Name: Luong Thi Uy Thieu

Class: DMA-B05

HOMEWORK DISCRETE MATHEMATICS PROBLEM SET 05

Problem 1:

$$gcd(2n+1, 3n+2) = gcd(3n+2, (2n+1) \mod (3n+2))$$

Take any n is a positive integer, n = 2 for instance
=> $gcd(5,8) = gcd(8,5 \mod 8)$
= $gcd(8,5) = gcd(5,8 \mod 5) =$
 $gcd(5,3) = gcd(3,5 \mod 3) =$
 $gcd(3,2) = gcd(2,3 \mod 2) =$

=> Greatest common divisor or these two number with n is a positive integer is 1.

Problem 2:

+) Take any m is a positive integer: m = 2

gcd(1,1) = gcd(1,1 mod 1) = gcd(1,0)

gcd(2,1) = gcd(1,2mod1) =

And a,b,c are integers: a = 2, b = 4, c = 5, with c satisfied: gcd(c,m) = 1

We have: ac \equiv bc (mod m), then:

 $2.5 \equiv 4.5 \mod 2 = 10 \equiv 20 \mod 2$ (always true)

Remove c from both sides of congruence:

 $2 \equiv 4 \mod 2$ (always true)

=> proved

+) example: a = 2, b = 8, c = 6, and m = 9

Then, $gcd(c,m) = 3 \neq 1$

$$ac \equiv bc \pmod{m} \Rightarrow 12 \equiv 48 \mod 9 \text{ (always true)}$$

Take c from both sides:

 \Rightarrow 2 $\not\equiv$ 8 mod 9

=> proved

Problem 3:

a)
$$13x \equiv 1 \pmod{29}$$

d = gcd(13,29) = 1, d|b => the congruence has one root.

$$d = n*s + a*r => find 1 = 29*s + 13*r$$

Euclidean algorithm

Dividend	Divisor	Quotient	Remainder
29	13	2	3
13	3	4	1
3	1	3	0

$$=> 1 = 13 - 3.4 = 13 + (-4).3 = 13 - 4.(29-13.2) = 9.13 - 4.29 = 29(-4) + 13.9$$

$$// d = n.s + a.r$$

$$X_0 = r*b/d \pmod{n/d} = 9*1/1 \pmod{29/1} = 9$$

=>
$$x = x0 + k \cdot \frac{n}{d} = 9 + k \cdot \frac{29}{1}$$
, $k = 0$ since the congruence only has one root

$$=> x = 9.$$

b) $384x \equiv 1038 \pmod{2418}$

$$d = \gcd(a,n) = \gcd(384, 2418)$$

Euclidean algorithm

Dividend	Divisor	Quotient	Remainder
2418	384	6	114
384	114	3	42
114	42	2	30
42	30	1	12
30	12	2	6
12	6	2	0

$$=> d = \gcd(384,2418) = 6$$
, $d|b => 6$ roots

$$d = n.s + a.r = 5 \text{ find } 6 = 2418.s + 384.r$$

$$=> 6 = 30 - 12.2 = (114 - 84) - 2.(42-30) = 2418 - 6.384 - 84 - 2.(384 - 342 - 114 + 84)$$

$$= 2418 - 6.384 - 2.384 + 2.342 + 2.114 - 2.84 - 84 = 2418 - 8.384 + 6.114 + 2.114 - 6.42$$

$$//342.2/114 = 6$$

$$//-3.84/42 = -6.$$

$$= 2418 - 8.384 + 8.114 - 6(384 - 3.114) = 2418 - 8.384 + 8.114 - 6.384 + 18.114$$

$$= 2418 - 14.384 + 26.114 = 2418 - 14.384 + 26(2418 - 6.384) = 2418.27 - 384.170$$

$$X_0 = r^*b/d \pmod{n/d} = (-170) * 1038/6 \pmod{2418/6} = -29410 \pmod{403} = 9$$

$$x = x0 + k \cdot \frac{n}{d} = 9 + k \cdot \frac{2418}{6}$$
 with $n \in (0,1,2,3,4,5)$

