# Projectile Motion 12PHYS - Mechanics

#### Mahi Tuatahi

- 1. Yssy travels 30km south and then 20km west. Draw a vector diagram to show her total displacement (resultant).
- 2. Max and Lena are pushing a box. Max is pushing it with force 500N to the right, and Lena is pushing it with force 400N up. Draw a vector diagram to show the **net (resultant) force**.
- 3. Phoebe is flying at  $7ms^{-1}$  east. Phoebe changes direction so she flying at  $7ms^{-1}$  south. Draw a vector diagram to show her **change in velocity**.

# Te Whāinga Ako

1. Be able to describe the motion of an object undergoing projectile motion.

Write the date and te whāinga ako in your book

#### Whakamātau/Experiment

- 1. How many seconds was the student in the air for?
- 2. What is the acceleration due to gravity?
- 3. What was their velocity at the top of their flight?
- 4. How far up did Hancock throw them?

## **Projectile Motion**

Motion under gravity. Friction forces are ignored. Gravity is the only force acting. Motion up and motion down are symmetrical.



## Mahi Tuatahi

- 1. Calculate the height that your ball reached yesterday in your experiment
- 2. Complete the calculation at the bottom of yesterday's worksheet

#### Pātai: Describing Velocity

We first need to correctly describe the *velocity* and *acceleration* of an object in motion.

A ball is thrown vertically upwards. In pairs on a whiteboard, draw two diagrams and indicate the direction of the ball's velocity and acceleration when:

- 1. It is going up,
- 2. it is going down,
- 3. it is at the highest point.

#### Whakatika



Figure 1: Velocity



Figure 2: Acceleration

#### Forces on Projectiles

- We assume that friction force is negligible (we ignore it).
- Therefore, the only force acting upon the ball while in the air is the weight force.
- Weight force acts in the vertical direction only  $(a_y = g = 9.8ms^{-2}, v \neq const.)$
- No forces act in the horizontal  $(a_x = 0, v = const.)$

## Acceleration Due to Gravity

$$a = g = 9.8ms^{-2} \text{ (down)}$$

The acceleration of any object in the air without any external forces acting on it.

## 1D Projectile Motion: In Summary

- An object that moves through the air without its own power source;
- the only force acting upon it is the **weight force**;
- it is always experiencing downward acceleration of  $9.8ms^{-2}$ ;
- motion up/down is symmetrical.

## Mahi Tuatahi: Pātai Tahi

A ball is thrown upwards with an initial speed of  $161.3kmh^{-1}$  ( $44.8ms^{-1}$ ).

- 1. How long does it take for the ball to reach its highest point?
- 2. How high does the ball rise?
  - 1. Knowns
  - 2. Unknowns
  - 3. Formula
  - 4. Substitute
  - 5. Solve

#### Pātai Rua

Lachie kicks a rugby ball straight upwards. It is in the air for 10.6s before it hits the ground.

- 1. What is the initial velocity of the ball?
- 2. If kicked towards some rugby posts, at its highest point, will it go over the crossbar (3m)?
  - 1. Knowns
  - 2. Unknowns
  - 3. Formula
  - 4. Substitute
  - 5. Solve

Pātai Toru

Angus is going cliff diving. He jumps and falls for 3.4s before hitting the water below.

- 1. What is his **initial velocity**?
- 2. What is his **acceleration**?
- 3. What is his **final velocity** (as he hits the water)?
- 4. How **high** is the cliff?
  - 1. Knowns
  - 2. Unknowns
  - 3. Formula
  - 4. Substitute
  - 5. Solve

Whakawai/Practise

• Textbook Page 137: Activity 12A Q1, Q3, Q4

## 2-D Projectile Motion: The Cannon Ball

A cannon ball is fired horizontally from the top of a hill. The velocity of the cannon ball is split into x and y components, which are independent of each other.

- 1. Weight force is the only force acting.
- 2. The cannonball accelerates in the y direction  $(a_y = g = 9.2ms^{-2})$ .
- 3. No forces are acting in the horizontal direction, so velocity is constant  $(a_x = 0)$ .



Figure 3: Source

#### Pātai: Hammer Throw

Hume throws a hammer as far as he can during the Highland Games. It has an initial velocity of  $12ms^{-1}$  on an angle of  $40^{\circ}$  to the ground. How far does it go?

## Steps:

- 1. Separate the x and y values that you know.
- 2. Calculate the x and y initial velocities (use a diagram).
- 3. Calculate how long does it take for the projectile to reach the top of its path?
- 4. What is the total time of flight?
- 5. How far can it travel horizontally in that time?



Whakawai/Practise

•