

Fusion decay-heat benchmark for nuclear data validation

Mark Gilbert

United Kingdom Atomic Energy Authority

Ununbium

Introduction

- Validation & Verification (V&V) is an important part of the development and release of FISPACT-II
- A suite of automated validation benchmarks have been created to test new releases of both the FISPACT-II code and the nuclear data libraries
 - against international experimental databases
- Results are compiled into open access pdf reports (see fispact.ukaea.uk)
 - thousands of pages in total providing a near-complete coverage of the physics landscape for neutron interactions

FISPACT-II validation

Joan-Christophe Sublet

nuclear data libraries

Integro-Differential Verification and

Validation, FISPACT-II & TENDL-2017

UK Marris Energy Authority

UK Atomic Energy Authority

Michael Fleming

CCFE

UKAEA-CCFE RE(20)0 April 2020 UK Atomic Energy

Authority

Mark R. Gilbert Olga Vilkhivskaya Jean-Christophe Subles

Fusion decay heat validation,

ENDF/B-VIII.0, JEFF-3.3, EAF2010.

and IRDFF-II nuclear data libraries

UKASA (145900)
Holmany 2018
Michael Floming
Jana-Christophe Siablet

Validation of FISPACT-II Decay Heat and Inventory Predictions for Fission Events Maxwellian-Averaged Neutron-Induced Cross Sections for kT=1 keV to 100 keV, KADONIS, TENDL-2017,2014, ENDF-9/III.0, JEFF-3.3, JENDL-4.0u, and EAF-2010 nuclear data libraries

A.C.OP.JELOX

- V&V exercises with FISPACT-II focusing on TENDL
 - but also benchmarking ENDF/B-VIII.0, JEFF-3.3 (and others)
- decay heat validation against (Japan-FNS) fusion experiments
- integral & differential xs validation against EXFOR
- fission decay heat and criticality benchmarks
- astrophysics testing (KADoNiS)

Other validation efforts (1)

UK Atomic Energy Authority

- Fission decay heat
- Comparison of simulated fission pulse decay heat to carefully interpreted experimental data
- $\bullet\,$ e.g. ^{235}U thermal (0.0253 eV) pulse comparison

- total and β -generated decay heat
- simulated with latest ENDF/B, JEFF, and JENDL libraries
- Also included in exercise: ²³³U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ²³²Th. and ²³⁷Np

Other validation efforts (2)

- e.g. ⁵⁶Fe results:
- TENDL-2017 xs & comparison to KADoNiS of average xs at various temperatures for different libraries

- Maxwellian-averaged neutron xs comparison
- using KADoNiS astrophysics experimental database, which includes data for 357 nuclides at temperatures ranging from 5 keV (58 million K) to 100 keV (1.2 billion K)

Integro-differential V&V

Other validations (3)

- Comparison of cross section data against integral and differential data in the EXFOR database
- more than 400 reactions currently assessed this way (more could be added)

- e.g. 115 In(n, γ) differential data compared to TENDL-2017
- obvious complexity associated with three metastable states of ¹¹⁶In and potential for mis-attribution

Fusion decay heat benchmark

- Experiments performed at the Fusion Neutron Source (FNS) at JAEA in 1996-2000
- aimed at providing fusion-relevant decay-power data for important structural materials
- accurate experimental measurements with detailed records are ideal for simulation benchmarking

Experiment reports & papers: F. Maekawa M. Wada, Y. Ikeda et al. Tech. Rep. JAERI-Data/Code 98-024, JAERI-Data/Code 98-021, & JAERI 99-055. http://www.jaea.go.jp/jaeri/Maekawa et al., Fus. Eng. Des. 47 (2000) 377-388 & J. Nucl. Sci. Tech. 39 (2002) 990-993

Simulation paper: Gilbert, Sublet, Nuclear Fusion **59** (2019) 086045 Latest report: Gilbert, Vilkhivskaya, Sublet, UKAEA-CCFE-RE(20)04 (2020) available from fispact.ukaea.uk/documentation-2/reports/

The experiment

UK Atomic Energy Authority

- 2 mA deuteron beam onto a tritium target producing a fusion neutron spectrum with fluxes of $\sim 10^{10}$ n cm $^{-2}$ s $^{-1}$ at the sample location
- samples irradiated for 5 minutes or 7 hours (4 different experimental set-ups)
- for the short irradiations, a rapid rabbit extraction system was used to make the samples available for immediate measurement

