Modèles probabilistes pour l'accès à l'information à grande échelle

Modèles Structurés

François Yvon

LIMSI - CNRS and Université Paris Sud

Sommaire

- Modèles structurés
 - Généralités
- 2 HMM, une révision rapide
- Modèles pour l'alignement de mots
- Modèles pour la syntaxe

Tentative de définition

Les modèles structurés représentent des ensembles de VA impliquées dans des structures / dépendances complexes

 des séquences (de mots, de lettres, de phrases) impliquant des dépendances structurales ou contextuelles

c'est le fils des voisins qui aime(nt?) le jazz

- des paires de séquences (symboles, étiquettes)
- des alignements
- des arbres syntagmatiques ou des graphes de dépendance

Tentative de définition

Les modèles structurés représentent des ensembles de VA impliquées dans des structures / dépendances complexes

- des séquences (de mots, de lettres, de phrases) impliquant des dépendances structurales ou contextuelles
- des paires de séquences (symboles, étiquettes)

```
He
        reckons
                    the
                                                deficit
                           current
                                     account
                                                          will
                                                                  narrow
         B-VP
                  B-NP
                                                I-NP
B-NP
                            I-NP
                                      I-NP
                                                         B-VP
                                                                  I-VP
```

- des alignements
- des arbres syntagmatiques ou des graphes de dépendance

Tentative de définition

Les modèles structurés représentent des ensembles de VA impliquées dans des structures / dépendances complexes

- des séquences (de mots, de lettres, de phrases) impliquant des dépendances structurales ou contextuelles
- des paires de séquences (symboles, étiquettes)
- des alignements

Michael assumes that he will stay in the house.

Michael geht davon aus, das er im haus bleibt.

des arbres syntagmatiques ou des graphes de dépendance

Tentative de définition

Les modèles structurés représentent des ensembles de VA impliquées dans des structures / dépendances complexes

- des séquences (de mots, de lettres, de phrases) impliquant des dépendances structurales ou contextuelles
- des paires de séquences (symboles, étiquettes)
- des alignements
- des arbres syntagmatiques ou des graphes de dépendance

Paul sees a man with a umbrella

Tentative de définition

Les modèles structurés représentent des ensembles de VA impliquées dans des structures / dépendances complexes

- des séquences (de mots, de lettres, de phrases) impliquant des dépendances structurales ou contextuelles
- des paires de séquences (symboles, étiquettes)
- des alignements
- des arbres syntagmatiques ou des graphes de dépendance

Difficultés

- Les VA représentant une instance ne sont pas indépendantes entre elles
- Trouver les factorisations qui rendent l'inférence faisable est difficile

Sommaire

- Modèles structurés
- 2 HMM, une révision rapide
 - Apprentissage supervisé : POS tagging
 - Généralités
 - Deux problèmes combinatoires
 - Apprentissage non supervisé
- Modèles pour l'alignement de mots
- Modèles pour la syntaxe

Étiquetage en parties du discours

ou Étiquetage Morphosyntaxique ou "Part of speech Tagging"

Classification d'une séquence de mots

$$W_{[1:T]} = w_{[1:T]} \Rightarrow E_{[1:T]} = e_{[1:T]}$$

avec e_s une valeur possible pour la VA E_s parmi les étiquettes \mathcal{E}

Étiquetage en parties du discours

ou Étiquetage Morphosyntaxique ou "Part of speech Tagging"

Classification d'une séquence de mots

$$W_{[1:T]} = w_{[1:T]} \Rightarrow E_{[1:T]} = e_{[1:T]}$$

avec e_s une valeur possible pour la VA E_s parmi les étiquettes \mathcal{E}

Catégorie morphosyntaxique d'un mot?

Désambiguïse les propriétés d'un mot graphique en contexte nom, verbe, adjectif, etc + informations morphologiques (genre, nombre, temps, mode, cas, etc) Problème difficile : ≈ 50% des occurrences sont ambiguës

- *le*: pronom ou déterminant? *la*: pronom ou nom déterminant? *est*: verbe ou adjectif?
- bus : verbe (présent / passé) ou nom? couvent : verbe ou nom?

Applications : synthèse de parole, traduction, extraction d'information, etc.

Construction et utilisation d'un étiqueteur morphosyntaxique

Étiquetage en parties du discours

ou Étiquetage Morphosyntaxique ou "Part of speech Tagging"

Classification d'une séquence de mots

$$W_{[1:T]} = w_{[1:T]} \Rightarrow E_{[1:T]} = e_{[1:T]}$$

avec e_s une valeur possible pour la VA E_s parmi les étiquettes \mathcal{E}

Catégorie morphosyntaxique d'un mot?

Désambiguïse les propriétés d'un mot graphique en contexte

nom, verbe, adjectif, etc + informations morphologiques (genre, nombre, temps, mode, cas, etc)

Construction et utilisation d'un étiqueteur morphosyntaxique

- Modélisation : formuler un modèle paramétrique de $P(W_{\lceil 1:T \rceil}, E_{\lceil 1:T \rceil}; \theta)$
- Apprentissage : sachant $\{(W_{\lceil 1:T \rceil}, E_{\lceil 1:T \rceil})_i, i = 1...N\}$: estimer θ
- \bullet Inférence : sachant $\theta,$ prédire la séquence d'étiquettes $E^{\star}_{[1:T]}$ de $W^{\star}_{[1:T]}$

Étiquetage : de la loi jointe à la loi conditionnelle

Le modèle du canal bruité

$$\begin{split} E_{[1:T]}^{*} &= \operatorname*{argmax}_{E_{[1:T]}} P(E_{[1:T]} | W_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{E_{[1:T]}} \frac{P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta})}{P(W_{[1:T]}; \boldsymbol{\theta})} \\ &= \operatorname*{argmax}_{E_{[1:T]}} P(W_{[1:T]} | E_{[1:T]}; \boldsymbol{\theta}) P(E_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{E_{[1:T]}} P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta}) \end{split}$$

Factorisation agnostique de la loi jointe

En appliquant la règle de Bayes et en définissant des termes comme $e_{1,0}$

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

Quelles hypothèses linguistiques pour factoriser P()?

Étiquetage : de la loi jointe à la loi conditionnelle

Le modèle du canal bruité

$$\begin{split} E_{[1:T]}^* &= \operatorname*{argmax}_{E_{[1:T]}} P(E_{[1:T]} \mid W_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{E_{[1:T]}} \frac{P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta})}{P(W_{[1:T]}; \boldsymbol{\theta})} \\ &= \operatorname*{argmax}_{E_{[1:T]}} P(W_{[1:T]} \mid E_{[1:T]}; \boldsymbol{\theta}) P(E_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{E_{[1:T]}} P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta}) \end{split}$$

Factorisation agnostique de la loi jointe

En appliquant la règle de Bayes et en définissant des termes comme $e_{1,0}$

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t, e_t | w_{1,t-1}, e_{1,t-1})$$

$$= \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

Quelles hypothèses linguistiques pour factoriser P()

Étiquetage : de la loi jointe à la loi conditionnelle

Le modèle du canal bruité

$$E_{[1:T]}^* = \underset{E_{[1:T]}}{\operatorname{argmax}} P(E_{[1:T]} | W_{[1:T]}; \boldsymbol{\theta}) = \underset{E_{[1:T]}}{\operatorname{argmax}} \frac{P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta})}{P(W_{[1:T]}; \boldsymbol{\theta})}$$

$$= \underset{E_{[1:T]}}{\operatorname{argmax}} P(W_{[1:T]} | E_{[1:T]}; \boldsymbol{\theta}) P(E_{[1:T]}; \boldsymbol{\theta}) = \underset{E_{[1:T]}}{\operatorname{argmax}} P(W_{[1:T]}, E_{[1:T]}; \boldsymbol{\theta})$$

Factorisation agnostique de la loi jointe

En appliquant la règle de Bayes et en définissant des termes comme $e_{1,0}$

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

Quelles hypothèses linguistiques pour factoriser P()?

Limsi

Factorisation agnostique

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

$$P(e_t | w_{1,t-1}, e_{1,t-1}) = P(e_t | e_{t-1})$$

$$P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) = P(w_t | e_t)$$

Factorisation agnostique

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

H1 : (syntaxe locale) E_t est indépendante du passé lointain sachant E_{t-1}

$$P(e_t | w_{1,t-1}, e_{1,t-1}) = P(e_t | e_{t-1})$$

[pas raisonnable : augmenter l'ordre ou le jeu d'étiquettes aide]

H2 : (les choix lexicaux sont indépendants de la grammaire) W_t ne dépend que de E_t Conditionnellement à E_t , W_t indépendant de toute autre variable

$$P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) = P(w_t | e_t)$$

pas raisonnable non plus : lexicalisation, cohérence lexicale

Factorisation agnostique

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

H1 : (syntaxe locale) E_t est indépendante du passé lointain sachant E_{t-1}

$$P(e_t | w_{1,t-1}, e_{1,t-1}) = P(e_t | e_{t-1})$$

[pas raisonnable : augmenter l'ordre ou le jeu d'étiquettes aide]

H2 : (les choix lexicaux sont indépendants de la grammaire) W_t ne dépend que de E_t Conditionnellement à E_t , W_t indépendant de toute autre variable

$$P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) = P(w_t | e_t)$$

[pas raisonnable non plus : lexicalisation, cohérence lexicale...]

Factorisation agnostique

$$P(w_{[1:T]}, e_{[1:T]}) = \prod_{t=1}^{T} P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) P(e_t | w_{1,t-1}, e_{1,t-1})$$

H1 : (syntaxe locale) E_t est indépendante du passé lointain sachant E_{t-1}

$$P(e_t | w_{1,t-1}, e_{1,t-1}) = P(e_t | e_{t-1})$$

[pas raisonnable : augmenter l'ordre ou le jeu d'étiquettes aide]

H2 : (les choix lexicaux sont indépendants de la grammaire) W_t ne dépend que de E_t Conditionnellement à E_t , W_t indépendant de toute autre variable

$$P(w_t | e_t, w_{1,t-1}, e_{1,t-1}) = P(w_t | e_t)$$

[pas raisonnable non plus : lexicalisation, cohérence lexicale...]

• correction grammaticale de $w_1...w_k$? $\propto P(W_{[1:T]} | \theta)$

- correction grammaticale de $w_1...w_k$? $\propto P(W_{[1:T]} | \theta)$
- sachant $w_{[1:T]}$, quelle est la meilleure $e_{[1:T]}$? $\underset{\sim}{\operatorname{argmax}} P(E_{[1:T]} | W_{[1:T]}, \theta)$

- correction grammaticale de $w_1...w_k$? $\propto P(W_{[1:T]} | \theta)$
- sachant $w_{\lceil 1:T \rceil}$, quelle est la meilleure $e_{\lceil 1:T \rceil}$? $\underset{\text{argmax P}}{\operatorname{argmax}} P(E_{\lceil 1:T \rceil} | W_{\lceil 1:T \rceil}, \theta)$
- probabilité de la séquence *PRO VRB*? Qu'un *PRO* soit égal à *tu*? ⇒ lexique probabiliste

D'autres problèmes d'étiquetage de séquence

En traitement automatique du langage

Ré-accentuation

je me leve (lève? levé?) : Le contexte permet de prendre la décision.

- observation : mot dégradé, bruité par ex. leve.
- étiquette : le mot par ex. *lève*.

Ré-capitalisation

- observation : mot dégradé, bruité par ex. il.
- étiquette : le mot par ex. il et Il.

Ré-ponctuation

- observation : le mot par ex. il.
- étiquette : (mot | ponctuation) par ex. il, ou il. ou il_{rien}

Aussi : frontière de groupes syntaxiques, d'entités nommées, etc.

30 ans de POS tagging Markovien

- © Le premier succès des approches empiriques (Chuch, de Rose 1988)
- Des performances encore (presque) compétitives
- © Combinaison supervisé / non-supervisé (Mérialdo 1994)
- © Intégration raisonnée dans une chaine de traitements
- Facile à neuronaliser

Modèles de Markov Cachés - Hidden Markov Model (HMM)

Définition (cas discret)

Un modèle de Markov « caché » est défini par $(\{1...n_S\}, \{1...n_K\}, \boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B})$.

- $\{1...n_S\}$ l'ensemble des états,
- π les probabilités initiales : $\pi(i) = P(Q_1 = i)$,
- A la matrice de transition (indépendant de t) :

$$A(i,j) = P(q_t = j | q_{t-1} = i) = P(j | i)$$

B(2,k)

- $\{1...n_K\}$ l'ensemble des observations
- B la matrice d'observations

$$B(j,k) = P(X_t = k | Q_t = j) = P(k | j)$$

 $\theta = \{\pi, A, B\}$: paramètres du HMM

Limsi

Modèles de Markov Cachés - Hidden Markov Model (HMM)

Définition (cas discret)

Un modèle de Markov « caché » est défini par $(\{1...n_S\}, \{1...n_K\}, \boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B})$.

- $\{1...n_S\}$ l'ensemble des états,
- π les probabilités initiales : $\pi(i) = P(Q_1 = i)$,
- A la matrice de transition (indépendant de t) :

$$A(i,j) = P(q_t = j | q_{t-1} = i) = P(j | i)$$

3

- $\{1...n_K\}$ l'ensemble des observations,
- **B** la matrice d'observations :

$$B(j,k) = P(X_t = k | Q_t = j) = P(k | j)$$

• $\theta = \{\pi, A, B\}$: paramètres du HMM

B(2,k)

HMM: probabilité jointe

Le modèle de génération (T est connu)

- Choisir $q_1 \sim \pi$
- Répéter $t \in \{1 \dots T\}$
 - tirer une observation $x_t \sim B(q_t, .)$
 - choisir l'état suivant $q_{t+1} \sim A(q_t, .)$

La probabilité jointe : $P(q_1...q_T, x_1...x_T | \theta)$

$$P(Q_{[1:T]} = q_1 \dots q_T, X_{[1:T]} = x_1 \dots x_T | \theta) = \pi(q_1)B(q_1, x_1) \prod_{t=2}^T A(q_{t-1}, q_t)B(q_t, x_t)$$

HMM: probabilité jointe

Le modèle de génération (T est connu)

- Choisir $q_1 \sim \pi$
- Répéter $t \in \{1 \dots T\}$
 - tirer une observation $x_t \sim B(q_t, .)$
 - choisir l'état suivant $q_{t+1} \sim A(q_t, .)$

La probabilité jointe : $P(q_1...q_T, x_1...x_T | \theta)$

$$P(Q_{[1:T]} = q_1 \dots q_T, X_{[1:T]} = x_1 \dots x_T | \theta) = \pi(q_1)B(q_1, x_1) \prod_{t=2}^T A(q_{t-1}, q_t)B(q_t, x_t)$$

Les 3 (ou 4) problèmes des HMMs

Prédiction, évaluation

$$P(X_{[1:T]}|\boldsymbol{\theta})$$

Classification de séquence, décodage (version 1)

$$q_{[1:T]}^* = \underset{q_{[1:T]}}{\operatorname{argmax}} P(q_{[1:T]} | x_{[1:T]}) = \underset{q_{[1:T]}}{\operatorname{argmax}} \prod_{t=1}^{T} P(q_t | q_{t-1}) P(x_t | q_t)$$

 $\operatorname{avec} P(Q_1 \mid Q_0) = \pi(Q)$

Classification de séquence, décodage (version 2)

$$q_t^* = \underset{s \in \mathcal{Q}}{\operatorname{argmax}} P(Q_t = q | X_{[1:T]}), \forall t = 1 \dots T$$

Apprentissage

estimer $\theta = (A, B, \pi)$ (ou les distributions a posteriori correspondantes) avec des données de supervision .. ou sans

Calculer la probabilité d'une séquence d'observation

Formellement : marginaliser les séquence d'états

Soit $X_{[1:T]}$ la séquence observée de longueur T:

$$P(X_{[1:T]}; \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} P(X_{[1:T]}, Q_{[1:T]} | \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} P(X_{[1:T]} | Q_{[1:T]}, \boldsymbol{\theta}) P(Q_{[1:T]}; \boldsymbol{\theta})$$

Factorisation de la loi jointe

- $P(Q_{[1:T]}; \theta) = \pi(q_1)A(q_1, q_2)A(q_2, q_3) \dots A(q_{T-1}, q_T)$
- $P(X_{\lceil 1:T \rceil} | Q_{\lceil 1:T \rceil}, \theta) = B(q_1, x_1)B(q_2, x_2) \dots B(q_T, x_T)$

Calculer la probabilité d'une séquence d'observation

Formellement : marginaliser les séquence d'états

Soit $X_{[1:T]}$ la séquence observée de longueur T:

$$P(X_{[1:T]}; \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} P(X_{[1:T]}, Q_{[1:T]} | \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} P(X_{[1:T]} | Q_{[1:T]}, \boldsymbol{\theta}) P(Q_{[1:T]}; \boldsymbol{\theta})$$

Factorisation de la loi jointe :

- $P(Q_{[1:T]}; \theta) = \pi(q_1)A(q_1, q_2)A(q_2, q_3) \dots A(q_{T-1}, q_T)$
- $P(X_{[1:T]}|Q_{[1:T]},\theta) = B(q_1,x_1)B(q_2,x_2)...B(q_T,x_T)$

Calculer la probabilité d'une séquence d'observation

Réponse brutale

$$P(X_{[1:T]}; \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} \pi(q_1) B(q_1, x_1) \prod_{t=2}^{T} A(q_{t-1}, q_t) B(q_t, x_t)$$

Complexité : $O(2Tn_S^T)$ (2T produits, n_S^T fois)

- n = 5 et $|S| = 3 \rightarrow 2430$
- 5 et $|S| = 100 \rightarrow 10^1$
- $10 \text{ et } |S| = 100 \rightarrow 2^2$

Meilleure solution: par programmation dynamique

Calculer la probabilité d'une séquence d'observation

Réponse brutale

$$P(X_{[1:T]}; \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} \pi(q_1) B(q_1, x_1) \prod_{t=2}^{T} A(q_{t-1}, q_t) B(q_t, x_t)$$

Complexité : $O(2Tn_S^T)$ (2T produits, n_S^T fois)

- n = 5 et $|S| = 3 \rightarrow 2430$
- 5 et $|S| = 100 \rightarrow 10^{11}$
- 10 et $|S| = 100 \rightarrow 2^{21}$

Meilleure solution: par programmation dynamique

Calculer la probabilité d'une séquence d'observation

Réponse brutale

$$P(X_{[1:T]}; \boldsymbol{\theta}) = \sum_{Q_{[1:T]}} \pi(q_1) B(q_1, x_1) \prod_{t=2}^{T} A(q_{t-1}, q_t) B(q_t, x_t)$$

Complexité : $O(2Tn_S^T)$ (2T produits, n_S^T fois)

- n = 5 et $|S| = 3 \rightarrow 2430$
- 5 et $|S| = 100 \rightarrow 10^{11}$
- 10 et $|S| = 100 \rightarrow 2^{21}$

Meilleure solution: par programmation dynamique

à l'endroit, ...

