Vorlesung Baumautomaten (Mitschrift)

Benedikt Elßmann (3720358) be57xocu@studserv.uni-leipzig.de

Universität Leipzig

8. Juli 2019

Inhaltsverzeichnis

U	Eini	eitung	3
1	Bäu	me und Baumautomaten	3
	1.1	Definition Rangalphabet	4
	1.2	Definition Term, Tree	4
	1.3	Definition Höhe	5
	1.4	Definition Position	5
	1.5	Definition der Label an den Positionen	5
	1.6	Definition Sub-Baum	5
	1.7	Definition Baumautomat	6
	1.8	Definition Lauf/Run	6
	1.9	Lemma	7
	1.10	Definition Determinismus	9
		Satz	9
	1.12	Definition vollständing und reduziert	11
			11
	1.14	Definition Kontext	11
	1.15	Pumping-Lemma	12
	1.16	Korollar	13
	1.17	Abschlusseigenschaften	13
	1.18	Definition Kongruenz	14
	1.19	Definition	14
	1.20	Lemma	14
	1.21	Theorem (Myhill-Nerode)	15
	1.22	Korollar	16
	1.23	Einschub - Homomorphismen von Baumsprachen	16
			16
		-	16
		1.23.3 Baumhomomorphismen	17
			18
		1.23.5 linearer Homomorphismus	18
			19
		1.23.7 Satz	19
	1.24	Top-Down Baumautomaten	20
			21
2			21
		Definition - Grammatik	
	2.2	Definition	22
	2.3		22
	2.4		23
	2.5	8	23
	2.6		23
	2.7	Theorem	23
	2.8	Satz	25

		Satz	
		Definition	
		Theorem	
		Satz	
	2.13	Satz	9
3	Wei	tere Modelle, Ausblick	0
•	3.1	Definition	0
	3.2	Definition	0
	3.3	Satz	1
	3.4	Definition	2
		Definition	
	3.6	Satz	6

0 Einleitung

Automaten lesen Wörter $w = a_1 \dots a_n$ und geben "accept" aus oder nicht. Dafür gibt es Erweiterungen, wie etwa:

- gewichtete Automaten, das heißt der Output ist ein Semiringelement
- Automaten mit Gedächtnis (Stack)
- Automaten über anderen Strukturen
 - $-\omega$ -Wörter $w = a_1 \dots a_n$
 - Graphen
 - Bäume
 - Kombinationen dieser

Typische Fragestellungen:

- Ausdrucksstärke
- Darstellung als rationale Ausdrücke (Kleene)
- Darstellung als Grammatik
- Darstellung als Logik

1 Bäume und Baumautomaten

Wir betrachten über $A = \{a, b\}$ den Automaten \mathcal{A} :

mit $L(A) = b^*aba^*$.

Betrachtung des Wortes $w = baba \in L(A)$:

Der eindeutige erfolgreiche Lauf für w lässt sich darstellen als:

 $q_0baba \rightarrow bq_0aba \rightarrow baq_1ba \rightarrow babq_2a \rightarrow babaq_2 \in F$ (Finalzustand)

Baumautomaten funktionieren analog. Unser erstes Beispiel wird

Akzeptiert mit dem Lauf:

mit $q_f \in F$

1.1 Definition Rangalphabet

Ein paar (Σ, rk) , wobei Σ eine endliche Menge von Symbolen und $rk : \Sigma \to \mathbb{N}$ eine Abbildung ist, heißt Rangalphabet.

Für $f \in \Sigma$ heißt rk(f) der Rang (oder die Stelligkeit) von f.

Intuitiv: rk(f) ist die Anzhal der Kinder von f in einem Baum. Insbesondere ist die Anzhal der Kinder für jedes Symbol fest.

Gilt rk(f) = n, schreiben wir auch $f^{(n)}$ statt f. wir schreiben:

- 0-stellige Symbole (Konstanten) a, b, \ldots
- unär, binär, ... f, g, ...

Wir setzen $\Sigma^{(n)} = \{ f \in \Sigma | rk(f) = n \}$

 In

f ist also
$$rk(f) = 2, rk(b) = 0$$
f b

1.2 Definition Term, Tree

Sei (Σ, rk) ein Rangalphabet. Die Menge T_{Σ} der Bäume üeber Σ ist induktiv definiert durch:

- $\Sigma^0 \subseteq T_{\Sigma}$
- $f^{(n)} \in \Sigma$. $t_1, \ldots, t_n \in T_{\Sigma}$, dann ist $f(t_1, \ldots, t_n) \in T_{\Sigma}$

Intuitiv sind t_1, \ldots, t_n die Kinder von f.

Z.B. ist

1.3 Definition Höhe

Sei (Σ, rk) ein Rangalphabet. Die Höhe ht ist gegeben durch:

- für $a^{(0)} \in \Sigma : ht(a) = 1$.
- für $f(t_1, ..., t_n) \in T_{\Sigma} : ht(f) = 1 + max\{ht(t_i)|i \in \{i, ..., n\}\}$

Ziel: Zugriff auf einen Knoten innterhalb eines Baumes und deren Label. Dafür ordnen wir den Knoten Positionen zu. Das geht induktiv wie folgt:

1.4 Definition Position

Sei (Σ, rk) ein Rangalphabet. Die Positionenmenge ist definiert durch:

- für $a^{(0)} \in T_{\Sigma}$ ist $Pos(a) = \{\varepsilon\}$
- für $f(t_1, \ldots, t_n) \in T_{\Sigma}$ ist $Pos(f(t_1, \ldots, t_n)) = \{\varepsilon\} \cup 1 \cdot Pos(t_1) \cup \cdots \cup n \cdot Pos(t_n)$

Beispiel:

Betrachtung von f(f(a,b),b) bzw.

$$Pos(f) = \{\varepsilon, 1, 2, 1.1, 1.2\}$$

1.5 Definition der Label an den Positionen

Für einen Term der Form $t = f(t_1, \dots, t_n)$ ist das Symbol t(p) in t an p-ter Position induktiv definert durch:

- $t(\varepsilon) = f$
- $t(ip) = t_i(p), i \in \{1, ..., n\}$

Beispiel: Betrachtung von f(f(a,b),b)

Dann ist

$$t(\varepsilon) = f$$

$$t(1) = t(1 \cdot \varepsilon) = t_1(\varepsilon) = f$$

$$t(2) = t(2 \cdot \varepsilon) = t_2(\varepsilon) = b$$

$$t(1.1) = t_1(1) = a$$

$$t(1.2) = t_2(1) = b$$

1.6 Definition Sub-Baum

Für T_{Σ} ist ein Sub-Baum $t_{|p}$ an p-ter Position wie folgt definiert:

•
$$Pos(t_{|p}) = \{i|pi \in Pos(t)\}$$

• $\forall q \in Pos(t_{|p} \text{ ist } t_{|p}(q) = t(pq)$

Wir schreiben $t[u]_p$ für den Baum, der entsteht, wenn man in t den sub-Baum $t_{|p}$ durch n ersetzt.

1.7 Definition Baumautomat

Ein Baumautomat \mathcal{A} ist ein 4-Tupel (Q, Σ, F, Δ) , wobei:

 $Q\dots$ endliche Menge an Zusänden

 $\Sigma \dots$ Rangalphabet, wobei $\Sigma \cup Q \neq \emptyset$

 $F \cdots \subseteq Q$ Finalzustände

 $\Delta \dots$ Menge von Regeln

$$r: f(q_1 \dots q_n) \to q$$

für $q, q_1, \dots, q_n \in Q$, für $a^{(0)} \in T_{\Sigma}: a \to q$

Beispiel:

$$\mathcal{A} = \{\{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(2)}\}, \{q_f\}, \Delta\}
\text{mit } \Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_a, f(q_a, q_b) \to q_f\}$$

1.8 Definition Lauf/Run

Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat und $t \in T_{\Sigma}$. Ein Lauf r für t von \mathcal{A} ist ein Term mit

- Pos(r) = Pos(t)
- Ist t(p) = a ein Blatt, dann ist $r(p) = q_a$, nur wenn $(a \to q_a) \in \Delta$
- Ist $t(p) = f^{(m)}$, dann ist r(p) = q, wenn $(f(q_1, \dots, q_n) \to q) \in \Delta$ und $r(p_i) = q_i, i \in \{1, \dots, n\}$

Ein Lauf ist erfolgreich, wenn $r(\varepsilon) \in F$. Der Automat \mathcal{A} akzeptiert t, falls es einen erfolgreichen Lauf für t von \mathcal{A} gibt.

Wir bezeichnen mit $L(A) = \{t \in T_{\Sigma} | A \text{ akzeptiert } t\}$ die von A erkannte Baumsprache. Eine Sprache $L \subseteq T_{\Sigma}$ heißt erkennbar, falls ein Baumautomat A existiert mit L = L(A).

Um einzelne Schritte von Baumautomaten zu formalisieren, betrachten wir die move relation $\to_{\mathcal{A}}$, definiert wie folgt:

Gegeben sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$, dann ist $t \to_{\mathcal{A}} t'$ mit $t, t' \in T_{\Sigma \cup Q}$, falls

- $t(p) = f^{(n)}$
- $t(pi) = q_i$ für $i \in \{1, ..., n\}$ und p_i sind Blätter
- $(f(q_1,\ldots,q_n)\to q)\in\Delta$
- und $t' = t[q]_p$

Mit $\to_{\mathcal{A}}^*$ bezeichnen wir die transitive Hülle von $\to_{\mathcal{A}}$.