The experiment

UK Atomic Energy Authority

- time-dependent decay heat of each sample was measured using a WEAS system
 - providing almost 100% detector efficiency
 - around 1 hour of recording for the 5-minute irradiations (starting from less than 1 minute after irradiation)
 - & up to a year of measurements from the 7-hour-irradiated samples

Z	Material	Form	Z	Material	Form
9	Fluorine	CF ₂	46	Palladium	Metallic Foil
11	Sodium	Na_2CO_3	47	Silver	Metallic Foil
12	Magnesium	MgO	48	Cadmium	Metallic Foil
13	Aluminium	Metallic Foil	49	Indium	Metallic Foil
14	Silicon	Metallic Powder	50	Tin	SnO_2
15	Phosphorus	P_3N_5	51	Antimony	Metallic Powder
16	Sulphur	Powder	52	Tellurium	TeO ₂
17	Chlorine	$C_2H_2CI_2$	53	lodine	IC ₆ H₄OH
19	Potassium	K_2CO_3	55	Caesium	Cs_2O_3
20	Calcium	CaO	56	Barium	$BaCO_3$
21	Scandium	Sc_2O_3	57	Lanthanum	La_2O_3
22	Titanium	Metallic Foil	58	Cerium	CeO_2
23	Vanadium	Metallic Foil	59	Praseodymium	Pr_6O_{11}
24	Chromium	Metallic Powder	60	Neodymium	Nd_2O_3
25	Manganese	Metallic Powder	62	Samarium	Sm_2O_3
26	Iron	Metallic Foil	63	Europium	Eu_2O_3
Alloy	SS304	Metallic Foil	64	Gadolinium	Gd_2O_3
Alloy	SS316	Metallic Foil	65	Terbium	Tb ₄ O ₇
27	Cobalt	Metallic Foil	66	Dysprosium	Dy_2O_3
Alloy	Inconel-600	Metallic Foil	67	Holmium	Ho_2O_3
28	Nickel	Metallic Foil	68	Erbium	Er_2O_3
Alloy	Nickel-chrome	Metallic Foil	69	Thulium	Tm_2O_3
29	Copper	Metallic Foil	70	Ytterbium	Yb_2O_3
30	Zinc	Metallic Foil	71	Lutetium	Lu ₂ O ₃
31	Gallium	Ga_2O_3	72	Hafnium	Metallic Powder
32	Germanium	GeO_2	73	Tantalum	Metallic Foil
33	Arsenic	As_2O_3	74	Tungsten	Metallic Foil
34	Selenium	Metallic Powder	75	Rhenium	Metallic Powder
35	Bromine	BrC ₆ H ₄ COOH	76	Osmium	Metallic Powder
37	Rubidium	Rb_2CO_3	77	Iridium	Metallic Powder
38	Strontium	SrCO ₃	78	Platinum	Metallic Foil
39	Yttrium	Y_2O_3	79	Gold	Metallic Foil
40	Zirconium	Metallic Foil	80	Mercury	HgO
41	Niobium	Metallic Foil	81	Thallium	TI ₂ O
42	Molybdenum	Metallic Foil	82	Lead	Metallic Foil
44	Ruthenium	Metallic Powder	83	Bismuth	Metallic Powder
45	Rhodium	Metallic Powder			

 mixture of metallic foils, powders, oxides, and alloys

Simulations

- Detailed experimental information (irradiation times, measurement times, material compositions, etc.) have been translated into a set of FISPACT-II input files
 - these can be rapidly repeated for different nuclear data libraries
- Latest version of exercise compares results from TENDL-2019, ENDF/B-VIII.0, JEFF-3.3, and EAF2010 neutron cross section libraries
 - in some cases it is also possible to produce a meaningful comparison with the IRDFF-II dosimetry file
- where available, the decay data file associated with each xs library is used (i.e. for JEFF and ENDF/B)
- otherwise the "dec_2012" decay database distributed with FISPACT-II is used
 applies to TENDL-2019
 - ▶ 3875 nuclides
 - a combination of data from JEFF-3.1.1, JEF-2.2 to produce the EAF2010 decay file, UK evaluations in UKPADD6.1-6.9, and supplemented from ENDF/B-VII
 - ▶ a new decay_2020 file has recently been prototyped & also tested against the FNS benchmark

Authority

Typical results and presentation

• 5 minute irradiation of pure iron

 experimental artefact likely cause of slight disagreement – otherwise simulation captures the profile well

