Factorial Cluster Algebra

Chengpeng Wang

Tsinghua University, China School of Software Department of Mathematical Science

June 7, 2016

Outline

Definition and Basic Properties

Cluster Algebra Acyclic Cluster Algebra Laurent Phenomenon Invertible Elements in Cluster Algebras Irreducibility of Cluster Variables

Sufficient Conditions to Admit Non-unique Factorization

A Sufficient Condition to Admit Unique Factorization

Factorization of Acyclic Cluster Algebra

■ Let m,n and p be integers with

$$m \ge p \ge n \ge 1$$
 and $m > 1$.

■ Let m,n and p be integers with

$$m \ge p \ge n \ge 1$$
 and $m > 1$.

■ Assume that K is a field of characteristic 0 or $K = \mathbb{Z}$. Let $\mathcal{F} = K(X_1, ..., X_m)$ be the field of rational functions in m variables.

■ Let m,n and p be integers with

$$m \ge p \ge n \ge 1$$
 and $m > 1$.

- Assume that K is a field of characteristic 0 or $K = \mathbb{Z}$. Let $\mathcal{F} = K(X_1, ..., X_m)$ be the field of rational functions in m variables.
- A seed of \mathcal{F} is a pair (\mathbf{x}, B) such that the following hold:
 - $(1) B \in M_{m,n}(\mathbb{Z}),$
 - (2) B is connected,
 - (3) The principal part of B is skew-symmetrizable,
 - (4) $\mathbf{x} = (x_1, ..., x_m)$ is an m-tuple of elements of \mathcal{F} such that $x_1, ... x_m$ are algebraically independent over K.

■ Define the mutation of (x, B) at k as

$$\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$$

■ Define the mutation of (x, B) at k as

$$\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$$

■ $B' = (b'_{ij})$ is defined as

$$b'_{ij} = \left\{ egin{array}{ll} -b_{ij} & ext{if } i=k ext{ or } j=k, \\ b_{ij} + rac{|b_{ik}|b_{kj}+b_{ik}|b_{kj}|}{2} & ext{otherwise,} \end{array}
ight.$$

and $\mathbf{x}' = (x'_1, ..., x'_m)$ is defined as

$$x_s' = \begin{cases} x_k^{-1} \prod_{b_{ik} > 0} x_i^{b_{ik}} + x_k^{-1} \prod_{b_{ik} < 0} x_i^{-b_{ik}} & \text{if } s = k, \\ x_s & \text{otherwise.} \end{cases}$$

■ Define the mutation of (x, B) at k as

$$\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$$

■ $B' = (b'_{ij})$ is defined as

$$b'_{ij} = \begin{cases} -b_{ij} & \text{if } i = k \text{ or } j = k, \\ b_{ij} + \frac{|b_{ik}|b_{kj} + b_{ik}|b_{kj}|}{2} & \text{otherwise,} \end{cases}$$

and $\mathbf{x}' = (x'_1, ..., x'_m)$ is defined as

$$x_s' = \begin{cases} x_k^{-1} \prod_{b_{ik} > 0} x_i^{b_{ik}} + x_k^{-1} \prod_{b_{ik} < 0} x_i^{-b_{ik}} & \text{if } s = k, \\ x_s & \text{otherwise.} \end{cases}$$

The equality

$$x_k x_k' = \prod_{b: k>0} x_i^{b_{ik}} + \prod_{b: k<0} x_i^{-b_{ik}}$$
 (1)

is called an exchange relation.

Proposition 1.2 Denote $\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$, where (\mathbf{x}, B) is a seed. Then (\mathbf{x}', B') is a seed.

- **Proposition 1.2** Denote $\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$, where (\mathbf{x}, B) is a seed. Then (\mathbf{x}', B') is a seed.
- **Proposition 1.3** $\mu_k \mu_k(\mathbf{x}, B) = (\mathbf{x}, B)$

- **Proposition 1.2** Denote $\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$, where (\mathbf{x}, B) is a seed. Then (\mathbf{x}', B') is a seed.
- **Proposition 1.3** $\mu_k \mu_k(\mathbf{x}, B) = (\mathbf{x}, B)$
- Mutation equivalent

$$(\mathbf{x}, B) \sim (\mathbf{y}, C) \Longleftrightarrow \mu_{i_t} \cdots \mu_{i_2} \mu_{i_1}(\mathbf{x}, B) = (\mathbf{y}, C)$$

