CEFET - Contagem

Lista de exercícios de Matemática – 2.º Bimestre de 2025 Igor Martins Silva

ASSUNTO	DATA	TURMA
FUNÇÕES EXPONENCIAIS	18/09/2025	INFORMÁTICA 1.º ANO

Exercício 1.	Qual é a soma	dos algarismos	do número	que se obtém a	o calcular 2 ¹⁰⁰	$\cdot 5^{103}$?
--------------	---------------	----------------	-----------	----------------	-----------------------------	-------------------

- (a) 7.
- (b) 8.
- (c) 9.
- (d) 10.
- (e) 11.

Resposta: letra B.

Exercício 2. O número de algarismos no produto $5^{17} \cdot 4^9$ é igual a:

- (a) 17.
- (b) 18.
- (c) 26.
- (d) 34.
- (e) 35.

Resposta: letra B.

Exercício 3. Determine o valor numérico da expressão $(\sqrt[6]{4})^{-3} - \left(\frac{5}{\sqrt{5}}\right)^2$.

- (a) 0.
- (b) 1.
- (c) -1.
- (e) $\frac{1}{2}$.

Resposta: letra D.

Exercício 4. O valor da expressão $\sqrt[3]{5^{-2}} \cdot 5^{1,333\cdots}$ é:

- (a) Um número primo.
- (b) Um decimal exato.
- (c) Uma dízima periódica.

- (d) Um número irracional.
- (e) Um número não real.

Resposta: letra D.

Exercício 5. Considere $a=11^{50}$, $b=4^{100}$ e $c=2^{150}$. Assinale a alternativa correta.

- (a) c < a < b.
- (b) c < b < a. (c) a < b < c.
- (d) a < c < b.
- (e) b < a < c.

Resposta: letra A.

Exercício 6. Qual dos números a seguir é o maior?

- (a) 3^{45} .
- (b) 9^{20} .
- (c) 27^{14} .
- (d) 243⁹.
- (e) 81¹².

Resposta: letra E.

Exercício 7. Determine o valor da expressão $\sqrt[3]{\frac{14}{125}} + \sqrt{\frac{3}{5} - \frac{11}{25}}$.

(a)
$$\frac{\sqrt[3]{14} + 2}{5}$$
. (b) $\frac{\sqrt[3]{114}}{5}$. (c) $\frac{6}{5}$. (d) $\frac{4}{5}$.

(b)
$$\frac{\sqrt[3]{114}}{5}$$

(c)
$$\frac{6}{5}$$

(d)
$$\frac{4}{5}$$
.

(e)
$$\frac{3}{5}$$
.

Resposta: letra D.

Exercício 8. Determine o valor da expressão

$$\frac{0,5^2 \cdot 2^{0,333\cdots} \sqrt[3]{16}}{0,125^{-3}}.$$

(a)
$$2^{-\frac{14}{3}}$$
.

(b)
$$2^{-\frac{16}{3}}$$
.

(c)
$$2^{-6}$$
. (d) $2^{-\frac{22}{3}}$.

(d)
$$2^{-\frac{22}{3}}$$
.

(e)
$$2^{-8}$$
.

Resposta: letra B.

Exercício 9. Determine o valor da expressão $(27^{\frac{1}{3}} + 64^{\frac{1}{2}} - 8^{\frac{2}{3}}4^{\frac{1}{2}})^{\frac{1}{2}}$.

- (a) 2.
- (b) 3.
- (c) 5.
- (d) 7.
- (e) 11.

Resposta: letra **B**.

Exercício 10. Computadores utilizam, por padrão, dados em formato binário, em que cada dígito, denominado de bit, pode assumir dois valores (0 ou 1). Para representação de caracteres e outras informações, é necessário fazer uso de uma sequência de bits, o byte. No passado, um byte era composto de 6 bits em alguns computadores, mas atualmente tem-se a padronização que o byte é um octeto, ou seja, uma sequência de 8 bits. Esse padrão permite representar apenas 28 informações distintas. Se um novo padrão for proposto, de modo que um byte seja capaz de representar pelo menos 2560 informações distintas, o número de bits em um byte deve passar de 8 para:

- (a) 10.
- (b) 12.
- (c) 13.
- (d) 18.
- (e) 20.

