Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 13 – Circuitos sequenciais: Flip-flops e aplicações

Visão Geral

Circuitos Sequenciais

<u>Circuitos Sequenciais:</u> As saídas dependem das entradas atuais e também das entradas anteriores (valor armazenado/estado – conceito de memória).

Flip-Flops (FF): São circuitos sequenciais que podem ser usados como memória para armazenar 1 bit.

<u>Símbolo</u>

Condição do FF:

As saídas Q e Q são complementares

Se
$$\begin{cases} Q=0 \Rightarrow \overline{Q}=1 \\ Q=1 \Rightarrow \overline{Q}=0 \end{cases}$$

Nomenclatura

S	R	Qa	Qf
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Nomenclatura

Qa = saída anterior Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 0

S	R	Qa	Qa	Qf	Qf
0	0	0	1	0	1

Manteve o estado anterior das saídas

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	0	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 1

S	R	Qa	Qa	Qf	Qf
0	0	1	0	1	0

Manteve o estado anterior das saídas

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	1	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 2

S	R	Qa	Qa	Qf	Qf
0	1	0	1	0	1

Qf=0 ⇒ Reset da saída

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
0	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 3

S	R	Qa	Qa	Qf	Qf
0	1	1	0	0	1

Qf=0 ⇒ Reset da saída

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 4

S	R	Qa	Qa	Qf	Qf
1	0	0	1	1	0

Qf=1 ⇒ Set da saída

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	0	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

<u>Caso 5</u>

S	R	Qa	Qa	Qf	Qf
1	0	1	0	1	0

Qf=1 ⇒ Set da saída

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	1	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	1	0	1		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 6

S	R	Qa	Qa	Qf	Qf
1	1	0	1	1	1

Qf=Qf=1 Viola a condição do FF RS

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

S	R	Qa	Qa	Qf	Qf
1	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

<u>Caso 7</u>

S	R	Qa	Qa	Qf	Qf
1	1	1	0		

TV da NAND

A	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Estudo de Casos

Caso 7

S	R	Qa	Qa	Qf	Qf
1	1	1	0	1	1

Qf=Qf=1 Viola a condição do FF RS

Tabela Verdade do FF RS

S	R	Qa	Qf	
0	0	0	0	
0	0	1	1	
0	1	0	0	l
0	1	1	0	J
1	0	0	1	l
1	0	1	1	
1	1	0	X)
1	1	1	X	

Qf=Qa Mantém a saída anterior

Qf=0 **R**eset da saída anterior

Qf=1 **S**et da saída anterior

Entradas não permitidas

Set e Reset ao mesmo tempo

Clocks: São necessários na lógica sequencial para decidir quando um elemento que contém estado deve ser atualizado

A frequência de clock: É simplesmente o inverso do tempo de ciclo (Período do clock)

- O período de clock: É dividido em duas partes:
 - Quando o clock está no nível alto (1)
 - Quando o clock está no nível baixo (0)
- Usamos o clock sensível ao nível lógico para decidir quando um elemento que contém estado deve ser atualizado

Se o clock=0 \Rightarrow FF permanece no seu estado anterior, mesmo que variem as entradas S e R

Se o clock= $1 \Rightarrow FF$ funciona como um FF RS

Para clock=0 ⇒ FF permanece no seu estado anterior

FF RS com entrada clock

Flip-Flop Tipo RS

Símbolo FF RS

O circuito irá funcionar quando a entrada do clock assumir o valor 1 e manterá travada esta saída quando a entrada clock passar para 0.

Flip-Flop Tipo D

Flip-Flop Tipo D

Flip-Flop Tipo D

Símbolo FF D

O Flip-Flop tipo D funciona como uma transferência de "dados" da entrada para a saída.

Flip-Flop Tipo JK

Flip-Flop Tipo JK

Símbolo FF JK

J	K	Qf	
0	0	Qa	
0	1	0	
1	0	1	
1	1	Qa	

O Flip-Flop tipo JK funciona como um Flip-Flop RS "melhorado", pois quando as entradas J (anteriormente "S") e K (anteriormente "R") estão em nível lógico alto ao mesmo tempo, temos uma inversão na saída do Flip-Flop.

Às vezes não queremos que ocorra a indeterminação apresentada na última linha do Flip-Flop tipo RS, desta forma o Flip-Flop tipo JK pode ser considerado como uma melhora!

Flip-Flop Tipo T

J	K	T	Qf
0	0	0	Qa
0	1	∉	1
1	0	∉	1
1	1	1	Qa

As entradas J e K são sempre iguais

Flip-Flop Tipo T

Símbolo FF T

O Flip-Flop tipo T funciona como um comutador de entrada (ou inversor), gerando como saída a entrada complementada.

Aplicações de FFs

- Armazenamento: registradores e memória
- Transferência de dados: ULA e periféricos
- Contador/Divisor de Frequência

Aplicações de FFs

Armazenamento: registradores e memória

Aplicações FF: Memória

Aplicações de FFs

Contador/Divisor de Frequência

Registradores

Registrador de 4 bits

Contador/Divisor de Frequência

Próxima aula

- Flip-Flop com Preset e Clear
- Contadores assíncronos de módulo 2^n