Apuntes de Estructuras Algebraicas

Elias Hernandis

28 de diciembre de 2018

Revisión del 28 de diciembre de 2018 a las 11:17.

Índice general

Ι	Primer parcial - hoja 1	5
1.	Grupos 1.1. Grupos 1.2. Subgrupos 1.2.1. Retículo de subgrupos 1.2.2. Subgrupos generados 1.3. Presentación de un grupo. Más ejemplos de grupos. 1.4. Grupos de permutaciones 1.4.1. Notación cíclica para permutaciones 1.5. Grupos cíclicos 1.6. Sobre los órdenes 1.7. El teorema de Lagrange 1.7.1. Subgrupos normales y grupo cociente	
2.	0 - F	
3. II	3.2. Producto libre de grupos	23 24 25 25 27
	El teorema de Cauchy	31 31 32 33
5.	Biyecciones5.1. El por qué de la notación cíclica5.2. De permutaciones a composiciones de ciclos5.3. Sobre las conjugaciones de una descomposición en ciclos5.4. Trasposiciones5.4.1. Paridad de las trasposiciones5.5. Clases de equivalencia de permutaciones en S_n 5.5.1. Estudio de un caso: descomposición detallada del grupo S_4 5.6. Clases de equivalencia de subgrupos en S_n 5.7. [Sub]grupos alternados	41 43 44 45 45 46 47 48

4	ÍNDICE	GENER	A
---	--------	--------------	---

6.	Teoremas de Sylow 6.1. Nuevas estructuras de grupo en el producto directo	52
7.	Grupos abelianos	61
8.	Anillos 8.1. Clase de equivalencia por el grupo de biyecciones	63 67
II	I Apendices	71
Α.	Ejercicios A.1. Hoja 1	74
в.	Índices	77

Parte I Primer parcial - hoja 1

Capítulo 1

Grupos

1.1. Grupos

Definición 1 (Grupo). Llamamos grupo al par (G, *), donde G es un conjunto no vacío y $*: G \times G \to G$ es una función que cumple las siguientes propiedades:

- 1. Clausura. $\forall a, b \in G, a * b \in G$
- 2. Asociatividad. $\forall a, b, c \in G, (a * b) * c = a * (b * c)$
- 3. Elemento neutro. $\exists e \in G, \forall a \in G \mid a * e = e * a = a$
- 4. Elemento inverso. $\forall a \in G, \exists a^{-1} \in G \mid a*a^{-1} = a^{-1}*a = e$

En general, la clausura es muy difícil de probar, por lo que recurrimos a dar un grupo como subgrupo de otro o dar una biyección entre un grupo existente y lo que queremos probar que es grupo.

Notación Hay dos notaciones para hablar sobre grupos. La utilizada para dar la definición es la multiplicativa (salvo el símbolo utilizado para la operación que es uno especial y el uso de la *e* para el elemento neutro). También existe la notación aditiva.

Concepto	Notación aditiva	Notación multiplicativa
elemento neutro	0	1
inverso de a	-a	a^{-1}
a operado consigo mismo k veces	$k \cdot a = ka$	a^k

Figura 1.1: Diferencias entre notaciones para grupos

Cuando escribimos $ka = a^k$ también podemos estar refiriéndonos a un entero k no positivo. Denotamos por a^k :

$$\bullet \text{ si } k > 0, \ a^k = \underbrace{a * a * \cdots * a}_{\text{k veces}}$$

- si k = 0, $a^0 = e$
- si k < 0, $a^k = \underbrace{a^{-1} * a^{-1} * \dots * a^{-1}}_{\text{-k veces}}$

Veamos ahora algunos ejemplos de grupos infinitos (que tienen un número infinito de elementos).

Ejemplo 1 (Ejemplos de grupos infinitos).

- $(\mathbb{R}, +)$ es un grupo
- \blacksquare (\mathbb{R},\cdot) no es un grupo porque el 0 no tiene inverso
- \blacksquare ($\mathbb{R}\setminus\{0\},\cdot$) es un grupo
- $(\mathbb{R} > 0, \cdot)$ es un grupo (subgrupo de \mathbb{R})
- $(\mathbb{R} < 0, \cdot)$ no es un subgrupo porque no es cerrado

8 CAPÍTULO 1. GRUPOS

- $(\mathbb{Z}, +)$ es un grupo
- $n\mathbb{Z} = \{\ldots, -2n, -n, 0, n, 2n, \ldots\}$ con la suma es un grupo
- $GL_2(\mathbb{R}) = \{A \in \mathbb{R}^{2 \times 2} \mid \det A \neq 0\}$ las matrices reales no singulares 2×2 forman un grupo con el producto
- Por lo anterior, las aplicaciones lineales que tienen inversa forman un grupo con la composición (componer aplicaciones es lo mismo que multiplicar matrices y la inversa existe \iff det $A \neq 0$)

Y a continuación una serie de grupos finitos

Ejemplo 2 (Grupo de las clases módulo n). $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}$ con la suma es un grupo.

Ejemplo 3. El conjunto $(\mathbb{Z}^*/n\mathbb{Z},\cdot)$ formado por $\{1,2,\ldots,n\}$ con el producto no da un grupo, porque hay elementos que no tienen inverso. Es interesante considerar el conjunto de unidades en este conjunto:

$$\mathcal{U}(\mathbb{Z}^*/n\mathbb{Z}) = \{ a \in \mathbb{Z}^*/n\mathbb{Z} \mid \exists a^{-1}, aa^{-1} = 1 \}$$

que sí es un grupo con el producto¹.

Los elementos de este grupo son tales que $\forall m \in \mathcal{U}(\mathbb{Z}^*/n\mathbb{Z}), \exists a \in \mathbb{Z}^*/n\mathbb{Z} \mid m \cdot a \equiv 1 \mod n \iff ma + nb = 1 \iff mcd(m,n) = 1$. De esta manera tenemos un método fácil para obtener los elementos de $\mathcal{U}(()\mathbb{Z}^*/n\mathbb{Z}) = \{m \in \mathbb{Z}^*/n\mathbb{Z} \mid mcd(m,n) = 1\}$. Aquí van algunos ejemplos:

- $U(\mathbb{Z}^*/6\mathbb{Z}) = \{1, 5\}$
- $U(\mathbb{Z}^*/12\mathbb{Z}) = \{1, 5, 7, 11\}$
- $\mathcal{U}(\mathbb{Z}^*/23\mathbb{Z}) = \{1, 2, 3, \dots, 22\}$ ya que 23 es primo

Hay muchos más grupos. Algunos de los grupos que hemos visto son en realidad el mismo grupo, solo que con dos maneras de verlo. De lo que va esta asignatura es de clasificar los grupos y de deducir propiedades comunes entre varios de ellos.

Teorema 1 (Propiedad cancelativa). Sea G un grupo, $a, b, c \in G$.

$$a * b = a * c \implies b = c \tag{1.1}$$

$$c * a = b * a \implies a = b \tag{1.2}$$

Demostración. Por la existencia del elemento inverso podemos multiplicar por a^{-1} a la izquierda en la primera expresión y obtenemos $a^{-1}ab = a^{-1}ac \implies eb = ec \implies b = c$. Lo mismo ocurre por la derecha en la segunda expresión.

Proposición 2 (Unicidad del elemento neutro). En un grupo G hay exactamente un elemento neutro e.

Demostración. Supongamos existen $e_1, e_2 \in G$ elementos neutros. Por ser e_1 elemento neutro se tiene que $e_1 * e_2 = e_2$ y por ser elemento neutro e_2 se tiene que $e_1 * e_2 = e_1$. Por tanto $e_1 = e_2$.

Proposición 3 (Unicidad del inverso de un elemento). Sea G un grupo, $g \in G$, entonces $\exists!g^{-1} \mid g * g^{-1} = e$.

Demostración. Supongamos a tiene inversos b_1 y b_2 . Entonces $a*b_1=a*b_2=e$. Por la propiedad cancelativa $b_1=b_2$.

Definición 2 (Orden de un elemento). Sea (G, *) un grupo. Decimos que $a \in G$ tiene orden finito si $\exists k \in \mathbb{N}$ tal que $a^k = e$. Si existen tales valores de k, llamamos orden del elemento a al mínimo de ellos:

$$o(a) = \min\{k \in \mathbb{N} \mid a^k = e\} \tag{1.3}$$

Definición 3 (Orden o cardinalidad de un grupo). Sea $G = \{a_1, a_2, \dots\}$ un grupo junto con alguna operación. Si $|G| < \infty$ decimos que el orden de G, $|G| = |\{a_1, a_2, \dots, a_n\}| = n$.

 $^{^{1}}$ Este grupo es en realidad una simplificación de un concepto que aparece en los anillos que son estructuras algebraicas con dos operaciones. En anillo no hace falta hacer la distinción de quitar el 0 y no solamente tenemos la noción de grupo de unidades para las clases de los enteros módulo n

1.2. SUBGRUPOS

Definición 4 (Grupo abeliano). Sea (G, *) un grupo. Diremos que G es abeliano (o conmutativo) $\iff \forall a, b \in G, \ a*b = b*a.$

De los ejemplos vistos anteriormente, son abelianos aquellos en los que la operación es conmutativa. Por ejemplo, $(\mathbb{R}, +)$ es abeliano porque $\forall a, b \in \mathbb{R}, \ a+b=b+a$. Por el contrario el grupo $GL_2(\mathbb{R})$ no es abeliano porque el producto de matrices no es conmutativo.

Teorema 4. Sea G un grupo tal que $\forall g \in G, g * g = e$. Entonces G es abeliano.

Corolario 1. $\forall a \in G, \ o(a) = 2 \implies G$ es abeliano.

Demostración. Sean $a,b \in G$. Tenemos que probar que a*b=b*a. Consideramos el elemento $(a*b) \in G$ por clausura. Por hipótesis tenemos que $(a*b)*(a*b)=e \implies (a*b)=(a*b)^{-1}=b^{-1}*a^{-1}=b*a$.

1.2. Subgrupos

Definición 5 (Subgrupo). Sea (G, *) un grupo, $S \in G, S \neq \emptyset$. Diremos que (S, *) es un subgrupo de (G, *) y lo denotaremos por S < G si verifica las siguientes condiciones:

- 1. Clausura. $\forall a, b, a, b \in S \implies a * b \in S$
- 2. Elemento neutro. $e \in S$
- 3. Elemento inverso. $\forall s \in S, s^{-1} \in S$

(La propiedad asociativa siempre se hereda.)

En caso de que el grupo del que elegimos el subgrupo sea finito, la clausura no es tan complicada de probar y suele merecer la pena empezar por ahí. De hecho en el caso finito, es suficiente para garantizar que el subconjunto sea un subgrupo. Veáse el siguiente teorema / ejercicio.

Teorema 5 (Hoja 1, ejercicio 7). Sea (G, *) un grupo y $S \subset G$, $S \neq \emptyset$ un subconjunto finito de G. Si S es cerrado por la operación * entonces S es un subgrupo de G.

Demostración. Se verifican las 3 propiedades

- 1. Clausura. Por hipótesis.
- 2. Elemento neutro. Sea $s \in S$. Si s = e ya hemos terminado. Si $s \neq e$, sabemos que $\{s^1, s^2, \dots\} \subset S$. Pero S es finito $\implies \exists \ 0 < i < j \text{ tales que } s^i = s^j \implies s^{j-i} = e$. Como $j > i \implies j-i > 0$, hemos obtenido e de operar s consigo mismo, luego $e \in S$.
- 3. Elemento inverso. Tomamos r=j-i de la propiedad anterior. Tenemos $s^r=e \implies s*s^{r-1}=e \implies s^{r-1}=s^{-1}$.

4

Teorema 6. Sea G un grupo y H un subconjunto de G. Entonces $H < G \iff \forall x, y \in H, xy^{-1} \in H$.

Demostración. De [DH96].

- $\bullet \ (\Longrightarrow). \ \text{Supongamos que } H < G. \ \text{Entonces} \ x,y \in H \implies xy \in H \land y \in H \implies y^{-1} \in H \ \text{y por tanto} \ xy^{-1} \in H.$
- (\iff). Supongamos que $x, y \in H \implies xy^{-1} \in H$. Veamos que se cumplen las 3 condiciones para que sea subgrupo:
 - Elemento neutro. Tomamos y = x y tenemos que $xx^{-1} = e \in H$.
 - Elemento inverso. Tomamos ahora x = e, y = x y tenemos que $ex^{-1} = x^{-1} \in H$.
 - Clausura. Tenemos que si $x, y \in H$ por la propiedad anterior $y^{-1} \in H$ y por tanto $xy = x(y^{-1})^{-1} \in H$.

Proposición 7. Si $\{S_i\}_{i\in\mathbb{N}}$ es una familia de subgrupos de G, entonces $\bigcap S_i$ también es un subgrupo de G.

Demostración. Es claro que se verifican las tres propiedades:

- 1. Clausura: si los elementos están en cada uno de los subgrupos entonces están en su intersección.
- 2. Elemento neutro: existe pues está en todos los subgrupos.

10 CAPÍTULO 1. GRUPOS

3. Elemento inverso: existe por la clausura.

*

1.2.1. Retículo de subgrupos

Definición 6 (Retículo de subgrupos). Dado un grupo G, el retículo de subgrupos es un grafo con todos los subgrupos de G. Denotamos la relación de inclusión con un vértice entre dos grupos. Es costumbre poner el mayor grupo arriba y denotar la inclusión por las diferencias en altura.

Es un diagrama de Hasse para la relación de inclusión.

Ejemplo 4 (Retículo de subgrupos \mathbb{Z}). \mathbb{Z} tiene infinitos subgrupos, todos los $k\mathbb{Z}$. En muchas ocasiones nos va a interesar solo dibujar unos pocos, para relacionarlos con subgrupos de otros grupos distintos de \mathbb{Z} . A continuación se muestra el retículo de subgrupos de \mathbb{Z} construido a partir de $6\mathbb{Z}$.

Figura 1.2: Una parte del retículo de subgrupos de \mathbb{Z} , en concreto la de los $n\mathbb{Z}$ con $n \mid 6$.

Los grupos que contienen a $6\mathbb{Z}$ son los de la forma $k\mathbb{Z}$ donde k divide a 6, ya que entre los múltiplos de los divisores de 6 también se encuentran los múltiplos de 6.

Proposición 8. Sea $n = \min_{r \in \mathbb{N}, r > 0} \{ r \in H, H < \mathbb{Z} \}$. Entonces $nH = \mathbb{Z}$.

Demostración. Probamos la doble inclusión. Por hipótesis $n \in H$ y por tanto $\langle n \rangle = n\mathbb{Z} \subset H$. Sea $\alpha \in H$. Por el algoritmo de la división, podemos expresar $\alpha = an + s$ con $0 \le s < n \implies s = 0 \implies H \subset n\mathbb{Z}$. Luego $H = n\mathbb{Z}$.

1.2.2. Subgrupos generados

Definición 7 (Subgrupo generado varios elementos). ^aSea (G, *) un grupo, $S \subset G$, $S \neq \emptyset$. El subgrupo generado por S es

$$\langle S \rangle = \{ s_1^{\alpha_1} * s_2^{\alpha_2} * \dots * s_n^{\alpha_n} \mid s_1, s_2, \dots, s_n \in S, \ \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{Z} \}$$

$$(1.4)$$

Proposición 9. El subgrupo generado por $S, \langle S \rangle$ es el más pequeño que contiene a S.

Normalmente, utilizaremos la definición restringida a un elemento:

Definición 8 (Subgrupo generado por un elemento). Sea G un grupo, $g \in G$. Llamamos subgrupo generado por g a

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \} \tag{1.5}$$

Proposición 10. El subgrupo generado por $g \in G$ en efecto es un subgrupo.

Demostración.

- 1. Es cerrado por * puesto que $\forall a^k, a^{k'} \in S, a^k * a^{k'} = a^{k+k'} \in S.$
- 2. $a^0 = e \in A$
- 3. $\forall a^k, a^{-k} \in A$

^aEste teorema reemplaza al de grupo generado por dos elementos dado en clase.

Proposición 11. Si o(g) = n, entonces $\langle g \rangle$ tiene n elementos (el orden de $\langle g \rangle$ es n).

Demostración. Primero comprobamos que no hay más de n elementos distintos. Consideramos $k \in \mathbb{Z}$, k = cn + r para algunos $c, r \in \mathbb{Z}$, $0 \le r < n$ por el algoritmo de la división. Entonces $a^k = a^{cn+r} = a^{cn}a^r = a^r$ pues o(a) = n.

Ahora probaremos que no hay menos de n elementos distintos, es decir, que $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ Supongamos existen $0 \le i < j < n$ tales que $a^i = a^j$. Entonces por cancelación $a^{j-i} = e = a^0 \implies j = i$ lo que da una contradicción.

Teorema 12. Sea G un grupo, $g \in G$. El menor subgrupo de G que contiene a g es $\langle g \rangle$.

Demostración. Tenemos que probar que para cualquier H subgrupo de $G, g \in H \implies g^k, \ \forall k \in \mathbb{Z}$.

1.3. Presentación de un grupo. Más ejemplos de grupos.

Con la noción de subgrupo generado ya tenemos tres maneras de dar los elementos de un grupo (o subgrupo):

- 1. Por su nombre, por ejemplo, los reales con la suma $(\mathbb{R}, +)$.
- 2. Explícitamente, citando todos los elementos, por ejemplo $\mathbb{Z}/2\mathbb{Z} = \{\overline{0}, \overline{1}\}$
- 3. Con la noción de grupo generado, por ejemplo $\mathbb{Z}/5\mathbb{Z} = \langle \overline{1} \rangle$.

Sin embargo, esto no suele ser suficiente para conocer un grupo. Por ejemplo, si nos hablan del grupo generado $\langle \overline{1} \rangle$ pueden estar refiriéndose a varios grupos, por ejemplo a $\mathbb{Z}/5\mathbb{Z}$ o a $\mathbb{Z}/2\mathbb{Z}$. Necesitamos una manera de dar la operación entre los elementos de un grupo. De esta manera tanto si enumeramos los elementos como si damos un grupo a partir de un generador, sabemos exactamente cómo se comporta el grupo.

Una manera de hacer esto es dar una tabla con todas las posibles operaciones entre cualesquiera dos elementos. Por la propiedad asociativa, esta tabla nos daría todas las operaciones necesarias para obtener el valor de cualquier palabra en los elementos de un grupo. Otra opción es dar una **presentación**.

Definición 9 (Presentación de un grupo). Una presentación de un grupo G es un par de conjuntos $G = \langle S \mid R \rangle$ donde S es un conjunto de elementos generadores y R es un conjunto de relaciones -igualdades- entre elementos del grupo.

En ocasiones el conjunto de relaciones se omite o se da por separado. Para las relaciones del tipo $a^k = e$, donde a es un elemento de G, en ocasiones se escribe o(a) = k, que viene a ser lo mismo.

La definición anterior no hace comentario alguno sobre los requisitos de los conjuntos que intervienen en la presentación. La definición formal es complicada. Ver [Wik].

Veamos ahora ejemplos de dos grupos importantes dados por su presentación.

Ejemplo 5 (Grupo de cuaterniones). Llamamos H al subgrupo de $GL_2(\mathbb{C})$ generado por A y B: $H = \langle A, B \rangle$ donde

$$A = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), B = \left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$$

De probar las multiplicaciones de A y de B consigo mismas y entre ellas se obtiene la presentación.

$$o(A) = o(B) = 4$$
 $A^2 = B^2$ $BA = AB^3$

y queda que $H = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$. Es posible obtener cualquier operación de A y B a partir de la presentación.

Figura 1.3: Órdenes de los elementos de H

Utilizando la notación estricta para la presentación tendríamos

$$H = \langle A, B \mid o(A) = o(B) = 4 \land A^2 = B^2 \land BA = AB^3 \rangle \tag{1.6}$$

y lo más importante: ya no hace falta decir quienes son A y B. De hecho, podían ser cualquier otra cosa que se comportara como las matrices que hemos dado antes y los teoremas que obtengamos para el grupo H aplicarían a esa otra cosa.

12 CAPÍTULO 1. GRUPOS

Figura 1.4: Simetría A y rotación B que compuestas forman los elementos del grupo D_4

Ejemplo 6 (El famoso grupo D_4). D_4 es el grupo formado por las composiciones de rotaciones y simetrías que llevan un cuadrado en un cuadrado $(f(\Box) = \Box)$. También se llama grupo diédrico de órden 4.

Geométricamente,

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right), \qquad B = \left(\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right), \quad \alpha = \frac{\pi}{2}$$

pero una vez hemos comprobado que todas las posibles operaciones A^iB^j y B^iA^j quedan dentro del grupo (que es cerrado), que existe el neutro (la identidad) y que cada elemento tiene su inverso, podemos obviar el significado geométrico y pasar a describirlo mediante la presentación del grupo.

$$D_4 = \langle A, B \rangle \text{ donde } o(A) = 2, \ o(B) = 4, BA = AB^3$$
 (1.7)

y además queda que $D_4 = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}.$

Figura 1.5: Órdenes de los elementos de D_4

Nota: lo que hemos hecho con un cuadrado también se puede hacer con un triángulo, con un pentágono o con cualquier polígono regular.

Ejemplo 7 (Grupos diédricos de orden n). Generalizando, podemos escribir cualquier grupo D_n con la presentación

$$D_n = \langle a, b \mid o(a) = 2, \ o(b) = n, \ ba = ab^{-1} = ab^{n-1} \rangle$$

Todos estos grupos son no abelianos de orden 2n.

Vistos estos ejemplos, continuamos con más definiciones y teoremas que se apoyan en la noción de grupo generado.

1.4. Grupos de permutaciones

Los grupos que se presentan a continuación fueron en realidad el germen de toda la teoría de grupos [DH96]. Se llaman grupos de permutaciones, de sustituciones o de biyecciones. Cuando son finitos a veces se llaman grupos simétricos de n elementos.

Definición 10 (Grupo de permutaciones de n elementos). Definimos S_n , el grupo de permutaciones de n elementos como el grupo formado por las biyecciones entre dos conjuntos de n elementos con la operación de composición.

Por simplicidad tomamos siempre los conjuntos $\{1, 2, \dots, n\}$. Para referirnos a sus elementos $\alpha \in S_n$ utilizamos la notación

$$\alpha = \left(\begin{array}{ccc} 1 & 2 & \dots & n \\ \alpha(1) & \alpha(2) & \dots & \alpha(n) \end{array}\right)$$

Ejemplo 8. Consideramos el grupo S_3 de las biyecciones de $\{1,2,3\}$ en sí mismo. Un elemento de este grupo es

$$\alpha = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

Se correspondería con la aplicación dada por (ver Figure 1.6)

Figura 1.6: Elemento α de S_3

Ejemplo 9. Consideramos ahora los elementos α y β de S_3 dados por

$$\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad \beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Observamos que como la operación en S_3 es la composición, el resultado $\alpha \circ \beta$ se obtiene de aplicar primero β y luego α (ver Figure 1.7)

Figura 1.7: Resultado de la composición $\alpha \circ \beta$

1.4.1. Notación cíclica para permutaciones

La notación vista hasta ahora es muy redundante porque la primera fila siembre se repite. Mejor utilizamos otra notación basada en *ciclos*.².

Veremos esta notación con una permutación de S_8 :

$$\alpha = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 7 & 5 & 1 & 8 & 6 & 3 \end{array}\right)$$

Por convención, tomamos primero el 1. Para obtener el primer ciclo vemos las imágenes sucesivas de α sobre el 1:

$$\alpha^{0}(1) = Id(1) = 1$$
 $\alpha^{1}(1) = \alpha(1) = 4$ $\alpha^{2}(1) = \alpha(4) = 5$ $\alpha^{3}(1) = \alpha(5) = 1$

Si siguiéramos aplicando α sucesivamente obtendríamos de nuevo estos tres números ($\alpha^4(1) = \alpha^1(1) = \alpha(1) = 4$, y en general $\alpha^j = \alpha^{j-3}$, $\forall j > 3$). Así hemos obtenido nuestro primer ciclo al que llamaremos σ_1 y denotaremos con (145).

Para seguir, cogemos en la fila de arriba, al siguiente elemento que no hayamos recorrido ya, es decir que no esté en σ_1 : es el 2. Repetimos el procedimiento

$$\alpha^{0}(2) = 2$$
 $\alpha^{1}(2) = 2$ $\alpha^{j}(2) = 2$...

Este segundo ciclo solo tiene un elemento así que escribimos $\sigma_2 = (2)$.

Continuamos con el 3

$$\alpha^{0}(3) = 3$$
 $\alpha^{1}(3) = 7$ $\alpha^{2}(3) = 6$ $\alpha^{3}(3) = 8$ $\alpha^{4}(3) = 3$

y obtenemos $\sigma_3 = (3768)$ y ya no quedan más números en la fila de arriba por asignar a un ciclo. Lo bueno de este proceso es que ahora podemos escribir

$$\alpha = \sigma_3 \circ \sigma_2 \circ \sigma_1 = (3768)(2)(145)$$

Como el ciclo σ_2 es la aplicación identidad lo podemos eliminar sin que afecte al resultado por lo que nos queda $\alpha = (3768)(145)$.

La razón por la que se utiliza esta notación va aún más allá de la economía de tinta y papel. Próximamente se darán propiedades de esta notación que permitirán calcular los órdenes de elementos de S_n de manera inmediata entre otras muchas.

Acabamos con un ejemplo del uso de esta notación.

 $^{^2}$ La definición de ciclo es algo complicada y vendrá más adelante. Básicamente, un ciclo es un elemento de una partición de S_3

14 CAPÍTULO 1. GRUPOS

Ejemplo 10 (Grupo de biyecciones S_3). Consideramos los elementos a = (123) y b = (12) de S_3 . Podemos presentar el grupo con

$$S_3 = \langle a, b \mid o(a) = 3, \ o(b) = 2, \ ba = ab^2 \rangle$$

Ocurre que esta es la misma presentación que la del grupo D_3 así que podremos dar un isomorfismo (cuando sepamos lo que son los isomorfismos) entre ellos y por tanto $S_3 \simeq D_3$.

1.5. Grupos cíclicos

El objetivo de la teoría de grupos es clasificar todos los grupos sea cual sea su orden. En esta sección extinguimos la primera familia de grupos a clasificar: concluiremos con un teorema que nos clasifica los grupos cíclicos de cualquier orden.

Definición 11 (Grupo cíclico). Sea (G,*) un grupo. Diremos que G es cíclico si $\exists q \in G \mid \langle q \rangle = G$.

Los grupos cíclicos ocuparán una parte central más adelante.

Teorema 13. Si G es cíclico entonces G es abeliano.

Demostración. Tenemos que probar que $\forall a,b \in G,\ ab=ba.$ Sabemos que $a=g^i,b=g^j$ para algunos $i,j\in\mathbb{Z}\implies ab=a^ia^j=a^{i+j}=a^{j+1}=a^ja^i=ba.$

Proposición 14. Todo subgrupo de $\mathbb{Z}/n\mathbb{Z}$ es cíclico.

Demostración. La propiedad de cíclico se hereda de \mathbb{Z} y se prueba igual utilizando el algoritmo de la división.

Proposición 15. Consideramos $\mathbb{Z}/n\mathbb{Z}$. Para cada divisor d de n, existe un único subgrupo cíclico de orden d.

Demostración. $d \mid n \implies n = dn' \implies n'\mathbb{Z} < n\mathbb{Z}$ Además, por el teorema de prácticas, $|n'\mathbb{Z}| = d$ y por tanto $|f(n'\mathbb{Z})| = d$ donde $f: n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ es la relación de equivalencia habitual.

El siguiente resultado requiere que anticipemos el concepto de isomorfismo que se da en cuanto introduzcamos las funciones entre grupos: los homomorfismos. Básicamente se puede interpretar como igualdad.

Teorema 16 (Teorema de clasificación de grupos cíclicos). De [DH96]. Sea G un grupo cíclico

- 1. Si $|G| = \infty$ entonces $G \simeq (\mathbb{Z}, +)$
- 2. Si $|G| = n < \infty$ entonces $G \simeq (\mathbb{Z}/n\mathbb{Z}, +)$

1.6. Sobre los órdenes

Teorema 17. Sea $g \in G$ tal que $o(g) = n \in \mathbb{N} \geqslant 1$ y sea $r \in \mathbb{N}$. Si r y n son coprimos, entonces $\langle g \rangle = \langle g^r \rangle$.

Corolario 2. Si r y n = o(g) son coprimos entonces $o(g) = o(g^r)$.

Demostración. Recordamos que $p \neq q$ son coprimos $\iff \exists \alpha, \beta \in \mathbb{Z} \mid \alpha p + \beta n = 1$. Recordamos que $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ donde n = o(g). Tenemos que probar la doble inclusión. Fijémonos en que $g^r \in \langle g \rangle \implies \langle g^r \rangle \subset \langle g \rangle$ pues $\langle g \rangle$ contiene a todos los elementos de la forma g^k , $k \in \mathbb{Z}$ (ver definición 8). Ahora probaremos que $\langle g \rangle \subset \langle g^r \rangle$. Como $r \neq n$ son coprimos, $g = g^{\alpha r + \beta n} = (g^r)^{\alpha} (g^n)^{\beta} = (g^r)^{\alpha} \in \langle g^r \rangle \implies \langle g \rangle \subset \langle g^r \rangle$. Concluimos que $\langle g \rangle = \langle g^r \rangle$.

Ejemplo 11. En $\mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$ con la suma tomamos g = 1 y por tanto n = o(g) = 4, y tomamos r = 3 y por tanto mcd(n, r) = 1. Efectivamente se verifica que $o(1^3) = o(1 + 1 + 1) = o(3) = 4 = o(1)$ o lo que es lo mismo, $\langle 1 \rangle = \langle 3 \rangle$.

Proposición 18. Sea $g \in G$ tal que o(g) = n y sea $r \in \mathbb{N}$ con $r \mid n$ (r divide a n). Entonces $o(g^r) = \frac{n}{r}$.

Demostración. Sea n' tal que n = rn'. Probaremos que $r \mid n \implies o(g^r) = n'$.

$$\langle g^r \rangle = \{g^r, g^{2r}, g^{3r}, \dots, g^{n'r} = g^n\} \subset \{g, g^2, g^3, \dots, g^n\} = \langle g \rangle$$

 $\langle g^r \rangle$ tiene n' elementos distintos porque para cualquier $i=0,\ldots,n',\ o(g^{ir}) <= o(g)=n$ por lo que no se repite ninguno. Además cualquier g^{ir} está bien definido porque al dividir r a $n,\ ir \in \mathbb{N}$.

Teorema 19 (Hoja 1, ejercicio 9). Sea $o(g) = n \in \mathbb{N}$ y sea $N \in \mathbb{Z}$. Entonces $o(g^N) = \frac{o(g)}{mcd(N, o(g))}$.

Demostración. Afirmamos que n y N/d, con d = mcd(N, n) son coprimos. Expresamos $g^N = (g^{N/d})^d$. Por el [corolario del] teorema 17 tenemos que $o(g^{N/d}) = o(g) = n$. Por la proposición 18 tenemos que $o((g^{N/d})^d) = \frac{o(g^{N/d})}{d} = \frac{n}{d}$.

Teorema 20. Sean $\overline{k}, \overline{k'} \in \mathbb{Z}/n\mathbb{Z}$. Entonces $o(\overline{k}) = o(\overline{k'}) = d \implies \langle \overline{k} \rangle = \langle \overline{k'} \rangle$

1.7. El teorema de Lagrange

Previamente, introducimos una definición crucial a lo largo del curso.

Definición 12 (Clase lateral). Sea (G, *) un grupo, $H < G, g \in G$. Definimos

- $g * H = gH = \{g * h \mid h \in H\}$ es una clase lateral izquierda de H
- $H * g = Hg = \{h * g \mid h \in H\}$ es una clase lateral derecha de H

Teorema 21. Si H < G tiene orden $n < \infty$ entonces |gH| = |Hg| = |H| = n.

