

Research and Technology Development **Astrobiology Technology Branch** Advanced Life Support

Dr. Mark Kliss, Chief Astrobiology Technology Branch (Code SSR) Presented at the International Advanced Life Support Working Group Meeting Guelph, Ontario May 12–16, 2001

nnein Exploration aing Developinent of Space (HEDS) egiforehuge

"We will conduct R&TD for advanced life support systems which will be validated on the ISS."

"We will develop revolutionary advanced technologies that will support future national decisions regarding human missions beyond Earth orbit."

The HEDS Enterprise relies on the Space Science Enterprise filssions to demonstrate the feasibility of utilizing local resources to "live off the land."

productively in space, to open the door for planet exploration, and for benefits on Earth. Provide life support self-sufficiency for human beings to carry out research and exploration

Tie Suppo MSA Amesia

Provide innovative ALS technology development for SS, crewed transit vehicles, and surface habitats. R&TD focus: Physicochemical Technologies (TRL 1-5)

- Regenerative Air, Water & Solid Waste Processing

Systems Integration, Modeling and Analysis

Astrobiology Technology Branch Peganine

Contractors / University COOPs 19

Dr. Mark Kliss, Chief Karen Bunn

Dr. Cory Finn Dr. John Finn

John Fisher

John Fisher Michael Flynn

Dr. Harry Jones Richard Lamparter Julie Levri

June Levri Dr. Andrew McMillan Dr. Jonathan Trent

Dave Affleck
Warren Belisle
Dr. Ann Bell
Dr. Charles Blackwell
Bruce Borchers
Richard Boulanger
Sheila Cho
Sekou Craw ford

Greg Pace Dr. Chris Pawlowski

Suresh Pisharody

Maher Tleimat Sunita Verma

> Sekou Craw ford Dr. Gerard Heyenga Jeanie Howard Jeff Johnson

)r. Hiromi Kagawa

Richard Wisniewski

Dr. Wiggy Wignarajah

Barbara Walton

Dr. K. R. Sridhar

Bric Litwiller

Mark Moran

Dr. Les Montgomery

Lila Mulloth

Suzanne Chan Joshua Coe Janice Cregan Kindall Forrest Chris Knoell Amber Sanford Kerry Wooding

/4) division each Life Sturologoida Full Molling Assirobiology Teehindlogy Evenion

Total FY01 ALS Funding (Direct & Indirect)

Total FY01 ALS Funding at ARC (Direct & Indirect)

54% (\$2,198K)

Direct TTA's

Indirect SBIR's 16% (\$670K)

Wairebiology Technology Branch

LesenGrafical Montioning for Phase L

	NASA ARC Advanced Life Support SBIR Contracts	Life S	nppor	t SBIF	R Contract	S
COMPANY	TITLE	FY99	FY00	FY01	CONTRACT STATUS	INNOVATION
Phytron Instruments, Inc.	Clean Water: Electrn Beam Water Treatment		70,000		99-1 started FY00	X-ray optic spectrometer
EnerTech Environmenta, Inc.	Wet Carbonization of Space Mission Generated Wastes		70,000		99-2 Started FY00	Make pumpable slurries out of inedible biomass
Reaction Engineering Intl	Integration of a Metal Fluoride Type Catalyst in a Low Temperature Fluidized Bed Incinerator into a Biomass Waste Management System	100,000		300,000	95-2 Phase II Completed 6/99	Unique catalyst for resource recovry system
Umpqua Research Co.	Electrochemically Generated, Hydrogen Peroxide Boosted Aqueous Phase Catalytic Oxidation	100,000			95-2 Del 4-99 Phase II Completed 9/99	Direct generation of H2O2 and catalyist selection for reaction promotion
Materials and Electro- chemical Res Corp	Novel Fullerene bed for Low Pressure Oxygen Storage	100,000			95-2 Del 10-99 Phase II Completed 10/99	High density oxygen storage
Ilmous Research Co	Microwave Regenerable Air Purification Device	100,000			95-2 Del 10-99 Phase II Completed 10/99	Regenaration properties of sorbents for carbon dioxide removal from air
Impany Research Company	Riomass Slurry Production	70,000			98-1 contract initiated Dec 98 No Phase II Completed FY99	Efficient continuos feed system for making high solids pumpable biomass slurry
Advanced Fuel Research,	Pyrolysis Processing for Solid Waste Resource Recovery in Space	70,000	300,000		98-2 contract Phase II Awarded 10/99	Pyrolyze waste without producing undesireable byproducts.
TDA Research Inc	System for Removal of the Oxides of Nitrogen and Sulfur from Incinerator Effluents	200,000	300,000	300,000	300,000 97-2 initiated 1/99	Remove Nox and SO2 contaminants from flue gas
Nanotechnology. Inc.				70,000	00-1 Started FY01	Efficient stabilization of waste and recovery of water

