

The Compact Muon Solenoid Experiment

CMS Performance Note

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

09 April 2020 (v3, 15 April 2020)

Jet energy scale and resolution performance with 13 TeV data collected by CMS in 2016-2018

CMS Collaboration

Abstract

We present jet energy scale and resolution performances with 13 TeV data collected by CMS in 2016-2018.

Jet energy scale and resolution performance with 13 TeV data collected by CMS in 2016-2018

The CMS Collaboration cms-pog-conveners-jetmet@cern.ch

15th April 2020

ı

Introduction

- Jet energy correction (JEC) and resolution (JER) measurements are presented, based on data collected in pp collisions at $\sqrt{s}=13\,\text{TeV}$ in 2016-2018 and reconstructed at the end of the data taking of each year. Previous results for 2016 were shown in CMS-DP-2018-028. The main detector changes are related to the phase-1 upgrade of the Pixel tracker, which took place between the 2016 and 2017 data taking periods.
- The jet energies are corrected up to the level of jets clustered from stable ($c\tau$ >1 cm) and visible (non-neutrino) final state particles, referred to as particle (ptcl) jets.
- ► The jet energy scale (JES) is calibrated sequentially with:
 - pileup offset subtraction
 - detector response correction from simulation
 - residual corrections for differences between data and detector simulation
 - optional corrections for jet flavour composition
- Experimental techniques used:
 - Dijet and multijet p_T-balance, which exploit momentum conservation in the transverse plane.
 - $ightharpoonup Z/\gamma + {
 m jet} \; p_{
 m T}$ -balance, in which a γ or a Z boson is used as a reference object, whose $p_{
 m T}$ is accurately measured from the ECAL or muon system.
 - Missing Transverse Energy Projection Fraction (MPF) used to facilitate a better understanding of systematic uncertainties and to perform cross-checks.
 - ▶ The JER is determined with dijet, Z + jet and $\gamma + jet$ events.
 - Additional jet activity quantified by $\alpha = \rho_{\mathrm{T}}^{\mathrm{add.\,jet}}/\rho_{\mathrm{T}}^{\mathrm{ref}}$, with $\rho_{\mathrm{T}}^{\mathrm{ref}} = (\rho_{\mathrm{T}}^{\mathrm{jet1}} + \rho_{\mathrm{T}}^{\mathrm{jet2}})/2$ for the dijet and multijet analyses and $\rho_{\mathrm{T}}^{\mathrm{ref}} = \rho_{\mathrm{T}}^{\mathrm{Z}/\gamma}$ otherwise.
- ▶ JES uncertainties evaluated as a function of η^{jet} and $p_{\mathrm{T}}^{\mathsf{jet}}$.

JEC - Pileup Offset Subtraction

- Average difference in p_T between matched jets measured in simulated samples with and without pileup overlay is subtracted in data and simulation.
- ▶ Offset residual corrections derived with Random Cone method from ZeroBias data vs. NeutrinoGun simulation.
- ▶ The average p_T of PF candidates in a randomly placed cone can be identified with the average offset due to pileup.
- Average offset per pileup interaction (μ) monitored for each type of PF candidates:
 - ▶ Photons, Neutral Hadrons, EM Deposits in HF, Hadronic Deposits in HF.
 - Assoc. Charged Hadrons: associated with reconstructed PU vertices and thus removed from the list of PF candidates in the jet clustering by CHS algorithm.
 - Unassoc. Charged Hadrons: not removed from the list of PF candidates by CHS algorithm.
- lacktriangle Corrections binned in energy density ho, jet area, $\eta^{
 m jet}$ and $ho^{
 m jet}_{
 m T}$.

JEC - Pileup Offset Subtraction

- Upper plots: data-to-simulation comparison for average offset per pileup interaction, calculated for each type of PF candidates.
- Right plot: evolution of data-to-simulation scale factors over the years.
- ➤ Change in MC UE tune after 2016 (CUEP8M1 to CP5) results in higher energy flow in HF. Larger data-to-simulation differences in 2018 are due to additional changes in HF simulation and PF calibration.

JEC - Response Correction From Simulation

- ▶ Jet response defined as $\frac{\langle \rho_T^{\rm reco} \rangle}{\langle \rho_T^{\rm ptcl} \rangle}$. Corrections derived in bins of $|\eta^{\rm jet}|$ and $\rho_T^{\rm jet}$.
- Stable response in the barrel:
 - lacktriangle 0.95 due to neutral hadrons response of 0.6 (accounts for $\sim 15\%$ of $p_{
 m T}^{
 m ptcl}$).
 - ▶ Drop below $p_{\rm T} < 30\,\text{GeV}$ due to HCAL acceptance.
- ▶ Stronger p_T -dependence in EC and HF.
- Change in performance for:
 - $3.0 < |\eta| < 3.2$ due to detector transition
 - $ightharpoonup |\eta| >$ 4.5 due to acceptance
- ► EC2 affected by calorimeter degradation over time, lowering jet response.