Product	$T_{1/2}$	Pathways	Path %
Mn57	1.42m	Fe57(n,p)Mn57	99.5
Fe53	8.51m	Fe54(n,2n)Fe53	100.0
Mn56	2.58h	Fe56(n,p)Mn56	99.7

 decay heat curves from simulations with different libraries vs. experiment

- nuclide contribution breakdown for TENDL-2019 vs.
 experiment
- showing ⁵⁶Mn dominance

Typical results and presentation

- tabulated comparison against each experimental measurement
- ullet and tabulated characteristic E/C values for important radionuclides

Times	FNS EXP.	5 mins		NDL-2019		ENDF/B-VIII.0	EAF2010	JEFF-3.3	IRDFF-II
Min.	$\mu W/g$		$\mu W/g$		E/C	E/C	E/C	E/C	E/C
0.58	1.17E-01	+/-5%	1.22E-01	+/-28%	0.96	1.00	0.94	0.91	1.15
0.83	1.14E-01	+/-5%	1.19E - 01	+/-29%	0.96	1.00	0.94	0.91	1.13
1.08	1.12E-01	+/-5%	1.17E - 01	+/-29%	0.96	0.99	0.93	0.91	1.11
1.35	1.08E-01	+/-5%	1.15E - 01	+/-29%	0.94	0.98	0.92	0.90	1.08
1.60	1.07E-01	+/-5%	1.13E - 01	+/-29%	0.95	0.98	0.93	0.90	1.07
2.03	1.04E-01	+/-5%	1.10E - 01	+/-30%	0.95	0.97	0.92	0.90	1.04
2.63	1.02E-01	+/-5%	1.07E - 01	+/-30%	0.95	0.97	0.92	0.90	1.03
3.23	9.87 <i>E</i> - 02	+/-5%	1.04E - 01	+/-31%	0.94	0.96	0.92	0.90	1.00
4.10	9.58 <i>E</i> - 02	+/-5%	1.02E - 01	+/-31%	0.94	0.95	0.91	0.90	0.98
5.20	9.30 <i>E</i> -02	+/-5%	9.93E - 02	+/-32%	0.94	0.94	0.91	0.90	0.96
6.32	9.13E - 02	+/-5%	9.75E - 02	+/-32%	0.94	0.94	0.91	0.90	0.95
7.93	8.96 <i>E</i> - 02	+/-5%	9.56E - 02	+/-33%	0.94	0.94	0.91	0.90	0.95
9.98	8.73 <i>E</i> - 02	+/-5%	9.37E - 02	+/-33%	0.93	0.93	0.91	0.90	0.94
12.03	8.58 <i>E</i> - 02	+/-5%	9.22E - 02	+/-33%	0.93	0.93	0.91	0.91	0.93
15.10	8.41 <i>E</i> - 02	+/-5%	9.02E - 02	+/-34%	0.93	0.93	0.92	0.91	0.94
19.20	8.13 <i>E</i> - 02	+/-5%	8.79E - 02	+/-34%	0.93	0.93	0.91	0.91	0.93
23.32	7.94E-02	+/-5%	8.58E - 02	+/-34%	0.93	0.93	0.91	0.92	0.93
27.42	7.75 <i>E</i> - 02	+/-5%	8.39E - 02	+/-34%	0.92	0.92	0.91	0.92	0.92
34.53	7.47E-02	+/-5%	8.09E - 02	+/-34%	0.92	0.92	0.92	0.92	0.92
44.65	7.10 <i>E</i> - 02	+/-5%	7.71E - 02	+/-34%	0.92	0.92	0.91	0.92	0.92
54.75	6.77 <i>E</i> - 02	+/-5%	7.36E - 02	+/-34%	0.92	0.92	0.91	0.92	0.92
mean %	diff. from E				7	5	9	10	7
mean v	2				1.59	1.20	2.75	3.62	1.89

Product	$T_{1/2}$	E/C	%∆E	ΔC^{nuc}
Mn56	2.58h	0.96	5%	35%

UK Atomic

Energy Authority

- a good fit with all major data libraries despite the relative complexity
 - predictions are within a few % of the experiment at all decay times

FISPACT-II workshop | November 2020 | M. Gilbert

 numerous (minor) contributions but importance dominance of ⁵⁶Mn, ⁵⁷Ni, and ⁵⁸Co at different times

