

ENSIIE
5 Avril 2024
26 Avril 2024

Reconnaissance de Formes et Biométrie

Sonia Garcia-Salicetti

sonia.garcia@telecom-sudparis.eu

Déroulement du module

- 1. Introduction, Apprentissage non-supervisé / Clustering (S. Garcia-Salicetti, TSP)
 - K-Means, Classification Hiérarchique Ascendante (CAH),
 Mélanges de Gaussiennes
- 2. Classification bayésienne, Réseaux de neurones / TP classification automatique (O. Galarraga, Centre Coubert)
- 3. Régression linéaire et non linéaire / TP régression (O. Galarraga, Centre Coubert)
- 4. Introduction à la Reconnaissance de sons (D. Istrate, UTC)
- 5. Réseaux de convolution et Transfer Learning (O. Galarraga)

Déroulement du module

- 6. Introduction à la modélisation de séquences:
- Application à la Biométrie Signature
- Application en santé numérique: analyse automatique du mouvement global (S. Garcia-Salicetti, TSP)
- 7. Machines à Vecteurs de Support et applications santé numérique (J. Boudy, TSP)
- 8. Vérification du locuteur (D. Istrate)
- 9. Traitement du langage naturel (O. Galarraga)
- 10. Apprentissage Profond (Deep Neural Networks) et application à la vidéo (Jean Emmanuel Haugeard, Thalès)

Déroulement du module

- 5 Intervenants

EVALUATION

6 TPs avec compte-rendus:

- Classification supervisée
- Régression
- Apprentissage profond
- Vérification du locuteur
- · Machines à Vecteurs de Support (SVMs)
- Traitement du langage naturel
- 1 projet: Clustering (présentation en binôme) → 1/2 note
- Moyenne des compte-rendus TPs → 1/2 note

Clustering

Une Classification des algorithmes de Clustering

K-moyennes

 Idée du K-Moyennes : partitionner l'espace en K groupes ou clusters (chaque cluster est representé par sa moyenne)

$$\begin{split} J &= \sum_{j=1}^{K} \sum_{i=1}^{n_{j}} \left(x_{i}^{(j)} - \mu_{j} \right)^{2} \\ \mu_{j} &: Centroid\ of\ Cluster\ C_{j} \\ x_{i}^{(j)} &: i^{th}\ Patternm\ belonging\ to\ Cluster\ C_{j} \\ n_{j} &: Number\ of\ Patterns\ assigned\ to\ Cluster\ C_{j} \end{split}$$

- Par cluster: on calcule la somme des écarts quadratiques à la moyenne m
- On somme cette quantité sur tous les clusters
 - → J= erreur totale effectuée quand on représente les données par les centres des clusters : ERREUR DE QUANTIFICATION
- Jest minimisée: erreur de quantification minimale

K-moyennes

 Critère à minimiser= erreur quadratique globale J

$$J = \sum_{j=1}^{K} \sum_{i=1}^{n_j} \left(x_i^{(j)} - \mu_j \right)^2$$

 μ_i : Centroid of Cluster C_i

 $x_i^{(j)}: i^{th}$ Patternmbelonging to Cluster C_i

 n_i : Number of Patterns assigned to Cluster C_i

- Algorithme des k-moyennes
 - Le plus simple
 - Le plus utilisé en pratique

"k-means"

- 1. Initialisation aléatoire de K Centres (Prototypes) dans l'espace
- Etape de Clustering : on affecte chaque donnée au centre le plus proche
- 3. Mise à jour des centres des Clusters
 - Centroid = moyenne de chaque Cluster
- 4. Répéter 2) et 3) jusqu'à convergence

Convergence signifie:

- Plus de nouvelle ré-affectation
- La baisse de l'erreur n'est plus significative
- Garantie d'une minimisation locale
 - Essayer différentes initialisations
 - Choisir celle menant à l'erreur minimale

K-moyennes (*K*=8)

Une seule partition des données est obtenue

La Fonction de Coût

$$\frac{(J_i - J_{i-1})}{J_{i-1}} < \varepsilon$$

K-means: cas des chiffres manuscrits

Methodologie

- 1. Visualiser les données
- 2. Lancer K-Means → connaissance a priori : K=10
- 3. K-means est sensible à l'initialisation
- → Besoin de faire plusieurs initialisations: lancer 5 fois K-means
- (i) Garder le meilleur cas: erreur de quantification minimale
- (ii) Visualiser la convergence du K-means

