

BCS of Images and Video

S. Mun

Video

Block Compressed Sensing of Images and Video

Sungkwang Mun

Department of Electrical & Computer Engineering Geosystems Research Institute Mississippi State University

Oct. 9. 2012

Outline

BCS of Images and Video

S. Mun

Video

1 **Block Compressed Sensing of Images**

CS Overview

BCS-SPL

Results

Multiscale BCS-SPL

Results

2 BCS-SPL of Video

CS for Video

Motion Compensated BCS-SPL

Results

3 DPCM for Quantized BCS

Quantization Problem in CS

DPCM for Natural Images

1D-DPCM for BCS

2D-DPCM for BCS

BCS of Images and Video

S. Mun

Images

CS Overview BCS-SPL Results MS-BCS-SPI

Video

Quantization

Conclusion

Motivation

Traditional Sampling

- Sampling theorem states the exact reconstruction is possible for any signal satisfying Nyquist rate
- Minimal prior knowledge required
- Commonly interested in more restricted class of signals (i.e. more structured signals)
- Possible to go below the rate with certain prior knowledge of the signal being sampled
 - bandpass

BCS of Images and Video____

S. Mun

Images

CS Overview BCS-SPL Results MS-BCS-SP

Vidoo

Quantizatio

Conclusion

Sparsity in Natural Images

Wavelet transform

Image using 5 % coeffs

BCS of Images and Video

S. Mun

Images

CS Overview BCS-SPL Results MS-BCS-SP

Video

Quantizatio

- Eventually a few percent of the meaningful data are stored/transferred
- Oculd we directly obtain the meaningful data?

BCS of Images and Video

S. Mun

Images

CS Overview BCS-SPL Results MS-BCS-SP

Video

Quantizatio

- Simultaneous sampling and dimension reduction
- Extremely low-cost encoding by reducing the size of sensor, memory, and computational unit

BCS of Images and Video

S. Mun

Images

BCS-SPL Results MS-BCS-Si

Video

Conclusion

Nonadaptive Random Sampling in CS

• Light integration can be represented as $y_m = \langle \phi_m, \mathbf{x} \rangle, m \in \{1, 2, ..., M\}$

BCS of Images and Video

S. Mun

Images

CS Overvier
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

- Huge sensing matrix, $\Phi = \{\phi_1, \phi_2, \dots, \phi_M\}$: $O(N^2)$
- O Complex recovery process: no explicit solution
- Quantization distortion: hinders reconstruction

BCS of Images and Video

S. Mun

Images

CS Overvie BCS-SPL Results MS-BCS-SF

Video

Quantizatio

- Huge sensing matrix, $\Phi = \{\phi_1, \phi_2, \dots, \phi_M\}$: $O(N^2)$
- Complex recovery process: no explicit solution
- Quantization distortion: hinders reconstruction

BCS of Images and Video

S. Mun

Images

CS Overvier
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

- Huge sensing matrix, $\Phi = \{\phi_1, \phi_2, \dots, \phi_M\}$: $O(N^2)$
- Complex recovery process: no explicit solution
- Quantization distortion: hinders reconstruction

BCS of Images and Video

S. Mun

Images

BCS-SPL Results MS-BCS-SP

Video

Quantization

Conclusion

Motivation

We want to solve these three challenges

- huge sensing matrix
- 2 complex recovery process
- quantization distortion

to make CS application (images and video) more realistic

Outline

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPL

Video

Qualitizatio

- 1 Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
- 4 Conclusion

CS Overview

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

√ide¢

Quantizatio

Conclusion

Goal

Recover $\mathbf{x} \in \Re^N$ from

$$\mathbf{y} = \mathbf{\Phi}\mathbf{x} \in \Re^M$$

- \bullet Φ : $M \times N$ measurement matrix, $M \ll N$
- ullet Usually, Φ is a random matrix (Gaussian, ± 1)

Fundamental Tenet of CS

If x is sufficiently sparse, recovery is exact from

$$M > O(K \cdot log N)$$

measurements by solving tractable program

- K: number of nonzero coefficients in some transform Ψ
- Approximate recovery for nearly sparse

CS Overview

BCS of Images and Video

S. Mun

CS Overvie BCS-SPL

BCS-SPL Results MS-BCS-SF Results

Video

Quantization

Conclusion

Images Nearly Sparse in Transform Domain

Wavelet transform

Sorted Coefficients

○ *K*: number of significant transform coefficients

$$|\dot{x}|_{(1)} \ge |\dot{x}|_{(2)} \ge \dots \ge |\dot{x}|_{(K)} \ge \dots \ge |\dot{x}|_{(N)}$$

where $\check{x} = \sum_{i=1}^{N} x_i \psi_i$ or $\check{\mathbf{x}} = \mathbf{\Psi} \mathbf{x}$ in matrix form

CS Overview

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPL

Video

Quantization

Conclusion

Practical Recovery: ℓ_1 optimization

$$\min_{\mathbf{x}} \|\mathbf{x}\|_{\ell_1}$$
 subject to $\|\mathbf{y} - \mathbf{\Phi}\mathbf{x}\|_{\ell_2} \le \epsilon$

- No explicit solution due to non-differentiability of $\|\mathbf{x}\|_{\ell_1}$, but the solution can be found iteratively
- Many solvers exists:
 - Interior point method for 1D signal
 - Regularized total variation replacing $\|x\|_{\ell_1}$ with $\|\nabla x\|_{\ell_1}$ for image
 - Gradient projection (GPSR)
 - Matching pursuit replacing $\|\mathbf{y} \mathbf{\Phi}\mathbf{x}\|_{\ell_2}$ with $\|\mathbf{y} \sum_{i=1}^m x_i \phi_i\|_{\ell_2}$
 - Projected Landweber (a.k.a iterative threshold)

Outline

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP
Results

Video

Quantizatio

- Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- Open Technology (3) DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
- 4 Conclusion

Solution for 1. Huge Measurement Matrix

BCS of Images and Video

S. Mun

CS Overvio BCS-SPL Results MS-BCS-S

Video

Quantizatio

Conclusion

Block Compressed Sensing (BCS)

Image partitioned into small blocks ($B \times B$)

$$\mathbf{y}_j = \mathbf{\Phi}_B \mathbf{x}_j$$

 Φ_B : $\lfloor \frac{M}{N}B^2 \rfloor \times B^2$, \mathbf{x}_j : block j of image

Solution for 1. Huge Measurement Matrix

BCS of Images and Video

S. Mun

Images
CS Overvier
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

Conclusion

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPL

Video

Quantization

Conclusion

Projected Landweber (PL)

$$\check{\check{\mathbf{x}}}^{(k)} = \begin{cases}
\check{\mathbf{x}}^{(k)}, & |\check{\mathbf{x}}^{(k)}| \ge \tau^{(k)} \\
0 & \text{else},
\end{cases}$$
(1)

$$\mathbf{x}^{(k+1)} = \bar{\mathbf{x}}^{(k)} + \frac{1}{\alpha} \mathbf{\Phi}^T \left(\mathbf{y} - \mathbf{\Phi} \bar{\mathbf{x}}^{(k)} \right)$$
 (2)

