Taller3

$May\ 12,\ 2022$

#A
[]: library(mlbench)
data(BostonHousing)

[]: BostonHousing

		crim <dbl></dbl>	zn <dbl></dbl>	indus <dbl></dbl>	chas <fct></fct>	nox <dbl></dbl>	rm <dbl></dbl>	age <dbl></dbl>	dis <dbl></dbl>	rad <dbl></dbl>
_	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1
	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2
	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2
	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3
	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3
	6	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3
	7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5
	8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5
	9	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5
	10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5
	11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5
	12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5
	13	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5
	14	0.62976	0.0	8.14	0	0.538	5.949	61.8	4.7075	4
	15	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4
	16	0.62739	0.0	8.14	0	0.538	5.834	56.5	4.4986	4
	17	1.05393	0.0	8.14	0	0.538	5.935	29.3	4.4986	4
	18	0.78420	0.0	8.14	0	0.538	5.990	81.7	4.2579	4
	19	0.80271	0.0	8.14	0	0.538	5.456	36.6	3.7965	4
	20	0.72580	0.0	8.14	0	0.538	5.727	69.5	3.7965	4
	$\frac{1}{21}$	1.25179	0.0	8.14	0	0.538	5.570	98.1	3.7979	$\overline{4}$
	$\frac{1}{22}$	0.85204	0.0	8.14	0	0.538	5.965	89.2	4.0123	$\overline{4}$
	23	1.23247	0.0	8.14	0	0.538	6.142	91.7	3.9769	4
	$\frac{23}{24}$	0.98843	0.0	8.14	0	0.538	5.813	100.0	4.0952	4
	$\frac{21}{25}$	0.75026	0.0	8.14	0	0.538	5.924	94.1	4.3996	4
	$\frac{26}{26}$	0.84054	0.0	8.14	0	0.538	5.599	85.7	4.4546	4
	$\frac{20}{27}$	0.67191	0.0	8.14	0	0.538	5.813	90.3	4.6820	4
	28	0.95577	0.0	8.14	0	0.538	6.047	88.8	4.4534	4
	$\frac{20}{29}$	0.77299	0.0	8.14	0	0.538	6.495	94.4	4.4547	4
A data.frame: 506×14	$\frac{20}{30}$	1.00245	0.0	8.14	0	0.538	6.674	87.3	4.2390	4
	477	4.87141	0	18.10	0	0.614	6.484	93.6	2.3053	24
	478	15.02340	0	18.10	0	0.614	5.304	97.3	2.1007	24
	479	10.23300	0	18.10	0	0.614	6.185	96.7	2.1705	24
	480	14.33370	0	18.10	0	0.614	6.229	88.0	1.9512	24
	481	5.82401	0	18.10	0	0.532	6.242	64.7	3.4242	24
	482	5.70818	0	18.10	0	0.532	6.750	74.9	3.3317	24
	483	5.73116	0	18.10	0	0.532	7.061	77.0	3.4106	24
	484	2.81838	0	18.10	0	0.532	5.762	40.3	4.0983	24
	485	2.37857	0	18.10	0	0.583	5.871	41.9	3.7240	24
	486	3.67367	0	18.10	0	0.583	6.312	51.9	3.9917	24
	487	5.69175	0	18.10	0	0.583	6.114	79.8	3.5459	24
	488	4.83567	0	18.10	0	0.583	5.905	53.2	3.1523	24
	489	0.15086	0	27.74	0	0.609	5.454	92.7	1.8209	4
	490	0.18337	0	27.74	0	0.609	5.414	98.3	1.7554	4
	491	0.20746	0	27.74	0	0.609	5.093	98.0	1.8226	4
	492	0.10574	0	27.74	0	0.609	5.983	98.8	1.8681	4
	493	0.11132	0 2		0	0.609	5.983	83.5	2.1099	4
	494	0.17331	0	9.69	0	0.585	5.707	54.0	2.3817	6
	495	0.27957	0	9.69	0	0.585	5.926	42.6	2.3817	6
Δ.	496	0.17899	0	9.69	0	0.585	5.670	28.8	2.7986	6

```
[]: fit <- lm(medv ~ rm, data = BostonHousing)
     summary(fit)
    Call:
    lm(formula = medv ~ rm, data = BostonHousing)
    Residuals:
        Min
                 1Q Median
                                 3Q
                                        Max
                              2.986 39.433
    -23.346 -2.547
                      0.090
    Coefficients:
                Estimate Std. Error t value Pr(>|t|)
    (Intercept) -34.671
                              2.650 -13.08
                                              <2e-16 ***
                   9.102
                              0.419
                                      21.72
                                              <2e-16 ***
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1

Residual standard error: 6.616 on 504 degrees of freedom

Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825

F-statistic: 471.8 on 1 and 504 DF, p-value: < 2.2e-16

B1, intercepto en -34.671, dado que una vivienda no tiene habitaciones se estima que la vivienda cuesta \$-34.671. lo cual es logico, ya que no existen viviendas que no tienen habitaciones. B2, 9.102, por cada habitacion adicional se estima que el precio de la vivienda aumenta en \$9.102.

