stochacalculus

David Peña Peralta

2025-01-11

Table of contents

1	Ecuaciones Diferenciales Estocásticas		3
2	Tarea 1		4
3	Tarea 2		16
4	Tarea 3		19
5	Tarea 4 5.0.1 5.0.2	Demostración	28 28 29
6	Tarea 5		33
7	Tarea 6		41
8	Tarea 7		45
9	Tarea 8		50
10	10.0.2	Muestre que X_t es una martingala local	55 56 56 57
11	Tarea 10		59
References		66	

1 Ecuaciones Diferenciales Estocásticas

Ahora, vamos

2 Tarea 1

Ejecute y explica en pocas palabras la salida del código ex_001.py

```
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import axes3d
from scipy.stats import norm
import numpy as np
from scipy.stats import bernoulli
import matplotlib.pyplot as plt
fig_01, ax_01 = plt.subplots(1, 1)
fig_02, ax_02 = plt.subplots(1, 1)
p = 0.3
mean, var, skew, kurt = bernoulli.stats(p, moments='mvsk')
print(mean, var, skew,kurt)
x = np.arange(bernoulli.ppf(0.01, p), bernoulli.ppf(0.99, p))
ax_01.plot(x, bernoulli.pmf(x, p), 'bo', ms=8, label='bernoulli pmf')
ax_01.vlines(x, 0, bernoulli.pmf(x, p), colors='b', lw=5, alpha=0.5)
r = bernoulli.rvs(p, size=1000)
ax_02.hist(r, bins=200)
plt.show()
```

0.3 0.21 0.8728715609439694 -1.2380952380952381

El código posee 3 salidas: * Un vector [0.3, 0.21, 0.87, -1.23] * Dos gráficas.

El vector hace referencia a los momentos de la distribución bernoulli con parámetro p=0.3. * mean hace referencia a la media. * var hace referencia a la varianza. * skew hace referencia al sesgo. * kurt hace referencia a la kurtosis.

Finalmente, las dos gráficas: * La primera hace referencia a la función de probabilidad. Notemos que $\mathcal{P}[X=0]=0.7$, lo que muestra la gráfica. Notemos que la gráfica va de -0.04 a 0.04, por lo tanto no se iba a mostrar el caso X=1.

* La segunda hace referencia a una simulación: Se generaron una muestra de tamaño N variables aleatorias con distribución bernoulli. Como la distribución bernoulli tiene media Np, pretende mostrar que en efecto, habrá de forma aproximada Np valores igual a 1 y N(1-p) valores igual a 0.

Ejecute y explica en pocas palabras la salida del código ex_002.py

```
fig, ax = plt.subplots(1, 1)
mean, var, skew, kurt = norm.stats(moments='mvsk')
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
ax.plot(
    x,
    norm.pdf(x),
    'r-',
    1w=5,
    alpha=0.6,
    label='norm pdf'
)
rv = norm()
ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
vals = norm.ppf([0.001, 0.5, 0.999])
np.allclose([0.001, 0.5, 0.999], norm.cdf(vals))
r = norm.rvs(size=50000)
ax.hist(r, density=True, bins='auto', histtype='stepfilled', alpha=0.2)
ax.set_xlim([x[0], x[-1]])
ax.legend(loc='best', frameon=False)
plt.show()
```


El código posee una gráfica. Que hace referencia a una simulación de variables aleatorias normales. Notemos que * El elemento en azul, hace referencia a un histograma que refleja las frecuencias de los valores generados. * Mientras que la linea roja, muestra la función de densidad de una variable aleatoria estándar.

Ejecute y explica en pocas palabras la salida del código ex_003.py

Para cambiar el vector de medias μ y la matriz Σ hay que prestar atención en la linea donde aparece la función multivariate_normal() que de forma simple posee dos parámetros: * El vector de medias $\mu = [0.5, -0.2]$ * La matriz de covarianza $\Sigma = [[2.0, 0.3], [0.3, 0.5]]$

```
x = np.linspace(0, 5, 100, endpoint=False)
y = multivariate_normal.pdf(x, mean=2.5, cov=0.5)

fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax.plot(x, y)
# plt.show()

x, y = np.mgrid[-5:5:.1, -5:5:.1]
pos = np.dstack((x, y))
rv = multivariate_normal([0.1, 0.5], [[3.0, 0.3], [0.75, 1.5]])
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
ax2.contourf(x, y, rv.pdf(pos))
```

```
# plt.show()
ax = plt.figure().add_subplot(projection='3d')
ax.plot_surface(
    х,
    у,
    rv.pdf(pos),
    edgecolor='royalblue',
    1w=0.5,
    rstride=8,
    cstride=8,
    alpha=0.4
)
ax.contour(x, y, rv.pdf(pos), zdir='z', offset=-.2, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='x', offset=-5, cmap='coolwarm')
ax.contour(x, y, rv.pdf(pos), zdir='y', offset=5, cmap='coolwarm')
ax.set(
    xlim=(-5, 5),
    ylim=(-5, 5),
    zlim=(-0.2, 0.2),
    xlabel='X',
    ylabel='Y',
    zlabel='Z'
)
plt.show()
```


Generando Normales

```
import numpy as np
  from scipy.stats import bernoulli
  import matplotlib.pyplot as plt
  fig_01, ax_01 = plt.subplots(1, 1)
  fig_02, ax_02 = plt.subplots(1, 1)
  p = 0.3
  x = np.arange(bernoulli.ppf(0.01, p), bernoulli.ppf(0.99, p))
  ax_01.plot(x, bernoulli.pmf(x, p), 'bo', ms = 8, label = 'bernoulli pmf')
  ax_01.vlines(x, 0, bernoulli.pmf(x, p), colors = 'b', lw = 5, alpha = 0.5)
  r = bernoulli.rvs(p, size = 1000)
  ax_02.hist(r, bins = 200)
(array([689.,
                0.,
                      0.,
                             0.,
                                   0.,
                                         0.,
                                                0.,
                                                      0.,
                                                            0.,
                                                                   0.,
                                                                         0.,
          0.,
                0.,
                      0.,
                             0.,
                                   0.,
                                         0.,
                                                0.,
                                                      0.,
                                                            0.,
                                                                   0.,
                                                                         0.,
          0.,
                0.,
                      0.,
                             0.,
                                   0.,
                                         0.,
                                                0.,
                                                      0.,
                                                            0.,
                                                                   0.,
                                                                         0.,
          0.,
                0.,
                      0.,
                             0.,
                                                            0.,
                                   0.,
                                         0.,
                                                0.,
                                                      0.,
                                                                   0.,
                                                                         0.,
          0.,
                0.,
                      0.,
                             0.,
                                   0.,
                                                            0.,
                                         0.,
                                                0.,
                                                      0.,
                                                                   0.,
                                                                         0.,
          0.,
                0.,
                      0.,
                             0.,
                                   0.,
                                         0.,
                                                0.,
                                                      0.,
                                                            0.,
                                                                   0.,
```

```
0.,
                                                           0.,
                                                                 0.,
         0.,
                     0.,
                            0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                                       0.,
         0.,
               0.,
                     0.,
                           0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                                                 0.,
                                                                       0.,
         0.,
               0.,
                     0.,
                            0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                                                       0.,
                                  0.,
                                                                 0.,
               0.,
                     0.,
                            0.,
                                  0.,
                                        0.,
                                              0.,
         0.,
                                                     0.,
                                                           0.,
                                                                 0.,
                                                                       0.,
                                                           0.,
         0.,
               0.,
                     0.,
                            0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                                 0.,
                                                                       0.,
         0.,
               0.,
                     0.,
                            0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                                                 0.,
                                                                       0.,
         0.,
               0.,
                     0.,
                            0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                  0.,
                                                                 0.,
                                                                       0.,
               0.,
                     0.,
                            0.,
                                              0.,
                                                     0.,
                                                           0.,
         0.,
                                  0.,
                                        0.,
                                                                 0.,
                                                                       0.,
               0.,
         0.,
                     0.,
                            0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                                                       0.,
                                                                 0.,
               0.,
                     0.,
                            0.,
                                                           0.,
         0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                                 0.,
                                                                       0.,
                     0.,
                            0.,
         0.,
               0.,
                                  0.,
                                        0.,
                                              0.,
                                                     0.,
                                                           0.,
                                                                 0.,
                                                                       0.,
               0.,
                     0.,
                            0.,
                                              0.,
                                                           0.,
                                  0.,
                                        0.,
                                                     0.,
                                                                 0.,
                                                                       0.,
         0., 311.]),
           , 0.005, 0.01 , 0.015, 0.02 , 0.025, 0.03 , 0.035, 0.04 ,
       0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085,
       0.09 , 0.095, 0.1 , 0.105, 0.11 , 0.115, 0.12 , 0.125, 0.13 ,
       0.135, 0.14, 0.145, 0.15, 0.155, 0.16, 0.165, 0.17, 0.175,
       0.18 , 0.185, 0.19 , 0.195, 0.2 , 0.205, 0.21 , 0.215, 0.22 ,
       0.225, 0.23, 0.235, 0.24, 0.245, 0.25, 0.255, 0.26, 0.265,
       0.27 , 0.275, 0.28 , 0.285, 0.29 , 0.295, 0.3 , 0.305, 0.31 ,
       0.315, 0.32, 0.325, 0.33, 0.335, 0.34, 0.345, 0.35, 0.355,
       0.36 , 0.365, 0.37 , 0.375, 0.38 , 0.385, 0.39 , 0.395, 0.4
       0.405, 0.41 , 0.415, 0.42 , 0.425, 0.43 , 0.435, 0.44 , 0.445,
       0.45 , 0.455, 0.46 , 0.465, 0.47 , 0.475, 0.48 , 0.485, 0.49 ,
       0.495, 0.5 , 0.505, 0.51 , 0.515, 0.52 , 0.525, 0.53 , 0.535,
       0.54 , 0.545, 0.55 , 0.555, 0.56 , 0.565, 0.57 , 0.575, 0.58 ,
       0.585, 0.59, 0.595, 0.6, 0.605, 0.61, 0.615, 0.62, 0.625,
       0.63 , 0.635, 0.64 , 0.645, 0.65 , 0.655, 0.66 , 0.665, 0.67 ,
       0.675, 0.68, 0.685, 0.69, 0.695, 0.7, 0.705, 0.71, 0.715,
       0.72 , 0.725, 0.73 , 0.735, 0.74 , 0.745, 0.75 , 0.755, 0.76 ,
       0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8, 0.805,
       0.81 , 0.815, 0.82 , 0.825, 0.83 , 0.835, 0.84 , 0.845, 0.85 ,
       0.855, 0.86, 0.865, 0.87, 0.875, 0.88, 0.885, 0.89, 0.895,
           , 0.905, 0.91 , 0.915, 0.92 , 0.925, 0.93 , 0.935, 0.94 ,
       0.945, 0.95, 0.955, 0.96, 0.965, 0.97, 0.975, 0.98, 0.985,
       0.99 , 0.995, 1.
<BarContainer object of 200 artists>)
```



```
from scipy.stats import norm
fig, ax = plt.subplots(1,1)
x = np.linspace(norm.ppf(0.01),norm.ppf(0.99), 100)
```

```
ax.plot(x, norm.pdf(x),'r-', lw = 5, alpha = 0.6)

r = norm.rvs(size = 1000)

ax.hist(r, density = True, bins = 'auto', histtype = 'stepfilled', alpha = 0.2)
ax.set_xlim(x[0], x[-1])
ax.legend(loc='best', frameon = False)
```

No artists with labels found to put in legend. Note that artists whose label start with an admitted that artists whose labels are admitted to the admitted that artists whose labels are admitted to the admitted that artists whose labels are admitted to the admitted that are admitted to the admitted that artists whose labels are admitted to the admitted that are admitted to the a


```
from mpl_toolkits.mplot3d import axes3d
from scipy.stats import multivariate_normal

x = np.linspace(0,5,100,endpoint = False)
y = multivariate_normal.pdf(x , mean = 2.5, cov = 0.5)

fig1 = plt.figure()
ax = fig1.add_subplot(111)
ax.plot(x,y)
```

<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x1ea23ca0e10>

3 Tarea 2

Sea X_i v.a.i.i.d tales que

$$\mathcal{P}\left[X_{i}=h\right]=\mathcal{P}\left[X_{i}=-h\right]=\frac{1}{2},\forall i,$$

entonces definimos $Y_{n,h}$.

