Systèmes dynamiques Feuille d'exercices 10

Exercice 1. Moyennes de Birkhoff pour les permutations

Soit σ une permutation de $X = \{1, \dots, p\}$. Montrer que pour toute fonction $\varphi : X \to \mathbf{C}$ et tout $x \in X$ on a

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} \varphi\left(\sigma^k(x)\right) = \frac{1}{|\mathcal{O}(x)|} \sum_{y \in \mathcal{O}(x)} \varphi(y),$$

où $\mathcal{O}(x) = {\sigma^k(x), k \in \mathbf{N}}$ est l'orbite de x.

Exercice 2. Théorème ergodique et isométries

Soit (X, d) un espace métrique compact, $f: X \to X$ une isométrie (i.e. d(f(x), f(y)) = d(x, y) pour tous $x, y \in X$) et μ une mesure borélienne de probabilités invariante par f telle que $\mu(U) > 0$ pour tout ouvert U non vide. Soit $\varphi: X \to \mathbf{C}$ une fonction continue et

$$S_n \varphi = \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^k.$$

Montrer que $S_n\varphi$ converge uniformément sur X vers une fonction continue.

Exercice 3. Théorème ergodique sur les espaces métriques compacts

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation mesurable préservant une mesure borélienne de probabilités μ . Montrer qu'il existe un ensemble mesurable $G \subset X$ de mesure totale tel que pour tout fonction continue φ et tout $x \in G$,

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\varphi \circ f^k \right) (x) \underset{n \to +\infty}{\longrightarrow} \bar{\varphi}(x),$$

où $\bar{\varphi}$ est la fonction limite des moyennes de Birkhoff de φ donnée par le théorème ergodique.

Exercice 4. Unique ergodicité et densité des orbites

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue. On suppose qu'il existe une unique mesure borélienne de probabilités invariante μ et que $\mu(A) > 0$ pour tout ouvert non vide A. Montrer que toutes les orbites de f sont denses dans X.

Exercice 5. Le théorème de Von Neumann via le théorème de Birkhoff

Soit (X, \mathscr{A}, μ) un espace probabilisé, $\varphi \in L^2(\mu)$ et $\bar{\varphi} \in L^1(\mu)$ sa fonction associée dans le théorème de Birkhoff. On note aussi $S_n \varphi = \frac{1}{n} \sum_{k=0}^{n-1} \varphi \circ f^k$. On cherche à retrouver le théorème de Von Neumann.

- 1. Montrer que $\bar{\varphi} \in L^2(\mu)$ et que $\|\bar{\varphi}\|_{L^2(\mu)} \leq \|\varphi\|_{L^2(\mu)}$.
- 2. Montrer que $S_n \varphi \to \bar{\varphi}$ dans $L^2(\mu)$.

Exercice 6. Explosion des sommes de Birkhoff et positivité de la moyenne

Soit (X, \mathscr{A}, μ) un espace de probabilités et $f: X \to X$ une application mesurable préservant μ . Soit $\varphi \in L^1(\mu)$. On suppose que pour μ presque tout x,

$$\lim_{n \to +\infty} \sum_{j=0}^{n} \varphi\left(f^{k}(x)\right) = +\infty.$$

On cherche à montrer que $\int_X \varphi \ \mathrm{d}\mu > 0.$

On note $T_n \varphi = \sum_{k=0}^{n-1} \varphi \circ f^k$ et pour tout $\varepsilon > 0$,

$$A_{\varepsilon} = \bigcap_{n>1} \Big\{ T_n \varphi \ge \varepsilon \Big\}, \quad B_{\varepsilon} = \bigcup_{k>0} f^{-k}(A_{\varepsilon}).$$

- 1. Montrer que $\int_X \varphi \ d\mu \ge 0$.
- 2. Soit $x \in A_{\varepsilon}$. Montrer que pour tout $n \geq 1$,

$$T_n \varphi(x) \ge \varepsilon \sum_{k=0}^{n-1} \chi_{A_\varepsilon} \left(f^k(x) \right).$$

- 3. Montrer que si $\int_X \varphi \ d\mu = 0$ alors $\mu(B_{\varepsilon}) = 0$.
- 4. Conclure.

Exercice 7. Applications uniformément quasi-périodiques sur N

Une application $\varphi: \mathbf{Z} \to \mathbf{R}$ sera dite uniformément quasi-périodique si pour tout $\varepsilon > 0$ il existe $L(\varepsilon) \in \mathbf{N}$ tel que

$$\forall n \in \mathbf{Z}, \ \exists \tau \in \{n+1, \dots, n+L(\varepsilon)\}, \ \forall k \in \mathbf{Z}, \quad |\varphi(k+\tau) - \varphi(k)| < \varepsilon.$$

- 1. Montrer que si φ est uniformément quasi-périodique, elle est bornée.
- 2. Montrer que pour tout $\varepsilon > 0$, il existe $\rho \ge 1$ tel que

$$\frac{1}{\rho} \left| \sum_{j=n\rho}^{n(\rho+1)} \varphi(j) - \sum_{j=1}^{\rho} \varphi(j) \right| < 2\varepsilon, \quad n \ge 1.$$

- 3. Montrer que $\frac{1}{n}\sum_{j=1}^{n}\varphi(j)$ converge quand $n\to+\infty$.
- 4. Montrer plus généralement que la limite

$$\lim_{n} \frac{1}{n} \sum_{j=1}^{n} \varphi(x+j)$$

existe pour tout $x \in \mathbf{Z}$ et est indépendante de x.