Přednáška #12: Paralelní algoritmy pro lineární algebru

Základní definice

 \blacksquare $(m \times n)$ -matice:

$$\mathcal{A} = (a_{ij}) = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

- \blacksquare A je čtvercová, je-li n=m, a jinak je obdélníková.
- Je-li \mathcal{A} $(m \times n)$ -matice, pak transpozice \mathcal{A}^T je $(n \times m)$ -matice

$$\mathcal{A}^T = (a_{ji}) = \begin{bmatrix} a_{11} & \dots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{mn} \end{bmatrix}$$

■ Sloupcový vektor = $(n \times 1)$ -matice (implicitně)

$$\vec{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right]$$

 \blacksquare Řádkový vektor $\vec{x}^T = [x_1, \dots, x_n] = (1 \times n)$ -matice. skalární součin vektorů

Proužkové mapování

- Po řádcích nebo po sloupcích.
- Blokově, cyklicky, nebo blokově-cyklicky.

Příklad: Proužkové mapování (27×27) -matice po řádcích na p=3 procesory P_1, P_2, P_3 .

- \blacksquare Procesory tvoří virtuální 1-D mřížku M(p).
- lacktriangleq p nedělí $n \implies \operatorname{spodní} \operatorname{proužky} \operatorname{jsou} \operatorname{užší}.$
- Všechna 3 mapování jsou stejnoměrná.
- $\blacksquare \frac{n}{p} \ge p \implies \mathsf{blokov\check{e}} \leftrightarrow \mathsf{cyklicky} \equiv \mathsf{AAS}.$

lacksquare Procesory tvoří virtuální 2-D mřížku $M(\sqrt{p},\sqrt{p}).$

Šachovnicové mapování (16×16) -matice na $p = 2 \times 2$ procesory $P_1 - P_4$.

Transpozice matice mapované proužkově = AAS

Transpozice matice mapované šachovnicově = permutace

SF 2-D mřížka

SF všeportová $M(\sqrt{p},\sqrt{p})$ s XY směrováním, $\mathcal{A}=(n\times n)$ -matice, $N=n^2$

Časová složitost a škálovatelnost

$$T(N,p) = t_s + 2(\sqrt{p} - 1)\frac{N}{p}t_m + O\left(\frac{N}{p}\right).$$

$$E(N,p) = \Theta\left(\frac{1}{\sqrt{p}}\right) \implies \psi_2(N) = 1!!!$$

- WH všeportová $M(\sqrt{p}, \sqrt{p})$ s XY směrováním, $\mathcal{A} = (n \times n)$ -matice, $N = n^2$.
- lacksquare Blokově šachovnicově mapování $\implies (\frac{n}{\sqrt{p}} imes \frac{n}{\sqrt{p}})$ -submatice na 1 procesor.

První 2 kroky transpozice matice na WH 2-D mřížce.

Časová složitost a škálovatelnost

$$T(N,p) \doteq (\sqrt{p}-1)(t_s + \sqrt{p}t_d + \frac{N}{p}t_m) + O\left(\frac{N}{p}\right).$$

$$E(N,p) = \Theta\left(\frac{1}{\sqrt{p}}\right) \implies \psi_2(N) = 1!!!$$

Hyperkrychle

- lacksquare $\mathcal{A}=(n imes n)$ -matice, $N=n^2$, poloduplexní SF jednoportová Q_q s e-cube směrováním.
- Rekurzivní algoritmus.
 - Fyzická hyperkrychle je vnořena do virtuální 2-D mřížky $M(\sqrt{p}, \sqrt{p})$, kde $p = 2^q$.
 - 1 krok = výměna posunem mezi diagonálně symetr. čtvrtinami matice (submatic).
 - ullet Rekurze skončí na $Q_2=$ čtverec 4 procesorů

Časová složitost a škálovatelnost

$$T(N,p) = \left(t_s + 2\frac{N}{p}t_m\right)\frac{q}{2} + O\left(\frac{N}{p}\right) = \left(\frac{t_s}{2} + \frac{N}{p}t_m\right)\log p + O\left(\frac{N}{p}\right).$$

$$E(N,p) = \Theta(1/\log p) \implies \psi_2(N) = 1!!!$$

lacksquare WH Q_q : přibližně totéž.

Násobení matice vektorem $\vec{y} = A\vec{x}$ (MVM)

MVM: mapování po řádcích

lacksquare $\mathcal{A}=(n imes n)$ -matice a $ec{x}$ a $ec{y}=(n imes 1)$ -vektory mapované po řádcích na virtuální 1-D mřížku procesorů M(p). Nechť $N=n^2$ a $r=rac{n}{p}$.

Algoritmus $RowWiseMVM(A, \overrightarrow{x}, \overrightarrow{y})$

- **Fáze 1:** Každý P_i pošle svůj subvektor $\vec{x}_{(i-1)r+1}, \dots, x_{ir}$ všem ostatním procesorům (AAB).
- **Fáze 2:** Každý P_i vypočte svůj subvektor $\vec{y}_{(i-1)r+1}, \dots, x_{ir}$ sekvenčním provedením r skalárních součinů n-vektorů.