$$=> x = \{9,412,815,1218,1621,2024\}$$

c) $372x \equiv 183 \pmod{579}$

$$d = gcd(372,579)$$

Euclidean Algorithm

Dividend	Divisor	Quotient	Remainder
579	372	1	207
372	207	1	165
207	165	1	42
165	42	3	39
42	39	1	3
39	3	13	0

$$=> d = gcd(372,579) = 3$$
, $d|b => 3$ roots $d = n.s + a.r => find $3 = 579.s + 372.r$$

$$3 = 42 - 39 = 207 - 165 - 165 + 42.3 = 207 - 2.165 + 42.3 = 207 - 2.(372 - 207) + 3.(207 - 165)$$

= $-2.372 + 6.207 - 3.165 = -2.372 + 6(579 - 372) - 3.(372 - 207) = 6.579 - 11.372 + 3.207$
= $6.579 - 11.372 + 3.(579 - 372) = 579.9 - 372.14$

$$X_0 = r * b/d \pmod{n/d} = (-14). (183/3) \pmod{579/3} = 111$$

$$x = x0 + k.\frac{n}{d} = 111 + k.\frac{579}{3}$$
 with $k \in \{0,1,2\}$
=> $x \in \{111,304,497\}$

Problem 4:

a)
$$134x \equiv 1 \pmod{467}$$

 $d = \gcd(134,467)$

Euclidean Algorithm

Dividend	Devisor	Quotient	Remainder
467	134	3 (q1)	65
134	65	2 (q2)	4
65	4	16 (q3)	1

4	1	4	0

 $=> d = \gcd(134,467) = 1$, d|b then congruence has one root d = n.s + a.r => find 1 = 467.s + 134.r

i	
0	R0 = 0
1	R1 = 1
2	$R2 = r0 - q1 * r1 = 0 - 3 * 1 = -3 \mod 467 = 464$
3	$R3 = r1 - q2 * r2 = 1 - 2 * 464 = -927 \mod 467 = 7$
4	$R4 = r2 - q3 * r3 = 464 - 16 * 7 = 352 \mod 467$

$$// r0 = 0$$
, $r1 = 1$, $Ri = Ri - 2 - Qi - 1 * Ri - 1$
*small "I" because I don't know how to type that!
 $// r = last \ value \ of \ Ri$

$$X_0 = r*b/d \pmod{n/d} = 352*(1/1) \pmod{467/1} = 352$$

$$x = x0 + k \cdot \frac{n}{d} = 352 + k \cdot \frac{467}{1}$$
 with $k = 0$ since the congruence only has 1 root
=> $x = 352$

b)
$$384x \equiv 1029 \pmod{341}$$

We have,
$$384x \equiv 1029 \pmod{341}$$

 $341x + 43x \equiv 6 \pmod{341}$
 $43x \equiv 6 \pmod{341}$

We have d = gcd(43,341)Euclidean Algorithm

Dividend	Devisor	Quotient	Remainder
341	43	7 (q1)	40
43	40	1 (q2)	3

40	3	13 (q3)	1
3	1	3	0

=> d = gcd(43,341) = 1, d|b then congruence has 1 root

i	
0	R0 = 0
1	R1 = 1
2	
	$R2 = r0 - q1 * r1 = 0 - 7 * 1 = -7 \mod 341 = 334$
3	$R3 = r1 - q \ 2 * r2 = 1 - 1 * 334 = -333 \mod 341 = 8$
4	$R4 = r 2 - q3 * r3 = 334 - 13 * 8 = 230 \mod 341$

$$// r0 = 0$$
, $r1 = 1$, $Ri = Ri - 2 - Qi - 1 * Ri - 1$
*small "I" because I don't know how to type that!
 $// r = last \ value \ of \ Ri$

Xo =
$$r*b/d \pmod{n/d} = 230*(6/1) = 1380$$

X = $x1 + k.\frac{n}{d} = 1380 + k.\frac{341}{1}$ with $k = 0$ since the congruence only has 1 root => $x = 1380$.

