

Distributed Algorithms 2020

Conclusions

Recap: Key ideas from previous weeks

Models of computing

- PN
- LOCAL unique identifiers
- **CONGEST** bandwidth constraints
- Deterministic and randomized algorithms

Canonical problems

Vertex coloring

- coloring = schedule
- coloring breaks symmetry
- Used to solve many other problems
- Used to show that other problems are hard
- Demonstrates different algorithm design ideas and lower-bound techniques

Algorithm ideas

- Conflict avoidance & coordination
- Process nodes by color classes
- Send proposals one by one
- Random subset of nodes is active
- Pipelining
- Algebraic techniques

Lower bound proofs

- Covering maps PN model
- Local neighborhoods any model
- Round elimination
- Simulation arguments
- Reductions

Key lessons learned

New kinds of challenges

Unknown systems

algorithms that work in any network

Partial information

making decisions based on local information

Parallelism

many nodes act simultaneously

What else is there?

Networks vs. big data

- Models for computer networks
 - PN, LOCAL, CONGEST
- Models for big data systems
 - congested clique
 - BSP (bulk-synchronous parallel)
 - MPC (massively parallel computation)
 - k-machine model

Asynchrony & failures

- Asynchronous networks
 - no failures → can use synchronizers
- Tolerating failures
 - crash faults, Byzantine faults ...
- Recovery from failures
 - self-stabilization

And a lot more...

Different kinds of models

- shared memory message passing
- physical models (e.g. radio networks)
- mobile agents (e.g. robot navigation, exploration)
- security and privacy

Different kinds of questions

- solving proving verifying fixing
- #rounds #messages #bits

What next?

Exercises this week

- Exercises 12.1–12.4: small research project
 - what are possible distributed complexities?
 - LOCAL model
 - locally verifiable problems
 - cycles
- Exercise 12.5: an example of an open research question

Exam next week

- Take-home exam
- Setup and rules exactly like last week
- Focus: proving impossibility results

Course feedback

- Feedback form opens on December 3
- •1 extra point for everyone who fills in the form!

After this course

- Ask us if you are interested in doing more:
 - thesis topics
 - research projects
 - summer jobs
 - doctoral studies ...