzugabe zum Prozeßgas geeignete Prozeßparameter sind beispielsweise, ausgehend von einem Verfahren nach Art der DE 42 41 045 C1, durch die folgende Rezeptur gegeben, wobei durch geeignete Maßnahmen im Abgasbereich sicherzustellen ist, daß keine Explosionsgefahr entsteht. Dazu ist beispielsweise eine an sich bekannte Vorrichtung zur katalytischen Wasserstoffumsetzung zwischen einer im Abgasbereich eingesetzten Turbomolekularpumpe und einer Drehschieberpumpe vorgesehen.

15 Passivierschritt:
20 100 sccm C₄F₁₀ + 70 sccm H₂ über 5 Sekunden bei 12 mTorr Druck, 800 Watt Hochfrequenzleistung der Plasmaquelle, keine Hochfrequenzleistung an der Substratelektrode.

Ätzschritt:
30 130 sccm SF₆ + 20 sccm O₂ über 9 Sekunden bei 20 mTorr Druck, 800 Watt Hochfrequenzleistung an der Plasmaquelle, 5 Watt bis 20 Watt Hochfrequenzleistung an der Substratelektrode

Eine weitere Rezeptur sieht bei gegenüber dem Vorstehenden unveränderten Passivierschritten vor, SF₆ als fluorlieferndes Ätzgas durch BrF₃ zu ersetzen, dem als das passivierende Teflonmaterial insbesondere vom Ätzgrund bevorzugt abtragen-
des Additiv zumindest zeitweise NF₃ zugesetzt wird.

Ätzschritt:

150 sccm BrF₃ + 50 sccm Ar oder Helium (als inertes Träger-
gas) + 10 sccm NF₃ über 10 Sekunden, 25 mTorr Druck, 1500
Watt Hochfrequenzleistung an der Plasmquelle, 5 Watt bis
5 30 Watt Hochfrequenzleistung an der Substratelektrode

10 Durch die durch die Helium- oder Wasserstoffzugabe erreichte
Unterdrückung von Profilabweichungen ist es im übrigen ohne
weiteres zusätzlich möglich, nun höhere Siliziumätzraten zu
erreichen, indem die Leistungsparameter des eingesetzten
Plasmaätzprozesses, insbesondere der Plasmaquelle, bei-
spielsweise von 800 Watt auf bis zu 3000 Watt hochskaliert
werden.

15 Durch den erfindungsgemäßen Prozeßgaszusatz von insbesondere
He oder H₂ wird schließlich auch die Selektivität zwischen
dem Seitenwandpolymerfilmabtrag und Ätzgrundpolymerabtrag
während der Ätzschritte dahingehend verbessert, daß der Ätz-
grundpolymerabtrag beschleunigt und der Seiten-
20 wandpolymerfilmabtrag reduziert wird. Dies ist eine Folge
der bevorzugten Ablenkung leichter Ionen zur Seitenwand,
während schwere Ionen ungehindert den Ätzgrund erreichen.

25 Die Zugabe des leichten und leicht zu ionisierenden Gases
wie H₂, Ne oder bevorzugt He wird umso wirksamer, je niedri-
ger die Frequenz der Substratelektrodenspannung an der Sub-
stratelektrode ist, da die leichten Ionen aufgrund ihrer ge-
ringeren Trägheit zunehmend der elektrischen Feldvariation
folgen können. Das Anlegen einer hochfrequenten Substrate-
30 lektrodenspannung über einen Substratspannungsgenerator (Bi-
as Power) an das zu ätzende Substrat ist an sich bekannt und
dient üblicherweise zur Beschleunigung von im Plasma erzeug-
ten Ionen auf das Substrat.

Im erläuterten Beispiel wird die eingesetzte hochfrequente Substratspannung dazu in ihrer Frequenz beispielsweise von üblichen 13,56 MHz auf weniger als 2 MHz verringert. Damit wirkt sich der Massenunterschied des leichten Gasbestandteils im Vergleich zu den übrigen Bestandteilen des Ätzgases besonders stark aus.

tiges Material, verzehrendes Additiv, insbesondere CHF₃, CF₄, C₂F₆, C₃F₆, C₄F₈, C₄F₁₀, C₃F₈, ein Fluoralkan oder NF₃ zugesetzt wird.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Prozeßgas zumindest zeitweilig ein leichtes und leicht zu ionisierendes Gas, insbesondere H₂, He oder Ne, zugesetzt wird.

