

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 835 928 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 15.04.1998 Bulletin 1998/16

(21) Application number: 96116337.5

(22) Date of filing: 11.10.1996

(51) Imt. Cl.⁶: **C12N 1/21**, C12N 15/31, C12N 15/74, A61K 39/02, A61K 39/112, C12Q 1/68

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States:

AL LT LV SI

(71) Applicant:

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Berlin 80539 München (DE)

(72) Inventors:

 Meyer, Thomas, Prof.Dr. 72076 Tübingen (DE) Gömez, Oscar, Dr.
 72076 Tübingen (DE)

Yan, Zhengxin, Dr.
 72076 Tübingen (DE)

Haas, Rainer, Dr.
 72076 Tübingen (DE)

 Lucas, Bernadette, Dr. 72076 Tübingen (DE)

(74) Representative:

Weiss, Wolfgang, Dipl.-Chem. Dr. et al Patentanwälte Weickmann & Partner, Kopernikusstrasse 9 81679 München (DE)

(54) Helicobacter pylori live vaccine

(57) The present invention relates to novel recombinant live vaccines, which provide protective immunity against an infection by Helicobacter pylori and a method of screening H. pylori antigens for optimized vaccines.

Description

5

50

The present invention relates to novel recombinant live vaccines, which provide protective immunity against an infection by Helicobacter pylori and a method of screening H. pylori antigens for optimized vaccines.

Helicobacter is a gram-negative bacterial pathogen associated with the development of gastritis, pepic ulceration and gastric carcinoma. Several Helicobacter species colonize the stomach, most notably H. pylori, H. heilmanii and H. felis. Although H. pylori is the species most commonly associated with human infection, H. heilmanii and H. felis also have been found to infect humans. High H. pylori infection rates are observed in third world countries, as well as in industrialized countries. Among all the virulence factors described in H. pylori, urease is known to be essential for colonisation of gnobiotic pigs and nude mice. Urease is an enzyme composed of two structural subunits (UreA and UreB). Previous studies have indicated that oral immunization using recombinant UreB plus cholera toxin were able to protect mice from gastric colonisation with H. felis and H. pylori (Michetti et al., Gastroenterology 107 (1994), 1002-1011). By oral administration of recombinant UreB antigens, however, in several cases only an incomplete protection can be obtained. Other H. pylori antigens shown to give partial protection are the 87 kD vacuolar cytotoxin VacA (Cover and Blaser, J. Biol. Chem. 267 (1992), 10570; Marchetti et al., Science 267 (1995), 1655) and the 13 and 58 kD heat shock proteins HspA and HspB (Ferrero et al., Proc. Natl. Acad. Sci. USA 92 (1995), 6499).

Attenuated pathogens, e.g. bacteria, such as Salmonella, are known to be efficient live vaccines. The first indications of the efficacy of attenuated Salmonella as good vaccine in humans came from studies using a chemically mutagenized Salmonella typhi Ty21a strain (Germanier and Furer, J. Infect. Dis. 141 (1975), 553-558), tested successfully in adult volunteers (Gilman et al., J. Infect. Dis. 136 (1977), 717-723) and later on in children in a large field trial in Egypt (Whadan et al., J. Infect. Dis. 145 (1982), 292-295). The orally administered Ty21a vaccine was able to protect 96% of the Egyptian children vaccinated during three years of surveillance. Since that time new attenuated Salmonella live vector vaccines have developed (Hone et al., Vaccine 9 (1991), 810-816), in which well defined mutations incorporated into the chromosome gave rise to non-virulent strains able to induce strong immune responses after oral administration (Tacket et al., Vaccine 10 (1992), 443-446 and Tacket et al., Infect. Immun. 60 (1992), 536-541). Other advantages of the live attenuated Salmonella vaccine include its safety, easy administration, long-time protection and no adverse reactions in comparison with the former inactivated wholesale typhoid vaccines (Levine et al., Typhoid Fever Vaccines. In: Plotkin S.A., Mortimer E.A. Jr. (eds.) Vaccines. Philadelphia: WB Saunders (1988), 333-361).

Mutants of S. typhimurium have been extensively used to deliver antigens because of the possibility to use mice as an animal model, which is believed to mimick S. typhi infections in humans. The attenuation of S. typhimurium most commonly used consists in site directed mutagenesis of genes affecting the synthesis of aromatic amino acids. Such strains, designated aro mutants, have a negligible pathogenicity, as demonstrated in animal models and human trials using these constructs (Hoiseth and Stocker, Nature 291 (1981), 238-239; Tacket et al. (1992), Supra). Advantage has been taken from the potent immunogenicity of live Salmonella vaccine to deliver heterologous antigens. Expression of specific antigens in attenuated Salmonella has conferred murine protection against several bacterial pathogens. The use of recombinant live vaccines, which are capable of expressing Helicobacter antigens and protecting the vaccinated animals, has not yet been described.

The use of attenuated live vaccines for the treatment of a Helicobacter infection has also not been rendered obvious. The reason therefor being that in the course of the Helicobacter infection a strong immune response against the pathogen per se is induced, which, however, does not lead to a protective immunity. Thus, it was highly surprising that a protective immune response is achieved when using recombinant attenuated bacterial cells as antigen carriers, which are capable of expressing a DNA molecule encoding a Helicobacter antigen. Apparently, recombinant attenuated bacterial cells expressing a Helicobacter antigen are capable of creating a qualitatively different immune response against the heterologous Helicobacter antigen than Helicobacter itself does against its own homologous antigen. Surprisingly, a non-protective immune response is thus transformed into an immune response protecting against Helicobacter infections. This unexpected observation renders it possible to use recombinant attenuated pathogens, e.g. bacterial cells, particularly Salmonella, as carriers for the screening of protective antigens, to apply the protective antigens identified in this manner in any vaccine against Helicobacter infections, and to use recombinant attenuated bacteria as carriers of protective antigens for the immunization against Helicobacter infections in humans and other mammals.

Thus, a subject matter of the present invention is a recombinant attenuated pathogen, which comprises at least one heterologous nucleic acid molecule encoding a Helicobacter antigen, wherein said pathogen is capable to express said nucleic acid molecule or capable to cause the expression of said nucleic acid in a target cell. Preferably the nucleic acid molecule is a DNA molecule.

The attenuated pathogen is a microorganism strain which is able to cause infection and preferably effective immunological protection against the actual pathogen but is no longer pathogenic per se. The attenuated pathogen can be a bacterium, a virus, a fungus or a parasite. Preferably it is a bacterium, e.g. Salmonella, such as S. typhimurium or S. typhi, Vibrio cholerae (Mekalanos et al., Nature 306 (1983), 551-557), Shigella Species such as S. flexneri (Sizemore et al., Science 270 (1995), 299-302; Mounier et al., EMBO J. 11 (1992), 1991-1999), Listeria such as L. monocytogenes

(Milon and Cossart, Trends in Microbiology 3 (1995), 451-453), Escherichia coli, Streptococcus, such as S. gordonii (Medaglini et al., Proc. Natl. Acad. Sci. USA 92 (1995) 6868-6872) or Mycobacterium, such as Bacille Calmette Guerin (Flynn, Cell. Mol. Biol. 40 Suppl. 1 (1994), 31-36). More preferably the pathogen is an attenuated enterobacterium such as Vibrio cholerae, Shigella flexneri, Escherichia coli or Salmonella. Most preferably the attenuated pathogen is a Salmonella cell, e.g. a Salmonella aro mutant cell. The attenuated pathogen, however, can be a virus, e.g. an attenuated vaccinia virus, adenovirus or pox virus.

The nucleic acid molecule which is inserted into the pathogen codes for a Helicobacter antigen, preferably a H. felis, H. heilmanii or H. pylori antigen, more preferably a H. pylori antigen. The Helicobacter antigen can be a native Helicobacter polypeptide, an immunologically reactive fragment thereof, or an immunologically reactive variant of a native polypeptide or of a fragment thereof. Further, the Helicobacter antigen can be a protective carbohydrate or a peptide mimotope simulating the three-dimensional structure of a native Helicobacter antigen. Peptide mimotopes can be obtained from peptide libraries presented on the surface of bacterial cells (cf. PCT/EP96/01130). Of course, the transformed cell can also contain several DNA molecules coding for different Helicobacter antigens.