LIK Atomic

Energy

Authority

total

Fe55

Co60

Co57 Nb96

Mn54

Cr51

Tc99m

Co58m

Mo99

Co58

Ni57 Mn56

Exp

Multiple metastable importance

• 7 hour irradiation of pure tin

- TEND-2019 and EAF2010 produce a good match to the measured profile
 - but absolute decay heat values are not very close to the experiment
- JEFF-3.3 and ENDF/B-VIII.0 get the profile wrong

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3
mean % diff. from E	22	51	23	61
mean χ^2	2.29	25.28	2.21	33.51

UK Atomic Energy

Tin nuclide comparisons

- TENDL result shows importance of two metastable nuclides
 - ▶ ¹¹⁹mSn and ¹¹⁷mSn produced via (n,2n) reactions
- JEFF & ENDF/B include the (n,2n)s but only to ground-states

• total

* In113m

* Sn119m

Sn123

• In111

• Sn121

• Sn127m

Exp

16/33

FISPACT-II workshop | November 2020 | M. Gilbert

A case where TENDL is best

5 minute irradiation of pure palladium

- a complex case with many contributing nuclides
 - ▶ particularly metastables: ^{108m}Rh, ^{109m}Pd, and ^{106m}Rh
 - ▶ a mixture of (n,2n) and (n,p) reactions dominate
 - ► TENDL-2017 outperforms all others

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3
mean % diff. from E	12	66	23	32
mean χ^2	4.77	121.59	14.31	26.91

A case where TENDL is best

5 minute irradiation of pure palladium

Pd111

Rh107

Rh105m

Rh108m

Rh104 Pd109m Pd107m

- a complex case with many contributing nuclides
 - ▶ particularly metastables: ^{108m}Rh, ^{109m}Pd, and ^{106m}Rh
 - ▶ a mixture of (n,2n) and (n,p) reactions dominate
 - ► TENDL-2017 outperforms all others

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3
mean % diff. from E	12	66	23	32
mean χ^2	4.77	121.59	14.31	26.91

Time after irradiation [vears]

A case where JEFF-3.3 is best

UK Atomic Energy Authority

total

Na22 Na24 Exp

7 hour irradiation of sodium

- only JEFF-3.3 matches closely the experimental measurements
 - other libraries either under or over predict the production of ²²Na
 - ► this could be a coincidence due to an experimental artefact especially since the IRDFF dosimetry file underpredicts

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3	IRDFF-II
mean % diff. from E	14	17	24	5	21
mean χ^2	5.58	10.23	19.27	0.47	12.27

Na22 Na24 Exp

total

- 23 Na(n, γ) 24 Na
- ²³Na(n,2n)²²Na

A case where all are wrong (1)

• 5 minute irradiation of pure Indium

- no library is close to the experiment
- the TENDL-2019 nuclide profiles suggest an overestimate of ^{116m}In production
 - ▶ ¹¹6m In decay profile matches the experimental measurements beyond 5 minutes of cooling
 - ▶ incorrect distribution of $^{115}In(n,\gamma)$ to ^{116}In , ^{116m}In , ^{116m}In ?

(T_{1/2}=14.2s, 54.6m, and 2.2s, respectively)

Indium nuclide comparisons

total In115m In112m In112 In116

瀧 UK Atomic Energy

Authority

In116m In114 ax3 00 Ag112

> JEFF-3.3. ENDF/B-VIII.0 miss ^{116m}In completely

EAF2010 & predict more contributing nuclides, but agree on $^{116m} In$ dominance

FISPACT-II workshop | November 2020 | M. Gilbert

Indium nuclide comparisons

total In115m In112m In112

瀧 UK Atomic Energy

Authority

In116 In116m In114 00 Exp Ag112

JEFF-3.3. ENDF/B-VIII.0 miss ^{116m}In completely

EAF2010 & predict more contributing nuclides, but agree on $^{116m} In$ dominance

A case where all are wrong (2)

• 5 minute irradiation of pure Osmium FNS-00 5 Min. Irradiation - Os

- no library predicts the correct decay-profile or heat magnitudes
 - ► EAF2010 and TENDL-2019 are identical and overpredict
 - ▶ JEFF-3.3 over and under predicts at different times, while ENDF/B-VIII.0 underpredicts

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3
mean % diff. from E	160	63	155	80
mean χ^2	501.94	127.59	467.62	118.99

Osmium nuclide comparisons

total

Ir191m Os189m

Os191m Os192m

Os190m

qx3 00

Re190

- this channel was missing from the group-wise processed version of TENDL-2017 (& JEFF-3.3 & ENDF/B-VIII.0)
- but now included in TENDL-2019

