MATH 6421: Algebraic Geometry I

Frank Qiang Instructor: Harold Blum

Georgia Institute of Technology Fall 2025

Contents

1	Aug. 19 — Affine Varieties	3
	1.1 Motivation for Algebraic Geometry	3
	1.2 Affine Varieties	3
	1.3 Correspondence with Ideals	4
2	Aug. 21 — Hilbert's Nullstellensatz	6
	2.1 Applications of Hilbert's Nullstellensatz	6
	2.2 Proof of Hilbert's Nullstellensatz	7
3	Aug. 26 — The Zariski Topology	9
•	3.1 Polynomial Functions and Subvarieties	9
	·	10
	1 00	
4	v v	11
	ı v	11
	4.2 Dimension	11
5	Sept. 2 — Dimension	12
	5.1 More on Dimension	12
	5.2 Hypersurfaces	13
	5.3 Regular Functions	14
6	Sept. 4 — Regular Functions	15
	<u>.</u>	15
		15
	6.3 Localization	17
_	Sont O Comma and Shaayaa	19
7	1	19
		19
		$\frac{19}{20}$
	7.9 Sheaves	20
8		22
	•	22
	8.2 Relation to Coordinate Rings	23
9	Sept. 16 — Morphisms, Part 2	25
	<u> </u>	25
	9.2 Ringed Spaces and Morphisms	25
	9.3 Products of Affine Varieties	26
	9.4 Tensor Products	27

CONTENTS 2

10	Sept. 18 — Pre-varieties	29
	10.1 More on Tensor Products	29
	10.2 Pre-varieties	30
11	Sept. 23 — Pre-varieties, Part 2	32
	11.1 More on Pre-varieties	32
	11.2 Varieties	34
	Sept. 25 — Projective Varieties	36
	12.1 Projective Space	36
	12.2 Graded Rings	
	12.3 Projective Varieties	38

Aug. 19 — Affine Varieties

1.1 Motivation for Algebraic Geometry

Remark. Why study algebraic geometry? Algebraic geometry connects to many fields of math.

Example 1.0.1. Consider a plane curve $\{f(z_1, z_2) = 0\} \subseteq \mathbb{C}^2$, e.g. an elliptic curve $z_2^2 - z_1^3 + z_1 - 1 = 0$. Compactify and set C to be the closure of C^0 in \mathbb{CP}^2 , and let $d = \deg f$. There are connections in

- 1. Topology: $H^1(C,\mathbb{C}) \cong \mathbb{C}^{2g}$, where g = (d-1)(d-2)/12;
- 2. Arithmetic: the number of \mathbb{Q} -points is finite if d > 3;
- 3. Complex geometry: We have $C \cong \mathbb{CP}^2$ for $d = 1, 2, C \cong \mathbb{C}/\Lambda$ for d = 3, and $C \cong \mathbb{H}/\Gamma$ for d > 3.

1.2 Affine Varieties

Fix an algebraically closed field k (e.g. \mathbb{C} , $\overline{\mathbb{Q}}$, $\overline{\mathbb{F}}_p$, etc.).

Definition 1.1. Affine space is the set $\mathbb{A}^n = \mathbb{A}^n_k = \{\vec{a} = (a_1, \dots, a_n) : a_i \in k\}.$

Remark. Note the following:

- 1. \mathbb{A}_k^n is the same set as k^n , but forgetting the vector space structure;
- 2. $f \in k[x_1, \ldots, x_n]$ gives a polynomial function $\mathbb{A}^n_k \to k$ by evaluation: $a \mapsto f(a)$.

Definition 1.2. For a subset $S \subseteq k[x_1, \ldots, x_n]$, its vanishing set is

$$V(S) = \{a \in \mathbb{A}^n : f(a) = 0 \text{ for all } f \in S\}.$$

An affine variety is a subset of \mathbb{A}^n_k of this form.

Example 1.2.1. Consider the following:

- 1. $\mathbb{A}^n = V(\emptyset) = V(\{0\});$
- 2. $\emptyset = V(1) = V(k[x_1, \dots, x_n]);$
- 3. a point $a = (a_1, ..., a_n)$ is an affine variety: $V(\{x_1 a_1, ..., x_n a_n\}) = \{a\}$;
- 4. a linear space $L \subseteq \mathbb{A}^n$ (it is the kernel of some matrix);
- 5. plane curves $V(f(x,y)) \subseteq \mathbb{A}^2_{x,y}$;

- 6. $SL_n(k) \subseteq \mathbb{A}^{n \times n}$ is an affine variety: $SL_n(k) = V(\det([x_{i,j}]) 1)$;
- 7. $GL_n(k)$ (as a set) is an affine variety in $\mathbb{A}^{n \times n+1}$: $GL_n(k) = V(\det([x_{i,j}])y 1)$;
- 8. if $X \subseteq \mathbb{A}^m$ and $Y \subseteq \mathbb{A}^n$ are affine varieties, then $X \times Y \subseteq \mathbb{A}^{m+n}$ is an affine variety;
- 9. the affine varieties $X \subseteq \mathbb{A}^1_k$ are of the form: finite set of points, \emptyset , or \mathbb{A}^1_k .

Proposition 1.1 (Relation to ideals). If $S \subseteq k[x_1, ..., x_n]$, then $V(S) = V(\langle S \rangle)$, where $\langle S \rangle$ is the ideal generated by S.

Proof. Since $S \subseteq \langle S \rangle$, we have $V(\langle S \rangle) \subseteq V(S)$. Conversely, if $f, g \in S$ and $h \in k[x_1, \dots, x_n]$, then f + g and hf vanish on V(S), so we see that $V(S) \subseteq V(\langle S \rangle)$.

Remark. The statement implies that if $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$, then $V(f_1, \ldots, f_r) = V((f_1, \ldots, f_n))$. The following are some further applications of the statement:

- 1. affine varities are vanishing loci of ideals;
- 2. if $X \subseteq \mathbb{A}^n$ is an affine variety, then X is cut out by finitely many polynomial equations.

To see the second statement, note that X = V(I) for some ideal $I \leq k[x_1, \ldots, x_n]$. By the Hilbert basis theorem that $k[x_1, \ldots, x_n]$ is Noetherian, there are finitely many $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ such that $I = (f_1, \ldots, f_r)$. So $X = V(I) = V(f_1, \ldots, f_r)$.

Proposition 1.2 (Properties of the vanishing set). For ideals I, J of $k[x_1, \ldots, x_n]$,

- 1. if $I \subseteq J$, then $V(J) \subseteq V(I)$;
- 2. $V(I) \cap V(J) = V(I+J);$
- 3. $V(I) \cup V(J) = V(IJ) = V(I \cap J)$.

Proof. (1) This follows from definitions and actually holds for general subsets.

- (2) Note that $V(I) \cap V(J) = V(I \cap J) = V(\langle I \cup J \rangle) = V(I + J)$.
- (3) We only prove the first equality, the second is similar. Recall that $IJ = \left\{ \sum_{i=1}^r f_i g_i : f_i \in I, g_i \in J \right\}$. We have the forwards inclusion $V(I) \cup V(J) \subseteq V(IJ)$ from definitions. For the reverse inclusion, consider a point $x \notin V(I) \cup V(J)$. So there exists $f \in I$ and $g \in J$ such that $f(x), g(x) \neq 0$. So $f(x)g(x) \neq 0$, which implies that $x \notin V(IJ)$. Thus $V(IJ) \subseteq V(I) \cup V(J)$ as well.

Remark. The above implies that if X and Y are affine varieties in \mathbb{A}^n_k , then so are $X \cup Y$ and $X \cap Y$.

Example 1.2.2. Consider $V(y^2 - x^2, y^2 + x^2) \subseteq \mathbb{A}^2$. Note that $(y^2 - x^2, y^2 + x^2) = (x^2, y^2)$, from which we can easily see that $V(y^2 - x^2, y^2 + x^2) = V(x^2, y^2) = \{0\}$.

1.3 Correspondence with Ideals

Remark. Our goal is to build a correspondence between affine varieties in \mathbb{A}^n_k and ideals of $k[x_1,\ldots,x_n]$.

Definition 1.3. For a subset $X \subseteq \mathbb{A}_k^n$, define

$$I(X) = \{ f \in k[x_1, \dots, x_n] : f(a) = 0 \text{ for all } a \in X \}.$$

Remark. Note that I(X) is in fact an ideal of $k[x_1, \ldots, x_n]$.

Example 1.3.1. Consider the following:

- 1. $I(\emptyset) = k[x_1, \dots, x_n];$
- 2. $I(\mathbb{A}^n_k) = \{0\}$, this will follow from the Hilbert nullstellensatz and relies on $k = \overline{k}$ (for $k = \mathbb{R}$, the polynomial $x^2 + y^2 + 1$ is always nonzero and thus lies in $I(\mathbb{A}^n_{\mathbb{R}})$);
- 3. for n=1, if $S\subseteq \mathbb{A}^1_k$ be an infinite set, then I(S)=(0).
- 4. for n = 1, we have $I(V(x^2)) = I(\{0\}) = (x)$.

Remark. What properties does I(X) satisfy?

Definition 1.4. Let R be a ring. The radical of an ideal $J \leq R$ is

$$\sqrt{J} = \{ f \in R : f^n \in J \text{ for some } n > 0 \}.$$

An ideal J is radical if $J = \sqrt{J}$.

Exercise 1.1. Check the following:

- 1. \sqrt{J} is always an ideal.
- $2. \ \sqrt{\sqrt{J}} = \sqrt{J}.$
- 3. An ideal $J \leq R$ is radical if and only if R/J is reduced.¹

Proposition 1.3. If $X \subseteq \mathbb{A}^n_k$ is a subset (not necessarily an affine variety), then I(X) is radical.

Proof. Fix $f \in k[x_1, ..., x_n]$. If $f^n \in I(X)$, then $f^n(x) = 0$ for all $x \in X$. This implies f(x) = 0 for all $x \in X$, so $f \in I(X)$. Thus we see that $I(X) = \sqrt{I(X)}$.

Theorem 1.1 (Hilbert's nullstellensatz). If $J \leq k[x_1, \ldots, x_n]$ is an ideal, then $I(V(J)) = \sqrt{J}$.

Example 1.4.1. Let n=1, so that k[x] is a PID. Let $f=(x-a_1)^{m_1}\cdots(x-a_r)^{m_r}$. Then

$$I(V(f)) = I(\{a_1, \dots, a_r\}) = ((x - a_1) \cdots (x - a_r)).$$

¹Recall that a ring R is reduced if for all nonzero $f \in R$ and positive integers n, we have $f^n \neq 0$. It is immediate that an integral domain is reduced.

Aug. 21 — Hilbert's Nullstellensatz

2.1 Applications of Hilbert's Nullstellensatz

Corollary 2.0.1 (Weak nullstellensatz). If $J \leq k[x_1, \ldots, x_n]$ is an ideal with $J \neq (1)$, then $V(J) \neq \emptyset$. Equivalently, if $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ have no common zeros, then there exist $g_1, \ldots, g_r \in k[x_1, \ldots, x_n]$ such that $\sum_{i=1}^r f_i g_i = 1$.

Proof. Assume otherwise that $V(J) = \emptyset$. Then $I(V(J)) = I(\emptyset) = (1)$, so by Hilbert's nullstellensatz, we have $\sqrt{J} = (1)$. Then $1^n \in J$ for some n > 0, so $1 \in J$, i.e. J = (1).

Remark. We need k to be algebraically closed. Note that $(1) \neq (x^2 + 1) \leq \mathbb{R}[x]$ but $V(x^2 + 1) = \emptyset$.

Corollary 2.0.2. There is an inclusion-reversing bijection between radical ideals $J \leq k[x_1, \ldots, x_n]$ and affine varieties $X \subseteq \mathbb{A}^n_k$ given by $J \mapsto V(J)$ and $X \mapsto I(X)$.

Proof. It suffices to show that these maps are inverses. For $J \leq k[x_1, \ldots, x_n]$ a radical ideal, we have

$$I(V(J)) = \sqrt{J} = J$$

by Hilbert's nullstellensatz. For $X \subseteq \mathbb{A}^n_k$ an affine variety, we clearly have $X \subseteq V(I(X))X$. For the reverse inclusion, choose an ideal $J \leq k[x_1, \dots, x_n]$ such that V(J) = X. Then $J \subseteq I(X)$, so we have $V(I(X)) \subseteq V(J) = X$. Thus we also get V(I(X)) = X.

Remark. This implies that maximal ideals in $k[x_1, \ldots, x_n]$ correspond to points in \mathbb{A}^n_k , since maximal ideals correspond to minimal varieties under this bijection.

Corollary 2.0.3. If X_1, X_2 are affine varieties in \mathbb{A}^n_k , then

- 1. $I(X_1 \cup X_2) = I(X_1) \cap I(X_2);$
- 2. $I(X_1 \cap X_2) = \sqrt{I(X_1) + I(X_2)}$.