Attenuated bacteria can be used to transcribe and translate said nucleic acid molecule directly in the bacterial cell or to deliver said nucleic acid molecule to the infected target cell, such that the DNA molecule is transcribed and/or translated by the eukaryotic target cell machinery. This indirect bacterial vaccination procedure, termed here as genetic vaccination, has been successfully used with Shigella as a carrier (Sizemore, D. R., Branstrom, A. A. & Sadoff, J. C. (1995) Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270:299-302).

In a preferred embodiment of the present invention the Helicobacter antigen is urease, a urease subunit or an immunologically reactive variant or fragment thereof or a peptide mimotope thereof. In a further preferred embodiment of the present invention the Helicobacter antigen is a secretory polypeptide from Helicobacter, an immunologically reactive variant or fragment thereof or a peptide mimotope thereof. A process for identifying Helicobacter genes coding for such secretory polypeptides, and particularly for adhesins, has been disclosed in the international patent application PCT/EP96/02544, which is incorporated herein by reference. This process comprises

- a) preparing a gene bank of H. pylori DNA in a host organism containing an inducible transposon coupled to a marker of secretory activity,
- b) inducing the insertion of the transposon into the H. pylori DNA and

25

30

35

- c) conducting a selection for clones containing a secretory gene by means of the marker, and optionally further
- d) conducting a retransformation of H. pylori by means of the DNA of clones containing genes having secretory activity, wherein isogenic H. pylori mutant strains are produced by means of integrating the DNA into the chromosome, and
- e) conducting a selection detecting adherence-deficient H. pylori mutant strains.

Suitable examples of antigens obtainable by the above process are selected from the group consisting of the antigens AlpA, AlpB, immunologically reactive variants or fragments thereof or peptide mimotopes thereof. The nucleic and amino acid sequences of the antigens AlpA and AlpB have been disclosed in the international patent applications PCT/EP96/02545 and PCT/EP96/04124, which are incorporated herein by reference. Further, the nucleic and amino acid sequences of AlpB are shown in SEQ ID NO. 1 and 2, and the nucleic and amino acid sequences of AlpA in SEQ ID NO. 3 and 4.

It is also conceivable, however, that an intracellular antigen is used which can be presented on the surface, e.g. by autolytic release, and confers immunological protection.

The presentation of the Helicobacter antigens in the recombinant pathogen according to the invention can be accomplished in different ways. The antigen or the antigens can be synthesized in a constitutive, inducible or phase variable manner in the recombinant pathogen. Concerning the constitutive or inducible synthesis of the Helicobacter antigens known expression systems can be referred to, as have been described by Sambrook et al., Molecular Cloning, A Laboratory Manual (1989), Cold Spring Harbor Laboratory Press.

Particularly preferred the antigens are presented in a phase variable expression system. Such a phase variable expression system for the production and presentation of foreign antigens in hybrid live vaccines is disclosed in EP-B-0 565 548, which is herein incorporated by reference. In such a phase variable expression system the nucleic acid molecule encoding the Helicobacter antigen is under control of an expression signal, which is substantially inactive in the pathogen, and which is capable of being activated by a spontaneous reorganization caused by a nucleic acid, e.g. DNA reorganization mechanism in the pathogen, e.g. a specific DNA inversion process, a specific DNA deletion process, a specific DNA replication process or a specific slipped-strand-mispairing mechanism.

A recombinant cell having a phase variable expression system is capable of forming two subpopulations A and B, wherein the division into said subpopulations occurs by spontaneous reorganization in the recombinant nucleic acid, wherein said sub-population A is capable of infection and immunologically active per se, while subpopulation B, which is regenerated from subpopulation A, produces at least one heterologous Helicobacter antigen and acts immunologi-

cally with respect to said additional antigen.

15

45

50

55

The activation of the expression signal encoding the Helicobacter antigen can be directly accomplished by nucleic acid reorganization or, alternatively, indirectly accomplished by activation of a gene encoding a protein which controls the expression of the gene encoding the Helicobacter antigen. The indirect activation represents a system which allows the production of the Helicobacter antigen via a cascade system, which can be realized e.g. in that the gene directly controlled by DNA reorganization codes for an RNA polymerase which is specific for the promoter preceding the Helicobacter gene, or a gene regulator which in another specific manner induces the expression of the Helicobacter gene. In an especially preferred embodiment of the present invention the expression signal for the gene encoding the Helicobacter antigen is a bacteriophage promoter, e.g. a T3, T7 or SP6 promoter, and the activation of the expression signal is caused by a nucleic acid reorganization resulting in the production of a corresponding bacteriophage RNA polymerase in the pathogen.

The phase variable expression system can be adjusted to provide a preselected expression level of the Helicobacter antigen. This can be accomplished e.g. by modifying the nucleotide sequence of the expression signal, which is activated by the nucleic acid reorganization mechanism, and/or by inserting further genetic regulation elements.

The Helicobacter antigens can be produced in an intracellular, as well as in an extracellular manner in the pathogen according to the invention. For instance, autotransporter systems such as the IgA-protease system (cf. for instance EP-A-0 254 090) or the E. coli AIDA-1 adhesin system (Benz et al., Mol. Microbiol. 6 (1992), 1539) are suited as extracellular secretory system. Other suitable outer membrane transporter systems are the RTX-toxin transporters, e.g. the E. coli hemolysin transport system (Hess et al., Proc. Natl. Acad. Sci. USA 93 (1996), 11458-11463).

The pathogen according to the invention can contain a second heterologous nucleic acid, e.g. DNA molecule, which codes for an immunomodulatory polypeptide influencing the immune response quantitatively or qualitatively, apart from the nucleic acid molecule encoding the Helicobacter antigen. Examples of such immunomodulatory polypeptides are immune-stimulating peptides, cytokines like IL-2, IL-6 or IL-12, chemokines, toxins, such as cholera toxin B or adhesins.

The present invention also refers to a pharmaceutical composition comprising as an active agent a recombinant attenuated pathogen as described above, optionally together with pharmaceutically acceptable diluents, carriers and adjuvants. Preferably, the composition is a living vaccine. The vaccination routes depend upon the choice of the vaccination vector. The administration may be achieved in a single dose or repeated at intervals. The appropriate dosage depends on various parameters such as the vaccinal vector itself, or the route of administration. Administration to a mucosal surface (e.g. ocular, intranasal, oral, gastric, intestinal, rectal, vaginal or urinary tract) or via the parenteral route (e.g. subcutaneous, intradermal, intramuscular, intravenous or intraperitoneal) might be chosen. A method for the preparation of the living vaccine comprises formulating the attenuated pathogen in a pharmaceutically effective amount with pharmaceutically acceptable diluents, carriers and/or adjuvants.

Further, the present invention refers to a method for preparing a recombinant attenuated pathogen as defined above, comprising the steps of a) inserting a nucleic acid molecule encoding a Helicobacter antigen into an attenuated pathogen, wherein the recombinant pathogen, e.g. a transformed bacterial cell, is obtained, which is capable of expressing said nucleic acid molecule or is capable to cause expression of said nucleic acid molecule in a target cell and b) cultivating said recombinant attenuated pathogen under suitable conditions. If the pathogen is a bacterial cell, the nucleic acid molecule encoding the Helicobacter antigen can be located on an extrachromosomal plasmid. It is, however, also possible to insert the nucleic acid molecule into the chromosome of the pathogen.

