Unit 1: Database Systems

(Part 1)

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

What is a Database?

Mention examples of databases you know.

Why do we need Databases?

A Day In Susan's Life

See how many databases she interacts with each day

Before leaving for work, Susan checks her Facebook and Twitter accounts On her lunch break, she picks up her prescription at the pharmacy After work, Susan goes to the grocery store At night, she plans for a trip and buys airline tickets and hotel reservations online

Then she makes a few online purchases

Where is the data about the friends and groups stored?

Where are the "likes" stored and what would they be used for?

Where is the pharmacy inventory data stored?

What data about each product will be in the inventory data?

What data is kept about each customer and where is it stored?

Where is the product data stored?

Is the product quantity in stock updated at checkout?

Does she pay with a credit card?

Where does the online travel website get the airline and hotel data from?

What customer data would be kept by the website?

Where would the customer data be stored?

Where are the product and stock data stored?

Where does the system get the data to generate product "recommendations" to the customer?

Where would credit card information be stored?

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

Data and Databases are everywhere!

Is data the same as information? YES or NO

What is the difference between data and information?

Data versus Information

Data

- Raw facts
 - Have not yet been processed to reveal their meaning to the end user
- Building blocks of information

Information

- Produced by processing raw data to reveal its meaning
- Requires context
- Bedrock of knowledge
- Should be accurate, relevant, and timely to enable good decision making

FIGURE 1.2 TRANSFORMING RAW DATA INTO INFORMATION

a) Data entry screen

b) Raw data

ld LastName	MidNamo	1 irstName	DeptCar		Lmail	Hank	HisroYear Degree
1 Westercho	A.	Boore e	MCMT	3F 125	gwech note: @miculed.	Prolessor	200' PND
2.4.1 xm		Jules	Fh.	1.3 3	union of four or sens	Patroni	158 - Ph.D
3 Jedench		Thomas	ECON.		perfere solgen tou enfo	het ate:	2002 MB A
1 Medicon	3	James	IN:	1.236	macroon@mosu.com	Associate Higheston	199" Ptu
5 Marina	A.	Lemes	ACCT	P41	mon-pol/smau ceu	Assistant Professor	1991 Ph.D
S.A.Lene	0	lurius .	ACCT	1.4.8	undar s@moneum	Assertine Trainment	1587 75 75
7 Jackson	0	Ancrew	ECON	1.303	s,eckson@misu.edu	Assenie Professor	1892-Ph.D
U Ver Ul ron	T.	Mera 1	I.F.	1.000	"ven sure maintau ed.	Prolessor	190, Ph.D
9 Hensia	3	William	MKTG	1.118	thanison@msu edu	Pictassor	1994 Ph.D
10 Tuler	2	luiter .	NUMBER		Men@mtenedu	Assist in Tralescent	200° FdT.
11 Pok		Chery	MK G	N143	operk Sams Jedu	Assente Professor	2001 Ph.D
12 sylor	3	Dechany	ACT	1415	meyto Simos, ocia	ASSOCIATE PROYESTS	1991 Fh.3
11 Filmona		Militar	JCE	1.2 5	mille confirmation also	Pictorial	1592 Ph.D
14 France	A	Francis	METG	1,359	armekingerten erti	Instruction	200° MBA
nshelb.U.ch	I.	carries	MICHEL	1-1:16	EuchanenGynts, edu	Associate Professor	189: D.E.A.
17 Lincoln	W.	Leny	MOMT	P-100	Incon-Resource	Associate Professor	1995 PND
18 James		Assistan	18.18	1.350	a némero Propositeo	Pre-laterature	1987 Ph.D
19 Grent		Cote	MKTG	1.170	-specificaries a secon	Assistant Innexent	1981 D.E.A.
20 Purhorio di		leve:	March.	15.4UE	nutherforchamits u edil	Prolessor	189, PND
21 Gretore	T.	Donisa	ACCT		does cld/Amsu cou	Assistant Professor	2016 PN.D
22 4-lan		fini-	AC.TT	1.4.3	a etter⊘en xuann	Assertions Profession	2007 (C)
21 Cleven and	3	Robert	ACCT	2-431	about the Estate evelo	Авесине Ригевал:	1992 25.0
211 amsp :		- eticie	DULA	5.420	star sonth ritstadu	Associate Professor	200" (312)
25 Makinsy	1.	Privalela	15VS	1.313	prock may film busedu	Acj.nct	1594 M.S
25 Parameteral	=	Hilay	MCMT	1,114	· massessi@mismedu	Asserviore Chalescon	2007 71-7
27 mileon		-BITE	BCEN	1.448	-loor-Statement.	Protestor	199: Ph.3
201 arding		W/8 (2)	MK G	P114	toharding@intsu.edu	Prolessor	150° E 8 E.
23 Caplage		Daly n	ECON	1.3 6	proof ege@mail.ade	Pictorica	1975 Ph.D
ST Frances		inte	NCHT		heror@maceum	Arriand	1875 MBA
30 men		dety.	ACSI	1540.0	amment/intoxed/	Protector	197" EdD;
TE Johnson		Robert	DCIN	P-200	chacen Amesu cou	Prolessor	200° PND

