<u>Méthodologie Projet 8</u>

- 1 Téléchargement et prise de connaissance des fichiers fournis pour l'exécution du projet.
- 2 Analyse des dataframes.
- 3 Anomalies et modifications apportées.
 - 3.1 management.
 - 3.1.1 Anomalies.
 - 3.1.2 Modifications liées aux anomalies.
 - 3.1.3 Modifications (hors anomalie).
 - 3.2 mortality.
 - 3.2.1 Anomalies.
 - 3.2.2 Modifications liées aux anomalies.
 - 3.2.3 Modifications (hors anomalie).
 - 3.3 politic.
 - 3.3.1 Anomalies.
 - 3.3.2 Modifications liées aux anomalies
 - 3.3.3 Modifications (hors anomalie):
 - 3.4 population.
 - 3.4.1 Anomalies.
 - 3.4.2 Modifications liées aux anomalies.
 - 3.4.3 Modifications (hors anomalies).
 - <u>3.5 regions.</u>
 - 3.5.1 Anomalies.
 - 3.5.2 Modifications liées aux anomalies.
 - 3.5.3 Modifications (hors anomalies).
- 4 Création de dataframes par granularités.
 - 4.1 population
 - 4.1.1 population male.
 - 4.1.2 population female.
 - 4.1.3 population rurale.
 - 4.1.4 population urbaine.
 - 4.1.5 population totale.
 - 4.2 mortality.
 - 4.2.1 mortality female.
 - 4.2.2 mortality male.
 - 4.2.3 mortality total.
 - 4.3 management.
 - 4.3.1 management rural.
 - 4.3.2 management_urban.
 - 4.3.3 management total.
- 5 Ajout de données externes.
- 6 Tableau Prep Builder.

- 6.1 jointure des tables "population"
 - 6.1.1 jointures 1.
 - 6.1.2 jointures 3.
 - 6.1.3 jointures 5.
 - <u>6.1.4 jointures 7.</u>
- 6.2 jointure des tables "management".
 - 6.2.1 jointures 9.
 - 6.2.3 jointures 11.
- 6.3 jointure de la table "mortality".
 - 6.3.1 jointures 17.
 - 6.3.2 jointures 19.
- 6.4 jointure 13.
- 6.5 jointure de la table "politic".
 - 6.5.1 jointures 15.
- 6.6 jointure 21.
- 6.7 jointure de la table "regions".
- 6.8 jointures 23.
- <u>6.9 jointures 25.</u>
- 6.10 jointures 27.
- 6.11 jointures 29.
- 6.12 jointures 31.
- 6.13 jointures 33.
- 6.14 Sortie.

1 - Téléchargement et prise de connaissance des fichiers fournis pour l'exécution du projet.

Utilisation de Python et de sa librairie Pandas via Jupyter notebook et Spyder (en parallèle).

- BasicAndSafelyManagedDrinkingWaterServices.csv
- MortalityRateAttributedToWater.csv
- PoliticalStability.csv
- Population.csv
- RegionCountry.csv

- → management
- → mortality
- → politic
- → population
- → regions

2 - Analyse des dataframes.

Après avoir parcouru et analysé les données des dataframes, j'ai pu me rendre compte que ces derniers comportent plusieurs anomalies que j'ai rectifiées en même temps que les changements faits dans une optique de confort d'utilisation des données (renommage de séries, etc.)

3 - Anomalies et modifications apportées.

3.1 - management.

- Aperçu avant modifications :

3.1.1 - Anomalies.

Aucune anomalie particulière n'a été relevée.

3.1.2 - Modifications liées aux anomalies.

Néant.

3.1.3 - Modifications (hors anomalie).

Renommage des colonnes :

 Passage de l'arrondi des valeurs à 2 décimales et remplacement des valleurs nulles par "0" :

```
management["ratio acces eau de base"] = round(management["ratio acces eau de base"],2)
management["ratio acces eau qualite"] = round(management["ratio acces eau qualite"],2)
management["ratio acces eau de base"] = management["ratio acces eau de base"].fillna(0)
management["ratio acces eau qualite"] = management["ratio acces eau qualite"].fillna(0)
```

- Aperçu après modifications :

Indice	annee	pays	granularite	ratio acces eau de base	ratio acces eau qualite
0	2000	Afghanistan	Rural	21.62	0
1	2000	Afghanistan	Total	27.77	0
2	2000	Afghanistan	Urban	49.49	0
3	2000	Albania	Rural	81.78	0
4	2000	Albania	Total	87.87	49.29
5	2000	Albania	Urban	96.36	0

3.2 - mortality.

