Álgebra Superior I: Tarea 01

Rendón Ávila Jesús Mateo March 16, 2025

Universidad Nacional Autónoma de México Facultad de Ciencias Profesora: Cristina Angélica Núñez Rodríguez

- 1. Determinar qué propiedades (reflexividad, simetría, antisimetría o transitividad) cumplen las siguientes relaciones y determinar cuáles son una relación de equivalencia o de orden (parcial o total).
 - a) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} | x y \text{ es múltiplo de } 3\}$

Reflexividad. Como 0 es múltiplo de cualquier número y ademas $\forall x \in \mathbb{R}$ se cumple que x - x = 0, entonces R satisface reflexividad.

Simetría. Si (x - y) es un múltiplo de 3, entonces (y - x) también será múltiplo de 3, en particular el inverso de (x, y). De lo anterior decimos que R satisface la simetría.

Antisimetría. La antisimetría no se cumple en R, basta dar el contraejemplo (3,6) y (6,3) donde $3 \neq 6$.

Transitividad. Finalmente, la relación satisface la transitividad pues $\forall (x-y), (y-z)$ que es multiplo de 3, también el número (x-z) satisface el ser múltiplo de 3.

Por lo tanto R es de equivalencia.

b) $R = \{(1,1), (2,2), (1,2), (2,1), (3,3), (3,4), (4,3), (4,4)\}$, donde $A = \{1,2,3,4\}$ Reflexividad. Como $\forall x \in A, \exists (x,x) \in R$ decimos que R es reflexiva.

Simetría. Como $(1,2),(3,4) \in R$ y $(2,1),(4,3) \in R$ entonces R es simétrica, para los pares (x,x) la simetría es por vacuidad.

Antisimetría. No se satisface.

Transitividad.

$$(1,1), (1,2) \sim (1,2)$$

 $(2,2), (2,1) \sim (2,1)$
 $(1,2), (2,1) \sim (1,1)$
 $(2,1), (1,2) \sim (2,2)$

Para el caso de 3 y 4 es similar, así R es transitiva.

Por lo tanto R es de equivalencia.

c) $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (1,3), (1,4), (2,3)\}$, donde $A = \{1,2,3,4\}$ Reflexividad. Como $\forall x \in A, \exists (x,x) \in R$ decimos que R es reflexiva.

Simetría. Como $(1,2) \in R$ y $(2,1) \notin R$, entonces R no es simétrica.

Antisimetría. No se satisface.

Transitividad. El caso trascendente es que $\exists (1,2), (2,3) \in R$ y trabién $(1,3) \in R$

Por lo tanto R no es de equivalencia.

- d) La relación en $A=\mathbb{R}$ definida por $a\sim b \Longleftrightarrow a \leq b$
- e) La relación en A = P(X) definida por $A \sim B \Longleftrightarrow A \subseteq B$
- **2.** Demostrar que la siguiente relación es de equivalencia e indicar quién es el conjunto cociente asociado. Sea $A = \{(a,b) \mid a,b \in \mathbb{Z}, b \neq 0\}$ y R la relación definida en A tal que $(a,b) \sim (c,d)$ si y sólo si ad = bc.

P.d R es reflexiva, simétrica y transitiva.

R es reflexiva.

 $\forall (a,b) \in A \text{ se debe satisfacer que } (a,b) \sim (a,b)$

$$(a,b) \sim (a,b)$$

 $ab = ba \ (por \ conmutaci\'on \ en \ ba)$
 $ab = ab$

Así, decimos que R es reflexiva.

R es simétrica.

Si $(a,b) \sim (c,d)$ entonces se deberá satisfacer que $(c,d) \sim (a,b)$

$$(a,b) \sim (c,d)$$

 $ad = cb$
 $cb = ad$ (por conmutación en ad)
 $cb = da$
 $(c,d) \sim (a,b)$

Así, R es simétrica.

R es transitiva.

Si $(a,b) \sim (c,d)$ y $(c,d) \sim (e,f)$ entonces se deberá satisfacer que $(a,b) \sim (e,f)$

$$(a,b) \sim (c,d)$$

 $ad = bc$

$$(c,d) \sim (e,f)$$

 $cf = de$

Por propiedades de los \mathbb{Z}

$$ad \bullet cf = bc \bullet de \ (por \ cancelación \ del \ producto \ en \ \mathbb{Z})$$

$$af = be$$

$$(a,b) \sim (e,f)$$

Así concluimos que f es transitiva.

- $\therefore R$ es de equivalencia.
 - 3. Diga cuál de las siguientes relaciones son funciones (justifica tu respuesta):
 - a) $R \subseteq \{1, 2, 3\} \times \{1, 2, 3\}$ definida como:

$$R = \{(1,2), (2,2), (3,3), (2,3), (1,1)\}$$

No es función pues 1 está relacionado con 1 y 2 y también 2 está relacionada con 2 y 3.

b) $S \subseteq \mathbb{N} \times \mathbb{N}$ definida como:

$$S = \{(n, m) \mid n < m\}$$

Es facil ver que si n está en el dominio de S y n=1, entonces para cualquier m>1 en el codominio tendremos que n=1 va a satisfacer el estar relacionado con m>1, con lo que S no es función.

c) $T \subseteq (\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}$ definida como:

$$T = \{((n, m), n + m) \mid n, m \in \mathbb{Z}\}\$$

Como no puede ser que $m \neq m$ o $n \neq n$, el valor para n + m debe ser unico.

Pensemos en una m' que satisfaga n + m = n + m'

$$n + m = n + m'$$
$$m = m'$$

Lo mismo ocurre con una n' por lo que n+m es un valor único.

- \therefore fes función pues n+mes un valor unico para cualquier $n,m\in\mathbb{Z}.$
- 4. Sea $f:\mathbb{Q}\longrightarrow\mathbb{Z},$ con regla de correspondencia:

$$f(\frac{a}{b}) = a$$

Para toda $a.b \in \mathbb{Z}$, con $b \neq 0$. ¿Será que f está bien definida?. Justifica tu respuesta.

- **5.** Sea $f:A\longrightarrow B$ y sean $Y_1,Y_2\subseteq B$. Demuestra lo siguiente:
- a) $f^{-1}[\varnothing] = \varnothing$
- b) $f^{-1}[Y_1 \cup Y_2] = f^{-1}[Y_1] \cup f^{-1}[Y_2]$
- c) $f^{-1}[Y_1 \cap Y_2] = f^{-1}[Y_1] \cap f^{-1}[Y_2]$

- d) $f^{-1}[B] \setminus f^{-1}[Y_1] = f^{-1}[B \setminus Y_1]$
- **6.** Da un contraejemplo de una función $f:A\longrightarrow B$ y $X_1,X_2\subseteq A$ tales que:

$$f[X_1 \cap X_2] \neq f[X_1] \cap f[X_2]$$

- 7. Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ funciones. Demuestre lo siguiente:
- a) si f y g son inyectivas, entonces $g \circ f$ es inyectiva
- b) si fy gson sobreyectivas, entonces $g\circ f$ es sobreyectiva
- c) si f y g son biyectivas, entonces $g \circ f$ es biyectiva.
- **8.** Sean $f:A\longrightarrow B$ y $g:B\longrightarrow C$ functiones invertibles.
- a) Demuestre que $g \circ f$ es invertibles
- b) Demuestre que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 9. Sea $f:A\longrightarrow B$ inyectiva. Demostrar que si B es finito entonces A es finito y $\#A\leq \#B$
- 10. Sea $f:A\longrightarrow B$ suprayectiva. Demostrar que si A es finito entonces B es finito y $\#B\leq \#A$