

Contents

1 Topología en el espacio euclídeo

Definición 1.0.1 [Longitud o Norma euclídea]

Se denomina longitud o norma euclídea de un vector $\vec{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ al númeor real mayor o igual que cero definido por

$$\|\vec{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Definición 1.0.2 [Distancia euclídea]

Se llama distancia euclídea entre dos vectores $\vec{x} = (x_1, x_2, \dots, x_n)$ y $\vec{y} = (y_1, y_2, \dots, y_n)$ al número real mayor o igual que 0 definido por:

$$d(\vec{x}, \vec{y}) = ||\vec{x} - \vec{y}|| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Definición 1.0.3 [Producto escalar euclídeo]

Se llama **producto escalar euclídeo** entre dos vectores $\vec{x} = (x_1, x_2, ..., x_n)$ y $\vec{y} = (y_1, y_2, ..., y_n)$ al número real, no necesariamente positivo, definido por:

$$\langle \vec{x}, \vec{y} \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

Teorema 1.0.1

- 1. $\langle \vec{x}, \vec{y} \rangle \ge 0 \quad \forall \vec{x}, \vec{y} \in \mathbb{R}^n$.
- 2. $\langle \vec{x}, \vec{y} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0} \ o \ \vec{y} = \vec{0}$.
- 3. $\forall \vec{x}, \vec{y}, \vec{z} \in \mathbb{R}^n$ se cumple que $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$.
- 4. $\langle \alpha \vec{x}, \vec{y} \rangle = \alpha \langle \vec{x}, \vec{y} \rangle$ para todo $\alpha \in \mathbb{R}$.
- 5. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.

Teorema 1.0.2

Para cualesquiera $x, \in \mathbb{R}^2$ se verifica que $\langle x, y \rangle = \|\vec{x}\| \|\vec{y}\| \cos(\theta)$, donde θ es el ángulo entre los vectores \vec{x} y \vec{y} .

Demostración. Dados dos vectores x e y de \mathbb{R}^2 , que supondremos distintos de 0 (pues si uno de ellos es 0 el resultado es inmediato), consideremos el triángulo de vértices 0, x, y:

Utilizando trigonometría elemental, tenemos que:

$$\cos \theta = \frac{a}{\|y\|}$$

Además, usando el teorema de Pitágoras, tenemos que:

$$||y||^2 = a^2 + h^2 \implies ||y||^2 - a^2 = h^2 = ||x - y||^2 - (||x|| - a)^2$$

Con lo que:

$$||x - y||^2 = ||y||^2 - a^2 + ||x||^2 - 2a||x|| + a^2 = ||y||^2 + ||x||^2 - 2a||x||$$

Usando que $a = ||y|| \cos \theta$, obtenemos:

$$||x - y||^2 = ||x||^2 + ||y||^2 - 2||x|| ||y|| \cos \theta$$

Si ahora usamos las propiedades del producto interior, obtenemos que:

$$||x - y||^2 = \langle x - y, x - y \rangle = ||x||^2 - 2\langle x, y \rangle + ||y||^2$$

De donde se deduce, teniendo en cuenta el valor previamente obtenido de $||x-y||^2$, que:

$$\langle x, y \rangle = ||x|| ||y|| \cos \theta$$

Definición 1.0.4 [Vectores ortogonales]

Se dice que dos vectores \vec{x} y \vec{y} son **ortogonales** si $\langle \vec{x}, \vec{y} \rangle = 0$.

Proposición 1.0.1 [Propiedades de la norma euclídea]

- 1. $\|\vec{x}\| \ge 0 \quad \forall \vec{x} \in \mathbb{R}^n$.
- $2. \|\vec{x}\| = 0 \Leftrightarrow \vec{x} = \vec{0}.$
- 3. $\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$ para todo $\alpha \in \mathbb{R}$.
- 4. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\| \quad \forall \vec{x}, \vec{y} \in \mathbb{R}^n$ (designal triangular).

Teorema 1.0.3 [Desigualdad de Cauchy-Schwarz]

Sea $\vec{x}, \vec{y} \in \mathbb{R}^n$. Entonces se cumple que:

$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||$$

Equivalente mente

$$\left\| \sum_{i=1}^{n} x_i y_i \right\| \le \sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}$$

Demostración. Fijemos \vec{x} y $\vec{y} \in \mathbb{R}^n$. Para cada $\alpha \in \mathbb{R}$ se tiene que

$$\langle \alpha \vec{x} + \vec{y}, \alpha \vec{x} + \vec{y} \rangle = \alpha^2 \langle , \rangle + 2\alpha \langle x, y \rangle + \langle y, y \rangle \ge 0$$

