Zadanie nr 1 – Transformacja

Inteligentna Analiza Danych

Przemysław Zdrzalik 224466

Karol Domański 224285

1 Cel zadania

Celem zadania było wykorzystanie wielowarstwowego perceptronu (MLP) w celu transformacji.

2 Wstęp

W zadaniu wykorzystujemy sieć neuronową o 4 wejściach i 4 wyjściach oraz jednej warstwie ukrytej. Wszystkie neurony posiadają sigmoidalną funkcję aktywacji. Wszystkie eksperymenty powtórzono dla 1, 2 oraz 3 neuronów w warstwie ukrytej.

3 Eksperymenty i wyniki

3.1 Eksperyment nr 1

W tym eksperymencie sprawdzamy jak zmieniają się wartości błędu średniokwadratowego po każdej epoce nauki w zależności od liczbie neuronów w warstwie ukrytej. Eksperyment wykonano dla następujących parametrów sieci:

- momentum równe 0.01,
- współczynnik nauki równy 0.1.

Liczba iteracji została ograniczona do 10 000 w celu zachowania przejrzystości wyników.

Rys. 1. Wykres zmiany błędu średniokwadratowego w zależności od liczby iteracji dla 1, 2 oraz 3 neuronów w warstwie ukrytej. Brak obecności biasu.

Rys. 2. Wykres zmiany błędu średniokwadratowego w zależności od liczby iteracji dla 1, 2 oraz 3 neuronów w warstwie ukrytej. Obecność biasu.

3.2 Eksperyment nr 2

W tym eksperymencie sprawdzamy wpływ parametrów nauki (współczynnik nauki i momentum) na szybkość nauki. W tym celu porównujemy liczbę epok potrzebną do osiągnięcia zadanej wartości błędu średniokwadratowego dla różnych parametrów nauki. Dla 1 neuronu w warstwie ukrytej zadana wartość błędu wynosiła 0.2 , natomiast dla 2 oraz 3 neuronów wynosiła 0.001 .

Tab. 1. Liczba iteracji w zależności od parametrów nauki dla 1 neuronu w warstwie ukrytej. Brak obecności biasu.

Współczynnik nauki	Momentum	Liczba iteracji
0.1	0.1	5338
0.1	0.3	3350
0.1	0.5	2108
0.3	0.1	1365
0.3	0.3	1011
0.3	0.5	929
0.5	0.1	1921
0.5	0.3	650
0.5	0.5	670

Tab. 2. Liczba iteracji w zależności od parametrów nauki dla 2 neuronów w warstwie ukrytej. Brak obecności biasu.

Współczynnik nauki	Momentum	Liczba iteracji
0.1	0.1	28331
0.1	0.3	21956
0.1	0.5	15680
0.3	0.1	11523
0.3	0.3	7408
0.3	0.5	5202
0.5	0.1	5564
0.5	0.3	4386
0.5	0.5	3098

Tab. 3. Liczba iteracji w zależności od parametrów nauki dla 3 neuronów w warstwie ukrytej. Brak obecności biasu.

Współczynnik nauki	Momentum	Liczba iteracji
0.1	0.1	14534
0.1	0.3	13863
0.1	0.5	10693
0.3	0.1	6399
0.3	0.3	4924
0.3	0.5	3496
0.5	0.1	2192
0.5	0.3	3025
0.5	0.5	1834

4 Wnioski

4.1 Zmiana błędu średniokwadratowego po każdej epoce nauki na zbiorze treningowym.

Na podstawie wyników uzyskanych w eksperymencie nr 1 zauważamy, że błąd średniokwadratowy zmniejsza się po każdej epoce nauki na zbiorze treningowym. Zwiększenie liczby neuronów w warstwie ukrytej powoduje obniżenie wartości błędu dla zadanej liczby epok.

4.2 Wpływ parametrów nauki na szybkość nauki.

Na podstawie eksperymentu nr 2 zauważamy, że zarówno współczynnik nauki, jak i momentum, mają znaczący wpływ na szybkość nauki. Zwiększenie tych wartości powoduję zmniejszenie ilości epok potrzebnych do osiągnięcia zadanego błędu.

4.3 Wpływ obecność biasu na proces nauki.

Na podstawie eksperymentu nr 1 można stwierdzić, że obecność biasu korzystnie wpływa na proces nauki. Dla sieci z biasem wartość błędu średniokwadratowego zmniejsza się szybciej niż w przypadku sieci bez biasu.

5 Bibliografia

- [1] Wzory związane z perceptronem wielowarstwowym.
- [2] Bartłomiej Stasiak Sztuczne sieci neuronowe.
- [3] Bartłomiej Stasiak Jednokierunkowe wielowarstwowe sieci neuronowe.