SME0820 Modelos de Regressão e Aprendizado Supervisionado I: Lista 2

Thomas Peron.

Data de publicação: 23/09/2023. Data da provinha: $\boxed{06/10/2023}$. Data de entrega exercícios \blacksquare : $\boxed{12/10/2023}$

Resolva os exercícios computacionais () da maneira que quiser: com o software ou linguagem de sua preferência (R, Python, C, Fortran, etc.), manualmente, ou ambos.

1. Para o modelo de regressão linear

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \ i = 1, ..., n, \tag{1}$$

onde ε_i é uma variável aleatória satisfazendo $\mathbb{E}(\varepsilon_i) = 0$, $\mathrm{Var}(\varepsilon_i) = \sigma^2$ e $\mathrm{cov}(\varepsilon_i, \varepsilon_j) = \sigma^2 \delta_{ij}$, onde δ_{ij} é a função delta de Kronecker, mostre que

- (a) $\operatorname{cov}(\hat{\beta}_1, \overline{Y}) = 0$.
- (b) $\operatorname{cov}(\hat{\beta}_0, \hat{\beta}_1) = -\overline{X}\sigma^2/S_{xx}$.
- 2. Para o modelo da Eq. (1), mostre que $\mathbb{E}(\hat{\sigma}^2) = \sigma^2$, onde

$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{(Y_i - \hat{Y}_i)^2}{n - 2},$$

sendo $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ a resposta estimada em $X = x_i$.

- 3. Para o caso de duas amostras apenas (n = 2) na Eq. (1), demonstre as seguintes relações
 - (a) $(y_1 \hat{y}_1) = (y_2 \hat{y}_2) = 0$,
 - (b) $R^2 = 1$ (Coeficiente de determinação $R^2 = SSR/SST = 1 SSE/SST$).
- 4. Num problema de regressão linear simples, como o descrito na Eq. (1), encontre a relação entre o estimador $\hat{\beta}_1$ e o coeficiente de correlação $r_{XY} = \text{cov}(X, Y) / \sqrt{\text{Var}(X)\text{Var}(Y)}$.
- 5. Há aplicações importantes (e.g., verificações de leis científicas) em que, devido a restrições conhecidas, a linha de regressão deve passar pela origem (isto é, o intercepto é zero). Dito de outro modo, o modelo deve ser definido como

$$Y_i = \beta_1 x_i + \varepsilon_i, \ i = 1, ..., n, \tag{2}$$

de maneira que apenas um parâmetro deve ser estimado. Considere que os termos ε_i satisfazem as mesmas condições como no modelo (1).

(a) Mostre que o estimador da inclinação da reta é dado por

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i}{\sum_{i=1}^n x_i^2}.$$
 (3)

(b) Mostre que

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n x_i^2}.$$
 (4)

- (c) Mostre também que $\hat{\beta}_1$ em (a) é um estimador não-enviesado para β_1 . Isto é, verifique que $\mathbb{E}(\hat{\beta}_1) = \beta_1$.
- 6. (p-valor é uma variável aleatória) A estatística que calculamos no teste t,

$$T = \frac{\hat{\beta}_1 - \beta_1^*}{\widehat{SE}[\hat{\beta}_1]},$$

possui a propriedade de ser próxima a zero quando a hipótese nula $H_o: \beta_1 = \beta_1^*$ for verdadeira, e de assumir valores extremos, que podem ser tanto negativos quanto positivos, quando H_o for falsa. Se a estatística de teste possui essas propriedades, convém sumarizar num único índice como os dados se adéquam à hipótese nula – o chamado p-valor. Seja T^* o valor observado para a estatística T, o p-valor é definido como

$$P = \Pr\{|T| \ge |T^*|\},\tag{5}$$

que é a probabilidade de que uma variável aleatória de distribuição t-Student seja maior do que o valor observado T*.