- **Proposition 1.2** Denote $\mu_k(\mathbf{x}, B) = (\mathbf{x}', B')$, where (\mathbf{x}, B) is a seed. Then (\mathbf{x}', B') is a seed.
- **Proposition 1.3** $\mu_k \mu_k(\mathbf{x}, B) = (\mathbf{x}, B)$
- Mutation equivalent

$$(\mathbf{x}, B) \sim (\mathbf{y}, C) \Longleftrightarrow \mu_{i_t} \cdots \mu_{i_2} \mu_{i_1}(\mathbf{x}, B) = (\mathbf{y}, C)$$

■ For a seed (x, B) of \mathcal{F} let

$$\mathcal{X}_{(\mathbf{x},B)} = \bigcup_{(\mathbf{y},C) \sim (\mathbf{x},B)} \{y_1,...,y_n\}$$

■ **cluster algebra** $A(\mathbf{x}, B)$ associated to (\mathbf{x}, B) is the L-subalgebra of \mathcal{F} generated by $\mathcal{X}_{(\mathbf{x},B)}$, where

$$L=K[x_{n+1}^{\pm 1},...,x_p^{\pm 1},x_{p+1},...x_m]$$

cluster algebra $A(\mathbf{x}, B)$ associated to (\mathbf{x}, B) is the L-subalgebra of \mathcal{F} generated by $\mathcal{X}_{(\mathbf{x},B)}$, where

$$L=K[x_{n+1}^{\pm 1},...,x_p^{\pm 1},x_{p+1},...x_m]$$

cluster variables: elements in $\mathcal{X}_{(\mathbf{x},B)}$

■ **cluster algebra** $A(\mathbf{x}, B)$ associated to (\mathbf{x}, B) is the L-subalgebra of \mathcal{F} generated by $\mathcal{X}_{(\mathbf{x},B)}$, where

$$L = K[x_{n+1}^{\pm 1},...,x_p^{\pm 1},x_{p+1},...x_m]$$

- **cluster variables**: elements in $\mathcal{X}_{(\mathbf{x},B)}$
- **cluster coefficients**: x_i for $n + 1 \le i \le m$

Definition-Acyclic Cluster Algebra

■ Let (\mathbf{x}, B) be a seed of \mathcal{F} with $B = (b_{ij})$. Let $\Sigma(B)$ be the quiver with vertices 1,...,n, and arrows $i \to j$ for all $1 \le i, j \le n$ with $b_{ij} > 0$. So $\Sigma(B)$ encodes the sign-pattern of the principal part of B.

Definition-Acyclic Cluster Algebra

- Let (\mathbf{x}, B) be a seed of \mathcal{F} with $B = (b_{ij})$. Let $\Sigma(B)$ be the quiver with vertices 1,...,n, and arrows $i \to j$ for all $1 \le i, j \le n$ with $b_{ij} > 0$. So $\Sigma(B)$ encodes the sign-pattern of the principal part of B.
- The seed (\mathbf{x}, B) and B are called acyclic if $\Sigma(B)$ does not contain any oriented cycle. The cluster algebra $\mathcal{A}(\mathbf{x}, B)$ is acyclic if there exists an acylic seed (\mathbf{y}, C) with $(\mathbf{y}, C) \sim (\mathbf{x}, B)$

Laurent Phenomenon

■ For a seed (\mathbf{x}, B) of \mathcal{F} let

$$\mathcal{L}_{\mathbf{x}} = K[x_1^{\pm 1}, ..., x_n^{\pm 1}, x_{n+1}^{\pm 1}, ..., x_p^{\pm 1}, x_{p+1}, ...x_m]$$

be the location of $K[x_1,...,x_m]$ at $x_1x_2\cdots x_p$, and let

$$\mathcal{L}_{\mathbf{x},\mathcal{Z}} = K[x_1^{\pm 1}, ..., x_n^{\pm 1}, x_{n+1}, ..., x_m]$$

be the localization of $\mathcal{Z}[x_1,...,x_m]$ at $x_1x_2\cdots x_n$. Let's consider $\mathcal{L}_{\mathbf{x}}$ and $\mathcal{L}_{\mathbf{x},\mathcal{Z}}$ as subrings the field of \mathcal{F} .

Laurent Phenomenon

■ For a seed (\mathbf{x}, B) of \mathcal{F} let

$$\mathcal{L}_{\mathbf{x}} = K[x_1^{\pm 1}, ..., x_n^{\pm 1}, x_{n+1}^{\pm 1}, ..., x_p^{\pm 1}, x_{p+1}, ...x_m]$$

be the location of $K[x_1,...,x_m]$ at $x_1x_2\cdots x_p$, and let

$$\mathcal{L}_{\mathbf{x},\mathcal{Z}} = K[x_1^{\pm 1},...,x_n^{\pm 1},x_{n+1},...,x_m]$$

be the localization of $\mathcal{Z}[x_1,...,x_m]$ at $x_1x_2\cdots x_n$. Let's consider $\mathcal{L}_{\mathbf{x}}$ and $\mathcal{L}_{\mathbf{x},\mathcal{Z}}$ as subrings the field of \mathcal{F} .

