ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE

Patent number:

JP11040346

Publication date:

1999-02-12

Inventor:

ABIKO HIROSHI; OGATA YOSHIHIRO

Applicant:

PIONEER ELECTRONIC CORP; PIONEER KK

TOHOKU

Classification:

- international:

G09F9/30; H01L51/50; H01L51/52; H05B33/04; H05B33/12; G09F9/30; H01L51/50; H05B33/04;

H05B33/12; (IPC1-7): H05B33/04; G09F9/30

- european:

H01L51/52C; H05B33/04

Application number: JP19970195726 19970722 Priority number(s): JP19970195726 19970722

Report a data error here

Also published as:

EP0893939 (A1)

US6104137 (A1)

EP0893939 (B1)

Abstract of JP11040346

PROBLEM TO BE SOLVED: To provide an electroluminescent display device in which the generation of short circuits is suppressed and reliability is enhanced. SOLUTION: An organic electroluminescent display device in which an organic compound layer group formed by stacking electroluminescent functional layers each comprising at least one organic compound is arranged between a cathode and an anode on a substrate 1 to form an organic electroluminescent layer 10 has an airtight case 20 surrounding the organic compound layer group, the cathode, and the anode through a space, and shutting off them from the outer air, and a sealing gas containing at least one nonflammable gas, for filling the space in the airtight case 20.

Data supplied from the esp@cenet database - Worldwide

Family list

6 family members for: JP11040346

Derived from 5 applications

1 No title available

Inventor: Applicant:

EC: IPC:

Publication info: DE69811439D D1 - 2003-03-27

2 Organic electroluminescent display device

Inventor: ABIKO HIROSE (JP); OGATA YOSHIHIRO Applicant: PIONEER ELECTRONIC CORP (JP);

(JP) PIONEER ELECTRONIC TOHOKU (JP)

EC: H01L51/52C; H05B33/04 **IPC:** *G09F9/30; H01L51/50; H01L51/52* (+7)

Publication info: DE69811439T T2 - 2003-10-23

3 Organic electroluminescent display device

Inventor: ABIKO HIROSE (JP); OGATA YOSHIHIRO Applicant: PIONEER ELECTRONIC CORP (JP);

(JP) PIONEER ELECTRONIC TOHOKU (JP)

EC: H01L51/52C; H05B33/04 **IPC:** *G09F9/30; H01L51/50; H01L51/52* (+7)

Publication info: EP0893939 A1 - 1999-01-27 **EP0893939 B1** - 2003-02-19

4 ORGANIC ELECTROLUMINESCENT DISPLAY DEVICE

Inventor: ABIKO HIROSHI; OGATA YOSHIHIRO Applicant: PIONEER ELECTRONIC CORP; PIONEER

кк тоноки

EC: H01L51/52C; H05B33/04 IPC: G09F9/30; H01L51/50; H01L51/52 (+8)

Publication info: JP11040346 A - 1999-02-12

5 Organic electroluminescent display device

Inventor: ABIKO HIROSI (JP); OGATA YOSHIHIRO Applicant: PIONEER ELECTRONIC CORP (JP);

JP) PIONEER ELECTRONIC TOHOKU (JP)

EC: H01L51/52C; H05B33/04 **IPC:** *G09F9/30; H01L51/50; H01L51/52* (+8)

Publication info: US6104137 A - 2000-08-15

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-40346

(43)公開日 平成11年(1999)2月12日

(51) Int.Cl.⁶

識別記号

FΙ

H05B 33/04 G09F 9/30

365

H 0 5 B 33/04

G09F 9/30

365D

審査請求 未請求 請求項の数13 OL (全 5 頁)

(21)出願番号	特顯平9-195726	(71)出願人	000005016
	••		パイオニア株式会社
(22) 出願日	平成9年(1997)7月22日		東京都目黒区目黒1丁目4番1号
		(71)出願人	000221926
			東北パイオニア株式会社
			山形県天童市大字久野本字日光1105番地
	·	(72)発明者	安彦 浩志
			山形県米沢市八幡原4-3146-7東北パイ
			オニア株式会社米沢工場内
		(72)発明者	尾形 吉弘
			山形県米沢市八幡原 4 -3146-7 東北パイ
			オニア株式会社米沢工場内
		(74)代理人	
		1	