Considérons la probabilité de se retrouver dans l'état $q_t = s_i$ à l'instant t après avoir observé la séquence d'observation $x_1^t = x_1 \dots x_t$

$$\alpha_{t}(i) = P(x_{[1:t]}, q_{t} = i; \theta)$$

$$= P(x_{t} | x_{[1:t-1]}, q_{t} = i, \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= P(x_{t} | q_{t} = i; \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(x_{[1:t-1]}, q_{t} = i, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | x_{[1:t-1]}, q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} A(j, i) \alpha_{t-1}(j)$$

Limsi

à l'endroit, ...

Considérons la probabilité de se retrouver dans l'état $q_t = s_i$ à l'instant t après avoir observé la séquence d'observation $x_1^t = x_1 \dots x_t$

$$\alpha_{t}(i) = P(x_{[1:t]}, q_{t} = i; \theta)$$

$$= P(x_{t} | x_{[1:t-1]}, q_{t} = i, \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= P(x_{t} | q_{t} = i; \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(x_{[1:t-1]}, q_{t} = i, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | x_{[1:t-1]}, q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

Limsi

à l'endroit, ...

Considérons la probabilité de se retrouver dans l'état $q_t = s_i$ à l'instant t après avoir observé la séquence d'observation $x_1^t = x_1 \dots x_t$

$$\alpha_{t}(i) = P(x_{[1:t]}, q_{t} = i; \theta)$$

$$= P(x_{t} | x_{[1:t-1]}, q_{t} = i, \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= P(x_{t} | q_{t} = i; \theta) P(x_{[1:t-1]}, q_{t} = i; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(x_{[1:t-1]}, q_{t} = i, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | x_{[1:t-1]}, q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} P(q_{t} = i | q_{t-1} = j; \theta) P(x_{[1:t-1]}, q_{t-1} = j; \theta)$$

$$= B(q_{t}, x_{t}) \sum_{1 \leq j \leq |S|} A(j, i) \alpha_{t-1}(j)$$

Limsi

23 / 110

Formulation récursive

Algorithme forward

- **1 Initialisation** : $\alpha_1(i) = \pi(i)B(i, x_1)$
- **Q** Récurrence : $\alpha_t(i) = \sum_{1 \le i \le n_s} \alpha_{t-1}(j) A(j,i) B(i,x_t), \forall t = 1 \dots T$
- **§** Fin: $P(X_{\lceil 1:T \rceil}; \boldsymbol{\theta}) = \sum_{1 \le i \le n_S} \alpha_T(i)$

Complexité

en temps $O(Tn_S^2)$ et en espace $O(Tn_S)$

Le calcul de α_t s'écrit matriciellement (avec $B_t(i) = B(i, x_t)$):

$$\alpha_t = \mathbf{A}\alpha_{t-1} \cdot \mathbf{B}$$

Formulation récursive

Algorithme forward

- **1 Initialisation** : $\alpha_1(i) = \pi(i)B(i, x_1)$
- **Q Récurrence**: $\alpha_t(i) = \sum_{1 \le i \le n_s} \alpha_{t-1}(j) A(j,i) B(i,x_t), \forall t = 1 \dots T$
- **§** Fin: $P(X_{[1:T]}; \theta) = \sum_{1 \le i \le n_S} \alpha_T(i)$

Complexité

en temps $O(Tn_S^2)$ et en espace $O(Tn_S)$

Le calcul de α_t s'écrit matriciellement (avec $B_t(i) = B(i, x_t)$):

$$\alpha_t = \mathbf{A}\alpha_{t-1} \cdot \mathbf{B}_t$$

à l'envers...

 $\beta_t(i)$: probabilité d'observer $x_{[t+1:T]}$ sachant $q_t = i$:

$$\beta_{t}(i) = P(x_{[t+1:T]} | q_{t} = i; \theta) = \sum_{1 \leq j \leq n_{S}} P(x_{[t+1:T]}, q_{t+1} = j | q_{t} = i; \theta)$$

$$= \sum_{1 \leq j \leq n_{S}} P(x_{[t+1:T]} | q_{t} = i, q_{t+1} = j; \theta) P(q_{t+1} = j | q_{t} = i; \theta)$$

$$= \sum_{1 \leq j \leq n_{S}} P(x_{t+1}, x_{[t+2:T]} | q_{t} = i, q_{t+1} = j; \theta) P(q_{t+1} = j | q_{t} = i; \theta)$$

$$= \sum_{1 \leq j \leq n_{S}} B(j, x_{t+1}) \beta_{t+1}(j) A(i, j)$$

Récursion pour s

- **①** Initialisation : $\forall i, \beta_T(i) = 1$
- **② Récurrence**: $\beta_t(i) = \sum_{1 \le i \le n_s} \beta_{t+1}(j) A(i,j) B(j,x_{t+1})$
- **Solution** Fin: $P(x_{[1:T]}; \theta) = \sum_{1 \le i \le n_c} \pi(i)B(i, x_1)\beta_1(i)$

à l'envers...

 $\beta_t(i)$: probabilité d'observer $x_{[t+1:T]}$ sachant $q_t = i$:

$$\beta_{t}(i) = P(x_{[t+1:T]} | q_{t} = i; \boldsymbol{\theta}) = \sum_{1 \leq j \leq n_{S}} P(x_{[t+1:T]}, q_{t+1} = j | q_{t} = i; \boldsymbol{\theta})$$

$$= \sum_{1 \leq j \leq n_{S}} P(x_{[t+1:T]} | q_{t} = i, q_{t+1} = j; \boldsymbol{\theta}) P(q_{t+1} = j | q_{t} = i; \boldsymbol{\theta})$$

$$= \sum_{1 \leq j \leq n_{S}} P(x_{t+1}, x_{[t+2:T]} | q_{t} = i, q_{t+1} = j; \boldsymbol{\theta}) P(q_{t+1} = j | q_{t} = i; \boldsymbol{\theta})$$

$$= \sum_{1 \leq j \leq n_{S}} B(j, x_{t+1}) \beta_{t+1}(j) A(i, j)$$

Récursion pour

- **①** Initialisation : $\forall i, \beta_T(i) = 1$
- **② Récurrence**: $\beta_t(i) = \sum_{1 \le i \le n_s} \beta_{t+1}(j) A(i,j) B(j, x_{t+1})$
- **o** Fin: $P(x_{[1:T]}; \theta) = \sum_{1 \le i \le n_S} \pi(i) B(i, x_1) \beta_1(i)$

à l'envers...

 $\beta_t(i)$: probabilité d'observer $x_{[t+1:T]}$ sachant $q_t = i$:

$$\begin{split} \beta_t(i) &= & \text{P}(x_{[t+1:T]} \,|\, q_t = i; \boldsymbol{\theta}) = \sum_{1 \leq j \leq n_S} \text{P}(x_{[t+1:T]}, q_{t+1} = j \,|\, q_t = i; \boldsymbol{\theta}) \\ &= & \sum_{1 \leq j \leq n_S} \text{P}(x_{[t+1:T]} \,|\, q_t = i, q_{t+1} = j; \boldsymbol{\theta}) \, \text{P}(q_{t+1} = j \,|\, q_t = i; \boldsymbol{\theta}) \\ &= & \sum_{1 \leq j \leq n_S} \text{P}(x_{t+1}, x_{[t+2:T]} \,|\, q_t = i, q_{t+1} = j; \boldsymbol{\theta}) \, \text{P}(q_{t+1} = j \,|\, q_t = i; \boldsymbol{\theta}) \\ &= & \sum_{1 \leq j \leq n_S} B(j, x_{t+1}) \beta_{t+1}(j) A(i, j) \end{split}$$

Récursion pour β

- **1 Initialisation** : $\forall i, \beta_T(i) = 1$
- **2 Récurrence** : $\beta_t(i) = \sum_{1 \le i \le n_S} \beta_{t+1}(j) A(i,j) B(j,x_{t+1})$
- **9** Fin: $P(x_{[1:T]}; \theta) = \sum_{1 \le i \le n_s} \pi(i)B(i, x_1)\beta_1(i)$

Évaluation par l'algorithme forward-backward

Par les deux bouts

Décompositions d'un chemin

- **1** D'abord les t premières observations, pour aboutir à l'état $i \to \alpha_t(i)$
- ② Puis les T t 1 dernières, en partant de $i : \beta_t(i)$.

$$\forall t = 1...T : P(x_{[1:T]}; \boldsymbol{\theta}) = \sum_{1 \le i \le n_s} P(x_{[1:T]}, q_t = i; \boldsymbol{\theta}) = \sum_{1 \le i \le n_s} \alpha_t(i)\beta_t(i)$$

- α pour t croissant à partir du début,
- β pour t décroissant à partir de la fin.
- Complexité : $O(Tn_S^2)$

Classification de séquence (décodage)

Position du problème d'inférence

Observant $x_{[1:T]}$, quelle est la séquence d'états la plus probable?

$$q_{[1:T]}^* = \operatorname*{argmax}_{q_{[1:T]}} \mathsf{P}(Q_{[1:T]} \,|\, X_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{Q_{[1:T]}} \mathsf{P}(Q_{[1:T]}, X_{[1:T]} \,|\, \boldsymbol{\theta})$$

Problème combinatoire : trouver le meilleur parmi n_S^T chemins possibles.

Programmation dynamique

 $\delta_t(i)$: la probabilité du meilleur chemin menant jusqu'à l'état s_i à l'instant t:

$$\delta_t(i) = \max_{q_{[1:t-1]}} P(q_{[1:t-1]}, q_t = i, x_{[1:t-1]} | \boldsymbol{\theta})$$

Classification de séquence (décodage)

Position du problème d'inférence

Observant $x_{[1:T]}$, quelle est la séquence d'états la plus probable?

$$q_{[1:T]}^* = \operatorname*{argmax}_{q_{[1:T]}} \operatorname{P}(Q_{[1:T]} \mid X_{[1:T]}; \boldsymbol{\theta}) = \operatorname*{argmax}_{Q_{[1:T]}} \operatorname{P}(Q_{[1:T]}, X_{[1:T]} \mid \boldsymbol{\theta})$$

Problème combinatoire : trouver le meilleur parmi n_S^T chemins possibles.

Programmation dynamique

 $\delta_t(i)$: la probabilité du meilleur chemin menant jusqu'à l'état s_i à l'instant t:

$$\delta_t(i) = \max_{q_{[1:t-1]}} P(q_{[1:t-1]}, q_t = i, x_{[1:t-1]} | \boldsymbol{\theta})$$

Algorithme de Viterbi

Calcul de $\delta_t(i)$ par récurrence en gardant la trace du meilleur chemin $\psi_t(i)$:

- **1 Initialisation :** $\delta_1(i) = \pi(i)B(i,x_1)$ et $\psi_1(i) = 0$, pour $1 \le i \le n_S$.
- ② Récurrence :

$$\delta_t(i) = \max_{1 \le j \le n_S} \left(\delta_{t-1}(j) A(j,i) \right) B(i,x_t), \text{ pour } 1 \le i \le n_S$$

$$\psi_t(i) = \operatorname{argmax}_{1 \le j \le n_S} \left(\delta_{t-1}(j) A(j,i) \right) B(i,x_t), \text{ pour } 1 \le i \le n_S$$

Fin:

$$q_T^* = argmax_{1 \le i \le n_S}(\delta_T(i))$$

$$P(q_{\lceil 1:T \rceil}^*; \boldsymbol{\theta}) = max_{1 \le i \le n_S}(\delta_T(i))$$

• Le meilleur chemin est obtenu par backtracking (parcours arrière):

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Viterbi ≡ plus court chemin dans un graphe valué (Bellman, Dijkstraa.)

Algorithme de Viterbi

Calcul de $\delta_t(i)$ par récurrence en gardant la trace du meilleur chemin $\psi_t(i)$:

- **1 Initialisation :** $\delta_1(i) = \pi(i)B(i,x_1)$ et $\psi_1(i) = 0$, pour $1 \le i \le n_S$.
- ② Récurrence :

$$\delta_t(i) = \max_{1 \le j \le n_S} \left(\delta_{t-1}(j) A(j,i) \right) B(i,x_t), \text{ pour } 1 \le i \le n_S$$

$$\psi_t(i) = \operatorname{argmax}_{1 \le i \le n_S} \left(\delta_{t-1}(j) A(j,i) \right) B(i,x_t), \text{ pour } 1 \le i \le n_S$$

Fin:

$$q_T^* = argmax_{1 \le i \le n_S}(\delta_T(i))$$

$$P(q_{1:T}^*; \boldsymbol{\theta}) = max_{1 \le i \le n_S}(\delta_T(i))$$

• Le meilleur chemin est obtenu par *backtracking* (parcours arrière) :

$$q_t^* = \psi_{t+1}(q_{t+1}^*)$$

Viterbi ≡ plus court chemin dans un graphe valué (Bellman, Dijkstraa.)

Limsi

Implémenter Viterbi pour l'étiquetage morphosyntaxique

Modèle

HMM, un état par étiquette, une multinomiale sur V par état.

Les nœuds du graphe de recherche

Le quadruplet : { mot, étiquette, score, père}

Développement d'un nœud

- Nœuds successeurs : $\{mot, tag\}$, avec $P(mot | tag) \neq 0$
- Score de $n = (w_t, e)$ successeur de $m = (w_{t-1}, e')$: $score(n) = score(m) P(e | e') P(w_t | e)$
- Si un successeur est déjà un nœud connu alors mise à jour du père.
- Étape finale : choisir à t = T le meilleur nœud, puis retour arrière.

