

INFORMATIKA FAKULTATEA FACULTAD DE INFORMÁTICA

Master Thesis

Master in Language Analysis and Processing

Grounding Language Models for Spatial Reasoning

Julen Etxaniz

Advisors

Oier Lopez de Lacalle Aitor Soroa

Acknowledgements

Abstract

Contents

Co	ontents	v
Li	ist of Figures	vi
Li	ist of Tables	vii
Li	ist of Algorithms	ix
1	Introduction	1
2	Related Work	3
3	Datasets 3.1 Winoground	5 5 5
4	Methods	7
5	Results 5.1 Compared To Humans 5.1.1 Baseline 5.1.2 Ours 5.1.2 Ours 5.2 Results By Linguistic Tag 5.2.1 Baseline 5.2.2 Ours 5.3.1 Baseline 5.3.1 Baseline 5.3.2 Ours	9 9 12 12 12 12 12 12
6	Discussion	13
7	Conclusions	15
Aı	ppendix	17
Bi	ibliography	19

List of Figures

List of Tables

5.1	Results on the Winoground dataset across the text, image and group score and accuracy	
	metrics. Results above random chance in bold	9
5.2	Results on the Winoground dataset across the text, image and group score and accuracy	
	metrics. Results above random chance in bold	10
5.3	The results by linguistic tag. Results above chance are in bold	10
5.4	The results by linguistic tag. Results above chance are in bold	11
5.5	The results by visual tag. Results above chance are in bold	11
5.6	The results by visual tag. Results above chance are in bold	12

List of algorithms

1 Introduction

2 Related Work

3 Datasets

This chapter introduces the datasets and metrics we used.

3.1 Winoground

3.1.1 Dataset

3.1.2 Metrics

3.1.2.1 Score

Performance on Winoground is computed according to three different metrics that evaluate different aspects of the models' visio-linguistic reasoning abilities.

The first metric is the **text score**, which measures whether a model can select the correct caption, given an image. Given images I_0 and I_1 and captions C_0 and C_1 , the text score for an example (C_0, I_0, C_1, I_1) is computed according to:

$$f(C_0, I_0, C_1, I_1) = \begin{cases} 1 & \text{if } s(C_0, I_0) > s(C_1, I_0) \\ & \text{and } s(C_1, I_1) > s(C_0, I_1) \\ 0 & \text{otherwise} \end{cases}$$
(3.1)

where $s(\cdot)$ is the model's score for the image/caption pair.

The second metric is the **image score**, which measures whether a model can select the correct image, given a caption. Given images I_0 and I_1 and captions C_0 and C_1 , the image score for an example is computed according to:

$$g(C_0, I_0, C_1, I_1) = \begin{cases} 1 & \text{if } s(C_0, I_0) > s(C_0, I_1) \\ & \text{and } s(C_1, I_1) > s(C_1, I_0) \\ 0 & \text{otherwise} \end{cases}$$
(3.2)

The group score in our framework is computed according to:

$$h(C_0, I_0, C_1, I_1) = \begin{cases} 1 & \text{if } f(C_0, I_0, C_1, I_1) \\ & \text{and } g(C_0, I_0, C_1, I_1) \\ 0 & \text{otherwise} \end{cases}$$
(3.3)

3.1.2.2 Accuracy

Given images I_0 and I_1 and captions C_0 and C_1 , the text accuracy for an example (C_0, I_0, C_1, I_1) is computed according to:

$$f(C_0, I_0, C_1, I_1) = \begin{cases} 1 & \text{if } s(C_0, I_0) > s(C_1, I_0) \\ & \text{and } s(C_1, I_1) > s(C_0, I_1) \end{cases}$$

$$0.5 & \text{if } s(C_0, I_0) > s(C_1, I_0)$$

$$& \text{xor } s(C_1, I_1) > s(C_0, I_1)$$

$$0 & \text{otherwise}$$

$$(3.4)$$

where $s(\cdot)$ is the model's score for the image/caption pair.

Given images I_0 and I_1 and captions C_0 and C_1 , the image accuracy for an example is computed according to:

$$g(C_0, I_0, C_1, I_1) = \begin{cases} 1 & \text{if } s(C_0, I_0) > s(C_0, I_1) \\ & \text{and } s(C_1, I_1) > s(C_1, I_0) \\ 0.5 & \text{if } s(C_0, I_0) > s(C_0, I_1) \\ & \text{xor } s(C_1, I_1) > s(C_1, I_0) \\ 0 & \text{otherwise} \end{cases}$$

$$(3.5)$$

The group score in our framework is computed according to:

$$h(C_0, I_0, C_1, I_1) = (f(C_0, I_0, C_1, I_1) + g(C_0, I_0, C_1, I_1))/2$$
(3.6)

4 Methods

5 Results

This chapter introduces baseline results and our results.