Proof. (1) This follows from definitions.

(2) Write
$$I(X_1 \cap X_2) = I(V(I(X_1)) \cap V(I(X_2))) = I(V(I(X_1) + I(X_2))) = \sqrt{I(X_1) + I(X_2)}$$
.

Example 2.0.1. The radical in (2) is necessary. Consider $X_1 = V(y)$ and $X_2 = V(y - x^2)$ in \mathbb{A}^2_k . Then $X_1 \cap X_2 = \{(0,0)\} \subseteq \mathbb{A}^2_k$, so $I(X_1 \cap X_2) = (x,y)$. However, $I(X_1) + I(X_2) = (y) + (y - x^2) = (y,x^2)$.

Note that it is sometimes better to consider (y, x^2) anyway as it tracks multiplicities. In particular, we can see the multiplicity in the dimension of $k[x, y]/(x, y^2) \cong \overline{1}k \oplus \overline{y}k$ as a k-vector space.

2.2 Proof of Hilbert's Nullstellensatz

We will assume the following result from commutative algebra without proof:

Theorem 2.1 (Noether normalization). Let A be a finitely generated algebra over a field k with A a domain. Then there is an injective k-algebra homomorphism $k[z_1, \ldots, z_n] \hookrightarrow A$ that is finite, i.e. A is a finitely generated $k[z_1, \ldots, z_n]$ -module.

Corollary 2.1.1. If $K \subseteq L$ is a field extension and L is a finitely generated K-algebra, then $K \subseteq L$ is a finite field extension. In particular, if in addition $K = \overline{K}$, then K = L.

Proof. By Noether normalization, there exists a k-algebra homomorphism $K[z_1, \ldots, z_n] \to L$ that is finite. Then by a result from commutative algebra, L is integral over $K[z_1, \ldots, z_n]$, which implies that $K[z_1, \ldots, z_n]$ must also be a field since L is. Thus n = 0, so $K \subseteq L$ is a finite extension.

Proposition 2.1. If $(1) \neq J \leq R$ is an ideal, then J is contained in some maximal ideal.

Proof. Consider the set $P = \{I \leq R : J \subseteq I, I \neq (1)\}$ with the partial order given by inclusion. Note that $P \neq \emptyset$ since $J \in P$. Furthermore, every chain in P has an upper bound (for $\{I_{\alpha} : \alpha \in A\}$ a chain P, we can take $\bigcup_{\alpha \in A} I_{\alpha}$, which one can check is indeed an ideal that lies in P; note that $1 \notin I_{\alpha}$ implies $1 \notin \bigcup_{\alpha \in A} I_{\alpha}$). So Zorn's lemma implies there is a maximal element in P, which is a maximal ideal. \square

Proof of Theorem 1.1. We will proceed in the following steps:

- 1. Show that the maximal ideals of $k[x_1, \ldots, x_n]$ are of the form $(x_1 a_1, \ldots, x_n a_n)$ for $a_i \in k$.
- 2. Prove the weak null stellensatz: If $1 \neq J \leq k[x_1, \dots, x_n]$, is an ideal, then $V(J) \neq \emptyset$.
- 3. Prove the (strong) nullstellensatz: $I(V(J)) = \sqrt{J}$ for $J \leq k[x_1, \dots, x_n]$.

The most difficult part is the first step and is where we need k to be algebraically closed.¹

(1) For $a_1, \ldots, a_n \in k$, the ideal $(x_1 - a_1, \ldots, x_n - a_n)$ is maximal (the quotient is k, which is a field). Conversely, fix a maximal ideal $\mathfrak{m} \in k[x_1, \ldots, x_n]$. Since

$$k \xrightarrow{\phi} k[x_1, \dots, x_n]/\mathfrak{m} = L$$

is a finitely generated k-algebra and k is algebraically closed, ϕ is an isomorphism by Corollary 2.1.1. Choose $a_i \in k$ such that $\phi(a_i) = \overline{x_i}$, so $\overline{x_i - a_i} = 0$ in L Then $(x_1 - a_1, \dots, x_n - a_n) \subseteq \mathfrak{m}$, so they must be equal since both the left and right hand sides are maximal ideals.

- (2) By Proposition 2.1, J is contained in some maximal ideal \mathfrak{m} . By (1), $\mathfrak{m} = (x_1 a_1, \dots, x_n a_n)$ for some $a_1, \dots, a_n \in k$. Since $J \subseteq \mathfrak{m}$, we have $V(J) \supseteq V(\mathfrak{m}) \supseteq \{(a_1, \dots, a_n)\}$, so $J \neq \emptyset$.
- (3) The reverse inclusion follows from definitions. For the forward inclusion, fix $f \in I(V(J))$, and we want to show that $f^n \in J$ for some n > 0. Add a new variable y and consider

$$J_1 = (J, fy - 1) \le k[x_1, \dots, x_n, y].$$

Now $V(J_1) = \{(a,b) = (a_1,\ldots,a_n,b) \in \mathbb{A}_k^{n+1} : a \in V(J), f(a)b = 1\} = \emptyset$ since f vanishes on V(J), so f(a)b = 0 for any b. Thus by the weak nullstellensatz, $J_1 = (1)$, so $1 = \sum_{i=1}^r g_i f_i + g_0 (fy - 1)$ with

¹The statement is false when k is not algebraically closed: $(x^2 + 1)$ is maximal in $\mathbb{R}[x]$.

 $f_1, \ldots, f_r \in J$ and $g_0, \ldots, g_r \in k[x_1, \ldots, x_n, y]$. Let N be the maximal power of y in the g_i . Multiplying by f^N , we get

$$f^{N} = \sum_{i=1}^{r} G_{i}(x_{1}, \dots, x_{n}, fy) f_{i} + G_{0}(x_{1}, \dots, x_{n}, fy) (fy - 1)$$

with $G_i \in k[x_1, \ldots, x_n, fy]$. So if we set fy = 1, then we have

$$f^N = \sum_{i=1}^r G_i(x_1, \dots, x_n, 1) f_i + 0 \in J,$$

which gives $f \in \sqrt{J}$. To justify this substitution, we can consider the quotient $k[x_1, \ldots, x_n, y]/(fy-1)$. We have a map $k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_n, y]/(fy-1)$, which is injective since (fy-1) does not lie in $k[x_1, \ldots, x_n]$, so an equality in the quotient implies an equality in $k[x_1, \ldots, x_n]$.

Aug. 26 — The Zariski Topology

3.1 Polynomial Functions and Subvarieties

Remark. Recall that a polynomial $f \in k[x_1, \ldots, x_n]$ gives a function $\mathbb{A}^n_k \to k$ by $a \mapsto f(a)$.

Proposition 3.1. If $f, g \in k[x_1, ..., x_n]$ give the same function $\mathbb{A}^n_k \to k$, then f = g in $k[x_1, ..., x_n]$.

Proof. Assume f = g as polynomial functions. Then $V(f - g) = \mathbb{A}^n_k$, so $\sqrt{(f - g)} = I(\mathbb{A}^n_k) = (0)$ by Hilbert's nullstellensatz (note that we can also prove $I(\mathbb{A}^n_k) = (0)$ directly, it is enough to have k be an infinite field for this part). Thus f - g = 0, so f = g in $k[x_1, \ldots, x_n]$.

Remark. In the above proposition, we need k to be an infinite field (e.g. if $k = \overline{k}$): Otherwise, there are only finitely many functions $\mathbb{A}^n_k \to k$, but infinitely many polynomials in $k[x_1, \ldots, x_n]$.

Remark. The set of polynomials functions $\mathbb{A}^n_k \to k$ form a ring, and the above proposition implies that this ring is isomorphic to $k[x_1, \ldots, x_n]$.

Definition 3.1. A polynomial function on an affine variety $X \subseteq \mathbb{A}^n_k$ is a function $\varphi : X \to k$ such that there exists $f \in k[x_1, \ldots, x_n]$ with $\varphi(a) = f(a)$ for every $a \in X$.

Definition 3.2. The *coordinate ring* of X is $A(X) = \{f : X \to k \mid f \text{ is a polynomial function}\}$, which is a ring under pointwise addition and multiplication.

Remark. Observe that there exists a surjective ring homomorphism

$$k[x_1, \dots, x_n] \longrightarrow A(X)$$

 $f \longmapsto (a \mapsto f(a))$

with kernel I(X). Thus we have $A(X) \cong k[x_1, \dots, x_n]/I(X)$.

Remark. We can now replace \mathbb{A}^n_k and $k[x_1,\ldots,x_n]$ by X and A(X) to study subvarieties of X.

Definition 3.3. Let $X \subseteq \mathbb{A}^n_k$ be an affine variety. If $S \subseteq A(X)$ is a subset, then define

$$V_X(S) = \{ a \in X : f(a) = 0 \text{ for all } f \in S \}.$$

A subset of X of this form is called an *affine subvariety* of X. (Equivalently, these are the same as an affine variety $Y \subseteq \mathbb{A}^n_k$ such that $Y \subseteq X$.) For $Y \subseteq X$ a subvariety, define

$$I_X(Y) = \{ f \in A(X) : f(a) = 0 \text{ for all } a \in Y \}.$$

Proposition 3.2. There is a bijective correspondence between radical ideals in A(X) and affine subvarieties of X given by $J \mapsto V_X(J)$ and $Y \mapsto I_X(Y)$.

Proof. See Homework 2. \Box

3.2 The Zariski Topology

Definition 3.4. The *Zariski topology* on \mathbb{A}^n_k is the topology with closed sets $V(I) \subseteq \mathbb{A}^n_k$, where I is an ideal in $k[x_1, \ldots, x_n]$. (Equivalently, the closed sets are the affine varieties in \mathbb{A}^n_k .)

Remark. Note the following:

- 1. On \mathbb{A}^1_k , the closed sets are of the form: \emptyset , \mathbb{A}^1_k , or finite collections of points.
- 2. When $k = \mathbb{C}$, then $X \subseteq \mathbb{A}^n_{\mathbb{C}}$ being Zariski closed implies that X is closed in the analytic topology on $\mathbb{A}^n_{\mathbb{C}}$. In particular, the Zariski topology is coarser than the analytic topology.
- 3. On \mathbb{A}^2_k , the closed sets are of the form: \emptyset , \mathbb{A}^2_k , finite collections of points, plane curves, and their finite unions.

Proposition 3.3. The Zariski topology on \mathbb{A}^n_k is indeed a topology.

Proof. First note that $\emptyset = V((1))$ and $\mathbb{A}_k^n = V((0))$ are closed. For arbitrary intersections, note that $\bigcap_{\alpha} V(I_{\alpha}) = V(\sum_{\alpha} I_{\alpha})$, and for finite unions, note that $\bigcup_{i=1}^r V(I_i) = V(I_1 \cdots I_r)$.

Example 3.4.1. The Zariski topology on \mathbb{A}_k^{n+m} is in general *not* the product topology of the Zariski topologies on \mathbb{A}_k^n and \mathbb{A}_k^m . Consider $V(y-x^2)\subseteq \mathbb{A}_k^2$, which is a closed set in the Zariski topology, but the only closed sets in \mathbb{A}_k^1 are either \emptyset , \mathbb{A}_k^1 , or finite.

Definition 3.5. If $X \subseteq \mathbb{A}^n_k$ is an affine variety, then we can define the *Zariski topology* on X in the following two equivalent ways:

- 1. take the subspace topology from the Zariski topology on \mathbb{A}_k^n ;
- 2. take the closed sets of X to be of the form $V_X(I)$ for some ideal $I \leq A(X)$.

This is because an affine subvariety of X is precisely the intersection of X with an affine variety in \mathbb{A}_k^n .

Remark. Our goal now is to relate properties of the Zariski topology on X to the ring A(X), and then to the ideal $I(X) \leq k[x_1, \ldots, x_n]$.

Definition 3.6. A topological space X is reducible if we can write $X = X_1 \cup X_2$ for some closed sets $X_1, X_2 \subsetneq X$. Otherwise, X is called irreducible.

Example 3.6.1. The plane curve $X = V(y^2 - x^2y) = V(y) \cup V(y - x^2)$ is reducible.

Remark. Note the following:

- 1. A disconnected topological space is reducible.
- 2. Many topologies are reducible, e.g. \mathbb{C}^n , \mathbb{R}^n with the analytic topology.
- 3. If X is irreducible and $U \subseteq X$ is a nonempty open set, then $\overline{U} = X$ (we have $\overline{U} \cup (X \setminus U) = X$).

Aug. 28 — Irreducibility

4.1 Properties of Irreducibility

Proposition 4.1. Let $X \subseteq \mathbb{A}^n$ be an affine variety. Then the following are equivalent:

- 1. X is irreducible;
- 2. $I(X) \leq k[x_1, \ldots, x_n]$ is a prime ideal;
- 3. the coordinate ring A(X) is an integral domain.

