Sistemas Não Lineares - Trabalho 1

Brac Joey - DRE: 121185808 Leonardo Pacheco - DRE: 114088817 Lucas Costa Barbosa - DRE:118045887

14/02/2022

Conteúdo

	Cor	ntrole Adaptativo por Modelo de Referência (CAMR)	3
	1.1	Planta real de $1^{\underline{a}}$ ordem	3
		1.1.1 Descrição da solução	3
		1.1.2 Resultados	3
		1.1.3 Discussão dos resultados	4
	1.2	Adicionando um pólo em diferentes locais	4
		1.2.1 Pólo em -1	5
		1.2.2 Pólo em -10	5
		1.2.3 Pólo em -100	5
	1.3	Discussão dos resultados	6
	1.4	Mudança de pólo para 2	6
2	PII) auto-ajustável	7
	2.1	PID clássico por Zieger Nicholson (ZN)	7
	2.2	Estimação de K_p* e T^* pelo método da Função Descritiva para	
		relé	8
	2.3	Controle por PID auto ajustável	9
	2.4	Efeito de uma perturbação temporária	11
3	Apé	èndice A	12
L	ista	de Figuras	
		<u>e</u>	
	1	Diagrama de blocos do simulink para o problema de CAMR	3
	1 2	Diagrama de blocos do simulink para o problema de CAMR	3
	2	Resultados do modelo desenvolvido	4
	2 3	Resultados do modelo desenvolvido	4 5
	2 3 4	Resultados do modelo desenvolvido	4 5 5
	2 3 4 5	Resultados do modelo desenvolvido	4 5 5 6
	2 3 4 5 6	Resultados do modelo desenvolvido	4 5 5 6 6
	2 3 4 5 6 7	Resultados do modelo desenvolvido	4 5 5 6 6 7
	2 3 4 5 6 7 8	Resultados do modelo desenvolvido	4 5 5 6 6 7 8
	2 3 4 5 6 7 8 9	Resultados do modelo desenvolvido	4 5 5 6 6 7
	2 3 4 5 6 7 8	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s}$. Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé)	4 5 5 6 6 7 8
	2 3 4 5 6 7 8 9 10	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé) Resposta da malha fechada controlada pelo algoritmo de PID	4 5 6 6 7 8 8 9
	2 3 4 5 6 7 8 9 10	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé) . Resposta da malha fechada controlada pelo algoritmo de PID auto-ajustável.	4 5 5 6 6 7 8
	2 3 4 5 6 7 8 9 10 11	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé)	4 5 5 6 6 7 8 8 9
	2 3 4 5 6 7 8 9 10 11	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé) Resposta da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável.	4 5 6 6 7 8 8 9
	2 3 4 5 6 7 8 9 10 11	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé) Resposta da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo	4 55 6 6 6 7 8 8 9
	2 3 4 5 6 7 8 9 10 11	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s}$. Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé)	4 5 5 6 6 7 8 8 9
	2 3 4 5 6 7 8 9 10 11 12	Resultados do modelo desenvolvido. Resultados para segundo pólo em -1. Resultados para segundo pólo em -10. Resultados para segundo pólo em -100. Resultados para segundo pólo em -100. Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s.}$ Resposta da malha fechada com o ganho crítico K_p* . Resposta da malha fechada com o PID de ZN. Resposta da malha fechada controlada por relé. Comparação dos PID (método ZN e relé) Resposta da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável. Diagrama de blocos da malha fechada controlada pelo algoritmo	4 55 6 6 6 7 8 8 9

1 Controle Adaptativo por Modelo de Referência (CAMR)

1.1 Planta real de $1^{\underline{a}}$ ordem

1.1.1 Descrição da solução

Dada a planta real:

$$\dot{y} = y + v \tag{1}$$

$$sY(s) = Y(s) + V(s) \tag{2}$$

$$G(s) = \frac{Y(s)}{V(s)} = \frac{1}{s-1}$$
 (3)

É dito que a planta modelo deve possuir ganho unitário, ou seja, $b_m=1$. Utilizando $a_m=-1$ temos:

$$G_m(s) = \frac{1}{s+1} \tag{4}$$

A figura 1 ilustra o diagrama de blocos no simulink, utilizando a estrutura idealizada em [2]. Todos os códigos usados neste relatório são apresentados no Apêndice A.