Demostración. Consideramos la aplicación $f: H \to gH$, $f(h) \to g*h$ para un $g \in G$ dado. Es inyectiva: $f(h_1) = f(h_2) \Longrightarrow h_1 = h_2$ puesto que $xh_1 = xh_2 \Longrightarrow h_1 = h_2$ por la propiedad cancelativa. Es sobreyectiva porque $\forall h \in H$, g*h = f(h). Por tanto f es biyectiva y los órdenes son iguales.

Proposición 22. Sea H < G, $g \in G$. Las clases laterales gH y Hg cumplen las siguientes propiedades (las cumplen las dos pero damos solo las de la izquierda):

- 1. $g \in H \iff g * H = H$
- 2. $g \in g * H \implies G = \bigcup_{g \in G} g * H$
- 3. $g' \in g * H \implies g' * H = g * H$
- 4. $g_1 * H \cap g_2 * H \neq \emptyset \implies g_1 * H = g_2 * H$

 $\begin{array}{l} \textit{Demostraci\'on.} \text{ (solo de la \'ultima propiedad) Sabemos que existe } \alpha \in g_1*H \cap g_2*H \text{ de la forma } \alpha = g_1*h_1 = g_2*h_2, \ h_1, h_2 \in H. \\ \text{Ahora bien, } g_1*h_1 = g_2*h_2 \iff g_2^{-1}*g_1*h_1 = h_2 \iff g_2^{-1}g_1 \in H \implies g_2(g_2^{-1}g_1)H = g_2(g_2^{-1}g_1H) = g_2H. \end{array}$

De las propiedades anteriores se obtiene que $\{g_i*H\}_{g_i\in G}$ es una partición de G. Además, por el teorema 21, como |g*H|=|H| la partición divide G en cajas iguales (ver cuadro 1.8). Pongamos que G es finito y que hay r cajas, entonces $|G|=r|g_i*H|=r|H| \implies |H| \mid |G|$. A continuación veremos otra forma de dar esta relación de equivalencia.

Para algún H < G, la partición que hemos dado anteriormente es la definida por la relación de equivalencia $g_1Rg_2 \iff g_1*H = g_2*H$. Otra manera de definirla es $g_1Rg_2 \iff g_2^{-1}g_1 \in H$. Se verifica que esta nueva definición es una relación de equivalencia.

$g_1 * H$	$g_2 * H$	
	H	
	$g_{r-1} * H$	$g_r * H$

Figura 1.8: Partición de G en r cajas iguales

Esto nos permite a su vez enunciar de manera natural el resultado que se conoce como Teorema de Lagrange: si un subgrupo da una relación de equivalencia que partición G en r cajas disjuntas, cada una con |H| elementos, entonces |H| | |G|.

Teorema 23 (de Lagrange). Sea G un grupo finito y H < G. Entonces $|H| \mid |G|$ (el orden de H divide al orden de G).

Corolario 3. Sea G un grupo y $q \in G$. Entonces $o(q) \mid |G|$ (el orden de un elemento divide al orden del grupo).

Corolario 4. Si G es un grupo de orden p, con p primo, entonces G es cíclico.

16 CAPÍTULO 1. GRUPOS

Demostración. Sea $g \in G$, $g \neq e$. Por el teorema de Lagrange $|\langle g \rangle|$ | |G| = p. Como p es primo sus únicos divisores son 1 y p y como $|\langle g \rangle| > 1$ se ha de tener $|\langle g \rangle| = p$. Por tanto $\langle g \rangle = G$ y G es cíclico.

Sabiendo ahora que $H < G \implies |H| \mid |G| \implies |G| = r \cdot |H|, r \in \mathbb{N}$ vamos a ponerle un nombre a dicha r.

Definición 13 (Índice de un subgrupo en un grupo). Sea H < G. Definimos el **índice de** H **en** G, y lo representamos mediante [G:H], como el cardinal del conjunto cociente G/H. [DH96]

1.7.1. Subgrupos normales y grupo cociente

Definición 14 (Subgrupo normal). Sea H < G. Diremos que H es un subgrupo normal de G y lo denotaremos por $H \triangleleft G \iff \forall g \in G, \ g*H = H*g.$

Proposición 24. Si G es abeliano entonces todos sus subgrupos son normales.

Definición 15 (Conjunto cociente en grupos). Sea H < G. Definimos

$$G/H = \{gH \mid g \in G\} \tag{1.8}$$

Proposición 25. Sea $H \triangleleft G$. (G/H, *) con la operación $*: G/H \times G/H \to G/H, (xH)(yH) \mapsto (xy)H$ es un grupo.

Demostración. La operación * está bien definida. $\forall \overline{x}, \overline{y} \in G/H, \ \overline{x} * \overline{y} = xHyH = xyHH = xyH = \overline{x} * \overline{y}.$

El elemento neutro es \overline{e} pues $\forall \overline{x} \in G/H$, $\overline{e} * \overline{x} = eHxH = exH = xH = \overline{x}$.

El elemento inverso está bien definido: $\overline{x}^{-1} = \overline{x}^{-1}$ pues $\forall \overline{x} \in G/H, \ \overline{xx}^{-1} = xHx^{-1}H = xx^{-1}H = eH = \overline{e}$.

Teorema 26. De $[DH96]^a$ Sea H < G con [G:H] = 2 (con índice de H en G igual a 2). Entonces H es normal.

 $^a\mathrm{No}$ lo hemos dado explícitamente pero se utiliza para algunos ejemplos.

Capítulo 2

Homomorfismos de grupos

2.1. Homomorfismos de grupos

Como en cualquier estructura algebraica, es interesante establecer correspondencias entre grupos. Los homomorfismos son funciones definidas de manera que la operación del grupo se preserva.

Definición 16 (Homomorfismo de grupos). Sean $(G_1, \cdot), (G_2, *)$ grupos. Decimos que $f: G_1 \to G_2$ es un homomorfismo de grupos si $\forall a, b \in G_1, \ f(a \cdot b) = f(a) * f(b)$.

- \blacksquare si fes inyectiva, fes un monomorfismo
- \blacksquare si f es sobreyectiva, f es un epimorfismo
- \bullet si f es biyectiva, f es un isomorfismo
- \bullet si $G_2=G_1$ y f es un isomorfismo, entonces f se llama automorfismo

Si existe un isomorfismo entre dos grupos, decimos que son isomorfos y lo denotamos por $G_1 \simeq G_2$.

Figura 2.1: Homomorfismo de grupos

Definición 17 (Núcleo de un homomorfismo). Sea $f:G_1\to G_2$ un homomorfismo. Definimos el núcleo ker $f=\{x\in G_1\mid f(x)=e_2\in G_2\}$ (los que van a parar al neutro).

Definición 18 (Imagen de un homomorfismo). Sea $f: G_1 \to G_2$ un homomorfismo. Definimos la imagen Im $f = \{y \in G_2 \mid \exists x \in G_1, f(x) = y\}.$

Proposición 27. Sea $f: G_1 \to G_2$ un homomorfismo. ker $f < G_1$.

Demostración. Probamos las 3 propiedades de los subgrupos

- 1. $a, b \in \ker f \implies a \cdot b \in \ker f$. $f(a \cdot b) = f(a) * f(b) = e_2 * e_2 = e_2$.
- 2. $a \in \ker f \implies a^{-1} \in \ker f$. $f(a) = e_2$, $f(a^{-1}) = e_2 \implies (f(a))^{-1} = e_2$.
- 3. $e_1 \in \ker f$.

Teorema 28. Sea $f: G_1 \to G_2$ un homomorfismo. Im $f < G_2$.

Demostración. Es análoga a la del ker f.

Teorema 29. Sea $f:G_1\to G_2$ un homomorfismo. ker $f\triangleleft G_1$

Demostración. Tenemos que probar que $\forall a \in G_1, a(\ker f)a^{-1} \subset \ker f$.

Sea
$$h \in \ker f$$
. $f(aha^{-1}) = f(a) \underbrace{f(h)}_{e_2} f(a^{-1}) = f(a)f(a^{-1}) = e_2 \subset \ker f$

Proposición 30. Sea $f: G_1 \to G_2$ un homomorfismo de grupos. f es inyectiva si y solo si ker $f = \{e\}$.

Demostración.

- ullet (\longleftarrow) Suponemos que f es inyectiva. Sabemos que en un homomorfismo $f(e_1)=e_2$ y además ker $f=e_1$ por hipótesis.
- (⇒) Tenemos que probar que dados $a, b \in G_1$, f(a) = f(b) ⇒ a = b. Decir que f(a) = f(b) es lo mismo que decir $e_2 = f(a)^{-1}f(b) = f(a^{-1})f(b) = f(a^{-1}b)$ ⇒ $a^{-1}b \in \ker f = \{e_1\}$ ⇒ a = b.

Proposición 31. Sean G_1, G_2, G_3 grupos y sean $f: G_1 \to G_2, g: G_2 \to G_3$ homomorfismos de grupos. Entonces $g \circ f$ es a su vez un homomorfismo de grupos.

Teorema 32. Sea $f: G_1 \to G_2$ un homomorfismo de grupos. Entonces o(f(g)) divide a o(g).

Teorema 33. Sea $f: G_1 \to G_2$ un isomorfismo de grupos. Entonces o(g) = o(f(g)).

Demostración. Consideramos f y f^{-1} para los que se verifica el teorema anterior. $o(g) \mid o(f(g)) \wedge o(f(g)) \mid o(f^{-1}(f(g))) = o(g) \implies o(g) = o(f(g))$.

2.1.1. Ejemplos de homomorfismos de grupos

Ejemplo 12 (Homomorfismo trivial). Siempre nos queda el homomorfismo trivial $f: G_1 \to G_2, f(g_1) = e_2, \forall g_1 \in G_1.$

Ejemplo 13. Consideramos $\mathbb{Z}/n\mathbb{Z} = \{0, 1, \dots, n-1\}$ La presentación de este grupo es o(1) = n. Queremos construir un homomorfismo $f: \mathbb{Z}/n\mathbb{Z} \to G'$. Para que f sea un homomorfismo necesitamos que f(0) = e. Ahora supongamos que establecemos f(1) = a. Naturalmente sigue (para que f sea un homomorfismo) que $f(2) = a * a = a^2$. Observamos que la condición necesaria y suficiente para que el homomorfismo definido por f(1) = a es que $a^n = e$, o lo que es lo mismo que o(a) divida a n.

$$f: \mathbb{Z}/n\mathbb{Z} \to G'$$

$$0 \mapsto e$$

$$1 \mapsto a$$

$$2 \mapsto a^{2}$$

$$\dots$$

$$n = 0 \mapsto a^{n} = 0$$

Ejemplo 14. En $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ podemos construir n homomorfismos ya que

- cualquier $a \in \mathbb{Z}/n\mathbb{Z}$ es cumple la condición necesaria para que f(1) = a induzca un homomorfismo
- \bullet todo homomorfismo queda determinado por f(1)=a para algún $a\in \mathbb{Z}/n\mathbb{Z}.$

Es decir que $\operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/n\mathbb{Z}) \simeq \mathbb{Z}/n\mathbb{Z}$.

Ejemplo 15. Si ahora nos preguntamos por los isomorfismos $\operatorname{Isom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \subset \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z})$ nos damos cuenta de que los únicos $a \in \mathbb{Z}/n\mathbb{Z}$ que nos dan isomorfismos son aquellos que tienen o(a) = n.

Es decir que $\operatorname{Isom}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \simeq \mathcal{U}(\mathbb{Z}/n\mathbb{Z})$. Profundizamos en esto más adelante al hablar del producto semidirecto.

Proposición 34 (O ejemplo). Sea $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. f es un isomorfismo $\iff f(\overline{1}) = \overline{a} \in \mathcal{U}(\mathbb{Z}/n\mathbb{Z})$

Ejemplo 16 (Automorfismo conjugación). Este ejemplo se utiliza tantísimo en lo que viene en el siguiente capítulo que tiene nombre propio.

Fijamos $g \in G$ y definimos $\phi_g : G \to G$, $x \mapsto gxg^{-1}$. Es un homomorfismo de grupos pues $y \mapsto gyg^{-1}$ y $xy \mapsto gxyg^{-1} = gxg^{-1}gyg^{-1}$.

Ahora consideramos g^{-1} y $\phi_{g^{-1}}: G \to G, \ x \mapsto g^{-1}xg$ y como antes se verifica que es homomorfismo.

Además, $\phi_q \circ \phi_{q^{-1}} = id$ luego ϕ_q es un automorfismo (e isomorfismo) de grupos.

Nota: en ocasiones lo denotamos con γ_a .

Ejemplo 17. Consideramos ahora $N \triangleleft G$ y por tanto para cualquier $g \in G$, gN = Ng. La función $\phi_g(N) \subset N$ es un isomorfismo que además lleva los elementos de N en N, por tanto podemos restringirla a $\phi_g : N \to N$ e inducir un isomorfismo.

Es decir, los subgrupos que no se mueven por ninguna función ϕ_g son los subgrupos normales.

Ejemplo 18. TODO: esto creo que es mentira.

Consideramos el grupo $(\mathbb{Z}, +)$ que es cíclico y un grupo G con $a \in G$. Utilizando notación multiplicativa en la que el $\mathbf{1}$ representa el elemento neutro (en este caso $\mathbf{1} = e$)

$$Z \to G$$

$$\mathbf{1} \mapsto a$$

$$k \mapsto a^{k}$$

$$k + k' \mapsto a^{k+k'}$$

Es decir, que al seleccionar $\mathbf{1} \mapsto a$ queda determinada la imágen de todos los demás $k \in \mathbb{Z}$ y además la función que obtenemos es un homomorfismo. Por tanto el conjunto de los homomorfismos de \mathbb{Z} en G es TODO G: Hom $(\mathbb{Z}, G) = G$.

Ejemplo 19 (del primer teorema de la isomorfía). Consideramos el grupo $G = \{1, i, -1, -i\}$ con el producto y establecemos la función $f: \mathbb{Z} \to G$ que lleva $1 \mapsto i$. Además f es sobreyectiva y ker $f = \mathbb{Z}/4\mathbb{Z}$. El primer teorema de la isomorfía nos dice que existe un isomorfísmo $\overline{f}: \mathbb{Z}/\ker f \to G$ y este es $\overline{f}, \overline{f}([a]) \mapsto i^a$ (en ker f no se repiten los elementos por lo que convertimos el epimorfismo f en un homomorfismo \overline{f}).

En general todos los grupos cíclicos de orden n son isomorfos entre sí, porque todos son isomorfos a $\mathbb{Z}/n\mathbb{Z}$ y los isomorfismos son reversibles y la composición sigue siendo isomorfismo.

Hemos visto que $\operatorname{Hom}(\mathbb{Z},G)=G$ porque al determinar f(1)=a determinamos el homomorfismo y por tanto tenemos un homomorfismo para cada elemento $a\in G$.

¿Pero qué pasa si tomamos los homomorfismos $f: \mathbb{Z}/n\mathbb{Z} \to G$ con $a \in G$ definidos por $f(\overline{1}) = a$? Pasa que para que sean homomorfismos necesitamos que o(a) = o(1) = n para que así $\overline{0} = \overline{n} \mapsto a^n = e$.

2.2. Retículo de subgrupos

Los homomorfismos de grupos pueden ser de gran utilidad para encontrar el retículo de subgrupos.

El siguiente teorema no lo ha dado Orlando explícitamente pero básicamente lo que dice es lo que dijo en las 3 clases sobre correspondencia entre subgrupos pero un poco más ordenado.

Teorema 35 (de correspondencia entre subgrupos mediante homomorfismos). Sea $f: G_1 \to G_2$ un homomorfismo de grupos. Se tiene [DH96]:

- 1. Si $H_1 < G_1$ entonces $f(H_1) < G_2$
- 2. Si $H_2 < G_2$ entonces $f^{-1}(H_2) = \{h_1 \in G_1 \mid f(h_1) \in H_2\} < G_2$
- 3. Si $H_2 \triangleleft G_2$ entonces $f^{-1}(H_2) \triangleleft G_1$
- 4. Si $H_1 \triangleleft G_1$ y f es además sobreyectiva (es un epimorfismo) entonces $f(H_1) \triangleleft G_2$

Demostración.

1. Demostramos que se cumplen las 3 propiedades de los grupos. Sabemos que $e_1 \in H_1 \implies e_2 \in f(H_1) = H_2$. Además, sabemos que $\forall x \in H_1, \ x^{-1} \in H_1$ y por ser f un homomorfismo tenemos que $\forall f(x) \in H_2, \ f(x)^{-1} = f(x^{-1}) \in H_2$. Por último, tenemos que $\forall x, y \in H, \ xy \in H_1 \implies \forall f(x), f(y) \in H_2, \ f(x)f(y) = f(xy) \in H_2$.

- 2. Es análoga a la de la primera afirmación.
- 3. Tenemos que probar que para un $g_1 \in G_1$, $\forall h_1 \in f^{-1}(H_2) = H_1$, $g_1h_1 = h_1g_1$. Sabemos que $\forall h_1, \exists h_2 \in H_2 \mid f^{-1}(h_2) = h_1$. Entonces $g_1h_1 = h_1g_1 \iff f^{-1}(g_2)f^{-1}(h_2) = f^{-1}(h_2)f^{-1}(g_2) \iff f^{-1}(g_2h_2) = f^{-1}(h_2g_2)$ que es cierto por hipótesis de que H_2 es normal.
- 4. Tenemos que probar que para $g_2 \in G_2$ dado, $\forall h_2 \in H_2 = f(H_1), \ g_2h_2 = h_2g_2$. Comenzamos por asegurar que $\exists g_1 \in G_1 \mid f(g_1) = g_2$ por ser f sobreyectiva. Por tanto $g_2h_2 = h_2g_2 \iff f(g_1)f(h_1) = f(h_1)f(g_1) \iff f(g_1h_1) = f(h_1g_1)$ que es cierto por hipótesis.

*

Queremos establecer una relación entre los retículos de subgrupos de dos grupos que son el dominio y la imágen de un epimorfismo $f: G_1 \to G_2$. Los subgrupos de G_2 siempre contendrán al elemento neutro e_2 por lo que podemos establecer una relación natural entre los subgrupos de G_1 que contienen a ker f con los subgrupos de G_2 .

Teorema 36. ^a Sea $f: G_1 \to G_2$ un epimorfismo. Existe una biyección entre el retículo de subgrupos de G_2 y subgrupos de G_1 que contienen al ker f. Se cumple que $H_2 < G_2 \iff f^{-1}(H_2) \supset \ker f$. En particular, el número de subgrupos de G_2 es igual al número de subgrupos de G_1 que contienen al núcleo.

$$|\{H_2 \mid H_2 < G_2\}| = |\{H_1 < G_1 \mid \ker f \in H_1\}|$$

 a Este teorema es un desastre. Las hipótesis no las ha dado y las conclusiones tampoco. Es lo que más o menos he creido que quería decir. Es posible que se corresponda con la proposición 4.4.6 del [DH96] pero en dicha proposición no se exige que f sea sobre.

Demostración. Sabemos que por ser f homomorfismo, $H_1 < G_1 \implies f(H_1) < G_2$.

Veamos que la relación entre los subconjuntos de G_1 y de G_2 se mantiene al aplicar el epimorfismo. Sea $H_2 \subset G_2$. Como f es sobre $f(f^{-1}(H_2)) = H_2$. Ahora sea $H_2' \mid H_2 \subset H_2' \subset G_2$. Ocurre lo de antes y además $f^{-1}(H_2) \subset f^{-1}(H_2') \subset G_1$.

Ahora lo extendemos de subconjuntos a subgrupos. Asociamos a cada $H_2 < G_2$ el subgrupo $f^{-1}(H_2) < G$. Es un subgrupo porque al ser f epimorfismo mantiene la operación. En particular, $e_2 \in H_2 \implies \ker f = f^{-1}(e_2) \subset f^{-1}(H_2)$.

Por último afirmamos que si ker $f \subset H_1 < G_1$, entonces $H_1 = f^{-1}(f(H_1))$. Para probar esto probamos la doble inclusión. $H_1 \in f^{-1}(f(H_1))$ es evidente pues $h \in H_1 \implies f(h) \in f(H_1)$. Ahora probamos ker $f \subset H_1 \implies H \subset f^{-1}(f(H_1))$.

$$\alpha \in f^{-1}(f(H_1)) \iff f(\alpha) \in f^{-1}(f(H_1))$$

$$\iff \exists h_1 \in f(H_1) \mid f(\alpha) \in f(H_1)$$

$$\iff \exists h_1 \in H \mid f(\alpha)(f(h_1))^{-1} = e_2$$

$$\iff \exists h_1 \in H_1 \mid f(\alpha h_1^{-1}) = e_2$$

$$\iff \exists h_1 \in H_1 \mid \alpha h_1^{-1} \in \ker f$$

$$\alpha h_1^{-1} h_1 \implies \alpha \in H_1$$

Ejemplo 20 (Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z}$). Queremos saber sobre los subgrupos que tiene $\mathbb{Z}/8\mathbb{Z}$ (ver figura ??). El epimorfismo que utilizamos es $f: \mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}$, $z \mapsto f(z) = \overline{z}$ el habitual.

Para ver los subgrupos de $\mathbb{Z}/8\mathbb{Z}$ miramos qué subgrupos de \mathbb{Z} contienen a ker $f=\{z\in\mathbb{Z}\mid f(z)=\overline{0}\}=\{z\in\mathbb{Z}\mid z\text{ mód }8=0\}=8\mathbb{Z}$. Es decir, tenemos que encontrar los subgrupos de \mathbb{Z} que contengan a los múltiplos de 8 (8 \mathbb{Z}):

$$\mathbb{Z} \supset 2\mathbb{Z} \supset 4\mathbb{Z} \supset 8\mathbb{Z}$$

En general, en $n\mathbb{Z}$, los subgrupos que contienen al núcleo son los $m\mathbb{Z}$ tales que $m \mid n$ (m divide a n). Luego $\mathbb{Z}/8\mathbb{Z}$ tendrá 4 subgrupos que serán $f(8\mathbb{Z}) = \mathbb{Z}/8\mathbb{Z}$, $f(4\mathbb{Z}) = \mathbb{Z}/4\mathbb{Z}$, $f(2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$, $f(\mathbb{Z}) = \{e\}$.

Figura 2.2: Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z}$

Lo mismo podríamos hacer para obtener el retículo de $\mathbb{Z}/6\mathbb{Z}$ (ver figura ??).

Figura 2.3: Retículo de subgrupos de $\mathbb{Z}/6\mathbb{Z}$

2.3. Teoremas de la isomorfía

Teorema 37. (Primer teorema de la isomorfía) Sea $f: G_1 \to G_2$ un epimorfismo y sea $\pi: G_1 \to G_1/\ker f$. Entonces existe un isomorfismo $\overline{f}: G_1/\ker f \to G_2$ tal que $f = \pi \circ \overline{f}$.

Figura 2.4: Primer teorema de la isomorfía.

Teorema 38. (Segundo teorema de la isomorfía) Sea G un grupo, $H \triangleleft G$, $K \triangleleft G$ y H < K. Entonces K/H es un subgrupo normal de G/H y

$$G/H/K/H \simeq G/K$$
 (2.1)

Teorema 39 (Tercer teorema de la isomorfía). Sea G un grupo, H < G, $K \triangleleft G$. Entonces HK < G, $K \triangleleft HK$ y $H \cap K \triangleleft H$. Además,

$$HK/K \simeq H/(H \cap K)$$
 (2.2)

Capítulo 3

Clasificación de grupos de orden pequeño

El objetivo final de la teoría de grupos es clasificar los grupos según sus propiedades. Durante el resto del curso veremos formas cada vez más sofisticadas de clasificar los grupos. Empezaremos con algunos resultados que permiten clasificar grupos finitos de orden pequeño.

3.1. Producto directo de grupos

El producto directo de grupos permite generar otro grupo a partir de otros.

Definición 19 (Producto directo de grupos). Sean $(G_1, *), (G_2, \bullet)$ grupos. Llamamos producto directo de los grupos G_1 y G_2 al grupo $(G_1 \times G_2, \sim)$. Donde $\sim: (G_1 \times G_2) \times (G_1 \times G_2) \rightarrow G_1 \times G_2, (g_1, g_2) \sim (g'_1, g'_2) = (g_1 * g'_1, g_2 \bullet g'_2)$. En general, dados $(G_1, *_1), \ldots, (G_n, *_n)$ podemos definir el producto directo con

$$(G_1, *_1) \times \dots (G_n, *_n) = \sum_{i=1}^n (G_i, *_i) = \left(\sum_{i=1}^n G_i, \sim\right)$$

donde $\sim: (X_{i=1}^n G_i) \times (X_{i=1}^n G_i) \to X_{i=1}^n G_i$ con $(g_1, \dots, g_n) \sim (g'_1, \dots, g'_n) = (g_1 *_1 g'_1, \dots, g_n *_n g'_n)$.

Cuando se utiliza la notación aditiva es común llamarlo suma directa.

Definición 20 (Suma directa). Sean $(G_1, +), \dots, (G_n, +)$ grupos cuya operación es la suma^a entonces denotamos por suma directa al producto directo de todos ellos:

$$\bigoplus_{i=1}^{n} (G_i, +) = \left(\bigoplus_{i=1}^{n} G_i, \oplus\right) = (G_1 \times \cdots \times G_n, \oplus)$$

donde \oplus : $(\bigoplus_{i=1}^n G_i) \times (\bigoplus_{i=1}^n G_i) \to \bigoplus_{i=1}^n G_i$ se define con $g \oplus g' = (g_1 + g'_1, \dots, g_n + g'_n)$.

 a Lo importante es que es la misma operación para todos y que utilizamos la notación aditiva, lo que suma signifique en realidad nos importa poco

El producto directo se trata con detalle más adelante pero aquí van un par de teoremas.

Teorema 40. Sean $n, m \in \mathbb{N}$. El grupo producto directo $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ es cíclico $\iff mcd(n, m) = 1$.

Demostración. Para que $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}$ sea cíclico debe haber un elemento $a \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \mid o(a) = m \cdot n$. Si $m \neq n$ no son coprimos entonces el orden de a no puede ser $m \cdot n$.

Este teorema puede ser útil combinado con el resultado anterior (teorema 16), para dar isomorfismos a productos directos que sean cíclicos.

Teorema 41. Si G es abeliano y $|G| < \infty$ entonces G es un producto de grupos cíclicos finitos.

Demostración. Dice que no lo vamos a probar, pero veremos algunos resultados más adelante (en la sección sobre clasificación de grupos finitos 3.3.1).

3.2. Producto libre de grupos

Definición 21 (Producto libre de grupos). Sean S, T subconjuntos del grupo G. Definimos $ST = \{s * t \mid s \in S \land t \in T\}$.

Es importante remarcar el el producto libre de [sub]grupos no siempre es un grupo, a diferencia del producto libre que siempre funciona. En general solo es un conjunto. Ver el teorema 43

Observemos que la función $f: S \times T \to ST$, $(s,t) \mapsto st$ no es un homomorfismo de grupos. Esto es porque al operar dos elementos de $S \times T$ no se comporta bien. Sean $s,s' \in S,t,t' \in T$

$$(s,t) \mapsto st$$

 $(s',t') \mapsto s't'$

esperamos que

$$f((s,t)(s',t')) = f(st,s't') \mapsto f(s,t)f(s',t') = sts't'$$

pero en realidad ocurre que

$$f((s,t),(s',t')) \mapsto ss'tt' \neq f(s,t)f(s',t')$$

No obstante, aunque la función que lleva $H_1 \times H_2 \to H_1 H_2$ no sea un homomorfismo, sí podemos saber cuantos elementos tiene $H_1 H_2$.

Teorema 42 (Cardinalidad del producto libre). Sean $H_1, H_2 < G$ con G finito. Entonces

$$|H_1 H_2| = \frac{|H_1||H_2|}{|H_1 \cap H_2|} \tag{3.1}$$

Demostración. Utilizaremos la función $f: H_1 \times H_2 \to H_1H_2$ que es sobreyectiva por definición de H_1H_2 . Para una función sobreyectiva $f: A \to B, \ |A| = \sum_{b \in B} |f^{-1}(b)|$.

Sean las fibras los conjuntos $f^{-1}(h_1h_2)$ de los pares de elementos que van a parar al mismo $h_1h_2 \in H_1H_2$. La condición necesaria y suficiente para que (h'_1,h'_2) esté en la misma fibra que (h_1,h_2) es que $h'_1=h_1\alpha \wedge h'_2=h_2\alpha, \ \alpha \in H_1 \cap H_2$. Entonces $|f^{-1}(h_1,h_2)|=|(h_1\alpha,h_2\alpha), \ \alpha \in H_1 \cap H_2|=|H_1 \cap H_2| \Longrightarrow |H_1||H_2|=|H_1H_2||H_1 \cap H_2|$

Teorema 43. Sean H_1, H_2 subgrupos de G, con G finito. Si $H_2 \triangleleft G$ entonces $H_1H_2 < G$ (si uno de los subgrupos es normal, entonces el producto es subgrupo).

Demostración. Observamos que podemos escribir $H_1H_2 = \bigcap_{h \in H_1} h * H_2$. Como $H_2 \triangleleft G$, $h * H_2 \cdot h'H_2 = hh'H_2 \forall h \in H_1$. Si nos fijamos H_1H_2 es cerrado por la operación pues $hh'H_2 \in H_1H_2$ y como G es finito y por tanto H_1, H_2 también, H_1H_2 es un subgrupo.

Teorema 44. Si $H_1 \triangleleft G \land H_2 \triangleleft G \implies H_1H_2 \triangleleft G$ (si los dos subgrupos son normales, enotnces el producto también es normal).

Demostración. $H_1, H_2 < G$ luego $\forall g \in G, gH_1H_2g^{-1} = gH_1g^{-1}gHg^{-1} = H_1H_2$.

3.3. Clasificación de grupos finitos

3.3.1. Teorema de clasificación de grupos finitos de orden pequeño

Teorema 45 (Grupos notables de distintos órdenes finitos.).

- $|G| = 2, 3, 5, 7, 11 \dots, p \text{ donde } p \text{ es primo:}$
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/p\mathbb{Z}$.
 - Abelianos no cíclicos: no hay, por el corolario del teorema de Lagrange 23.
- |G| = 4:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/4\mathbb{Z}$
 - Abelianos no cíclicos: son isomorfos con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
 - No abelianos: no hay grupos no abelianos de orden menor que 4.
- |G| = 6:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/6\mathbb{Z}$.
 - Abelianos no cíclicos: no hay porque todo grupo abeliano cuyo orden se puede descomponer en dos primos es cíclico (ver Hoja 1 ejercicio 19).
 - No abelianos: todos son isomorfos con $D_3 \simeq S_3$ (ver ejemplo 23).
- |G| = 8:
 - Abelianos cíclicos: son isomorfos con $\mathbb{Z}/8\mathbb{Z}$.
 - Abelianos no cíclicos: son isomorfos o bien con $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ o bien con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (depende de los órdenes de los elementos de G).
 - No abelianos: son isomorfos o bien con el famoso grupo D_4 (ver ejemplo 6) o bien con el grupo de cuaterniones H (ver ejemplo 5). Ver ejemplo 24

Demostración. En lo que resta de sección se dan algunos ejemplos de los razonamientos que llevan a estas afirmaciones.

Vamos a aplicar el teorema 41 a grupos abelianos.