1.9 Lemma

Sei $\mathcal{A}=(Q,\Sigma,F,\Delta)$ ein Baumautomat. Dann ist $L(\mathcal{A})=\{t\in T_{\Sigma}|t\to_{\mathcal{A}}^*q \text{ mit } q\in F\}(=Z)$

Beweis: $L(A) \subseteq Z$:

Wir zeigen: Es existiert ein Run r für t von \mathcal{A} mit $r(\varepsilon) = q$, dann ist $t \to_{\mathcal{A}}^* q$

Inuktionsannahme:

 $t = a^{(0)} \in T_{\Sigma}$. Dann gilt $a \in L(\mathcal{A})$, falls ein Lauf r existiert mit $r(a) = q_a$ und $(a \to q_a) \in \Delta$. Dann folgt $a \to_{\mathcal{A}}^* q_a$. Sei nun $t = f(t_1, \ldots, t_n)$

Induktionsvoraussetzung:

Falls für t_1, \ldots, t_n Läufe r_i existieren mit $r_i(\varepsilon) = q_i$, dann gilt auch $t_i \to_{\mathcal{A}}^* q_i$ mit $i \in \{1, \ldots, n\}$

Induktionsschritt:

zu zeigen: Es existiert ein Lauf r für t mit $r(\varepsilon) = q$, dann $t \to_{\mathcal{A}}^* q$. Sei also r ein Lauf mit $r(\varepsilon) = q$. Dann ist $r(i) = q_i, i \in \{1, \dots, n\}$, mit $(f(q_1, \dots, q_n) \to q) \in \Delta$. Laut Induktionsvoraussetzung gilt nun, $t_i \to_{\mathcal{A}}^* q_i, i \in \{1, \dots, n\}$. Damit $t = f(t_1, \dots, t_n) \to_{\mathcal{A}}^* f(q_1, t_2, \dots, t_n) \to_{\mathcal{A}}^* \dots \to_{\mathcal{A}}^* f(q_1, \dots, q_n)$ Des weiteren haben wir die regel $f(q_1, \dots, q_n) \to q$, das heißt $f(q_1, \dots, q_n) \to_{\mathcal{A}}^* q$.

Insgesamt also $t \to_{\mathcal{A}}^* q$

Beweis: $L(Z \subseteq A)$ ": analog

Einige Beispiele für Baumautomaten:

1. Sei
$$B = (\{q_0, q_1\}, \{0^{(0)}, 1^{(0)}, \neg^{(1)}, \wedge^{(2)}, \vee^{(2)} \{q_1\}, \Delta\})$$
 mit $\Delta = \{0 \to q_0, 1 \to q_1, \neg(q_0) \to q_1, \neg(q_1) \to q_0, \land (q_0, q_0) \to q_0, \land (q_0, q_1) \to q_0, \land (q_1, q_0) \to q_0, \land (q_1, q_1) \to q_1 \lor (q_0, q_0) \to q_0, \lor (q_0, q_1) \to q_1, \lor (q_1, q_0) \to q_1, \lor (q_1, q_1) \to q_1\}$

Beispiellauf:

2. (a^nb^nlight)

Betrachten
$$\mathcal{A} = (\{q_a, q_b, q_f\}, \{a^{(0)}, b^{(0)}, f^{(3)}, g^{(2)}\}, \{q_f\}, \Delta)$$
 mit $\Delta = \{a \to q_a, b \to q_b, g(q_a, q_b) \to q_f, f(q_a, q_f, q_b) \to q_f\}$

Beispiellauf:

 \mathcal{A} akzeptiert also alle Bäume der Form:

3. Simulation eines Wortautomaten: (siehe Übung)

Betrachtet man $\Sigma = \{a^{(0)}, f^{(2)}, g^{(1)}\}$. Dann ist $L = \{f(g^i(a), g^i(a)) | i \geq 0\}$ nicht erkennbar.

1.10 Definition Determinismus

Ein Automat $\mathcal{A}(Q, \Sigma, F, \Delta)$ heißt deterministisch, falls: aus $f(q_1, \dots, q_n) \to q$ und $f(q_1, \dots, q_n) \to q'$ folgt q = q'

1.11 Satz

Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat, dann existiert ein deterministischer Baumautomat \mathcal{A}_d , so dass $L(\mathcal{A}) = L(\mathcal{A}_d)$.

Beweis: Setze
$$\mathcal{A}_d = (Q_d, \Sigma, F_d, \Delta_d)$$

mit $Q_d = 2^Q$ (*)
und $f(s_1, \dots, s_n) \to s \in \Delta_d$
 $\Leftrightarrow s = \{q \in Q | \exists q_1 \in s_1 \dots q_n \in s_n : (f(q_1, \dots, q_n) \to q) \in \Delta\}$
und $F_d = \{s \in Q_d | s \cap F \neq \emptyset\}.$

Wir zeigen:

- 1. \mathcal{A} ist deterministisch
- 2. $L(A) \subset L(A_d)$
- 3. $L(\mathcal{A}_d) \subset L(\mathcal{A})$

1. ist klar, denn (*) ist mit einer Äquivalenz definiert.

2. $L(A) \subseteq L(A_d)$:

Wir zeigen hierzu: Ist $Z=\{q|t\to^*_{\mathcal{A}}q\},$ dann $t\to^*_{\mathcal{A}_d}z.$

Induktionsannahme:

Angenommen $a \to_{\mathcal{A}} q_a$, dann ist $q_a \in \{q \in Q | q \to_{\mathcal{A}}^* q\}$, das heißt

$$\begin{split} a & \to_{\mathcal{A}}^* q_a \Leftrightarrow q_a \in \{q \in Q | a \to_{\mathcal{A}}^* q\} \\ & \Leftrightarrow q_a \in \{q \in Q | (a \to q) \in \Delta\} \\ & \text{also } a \to_{\mathcal{A}}^* q_a \Leftrightarrow q_a \in \{q \in Q | (a \to q) \in \Delta\}, \text{ das heißt} \\ & z := \{q_a \in Q | a \to_{\mathcal{A}}^* q_a\} = \{q \in Q | (a \to q) \in \Delta\} =: s \end{split}$$

Nun ist $(a \to s) \in \Delta_d$ per Definition, also auch $(a \to z) \in \Delta_d$, damit: $a \to_{\mathcal{A}_d}^* z$.

Betrachten wir nun $t = \sigma(t_1, \ldots, t_n)$

Induktionsvoraussetzung:

$$t_i \to_{\mathcal{A}_d}^* z_i \text{ mit } Z_i = \{ q \in Q | t_i \to_{\mathcal{A}_q}^* q \}$$

Das heißt, es existieren Läufe r_i für t_i von \mathcal{A}_d mit $r_i(\varepsilon) = z_i$

Induktionsschritt:

zu zeigen:
$$t \to_{\mathcal{A}}^* z$$
 mit $Z = \{q \in Q | t \to_{\mathcal{A}}^* q\}$

Das heißt, es existiert ein Lauf r für t von \mathcal{A}_d mit $r(\varepsilon) = z$

Das heißt, $\exists r$:

- $r(\varepsilon) = z$
- $r(i) = z_i$
- $\sigma(z_1,\ldots,z_n) \to z \in \Delta_d$

Setze nun $r_{|i} = r_i$, damit ist insbesondere $r(i) = r_i(\varepsilon) = z := \{q | t_i \to_{\mathcal{A}_d}^* q\}$

Es bleibt also zu zeigen: \exists Regel $\sigma(z_i, \ldots, z_m) \to z \in \Delta_d$.

Es ist nun
$$z \in Z \Leftrightarrow t \to_{\mathcal{A}}^* z$$

$$\Leftrightarrow \exists q_i \in Q : t_i \to_{\mathcal{A}}^* q_i, \sigma(q_1, \dots, q_m) \to z \in \Delta$$

$$\Leftrightarrow \exists z_i \in Z_i \text{ und } \sigma/z_1, \dots, z_m) \to z \in \Delta$$

$$\Leftrightarrow \exists z_i \in Z_i \text{ und } \sigma/z_1, \ldots, z_m) \to z \in \Delta$$

Also $Z = \{z \in Q | \exists z_i \in Z_i : (\sigma/z_1, \dots, z_m) \to z\} \in \Delta$ also per Definition $\sigma/z_1, \dots, z_m \to z \in \Delta_d$

2. "
$$L(\mathcal{A}_d) \subseteq L(\mathcal{A})$$
":

Sei
$$t \in T_{\Sigma}$$
 mit $t \notin L(\mathcal{A})$, dann ist $Z \cap F = \{q \in Q | t \to_{\mathcal{A}}^* q\} \cap F = \emptyset$
Laut 2. ist $t \to_{\mathcal{A}_d}^* z$ (und \mathcal{A} ist deterministisch) Wegen $Z \cap F = \emptyset$ ist $Z \notin F_d$, also $t \notin L(\mathcal{A}_d)$

Wir vereinbaren die Abkürzungen: NBA/NTA für nichtdeterministischer Baumautomat und DBA/DTA für deterministischer Baumautomat.

Wie im Wortfall ist die Konstruktion exponentiell, das heißt wir benötigen expontntiell viele Zustände $(Q_d = 2^{|Q|})$. Und wie im Wortfall lässt sich das im Allgemeinen nicht vermeiden.

Beispiel: Betrachtet man
$$\Sigma = \{f^{(1)}, g^{(1)}, a^{(0)}\}$$
 und sei $L_n = \{f \in T_{\Sigma} | t(\underbrace{1 \dots 1}_{\text{n-mal}}) = f\}$

Ein NTA benötigt n + 2 Zustände:

$$A = (Q, \Sigma, F, \Delta) \text{ mit } Q = \{q, q_1, \dots, q_{n+1}\}, F = \{q_{n+1}\}$$

mit Übergängen $\Delta = \{a \to q, f(q) \to q, g(q) \to q, f(q) \to q_1, f(q_i) \to q_{i+1}, g(q_i) \to q_{i+1}\}$ für $i \in \{1, \dots, n\}$

Man kann zeigen: Ein DTA \mathcal{A}' mit $L(\mathcal{A}') = L_n$ hat mindestens 2^{n+1} Zustände.

1.12 Definition vollständing und reduziert

Ein Automat $(A = Q, \Sigma, F, \Delta)$ heißt:

- vollständig, falls für jedes $f^{(n)} \in \Sigma$ und alle $q_1, \ldots, q_n \in Q$ eine Regel $f(q_1, \ldots, q_n) \to q \in \Delta$ existiert
- reduziert, falls für jeden Zustand $q \in Q$ ein Term $t \in T_{\Sigma}$ exisitert mit $f \to_{\mathcal{A}}^* q$

1.13 Satz

Sei \mathcal{A} ein Baumautomat. Dann existiert ein vollständiger, reduzierter Baumautomat \mathcal{A}' mit $L(\mathcal{A}) = L(\mathcal{A}')$.