Figura 1: Diagrama de blocos do simulink para o problema de CAMR.

1.1.2 Resultados

A figura 2 abaixo ilustram $y(t),y_m(t)$ e r(t) e K(t) e $\theta(t)$, para as referências de trem de pulsos e senoidal. Escolheu-se um tempo total de simulação alto para ser mais fácil de visualizar a convergência de K(t) a $K^*=1$ e $\theta(t)$ a $\theta^*=0$, que é lenta.

(a) Comparação entre $y(t),y_m(t)$ e r(t) para referência de trem de pulsos.

(c) Comparação entre $y(t),y_m(t)$ e r(t) para referência senoidal.

(d) Comparação entre K(t) e $\theta(t)$ para referência senoidal.

Figura 2: Resultados do modelo desenvolvido.

1.1.3 Discussão dos resultados

É possível notar que, para ambas referências, a saída $y_m(t)$ consegue com sucesso seguir a saída y(t) (que possui oscilação incial), e os valores de K(t) e $\theta(t)$ conseguem convergir para referência de trem de pulsos, mesmo que com uma velocidade bastante lenta, aos valores ótimos K^* e θ^* , respectivamente. Para referência senoidal, os valores não convergem para ótimos, porém se aproximam.

1.2 Adicionando um pólo em diferentes locais

Adiciona-se uma função de transferência anterior a planta G, da forma $\frac{b}{s+b}$, de forma a manter o ganho estático unitário, adicionando uma ordem a malha aberta. Vamos escolher 3 pólos, i.e., $b = \{-1, -10, -100\}$.

1.2.1 Pólo em -1

A figura 3 ilustra os resultados para segundo pólo em -1. Nota-se que $y_m(t)$ possui uma oscilação em regime permanente. $y_m(t)$ consegue rastrear a referência, mas não y(t). Os valores de K(t) e $\theta(t)$ aparentemente divergem para $+\infty$ e $-\infty$, respectivamente.

- (a) Comparação entre $y(t),y_m(t)$ e r(t) para segundo pólo em -1.
- (b) Comparação entre K(t) e $\theta(t)$ para segundo pólo em -1.

Figura 3: Resultados para segundo pólo em -1.

1.2.2 Pólo em -10

A figura 4 ilustra os resultados para segundo pólo em -10. Neste caso, $y_m(t)$ consegue rastrear a referência e, em 4 períodos, aproximar-se de y(t), atingindo assim o objetivo. K(t) e $\theta(t)$ convergem para os valores $K^*=1$ e $\theta^*=0$ originais.

- (a) Comparação entre $y(t),y_m(t)$ e r(t) para segundo pólo em -10.
- (b) Comparação entre K(t) e $\theta(t)$ para segundo pólo em -10.

Figura 4: Resultados para segundo pólo em -10.

1.2.3 Pólo em -100

A figura 5 ilustra os resultados para segundo pólo em -100. Neste caso, y(t) não possui oscilação em regime permanente, porém devido ao pólo bastante lento (longe da origem), o rastreamento a origem demora. $y_m(t)$ consegue rastrear a

referência e y(t), levando a $e_{ss} = 0$. K(t) converge para um valor bem maior que o $K^* = 1$ original, enquanto que $\theta(t)$ converge para um valor bem menor que o $\theta^* = 0$ original.

- (a) Comparação entre $y(t),y_m(t)$ e r(t) para segundo pólo em -100.
- (b) Comparação entre K(t) e $\theta(t)$ para segundo pólo em -100.

Figura 5: Resultados para segundo pólo em -100.

1.3 Discussão dos resultados

Com isso, percebe-se que a adição de um pólo desfaz a convergência de K(t) e $\theta(t)$ a seus valores ótimos originais. Além disso, este pólo atrapalha tão mais o rastreamento de $y_m(t)$ a y(t) quanto mais próximo da origem ele estiver, pois com isso ele será mais dominante, causando maior impacto na dinâmica de y(t).