 α : scaling factor, $\alpha=1$ with orthonormal Φ

 Ψ, Ψ^{-1} : transform and its inverse, $\check{\mathbf{x}} = \Psi \mathbf{x}, \bar{\mathbf{x}} = \Psi^{-1} \check{\check{\mathbf{x}}}$

 $au^{(k)}$: threshold value for iteration k

Smooth PL Reconstruction

Attempt to impose:

- Sparsity through (1)
- Consistency with observation space through (2)
- Smoothness through Wiener filter

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPL

Video

Quantization

Conclusion

Projected Landweber (PL)

$$\dot{\check{\mathbf{x}}}^{(k)} = \begin{cases}
\check{\mathbf{x}}^{(k)}, & |\check{\mathbf{x}}^{(k)}| \ge \tau^{(k)} \\
0 & \text{else},
\end{cases}$$
(1)

$$\mathbf{x}^{(k+1)} = \bar{\mathbf{x}}^{(k)} + \frac{1}{\alpha} \mathbf{\Phi}^T \left(\mathbf{y} - \mathbf{\Phi} \bar{\mathbf{x}}^{(k)} \right)$$
 (2)

 α : scaling factor, $\alpha=1$ with orthonormal Φ

 Ψ, Ψ^{-1} : transform and its inverse, $\check{\mathbf{x}} = \Psi \mathbf{x}, \bar{\mathbf{x}} = \Psi^{-1} \check{\mathbf{x}}$ $\tau^{(k)}$: threshold value for iteration k

Smooth PL Reconstruction

Attempt to impose:

- Sparsity through (1)
- Consistency with observation space through (2)
- Smoothness through Wiener filter

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPI

Video

Quantizatio

Conclusion

$$\begin{aligned} & \mathbf{function}\,\mathbf{x}^{(k+1)} = \mathrm{SPL}(\mathbf{x}^{(k)},\mathbf{y}_j,\Phi_B,\Psi,\tau) \\ & \hat{\mathbf{x}}^{(k)} = \mathrm{Wiener}(\mathbf{x}^{(k)}) \\ & \mathbf{for}\,\,\mathbf{each}\,\,\mathbf{block}\,\,j \\ & \hat{\mathbf{x}}_j^{(k)} = \hat{\mathbf{x}}_j^{(k)} + \Phi_B^T(\mathbf{y}_j - \Phi_B\hat{\mathbf{x}}_j^{(k)}) \\ & \check{\mathbf{x}}^{(k)} = \Psi\hat{\dot{\mathbf{x}}}^{(k)} \\ & \check{\mathbf{x}}^{(k)} = \mathrm{Threshold}(\check{\mathbf{x}}^{(k)},\tau) \\ & \bar{\mathbf{x}}^{(k)} = \Psi^{-1}\check{\dot{\mathbf{x}}}^{(k)} \\ & \mathbf{for}\,\,\mathbf{each}\,\,\mathbf{block}\,\,j \\ & \mathbf{x}_j^{(k+1)} = \bar{\mathbf{x}}_j^{(k)} + \Phi_B^T(\mathbf{y}_j - \Phi_B\bar{\mathbf{x}}_j^{(k)}) \\ & D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\dot{\mathbf{x}}}^{(k)}\|_2 \end{aligned}$$

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}^{(0)} = \mathbf{\Phi}_{P}^{T} \mathbf{v}_{i}$

BCS of Images and Video

S. Mun

mages CS Overviev BCS-SPL Results

Video

Quantizatio

Conclusion

SPL Reconstruction Algorithm

$$\begin{aligned} &\textbf{function } \mathbf{x}^{(k+1)} = \text{SPL}(\mathbf{x}^{(k)}, \mathbf{y}_j, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}, \boldsymbol{\tau}) \\ &\hat{\mathbf{x}}^{(k)} = \text{Wiener}(\mathbf{x}^{(k)}) \\ &\textbf{for each block } j \\ &\hat{\mathbf{x}}_j^{(k)} = \hat{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \hat{\mathbf{x}}_j^{(k)}) \\ &\hat{\mathbf{x}}^{(k)} = \boldsymbol{\Psi} \hat{\mathbf{x}}^{(k)} \\ &\hat{\mathbf{x}}^{(k)} = \text{Threshold}(\check{\mathbf{x}}^{(k)}, \boldsymbol{\tau}) \\ &\hat{\mathbf{x}}^{(k)} = \boldsymbol{\Psi}^{-1} \check{\mathbf{x}}^{(k)} \\ &\textbf{for each block } j \\ &\mathbf{x}_j^{(k+1)} = \bar{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \bar{\mathbf{x}}_j^{(k)}) \\ &D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\mathbf{x}}^{(k)}\|_2 \end{aligned}$$

endfunction

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}_i^{(0)} = \mathbf{\Phi}_R^T \mathbf{y}_i$

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results

Video

Quantizatio

Conclusion

$$\begin{aligned} & \textbf{function } \mathbf{x}^{(k+1)} = \text{SPL}(\mathbf{x}^{(k)}, \mathbf{y}_j, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}, \boldsymbol{\tau}) \\ & \hat{\mathbf{x}}^{(k)} = \text{Wiener}(\mathbf{x}^{(k)}) \\ & \textbf{for each block } j \\ & \hat{\mathbf{x}}_j^{(k)} = \hat{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \hat{\mathbf{x}}_j^{(k)}) \\ & \check{\mathbf{x}}^{(k)} = \boldsymbol{\Psi} \hat{\mathbf{x}}^{(k)} \\ & \check{\mathbf{x}}^{(k)} = \text{Threshold}(\check{\mathbf{x}}^{(k)}, \boldsymbol{\tau}) \\ & \check{\mathbf{x}}^{(k)} = \boldsymbol{\Psi}^{-1} \check{\check{\mathbf{x}}}^{(k)} \\ & \textbf{for each block } j \\ & \mathbf{x}_j^{(k+1)} = \bar{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \bar{\mathbf{x}}_j^{(k)}) \\ & D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\mathbf{x}}^{(k)}\|_2 \end{aligned}$$

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}_i^{(0)} = \mathbf{\Phi}_R^T \mathbf{y}_i$