Analýza složitosti a škálovatelnosti algoritmu RowWiseMVM

- Složitost fáze 2: $T_2(N,p) = k_2 \frac{N}{p}$ (r skalárních součinů vektorů o délce n).
- Složitost fáze 1: (AAB r čísel) závisí na topologii a HW propojovací sítě.
 - 1. Plně-duplexní 2-portová SF M(p) a nekombinující AAB: $T_1(N,p) = p(t_s + k_1r) \doteq k_1\sqrt{N}$.
 - 2. Plně-duplexní 1-portová SF $M(\sqrt{p},\sqrt{p})$ a kombinující AAB: AAB po dimenzích $T_1(N,p)=\sqrt{p}t_s+k_1\sqrt{p}r+\sqrt{p}t_s+k_1\sqrt{p}\sqrt{p}r\doteq k_1\sqrt{N}$.
 - 3. Plně-duplexní 4-portová SF $M(\sqrt{p},\sqrt{p})$ a nekombinující AAB: TADT metoda $T_1(N,p)=\frac{p}{4}(t_s+k_1r)\doteq \frac{k_1\sqrt{N}}{4}.$
 - 4. Hyperkrychle: podobně.
- lacksquare Ve všech uvedených případech je $T(N,p)=T_1(N,p)+T_2(N,p)\doteq k_1'\sqrt{N}+k_2\frac{N}{p}.$
- Čili $E(N,p) = \frac{k_2N}{k_2N + k_1'p\sqrt{N}} \ge E_0$ pro $\sqrt{N} \ge \frac{E_0k_1'}{(1-E_0)k_2}p$ a $p \le \frac{(1-E_0)k_2}{E_0k_1'}\sqrt{N}$
 - ⇒ vynikající škálovatelnost:

konstantní efektivnost lze dosáhnout i pro konstantní počet řádků ${\mathcal A}$ na 1 procesor!!!

- lacksquare $\mathcal{A}=(n imes n)$ -matice, $\vec{x}=(n imes 1)$ -vektor, virtuální 1-D mřížka M(p) procesorů.
- Na počátku: P_i má subvektor $x_{(i-1)r+1}, \dots, x_{ir}$ a sloupce $(i-1)r+1, \dots, ir$ matice \mathcal{A} .
- Na konci: P_i má subvektor $y_{(i-1)r+1}, \dots, x_{ir}$.

Algoritmus ColumnWiseMVM($\mathcal{A}, \overrightarrow{x}, \overrightarrow{y}$)

- **Fáze 1:** Každý P_i může okamžitě spočítat svůj příspěvek k \vec{y} .
- **Fáze 2:** Všechny procesory zredukují všech p polí částečných skalárních součinů provedením p redukcí s operací + paralelně (redukce všech-se-všemi).

Řádově stejná časová složitost i škálovatelnost jako v předchozím případě.

- lacksquare $\mathcal{A}=(n imes n)$ -matice šachovnicově map. na virtuální $M(\sqrt{p},\sqrt{p})$, $N=n^2$.

Algoritmus CheckerBoardMVM($\mathcal{A}, \overrightarrow{x}, \overrightarrow{y}$)

- Fáze 1: for all $i=1,\ldots,\sqrt{p}$ do_in_parallel pravý krajní procesor $P_{i,\sqrt{p}}$ pošle svůj subvektor \vec{x} diagonálnímu $P_{i,i}$.
- Fáze 2: for all $i=1,\ldots,\sqrt{p}$ do_in_parallel $P_{i,i}$ informuje o obdrženém subvektoru \vec{x} svůj sloupec (OAB).
- Fáze 3: for all $i, j = 1, \dots, \sqrt{p}$ do_in_parallel $P_{i,j}$ vynásobí lokálně submatici \mathcal{A} a subvektor \vec{x} .
- Fáze 4: for all $i=1,\ldots,\sqrt{p}$ do_in_parallel procesory $P_{i,*}$ v řádku i provedou paralelní redukci, kde kořenem redukčního stromu je pravý krajní procesor $P_{i,\sqrt{p}}$.

Faze 1

Faze 2

Faze 4

Hotovo

- Každý procesor má přiřazenou $(\sqrt{\frac{N}{p}} \times \sqrt{\frac{N}{p}})$ -submatici.
- Fáze 3: $T_3 = k_3 \frac{N}{p}$ paralelních aritmetických operací.
- Složitost fáze 1 je řádově stejná (SF) nebo nižší (WH) než fáze 2 (tudíž lze zanedbat).
- Složitost fáze 2 = řádová složitost fáze 4.
- lacksquare Fáze $2=\mathsf{OAB}\ \sqrt{rac{N}{p}}$ čísel: opět závisí na topologii a HW propojovací sítě
 - SF mřížka $M(\sqrt{p},\sqrt{p})$: $T_2=k_22\sqrt{p}\sqrt{\frac{N}{p}}=2k_2\sqrt{N}\implies$ stejného řádu jako u algoritmu ROWWISEMVM, čili $E(N,p)\geq E_0$, jestliže $\frac{\sqrt{N}}{p}\geq$ konst.
 - $\begin{array}{l} \bullet \ \ Q_{\log p} \colon T_2 = k_2 \log p \sqrt{\frac{N}{p}} \\ \\ \Longrightarrow \ \ T(N,p) \doteq 2T_2(N,p) + T_3(N,p) = k_2' \log p \sqrt{\frac{N}{p}} + k_3 \frac{N}{p} \\ \\ \Longrightarrow \ \ E(N,p) \geq E_0 \ \iff \ \ N \geq \alpha^2 p \log^2 p \text{ a } p \leq \frac{\beta^2 N}{4 \log^2(\beta \sqrt{N})}, \text{ kde } \alpha = \frac{1}{\beta} = \frac{E_0 k_2'}{(1-E_0)k_3}. \end{array}$

Násobení matice-matice C = AB (MMM)

MMM: naivní algoritmus

lacksquare $\mathcal{A}=(m imes l)$ -matice a $\mathcal{B}=(l imes n)$ -matice \implies p=mln procesorů, N=ml+ln.