Furthermore, the present invention refers to a method for identifying Helicobacter antigens which raise a protective immune response in a mammalian host, comprising the steps of:

a) providing an expression gene bank of Helicobacter in an attenuated pathogen and b) screening the clones of the gene bank for the ability to confer a protective immunity against a Helicobacter infection in a mammalian host. Preferably, this identification process takes place in a phase variable expression system, rendering possible a stable expression of all of the Helicobacter antigens. Recombinant clones can then be applied as "pools" for the oral immunization of test animals, such as mice. The potential of these clones as protective antigen is then determined via a challenge infection with Helicobacter, e.g. a mouse-adapted H. pylori strain. Thus, there is a possibility of directly selecting optimized H. pylori vaccine antigens.

The invention will be further illustrated by the following figures and sequence listings.

Fig. 1: shows a schematic illustration of the urease expression vector pYZ97, whereon the genes coding for the urease subunits UreA and UreB are located under transcriptional control of the T7 promoter \$\phi\$10. There is a ribosomal binding site (RBS) between the T7 promoter and the urease genes. Further, the plasmid exhibits an origin of replication (ori), a \$\beta\$-lactamase resistance gene (bla) and 4 T7 terminators in series.

Apart from the expression by the T7 promoter, a constitutive low level expression of the urease A and B sub-

units can also be brought about via a cryptic promoter, which is located upstream from the T7 promoter, on the plasmid pYZ97.

Fig. 2: shows a schematic illustration of the T7 RNA polymerase (T7RNAP) expression cassettes pYZ88, pYZ84 and pYZ114, which can be integrated into the chromosomes of bacteria.

In the high-expression cassette pYZ88 the lambda PL promoter is located in inverse orientation, upstream from the T7RNAP gene. A gene for the temperature-sensitive repressor cl 857 (cl) is under control of this promoter. A terminator of the bacteriophage fd (fdT) is situated upstream from the cl gene. The gin gene (Mertens, EMBO J. 3 (1984), 2415-2421) codes for a control enzyme of a DNA reorganization mechanism. A DNA sequence coding for the tRNA Arg is located downstream from the gin gene.

In phase A the PL promoter responsible for the expression of the T7RNAP gene is directed in the direction of the cl857 gene and the gin gene. The consequence of this is that an active repressor is formed at the permissive temperature of 28°C and reduces the transcription from the PL promoter. At a higher temperature the transcription of the PL promoter is increased, since the repressor is inactivated at least partially under such external influences. The temperature-dependent increase in the transcription also causes a corresponding increase in the expression of the following gin gene, which as a control enzyme catalyses the inversion of the PL promoter and the transition in phase B, in which the T7RNAP gene is expressed.

In the high-expression system pYZ88 a further fdT transcription terminator is located between a kanamycinresistànce gene (km) and the promoter of this gene. In this manner, the synthesis of an anti-sense RNA, inversely orientated to the T7RNAP gene, which normally contributes to the reduction of the T7RNAP expression, is reduced. This results in a high expression of the T7RNAP.

In the medium-expression system pYZ84 a transcription terminator (fdT) is located between the PL promoter and the start of the T7RNAP gene. In this manner the expression of the T7RNAP mRNA is reduced. Additionally, the anti-sense RNA affects the T7RNAP translation. Therefore, only a medium expression occurs.

In the low-expression system pYZ114 a deletion of 100 bp in PL is additionally introduced (Δ PL). In this manner the activity of the PL promoter is reduced to a high extent, which leads to a lower T7RNAP expression and thus to a reduction of the UreA/B gene expression. In this construct the effect of the cryptic promoter on pYZ97 is already observed.

SEQ ID NO. 1 and 2 show the nucleotide sequence of the adhesin gene AlpB from H. pylori and the amino acid sequence of the polypeptide coded therefrom.

SEQ ID No. 3 and 4 show the nucleotide sequence of the adhesin gene AlpA from H. pylori and the amino acid sequence of the protein coded therefrom.

Experimental part

Materials and Methods

Bacterial strains: S. typhimurium SL3261 live vector vaccine strain was used as a recipient for the recombinant H. pylori urease plasmid constructs. S. typhimurium SL3261 is an aroA transposon mutant derived from S. typhimurium SL1344 wild type strain. S. typhimurium SL3261 is a non-virulent strain that gives protection to mice against infection with wild type S. typhimurium after oral administration (Hoiseth and Stocker (1981) Supra). S. typhimurium SL3261 and derivatives thereof, which contain the urease expression plasmid pYZ97 (extrachromosomal) and the T7RNAP expression cassettes pYZ88, pYZ84 or pYZ114, respectively (integrated into the chromosome) are indicated in table 1. Luria broth or agar was used for bacterial growth at 28°C. H. pylori wild type strain grown at 37°C on serum plates was used for the challenge experiments.

Immunization of mice: Four weeks Balb/c mice purchased from Interfauna (Tuttlingen, Germany) were adapted two weeks in an animal facility before being used for experimentation. 150 μ l of blood was taken retroorbitally from all mice to obtain preimmune serum. Retroorbital bleedings were repeated from all immunized mice 1 week and 3 weeks after immunization.

Eight groups of 5 mice including controls were used in this study (table 2). Group A, the naive control group, was not immunized with Salmonella neither challenged with wild type H. pylori. The rest of the groups were all orally immunized. Group B, a negative control group, did not receive Salmonella and was challenged with H. pylori. Mice from groups C to G were immunized with Salmonella vaccine strains and challenged with H. pylori. The last group H received recombinant urease B in combination with cholera toxin and was also challenged.

Prior to immunizations mice were left overnight without solid food and 4 hours without water. 100 µl of 3% sodium

_

30

35

5

10

15

20

25

bicarbonate were given orally using a stainless steel catheter tube to neutralize the stomach pH. Then mice from group B received 100 μ l PBS and mice from groups C to G received 1.0 x 10¹⁰ CFU of Salmonella in a 100 μ l volume. Mice from group H received four times 100 μ l of a mixture of recombinant H. pylori UreaseB plus cholera toxin, one dose every week. After every immunization water and food were returned to the mice.

H. pylori challenge: Four weeks after the first oral immunization mice from groups B to H were challenged with H.pylori. Mice were left overnight without solid food and without water 4 hours prior to the challenge. 100 μ l of 3% sodium bicarbonate were given orally to the mice using a stainless steel catheter tube, followed by an oral dose of 5.0 x 10⁹ CFU/ml of Helicobacter pylori. Water and food were returned to the mice after the challenge.

Collection of blood and tissues from mice: Twelve weeks after the first immunization the mice were left overnight without food and subsequently sacrificed for analysis of protection and immune response. The mice were anaesthetized with Metoxyfluorane for terminal cardiac bleeding and prior to sacrifice by cervical dislocation. Under aseptic conditions, spleen and stomach were carefully removed from each mouse and placed on ice in separate sterile containers until further processing. Large and small intestine were obtained for further isolation of the intestinal fluid.

Processing of stomach and measurement of urease activity. The degree of H. pylori colonisation in the mouse stomach was measured by the presence of active urease in the tissue. The Jatrox-test (Röhm-Pharma GmbH, Weiterstadt, Germany) was used according to the suppliers' directions. Stomach mucosa was exposed and washed with PBS, half of the antral portion of the stomach was immediately placed inside an Eppendorf tube containing the substrate for measurement of urease activity. Absorbance at 550 nm was measured after tubes were incubated for 4 hours at room temperature. The rest of the stomach tissue was stored at -20°C for further treatments. The urease activity values obtained from the stomach of naive mice, which did not undergo immunization or challenge, were used to create a base line to indicate the absence of H. pylori infection and therefore protection.

