COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS DEPARTMENT OF APPLIED INFORMATICS

LEARNING MULTISENSORY INTEGRATION AND COORDINATE TRANSFORMATION IN A SIMULATED HUMANOID ROBOT

Master thesis

2019

BC. MARTIN KELLNER

UNIVERZITA KOMENSKÉHO V BRATISLAVE FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

UČENIE MULTISENZORICKEJ INTEGRÁCIE A TRANSFORMÁCIE SÚRADNÍC V SIMULÁTORE HUMANOIDNÉHO ROBOTA

Diplomová práca

Študijný program: Aplikovaná informatika Študijný odbor: Aplikovaná informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školiteľ: prof. Ing. Igor Farkaš, Dr.

Bratislava, 2019 Bc. Martin Kellner

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno	a priezvisko	študenta:	Bc. Martin Kellı	ner

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor: aplikovaná informatika

Typ záverečnej práce: diplomová Jazyk záverečnej práce: anglický Sekundárny jazyk: slovenský

Názov: Learning Multisensory Integration and Coordinate Transformation in a

Simulated Humanoid Robot

Učenie multisenzorickej integrácie a transformácie súradníc v simulátore

humanoidného robota

Anotácia: Spracovanie senzorických podnetov v mozgu zahŕňa multisenzorickú integráciu

(kombinovanie vodítok do jedného spoločného podnetu) a transformácie súradníc (referenčných rámcov, napr. z retinotopického na telo-centrický, ovplyvnenej modulačnou premennou, napr. pozíciou očí). Táto schopnosť je kľúčová v kognitívnej robotike, ak chceme vybaviť robota schopnosťou

operovať autonómne v 3D priestore.

Anotácia: 1. Naštudujte si problematiku z kognitívnej neurovedy o multisenzorickej

integrácii a referenčných rámcoch (súradnicových systémoch).

2. Implementujte a natrénujte model umelej neurónovej siete, ktorá sa naučí integrovať vizuálnu a proprioceptívnu informáciu, vykonávajúc prepočet súradníc v úlohe týkajúcej sa ruky a očí, s využitím simulovaného robota iCub.

3. Vyhodnoť te a analyzujte správanie natrénovaného modelu.

Literatúra: Makin J., Fellows M., & Sabes P. (2013). Learning multisensory integration and

coordinate transformation via density estimation. PLOS: Comput. Biol., 9(4). Švec M., Farkaš I. (2014). Calculation of object position in various reference frames with a robotic simulator. In Proceedings of the 36th Annual Conference

of the Cognitive Science Society, Quebec, Canada.

Tikhanoff V., Fitzpatrick P., Nori F., Natale L., Metta G., & Cangelosi A. (2008).

The iCub humanoid robot simulator. Advanced Robotics, 1(1), 22-26.

Vedúci: prof. Ing. Igor Farkaš, Dr.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 16.10.2017

Dátum schválenia: 20.10.2017 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno	a priezvisko	študenta:	Bc. Martin Kellı	ner

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor: aplikovaná informatika

Typ záverečnej práce: diplomová Jazyk záverečnej práce: anglický Sekundárny jazyk: slovenský

Názov: Learning Multisensory Integration and Coordinate Transformation in a

Simulated Humanoid Robot

Učenie multisenzorickej integrácie a transformácie súradníc v simulátore

humanoidného robota

Anotácia: Spracovanie senzorických podnetov v mozgu zahŕňa multisenzorickú integráciu

(kombinovanie vodítok do jedného spoločného podnetu) a transformácie súradníc (referenčných rámcov, napr. z retinotopického na telo-centrický, ovplyvnenej modulačnou premennou, napr. pozíciou očí). Táto schopnosť je kľúčová v kognitívnej robotike, ak chceme vybaviť robota schopnosťou

operovať autonómne v 3D priestore.

Anotácia: 1. Naštudujte si problematiku z kognitívnej neurovedy o multisenzorickej

integrácii a referenčných rámcoch (súradnicových systémoch).

2. Implementujte a natrénujte model umelej neurónovej siete, ktorá sa naučí integrovať vizuálnu a proprioceptívnu informáciu, vykonávajúc prepočet súradníc v úlohe týkajúcej sa ruky a očí, s využitím simulovaného robota iCub.

3. Vyhodnoť te a analyzujte správanie natrénovaného modelu.

Literatúra: Makin J., Fellows M., & Sabes P. (2013). Learning multisensory integration and

coordinate transformation via density estimation. PLOS: Comput. Biol., 9(4). Švec M., Farkaš I. (2014). Calculation of object position in various reference frames with a robotic simulator. In Proceedings of the 36th Annual Conference

of the Cognitive Science Society, Quebec, Canada.

Tikhanoff V., Fitzpatrick P., Nori F., Natale L., Metta G., & Cangelosi A. (2008).

The iCub humanoid robot simulator. Advanced Robotics, 1(1), 22-26.

Vedúci: prof. Ing. Igor Farkaš, Dr.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 16.10.2017

Dátum schválenia: 20.10.2017 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

DECLARATION: I hereby declare that this thesis is my own work and that all the sources I have used or quoted have been indicated and acknowledged as complete references.

Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stručne sumarizuje výsledky práce. Mal by byť pochopiteľný pre bežného informatika. Nemal by teda využívať skratky, termíny alebo označenie zavedené v práci, okrem tých, ktoré sú všeobecne známe.

Kľúčové slová: jedno, druhé, tretie (prípadne štvrté, piate)

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

Contents

List of Figures

List of Tables

Bibliography

- [1] Makin J., Fellows M., Sabes P. (2013). Learning multisensory integration and coordinate transformation via density estimation. PLOS: Comput. Biol., 9(4).
- [2] Švec M., Farkaš I. (2014). Calculation of object position in various reference frames with a robotic simulator. In Proceedings of the 36th Annual Conference of the Cognitive Science Society, Quebec, Canada.
- [3] Svec M., Farkaš I. (2014). Representation of object position in various frames of reference using a robotic simulator
- [4] Tikhanoff V., Fitzpatrick P., Nori F., Natale L., Metta G., Cangelosi A. (2008). The iCub humanoid robot simulator. Advanced Robotics, 1(1), 22-26.