10. Verfahren zum Plasmaätzen, insbesondere zum anisotropen Plasmaätzen, von lateral definierten Strukturen in einem Siliziumsubstrat, mit einem Prozeßgas, wobei vor und/oder während des Ätzens zumindest auf den Seitenwänden von lateral definierten Strukturen zumindest zeitweilig mindestens ein passivierendes Material abgeschieden wird, dadurch gekennzeichnet, daß dem Prozeßgas zumindest zeitweilig als ein das passivierende Material, insbesondere SiO₂ oder ein teflonartiges Material, verzehrendes Additiv NF₃ zugesetzt wird.

15. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß dem Prozeßgas zumindest zeitweilig ein fluorlieferndes Ätzgas zugegeben wird, das mindestens eine der Verbindungen, ausgewählt aus der Gruppe SF₆, ClF₃, BrF₃ oder IF₅ enthält.

20. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß dem Prozeßgas weiterhin zumindest zeitweilig als ein das passivierende Material bildendes Gas mindestens ein Gas ausgewählt aus der Gruppe SiF₄, C₄F₈, C₃F₆, C₄F₁₀, C₃F₈ oder C₂F₆ zugesetzt wird.

25. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß dem Prozeßgas zumindest zeitweilig mindestens ein Gas,

15. Verfahren nach Anspruch 11, dadurch gekennzeichnet,
daß dem Prozeßgas zumindest zeitweilig mindestens ein das
passivierende Material, insbesondere SiO_2 , oder ein teflonar-
tiges Material verzehrendes Additiv, insbesondere CHF_3 , CF_4 ,
5 C_2F_6 , C_3F_6 , C_4F_8 , C_4F_{10} , C_3F_8 , ein Fluoralkan oder NF_3 , zugesetzt
wird.

16. Verfahren zum Plasmaätzen, insbesondere zum anisotro-
pen Plasmaätzen, von lateral definierten Strukturen in einem
10 Siliziumsubstrat, mit einem Prozeßgas, wobei vor und/oder
während des Ätzens auf den Seitenwänden von lateral defi-
nierten Strukturen zumindest zeitweilig mindestens ein pas-
sivierendes Material abgeschieden wird, dadurch gekennzeich-
net, daß dem Prozeßgas zumindest zeitweise ein fluorliefern-
15 des Ätzgas zugegeben wird, das mindestens eine der Verbin-
dungen, ausgewählt aus der Gruppe ClF_3 , BrF_3 oder IF_5 ent-
hält, daß dem Prozeßgas weiterhin zumindest zeitweilig als
ein das passivierende Material verzehrendes Additiv NF_3 zu-
gesetzt wird, und daß dem Prozeßgas zumindest zeitweilig ein
20 leichtes und leicht ionisierbares Gas, insbesondere H_2 , He
oder Ne , zugesetzt wird.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet,
daß dem Prozeßgas weiterhin zumindest zeitweilig mindestens
ein das passivierende Material bildendes Gas, ausgewählt aus
der Gruppe SiF_4 , C_4F_8 , C_3F_6 , C_4F_{10} , C_3F_8 oder C_2F_6 zugesetzt
wird.

18. Verfahren nach Anspruch 16, dadurch gekennzeichnet,
30 daß dem Prozeßgas zumindest zeitweilig mindestens ein Gas, .
ausgewählt aus der Gruppe O_2 , N_2O , NO , NO_x , CO_2 , Ar , NO_2 oder
 N_2 zugesetzt wird.

26.04.99 Kut

ROBERT BOSCH GMBH, 70442 Stuttgart

5

Verfahren zum Plasmaätzen von Silizium

10

Zusammenfassung

Es werden Verfahren zum Plasmaätzen, insbesondere zum anisotropen Plasmaätzen, von lateral definierten Strukturen in einem Siliziumsubstrat unter Verwendung eines Prozeßgases vorgeschlagen. Dabei wird vor und/oder während des Ätzens auf den Seitenwänden von lateral definierten Strukturen zumindest zeitweilig mindestens ein passivierendes Material abgeschieden. In einem ersten Verfahren wird vorgeschlagen, dem Prozeßgas als fluorlieferndes Ätzgas mindestens eine der Verbindungen, ausgewählt aus der Gruppe ClF_3 , BrF_3 oder IF_5 zuzusetzen. In einem zweiten Verfahren wird dem Prozeßgas zumindest zeitweilig als das passivierende Material verzehrendes Additiv NF_3 zugesetzt. Schließlich wird in einem dritten Verfahren dem Prozeßgas zumindest zeitweilig ein leichtes und leicht ionisierbares Gas, insbesondere H_2 , He oder Ne , zugesetzt. Die drei vorgeschlagenen Verfahren können auch kombiniert werden.