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

Conclusion

$$\begin{aligned} & \textbf{function } \mathbf{x}^{(k+1)} = \text{SPL}(\mathbf{x}^{(k)}, \mathbf{y}_j, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}, \tau) \\ & \hat{\mathbf{x}}^{(k)} = \text{Wiener}(\mathbf{x}^{(k)}) \\ & \textbf{for each block } j \\ & \hat{\mathbf{x}}_j^{(k)} = \hat{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \hat{\mathbf{x}}_j^{(k)}) \\ & \check{\mathbf{x}}^{(k)} = \boldsymbol{\Psi} \hat{\mathbf{x}}^{(k)} \\ & \check{\mathbf{x}}^{(k)} = \text{Threshold}(\check{\mathbf{x}}^{(k)}, \tau) \\ & \bar{\mathbf{x}}^{(k)} = \boldsymbol{\Psi}^{-1} \check{\check{\mathbf{x}}}^{(k)} \\ & \textbf{for each block } j \\ & \mathbf{x}_j^{(k+1)} = \bar{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \bar{\mathbf{x}}_j^{(k)}) \\ & D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\mathbf{x}}^{(k)}\|_2 \end{aligned}$$

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}_i^{(0)} = \mathbf{\Phi}_R^T \mathbf{y}_i$

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

Conclusion

$$\begin{split} & \mathbf{function} \ \mathbf{x}^{(k+1)} = \mathrm{SPL}(\mathbf{x}^{(k)}, \mathbf{y}_j, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}, \boldsymbol{\tau}) \\ & \hat{\mathbf{x}}^{(k)} = \mathrm{Wiener}(\mathbf{x}^{(k)}) \\ & \mathbf{for} \ \mathbf{each} \ \mathbf{block} \ j \\ & \hat{\mathbf{x}}_j^{(k)} = \hat{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \hat{\mathbf{x}}_j^{(k)}) \\ & \check{\mathbf{x}}^{(k)} = \boldsymbol{\Psi} \hat{\mathbf{x}}^{(k)} \\ & \check{\mathbf{x}}^{(k)} = \mathrm{Threshold}(\check{\mathbf{x}}^{(k)}, \boldsymbol{\tau}) \\ & \bar{\mathbf{x}}^{(k)} = \boldsymbol{\Psi}^{-1} \check{\mathbf{x}}^{(k)} \\ & \mathbf{for} \ \mathbf{each} \ \mathbf{block} \ j \\ & \mathbf{x}_j^{(k+1)} = \bar{\mathbf{x}}_j^{(k)} + \boldsymbol{\Phi}_B^T(\mathbf{y}_j - \boldsymbol{\Phi}_B \bar{\mathbf{x}}_j^{(k)}) \\ & D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\mathbf{x}}^{(k)}\|_2 \end{split}$$

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}_{i}^{(0)} = \mathbf{\Phi}_{R}^{T} \mathbf{y}_{i}$

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPI
Results

Video

Quantizatio

```
SPL Reconstruction Algorithm
```

```
function \mathbf{x}^{(k+1)} = \mathrm{SPL}(\mathbf{x}^{(k)}, \mathbf{y}_i, \mathbf{\Phi}_B, \mathbf{\Psi}, \tau)
            \hat{\mathbf{x}}^{(k)} = \text{Wiener}(\mathbf{x}^{(k)})
             for each block i
                         \hat{\hat{\mathbf{x}}}_i^{(k)} = \hat{\mathbf{x}}_i^{(k)} + \mathbf{\Phi}_B^T(\mathbf{y}_i - \mathbf{\Phi}_B\hat{\mathbf{x}}_i^{(k)})
             \check{\mathbf{x}}^{(k)} = \mathbf{\Psi} \hat{\hat{\mathbf{x}}}^{(k)}
            \check{\mathbf{x}}^{(k)} = \text{Threshold}(\check{\mathbf{x}}^{(k)}, \tau)
             \bar{\mathbf{v}}^{(k)} - \mathbf{\Psi}^{-1} \check{\check{\mathbf{v}}}^{(k)}
             for each block j
                          \mathbf{x}_i^{(k+1)} = \bar{\mathbf{x}}_i^{(k)} + \mathbf{\Phi}_B^T(\mathbf{y}_i - \mathbf{\Phi}_B\bar{\mathbf{x}}_i^{(k)})
             D^{(k+1)} = \|\mathbf{x}^{(k+1)} - \hat{\hat{\mathbf{x}}}^{(k)}\|_{2}
endfunction
```

- Iterate until $|D^{(i)} D^{(i-1)}| < 10^{-4}$
- Initialization: $\mathbf{x}_i^{(0)} = \mathbf{\Phi}_R^T \mathbf{y}_i$

IJ.

BCS of Images and Video

S. Mun

CS Overview BCS-SPL Results MS-BCS-SP

Video

Quantizatio

Conclusion

Solution for 2. Complex Recovery

Two issues of SPL

- ullet A good transform function, Ψ
 - should prevent oscillations or shift variance due to thresholding
 - should preserve local structure (directional patterns)
- ullet A good thresholding value, au
 - should determine which coeff is important
 - should be adaptive to the signal at each iteration

BCS of Images and Video

S. Mun

Images
CS Overvier
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

- ullet Ψ : simple, but blocking artifacts
- \circ τ : Convenient heuristic, but theoretical shortcomming

BCS of Images and Video

S. Mun

Quantization

Better Choice for Ψ : Directional Transformation

Dual-tree DWT

- Contourlet Transform (Do, 2005)
 - Couples Laplacian-pyramid decomposition with directional filterbank
 - 2^d directional sub-bands, usually n=3,4
- Dual-tree DWT (Kingsbury, 2001)
 - keeps real & imaginary values in decomposition
 - 12 directional sub-bands, real 6 and imaginary 6

We choose Contourlet and Dual-tree DWT for Ψ

BCS of Images and Video

S. Mun

Images
CS Overvie
BCS-SPL
Results

Video

Quantization

BCS of Images and Video

S. Mun

Images
CS Overvie
BCS-SPL
Results
MS-BCS-SF
Results

Video

Quantization

Conclusion

Better Choice for τ : Wavelet coeffs' dependency

Bivariate Shrinkage (Şendur & Selesnick, 2002)
 For each coefficient x in x

$$\check{x} = \text{Shrinkage}(z, \tau) \cdot \frac{\check{x}}{z}$$

where

$$\begin{aligned} \text{Shrinkage}(z,\tau) &= \begin{cases} |z| - \tau, & |z| \geq \tau \\ 0 & \text{else}, \end{cases} \\ z &= \sqrt{\check{x}^2 + \check{x}_p^2}, \tau = \lambda \frac{\sqrt{3}\sigma_n}{\sigma_n^2} \end{aligned}$$

 \check{x}_p : coeff in parent level, σ_n : noise variance

- Works well with multi-level decomposition
- Takes into account statistical dependency

We choose bivariate shrinkage for τ

Experimental Setup

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

Vide

Quantization

Conclusion

Experimental Setup

- Φ_B : orthonormalized Gaussian matrix, $B = 32 \times 32$
- $\lambda = 10(CT),25(DWT),25(DDWT),6(DCT)$
- Sub-sampling ratio (subrate): S = M/N
- Distortion measure: Peak signal-to-noise ratio

