Sorting 1

What is sorting?

1, 2, 3, 4,
$$r \rightarrow Asc$$

S, 4, 3, 2, $1 \rightarrow Desc$
7, 2, 4, 9, 6 $\rightarrow Arc \ order \rightarrow \# factors$
2 2 3 3 4

Why sorting? -> Making search easier & faiter

Name	12 th 7,	~	Name	12 ^M	1
Ankur	83		Nauneet	59	
Ashirh	71		Rohit	70	
Nikhil	95	and Ala	Ashish	71	
Rohit	70	by 12th	Komal	73	
Naunect	59	Icarl	An Kor	03	
Ko Mal	73		Kshitiy	86	
Abhan	93		Abhay	93	Per 9
POSTAIMU	93		POO SAIMA	93	Ab g
Kesrij	86		N; Khle	95	•

Stable sorting: If 2 data points flave same value then theix relative order in intial data should be maintained

7234201 Dtable 1223470

Inplace Algo: O(1) SC

 $O \Rightarrow$ Given a array of N element. Find the Kth minimum

1, 5, -1, 2, 10, 3 K < log n $K = 3 \rightarrow 2$ $K = 5 \rightarrow 5$

Apprach 1:

- · Sort the array
- · Ret ACK-U

TC: (Nlog N)

Approach 2;

i=0 delect 1" min -> Iterate from 0 -> n-1

& find min swap (0, indmin)

*O(N)

```
& find min O(N)
Swap(1, indmin,)
i=K - KH min ->
                                       (N)O
              O (KN)
2e (ection root e o(n^2)
     for ( i=0; i=N; i++)
          min = ACi); ind = i
          for (j= i; j< N; j++)
                  if (ACI) < min)
                       min = ACjO O(1)

ind = j; inplace
          swap ( Acid ); Stable No
                               #swaps
                                   Cn-1)
        2,5,2,1,6
         1,5,2,2,6
         1, 2, 5, 2, 6
         1,2,2,56 H/w: Implement stabe
                           version of selection
```

O => Given an array of N element- swappy Of Non-consequitive indexes is not allowed TC: O(n²)
SC: O(D) -> Inplace for(i=0; i<N; i++) fox (j=0; j < N-1-1; j++) if (Acj > Acj+1) suapl ACJ), ACJ+1J, Stable yer Inplace yes #swaps ocn2)

Ic: o(n) 1

```
Given 2 sorted arrays of size
 0 =)
Amazan
        N&M. Merge both & return new
What i App
        rosted Array
        A: 2,5,7,12,20,24,29 & N
        8: 6,9,10,14,18,19 EM
        C: 2,5,6,7,9,10,12,14,18,19,20,24,29
A Ca J B Cb
       int CD merge (ACD, N, BCJ, M)
           C[N+M] -> New array
          a = 0, b = 0, c = 0

while ( a < N f. b \ge M)

if (A Ca J \ge B E b J)
```

```
C [c] = A(a);
       a + +;
  else
       C[c] = B[b];
   C[c] = A[ca];
     a++ ; c++;
while (b < M)
     CECJ= BEb];
b++; c++;
```

Break: 9:00

OF Given array of iire N, 3 Indexes 1, y, 8
L-78 => sorted combined array

$$8,1, \frac{1^{2}}{3,6,11}, \frac{1^{8}}{2,9,9}, \frac{1^{8}}{7,6}$$
 $8,1, \frac{2}{3,6,11}, \frac{2}{9,11}, \frac{4}{7,6}$

int CD merge
$$(ACJ, l, y, x)$$
 $C [x-l+1] \rightarrow New array$
 $a = l, b = y, c = 0$

while $(a < y l l b = x)$

if $(ACaJ < AEbJ)$
 $(CCJ = ACaJ; a + +;$

```
else
        CEW = A [ W)
while ( a < y)
while (b \le 8)
     C [c] = A [b];
       b++; c++;
for (i=0; i< (r-1+1); i++)
 ACitlJ= CCD
```


3 10

O(Nlgy)

void merge vort (AC), l, &]

if (l==x) ret;

mid= (l+r)/2;merge forf (A, l, mid);merge forf (A, mid+1; r);merge (A, l, mid+1, r);

TC:

 $T(n) = T(\frac{1}{2}) + T(\frac{1}{2}) + T(\frac{1}{2})$ $= 2T(\frac{1}{2}) + T(\frac{1}{2})$

SC: O(log N) + O(n)

: O(N)

mid = (l+x)/2;

merge fort (A, l, mid);

merge fort (A, mid+1; x);

merge(A, l, mid+1, x);

}