

## 1 Lineare Funktionen und Geraden

### 1.1 Grundlagen

Die allgemeine Form einer **linearen Funkion** lautet  $\mathbf{y} = \mathbf{m} \cdot \mathbf{x} + \mathbf{b}$ .  $\mathbf{m}$  gibt die Zunahme bzw. Abnahme pro Einheit an. Es wird auch als **Steigung** der Funktion bezeichnet.

Der Term **b** definiert, in welchem Wert der Graph der Funktion die y-Achse schneidet. Man bezeichnet ihn auch als **y-Achsenabschnitt**. Mit *linearen Funktionen* werden Funktionen modelliert, dei einen gleichmäßigen Anstieg

bzw. Abfall besitzen.

#### Wie ermittelt man m?

Um die Steigung eines gegebenen Graphen zu bestimmen, verwendet man das **Steigungs-dreieck**. Dieses wird mit Hilfe zweier Punkte auf dem Graphen gezeichnet.

Generell gilt, dass sich für eine Einheit in x-Richtung (z.B.  $1\,cm$ ), der Funktionswert um genau m ändert.

Das Verhältnis m der Seitenlängen im Steigungsdreieck ist immer gleich und kann durch eine Formel berechnet werden.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$$

**Vorsicht:**  $\Delta x$  und  $\Delta y$  sind orientiert. Das bedeutet, ist die Steigung negativ (Vorzeichen von m ist -), so muss entsprechend in negative Richtung (<u>nach unten</u>) gegangen werden.

Ist die *Steigung sehr klein* (z.B. bei y=0,01x+2), so muss das Steigungsdreieck entsprechend vergrößert werden, um eine angemessene Genauigkeit zu ermöglichen.

Für eine lineare Funktion f(x) = mx + b gilt:

- **b** gibt den **y-Achsenabschnitt** an. Der dazugehörige Punkt hat die Koordinate  $S_y(0|b)$ .
- m gibt die **Steigung** an. Dabei gilt:
  - -m > 0: Der Graph der Funktion steigt.
  - -m < 0: Der Graph der Funktion fällt.
  - -m=0: Der Graph der Funktion verläuft parallel zur x-Achse.
- Die Steigung gibt das Verhältnis der Seiten des Steigungsdreiecks an.

#### **Ihre Aufgabe:**

Zeichnen Sie den Graphen der Funktion f(X)=2x+1,5 und tragen Sie verschiedene Steigungsdreiecke ein.

### 1.2 Von der Gleichung zur Gerade

(1) Um zu einer gegebenen Funktionsgleichung den Graphen zu zeichnen gehen Sie wie folgt vor:

Beispiel: y = 2x + 3

Wir markieren zunächst den y-Achsenabschnitt (also b=3) auf der y-Achse. Von diesem Punkt aus zeichnet man ein Steigungsdreieck indem man <u>eine Einheit</u> nach rechts und <u>zwei (2) Einheiten</u> nach oben geht. Dort befindet sich der nächste Punkt.



(2) Ist hingegen ein Punkt, z.B. P(-1|2), und eine Steigung  $m=-\frac{2}{3}(=\frac{\Delta y}{\Delta x})$  gegeben, übertragen wir zunächst den Punkt in das Koordinatensystem.

Im Anschluss bewegen wir uns 3 Einheiten  $(\Delta x)$  nach rechts und dann 2 Einheiten  $(\Delta y)$  nach unten (Vorzeichen -). So gelangen wir zu einem zweiten Punkt Q(2|0). Die Gerade durch P und Q ist der Graph der Funktion.



### 1.3 Von der Geraden zur Gleichung

Aus dem Graphen können wir den Wert für b direkt ablesen (der Wert, an dem der Graph die y-Achse schneidet).

Um die Steigung zu bestimmen, müssen wir ein Steigungsdreieck einzeichnen und darauf den Quotienten bzw. das Verhältnis der zwei eingezeichneten Seiten bestimmen ( $m=\frac{\Delta y}{\Delta x}$ ).