Algorithms Compared

- BCS-SPL using Directional Transform
 - Dual-tree DWT (DDWT) bivariate shrinkage
 - Contourlet Transform (CT) bivariate shrinkage
- BCS-SPL using DWT with bivariate shrinkage
- BCS-SPL using DCT with heuristic thresholding
- Gradient projection method in BCS as benchmark
 - GPSR(Schniter et al. 2008)

PSNR performance comparison, "Lenna"

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

Video

Ouantizatio

PSNR performance comparison, "Mandrill"

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPI

Video

Quantizatio

Outline

BCS of Images and Video

S. Mun

Images CS Overvie BCS-SPL

MS-BCS-SPL

Video

Quantizatio

- 1 Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
- 4 Conclusion

Multiscale extention

BCS of Images and Video

S. Mun

CS Overvie
BCS-SPL
Results
MS-BCS-SF

Video

Quantization

Conclusion

Block-Based Compressed Sensing (BCS)

- BCS: CS sampling within small image blocks
- Advantage: very fast, low memory
- Drawback: reduced reconstruction quality comparing to global sampling
- Motivation: deploy BCS within multiscale framework

Multiscale Framework

- Random sampling in wavelet domain, not spatial domain
 - Exploiting wavelet structure enables to determine which subband is important than others
 - Mutiscale CS—Sampling rate adjusted with DWT level (baseband retained in full)

BCS of Images and

Video

S. Mun

Quantization

Multiscale BCS (MS-BCS)

Multiscale Sampling

Random sampling in multi-scale domain is defined

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \mathbf{\Phi}'\mathbf{\Omega}\mathbf{x}$$

and multiscale coefficients are defined

$$\tilde{\mathbf{x}} = \Omega \mathbf{x}$$

Then,

$$\mathbf{y} = \mathbf{\Phi}' \tilde{\mathbf{x}}$$

- Ω: multiscale transform (i.e., L-level DWT)
- Φ': multiscale block-based sampling operator
 - set of BCS sampling operators with subrates varying with level
 - $\Phi' = \{\Phi_l\}, 1 < l < L$

Multiscale Sampling Example, $\mathbf{y} = \Phi' \tilde{\mathbf{x}}$

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SPL

Video

Quantizatio

Conclusion

Multiscale BCS Reconstruction

BCS of Images and Video

S. Mun

Images
CS Overview
BCS-SPL
Results
MS-BCS-SP

Video

Quantization

Conclusion

MS-BCS-SPL algorithm

$$\begin{split} & \textbf{function} \ \tilde{\mathbf{x}}^{(i)} = \text{MS-BCS-SPL} \left(\mathbf{y}, \left\{ \boldsymbol{\Phi}_{l, \ 1 \leq l \leq L} \right\}, \boldsymbol{\Psi}, \boldsymbol{\Omega}, \tilde{\mathbf{x}}_{l,s,j}^{(0)} \right) \\ & \textbf{do} \quad \mathbf{x}^{(i)} = \boldsymbol{\Omega}^{-1} \tilde{\mathbf{x}}^{(i)} \\ & \hat{\mathbf{x}}^{(i)} = \text{Wiener}(\mathbf{x}^{(i)}) \\ & \hat{\tilde{\mathbf{x}}}^{(i)} = \boldsymbol{\Omega} \hat{\mathbf{x}}^{(i)} \\ & \textbf{for each} \ \textit{l}, \ \textbf{for each} \ \textit{s}, \ \textbf{for each} \ \textit{j} \\ & \hat{\tilde{\mathbf{x}}}_{l,s,j}^{(i)} = \hat{\tilde{\mathbf{x}}}_{l,s,j}^{(i)} + \boldsymbol{\Phi}_{l}^{T} (\mathbf{y}_{l,s,j} - \boldsymbol{\Phi}_{l} \hat{\tilde{\mathbf{x}}}_{l,s,j}^{(i)}) \\ & \check{\tilde{\mathbf{x}}}^{(i)} = \boldsymbol{\Psi} \boldsymbol{\Omega}^{-1} \hat{\tilde{\mathbf{x}}}^{(i)} \\ & \check{\tilde{\mathbf{x}}}^{(i)} = \mathbf{Threshold}(\check{\tilde{\mathbf{x}}}^{(i)}) \\ & \tilde{\tilde{\mathbf{x}}}^{(i)} = \boldsymbol{\Omega} \boldsymbol{\Psi}^{-1} \check{\tilde{\mathbf{x}}}^{(i)} \\ & \textbf{for each} \ \textit{l}, \ \textbf{for each} \ \textit{s}, \ \textbf{for each} \ \textit{j} \\ & \tilde{\tilde{\mathbf{x}}}_{l,s,j}^{(i+1)} = \tilde{\tilde{\mathbf{x}}}_{l,s,j}^{(i)} + \boldsymbol{\Phi}_{l}^{T} (\mathbf{y}_{l,s,j} - \boldsymbol{\Phi}_{l} \tilde{\tilde{\mathbf{x}}}_{l,s,j}^{(i)}) \\ & \boldsymbol{D}^{(i+1)} = \|\tilde{\mathbf{x}}^{(i+1)} - \hat{\tilde{\mathbf{x}}}^{(i)}\|_{2} \\ & i = i+1 \\ & \textbf{until} \ |\boldsymbol{D}^{(i)} - \boldsymbol{D}^{(i-1)}| < 10^{-2} \end{split}$$

Experimental Setup

BCS of Images and Video

S. Mun

CS Overview BCS-SPL Results MS-BCS-SP

Video

Quantization

Conclusion

Experiment Setup

- Sparsity basis, Ψ: DDWT
- ullet Sampling basis, Ω : 3-level 9/7 biorthogonal DWT
- ullet $B_l imes B_l$ blocks sampled using structured random matrices (SRM)
- \bullet Block size $B_1 = 16$, $B_2 = 32$, $B_3 = 64$

Algorithms Compared

- BCS-SPL
- TV (Candès et al. 2006)
- OGPSR (Schniter et al. 2008)
- MS-GPSR multiscale version of GPSR

Performance Comparison, "Lenna"

BCS of Images and Video

S. Mun

Images
CS Overvie
BCS-SPL
Results
MS-BCS-SP

Video

Quantizatio

Conclusio

Performance Comparison, "Peppers"

BCS of Images and Video

S. Mun

Image

CS Overvier
BCS-SPL
Results
MS-BCS-SP
Results

Video

Quantizatio

Conclusion

Simulation Results for 2D Images

BCS of Images and Video

S. Mun

lmage:

CS Overvie BCS-SPL Results MS-BCS-SF

Results

vided

Quantizatio

Conclusion

Lenna (512 \times 512) with subrate S=0.1

MS-BCS-SPL 31.6 dB 50 seconds BCS-SPL 28.0 dB 30 seconds

Simulation Results for 2D Images

BCS of Images and Video____

S. Mun

lmage

CS Overvie BCS-SPL Results MS-BCS-SP

Result

Vide

Quantizatio

Conclusion

Lenna (512 \times 512) with subrate S=0.1

MS-GPSR 30.3 dB 20 minutes TV 29.9 dB 1.8 hours

BCS-SPL of images

BCS of Images and Video

S. Mun

Images
CS Overvier
BCS-SPL
Results
MS-BCS-SP
Results

Video

Quantizatio

Conclusion

Remarks

- BCS-SPL simplified measurement process and sped up the reconstruction process
- Multiscale random sampling significantly enhanced the reconstruction quality

Publications

- S. Mun and J. E. Fowler, "Block Compressed Sensing of Images Using Directional Transforms," in Proceedings of the International Conference on Image Processing, Cairo, Egypt, November 2009, pp. 3021-3024.
- J. E. Fowler, S. Mun, and E. W. Tramel, "Multiscale Block Compressed Sensing with Smoothed Projected Landweber Reconstruction," in Proceedings of the European Signal Processing Conference, Barcelona, Spain, August 2011, pp. 564-568.