- Aperçu avant modifications :

Indice	Year	Country	Granularity	Mortality rate attributed to exposure to unsafe WASH services	WASH deaths
0	2016	Afghanistan	Female	15.31193	nan
1	2016	Afghanistan	Male	12.61297	nan
2	2016	Afghanistan	Total	13.92067	4824.353
3	2016	Albania	Female	0.12552	nan
4	2016	Albania	Male	0.2065	nan
5	2016	Albania	Total	0.16641	4.86975
6	2016	Algeria	Female	2.1989	nan
7	2016	Algeria	Male	1.72837	nan
8	2016	Algeria	Total	1.86723	758.21

3.2.1 - Anomalies.

- Aucune anomalie particulière n'a été relevée.

3.2.2 - Modifications liées aux anomalies.

- Néant.

3.2.3 - Modifications (hors anomalie).

Renommage des colonnes :

- Passage de l'arrondi des la valeur du taux de mortalité à 2 décimales.
- Passage de l'arrondi des la valeur du nombre de décès à 0 décimale,remplacement des valeurs nulles par "0" puis sa conversion en type entier (int) :

```
mortality["décès pour 100000 habitants"] = round(mortality["décès pour 100000 habitants"],2)
mortality["nb morts eau insalubre"] = round(mortality["nb morts eau insalubre"]).fillna(0).astype(int)
```

- Confirmation de l'unicité de l'année 2016 dans le dataframe:

```
In [17]: mortality["annee"].unique()
Out[17]: array([2016], dtype=int64)
```

- Aperçu après modifications :

Indice	annee	pays	granularite	décès pour 100000 habitants	nb morts eau insalubre
0	2016	Afghanistan	Female	15.31	ø
1	2016	Afghanistan	Male	12.61	ø
2	2016	Afghanistan	Total	13.92	4824
3	2016	Albania	Female	0.13	ø
4	2016	Albania	Male	0.21	ø
5	2016	Albania	Total	0.17	5
6	2016	Algeria	Female	2.2	0

3.3 - politic.

Aperçu avant modifications :

	Indice	Country	Year	Political_Stability	3ranularit
	0	Afghanistan	2000	-2.44	Total
	1	Afghanistan	2002	-2.04	Total
	2	Afghanistan	2003	-2.2	Total
Ī	3	Afghanistan	2004	-2.3	Total
	4	Afghanistan	2005	-2.07	Total
	5	Afghanistan	2006	-2.22	Total
	6	Afghanistan	2007	-2.41	Total
	7	Afghanistan	2008	-2.69	Total

3.3.1 - Anomalies.

- Après analyse et recoupements des différents dataframes, j'ai pu me rendre compte qu'il y avait un problème de représentativité concernant la <u>Chine</u>:
 Suivant quelle source de donnée est consultée, la chine est représentée soit :
 - Dans sa manière globale, en un seul bloc.
 - Scindée en 4 provinces distinctes :
 - Chine continentale.
 - Taïwan.
 - Macao.
 - Hong Kong.
 - Les 2 cumulées.
- Concernant le dataframe "politic", j'ai pu remarquer que la Chine n'était représentée que sous la forme de ses 4 provinces et non en un bloc. Ceci pourrait ne pas constituer un problème, puisque les données sont plus précises, mais au regard de la répartition de ce pays dans les autres fichiers de données, on se rend compte que celui-ci est réparti de la manière suivante :

management → Chine totale.
 mortality → Chine totale.

- politic \rightarrow Chine par provinces.

- regions \rightarrow Chine totale.

- population \rightarrow Chine totale + Chine par provinces.