Für Wortautomaten gibt es das Pumping-Lemma, das die Gedächtnislosigkeit der Automaten formalisiert. Formal besagt es: Ist L eine reguläre Wortsprache, dann existiert ein $n \in \mathbb{N}$, so dass sich $w \in L$ mit |w| > n zerlegen lässt in w = xyz, $y \neq \varepsilon$ und $\forall i \geq 0$ ist $xy^iz \in L$.

Baumautomaten haben auch kein Gedächtnis, also erwarten wir ein analoges Resultat. Dazu müssen wir formalisierten, was "aufgepumpt "werden soll.

1.14 Definition Kontext

Es sei Σ ein Rangalphabet und $x^{(0)} \notin \Sigma$. Es sei $C \in T_{\Sigma \cup \{x\}}$. Falls es genau eine Position $p \in Pos(C)$ gibt mit C(p) = x, dann heißt C ein Kontext.

Beispiel:

$$f$$
 ist ein Kontext.

Wir schreiben $T_{\Sigma}(x)$ für die Menge aller solcher Kontexte.

Ist $C \in T_{\Sigma}(x)$ mit C(p) = x, dann schreiben wir C[u] statt $C[u]_p$ für den Baum, der entsteht, wenn wir x durch u ersetzen.

Wir schreiben $C^0=x,\,C^1=C,\,C^n=C^{n-1}[C]$

Beispiel: Betrachtet t =

Setze u = f(a, b) und C = f(x, b). Dann ist t = C[u] und $C^2[u] =$

1.15 Pumping-Lemma

Sei $L \subseteq t_{\Sigma}$ erkennbar, dann existiert ein $k \in \mathbb{N}$, so dass:

Für alle $T \in L$ mit ht(t) > k gibt es einen Kontext $C \in T_{\Sigma}(x)$, einen nicht-trivialen Kontext $C' \in T_{\Sigma}(x)$ und einen Term $u \in T_{\Sigma}$ mit t = C[C'[u]] und $C[(C')^n[u]] \in L$ für alle $n \geq 0$.

Beweis: Sei L erkennbar, das heißt \exists Baumautomat $\mathcal{A} = (Q, \Sigma, F, \Delta)$ mit $L = L(\mathcal{A})$. Setze |Q| = k und betrachte $t \in L$ mit ht(t) > k. Betrachte nun einen Lauf r und einen Pfad in t, der länger als k ist. Nun gibt es $p_1, p_2 \in Pos(r)$ mit $r(p_1) = r(p_2) = q \in Q$. Sei nun $u = t_{|p_2}$ der Sub-Baum von t bei p_2 und $u' = t_{|p_1}$. Dann existiert C' mit C'[u] = u' und es existiert C mit t = C[C'[u]]. Es ist wegen $t \in L$

$$\begin{array}{l} C[C'[u]] \to_{\mathcal{A}}^* C[C'[q]] \to_{\mathcal{A}}^* C[q] \to_{\mathcal{A}}^* q_f \in F, \text{ also auch} \\ C[(C')^n[u]] \to_{\mathcal{A}}^* C[(C')^n[q]] \to_{\mathcal{A}}^* CC[(C')^{(n-1)}[q]] \to_{\mathcal{A}}^* \cdots \to_{\mathcal{A}}^* C[q] \to_{\mathcal{A}}^* q_f \in F. \text{ q.e.d.} \end{array}$$

Beispiel: Betrachte den Baumautomaten $\mathcal{A} = (\{q_a, q_b, q_g, q_f\}, \{a^{(0)}, b^{(0)}, g^{(1)}, f^{(2)}\}, \{q_f\}, \Delta)$ mit $\Delta = \{a \to q_a, b \to q_b, f(q_a, q_b) \to q_g, g(q_g) \to q_f\}$

 $\begin{aligned} u &= f(a,b), \, u' = C'[u] = f(f(a,b),b) \\ C &= g(f(x,b)), \, C' = f(x,b) \end{aligned}$

$$C[(C')^n[u]] =$$

Die Sprache $L = \{f(g^i(a), g^i(a)) | i \ge 0\}$ kann nicht erkennbar sein, denn für große i würde man ein k finden, so dass ein gegebener Baumautomat auch $f(g^{i+lk}(a), g^i(a))$ für alle $l \ge 0$ akzeptiert.

1.16 Korollar

Für $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ist $L(\mathcal{A}) \neq \emptyset \Leftrightarrow \exists t \in L \text{ mit } ht(t) \leq |Q|$:

• L(A) nicht endlich $\Leftrightarrow \exists t \in L \text{ mit } |Q| < ht(t) \le 2|Q|$

1.17 Abschlusseigenschaften

Erkennbare Sprachen sind abgeschlossen unter Vereinigung, Schnitt und Komplement. Das heißt, sind L_1 und L_2 erkennbar, dann auch $L_1 \cup L_2$, $L_1 \cap L_2$ und L_1^c (in T_{Σ}).

Beweis:

Seien \mathcal{A}_1 und \mathcal{A}_2 vollständige DTA. Betrachte für die Vereinigung $\mathcal{A}_{\cup} = (Q_1 \times Q_2, \Sigma, F_1 \times Q_2 \cup Q_1 \times F_2, \Delta_1 \times \Delta_2)$ mit $\Delta_1 \times \Delta_2 = \{f((q_1, q_1'), \dots, (q_n, q_n')) \rightarrow (q, q') | f(q_1, \dots, q_n) \rightarrow q \in \Delta_1, f(q_1', \dots, q_n') \rightarrow q' \in \Delta_2\}$ Dann akzeptiert \mathcal{A}_{\cup} die Sprache $L(\mathcal{A}_1) \cup L(\mathcal{A}_2)$.

Für
$$L(A_1) \cap L(A_2)$$
 betrachte den Automaten $A_{\cap} = (Q_1 \times Q_2, \Sigma, F_1 \times F_2, \Delta_1 \times \Delta_2)$

Für
$$T_{\Sigma} L(\mathcal{A}_1) = L(A_1)^c$$
 betrachte $\mathcal{A}_C = (Q_1, \Sigma, Q_1 \ F_1, \Delta_1)$.
Der Automat A_C akzeptiert $L(A_1)^c$.

Beispiel:

Betrachte $\Sigma = \{a^{(0)}, g^{(1)}, f^{(2)}\}$ und $L = \{f(g^i(a), g^j(a)) | i \leq j\}$ Dann ist L nicht erkennbar, denn: Wäre L erkennbar, dann auch L' mit $L' = \{f(g^i(a), g^j(a)) | i \geq j\}$, also auch $L \cap L' \not$.

Bemerkung: Wenn \mathcal{A} deterministisch und vollständig ist, dann können wir eine Übergangsfunktion $\delta: T_{\Sigma} \to Q$ definieren mit $\delta(t) = q$, falls $t \to_{\mathcal{A}}^* q$.

Wiederholung - Äquivalenzrelation:

Eine Äquivalenzrelation \sim auf einer Menge M ist eine Relation mit

- $\forall m \in M : m \sim m$
- $\forall m, n \in M : m \sim n \Rightarrow n \sim m$
- $\bullet \ \forall l,m,n \in M: l \sim m, m \sim n \Rightarrow l \sim n$

Insbesondere: Ist \sim eine Äquivalenzrelation auf M, so induziert \sim eine Partition auf und umgekehrt, das heißt Mengen $(M_i)_{i\in I}$ mit $M_i \cup M_j = \emptyset$ für $i \neq j$ und $M = \bigcup_{i\in I} M_i$

1.18 Definition Kongruenz

Eine Äquivalenzrelation \equiv auf T_{Σ} heißt Kongruenz, falls für alle $f^{(n)} \in \Sigma$:

$$v_1 \equiv u_1, \dots, v_n \equiv u_n \Rightarrow f(v_1, \dots, v_n) \equiv f(u_1, \dots, u_n).$$

Beispiel:

Die Relation $t \equiv t'$, falls t und t' die gleiche Anzahl Blätter modulo 2 haben.

- Außerdem: $t \equiv t' \Leftrightarrow ht(t) = ht(t')$
- Nicht: gleiche Höhe modulo 2

1.19 Definition

Eine Kongruenz \equiv hat endlichen Index, falls \equiv endlich viele Äquivalenzklassen indiziert.

1.20 Lemma

Sei Σ ein Rangalphabet. Dann ist \equiv genau dann eine Konguenz auf T_{Σ} , wenn \equiv eine Äquivalenzrelation ist mit $u \equiv v \Rightarrow C[u] \equiv C[v]$ für alle Kontexte.

```
Beweis: 

,,⇒ "Induktion: Induktionsannahme: C=x, dann ist u\equiv v\Rightarrow C[u]\equiv C[v] klar. 

Sei nun C=f(C_1,\ldots C_n). Sei x=C[ip]=C_i[p]. 

Dann ist C[u]_{ip}=f(C_1,\ldots,C_{i-1},C_i[p],C_{i+1},\ldots,C_n)=C[u]_{ip}=f(C_1,\ldots,C_{i-1},C_i[v],C_{i+1},\ldots,C_n) 

,,\Leftarrow ": Angenommen u\equiv v und C[u]\equiv C[v] für alle Kontexte. 

Sei f^{(n)}\in\Sigma. Dann ist: 

f(u_1,\ldots u_n) 

=C^1[u_1]\equiv C^1[v_1]=f(v_1,u_2,\ldots,u_n) 

=\ldots 

=C^1[u_n]\equiv C^1[v_n]=f(v_1,\ldots,v_n)
```

Betrachte nun eine Sprache $L \subseteq T_{\Sigma}$ von Bäumen. Wir definieren \equiv_L als: $u \equiv_L v \Leftrightarrow \forall C \in T_{\Sigma}(x) : C[u] \in L \Leftrightarrow C[v] \in L$.

