## МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики Кафедра прикладної математики

## Лаболаторна робота

Моделювання процесу дифузії забрудника (нафти) у зразку ґрунту з каналом

Студента -

Львів - 2025

#### Зміст

| 1 | Постановка задачі      | 4 |
|---|------------------------|---|
| 2 | Математична модель     | 4 |
| 3 | Чисельний метод        | 4 |
| 4 | Реалізація моделювання | 5 |
| 5 | Результати             | 6 |
| 6 | Висновки               | 9 |

#### Анотація

У даній роботі розглядається задача моделювання проникнення забрудника (нафти) у товщу зразка ґрунту, який містить канал із рухомою рідиною (водою). Метою є визначення часу, необхідного для повного забруднення зразка (концентрація > 4000 мг/кг). Для розв'язання задачі використано чисельний метод скінченних різниць на основі рівняння дифузії, враховуючи граничні умови та геометрію каналу. Результати моделювання представлені у вигляді графіків розподілу концентрації у різні моменти часу.

### 1 Постановка задачі

Розглядається процес проникнення забрудника (нафти) у зразок ґрунту розміром  $8\,\mathrm{m} \times 6\,\mathrm{m}$  (по горизонталі x від -4 до  $4\,\mathrm{m}$ , по вертикалі z від 0 до  $6\,\mathrm{m}$ ). Усередині зразка розташований канал, по якому просочується вода зі швидкістю  $v_z = -0.02\,\mathrm{m/c}$ . Забрудник надходить на верхню поверхню зразка зі сталою концентрацією  $q_{\mathrm{top}} = 0.01\,\mathrm{kr/m}^3$ . Необхідно визначити час, за який концентрація забрудника у всьому зразку перевищить порогове значення  $q_{\mathrm{threshold}} = 0.004\,\mathrm{kr/m}^3$  ( $4000\,\mathrm{mr/kr}$ ).

Геометрія каналу задається наступним чином:

- Для  $z \ge 3$  м ширина каналу становить 0.2 м (від x = -0.1 до x = 0.1).
- Для z < 3 м канал звужується до ширини 4 м при z = 0 (залежність ширини лінійна).

Граничні умови:

- На верхній межі  $(z = 6 \,\mathrm{M})$ :  $q = 0.01 \,\mathrm{kg/M}^3$ .
- На нижній межі  $(z=0\,\mathrm{M})$ :  $\frac{\partial q}{\partial z}=0$  (немає потоку).
- На бічних межах  $(x=-4\,\mathrm{m}\ \mathrm{ta}\ x=4\,\mathrm{m})$ :  $\frac{\partial q}{\partial x}=0.$

#### 2 Математична модель

Процес проникнення забрудника описується рівнянням дифузії у двовимірному просторі:

$$\frac{\partial q}{\partial t} = D \left( \frac{\partial^2 q}{\partial x^2} + \frac{\partial^2 q}{\partial z^2} \right), \tag{2.1}$$

де q(x,z,t) — концентрація забрудника (кг/м³),  $D=10^{-6}\,\mathrm{m}^2/\mathrm{c}$  — коефіцієнт дифузії, t — час (c).

У каналі концентрація підтримується на рівні  $q=0.01\,\mathrm{kr/m^3}$  у міру заповнення водою, що рухається зі швидкістю  $v_z=-0.02\,\mathrm{m/c}$ . Глибина заповнення каналу обчислюється залежно від часу, враховуючи конічну форму нижньої частини.

### 3 Чисельний метод

Для розв'язання рівняння використано явний метод скінченних різниць. Просторова сітка має розміри nx=41 по осі x та nz=31 по осі z, із кроками  $\Delta x=0.2$  м та  $\Delta z=0.2$  м. Часовий крок  $\Delta t=500\,\mathrm{c}$  вибрано з урахуванням умови стабільності:

$$\alpha = D \frac{\Delta t}{\Delta x^2} \le 0.5, \quad \alpha = D \frac{\Delta t}{\Delta z^2} \le 0.5.$$
 (3.1)

Підставляючи значення:  $\alpha = 10^{-6} \cdot 500/0.2^2 = 0.0125 < 0.5$ , умова виконується.

Схема для внутрішніх точок ґрунту:

$$q_{i,j}^{n+1} = q_{i,j}^n + D\Delta t \left( \frac{q_{i+1,j}^n - 2q_{i,j}^n + q_{i-1,j}^n}{\Delta x^2} + \frac{q_{i,j+1}^n - 2q_{i,j}^n + q_{i,j-1}^n}{\Delta z^2} \right).$$
(3.2)

Граничні умови реалізовано через відображення:

- $q_{i,nz-1}^{n+1} = 0.01$ ,
- $q_{i,0}^{n+1} = q_{i,1}^{n+1}$ ,
- $\bullet \ q_{0,j}^{n+1}=q_{1,j}^{n+1}, \, q_{nx-1,j}^{n+1}=q_{nx-2,j}^{n+1}.$

# 4 Реалізація моделювання

Моделювання виконано мовою Python із використанням бібліотек NumPy та Matplotlib. Основні параметри задано у файлі config.py:

```
nx = 41
nz = 31
dx = 0.2
dz = 0.2
dt = 500.0
max_time = 1e7
D = 1e-6
q_top = 0.01
v_z_channel = -0.02
q_threshold = 0.004
```

Симуляція триває до досягнення максимального часу  $(10^7 \, c)$  або повного забруднення зразка. Знімки розподілу концентрації зберігаються через 1 та 10 діб.

# 5 Результати

Нижче наведено розподіл концентрації забрудника у зразку через 1 та 10 діб, а також у момент повного забруднення. На це пішло 30 днів у симуляції.



Рис. 5.1. Концентрація забрудника сповільнено.

Час повного забруднення  $(q \ge 0.004 \, \mathrm{kr/m}^3 \, \mathrm{y}$  всьому зразку) залежить від результатів симуляції. У консолі виводиться повідомлення із точним значенням часу у днях.



Рис. 5.2. Концентрація забрудника через 1 добу.



Рис. 5.3. Концентрація забрудника через 10 діб.



Рис. 5.4. Концентрація забрудника у момент повного забруднення.

# 6 Висновки

У роботі реалізовано модель дифузії забрудника у зразку ґрунту з каналом, враховуючи рух рідини та геометрію системи. Чисельний метод скінченних різниць дозволив отримати розподіл концентрації у просторі та часі. Отримані результати можуть бути використані для оцінки швидкості забруднення ґрунтів у реальних умовах з врахуванням різних рідин, ґрунтів, поверхонь.