(54) 【発明の名称】 有機エレクトロルミネセンス表示装置

(57)【要約】

【課題】 ショートの発生を抑制した信頼性の高いエレクトロルミネセンス表示装置を提供する。

【解決手段】 1以上の有機化合物からなるエレクトロルミネセンス機能層が互いに積層された有機化合物層群が陰極及び陽極間に配された有機エレクトロルミネセンス素子が基板上に形成されてなる有機エレクトロルミネセンス表示装置であって、有機化合物層群並びに陰極及び陽極を空間を介して囲繞しかつこれらを外気から遮断する気密ケースと、気密ケース内の空間を満す少なくとも1種類の支燃性ガスを含む封入ガスと、を有する。

【特許請求の範囲】

【請求項1】 1以上の有機化合物からなるエレクトロルミネセンス機能層が互いに積層された有機化合物層群が陰極及び陽極間に配された有機エレクトロルミネセンス素子が基板上に形成されてなる有機エレクトロルミネセンス表示装置であって、前記有機化合物層群並びに前記陰極及び陽極を空間を介して囲繞しかつこれらを外気から遮断する気密ケースと、前記気密ケース内の空間を満す少なくとも1種類の支燃性ガスを含む封入ガスと、を有することを特徴とする有機エレクトロルミネセンス表示装置。

【請求項2】 前記支燃性ガスは酸素ガスであることを 特徴とする請求項1記載の有機エレクトロルミネセンス 表示装置。

【請求項3】 前記酸素ガスは濃度が1vol%以上であることを特徴とする請求項2記載の有機エレクトロルミネセンス表示装置。

【請求項4】 前記支燃性ガスは一酸化二窒素ガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項5】 前記一酸化二窒素ガスは濃度が2vo1%以上であることを特徴とする請求項4記載の有機エレクトロルミネセンス表示装置。

【請求項6】 前記支燃性ガスはオゾンガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項7】 前記支燃性ガスは塩素ガスであることを 特徴とする請求項1記載の有機エレクトロルミネセンス 表示装置。

【請求項8】 前記支燃性ガスは一酸化窒素ガスである ことを特徴とする請求項1記載の有機エレクトロルミネ センス表示装置。

【請求項9】 前記支燃性ガスはフッ素ガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項10】 前記支燃性ガスは三フッ化窒素ガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項11】 前記支燃性ガスは二フッ化酸素ガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項12】 前記支燃性ガスは三酸化フッ化塩素ガスであることを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【請求項13】 前記封入ガスは窒素ガス又は不活性ガスを含むことを特徴とする請求項1記載の有機エレクトロルミネセンス表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電界の印加によっ

て発光するエレクトロルミネセンス層を備えたエレクトロルミネセンス素子からなるエレクトロルミネセンス表示装置に関する。

[0002]

【従来の技術】従来の電気信号に応答して多色表示するカラー表示装置としてはCRT(陰極線管)や液晶型素子が広く利用されている。更に、完全固体型として高輝度の発光が得られるエレクトロルミネセンスを用いたエレクトロルミネセンス素子の複数からなるエレクトロルミネセンス表示装置も開発されている。