- La chine, dans sa totalité, étant la plus représentée, mais aussi le fait que l'on puisse noter l'absence de ses régions dans d'autres dataframes permettant d'effectuer des analyses en fonction de ces régions, je fais donc le choix de privilégier l'utilisation de la Chine dans sa représentation totale.
- La Macédoine du Nord est nommée de 2 manières différentes, suivant le dataframe dans lequel se trouve ce pays:

management → Republic of North Macedonia.
 mortality → Republic of North Macedonia.

- politic → North Macedonia.

- regions ightarrow Republic of North Macedonia.

- population \rightarrow North Macedonia.

3.3.2 - Modifications liées aux anomalies

- Ayant une absence de valeur pour la stabilité politique pour la Chine dans sa totalité, contrairement à son format par régions, je fais la moyenne du cumul de la stabilité politique de ces dernières, par année et crée un dataframe "politic_chine" avec les valeurs calculées. J'ajoute ensuite ce df à "politic" avec la méthode "concat":

```
politic_chine = pd.DataFrame({
    "pays":["China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China","China
```

Indice	pays	annee	stabilite politique
0	China	2000	0.44
1	China	2002	0.46
2	China	2003	0.54
3	China	2004	0.68
4	China	2005	0.7
5	China	2006	0.58
6	China	2007	0.4

- Renommage de la Macédoine du Nord :

```
politic["pays"] = politic["pays"].replace({"North Macedonia":"Republic of North Macedonia"})
```

3.3.3 - Modifications (hors anomalie) :

Suppression de la colonne "granularité", inutile car ne comportant qu'une valeur unique.

del politic["granularite"]

- Renommage des colonnes :

- Aperçu après modifications :

Indice	pays	annee	stabilite politique
3524	Zimbabwe	2017	-0.71
3525	Zimbabwe	2018	-0.71
3526	China	2000	0.44
3527	China	2002	0.46
3528	China	2003	0.54
3529	China	2004	0.68
3530	China	2005	0.7

3.4 - population.

Aperçu avant modifications :

	Indice	Country	3ranularit	Year	Population
	0	Afghanistan	Total	2000	20779.953
	1	Afghanistan	Male	2000	10689.508
	2	Afghanistan	Female	2000	10090.449
Г	3	Afghanistan	Rural	2000	15657.474
	4	Afghanistan	Urban	2000	4436.282
	5	Afghanistan	Total	2001	21606.988
	i			2004	44447 754

3.4.1 - **Anomalies**.

- Comme cité précédemment (anomalies du df "politic", en 3.3.1), ce dataframe comporte le pays "Chine" en 2 styles de représentativité… ce qui fait que celui-ci est comptabilisé 2 fois.

Je fais le choix de conserver ce doublon, en cas de besoin ultérieur, en fonction d'une demande quelconque à venir. Je n'oublierai pas, cependant, de supprimer un des 2 à l'aide de tableau prep. Mais j'aurai, ainsi, une base de données comportant les 2 modèles, si besoin.

- Le soudan est nommé "sudan (former)" de 2000 à 2011, avant de devenir "sudan" de 2012 à 2018, avant que le soudan du sud ne fasse sécession de la république du soudan le 9 Juillet 2011 (suite au référendum d'autodétermination du 9 au 15 Janvier 2011). J'ai donc renommé "sudan (former)" en "sudan", gardant ainsi la correspondance avec les autres fichiers.
- La Macédoine du Nord est nommée "North Macedonia".

3.4.2 - Modifications liées aux anomalies.

- Renommage de la Macédoine du Nord et du Soudan:

```
population["pays"] = population["pays"].replace({"North Macedonia":"Republic of North Macedonia"})
population["pays"] = population["pays"].replace({"Sudan (former)":"Sudan"})
```

3.4.3 - Modifications (hors anomalies).

Renommage des colonnes :

- Passage de la valeur de la population en unité et au type entier (int) : population["population"]=(population["population"]*1000).astype(int)

- Aperçu après modifications :

Ĺ	Indice	pays	granularite	annee	population
	0	Afghanistan	Total	2000	20779953
	1	Afghanistan	Male	2000	10689508
	2	Afghanistan	Female	2000	10090449
	3	Afghanistan	Rural	2000	15657474
	4	Afghanistan	Urban	2000	4436282
	5	Afghanistan	Total	2001	21606988
	6	Afghanistan	Male	2001	11117754

3.5 - regions.

