Math 324, Homework 7

- 1. Give a parametric description of the plane that contains the point (-1,0,0) and is normal to the vector (3,1,-1).
- 2. Let S be the part of the surface of the unit sphere that lies above the cone $z = \sqrt{x^2 + y^2}$. Give a parametric description of S, and find the surface area of S by integrating the function 1 over S.
- 3. Find the area of the part of the surface $z=x^2+2y$ that lies above the triangle with vertices (0,0),(1,0),(1,2). For problems 4-6, compute the surface integral $\iint_S f \, dS$ for the given surface S and function f.
- 4. f(x,y,z) = z; S is the part of the plane x + y + z = 1 where $x,y,z \ge 0$.
- 5. f(x, y, z) = y; S is the surface $x^2 + y^2 + z^2 = 4$, for $0 \le y \le 1$.
- 6. $f(x,y,z) = x^2 + y^2 + z^2$; S is the part of the cylinder $x^2 + y^2 = 9$ between z = 0 and z = 2, together with the top and bottom disks.

For problems 4-6, evaluate the surface integral $\iint_S F \cdot dS$ for the given vector field F and oriented surface S.

- 7. $F(x,y,z) = \langle 0, y, -z \rangle$; S consists of the parabloid $y = x^2 + z^2$, $0 \le y \le 1$, and the disk $x^2 + z^2 \le 1$, y = 1 with the outward pointing normal.
- 8. $F(x,y,z)=\langle x,y,z\rangle;$ S is the part of the unit sphere where $\frac{1}{2}\leq z\leq \frac{\sqrt{3}}{2}$ with the inward pointing normal.
- 9. $F(x,y,z) = \langle 0,0,e^{y+z} \rangle$; S is the boundary of the unit cube $0 \le x,y,z \le 1$ with the outward pointing normal.