Contents

Parameters

Ηı	ıman	n-Plant Coevolution model	1
1	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Fast coevolution (default) No coevolution Coevolution with early cultivation Coevolution with early domestication Cultivation without domestication Coevolution with population "bleep" Coevolution with population "boom" Coevolution with long population "boom" Semi-coevolution (stationary point) Semi-coevolution (oscillations)	3 7 8 9 10 11 12 13 14 14
2		parameter exploration Full example (table+plot alternatives)	17 17 18 22
3	Two 3.1 3.2	parameter exploration Full example	23 23 25
4	Four 4.1 4.2 4.3	The parameter exploration Utility per capita between humans and plants $(\bar{U}_{H_1P} \times \bar{U}_{P_1H} \times \bar{U}_{H_nP} \times \bar{U}_{P_nH})$: Utility from other resources to humans and plants $(U_{bH_1} \times U_{bP_1} \times U_{bH_n} \times U_{bP_n})$: Number of types and undirected variation of humans and plants $(n_H \times n_P \times v_H \times v_P)$:	35 35 37 39
Н	um	an-Plant Coevolution model	
An	dreas	Angourakis & Jonàs Alcaina	
26	June	, 2019	

R notation	Math notation	Description
iniH, iniP	ini_H,ini_P	initial populations of humans and plants
n.H, n.P	n_H,n_P	number of types of humans and plants
v.H, v.P	v_H, v_P	level of undirected variation in humans and plants
r.H, r.P	r_H,r_P	intrinsic growth rates for human and plant populations
mU.PnH	$ar{U}_{P_nH}$	utility per capita of type n plants to humans
mU.HnP	$ar{U}_{H_nP}$	utility per capita of type n humans to plants
mU.P1H	$ar{U}_{P_1H}$	utility per capita of type 1 plants to humans
mU.H1P	$ar{U}_{H_1P}$	utility per capita of type 1 humans to plants
U.bH1	U_{bH_1}	utility of other resources to humans of type 1 (the baseline carrying capacity for humans of type 1, i.e. independent of HP relationship)
U.bP1	U_{bP_1}	utility of non-anthropic space to type 1 plants (the baseline carrying capacity for plants of type 1, i.e. independent of HP relationship)
U.bHn	U_{bH_n}	utility of other resources to type n humans
U.bPn	U_{bP_n}	utility of non-anthropic space to type n plants
MaxArea	MaxArea	maximum contiguous area to be used by plants (i.e., maximum carrying capacity for plants)

$Output\ end\text{-}state\ variables$

R notation	Math notation	Description
time	t_{end}	Iterations past until the end
		state (stationary point)

R notation	Math notation	Description
coevo.H, coevo.P	$coevo_H,coevo_P$	Coevolution coefficients. A coefficient representing the distribution of the proportions of population per type $(pop_{A_1} \text{ to } pop_{A_n})$ weighted by type index (1 to n). Each indicates if and how much the population distribution has been modified by the coevolutionary process. Their values range between -1, the entire population is of type 1, and 1, the entire population is of type n .
depend.H, depend.P	$depend_H, depend_P$	Dependency coefficients. Slope of linear model of the fitness score per type $(fitness_{A_1} \text{ to } fit_{A_n})$ using type index $(1 \text{ to } n)$. Indicate if and how $much$ the overall fitness score of a population is dependent on the other population.
timing.H, timing.P	$timing_H,timing_P$	Iterations past until coevolution successfully changes the proportions of population per type; generally, when $pop_1 \gg pop_n$ or, more specifically, $coevo > timing.threshold$.

1 Single runs

1.1 Fast coevolution (default)

 $Parameter\ setting:$

parameter	values
iniH	10
iniP	10
n.H	30
n.P	30
v.H	0.15
v.P	0.15
r.H	0.04
r.P	0.1
mU.PnH	1.5
mU.HnP	1
mU.P1H	0.15
mU.H1P	0
U.bHn	10
U.bPn	20
U.bH1	80
U.bP1	100
MaxArea	200
maxIt	5000
tol	6
timing.threshold	0.5
·	

Plotting the $\it end\ state,$ i.e. both populations become stationary:

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 1.5, mU.HnP = 1, mU.PnH = 0.15, mU.HnP = 0, U.bHn = 10, U.

$Output\ end$ -state variables at the end state:

Abbreviation	Value
time	716
coevo.H	0.6922901
coevo.P	0.7687119
depend.H	0.8913384
depend.P	1.7541986
timing.H	236
timing.P	252

Plotting population trajectories with ggplot:

Animated GIF showing the sequence of states throughout the simulation:

1.2 No coevolution

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 1.5, mU.HnP = 1, mU.PnH = 0, mU.HnP = 0, mU.Hn

1.3 Coevolution with early cultivation

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P =

1.4 Coevolution with early domestication

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 1, mU.PnH = 1, mU.HnP = 1, mU.PnH = 1, mU.HnP = 1, mU.HnP

1.5 Cultivation without domestication

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 2.5, mU.HnP = 0.45, mU.PnH = 0.15, mU.HnP = 0.15, mU