c) Information in summary format

Rank	COUNT	%/INFS	TOT/COL	%/COL. TOT.	%/COL. FAC.
	5	20.00%	23	21.74%	3.27%
Assistant Professor	2	8.00%	28	7.14%	1.31%
Associate Professor	9	36.00%	37	24.32%	5.88%
Instructor	2	8.00%	18	11.11%	1.31%
Professor	7	28.00%	47	14.89%	4.58%

d) Information in graphical format

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

The Database

- Shared, integrated computer structure that stores a collection of:
 - End-user data Raw facts of interest to end user
 - Metadata: Data about data
 - Describes data characteristics and relationships

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

The Database Management System (DBMS)

- Collection of programs
- Manages the database structure
- Controls access to data stored in the database

Role of the DBMS

- Intermediary between the user and the database
- Enables data to be shared
- Presents the end user with an integrated view of the data
- Receives and translates application requests into operations required to fulfill the requests
- Hides database's internal complexity from the application programs and users

Figure 1.3 - The DBMS Manages the Interaction between the End User and the Database

Advantages of the DBMS

- Better data integration and less data inconsistency
 - **Data inconsistency**: Different versions of the same data appear in different places
- Increased end-user productivity
- Improved:
 - Data sharing
 - Data security
 - Data access
 - Decision making
- Data quality: Accuracy, validity, and timeliness of data

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

Types of Databases

- Databases can be classified based on:
 - Number of users
 - Location of data
 - Type of data stored
 - Intended data usage
 - Structure of the data

Types of Databases – Number of users

- Single-user database: Supports one user at a time
 - **Desktop database**: Runs on PC
- Multiuser database: Supports multiple users at the same time
 - Workgroup databases: Supports a small number of users or a specific department
 - Enterprise database: Supports many users across many departments

Types of Databases – Location of data

- Centralized database: Data is located at a single site
- Distributed database: Data is distributed across different sites
- Cloud database: Created and maintained using cloud data services that provide defined performance measures for the database
 - Microsoft Azure
 - Amazon AWS

Types of Databases – Type of data stored

- General-purpose databases: Contains a wide variety of data used in multiple disciplines
- Discipline-specific databases: Contains data focused on specific subject areas

Types of Databases – intended data usage

- Operational database: Designed to support a company's day-to-day operations
- Analytical database: Stores historical data and business metrics used exclusively for tactical or strategic decision making
 - Data warehouse: Stores data in a format optimized for decision support
 - Online analytical processing (OLAP)
 - Tools for retrieving, processing, and modeling data from the data warehouse
- Business intelligence: Captures and processes business data to generate information that support decision making

Types of Databases – structure of the data

- Unstructured data: It exists in their original state
- Structured data: It results from formatting
 - Structure is applied based on type of processing to be performed
- Semistructured data: Processed to some extent
 - Extensible Markup Language (XML)
 - Represents data elements in textual format

TABLE 1.1

TYPES OF DATABASES

PRODUCT	NUMBER OF USERS			DATA LOCATION		DATA USAGE		XML
	SINGLE	MULTIUSER						
	USER	WORKGROUP	ENTERPRISE	CENTRALIZED	DISTRIBUTED	OPERATIONAL	ANALYTICAL	
MS Access	X	X		Χ		X		
MS SQL Server	X ³	X	Χ	X	X	X	X	X
IBM DB2	X ³	X	Χ	Х	X	X	X	Χ
MySQL	X	X	Χ	X	X	X	X	X
Oracle RDBMS	X3	Х	Х	X	Х	Х	Х	Х

- Introduction
- The difference between data and information
- What is a database?
- Database Management Systems
- Types of databases
- Database design

Database Design

- Focuses on the design of the database structure that will be used to store and manage end-user data
- Well-designed database
 - Facilitates data management
 - Generates accurate and valuable information
- Poorly designed database causes difficult-to-trace errors

References

Recommended Textbook and slides

Database Systems: Design, Implementation and Management; 12th edition;

By: Carlos Coronel; Steven Morris

Next Class?

- How modern databases evolved from file systems
- Introduction to Structured Query Language