【0003】かかるエレクトロルミネセンス表示装置 を、電流の印加により発光するエレクトロルミネセンス 素子の発光層材質で分類すると、無機物発光層を有する ものと有機発光層を有するものとに分けられる。近年、 有機発光層を有する有機エレクトロルミネセンス素子が 注目されている。有機エレクトロルミネセンス素子の構 造は、電極間に正孔輸送層、発光層、電子注入層など有 機蛍光材料の積層体からなっている。例えば、図1に有 機エレクトロルミネセンス表示装置であるX、Yマトリ クス型のものの一例を示す。該エレクトロルミネセンス 表示装置のエレクトロルミネセンス素子10は、ガラス 透明基板1上に、ITO等の複数の透明電極2 (陽 極)、正孔輸送層3、有機発光層4、透明電極2に交差 する複数の背面電極6 (陰極) を順に積層、形成した2 層構造で、電極の交差点が画素に対応したマトリクスと なる。有機エレクトロルミネセンス表示装置には、図に 示す正孔輸送層3及び有機発光層4からなる2層構造の ものや、図示しないが有機発光層4及び背面電極6間に 有機電子輸送層がさらに配された3層構造や、さらなる 多層構造のものがある。なお、正孔輸送層、有機発光 層、電子輸送層などを有機エレクトロルミネセンス機能 層ともいう。

【0004】有機エレクトロルミネセンス素子10において、有機発光層4は、例えばクマリン化合物等の蛍光体を含む層である。有機正孔輸送層3は電極から正孔を注入させ易くする機能と電子をブロックする機能とを有し、有機電子輸送層は電極から電子を注入させ易くする機能を有している。有機エレクトロルミネセンス素子において、一対の電極から注入された電子と正孔との再結合によって励起子が生じ、この励起子が放射失活する過程で光を放ち、この光が透明電極及びガラス基板を介して外部に放出される。

【0005】しかしながら、A1などからなる陰極にピンホール7があると、そこから水分や酸素などが浸入し陰極界面との抵抗が高くなったり(陰極の剥離も含む)、有機エレクトロルミネセンス機能層が変質することにより発光しない領域、すなわち黒点(ダークスポット)8が発生する。また、図1に示すように、有機エレクトロルミネセンス機能層は膜厚がサブミクロンオーダと薄いためゴミ15により、透明電極2の陽極と陰極の

背面電極6とがショート(短絡)しやすい。これを防ぐために、基板表面の洗浄及び平滑化を行っている。しかし、完全にはきれいにできないため、ショートが発生してしまう。

[0006]

【発明が解決しようとする課題】本発明は、上記の事情に鑑みてなされたものであり、本発明の目的は、ショート発生を抑制した信頼性の高いエレクトロルミネセンス表示装置を提供することを目的とする。

[0007]

【発明を解決するための手段】本発明の有機エレクトロルミネセンス表示装置は、1以上の有機化合物からなるエレクトロルミネセンス機能層が互いに積層された有機化合物層群が陰極及び陽極間に配された有機エレクトロルミネセンス素子が基板上に形成されてなる有機エレクトロルミネセンス表示装置であって、前記有機化合物層群並びに前記陰極及び陽極を空間を介して囲繞しかつこれらを外気から遮断する気密ケースと、前記気密ケース内の空間を満す少なくとも1種類の支燃性ガスを含む封入ガスと、を有することを特徴とする有機エレクトロルミネセンス表示装置。

【0008】本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは酸素ガスであることを特徴とする。この本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記酸素ガスは濃度が1vol%以上であることを特徴とする。本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは一酸化二窒素ガスであることを特徴とする。

【0009】この本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記一酸化二窒素ガスは 濃度が 2 vol%以上であることを特徴とする。本発明の 実施例の有機エレクトロルミネセンス表示装置において は、前記支燃性ガスはオゾンガスである。本発明の実施 例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは塩素ガスであることを特徴とする。

【0010】本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは一酸化窒素ガスであることを特徴とする。本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスはフッ素ガスであることを特徴とする。本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは三フッ化窒素ガスであることを特徴とする。

【0011】本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは二フッ化酸素ガスであることを特徴とする。本発明の実施例の有機エレクトロルミネセンス表示装置においては、前記支燃性ガスは三酸化フッ化塩素ガスであることを特徴とする。本発明の実施例の有機エレクトロルミネセンス表示

