PROJET D'INFORMATIQUE SCIENTIFIQUE

PathFinding

présenté par :

MBAYE Serigne Touba

encadré par :

M. Gandibleux

le 27/03/2025

Comparaison des algorithmes

• Carte: test.map

• Dimension : 15 x 15

• Point de départ : (12, 5)

• Point d'arrivée : (2, 12)

algorithme	distance	nb_som_visite	temps (s)
BFS	17	191	0.168
DIJKSTRA	17	167	0.077
ASTAR	17	73	0.009
A*_pondere(w=1)	17	167	0.009

Table: Comparaison des 4 algorithmes implémentés pour une carte de petite taille

Comparaison des algorithmes

carte : theglaive.map

• dimension : 512 x 512

• point de départ : (189, 193)

• point d'arrivée : (226, 437)

algorithme	distance	nb_som_visite	temps (s)
BFS	281	129409	1.138
DIJKSTRA	335	80384	1.680
ASTAR	335	9946	0.445
A*_pondere(w=1)	335	80384	0.490

Table: Comparaison des 4 algorithmes implémentés pour une carte de grande taille

ASTAR PONDERE

Carte : theglaive.mapDimension : 512 x 512

Point de départ : (189, 193)Point d'arrivée : (226, 437)

Astar pondéré $0 \le w \le 1$

poids (w)	distance	nb_sommet_visite	temps (s)
0.1	709	282	0.453
0.2	335	2752	0.457
0.3	335	3789	0.483
0.4	335	9946	0.525
0.5	335	25157	0.496
0.6	335	26202	0.560
0.7	335	42826	0.622
0.8	335	58720	0.676
0.9	335	69384	0.703

ASTAR PONDERE:

Carte : theglaive.mapDimension : 512 x 512

Point de départ : (189, 193)Point d'arrivée : (226, 437)

Astar pondéré w > 1

poids (w)	distance	nb_sommet_visite	tpems (s)
1	335	80384	0.476
2	335	3831	0.473
3	335	2943	0.460
4	335	2834	0.480
5	591	2247	0.471
6	709	1817	0.468
7	709	384	0.445
8	709	282	0.441
9	709	282	0.454
10	709	282	0.543

Conclusions

premiere partie

- BFS trouve une distance plus courte mais visite énormément de nœuds.
- DIJKSTRA fait une distance plus important que BFS mais visite moins de noeuds que ce dernier
- ASTAR est beaucoup plus performant que les autres algorithmes en termes de nombre de nœuds visités.
- ASTAR PONDERE reste le plus performent pour w strictement superieur à 1

seconde partie

- ASTAR PONDERE se comporte comme ASTAR pour w=1
- Pour w entre 0 et 1 , le nombre de sommet visités augmente trés rapidement mais la distance va dimunier
- Pour w superieur à 1 , le nombre de sommet visités dimunie tandis que la distance augmente