Course name: Growth and Characterization of Nanoelectronic Materials (EE728)

Instructor: Apurba Laha

Department of Electrical Engineering, IIT Bombay

Contact: Tel: 022-2576 9408, email: laha@ee.iitb.ac.in

Etching

EE669 VLSI Technology

Reference: Textbook: Silicon VLSI Technology by Plummer, Deal and Griffin, Chapter 10

Outline

- 1. Introduction to etching.
- 2. Wet chemical etching: isotropic.
- 3. Anisotropic etching of crystalline Si.
- 4. Dry etching overview.
- 5. Plasma etching mechanism.
- 6. Types of plasma etch system.
- 7. Dry etching issues.
- 8. Dry etching method for various films.
- 9. Deep Si etching (can etch through a wafer).

Wet etching of SiO₂

Immerse wafer in bath (HF dip) or etch SiO_2 through photoresist mask $SiO_2(s) + 6HF(I) \rightarrow H_2SiF_6(g) + 2H_2O(I)$

Reaction products must be gaseous or water soluble

Slow reaction by diluting HF with H₂O

120 nm/min in 6:1::H₂O:HF

1000 nm/min in 1:1

Doped or deposited oxide etches faster

Selectivity relative to Si ≈ 100

Buffered oxide etch (BOE) (add NH₄F)
improves consistency, maintains F

Wet etching of SiO₂

Common silicon wet etch: nitric (=>NO₂) + hydrofluoric acid

$$Si(s) + 2NO_2(g) + 2H_2O(1) \rightarrow SiO_2(s) + H_2 + 2HNO_2(1)$$

HF dissolves SiO₂ by reaction above. Total reaction:

$$Si(s) + HNO_3(l) + 6HF(l) \rightarrow H_2SiF_6(g) + 2H_2O(l) + HNO_2(l) + H_2$$

Buffered HF: Acetic acid (CH₃COOH) instead of H₂O, NH₄F added to prevent depletion of F and retard etch of photoresist

Wet etching of Si

Bond coordination in (111) is greatest

The family of planes AFEG (1,0,0), ABC (1,1,1) and ABDF (1,1,0)

(111) planes most stable

Wet etching of Si

Fast etching sidewalls on a <100> silicon wafer after exposure to an EDP solution (ethylenediamine, water, and pyrocatechol)

Wet etching of Si

Laterally underetched sidewall of a masked segment on a <110> wafer after exposure to a 50% KOH solution. The edges of the masked segment diagonally crossing the picture had an angular misalignment of (a, left) 32 $^{\sim}$ and (b, right) 42 $^{\sim}$ with respect to the [-110] direction, which is parallel to the 35.3 $^{\sim}$ inclined {111 } planes.

See H. Seidel, L. Csepregi, A. Hueberger, and H. Baungärtel. *The Journal of the* Electrochemical Society 137 (1990): 3612-3626.

Anisotropic Etching of Si surface: KOH

An-isotropic wet etching of Si: overview

- ➤ {100} and {110} have 2 bonds below surface & 2 dangling bonds
 pointing out of the surface that can react. Reacts very fast.
- > {111} plane has three of its bonds below surface & only one dangling bond to react → much slower etch rate.

An-isotropic wet etching of Si: overview

 Orientation selective etch of silicon occur in hydroxide solutions partly because of the closer packing of some orientations relative to other orientations

- Opensity of planes: <111> > <110>, <100>
- Etch rate: R(111) << R(110), R(100)</p>
- <100> direction etches faster than <111> direction, with etch rate
 - \circ R(100) = few 100 \times R(111)
 - It is reaction rate limited
- Used very widely in MEMS (micro electro mechanical systems), since it is inexpensive, fast etching and easy to control.