Beispiel: Betrachte alle Bäume der Form

$$L = \{ f(f(\dots f(a,b),b)\dots,b) \}$$

Dann gilt:

C = f , C' = x b

1.21 Theorem (Myhill-Nerode)

Die folgenden Aussagen sind äquivalent:

- a) L ist erkennbar
- b) L ist die Vereinigung von Äquivalenzklassen einer Kongruenz mit endlichem Index
- c) \equiv_L hat endlichen Index

Reweis

"a \Rightarrow b ": Sei \mathcal{A} vollständiger DTA mit $L(\mathcal{A}) = L$. Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$.

Definiere $u \equiv_{\mathcal{A}} v \Leftrightarrow \delta(u) = \delta(v)$.

Offensichtlich hat $\equiv_{\mathcal{A}}$ höchstens |Q|-viele Äquivalenzklassen. Außerdem ist $\equiv_{\mathcal{A}}$ eine Kongruenz. Nun ist L Vereinigung aller Klassen $[u]_{\equiv_{\mathcal{A}}}$ mit $\delta(u) \in F$.

"b \Rightarrow c ": Sei \sim eine Kongruenz mit d
nlichem Index. Sei $u\sim v.$ Wegen Lemma 1.20 gilt

 $C[u] \sim C[v] \forall C \in T_{\Sigma}(x)$. Nun ist aer L die Vereinigung von Äquivalenzklassen von \sim , das heißt $C[u] \in L \Leftrightarrow C[v] \in L$. Insbesondere ist also $u \equiv_L v$

Wir haben gezeigt: $v \in [u]_{\sim} \Rightarrow v \in [u]_{\equiv_L}$, also $[u]_{\sim} \leq [u]_{\equiv_L}$

(Also ist \sim eine Verfeinerung von \equiv_L)

Insbesondere hat \equiv_L kleinern Index als \sim , also endlichen.

"c \Rightarrow a ": Die Zustände Q_{\min} sind die Äquivalenzklassen bezüglich \equiv_L . (Damit ist Q_{\min} endlich). Wir definieren Regeln

 $f([u_1], \ldots, [u_n]) \to [f(u_1, \ldots, u_n)].$

Das ist wohldefiniert, weil \equiv_L eine Kompetenz ist. Finalzustände F_{\min} sind $\{[u]_{\equiv_L}|u\in L\}$.

Dann akzeptiert $\mathcal{A}_{\min} = (Q_{\min}, \Sigma, F_{\min}, \Delta_{\min})$ die Sprache L.

Beispeiel:

Betrachte
$$\Sigma = \{a^{(0)}, g^{(1)}, f^{(2)}\}$$
 und $L = \{f(g^i(a), g^i(a)) | i \ge 0\}$

Betrachte $g^i(a)$ und $g^j(a)$ mit $i \neq j$. Dann ist $C^i = f(x, g^i(a))$ ein Kontext mit $C^i[g^i(a)] \in L$, aber $C^i[g^j(a)] \notin L$. Da es unenlich viele $g^i(a)$ gibt, hat die Kongruenz bezüglich L unendlichen Index, also ist L nicht erkennbar.

1.22 Korollar

Ist L erkennbar, gibt es einen bis auf Umbenennung der Zustände eindeutigen, vollständigen DBA \mathcal{A} mit $L = L(\mathcal{A})$. Dieser ist \mathcal{A}_{\min} aus obigem Beweis. Beweis:

Sei L = L(A). Vorher gesehen:

 $\equiv_{\mathcal{A}}$ ist Verfeinerung von \equiv_{L}

Also ist $|Q| \ge |Q_{\min}|$. Wir nehmen OBDA an: beide reduziert. Sei nun qinQ. Getrachte ein $u \in T_{\Sigma}$ mit $\delta(u) = q$. Betrachte die Funktion $\rho: Q \to Q_{\min}$ mit $\delta(u) = q \mapsto \delta_{\min}(u)$

Die Abbildung ρ ist wohldefiniert, denn falls $\delta(u) = \delta(v)$, dann $u \equiv_{\mathcal{A}} v \Rightarrow u \equiv_{L} v \Leftrightarrow \delta_{\min}(u) = \delta_{\min}(v)$. Außerdem ist ρ surjektiv, denn $\delta_{\min}(u)$ hat das Urbild $\delta(u)$.

Also: $|Q| = |Q_{\min}| \Rightarrow \rho$ ist Bijektion. \square

1.23 Einschub - Homomorphismen von Baumsprachen

1.23.1 Allgemeine Homomorphismen

 $(M,\cdot),(N,*);h:M\to N$ heißt Homomorphismus, falls $\forall m,\hat{m}:h(m\cdot\hat{m})=h(m)*h(\hat{m})$

1.23.2 Worthomomorphismen

$$(A^*,\cdot),(B^*,\cdot);h:A^*\to B^*$$
 ist Homomorphismus, falls $h(w\cdot\hat{w})=h(w)\cdot h(\hat{w}).$ (zusätzlich $h(\varepsilon)=\varepsilon$)

Nutze für die Definition des Homomorphismus die induktive Definition von Wörtern aus A^* .

- 0.) $\varepsilon \in A^*$
- 1.) $a \in A^* \ \forall a \in A$
- $a \cdot w \in A^* \ \forall a \in A, w \in A^*$

Ein Wort-Homomorphismus entsteht deshalb aus einer Abbildung $\bar{h}: A \to B$ wie folgt:

- 0.) $h(\varepsilon) = \varepsilon$
- 1.) $h(a) = \bar{h}(a) \ \forall a \in A$
- 2.) $h(a \cdot w) = h(a) \cdot h(w) = \overline{h}(a) \cdot h(w) \ \forall a \in A, w \in A^*$

1.23.3 Baumhomomorphismen

 T_{Σ} :

- 1.) $a \in T_{\Sigma} \ \forall a^{(0)} \in \Sigma$ 2.) $f(t_1, \dots, t_n) \in T_{\Sigma} \ \forall f^{(n)} \in T_{\Sigma}$

Zunächst: Schreibe $\Sigma=\bigcup_{n=0}^r\Sigma^{(n)},$ wobe
i $\Sigma^{(n)}=rk^{-1}(n).$ Sei $X=\{x_1,\ldots,x_n\}$ und $X_n=\{x_1,\ldots,x_n\},X_0=\emptyset$

Dann ist für ein Rangalphabet Γ auch $\Gamma \cup X_n$ ein Rangalphabet mit $rk(x_i) = 0$

Nachtrag - Substitution:

 $t, s \in T_{\Sigma \cup X_n}$ (für ein $n \in \mathbb{N}$) Sei $P \subseteq pos(t), P = \{p \in pos(t) | t(p) = x_i\}$ für ein $i \in \{1, \dots, n\}$ Etwa $P = \{p_1, \ldots, p_m\}$ Dann ist $t_{[x_i \leftarrow s]} = t[s]_{p_1} \cdot \dots \cdot t[s]_{p_m}$.

Definition von Homomorphismen für jeden Rang $n = 0, \dots, r$ Wähle eine Funktion $\bar{h}_n: \Sigma^{(n)} \to T_{\Gamma \cup X_n}$ Der von $\bar{h}_0, \dots, \bar{h}_r$ erzeugte Homomorphismus $h: T_{\Sigma} \to T_{\Gamma}$

1.) $h(a) = \bar{h}_0(a) \ \forall a \in \Sigma$ 2.) $h(f(t_1,...,t_n)) = \bar{h}_n(f)[x_1 \leftarrow h(t_1)] \dots [x_n \leftarrow h(t_n)]$

Beispiel:

$$\begin{split} \Sigma &= \{a^{(0)}, g^{(1)}, f^{(2)}\} \\ \Gamma &= \{\alpha^{(0)}, \delta^{(2)}, \tau^{(2)}\} \end{split}$$

 $\bar{h}_0: a \to$ $\tau ; \bar{h}_1: g \to$ $\alpha \alpha \alpha \qquad \rho ; \bar{h}_2: f \to$

Gegenbeispiel:

Erzeugter Homomorphismus $h:T_{\Sigma}\to T_{\Gamma}$ wie oben

1.23.4 lineare Terme

Ein Term $t\in T_{\Sigma\cup X_n}$ heißt linear, falls jede Variable höchstens einmal vorkommt, d.h. falls $\forall i\in\{1,\dots,n\}:|\{p\in pos(t)|t(p)=x_i\}|\leq 1$

1.23.5 linearer Homomorphismus

Ein Homomorphismen $h: T_{\Sigma} \to T_{\Gamma}$ erzeugt von $\bar{h}_0, \dots, \bar{h}_r$ heißt linear, falls $\forall f^{(n)} \in T_{\Sigma}$ gilt: $\bar{h}_n(f) \in T_{\Gamma \cup X_n}$ ist linear.

Beispiel: im Allgemeinen erhalten Homomorphismen die Erkennbarkeit nicht. Betrachte

 $\Sigma = \{f^{(1)}, g^{(1)}, a^{(0)}\}, \Gamma = \{\hat{f}^{(2)}, g^{(1)}, a^{(0)}\}$

 $\bar{h}_0: a \to a, \bar{h}_1: g \to g(x_1), \bar{h}_1: f \to \hat{f}(x_1, x_1)$

Für $L \subseteq T_{\Sigma}, L = \{f(g^i(a))|i \in \mathbb{N}\}$ ist $h(L) = \{\hat{f}(g^i(a), g^i(a))|i \in \mathbb{N}\}$ nicht erkennbar, obwohl L erkennbar ist.

1.23.6 Satz

Sei $L\subseteq T_{\Sigma}$ erkennbar, $h:T_{\Sigma}\to T_{\Gamma}$ ein linearer Homomorphismen, dann ist $h(L)\subseteq T_{\Gamma}$ erkennbar.

