
PySpark Resource-**Availability Testing**

Emerson Kiefer, Matthew Spahl, Owen Tibby, Kevin Martell

WHO ARE WE?

+

Emerson Kiefer

Assisted with testing, validation and explaining the experimental results.
Created design diagrams and organized the presentation.

Matthew Spahl

Coded PySpark random forest program, wrote instructions for running code, ran experiments/tests on VM, documented test results.

Owen Tibby

Sourced dataset,
performed data
cleansing/
preprocessing,
assisted with logic
for ML model, and
designed visuals.

Kevin Martell

Assisted with cloud services research, narrowed the final project, ran pyspark random forest code in colab for testing purposes

1: Design Description

Presented by Emerson

(Icon made by Freepik from www.flaticon.com)

3

sts 3: Experimental Results

4: Goals

5: Possible Improvements

Dataset

5: Possible Improvements

Hyperparameters

* Experiments/ Tests

Presented by Matt

(Icon made by Freepik from www.flaticon.com)

5: Possible Improvements

Trained and tested random forests by running program in virtual machine (VirtualBox and Ubuntu 20.04.5, validated on second Ubuntu VM)

Max tree depth of 7, and varied:

- RAM available to virtual machine (2 GB, 4 GB, 6 GB)
- **CPU cores** available to virtual machine (2 cores, 4 cores, 6 cores)
- **Number of trees** in the random forest (10, 50, 100, 150, 200)

Averaged over 3 trials each Recorded total time elapsed: preprocessing time + training/predicting time

Experiment/Test Observations

- More than 200 trees with 6 cores -> program runs out of memory
- Pyspark random forest regressor likely uses parallelism (reference: https://spark.apache.org/docs/2.2.0/mllib-ensembles.html)
- More cores -> more data processed at once -> more memory / RAM needed
- Cache memory warnings (More warnings when more trees, disk reads slow training)

3: Experimental Results

Presented by Owen

(Icon made by Freepik from www.flaticon.com)

Fig. 3.1

- ↑ RAM from 2GB to 4GB
 ↑ preprocessing
 performance
- ↑ RAM to 6GB ≠ enhanced performance.
- More cores → faster
 runtime, but advantages ↓
 as there are likely costs
 associated with
 non-parallelizable
 preprocessing tasks.

Training Time by No. of Trees, Ram (GB) and # of Cores

6 Cores

Insufficient

Fig. 3.2

Fig. 3.3

- As training took up the larger share of runtime, the shape of the total runtime graph (Figure 3.3) closely resembled the training time graph (Figure 3.2).

3: Experimental Results

4: Goals

5: Possible Improvements

Fig. 3.5

- With RAM fixed at 6GB, Figure 3.5 illustrates general RMSE convergence as more trees are added.
- Accuracy

significantly when using > 100 trees.

4: Goals

Presented by Kevin

Would there be a linear runtime increase with respect to the number of trees in the forest?

Runtime Experiments

Virtual Machine Configuration Random forest Parameters Testing scenarios

Visualize Performance

Created graphs to illustrate trends in performance based on the VM configuration and the model's hyperparameters

Explain Results

The parallelism introduced by using more cores increases memory requirements, impacting performance.

RAM Impact

CPU Cores Impact

Forest size Impact

5: Possible Improvements

Presented by Kevin

(Icon made by Freepik from www.flatcon.com)

GPU Tests

Compare tradeoffs between GPU parallelization benefits and CPU optimized libraries

Memory Warning Analysis

Use PySpark's logging system to evaluate the correlation between cache memory warnings and runtime

Cloud Tests

Compare performance in a Cloud environment. Consider the impact of network latency and server performance

Tree Depth Experiments

Run all experiments again with different settings for tree depth to see how scaling of runtime changes

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, infographics & images by **Freepik**, and illustrations by **Storyset**

Please keep this slide for attribution