Queremos calcular la función característica de $Y_{n,\delta}$.

$$E\left[i\lambda Y_{n,\delta}\left(t\right)\right],$$

Aprovechando que para cada X_i son v.a.i.i.d. Entonces, tenemos lo siguiente

$$E\left[i\lambda Y_{n,\delta}\left(t\right)\right] = \left(\cos\left(\lambda h\right)\right)^{t/\delta}$$
$$= u^{t},$$

donde

$$u = \left[\cos(\lambda h)\right]^{1/\delta}$$
$$\ln(u) = \frac{1}{\delta}\ln\left[\cos(\lambda h)\right]$$

Entonces, aproximaremos $\cos(\lambda h)$ con su expansión de Taylor.

$$\cos\left(\lambda h\right) \approx 1 - \frac{\left(\lambda h\right)^2}{2!} + \frac{\left(\lambda h\right)^4}{4!},$$

entonces

$$\begin{split} \ln\left(\cos\left(\lambda h\right)\right) &\approx \ln\left[1 - \frac{\left(\lambda h\right)^2}{2} + \frac{\left(\lambda h\right)^4}{4!}\right] \\ &\approx -\frac{\left(\lambda h\right)^2}{2!} + \frac{\left(\lambda h\right)^4}{4!} \end{split}$$

Entonces

$$u^{t} \approx \exp\left[\frac{t}{\delta} \left(-\frac{(\lambda h)^{2}}{2!} + \frac{(\lambda h)^{4}}{4!}\right)\right],$$
$$\approx \exp\left[-\frac{t}{\delta} \left(\frac{\lambda^{2} h^{2}}{2} - \frac{\lambda^{4} h^{4}}{24}\right)\right],$$

Calculando el limite

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right)\right)\right] = \lim_{\delta \to 0} \exp\left[-t\left(\left\lceil\frac{h^2}{\delta}\right\rceil\left(\frac{\lambda^2}{2} - \frac{\lambda^4 h^2}{24}\right)\right)\right],$$

si $h^2/\delta \to \infty$ Segun la sucesión $\delta_n \to 0$ tenemos limites diferentes, por lo tanto, este no existe. Ahora, usando la normalización, retomando las operaciones anteriores,

$$\begin{split} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right) + \frac{th^2\lambda^2}{2}\right)\right] &= E\left[\exp\left(i\lambda\sum_{i=0}^n X_i + \frac{th^2\lambda^2}{2\delta}\right)\right] \\ &= E\left[\exp\left(i\lambda\sum_{i=0}^n X_i\right)\right] \exp\left(\frac{th^2\lambda^2}{2\delta}\right) \\ &= \left(\left[\cos\left(\lambda h\right)\right]^{1/\delta} \exp\left(\frac{h^2\lambda^2}{2\delta}\right)\right)^t, \end{split}$$

entonces,

$$v = \left[\cos(\lambda h)\right]^{1/\delta} \exp\left(\frac{h^2 \lambda^2}{2}\right)$$

$$\ln v = \ln\left[\left[\cos(\lambda h)\right]^{1/\delta} \exp\left(\frac{h^2 \lambda^2}{2}\right)\right]$$

$$= \frac{1}{\delta} \ln\left[\cos(\lambda h)\right] + \frac{h^2 \lambda^2}{2\delta}$$

$$= \frac{1}{\delta} \left(\ln\left[\cos(\lambda h)\right] + \frac{h^2 \lambda^2}{2}\right)$$

$$\approx \frac{1}{\delta} \left(\ln\left[\frac{(\lambda h)^2}{2} + \frac{(\lambda h)^4}{4!}\right] + \frac{h^2 \lambda^2}{2}\right)$$

recordando que

$$\ln\left(1+x\right) \approx x - \frac{x^2}{2},$$

entonces

$$\ln v \approx \frac{1}{\delta} \left(\left\lceil -\frac{\left(\lambda h\right)^2}{2} + \frac{\left(\lambda h\right)^4}{4!} - \frac{\left(-\frac{\left(\lambda h\right)^2}{2} + \frac{\left(\lambda h\right)^4}{4!}\right)^2}{2} \right\rceil + \frac{h^2 \lambda^2}{2} \right),$$

bajo la simplificación de que $o\left(h^{k}\right)\equiv0,k\geq4,$ entonces

$$\ln v \approx \frac{1}{\delta} \left(\frac{(\lambda h)^4}{24} - \frac{(\lambda h)^4}{8} \right)$$
$$\approx \frac{1}{\delta} \left(\frac{(\lambda h)^4}{24} - \frac{3(\lambda h)^4}{24} \right)$$
$$v \approx \exp\left(-\frac{(\lambda h)^4}{12\delta} \right)$$

por lo tanto, si $h^4/\delta \to 0$

$$\lim_{\delta \to 0} E\left[\exp\left(i\lambda Y_{n,\delta}\left(t\right) + \frac{th^2\lambda^2}{2}\right)\right] = \lim_{\delta \to 0} \exp\left(-\frac{\left(\lambda h\right)^4}{12\delta}\right) = 1$$

4 Tarea 3

Si $X \sim N(\mu, \sigma)$ entonces $\left(\frac{X - \mu}{\sigma}\right) \sim N(0, 1)$.

Calculemos la función característica de la variable $\frac{X-\mu}{\sigma}$,

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = E\left[e^{it\left(\frac{X-\mu}{\sigma}\right)}\right] \\
= E\left[e^{\left(\frac{itX}{\sigma} - \frac{it\mu}{\sigma}\right)}\right] \\
= e^{-\frac{it\mu}{\sigma}}E\left[e^{\left(\frac{itX}{\sigma}\right)}\right] \\
= e^{-\frac{it\mu}{\sigma}}\int_{-\infty}^{\infty}e^{\frac{itx}{\sigma}}\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx \\
= e^{-\frac{it\mu}{\sigma}}\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\frac{itx}{\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx \\
= e^{-\frac{it\mu}{\sigma}}\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{\frac{itx}{\sigma} - \frac{(x-\mu)^2}{2\sigma^2}}dx \\
= e^{-\frac{it\mu}{\sigma}}\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{1}{2}\frac{(x-\mu)^2 - 2itx\sigma}{\sigma^2}}dx \tag{4.1}$$

Observemos que,

$$\frac{(x-\mu)^2 - 2itx\sigma}{\sigma^2} = \frac{x^2 - 2x\mu + \mu^2 - 2itx\sigma}{\sigma^2}$$

$$= \frac{x^2}{\sigma^2} - \frac{2x\mu}{\sigma^2} + \frac{\mu^2}{\sigma^2} - \frac{2itx\sigma}{\sigma^2}$$

$$= \frac{x^2}{\sigma^2} - \frac{2x}{\sigma} \left(\frac{\mu + it\sigma}{\sigma^2}\right) + \frac{\mu^2}{\sigma^2}$$

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \left(\frac{\mu + it\sigma}{\sigma}\right)^2 + \frac{\mu^2}{\sigma^2}$$

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \frac{2it\sigma\mu}{\sigma^2} - \frac{(it\sigma)^2}{\sigma^2}$$

$$= \left(\frac{x}{\sigma} - \left(\frac{\mu + it\sigma}{\sigma}\right)\right)^2 - \frac{2it\mu}{\sigma} + t^2. \tag{4.2}$$

Sustituyendo (4.2) en (4.1), resulta

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{it\mu}{\sigma}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left[\left(\frac{x}{\sigma} - \left(\frac{\mu+it\sigma}{\sigma}\right)\right)^{2} - \frac{2it\mu}{\sigma} + t^{2}\right]} dx$$

$$= e^{-\frac{it\mu}{\sigma}} e^{\frac{it\mu}{\sigma} - \frac{t^{2}}{2}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x}{\sigma} - \left(\frac{\mu+it\sigma}{\sigma}\right)\right)^{2}} dx$$

$$= e^{-\frac{t^{2}}{2}} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x}{\sigma} - \left(\frac{\mu+it\sigma}{\sigma}\right)\right)^{2}} dx \tag{4.3}$$

Sea $u=\frac{x}{\sigma}-\left(\frac{\mu+it\sigma}{\sigma}\right)\Longrightarrow du=\frac{1}{\sigma}dx$, sustituyendo esto en (4.3), resulta

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{t^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du \tag{4.4}$$

de aquí se sigue que $u \sim N(0,1)$, entonces

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} dx = 1.$$

sustituyendo esto ultimo en (4.4), se tiene,

$$\varphi_{\frac{X-\mu}{\sigma}}(t) = e^{-\frac{t^2}{2}},$$

que es la función característica de una Normal estándar, como las funciones características coinciden se concluye que $\frac{X-\mu}{\sigma} \sim N(0,1)$.

Si $Y \sim N(0,1)$ entonces $\sigma Y + \mu \sim N(\mu,\sigma)$. Calculemos la función característica de la variable $\sigma Y + \mu$,

$$\varphi_{\sigma Y + \mu}(t) = E \left[e^{it(\sigma Y + \mu)} \right]
= E \left[e^{it\sigma Y + it\mu} \right]
= e^{it\mu} E \left[e^{it\sigma Y} \right]
= e^{it\mu} \int_{-\infty}^{\infty} e^{it\sigma y} \frac{1}{\sqrt{2\pi}} e^{\frac{-y^2}{2}} dy
= e^{it\mu} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^2 - 2yit\sigma)} dy.$$
(4.5)

Observemos que,

$$y^{2} - 2yit\sigma = (y - it\sigma)^{2} - (it\sigma)^{2}$$
$$= (y - it\sigma)^{2} + t^{2}\sigma^{2}.$$
(4.6)

Sustituyendo, (4.6) en (4.5) resulta

$$\varphi_{\sigma Y + \mu}(t) = e^{it\mu} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}((y - it\sigma)^2 + t^2\sigma^2)} dy
= e^{it\mu} e^{-\frac{1}{2}t^2\sigma^2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y - it\sigma)^2} dy$$
(4.7)

Tomando $u = y - it\sigma \Longrightarrow du = dy$, se tiene que

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-it\sigma)^2} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du,$$

entonces $U \sim N(0,1)$, por lo tanto,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y-it\sigma)^2} dy = 1$$

sustituyendo esto ultimo en (4.7), resulta,

$$\varphi_{\sigma Y+\mu}(t)=e^{it\mu}e^{-\frac{1}{2}t^2\sigma^2}=e^{it\mu-\frac{t^2\sigma^2}{2}}.$$

Sea Z una variable aleatoria tal que $Z \sim N(\mu, \sigma)$ sabemos que,

$$\varphi_Z(t) = e^{it\mu - \frac{t^2\sigma^2}{2}}.$$

De estas dos ultimas igualdades se sigue que,

$$\varphi_Z(t) = \varphi_{\sigma Y + \mu}(t).$$

Dado que tienen iguales funciones características se concluye que,

$$\sigma Y + \mu \sim N(\mu, \sigma)$$

Si $X \sim N(\mu_1, \sigma_1^2), \ Y \sim N(\mu_2, \sigma_2^2)$ además X y Y son independientes entonces $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Por definición, se tiene que,

$$\begin{split} \varphi_{X+Y}(t) &= E[e^{it(X+Y)}] \\ &= E[e^{itX}e^{itY}] \text{ por ser independientes, del ejercicio 4} \\ &= E[e^{itX}]E[e^{itY}] \\ &= \varphi_X(t)\varphi_Y(t). \end{split} \tag{4.8}$$

Por otro lado, sea Z una variables aleatoria tal que, $Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$, sabemos que la función característica de Z, esta dada por,

$$\begin{array}{lll} \varphi_Z(t) = & & e^{it(\mu_1 + \mu_2) - \frac{t^2}{2}(\sigma_1^2 + \sigma_2^2)} \\ & = & & e^{it\mu_1 - \frac{t^2\sigma_1^2}{2} + it\mu_2 - \frac{t^2\sigma_2^2}{2}} \\ & = & & e^{it\mu_1 - \frac{t^2\sigma_1^2}{2}} e^{it\mu_2 - \frac{t^2\sigma_2^2}{2}} \\ & = & & \varphi_X(t)\varphi_Y(t), \end{array}$$

entonces, de esta ultima igualdad y de (??) se sigue que,

$$\varphi_Z(t) = \varphi_{X+Y}(t).$$

Como las funciones características coinciden se sigue que, $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$. Si X, Y son variables normales independientes. Entonces E[XY] = E[X] E[Y].