Resposta: letra B.

Exercício 11. Há uma lenda que credita a invenção do xadrez a um brâmane de uma corte indiana, que, atendendo a um pedido do rei, inventou o jogo para demonstrar o valor da inteligência. O rei, encantado com o invento, ofereceu ao brâmane a escolha de uma recompensa. De acordo com essa lenda, o inventor do jogo de xadrez pediu ao rei que a recompensa fosse paga em grãos de arroz da seguinte maneira: 1 grão para a casa 1 do tabuleiro, 2 grãos para a casa 2, 4 para a casa 3, 8 para a casa 4 e assim sucessivamente. Ou seja, a quantidade de grãos para cada casa do tabuleiro correspondia ao dobro da quantidade da casa imediatamente anterior. Escreva uma função f que expresse a quantidade de grãos de arroz em função do número x da casa do tabuleiro.

(a)
$$f(x) = x^{64}$$

(b)
$$f(x) = 2^x$$
.

$$(c) f(x) = 64x$$

(a)
$$f(x) = x^{64}$$
. (b) $f(x) = 2^x$. (c) $f(x) = 64x$. (d) $f(x) = 2^{x+1}$. (e) $f(x) = 2^{x-1}$.

(e)
$$f(x) = 2^{x-1}$$
.

Resposta: letra E.

Observação. A quantidade de 2^{63} grãos de arroz equivalem a aproximadamente 46 trilhões de pacotes de 5 kg. Pensado esse número como distância, ele corresponde a aproximadamente 975 anos-luz, o que daria umas 230 bilhões de voltas na Terra.

Exercício 12. O número de bactérias numa cultura, em função do tempo t (em horas), pode ser expresso por $N(t) = 256 \cdot 2^{0.75t}$. Em quanto tempo, em horas, o número de bactérias será igual a 2048?

(a) 2.

(b) 6.

(c) 8.

(d) 3.

(e) 4.

Resposta: letra E.

Exercício 13. Em uma pesquisa, obteve-se o gráfico abaixo, que indica o crescimento de uma cultura de bactérias no decorrer de 6 meses.

Admitindo a lei de formação da função que representa essa situação como $f(t) = ka^t$, determine os valores de k e de a.

(a) k = 1 e a = 2.

(b) $k = 5000 \text{ e } a = \sqrt[6]{3}$.

(c) $k = 15000 \text{ e } a = \sqrt{3}$.

(d) $k = \frac{1}{2}$ e a = 3.

(e) $k = \sqrt{2} e a = \frac{1}{2}$.

Resposta: letra B.

Exercício 14. O decaimento radioativo de uma substância se dá de acordo com a fórmula $r(t) = C \cdot 3^{-6t}$, com C sendo uma constante diferente de zero e r(t) a quantidade de radioatividade presente na substância após t segundos desde o início do decaimento. O valor de t, em segundos, para que a substância fique com a terça parte da radioatividade que tinha inicialmente é igual a:

(a) $\frac{1}{4}$.

(b) $\frac{1}{5}$.

(c) $\frac{1}{3}$.

(d) $\frac{1}{6}$.

(e) $\frac{2}{5}$.

Resposta: letra D.

Exercício 15. Considere a função $f(x) = e^x$, onde e é o número de Euler. Seja g(x) a reta tangente ao gráfico de f passando pelo ponto (0,1). Qual é o zero de g(x)?

(a) -2.

(b) -1.

(c) 0

(d) 1.

(e) 2.

Resposta: letra E.

