Reservoir Computing on Non-Linear Schrödinger Equation

A. Hasmi¹

¹PhD Student of Mathematics Khalifa University

21 February 2022

Outline

Theory

- Result
 - Non-Linear Schrödinger

Data Driven Method for Partial Differential Equation

Frame subtitles are optional. Use upper- or lowercase letters.

- First Principle Methods: Discretize PDEs using Numerical Schemes: Finite Difference, Finite Element, Finite Volume, Spectral Methods, etc
- Data Driven Method: Incorporate Observation/Data to simulate PDEs: Physics Informed Neural Network,
- Pros/Reasoning Using DDM:
 - Learning Hidden Physics from Data (Turbulence, Wall Model)
 - Reducing Computational Cost (Reduced Order Method,)
 - Data Assimilation with observation data[3]

Reservoir Computing

- Recurrent Neural Network but only train the output layer [2]
- Fast training as only output parameters need to optimized [1, 2]

Reservoir Computing for Spatiotemporal Problem

internal states updates:

$$r_{i+1}^{(k)} = \tanh \left(\frac{W^{(k)}}{W^{(k)}} r_i^{(k)} + W_{in}^{(k)} v_i^{(k)} \right)$$

output readout

$$y_i^{(k)} = W_{outj}^{(k)} \hat{r}_i^{(k)} \qquad \hat{r}_{ij}^{(k)} = \begin{cases} r_{ij}^{(k)} & j \text{ is odd} \\ \left(r_{ij}^{(k)}\right)^2 & j \text{ is even} \end{cases}$$

Training Objectives

$$E^{(k)} = \min_{\substack{W_{out}^{k} \\ \text{out}}} \sum_{i=1}^{N_{train}} \left\| W_{out}^{(k)} \hat{r}_{i}^{(k)} - s_{i}^{(k)} \right\|_{2}^{2} + \beta \left\| W_{out}^{(k)} \right\|^{2}$$

$$\int_{\mathcal{S}} \int_{\mathcal{S}} \left\| W_{out}^{(k)} \right\|_{2}^{2} + \beta \left\| W_{out}^{(k)} \right\|_{2}^{2}$$

Reservoir

Prediction Steps

State space,

- Occupance Construct $\tilde{v}_i^{(k)}$ based on $y_i^{(k-1)}, y_i^{(k)} y_i^{(k+1)}$ Update the reservoir states: $r_{i+1}^{(k)} = \tanh\left(W^{(k)} r_i^{(k)} + W_{in}^{(k)} \tilde{v}_i^{(k)}\right)$

Outline

Theory

- 2 Result
 - Non-Linear Schrödinger

Non-Linear Schrödinger

• Equation given by:

- Can be used to modeled rogue wave
- The figure shows training and testing data for NLS. The limit of training data is given by whiteline

Simulation Hyperparameter

Parameter	Explanation	Value
ρ	Spectral Radius of W	0.6
σ	maximum elementwise magnitude of W_{in}	0.1
β	Regularization Parameter	10^{-4}
М	Number of reservoirs	32
I	Number of overlap grid	6

NLT1

$$\hat{r}_{ij}^{(k)} = egin{cases} r_{ij}^{(k)} & j ext{ is odd} \ \left(r_{ij}^{(k)}
ight)^2 & j ext{ is even} \end{cases}$$

NLT2

$$\hat{r}_{ij}^{(k)} = \begin{cases} r_{ij}^{(k)} & j \text{ is odd} \\ \left|r_{ij}^{(k)}\right|^2 r_{ij}^{(k)} & j \text{ is ever} \end{cases}$$

Assessing the Result

To measure the performance, we use H^1 norm (Sobolev space norm). Let $u \in H^1$, then the norm is defined as:

$$||u||_{H^1} = \left[\int |u|^2 dx\right]^{\frac{1}{2}} + \left[\int |du|^2 dx\right]^{\frac{1}{2}}$$

the error is calculated at t = 10 (the expected peak), with error defined as:

$$du = + \frac{1}{2} \left(\frac{1}{2} + \left(u \right) \right)^{2} \qquad e = \frac{\|\hat{\psi} - \psi\|_{H^{1}}}{\|\psi\|_{H^{1}}}$$

Result: Prediction Length

Simulation using NLT1, 200 reservoir nodes with varying start of prediction phase. 10 realizations for each case.

Typical Result

there are typical success simulations however, the simulations can be failed.

Result: Effect of Reservoir Nodes

 $n_p = 40$. nodes: 100, 200,400, 600 with both NLT1 and NLT2 .The simulations are repeated for 100 realization,

Result: Effect of Reservoir Nodes

Summary

- Simulation Quality detoriates farther away from prediction
- NLT1 gives more robust result compared to NLT1
- Only 100 or 200 nodes are enough for prediction
- Outlook
 - Optimization of hyperparameter?
 - Can we improve the robustness of the result?

For Further Reading I

Ashesh Chattopadhyay, Pedram Hassanzadeh, and Devika Subramanian.

Data-driven predictions of a multiscale Lorenz 96 chaotic system using machine-learning methods: Reservoir computing, artificial neural network, and long short-term memory network.

Nonlinear Processes in Geophysics, 27(3):373–389, 2020.

Mantas Lukoševičius and Herbert Jaeger.

Reservoir computing approaches to recurrent neural network training.

Computer Science Review, 3(3):127–149, 2009.

Jaideep Pathak, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt. Michelle Girvan, and Edward Ott.

Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model.

Chaos, 28(4), 2018.

For Further Reading II