What is claimed is:

1. A compound of formula I or a pharmaceutically acceptable salt thereof:

5 wherein

10

15

 R^1 is a C_{1-12} group;

X is a C₁₋₁₀ divalent group that separates groups connected thereto by one or two saturated carbons;

Ar is C₄₋₁₂ divalent aromatic group;

R² is optionally substituted C₁₋₆hydrocarbyl, optionally substituted C₆₋₁₀aryl, or optionally substituted C₃₋₆heteroaryl;

 R^3 is a C_{1-12} group, wherein the atom of R^3 that is directly connected to the six-membered ring of formula I is a nitrogen, or an unsaturated carbon, wherein the unsaturated carbon is connected to an oxyen through a double bond; and

 R^a and R^b are -R, -NO₂, -OR, -CI, -Br, -I, -F, -CF₃, -C(=O)R, -C(=O)OH, -NH₂, -SH, -NHR, -NR₂, -SR, -SO₃H, -SO₂R, -S(=O)R, -CN, -OH, -C(=O)OR, or -NRC(=O)R, wherein R is independently -H or C₁₋₆ hydrocarbyl.

2. A compound as claimed in claim 1, wherein

20 R¹ is optionally substituted C₁₋₁₀ hydrocarbyl; optionally substituted C₁₋₁₀acyl; optionally substituted C₄₋₈heteroaryl-C(=O)-; R⁴R⁵N-C₁₋₆alkyl; R⁴R⁵NC(=O)-C₁₋₆alkyl; R⁴O-C₁₋₆alkyl; R⁴C(=O)-C₁₋₆alkyl; R⁴C(=O)NR⁴-C₁₋₆alkyl; R⁴R⁵NSO₂-C₁₋₆alkyl; R⁴CSO₂N(R⁵)-C₁₋₆alkyl; R⁴R⁵NC(=O)N(R⁶)-C₁₋₆alkyl; R⁴R⁵NSO₂N(R⁶)-C₁₋₆alkyl; optionally substituted aryl-C(=O)-C₁₋₆alkyl; optionally substituted heterocyclyl-C(=O)-C₁₋₆alkyl; and C₁₋₁₀hydrocarbylamino;

wherein R⁴, R⁵ and R⁶ are independently selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, or a divalent C₁₋₆group that together with another divalent C₁₋₆group forms a portion of a ring;

R³ is selected from:

wherein

5

10

15

20

25

 R^7 is selected from -H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{3-6} heteroaryl;

 R^{10} , R^{11} , R^{12} and R^{13} are independently selected from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{2-6} alkynyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl; and R^a and R^b are hydrogen.

3. A compound as claimed claim 1,

wherein R^1 is selected from C_{1-8} alkyl; C_{2-8} alkenyl; C_{2-8} alkynyl; optionally substituted aryl- C_{1-6} alkyl; $R^4R^5NC_{1-6}$ alkyl; R^4OC_{1-6} alkyl; C_{3-6} cycloalkyl- C_{1-6} alkyl; optionally substituted C_{3-6} heterocycloalkyl- C_{1-6} alkyl; C_{1-6} alkyl C_{6-8} aryl; C_{1-6} alkyl-C(=O)-; C_{6-8} aryl-C(=O)-; C_{3-8} heteroaryl-C(=O)-; or optionally substituted C_{3-6} heteroaryl- C_{1-6} alkyl;

wherein R^2 is selected from C_{1-6} alkyl, C_{1-6} alkyl substituted by at least one fluorine, C_{2-6} alkenyl, C_{2-6} alkenyl substituted by at least one fluorine, C_{2-6} alkynyl, C_{2-6} alkynyl substituted by at least one fluorine, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, and optionally substituted C_{3-6} heteroaryl;

R⁴, R⁵ and R⁶ are independently selected from the group consisting of -H, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, and a divalent C₁₋₆group that together with another divalent C₁₋₆group forms a portion of a ring;

X is selected from the group consisting of $-NR^6$ -, $-CH_2$ - CH_2 -, -CH=CH-, -O-, $-C(R^8)(R^9)$ -, and $-S(O)_q$ -, wherein q is 0, 1 or 2, wherein R^8 and R^9 are independently C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, -OH, or -H; at most one of R_8 and R_9 is -OH;