Viterbi et Forward

Deux instances du même algorithme

- Viterbi (log)
 - les scores s'aditionnent (+) le long des chemins
 - les scores se maximisent (max) quand des chemins fusionnent
- Forward
 - les scores se multiplient (x) le long des chemins
 - les scores s'ajoutent (+) quand des chemins fusionnent
- Généralisation : semi-anneau $(\mathbb{K}, \oplus, \otimes, 0, 1)$
 - les scores se ⊗ le long des chemins
 - les scores se ⊕ quand des chemins fusionnent

Cadre algébrique :

- $(\mathbb{K}, \oplus, 0)$ monoïde commutatif
- $(\mathbb{K}, \otimes, 0)$ monoïde
- ⊕ distributif par rapport à ⊗

Viterbi et Forward

Deux instances du même algorithme

- Viterbi (log)
 - les scores s'aditionnent (+) le long des chemins
 - les scores se maximisent (max) quand des chemins fusionnent
- Forward
 - les scores se multiplient (x) le long des chemins
 - les scores s'ajoutent (+) quand des chemins fusionnent
- Généralisation : semi-anneau $(\mathbb{K}, \oplus, \otimes, 0, 1)$
 - les scores se ⊗ le long des chemins
 - les scores se ⊕ quand des chemins fusionnent

Cadre algébrique

- (K,⊕,0) monoïde commutatif
- $(\mathbb{K}, \otimes, 0)$ monoïde
- ⊕ distributif par rapport à ⊗

34 / 110

Viterbi et Forward

Deux instances du même algorithme

- Viterbi (log)
 - les scores s'aditionnent (+) le long des chemins
 - les scores se maximisent (max) quand des chemins fusionnent
- Forward
 - les scores se multiplient (x) le long des chemins
 - les scores s'ajoutent (+) quand des chemins fusionnent
- Généralisation : semi-anneau $(\mathbb{K}, \oplus, \otimes, 0, 1)$
 - les scores se ⊗ le long des chemins
 - les scores se ⊕ quand des chemins fusionnent

Cadre algébrique:

- $(\mathbb{K}, \oplus, 0)$ monoïde commutatif
- (K, ⊗, 0) monoïde
- ⊕ distributif par rapport à ⊗

Décodage optimal? Une variante

Minimiser l'erreur d'étiquetage

- $\arg\max_{Q_{[1:T]}} P(q_{[1:T]}, x_{[1:T]})$ minimise l'espérance du nombre d'erreurs par séquence
- Minimiser du nombre d'erreurs d'étiquetage par position :

$$\forall t = 1...T, q_t^* = \underset{q_t}{\operatorname{argmax}} P(q_t | x_{[1:T]})$$

• Un calcul familier?

$$P(q_t = i | x_{[1:T]}; \boldsymbol{\theta}) \propto P(x_{[1:T]}, q_t = i | \boldsymbol{\theta})$$

$$\propto P(x_{[1:t]}, q_t = i, x_{[t+1:T]} | \boldsymbol{\theta})$$

$$\propto P(x_{[1:t]}, q_t = i | \boldsymbol{\theta}) P(x_{[t+1:T]} | x_{[1:t]}, q_t = i; \boldsymbol{\theta})$$

$$\propto \alpha_t(i) \beta_t(i)$$

Décodage optimal? Une variante

Minimiser l'erreur d'étiquetage

- $\arg\max_{Q_{[1:T]}} P(q_{[1:T]}, x_{[1:T]})$ minimise l'espérance du nombre d'erreurs par séquence
- Minimiser du nombre d'erreurs d'étiquetage par position :

$$\forall t = 1...T, q_t^* = \underset{q_t}{\operatorname{argmax}} P(q_t | x_{[1:T]})$$

• Un calcul familier?

$$\begin{aligned} \mathsf{P}(q_t = i \,|\, x_{[1:T]}; \boldsymbol{\theta}) & \propto & \mathsf{P}(x_{[1:T]}, q_t = i \,|\, \boldsymbol{\theta}) \\ & \propto & \mathsf{P}(x_{[1:t]}, q_t = i, x_{[t+1:T]} \,|\, \boldsymbol{\theta}) \\ & \propto & \mathsf{P}(x_{[1:t]}, q_t = i \,|\, \boldsymbol{\theta}) \mathsf{P}(x_{[t+1:T]} \,|\, x_{[1:t]}, q_t = i; \boldsymbol{\theta}) \\ & \propto & \alpha_t(i) \beta_t(i) \end{aligned}$$

Apprendre des HMMs avec des exemples annotés

L'apprentissage supervisé

• Naïves Bayes (multinomial) : $\theta_{i,j} = P(x = i | y = j), \alpha_j = P(y = j)$

$$\ell(x, y = j) \quad \propto \quad \log(\alpha_j) + \sum_{i=1}^d C_i \log(\theta_{ij})$$

$$\widehat{\theta}_{ij} \quad = \quad \frac{C_i}{\sum_k C_k}$$

• Modèle de Markov $\theta_{i,j} = P(x_t = i | x_{t-1} = j), \pi_i$

$$\ell(\theta) \propto \log(\pi_{x_1}) + \sum_{t=2}^{T} \log(\theta_{x_t x_{t-1}})$$

$$\widehat{\theta}_{ij} = \frac{C(i, j)}{\sum_k C(i, k)}$$

• Modèles de Markov cachés $\theta = \{A_{i,i}, B_{i,o}, \pi_i\}$

$$\ell(\theta) \propto \log(\pi(q_1)) + \log(B(x_1, q_1)) + \sum_{t} \log(A(q_{t-1}, q_t)) + \log(B(q_t, x_t))$$

$$\widehat{\theta}_{ij} = ??$$

Limsi

idem nour l'estimateur MAP

Apprendre des HMMs avec des exemples annotés

L'apprentissage supervisé

• Naïves Bayes (multinomial) : $\theta_{i,j} = P(x = i | y = j), \alpha_j = P(y = j)$

$$\ell(x, y = j) \quad \propto \quad \log(\alpha_j) + \sum_{i=1}^d C_i \log(\theta_{ij})$$

$$\widehat{\theta}_{ij} \quad = \quad \frac{C_i}{\sum_k C_k}$$

• Modèle de Markov $\theta_{i,j} = P(x_t = i | x_{t-1} = j), \pi_i$

$$\ell(\boldsymbol{\theta}) \quad \propto \quad \log(\pi_{x_1}) + \sum_{t=2}^{T} \log(\theta_{x_t x_{t-1}})$$

$$\widehat{\theta}_{ij} \quad = \quad \frac{C(i,j)}{\sum_{k} C(i,k)}$$

• Modèles de Markov cachés $\theta = \{A_{i,j}, B_{j,o}, \pi_i\}$

$$\ell(\theta) \propto \log(\pi(q_1)) + \log(B(x_1, q_1)) + \sum_{t} \log(A(q_{t-1}, q_t)) + \log(B(q_t, x_t))$$

$$\widehat{\theta}_{ij} = \frac{C(q_t = i, q_{t+1} = j)}{\sum_k C(q_t = i, q_{t+1} = k)}, \frac{C(q_t = i, x_t = j)}{\sum_k C(q_t = i, x_t = k)}$$

Limsi

idem pour l'estimateur MAP

Apprendre des HMMs avec des exemples annotés

L'apprentissage supervisé

• Naïves Bayes (multinomial) : $\theta_{i,j} = P(x = i | y = j), \alpha_j = P(y = j)$

$$\ell(x, y = j) \quad \propto \quad \log(\alpha_j) + \sum_{i=1}^{d} C_i \log(\theta_{ij})$$

$$\widehat{\theta}_{ij} \quad = \quad \frac{C_i}{\sum_k C_k}$$

• Modèle de Markov $\theta_{i,j} = P(x_t = i | x_{t-1} = j), \pi_i$

$$\ell(\boldsymbol{\theta}) \quad \propto \quad \log(\pi_{x_1}) + \sum_{t=2}^{T} \log(\theta_{x_t x_{t-1}})$$

$$\widehat{\theta}_{ij} \quad = \quad \frac{C(i,j)}{\sum_k C(i,k)}$$

Modèles de Markov cachés θ = {A_{i,j}, B_{j,o}, π_i}

$$\ell(\boldsymbol{\theta}) \quad \propto \quad \log(\pi(q_1)) + \log(B(x_1, q_1)) + \sum_{t} \log(A(q_{t-1}, q_t)) + \log(B(q_t, x_t))$$

$$\widehat{\theta}_{ij} = \frac{C(q_t = i, q_{t+1} = j)}{\sum_k C(q_t = i, q_{t+1} = k)}, \frac{C(q_t = i, x_t = j)}{\sum_k C(q_t = i, x_t = k)}$$

Limsi

idem pour l'estimateur MAP

Objectif

Estimer $\theta = (A, B, \pi)$ maximisant la log-vraisemblance : $\ell(\theta) = \log \prod_i P(X_{[1:T]}^i; \theta)$; les états sont latents.

EM pour les HMM: Baum-Welch

- Choisir θ^0
- ② Calculer θ^1 à partir de θ^0
- Répéter jusqu'à convergence

$$\theta^n \leftarrow \operatorname{argmax} Q_{\theta^{n-1}}(\mathbb{C}, \theta)$$

Garantie: à chaque itération

$$P(X_{[1:T]} | \boldsymbol{\theta}^n) \ge P(X_{[1:T]} | \boldsymbol{\theta}^{n-1})$$

Objectif

Estimer $\theta = (A, B, \pi)$ maximisant la log-vraisemblance : $\ell(\theta) = \log \prod_i P(X_{[1:T]}^i; \theta)$; les états sont latents.

EM pour les HMM: Baum-Welch

- Choisir θ^0
- ② Calculer θ^1 à partir de θ^0
- Répéter jusqu'à convergence

$$\theta^n \leftarrow \operatorname{argmax} Q_{\theta^{n-1}}(\mathbb{C}, \theta)$$

Garantie: à chaque itération,

$$P(X_{\lceil 1:T \rceil} | \boldsymbol{\theta}^n) \ge P(X_{\lceil 1:T \rceil} | \boldsymbol{\theta}^{n-1})$$

Retrouver les formules de réestimation

États connus, estimation supervisée

$$\widehat{\pi}(i) = \frac{C(q_1 = i)}{\sum_{j} C(q_1 = j)}$$

$$\widehat{A}(i,j) = \frac{\sum_{t \ge 1} C(q_t = i, q_{t+1} = j)}{\sum_{k} \sum_{t \ge 1} C(q_t = i, q_{t+1} = k)}$$

$$\widehat{B}(i,k) = \frac{\sum_{t \ge 1} C(q_t = i, x_t = k)}{\sum_{k'} \sum_{t \ge 1} C(q_t = i, x_t = k')}$$

Apprentissage style "Viterbi"

- Choisir θ^0
- © Calculer $q_{[1:T]}^* \mid \theta^{n-1}$ (Viterbi), utiliser ces annotations pour calculer θ^n
 - Répéter jusqu'à convergence

EM utilise plusieurs étiquetages incertains

Retrouver les formules de réestimation

États connus, estimation supervisée

$$\widehat{\pi}(i) = \frac{C(q_1 = i)}{\sum_j C(q_1 = j)}$$

$$\widehat{A}(i,j) = \frac{\sum_{t \ge 1} C(q_t = i, q_{t+1} = j)}{\sum_k \sum_{t \ge 1} C(q_t = i, q_{t+1} = k)}$$

$$\widehat{B}(i,k) = \frac{\sum_{t \ge 1} C(q_t = i, x_t = k)}{\sum_{k'} \sum_{t \ge 1} C(q_t = i, x_t = k')}$$

Apprentissage style "Viterbi"

- Choisir θ^0
- ② Calculer $q_{[1:T]}^* | \theta^{n-1}$ (Viterbi), utiliser ces annotations pour calculer θ^n
- 8 Répéter jusqu'à convergence

EM utilise plusieurs étiquetages incertains.

Retour de l'algorithme EM

La maximisation de la fonction auxiliaire

Règle de mise à jour de EM

$$\theta^n \leftarrow \operatorname*{argmax}_{\theta} Q_{\theta^{n-1}}(\theta) = \mathbb{E}_{P(Q|X;\theta^{n-1})}(\log P(X,Q|\theta))$$

La fonction auxiliaire

$$Q_{\theta^{n-1}}(\theta) = \sum_{q_1...q_T} P(q_{[1:T]} | x_{[1:T]}; \theta^{n-1}) \log \left(\pi(q_1) \prod_{t=1}^T P(x_t | q_t) \prod_{t=2}^T P(q_t | q_{t-1}) \right)$$

Le **M** de EM

Une histoire de maximisation

Demandez le programme

$$\max_{\boldsymbol{\theta}} Q_{\boldsymbol{\theta}^{n-1}}(\boldsymbol{\theta}) = \mathbb{E}_{P(Q|X;\boldsymbol{\theta}^{n-1})}(\log P(X,Q|\boldsymbol{\theta}))$$

$$\begin{cases} \forall i, \sum_{j} A(i,j) = 1, \Rightarrow |S| \text{ contraintes, } \lambda_{i} \\ \forall i, \sum_{o} B(i,o) = 1, \Rightarrow |S| \text{ contraintes, } \mu_{i} \\ \sum_{i} \pi(i) = 1, \Rightarrow 1 \text{ contrainte, } \nu \end{cases}$$

Conditions d'optimalité

$$\widehat{A}(i,j) = \frac{\text{Espérance de } C(q_t = i, q_{t+1} = j)}{\sum_k \text{Espérance de } C(q_t = i, q_{t+1} = k)}$$
(idem pour **B** et π)

Les espérances sont calculées sous $P(Q_{\lceil 1:T \rceil} | X_{\lceil 1:T \rceil}; \theta^{n-1})$

Le calcul de l'espérance

$$\mathbb{E}(C(i,j) | x_{[1:T]}, \boldsymbol{\theta}^{n-1}) = \sum_{q_{[1:T]}} C(i,j) P(q_{[1:T]} | x_{[1:T]}, \boldsymbol{\theta}^{n-1})$$

$$= \sum_{q_{[1:T]}} \sum_{t=2}^{T} \mathbb{I}(q_{t-1} = i, q_t = j) P(q_{[1:T]} | x_{[1:T]}, \boldsymbol{\theta}^{n-1})$$

$$= \sum_{t=2}^{T} \sum_{q_{[1:T]}} \mathbb{I}(q_{t-1} = i, q_t = j) P(q_{[1:T]} | x_{[1:T]}, \boldsymbol{\theta}^{n-1})$$

$$= \sum_{t=2}^{T} P(q_{t-1} = i, q_t = j | x_{[1:T]}, \boldsymbol{\theta}^{n-1})$$

41 / 110

Retour des $\alpha()$ et des $\beta()$

$$P(q_{t-1} = i, q_t = j | x_{[1:T]}, \boldsymbol{\theta}^{n-1}) \propto P(x_{[1:T]}, q_{t-1} = i, q_t = j | \boldsymbol{\theta}^{n-1})$$

$$\propto P(x_{[1:t-1]}, q_{t-1} = i | \boldsymbol{\theta}^i) P(q_t = j | q_{t-1} = i; \boldsymbol{\theta}^{n-1}) \times P(x_t | q_t = j) P(x_{[t+1:T]}, q_t = j | \boldsymbol{\theta}^{n-1})$$

$$\propto \alpha_{t-1}(i) A(i, j) B(j, x_t) \beta_t(j)$$

Le facteur de normalisation? $P(x_{\lceil 1:T \rceil}; \theta^{n-1})$

Retour des $\alpha()$ et des $\beta()$

$$\begin{split} \mathsf{P}(q_{t-1} = i, q_t = j \, | \, x_{[1:T]}, \boldsymbol{\theta}^{n-1}) & \propto & \mathsf{P}(x_{[1:T]}, q_{t-1} = i, q_t = j \, | \, \boldsymbol{\theta}^{n-1}) \\ & \propto & \mathsf{P}(x_{[1:t-1]}, q_{t-1} = i \, | \, \boldsymbol{\theta}^i) \, \mathsf{P}(q_t = j \, | \, q_{t-1} = i; \boldsymbol{\theta}^{n-1}) \times \\ & \qquad & \mathsf{P}(x_t \, | \, q_t = j) \, \mathsf{P}(x_{[t+1:T]}, q_t = j \, | \, \boldsymbol{\theta}^{n-1}) \\ & \propto & \alpha_{t-1}(i) A(i, j) B(j, x_t) \beta_t(j) \end{split}$$

Le facteur de normalisation? $P(x_{\lceil 1:T \rceil}; \theta^{n-1})$

Retour des $\alpha()$ et des $\beta()$

$$\begin{split} \mathsf{P}(q_{t-1} = i, q_t = j \, | \, x_{[1:T]}, \boldsymbol{\theta}^{n-1}) & \propto & \mathsf{P}(x_{[1:T]}, q_{t-1} = i, q_t = j \, | \, \boldsymbol{\theta}^{n-1}) \\ & \propto & \mathsf{P}(x_{[1:t-1]}, q_{t-1} = i \, | \, \boldsymbol{\theta}^i) \, \mathsf{P}(q_t = j \, | \, q_{t-1} = i; \boldsymbol{\theta}^{n-1}) \times \\ & \qquad & \mathsf{P}(x_t \, | \, q_t = j) \, \mathsf{P}(x_{[t+1:T]}, q_t = j \, | \, \boldsymbol{\theta}^{n-1}) \\ & \propto & \alpha_{t-1}(i) A(i,j) B(j, x_t) \beta_t(j) \end{split}$$

