# L12Ex\_Voltage\_Drop\_Rick\_Davila

#### Rick Davila

5/24/2020

Perform data housekeeping - upload, name columns, display to make sure it reads properly, etc.

```
knitr::opts_chunk$set(echo = TRUE)

library(e1071)
library("xlsx")
```

```
## Warning: package 'xlsx' was built under R version 4.0.3
```

```
library(xtable)
library(MASS) # Needed for ginv() function
rm(list = ls())
# Load data
Ex72 <- read.xlsx(</pre>
  "data-ex-7-2.xlsx",
  sheetIndex = 1, sheetName=NULL, rowIndex=NULL,
  startRow=NULL, endRow=NULL, colIndex= c(1,2,3),
  as.data.frame=TRUE, header=TRUE, colClasses=NA,
  keepFormulas=FALSE, encoding="unknown")
# Give labels to data columns
names(Ex72) <- c("obs",</pre>
                  "time",
                  "voltage drop")
attach(Ex72)
# Output data to make sure it reads properly
out <- as.data.frame(c(Ex72))</pre>
colnames(out) <- c("obs",</pre>
                  "time",
                  "voltage drop")
tab <- (xtable(out, digits=c(0,0,1,2)))
print(tab, type="html")
```

|   | obs | time | voltage_drop |
|---|-----|------|--------------|
| 1 | 1   | 0.0  | 8.33         |
| 2 | 2   | 0.5  | 8.23         |
| 3 | 3   | 1.0  | 7.17         |
| 4 | 4   | 1.5  | 7.14         |
| 5 | 5   | 2.0  | 7.31         |
| 6 | 6   | 2.5  | 7.60         |

| 6/202 | 21 |      |       |
|-------|----|------|-------|
| 7     | 7  | 3.0  | 7.94  |
| 8     | 8  | 3.5  | 8.30  |
| 9     | 9  | 4.0  | 8.76  |
| 10    | 10 | 4.5  | 8.71  |
| 11    | 11 | 5.0  | 9.71  |
| 12    | 12 | 5.5  | 10.26 |
| 13    | 13 | 6.0  | 10.91 |
| 14    | 14 | 6.5  | 11.67 |
| 15    | 15 | 7.0  | 11.76 |
| 16    | 16 | 7.5  | 12.81 |
| 17    | 17 | 8.0  | 13.30 |
| 18    | 18 | 8.5  | 13.88 |
| 19    | 19 | 9.0  | 14.59 |
| 20    | 20 | 9.5  | 14.05 |
| 21    | 21 | 10.0 | 14.48 |
| 22    | 22 | 10.5 | 14.92 |
| 23    | 23 | 11.0 | 14.37 |
| 24    | 24 | 11.5 | 14.63 |
| 25    | 25 | 12.0 | 15.18 |
| 26    | 26 | 12.5 | 14.51 |
| 27    | 27 | 13.0 | 14.34 |
| 28    | 28 | 13.5 | 13.81 |
| 29    | 29 | 14.0 | 13.79 |
| 30    | 30 | 14.5 | 13.05 |
| 31    | 31 | 15.0 | 13.04 |
| 32    | 32 | 15.5 | 12.60 |
| 33    | 33 | 16.0 | 12.05 |
| 34    | 34 | 16.5 | 11.15 |
| 35    | 35 | 17.0 | 11.15 |
| 36    | 36 | 17.5 | 10.14 |
| 37    | 37 | 18.0 | 10.08 |
| 38    | 38 | 18.5 | 9.78  |
| 39    | 39 | 19.0 | 9.80  |
| 40    | 40 | 19.5 | 9.95  |
| 41    | 41 | 20.0 | 9.51  |

# Output data structure and dimensions
str(Ex72)

'data.frame': 41 obs. of 3 variables: \$ obs : num 1 2 3 4 5 6 7 8 9 10 ... \$ time : num 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 ... \$ voltage\_drop: num 8.33 8.23 7.17 7.14 7.31 7.6 7.94 8.3 8.76 8.71 ...

dim(Ex72)

[1] 41 3

# Example 7.2 (p.231-234)

#### Create scatterplot

```
plot(time, voltage_drop, main = "Scatterplot of time vs voltage drop",
    xlab = "time (sec)",
    ylab = "voltage drop")
```

### Scatterplot of time vs voltage drop



# Fit a cubic spline using two knots, one at t1=6.5 and one at t2=13

Create indicator functions for the two knots

```
t1 <- 6.5
t2 <- 13

x_t1 <- ifelse((time-t1)>0,(time-t1),0)
x_t2 <- ifelse((time-t2)>0,(time-t2),0)
```

