FIG. 1A

GGCTGCCGG **AGGGGGGCGCCGTGCATGCGGGGGGGGTGGAAGCCTCGAGCAGCCGGCGGCCTTCT** CTGGCCCCGGCCCATATGGCTTGAAGAGCCGTGCCACCCAGTGGCCCCACTGCCCCA

ArgLeu Glu / CTG GAG / Asp GAT Asp 10 Asp GAT ${
m Tyr} \ {
m TAC}$ $\operatorname{Trp}_{\operatorname{TGG}}$ Ser TCC Pro Leu Asn Leu CCA CTG AAC CTG $\mathop{\mathrm{Asp}}_{\mathop{\mathrm{GAT}}}$

Asp GAC 90 Ala GCA Lys AAG G1y GGG Glu GAA Ser TCA $_{
m GLy}$ Asn AAT Phe Pro CCC 20 Arg CGG Ser AGC ${
m Trp} \ {
m TGG}$ Asn

IleLeu CTC Leu Thr ACC Leu Leu CTG 40 Met ATG Ala GCC $\mathtt{T}\mathtt{yr}$ ${
m Tyr} \ {
m TAC}$ Asn AAC ${
m Tyr} \ {
m TAC}$ His CAC Pro CCC

Ser TCC 180 9 Val GTAAla GCT Met cysTGC Val GTG Leu CTG Asn Val $_{
m GCC}$ 50 Phe TTT Val GTC Ile ATC Ile ATC Phe TTT

Ser AGC	90 Trp TGG	, ~ H	120 A1a GCA	O H O	150 Arg CGC	2
Val GTC	Pro	Arg AGG	Thr_{ACA}	Thr ACA	Lys AAG	
Ile ATA	Met ATG	Ser AGC	Cys TGC	${ m Tyr} \ { m TAC}$	Ser TCC	
Leu TTG	Val GTA	Phe TTC	Met ATG	Arg AGG	Ser AGC	
$\operatorname{Tyr}_{\operatorname{TAC}}$	Leu	Lys AAA	Met ATG	Asp GAC	Tyr TAC	
70 Asn AAC	Thr ACA	100 Trp	Val GTC	130 Ile ATT	Arg CGC	
Thr	Ala GCC	Glu GAG	Asp GAT	Ser AGC	$\operatorname{Thr}_{\operatorname{ACA}}$	
$\operatorname{Th}_{\mathcal{L}}$	Val GTG	$^{ m G1y}_{ m GGT}$	Leu	Ile ATC	Asn AAC	
$\operatorname{Thr}_{\operatorname{ACC}}$	Leu CTG	Val GTG	Thr ACT	Ala GCC	${\tt Tyr} \\ {\tt TAT}$	
Gln CAG	Leu	Val GTG	Val GTC	Cys TGT	Leu CTG	
Leu TTG	80 Asp GAT	Glu GAG	110 Phe TTT	Leu	140 Met ATG	
Ala GCT	Ala GCT	Leu CTG	Ile ATC	Asn AAC	Pro	
Lys	Val GTG	${ m Ty}_{ m TAC}$	Asp GAC	Leu	Met ATG	~
Glu GAG	Ala GCT	Val GTC	Cys TGT	Ile ATC	Ala GCA	. 18
Arg GCA	Leu	Val GTT	His	Ser AGC	Val GTG	FIG.

Thr	180 Asn AAT	540 Ile ATT	210 Ile ATC	630 Thr	240 Leu	720
Phe TTC	Gln CAG	Ser TCC	${ m Tyr} \ { m TAT}$	Asn AAC		
Ser TCC	Asp GAC	Ser TCC	Val GTC	Val GTC	Thr	
Leu CTG	Thr ACA	${ m Tyr} \ { m TAC}$	Leu CTG	Arg CGG	Lys '	
Val GTC	Asn AAT	Val GTC	Leu	Lys	Leu CTG	
160 Trp TGG	Asn AAC	190 Val GTG	Thr ACT	220 Arg CGG	Asn AAC	
Val GTC	Leu	Phe TTT	Val GTC	Arg	Ala GCC	
Ile ATT	$^{ m G1y}_{ m GGA}$	Ala GCC	Ile ATC	Lys	Arg	
Ala GCC	Phe TTC	Pro	Phe TTC	Arg CGG	Phe	
Ile ATT	Leu CTC	Asn AAC	Pro	Leu	Ala GCT	
Met ATG	170 Leu CTG	Ala GCC	200 Val GTG	Val GTC	230 Arg CGA	
Val GTC	Pro CCA	Ile ATT	${ m Tyr} \ { m TAC}$	Ile ATC	Ser	
Thr	Cys TGC	Ile ATC	Phe TTC	Tyr TAC	Ser	4.5
Val GTT	Ser TCC	Cys TGT	Ser TCA	Ile ATC	Arg CGC	. 10
Arg CGA	Ile ATC	Glu GAG	Val GTC	Lys	Lys AAG	FIG.

