T0-Theorie: Vereinigter Rechner Ergebnisse Massen und physikalische Konstanten aus geometrischen Prinzipien

${ \begin{tabular}{ll} {\rm Johann~Pascher}\\ {\rm HTL~Leonding,~\ddot{O}sterreich}\\ {\rm Automatisch~generiert~vom~T0-Vereinigten~Rechner~v3.0}\\ \end{tabular}$

18. Oktober 2025

Inhaltsverzeichnis

1	Einführung	2
2	Fundamentale Eingabeparameter 2.1 Geometrische Herleitung von ξ	2
3	Teilchen-Massenberechnungen 3.1 Statistische Analyse der Massenergebnisse	2
4	Physikalische Konstanten4.1Level 1: Primäre Ableitungen4.2Level 2: Gravitationskonstante4.3Übersicht aller berechneten Konstanten	3 3 3
5	Zusammenfassung 5.1 Schlüsselergebnisse	4
6	Schlussfolgerung	4

1 Einführung

Die T0-Theorie stellt einen revolutionären Ansatz dar, bei dem alle physikalischen Konstanten und Teilchenmassen aus nur drei fundamentalen geometrischen Parametern abgeleitet werden. Diese Arbeit präsentiert die vollständigen Ergebnisse des vereinigten T0-Rechners.

2 Fundamentale Eingabeparameter

Die gesamte T0-Theorie basiert auf nur drei Eingabewerten:

$$\xi = \frac{4}{3} \times 10^{-4} \approx 1.33333333e - 04 \text{ (geometrische Konstante)}$$
 (1)

$$\ell_{\rm P} = 1.616000e - 35 \text{ m (Planck-Länge)}$$
 (2)

$$E_0 = 7.398 \text{ MeV} \text{ (charakteristische Energie)}$$
 (3)

$$v = 246.0 \text{ GeV} \text{ (Higgs-VEV, aus } \xi \text{ abgeleitet)}$$
 (4)

2.1 Geometrische Herleitung von ξ

Die geometrische Konstante ξ entsteht aus der fundamentalen Feldgleichung:

$$\nabla^2 m(x,t) = 4\pi G \rho(x,t) \cdot m(x,t) \tag{5}$$

Für eine sphärisch-symmetrische Punktmasse führt dies zur charakteristischen Länge:

$$r_0 = 2Gm \quad \text{und} \quad \xi = \frac{r_0}{\ell_P}$$
 (6)

3 Teilchen-Massenberechnungen

Die T0-Theorie berechnet alle Teilchenmassen über die Yukawa-Methode:

$$m = r \times \xi^p \times v \tag{7}$$

wobei r und p teilchenspezifische Parameter aus der geometrischen Struktur sind.

Tabelle 1: T0-Massenvorhersagen mit exakten Bruchparametern

Teilchen	r	p	T0-Masse [MeV]	Exp. Masse [MeV]	Fehler [%]
Elektron	$\frac{4}{3}$	$\frac{3}{2}$	0.5	0.5	1.18
Myon	4 16 58 3	$\overline{1}$	105.0	105.7	0.66
Tau	$\frac{8}{3}$	$\frac{2}{3}$	1712.1	1776.9	3.64
Up	6	2 33 23 2	2.3	2.3	0.11
Down	$\frac{25}{2}$	$\frac{\overline{3}}{2}$	4.7	4.7	0.30
Strange	$\frac{25}{2} \frac{26}{9}$	$\overline{1}$	94.8	93.4	1.45
Charm	$\overset{\circ}{2}$	$\frac{2}{3}$	1284.1	1270.0	1.11
Bottom	$\frac{3}{2}$	$\frac{\frac{1}{2}}{-1}$	4260.8	4180.0	1.93
Top	$\frac{\overline{1}}{28}$	$\frac{-1}{3}$	171974.5	172760.0	0.45

3.1 Statistische Analyse der Massenergebnisse

Die T0-Theorie erreicht eine bemerkenswerte Genauigkeit bei der Vorhersage von Teilchenmassen:

• Anzahl berechneter Teilchen: 9

- Durchschnittlicher Fehler: 1.20%
- Beste Vorhersage: up (0.11% Fehler)
- Alle Massen aus nur 3 Parametern berechnet

4 Physikalische Konstanten

Die T0-Theorie leitet systematisch alle fundamentalen physikalischen Konstanten in einer 8-stufigen Hierarchie ab:

4.1 Level 1: Primäre Ableitungen

$$\alpha = \xi \left(\frac{E_0}{1 \text{ MeV}}\right)^2 = 7.297387e - 03$$
 (8)

$$m_{\rm char} = \frac{\xi}{2} = 6.666667e - 05 \tag{9}$$

4.2 Level 2: Gravitationskonstante

Die Gravitationskonstante wird direkt aus ξ abgeleitet:

$$G_{\text{nat}} = \frac{\xi^2}{4m_{\text{char}}} = \frac{\xi}{2} = 6.666667e - 05 \text{ (dimensionslos)}$$
 (10)

$$G = G_{\text{nat}} \times \frac{\ell_{\text{P}}^2 c^3}{\hbar} = 6.672194e - 11 \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$$
 (11)