Recommendation Research ait NVSVV Annes A Novieesel Desiloof

Characterization of a sadion of a sadion properties additional than 45 (CO, removal for ISS)

Support of NASA Missions (such as ISS) Prediction of effects of water co-adsorption with trace contaminants

Basic Physical and Chemical Research

Low-power hybrid membrane/ adsorption unit for CO₂ remove

New Concepts and Technology for Advanced Life Support Temperature swing adsorption for utilization of Mars atmosphere gases

Solid State CO₂ Compressor for ISS (closes air loop)

Regenerable Trace Gas-Phase Contaminant Control

Study of physical chemistry of adsorbed CO₂/H₂O solutions

| Adsorption-based gas separation and purification

Why Develop Advanced CO, Removal Technologies?

- The International Space Station (ISS) CO2 removal subsystem has the highest power penalty of any ISS life support subsystem (~ $3200 \text{ W-hr/kg CO}_2$). Current technology has a thermodynamic efficiency of about 3%.
- Current CO₂ removal & reduction technology in closed-loop mode (with Sabatier/oxygen recovery) will require ~ 5400W-hr/kg CO₂.
- Life scientists are calling for lower CO, levels on International Space Station.
- Achieving lower concentrations translates directly into more energy consumption. Confounding influence on gravity-response experiments; blood chemistry effects ISS requirement is 7000 ppm, compared to ~400 ppm Earth-normal
- Power will be an extremely critical resource for a Mars transit vehicle.
- The Mars Reference Mission would use a solar-powered transit vehicle with total estimated available power of 30 kW; 12 kW for ECLS

(or maintains substantially lower concentrations of ${\sf CO}_2$ for no increase in power) Develop CO₂ removal technology that consumes 10x less power than current Space Station technology for same performance.

Hybrid Membrane/Adsorption ⓒO, Flemoya

ate of the Arr (ISS): Four-Bed Molecular Sieve (4BMS; AlledSignal/Honeywell)

- Mature technology (Skylab)
 - Fully regenerable
- High removal efficiency (100%)
 - High-purity CO₂ for reduction

cabin air

CONS

 High power consumption (860 W avg in open-loop mode), mostly needed for water desorption

Membrana//englogical/

WAter Recuperated CO₂ Sorbed 🕯 Ames Besearch Center) MRCS, N

SOHd

- Lower power than 4BMS due to reduced/eliminated need for water desorption
- Uses similar materials to existing life support equip.

Low technical maturity

Low Power CO. Remova

- ARC research focuses on developing CO₂ removal technology that has significantly lower power requirements for the same performance of current processors.
- Vanderbilt University will perform modeling and optimization work, supported by experimental testing at NASA Ames.
- mass trade (ESM) with existing technology, we will propose If the concept has sufficient merit in terms of its power and further development. Alan Drysdale (SIMA group) is collaborating on system metrics.
- materials continue to play an essential and fundamental role in In addition, characterization and development of sorbent the research.

