Course Code	Course Title	L	Т	Р	С
MCSE603L	Deep Learning	2	0	0	2
Pre-requisite	Nil	Syllabus version			
		1.0			

Course Objectives

- 1. Introduce major deep neural network frameworks and issues in basic neural networks
- 2. To solve real-world applications using Deep learning
- 3. Providing insight into recent Deep Learning architectures

Course Outcomes

At the end of this course, students will be able to:

- 1. Understand the methods and terminologies involved in deep neural network, differentiate the learning methods used in Deep-nets.
- 2. Identify and improve Hyper parameters for better Deep Network Performance
- 3. To understand and visualize Convolutional Neural Network for real-world applications
- 4. To demonstrate the use of Recurrent Neural Networks and Transformer based for language modeling
- 5. To distinguish different types of Advanced Neural Networks

Module:1 Neural Networks

3 hours

The Neuron –Expressing Linear Perceptrons as Neurons – Feed-Forward Neural Networks – Linear Neurons and their Limitations – Sigmoid, Tanh and Relu Functions – Softmax Output Layers

Module:2 | Neural Learning

4 hours

Measuring Errors - Gradient Descent - Delta Rule and Learning Rate - Backpropagation - Stochastic and Minibatch Gradient - Test Sets, Validation Sets and Overfitting - Preventing Overfitting in Deep Neural Networks - Other Optimization Algorithms: Adagrad, RMSProp, Adadelta, Adam

Module:3 | Convolution Neural Networks

5 hours

Neurons in Human Vision – Shortcomings of Feature Selection –Scaling Problem in Vanilla Deep Neural Networks – Filters and Feature Maps – Description of Convolutional Layer – Maxpooling – Convolution Network Architecture – Image Classification

Module:4 Pre-Trained Models

3 hours

Self-Supervised Pretraining, AlexNet, VGG, NiN, GoogleNet, Residual Network (ResNet), DenseNet, Region-Based CNNs (R-CNNs) – Transfer Learning - FSL

Module:5 | Recurrent Neural Networks

6 hours

Sequence-to-Sequence Modeling – Embedding - Recurrent Neural Networks - Bidirectional RNNs, Analyzing Variable Length Inputs – Tackling seq2seq Problem – Beam Search and Global Normalization – Recurrent Neural Networks (RNN)– Hidden States – Perplexity – Character-level Language Models – Modern RNNs: Gated Recurrent Units (GRU), Long Short Term Memory (LSTM), Bidirectional Long Short Term Memory (BLSTM), Deep Recurrent Neural Network, Bidirectional RNN

Module:6 Attention Models and Transformers

4 hours

Attention Mechanism: Attention Cues, Attention Pooling, Scoring Functions, Self-Attention and Positional Encoding;—Bidirectional Encoder Representations from Transformers (BERT) – Generative Pre-trained Transformers

Module:7 Advanced Neural Networks

4 hours

Generative Adversarial Networks – Generator, Discriminator, Training, GAN variants; Autoencoder: Architecture, Denoising and Sparcity; DALL-E, DALL-E 2 and IMAGEN

Mod	dule:8	Contemporary Issues				1 hour			
·									
				Total	Lecture hours:	30 Hours			
Text Book(s)									
1.	Fundamentals of Deep Learning, Nikhil Buduma and Nicholas Locasio, O-Reilly, 2017								
2.	Dive in	Dive into Deep Learning, Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J.							
	Smola,	ola, Amazon Senior Scientists - Open source and Free Book, March 2022							
Reference Books									
1.	Deep Learning, Ian Goodfellow Yoshua Bengio Aaron Courville, MIT Press, 2017								
2.	Deep Learning: A Practitioner's Approach, Josh Patterson, Adam Gibson, O'Reilly Media, 2017								
Mode of Evaluation: CAT / Written Assignment / Quiz / FAT									
Red	commen	ded by Board of Studies	26-07-2022						
App	roved by	y Academic Council	No. 67	Date	08-08-2022				