Neste exercício mostraremos que *P* que é uma variável aleatória uniformemente distribuída sob a hipótese nula. Siga os passos abaixo, considerando que *T* possua uma distribuição contínua.

- (a) Mostre que se $Q \sim \text{Uniforme}(0,1)$, então P = 1 Q possui a mesma distribuição.
- (b) Seja X uma variável aleatória contínua cuja CDF é F. Mostre que $F(X) \sim Uniforme(0,1)$. Dica: a CDF de uma distribuição uniforme é $F_{Unif(0,1)}(x) = x$.
- (c) Mostre que P, como definido acima, pode ser escrito como $1 F_{|T|}(|T^*|)$.
- (d) Usando os itens anteriores, mostre que $P \sim \text{Uniforme}(0, 1)$.
- 7. \square Suponha, como no exercício 5, que nosso problema é modelado por uma equação linear que passa pela origem, i.e. $\mu_{Y|x} = \beta_1 x$. Dito isso,
 - (a) estime a linha de regressão para os seguintes dados:

- (b) Imagine que não sabemos se a verdadeira linha de regressão deva passar pela origem ou não. Estime o modelo linear $\mu_{Y|x} = \beta_0 + \beta_1 x$, e teste a hipótese de que $\beta_0 = 0$, com um nível de 90% de significância em relação à hipótese alternativa $\beta_0 \neq 0$.
- 8. Há um certo tipo de molusco, do gênero *Haliotis*¹, cuja carne é apreciada por várias culturas, podendo esta ser consumida tanto crua quanto cozida. Um problema encontrado por cientistas que estudam esse animal é determinar a idade de indivíduos a partir do tamanho de suas conchas. Essa não é uma tarefa simples de realizar, porque o crescimento das conchas não depende apenas do tempo de vida, e sim também da disponibilidade de alimento. Uma abordagem comumente adotada é retirar uma amostra da concha e analisar, com a ajuda de um microscópio, o número de anéis presentes nela. Imagine você faça parte de um grupo de pesquisa que esteja interessado em utilizar as medidas físicas dos moluscos, especialmente a altura da concha, para prever seus tempos de vida. Acredita-se que um modelo de regressão linear simples com erros normais seja suficiente para descrever a relação entre altura e idade. Em particular, o grupo busca dar suporte à teoria de que conchas maiores correspondem a animais mais velhos.

Os dados que utilizaremos neste exercícios estão no arquivo molusco.csv. Mais informações sobre essa base podem ser encontradas em https://archive.ics.uci.edu/ml/datasets/Abalone.

- (a) Escreva algumas sentenças descrevendo o problema da pesquisa e a hipótese científica que será verificada.
- (b) Examine as duas variáveis da base de dados individualmente. Faça um resumo de suas medidas (média, variância, intervalo de amostragem, etc). Faça essa descrição também por meio de gráficos. Qual é a unidade de Height?
- (c) Faça um gráfico de dispersão dos dados. Descreva as tendências interessantes observadas.
- (d) Ajuste uma linha de regressão aos dados, prevendo o número de anéis na concha utilizando o tempo de vida dos moluscos.

https://en.wikipedia.org/wiki/Haliotis

- (e) Crie um gráfico de dispersão que mostre os dados e a função de regressão estimada (você pode incluir no gráfico anterior). Descreva o ajuste da reta.
- (f) Forneça um intervalo de 95% de confiança para β_0 e β_1 . Interprete no contexto do problema.
- (g) Há uma relação estatística significante entre altura e número de anéis (e, portanto, tempo de vida) dos moluscos?
- (h) Faça uma estimativa pontual e encontre o intervalo de 95% de confiança para o número médio de anéis de moluscos com altura 0.128 (na mesma unidade das outras observações).
- (i) Estamos interessados agora em *predizer* o número de anéis de um molusco de tamanho 0.132 (mesma unidade que as anteriores). Encontre o valor predito e o intervalo de predição com 99% de significância.
- (j) Conclua brevemente o estudo.