	%matplotlib inline Problem a)				
	Using the training data in TrainingSamplesDCT 8.mat compute the histogram estimate of the prior $P_Y(i)$, $i \in \{cheetah, grass\}$. Using the results of problem 2 compute the maximum likelihood estimate for the prior probabilities. Compare the result with the estimates that you obtained last week. If they are the same, interpret what you did last week. If they are different, explain the differences. Answer for problem a)				
	$\pi_i = \frac{C_i}{n}$ $\pi_1(Cheetah) = \frac{C_1}{n} = \frac{250}{250+1053} = 0.1918649270913277$ $\pi_2(Grass) = \frac{C_i}{n} = \frac{1053}{250+1053} = 0.8081350729086723$ Last week, we calculate the prior based on the frequency of the occurancy of each class in the training set. This is the same as the				
In [2]:	<pre>maximum likelihood estimate. Code Answers form HW1 data_dir = os.path.join(os.getcwd(), 'data') plot_dir = os.path.join(os.getcwd(), 'plots') data_dir = pathlib.Path(data_dir) old_mat_fname = data_dir / "TrainingSamplesDCT_8.mat"</pre>				
In [3]:	<pre>load_and_compute_prior(old_mat_fname) The prior P_Y_cheetah from HW1: 0.1918649270913277 The prior P_Y_grass from HW1: 0.8081350729086723 Answers from HW2 a) mat_contents = sio.loadmat(data_dir / "TrainingSamplesDCT_8_new.mat")</pre>				
In [4]:	TrainsampleDCT_BG = mat_contents["TrainsampleDCT_BG"] TrainsampleDCT_FG = mat_contents["TrainsampleDCT_FG"] m_FG, n_FG = TrainsampleDCT_FG.shape m_BG, n_BG = TrainsampleDCT_BG.shape # Using the results of problem 2 compute the maximum likelihood estimate for the prior probabilities. P_FG = m_FG / (m_FG + m_BG) P_BG = m_BG / (m_FG + m_BG) assert P FG + P BG == 1				
	<pre>assert P_FG + P_BG == 1 print(f"\nThe prior P_Y_cheetah: {P_FG}") print(f"The prior P_Y_grass: {P_BG}") The prior P_Y_cheetah: 0.1918649270913277 The prior P_Y_grass: 0.8081350729086723</pre> Problem b)				
	Using the training data in TrainingSamplesDCT8. mat , $compute$ the $maximum$ likelihood estimates for the parameters of the class $conditional$ densities $SP\{X Y\}$ (x cheetah) $andP_{\{X Y\}}(x grass)$ \$ under the Gaussian assumption. Denoting by $X = \{X_1, \dots, X_64\}$ the vector of DCT coefficients, create 64 plots with the marginal densities for the two classes $P_{X_k Y}(x_k cheetah)$ and $P_{X_k Y}(x_k grass)$, $k=1,\dots,64$ on each. Select, by visual inspection, what you think are the best 8 features for classification purposes and what you think are the worst 8 features. Hand in the plots of the marginal densities for the best-8 and worst-8 features In each subplot indicate the feature that it refers to				
In [5].	The index of best 8 features are $\{1, 18, 25, 27, 32, 33, 40, 41\}$. The index of worst 8 features are $\{3, 4, 5, 59, 60, 62, 63, 64\}$. Note: The full 64 features plots are included in the appendix of the report. Code Answers from HW2 b)				
In [5]:	<pre>mu_FG = np.mean(TrainsampleDCT_FG, axis=0).reshape(-1, 1) mu_BG = np.mean(TrainsampleDCT_BG, axis=0).reshape(-1, 1) # std sigma std_FG = np.std(TrainsampleDCT_FG, axis=0) std_BG = np.std(TrainsampleDCT_BG, axis=0) # covariance Sigma cov_FG, cov_BG = np.cov(TrainsampleDCT_FG.T), np.cov(TrainsampleDCT_BG.T)</pre>				
In [6]:	<pre>def plot_8(data, title: str, size) -> None: """ Plot best8 or worst8 figures. """ fig = plt.figure(title, figsize=(size, size)) for plt_idx, j in enumerate(data): # since j start from 1, we need to subtract 1 i = j - 1 x_FG = np.linspace(-std_FG[i] * 3 + mu_FG[i], std_FG[i] * 3 + mu_FG[i]) y FG = univariate gaussian normpdf(x FG, mu FG[i], std FG[i])</pre>				
	<pre>x_BG = np.linspace(-std_BG[i] * 3 + mu_BG[i], std_BG[i] * 3 + mu_BG[i]) y_BG = univariate_gaussian_normpdf(x_BG, mu_BG[i], std_BG[i]) plt.subplot(2, 4, plt_idx + 1).set_title(f"Feature {j}") plt.plot(x_FG, y_FG, "-", label="Cheetah") plt.plot(x_BG, y_BG, "", label="Grass") plt.legend(loc="best") fig.suptitle(title) plt.show()</pre>				
In [7]:	plot_8 (best_8, "Best 8 Features", size=16) Best 8 Features Best 8 Features				
	Feature 1 Feature 18 Feature 25 Feature 27				
	0.4 -				
	Feature 32 Feature 33 Feature 40 Feature 41 Cheetah Grass Grass Grass Grass Feature 40 Feature 41 Cheetah Grass				
	25 - 25 - 30 - 25 - 25 - 25 - 25 - 20 - 25 - 20 - 20				
	10 - 15 - 10 - 10 - 10 - 5 - 5 - 5 - 5 - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7				
In [8]:	-0.1 0.0 0.1 -0.10 -0.05 0.00 0.05 0.10 -0.10 -0.05 0.00 0.05 -0.05 0.00 0.05				
	Feature 3 Feature 4 Feature 5 Feature 59 Cheetah Grass 4- Grass 120 - Grass 1				
	15 - 3 - 10 - 2 - 60 - 40 - 40 -				
	0.5				
	Feature 60 Feature 62 Feature 63 Feature 64 120 - Cheetah Grass 140				
	60 - 80 - 80 - 80 - 80 - 60 - 60 - 60 -				
	Problem c)				
	 i) the 64-dimensional Gaussians, and ii) the 8-dimensional Gaussians associated with the best 8 features. For the two cases, plot the classification masks and compute the probability of error by comparing with cheetah mask.bmp. Can you explain the results? 				