1.4 Mudança de pólo para 2

Escolheu-se um momento para a mudança do local do pólo que coincidisse com a subida do pulso da referência. Com isso, foi escolhido $t_c = 50$ s, que é após o assentamento do modelo de referência.

A figura 6 abaixo ilustram $y(t),y_m(t)$ e r(t) e K(t) e $\theta(t)$

- (a) Comparação entre $y(t),y_m(t)$ e r(t) para referência de trem de pulsos.
- (b) Comparação entre K(t) e $\theta(t)$ para referência de trem de pulsos.

Figura 6: Resultados para mudança de pólo para 2 em $t_c=21~\mathrm{s}.$

Percebe-se que há uma retomada de oscilação de y(t), uma leve descida de K(t) e subida de $\theta(t)$. No entanto, $y_m(t)$ consegue rastrear novamente y(t),

K(t) volta a convergir para o K^* original, porém $\theta(t)$ converge para outro θ^* , o que condiz com a mudança do valor de a_p .

2 PID auto-ajustável

2.1 PID clássico por Zieger Nicholson (ZN)

Para achar o ganho crítico, utilizou o método de busca binária, começando com os chutes 1 e 10. A partir daí, chegou-se no valor final de $K_p*=2.11$. A figura ?? ilustra a resposta para realimentação com esse ganho, que produz o estimado limite de estabilidade.

Figura 7: Resposta da malha fechada com o ganho crítico K_p* .

Logo, $K_p*=2.11$ e $T^*=\frac{2\pi}{\omega_n^*}=4.92$ s. Com isso podemos achar os valores do corretor PID:

$$K_p = 0.6K_p^* = 0.6(2.11) = 1.27$$
 (5)

$$T_i = \frac{T^*}{2} = \frac{4.92}{2} = 2.46 \tag{6}$$

$$T_i = \frac{T^*}{2} = \frac{4.92}{2} = 2.46$$

$$T_d = \frac{T_i^*}{8} = \frac{4.92}{8} = 0.62$$
(6)

No gráfico de baixo podemos observar a resposta usando o PID de ZN que acabamos de achar:

Observamos a convergência da resposta prevista. Portanto, esse método não é muito pratico porque precisa muito da nossa intervenção, e precisa de verificações. O nosso objetivo sera de automatizar esse processo. Consequentemente nos vamos usar um outro método parecido que usa um relé para criar essas oscilações.

Figura 8: Resposta da malha fechada com o PID de ZN.

2.2 Estimação de $K_p *$ e T^* pelo método da Função Descritiva para relé

Igualando a função descritiva ao ganho do controlador linear temos:

$$F_d = \frac{4M}{\pi A^*} = K_p^* \tag{8}$$

A figura 9 ilustra a resposta para controle por relé com M=5. Nela, é possível identificar que:

$$A* = \frac{3.54 + 2.66}{2} = 3.1 \tag{9}$$

$$T^* = 2 * (24.94 - 22.74) = 4.4 \tag{10}$$

$$K_p = \frac{4M}{\pi A^*} = 2.05 \tag{11}$$

Figura 9: Resposta da malha fechada controlada por relé.

Para determinar, o valor teórico:

$$G(s) = \frac{6e^{-s}}{(s+1)(s+2)(s+3)}$$
(12)

$$G(j\omega) = \frac{6e^{-j\omega}}{(j\omega+1)(j\omega+2)(j\omega+3)}$$
(13)

$$\underline{/G}(j\omega) = -\omega - \arctan(\omega) - \arctan\left(\frac{\omega}{2}\right) - \arctan\left(\frac{\omega}{3}\right)$$
 (14)

$$\underline{/G}(j\omega) = -\omega - \arctan(\omega) - \arctan\left(\frac{\omega}{2}\right) - \arctan\left(\frac{\omega}{3}\right) \tag{14}$$

$$|G(j\omega)| = \frac{6}{\sqrt{\omega^2 + 1}\sqrt{\omega^2 + 4}\sqrt{\omega^2 + 9}} \tag{15}$$