Algoritmus NAIVEMMM(A, B, C)

- Fáze 1: for all i, j, k do_in_parallel, procesor $P_{i,j,k}$ vypočítá součin $a_{i,j}b_{j,k}$.
- Fáze 2: for all i,k do_in_parallel, procesory $P_{i,*,k}$ pomocí paralelní redukce s kořenem redukčního stromu v $P_{i,1,k}$ vypočtou $c_{i,k} = \sum_{j=1}^l a_{i,j} b_{j,k}$.
- Příklady časů: O(l) na SF 3-D mřížce M(m,l,n) a $O(\log l)$ na hyperkrychli $Q_{\log p}$ nebo na WH 3-D mřížce, a proto $E(N,p) = \Theta(1/\sqrt[3]{p})$ na 3-D mřížce a $E(N,p) = \Theta(1/\log p)$ na hyperkrychli.
- Škálování: p' = m'l'n' < p & blokové mapování matic na M(m', l', n').
- Počáteční rozeslání matic: nejvýše stejná složitost jako má fáze 2.

MMM: méně naivní algoritmus

 \blacksquare $(n \times n)$ -matice $\mathcal{C} = \mathcal{AB}$ na $M(\sqrt{p}, \sqrt{p})$, $\sqrt{p} \leq n$: blokově šachovnicové mapování

Algoritmus StandardMM(A, B, C)

- Fáze 1: for all $i=1,\ldots,\sqrt{p}$ do_in_parallel, procesory $P_{i,*}$ v i-tém řádku virtuální mřížky provedou operaci AAB, ve které $P_{i,j}$ vysílá svou submatici $\mathcal{A}_{i,j}$.
- Fáze 2: for all $k=1,\ldots,\sqrt{p}$ do_in_parallel, procesory $P_{*,k}$ v k-tém sloupci virtuální mřížky provedou operaci AAB, ve které $P_{j,k}$ vysílá svou submatici $\mathcal{B}_{j,k}$.
- Fáze 3: for all $i, k = 1, ..., \sqrt{p}$ do_in_parallel, $P_{i,k}$ vypočítá $C_{i,k} = \sum_{j=1}^{\sqrt{p}} A_{i,j} \mathcal{B}_{j,k}$.
- Předpokládáme-li SF 2-D mřížku a $N=n^2$, pak $T(N,p)=O\left(\frac{N}{p}\sqrt{p}+\frac{N}{p}\sqrt{N}\right)$, a proto $E(N,p)=\Theta\left(\frac{\sqrt{N}}{\sqrt{N}+\sqrt{p}}\right)$. $\Rightarrow \quad \psi_2(N)=N$, což značí ideální škálovatelnost.
- **Paměťově** neefektivní: potřebuje celkem $\sqrt{p}\times$ více paměti než sekvenční alg.

MMM: Cannonův algoritmus

Cannonův algoritmus násobení matic na T(4,4).

MMM: Cannonův algoritmus (pokr).

Algoritmus $CannonMMM(\mathcal{A},\mathcal{B},\mathcal{C})$

- Fáze 1: **for all** $i=1,\ldots,\sqrt{p}$ **do_in_parallel** všechny submatice $\mathcal{A}_{i,*}$ v řádku i se orotují o i-1 pozic doleva; Fáze 2: **for all** $k=1,\ldots,\sqrt{p}$ **do_in_parallel**
- Fáze 2: **for all** $k=1,\ldots,\sqrt{p}$ **do_in_parallel** všechny submatice $\mathcal{B}_{*,k}$ v sloupci k se orotují o k-1 pozic nahoru; (* viz permutace cyklický posun v přednášce 9 *)
- Fáze 3: repeat \sqrt{p} times $\{ \begin{array}{ll} \textbf{for all } i, k=1,\ldots,\sqrt{p} \ \ \textbf{do_in_parallel} \\ P_{i,k} \ \ \text{vynásobí momentální submatice } \mathcal{A} \ \text{a} \ \mathcal{B} \ \text{a} \ \text{přičte výsledek do } \mathcal{C}_{i,k}; \\ \textbf{for all } i=1,\ldots,\sqrt{p} \ \ \textbf{do_in_parallel} \\ \text{všechny submatice } \mathcal{A}_{i,*} \ \text{v řádku } i \ \text{se orotují o} \ 1 \ \text{pozici doleva}; \\ \textbf{for all } k=1,\ldots,\sqrt{p} \ \ \textbf{do_in_parallel} \\ \text{všechny submatice } \mathcal{B}_{*,k} \ \text{v sloupci } k \ \text{se orotují o} \ 1 \ \text{pozici nahoru}; \ \} \\ \end{array}$

