

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Математического обеспечения и стандартизации информационных технологий

Отчет по практическим работам №5-8

по дисциплине «Системная и программная инженерия»

Выполнили:

Студенты группы ИКБО-15-22

Кудинов А.В.

Оганнисян Г.А.

Шаралапов Д.А.

Принял преподаватель

Запорожских А.И.

СОДЕРЖАНИЕ

Практическая работа №5	3
Практическая работа №6	5
Практическая работа №7	6
Практическая работа №8	8
Вывод	. 13

На рисунках 1–2 представлены диаграммы классов и объектов системы.

role = "Разработчик" team = team1 Task User Team Meeting id = 1 id = 2 id = 1 title = "Разработать UI" name = "Tech Team" пате = "Мария" title = "Обсуждение UI" assignee = user2 role = "Дизайнер" date_time = "2024-03-25 10:00" team = team1 members = [user1, user2] team = team1 team = team1

Рисунок 2 – Диаграмма объектов

На рисунках 3 - 5 представлены диаграммы в нотации IDEF0.

Рисунок 3 – Процесс «Telegram-бот для управления задачами и встречами»

Рисунок 4 — Декомпозиция процесса «Telegram-бот для управления задачами и встречами»

На рисунках 6–8 представлены диаграммы в нотации DFD и модель базы данных.

Рисунок 5 – Диаграмма в нотации DFD

Рисунок 6 – Модель базы данных

Трехуровневая архитектура — это широко применяемая архитектура программного обеспечения, в которой приложения разделены на три логических и физических уровня: уровень представления (пользовательский интерфейс), уровень приложения, на котором осуществляется обработка данных, и уровень данных, предназначенный для хранения и управления данными, относящимися к приложению.

Основное преимущество трехуровневой архитектуры заключается в том, поскольку каждый уровень имеет собственную инфраструктуру, разработкой каждого уровня может заниматься отдельная разработчиков. Кроме того, обновлять каждый уровень МОЖНО масштабировать по мере необходимости, не затрагивая другие уровни. На рисунке 7 представлена архитектура приложения.

Рисунок 7 – Архитектура приложения

1. Уровень представления (Клиент) – Telegram Bot API

Telegram Bot API — используется для взаимодействия с пользователями через Telegram. Бот обрабатывает команды, кнопки и текстовые сообщения, валидирует ввод (например, проверяет корректность даты для встреч) и отправляет уведомления.

2. Уровень приложений (Сервер приложений) – Golang(Gin)

Golang в сочетании с фреймворком Gin представляет собой мощное решение для backend-разработки Telegram-бота.

3. Уровень данных (Сервер БД) – PostgreSQL

PostgreSQL: Выбор PostgreSQL обусловлен его надежностью, масштабируемостью и поддержкой разнообразных типов данных.

Таблица 3 – Матрица требований

Nº	Требование	Суть	Автор	Ссылки	Критерий проверки			
1	Уровень представлений							
1.1	Регистрация пользователя	"При первом запуске бот запрашивает имя и должность"	Николай Суворов	https://habr. com/ru/artic les/549408/	Регистрация нового пользователя			
1.2	Авторизация по Telegram ID	"Используется Telegram ID для повторного входа"	Чибиток Д.С.	https://habr. com/ru/com pany/infopu lse/blog/346 318/	При повторном запуске бот узнаёт пользователя и показывает его команды			
1.3	Интерфейс управления командами	Меню для создания, редактирования, удаления команд	Чибиток Д.С.	https://habr. com/ru/com panies/first/ articles/497 342/	Интерфейс отображает список команд, кнопки «Создать», «Удалить»			
1.4	Отправка уведомлений	Бот асинхронно отправляет напоминания и статусы	Жаворонк ов М.А.	https://habr. com/ru/com panies/first/ articles/497 342/	При изменении задачи пользователь получает уведомление			
2	Уровень приложений							