Problem 5:

a) CEBBOXNOB XYG

Converted into numbers:

$$2 - 4 - 1 - 1 - 14 - 23 - 13 - 14 - 1$$
 $23 - 24 - 6$

Apply decryption: $f^{-1}(p) = (p - 10) \mod 26$.

$$=>$$
 new numbers: $18-20-17-17-4-13-3-4-17$ $13-14-22$

Message: Surrender now

b) LO WI PBSOXN

numbers: 11-14 22-8 15-1-18-14-23-13

Apply decryption: $f^{-1}(p) = (p - 10) \mod 26$

=> numbers: 1-4 12-24 5-17-8-4-13-3

Message: Be My Friend

c) DSWO PYB PEX

numbers: 3-18-22-14 15-24-1 15-4-23

Apply decryption: $f^{-1}(p) = (p - 10) \mod 26$

=> numbers: 19-8-12-4 5-4-17 5-20-13

=> message: time for fun

Problem 6:

Read chapter 4.2, Textbook, summarize the method (section 4.2.4 page 267) and show your own example.

To be able to find $b^n \mod m$ efficiently, where b, n and m are large integers, we can use an algorithm that employs the binary expansion of the exponent n:

• We explain how to use the binary expansion of n, say $n = (a_{k-1} \dots a_1 a_0)_2$, to compute b^n

Note that:

$$b^{n} = b^{a_{k-1} \cdot 2^{k-1} + \dots + a_1 \cdot 2 + a_0} = b^{a_{k-1} \cdot 2^{k-1}} \cdots b^{a_1 \cdot 2} \cdot b^{a_0}.$$

=> + To compute b^n , we need only compute the values of b, b^2 , $(b^2)^2 = b^4$, $(b^4)^2 = b^8$, ..., b^{2^k}

- + When we have these values, multiply the term b^{2j} in the list, where $a_{j=1}$.
- + This gives us b^n
- => The algorithm successively finds b mod m, b^2 mod m, b^4 mod m, ..., $b^{2^{k-1}}$ mod m and multiplies together those terms b^{2^j} mod m where $a_j = 1$, finding the remainder of the product when divided by m after each multiplication.

Ex: 5¹¹⁷ mod 19

Step 1: Divide B into powers of 2 by writing it in binary: 117 = 1110101

Start at the rightmost digit, let k=0 and for each digit:

- If the digit is 1, we need a part for 2^k , otherwise we do not
- Add 1 to k, and move left to the next digit

$$117 = (2^{0} + 2^{2} + 2^{4} + 2^{5} + 2^{6})$$

$$117 = 1 + 4 + 16 + 32 + 64$$

$$5^{117} mod \ 19 = 5^{1+4+16+32+64} mod \ 19$$

$$5^{117} mod \ 19 = (5^1 * 5^4 * 5^{16} * 5^{32} * 5^{64}) mod \ 19$$

Step 2: Calculate mod C of the powers of two \leq B

5^1 mod 19 = 5 5^2 mod 19 = (5^1 * 5^1) mod 19 = (5^1 mod 19 * 5^1 mod 19

 $5^2 \mod 19 = (5^1 * 5^1) \mod 19 = (5^1 \mod 19 * 5^1 \mod 19) \mod 19$

 $5^2 \mod 19 = (5 * 5) \mod 19 = 25 \mod 19$

 $5^2 \mod 19 = 6$

 $5^4 \mod 19 = (5^2 * 5^2) \mod 19 = (5^2 \mod 19 * 5^2 \mod 19) \mod 19$

 $5^4 \mod 19 = (6 * 6) \mod 19 = 36 \mod 19$

 $5^4 \mod 19 = 17$

5^8 mod 19 = (**5^4** * **5^4**) mod 19 = (**5^4** mod 19 * **5^4** mod 19) mod 19

 $5^8 \mod 19 = (17 * 17) \mod 19 = 289 \mod 19$

 $5^8 \mod 19 = 4$

 $5^{16} \mod 19 = (5^{8} * 5^{8}) \mod 19 = (5^{8} \mod 19 * 5^{8} \mod 19) \mod 19$