Beweisskizze:

Sei $A = (Q, \Sigma, F, \Delta)$ ein reduzierter DFTA mit L(A) = L

- Seien $(\bar{h}_n)_{n=0}^r$ die erzeugenden Funktionen von h
- Definiere NFTA $A' = (Q', \Gamma, F', \Delta)$ wie folgt: für jede Regel $\rho: f(q_1, \ldots, q_n) \to q \in \Delta$: Setze $Q^{\rho} = \{q_p^{\rho} | q \in pos(\bar{h}_n(f))\}$ und Δ^{ρ} für jedes $p \in pos(\bar{h}_n(f))$ falls $(\bar{h}_n f)(p) = g^{(k)} \in \Gamma^{(k)}$ für ein k, $g(q_{p-1}^{\rho}, \ldots, q_{p-k}^{\rho}) \to q_p \in \Delta^{\rho}$ falls $(\bar{h}_n f)(g) = x_i$ für ein i $q_i \to q_p^{\rho} \in \Delta^{\rho}$ $q_{\varepsilon}^{\rho} \to q \in \Delta^{\rho}$ OBdA Q^{ρ} paarweise disjukt auch mit Q

$$\bullet \ Q' = \bigcup_{\rho \in \Delta} Q^{\rho} \cup Q$$

$$\bullet \ \Delta = \bigcup_{\rho \in \Delta} \Delta^{\rho} \cup Q$$

•
$$F' = F$$

1.23.7 Satz

Sei $h:T_{\Sigma}\to T_{\Gamma}$ beliebiger Homomorphismus und $L\subseteq T_{\Gamma}$ erkennbar. Dann ist auch $h^{-1}(L)\subseteq T_{\Sigma}$ erkennbar.

Beweis:

Sei $A' = (Q', \Gamma, F', \Delta')$ ein vollständiger DFTA mit L(A') = L. Definiere $A = (Q, \Sigma, F, \Delta)$ wie folgt: Q = Q', F = F' $f(q_1, \dots, q_n) \to q \in \Delta$ $\Leftrightarrow \bar{h}_n(f)[x_1 \leftarrow q_1] \cdot \dots \cdot [x_n \leftarrow q_n] \to_{\mathcal{A}'}^* q$

Beweis der Korrektheit (strukturelle Induktion): Zeige die stärkere Aussage: für $q \in Q = Q'$ gilt

$$\begin{array}{c} t \to_{\mathcal{A}}^* q \Leftrightarrow h(t) \to_{\mathcal{A}'}^* q \\ (h^{-1}(s) \to_{\mathcal{A}}^* q \Leftrightarrow s \to_{\mathcal{A}'}^* q) \end{array}$$

In duktions annahme:

Sei $t = a \in \Sigma^{(0)}$. Dann gilt $h(a) \to_{\mathcal{A}'}^* q \Leftrightarrow \bar{h}_0(a) \to_{\mathcal{A}'}^* q \Leftrightarrow a \to q \in \Delta \Leftrightarrow a \to_{\mathcal{A}}^* q$

Induktionsvoraussetzung:

Die Aussage gelte für Terme mit Höhe $\leq k$

Induktionsschritt: Dann gilt sie auf für t mit Höhe k+1. Sei $t=f(t_1,\ldots,t_n)$ mit $ht(t_i)\leq k \ \forall i\in\{1,\ldots,m\}$

$$t \to_{\mathcal{A}}^* q \Leftrightarrow \exists q_1, \dots, q_n : t_i \to_{\mathcal{A}}^* q_1 \text{ und } f(q_1, \dots, q_n) \to q \in \Delta$$

$$\Leftrightarrow \exists q_1, \dots, q_n : h(t_i) \to_{\mathcal{A}'}^* q_i \text{ und } f(q_1, \dots, q_n) \to q \in \Delta$$

$$\Leftrightarrow \exists q_1, \dots, q_n : h(t_i) \to_{\mathcal{A}'}^* q_i \text{ und } \bar{h}_n(f)[x \leftarrow q_i] \cdot \dots \cdot [x_n \leftarrow q_n] \to_{\mathcal{A}'}^* q$$

$$\Leftrightarrow \bar{h}_n(f)[x_1 \leftarrow h(t_1)] \cdot \dots \cdot [x_n \leftarrow h(t_n)] \to_{\mathcal{A}'}^* q$$

$$\Leftrightarrow h(f(t_1, \dots, t_n))(=h(t)) \to_{\mathcal{A}'}^* q$$

1.24 Top-Down Baumautomaten

Bisher: Bottom-Up TA - laufen Bäume von den Blättern zu der Wurzel nach oben. Nun: Top-Down TA - umgekehrt

Definition:

Ein nicht-deterministischer Top-Down Baumautomat ist ein Tupel $\mathcal{A} = (Q, \Sigma, I, \Delta)$, wobei:

- $\bullet \ Q$ eine enliche Menge Zustände
- $\bullet~\Sigma$ ein Rangalphabet
- $I \subseteq Q$ Initialzustände
- Δ eine endliche Menge Regeln der Form $q(f(x_1,\ldots,x_n)) \to f(q_1(x_1),\ldots,q_n(x_n))$ bzw. für n=0: $q(a) \to a$

ist.

Beispiel:

Wir betrachten wieder $\Sigma = \{a^{(0)}, b^{(0)}, f^{(2)}\}$ und t =

Setze

$$Q = \{q_f(f(x_1, x_2)) \rightarrow f(q_f(x_1), q_b(x_2)), q_f(f(x_1, x_2)) \rightarrow f(q_a(x_1), q_b(x_2)), q_a(a) \rightarrow a, q_b(b) \rightarrow b\}$$

Run für t (intuitiv):

Betrachte folgende Übergangsrelation:

$$C[q(f(t_1,...,t_n))] \to C[f(q_1(t_1),...,q_n(t_n))], C \in T_{\Sigma \cup Q}(x),$$

falls $q(f(x_1,...,x_n)) \to f(q_1(x_1),...,q_n(x_n)) \in \Delta$

 \rightarrow^* transitive Hülle

$$L(\mathcal{A}) = \{ t \in T_{\Sigma} | q(t) \to^*, q \in I \}$$

1.25 Satz

Eine Sprache $L \subseteq T_{\Sigma}$ ist genau dann erkennbar, wenn es einen nichtdeterministischen Top-Down TA \mathcal{A} gibt mit $L = L(\mathcal{A})$.

Bemerkung:

Top-Down Automaten sind nicht determinisierbar. Deterministische Top-Down TA erkennen "path closed" Sprachen.

2 Grammatiken

2.1 Definition - Grammatik

Eine Grammatik ist ein Tupel $G = (S, N, \Sigma, R)$. Dabei ist:

- S Startsymbol $(S = S^{(0)}, S \in N)$
- \bullet N (Rangalphabet) nichtterminale Symbole
- Σ (Rangalphabet) terminale Symbole ($\Sigma \cap N = \emptyset$)
- R Regeln der Form $\alpha \to \beta$ mit: $\alpha, \beta \in T_{\Sigma \cup N \cup X} \ (X \cap (\Sigma \cup N) = \emptyset \text{ Variablen}),$ α enthält mindestens ein Nichtterminal-Symbol

Eine reguläre Grammatik enthält nur Regel
nd der Form $A \to B$, wobei A den Rang 0 hat und $b \in T_{\Sigma \cup N}$. Ins
besondere enthält N nur Symbole mit Rang 0.

Beispiel: Betrachte $G=(S,\{S,A\},\{a^{(0)},b^{(0)},f^{(2)}\},R)$ mit $R=\{S\to f(A,b),A\to a,A\to f(A,b)\}$ zum Beispiel haben wir:

Beispiel: Betrachte $G = (S, \{S, A\}, \{a^{(0)}, g^{(3)}, f^{(2)}\}, R)$ mit $R = \{S \to A, A \to f(a, b), A \to g(a, A, b)\}$ zum Beispiel:

Bemerkung - kontextfreie Baumgrammatik:

$$F(x_1,...,x_n) \to t, t \in T_{\Sigma \cup N \cup \{x_1,...,x_n\}}$$

z.B. $S \to F(a,a), F(x,x) \to F(G(x),G(x)), F(x,x) \to f(x,x), G(x) \to g(x)$

Damit können wir erzeugen:

$$S \to F(a,a) \to F(G(a),G(a)) \to F(G(G(a)),G(G(a))) \to \cdots \to f(g(g(a)),g(g(a)))$$
 f
$$g \quad g \quad | \quad | \quad |$$
 g \ g \ | \ | \ | a \ a

Betrachte nun folgende Ableitungsrelation für reguläre Grammatiken:

Wir schreiben $s \to_G$ genau dann wenn ein Kontext $C \in T_{\Sigma \cup N}(x)$ existiert, sodass

 $s = C[A], t = C[\alpha], A \to \alpha \in R$ für $G = (S, N, \Sigma, R).$

Mit \to_G^* bezeichnen wir die transitive Hülle von \to_G .

2.2 Definition

Ist G eine reguläre Grammatik, dann heißt $L(G) = \{t \in T_{\Sigma} | S \to_G^* t\}$ die von G akzeptierte Sprache. Eine Sprache $L \subseteq T_{\Sigma}$ heißt regulär, falls L = L(G) für eine reguläre Grammatik. Betrachte reguläre Grammatik $G = (S, N, \Sigma, R)$ Wir bezeichnen mit $L_G(A)$, $A \in N$, die von G erzeugte Sprache mit A als Startsymbol.

2.3 Definition - reduziert

Sei $G = (S, N, \Sigma, R)$ eine reguläre Grammatik und $A \in N$. Dann heißt A

- erreichbar, falls ein Kontext $C \in T_{\Sigma}(x)$ existiert, so dass $S \to_G^* C[A]$
- produktiv, falls $L_G(A) \neq \emptyset$

G heißt reduziert, falls alle $A \in N$ erreichbar und produktiv sind.

2.4 Satz

Ist G eine reguläre Grammatik mit L(G) = L, dann existiert eine reduzierte reguläre Grammatik G' mit L(G') = L.

Nun: zu G eine "Normalform "konstruieren.

