AgPMS

Silver nanowire PVB melamine sponge electrodes for EEG

KN Neuroinformatyki & "Nanorurki"

Uniwersytet Warszawski, Wydział Fizyki

11 maja 2025

Streszczenie

Celem projektu jest odtworzenie i ocena skuteczności nowatorskich elektrod EEG wykonanych z elastycznej gąbki melaminowej pokrytej nanodrutami srebra. Elektrody te mają zastąpić tradycyjne elektrody żelowe w nieinwazyjnych interfejsach mózg–komputer (BCI), oferując lepszy kontakt ze skórą bez potrzeby stosowania żelu przewodzącego. Zakładamy wytworzenie elektrod o wysokiej przewodności, stabilności mechanicznej oraz zdolności do rejestracji sygnałów EEG porównywalnej z klasycznymi rozwiązaniami. Projekt ma na celu potwierdzenie parametrów technicznych i funkcjonalnych opisanych w literaturze oraz ich potencjalne zastosowanie w praktycznych systemach BCI.

1 Wprowadzenie

Brief overview of the theoretical background and relevance of the work. State the objective of the project clearly. If applicable, define a hypothesis or scientific question.

2 Niezbędne materiały i sprzęt

2.1 Equipment

Tabela 1: List of Equipment

Device	Model	Manufacturer	Function
Spin Coater	KW-4A	Chemat	Thin film deposition
Oven	Memmert ULE 400	Memmert	Thermal treatment
Multimeter	Fluke 115	Fluke	Electrical measurements

2.2 Ingredients / Materials

Tabela 2: Materials and Chemicals

Name	Purity / Grade	Supplier	Role
Ethanol Silicon Wafer	99.9% p-type, <100>	Sigma-Aldrich Wafer World	Solvent Substrate
PEDOT:PSS	• • •	Heraeus	Conductive layer

3 Preparation

Describe any preparatory steps, such as:

- Cleaning of substrates using solvents
- Preheating or calibration of equipment
- Solution preparation or mixing ratios

4 Process / Experimental Procedure

Outline each step of the main experimental process. Include:

- Temperatures and durations
- Concentrations and volumes
- Equipment settings and sequences

5 Characterisation Techniques

Scanning Electron Microscopy (SEM)

Instrument: Zeiss Sigma 300

Used for surface morphology imaging. Operated at 5-10 kV.

X-ray Diffraction (XRD)

Instrument: Bruker D8 Advance

Used to determine crystalline structure. Scanned from 10° to 80° in 2θ .

6 Results and Discussion

Include figures, graphs, or tables of results:

Rysunek 1: Example result: surface morphology at 10kV SEM

Discuss trends, anomalies, and how the results align with expectations or literature.

7 Conclusions

Summarise:

- Main findings
- Whether objectives were met
- Any limitations or sources of error
- Suggestions for improvement or further research

References

- J. Smith et al., Journal of Applied Physics, 2022, 120(3), 1234.
- Equipment manuals and data sheets
- Scientific articles, standards

Appendix

Include raw data, code, calculations, or safety data sheets.