2.1	Производитель ность при одновременной нагрузке	Система должна обеспечивать отклик не более 500мс при 1000 одновременных	Жаворонк ов М.А.	https://devel oper.mozilla .org/ru/docs /Web/Perfor	Стресс- тестирование серверного программного		
		пользовательских запросах		mance/Fund amentals	обеспечения		
2.2	Надежность	Система должна гарантировать круглогодичную доступность системы не менее 99% (простой не более 55 часов)	Чибиток Д.С.	https://habr. com/ru/com panies/yoo money/articl es/591803/	Мониторинг времени работы системы		
2.3	Масштабируем ость	Система должна быть готова к вертикальному и горизонтальному масштабированию в случае увеличения нагрузки	Чибиток Д.С.	https://habr. com/ru/artic les/415773/	Планы масштабирован ия аппаратного обеспечения		
3	Уровень данных						
3.1	Telegram ID в базе	Telegram ID используется как уникальный идентификатор	Алексей Яковенко	https://habr. com/ru/com panies/amve ra/articles/8 48644//	В таблице users Telegram ID — уникальный ключ		
3.2	Шифрование данных во время передачи	Система должна использовать протокол HTTPS для передачи данных между клиентом и сервером	Чибиток Д.С.	https://proto n.me/blog/h ttps	Использование протокола HTTPS		

Обоснованный выбор ГОСТа проекта:

Для оформления ТЗ был выбран ГОСТ 34.602-2020, поскольку он наиболее полно и точно позволяет описать требования к разрабатываемому технологическому и информационному комплексу.

ТЗ по выбранному ГОСТу:

- 1. Общие сведения:
- 1.1. Полное наименование системы и ее условное обозначение:

- «Телеграм-бот для управления задачами и встречами"», условное обозначение: «TaskBoard».
- 1.2. Наименование разработчиков системы и реквизиты заказчика:
- Заказчик кафедра МОСИТ;
- Разработчики студенты группы ИКБО-15-22 Кудинов А.В.,
 Оганисян Г.А, Шаралапов Д.А.
- 1.3. Основания для разработки АС:
- Практическая работа по дисциплине «Системная и программная инженерия»
- 1.4. Плановые сроки начала и окончания работы по созданию системы:
- Сбор и анализ требований 01 февраля 2025 г. 28 февраля 2025 г.
- Проектирование архитектуры (REST API, БД, Telegram-бот). 01 марта 2025 г. 15 марта 2025 г.
- Разработка и модульное тестирование. 15 марта 2025 г. 20 апреля 2025 г.
- Интеграция, развёртывание и приёмочное тестирование 21 апреля $2025 \, \Gamma$. $30 \, \text{апреля} \, 2025 \, \Gamma$.
- 1.5. Источник финансирования работ по созданию АС:
- Собственные средства разработчиков.
- 1.6. Порядок оформления и предъявления заказчику результатов работ по созданию системы:
- К результатам труда разработчика относится:
 - а. Оригинальное аппаратное обеспечение;
 - b. Оригинальное программное обеспечение;
 - с. Уникальные структуры данных;
 - d. Типовые проектные решения и особенности построения распределенной системы;
 - е. Проектная и рабочая документация.
- Результаты передаются заказчику частями по завершении каждой стадии работы по созданию системы.

- 2. Назначение и цели создания (развития) системы:
- 2.1. Назначение системы:
- Обеспечить инструмент для управления задачами внутри команды и организации встреч с помощью Telegram-бота;
- 2.2. Цели создания системы:
- Автоматизация процесса распределения задач;
- Упрощённое взаимодействие между руководителем и участниками через интерфейс Telegram.
- 3. Характеристика объектов автоматизации:
- 3.1. Краткие сведения об объекте автоматизации:
- Решаемые проблемы: децентрализация задач, отсутствие контроля за встречами, путаница в планировании.
- 3.2. Сведения об условиях эксплуатации объекта автоматизации:
- Telegram-бот работает на сервере, использует API Telegram; Пользователи взаимодействуют через Telegram-приложение.
- 4. Требования к системе:
- 4.1. Требования к системе в целом:
 - Взаимодействие с пользователем Telegram-интерфейс;
 - В качестве протокола взаимодействия между компонентами Системы на транспортно-сетевом уровне необходимо использовать протокол TCP/IP;
 - Для организации информационного обмена между компонентами Системы должны использоваться специальные протоколы прикладного уровня, такие как HTTP и его расширение HTTPS.
 - Для организации доступа пользователей к приложению должен использоваться протокол презентационного уровня HTTP и его расширение HTTPS.
- 4.2. Требования к численности и квалификации персонала системы и режиму его работы:

- Руководитель: Может создавать до 3 команд; Управляет задачами и встречами; Назначает участникам задания; Приглашает участников через ссылки
- Участник: Может состоять только в одной команде; Получает задачи, отмечает их выполнение; Отправляет отчёты.
- Ограничения: В одной команде не более 5 участников.
- 4.3. Требования к надежности и безопасности:
 - Конфиденциальность аккаунтов пользователе.
- 4.3.1. Требования по защите информации от несанкционированного доступа:
 - Требования не предъявлены.
- 4.3.2. Требования по сохранности информации при авариях:
 - Требования не предъявлены
- 4.4. Требования к видам обеспечения:
- 4.4.1. Требования к информационному обеспечению:
 - В качестве входной информации выступают: данные пользователя.
 - В качестве выходной информации выступают: информация о задачах и встречах.
- 4.4.2. Требования к программному обеспечению:
 - На сервере должна быть установлена ОС Microsoft Windows не ниже 10 версии;
 - На сервере должна быть установлена СУБД PostgreSQL.
 - Наличие Telegram.
- 4.4.3. Требования к техническому обеспечению:
 - Для функционирования ИС необходимо: локальная вычислительная сеть на основе протокола TCP/IP с пропускной способностью 10/100 Мбит/с.

- Сервер должен удовлетворять следующим минимальным требованиям:
 - а. процессор Intel Xeon или аналогичный;
 - b. 4 GB и более оперативной памяти;
 - с. 5 GB жесткий диск
- Требования, предъявляемые к конфигурации клиентских станций:
 - а. процессор, с тактовой частотой не менее 3000 МНz;
 - b. 4 GB оперативной памяти;
 - с. Пользователь может использовать мобильное устройство на базе iOS, Android.
- 5. Состав и содержание работ по созданию системы:
- По окончании работ должен быть предоставлен отчет о проделанных работах и успешной работоспособности системы.
- 6. Порядок контроля и приемки системы:
- 6.1. Приемка этапа заключается в рассмотрении и оценке проведенного объема работ и предъявленной технической документации в соответствии с требованиями настоящего технического задания.
- 6.2. Ответственность за организацию и проведение приемки системы должен нести заказчик. Приемка системы должна производиться по завершению приемки всех задач системы. При этом необходимо предоставить обеспечение материальной частью (технические средства), проектной документацией и специально выделенным персоналом.
- 6.3. Заказчик должен предъявлять систему ведомственной приемочной комиссии, при этом он обязан обеспечить нормальные условия работы данной комиссии в соответствии с принятой программой приемки.
- 6.4.Завершающим этапом при приемке системы должно быть составление акта приемки.

- 7. Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие:
- 7.1. Для обеспечения готовности объекта к вводу системы в действие провести комплекс мероприятий:
- Приобрести компоненты технического и программного обеспечения, заключить договора на их лицензионное использование; Завершить работы по установке технических средств.
- 8. Требования к документированию: отчетные материалы должны включать в себя скриншоты интерфейса системы, листинги наиболее важных элементов кода, а также доступные функции для каждой роли, участвующей в системе.
- 9. Источники разработки: не представлены.

Вывод

В результате выполнения практических работ были построены диаграмма классов, диаграмма объектов, диаграмма основного процесса в нотации IDEF0, диаграмма в нотации DFD, построена нормализованная схема базы данных, описана архитектура системы и обоснован выбор определенных программных решений, построена архитектурная диаграмма разработки, а также составлено подробное ТЗ по выбранному ГОСТу.