Si tomamos $A = \langle \vec{x}, \vec{x} \rangle$, $B = 2\langle \vec{x}, \vec{y} \rangle$ y $C = \langle \vec{y}, \vec{y} \rangle$, tenemos que:

$$A\alpha^2 + B\alpha + C \ge 0 \quad \forall \alpha \in \mathbb{R}$$

Entoncespodemos distinguir dos casos:

- 1. Si A = 0, entonces $\vec{x} = \vec{0}$ y la desigualdad es trivial.
- 2. Si A > 0, entonces la desigualdad anterior es una ecuación cuadrática en α , y por las propiedades del producto escalar es necasrio que su discriminantes sea no positivo, pues de lo contrario tendría dos raíces reales distintias y entonces la ecuacion tomaría algún valor negativo

$$\implies D = B^2 - 4AC \le 0 \iff B^2 \le 4AC \iff 4\langle \vec{x}, \vec{y} \rangle^2 \le 4\langle \vec{x}, \vec{x} \rangle \langle \vec{y}, \vec{y} \rangle = 4\|x\|^2 \|y\|^2$$

Proposición 1.0.2 [Propiedades de la distancia euclídea]

- 1. $d(\vec{x}, \vec{y}) \ge 0 \quad \forall \vec{x}, \vec{y} \in \mathbb{R}^n$.
- 2. $d(\vec{x}, \vec{y}) = 0 \Leftrightarrow \vec{x} = \vec{y}$.
- 3. $d(\vec{x}, \vec{y}) = d(\vec{y}, \vec{x})$.
- 4. $d(\vec{x}, \vec{z}) \leq d(\vec{x}, \vec{y}) + d(\vec{y}, \vec{z})$ (designal dad triangular).

Definición 1.0.5 [Métrica]

Se llama **métrica** sobre un conjunto arbitrario M a cualquier aplicación $d: M \times M \to \mathbb{R}$ que cumple las siguientes propiedades:

- 1. $d(x,y) \ge 0 \quad \forall x,y \in M$.
- 2. $d(x,y) = 0 \Leftrightarrow x = y$.
- 3. d(x,y) = d(y,x).

4. $d(x,z) \le d(x,y) + d(y,z)$ (designal dad triangular).

Definición 1.0.6 [Espacio métrico]

Se llama espacio métrico a un par (M,d) donde M es un conjunto no vacío y d es una métrica sobre M.

Ejemplo

Vemos algunos ejemploes de métricas:

- 1. La métrica euclídea en \mathbb{R}^n
- 2. $d_1(x,y) = \sum_{i=1}^n |x_i y_i|$
- 3. $d_{\infty}(x, y) = \max_{i=1,...,n} |x_i y_i|$
- 4. $d(f,g) = \int_a^b |f(x) g(x)| dx$ para funciones $f,g:[a,b] \to \mathbb{R}$.
- 5. $d_{\infty}(f,g) = \max_{x \in [a,b]} |f(x) g(x)|$ para funciones $f,g:[a,b] \to \mathbb{R}$.
- 6. $d(x,y) = \begin{cases} 0 & \text{si } x = y \\ 1 & \text{si } x \neq y \end{cases}$, que se conoce como la **métrica discreta**.

Definición 1.0.7 [Diámetro]

Se llama $\operatorname{diámetro}$ de un subconjunto S de un espacio métrico (M,d) a

$$diam(S) = \sup\{d(x, y) \mid x, y \in S\}$$

si el conjunto de números reales $\{d(x,y): x,y \in S\}$ es acotado superiormente y se define diam $(S) = +\infty$ en caso contrario. Cual del diámetro es ifnito se dice que el conjunto es (acotado);

Definición 1.0.8 [Norma]

Sea V un espacio vectorial sobre \mathbb{R} . Se llama **norma** en V a toda aplicación $\|\cdot\|:V\to\mathbb{R}$ que cumple las siguientes propiedades:

- 1. $\|\vec{x}\| \ge 0 \quad \forall \vec{x} \in V$.
- 2. $\|\vec{x}\| = 0 \Leftrightarrow \vec{x} = \vec{0}$.
- 3. $\|\alpha \vec{x}\| = |\alpha| \|\vec{x}\|$ para todo $\alpha \in \mathbb{R}$.
- 4. $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$ (designal dad triangular).

Ejemplo

- 1. $\|\vec{x}\| = |x|$
- 2. $\|\vec{x}\|_2 = \left(\sum_{j=1}^n x_j^2\right)^{\frac{1}{2}}$ (norma euclídea).

- 3. $\|\vec{x}\|_1 = \sum_{i=1}^n |x_i|$ (norma l^1).
- 4. $\|\vec{x}\|_{\infty} = \max_{j=1,...,n} |x_j|$ (norma l^{∞}).
- 5. $||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$ para funciones $f : [a,b] \to \mathbb{R}$.