Časová složitost a škálovatelnost

Příklad: Všeportová WH hyperkrychle $Q_{\log p} \implies$

$$T_{\text{Cannon}}(N,p) \doteq O(t_s\sqrt{p}) + O\left(\frac{N}{\sqrt{p}}t_m\right) + O\left(\frac{n^3}{p}\right).$$

MMM: Foxův algoritmus = Broadcast-Multiply-Roll (BMR)

Algoritmus $\operatorname{FoxMMM}(\mathcal{A},\mathcal{B},\mathcal{C})$ for all $j=1,\ldots,\sqrt{p}$ do_sequentially $\{ \text{ for all } i=1,\ldots,\sqrt{p} \text{ do_in_parallel} \\ P_{i,(i+j) \bmod \sqrt{p}} \text{ rozešle submatici } \mathcal{A}_{i,(i+j) \bmod \sqrt{p}} \text{ v rámci řádku } i \text{ (OAB)};$ for all $i,k=1,\ldots,\sqrt{p}$ do_in_parallel $P_{i,k}$ přičte k $\mathcal{C}_{i,k}$ součin přijatých submatic \mathcal{A} a \mathcal{B} ; for all $k=1,\ldots,\sqrt{p}$ do_in_parallel všechny submatice $\mathcal{B}_{*,k}$ v sloupci k se orotují o 1 pozici nahoru; k

Časová složitost a škálovatelnost podobná.

Úlohy lineární algebry

- Řešení soustavy lineárních rovnic (SLR) s regulární čtvercovou $(n \times n)$ -maticí \mathcal{A} pro 1 nebo více pravých stran \vec{b} .
 - Metody řešení se liší podle typů matic: husté vs. řídké, dobře vs. špatně podmíněné, symetrické vs. nesymetrické, pozitivně definitní vs. indefinitní ap.
 - Základní skupiny metod jsou:
 - * přímé metody (finitní): pro husté matice,
 - * iterační: pro řídké matice,
 - * gradientní: pro řídké matice.
 - * speciální: pro speciální matice
- Výpočet inverzní matice.
- Výpočet determinantu.
- Hledání vlastních čísel a vektorů.

Speciální tridiagonální SLR a sudo-lichá redukce

$$(f_{1}x_{0}+)g_{1}x_{1}+h_{1}x_{2} = b_{1}$$

$$f_{2}x_{1}+g_{2}x_{2}+h_{2}x_{3} = b_{2}$$

$$\vdots$$

$$f_{i}x_{i-1}+g_{i}x_{i}+h_{i}x_{i+1} = b_{i}$$

$$\vdots$$

$$\vdots$$

$$f_{n}x_{n-1}+g_{n}x_{n}(+h_{n}x_{n+1})=b_{n}$$

Myšlenka sudo-liché redukce:

■ Jestliže $\forall i; g_i \neq 0$, pak

$$x_i = \frac{1}{g_i}(b_i - f_i x_{i-1} - h_i x_{i+1}).$$

- Substituuj tyto výrazy za x_i s lichým i
 - \implies nový tridiagonální SLR s proměnnými x_2, x_4, \ldots a s rovnicemi ve tvaru

$$-\left(\frac{f_{i}f_{i-1}}{g_{i-1}}\right)x_{i-2} + \left(g_{i} - \frac{h_{i-1}f_{i}}{g_{i-1}} - \frac{h_{i}f_{i+1}}{g_{i+1}}\right)x_{i} - \left(\frac{h_{i}h_{i+1}}{g_{i+1}}\right)x_{i+2} = b_{i} - \frac{f_{i}}{g_{i-1}}b_{i-1} - \frac{h_{i}}{g_{i+1}}b_{i+1}$$

- Počet rovnic a neznámých proměnných klesnul na jednu polovinu.
- $\blacksquare SU(n) = O(n)$

- lacksquare Po k paralelních redukcích: P_{j2^k} komunikuje s $P_{(j+1)2^k}$.
- SF M(n): celková komunikační složitost v $\lceil \log n \rceil$ krocích je $\Theta(n) = \Theta(SU(n))$.
- SF síť G: celková komunikační složitost $\approx \operatorname{diam}(G)$.
- SF Q_n : BRGC \Longrightarrow konstantní komunikační složitost/krok: $\varrho(G_n(j2^k), G_n((j+1)2^k)) \le 2!!!$
- WH M(n): konstantní komunikační složitost/krok.
- Škálovatelnost: řádkově blokové mapování na hyperkrychli n. WH síti \implies $T(n,p) = O(n/p + n/(2p) + n/(4p) + \cdots + n/(2^{\log k}p) + 1 + \ldots + 1$), kde $k = \log(n/p)$ \implies $T(n,p) = O(2n/p + \log p)$ \implies dobrá škálovatelnost, jako u PPS algoritmu.

Přímé metody pro husté SLR

Definice 1. Elementární řádkové operace (EŘO):

- 1. prohození 2 řádků matice,
- 2. vynásobení/vydělení řádku konstantou,
- 3. přičtení násobku 1 řádku k jinému řádku.