 $5^{16} \mod 19 = (4 * 4) \mod 19 = 16 \mod 19$

 $5^16 \mod 19 = 16$

5^32 mod 19 = (**5^16 * 5^16**) mod 19 = (**5^16 mod 19 * 5^16 mod 19**) mod 19

5^32 mod 19 = (**16 * 16**) mod 19 = **256** mod 19

 $5^32 \mod 19 = 9$

 $5^64 \mod 19 = (5^32 * 5^32) \mod 19 = (5^32 \mod 19 * 5^32 \mod 19) \mod 19$

 $5^{64} \mod 19 = (9 * 9) \mod 19 = 81 \mod 19$

 $5^64 \mod 19 = 5$

Step 3: Use modular multiplication properties to combine the calculated mod C values

Problem 7:

Encrypt the message UPLOAD using the RSA system with $n = 53 \cdot 61$ and e = 17.

We have:
$$n = 53.61 = p = 53, q = 61$$

Compute
$$\mathbf{z} = (p-1).(q-1) = (53-1).(61-1) = 3120; \ 1 < \mathbf{e} = \mathbf{17} < \mathbf{z} = \mathbf{3120}, \gcd(\mathbf{e}, \mathbf{z}) = \gcd(17,3120) = 1 => \text{satisfy}$$

+ Public key: (n,e) = (53.61, 17)

Compute d as multiplicative inverse of e modulo z: $e \pmod{z} = 17 \pmod{3120}$

// y is called the multiplicative inverse of x mod m if $xy \equiv 1 \pmod{m}$

$$\Rightarrow$$
 17.d \equiv 1 (mod 3120)

Dividend	Devisor	Quotient	Remainder
3120	17	183	9
17	9	1	8
9	8	1	1
8	1	8	0

$$=> d = gcd(17,3120) = 1 => d|b => congruence has 1 root d = n*s + a*r => find 1 = 3120*s + 17*r$$

$$1 = 9 - 8 = 3120 - 17.183 - 17 + 9 = 3120 - 17.183 - 17 + 3120 - 17.183 = 2.3120 - 367.17$$

$$d = X_0 = r * b/d \pmod{n/d} = (-367).(1/1) \mod (3120) = -367 \mod 3120 = 2753$$

$$=> d = 2753$$

+ Private key (n,d) = (53.61,2753)

* encrypt:

*M is the position of (i)letter in alphabet

Apply the formula:
$$c = m^e mod n$$

$$=> c = (20^{17} \ 15^{17} \ 12^{17} \ 14^{17} \ 0^{17} \ 3^{17}) \ (\ \text{mod} \ 53.61)$$

Problem 8: What is the original message encrypted using the RSA system with $n = 43 \cdot 59$ and e = 13 if the encrypted message is 0667 1947 0671?

$$n = 43.59 = 2537$$

$$e = 13$$

$$z = (p-1).(q-1) = 2436$$

// y is called the multiplicative inverse of x mod m if $xy \equiv 1 \pmod{m}$

d is a multiplicative inverse of e modulo z: 13.d ≡ 1 mod 2436

Dividend	Divisor	Quotient	Remainder
2436	13	187	5
13	5	2	3
5	3	1	2
3	2	1	1
2	1	2	0

 $=> \gcd(13,2436) = 1$, d|b so the congruence has 1 root

$$\mathbf{d} = \mathbf{n.s} + \mathbf{a.r} = 2436.s + 13.r = 5 \text{ find } 1 = 2436.s + 13.r$$

$$1 = 3 - 2 = 13 - 10 - 5 + 3 = 13 - 15 + 13 - 10 = 2.13 - 25 = 2.13 - 5.5 = 2.13 - 5.(2436 - 13.187)$$

$$= 2.13 - 5.2436 + 935.13 = -5.2436 + 937.13$$

$$d = X_0 = r*b/d \pmod{n/d} = 937*(1/1) \pmod{(2436/1)} = 937$$

public key
$$(n,e) = (2537,13)$$

private key
$$(n,d) = (2537,937)$$

*Decrypt

$$m = c^d \mod n$$

Decrypt each block:
$$m1 = 0667^{937} \mod 2537 = 1808$$

$$m2 = 1947^{937} \mod 2537 = 1121$$

$$m3 = 0671^{937} \mod 2537 = 0417$$

=> the decrypted numbers: 1808 1121 0417

=> SILVER