■ Let y be a cluster variable of A(x, B). We have

$$y \in \bigcap_{(\mathbf{y},C) \sim (\mathbf{x},B)} \mathcal{L}_{\mathbf{y},\mathcal{Z}}$$

$$\mathcal{A}(\mathbf{x}, B) \subseteq \bigcap_{(\mathbf{y}, C) \sim (\mathbf{x}, B)} \mathcal{L}_{\mathbf{y}}$$

Invertible elements in cluster algebras

■ **Lemma 2.1** For a seed (x, B) of \mathcal{F} we have

$$\mathcal{L}_{\mathbf{x}}^{\times} = \{\lambda x_1^{a_1} \cdots x_p^{a_p} | \lambda \in K^{\times}, a_i \in \mathbb{Z}\}.$$

Invertible elements in cluster algebras

■ **Lemma 2.1** For a seed (x, B) of \mathcal{F} we have

$$\mathcal{L}_{\mathbf{x}}^{\times} = \{\lambda x_1^{a_1} \cdots x_p^{a_p} | \lambda \in K^{\times}, a_i \in \mathbb{Z}\}.$$

■ **Theorem 2.2** For any seed (x, B) of \mathcal{F} we have

$$\mathcal{A}(\mathbf{x},B)^{\times} = \{\lambda x_{n+1}^{a_{n+1}} \cdots x_p^{a_p} | \lambda \in K^{\times}, a_i \in \mathbb{Z}\}.$$

Invertible elements in cluster algebras

Lemma 2.1 For a seed (x, B) of \mathcal{F} we have

$$\mathcal{L}_{\mathbf{x}}^{\times} = \{\lambda x_1^{a_1} \cdots x_p^{a_p} | \lambda \in K^{\times}, a_i \in \mathbb{Z}\}.$$

■ **Theorem 2.2** For any seed (x, B) of \mathcal{F} we have

$$\mathcal{A}(\mathbf{x},B)^{\times} = \{\lambda x_{n+1}^{a_{n+1}} \cdots x_p^{a_p} | \lambda \in K^{\times}, a_i \in \mathbb{Z}\}.$$

■ **Corollary 2.3** For any seed (x, B) of \mathcal{F} the following propositions hold: (1)Let y and z be non-zero elements in $\mathcal{A}(x, B)$. Then y and z are associated if and only if there exist $a_{n+1}, \dots, a_p \in \mathbb{Z}$ and $\lambda \in K^{\times}$ with

$$y = \lambda x_{n+1}^{a_{n+1}} \cdots x_p^{a_p} z.$$

(2)Let y and z be cluster variables of A(x, B). Then y and z are associated if and only if y=z.

Irreducibility of Cluster Variables

■ **Theorem 3.1** Let (\mathbf{x},B) be a seed of \mathcal{F} . Then any cluster variable in $\mathcal{A}(\mathbf{x},B)$ is irreducible.

Outline

Definition and Basic Properties

Sufficient Conditions to Admit Non-unique Factorization

A Sufficient Condition to Admit Unique Factorization

Factorization of Acyclic Cluster Algebra

Denote the polynomial

$$f_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}$$

Denote the polynomial

$$f_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}$$

as exchange polynomial.

■ For a matrix $A \in M_{m,n}(\mathbb{Z})$ and $1 \le i \le n$, denote $c_i(A)$ to be the ith column of A.

Denote the polynomial

$$f_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}$$

- For a matrix $A \in M_{m,n}(\mathbb{Z})$ and $1 \le i \le n$, denote $c_i(A)$ to be the ith column of A.
- **Proposition 4.1** Let (\mathbf{x}, B) be a seed of \mathcal{F} . Assume that $c_k(B) = c_s(B)$ or $c_k(B) = -c_s(B)$ for some $k \neq s$ with $b_{ks} = 0$. Then $\mathcal{A}(\mathbf{x}, B)$ is not factorial.

Denote the polynomial

$$f_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}$$

- For a matrix $A \in M_{m,n}(\mathbb{Z})$ and $1 \le i \le n$, denote $c_i(A)$ to be the ith column of A.
- **Proposition 4.1** Let (\mathbf{x}, B) be a seed of \mathcal{F} . Assume that $c_k(B) = c_s(B)$ or $c_k(B) = -c_s(B)$ for some $k \neq s$ with $b_{ks} = 0$. Then $\mathcal{A}(\mathbf{x}, B)$ is not factorial.
- **Proposition 4.2** If there are two distinct indices $i, j \in \{1, \dots, n\}$ such that $f_i = f_j$, then $\mathcal{A}(\mathbf{x}, B)$ is not a unique factorization domain.