Teorema 46. Sea G abeliano con $|G| = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$. Entonces

$$G \simeq \mathbb{Z}/p_1^{\beta_{11}}\mathbb{Z} \times \mathbb{Z}/p_1^{\beta_{1s_1}}\mathbb{Z} \times \dots \mathbb{Z}/p_n^{\beta_{n1}}\mathbb{Z} \times \mathbb{Z}/p_1^{\beta_{ns_n}}\mathbb{Z} \text{ donde } \alpha_i = \sum_{j=1\dots s_i} \beta_{ij}$$
(3.2)

En particular, se cumple que para grupos cíclicos G de orden n, donde $G \simeq \mathbb{Z}/n\mathbb{Z}$.

Teorema 47. Sea un número y su factorización en primos: $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$. Entonces

$$\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/p_1^{\alpha_1} \mathbb{Z} \times \mathbb{Z}/p_2^{\alpha_2} \mathbb{Z} \times \cdots \times \mathbb{Z}/p_n^{\alpha_n} \mathbb{Z}$$
(3.3)

Demostración. Sea d tal que $d \mid n$ y n = dn'. Por tanto $n' = p_2^{\alpha_2} \dots p_n^{\alpha}$ y $d = p_1^{\alpha_1}$. Como $\mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots, n', \dots, n-1\}$ tenemos que $o(n') = p_1^{\alpha_1}$. Luego $H = \langle n' \rangle$ es el único subgrupo de orden $p_1^{\alpha_1}$ y $N = \langle p_1^{\alpha_1} \rangle$ es el único subgrupo de orden n'. Ahora bien, por cómo hemos elegido n' y d, mcd(n', d) = 1 por lo que $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/d\mathbb{Z} \times \mathbb{Z}/n'\mathbb{Z}$. Podemos repetir este procedimiento hasta que descompongamos n en potencias de primos y tendremos que $mcd(p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_n^{\alpha_n}) = 1$ y por tanto $\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}/p_1^{\alpha_1}\mathbb{Z} \times \mathbb{Z}/p_2^{\alpha_2}\mathbb{Z} \times \dots \times \mathbb{Z}/p_n^{\alpha_n}\mathbb{Z}$

Lo que nos dice este teorema es que si un grupo es cíclico de orden n entonces es isomorfo a $\mathbb{Z}/n\mathbb{Z}$ y a su vez a un producto directo en el que cada uno de los factores tiene como orden un factor de n, sin separarlos con la multiplicidad.

Ejemplo 21. Si un grupo de orden 12 es cíclico entonces es isomorfo a $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, y no es isomorfo a $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Teorema 48. Sea G abeliano donde $|G| = r \cdot s$ con mcd(r, s) = 1 y ean $K < G \land N < G$ donde $|K| = r \land |N| = s$. Entonces $G \simeq K \times N$.

Demostración. Sabemos que $f: K \times N \to G$, $(k,h) \mapsto kh$ es un homomorfismo y por tanto Im f < G. Para probar que f es un isomorfismo probaremos que Im f = G. Como $|K| = r \wedge |N| = s$ y r y s son coprimos entonces $K \cap N = \{e\}$. Por tanto $|K \cap N| = 1$ y utilizando el teorema 42 tenemos que $|KN| = \frac{|K||N|}{|K \cap N|} = |K||N| = rs$ por lo que f es sobreyectiva, y, por tanto, biyectiva, es decir, que f es un isomorfismo.

Ejemplo 22. Podemos afirmar que si |G| = 6 y G es abeliano entonces $G \simeq \mathbb{Z}/6\mathbb{Z} \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.

Observemos que la hipótesis de abeliano es fundamental (ver ejemplo 28).

Ejemplo 23. Sea G no abeliano con |G| = 6. Entonces $G \simeq D_3$.

Demostración. 1. G no abeliano \implies G no cíclico $\implies \exists g \in G \mid o(g) \neq 6$

- 2. G no abeliano $\implies \exists b \in G \mid o(b) \neq 2 \implies o(b) = 3$ ya que si $b \in G$ entonces $o(b) \mid |G|$ (corolario teorema de Lagrange (23)).
- 3. Sabemos pues que $\langle b \rangle = \{1, b, b^2\} < G$ y $|\langle b \rangle| = 3 \implies [G : \langle b \rangle] = \frac{|G|}{|\langle b \rangle|} = 2$. Es decir, que hay otra caja disjunta en la partición a la que llamamos K
- 4. Por el teorema del cardinal del producto libre (teorema 42) tenemos que $6 \ge |HK| = \frac{|H||K|}{|\langle b \rangle \cap K|}$. Como $\langle b \rangle \cap K = \{e\}$ por ser las cajas disjuntas tenemos que |K| = 2 ya que si fuera |K| = 3 tendríamos que $|HK| = 9 \le 6$.
- 5. Definimos $\phi_a(x): G \to G$, $x \mapsto axa^{-1}$ (el isomorfismo de conjugación). ϕ_a es un isomorfismo, incluso cuando lo restringimos a un subgrupo normal. El subgrupo $\langle b \rangle$ es normal porque tiene índice 2 (ver teorema 26).
- 6. Por ello tenemos que si $\phi_a(x) = y$ entonces tiene que ser o(x) = y. Por tanto, aplicando ϕ_a a b tenemos lo siguiente:

$$\phi_a(b) = aba^{-1} = b \implies ab = ba \implies G$$
 abeliano
 $\phi_a(b) = aba^{-1} = b^{-1} \implies ab = b^2a \implies ba = ab^2$

7. La primera no puede ser por hipótesis. La segunda nos da el final de la presentación de D_3 :

$$D_3 = \langle a, b \rangle$$
 donde $o(a) = 2$, $o(b) = 3$, $ba = ab^2$

Ejemplo 24. Probar que si G es un grupo no abeliano con |G| = 8 entonces o bien $G \simeq D_4$ o bien $G \simeq H$ donde H es el grupo de cuaterniones (ver ejemplo 5).

Demostración.

- 1. Tenemos que G no es abeliano. Por el contrarrecíproco del teorema 13 tenemos que no puede ser cíclico por lo que $\nexists g \in G \mid o(g) = 8$.
- 2. Por el teorema 4 sabemos que $\exists b \in G \mid o(b) \neq 2 \implies \mathbf{o}(\mathbf{b}) = \mathbf{4}$.
- 3. Por el teorema de Lagrange 23 sabemos que dicho b tiene que tener o(b) = 4 ya que $\forall b \in G, o(b) \mid |G|$. Por tanto $\langle b \rangle = \{1, b, b^2, b^3\}$.
- 4. Como $\langle b \rangle$ tiene orden 4, el índice es $[G:\langle b \rangle]=2$ por lo que hay otro subgrupo en G disjunto a $\langle b \rangle$. Sea a un elemento de dicho subgrupo.
- 5. Fijado a, definimos el isomorfismo de conjugación $\phi_a:G\to G,\ \phi_a(x)=axa^{-1}.$ Este isomorfismo sigue siendo un isomorfismo cuando lo restringimos a un subgrupo normal como es el caso de $\langle b \rangle$ (ver teorema 26).
- 6. Para $b \in G$ pueden ocurrir las siguientes, porque ϕ_a debe mantener los órdenes por ser isomorfismo:
 - \bullet $\phi_a(b)=aba^{-1}=b \implies ab=ba \implies G$ abeliano. Descartamos esta opción por hipótesis.
 - $\phi_a(b) = aba^{-1} = b^{-1} \implies ba = ab^{-1} = ab^3$
- 7. Ahora consideramos los posibles órdenes de a que pueden ser 2 o 4 por el teorema de Lagrange:
 - Si $\mathbf{o}(\mathbf{a}) = \mathbf{2}$ entonces $G \simeq D_4$
 - Si $\mathbf{o}(\mathbf{a}) = \mathbf{4}$ entonces $\langle a \rangle = \{1, a, a^2, a^3\}.$
 - a) Miramos $\langle a \rangle \cap \langle b \rangle = \{1, a, a^2, a^3\} \cap \{1, b, b^2, b^3\} = \{1\} \implies |\langle a \rangle \cap \langle b \rangle| = 1$
 - b) Por el teorema del orden del producto libre 42 tenemos que $|\langle a \rangle \langle b \rangle| = |\langle a \rangle| |\langle b \rangle| = 4 \cdot 4 = 16$, pero esto no puede ocurrir puesto que el orden del producto puede ser como máximo 8. Es decir, que $\langle a \rangle \cap \langle b \rangle \neq \{e\}$.
 - c) Ahora bien, la intersección de subgrupos debe ser un subgrupo, luego el orden debe ser divisor del orden de los grupos intersecados. El orden de $\langle a \rangle \cap \langle b \rangle$ puede ser 1, 2 o 4.

3.4. EXTRA 27

d) Ya hemos visto que no puede ser 1. Tampoco puede ser 4 porque... por qué? Luego $o(\langle a \rangle \cap \langle b \rangle) = 2$ por lo que $\langle a \rangle \cap \langle b \rangle$ tiene 2 elementos.

- e) Uno de ellos es el neutro (1). El otro no puede ser ni a, ni b porque al tener estos orden 4 tendría que haber más elementos. Tampoco puede ser ni a^3 , ni b^3 porque también tienen orden 4 por el teorema 17. Luego $\langle a \rangle \cap \langle b \rangle = \{1, a^2\} = \{1, b^2\} \implies \mathbf{a^2} = \mathbf{b^2}$.
- f) Recopilando $o(a)=4,\ o(b)=4,\ a^2=b^2,\ ba=ab^{-1}$ tenemos que $G\simeq H$

3.4. Extra

Ejemplo 25 (Retículo de subgrupos de D_4). Dar el retículo de subgrupos de $D_4 = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$, donde o(A) = 2, o(B) = 4, $BA = AB^3$. En este caso no tenemos más remedio que ir probando a ver qué combinaciones de elementos dan subgrupos. Como conocemos de dónde viene D_4 nos es más fácil (ver el ejemplo 6).

Figura 3.1: Retículo de subgrupos de D_4

Figura 3.2: Retículo de subgrupos de D_4 de [Epp]

Nos ayudamos de la imágen para sacarlos. La manera de hacerlo sin tener más información que la presentación del grupo es hacerse todos los subgrupos generados por cada elemento y descartar los que son iguales. Luego hacerse todos los subgrupos generados por dos elementos y descartar los que son iguales. Por alguna razón no hace falta probar con los generados por más de dos elementos. Una vez obtenidos estos grupos establecemos las relaciones de inclusión y creamos el diagrama de Hasse.

Ejemplo 26. Retículo de subgrupos del grupo de cuaterniones H (figura 3.3)

Figura 3.3: Retículo de subgrupos del grupo de cuaterniones H.

El retículo de subgrupos de D_5 lo veremos más adelante (para no llenar todo esto de retículos).

Ejemplo 27. Sea G abeliano con |G| = n = rs, sea H < G, K < G con |H| = r, |K| = s y $H \cap K = \{e\}$.

 \blacksquare Notemos que como G es abeliano, H y K son subgrupos normales.

- Al aplicar el teorema 42 tenemos que el denominador es $|H \cap K| = 1$ por lo que |HK| = |H||K| = rs = n.
- lacktriangle Como G es abeliano:
 - 1. G = HK (porque HK es un subgrupo con el mismo número de elementos que G por el teorema 42)
 - 2. La función $f: H \times K \to G$, $(h,k) \mapsto hk$ es un homomorfismo de grupos (nótese que esto no ocurriría si G no fuese abeliano).

Es más, si se cumple todo lo anterior, f es además un isomorfismo $\implies H \times K \simeq G$.

Ejemplo 28. Consideramos S_3 , que tiene $|S_3| = 6$ y no es abeliano y los subgrupos $H = \langle (12) \rangle$ y $K = \langle (123) \rangle$ con |H| = 2 y |K| = 3. Podemos construir la función $f : H \times K \to S_3$ pero no es un homomorfismo de grupos. De hecho, al ser $K \triangleleft S_3$, el producto HK es un subgrupo y la función f es una biyección, pero aún así no es compatible con la estructura de grupo.

Ejemplo 29. Consideramos D_4 y un grupo G con $a, b \in G$ donde hemos establecido un homomorfismo que definimos con f(A) = a y f(B) = b. Ocurre lo siguiente

- El homomorfismo queda totalmente definido ya que todos los elementos de D_4 son palabras en A y B y por la estructura de homomorfismo podemos operar tras aplicar la operación a cada letra. Por ejemplo f(ABA) = aba.
- Es necesario que o(a) = 2 y o(b) = 4, de lo contrario no se cumpliría la estructura de homomorfismo entre D_4 y G.

Ejemplo 30. Veamos un ejemplo (notamos que $(12)^4 = id$)

$$f: \mathbb{Z}/4\mathbb{Z} \to S_3$$

$$\overline{1} \mapsto (12)$$

$$\overline{2} \mapsto id = (1)$$

$$\overline{3} \mapsto (12)$$

$$\overline{4} = \overline{0} \mapsto id$$

Observamos que $\operatorname{Hom}(\mathbb{Z}/4\mathbb{Z}, S_3) \subset \operatorname{Hom}(\mathbb{Z}, S_3)$ puesto que al tomar $\mathbb{Z}/4\mathbb{Z}$ no podemos tomar cualquier a sino que tenemos que asegurarnos de que o(a) = o(1) (en este caso o(a) = 2 pero sigue funcionando porque lo que importa es que $a^{o(1)} = id$).

Queremos analizar los homomorfismos $f: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Ahora no importa el \overline{a} que elijamos para que f sea homomorfismo porque Im $f = \langle \overline{a} \rangle$.

Para que f sea epimorfismo, necesitamos que Im $f = \langle \overline{a} \rangle = \mathbb{Z}/n\mathbb{Z}$ es decir que o(a) sea coprimo con n.

Concluímos que $\operatorname{Aut}(\mathbb{Z}/n\mathbb{Z}) \subset \operatorname{Hom}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/n\mathbb{Z}).$

Parte II

Segundo parcial - hojas 2, 3 y 4

Capítulo 4

El teorema de Cauchy

4.1. Consideraciones previas

4.1.1. Conjugación

Cuando introdujimos los homomorfismos de grupos hicimos especial hincapié en un automorfismo al que llamábamos ϕ_g o γ_g y que para un $g \in G$ dado se definía como

$$\phi_g: G \to G$$
$$x \mapsto gxg^{-1}$$

Diremos a partir de ahora que dos elementos son conjugados si cumplen la siguiente definición.

Definición 22 (Conjugados). Sea G un grupo, $a, b \in G$. Diremos que b es conjugado de $a \iff \exists g \in G \mid b = gag^{-1}$, es decir, si existe un $g \in G$ para el que el automorfismo conjugación ϕ_g cumple $\phi_g(a) = b$.

Observemos que la conjugación es una relación de equivalencia.

Proposición 49. Sea R una relación de equivalencia definida con

$$\forall a, b \in G, \quad aRb \iff \exists g \in G \mid b = gag^{-1}$$

Probamos las tres propiedades de las relaciones de equivalencia:

1. Reflexiva: $\forall a \in G, aRa$

Demostración. Tomando g=e se tiene $\forall a, a=eae^{-1}=eae=a.$

2. Simétrica: $\forall a, b \in G, \ aRb \iff bRa$

Demostración. Se verifica la doble implicación tomando $g'=g^{-1}$ utilizado en el otro lado:

$$aRb \implies \exists g \mid b = gag^{-1} \iff g^{-1}bg = a \iff g' = g^{-1} \land a = gbg^{-1} \iff bRa$$

Hacia el otro lado es igual.

3. Transitiva: $\forall a, b, c \in G, aRb \land bRc \implies aRc$

Demostración.

$$aRb \implies \exists g_1 \mid b = g_1 a g_1^{-1} \quad \land \quad bRc \implies \exists g_2 \mid c = g_2 b g_2^{-1}$$

 $c = g_2 b g_2^{-1} = g_2 g_1 a g_1^{-1} g_2^{-1} \implies c = g' a g'^{-1} \cos g' = g_1 g_2 \implies aRc$

Nota: La relación de conjugación solo merece la pena en grupos no abelianos, porque en un grupo abeliano, cualquier par de elementos es conjugado.

Ejemplo 31. En S_3 afirmamos lo siguiente:

- que 1 solo tiene como conjugado a sí mismo,
- que $\{(12), (13), (23)\}$ son conjugados entre sí,
- y que {(123), (132)} también son conjugados entre sí.

Es decir, que la conjugación nos genera una partición con 3 cajas disjuntas.

En esta relación de equivalencia, las clases de equivalencia son de la forma $cl(a) = \{gag^{-1} \mid g \in G\}$ (conjuntos de los elementos que son conjugados de a). Queremos saber cuántos elementos hay en cada clase de equivalencia. Para ello introduciremos la noción de centralizador de un elemento y posteriormente daremos un teorema (proposición 58) que relaciona el número de elementos del centralizador de un elemento con el número de elementos de la clase de equivalencia de un elemento.

4.1.2. Centro de un grupo

Definición 23 (Centro de un grupo). Sea G un grupo finito. Definimos el centro de G, $Z(G) = \{a \in G \mid \forall g \in G, ag = ga\}$.

El centro es útil en grupos finitos no abelianos ya que, en grupos abelianos, el centro es todo el grupo como veremos en la proposición 54.

Proposición 50. Sean $a, b \in Z(G)$. Entonces $ab \in Z(G)$.

Demostración. Tenemos que ag = ga y que bg = gb. Ahora tenemos que probar que g(ab) = (ab)g. Es trivial manipulando (ab)g = agb = gab.

Proposición 51. Sea G un grupo. Z(G) es un subgrupo y además es un subgrupo normal.

Demostración. Es un subgrupo porque es cerrado (ver proposición 50), contiene siempre al neutro (el centro conmuta con todos) y para todo $a \in Z(G)$, se tiene que $\forall b \in G, \ ab = ba \iff aba^{-1} = b \iff ba^{-1} = a^{-1}b \iff a^{-1} \in Z(G)$.

Es normal porque $\forall g \in G, \ Z(G)g = \{ag \mid a \in G \land \forall b \in G, \ ab = ba\} = \{ga \mid a \in G \land \forall b \in G, \ ab = ba\} = gZ(G).$

Proposición 52. Si H < Z(G) entonces H es abeliano y normal.

Demostración. Es abeliano porque $\forall g, g' \in Z(G), gg' = g'g$ y en particular esto se cumple para $g, g' \in G < G$.

Es normal porque $\forall g \in G, gH = \{ga \mid a \in H \land \forall b \in G, gb = bg\} = \{ag \mid a \in G \land \forall b \in G, bg = gb\} = Hg.$

Proposición 53. Sea $g \in G$, $\phi_g : G \to G$ el isomorfismo definido por $\phi_g(x) = gxg^{-1}$. Entonces

$$x \in Z(G) \iff \forall g \in G, gx = xg \iff gxg^{-1} = x$$

 $x \in Z(G) \iff \forall g \in G, \ \phi_g(x) = x$

Proposición 54. G es abeliano $\iff G = Z(G)$

Demostración. Sea $a \in G \land o(a) = n$. Si a es el único elemento de orden n entonces $n = 2 \land a \in Z(G)$. Probamos primero que n = 2. Si a es el único elemento de orden n entonces tiene que ocurrir que a y a^{n-1} tienen el mismo orden por lo que $1 = n - 1 \implies n = 2$.

La siguiente proposición es crucial para sacar conclusiones sobre los grupos sabiendo sobre sus órdenes y su centro.

Proposición 55. Si G/Z(G) es cíclico de orden n entonces n = 1. Otra manera de formularlo: Si G/Z(G) es cíclico, entonces G = Z(G). Otra manera más de formularlo: si G/Z(G) es cíclico entonces G es abeliano.

Demostración. Supongamos que $G/Z(G) \simeq \mathbb{Z}/n\mathbb{Z}$. Vamos a probar que n tiene que ser 1. Supongmos que $G/Z(G) = \{\overline{\alpha_i}, i = 1, \dots, n\}$ donde $\overline{\alpha_i} = \alpha^i Z(G)$. Fijamos $g \in G$ con $g = \alpha^j h$, $h \in Z(G)$, $0 \le j < n$ y fijamos $f' \in G$ con $g' = \alpha^j h'$, $h' \in Z(G)$, $0 \le j' < n$. Entonces $gg' = \alpha^j h \alpha^{j'} h' = \alpha^{j+j'} h h' = \alpha^{j'} h' \alpha^j h = gg'$ (podemos conmutar las h con cualquier elemento porque $h \in Z(G)$, por el contrario, los α no necesitamos conmutarlos, solo agruparlos cuando están juntos). Es decir, que $\forall g, g' \in G$ tenemos que gg' = g'g por lo que G es abeliano.

4.1.3. Centralizador de un elemento.

Definición 24 (Centralizador de un elemento). Sea $a \in G$. Llamamos centralizador de a al conjunto

$$C(a) = \{ g \in G \mid \gamma_g(a) = gag^{-1} = a \}$$
(4.1)

Se tiene que $\forall a \in G, e \in C(a)$, es decir que C(a) no es vacío.

Proposición 56. $a \in Z(G) \iff C(a) = G \iff [G:C(a)] = 1$

Demostración. Es cristalina de las definiciones.

Proposición 57. C(a) es un subgrupo de G

Demostración. Por el teorema 5 solo necesitamos probar la clausura, es decir, tenemos que probar que $\forall g,g' \in G,\ g \in C(a) \land g' \in C(a) \implies gg' \in C(a).$ Sale solo $(gg')agg'^{-1} = gg'a(g')^{-1}g^{-1} = gag^{-1} = a \in C(a).$

Proposición 58. $|cl(a)| = |\{gag^{-1} \mid g \in G\}| = [G:C(a)]$ (el número de elementos de una clase de equivalencia es el índice del centralizador de un representante)

De la proposición anterior se deduce que

Corolario 5. |C(a)| = [G : cl(a)]

La prueba de la proposición se ve clara después de ver la prueba del teorema de Cauchy, así que la dejamos para después.

4.2. Teorema de Cauchy

Teorema 59 (de Cauchy). Sea G un grupo finito con |G| = n. Si p es primo y $p \mid n$ entonces G contiene un elemento de orden p.

Demostración. Procedemos por casos:

- Si G es abeliano. Descomponemos $|G| = n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$. Por el teorema 41, $G \simeq \mathbb{Z}/p_1^{\beta_1} \mathbb{Z} \times \mathbb{Z}/p_2^{\beta_2} \mathbb{Z} \times \dots \times \mathbb{Z}/p_s^{\beta_r} \mathbb{Z}$ donde cada α_i es la suma de algunos β_r .
- Si G no es abeliano. Particionamos G con la relación de equivalencia dada anteriormente (definición 22), $aRb \iff \exists g \in G \mid gag^{-1} = b$. Recordemos que cada clase de equivalencia es de la forma $\bar{c} = \{gcg^{-1} \mid g \in G\}$. Observamos que si partimos de e, el elemento neutro, $eRb \implies \exists g \mid geg^{-1} = b$ pero $\forall g \in G, geg^{-1} = e$ por lo que cl(e) tiene un único elemento

Tomemos ahora una clase de equivalencia, la que contenga a $a \in G$. La clase es $cl(a) = \{gag^{-1} \mid g \in G\}$. Es claro que $a \in \overline{a}$ por la propiedad reflexiva de R, luego por lo menos en cl(a) tiene un elemento.

$$cl(a) = \{gag^{-1} \mid g \in G\} = \{a\} \iff gag^{-1} = a, \ \forall g \in G \iff ga = ag, \ \forall g \in G$$

$$|cl(a)| = 1 \iff \overline{a} = 1$$

 $\iff a \in Z(G)$

Supongamos que la partición está dada por subconjuntos $cl(a_1), cl(a_2), \ldots, cl(a_s)$. Por ser una partición, cualquier elemento vive en una sola caja, luego para saber cuantos elementos tiene G nos vale con sumar los elementos de cada caja:

$$|G| = \sum_{i=1}^{s} |cl(a_i)| = \sum_{i=1}^{n} |\{ga_ig^{-1} \mid g \in G\}|$$

Ahora bien, por la proposición 58 tenemos que $|cl(a_i)| = [G:C(a_i)]$. Por tanto decir que $|cl(a_i)| = 1 \implies [G:C(a_i)] = 1 \implies G = C(a_i)$.

Ahora vamos a dividir el sumatorio en dos: por un lado las cajas de un solo elemento y luego las cajas de varios elementos:

$$|G| = |Z(G)| + \sum_{i=r+1}^{s} [G:C(a_i)] \text{ donde } |Z(G)| = r \text{ y } [G:C(a_i)] \ge 2, \forall i = r+1,\dots,s$$
 (4.2)

Ahora para probar el teorema de Cauchy procedemos por inducción en $n = |G| = [G : C(a_i)] \cdot |C(a_i)|$.

- 1. Caso n = 1. $G = \{e\}$ que es obvio.
- 2. Caso n=2. Son grupos cíclicos por lo que $\exists \alpha \in G \mid o(\alpha)=2$.
- 3. Caso $n \implies n+1$. Pueden pasar dos cosas:
 - o bien $p \mid |C(a_i)|$ para algún $i = r + 1, \ldots, s$ entonces, por hipótesis inductiva, $C(a_i)$ contiene algún elemento de orden p. Pues ya está: $C(a_i) < G$ porque $\alpha \in C(a_i) \mid o(\alpha) = p \implies \alpha \in G$ también). \clubsuit
 - o bien $p \nmid |C(a_i)|$, $\forall i = r+1, \ldots, s$. No podemos proceder por inducción. Por hipótesis $|G| = [G:C(a_i)] \cdot |C(a_i)| \wedge p \mid |G| \implies p \mid [G:C(a_i)], \ \forall i = r+1, \ldots, s$.

Como $|G| = |Z(G)| + \sum_{i=r+1}^{s} [G:C(a_i)]$ y por hipótesis $p \mid |G| \land p \mid [G:C(a_i)], \forall i=r+1,\ldots,s \implies p \mid |Z(G)| \implies |Z(G)|$ es múltiplo de p. Como Z(G) es abeliano, $\exists \alpha \in Z(G) \mid o(\alpha) = p$. Luego se reduce al caso abeliano y ya estaría

Ejemplo 32. Sea G tal que |G| = pq. Entonces por le teorema de Cauchy $\exists a, b \in G \mid o(a) = p \land o(b) = q$. Como $p \lor q$ son primos los ordenes de $\langle a \rangle \lor \langle b \rangle$ son coprimos $\forall a \lor coprimos \lor$

Ejemplo 33. Sea G tal que |G|=2q. Análogamente al caso anterior llegamos a que o(a)=2. Como $\langle b \rangle$ tiene índice 2 entonces $\langle b \rangle \triangleleft G$. Esto nos permite saber como operar con las palabras a^ib^j una vez tenemos un isomorfismo que lleva $aba^{-1}=b^j$ (tiene que ir a algún b^j porque por ser isomorfismo tiene que llevar elementos de orden q en elementos de orden q: los $b \in \langle b \rangle$)

Dada la relación de equivalencia de conjugación (definición 22), definimos C como el conjunto de los representantes de las clases de equivalencia. Entonces podemos decir

$$G = \bigcup_{c_i \in C} \{ a \in G \mid aRc_i \}$$

Observemos que $d \in Z(G) \iff \{a \in G \mid aRd\} = \{gdg^{-1} \mid g \in G\} = \{d\}$. Y por tanto podemos escribir

$$C = Z(G) \cup (C \backslash Z(G))$$

que aunque pareza obvio quiere decir que C se puede expresar como la unión disjunta de las cajas que tienen solo un elemento que se corresponden con elementos que están en el centro y las cajas que tienen más de uno. Y por lo visto en la demostración del teorema de Cauchy tenemos que

$$|G| = \sum_{c_i \in C} |\overline{c_i}| = |Z(G)| + \sum_{i=r+1}^s [G : C(a_i)] \text{ donde } [G : C(a_i)] \ge 2$$

4.2.1. P-grupos

Una aplicación inmediata del teorema de Cauchy es la caracterización de los p-grupos.

Definición 25 (P-grupo). Sea p primo. Decimos que G es un p-grupo si $|G| = p^r$.

Teorema 60. Si G es un p-grupo entonces Z(G) es no trivial (no es el vacío).

Demostración. Podemos escribir sin distinguir entre cajas de uno o varios elementos

$$|G| = |C(c_i)||[G : C(c_i)]|$$

es decir que tenemos una factorización de $|G| = p^r$ luego $|C(c_i)|$ y $|[G:C(c_i)]|$ son ambos potencias de p. Y aplicando esto a la expresión 4.2 tenemos que

$$\underbrace{|G|}_{\text{múltiplo de p}} = |Z(G)| + \sum_{i=r+1}^{s} \underbrace{[G:C(a_i)]}_{\text{múltiplo de p}} \text{ donde } [G:C(a_i)] \geqslant 2$$

por lo que |Z(g)| tiene que ser múltiplo p por lo que Z(G) no puede ser el trivial.

Véase un ejemplo de aplicación de esta anterior proposición en el ejercicio H2.22 y en el ejercicio H1.33

Ejemplo 34. Tenemos que $Z(D_4) = \{1, B^2\}$ y $Z(H) = \{1, B^2\}$ donde H es el grupo de cuateriones (ejemplo 5) y D_4 es el famoso grupo (ejemplo 6).

Proposición 61. Si p es primo y $|G| = p^2$ entonces G es abeliano.

Demostración. Por el la demostración del teorema anterior tenemos que o bien |Z(G)| = p o bien $|Z(G)| = p^2$. Afirmamos que $|Z(G)| \neq p$ ya que si fuera así $|G/Z(G)| = p \implies G/Z(G)$ cíclico pero hemos probado (proposición 55) que G/Z(G) no puede ser cíclico. Por lo tanto $|Z(G)| = p^2 \implies Z(G) = G \implies G$ es abeliano.

4.3. Más sobre la conjugación, el centro y los centralizadores.

Antes de introducir el teorema de Cauchy hablábamos de la conjugación que era una relación de equivalencia que partía un grupo G en cajas. Nos gustaría saber cuántos elementos había en la clase de equivalencia de cada uno de los elementos de G y para eso introducíamos el concepto de centralizador de un elemento: C(a) el conjunto de los elementos de G que no mueven a G por conjugación. La proposición 58 nos aseguraba que |cl(a)| = [G:C(a)] y dijimos que retrasaríamos la prueba hasta ahora. Pues aquí va.

Sea \sim una relación de equivalencia definida por $a \sim b \iff \exists g \in G \mid gag^{-1} = b$ para $a, b \in G$. Esta relación da una partición de G en clases de la forma $cl(a) = \{gag^{-1} \mid g \in G\}$. En el caso abeliano esta relación es la de igualdad, por lo que no nos merece la pena liar este pifostio para saber que $a \sim b \iff a = b$.

Es muy importante saber cómo contamos los elementos de una clase, es decir, de cuantas formas podemos mover el elemento a con $g \in G$. Para ello definimos el centralizador (definición 24) como $C(a) = \{h \in G \mid hah^{-1} = a\} < G$. Queremos probar que |cl(a)| = [G:C(a)] = r.

Demostración de la proposición 58. Lo probamos tomando clases laterales a la izquierda (por ejemplo) y partiendo G en r cajas. Las cajas son de la forma $\alpha_i C(a)$, $i=1,\ldots,r$. Esta partición no tiene que ver con la partición anterior. Observemos que para cualquier $g \in \alpha_i C(a)$, $g=\alpha_i h$, tenemos que $gag^{-1}=\alpha_i hah^{-1}\alpha_i^{-1}=\alpha_i a\alpha_i^{-1}$ es decir que los $g \in C(a)$ no se mueven fuera de la caja. Es decir, que si $\alpha_i \neq \alpha_j$ para $i \neq j$ entonces hay r maneras de mover a g y por tanto |cl(a)|=r.

Probaremos que en efecto los α_i son distintos.

