1,(a) y'+3xy=8 4+0 -4 dx + u = x u = c.e - fadx + e fedx So y 4 = c.e + e = 4 i, y = (ce + e-4

+ 1 sol y = dy (b) cos x sin dy $y = c \cdot e^{-\int \frac{1}{\sin x}} \frac{dx}{dx} + e^{-\int \frac{1}{\sin x}} \frac{dx}{dx}$ $y = c \cdot e^{-\int \frac{1}{\sin x}} \frac{dx}{dx} + e^{-\int \frac{1}{\sin x}} \frac{dx}{dx} (\cdot)$ $vd(\cdot) = \int e^{\int \frac{1}{\sin x}} \frac{dx}{dx} \cdot (cs^{2}x) \frac{dx}{dx}$:. y = \(\frac{\circ}{\sinx} + \tan\) + (\st.\)

 $\frac{dy(4) = \frac{1}{9}}{y = (-2)} = \frac{1}{3}$ $y = (-2) + \frac{1}{3}$ $y = (-\frac{10}{3})^{\frac{1}{2}} + \frac{1}{3}$

b.

3.(a)
$$dx = tan^2(x+y)$$

Sol. Let $x+y = u$
 $dy = 1+dy$
 $dy = 1 = tan^2u$

$$du = \sqrt{2}u$$

$$du = \sqrt{2}u$$

$$\int cos^2u \cdot du = \int dx$$

5. $2(y-x) + sin(2x+2y) = C$

(b)
$$\frac{dy}{dx} = (x+y+1)^2$$

Let $u = x+y+1$
 $\frac{du}{dx} = (x+dy)^2$
 $\frac{du}{$

4.(a) separation of variables

(b) reduction to separation of variables

WI linear first order

& Bemoulli