30

Affidavit of Accuracy

I, Gabe Bokor, of Accurapid Translation Services, Inc., hereby certify that the attached translation from German to English of German Patent Application No. 199 19 469.6, filed on April 29, 1999 at the German Patent Office, entitled VERFAHREN ZUM PLASMAÄTZEN VON SILIZIUM [METHOD OF PLASMA ETCHING OF SILICON] was performed by Accurapid Translation Services, Inc. I also certify that I carefully compared the translation to the original, and that, to the best of my knowledge and belief, it is an accurate and full translation of the original text, and that I am a competent translator in the German and English languages.

Poughkeepsie, May 28, 2003

Gabe Bokor

RECEIVED
JUN 12 2003
TC 1700

[10191/1629]

METHOD OF PLASMA ETCHING OF SILICON

The present invention relates to a method of plasma etching, in particular of anisotropic plasma etching, of silicon according to the definition of the species of the independent claims.

5

Background Information

German Patent 197 06 682 C2 describes a method of anisotropic high-rate plasma etching of silicon with SiO_2 , formed from the addition of SiF_4 and O_2 to the actual SF_6 etching agent, being used as a side wall passivating material. At the same time, CHF_3 , CF_4 , C_2F_6 , or C_4F_8 are added to the etching gas continuously or at determined intervals as SiO_2 -consuming additives ("scavengers") in order to selectively strip the SiO_2 on the structure base.

Another high-rate etching method for silicon is proposed, for example, in German Patent 42 41 045 C2, where a high-density plasma source using inductive high-frequency excitation (ICP source) or a special microwave excitation (PIE source) is used for releasing fluorine radicals from a fluorine-delivering etching gas and for releasing $(\text{CF}_2)_x$ radicals from a passivating gas that delivers teflon-forming monomers, to form a teflon-type passivating material, with etching gas and passivating gas being used alternately.

Finally, from German Patent Application 43 17 623 A1 it is known that a mixture of SF_6 or another fluorine-delivering etching gas and CHF_3 , or another passivating gas forming teflon-type monomers can be exposed to a high-density plasma, so that the fluorine radicals etch the

silicon structure base and at the same time the teflon-type monomers form a passivating material on the structure side walls thus ensuring an anisotropic character of the etching process.

5

The object of the present invention is to improve existing plasma etching methods for silicon so that higher etching rates, lower profile deviations in etching, and better environmental compatibility of the process gas are ensured by using novel process gases.

10

Advantages of the Invention

The method according to the present invention having the characterizing features of the independent claims has the advantage over the related art that it allows improved profile control and higher etching rates in the plasma etching process of silicon, in particular, in an anisotropic high-rate plasma etching process. At the same time, the process gases used are considerably more environmentally compatible than the process gases or additives used previously with respect to the greenhouse effect, and are therefore also available long-term.

25 Furthermore, when using fluorine-delivering etching gases ClF_3 , BrF_3 or IF_5 , large amounts of fluorine are released even at a relatively low plasma excitation, so that they are very efficient with regard to the excitation and the high silicon etching rates achieved, while not requiring that the plasma source such as an inductive plasma source or a microwave plasma source deliver a high power.

30 Furthermore, it is advantageous that, in particular, ClF_3 when it decomposes to form ClF or BrF_3 when it decomposes to form BrF releases lighter and a larger number of fluorine radicals than the known SF_6 via its preferential decomposition reaction resulting in SF_4 . In addition, the reaction on decomposition of ClF_3 to ClF and 2F^* and of

BrF₃ to BrF and 2F* requires a much lower activation energy than the reaction of SF₆ to SF₄ and 2F*. Thus, advantageously also fewer interference effects, capable of negatively affecting the etching profiles obtained, occur in the plasma source due to the lower high-frequency or microwave power required for producing the large amounts of fluorine radicals needed.

Further advantages result from the fact that when using interhalogen fluorides as fluorine-delivering etching gases, no sulfur precipitation can occur in the waste gas zone of the etching system, which would otherwise have to be eliminated or suppressed.

Finally, in particular ClF₃ and BrF₃ are chemically unstable and in air they easily hydrolyze forming HF plus HCl or HBr, respectively, with atmospheric moisture. Therefore, no greenhouse effect occurs with these compounds or gases, so that their industrial availability is guaranteed even long-term from the environmental point of view, which is not unconditionally true for SF₆, for example.

