Лабораторная работа

Дифференциальные уравнения в частных производных

Постановка задачи: Для указанного уравнения:

- построить явную разностную схему (не забываем аппроксиммировать граничные условия, если это необходимо). 4 балла
- аппроксиммировать граничные условия со вторым порядком 1 балл
- провести исследование порядка точности и устойчивости построенной разностной схемы. 2 балла
- выполнить программную реализацию построенной разностной схемы. Провести вычислительный эксперимент: на равномерной сетки с количеством узлов N=10,20,50 найти решение указанной задачи при помощи построенной разностной схемы. Шаг по времени определяется исходя из требований устойчивости. Временной отрезок -[0,1]. В отчет приложить графики построенного решения. Сравните с точным решением в узлах сетки. Какой точности удалось достичь в каждом из экспериментов? Сколько времени заняли вычисления? -3 балла

$N_{\overline{0}}$	Тип уравнения	Исходные данные
1.	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -10$

2.			
7.	0 02	$\alpha = -10$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = e^t x + (1 + 10\pi^2) e^t \cos(\pi x) - 10e^x$	
		$u(t,0) = e^t + 1$	
		$\frac{\partial u(t,1)}{\partial x} = e^t + e$	
		$u(0,x) = x + e^x + \cos(\pi x)$	
		Точное решение:	
		$u(t,x) = e^t(x + \cos(\pi x)) + e^x$	
		$u(t,x) = e\left(x + \cos(\pi x)\right) + e$	
0			
3.		$\alpha = -15$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = 15\pi^2 t^2 \cos(\pi tx) - \pi x \sin(\pi tx) - 15e^x$	
		u(t,0)=2	
		$u(t,1) = \cos(\pi t) + e + 1$	
		$u(0,x) = x + e^x + 1$	
		(
		Точное решение:	
		$u(t,x) = \cos(\pi t x) + x + e^x$	
4.			
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = \pi \left((25\pi t^2 - x)\cos(\pi tx) - (25\pi t^2 + x)\sin(\pi tx) \right)$	
	$\frac{\partial t}{\partial t} + \alpha \frac{\partial x^2}{\partial x^2} = f(t, x)$	$\alpha = -25$	
		u(t,0) = 1	
		$\frac{\partial u(t,1)}{\partial x} = -\pi t \sin(\pi t) - \pi t \cos(\pi t) + 1$	
		u(0,x) = x + 1	
		a(0,x)=x+1 Точное решение:	
		-	
		$u(t,x) = -\sin(\pi tx) + \cos(\pi tx) + x$	

5.			
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = \pi \left(-25\pi (t-2)^2 \sin(\pi (t-2)x) - x \cos(\pi (t-2)x) \right)$	
		$\alpha = -25$	
		u(t,0) = 0	
		$\frac{\partial u(t,1)}{\partial x} = -\pi(t-2)\cos(\pi(t-2))$	
		$u(0,x) = \sin(2\pi x)$	
		Точное решение:	
		$u(t,x) = -\sin(\pi(t-2)x)$	
6.			
	$\frac{\partial u}{\partial u} = \frac{\partial^2 u}{\partial u} = f(t, x)$	$f(t,x) = -\pi x \sin(\pi(t-2)x) + 25\pi^2(t-2)^2 \cos(\pi(t-2)x) + x$	
		$\alpha = -25$	
		$u(t,1) = t + \cos(\pi(t-2))$	
		$\frac{\partial u(t,0)}{\partial x} = t$	
		$u(0,x) = \cos(2\pi x)$	
		Точное решение:	
		$u(t,x) = tx + \cos(\pi(t-2)x)$	
7.		$f(t,x) = x \left(3\pi^3(t-2)^2 \left(10t - x^2 - 20\right) + 1\right)$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -5$	
	$\int Ot Ox^2$		
		$\frac{\partial u(t,0)}{\partial x} = t$	
		$u(t,1) = t - \pi^3 (t-2)^3$	
		$u(0,x) = 8\pi^3 x^3$	
		Точное решение:	
		$u(t,x) = tx - \pi^3(t-2)^3x^3$	
		$\omega(v,\omega)=v\omega$ $\kappa(v-2)$ ω	