	Answers for problem c) Bayesian decision rule $i^*(x) = \backslash {\rm argmax}_i g_i(x) \\ i^*(x) = \backslash {\rm argmax}_i \log g_i(x)$				
	$g_i(x) = -rac{1}{2}(x-\mu_i)^T\Sigma_i^{-1}(x-\mu_i) - rac{d}{2}\log(2\pi) - rac{1}{2}\log(\det(\Sigma_i)) + \log P_Y(i)$ dropping the constant term, we get $\log g_i(x) = (x-\mu_i)^T\Sigma_i^{-1}(x-\mu_i) + \log \Sigma_i - 2log P_Y(i)$				
	Decision boundary interpretation $g_i(x) = x^T W_i x + w_i^T x + w_{i0}$ Where $W_i = \Sigma_i^{-1}$				
In [9]:	$w_i = -2\Sigma_i^{-1}\mu_i$ $w_{i0} = \mu_i^T \Sigma_i^{-1} \mu_i + \log \det(\Sigma_i) - 2\log P_Y(i)$ #) 64-dimensional feature vector img = np.asarray(Image.open(str(data dir / "cheetah.bmp"), "r"))				
	<pre>img = im2double(img) # cheetah_mask ground_truth = np.asarray(Image.open(str(data_dir / "cheetah_mask.bmp"), "r")) plt.imshow(ground_truth) plt.title("Ground_Truth") plt.show() # placeholder processed img = np.zeros([img.shape[0] - 8, img.shape[1] - 8], dtype=bool)</pre>				
	<pre>processed_img = np.zeros([img.snape[0] - 8, img.snape[1] - 8], dtype=bool) # zig-zag pattern zigzag = np.loadtxt(data_dir / "Zig-Zag Pattern.txt", dtype=np.int64) # log prior logp_FG = np.log(P_FG) logp_BG = np.log(P_BG) # log determinant of covariance matrix logdet FG = np.log(np.linalg.det(cov FG))</pre>				
	<pre>logdet_BG = np.log(np.linalg.det(cov_BG)) W_FG = np.linalg.inv(cov_FG) W_BG = np.linalg.inv(cov_BG) w_FG = -2 * W_FG @ mu_FG w_BG = -2 * W_BG @ mu_BG w_DFG = mu_FG.T @ W_FG @ mu_FG + logdet_FG - 2 * logp_FG w0_BG = mu_BG.T @ W_BG @ mu_BG + logdet_BG - 2 * logp_BG</pre>				
	Ground Truth 50 -				
	200 - 250 -				
In [10]:	<pre># Feature vector 64 x 1 x_64 = np.zeros((64, 1), dtype=np.float64) for i in (range(processed_img.shape[0])): for j in range(processed_img.shape[1]): # 8 x 8 block block = img[i : i + 8, j : j + 8] # DCT transform on the block block_DCT = dct2(block) # zigzag pattern mapping</pre>				
	<pre>for k in range(block_DCT.shape[0]): for p in range(block_DCT.shape[1]): loc = zigzag[k, p] x_64[loc, :] = block_DCT[k, p] if g(x_64, W_FG, w_FG, w0_FG) >= g(x_64, W_BG, w_BG, w0_BG): processed_img[i, j] = 0 else: processed_img[i, j] = 1</pre>				
In [11]:	colormap_gray255 (processed_img, title="Grayscale Segmented Image with 64D features") _ = calculate_error (processed_img, ground_truth) Grayscale Segmented Image with 64D features				
	50 -				
	150				
	200 -				
In [12]:	# best_8 should minus one to match the index in python				
	<pre>best_8 = np.array(best_8, dtype=int) - 1 # mean mu mu_FG_8 = np.mean(TrainsampleDCT_FG[:, best_8], axis=0).reshape(-1, 1) mu_BG_8 = np.mean(TrainsampleDCT_BG[:, best_8], axis=0).reshape(-1, 1) # covariance Sigma cov_FG_8, cov_BG_8 = np.cov(TrainsampleDCT_FG[:, best_8].T), np.cov(TrainsampleDCT_BG[:, best_8].T) logdet_FG_8 = np.log(np.linalg.det(cov_FG_8))</pre>				
	<pre>logdet_BG_8 = np.log(np.linalg.det(cov_BG_8)) W_FG_8 = np.linalg.inv(cov_FG_8) W_BG_8 = np.linalg.inv(cov_BG_8) w_FG_8 = -2 * W_FG_8 @ mu_FG_8 w_BG_8 = -2 * W_BG_8 @ mu_BG_8 w_BG_8 = -2 * W_BG_8 @ mu_BG_8 w0_FG_8 = mu_FG_8.T @ W_FG_8 @ mu_FG_8 + logdet_FG_8 - 2 * logp_FG w0_BG_8 = mu_BG_8.T @ W_BG_8 @ mu_BG_8 + logdet_BG_8 - 2 * logp_BG</pre>				
	<pre># Feature vector 64 x 1 palceholder for selecting the best 8 features x_64 = np.zeros((64, 1), dtype=np.float64) for i in (range(processed_img.shape[0])): for j in range(processed_img.shape[1]): # 8 x 8 block block = img[i : i + 8, j : j + 8] # DCT transform on the block block_DCT = dct2(block) # zigzag pattern mapping for k in range(block_DCT_shape[0]);</pre>				