for the first the first term of the first term o

Leu	27 Pr		300 310 61y 666		E G	ATG 990
Met	Ile ATC	His	Asn AAT	Glu		
Glu	Pro CCC	His	0 (0)	Phe (ර
Met	Ser	Ser TCC	1 hrn	Phe 1	מ מו	
Glu GAA	$\mathtt{T}\mathtt{yr}$	Pro CCA	Pro	Lys 1	er	ر
250 Leu CTG	Arg CGG	280 Asp GAT	Lys AAA	310 Ala 1 GCC /	Thr S	1
Glu GAG	$\operatorname{Thr}_{\operatorname{ACC}}$	Pro CCT	Ala GCC	Ile A	re 1	
Gln CAG	Arg AGG	Leu	Pro	Arg AGG	Thr A ACC C	
Ala	Glu GAG	$\operatorname{Thr}_{\operatorname{ACT}}$	Ser AGT	Pro ,	Lys 7 AAA, A	
Arg	Pro CCA	Leu	Asp GAC	Asn AAT	G1y] GGC /	
Arg CGC	260 Pro CCC	Gln CAG	290 Pro CCT	Val GTC	320 Asn AAT (
Ala GCC	Ser AGC	His CAC	Asn AAC	Ile ATT	Pro CCC	
Ala	Thr	His	Ser AGC	Lys AAG	Met	
Asp GAT	Ser AGC	Ser AGT	His CAT	Ala GCC	Thr ACC /	FIG. 1D
Lys AAG	Ser TCA	Pro	Leu CTA	His	Gln c	FIG

Gln	360 Pro CCC	080 Ile	7 60 7	.170 Phe	4	T.G 64
Thr	or LG	Asn AAC) - 0	ll Glu F		rangiciecccTTGCC
Ala GCC	Tr] TG(Cys	Yr YT	Ile (ATC (
Lys	Cys	Asp GAT	Gly	Asn AAC	, C	1016
Lys AAG	Ile ATC	$\frac{\text{Cys}}{\text{TGT}}$	Leu	Phe TTC	ָּרָ עָּרָ עָּרָ בּיי	5451
340 s Glu G GAG	Ile	370 His CAC	${ m Trp} \ { m TGG}$	400 Thr ACC	415 Cys TGC)
Ly AA	Phe TTC	Ile ATA	Th_{r}	Thr	His	
Gln β CAG	Val GTG	Asn AAT	Phe TTC	${ t Tyr} \\ { t TAC}$	Leu	
r Gln C CAG	. G1y : GGT ▲	Leu	Ala GCC	Ile ATC	Ile ATC~	
Se	Leu CTC	Ile ATC	Ser AGC	Ile ATC	Lys	
s Leu G CTC	350 Val	His	380 Tyr TAC	Pro	410 Met ATG	
Ly AA	Ile ATT	$\operatorname{Th}_{\mathcal{L}}$	Leu	Asn AAC	Phe TTC	
g Arg AGA	Ala GCC	Ile ATC	Val GTC	Val GTC	Ala GCC	Ш
r Arg 3 CGC	CTT CTT	Phe TTC	Pro	Ala GCC	Lys AAG	_
Ser AGC	Met ATG	Phe TTC	Pro	Ser AGT	Arg CGC	FIG.