Denote the polynomial

$$f_k = \prod_{b_{ik} > 0} x_i^{b_{ik}} + \prod_{b_{ik} < 0} x_i^{-b_{ik}}$$

- For a matrix $A \in M_{m,n}(\mathbb{Z})$ and $1 \le i \le n$, denote $c_i(A)$ to be the ith column of A.
- **Proposition 4.1** Let (\mathbf{x} , B) be a seed of \mathcal{F} . Assume that $c_k(B) = c_s(B)$ or $c_k(B) = -c_s(B)$ for some $k \neq s$ with $b_{ks} = 0$. Then $\mathcal{A}(\mathbf{x}, B)$ is not factorial.
- **Proposition 4.2** If there are two distinct indices $i, j \in \{1, \dots, n\}$ such that $f_i = f_j$, then $\mathcal{A}(\mathbf{x}, B)$ is not a unique factorization domain.
- The propositions above are equivalent.

■ **Proposition 4.3** Let (\mathbf{x}, B) be a seed of \mathcal{F} . Assume that there exists some $1 \le k \le n$ such that the polynomial $X^d + Y^d$ is not irreducible in K[X,Y], where $d = gcd(b_{1k}, ..., b_{mk})$ is the greatest common divisor of $b_{1k}, ..., b_{mk}$. Then $\mathcal{A}(\mathbf{x}, B)$ is not factorial.

- **Proposition 4.3** Let (\mathbf{x}, B) be a seed of \mathcal{F} . Assume that there exists some $1 \le k \le n$ such that the polynomial $X^d + Y^d$ is not irreducible in K[X,Y], where $d = gcd(b_{1k}, ..., b_{mk})$ is the greatest common divisor of $b_{1k}, ..., b_{mk}$. Then $\mathcal{A}(\mathbf{x}, B)$ is not factorial.
- **Proposition 4.4** If there is some $i \in \{1, \dots, n\}$ such that f_i is reducible in $K[x_i : 1 \le i \le m]$, then $A(\mathbf{x}, B)$ is not a unique factorization domain.

- **Proposition 4.3** Let (\mathbf{x}, B) be a seed of \mathcal{F} . Assume that there exists some $1 \le k \le n$ such that the polynomial $X^d + Y^d$ is not irreducible in K[X,Y], where $d = gcd(b_{1k},...,b_{mk})$ is the greatest common divisor of $b_{1k},...,b_{mk}$. Then $\mathcal{A}(\mathbf{x},B)$ is not factorial.
- **Proposition 4.4** If there is some $i \in \{1, \dots, n\}$ such that f_i is reducible in $K[x_i : 1 \le i \le m]$, then $A(\mathbf{x}, B)$ is not a unique factorization domain.
- The propositions above are equivalent.

Outline

Definition and Basic Properties

Sufficient Conditions to Admit Non-unique Factorization

A Sufficient Condition to Admit Unique Factorization

Factorization of Acyclic Cluster Algebra

UFD: Sufficient Condition

■ **Theorem 5.1** Let **y** and **z** be disjoint clusters of $\mathcal{A}(\mathbf{x}, B)$ and let U be a factorial subalgebra of $\mathcal{A}(\mathbf{x}, B)$ such that

$$\{y_1,\cdots,y_n,z_1,\cdots,z_n,x_{n+1}^{\pm 1},...,x_p^{\pm 1},x_{p+1},...,x_m\}\subset U.$$

Then we have

$$U = A(\mathbf{x}, B) = U(\mathbf{y}, \mathbf{z}).$$

Outline

Definition and Basic Properties

Sufficient Conditions to Admit Non-unique Factorization

A Sufficient Condition to Admit Unique Factorization

Factorization of Acyclic Cluster Algebra

Some Definitions A Conjectured Decomposition Main Theorem Two Types of Acyclic Cluster Algebra Factorization of Dynkin Type Factorization of Euclidean Type

Some Definitions

■ For all $i \in \{1, 2, ..., n\}$ define an ideal

$$I_i = (x_i, f_i) \subseteq K[x_1, x_2, ..., x_m].$$

Denote abbreviation $R = K[x_i : 1 \le i \le m]$ for the polynomial ring.

Some Definitions

■ For all $i \in \{1, 2, ..., n\}$ define an ideal

$$I_i = (x_i, f_i) \subseteq K[x_1, x_2, ..., x_m].$$

Denote abbreviation $R = K[x_i : 1 \le i \le m]$ for the polynomial ring.