SRU Technologies for Mars

Safreufficiency Options

Complete regeneration No leaks Total closure (100%)

Relatively relaxed closure and leakage requirements, reliance on [cal resources [SRU]

Design Drivers are

- Reduced mass and power
- Increased safety and reliability

Atmospharic Resources of Wars

Mars atmosphere composition

- Pressure: ~1% of Earth's
- Temperature: 180 290 K (equatorial)
- Dusty, windy

Mars Pathfinder, 1997

/ Make-yo for Mars Life Syppor L Consumables

Figure 3-4 Fast-transit mission profile

Transit Leakage Losses:
0.1 kg/day leakage,
260 days = 26 kg N₂

Surface Leakage Losses: 0.1 kg/day leakage, 619 days = 62 kg N₂

Surface/Airlock Losses: 1 kg/cycle, 2 cycles/day, 619 days = 1200 kg N₂ Total Mission N_2 Losses: ~1.3 tonnes N_2 lost (2x safety factor = 2.6 tonnes)

NASA SP 6107, Mars Reference Mission, 1997.

गाउड्डिट्राम्स डिन्ड्रिट्सार्था बागदा **छ्ना**ग्रह्मा

Basic regearch on adsorption separations of Mars atmospheric gases at Mars local conditions.

NASA Ames Research Center

produce compressed N₂-Ar for science payloads at Mars In-situ Carrier Gas Generator (MICAGG) will no electrical cost.

NASA Ames Research Center/University of Arizona

nosphere co, separation and compression - Regoulsionalesseardin

Solid-state CO₂ compressor produces 13 g CO₂ per cycle at 1 bar for 35 W-h electrical energy.

All hardware is tested under simulated Mars conditions of pressure, gas composition, and diurnal temperature cycle.

Internional Space Skidon Oxygenial Recovery Absorotion-Based Compressorfor

は、現在を記念が、一般の一般である。

- effectively separated and compressed N₂ and CO₂. Perhaps other ISRU research demonstrated low power technology which applications?
- implemented, all CO, removed from the cabin air and H₂ generated Until oxygen recovery on the International Space Station is through water electrolysis will be vented.
- Total venting difference is about 0.37 kg H₂O per HEU per day, (2000 lb or \$20M per year resupply penalty. Water loss is minimized when no H₂ is vented. Venting of H, and oxygen (in the form of CO,) represents a water

CDRA and CRA Characteristics

Carbon Dioxide Removal Assembly (CDRA)

CO₂ Reduction Assembly (CRA)

- 4BMS adsorption separation (AlliedSignal/Honeywell)
- Removes CO₂ from cabin air
- Operates on a 155-minute "half-" cycle
- Produces CO₂ at vacuum (< 4 psia)

- Sabatier methanation (Hamilton Sundstrand)
- Uses CO₂ (and H₂) to make CH₄ and H₂O
- Operates on a 90-minute cycle
- Needs CO₂ at pressure (~ 14 psia)

Interface equipment is required that

- Can remove CO₂ (4 kg/day) from the CDRA at vacuum (To react all available H_2 , 4 kg CO_2 needs to be extracted & compressed from the CDRA)
- Compresses the gas
- Stores it at pressure until it can be used by the CRA
 - Fits within the OGS rack
- Requires no modifications to existing hardware/software

Characteristics of "2 kg" Compressor and the state of the

Resource	Mechanical compressor	Temperature Swing Absorption (TSA) compressor
power	500 W nominal, 900 W peak	150 W nominal, 300 W peak
volume	31 liters (1.1 cubic feet)	25 liters (0.9 cubic feet)
buffer tank volume	38 liters (10 gallons)	n/a
mass	27 kg (60 lbs)	22.5 kg (50 lbs)
heat rejection to cold water	up to 500 W	150 W
heat rejection to avionics air	up to 200 W	20 W
operating life	3.1 yr	comparable to 4BMS

rassboard Development Start

- ested with the MSFC 4BMS hardware in FY00. A single-bed partial unit was developed and
- Development and testing of a complete four-bed brassboard unit is ongoing in FY01.
- The TSA compressor is expected to be capable of providing 4 kg ${\sf CO}_2$ per day from the CDRA
- lower power
- quieter and vibration-free operation
- expected better reliability and lifetime
 than the mechanical compressor alternative
- If successful, this technology would solve one of the key technical challenges to closing the air loop for the first time on International Space

