第十次习题课群文件《期中 & 期末试题》

考研例题-实对称矩阵

1.设 $A \ge 3$ 阶实对称矩阵,秩 r(A) = 2,若 $A^2 = A$,则 A 的特征值是______. 解:

$$A^{2}\alpha = AA\alpha = A\lambda\alpha = \lambda A\alpha = \lambda \lambda\alpha = \lambda^{2}\alpha$$

又因为 $A^2 = A$. 所以有 $A^2 \alpha = A\alpha$. 即 $\lambda^2 \alpha = \lambda \alpha$. 解得 $\lambda = 0$ 或 1。

因为 A 是实对称矩阵,所以 $A\sim\Lambda$,且 Λ 由 A 的特征值所构成,相似矩阵具有相同的秩,所以 $r(\Lambda)=r(A)=2$,所以可以推出

$$\Lambda = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 0 \end{bmatrix}$$

所以矩阵 A 的特征值是 1,1,0。

2.n 阶矩阵

$$A = \begin{bmatrix} a & 1 & 1 & \cdots & 1 \\ 1 & a & 1 & \cdots & 1 \\ 1 & 1 & a & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & a \end{bmatrix}$$

则 $r(A) = _____.$

解:

由第二题的方法 2 可快速写出 A 的特征值为 $n+a-1,a-1,a-1,\cdots,a-1$. 因为 A 是实对称矩阵,所以 $A\sim\Lambda$,且 Λ 由 A 的特征值所构成,相似矩阵具有相同的秩,所以 $r(\Lambda)=r(A)$,所以

$$\Lambda = egin{bmatrix} n+a-1 & & & & & \\ & a-1 & & & & \\ & & & \ddots & & \\ & & & a-1 \end{bmatrix}$$

这里 n 是 A 的阶数, 所以不会等于 0。所以

$$r(A) = \begin{cases} n, &$$
 若 $a \neq 1$ 且 $a \neq 1 - n, \\ n - 1, &$ 若 $a = 1 - n, \\ 1, &$ 若 $a = 1. \end{cases}$

3.设 α 为 n 维单位列向量,E 为 n 阶单位矩阵,则

 $A.E - \alpha \alpha^T$ 不可逆

 $B.E + \alpha \alpha^T$ 不可逆

 $C.E + 2\alpha\alpha^T$ 不可逆

 $D.E - 2\alpha\alpha^T$ 不可逆

 \Diamond

 \Diamond

解:

注意: 单位向量指的是向量的模(长度)为1,要与[1,1,1]区分开来。

 $\alpha \alpha^T \alpha = \alpha(\alpha^T \alpha) = 1\alpha$, 所以 $\alpha \alpha^T$ 有一个特征值 1.

 α 为 n 维单位列向量, 所以 $r(\alpha\alpha^T)=1$, 所以由第一题的结论, $\alpha\alpha^T$ 的特征值为 $1,0,0,\cdots,0$ 。

E 为 n 阶单位矩阵, 所以 E 也为实对称矩阵 (特征值为 1), 实对称矩阵相加减依然为实对称矩阵, 所以上述选项中每一项均为实对称矩阵。

 \Diamond

 \Diamond

又由矩阵可逆则行列式一定不为 0 (不可逆则行列式一定为 0, 充要条件),矩阵的行列式等于特征值的乘积。 A.c 的特征值为 $1-1,1-0,1-0,\cdots,1-0$ 即 $0,1,1,\cdots,1$,所以 $|E-\alpha\alpha^T|=0\times1\cdots1=0$,即不可逆。 同理可以看出其他选项的行列式均不为 0,即可逆。

期末试题

4.期末 2015-2016 三 2.

设 3 阶实对称矩阵 A 的特征值为 $\lambda_1 = -1, \lambda_2 = \lambda_3 = 1$, 对应于 λ_1 的特征向量 $\alpha_1 = (0, 1, 1)^T$ 。

- (1) 求 A 对应于特征值 1 的特征向量;
- (2) 求 A;
- (3) 求 A^{2016} 。

解:

(1) 由于 A 是实对称矩阵,所以对于 A 的不同特征值的特征向量正交,所以设特征值 1 对应的特征向量是 $\alpha=[x_1,x_2,x_3]$ 。 所以有:

$$\alpha_1^T \alpha = x_2 + x_3 = 0 \quad \Rightarrow \quad x_2 = -x_3$$

分别取
$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 得 $\alpha_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}.$

 α_2, α_3 即为 A 对应于特征值 1 的特征向量。

(2) 由特征值定义: $A\alpha_i = \lambda_i \alpha_i$ 。所以:

$$A[\alpha_1, \alpha_2, \alpha_3] = [\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3] \Rightarrow$$

$$A = [\lambda_1 \alpha_1, \lambda_2 \alpha_2, \lambda_3 \alpha_3][\alpha_1, \alpha_2, \alpha_3]^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\left(\vec{x} \, \psi \colon \left[\alpha_1, \alpha_2, \alpha_3 \right]^{-1} = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \right)$$

(3) 由 (2) 得: $A^2 = E_3$ (E 表示单位矩阵。) 所以 $A^{2016} = (A^2)^{1008} = E_3$ 。

5.期末 2016-2017 一 4.

设 $\alpha_1 = (a,1,1)^T$, $\alpha_2 = (1,b,-1)^T$, $\alpha_3 = (1,-2,c)^T$ 是正交向量组,则 a+b+c=____。

解:

由题得:

$$\begin{cases} \alpha_{1}\alpha_{2}^{T} = a + b - 1 = 0 \\ \alpha_{1}\alpha_{3}^{T} = a - 2 + c = 0 \\ \alpha_{2}\alpha_{3}^{T} = 1 - 2b - c = 0 \end{cases} \Rightarrow \begin{cases} a = 1 \\ b = 0 \\ c = 1 \end{cases}$$

6.期末 2016-2017 一 5.

设 3 阶实对称矩阵 A 的特征值分别为 1,2,3 对应的特征向量分别为 $\alpha_1=(1,1,1)^T,\alpha_2=(2,-1,-1)^T,\alpha_3$,则 A 的对应于特征值 3 的一个特征向量 $\alpha_3=$ ____。

设 $\alpha_3 = [x_1, x_2, x_3]^T$, 实对称矩阵对应于不同特征值的特征向量是正交的, 所以:

$$\begin{cases} \alpha_1 \alpha_3^T = x_1 + x_2 + x_3 = 0 \\ \alpha_2 \alpha_3^T = 2x_1 - x_2 - x_3 = 0 \end{cases} \Rightarrow \begin{cases} x_1 = 0 \\ x_2 = -x_3 \end{cases}$$