5.1 Compared To Humans

5.1.1 Baseline

	Score Accuracy			y		
Model	Text	Image	Group	Text	Image	Group
MTurk Human	89.50	88.50	85.50	93.75	93.88	93.81
Random Chance	25.00	25.00	16.67	50.00	50.00	50.00
VinVL	37.75	17.75	14.50	62.75	57.75	60.25
$UNITER_{large}$	38.00	14.00	10.50	63.25	55.75	59.50
$UNITER_{base}$	32.25	13.25	10.00	60.62	55.50	58.06
${ m ViLLA}_{large}$	37.00	13.25	11.00	62.62	55.25	58.94
${ m ViLLA}_{base}$	30.00	12.00	8.00	59.62	55.00	57.31
$VisualBERT_{base}$	15.50	2.50	1.50	50.50	49.88	50.19
ViLT (ViT-B/32)	34.75	14.00	9.25	60.50	55.38	57.94
LXMERT	19.25	7.00	4.00	52.12	51.88	52.00
$ m Vilbert_{base}$	23.75	7.25	4.75	57.25	52.50	54.87
$UniT_{ITMFinetuned}$	19.50	6.25	4.00	50.25	50.75	50.50
$FLAVA_{ITM}$	32.25	20.50	14.25	62.75	59.13	60.94
${\it FLAVA}_{Contrastive}$	25.25	13.50	9.00	59.25	55.12	57.19
CLIP (ViT-B/32)	30.75	10.50	8.00	60.38	53.25	56.81
$VSE++_{COCO}$ (ResNet)	22.75	8.00	4.00	51.38	50.88	51.12
$VSE++_{COCO}$ (VGG)	18.75	5.50	3.50	50.38	49.75	50.06
$VSE++_{Flickr30k}$ (ResNet)	20.00	5.00	2.75	51.50	50.25	50.88
$VSE++_{Flickr30k}$ (VGG)	19.75	6.25	4.50	52.75	51.00	51.88
$VSRN_{COCO}$	17.50	7.00	3.75	50.38	51.12	50.75
${ m VSRN}_{Flickr30k}$	20.00	5.00	3.50	53.25	51.75	52.50

Table 5.1: Results on the Winoground dataset across the text, image and group score and accuracy metrics. Results above random chance in **bold**.

	Score Accuracy					
Model	Text	Image	Group	Text	Image	Group
MTurk Human	89.50	88.50	85.50	93.75	93.88	93.81
Random Chance	25.00	25.00	16.67	50.00	50.00	50.00
ViLT (ViT-B/32)	27.50	8.75	6.00	56.88	53.12	55.00
ViLT _{COCO} (ViT-B/32)	32.75	13.50	11.25	61.88	56.00	58.94
$ViLT_{Flickr30k}$ (ViT-B/32)	35.00	11.50	9.75	61.62	54.50	58.06
$FLAVA_{ITM}$	32.25	20.50	14.25	62.75	59.13	60.94
$FLAVA_{ITC}$	25.25	13.50	9.00	59.25	55.12	57.19
CLIP (ViT-B/32)	30.75	10.25	8.25	60.38	53.12	56.75
CLIP (ViT-B/16)	25.00	10.25	7.00	57.88	53.75	55.81
CLIP (ViT-L/14)	28.50	11.00	8.00	60.38	54.62	57.50
CLIP (ViT-L/14-336)	27.50	12.00	8.00	59.38	55.12	57.25
$BLIP_{ITM14M}$ (ViT-B/16)	39.25	19.00	15.00	65.88	58.25	62.06
BLIP_{ITC14M} (ViT-B/16)	32.25	13.75	10.50	62.25	56.50	59.38
$BLIP_{ITM}$ (ViT-B/16)	40.50	20.50	16.50	66.25	59.00	62.62
BLIP_{ITC} (ViT-B/16)	29.75	14.50	9.50	59.88	56.12	58.00
$BLIP_{ITM}$ (ViT-B/16) (CapFilt-L)	37.50	18.50	14.00	65.00	59.13	62.06
$BLIP_{ITC}$ (ViT-B/16) (CapFilt-L)	31.50	10.50	8.50	61.38	53.62	57.50
$BLIP_{ITM}$ (ViT-L/16)	42.50	18.25	15.50	66.88	57.25	62.06
$BLIP_{ITC}$ (ViT-L/16)	33.25	12.00	9.00	61.75	55.00	58.38
$BLIP_{ITMCOCO}$ (ViT-B/16)	48.00	24.50	20.00	69.88	61.25	65.56
$BLIP_{ITCCOCO}$ (ViT-B/16)	37.75	15.75	12.75	65.00	56.88	60.94
$BLIP_{ITMFlickr30k}$ (ViT-B/16)	46.25	24.25	21.25	69.25	60.62	64.94
$BLIP_{ITCFlickr30k}$ (ViT-B/16)	38.25	15.00	12.25	65.38	56.12	60.75
$BLIP_{ITMCOCO}$ (ViT-L/16)	46.75	24.00	20.50	68.88	61.00	64.94
BLIP _{ITCCOCO} (ViT-L/16)	37.75	13.75	10.50	64.88	55.75	60.31
$BLIP_{ITMFlickr30k}$ (ViT-L/16)	45.00	24.75	20.50	68.62	60.50	64.56
$\mathrm{BLIP}_{ITCFlickr30k}$ (ViT-L/16)	36.00	16.25	13.50	63.38	56.75	60.06