Recordemos que

$$E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y) \, \mathrm{d}x \mathrm{d}y$$

Como X, Y son independientes

$$f_{XY}\left(x,y\right) =f_{X}\left(x\right) f_{Y}\left(y\right)$$

Entonces

$$\begin{split} E\left[XY\right] &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}\left(x,y\right) \mathrm{d}x \mathrm{d}y \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X}\left(x\right) f_{y}\left(y\right) \mathrm{d}x \mathrm{d}y \\ &= \left[\int_{-\infty}^{\infty} x f_{X}\left(x\right) \mathrm{d}x\right] \left[\int_{-\infty}^{\infty} y f_{y}\left(y\right) \mathrm{d}y\right] \\ &= E\left[X\right] E\left[Y\right] \end{split}$$

Por Demostrar

$$\mathcal{P}[|X - \mu| \ge \epsilon] \le \frac{\operatorname{Var}[X]}{\epsilon^2}$$

Por la desigualdad de Chebysev, para X una variable aleatoria.

$$\mathcal{P}\left[X \geq \epsilon\right] \leq \frac{E\left[X\right]}{\epsilon}$$

Entonces, sea $Y=\left|X-\mu\right|,\mu=E\left[X\right]$

$$\begin{split} \mathcal{P}\left[\left|X-\mu\right| \geq \epsilon\right] &= \mathcal{P}\left[\left|X-\mu\right|^2 \geq \epsilon^2\right] \\ &\leq \frac{E\left[\left(X-\mu\right)^2\right]}{\epsilon^2} &= \frac{\mathrm{Var}\left[X\right]}{\epsilon^2} \end{split}$$

::: {exr-1}

Por demostrar

Sean X_1,X_2,\dots,X_n variables aleatorias independienes con esperanza finita $\mu=E\left[X_j\right]$ y varianza infinita. $\sigma^2=\mathrm{Var}\left(X_j\right)$. Sean $S_n=X_1+X_2+\dots+X_n$. Entonces para cada $\epsilon>0$.

:::

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \to 0$$

Notemos que

$$\operatorname{Var}\left[\frac{S_n}{n} - \mu\right] = \frac{1}{n^2} \operatorname{Var}\left(S_n\right) = \frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}\left(X_i\right)$$
$$= \frac{\sigma^2}{n}$$

Entonces, por el Teorema de Chebysev

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \le \frac{\sigma^2}{n\epsilon},$$

notemos que para $n \to \infty$

$$\frac{\sigma^2}{n\epsilon} \to 0.$$

Entonces

$$\mathcal{P}\left[\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right] \to 0$$

Sea $\left\{X_i\right\}_{i=1}^{\infty}$ una secuencia de v.a.i.id con media a y varianza b^2 . Entonces para doo $\alpha,\beta\in\mathbb{R}$, con $\alpha<\beta$, entonces

$$\mathcal{P}\left(\lim_{M\to\infty}\alpha\leq\frac{\displaystyle\sum_{i=1}^{M}X_{i}-Ma}{\sqrt{M}b}\leq\beta\right)=\frac{1}{\sqrt{2\pi}}\int_{\alpha}^{\beta}\exp\left(-\frac{1}{2}x^{2}\right)\mathrm{d}x$$

Sea

$$Y_M = \frac{\displaystyle\sum_{i=1}^M \left[X_i - a\right]}{\sqrt{M}b},$$

Definamos

$$\overline{S_M} = \sum_{i=1}^M \left[X_i - a \right],$$

entonces

$$Y_M = \frac{S_M}{\sqrt{M}b}$$

demostraremos que la función generadora de momentos $\varphi_M \to \varphi$ donde $\varphi_m = \varphi_{Y_M}$ y φ es función generadora de momentos de la distribución normal estandar.

Ahora,

$$\begin{split} \varphi_{M}\left(t\right) &= E\left[\exp\left(t\frac{S_{M}}{\sqrt{Mb}}\right)\right] \\ &= \varphi_{SM}\left(\frac{t}{\sqrt{Mb}}\right) \\ X_{i} \text{ v.a.i.i.d} \Rightarrow &= \left[\varphi_{(X_{1}-a)}\left(\frac{t}{\sqrt{Mb}}\right)\right]^{M} \\ &= \left[E\left[\exp\left(\frac{t}{b\sqrt{M}}\left(X_{1}-a\right)\right)\right]\right] \end{split}$$

Recordando la serie de Taylor

$$\begin{split} \varphi_{M}\left(t\right) &= \left[\sum_{i=0}^{\infty} \frac{E\left[\left(\frac{t}{b\sqrt{M}}\left(X_{1}-a\right)\right)^{i}\right]}{i!}\right]^{M} \\ &= \left[1+\frac{1}{2}\left(\frac{t}{b\sqrt{M}}\right)^{2} E\left[\left(X_{1}-a\right)^{2}\right]+\epsilon\left(3\right)\right]^{M} \\ &= \left[1+\frac{1}{M}\frac{t^{2}}{2}+\epsilon\left(3\right)\right]^{M}, \end{split}$$

donde

$$\epsilon\left(3\right) = \sum_{i=3}^{\infty} \frac{E\left[\left(\frac{t}{b\sqrt{M}}\left(X_{1} - a\right)\right)^{i}\right]}{i!},$$

Sea $s = \frac{t}{b\sqrt{M}}$, entonces $s \to 0, t \to 0$

$$\epsilon(3) = \sum_{i=2}^{\infty} \frac{E\left[\left(X_1 - a\right)^i\right] s^i}{i!}$$

Notemos que, si φ_1 existe. Entonces

$$\frac{\epsilon\left(3\right)}{s^{2}} = \sum_{i=3}^{\infty} \frac{E\left[\left(X_{1} - a\right)^{i}\right]s^{i-2}}{i!} \rightarrow 0, s \rightarrow 0.$$

Además $s \to 0$ cuando $M \to \infty$.

$$\Rightarrow \varphi_{M}\left(t\right) = \left[1 + \frac{1}{M}\left[\frac{t^{2}}{2} + M\epsilon\left(3\right)\right]\right]^{M},$$

Entonces $\epsilon\left(3\right)s^{-2}=Me\left(3\right)b^{2}t^{-2}\rightarrow0.$ Como b,t estan fijas.

$$M\epsilon(3) \to 0, M \to \infty$$

por lo tanto

$$\begin{split} \frac{t^{2}}{2} + M\epsilon\left(3\right) &\to \frac{t^{2}}{2}, M \to \infty \\ \left[1 + \frac{1}{M}\left[\frac{t^{2}}{2} + M\epsilon\left(3\right)\right]\right]^{M} &\to \exp\left(t^{2}\right), M \to \infty \\ \lim_{M \to \infty} \varphi_{M}\left(t\right) &= \exp\left(t^{2}\right) = \varphi\left(t\right), \end{split}$$

la función generadora de momentos de la distribución normal estándar. Por lo tanto

$$F_M(x) \rightarrow F_{N(0,1)}(x)$$

$$\mathcal{F}_{M}\left(b\right) - F_{M}\left(a\right) \to F_{N}\left(b\right) - F_{N}\left(a\right)$$

$$\mathcal{P}\left(\lim_{M \to \infty} \alpha \leq \frac{\displaystyle\sum_{i=1}^{M} X_{i} - Ma}{\sqrt{M}b} \leq \beta\right) = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{\beta} \exp\left(-\frac{1}{2}x^{2}\right) \mathrm{d}x$$

Sea $\left\{X_i\right\}_{i=1}^{\infty}$ una sucesión de v.a.i.i.d con media a. Entonces

$$\mathcal{P}\left[\lim_{M\to\infty}\frac{1}{M}\sum_{i=1}^{M}X_{i}=a\right]=1.$$

Esto es similar a decir que

$$\lim_{M \to \infty} \frac{1}{M} \sum_{i=1}^{M} X_i \stackrel{\text{c.s}}{=} a$$

Sin perdida de generalidad, diremos que $X_i \geq 0, \forall i.$ Definamos

$$Y_n = X_n I_{[|X_n| \le n]}, Q_n = \sum_{i=1}^n Y_i$$

Por la desigualdad de

$$\begin{split} \sum_{n=1}^{\infty} \mathcal{P}\left[\left|\frac{Q_n - E\left[Q_n\right]}{n}\right| \geq \epsilon\right] \leq \sum_{n=1}^{\infty} \frac{\operatorname{Var}\left(Q_n\right)}{\epsilon^2 n^2} = \sum_{n=1}^{\infty} \frac{1}{\epsilon^2 n^2} \sum_{i=1}^n \operatorname{Var}\left(Y_i\right) \\ \leq \sum_{n=1}^{\infty} \frac{E\left(Y_n^2\right)}{\epsilon^2 n^2} = \sum_{n=1}^{\infty} \frac{1}{\epsilon^2 n^2} \int_0^n x^2 \mathrm{d}F \\ \leq \sum_{n=1}^{\infty} \frac{1}{\epsilon^2} \int_0^n x \mathrm{d}F < \infty, \end{split}$$

donde ${\cal F}$ es la función de distribución de $X_i.$ Luego

$$E\left[X_{1}\right]=\lim_{n\rightarrow\infty}\int_{0}^{n}x\mathrm{d}F=\lim_{n\rightarrow\infty}E\left[Y_{n}\right]=\lim_{n\rightarrow\infty}\frac{E\left[Q_{n}\right]}{n}.$$

Entonces, por el Lema de Borel Canteli. $\mathcal{P}\left[\limsup\left(\left|\frac{Q_n-E\left[Q_n\right]}{n}\right|\geq\epsilon\right)\right]=0$

$$\lim_{n\to\infty}\frac{Q_n}{n}=E\left[X_1\right], \text{c.s}$$

Ahora, calcularemos la siguiente probabilidad

$$\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}\neq Y_{i}\right]=\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}>n\right]$$

como $E\left[X_{i}\right]<\infty$ y X_{i} son v.a.i.i.d.

$$\sum_{i=1}^{\infty}\mathcal{P}\left[X_{i}>n\right]\leq E\left[X_{1}\right]<\infty$$

De nuevo, por el Lema de Borel Cantelli.

$$\mathcal{P}\left[\limsup\left[X_{i}\neq Y_{i}\right]\right]=0,\forall i$$

Entonces

$$\begin{split} X_i &= Y_i, \text{c.s} \\ \Rightarrow & \frac{1}{M} \sum_{i=1}^M X_i \to E\left[X_1\right] = \mu. \text{ c.s} \end{split}$$

5 Tarea 4

Sea W(t) un movimiento Browniano estándar en [0,T]. Pruebe que para cualquier c>0 fijo,

$$V(t) = \frac{1}{c}W(c^2t)$$

es un movimiento Browniano sobre [0, T].

5.0.1 Demostración

Demostraremos que V cumple las propiedades del movimiento Browniano.

5.0.1.1 Propiedad 1

Es claro que $V(0) = \frac{1}{c}W(c^20) = 0.$

5.0.1.2 Propiedad 2 (Incrementos Independientes)

Sean s < t < u < v tenemos que

$$E[\left(V(t) - V(s)\right)\left(V(v) - V(u)\right)] = \frac{1}{c^2} E[\left(W(c^2t) - W(c^2s)\right)\left(W(c^2v) - W(c^2u)\right)]$$

Como el browniano tiene incrementos independientes.

$$\begin{split} \frac{1}{c^2} E\left[\left(W(c^2t) - W(c^2s)\right)\left(W(c^2v) - W(c^2u)\right)\right] &= \frac{1}{c^2} E\left[\left(W(c^2t) - W(c^2s)\right)\right] E\left[\left(W(c^2v) - W(c^2u)\right)\right] \\ &= 0 \end{split}$$

Entonces V tiene incrementos independientes.

5.0.1.3 Propiedad 3 (Incrementos estacionarios)

Considere s < t.

$$V(t) - V(s) = \frac{1}{c} \left[W(c^2 t) - W(c^2 s) \right]$$

Por propiedades del movimiento Browniano.

$$\begin{split} E\left[V(t) - V(s)\right] &= \frac{1}{c} E\left[W(c^2 t) - W(c^2 s)\right] = 0 \\ \operatorname{Var}\left[V(t) - V(s)\right] &= \frac{1}{c^2} \operatorname{Var}\left[W(c^2 t) - W(c^2 s)\right] = \frac{1}{c^2} \left(c^2 \left(t - s\right)\right) = t - s \end{split}$$

Entonces V tiene incrementos estacionarios.

5.0.2 Por lo tanto, V es un movimiento browniano.

Hacer un script para ilustrar la propiedad de escalado del movimiento Browniano para el caso de $c=\frac{1}{5}$. Estar seguro que usa el mismo camino browniano discretizado en cada subplot.