Run K-Means 5 times

iteratio	n	q	uantization error
1	1	480	52683.1
2	1	120	50474.1
3	1	35	50041.6
4	1	23	49821.5
5	1	15	49679.5
6	1	8	49626.3
7	1	5	49587.2
8	1	5	49553.5
9	1	3	49532.1
10	1	3	49517.9
11	1	2	49508.2
12	1	2	49500.8
13	1	2	49491.1
1	1	480	53130.4
2	1	135	50661.4
3	1	52	49788.4
4	1	30	49424.6
5	1	11	49346.7
6	1	6	49293.3
7	1	2	49277.2
8	1	3	49258.4
9	1	2	49246.6
10	1	2	49233.8
11	1	2	49225.5
12	1	2	49216.2
13	1	1	49210.8

iteratio	n		quantization	error
1	1	480	53313.5	
2	1	122	50481.5	
3	1	37	49973.9	
4	1	20	49759.4	5.3
5	1	11	49641.4	
6	1	5	49608.3	5.3
7	1	7	49553.6	5.2
8	1	1	49548	5.2
9	1	1	49545.3	
10	1	3	49531	5.1
11	1	5	49474.9	5.1
_		400	E2 407 E	5.0
1	1	480	53407.5	1
2	1	118	51110.7	4.9
3	1	43	50556.7	
4	1	28	50243.4	4.9
5	1	18	50035.9	
6	1	5	49990.8	
7	1	4	49966.8	
8	1	3 1	49950.4	
9	1	1	49945.2	
4	4	400	51828.5	
1 2	1 1	480 85	51020.5	
3	1		49923	
3 4	1	39 23	49923	
	1			
5 6	1	5	49577.4 49553.1	
7	1	3 2 3 1	49536.4	
8	1	2	49536.4 49509.6	
9	1	ے 1	49509.6 49501.1	
9	1	1	49201.1	

Garder le meilleur cas:

Erreur minimale= 49210.8

Clustering

Visualisation des centres obtenus

Les 10 prototypes ou centres avec labels de chaque cluster dessus 22

- 1 cluster à 1 seule classe: Cluster 4 (que le chiffre 7)
- 1 cluster à 3 classes: Cluster 9 (mélange de 0,9,6)
- 1 cluster à 4 classes: Cluster 2 (mélange de 5,6,9,0)
- 7 clusters à plus de 5 classes

Indice de Validité : Silhouette

$$s_i = \frac{b_i - a_i}{\max\left(a_i, b_i\right)}$$

→ Mesure de la qualité du Clustering: rôle des indices de validité

- Indice de validité interne: n'utilise pas les étiquettes de classe
- Il existe des indices externes

Indice de Validité : Silhouette

$$s_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

Pour le point *i* :

-a(i): distance moyenne entre i et les points du cluster vert

-b(i): minimum des distances moyennes entre i et les points de chaque autre cluster: min(AVG1,AVG2)

Plus $a(i) \rightarrow 0$, plus le cluster du point *i* sera mieux séparé des autres

 \rightarrow dans ce cas : b(i) > a(i) donc s(i) \rightarrow 1

On moyenne les s(i): indice de la Silhouette (dans [-1,1])

Indice de Validité externe: Entropie

$$\eta(C_k) = -\sum_{i=1}^{N_A} \frac{p(A_i|C_k)\log_2(p(A_i|C_k))}{\log_2(N_A)}$$

$$E[\eta] = \sum_{k=1}^{N_C} \frac{|C_k|}{\left| \bigcup_{j=1}^{N_C} C_j \right|} \eta(C_k)$$

 $A_i : classi: 0, 1, 2, ..., 9$

 $N_A = 10 classes$

Left: Entropy per cluster normalized by log2(10)

= max entropy when
$$P(A_i|C_k) = \frac{1}{10}$$

Right: Weighted average entropy of the partition

```
Hmax=-10(0.1log2(0.1))
= -log2(1/10)
= -(log2(1)-log2(10))
= log2(10)
```

- Calcul par cluster d'abord puis calcul de l'indice d'entropie globale du Clustering obtenu: une valeur dans [0,1]
- Si 1 cluster a une seule classe: son entropie est 0
- Plus l'entropie globale est faible, meilleur est le Clustering