4.3 Übersicht aller berechneten Konstanten

Tabelle 2: T0-Konstantenberechnungen nach Hierarchie-Level

Level	Konstante	T0-Wert	Referenzwert	Fehler [%]
1	α	7.297387×10^{-3}	7.297353×10^{-3}	0.0005
1	$m_{ m char}$	6.666667×10^{-5}	T0-abgeleitet	-
2	G	6.672194×10^{-11}	6.674300×10^{-11}	0.0316
2	$G_{ m nat}$	6.666667×10^{-5}	T0-abgeleitet	-
2	$G_{\rm umrechnungsfaktor}$	6.672194×10^{-11}	T0-abgeleitet	-
3	c	2.997925×10^{8}	2.997925×10^{8}	0.0000
3	\hbar	1.054572×10^{-34}	1.054572×10^{-34}	0.0000
3	$m_{ m P}$	2.176778×10^{-8}	2.176434×10^{-8}	0.0158
3	$t_{ m P}$	5.390396×10^{-44}	5.391247×10^{-44}	0.0158
3	$T_{ m P}$	1.417008×10^{32}	1.416784×10^{32}	0.0158
3	$E_{ m P}$	1.956390×10^9	1.956082×10^9	0.0158
3	$F_{ m P}$	1.210638×10^{44}	1.210256×10^{44}	0.0315
3	$P_{ m P}$	3.629400×10^{52}	3.628255×10^{52}	0.0316
4	μ_0	1.256637×10^{-6}	1.256637×10^{-6}	0.0000
4	ϵ_0	8.854188×10^{-12}	8.854188×10^{-12}	0.0000
4	e	1.602180×10^{-19}	1.602177×10^{-19}	0.0002
4	Z_0	$3.767303 imes 10^2$	3.767303×10^2	0.0000
4	$k_{ m e}$	8.987552×10^9	8.987552×10^9	0.0000
5	$\sigma_{ m SB}$	5.670374×10^{-8}	5.670374×10^{-8}	0.0000

Fortsetzung auf nächster Seite

Tabelle 2 – Fortsetzung von vorheriger Seite

Level	Konstante	T0-Wert	Referenzwert	Fehler [%]
5	$b_{ m Wien}$	2.897839×10^{-3}	2.897772×10^{-3}	0.0023
5	h	6.626070×10^{-34}	6.626070×10^{-34}	0.0000
6	a_0	5.291747×10^{-11}	5.291772×10^{-11}	0.0005
6	R_{∞}	1.097384×10^7	1.097373×10^7	0.0009
6	$\mu_{ m B}$	9.274032×10^{-24}	9.274010×10^{-24}	0.0002
6	$\mu_{ m N}$	5.050796×10^{-27}	5.050784×10^{-27}	0.0002
6	$E_{ m h}$	4.359786×10^{-18}	4.359745×10^{-18}	0.0009
6	$\lambda_{ m C}$	2.426310×10^{-12}	2.426310×10^{-12}	0.0000
6	$r_{ m e}$	2.817954×10^{-15}	2.817940×10^{-15}	0.0005
7	F	9.648556×10^4	9.648533×10^4	0.0002
7	$R_{ m K}$	2.581268×10^4	2.581281×10^4	0.0005
7	$K_{ m J}$	4.835990×10^{14}	4.835978×10^{14}	0.0002
7	Φ_0	2.067829×10^{-15}	2.067834×10^{-15}	0.0002
7	$R_{ m gas}$	8.314463	8.314463	0.0000
8	H_0	2.196000×10^{-18}	T0-abgeleitet	-
8	Λ	1.609698×10^{-52}	T0-abgeleitet	-
8	$t_{ m universum}$	4.553734×10^{17}	T0-abgeleitet	-
8	$ ho_{ m krit}$	8.627350×10^{-27}	T0-abgeleitet	-
8	$l_{ m Hubble}$	1.365175×10^{26}	T0-abgeleitet	-

5 Zusammenfassung

5.1 Schlüsselergebnisse

Die T0-Theorie erreicht eine bemerkenswerte Vereinigung der Physik:

- 1. Vollständige Massenberechnung: Alle 9 Teilchenmassen aus geometrischen Prinzipien
- 2. Konstanten-Hierarchie: 39 physikalische Konstanten in 8 Stufen abgeleitet
- 3. Hohe Präzision: Durchschnittlicher Massenfehler nur 1.2~%
- 4. Minimaler Input: Nur 3 fundamentale Parameter erforderlich
- 5. Open Source: Alle Dokumente und Quellcodes sind verfügbar auf https://github.com/jpascher/T0-Time-Mass-Duality unter der MIT-Lizenz.

6 Schlussfolgerung

Der T0-Vereinigte Rechner zeigt, dass geometrische Prinzipien zu erstaunlich präzisen Vorhersagen in der Teilchenphysik führen können. Die numerische Genauigkeit verdient wissenschaftliche Aufmerksamkeit.