■ Remark 6.9 We have

$$\mathcal{A}(\mathbf{x},B) = \bigcup_{\mathbf{a} \in \mathbb{N}^n} \left\{ \frac{\lambda P}{x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}} : P \in I_1^{a_1} I_2^{a_2} \cdots I_n^{a_n} . \lambda \in \mathcal{A}(\mathbf{x},B)^{\times} \right\}.$$

Some Definitions

■ For all $i \in \{1, 2, ..., n\}$ define an ideal

$$I_i = (x_i, f_i) \subseteq K[x_1, x_2, ..., x_m].$$

Denote abbreviation $R = K[x_i : 1 \le i \le m]$ for the polynomial ring.

■ Remark 6.9 We have

$$\mathcal{A}(\mathbf{x},B) = \bigcup_{\mathbf{a} \in \mathbb{N}^n} \left\{ \frac{\lambda P}{x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}} : P \in I_1^{a_1} I_2^{a_2} \cdots I_n^{a_n} . \lambda \in \mathcal{A}(\mathbf{x},B)^{\times} \right\}.$$

Remark 6.9 can be obtained by the Laurent Phenomenon.

A Conjectured Decomposition

Conjecture 6.10 For all $\mathbf{a} \in \mathbb{N}^n$ we have $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap ... \cap I_n^{a_n}$.

A Conjectured Decomposition

- Conjecture 6.10 For all $\mathbf{a} \in \mathbb{N}^n$ we have $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap ... \cap I_n^{a_n}$.
- **Remark 6.12** For all $\mathbf{a} \in \mathbb{N}^n$, define a set

$$S(\mathbf{a}) = \{P \in I_1^{a_1} \cap I_2^{a_2} \cap ... \cap I_n^{a_n} : P \text{ is not divided by } x_i \text{ if } 1 \leq i \leq n, a_i \neq 0\}$$

If the conjecture above holds for all $\mathbf{a} \in \mathbb{N}^n$, then it yields a decomposition

$$\mathcal{A}(\mathbf{x},B) = \bigcup_{\mathbf{a} \in \mathbb{N}^n} \frac{\mathcal{A}(\mathbf{x},B)^{\times} S(\mathbf{a})}{x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}}.$$

For each none-zero polynomial $P \in R$ and each $1 \le i \le n$ there is a largest natural number $a_i \in \mathbb{N}$ s.t. $P \in I_i^{a_i}$. Define $m_i(P)$ to be the unique natural number such that $P \in I_i^{m_i(P)} \setminus I_i^{m_i(P)+1}$. In particular, we define a momomial

$$M(P) = \prod_{i=1}^{n} x_i^{m_i(P)} \in R.$$

■ For each none-zero polynomial $P \in R$ and each $1 \le i \le n$ there is a largest natural number $a_i \in \mathbb{N}$ s.t. $P \in I_i^{a_i}$. Define $m_i(P)$ to be the unique natural number such that $P \in I_i^{m_i(P)} \setminus I_i^{m_i(P)+1}$. In particular, we define a momomial

$$M(P) = \prod_{i=1}^{n} x_i^{m_i(P)} \in R.$$

■ **Theorem 6.13** If $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap ... \cap I_n^{a_n}$ holds for all $\mathbf{a} \in \mathbb{N}^n$, then $\mathcal{A}(\mathbf{x}, B)$ is a unique factorization domain. Moreover, the set irreducible elements in $\mathcal{A}(\mathbf{x}, B)$ is

$$(\{\lambda x_i: 1 \leq i \leq n, \lambda \in \mathcal{A}(\mathbf{x}, B)^{\times}\}\$$

$$\cup \{ \frac{\lambda P}{M(P)} : P \in R \text{ irreducible, } \lambda \in \mathcal{A}(\mathbf{x}, B)^{\times} \} \setminus \mathcal{A}(\mathbf{x}, B)^{\times}.$$

■ **Lemma 7.1** Assume $\mathbf{a} \in \mathbb{N}^n$ and $\mathbf{I}^{\mathbf{b}} = I_1^{b_1} \cap I_2^{b_2} \cap \cdots \cap I_n^{b_n}$ holds for all $\mathbf{b} \in \mathbb{N}^n$ s.t. $\sum_{i=1}^n b_i < \sum_{i=1}^n a_i$. Assume that the index $i \in \{1, 2, \cdots, n\}$ is either a sink or a source s.t. $a_i \neq 0$. Suppose that there exists an index $1 \leq j \leq n$ with $a_j \neq 0$ s.t. i and j are adjacent. Then $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap \cdots \cap I_n^{a_n}$

