M2 Corrigé: Exercice sur Modèles Graphiques.

- 1. Non, car tous les $\Sigma_{ij} \neq 0$.
- **2.** Oui, $\kappa_{ij} = 0 \iff X_i \perp \!\!\!\perp X_j | X_{V \setminus \{i,j\}}, \text{donc } X_1 \perp \!\!\!\perp X_2 | X_3.$

Si on connaît X_3 alors pour prédire X_1 , la connaîssance de X_2 est sans importance.

3. le graphe de dépendance \mathcal{G} est

4. On a $A = \{1\}, B = \{2,3\}$. La formule du cours donne $\xi_{A|B} = \xi_A + \Sigma_{AB}\Sigma_{BB}^{-1}(x_B - \xi_B) = \begin{pmatrix} 1 & 1 \end{pmatrix} \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = b$ et $\Sigma_{A|B} = K_{AA}^{-1} = 2$. Donc $X_1 \mid (X_2 = a, X_3 = b)$ a la loi N(b, 2).

- 5. La corrélation conditionnelle $\rho_{X_2, X_3|X_1 = u} = -\tilde{\kappa}_{23} = \frac{0.5}{\sqrt{0.5}\sqrt{2}} = 0.5$. 6. Au lieu de résoudre l'équation de vraisemblance(ce qui est plus long), on peut remarquer que $\pi_{\mathcal{G}}(\tilde{\Sigma}_Y) = \pi_{\mathcal{G}}(\Sigma_X)$ et $\Sigma_X^{-1} = K_X$ a un zéro en position (1,2). Donc l'EMV est $\hat{\Sigma}_Y = \Sigma_X$.
- 7. Le graphe \mathcal{G} n'est pas décomposable car le sous-graphe $\{1,2,5,6\}$ est un cycle sans corde.

La décomposition en graphes premiers est:

deux graphes triangulaires $\{1,3,5\},\{2,4,6\}$ et le cycle carré $\{1,2,5,6\}$.

Les cliques sont $\{1,2\},\{1,3,5\},\{2,4,6\},\{5,6\}.$

La factorisation (F) est $f(\underline{x}) = \psi_1(x_1, x_2)\psi_2(x_1, x_3, x_5)\psi_3(x_2, x_4, x_6)\psi_4(x_5, x_6)$.