Sean $g_1, g_2 \in G$. $g_1 a g_1^{-1} = g_2 a g_2^{-1} \iff (g_2^{-1} g_1) a (g_1^{-1} g_2) = a \iff (g_2^{-1} g_1) a (g_2^{-1} g_1)^{-1} \iff C(a) g_2^{-1} g_1 \in C(a) \iff g_1 \in G(a)$.

Si G/\sim tiene N elementos, tomamos $\{c_1,\ldots,c_N\}$ como el conjunto de los representantes, donde c_i es un representante de cada conjunto de la partición. Entonces pordemos expresar

$$G = \bigcup_{c_i \in C} = cl(c_i)$$

donde $|cl(c_i)| = [G:C(c_i)]$. Por tanto decir que $|cl(c_i)| = 1$ es equivalente (\iff) a decir que $G = C(c_i) = \{ \forall g \in G, gcg^{-1} = c \} \iff c \in Z(G)$.

Afirmábamos que

$$|G| = \sum_{c_i \in C} |cl(c_i)| = |Z(G)| + \sum_{c_i \in C \setminus Z(G)} [G : C(c_i)]$$

descomponiendo la suma en las clases con solo un elemento y las clases con más de dos elementos.

Ejemplo 35. Consideramos D_3 (ver ejemplo 7). Nos fijamos en que $B \notin Z(D_3)$ es decir que en cl(B) hay más de un elemento. En particular por lo visto anteriormente |cl(B)| = [G:C(B)]. Ahora bien $C(B) = \{1,B,B^2\}$ luego |cl(B)| = [G:C(B)] = 2. La pregunta es ¿quién es el compañero de B en su clase? Es fácil, recordamos que $\phi_g(x) = gxg^{-1}$ (el isomorfismo conjugación) es un isomorfismo y que $\{1,B,B^2\}$ es normal, por lo que $o(B) = o(\phi_g(B)) = 2$. Entonces $\phi_g(B) \neq 1$ porque no coinciden los órdenes, de manera que $\phi_g(B) = B^2$ por necesidad. Luego el otro elemento es el B^2 .

¿Qué pasa con el elemento A? Pues ocurre que $A \in C(A)$ y $\{1,A\} \in C(A)$ y en realidad no puede haber más porque si hubiese un tercero, $\{1,A\}$ es un subgrupo de orden $2 \implies o(\{1,A\})$ no divide a $3 \implies$ si hubiese más, $C(A) = D_3$ y eso no puede ser $\implies C(A) = \{1,A\} \implies |cl(A)| = [D_3:C(A)] = 6/2 = 3$. Como las clases son disjuntas los tres elementos sobrantes forman la última caja.

Para conlcuir queda que la relación \sim parte D_3 en 3 cajas, a saber:

$$D_3 = \{ \underbrace{1}, \underbrace{B, B^2}, \underbrace{A, AB, AB^2} \}$$

Ejemplo 36. El caso del famoso grupo D_4 (ver ejemplo 6)es mucho más interesante porque $Z(D_4)$ no es trivial. Elegimos por ejemplo el elemento B^2 . Probar que $\phi_g(B^2) = gB^2g^{-1} = B^2$, $\forall g \in D_4$ es complicado. Pero fijémonos en que $\phi_B(B^2) = BB^2B^{-1} = B^2$ y que $\phi_A(B^2) = AB^2A^{-1} = B^2$. Entonces cualquier palabra en A y en B no mueve a B^2 , por ejemplo $AB(B^2)B^{-1}A^{-1} = B^2$. Nos convencemos de que $B^2 \in Z(D_4)$. Con esto ya tenemos que $|Z(D_4)| \ge 2$ (puesto que de momento ya sabemos que $1, B^2 \in Z(G)$. Podría ser entonces $|Z(D_4)| = 4,8$ (probamos los divisores de $|D_4|$). Como D_4 no es abeliano, es claro que $|Z(D_4)| \ne 8$. Tampoco puede ser $|Z(D_4)| \ne 4$ porque si tuviera 4, el cociente $D_4/Z(G)$ tendría orden 2 y por tanto sería cíclico. Pero ya hemos probado que G/Z(G) no puede ser cíclico (ver proposición 55). Luego ya sabemos que $Z(D_4) = \{1, B^2\}$.

Vamos a seguir sacando cajas. Veamos cl(B). Claramente $B \in C(B)$ y por alguna razón que me falta $C(B) = \{1, B, B^2, B^3\}$. Por la fórmula tenemos que $|cl(B)| = [D_4 : C(B)] = 2$. Tenemos una vez más que utilizar el isomorfismo de conjugación. Sabemos que $cl(B) = \{gag^{-1} \mid g \in G\}$. Pero al ser ϕ_g isomorfismo y $\langle B \rangle$ normal, tenemos que $\phi_g : \langle b \rangle \to \langle b \rangle$ también es isomorfismo y por tanto lleva elementos de orden n en elementos de orden n. Por tanto $\phi_g(B) = gBg^{-1}$ solo puede ser B^3 (a parte de B). Luego ya tenemos que $cl(B) = \{B, B^3\}$.

¿Qué pasa con A? Pues es claro que $C(A) \supset \{1, A, B^2, AB^2\}$ ya que $B^2 \in Z(G)$ por lo que está en todos los $C(c_i)$. Segundo intento.

- 1. Como siempre $cl(e) = \{e\}$
- 2. Veamos cl(B). Queremos ver cuántos elementos tiene. Sabemos que $|cl(B)| = [D_4 : C(B)]$. Veamos quién es C(B). En primer lugar $B \in C(B) \implies \langle B \rangle \in C(B)$. Así ya tenemos que $|C(B)| \geqslant 4$. ¿Puede haber algún elemento más en C(B)? No, porque si hubiera uno más, su orden ya sería |C(B)| = 8 pues $C(B) < D_4$. Así concluímos que $|cl(B)| = [D_4 : C(B)] = 8/4 = 2$. Además sabemos que $[D_4 : C(B)] = 2 \implies C(B) \triangleleft D_4 \iff gC(B)g^{-1} = C(B) \forall g \in D_4 \implies gBg^{-1} \in C(B)$. Además como gxg^{-1} es un isomorfismo que lleva elementos de orden n en elementos de orden n obtenemos que $o(gBg^{-1}) = o(B) = 2$. Sabemos que $B \in cl(B) \land cl(B) = \{gBg^{-1} \mid g \in D_4\} \land gBg^{-1} \in C(B) \implies gBg^{-1} = B^3$. Por tanto $cl(B) = \{B, B^3\}$.
- 3. Veamos cl(A). Queremos ver cuántos elementos tiene. Sabemos que $|cl(A)| = [D_4 : C(A)]$. Veamos quién es C(A). En primer lugar $A \in C(A) \implies \langle A \rangle \subset C(A)$. Si $B \in C(A)$ entonces C(A) = G pues B y A generan. Esto no puede ser porque $C(A) = G \implies A$ conjuga con todos los demás elementos pero sabemos que $AB \neq BA$. Ocurre lo mismo con B^3 . Probamos con B^2 . $B^2AB^2 = BBAB^2 = BAB^3B^2 = BAB = AB^3B = A$ luego $B^2 \in C(A)$. Como $C(A) < D_4$ sabemos que es cerrado y por tanto $AB^2 \in C(A)$. Ya no puede haber más elementos porque si hubiera más, entonces |C(A)| = 8 y eso no puede ser. Por tanto $|cl(A)| = [D_4 : C(A)] = 8/4 = 2$. Sabemos que $A \in cl(A)$. ¿Quién es el otro elemento? Como antes, $[D_4 : C(A)] = 2 \implies C(A) \triangleleft D_4 \iff gC(A)g^{-1} = A$. Como gxg^{-1} es un isomorfismo mantiene el orden y por tanto los conjugados de A pueden ser B^2 o AB^2 (los únicos de orden 2 en C(A)

4.4. Normalizador de un subconjunto

Vez pasada tomábamos $a \in G$ y teníamos $cl(a) = \{gag^{-1} \mid g \in G\} = \{a = a_1, a_2, \dots, a_r\}$ y $C(a) = \{g \in G \mid hah^{-1} = a\}$. Concluíamos que |cl(a)| = [G : C(a)].

Vamos a generalizar al caso $S \subset G, \ S \neq \emptyset$. Consideramos la familia de subconjuntos siguiente:

$$\{gSg^{-1} \mid g \in G\} = \{S = S_1, S_2, \dots, S_r\}$$

que tiene r subconjuntos distintos.

Recordemos que la conjugación dada $\phi_g(x) = gxg^{-1}$ (el isomorfismo conjugación) es un isomorfismo¹, y por tanto una biyección entre subconjuntos $S_i \subset G$. Por tanto $|S| = \phi_g(S)$.

Definición 26 (Normalizador de un subconjunto). Fijado $S \subset G$, definimos el normalizador de S:

$$N(S) = \{ g \in G \mid gSg^{-1} = S \}$$
(4.3)

 $^{^{1}}$ A veces tomate frito llama a este isomorfismo γ_{q}

Se parece mucho a la definición de centralizador de un elemento (definición 24). En el caso en que $S = \{a\}$ tenemos que $N(S) = \{g \in G \mid gag^{-1} = a\} = C(a)$.

Ojo, decir que $gSg^{-1} = S$ no significa que $\forall b_i \in S$, $gb_ig^{-1} = b_i$, sino que $gb_ig^{-1} \in S$ (no mandamos cada elemento a él mismo, sino que todos quedan dentro del subconjunto). Es decir que N(S) es el conjunto de la totalidad de elementos para los que ϕ_g manda el subconjunto S en sí mismo.

Proposición 62. Dado $S \subset G$, N(S) es un subgrupo.

Demostración. Como G es finito, N(S) es subgrupo $\iff S \neq \emptyset \land N(S)$ es cerrado por la operación.

- Es claro que $e \in N(S)$ pues $eSe^{-1} = S$, luego $N(S) \neq \emptyset$.
- Tenemos que probar la clausura. Si $h_1Sh_1^{-1} = S \wedge h_2Sh_2^{-1} = S$ tenemos que $\underbrace{(h_2Sh_2^{-1})}_{\in S}h_1^{-1} = S \implies h_1h_2 \in N(S)$.

Proposición 63. $\{gSg^{-1} \mid g \in G\} = \{S = S_1, S_2, \dots, S_r\}$ son r subconjuntos distintos. Es decir que r = [G : N(S)].

Demostración. A la izquierda del lector.²

Supongamos ahora que en vez de ser $S \subset G$, tomamos S < G. Recordemos que dado $g \in G$, ϕ_g es un isomorfismo por tanto manda elementos de un subgrupo en otro subgrupo (si el subgrupo es normal, manda elementos de un subgrupo en sí mismo). Es por esto que la afirmación equivalente a la proposición anterior sería:

Proposición 64. Sea S < G. Entonces $\{gSg^{-1} \mid g \in G\} = \{S = S_1, S_2, \dots, S_r\}$ son r subgrupos distintos.

Teorema 65. Sea G grupo, H < G. Entonces $H \triangleleft N(H)$ y N(H) es el mayor subgrupo de G con esta propiedad, es decir, $H \triangleleft H' \implies H' < N(H)$.

Demostración.

- Para probar que $N \triangleleft N(H)$ tiene sentido olivdarse del grupo G. Tenemos que $h \in N(H) \iff hHh^{-1} = H, \forall h \in G$. En particular, tenemos que $hHh^{-1} = H, \forall h \in N(H) \implies H$ es normal en N(H).
- Para porbar que N(H) es el mayor subgrupo con esta propiedad demostraremos que si H < H' y $H \triangleleft H'$ entonces $H' \subseteq N(H)$. La demostración es casi una tautología. Tenemos que $\forall h' \in H'$, $h'Hh'^{-1} = H \implies \forall h' \in H'$, $h' \in N(H) \implies H' \subset N(H)$.

Corolario 6. $H \triangleleft G \iff N(H) = G$

Demostración. Sabemos que $H \triangleleft H = \{gHg^{-1} \mid g \in G\}$ y dicho conjunto tiene [G:N(H)] = 1 elementos, luego N(H) = G. En otras palabras, el normalizador de un subgrupo $H \triangleleft G$ normal es todo el grupo G.

Proposición 66. Si H < G entonces³ Z(G) < N(H)

Demostración. Por definición de Z(G) tenemos que los elementos $g \in Z(G)$ fijan no solo los elementos dentro de subconjuntos, sino que los fijan uno a uno. Por lo que es claro que Z(G) < N(H).

Proposición 67. Sea $g \in G$. Entonces $C(g) < N(\langle g \rangle)$

Ejemplo 37. Vamos a empezar por $G = S_3$. En S_3 tenemos los subgrupos $\langle (12) \rangle, \langle (13) \rangle, \langle (23) \rangle$ de orden 2 y el subgrupo $\langle (123) \rangle = \{(1), (123), (132)\}$ de orden 3.

- En el caso de este último $g\langle (123)\rangle g^{-1} = \langle (123)\rangle$ porque es el único subgrupo de orden 3. Por tanto $\langle (123)\rangle \triangleleft S_3$ y entonces $N(\langle (123)\rangle) = S_3$.
- Sin encambio en el caso de los subgrupos de orden 2 es posible que $g((12)) \neq ((12))$, porque hay más de un subgrupo de orden 2. Observemos por ejemplo que $(13)(12)(13)^{-1} = (32) = (23)$, luego ((12)) no es normal en S_3 , ya que hemos

 $^{^{2}}$ Left to the reader.

 $^{^3 \}mathrm{No}$ sé si la hipotesis aquí es que H < Go que $H \subset G$

Figura 4.1: Retículo de subgrupos de S_3

encontrado $g=(13)\in G$ que lo mueve. Pero ¿quién es el normalizador $N(\langle (12)\rangle)$? Pues ya sabemos que es un subgrupo propio, porque no puede dar todo S_3 . Evidentemente $\langle (12)\rangle \subset N(\langle (12)\rangle)$. Luego tiene que ser que $N(\langle (12)\rangle) = \langle (12)\rangle^4$

Ejemplo 38. Seguimos por El famoso grupo D_4). Vimos anteriormente (ejemplo 36) que $Z(D_4) = \{1, B^2\}$. Tenemos su retículo en Figure 3.1. Queremos ver de entre los subgrupos de D_4 , cuáles son los que conmutan.

- Empecemos por $\langle B \rangle = \{1, B, B^2, B^3\}$. Observamos que $\langle b \rangle$ es normal puesto que tiene índice 2, es decir que $\{g\langle B \rangle g^{-1} \mid g \in G\} = \{\langle B \rangle\}$ y tiene sentido que $[G: N(\langle B \rangle)] = 1$. Es decir que como $\langle B \rangle$ es normal tenemos que $N(\langle B \rangle) = D_4$.
- Seguimos por $H = \{1, A, B^2, AB^2\}$. Ocurre lo mismo, luego $N(H) = D_4$.
- Con el caso de $\langle B^2 \rangle$ tenemos también que $N(\langle B^2 \rangle) = D_4$ por ser normal.
- Agotados los subgrupos normales, nos quedan los más difíciles. Consideramos ahora $\langle A \rangle$. Una vez más nos preguntamos quién es el normalizador de $\langle A \rangle$.
 - 1. Es claro que $\langle A \rangle$ conjugará con otros subgrupos de orden 2.
 - 2. También es claro que $\langle A \rangle \subset N(\langle A \rangle)$ y que $\langle B^2 \rangle \subset N(\langle A \rangle)$. Luego $N(\langle A \rangle)$ tiene al menos 2 elementos.
 - 3. También sabemos que $N(\langle A \rangle) \subsetneq G$ puesto que $\langle A \rangle$ no es normal, por lo que no puede tener 8 elementos. Por esto y porque $N(\langle A \rangle) < G$, concluimos que $|N(\langle A \rangle)| = 4$.
 - 4. ¿Cuáles mueven al $\langle A \rangle$? Sabemos que no puede haber más de dos, pues el normalizador tiene 4 elementos. Pues mirando la presentación nos damos cuenta de que $BA = AB^{-1} \iff BAB^{-1} = AB^2$. Luego nos damos cuenta de que A se mueve a AB^2 .
 - 5. Análogamente nos damos cuenta de que AB se mueve a AB^3 .
 - 6. Ya tenemos los dos elementos que se mueven.

Ejemplo 39. Vamos ahora con el grupo de cuaterniones H descrito en el ejemplo 5.

- 1. Nos dibujamos el retículo. Se puede consultar en Figure 3.3.
- 2. Primeramente nos damos cuenta de que $\langle A \rangle \cap \langle b \rangle \supseteq \{e\}$ porque H tiene 8 elementos y por la fórmula del producto libre (teorema 42) y porque todo producto directo de subgrupos está contenido en el grupo aunque no sea subgrupo.
- 3. Ocurre lo mismo con los demás subgrupos de orden 4 ($\langle A \rangle$, $\langle AB \rangle$). Tiene que tener intersección no vacía. En concreto la intersección es el subgrupo generado $\langle A^2 = B^2 = (AB)^2 \rangle$.
- 4. En H todos los subgrupos son normales, por lo que no tienen "órbitas" de modo que es muy aburrido.

Ejemplo 40. Consideramos ahora D_5 que funciona como el D_4 (ver ejemplo 7 para más información sobre los grupos D_n).

Figura 4.2: Retículo de subgrupos de D_5 .

■ Primera observación. Como o(B) = 5 que es primo, tenemos que $o(B^k) = 5$, k = 1, ..., 4. Luego cualquier subgrupo generado por $\langle B^k \rangle = \langle B \rangle$. Aquí falta algo.

⁴No tiene gracia que $\langle (12) \rangle$ sea normal en sí mismo, lo que tiene gracia es que $\langle (12) \rangle$ es el mayor grupo donde $\langle (12) \rangle$ es normal.

- Observemos que los subgrupos propios pueden ser de 2 o 5 elementos.
- \blacksquare No puede haber subgrupos generados por dos elementos de D_5 (por qué?)
- \blacksquare Los únicos subgrupos son $\langle B \rangle$ y los generados por $A,AB,AB^2,AB^3,AB^4.$
- Afirmamos que $\{gAg^{-1} \mid g \in G\} = \{\langle A \rangle, \langle AB \rangle, \langle AB^2 \rangle, \langle AB^3 \rangle, \langle AB^4 \rangle\}$. Vamos a probarlo.
 - 1. Primero nos damos cuenta de que $\{1,A\} \in N(\langle A \rangle)$.
 - 2. Además tenemos que no puede haber otro grupo por encima de $\langle A \rangle$ y D_5 por lo que tenemos que $N(A) = \langle A \rangle$.
 - 3. Por tanto en la órbita de A tenemos $[D_5:\langle A\rangle]=5$ grupos.

Capítulo 5

Biyecciones

5.1. El por qué de la notación cíclica

Definición 27 (Conjunto de biyecciones). Sea X un conjunto. Definimos

$$Biy(X) = \{f : X \to X \mid f \text{ es biyección}\}\$$

Como coinciden dominio y codominio $(f:X\to X)$ si f es inyectiva entonces automáticamente es sobre y por tanto biyectiva.

En general, tiene sentido pensar en Biy(X) aunque $|X| = \infty$. Además, en dicho conjunto viven la biyección identidad y la biyección inversa para cada biyección. Por tanto, tiene sentido pensar en $(Biy(X), \circ)$ como un grupo (la composición de biyecciones da una biyección). Lo escribimos en forma de teorema.

Teorema 68. Sea X un conjunto. El par $(Biy(X), \circ)$ es un grupo.

Nos concentraremos en el caso en el que $|X| = n < \infty$ que nos da $Biy(X) = S_n$. Ver definición 10 para una explicación detallada del grupo S_n .

Fijamos un conjunto X y un homomorfismo de grupos $\alpha: X \to Biy(X)$. A partir de estos datos definimos una relación de equivalencia que nos da una partición de X, es decir, vamos a partir X en conjuntos disjuntos. Veamos un ejemplo particular.

Ejemplo 41. Supongamos G = X, |G| = n y consideramos $\rho : G \to \operatorname{Aut}(G) \subset \operatorname{Biy}(X)$. Definimos la relación en X = G

$$aRb \iff \exists g \in G \mid \phi_q(a) = b, \ \phi_q(x) = gxg^{-1}$$

que es la relación de conjugación dada por el isomorfismo de conjugación de toda la vida.

Ahora, en lugar de pensar en G = X pensamos en $X = \{H < G\}$ (los subgrupos de G). Para cualquier isomorfismo de grupos $\beta : G \to G$, tenemos que si H < G entonces $\beta(H) < G$.

Lo que hemos hecho aquí es un caso particular de lo que viene ahora.

Ahora pasamos al caso general.

Proposición 69. Sea $\alpha: G \to Biy(X), \ g \mapsto \alpha(g)$ un homomorfismo de grupos¹. Definimos la relación de equivalencia R en el conjunto X

$$aRb \iff \exists g \in G \mid \alpha(g)(a) = b$$
 (5.1)

Afirmamos que la relación es de equivalencia y que nos divide X en subconjuntos disjuntos (nos particiona X).

Demostración. Probamos las 3 propiedades de las relaciones de equivalencia.

- 1. Reflexiva: $\forall x \in X, aRa$. Por ser α homomorfismo tenemos que $\alpha(e_G) = id_X$ y por tanto $\alpha(e_G)(a) = a$.
- 2. Simétrica: $aRb \implies bRa$. Partimos de que $\exists g \in G \mid \alpha(g)(a) = b$. Tomamos $g^{-1} \in G$ y por ser α homomorfismo de grupos tenemos que $\alpha(g^{-1})(b) = (\alpha(g))^{-1}(b) = a$.

¹Ojo: aquí las imágenes de los elementos $g \in G$ son biyecciones $f : G \to G$, por eso tendrá sentido la notación $\alpha(g)(a)$ que significa aplicar la función que nos devuelve α al elemento $a \in G$.

3. Transitiva: $aRb \wedge bRc \implies aRc$. Partimos de que $\exists g, g' \in G \mid \alpha(g)(a) = b \wedge \alpha(g')(b) = c$. Tomamos $g'g \in C$ y tenemos que $\alpha(g'g)(a) = \alpha(g')(\alpha(g)(a)) = \alpha(g')(b) = c$ por composición de biyecciones.

¿Cómo son las clases que da la partición?

Pues tenemos que para $a \in X$, la clase $cl(a) = \{\alpha(g)(a) \mid g \in G\}$. Definimos $H_a = \{g \in G \mid \alpha(g)(a) = a\}$. Tenemos por lo visto anteriormente que $H_a < G \land |cl(a)| = [G : H_a]$. Entonces tenemos lo siguiente:

- En el caso en que X = G, es decir, que el conjunto X tiene dentro elementos de G, tenemos que $H_a = C(a)$ donde C(a) es el centralizador de a (definición 24).
- En el caso en que $X = \{H < G\}$, es decir, que el conjunto X tiene dentro subgrupos de G, tenemos que $H_a = N(a)$ donde N(a) es el normalizador de a (definición 26).

Vista la definición abstracta, lo que nos interesa de esto es aplicarlo a los grupos S_n de los que hablábamos antes. En particular, ahora daremos una definición formal de ciclo para la notación que introdujimos en la subsection 1.4.1.

Figura 5.1: La permutación α de S_n

Fijamos $\sigma \in S_n$ y definimos $G = \langle \sigma \rangle$ el subgrupo generado por σ en S_n . Definimos ahora el homomorfismo

$$G = \langle \sigma \rangle \to S_n = \text{Biy}(X), \qquad X = \{1, 2, 3, \dots, n\}$$

Las clases cl(i) para $i \in \{1, 2, ..., n\}$ son de la forma²

$$cl(i) = {\sigma^k(i) \mid k \in \mathbb{Z}}$$

Ejemplo 42. Consideramos la permutación $\alpha \in S_n$ dada por (ver Figure 5.1)

que en la notación cíclica podríamos escribir como $\alpha = (345...n)(12)$.

En este caso la clase $cl(1) = \{1,2\} = cl(2)$ está formada por los elementos que podemos obtener de aplicar α al elemento 1. Ya se intuye la utilidad de la notación cíclica: la permutación α nunca mezcla elementos de la caja $\{1,2\}$ con elementos de la caja $\{3,4,5,\ldots,n\}$. Así, también tendremos que $cl(3) = cl(4) = \cdots = cl(n) = \{3,4,5,\ldots,n\}$. Los elementos que hay en estas dos clases coinciden con los elementos que hay en cada uno de los ciclos en los que hemos descompuesto α .

Vemos que si fijamos σ se define una partición en $\{1,\ldots,n\}$ de subconjuntos disjuntos

$$F_1 \cup F_2 \cup \cdots \cup F_n$$

Si
$$r = |F_i| > 1$$
, $F_i = \{i_0, i_1, \dots, i_r\}$ tal que $\sigma(i_0) = i_1, \sigma(i_1) = i_2, \dots, \sigma(i_r) = i_0$.

Definición 28 (Ciclo). Diremos que σ es un ciclo de longitud r si en la partición definida

$$F_1 \cup F_2 \cup \cdots \cup F_n$$

todas las cajas F_j , j < r tienen un único elemento y F_r tiene r elementos.

La definición quiere decir que, en el fondo, un ciclo es un tipo de permutación que al aplicarla sucesivamente sobre el conjunto X lo particiona en varias cajas pero de manera que todas tienen un elemento excepto una, que tiene todos los elementos que se mueven entre ellos por la acción del ciclo. Un ejemplo en el conjunto $X = \{1, 2, 3, \ldots, n\}$ sería

1	5		
2	6	٠٠.	:
$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	٠٠.	٠٠.	• • •
4			n

Observemos que por la notación que hemos elegido, los ciclos tienen la estructura $(\sigma^0(a) \ \sigma^1(a) \ \sigma^2(a) \dots \sigma^s(a))$ donde σ es un elemento de S_n y a un elemento de X. Dado que si $\sigma^k = Id$ entonces $\sigma^{k+i} = \sigma^i$, si rotamos los números que definen el ciclo no estamos haciendo nada. Esto es, el ciclo (1234) = (2341) = (3412) = (4123).

²Las clases serían de la forma $\alpha(g)(i)$ pero es que en este caso todos los $\alpha(g)$ son elementos de $G = \langle \sigma \rangle$ y por tanto son de la forma σ^k .

5.2. De permutaciones a composiciones de ciclos

Proposición 70. Toda biyección $\alpha \in S_n$ se puede expresar como composición de ciclos disjuntos dos a dos:

$$\alpha = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_s$$

Proposición 71. La composición de dos ciclos disjuntos conmuta, es decir, si σ_1 y σ_2 son ciclos disjuntos (que no comparten ningún elemento entre los paréntesis) entonces $\sigma_1 \circ \sigma_2 = \sigma_2 \circ \sigma_1$

Corolario 7. Toda descomposición de una permutación $\alpha \in S_n$ en ciclos disjuntos $\alpha = \sigma_s \circ \sigma_{s-1} \circ \cdots \circ \sigma_2 \circ \sigma_1$ se puede reordenar sin cambiar el resultado.

Ejemplo 43. Antes de seguir veamos un ejemplo más de cómo una biyección de S_n particiona el conjunto $X = \{1, 2, \dots, n\}$.

Consideramos $\alpha \in S_n$ definida con

La partición que nos da α de $X = \{1, 2, 3, 4, 5, 6, 7, 8, 910\}$ es la siguiente:

$$\begin{array}{c|cccc}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}$$
 10

Partición de X dada por $\alpha = (123)(456)(89)$

Esto lo obtenemos de buscar las clases de cada elemento. Empezamos por el que queramos, por ejemplo, el 1:

$$cl(1) = \{\alpha^k(1) \mid k \in \mathbb{Z}\} = \{\alpha^0(1) = 1, \alpha^1(1) = 2, \alpha^2(1) = 3, \alpha^3(1) = 1, \alpha^4(1) = 2, \dots\}$$

Eliminando duplicidades obtenemos que $cl(1) = \{1, 2, 3\}$. Análogamente obtenemos $cl(4) = \{4, 5, 6\}$, $cl(7) = \{7\}$, $cl(8) = \{8, 9\}$, $cl(10) = \{10\}$. Lo que hemos hecho es seguir el algoritmo descrito en la subsection 1.4.1, esta vez entendiendo el significado. Obtenemos que $\alpha = (123)(456)(89)$ o cualquier reordenación de los ciclos anteriores, ya que al ser disjuntos, cambiar el orden en el que los rotamos no afecta al resultado.

Veamos ahora cómo se relacionan los órdenes de los ciclos con su longitud.

Ejemplo 44. Consideramos $\sigma = (123456) \in \S_n$. Observamos que $\sigma^6 = Id$ es decir que σ tiene orden 6.

De esta manera si nos preguntan por $\sigma^{122}=(123456)^{122}=(123456)^{6\cdot 20}\circ(123456)^2=(123456)^2$ no nos asustamos.

Si nos hubieran dado σ con la notación habitual, aparte de que hubiera ocupado mucho, no podríamos haber resuelto esta operación tan rápido.

Ejemplo 45. Nos preguntamos ahora por las potencias de $\sigma=(123456)$ menores que $6=o(\sigma)$.

• σ^2 equivaldría a aplicar σ dos veces a cada número $\{1, \ldots, 6\}$ (los demás números no nos interesan porque sabemos que σ no los mueve). Ayudándonos del dibujo obtenemos que $\sigma^2 = (135)(246)$.

Se verifica que σ^2 tiene $o(\sigma^2)=3$ y además si recordamos el teorema 19 comprobamos que se verifica $o(\sigma^2)=\frac{o(\sigma)}{mcd(o(\sigma),2)}=\frac{6}{2}=3$.

■ En cuanto a σ^3 observamos que al aplicar σ 3 veces nos quedan 3 ciclos y que se vuelve a verificar que $o(\sigma^3) = \frac{o(\sigma)}{mcd(o(\sigma),3)} = \frac{6}{3} = 2$

Esto nos lleva a enunciar el siguiente teorema

Teorema 72. Sea $\sigma=(i_1\ i_2\ i_3\dots i_n)$ un ciclo de longitud n. Sea $m\in\mathbb{Z}$ y d=mcd(n,m). Entonces σ^m es un producto de d ciclos de longitud $\frac{n}{d}$ y estos son disjuntos dos a dos.

Poder averiguar los órdenes de ciclos es una herramienta muy potente. Por ejemplo, podemos hacer lo siguiente.

Figura 5.2: El ciclo $\sigma = (123456)$

Figura 5.3: El ciclo $\sigma^2 = (123456)^2$

Figura 5.4: El ciclo $\sigma^3 = (123456)^3$

Ejercicio (H3.8). Demuestra que el subgrupo $G < S_4$ generado por los elementos $\sigma = (1432)$ y $\tau = (24)$ es isomorfo a D_4 .

Demostración. Sabemos que $o(\sigma)=4$ y que $o(\tau)=2.$ Trabajando un poco vemos que

$$\langle \sigma \rangle = \{ \sigma = (1432), \sigma^2 = (13)(24), \sigma^3 = (4321), \sigma^4 = Id \}$$

 $\langle \tau \rangle = \{ \tau = (24), \tau^2 = Id \}$

Faltaría ver que $\sigma \tau = \tau \sigma^3$ es decir que (1432)(24) = (24)(4321) (spoiler: es verdad) y ya podríamos identificar σ con B y τ con A para obtener la presentación del famoso grupo D_4 :

$$D_4 \simeq G = \langle \sigma, \tau \mid o(\sigma) = 4 \land o(\tau) = 2 \land \sigma\tau = \tau\sigma^3 \rangle$$

$$\alpha = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_n \text{ disjuntos } \implies o(\alpha) = mcm(\sigma_1, \dots, \sigma_n)$$

Demostración. Ver [DH96] página 120.

5.3. Sobre las conjugaciones de una descomposición en ciclos

Antes de seguir, vamos a introducir dos proposiciones que nos serán de gran ayuda al calcular conjugados de una permutación, por ejemplo, para cuando queramos calcular centralizadores.