NF₃, an additive used from time to time in the process gas to consume the passivating material, in particular SiO₂ or a teflon-type material, has the advantage over additives based on fluorocarbon compounds known from the related art that considerably stronger stripping of the dielectric layers masking the structure base is achieved, so that it has to be used in considerably smaller amounts in the respective plasma etching process compared to the known additives, with the result that the overall process is less subject to negative effects, in particular dilution of the other active reagents, which otherwise necessarily occurs.

Furthermore, the NF₃ additive has a relatively short life

in air compared to fluorocarbons (CHF_3 , CF_4 , C_3F_6 , C_4F_8 , C_2F_6 , etc.) due to its weaker hydrolysis effect, which also prevents the greenhouse effect from occurring. NF_3 reacts with atmospheric moisture even after a short time.

5 In contrast to fluorocarbons which act as greenhouse gases, long-term industrial availability is also ensured in this case.

10 Addition of a light and easily ionizable gas, i.e., of a gas with a low atomic mass such as He, H_2 , or Ne, from which slightly positively charged ions are obtained, to the etching gas has the advantage that charging effects, which manifest themselves as interference, in particular at the junctions between electrically conductive silicon and electrically insulating dielectric materials used, for example, as masking materials or buried sacrificial layers, are considerably reduced. Thus considerable improvement in the etching profiles are obtained is achieved, in particular at the junction of silicon with a buried oxide layer, a polymer stop layer, or at the mask edge, i.e., junction of the dielectric masking layer (photoresist or hard material mask made of SiO_2) with the silicon to be etched.

15

20

25

25 This charging effect is based on the fact that negatively charged electrons, which act upon the wafer surface anisotropically, go preferentially to the side walls of the structure to be etched, so that the side walls become negatively charged with respect to the etching base.

30 These electrons move relatively freely within the electrically conductive silicon, while the positively charged ions on the electrically insulating etching base are stationary. Thus, the movable electrons tend to move into the junction region between silicon and the dielectric material, generating a strong electric field there. In the steady-state case these fields on average result in exactly as many ions going to the side walls as

35

there were electrons previously, since they are deflected by the electric fields of a similar strength toward the side wall. This effect is described in the literature as the "notching phenomenon" and results in the formation of 5 large pockets etched into the side wall.

The addition of a light, easily ionizable gas such as He advantageously reduces this formation of pockets considerably.

10 Another problem caused by electrical charging effects, which is also eliminated by the addition of a light, easily ionizable gas, occurs at the upper mask edge. The surface of a dielectric masking layer on the silicon 15 wafer is negatively charged ("DC bias") by the "self-biasing" effect, often as a result of a high-frequency voltage applied to a conventional substrate electrode. This charge is caused by the different mobilities of 20 electrons and ions, i.e., in order to draw as many immobile ions as highly mobile electrons to the surface on average over time, a negative electrical bias must be built up there. If silicon is now etched in the openings 25 of a masking layer, this accumulation of surface charges with respect to the newly produced silicon side wall results in concentration of electrons at the silicon to dielectric masking layer junction. Therefore ions are increasingly deflected into this upper part of the etched silicon trench, which also results in the formation of profile irregularities or pockets there. Finally, the 30 addition of a light, easily ionizable gas to the etching gas has the advantage that the side wall film transport mechanism known from German Patent 42 41 045 is improved in that more polymer is stripped from the etching base and less from the side walls, i.e., selectivity is 35 improved.

Advantageous refinements of the present invention are

derived from the measures named in the subclaims.

Thus, it is particularly advantageous that the methods according to the present invention can be combined, with
5 the advantages of the individual methods being preserved.

In general, it may be advantageous to also add argon to dilute the etching gas, to the gas forming the passivating material, in particular SiF_4 , to the additive, or to one of the gases used as a reactant such as oxygen, 10 nitrogen, carbon dioxide, or a nitrogen oxide.

In the mechanisms described above, overall the intensity of the electrical fields required to establish the dynamic equilibrium between the incidence of ions and 15 electrons directly depends on the ease with which the arriving ions can be deflected by electrical fields. It is therefore obvious that relatively heavy ions are only deflected by relatively high-intensity fields, while relatively light ions can be deflected even by relatively 20 low-intensity fields, balancing the charges. By introducing a type of ion with a low atomic mass, it can be achieved to great advantage that only low field intensities are built up in the above-described regions and a sufficient number of these light ions is deflected 25 even with these low field intensities so that they can balance the charges.

The heavy ions occurring in the etching process, for example, as ionized molecules or molecule fragments of 30 the etching gas or additives are no longer deflected by these electrical fields due to their mass and associated inertia, but go directly to the etching base, where they can advantageously promote an etching reaction or etching 35 base polymer stripping, for example. Therefore, the addition of the light, easily ionizable gas results in separation, which is overall very advantageous, between light ions, which balance the charges, and heavy ions,

which preferably affect the etching base.