Le facteur de normalisation ? $P(x_{[1:T]}; \boldsymbol{\theta}^{n-1})$

Limsi

On rassemble les morceaux

$$A(i,j)^{n} = \frac{\mathbb{E}(C(i,j) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \mathbb{E}(C(i,k) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{\sum_{t=2}^{T} P(q_{t} = j, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \sum_{t=2}^{T} P(q_{t} = k, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{S(i,j)}{\sum_{k} S(i,k)}$$

Avec

$$S(i,j) = \sum_{t=2}^{T} P(q_t = j, q_{t-1} = i | X_{[1:T]}, \boldsymbol{\theta}^{n-1}) \propto \sum_{t=2}^{T} \alpha_{t-1}(i) A(i,j) B(j, x_t) \beta_t(j)$$

On rassemble les morceaux

$$A(i,j)^{n} = \frac{\mathbb{E}(C(i,j) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \mathbb{E}(C(i,k) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{\sum_{t=2}^{T} P(q_{t} = j, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \sum_{t=2}^{T} P(q_{t} = k, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{S(i,j)}{\sum_{k} S(i,k)}$$

Avec

$$S(i,j) = \sum_{t=2}^{T} P(q_t = j, q_{t-1} = i | X_{[1:T]}, \boldsymbol{\theta}^{n-1}) \propto \sum_{t=2}^{T} \alpha_{t-1}(i) A(i,j) B(j, x_t) \beta_t(j)$$

Formules de ré-estimation

On rassemble les morceaux

$$A(i,j)^{n} = \frac{\mathbb{E}(C(i,j) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \mathbb{E}(C(i,k) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{\sum_{t=2}^{T} P(q_{t} = j, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \sum_{t=2}^{T} P(q_{t} = k, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{S(i,j)}{\sum_{k} S(i,k)}$$

Avec:

$$S(i,j) = \sum_{t=2}^{T} P(q_t = j, q_{t-1} = i | X_{[1:T]}, \boldsymbol{\theta}^{n-1}) \propto \sum_{t=2}^{T} \alpha_{t-1}(i) A(i,j) B(j, x_t) \beta_t(j)$$

Formules de ré-estimation

On rassemble les morceaux

$$A(i,j)^{n} = \frac{\mathbb{E}(C(i,j) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \mathbb{E}(C(i,k) | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{\sum_{t=2}^{T} P(q_{t} = j, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}{\sum_{k} \sum_{t=2}^{T} P(q_{t} = k, q_{t-1} = i | x_{[1:T]}, \boldsymbol{\theta}^{n-1})}$$

$$= \frac{S(i,j)}{\sum_{k} S(i,k)}$$

Avec:

$$S(i,j) = \sum_{t=2}^{T} P(q_t = j, q_{t-1} = i | X_{[1:T]}, \boldsymbol{\theta}^{n-1}) \propto \sum_{t=2}^{T} \alpha_{t-1}(i) A(i,j) B(j, x_t) \beta_t(j)$$

Limsi

Suite des formules de réestimation

Les autres paramètres

Notation

$$\gamma_t(i) = P(q_t = i | x_{[1:T]}; \boldsymbol{\theta}^{n-1}) \propto \alpha_t(i)\beta_t(i)$$

Probabilités initiales

$$\pi^n(i) = \frac{\mathbb{E}(\mathbb{I}(q_1 = i))}{\sum_k \mathbb{E}(\mathbb{I}(q_1 = k))} = \frac{\gamma_1(i)}{\sum_k \gamma_1(k)}$$

Multinomiales associées aux états

$$B(i,o)^{n} = \frac{\mathbb{E}(C(q_{t}=i,x_{t}=o))}{\sum_{p} \mathbb{E}(C(q_{t}=i,x_{t}=o))} = \frac{\sum_{t,x_{t}=o} P(q_{t}=i | x_{[1:T]}; \boldsymbol{\theta}^{n-1})}{\sum_{p} \sum_{t,x_{t}=p} P(q_{t}=i | x_{[1:T]}; \boldsymbol{\theta}^{n-1})}$$

Suite des formules de réestimation

Les autres paramètres

Notation

$$\gamma_t(i) = P(q_t = i | x_{[1:T]}; \boldsymbol{\theta}^{n-1}) \propto \alpha_t(i)\beta_t(i)$$

Probabilités initiales

$$\pi^n(i) = \frac{\mathbb{E}(\mathbb{I}(q_1 = i))}{\sum_k \mathbb{E}(\mathbb{I}(q_1 = k))} = \frac{\gamma_1(i)}{\sum_k \gamma_1(k)}$$

Multinomiales associées aux états

$$B(i,o)^{n} = \frac{\mathbb{E}(C(q_{t}=i,x_{t}=o))}{\sum_{p}\mathbb{E}(C(q_{t}=i,x_{t}=o))} = \frac{\sum_{t,x_{t}=o} P(q_{t}=i|x_{[1:T]};\boldsymbol{\theta}^{n-1})}{\sum_{p}\sum_{t,x_{t}=p} P(q_{t}=i|x_{[1:T]};\boldsymbol{\theta}^{n-1})}$$

Convergence de l'EM

Mauvaises nouvelles

- © EM converge vers un optimum local
- \odot Dépend très fortement des conditions initiales (θ^0)
- © Beaucoup de minima locaux!
- © La convergence est très (trop) rapide

Bonnes nouvelles

- Les minima locaux sont souvent « raisonnables »
- Peu de données étiquetées suffisent à fournir des bons paramètres initiaux (apprentissage semi-supervisé)
- nombreuses variantes (cf. cours précédent)
 - en ligne (mise à jour après chaque observation)
 - sommer sur quelques séquences d'états
 - ralentir la convergence (tempered EM)

Convergence de l'EM

Mauvaises nouvelles

- © EM converge vers un optimum local
- © Dépend très fortement des conditions initiales (θ^0)
- Beaucoup de minima locaux!
- © La convergence est très (trop) rapide

Bonnes nouvelles

- © Les minima locaux sont souvent « raisonnables »
- Peu de données étiquetées suffisent à fournir des bons paramètres initiaux (apprentissage semi-supervisé)
- nombreuses variantes (cf. cours précédent)
 - en ligne (mise à jour après chaque observation)
 - sommer sur quelques séquences d'états
 - ralentir la convergence (tempered EM)

Sommaire

- Modèles structurés
- 2 HMM, une révision rapide
- Modèles pour l'alignement de mots
 - Les alignements mot-à-mot
- Modèles pour la syntaxe

50 / 110

Traduction automatique

Le triomphe des modèles statistiques

Principe général : du français (f) vers l'anglais (e)

- construire $P(\mathbf{f}|\mathbf{e};\theta)$ et $P(\mathbf{e}|\theta')$
- P(f|e) est appris sur des textes parallèles alignés
- 1 inférer $\operatorname{argmax}_{e} P(\mathbf{f}|\mathbf{e}) P(\mathbf{e})$ pour traduire \mathbf{e} (canal bruité)

Le pétrole : des textes parallèles

Traduction automatique

Le triomphe des modèles statistiques

Principe général : du français (f) vers l'anglais (e)

- construire $P(\mathbf{f}|\mathbf{e};\theta)$ et $P(\mathbf{e}|\theta')$
- P(f|e) est appris sur des textes parallèles alignés
- \bullet inférer argmax_e P(f|e) P(e) pour traduire e (canal bruité)

Le pétrole : des textes parallèles

In the gayest and happiest spirits she set forward with her father;	Elle partit avec son père, le visage souriant;
not always listening, but always agreeing to what he said;	elle n' écoutait pas toujours, mais elle acquiesçait de confiance.
They arrived .	Ils arrivèrent .
It is Frank and Miss Fairfax, said Mrs. Weston .	 C'est Frank et Mlle Fairfax, dit aussitôt Mme Weston .
I was just going to tell you of our agreeable surprize in seeing him arrive this	 J'allai justement vous faire part de l'agréable surprise que nous avons eue
morning.	en le voyant arriver.
He stays till tomorrow, and Miss Fairfax has been persuaded to spend the day	Il reste jusqu'à demain et Mlle Fairfax a bien voulu, sur notre demande, venir
with us .	passer la journée.

Introduction des alignments

Décomposer $P(\mathbf{f}|\mathbf{e}; \boldsymbol{\theta})$

- la décomposition $P(\mathbf{f} | \mathbf{e}) = \prod_i P(f_i | e_i)$ est trop simpliste
- ⇒ décomposition via des alignements latents :

$$P(\mathbf{f}|\mathbf{e}) = \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{a}, \mathbf{f}|\mathbf{e})$$

où A est l'ensemble des alignements de mots entre e et f

Expliciter les relations de traduction

Mary₁ n'₂ est₃ pas₄ d'accord₅ avec₆ les₇ amis₈ de₉ John₁₀

Mary₁ does₂ not₃ agree₄ with₅ John's₆ friends₇

Alignements symétriques et asymétrique

• symétrique : un alignement = relation sur $I \times J$

$$a = \{(1,1), (2,3), (3,4), (4,2), (5,4) \ldots\}$$

 $2^{I \times J}$ relations possibles

• asymétrique : un alignement = $\underline{\text{application partielle}}$ de J vers I

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

Expliciter les relations de traduction

Alignements symétriques et asymétriques

• symétrique : un alignement = relation sur $I \times J$

$$a = \{(1,1), (2,3), (3,4), (4,2), (5,4) \dots\}$$

 $2^{I \times J}$ relations possibles

• asymétrique : un alignement = $\underline{\text{application partielle}}$ de J vers I

$$u = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

Expliciter les relations de traduction

Alignements symétriques et asymétriques

• symétrique : un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,2), (5,4) \dots\}$$

$2^{I \times J}$ relations possibles

• asymétrique : un alignement = $\underline{\text{application partielle}}$ de J vers I

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

Expliciter les relations de traduction

Alignements symétriques et asymétriques

• symétrique : un alignement = relation sur $I \times J$.

$$a = \{(1,1), (2,3), (3,4), (4,2), (5,4) \dots\}$$

 $2^{I \times J}$ relations possibles

• asymétrique: un alignement = application partielle de J vers I:

$$a = [1, 3, 4, 2, 4, 5, 7, 7, 6, 6]$$

Quelques configurations typiques

Quelques configurations typiques

Quelques configurations typiques

Quelques configurations typiques

the house is very small

Les hypothèses de l'alignement de mots

© certains mots sont faciles à aligner?

- ② la plupart des alignements sont 1 to 1?

Les hypothèses de l'alignement de mots

© certains mots sont faciles à aligner?

- ② la plupart des alignements sont 1 to 1?

Un modèle générique

Des alignements asymétriques

Notations

- $\mathbf{f} = f_{[1:J]}$ la phrase source (J mots)
- $\mathbf{e} = e_{[1:J]}$ la phrase cible $(I = l_{\mathbf{e}} \text{ mots})$
- problème : décomposer $P(\mathbf{a}, \mathbf{f} | \mathbf{e})$

Structure du modèle graphique (e connu)

- choisir J sachant e^{I}
- ② pour chaque position $j \in [1:J]$
 - choisir a_j sachant $J, a_{[1:j-1]}, f_{[1:j-1]}, e_{[1:T]}$
 - ② choisir f_j sachant $J, a_{[1:j]}, f_{[1:j-1]}, e_{[1:I]}$

 $\mathbf{P}(a_{[1:J]},f_{[1:J]} \,|\, e_{[1:I]}) = \mathbf{P}(J \,|\, e_{[1:I]}) \prod_{i} \mathbf{P}(a_{i} \,|\, a_{[1:j-1]},f_{[1:j-1]},e_{[1:I]}) \, \mathbf{P}(f_{i} \,|\, a_{[1:j]},f_{[1:j-1]},f_{[1:J]}) = \mathbf{P}(J \,|\, e_{[1:I]}) \cdot \mathbf{P}(f_{i} \,|\, e_{[1:I]},f_{[1:J]},f_{[1:J]}) = \mathbf{P}(J \,|\, e_{[1:I]}) \cdot \mathbf{P}(g_{i} \,|\, e_{[1:I]},f_{[1:J]},f$

Un modèle générique

Des alignements asymétriques

Notations

- $\mathbf{f} = f_{[1:J]}$ la phrase source (J mots)
- $\mathbf{e} = e_{[1:J]}$ la phrase cible $(I = l_{\mathbf{e}} \text{ mots})$
- problème : décomposer $P(\mathbf{a}, \mathbf{f} | \mathbf{e})$

Structure du modèle graphique (e connu)

- choisir J sachant e_1^I
- ② pour chaque position $j \in [1:J]$
 - choisir a_j sachant $J, a_{[1:j-1]}, f_{[1:j-1]}, e_{[1:I]}$
 - ② choisir f_j sachant $J, a_{[1:j]}, f_{[1:j-1]}, e_{[1:I]}$

$$P(a_{[1:J]},f_{[1:J]} | e_{[1:J]}) = P(J | e_{[1:I]}) \prod_{i} P(a_{i} | a_{[1:j-1]},f_{[1:j-1]},e_{[1:J]}) P(f_{i} | a_{[1:j]},f_{[1:j-1]},e_{[1:J]})$$

Modéliser les alignements : avec des HMMs

Hypothèses

- *J* ne dépend que de *I*
- a_j ne dépend que de a_{j-1} (dépendances markoviennes) et de **e**
- f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir *J* sachant *I*
- pour chaque position $j \in [1:J]$
 - choisir $a_j|I, a_{j-1}, \mathbf{e} \sim \mathrm{Disc}(u(a|a_{j-1}))$: l'indice associé à j
 - choisir $f_j|J, a_j, e_{\lceil 1:I \rceil} \sim \mathrm{Disc}(t(f|e_{a_i})): f_j$ dépend que du mot avec lequel il est align

$$\mathbf{P}(\mathbf{a},\mathbf{f}|\mathbf{e}) = \mathbf{P}(J|I) \prod_{i} u(a_{i}|a_{i-1},e_{[1:I]}) t(f_{i}|e_{a_{i}})$$

Paramètres : $\theta = \{u(): J_{\text{max}}^2 \text{ valeurs}; t(): n_{WE} \times n_{WF} \text{ valeurs}(!)\}$

Modéliser les alignements : avec des HMMs

Hypothèses

- *J* ne dépend que de *I*
- a_j ne dépend que de a_{j-1} (dépendances markoviennes) et de ${\bf e}$
- f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir *J* sachant *I*
- pour chaque position $j \in [1:J]$
 - choisir $a_j|I, a_{j-1}, \mathbf{e} \sim \mathrm{Disc}(u(a|a_{j-1}))$: l'indice associé à j
 - choisir $f_j|J, a_j, e_{[1:I]} \sim \text{Disc}(t(f|e_{a_j})): f_j$ dépend que du mot avec lequel il est aligné

$$P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = P(J | I) \prod_{j} u(a_{j} | a_{j-1}, e_{[1:I]}) t(f_{j} | e_{a_{j}})$$

Paramètres : $\theta = \{u(): J_{\text{max}}^2 \text{ valeurs}; t(): n_{WE} \times n_{WF} \text{ valeurs}(!)\}$

```
Cible: e this<sub>1</sub> seems<sub>2</sub> to<sub>3</sub> me<sub>4</sub> to<sub>5</sub> be<sub>6</sub> a<sub>7</sub> workable<sub>8</sub> solution<sub>9</sub>
```


Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim u(f|uus) : f_1 = u
2   a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me
3   a_1 \sim u(a_2|1) : a_2 = 2   a_1 \sim u(f|uus) : f_1 = u
4   a_4 \sim u(a_4|2) : a_4 = 3   a_4 \sim u(f|us) : f_4 = fu
5   a_1 \sim u(a_4|2) : a_4 = 3   a_4 \sim u(f|us) : f_4 = fu
6   a_6 \sim u(a_6|5) : a_6 = 6   a_6 \sim u(f|be) : f_6 = fu
7   a_1 \sim u(a_4|fus) : fu
8   a_8 \sim u(a_8|fus) : a_8 = 8   a_8 \sim u(f|us) : f_8 = fu
9   a_1 \sim u(a_4|fus) : f_8 = fu
1  a_1 \sim u(a_4|fus) : f_8 = fus) : f_8 = fu
1  a_1 \sim u(a_4|fus) : f_8 = fus) : f_8 = fu
1  a_1 \sim u(a_4|fus) : f_8 = fus) :
```


Cible: e

this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

Source · f

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_3 \sim t(f|veems) : f_2 = me
3
4   a_4 \sim u(a_4|2) : a_4 = 3   f_4 \sim t(f|to) : f_4 = que
5
6   a_6 \sim u(a_6|5) : a_6 = 6   f_6 \sim t(f|be) : f_6 = est
7
8   a_8 \sim u(a_8|7) : a_8 = 8   f_8 \sim t(f|workable) : f_8 = bonne
```