Proposición 74. Sea $\alpha \in S_n$ una permutación con descomposición en ciclos disjuntos

$$\alpha = \left(i_1^{(1)} \ i_2^{(1)} \ \dots \ i_{s_1}^{(1)}\right) \left(i_1^{(2)} \ i_2^{(2)} \ \dots \ i_{s_2}^{(2)}\right) \dots \left(i_1^{(r)} \ i_2^{(r)} \ \dots \ i_{s_r}^{(r)}\right)$$

y se
a $\omega \in S_n.$ Entonces el conjugado de α por
 ω es α' y se obtiene de

$$\alpha' = \omega \alpha \omega^{-1} = \left(\omega(i_1^{(1)}) \ \omega(i_2^{(1)}) \ \dots \ \omega(i_{s_1}^{(1)})\right) \left(\omega(i_1^{(2)}) \ \omega(i_2^{(2)}) \ \dots \ \omega(i_{s_2}^{(2)})\right) \dots \left(\omega(i_1^{(r)}) \ \omega(i_2^{(r)}) \ \dots \ \omega(i_{s_r}^{(r)})\right)$$

Se ve mejor con un ejemplo:

Ejemplo 46. Sea $\alpha = (123)(45) \in S_5$ y sea $\omega \in S_5$ alguna permutación. Entonces

$$\alpha' = \omega \alpha \omega^{-1} = \omega(123)(45)\omega^{-1} = (\omega(1) \ \omega(2) \ \omega(3)) (\omega(4)\omega(5))$$

También podemos ir en la otra dirección. Es decir, dados α y α' obtener ω :

Proposición 75. Sean $\alpha, \alpha' \in S_n$ dos permutaciones cuyas descomposiciones en ciclos disjuntos son del mismo tipo y se denotan por

$$\alpha = \left(i_1^{(1)} \ i_2^{(1)} \ \dots \ i_{s_1}^{(1)}\right) \dots \left(i_1^{(r)} \ i_2^{(r)} \ \dots \ i_{s_r}^{(r)}\right)$$

$$\alpha' = \left(j_1^{(1)} \ j_2^{(1)} \ \dots \ j_{s_1}^{(1)}\right) \dots \left(j_1^{(r)} \ j_2^{(r)} \ \dots \ j_{s_r}^{(r)}\right)$$

Entonces $\exists \omega \in S_n$ tal que $\alpha' = \omega \alpha \omega^{-1}$ y ω se puede construir (en notación no cíclica)

$$\omega = \begin{pmatrix} i_1^{(1)} & i_2^{(1)} & \dots & i_{s_1}^{(1)} & \dots & i_1^{(r)} & i_2^{(r)} & \dots & i_{s_r}^{(r)} \\ i_1^{(1)} & i_2^{(1)} & \dots & i_{s_1}^{(1)} & \dots & i_1^{(r)} & i_2^{(r)} & \dots & i_{s_r}^{(r)} \\ i_1^{(1)} & i_2^{(1)} & \dots & i_{s_1}^{(1)} & \dots & i_1^{(r)} & i_2^{(r)} & \dots & i_{s_r}^{(r)} \end{pmatrix}$$

Ejemplo 47. Sean $\sigma, \sigma' \in S_5$. Busco $\tau \in S_5$ tal que σ' sea conjugada de σ por τ , es decir, $\tau \in S_n \mid \sigma' = \tau \sigma \tau^{-1}$. Pues utilizamos el método

$$\begin{cases} \sigma &= (123)(45) \\ \sigma' &= (245)(13) \end{cases} \longrightarrow \omega = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 5 & 1 & 3 \end{pmatrix}$$

o en notación cíclcia: $\omega = (124)(35)$.

5.4. TRASPOSICIONES 45

5.4. Trasposiciones

Definición 29 (Trasposición). Una trasposición es un ciclo de orden 2. Cualquier trasposición tiene orden 2.

Las trasposiciones tienen la forma $(a\ b)$ pero observemos que también se pueden escribir como $(b\ a)$ ya que lo que estamos haciendo es rotar (o empezar en otro lugar del ciclo).

Proposición 76. La inversa de cualquier trasposición es ella misma.

Teorema 77. El grupo S_n está generado por las transposiciones $\sigma \in S_n$.

Ya sabemos que cualquier permutación se puede expresar como producto de ciclos [disjuntos]. Para probar este teorema probaremos la siguiente proposición:

Proposición 78. Cualquier ciclo se puede expresar como composición de trasposiciones.

La prueba es constructiva y describe la manera de expresar un ciclo como composición de trasposiciones.

Demostraci'on. Sabemos que un ciclo σ se escribe como $\sigma = (\sigma^0(a) = a \ \sigma^1(a) \ \sigma^2(a) \ \dots \ \sigma^s(a))$. Pues vasta con observar que la composici\'on

$$\sigma = (a \ \sigma^s(a))(a \ \sigma^{s-1}(a)) \dots (a \ \sigma^2(a))(a \ \sigma(a))$$

tiene el mismo efecto.

Ejemplo 48. La permutación $\sigma = (1234)$ se puede expresar como $\sigma = (14)(13)(12)$.

5.4.1. Paridad de las trasposiciones

Teorema 79. Si $\sigma \in S_n$ se puede descomponer como un número par de trasposiciones entonces toda expresión en σ expresada como una composición de un número par de trasposiciones.

Análogamente para las permutaciones que se pueden expresar como una composición de un número impar de trasposiciones.

Demostración. Definimos una función

$$S_n \to GL_n(\mathbb{N})$$

$$\sigma \mapsto \begin{pmatrix} e_{\sigma}(1) & \dots & e_{\sigma}(n) \\ \vdots & \vdots & \vdots \end{pmatrix}$$

Esta función es un homomorfismo de grupos.

Entonces si expresamos σ como composición de trasposiciones $\sigma = (i_1^{(1)} \ i_2^{(1)})(i_1^{(2)} \ i_2^{(2)})\dots(i_1^{(r)} \ i_2^{(r)})$ y aplicamos la función que hemos definido nos queda

$$A = \begin{pmatrix} e_{\sigma}(1) & \dots & e_{\sigma}(n) \\ \vdots & \vdots & \vdots \end{pmatrix} = \underbrace{\begin{pmatrix} i_1^{(1)} & \dots & i_2^{(1)} \\ \vdots & \vdots & \vdots \end{pmatrix}}_{\text{det}=-1} \dots \underbrace{\begin{pmatrix} i_1^{(r)} & \dots & i_2^{(r)} \\ \vdots & \vdots & \vdots \end{pmatrix}}_{\text{det}=-1}$$

y entonces

$$\det A = (-1)^r = \begin{cases} 1 & \text{si r es par} \\ -1 & \text{si r es impar} \end{cases}$$

Visto que la paridad de una permutación va a ser invariante por la expresión como composición de trasposiciones que elijamos vamos a darle nombre ya que parece importante

Definición 30 (Paridad de una permutación). Sea $\sigma \in S_n$.

- ullet Diremos que σ es par si se puede descomponer como una composición de un número par de trasposiciones.
- ullet Diremos que σ es impar si se puede descomponer como una composición de un número impar de trasposiciones.

En otros textos, esto se define con la signatura

Definición 31 (Signatura de una permutación). Sea $\sigma \in S_n$ una permutación que podemos descomponer como una composición de r trasposiciones: $\sigma = \tau_1 \circ \tau_2 \circ \cdots \circ \tau_r$. Llamamos signatura de σ al número $(-1)^r$ y lo denotamos por $\operatorname{sig}(\sigma) = (-1)^r$.

Es muy interesante la manera en la que hemos demostrado el teorema 79. El homomorfismo que hemos construido de S_n a $GL_n(\mathbb{N})$ se puede extender para llegar al determinante:

$$\varphi: S_n \to GL_n(\mathbb{R}) \to (\{-1, 1\}, \cdot)$$

$$\sigma \mapsto A = \begin{pmatrix} e_{\sigma}(1) & \dots & e_{\sigma}(n) \\ \vdots & \vdots & \vdots \end{pmatrix} \mapsto \det(A)$$

Si consideramos el homomorfismo desde S_n hasta $(\{-1,1\},\cdot)$ nos damos cuenta de que hemos definido un homomorfismo de grupos que además es sobreyectivo.

El núcleo de dicho isomorfismo $\ker \varphi = \{ \sigma \in S_n \mid \varphi(\sigma) = 1 \}$ es un subgrupo por el teorema de correspondencia entre familias de subgrupos bajo un epimorfismo (ver teorema 35). Además este subgrupo es normal y de índice 2. Tan importante es que le daremos nombre en la sección 5.7.

5.5. Clases de equivalencia de permutaciones en S_n

Definición 32 (Tipo de una permutación). Sea $\alpha \in S_n$ una permutación que descomponemos en composición de ciclos disjuntos

$$\alpha = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_r$$
 donde $o(\sigma_i) = \lambda_i$ y además $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_r \ge 1 \land \sum_{i=1}^r \lambda_i = n$

Entonces decimos que α es de tipo o estructura $(\lambda_1, \ldots, \lambda_r)$. A veces lo denotamos con α es de tipo $\lambda_1 + \cdots + \lambda_r$.

Ejemplo 49. En S_8 la permutación $\alpha = (123)(45)(67)$ tiene tipo (3, 2, 2, 1) o bien 3 + 2 + 2 + 1.

¿Por qué es interesante esto? Porque los elementos de $cl(\alpha)$ son todas las permutaciones del mismo tipo que α . Lo vemos con un ejemplo.

Ejemplo 50. Consideramos $\alpha \in S_5$, $\alpha = (123)$. Los elementos de la clase de equivalencia son de la forma $cl(\alpha) = \{\omega(123)\omega^{-1} \mid \omega \in S_5\}$. Es decir que, por ejemplo:

$$cl((123)(45)) = \{(i_1 \ i_2 \ i_3)(i_4 \ i_5) \mid \text{totalidad de elementos de tipo} \ (3,2)\}$$

 $cl((12)) = \{\text{elementos de clase} \ (2,1,1,1)\}$

Observemos que $\omega(123)\omega^{-1}=(\omega(1)\ \omega(2)\ \omega(3))$. Con $\omega=(12345)$ tenemos

$$\omega(123)\omega^{-1}(\omega(1)) = \omega(123)\omega^{-1}(3) = \omega(123)(\omega(1)) = \omega(2)$$

$$\omega(123)\omega^{-1}(\omega(2)) = \omega(123)\omega^{-1}(2) = \omega(123)(\omega(2)) = \omega(3)$$

$$\omega(123)(54)\omega^{-1} = (234)(15)$$

Ejemplo 51. ¿Cuántos elementos hay en la clase de equivalencia del elemento $(123) \in S_3$?

- En S_3 los posibles tipos son (3), (2,1), (1,1,1). El elemento (123) que es de tipo 3.
- Por lo visto anteriormente sabemos que $cl((123)) = \{\text{totalidad elementos de tipo 3 en } S_3\}$. Por tanto, la pregunta en los grupos de permutaciones es ¿cuántos 3-ciclos hay en S_3 ?

- Recordemos que $|cl((123))| = [S_3 : C((123))]$, luego solo necesitamos saber cuántos elementos hay en C((123)).
 - Por el teorema de Lagrange (teorema 23) sabemos que los posibles órdenes del subgrupo C((123)) son 1, 2, 3, 6 (los divisores de $|S_3| = 6$).
 - Sabemos que siempre (123) $\in C((123))$. Además C((123)) es un grupo, luego por clausura es necesario que $\langle (123) \rangle \subset S_3$. Esto nos dice que $|C((123))| \ge 3$.
 - ¿Puede haber algún elemento más? No, porque C((123)) es un subgrupo propio. Esto quiere decir que tiene menos elementos que S_3 luego |C((123))| < 6.
 - Entonces, C((123)) solo puede tener 3 elementos (y por tanto $C((123)) = \langle (123) \rangle$).
- Concluímos que $|cl((123))| = [S_3 : C((123))] = \frac{6}{3} = 2$. De hecho, los elementos son $cl(123) = \{(123), (132)\}$.

5.5.1. Estudio de un caso: descomposición detallada del grupo S_4

A lo largo de los siguientes ejemplos veremos cómo se descompone S_4 en clases disjuntas de acuerdo a los tipos de sus permutaciones.

Ejemplo 52. Consideramos el grupo S_4 . Queremos ver cómo se descompone S_4 en clases de equivalencia según los tipos de sus permutaciones.

■ Los posibles tipos en S_3 son 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1. Recordemos que por la demostración del Teorema de Cauchy tenemos que

$$S_4 = cl((1234)) \cup cl((123)) \cup cl((12)(34)) \cup cl((12)) \cup cl((1d))$$

Aquí, hemos tomado un representante de cada clase para escribirla más cómodamente. Lo que dice la ecuación de arriba es que S_4 está formado por todas las permutaciones de cada posible tipo que se puede dar en S_4 .

- Nos preguntamos, por ejemplo, ¿cuántos elementos hay en C((1234))? Para averiguarlo utilizaremos que $[S_4: cl((1234))] = |C((1234))|$. El problema se reduce a averiguar |cl((1234))| puesto que ya sabemos que $|S_4| = 4!$.
 - En cl((1234)) están todos los 4-ciclos. ¿Cuántos hay? Tenemos que ver de cuántas maneras distintas podemos escribir 4 números $(i_1 \ i_2 \ i_3 \ i_4)$ de manera que todas representen 4-ciclos diferentes.
 - Como una rotación de los números de un ciclo no cambia la permutación que describe (esto es, (1234) = (2341)) lo que buscamos es, fijado un número, de cuántas maneras podemos ordenar los demás. Es decir, ¿de cuántas maneras podemos ordenar 3 números distintos? Pues de 3! = 6 maneras.
 - Por último nos queda ver qué valores pueden tomar los 4 números que escribimos en el ciclo. Pues tenemos disponibles 4 números para elegir (del 1 al 4) y tenemos que coger 4, así que solo hay una manera, o lo que es lo mismo, hay (4) maneras.
 - Concluimos que en cl((1234)) hay $3!\binom{4}{4} = 6 \cdot 1 = 6$ 4-ciclos, y por tanto en C((1234)) hay $[S_4: cl((1234))] = \frac{24}{6} = 4$ elementos.
- Ahora nos preguntamos lo mismo pero para los 3-ciclos, es decir, las permutaciones de tipo 3 + 1. Procediendo de la misma manera obtenemos que el número de 3 ciclos es

$$|cl((123))| = \#$$
 elementos a ordenar $\times \#$ posibles valores $= (3-1)! \times \binom{4}{3} = 2! \cdot \frac{4!}{1!3!} = 8$

Con lo cual $|C((123))| = [S_4 : cl((123))] = \frac{24}{8} = 3$

Podríamos seguir con el ejemplo anterior pero le daremos una vuelta más. En vez de pedir solo el orden del subgrupo C((12)(34)) como nos tocaría si siguieramos el orden lógico, pedimos los generados de ese subgrupo.

Ejemplo 53. Halla los generadores del subgrupo $C((12)(34)) < S_4$.

- Una buena manera de empezar, es preguntarse cuántos elementos hay en C((12)(34)) y para ello necesitamos saber cuántos elementos hay en cl((12)(34)). Esta vez es un poco más complicado.
 - El número de posibles primeras parejas (primeros 2-ciclos) que podemos poner para obtener un elemento de tipo 2+2 es $1! \times {4 \choose 2} = 6$.
 - Observemos que al elegir la primera pareja queda determinada la segunda (solo hay 4 elementos para elegir).
 - Observemos también que al ser ciclos disjuntos, reordenaciones de estas dos parejas no dan permutaciones distintas. Dividimos entre 2.

- Queda que |cl((12)(34))| = 3
- Una manera alternativa de pensar este caso es decir: fijo el 1 como primer elemento de la primera pareja. Para elegir el segundo solo me quedan 3 elementos y la segunda pareja me queda determinada en cuanto lo haga. Así que hay 3 permutaciones de tipo 2 + 2.
- Finalmente tenemos que $C((12)(34)) = \frac{24}{3} = 8$. Ya sabíamos que $\langle (12)(34) \rangle \subset C((12)(34))$ pero o((12)(34)) = 2 luego con los elementos de $\langle (12)(34) \rangle$ no tenemos suficientes para llenar C((12)(34)).
- Probamos con otros elementos τ de S_4 a ver si verifican $\tau(12)(34)\tau^{-1}=(12)(34)$:

$$\tau_1 = (1234)$$
 $\tau_1(12)(34)\tau_1^{-1} = (1234)(12)(34)(1234)^{-1} = (34)(12) = (12)(34)$
 $\tau_2 = (12)$
 $\tau_2(12)(34)\tau_2^{-1} = (12)(12)(34)(12)^{-1} = (34)(12) = (12)(34)$

De las ecuaciones anteriores tenemos que $(1234) \in C((12)(34)) \land (12) \in C((12)(34))$. Además, por clausura, $\langle (1234) \rangle = \{(1234), (12)(34), (4321), Id\} \subset C((12)(34)) \land \langle (12) \rangle = \{(12), Id\} \subset C((12)(34))$.

■ Como $|\langle (1234)\rangle \cap \langle (12)\rangle| = 1$ tenemos, por el teorema 42, que $|\langle (1234)\rangle\langle (12)\rangle| = |\langle (1234), (12)\rangle| = 4 \cdot 2 = 8 = |C((12)(34))| \implies C((12)(34)) = \langle (1234), (12)\rangle$

Ejemplo 54. Halla los generadores del subgrupo centralizador del elemento (12) en S_4

- $|C((12))| = [S_4 : cl((12))]$. Obtenemos cl((12)) de la manera habitual: número de 2-ciclos = $(2-1)! \times {4 \choose 2} = 6$. Por tanto |C((12))| = 24/6 = 4.
- Sabemos que $\langle (12) \rangle \subset C((12))$ luego necesitamos otros dos elementos para rellenar C((12)).
- Pues vamos a probar a ver qué pasa con (34):

$$(34)(12)(34)^{-1} = (12)(34)(34)^{-1} = (12) \implies (34) \in C((12)) \implies \langle (34) \rangle \subset C((12))$$

■ Como en el ejemplo anterior aplicamos el teorema 42 y obtenemos que $|\langle (12)\rangle\langle 34\rangle| = |\langle (12), (34)\rangle| = \frac{|\langle (12)\rangle|\langle (34)\rangle|}{|\langle (12)\rangle\cap\langle (34)\rangle|} = \frac{2\cdot 2}{1} \implies C((12)) = \langle (12), (34)\rangle$

Recapitulando comprobamos que S_4 se descompone en

- 6 4-ciclos (tipo 4),
- 8 3-ciclos (tipo 3 + 1),
- \blacksquare 3 2-ciclos + 2-ciclos (tipo 2 + 2),
- 6 2-ciclos (tipo 2 + 1 + 1), y
- 1 identidad o 1-ciclo (tipo 1 + 1 + 1 + 1).

En total suman 24 elementos.

5.6. Clases de equivalencia de subgrupos en S_n

Ahora haremos lo mismo que hemos hecho para permutaciones pero con subgrupos. Recordemos que el normalizador es lo mismo que el centralizador pero aplicado a subgrupos: el normalizador de un subgrupo son las permutaciones que mandan a un subgrupo en sí mismo mientras que en el caso del centralizador eran los elementos que mandan un elemento en sí mismo.

Conviene recordad la definición 26 y la proposición 67.

Ejemplo 55. Entender y copiar ejemplo pág 100 santorum

5.7. [Sub]grupos alternados

Recordemos que existía un homomorfismo de grupos $S_n \to (\{-1,1\},\cdot)$ y que defiamos la paridad de una permutación $\sigma \in S_n$ como par si $\sigma \mapsto 1$ y como impar si $\sigma \mapsto -1$. Esto tenía sentido porque una permutación par se descomponía siempre en un número par de transposiciones y ocurría lo mismo con las permutaciones impares.

Pues resulta que nos interesa mucho el conjunto formado por las trasposiciones de orden par. Esto conjunto es en realidad un subgrupo (recordar que la paridad se mantiene si operamos con trasposicones de la misma paridad) y además veremos que es un subgrupo normal de S_n .

5.8. GRUPOS SIMPLES 49

Definición 33 (Grupo alternado). Sea $\varphi: S_n \to (-1,1,\cdot)$ el homomorfismo de grupos definido arriba. Definimos el grupo alternado o alternante A_n como

$$A_n = \ker \varphi = \{ \sigma \in S_n \mid \sigma \text{ es par} \}$$

Recogemos los resultados que hemos dejado caer antes de la definición:

Proposición 80. $A_n \triangleleft S_n$ y además $[S_n : A_n] = 2$

Corolario 8. Todo grupo S_n tiene un subgrupo normal de orden 2.

Hay dos resultados más que aún no entiendo para qué sirven:

Proposición 81.

$$S_n/A_n \simeq (\{-1,1\},\cdot)$$

Proposición 82. Todo subgrupo normal de S_n se puede expresar como unión de cajas.

Pasado esto seguimos con nuestras vidas. Veamos ejemplos.

Ejemplo 56. Consideramos $|S_5| = 5! = 120$. Haciendo lo mismo que hicimos para S_4 en la sección 5.5.1 obtenemos lo siguiente:

tipo 5	$ cl((12345)) = 4!\binom{5}{5} = 24$	$C((12345)) = \langle (12345) \rangle \simeq \mathbb{Z}/5\mathbb{Z}$
tipo 4 + 1	$ cl((1234)) = 3!\binom{5}{4} = 30$	$C((1234)) = \langle (1234) \rangle \simeq \mathbb{Z}/4\mathbb{Z}$
tipo 3 + 2	$ cl((123)(45)) = 2!\binom{5}{2} = 20$	$C((123)(45)) = \langle (123), (45) \rangle \simeq \mathbb{Z}/6\mathbb{Z}$
tipo 3 + 1 + 1	$ cl((123)) = 2!\binom{5}{2} = 20$	$C((123)) = \langle (123), (45) \rangle \simeq \mathbb{Z}/6\mathbb{Z}$
tipo $2 + 2 + 1$	cl((12)(34)) = 15	$C((12)(34)) = \langle (1234), (13) \rangle \simeq D_4$
tipo $2 + 1 + 1 + 1$	$ cl((12)) = 1!\binom{5}{2} = 10$	$C((12)) = \langle (12345) \rangle \simeq H \times \mathbb{Z}/2\mathbb{Z}$
tipo $1 + 1 + 1 + 1$	cl((1) = Id) = 1	$C(Id) = S_5$

Cuadro 5.1: Descomposición de S_5 en clases. Nota: aquí $H \simeq S_3$ o bien $H = \{ \sigma \in S_5 \mid \sigma(1) = 1 \land \sigma(2) = 2 \}$

¿Cuáles son los tipos que estarían en A_5 ? Pues aquellos que se puedan descomponer en un número par de trasposiciones. A saber: tipo 5, tipo 3+1+1, tipo 2+2+1, tipo 2+1+1+1. Por tanto en $|A_5|=24+20+15+1=60 \implies [S_5:A_5]=2 \implies A_5 \triangleleft S_5$.

Observación 1. En S_n siembre hay un subgrupo isomorfo a D_n .

Lo construimos buscando un elemento $B \in S_n$ de orden n (pista, el elemento (123...n) siempre vale) y otro elemento $A \in S_n$ de orden dos tal que $BA = AB^{-1}$. Con esto llegamos a la presentación de D_n . Ver ejemplo 7 para más detalles sobre esta presentación.

5.8. Grupos simples

Definición 34 (Grupo simple). Sea G un grupo, decimos que G es un grupo simple si los únicos grupos normales son G y el grupo neutro $\{e\}$.

A continuación demostraremos que el grupo alternante A_n , es simple para $n \ge 5$. La demostración de este resultado requiere distintas proposiciones.

Proposición 83. Sea G un grupo. Si G es finito y abeliano $\implies G$ es simple.

Proposición 84. Sea A_n un grupo alternante, A_n es generado por 3-ciclos para $n \ge 3$.

Demostración. Sea $\sigma \in A_n$, entonces $\sigma = (i_1^1 \ i_2^1)(i_1^2 \ i_2^2)\dots(i_1^{2n} \ i_2^{2n})$ una composición de un número par de composiciones.

Vamos a ver que para cualquier par de transposiciones $(i \ j)(k \ l)$ podemos expresarla como un 3 - ciclo.

$$(i \ j)(k \ l) = (i \ k \ j)(i \ k \ l)$$
 si los elementos son diferentes.
 $(i \ j)(i \ l) = (i \ l \ j)$ si tienen un elemento en comun.

Por tanto, como $\forall \sigma \in A_n$ puede ser expresado como un 3-ciclo o una composición de estos, A_n está generado por los ciclos de longitud 3.

Proposición 85. Sea A_n el grupo alternante de un conjunto de n elementos, A_n es generado por 3-ciclos de la forma $(s\ t\ i)$ con $s,t\in\{1\dots n\}$ fijos e $i\in\{1\dots n\}\setminus\{s,t\}$

Demostración. Cada 3-ciclo es el producto de 3-ciclos del tipo $(s\ t\ i)$ con s,t fijos e i variable, pues:

$$(s a t) = (s t a)^{2}$$

$$(s a b) = (s t b)(s t a)^{2}$$

$$(t a b) = (s t b)^{2}(s t a)$$

$$(a b c) = (s t a)^{2}(s t c)(s t b)^{2}(s t a)$$

Entonces, como A_n está generado por 3-ciclos, A_n está generado por ciclos de la forma $(s\ t\ i)$

Teorema 86 (Igualdad entre subgrupos y grupos alternantes). Si un subgrupo normal H de A_n contiene un 3-ciclo $\Longrightarrow H = A_n$

Demostraci'on. Supongamos que H es no trivial y contiene un 3-ciclo de la forma $(s\ t\ a)$. Usando la normalidad de H vemos que:

$$[(s\ t)(a\ i)](s\ t\ a)^2[(s\ t)(a\ k)]^{-1} = (s\ t\ i)$$

está en H. Luego, H debe contener todos los ciclos (s t i) para $1 \ge i \ge n$. Por la proposición 85, estos 3-ciclos generan A_n ; luego $H = A_n$.

Proposición 87. Para $n \ge 5$, todo $H \triangleleft A_n$ contiene un 3-ciclo.

Demostración. Sea $e \neq \sigma \in H$, existen varias posibles estructuras de ciclos para σ .

- \bullet σ es un 3-ciclo.
- σ es el producto de ciclos disjuntos, $\sigma = \tau(a_1 \ a_2 \cdots a_r) \in H$, con $r \ge 3$.
- σ es el producto de ciclos disjuntos, $\sigma = \tau(a_1 \ a_2 \ a_3)(a_4 \ a_5 \ a_6)$.
- $\sigma = \tau(a_1 \ a_2 \ a_3)$, donde τ es el producto de 2-ciclos disjuntos.
- $\sigma = \tau(a_1 \ a_2)(a_3 \ a_4)$, donde τ es el producto de un número par de 2-ciclos disjuntos.

La demostración sigue con el desarrollo de cada uno de los casos, utilizando la normalidad de H para ver que en todos los casos se llega a que H contiene un 3-ciclo.

Teorema 88 (Simplicidad del grupo alternante). Sea (A_n, \circ) el grupo alternante de un conjunto de n elementos. A_n es simple $\forall n \geq 5$.

Demostración. Sea H un subgrupo normal no trivial de A_n , por la proposición 87, H contiene un 3-ciclo. Por el teorema 86, $H = A_n$; por tanto, A_n no contienen ningún subgrupo normal que sea propio y no trivial para $n \ge 5$.

Capítulo 6

Teoremas de Sylow

6.1. Nuevas estructuras de grupo en el producto directo

Sean G_1, G_2 grupos, queremos definir nuevas estructuras de grupo en el producto $G_1 \times G_2$. Para ello comenzaremos definiendo una operación $*_{\alpha}$. Fijamos un homomorfismo de grupos $\alpha: G_2 \longrightarrow Aut(G_1)$, con $Aut(G_1)$ el grupo de automorfismos de G_1 .

Sean $(a, b), (c, d) \in G_1 \times G_2$, definimos $*_{\alpha}$ como:

$$(a,b) *_{\alpha} (c,d) = (a \cdot \alpha(b) \cdot c, b \cdot d).$$

Donde $b \in G_2$, $\alpha(b) \in G_1 \text{ y } \alpha(b) \cdot c \in G_1$.

Vamos a ver que $(G_1 \times G_2, *_{\alpha})$ es un grupo.

Teorema 89 (Grupo producto semidirecto). $(G_1 \times G_2, *_{\alpha})$ es un grupo.

Vamos a demostrar cada una de las propiedades del grupo:

Asociatividad.

Demostración.

$$(a \cdot \alpha(b) \cdot c, bd) *_{\alpha} (h, f) = (a \cdot \alpha(b) \cdot c \cdot \alpha(bd) \cdot h, b \cdot d \cdot h)$$

$$(a, b) *_{\alpha} (c \cdot \alpha(d) \cdot h, df) = (a \cdot \alpha(b) \cdot c \cdot \alpha(d) \cdot h, b \cdot d \cdot h)$$

Entonces, falta ver que $\alpha(d) \cdot h = \alpha(bd) \cdot h$. Definimos el isomorfismo de grupo:

$$\alpha(b): G_1 \longrightarrow G_1$$

$$c \longmapsto \alpha(b) \cdot c$$

$$\alpha(d) \cdot h \longmapsto \alpha(b) \cdot (\alpha(d) \cdot h) = \alpha(bd) \cdot h.$$

Por tanto, son iguales y la operación es asociativa.

• Existencia del elemento neutro.

Demostración. Sean e_1 y e_2 elementos neutros de G_1 y G_2 respectivamente. Recordamos que por el argumento anterior $\alpha(b) \cdot e_1 = e_1$.

$$(a,b) *_{\alpha} (e_1,e_2) = (a \cdot \alpha(b) \cdot e_1, b \cdot e_2) = (a,b)$$

■ Existencia del inverso.

Demostración. Hemos de hallar $(c,d) \mid (a,b) *_{\alpha} (c,d) = (e_1,e_2)$. Entonces, hemos de hallar c y d tal que:

$$a \cdot \alpha(b) \cdot c = e_1$$
$$b \cdot d = e_2$$

Es fácil ver que $\exists d$ y $d = b^{-1}$. Como $\alpha(b)$ es un isomorfismo $\implies \exists (\alpha(b))^{-1}$, entonces, $c = \alpha(b^{-1}) \cdot a^{-1} = a^{-1}$, por tanto $\exists c$ y $c = a^{-1}$.

Por tanto, el par $(G_1 \times G_2, *_{\alpha})$ tiene estructura de grupo.

Vamos a ver ahora ciertas relaciones del producto cruz con la operación que acabamos de definir. Para abreviar, al par $(G_1 \times G_2, *_{\alpha})$ lo denominaremos por $G_1 \times_{\alpha} G_2$.