Outline

BCS of Images and Video

S. Mun

Video

- 2 BCS-SPL of Video
 - CS for Video

Traditional Video Compression

BCS of Images and Video

S. Mun

Traditional Video Compression

- Temporal motion compensation at encoding making encoder complex
- Well suited for once encode, decode many times
- Not the best solution for resource-limited encoding

Extension of Still-image CS to Video

BCS of Images and Video

S. Mun

Image

CS for vide MC-BCS-SI

Quantization

BCS for multiple frames

- BCS can provide extremely simple video sampler.
- Unlike traditional video coder, motion cannot be tracked in sampling stage
 - Random sampling generates measurements, not images
- Instead, the motion can be tracked at receiver side

Experimental Assumption

- Same 2D BCS sampler used for images
- Adjustable sampling rate for certain frames(key frames)

We want to find a good CS video recovery while keeping the sampler simple

Outline

BCS of Images and Video

S. Mun

Video

- **BCS-SPL** of Video

 - Motion Compensated BCS-SPL

BCS of Images and Video

S. Mun

Image

Video
CS for vide
MC-BCS-SI

Quantizati

Residual Reconstruction

- Using motion estimation/compensation (ME/MC) to capture objects motion in frames
- Obtaining correct motion vectors (MVs) are crucial
 - using iterative-refinement of MVs
 - using sparser representation in ME/MC residual
- Residual is random projected motion compensated interframe

BCS of Images and Video

S. Mun

Image

Video CS for video MC-BCS-SPL

Quantization

. . .

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
```


BCS of Images and Video

S. Mun

Image

Video

CS for video MC-BCS-SPL Results

Quantization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
      \hat{\mathbf{x}} = \text{Initialize}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
```


BCS of Images and Video

S. Mun

Image

CS for video

Quantization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
    \hat{\mathbf{x}} = \text{Initialize}(\mathbf{v}, \mathbf{\Phi}_{R}, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
    i = 0
    while i < MAX ITERATION
          \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
```


BCS of Images and Video

S. Mun

Image

Video CS for video

Results

Quantization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
    \hat{\mathbf{x}} = \text{Initialize}(\mathbf{v}, \mathbf{\Phi}_{R}, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
    i = 0
    while i < MAX ITERATION
          \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
          for each block j
                \mathbf{y}_{\mathsf{mc}_i} = \mathbf{\Phi}_B \hat{\mathbf{x}}_{\mathsf{mc}_i}
```


BCS of Images and Video

S. Mun

Image

Video CS for video MC-BCS-SPI

Quantization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
     \hat{\mathbf{x}} = \text{Initialize}(\mathbf{v}, \mathbf{\Phi}_{R}, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
     i = 0
     while i < MAX ITERATION
           \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
           for each block j
                \mathbf{y}_{\mathsf{mc}_i} = \mathbf{\Phi}_B \hat{\mathbf{x}}_{\mathsf{mc}_i}
          \mathbf{y_r} = \mathbf{y} - \mathbf{y_{mc}}
```


BCS of Images and Video

S. Mun

Image

CS for video MC-BCS-SPL

Quantization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
     \hat{\mathbf{x}} = \text{Initialize}(\mathbf{v}, \mathbf{\Phi}_{R}, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
     i = 0
     while i < MAX ITERATION
           \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
           for each block j
                 \mathbf{y}_{\mathsf{mc}_i} = \mathbf{\Phi}_B \hat{\mathbf{x}}_{\mathsf{mc}_i}
           \mathbf{y_r} = \mathbf{y} - \mathbf{y_{mc}}
           \hat{\mathbf{x}}_{\mathbf{r}} = \text{BCS-SPL}(\mathbf{y}_{\mathbf{r}}, \mathbf{\Phi}_{B}, \mathbf{\Psi})
```


BCS of Images and Video

S. Mun

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
     \hat{\mathbf{x}} = \text{Initialize}(\mathbf{v}, \mathbf{\Phi}_{R}, \mathbf{\Psi}, \mathbf{x}_{\text{ref}})
     i = 0
     while i < MAX ITERATION
           \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
           for each block j
                 \mathbf{y}_{\mathsf{mc}_i} = \mathbf{\Phi}_B \hat{\mathbf{x}}_{\mathsf{mc}_i}
           \mathbf{y_r} = \mathbf{y} - \mathbf{y_{mc}}
           \hat{\mathbf{x}}_{\mathbf{r}} = \text{BCS-SPL}(\mathbf{y}_{\mathbf{r}}, \mathbf{\Phi}_{B}, \mathbf{\Psi})
           \hat{\mathbf{x}} = \hat{\mathbf{x}}_{mc} + \hat{\mathbf{x}}_{r}
           i = i + 1
     end while
```


BCS of Images and Video

S. Mun

Image

CS for video MC-BCS-SP

Quantization

a danitization

```
MC-BCS-SPL algorithm for single frame
```

```
function \hat{\mathbf{x}} = \text{MC-BCS-SPL}(\mathbf{y}, \Phi_B, \Psi, \mathbf{x}_{ref})
     \hat{\mathbf{x}} = \text{Initialize}(\mathbf{y}, \mathbf{\Phi}_B, \mathbf{\Psi}, \mathbf{x}_{ref})
     i = 0
     while i < MAX_ITERATION
            \hat{\mathbf{x}}_{mc} = \text{MotionCompensation}(\hat{\mathbf{x}}, \mathbf{x}_{ref})
            for each block j
                 \mathbf{y}_{\mathsf{mc}_i} = \mathbf{\Phi}_B \hat{\mathbf{x}}_{\mathsf{mc}_i}
           \mathbf{y_r} = \mathbf{y} - \mathbf{y_{mc}}
           \hat{\mathbf{x}}_{\mathsf{r}} = \mathrm{BCS}\text{-}\mathrm{SPL}(\mathbf{y}_{\mathsf{r}}, \mathbf{\Phi}_{B}, \mathbf{\Psi})
           \hat{\mathbf{x}} = \hat{\mathbf{x}}_{\mathsf{mc}} + \hat{\mathbf{x}}_{\mathsf{r}}
           i = i + 1
     end while
```

Residual y_r can be sparser in some transform than y_r

Multi-hypothesis Initialization

BCS of Images and Video

S. Mun

Image

CS for vide MC-BCS-SF

Quantizatio

Obtaining Correct (MVs) are Crucial

- Better Initialization, more correct MVs possible
- To have better initial reconstruction, averages two possible reconstructions
 - 2D-BCS-SPL: good for dynamic sequence
 - Residual reconstruction with no motion vector: good for stationary sequence

Algorithm

