Bruno Pasqualotto Cavalar

bruno.cavalar@cs.ox.ac.uk

http://brunopc.github.io

RESEARCH INTERESTS

Computational and circuit complexity theory and their connections to combinatorics, algorithms, learning theory, quantum cryptography and quantum advantage.

EMPLOYMENT

Research Associate

July 2024 - now

University of Oxford

Department of Computer Science

Host: Dr. Ján Pich

EDUCATION

Ph.D. in Computer Science

2020 - 2024

University of Warwick

Department of Computer Science Advisor: Igor Carboni Oliveira

Thesis: Complexity Theory of Classical and Quantum Computational Devices

M.Sc. in Computer Science

2018 - 2020

University of Sao Paulo

Institute of Mathematics and Statistics (IME-USP)

Advisor: Yoshiharu Kohayakawa

Thesis: Sunflower theorems in monotone circuit complexity

B.Sc. in Computer Science (with honours)

2014 - 2017

Average: 9.1/10

University of Sao Paulo (IME-USP)

Ranked 1st among 37 Computer Science students

Advisor: Yoshiharu Kohayakawa

Thesis: Ramsey-type problems in orientations of graphs

FUNDING, DISTINCTIONS AND AWARDS

Best Master Thesis Award: Winner of the Latin American Master Thesis Contest (CLTM - XXVII) at the Latin American Computing Conference (CLEI 2021).

Best Master Thesis Award: Winner of the Contest of Theses and Dissertations (CTD - XXXIV) at the Congress of the Brazilian Computer Society (CSBC 2021).

Alejandro Lópes-Ortiz Best Paper Award: For the paper Monotone Circuit Lower Bounds from Robust Sunflowers at the LATIN 2020 conference, joint work with Benjamin Rossman and Mrinal Kumar.

2021

Chancellor's International Scholarship: Awarded to the 30 most outstanding international PhD applicants to the University of Warwick.

Computational Complexity and extremal combinatorics

September 2018 - August 2020

FAPESP Grant for M.Sc. research

Computational Complexity and extremal combinatorics

January 2019 - July 2019

FAPESP Grant for research internship abroad (University of Toronto)

Best student award of IME-USP: Awarded to the best student among all students graduating at IME-USP in a given year, including all majors in Mathematics, Applied Mathematics, Statistics and Computer Science.

2017

Bridges in Mathematics and Computing

April 2016 - December 2017

FAPESP Grant for undergraduate research

Second place, in the admission exam of the University of Sao Paulo for undergraduate studies in Computer Science (over 3,500 applicants).

2014

PUBLICATIONS

9. A Meta-Complexity Characterisation of Quantum Cryptography

2024

Bruno P. Cavalar, Eli Goldin, Matthew Gray, Peter Hall

Proc. EUROCRYPT, 2025

Available at https://arxiv.org/abs/2410.04984

Brief description: Obtains the first complexity-theoretic characterisation of a quantum cryptographic task, pioneering connections between quantum cryptography and Kolmogorov complexity.

8. Boolean Circuit Complexity and Two-Dimensional Cover Problems

2024

Bruno P. Cavalar, Igor C. Oliveira

ACM Transactions on Computation Theory (ACM **ToCT**) 2025

Available at https://dl.acm.org/doi/10.1145/3718746

Brief description: Reduces the problem of showing circuit lower bounds to a cleaner combinatorial problem, offering a new approach to a problem that has seen very little progress in decades.

7. On the Computational Hardness of Quantum One-wayness

2023

Bruno P. Cavalar, Eli Goldin, Matthew Gray, Peter Hall, Yanyi Liu, Angelos Pelecanos Quantum 9, 1679 (2025).

Available at https://arxiv.org/abs/2312.08363

Brief description: Shows that complexity-theoretic separations are necessary for quantum one-wayness (an important cryptographic task) to be possible. Also proves that pseudorandom states imply one-way state generators in nearly all parameter regimes.

6. Constant-Depth Circuits vs. Monotone Circuits

2023

Bruno P. Cavalar, Igor Carboni Oliveira

Proc. 38th Computational Complexity Conference (\mathbf{CCC}), LIPIcs, Vol. 264, 29:1–29:37

Available at https://arxiv.org/abs/2305.06821

Brief description: Proves the first separation between constant-depth circuit classes and monotone circuits, nearly solving an important open problem of 1990. Shows a dichotomy for the monotone complexity of CSPs, implying limitations for communication complexity methods.

5. Algorithms and Lower Bounds for Comparator Circuits from Shrinkage

2022

Bruno P. Cavalar, Zhenjian Lu

Proc. 13th Innovations in Theoretical Computer Science Conference (ITCS), LIPIcs,

Vol. 215, 34:1–34:21

Algorithmica, 85(7):2131–2155, 2023

Available at https://arxiv.org/abs/2111.14974

Brief description: Obtains superlinear average-case lower bounds for the strongest circuit classes ever studied, and derives the first algorithms analysing comparator circuits, such as satisfiability algorithms.