Exercício 16. O processo de resfriamento de um determinado corpo é descrito por $T(t) = T_A + \alpha \cdot 3^{\beta t}$, onde T(t) é a temperatura do corpo, em graus Celsius, no instante t (em minutos), T_A é a temperatura ambiente e α e β são constantes. O referido corpo foi colocado em um congelador com temperatura de -18° C. Um termômetro no corpo indicou que ele atingiu 0° C após 90 minutos e chegou a -16° C após 270 minutos. Determine o valor de t para o qual a temperatura do corpo no congelador é apenas $\left(\frac{2}{3}\right)^{\circ}$ C superior à temperatura ambiente.

(a) 50 minutos.

(b) 100 minutos.

(c) 360 minutos.

(d) 900 minutos.

(e) 1000 minutos.

Resposta: letra C.

Exercício 17. Considere as funções $f(x) = 3^x$ e $g(x) = x^3$, definidas para todo número real x. O número de soluções da equação f(g(x)) = g(f(x)) é igua a:

(a) 0.

(b) 1.

(c) 2.

(d) 3.

(e) 4.

Resposta: letra D.

Exercício 18. Resolva a seguite equação $2^x + 2^{x+1} + 2^{x+2} = 112$.

(a) 2.

(b) 4.

(c) 8.

(d) 16.

(e) 32.

Resposta: letra B.

Exercício 19. Determine o conjunto solução da equação exponencial $0,125^{4-5x}=0,25^{2x-1}$.

(a) $-\frac{2}{15}$.

(b) 4.

(c) -11.

(d) $\frac{1}{9}$. (e) $\frac{14}{19}$.

Resposta: letra E.

Exercício 20. Determine o conjunto solução da equação $3 \cdot 5^{x^2} + 3^{x^2+1} - 8 \cdot 3^{x^2} = 0$.

(a) $\{-1, 1\}$.

(b) {0}.

(c) Ø.

(d) $\{-1,0,1\}$.

(e) \mathbb{R} .

Resposta: letra A.

Exercício 21. O conjunto solução da inequação

$$\left(\frac{1}{7^x}\right)^{x^3-4} - 7(7^{x^2+1})^{2x-1} \ge 0$$

é:

(a) [-2, -1].

(b) [0, 1].

(c) $]-\infty,-2] \cup [-1,0] \cup [1,\infty[$.

(d) $[0, \infty[$.

(e) $[-2,-1] \cup [0,1]$.

Resposta: letra E.

Exercício 22. O conjunto solução da inequação $0,5^{1-x} > 1$ é:

(a) $S = \{x \in \mathbb{R} \mid x > 1\}.$

(b) $S = \{x \in \mathbb{R} \mid x > 1\}.$

(c) $S = \{x \in \mathbb{R} \mid x > 0\}.$

(d) $S = \{x \in \mathbb{R} \mid x < 0\}.$

(e) ℝ.

Resposta: letra E.

Exercício 23. O conjunto solução da inequação $\left(3^{\frac{x}{2}}\right)^{x-1} \ge \left(\frac{3}{9}\right)^{x-3}$ é:

(a)
$$]-\infty,-3] \cup [2,\infty[$$
.

(b)
$$[-3, 2]$$
.

(c)
$$S = \{x \in \mathbb{R} \mid x \le -3\}.$$

(d)
$$S = \{x \in \mathbb{R} \mid x \ge 2\}.$$

(e) ℝ.

Resposta: letra A.

Exercício 24. Assinale a alternativa correta.

(a)
$$16^{\frac{3}{4}} - 27^{\frac{2}{3}} = 1$$
.

(b) Se
$$(\sqrt{2})^x = 64$$
, então $x = 12$.

(c)
$$(-1)^{2025} = 1$$
.

(d)
$$\frac{99^{15}}{33^{30}} = 3^{-15}$$
.

(e) A solução da inequação $(\frac{1}{3})^x \le 27$ é $S = \{x \in \mathbb{R} \mid x \le -3\}$.

Resposta: letra B.