```
\begin{aligned} & \textbf{function} \ \hat{\mathbf{x}} &= \text{Initialize}(\mathbf{y}, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}, \mathbf{x}_{\textbf{ref}}) \\ & \hat{\mathbf{x}}' &= \text{BCS-SPL}(\mathbf{y}, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}) \\ & \textbf{for each block} \ j \\ & \mathbf{y}_{\textbf{r}_j} &= \mathbf{y}_j - \boldsymbol{\Phi}_B \mathbf{x}_{\textbf{ref}_j} \\ & \hat{\mathbf{x}}'' &= \text{BCS-SPL}(\mathbf{y}_{\textbf{r}}, \boldsymbol{\Phi}_B, \boldsymbol{\Psi}) + \mathbf{x}_{\textbf{ref}} \\ & \hat{\mathbf{x}} &= \frac{1}{2} [\hat{\mathbf{x}}' + \hat{\mathbf{x}}''] \end{aligned}
```


Multiple-Frame Processing

BCS of Images and Video

S. Mun

Image

CS for video
MC-BCS-SPI

MC-BCS-SPL Results

Quantization

Forward/Backward Processing

- Key frames could have better quality than non-key frames by sampling more
- Forward processing for first half of the GOP;
 backward processing for last half of the GOP

Outline

BCS of Images and Video

S. Mun

Video

Results

- **BCS-SPL** of Video

 - Results

Comparison to non-MC Algorithms

BCS of Images and Video

S. Mun

Image

CS for vide

Quantization

Quantizatio

Experiment Setup

- Using DCT as sparsity basis for simplicity
- Subrate-distortion performance is observed
- GOP size: 8 frames (1st: key frame, Remainder: non-key)
- Test 1: All frames are equally subsampled
- Test 2: Key frames are sampled with higher subrate
 - Subrates are adjusted for non-key frame by the amount of measurements taken by key frames

Algorithms Compared

- Frame-by-frame reconstruction: 2D-BCS-SPL
- 3D joint reconstruction (Wakin et al. 2006): 3D-BCS-SPL

Test 1: $S_K = S_{NK}$, Foreman, 296 frames

BCS of Images and Video

S. Mun

Image

Video

CS for vid

MC-BC

Quantizatio

Test 2: $S_K \neq S_K$, Mother-Daughter,296frames

BCS of Images and Video____

S. Mun

Image

Video

CS for vide

MC-BCS Results

Quantizatio

O----1---1--

Comparison to Other MC algorithms

BCS of Images and Video

S. Mun

Experimental Setup

- Φ for MC-BCS-SPL: DDWT
- GOP size: 8 frames (1st: Key, 2-8th: non-key)
- Unequal subrate, $S_K = 0.7$ fixed, $S_{NK} = 0.1$ to 0.5

Algorithms Compared

- DISCOS (Do et al, 2009): Find the best linear combination of multiple matching blocks from the two key frames nearby
- k-t FOCUSS (Jung et al, 2009, 2010): Similar residual reconstruction with FOCUSS or IRLS. Reference frames: average of all initial reconstructions
- ModCS (Vaswani & Lu, 2010): Using previous frame's wavelet coefficients support info, estimate successive frames

Comparison to Other MC algorithms, Coastguard, 88 frames

BCS of Images and Video

S. Mun

Image

Video CS for vide

MC-BC:

Quantization

Comparison to Other MC algorithms, Football, 88 frames

BCS of Images and Video

S. Mun

Image

ŭ

Video CS for vid

MC-BC

Quantization

Visual Comparison of Reconstructions

4th frame of 'Foreman', $S_K = 0.7$, $S_{NK} = 0.3$

BCS of Images and Video

S. Mun

Image

Video

CS for vide MC-BCS-S

Quantization

MC-BCS-SPL 36.7 dB 159 seconds DISCOS 34.0 dB 41 seconds

Visual Comparison of Reconstructions

BCS of Images and Video

S. Mun

Image

Video

CS for vic

MC-BCS-S

Quantizatio

ModCS

29.6 dB

699 seconds

k-t FOCUSS

32.7 dB

46 seconds

Remarks

BCS of Images and Video

S. Mun

Quantization

Motion Compensated BCS-SPL

- ME/MC in residual reconstruction helps track the motion along the sequences at at receiver side
- Multi-hypothesis initialization provides a better estimation of the reference frame
- Forward/backward processing for multiple frames

Publications

- S. Mun and J. E. Fowler, "Residual Reconstruction for **Block-Based Compressed Sensing of Video," in Proceedings** of the IEEE Data Compression Conference, J. A. Storer and M. W. Marcellin, Eds., Snowbird, UT, March 2011, pp. 183-192.
- J. E. Fowler, S. Mun and E. W. Tramel "Block-Based Compressed Sensing of Images and Video", Foundations and Trends in Signal Processing: Vol. 4: No 4, pp 297-416, 2012.

Outline

BCS of Images and Video

S. Mun

Image

Video

. .

Quantization DPCM for Imag

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

- Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
 - 4 Conclusion

Existing Approaches

BCS of Images and Video

S. Mun

Image

Vide

Quantization
Quantization
DPCM for Images

DPCM for Image 1D-DPCM-BCS 2D-DPCM-BCS

Conclusio

Straightforward Approach

Scalar Quantization (SQ): Simple, but inefficient

Alternative Approaches

- BPDQ(L. Jacques, 2011): seeks a sparse solution from scalar quantized measurements by adding particular data-fidelity constraint to enhance the reconstruction quality
- Progressive Quantization(L. Wang et al, 2011,2012): reconstructs a small set of fine quantized measurements to progressively estimate a large set of course quantized measurements

We want to use some statistical correlation in block CS

Correlation in Block Compressed Sensing

BCS of Images and Video

S. Mun

Image

Vide

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

block correlation in BCS
$$\bar{\rho}$$
 = 0.971

in CS
$$\bar{\rho} = 0.026$$

- measurements are divided into several groups to obtain the correlation using $\rho_j = \frac{\mathbf{y}^{(j)^T}\mathbf{y}^{(j-1)}}{\|\mathbf{y}^{(j)}\|\|\mathbf{y}^{(j-1)}\|}$
- ullet $\bar{
 ho}$: average correlation

Outline

BCS of Images and Video

S. Mun

Image

Video

. .

Quantization

DPCM for Images

1D-DPCM-BCS

2D-DPCM-BCS

- 1 Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