An-isotropic wet etching of Si

KOH etch example:

250 g KOH: 200 g 2-propanol, 800 g H₂O at 80°C

1000 nm/min of [100]

Selectivity: {111}:{110}:{100} ~ 1:600:400

Seidel's etching model:

Si + 2OH
$$^ \rightarrow$$
 Si(OH) $_2^{2+}$ + 2e $^-$
Si(OH) $_2^{2+}$ + 2OH $^ \rightarrow$ Si(OH) $_4$ + 2e $^-$
Si(OH) $_4$ + 4e $^-$ + 4H $_2$ O \rightarrow Si(OH) $_6^{2-}$ + 2H $_2$
This is a model! Real reaction is complicated.

Si(OH)₄ is soluble.

H₂ is generated and form bubbles.

Materials	Etchants	Etch Rates	I
⟨100⟩ Si ⟨100⟩ Si	KOH	~0.26 – 1.4 μm/min	Rate dro
	EDP	~0.75 μm/min	arder to
SiO ₂	KOH	~40– 80 nm/hr	etch
SiO ₂	EDP	~12 nm/hr	
Silicon Nitride Silicon Nitride	KOH EDP	~5 nm/hr ~6 nm/hr	

Examples: for (100) wafer

Effect of slow {111} etching with KOH: etching virtually stops at {111} plane.

Etching selectivity to thermal oxide \sim 1000, to *LPCVD* nitride \sim infinity (>10⁴!).

Etch mask: SiO₂ or Si₃N₄ or Cr/Au

But KOH attacks *PECVD* oxide and nitride.

Table 10-1 Common wet chemical etchants for various thin films used in IC fabrication

Material	Etchant	Comments		
SiO ₂	HF (49% in water) "straight HF"	Selective over Si (i.e., will etch Si very slowly in comparison). Etch rate depends on film density, doping.		
	NH ₄ F:HF (6:1) "Buffered HF" or "BOE"	About 1/20 th the etch rate of straight HF. Etch rate depends on film density, doping. Will not lift up photoresist like straight HF.		
Si ₃ N ₄	HF (49%)	Etch rate depends strongly on film density, O, H in film.		
	H ₃ PO ₄ :H ₂ O (boiling @ 130–150°C)	Selective over SiO ₂ . Requires oxide mask.		
Al	H ₃ PO ₄ :H ₂ O:HNO ₃ :CH ₃ COOH (16:2:1:1)	Selective over Si, SiO ₂ , and photoresist.		
Polysilicon	HNO ₃ :H ₂ O:HF (+ CH ₃ COOH) (50:20:1)	Etch rate depends on etchant composition.		
Single crystal Si	HNO ₃ :H ₂ O:HF (+ CH ₃ COOH) (50:20:1)	Etch rate depends on etchant composition.		
	KOH:H ₂ O:IPA (23 wt. % KOH, 13 wt. % IPA)	Crystallographically selective; relative etch rates: (100): 100 (111): 1		
Ti	NH ₄ OH:H ₂ O ₂ :H ₂ O (1:1:5)	Selective over TiSi ₂		
TiN	NH ₄ OH:H ₂ O ₂ :H ₂ O (1:1:5)	Selective over TiSi ₂ .		
TiSi ₂	NH₄F:HF (6:1)			
Photoresist	H ₂ SO ₄ :H ₂ O ₂ (125°C)	For wafers without metal.		
Organic strippers		For wafers with metal.		

Summary

Etchant			Etches	Doesn't etch
H ₃ PO ₄ (19), CH3COOH, HNO ₃ (1), H ₂ O(2)		Al, SiN, M	SiO ₂ , Si, PR	
HF, BOE (HF + NH ₄ F)		SiO ₂ , M	Si, SiN, Au	
H ₂ SO ₄ (3), H ₂ O ₂ (1) pirahna		Organics, M	Si, SiO ₂ , SiN	
I ₂ (I),KI(2),H ₂ O(10)		Au, M	Si, SiO ₂ , SiN, M, PR	
NH ₄ OH(5), H ₂ O ₂ (1)		Polymers, Al	Si, SiO ₂ , SiN, M	
HNO ₃ (64), NH ₄ F(3), H ₂ O(33)		Si, M	SiN, PR	
HCI(3), HNO ₃ (1) (aqua regia)		Au, other M	Cr, Si, SiN, SiO ₂	

M: metal; PR: photoresist;

In addition, most metals can be etched by (diluted) acid, except Ti and Cr that form a dense stable oxide on top.