In addition to the inert gas helium as a light gas, the use of hydrogen (H_2) is also advantageous in some plasma etching processes, as long as it is compatible with the process chemistry. The hydrogen molecule in its ionized form has an atomic mass of only 2, and also in plasma it dissociates in a particularly easy manner into positively charged atoms having an atomic mass of 1.

10 Exemplary Embodiments

The first embodiment is initially based on an anisotropic plasma etching process using a high-density plasma source, for example, an ICP plasma source, an ECR plasma source, or a PIE plasma source as known from German Patent 197 06 682 C2.

20 Instead of the fluorine-delivering etching gas SF_6 or NF_3 , used in that patent, however, gaseous chlorine trifluoride ClF_3 , bromine trifluoride BrF_3 , or iodine pentafluoride IF_5 , or a mixture of these gases is added to the process gas as the etching gas in a first embodiment. Chlorine trifluoride or bromine trifluoride, which can be 25 supplied directly via a mass flow controller, is preferably used, since they have a sufficiently high vapor pressure. When using liquid bromine trifluoride, its temperature is preferably held above 20°C in order to convert it into gaseous form. An inert carrier gas, for example, argon, can also be added in a known manner. 30 Helium can also be used instead of argon.

Furthermore, the SiO_2 -consuming additives known from German Patent 197 06 682 C2 (CHF_3 , CF_4 , C_2F_6 , etc.) are 35 replaced by nitrogen trifluoride NF_3 , which is added to the process gas continuously or at determined intervals. This additive is used in particular for faster removal of

the passivating material from the etching base.

NF₃ decomposes under moderate plasma excitation, i.e., typical ICP excitation conditions, preferably into radical fragments NF_x (where x = 1, 2), which react in an extremely aggressive manner with dielectric materials and thus act as very effective stripping reagents with respect to SiO₂, SiN, SiO_xN_y (silicon oxynitride) or teflon-type materials.

The amounts of fluorine released at the same time by the dissociation of NF₃ are almost negligible in comparison with the amounts of fluorine from the fluorine-delivering etching gases, for example, ClF₃ or BrF₃, and also contribute to the silicon etching reaction.

Passivation of the structure side walls in the process is unchanged with respect to the teaching of German Patent 197 06 682 C2 due to the addition, at least from time to time, of SiF₄ and a reagent selected from the group O₂, N₂O, NO, NO_x, CO₂, NO₂, or N₂ to the process gas. Oxygen is preferred.

Regarding the other process parameters (in particular gas flow rates, process pressures, ion energy, and injected plasma power), reference is made to the respective parameters known from German Patent 197 06 682 C2, which can be largely used here.

One preferred composition of the process gas based on the method known from German Patent 197 06 682 C2 is given by the following recipe, for example:

60 sccm ClF₃ + 50 sccm O₂ + 50 sccm SiF₄ + 70 sccm He + 5 sccm NF₃ with constant addition, 20 mTorr pressure, 1000 W high-frequency power at a frequency of 13.56 MHz at the plasma source, 5 W to 20 W high-frequency power at the

substrate electrode

or:

5 100 sccm BrF₃ + 50 sccm O₂ + 50 sccm SiF₄ + 70 sccm He,
plus addition of 30 sccm NF₃ periodically every 30 to 60
seconds, preferably every 45 seconds over a period of 5
seconds each time, 20 mTorr pressure, 1000 W high-
frequency power at the plasma source, 5 W to 30 W high-
frequency power at the substrate electrode.

10 Another exemplary embodiment of the present invention is
initially based on a method known from German Patent
42 41 045 C1. In this known method, anisotropic etching
15 of silicon is performed using a microwave plasma or a
plasma generated by an inductive plasma source in
particular, anisotropic etching being carried out in
separate alternating and successive etching and
polymerization/passivation steps, which are controlled
20 separately from one another. During the polymerization
steps, a polymer is applied to a lateral structure
boundary defined by an etching mask, and this polymer is
stripped away again in the subsequent etching steps.

25 For this purpose, SF₆ is added to the process gas, at
least from time to time, in particular during the etching
steps, as the fluorine-delivering etching gas. During the
polymerization steps octafluorocyclobutane C₄F₈ or
hexafluoropropane C₃F₆ is also added to the process gas,
30 in particular in the case of an inductively coupled
plasma source, as a passivating gas delivering teflon-
forming monomers. This passivating gas forms a teflon-
type protective film as a passivating material, in
particular on the side walls of the etched structures,
35 protecting them from the etching attack by fluorine
radicals.

