OPTIMAL RULE-FIT ALGORITHM (ORFA)

Machine Learning Under an Optimization Lens

Ryan Lucas & Paul Roeseler

MOTIVATION

Decision trees and linear models uncover different types of effects

Decision trees

• Uncover interaction effects

Linear models

• Uncover linear relationships

$$\hat{m{Y}} = m{X}\hat{m{eta}}$$

But what if both types of effects are present?

MOTIVATION

RuleFit algorithm (Friedman and Popescu, 2008)

Interpretable machine learning method using rules from a decision tree as features for a linear regression model

$$\hat{Y} = X\hat{\beta} + \hat{\delta}_1(\mathbb{1}\{x_2 \geq 3\} \cdot \{x_5 \geq 7\})$$

RuleFit adds rules as interaction features...

MAJOR DRAWBACK

Greedy tree building methods (e.g., CART) require many splits to achieve strong performance – leads to great number of rules and overly sparse features

Optimal Regression Trees (ORTs) uncover true interaction effects in efficient number of splits and require only a single tree, resulting in fewer, more interpretable rules.

We propose An Optimal RuleFit Algorithm (ORFA), combining ORTs and Linear Regression in a similar fashion to RuleFit

SIMULATIONS

$$oldsymbol{y}_3 = oldsymbol{\lambda} imes \underbrace{\mathbb{1}\{oldsymbol{x}_3 \leq 0.3\} imes \mathbb{1}\{oldsymbol{x}_4 \geq -0.5\}}_{ ext{interaction terms}} + oldsymbol{(1-\lambda)} imes \underbrace{0.5oldsymbol{x}_1 + 0.1oldsymbol{x}_2}_{ ext{linear terms}} + oldsymbol{arepsilon}$$

BENCHMARK

Across 84 real-world regression datasets, provided by <u>PLMB</u>, ORFA consistently ranks among the best methods

BENCHMARK

Across 84 real-world regression datasets, provided by <u>PLMB</u>, ORFA consistently ranks among the best methods

		Lin. Regression	CART	ORT	RuleFit	ORFA
Dataset	CPU	0.721	0.951	0.956	0.976	0.978
	Automobile	0.759	0.847	0.879	0.806	0.874
	Rabe	0.984	0.882	0.882	0.986	0.987
	Puma	0.375	0.567	0.601	0.571	0.608
	$ \mathbf{PW} $	0.710	0.780	0.762	0.820	0.822
	Wind	0.754	0.663	0.667	0.754	0.753
	Sleep Apnea	0.193	$\boldsymbol{0.845}$	0.852	0.836	0.844
	Bodyfat	0.974	0.944	0.946	$\boldsymbol{0.974}$	0.973
	CPU Small	0.707	0.936	0.947	0.963	0.969
	FRI	0.265	0.580	0.684	0.614	0.749
	Chatfield	0.851	0.704	0.679	0.781	0.750
	Geyser	0.800	0.775	0.755	0.779	0.762
:	:	÷	÷	÷	÷	
	Average	0.424	0.625	0.633	0.707	0.724

Table 1: Out-of-sample R^2 across 84 real-world regression datasets provided by PMLB. The best performer on each dataset is hilighted in **blue**, while **purple** denotes the second best.

BEYOND A HEURISTIC

The ORFA training is **disaggregated**. Rules are fed to regression and a new problem is solved.

But this is *Machine Learning under an Optimization Lens.* What if we solve just one problem?

$$\min_{oldsymbol{eta},oldsymbol{\delta},oldsymbol{ar{r}}} \mathcal{L}(oldsymbol{X},oldsymbol{y},oldsymbol{ar{s}})$$

Single Problem

INTEGRATED ORFA (IORFA)

Introducing IORFA, an integrated approach to solving $\min_{m{eta},m{\delta},m{r}}\mathcal{L}(m{X},m{y},\overset{\sim}{\sim})$

IORFA is a modification of the MIO problem of ORT, introducing a rule term to the objective:

$$\min_{oldsymbol{eta},oldsymbol{\delta},oldsymbol{z}} \sum_{i} \left(y_i - oldsymbol{x}_i^T oldsymbol{eta} - \sum_{oldsymbol{t} \in T_L} oldsymbol{\delta}_t oldsymbol{z}_{i,t}
ight)^2$$

subject to the usual constraints on z...