TGGGCAGAAAGGCCCAGATGAACTTGGCCTTCTCGACCCTGCAGGCCCTGCAGTGTTA TGTTTTCCACTCCAACTCTAGTGTGCCCTACTTTTCATAGCCATGGGTATTACTATG 1859 **AGACTGGTATCTTACCAGCTCTGGGGTTGGACCCATGGCTCAGGGCAGCTCACAGAGTGC** TTCCTCTTGGGCACAGAACTAGCTCAGTGGTCGAGCACACCCTGATCGCTGGCTTGGCC **ATAGGAACCACATAGGAAAGCAGGGAACACGCCAAGTCCTCCAGGCACATCAGTGTCAGG** GCTTGGCTCGATGCCCCTCTGCCCACACACCCTCATCCTGCCAGGGTAGGGCCAGGG CACAGCAGCTGCTTCCCACCTCCCTGCCTATGCAGGCCAGACCTCATCCCTGCAAGCTG AGACACACATAAACACCAGGTAGCTCCATGGACCCCAGAGAAACTGAGGCTGAAAAATC TGGCCCTTGCCTGTGCCGGATCAGGTGGTGGGAGGGAGCGACACGTTCTTACTTT

FIG. 1F

ATCCTCAAGGGCCCCAAGAGAATCTGTAAGGAGAAAAATAGGCTGATCTCCCTCTACTCT CCTCTGCCTTAGAAGAGGCTGTGGATGGGGTGCTGGGACTGCTGATACCATTGGGGCCTGG CTGGCCAGTCAGGCCTTGGACCAGTGTTGGAGTTGAAGCTGGATGTGGTAACTTGGGGCT CCAATCCACTCCACCTTCTTGATATACCTTGGATGTATCCATTCCTCACAGCAAATG TCCTACCTTGTTATAGTATCCCATGGGGTTTCTGTACCATTTGGGGGAAAACAACTCTA CCCTGAATGAGGGGGAAGCTGCAGTTTGGAGGGTTCTGGGATCCAACTCTGTAACAT

FIG. 10

FIG. 2		WNTKR-(111) QLQKI-(32)- RTRVP-(137) RIPKT-(110) RAREL-(137) RSVPG-(12)-	KIIHG EIL.CL(36) KII.CRC(6) KIIKONFCRQ LILHOR(24) APRCC(62)
MD [PLMISWYDDDLERQNWSRPFNGSEGKADRPHYNYYAMIIIILL. IFI IVFGNVLVICMAVSREKALQTITINY MGPPGNDSDFLLTTNGSHVPDHDVTEERDEAWVVGMAIIMSVIVLAIVFGNVLVITAIAKFERLQTVTNY MGSLQ.PQA.GNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLI.MLTTVFGNVLVI IAVFTSRAIKAPQNL MDVLS.BGQ.QNNTTSPPAPFETGGNTTGISDVTVSYQV.ITSLIGGIL.IFCAVIGNAGIALERSLONVANY MNTSAPPAVSPNITVLAPGKGPWQVAFIGITTGLI.SLATVIGNILVI ISFKVNTELIKIIVINY MGACV.VMTDINISSGLDSNATGITAFSMPGWQLALWTAAYLAIL.VLVAVMGNATVIWIILILAHQRMRIVTNY	LIVSLAMADIIVATLVMPWVVYLEVVGEWKFSRIHCDIFVTLDVMMCTASILNLCAISIQRYTAVAMPMIYMTRYSSKRR FIDSLACADLVMGIAWWFGASHIMKYWNFGNFWCEFWTSIQVLCVTASIETLCVTAVORYIAITSEFKYQSLLTKNKA FIVSLASADIIVATLVIPFSLANEVAQYWWEGKTWCEIYLALDVLFCTSSIVHLCAISIQRYWSITQAIETNLKRTPRRI LIGSLAVIDIMVSVLVIPMAALYQVLNNWTLGQVTCDLFIALDVLOCTSSILHLCAIAIQRYWAITDFIDYVNKRTPRRI FLLSLACADLIIGIFSMNLYTYYLLMQTWALGTLACDLWIALDYVASNASVANMLTIISFQRYFSVTRPLSYRAKTRPRRA FILVNLALADICMAAFNAAFNYASHNIWYFGRAFCYFQNLFPITAMFVSIYSMTAIAAQRYMAIVREQPRLSAPGTRI	VIÚMÍAIÚWVISETESC. PLLFGLNNTDQNECIIANPAFVVYSSÍMSFYVPFIVTÍLÍVYIK IYIVLRKRRRRVNTKR. RMM. ILMVWIVSGLÍSFIPIQMHWYRATHQKAIDCYHRETCCDFFTNQAYAÍMSSIVSFYVPÍÚVMVFVYSRVFQVAKRQLQKÍT- KAI. LITTVWVISAVÍTSFPPLISIEKKGGGGGPQPAEPRCEINDQKWYVHSSCIGSFFAPÖJÍMILVYVRIYQIAKBRTRVP- ALT. SLT. MLIGFILST PPMLGWRTPEDRSDPDACTISKDMGYTLÍVSTFGAFYIPLILMLVLYGRIFRAARFRIPKT- ALM. LÍGLAWLVŠEVLWA.PAILFWQYLVGERTVLAGQCYIQFLSQPIITFGTAMAAFYLPVTVMCTIYWRIYRETENRAREL. AM. LÍGLAWLVŠEVLWA.PAILFWQYLVGERTVLAGQCYIQFLSQPIITFGTAMAAFYLPVTVMCTIYWRIYRETENRAREL. AM. LÍGLAWLVŠEVLWA.PAILFWQYLVGERTVLAGQCYIQFLSQPIITFGTAMAAFYLPVTVMCTIYWRIYRETENRAREL.	KEKKATOMIIAI VIGMFII CWLPFFITHI IN I HCOCN IPPVLYSAFIWLGYVNSA VNPIITYTTENTEFRNAFM -KEHKALKTHOIIINGIFFICWLPFFITHI VOON IPKEVYILLNWLGYVNSA PNPIITYTTENTEFRNAFM - REKRFTFVIAVVIGMFVYCWEPFFFTYTITAVGCS VPRTHEKFFWEGYCNSS LNPVI YTLFNHDFRRAFM - REBRIVKTHOIINGIF II CWLPFFIVALVLPPCESSC HMPTILGAIINWLGYSNSL INPVI YTLFNHDFRAFM -KEKKAARTISAILLAFIVIMI FYNLVSTFCKDC VPETHWELGYWIGYVNST INPWGYALGNKAFRDTFRA - KEKKAARTISAILLAFIVIMI FYHLYFFIJGTFCKDC VPETHWELGYWIGYVNST INPMGYALGNKAFRDTFRA - AKKKFVKTMVIVVVTEAICWLPYHLYFFIJGTFCEDIYCHKFIQQVYLALPWIA MSSTMYNPIITYCCINHRERSOFRA
D _δ β _δ ας _δ G-21 M ₁ SK	υς Φς Ω-21 Μ ₁ SK	D6 86 8-21 G-21 M1 SK	D _δ β _δ Q-21 M ₁ SK