El código, se encuentra en hw4_p2.py. Pero aquí se muestran los resultados.

```
Ahora, comenzamos con el browniano escalado.

"""

c = 0.2  # 1/5

"""

Esto tiene dos interpretaciones.
Sin embargo, para este ejercicio debemos partir de una trayectoria dada, entonces haremos
"""

c_time = c**2 * time  # Transformamos el intervalo del tiempo
c_w = c**(-1) * w  # Escalamos el browniano.

print("El valor de c es ",c)
fig, cbrown = plt.subplots(2)
cbrown[0].plot(time, w)
cbrown[1].plot(c_time, c_w)
cbrown[0].set_title('Movimiento browniano')
cbrown[1].set_title('Movimiento browniano escalado')
plt.show()
```

El valor de c es 0.2

Modifique el script half_brownian_refinement.py encapsulando el código en una función. Esta función deberá recibir el extremo derecho del intervalo [0,T] y el número de incrementos N de un camino browniano base. El propósito es calcular los incrementos de relleno de una refinamiento con 2N incrementos.

```
import numpy as np
import matplotlib.pyplot as plt
prng = np.random.RandomState(10)
def refined_brownian_2n(T,L):
    dt = T / L
    W = np.zeros(L + 1)
    W_{refined} = np.zeros(2 * L + 1)
    xi = np.sqrt(dt) * prng.normal(size=L)
    xi_half = np.sqrt(0.5 * dt) * prng.normal(size=L)
    W[1:] = xi.cumsum()
    W_{-} = np.roll(W, -1)
    W_half = 0.5 * (W + W_)
    W_half = np.delete(W_half, -1) + xi_half
    W_refined[1::2] = W_half
    W_refined[2::2] = W[1:]
    t = np.arange(0, T + dt, dt)
    t_{half} = np.arange(0, T + 0.5 * dt, 0.5 * dt)
    return t, t_half, W, W_refined
```

En un script separado, incluya la función de arriba y grafique una figura con la trayectoria del browniano con 100 incrementos y muestre su refinamiento correspondiente.

```
time, bi_time, w, bi_w = refined_brownian_2n(1,100)

plt.plot(time, w, 'b-+')
plt.plot(
    bi_time,
    bi_w,
    'ro--',
    alpha=0.5
)
plt.show()
```


6 Tarea 5

Exercise 6.1. Muestre que el movimiento Browniano satisface

$$E\left[\left|W\left(t\right)-W\left(s\right)\right|^{2}\right]=\left|t-s\right|$$

Si t > s.

$$E[|W(t) - W(s)|^{2}] = E[(W(t) - W(s))^{2}]$$
$$= t - s,$$

mientras que si $t \leq s$.

$$\begin{split} E\left[\left(W\left(t\right)-W\left(s\right)\right)^{2}\right] &= E\left[\left(W\left(s\right)-W\left(t\right)\right)^{2}\right] \\ &= s-t, \end{split}$$

por lo tanto

$$E\left[\left|W\left(t\right)-W\left(s\right)\right|^{2}\right]=\left|t-s\right|$$

Exercise 6.2. Dado $W\left(t_{i}\right)$ y $W\left(t_{i+1}\right)$, muestre que la variable aleatoria

$$W\left(t_{i+\frac{1}{2}}\right):=\frac{1}{2}\left[W\left(t_{i}\right)+W\left(t_{i+1}\right)\right]+\frac{1}{2}\sqrt{\Delta t}\xi,\xi\sim N\left(0,1\right)$$

es un movimiento Browniano.

6.0.0.0.1 Es claro que al ser un refinamiento del movimiento browniano.

$$W\left(0\right) = 0$$

$\textbf{6.0.0.0.2} \ \ C_2. \ \ \textbf{Notemos que}$

$$W_{i+\frac{i}{2}}-W_{i}=\frac{1}{2}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]+\frac{1}{2}\sqrt{\Delta t}\xi,$$

Sabemos que la combinación lineal de normales es una nornal. Luego, partiendo que $t_{i+1}-t_i=\Delta t.$

$$\begin{split} E\left[W_{i+\frac{i}{2}}-W_i\right] &= 0,\\ \mathrm{Var}\left[W_{i+\frac{i}{2}}-W_i\right] &= \frac{1}{4}\Delta t + \frac{1}{4}\Delta t = \frac{1}{2}\Delta t, \end{split}$$

Por lo tanto $W_{i+\frac{1}{2}} - W_i \sim N\left(0, \frac{\Delta t}{2}\right).$

6.0.0.0.3 Calculamos la esperanza.

$$E\left[\left(W_{i+1}-W_{i+\frac{1}{2}}\right)\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]=E\left[\left(\frac{1}{2}\left[W\left(t_{i+1}\right)-W\left(t_{i}\right)\right]+\sqrt{\frac{\Delta t}{4}}\xi\right)\frac{1}{2}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]+\sqrt{\frac{\Delta t}{4}}\xi\right]$$

defina $dW_i = W_{i+1} - W_i$,

$$\begin{split} E\left[\left(W_{i+1}-W_{i+\frac{1}{2}}\right)\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right] &= E\left[\left(\frac{1}{2}dW_{i}+\sqrt{\frac{\Delta t}{4}}\xi\right)\left(\frac{1}{2}dW_{j}+\sqrt{\frac{\Delta t}{4}}\xi\right)\right] \\ &= E\left[\frac{1}{4}dW_{i}dW_{j}+\frac{1}{2}dW_{i}\sqrt{\frac{\Delta t}{4}}\xi+\frac{1}{2}dW_{j}\sqrt{\frac{\Delta t}{4}}\xi+\left(\sqrt{\frac{\Delta t}{4}}\xi\right)^{2}\right] \\ dW_{i},dW_{j} \text{ son independientes} &= \left(E\left[\frac{1}{2}dW_{i}\right]\right)\left(E\left[\frac{1}{2}dW_{j}\right]\right)+E\left[\frac{1}{2}dW_{i}\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right] \\ &+ E\left[\frac{1}{2}dW_{j}\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right]+\frac{\Delta t}{4}\left(E\left[\xi\right]\right)^{2} \\ &= \left(E\left[\frac{1}{2}dW_{i}\right]\right)\left(E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\right)+E\left[\frac{1}{2}dW_{j}\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right]+\frac{\Delta t}{4}\left(E\left[\xi\right]\right) \\ &= \left(E\left[\frac{1}{2}dW_{i}\right]\right)\left(E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\right)+E\left[\frac{1}{2}dW_{j}+\sqrt{\frac{\Delta t}{4}}\xi\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right] \\ &= \left(E\left[\frac{1}{2}dW_{i}\right]\right)\left(E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\right)+E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right] \\ &= \left(E\left[\frac{1}{2}dW_{i}\right]\right)\left(E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\right)+E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right]\sqrt{\frac{\Delta t}{4}}E\left[\xi\right] \\ &= E\left[\left(W_{i+1}-W_{i+\frac{1}{2}}\right)\right]E\left[\left(W_{j+1}-W_{j+\frac{1}{2}}\right)\right], \end{split}$$

teniendo asi, que los incrementos son independientes.

Exercise 6.3. Generalice la fórmula del ejercicio anterior para en el caso donde, $W(t_i), W(t_{i+1}), y \alpha \in (0,1)$ el valor

$$W\left(t_{i}+\alpha\Delta t\right),$$

es un movimiento Browniano.

Notemos que

$$t_i + \alpha \Delta t + (1 - \alpha) \Delta t = t_{i+1}$$

entonces vamos a definir

$$\begin{split} W_{i+\alpha} &= W\left(t_i + \alpha \Delta t\right) \\ &= \left(1 - \alpha\right) W_i + \alpha W_{i+1} + Y, \end{split}$$

donde Y será una v.a independiente de W(t). Entonces

$$\begin{split} W_{i+\alpha} - W_i &= \left(1 - \alpha\right) W_i + \alpha W_{i+1} + Y - W_i \\ &= \alpha \left(W_{i+1} - W_i\right) + Y \\ &= \alpha \left(W_{i+1} - W_i\right) + Y. \end{split}$$

Entonces

$$E\left[W_{i+\alpha}-W_{i}\right]=E\left[Y\right],$$

por lo tanto, E[Y] tiene que ser cero. Luego

$$\operatorname{Var}\left[W_{i+\alpha} - W_i\right] = \alpha^2 \Delta t + \operatorname{Var}\left[Y\right],$$

notemos que

$$(i + \alpha) \Delta t - i \Delta t = \alpha \Delta t,$$

por lo tanto tendría que cumplirse $\mathrm{Var}\left[W_{i+\alpha}-W_i\right]=\alpha\Delta t.$

$$\alpha^2 \Delta t + \text{Var}[Y] = \alpha \Delta t,$$

entonces

$$Var[Y] = \Delta t (\alpha - \alpha^2),$$

como $Y=\sqrt{\alpha\left(1-\alpha\right)}\xi,\xi\sim N\left(0,1\right)$. Como este es un refinamiento del browniano, entonces se cumple C1.

$$W(0) = 0.$$

Conseguimos C2 por construcción y de forma análoga tenemos la independiencia de los incrementos.

$$E\left[\left(W_{i+\alpha}-W_i\right)\left(W_{j+\alpha}-W_j\right)\right]=E\left[W_{i+\alpha}-W_i\right]E\left[W_{j+\alpha}-W_j\right].$$

Exercise 6.4. Suponga que $X \sim N(0,1)$. Sabemos que E[X] = 0 y $E[X^2] = 3$. Luego, de la definición, el p— ésimo momento satisface

$$E\left[X^{p}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{p} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{D}x.$$

Usando la relación, muestre que $E\left[X^{3}\right]=0$ y $E\left[X^{4}\right]=1.$

Entonces deduzca el incremento Browniano,

$$\Delta W_{i} = W\left(t_{i+1}\right) - W\left(t_{i}\right),\,$$

satisface $E\left[\Delta W_i^3\right]=0, E\left[\Delta W_i^4\right]=3\left(\Delta t\right)^2$. Entonces encuentre una expresión para $E\left[X^p\right]$ para un entero positivo $p.\backslash$ Pista: Tu puedes usar el dato que $\int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right)=\sqrt{2\pi}$.

Considere la fórmula.

$$E\left[X^{p}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^{p} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{D}x.$$

Partiendo la integral,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^p \exp\left(-\frac{x^2}{2}\right) \mathrm{D}x = \underbrace{\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} x^p \exp\left(-\frac{x^2}{2}\right) \mathrm{D}x}_{I_1} + \underbrace{\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} x^p \exp\left(-\frac{x^2}{2}\right) \mathrm{D}x}_{I_2}$$

Entonces

$$I_1 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^0 x^p \exp\left(-\frac{x^2}{2}\right) \mathrm{D}x,$$

hagamos el cambio de variable. y=-x, tenemos que

$$\begin{split} I_1 &= \frac{1}{\sqrt{2\pi}} \int_{\infty}^{0} - \left(-y\right)^p \exp\left(-\frac{y^2}{2}\right) \mathrm{D}y \\ &= \frac{\left(-1\right)^p}{\sqrt{2\pi}} \int_{0}^{\infty} y^p \exp\left(-\frac{y^2}{2}\right) \mathrm{D}y = I_2 \left(-1\right)^p, \end{split}$$

entonces

$$E[X^p] = (1 + (-1)^p)I_2,$$

de aqui tenemos, que si p es impar $E[X^p] = 0$, entonces si p es par

$$E\left[X^{p}\right] = 2I_{2},$$

entonces, nos concentraremos en

$$E\left[X^{p}\right] = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{p} \exp\left(-\frac{x^{2}}{2}\right) \mathrm{D}x, p = 2k, k \in \mathbb{N}$$

Considere $y = \frac{x^2}{2}$, Dy = xDx.

$$E\left[X^{p}\right] = \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} x^{p-1} \exp\left(-y\right) \mathrm{D}y,$$

luego $\sqrt{2y} = x$, entonces

$$\begin{split} E\left[X^{p}\right] &= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} \left(\sqrt{2y}\right)^{p-1} \exp\left(-y\right) \mathrm{D}y \\ &= \frac{2\left(\sqrt{2}\right)^{p-1}}{\sqrt{2\pi}} \int_{0}^{\infty} y^{\frac{p-1}{2}} \exp\left(-y\right) \mathrm{D}y \\ &= \frac{2\left(\sqrt{2}\right)^{p-1}}{\sqrt{2\pi}} \int_{0}^{\infty} y^{\frac{p+1}{2}-1} \exp\left(-y\right) \mathrm{D}y, \end{split}$$

recordando la función Gamma.