Ti can be etched by HF; Cr by Ceric ammonium nitrate plus acid.

Si iso-etch curves

Regions exist where the reduction reaction is so slow, the surface is very planar and ends up being "polished" after the etch.

Region 1:

High HF concentrations, reaction limited by HNO₃, follow constant HNO₃% lines.

Rate limited by oxidation, etched wafer surface have some oxide.

Region 2:

High HNO₃ concentrations, reaction limited by HF, follow constant HF % lines.

Rate limited by reduction, etched wafer surface have more oxide.

Examples: for (100) wafer

Have been used to make bubble-jet printer nozzle. $t_{si} = z \quad si$ v_{m} z = etch depth

ANISOTROPIC ETCHING OF<100>SILICON

AFM (atomic force microscope) tips

For (110) (not (100)) wafer, vertical (not tapered) trench possible.

What is the direction along the grating lines?

Bottom of pits are

- flat ({110} plane) if KOH is used {100} etches slower than {110}
- V-shaped ({100} planes) if EDP is used {110} etches slower than {100}

Other anisotropic silicon etchants

Tetramethyl Ammonium Hydroxide (TMAH) (C₄H₁₃NO)

- Used widely as positive photoresist developer (since it contains no metal like K or Na, which are harmful for device.)
- Typical etching at 80-90°C.
- Etching rate ~0.5-1.5 μm/min (10-40%w.t)
- Selectivity <100> : <111> ~ 10 35
- Like KOH, attacks aluminum
- Like KOH, can use boron-stop-etching technique (etching rate decreases 40 times for 10²⁰/cm³ boron doping).
- Excellent selectivity of <100>Si:
 oxide/nitride (~ 5000-50000)

Ethylene Diamine Pyrochatechol (EDP)

- Typical etching temperature 115°C.
- Etching rate 1μm/min.
- Selectivity of <100>Si : oxide/nitride
 ~ 3000-7000.
- Doesn't attack metal (Au, Cr, Cu, Ta)
 but attacks Al.
- Selectivity <100>: <111> ~35; (100)
 etches faster than (110), ((110)
 etches faster for KOH).
- Excellent for boron stop technique, etching rate drops 50 times for 7x10¹⁹/cm³ boron doping.
- Carcinogenic.

Isotropic etch (silicon nitride)

$$Si_3N_4 + H_3PO_4 + H_2O \rightarrow NO \uparrow + NO_3^- + H_2PO_4^- + H_2SiO_3$$

- Silicon Nitride is etched very slowly by HF solutions at room temperature, for example 20:1 BOE @20 C
 - Etch rate of SiO₂- 300 Å/min
 - Etch rate of $Si_3N_4 5-15 \text{ Å/min}$
 - Very good selectivity of oxide to nitride
- Silicon nitride etches in 49% HF at room temperature at about 500 Å/min
- Phosphoric acid at 150 °C [140-200
 °C] etches Si₃N₄ at fairly fast rate
 - Etch rate of Si₃N₄ 100 Å/min
 - Etch $SiO_2 10 \text{ Å/min}$
 - Selectivity of Si_3N_4 over SiO_2 : S = 10
 - Selectivity of Si₃N₄ over Si: S=30

Phosphoric Acid Etch Rate

Isotropic etching (aluminum)