```
[]: plot(BostonHousing$medv ~ BostonHousing$rm)
abline(fit, col = "red")
```



```
[]: fit <- lm(medv ~ crim + zn + indus + chas + nox + rm + age + dis + rad + tax +_u 
ptratio + b + lstat, data = BostonHousing)
summary(fit)
```

Call:

lm(formula = medv ~ crim + zn + indus + chas + nox + rm + age +
dis + rad + tax + ptratio + b + lstat, data = BostonHousing)

Residuals:

Min 1Q Median 3Q Max -15.595 -2.730 -0.518 1.777 26.199

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            3.646e+01 5.103e+00
                                   7.144 3.28e-12 ***
           -1.080e-01 3.286e-02 -3.287 0.001087 **
crim
zn
            4.642e-02 1.373e-02
                                   3.382 0.000778 ***
            2.056e-02 6.150e-02
                                   0.334 0.738288
indus
chas1
            2.687e+00 8.616e-01
                                   3.118 0.001925 **
nox
           -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
            3.810e+00 4.179e-01
                                   9.116 < 2e-16 ***
rm
age
            6.922e-04 1.321e-02
                                   0.052 0.958229
           -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
dis
            3.060e-01 6.635e-02
                                   4.613 5.07e-06 ***
rad
           -1.233e-02 3.760e-03 -3.280 0.001112 **
tax
           -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
ptratio
b
            9.312e-03 2.686e-03
                                   3.467 0.000573 ***
           -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
lstat
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-squared: 0.7406,
                                   Adjusted R-squared:
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
```

crim, por cada unidad que aumente el crimen se estima que la vivienda pierde -1.080e-01 de precio. nox, por cada unidad que aumenta la concentracion de oxido nitrico en la zona se estima que la vivienda pierde -1.777e+01 de precio. b, por cada unidad que aumenta la cantidad de personas de poblacion negra en el sector se estima que la vivienda pierde 9.312e-03 de precio.

#B

```
[]: library(readr)
  dfA <- read_csv("saber18A.csv")
  dfB <- read_csv("saber18B.csv")</pre>
```

```
[]: hist(dfA$PUNT_GLOBAL)
hist(dfB$PUNT_GLOBAL)
```

Histogram of dfA\$PUNT_GLOBAL

Histogram of dfB\$PUNT_GLOBAL

los datos del calendario B tienen una mayor acumulacion de datos mayores a 300 puntos quen los estudiantes de calendario A los cuales tienen los datos mayormente distribuidos a la izquierda.

los estudiantes de calendario B tienen mayores notas en todas las asignaturas que los estudiantes de calendario A, los de calendario B destacan principalmente en ingles y los de calendario A en lectura critica no obstante tienen menor nota de media en lectura critica que los de calendario B

```
[]: boxplot(dfA$PUNT_GLOBAL)
boxplot(dfB$PUNT_GLOBAL)
```


como era de esperarse por una mayor media los estudiantes de calendario B tienen sus datos atipicos en los puntajes bajos y por el contrario tienen pocos datos atipicos altos, y los estudiantes de calendario A tienen datos atipicos en los puntajes altos y no tienen datos atipicos bajos.

No Si Estrato 1 761 406 Estrato 2 342 666

```
Estrato 3 106 627
Estrato 4 11 62
Estrato 5 3 7
Estrato 6 1 0
```

Warning message in chisq.test(dfA\$FAMI_ESTRATOVIVIENDA, dfA\$FAMI_TIENEINTERNET): "Chi-squared approximation may be incorrect"

```
dfA$FAMI_TIENEINTERNET
```

```
dfA$FAMI_ESTRATOVIVIENDA No Si
Estrato 1 21.62 -21.62
Estrato 2 -5.54 5.54
Estrato 3 -16.76 16.76
Estrato 4 -4.55 4.55
Estrato 5 -0.70 0.70
Estrato 6 1.20 -1.20
```

por la baja cantidad de datos de personas estrato 6 en calendario A podria descartarse este valor, y se encuentra que de alguna forma si hay asociacion al menos entre ser de estrato 1 y no tener internet, se presenta una gran desviacion por parte del Estrato 3 que puede estar relacionada con mayor cantidad de ingresos.

```
[]: var.test(dfA$PUNT_GLOBAL, dfB$PUNT_GLOBAL)
```

F test to compare two variances

```
data: dfA$PUNT_GLOBAL and dfB$PUNT_GLOBAL
F = 0.98028, num df = 2993, denom df = 4399, p-value = 0.554
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.9181487 1.0470532
sample estimates:
ratio of variances
    0.9802809
```

```
[]: t.test(dfA$PUNT_GLOBAL, dfB$PUNT_GLOBAL, var.equal = FALSE, alternative = "two. sided", conf.level = 0.95)
```

Welch Two Sample t-test

```
data: dfA$PUNT_GLOBAL and dfB$PUNT_GLOBAL
t = -57.199, df = 6469.4, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -67.98049 -63.47520
sample estimates:
mean of x mean of y</pre>
```

```
[]: t.test(dfA$PUNT_GLOBAL, dfB$PUNT_GLOBAL, var.equal = FALSE, alternative = "greater", conf.level = 0.95)
```

Welch Two Sample t-test

la media de nota global de los estudiantes de Calendario B es mayor a la de los estudiantes de Calendario A