Image Segmentation

Drew Guarnera, Bharath Bogadamidi, Heather Michaud

The Algorithms

Primary Components of our Algorithm

- Breadth First Search (BFS)
- Ford-Fulkerson (FF)
- Threshold and Penalty Calculations

Breadth First Search

Mostly Standard

- Queue to hold node for processing
- Non-recursive to avoid stack overhead

Optimizations

- Arrays to track neighbors/visited and edge weights
- Early loop termination when end node is found
- Returns max flow of path (smallest capacity/bottleneck)

Purpose

 BFS will help the Ford-Fulkerson algorithm to find optimal paths and provide the flow value used in augmenting the residual graph

Ford-Fulkerson

Mostly Standard:

Edge augmentation

Optimizations:

- Use BFS to find paths (Edmond-Karp)
- Map<int, Map<int, Vertex>> used for adjacency list keeps traversals to a minimum and makes residual graph manipulation straightforward

Purpose:

 Supply a residual graph to indicate what pixels are in the foreground (connected to source) and background (connected to sink)

How does it all come together?

Step 1:

BFS to find Shortest Path

Step 2:

 Find the maximum flow (smallest edge weight) in the shortest path.

Step 3:

 Add the max flow for the path to the max flow for the entire graph, and adjust edge weights using the maximum flow of the path resulting in a residual graph.

Repeat the process until there are no paths from S to T in the residual graph

Image Segmentation

GOAL

 Separate image pixel elements that represent foreground content from those that represent background content.

Image Segmentation - Setup

- After reading in PGM file (Optimization)
 - Calculate a threshold value
 - Threshold = | Max Pixel | Sum of nodes / num of nodes |
 - Calculate edge penalties (S = 0, T = Max)
 - Penalty = Max Pixel | node node neighbor |
 - Build Adjacency List
 - Only connect nodes with edges where Threshold > Penalty

Image Segmentation - Process

- Run Ford-Fulkerson until no path exists between S(source) and T(sink)
- Use residual graph to determine which pixels are in the background and foreground
- Update original image to show all background pixels as white (Max value)

Breadth First Search Timing

Ford Fulkerson Timing

Image Segmentation Timing

Conclusions

- Theoretical predictions are often worse than the empirical evidence, especially with small data sets
- Optimization goes a long way
- Depending on the application, a light-weight "good-enough" algorithm can work as a substitute

DEMO TIME

Q & A