機器學習 Multiple Linear Regression

授課老師:林彦廷

多元線性回歸 Multiple Linear Regression

- ·多元線性回歸分析(又稱複回歸分析或多變項回歸分析)是建立因變量(Y)與自變量(X)的關係模型,利用對自變量的觀察,評估因變量的變化
- •多元線性回歸涉及一個因變量與兩個或以上的自變量

Simple Linear Regression

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Simple Linear Regression

$$y = b_0 + b_1^*x_1$$
Dependent variable (DV)

Simple Linear Regression

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + \dots + b_n^* x_n$$

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Multiple Linear Regression

Dependent variable (DV)

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + \dots + b_n^* x_n$$

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Dependent variables (IVs)
$$y = b_0 + b_1^* x_1 + b_2^* x_2 + \dots + b_n^* x_n$$

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

Dependent variable
$$y = b_0 + b_1^*x_1 + b_2^*x_2 + \dots + b_n^*x_n$$
Constant

Simple Linear Regression

$$y = b_0 + b_1 * x_1$$

多元線性回歸-注意事項

Assumptions of a Linear Regression:

1			in	~	0	~	+1	,
			ш	-	~		11	,
	•	_		•	·		.,	
							•	

- 2. Homoscedasticity
- 3. Multivariate normality
- 4. Independence of errors
- Lack of multicollinearity

線性關係

變項同質性

多元常態性

誤差獨立性

無多重共線性

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State		New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	Y		
191,792.06	162,597.70	151,377.59	443,898.53	California			
191,050.39	153,441.51	101,145.55	407,934.54	California	}		
182,901.99	144,372.41	118,671.85	383,199.62	New York			
166,187.94	142,107.34	91,391.77	366,168.42	California			

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York -	1	
191,792.06	162,597.70	151,377.59	443,898.53	California	0	
191,050.39	153,441.51	101,145.55	407,934.54	California	0	
182,901.99	144,372.41	118,671.85	383,199.62	New York -	1	
166,187.94	142,107.34	91,391.77	366,168.42	California	0	

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State	New York	California
192,261.83	165,349.20	136,897.80	471,784.10	New York	1	0
191,792.06	162,597.70	151,377.59	443,898.53	California -	0	→ 1
191,050.39	153,441.51	101,145.55	407,934.54	California -	0	1
182,901.99	144,372.41	118,671.85	383,199.62	New York	1	0
166,187.94	142,107.34	91,391.77	366,168.42	California -	0	→ 1

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3 + ???$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

$$y = b_0 + b_1^*x_1 + b_2^*x_2 + b_3^*x_3$$

New York	California
1	0
0	1
0	1
1	0
0	1

$$+ b_4*D_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California
1	0
0	1
0	
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4*D_1$$

R&D Spend Marketing **Profit** Admin State 165,349.20 136,897.80 471,784.10 New York 192,261.83 191,792.06 162,597.70 151,377.59 443,898.53 California 191,050.39 153,441.51 101,145.55 407,934.54 California 144,372.41 383,199.62 New York 182,901.99 118,671.85 166,187.94 142,107.34 91,391.77 366,168.42 California

New York	California
1	0
0	1
0	1
1	0
0	1

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4*D_1$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

New York	California	
1	0	
0	1	
0	1	
1	0	
0	1	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 + b_4^* D_1 + b_5^* D_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136 007 00	474 704 40	Now York
191,792.06	162,597.70	151	_ 1 D	ornia
191,050.39	153,441.51	101	$_{2} = 1 - D$	1 prnia
182,901.99	144,372.41	118		York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy	Variable	es
-------	----------	----

New York	California	
1	0	
0	1	
0	1	
1	0	
0	1	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3 +$$

$$+ b_4*D_1 + b_5*D_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

· ·		
New York	California	
1	0	
0	1	
0	1	
1	0	
0	1	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4*D_1 + b_5*D_2$$

Profit	R&D Spend	Admin	Marketing	State
192,261.83	165,349.20	136,897.80	471,784.10	New York
191,792.06	162,597.70	151,377.59	443,898.53	California
191,050.39	153,441.51	101,145.55	407,934.54	California
182,901.99	144,372.41	118,671.85	383,199.62	New York
166,187.94	142,107.34	91,391.77	366,168.42	California

Dummy Variables

<u> </u>		
New York	California	
1	0	
0	1	
0	1	
1	0	
0	1	

$$y = b_0 + b_1^* x_1 + b_2^* x_2 + b_3^* x_3$$

$$+ b_4*D_1 + b_5*D_2$$

Always omit one dummy variable

Why?

1)

2)

1)

2)

5 methods of building models:

- 1. All-in
- 2. Backward Elimination
- 3. Forward Selection
- 4. Bidirectional Elimination
- 5. Score Comparison

Stepwise Regression

"All-in" - cases:

- Prior knowledge; OR
- · You have to; OR
- · Preparing for Backward Elimination

Backward Elimination

STEP 1: Select a significance level to stay in the model (e.g. SL = 0.05)

STEP 2: Fit the full model with all possible predictors

STEP 3: Consider the predictor with the highest P-value. If P > SL, go to STEP 4, otherwise go to FIN

STEP 4: Remove the predictor

STEP 5: Fit model without this variable*

FIN: Your Model Is Ready

Forward Selection

STEP 1: Select a significance level to enter the model (e.g. SL = 0.05)

STEP 2: Fit all simple regression models $\mathbf{y} \sim \mathbf{x}_n$ Select the one with the lowest P-value

STEP 3: Keep this variable and fit all possible models with one extra predictor added to the one(s) you already have

STEP 4: Consider the predictor with the lowest P-value. If P < SL, go to STEP 3, otherwise go to FIN

FIN: Keep the previous model

Bidirectional Elimination

STEP 1: Select a significance level to enter and to stay in the model e.g.: SLENTER = 0.05, SLSTAY = 0.05

STEP 2: Perform the next step of Forward Selection (new variables must have: P < SLENTER to enter)

STEP 3: Perform ALL steps of Backward Elimination (old variables must have P < SLSTAY to stay)

STEP 4: No new variables can enter and no old variables can exit

FIN: Your Model Is Ready

Score Comparison

STEP 1: Select a criterion of goodness of fit (e.g. Akaike criterion)

STEP 2: Construct All Possible Regression Models: 2N-1 total combinations

STEP 3: Select the one with the best criterion

FIN: Your Model Is Ready

Score Comparison

STEP 1: Select a criterion of goodness of fit (e.g. Akaike criterion)

STEP 2: Construct All Possible Regression Models: 2^N-1 total combinations

STEP 3: Select the one with the best criterion

FIN: Your Model Is Ready

Example: 10 columns means 1,023 models

THE END

ytlin@mail.nptu.edu.tw