Ki (nM)		Rat Striatum	1.0 >1,000 5.3 6,300	67 (87%) >10,000 (13%)	35 (16%) 780 (84%)	27 (25%) >1,000 (75%)
	RGB-2	Transformed Ltk-Cells	0.83 >1,000 3.0 17,000	80	1,000	>1,000
DRUG			<pre>(+)-Butaclamol (-)-Butaclamol Haloperidol Dopamine + GTP Sulpiride</pre>	high affinity low affinity sch 23390	high affinity low affinity Ketanserin	high affinity low affinity

FIG. 4C

FIG. 6C

FIG. 6D

FIG. 7A

3'GTC GGG TGG GCT CTC CTG GGC CAT GTC GGG GTA GGG TGG GTC GGT GGT GGT CGA 5' 5'CAG CCC ACC CGA GAG GCG GTA CAG CCC ACC CAG CCA CCA GCT3' Gln Pro Thr Arg Glu Asp Pro Val Gln Pro His Pro Thr Gln Pro Pro Ala Ser Pro Pro Glu Arg Thr Arg Tyr Ser Pro Ile Pro Pro Ser His His Gln Leu Ala His Pro Arg Gly Pro Gly Thr Ala Pro Ser His Pro Ala Thr Thr Ser

Leu Ser Pro Thr Arg Pro Thr MET Val Ser Thr Ala Leu Pro Thr Ala Pro Pro CTG AGA GGG GCT GGG CAG GGT GGT ACC AGA GGT GTC GTG AGG GCT GTC GGG GCG GAC GAC TCT CCC CGA CAC CCC CGC CGC CGC ASP Ser Pro Arg Pro Val Pro Pro Trp Ser Pro Gln His Ser Arg Gln Pro Arg Thr Leu Pro Asp Pro Ser His His Gly Leu His Ser Thr Pro Asp Ser Pro Ala