2.5 Definition - Normalisierung

Eine reguläre Grammatik G heißt normalisiert, falls alle Regeln aus R die Form

- $A \to f(A_1, \ldots, A_n), A, A_1, \ldots, A_n \in N, v \in \Sigma^{(n)}$
- $A \rightarrow a, A \in N, a \in \Sigma$

2.6 Satz

Ist G eine reguläre Grammatik mit L(G) = L, dann existiert eine normalisierte reguläre Grammatik G' mit L(G') = L.

Beweis: Wir ersetzen Regeln der Form $A \to f(s_1, \ldots, s_n)$ durch $A \to f(A_1, \ldots, A_n)$ wobei: Ist $s_i \in N$, dann ist $A_i = s_i$, ansonsten ist A_i ein neues Symbol und wir fügen $A_i \to s_i$ hinzu. ...Iterieren...

Es bleiben übrig:

$$A \to f(A_1, \dots, A_n), A \to a \in \Sigma, A_i \to A_i$$
 (letztere überbrücken)

Wir erhalten nun:

2.7 Theorem

L ist erkennbar $\Leftrightarrow L$ ist regulär.

Beweis:

" \Rightarrow "Ist L erkennbar, so existiert ein nicht-deterministischer Top-Down-TA $\mathcal{A}=(Q,\Sigma,I,\Delta)$ mit $L=L(\mathcal{A})$. Betrachte eine Grammatik $G=(S,N,\Sigma,R)$ mit

- \bullet S ist ein neues Symbol
- $N = \{A_q | q \in Q\}$
- $R = \{A_q \to f(A_{q_1}, \dots, A_{q_n}) | q(f(x_1, \dots, x_n)) \to f(q_1(x_1)), \dots, q_n(x_n) \in \Delta\} \cup \{S \to A_{q_i} | q_i \in I\}$

Offensichtlich ist L(G) = L(A)

"← "analog (gehe von normalisierter Grammatik aus) □

Ziel: Definieren Konkatenation und Kleene-Stern

Problem hierbei ist: Wir müssen erklären, wie wir Bäume zusammensetzen.

Dazu definieren wir: Substitution von Sprachen.

Betrachte $t \in T_{\Sigma \cup k}$, wobei $k = \{\Box_1, \ldots, \Box_n\}, \Box_i$ sind Konstanten. Es seien $L_i \subseteq T_{\Sigma \cup k}$ Sprachen. Dann ist die Substitution $t\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\}$ induktiv wie folgt definiert:

- $\Box_i\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\} = L_i$
- $a\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\} = \{a\}, a \neq \Box_i, a \in \Sigma^0$
- $f(s_1, ..., s_n)\{\Box_1 \leftarrow L_1, ..., \Box_n \leftarrow L_n\} = \{f(t_1, ..., t_n) | t_i \in s_i\{\Box_1 \leftarrow L_1, ..., \Box_n \leftarrow L_n\}\}$

Außerdem setzen $L\{\Box_1 \leftarrow L_1, \dots, \Box_n \leftarrow L_n\} = \bigcup_{t \in L} t\{\Box_1 \leftarrow L_1, \dots, \Box_n \leftarrow L_n\}$

Beispiel: Betrachte $k = \{\Box_1, \Box_2\}$

t =

$$L_2 = \{a, b\}$$

Dann ist $t\{\Box_2 \leftarrow L_2\} = \{$

Nun setzen wir für zwei Sprachen L, M:

$$L \cdot_{\square} M = \bigcup_{t \in I} t \{ \square \leftarrow M \}$$

 $L \cdot_{\square} M = \bigcup_{t \in L} t\{\square \leftarrow M\}$ Des weiteren ergibt sich der Kleene-Stern:

- $\bullet \ L^{0.\square} = \{\square\}$
- $\bullet \ L^{n+1.\square} = L^{n.\square} \cup L \cdot_{\sqcap} L^{n.\square}$

$$\Rightarrow L^{*.\square} = \bigcup_{n \geq L^{n.\square}}$$

Beispiel: Betrachte $L = \{$

$$\begin{array}{l} L^{0.\square} = \{\square\} \\ L^{1.\square} = \{\square\} \cup L \cdot_{\square} \{\square\} = \{\square\} \cup \{\square\} \end{array}$$

$$L = \{ \sqcup \} \cup L \cdot \square \{ \sqcup \} = \{ \sqcup \} \cup \{$$

$$\begin{cases}
f, a \\
f, a \\
\end{cases} = \dots$$

$$L^{2.\square}=\{\square,$$

f $,a\} \cup L \cdot_{\square} \{\Box,$

Abschlusseingenschaften:

2.8 Satz

Es sei $L \subseteq T_{\Sigma \cup k}$ regulär, sowie $\square_1, \ldots, \square_n \in k$. Dann ist $L\{\square_1 \leftarrow L_1, \ldots, \square_n \leftarrow L_n\}$ regulär.

Beweis:

Betrachte normalisierte Grammatiken G, G_1, \ldots, G_n mit $L(G) = L, L(G_1) = L_1, \ldots, L(G_n) = L_n$, $G = (S, N, \Sigma \cup k, R), G_i = (S_i, N_i, \Sigma \cup k, R_i)$. (alle Nichtterminale paarweise disjunkt) Konstruiere $G' = (S, N', \Sigma \cup k, R')$ mit:

- $N' = N \cup N_1, \cup \cdots \cup N_n$
- R' enthält alle Regeln in R, R_1, \ldots, R_n , wobei $A \to \square_i$ ersetzt werden durch $A \to S_i$

Direkt zeigen: $L\{\Box_1 \leftarrow L_1, \dots, \Box_n \leftarrow L_n\} \subseteq L(G')$

Wir zeigen "⊇"

Induktion: über die Anzahl der Ableitungsschritte zeigen wir $A \to_{G'}^* s'$ mit $S \in T_{\Sigma \cup k}$ — s' enthält keine Nichtterminale

$$\exists s \text{ mit } A_{G'}^* \text{ und } s' \in s\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\} \text{ } -- \text{ das heißt } s" \in L_G(A)\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\}$$

Induktionsannahme: Angenommen $A \to_G^*$ in einem Schritt, das heißt $s' \in L$, die Regel kann nicht $A \to \square_i$ sein (existiert nicht in G') und auch nicht $A \to s_i$ (kein $s' \in T_{\Sigma \cup k}$. Damit: $S' \in L$. Seze s = s', damit enthält s kein \square_i , also $\{s'\} = \{s\} = s\{\square_1 \leftarrow L_1, \ldots, \square_n \leftarrow L_n\}$, also insbesondere $s' \in s\{\square_1 \leftarrow L_1, \ldots, \square_n \leftarrow L_n\} \subseteq L(A)\{\square_1 \leftarrow L_1, \ldots, \square_n \leftarrow L_n\}$ Induktionsschritt: $A \to_{G'}^* s'$: zerlege $A \to G'$ s' Fälle für s (bzw. $A \to s_1$)

- $a \to f(A_1, \ldots, A_m) \Rightarrow s' = f(t_1, \ldots, t_n)$. Laut Induktionsvoraussetzung: $t_i \in L(A_i)\{\Box_1 \leftarrow L_1, \ldots, \Box_n \leftarrow L_n\} \Rightarrow s' \in L(A)$
- $A \to s_i \in R' \Rightarrow A \to \square_i \in R$ (laut Konstruktion) $\Rightarrow \square_i \in L(A) \Rightarrow s' \in L_i \Rightarrow s' \in L(A) \{ \square_1 \leftarrow L_1, \ldots, \square_n \leftarrow L_n \}$

Aussage gilt für alle Nichtterminale A_i , also auch für Startsymbol S. \square

2.9 Satz

Ist $L \subseteq T_{\Sigma \cup K}$ regulär und $\square \in K$, dann ist $L^{*,\square}$ regulär. Beweis: Betrachte normalisierte Grammatik $G = (S, N, \Sigma \cup K, R)$ mit L(G) = L. Konstriere $G' = (S', N \cup \{S'\}, \Sigma \cup K, R')$ (mit $S' \notin N$) wie folgt: R' enthälte alle Regeln aus R, wobei:

- $A \to \square$ wird ersetzt durch $A \to S'$
- \bullet $S' \to S$
- $S' \to \square$ (damit $\square \in L(G')$)

Induktion liefert: $L(G') = L^{*.\square}$

2.10 Definition

Wir formalisieren nun die rationalen Ausdrücke:

Sei Σ ein Rangalphabet, K eine Menge Konstanten mit $\square \in K$: Dann ist $Rat(\Sigma, K)$ die kleinste Menge, sodass:

- $\emptyset \in Rat(\Sigma, K)$
- $a \in \Sigma^0 \cup K'Rightarrowa \in Rat(\Sigma, K)$
- $f \in \sigma^n, E_1, \dots, E_n \in Rat(\Sigma, K) \Rightarrow f(E_1, \dots, E_n) \in Rat(\Sigma, K)$
- $E_1, E_2 \in Rat(\Sigma, K) \Rightarrow E_1 \cup E_2 \in Rat(\Sigma, K)$
- $E_1, E_2 \in Rat(\Sigma, K), \square \in K \Rightarrow E_1 \cdot_{\square} E_2 \in Rat(\Sigma, K)$
- $E_1 \in Rat(\Sigma, K), \square \in K \Rightarrow E_1^{*,\square} \in Rat(\Sigma, K)$

Die Ausdrücke $Rat(\Sigma, K)$ heißen rational über Σ und K. Ist E ein rationaler Ausdruck in $Rat(\Sigma, K)$, dann repräsentiert E eine Menge von Termen aus $T_{\Sigma \cup K}$, bezeichnet mit ||E||.

- $||\emptyset|| = \emptyset$
- $||a|| = \{a\}$
- $f(E_1, \ldots, E_n)|| = \{f(t_1, \ldots, t_n)|t_i \in ||E_i||\}$
- $||E_1 \cup E_2|| = ||E_1|| \cup ||E_2||$
- $||E_1 \cdot E_2|| = ||E_1|| \{ \Box \Leftarrow ||E_2|| \}$
- $||E^{*.\Box}|| = ||E||^{*.\Box}$

Beispiel: Der Ausdruck $(f(\Box, b))^{*.\Box} \cdot_{\Box} a$ ist rational und repräsentiert alle Terme der Form

Wir erhalten die "Baumautomaten "- Variante von Kleene:

2.11 Theorem

Rationale Ausdrücke haben die selbe Ausdrucksstärke wie bottom-up Baumautomaten.

