Лекция 1

Введение в ML

Аминов Тимур. email: <u>aminov.tv@phystech.edu</u> , telegram: @Sifonsoul

План

- 1. Данные
 - а. Как выглядят данные
 - b. Признаковое описание
- 2. Обзор ML
- 3. Модель
 - а. Обучение с учителем
 - b. Классификация и регрессия
 - с. Пример KNN
- 4. Измерение качества
 - а. Примеры метрик
 - b. Разделение на тестовую и тренировочную выборки
 - с. Кросс-валидация
 - d. Переобучение и недообучение

Полезные ссылки

- Введение в ML простыми словами https://vas3k.ru/blog/machine_learning/
- Метрики в задаче классификации
 https://medium.com/swlh/recall-precision-f1-roc-auc-and-everything-542aedf322b9
- Метрики в задаче регрессии
 https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
- Демонстрация алгоритмов на простых примерах https://ml-toy.herokuapp.com/

Данные

Изображения

MNIST Dataset

- Изображения цифр, написанных от руки
- ~50к изображений
- Можно научить модель распознавать цифру

Табличные данные

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 31012
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450
6	0	3	Moran, Mr. James	male		0	0	330877
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909

- Таблица как в Excel
- Как часто бывает: десятки столбцов, тысячи строк
- Один из столбцов целевая переменная
- С данными такого вида мы будем работать на протяжение всего курса

Признаковое описание

Для того, чтобы работать с данными, нужно представить их в виде, пригодном для моделей ML

- Строка в таблице называется объектом
- Столбец в таблице называется признаком
- Признаки могут быть 3-х типов:
 - Числовые
 - Категориальные
 - о Бинарные
- Столбец, который нужно предсказать, называется целевой переменной

Χ	У*	features
	-	

Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171
2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 310128
4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803
5	0	3	Allen, Mr. William Henry	male	35	0	0	373450
6	0	3	Moran, Mr. James	male		0	0	330877
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	17463
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	349909

Признаковое описание

Все признаки представляются в виде чисел:

- Числовые признаки это уже числа
- Бинарные признаки как 0 и 1
- Категориальные признаки:
 - Как число от 0 до N, где N число категорий
 - Как N-мерный вектор {0, 0, 1, 0, 0, 0}. Т.н. **one-hot vector**

Для каждого объекта набор его признаков собирается в один вектор

Вектор

- Вектор это упорядоченный набор чисел
- Вектор это координаты точки в пространстве

Для двух точек можно рассчитать расстояние между ними

Матрица

- Матрица это упорядоченный набор векторов одного размера
- Набор векторов это набор точек в пространстве

Датасет с подготовленными признаками - это матрица

Визуализация данных

Датасет - это матрица

target	petal width	petal length
Iris-setosa	0.2	1.4
Iris-setosa	0.2	1.4
Iris-setosa	0.2	1.3
Iris-setosa	0.2	1.5
Iris-setosa	0.2	1.4

Большие размерности

- Двумерный набор точек можно нарисовать на плоскости
- Трехмерный набор можно спроецировать на плоскость
- Размерности векторов могут быть порядков 100~100 000
- Их всё равно можно спроецировать!

Визуализация реальных датасетов

Матрица корреляции

- Если признаков много, то все парные графики не рассмотришь
- Визуально проанализировать признаки помогает матрица корреляции


```
plt.figure(figsize=(9,5))
sns.heatmap(df.corr())
```

<matplotlib.axes._subplots.AxesSubplot at 0x1fa0e4d4a20>

Обзор ML

Модель

Пример: оцените стоимость ноутбука

		Кол-во ядер	RAM (Гб)	Объем жесткого диска (ГБ)	Диагональ/ разрешение	Работа от аккумулятора	Цена (руб.)
1		2	4	500 (HDD)	15"/1920x1080 пикс.	до 5 часов	31 490
2	(O)	4	8	256 (SSD)	14"/1920x1080 пикс.	до 12 часов	60 990
3	all and	4	16	1000 (HDD)	17"/1920x1080 пикс.	до 3 часов	65 990
4	***	8	16	1000 (HDD) + 256 (SSD)	17"/1920x1080 пикс.	до 11 часов	109 990
5		4	16	1000 (HDD)+ 128 (SSD)	17"/1920×1080 пикс.	до 6 часов	?

Пример: оцените стоимость ноутбука

		Кол-во ядер	RAM (Γ6)	Объем жесткого диска (ГБ)	Диагональ/ разрешение	Работа от аккумулятора	Цена (руб.)
1	-	2	4	500 (HDD)	15"/1920x1080 пикс.	до 5 часов	31 490
2	053	4	8	256 (SSD)	14"/1920x1080 пикс.	до 12 часов	60 990
3	of the last	4	16	1000 (HDD)	17"/1920x1080 пикс.	до 3 часов	65 990
4		8	16	1000 (HDD) + 256 (SSD)	17"/1920x1080 пикс.	до 11 часов	109 990
5		4	16	1000 (HDD)+ 128 (SSD)	17"/1920x1080 пикс.	до 6 часов	86990

Задача обучения с учителем

- Между объектом и целевой переменной существует реальная зависимость
- У нас есть только N сэмплов этой зависимости обучающая выборка
- Задача научиться предсказывать целевую переменную для новых точек
- Для этого строится модель

Модель - это функция, которой можно аппроксимировать реальную зависимость, имея конечное число примеров.