Example 4.0.1. We have the following:

- 1. \mathbb{A}_k^n is irreducible as $A(\mathbb{A}_k^n) = k[x_1, \dots, x_n]$, which is an integral domain.
- 2. A hypersurface $X \subseteq \mathbb{A}_k^n$ is an affine variety with I(X) = (f) for some $f \in k[x_1, \dots, x_n]$. Then A is irreducible if and only if (f) is prime, if and only if f is irreducible.

4.2 Dimension

Definition 4.1. Let X be a topological space.

• The dimension of X, denoted dim X, is the supremum of the n such that there exists a chain of irreducible closed subspaces

$$X \supseteq X_0 \supsetneq X_1 \supsetneq \cdots \supsetneq X_n \neq \varnothing.$$

• For $Y \subseteq X$ closed and irreducible, the *codimension* of Y in X, denoted $\operatorname{codim}_X Y$, is the supremum of the n as above such that $X_n = Y$.

¹Note that any prime ideal is radical.

Sept. 2 — Dimension

5.1 More on Dimension

Remark. Recall the following correspondence from before: If $X \subseteq \mathbb{A}_k^n$ is an affine variety, then there exists a bijection between the irreducible closed subsets $Y \subseteq X$ and the prime ideals $\mathfrak{p} \leq A(X)$.

Definition 5.1. For a ring A, the (Krull) dimension of A, denoted dim A, is the supremum of the n such that there exists a chain of prime ideals

$$A \supseteq \mathfrak{p}_0 \supsetneq \mathfrak{p}_1 \supsetneq \cdots \supsetneq \mathfrak{p}_n.$$

For a prime ideal $\mathfrak{q} \leq A$, the height of \mathfrak{q} , denoted ht \mathfrak{q} , is the supremum of the n as above with $\mathfrak{p}_0 = \mathfrak{q}$.

Remark. If X is an affine variety, then we have the following:

- 1. $\dim X = \dim A(X)$;
- 2. for $Y \subseteq X$ a closed irreducible subset, $\operatorname{codim}_X Y = \operatorname{ht} I_X(Y)$.

These properties follow from the inclusion-reversing correspondence.

Definition 5.2. Let $K \subseteq L$ be a field extension.

- 1. A collection of elements $\{z_i : i \in I\} \subseteq L$ is a transcendence basis of $K \subseteq L$ if the z_i are algebraically independent (i.e. $K(x_i : i \in I) \xrightarrow{\cong} K(z_i : i \in I)$ by $x_i \mapsto z_i$) and $K(z_i : i \in I) \subseteq L$ is algebraic.
- 2. The $transcendence\ degree\ {\rm tr.deg}_K\, L$ is the cardinality of a transcendence basis.

Theorem 5.1 (Dimension theory). Let A be a finitely generated k-algebra that is a domain. Then

- 1. $\dim A = \operatorname{tr.deg}_k \operatorname{Frac}(A)$;
- 2. for any prime ideal $\mathfrak{p} \leq A$, we have $\operatorname{ht} \mathfrak{p} + \dim A/\mathfrak{p} = \dim A$;
- 3. all maximal chains of prime ideals $A \supseteq \mathfrak{p}_0 \supsetneq \mathfrak{p}_1 \supsetneq \cdots \supsetneq \mathfrak{p}_n$ are of the same length.

Remark. The following are consequences of the above result from commutative algebra:

- 1. $\dim_k \mathbb{A}_k^n = \dim k[x_1, \dots, x_n] = \operatorname{tr.deg}_k k(x_1, \dots, x_n) = n.$
- 2. If X is irreducible, then A(X) is a domain, so for $x \in X$, we have

$$\operatorname{codim}_{X}\{x\} = \operatorname{ht} I(\{x\}) = \dim A(X) - \dim A(X) / I(\{x\}) = \dim A(X) = \dim X,$$

where we note that $A(X)/I(\{x\}) \cong k$ is a field.

3. If X is an irreducible affine variety and $U \subseteq X$ is a nonempty open subset, then

$$\dim U = \sup_{x \in U} \operatorname{codim}_{U} \{x\} = \sup_{x \in U} \operatorname{codim}_{X} \{x\} = \dim X.$$

This follows since we can pass from a chain in U to a chain in X by taking closures.

4. If X is an irreducible affine variety and $Z \subseteq X$ is an irreducible closed subset, then

$$\dim Z = \dim X - \operatorname{codim}_X Z.$$

Note that (2)-(4) can be false if X is not irreducible. To contradict (4), let $X = V(x, y) \cup V(z) \subseteq \mathbb{A}^3_k$ with Z = V(x, y). Then we have dim X = 2, dim Z = 1, codim_X Z = 0.

5.2 Hypersurfaces

Remark. We now want to study hypersurfaces.

Theorem 5.2 (Krull's Hauptidealsatz). If A is a Noetherian ring and $f \in A$ is nonzero and a non-unit, then every minimal prime ideal containing f has height 1.

Corollary 5.2.1. If $X \subseteq \mathbb{A}^n_k$ is an irreducible affine variety and $f \in A(X)$ is a nonzero non-unit, then

$$\dim Z = \dim X - 1$$

for every irreducible component Z of $V_X(f)$.

Proof. Since X is irreducible, A(X) is a domain. So there is a correspondence between the minimal prime ideals $f \in \mathfrak{p} \subsetneq A(X)$ and the minimal irreducible closed subsets $Z \supseteq V_X(f)$, which corresponds to the irreducible components Z of $V_X(f)$. For such a component Z, we know

$$\dim Z = \dim Z - \operatorname{codim}_X Z = \dim X - \operatorname{ht} I(Z) = \dim X - 1$$

by Krull's Hauptidealsatz, which is the desired result.

Example 5.2.1. Corollary 5.2.1 implies that if $f \in k[x_1, \ldots, x_n]$ is non-constant, then

$$\dim V(f) = \dim \mathbb{A}_k^n - 1 = n - 1.$$

Theorem 5.3. An irreducible affine variety $Y \subseteq \mathbb{A}^n_k$ has dim Y = n - 1 if and only if Y = V(f) for some non-constant polynomial $f \in k[x_1, \ldots, x_n]$.

Proof. (\Leftarrow) This was Corollary 5.2.1.

 (\Rightarrow) We will use that $A(\mathbb{A}^n_k)=k[x_1,\ldots,x_n]$ is a UFD. Since Y is irreducible and dim Y=n-1,

$$\operatorname{ht} I(Y) = \operatorname{codim}_{\mathbb{A}^n_k} Y = \dim \mathbb{A}^n_k - \dim Y = 1.$$

Since $(0) \subsetneq I(Y) \subsetneq k[x_1, \ldots, x_n]$, there exists a non-constant $f \in k[x_1, \ldots, x_n]$ with $f \in I(Y)$. Write

$$f = f_1 \cdots f_r$$

with f_i irreducible by unique factorization, and note that the f_i are also prime since we are in a UFD. Since I(Y) is prime, some f_i is in I(Y), so we have the inclusions

$$(0) \subsetneq (f_i) \subseteq I(Y).$$

Since ht I(Y) = 1, we must have $(f_i) = I(Y)$, so $Y = V(I(Y)) = V(f_i)$.

5.3 Regular Functions

Definition 5.3. Let X be an affine variety and $U \subseteq X$ open. A function $\varphi : U \to k$ is regular if for each $a \in U$, there exists an open neighborhood $a \in U_a \subseteq U$ and $f, g \in A(X)$ such that

$$\varphi(x) = \frac{g(x)}{f(x)}, \quad f(x) \neq 0, \quad \text{for all } x \in U_a.$$

Define $\mathcal{O}_X(U) = \{ \varphi : U \to k \mid \varphi \text{ is a regular function on } U \}.$

Exercise 5.1. Check that $\mathcal{O}_X(U)$ is a ring under pointwise addition and multiplication of outputs.

Remark. To patch open sets together, we will later need the notion of a *morphism*, and a morphism $U \to Y \subseteq \mathbb{A}_k^m$ should be given by

$$x \longmapsto (\varphi_1(x), \dots, \varphi_m(x))$$

with φ_i regular functions on U.

Example 5.3.1. We have the following:

- 1. If $X \subseteq \mathbb{A}^n_k$ is an affine variety, then any $\varphi \in A(X)$ is regular. Furthermore, we get an injective ring homomorphism $A(X) \to \mathcal{O}_X(X)$. We will see that this is an isomorphism.
- 2. If $X = \mathbb{A}^1_k$ and $U = \mathbb{A}^1_k \setminus \{0\}$, then for any $n \geq 0$ and $g \in k[x]$, the function g/x^n is regular on U. In general, if we fix $f, g \in A(X)$ and set $U = X \setminus V(f)$, then the map g/f^m is regular on U.
- 3. Let $X = V(x_1x_4 x_2x_3) \subseteq \mathbb{A}^4_k$ and $U = X \setminus V(x_2, x_4)$. Then the following map is regular:

$$\varphi: U \longrightarrow k$$

$$(x_1, x_2, x_3, x_4) \longmapsto \begin{cases} x_1/x_2, & \text{if } x_2 \neq 0, \\ x_3/x_4, & \text{if } x_4 \neq 0. \end{cases}$$

Note that on $U \setminus V(x_2x_4)$, we have $x_1/x_2 = x_3/x_4$ since $x_1x_4 = x_2x_3$ on X.

Sept. 4 — Regular Functions

6.1 Properties of Regular Functions

Proposition 6.1. Let X be an affine variety and $U \subseteq X$ open. Then:

- 1. if $\varphi \in \mathcal{O}_X(U)$, then $V(\varphi) = \{x \in U : \varphi(x) = 0\}$ is closed in U;
- 2. (identity principle) If X is irreducible, $U \subseteq X$ is nonempty and open, and $\varphi, \psi \in \mathcal{O}_X(U)$ with $\varphi|_W = \psi|_W$ for some $W \subseteq U$ nonempty and open, then $\varphi = \psi$ in $\mathcal{O}_X(U)$.

Proof. (1) It suffices to show that $U \setminus V(\varphi)$ is open in U. Fix $a \in U \setminus V(\varphi)$. Since φ is regular, there exists an open neighborhood $a \in U_a \subseteq U$ and $f_a, g_a \in A(X)$ such that

$$\varphi|_{U_a} = \frac{g_a}{f_a}.$$

So $a \in \{g_a \neq 0\} \cap U_a \subseteq U \setminus V(\varphi)$. This is an open set containing a in $U \setminus V(\varphi)$, so $U \setminus V(\varphi)$ is open.

(2) Since X is irreducible, U is also irreducible. The locus $\{x \in U : \varphi(x) = \psi(x)\} = V(\varphi - \psi)$ is closed in U by (1). It also contains W. Since W is dense (it is a nonempty open set in an irreducible topological space), we must have $V(\varphi - \psi) = U$. This proves the claim.

Example 6.0.1. In (2) of Proposition 6.1, the assumption that X is irreducible is necessary. Consider

$$U = X = V(xy) \subseteq \mathbb{A}_k^2$$
 and $W = V(xy) \setminus V(x)$.

Then the regular functions $\varphi = x$ and $\psi = x + y$ agree on W but are not equal on U.

6.2 Distinguished Open Sets

Remark. We will see that an affine variety has a basis of open sets on which we can compute $\mathcal{O}_X(U)$.

Definition 6.1. A distinguished open set of an affine variety X is a subset of the form

$$D(f) = X \setminus V(f)$$

for some polynomial function $f \in A(X)$.

Remark. We have the following:

1. The D(f) are closed under (finite) intersection: $D(fg) = D(f) \cap D(g)$.

2. The D(f) form a basis for the Zariski topology on X: If $U \subseteq X$ is open, then $U = X \setminus V(f_1, \ldots, f_r)$ for some $f_1, \ldots, f_r \in A(X)$ (since X is Noetherian). So $U = D(f_1) \cup \cdots \cup D(f_r)$.

Remark. We will view D(f) as "small open sets" (under mild assumptions, $\operatorname{codim}_X(X \setminus D(f)) = 1$).

Theorem 6.1. If X is an affine variety and $f \in A(X)$, then

$$\mathcal{O}_X(D(f)) = \left\{ \frac{g}{f^m} : g \in A(X), m \ge 0 \right\}.$$

Proof. We have an injective ring homomorphism

$$\left\{ \frac{g}{f^m} : g \in A(X), m \ge 0 \right\} \longrightarrow \mathcal{O}_X(D(f)),$$

it suffices to show this map is surjective. Fix $\varphi \in \mathcal{O}_X(D(f))$. For any $a \in D(f)$, there exists an open neighborhood $a \in U_a \subseteq D(f)$ and $f_a, g_a \in A(X)$ such that $\varphi|_{U_a} = g_a/f_a$. We may further assume that

- 1. $U_a = D(h_a)$ for some $h_a \in A(X)$ (by shrinking U_a if necessary, since the D(h) form a basis);
- 2. $h_a = f_a$ (by rewriting $g_a/f_a = g_a h_a/f_a h_a$ and replacing h_a, f_a with $f_a h_a$).