Beweis: Ist E ein rationaler Ausdruck, so existiert laut Sätzen 2.8 und 2.9 und den Abschlusseigenschaften von Baumautomaten einen Baumautomaten \mathcal{A} mit $L(\mathcal{A}) = ||E||$. Umgekehrt: Sei $\mathcal{A} = (Q, \Sigma, F, \Delta)$ ein Baumautomat. Wir zeigen: Es existiert ein rationaler Ausdruck E aus $Rat(\Sigma.K)$ mit $||E|| = L(\mathcal{A})$.

Betrachter hierzu für $1 \le i, j \le |Q|$ und $Z \subseteq Q$ Terme T(i, j, Z) definiert wie folgt: $t \in T(i, j, Z)$, falls $t \in T_{\Sigma \cup K}$ mit einem Lauf R in t, so dass:

- $v(\varepsilon) = q_i$
- ist $p \neq \varepsilon$ und t(p)/inZ, dann ist $r(p) \in \{q_1, \ldots, q_j\}$

Damit: $L(\mathcal{A}) = \bigcup_{q_i \in F} T(i, |Q|, \emptyset)$

Induktion über $j: T(i, j, Z) \in Rat(\Sigma, K)$ $j = 0: t \in T(i, 0, Z)$ bedeutet, es existiert ein Lauf r

- $r(\varepsilon) = q_i$
- kein Symbol, das nicht nullstellig ist, darf gelabelt sein $\Rightarrow t = a$ oder $t = f(a_1, \dots, a_n), a_1, \dots, a_n \in \Sigma^0 \Rightarrow$ endlich viele, also existiert ein rationaler Ausdruck

Induktionsschritt: Angenommen für j' < j ist $T(i,j',Z) \in Rat(\Sigma,Q)$. Schreibe $T(i,j,Z) = T(i,j-1,Z) \cup T(i,j-1,Z \cup \{q_j\}) \cdot_{q_i} (T(j,j-1,Z \cup \{q_j\}))^{*,q_j} \cdot_{q_i} T(j,j-1,Z)$

Ziel: Zusammenhang zwischen Baum- und Wortsprachen

Neben der Pfadsprache (siehe Übung) betrachten wir den sogenannten Yield-Operator, definiert wie folgt:

- $Yield(a^{(0)}) = a$ für eine Konstante $a^{(0)} \in \Sigma$
- $Yield(f(t_1, ..., t_n)) = Yield(t_1) \cdot ... \cdot Yield(t_n)$ für $f^{(n)} \in \Sigma, t_i \in T_{\Sigma}$

Für Sprache L gilt: $Yield(L) = \bigcup_{t \in \Sigma} Yield(t)$

Beispiel: Yield(f(f(a,b),b)) = abb

 $Yield(||g(a,\square,b)^{*.\square} \cdot_{\square} f * (a,b)||) = \{a^nb^n | n \in \mathbb{N}, n \geq 1\}$

Wir wolen reguläre Baumsprachen mit Ableitungsbäumen von kontextfreien Wortgrammatiken "vergleichen". Betrachte G = (S, N, T, R) (kontextfreie Wortgrammatik, d.h. Regeln in R haben die Form $A \to \alpha$, wobei $A \in N, \alpha \in (N \cup T)^+$).

Betrachte zum Beispiel G = (S, N, T, R) mit Regeln:

 $S \to aSb, S \to ab \text{ mit } L(G) = \{a^nb^n | n \in \mathbb{N}, n \ge 1\}.$

Der Syntaxbaum für aabb hat die Form

, d.h. S hat keinen festen Rang.

Betrachte daher für gegebene Grammatik G Tupel (A, m) für jedes $A \in \mathbb{N}$, sodass $A \to \alpha \in \mathbb{R}$ mit $|\alpha| = m$.

Zu einem Symbol $a \in T \cup N$ definieren wir die Menge der von a ausgehenden Ableitungsbäume in G, D(G, a), wie folgt:

- $D(G,a) = \{a\}$ für $a \in T$
- $(a,0)(\varepsilon) \in D(G,a)$, falls $a \to \varepsilon \in R$

- $(a,m)i(t_1,\ldots,t_m) \in D(G,a)$, falls $t_i \in (G,a_i), a_i \in T \cup N, a \to a_1,\ldots,a_m \in R$
- Ableitungsbäume für G sind $D(G) = \bigcup_{a \in t \cup N} D(G,a)$

Beispiel: G = (S, N, T, R) mit $S \to aSb, S \to ab$. Dann ist

$$(S,3) \quad \text{in } D(G)$$

$$(S,2) \quad b$$

$$(S,2) \quad b$$

Bemerkung: Ist G eine kontextfreie Grammatik, so ist natürlich Yield(D(G)) = L(G).

2.12 Satz

- 1.) Ist G = (S, N, T, R) eine kontextfreie Wortgrammatik, dann ist D(G) reguläre Baumsprache.
- 2.) Ist L reguläre Baumsprache, dann ist Yield(L) kontextfreie Wortsprache.
- 3.) Es existieren reguläre Baumsprachen, die nicht Ableitungsbäumen von kontextfreien Sprachen entsprechen.

Beweis:

- 1.) Erzeuge Grammatik $G' = (S, N, \Sigma, R')$ mit:
 - $\Sigma = T \cup \{\varepsilon\} \cup \{(A, m) | A \in N, A \to \alpha \in R \text{ mit } |\alpha| = m\}$
 - $A \to (A,0)(\varepsilon) \in R'$, falls $A \to \varepsilon \in R$
 - $A \to (A, m)(A_1, \dots, A_m) \in R'$, falls $A \to A_1 \dots A_m \in R$

damit ist offensichtlich Yield(L(G')) = L(G).

- 2.) Betrachte normalisierte Grammatik $G = (S, N, \Sigma, R)$ mit L(G) = L. Erzeuge Wortgrammatik $G' = (S, N, \Sigma^{(0)}, R')$ mit folgenden Regeln:
 - $A \to A_1, \ldots, A_m \ (A \to a) \in R'$, falls $A \to f(A_1, \ldots, A_n) \ (A \to a) \in R$ für $f^{(m)} \in \Sigma$
- 3.) Übung

Pfadsprache $\pi(n)$:

- $a \in \Sigma^0$ dann ist $\pi(a) = \{a\}$
- $t = f(t_1, \dots, t_n)$, dann ist $\pi(t) = \bigcup_{i=1}^n \{fiw | w \in \pi(t_i)\}$

Beispiel:
$$t =$$

$$f \rightarrow \pi(t) = \{f1f1a, f1f2b, f2b\}$$

$$b$$

$$\pi(L) = \bigcup_{t \in L} \pi(t)$$

2.13 Satz

Ist $L \subseteq T_{\Sigma}$ eine reguläre Baumsprache, dann ist $\pi(L)$ eine reguläre Wortsprache.

Komplexität

Um den Input zu formalisieren, setze: (für $t \in T_{\Sigma}$)

- ||t|| = 1, falls t Konstante
- $||t|| = 1 + \sum_{i=1}^{n} ||t_i||$, falls $t = f(t_1, \dots, t_n)$ $\hat{=} |Pos(t)|$
- für einen Automaten \mathcal{A} : $||\mathcal{A}|| = |Q| + \sum_{r \in \mathcal{A}} ||r||$, wobei ||r|| = n + 2 für $r = f(q_1, \dots, q_n) \to q$

Betrachte nun:

MEMBERSHIP

- Input: $t \in T_{\Sigma}$
- Output: "Yes", dgw. $t \in L(\mathcal{A})$ für gegebenen Automaten \mathcal{A}
- \rightarrow linear

UNIFORM MEMBERSHIP

- Input: Input: $t \in T_{\Sigma}$, A bottom-up Baumautomat
- Output: "Yes", dgw. $t \in L(A)$
- \rightarrow deterministischer TA: rightarrow linear
- \rightarrow nichtdeterministischer TA: $rightarrow~O(||t|| \cdot ||\mathcal{A}||)$ (polynomiell)

("on the fly"alle erreichbaren Zustände bestimmen)

EMPTYNESS

- Input: A bottom-up Baumautomat
- Output: "Yes" gdw. $L(A) = \emptyset$
- \rightarrow übersetze in Horn-Formeln
- \rightarrow linear

UNIVERSALITY

- Input: A
- Output: "Yes" gdw. $L(A) = T_{\Sigma}$
- \rightarrow Exptime-vollständig (Determinisierten, bevor \mathcal{A}^c gebildet werden kann)

FINITENESS

- Input: A
- Output: "Yes" gdw. L(A) endlich
- \rightarrow Pumping: Exptime
- \rightarrow nach Loops suchen für Automat

 $q \text{ mit } C[q] \to^* q \text{ für } C \in T)\Sigma(x)$

und $C'[q] \to^* q_f \in F$ für $C' \in T)\Sigma(x)$

 \rightarrow polynomiell

3 Weitere Modelle, Ausblick

Wir betrachten 2 Modelle, die weniger ausdrucksstart als Baumautomaten sind. Dabei gehen wir nicht mehr von einem Rangalphabet aus, d.h. interne Symbole haben beliebig (endlich) viele Kinder.

3.1 Definition

Es sei Σ eine endliche Menge (von Symbolen) und Q ein Alphabet (von Blättern) und $Q \cap \Sigma = \emptyset$. Die Menge $T_{\Sigma,Q}$ der Σ -Bäume mit Q-Blättern ist induktiv definiert wie folgt:

- $q \in Q \Rightarrow q \in T_{\Sigma,Q}$
- $n \ge 1, f \in \Sigma, t_1, \dots, t_n \in T_{\Sigma,Q} \Rightarrow f(t_1, \dots, t_n) \in T_{\Sigma,Q}$

Die Menge Pos(t) der Positionen eines Terms $t \in T_{\Sigma,Q}$ sowie Teilbäume etc. sind definiert wie bisher.