GTT TGG TCT CTT ACC CGT ACG GTT TTC CTG GTG GGG TTC CTA ACG GTT CTA CAA GAT CAA ACC ACC ACC ACC ACC ACC ACC ACC CAA GAT CAA GAT GIN Thr Arg Glu Glu Trp Ala Cys Gln Lys Asp His Pro Lys Asp Cys Gln Asp Lys Pro Glu Lys Asn Gly His Ala Lys Arg Thr Thr Pro Arg Ile Ala Lys Ile Ásn Gln Arg Árg MET Gly MET Pro Lys Gly Pro Pro Gln Gly Leu Pro Árg

GAA ACT CTA GGT CTG GTA CGG GTT ÄCC GTT TTG GGC CTG GAG GGA GTT CTG GTA CTT TGA GAT CCA GAC CAT GCC CAA AAC CCG GAC CTC CCT CAA GAC CAT Leu . Asp Pro Asp His Ala Gln Trp Gln Asp Pro Asp His Ala Gln Trp Gln Asp Leu Pro Gln Asp His Phe Glu Ile Gln Thr MET Pro Asp Gly Lys Thr Arg Thr Ser Leu Lys Thr MET

Ser Arg Arg Arg Lys Pro Leu Arg Cys Ser Pro

297

le Phe Ser Aja Cys Ser Ser Ser Ála Gly Cys Pro Ser Ser His Thr Ser GTA 5CA AGA GCC GCA CAA GTA GTA GAC GAC CGA CGG GAA GAA GTA GTG TGT GTA CAT 4GT TCT CGG CGT GTT CAT CAT CAT CAT CAT CAT His His Leu Leu Ala Ala Leu Leu His His Thr His Ile ILE Val Leu Gly Val Phe Ile Ile Cys Trp Leu Pro Phe Phe Ile Thr His Ile

351

Thr Tyr Thr Val Thr Ála Thr Ser Arg Leu Ser Cys Íhr Ala Pro Ser Arg GGA CTT GTA TGT GAC ACT GAC GTT GTA GGG CGG ACA GGA CAT GTC GCG GAA GTG CCT GAA CAT ACA CTG TGA CTG CAA CAT CCC GCC TGT CCT GTA CAG CGC CTT CAC Pro Glu His Thr Leu . Leu Gln His Pro Ala Cys Pro Val Gln Arg Leu His Leu Asn Ile His Cys Asp Cys Asn Ile Pro Pro Val Leu Tyr Ser Ala Phe Thr

Thr Pro Ser Ser Thr Pro Pro Ser Thr Trp Leu Gly Tyr Val Asn Ser Ala Val Asn Pro Ile Ile Tyr Thr Thr Phe Asn CAC CGA CCC GAT ACA GTT GTC GCG GCA CTT GGG GTA GTA GAT GTG GTG GAA GTT GTG GCT CAA CGC CGT GAA CCC CAT CTA CAC CAC CTT CAA Val Ala Gly Leu Cys Gln Gln Arg Arg Glu Pro His His Leu His Leu Gln 405 Gly Trp Ala MET Ser Thr Ala Pro

FIGURE SET CAN GGC GTT CCG GAA GGA CTT CTA GGA GGT GAC GAC TGA GAC GAC GGA GAT TGA GTT CCG CAA GGC CTT CCT GAA GAT CCT CCA CTG CTG ACT CTG CTG CCT Its . Val Pro Glu Pro Glu Asp Pro Pro Leu Leu Thr Leu Leu Pro Ile Glu Phe Arg Lys Ala Phe Leu Lys Ile Leu His Cys STOPLeu Cys Cys Leu Leu Ser Ser Ala Arg Pro Ser . Arg Ser Ser Thr Ala Asp Ser Ala Ala Cys His CAT

Arg Thr Ala Ala Cys Phe Pro Pro Pro Cys Pro Val Pro Aja Ser Leu Thr Leu CGG CGT GTC GTC GGA CGA AGG GTG GAG GGA CGG GTC ACG GCC GGT CGG AGT GGG GCC GCA CAG CCC GCA CCC TCA CCC Ala Ala Ala Gln Gln Pro Ala Ser His Leu Pro Ala Gln Cys Arg Pro Ala Ser Pro Pro His Ser Ser Leu Leu Pro Ser Ala Gln Fro His Pro His Pr

AAC GCT TGG CAC TCG TCC TTC CGG ACC CAC CTA GCC GGA GGA GAA GAT CGG GGC TTG CGA ACC GTG AGG AAG GCC TGG GTG GAT CGG CCT CCT CTT CTA GCC CCG Leu Arg Thr Val Ser Arg Lys Ala Trp Val Asp Arg Pro Pro Leu Leu Ala Pro Cys Glu Pro . Ala Gly Arg Pro Gly Trp Ile Gly Leu Leu Phe . Pro Arg Ala Asn Arg Glu Glu Gly Leu Gly Gly Ser Ala Ser Ser Ser Pro Gly 567

