Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет Информационных технологий и управления Кафедра Интеллектуальных информационных технологий

ОТЧЁТ по ознакомительной практике

Выполнил: В. Д. Головач

Студент группы 321703

Проверил: В. В. Голенков

СОДЕРЖАНИЕ

Bı	ведение
1	Постановка задачи
2	Преобразование речи в текст. Фонемный подход
3	Обработка и анализ данных из сигналов
4	Формальная семантическая спецификация библиографических ис-
	точников
38	аключение
\mathbf{C}_{1}	писок использованных источников

ВВЕДЕНИЕ

Цель:

Закрепить практические навыки формализации информации в интеллектуальных системах с использованием семантических сетей.

Задачи:

- Построение формализованных фрагментов теории интеллектуальных компьтерных систем и технологий их разработки;
- Построение формальной семантической спецификации библиографических источников, соответствующих указанным выше фрагментам;
- Оформление конкретных предложений по развитию текущей версии Стандарта интеллектуальных компьтерных систем и технологий их разработки

1 ПОСТАНОВКА ЗАДАЧИ

Часть 4 Учебной дисциплины ''Представление и обработка информации в интеллектуальных системах''

- \Rightarrow библиографическая ссылка*:
 - Монография OSTIS
 - Материалы конференций OSTIS
 - Медведев М.С..ПреобРвТФП-2007ст
 - \Rightarrow *URL**:

[https://static.freereferats.ru/_avtoreferats/01003316656.pdf?ver=3]

- Донгшенг Л.. УстроиСПДдА-2013ст
 - \Rightarrow *URL**:

[https://www.elibrary.ru/download/elibrary_37389666_16300332.pdf]

 \Rightarrow ammecmaционные вопросы*:

)

- ⟨ Bonpoc 3.2 по Части 4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"
- Вопрос 3.3 по Части 4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

Вопрос 3.2 по Части 4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- := [Аудиоинтерфейс. Аудиоинтерфейс OSTIS-систем. Характеристика речи. Аудиосигналы. Характеристика аудиосигналов.]
- \Rightarrow библиографическая ссылка*:
 - Предметная область и онтология задач аудиоинтерфейса ostis-систем
 ∈ раздел Монографии
 - Лебедев. О.В..СонифиЕАвУСО-2018ст
 - \Rightarrow *URL**:

[https://www.elibrary.ru/download/elibrary_35007486_95787789.pdf]

Вопрос 3.3 по Части 4 Учебной дисциплины "Представление и обработка информации в интеллектуальных системах"

- := [Сигнал. Модель сигнала. Характеристика сигнала. Параметрическое представление сигнала.]
- \Rightarrow библиографическая ссылка*:
 - Предметная область и онтология моделей параметрического представления сигнала
 - ∈ раздел Монографии
 - Polikar R..tWavelT-2006bk
 - \Rightarrow *URL**:

[http://www.autex.spb.su/download/wavelet/books/tutorial.pdf]

- Кренкель Т.А..КвантВПД
 - \Rightarrow *URL**:

[https://cyberleninka.ru/article/n/kvantovoe-veyvlet-preobrazovanie-dobeshi/viewer]

2 ПРЕОБРАЗОВАНИЕ РЕЧИ В ТЕКСТ. ФОНЕМНЫЙ ПОДХОД

Фонологические особенности русского языка

- \Leftarrow объединение*:
 - большое количество фонем
 - сложное словообразование
 - большое количество словоформ
 - длина слов
 - \Rightarrow пояснение*:

[в среднем длина слова в русском языке больше, чем в других языках]

база данных русского языка

 \Rightarrow примечание*:

}

[для русского языка такие базы данных только начинают создаваться и находятся в закрытом пользовании]

- ∈ обычная речь
- ∈ телефонные звонки
- ∈ иные источники человеческой речи

речевые единцицы распознавания русской речи

```
\Leftarrow объединение*:
```

- { аллофон
 - фонема
 - дифон
 - слог
- слово

методы распознавания речи

- \Rightarrow разбиение*:
 - **{●** распознавание целых слов
 - выделение фонем из потока речи

ſ

подходы к распознаванию речи

- \Rightarrow разбиение*:
 - **{ ●** функциональный подход
 - \Rightarrow noяснение*:

[если входной образ лучше соответствует эталону і-ого класса, чем любому другому, то входной образ классифицируется как принадлежащий к і-ому классу]

- нейросетевой подход
 - \Rightarrow пояснение*:

[в процессе обучения настраиваются веса связей нейронной сети, при которых определенная входная комбинация приводит к требуемому множеству на выходах]

}

нейросетевая система распознавания речи

- *⇒* задачи*:
 - преобразование в цифровую форму и предварительная обработка речевого сигнала
 - \Rightarrow разбиение*:
 - { подавление шума
 - нормализация сигнала
 - алгоритм выделения информации
 - }
 - вычисление признаков речевого сигнала
 - классификация речевых единиц
 - лингвистические задачи
 - \Rightarrow разбиение*:
 - € выбор речевой единицы
 - формированеи словаря }
 - подготовка данных для обучения системы
- \Rightarrow примеры*:
 - Mozilla DeepSpeech
 - OpenAI Whisper
 - Google Speech Transformer

сонификация

- := [преобразование данных в речь]
- \Rightarrow определение*:

[сонификация - это метод, техника, алгоритм преобразования данных в звук]

- \Rightarrow xарактеристика*:
 - воспроизводимость
 - систематичность
 - \Rightarrow пояснение*:

[при одинаковых входных данных - одинаковые выходные]

- различность входных данных
- звук отражает свойства входных данных

3 ОБРАБОТКА И АНАЛИЗ ДАННЫХ ИЗ СИГНАЛОВ.

