Taller - Econometría 1 Econometria Edinson Tolentino Aplicacion

Clase 4 - Taller Aplicado, 29 de marzo de 2024

1. Hoja de ejercicos aplicados: Modelo Panel Data

Dada la información de la data DB4.dta contiene información para 42 areas de fuerza policial (oficinas policiales) en Inglaterra y Gales (exluyendo a LOndres) desde el periodo de 1980a 1991. La información se detalla a continuación:

Variable Name	Variable Description
b	The number of burglaries per 1,000 of the
	police force area's resident population.
1b	The natural logarithm of burglaries per 1,000
	of the police force area's resident population.
eburg	The percentage of recorded burglary offences
	solved by the police in the police force area.
sburg	The average sentence length for burglary in the
	police force area measured in months.
ur	The male unemployment rate expressed in
	percentages for the police force area.
yr1 – yr12	A set of 12 time dummies, one for each year of
	the data.
pfa	The identifier variable for the police force area
	in England & Wales.
year	The identifier variable for the year.

Puede utilizar el dofile L4.do para observar los comandos a usar en cada pregunta

Preguntas:

- 1. Interprete los estadísticos para las variables *b*, *cburg*, *sburg* y *ur*. Ademas: ¿Qué tipo de conjunto de datos de panel es este?
- 2. Estime el modelo de regresión [1] utilizando tanto el LSDV como los procedimientos de transformación **within**:

$$lb_{i,t} = \alpha_i + \beta_1 cburg_{i,t-1} + \beta_2 sburg_{i,t-1} + \beta_3 ur_{i,t} + \sum_{j=3}^{12} \delta_j yr_{ji,t} + \mu_{i,t}$$
 (1)

a) ¿Por qué se utilizó un estimador de efectos fijos en este caso? Compare los resultados de las variables explicativas distintas de las variables ficticias de tiempo.

- *b*) ¿Qué concluyes? Interprete las estimaciones de las variables de la tasa de disuasión y de desempleo utilizando las estimaciones basadas en el procedimiento **within**.
- c) ¿Por qué cree que aquí se utilizaron valores rezagados para las dos variables de disuasión?

3. Se le pide:

- *a*) Implemente e interprete una prueba de Hausman utilizando la especificación descrita en [1]. ¿Cuál es el propósito de la prueba y qué infiere del resultado informado?
- *b*) Implemente e interprete la prueba de Mundlak utilizando la especificación descrita en [1]. ¿Cuál es el propósito de la prueba y qué infiere del resultado informado?
- 4. Estime la siguiente ecuación de robo de ajuste parcial usando los efectos fijos (o estimador within):

$$lb_{i,t} = \alpha_i + \gamma lb_{i,t-1} + \beta_1 cburg_{i,t-1} + \beta_2 sburg_{i,t-1} + \beta_3 ur_{i,t} + \sum_{j=3}^{12} \delta_j yr_{ji,t} + \mu_{i,t}$$

• Interpretar las estimaciones. ¿Por qué podría estimar aquí un modelo de ajuste parcial? ¿Qué problemas econométricos se asocian a la estimación de la ecuación anterior?