50H₃PO₄: 20H₂O: 1HNO₃: 1CH₃COOH

$$6H^+ + 2AI \rightarrow 3H_2 + 2AI^{3+}$$
 Al³⁺ is water-soluble

- > Aluminum etches in water, phosphoric, nitric and acetic acid mixtures.
- \triangleright Converts Al to Al₂O₃with nitric acid (evolves H₂).
- Dissolve Al₂O₃ in phosphoric acid.
- Gas evolution leading to bubbles.
- Local etch rate goes down where bubble is formed, leading to non-uniformity.
- ➤ Al can also be etched in (diluted) acid or base, such as HCl, HNO₃, H₂SO₄, NaOH or KOH, but less controllable (etch the native oxide slowly and uncontrollably, then once oxide all etched away, etch Al metal very fast).
- The etch seems more repeatable in diluted HF (1:100 diluted),

Etch stop

It's hard to control the etching depth in wet etching. Therefore, a need to have a "stop layer".

Besides oxide and nitride, etching may be stopped by the following two methods, both related to doping of the silicon substrates.

- Controlled by doping: doped Si dissolved slower than pure Si.

Introducing an etch stop

What is an Etch-Stop?

Etch-stop is defined as a technique that allows termination of the etching process at a controllable depth

Selectivity: $S = \delta 1/\delta s$

Etch-Stop Techniques

- Timing Method
- Boron Etch-Stop
- Electrochemical Etch-Stop

Timing Method: V-Groove

- Method to control depth of etch
- ➤ At the precise moment the Vgroove develops, the membrane has reached the correct thickness
 - Advantages
 - > Simplest of all etch-stops
 - Cheap

- Disadvantages
- > Low Accuracy
- Not very reliable

Boron Etch-Stop

- ➤ Heavily B doped silicon has a very low etch rate
- Membranes can be created by doping the top of the wafer etching from the back
 - Advantages
 - Relatively simple process
 - High selectivity and reliability
 - Disadvantages
 - > Microstructures subjected to high tensile stress
 - Not compatible with CMOS process

Electrochemical etch

- Reverse biased
- > Anisotropic etch
- High selectivity
- Passivation potential
- TMAH/KOH
- Three electrode vs. four electrode system

Etch rate modulation

- Open circuit potential
- Passivation potential
- SiO2 etch stop
- > Anodic current flow
- > KOH/TMAH

Electrochemical Etch

- Advantages
- Doesn't require as high doping level as boron
- Better thickness control
- > Less stress on wafer
- Batch fabrication (Electrodless)
- Disadvantages
- Requires cumbersome fixtures to insulate electrical wiring
- from etchant
- **☐** Typical Applications
- > Thin membranes
- Pressure Sensors
- > Actuators
- Micro-needles used by neurophysiologist as a
- minimally invasive tool to monitor neural signals

Selective over-etch of different materials

The film is etched through to the bottom, plus over-etch to etch laterally for under-cut profile.

Dry etching?

- □ Advantages
- > Eliminates handling of dangerous acids and solvents
- ➢ Isotropic or anisotropic/vertical etch profiles
- Directional etching without using the crystal orientation of Si
- Reliable pattern transfer into underlying layers
- High resolution and cleanliness
- Less undercutting
- Better process control
- **☐** Disadvantages:
- Some gases are quite toxic and corrosive.
- > Re-deposition of non-volatile compound on wafers.
- > Expensive equipment (\$200-500K for R&D, few million for industrial tools).
- ☐ Types of dry etching:
- > Non-plasma based: Spontaneous reaction of suitable reactive gas mixture.
- > Plasma based: Radio frequency (RF) power to drive chemical reaction.

Plasma-based etching

- Directional etching due to presence of ionic species in plasma and (self-) biased electric field. (The self-bias electric field is not applied externally, but is created spontaneously in RF plasma)
- > Two components exist in plasma
 - Ionic species result in directional etching.
 - Chemical reactive species result in high etch selectivity.
- ➤ Control of the ratio of ionic/reactive components in plasma can modulate the dry etching rate and etching profile.

$$Si(s) + 4F(g) = SiF_4(g)$$