Examenul de bacalaureat național 2020 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Test 15

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(2+3i)^2 = 4+12i+9i^2 = 4-9+12i = -5+12i =$	3p
	$=5i^2 + 12i = i(5i + 12)$	2 p
2.	$(f \circ f)(x) = x + a + a = x + 2a$, $f(x+1) = x + 1 + a$, pentru orice număr real x	3 p
	$x + 2a = x + 1 + a \Rightarrow a = 1$	2 p
3.	$5 \cdot 2 \cdot 2^x \cdot 3^x = 12 \cdot 5^x \Leftrightarrow 10 \cdot 6^x = 12 \cdot 5^x$	3p
	$\left(\frac{6}{5}\right)^x = \frac{6}{5}$, deci $x = 1$	2p
4.	f(1) poate fi aleasă în două moduri, iar $f(2)$ și $f(3)$ pot fi alese în câte patru moduri	3 p
	Există $4^2 \cdot 2 = 32$ de funcții $f: \{1,2,3\} \rightarrow \{1,2,3,4\}$ astfel încât $f(1) \ge 3$	2 p
5.	$m_{AC} = -1$	2p
	Cum $BD \perp AC$, obținem $m_{BD} = 1$	3 p
6.	$\cos 2x \cos \left(x - \frac{\pi}{6}\right) - \sin 2x \sin \left(\frac{\pi}{6} - x\right) = \cos 2x \cos \left(x - \frac{\pi}{6}\right) + \sin 2x \sin \left(x - \frac{\pi}{6}\right) = \cos \left(x + \frac{\pi}{6}\right)$	2p
	$\cos\left(x + \frac{\pi}{6}\right) = 0$ și, cum $x \in \left(0, \frac{\pi}{2}\right)$, obținem $x + \frac{\pi}{6} = \frac{\pi}{2}$, deci $x = \frac{\pi}{3}$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det(A(x)) = \begin{vmatrix} 2^x & 0 \\ 0 & 3^x \end{vmatrix} = 2^x \cdot 3^x - 0 \cdot 0 =$	3 p
	$=(2\cdot3)^x=6^x$, pentru orice număr real x	2 p
b)	$A(x) \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2^x & 2^x \\ 0 & 3^x \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \cdot A(x) = \begin{pmatrix} 2^x & 3^x \\ 0 & 3^x \end{pmatrix}$	3p
	$ \begin{pmatrix} 2^x & 2^x \\ 0 & 3^x \end{pmatrix} = \begin{pmatrix} 2^x & 3^x \\ 0 & 3^x \end{pmatrix} \Leftrightarrow 2^x = 3^x, \text{ de unde obținem } x = 0 $	2p
c)	$ X \cdot X \cdot X = A(1) \cdot X \text{ si } X \cdot X \cdot X = X \cdot A(1) \Rightarrow A(1) \cdot X = X \cdot A(1), \text{ deci, pentru } X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, $	3 m
	unde a , b , c şi d sunt numere reale, obţinem $\begin{pmatrix} 2a & 2b \\ 3c & 3d \end{pmatrix} = \begin{pmatrix} 2a & 3b \\ 2c & 3d \end{pmatrix} \Leftrightarrow b = 0$ şi $c = 0$	3p
	$ \begin{pmatrix} a^2 & 0 \\ 0 & d^2 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \Leftrightarrow a \in \left\{ -\sqrt{2}, \sqrt{2} \right\} \text{ si } d \in \left\{ -\sqrt{3}, \sqrt{3} \right\}, \text{ deci orice matrice } X \text{ , pentru care } d \in \left\{ -\sqrt{2}, \sqrt{2} \right\} $	2p
	$X \cdot X = A(1)$, are două elemente numere iraționale	

Probă scrisă la matematică M_st-nat

Barem de evaluare și de notare

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

2.a)	$x \circ x = x^2 + x \cdot x + x^2 =$	3 p
	$=3x^2 \ge 0$, pentru orice număr real x	2p
b)	$x^{2} + xa + a^{2} = x^{2} + xb + b^{2} \Leftrightarrow x(a-b) + (a^{2} - b^{2}) = 0 \Leftrightarrow (a-b)(x+a+b) = 0$	3 p
	Cum $a \neq b$, obținem $x = -a - b$	2 p
c)	$x^{2} + x(x+1) + (x+1)^{2} = -x^{3} \Leftrightarrow x^{3} + 3x^{2} + 3x + 1 = 0$	3 p
	$(x+1)^3 = 0$, de unde obţinem $x = -1$	2 p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = 2 - \ln(x+1) - (x+1) \cdot \frac{1}{x+1} =$	3p
	$=2-\ln(x+1)-1=1-\ln(x+1), x \in (-1,+\infty)$	2p
b)	$f'(x) = 0 \Leftrightarrow x = e - 1$	2p
	Pentru orice $x \in (-1, e-1]$, $f'(x) \ge 0$, deci f este crescătoare pe $(-1, e-1]$ și pentru orice $x \in [e-1, +\infty)$, $f'(x) \le 0$, deci f este descrescătoare pe $[e-1, +\infty)$	3р
c)	$f''(x) = -\frac{1}{x+1}, x \in (-1, +\infty)$	2p
	Cum, pentru orice $x \in (-1, +\infty)$ avem $-\frac{1}{x+1} < 0$, obținem $f''(x) < 0$, deci f este concavă	3 p
2.a)	$\int_{0}^{1} f(x)dx = \int_{0}^{1} (x - e^{x})dx = \left(\frac{x^{2}}{2} - e^{x}\right) \Big _{0}^{1} =$	3р
	$=\frac{1}{2}-e+1=\frac{3}{2}-e$	2p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} x (x - e^{x}) dx = \int_{0}^{1} (x^{2} - xe^{x}) dx = \frac{x^{3}}{3} \Big _{0}^{1} - (x - 1)e^{x} \Big _{0}^{1} =$	3p
	$=\frac{1}{3}-1=-\frac{2}{3}$	2p
c)	$I_n = \int_0^1 x^n (x - f(x)) dx = \int_0^1 x^n e^x dx = x^n e^x \left \int_0^1 - \int_0^1 x^{n-1} e^x dx \right = \int_0^1 x^n (x - f(x)) dx = \int_0^1 x^n e^x dx = x^n e^x dx = x^n e^x dx$	3 p
	$=e-nI_{n-1}$, de unde obținem $I_n+nI_{n-1}=e$, pentru orice număr natural n , $n\geq 2$	2p