R³ is selected from:

$$R^{10} \longrightarrow R^{7} \longrightarrow R^{10} \longrightarrow$$

wherein

5

10

20

 R^7 is selected from -H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{3-6} ecycloalkyl, optionally substituted C_{3-6} ecycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl;

R¹⁰, R¹¹, R¹² and R¹³ are independently selected from optionally substituted C₁₋₆alkyl, optionally substituted C₂₋₆alkenyl, optionally substituted C₂₋₆alkynyl, optionally substituted C₃₋₆cycloalkyl, optionally substituted C₆₋₁₀ aryl, or optionally substituted C₃₋₆heteroaryl; and R^a and R^b are hydrogen.

15 4. A compound as claimed in claim 3, wherein

R¹ is selected from C₁₋₆alkyl; C₂₋₆alkenyl; C₂₋₆ alkynyl; optionally substituted C₃₋₆cycloalkylmethyl; optionally substituted C₃₋₆heterocycloalkylmethyl;

X is $-CH_2$ -;

Ar is phenylene or pyridylene;

R² is selected from -CH₃, -CH₂CH₃, -CH(CH₃)₂, -CH₂CF₃, CF₃, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R³ is selected from

wherein, R^7 is selected from -H and methyl; R^{10} and R^{11} are independently selected 25 from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted

15

25

 C_{2-6} alkynyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl.

5. A compound as claimed in claim 3, wherein

R¹ is selected from C₁₋₆alkyl; C₂₋₆alkenyl; C₂₋₆ alkynyl; optionally substituted C₃₋₆cycloalkylmethyl; optionally substituted C₃₋₆heterocycloalkylmethyl;

X is $-CH_2$ -;

Ar is selected from the group consisting of an optionally substituted *para*-arylene; an optionally substituted a six-membered *para*-heteroarylene;

10 R² is selected from -CH₃, -CH₂CH₃, -CH_{(CH₃)₂, -CH₂CF₃, CF₃, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and}

R³ is selected from:

wherein, R^7 is selected from -H and methyl; R^{10} and R^{11} are selected from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{2-6} alkynyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl.

6. A compound as claimed in claim 3, wherein

20 R¹ is selected from optionally substituted C₃₋₆cycloalkylmethyl; and optionally substituted C₃₋₆heterocycloalkylmethyl;

X is $-CH_2$ -;

Ar is para-phenylene or para-pyridylene;

R² is methyl, or ethyl; and

R³ is selected from

wherein, R⁷ is selected from -H and methyl; R¹⁰ and R¹¹ are selected from C₁₋₆alkyl, C₃₋₆cylcoalkyl, phenyl optionally substituted with halogen, nitro, C₁₋₃alkyl, -COOR¹⁴, -OH,

15

20

25

30

cyano, trifluormethyl, C_{1-3} alkyloxy; C_{3-6} heteroaryl optionally substituted with halogen, nitro, C_{1-3} alkyl, -COOR¹⁴, -OH, cyano, trifluormethyl, C_{1-3} alkyloxy, wherein R^{14} is a C_{1-3} alkyl.

7. A compound selected from:

- 5 1) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-2,2-dimethyl-propanamide;
 - 2) N-[1-(cyclohexylmethyl)-2-[(3-methoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-2,2-dimethyl-propanamide;
 - 3) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N-methyl-N-(1-methylethyl)-urea;
 - 4) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,3-dimethyl-butanamide;
 - 5) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,2-dimethyl-propanamide;
 - 6) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N-methyl-cyclopropanecarboxamide;
 - 7) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,2,2-trimethyl-propanamide;
 - 8) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*',*N*'-diethyl-*N*-methyl-urea;
 - 9) N-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,5-dimethyl-3-isoxazolecarboxamide;
 - 10) *N*-[1-(cyclohexylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2-fluoro-*N*-methyl-benzamide;
 - 11) N-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-2,2-dimethyl-propanamide;
 - 12) [1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-, 1-methylethyl ester carbamic acid;
 - 13) *N*-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2,2-trimethyl-propanamide;
 - 14) N-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,3-dimethyl-butanamide;