Sean G_1, G_2 grupos finitos, definimos:

$$\frac{G_1}{G_2} = \{(a, e_2) \mid a \in G_1\}$$
$$G_2 = \{(e_1, b) \mid a \in G_2\}$$

Es fácil ver que $\underline{G_1} < G_1 \times_{\alpha} G_2$ y $\underline{G_2} < G_1 \times_{\alpha} G_2$. Además,

$$\begin{split} |\underline{G_1} \cdot \underline{G_2}| &= \frac{|\underline{G_1}| \cdot |\underline{G_2}|}{|\underline{G_1} \cap \underline{G_2}|} = \frac{|\underline{G_1}| \cdot |\underline{G_2}|}{1} = |G_1| \cdot |G_2| = |G_1 \times_{\alpha} G_2| \\ \underline{G_1} \cap \underline{G_2} &= (e_1, e_2) \end{split}$$

Y podemos probar que G_1 es normal, sean $g_1 \in G_1$ y $g_2 \in G_2$:

$$(g_1, g_2) *_{\alpha} (a, e_2) *_{\alpha} (g_1, g_2)^{-1} = (g_1, g_2) *_{\alpha} (\dots, e_2 \cdot g_2^{-1}) = (\dots, e_2).$$

Corolario 9. Por lo que acabamos de ver:

- \hat{G}_1 y \hat{G}_2 son subgrupos.
- \hat{G}_1 es normal.
- $G_1 \cap G_2 = \{(e_1, e_2)\}$
- $\bullet \ \underline{G_1} \cdot \underline{G_2} = G_1 \times_{\alpha} G_2$

Si ahora tomamos $G_1 = N, G_2 = H$ con $N \triangleleft G, H \triangleleft G$, entonces:

- $\blacksquare H \cap N = \{e\}$
- $\blacksquare H \cdot N = G$
- $\alpha: H \longrightarrow Aut(N)$
- $G \cong H \times_{\alpha} N$

En particular, podemos definir:

$$\phi: H \longrightarrow Aut(N)$$
$$h \longmapsto \gamma_h \mid_N (n) = h \cdot n \cdot h^{-1}$$

Ejemplo 57. Sea el famoso grupo $D_4 = \{1, B, B^2, B^3, A, AB, AB^2, AB^3\}$ (ver ejemplo 6). Tomamos $N = \langle B \rangle = \{1, B, B^2, B^3\}$, $H = \langle A \rangle = \{1, A\}$. Entonces:

$$\phi: H \longrightarrow \operatorname{Aut}(N)$$
$$A \longmapsto ABA^{-1} = B^3$$

Entonces como hemos visto: $D_4 \cong \{1, A\} *_{\phi} \{1, B, B^2, B^3\}.$

6.2. Producto semidirecto

De [DH96]

Sea G un grupo. Sea $N \triangleleft G$, H < G, $N \cap H = \{e\}$ y NH = G (recordemos que por ser N normal, NH es grupo). Entonces $G \simeq N \times H$.

Veamos quién es ese isomorfismo $\gamma: G \to N \times H$. Recordemos que considerando dos grupos G_1, G_2 y su producto directo $G_1 \times G_2$ existe un $\alpha: G_2 \to Aut(G_1)$. Veremos quien es este α para H y N, es decir, quién es $\alpha: H \to Aut(N)$.

Construye α a partir de 4 isomorfismos.

Demostración.

- Comenzamos por definir una función $j: N \times H \to G$, $(n,h) \mapsto nh$. Es función está bien definida por teoría de conjuntos pero no es un homomorfismo de grupos¹².
- Recordemos que por el teorema 42 tenemos que $|G| = |N||H| = |N \times H|$ por ser $N \cap H = \{e\}$.
- \blacksquare Volviendo a lo de la estructura especial. Dar una estructura especial es dar una operación para $N \times H$.
 - Sea A un conjunto. Es claro que si tenemos una biyección $\phi:A\to G$ podemos dotar a A de alguna estructura para que sea un grupo.
 - Para dotar a A de estructura tenemos que definir la operación. Forzamos que para cada $a, a' \in A$ para los que se tiene $\phi(g) = a, \phi(g') = a'$ la operación sea $aa' = \phi(gg')$.
 - En este caso nuestro A es $N \times H$. En lugar de utilizar la operación habitual del producto directo definimos otra operación. Para llegar a ella nos fijamos en $(n,h)(n',h') \mapsto nhn'h' = nhn'h^{-1}hh' = n(hn'h^{-1})hh' = nn'hh'$ (intercalamos el neutro, que es legal).
 - Redefinimos la operación en $N \times H$ para que cuadre con este resultado. Llamaremos al nuevo grupo con la nueva operación $N \times_{\phi} H$: para (n,h),(n',h') definimos $(n,h)\cdot(n',h')=(n(hn'h^{-1}),hh')$.
 - Comprobamos que en este caso j es un homomorfismo de grupos:

$$\begin{split} j: N \times_{\phi} H &\to G \\ (n,h) &\mapsto nh \\ (n',h') &\mapsto n'h' \\ (n,h) \cdot (n',h') &\mapsto n(hn'h^{-1})hh' = nn'hh' \end{split}$$

Es muy interesante por que es muy natural llegar a situaciones de esta manera. ¡Y les voy a dar una!³

Ejemplo 58. Sea $|G| = p \cdot q$ y supongamos p < q primos. Por el teorema de Lagrange (23) tenemos que existe un subgrupo $H_p < G$ con $|H_p| = p$ y análogamente $\exists H_q \mid |H_q| = q$. A primera vista podríamos pensar que puede haber varios grupos de orden q. Pues no.

Demostración. Supongamos hay dos grupos H,H' de orden q distintos. La intersección tiene que dar un subgrupo y si los dos grupos tienen un número primo de elementos entonces la intersección solo puede ser el neutro, $H \cap H' = \{e\}$. Entonces por el teorema 42 tenemos que $|HH'| = q^2 > p \cdot q$ lo que es imposible. Luego sabemos que a lo sumo hay un grupo de orden q.

(Sigue el ejemplo) Supongamos que ese único grupo de orden q se llama N. Entonces $\phi_g(N) = N$ ya que un isomorfismo tiene que mandar un subgrupo de q elementos en otro subgrupo de q elementos y N es el único. Por tanto $N \triangleleft G$. Aplicando el teorema de antes, tenemos que $G \simeq N \times H$.

Ejemplo 59. Veamos un ejemplo con más pinta de problema. Demostrar que todo grupo de orden 77 es cíclico.

Demostración. Comenzamos por observar que 77 = 7 · 11. Por el teorema de Lagrange (23) tenemos que existen $H, N < G \mid |H| = 7, |N| = 11$ y por lo visto en el ejemplo anterior, $N \triangleleft H$. Como antes llegamos a que $H \cap N = \{e\}$ y a que |HN| = pq. Para aplicar el teorema anterior vemos qué estructura tiene que tener $N \times_{\phi} H$, con $\phi : H \longrightarrow Aut(N)$.

Vemos que $Aut(N) = Aut(\mathbb{Z}/11\mathbb{Z}) = \mathcal{U}(\mathbb{Z}/11\mathbb{Z}) = \mathbb{Z}/10\mathbb{Z}$, es decir, un grupo cíclico de 10 elementos.

Entonces, ϕ es de la forma: $H = \mathbb{Z}/7\mathbb{Z} \longrightarrow Aut(\mathbb{Z}/11\mathbb{Z})$, por tanto, solo podemos definir el homomorfismo de grupos trivial. Esto hace que $N \times_{\phi} H$ es igual a $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/11\mathbb{Z}$.

Por el corolario 9 sabemos que $G\cong N\times_\phi H\implies G\cong \mathbb{Z}/7\mathbb{Z}\times\mathbb{Z}/11\mathbb{Z}$ que es cíclico por ser producto de cíclicos de órdenes coprimos.

¹Ojo con por qué no es homomorfismo. Si tomamos $(n,h),(n',h') \in N \times H$ tenemos que j((n,h)(n',h')) = nn'hh'. Podríamos pensar que como N es normal, podemos conmutarlo y obtener nn'hh' = nhn'h' = j((n,h))j((n',h')). **Pero esto está mal.** Lo que significa ser normal es que para $h \in H$, se tiene que nh = hn'' para algún $n'' \in N$.

²Si los grupos son abelianos entonces sí es claro que es un homomorfismo. Lo que vamos a hacer es ver que dando una estructura especial, sí que es un homomorfismo de grupos incluso para grupos no abelianos

³Sugerencia: leelo con voz de tomatito.

6.3. Teoremas de Sylow

Son muchos teoremas para grupos finitos en los que el orden se puede expresar como

$$|G| = p^s m, \ mcd(p, m) = 1, s \ge 1$$
 (6.1)

Veremos y discutiremos 3 de ellos. Sirven sobre todo para contar cosas.

Definición 35 (P-subgrupo de Sylow). Dado G con $|G| = p^s m$ con mcd(p, m) = 1, $s \ge 1$, un p-subgrupo de Sylow de G es un subgrupo P < G con $|P| = p^s$.

Teorema 90 (Primero de Sylow). Sea G un grupo tal que $|G| = p^s m$, $mcd(p, m) = 1, s \ge 1$, p primo. Entonces existe un p-subgrupo de Sylow $H_1 < G$ con $|H_1| = p^s$.

^aEste teorema es el recíproco de algo que ya sabíamos. Podíamos afirmar que si P < G y $|P| = p^s$ entonces p^s dividía a |G|. Lo que dice el primer teorema de Sylow es que el recíproco es cierto.

El teorema de Cauchy (59) es una versión más débil de este primer teorema de Sylow.

Teorema 91 (Segundo de Sylow). Sea G grupo con $|G| = p^s m, mcd(p, m) = 1, s \ge 1$. Sea P un p-subgrupo de Sylow fijado. Si Q es un p-subgrupo de Sylow de G entonces $\exists g \in G \mid Q \subset gPg^{-1}$.

Teorema 92 (Tercero de Sylow). Sea $F = \{gPg^{-1} \mid g \in G\} = \{P = P_1, \dots, P_{n_p}\}$ el conjunto de p-subgrupos de Sylow de G. Entonces n_p divide a m y $n_p \equiv 1 \mod p$.

Hemos hecho mucho hincapié en los subgrupos normales y tenemos que si $N \triangleleft G$ entonces existe $\pi: G \to G/N$ homomorfismo de grupos⁴. Además teníamos que $|G| = |G/N| \cdot |N|$.

También establecíamos una biyección entre los submódulos de G que contienen a N y los submódulos de G/N. Si K es uno de ellos entonces $N \triangleleft G \implies N \triangleleft K$,

$$K/N = \overline{K} \subset K/N$$
$$|K| = |\overline{K}||N|$$

Vamos a discutir el teorema. Recordemos que dado G el centro Z(G) es el conjunto de los elementos que conmutan con todos (ver definición 23). Recordamos además las proposiciones 51 y 52 que nos dicen que el centro es normal y que cualquier subgrupo del centro es abeliano y normal. El centro está bien pero tampoco es para tanto: suele ser muy pequeño. WTF.

Aquí en medio ha desvariado bastante, remontándose hasta el teorema 36.

Demostración del teorema de Sylow. Procedemos por inducción [fuerte] en |G|.

- Si |G| = 1 no hay mucho que probar porque son grupos muy tontos.
- Suponemos que⁵ el teorema es válido para |G| < n. Distinguimos los siguientes casos:
 - 1. |Z(G)| = 0
 - 2. $|Z(G)| \neq 0$. Entonces Z(G) es un grupo abeliano no trivial. Es decir que $Z(G) \simeq \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_l\mathbb{Z}$. Como p divide a |Z(G)| podemos suponer que p divide a n_1 . Entonces $(n_1/p) \in \mathbb{Z}/n_1\mathbb{Z}$ y por tanto

$$(\overline{\left(\frac{n_1}{p}\right)}, \overline{0}, \dots, \overline{0})$$
 tiene orden p

Es decir que tenemos un H < Z(G) con |H| = p.

Teníamos de antes que |G/H||H| = |G|. Por inducción existe $\overline{K} < G/H$ de orden p^{s-1} . Aplicamos $|K| = |\overline{K}||H|$ y como |H| = p, $|\overline{K}| = p^{s-1}$ tenemos que $|H| = p^s$.

 $^{^4}$ Por teoría de conjuntos tenemos que π es una función que existe y está bien definida, pero aquí interesa que además es homomorfismo.

⁵[La clase en silencio]. Orlando: Se pueden callar por favor. [El silencio se hace más hueco]. Orlando: No hagan ruiditos. Me cuesta concentrarme [agita las manos]. [Sigue la demostración.]

Lo hemos probado para una hipótesis en concreto pero falta algo (no sé el qué). Seguimos con la demostración.

$$|G| = |Z(G)| + [G : C(a_{s+1})] + \dots + [G : C(a_r)]$$

|G| es no nulo módulo p y |Z(G) es nulo módulo p, por lo que necesariamente tiene que ocurrir que alguno de los $[G:C(a_i)]$ sea no nulo módulo p. Supongamos que es el primero, es decir, supongamos que $[G:C(a_{s+1})]$ es no nulo módulo p. Además tenemos que

$$\underbrace{|G|}_{p^s m} = \underbrace{|C(a)|}_{p^s m'} \cdot \underbrace{[G:C(a)]}_{\text{no divisible por p}}$$

Como $[G:C(a)] \ge 2$, $|C(a)| = p^s m' < |G|$ por inducción el subgrupo $C(a_{s+1})$ tiene un subgrupo de orden p^s .

Ejemplo 60. Supongamos $|G| = 2^2 \cdot 11 \cdot 13$. Por el teorema de Sylow tenemos que existen subgrupos $P_2, P_{11}, P_{13} < G$ con órdenes $|P_2| = 2^2$, $|P_{11}| = 11$, $|P_{13}| = 13$. Sin embargo no podemos garantizar que exista un Q con orden $|Q| = 2^2 \cdot 13$. Si ocurriera esto sería buenísimo porque existiría un P < G con $P \cap Q = \{e\}$ y por tanto $P \cdot Q = G$ y automáticamente $G \simeq P \times_{\phi} Q$. Esto no ocurre porque en general no sabemos si P_2 y P_1 3 son normales y por tanto no podemos garantizar que $Q = P_2 \cdot P_1$ 3 sea siquiera un grupo.

Lo interesante del ejemplo anterior es que si tenemos G descompuesto como producto directo de dos grupos y uno de ellos es normal, entonces tenemos automáticamente un producto semidirecto. Sin embargo, si tenemos G descompuesto en 3 grupos, no basta con que uno sea normal, sino que tienen que ser normales 2. Supongamos G se descompone en P, Q, R. Necesitamos que P sea normal para que $P \cdot Q$ sea grupo. Y necesitamos que R sea normal para que $P \cdot Q$ sea también un grupo y podamos dar un producto semidirecto.

Resultado muy fuerte que hay que saber probar.

Teorema 93. Sea G un grupo, $H_1, H_2 \triangleleft G \land H_1 \cap H_2 = \{e\}$. Entonces $\forall h_1 \in H_1, h_2 \in H_2$ se tiene que $h_1h_2 = h_2h_1$.

Demostración. Probaremos que $h_1h_2h_1^{-1}h_2^{-1}=e$. Para ello probaremos que $h_1h_2h_1^{-1}=h_2$. Sabemos que por ser $H_2 \triangleleft G$ tenemos que $h_1H_2h_1^{-1}=H_2$. Es decir, que $h_1h_2h_1^{-1}\in H_2$. Si multiplicamos a la derecha por $h_2^{-1}\in H_2$ nos sigue quedando un elemento de H_2 : $h_1h_2h_1^{-1}h_2^{-1}\in H_2$. Para H_1 tenemos lo mismo: $h_2h_1h_2^{-1}h_1^{-1}\in H_1$. Por alguna razón estos dos elementos son el mismo y como pertenece a ambos subgrupos entonces pertenece a la intersección y por tanto $h_1h_2h_1^{-1}h_2^{-1}=e$. ♣

Ejemplo 61. Consideramos D_4 que es un p-grupo pues $|D_4| = 2^3$. En este caso el centro no es el trivial: $Z(D_4) = \{1, B^2\}$.

Ejemplo 62. Consideramos H (el grupo de cuaterniones, ejemplo 5, y su retículo, figura ??) que también es un p-grupo pues $|H|=2^3$. El retículo de este grupo es extraño y volvemos a tener que $Z(H)=\{1,B^2\}$.

Ejemplo 63. Si G es un p-grupo con $|G| = p^s$ entonces G tiene subgrupos de orden $1, p, p^2, \ldots, p^s$.

Demostración. Procedemos por inducción en s. Para s=1 es trivial: el subgrupo es el propio G.

Supongamos que $|Z(G)| = p^{s'}$ con $s' \leq s$. Sabemos que $Z(G) \triangleleft G$ y además todo subgrupo de Z(G) es normal en G. $\exists \alpha \in Z(G) \mid o(\alpha) = p$. Tenemos que $\langle \alpha \rangle < Z(G)$ y por tanto $\langle \alpha \rangle \triangleleft G$. Consideramos ahora $G \to G/\langle \alpha \rangle$. Tenemos que $|G/\langle \alpha \rangle| = p^{s-1}$

Ejemplo 64 (de aplicación de los teoremas de Sylow). Sea G con $|G|=3\cdot 5$.

- Tenemos por el primer teorema de Sylow (90) que existen P_3 , $P_5 < G$ con $|P_3| = 3$, $|P_5| = 5$ (aplicamos el teorema dos veces primero cogiendo p = 3 y luego p = 5).
- Tenemos también que $P_3 \cap P_5 = \{e\}$ ya que los elementos de P_3 tienen orden que divide a 3 y los elementos de P_5 orden que divide a 5, por tanto, los elementos de la intersección tienen que tener orden que divida a 3 y a 5 por lo que solo puede ser el neutro.
- Como $P_3 \cap P_5 = \{e\}$ sabemos por el teorema 42 que P_3P_5 tiene 15 elementos. Si fuéramos capaces de probar que alguno de ellos es normal tendríamos un producto semidirecto.
 - Aplicamos el tercer teorema de Sylow (92) para averiguar quién es n_3 (el número de 3-subgrupos de Sylow en G). Tomamos $|G| = 3^1 \cdot 5$ (cogemos p = 3, m = 5). Entonces $n_3 \in \{1, 5\}$ pues n_3 tiene que dividir a m = 5. Además $n_3 \equiv 1 \mod 3 \implies n_3 \in \{1, 4, 7, \ldots\}$. Concluimos que $n_3 = 1$.
 - De aquí concluímos que el único conjugado de P_3 es P_3 (solo hay un 3-subgrupo de Sylow en 3, es decir, $\{gPg^{-1}\mid g\in G\}=\{P\} \implies gPg^{-1}=P,\ \forall g\in G\implies gP=Pg,\ \forall g\}$ luego $P_3\vartriangleleft G.^6$

⁶Orlando: Esto es buenísimo! [Se alegra muchísimo de lo que acaba de probar.]

- Hacemos lo mismo con n_5 y obtenemos que $n_5 = 1$ y concluímos que $P_5 \triangleleft G$.
- No solo uno de ellos es normal, sino que los dos son normales. Tenemos un producto semidirecto y concluímos que $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Ejemplo 65. Hacemos lo mismo con un grupo G que tiene $|G| = 2 \cdot 7$.

- Del primer teorema de Sylow (90) tenemos que $\exists P_2, P_7 < G$ con órdenes $|P_2| = 2, |P_7| = 7$.
- Es claro que P_7 tiene que ser normal (de dibujarlo) pero aún así supongamos que no sabemos contar y somos creyentes de los teoremas de Sylow, veamos que P_7 es normal.
 - Obtenemos n_7 del tercer teorema:

$$\begin{cases} n_7 \text{ divide a 2} \\ n_7 \equiv 1 \mod 7 \end{cases} \implies n_7 = 1$$

- Análogamente obtenemos que $n_2 = 1$.
- Volvemos a tener dos subgrupos normales y tenemos que $|P_2 \cdot P_7| = 2 \cdot 7$ (con un razonamiento análogo al de antes) de lo que obtenemos un producto semidirecto y por tanto $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Ejemplo 66. Consideramos el grupo S_4 que tiene orden $|S_4| = 4! = 4 \cdot 3 \cdot 2 = 2^3 \cdot 3$.

- \bullet Del primer teorema de Sylow obtenemos que $\exists P_2, P_3 < S_4$ con $|P_2| = 8, |P_3| = 3$.
- ¿Será S_4 un producto semidirecto? ¿Será P_2 o P_3 un subgrupo normal?
 - Veamos quien es n_3 . Por el tercer teorema de Sylow (92) tenemos que n_3 divide a m=8 y que $n_3\equiv 1 \mod p=3$. Con estas condiciones tenemos que n_3 puede ser o bien 1 o bien 4.

Recordemos que $\sigma \in S_4 \land o(\sigma) = 3 \iff \sigma$ es un ciclo de longitud 3. Y recordemos que en S_4 había 8 ciclos de longitud 3. Entonces tenemos que n_3 no puede ser 1 ya que en tal caso $P_3 \triangleleft S_4$ y por tanto en S_4 habría solo 2 ciclos de orden 3 resulta que hay ocho. Concluimos que $n_3 = 4.7$

• Veamos quien es $n_2 = \{gP_2g^{-1} \mid P\} = \{P_2 = P_2^{(1)}, \dots, P_2^{(n_2)}\}$. Por el tercer teorema de Sylow (92) tenemos que n_2 divide a m = 3 y que $n_2 \equiv 1 \mod p = 2$. Con estas condiciones tenemos que n_2 puede ser o bien 1 o bien 3.

Para $n_2 = 1$ tendríamos que $P_2 \triangleleft S_4$ y por tanto todos los elementos de orden par tendrían que vivir en P_2 . De orden 2 hay 6 elementos y de orden 4 hay otros 6, es decir, que en P_2 que es un grupo de orden 8, viven al menos 6 + 6 = 12 con lo cual llegamos a una contradicción. Por lo que necesariamente $n_2 = 3$.

- Pues no, ninguno de los p-subgrupos de Sylow que encontramos es normal.
- No hemos conseguido un producto semidirecto, pero vamos a probar que $P_2 \simeq D_4$ (y por extensión todos sus conjugados porque tenemos el isomorfismo de conjugación entre ellos). Para eso, haremos una presentación de P_2 análoga a la de D_4 (ver ejemplo 6).
 - Tomamos A = (13), B = (1234). ¿Por qué? Por el contexto geométrico de D_4 que se puede ver en el ejemplo 6. Recordemos que la A es la simetría y B es el giro.
 - Vemos que todo funciona y que la presentación queda igual que la de D_4 .

Cogemos un grupo de Sylow $|G|=p^smmcd(m,p)=1, s\geqslant 1$. Tenemos para el F del segundo tercer teorema de Sylow que $|F|=|F_1|+|F_2|+\cdots+|F_l|$ donde cada $F_j=\{qP_{i_j}q^{-1}\mid q\in Q\}$ y $|F_j|=[Q:N_Q(P_{i_j})]$.

Proposición 94. Si Q es un p-subgrupo de Sylow y P' es un p-subgrupo de Sylow entonces el normalizador de P' en Q es

$$N_Q(P') = P' \cap Q$$

De aquí obtenemos que $|F_j| = [Q:N_Q(P_{i_j})] = [Q:Q \cap P_{i_j}]$. Como Q,P_{i_j} son p-subgrupos tienen órdenes que son potencias de p por lo que $|F_j|$ es cociente de potencias de p y por tanto es potencia de p.

Observación 2 (para la prueba del tercer teorema de Sylow). $n_p \equiv 1 \mod p$

Demostración. En particular, tomamos P = Q. En este caso, la clase de P, $F_1 = \{pPp^{-1} \mid p \in Q = P\} = \{P\}$. $|F_2| = [Q:N_Q(P_{i_2})] = [P:P \cap P_{i_2}] = p_{r_2}$ porque P y P_{i_2} no son iguales.

Observación 3. Si Q es un p-subgrupo de Sylow de G entonces $Q \subset gPg^{-1}$ para algún $g \in G$.

⁷Efectivamente, de entre los 8 ciclos de longitud 3 que hay en S₄ salen 4 parejas que viven cada una en uno de los conjugados de P₃.

Demostración. Procedemos por refutación: supongamos que $Q \not\subset F$. Recordemos que

$$|F| = |F_1| + |F_2| + \dots + |F_s|$$
 $|F_k| = [Q: Q \cap P_{i_j}]$

Si afirmamos que $Q \not = Q$ entonces $|F_j|$ tiene que ser un múltiplo de p ya que al hacer la intersección $Q \cap P_{i_j}$ obtenemos un conjunto propio. De este modo, $|F| = \sum |F_j|$ también es un múltiplo de p. La contradicción llega con la observación anterior, ya que $|F| \equiv 1 \mod p$.

Lo interesante de verdad es el corolario que obtenemos de esta observación:

Corolario 10. F es el conjunto de todos los subgrupos de Sylow de G.

Observación 4. Por último probaremos que $n_n \mid m$.

Demostración. $F = \{gPg^{-1} \mid g \in G\}$ y tenemos que $|F| = [G:N_G(F)] \land |G| = p^sm \land P \subset N(P)$. Además

$$\underbrace{|G|}_{p^s m} = \underbrace{|P|}_{p^s} \underbrace{[G:P]}_{m}$$

Ahora $P \subset N(P)$ y también |G| = |N(P)[G:N(P)].

Ejemplo 67. Consideramos $|S_5| = 5! = 5 \cdot 4!$ tomamos p = 5, m = 4!, s = 1.

- \blacksquare Por el primer teorema tenemos que existen subgrupos de orden $p^s=5$. Esto ya lo sabíamos.
- De hecho hasta sabíamos que había 4! = 24 ciclos de longitud 5. Como p = 5 es un número primo, los subgrupos de orden 5 no tienen elementos en común. Cada subgrupo tendrá 4 elementos y como hay 24 ciclos de orden 5 habrá 6 subgrupos de orden 5.

Ejemplo 68. Sea G un grupo, H < G, N < G subgrupos. Recordemos que si $H \cap N = \{e\}, HN = G \wedge N \triangleleft G$ entonces existe un producto semidirecto para el que $G \simeq H \times_{\phi} N$. Si $|G| = p^a q^b$ con $p \neq q$ primos, entonces existen $P_p, P_q < G$ con $|P_p| = a, |P_q| = b$. Además se tiene que $P_p \cap P_q = \{e\}, |P_pP_q| = |P_p||P_q|$ y por tanto $P_pP_q = G$.

Realizamos un estudio sistemático de los grupos dado el orden similar al del teorema 45 pero utilizando los teoremas de Sylow

- Si |G| = 1 no tiene interés estudiarlo.
- Si |G| = 2, 3 entonces $G \simeq \mathbb{Z}/2\mathbb{Z}$ o $G \simeq \mathbb{Z}/3\mathbb{Z}$.
- \blacksquare Si $|G|=4=2^2$ entonces G es abeliano. Lo demostramos en la proposición 61 para todo grupo de orden p^2 con p primo.
- Si |G| = 5 entonces $G \simeq \mathbb{Z}/5\mathbb{Z}$.
- Si $|G| = 6 = 2 \cdot 3$ entonces $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ o $G \simeq D_3$. Sabemos por Sylow que existen $P_2, P_3 \triangleleft G$ con $|P_2| = 2, |P_3| = 3$. Además del tercer teorema de Sylow obtenemos $n_3 = 1$, es decir que en F_3 tenemos solo un grupo. Para n_2 solo tenemos que $n_2 = 1, 3$. Ahora bien, como $n_3 = 1$ tenemos que $P_3 \lessdot G$. Por tanto, existe un producto semidirecto para el que $G \simeq P_3 \times_{\phi} P_2 = ? \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.^8$

Veamos que de este producto semidirecto nos salen dos estructuras. En primer lugar vemos quiénes son N y H. En este caso el grupo normal es P_3 por lo que $N=P_3$ y $H=P_2$. Veamos los automorfismos interiores $Int: H \to Aut(\mathbb{Z}/3\mathbb{Z}) = (\{\overline{1},\overline{2}\},\cdot) = \mathcal{U}(Z/3\mathbb{Z})$. Como $Aut(\mathbb{Z}/3\mathbb{Z})$ tiene dos elementos, obtenemos dos estructuras

- Si tomamos que $e_H \mapsto e_{Aut(\mathbb{Z}/3\mathbb{Z})} = \overline{1}$ entonces encontramos que $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.
- Si tomamos que $e_H \mapsto \overline{2}$ ocurre que $G \simeq D_3$. Vamos a verlo.

Supongamos que $P_3 = \langle a \rangle, o(a) = 3$. Si para algún $h \in H$ definimos la conjugación hxh^{-1} para $x \in G$ tenemos que como $P_3 \triangleleft G$ entonces $hP_3h^{-1} = P_3$. Ahora supongamos que $H = P_2 = \langle b \rangle, o(b) = 2$. Entonces para un b, con el automorfismo seleccionado $a \mapsto bab^{-1} = a^2 \implies ab = ba^2$ y llegamos a la presentación de D_3 (con las a's y las b's cambiadas.)

- Si |G| = 7 entonces $G \simeq \mathbb{Z}/7\mathbb{Z}$.
- \blacksquare Si |G|=8 Sylow dice poco. Lo vimos en algún sitio
- Si |G| = 9 tampoco tenemos mucho que decir

 $^{^8\}mathrm{Por}$ convención ponemos el normal primero, para poder aplicar directamente la construcción sin liarnos.

■ Si $|G| = 10 = 2 \cdot 5$. Como de costumbre sabemos que existen $P_2, P_5 < G$ con los ordenes correspondientes. Por el tercer teorema llegamos a que $n_5 = 1$ y por tanto a que $P_5 \triangleleft G$. Para P_2 no tenemos nada, pero solo por ser P_5 normal existe un producto semidirecto para el que $G \simeq P_5 \times P_2 \simeq \mathbb{Z}/5\mathbb{Z} \times_{\phi} \mathbb{Z}/2\mathbb{Z}$. Como en el caso de |G| = 6 obtendremos dos estructuras.

Tomamos $N=P_5, H=P_2$. Tenemos que definir morfismos $Int: \mathbb{Z}/2\mathbb{Z} \to Auto(\mathbb{Z}/5\mathbb{Z}) = (\{\overline{1},\overline{2},\overline{3},\overline{4}\},\cdot) = \mathcal{U}(\mathbb{Z}/5\mathbb{Z})$. Para ver cuantos morfismos salen veamos el orden de los elementos de $Aut(\mathbb{Z}/5\mathbb{Z})$: Los elementos $\{\overline{1},\overline{2},\overline{3},\overline{4}\}$ tienen órdenes 1,4,4,2 respectivamente. En $\mathbb{Z}/2\mathbb{Z}=\{\overline{0},\overline{1}\}$ tenemos dos posibilidades Un automorfismo viene dado por donde enviamos el generador de $\mathbb{Z}/2\mathbb{Z}$ en este caso el $\overline{1}$.

- Si $\overline{1} \mapsto \overline{1}$ obtenemos el homomorfismo trivial y por tanto la estructura dada por la presentación $o(a) = 5, o(b) = 2, bab^{-1} = a \implies G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ abeliano.
- Si $\overline{1} \mapsto \overline{4}$ la estructura que obtenemos es $o(a) = 5, o(b) = 2, bab^{-1} = a^4 = a^{-1}$. Esta presentación es la del grupo D_5 .
- Si |G| = 11 pasa la historia de los primos.
- Si $|G| = 12 = 2^2 \cdot 3$. Entonces del tercero de Sylow tenemos $n_3 = 1, 4$ y $n_2 = 1, 3$. Tristeza. ¹⁰

Ahora se le ocurre afirmar que no puede ocurrir que $n_2 = 3 \wedge n_3 = 4$ simultáneamente.

Supongamos que $n_3 = 4$ entonces habría 4 subgrupos de orden 3 y por tanto habría $2 \cdot 4$ elementos de orden 3 (el neutro tiene orden 1). Ya tenemos 9 elementos bajo control. Para controlar los 12 nos faltan 3 elementos que llamaremos a, b, c y que podrían formar un grupo con el neutro: $\{e, a, b, c\}$. Efectivamente esto dice Sylow, que hay un subgrupo de orden 4 (a, b, c) no pueden tener orden 3 porque si no no podrían pertenecer a un grupo de orden 4). Como ya hemos agotado los elementos, no es posible que haya más subgrupos de orden 4, por lo que necesariamente $n_2 = 1$.

■ Así podemos seguir hasta |G| = 29 ya que cualquier orden menor que 30 es producto de como máximo dos primos.

Ejemplo 69. Sea G abeliano y $|G| = 20 = 2^2 \cdot 5$.