Add columns to dataframe for the higher-order terms and spline terms

|    | obs | time | voltage_drop | x b01  | x_b02   | x_b03    | x_b1    | x_b2   |
|----|-----|------|--------------|--------|---------|----------|---------|--------|
| 1  | 1   | 0.0  | 8.33         | _      |         |          | 0.000   | 0.000  |
| 2  | 2   | 0.5  | 8.23         | 0.500  | 0.250   | 0.125    | 0.000   | 0.000  |
| 3  | 3   | 1.0  | 7.17         | 1.000  | 1.000   | 1.000    | 0.000   | 0.000  |
| 4  | 4   | 1.5  | 7.14         | 1.500  | 2.250   | 3.375    | 0.000   | 0.000  |
| 5  | 5   | 2.0  | 7.31         | 2.000  | 4.000   | 8.000    | 0.000   | 0.000  |
| 6  | 6   | 2.5  | 7.60         | 2.500  | 6.250   | 15.625   | 0.000   | 0.000  |
| 7  | 7   | 3.0  | 7.94         | 3.000  | 9.000   | 27.000   | 0.000   | 0.000  |
| 8  | 8   | 3.5  | 8.30         | 3.500  | 12.250  | 42.875   | 0.000   | 0.000  |
| 9  | 9   | 4.0  | 8.76         | 4.000  | 16.000  | 64.000   | 0.000   | 0.000  |
| 10 | 10  | 4.5  | 8.71         | 4.500  | 20.250  | 91.125   | 0.000   | 0.000  |
| 11 | 11  | 5.0  | 9.71         | 5.000  | 25.000  | 125.000  | 0.000   | 0.000  |
| 12 | 12  | 5.5  | 10.26        | 5.500  | 30.250  | 166.375  | 0.000   | 0.000  |
| 13 | 13  | 6.0  | 10.91        | 6.000  | 36.000  | 216.000  | 0.000   | 0.000  |
| 14 | 14  | 6.5  | 11.67        | 6.500  | 42.250  | 274.625  | 0.000   | 0.000  |
| 15 | 15  | 7.0  | 11.76        | 7.000  | 49.000  | 343.000  | 0.125   | 0.000  |
| 16 | 16  | 7.5  | 12.81        | 7.500  | 56.250  | 421.875  | 1.000   | 0.000  |
| 17 | 17  | 8.0  | 13.30        | 8.000  | 64.000  | 512.000  | 3.375   | 0.000  |
| 18 | 18  | 8.5  | 13.88        | 8.500  | 72.250  | 614.125  | 8.000   | 0.000  |
| 19 | 19  | 9.0  | 14.59        | 9.000  | 81.000  | 729.000  | 15.625  | 0.000  |
| 20 | 20  | 9.5  | 14.05        | 9.500  | 90.250  | 857.375  | 27.000  | 0.000  |
| 21 | 21  | 10.0 | 14.48        | 10.000 | 100.000 | 1000.000 | 42.875  | 0.000  |
| 22 | 22  | 10.5 | 14.92        | 10.500 | 110.250 | 1157.625 | 64.000  | 0.000  |
| 23 | 23  | 11.0 | 14.37        | 11.000 | 121.000 | 1331.000 | 91.125  | 0.000  |
| 24 | 24  | 11.5 | 14.63        | 11.500 | 132.250 | 1520.875 | 125.000 | 0.000  |
| 25 | 25  | 12.0 | 15.18        | 12.000 | 144.000 | 1728.000 | 166.375 | 0.000  |
| 26 | 26  | 12.5 | 14.51        | 12.500 | 156.250 | 1953.125 | 216.000 | 0.000  |
| 27 | 27  | 13.0 | 14.34        | 13.000 | 169.000 | 2197.000 | 274.625 | 0.000  |
| 28 | 28  | 13.5 | 13.81        | 13.500 | 182.250 | 2460.375 | 343.000 | 0.125  |
| 29 | 29  | 14.0 | 13.79        | 14.000 | 196.000 | 2744.000 | 421.875 | 1.000  |
| 30 | 30  | 14.5 | 13.05        | 14.500 | 210.250 | 3048.625 | 512.000 | 3.375  |
| 31 | 31  | 15.0 | 13.04        | 15.000 | 225.000 | 3375.000 | 614.125 | 8.000  |
| 32 | 32  | 15.5 | 12.60        | 15.500 | 240.250 | 3723.875 | 729.000 | 15.625 |
| 33 | 33  | 16.0 | 12.05        | 16.000 | 256.000 | 4096.000 | 857.375 | 27.000 |

