Enrichment course in Biology

1. Cellular organization

Dr. Yeung Man Nga, Mandy

Rm 4-23, School of Nursing

Tel:28192684

Email: mandyymn@hku.hk

Dr. Yick Pang Ching, Wilson Rm L1-43, School of Biomedical Sciences,

Tel: 39179434

Email: ypching@hku.hk

Learning objectives

What are the major characteristics of cell?

How a cell functions?

 What are the structures and functions of the cell organelles?

Cells are the basic functional units of lives...

- building blocks of muticellular organisms
 - cell → tissue → organs → organsystems
 → whole organism
- able to perform vital physiological processes to maintain its life
- combined and coordinated action of different cells
 - = function of tissue, organ, organ system and the organism

Diversity of cells in human body

All cells in the body comes from a fertilized egg

→ become **embryonic stem cell** that give rise to all types of cells

Properties of stem cells

- 1. self-renewal (i.e. divide to make more stem cells)
- 2. able to give rise to different cell types (pluripotent)
 - * given the right condition/stimulation

Cellular diversity

- 1. every cell in the body have the same genetic composition (DNA)
 - * except in lymphocytes (a kind of white blood cells for specific immunity)
- 2. human has ~ 20000 genes, each gene makes 1 protein
- 3. different types of cells make different combinations of protein
 - → different cells performs different functions

Plasma membrane

- 1. defines cell boundary
- 2. separates intracellular substances and extracellular substances
- 3. phospholipid bilayer interspersed with cholesterol
- 4. fluid mosaic model: proteins float and drift across the membrane freely (like iceberg floating in the sea)

Plasma membrane – fluid mosaic model

Functions of plasma membrane

Depends on the proteins present in the membrane

- 1. Transporters to control entry and exit of substances
 - carrier proteins, channels
- 2. Anchoring proteins allow cell attachment (to another cell/extracellular matrix)
- 3. Receptor proteins response to chemical signals (e.g. hormone)
- 4. Enzymes e.g. on intestinal cells for digestion of food
- 5. Recognition proteins glycoproteins (proteins with carbohydrate chains attached) (e.g. antigens of ABO blood group)

Transport across plasma membrane

- Diffusion
 - Simple diffusion
 - Facilitated diffusion
- Osmosis
- Active transport
- Endocytosis and pinocytosis

Diffusion

High concentration

| Net movement of molecules | Low concentration |
| Given time |
| Equilibrium |

Diffusion across plasma membrane

Simple diffusion across lipid bilayer

Biological membrane is **selectively permeable**

- not all substances are allowed to pass

What can diffuse through the lipid bilayer?

- small molecules
- nonpolar molecules
- uncharged particles
- e.g. O₂, CO₂

Passive

- No energy needed

Factors affecting rates of diffusion:

- 1. Steepness of the concentration gradient
- 2. Temperature
- 3. Size/mass of the molecule
- 4. Surface area
- 5. Diffusion distance

Facilitated diffusion

- larger molecules
- polar molecules, e.g. glucose
- charged molecules, e.g. ions

Most of these transporter proteins are specific

Passive

<u>Osmosis = diffusion of water molecules</u>

Importance of osmosis

Hypertonic solution = higher solute concentration outside of the cell **Iso**tonic solution = same solute concentration

Hypotonic solution = lower solute concentration outside of the cell

Hypertonic Isotonic Hypotonic

water water water water

Active transport

Transport of substances against concentration gradient

i.e. low conc. ----> high conc.

- * Require energy (from ATP → ADP)
- Unidirectional → prevent leakage

- -e.g. Na⁺ / K⁺ ATPase
 - remove Na⁺ from cell
 - transport K+ into cell

Endocytosis

Active process that requires energy

Nucleus

- double membrane (nuclear envelope)
- nuclear pores
 - for transport of protein and RNA
- nucleoplasm (nuclear lamina)
 - A network of fine filament that provides support to the nucleus
- nucleolus
 - ribosomal RNA synthesis

DNA in nucleus

- 1. Chromatin
 - a. euchromatin
 - stained lightly in EM
 - contains active genes
 - b. heterochromatin
 - stained darkly in EM
 - contains inactive genes
- 2. Chromosome
 - condensed chromatin during mitosis

Cytoplasm

1. Cytosol

- fluid that is contained within the plasma membrane
- contains various soluble substances
 - proteins
 - ions (intracellular [K+] is higher)
 - nutrients
 - wastes

2. Organelles

suspended in the cytoplasm

different organelles have different functions

Lysosome: 6 Golgi complex:

3. Cytoskeleton

structural support, movement, intracellular transport

Endoplasmic reticulum (ER)

• A network of membranes that form hollow tubes, flattened sheets and chambers called <u>cisternae</u>

 Continuous with the outer membrane of th∈ nucleus

Smooth ER (sER)

- no ribosome
- site of carbohydrate and lipid synthesis (e.g. adipocytes)
- site of detoxification (e.g. liver cells)