This essentially known method is improved according to the present invention by the fact that helium in the form of He⁴ or He³ is also added to the process gas at least from time to time, this addition taking place 5 continuously both during the etching steps and during the passivation steps, since helium as an inert gas in no way affects the process chemistry. The addition of helium guarantees in both steps that undesirable charges are reduced and harmful ion incidence onto the side walls of 10 the etched structures, as explained above, is permanently suppressed or reduced.

As an alternative, [addition of] the helium gas can, however, also take place only during the etching steps or 15 only during the polymerization/passivation steps, i.e., the helium flow is added at determined intervals like the etching and passivating gas, helium gas advantageously being used specifically during the etching steps, since, especially in the case of post-etching, buildup of 20 stronger stray fields in the trenches formed must be effectively suppressed even as they are generated. Helium is preferably added in both process steps continuously at a constant gas flow rate.

25 A suitable helium gas flow rate is normally between 10 and 100 sccm; however, lower or, in particular, higher flow rates are also possible, depending on the suction capacity of the attached turbomolecular vacuum pump of the etching system.

30 In order to support the stripping of the passivating material from the etching base, NF₃ can be used, at least from time to time, in this case too, as a substance to consume the passivating material.

35 A preferred composition of the process gas in the case of

plasma generation via an inductively coupled plasma source (ICP source) is given by the following recipe, for example, based on German Patent 42 41 045 C1:

5 Passivation step:

100 sccm C_3F_6 or C_4F_8 + 50 sccm He over 5 seconds at 12 mTorr pressure, 800 W high-frequency power at the plasma source, no high-frequency power at the substrate electrode.

10 Etching step:

130 sccm SF_6 + 20 sccm O_2 + 50 sccm He over 9 seconds at 20 mTorr pressure, 800 W high-frequency power at the plasma source, 5 W to 20 W high-frequency power at the substrate electrode.

15 Further embodiments of the process gas composition, based on the method according to German Patent 42 41 045 C2, are given by the following recipes, in which the 20 fluorine-delivering etching gas SF_6 is replaced by ClF_3 or BrF_3 in the etching steps. Furthermore, NF_3 is added, at least from time to time, to the process gas in the 25 etching steps as an additive that preferentially strips the passivating teflon material in particular from the etching base. The process parameters in the passivation steps remain unchanged with respect to the previous example.

30 Etching step:

200 sccm ClF_3 + 10 sccm NF_3 + 50 sccm He over 10 seconds at 20 mTorr pressure, 1000 W high-frequency power at the plasma source, 5 W to 20 W high-frequency power at the substrate electrode

35 or:

Etching step:

200 sccm ClF₃ + 50 sccm He over 10 seconds at 20 mTorr pressure, plus 30 sccm NF₃ during the first 3 seconds of the etching steps, 1000 W high-frequency power at the plasma source, 5 W to 20 W high-frequency power at the substrate electrode.

5 Other recipes use O₂ as an alternative to NF₃ as the preferred additive for stripping the teflon-type passivating material in particular from the etching base.

10 Oxygen is considerably less aggressive than the NF₃ fragments obtained in the plasma; therefore, a considerably higher amount of oxygen must be added, at least from time to time, to the etching gas.

15 The considerably lower proportion of oxygen added in a previous recipe to SF₆ used as an etching gas was used there only for suppressing precipitation of sulfur in the gas waste gas zone. However, such precipitation does not occur when using ClF₃ as the etching gas, so that the 20 amount of oxygen added to ClF₃, at least temporarily, is available in its entirety for stripping the passivating material, in particular of the etching base. Thus, in the further passivation steps, which are unchanged regarding composition and process parameters, the following 25 advantageous recipe is obtained for the etching steps:

Etching step:

250 sccm ClF₃ + 50 sccm He over 10 seconds plus 100 sccm O₂ during the first 4 seconds, 30 mTorr pressure, 1200 W high-frequency power at the plasma source, 5 W to 30 W high-frequency power at the substrate electrode.

or:

35 Etching step:

200 sccm ClF₃ + 50 sccm He + 50 sccm O₂ over 10 seconds, 30 mTorr pressure, 1000 W high-frequency power at the

plasma source, 5 W to 30 W high-frequency power at the substrate electrode.

5 Regarding the other process parameters, reference is made to the respective parameters known from German Patent 42 41 045 C1, which can otherwise be largely retained.