Source · f

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_1 \sim t(f|this) : f_2 = me
3   f_1 \sim t(f|this) : f_3 = me
4   f_2 \sim u(a_2|1) : a_2 = 2   f_3 \sim t(f|to) : f_4 = que
5   f_4 \sim t(f|to) : f_4 = que
6   f_5 \sim u(a_5|5) : a_5 = 6   f_5 \sim t(f|be) : f_6 = est
7   f_7 \sim u(a_5|7) : a_8 = 8   f_8 \sim t(f|workable) : f_8 = bonne
9
```

Source : 1

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me
3   a_1 \sim u(a_1|2) : a_4 = 3   a_4 \sim u(a_4|2) : a_4 = 3   a_4 \sim u(f|to) : f_4 = f_4 \sim u(f|to
```

Source : 1

il, meg semble; que, c's est, une, bonne, solution,

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me
3   a_3 \sim u(a_3|2) : a_3 = 2
4   a_4 \sim u(a_4|2) : a_4 \sim 3   f_4 \sim t(f|to) : f_4 = que
5
6   a_6 \sim u(a_6|5) : a_6 = 6   f_6 \sim t(f|be) : f_6 = est
7
8   a_8 \sim u(a_8|7) : a_8 = 8   f_8 \sim t(f|workable) : f_8 = bonne
9
```

Source : 1

il, meg semble; que, c's est, une, bonne, solution,

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me
3   a_3 \sim u(a_3|2) : a_3 = 2   f_3 \sim t(f|seems) : f_3 = semble
4   a_1 \sim u(a_1|2) : a_2 = 3   a_3 \sim t(f|seems) : f_3 = semble
5
6   a_6 \sim u(a_6|5) : a_6 = 6   f_6 \sim t(f|be) : f_6 = est
7
8   a_8 \sim u(a_8|7) : a_8 = 8   f_8 \sim t(f|workable) : f_8 = bonne
9
```

Source : 1

il, me, semble, que, c's est, une, bonne, solution

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9

1  a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il

2  a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me

3  a_3 \sim u(a_3|2) : a_3 = 2   f_3 \sim t(f|seems) : f_3 = semble

4  a_4 \sim u(a_4|2) : a_4 = 3

5  a_4 \sim u(a_4|2) : a_4 = 3

6  a_4 \sim u(a_4|2) : a_4 = 3

7  a_4 \sim u(a_4|2) : a_4 = 3

8  a_4 \sim u(a_4|2) : a_4 = 3

9  a_4 \sim u(a_4|2) : a_4 = 3
```

Source : 1

il, me, semble, que, c's est, une, bonne, solution,

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9

1  a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il

2  a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me

3  a_3 \sim u(a_3|2) : a_3 = 2   f_3 \sim t(f|seems) : f_3 = semble

4  a_4 \sim u(a_4|2) : a_4 = 3   f_4 \sim t(f|to) : f_4 = que

5  a_4 \sim u(a_4|2) : a_4 = 3   a_4 \sim u(a_4|2) : a_4 \sim u(a_4|2)
```

Source: f

il, meg sembles ques c's esta uner bonnes solutions

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1   a_1 \sim u(a_1) : a_1 = 1   f_1 \sim t(f|this) : f_1 = il
2   a_2 \sim u(a_2|1) : a_2 = 2   f_2 \sim t(f|seems) : f_2 = me
3   a_3 \sim u(a_3|2) : a_3 = 2   f_3 \sim t(f|seems) : f_3 = semble
4   a_4 \sim u(a_4|2) : a_4 = 3   f_4 \sim t(f|to) : f_4 = que
5   a_5 \sim u(a_5|3) : a_5 = 5   f_5 \sim t(f|to) : f_5 = c'
6   a_6 \sim u(a_6|5) : a_6 = 6   f_6 \sim t(f|be) : f_6 = est
7   a_7 \sim u(a_7|6) : a_7 = 7   f_7 \sim t(f|a) : f_7 = une
8   a_8 \sim u(a_8|7) : a_8 = 8   f_8 \sim t(f|workable) : f_8 = bonne
9   a_9 \sim u(a_9|8) : a_9 = 9   f_9 \sim t(f|solution) : f_9 = solution
```

Source: 1

il, meg sembles ques c's esta uner bonnes solutions

Cible: **e** this₁ seems₂ to₃ me₄ to₅ be₆ a₇ workable₈ solution₉