Gaussova eliminace při řešení $\mathcal{A} \vec{x} = \vec{b}$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

lacktriangle Vytvoříme rozšířenou matici \mathcal{A}'

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & b_1 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} & b_n \end{bmatrix}$$

Postupnou aplikací EŘO transformujeme \mathcal{A}' na tvar

$$\begin{bmatrix} a'_{1,1} & a'_{1,2} & \dots & a'_{1,n} & b'_1 \\ 0 & a'_{2,2} & \dots & a'_{2,n} & b'_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a'_{n,n} & b'_n \end{bmatrix}$$

■ Provedením zpětné substituce

$$x_{i} = \frac{1}{a'_{i,i}} \left(b'_{i} - \sum_{j=i+1}^{n} a'_{i,j} x_{j} \right)$$

vypočteme postupně $x_n, x_{n-1}, \ldots, x_1$.

Algoritmus Gausselim $(A, \overrightarrow{x}, \overrightarrow{b})$

for $i := 0, \dots, n-1$ do_sequentially

- (1) if $(a_{i,i} = 0 \& \forall j > i; a_{j,i} = 0)$ then Exit(Neřešitelné)
- (2) if $(a_{i,i} = 0 \& \exists j > i; a_{j,i} \neq 0)$ then vyber hlavní prvek (pivot) (* nechť je na řádku j *) prohoď řádek i a řádek j (* nyní $a_{i,i} \neq 0$ *)
- (3) vyděl řádek i prvkem $a_{i,i}$ (* n-i operací dělení *)
- (4) vynuluj sloupec i pod diagonálou odčítáním násobků řádku i od řádků $i+1,\ldots,n$. (* přibližně $(n-i)^2$ operací násobení a odčítání *)

Sekvenční složitost Gaussovy eliminace

- Celkový počet operací dělení na ř. (3) je přibližně $\sum_{i=1}^{n-1} (n-i) \doteq \frac{n^2}{2}$.
- lacktriangle Celkový počet operací násobení a odčítání na ř. (4) je přibližně $\sum_{i=1}^{n-1}(n-i)^2\doteq rac{n^3}{3}$.
- lacktriangle Celková sekvenční složitost $SU(n) \doteq \frac{2n^3}{3}t_{
 m mul} + \frac{n^2}{2}t_{
 m div}$ za předpokladu, že $t_{
 m mul} \doteq t_{
 m sub}$.

- ightharpoonup p = n: Každý procesor vlastní 1 řádek
- Paralelní operace prováděné v 1 iteraci:
 - Krok (1): paralelní redukce + OAB 1 čísla
 - Krok (2): 1-1 komunikace n čísel
 - Krok (3): lokální provedení přibližně n-i aritm. operací (žádná komunikace)
 - Krok (4): OAB řádku i + lokální provedení přibližně <math>2(n-i) aritm. operací
- Celková // složitost:
 - Dominují kroky (3)+(4).
 - Paralelní aritm. operace: $3\sum_{i=1}^{n-1}(n-i) \doteq \frac{3n^2}{2}$.
 - OAB v (4) závisí na kom. modelu. Např. WH mřížka: $\sum_{i=1}^{n-1} \left((t_s+(n-i)t_m)\log n\right)$. Pak: $T(n^2,n)\doteq \frac{3n^2}{2}+t_sn\log n+\frac{1}{2}t_mn^2\log n$
- Závěr: není efektivní: komunikační režie převyšuje výpočetní složitost
- lacktriangle Vysvětlení: sekvenční závislost iterací: iterace i+1 začne, až když skončí iterace i
- Řešení: **systolický** (data-flow přístup), pokud řešení **nevyžaduje pivotizaci** (čili provádí se pouze kroky (3) a (4))!!!!

Systolická (asynchronní, vlnová) GE na virtuální 1-D mřížce M(n)

- 1 iterace = 1 komunikační a výpočetní vlna. (V předchozím algoritmu se vlny nepřekrývaly.)
- Každý procesor P_i přijímá postupně řádky od P_{i-1} , přeposílá je P_{i+1} a současně je zapracovává (krok (4)).
- Jakmile dostane poslední (i-1)-tou řádku, nečeká, až celá iterace i-1 doběhne, ale jakmile provede krok (3), okamžitě spouští další vlnu.
- $T(n^2, n) = O(n^2)$ i na fyzické 1-D mřížce.
- p < n: blokově-řádkové mapování.

Gauss-Jordanova eliminace=metoda výpočtu inverzní matice

lacksquare Vytvoříme rozšířenou matici $\mathcal{A}' = [\mathcal{A}|\mathcal{I}_n]$

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} & 1 & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} & 0 & 0 & \dots & 1 \end{bmatrix}$$

 \blacksquare Postupnou aplikací EŘO transformujeme \mathcal{A}' na tvar

$$\begin{bmatrix} 1 & 0 & \dots & 0 & b_{1,1} & b_{1,2} & \dots & b_{1,n} \\ 0 & 1 & \dots & 0 & b_{2,1} & b_{2,2} & \dots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & b_{n,1} & b_{n,2} & \dots & b_{n,n} \end{bmatrix} = [\mathcal{I}_n | \mathcal{B}] = [\mathcal{I}_n | \mathcal{A}^{-1}]$$

■ Paralelizace, její možnosti, efektivnosti a škálovatelnosti - naprosto analogické.