- **Lemma 7.1** Assume $\mathbf{a} \in \mathbb{N}^n$ and $\mathbf{I}^{\mathbf{b}} = I_1^{b_1} \cap I_2^{b_2} \cap \cdots \cap I_n^{b_n}$ holds for all $\mathbf{b} \in \mathbb{N}^n$ s.t. $\sum_{i=1}^n b_i < \sum_{i=1}^n a_i$. Assume that the index $i \in \{1, 2, \cdots, n\}$ is either a sink or a source s.t. $a_i \neq 0$. Suppose that there exists an index $1 \leq j \leq n$ with $a_j \neq 0$ s.t. i and j are adjacent. Then $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap \cdots \cap I_n^{a_n}$
- $N(i) = \{j : 1 \le j \le n, b_{ij} \ne 0\}$ for all $i \in \{1, 2, \dots, m\}$.

- **Lemma 7.1** Assume $\mathbf{a} \in \mathbb{N}^n$ and $\mathbf{I}^{\mathbf{b}} = I_1^{b_1} \cap I_2^{b_2} \cap \cdots \cap I_n^{b_n}$ holds for all $\mathbf{b} \in \mathbb{N}^n$ s.t. $\sum_{i=1}^n b_i < \sum_{i=1}^n a_i$. Assume that the index $i \in \{1, 2, \cdots, n\}$ is either a sink or a source s.t. $a_i \neq 0$. Suppose that there exists an index $1 \leq j \leq n$ with $a_j \neq 0$ s.t. i and j are adjacent. Then $\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap \cdots \cap I_n^{a_n}$
- $N(i) = \{j : 1 \le j \le n, b_{ij} \ne 0\}$ for all $i \in \{1, 2, \dots, m\}$.
- **Lemma 7.2** Put $\mathbf{a} \in \mathbb{N}^n$. Suppose that i is a mutable index s.t. $a_i \neq 0$ and $\mathbf{I}^{\mathbf{b}} = I_1^{b_1} \cap I_2^{b_2} \cap \cdots \cap I_n^{b_n}$ holds for all $\mathbf{b} \in \mathbb{N}^n$ such that $\sum_{i=1}^n b_i < \sum_{i=1}^n a_i$. Suppose that one of the following conditions holds: (1) For all indices $j \in N(i)$, we have $a_i = 0$.
 - (2) The initial exchange polynomial f_i has the form $f_i = x_k + M_i$ for some index k and some monomials $M_i \in R$. Suppose that for all neighbors $j \in N(k) \setminus \{i\}$, we have $a_j = 0$.

Then
$$\mathbf{I}^{\mathbf{a}} = I_1^{a_1} \cap I_2^{a_2} \cap \cdots \cap I_n^{a_n}$$

Dynkin Type

Dynkin type is finite type of cluster algebras, which have the finite number of cluster variables. And each finite-type cluster algebra is equivalent to a Dynkin type.

Euclidean Type

 Euclidean type is a infinite type of cluster algebras, which have the infinite number of cluster variables.

Factorization of Dynkin Type

For $n \neq 3$, A_n is a unique factorial type, while for n = 3, A_n is not a unique factorial type. For all $n \geq 4$, D_n is not a unique factorial type. For E_6 , E_7 , E_8 , they are all unique factorial types.

■ **Theorem 10.1** The cluster algebra generated by the type $\widetilde{A_n}$ is a unique domain.

- **Theorem 10.1** The cluster algebra generated by the type $\widetilde{A_n}$ is a unique domain.
- **Poof** Suppose there are $k(1 \le k \le n/2)$ clockwise edges and n+1-k anticlockwise edges. In this orientation, the diagram has the most sources and sinks, which means clockwise and anticlockwise edges are presented in turn and other n+1-2k anticlockwise edges are presented in sequences. Suppose that the points are labeled from 1 to n+1 in a anticlockwise direction. Suppose index 1 to k+1 is a source or a sink, and index k+2 to n+1 is neither a source nor a sink.

- **Theorem 10.1** The cluster algebra generated by the type $\widetilde{A_n}$ is a unique domain.
- **Poof** Suppose there are $k(1 \le k \le n/2)$ clockwise edges and n+1-k anticlockwise edges. In this orientation, the diagram has the most sources and sinks, which means clockwise and anticlockwise edges are presented in turn and other n+1-2k anticlockwise edges are presented in sequences. Suppose that the points are labeled from 1 to n+1 in a anticlockwise direction. Suppose index 1 to k+1 is a source or a sink, and index k+2 to n+1 is neither a source nor a sink.
- Let P be a polynomial in the intersection $I_1^{a_1} \cap I_2^{a_2} \cap \cdots I_n^{a_n}$. We have to show that $P \in \mathbf{I}^{\mathbf{a}}$ which we will prove by mathematical induction on $\sum_{i=1}^n a_i$. The base case is trival. Assume that the statement holds for all sequences with a smaller sum.