```
J \sim P(J|9) \Rightarrow J = 9
1  a_1 \sim u(a_1) : a_1 = 1  f_1 \sim t(f|this) : f_1 = il
2  a_2 \sim u(a_2|1) : a_2 = 2  f_2 \sim t(f|seems) : f_2 = me
3  a_3 \sim u(a_3|2) : a_3 = 2  f_3 \sim t(f|seems) : f_3 = semble
4  a_4 \sim u(a_4|2) : a_4 = 3  f_4 \sim t(f|to) : f_4 = que
5  a_5 \sim u(a_5|3) : a_5 = 5  f_5 \sim t(f|to) : f_5 = c'
6  a_6 \sim u(a_6|5) : a_6 = 6  f_6 \sim t(f|be) : f_6 = est
7  a_7 \sim u(a_7|6) : a_7 = 7  f_7 \sim t(f|a) : f_7 = une
8  a_8 \sim u(a_8|7) : a_8 = 8  f_8 \sim t(f|workable) : f_8 = bonne
9  a_9 \sim u(a_9|8) : a_9 = 9  f_9 \sim t(f|solution) : f_9 = solution
```

Source: f

Deux finesses

Les mots « non-traduits »

Traiter des mots source non alignables : Les et de dans :

Les étudiants sont tenus de s'inscrire / Students must register

- état fictif (ϵ) dans la cible (d'indice 0) atteint avec $P_0 = P(a_i = 0 | a_{i-1}, J)$
- une distribution associée à cet état $P = P(f | \epsilon)$

Modéliser les sauts

Rendre le modèle d'alignement indépendant des indices absolus :

 \Rightarrow remplacer $P(a_i | a_{i-1})$ par $P(a_i - a_{i-1} | a_{i-1} - a_{i-2})$

58 / 110

Deux finesses

Les mots « non-traduits »

Traiter des mots source non alignables : Les et de dans :

Les étudiants sont tenus de s'inscrire / Students must register

- état fictif (ϵ) dans la cible (d'indice 0) atteint avec $P_0 = P(a_i = 0 | a_{i-1}, J)$
- une distribution associée à cet état $P = P(f | \epsilon)$

Modéliser les sauts

Rendre le modèle d'alignement indépendant des indices absolus :

$$\Rightarrow$$
 remplacer $P(a_i | a_{i-1})$ par $P(a_i - a_{i-1} | a_{i-1} - a_{i-2})$

Estimation supervisée du modèle

- à alignements connus...
- ... les paramètres se déduisent par décompte

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{C(I,J)}{C(I)}$$

$$\forall i, j \in [1 \dots I_{max}], u(i|j,J,I) = \frac{C(i,j,I,J)}{C(j,I,J)}$$

$$\forall e \in V_e, f \in V_f, t(f|e) = \frac{C(e,f)}{C(e)}$$

Calculer les alignements (à modèle connu)

Problème

- P(.|I) connu; u(.|j,I,J) connu; t(.|e) connu
- $\mathbf{e} = e_1^I$ et $\mathbf{f} = f_1^J$ sont toujours observés
- trouver:

$$a^* = \underset{a_1...a_J}{\operatorname{argmax}} P(f_1^J, a_1^J | e_j)$$

= $\underset{a_1...a_J}{\operatorname{argmax}} P(J | I) \prod_j u(a_j | a_{j-1}) t(f_i | e_{a_j})$

Résolution par programmation dynamique : Viterbi

 $\delta(i,j)=$ proba du meilleur alignement de f_1^j avec ${\bf e}$ tq. a_j = i

$$\begin{cases} \delta(i,1) = u(a_1 = i|a_0)t(f_1|e_i), \forall i \in [0...I] \\ \delta(i,j) = \max_{i' \in [0:I]} \delta(i',j-1)u(a_j = i|a_{j-1} = i')t(f_j|e_i) \forall i,j > 1 \end{cases}$$

Estimation par EM

Étape E(xpectation)

à paramètres connus (étape précédente) :

$$P(\mathbf{a} | \mathbf{e}, \mathbf{f}; \boldsymbol{\theta}) = \frac{P(\mathbf{a}, \mathbf{f} | \mathbf{e}; \boldsymbol{\theta})}{\sum_{\mathbf{a}} P(\mathbf{a}, \mathbf{f} | \mathbf{e}; \boldsymbol{\theta})} \quad \text{(calcul des } \alpha \text{ et } \beta)$$

Étape M(aximisation de la fonction auxiliaire

Espérances des comptes (pour une phrase)

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{C(I,J)}{C(I)}$$

$$\forall i, i' \in [1 \dots I], u(i'|i,J,I) = \frac{\sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f})C(i,i')}{\sum_{i} \sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f})C(i,i')}$$

$$\forall e, f, t(f|e) = \frac{\sum_{\mathbf{e},\mathbf{f}} P(\mathbf{a}|\mathbf{e},\mathbf{f})C(e,f)}{\sum_{f} \sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f})C(e,f)}$$

Estimation par EM

Étape E(xpectation)

à paramètres connus (étape précédente) :

$$P(\mathbf{a} | \mathbf{e}, \mathbf{f}; \boldsymbol{\theta}) = \frac{P(\mathbf{a}, \mathbf{f} | \mathbf{e}; \boldsymbol{\theta})}{\sum_{\mathbf{a}} P(\mathbf{a}, \mathbf{f} | \mathbf{e}; \boldsymbol{\theta})} \quad \text{(calcul des } \alpha \text{ et } \beta)$$

Étape M(aximisation de la fonction auxiliaire)

Espérances des comptes (pour une phrase) :

$$\forall I \in [1 \dots I_{max}], J \in [1 \dots J_{max}], P(J|I) = \frac{C(I,J)}{C(I)}$$

$$\forall i, i' \in [1 \dots I], u(i'|i,J,I) = \frac{\sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f}) C(i,i')}{\sum_{i} \sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f}) C(i,i')}$$

$$\forall e, f, t(f|e) = \frac{\sum_{\mathbf{e},\mathbf{f}} P(\mathbf{a}|\mathbf{e},\mathbf{f}) C(e,f)}{\sum_{f} \sum_{\mathbf{e},\mathbf{f}} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f}) C(e,f)}$$

Initialiser avec des modèles simples : Modèles IBM 1 et 2

Problème d'optimisation

EM converge vers un optima local \Rightarrow initialiser t() (ou $P(\mathbf{a} | \mathbf{e}, \mathbf{f}; \boldsymbol{\theta})$!!) avec des modèles + simples.

IBM Modèle 1

Les probabilités des a_j sont uniformes : $u(a_j|a_{j-1},I,J) = \frac{1}{I+1}$

$$P(a_1^J, f_1^J | e_1^J) = \frac{P(J | I)}{(I+1)^J} \prod_j t(f_j | e_{a_j})$$

IBM Modèle 2

Les a_i ne dépendent que de j: $P(a_i | a_{i-1}, I, J) = P(a_i | j, I, J)$

$$P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = P(J | I) \prod_{j} u(a_{j} | j, I, J) t(f_{j} | e_{a_{j}})$$

Initialiser avec des modèles simples : Modèles IBM 1 et 2

Problème d'optimisation

EM converge vers un optima local \Rightarrow initialiser t() (ou $P(\mathbf{a} | \mathbf{e}, \mathbf{f}; \boldsymbol{\theta})$!!) avec des modèles + simples.

IBM Modèle 1

Les probabilités des a_j sont uniformes : $u(a_j|a_{j-1},I,J) = \frac{1}{I+1}$

$$P(a_1^J, f_1^J | e_1^I) = \frac{P(J | I)}{(I+1)^J} \prod_j t(f_j | e_{a_j})$$

IBM Modèle 2

Les a_j ne dépendent que de j: $P(a_j | a_{j-1}, I, J) = P(a_j | j, I, J)$

$$P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = P(J | I) \prod_{j} u(a_{j} | j, I, J) t(f_{j} | e_{a_{j}})$$

IBM Modèle 1

Hypothèses

- J est uniforme sur [1; N], N grand : $P(J) = \epsilon$
- a_j est uniforme sur [0; I]
- f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir J
- pour chaque position $j \in [1:J]$
 - choisir $a_i | J \sim \text{Unif}([0:I])$: l'indice du mot qui engendre f_i
 - choisir $f_j | J, e_{a_j} \sim \text{Disc}(t(f_j | e_{a_j}))$: sachant le mot cible, choisir le mot sourc

$$P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = \epsilon \prod_{i=1}^{J} \frac{1}{I+1} t(f_j | e_{a_j}) = \frac{\epsilon}{(I+1)^J} \prod_{i=1}^{J} t(f_j | e_{a_j})$$

IBM Modèle 1

Hypothèses

- J est uniforme sur [1; N], N grand : $P(J) = \epsilon$
- a_j est uniforme sur [0; I]
- f_j ne dépend que de e_{a_j} (le mot aligné avec f_j)

Histoire générative de f sachant e

- choisir J
- pour chaque position $j \in [1:J]$
 - choisir $a_i | J \sim \text{Unif}([0:I])$: l'indice du mot qui engendre f_i
 - choisir $f_j | J, e_{a_j} \sim \text{Disc}(t(f_j | e_{a_j}))$: sachant le mot cible, choisir le mot source
 - $P(\mathbf{a}, \mathbf{f} | \mathbf{e}) = \epsilon \prod_{j=1}^{J} \frac{1}{I+1} t(f_j | e_{a_j}) = \frac{\epsilon}{(I+1)^J} \prod_{j=1}^{J} t(f_j | e_{a_j})$

Expression analytique de la vraisemblance

Calcul de la vraisemblance

$$P(\mathbf{f}|\mathbf{e}) = \frac{\epsilon}{(I+1)^J} \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{a}, \mathbf{f}|\mathbf{e}, J; \boldsymbol{\theta})$$

$$= \frac{\epsilon}{(I+1)^J} \sum_{a_1=0}^I \sum_{a_2=0}^I \dots \sum_{a_J=0}^I \prod_{j=1}^J t(f_j|e_{a_j})$$

$$= \frac{\epsilon}{(I+1)^J} \prod_{j=1}^J \left(\sum_{i=0}^I t(f_j|e_{a_j}) \right)$$

$$(\mathbf{a}|\mathbf{e}, \mathbf{f}) = \prod_{j=1}^J \left(\frac{t(f_j|e_{a_j})}{\sum_{i=0}^I t(f_j|e_{i})} \right)$$
factorise par positions

Raisonnement graphique :

$$\begin{cases} A_j \perp \!\!\!\perp A_{j'} \mid E, \theta \Rightarrow \mathrm{P}(\mathbf{a} \mid \mathbf{e}, \mathbf{f}, J) \propto \prod_j \mathrm{P}(A_j \mid E, F) \\ F_j \perp \!\!\!\perp F_{j'} \mid E, \theta \Rightarrow \mathrm{P}(\mathbf{f} \mid \mathbf{e}, J) \propto \prod_j \mathrm{P}(F_j \mid E) \end{cases}$$

Expression analytique de la vraisemblance

Calcul de la vraisemblance

$$P(\mathbf{f} | \mathbf{e}) = \frac{\epsilon}{(I+1)^J} \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{a}, \mathbf{f} | \mathbf{e}, J; \boldsymbol{\theta})$$

$$= \frac{\epsilon}{(I+1)^J} \sum_{a_1=0}^I \sum_{a_2=0}^I \dots \sum_{a_J=0}^I \prod_{j=1}^J t(f_j | e_{a_j})$$

$$= \frac{\epsilon}{(I+1)^J} \prod_{j=1}^J \left(\sum_{i=0}^I t(f_j | e_{i}) \right)$$

$$P(\mathbf{a} | \mathbf{e}, \mathbf{f}) = \prod_{j=1}^J \left(\frac{t(f_j | e_{a_j})}{\sum_{i=0}^I t(f_j | e_{i})} \right)$$
factorise par positions

Raisonnement graphique :
$$\begin{cases} A_j \perp \!\!\! \perp A_{j'} \mid \!\! E, \boldsymbol{\theta} \Rightarrow \mathrm{P}(\mathbf{a} \mid \mathbf{e}, \mathbf{f}, J) \propto \prod_j \mathrm{P}(A_j \mid \!\! E, F) \\ F_j \perp \!\!\! \perp F_{j'} \mid \!\!\! E, \boldsymbol{\theta} \Rightarrow \mathrm{P}(\mathbf{f} \mid \mathbf{e}, J) \propto \prod_j \mathrm{P}(F_j \mid \!\! E) \end{cases}$$

La révélation

$$P(\mathbf{a} \mid \mathbf{e}, \mathbf{f}) = \prod_{j=1}^{J} \left(\frac{t(f_j \mid e_{a_j})}{\sum_{i=0}^{I} t(f_j \mid e_i)} \right)$$

Conséquences

- La probabilité a posteriori d'un alignement est un produit sur les liens
- Chaque lien $a_i: f_i \to e_{a_i}$ a posteriori : $P(a_i|f_i, \mathbf{e}) = t(f_i|e_{a_i})$ (normalisé sur \mathbf{e})
- Tous les calculs (yc l'inférence) se décomposent par position :

$$\mathbf{a}^* = a_{[1:J]}^* \text{ avec } j^* = \underset{i}{\operatorname{argmax}} t(f_j | e_i)$$

Simplicité perdue dans le modèle HMM : il faut faire forward / backward

Expectation - Maximisation : décomposé par lien

 Fonction auxiliaire de l'EM (concave - mais pas strictement concave : il peut exister plusieurs optimum globaux)

$$Q_{\theta'}(\theta) = \sum_{(\mathbf{f}, \mathbf{e})} \sum_{\mathbf{a}} P(\mathbf{a} | \mathbf{e}, \mathbf{f}; \theta') \log(\prod_{j=1}^{J} t(f_j | e_{a_j}))$$

$$vtheta^* = \underset{\theta}{\operatorname{argmax}} Q_{\theta'}(\theta) \text{ avec } \forall e, \sum_{f} t(f | e) = 1$$

• Maximiser $L(t,t') = Q_{\theta'}(\theta) + \sum_{e} \lambda_e (1 - \sum_{f} t(f|e))$

$$\begin{split} \frac{\delta L}{\delta t(f|e)} &= \sum_{(\mathbf{f},\mathbf{e})} \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f};t') \frac{\sum_{j=1}^{J} \mathbb{I}(f_{j}=f) \mathbb{I}(e_{a_{j}}=e)}{t(f|e)} - \lambda_{e} \\ &= \sum_{(\mathbf{f},\mathbf{e})} \frac{\sum_{j=1}^{J} \mathbb{I}(f_{j}=f) \sum_{i=1}^{I} \mathbb{I}(e_{i}=e)}{t(f|e)} \sum_{\mathbf{a},(f,e) \in \mathbf{a}} P(\mathbf{a}|\mathbf{e},\mathbf{f};t') - \lambda_{e} \\ &= \sum_{(\mathbf{f},\mathbf{e})} \frac{\sum_{j=1}^{J} \mathbb{I}(f_{j}=f) \sum_{i=1}^{I} \mathbb{I}(e_{i}=e)}{t(f|e)} \frac{t'(f|e)}{\sum_{i} t'(f|e_{i})} - \lambda_{e} \end{split}$$

Conditions d'optimalité

$$t(f|e) \propto \sum_{\{e,e\}} (\sum_{i=1}^{J} \mathbb{I}(f_i = f) \sum_{i=1}^{J} \mathbb{I}(e_i = e)) \frac{t'(f|e)}{\sum_{i} t'(f|e_i)}$$

Limsi

Estimation

- Initialiser t(f|e), $\forall e$, $\forall f$
- pour chaque couple de phrases $(e, f) \in \mathbb{C}$, calculer :

$$\mathbb{E}(C(e, f|\mathbf{e}, \mathbf{f}, t')) = \sum_{\mathbf{a}} P(\mathbf{a}|\mathbf{e}, \mathbf{e}) C_{\mathbf{a}}(f) C_{\mathbf{a}}(e)$$
$$= \frac{t'(f|e)}{\sum_{i=0}^{I} t'(f|e_i)} \sum_{j} \mathbb{I}(f_j, f) \sum_{i} \mathbb{I}(e_i, e)$$

• remettre à jour :

$$t(f|e) = \frac{\sum_{(\mathbf{e},\mathbf{f})} C(e,f|\mathbf{e},\mathbf{f};t')}{\sum_{f} \sum_{S} C(e,f|\mathbf{e},\mathbf{f};t')}$$

Inférence position par position

$$\mathbf{a}^* = \operatorname{argmax} \prod_i t(f_i|e_{a_i}) = \prod_i \operatorname{argmax}_i t(f_i|e_i)$$

IBM modèle 2

Hypothèses

- J est uniforme sur [1; N], N grand : $P(J) = \epsilon$
- a_j dépend de j, de I et de J
- f_j ne dépend que de e_{a_j} (le mot aligné avec f)

Histoire générative de f sachant e

- choisir J
- pour chaque position $j \in [1:J]$
 - choisir $a_j|j, I, J \sim \mathrm{Disc}(u(a_j|j, I, J))$: choix de l'indice
 - choisir $f_j|J, e_{a_j} \sim \text{Disc}(t(f_j|e_{a_j}))$: choix du mot source

$$P(\mathbf{a}, \mathbf{f}|\mathbf{e}) = \epsilon \prod_{j=1}^{J} u(a_j|j, I, J) t(f_j|e_{a_j})$$

IBM modèle 2

Hypothèses

- J est uniforme sur [1; N], N grand : $P(J) = \epsilon$
- a_i dépend de j, de I et de J
- f_j ne dépend que de e_{a_j} (le mot aligné avec f)

Histoire générative de f sachant e

- choisir J
- pour chaque position $j \in [1:J]$
 - choisir $a_j|j, I, J \sim \mathrm{Disc}(u(a_j|j, I, J))$: choix de l'indice
 - choisir $f_j|J,e_{a_j} \sim \operatorname{Disc}(t(f_j|e_{a_j}))$: choix du mot source

$$P(\mathbf{a}, \mathbf{f}|\mathbf{e}) = \epsilon \prod_{j=1}^{J} u(a_j|j, I, J) t(f_j|e_{a_j})$$

Mêmes indépendances que pour IBM modèle 1 (alignement position par position)

Calcul analytique de la vraisemblance

$$P(\mathbf{f}|\mathbf{e}) = \epsilon \sum_{\mathbf{a} \in \mathcal{A}} P(\mathbf{f}, \mathbf{a}|\mathbf{e})$$

$$= \epsilon \sum_{a_1=0}^{I} \sum_{a_2=0}^{I} \dots \sum_{a_J=0}^{I} \prod_{j=1}^{J} t(f_j|e_{a_j}) u(a_j|j, I, J)$$

$$= \epsilon \prod_{j=1}^{J} (\sum_{i=0}^{I} t(f_j|e_i) u(i|j, I, J))$$

Limsi

IBM2 : Estimation des paramètres

- Initialiser t(f|e), $\forall e$, $\forall f$ (par ex. avec IBM1)
- pour chaque couple de phrases $(e, f) \in S$, calculer :

$$\forall e, f : \mathbb{E}(C(e, f | \mathbf{e}, \mathbf{f}, t')) = \sum_{j=0}^{J} \sum_{i=0}^{I} \frac{t'(f | e)u(i|j, I, J)\mathbb{I}(f, f_j)\mathbb{I}(e, e_j)}{\sum_{k} t'(f | e_k)u(k|j, I, J)}$$

$$\forall i, j : \mathbb{E}(n(i|j, I, J)) = \frac{t(f_j | e_i)u(i|j, I, J)}{\sum_{k} t(f | e_k)u(k|j, I, J)}$$

• remettre à jour :

$$t(f|e) = \frac{\sum_{(\mathbf{e},\mathbf{f})} C(e,f|\mathbf{e},\mathbf{f};t')}{\sum_{f} \sum_{(\mathbf{e},\mathbf{f})} C(e,f|\mathbf{e},\mathbf{f};t')}$$
$$u(i|j,I,J) = \frac{\sum_{(\mathbf{e},\mathbf{f})} C(i|j,\mathbf{e},\mathbf{f};t')}{\sum_{i} \sum_{(\mathbf{e},\mathbf{f})} C(i|j,\mathbf{e},\mathbf{f};t')}$$

Des alignements... plus ou moins heureux

Des alignements... plus ou moins heureux

Des alignements... plus ou moins heureux

Pour en savoir plus...

- The mathematics of statistical machine translation (Brown & al, 1993): publication de référence sur la traduction mot-à-mot et les modèles d'alignement
- A Statistical MT tutorial workbook (Knight, 1999) : le même, en pédagogique
- Giza++, Giza-pp, fast_align: logiciels open-source pour la construction d'alignements

Sommaire

- Modèles structurés
- 2 HMM, une révision rapide
- Modèles pour l'alignement de mots
- Modèles pour la syntaxe
 - Engendrer des arbres de dépendances
 - Grammaires hors-contexte : les bases
 - Grammaires
 - Dérivations et arbres de dérivation
 - Parsage : résultats élémentaires
 - Grammaires probabilistes : Définitions

Le domaine de la syntaxe

- Identifier et décrire les énoncés bien formés [corrects] du langage
 - À partir de grammaires : des règles qui supportent une description intensionnelle des énoncés
 - Qui prennent en compte et permettent de calculer des informations sur la structure interne des énoncés
- Articuler les représentations syntaxiques et les autres composants de la grammaire : sémantique, morphologie, morpho-syntaxe
- Déduire des généralisations sur les mécanismes cognitifs impliqués dans la construction et la manipulation de telles représentations : la capacité de langage

L'analyse en dépendances

Un modèle universel de la syntaxe?

Principe

- représente des relations de dominance / dépendance entre mots/formes
- les relations sont orientées et typées (fonctions syntaxiques)

Modèle formel pour les dépendances

Représenter les dépendances

$$w_{[1:T]} = w_1 \dots w_T$$
 une phrase $+ w_0$ (racine)
 $G = \{(d, h, t) \in [0:T] \times [0:T] \times \mathcal{R}\}$, tel que :

- $\forall i > 0, !(h, i, t) \in G$ (G est connecté, acyclique)
- $!(0,i,t) \in G$
- (+projectivité) $(h, d, t) \in G$ implique $\forall \min(h, d) < j < \max(h, d), j$ est soit un descendant de h, soit un descendant de d.

raur sees a man with an uniorena

$$G = \{(1,2); (2,0); (3,4); (4,2); (5,4); (6,7); (7,5)\}$$

Modèles formels pour les dépendances

Une formulation directe

Les variables du modèle

- $W_{[1:T]}$ pour les mots, $W_i \in [1:|V|]$
- $H_{[1:T]}$ pour les têtes $H_i \in [0:T]$
- $R_{\lceil 1:T \rceil}$ pour les types $R_i \in \mathcal{R}$
- (+contraintes de projectivité)

Une analogie possible

Traiter la construction du graphe comme un problème d'auto-alignement.

Modèles formels pour les dépendances

Une formulation directe

Les variables du modèle

- $W_{[1:T]}$ pour les mots, $W_i \in [1:|V|]$
- $H_{[1:T]}$ pour les têtes $H_i \in [0:T]$
- $R_{[1:T]}$ pour les types $R_i \in \mathcal{R}$
- (+contraintes de projectivité)

Une analogie possible

Traiter la construction du graphe comme un problème d'auto-alignement.

Analyser comme on aligne

Auto-aligner avec IBM modèle 1

$$\mathbf{f} = W_{[1:T]}, \mathbf{e} = W_{[1:T]} P()\mathbf{f}, \mathbf{e} = \prod_{j=1}^{J} P(W_i | W_{a_i})$$

Problèmes

- paramétrisation : $\forall u, v\theta_{uv}$?
- interdiction des liens (i, i)
- une seule racine?
- positionnement des liens?

On peut faire mieux (IBM2, etc) voir (Brody 2010)

Analyser comme on aligne

Auto-aligner avec IBM modèle 1

$$\mathbf{f} = W_{[1:T]}, \mathbf{e} = W_{[1:T]} P()\mathbf{f}, \mathbf{e} = \prod_{j=1}^{J} P(W_i | W_{a_i})$$

Problèmes

- paramétrisation : $\forall u, v\theta_{uv}$?
- interdiction des liens (i, i)
- une seule racine?
- positionnement des liens?

On peut faire mieux (IBM2, etc) voir (Brody 2010)

Analyser comme on aligne

Auto-aligner avec IBM modèle 1

$$\mathbf{f} = W_{[1:T]}, \mathbf{e} = W_{[1:T]} P()\mathbf{f}, \mathbf{e} = \prod_{j=1}^{J} P(W_i | W_{a_i})$$

Problèmes

- paramétrisation : $\forall u, v\theta_{uv}$?
- interdiction des liens (i, i)
- une seule racine?
- positionnement des liens?

On peut faire mieux (IBM2, etc) voir (Brody 2010)

Un modèle alternatif

Dependances + Valence = DMV (Klein & Manning, 2004)

Construction récursive avec DMV: Gen

Partant de la racine :

- engendrer (récursivement) les fils gauches (de droite à gauche)
- engendrer (récursivement) les fils gauches (de gaucge à droite)

Variables et paramètres

Pour chaque tête h

- P(stop | dir, h, adj) s'arrêter d'engendrer des filles (à gauche, à droite)
- P(a | dir, h, adj) choisir la prochaine fille

$$P(D(h)) = \prod_{a=1, \dots} \left(\prod_{a} P(s=0 \mid h, d, adj) P(a \mid h, dir) P(D(a)) \right) P(s=1 \mid h, d, adj)$$

Estimation par EM (Klein et Manning, 2004)

79 / 110

Un modèle alternatif

Dependances + Valence = DMV (Klein & Manning, 2004)

Construction récursive avec DMV: Gen

Partant de la racine :

- engendrer (récursivement) les fils gauches (de droite à gauche)
- engendrer (récursivement) les fils gauches (de gaucge à droite)

Variables et paramètres

Pour chaque tête h:

- P(stop | dir, h, adj) s'arrêter d'engendrer des filles (à gauche, à droite)
- P(a | dir, h, adj) choisir la prochaine fille

$$P(D(h)) = \prod_{s,h} \left(\prod_{s} P(s=0 \mid h, d, adj) P(a \mid h, dir) P(D(a)) \right) P(s=1 \mid h, d, adj)$$

Estimation par EM (Klein et Manning, 2004)

Limsi

Un modèle alternatif

Dependances + Valence = DMV (Klein & Manning, 2004)

Construction récursive avec DMV: Gen

Partant de la racine :

- engendrer (récursivement) les fils gauches (de droite à gauche)
- engendrer (récursivement) les fils gauches (de gaucge à droite)

Variables et paramètres

Pour chaque tête h:

- P(stop | dir, h, adj) s'arrêter d'engendrer des filles (à gauche, à droite)
- P(a | dir, h, adj) choisir la prochaine fille

$$P(D(h)) = \prod_{s,h} \left(\prod_{s} P(s=0 \mid h, d, adj) P(a \mid h, dir) P(D(a)) \right) P(s=1 \mid h, d, adj)$$

Estimation par EM (Klein et Manning, 2004)

Limsi

Mots, langages

Définitions de base

Notions de base

 Σ un ensemble fini.

- L'ensemble des séquences finies de symboles de Σ est le langage universel Σ^* .
- Une séquence $w = w_1 \dots w_n$ de Σ^* est appelée mot
- ε est le mot de longueur nulle ($|\varepsilon| = 0$).
- Un langage est un sous-ensemble de Σ^* .

Mots, langages

Définitions de base

Notions de base

 Σ un ensemble fini.

- L'ensemble des séquences finies de symboles de Σ est le langage universel Σ^* .
- Une séquence $w = w_1 \dots w_n$ de Σ^* est appelée mot
- ε est le mot de longueur nulle ($|\varepsilon| = 0$).
- Un langage est un sous-ensemble de Σ^* .

Exemples

- Exemple 1 : *langage* est un mot sur $\Sigma = \{a, b, ..., z\}$
- Exemple 2 : ceci est une phrase est un mot sur $\Sigma = \{ceci, est, une, phrase\}$
- Exemple 3 : AACTGCACCAGT est un mot sur $\Sigma = \{A, C, G, T\}$

Règles de récriture

- Une règle de récriture ou production α → β exprime le remplacement du facteur α par β;
- α est la partie gauche ou tête de la récriture et β est le corps.
- Soit $\Sigma = \{a, b\}$ et $aba \rightarrow bab$ une règle; elle récrit $b\underline{aba}bb$ en $b\underline{bab}bb$.
- Un ensemble de règles P définit une relation de dérivation denotée ⇒ sur les mots de Σ*:

$$\alpha\beta\gamma \Rightarrow \alpha\beta'\gamma$$
 si et seulement si $\beta \rightarrow \beta' \in P$

• la fermeture transitive de \Rightarrow est $\stackrel{\star}{\Rightarrow}$, définie par :

$$\alpha \stackrel{\star}{\Rightarrow} \gamma \text{ ssi } \begin{cases} \alpha = \gamma \\ \alpha \Rightarrow \beta \text{ et } \beta \stackrel{\star}{\Rightarrow} \gamma \end{cases}$$

Grammaires hors-contexte

Définitions

Une grammaire hors contexte (context-free) est définie par $G = (\Sigma, V, S, P)$ avec :

- Σ l'alphabet fini des symboles terminaux
- V un ensemble fini de symboles non-terminaux, $V \cap \Sigma = \emptyset$
- S un symbole distingué de V, appelé l'axiome de la grammaire
- P est un ensemble de productions telles que si $\alpha \to \beta$ est dans P, alors (i) $\alpha \in V$ et (ii) $\beta \in (V \cup \Sigma)^*$

Le langage L(G) d'une grammaire G est :

$$L(G) = \{ w \in \Sigma^* \text{ st. } S \stackrel{\star}{\Rightarrow} w \}$$

Un mot de L(G) dérive de S et ne contient que des terminaux

Un protomot est un mot α de $(V \cup \Sigma)^*$ tel que $S \stackrel{\star}{\Rightarrow} \alpha$.

Une grammaire CF simple

Le langage $a^n b^n$

Soit $G_1 = (\{a,b\}, \{S\}, S, \{S \rightarrow aSb, S \rightarrow ab\})$

- $ab \in L(G_1)$, car $S \Rightarrow ab$
- $aabb \in L(G_1)$: $S \Rightarrow aSb$ (par la règle 1) et $aSb \Rightarrow aabb$ (par la règle2), donc $S \stackrel{\star}{\Rightarrow} aabb$.
- $\forall n > 0, a^n b^n \in L(G)$ (par récurrence)
- $L(G_1) = \{a^n b^n, n > 0\}$ (considérer les proto-mots).

Une grammaire jouet de l'anglais

La grammaire

$$\begin{array}{c|cccc} S & \rightarrow NP & VP & DET \rightarrow the \mid a \mid my... \\ NP \rightarrow DET & N & \rightarrow boy \mid girl \mid book \\ NP \rightarrow NP & V & \rightarrow cries \mid sleeps \\ VP \rightarrow V & V & \rightarrow likes \mid reads \\ VP \rightarrow V & NP & V & \rightarrow dreams \mid complains \\ VP \rightarrow V & PP & V & \rightarrow shares \mid discusses \\ VP \rightarrow V & NP & N & \rightarrow talks \mid speaks \\ VP \rightarrow V & PP & P & \rightarrow of \mid about \mid \\ PP \rightarrow P & NP & P & \rightarrow to \mid with \\ \end{array}$$

 $X \to \alpha \mid \beta$ remplace deux règles $X \to \alpha$ et $X \to \beta$.

Une grammaire jouet de l'anglais

La grammaire

$$\begin{array}{c|cccc} S & \rightarrow NP & VP & DET \rightarrow the \mid a \mid my... \\ NP \rightarrow DET & N & \rightarrow boy \mid girl \mid book \\ NP \rightarrow NP & V & \rightarrow cries \mid sleeps \\ VP \rightarrow V & V & \rightarrow likes \mid reads \\ VP \rightarrow V & NP & V & \rightarrow dreams \mid complains \\ VP \rightarrow V & PP & V & \rightarrow shares \mid discusses \\ VP \rightarrow V & NP & N & \rightarrow talks \mid speaks \\ VP \rightarrow V & PP & P & \rightarrow of \mid about \mid \\ PP \rightarrow P & NP & P & \rightarrow to \mid with \\ \end{array}$$

 $X \to \alpha \mid \beta$ remplace deux règles $X \to \alpha$ et $X \to \beta$.

Des « mots »

my girl reads a book

Les langages hors-contexte

Définition

Un langage L est hors-contexte s'il existe G hors-contexte tq. G = L(G)

Les langages hors-contexte

Définition

Un langage L est hors-contexte s'il existe G hors-contexte tq. G = L(G)

Propriétés

- les langages hors-contexte contiennent strictement les langages rationnels
- les langages hors-contexte sont rationnellement clos
- l'intersection de deux hors-contexte n'est pas toujours hors-contexte
- plus compliqué : les langages des grammaires contextuelles.

Dérivations

• une dérivation de w dans L(G) est une suite de productions $P_1...P_k$ telles que :

$$S \Rightarrow_{P_1} \alpha_1 \Rightarrow_{P_2} \alpha_2 \dots \Rightarrow_{P_k} w$$

- plusieurs manières de dériver w
- $G_2 = (\{a,b\}, \{A,B,S\}, S, \{S \to AB, A \to a, B \to b\})$. ab a deux dérivations :
 - $S \Rightarrow AB \Rightarrow aB \Rightarrow ab$
 - \bullet $S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$
- une dérivation gauche récrit toujours le non-terminal le plus à gauche du proto-mot courant. (1) est une dérivation gauche.
- une dérivation droite récrit toujours le non-terminal le plus à droite. (2) est une dérivation droite.

Arbres de dérivation

• Un arbre de dérivation de w dans L(G) représente un ensemble de dérivations équivalentes.

- L'arbre de dérivation de w = aabb dans G_2 :
- Un arbre de dérivation est un arbre (acyclique, connexe) étiqueté :
 - chaque nœud interne (resp. feuille) est étiqueté par un non-terminal (resp. terminal)
 - si $n_1, n_2...n_k$, respectivement étiquetés $X_1...X_k$ sont des filles de n (étiqueté X), alors $X \to X_1...X_k$ est une production de G.

Mots linéaires, arbres hiérarchiques

- L'arbre de dérivation représente la structure (hiérarchique) calculée par la grammaire.
- $G_3 = (\{1, 2, ..., +, *\}, \{T, F, E\}, E, \{E \rightarrow T, E \rightarrow E + T, T \rightarrow F, T \rightarrow T * F, F \rightarrow 1...\})$. L'arbre de dérivation pour w = 1 + 2 * 3 dans G_3 :

• l'arbre de dérivation détermine l'interprétation (la sémantique) d'un mot

Ambiguïté

- Une grammaire est ambiguë si au moins un mot a plus d'une dérivation gauche
 (⇔ a plus d'un arbre de dérivation)
- $G_4 = (\{1, 2, ..., +, *\}, \{E\}, E, \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow 1...\})$ deux arbres de dérivation pour w = 1 + 2 * 3:

• Un langage est ambigu ssi toutes ses grammaires sont ambiguës

Ambiguïté

- Une grammaire est ambiguë si au moins un mot a plus d'une dérivation gauche
 (⇔ a plus d'un arbre de dérivation)
- $G_4 = (\{1, 2, ..., +, *\}, \{E\}, E, \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow 1...\})$. deux arbres de dérivation pour w = 1 + 2 * 3:

• Un langage est ambigu ssi toutes ses grammaires sont ambiguës.

Ambiguïté

- Une grammaire est ambiguë si au moins un mot a plus d'une dérivation gauche (⇔ a plus d'un arbre de dérivation)
- $G_4 = (\{1, 2, ..., +, *\}, \{E\}, E, \{E \rightarrow E + E, E \rightarrow E * E, E \rightarrow 1...\})$. deux arbres de dérivation pour w = 1 + 2 * 3:

• Un langage est ambigu ssi toutes ses grammaires sont ambiguës.

Ambiguité (suite)

- Les langages formels doivent être sans ambiguïté : les ambiguités doivent être résolues (comment ? par reformulation de la grammaire).
- Les langages naturels sont ambigus pour les humains :
 - time flies like an arrow (rare)
 - I saw a man with a telescope (fréquent)
- ... et encore plus pour les machines
 - Dog trains like an arrow
 - I saw a man with an umbrella

Comment faire? Probabiliser les décisions

- deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$
- elles sont fortement (resp. faiblement) équivalentes ssi de plus les arbres de dérivation dans G_1 et G_2 sont identiques (resp. différents).
- pour toute grammaire, ∃ une grammaire fortement équivalente qui ne contient que des terminaux, non terminaux et productions utiles (= utilisés pour engendrer au moins un mot)
- pour toute grammaire, ∃ une grammaire faiblement équivalente dont toutes les productions sont de la forme A → BC ou A → a (Forme Normale de Chomsky ou CNF)
- pour toute grammaire, \exists une grammaire faiblement équivalente dont toutes les productions sont de la forme $A \rightarrow a \alpha$ (Forme Normale de Greibach)

- deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$
- elles sont fortement (resp. faiblement) équivalentes ssi de plus les arbres de dérivation dans G_1 et G_2 sont identiques (resp. différents).
- pour toute grammaire, ∃ une grammaire fortement équivalente qui ne contient que des terminaux, non terminaux et productions utiles (= utilisés pour engendrer au moins un mot)
- pour toute grammaire, ∃ une grammaire faiblement équivalente dont toutes les productions sont de la forme A → BC ou A → a (Forme Normale de Chomsky ou CNF)
- pour toute grammaire, \exists une grammaire faiblement équivalente dont toutes les productions sont de la forme $A \rightarrow a \alpha$ (Forme Normale de Greibach)

- deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$
- elles sont fortement (resp. faiblement) équivalentes ssi de plus les arbres de dérivation dans G_1 et G_2 sont identiques (resp. différents).
- pour toute grammaire, ∃ une grammaire fortement équivalente qui ne contient que des terminaux, non terminaux et productions utiles (= utilisés pour engendrer au moins un mot)
- pour toute grammaire, ∃ une grammaire faiblement équivalente dont toutes les productions sont de la forme A → BC ou A → a (Forme Normale de Chomsky ou CNF)
- pour toute grammaire, \exists une grammaire faiblement équivalente dont toutes les productions sont de la forme $A \rightarrow a \alpha$ (Forme Normale de Greibach)

- deux grammaires G_1 et G_2 sont équivalentes ssi $L(G_1) = L(G_2)$
- elles sont fortement (resp. faiblement) équivalentes ssi de plus les arbres de dérivation dans G_1 et G_2 sont identiques (resp. différents).
- pour toute grammaire, ∃ une grammaire fortement équivalente qui ne contient que des terminaux, non terminaux et productions utiles (= utilisés pour engendrer au moins un mot)
- pour toute grammaire, ∃ une grammaire faiblement équivalente dont toutes les productions sont de la forme A → BC ou A → a (Forme Normale de Chomsky ou CNF)
- pour toute grammaire, \exists une grammaire faiblement équivalente dont toutes les productions sont de la forme $A \rightarrow a \alpha$ (Forme Normale de Greibach)

Parsage = recherche

- ⇒ definit un graphe orienté (=relation binaire) sur l'ensemble des proto-mots.
- $w \in L(G)$ équivaut à trouver un chemin dans ce graphe.
- attention : le graphe est infini (seulement localement fini)
- stratégies de recherche :
 - de S vers w : parsage descendant ou top-down
 - de w vers S : parsage ascendant ou bottom-up
 - profondeur d'abord (exploration séquentielle des chemins)
 - largeur d'abord (exploration en parallèle des chemins)
 - ...

Une grammaire ambiguë