ALS Water Recovery R&TD

Estification

Vater accounts for 87% of the total metabolic resupply requirements to keep an astronaut alive in space.

baseline and Mars Pathfinder launch cost data, the cost of supplying water for this mission in Using the Mars Reference Mission as a the open loop case is over \$11 Billion.

nptions: 6 astronauts, duration = 960 days, launch cost = \$150,000/kg,

Sisterofile Art Waiter Recovery

The International Space Station (ISS) uses a water recycling system (WRS) which all but eliminates this open loop penalty.

- However, the ISS WRS system has a significant processor- related resupply requirements (primarily adsorption beds, filters, and makeup water).
- Pathfinder cost data, the cost for resupplying an ISS type WRS for Using the Mars Reference Mission as a baseline and the Mars such a mission would be in excess of \$1 Billion.

Assumptions: 6 astronauts, duration = 960 days, launch cost = \$150,000/kg, WRS resupply = 1.19kg/person-day, flow rate = 3.18kg/hi

ARC Focus - Waier Recovery

regenerative water recycling solutions for nearer term missions. The Advanced Life Support (ALS) water treatment technology development program is focused on developing fully

Candidate Technologies:

- * Vapor Phase Catalytic Ammonia Reduction (VPCAR)
- Wiped-Film Rotating-Disk Evaporator
- Lyophilization
- Direct Osmotic Concentration

Aqueous Phase Catalytic Oxidation

In situ hydrogen peroxide generation

Electrochemical Oxidation

Vapor Phase CaralViic Ammonia Remova

- or sesed/catalytic oxidation water processor: The VPCAR is a distillat
- Designed to accept a combined waste stream (condensate, hygiene and urine) and produce potable water in a single step.
- Designed to require no re-supply or maintenance for 3 yrs.
- The technology is modular and can be packaged to fit into a volume comparable to a single Space Station rack.

Comparison Between 188 Baseline and

	7 7 7 7	
	ISS Water	VPCAR System
	Recycling	
	System	
Re-supply (equipment)	413	0 Kg/year
	Kg/year	
Number of Independent	4	2
Processors		
Feed Streams	2	
Weight	193 Kg	68 Kg
Volume	1.1 m³	0.39 m ³
Power – Water Processor	55 W-hr/kg	300 Whr/kg
Only		
Oxidant Feed	2 g/hr	>30 g/hr
Oxidant Consumption	0. 67 g/hr	>30 g/hr
Oxidant Energy Penalty	0.7 Whr/kg feed	0.7 Whr/ kg feed
CO2 Generation Rate	0.47 g/hr	0.47 g/hr
CO2 Energy Penalty	0.6 Whr/kg feed	0.6 Whr/kg feed
Lyophilization Power **	5.2 Whr/kg feed	10.4 Whr/kg feed
Total Subsystem Power	61.5 Whr/kg feed	311.7 Whr/kg feed
Recovery Rate	%66	97%
Scheduled Maintenance	every 50 days	0
TRL	9	4
Mass Metric	2463	434 (332)

AN STEINIORGRUINWAS AND SENTENTIAN CONTRACTOR CONTRACTOR OF THE STREET O Veological Waste Treatinemi Technology

Section 1

modified lyophilization technique to recover water from/stabilize spacecraft solid wastes. (food wastes, feces, general trash, and water treatment system byproduct streams) The objective of this NRA research is to evaluate the use of a

The Iyophilization process is a process by which water contained within a solid sample is frozen and then sublimed thus leaving a dry solid material (usually 1-3% water content) and liquid water.

Transit Vehicle (MTV) where water recovery rates approaching 100% are desirable, but the production of ${\rm CO}_2$ (from conversion of This technology is ideally suited for an application such as a Mars solid wastes) is not.