Rough RE (rER)

- <u>ribosome</u> attached for <u>synthesis of protein</u> (e.g. hormones, enzymes)
- form vesicles to transport proteins to Golgi apparatus

Nucleolus Cytoplasm Nucleus DNA (chromatin) Nuclear pore ribosomal subunit Ribosomal proteins from cytoplasm

Ribosomes

- sites of protein synthesis
- made of protein and ribosomal RNA (rRNA)
- composed of a large and a small subunit
- free in cytoplasm or attached to rER

Golgi apparatus

- Stack of flat membranous discs called <u>cisternae</u>
- Cis face receives and fuses with vesicles from rER
- Protein transported across the cisternae and packaged into vesicles for export or to form lysosomes at the trans face
- During transport, the <u>proteins</u> are modified (e.g. addition of carbohydrate or lipids)

Functions of Golgi apparatus

- 1. Modify and packaging of protein for export
- 2. Renew and modify the plasma membrane
- 3. Formation of lysosomes

Protein synthesis

- 1. Transcription occurs in nucleus to synthesize mRNA
- 2. mRNA pass through nuclear pore and gets into the cytoplasm
- 3. mRNA binds to ribosomes on the rER and translation begins
- 4. The polypeptide produced is packaged into transport vesicle
- 5. The transport vesicle fuses with Golgi apparatus where protein is modified
- 6. The modified protein is then packaged into secretory vesicles for secretion

<u>Lysosome</u>

- from Golgi apparatus
- contains <u>digestive enzymes</u> in <u>acidic</u> environment
- fuses with endocytosed/phagocytosed material for degradation
- fuses with old damaged organelles for destruction
- provides an isolated environment for destruction of unwanted materials

Mitochondrion

- oblong shaped organelle
- double membrane
 - outer membrane surrounds the organelle
 - inner membrane folds into structures called **cristae** to increase surface area
- matrix contains enzymes of the TCA cycle to breakdown sugars to produce energy (ATP)
- inner membrane contains protein complexes of the electron transport chain for generation of energy (ATP)

- mitochondrial DNA
 - from mother

Function of mitochondrion

- produce energy through aerobic respiration

Cytoskeleton

- microfilaments
- intermediate filaments
- microtubules

Cytoskeleton (skeleton of the cells)

- Microfilament (e.g. actin)
 - thinnest
 - mostly found in the periphery
 - roles
 - Microvilli
 - Stress fibers for cell attachment
 - Filipodia and lamellidopodia for cell movement
 - Cleavage of a dividing cell into daughter cells (cytokinesis)
 - Interact with myosin for contraction (e.g. muscle cells)

The following movie shows a moving cells with Lamellipodia and filopodia

Cytoskeleton (skeleton of the cells)

- Microfilament (e.g. <u>actin</u>)
 - thinnest
 - mostly found in the periphery
 - roles
 - Microvilli
 - Stress fibers for cell attachment
 - Filipodia and lamellidopodia for cell movement
 - Cleavage of a dividing cell into daughter cells (cytokinesis)
 - Interact with myosin for contraction (e.g. muscle cells)

- Intermediate filament (e.g. keratin)
 - provide structural support for cells to withstand mechanical stress

Microtubule

- hollow tubes built from tubulin
- roles
 - Cilia
 - Centrioles
 - Spindle fibers in mitosis
 - Transport of organelles and vesicles

Prokaryotes and Eukaryotes

There are 2 types of cells

- 1. Prokaryotic cell
 - : small and simple
 - : e.g. bacteria
- 2. Eukaryotic cell
 - : much larger and more complex
 - : e.g. yeast, plant cell, animal cell

Animal (Eukaryotic) Cell

Comparisons of the 2 types of cells

	Prokaryotes	Eukaryotes
Cell size	Smaller (0.5 – 2 μm)	Larger (2 – 100 μm)
Structural complexity	Simpler	More complex
Presence of cell wall?	Yes	Not in animal cell
Presence of cell membrane?	Yes	Yes
Presence of membrane - bounded organelles?	No	Yes
Presence of nucleus	No	Yes
DNA - number	one	> one (46 in a human cell)
- shape - location	circular cytoplasm	linear nucleus

Suggested reading

Martini, F. H., Nath, J. L., & Bartholomew, E.F. (2012). Fundamentals of anatomy and physiology. (9th Ed.). San Francisco: Pearson/Benjamin Cummings (Chapter 3, p63-80 & p85-96)

Fox, S. I. (2011). *Human Physiology.* (12th Ed.) New York: McGraw-Hill (Chapter 3.1 - 3.2, Chapter 6.1 to 6.3)

Silverthron, D. U. (2013). *Human Physiology: an integrated approach*. (6th Ed.). Upper Saddle River, N.J.; Harlow: Pearson Education. (Chapter 3, p65-76 & Chapter 5, p129-160)

You can also use any physiology textbook that you can find the Medical library. Look for the chapter dedicated for cellular structure and function.