Then for $a, b \in D(f)$, we have $f_a g_b = f_b g_a$ on $D(f_a) \cap D(f_b)$. Since both the left and right hand sides vanish on $X \setminus (D(f_a) \cap D(f_b))$, we have $f_a g_b = f_b g_a$ in A(X). Now we can write

$$V(f) = \bigcap_{a \in D(f)} V(f_a) = V(f_a : a \in D(f)),$$

so $f \in I(V(f_a : a \in D(f)))$. By the Nullstellensatz, there exists $n \geq 0$ such that

$$f^n = \sum_{a \in D(f)} k_a f_a, \quad k_a \in A(X),$$

where only finitely many of the k_a are nonzero. Set $g = \sum_{a \in D(f)} k_a g_a$, and we claim that $\varphi = g/f^n$. To see this, note that on U_b , we have $\varphi|_{U_b} = g_b/f_b$. Now since $f_a g_b = f_b g_a$, we have

$$gf_b = \sum_{a \in D(f)} k_a g_a f_b = \sum_{a \in D(f)} k_a f_a g_b = f^n g_b,$$

which shows that $\varphi|_{U_b} = (g/f^n)|_{U_b}$. Since this holds for any U_b , we have $\varphi = g/f^n$ in $\mathcal{O}_X(D(f))$.

Remark. Theorem 6.1 has the following consequences:

- 1. The f = 1 case implies that the natural ring homomorphism $A(X) \to \mathcal{O}_X(X)$ is surjective and hence an isomorphism (note that D(1) = X).
- 2. We will see that $\mathcal{O}_X(D(f)) \cong A(X)_f$, the localization of A(X) at f.

Example 6.1.1. How do we compute $\mathcal{O}_X(U)$ on non-distinguished open sets? Consider

$$X = \mathbb{A}_k^2$$
 and $U = \mathbb{A}_k^2 \setminus \{(0,0)\}.$

Note that U is never a distinguished open set. We claim that the ring homomorphism

$$k[x,y] \longrightarrow \mathcal{O}_{\mathbb{A}^2_r}(\mathbb{A}^2_k \setminus \{(0,0)\})$$

is an isomorphism. The map is injective by the identity principle, so it suffices to show surjectivity. The strategy is use $U = D(x) \cup D(y)$ (in general, cover U by basis elements). Fix $\varphi : U \to k$ regular, so

$$\varphi|_{D(x)} = \frac{f}{x^m} \quad \text{for some } f \in k[x, y], m \ge 0$$

$$\varphi|_{D(y)} = \frac{g}{y^n} \quad \text{for some } g \in k[x, y], n \ge 0.$$

Since we are in a UFD, we may assume that $x \nmid f$ and $y \nmid g$. Now $fy^n = gx^m$ on $D(y) \cap D(x)$, so by the identity principle, $fy^n = gx^m$ on \mathbb{A}^2_k , so $fy^n = gx^m$ in k[x,y]. Using that $y \nmid g$, $x \nmid f$, and that k[x,y] is a UFD, we must have n = m = 0, hence f = g. In particular, we have

$$\varphi|_{D(x)} = \varphi|_{D(y)} = f,$$

so the map $k[x,y] \to \mathcal{O}_X(U)$ is surjective.

6.3 Localization

Remark. We want to invert a subset of a ring, in particular multiplicative systems.

Definition 6.2. A multiplicative system of a ring A is a subset such that

- 1. $1 \in S$;
- 2. S is closed under multiplication.

Example 6.2.1. The following examples of S are multiplicative systems:

- 1. S = A or $S = \{1\};$
- 2. if $\mathfrak{p} \leq A$ is a prime ideal, then $S = A \setminus \mathfrak{p}$;
- 3. if $f \in A$, then $S = \{f^m : m \ge 0\}$.

Definition 6.3. The *localization* of a ring A at a multiplicative system S is the ring

$$S^{-1}A = \left\{ \frac{a}{s} : a \in A, s \in S \right\} / \sim$$

where the a/s are formal symbols with $a/s \sim a'/s'$ if t(as'-a's)=0 for some $t \in S$. The operations are given by the usual addition and multiplication of fractions:

$$\frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'}$$
 and $\frac{a}{s} + \frac{a'}{s'} = \frac{as' + a's}{ss'}$.

Check as an exercise that these operations respect the equivalence relation.

Example 6.3.1. The following are examples of localization:

- 1. If A is a domain and $S = A \setminus \{0\}$, then $S^{-1}A = \operatorname{Frac} A$.
- 2. If $S = \langle f \rangle = \{1, f, f^2, \dots\}$, then we will write $A_f = S^{-1}A$.
- 3. If $S = A \setminus \mathfrak{p}$ for a prime ideal \mathfrak{p} , then we will write $A_{\mathfrak{p}} = S^{-1}A$.

¹Note that if A is a domain and $0 \notin S$, then this condition is equivalent to as' = a's.

Proposition 6.2. We have the following properties of localization:

1. (Universal property of localization) For any ring homomorphism $\varphi: A \to B$ such that $\varphi(s)$ for all $s \in S$, then there exists a unique ring homomorphism which makes the following diagram commute:

2. There is a bijection between the prime ideals $\mathfrak{p} \leq A$ with $\mathfrak{p} \cap S = \emptyset$ and the prime ideals $\mathfrak{q} \leq S^{-1}A$ given by $\mathfrak{p} \mapsto \pi(\mathfrak{p})S^{-1}A$ with inverse $\mathfrak{q} \mapsto \pi^{-1}(\mathfrak{q})$, where $\pi: A \to S^{-1}A$ is the map $a \mapsto a/1$.

Remark. In more generality, for an A-module M, we can define the localization $S^{-1}M$, which is an $S^{-1}A$ -module. This gives a functor $\operatorname{Mod}_A \to \operatorname{Mod}_{S^{-1}A}$ which is exact.

Sept. 9 — Germs and Sheaves

7.1 More on Localization

Proposition 7.1. If X is an affine variety and $f \in A(X)$ is nonzero, then $\mathcal{O}_X(D(f)) \cong A(X)_f$.

Proof. We define a ring homomorphism as follows:

$$A(X)_f \longrightarrow \mathcal{O}_X(D(f))$$

 $\frac{g}{f^m} \longmapsto \left(x \mapsto \frac{g(x)}{f^m(x)}\right).$

To check that this is well-defined, assume $g/f^m \sim h/f^n$ in $A(X)_f$. So there exists $k \geq 0$ such that

$$f^k(gf^n - hf^m) = 0 \quad \text{in } A(X).$$

So $gf^n - hf^m = 0$ as functions $D(f) \to k$, so $g/f^m = h/f^n$ as functions $D(f) \to k$. Thus their images agree in $\mathcal{O}_X(D(f))$, so the map is well-defined.

Surjectivity follows from the argument from last time. For injectivity, assume $g/f^m=0$ as functions $D(f)\to k$ with $g\in A(X)$. Then fg=0 in A(X), so $g/f^m\sim 0/1$ in $A(X)_f$.

7.2 Germs of Functions

Definition 7.1. Let $p \in X$ be a point on an affine variety.

- 1. A germ of a regular function of X at p is a pair (U, f) such that $x \in U \subseteq X$ is open and f is a regular function $U \to k$, up to the equivalence relation $(U, \varphi) \sim (V, \psi)$ if there exists an open set $x \in W \subseteq U \cap V$ such that $\varphi|_W = \psi|_W$.
- 2. Define $\mathcal{O}_{X,p} = \{\text{germs of regular functions of } X \text{ at } p\}.$

Exercise 7.1. Check that $\mathcal{O}_{X,p}$ is a ring with operations

$$(U,\varphi)\cdot(V,\psi) = (U\cap V,\varphi|_{U\cap V}\cdot\psi|_{U\cap V}),$$

$$(U,\varphi)+(V,\psi) = (U\cap V,\varphi|_{U\cap V}+\psi|_{U\cap V}),$$

with the zero function as the zero element and the constant 1 function as the unit element.

Lemma 7.1. $\mathcal{O}_{X,p}$ is a local ring with unique maximal ideal $\mathfrak{m}_p = \{(U,\varphi) \in \mathcal{O}_{X,p} : \varphi(p) = 0\}.$

Proof. It suffices to show that the units of $\mathcal{O}_{X,p}$ are precisely $\mathcal{O}_{X,p} \setminus \mathfrak{m}_p$. To see the reverse inclusion, fix $(U,\varphi) \in \mathcal{O}_{X,p}$ with $\varphi(p) \neq 0$. So there exists an open neighborhood $p \in W \subseteq U$ such that $\varphi|_W$ never vanishes. Then

$$(U,\varphi) \cdot (W,1/\varphi|_W) = (W,\varphi|_W) \cdot (W,1/\varphi|_W) = (W,1),$$

so (U,φ) is a unit in $\mathcal{O}_{X,p}$. The forward inclusion is similar.

Proposition 7.2. With the above setup, there is an isomorphism

$$A(X)_{I(p)} \longrightarrow \mathcal{O}_{X,p}$$

$$\frac{f}{g} \longmapsto \left(D(g), x \mapsto \frac{f(x)}{g(x)}\right)$$

with $I(p) = \{ f \in A(X) : f(p) = 0 \}.$

Proof. To see that this is well-defined, let $f/g \sim f'/g' \in A(X)_{I(p)}$. Then h(fg'-f'g)=0 for some $h \in A(X)$ with $h(p) \neq 0$. So f/g = f'/g' as functions $D(h) \cap D(g) \to k$, which means that f/g = f'/g' as elements in $\mathcal{O}_{X,p}$. Thus the map is well-defined.

Injectivity is similar to before. For surjectivity, choose $(U, \varphi) \in \mathcal{O}_{X,p}$. Since $\varphi : U \to k$ is a regular function, there exists an open set $p \in U_p \subseteq U$ and $f, g \in A(X)$ such that g does not vanish on U_p and $\varphi(x) = f(x)/g(x)$ for all $x \in U_p$. So $(U, \varphi) \sim (D(g), f/g)$ in $\mathcal{O}_{X,p}$, i.e. (U, φ) is in the image.

Example 7.1.1. If $X = \mathbb{A}^n_k$ and p = 0, then

$$\mathcal{O}_{\mathbb{A}^n_k,0} \cong k[x_1,\ldots,x_n]_{(x_1,\ldots,x_n)} = \left\{ \frac{f}{g} : f \in k[x_1,\ldots,x_n], g \in k[x_1,\ldots,x_n] \setminus (x_1,\ldots,x_n) \right\}.$$

Remark. We will relate the local properties of X at p to properties of $\mathcal{O}_{X,p}$. We will use the following statements from commutative algebra: Let A be a ring and $\mathfrak{p} \subseteq A$ a prime ideal. Then

- 1. $A_{\mathfrak{p}}$ is a local ring with unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$.
- 2. There is a bijection from the prime ideals of $A_{\mathfrak{p}}$ to the prime ideals of A contained in \mathfrak{p} .
- 3. $\operatorname{ht}_A \mathfrak{p} = \dim A_{\mathfrak{p}}$ (this follows from (2)).

This has the following consequence: If X is an affine variety and $p \in X$, then

$$\operatorname{codim}_X\{p\} = \operatorname{ht}_{A(X)} I(p) = \dim A(X)_{I(p)} = \dim \mathcal{O}_{X,p}.$$

7.3 Sheaves

Remark. We will now formalize the structures $\mathcal{O}_X(U)$ and $\mathcal{O}_{X,p}$ that we have seen before.

Definition 7.2. A presheaf (of rings) \mathcal{F} on a topological space X is the data of

- 1. for every open set $U \subseteq X$, a ring $\mathcal{F}(U)$;
- 2. for every inclusion of open sets $U \subseteq V \subseteq X$, a ring homomorphism $\rho_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U)$ satisfying the following properties:

- 1. $\mathcal{F}(\varnothing) = 0$;
- 2. $\rho_{U,U}$ is the identity map;
- 3. for inclusions of open sets $U \subseteq V \subseteq W \subseteq X$, we have $\rho_{W,U} = \rho_{V,U} \circ \rho_{W,V}$.

Example 7.2.1. If X is an affine variety, then \mathcal{O}_X gives a presheaf of rings with

- 1. for $U \subseteq X$, the ring is $\mathcal{O}_X(U) = \{\text{regular functions } \varphi : U \to k\};$
- 2. for $U \subseteq V \subseteq X$, the map $\mathcal{O}_X(V) \to \mathcal{O}_X(U)$ is given by $\varphi \mapsto \varphi|_U$.