10

15

20

25

30

- 15) N-[1-(cyclohexylmethyl)-2-[(5-ethoxy-2-pyridinyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N-methyl-N'-(1-methylethyl)-urea;
- 16) N-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 17) N-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2H-pyran-4-yl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-2,6-difluoro-N-methyl-benzenesulfonamide;
- 18) N-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-cyclobutanecarboxamide;
- 19) N-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,5-difluoro-*N*-methyl-benzamide;
- 20) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2-dimethyl-propanamide;
- 21) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,2,2-trimethyl-propanamide;
- 22) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-*N*'-(1-methylethyl)-urea;
- 23) *N*-[2-[(4-ethoxyphenyl)methyl]-1-[(tetrahydro-2*H*-pyran-4-yl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,3-dimethyl-butanamide;
- 24) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,2-dimethyl-propanamide;
- 25) [1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-, methyl ester carbamic acid;
- 26) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-2,6-difluoro-*N*-methyl-benzenesulfonamide;
- 27) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*-methyl-2-pyridinecarboxamide;
- 28) N-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,3-dimethyl-butanamide;
- 29) N-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N-methyl-N-(1-methylethyl)-urea;
- 30) N-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N,1-dimethyl-1H-imidazole-5-sulfonamide;

10

15

25

- 31) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-4-(dimethylamino)-*N*-methyl- benzamide;
- 32) *N*-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]-*N*,5-dimethyl-3-isoxazolecarboxamide;
- 33) 4-[[[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1*H*-pyrrolo[2,3-*b*]pyridin-5-yl]methylamino]sulfonyl]-benzoic acid;
- 34) N-[1-(cyclobutylmethyl)-2-[(4-ethoxyphenyl)methyl]-1H-pyrrolo[2,3-b]pyridin-5-yl]-N-methyl-2-nitro-benzenesulfonamide; and pharmaceutically acceptable salts thereof.

8. A compound according to any one of claims 1-7 for use as a medicament.

- 9. The use of a compound according to any one of claims 1-7 in the manufacture of a medicament for the therapy of pain.
- 10. The use of a compound according to any one of claims 1-7 in the manufacture of a medicament for the treatment of immune cancer.
- The use of a compound according to any one of claims 1-7 in the manufacture of a
 medicament for the treatment of multiple sclerosis, Parkinson's disease, Huntington's chorea,
 Alzheimer's disease, anxiety disorders, gastrointestinal disorders or cardiovascular disorders.
 - 12. A pharmaceutical composition comprising a compound according to any one of claims 1-7 and a pharmaceutically acceptable carrier.
 - 13. A method for the therapy of pain in a warm-blooded animal, comprising the step of administering to said animal in need of such therapy a therapeutically effective amount of a compound according to any one of claims 1-7.
- 30 14. A method for preparing a compound of formula II,

$$R^3$$
 N
 N
 R^1
 M

comprising the steps of

a) reacting a compound of formula III,

5

10

15

20

with a base having a pKa more than 20;

$$R^2$$
 O R^c

b) reacting a product formed in step a) with a compound of formula IV, to form the compound of formula II, wherein

 R^1 is optionally substituted C_{1-10} hydrocarbyl; optionally substituted C_{1-10} acyl; optionally substituted C_{4-8} heteroaryl-C(=0)-; R^4R^5N - C_{1-6} alkyl; $R^4R^5NC(=0)$ - C_{1-6} alkyl; $R^4C(=0)$ - C_{1-6} alkyl; $R^4C(=0)$ - C_{1-6} alkyl; $R^4C(=0)$ - R^4 - R^5

wherein R^4 , R^5 and R^6 are independently selected from -H, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, or a divalent C_{1-6} group that together with another divalent C_{1-6} group forms a portion of a ring;

 R^2 is optionally substituted C_{1-6} hydrocarbyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl;

R³ is selected from:

$$R^{10} \longrightarrow R^{7} \qquad R^{10} \longrightarrow R^{7} \longrightarrow R^{10} \longrightarrow$$

wherein

 R^7 is selected from -H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl;

 R^{10} , R^{11} , R^{12} and R^{13} are independently selected from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{2-6} alkynyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl; and R^{c} is C_{1-4} alkyl.