```
\rightarrow GNGV
                                       P15
                                                     → mange | sert
p_1
        GN \rightarrow DET N
                                                    → donne
p_2
                                       p_{16}
        GN \rightarrow GN GNP
                                                    → boude | s'ennuie
p_3
                                       p_{17}
        GN \rightarrow NP
                                                   → parle
p_4
                                       p_{18}
        GV \rightarrow V
                                                    → coupe | avale
p_5
                                       p_{19}
        GV \rightarrow VGN
                                                      → discute | gronde
p6
                                       P20
        GV \rightarrow V GNP
                                               NP → Louis | Paul
                                       p_{21}
        GV \rightarrow V GN GNP
                                               NP → Marie | Sophie
p_8
                                       p22
        GV \rightarrow V GNP GNP
                                                    → fille | cousine | tante
p9
                                       P23
                                               N \rightarrow paternel \mid fils
        GNP \rightarrow PP GN
p_{10}
                                       p_{24}
        PP \rightarrow de \mid a
                                                    → viande | soupe | salade
p_{11}
                                       p_{25}
        DET \rightarrow la \mid le
                                               N \rightarrow dessert \mid fromage \mid pain
p_{12}
                                       p_{26}
        DET \rightarrow sa \mid son
                                               ADJ \rightarrow petit \mid gentil
p_{13}
                                       p27
        DET → un | une
                                               ADJ \rightarrow petite \mid gentille
p_{14}
                                       p<sub>28</sub>
```


Les deux idées de CYK

Propriété de sous-structure

Si G est CNF, tout arbre couvrant w[1:n] se décompose en exactement deux sous-arbres couvrant w[1:k-1] et w[k:n] (et récursivement).

Tabulation

Pour chaque $A \in V$, $i, j \in 1 : n + 1$, $A \stackrel{\star}{\Rightarrow} ?w[i:j]$ n'est calculé qu'une fois et stocké dans une table

Les deux idées de CYK

Propriété de sous-structure

Si G est CNF, tout arbre couvrant w[1:n] se décompose en exactement deux sous-arbres couvrant w[1:k-1] et w[k:n] (et récursivement).

Tabulation

Pour chaque $A \in V$, $i, j \in 1 : n + 1$, $A \stackrel{\star}{\Rightarrow} ?w[i:j]$ n'est calculé qu'une fois et stocké dans une table

94 / 110

Les sous-chaînes bien formées

6	S				
5					
3	S		GV		
2	GN			GN	
1	DET	N	V, GV	DET	N
	ma	sœur	mange	une	pomme
	1	2	3	4	5

$$X \in T[i:j] \Leftrightarrow X \stackrel{\star}{\Rightarrow} w[i:j-1]$$

95 / 110

Cocke Younger Kasami - CYK

```
// la phrase à analyser est w = w_1 \dots w_n
T[i,j] \leftarrow \emptyset;
for i = 1 \dots n do
    foreach A \rightarrow u_i \in P do
     T[i, \overline{i+1}] \leftarrow T[i, i+1] \cup \{A\}
    end
end
for l = 2 ... n do
    for i = 1 ... n - l + 1 do
          for k = i + 1 \dots i + l - 1 do
              if B \in T[i,k] \land C \in T[k,i+l] \land A \rightarrow BC \in P then
               T[i, i+l] := \leftarrow T[i, i+l] \cup \{A\}
               end
          end
    end
end
// Succès: S couvant 1...n+1
if S \in T[1, n] then
     return (true)
end
```

Limsi

CYK - application