Remark. We often call $s \in \mathcal{F}(U)$ a section, and for $U \subseteq V$, we call $s|_{U} = \rho_{V,U}(s)$ the restriction.

Remark. A presheaf is the same thing as a functor $\operatorname{Open}_X^{\operatorname{op}} \to \operatorname{Rings}$, where Open_X is the category with objects the nonempty open sets of X and morphisms corresponding to the inclusions $U \subseteq V$.

Definition 7.3. A presheaf \mathcal{F} on X is a *sheaf* if it satisfies the *gluing property*: For any $U \subseteq X$ open, an open cover $\{U_i\}_{i\in I}$ of U, and $\varphi_i \in \mathcal{F}(U_i)$ with $\varphi_i|_{U_i\cap U_j} = \varphi_j|_{U_i\cap U_j}$ for all $i,j\in I$, there exists a unique $\varphi\in\mathcal{F}(U)$ such that $\varphi|_{U_i}=\varphi_i$ for all $i\in I$.

Example 7.3.1. We have the following:

- 1. If X is an affine variety, then \mathcal{O}_X is a sheaf (if we take $\varphi_i \in \mathcal{O}_X(U_i)$ that agree on the overlaps, then we get $\varphi: U \to k$, which is regular since regularity is a local property).
- 2. If M is a smooth manifold, then we can define a sheaf (on open subsets $U \subseteq M$) by

$$U \longmapsto \mathcal{F}^{\mathrm{sm}}(U) = \{ \text{smooth functions } U \to \mathbb{R} \}.$$

We may also consider $\mathcal{F}^{\text{cont}}$, $\mathcal{F}^{\text{diff}}$, $\mathcal{F}^{\text{loc,const}}$, etc. However, $\mathcal{F}^{\text{const}}$ is a presheaf, but not a sheaf in general: We can take $U = U_1 \cup U_2$ with $U_1 \cap U_2 = \emptyset$, and we will only get a locally constant function. Similarly, $\mathcal{F}^{\text{bounded}}$ is only a presheaf but not a sheaf.

3. If \mathcal{F} is a sheaf on a topological space X and $U \subseteq X$ is open, then we get a sheaf $\mathcal{F}|_U$ on U defined by $\mathcal{F}|_U(V) = \mathcal{F}(V)$ for $V \subseteq U$ open.

Definition 7.4. The stalk of a sheaf \mathcal{F} on a topological space X at $x \in X$ is

$$\mathcal{F}_x = \{(U, \varphi) : U \subseteq X \text{ open and } \varphi \in \mathcal{F}(U)\}/\sim$$

where $(U,\varphi) \sim (V,\psi)$ if there exists an open set $x \in W \subseteq U \cap V$ such that $\varphi|_W = \psi|_W$.

Example 7.4.1. If X is an affine variety and $p \in X$, then $\mathcal{O}_{X,p} \cong (\mathcal{O}_X)_p$.

Remark. As before with $\mathcal{O}_{X,p}$, one can check that \mathcal{F}_x naturally has the structure of a ring.

Remark. An alternative perspective is to define the stalk as a direct limit:

$$\mathcal{F}_x = \varinjlim_{U \ni x} \mathcal{F}(U),$$

where the limit is taken over all open $x \in U \subseteq X$ with respect to the ordering $U \leq V$ if $V \subseteq U$.

Sept. 11 — Morphisms

8.1 Morphisms of Open Sets

Remark. Recall that a continuous map $f: \mathbb{R}^m \to \mathbb{R}^n$ is *smooth* if it satisfies either of the following equivalent conditions:

- 1. there exist smooth functions $f_1, \ldots, f_n : \mathbb{R}^m \to \mathbb{R}$ such that $f(x) = (f_1(x), \ldots, f_n(x))$;
- 2. for each open set $U \subseteq \mathbb{R}^n$ and smooth $\varphi: U \to \mathbb{R}$, the function $f^*\varphi := \varphi \circ f: \mathbb{R}^m \to \mathbb{R}$ is smooth.

The implication $(1 \Rightarrow 2)$ follows by the chain rule. To see $(2 \Rightarrow 1)$, take $y_i : \mathbb{R}^n \to \mathbb{R}$ defined by $f_i := f^*y_i$. We want a similar definition in algebraic geometry.

Definition 8.1. Let X and Y be open sets of affine varieties. A morphism $f: X \to Y$ is a continuous map such that for every $U \subseteq Y$ open and $\varphi \in \mathcal{O}_Y(U)$, the map

$$f^{-1}(U) \xrightarrow{f} U \xrightarrow{\varphi} k$$

satisfies $f^*\varphi \in \mathcal{O}_X(f^{-1}(U))$. A morphism is an *isomorphism* if it has a two-sided inverse (equivalently, f is a bijection and f^{-1} is a morphism).

Remark. We have the following properties of morphisms:

- 1. (Composition) If $f: X \to Y$ and $g: Y \to Z$ are morphisms of open sets of affine varieties, then so is $g \circ f: X \to Z$.
- 2. (Local on target) If $X \to Y$ is a map of open sets of affine varieties such that there exists an open cover $\{U_i\}_{i\in I}$ of Y with $f|_{f^{-1}(U_i)}: f^{-1}(U_i) \to U_i$ a morphism for all $i \in I$, then f is a morphism.

Proposition 8.1. Let $X \subseteq \mathbb{A}^m$ and $Y \subseteq \mathbb{A}^n$ be affine varieties. Let $U \subseteq X$ and $V \subseteq Y$ be open sets. A map $f: U \to V$ is a morphism if and only if there exist $\varphi_1, \ldots, \varphi_n \in \mathcal{O}_X(U)$ such that

$$f(x) = (\varphi_1(x), \dots, \varphi_n(x)).$$

Proof. (\Rightarrow) Let $U \subseteq \mathbb{A}^m_{x_i}$ and $V \subseteq \mathbb{A}^n_{y_i}$. By the definition of a morphism, $y_i : V \to k$ satisfies

$$\varphi_i := f^* y_i \in \mathcal{O}_X(U),$$

so we can write $f(x) = (\varphi_1(x), \dots, \varphi_n(x))$.

 (\Leftarrow) Assume there exist $\varphi_1, \ldots, \varphi_n \in \mathcal{O}_X(U)$ such that $f(x) = (\varphi_1(x), \ldots, \varphi_n(x))$.

We first show that f is continuous. Let $Z \subseteq V$ be a closed set. So we can write $Z = V(g_r, \ldots, g_r)$ for some $g_1, \ldots, g_r \in A(\mathbb{A}^n) \cong k[y_1, \ldots, y_n]$. Now we have

$$f^{-1}(Z) = \{x \in U : f(x) \in Z\} = \{x \in U : g_i(f(x)) = 0 \text{ for } i = 1, \dots, r\}$$
$$= \{x \in U : (f^*g_i)(x) = 0 \text{ for } i = 1, \dots, r\}.$$

Note that $f^*g_i = g_i(\varphi_1, \dots, \varphi_n)$, which is regular since a composition of a polynomial with fractions of polynomials is again a fraction of polynomials. So $f^{-1}(Z)$ is closed in U.

Now to show that f is a morphism, it suffices to show that for any $W \subseteq Y$ open and $\varphi \in \mathcal{O}_Y(W)$, we have $f^*\varphi \in \mathcal{O}_X(f^{-1}(W))$. The proof of this is similar to before.

Example 8.1.1. We have the following:

1. Morphisms $\mathbb{A}^m \to \mathbb{A}^n$ are of the form

$$x \longmapsto (f_1(x), \ldots, f_n(x))$$

with
$$f_1, \ldots, f_n \in \mathcal{O}_{\mathbb{A}^m}(\mathbb{A}^m) = k[x_1, \ldots, x_m].$$

- 2. Write \mathbb{A}^1_t to mean \mathbb{A}^1 with variable t. Then we can define $\mathbb{A}^1_t \to V(y-x^2) \subseteq \mathbb{A}^2_{x,y}$ by $t \mapsto (t,t^2)$. We can get an inverse $V(y-x^2) \to \mathbb{A}^1_t$ by $(x,y) \mapsto x$, so \mathbb{A}^1_t and $V(y-x^2)$ are isomorphic.
- 3. Consider the map $g: \mathbb{A}^1_t \to V(x^2-y^3) \subseteq \mathbb{A}^2_{x,y}$ given by $t \mapsto (t^3,t^2)$. This map is bijective, but it is not an isomorphism. To see this, we can show that $(g^{-1})^*\varphi$ is not regular for some regular function φ on \mathbb{A}^t_1 . For instance, we can take $\varphi = t$, so that

$$(g^{-1})^*(t) = (x, y) \mapsto \begin{cases} x/y & \text{if } y \neq 0, \\ 0 & \text{otherwise,} \end{cases}$$

which we can see is not regular.

8.2 Relation to Coordinate Rings

Remark. Let $X \subseteq \mathbb{A}^m$ and $Y \subseteq \mathbb{A}^n$ be affine varieties. Then a morphism $f: X \to Y$ of affine varieties induces a k-algebra morphism (called the pullback of f)

$$f^*:A(Y)\longrightarrow A(X)$$

$$\varphi\longmapsto f^*=\varphi\circ f$$

with the properties $(g \circ f)^* = f^* \circ g^*$ and $(\mathrm{id}_X)^* = \mathrm{id}_{A(X)}$, i.e. $X \mapsto A(X)$ is a contravariant functor.

Proposition 8.2. The following map is a bijection:

$$\operatorname{Hom}_{\operatorname{aff,var}}(X,Y) \xrightarrow{\Phi} \operatorname{Hom}_{k-\operatorname{alg}}(A(Y),A(X))$$

$$f \longmapsto f^*$$

Proof. Note that $A(X) \cong k[x_1, \ldots, x_m]/I(X)$ and $A(Y) \cong k[y_1, \ldots, y_n]/I(Y)$. Given a morphism

$$f: X \longrightarrow Y$$

 $x \longmapsto (\varphi_1(x), \dots, \varphi_n(x)),$

we can define $f^*\overline{y}_i = \varphi_i$. Conversely, given a k-algebra homomorphism $\phi: A(Y) \to A(X)$, we can set $\varphi_i = \phi(\overline{y}_i)$. Now consider the morphism defined by

$$f: X \longrightarrow \mathbb{A}^n_{y_i}$$

 $x \longmapsto (\varphi_1(x), \dots, \varphi_n(x)).$

We claim that $f(X) \subseteq Y$. To see this, fix $x \in X$. If $h \in I(Y)$, then

$$h(f(x)) = h(\varphi_1(x), \dots, \varphi_n(x)) = \phi(h)(x) = 0(x) = 0,$$

so $f(X) \subseteq Y$. Thus we get a morphism $f: X \to Y$ by $x \mapsto (\varphi_1(x), \dots, \varphi_n(x))$ with $f^*y_i = \varphi_i$. One can check that this gives a map $\Psi: \operatorname{Hom}_{k\text{-alg}}(A(Y), A(X)) \to \operatorname{Hom}_{\operatorname{aff,var}}(X, Y)$ which is inverse to Φ .

Example 8.1.2. We have the following:

1. Recall the morphism $g: \mathbb{A}^1_t \to V(y-x^2) \subseteq \mathbb{A}^2_{x,y}$ given by $t \mapsto (t,t^2)$. The pullback is given by

$$g^*: \frac{k[x,y]}{(y-x^2)} \longmapsto k[t]$$
$$x \longmapsto t$$
$$y \longmapsto t^2.$$

Note that g^* is an isomorphism of k-algebras, so g is an isomorphism of affine varieties. This gives an alternative way of seeing this without writing down an inverse to g.

2. Recall the morphism $h: \mathbb{A}^1_t \to V(x^2-y^3) \subseteq \mathbb{A}^2_{x,y}$ given by $t \mapsto (t^3,t^2)$. The pullback is

$$h^*: \frac{k[x,y]}{(x^2 - y^3)} \longmapsto k[t]$$
$$x \longmapsto t^3$$
$$y \longmapsto t^2.$$

Note that $t \notin \text{Im } h^*$, so h^* is not an isomorphism, so h is not an isomorphism.

Remark. There is a one-to-one correspondence between affine varieties (up to isomorphism) and finitely generated reduced k-algebras (up to isomorphism).

To see this, observe that if $X \subseteq \mathbb{A}^n$ is an affine variety, then $A(X) \cong k[x_1, \ldots, x_n]/I(X)$. This is finitely generated, and reduced since I(X) is radical. Conversely, let A be a reduced finitely generated k-algebra. Then $A \cong k[y_1, \ldots, y_m]/I$ since A is finitely generated, and I is radical since A is reduced. Thus by Hilbert's nullstellensatz, Y = V(I) satisfies I(Y) = I(V(I)) = I, so $A \cong A(Y)$.