■ If k > 1, then index 1, 2, 3 is either a source or a sink.

- If k > 1, then index 1, 2, 3 is either a source or a sink.
- (1) If $a_1 > 0$ and $a_2 > 0$ or $a_{n+1} > 0$, then the claim follows from Lemma 7.1, because index 1 is a source or a sink and index 2 or index n is adjacent to index 0.

- If k > 1, then index 1, 2, 3 is either a source or a sink.
- (1) If $a_1 > 0$ and $a_2 > 0$ or $a_{n+1} > 0$, then the claim follows from Lemma 7.1, because index 1 is a source or a sink and index 2 or index n is adjacent to index 0.
- (2) If $a_1 > 0$ and $a_2 = 0$ and $a_{n+1} = 0$, then the claim follows from Lemma 7.2(a), because $a_1 > 0$ and for all $j \in N(1)$, $a_j = 0$.

- If k > 1, then index 1, 2, 3 is either a source or a sink.
- (1) If $a_1 > 0$ and $a_2 > 0$ or $a_{n+1} > 0$, then the claim follows from Lemma 7.1, because index 1 is a source or a sink and index 2 or index n is adjacent to index 0.
- (2) If $a_1 > 0$ and $a_2 = 0$ and $a_{n+1} = 0$, then the claim follows from Lemma 7.2(a), because $a_1 > 0$ and for all $j \in N(1)$, $a_j = 0$.
- (3) If $a_1 = 0$ and $a_2 = 0$, then the sequences of I_k is of the same form as in type A_{n+1} and can yield to the conclusion.

- If k > 1, then index 1, 2, 3 is either a source or a sink.
- (1) If $a_1 > 0$ and $a_2 > 0$ or $a_{n+1} > 0$, then the claim follows from Lemma 7.1, because index 1 is a source or a sink and index 2 or index n is adjacent to index 0.
- (2) If $a_1 > 0$ and $a_2 = 0$ and $a_{n+1} = 0$, then the claim follows from Lemma 7.2(a), because $a_1 > 0$ and for all $j \in N(1)$, $a_j = 0$.
- (3) If $a_1 = 0$ and $a_2 = 0$, then the sequences of I_k is of the same form as in type A_{n+1} and can yield to the conclusion.
- (4) If $a_1 = 0$ and $a_2 > 0$, $a_3 = 0$, then the claim follows from Lemma 7.2(a), because $a_2 > 0$ and for all $j \in N(2)$, $a_j = 0$.

- If k > 1, then index 1, 2, 3 is either a source or a sink.
- (1) If $a_1 > 0$ and $a_2 > 0$ or $a_{n+1} > 0$, then the claim follows from Lemma 7.1, because index 1 is a source or a sink and index 2 or index n is adjacent to index 0.
- (2) If $a_1 > 0$ and $a_2 = 0$ and $a_{n+1} = 0$, then the claim follows from Lemma 7.2(a), because $a_1 > 0$ and for all $j \in N(1)$, $a_j = 0$.
- (3) If $a_1 = 0$ and $a_2 = 0$, then the sequences of I_k is of the same form as in type A_{n+1} and can yield to the conclusion.
- (4) If $a_1 = 0$ and $a_2 > 0$, $a_3 = 0$, then the claim follows from Lemma 7.2(a), because $a_2 > 0$ and for all $j \in N(2)$, $a_j = 0$.
- (5) If $a_1 = 0$, $a_2 > 0$ and $a_3 > 0$, then the claim follows form Lemma 7.1, because index 3 is a sink or a source which is adjacent to index 2 and $a_2 > 0$, $a_3 > 0$.

■ If k = 1, then the same argument for the situation (1)-(4). In situation (5), it is obvious that index 3 is not a sink nor a source, then $f_3 = x_2 + x_4$, and the claim follows from Lemma 7.2(b), because k=2, i=3, N(k)={1,3} and $a_1 = 0$.

- If k = 1, then the same argument for the situation (1)-(4). In situation (5), it is obvious that index 3 is not a sink nor a source, then $f_3 = x_2 + x_4$, and the claim follows from Lemma 7.2(b), because k=2, i=3, N(k)={1,3} and $a_1 = 0$.
- In all situation, we can safely get the conclusion that $P \in \mathbf{I}^{\mathbf{a}}$. According to the main theorem, we can get the unique factorization of type \widetilde{A}_n .