Table 5.2: Results on the Winoground dataset across the text, image and group score and accuracy metrics. Results above random chance in **bold**.

		Object			Relation	ı		Both		1	Main Pr	ed	2	Main Pre	eds
Model	Text	Image	Group	Text	Image	Group	Text	Image	Group	Text	Image	Group	Text	Image	Group
MTurk Human	92.20	90.78	88.65	89.27	90.56	86.70	76.92	57.69	57.69	87.33	85.62	82.53	95.37	96.30	93.52
VinVL	36.88	17.73	14.18	37.77	17.60	14.16	42.31	19.23	19.23	39.38	21.23	17.47	33.33	8.33	6.48
UNITER $_{large}$	39.01	12.77	9.93	36.05	14.16	9.87	50.00	19.23	19.23	40.07	16.44	13.36	32.41	7.41	2.78
UNITER _{base}	34.04	11.35	9.22	30.04	14.16	10.30	42.31	15.38	11.54	35.27	14.73	11.99	24.07	9.26	4.63
$ViLLA_{large}$	36.88	14.89	11.35	37.34	12.88	11.16	34.62	7.69	7.69	39.73	17.12	14.38	29.63	2.78	1.85
$ViLLA_{base}$	33.33	15.60	9.93	27.04	9.01	6.01	38.46	19.23	15.38	33.22	14.04	10.27	21.30	6.48	1.85
VisualBERT $_{base}$	19.15	2.13	0.71	12.88	2.15	1.72	19.23	7.69	3.85	16.44	2.74	1.71	12.96	1.85	0.93
ViLT (ViT-B/32)	31.91	15.60	9.22	36.91	11.59	8.15	30.77	26.92	19.23	35.27	17.12	11.64	33.33	5.56	2.78
LXMERT	22.70	9.22	6.38	17.60	5.58	2.58	15.38	7.69	3.85	19.18	8.56	5.14	19.44	2.78	0.93
$ViLBERT_{base}$	29.08	10.64	7.09	19.31	3.00	1.72	34.62	26.92	19.23	23.97	8.90	5.82	23.15	2.78	1.85
$UniT_{ITMfinetuned}$	17.73	5.67	2.13	18.03	4.72	3.43	42.31	23.08	19.23	21.58	6.85	4.11	13.89	4.63	3.70
$FLAVA_{ITM}$	31.91	23.40	14.89	30.04	16.31	12.02	53.85	42.31	30.77	36.30	24.66	17.81	21.30	9.26	4.63
$FLAVA_{Contrastive}$	23.40	19.15	11.35	23.61	8.58	5.58	50.00	26.92	26.92	26.37	16.44	10.62	22.22	5.56	4.63
CLIP (ViT-B/32)	34.75	7.80	6.38	22.75	8.58	5.58	80.77	42.31	38.46	35.27	13.01	10.27	18.52	3.70	1.85
VSE++ _{COCO} (ResNet)	21.99	6.38	1.42	23.61	9.01	5.58	19.23	7.69	3.85	25.00	9.59	4.79	16.67	3.70	1.85
VSE++COCO (VGG)	17.73	2.13	2.13	18.45	7.30	3.86	26.92	7.69	7.69	18.49	4.79	2.74	19.44	7.41	5.56
$VSE++_{Flickr30k}$ (ResNet)	20.57	6.38	3.55	18.88	4.29	2.15	26.92	3.85	3.85	21.58	6.51	3.42	15.74	0.93	0.93
VSE++Flickr30k (VGG)	17.73	4.96	2.84	19.74	6.87	5.15	30.77	7.69	7.69	20.55	6.16	4.79	17.59	6.48	3.70
$VSRN_{COCO}$	15.60	4.96	2.13	18.88	7.73	4.72	15.38	11.54	3.85	17.12	7.19	3.77	18.52	6.48	3.70
$VSRN_{Flickr30k}$	16.31	4.96	2.13	21.03	4.29	3.86	30.77	11.54	7.69	20.89	5.82	3.77	17.59	2.78	2.78