JEC – Relative η -dependent Residual Correction

anti-k, R=0.4

PF+CHS

- Residual correction of jet response normalised to the response in the barrel derived in bins of η^{jet} and $p_{\text{T}}^{\text{jet}}$ using dijet events with MPF method.
- ► Time-dependent corrections address evolution and ageing of the detector in different data-taking periods and years.

JEC – Absolute p_{T} -dependent Residual Correction

- ▶ Jet response dependence on p_T^Z in $Z(\to \mu\mu)$ +jet events (left) and p_T^{γ} in γ + jet events (right).
- ▶ JES determined relative to precisely measured reference objects (μ, e, γ) .
- Response smaller than 1 due to FSR and ISR effects.

7

JEC – Absolute p_{T} -dependent Residual Correction

- lacktriangle Data-to-simulation comparison for the jet response dependence on $ho_{
 m T}^{
 m jet}$.
- ▶ Combination of γ + jet and Z + jet. Multijet results used in 2016.
- ▶ $Z(\rightarrow \mu\mu)$ +jet and $Z(\rightarrow ee)$ events are pre-combined into Z + jet events.
- ▶ MPF and p_T -balance methods used, but (Z + jet) MPF dominates precision.
- ▶ Post global fit values for nuisance parameters (scales of reference objects) used to demonstrate the good consistency between the data sets.
- ▶ Yellow band indicates absolute scale uncertainty that is centred around the luminosity-weighted average of JEC per run. Its deviation from the fit to the combined sample (solid black line) is taken as "Time stability" uncertainty in the following slides.

JES – Systematic Uncertainties

Jet energy scale uncertainties include the following sources:

- Absolute scale: flat absolute scale uncertainties. Main uncertainties combine γ , $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ reference scale and correction for FSR+ISR.
- ► Relative scale: dijet uncertainties for JER SF variation and for FSR+ISR estimated from difference of L2Res obtained with Pythia8 and Herwig.
- Pileup: 5% uncertainty on data-to-simulation scale factor from the Random Cone method, plus residual difference between Random Cone offset and MC truth offset after global fit of absolute scale vs $p_{\rm T}$.
- ▶ Jet flavour: based on Pythia vs. Herwig differences in uds/c/b-quark and gluon responses.
- Time stability: difference between the luminosity-weighted average of corrections per data-taking period per year.
- lacktriangle Pileup and flavour uncertainty dominate at low p_{T} .
- Methods and samples used:
 - ▶ MPF vs. p_T-balance results
 - $ightharpoonup Z/\gamma+jets$ vs. Z vs. dijet (the largest difference outside tracking) and $Z/\gamma+jet$ vs. dijet (within tracking).

JES – p_T -dependent Uncertainties

Figure: JES uncertainty sources and total uncertainty (quadratic sum of individual uncertainties) as a function of $p_{\rm T}^{\rm jet}$. Run I uncertainty without flavour and time sources shown for comparison. flavour source is the same as in Run I.

JES – η -dependent Uncertainties

Figure: JES uncertainty sources and total uncertainty (quadratic sum of individual uncertainties) as a function of $\eta^{\rm jet}$. Run I uncertainty without flavour and time sources shown for comparison. flavour source is the same as in Run I.

JER - Scale Factors

- ▶ JER measured with dijet and Z/γ + jet $p_{\rm T}$ -balance methods in data and simulated samples using JES-corrected jets. Worsening due to ISR/FSR taken into account by extrapolating to ideal two-body topology.
- Derivation of η -dependent data-to-simulation scale factors (SFs) with dijet method.
- SFs derived for $p_{\rm T} \geq 100 \, {\rm GeV}$.
- SFs of 1.1-1.2, larger in the EC-HF transition region of $|\eta| \in [2.5, 3]$.

JER – $p_{\rm T}$ -dependent Scale Factors

- ightharpoonup JER obtained from γ + jet analysis agrees with dijet results. Comparison can be used to reduce uncertainties.
- ▶ SFs p_{T} -dependent in $|\eta| \in [2.5, 3.0]$. No p_{T} -dependence observed elsewhere.
- ▶ The Z + jet analysis yields larger uncertainties for $p_T>150$ GeV, but extends dijet approach for $p_T<100$ GeV.
- lacktriangle The two methods are complementary and aim for full coverage in p_{T} and $\eta.$

- Jet PF composition studied from dijet events using fully corrected jets.
- Cross-check comparison between data and simulation for monitoring the stability of JES.
- All categories considered: Photons, Leptons, Neutral and Charged Hadrons.
- Fraction of energy removed by CHS before jet clustering is overlaid.

—Additional Material—

JEC – Relative η -dependent Residual Correction

Figure: Residual correction of jet response w.r.t. barrel derived in bins of $\eta^{\rm jet}$ and $p_{\rm T}^{\rm jet}$ using dijet events with MPF method.

Figure: Jet PF composition studied from dijet events using fully corrected jets.

Figure: Jet PF composition studied from dijet events using fully corrected jets.

Figure: Jet PF composition studied from dijet events using fully corrected jets.