- Aperçu avant modifications :

	•	,	
Ĺ	Indice	REGION (DISPLAY)	COUNTRY (DISPLAY)
	0	Europe	Albania
	1	Europe	Andorra
	2	Europe	Armenia
	3	Western Pacific	Australia
	4	Europe	Austria
	5	Europe	Azerbaijan

3.5.1 - **Anomalies**.

On peut noter que le dataframe "regions" comporte un grand nombre d'anomalies qu'il me faudra corriger, afin d'avoir la possibilité d'obtenir des analyses correctes, par la suite :

- 40 pays et territoires ne sont pas présents, ce qui constitue un problème, en terme de représentativité lors d'analyses faisant appel à des valeurs régionales (palestine, porto rico, îles féroé, gibraltar, sahara occidental, polynésie française, guadeloupe, etc.
- 11 pays ne sont pas dans leurs régions respectives (Maroc et Soudan en Méditerranée orientale, Israël et Azerbaïdjan en Europe, etc.).

3.5.2 - Modifications liées aux anomalies.

- Ajout des provinces Chinoises par la création du dataframe "regions_chine", puis sa concaténation au df "regions".

```
# Création d'un dictionnaire "regions_chines", où j'ajoute les régions composant la chine.
regions_chine = pd.DataFrame({
    "pays":["China, Hong Kong SAR","China, Macao SAR","China, mainland","China, Taiwan Province of"],
    "region":["Western Pacific","Western Pacific","Western Pacific","Western Pacific"]
})
# Utilisation de la méthode "concat()".
regions = pd.concat([regions,regions_chine], ignore_index = True)
```

 Ajout des 40 pays et territoires n'ayant pas de correspondance avec les régions.

```
territoires = pd.DataFrame{

"pays" : ["Aruba", "Channel Islands", "Curaçao", "French Guyana", "French Polynesia", "Guadeloupe", "Guam", "Martinique", "Mayotte", "Netherlands Antilles (former)",

"New Caledonia", "Palestine", "Puerto Rico", "Réunion", "Serbia and Montenegro", "United States Virgin Islands", "Nestern Sahara", "American Samoa",

"Anguilla", "Bermuda", "Bonaire, Sint Eustatius and Saba", "British Virgin Islands", "Falkland Islands (Malvinas)", "Faroe Islands", "Gibralta

"Isle of Man", "Liechtenstein", "Montserrat", "Northern Mariana Islands", "Saint Barthélemy", "Saint Helena, Ascension and Tristan da Cunha", "Saint Pierre and

"Wallis and Futuna Islands", "Sint Maarten (Dutch part)", "Montenegro"],

"region" : ["Americas", "Europe", "Americas", "Americas", "Western Pacific", "Americas", "Africa", "Europe", "Americas", "Africa", "Western Pacific",

"Americas", "Americas", "Americas", "Americas", "Americas", "Europe", "Europe",
```

Réassignation des 11 pays dans leurs régions respectives.

```
regions.loc[regions["pays"] == "Sudan", "region"] = "Africa"
regions.loc[regions["pays"] == "Morocco", "region"] = "Africa"
regions.loc[regions["pays"] == "Libya", "region"] = "Africa"
regions.loc[regions["pays"] == "Egypt", "region"] = "Africa"
regions.loc[regions["pays"] == "Tunisia", "region"] = "Africa"
regions.loc[regions["pays"] == "Somalia", "region"] = "Africa"
regions.loc[regions["pays"] == "Djibouti", "region"] = "Africa"
regions.loc[regions["pays"] == "Turkey", "region"] = "Eastern Mediterranean"
regions.loc[regions["pays"] == "Israel", "region"] = "Eastern Mediterranean"
regions.loc[regions["pays"] == "Azerbaijan", "region"] = "Eastern Mediterranean"
regions.loc[regions["pays"] == "Armenia", "region"] = "Eastern Mediterranean"
```

3.5.3 - Modifications (hors anomalies).

Renommage des colonnes.

4 - Création de dataframes par granularités.

Chaque dataframe est ensuite exporté au format .csv pour importation dans tableau prep en vue de leur fusion.