装置においては、前記封入ガスは窒素ガス又は不活性ガスを含むことを特徴とする。

【0012】本発明の様な構造にすることにより、支燃性ガスによって、陰極のピンホールや不連続な箇所の周辺は酸化され、また、短絡している部位は発熱するため、陰極材料が容易に酸化して絶縁体となり、ショートの発生を抑止できる。支燃性ガスは気体酸化剤であって、自燃性がなく、他の物質の燃焼を助ける物質をいう。

[0013]

【発明の実施の形態】以下に本発明の実施例を図面を参照しつつ説明する。図2は本実施例のエレクトロルミネセンス表示装置を示す。ガラス透明基板1上にて、両電極間に積層された正孔輸送層及び有機発光層の有機エレクトロルミネセンス機能層からなるエレクトロルミネセンス素子10を空間を介して囲繞するように気密ケース20がガラス透明基板1上に気密的に接着されている。気密ケース20が有機化合物層群を水分を多く含む外気から遮断する。気密ケース20内の空間が少なくとも酸素などの少なくとも1種類の支燃性ガスを含む封入ガスで満たされている。混合するガスはN2、Ar, Neなどの不活性ガスでもよく、また、これらを混合させたガスでもよい。

【0014】かかる実施例のエレクトロルミネセンス素子10は、図3に示すように、ガラス透明基板1上に、ITO等の複数のストライプ陽極の透明電極2、正孔輸送層3、有機発光層4、透明電極2に交差する複数のA1のストライプ陰極の背面電極6を順に積層、形成した2層構造のエレクトロルミネセンス表示装置である。正孔輸送層3及び有機発光層4は互いに積層された有機化合物層群をなす。

【0015】実施例として、ストライプ状にパターニングされたITOの陽極付きガラス基板を十分に洗浄し、真空蒸着により、この基板上の陽極ストライプ上にTPDの正孔輸送層を膜厚700Åで、Alq $_3$ の発光層を膜厚550Åで、ストライプ状にパターニングされたAlの陰極を膜厚1000Åで順に成膜した。最後に気密ケースにより気密的に接着し、各種の封入ガスで満たし、封止を行った。また、気密ケースの内壁には吸湿のためにCaOを配した。

【0016】このようにして得られた64×256画素を有する有機エレクトロルミネセンス素子を、輝度が200cd/mになるように点灯させたまま、85 $^{\circ}$ C、2時間、動作保持し、次いで、 -40° C、96時間動作保持する動作試験を行った。気密ケース内の封入ガスが酸素ガスと窒素ガスとの混合ガスで、酸素濃度0.5 $^{\circ}$ Col%,1 $^{\circ}$ Col%,3 $^{\circ}$ Col%,1 $^{\circ}$ Col%,2 $^{\circ}$ Col%,1 $^{\circ}$ Col%,2 $^{\circ}$ Col%,1 $^{\circ}$ Col%,2 $^{\circ}$ Col%,1 $^{\circ}$ Col%,2 $^{\circ}$ Col%,

【0017】気密ケース内の封入ガスが一酸化二窒素ガスと窒素ガスとの混合ガスで、一酸化二窒素濃度1vol

%, 2 vol%, 1 0 vol%, 2 0 vol%, 5 0 vol%, 100vol%の場合の結果を表 2 に示す。気密ケース内の封入ガスがオゾン、塩素、一酸化窒素、フッ素、三フッ化窒素、二フッ化酸素及び三酸化フッ化塩素の支燃性ガスとそれぞれ窒素ガスとの混合ガスで、各支燃性ガス濃度 5 vol%の場合の結果を表 3 に示す。

【0018】比較例として、気密ケース内を窒素ガスのみで満たしたこと以外は、実施例と同様に有機エレクトロルミネセンス素子を作製し、実施例と同様に動作試験を行った。その結果を表1に示す。

[0019]

