++	75VT 3	エコト	!录:
11 \	- 	/ /	, N

, H H	11.7.	
组号:	姓名	
20. 7 :	×1.4J	

实验 1、测量霍尔片的输出特性,确定样品的霍尔系数

(1) 保持励磁电流 I_M (I_M =0.500A) 不变,将实验仪双刀开关倒向" V_H ",测试仪功能选择置于" V_H ",测绘 V_H — I_S 曲线.

励磁线圈参数 $K = _____KGS.A^{-1}$

霍尔片厚度 d = _____ mm

I _{S/mA}	$V_{1/\text{mV}}$	V _{2/mV}	V _{3/mV}	V _{4/mV}	$V_H = \frac{ V_1 + V_2 + V_3 + V_4 }{4} \text{ mv}$
	$+B,+I_S$	-B,+ I_S	$-B,-I_S$	$+B,-I_S$	$V_H = \frac{}{4}$ IIIV
1.00					
1.50					
2.00					
2.50					
3.00					
3.50					
4.00					

(2)、保持霍尔片工作电流 I_s 的值不变 (I_s =3.00mA),测绘曲线 V_H — I_M

<i>I</i>	V _{1/m} V	V _{2/mV}	V _{3/mV}	V _{4/mV}	$V_H = \frac{ V_1 + V_2 + V_3 + V_4 }{4} \text{ mv}$
$I_{M/A}$	$+B,+I_S$	- B ,+ I_S	-B,-I _S	$+B,-I_S$	$V_H = \frac{1}{4}$ mV
0.300					
0.400					
0.500					
0.600					
0.700					
0.800					

实验 2: 用霍尔片测量螺线管轴线上磁场分布

霍尔片工作电流 $I_{S}=$ <u>3.00</u> mA, 励磁电流 $I_{M}=$ <u>0.500</u> A,

霍尔元件灵敏度 K_{H} =_____ mv/mA.T

X/cm	V _{1/mV}	V _{2/mV}	V _{3/mV}	V _{4/mV}	** / **	В/Т
	$+B,+I_S$	$-B,+I_S$	$-B,-I_S$	$+B,-I_S$	- V _H /mV	
0						
0.5						
1						
1.5						
2						
3						
5						
7						
11						
15						
17						
19						
20						
21						
21.5						
22						
22.5						
23						