Table 5.3: The results by linguistic tag. Results above chance are in **bold**.

		Object			Relation			Both		1	Main Pr	ed	2	Main Pre	eds
Model	Text	Image	Group	Text	Image	Group	Text	Image	Group	Text	Image	Group	Text	Image	Group
MTurk Human	92.20	90.78	88.65	89.27	90.56	86.70	76.92	57.69	57.69	87.33	85.62	82.53	95.37	96.30	93.52
ViLT (ViT-B/32)	29.08	10.64	4.96	26.18	7.73	6.44	30.77	7.69	7.69	30.14	10.62	7.53	20.37	3.70	1.85
ViLT _{COCO} (ViT-B/32)	33.33	15.60	12.77	30.90	10.73	9.01	46.15	26.92	23.08	36.64	15.75	14.04	22.22	7.41	3.70
ViLT _{Flickr30k} (ViT-B/32)	32.62	14.89	11.35	35.62	8.15	7.73	42.31	23.08	19.23	36.99	14.38	11.99	29.63	3.70	3.70
$FLAVA_{ITM}$	31.91	23.40	14.89	30.04	16.31	12.02	53.85	42.31	30.77	36.30	24.66	17.81	21.30	9.26	4.63
FLAVA _{ITC}	23.40	19.15	11.35	23.61	8.58	5.58	50.00	26.92	26.92	26.37	16.44	10.62	22.22	5.56	4.63
CLIP (ViT-B/32)	35.46	7.80	6.38	22.32	7.73	5.58	80.77	46.15	42.31	35.62	13.01	10.62	17.59	2.78	1.85
CLIP (ViT-B/16)	27.66	10.64	5.67	19.31	6.44	4.29	61.54	42.31	38.46	30.14	11.99	8.90	11.11	5.56	1.85
CLIP (ViT-L/14)	27.66	8.51	5.67	25.75	9.87	6.44	57.69	34.62	34.62	30.14	13.01	9.93	24.07	5.56	2.78
CLIP (ViT-L/14-336)	32.62	12.77	9.22	21.03	8.15	4.29	57.69	42.31	34.62	30.48	14.04	10.62	19.44	6.48	0.93
$BLIP_{ITM14M}$ (ViT-B/16)	41.84	23.40	17.73	36.05	14.59	11.59	53.85	34.62	30.77	43.84	23.63	18.49	26.85	6.48	5.56
$BLIP_{ITC14M}$ (ViT-B/16)	34.04	13.48	9.93	28.33	12.02	9.44	57.69	30.77	23.08	37.67	16.44	13.01	17.59	6.48	3.70
$BLIP_{ITM}$ (ViT-B/16)	46.10	22.70	17.73	35.62	17.60	14.16	53.85	34.62	30.77	45.89	25.34	20.55	25.93	7.41	5.56
$BLIP_{ITC}$ (ViT-B/16)	34.75	14.18	9.22	25.32	13.73	8.58	42.31	23.08	19.23	33.56	16.10	10.62	19.44	10.19	6.48
BLIP _{ITM} (ViT-B/16) (CapFilt-L)	39.01	19.86	12.77	34.76	15.88	12.45	53.85	34.62	34.62	41.10	22.60	17.12	27.78	7.41	5.56
BLIP _{ITC} (ViT-B/16) (CapFilt-L)	36.88	12.77	9.22	26.18	8.58	7.30	50.00	15.38	15.38	35.96	13.36	10.96	19.44	2.78	1.85
$BLIP_{ITM}$ (ViT-L/16)	41.84	19.86	17.02	40.77	16.31	13.73	61.54	26.92	23.08	45.55	23.29	20.21	34.26	4.63	2.78
BLIP _{ITC} (ViT-L/16)	34.04	14.18	11.35	30.90	9.01	6.01	50.00	26.92	23.08	36.99	14.04	10.96	23.15	6.48	3.70
BLIP _{ITMCOCO} (ViT-B/16)	42.55	26.95	19.15	49.79	21.89	19.31	61.54	34.62	30.77	48.97	29.79	24.66	45.37	10.19	7.41
BLIP _{ITCCOCO} (ViT-B/16)	36.88	19.15	14.18	36.05	11.59	10.30	57.69	34.62	26.92	41.78	18.84	15.07	26.85	7.41	6.48
BLIP _{ITMFlickr30k} (ViT-B/16)	49.65	28.37	22.70	42.49	19.74	18.45	61.54	42.31	38.46	51.03	28.42	26.03	33.33	12.96	8.33
BLIP _{ITCFlickr30k} (ViT-B/16)	36.88	17.02	10.64	36.48	12.02	11.16	61.54	30.77	30.77	40.75	17.12	13.70	31.48	9.26	8.33
BLIP _{ITMCOCO} (ViT-L/16)	48.94	25.53	20.57	44.64	22.32	20.60	53.85	30.77	19.23	51.03	28.42	23.97	35.19	12.04	11.11
BLIP _{ITCCOCO} (ViT-L/16)	36.88	14.18	11.35	36.05	11.16	7.30	57.69	34.62	34.62	41.10	16.44	13.36	28.70	6.48	2.78
BLIP _{ITMFlickr30k} (ViT-L/16)	46.10	22.70	16.31	42.06	24.89	21.46	65.38	34.62	34.62	50.34	29.11	24.66	30.56	12.96	9.26
BLIP _{ITCFlickr30k} (ViT-L/16)	39.01	19.86	15.60	30.47	11.59	9.44	69.23	38.46	38.46	39.38	20.55	17.12	26.85	4.63	3.70

