

planetmath.org

Math for the people, by the people.

proof of necessary and sufficient conditions for a normed vector space to be a Banach space

 $Canonical\ name \qquad Proof Of Necessary And Sufficient Conditions For AN or med Vector Space To Be AB and Space To Be AB$

Date of creation 2013-03-22 17:35:11 Last modified on 2013-03-22 17:35:11

Owner willny (13192) Last modified by willny (13192)

Numerical id 4

Author willny (13192)

Entry type Proof Classification msc 46B99 We prove here that in order for a normed space, say X, with the norm, say $\|\cdot\|$ to be Banach, it is necessary and sufficient that convergence of every absolutely convergent series in X implies convergence of the series in X.

Suppose that X is Banach. Let a sequence (x_n) be in X such that the series

$$\sum_{n} \|x_n\|$$

converges. Then for all $\epsilon > 0$ there exists N such that for all m > n > N we have

$$\left\| \sum_{n+1}^{m} x_n \right\| \le \sum_{n+1}^{m} \|x_n\| < \epsilon$$

Hence

$$s_k = \sum_{n=1}^k x_n$$

is a Cauchy sequence in X. Since X is Banach, s_k converges in X.

Conversely, suppose that absolute convergence implies convergence. Let (x_n) be a Cauchy sequence in X. Then for all $m \geq 1$ there exists N_m such that for all $k, k' \geq N_m$ we have $||x_k - x_{k'}|| < 1/m^2$. We'll conveniently choose N_m so that N_m is an increasing sequence in m. Then in particular, $||x_{N_m} - x_{N_{m+1}}|| < 1/m^2$. Hence we have,

$$\sum_{m=1}^{M} \|x_{N_m} - x_{N_{m+1}}\| < \sum_{m=1}^{M} \frac{1}{m^2}$$

The sum on the right converges, so must the sum on the left. Since absolute convergence implies convergence, we must have

$$\sum_{m=1}^{M} (x_{N_m} - x_{N_{m+1}})$$

converges as M tends to infinity. So there is an s in X which is the limit of the sum above. As a telescoping series, however, the sum above converges to $\lim_{M\to\infty}(x_{N_1}-x_{N_m})=s$. Since s and x_{N_1} are both in X, so is the limit of x_{N_m} , which is a subsequence of the Cauchy sequence (x_n) . Hence (x_n)

converges in X. So X is Banach.

This completes the proof.