Table 1

25	

UreA and UreB expre	ssing S. typhimurium vaccine st	ains
Strains	Urease Expression	Source
S. typhimurium SL3261	Negative	Hoiseth and Stocker
S. typhimurium SL3262 pYZ97	Constitutive Low	this study
S. typhimurium SL3261::pYZ88pYZ97	High T7-induced expression	this study
S. typhimurium SL3261::pYZ84pYZ97	Medium T7-induced expression	this study
S. typhimurium SL3261::pYZ114pYZ97	Low T7-induced expression	this study

35

30

40

45

50

Table 2

Mice groups used for immunization No. of oral immuniza-Group Immunogen tions 0 Α None В PBS oral immunization 1 С S. typhimurium S3261 1 D 1 S. typhimurium S3261 pYZ97 Ε S. typhimurium S3261::pYZ88pYZ97 1 F S. typhimurium S3261::pYZ84pYZ97 1 G S. typhimurium S3261::pYZ114pYZ97 1 Н Urease B plus cholera toxin 4

Results:

In the control mice (groups B and C) 100% infection with H. pylori was observed. In the mice immunized with recombinant attenuated pathogens (groups D, E, F, G) between 0% and 60% infection (100% to 40% protection) was observed. Immuno-protection did not correlate with humoral anti-UreA and UreB response, suggesting that, in addition to humoral immunity, cellular immunity is critical for protection against H. pylori infection. The results indicate that oral immunization of mice with UreA and UreB delivered by S. typhimurium attenuated strain is effective to induce high levels of protection against H. pylori colonisation.

In the mice immunized with recombinant urease B plus cholera toxin considerably higher levels of urease activity were observed under said experimental conditions than when administering the recombinant attenuated pathogens according to the invention.

The results of the urease test have been illustrated in table 3.

	Table 3	Group	Mouse	E _{550nm, 4h}	E _{4h} - E _{control}	Е * 3	Dilution
		Α	1	0,085	-0,022	-0,066	200µl+400µl
		Α	2	0,091	-0,016	-0,048	200µl+400µl
5		Α	3	0,116	0,009	0,027	200µl+400µl
		Α	4	0,099	-0,008	-0,024	200µl+400µl
		Α	5	0,101	-0,006	-0,018	200µ !+400 µl
		Control		0,107	. 0	0	200µl+400µl
		В	1	0,394	0,292	0,876	200µl+400µl
10		8	2	0,464	0,362	1,086	200µl+400µl
		В	3	0,329	0,227	0,681	200µl+400µl
		В	4	0,527	0,425	1,275	200µl+400µl
		В	5	0,462	0,36	1,08	200µ!+400µl
		Control		0,102	0	0	200µl+400µl
15			,		0.445	0.405	000-4-400-4
		C	1	0,248	0,145	0,435	200µl+400µl
		C	2	0,369	0,266	0,798	200µl+400µl
		С	3	0,209	0,106	0,318	200µl+400µl
		C	4	0,219	0,116	0,348	200µl+400µl
20		С	5	0,24	0,137	0,411	200µl+400 µl
		Control	·	0,103	0	0	200µl+40 0µl
		D	1	0,143	0,002	0,004	300µl+300µl
		D	2	0,156	0,015	0,03	300µl+300µl
		D	3	0,142	0,001	0,002	300µl+300µl
25		D	4	0,114	-0,027	-0,054	300µI+300µI
		D	5	0,133	-0,008	-0,016	300µl+300µl
		Control		0,141	0	0	300hl+300hl
		Ε	. 1	0,127	0,027	0,081	200µl+400µl
30	•	E	2	0,094	-0,006	-0,018	200µl+400µl
		E	3	0,099	-0,001	-0,003	200µl+400µl
		E	4	0,161	0,061	0,183	200µl+400µl
		Ε	5	0,198	0,098	0,294	200µl+400µl
		Control		0,1	0	0	200µі+400µі
35		F	1	0,166	0,025	0,05	300µl+300µl
		F	2	0,145	0,004	0,008	300h+300h
		F	3	0,166	0,025	0,05	300µl+300µl
		F	4	0,154	0,013	0,026	300µl+300µl
		F	5	0,301	0,16	0,32	300µl+300µl
40		Control		0,141	0	0	300µl+300µl
		G	1	0,084	-0,019	-0,057	200µl+400µl
		G	2	0,087	-0,016	-0,048	200µl+400µl
	•	G	3	0,269	0,166	0,498	200µI+400µI
		G	4	0,085	-0,018	-0,054	200µl+400µl
45		G	5	0,092	-0,011	-0,033	200µl+400µl
		Control		0,103	0	0	200µ1+400µ1
		н	1	0,638	0,531	1,593	200µl+4 00 µl
		H	2	0,282	0,175	0,525	200µl+ 400 µl
50		н	3	0,141	0,034	0,102	200µl+400µl
		н	4	0,135	0,028	0,084	200µ1+400µ1
		н	5	0,171	0,064	0,192	200µl+400µl
		Control		0,107	0	0	200µl+4 00 µl

SEQUENCE LISTING

5	(1)	GENE	RAL	INFO	RMAT	ION:	:										
		(i)	API	PLICA A) NA	ANT: AME:		-Plar sensc						Foer	deru	ing d	ler	
) I)	c) C1 E) C0	TREET TY: OUNTF OSTAL	Muer	ncher Serma	n ny									
		(ii)	TIT	rLE C	11 TC	IVENT	noi:	Hel	icob	acte	r py	/lori	liv	e va	ccir	ne .	
	((iii)	NUN	1BER	OF S	EQUE	ENCES	: 4									
15		(iv)	(<i>I</i> (E	A) ME B) CC C) OF	ER RE EDIUM OMPUT PERAT OFTWA	TYE ER: ING	PE: F IBM SYST	PC C PC C PEM:	oy di compa PC-D	tibl OS/M	IS-DO	os .o, v	/ersi	.on #	1.30) (EPO)	
20	(2)	INFO	RMAT	NOT	FOR	SEO	ID N	10: 1	L:								
	(2)				CE CH												
?5		(-)	(I (I	A) LE B) TY C) ST	ENGTH (PE: (RANE (POLC	i: 15 nucl	557 b leic ESS:	ase acid	pair l	's							
		(ii)	MOI	LECUI	LE TY	PE:	DNA	(ger	omic	:)							
		(vi)			AL SC RGANI			coba	cter	. bAl	ori						
	((vii)			ATE S LONE:												/
35		(ix)	(1		e: ame/f ocati			554.									
		(xi)	SE(QUENC	CE DE	ESCR	PTIC	on: s	SEQ]	D NC): 1:	:					
10	ATG Met 1	ACA Thr	CAA Gln	TCT Ser	CAA Gln 5	AAA Lys	GTA Val	AGA Arg	TTC Phe	TTA Leu 10	GCC Ala	CCT Pro	TTA Leu	AGC Ser	CTA Leu 15	GCG Ala	4.8
5	TTA Leu	AGC Ser	TTG Leu	AGC Ser 20	TTC Phe	AAT Asn	CCA Pro	GTG Val	GGC Gly 25	GCT Ala	GAA Glu	GAA Glu	GAT Asp	GGG Gly 30	GGC Gly	TTT Phe	9€
	ATG Met	ACC Thr	TTT Phe 35	GGG Gly	TAT Tyr	GAA Glu	TTA Leu	GGT Gly 40	CAG Gln	GTG Val	GTC Val	CAA Gln	CAA Gln 45	GTG Val	AAA Lys	AAC Asn	144
o .	CCG Pro	GGT Gly 50	AAA Lys	ATC Ile	AAA Lys	GCC Ala	GAA Glu 55	GAA Glu	TTA Leu	GCC Ala	GGC Gly	TTG Leu 60	TTA Leu	AAC Asn	TCT Ser	ACC Thr	192
	ACA	ACA	AAC	AAC	ACC	AAT	ATC	AAT	ATT	GCA	GGC	ACA	GGA	GGC	ААТ	GTC	240