Trojúhelníkové matice a zpětná substituce

$$\begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

- \blacksquare $n = \mathsf{po\check{c}et} \ \mathsf{rovnic} \implies SU(n) = O(n^2).$
- $lacksquare p=n \& t_{\mathrm{OAB}}(p)=\Theta(p)$ (SF 1-D mřížka) $\implies T(n,n)=O(n^2).$
- $p = n \& t_{OAB}(p) = O(\log p)$ (hyperkrychle, WH mřížky) $\implies T(n,n) = O(n \log n)$.
- $\blacksquare p \ll n \& \text{ cyklick\'e mapov\'an\'i po \'r\'adc\'ich} \implies n \text{ paraleln\'ich krok\'u} \implies$

$$T(n,p) = nO\left(\log p\right) + nO\left(\frac{n}{p}\right) = O(n\log p) + O\left(\frac{n^2}{p}\right).$$

lacksquare $p \ll n$ & blokové mapování po řádcích $\implies p$ paralelních kroků \implies

$$T(n,p) = pO\left(\frac{n^2}{p^2}\right) + pO\left(\frac{n}{p}\log p\right).$$

- (1) LU dekompozice: $A = \mathcal{LU}$, kde $\mathcal{L} = \operatorname{spodn}$ í trojúhelníková matice, $\mathcal{U} = \operatorname{horn}$ í trojúhelníková matice.
- (2) Dopředná redukce: $\mathcal{U}\overrightarrow{x} = \mathcal{L}^{-1}\overrightarrow{b} = \overrightarrow{y}$ (čili $\forall \overrightarrow{b}$ řešíme $\mathcal{L}\overrightarrow{y} = \overrightarrow{b}$).
- (3) Zpětná substituce: $\overrightarrow{x} = \mathcal{U}^{-1} \overrightarrow{y}$ (čili $\forall \overrightarrow{y}$ řešíme $\mathcal{U} \overrightarrow{x} = \overrightarrow{y}$).

LU dekompozice

- Gaussova LU dekompozice: $\operatorname{diag}(\mathcal{L}) = \overrightarrow{1}$.
- Choleskyho LU dekompozice: $\operatorname{diag}(\mathcal{L}) = \operatorname{diag}(\mathcal{U})$.

Idea paralelní LU dekompozice

\boldsymbol{A}	$oldsymbol{L}$	$oldsymbol{U}$
$\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}$	$\begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix}$	$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} \\ u_{22} & u_{23} & u_{24} \end{bmatrix} -$
$\begin{vmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$	$\begin{bmatrix} l \\ l_{31} & l_{32} & 1 \\ l_{41} & l_{42} & l_{43} & 1 \end{bmatrix}$	$0 \begin{array}{c c} u_{33} & u_{34} \\ u_{44} \end{array}$

$\begin{bmatrix} u_{11} \end{bmatrix}$	<i>u</i> ₁₂	<i>u</i> ₁₃	<i>u</i> ₁₄
$l_{21}u_{11}$	$l_{2}\mu_{12}^{+}\mu_{22}^{-}$	$l_{2}\mu_{13}^{+} u_{23}^{-}$	$l_{2}\mu_{14}^{+}\mu_{24}^{+}$
$l_{31}u_{11}$	$l_{3}\mu_{12}^{+}l_{32}^{}\mu_{22}^{}$	$l_{3}\mu_{13}^{+}l_{32}^{}\mu_{23}^{+}u_{33}^{}$	$l_{3}\mu_{14}^{+}l_{3}\mu_{24}^{+}u_{34}$
$l_{41}u_{11}$	$l_{4}\mu_{12}^{+}l_{42}^{}\mu_{22}^{}$	$l_{4}\mu_{13}^{+}l_{42}^{}u_{23}^{+}l_{43}^{}u_{33}^{}$	$l_{4}\mu_{14}^{+}l_{42}^{}u_{24}^{+}l_{4334}^{}u_{44}^{+}u_{44}^{}$

Optimální mapování pro paralelní LU dekompozici

Blokově-cyklicky šachovnicové mapování $(n \times n)$ - $\mathcal A$ na mřížce procesorů M(r,r),

$$r = \sqrt{p}$$
, $n = rsq$

${\cal A}_{1,1}$.	• •	$\mathcal{A}_{1,r}$		$\mathcal{A}_{1,(q-1)r+1}$	$\mathcal{A}_{1,qr}$
$\mathcal{A}_{r,1}$.		$\mathcal{A}_{r,r}$	• • •	$\mathcal{A}_{r,(q-1)r+1} \qquad \cdots$	$\mathcal{A}_{r,qr}$
	:		٠٠.	· ·	
$\overline{\mathcal{A}_{(q-1)r+1,1}}$.	\mathcal{A}	(q-1)r+1,r		$A_{(q-1)r+1,(q-1)r+1}$ · · ·	$\overline{\mathcal{A}_{(q-1)r+1,qr}}$
${\cal A}_{qr,1}$.		$\mathcal{A}_{qr,r}$	•••	$\mathcal{A}_{qr,(q-1)r+1} \cdots$	$\mathcal{A}_{qr,qr}$

Mapování 2-D mřížky procesorů M(r,r) na ${\mathcal A}$

$\begin{bmatrix} P_{1,1} & \cdots & P_{1,\sqrt{p}} \end{bmatrix}$		$P_{1,1} \cdots P_{1,\sqrt{p}}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• • •	$P_{\sqrt{p},1} \cdots P_{\sqrt{p},r}$
:	•••	i i
$P_{1,1} \cdots P_{1,\sqrt{p}}$		$P_{1,1} \cdots P_{1,\sqrt{p}}$
$ \begin{bmatrix} P_{\sqrt{p},1} & \cdots & P_{\sqrt{p},r} \end{bmatrix} $	• • •	$ P_{\sqrt{p},1} \cdots P_{\sqrt{p},r} $