【表1】

120 1 1	120.11					
	支燃性	濃度	不点灯画素数			
	ガス	[vol%]				
比較例	-	0	2 2			
例1	O_2	0.5	18			
例 2	O_2	1	0			
例 3	O_2	3	0			
例4	O_2	6	0			
例 5	O_2	10	0			
例 6	O_2	15	0			
例7	O_2	20	0			
例8	O_2	5 0	0			
例 9	O ₂ 1	0 0	0			
[0020]						
【表2】						
	支燃性	濃度	不点灯画素数			
	ガス	[vol%]				
例10	$N_2 O$	1	1 5			
例11	$N_2 O$	2	0 .			
例12	$N_2 O$	10	0			
例13	$N_z O$	20	0			
例14	N ₂ O	50	0			
例15	$N_2 O$	100	0			
[0021]						
【表3】						
	支燃性	濃度	不点灯画素数			
	ガス	[vo1%]				
例16	O ₃	5	0			
例17	C 1 2	5	0			
例18	NO	5	0			
例19	\mathbf{F}_2	5	0			
例20	NF ₈	5	0			
例21	OF_2	5	0			
例22	$ClO_3\mathbf{F}$	5	0			

表1より明らかなように、酸素ガス濃度が1vol%以上の封入ガスで気密ケース内を満された有機エレクトロルミネセンス素子においては、ショートを原因とする不点灯画素が発生しなかった。しかし、酸素濃度が20vol%以上の窒素ガスで気密ケース内を満した有機エレクト

ロルミネセンス素子においては目視で黒点(非発光部)の拡大が確認されたため、特に苛酷な条件下で使用する場合、封入ガスの酸素濃度は1vol%以上20vol%未満が好ましい。

【0022】表2より明らかなように、一酸化二窒素ガス濃度が2vo1%以上の封入ガスで気密ケース内を満された有機エレクトロルミネセンス素子においては、ショートを原因とする不点灯画素が発生しなかった。表3より明らかなように、オゾン、塩素、一酸化窒素、フッ素、三フッ化窒素、二フッ化酸素及び三酸化フッ化塩素の支燃性ガスの濃度がそれぞれ5vo1%の封入ガスで気密ケース内を満された有機エレクトロルミネセンス素子においては、ショートを原因とする不点灯画素が発生しなかった。

【0023】さらに、上記実施例では、酸素、一酸化二 窒素、オゾン、塩素、一酸化窒素、フッ素、三フッ化窒素、二フッ化酸素及び三酸化フッ化塩素の支燃性ガスをそれぞれ独立に用いた封入ガスで行ったが、これら支燃性ガスを2種類以上を封入ガスに含めることができる。以上述べたように有機エレクトロルミネセンス素子の封止ガスとして少なくとも酸素などの支燃性ガスを含む封入ガスを用いると、ショートの発生しない信頼性の高い有機エレクトロルミネセンス素子を得る効果がある。

【0024】上記実施例では、両電極間に正孔輸送層3及び有機発光層4を配した2層構造有機化合物層群としたが、陰極6及び有機発光層4間に有機化合物からなる電子輸送層が配されたものでもよい。また、有機発光層4の代わりに無機物発光層とした場合でもよい。さらに上記実施例に加えて、窒素N₂、酸素O₂、水H₂Oの3者のうち水の存在が最も経時劣化に悪影響するので、水又は湿気の遮断対策として、気密ケース20内の有機化合物層群に対向する内壁面に有機化合物層群並びに陰極から隔離して配置された通気性を有する保持容器中に五酸化ニリン、BaOなどの乾燥剤を封入することもできる。

【図面の簡単な説明】

【図1】有機エレクトロルミネセンス素子の概略部分拡 大断面図である。

【図2】実施例の有機エレクトロルミネセンス表示装置 の概略拡大断面図である。

【図3】実施例の有機エレクトロルミネセンス表示装置 の有機エレクトロルミネセンス素子の概略部分拡大断面 図である。

【符号の説明】

- 1 ガラス透明基板
- 2 透明電極
- 3 正孔輸送層
- 4 有機発光層
- 6 背面電極
- 10 有機エレクトロルミネセンス素子

【図1】

【図2】

【図3】