Вейвлет-преобразование

 \Rightarrow noschehue*:

[вейвлет преобразование обеспечивает частотно-временное представление сигналов]

- *⇒* свойства*:
 - разложение на вейвлеты
 - \Rightarrow пояснение*:

[вейвлет - это осциллирующая функция, локализованная по времени и частоте]

- масштабирование и сдвиг
 - \Rightarrow noschehue*:

[новые вейвлеты появляются из других путем масштабирования и сдвига]

- непрерывное преобразование
- дискретное преобразование
- многоуровневое разложение
 - \Rightarrow noschehue*:

[сигнал разлагается на приближения и детали для удобного анализа]

 \Rightarrow разбиение*:

}

• приближения

≔ [низкие частоты]

преобразование Фурье

 \Rightarrow noяснение*:

[преобразование Фурье обеспечивает только частотное представление сигнала]

- *⇒ свойства**:
 - разложение на гармонические составляющие
 - \Rightarrow пояснение*:

[сигнал раскладывается на синусоиды]

- интегральное представление
 - \Rightarrow noяснение*:

[сигнал представлен в виде интегральной суммы]

- линейность
- дискретизация

Вейвлет Добеши

- ≔ [Базис Добеши]
- \Rightarrow определение*:

[Вейвлеты Добеши - это семейство ортогональных вейвлетов с компактным носителем, вычисляемым итерационным путём. Они не симметричны и не имеют аналитической формы.]

- \in KUX
 - := [конечная импульсная характеристика]
 - \Rightarrow пояснение*:

[КИХ - это набор весовых вейвлет, главная характеристика вейвлетов Добеши, по совместительству их коэффицент]

← типовые коэффицентыы Добеши*:

```
{● D2 D4
```

- *D8*
- D16

4 ФОРМАЛЬНАЯ СЕМАНТИЧЕСКАЯ СПЕЦИФИКАЦИЯ БИБЛИОГРАФИЧЕСКИХ ИСТОЧНИКОВ

Преобразование речи в текст. Фонемный подход

 \Rightarrow mun источника*:

[статья]

- \Rightarrow asmop*:
 - М.С. Медведев
- \Rightarrow ключевой знак*:
 - фонема
 - преобразование речи
 - нейросеть
 - система распознавания речи
- \Rightarrow аннотация*:

[Устная речь и сегодня остается самым оперативным и распространенным способом передачи информации в любой сфере человеческой деятельности, являясь основной формой выражения намерений, целей, желаний. Это продуктивный, естественный и удобный способ передачи информации. В современных компьютерных системах все больше внимания уделяется построению интерфейса речевого вводавывода, эффективность которого основана на практически неограниченных возможностях формулировки на естественном языке всевозможных задач в самых различных областях человеческой деятельности. Системы речевого ввода являются наиболее перспективными на сегодняшний день.]

 \Rightarrow uumama*:

[Разработка эффективных алгоритмов распознавания русской речи является ключевым моментов в решении задач: преобразования речи в текст, понимания речи, голосового управления, автоматического перевода, распознавания речи в телефонии (голосовые меню вместо набора цифр).]

Сонификация и её актуальность в условияъ современного общества

 \Rightarrow mun источника*:

[статья]

- \Rightarrow asmop*:
 - О.В. Лебедев
- \Rightarrow ключевой знак*:
 - сонификация
 - преобразование данных в звук
- \Rightarrow аннотация*:

[Сонификация является важным инструментом представления информации в современном мире. Методы, построенные на основе преобразования данных в звуковой сигнал, повсеместно используется в различных науках. В некоторых областях, например, биомедицина и интерфейсы для слабовидящих людей, сонификация занимает одну из главенствующих ролей. Эта наука начала свое развитие не так давно, поэтому существует еще множество аспектов, которые следует изучать и анализировать.]

The Wavelet tutorial

 \Rightarrow mun источника*:

[книга]

- $\Rightarrow aemop*$:
 - R. Polikar
- \Rightarrow ключевой знак*:
 - сигнал
 - разложение сигнала
 - вейвлет
 - ΟΠΦ
- \Rightarrow аннотация*:

[Представляем вам этот учебник по вейвлет-преобразованию. Большинство книг и статей по вейвлетам написаны математиками и для математиков, тогда как количество литературы для новичков в этой области весьма ограничено. Этим и вызвано написание учебника.]

