Программа КР «Производная»

Теория

Механический смысл производной.

Касательная и нормаль к кривой. Геометрический смысл производной. Уравнения касательной и нормали к графику функции.

Правила дифференцирования суммы, произведения и частного двух функций. Частные случаи: производные функций Cu, $\frac{u}{C}$, $\frac{C}{u}$ (u – функция, C – постоянная). Правило дифференцирования сложной функции.

Производные основных элементарных функций (таблица производных).

Производная параметрически заданной функции.

Тренировочные варианты на уровень А

Вариант 1

1. Найти угловой коэффициент нормали к графику функции $\frac{2}{x^2}$ в точке (-1,2). (Ответ: $-\frac{1}{4}$)

2.
$$\lim_{n \to +\infty} \frac{1}{\sqrt{n^2 + 1} - \sqrt{n^2 + 2}} = ?$$
 (Other: $-\infty$)

3.
$$y = \frac{e^x - 1}{e^x + 1}$$
. $y' = ?$ (Other: $\frac{2e^x}{(e^x + 1)^2}$)

4.
$$y = (2+x)\sqrt{1-x}$$
. $y' = ?$ (OTBET: $\frac{-3x}{2\sqrt{1-x}}$)

5.
$$y = 1 - \frac{(\cot x)^3}{3}$$
. $y' = ?$ (OTBET: $\frac{(\cos x)^2}{(\sin x)^4}$)

6.
$$x = \ln(1+t^2)$$
, $y = \arctan t$. $y'_x = ?$ (Other: $\frac{1}{2t}$)

7. Составить уравнение касательной к кривой $y = \sin \frac{x}{2}$ в точке с абсциссой x = 0. (Ответ: $y = \frac{1}{2}x$)

Вариант 2

1.
$$y = \frac{2}{3x-4}$$
. $y' = ?$ (Other: $-\frac{6}{(3x-4)^2}$)

2.
$$\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = ?$$
 (Other: $\frac{1}{4}$)

3.
$$y = x(2x-1)^5$$
. $y' = ?$ (Other: $(12x-1)(2x-1)^4$)

4.
$$y = \frac{\sqrt{2x+1}-1}{\sqrt{2x+1}+1}$$
. $y' = ?$ (Other: $\frac{2}{\sqrt{2x+1}(\sqrt{2x+1}+1)^2}$)

5.
$$y = 1 - \frac{\arcsin(x^3)}{3}$$
. $y' = ?$ (Other: $-\frac{x^2}{\sqrt{1-x^6}}$)

6.
$$x = e^t \cos t$$
, $y = e^t \sin t$. $y'_x = ?$ (Other: $\frac{\cos t + \sin t}{\cos t - \sin t}$)

7. Составить уравнение нормали к кривой $y = \ln x$ в точке ее пересечения с осью x.

(Otbet: x + y - 1 = 0)

Вариант 3

1.
$$y = \frac{\operatorname{ctg} x}{3}$$
. $y' = ?$ (Other: $-\frac{1}{3(\sin x)^2}$)

2.
$$\lim_{n \to +\infty} \frac{(3n-1)^2}{3n^2-1} = ?$$
 (OTBET: 3)

3.
$$y = (1+4x^2) \arctan 2x$$
. $y' = ?$ (Other: $8x \arctan 2x + 2$)

4.
$$y = \frac{1+\sin 3x}{1-\sin 3x}$$
. $y' = ?$ (OTBET: $\frac{6\cos 3x}{(1-\sin 3x)^2}$)

5.
$$y = \frac{1}{1 - \ln x}$$
. $y' = ?$ (Other: $\frac{1}{x(1 - \ln x)^2}$)

6.
$$x = \sqrt{1-t}$$
, $y = t\sqrt{1-t}$. $y'_x = ?$ (Other: $3t-2$)

7. Составить уравнение касательной к кривой $y = e^x$ в точке ее пересечения с осью y.

(Other: x - y + 1 = 0)

Тренировочные варианты на уровни В,С

Вариант 1

1.
$$\lim_{x\to 0} (1+\sin 2x)^{\operatorname{ctg} x} = ?$$
 (Other: e^2)

- **2.** Функция *y* задана уравнением $e^{y} + xy = e$. Доказать, что $y'_{x} = \frac{y}{xy x e}$.
- **3.** Найти точку кривой $y = \ln(5-2x)$, в которой касательная параллельна прямой 2x + y 1 = 0.

(OTBET: (2,0))

Вариант 2

1.
$$\lim_{n \to +\infty} \frac{\sqrt{n^2 + 2} - n + 5}{\sqrt{n^2 + 5} - n + 2} = ?$$
 (Other: $\frac{5}{2}$)

2. Найти угол между кривыми $y = \sin x$ и $y = \cos x \left(0 < x < \frac{\pi}{2} \right)$ в точке их пересечения.

(Ответ: $arctg(2\sqrt{2})$)

3. Найти точку параболы $y=2x^2-3x+5$, в которой касательная перпендикулярна прямой x+3y-5=0. (Ответ: $\left(\frac{3}{2},5\right)$)

Вариант 3

1.
$$\lim_{x \to \infty} \left(\frac{x-5}{x-1} \right)^{x+2} = ?$$
 (Other: e^{-4})

2.
$$y = \frac{\sqrt{x+4}}{\sqrt[3]{(x-1)^2(2x+1)}}$$
. $y'(0) = ?$. (Other: $\frac{1}{4}$)

3. Найти точку кривой $y = \sqrt{3x-5}$, в которой касательная параллельна прямой 3x-y+4=0.

(Otbet: $\left(\frac{7}{4}, \frac{1}{2}\right)$)