Clustering Hiérarchique

Une Classification des algorithmes de Clustering

Clustering Hiérarchique

- Pas d'hypothèse sur le nombre de clusters
- Pas d'effets d'initialisation
- Construit une structure arborescente de partitions: "dendrogram"
- Par agglomération récursive : construit une hiérarchie de partitions
 - À chaque étape: 2 clusters sont choisis pour être regroupés
 - → les 2 plus similaires

Clustering Hiérarchique : le dendrogram

Racine=tout l'ensemble des données - Variance intra-groupe maximum

Noeuds = groupes

Problème: décider quel niveau du clustering est le bon

i.e. les données du même groupe sont suffisamment plus similaires entre elles qu'aux données de groupes différents

→ Indices de validité

Clusters: Singleton Variance intra-groupe minimum

Clustering Hiérarchique

- → 1 dissimilarité entre clusters est définie: d(G,H)
- 1. Début avec N Clusters Singleton
- 2. Calcul de la Matrice de Proximité pour les N Clusters
- 3. Recherche de la dissimilarité minimale

$$d(C_i, C_j) = \min_{\substack{1 \le m, l \le N \\ m \ne l}} d(C_m, C_l)$$

- 4. Combinaison du Cluster C_j et C_j pour former un nouveau Cluster
- 5. Mise à jour de la Matrice de Proximité
- 6. Répéter 3 à 5 jusqu'à ce que toutes les données soient dans un même cluster

- Single Linkage (SL)
 - Distance entre 2 clusters: la plus faible entre objets des 2 clusters
 - D(G,H)=min d(i,i'), i appartient à G et i' appartient à H
- Complete Linkage (CL)
 - Distance = la plus grande entre objets des 2 clusters
- Group Average (GA)
 - = AVG(d(i,i')) pour tout i,i'
- Ward's Linkage

$$\underline{d}(A,B) = \frac{W_A W_B}{W_A + W_B} d^2(G_A, G_B)$$

WA=card(A) WB=card(B)
GA,GB: centres de gravité de A,B

→ chaque cluster est représenté

Effets de la distance entre clusters (Linkage rule)

△ △ △ Min distance ↑ ☆ ☆ ☆

SL: clusters à grands diamètres

- → La distance entre clusters à tendance à être réduite
- → Des points éloignés seront mis dans le même groupe
- = clusters larges (grande dispersion)

CL: clusters à faibles diamètres

- → la distance entre clusters a tendance à accroître
- → des points proches seront mis dans des groupes différents

GA: un compromis → moins sensible aux "outliers"

WARD: bons résultats en pratique, donne des prototypes à chaque cluster

Exemple

Dist	Α	В	С	D	E	F
A	0.00	0.71	5.66	3.61	4.24	3.20
В	0.71	0.00	4.95	2.92	3.54	2.50
c)	5.66	4.95	0.00	2.24	1.41	2.50
D)	3.61	2.92	2.24	0.00	1.00	0.50
E	4.24	3.54	1.41	1.00	0.00	1.12
F	3.20	2.50	2.50	0.50	1.12	0.00

Matrice de Proximité:

D et F sont les 2 objets les plus proches

→ D et F sont regroupés

Dist	A	В	C	D, F	Ε
Α	0.00	0.71	5.66	?	4.24
В	0.71	0.00	4.95	?	3.54
C .	5.66	4.95	0.00	?	1.41
D, F	?	?	?	0.00	?
E	4.24	3.54	1.41	?	0.00

Mise à jour de la Matrice de Proximité : Comment calculer la distance entre le nouveau cluster à 2 éléments D,F et les autres éléments ?

→ Linkage Rule

Dist	Α	В	С	D	E	F	
A	0.00	0.71	5.66	3.61	4.24	3.20	n
В	0.71	0.00	4.95	2.92	3.54	2.50	
c)	5.66	4.95	0.00	2.24	1.41	2.50	
D)	3.61	2.92	2.24	0.00	1.00	0.50	1
E	4.24	3.54	1.41	1.00	0.00	1.12	
F	3.20	2.50	2.50	0.50	1.12	0.00	

Dist		Α	В	C	D, F	Ε
Α	(0.00	0.71	5.66	?	4.24
В		0.71	0.00	4.95	?	3.54
C	1	5.66	4.95	0.00	?	1.41
D, F		?	?	?	0.00	?
E		4.24	3.54	1.41	?	0.00

