MATH-331 Intro.	to Real Analysis
Team test 01	

Pierre-Olivier Parisé Fall 2021, 09/10/2021

Name of the members of the team: _	Correction.
Team name: Correction.	

Question:	1	2	Total
Points:	10	10	20
Score:	CONTRACT		Toron

Instructions: You must answer all the questions in teams of 3 and hand out one copy per team. You are allowed to use the lecture notes only. No other tools such as a cell-phone, a calculator, or a laptop. Only your pen and eraser. The space between the questions are there to write the final versions of your answers.

$_$ Question 1 $_$ (10	pts))
— 90°======= (. — -	1/	,

Which of the following inequalities are true, for any $x_1, x_2, x_3 \in \mathbb{R}$? Give a proof or a counter-example.

- (a) (2 points) $|x_1 x_2 + x_3| \le |x_1| |x_2| |x_3|$.
- (b) (2 points) $|x_1 x_2 + x_3| \ge |x_1| |x_2| + |x_3|$.
- (c) (2 points) $|x_1 x_2 + x_3| \ge |x_1| |x_2| |x_3|$.
- (d) (2 points) $((-1)^n/n)_{n=1}^{\infty}$ converges to 0.
- (e) (2 points) $((-1)^n + (-1)^{n+1})_{n=1}^{\infty}$ converges.
- (a) False. Take $x_1 = x_2 = 0$ and $x_3 = 2$: $|x_1 x_2 + x_3| = |x_3| = 2$ $|x_1| |x_2| |x_3| = -2$ $|x_1| |x_2| |x_3| = -2$
- (b) <u>False</u>. Take $x_2=0$. Then $|x_1+x_3| \ge |x_1|+|x_3|$.

Take $\alpha_1 = 2$, $\alpha_3 = -2 \Rightarrow 0 \ge 4$. But $0 \not\equiv 4$.

(c) True. By the properties of the absolute value we have

 $|x_1-x_2+x_3| \ge |x_1-x_2| - |x_3|$ $\ge |x_1|-|x_2| - |x_3|$.

(d) True. Let Exo. then (-1) < E iff.

1 < mE

By the AP with $x=\varepsilon$ & y=1, $\exists N \in \mathbb{N}$ o.t.

NE> 1.

So, if n > N, we have

 $\frac{1}{m} \leq \frac{1}{N} < \epsilon$.

So, since & was oubitrary, (-1) -> 0.

(e) True. We have

(-Dn+ (-Dn+1) = 0 \\n≥1.

So, (-1) + (-1) to is just the sequence

(0) This sequence converges to 0.

 $_{-}$ Question 2 ______

Suppose $(a_n)_{n=1}^{\infty}$ converges to A, and define the new sequence $b_n = \frac{a_n + a_{n-1}}{2}$ for all $n \ge 1$. Prove that the sequence $(b_n)_{n\geq 1}$ converges to A.

By hypothesis, an -> A. The goal is to prove that by -> A. Let E>O. Then,

$$\left|\frac{an+a_{n-1}}{a}-A\right|=\left|\frac{an+a_{n-1}-2A}{a}\right|$$

$$\leq \left|\frac{an-A+a_{n-1}-A}{a}\right|$$

Choose NEIN o.t.

MZN+1 => |an-A| < E.

Then, if m= N+1, then m-1=N&

$$\frac{|a_{n-A}|+|A_{n+-A}|}{2} < \frac{\varepsilon+\varepsilon}{2} = \varepsilon.$$

|bn-A| < E whenver m = N+1.

Since E>0 was arbitrary, we have bn -> A.

11