| 34 | 34 | 16.5 | 11.15 | 16.500 | 272.250 | 4492.125 | 1000.000 | 42.875  |
|----|----|------|-------|--------|---------|----------|----------|---------|
| 35 | 35 | 17.0 | 11.15 | 17.000 | 289.000 | 4913.000 | 1157.625 | 64.000  |
| 36 | 36 | 17.5 | 10.14 | 17.500 | 306.250 | 5359.375 | 1331.000 | 91.125  |
| 37 | 37 | 18.0 | 10.08 | 18.000 | 324.000 | 5832.000 | 1520.875 | 125.000 |
| 38 | 38 | 18.5 | 9.78  | 18.500 | 342.250 | 6331.625 | 1728.000 | 166.375 |
| 39 | 39 | 19.0 | 9.80  | 19.000 | 361.000 | 6859.000 | 1953.125 | 216.000 |
| 40 | 40 | 19.5 | 9.95  | 19.500 | 380.250 | 7414.875 | 2197.000 | 274.625 |
| 41 | 41 | 20.0 | 9.51  | 20.000 | 400.000 | 8000.000 | 2460.375 | 343.000 |

Fit model; compare to values in Table 7.4, p. 233

Call: lm(formula = voltage\_drop ~ Ex72 $x_b$ 01 + Ex72x\_b02 + Ex72 $x_b$ 03 + Ex72x\_b1 + Ex72\$x\_b2)

Residuals: Min 1Q Median 3Q Max -0.45168 -0.18499 -0.03547 0.20577 0.61694

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.465678 0.200520 42.219 < 2e-16  $\it Ex72$   $\it x_b01-1.4531240.181586-8.0022.04e-09*** <math>\it Ex72x_b02$  0.489889 0.043018 11.388 2.54e-13 Ex72

 $x_b01-1.4531240.181586-8.0022.04e-09***Ex72x\_b02$  0.489889 0.043018 11.388 2.54e-13 Ex72 $x_b03-0.0294670.002848-10.3473.44e-12***Ex72x\_b1$  0.024706 0.004039 6.116 5.43e-07 Ex72 $x_b2$  0.027112 0.003578 7.577 6.98e-09 — Signif. codes: 0 '' 0.001 " 0.01 " 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2678 on 35 degrees of freedom Multiple R-squared: 0.9904, Adjusted R-squared: 0.9891 F-statistic: 725.5 on 5 and 35 DF, p-value: < 2.2e-16

xtable(summary(model.72))

|             | Estimate    | Std. Error  | t value     | Pr(> t )     |
|-------------|-------------|-------------|-------------|--------------|
|             | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl>  |
| (Intercept) | 8.46567813  | 0.200519766 | 42.218672   | 1.292813e-31 |
| Ex72\$x_b01 | -1.45312398 | 0.181586270 | -8.002389   | 2.041364e-09 |
| Ex72\$x_b02 | 0.48988886  | 0.043017866 | 11.388033   | 2.542202e-13 |
| Ex72\$x_b03 | -0.02946712 | 0.002847800 | -10.347331  | 3.443568e-12 |
| Ex72\$x_b1  | 0.02470600  | 0.004039269 | 6.116454    | 5.425314e-07 |
| Ex72\$x_b2  | 0.02711180  | 0.003578004 | 7.577352    | 6.980038e-09 |
| 6 rows      |             |             |             |              |

Reproduce ANOVA table on p. 233

```
summary(model.72)
```

```
Call: lm(formula = voltage_drop ~ Ex72x_b01 + Ex72x_b02 + Ex72x_b03 + Ex72x_b1 + Ex72x_b2)
```

Residuals: Min 1Q Median 3Q Max -0.45168 -0.18499 -0.03547 0.20577 0.61694

```
Coefficients: Estimate Std. Error t value \Pr(>|\mathbf{t}|) (Intercept) 8.465678 0.200520 42.219 < 2e-16 \pmb{Ex72} x_b01-1.4531240.181586-8.0022.04e-09***Ex72**x_b02*0.489889*0.043018*11.388*2.54e-13*Ex72**x_b03-0.0294670.002848-10.3473.44e-12***Ex72**x_b1*0.024706*0.004039*6.116*5.43e-07*Ex72**x_b2*0.027112*0.003578*7.577*6.98e-09**—Signif. codes: 0 ''*0.001**0.001**0.001**0.005*.' 0.1 ' ' 1
```