INTEGRATED ORFA (IORFA)

Introducing IORFA, an integrated approach to solving $\min_{m{eta},m{\delta},m{r}}\mathcal{L}(m{X},m{y},\widehat{m{\psi}})$

IORFA is a modification of the MIO problem of ORT, introducing a rule term to the objective:

$$\min_{oldsymbol{eta},oldsymbol{\delta},oldsymbol{z}} \sum_{i} \left(y_i - oldsymbol{x}_i^T oldsymbol{eta} - \sum_{oldsymbol{t} \in T_L} oldsymbol{\delta}_t oldsymbol{z}_{i,t}
ight)^2$$

subject to the usual constraints on z...

Think of $\,\delta_t\,$ as fitting a coefficient to every group belonging to leaf nodes $\,t\in T_L\,$

- Equivalent to fitting a parameter to every rule, as we would like to do in RuleFit!
- See Appendix B for the complete MIO formulation

INTEGRATED ORFA (IORFA): RESULTS

Our resulting algorithm (IORFA) outperforms ORFA and RuleFit on a small simulated dataset

- We plan to extend these trials to real-world datasets in the coming weeks

APPENDIX A: INTERPRETATION

Predicting bodyfat with one rule from OCT:

$$\hat{\text{Bodyfat}}_i = 24.2 + 2.29 \cdot \text{Age}_i +, ..., + 8.8 \cdot (\mathbb{1}\{\text{Weight}_i < 183.77\} \cdot \mathbb{1}\{\text{Age}_i < 37\} \cdot \mathbb{1}\{\text{Height}_i > 182.65\})$$

If weight is less than 183.77 lbs, age is less than 38 and height is greater than 182.65 cm, then predicted bodyfat decreases by 8.8%, when all other feature values remain fixed.

This rule identifies a subgroup of tall, athletic young people with high weight but low bodyfat.

APPENDIX B: IORFA MIO FORMULATION

 $a_{jt}, d_t \in \{0, 1\}, \quad j = 1, \dots, p, \quad \forall t \in T_B$

$$\begin{split} & \min_{\boldsymbol{\beta},\boldsymbol{\delta},\boldsymbol{z}} \sum_{i} \left(y_{i} - \boldsymbol{x}_{i}^{T}\boldsymbol{\beta} - \sum_{t \in T_{L}} \delta_{t} z_{i,t} \right)^{2} \\ & \text{subject .to.} \\ & N_{t} = \sum_{i=1}^{n} z_{it}, \quad \forall t \in T_{L} \\ & \boldsymbol{a}_{m}^{\intercal} \boldsymbol{x}_{i} \geq b_{t} - (1 - z_{it}), \quad i = 1, \dots, n, \quad \forall t \in T_{B}, \quad \forall m \in A_{R}(t), \\ & \boldsymbol{a}_{m}^{\intercal} \left(\boldsymbol{x}_{i} + \boldsymbol{\epsilon} \right) \leq b_{t} + (1 + \epsilon_{\max}) \left(1 - z_{it} \right), \ i = 1, \dots, n, \forall t \in T_{B}, \forall m \in A_{L}(t) \\ & \sum_{t \in T_{L}} z_{it} = 1, \quad i = 1, \dots, n, \\ & z_{it} \leq l_{t}, \quad \forall t \in T_{L}, \\ & \sum_{i=1}^{n} z_{it} \geq N_{\min} l_{t}, \quad \forall t \in T_{L}, \\ & \sum_{j=1}^{n} a_{jt} = d_{t}, \quad \forall t \in T_{B}, \\ & 0 \leq b_{t} \leq d_{t}, \quad \forall t \in T_{B}, \\ & d_{t} \leq d_{p(t)}, \quad \forall t \in T_{B} \backslash \{1\} \\ & z_{it}, l_{t} \in \{0,1\}, \quad i = 1, \dots, n, \quad \forall t \in T_{L}, \end{split}$$

