

- 1. Consider the schema $R=\{A,B,C,D,E\}$ with the set of functional dependencies $\Sigma=\{\{A,B\}\to\{C\},\{A,C\}\to\{D\},\{E\}\to\{A,B,C,D\}\}.$
 - Does the decomposition of R into $\delta = \{R_1(A, B, C), R_2(A, B, E), R_3(A, C, D)\}$ a lossless join decomposition? Justify your answer without using tableau method.
- 2. Consider the schema $R = \{A, B, C, D, E\}$ with a set of functional dependencies $\Sigma = \{\{A\} \rightarrow \{E\}, \{A, B\} \rightarrow \{D\}, \{C, D\} \rightarrow \{A, E\}, \{E\} \rightarrow \{B\}, \{E\} \rightarrow \{D\}\}.$
 - (a) Is R in Boyce-Codd normal form with respect to Σ ?
 - (b) Consider the following decomposition $\delta = \{R_1(B, D, E), R_2(A, C, E)\}$. Is δ in Boyce-Codd normal form with respect to Σ .
 - (c) If δ is not in Boyce-Codd normal form with respect to Σ , find a Boyce-Codd normal form decomposition of R with respect to Σ .