	Thr 65	Thr	Asn	Asn	Thr	Asn 70	Ile	Asn	Ile	Ala	Gly 75	Thr	Gly	Gly	Asn	Val 80		
5	GCC Ala	GGG Gly	ACT Thr	TTG Leu	GGC Gly 85	AAC Asn	CTT Leu	TTT Phe	ATG Met	AAC Asn 90	CAA Gln	TTA Leu	GGC	AAT Asn	TTG Leu 95	ATT Ile		288
10	GAT Asp	TTG Leu	TAT Tyr	CCC Pro 100	ACT Thr	TTG Leu	AAC Asn	ACT Thr	AGT Ser 105	AAT Asn	ATC Ile	ACA Thr	CAA Gln	TGT Cys 110	GGC Gly	ACT Thr		336
	ACT Thr	AAT Asn	AGT Ser 115	GGT Gly	AGT Ser	AGT Ser	AGT Ser	AGT Ser 120	GGT Gly	GGT Gly	GGT Gly	GCG Ala	GCC Ala 125	ACA Thr	GCC Ala	GCT Ala		384
15	GCT Ala	ACT Thr 130	ACT Thr	AGC Ser	AAT Asn	AAG Lys	CCT Pro 135	TGT Cys	TTC Phe	CAA Gln	GGT Gly	AAC Asn 140	CTG Leu	GAT Asp	CTT Leu	TAT Tyr		432
	AGA Arg 145	AAA Lys	ATG Met	GTT Val	GAC Asp	TCT Ser 150	ATC Ile	AAA Lys	ACT Thr	TTG Leu	AGT Ser 155	CAA Gln	AAC Asn	ATC Ile	AGC Ser	AAG Lys 160		480
20	AAT Asn	ATC Ile	TTT Phe	CAA Gln	GGC Gly 165	AAC Asn	AAC Asn	AAC Asn	ACC Thr	ACG Thr 170	AGC Ser	CAA Gln	AAT Asn	CTC Leu	TCC Ser 175	AAC Asn		528
25	CAG Gln	CTC Leu	AGT Ser	GAG Glu 180	CTT Leu	AAC Asn	ACC Thr	GCT Ala	AGC Ser 185	GTT Val	TAT Tyr	TTG Leu	ACT Thr	TAC Tyr 190	ATG Met	AAC Asn		576
	TCG Ser	TTC Phe	TTA Leu 195	AAC Asn	GCC Ala	AAT Asn	AAC Asn	CAA Gln 200	GCG Ala	GGT Gly	GGG Gly	ATT Ile	TTT Phe 205	CAA Gln	AAC Asn	AAC Asn		624
30	ACT Thr	AAT Asn 210	CAA Gln	GCT Ala	TAT Tyr	GGA Gly	AAT Asn 215	GGG Gly	GTT Val	ACC Thr	GCT Ala	CAA Gln 220	CAA Gln	ATC Ile	GCT Ala	TAT Tyr		672
35	ATC Ile 225	CTA Leu	AAG Lys	CAA Gln	GCT Ala	TCA Ser 230	ATC Ile	ACT Thr	ATG Met	GGG Gly	CCA Pro 235	Ser	GGT Gly	GAT Asp	AGC Ser	GGT Gly 240		720
	GCT Ala	GCC Ala	GCA Ala	GCG Ala	TTT Phe 245	TTG Leu	GAT Asp	GCC Ala	GCT Ala	TTA Leu 250	GCG Ala	CAA Gln	CAT His	GTT Val	TTC Phe 255	AAC Asn		768
40	TCC Ser	GCT Ala	AAC Asn	GCC Ala 260	GGG Gly	AAC Asn	GAT Asp	TTG Leu	AGC Ser 265	GCT Ala	AAG Lys	GAA Glu	TTC Phe	ACT Thr 270	AGC Ser	TTG Leu		816
45	GTG Val	CAA Gln	AAT Asn 275	ATC Ile	GTC Val	AAT Asn	AAT Asn	TCT Ser 280	CAA Gln	AAC Asn	GCT Ala	TTA Leu	ACG Thr 285	CTA Leu	GCC Ala	AAC Asn		864
	AAC Asn	GCT Ala 290	AAC Asn	ATC Ile	AGC Ser	TAA Asn	TCA Ser 295	ACA Thr	GGC Gly	TAT Tyr	CAA Gln	GTG Val 300	AGC Ser	TAT Tyr	GGC Gly	GGG Gly		912
50	AAT Asn 305	ATT Ile	GAT Asp	CAA Gln	GCG Ala	CGA Arg 310	TCT Ser	ACC Thr	CAA Gln	CTA Leu	TTA Leu 315	AAC Asn	AAC Asn	ACC Thr	ACA Thr	AAC Asn 320		960
	ACT	TTG	GCT	AAA	GTT	AGC	GCT	TTG	AAT	AAC	GAG	CTT	AAA	GCT	AAC	CCA	. :	1008

	Thr	Leu	Ala	Lys	Val 325	Ser	Ala	Leu	Asn	Asn 330	Glu	Leu	Lys	Ala	Asn 335	Pro	•
5	TGG Trp	CTT Leu	GGG Gly	AAT Asn 340	TTT Phe	GCC Ala	GCC Ala	GGT Gly	AAC Asn 345	AGC Ser	TCT Ser	CAA Gln	GTG Val	AAT Asn 350	GCG Ala	TTT Phe	1056
10	AAC Asn	GGG Gly	TTT Phe 355	ATC Ile	ACT Thr	AAA Lys	ATC Ile	GGT Gly 360	TAC Tyr	AAG Lys	CAA Gln	TTC Phe	TTT Phe 365	GGG Gly	GAA Glu	AAC Asn	1104
	AAG Lys	AAT Asn 370	GTG Val	GGC Gly	TTA Leu	CGC Arg	TAC Tyr 375	TAC Tyr	GGC Gly	TTC Phe	TTC Phe	AGC Ser 380	TAT Tyr	AAC Asn	GGC Gly	GCG Ala	1152
15	GGC Gly 385	GTG Val	GGT Gly	AAT Asn	GGC	CCT Pro 390	ACT Thr	TAC Tyr	AAT Asn	CAA Gln	GTC Val 395	AAT Asn	TTG Leu	CTC Leu	ACT Thr	TAT Tyr 400	1200
	GGG Gly	GTG Val	GGG Gly	ACT Thr	GAT Asp 405	GTG Val	CTT Leu	TAC Tyr	AAT Asn	GTG Val 410	TTT Phe	AGC Ser	CGC Arg	TCT Ser	TTT Phe 415	GGT Gly	1248
20	AGT Ser	AGG Arg	AGT Ser	CTT Leu 420	AAT Asn	GCG Ala	GGC Gly	TTC Phe	TTT Phe 425	GGG Gly	GGG Gly	ATC Ile	CAA Gln	CTC Leu 430	GCA Ala	GGG Gly	1296
25	GAT Asp	ACT Thr	TAC Tyr 435	ATC Ile	AGC Ser	ACG Thr	CTA Leu	AGA Arg 440	AAC Asn	AGC Ser	TCT Ser	CAG Gln	CTT Leu 445	GCG Ala	AGC Ser	AGA Arg	1344
	CCT Pro	ACA Thr 450	GCG Ala	ACG Thr	AAA Lys	TTC Phe	CAA Gln 455	TTC Phe	TTG Leu	TTT Phe	GAT Asp	GTG Val 460	GGC Gly	TTA Leu	CGC Arg	ATG Met	1392
eo	AAC Asn 465	TTT Phe	GGT Gly	ATC Ile	TTG Leu	AAA Lys 470	AAA Lys	GAC Asp	TTG Leu	AAA Lys	AGC Ser 475	CAT His	AAC Asn	CAG Gln	CAT Kis	TCT Ser 480	1440
15	ATA Ile	GAA Glu	ATC Ile	GGT Gly	GTG Val 485	CAA Gln	ATC Ile	CCT Pro	ACG Thr	ATT Ile 490	TAC Tyr	AAC Asn	ACT Thr	TAC Tyr	TAT Tyr 495	AAA Lys	1488
	GCT Ala	GGC Gly	GGT Gly	GCT Ala 500	GAA Glu	GTG Val	AAA Lys	TAC Tyr	TTC Phe 505	CGC Arg	CCT Pro	TAT Tyr	AGC Ser	GTG Val 510	TAT Tyr	TGG Trp	1536
o				TAC Tyr			TAA										1557
5	(2)		(i) (i)	TION SEQUE A) LE B) TO	ENCE ENGT: YPE:	CHA H: 5 ami	RACT 18 ai	ERIS mino cid	TICS								