4. Directed graphs with lower orientation Ramsey thresholds

2021

Gabriel Ferreira Barros, Bruno P. Cavalar, Yoshiharu Kohayakawa,

Guilherme Oliveira Mota, Tássio Naia

Extended Abstracts EuroComb, Trends in Mathematics, Vol. 14, 799–804

RAIRO-Oper. Res. 58 (2024) 3607–3619

Available at https://arxiv.org/abs/2211.07033

Brief description: Constructs graphs for which the probability threshold of their directed Ramsey property is lower than the generic upper bound. Contains part of my undergraduate thesis.

3. Orientation Ramsey thresholds for cycles and cliques

2021

Gabriel Ferreira Barros, Bruno P. Cavalar, Yoshiharu Kohayakawa, Tássio Naia

SIAM Journal on Discrete Mathematics (SIDMA), 35(4):2844–2857, 2021

Available at https://arxiv.org/abs/2012.08632

Brief description: Initiates the problem of determining the threshold function for the directed Ramsey property in random graphs. Determines the corresponding threshold for cycles and cliques.

2. Monotone circuit lower bounds from robust sunflowers

2020

Bruno P. Cavalar, Mrinal Kumar, Benjamin Rossman

Proc. 14th Latin American Theoretical Informatics Symposium (**LATIN**),

LNCS Vol. 12118, 311-322

Winner of the Alejandro Lópes-Ortiz Best Paper Award at LATIN

Algorithmica, 84(12):3655–3685, 2022

Available at https://arxiv.org/abs/2012.03883

Brief description: Obtains the strongest monotone circuit lower bound to-date, improving a 30-year old record, and a tight monotone circuit lower bound for large cliques.

1. Anti-Ramsey threshold of cycles

2019

Gabriel Ferreira Barros, Bruno P. Cavalar, Guilherme Oliveira Mota, Olaf Parczyk

Proc. 10th Latin American Algorithms, Graphs and Optimization Symposium (**LAGOS**) 2019, ENTCS Vol. 346, 89-98

Discrete Applied Mathematics (DAM), 323:228–235, 2022

Available at https://arxiv.org/abs/2006.02079

Brief description: Settles the problem of determining the threshold function for the anti-Ramsey property of cycles in random graphs, whereas previous works only addressed large cycles.

ACADEMIC VISITS

Lund University and University of Copenhagen

October 2023

Visiting Graduate Student *Host:* Susanna Rezende

École Polytechnique Fédérale de Lausanne (EPFL)

May 2023 - June 2023

Visiting Graduate Student

Host: Mika Göös

Simons Institute for the Theory of Computing (UC Berkeley)

Jan 2023 - March 2023

Visiting Graduate Student Program: Meta-Complexity

University of Toronto

Jan 2019 - Jul 2019

International Visiting Graduate Student (IVGS)

Host: Benjamin Rossman

TEACHING ACTIVITIES

University of Warwick

Discrete Mathematics and its Applications 1
 Marking and teaching of seminars (~ 10 students).
 1st year course for Discrete Mathematics undergraduates.

2022

• Quantum Computing Marking and teaching of seminars (~ 40 students). Undergraduate and graduate students of Computer Science.	2021, 2022
• Computational Learning Theory Marking and teaching of seminars (~ 20 students). Undergraduate and graduate students of Computer Science.	2021
 Algorithms Teaching of seminars (~ 40 students). 2nd year course for Computer Science undergraduates. 	2020
University of São Paulo	
• Introduction to Graph Theory Marking and teaching of seminars (~ 20 students). Undergraduate/graduate course.	2020
• Foundations of Data Science Marking and teaching of seminars (~ 20 students). Undergraduate/graduate course.	2019
• Combinatorial Optimization Marking and teaching of seminars (~ 20 students). Undergraduate course.	2018
• Languages, Automata and Computability Marking and teaching of seminars (~ 80 students). Graduate course.	2018
• Introduction to Computer Science Marking and teaching of seminars (~ 40 students). 1st year undergraduate course.	2015
 Mathematical Foundations for Computer Science Marking and teaching of seminars (~ 60 students). 1st year undergraduate course. 	2015
SELECTED TALKS AND SEMINARS	
A Meta-Complexity Characterization of Quantum Cryptography	
$Quantinuum \ (London \ Office)$	2025
Complexity Network UK (Imperial College London)	2024
Constant-depth Circuits vs. Monotone Circuits	
MIAO Seminar (University of Copenhagen)	2023
EPFL Theory Coffee Seminar (EPFL)	2023
Computational Complexity Conference (CCC)	2023
39th British Colloquium for Theoretical Computer Science (BCTCS)	2023
Simons Institute for the Theory of Computing	2023
Complexity Network UK (Imperial College London)	2022
Algorithms and Lower Bounds for Comparator Circuits from Shrinkage	

2022
2022
2021
2021

LEADERSHIP AND SCIENTIFIC SERVICE

Organisation of events:

- Warwick-Imperial-Oxford Complexity Network
 Online and Local Events. Running since December 2021
- Complexity Lunches at Warwick.

Journal reviewing: Journal of Graph Theory, Theory of Computing, Random Structures and Algorithms

Conference reviewing: Computational Complexity Conference (CCC), Innovations in Theoretical Computer Science (ITCS), Symposium on Theory of Computing (STOC)