- Por el primer teorema de Sylow tenemos que $\exists P_4 < G, |P_4| = 4$.
- Por el segundo teorema, tenemos que todo subgrupo de orden 4 está en $F_4 = \{gP_4g^{-1} \mid g \in G\}$. Como G es abeliano, F_4 solo tiene un elemento luego P_4 es el único subgrupo de orden 4.
- Análogamente concluímos que $P_5 < G$ es el único subgrupo de orden 5.

Ejemplo 70. Estudiamos el grupo $G = \langle a, b \rangle$ con presentación o(b) = 4, o(a) = 3, $bab^{-1} = a^2$.

Pendiente, posible ejercicio de examen.

Ejemplo 71. Sea |G| = 30. Entonces G no es un grupo simple.

Demostración. Recordemos que G es simple si sus únicos subgrupos normales son G y $\{e\}$ (ver definición 34).

Tenemos que $|G| = 30 * 2 \cdot 3 \cdot 5$. Por el primer teorema de Sylow tenemos que $\exists P_5$ con $|P_5| = 5$. Además por el tercer teorema tenemos que $n_5 = 1, 6$. Análogamente tenemos $|P_3| = 3$ y $n_3 = 1, 10$.

Supongamos que $n_5 = 6$, $n_3 = 10$. Sean $S_1, \ldots S_6$ los 6 subgrupos de orden 5. Como 5 es primo entonces cada S_i es cíclico de orden 5 y necesariamente $S_i \cap S_j = \{e\}$, porque si S_i y S_j compartieran algún elemento, entonces serían el mismo grupo pero hemos supuesto que había 6 subgrupos de orden 5. Cada $S_i = \{1, a, a^2, a^3, a^4\}$ por ser 5 primo $\Longrightarrow S_i$ cíclico, es decir, que tenemos $4 \cdot 6 = 24$ elementos distintos de orden 5 (en cada grupo tenemos el neutro que tiene orden 1 y otros cuatro que deben tener orden 5 por ser S_i cíclico). Sean ahora H_1, \ldots, H_{10} los subgrupos de orden 3. Aplicando el mismo argumento, $H_i \cap H_j = \{e\}, H_i = \{e, b, b^2\} \Longrightarrow$ hay $2 \cdot 10 = 20$ elementos distintos de orden 3. Con esto llegaríamos a que en G hay al menos 20 + 24 = 44 > 30 elementos por lo que llegamos a una contradicción. Es decir, que necesariamente tiene que ocurrir que o $n_3 = 1$ o $n_5 = 1$, por lo que existe un subgrupo normal distinto de G o $\{e\} \Longrightarrow G$ no puede ser simple.

Ejemplo 72. Sea |G| = 48. Entonces o bien G tiene un subgrupo de orden 8 o bien G tiene un subgrupo de orden 16.

Demostración. Tenemos $|G| = 2^4 \cdot 3$. Por el primer teorema de Sylow tenemos que $\exists P_2, |P_2| = 2^4$ y por el tercer teorema tenemos que $n_2 = 1, 3$.

ESTO TIENE UNAS LAGUNAS...

■ Supongamos que $n_2 = 3$. Entonces $F_3 = \{gP_3g^{-1} \mid g \in G\} = \{P_{2_1} = P_2, P_{2_2}, P_{2_3}\}$. Probaremos que algún elemento de F_3 tiene un subgrupo normal, es decir, $\exists H \triangleleft P_{2_i}$ para algún i = 1, 2, 3.

⁹Estamos abusando un poco de la notación de clases, ir con cuidado.

¹⁰Orlando: Sylow nunca dice toda la verdad, se puede hilar más fino.

6.3. TEOREMAS DE SYLOW

- Consideramos la intersección $P_{2_2} \cap P_{2_3}$. Tenemos que $|P_{2_2} \cap P_{2_3}| = 1, 2, 4, 8$. Supongamos que $|P_{2_2} \cap P_{2_3}| = 4$. Entonces $|P_{2_2} \cdot P_{2_3}| = \frac{|P_{2_2}||P_{2_3}|}{|P_{2_2} \cap P_{2_3}|} = \frac{16 \cdot 16}{4} = 48 = |G|$. Esto no puede ocurrir, tiene que haber algún elemento de orden 3 y en P_{2_i} no puede haber ningúno. Por tanto concluímos que $|P_{2_2} \cap P_{2_3}| > 4 \implies |P_{2_2} \cap P_{2_3}| = 8$. ¹¹
- Es claro que $P_{2_2} \cap P_{2_3} < P_{2_2}$. Por alguna razón tenemos que $P_{2_2} \cap P_{2_3} \triangleleft P_{2_2}$ y $P_{2_2} \cap P_{2_3} \triangleleft P_{2_3}$. Recordemos que $P_{2_2} \cap P_{2_3} \triangleleft G \iff N(P_{2_2} \cap P_{2_3}) = G$ y que el normalizador N(H) siempre contiene a H y es el menor grupo en el que $H \triangleleft N(H)$. Entonces $P_{2_2} \triangleleft N(P_{2_2} \cap P_{2_3}) \implies \forall g \in G, g(P_{2_2} \cap P_{2_3})g^{-1} = P_{2_2} \cap P_{2_3}$. En particular $\forall g \in P_2, g \in N(P_{2_2} \cap P_{2_3}) \wedge \forall g \in P_{2_3}, g \in N(P_{2_2} \cap P_{2_3})$.

Ejemplo 73. Consideramos $|S_4| = 4! = 2^3 \cdot 3$. Podemos hacer el mismo argumento que antes para los subgrupos de orden 3.

Proposición 95. Sea G un grupo, $H \triangleleft G, K \triangleleft G$ y $H \cap K = \{e\}$. Entonces $\forall h, k, h \in H, k \in K \implies hk = kh$.

Teorema 96. Sea G un grupo finito, $H \triangleleft G$ y $K \triangleleft G$. Entonces son equivalentes

- 1. $H \cap K = \{e\} \wedge HK = G$
- 2. la función $H \times K \to G$, $(h,k) \mapsto hk$ es un isomorfismo de grupos

Demostración.

- 1 ⇒ 2. Lo primero decir que la función $H \times K \to G$ existe por teoría de conjuntos. Tenemos por el teorema 42 que |HK| = |H||K|. Con esto tenemos que la función es sobreyectiva porque |H||K| = |G|. Además es claro que la función es inyectiva. Además como $H \cap K = \{e\} \wedge H \triangleleft G \wedge K \triangleleft G$ tenemos que la función es un homomorfismo de grupos. Concluimos que la función es un isomorfismo de grupos.
- 2 \implies 1. Sea $H \times e = \{(h, e) \mid h \in H\}$. Es claro que $H < H \times K$: es subgrupo porque es finito y es cerrado. Análogamente sea $e \times K = \{(e, k) \mid k \in K\}$ y $e \times K < H \times K$.

Veamos ahora que $H \times e$, y por extensión, $e \times K$ son subgrupos normales en $H \times K$. Tenemos que probar que $\forall (a,b) \in H \times K$, $(a,b)(H \times e)(a,b)^{-1} = (H \times e)$. Sea $h \in H$, entonces

$$(a,b)(h,e)(a,b)^{-1} = (\underbrace{aha^{-1}}_{\in H}, \underbrace{beb^{-1}}_{=e}) \in H \times e \implies H \times e \triangleleft H \times K$$

Análogamente lo tenemos para $e \times K$.

Además, es claro que $(H \times e) \cap (e \times K) = \{(e, e)\}$ que es el neutro de $H \times K$ y por el isomorfismo de la hipótesis $(e, e) \mapsto e \implies (H \times e) \cap (e \times K) \mapsto H \cap K = \{e\}.$

Por último tenemos que $(H \times e) \cdot (e \times K) = H \times K \simeq G$ por hipótesis. Además, podemos obtener cualquier elemento de HK con el mismo isomorfismo: $\forall h \in H, k \in K, (h, e) \cdot (e, k) \mapsto hk \in HK \implies HK = G$.

Corolario 11. Sea G un grupo finito, $H \triangleleft G$ y $K \triangleleft G$, $N \triangleleft G$. Entonces son equivalentes

- 1. $H \times K \times N \to G$, $(h, k, n) \mapsto hkn$ es un isomorfismo de grupos.
- 2. $H \cap (KN) = K \cap (HN) = N \cap (HK) = \{e\} \text{ y } HKN = G.$

Demostración. Es análoga a la del teorema anterior.

Corolario 12. Dados H, K, N subgrupos normales de G entonces $\forall g \in G$ existe una única operación para la que g = hkn y dicha operación es el isomorfismo $H \times K \times N \to G$.

Teorema 97. Sea G un grupo abeliano finito. Entonces G es suma directa de sus p-subgrupos de Sylow.

Ejemplo 74. Consideramos $G = \mathbb{Z}/12\mathbb{Z}$ que tiene $|G| = 2^2 \cdot 3$. Se tiene que

$$P_2 = {\overline{0}, \overline{3}, \overline{6}, \overline{9}}$$
 $P_3 = {\overline{0}, \overline{4}, \overline{8}}$ $\mathbb{Z}/12\mathbb{Z} = P_2 \oplus P_3$

 $^{^{11}}$ Ojo aquí, lo que está haciendo es aplicar el teorema 42 con mucho arte. Podía haber probado con $|P_{2_2} \cap P_{2_3}| = 2$ pero en realidad no le hace falta, ya que $|P_{2_i}| = 16$ es fijo y por tanto la única manera de cambiar $|P_{2_2} \cdot P_{2_3}|$ es tocando el denominador. De ahí concluye que $|P_{2_2} \cap P_{2_3}| > 4$.

Sea ahora G un p-grupo abeliano finito, es decir que G es abeliano y que $|G| = p^r$. Es inmediato que $\forall g \in G$, $o(g) = p^s$ con $s \leq r$. Si tomamos $n \in \mathbb{Z}$ y utilizamos notación aditiva (nq significa q operado consigo mismo n veces) tenemos que

$$\alpha_n: G \to G$$
$$q \mapsto nq$$

es un homomorfismo de grupos (cuando G es abeliano). Si ahora tomamos $p \in \mathbb{Z}$ con p primo, tenemos que $\alpha_p(g) \mapsto pg$. Por el teorema de Lagrange (23) tenemos que si $|G| = n \land p \mid n$ entonces $\exists \alpha \in G \mid o(\alpha) = p$. Como $|G| = p^r$ entonces $\alpha_p : G \to G$ no es inyectiva y por tanto $\emptyset \subsetneq \ker \alpha_p < G$. Vamos a profundizar en el subgrupo $\ker \alpha_p$. Este subgrupo es

$$\ker \alpha_p = \{ g \in G \mid o(g) \mid p \} = \{ g \in G \mid o(g) = 1 \lor o(g) = p \}$$

ya que p es primo.

Ejemplo 75. Consideramos $G = \mathbb{Z}/p^r\mathbb{Z}$.

Ejemplo 76. Consideramos $G = \mathbb{Z}/p^r\mathbb{Z} \oplus \mathbb{Z}/p^s\mathbb{Z}$. Observemos que G nunca va a ser cíclico porque $mcd(p^r, p^s) > 1$ (nunca serán coprimos). Definamos aquí el producto por p.

$$\alpha_p: G \to G$$
$$(\overline{a}, \overline{b}) \mapsto (p\overline{a}, p\overline{b})$$

En este caso es necesario que $\ker \alpha_p = \{(\overline{a}, \overline{b}) \mid p\overline{a} = \overline{0} \land p\overline{b} = \overline{0}\} = \langle \overline{p^{r-1}} \rangle \oplus \langle \overline{p^{s-1}} \rangle$ donde $\langle \overline{p^{r-1}} \rangle \simeq \mathbb{Z}/p^r\mathbb{Z}$ y $\langle \overline{p^{s-1}} \rangle \simeq \mathbb{Z}/p^s\mathbb{Z}$. En este caso (en el que el p-grupo no es cíclico) se observa que hay más de 1 subgrupo de orden p.

¿Será verdad que esta observación caracteriza a los grupos cíclicos?

Teorema 98 (de alguien 1). Sea G un p-subgrupo abeliano. Entonces G es cíclico si y solo si tiene un único subgrupo de orden p.

Demostraci'on. Consideramos $\alpha_p:G\to G$. $\ker\alpha_p$ consiste en $\overline{0}$ y todos los elementos de orden p. Sea N el único subgrupo de orden p. Por tanto $\ker\alpha_p=N$.

La imagen Im α_p es un subgrupo de G y sabemos (por los teoremas de isomorfía) que Im $\alpha_p \simeq G/N$. Pongamos que $|G| = p^r$, por hipótesis, ker $\alpha_o = N \wedge |N| = p$. En particular, tenemos que Im α_p es un p-grupo abeliano de orden $|\text{Im }\alpha_p \simeq G/N| = \frac{p^r}{p} = p^{r-1}$. Como $p \mid |\text{Im }\alpha_p|$ tiene que existir un elemento de orden p en Im α_p y por tanto $N < \text{Im }\alpha_p < G$. Es único porque si hubiera dos subgrupos de orden p en Im α_g , también los habría en G y hemos partido de lo contrario. Aplicando inducción podemos suponer que el criterio es válido para Im α_p y por tanto podemos suponer que Im α_p es cíclico.

Sea $\overline{g} \in \text{Im } \alpha_p$ que genera el subgrupo Im α_p . Entonces $\overline{g} \in G/N \simeq \text{Im } \alpha_p$. Fijamos un elemento $g \in G$ cuya imagen en G/N sea \overline{g} . Recordemos que hay una correspondencia (36) entre los subgrupos de G que contienen a N y los subgrupos de G/N. Por tanto tenemos un elemento $g \in G$ que genera un subgrupo y quisiéramos ver que $\langle g \rangle = G$. Si demostramos que $N < \langle g \rangle$ entonces $\langle g \rangle = G$ por la correspondencia mencionada. Esta última afirmación $(N < \langle g \rangle = G')$ es válida porque G' es un p-grupo $\Longrightarrow G'$ contiene un elemento de orden $p \Longrightarrow N < G' = \langle g \rangle$. Luego $\langle g \rangle = G$.

Capítulo 7

Grupos abelianos

Capítulo 8

Anillos

Definición 36 (Anillo). Un anillo es una terna $(A, +, \cdot)$ donde + es una operación a la que llamamos suma, \cdot es otra operación a la que llamamos producto y se verifican las siguientes propiedades

- 1. El par (A, +) es un grupo abeliano
- 2. El producto \cdot es asociativo
- 3. Se cumplen las propiedades distributivas:

$$\forall a, b, c \in A, \ a \cdot (b+c) = a \cdot b + a \cdot c \tag{8.1}$$

$$\forall a, b, c \in A, \ (a+b) \cdot c = a \cdot c + b \cdot c \tag{8.2}$$

Con la operación + tenemos las siguientes propiedades

- 1. Asociatividad: (a + b) + c = a + (b + c)
- 2. Elemento neutro aditivo: $\exists 0 \in A \mid 0 + a = a$
- 3. Elemento inverso aditivo: $\forall a \in A, \exists -a \in A \mid a + (-a) = 0$
- 4. Conmutatividad aditiva: $\forall a, b \in A, a+b=b+a$

Con la operación \cdot tenemos las siguientes propiedades

- 1. Asociatividad: $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 2. Elemento neutro multiplicativo: $\exists 1 \in A \mid a \cdot 1 = 1 \cdot a = a$
- 3. No siempre existe inverso multiplicativo: $a^{-1} \mid a \cdot a^{-1} = 1$
- 4. No siembre se da la conmutatividad multiplicativa: $a \cdot b = b \cdot a$

Definición 37 (Unidades en anillos). Dado $(A, +, \cdot)$ anillo. El grupo de unidades es

$$\mathcal{U}(A) = (\{a \in A \mid \exists a^{-1} \in A, \ a \cdot a^{-1} = 1\}, \cdot)$$
(8.3)

Los elementos del grupo de unidades se llaman elementos invertibles.

Ejemplo 77. Las matrices cuadradas 2×2 con coeficientes reales: $(M_{2\times 2}(\mathbb{R}), +, \cdot)$ es un anillo. Tiene unidades $\mathcal{U}(A) = (GL_2(\mathbb{R}), \cdot)$

Ejemplo 78. Los numeros enteros $(\mathbb{Z}, +, \cdot)$ es un anillo y tienen unidades $\mathcal{U}(\mathbb{Z}) = (\{-1, 1\}, \cdot)$

Proposición 99. Sea -1 el inverso aditivo del neutro multiplicativo 1. Entonces $\forall a \in A$ el inverso aditivo es $-a = -1 \cdot a$ y se tiene $-1 \cdot a + a = 0$.

Proposición 100. Sea A un anillo. El neutro aditivo 0 verifica $0 \notin \mathcal{U}(A)$

Definición 38 (Anillo conmutativo). Sea A un anillo. A es un anillo conmutativo $\iff \forall a, b \in A, \ a \cdot b = b \cdot a$.

Proposición 101 (Propiedad cancelativa). Sea $a \in \mathcal{U}(A)$. Entonces $\forall b, c$ se tiene $b, c \in A \implies a \cdot b = a \cdot c \implies b = c$

64 CAPÍTULO 8. ANILLOS

Definición 39 (Divisor de 0). Sea $(A, +, \cdot)$ un anillo. Diremos que $a \in A$ es divisor de $0 \iff a \neq 0 \land \exists 0 \neq b \in A \mid a \cdot b = 0$

Ejemplo 79. En $\mathbb{Z}/8\mathbb{Z}$ el elemento $\overline{2}$ tiene dimensión 0.

Proposición 102. Sea A un anillo. $\forall a \in A$ no divisor de $0 \implies$ se cumple la propiedad cancelativa.

Demostración.
$$ab = ac \implies b = c \iff ab + (-ac) = a(b-c) = 0$$

Definición 40 (Dominio de integridad). Un anillo que no tiene elementos divisores de 0 se llama dominio de integridad (DI).

Ejemplo 80. \blacksquare \mathbb{Z} es un dominio de integridad ya que todo $a \in \mathbb{Z}$, $a \neq 0$ tiene un inverso multiplicativo a^{-1} .

- $\mathbb{Z}/p\mathbb{Z}$ con p primo es un dominio de integridad.
- $\mathbb{Z}/n\mathbb{Z}$ con n no primo no es un dominio de integridad ya que si $\overline{n} = ab$ con $a \neq n \land b \neq n$ se tiene $\overline{a} \cdot \overline{b} = \overline{n} = \overline{0}$ con $\overline{a} \neq 0 \land \overline{b} \neq 0$.

Teorema 103. Dado el anillo A y un ideal propio I

$$\pi: A \to A/I, \qquad I \subset \pi^{-1}(\overline{J}) \subset A, \qquad \overline{0} \in \overline{J} \subset A/I$$

existe una identificación entre el retículo de ideales A/I con el subretículo de ideales de A que contienen a I. Es decir, si J es un ideale en A/I entonces $\pi^{-1}(\overline{J})$ es un ideal en A que contiene al ideal I.

El ideal cero de A/I tiene contraimagen $\pi^{-1}(\{0\}) = I$. Si \overline{J} es un ideal en A/I

$$\pi:A\to A/I\to (A/I)/\overline{J}$$

es un homomorfismo de anillos (la composición de homomorfismos de anillos es un homomorfismo de anillos). $\pi^{-1}(\overline{J}) = \ker$ de la composición.

Teorema 104. Sea $\alpha: A \to B$ un homomorfismo de anillos.

- $\ker \alpha$ es un ideal
- \blacksquare Im α es un subanillo
- α es sobreyectivo \iff Im $\alpha = B$
- α es inyectivo \iff ker $\alpha = \{0\}$

Definición 41 (Isomorfismo de anillos). Un homomorfismo de anillos $\alpha:A\to B$ es un isomorfismo cuando es una biyección. En este caso decimos que A y B son isomorfos y lo notamos con $A\simeq B$.

Proposición 105. Si $\alpha:A\to B$ es un homomorfismo de anillos y una biyección de conjuntos entonces $\alpha^{-1}:B\to A$ es nuevamente un homomorfismo de anillos.

Homomorfismos de anillos e ideales

Teorema 106. Sea $\alpha:A\to B$ un homorfismo de anillos. Entonces

- 1. Si $J \subset B$ es un ideal en B entonces $\alpha^{-1}(J)$ es un ideal en A.
- 2. Si α es sobreyectiva entonces la imagen $\alpha(I)$ de un ideal $I \subset A$ es un ideal en B

Demostración. 1. $\alpha^{-1}(J) = \ker(\pi \circ \alpha)$ y por tanto es un ideal.

- 2. Probamos las propiedades de los ideales:
 - a) $\alpha(0) = 0 \in \alpha(I)$
 - b) Sean $b_1, b_2 \in \alpha(I)$ tenemos que ver que $b_1 + b_2 \in \alpha(I)$. Sean $a_1, a_2 \in I$ tales que $b_1 = \alpha(a_1) \wedge b_2 = \alpha(a_2)$. Por ser α h. de anillos tenemos que $b_1 + b_2 = \alpha(a_1 + a_2) = \alpha(a_1) + \alpha(a_2)$.
 - c) Sean $b \in B$, $b' \in \alpha(I)$. Tenemos que probar que $bb' \in \alpha(I)$. Sabemos que $b' \in \alpha(I) \iff b' = \alpha(a)$, $a \in I$. Como $b \in B$ y α es sobre tiene que existir $d \in I \mid \alpha(d) = b$. Por tanto $\alpha(d \cdot a) = b \cdot b' \implies bb' \in \alpha(I)$.

Fijado $I \subset A$ consideramos $\pi: A \to A/I$ que es un homomorfismo de anillos sobreyectivo.

- 1. Si $\overline{J} \subset A/I$ es un ideal en A/I entonces $\pi^{-1}(\overline{J})$ es un ideal en A que contiene a I.
- 2. Si J es un ideal en A entonces $\pi(J)$ es un ideal en A/J y $J \subseteq \pi^{-1}(\pi(J))$ (es claro porque si $j \in J$ entonces $\pi(j) \in \pi(J)$).
 - a) Además, si $I \subseteq J$ entonces $J = \pi^{-1}(\pi(J))$.

Demostración. Si $\delta \in \pi^{-1}(\pi(J)) \implies \delta \in J$. Además, $\delta \in \pi^{-1}(\pi(J)) \iff \pi(\delta) \in \pi(J) \iff \pi(\delta) = \pi(d_1), d_1 \in J \iff \delta - d_1 \in \ker \pi = I$. Tomamos

$$\delta = \underbrace{(\delta - j_i)}_{\in I} + \underbrace{j_i}_{\in J} \in J$$

porque $I \subset J$.

La siguiente proposición nos llevará al primer teorema de la isomorfía.

Proposición 107. Sea $\varphi:A\to B$ un homomorfismo de anillos con ker φ ideal en A. Sea I un ideal en A con $I\subset\ker\varphi$.

■ Existe un único homomorfismo de anillos $\overline{\varphi}: A/I \to B$ tal que $\varphi = \overline{\varphi} \circ \pi$.

Demostración. Definimos $\overline{\varphi}(\overline{a}) = \varphi(a)$. Aunque choque (porque el \overline{a} puede venir de muchos a) aseguramos que $\overline{\varphi}$ está bien definida. Veamos por qué. Sabemos que a' y a definen el mismo elemento en $A/I \iff a' - a \in I$. Sopongamos que $I \subset \ker \varphi$. Entonces $\varphi(a - a') = 0 \iff \varphi(a) - \varphi(a') = 0 \implies \overline{\varphi}$ está bien definida como función.

Veamos ahora que en efecto se cumple que $\overline{\varphi}$ es un homomorfismo de anillos, es decir que $\overline{\varphi}(\overline{a}+\overline{b})=\overline{\varphi}(\overline{a})+\overline{\varphi}(\overline{b})$. Recordando la definición que hemos dado de φ y la propiedad $\overline{a}+\overline{b}=\overline{a+b}$ es claro que $\overline{\varphi}(\overline{a}+\overline{b})=\overline{\varphi}(\overline{a}+\overline{b})=\varphi(a+b)=\varphi(a)+\varphi(b)=\overline{\varphi}(\overline{a})+\overline{\varphi}(\overline{b})$. Es análogo para el producto ya que $\overline{a}\cdot\overline{b}=\overline{a\cdot b}$.

• $\ker \overline{\varphi} = \ker \varphi / I$

Demostración. Sea $\overline{a} \in A/I$. Entonces $\overline{a} \in \ker \overline{\varphi} \iff \overline{\varphi}(\overline{a}) = 0 \iff \varphi(a) = 0 \iff a \in \ker \varphi$.

Teorema 108 (Primer teorema de la isomorfía (anillos)). Si $\alpha : A \to B$ es un homomorfismo de anillos sobreyectivo entonces $B \simeq A/\ker \alpha$.

Demostración. Nos apoyamos en la proposición anterior tomando $I=\ker\alpha$. Como α y π son sobreyectivas tenemos que $\overline{\alpha}$ es sobreyectiva. Aplicando el segundo resultado de la proposición anterior tenemos que $\ker\overline{\alpha}=\ker\alpha/\ker\alpha=\{0\}$ $\Longrightarrow \overline{\alpha}$ es inyectiva. Concluimos que $\overline{\alpha}$ es un isomorfismo de anillos y por tanto $B\simeq A/\ker\alpha$.

66 CAPÍTULO 8. ANILLOS

Teorema 109.

D es un dominio de ideales principales (DIP) $\implies D$ es un dominio de factorización única (DFU)

El recíproco de este teorema no es cierto en general. Véase por ejemplo el caso de \mathbb{Z} que es un dominio de ideales principales pero no se cumple que $\mathbb{Z}[X]$ es un dominio de factorización única. Si se cumpliera el recíproco entonces el siguiente teorema sería un simple corolario.

Teorema 110.

D es un dominio de factorización única (DFU) $\implies D[X]$ es un dominio de factorización única (DFU)

Este segundo teorema no lo vamos a probar. Probamos el primero.

Definición 42 (Asociados). Sea D un domino, $a, a' \in D$. DIremos que a y a' son asociados $\iff \exists u \in \mathcal{U}(D) \mid a = ua'$.

Demostración. Sea D un dominio, $a \in D \mid a \neq 0 \land a \notin \mathcal{U}(D)$. Sabemos que $a, a' \in D$ son asociados si $\exists u \in \mathcal{U}(D) \mid a = ua'$. Por ejemplo, los polinomios 3x - 2 y x - 2/3 en $\mathbb{Q}[X]$ son asociados.

Observemos que si a y a' son asociados entonces $\langle a \rangle = \langle a' \rangle$. Si $u \in \mathcal{U}(a)$ entonces $ua' = a \in \langle a' \rangle$. Análogamente $u^{-1}a = a' \in \mathcal{U}(a)$. Luego tenemos $\langle a \rangle \subset \langle a' \rangle \land \langle a' \rangle \subset \langle a \rangle \implies \langle a \rangle = \langle a' \rangle$. Recíprocamente si $0 \neq \langle a \rangle = \langle a' \rangle \implies \exists u \in \mathcal{U}(D) \mid a = ua'$. $a \in \langle a' \rangle \land a' \in \langle a \rangle \implies a = a't \land a' = as \implies a' = a'ts \implies 1 = ts \implies t, s \in \mathcal{U}(D)$.

Recordemos las hipótesis iniciales: $a \in D \mid a \neq 0 \land a \notin \mathcal{U}(D)$. Esto nos da que $0 \neq \langle a \rangle \land \langle a \rangle \subsetneq D$. Pensemos en qué significa que un elemento no nulo a no sea una unidad. Supongamos a = st. Si a no es una unidad podría ocurrir que s es una unidad (por ejemplo $6 = (-1)(-6), -1 \in \mathcal{U}(\mathbb{Z})$). Lo que sí que está claro es que no puede ocurrir que a la vez s y t sean unidades. Es decir, tiene que ocurrir que al menos uno de los dos no es una unidad. Por tanto podemos suponer sin pérdida de generalidad que si expresamos $a = a' \cdot s$ entonces $a' \notin \mathcal{U}(D)$. Tenemos dos situaciones posibles

- 1. $s \in \mathcal{U}(D) \implies \langle a \rangle = \langle a' \rangle$
- 2. $s \notin \mathcal{U}(D) \implies \langle a \rangle \subsetneq \langle a' \rangle$ ya que $\langle a \rangle = \langle a' \rangle \iff a = a'u \text{ con } u \in \mathcal{U}(D)$ pero hemos tomado $s \notin \mathcal{U}(D)$

Aquí para de demostrar y empieza a dar definiciones.

Definición 43 (Irreducible). Sea D un dominio y $0 \neq a \notin \mathcal{U}(D)$. Diremos que a es irreducible en $D \iff \forall a', s \in D, \ a' \notin \mathcal{U}(D), \ a = a's \implies s \in \mathcal{U}(D)$

Observación 5. Un elemento es irreducible \iff cualquier asociado lo es.

Definición 44 (Dominio de factorización única (DFU)). Sea D un dominio. Diremos que D es un dominio de factorización única (DFU) si se cumplen las siguientes condiciones $\forall a \in D$:

- $a \neq 0 \land a \notin \mathcal{U}(D) \implies a = p_1 p_2 \dots p_r$ donde p_i es irreducible en D
- $a = p_1 p_2 \dots p_r$, p_i irreducible y $a = q_1 q_2 \dots q_s$, q_i irreducible $\implies r = s$ y además r_i y q_i son asociados para $i = 1, \dots, r$ (la igualdad es un caso particular de el ser asociados).

Observación 6. Sea $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ una cadena creaciente de ideales de un anillo A. Entonces $\bigcup I_i$ es un ideal.¹

¹Literalmente ha dicho que esto no viene a cuento. Que esto es una digresión de las suyas.

Demostración. Probamos las propiedades de los ideales.

- 1. $0 \in \bigcup I_i$
- $2. s, t \in \bigcup I_i \implies s + t \in \bigcap I_i$
- 3. $s \in \bigcup I_i, \ a \in A \implies as \in \bigcup I_i$.

Definición 45 (Propiedad de cadena creciente). Diremos que un anillo A tiene la propiedad de cadena creciente \iff toda cadena creciente $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq \cdots$ es finita. Es decir, que $\exists n \mid I_n = I_{n+1} = I_{n+2} = \cdots$

Teorema 111. Si D es un DIP entonces D tiene la propiedad de cadena creciente.

La demostración es tan ingenua como uno quiera.

Demostración. Sea $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \subseteq I_n \subseteq \cdots$ una cadena de ideales. Sabemos que en cualquier anillo $\bigcup I_i$ es un ideal. Sea $J = \langle d \rangle$ para algún $d \in D$. Como D es un DIP ocurre que $d \in \bigcup I_i \implies d \in I_{n_0} \implies \langle d \rangle \subset I_{n_0} \implies I_{n_0} = I_{n_0+1} = \cdots$

8.1. Clase de equivalencia por el grupo de biyecciones

Definición 46 (Clase de equivalencia por el grupo de biyecciones). Sea (G, *) un grupo, X un conjunto, $Biy(X) = \{f \mid f : X \longrightarrow X \ biyeccion\}$, y $\alpha : G \longrightarrow Biy(X)$ es un homomorfismo de grupos. Definimos la siguiente relación de equivalencia:

$$a\mathcal{R}b \ si \ \exists g \mid \alpha(g)a = b$$

Por esta relación, definimos la clase de equivalencia de un elemento $a \in X$ como:

$$cl(a) = \{\alpha(g)(a) \mid g \in G\} \ni a$$

Para poder definirlo mejor nos gustaría saber cuantos elementos existen en cl(a). Para ello nos ayudaremos del centralizador de a (definición 24). En nuestro caso particular, el centralizador es:

$$C_G(a)\{g \in G \mid \alpha(g)(a) = a\}$$

Es fácil ver que si $g \in C_G(a)$ y $g' \in C_G(a)$ entonces $g * g' = C_G(a)$.