(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Thr Gln Ser Gln Lys Val Arg Phe Leu Ala Pro Leu Ser Leu Ala 1 5 15

	Leu	Ser	Leu	Ser 20	Phe	Asn	Pro	Val	Gly 25	Ala	Glu	Glu	Asp	Gly 30	Gly	Phe
5	Met	Thr	Phe 35	Gly	Tyr	Gĺu	Leu	Gly 40	Gln	Val	Val	Gln	Gln 45	Val	Lys	Asn
	Pro	Gly 50	Lys	Ile	Lys	Ala	Glu 55	Glu	Leu	Ala	Gly	Leu 60	Leu	Asn	Ser	Thr
10	Thr 65	Thr	Asn	Asn	Thr	Asn 70	Ile	Asn	Ile	Ala	Gly 75	Thr	Gly	Gly	λsn	Val 80
	Ala	Gly	Thr	Leu	Gly 85	Asn	Leu	Phe	Met	Asn 90	Gln	Leu	Gly	Asn	Leu 95	Ile
15	Asp	Leu	Tyr	Pro 100	Thr	Leu	Asn	Thr	Ser 105	Asn	Ile	Thr	Gln	Cys 110	Gly	Thr
	Thr :	Asn	Ser 115	Gly	Ser	Ser	Ser	Ser 120	Gly	Gly	Gly	Ala	Ala 125	Thr	Ala	Ala
20	£A la	Thr 130	Thr	Ser	Asn	Lys	Pro 135	Cys	Phe	Gln	Gly	Asn 140	Leu	Asp	Leu	Tyr
	A rg 145	Lys	Met	Val	Asp	Ser 150	Ile	Lys	Thr	Leu	Ser 155	Gln	Asn	Ile	Ser	Lys 160
25	Asn	Ile	Phe	Gln	Gly 165	Asn	Asn	Asn	Thr	Thr 170	Ser	Gln	Asn	Leu	Ser 175	Asn
	⊒ G ln	Leu	Ser	Glu 180	Leu	Asn	Thr	Ala	Ser 185	Val	Tyr	Leu	Thr	Tyr 190	Met	Asn
30	⁻ Ser		195					200					205			
		210	Gln				215			•		220				
<i>35</i>	225		Lys			230					235			•		240
			Ala		245					250					255	
40			Asn	260					265					270		
			As n 275					280					285			
45		290					295					300				Gly
	305					310					315					Asn 320
50			Ala		325					330	•				335	
50	Trp	Leu	Gly	As n 340	Phe	Ala	Ala	Gly	Asn 345		Ser	Gln	Val	Asn 350	Ala	Phe

	Asn	Gly	Phe 355	Ile	Thr	Lys	Ile	Gly 360	Tyr	Lys	Gln	Phe	Phe 365	Gly	Glu	Asn		
5	Lys	Asn 370	Val	Gly	Leu	Arg	Tyr 375	Tyr	Gly	Phe	Phe	Ser 380	Tyr	Asn	Gly	Ala		
	Gly 385	Val	Gly	Asn	Gly	Pro 390	Thr	Tyr	Asn	Gln	Val 395	Asn	Leu	Leu	Thr	Tyr 400		
10	Gly	Val	Gly	Thr	Asp 405	Val	Leu	Tyr	Asn	Val 410	Phe	Ser	Arg	Ser	Phe 415	Gly		
	Ser	Arg	Ser	Leu 420	Asn	Ala	Gly	Phe	Phe 425	Gly	Gly	Ile	Gln	Leu 430	Ala	Gly		
15	Asp	Thr	Tyr 435	Ile	Ser	Thr	Leu	Arg 440	Asn	Ser	Ser	Gln	Leu 445	Ala	Ser	Arg		
	Pro	Thr 450	Ala	Thr	Lys	Phe	Gln 455	Phe	Leu	Phe	Дsp	Val 460	Gly	Leu	Arg	Met		
20	#Asn #465	Phe	Gly	Ile	Leu	Lys 470	Lys	Asp	Leu	Lys	Ser 475	His	Asn	Gln	His	Ser 480		
	Ile	Glu	Ile	Gly	Val 485	Gln	Ile	Pro	Thr	Ile 490	туr	Λsn	Thr	Tyr	Tyr 495	Lys		
25	Ala	Gly	Gly	Ala 500	Glu	Val	Lys	Tyr	Phe 505	Arg	Pro	туг	Ser	Val 510	Tyr	Trp		
	Wal	Tyr	Gly 515	Туг	Ala	Phe												
	£(2)	INF	ORMA'	TION	FOR	SEQ	ID	NO: 3	3:									
30		(i)	(, ()	QUENC B) T' C) S' D) To	ENGT! YPE: TRAN	H: 1 nuc DEDN	557 leic ESS:	base acio boti	pai: d	rs ·							•	
35		(ii) MO	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
		(vi		IGIN A) O				icob	acte	r py	lori							
1 0		(vii	•	MEDI. B) C														
		(ix	(ATUR A) N. B) L	AME/													
15		(xi) SE	QUEN	CE D	ESCR	IPTI	ON:	SEQ	ID N	0: 3	:						
	ATG Met	ATA Ile 520	Lys	AAG Lys	AAT Asn	AGA Arg	ACG Thr 525	Leu	TTT Phe	CTT Leu	AGT Ser	CTA Leu 530	Ala	CTT Leu	TGC Cys	GCT Ala		48
50	AGC Ser 535	Ile	AGT Ser	TAT Tyr	GCC Ala	GAA Glu 540	Asp	GAT Asp	GGA Gly	GIY	TTT Phe 545	Phe	ACC Thr	GTC Val	GGT Gly	TAT Tyr 550		96

