**Subject :- Programming In Python** 

**Guide Name:- Sanket Shah** 

Div :- C2 - 62

# ADVANCED LIBRARIES IN PYTHON

Presented By Janmejay Pandya (2301031800059)
4th Semester







#### INTRODUCTION

Data Analysis using Advanced Python Libraries

**Objective:** Analyze a heart disease dataset and extract meaningful insights using advanced Python libraries like Pandas, NumPy, Matplotlib, and Seaborn

#### **Importance:**

- Understand the significance of data analysis in healthcare.
- Learn how Python libraries simplify complex data handling.

#### UNDERSTANDING THE PROBLEM

#### PROBLEM STATEMENT:

Analyze the dataset to gain insights into factors contributing to heart disease.

#### **GOALS:**

- Identify trends and relationships between features.
- Visualize data for better understanding.

#### **OVERVIEW OF DATASET**

#### MARKET TRENDS

- Source: <u>heart.csv</u>
- Key Features: Age, sex, chest pain type, cholesterol, fasting blood sugar, resting ECG, maximum heart rate, exercise-induced angina, etc.
- Target Variable: Presence of heart disease (binary classification).

#### LIBRARIES USED IN THE PROJECT

#### **NUMPY**

For numerical operations (e.g., array handling).

#### **MATPLOTLIB**

For creating basic plots and charts.

#### **PANDAS**

For data manipulation, including loading and exploring the dataset

#### **SEABORN**

For advanced statistical visualizations.

## DATA LOADING AND INITIAL EXPLORATION

#### **EXPLANATION**

This code loads the dataset and displays the first few rows for an initial overview.

```
import pandas as pd
df = pd.read_csv('heart.csv')
print(df.head())
```

#### **CONCISE SUMMARY**

#### df.info()

- The total number of rows and columns.
- Column names and data types (e.g., int, float, object).
- Non-null count of each column (helps identify missing data).
- Memory usage of the dataset.

#### print(df.columns.values)

List all the columns to understand the dataset's available features

#### **OUTCOMES OF THE DATASET**

- "1.how many people have heart disease and how many people doesn`t have heart disease?",
  - "2. people of which sex has most heart disease?",
  - "3. people of which sex has which type of chest pain most?",
  - "4. people with which chest painare most pron to have heart disease?",
- "5. What is the average age of people with heart disease versus those without?",
- "6. Which 'thal' (thalassemia) type is most associated with heart disease presence?",
- "7. Do people with 'exang' (exercise-induced angina) have a higher likelihood of heart disease?",
- "8. How does 'oldpeak' (ST depression) vary between people with and without heart disease?"

#### **DEMONSTRATION OF DATASET**

#1.how many people have heart disease and how many people doesn`t have heart disease?

```
df.target.value_counts().plot(kind = 'bar',color=
["orchid","salmon"])
plt.title("heart disease values")
plt.xlabel("1 =heart disease; 0=no heart disease")
plt.ylabel("amount");
```

creates a bar plot using Matplotlib and Pandas to visualize the distribution of heart disease cases in the dataset.



#### **ADVANCED VISUALIZATION WITH SEABORN**

people in which age painare most pron to have heart disease?

```
#create a distribution plot with normal diss. curve
import seaborn as sns
sns.displot(x = 'age',data = df, bins = 30,kde = True);
```

a distribution plot (histogram) with a normal distribution curve (KDE) overlay using Seaborn to visualize the distribution of the 'age' feature in the dataset.

#58-59 years old are most in dataset.



#### KEY INSIGHTS FROM DATA ANALYSIS

#### **EXAMPLE INSIGHTS**

- Age and cholesterol are important factors in determining heart disease risk.
- Patients with higher chest pain levels tend to have higher risks.
- The target variable is slightly imbalanced.



#### **FUTURE SCOPE**

Apply machine learning algorithms to predict heart disease.

Implement additional data preprocessing techniques for improved analysis.

**GitHub Link:** 

<a href="https://github.com/JanmejaySocet/Advance">https://github.com/JanmejaySocet/Advance</a>
<a href="https://github.com/JanmejaySocet/Advance">d-Libraries/tree/main</a>

#### CONCLUSION

#### **Summary:**

Successfully analyzed the heart disease dataset.

Gained hands-on experience with advanced Python libraries.

Extracted meaningful insights through data visualizations.

**Key Learning:** Python libraries make data handling and visualization much easier and more efficient.

### THANKYOU

Presented By Janmejay Pandya (2301031800059)