Implementace paralelní LU dekompozice

Algoritmus LUDECOMPOSITION(A)

```
for k = 1, \dots, qr do_sequentially {
Fáze 1: P_{\widetilde{k}} počítá \mathcal{A}_{k,k}^{-1};
Fáze 2: for j = k, \dots, qr do_in_parallel
                     P_{\widetilde{k},\widetilde{j}} vyšle \mathcal{A}_{k,k}^{-1} dolů v sloupci k, je-li j=k
                     P_{\widetilde{k},\widetilde{j}} vyšle \mathcal{A}_{k,j} dolů v sloupci \widetilde{j} jinak;
Fáze 3: for i = k + 1, \dots, qr do_in_parallel
                      \{\;P_{\widetilde{i},\widetilde{k}}\; počítá \mathcal{A}_{i,k}=\mathcal{A}_{k,k}^{-1}\mathcal{A}_{i,k};
                         P_{\widetilde{i}.\widetilde{k}} vyšle \mathcal{A}_{i,k} doprava v řádku \widetilde{i} };
Fáze 4: for i = k + 1, ..., qr
                     for j = k + 1, \dots, qr do_in_parallel
                            P_{\widetilde{i}\ \widetilde{i}} počítá \mathcal{A}_{i,j}=\mathcal{A}_{i,j}-\mathcal{A}_{i,k}\mathcal{A}_{k,j}
```


Faze 2

Faze 3

Faze 4

■ Jacobi

$$x_i(t+1) = -\frac{1}{a_{i,i}} \left[\sum_{j \neq i} a_{i,j} x_j(t) - b_i \right]$$
 (1)

■ Gauss-Seidel

$$x_i(t+1) = -\frac{1}{a_{i,i}} \left[\sum_{j < i} a_{i,j} x_j(t+1) + \sum_{j > i} a_{i,j} x_j(t) - b_i \right]$$

■ Jacobiho superrelaxace (JOR)

$$x_i(t+1) = (1-\gamma)x_i(t) - \frac{\gamma}{a_{i,i}} [\Sigma_{j\neq i} a_{i,j} x_j(t) - b_i]$$

■ Gauss-Seidelova superrelaxace (SOR)

$$x_i(t+1) = (1-\gamma)x_i(t) - \frac{\gamma}{a_{i,i}} \left[\sum_{j < i} a_{i,j} x_j(t+1) + \sum_{j > i} a_{i,j} x_j(t) - b_i \right]$$

Pro účely vysvětlení paralelního řešení, přepíšeme rovnici (1) na tvar

$$x_i(t+1) = \frac{r_i(t)}{a_{i,i}} + x_i(t),$$

kde $\overrightarrow{r(t)} = \overrightarrow{b} - \mathcal{A}\overrightarrow{x(t)} = \text{residuální (zbytkový) vektor.}$

Algoritmus ParallelJacobi $(\mathcal{A}, \overrightarrow{x}, \overrightarrow{b})$

```
\begin{array}{ll} \overline{t:=0;\ \overrightarrow{x(t)}:=\operatorname{počáteční}\ \operatorname{hodnota;}}\\ \overline{r(t):=\overrightarrow{b}-\mathcal{A}\overrightarrow{x(t)};} & (*\operatorname{počáteční}\ \operatorname{residuál:}\ \operatorname{násobení}\ \operatorname{matice}\ \operatorname{vektorem}\ *) \\ \hline \textbf{while}\ (||\overline{r(t)}||>\varepsilon)\ \textbf{do\_sequentially}} & (*||\overline{r(t)}||=\sqrt{\overrightarrow{r(t)}}^T.\overline{r(t)})=\operatorname{skalární}\ \operatorname{součin}\ *) \\ \{\ t:=t+1; & (*\operatorname{paralelní}\ \operatorname{redukce}\ +\ \operatorname{OAB}\ *) \\ \hline \textbf{for}\ i:=0,\ldots,n-1\ \textbf{do\_in\_parallel}} \\ x_i(t)=r_i(t-1)/a_{i,i}+x_i(t-1); & (*r_i(t-1),x_i(t-1),a_{i,i}\ \operatorname{musí}\ \operatorname{být}\ v\ 1\ \operatorname{procesoru}\ *) \\ \operatorname{bariérová}\ \operatorname{synchronizace;} \\ \overline{r(t)}=\overrightarrow{b}-\mathcal{A}\overline{x(t)}; & (*\operatorname{nový}\ \operatorname{residuál:}\ \operatorname{násobení}\ \operatorname{matice}\ \operatorname{vektorem}\ *) \\ \overline{x}:=\overline{x(t)}; & (*\operatorname{nový}\ \operatorname{residuál:}\ \operatorname{násobení}\ \operatorname{matice}\ \operatorname{vektorem}\ *) \\ \hline \end{array}
```

Žádná datová závislost v rámci téže iterace \implies krásná paralelizovatelnost.