	CAG Gln	CTC Leu	GGG Gly	CAA Gln	GTC Val 555	ATG Met	CAA Gln	GAT Asp	GTC Val	CAA Gln 560	AAC Asn	CCA Pro	GGC Gly	GGC Gly	GCT Ala 565	AAA Lys	144
5	AGC Ser	GAC Asp	GAA Glu	CTC Leu 570	GCC Ala	AGA Arg	GAG Glu	CTT Leu	AAC Asn 575	GCT Ala	GAT Asp	GTA Val	ACG Thr	AAC Asn 580	AAC Asn	ATT Ile	192
10	TTA Leu	AAC Asn	AAC Asn 585	AAC Asn	ACC Thr	GGA Gly	GGC Gly	AAC Asn 590	ATC Ile	GCA Ala	GGG Gly	GCG Ala	TTG Leu 595	AGT Ser	AAC Asn	GCT Ala	240
	TTC Phe	TCC Ser 600	CAA Gln	T'AC Tyr	CTT Leu	TAT Tyr	TCG Ser 605	CTT Leu	TTA Leu	GGG Gly	GCT Ala	TAC Tyr 610	CCC Pro	ACA Thr	AAA Lys	CTC Leu	288
15	AAT Asn 615	GGT Gly	AGC Ser	GAT Asp	GTG Val	TCT Ser 620	GCG Ala	AAC Asn	GCT Ala	CTT Leu	TTA Leu 625	AGT Ser	GGT Gly	GCG Ala	GTA Val	GGC Gly 630	336
20	TCT : Ser	GGG Gly	ACT Thr	TGT Cys	GCG Ala 635	GCT Ala	GCA Ala	GGG Gly	ACG Thr	GCT Ala 640	GGT Gly	GGC Gly	ACT Thr	TCT Ser	CTT Leu 645	AAC Asn	384
	ACT Thr	CAA Gln	AGC Ser	ACT Thr 650	TGC Cys	ACC Thr	GTT Val	GCG Ala	GGC Gly 655	TAT Tyr	TAC Tyr	TGG Trp	CTC Leu	CCT Pro 660	AGC Ser	TTG Leu	432
25	ACT Thr	GAC Asp	AGG Arg 665	ATT Ile	TTA Leu	AGC Ser	ACG Thr	ATC Ile 670	GGC Gly	AGC Ser	CAG Gln	ACT Thr	AAC Asn 675	TAC Tyr	GGC Gly	ACG Thr	480
30	AAC Asn	ACC Thr 680	AAT Asn	TTC Phe	CCC Pro	AAC Asn	ATG Met 685	CAA Gln	CAA Gln	CAG Gln	CTC Leu	ACC Thr 690	TAC Tyr	TTG Leu	AAT Asn	GCG Ala	528
	Gly 6 95	AAT Asn	Val	Phe	Phe	Asn 700	Ala	Met	Asn	Lys	Ala 705	Leu	Glu	Asn	Lys	λsn 710	576
35	GGA Gly	ACT Thr	AGT Ser	AGT Ser	GCT Ala 715	AGT Ser	GGA Gly	ACT Thr	AGT Ser	GGT Gly 720	GCG Ala	ACT Thr	GGT Gly	TCA Ser	GAT Asp 725	ggt Gly	624
40	CAA Gln	ACT Thr	TAC Tyr	TCC Ser 730	ACA Thr	CAA Gln	GCT Ala	ATC Ile	CAA Gln 735	TAC Tyr	CTT Leu	CAA Gln	GGC Gly	CAA Gln 740	CAA Gln	AAT Asn	672
	ATC Ile	TTA Leu	AAT Asn 745	AAC Asn	GCA Ála	GCG Ala	AAC Asn	TTG Leu 750	CTC Leu	AAG Lys	CAA Gln	GAT Asp	GAA Glu 755	TTG Leu	CTC Leu	TTA Leu	720
45	GAA Glu	GCT Ala 760	TTC Phe	AAC Asn	TCT Ser	GCC Ala	GTA Val 765	GCC Ala	GCC Ala	AAC Asn	ATT Ile	GGG Gly 770	AAT Asn	AAG Lys	GAA Glu	TTC Phe	768
50	AAT Asn 775	TCA Ser	GCC Ala	GCT Ala	TTT Phe	ACA Thr 780	GGT Gly	TTG Leu	GTG Val	CAA Gln	GGC Gly 785	ATT Ile	ATT Ile	GAT Asp	CAA Gln	TCT Ser 790	816
50	CAA Gln	GCG Ala	GTT Val	TAT Tyr	AAC Asn 795	GAG Glu	CTC Leu	ACT Thr	AAA Lys	AAC Asn 800	ACC Thr	ATT Ile	AGC Ser	GGG Gly	AGT Ser 805	GCG Ala	864

	GTT Val	ATT Ile	AGC Ser	GCT Ala 810	GGG Gly	ATA Ile	AAC Asn	TCC Ser	AAC Asn 815	CAA Gln	GCT Ala	AAC Asn	GCT Ala	GTG Val 820	CAA Gln	GGG Gly	912
5	CGC Arg	GCT Ala	AGT Ser 825	CAG Gln	CTC Leu	CCT Pro	AAC Asn	GCT Ala 830	CTT Leu	TAT Tyr	AAC Asn	GCG Ala	CAA Gln 835	GTA Val	ACT Thr	TTG Leu	960
10	GAT Asp	AAA Lys 840	ATC Ile	AAT Asn	GCG Ala	CTC Leu	AAT Asn 845	AAT Asn	CAA Gln	GTG Val	AGA Arg	AGC Ser 850	ATG Met	CCT Pro	TAC Tyr	TTG Leu	1008
	CCC Pro 855	CAA Gln	TTC Phe	AGA Arg	GCC Ala	GGG Gly 860	AAC Asņ	AGC Ser	CGT Arg	TCA Ser	ACG Thr 865	AAT Asn	ATT	TTA Leu	AAC Asn	GGG Gly 870	1056
15	TTT Phe	TAC Tyr	ACC Thr	AAA Lys	ATA Ile 875	GGC Gly	ТАТ Туг	AAG Lys	CAA Gln	TTC Phe 880	TTC Phe	GGG Gly	AAG Lys	AAA Lys	AGG Arg 885	AAT Asn	1104
20	ATC Ile	GGT Gly	TTG Leu	CGC Arg 890	TAT Tyr	TAT Tyr	GGT Gly	TTC Phe	TTT Phe 895	TCT Ser	TAT Tyr	AAC Asn	GGA Gly	GCG Ala 900	AGC Ser	GTG Val	1152
	GGC Gly	TTT Phe	AGA Arg 905	TCC Ser	ACT Thr	CAA Gln	AAT Asn	AAT Asn 910	GTA Val	GGG Gly	TTA Leu	TAC Tyr	ACT Thr 915	TAT Tyr	GGG Gly	GTG Val	1200
25	GGG Gly	ACT Thr 920	GAT Asp	GTG Val	TTG Leu	TAT Tyr	AAC Asn 925	ATC Ile	TTT Phe	AGC Ser	cgc Arg	TCC Ser 930	TAT Tyr	CAA Gln	AAC Asn	CGC Arg	1248
30	TCT Ser 935	GTG Val	GAT Asp	ATG Met	GGC Gly	TTT Phe 940	TTT Phe	AGC Ser	GGT Gly	ATC Ile	CAA Gln 945	TTA Leu	GCC Ala	GGT Gly	GAG Glu	ACC Thr 950	1296
30	TTC Phe	CAA Gln	TCC Ser	ACG Thr	CTC Leu 955	AGA Arg	GAT Asp	GAC Asp	CCC Pro	AAT Asn 960	GTG Val	AAA Lys	TTG Leu	CAT His	GGG Gly 965	AAA Lys	1344
35	ATC Ile	AAT Asn	AAC Asn	ACG Thr 970	CAC His	TTC Phe	CAG Gln	TTC Phe	CTC Leu 975	TTT Phe	GAC Asp	TTC Phe	GGT Gly	ATG Met 980	AGG Arg	ATG Met	1392
	AAC Asn	TTC Phe	GGT Gly 985	AAG Lys	TTG Leu	GAC Asp	GGG Gly	AAA Lys 990	TCC Ser	AAC Asn	CGC Arg	CAC His	AAC Asn 995	CAG Gln	CAC His	ACG Thr	1440
40			Phe					Pro					Thr			AAA Lys	1488
45	TCA Ser 101	Ala	GGG Gly	ACT Thr	ACC Thr	GTG Val 102	Lys	TAT Tyr	TTC Phe	CGT Arg	CCT Pro 102	Tyr	AGC Ser	GTT Val	TAT Tyr	TGG Trp 1030	1536
				TAT Tyr		Phe	TAA										1557

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

			(E	A) LE 3) T'(0) TO	PE:	amir	o ac	id	acio	ls						
5				LECUI					SEQ I	D NC): 4:	:				
	Met 1	Ile	Lys	Lys	Asn 5	Arg	Thr	Leu	Phe	Leu 10	Ser	Leu	Ala	Leu	Cys 15	Ala
10	Ser	Ile	Ser	Tyr 20	Ala	Glu	Asp	Asp	Gly 25	Gly	Phe	Phe	Thr	Val 30	Gly	туг
	Gln	Leu	Gly 35	Gln	Val	Met	Gln	Asp 40	Val	Gln	Asn	Pro	Gly 45	Gly	Ala	Lys
15	Ser	Asp 50	Glu	Leu	Ala	Arg	Glu 55	Leu	Asn	Ala	Asp	Val 60	Thr	λsn	Asn	Ile
	Leu 65	Asn	Asn	Asn	Thr	Gly 70	Gly	Asn	Ile	Ala	Gly 75	Ala	Leu	Ser	Asn	Ala 80
20	Phe	Ser	Gln	Tyr	Leu 85	Туr	Ser	Leu	Leu	Gly 90	Ala	Tyr	Pro	Thr	Lys 95	Leu
	Asn	Gly	Ser	Asp 100	Val	Ser	Ala	Asn	Ala 105	Leu	Leu	Ser	Gly	Ala 110	Val	Gly
25	Ser	Gly	Thr 115	Cys	Ala	Ala	Ala	Gly 120	Thr	Ala	Gly	Gly	Thr 125	Ser	Leu	Asn
	Thr	130					135					140				
30	Thr 145	Asp	Arg	Ile	Leu	Ser 150	Thr	Ile	Gly	Ser	Gln 155	Thr	Asn	Tyr	Gly	Thr 160
	Asn	Thr	Asn	Phe	Pro 165	Asn	Met	Gln	Gln	Gln 170	Leu	Thr	Tyr	Leu	Asn 175	Ala
35	-			Phe 180					185	-				190		
			195	Ser				200					205			
40		210	_	Ser			215					220				
	225			Asn		230					235					240
45				Asn	245					250					255	
				Ala 260			-		265					270		
, 50			275	Tyr				280	-				285			
	Val	Ile 290	Ser	Ala	Gly	Ile	Asn 295	Ser	Asn	Gln	Ala	Asn 300	Ala	Val	Gln	Gly

