Patent claims:

- 1. Process for the determination of an actual value of a control variable set by an actuator in accordance with a theoretical value, **characterized in that**, a partial value ($\Delta\delta_{VARI}$; $\Delta\delta_{\Sigma}$) of an actual value ($\Delta\delta_{AFS}$) set in accordance with a theoretical total value ($\Delta\delta_{AFS, req}$) consisting of a sum of theoretical partial values ($\Delta\delta_{VARI, req}$, $\Delta\delta_{GRR, req}$, $\Delta\delta_{GMK, req}$) is determined, in dependence on the theoretical partial value ($\Delta\delta_{VARI, req}$; $\Delta\delta_{\Sigma, req}$) corresponding to the partial value ($\Delta\delta_{VARI, \Delta\delta_{\Sigma}}$), in an actuator model formed with at least one parameter (T_{AFS}), whereby the value (T_{AFS}) of the parameter (T_{FAS}) is determined by means of a divergence ($\epsilon_{\delta, AFS}$) between the theoretical total value ($\Delta\delta_{AFS, req}$) and a determined actual total value ($\Delta\delta_{AFS}$) of the control variable.
- 2. Process in accordance with claim 1, **characterized in that,** the value (\tilde{T}_{AFS}) of the parameter (T_{AFS}) is assigned to the value of the deviation ($\epsilon_{\delta, AFS}$) by means of a characteristic curve.
- 3. Process in accordance with one or both of the claims 1 and 2, **characterized** in that, the value (\tilde{T}_{AFS}) of the parameter (T_{AFS}) is determined by means of an actuator model or a parameter estimation process.
- 4. Process in accordance with one or more of the preceding claims, **characterized in that,** the value (\tilde{T}_{AFS}) of the parameter (T_{AFS}) is determined by means of the same actuator model as the partial value $(\Delta \delta_{VARI}; \Delta \delta_{\Sigma})$ of the actual value $(\Delta \delta_{AFS})$ of the control variable.
- 5. Process in accordance with one or more of the preceding claims, **characterized in that,** a value (\tilde{T}_{AFS}) for the parameter (T_{AFS}) is only determined if the rate of change $(\Delta \dot{\delta}_{AFS,req})$ of the total theoretical value $(\Delta \delta_{AFS,req})$ and/or the rate of change $(\Delta \dot{\delta}_{AFS})$ of the total actual value $(\Delta \delta_{AFS})$ exceeds a preset threshold value.

- 6. Process in accordance with one or more of the preceding claims, **characterized in that**, a value $(\tilde{\mathbb{T}}_{AFS})$ for the parameter (T_{AFS}) is retained if the rate of change $(\Delta\dot{\delta}_{AFS,req})$ of the total theoretical value $(\Delta\delta_{AFS,req})$ and/or the rate of change $(\Delta\dot{\delta}_{AFS})$ of the total actual value $(\Delta\delta_{AFS})$ lies below the preset threshold value.
- 7. Process in accordance with one or more of the preceding claims, **characterized in that,** the value (\tilde{T}_{AFS}) of the parameter (T_{AFS}) is limited to a preset interval.
- 8. Process in accordance with one or more of the preceding claims, **character- ized in that,** a time constant (T_{AFS}) is determined as the parameter of an actuator model describing a transmission behavior of the actuator.
- 9. Process in accordance with one or more of the preceding claims, **characterized in that**, an assessed value $(\Delta \tilde{\delta}_{VARI}; \Delta \tilde{\delta}_{\Sigma})$ is determined for an actual partial value $(\Delta \delta_{VARI}; \Delta \delta_{\Sigma})$ of a steering angle $(\Delta \delta_{AFS})$ set by an actuator of a superimposition steering on the steerable wheels of a vehicle.
- 10. Process in accordance with one or more of the preceding claims, **characterized in that,** an assessed value ($\Delta \tilde{\delta}_{VARI}$) is determined for an actual partial value ($\Delta \delta_{VARI}$) of a steering angle changing a transmission ratio of a steering of the vehicle in a manner dependent upon speed, and set by means of a superimposition steering.