Betrachte kontextfreie Grammatik $G = (\Sigma_0, \Sigma, Q, R)$.

Dann haben wir Regeln der Form $A \in \Sigma \to \alpha \in (\Sigma \cup Q)^*$ und erzeugen so Zeichenketten von Wörtern.

Wir fassen G als Baumgrammatik auf: $A \to \alpha_1, \ldots, \alpha_n \Rightarrow$

3.2 Definition

Eine lokale Baumgrammatik (LTG) ist eine kontextfreie Grammatik $G = (\Sigma_0 \Sigma, Q, R)$. Ein Term $t \in T_{\Sigma,Q}$ wird von G erzeugt, falls

- $t(\varepsilon) \in \Sigma_0$
- Ist w interene Posotion $(w \in Pos(t))$ mit $\{i|wi \in Pos(t)\} = \{1,\ldots,n\} \neq \emptyset$, dann ist $t(w) \to t(w_1) \cdot \cdots \cdot t(w_n) \in R$
- Ist w ein Blatt, dann ist $t(w) \in Q$

Lokale Baumsprache (LTL): $L(G) = \{t \in T_{\Sigma,Q} | G \text{ erzeugt t} \}$

Beispiel: Sei
$$\Sigma_0=\{f\}, \Sigma=\{f\}, Q=\{a,b\}, R=\{f\to fb, f\to ab\}$$
 Dann wird
$$f \quad \text{von } G=(\Sigma_0,\Sigma,Q,R) \text{ erzeugt.}$$

Offensichtlich ist Yield(L(G)) kontextfrei für LTG G.

3.3 Satz

Sind G, G' LTGs, dann existiert eine LTG $G \cap G'$ mit $L(G \cap G') = L(G) \cap L(G')$ Beweis: Betrachte $\Sigma \cap \Sigma', Q \cap Q', R \cap R', \Sigma_0 \cap \Sigma'_0$

Falls $Q \cap Q' \neq \emptyset$, ansonsten irgendeine Grammatik mit leerer Sprache, etwa $(\emptyset, \Sigma, Q, R)$

Beispiel: LTL sind nicht abgeschlossen unter Vereinigung

Betrachte Terme der Form

Betrachte

Falls G alle Terme aus G_1 und G_2 erzeugt, so auch gemischte, z.B. $g(f^i(a), f^j(b))$ Demzufolge sind LTBs auch nicht abgeschlossen unter Komplement.

Nun: Größere "Bausteine"für Baüme

3.4 Definition

Eine Baumsubstitutionsgrammatik (TSG) ist ein Tupel $G = (\Sigma_0, \Sigma, Q, R)$, wobei $R \subseteq T_{\Sigma,Q}$ (mit nicht notwendigerweise $\Sigma \cap Q = \emptyset$) eine endliche (Menge von Fragmenten) ist.

Wir setzen $t \to_{TSG} t'$, falls

- $p \in R$ Fragment
- $C \in T_{\Sigma,Q}(x)$ Kontext

existieren mit

• $t = C[p(\varepsilon)], t' = C[p]$

Beispiel:

$$R = \{ \begin{array}{ccc} \mathbf{f} &, & \mathbf{f} & \} \\ & \widehat{\mathbf{f}} & \widehat{\mathbf{b}} & \widehat{\mathbf{a}} & \widehat{\mathbf{b}} \\ \Sigma_0 = \{f\} & \end{array}$$

Ist G eine TSG, dann ist $L(G) = \bigcup_{t_0 \in \Sigma_0} \{t \in T_{\Sigma,Q} | t_0 \to_T^* SGt, \text{Blätter von t in Q} \}$

Beispiel (Vereinigung): siehe oben, mit "Pumping"-Argument Beispiel (Schnitt): Seien $x_i \in \{a,b\}$

 $L_1 =$

Ziel: gewichtete Baumautomaten

Diese werden analog zu gewichteten Wortautomaten definiert. Betrachte hierzu einen Wortautomaten $\mathcal{A} = (Q, A, I, F, \delta)$ mit $\delta \subseteq Q \times A \times Q$.

 \rightarrow ungewichtete Automaten können Eigenschaften testen, z.B.:

Gewichtete Automaten können u.a. zählen, wie oft, d.h. in diesem Fall $||\mathcal{A}||(w) = |w|_a$

Definition:

Ein Tupel $(S, +, \cdot, 0, 1)$ heißt Semiring, falls

- (S, +, 0) kommutativer Monoid
- $(S, \cdot, 1)$ Monoid
- Distributivität $(a+b) \cdot c = a \cdot c + b \cdot c, \ c \cdot (a+b) = c \cdot a + c \cdot b \ \forall a,b,c \in S$
- 0 absorbiert: $0 \cdot x = x \cdot 0 = 0 \ \forall x \in S$

S heißt kommutativ, falls · kommutativ ist. S heißt Ring, falls (S, +, 0) eine Gruppe ist.

Beispiel:

- $(N, +, \cdot, 0, 1)$ (N mit 0)
- $B = (\{0,1\}, \vee, \wedge, 0, 1)$
- max-plus $(R_+ \cup \{-\infty\}, max, +, -\infty, 0)$
- min-plus $(R_+ \cup \{\infty\}, min, +, \infty, 0)$

Definition:

Sei A ein Alphabet, S ein Semiring. Ein gewichteter Automat \mathcal{A} über S und A ist ein Tupel $\mathcal{A} = (Q, in, wt, out)$ mit:

- ullet Q endliche Menge von Zuständen
- $wt \ Q \times A \times Q \rightarrow S$
- in, out $Q \rightarrow S$

Betrachte $w=a_1,\ldots,a_n$ mit Pfad $p=t_1,\ldots,t_n,$ d.h. $t_i=(q_{i-1},a_i,q_i)$ Dann setzen wir

- $wt(p) = wt(t_1) \cdot \cdots \cdot wt(t_n)$
- $weight(p) = in(q_0)wt(p)out(q_n)$

Das Verhalten von \mathcal{A} ist nun

$$\begin{split} &||\mathcal{A}||A^* \to S \text{ mit } \\ &||\mathcal{A}||(w) = \sum_{q_i, q_j \in Q} in(q_i)wt(p)out(q_j) \text{ (für } q_i \text{ nach } q_j) \\ &= \sum_{\text{p Pfad für w}} weight(p) \end{split}$$

Beispiel: $S = (N, +, \cdot, 0, 1)$

Dann ist $||\mathcal{A}||(w) = |w|_a$

Nun: Baumautomaten. Betrachte ein Rangalphabet Σ

3.5 Definition

Sei Σ ein Rangalphabet und S ein kommutativer Semiring. Ein gewichteter Baumautomat (WTA) ist ein Tupel $\mathcal{A}(Q, \sigma, F, wt)$, wobei:

 \bullet Q endliche Menge an Zuständen

- $\Sigma \cap Q = \emptyset$
- $F \subseteq Q$ Finalzustände

und $(wt_f)_{f\in\Sigma}$ mit $wt_f: Q^{rk(f)} \times Q \to S$

Beispiel:

 $wt_a(q_a) = 1$ $wt_b(q_b) = 1$ $wt_f((q_a, q_b), q_a) = 2$ $wt_f((q_a, q_b), q_f) = 3$

Ein Run für $t \in T_{\Sigma}$ ist ein Baum r mit Pos(r) = Pos(t) und Labels in Q. Betrachte Pos n mit t(n) = f rk(f) = n Dann ist das Gewicht von r an n für

Betrachte Pos p mit t(p)=f, rk(f)=n. Dann ist das Gewicht von r an p für t gegeben durch $wt(r)=\prod_{p\in Pos(r)}wt(r,p)$

wir nennen S valid, falls $wt(r,p) \neq 0 \ \forall p \in Pos(r)$. Das bedeutet i.A. nicht, dass dann auch $wt(r) \neq 0 ist$.

Ein Run r heißt akzeptiert, falls $wt(r) \neq 0$ und $r(\varepsilon) \in F$.

Das Verhalten von \dashv ist nun $||\mathcal{A}||: T_{\Sigma} \to S$ mit

$$\begin{aligned} ||\mathcal{A}||(w) &= \sum_{q \in F} \sum_{rvalid \text{ mit } r(\varepsilon) = q} wt(r) \\ &= \sum_{\text{r akzeptiert}} wt(r) \end{aligned}$$

Beispiel:

Sei
$$\Sigma = \{a^{(0)}, f^{(2)}\}, Q = \{q_0, q_1\}, F = \{q_1\}$$

Setze $wt_a(q_1) = 1$

 $wt_a(q_0) = 1$

$$wt_f((q_0, q_0), q_1) = 0$$

$$wt_f((q_0, q_1), q_1) = 1$$

$$wt_f((q_1, q_0), q_1) = 1$$

$$wt_f((q_1, q_1), q_1) = 1$$

$$wt_f((q_0, q_0), q_0) = 1$$

$$wt_f((q_0, q_1), q_0) = 0$$

$$wt_f((q_1, q_0), q_0) = 0$$

$$wt_f((q_1, q_1), q_0) = 0$$

$$||\mathcal{A}||(t) = 2^{|t|_a} - 1$$

Setze $wt_f((q_1, q_1), q_1) = 0$ und alle anderen wie oben, dann ist $||\mathcal{A}(t)|| = |t|_a$

3.6 Satz

Ist $L \subseteq T_{\Sigma}$ erkennbar und S ein beliebiger kommutativer Semiring, dann ist die charakteristische Funktion \mathbb{I}_L erkennbar, d.h. es existiert \dashv mit $\mathbb{I}_L = ||\mathcal{A}||$.

Beweis: Betrachte det. vollst. TA \mathcal{A} mit $L(\mathcal{A}=L,\mathcal{A}=(Q,\Sigma,F,\Delta)$. Konstruiere WTA $\mathcal{A}'=(Q,\Sigma,F,wt)$, wobei $wt_f((q_1,\ldots,q_n),q)=1\Leftrightarrow f(q_1,\ldots,q_n)\to q\in\Delta$