	Arg 305	Ala	Ser	Gln	Leu	Pro 310	Asn	Ala	Leu	туr	Asn 315	Ala	Gln	Val	Thr	Leu 320
5	Asp	Lys	Ile	Asn	Ala 325	Leu	Asn	Asn	Gln	Val 330	Arg	Ser	Met	Pro	Tyr ,335	Leu
	Pro	Gln	Phe	Arg 340	Ala	Gly	Asn	Ser	Arg 345	Ser	Thr	Asn	Ile	Leu 350	Asn	Gly
10	Phe	Туr	Thr 355	Lys	Ile	Gly	Tyr	Lys 360	Gln	Phe	Phe	Gly	Lys 365	Lys	Arg	Asn
	Ile	Gly 370	Leu	Arg	Tyr	Tyr	Gly 375	Phe	Phe	Ser	Tyr	Asn 380	Gly	Ala	Ser	Val
15	Gly 385	Phe	Arg	Ser	Thr	Gln 390	Asn	Asn	Val	Gly	Leu 395	туr	Thr	Tyr	Gly	Val 400
•	Gly	Thr	Asp	Val	Leu 405	Tyr	Asn	Ile	Phe	Ser 410	Arg	Ser	туг	Gln	Asn 415	Arg
. 20	Ser	Val	Asp	Met 420	Gly	Phe	Phe	Ser	Gly 425	Ile	Gln	Leu	Ala	Gly 430	Glu	Thr
	Phe	Gln	Ser 435	Thr	Leu	Arg	Asp	Asp 440	Pro	Asn	Val	Lys	Leu 445	His	Gly	Lys
25	Įle	Asn 450	Asn	Thr	His	Phe	Gln 455	Phe	Leu	Phe	Asp	Phe 460	Gly	Met	Arg	Met
	Asn 465	Phe	Gly	Lys	Leu	Asp 470	Gly	Lys	Ser	Asn	Arg 475	His	Asn	Gln	His	Thr 480
	∵Val	Glu	Phe	Gly	Val 485	Val	Val	Pro	Thr	Ile 490	Tyr	Asn	Thr	Tyr	Tyr 495	Lys
	Ser	Ala	Gly	Thr 500	Thr	Val	Lys'	Tyr	Phe 505	Arg	Pro	Tyr	Ser	Val 510	Tyr	Trp
35	Ser	Tyr	Gly 515	Tyr	Ser	Phe										

40 Claims

- 1. A recombinant attenuated microbial pathogen, which comprises at least one heterologous nucleic acid molecule encoding a Helicobacter antigen, wherein said pathogen is capable to express said nucleic acid molecule or capable to cause the expression of said nucleic acid molecule in a target cell.
- 2. The pathogen according to claim 1, which is an enterobacterial cell, especially a Salmonella cell.
- 3. The pathogen according to claim 1 or 2, which is a Salmonella aro mutant cell.
- 50 4. The pathogen according to any of claims 1-3, wherein the Helicobacter antigen is urease, a urease subunit, an immunologically reactive fragment thereof, or a peptide mimotope thereof.
- 5. The pathogen according to any one of claims 1-3, wherein the Helicobacter antigen is a secretory polypeptide from Helicobacter, an immunologically reactive fragment thereof, or a peptide mimotope thereof.
 - 6. The pathogen according to any one of claims 1-3 and 5, wherein the Helicobacter antigen is selected from the

group consisting of the antigens AlpA, AlpB, immunologically reactive fragments thereof, or a peptide mimotope thereof.

- The pathogen according to any one of claims 1-6, wherein said nucleic acid molecule encoding a Helicobacter antigen is capable to be expressed phase variably.
 - 8. The pathogen according to claim 7, wherein said nucleic acid molecule encoding the Helicobacter antigen is under control of an expression signal which is substantially inactive in the pathogen and which is capable to be activated by a nucleic acid reorganization caused by a nucleic acid reorganization mechanism in the pathogen.
 - 9. The pathogen according to claim 8, wherein the expression signal is a bacteriophage promoter, and the activation is caused by a DNA reorganization resulting in the production of a corresponding bacteriophage RNA polymerase in the pathogen.
 - 10. The pathogen according to any one of claims 1-9, further comprising at least one second nucleic acid molecule encoding an immunomodulatory polypeptide, wherein said pathogen is capable to express said second nucleic acid molecule.
- 20 11. Pharmaceutical composition comprising as an active agent a recombinant attenuated pathogen according to any one of claims 1-10, optionally together with pharmaceutically acceptable diluents, carriers and adjuvants.
 - 12. Composition according to claim 11, which is a living vaccine, which is suitable for administration to a mucosal surface or via the parenteral route.
 - 13. A method for the preparation of a living vaccine comprising formulating an attenuated pathogen according to any one of claims 1-10 in a pharmaceutically effective amount with pharmaceutically acceptable diluents, carriers and/or adjuvants.
- 30 14. A method for preparing a recombinant attenuated pathogen according to any one of claims 1-10, comprising the steps:
 - a) inserting a nucleic acid molecule encoding a Helicobacter antigen into an attenuated pathogen, wherein a
 recombinant attenuated pathogen is obtained, which is capable of expressing said nucleic acid molecule or is
 capable to cause expression of said nucleic acid molecule in a target cell, and
 - b) cultivating said recombinant attenuated pathogen under suitable conditions.
- 15. The method according to claim 15,40 wherein said nucleic acid molecule encoding a Helicobacter antigen is located on an extrachromosomal plasmid.
 - 16. A method for identifying Helicobacter antigens, which raise a protective immune response in a mammalian host, comprising the steps of:
 - a) providing an expression gene bank of Helicobacter in an attenuated pathogen and
 - b) screening the clones of the gene bank for their ability to confer protective immunity against a Helicobacter infection in a mammalian host.

55

50

45

10

15

25

FIG. 1

FIG. 2

pYZ88 (high expression)

pYZ84 (medium expression)

pYZ114 (low expression)

EUROPEAN SEARCH REPORT

Application Number EP 96 11 6337

		DERED TO BE RELEVAN	<u> </u>	
Category	Citation of document with i	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
T	* the whole documen			C12N1/21 C12N15/31 C12N15/74
\	ERIC G (US); LAVEEN 1995	EEN HARRY H ; LAVEEN ROBERT F (US)) 24 May 6 - column 12, line 40;	1-16	A61K39/02 A61K39/112 C12Q1/68
\	antigens prepared f of Helicobacter spp protection in a mou infection*	0019-9567, ET AL: "Recombinant rom the urease subunits .: evidence of se model of gastric sion of Helicobacter	1-16	
	urease polypeptides			TECHNICAL FIELDS
Ì				SEARCHED (Int.Cl.6)
				C12N A61K C12Q
		,		
			_	
	The present search report has b	-	l	
	Place of search	Date of completion of the search	u a	Examiner
	MUNICH	8 April 1997		lle, F
X : part Y : part doct	CATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if combined with an ument of the same category	E : earlier patent do after the filing d other II : document cited L : document cited (cument, but publiste late In the applicatio for other reasons	lished on, or R
() : non	inological background i-written disclosure rmediate document	A : member of the s document		