 - 4 Conclusion

BCS of Images and Video

S. Mun

Image

Video

Quantization

Quantization

DPCM for Images

1D-DPCM-BCS

2D-DPCM-BCS

Conclusion

DPCM in Image Coding

- Transmitting the pixel difference rather than pixel
- Works when signals possess a significant degree of correlation, and image does
- Predicted pixel is obtained $\tilde{x}[n] = \sum_{i=1}^{k} a_i x[n-i]$
- If 1st order prediction (k = 1 and $a_1 = 1.0$), the predicted pixel is simply the previously pixel

BCS of Images and Video

S. Mun

Image

Vide

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

DPCM in Image Coding

- Transmitting the pixel difference rather than pixel
- Works when signals possess a significant degree of correlation, and image does
- Predicted pixel is obtained $\tilde{x}[n] = \sum_{i=1}^{k} a_i x[n-i]$
- If 1st order prediction (k = 1 and $a_1 = 1.0$), the predicted pixel is simply the previously pixel

BCS of Images and Video

S. Mun

Image

Video

Quantization

DPCM for Images
1D-DPCM-BCS

Conclusio

DPCM in Image Coding

Goal is to minimize the difference

$$\sigma_d^2 = E\left[d[n]^2\right] = E\left[(x[n] - \tilde{x}[n])^2\right]$$

- If 1st order predictor, it becomes $\sigma_d^2 = \sigma_r^2 (1 \rho_1^2)$
- Meaning the variance of the difference is reduced by the factor of $(1 \rho_1^2)$
- ullet Typical grayscale images having $ho_1 pprox 0.95$ shows the rate gain 1-3 bpp over SQ

BCS of Images and Video

S. Mun

lmage

Vide

Quantization

Quantization

DPCM for Images 1D-DPCM-BCS 2D-DPCM-BCS

Conclusio

DPCM in Image Coding

Goal is to minimize the difference

$$\sigma_d^2 = E\left[d[n]^2\right] = E\left[(x[n] - \tilde{x}[n])^2\right]$$

- If 1st order predictor, it becomes $\sigma_d^2 = \sigma_r^2 (1 \rho_1^2)$
- Meaning the variance of the difference is reduced by the factor of $(1-\rho_1^2)$
- ullet Typical grayscale images having $ho_1 pprox 0.95$ shows the rate gain 1-3 bpp over SQ

BCS of Images and Video

S. Mun

Image

Vide

Quantization
Quantization
DPCM for Images

DPCM for Images 1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

DPCM in Image Coding

Goal is to minimize the difference

$$\sigma_d^2 = E\left[d[n]^2\right] = E\left[(x[n] - \tilde{x}[n])^2\right]$$

- If 1st order predictor, it becomes $\sigma_d^2 = \sigma_r^2 (1 \rho_1^2)$
- Meaning the variance of the difference is reduced by the factor of $(1 \rho_1^2)$
- ullet Typical grayscale images having $ho_1 pprox 0.95$ shows the rate gain 1-3 bpp over SQ

Outline

BCS of Images and Video

S. Mun

ımage

Video

Quantization
DPCM for Imag
1D-DPCM-BCS
2D-DPCM-BCS

- Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
 - 4 Conclusion

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

Conclusion

DPCM procedure in BCS

Given M-dimensional BCS measurement vector

$$\mathbf{y}^{(j)} = \begin{bmatrix} y_1^{(j)} & \cdots & y_m^{(j)} & \cdots & y_{M_B}^{(j)} \end{bmatrix}^T = \mathbf{\Phi}_B \mathbf{x}^{(j)}$$

j: index of block, m: measurement vector component

To predict $y_m^{(j)}$, m^{th} measurement of the previous vector is used.

$$d_m^{(j)} = y_m^{(j)} - \hat{y}_m^{(j-1)}$$

Next, the residual, $d_m^{(j)}$, is scalar quantized

$$i_m^{(j)} = Q \left[d_m^{(j)} \right]$$

Index $i_m^{(j)}$ is then entropy coded.

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

Conclusion

DPCM procedure in BCS

Given M-dimensional BCS measurement vector

$$\mathbf{y}^{(j)} = \begin{bmatrix} y_1^{(j)} & \cdots & y_m^{(j)} & \cdots & y_{M_B}^{(j)} \end{bmatrix}^T = \mathbf{\Phi}_B \mathbf{x}^{(j)}$$

j: index of block, m: measurement vector component To predict $y_m^{(j)}$, m^{th} measurement of the previous vector is used.

$$d_m^{(j)} = y_m^{(j)} - \hat{y}_m^{(j-1)}$$

Next, the residual, $d_m^{(j)}$, is scalar quantized

$$i_m^{(j)} = Q \left[d_m^{(j)} \right]$$

Index $i_m^{(j)}$ is then entropy coded.

BCS of Images and Video

S. Mun

Image

.....

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

Conclusion

DPCM procedure in BCS

Given M-dimensional BCS measurement vector

$$\mathbf{y}^{(j)} = \begin{bmatrix} y_1^{(j)} & \dots & y_m^{(j)} & \dots & y_{M_B}^{(j)} \end{bmatrix}^T = \mathbf{\Phi}_B \mathbf{x}^{(j)}$$

j: index of block, m: measurement vector component To predict $y_m^{(j)}$, m^{th} measurement of the previous vector is used.

$$d_m^{(j)} = y_m^{(j)} - \hat{y}_m^{(j-1)}$$

Next, the residual, $d_m^{(j)}$, is scalar quantized.

$$i_m^{(j)} = Q \left[d_m^{(j)} \right]$$

Index $i_m^{(j)}$ is then entropy coded.

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

DPCM procedure in BCS

Feedback loop consists of dequantization of $i_m^{(j)}$, producing the quantized residual $\hat{d}_m^{(j)}$,

$$\hat{d}_m^{(j)} = Q^{-1} \left[i_m^{(j)} \right]$$

such that

$$\hat{y}_m^{(j)} = \hat{d}_m^{(j)} + \hat{y}_m^{(j-1)}.$$

Finally, the prediction is implemented with a one-block delay buffer.

• The set of measurements in the first block is processed in the same manner by initializing $\hat{y}^{(0)}$ to be the zero vector.

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

DPCM procedure in BCS

Feedback loop consists of dequantization of $i_m^{(j)}$, producing the quantized residual $\hat{d}_m^{(j)}$,

$$\hat{d}_m^{(j)} = Q^{-1} \left[i_m^{(j)} \right]$$

such that

$$\hat{y}_m^{(j)} = \hat{d}_m^{(j)} + \hat{y}_m^{(j-1)}.$$

Finally, the prediction is implemented with a one-block delay buffer.

• The set of measurements in the first block is processed in the same manner by initializing $\hat{y}^{(0)}$ to be the zero vector.