 The EAF2010 profile was identified as the best match and is attributed to ¹⁹⁰Os(n,n')^{190m}Os

Osmium nuclide comparisons

Os189m

Os191m

Os192m Re190 Os190m

- this channel was missing from the group-wise processed version of TENDL-2017 (& JEFF-3.3 & ENDF/B-VIII.0)
- but now included in TENDL-2019

 The EAF2010 profile was identified as the best match and is attributed to ¹⁹⁰Os(n,n')^{190m}Os

% decay heat contribution

- χ^2/n variation for all experiments
 - $\begin{array}{l} {\rm less\ clear\ trend} \\ \Rightarrow {\rm higher\ experimental} \\ {\rm errors\ at\ high}\ Z \end{array}$

$$\chi^2 = \left(\frac{D_{sim} - D_{exp}}{\Delta D_{exp}}\right)^2$$

n values per experiment

χ^2 test

TENDL performs better than other modern libraries & slightly better than EAF2010

Summary

- The FNS experimental results from Japan offer a unique validation benchmark for inventory simulations in fusion-relevant conditions
 - they test the cross section data for a significant fraction of stable nuclides
- Automation of benchmarking against these experiments with FISPACT-II allows rapid testing of libraries
 - quickly provides a global impression of data quality
 - but each individual experiment and associated simulations can have unexpected subtleties
 - overall libraries perform well, particularly at low Z
 - no library succeeds for every case
 - new libraries still have something to learn from older ones ...

A case where the "legacy" is best

• 5 minute irradiation of pure Iridium FNS-00 5 Min. Irradiation - Ir

Only EAF2010 correctly matches the experimental profile (and scale)

▶ the observed decay heat originates from ^{192m}Ir in the first 5 minutes of cooling

► at longer times ^{190m}Os dominates

	TENDL-2019	ENDF/B-VIII.0	EAF2010	JEFF-3.3
mean % diff. from E	52	419	13	425
mean χ^2	94.41	3453.56	2.29	3550.01

Iridium nuclide comparisons

total lr192 lr190m Ir190n Re190 Ir194 lr190 Os190m lr192m 00 Exp

瀧 UK Atomic

Energy

Authority

- TENDL-2017 underpredicted 191 lr(n.2n) 190n lr (corrected now for TENDL-2019)
- ENDF/B-VIII.0 and JEFF-3.3 overestimate this path & predict a different dominant nuclide $(^{193}Ir(n,\alpha)^{190}Re)$ at short times

FISPACT-II inputs & outputs

.gra files

UK Atomic Energy Authority

• e.g. irradiation of pure iron

- separate FISPACT-II simulation for each different nuclear data library (and for each different material)
- curves extracted directly from .gra files

GRAPH 1 2 1 3 UNCERTAINTY 2

- UNCERTAINTY keyword included to provide uncertainty estimates
- GRAPH <<n>> <<show>> <<uncert>> <ist>>
 - ▶ instructs FISPACT-II to output <<n>> blocks of summary data in an additional output file with a .gra stub
 - <<show>> equal to 2 makes the output suitable for GNUPLOT plotting (+ a template .plt file is written)

.gra files

UK Atomic Energy Authority

• e.g. irradiation of pure iron

- separate FISPACT-II simulation for each different nuclear data library (and for each different material)
- curves extracted directly from .gra files

GRAPH 1 2 1 3 UNCERTAINTY 2

- UNCERTAINTY keyword included to provide uncertainty estimates
- GRAPH <<n>> <<show>> <<uncert>> <ist>>
 - <<uncert>> equal to 1 includes the uncertainties in the .gra file (and plot)
 - <<list >>: list of <<n>> graphs required
 1=activity;2=dose;3=decay-heat...

Nuclide graphs

• e.g. irradiation of palladium

- capability to extract nuclide contribution breakdown to radiological quantities
- curves extracted directly from .grn files

NUCGRAPH 1 1.0 1 2

- NUCGRAPH <<n>> <<floor>> <<uncert>> <ist>>
- instructs FISPACT-II to output <<n>> blocks of data in .grn file 1=activity;2=decay-heat;3=dose...
- for each radiological quantity (block) as a function of time:
 - total with uncertainty (if <<uncert>> equals 1)
 - contribution to quantity from any nuclide that contributes <<floor>> % or more at any time