Table 5.4: The results by linguistic tag. Results above chance are in **bold**.

	Symbolic			I	Pragmati	cs	Same Image Series			
Model	Text	Image	Group	Text	Image	Group	Text	Image	Group	
MTurk Human	96.43	92.86	92.86	58.82	41.18	41.18	95.65	91.30	91.30	
VinVL	25.00	17.86	14.29	29.41	5.88	5.88	34.78	17.39	13.04	
UNITER_{large}	39.29	28.57	17.86	35.29	0.00	0.00	4.35	8.70	0.00	
$UNITER_{base}$	46.43	14.29	14.29	29.41	17.65	11.76	8.70	8.70	0.00	
${ m ViLLA}_{large}$	39.29	14.29	10.71	17.65	0.00	0.00	17.39	4.35	0.00	
$ViLLA_{base}$	42.86	17.86	14.29	29.41	5.88	5.88	13.04	8.70	4.35	
$VisualBERT_{base}$	28.57	0.00	0.00	5.88	0.00	0.00	13.04	0.00	0.00	
ViLT (ViT-B/32)	28.57	17.86	10.71	35.29	0.00	0.00	26.09	0.00	0.00	
LXMERT	28.57	3.57	3.57	17.65	5.88	0.00	8.70	4.35	0.00	
$ViLBERT_{base}$	28.57	10.71	7.14	29.41	5.88	5.88	13.04	0.00	0.00	
$UniT_{ITMfinetuned}$	14.29	10.71	7.14	17.65	5.88	5.88	21.74	4.35	4.35	
$FLAVA_{ITM}$	25.00	28.57	17.86	17.65	29.41	11.76	17.39	8.70	0.00	
${\it FLAVA}_{Contrastive}$	17.86	10.71	10.71	11.76	23.53	5.88	17.39	4.35	4.35	
CLIP (ViT-B/32)	39.29	3.57	3.57	35.29	5.88	5.88	8.70	0.00	0.00	
$VSE++_{COCO}$ (ResNet)	32.14	10.71	10.71	23.53	11.76	0.00	13.04	4.35	4.35	
$VSE++_{COCO}$ (VGG)	17.86	14.29	7.14	17.65	0.00	0.00	13.04	4.35	4.35	
$VSE++_{Flickr30k}$ (ResNet)	21.43	3.57	0.00	23.53	0.00	0.00	17.39	4.35	0.00	
$VSE++_{Flickr30k}$ (VGG)	28.57	10.71	10.71	11.76	0.00	0.00	13.04	4.35	0.00	
$VSRN_{COCO}$	7.14	3.57	0.00	11.76	0.00	0.00	13.04	0.00	0.00	
$VSRN_{Flickr30k}$	21.43	3.57	3.57	35.29	11.76	5.88	8.70	4.35	4.35	

Table 5.5: The results by visual tag. Results above chance are in **bold**.