Daraus ergibt sich  $m=\frac{\Delta y}{\Delta x}=\frac{1}{10}.$  Für die Funktionsgleichung folgt dann

$$y = \frac{1}{10}x + 3$$

## 1.4 Eine Gerade durch zwei Punkte

Haben wir zwei Punkte (z.B.  $P(\underbrace{3}_{x_1}|\underbrace{4}_{y_1})$  und  $Q(\underbrace{7}|\underbrace{6}))$  gegeben, können wir daraus die

Funktionsgleichung aufstellen, ohne zeichnen zu müssen.

Wir wissen, dass sich die Steigung als Verhältnis von  $\Delta x$  und  $\Delta y$  bestimmen lässt  $(m=\frac{\Delta y}{\Delta x}).$ 

Wir berechnen also:

$$\Delta x = x_2 - x_1 = 7 - 3 = 4$$



$$\Delta y = y_2 - y_1 = 6 - 4 = 2$$

Für die Steigung ergibt sich:  $m=\frac{2}{4}=\frac{1}{2}$  Anschließend müssen wir den y-Achsenabschnitt bestimmen. Hierfür setzen wir die Koordinaten eines Punktes sowie die berechnete Steigung in die allgemeine Form y=mx+b ein, und bestimmen den Wert für b.

$$6 = \frac{1}{2} \cdot 7 + b \quad |-\frac{1}{2} \cdot 7$$
  
2. 5 = b

Damit haben wir die Funktion bestimmt:

$$y = \frac{1}{2} \cdot x + 2,5$$

### 1.5 Eine Gerade durch einen Punkt mit vorgegebener Steigung

Hat Punkt  $P(x_p|y_p)$ man einen und gegeben, eine Steigung mlässt die Funktionsgleichung direkt sich mit Punkt-Steigungsformel aufstellen:  $\mathbf{y} = \mathbf{m} \cdot (\mathbf{x} - \mathbf{x}_{\mathbf{p}}) + \mathbf{y}_{\mathbf{p}}.$ 

## 1.6 Die Geradengleichung in impliziter Form

Bekannt ist uns bereits die lineare Funktion der Form  $y=m\cdot x+b$ . Nicht immer ist die Funktion in dieser Form gegeben.

Betrachten wir das folgende **Beispiel**: Eine große Fitness-Studio-Kette möchte eine neue Filiale in Mainz eröffnen. In dieser Filiale sollen zum einen Personal-Trainer beschäftigt werden, die sich auch um die Trainingspläne der Mitglieder kümmern. Zum anderen benötigt man aber auch Service-Personal, dass sich um das Drum-Herum kümmert.

Die Personal-Trainer werden mit 16.000 € und

das Service-Personal mit  $4.000 \in \ddot{\text{a}}\ddot{\text{u}}\ddot{\text{o}}\text{plhjm}$  nvcx vergütet. Insgesamt hat sich die Fitness-Kette eine Personalbudget von  $240.000 \in \text{gesetzt}$ .

Um ein Optimum zu erreichen, sollen alle möglichen Kombinationen der Personal-Trainer und Service-Personal sowohl in einem Graph als auch als Funktionsgleichung dargestellt werden.



# 2 Schnittpunkt zweier Geraden

Unter bestimmten Umständen kann es notwendig sein, den Schnittpunkt zweier Gerade zu bestimmen. Zum Beispiel, wenn wir zwei Handy-Tarife vergleichen und wissen wollen, ab welcher Anzahl verbrauchter Einheiten (Gesprächsminuten oder SMS) sich der Tarif mit dem höheren Grundpreis lohnt.

Das Vorgehen erkunden wir beispielhaft mit Hilfe von  $y_f=2x+1$  und  $y_q=-4x+10$ .