Формальная постановка задачи

Х - Множество объектов

Ү - Целевая переменная

 $f: X \longrightarrow Y$ - неизвестная зависимость

Дано

```
\{x_1, ...., x_l\} - обучающая выборка y_i = y(x_i) , i = 1, ..., l - известные ответы
```

Найти

a : X → Y - алгоритм, решающую функцию, приближающую у на всем множестве X

Классификация и регрессия

Расстояние

Что такое расстояние?

Метрическое пространство есть пара (X,d), где X — множество, а d — числовая функция

функция d обладает следующими свойствами:

- d(x, y) = 0, значит x == y (аксиома тождества)
- d(x, y) = d(y, x) (аксиома симметрии)
- $d(x, y) \le d(x, z) + d(z, y)$ (неравенство треугольника)

Примеры

$$D(x, y) = \sum_{i} |x_i - y_i|$$

$$D(x, y) = \max_{i} |x_i - y_i|$$

Семейство расстояний Менковского

$$D(x,y) = \sqrt[p]{|x_1 - y_1|^p + |x_2 - y_2|^p + \cdots + |x_n - y_n|^p}.$$

Можно показать, что для любого $p \ge 1$:

- \triangleright $D(x,y) \geq 0$,
- D(x,x)=0,
- $\triangleright D(x,y) = D(y,x),$
- $D(x,y) \leq D(x,z) + D(z,y).$

Манхэттенское расстояние р = 1

$$D(x, y) = \sum_{i} |x_i - y_i|$$

Чебышевское расстояние р = ∞

$$D(x, y) = \max_{i} |x_i - y_i|$$

KNN

K Nearest Neighbors

Метод К ближайших соседей

- На вход подается вектор признаковое описание какого-то объекта
- Находится К ближайших к нему векторов, для которых ответ известен
- Ответ для новой точки выбирается с помощью
 - Усреднения в случае регрессии
 - Голосования в случае классификации
- Возможно также усреднение/голосование с весами

KNN классификация

К - внешний параметр. Он подбирается так, чтобы модель работала как можно лучше.

Результат предсказания для некоторых точек может зависеть от K

KNN регрессия

К - внешний параметр. Он подбирается так, чтобы модель работала как можно лучше.

Результат предсказания для некоторых точек может зависеть от K

$$\hat{y} = \frac{\sum_{k=1}^{K} y_k}{K}$$

Метрики

Измерение качества модели

Чтобы понять, насколько адекватно ведет себя модель, нужно каким-то образом численно оценить ее качество.

Метрика - это функция вида:

 $metric(\mathbf{y}, \mathbf{\hat{y}})$

где \mathbf{y} - это правильное значение целевой переменной (label),

а $\mathbf{\hat{y}}$ - значение, предсказанное моделью (**prediction**).

Примеры метрик

Классификации:

- **ассигасу** процент правильных предсказаний среди всех примеров
- precision точность
- recall полнота
- f1 объединяет полноту и точность
- ROC-AUC вероятность правильного ранжирования двух случайных примеров

Регрессии:

- MSE средний квадрат отклонения
- RMSE стандартное отклонение
- МАЕ средний модуль отклонения
- MAPE mean absolute percentage error
- R2 коэффициент детерминации

Более подробно метрики будут рассмотрены в следующий раз

Смещенная оценка

Вопрос: какое предсказание лучше по метрикам, а какое на самом деле?

Если тестировать модель на той же выборке, на которой она обучалась, то оценка получится смещенной. В таком случае "самая лучшая" модель - это та, которая просто запомнила все данные.

Хорошая модель должна делать хорошие предсказания на новых для себя данных

Отложенная выборка

Можно "отложить", скажем, 20% обучающей выборки для валидации модели. Использовать 80% выборки для обучения и 20% для тестирования.

- Оценка на тестовой выборке будет несмещенной
- Тестовая выборка маленькая оценка будет иметь погрешность

Кросс-валидация

- Разбиваем выборку на k частей
- k-1 частей используются для обучения и одна для тестирования
- Процесс повторяется k раз. Каждый раз для тестирования выбирается разная часть
- Результаты тестирования усредняются

Плюсы:

• Погрешность оценки уменьшается, т.к. используется весь набор

Минусы:

• Обучение производится k раз. Для некоторых моделей это может быть очень долго

Переобучение и недообучение

Переобучение и недообучение

Слишком простая "глупая" модель может уловить только общую закономерность, без деталей. Это называется **недообучение**.

Слишком "умная", сложная модель может просто запомнить все точки обучающей выборки - это называется переобучение.

Для каждой задачи нужно найти свою **оптимальную** модель - не слишком простую и не слишком сложную.

Сложность модели

Сложность модели регулируется внешними параметрами.

Haпример, в KNearestNeighbors сложность регулируется параметром K

Какой K самый лучший? Подскажет кроссвалидация

Summary

Тезисы вводной лекции

- Данные нужно превращать в числа признаковое описание
- В данных должна присутствовать целевая переменная
- Можно обучить модель предсказывать целевую переменную это называется <u>обучение с учителем</u>
- Если предсказывается число это <u>регрессия</u>, если класс <u>классификация</u>
- Качество модели оценивается с помощью метрик

