Bioinformatics for One Health Pathogen Genomics

A Training Workshop by Dr Yaovi M. Gildas Hounmanou

© Vietnam, August 2025

CURRICULUM

Goal

To build capacity among researchers for the analysis and interpretation of bacterial genomic data to support antimicrobial resistance surveillance within One Health frameworks.

Objectives

- Deliver hands-on bioinformatics modules tailored to bacterial AMR genomic surveillance.
- Equip participants with practical skills in web-based and introductory coding-based tools for bacterial genome analysis.
- Facilitate collaboration and knowledge exchange among researchers engaged in genomic surveillance of AMR.

Course Prerequisites

- Basic knowledge of microbiology, molecular biology, or related life sciences.
- Interest in antimicrobial resistance and bacterial genomics.
- · No prior programming experience required.

Learning Outcomes

By the end of this training, participants will be able to:

- Describe key steps in the bacterial genome analysis and bioinformatics workflow.
- Recognize and manipulate standard NGS data file formats (e.g., FASTQ, FASTA, GenBank).
- · Access and extract genomic data from public biological databases.
- Use web-based tools for AMR gene prediction, bacterial typing, and annotation.
- Build and interpret phylogenetic trees for bacterial pathogens.
- Execute basic Linux terminal commands and run pre-written scripts to automate analyses.

Course Schedule

Day	Focus	Modules / Activities	Topics / Tools
Day 1	Foundations of Genomics & AMR Bioinformatics	 Pre-course assessment of participant expectations Interactive discussion on pre-course video materials Biological Databases and Resources NGS Technologies and NGS Data Formats Sequence Alignments 	 NCBI, EMBL, UniProt- FASTQ, FASTA, GenBank formats BLAST (n/x) Resistance gene detection
Day 2	Bacterial Genome Analysis & Phylogeny	 Bacterial Genome Analysis-Bacterial Typing Phylogeny Construction and Visualization Quality Check & Genome Assembly Group presentations 	 CARD, RGI, AMRFinderPlus, ResFinder MLST (CGE), PathogenWatch MicroReact, Patric, Figtree FastQC, SPAdes
Day 3	Applied Genomics: Lactococcus & Case- Based Work	 Lactococcus garvieae outbreak investigation - Vietnam Fish Farm Dataset Case Work: Outbreak Investigation Nanopore Sequencing & Hybrid Assembly for MGE Analysis Group presentations 	 Hybrid assembly (Illumina + Nanopore) Mobile genetic element (MGE) profiling Contextual AMR interpretation
Day 4	Linux & Scripting for Genomic Workflows	 Introduction to Linux and Terminal Navigation Command Line–Based Sequence Analyses Course Evaluation & Feedback 	 Linux basics (mkdir, cd, ls, grep, nano) Running pre-written shell scripts Bioinformatics workflows in bash

Tools & Platforms Used

Web-Based Tools:

NCBI, BLAST (n/x), CARD, RGI, ResFinder, AMRFinderPlus, PathogenWatch, MLST (CGE)

• Software & Command Line Utilities:

FastQC, MultiQC, SPAdes, Figtree, Nano, grep, bash scripting, Linux terminal (Mac/Linux VM), Jyputer lab in Google Collab

Databases & Resources:

GenBank, UniProt, AMR gene databases (CARD, Resfinder, ARG-ANNOT), mobile genetic element databases

Visualization & Analysis Platforms:
 MicroReact, BV-BRC, CSIPhylogeny, Galaxy, iTOL, RStudio

Topics Covered

- Next-generation sequencing (NGS) technologies and data formats
- Biological databases and genomic data retrieval
- Sequence alignment, annotation, and resistance gene detection
- Quality control and genome assembly workflows
- Bacterial genotyping, subtyping, and phylogenetic analysis
- Hybrid assembly and mobile genetic element (MGE) investigations
- Command-line tools and Linux scripting for genomics workflows
- Interactive computing environments (Jupyter, Colab)
- Case-based learning with Lactococcus garvieae from aquaculture outbreaks
- One Health applications in AMR surveillance and outbreak response