	Mass (wet)	Water	Mass
		Content	Water
	Kg/person day	%	Kg/person day
Feces	0.132	84	0.11
Water Treatment System	0.27	11	0.19
By-products*			
Leftover food	0.10	70	0.07
paper	0.13	10.2	0.013
Other Trash	0.78	0.2	0.0016
Total	1.41		0.38
	7700 J	~	

はのこうのこうには Drying . yophilization vs. Other

Low pressure, low temperature process (potential for low power operation).

THE PARTY OF

- Complex solids pumping or handling techniques are not required.
- undesirable oxidation byproducts (gases generated are primarily water). The technique should not produce CO₂, NO_x, SO_x, or any other
- The final product is a stable dried material with from 1 to 3% H₂O.
- The approach is fully regenerable, meaning that the process requires no consumables, only energy.

Goal

Stabilize/
Destroy
hazardous
or noxious
wastes

Reclaim CO₂
and nutrients
from waste
for biological
processors

Valsite Processing जित्तंत्रवा जित्ता कार्या जात Seleul ield ell oo Moli

4

- scenarios affect the requirements on waste processing? 1. What are the mission scenarios and how do these
- What are the desired products of waste processing?
- What quality/quantity of reclaimed products are necessary? က
- What is the weight, power, volume, and reliability of the candidate processing technology?
- What is the cost, time, and probability of success for the development effort? 5.

Promising What are the Options?

								- A	25				
Technology	Advantages	Development Issues	Compl. React.	w:	Pwr	Vol.	Dev Cost	Reliability Simplicity		Safety Robust Novel	Novel	Use for No Food Growth Sys?	New Commercial
Inclneration	Low pressureCommercialapplications	• Sulfur	# But byprod	+		+				c-	+		Exieting
Steam Reforming	Low pressureClean syngasfor oxidation	Power and energy rec.		~	<i>د</i> -	٥-	٠.	.	+	+	٠-	c	+
scwo	One step processing	CorrosionSlry pumpReactor Plug	+	٠,	=/-150%	c.	·		l	+	¢.	ċ	+
Wet Ox	 Lower pres. than SCWO 	 Post treatment for acetic acid 	II.	•	+	٠.		¢.	٠.	+	ç	ı	6
Biological	 Low power Nutrient recovery 	 Incomplete reaction Sludge control Large size 	11		c .		C.	٠٠	+	· ·	l	II.	Existing
Electro- Chemical	Accelerates reaction at lower T & P	Incomplete reactionEnergy	11	6.	¢.	C+	·	(1)	C:	¢.	¢.	C •	ċ
+ Likely Advantage		I Neither Advantage, r	i nor Disadvantage	tvanta	Эe	– Ma	ybe Di	i - Maybe Disadvantage		= Likely Disadvantage	Disadva		? Unknown

Incineration - mature technology, complete oxidation, low pressure, but high temp and requires catalysts/resupply for flue gas clean up

SuperCritical Water Oxidation (SCWO) - 'ultimate' processor, complete oxidation, no catalysts/resupply, but high pressure/temp, pretreatment

Biological Waste Treatment - limited wastes, but potential 'front end' system to remove K*/organics

for plant growth

Solid Waste Processing/BesonRae Recovery Focultable Beard West

INCINERATION R&TD EFFORTS

- Feed system development
- Improved energy efficiency
- Improved catalyst lifetime/robustness
- Waste Reutilization
- Trace gas analysis of flue gas
- CO,NO, SO₂, trace hydrocarbon dose response studies (plant sensitivity)
- Ash analysis for plant nutrient solution make up

記3000

Incinerator Flue Gas and <u>। द्यार</u>ीशा श्रं

attice Grown on Cleaned Flue Gas

General Recovery Factors for Inorganics in the Incinerator Ash

- The inorganics represent about 7.5% of the original plant dry weight
- About 90% of inorganics are retained in the incinerator ash.
- About 72% of the inorganics in the ash are water soluble.
- All of the ash is soluble in acid.

