Jednostruka linearna regresija

Podaci

% stanovništva sa pristupom adekvatnim sanitarijama

http://apps.who.int/gho/data/node.main.46

Prosečna dužina života

http://apps.who.int/gho/data/node.main.688

Country	SanitationFacilities	LifeExpectancyBirth
Australia	100.0	82.8
Bahamas	92.0	76.1
Belize	90.5	70.1
Chile	99.1	80.5
Greece	99.0	81.0
Guatemala	63.9	71.9
Guyana	83.7	00.2
Hungary	98.0	75.8
Latvia	87.8	74.6
Malta	100.0	81.7

Serbia?

Ne postoji zemlja sa SF = 96.4

SanitationFacilities = 96.4

LifeExpectancyBirth = ?

Da li da uzmemo prosek sličnih?

Podaci

Linearna regresija

% of population using improved sanitation facilities 🗦

Linearna regresija

Primena modela

Od klase modela

$$h_{\theta}(x) = \theta_1(x) + \theta_0$$

odabrali smo model

$$h_{\widehat{\Theta}}(x) = 0.274 \cdot x + 50.7$$

koji najviše odgovara opservacijama

 $\hat{y}(96.4) = h_{\hat{\theta}}(96.4) = 0.274 \cdot 96.4 + 50.7 = 77.1$

(tačna vrednost je 75.6)

Primena modela

Od klase modela

$$h_{\theta}(x) = \theta_1(x) + \theta_0$$

odabrali smo model

$$h_{\widehat{\Theta}}(x) = 0.274 \cdot x + 50.7$$

koji najviše odgovara opservacijama

Koliki procenat stanovništva treba da ima pristup odgovarajućim sanitarijama da bi očekivani životni vek bio 77.1 godinu?

Od klase modela

$$h_{\theta}(x) = \theta_1(x) + \theta_0$$

odabrali smo model

$$h_{\widehat{\Theta}}(x) = 0.274 \cdot x + 50.7$$

koji najviše odgovara opservacijama

Ako 1% više stanovništva dobije pristup sanitarijama, životni vek poraste za 0.274 godine

Od klase modela

$$h_{\theta}(x) = \theta_1(x) + \theta_0$$

odabrali smo model

$$h_{\widehat{\Theta}}(x) = 0.274 \cdot x + 50.7$$

koji najviše odgovara opservacijama

Koliki je životni vek kada niko nema pristup sanitarijama?

U opštem slučaju θ_0 nije interpretabilno

Najčešće θ_0 nije interpretabilno

Matematički

 θ_0 je očekivana vrednost y kada su x postavljeni na 0

Praktično

Da li je primer gde su svi x = 0 realno moguć?

Čovek koji ima visinu 0 je težak – 114.3 kg

Ali, da li je realno moguće da se pojavi čovek sa visinom 0?

Ako je realno postaviti sve x na 0, da li je onda θ_0 uvek interpretabilno?

Ne uvek, prisetite se interpolacije i ekstrapolacije

Ne treba da koristite regresioni model za predikciju tačaka van opsega trening podataka

Ako nemamo trening podatke u okolini 0-vrednosti, ne vredi da interpretiramo θ_0

Čak i ako imamo, θ_0 ne mora biti interpretabilno

Ipak je od krucijalnog značaja da θ_0 uvrstimo u model

Rezime

Upoznali smo se sa modelom linearne regresije

- Videli smo kako da ga interpretiramo
 - Konstantu θ_0 generalno ne vredi interpretirati
 - Ali je korisna za model
 - Vrednost regresionog modela jeste razumevanje kako se y menja sa promenom x