Dist	Α	В	C	D, F	E
A	0.00	0.71	5.66	3.20	4.24
В	0.71	0.00	4.95	2.50	3.54
С .	5.66	4.95	0.00	2.24	1.41
D, F	3.20	2.50	2.24	0.00	1.00
Ε	4.24	3.54	1.41	1.00	0.00

$$d_{(D,F)\to A} = \min(d_{DA}, d_{FA}) = \min(3.61, 3.20) = 3.20$$

$$d_{(D,F) \mapsto B} = \min (d_{DB}, d_{FB}) = \min (2.92, 2.50) = 2.50$$

$$d_{(D,F)\to C} = \min(d_{DC}, d_{FC}) = \min(2.24, 2.50) = 2.24$$

$$d_{E \to (D,F)} = \min (d_{ED}, d_{EF}) = \min (1.00, 1.12) = 1.00$$

ETAPE SUIVANTE: A et B seront

regroupés

Dist	A,B	С	(D, F)	E
A,B	0	?	?	?
С	?	0	2.24	1.41
(D, F)	?	2.24	0	1.00
Ε	?	1.41	1.00	0

Min Distance (Single Linkage) Dist A,B (D, F) 3.54 4.95 2.50 A.B 4.95 C 2.24 1.41 2.50 1.00 (D, F) 2.24 3.54 1.00 E 1.41 0

Pas suivants

Dendrogram:

Les distances entre groupes augmentent quand on agrège (on agrège d'abord les clusters les plus proches et progressivement des clusters qui sont plus éloignés)

Algorithmes de Clustering partitionnels vs. Hiérarchique

- On obtient avec une seule Partition des données, pas une hiérarchie de partitions
- Mieux pour de grands ensembles de données
- Problème 1: comment choisir le nombre de Clusters?
 - Connaissance a priori
 - Indices de Validité
- Problème 2: comment gérer la sensibilité de l'algorithme à l'initialisation?
 - Faire plusieurs initialisations et retenir le meilleur Clustering (indices de validité)

Clustering Hiérarchique

- Il n'y a pas d'hypothèse a priori sur le nombre de clusters
- Il n'y a pas d'effets d'initialisation
- Lourd coût calculatoire sur grands ensembles de données :
 - Calcul de la matrice de proximité: toutes les distances entre tous les éléments
 - Complexité quadratique
 - → K-means calcule seulement les distances entre chaque élément et les prototypes! (K<<N)

Bibliography

- [1] Jain A.K. et al. "Data Clustering: A Review", *Pattern Recognition Letters* 31(8), pp. 651-666, 2010.
- [2] Kaufman L. and P. J. Rouseeuw. *Finding Groups in Data: An Introduction to Cluster Analysis*. Hoboken, NJ: John Wiley & Sons, Inc., 1990.
- [3] Rouseeuw, P. J. "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis", *Journal of Computational and Applied Mathematics*. Vol. 20, No. 1, 1987, pp. 53–65.
- [4] Calinski, T., and J. Harabasz. "A dendrite method for cluster analysis." *Communications in Statistics*. Vol. 3, No. 1, 1974, pp. 1–27.
- [5] Davies, D. L., and D. W. Bouldin. "A Cluster Separation Measure." *IEEE Transactions on Pattern Analysis and Machine Intelligence*. Vol. PAMI-1, No. 2, 1979, pp. 224–227.
- [6] Maria Halkidi, Yannis Batistakis, Michalis Vazirgiannis, "On Clustering Validation Techniques", *Journal of Intelligent Information Systems*, 17:2/3, 107-145, 2001.
- [7] R.O. Duda, P. E. Hart, D.G. Stork, *Pattern Classification*, Second Edition, John Wiley, 2001.
- [8] McLachlan, G., and D. Peel, *Finite Mixture Models*, Hoboken, NJ: John Wiley & Sons, Inc., 2000.