- Sekvenční Gauss-Seidelova metoda je rychlejší než sekvenční Jacobiho.
- Je však inherentně sekvenční: Je-li $\mathcal A$ hustá nebo nepravidelně řídká matice, pak pro výpočet $x_i(t+1)$ potřebujeme znát hodnoty $x_j(t+1)$ pro všechny nebo skoro všechny j < i.
- \blacksquare Tuto nesnáz lze často obejít, je-li matice $\mathcal A$ je řídká a speciálního typu.
- Toto je případ většiny matic vzniklých při diskretizaci parciálních dif. rovnic.
- Diskretizaci lze provést metodou
 - konečných diferencí,
 - konečných prvků (FEM).

Parciální diferenciální rovnice (PDE)

Poissonova rovnice = lineární parciální diferenciální rovnice

$$\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) = g(x,y), \quad (x,y) \in D = [a,b] \times [c,d], \tag{2}$$

kde $g:D\to\Re$ je známá funkce.

Úkolem je nalézt funkci $f:D o\Re$ takovou, že

- (a) splní rovnici (2),
- (b) na okraji oblasti D má předepsané hodnoty φ .

Diskretizace PDE metodou konečných diferencí

lacksquare Síťka $(N+1)^2$ rovnoměrně rozmístěných bodů v oblasti D, h=1/N,

$$f_{i,j} = f\left(\frac{i}{N}, \frac{j}{N}\right), \quad 0 \le i, j \le N,$$

$$g_{i,j} = g\left(\frac{i}{N}, \frac{j}{N}\right), \quad 0 < i, j < N.$$

Aproximace:

$$\frac{\partial^2 f}{\partial x^2}(x,y) \approx \frac{1}{h^2} \left[f(x+h,y) - 2f(x,y) + f(x-h,y) \right],$$

 \implies Rovnice (2) \rightarrow SLR $(N-1)^2$ rovnic s $(N-1)^2$ neznámými $f_{i,j}$

$$f_{i,j} = \frac{1}{4} \left[f_{i+1,j} + f_{i-1,j} + f_{i,j+1} + f_{i,j-1} - \frac{1}{N} g_{i,j} \right]$$
 (3)

- $\blacksquare \ \mathcal{A}\overrightarrow{x} = \overrightarrow{b}$, kde
 - ullet $\mathcal{A}=$ matice typu $(N-1)^2 imes (N-1)^2$,
 - ullet $\overrightarrow{x}=$ vektor $(N-1)^2$ neznámých hodnot $f_{i,j}$ na vnitřních bodech síťky,
 - ullet \overrightarrow{b} = vektor hodnot závislých na $g_{i,j}$ a na známých okrajových podmínkách f.

Matice A = speciální & řídká = blokově tri-diagonální.

$$\mathcal{A} = \begin{bmatrix} \mathcal{R} & \mathcal{E} & 0 & \dots & 0 \\ \mathcal{E} & \mathcal{R} & \mathcal{E} & 0 & \dots & 0 \\ 0 & \mathcal{E} & \mathcal{R} & \mathcal{E} & \dots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & \mathcal{E} & \mathcal{R} \end{bmatrix}$$

$$\mathcal{A} = \begin{bmatrix}
\mathcal{R} & \mathcal{E} & 0 & \dots & \dots & 0 \\
\mathcal{E} & \mathcal{R} & \mathcal{E} & 0 & \dots & 0 \\
0 & \mathcal{E} & \mathcal{R} & \mathcal{E} & \dots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & \dots & 0 & \mathcal{E} & \mathcal{R}
\end{bmatrix}, \qquad
\mathcal{R} = \begin{bmatrix}
-4 & 1 & 0 & \dots & \dots & 0 \\
1 & -4 & 1 & 0 & \dots & 0 \\
0 & 1 & -4 & 1 & \dots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\
0 & \dots & \dots & 0 & 1 & -4
\end{bmatrix},$$

a $\mathcal{E}=$ jednotková matice.

Paralelní Jacobiho algoritmus

Bez problému: číslování bodů mřížky je nepodstatné.

$$f_{i,j}(t+1) = \frac{1}{4} \left[f_{i+1,j}(t) + f_{i-1,j}(t) + f_{i,j+1}(t) + f_{i,j-1}(t) - \frac{1}{N} g_{i,j} \right]. \tag{4}$$

Paralelní Gauss-Seidelův algoritmus

Číslování má dopad na datové závislosti, a tudíž na paralelismus:

Číslování indukované 2-barvením založeným na paritě

Algoritmus ParallelGS $(A, \overrightarrow{x}, \overrightarrow{b})$

repeat

Fáze 0: proveď výpočet (4) na všech **modrých** bodech paralelně;

Fáze 1: proveď výpočet (4) na všech **žlutých** bodech paralelně;

until (není dosaženo dostatečně přesné řešení)

Jiné diskretizační matrice a jejich paralelní řešení

$$\frac{\partial^2 f}{\partial x^2}(x,y) + \frac{\partial^2 f}{\partial y^2}(x,y) + \frac{\partial^2 f}{\partial x \partial y}(x,y) = g(x,y)$$

⇒ 9-bodová diskretizace

∃ pouze 3 různá barvení 2-D síťky pomocí 4 barev, odpovídající této diskretizaci.

4-fázový paralelní Gauss-Seidelův algoritmus:

repeat

proveď výpočet na všech **červených** bodech paralelně; proveď výpočet na všech **modrých** bodech paralelně; proveď výpočet na všech **zelených** bodech paralelně; proveď výpočet na všech **žlutých** bodech paralelně; **until** (není dosaženo dostatečně přesné řešení)