In more abstract language, this means that there is an equivalence of categories

$$AffVar \longleftrightarrow RedFGAlg_k^{op}.$$

Sept. 16 — Morphisms, Part 2

9.1 An Example of Isomorphisms

Example 9.0.1. What of the following are isomorphic over \mathbb{C} ?

- 1. $\mathbb{A}^1 \setminus \{1\};$
- 2. $V(x^2 + y^2) \subseteq \mathbb{A}^2$;
- 3. $V(y x^2, z x^3) \subseteq \mathbb{A}^3$;
- 4. $V(xy) \subseteq \mathbb{A}^2$;
- 5. $V(y^2 x^2 x^3) \subseteq \mathbb{A}^2$;
- 6. $V(x^2 y^2 1) \subseteq \mathbb{A}^2$.

Note that (2) and (4) are not irreducible. In fact, they are isomorphic since we can write (2) as

$$V(x^2 + y^2) = V((x + iy)(x - iy)) \cong V(xy).$$

We have seen (3) previously on homework, and we have an isomorphism $\mathbb{A}^1 \to Y = V(y - x^2, z - x^3)$ by $t \mapsto (t, t^2, t^3)$. We can also see this by noting that $A(Y) \cong \mathbb{C}[x] \cong A(\mathbb{A}^1)$. For (1), note that

$$\mathbb{A}^1 \setminus \{1\} \cong \mathbb{A}^1 \setminus \{0\}$$

and $A(\mathbb{A}^1 \setminus \{0\}) \cong \mathbb{C}[x^{\pm 1}]$, whereas $A(\mathbb{A}^1) \cong \mathbb{C}[x]$. So $A \setminus \{1\} \ncong \mathbb{A}^1$. For (6), note that

$$V(x^{2} - y^{2} - 1) = V((x - y)(x + y) - 1) \cong V(uv - 1) \cong \mathbb{A}^{1} \setminus \{0\}$$

by the map $V(uv-1) \to \mathbb{A}^1 \setminus \{0\}$ given by $(u,v) \mapsto u$, with inverse $t \mapsto (t,1/t)$. Finally, letting C be the curve in 6, one can show that there is a singularity at the origin with $\dim_{\mathbb{C}}(\mathcal{O}_{C,0}/\mathfrak{m}_0) = 2$, which is different than the other examples. So the isomorphism classes are $\{2,4\}$, $\{1,6\}$, $\{3\}$, and $\{5\}$.

9.2 Ringed Spaces and Morphisms

Definition 9.1. A ringed space (X, \mathcal{O}_X) is a topological space X with a sheaf of rings \mathcal{O}_X on X.

Example 9.1.1. If X is an affine variety and \mathcal{O}_X is the sheaf of regular functions, then (X, \mathcal{O}_X) is a ringed space. Similarly, if M is a complex manifold and \mathcal{O}_M is the sheaf of holomorphic functions on M, then (M, \mathcal{O}_M) is a ringed space.

Remark. From now on, for a ringed space (X, \mathcal{O}_X) , we will always assume \mathcal{O}_X is a sheaf of k-valued functions on X. With this assumption, we can make sense of pullbacks.

Definition 9.2. A morphism of ringed spaces

$$(X, \mathcal{O}_X) \stackrel{f}{\longrightarrow} (Y, \mathcal{O}_Y)$$

is a continuous map $f: X \to Y$ such that for every $U \subseteq Y$ open and $\varphi \in \mathcal{O}_Y(U)$,

$$f^{-1}(U) \xrightarrow{f} U \xrightarrow{\varphi} k$$

is an element of $\mathcal{O}_X(f^{-1}(U))$. A morphism is an isomorphism if it has a two-sided inverse.

Remark. A one-sided inverse need not be two-sided: Consider $f: \mathbb{A}^2 \to \mathbb{A}^1$ given by $(x, y) \mapsto x$ and $g: \mathbb{A}^1 \to \mathbb{A}^2$ given by $x \mapsto (x, 0)$. Then $f \circ g = \mathrm{id}_{\mathbb{A}^1}$, but $g \circ f$ is not the identity on \mathbb{A}^2 .

Remark. If $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a morphism of ringed spaces, then for $V \subseteq U \subseteq Y$ open, we get

$$\mathcal{O}_Y(U) \longrightarrow \mathcal{O}_X(f^{-1}(U))$$

$$\downarrow^{\text{res.}} \qquad \qquad \downarrow^{\text{res.}}$$

$$\mathcal{O}_Y(V) \longrightarrow \mathcal{O}_X(f^{-1}(V))$$

which is a commutative diagram of ring homomorphisms.

Remark. If X and Y are open sets of affine varieties, then a map $f: X \to Y$ is a morphism of open sets of affine varieties if and only if it is a morphism of ringed spaces.

Definition 9.3 (Redefinition of affine variety). An affine variety (X, \mathcal{O}_X) is a ringed space isomorphic to an affine variety in the original sense (as ringed spaces).

Remark. We will often write just X for the affine variety instead of the pair (X, \mathcal{O}_X) .

Example 9.3.1. Recall that $\mathbb{A}^1 \setminus \{0\} \cong V(xy-1) \subseteq \mathbb{A}^2$ from Example 9.0.1. In particular, $\mathbb{A}^1 \setminus \{0\}$ is an affine variety in the new sense (but not in the old sense).

Proposition 9.1. If X is an affine variety (in the old sense) and $f \in A(X)$, then D(f) is an affine variety.

Proof. Write $X = V(I) \subseteq \mathbb{A}_{x_i}^n$ and consider the map

$$D(f) \longrightarrow V(I, fy - 1) \subseteq \mathbb{A}_{x_i}^n \times \mathbb{A}_y^1$$

 $x \longmapsto (x, 1/f(x)).$

This has an inverse $V(I, fy-1) \to D(f)$ given by $(x,y) \mapsto x$. So $D(f) \cong V(I, fy-1)$ as ringed spaces. Thus D(f) is an affine variety (in the new sense).

9.3 Products of Affine Varieties

Remark. If $X \subseteq \mathbb{A}^m_{x_i}$ and $Y \subseteq \mathbb{A}^n_{y_i}$ are affine varieties, then

$$X \times Y = V(I(X), I(Y)) \subseteq \mathbb{A}^{m+n}$$

viewing I(X), I(Y) as ideals in $k[x_1, \ldots, x_m, y_1, \ldots, y_n]$. So $X \times Y$ is an affine variety with morphisms

Proposition 9.2. For every affine variety Z and diagram of morphisms

there is a unique morphism f which makes the diagram commute.

Proof. We already know that there is a unique set theoretic map which makes the diagram commute. Then since f_X and f_Y are given as regular functions, so is f. So f is a morphism.

Remark. We will now try to understand the isomorphism $A(X \times Y) \cong A(X) \otimes_k A(Y)$.

9.4 Tensor Products

Definition 9.4. Let A be a (commutative) ring and M, N be A-modules. The tensor product $M \otimes_A N$ is the A-module generated by the symbols $m \otimes n$ for $m \in M$ and $n \in N$, subject to the relations

- 1. (distributive law): $(m+m') \otimes n = m \otimes n + m' \otimes n$,
- 2. (multiplication with scalars): $a(m \otimes n) = (am) \otimes n = m \otimes (an)$.

To make this precise, $M \otimes_A N = A^{M \times N}/R$, where R is the submodule generated by these relations.

Example 9.4.1. We have $\mathbb{Z}/3\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} = 0$. We can compute

$$1\otimes 1=(3-2)\otimes 1=3\otimes 1-2\otimes 1=3\otimes 1+1\otimes (-2)=0\otimes 1+1\otimes 0=0\otimes 0,$$

and similarly for the other elements. In general, if gcd(m,n) = 1, then $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} = 0$.

Proposition 9.3 (Universal property of the tensor product). For any bilinear map $\Phi: M \times N \to P$ to an A-module P (i.e. $n \mapsto \Phi(m, n)$ is A-linear for each $m \in M$ and the same for $m \mapsto \Phi(m, n)$),

$$\begin{array}{c}
M \times N \xrightarrow{\Phi} P \\
(m,n) \mapsto m \otimes n \downarrow & \Psi \\
M \otimes N
\end{array}$$

there exists a unique A-module homomorphism $\Psi: M \otimes N \to P$ such that the above diagram commutes.

Remark. We have the following properties of the tensor product:

1. $A \otimes M \cong M$;

- 2. $M \otimes N \cong N \otimes M$;
- 3. $(M \otimes N) \otimes P \cong M \otimes (N \otimes P)$;
- 4. $(M \oplus N) \otimes P \cong (M \otimes P) \oplus (N \otimes P)$.

The way to prove these is to use the universal property to construct maps in either direction and show that they compose to the identity.

5. For a fixed A-module M and an exact sequence

$$N' \xrightarrow{f} N \xrightarrow{g} N'' \longrightarrow 0.$$

the sequence (where F is defined by $m \otimes n' \mapsto m \otimes f(n')$ and G is defined by $m \otimes n \mapsto m \otimes g(n)$)

$$M \otimes N' \xrightarrow{F} M \otimes N \xrightarrow{G} M \otimes N'' \longrightarrow 0$$

is also exact. In particular, $\otimes M$ induces a right exact functor $\operatorname{Mod}_A \to \operatorname{Mod}_A$ by $N \mapsto M \otimes N$.

Example 9.4.2. The functor $\otimes M$ is in general not left exact. Consider

$$0 \longrightarrow \mathbb{Z} \stackrel{1\mapsto 2}{\longrightarrow} \mathbb{Z} \stackrel{1\mapsto 1}{\longrightarrow} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0.$$

After tensoring with $\mathbb{Z}/2\mathbb{Z}$, we get the sequence

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{1 \mapsto 0} \mathbb{Z}/2\mathbb{Z} \xrightarrow{1 \mapsto 1 \otimes 1} \mathbb{Z}/2\mathbb{Z} \otimes \mathbb{Z}/2\mathbb{Z} \longrightarrow 0,$$

where the first map is not injective. Note that right exactness gives $\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Z}/2\mathbb{Z}\cong\mathbb{Z}/2\mathbb{Z}$.

Exercise 9.1. Show that $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/(m,n)\mathbb{Z}$.

Sept. 18 — Pre-varieties

10.1 More on Tensor Products

Proposition 10.1. If B and C are A-algebras (i.e. there are ring homomorphisms $f: A \to B$ and $g: A \to C$ which give $a \cdot b := f(a)b$ and $a \cdot c = g(a)c$, then $B \otimes_A C$ is also an A-algebra with

$$(b \otimes c) \cdot (b' \otimes c') := (bb') \otimes (cc')$$

and ring homomorphism $A \to B \otimes_A C$ given by $a \mapsto a \otimes 1$ (equivalently, $1 \otimes a$).

Proposition 10.2. $k[x_1, ..., x_m] \otimes_k k[y_1, ..., y_n] \cong k[x_1, ..., x_m, y_1, ..., y_n].$

Proposition 10.3. $(k[x_1,\ldots,x_m]/I)\otimes_k (k[y_1,\ldots,y_n]/J)\cong k[x_1,\ldots,x_m,y_1,\ldots,y_n)/\langle I,J\rangle.$

Proof. Set $R = k[x_1, \ldots, x_m]$ and $S = k[y_1, \ldots, y_n]$. We have a short exact sequence

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0.$$

Applying the right exact functor $\otimes_k(S/J)$ (and vice versa with J and $\otimes R$) gives an exact sequence

$$R \otimes_{k} J$$

$$\downarrow$$

$$R \otimes_{k} S$$

$$\downarrow$$

$$I \otimes_{k} (S/J) \longrightarrow R \otimes_{k} (S/J) \longrightarrow (R/I) \otimes_{k} (S/J) \longrightarrow 0$$

$$\downarrow$$

$$0$$

So we have

$$(R/I) \otimes_k (S/J) \cong \frac{R \otimes_k (S/J)}{\operatorname{Im}(I \otimes_k (S/J) \to R \otimes_k (S/J))} \cong \frac{R \otimes_k S}{I \otimes_k S + R \otimes_k J},$$

which is the desired result since $I \otimes_k S + R \otimes_k J = \langle I, J \rangle$ in $R \otimes_k S$.

Proposition 10.4 (Milne). Let B and C be finitely generated k-algebras with $k = \overline{k}$.

1. If B and C are reduced, then so is $B \otimes_k C$.

2. If B and C are domains, then so is $B \otimes_k C$.

Remark. We need $k = \overline{k}$ in Proposition 10.4. Consider the domains $\mathbb{R}[x]/(x^2+1)$, $\mathbb{R}[y]/(y^2+1)$. Then

$$\frac{\mathbb{R}[x]}{(x^2+1)} \otimes_{\mathbb{R}} \frac{\mathbb{R}[y]}{(y^2+1)} \cong \frac{\mathbb{R}[x,y]}{(x^2+1,y^2+1)},$$

which is not a domain since $(\overline{x-y})(\overline{x+y}) = \overline{x^2-y^2} = \overline{-1-(-1)} = 0$.

