Drivabilit Drivabilit d'un point MPSI 2

Soit I un intervalle rel non rduit à un point. Soit $f: I \to \mathbb{R}$ une fonction numrique.

1 Dfinition

Soit x_0 un lment de I.

On pose $\phi: I \setminus \{x_0\} \longrightarrow \mathbb{R}$

$$x \longmapsto \frac{f(x) - f(x_0)}{x - x_0}$$

Définition 1.0.1

• On dit que f est drivable en x_0 si $\phi(x)$ admet une limite finie note L lorsque x tend vers x_0 sur $i \setminus \{x_0\}$:

On note
$$f'(x) = L = \lim_{\substack{x \to x_0 \\ x \in I \setminus \{x_0\}}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

Cette limite, quand elle existe, s'appelle le nombre driv de f en x_0 .

• On dit que f est drivable à gauche en x_0 si $\phi(x)$ admet une limite finie à gauche, L_a :

On note
$$f'_g(x) = L_g = \lim_{\substack{x \to x_0 \\ x < x_0}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$

• On dit que f est drivable à droite en x_0 si $\phi(x)$ admet une limite finie à droite, L_d :

On note
$$f'_d(x) = L_d = \lim_{\substack{x \to x_0 \\ x > x_0}} \left(\frac{f(x) - f(x_0)}{x - x_0} \right)$$