Nutrients Available from Ash

ntall ion of ash alone ng/g)	,	2 101	3 24	.3 67	42 44	06 3	67 7	33 108	33 416	94 8
Elementall composition of Ash (mg/g)		792	17.3	133.3	0.8942	0.0006	0.4667	0.5333	0.1333	0.004
Lettuce hydroponic solution (LHS)(mM)		2	1.5	2.5	0.0466	0.00015	960.0	0.0045	0.0005	0.0038
Nutrient		エ	Mg	ප	В	ಕ	P.	Mn	Mo	Zn

107 Flue Gas Carbo 19301179

- bents (activated carbon) are typically used cress gases for clean up of combustion p Background
- NRA Goal: convert inedible biomass to activated carbon to eliminate adsorbent resupply (adsorb NO_x, SO₂; reduce NO_x to N₂; SO₂, to S)

8

3

Example of flow diagram of reactive carbon for flue gas cleanup

Essence of the Process

Air or Oxygen= Aqueous Waste

SCWO R&TD EFFORTS

A CONTRACTOR OF THE PARTY OF TH

To The second

- Demonstrated effectiveness on liquid waste streams (complete oxidation w/o catalysts)
- Determine kinetics of biomass particle oxidation
- Development of solid feed system
 - Feed pretreatment (slurry)
 - Feed delivery/pumping
- Investigate batch operation methods
- Evaluate carbonization process to fluidize waste

ng end Anelva

- ve the of Advanced Life Mission objective
- he functional requirements the best way possible. ms Engineering (SIMA) enables R&TD efforts
- tification and evaluation of feasible designs
- Pertormance of technology/configuration trade studies
- ímization of operational strategies
- Provide guidance for future R&TD efforts

Dynamie System Modeling

Dynamic mass flow modeling of Bio-PLEX

- Model flow of material through BLSS over time
- Crew
- Air Revitalization
- Water Recovery
- Solid Waste Processing/Resource recovery
 - Biomass Production Chamber
- Food Processing System
- Conduct candidate technology trades
- Bioreactor or incinerator?
- Grow all food or partial resupply?
- · Compare candidate configurations
- Separate or combined air loops for the crew and crops?
- Recycle crop transpiration water to WRS or to nutrient solution?
- Optimize operational strategies
- What is the best crop planting/harvesting schedule?
- Adjust solid waste processing rate to maintain CO₂ level?

≕ Dynamie System Wodeling

Dynamic mass flow modeling of Bio-PLEX

- Model flow of material through BLSS over time
- Air Revitalization
- Water Recovery
- Solid Waste Processing/Resource recovery
- Biomass Production Chamber
- Food Processing System
- Bioreactor or incinerator? Grow all food or partial resupply? Conduct candidate technology trades
- Compare candidate configurations

Recycle crop transpiration water to WRS or to nutrient solution? Separate or combined air loops for the crew and crops?

Optimize operational strategies

Adjust solid waste processing rate to maintain CO₂ level? What is the best crop planting/harvesting schedule?

Divine mire Siv

- Develop schedules for crop production
 Smooth crop gas exchange profiles (CO₂ usage)
- Smooth crop gas exchange profiles (CO₂ usage)
 by altering planting/harvesting schedules
- Develop control system strategies
- Design controllers that meet performance specifications (atmospheric oxygen level)
- Apply model-based Fault Detection, Isolation and Recovery (FDIR) system
- Compare model predictions to real-time data for failure diagnosis (simulated 4BMS failure)
- Design appropriately sized processors and buffers
 - Select technologies based on systems trades

COMO

- The high power requirement associated with ALS is a key challenge Optimization of total system efficiency (not individual processors) is requ Motivation
- Apply Pinch Analysis technique and Market-based Control strategy Approach

Reduce total system power by optimized reuse of waste heat between hot and cold streams

The market determines which processes receive the power they demand within the target limit (function of internal process state and power cost)