Corollary 10.0.1. If $X \subseteq \mathbb{A}^m$ and $Y \subseteq \mathbb{A}^n$ are affine varieties, then

- 1. $I(X \times Y) = \langle I(X), I(Y) \rangle \subseteq k[x_1, \dots, x_m, y_1, \dots, y_n].$
- 2. $A(X \times Y) \cong A(X) \otimes_k A(Y)$.
- 3. If X and Y are irreducible, then $X \times Y$ is irreducible.

Proof. Observe that $V(I(X), I(Y)) = X \times Y \subseteq \mathbb{A}^{m+n}$, so $I(X \times Y) = \sqrt{\langle I(X), I(Y) \rangle}$. Now we know that I(X) and I(Y) are radical in $k[x_1, \ldots, x_m]$ and $k[y_1, \ldots, y_n]$, respectively, so

$$\frac{k[x_1,\ldots,x_m]}{I(X)}$$
 and $\frac{k[y_1,\ldots,y_n]}{I(Y)}$

are reduced. By Proposition 10.4, we get that

$$\frac{k[x_1,\ldots,x_m,y_1,\ldots,y_n]}{\langle I(X),I(Y)\rangle} \cong \frac{k[x_1,\ldots,x_m]}{I(X)} \otimes_k \frac{k[y_1,\ldots,y_n]}{I(Y)}$$

is reduced, so $\langle I(X), I(Y) \rangle$ is radical. Thus $I(X \times Y) = \langle I(X), I(Y) \rangle$, so (1) holds.

Now (1) implies (2), and (3) follows since X and Y being irreducible implies A(X) and A(Y) are domains, which implies $A(X \times Y)$ is a domain by Proposition 10.4 and (2), so $X \times Y$ is irreducible.

10.2 Pre-varieties

Remark. We will now head towards defining a *variety*, which is roughly finitely many affine varieties glued together (a *pre-variety*) with a separation condition (an algebraic version of Hausdorffness).

Definition 10.1. A pre-variety is a ringed space (X, \mathcal{O}_X) such that there exists a finite open cover $X = \bigcup_{i=1}^{s} U_i$ with $(U_i, \mathcal{O}_X|_{U_i})$ being an affine variety for all $i = 1, \ldots, s$. A morphism of pre-varieties

$$f:(X,\mathcal{O}_X)\longrightarrow (Y,\mathcal{O}_Y)$$

is a morphism of the ringed spaces. We will often just write X for (X, \mathcal{O}_X) .

Remark. We call $\varphi \in \mathcal{O}_X(U)$ with $U \subseteq X$ open and $\varphi : U \to k$ a regular function on U.

Example 10.1.1. Consider the following:

- 1. An affine variety X is a pre-variety. However, we have multiple choices for the open cover: We can take X = X, or $X = \bigcup_{i=1}^{s} D(f_i)$ with $f_i \in \mathcal{O}_X(X)$ and $(f_1, \ldots, f_s) = (1)$ in $\mathcal{O}_X(X)$.
- 2. $\mathbb{P}_k^n = (\mathbb{A}^{n+1} \setminus \{0\})/k^*$ is a pre-variety. We will see that $\mathbb{P}_k^1 = \mathbb{A}_k^1 \cup \{\text{pt}\}$.

3. Let $X = V(I) \subseteq \mathbb{A}^n$ be an affine variety and $U \subseteq X$ open. Set

$$\mathcal{O}_U(V) = \{ \varphi : V \to k \mid \varphi \text{ is regular} \}.$$

Then (U, \mathcal{O}_U) is a pre-variety. To see this, note that $U = \bigcup_{f \in I(X \setminus U)} D(f)$. Since U is Noetherian (hence is compact), we can find a finite subcover, so $U = \bigcup_{i=1}^{s} D(f_i)$ for some $f_i \in A(X)$.

4. (Gluing) Let X_1 and X_2 be affine varieties, and $U_{1,2} \subseteq X_1$, $U_{2,1} \subseteq X_2$ open, with an isomorphism

$$f: U_{1,2} \longrightarrow U_{2,1}.$$

Then we get a pre-variety by setting $X = (X_1 \sqcup X_2)/\sim$, where $a \sim f(a)$ for all $a \in U_{1,2}$, $f(a) \sim a$ for all $a \in U_{2,1}$, and $b \sim b$ for all $b \in X_1 \sqcup X_2$. We have quotient maps

$$j_1: X_1 \longrightarrow X$$
 and $j_2: X_2 \longrightarrow X$.

Now X is a topological space with the quotient topology, and j_1, j_2 are open embeddings (i.e. have open images and are homeomorphisms onto their images). Define a sheaf of rings \mathcal{O}_X on X by

$$\mathcal{O}_X(U) = \{ \varphi : U \to k \mid j_1^* \varphi \in \mathcal{O}_{X_1}(j^{-1}(U)) \text{ and } j_2^* \varphi \in \mathcal{O}_{X_2}(j_2^{-1}(U)) \}.$$

One can check $X = j_1(X_1) \cup j_2(X_2)$ and $(j(X_i), \mathcal{O}_X|_{j_i(X_i)}) \cong (X_i, \mathcal{O}_{X_i})$, so (X, \mathcal{O}_X) is a pre-variety.

Example 10.1.2. Consider $X_1 = \mathbb{A}^1_x$ and $X_2 = \mathbb{A}^1_y$, with $U_{1,2} = \mathbb{A}^1_x \setminus \{0\}$ and $U_{2,1} = \mathbb{A}^1_y \setminus \{0\}$. Define

$$f: U_{1,2} \longrightarrow U_{2,1}$$

 $x \longmapsto 1/x.$

Then we can take $\mathbb{P}^1_k = (X_1 \sqcup X_2)/\sim$. What are the regular functions $\mathbb{P}^1_k \to k$? We should get only the constant functions (When $k = \mathbb{C}$, $\mathbb{P}^1_{\mathbb{C}}$ is compact, so a holomorphic function $f : \mathbb{P}^1_{\mathbb{C}} \to \mathbb{C}$ is bounded. By restricting to X_1 , we get a bounded map $f : \mathbb{C} \to \mathbb{C}$, so f is constant by Liouville's theorem).

In general, let $j_i: X_i \to \mathbb{P}^1_k$ be the quotient maps. Fix $\varphi \in \mathcal{O}_{\mathbb{P}^1}(\mathbb{P}^1)$. Now

$$\varphi|_{X_1} := j_1^* \varphi = \sum_{i \ge 0} a_i x^i$$
 and $\varphi|_{X_2} := j_2^* \varphi = \sum_{i \ge 0} b_i y^i$

for some $a_i, b_i \in k$. They must agree on the overlap, so

$$\sum_{i\geq 0} a_i x^i = \sum_{i\geq 0} b_i (1/x)^i$$

as functions on $\mathbb{A}^1 \setminus \{0\}$. Since $\mathcal{O}_{\mathbb{A}^1}(\mathbb{A}^1 \setminus \{0\}) = k[x^{\pm 1}]$, we have $a_i = b_i = 0$ for i > 0 and $a_0 = b_0$ (since the powers of $x^{\pm 1}$ are k-linearly independent), so φ is a constant function.

If we instead took $f: U_{1,2} \to U_{2,1}$ to be $x \mapsto x$, then $X = (X_1 \sqcup X_2)/\sim$ is the "bug-eyed line" with two points 0, 0' at the origin (this is the *line with two origins* when $k = \mathbb{R}$, which is not Hausdorff.) Note that $X \setminus \{0, 0'\} \cong \mathbb{A}^1 \setminus \{0\}$. In our case, the bad property is that there exist two morphisms

$$g_1, g_2: \mathbb{A}^1 \longrightarrow X$$

such that $g_1|_{\mathbb{A}^1\setminus\{0\}} = g_2|_{\mathbb{A}^1\setminus\{0\}}$ and $g_1 \neq g_2$, i.e. "limits are not unique" on X. Note that a similar computation shows $\mathcal{O}_X(X) \cong k[x]$, so in particular, $X \ncong \mathbb{P}^1_k$.

Sept. 23 — Pre-varieties, Part 2

11.1 More on Pre-varieties

Proposition 11.1. Let (X, \mathcal{O}_X) be a pre-variety.

- 1. X is Noetherian as a topological space.
- 2. X has a basis by affine varieties.

Proof. (1) Note that X has a finite cover by affine varieties U_i , which are each Noetherian.

(2) If
$$(X, \mathcal{O}_X)$$
 is affine, then $\{D(f) : f \in \mathcal{O}_X(X)\}$ gives such a basis. Do this for each U_i .

Example 11.0.1 (General gluing procedure). Let I be a finite index set, (X_i, \mathcal{O}_{X_i}) affine varieties, $U_{i,j} \subseteq X_i$ open sets, and $f_{i,j}: U_{i,j} \to U_{j,i}$ isomorphisms for each $i, j \in I$, satisfying

- 1. $U_{i,i} = X_i \text{ and } f_{i,i} = id;$
- 2. $f_{i,j}^{-1}(U_{j,i} \cap U_{j,k}) = U_{i,j} \cap U_{i,k};$
- 3. the following diagram commutes:

$$U_{i,j} \cap U_{i,k} \xrightarrow{f_{i,k}} U_{k,i} \cap U_{k,j}$$

$$U_{j,i} \cap U_{j,k}$$

We can define $X = (\bigsqcup_{i \in I} X_i)/\sim$ with the quotient topology, where $a \sim a$ for $a \in X_i$ and $a \sim f_{i,j}(a)$ for $a \in U_{i,j}$. The inclusions $j_i : X_i \hookrightarrow X$ are open embeddings, and we can set

$$\mathcal{O}_X(U) := \{ \varphi : U \to k \mid \varphi|_{X_i} = j_i^* \varphi \text{ is regular for all } i \}.$$

Then (X, \mathcal{O}_X) is a ringed space with $(j_i(X_i), \mathcal{O}_X|_{j_i(X_i)}) \cong (X_i, \mathcal{O}_{X_i})$, so (X, \mathcal{O}_X) is a pre-variety.

Remark. Any pre-variety X is a gluing of affine varieties. To see this, note that there exists a cover $X = \bigcup_{i=1}^{s} U_i$ by affine varieties. Then we can take $X_i = U_i$, $U_{i,j} = U_i \cap U_j \subseteq X_i$, and $f_{i,j} : U_{i,j} \to U_{j,i}$ to be the identity map.

Proposition 11.2. Let X be a pre-variety.

1. If $U \subseteq X$ is an open set, then $(U, \mathcal{O}_X|_U)$ is again a pre-variety.

2. Let $Z \subseteq X$ be a closed set. For $U \subseteq Z$ open, set

$$\mathcal{O}_Z(U) = \left\{ \varphi : U \to k \mid \begin{matrix} \text{for each } a \in U, \text{ there exists open } a \in W \subseteq X \text{ and} \\ \psi : W \to k \text{ regular such that } \varphi|_{W \cap Z} = \psi|_{W \cap Z} \end{matrix} \right\}.$$

Then (Z, \mathcal{O}_Z) is a pre-variety.

Proof. (1) Note that X has a basis by affine varieties, so we can cover U by affine varieties. This cover may be infinite, but we can pass to a finite subcover since X and hence U is Noetherian.

(2) The idea is to first reduce to the case $X = V(I) \subseteq \mathbb{A}^n$, so $Z \subseteq X$ is cut out by polynomials. Then observe that \mathcal{O}_Z agrees with the previous definition.

Remark. Note that unions of intersections of closed and open sets are not necessarily pre-varieties. For instance, consider $(\mathbb{A}^2 \setminus V(xy)) \cup \{0\}$.

Proposition 11.3. If X, Y are pre-varieties, then there exists a pre-variety with morphisms

with the property that for every diagram

there exists a unique morphism f such that the diagram commutes. We call P the product of X and Y, and write $X \times Y := P$. Moreover, set theoretically $X \times Y = \{(x,y) : x \in X \text{ and } y \in Y\}$.

Proof. We know the result holds when X, Y, Z are affine or even open sets of affine varieties. In the general case, fix an open affine cover $X = \bigcup_{i=1}^{s} U_i$ and $Y = \bigcup_{j=1}^{r} V_j$. Then glue the products by:

- 1. $P_{(i,j)} := U_i \times V_j$,
- 2. along $P_{(i,j),(i',j')}: (U_i \cap U_{i'}) \times (V_j \cap V_{j'}),$
- 3. via $f_{(i,j),(i',j')}: P_{(i,j),(i',j')} \stackrel{\cong}{\to} P_{(i',j'),(i,j)}$, the isomorphism from the universal property of products.

