Autor: Hubert Kowalczyk 259550	Struktury Danych i złożoność obliczeniowa Semestr letni 2022/2023	Termin: Wtorek NP: 17:05	
Prowadzący: Dr. Inż. Tomasz Kapłon	Ćwiczenie 4	Data wykonania ćwiczenia: 09.05.2023	
		Data oddania sprawozdania 23.05.2023	

1)Cel Ćwiczenia

Celem ćwiczenia było zaimplementowanie algorytmu ,który wyszukuje najkrótsze ścieżki w grafie skierowanym. Z proponowanych algorytmów wybrano algorytm Dijkstry.

2)Algorytm i implementacja

2.1)Algorytm

Algorytm Dijkstry to algorytm służący do znajdowania najkrótszych ścieżek w skierowanym lub nieskierowanym grafie ważonym z jednym wierzchołkiem początkowym. Algorytm przypisuje każdemu wierzchołkowi grafu odległość od wierzchołka początkowego i stopniowo aktualizuje te odległości w miarę odkrywania krótszych ścieżek.

2.2) Implementacja

- 1.Inicjalizua tablic distances, prev i visited. 2.Ustawienie odległośći dla wierzchołka startowego na 0. 3.Wykonanie głównej pętli, w której wybrany zostanie nieodwiedzony wierzchołek o najmniejszej odległości.
- 4. Oznacznie wybrany wierzchołek jako odwiedzony.

- 5.Aktulizacja odległości do sąsiednich wierzchołków, jeśli nowa odległość jest mniejsza niż obecna.
- 6.Sprawdzenie, czy istnieje ścieżka do wierzchołka docelowego. 7.Jeśli ścieżka istnieje, odtwarzanie ją, przechodząc przez poprzedników wierzchołków.
- 8. Wyświetlenie rezultatów algorytmu.

3) Wyniki

Algorytm został przetestowany na poniżej przedstawionym grafie:

Rys 1 Testowy graf na którym testowano poprawność zadania

1.Droga do 0: ścieżka pusta, koszt 0

2.Dojście do wierzchołka 1: 0-1, koszt 3

3.Dojście do wierzchołka 2: 0-1-2, koszt 4

4.Dojście do wierzchołka 3: 0-4-5-3, koszt 6

5.Dojście do wierzchołka 4: 0-4, koszt 3

6.Dojście do wierzchołka 5: 0-4-5, koszt 5

4)Wnioski

Algorytm Dijkstry jest stosunkowo prosty do zrozumienia i implementacji, jednak istnieją pewne ograniczenia, które należy wziąć pod uwagę. Algorytm gwarantuje znalezienie najkrótszej ścieżki tylko wtedy, gdy wagi krawędzi są nieujemne. Jeśli w grafie występują krawędzie o ujemnych wagach, algorytm Dijkstry może nie działać poprawnie. Jednakże, jeśli mamy do czynienia z grafem zawierającym krawędzie o wagach ujemnych lub jeśli wymagamy bardziej wszechstronnego algorytmu, warto rozważyć zastosowanie algorytmu Bellmana-Forda lub innych bardziej zaawansowanych technik.