11.	$igg _{\partial u = \partial^2 u}$	$f(t,x) = 6t (t^2 - 2)^2 + x^4 e^{tx} - 20x e^{tx} (tx(tx+6) + 6)$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -20$	
		$\frac{\partial u(t,0)}{\partial x} = 0$	
		$u(t,1) = (t^2 - 2)^3 + e^t$	
		$u(0,x) = x^3 - 8$	
		Точное решение:	
		$u(t,x) = (t^2 - 2)^3 + x^3 e^{tx}$	
12.			
12.	$\partial u = \partial^2 u$	$f(t,x) = e^{tx} (x - 10t^2) + 6t (t^2 - 2)^2 - 60x$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -10$	
		$u(t,0) = (t^2 - 2)^3 + 1$	
		$\frac{\partial u(t,1)}{\partial x} = e^t t + 3$	
		O.	
		$u(0,x) = x^3 - 7$	
		Точное решение:	
		$u(t,x) = (t^2 - 2)^3 + e^{tx} + x^3$	
13.		$f(t,x) = 6t (t^2 - 2)^2 + (1 - 10t)e^x - 60x$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -10$	
	$\int dt = \partial x^2$		
		$\frac{\partial u(t,0)}{\partial r} = t$	
		$u(t,1) = (t^2 - 2)^3 + et + 1$	
		` '	
		$u(0,x) = x^3 - 8$	
		Точное решение:	
		$u(t,x) = (t^2 - 2)^3 + te^x + x^3$	

1 4			
14.			
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = -3(t-2)^2 \sin^3(\pi x) - \frac{45}{4}\pi^2(t-2)^3(\sin(\pi x) - 3\sin(3\pi x)) + x$	
		$\alpha = -15$	
		$\frac{\partial u(t,0)}{\partial x} = t$	
		u(t,1) = t	
		$u(0,x) = 8\sin^3(\pi x)$	
		Точное решение:	
		$u(t,x) = tx - (t-2)^3 \sin^3(\pi x)$	
15.			
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$f(t,x) = -3(t-2)^2 \cos^3(3x) - \frac{405}{4}(t-2)^3(\cos(3x) + 3\cos(9x)) + x$	
		$\alpha = -15$	
		$u(t,0) = (2-t)^3$	
		$\frac{\partial u(t,1)}{\partial x} = t + 9(t-2)^3 \sin(3)\cos^2(3)$	
		$u(0,x) = 8\cos^3(3x)$	
		Точное решение:	
		$u(t,x) = tx - (t-2)^3 \cos^3(3x)$	
16.	_	$f(t,x) = (269 - 135t)\cos(3x) + x$	
	$\frac{\partial u}{\partial t} + \alpha \frac{\partial^2 u}{\partial x^2} = f(t, x)$	$\alpha = -15$	
	$\int dt dx^2$	u(t,0) = 2 - t	
		$\frac{\partial u(t,1)}{\partial x} = t + 3(t-2)\sin(3)$	
		$u(0,x) = 2\cos(3x)$	
		Точное решение:	
		$u(t,x) = tx - (t-2)\cos(3x)$	

Варианты

$N_{ar{0}}$	Фамилия	Вариант
1.	Артюшкевич С.	1
2.	Бакевич А.	2
3.	Ганкович Е.	3
4.	Диброва Е.	4
5.	Казаков А.	5
6.	Керножицкий А.	6
7.	Мелех А.	7
8.	Неверо А.	8
9.	Соловей М.	9
10.	Тарайкович А.	10
11.	Филипович Ф.	11
12.	Ходор И.	12
13.	Шакель А.	13
14.	Шляго Н.	14
15.	Юрковская Е.	15