Residual standard error: 0.2678 on 35 degrees of freedom Multiple R-squared: 0.9904, Adjusted R-squared: 0.9891 F-statistic: 725.5 on 5 and 35 DF, p-value: < 2.2e-16

xtable(anova(model.72))

|             | <b>Df</b><br><int></int> | Sum Sq<br><dbl></dbl> | <b>Mean Sq</b><br><dbl></dbl> | F value<br><dbl></dbl> | <b>Pr(&gt;F)</b> <dbl></dbl> |
|-------------|--------------------------|-----------------------|-------------------------------|------------------------|------------------------------|
| Ex72\$x_b01 | 1                        | 48.162914             | 48.16291361                   | 671.52626              | 1.989173e-24                 |
| Ex72\$x_b02 | 1                        | 170.493247            | 170.49324703                  | 2377.15463             | 9.097170e-34                 |
| Ex72\$x_b03 | 1                        | 11.788218             | 11.78821797                   | 164.36086              | 8.785188e-15                 |
| Ex72\$x_b1  | 1                        | 25.615992             | 25.61599208                   | 357.15886              | 6.047372e-20                 |
| Ex72\$x_b2  | 1                        | 4.117984              | 4.11798435                    | 57.41627               | 6.980038e-09                 |
| Residuals   | 35                       | 2.510255              | 0.07172156                    | NA                     | NA                           |

## Test significance of spline terms using Partial F-test. Use alpha = 0.01 as the significance level

|        | Res.Df<br><dbl></dbl> | RSS<br><dbl></dbl> | <b>Df</b> <dbl></dbl> | Sum of Sq<br><dbl></dbl> | <b>F</b><br><dbl></dbl> | <b>Pr(&gt;F)</b> <dbl></dbl> |
|--------|-----------------------|--------------------|-----------------------|--------------------------|-------------------------|------------------------------|
| 1      | 37                    | 32.244231          | NA                    | NA                       | NA                      | NA                           |
| 2      | 35                    | 2.510255           | 2                     | 29.73398                 | 207.2876                | 3.955041e-20                 |
| 2 rows |                       |                    |                       |                          |                         |                              |

```
# F crit
alpha <- 0.01
df_SS_R <- anova(model.reduced, model.full)$'Df'[2]
df_SS_Res <- anova(model.reduced, model.full)$'Res.Df'[2]
F_crit <- qf(1-alpha,df_SS_R,df_SS_Res)</pre>
```

We're investigating the contribution of the spline terms to the model. That is, we wish to test

$$H_0:eta_1=eta_2=0$$

we have

$$F_0 = rac{SS_R(eta_1,eta_2|eta_{00},eta_{01},eta_{02},eta_{03}/2}{MS_{Res}} = rac{29.7339764/2}{0.0717216} = 207.2875639$$

and since  $F_{0.01,2,35}=5.2679413$ , we have  $F_0>F_{0.01,2,35}$  and as a result, we reject the null hypothesis and conclude that the spline terms contributes significantly to the model.

### Create residuals versus fits plot for each model

```
plot(model.72\$fitted.values, model.72\$residuals, main = "residuals e_i, versus fitted values \hat{y}i for the cubic spline model", xlab = "\hat{y}i", ylab = "e_i") abline(0, 0, col = "gray")
```

### residuals e\_i, versus fitted values yi for the cubic spline model



```
##
## Call:
## lm(formula = voltage\_drop \sim x_b01b + x_b02b + x_b03b)
##
## Residuals:
              1Q Median
##
      Min
                             3Q
                                    Max
## -1.3503 -0.7340 -0.1859 0.6440 1.8390
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.4910163 0.5336473 12.163 1.71e-14 ***
## x b01b
              0.7031952  0.2339552  3.006  0.004738 **
## x b02b
              0.0340179 0.0273762 1.243 0.221829
## x b03b
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9335 on 37 degrees of freedom
## Multiple R-squared: 0.8773, Adjusted R-squared: 0.8673
## F-statistic: 88.14 on 3 and 37 DF, p-value: < 2.2e-16
```

#### xtable(summary(model.72b))

|             | Estimate     | Std. Error   | t value     | Pr(> t )     |
|-------------|--------------|--------------|-------------|--------------|
|             | <dbl></dbl>  | <dbl></dbl>  | <dbl></dbl> | <dbl></dbl>  |
| (Intercept) | 6.491016346  | 0.5336472749 | 12.163496   | 1.705415e-14 |
| x_b01b      | 0.703195219  | 0.2339551713 | 3.005684    | 4.738282e-03 |
| x_b02b      | 0.034017947  | 0.0273761684 | 1.242612    | 2.218288e-01 |
| x_b03b      | -0.003307211 | 0.0008992137 | -3.677892   | 7.431685e-04 |
| 4 rows      |              |              |             |              |

```
\label{eq:plot_model.72b} $$ fitted.values, model.72b$ residuals, main = "residuals e_i, versus fitted values $\hat{y}$ i for the cubic polynomial model", xlab = "$\hat{y}$i", ylab = "e_i") $$ abline(0, 0, col = "gray") $$
```

### residuals e\_i, versus fitted values yi for the cubic polynomial model