Travail Pratique (1)

Classer des chiffres manuscrits en exploitant l'algorithme des K-moyennes

Optical Recognition of Handwritten Digits Data Set (*UC Irvine ML Repository*) https://archive.ics.uci.edu/ml/datasets/optical+recognition+of+handwritten+digits

A propos de la base:

Des codes de prétraitement mis à disposition par NIST ont été utilisés pour extraire des bitmaps normalisés de chiffres manuscrits d'un formulaire

Sur un total de **43 personnes**:

- 30 personnes ont contribué à l'ensemble d'apprentissage (BA)
- les 13 personnes restantes à l'ensemble de test (BT)
- Format original des données: 1 chiffre = 1 bitmap 32x32
- Extraction de caractéristiques:
- chaque chiffre (bitmap 32x32) a été divisé en blocs sans recouvrement
- chaque bloc est de taille 4x4
- le nombre de pixels est compté dans chaque bloc (= valeur entre 0 et 16; permet une compression des entrées et un lissage des faibles distorsions)
- → 1 chiffre est devenu 1 matrice de taille 8x8
- → chaque élément est un entier dans l'intervalle 0..16 (Nb pixels par bloc)

Travail Pratique (2)

- I. La base d'apprentissage (BA) à utiliser: optdigits.tra
- BA: 3823 chiffres manuscrits
- X= matrice des entrées de la BA:
- Chaque ligne = 1 chiffre → X : 3823 lignes
- Chaque chiffre est représenté par 8x8=64 valeurs + étiquette = 65 colonnes
- → X: matrice 3823x65

- II. La base de test (BT) à utiliser pour classer : optdigits.tes
- 1797 chiffres manuscrits

Travail Pratique (3)

- L'implémentation: outil de votre choix (R, Matlab, Python, etc.)
- Rédiger une présentation décrivant: techniques, résultats et analyses

DEMARCHE A SUIVRE (APPRENTISSAGE)

- I. Apprentissage
- 1. Faire un K-moyennes avec K=10 sur la base d'apprentissage (BA) : optdigits.tra
- 2. Par cluster: faire un histogramme du nombre de chiffres de chaque classe
- → Analyser si les clusters ont un sens (classe la plus représentée, ressemblance avec d'autres classes...)
- 3. Mesurer la qualité du Clustering avec l'indice de la Silhouette
- → Est-ce un bon Clustering?
- 4. Faire varier K entre 10 et 20 clusters et calculer pour chaque K l'indice de la Silhouette → Pour quelle valeur de K obtenez-vous un meilleur Clustering?

Travail Pratique (4)

DEMARCHE A SUIVRE (TEST): considérer le meilleur Clustering obtenu

- II. Test: Classification à partir du Clustering obtenu sur optdigits.tra
- 1. <u>Par cluster</u>: faire un vote à la majorité pour attribuer un label à chaque cluster (la classe la plus représentée dans chaque cluster)
- 2. Pour chaque élément de la BT (Base de Test) : optdigits.tes
- Chercher le Cluster (Centre) le plus proche
- Attribuer à cet élément de la BT le label associé au Cluster le plus proche
- Calculer la matrice de confusions (matrice 10x10) et la performance globale: analyser les confusions

Travail Pratique CAH (5)

III. Comparaison au Clustering Hiérarchique (avec le critère de Ward)

1. Phase d'apprentissage: sur optdigits.tra

- Faire un Clustering Hiérarchique et visualiser le dendrogramme
- Couper le dendrogramme à K=10, calculer l'indice de la Silhouette et faire les histogrammes par cluster (à comparer avec histogrammes avec K-moyennes).
 Comparer à la valeur de la Silhouette obtenue avec l'algorithme des K-moyennes.
- Couper le dendrogramme à d'autres niveaux hiérarchiques: entre 11 et 20 clusters et calculer pour chaque K l'indice de la Silhouette. Pour quelle valeur de K obtenez-vous la meilleure partition? Comparer au K-moyennes.

Travail Pratique (6)

DEMARCHE A SUIVRE (TEST Clustering Hiérarchique): Il faut considérer le meilleur Clustering obtenu avec la CAH

- 2. Phase de test après Clustering Hiérarchique: sur optdigits.tes
- On va classer les éléments de la base de test, optdigits.tes, à partir du meilleur Clustering obtenu sur optdigits.tra avec la CAH
- (i) Par cluster: faire un vote à la majorité pour attribuer un label à chaque cluster (la classe la plus représentée dans chaque cluster)
- (ii) Pour chaque élément de la BT (Base de Test) : optdigits.tes
- Chercher le Cluster (Centre) le plus proche
- Attribuer à cet élément de la BT le label associé au Cluster le plus proche
- Calculer la matrice de confusions (matrice 10x10) et la performance globale: analyser les confusions. Comparer les résultats de classification à ceux obtenus avec le K-moyennes. Analysez.