FIG. 7C

		_		1				
		FSK+DA		23.1	0.5		14%	
1	• • •	FSK		26.7	2.0		1	
		BASAL		1.7	0.4			
		FSK+DA		.4.3 	7.1	ò	% t	
CONTROL	,,,,,	FSK		22.6	7.7	ļ		
		DASAL	-	- 0	1.0	1		
		_	>	S.E.		I N		
				12A	•			
				F1G. 12A				

				_					
		VIP+DA			2.56	0.25		70	e S
⊢ Q+	•	DA			0.55	0.03		76	?
+	-	VIP		(7.08	0.08		1	
		BASAL		90		60.0		1	
		VIP+DA		0.84	- (2.5			
CONTROL		DA		0.32	0	40.0	ŗ	36.6%	
CON		VIP		2.4	0.31	-			
		BASAL	(09.0	0.05	!	1		
			 >	ر د ر	٠. ۲.		I		
			,	<u>ں</u> ت	֖֖֖֖֖֖֖֝֝֝֝֝֝֝֡֝				

		_		_					
		VIDTON	1 1 1		4.76	91.0		3	% V.
+ D →	•	ΔC	(0	99.0	0.03		ò	8
4	-	VIP		i d	2.0	0.44			
		BASAL		700	† ·	-0.0		1	
		VIP+DA		0.76) -	-0.0		888	
CONTROL		DA		0.25	KO 0	•	ò	000	
CON		AL VIP		5.1	0.4	-	ı		
		BASAL		0.78	0.0		I		
			1>	< ر د	о. Г.		Z		
				アに、して	7				
				П П	<u>.</u>				

-33 AGAGCCTGGCCACCCAGTGGCTCCACCGCCCTG

 ${\tt METAspProLeuAsnLeuSerTrpTyrAspAspAspLeuGluArgGlnAsnTrpSerArg}$

ProPheAsnGlySerAspGlyLysAlaAspArgProHisTyrAsnTyrTyrAlaThrLeu

FIG. 18A

 $\underline{LeuThr}LeuLeuIleAlaValIleValPheGlyAsnValLeuValCysMETAlaValSer$ ArgGluLysAlaLeuGlnThrThrThrAsnTyrLeuIleValSerLeuAlaValAlaAsp

LeuLeuValAlaThrLeuValMETProTrpValValTyrLeuGluValValGlyGluTrp 90

FIG. 18B

	FIG. 18C
480	CTGTACAATACGCGCTACAGCTCCAAGCGCGGGTCACGTCATGATCTCCATCGTCTGGIIIIII II I
	150 LeuTyrAsnThrArgTyrSerSerLysArgArg <mark>ValThrValMETIleSerIleValTrp</mark>
	SerIleLeuAsnLeuCysAlaIleSerIleAspArgTyrThrAlaValAlaMETProMET AGCATCCTGAACTTGTGTGCCATCAGCATCGACAGGTACACACCTGTGGCCATGCCCATG IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
360	LysPheSerArglleHisCysAsp[IlePheValThrLeuAspValMETMETCysThrAla AAATTCAGGGTTCAGTGTGACATCTTCGTCACTCTGGACGTCATGTGTGCACGGCG AAATTCAGCAGGATTCAGTGTGACATCTTTGTCACTCTGGATGTCATGTGCACGCGCA AAATTCAGCAGGATTCAGTGTGACATCTTTGTCACTCTTGGATGTCATGTGCACAGCA

ValLeuSerPheThrIleSerCysProLeuLeuPheGlyLeuAsnAsnAlaAspGlnAsn

GluCysIleIleAlaAsnrVal 190

GAGTGCATCATTGCCAACCCGGCCTTCGTGGTCTACTCCTCCATCGTCTCCTTCTACGTG

ProPheIleValThrLeuLeuValTyrIleLysIleTyrIleValLeuArgArgArgArg

FIG. 18D

240 LysArgValAsnThrLysArgSerSerArgAlaPheArgAlaHisLeuArgAlaProLeu	
AAGCGAGTCÁACACCAAACGCAGCAGCCTTTCAGGGCCCACCTGAGGCTCCACTÁ 	720
* LysGlyAsnCysThrHisProGluAspMETLysLeuCysThrVallleMETLysSerAsn	
AAGGGCAACTGTACTCACCCCGAGGACATGAAACTCTGCACCGTTATCATGAAGTCTAAT	
AAG	
280 GlySerPheProValAsnArgArgArgValGluAlaAlaArgArgArgAlaGlnGluLeuGlu	
GGGAGTTTCCCAGTGAACAGGCGGAGGTGGAGGCTGCCGGGGGGCCCAGGAGCTGGAG	
	84(