1.6 Coevolution with population "bleep"

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 1.5, mU.HnP = 1, mU.P1H = 0.15, mU.H1P = 0, U.bHn = 10, U.bHn = 20, U.bH1 = 80, U.bP1 = 100, MaxArea = 110, maxIt = 5000, tol = 6, timing threshold = 0.5

1.7 Coevolution with population "boom"

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 2, mU.HnP = 1,

mU.P1H = 0.15, mU.H1P = 0, U.bHn = 10, U.bHn = 20, U.bH1 = 80, U.bP1 = 100, MaxArea = 500, maxIt = 5000, tol = 6, timing.threshold = 0.5

1.8 Coevolution with long population "boom"

Parameter setting:

iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 1, mU.HnP = 1,

1.9 Semi-coevolution (stationary point)

 $iniH = 10, iniP = 10, n.H = 30, n.P = 30, v.H = 0.15, v.P = 0.15, r.H = 0.04, r.P = 0.1, mU.PnH = 0.5, mU.HnP = 1, \\ mU.P1H = 0.5, mU.H1P = 0, U.bHn = 10, U.bPn = 20, U.bH1 = 80, U.bP1 = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.H1P = 0, U.BPn = 10, U.BPn = 20, U.BPn = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.H1P = 0, U.BPn = 10, U.BPn = 20, U.BPn = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.H1P = 0, U.BPn = 10, U.BPn = 10, U.BPn = 10, U.BPn = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.H1P = 0, U.BPn = 10, U.BPn = 10, U.BPn = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.H1P = 0, U.BPn = 10, U.BPn = 10, U.BPn = 100, MaxArea = 200, maxIt = 5000, tol = 6, timing.threshold = 0.5 \\ mU.P1H = 0.5, mU.P1H = 0.5,$

1.10 Semi-coevolution (oscillations)

Parameter setting:

parameter	values
iniH	10
iniP	10
n.H	30
n.P	30
v.H	0.15
v.P	0.15
r.H	0.04
r.P	0.1
mU.PnH	0.5
mU.HnP	0.9
mU.P1H	0.5
mU.H1P	0
U.bHn	20
U.bPn	20
U.bH1	100
U.bP1	100
MaxArea	200
maxIt	2000
tol	6
timing.threshold	0.5

 $iniH = 10, \\ iniP = 10, \\ n.H = 30, \\ n.P = 30, \\ v.H = 0.15, \\ v.P = 0.15, \\ r.H = 0.04, \\ r.P = 0.1, \\ mU.PnH = 0.5, \\ mU.HnP = 0.9, \\ mU.P1H = 0.5, \\ mU.HnP = 0, \\ U.bHn = 20, \\ U.bHn = 20, \\ U.bHn = 20, \\ U.bHn = 100, \\ U.bH1 = 100, \\ U.bP1 = 100, \\ MaxArea = 200, \\ maxIt = 2000, \\ tol = 6, \\ timing.threshold = 0.5, \\ timi$

2 One parameter exploration

2.1 Full example (table+plot alternatives)

2.1.1 utility per capita of type n plants to humans (\bar{U}_{P_nH}) :

value
10
10
30
30
0.15
0.15
0.04
0.1
0.5 - 2.5 (sample = 100)
1
0.15
0
10
20
80
100
200

2.2 Exploration on 'default' setting for each parameter:

2.2.1 Initial populations of humans and plants ($init_H$, $init_P$):

2.2.2 Number of types of humans and plants (n_H, n_P) :

2.2.3 level of undirected variation in humans and plants (v_H, v_P) :

2.2.4 intrinsic growth rates for human and plant populations (r_H, r_P) :

2.2.5 utility per capita of type n plants to humans (\bar{U}_{P_nH}) :

2.2.6 utility per capita of type n human to plants (\bar{U}_{H_nP}) :

2.2.7 utility per capita of type 1 plants to humans (\bar{U}_{P_1H}) :

2.2.8 utility per capita of type 1 humans to plants (\bar{U}_{H_1P}) :

2.2.9 utility of other resources to humans of type 1 (U_{bH_1}) :

2.2.10 utility of non-anthropic space to type 1 plants (U_{bP_1}) :

2.2.11 utility of other resources to type n humans (U_{bH_n}) :

2.2.12 utility of non-anthropic space to type n plants (U_{bP_n}) :

2.2.13 maximum contiguous area to be used by plants (MaxArea):

2.3 Oscilations

Bifurcation plot with last 100 time steps (of 1000) to capture oscillations or 'slow' asymptotic stability

3 Two parameter exploration

3.1 Full example

3.1.1 Utility per capita from type n humans and plants $(\bar{U}_{H_nP} \times \bar{U}_{P_nH})$:

value
10
10
30
30
0.15
0.15
0.04
0.1
0 - 2.5 (sample = 15)
0 - 2.5 (sample = 15)
0.15
0
10
20
80
100
200

- 3.2 Exploration on 'default' setting for (directly-related) parameter pairs:
- 3.2.1 Number of types of humans and plants $(n_H \times n_P)$:

3.2.2 Undirected variation in humans and plants $(v_H \times v_P)$:

3.2.3 Utility per capita from type 1 humans and plants ($\bar{U}_{H_1P} \ge \bar{U}_{P_1H}$):

3.2.4 Utility per capita from type n humans and plants $(\bar{U}_{H_nP} \ge \bar{U}_{P_nH})$:

3.2.5 Utility per capita from humans to plants $(\bar{U}_{H_1P} \times \bar{U}_{H_nP})$:

3.2.6 Utility per capita from plants to humans $(\bar{U}_{P_1H} \ge \bar{U}_{P_nH})$:

3.2.7 Utility of other resources to type 1 humans and plants $(U_{bH_1} \times U_{bP_1})$:

3.2.8 Utility of other resources to type n humans and plants $(U_{bH_n} \times U_{bP_n})$:

3.2.9 Utility of other resources to humans $(U_{bH_1} \times U_{bH_n})$:

3.2.10 Utility of other resources to plants $(U_{bP_1} \times U_{bP_n})$:

4 Four parameter exploration

4.1 Utility per capita between humans and plants $(\bar{U}_{H_1P} \times \bar{U}_{P_1H} \times \bar{U}_{H_nP} \times \bar{U}_{P_nH})$:

value
10
10
30
30
0.15
0.15
0.04
0.1
0 - 2.5 (sample = 5)
10
20
80
100
200

Interpretation:

- * Higher values of all four parameters facilitate coevolution; under the 'default' setting, a value around 1 is enough for all four parameters (intermediate values in this exploration).
- * Coevolution is still possible if any single one of these parameters equal zero (bottom-left corners). Under this type of conditions, agriculture (blue) appears more probable than domestication (red), and the latter is strongly dependent on a non-null \bar{U}_{H_nP} .
- * As a summary of possible end-states:
- + 'Fast' coevolution (red square in blue tile, small t): most cases when values are greater than 0.625.
- + Domestication without cultivation (red square in whitish tile): most cases when $\bar{U}_{H_nP} > 0.625$, $\bar{U}_{H_1P} \geq 0.625$, $\bar{U}_{P_nH} = 0$, and $\bar{U}_{P_1H} < 2.5$.

+ Cultivation without domestication (whitish square in blue tile): most cases when $\bar{U}_{H_nP}=0$.

4.2 Utility from other resources to humans and plants $(U_{bH_1} \times U_{bP_1} \times U_{bH_n} \times U_{bP_n})$:

For this experiment, consider that the default setting includes MaxArea = 200 (i.e. the maximum for the plant population).

value
10
10
30
30
0.15
0.15
0.04
0.1
1.5
1
0.15
0
5 - 300 (sample = 5)
200

Interpretation:

- Lower values of all four parameters facilitate coevolution; under the 'default' setting and for all four parameters, values higher than MaxArea (here, 200) impede coevolution. The human parameters (U_{bH_1}, U_{bH_n}) , together regulating the scale of the subsistence alternatives for humans, are significantly more important; their relationship (if one is greater than the other) seems to be less important as long as their combined sum is small enough.
- * Coevolution is likely to occur when $U_{bH_1} = 5$, unless U_{bH_1} is too big and U_{bP_1} is too small.
- * As a summary of possible end-states:
- + 'Fast' coevolution (red square in blue tile, small t): most cases when U_{bH_1} and

 $U_{bH_n} < 152.5.$

- + Domestication without cultivation (red square in whitish tile): most cases when $U_{bP_n} = 5$, $U_{bP_1} = 5$ (i.e. there is very little carrying capacity for plants beyond the anthropic space) and $U_{bH_1} > 5$ (i.e. humans get enough of other resources when -still-not engaged in agriculture).
- + Cultivation without domestication (whitish square in blue tile): no cases are visible under these conditions.

4.3 Number of types and undirected variation of humans and plants ($n_H \times n_P \times v_H \times v_P$):

parameter	value
iniH	10
iniP	10
n.H	5 - 45 (sample = 5)
n.P	5 - 45 (sample = 5)
v.H	0.05 - 0.25 (sample = 5)
v.P	0.05 - 0.25 (sample = 5)
r.H	0.04
r.P	0.1
mU.PnH	1.5
mU.HnP	1
mU.P1H	0.15
mU.H1P	0
U.bHn	10
U.bPn	20
U.bH1	80
U.bP1	100
MaxArea	200

Interpretation:

- * Higher values of all four parameters facilitate coevolution. Undirected variation has a stronger effect than number of types. * As a summary of possible end-states:
- + 'Fast' coevolution (red square in blue tile, small t): most cases when the numbers of types (n_H, n_P) are greater than **15** and values of undirected variation (v_H, v_P) higher than **0.15**.
- + 'Semi-domestication' without cultivation (redish square in whitish tile): cases when $v_P \ge 0.15$.
- + 'Semi-cultivation' without domestication (whitish square in blue tile): cases when $v_H \geq 0.15$.