Teorema 112 (Orden de la clase de equivalencia de un elemento). Sea (G, *) un grupo, C(a) el centralizador de a y cl(a) la clase de equivalencia de a:

$$|cl(a)| = [G:C(a)]$$

- Recordemos que fijado $\sigma \in S_5$ podemos dar una descomposición en ciclos $\sigma = (123)(45)$ que es única aunque los ciclos se escriban diferente (por ejemplo (123) = (231)).
- Fijado $\tau \in S_5$, $\tau \sigma \tau^{-1} = (\tau(1)\tau(2)\tau(3))(\tau(4)\tau(5))$ la descomposición se mantiene
- Si dos permutaciones σ , σ' tienen descomposiciones del mismo tipo (un 3-ciclo y un 2-ciclo como antes) entonces existe un τ que hace pasar de una a otra.

Ejemplo 81 (Posibles descomposiciones en cíclos de S_4).

■ Para (1234)

$$cl((1234)) = \{\tau(1234)\tau^{-1} \mid \tau \in S_4\}$$

• A la hora de definir τ tenemos varias posibilidades. En este caso, si empezamos por el 1, para fijar el segundo elemento solo tenemos 3 posibilidades, para el tercero 2 y para el último una. Por tanto

$$|cl((1234))| = 4$$

68 CAPÍTULO 8. ANILLOS

• Recordemos que el centralizador

$$C_{S_4}((1234)) = \{ \sigma \in S_4 \mid \sigma(1234)\sigma^{-1} = (1234) \} < S_4$$

- Como S_4 tiene $|S_4| = 4! = 24$ y tenemos que $|cl((1234))| = [S_4 : C_{S_4}((1234))] = 6$ necesariamente $|C_{S_4}((1234))| = 4$.
- Nos proponemos calcular el grupo C((1234)). Un candidato para $\sigma \in C((1234))$ es $\sigma = (1234)$. En efecto $(1234)(1234)(1234) \in C((1234))$. Siempre ocurre que un elemento conmuta consigo mismo. Además, $\langle (1234) \rangle = C((1234))$ pero como $|\langle (1234) \rangle| = 4 = |C((1234))|$ tiene que ocurrir que $\langle (1234) \rangle = C((1234))$. Es decir que de tipo 4 solo tenemos (1234).
- ¿Qué tipos tenemos? Pues tantos como maneras de descomponer 4 en suma de números positivos, a saber
 - (1234) de tipo 4
 - (123) de tipo 3+1
 - (12)(34) de tipo 2+2
 - (12) de tipo 2+1+1
 - Id de tipo 1+1+1+1 (que es la única que tiene descomposición en 4 unos)
- En general no es difícil calcular cuantos hay, por lo que a menudo utilizamos este argumento para calcular el grupo centralizador.
- Lo importante es que estamos descomponiendo S_4 de la siguiente manera:

$$S_4 = cl((1234)) \cap cl((1223)) \cap cl((12)(34)) \cap cl((12)) \cap cl(Id)$$

$$|S_4| = |cl((1234))| \cap |cl((1223))| \cap |cl((12)(34))| \cap |cl((12))| \cap |cl(Id)|$$

■ Ahora analizamos la clase cl((123)) de los ciclos de tipo 3+1. Lo primero es saber cuantos hay. Pues tenemos que elegir 3 elementos de entre 4 y luego ordenar los dos que nos quedan por tanto

$$|cl((123))| = {4 \choose 3} \times 2 = 8$$

Por otro lado lo que sabemos es que $(123) \in C((123))$ (porque todos conmutan consigo mismos) y como antes |C((123))| = 3 (de la fórmula $|cl((123))| = [S_4 : C((123))]$), luego $C((123)) = \langle (123) \rangle$.

- Igual es un poco más interesante la clase de tipo 2+2. **Pregunta de examen:** halla generadores del subgrupo centralizador del elemento (12)(34).
 - Sabemos que el conjugado de un elemento de tipo 2 tiene que ser otro de tipo 2, por tanto tenemos que ver qué elementos distintos de tipo 2 tenemos. Pues fijamos el 1 por ejemplo y vemos qué parejas podemos hacer. Nos salen 3, a saber, 1 con 2, 1 con 3 y 1 con 4 de lo que concluímos que |cl((12)(34))| = 3.
 - De la misma fórmula que antes sacamos que |C((12)(34))| = 8. De orden 8 sabemos que hay solo unos pocos grupos (ver la clasificación en 3.3.1). Veamos con cuál de ellos es isomorfo.
 - Como siempre sabemos que $(12)(34) \in C((12)(34))$. Tenemos que encontrar los demás τ que conmutan $\tau \sigma \tau^{-1} = \tau(12)(34)\tau^{-1} = (\tau(1)\tau(2))(\tau(3)\tau(4))$. Probamos con $\tau = (1324)^2$.

$$(1324)(12)(34)(1324)^{-1}$$

 $(34)(21)$

Que es el mismo, luego hemos probado que τ conmuta y por tanto $\tau \in C((12)(34))$. Lástima que no valga porque nos damos cuenta de que $\tau^2 = (12)(34)$. Vaya. Drácula ha hecho chiste con esto y todo (X, d).

Lo que hacemos es quitar el (12)(34) y cambiarlo por el (12). Para evitar $\tau^2 \neq (12)$. En resumen, ya tenemos $(12) \in C((12)(34))$ y $\tau = (1324) \in C((12)(34))$. Si vemos sus grupos generados:

$$\langle (1324) \rangle = \{ (1324), (12)(23), (4321), Id \}$$

 $\langle (12) \rangle = \{ (12), Id \}$

La intersección de ambos subgrupos es solo la identidad y por la fórmula del producto libre averiguamos que $|\langle (1324)\rangle\langle (12)\rangle|=8$ por lo $C((12)(34))=\langle (1324), (12)\rangle.$

²La idea de probar con este viene de decir: pues a ver qué pasa si cambio el 1 con el 3 y el 2 con el 4, que nos daría la permutación (1324). En cualquier caso esto es prueba y error, y parar de probar cuando tengamos un grupo generado de orden 8.

 $^{^3}$ Aquí se ve claramente que la elección del τ es casi al azar. Hemos elegido uno que prometía pero hemos tenido la mala suerte de que su cuadrado nos daba un elemento que suponíamos estaba en el grupo ($\tau^2 = (12)(34)$). Podríamos haber descartado este $\tau = (1324)$ pero hemos preferido descartar el elemento (12)(34) que sabíamos que estaba en el grupo. La razón de la sustitución de este último por el (12) es un misterio hasta la fecha.

Tiene toda la pinta de ser D_4 porque está generado por dos elementos, no es abeliano y los órdenes de los generadores son o((1324)) = 4, o((12)) = 2. Solo nos quedaría probar que se sigue cumpliendo la ecuación de la presentación de D_4 :

$$BA = AB^3 \iff (1324)(12) = (12)(1324)^3$$

Lo comprobamos y al final sale.

■ Ahora hacemos lo mismo con C((12)). Siguiendo un razonamiento similar, llegamos a que C((12)) es isomorfo con el grupo de Klein y por extensión con $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Falta la semana fatídica de Estadística

Vez pasada considerabamos $G_1 \times G_2$ y fijado un homomorfismo de grupos $\phi: G_1 \to Aut(G_2)$ hacíamos lo siguiente. En $G_1 \times_{\phi} G_2$ viven los elementos $(a,b) \times_{\phi} (c,d)$ donde la operación cambiaba en la primera coordenada $(a\phi_b(c),bd)$. Probamos la última clase que $G_1 \times_{\phi} G_2$ era un grupo (probar la asociatividad no es trivial).

Observación:

$$\gamma: G \xrightarrow{Int} Aut(G)$$

 γ es un homomorfismo de grupos que lleva cada elemento $g \in G$ al automorfismo conjugación $\gamma_g(x) = gxg^{-1}$. Observamos que si $N \triangleleft G$, $\forall g \in G, \gamma_g(N) = gNg^{-1} = N$.

Proposición 113. N es normal en G $(N \triangleleft G)$ sí y solo sí al restringir ϕ_g a N la imagen es N:

$$G \xrightarrow{\gamma_g} G$$

$$N \xrightarrow{\gamma_g|_N} N$$

Es decir, que si N es normal, $\gamma_g|_N$ induce un isomorfismo $\gamma_g|_N:N\to N.$

Demostración. Cristalina de la definición de subgrupo normal.

En general, al restringir γ_q a un subgrupo de G no tenemos esta propiedad.

Además, si $N \triangleleft G$ tiene sentido restringir $\gamma: G \xrightarrow{Int} Aut(G)$ a Aut(N) y la restricción da un homomorfismo.

70 CAPÍTULO 8. ANILLOS

${\bf Parte~III}\\ {\bf Apendices}$

Capítulo A

Ejercicios

A.1. Hoja 1

Ejercicio (H1.2). Sean $a, b, c \in G = (-1, 1)$. Probamos las propiedades de los grupos.

Asociatividad:

$$(a*b)*c = \left(\frac{a+b}{1+ab}\right)*c = \frac{\left(\frac{a+b}{1+ab}\right)+c}{1+\left(\frac{a+b}{1+ab}\right)c} = \frac{\frac{a+b+c+abc}{1+ab}}{\frac{1+ab+ac+bc}{1+ab}} = \frac{a+b+c+abc}{1+ab+ac+bc}$$

$$a*(b*c) = a*\left(\frac{b+c}{1+bc}\right) = \frac{a+\left(\frac{b+c}{1+bc}\right)}{1+a\left(\frac{b+c}{1+bc}\right)} = \frac{\frac{a+b+c+abc}{1+bc}}{\frac{1+ab+ac+bc}{1+bc}} = \frac{a+b+c+abc}{1+ab+ac+bc}$$

- Elemento neutro: es el 0 ya que $x*0 = \frac{x+0}{1+x\cdot 0} = \frac{x}{1} = x$ y además $0*x = \frac{0+x}{1+0\cdot x} = \frac{x}{1} = x$
- Elemento inverso: la ecuación

$$x * x^{-1} = 0 \iff \frac{x + x^{-1}}{1 + xx^{-1}} = 0 \iff x^{-1} = -x$$

siempre tiene solución y ocurre lo mismo para la ecuación $x^{-1} * x = 0 \iff x^{-1} = -x$

- Clausura: tenemos que probar que si $x,y \in (-1,1)$ entonces $x*y \in (-1,1)$. Consideramos $f(x,y) = x*y = \frac{x+y}{1+xy}$. Derivando tenemos que $\nabla f(x,y) = (\frac{1}{(1+xy)^2}, \frac{1}{(1+xy)^2}) \neq 0, \forall x,y \in [-1,1] \times [-1,1]$. Si el máximo no se alcanza en ningún sitio de dentro del cuadrado $(-1,1) \times (-1,1)$ se tendrá que alcanzar en el borde.
 - Fijado x=1 tenemos que $f(1,y)=\frac{1+y}{1+y}=1 \implies f(1,-1< y<1)<1$ porque si f(1,-1< y<1) tomara un valor mayor que 1 habría un máximo en $(-1,1)\times (-1,1)$ y esto no puede ser pues ∇f no se anula en el cuadrado.
 - Fijado x=-1 tenemos que $f(-1,y)=\frac{y-1}{1-y}=-1 \implies f(-1,-1< y<1)>-1$ por la misma razón que antes.
 - Hacemos lo mismo fijando la y y variando la x.

En el borde (que no está incluido) se alcanzan máximo y mínimo que acotan a f en el cuadrado:

$$-1 < f(x,y) = x * y < 1, \quad \forall x, y \in G$$

Ejercicio (H1.3). Hallar los inversos de los siguientes elementos, cada uno en su grupo correspondiente:

- 1. $o(\overline{11})$ en $\mathcal{U}(\mathbb{Z}^*/23\mathbb{Z})$ es 22 porque $23 \cdot 22 \equiv 1 \mod 23$
- 2. $o(\overline{5})$ en $\mathcal{U}(\mathbb{Z}^*/31\mathbb{Z})$ es 3 porque $5 \cdot 3 \equiv 1 \mod 31$

Ejercicio (H1.33). Sea G un grupo. Suponed que existe un único $a \in G$ de orden 2. Demostrad que $a \in Z(G)$.

Demostración. Recordamos que $a \in Z(G) \iff ga = ag, \ \forall g \in G$. Definimos el isomorfismo de conjugación $\phi_g(x) = gxg^{-1}$ para algún g. Como ϕ_g es isomorfismo lleva elementos de orden n en elementos de orden n. Entonces $\phi_g(a) = a$ ya que a es el único elemento de orden a. Por tanto a0 elemento de orden a2. Por tanto a2 elemento de orden a3 elemento de orden a4 elemento de orden a5.

A.2. Hoja 2

Ejercicio (H2.1). Se considera el tercer grupo diédrico D_3 . Se pide hallar lo siguiente:

1. Las clases de conjugación de cada uno de sus elementos.

Demostración. Las clases dan una partición del grupo. Si un elemento pertenece a una clase, entonces la clase de ese elemento también es la clase a la que pertenece.

- $cl(e) = \{e\}$
- cl(B)? Sabemos que |cl(B)| = [G:C(B)]. Sabemos que $\langle B \rangle = \{1,B,B^2\} \subset C(B)$ luego $|C(B)| \geqslant 3$. Si hubiera más elementos en C(B) tendríamos que |C(B)| = 6 pues $C(B) < D_3$. Esto no ocurre porque sabemos que B no conmuta con todos los demás elementos. Por ejemplo $BA \neq AB$. Por tanto $|C(B)| = 3 \implies |cl(B)| = [D_3:C(B)] = 6/3 = 2$. Es claro que $B \in cl(B)$. Además, como cl(B) contiene elementos transformados por el isomorfismo conjugación sabemos que el otro elemento que hay tiene orden 3. El único elemento que queda de orden 3 es $B^2 \implies cl(B) = \{B, B^2\}$.
- cl(A)? Sabemos que A no conmuta con todos $(A \notin Z(D_3))$ luego |C(A)| < 6. Sabemos que $\langle A \rangle = \{1, A\} < C(A)$. Además, como C(A) es un (sub)grupo sabemos que no puede haber más elementos porque si los hubiera, $|\langle A \rangle| |$ $|C(A)| \implies C(A) \ge 6$ pero ya hemos visto que no puede ser. Es decir que $|cl(A)| = [D_3 : D(A)] = 6/2 = 3$. Por tanto cl(A) incluye los 3 elementos que nos quedan: $cl(A) = \{A, AB, AB^2\}$.
- 2. Los elementos de $Int(D_3)$.
- 3. Los centralizadores $C_{D_2}(x)$ para cada $x \in D_3$
- 4. Los normalizadores N(H) para cada $H < D_3$.

Ejercicio (H2.2). Demostración. Obtenidas las clases en el ejercicio H2.1 se verifica que $|D_3| = |cl(e)| + |cl(B)| + |cl(A)| = 1 + 2 + 3 = 6$

Ejercicio (H2.6). Sea G un grupo. ¿Verdadero o falso?

- 1. $H < G \lor H$ conmutativo implica $H \triangleleft G$.
- 2. $H < G y |H| = 2 \text{ implica } H \triangleleft G.$
- 3. Si $\varphi:G\to G_1$ es un homomorfismo de grupos, entonces Im $\varphi\lhd G$
- 4. Si $H \triangleleft K$ y $K \triangleleft G$ entonces $H \triangleleft G$
- 5. Si $H \triangleleft G$ y |H| = m entonces H es el único subgrupo de G de orden m.
- 6. Si $H \triangleleft G$ entonces H < Z(G).

FALSO. Contraejemplo: En
$$G = D_4$$
 tomamos $H = \langle B^2 \rangle = \{1, B, B^2, B^3\} \not\subset Z(D_4) = \{1, B^2\}.$

Ejercicio (H2.10). *Demostración*. Fijado n y definida $\alpha_n:G\to G,\ x\mapsto x^n$ tenemos que α_n es un homomorfismo de grupos. Además podemos expresar $H_2=\ker\alpha_n\implies H_2\lhd G$. Además tenemos que $H_1=\operatorname{Im}\ \alpha_n< G$. Veamos que $H_1\lhd G$. Es decir, que $gH_1g^{-1}=H_1,\ \forall g\in G$. Para ello tomamos $x_1^n\in H_1$ y lo conjugamos $gx_1^ng^{-1}=(gx_1g^{-1})^n$ por ser α homomorfismo de grupos. En particular $(gx_1g^{-1})^n\in\operatorname{Im}\ \alpha\implies (gx_1g^{-1})^n\in H_1\implies (gx_1g^{-1})^n=x_2^n$ para algún $x_2\in H_1\implies H_1\lhd G$. \clubsuit

Ejercicio (H2.13). Si A es un grupo abeliano con n elementos y k es un entero primo con n, demostrad que la aplicación $\varphi: A \to A$ definida por $\varphi(a) = a^k$ es un isomorfismo.

ullet φ homomorfismo de grupos.

Demostración.

$$\varphi(a)\varphi(b) = a^k b^k = (ab)^k = \varphi(ab)$$

 $\blacksquare \ \varphi$ biyectiva
 $\Longleftrightarrow \ \varphi$ inyectiva ya que dominio y codominio coinciden

Demostración. $\ker \varphi = \{a \in A \mid \varphi(a) = a^k = 1\}$. Probaremos que $a^k = 1 \iff a = 1$ y por tanto que $\ker \varphi = \{1\} \implies \varphi$ inyectiva. Sabemos que $a^k = 1 \iff o(a^k) = 1$. Sea $t = o(a) \mid n$. Distinguimos dos casos

A.3. HOJA 4 75

- Si t = 1 entonces a = 1 y ya está
- Si t > 1 entonces $o(a^k) = \frac{t}{mcd(k,t)} = \frac{t}{1} > 1$ contradicción. Luego necesariamente t = o(a) = 1.

Ejercicio (H2.22). Demostrad que si G es un grupo no conmutativo y tiene orden p^3 (p un número primo) entonces Z(G) tiene orden p.

Demostración. Sabemos que $Z(G) < G \implies |Z(G)| \mid |G| \implies |Z(G)| \in \{1, p, p^2, p^3\}$

- $|Z(G)| \neq p^3$ porque en tal caso G sería conmutativo
- $|Z(G)| \neq 1$ porque G es un p-grupo y por tanto su centro no es el trivial.
- Si $|Z(G)| = p^2$ entonces $|G/Z(G)| = p \implies G/Z(G)$ es cíclico lo que no es posible si G no es abeliano.

Por descarte concluimos que |Z(G)| = p.

Ejercicio (H2.25). Sabemos que Aut($\mathbb{Z}/12\mathbb{Z}$) $\simeq \mathcal{U}(\mathbb{Z}^*/12\mathbb{Z})$ donde $\mathbb{Z}^*/12\mathbb{Z}$ es el grupo multiplicativo ($\{\overline{1},\overline{2},\overline{3},\ldots,\overline{11}\},\cdot$). Queda $\mathcal{U}(\mathbb{Z}^*/12\mathbb{Z})=(\{\overline{1},\overline{5},\overline{7},\overline{11}\},\cdot)$ y además da la casualidad que $\forall x\in\mathcal{U}(\mathbb{Z}^*/12\mathbb{Z}),\ o(x)=2$ (todos los elementos son su propio inverso) por lo que no tenemos restricciones al definir $f:\mathbb{Z}/2\mathbb{Z}\to \operatorname{Aut}(\mathbb{Z}/12\mathbb{Z})$:

$$f: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/12\mathbb{Z}) \simeq \mathcal{U}(\mathbb{Z}^*/12\mathbb{Z})$$

$$e = \overline{0} \mapsto 1$$

$$\overline{1} \mapsto \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$$

Ejercicio (H2.26). Sea $|G_1| = m$, $|G_2| = n$, mcd(m, n) = 1. Si $f: G_1 \to G_2$ es h. de g. sabemos que $o(f(a)) \mid o(a)$, $\forall a \in G_1$. Además $o(a) \mid m \land o(f(a)) \mid n$ por el teorema de Lagrange (23).

$$\begin{cases} o(a) \mid m \land o(f(a)) \mid n \\ mcd(m,n) = 1 \\ o(f(a)) \mid o(a) \end{cases} \implies o(a) = o(f(a)) = 1, \forall a \in G_1$$

Por lo que solo puede haber un homomorfismo entre ellos y además es el trivial $f(a) = e_{G_2}$.

Ejercicio (H2.19). Definimos una función $f:[0,2\pi] \subset \mathbb{R} \to \mathbb{S}^1, \alpha \mapsto \cos \alpha + i \sin \alpha$. Esta función tiene la propiedad de que $f(\alpha) \cdot f(\alpha') = \cos(\alpha + \alpha') + i \sin(\alpha + \alpha') = f(\alpha + \alpha')$ y por tanto es un h. de g. entre R y \mathbb{S}^1 .

Un elemento de $\cos \alpha + i \sin \alpha \in \mathbb{S}^1$ es de torsión $\iff \exists n \mid (\cos \alpha + i \sin \alpha)^n = 1$. Ahora bien $(\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n\alpha = 1 \iff n\alpha = k2\pi$.

A.3. Hoja 4

Ejercicio (H4.11). Hallar los subgrupos de Sylow de S_5 . Sabemos que $|S_5| = 5! = 2^3 \cdot 3 \cdot 5$ y por Primero de Sylow tenemos lo siguiente:

- $\blacksquare \exists P_2, |P_2| = 2^3 = 8.$
- $\exists P_3, |P_3| = 3$. Además en S_5 hay $\binom{5}{3}2! = 20$ 3-ciclos y en cada $gP_3g^{-1} = \{1, a, a^2 \mid o(a) = 3\}$ hay 2 elementos de orden 3 distintos. Además, $g_1P_3g_1^{-1} \cap g_2P_3g_2^{-1} = \{e\}$ porque si su intersección fuera más grande entonces serían el mismo subgrupo (porque son cíclicos). Es por esto que tenemos que repartir 40 elementos dando 2 a cada 3-grupo con lo que obtenemos $n_3 = 20/2 = 10$ 3-subgrupos de Sylow en S_5 .
- $\exists P_5, \ |P_5| = 5$. Además en S_5 hay 4! = 24 5-ciclos (elementos de orden 5) y en cada $gP_5g^{-1} = \{1, a, a^2, a^3, a^4 \mid o(a) = 5\}$ tenemos 4 elementos de orden 5 distintos. Además, $g_1P_5g_1^{-1} \cap g_2P_5g_2^{-1} = \{e\}$ porque si su intersección fuera más grande entonces serían el mismo. Así, tenemos 24 5-ciclos a repartir entre los diferentes gP_5g^{-1} dando 4 5-ciclos a cada 1. Por tanto tenemos $n_5 = 24/4 = 6$ 5-subgrupos de Sylow en S_5 .

Ejercicio (H4.18). Demostrar que todo grupo de orden $|G| = 5^3 \cdot 7^3$ tiene un subgrupo normal de orden 125.

Demostración. Primero de Sylow $\implies \exists P_5 < G, |P_5| = 125$. Tercero de Sylow $\implies n_5 \mid 7^3 \land n_5 \equiv 1 \mod 5$ es decir $n_5 \in \{1, 7, 49, 343\} \land n_5 \in \{1, 6, 11, \ldots\}$. Como ni 49 ni 343 son conguentes con 1 módulo 5 tenemos que $n_5 = 1 \implies P_5 \triangleleft G$. ♣

Ejercicio (H4.20). Hallad todos los grupos abelianos de órdenes 36, 64, 96 y 100.

 $^{^1}$ A la izquierda (en $\mathbb R$) sumamos pero a la derecha (en $\mathbb S^1$) multiplicamos.

1.
$$|G| = 36 = 2^2 \cdot 3^2$$

Demostración. Primero de Sylow $\implies \exists P_2, \ |P_2| = 4 \land \exists P_3, \ |P_3| = 9$. Además G abeliano $\implies P_2, P_3 \triangleleft G \implies G \simeq P_2 \times P_3$. Estudiamos los grupos de orden 4 y de orden 9

- $|P_2| = 4$ entonces $P_2 \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \vee P_2 \simeq \mathbb{Z}/4\mathbb{Z}$
- $|P_3| = 9 \text{ entonces } P_3 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \vee P_3 \simeq \mathbb{Z}/9\mathbb{Z}$

Como $G \simeq P_2 \times P_3$ tenemos 4 posibles grupos abelianos de orden 36.

Ejercicio (H4.22). Hallar todos los grupos abelianos de orden 175.

Demostración. $|G| = 5^2 \cdot 7$. Por el Primero de Sylow tenemos que $\exists P_5, P_7 < G$ con $|P_5| = 25$, $|P_7| = 7$ y además por ser G abeliano tenemos que $P_5, P_7 \triangleleft G \implies G \simeq P_5 \times P_7$. Estudiamos los grupos de orden 25 y de orden 7:

- $|P_5| = 25 \land P_5$ abeliano $\implies P_5 \simeq \mathbb{Z}/25\mathbb{Z} \lor P_5 \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. En ambos casos P_5 es producto directo de cíclicos pues $\mathbb{Z}/n\mathbb{Z}$ es cíclico.
- $|P_7| = 7 \wedge P_7$ abeliano $\implies P_7 \simeq \mathbb{Z}/7\mathbb{Z}$. Ocurre lo mismo que con P_5 .

Concluimos que $G \simeq \mathbb{Z}/25\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z} \vee G \simeq \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$. Los dos casos son abelianos por ser producto directo de grupos cíclicos.

Ejercicio (H4.23). ¿Cuántos elementos de orden 3 puede tener un grupo abeliano de orden 36?

Demostración. $|G| = 36 = 2^2 3^2$. Primero de Sylow $\implies \exists P_2, P_3 < G, |P_2| = 4, |P_3| = 9$. Estudiamos los grupos de órdenes 4 y 9:

 $|P_3| = 9 \implies P_3 \simeq \mathbb{Z}/9\mathbb{Z} \vee P_3 \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Ţ

Capítulo B

Índices

78 CAPÍTULO B. ÍNDICES

Lista de definiciones

1.	Definición (Grupo)	
2.	Definición (Orden de un elemento)	
3.	Definición (Orden o cardinalidad de un grupo)	
4.	Definición (Grupo abeliano)	
5.	Definición (Subgrupo)	
6.	Definición (Retículo de subgrupos)	
7.	Definición (Subgrupo generado varios elementos)	
8.	Definición (Subgrupo generado por un elemento)	
9.	Definición (Presentación de un grupo)	
10.	Definición (Grupo de permutaciones de n elementos)	
11.	Definición (Grupo cíclico)	14
12.	Definición (Clase lateral)	15
13.	Definición (Índice de un subgrupo en un grupo)	16
14.	Definición (Subgrupo normal)	
15.	Definición (Conjunto cociente en grupos)	
16.	Definición (Homomorfismo de grupos)	17
17.	Definición (Núcleo de un homomorfismo)	17
18.	Definición (Imagen de un homomorfismo)	
19.	Definición (Producto directo de grupos)	23
20.	Definición (Suma directa)	
21.	Definición (Producto libre de grupos)	
22.	Definición (Conjugados)	31
23.	Definición (Centro de un grupo)	32
24.	Definición (Centralizador de un elemento)	33
25.	Definición (P-grupo)	34
26.	Definición (Normalizador de un subconjunto)	
27.	Definición (Conjunto de biyecciones)	41
28.	Definición (Ciclo)	42
29.	Definición (Trasposición)	
30.	Definición (Paridad de una permutación)	
31.	Definición (Signatura de una permutación)	
32.	Definición (Tipo de una permutación)	
33.	Definición (Grupo alternado)	
34.	Definición (Grupo simple)	
35.	Definición (P-subgrupo de Sylow)	54
36.	Definición (Anillo)	63
37.	Definición (Unidades en anillos)	63
38.	Definición (Anillo conmutativo)	63
39.	Definición (Divisor de 0)	64
40.	Definición (Dominio de integridad)	
41.	Definición (Isomorfismo de anillos)	
42.	Definición (Asociados)	
43.	Definición (Irreducible)	
44.	Definición (Dominio de factorización única (DFU))	
45.	Definición (Propiedad de cadena creciente)	
46.	Definición (Clase de equivalencia por el grupo de biyecciones)	
10.	20mmeter (cross de equitatere per el grape de enjocciones)	01

Lista de teoremas

1.	Teorema (Propiedad cancelativa)	7
5.	Teorema (Hoja 1, ejercicio 7)	Ç
16.	Teorema (Teorema de clasificación de grupos cíclicos)	
19.	Teorema (Hoja 1, ejercicio 9)	
23.	Teorema (de Lagrange)	
35. 39.	Teorema (de correspondencia entre subgrupos mediante homomorfismos)	
42. 45.	Teorema (Cardinalidad del producto libre)	
59.	Teorema (de Cauchy)	33
86.	Teorema (Igualdad entre subgrupos y grupos alternantes)	50
88.	Teorema (Simplicidad del grupo alternante)	50
89.	Teorema (Grupo producto semidirecto)	51
90.	Teorema (Primero de Sylow)	54
91.	Teorema (Segundo de Sylow)	54
92.	Teorema (Tercero de Sylow)	54
98.	Teorema (de alguien 1)	
108.	Teorema (Primer teorema de la isomorfía (anillos))	65
112.	Teorema (Orden de la clase de equivalencia de un elemento)	6

82 LISTA DE TEOREMAS

Lista de ejemplos

1.	Ejemplo (Ejemplos de grupos infinitos)	7
2.	Ejemplo (Grupo de las clases módulo n)	
4.	Ejemplo (Retículo de subgrupos $\mathbb Z)$	10
5.	Ejemplo (Grupo de cuaterniones)	
6.	Ejemplo (El famoso grupo D_4)	12
7.	Ejemplo (Grupos diédricos de orden n)	12
10.	Ejemplo (Grupo de biyecciones S_3)	14
12.	Ejemplo (Homomorfismo trivial)	18
16.	Ejemplo (Automorfismo conjugación)	19
19.	Ejemplo (del primer teorema de la isomorfía)	19
20.	Ejemplo (Retículo de subgrupos de $\mathbb{Z}/8\mathbb{Z})$	20
25.	Ejemplo (Retículo de subgrupos de D_4)	27
64.	Ejemplo (de aplicación de los teoremas de Sylow)	55
81.	Ejemplo (Posibles descomposiciones en cíclos de S_4)	6

84 LISTA DE EJEMPLOS

Lista de ejercicios

•	Ejercicio	(H3.8)		•	٠	•	•	 •	•	 	•	•	٠	•	 •	•	•	•	•	 ٠	•	•	•	 •	•	٠	•	 •	•		 •	•	•	 •	•	٠	4
	Ejercicio	(H1.2)								 																								 			7
	Ejercicio	(H1.3)								 					 																						7
	Ejercicio	(H1.33)) .							 					 																						7
	Ejercicio																																				74
	Ejercicio	(H2.2)								 					 																						7
	Ejercicio	,																																			7
	Ejercicio	(H2.10)) .							 					 																			 			7
	Ejercicio	. ,																																			7
	Ejercicio	` /	,																																		7
	Ejercicio	` /																																			7
	Ejercicio	` /																																			7
	Ejercicio	` /																																			7
	Ejercicio	` /	,																																		7
	Ejercicio	` /	,																																		7
	Ejercicio	` '	,																																		7
	Ejercicio																																				70
	Ejercicio		/																																		70

86 LISTA DE EJERCICIOS

Bibliografía

- [DH96] José Dorronsoro and Eugenio Hernandez. *Némeros, Grupos y Anillos*. Addison-Wesley Iberoamericana, S.A. Universidad Autónoma de Madrid, 1996.
- [Epp] David Eppstein. Dih4 subgroups.
- [Wik] Wikipedia. Definición de la presentación de un grupo.