$$\Gamma\left(z\right) = \int_{0}^{\infty} x^{z-1} e^{-t} \mathrm{D}t,$$

entonces

$$E\left[X^{p}\right] = \begin{cases} 0 & p \text{ impar} \\ \frac{2^{\frac{p+1}{2}}}{\sqrt{2\pi}} \Gamma\left(\frac{p+1}{2}\right) & p \text{ par} \end{cases},$$

entonces $E\left[X^4\right] = \frac{4}{\sqrt{\pi}}\Gamma\left(\frac{5}{2}\right)$

$$\Gamma\left(\frac{5}{2}\right) = \int_0^\infty x^{\frac{3}{2}} e^{-x} \mathrm{D}x.$$

Considere

$$u = x^{3/2} \mathbf{D} v = e^{-x} \mathbf{D} x$$

$$\mathbf{D} u = \frac{3}{2} x^{1/2} v = -e^{-x},$$

$$\begin{split} \Gamma\left(\frac{5}{2}\right) &= \left[-x^{3/2}e^{-x}\right] + \frac{3}{2}\int_0^\infty x^{1/2}e^{-x}\mathrm{D}x \\ &= \frac{3}{2}\frac{\sqrt{\pi}}{2}. \end{split}$$

Entonces

$$E\left[X^4\right]=3$$

Notemos que si $\Delta W \sim N(0, \sigma^2)$, entonces

$$Z = \frac{\Delta W}{\sigma} \sim N\left(0, 1\right)$$

En general,

$$E\left[\left(\Delta W\right)^{p}\right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} w^{p} \exp\left(-\left(\frac{w}{\sigma}\right)^{2}\right) \mathrm{D}w,$$

considere $\sigma u = w$, entonces

$$E\left[\left(\Delta W\right)^{p}\right] = \sigma^{p} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^{p} \exp\left(-u^{2}\right) Dw\right],$$
$$= \sigma^{p} E\left[Z^{p}\right],$$

entonces para $p = 4, \sigma^2 = \Delta t$.

$$E\left[\left(\Delta W\right)^{4}\right]=\left(\Delta t\right)^{2}E\left[Z^{4}\right]=3\left(\Delta t\right)^{2}$$

Exercise 6.5. Suponga que $X \sim N(0,1)$. Muestre que para $a,b \in \mathbb{R}$,

$$E\left[\exp\left(a+bX\right)\right] = \exp\left(a + \frac{1}{2}b^2\right).$$

Deduzca que

$$E\left[\exp\left(t+\frac{1}{4}W_t\right)\right]=\exp\left(\frac{33}{32}t\right)$$

Considere

$$E\left[\exp\left(a+bX\right)\right]=e^{a}E\left[\exp\left(bX\right)\right],$$

notemos que $bX \sim N\left(0,b^2\right)$, por lo tanto, la función generadora de momentos nos dice que

$$E\left[\exp\left(bX\right)\right] = M_{bX}\left(1\right) = \exp\left(\frac{b^2}{2}\right),\,$$

por lo tanto

$$E\left[\exp\left(a+bX\right)\right]=e^{a}\exp\left(\frac{b^{2}}{2}\right)=\exp\left(a+\frac{1}{2}b^{2}\right),$$

ahora, considere

$$E\left[\exp\left(t+\frac{1}{4}W_{t}\right)\right]=E\left[\exp\left(t+\frac{1}{4}\left(W_{t}-W_{0}\right)\right)\right],$$

Notemos que $W_{t}-W_{0}\sim N\left(0,t\right),$ por lo tanto, usando la fórmula anterior

$$\begin{split} E\left[\exp\left(t+\frac{1}{4}\left(W_{t}-W_{0}\right)\right)\right] &= \exp\left(t+\frac{1}{4}\left(\sqrt{t}X\right)\right), X \sim N\left(0,1\right) \\ &= \exp\left(t+\left(\frac{1}{4}\sqrt{t}\right)X\right) = \exp\left(t+\frac{t}{32}\right) \\ &= \exp\left(\frac{33}{32}t\right) \end{split}$$

7 Tarea 6

Exercise 7.1. Hacer un script para simular 10000 trayectorias del proceso $u(t, W_t)$ definido en el Ejercicio. Grafique en una figura, 10 trayectorias y la media de las 10000 trayectorias del proceso $u(t, W_t)$.

```
import numpy as np
import matplotlib.pyplot as plt
def strong_brownian(t, n):
    dt = t / n
    dw = np.zeros(n)
    w = np.zeros(n)
    for i in np.arange(1, n):
        dw[i] = np.sqrt(dt)*np.random.standard_normal()
        w[i] = w[i - 1] + dw[i]
    time = np.linspace(0, t, n)
    return time, w
def b_function(t, a, w):
    y = np.exp(t - a * w)
    return y
n_samples = 10000
n_{points} = 64
t_initial = 0
t_final = 1
mean = np.zeros(n_points)
for i in range(n_samples):
    time, b_w = strong_brownian(t_final, n_points)
    y = b_function(time, 0.25, b_w)
    if i < 10:
```

```
plt.plot(time, b_w, 'g-', alpha=0.5)
mean += y

mean = (n_samples)**(-1) * mean
time = np.linspace(0, t_final, n_points)

y = [np.exp(33 / 32 * t) for t in time]
plt.plot(time, mean, 'r-')
plt.plot(time, y, 'b-', alpha=0.3)
plt.show()
```


Exercise 7.2. Siguiendo las ideas del refinamiento del camino browniano. $t_{i+1/2}=t_i+\frac{1}{2}\delta t$. Hacer un código de Python para el refinamiento del Browniano para $\alpha\in(0,1)$ para el refinamiento $t_i = t_i + t$

```
import numpy as np
import matplotlib.pyplot as plt

def strong_brownian(t, n):
    dt = t / n
    dw = np.zeros(n)
    w = np.zeros(n)
```

```
for i in np.arange(1, n):
        dw[i] = np.sqrt(dt)*np.random.standard_normal()
        w[i] = w[i - 1] + dw[i]
    time = np.linspace(0, t, n)
    return time, w
t final = 1
n_{points} = 65
delta_t = 1/(n_points - 1)
alpha = 0.7
prng = np.random.RandomState(219)
time, w = strong_brownian(1, n_points) # w_i
y = np.sqrt(delta_t * (alpha - alpha ** 2)) * prng.standard_normal(n_points - 1)
w_{-} = np.roll(w, -1) # w_i+1
w_alpha = alpha * w_ + (1 - alpha) * w
w_{alpha} = np.delete(w_{alpha}, -1)
w_alpha += y
w_ref = np.zeros(2* n_points -1)
w_ref[0::2] = w
w_ref[1::2] = w_alpha
time_ref = np.zeros(2 * n_points - 1)
for i in range(2 * n_points - 1):
    if i % 2 == 0:
        time_ref[i] = time[int(i / 2)]
    else:
        time_ref[i] = time[int(i / 2)] + alpha * delta_t
plt.plot(time_ref, w_ref, 'g-')
plt.plot(time, w, 'ro')
plt.show()
```


8 Tarea 7

Sea W(t) un Movimiento Browniano y Z_i una colección de variables aleatorias i.i.d, con distribución $N\left(0,\frac{\delta t}{4}\right)$.

Pruebe que la suma

$$\sum_{i=0}^L Z_i \left(W(t_{i+1}) - W(t_i)\right),$$

tiene valor esperado igual a cero y una varianza de $O(\delta t)$.

Sin perdida de generalidad supongamos que Z_i y $W(t_{i+1})-W(t_i)$ son variables aleatorias independientes para cada $i=1,\dots L.$ Entonces

$$\begin{split} \mathbb{E}\left[\sum_{i=0}^{L} Z_i \left(W(t_{i+1}) - W(t_i)\right)\right] &= \sum_{i=0}^{L} \mathbb{E}\left[Z_i \left(W(t_{i+1}) - W(t_i)\right)\right] \\ &= \sum_{i=0}^{L} \mathbb{E}(Z_i) \mathbb{E}\left(W(t_{i+1}) - W(t_i)\right) \\ &= 0 \end{split}$$

así,

$$\begin{aligned} Var\left[\sum_{i=0}^{L} Z_{i}\left(W(t_{i+1}) - W(t_{i})\right)\right] &= & \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))\right)^{2}\right] + \left(\mathbb{E}\left[\sum_{i=0}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))\right]\right)^{2} \\ &= & \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))\right)^{2}\right] \end{aligned}$$

por el Teorema multinomial, resulta

$$\begin{split} \mathbb{E}\left[\left(\sum_{i=0}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))\right)^{2}\right] &= \mathbb{E}\left[\sum_{i=0}^{L} \left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{i+1}))\right]^{2} \\ &= \sum_{i=0}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{i+1}))\right]^{2} \\ &= \sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{i}(W(t_{i+1}))\right]^{2} \\ &= \sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i+1}))Z_{i}(W(t_{i+1}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{i}(W(t_{i+1}))\right]^{2} + 2\sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{i}(W(t_{i+1}))\right]^{2} \\ &= \sum_{i \neq j}^{L} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{i}(W(t_{i+1}))Z_{$$

observemos que, si i < j

$$\begin{split} \mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}) - W(t_{j}))\right] &= \mathbb{E}\{\mathbb{E}\left[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}(W(t_{j+1}) - W(t_{j}))|\mathcal{F}_{j}\right]\} \\ &= \mathbb{E}[Z_{i}(W(t_{i+1}) - W(t_{i}))Z_{j}]\mathbb{E}\left[(W(t_{j+1}) - W(t_{j}))|\mathcal{F}_{j}\right] \\ &= 0 \end{split}$$

y además

$$\begin{split} \mathbb{E} \left[Z_i(W(t_{i+1}) - W(t_i)) \right]^2 &= \mathbb{E} \{ \mathbb{E} \left[Z_i^2(W(t_{i+1}) - W(t_i))^2 | \mathcal{F}_j \right] \} \\ &= \mathbb{E} \{ Z_i^2 \mathbb{E} \left[(W(t_{i+1}) - W(t_i))^2 | \mathcal{F}_j \right] \} \\ &= \mathbb{E} [Z_i^2] (t_{i+1} - t_i) \\ &= \frac{\delta t}{4} (t_{i+1} - t_i) \end{split}$$

sustituyendo resulta

$$\begin{split} Var\left[\sum_{i=0}^{L}Z_{i}\left(W(t_{i+1})-W(t_{i})\right)\right] &= \sum_{i=0}^{L}\frac{\delta t}{4}(t_{i+1}-t_{i})\\ &= \frac{\delta t}{4}(t_{L+1}-t_{0}). \end{split}$$

Para un L suficientemente grande, se tiene que, $(t_{L+1}-t_0)\leq \frac{\varepsilon}{4}$, así

$$Var\left[\sum_{i=0}^{L}Z_{i}\left(W(t_{i+1})-W(t_{i})\right)\right]\leq\varepsilon\delta t.$$

Así, la varianza es de orden δt .

La regla del punto medio de la integral de Riemann de una función $h \in C^2([a,b])$ sobre una partición de L puntos del intervalo [a,b] está dada por,

$$\int_a^b h(t)dt = \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L h\left(\frac{t_i + t_{i+1}}{2}\right) \delta t.$$

Use la relación

$$W\left(\frac{t_i+t_{i+1}}{2}\right) = \frac{1}{2}(W(t_i)+W(t_{i+1})) + \underbrace{Z_i}_{i.i.d.\sim N(0,\delta t/4)},$$

y el ejercicio anterior para demostrar que la regla del punto medio de la integral de Riemann implica que

$$\int_0^T W(t)dW(t) = \frac{1}{2}W(T)^2.$$

Sea $\Delta_L = \{0 = t_0, t_1, \dots, t_{L-1}, t_L = T\}$ una partición del intervalo [0, T]. De la regla del punto medio para h(t) = W(t), resulta

$$\begin{split} \int_0^T W(t)dW(t) &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L W\left(\frac{t_i + t_{i+1}}{2}\right) \left(W(t_{i+1}) - W(t_i)\right) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L \left[\frac{1}{2}(W(t_i) + W(t_{i+1})) + Z_i\right] \left(W(t_{i+1}) - W(t_i)\right) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L \frac{1}{2} \left(W(t_{i+1})^2 - W(t_i)^2\right) + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \\ &= \lim_{\delta t \to 0, \, L \to \infty} \frac{1}{2} \left(W(T)^2 - W(0)^2\right) + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \\ &= \frac{1}{2} W(T)^2 + \lim_{\delta t \to 0, \, L \to \infty} \sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \end{split}$$

Solo falta ver que

$$\sum_{i=0}^L Z_i(W(t_{i+1})-W(t_i)) \to 0 \text{ en } L^2$$

es decir,

$$\lim_{\|\Delta_L\| \rightarrow 0} E\left[\left(\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] = 0$$

Del ejercicio anterior se tiene que

$$E\left[\left(\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i))\right)^2\right] = O(\delta t) \leq \varepsilon \|\Delta_L\|,$$

así, tomando el limite cuando $\|\Delta_L\| \to \text{se}$ tiene que,

$$\sum_{i=0}^L Z_i(W(t_{i+1}) - W(t_i)) \rightarrow 0$$
en L^2

Usando la aproximación de la suma de Riemann

$$\int_0^T h(t) dW(t) \sim \sum_{i=0}^L h(t_i) (W(t_{i+1}) - W(t_i)),$$

argumente que,

$$\mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] = \frac{T^3}{3}.$$

Por tanto, enuncie la isometría de It $\hat{}$ o y deduzca que esta isometría es válida para el caso h(t)=t.