We get a pre-variety P, and the morphisms

glue to give a morphism

which is a morphism as the morphism condition can be checked locally. Furthermore, the diagram commutes (as can be checked locally). Last, f is unique: One can either this check locally or check set theoretically using $P = \{(x, y) : x \in X \text{ and } y \in Y\}$ as sets.

Remark. Note that $X \times Y$ is set theoretically the product of X and Y, but not the product of X and Y as topological spaces. Consider $X = Y = \mathbb{A}^1$ and $X \times Y = \mathbb{A}^2$.

11.2 Varieties

Remark. We want a version of Hausdorffness in algebraic geometry. However, an irreducible topological space (e.g. \mathbb{A}^n) is almost never Hausdorff (unless it is a single point). From a different perspective, note that X is Hausdorff if and only if the diagonal $\Delta_X = \{(x, x) : x \in X\} \subseteq X \times X$ is closed, where $X \times X$ is given the product topology.

Definition 11.1. A pre-variety is *separated* if the diagonal

$$\Delta_X = \{(x, x) : x \in X\}$$

is closed in $X \times X$ (the product pre-variety). A variety is a pre-variety that is separated.

Example 11.1.1. \mathbb{A}^n is separated. We have

$$V(x_1 - y_1, \dots, x_n - y_n) = \Delta_{\mathbb{A}^n} \subseteq \mathbb{A}^n_{x_i} \times \mathbb{A}^n_{y_i} \cong \mathbb{A}^{2n},$$

so $\Delta_{\mathbb{A}^n}$ is closed in $\mathbb{A}^n \times \mathbb{A}^n$.

Example 11.1.2. Any affine variety is separated. To see this, we may assume $X = V(I) \subseteq \mathbb{A}^n$. By the construction of the product, $X \times X \subseteq \mathbb{A}^n \times \mathbb{A}^n$ is closed and

$$\Delta_X = (X \times X) \cap \Delta_{\mathbb{A}^n}.$$

Since $\Delta_{\mathbb{A}^n}$ is closed, we have Δ_X is closed in $X \times X$ since $X \times X$ has the subspace topology.

Proposition 11.4. If X is a variety, then any closed or open set $Z \subseteq X$ is a variety.

Proof. We have already seen that Z is a pre-variety, so it suffices to show that Z is separated. We note that $Z \times Z \hookrightarrow X \times X$ is an embedding of topological spaces, and $\Delta_Z = (Z \times Z) \cap \Delta_X$. Since Δ_X is closed and $Z \times Z$ has the subspace topology, Δ_Z is closed in $Z \times Z$. So Z is separated.

Example 11.1.3. Recall the bug-eyed line from Example 10.1.2. Let a, b be the two origins, and write $X = U_1 \cup U_2$, where $U_1 = X \setminus \{b\} \cong \mathbb{A}^1$ and $U_2 = X \setminus \{a\} \cong \mathbb{A}^1$. Then consider

$$\mathbb{A}^2 \cong U_1 \times U_2 \subset X \times X.$$

Note that $\Delta_X \cap (U_1 \times U_2) = \{(x, x) : x \in k \setminus \{0\}\} = \Delta_{\mathbb{A}^1} \setminus \{0\}$. So Δ_X is not closed in $X \times X$.

Exercise 11.1. Show that \mathbb{P}^1_k is separated.

Proposition 11.5. Let $f, g: X \to Y$ be morphisms of pre-varieties with Y a variety.

- 1. The graph $\Gamma_f := \{(x, f(x)) : x \in X\}$ of f is closed in $X \times Y$.
- 2. $\{x \in X : f(x) = g(x)\}$ is closed in X. This becomes a version of the identity principle in the case that X is irreducible: If X is irreducible and f, g agree on a nonempty open set, then f = g.

Proof. (1) We can write $\Gamma_f = (f, \mathrm{id})^{-1}(\Delta_Y)$ where $(f, \mathrm{id}) : X \times Y \to Y \times Y$, and Δ_Y is closed.

(2) Consider the morphism

$$X \xrightarrow{(f,g)} Y \times Y$$
$$x \longmapsto (f(x), g(x)).$$

Then $\{x \in X : f(x) = g(x)\} = (f, g)^{-1}(\Delta_Y)$, so it is closed.

Sept. 25 — Projective Varieties

12.1 Projective Space

Definition 12.1. Define projective n-space over k to be

$$\mathbb{P}^n_k = \mathbb{P}^n = 1$$
-dimensional subspaces of $k^{n+1} = (k^{n+1} \setminus \{0\})/\sim$,

where $(x_0, x_1, \ldots, x_n) \sim (y_0, y_1, \ldots, y_n)$ if there exists $\lambda \in k^*$ such that $(x_0, \ldots, x_n) = \lambda(y_0, \ldots, y_n)$. We write $[x_0 : x_1 : \cdots : x_n] \in \mathbb{P}^n_k$ for the equivalence class of (x_0, x_1, \ldots, x_n) .

Example 12.1.1. For n = 2, we have $[1:0:2] = [1/2:0:1] \in \mathbb{P}^2_k$ when char $k \neq 2$.

Remark. For $0 \le i \le n$, define $U_i = \{[x_0 : x_1 : \cdots : x_n] \in \mathbb{P}_k^n : x_i \ne 0\}$. Then

$$\mathbb{P}_k^n = \bigcup_{i=0}^n U_i,$$

and there exist bijective maps $f_i: U_i \to \mathbb{A}^n$ given by

$$f_i([x_0:\cdots:x_n])=(x_0/x_i,\ldots,\widehat{x_i/x_i},\ldots,x_n/x_i),$$

where $\widehat{x_i/x_i}$ means we omit x_i/x_i . For i=0, the inverse is $f_0^{-1}(x_1,\ldots,x_n)=[1:x_1:\cdots:x_n]$.

Remark. Another way to think about \mathbb{P}^n is via points at ∞ . Observe that

$$\mathbb{P}^n \setminus U_0 = \{ [0 : x_1 : \dots : x_n] \in \mathbb{P}^n_k : (x_1, \dots, x_n) \in k^n \setminus \{0\} \} \cong \mathbb{P}^{n-1}.$$

So
$$\mathbb{P}^n = \mathbb{A}^n \sqcup \mathbb{P}^{n-1} = \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \cup \mathbb{P}^{n-2} = \cdots = \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^0$$
.

Remark. Why work with \mathbb{P}^n ? One motivation is analytic (e.g. for $k = \mathbb{C}$):

1. $\mathbb{P}^n_{\mathbb{C}}$ is compact with the analytic topology: There are surjective continuous maps

2. Chow's theorem: Any closed complex submanifold of \mathbb{CP}^n is a projective variety.

Another motivation is the extra data at ∞ :

1. If ℓ_1, ℓ_2 are distinct lines in \mathbb{A}^2 , then $\#(\ell_1 \cap \ell_2) = 0$ or 1. However, over \mathbb{P}^2 , $\#(\ell_1 \cap \ell_2) = 1$ always.

2. Bezout's theorem: If $C_1, C_2 \subseteq \mathbb{A}^2$ are two distinct irreducible curves in \mathbb{A}^2 , then

$$\#(C_1 \cap C_2) \le (\deg C_1)(\deg C_2),$$

counting multiplicities. The version over \mathbb{P}^2 always gives equality.

12.2 Graded Rings

Remark. In projective space, for $f \in k[x_0, \ldots, x_n]$, we could try to define

$$V(f) = \{ [a_0 : \cdots : a_n] : f(a_0, \dots, a_n) = 0 \}.$$

But this is bad notation as it is not well-defined (f = 0 depends on the representative in the equivalence class). Instead, if f is homogeneous of degree d, then

$$f(\lambda a_0, \dots, \lambda a_n) = \lambda^d f(a_0, \dots, a_n),$$

so V(f) is well-defined in this case, when f is homogeneous.

Definition 12.2. An \mathbb{N} -graded ring is a ring R with subgroups $R_d \subseteq R$ for $d \in \mathbb{N}$ such that

$$R = \bigoplus_{d \in \mathbb{N}} R_d$$
 and $R_d R_e \subseteq R_{d+e}$.

An element $f \in R$ is homogeneous if there exists d such that $f \in R_d$.

Example 12.2.1. For $S = k[x_0, \ldots, x_n]$, we can take $S_d = \bigoplus_{a_i \geq 0, \sum a_i = d} kx_0^{a_0} \cdots x_n^{a_n}$.

Definition 12.3. An ideal I in a graded ring is *homogeneous* if it is generated by homogeneous elements.

Example 12.3.1. We can write $(x, y^3 - 3x^2) \subseteq k[x, y]$ as (x, y^3) , so it is homogeneous.

Proposition 12.1. Let R be a graded ring with ideal I. The following are equivalent:

- 1. I is homogeneous;
- 2. for any $f = \sum_{d \in \mathbb{N}} f_d \in I$ with $f_d \in R_d$, then $f_d \in I$ for all d;
- 3. $I = \bigoplus_{d \in \mathbb{N}} (I \cap R_d)$.

Proof. Left as an exercise. The interesting implication is $(1 \Rightarrow 2)$.

Proposition 12.2. Let I, J be homogeneous ideals of a graded ring R. Then

- 1. I + J, IJ, \sqrt{I} , and $I \cap J$ are all homogeneous;
- 2. R/I is a graded ring with $R/I = \bigoplus_{d \in \mathbb{N}} R_d/I_d$, where $I_d = I \cap R_d$.

Proof. (1) We prove that \sqrt{I} is homogeneous. Assume $f \in \sqrt{I}$, and write $f = f_0 + f_1 + \cdots + f_d$ with $f_i \in R_i$ and $f_d \neq 0$. Now there exists n > 0 such that $f^n \in I$, and

$$f^n = f_d^n + \text{lower order terms.}$$

Since I is homogeneous, $f_d^n \in I$, so $f_d \in \sqrt{I}$. Then $f_0 + \cdots + f_{d-1} \in \sqrt{I}$, and we can repeat.

(2) We can write $R/I = (\bigoplus_{d \in \mathbb{N}} R_d)/(\bigoplus_{d \in \mathbb{N}} (I \cap R_d))$. As abelian groups, this is $R/I \cong \bigoplus_{d \in \mathbb{N}} R_d/I_d$. One can check that the multiplication also respects the grading, so this is an isomorphism of rings.

12.3 Projective Varieties

Definition 12.4. For a set $T \subseteq k[x_0, \ldots, x_n]$ of homogeneous elements, define its vanishing locus

$$V_p(T) := V(T) = \{ [x_0 : \dots : x_n] \in \mathbb{P}^n : f(x) = 0 \text{ for all } f \in T \} \subseteq \mathbb{P}^n.$$

A projective variety is a subset of this form. For a homogeneous ideal $I \leq k[x_0, \ldots, x_n]$, define

$$V(I) = \{x \in \mathbb{P}^n : f(x) \text{ for all } f \in I \text{ homogeneous}\}.$$

For a subset $X \subseteq \mathbb{P}^n$, define its *ideal*

$$I_p(X) := I(X) = (f \in k[x_0, \dots, x_n] \text{ homogeneous} : f(x) = 0 \text{ for all } [x] \in X).$$

Remark. If $T \subseteq k[x_0, \ldots, x_n]$ is a subset of homogeneous elements, then we have $V_p(T) = V_p(T)$. So projective varieties can equivalently be defined as vanishing sets of homogeneous ideals.

Example 12.4.1. Consider $X = V_p(x^2 - yz) \subseteq \mathbb{P}^2_{x:y:z}$. Set H = V(x), then there is a bijection

$$U = \mathbb{P}^2 \setminus H \xrightarrow{f} \mathbb{A}^2$$
$$[1:y:z] \longmapsto (y,z).$$

Then $f(X \cap U) = V(1 - yz)$. On the other hand, we can see that

$$X\cap H=\{[0:1:0],[0:0:1]\}=\{a,b\}.$$

If we were working with \mathbb{C} with the analytic topology, then we can take limits on V(1-yz) and see

$$\lim_{t \to 0} [1:t:1/t] = \lim_{t \to 0} [t:t^2:1] = [0:0:1] = b.$$

Note that we essentially switched charts in order to take this limit. Similarly, we have

$$\lim_{t \to \infty} [1:t:1/t] = \lim_{t \to \infty} [1/t:1:1/t^2] = [0:1:0] = a.$$

So we can see a, b as points at ∞ compactifying the curve V(1 - yz).

Example 12.4.2. We have the following:

- 1. $V_p(0) = \mathbb{P}^n$;
- $2. V_p(1) = \varnothing;$
- 3. if $p = [a_0 : \cdots : a_n]$ and $J = (a_i x_j a_j x_i : 0 \le i, j \le n)$, then $V(J) = \{0\}$;
- 4. $I_0 = (x_0, \dots, x_n)$ is called the *irrelevant ideal*, which has $V_p(I_0) = \emptyset = V_p(1)$ but $I_0 = \sqrt{I_0} \subsetneq (1)$.