(Due: Sept. 12, 2024)

- 1. (10') 请参考教材图 1.3 所示的控制框图,描述一个生活或工程中存在的闭环控制系统的例子。
- 2. (10') 试求解函数 $f(t) = 5e^{-2t} \sin 2t$, $t \ge 0$ 的 Laplace 变换(请写出求解过程)。
- 3. **(10')** 求函数 $F(s) = \frac{2s+2}{s^2+2s+5}$ 的 Laplace 逆变换。
- 4. (10') 利用定义求 $f(t) = e^{at}$ 的 Laplace 变换,并给出成立的条件。其中 a 为实数。
- 5. (10'+10') 如下图所示,假设两个滑块都在无摩擦的表面上运动,
 - (a) 请写出系统的运动方程(微分方程)。
 - (b) 假设 r(t) 为系统的控制输入量, y 为系统的输出量,请计算系统的传递函数 G(s) = Y(s)/R(s)。

6. (15') 下图是一个典型的运算放大器电路。假设电路是理想放大器,且各参数为 $R_1=R_2=100 \text{ k}\Omega$, $C_1=10 \text{ }\mu\text{F}$, $C_2=5 \text{ }\mu\text{F}$,请计算电路的传递函数.

7. (25) 系统方框图下图所示,请计算系统的传递函数 $G(s) = \frac{Y(s)}{R(s)}$ 。(注意:请写出详细的化

简步骤)

备注: 教材指 Dolf & Bishop 的《Modern Control Systems》第 12 版。