Sea $\{0=t_0,t_1,\dots,t_{L-1},t_L=T\}$ una partición del intervalo [0,T]. De la aproximación de la suma de Riemann, resulta

$$\begin{split} & \int_0^T t dW(t) &\sim & \sum_{i=0}^L t_i (W(t_{i+1}) - W(t_i)) \\ \Longrightarrow & \left(\int_0^T t dW(t) \right)^2 &\sim & \left(\sum_{i=0}^L t_i (W(t_{i+1}) - W(t_i)) \right)^2, \end{split}$$

por el Teorema Multinomial, resulta

$$\left(\sum_{i=0}^L t_i(W(t_{i+1}) - W(t_i))\right)^2 = \sum_{i=0}^L t_i^2(W(t_{i+1}) - W(t_i))^2 + 2\sum_{i \neq j} t_i t_j(W(t_{i+1}) - W(t_i))(W(t_{j+1}) - W(t_j))$$

entonces sustituyendo esto, resulta

$$\begin{split} \mathbb{E}\left[\left(\int_{0}^{T}tdW(t)\right)^{2}\right] &\sim \mathbb{E}\left[\sum_{i=0}^{L}t_{i}^{2}(W(t_{i+1})-W(t_{i}))^{2}+2\sum_{i\neq j}t_{i}t_{j}(W(t_{i+1})-W(t_{i}))(W(t_{j+1})-W(t_{j}))\right] \\ &=\sum_{i=0}^{L}t_{i}^{2}\mathbb{E}(W(t_{i+1})-W(t_{i}))^{2}+2\sum_{i\neq j}t_{i}t_{j}\mathbb{E}\left[(W(t_{i+1})-W(t_{i}))(W(t_{j+1})-W(t_{j}))\right] \\ &=\sum_{i=0}^{L}t_{i}^{2}(t_{i+1}-t_{i}), \end{split}$$

observemos que,

$$\lim_{L \to 0} \sum_{i=0}^L t_i^2(t_{i+1} - t_i) = \int_0^T t^2 dt = \frac{T}{3}$$

entonces

$$\mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] = \frac{T}{3}.$$

Además, de la isometria de Itô,

$$\mathbb{E}\left[\left(\int_0^T t dW(t)\right)^2\right] = \mathbb{E}\left[\left(\int_0^T t dW(t)\right)\left(\int_0^T t dW(t)\right)\right]$$

$$= \int_0^T \mathbb{E}(t^2) dt$$

$$= \int_0^T t^2 dt$$

$$= \frac{T}{3}$$

Escriba una función de Python para calcular la integral de It $\hat{}$ o del movimiento Browniano W(t) sobre [0,T]. La función tendría la siguiente firma.

```
import numpy as np
def f(x: float, t: float):
    y = x
    return y
def fB(partition: np.array, x: float, t: float):
    for i in range(len(partition) - 1):
        if partition[i] <= t < partition[i + 1]:</pre>
            y = f(x, t)
    return y
def ito_n(n_points: int, t: float):
    time, w = bw.u(t, n_points)
    integral = np.zeros(n_points)
    for i in range(n_points - 1):
        integral[i] = fB(time, w[i], time[i]) * (w[i + 1] - w[i])
    ito = integral.sum()
    return w, ito
```

9 Tarea 8

Use la aproximación de la suma de Riemann la ecuación 6.1. Muestra la propiedad de linealidad de la integral estocástica. Es decir,

$$\int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t = \alpha \int_0^T f(t) dW_t + \beta \int_0^T g(t) dW_t$$

Sea $\{0=t_0,t_1,\dots,t_{L-1},t_L=T\}$ una particion del intervalo [0,T], de la aproximación de la suma de Riemann, resulta

$$\begin{split} \int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t &\sim & \sum_{i=0}^L (\alpha f(t_i) + \beta g(t_i)) (W(t_{i+1}) - W(t_i)) \\ &= & \sum_{i=0}^L \alpha f(t_i) (W(t_{i+1}) - W(t_i)) + \sum_{i=0}^L \beta g(t_i) (W(t_{i+1}) - W(t_i)) \\ &= & \alpha \sum_{i=0}^L f(t_i) (W(t_{i+1}) - W(t_i)) + \beta \sum_{i=0}^L g(t_i) (W(t_{i+1}) - W(t_i)) \end{split}$$

tomando el limite cuando $L \to \infty$, resulta

$$\alpha \lim_{L \to \infty} \sum_{i=0}^L f(t_i)(W(t_{i+1}) - W(t_i)) = \alpha \int_0^T f(t) dW_t$$

у

$$\beta \lim_{L \rightarrow \infty} \sum_{i=0}^L g(t_i)(W(t_{i+1}) - W(t_i)) = \beta \int_0^T g(t) dW_t$$

así,

$$\int_0^T \left(\alpha f(t) + \beta g(t)\right) dW_t = \alpha \int_0^T f(t) dW_t + \beta \int_0^T g(t) dW_t$$

Escriba con detalle la demostración del siguiente Teorema, también incluya la demostración del Lema 5.18 del Mao.\ Teorema: Sea $f \in \mathcal{M}^2([0,T];\mathbb{R})$, sea ρ, τ dos tiempos de paro tales

que $0 \le \rho \le \tau \le T$. Entonces

$$\mathbb{E}\left(\int_{\rho}^{\tau} f(s)dW_s \mid \mathcal{F}_{\rho}\right) = 0, \tag{9.1}$$

$$\mathbb{E}\left(\left|\int_{\rho}^{\tau} f(s)dW_{s}\right|^{2} \mid \mathcal{F}_{\rho}\right) = \mathbb{E}\left(\int_{\rho}^{\tau} \left|f(s)\right|^{2} ds \mid \mathcal{F}_{\rho}\right). \tag{9.2}$$

Por el Teorema 5.14 y el teorema de paro de la martingala de Doob,

$$E(I(\tau)|\mathcal{F}_{\rho}) = I(\rho) \tag{9.3}$$

у

$$E(I^{2}(\tau) - \langle I, I \rangle_{\tau} | \mathcal{F}_{\rho}) = I^{2}(\rho) - \langle I, I \rangle_{\rho}, \tag{9.4}$$

donde $\{\langle I,I\rangle_t\}$ es definido por 5.18. Aplicando el Lema 5.18 se ve entonces de 5.22 que

$$\mathbb{E}\left(\int_{\rho}^{\tau}f(s)dB_{s}|\mathcal{F}_{\rho}\right)=\mathbb{E}(I(\tau)-I(\rho)|\mathcal{F}_{\rho})=0$$

que es (5.20). Además, por (5.22) y (5.23),

$$\mathbb{E}(|I(\tau)-I(\rho)|^2|\mathcal{F}_{\rho}) = \mathbb{E}(I^2(\tau)|\mathcal{F}_{\rho}) - 2I(\rho)\mathbb{E}(I(\tau)|\mathcal{F}_{\rho}) + I^2(\rho)$$

$$=\mathbb{E}(I^2(\tau)|\mathcal{F}_\rho)-I^2(\rho)=\mathbb{E}(\langle I,I\rangle_\tau-\langle I,I\rangle_\rho|\mathcal{F}_\rho)=\mathbb{E}\left(\int_\rho^\tau|f(s)|^2ds|\mathcal{F}_\rho\right)$$

Usando la aproximación de la suma de Riemann ecuación 6.1, la isometría de Itô y la identidad $4ab = (a+b)^2 - (a-b)^2$ pruebe que

$$\mathbb{E}\left[\left(\int_0^T g(t)dW_t\right)\left(\int_0^T f(t)dW_t\right)\right] = \int_0^T \mathbb{E}[f(t)g(t)]dt.$$

Tomemos $a=\int_0^T g(t)dW_t$ y $b=\int_0^T f(t)dW_t$, entonces usando la identidad $4ab=(a+b)^2-(a-b)^2$

$$\begin{split} 4 \left(\int_0^T g(t) dW_t \right) \left(\int_0^T f(t) dW_t \right) &= \left(\int_0^T g(t) dW_t + \int_0^T f(t) dW_t \right)^2 - \left(\int_0^T g(t) dW_t - \int_0^T f(t) dW_t \right)^2 \\ &= \left(\int_0^T (g(t) + f(t)) dW_t \right)^2 - \left(\int_0^T (g(t) - f(t)) dW_t \right)^2, \end{split}$$

así,

$$\begin{split} 4\mathbb{E}\left[\left(\int_0^T g(t)dW_t\right)\left(\int_0^T f(t)dW_t\right)\right] &= \mathbb{E}\left(\int_0^T (g(t)+f(t))dW_t\right)^2 - \mathbb{E}\left(\int_0^T (g(t)-f(t))dW_t\right)^2 \\ &= \left(\int_0^T \mathbb{E}(g(t)+f(t))^2dt\right) - \left(\int_0^T \mathbb{E}(g(t)-f(t))^2dt\right) \\ &= \left(\int_0^T \mathbb{E}[(g(t)+f(t))^2 - (g(t)-f(t))^2]dt\right) \\ &= 4\left(\int_0^T \mathbb{E}[g(t)f(t)]dt\right) \end{split}$$

Usando la suma de Riemann ecuación 6.1 y deduzca que,

$$\int_0^T W(t)^2 dW(t) = \frac{1}{3} W(T)^3 - \int_0^T W(t) dt.$$

Observemos que,

$$3W(t_i)^2(W(t_{i+1})-W((t_i))) = W(t_{i+1})^3 - \left(W(t_{i+1})-W(t_i)\right)^3 - 3\left(W(t_{i+1})-W(t_i)\right)^2W(t_i) - W(t_{i-1})^3,$$

aplicando la ecuación 6.1

$$\begin{split} \int_0^T W(t)^2 dW(t) &\sim \sum_{i=0}^L W(t_i)^2 (W(t_{i+1}) - W((t_i))) \\ &= \frac{1}{3} \sum_{i=0}^L \left[W(t_{i+1})^3 - W(t_{i-1})^3 \right] - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i) \\ &= \frac{1}{3} (W(T)^3 - W(t_0)^3) - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i) \\ &= \frac{1}{3} W(T)^3 - \frac{1}{3} \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^3 - \sum_{i=0}^L \left(W(t_{i+1}) - W(t_i) \right)^2 W(t_i) \end{split}$$

veamos que $\frac{1}{3}\sum_{i=0}^L \left(W(t_{i+1})-W(t_i)\right)^3\to 0$ en $L^2.\backslash$ Ahora, calcularemos la media de la variación cuadrática. Del Teorema Multinomial

$$\frac{1}{9}\mathbb{E}\left[\left(\sum_{i=0}^{L}\left(W(t_{i+1})-W(t_{i})\right)^{3}\right)^{2}\right] = \frac{1}{9}\sum_{i=0}^{L}\mathbb{E}\left[\left(W(t_{i+1})-W(t_{i})\right)^{6}\right] + \frac{2}{9}\sum_{i=0}^{L}\mathbb{E}\left[\left(W(t_{i+1})-W(t_{i})\right)^{3}\left(W(t_{j+1})-W(t_{i})\right)^{3}\right] = \frac{1}{9}\sum_{i=0}^{L}\mathbb{E}\left[\left(W(t_{i+1})-W(t_{i})\right)^{6}\right] + \frac{2}{9}\sum_{i=0}^{L}\mathbb{E}\left[\left(W(t_{i+1})-W(t_{i})\right)^{3}\right] + \frac{2}{9}\sum_{i=0}^{L}\mathbb{E}\left[\left(W(t_{i+1})-W(t_{i})\right)^{$$