	<pre>for k in range(block_DCT.shape[0]): for p in range(block_DCT.shape[1]): loc = zigzag[k, p] x_64[loc, :] = block_DCT[k, p] x_8 = x_64[best_8, :] if g(x_8, W_FG_8, w_FG_8, w0_FG_8) > g(x_8, W_BG_8, w_BG_8, w0_BG_8): processed_img[i, j] = 0 else: processed_img[i, j] = 1</pre>				
In 「					
. [13]:	<pre>colormap_gray255(processed_img, title="Grayscale Segmented Image with best 8D features") _ = calculate_error(processed_img, ground_truth) Grayscale Segmented Image with best 8D features 0</pre>				
. [13]:	_ = calculate_error(processed_img, ground_truth) Grayscale Segmented Image with best 8D features				
. [13]:	Grayscale Segmented Image with best 8D features Grayscale Segmented Image with best 8D features				
. [13]:	Grayscale Segmented Image with best 8D features Grayscale Segmented Image with best 8D features 100				
	Grayscale Segmented Image with best 8D features Grayscale Segmented Image with best 8D features 100 100 100 150 100 150 200 250 The probability of error: 0.0585808325864573 EC error: 0.021927249126827714 BC error is: 0.03665189345952962 # 8 dimensional feature vector # worest 8 should minus one to match the index in python worst 8 e mp.array(worst 8, dtype=int) - 1 # mean mu				
	Grayscale Segmented Image with best 8D features Grayscale Segmented Image with best 8D features The probability of error: 0.088308325864973 Fig error: 0.021927248126927714 BG error: 0.036353084352586 \$ 8 dimensional feature vector \$ swored 8 should with sender in system worst 8 should with sender in system worst 8 should without one to earth the index in system worst 8 should without one to earth the index in system worst 8 should without one to earth the system worst 8 should without one to earth the system worst 8 should without one to earth the system worst 8 should without one to earth the system worst 8 should without one to earth the system worst 8 should without one to earth the system in system worst 8 should without one to earth the system in system worst 8 should without one to earth the system in system worst 8 should without one to earth the system in system worst 8 should without one to earth the system in system worst 8 should be sho				
	### Control of the Co				
	The probability of error: 0.59800015800273 The error: 0.001927290190390771 Marcor: 0.001927290190390771 Service: 0.00192729019039077 Service: 0.00192729019039077 Service: 0.00192729019039077 Service: 0.00192729019039079 Service: 0.00192729019039079079 Service: 0.00192729019039079079 Service: 0.00192729019039079079079079079079079079079079079079079				
In [14]:	Craycale Segmented image with best 80 features				
In [14]:	Graycale Segmented image with best 8D features Graycale Segmented image with best 8D features Observed the construction of viscos 2.000000000000000000000000000000000000				
In [13]:	Graycale Segmented Image with best 8D features Craycale Segmented Image with best 8D features On the proceedition of error: which appears to the process of the process o				
In [14]:	Compacile Segmented image with best 8D features Orapically Segmented image with best 8D features The process are on enter 1 (100 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 200 M 90 / 200 M) The process are one enter 1 (100 M 90 / 200 M 90 / 2				
In [14]:	Copyright Suppressed into proceed months and Districts of the Copyright Suppressed into the Copy				
In [14]:	Comparation Supported manage with best 80 features Comparation Supported Manage with supported Su				
In [14]:	Compared Engineetic National State Communication Communica				
In [14]:	Companies Companies Interpretation (1997) The property of the companies of the party of the companies of th				