E-02 (ANSYS)

Формулировка задачи:

Hайти: эпюры $M_{\kappa p}$, $oldsymbol{arphi}$.

Аналитический расчёт (см. Е-02) даёт следующие решения:

Задача данного примера: при помощи ANSYS Multyphisics получить эти же решения методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

B окно C_P вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый:

U M > PlotCtrls > Style > Colors > Reverse Video

Скрываем пункты меню, не относящиеся к прочностным расчётам:

 ${\tt M_M}$ > Preferences > Отметить "Structural" > OK

При построениях полезно видеть номера узлов и номера конечных элементов (один участок – один конечный элемент):

```
U_M > PlotCtrls > Numbering >
OTMETUTЬ NODE;

Установить Elem на "Element numbers";
Установить [/NUM] на "Colors&numbers"
> OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

<u>Решение задачи:</u> Приравняв G, d, M и l, к единице, результаты получим в виде чисел, обозначенных на рис. l. синим цветом.

No	Действие	Результат
	Конечноэлементная моделі	Ь
	Узлы 1, 2, 3 и 4 в точках O, A, B и C соответственно:	
7	M_M> Preprocessor> Modeling> Create> Nodes> In Active CS > NODE пишем 1 X,Y,Z пишем 0,0,0 > Apply > NODE пишем 2 X,Y,Z пишем l,0,0 > Apply > NODE пишем 3 X,Y,Z пишем 2*l,0,0 > Apply > NODE пишем 4 X,Y,Z пишем 4 X,Y,Z пишем 3*l,0,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	NODES NODE NUM Y LX 2 .3 .4
8	Номер узла 1 сливается со значком глобальной системы координат. Cкрываем оси системы координат: U_M> PlotCtrls> Window Controls> Window Options> /Triad ycтановить "Not Shown" > OK Window Option	1 NODES NODE NUM 1 2 .3 .4

№	Действие	Результат			
	Расчёт				
13	Запускаем расчёт: М_M > Solution > Solve > Current LS Синхронно появляются два окна: белое информационное и серое исполнительное. Белое закрываем, на сером нажимаем ОК. Расчёт пошёл. Когда он закончится, появится окно «Solution is done!». Закройте это окно. Расчёт окончен.	File SOLUTION OPTIONS SOLUTION OPTIONS POSSED INDECIDENT. ON 1 STEP OPTIONS LOG STEP POPTIONS LOG STEP POPTIONS LOG STEP POPTIONS LOG STEP MINER. LOG			

№	Действие	Результат
15	Цветовая шкала будет состоять из десяти цветов: U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK	
16	Cocmaвление эпюры эпюры внутреннего крутящего момента $M_{\kappa p}$: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "4" > Apply > "By sequence num", "SMISC,", "17" > OK > > Close	A first Additional Ensurer 1 data home
17	Прорисовка эпюры внутреннего крутящего момента М _{кр} : M_M > General Postproc > Plot Results > Contour Plot > > Line Elem Res> LabI установить "SMIS4" LabJ установить "SMIS17" > ОК Пропечатка эпюры внутреннего крутящего момента М _{кр} : M_M > General Postproc > List Results > Elem Table Data > Отметить мышью строчку SMIS4 > ОК Получаем тот же результат, что и на рис. 1в. (числа, выделенные синим цветом).	1 LINE STRESS STEP=1 SUB =1 TIME=1 SMIS4 SMIS17 MIN =575758 ELEM=2 MAX =2.42424 ELEM=1 M RMOM 2.38422 2.33 -3 4.424242 1.82424 2.42424

.No Действие Результат Угловые перемещения точек стержня (таблица): M M > General Postproc > List Results > Nodal Solution > Nodal Solution > DOF Solution > X-Component of rotation > OK Item to be listed Favorites Modal Solution X-Component of displacement Y-Component of displacement Z-Component of displacement ΣS ▲ PRNSOL Command Rotation vector sum File Elastic Strain PRINT ROT NODAL SOLUTION PER NODE ****** POST1 NODAL DEGREE OF FREEDOM LISTING ****** LOAD STEP= 1 SUBSTEP= Получаем окно "PRNSOL Command" с табличкой, где NODE – номер узла LOAD CASE= 0 TIME= 1.0000 конечноэлементной модели, а ROTX – его вращение относительно оси X: 18 THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM $\varphi_1 = \varphi_O = 0 ;$ 0.0000 2 1.5433 $\varphi_2 = \varphi_A = 1,543 \cdot \frac{M \cdot l}{G \cdot d^4}$ (точное совпадение с *puc.1г.*); **HAXIHUH ABSOLUTE VALUES** VALUE -4.3213 $\varphi_3 = \varphi_B = -4,321 \cdot \frac{M \cdot l}{G \cdot d^4}$ (точное совпадение с *puc.1г.*); $\varphi_{\Lambda} = \varphi_{C} = 0$. На этом можно было бы урок и закончить. Интересно, однако, прорисовать полученные значения в виде эпюры, к тому же в размерности $\frac{M \cdot l}{G \cdot l}$. Прорисовке будут посвящены последующие два действия данной инструкции.

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

U M > File > Exit > Quit - No Save! > OK

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.