Application of DPCM to BCS-SPL

BCS of Images and Video

S. Mun

Image

Video

Quantization

1D-DPCM-BCS 2D-DPCM-BCS

Conclusio

Proposed Algorithm: DPCM + SQ to BCS-SPL

Rate Reduction using DPCM+SQ

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

$$\Delta R = \frac{1}{2} \frac{M}{N} \log_2 \frac{1}{(1 - \rho_1^2)}$$

Performance Comparison to SQ-alone

BCS of Images and Video

S. Mun

Image

viaco

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS
2D-DPCM-BCS

Conclusio

Experimental Setup

- RD performance measured by PSNR and bitrate
- Optimal stepsize and subrate are chosen through exhaustive search
- \bullet Φ_B : Orthonormal Gaussian, Ψ : 5-level DDWT
- B=8 for BCS-SPL and MH-BCS-SPL, B=2 for MS-BCS-SPL
- all SQ is uniform quantization

Algorithms Compared

- BCS-SPL
- MS-BCS-SPL
- MH-BCS-SPL(Chen et al, 2011) extension using multi-hypothesis predictions

Experimental Results (BCS-SPL)

BCS of Images and Video

S. Mun

Image

Video

Quantization

DPCM for Image 1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

PSNR Performance in dB for a bitrate of 0.5 bpp

BCS-SPL	
---------	--

Image	SQ	DPCM	Gain
Lenna	27.7	29.4	+1.7
Barbara	22.9	23.6	+0.7
Peppers	28.6	29.5	+0.9
Goldhill	26.7	27.4	+0.7
Man	26.2	26.9	+0.7
Clown	26.7	27.6	+0.9
Average	26.5	27.4	+0.9

Experimental Results (MH-BCS-SPL)

BCS of Images and Video____

S. Mun

Image

Video

Quantizatio

DPCM for Image
1D-DPCM-BCS

Conclusion

PSNR Performance in dB for a bitrate of 0.5 bpp

MH-BCS-SPL

Image	SQ	DPCM	Gain
Lenna	29.2	31.4	+2.3
Barbara	24.4	27.9	+3.5
Peppers	29.2	31.2	+2.1
Goldhill	26.8	28.8	+2
Man	26.5	27.9	+1.4
Clown	28.4	30.8	+2.4
Average	27.4	29.7	+2.3

Experimental Results (MS-BCS-SPL)

BCS of Images and Video

S. Mun

Image

Vide

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

PSNR Performance in dB for a bitrate of 0.5 bpp

	WIS-DUS-SPL			
Image	SQ	DPCM	Gain	
Lenna	33.8	34.7	+0.9	
Barbara	26.6	27.4	+0.8	
Peppers	33.8	34	+0.2	
Goldhill	30.5	31	+0.5	

MC DCC CDI

30.7

33.2

+0.2

+0.5

Average 31.3 31.8 +0.5

30.5

32.7

Gain for MS is not as large as others

Man

Clown

 Because DPCM is only applied to the baseband which only shows high correlation

Outline

BCS of Images and Video

S. Mun

Image

Video

Quantization
DPCM for Image
1D-DPCM-BCS
2D-DPCM-BCS

- Block Compressed Sensing of Images
 - CS Overview
 - BCS-SPL
 - Results
 - Multiscale BCS-SPL
 - Results
- 2 BCS-SPL of Video
 - CS for Video
 - Motion Compensated BCS-SPL
 - Results
- 3 DPCM for Quantized BCS
 - Quantization Problem in CS
 - DPCM for Natural Images
 - 1D-DPCM for BCS
 - 2D-DPCM for BCS
 - 4 Conclusion

2D Extension of DPCM for BCS

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images

1D-DPCM-BCS 2D-DPCM-BCS

- For better coding gain, more prediction coefficients used.
- Prediction coefficients— a_1 , a_2 , and a_3 —that sum 1.

Prediction Coefficients for 2D DPCM

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

Conclusion

Empirically found $a_1 = 0.5$, $a_2 = 0.5$, and $a_3 = 0.5$

Comparison to Other Approaches

BCS of Images and Video

S. Mun

Image

V.000

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS
2D-DPCM-BCS

Conclusio

Experimental Setup

- Only 2D-DPCM, not 1D-DPCM and SQ
- Prediction Coefficients, $a_1 = 0.5$, $a_2 = 0.5$, and $a_3 = 0$
- BCS-SPL and MS and MH version

Algorithms Compared

- BPDQ (L. Jacques, 2011)
- MARX + PQ (L. Wang et al, 2011, 2012)
 - MARX (L. Wang et al,2009): extension of TV regularizing more directional gradients
 - Gain using PQ over SQ is averagely 1-2 dB
- Tranditional JPEG as benchmark

Performance Comparison, 'Lenna'

BCS of Images and Video____

S. Mun

Image

Video

Quantization

DPCM for Imag
1D-DPCM-BCS
2D-DPCM-BCS

Performance Comparison, 'Goldhill'

BCS of Images and Video

S. Mun

Image

Video

Quantization
DPCM for Imag
1D-DPCM-BCS

Simulation Results for 2D Images

BCS of Images and Video____

S. Mun

Image

Vide

Quantization
DPCM for Imag

1D-DPCM-BCS 2D-DPCM-BCS

Conclusion

Lenna (512 \times 512) at **0.25**bpp

MS-BCS-SPL 31.6 dB JPEG 30.9 dB

Simulation Results for 2D Images

BCS of Images and Video

S. Mun

2D-DPCM-BCS

BPDQ

MARX+PQ 29.8 dB

23.1 dB

Remarks

BCS of Images and Video

S. Mun

Image

Video

Quantization
Quantization
DPCM for Images
1D-DPCM-BCS

Conclusion

Remarks

DPCM is applied on block CS framework

- increasing compression ratio, resulting in better reconstruction quality
- keeping the simple sender part of CS by adding only a small subset of the memory and arithmetic operator
- MH rivals other CS coding technique, MS rivals traditional JPEG

Publication

 S. Mun and J. E. Fowler "DPCM for Quantized Block-Based Compressed Sensing of Images," in Proceedings of the European Signal Processing Conference, Bucharest, Romania, August 2012.

Future Work

BCS of Images and Video

S. Mun

Video

_

Conclusion

Medical Imaging Application

 Medical Imaging Reconstruction by modification of BCS-SPL

CS-SPL

ktFOCUSS

- Radial sensing required (Gaussain,±1 not suitable)
- Expected to work in dynamic MRI as well

Future Work

BCS of Images and Video

S. Mun

Video

Quantization

- Currently needs to test all possible combinations of subrates and stepsize
- Line fitting might be used to find closed equation

Conclusion

BCS of Images and Video

S. Mun

Image

video

Quantization

Conclusion

URL for all source codes (MATLAB)

http://www.ece.msstate.edu/~fowler/BCSSPL/