además, de la tarea 5,

$$\begin{split} \mathbb{E}\left[\left(W(t_{i+1})-W(t_i)\right)^3\left(W(t_{j+1})-W(t_j)\right)^3\right] &=& \mathbb{E}\{\mathbb{E}\left[\left(W(t_{i+1})-W(t_i)\right)^3\left(W(t_{j+1})-W(t_j)\right)^3\right]|\mathcal{F}_j\} \\ &=& \mathbb{E}\{\left(W(t_{i+1})-W(t_i)\right)^3\mathbb{E}\left[\left(W(t_{j+1})-W(t_j)\right)^3\middle|\mathcal{F}_j]\} \\ &=& \mathbb{E}[\left(W(t_{i+1})-W(t_i)\right)^3]\mathbb{E}\left[\left(W(t_{j+1})-W(t_j)\right)^3\right] \\ &=& 0. \text{ de la tarea 5} \end{split}$$

así,

$$\frac{2}{9} \sum_{i=0}^{L} \mathbb{E} \left[\left(W(t_{i+1}) - W(t_i) \right)^3 \left(W(t_{j+1}) - W(t_j) \right)^3 \right] = 0$$

y también se tiene que $\mathbb{E}\left[\left(W(t_{i+1})-W(t_i)\right)^6\right]=15\left(t_{i+1}-t_i\right)^3,$ así

$$\begin{split} \frac{1}{9} \sum_{i=0}^{L} E\left[\left(W(t_{i+1}) - W(t_{i})\right)^{6}\right] &= \frac{5}{3} \sum_{i=0}^{L} \left(t_{i+1} - t_{i}\right)^{3} \\ &\leq \frac{5}{3} \|\Delta_{L}\|^{2} \sum_{i=0}^{L} \left(t_{i+1} - t_{i}\right) \\ &\leq \frac{5}{3} \|\Delta_{L}\|^{2} L \to 0, \|\Delta_{L}\| \to 0 \end{split}$$

Ahora veamos que

$$\sum_{i=0}^L \left(W(t_{i+1}) - W(t_i)\right)^2 W(t_i) \to \sum_{i=0}^L W(t_i) \left(t_{i+1} - t_i\right) \text{ en } L^2$$

se tiene que,

$$\mathbb{E}\left[\left(\sum_{i=0}^{L}\left(W(t_{i+1})-W(t_{i})\right)^{2}W(t_{i})-\sum_{i=0}^{L}W(t_{i})\left(t_{i+1}-t_{i}\right)\right)^{2}\right] \\ = \mathbb{E}\left[\left(\sum_{i=0}^{L}W(t_{i})[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right)^{2}\right] \\ = \mathbb{E}\left[\sum_{i=0}^{L}W(t_{i})^{2}[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)]^{2}+\sum_{i=0}^{L}W(t_{i})W(t_{i})[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)][\left(W(t_{j+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)]\right] \\ = \mathbb{E}\left[\sum_{i=0}^{L}W(t_{i})^{2}[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)]^{2}+\sum_{i=0}^{L}W(t_{i})W(t_{i})\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right]\right] \\ = \mathbb{E}\left[\sum_{i=0}^{L}W(t_{i})^{2}[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right]^{2}+\sum_{i=0}^{L}W(t_{i})W(t_{i})\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right]\right] \\ = \mathbb{E}\left[\sum_{i=0}^{L}W(t_{i})^{2}[\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right]^{2}+\sum_{i=0}^{L}W(t_{i})W(t_{i})\left(W(t_{i+1})-W(t_{i})\right)^{2}-\left(t_{i+1}-t_{i}\right)\right]\right]$$

calculemos

$$\begin{split} &\mathbb{E}\{\mathbb{E}[W(t_i)W(t_j)(\big(W(t_{i+1})-W(t_i)\big)^2-\big(t_{i+1}-t_i\big))(\big(W(t_{j+1})-W(t_j)\big)^2-\big(t_{j+1}-t_j\big))]|\mathcal{F}_j\} \\ &= &\mathbb{E}\{W(t_i)W(t_i)(\big(W(t_{i+1})-W(t_i)\big)^2-\big(t_{i+1}-t_i\big))\mathbb{E}[(\big(W(t_{i+1})-W(t_i)\big)^2-\big(t_{i+1}-t_i\big))]|\mathcal{F}_j\} = 0 \end{split}$$

Verifique que la isometría de Itô ecuación 6.4,

$$\mathbb{E}\left[\left(\int_0^T h(t)dW(t)\right)^2\right] = \mathbb{E}\left[\int_0^T h(t)^2 dt\right],$$

se tiene cuando h(t) := 1.

del ejercicio 3, resulta

$$\begin{split} \mathbb{E}\left[\left(\int_0^T h(t)dW(t)\right)^2\right] &= \mathbb{E}\left[\left(\int_0^T 1dW(t)\right)^2\right] &= \mathbb{E}\left[\left(\int_0^T 1dW_t\right)\left(\int_0^T 1dW_t\right)\right] \\ &= \int_0^T \mathbb{E}[1]dt \\ &= \int_0^T dt \\ &= T. \end{split}$$

у

$$\begin{split} \mathbb{E}\left[\int_0^T h(t)^2 dt\right] &= \mathbb{E}\left[\int_0^T 1^2 dt\right] \\ &= \mathbb{E}\left[\int_0^T dt\right] \\ &= \mathbb{E}\left[T\right] \\ &= T \end{split}$$

Así,

$$\mathbb{E}\left[\left(\int_0^T dW(t)\right)^2\right] = \mathbb{E}\left[\int_0^T dt\right]$$

10 Tarea 9

El siguiente código calcula la aproximación de la Integral de Ito. Con $T=1, L=2^13$ correspondiente al error de $\mathcal{O}(10^{-3})$

```
import numpy as np
T = 1.0
L = 2**13
dt = T / L
dW = np.sqrt(dt) * np.random.normal(size=L)
W = np.zeros(L + 1)
W[1 :] = np.cumsum(dW)
ito_integral = np.sum(np.multiply(W[0: -1], dW))
err = np.abs(ito_integral - 0.5 * (W[-1] ** 2 - T))
```

Adapta este código para la Integral de Stratonovich correspondente y evalue el error.

```
from PythonScripts import brownian_motion as bw
import numpy as np
def u(t: float, n_points: int):
    dt = t / (n_points - 1)
    dw = np.sqrt(dt) * np.random.standard_normal(n_points - 1)
    w = np.zeros(n_points)
    w[1:] = dw.cumsum()
    time = np.linspace(0, t, n_points)
    return time, w
t_f = 1
n_p = 2** 13
t, bt = u(t_f, n_p)
y = 0.5 * np.sqrt(t[1] - t[0]) * np.random.standard_normal(n_p)
stratonovich = [(0.5 * (bt[i + 1] + bt[i]) + y[i])* (bt[i + 1] - bt[i]) for i in range(n_p)
stratonovich = np.array(stratonovich).sum()
print(np.abs(stratonovich - 0.5 * bt[-1] ** 2))
```

0.0015603938766526933

Escoja un integrando y computacionalmente verifique la Isometría de Ito de la Ecuación 7.4 Sea τ un tiempo de paro. Prueba que $W\left(t+\tau\right)-W\left(\tau\right)$ es un movimiento browniano.

Definamos

$$V_{\tau}\left(t\right)=W\left(t+\tau\right)-W\left(\tau\right),$$

notemos que

$$V_{\tau}\left(0\right) =0,$$

Luego, considere para $s \leq t$

$$\begin{split} V_{\tau}\left(t\right) - V_{\tau}\left(s\right) &= W\left(t + \tau\right) - W\left(\tau\right) - \left[W\left(s + \tau\right) - W\left(\tau\right)\right] \\ &= W\left(t + \tau\right) - W\left(s + \tau\right) \sim N\left(0, t - s\right), \end{split}$$

esto además nos garantiza la independencia de los incrementos del Browniano.

Sea $W_{1}\left(t\right)$, $W_{2}\left(t\right)$ movimientos brownianos independientes con punto inicial $\left(W_{1}\left(0\right),W_{2}\left(0\right)\right)\neq\left(0,0\right)$. Defina $X_{t}=\ln\left(W_{1}^{2}\left(t\right)+W_{2}^{2}\left(t\right)\right)$.

10.0.1 Muestre que X_t es una martingala local.

Supongamos que X_t NO es una martingala local.

10.0.2 Muestre que $E\left|X_{t}\right|<\infty$ para cada t>0.

Considere

$$\begin{split} X_t &= \ln \left(W_1^2 \left(t \right) + W_2^2 \left(t \right) \right), \\ \exp \left(X_t \right) &= W_1^2 \left(t \right) + W_2^2 \left(t \right). \end{split}$$

$$\begin{split} E\left[\exp\left(X_{t}\right)\right] &= E\left[W_{1}^{2}\left(t\right)\right] + E\left[W_{2}^{2}\left(t\right)\right] \\ &= 2t. \end{split}$$

Como $X_t \geq 0, \forall t$

$$\begin{split} X_t & \leq \exp{(X_t)} \\ E\left[X_t\right] & \leq 2t < \infty, \forall t \end{split}$$

10.0.3 Muestre que X_t no es una martingala.

Supongamos que existe $c \in \mathbb{R}$ tal que $E[X_t] = c, \forall t$. Entonces

$$\begin{split} E\left[\ln\left(W_{1}^{2}\left(t\right)+W_{2}^{2}\left(t\right)\right)\right] &= c\\ \int_{0}^{\infty} \ln\left(W_{1}^{2}\left(t\right)+W_{2}^{2}\left(t\right)\right) \mathrm{d}\mathcal{P} &= c, \end{split}$$

Como la integral es finita. Entonces

$$X_t \to 0, t \to \infty$$
, c.s

Luego,

$$W_1^2\left(t\right) + W_2^2\left(t\right) \to 1, t \to \infty, \text{c.s}$$

Sin embargo

$$E[W_1^2(t) + W_2^2(t)] = 2t \to \infty, t \to \infty,$$

entonces llegamos a una contradicci'on. Entonces $E\left[X_{t}\right]$ no es constante, por lo tanto X_{t} no puede ser martingala.

Considere

$$\tau_n = \inf_t \left\{ X_t = n \right\}$$

Como X_t es no acotada. Entonces

$$\tau_n(\omega) \to \infty, n \to \infty, \forall n.$$

Ahora probaremos que Y_t es una martingala. Ahora, considere

$$Y_t = X_{\min\{t,\tau_n\}},$$

es adaptado con respecto a la filtración. Si $\tau_n>t$ lo tenemos por construcción. En caso contrario, para $n\in\mathbb{N}.$

$$Y_t = n$$

$$[Y_t = n] \subset [\tau_n < t] \in \mathcal{F}_t,$$

por ser tiempo de paro. Por lo tanto Y_t es adaptado a la filtración, por lo tanto nos queda probar que es una martingala.

Considere s < t.

$$\begin{split} E\left[Y_t\mid\mathcal{F}_s\right] &= E\left[X_{\min\{t,\tau_n\}}\mid\mathcal{F}_s\right] \\ &= E\left[X_t \mathbf{1}_{[t<\tau_n]}\left(t\right)\mid\mathcal{F}_s\right] + E\left[X_t \mathbf{1}_{[\tau_n\leq t]}\left(t\right)\mid\mathcal{F}_s\right] \\ &= E\left[X_s \mathbf{1}_{[s<\tau_n]}\left(t\right)\mid\mathcal{F}_s\right] + E\left[X_{\tau_n} \mathbf{1}_{[\tau_n\leq t]}\left(t\right)\mid\mathcal{F}_s\right] \\ &= X_s \mathbf{1}_{[s<\tau_n]}\left(t\right) + X_{\tau_n} \mathbf{1}_{[\tau_n\leq s]}\left(s\right) \\ &= Y_s, \end{split}$$

teniendo así que para cada $n\ Y_t$ es una martingala.

11 Tarea 10

Considere la ecuación diferencial estocástica lineal con ruido multiplicativo.

$$\mathrm{d}Y\left(t\right)=\left(\mu+\frac{1}{2}\sigma^{2}\right)Y\left(t\right)\mathrm{d}t+\sigma\mathrm{d}W\left(t\right)$$

Aplicando la Fórmula de Ito a la función

$$u(t,x) = y_0 \exp(\mu t + \sigma x)$$
.