 \Rightarrow uumama*:

[Итак, для анализа нестационарных сигналов предпочтительнее применять вейвлет-преобразование (ВП). Я написал, что преобразование Фурье (ПФ) не подходит для анализа нестационарных сигналов, и привел несколько тому примеров. Для быст-рого повторения рассмотрим следующий пример, Предположим, у нас имеется два различных сигнала. Также предположим, что их спектральные характеристики идентичны. Может ли быть такое? Как показано в примерах части I - может. В частности в случае, когда в одном из сигналов частоты присутствуют на протяжении всего интервала наблюдения, а в другом - эти же частоты встречаются поочередно во времени. Хотя сигналы полностью различны, их ПФ (амплитуда) полностью одинаково! Отсюда следует неэффективность применения ПФ для анализа нестационарных сигналов.]

```
сравнение*:
{● Преобразование Фурье
• Вейвлет-преобразование
}
```

Квантовое вейвлет-преобразование Добеши

 \Rightarrow mun источника*:

[статья]

- \Rightarrow asmop*:
 - Т.Э. Кренкель
- \Rightarrow ключевой знак*:
 - вейвлет Добеши
 - инитарнй оператор
- \Rightarrow аннотация*:

[Вейвлеты (всплески) представляют собой новую технологию обработки сигналов, как аналоговых так и циффровых. Рассматривается одномерный трехуровневый вейвлет-анализ, позволяющий получать массив вейвлет-коэффициентов с линейной сложностью. Новым направлением в теории квантовых вычислений является приименение квантовых схем, позволяющих реализовать с их помощью вейвлет-преобразование Добеши. При этомм классические биты заменяются на кубиты (квантовые биты), которые хранятся в квантовом регистре. ООтличительной чертой вейвлет-анализа является введение новых операций, которые ранее не использовалиссь в цифровой обработке сигналов]

 \Rightarrow uumama*:

[Большинство семейств дискретных вейвлетов строится на основе нескольких аксиом кратно-масштабного анализа [5]. В общем случае вейвлеты обладают только двумя свойствами из трех фундаментальных свойств: Ортогональность (Это основное свойство, оно обязательно должно соблюдаться между различными уровнями разрешения, но не всегда соблюдается в пределах одного заданного уровня разрешения. В этом случае семейство вейвлетов называется полуортогональным), компактность носителя, симметричность формы. Семейств вейвлетов, которые обладают свойствами, не существует]

Ten lectures on Wavelets

 \Rightarrow mun источника*:

[книга]

- \Rightarrow asmop*:
 - I. Daubechies
- \Rightarrow аннотация*:

[Книга представляет собой введение в курс вейвлет-анализа, имеющего приложение в теории временных рпдов, методах распознавания образов и пр. Она явияется одним из лучших введений в эту область современной математики. За эту книгу Ингрид Добеши была награждена премией Лероя Стила Американского Математического Общества, Предназначена для студентов, аспирантов, а также будет полезна прено давателям и научным сотрудникам]

 \Rightarrow оглавление*:

ſ

- Что, почему и как в вейвлетах
- Непрерывное ВП
- Дискретные ВП
- Частотно-временная плотность и ортонормированные базисы
- Ортонормированные базисы
- Более подробно о регулярности вейвлетов с компактным носителем
- Симметрия базисов вейвлетов
- Характеристика функциональных пространств
- Обобщения и трюки для ортонормированных базисов

]

 \Rightarrow uumama*:

[Во многих приложениях, имея заданный сигнал f(t) (сейчас мы предполагаем, что t — непрерывная переменная), интересно знать его частотную характеристику локально во времени. Это аналогично, например, музыкальным обозначениям, которые говорят музыканту, какую ноту (= частотная информация) брать в данный момент. Обычное преобразование Фурье также дает представление о частотной характеристике f, но информация, касающаяся временной локализации, скажем, пиков с высокой частотой не может быть легко извлечена из f.]

```
сравнение*:
{● Преобразование Фурье
• Вейвлет-преобразование
}
```

ЗАКЛЮЧЕНИЕ

В результате формализации нескольких статей удалось несколько расширить свое понимание и дополнить информацию в монографии относительно аудиоинтерфейсов в системах, преобразования и анализа речевых сигналов. Также усовершенствованы навыки формализации текста, выделения важного из статей, работы с монографией и стандартом. В рамках данной работы удалось хорошо разобраться в предметной области того, что формализовывал.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Daubechies, Ingrid. Ten Lectures on Wavelets / Ingrid Daubechies. Society for Industrial and Applied Mathematics, 1992.
 - [2] Polikar, Robi. The wavelet tutorial / Robi Polikar. Rowan University, 2006.
- [3] Кренкель, Т.Э. Квантовое вейвлет-преобразование Добеши / Т.Э. Кренкель // Т-Comm Телекоммуникации и Транспорт. 2014.
- [4] Лебедев, О.В. Сонификация и её актуальность в условияъ современного общества / О.В. Лебедев // Синергия наук. 2018.
- [5] Медведев, М.С. Преобразование речи в текст. Фонемный подход: Ph.D. thesis / М.С. Медведев; Сибирский федеральный университет. 2007.