Para a achar ω^* onde $/(G(j\omega^*)) = -\pi$:

$$-\omega - \arctan(\omega^*) - \arctan\left(\frac{\omega^*}{2}\right) - \arctan\left(\frac{\omega^*}{3}\right) = -\pi \Rightarrow \omega^* = 1.27 \quad (16)$$

$$T^* = \frac{2\pi}{\omega^*} = 4.94\tag{17}$$

$$K_p^* = \frac{1}{|G(j\omega^*)|} \tag{18}$$

$$K_p^* = \frac{\sqrt{1.27^2 + 1}\sqrt{1.27^2 + 4}\sqrt{1.27^2 + 9}}{6} = 2.08$$
 (19)

Podemos observar que a simulação corresponde aos valores que achamos na teoria, sabendo disso, podemos continuar com a nossa modelagem. Do mesmo jeito, os valores de K^* e T^* são bem próximos aos valores que achamos com o método de ZN, na simulação podemos observar que os dois métodos convergem com caracteristicas parecidas (grafico abaixo).

Figura 10: Comparação dos PID (método ZN e relé)

Podemos então validar o nosso modelo e continuar com esse método do relé. Agora que achamos um jeito mais simples de obter os valores do nosso PID, nos vamos precisar automatizar o cálculos desses parâmetros, e implementar automaticamente o PID.

2.3 Controle por PID auto ajustável

O método que vamos usar é o seguinte : Em malha fechada, nos vamos controlar a planta com o relé. o resultado sera que a saída oscilaria em regime permanente. Com um programa nos vamos recuperar a amplitude e período das oscilações (depois do regime permanente acontecer), para poder calcular os parâmetros do PID. quando temos os parâmetros nos usáramos um "Switch", para trocar do controle, deixando o relé para usar o PID. Utilizando o tempo de mudança do relé para o PID $t=8\,\mathrm{s}$, temos os resultados abaixo. A figura 11 ilustra os resultados utilizando o algoritmo de PID auto-ajustável proposto por [1]. A figura 12. O algoritmo auto-ajuste dos parâmetros de PID são descritos no apêndice A, junto com todos os códigos usados. Ele faz o cálculo de A^* e T^* analisando os valores de pico e seus tempos correspondentes, respectivamente. A figura 13 apresenta a evolução dos parâmetros do PID ao longo do tempo.

Figura 11: Resposta da malha fechada controlada pelo algoritmo de PID autoajustável.

Figura 12: Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável.

Figura 13: Diagrama de blocos da malha fechada controlada pelo algoritmo de PID auto-ajustável.

É possível notar que os valores de T^* e A^* obtidos são compatíveis, já que os valores aos quais os parâmetros de PID convergiram também o são com os achados teoricamente, produzindo uma resposta aceitável.

2.4 Efeito de uma perturbação temporária

Considerando uma pertubação de entrada em formato de pulso de comprimento de 1s, entre os tempos de $t_i=20$ s e $t_f=21$ s, de amplitude de 1, temos a resposta ilustrada na figura 14 abaixo.

Figura 14: Resposta da malha fechada controlada pelo algoritmo de PID auto-ajustável com perturbação de entrada.

 $\acute{\rm E}$ possível notar que o sistema consegue rastrear a referência e regular a perturbação em cerca de 15 s, provando a sua robustez.

