21/9/2016

$$\frac{1}{2}\cos\alpha + \frac{\tan^{2}\alpha}{1 + \tan^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \frac{\sin^{2}\alpha}{\cos\alpha \tan^{2}\alpha} =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \frac{\sin^{2}\alpha}{\cos\alpha} =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2} \cdot \cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos^{2}\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{\sin^{2}\alpha}{\cos\alpha} - \sin^{2}\alpha + \frac{1}{2}\cos\alpha =$$

$$= \frac{1}{2}\cos\alpha + \frac{1}{2}\cos\alpha + \frac{1}{2}\cos\alpha +$$

$$= \frac{1}{2}\cos\alpha + \frac{1}{2}\cos\alpha +$$

$$= \frac{1}{$$

Considera il fascio di rette di equazione y=(k+2)x+k-1, con $k\in\mathbb{R}$, e determina:

- **a.** la retta inclinata di 150° rispetto all'asse *x*;
- **b.** le rette che hanno inclinazione compresa fra $\frac{\pi}{4}$ e $\frac{\pi}{3}$. [a) $y = -\frac{\sqrt{3}}{3}x 3 \frac{\sqrt{3}}{3}$; b) $-1 \le k \le \sqrt{3} 2$]

a

$$y = (K+2) \times + K - 1$$

$$K+2 = -\frac{\sqrt{3}}{3}$$
 $K = -\frac{\sqrt{3}}{3} - 2$

$$m = \tan 150^{\circ} = -\frac{\sqrt{3}}{3}$$

$$y = -\frac{\sqrt{3}}{3} \times -3 - \frac{\sqrt{3}}{3}$$

b) inclinatione comprese tre
$$\frac{\pi}{4}$$
 or $\frac{\pi}{3}$ $\frac{\pi}{4} \leq \alpha \leq \frac{\pi}{3}$

$$tom \frac{7}{4} < m < tom \frac{\pi}{3}$$

COTANGENTE, SEAME, OSECAME

COTANGENTE

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$$
 $\alpha \neq K\pi$ $K \in \mathbb{Z}$

A volte pué essere utile scrivere cot
$$\alpha = \frac{1}{tound}$$
 $x \neq K \frac{\pi}{2}$ $\xi \in \mathbb{Z}$

SE CANTE

$$\sec \alpha = \frac{1}{\cos \alpha}$$
 $\alpha \neq \frac{\pi}{2} + \kappa \pi$ $\kappa \in \mathbb{Z}$

COSECANTE

$$CSC = \frac{1}{Sind}$$
 $d \neq KTT \quad K \in \mathbb{Z}$