```
\rightarrow GNGV
                                     p_{11} V \rightarrow joue \mid travaille
p_1
        GN \rightarrow DET N
                                     p_{12} V \rightarrow donne \mid corde
p_2
        GN \rightarrow GN GNP
                                     p_{13} V \rightarrow gratte \mid compose
p_3
                                     p_{14} V \rightarrow \acute{e}coute
        GV \rightarrow VGN
p_4
        GV \rightarrow V GNP
                                     p_{15} V \rightarrow enregistre
p_5
        GNP \rightarrow PPGN
                                     p_{16} N \rightarrow air \mid refrain
p_6
       PP \rightarrow de \mid a
                                     p_{17} N \rightarrow guitare \mid gratte \mid corde
p_7
       DET → la | le
                                     p_{18} N \rightarrow son \mid piano \mid la
p_8
       DET \rightarrow sa \mid son
                                     p_{19} N \rightarrow chanteuse \mid guitariste \mid pièce
p_9
        DET \rightarrow un \mid une
                                     p_{20} N \rightarrow composition | chanteur | concert
p_{10}
```

le chanteur compose un refrain; la guitariste gratte une corde de sa guitare

97 / 110

Probabiliser les langages hors-contexte

Grammaires probabilistes hors-contexte (PCFG)

 $G = (\Sigma, V, S, \theta)$, avec Σ un alphabet fini, V un ensemble de non-terminaux, S l'axiome et $\theta : V \times (V \cup \Sigma)^* \to [0, 1]$ tq. $\forall (A \to \alpha), \sum_{\alpha} \theta_{A \to \alpha} = 1$

Probabilité d'un arbre de dérivation

Soit τ un arbre de dérivation de G, utilisant $c(A \to \alpha)$ fois la production $A \to \alpha$, alors

$$P(\tau) = \prod_{A \to \alpha \in \tau} \theta_{A \to \alpha}^{c(A \to \alpha)}$$

NB. P() n'est pas toujours une distribution sur les arbres engendrés par G: il faut en plus éviter que les dérivations infinies aient une probabilité > 0.

Probabilité d'un mot

$$P(w_1 \dots w_n) = \sum_{\text{vield}(\tau) = w_1 \dots w} P(\tau)$$

Encore une somme de produits

Probabiliser les langages hors-contexte

Grammaires probabilistes hors-contexte (PCFG)

 $G = (\Sigma, V, S, \theta)$, avec Σ un alphabet fini, V un ensemble de non-terminaux, S l'axiome et $\theta: V \times (V \cup \Sigma)^* \to [0,1]$ tq. $\forall (A \to \alpha), \sum_{\alpha} \theta_{A \to \alpha} = 1$

Probabilité d'un arbre de dérivation

Soit τ un arbre de dérivation de G, utilisant $c(A \to \alpha)$ fois la production $A \to \alpha$, alors :

$$P(\tau) = \prod_{A \to \alpha \in \tau} \theta_{A \to \alpha}^{c(A \to \alpha)}$$

NB. P() n'est pas toujours une distribution sur les arbres engendrés par G: il faut en plus éviter que les dérivations infinies aient une probabilité > 0.

$$P(w_1 \dots w_n) = \sum_{\text{yield}(\tau) = w_1 \dots w_n} P(\tau)$$

Probabiliser les langages hors-contexte

Grammaires probabilistes hors-contexte (PCFG)

 $G = (\Sigma, V, S, \theta)$, avec Σ un alphabet fini, V un ensemble de non-terminaux, S l'axiome et $\theta : V \times (V \cup \Sigma)^* \to [0, 1]$ tq. $\forall (A \to \alpha), \sum_{\alpha} \theta_{A \to \alpha} = 1$

Probabilité d'un arbre de dérivation

Soit τ un arbre de dérivation de G, utilisant $c(A \rightarrow \alpha)$ fois la production $A \rightarrow \alpha$, alors :

$$P(\tau) = \prod_{A \to \alpha \in \tau} \theta_{A \to \alpha}^{c(A \to \alpha)}$$

NB. P() n'est pas toujours une distribution sur les arbres engendrés par G: il faut en plus éviter que les dérivations infinies aient une probabilité > 0.

Probabilité d'un mot

$$P(w_1 \dots w_n) = \sum_{yield(\tau) = w_1 \dots w_n} P(\tau)$$

Encore une somme de produits

Décomposition récursive de la loi jointe

Grammaire

 $G = (\Sigma, V = V_1 \cup V_2, S, P)$ CNF; les règles de P

- \bullet $A \rightarrow BC, A \in V_1, B, C \in V$
- $A \rightarrow w$, $A \in V_2$ (règles pré-terminales)

Représentations

- Un arbre binaire τ couvrant w_[1:T] contient T 1 nœuds internes étiquetés par des NT.
- Un arbre de dérivation complet
 - un ensemble de variables $Y_1 \dots Y_{T-1}$ à valeurs dans V_1
 - un ensemble de variables $Y_T \dots Y_{2T-1}$ à valeurs dans V_2 (pré-terminaux)
 - un ensemble de variables $W_1 \dots W_T$ à valeurs dans Σ

Décomposition récursive de la loi jointe

$$\tau = \{A, W = w\}$$

$$P(T = \tau, W = w) = P(A \rightarrow w)$$

99 / 110

Décomposition récursive de la loi jointe

$$P(T = \tau, W = w) = P(A \rightarrow w)$$

$$\begin{split} \mathbf{P}(T=\tau,W=w) = & \mathbf{P}(Y_1=S)\,\mathbf{P}(Y_2Y_3\,|\,Y_1=S)\times\\ & \mathbf{P}(T_2=\tau_A,W_{\left[1:k\right]}\,|\,Y_2=A)\times\\ & \mathbf{P}(T_3=\tau_B,W_{\left[k+1:T\right]}\,|\,Y_3=B) \end{split} \quad \text{Limsi}$$

Décomposition récursive de la loi jointe

 $T_2 \perp \!\!\!\perp T_3 \mid Y_2, Y_3$

$$\tau = \{S \to AB, \tau_A, \tau_B\}, W_{[1:T]} = w_{[1:T]}$$
S

A
B

$$T_A \qquad T_B$$

$$T_A \qquad T_B$$

$$\begin{split} \mathbf{P}(T=\tau,W=w) &= \mathbf{P}(Y_1=S)\,\mathbf{P}(Y_2Y_3\,|\,Y_1=S)\times\\ &\quad \mathbf{P}(T_2=\tau_A,W_{\left[1:k\right]}\,|\,Y_2=A)\times\\ &\quad \mathbf{P}(T_3=\tau_B,W_{\left[k+1:T\right]}\,|\,Y_3=B) \end{split} \label{eq:posterior}$$
 Limsi

Trois problèmes pour les PCFGs

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{yield(\tau)=w_1...w_n} P(\tau)$

- Estimer les probabilités (G connue) :
- For Pallgorithme 1934 = non-learning or Form to a re-
- Apprendre *G* est beaucoup plus difficile (IG)

Trois problèmes pour les PCFGs

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i ... w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{yield(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivemen
 - $T[i,j,A] = \operatorname{argmax} P(A \Rightarrow w_i \dots w_{j-1})$
- Estimer les probabilités (*G* connue) :
 - si l'on dispose d'use banque d'arbres; • Par l'algorithme 1981 = mais /on mie, si l'on ne comme
- Apprendre G est beaucoup plus difficile (IG)

Trois problèmes pour les PCFGs

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{\operatorname{yield}(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{i-1})$
- Estimer les probabilités (*G* connue)

• Apprendre G est beaucoup plus difficile (IG)

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{\operatorname{yield}(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{i-1})$
- Estimer les probabilités (*G* connue)
 - Au maximum de vraisemblance par les fréquences relatives d'utilisation des règles si l'on dispose d'une banque d'arbres;
- Apprendre G est beaucoup plus difficile (IG)

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{vield(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$
- Estimer les probabilités (G connue) :
 - Au maximum de vraisemblance par les fréquences relatives d'utilisation des règles si l'on dispose d'une banque d'arbres:
 - Par l'algorithme EM = inside/outside, si l'on ne connait que les productions
- Apprendre G est beaucoup plus difficile (IG)

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{\operatorname{yield}(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$
- Estimer les probabilités (G connue) :
 - Au maximum de vraisemblance par les fréquences relatives d'utilisation des règles, si l'on dispose d'une banque d'arbres;
 - Par l'algorithme EM = inside/outside, si l'on ne connait que les productions
- Apprendre G est beaucoup plus difficile (IG)

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{\operatorname{yield}(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{i-1})$
- Estimer les probabilités (G connue) :
 - Au maximum de vraisemblance par les fréquences relatives d'utilisation des règles, si l'on dispose d'une banque d'arbres;
 - Par l'algorithme EM = inside/outside, si l'on ne connait que les productions.
- Apprendre G est beaucoup plus difficile (IG)

- Calculer $P(w_1 \dots w_n)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement
 T[i,j,A] = P(A ⇒ w_i...w_{j-1}) comme la somme des probabilités de tous les sous-constituants par l'algorithme inside.
- Calculer $\operatorname{argmax}_{vield(\tau)=w_1...w_n} P(\tau)$
 - Par programmation dynamique (cf. CYK) en calculant récursivement $T[i, j, A] = \operatorname{argmax} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$
- Estimer les probabilités (G connue) :
 - Au maximum de vraisemblance par les fréquences relatives d'utilisation des règles, si l'on dispose d'une banque d'arbres;
 - Par l'algorithme EM = inside/outside, si l'on ne connait que les productions.
- Apprendre G est beaucoup plus difficile (IG)

100 / 110

L'algorithme Inside

Hypothèses et notations

- G sous forme normale de Chomsky (productions $X \to AB$ ou $X \to w$)
- T table d'analyse :

$$\forall A, T[i, j, A] \doteq \sum_{\substack{\tau \text{ tq.} \\ root(\tau) = A}} P(\tau)$$

Calcul de T par DP (bottom-up)

- $T[i, i+1, A] = P(A \rightarrow w_i)$
- $T[i,j,A] = \sum_{k} \sum_{A \to BC} \theta_{A \to BC} \times T[i,k,B] \times T[k+1,j,C]$

L'algorithme *Inside*

Hypothèses et notations

- G sous forme normale de Chomsky (productions $X \to AB$ ou $X \to w$)
- T table d'analyse :

$$\forall A, T[i,j,A] \doteq \sum_{\substack{\tau \text{ tq.} \begin{cases} yield(\tau) = w_i \dots w_{j-1} \\ root(\tau) = A \end{cases}}} P(\tau)$$

Calcul de *T* par DP (bottom-up)

- $T[i, i+1, A] = P(A \rightarrow w_i)$
- $T[i,j,A] = \sum_{k} \sum_{A \to BC} \theta_{A \to BC} \times T[i,k,B] \times T[k+1,j,C]$

Cocke Younger Kasami - CYK

```
/* la phrase à analyser est w = w_1 \dots w_n */
T[i,j] \leftarrow \emptyset;
for i = 1 \dots n do
     foreach A \rightarrow w_i \in P do
       | T[i, i+1] \leftarrow T[i, i+1] \cup \{A\} 
     end
end
/* Construit les constituants de longueur croissante */
for l = 2 \dots n do
     for i = 1 ... n - l + 1 do
          for k = i + 1 \dots i + l - 1 do
               if B \in T[i,k] \land C \in T[k,i+l] \land A \rightarrow BC \in P then
                    T[i, k+l] := \leftarrow T[i, k+l] \cup \{A\}
               end
          end
     end
end
/* Succès: S couvant 1...n+1 */
if S \in T[1, n] then
     return (true)
end
return (false)
```

Limsi

CYK - Inside

```
/* la phrase à analyser est w = w_1 \dots w_n */
T[i,j,X] \leftarrow 0;
for i = 1 \dots n do
      foreach A \rightarrow w_i \in P do
       T[i,\overline{i+1,A}] \leftarrow P(A \rightarrow u_i)
      end
end
/* Construit les constituants de longueur croissante */
for l = 2 \dots n do
      for i = 1 ... n - l + 1 do
            for k = i + 1 \dots i + l - 1 do
                  \begin{array}{l} \textbf{if } T[i,k,B] > 0 \land T[k,i+l,C] > 0 \land P(A \rightarrow BC) > 0 \textbf{ then} \\ | T[i,k+l,A] \coloneqq \leftarrow T[i,k+l,A] + \theta_{A \rightarrow BC} \times T[i,k,B] \times T[k,i+l,C] \end{array}
                   end
            end
      end
end
/* Succès: S couvant 1...n+1 */
if T[1, n, S] > 0 then
      return (T[1, n, S])
end
return (0)
```

L'analogue arboré de Forward et Backward

Définitions

- Probabilité Inside : $T[i,j,A] = \sum_A P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$
- Probabilité Outside : $S[i,j,A] = P(S \stackrel{\star}{\Rightarrow} w_1 \dots w_{i-1}A w_j \dots w_n)$

Calcul de S par DP (top-down)

$$\begin{cases} S[1, m, S] = 1, S[1, m, A] = 0 \text{ pour } A \neq S \\ S[i, j, A] = \sum_{X \to AB} \sum_{k > j} S[i, k, X] \times \theta_{X \to AB} \times T[j, k, B] + \\ \sum_{X \to BA} \sum_{k} S[k, j, X] \times \theta_{X \to BA} \times T[k, i - 1, B] \end{cases}$$

Décomposition des probabilités totales

probabilité qu'une dérivation de S utilise X pour couvrir $w_i...w_{i-1}$

$$\forall i,j,X,: T[i,j,X] \times S[i,j,X] = P(S \stackrel{\star}{\Rightarrow} w_1 \dots w_{i-1} X w_j \dots w_n) \times P(X \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$$

L'analogue arboré de Forward et Backward

Définitions

- Probabilité Inside : $T[i,j,A] = \sum_A P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$
- Probabilité Outside : $S[i,j,A] = P(S \stackrel{\star}{\Rightarrow} w_1 \dots w_{i-1}A w_i \dots w_n)$

Calcul de S par DP (top-down)

$$\begin{cases} S[1, m, S] = 1, S[1, m, A] = 0 \text{ pour } A \neq S \\ S[i, j, A] = \sum_{X \to AB} \sum_{k > j} S[i, k, X] \times \theta_{X \to AB} \times T[j, k, B] + \\ \sum_{X \to BA} \sum_{k} S[k, j, X] \times \theta_{X \to BA} \times T[k, i - 1, B] \end{cases}$$

L'analogue arboré de Forward et Backward

Définitions

- Probabilité Inside : $T[i,j,A] = \sum_{A} P(A \stackrel{\star}{\Rightarrow} w_i \dots w_{i-1})$
- Probabilité Outside : $S[i, j, A] = P(S \stackrel{\star}{\Rightarrow} w_1 \dots w_{i-1} A w_i \dots w_n)$

Calcul de S par DP (top-down)

$$\begin{cases} S[1, m, S] = 1, S[1, m, A] = 0 \text{ pour } A \neq S \\ S[i, j, A] = \sum_{X \to AB} \sum_{k > j} S[i, k, X] \times \theta_{X \to AB} \times T[j, k, B] + \\ \sum_{X \to BA} \sum_{k} S[k, j, X] \times \theta_{X \to BA} \times T[k, i - 1, B] \end{cases}$$

Décomposition des probabilités totales

probabilité qu'une dérivation de S utilise X pour couvrir $w_i...w_{i-1}$

$$\forall i,j,X,: T[i,j,X] \times S[i,j,X] = P(S \stackrel{\star}{\Rightarrow} w_1 \dots w_{i-1} X w_j \dots w_n) \times P(X \stackrel{\star}{\Rightarrow} w_i \dots w_{j-1})$$

L'analogue arboré de Forward et Backward

Retour de EM

En utilisant l'algorithme Inside/Outside

La fonction auxiliaire

$$Q_{\theta'}(\theta) = \sum_{\tau} P(\tau \mid w_1 \dots w_n; \theta') \log P(\tau, w_1 \dots w_n \mid \theta)$$
$$= \sum_{\tau} P(\tau \mid w_1 \dots w_n; \theta') \sum_{X \to AB} c(X \to AB) \log \theta_{X \to AB}$$

Maximiser la fonction auxiliaire... fait apparaître l'espérance des comptes

$$\sum_{\tau} P(\tau \mid w_{1} \dots w_{n}; \boldsymbol{\theta}') c(X \to AB) = \sum_{\tau} P(\tau \mid w_{1} \dots w_{n}; \boldsymbol{\theta}') \sum_{i,k,j} c(X \to AB; i, k, j)$$

$$= \sum_{i,k,j} \sum_{\tau} P(\tau \mid w_{1} \dots w_{n}; \boldsymbol{\theta}') c(X \to AB; i, k, j)$$

$$\propto \sum_{i,k,j} S[X, i, j] \times \theta_{X \to AB} \times T[A, i, k] \times T[B, j, k]$$

Les étapes de l'algorithme EM

En utilisant l'algorithme Inside/Outside

- Étape E : pour chaque phrase :
 - remplir T (récursion inside)
 - remplir *S* (récursion outside)
 - calculer l'espérance des comptes

$$\forall X \rightarrow AB, c(X \rightarrow AB) + = \sum_{i,j} \sum_{k} \frac{S[X,i,j]T[A,i,k]T[B,k,j]\theta_{X \rightarrow AB}}{T[S,1,n]}$$

• Étape M:

$$\theta_{X \to AB} = \frac{c(X \to AB)}{\sum_{\alpha} c(X \to \alpha)}$$

Au delà des PCFGs

- Adaptation pour les grammaires non CNF
- Versions « synchrones » (transducteurs dans les arbres)
- Probabilisation des grammaires contextuelles : TAG, LFG, HPSG
- Probabilisation des grammaires de dépendances
- Probabilisation de tout modèle génératif : automate à pile, automates d'arbres Recette (générale) :
 - identifier les actions élémentaires (par ex. récriture)
 - obtenir les dérivations par enchainement (produit) d'actions élémentaires
 - marginaliser sur les dérivations pour les probabilités des structures
 - marginaliser sur les structures pour les probabilités des séquences