10

15

20

5

15. A process as claimed in claim 14, wherein the base is t-butyl lithium;

 R^1 is selected from C_{1-6} alkyl; C_{2-6} alkenyl; C_{2-6} alkynyl; optionally substituted C_{3-6} 6cycloalkylmethyl; optionally substituted C_{3-6} heterocycloalkylmethyl;

R² is selected from -CH₃, -CH₂CH₃, -CH₂CF₃, CF₃, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R³ is selected from:

wherein, R^7 is selected from -H and methyl; R^{10} and R^{11} are independently selected from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{2-6} alkynyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl.

16. A process for preparing a compound of formula V,

$$R^3$$
 N
 N
 N
 N
 N

comprising the step of reacting a compound of formula VI.

with a compound of formula VII,

to form the compound of formula V, wherein

5

10

15

20

 \mathbb{R}^1 is optionally substituted \mathbb{C}_{1-10} hydrocarbyl; optionally substituted \mathbb{C}_{1-10} acyl; optionally substituted C₄₋₈heteroaryl-C(=O)-; R⁴R⁵N-C₁₋₆alkyl; R⁴R⁵NC(=O)-C₁₋₆alkyl; R⁴O- $C_{1\text{-}6} \text{ alkyl}; \\ R^4 O C (= O) - C_{1\text{-}6} \text{ alkyl}; \\ R^4 C (= O) - C_{1\text{-}6} \text{ alkyl}; \\ R^4 C (= O) N R^4 - C_{1\text{-}6} \text{ alkyl}; \\ R^4 R^5 N S O_2 - C_{1\text{-}6} \text{ alkyl}; \\ R^4 C (= O) N R^4 - C_{1\text{-}6} \text{ alkyl}; \\ R^4 C (=$ 6alkyl; $R^4CSO_2N(R^5)-C_{1-6}$ alkyl; $R^4R^5NC(=O)N(R^6)-C_{1-6}$ alkyl; $R^4R^5NSO_2N(R^6)-C_{1-6}$ alkyl; optionally substituted aryl-C₁₋₆alkyl; optionally substituted aryl-C(=0)-C₁₋₆alkyl; optionally substituted heterocyclyl-C₁₋₆alkyl; optionally substituted heterocyclyl-C(=O)-C₁₋₆alkyl; and C₁₋₁₀hydrocarbylamino;

wherein R⁴, R⁵ and R⁶ are independently selected from -H, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋ 6alkynyl, or a divalent C₁₋₆group that together with another divalent C₁₋₆group forms a portion of a ring;

 R^2 is optionally substituted C_{1-6} hydrocarbyl, optionally substituted C_{6-10} aryl, or optionally substituted C3-6heteroaryl;

R³ is selected from:

$$R^{10} \xrightarrow{R^7} R^{11} \xrightarrow{R^{10}} R^{7} \xrightarrow{R^{10}} R^{7} \xrightarrow{R^{10}} R^{7} \xrightarrow{R^{10}} R^{7} \xrightarrow{R^{10}} R^{10} \xrightarrow{R^$$

wherein

5

10

15

 R^7 is selected from -H, optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{6-10} aryl, or optionally substituted C_{3-6} heteroaryl;

 R^{10} , R^{11} , R^{12} and R^{13} are independently selected from optionally substituted C_{1-6} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted C_{2-6} alkyl, optionally substituted C_{3-6} cycloalkyl, optionally substituted C_{3-6} teteroaryl;

Y is CH or N; and

R^c is C₁₋₄alkyl.

17. A process as claimed in claim 16, wherein

R¹ is selected from C₁₋₆alkyl; C₂₋₆alkenyl; C₂₋₆ alkynyl; optionally substituted C₃₋₆cycloalkylmethyl; optionally substituted C₃₋₆heterocycloalkylmethyl;

R² is selected from -CH₃, -CH₂CH₃, -CH₂CF₃, CF₃, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, pyridyl and phenyl; and

R³ is selected from:

wherein, R⁷ is selected from -H and methyl; R¹⁰ and R¹¹ are independently selected 20 from optionally substituted C₁₋₆alkyl, optionally substituted C₂₋₆alkenyl, optionally substituted C₂₋₆alkynyl, optionally substituted C₃₋₆cycloalkyl, optionally substituted C₆₋₁₀ aryl, or optionally substituted C₃₋₆heteroaryl.