	Symbolic			I	Pragmatio	es	Same Image Series		
Model	Text	Image	Group	Text	Image	Group	Text	Image	Group
MTurk Human	96.43	92.86	92.86	58.82	41.18	41.18	95.65	91.30	91.30
ViLT (ViT-B/32)	21.43	7.14	3.57	17.65	5.88	5.88	17.39	8.70	4.35
$ViLT_{COCO}$ (ViT-B/32)	21.43	10.71	10.71	29.41	17.65	5.88	21.74	8.70	4.35
ViLT _{Flickr30k} (ViT-B/32)	28.57	7.14	7.14	23.53	0.00	0.00	26.09	4.35	4.35
$FLAVA_{ITM}$	25.00	28.57	17.86	17.65	29.41	11.76	17.39	8.70	0.00
$FLAVA_{ITC}$	17.86	10.71	10.71	11.76	23.53	5.88	17.39	4.35	4.35
CLIP (ViT-B/32)	35.71	3.57	3.57	35.29	5.88	5.88	13.04	0.00	0.00
CLIP (ViT-B/16)	21.43	3.57	3.57	29.41	11.76	11.76	4.35	4.35	0.00
CLIP (ViT-L/14)	28.57	10.71	3.57	23.53	17.65	11.76	13.04	8.70	4.35
CLIP (ViT-L/14-336)	28.57	14.29	7.14	17.65	17.65	5.88	13.04	4.35	0.00
$BLIP_{ITM14M}$ (ViT-B/16)	46.43	17.86	17.86	35.29	11.76	11.76	17.39	4.35	0.00
$BLIP_{ITC14M}$ (ViT-B/16)	32.14	14.29	10.71	29.41	0.00	0.00	13.04	0.00	0.00
$BLIP_{ITM}$ (ViT-B/16)	50.00	17.86	17.86	29.41	5.88	5.88	13.04	4.35	0.00
BLIP _{ITC} (ViT-B/16)	39.29	10.71	7.14	5.88	11.76	0.00	4.35	8.70	0.00
BLIP _{ITM} (ViT-B/16) (CapFilt-L)	42.86	17.86	14.29	23.53	17.65	17.65	17.39	4.35	0.00
BLIP _{ITC} (ViT-B/16) (CapFilt-L)	42.86	0.00	0.00	17.65	0.00	0.00	4.35	0.00	0.00
$BLIP_{ITM}$ (ViT-L/16)	53.57	25.00	25.00	29.41	5.88	0.00	26.09	4.35	0.00
$BLIP_{ITC}$ (ViT-L/16)	39.29	17.86	14.29	41.18	11.76	11.76	8.70	4.35	4.35
BLIP _{ITMCOCO} (ViT-B/16)	53.57	17.86	17.86	58.82	17.65	17.65	39.13	8.70	0.00
BLIP _{ITCCOCO} (ViT-B/16)	25.00	10.71	7.14	35.29	5.88	5.88	17.39	8.70	4.35
BLIP _{ITMFlickr30k} (ViT-B/16)	53.57	21.43	21.43	35.29	11.76	11.76	26.09	4.35	4.35
$BLIP_{ITCFlickr30k}$ (ViT-B/16)	35.71	10.71	10.71	23.53	17.65	11.76	17.39	4.35	0.00
$BLIP_{ITMCOCO}$ (ViT-L/16)	39.29	35.71	25.00	58.82	23.53	17.65	26.09	4.35	0.00
$BLIP_{ITCCOCO}$ (ViT-L/16)	46.43	14.29	14.29	17.65	5.88	5.88	13.04	0.00	0.00
$BLIP_{ITMFlickr30k}$ (ViT-L/16)	39.29	28.57	25.00	47.06	11.76	5.88	30.43	8.70	4.35
$\mathrm{BLIP}_{ITCFlickr30k}$ (ViT-L/16)	39.29	14.29	14.29	47.06	5.88	5.88	21.74	13.04	13.04

Table 5.6: The results by visual tag. Results above chance are in **bold**.

5.1.2 Ours

5.2 Results By Linguistic Tag

- 5.2.1 Baseline
- 5.2.2 Ours
- 5.3 Results By Visual Tag
- 5.3.1 Baseline
- 5.3.2 Ours

6 Discussion

7 Conclusions

Appendix

Bibliography