Definición 1.0.9 [Producto escalar o interior]

Llamaremos producto escalar o producto interior en V a toda aplicación $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ que cumple las siguientes propiedades:

- 1. $\langle \vec{x}, \vec{y} \rangle \ge 0 \quad \forall \vec{x}, \vec{y} \in V$.
- 2. $\langle \vec{x}, \vec{x} \rangle = 0 \Leftrightarrow \vec{x} = \vec{0}$.
- 3. $\langle \vec{x}, \vec{y} \rangle = \langle \vec{y}, \vec{x} \rangle$.
- 4. $\langle \alpha \vec{x}, \vec{y} \rangle = \alpha \langle \vec{x}, \vec{y} \rangle$ para todo $\alpha \in \mathbb{R}$.
- 5. $\langle \vec{x} + \vec{y}, \vec{z} \rangle = \langle \vec{x}, \vec{z} \rangle + \langle \vec{y}, \vec{z} \rangle$ para todo $\vec{x}, \vec{y}, \vec{z} \in V$.

Definición 1.0.10 [Igualdad del paralelogramo]

Sea una norma $\|\cdot\|$ en un espacio vectorial V. Se dice que la norma cumple la **igualdad del paralelogramo** si la norma procede de un producto escalar

$$\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2$$

Demostración.

$$\begin{aligned} \|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 &= \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle + \langle \vec{x} - \vec{y}, \vec{x} - \vec{y} \rangle = \\ &= \|\vec{x}\|^2 + \langle \vec{x}, \vec{y} \rangle + \langle \vec{y}, \vec{x} \rangle + \|\vec{y}\|^2 + \|\vec{x}\|^2 - \langle \vec{x}, \vec{y} \rangle - \langle \vec{y}, \vec{x} \rangle + \|\vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2 \end{aligned}$$

Definición 1.0.11 [Bola abierta]

Dados $x_0 \in \mathbb{R}^n$ y un número real r > 0, llamamos **bola abierta** de centro x_0 y radio r al conjunto

$$B(x_0, r) = \{ x \in \mathbb{R}^n \mid d(x, x_0) < r \}$$

donde d es la métrica que se está considerando en \mathbb{R}^n .

Definición 1.0.12 [Conjunto abierto]

Se dice que un conjunto $A \subset \mathbb{R}^n$ es **abierto** si para todo punto $x_0 \in A$ existe un número real r > 0 tal que $B(x_0, r) \subset A$.

Proposición 1.0.3 [Propiedades de los conjuntos abiertos]

- 1. El conjunto vacío y el espacio euclídeo \mathbb{R}^n son abiertos.
- 2. La unión de abiertos es un abierto
- 3. La interseccion finita de abiertos es un abierto.

Definición 1.0.13 [Punto abierto]

Se dice que un punto $x \in S \subset \mathbb{R}^n$ es un **punto abierto** de S si existe una bola abierta B(x,r) tal que $B(x,r) \subset S$. Denotamos por S° al conjunto de los puntos abiertos de S.

Observación 1.0.1

 S° puede ser vacío, por ejemplo si S es un subconjunto con un solo punto

Proposición 1.0.4 [Propiedades de los puntos abiertos]

- 1. S° es el mayor abierto contenido en S
- 2. S° es la unión de todos los abiertos contenidos en S.
- 3. S es abierto si y solo si $S = S^{\circ}$.

Demostración. 1. S° es abierto, pues dado $x \in S^{\circ}$, existe r > 0 tal que $B(x,r) \subset S$. Entonces sucede que $B(x,r) \subset S^{\circ}$, pues al ser B(x,r) un abierto, entonces $B(x,r) = [B(x,r)]^{\circ} \subset S^{\circ}$. Por otra parte, si A es un abierto de \mathbb{R}^n contenido en S, entonces para todo punto de A hay una bola centrada en él contenida en A y por lo tanto en S, lueg todos los puntos de A están en S°

- 2. Es claro que el mayor abierto contenido en S es la unión de todos los abiertos contenidos en S
- 3. Si S es abierto, entonces él es el mayor abierto contenido en S, luego $S = S^{\circ}$. Por otra parte, si $S = S^{\circ}$, entonces S es abierto, pues para todo punto $x \in S$, existe una bola abierta B(x,r) tal que $B(x,r) \subset S$, luego S es abierto.

Definición 1.0.14 [Bola cerrada]

Dados $x_0 \in \mathbb{R}^n$ y un número real r > 0, llamamos **bola cerrada** de centro x_0 y radio r al conjunto

$$\overline{B}(x_0, r) = \{ x \in \mathbb{R}^n \mid d(x, x_0) \le r \}$$

Demostraci'on.