10 If hydrogen is to be added to the process gas as the light, easily ionizable gas, this addition can be performed on the basis of German Patent 42 41 045 C1 only during the passivation steps. Hydrogen added to the etching gas would react with the released fluorine radicals to form HF, thus neutralizing the latter, i.e., these fluorine radicals would subsequently no longer be 15 available for an etching reaction with silicon.

20 Furthermore, due to the oxygen contained in the etching step, there is a danger of explosion due to the formation of oxyhydrogen gas in the waste gas zone of the etching system. Finally, the hydrogen added must also be taken into account in the passivation chemistry of the 25 passivation step. Since octafluorocyclobutane C_4F_8 or hexafluoropropene C_3F_6 added from time to time, in particular during the passivation steps, to the process gas as a passivating gas becomes poorer in fluorine by the addition of hydrogen, it is advantageous in this case to replace it with a passivating gas that is richer in fluorine. Perfluoroalcanes such as C_2F_6 , C_3F_8 or, 30 preferably, C_4F_{10} for example, are eminently suitable for this purpose.

35 Thus not only is excess fluorine bound in the passivation steps via the addition of hydrogen, forming HF, while the desired polymerization effect is achieved, but also sufficient hydrogen is always available for an ionization reaction in order to reduce charging phenomena.

In the case of hydrogen addition to the process gas,

5 suitable process parameters are given by the following recipe, on the basis of a method of the type described in German Patent 42 41 045 C1; it must be ensured, by appropriate measures in the waste gas zone, that no danger of explosion arises. For this purpose, a device known per se for catalytic hydrogen conversion is provided between a turbomolecular pump used in the waste gas zone and a vane-type rotary pump, for example.

10 Passivation step:

100 sccm C_4F_{10} + 70 sccm H_2 over 5 seconds at 12 mTorr pressure, 800 W high-frequency power at the plasma source, no high-frequency power at the substrate electrode.

15 Etching step:

130 sccm SF_6 + 20 sccm O_2 over 9 seconds at 20 mTorr pressure, 800 W high-frequency power at the plasma source, 5 W to 20 W high-frequency power at the substrate electrode.

20 Another recipe provides, in contrast to the previous unchanged passivation steps, replacement of SF_6 as fluorine-delivering etching gas with BrF_3 , to which NF_3 is added, at least from time to time, as an additive for preferentially stripping the passivating teflon material in particular from the etching base.

25 Etching step:

30 150 sccm BrF_3 + 50 sccm Ar or helium (as inert carrier gas) + 10 sccm NF_3 over 10 seconds, 25 mTorr pressure, 1500 W high-frequency power at the plasma source, 5 W to 30 W high-frequency power at the substrate electrode.

35 By adding helium or hydrogen in order to suppress profile deviations, higher silicon etching rates can also be easily achieved in that the performance parameters of the

plasma etching process used, in particular the plasma source power, are scaled up from 800 W to 3000 W, for example.

5 Finally, selectivity between side wall polymer film stripping and etching base polymer stripping during the etching steps is also improved by the process gas addition according to the present invention, in particular by addition of He or H₂, in that etching base polymer stripping is accelerated and side wall polymer film stripping is reduced. This is one result of the preferred deflection of the lighter ions toward the side wall, while heavy ions reach the etching base unimpeded.

10 15 The addition of light and easily ionizable gases such as H₂, Ne or preferably He is more effective the lower the frequency of the substrate electrode voltage at the substrate electrode, since the lighter ions can follow the variation of the electrical field more easily due to their lower inertia. Applying a high-frequency substrate electrode voltage to the substrate to be etched via a substrate voltage generator (bias power) is known per se and is normally used for accelerating the ions obtained in the plasma onto the substrate.

20 25 30 In the above exemplary embodiment, the frequency of the high-frequency substrate voltage used is reduced for this purpose, for example, from the usual 13.56 MHz to less than 2 MHz. Thus the difference in mass between the lighter gas component and the other components of the etching gas is used to greater advantage.

Patent Claims

1. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated at least on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that a fluorine-delivering etching gas, containing at least one of the compounds selected from the group ClF_3 , BrF_3 , or IF_5 , is added, at least from time to time, to the process gas.
2. The method according to Claim 1, characterized in that at least one gas selected from the group SiF_4 , C_4F_5 , C_3F_6 , C_4F_{10} , C_3F_8 , or C_2F_6 , is also added to the process gas, at least from time to time, as the gas forming the passivating material.
3. The method according to Claim 1, characterized in that at least one gas selected from the group O_2 , N_2O , NO , NO_x , CO_2 , Ar , NO_2 , or N_2 is added, at least from time to time, to the process gas.
4. The method according to Claim 1, characterized in that at least one additive, in particular, CHF_3 , CF_4 , C_2F_6 , C_3F_6 , C_4F_8 , C_4F_{10} , C_3F_8 , a fluoroalcano, or NF_3 , consuming the passivating material, in particular, SiO_2 or a teflon-type material, is added, at least from time to time, to the process gas.
5. The method according to Claim 1, characterized in that a light and easily ionizable gas, in particular H_2 , He , or Ne , is added, at least from time to time, to the process gas.

6. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated at least on the side walls of the laterally defined structures at least from time to time prior to and/or during etching,
characterized in that NF_3 is added to the process gas, at least from time to time, as an additive NF_3 consuming the passivating material, in particular, SiO_2 or a teflon-type material.

7. The method according to Claim 6,
characterized in that a fluorine-delivering etching gas, containing at least one of the compounds selected from the group SF_6 , ClF_3 , BrF_3 , or IF_5 , is added, at least from time to time, to the process gas .

8. The method according to Claim 6,
characterized in that at least one gas selected from the group SiF_4 , C_4F_8 , C_3F_6 , C_4F_{10} , C_3F_8 , or C_2F_6 is added to the process gas, at least from time to time, as the gas forming the passivating material.

9. The method according to Claim 6,
characterized in that at least one gas selected from the group O_2 , N_2O , NO , NO_x , CO_2 , Ar , NO_2 , or N_2 is added, at least from time to time, to the process gas.

10. The method according to Claim 6,
characterized in that a light and easily ionizable gas, in particular H_2 , He , or Ne , is added, at least from time to time, to the process gas.

11. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas,

at least one passivating material being precipitated on the side walls of the laterally defined structures at least from time to time prior to and/or during etching, characterized in that a light and easily ionizable gas, in particular H₂, He, or Ne, is added, at least from time to time, to the process gas.

12. The method according to Claim 11, characterized in that at least one fluorine-delivering etching gas, containing at least one of the compounds selected from the group SF₆, ClF₃, BrF₃, or IF₅, is added, at least from time to time, to the process gas.

13. The method according to Claim 11, characterized in that at least one gas selected from the group SiF₄, C₄F₈, C₃F₆, C₄F₁₀, C₃F₈, or C₂F₆ is added to the process gas, at least from time to time, as the gas forming the passivating material.

14. The method according to Claim 11, characterized in that at least one gas selected from the group O₂, N₂O, NO, NO_x, CO₂, Ar, NO₂, or N₂ is added, at least from time to time, to the process gas.

15. The method according to Claim 11, characterized in that at least one additive, in particular, CHF₃, CF₄, C₂F₆, C₃F₆, C₄F₈, C₄F₁₀, C₃F₈, a fluoroalcano, or NF₃, consuming the passivating material, in particular, SiO₂, or a teflon-type material, is added, at least from time to time, to the process gas.

16. A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, at least one passivating material being precipitated on the side walls of the laterally defined structures at least from time to time prior to and/or during etching,

characterized in that at least one fluorine-delivering etching gas, containing at least one of the compounds selected from the group ClF_3 , BrF_3 , or IF_5 , is added, at least from time to time, to the process gas; NF_3 is added to the process gas, at least from time to time, as an additive consuming the passivating material, and a light and easily ionizable gas, in particular H_2 , He , or Ne , is added, at least from time to time, to the process gas.

17. The method according to Claim 16, characterized in that at least one gas selected from the group SiF_4 , C_4F_8 , C_3F_6 , C_4F_{10} , C_3F_8 , or C_2F_6 is added to the process gas, at least from time to time, as the gas forming the passivating material.

18. The method according to Claim 16, characterized in that at least one gas selected from the group O_2 , N_2O , NO , NO_x , CO_2 , Ar , NO_2 , or N_2 is added, at least from time to time, to the process gas.

Abstract

A method of plasma etching, in particular of anisotropic plasma etching, of laterally defined structures in a silicon substrate, using a process gas, is described. At least one passivating material is precipitated on the side walls of the laterally defined structures at least from time to time prior to and/or during etching. In a first method, the addition of at least one of the compounds selected from the group ClF_3 , BrF_3 , or IF_5 to the process gas as a fluorine-delivering etching gas is proposed. In a second method, NF_3 is added to the process gas, at least from time to time, as an additive consuming the passivating material. Finally, in a third method, a light and easily ionizable gas, in particular H_2 , He , or Ne , is added, at least from time to time, to the process gas. The three methods can also be combined.