Es ist möglich, die **Lösung zeichnerisch** zu bestimmen.



Um die **Lösung rechnerisch** zu bestimmen, setzen wir die Funktionen gleich und ermitteln die Lösung für x.

$$2x + 1 = -4x + 10$$
 |  $+4x$   
 $6x + 1 = 10$  |  $-1$   
 $6x = 9$  |  $: 6$   
 $x = 1, 5$ 

Wir benötigen nun noch die passende y-Koordinate.  $2\cdot 1, 5+1=4.$  Also SP(1,5|4).

## 3 Modellieren mit linearen Funktionen

Wie bereits zu Beginn zuvor erwähnt, werden lineare Funktionen verwendet, um Entwicklung mit gleichmäßiger Veränderung widerzuspiegeln.

Betrachten wir das Fahrrad-Verleihsystem "MVG Mein Rad". Dieses bietet mehrere Tarife, darunter auch

Normaltarif: Keine Grundgebühr,  $1,45 \in \text{pro}$  halbe Stunde

<u>Tarif Silber</u>: 25 € Grundgebühr, 0,85 € pro halbe Stunde

Quelle: https://www.mainzer-mobilitaet.de/

tickets-tarife/fuer-radfahrer/details/tarif/

 ${\tt mvgmeinrad-mietradeln-fuer-freibewegliche.html}$ 

### Fragestellung:

- (a) Was kosten 50 Stunden in den einzelnen Tarifen?
- (b) Wann ist der eine Tarif günstiger als der andere?
- (c) Sie überlegen sich ein Fahrrad für knapp 120 € kaufen. Wie lange könnten Sie für das Geld mit dem Tarif Silber fahren?

### 3.1 Der Modellierungsprozess

### 3.1.1 Aufstellen des Modells

Zunächst müssen wir die Preise der jeweiligen Tarife mit Variablen belegen, hierzu wählen wir  $y_N$  für den Normaltarif und  $y_S$  für den Tarif Silber.

Die Kosten beider Tarife sind abhängig von der Dauer, die ein Fahrrad geliehen wird, wobei immer eine halbe Stunde abgerechnet wird. Daher integrieren wir die Variable x für diese

halbe Stunde Ausleihzeit.

Nun ist es uns möglich anhand der Tarifauskunft eine lineare Funktion aufzustellen.

$$y_N = 1,45 \cdot x$$
$$y_S = 0,85 \cdot x + 25$$

### 3.1.2 Mit dem Modell arbeiten

Wollen wir nun schauen, wie wir das Modell nutzen können, um die Fragestellungen zu beantworten.

(a) Wir haben die Ausleihzeit für eine halbe Stunde mit x modelliert und sollen nun die Kosten nach 50 Stunden berechnen. Daher setzen wir für  $x=2\cdot 50=100$  ein - eine Stunde  $\hat{=}$  zwei halbe Stunden.

$$y_N = 1,45 \cdot 100 = 145$$
  
 $y_S = 0,85 \cdot 100 + 25 = 85 + 25 = 110$ 

| Antwort: |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |
|          |  |  |  |

(b) Übersetzung in das Modell:  $y_N=y_S.$  Wir ersetzen nun  $y_N$  bzw.  $y_S$  durch die Funktionsterme.

$$1,45 \cdot x = 0,85 \cdot x + 25 \quad |-0,85 \cdot x |$$
  
 $0,6 \cdot x = 25 \quad |:0,6 |$   
 $x = 41,6$ 

| Antwort: |  |  |  |
|----------|--|--|--|
|          |  |  |  |
|          |  |  |  |

(c) Übersetzung in das Modell:  $120 = y_S$ .  $120 = 0.85 \cdot x + 25 \quad |-25$ 

$$95 = 0,85 \cdot x$$
 |: 0,85  
 $x = 111,76$ 

| Antwort: |  |  |
|----------|--|--|
|          |  |  |