

Today's Instructor Bioinformatics and Computational Biosciences Branch (BCBB), Rocky Mountain Laboratories (RML), NIAID, NIH, Hamilton, MT USA. Contact our team via email: - Email: ace@icermali.org Ongoing Computational Biology projects: Vaccine development Structure determination of prion - Instructor: amitava.roy@nih.gov

Alignment methods Introduction to global and local sequence alignment methods Global: Needleman-Wunsch Local: Smith-Waterman BLAST Scoring Matrices PAM BLOSUM

Function Prediction

- Multiple Sequence Alignment Dynamics Programming ClustIW, t-Coffee, Muscle
- Motif Search and Function Prediction Expectation Maximization, MEME
- Software
- Markov Model and Hidden Markov Model

Alignment - Why search sequence databases?

- I have just sequenced something. What is known about the thing I sequenced?
- I have a unique sequence. Is there similarity to another gene that has a known function?
- I found a new protein in a lower organism. Is it similar to a protein from another species?

Alignment - Perfect Searches

- First "hit" should be an exact match.
- Next "hits" should contain all of the genes that are related to your gene (homologs)
- Next "hits" should be similar but are not homologs

How does one achieve the "perfect search"?

- Comparison Matrices (PAM vs. BLOSUM)
- Database Search Algorithms
- Databases
- Search Parameters
 - Expect Value-change threshold for score reporting
 - Translation-of DNA sequence into protein
 - Filtering-remove repeat sequences

Global : Needleman-Wunch
Local : Smith-Watermann

 $\begin{tabular}{ll} \begin{tabular}{ll} \beg$

→ But O(m*n) quadratic

Scoring

• Quality = [10(match)] + [-1(mismatch)] [(Gap Creation Penalty)(#of Gaps) +(Gap Ext. Pen.)(Total length of Gaps)]

Scoring scheme incorporates an evolutionary model--

- Matches are conserved
- Mismatches are divergences
- Gaps are more likely to disrupt function, hence greater penalty than mismatch. Introduction of a gap (indel) penalized more than extension of a gap.

_			
_			

Scoring -	Estimating	$n(\cdot,\cdot)$ for	nroteins
Sconing -		$p(\cdot,\cdot)$ 101	PIOLEIII

Generate a large diverse collection of accepted mutations. An accepted mutation is a mutation due to an alignment of closely related protein sequences. For example, Hemoglobin alpha chain in humans and other organisms (homologous proteins).

Let $p_a = n_a/n$ where n_a is the number of occurrences of letter a and n is the total number of letters in the collection, so $n = \Sigma_a n_a$.

 $f = \sum_{a} f_{a}$ be the total number of amino acids involved in a mutation.

Note that f is twice the number of mutations.

Scoring - PAM-1 matrices

Define M_{ob} to be the symmetric probability matrix for switching between a and b. We set, M_{oo} = 1 - m_o , so that m_o is the probability that **a** is involved in a change.

 $M_{ab} = \Pr(a \to b) = \Pr(a \to b \mid a \text{ changed}) \cdot \Pr(a \text{ changed}) = \frac{f_{ab}}{f} m_a$

We define M_{ob} , such that only 1% of amino acids change according to this matrix or 99% don't. Hence the name, 1-Percent Accepted Mutation (PAM). In other words,

$$\sum_{a} p_{a} M_{aa} = \sum_{a} p_{a} (1 - m_{a}) = 1 - \sum_{a} p_{a} m_{a} = 0.99$$

Scoring - BLOSUM Outline

- Idea: use aligned ungapped regions of protein families. These are assumed to have a common ancestor. Similar ideas but better statistics and modeling. It uses 2000 conserved blocks from 500 families.
- Procedure:

 - Cluster together sequences in a family whenever more than L% identical residues are shared, for BLOSUM-L.
 Count number of substitutions across different clusters (in the same family).
 Estimate frequencies using the counts.
- Practice: BIOSUM-50 and BLOSOM62 are widely used.

Considered the state of the art nowadays.

	MSA
1888	Multiple sequence alignment (MSA) Generalize DP to 3 sequence alignment Impractical Heuristic approaches to MSA Progressive alignment – ClustalW (using substitution matrix based scoring function) Consistency-based approach – T-Coffee (consistency-based scoring function) MUSCLE (MUSCLE-fast, MUSCLE-prog): reduces time and space complexity

	MSA-From pairwise to multiple alignment
184	Alignment of 2 sequences is represented as a 2-row matrix In a similar way, we represent alignment of 3 sequences as a 3-row matrix
	A T _ G C G _ A _ C G T _ A
	A T C A C _ A
1	Score: more conserved columns, better alignment

What's multiple sequence alignment (MSA) • A model • Indicates relationship between residues of different sequences • Reveals similarity/disimilarity

Why we need MSA MSA is central to many bioinformatics applications Phylogenetic tree Motifs Patterns Structure prediction (RNA, protein)

Why find motifs? In proteins—may be a critical component • Find similarities to known proteins • Find important areas of new protein family In DNA—may be a binding site • Discover how the gene expression is regulated

Why is this hard? Input sequences are long (thousands or millions of residues) Motif may be subtle Instances are short. Instances may be only slightly similar.

	Computational problems for in silico motif detection
	Extract a motif model based on (experimentally) identified motifs
18 18 7418	Supervised learning
	Search for motif instances based on given motif model(s)
	Prediction
	T Tementon
- Constitution	 Uncover novel motifs computationally from genomic sequences
1	Unsupervised learning

	Profile based	predictors of protein domains / motifs
181	prosite	Motif database in form of regular expressions. Not necessarily the whole domain. K-x(12)-[DE] = lysine, any 12, Aspartic acid or Glutamic acid. Returns 1 or 0, i.e. very rigid and can be very inaccurate for small simple motifs
	PRINTS	Motif search tools based on Prosite but with multiple alignment profiling
Water Commence	Pfam	Collection of HMM's usually covering the whole domain

	Exercises:			
	Section A: Sequence retrieval of a P. falciparum protein (cyclophilin) using SRS BLAST and Fasta searches by cutting & pasting the sequence.			
18	Section B: Exercise 1 Part 1 (row 1): Search PROSITE server by cutting & pasting the cyclophilin sequence			
	*Secret Part I (row): Plan server Exercise I Part II (row): Plan server Exercise I Part III (row):			
Jor Const	SMART server Exercise I Part IV (row4): InterPro server			

1	• SignalPv3.0 server. Section C:			

	Introducing Hidden Markov Models First – a Markov Model	
	A Markov Model is a chain-structured process where future states depend only on the present state, not on the sequence of events that preceded it.	
AND POST OF THE PO	The X at a given time is called the state . The value of Xn depends only on Xn-1. State: sunny cloudy rainy sunny?	

	The Hidden Markov Model		
	A Hidden Markov M is only partially obser	lodel is a Markov chain for which the state rvable.	_
1838	A Markov Model	(x_0) \xrightarrow{A} (x_1) \xrightarrow{A} (x_2) \xrightarrow{A} (x_N)	_
	A Hidden Markov Model	0 A 7 A 72 A N B B B B To 7, 72 N	-
		the (TRUE) states of a system that d by a Markov process (e.g., the	-
	Observed state `visible' (e.g., un	es: the states of the process that are nbrella).	-