FIG. 18E

Ile PheGluIle GlnThr METProAsnGlyLysThrArgThrSerLeuLysThrMETSer

ArgArgLysLeuSerGlnGlnLysGluLysLysAlaThrGlnMETLeuAlaIleValLeu

 ${\tt GlyValPheIleIleCysTr0LeuProPhePheIleThrHisIleLeuAsnIle} \\ {\tt HisCys}$

FIG. 18G

MET

AspCysAsnIleProProValLeuTyrSerAlaPhéThrTrpLeuGlyTyrValAsnSer

AlaValAsnProllelleTyrThrThrPheAsnIleGluPheArgLysAlaPheLeuLys

IleLeuHisCys *

THE RAIL TO BE THE TAX THE TAX

1437
SAGGCCGGCCAGCCTCACCCTTGCGAACCGTGAGCAAGGCCTGGGTGGATCGGCCTC 1

- CTCTTCTTAGCCCCGGCAGGCCCTGCAGTGTTCGCTTGGCTCCATGCTCCTCACTGCCCCG
- CACACCCTCACTOTGCCAGGGGGAGGTGAGCTGGGCATGGTACCAGCCOTGGGGGT 1557
- GGCCCCAGCTCAGGGCCAGCTCATAGAGTCCCCCCTCCCACCTCCAGTCCCCCTATCCTT
- GGCACCAAAGATGCAGCCGCCTTCCTTGACCTTCCTCTGGGGCTCTAGGGTTGCTGGAGC 1677
- CTĠAGTCAGGGCCCAGAGGCTGAGTTTTCTCTTTGTGGGGCTTGGCGTGGAGCAGGCGGT
- GGGGAGAGATGGACAGTTCACACCCTGCAAGGCCCACAGGAGGCAAGCTCTTTGC 1797
- CGAGGAGCCAGGCAACTTCAGTCCTGGGAGCCCATGTAAATACCAGACTGCAGGTTGGA
- CCCCAAGGATTCCCAAGCCAAAACCTTAGCTCCCTCCCGCACCCCGATGTGGACCTCTA 1917

FIG. 181

CTTTCCAGGCTAGTCCGGACCCACCTCACCCGGTTACAGCTCCCCCAAGTGGTTTCCACAT

GCTCTGAGAAGAGGGCCCTCATCTTGAAGGGCCCCAGGAGGGTCTATGGGGAGGAACT 2037

cctrgcctagccacctrgctgcttctgacgccctgcaatgtatcccttctcacagc

ACATGCTGGCCAGCCTGGGCCTGGCAGGTCAGGCCCTGGAACTCTATCTGGGCCT 2157

GGGCTAGGGACATCAGAGGTTCTTTGAGGGACTGCCTCTGCCACACTCTGACGCAAAACC

CTCTGCCTTAGAGGCCCCACGCCTAAGAGGCTGCTGAAAACCATCTGGCCTGGCCTGGC

CCTGCCCTGAGGAAGGAGGGCAGCTTGGGAGAGCCCCTGGGGCCTAGACTCTG 2397

TAACATCACTATCCGATGCACCAAACTAAAACTTTGACGAGTCACCTTC (A)_n 2449

FIG. 18J

1 2 3 4

FIG. 20

DRUG	HUMAN D ₂ RAT D ₂	RAT D ₂	RAT STRIATUM
SPIPERONE	0.125	0.35	0.56
(+)BUTACLAMOL	0.94	1.2	9:1
HALOPERIDOL	2.4	5.1	5,8
SULPIRIDE	206	091	205
MIANSERIN (5-HT)	2685	4300	4600
SCH 23390 (DI)	2145	2500	3300
(+) BUTACLAMOL	000'01	>10,000	>10,000
Kd [3H] DOMPERIDONE	0.74	0.40	0.40

FIG. 22