4.1 - population

4.1.1 - population_male.

Indice	pays	annee	population hommes
1	Afghanistan	2000	10689508
6	Afghanistan	2001	11117754
11	Afghanistan	2002	11642106
16	Afghanistan	2003	12214634
21	Afghanistan	2004	12763726
26	Afghanistan	2005	13239684

4.1.2 - population_female.

Indice	pays	annee	population femmes
2	Afghanistan	2000	10090449
7	Afghanistan	2001	10489238
12	Afghanistan	2002	10958668
17	Afghanistan	2003	11466237
22	Afghanistan	2004	11962963
27	Afghanistan	2005	12414590
32	Afghanistan	2006	12809162

4.1.3 - population rurale.

Indice	pays	annee	population rurale
3	Afghanistan	2000	15657474
8	Afghanistan	2001	16318324
13	Afghanistan	2002	17086910
18	Afghanistan	2003	17909063
23	Afghanistan	2004	18692107
28	Afghanistan	2005	19378962
33	Afghanistan	2006	19961972

4.1.4 - population_urbaine.

Indice	pays	annee	population urbaine
4	Afghanistan	2000	4436282
9	Afghanistan	2001	4648139
14	Afghanistan	2002	4893013
19	Afghanistan	2003	5155788
24	Afghanistan	2004	5426872
29	Afghanistan	2005	5691836
34	Afghanistan	2006	5931478

4.1.5 - population_totale.

_	Indice	pays	annee	population totale
	0	Afghanistan	2000	20779953
	5	Afghanistan	2001	21606988
	10	Afghanistan	2002	22600770
	15	Afghanistan	2003	23680871
	20	Afghanistan	2004	24726684
	25	Afghanistan	2005	25654277
	30	Afghanistan	2006	26433049

4.2 - mortality.

4.2.1 - mortality_female.

Indice	annee	pays	icès femmes/100.000 habitar	nb morts femmes
0	2016	Afghanistan	15.31	0
3	2016	Albania	0.13	0
6	2016	Algeria	2.2	0
9	2016	Angola	45.15	0
12	2016	Antigua and Barbuda	0.1	0
15	2016	Argentina	0.4	0
18	2016	Armenia	0.16	0
21	2016	Australia	0.12	0

4.2.2 - mortality_male.

Indice	annee	pays	décès hommes/100.000 habitants	nb morts hommes
1	2016	Afghanistan	12.61	0
4	2016	Albania	0.21	0
7	2016	Algeria	1.73	0
10	2016	Angola	52.63	0
13	2016	Antigua and Barbuda	0.12	0
16	2016	Argentina	0.32	0
19	2016	Armenia	0.19	0
22	2016	Australia	0.07	0

4.2.3 - mortality_total.

Indice	annee	pays	décès total/100.000 habitants	nb morts total
2	2016	Afghanistan	13.92	4824
5	2016	Albania	0.17	5
8	2016	Algeria	1.87	758
11	2016	Angola	48.81	14065
14	2016	Antigua and Barbuda	0.11	0
17	2016	Argentina	0.36	159
20	2016	Armenia	0.18	5
23	2016	Australia	0.1	23

4.3 - management.

4.3.1 - management_rural.

	Indice	annee	pays	ratio eau de base rural	ratio eau qualite rur₁▼
Ī	5055	2008	Paraguay	74.95	38.17
	7092	2012	Colombia	81.94	37.95
	5472	2009	India	82.76	37.85
	6510	2011	Colombia	81.04	37.53
	5481	2009	Iraq	73.05	37.35
	8493	2014	Morocco	64.71	37.31
	5928	2010	Colombia	80.13	37.11
	4473	2007	Paraguay	72.18	36.75
	5346	2009	Colombia	79.23	36.69

4.3.2 - management urban.

Indice	annee	pays	ratio eau de base urbain	ratio eau qualite urbai▼
2072	2010	noi occo	50.05	00.55
10241	2017	Morocco	96.65	88.93
7478	2012	Sri Lanka	96.46	88.92
5141	2008	South Africa	98.62	88.78
9488	2016	Eswatini	96.78	88.75
10070	2017	Eswatini	96.78	88.75
9077	2015	Morocco	96.35	88.75
6680	2011	Kyrgyzstan	96.84	88.63
8495	2014	Morocco	96.05	88.58
6896	2011	Sri Lanka	96.36	88.53

4.3.3 - management_total.

