## EECS 455: Problem Set 4 **Submit via Gradescope via link on Canvas**

Due: Wednesday, September 29, 2021, 11pm.

1. A binary communication system transmits one of two equally likely signals  $s_0(t)$  and  $s_1(t)$  of duration T given by

$$s_i(t) = \sqrt{2P}(-1)^i \cos(2\pi f_c t) p_T(t), \quad i = 0, 1.$$

The noise in the system is white Gaussian noise with power spectral density  $N_0/2$ . The receiver shown in Figure 1 is used to demodulate the signal. The filter impulse response is a rectangular pulse,  $h(t) = p_T(t)$ . However, as shown, the phase of the received signal is not know completely accurately. In fact, there is a discrepancy of  $\theta$  radians between the received signal (in the absence of noise) and the local reference signal. Determine the error probability at the output of the demodulator as a function of  $\theta$ . (Assume  $2\pi f_c T = 2\pi n$  for some integer n or  $f_c T \gg 1$ . That is, ignore double frequency terms).



Figure 1: Receiver with Phase Offset.

2. A transmitter uses one of four equally likely signals to convey two bits of information. The signals are  $s_0(t), s_1(t), s_2(t)$ , and  $s_3(t)$ . The following table indicates the mapping between information bits and signals.

| Information bits | Signals  |
|------------------|----------|
| 00               | $s_0(t)$ |
| 01               | $s_1(t)$ |
| 11               | $s_2(t)$ |
| 10               | $s_3(t)$ |

The signals are received in the presence of white Gaussian noise with power spectral density  $N_0/2$ . The receiver consist of a filter, a sampler and a threshold device. The sampled output is denoted by Z(T). The threshold device uses the following table to make a decision.

| Z(T) > 2      | decide $s_0(t)$ transmitted |
|---------------|-----------------------------|
| 0 < Z(T) < 2  | decide $s_1(t)$ transmitted |
| -2 < Z(T) < 0 | decide $s_2(t)$ transmitted |
| Z(T) < -2     | decide $s_3(t)$ transmitted |

It is known that the output of the filter due to the signals alone at the sampling time is

$$\hat{s}_0(T) = +3$$
  
 $\hat{s}_1(T) = +1$   
 $\hat{s}_2(T) = -1$   
 $\hat{s}_3(T) = -3$ 

It is also known that the variance of the output due to noise alone is  $\sigma^2 = 4$ .

- (a) Determine the probability of error given signal  $s_i(t)$  is transmitted for i = 0, 1, 2, 3. (Express your answers in terms of the Q function).
- (b) Determine the probability that the receiver makes an error in the first bit given the first bit is 0. (The first bit being 0 means either signal  $s_0(t)$  was transmitted or  $s_1(t)$  was transmitted). Hint: Let  $b_0$  represent the first bit. Let  $\hat{b}_0$  represent the decision on the first bit. The probability of error for the first bit is then  $P\{\hat{b}_0 = 1 | b_0 = 0\}$ .
- 3. Show that the raised cosine pulse shape satisfies the Nyquist criteria for zero intersymbol interference. That is, show if

$$H(f) = \begin{cases} T, & |f| < \frac{1-\alpha}{2T} \\ \frac{T}{2} \left\{ 1 + \cos(\frac{\pi T}{\alpha} [|f| - \frac{(1-\alpha)}{2T}]) \right\}, & \frac{1-\alpha}{2T} < |f| < \frac{1+\alpha}{2T} \\ 0, & |f| > \frac{1+\alpha}{2T} \end{cases}$$

then

$$H(f) + H(f - 1/T) + H(f + 1/T) = T$$
, for  $-1/(2T) < f < 1/(2T)$ .

4. A binary communications system operates over an AWGN channel with power spectral density  $N_0/2$ . The transmitted signals are given by

 $s_0(t) = A p_{T/2}(t) - A p_{T/2}(t - T/2)$ 

$$S_{1}(t) = 0$$

$$A \qquad \qquad S_{1}(t)$$

$$T/2 \qquad T \qquad t \qquad T/2 \qquad T \qquad t$$

$$-A \qquad \qquad T/2 \qquad T \qquad t$$



Figure 2: Receiver Structure

The receiver has the following structure.

- (a) Give an expression (in terms of A, T,  $N_0$ , and Q(x)) for the minimum average error probability when the two signals are transmitted with equal probabilities (i.e.  $\pi_0 = \pi_1$ ).
- (b) What is the optimum filter for minimizing the error probability and the optimum threshold?
- (c) Assume that the optimum filter h(t) and the optimum threshold is used for the signals above (i.e. the answer to part (b)) but the signal  $s_0(t)$  is actually given by

$$s_0(t) = cAp_{T/2}(t) - cAp_{T/2}(t - T/2)$$

instead of the one given above while  $s_1(t)$  is the same where c > 0. Give an expression (in terms of c, A, T,  $N_0$  and  $\Phi$  or Q) for the average error probability if  $\pi_0 = \pi_1$ .

5. Consider a binary communication system that transmits one of two signal  $s_0(t)$  and  $s_1(t)$  over an additive white Gaussian noise channel (power spectral density  $N_0/2$ ) where

$$s_0(t) = A_0 p_{T/2}(t), \quad s_1(t) = A_1 p_{T/2}(t - T/2);$$

that is  $s_0(t)$  is a pulse of amplitude  $A_0$  from 0 to T/2 and  $s_1(t)$  is a pulse of amplitude  $A_1$  from T/2 to T as shown below.



The received signal, r(t), is the transmitted signal with additive white Gaussian noise. The receiver shown below consist of a filter h(t) which is sampled at time T and a threshold device.



(a) If  $h_R(t) = -p_{T/2}(t) + p_{T/2}(t - T/2)$  shown below, find the output of the filter  $\hat{s}_0(T)$  due to signal  $s_0(t)$  at time T and the output of the filter  $\hat{s}_1(T)$  due to signal  $s_1(t)$  at time T



- (b) Find the threshold  $\gamma$  that will minimize the average of the error probabilities  $P_{e,0}$  and  $P_{e,1}$  for the given signals and filter. Assume  $\pi_0 = \pi_1$ .
- (c) Find the error average error probability  $\bar{P}_e = \pi_0 P_{e,0} + \pi_1 P_{e,1}$  for the threshold found in the previous part. Assume  $\pi_0 = \pi_1$ .
- (d) Find the matched filter for the same signals and find the corresponding threshold that minimizes  $\bar{P}_e$ . Assume  $\pi_0 = \pi_1$ .
- (e) Find  $\bar{P}_e$  for the matched filter with the optimum threshold. Assume  $\pi_0 = \pi_1$ .