

楼道杂物检测系统

组长: 顾婧

组员: 鲍奕凡、陈予涵、仇雨恬、王蕾颖

关键技术

性能分析

项目小结

主要问题

楼道拥堵, 给居民出行带来不便

堵塞逃生通道, 引发安全隐患

- □ 楼道数量多,人眼难以兼顾;
- □ 缺乏智能分析,需要自行观察判断;
- □没有系统数据记录,无法系统化规范管理。

社会调研

- * 1. 您身边是否存在楼道杂物堆放这样的现象?

 - ○否
- * 2. 您见过楼道中堆放的杂物主要有哪些? 【最少选择1项】
 - 快递盒
 - 自行车/电瓶车
 - 生活用品
- *3. 这种随意堆放的现象是否对您的出行产生了不便?
 - 没有造成不便
 - 有一定程度上的不便
 - 严重影响了我的出行
- * 4. 您对解决这一问题的迫切程度是?
 - 非常迫切
 - 一般 ○ 无所谓

*5. 您身边对于解决这一现象的方案是?

- *6. 您认为有必要在楼道内安装自动监测杂物堆放情况的装置吗

 - 有必要
 - 一般
 - 没有必要

□ 收到494份有效问卷

- □ 受试者中66.4%的居民有此类困扰,42.7%很迫切地想解决这一问题
- □ 主要解决方式为: 自行协商、物业协调

受试者对安装楼道杂物检测系统的态度

楼道垃圾种类:

- 1. 自行车
- 2. 纸箱 (快递盒)
- 3. 垃圾袋
- 4. 废旧家具

主要问题 > 社会调研

项目意义

① 提出两个可提高准确率的可行方案。其一将运动目标追踪、遗留物检测、图片 分类相结合,其二直接运用特定目标检测

2 完成了帮助管理员系统化管理楼道的前端管理界面

第部分

关键技术

系统架构

Vibe背景建

移动目标追

遗留物提取

CNN分≥

OLOv3

汝据库

系统沿线

检测视频流中的杂物

视频流输入

楼道实时视频流

方案二 (特定目标检测)

0103

前端web界面

系统架构

Vibe背景建 模

移动目标追`

遗留物提取

CNN分类

OLOv3

汝据库!

糸统狢娃

输入视频流 的第1帧 提取像素点及 周围像素点建 立样本集

提取像素点及 周围像素点建 立数据集

输入视频流 的第n帧

移动目标追

运动前景

运动区 域划分

初始化搜索框 信息

移动搜索 框中心

遗留物提取

N分类 > YOL

数据库

系统搭建

系统架构

Vibe背景廷

移动目标追

遗留物提取

CNN分类

)v3 > 数

> 系统搭

YOLOv3

系统架构

Vibe背景到

移动目标注

贵留物提取

YOLOv3

数据库

- 〉 系统搭建

YOLOv3算法是一个优秀的目标检测模型,它使用Darknet-53卷积网络作为骨架,大量使用残差结构,同时引出3条预测支路,实现对不同尺度的物体检测。

YOLOv3

系统架构

ibe背景建`

|标追 `

遗留物提取

类 YOLOv3

数据库

糸统ी建

在本项目中,我们采用了YOLOv3作为检测楼道内垃圾的算法,从视频中截取图片作为输入,识别其中的楼道垃圾与杂物,如自行车,纸箱,垃圾袋等。训练集为coco与voc,由于这些数据集内没有纸箱和垃圾袋的图片,因此我们也根据网上的资料自己制作了一部分数据集用于训练。

目标类型	训练集数量	测试集数量	正确数量	正确率	总正确率
纸箱	204	23	21	91.30%	
垃圾袋	164	19	18	94.74%	
鞋架	194	21	19	90.48%	94.504%
自行车	已有现成数据集,正确率近似为98%				
椅子	已有现成数据集,正确率近似为98%				

数据库: MySQL

经架构

Vibe背景建

移动目标:

贵留物提取

分类 > YOLOv3

数据库

糸统搭列

- 在本项目中,我们采用了MySQL作为数据库的实现方式,并在Python中用Pymysql插件与数据库相连接。数据库中主要存储两张表格:一张存储账号信息,另一张存储楼道监控视频的相关信息,如楼号、楼层、时间与是否已处理等。
- 后端接收网页传来的查询需求后在数据库中进行查询,返回查询结果。

id	rdate	rbuilding	rfloor	rcat	rphoto	isDelete	isHandle
1	2022-04-26	1	2	纸箱	path	0	0

username	password
admin	123456 (hash)

系统架构

Vibe背景建

移动目标追

贵留物提取

NN分类

YOLOv3

居库

系统搭建

后端内容

Web前端界面

URL传参

url.py

后台数据库

增删改查

views.py

移动目标检测

遗留物检测

图片分类

传递结果

C

前端采用layui框架,后端采用Django框架编写

性能分析

测试环境

遗留物提取

图片集建立

图片分类

YOLOv3

在楼道处,共计30种不同的杂物测试,53段视频,101段小片段

性能分析

测试环境

遗留物提取

图片集建立

图片分类

YOLOv3

	检测数量	正确识别数量	误检数量	正确率
遗留物提取	30	27	3	90.0%

性能分析

测试环境

遗留物提取

图片集建立

图片分类

YOLOv3

分7个种类,含有3159张图片

	检测数量	错误数量	正确率	总正确率
自行车	105	10	90.47%	
纸箱	125	9	92.80%	
垃圾袋	44	5	88.63%	90.284%
鞋架	120	18	85.00%	
椅子	73	4	94.52%	

方案二

测试环境

遗留物提取

图片集建立

图片分类

目标类型	<u></u> 训练集数量	测试集数量	正确数量	正确率	总正确率
纸箱	204	23	21	91.30%	
垃圾袋	164	19	18	94.74%	
鞋架	194	21	19	90.48%	94.504%
自行车		已有现成数据集,	正确率近似为9	8%	
椅子		已有现成数据集,	正确率近似为9	8%	

项目小结

方案一使用**遗留物检测与图** 片分类,方案二使用yolo3 特定目标检测

系统 设计

实时 监测 将对实时视频流进行 **实时处理、实时监测** 也可事后检索查看

包含面向管理员,用户 友好的web端管理界面 系统 应用

多场景 拓展

拓展运用于**检测室内公** 共区域垃圾,例如停车 场场景

分工

组员	分工		
鲍奕凡	特定目标检测(Yolo3)		
陈予涵	遗留物检测+CNN分类		
顾婧	数据库		
仇雨恬	前端(首页、简介、全局监控)		
王蕾颖	前端(垃圾记录查询、个人中心)		

谢谢倾听