Indice	annee	pays	ratio eau de base total	ratio eau qualite total
6988	2012	Albania	87.86	65.9
6406	2011	Albania	87.76	63.93
5824	2010	Albania	87.81	61.98
5242	2009	Albania	87.85	60.05
4660	2008	Albania	87.89	58.14
4078	2007	Albania	87.91	56.25
3496	2006	Albania	87.93	54.39
2914	2005	Albania	87.94	52.55
2332	2004	Albania	87.94	50.73

5 - Ajout de données externes.

Dans un soucis d'une meilleure compréhension de l'environnement concernant l'impact de l'accès à l'eau, j'ai choisi d'ajouter des données que j'ajoute à celles, déjà disponibles :

- Ressources en eau douce renouvelables
- Prélèvements dans les ressources d'eau douce
- Les populations contraintes de quitter leur pays d'origine
- Le taux d'accès à l'hygiène des mains
- Le taux de stress hydrique après prélèvement dans les ressources en eau douce

_

6 - Tableau Prep Builder.

6.1 - jointure des tables "population"

Utilisation du nettoyage pour supprimer les 4 provinces composant la Chine, afin d'éviter les doublons.

6.1.1 - jointures 1.

[pays] == "China, Taiwan Province of") AND NOT

(ISNULL([pays]))))

6.1.2 - jointures 3.

6.1.3 - jointures 5.

Valeurs discordantes:

6.1.4 - jointures 7.

Valeurs discordantes:

6.2 - jointure des tables "management".

Aucun nettoyage des tables n'est nécessaire.

<u>6.2.1 - jointures 9.</u>

<u>6.2.3 - jointures 11.</u>

Pa	ramètres	Mo	difications (2)		Paramètres	Modifications (2)
Clauses de jointure appliquées management_rural Jointures 9 pays = pays annee = annee		OD Jointures [pays] == [pays],[a		amp		
	nture : Jointu		de leterore		[]	
Cliquez sur le graphique pour modifier le type de jointure. management_rural Jointures 9 Résumé des résultats de la jointure						
Cliquez sur les incluses et ex		arre pour affich	er les valeurs			
3	/// Valeurs disc	ordantes				
	Incluse(s)					
managem	3 4 9 2]			
Jointures 9	3492]			
Résultat	3492					

6.3 - jointure de la table "mortality".

Aucun nettoyage des tables n'est nécessaire.

6.3.1 - jointures 17.

 Suppression des colonnes "nb morts hommes" et "nb morts femmes", ces dernières n'ayant que des valeurs égales à 0. Elles sont donc inutiles aux analyses à venir.

6.3.2 - jointures 19.

6.4 - jointure 13.

(population + management)

6.5 - jointure de la table "politic".

Utilisation du nettoyage pour supprimer les 4 provinces composant la Chine, afin d'éviter les doublons.

```
NOT ((([pays] == "China, Hong Kong SAR" OR [pays] == "China, Macao SAR" OR [pays] == "China, Taiwan Province of" OR [pays] == "China, mainland") AND NOT (ISNULL([pays]))))
```

6.5.1 - jointures 15.

(population + management + politic)

6.6 - jointure 21.

(population + management + politic + mortality)

6.7 - jointure de la table "regions".

Utilisation du nettoyage pour supprimer les 4 provinces composant la Chine, ces dernières n'apparaissant plus dans les autres tables.

```
NOT ((([pays] == "China, Taiwan Province of" OR [pays] == "China, mainland" OR [pays] == "China, Macao SAR" OR [pays] == "China, Hong Kong SAR") AND NOT (ISNULL([pays]))))
```

6.8 - jointures 23.

6.9 - jointures 25.

6.10 - jointures 27.

6.11 - jointures 29.

6.12 - jointures 31.

6.13 - jointures 33.

6.14 - Sortie.

sortie effectuée sous 3 formats : .xlsx, .csv et .hyper