3 Apêndice A

Código $controle_adap_script.m$:

```
close all;
   clear all;
4 % reference
   ref_pulse_T = 18;
   ref_sin_freq = 1/ref_pulse_T;
   switch_ref = 0;
   ref = ["pulse" "sine"];
   ref = ref(switch_ref+1);
13 % reference plant
am = -1;
_{15} bm = 1;
16
17 % real plant
ap = 1;
   bp = 1;
19
   % parameters
21
   alpha = 1;
22
   beta = 1;
   out = sim('controle_adap',2*ref_pulse_T);
25
26
   %optimal k and theta
27
   k_{\text{opt}} = bm/bp;
   theta_opt = (am-ap)/bp;
29
30
31 % Plots
32 % y,ym and r
зз figure;
34 plot (out.y)
35 hold on
36 plot (out.ym)
   hold on
37
   plot (out.r)
   legend({'$y(t)$','$y_m(t)$','$r(t)$'},'Interpreter','latex')
xlabel({'$t$'},'Interpreter','latex')
saveas(gcf,"imgs/yymr_"+ref+".png");
   \% k and theta
   figure;
44 plot (out.K)
45 hold on
46 plot (out.theta)
```

```
yline(k_opt, '-', '$K^*$', 'Interpreter', 'latex');
   yline(theta_opt, '-', '$\theta^**', 'Interpreter', 'latex');
{\tt 49} \quad {\tt legend}\left( \{\,\texttt{'\$K\$'}\,,\,\texttt{'\$\backslash theta\$'}\,\}\,,\,\texttt{'Interpreter'}\,,\,\texttt{'latex'}\right);
so xlabel({ '$t$'}, 'Interpreter', 'latex');
   saveas(gcf,"imgs/ktheta_"+ref+".png");
       Código autotune_PID.m:
   function [Kp, Fi, Td, max_hist, min_hist, t1, t2] = autotune_PID(y,
        time, y_prev, M, max_hist, min_hist, t1, t2)
3
        if y >= max_hist
             \max_{\text{hist}} = y;
        end
        if y <= min_hist
             \min_{\text{hist}} = y;
        if y\_prev >= max\_hist \&\& y <= y\_prev \&\& time < 8
9
             t1 = time -1;
10
11
        if y_prev <= min_hist && y >= y_prev && time < 8
12
             t2 = time -1;
13
14
        end
        T_{crit} = 2*(t2-t1);
        A_{crit} = (max_{hist} - min_{hist})/2;
16
        K_{\text{-crit}} = 4*M/(pi*A_{\text{-crit}});
        Kp = 0.6*K_crit;
18
        Ti = T_crit/2;
19
        Fi = 1/Ti;
20
        Td = T_crit/8;
21
22 end
       Código PID\_auto\_script.m:
   close all;
   clear all;
4 % Variables
5 s=tf('s');
6 G=\exp(-s)*zpk([],[-1 -2 -3],6);
_{7} R = 1; %reference
s \% K prop
_9 K_crit =2.11; %rlocus
   T_{estr} = 4.92; %secs
10
11 % PID
12 Kp=0.6*K_crit;
   Ti=T_estr/2;
   Fi = 1/Ti;
14
   Td=T_estr/8;
   \% rel
17
18 M=5;
20 % relay
_{21} A = 6.2/2;
T_{estr\_relay} = 4.4;
```

```
K_{critr_relay} = 4*M/(pi*A);
   Kp_relay = 0.6*K_critr_relay;
   Ti_relay = T_estr_relay/2;
   Td_relay = T_estr_relay/8;
27
   % autotuning
28
29
   out = sim('PID_auto.slx',40);
30
32 % plots
зз figure;
   \textcolor{red}{\textbf{plot}} \, (\, \text{out.y\_PID} \,) \, ;
   xlabel({ '$t$'}, 'Interpreter', 'latex');
   ylabel('y');
36
   title("Resposta para $K_p^*$", 'Interpreter', 'latex');
37
   yline (R, 'label', 'Reference')
38
   figure;
40
   plot(out.y_relay);
41
   xlabel({'$t$'},'Interpreter','latex');
ylabel('y');
   title("Resposta para controle por relay");
   yline (R, 'label', 'Reference')
45
47 figure;
48 plot (out.y_PID_auto);
49 hold on;
50 plot (out. D_auto);
s1 xlabel({'$t$'}, 'Interpreter', 'latex');
52 ylabel('y');
   title ("Resposta para controle por PID autoajust vel com
        dist rbio");
   yline(R);
55 legend({ '$y_{auto}$', '$D_{auto}$', 'Rerence'}, 'Interpreter', '
       latex ');
```

Referências

- [1] Hagglund Astron. Advanced PID Control.
- [2] Annaswami Narendra. Stable Adaptive Systems.