■ **Theorem 10.2** The cluster algebra generated by the type $\widetilde{D_n}$ is not a unique domain.

■ **Theorem 10.2** The cluster algebra generated by the type $\widetilde{D_n}$ is not a unique domain.

■ The diagram of $\widetilde{D_n}$ is presented above. No matter how to orient the diagram, the exchange polynomial of index n+1 and index 1 are both 1 + x_2 . According to Proposition 4.2, we can claim that the cluster algebra generated by the type $\widetilde{D_n}$ is not a unique domain.

Factorization of \widetilde{E}_6

■ **Theorem 10.3** The cluster algebra generated by the type $\widetilde{E_6}$ is a unique domain.

■ **Theorem 10.3** The cluster algebra generated by the type $\widetilde{E_6}$ is a unique domain.

■ **Proof** Let P be a polynomial in the intersection $I_1^{a_1} \cap I_2^{a_2} \cap \cdots I_n^{a_n}$. We have to show that $P \in \mathbf{I}^{\mathbf{a}}$ which we will prove by mathematical induction on $\sum_{i=1}^n a_i$. The base case is trival. Assume that the statement holds for all sequences with a smaller sum.

Factorization of \widetilde{E}_6

• (1) If $a_2, a_1 > 0$, then the claim follows from the Lemma 7.1.

- (1) If a_2 , $a_1 > 0$, then the claim follows from the Lemma 7.1.
- (2) If $a_2 = 0$, $a_1 > 0$, $a_7 = 0$, then the claim follows from Lemma 7.2(a), bacause i=1 and N(i)= $\{0,2\}$.

- (1) If a_2 , $a_1 > 0$, then the claim follows from the Lemma 7.1.
- (2) If $a_2 = 0$, $a_1 > 0$, $a_7 = 0$, then the claim follows from Lemma 7.2(a), bacause i=1 and N(i)= $\{0,2\}$.
- (3) If $a_2 = 0$, $a_1 > 0$, $a_7 > 0$, then the claim follows from Lemma 7.1, because index 7 is a source and a_7 , $a_1 > 0$.

- (1) If a_2 , $a_1 > 0$, then the claim follows from the Lemma 7.1.
- (2) If $a_2 = 0$, $a_1 > 0$, $a_7 = 0$, then the claim follows from Lemma 7.2(a), bacause i=1 and N(i)= $\{0,2\}$.
- (3) If $a_2 = 0$, $a_1 > 0$, $a_7 > 0$, then the claim follows from Lemma 7.1, because index 7 is a source and a_7 , $a_1 > 0$.
- (4) If $a_2 = 0$, $a_1 = 0$, $a_7 = 0$, then it is the same form as in type A_5 , which can get the conclusion.

 $\begin{array}{c}
6 \\
\downarrow \\
5 \\
\downarrow \\
7 \longrightarrow 1 \longrightarrow 2 \longleftarrow 3 \longleftarrow 4
\end{array}$

■ (5) If $a_2 = 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.2(a), because i=0 and N(i)= $\{1\}$.

- (5) If $a_2 = 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.2(a), because i=0 and N(i)= $\{1\}$.
- (6) If $a_2 > 0$, $a_1 = 0$, $a_7 = 0$, then it is the same form as in type E_6 , which can get the conclusion.

- (5) If $a_2 = 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.2(a), because i=0 and N(i)= $\{1\}$.
- (6) If $a_2 > 0$, $a_1 = 0$, $a_7 = 0$, then it is the same form as in type E_6 , which can get the conclusion.
- (7) If $a_2 > 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.1(a), because i=0 and N(i)={1}.

- (5) If $a_2 = 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.2(a), because i=0 and N(i)= $\{1\}$.
- (6) If $a_2 > 0$, $a_1 = 0$, $a_7 = 0$, then it is the same form as in type E_6 , which can get the conclusion.
- (7) If $a_2 > 0$, $a_1 = 0$, $a_7 > 0$, then the claim follows from Lemma 7.1(a), because i=0 and N(i)={1}.
- In all situation, we can safely get the conclusion that $P \in \mathbf{I}^{\mathbf{a}}$. According to the main theorem, we can get the unique factorization of type $\widetilde{E_6}$.

Factorization of $\widetilde{E_7}$ and $\widetilde{E_8}$

■ **Theorem 10.4** The cluster algebra generated by the type $\widetilde{E_7}$ and $\widetilde{E_8}$ is a unique domain.

The same argument for index 8 and 4 in $\widetilde{E_7}$ and index 9 and 5 in $\widetilde{E_8}$ can get the conclusion.

Q&A

■ Thank You For Listening