Muestre que

$$Y(t) = Y(0) \exp(\mu t + \sigma W(t)),$$

resuelve la ecuación diferencial.

Use el hecho anterior, confirma que

$$Y\left(t\right)=Y\left(0\right)\exp\left(\left(\mu-\frac{1}{2}\sigma^{2}\right)t+\sigma W\left(t\right)\right),\label{eq:Y_total_eq}$$

resuelve,

$$dY(t) = \mu Y(t) dt + \sigma Y(t) dW(t)$$

Primero. Considerando la formula Integral.

$$\begin{split} S\left(t\right) &= S\left(0\right) + \int_{0}^{t}\left(a_{1}\mathbf{S}\left(t\right) + a_{2}\right)\mathrm{d}t + \int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right) \\ &= S\left(0\right) + a_{1}\int_{0}^{t}\mathbf{S}\left(t\right)\mathrm{d}t + a_{2}t + \int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right), \end{split}$$

calculamos la esperanza.

$$\begin{split} m\left(t\right) &= m\left(0\right) + a_{1} \int_{0}^{t} m\left(t\right) \mathrm{d}t + a_{2}t + \int_{0}^{t} E\left[g\left(S\left(s\right)\right)\right] \mathrm{d}B\left(s\right) \\ m\left(t\right) - m\left(0\right) &= a_{1} \int_{0}^{t} m\left(t\right) \mathrm{d}t + a_{2}t + E\left[\int_{0}^{t} g\left(S\left(s\right)\right) \mathrm{d}B\left(s\right)\right] \end{split}$$

Como g es de lipschitz y con crecimiento lineal $g(S) \in L^2_{ad}(\Omega_a^b)$, por lo tanto existe una constante c tal que

$$E\left[\int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right)\right]=c,\ \forall t$$

Luego, sabemos que

$$\int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right)=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right),$$

ahora, para cada i

$$\begin{split} E\left[g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right)\right] &= E\left[E\left[g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right)\mid\mathcal{F}_{i-1}\right]\right] \\ &= E\left[g\left(S\left(t_{i-1}\right)\right)E\left[\left(B_{i}-B_{i-1}\right)\mid\mathcal{F}_{i-1}\right]\right] \\ &= 0. \end{split}$$

por lo tanto

$$m\left(t\right)-m\left(0\right)=a_{1}\int_{0}^{t}m\left(t\right)\mathrm{d}t+a_{2}t,$$

ahora, considere su forma diferencial.

$$\frac{\mathrm{d}m\left(t\right)}{\mathrm{d}t} = a_{1}m\left(t\right) + a_{2},$$

es una ecuación diferencial lineal. Por lo tanto usaremos métodos conocidos para resolverla.

$$\frac{\mathrm{d}m\left(t\right) }{\mathrm{d}t}-a_{1}m\left(t\right) =a_{2},$$

defina

$$u = \exp\left(\int a_1 dt\right)$$
$$= e^{-a_1 t},$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left[um \left(t \right) \right] &= a_2 u \\ u \left(t \right) m \left(t \right) &= a_2 \int u \left(t \right) \mathrm{d}t \\ m \left(t \right) &= \frac{a_2}{u \left(t \right)} \int u \left(t \right) \mathrm{d}t \\ &= a_2 e^{a_1 t} \int e^{-a_1 t} \mathrm{d}t \\ &= -a_2 e^{a_1 t} \left[-\frac{1}{a_1} e^{-a_1 t} + C \right] \\ m \left(t \right) &= -\frac{a_2}{a_1} - C a_2 e^{a_1 t} \end{split}$$

Ahora, recordando la condición inicial.

$$\begin{split} m\left(0\right) &= -\frac{a_2}{a_1} - C a_2 \\ \Rightarrow C &= -\frac{1}{a_1} - \frac{1}{a_2} m\left(0\right). \end{split}$$

Entonces

$$E\left[X_{t}\right]=-\frac{a_{2}}{a_{1}}-\left[-\frac{a_{2}}{a_{1}}-E\left[X_{0}\right]\right]\exp\left(a_{1}t\right)$$

Considere la siguiente ecuación diferencial estocástica lineal.

$$\mathrm{d}S\left(t\right)=\left(a_{1}\mathbf{S}\left(t\right)+a_{2}\right)\mathrm{d}t+g\left(S\left(t\right)\right)\mathrm{d}W\left(t\right),$$

donde $g:\mathbb{R}\to\mathbb{R}$ es cualquier función global de Lipschitz con crecimiento lineal, y a_1,a_2 son dos constantes diferentes de cero. Use la forma integral de la ecuación diferencial estocástica, la propiedad de martingala de la integral de Ito y la notación

$$m\left(t\right) = E\left[X_{t}\right],$$

para deducir que

$$m\left(t\right)-m\left(0\right)=a_{1}\int_{0}^{t}m\left(s\right)\mathrm{d}s+a_{2}t$$

Usando que m(t) es la solución

$$\frac{\mathrm{d}m\left(t\right)}{\mathrm{d}t}=a_{1}m\left(t\right)+a_{2},m\left(0\right)=E\left[X_{0}\right]$$

Finalmente, muestre que

$$E\left[X\left(t\right)\right] = -\frac{a_{2}}{a_{1}} + \left(E\left[X\left(0\right)\right] + \frac{a_{2}}{a_{1}}\right)\exp\left(a_{1}t\right)$$

Primero. Considerando la formula Integral.

$$\begin{split} S\left(t\right) &= S\left(0\right) + \int_{0}^{t} \left(a_{1}\mathbf{S}\left(t\right) + a_{2}\right)\mathrm{d}t + \int_{0}^{t} g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right) \\ &= S\left(0\right) + a_{1}\int_{0}^{t} \mathbf{S}\left(t\right)\mathrm{d}t + a_{2}t + \int_{0}^{t} g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right), \end{split}$$

calculamos la esperanza.

$$\begin{split} m\left(t\right) &= m\left(0\right) + a_{1} \int_{0}^{t} m\left(t\right) \mathrm{d}t + a_{2}t + \int_{0}^{t} E\left[g\left(S\left(s\right)\right)\right] \mathrm{d}B\left(s\right) \\ m\left(t\right) - m\left(0\right) &= a_{1} \int_{0}^{t} m\left(t\right) \mathrm{d}t + a_{2}t + E\left[\int_{0}^{t} g\left(S\left(s\right)\right) \mathrm{d}B\left(s\right)\right] \end{split}$$

Como g es de lipschitz y con crecimiento lineal $g(S) \in L^2_{ad}(\Omega_a^b)$, por lo tanto existe una constante c tal que

$$E\left[\int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right)\right]=c,\ \forall t$$

Luego, sabemos que

$$\int_{0}^{t}g\left(S\left(s\right)\right)\mathrm{d}W\left(s\right)=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right),$$

ahora, para cada i

$$\begin{split} E\left[g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right)\right] &= E\left[E\left[g\left(S\left(t_{i-1}\right)\right)\left(B_{i}-B_{i-1}\right)\mid\mathcal{F}_{i-1}\right]\right] \\ &= E\left[g\left(S\left(t_{i-1}\right)\right)E\left[\left(B_{i}-B_{i-1}\right)\mid\mathcal{F}_{i-1}\right]\right] \\ &= 0, \end{split}$$

por lo tanto

$$m\left(t\right)-m\left(0\right)=a_{1}\int_{0}^{t}m\left(t\right)\mathrm{d}t+a_{2}t,$$

ahora, considere su forma diferencial.

$$\frac{\mathrm{d}m\left(t\right)}{\mathrm{d}t} = a_{1}m\left(t\right) + a_{2},$$

es una ecuación diferencial lineal. Por lo tanto usaremos métodos conocidos para resolverla.

$$\frac{\mathrm{d}m\left(t\right) }{\mathrm{d}t}-a_{1}m\left(t\right) =a_{2},$$

defina

$$u = \exp\left(\int a_1 dt\right)$$
$$= e^{-a_1 t},$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left[um \left(t \right) \right] &= a_2 u \\ u \left(t \right) m \left(t \right) &= a_2 \int u \left(t \right) \mathrm{d}t \\ m \left(t \right) &= \frac{a_2}{u \left(t \right)} \int u \left(t \right) \mathrm{d}t \\ &= a_2 e^{a_1 t} \int e^{-a_1 t} \mathrm{d}t \\ &= -a_2 e^{a_1 t} \left[-\frac{1}{a_1} e^{-a_1 t} + C \right] \\ m \left(t \right) &= -\frac{a_2}{a_1} - C a_2 e^{a_1 t} \end{split}$$

Ahora, recordando la condición inicial.

$$\begin{split} m\left(0\right) &= -\frac{a_2}{a_1} - C a_2 \\ \Rightarrow C &= -\frac{1}{a_1} - \frac{1}{a_2} m\left(0\right). \end{split}$$

Entonces

$$E\left[X_{t}\right]=-\frac{a_{2}}{a_{1}}-\left[-\frac{a_{2}}{a_{1}}-E\left[X_{0}\right]\right]\exp\left(a_{1}t\right)$$

Considere la siguiente ecuación diferencial estocástica lineal.

$$dS(t) = (\alpha(t) S(t)) dt + \beta(t) S(t) dW(t), S(0) = s_0,$$

con constantes s_0 y funciones α, β integrables. Use la formula de Ito con la fórmula

$$u\left(t,x\right) = \ln\left(\frac{x}{S_0}\right),\,$$

para deducir que

$$S\left(t\right) = S\left(0\right) \exp \left(\int_{0}^{t} \left[\alpha\left(s\right) - \frac{1}{2}\beta^{2}\left(s\right)\right] \mathrm{d}s + \int_{0}^{t} \beta\left(s\right) \mathrm{d}W\left(s\right)\right)$$

Ahora considere que

$$f(t) = \beta(t) S(t)$$
$$g(t) = \alpha(t) S(t),$$

Calculamos las parciales de u.

$$u_t = 0$$

$$u_x = \frac{1}{x}$$

$$u_{xx} = -\frac{1}{x^2}$$

Entonces

$$\begin{split} \mathrm{d}u\left(t,S_{t}\right) &= \alpha\left(t\right)\mathrm{d}t + \beta\left(t\right)\mathrm{d}W\left(t\right) - \frac{1}{2S_{t}^{2}}\left(dS_{t}\right)^{2} \\ &= \alpha\left(t\right)\mathrm{d}t + \beta\left(t\right)\mathrm{d}W\left(t\right) - \frac{1}{2S_{t}^{2}}\beta^{2}S_{t}^{2}\mathrm{d}t \\ &= \left[\alpha\left(t\right) - \frac{\beta^{2}\left(t\right)}{2}\right]\mathrm{d}t + \beta\left(t\right)\mathrm{d}W\left(t\right), \end{split}$$

entonces

$$\begin{split} \ln \left(\frac{S_t}{S_0} \right) &= \int_0^t \left[\alpha \left(t \right) - \frac{\beta^2 \left(t \right)}{2} \right] \mathrm{d}t + \int_0^t \beta \left(t \right) \mathrm{d}W \left(t \right) \\ S_t &= S_0 \exp \left(\int_0^t \left[\alpha \left(t \right) - \frac{\beta^2 \left(t \right)}{2} \right] \mathrm{d}t + \int_0^t \beta \left(t \right) \mathrm{d}W \left(t \right) \right) \end{split}$$

Considere la siguiente ecuación diferencial estocástica lineal.

$$\mathrm{d}S\left(t\right)=\left(\alpha\left(t\right)\mathsf{S}\left(t\right)\right)\mathrm{d}t+\beta\left(t\right)S\left(t\right)\mathrm{d}W\left(t\right),S\left(0\right)=s_{0},$$

con constantes s_0 y funciones α,β integrables. Considere

$$\alpha(t) = \sin(t)$$
$$\beta(t) = \frac{t}{1+t}$$
$$s_0 = 1,$$

sobre el intervalo [0, 5].

Usando el acercamiento apropiado, la salida del código reproduce 200 realizaciones de la solución con el proceso de Euler-Maruyama.

Adapta el código para obtener la media de la solución de 1000 realizaciones y comparalo con la media de la solución de la forma diferencial, usando los mismos parámetros. Ilustra la diferencia con un log-plot de

$$\ln \left| S\left(t\right) -\tilde{S}\left(t\right) \right| ,$$

donde S es la solución de Euler y \tilde{S} es la solución de la diferencial.

References