

CMT2310A Register Description

Overview

This application document provides register introduction for users who use CMT2310A for product development, so that users can refer to the description and usage of each register during processing.

The product models covered in this document are shown in the table below.

Table 1. Product Models Covered in this Document

Part Number	Frequency	Modem	Function	Configuration	Package
CMT2310A	113 - 960 MHz	(4)(G)FSK/OOK	Transceiver	Register	QFN24

Users should jointly read the documents below to get comprehensive information on software and hardware development.

AN238 CMT2310A RF Parameter Configuration Guide

AN235 CMT2310A FIFO and Packet Format Usage Guide

AN237 CMT2310A Quick Start Guide

AN239 CMT2310A Automatic Receiving and Transmission Function Usage Guide

Table of Contents

1 Register Introduction	3
1.1 PAGE 0, Control Register (0x00 - 0x27)	3
1.2 PAGE 0, Configuration Register(0x28 - 0x77)	15
1.3 PAGE 1, Configuration Register(0x00 - 0x68)	28
2 Revise History	
3 Contacts	31

1 Register Introduction

1.1 PAGE 0, Control Register (0x00 - 0x27)

Registers in this area are mainly to control the switching of chip operating mode and interrupt related operating.

Table 2. PAGE 0 (0x00 - 0x27), Control Register Description

Register Name	Bits	R/W	Bit Flag	Description
				The register sends out 0x03 to power on
CTL_REG_0	7:0	W	PU_BOOT <7:0>	the chip in IDLE state and then make the
(0x00)	7.0	VV	1 0_001 <7.02	chip to stay in SLEEP state. It is not
				allowed to set other values
				Chip state switching command
				00000001: go_sleep
				00000010: go_ready
CTL_REG_1				00000100: go_tx
(0x01)	7:0	W	CHIP_MODE_SW<7:0>	00001000: go_rx
(0x01)				00010000: go_tfs
				00100000: go_rfs
				Except for the 6 values above, others are
				invalid.
	7:2	RW	RESV	Reserve bit, it has to set all 0
				Antenna diversity manual mode enables:
	1	RW	ANT_DIV_MANU	0: disable
CTL_REG_2				1: enable
(0x02)				Antenna selected in antenna diversity
	0	RW	ANT_SELECT	manual mode:
	U			0: antenna 1
				1: antenna 2
CTL_REG_3	7:0	RW	EDEO CHANI MANIL 7:05	Manually set the channel value in fast
(0x03)	7.0	KVV	FREQ_CHANL_MANU<7:0>	frequency hopping mode
	7	RW	RESV	Reserve bit, it is set to 0
	6	RW	TY DIN EN	0: disable Tx data to be input from GPIO
	0	KVV	TX_DIN_EN	1: enable Tx data to be input from GPIO
CTL_REG_4				Select GPIO1 function.
(0x04)				000: DCLK
(0,04)	E.0	RW	CDIO1 SEL 22:05	001: INT1
	5:3	KVV	GPIO1_SEL<2:0>	010: INT2
				011: DOUT
				Other selections: NA

Register Name	Bits	R/W	Bit Flag	Description
				Select GPIO1 function:
				000: DOUT
				001: INT1
	2:0	RW	GPIO0_SEL<2:0>	010: INT2
				011: DCLK
				110: INT3
				Other selections: NA
				Select which GPIO to input the transmitting
				data:
	7.0	D)A/	TV DIN OFF 4:0	00: GPIO3
	7:6	RW	TX_DIN_SEL<1:0>	01: GPIO4
				10: NIRQ
				11: NA
				Select the GPIO3 function:
				000: INT2
				001: INT1
CTL_REG_5	5:3	RW	GPIO3_SEL<2:0>	010: DCLK
(0x05)				011: DOUT
				101: DIN
				Other selections: NA
				Select the GPIO2 function.
				000: INT1
				001: INT2
	2:0	RW	GPIO2_SEL<2:0>	010: DCLK
				011: DOUT
				110: INT3
				Other selections: NA
	7	RW	RESV	Reserve bit, it has to be set as 0
				Set GPIO4 as digital clock output.
				0: disable
	6	RW	DIG_CLKOUT_EN	1: enable
				The item has higher priority than other GPIO4
				configurations.
CTL_REG_6				Select GPIO5 function.
(0x06)				000: RSTn
				001: INT1
	5:3	RW	GPIO5_SEL<2:0>	010: INT2
				011: DOUT
				100: DCLK
				Other options: NA
	2:0	RW	GPIO4_SEL<2:0>	Select GPIO4 function.

Register Name	Bits	R/W	Bit Flag	Description
				000: DOUT
				001: INT1
				010: INT2
				011: DCLK
				101: DIN
				Other options: NA
	7:6	RW	RESV	Reserve bit, it has to be set as 00
				Set GPIO2 and GPIO3 as the two pins of
				LFXO.
	_	D)A/	LEVO DAD EN	0: disable.
	5	RW	LFXO_PAD_EN	1: enable.
				The item has higher priority than other GPIO2
				and GPIO3 configurations.
				Stop the API that the chip is executing.
	4	RW	API_STOP	0: API in progress
				1: API stop
CTL_REG_7				Switch the chip SPI interface to 3-wire mode.
(0x07)	3	RW	SPI_3W_EN	0: 4-wire mode.
				1: 3-wire mode.
				Select NIRQ function.
		RW	NIRQ_SEL<2:0>	000: INT1
				001: INT2
				010: DCLK
	2:0			011: DOUT
				100: TCXO
				101: DIN
				Other options: NA
CTL_REG_8				
(0x08)	6:0	W	API_CMD<6:0>	API command input interface.
CTL_REG_9	7	R	API_CMD_FLAG	API command flag
(0x09)	6:0	R	API_RESP<6:0>	Feedback or response of API command
(0x03)	0.0	IX.	ALI_NESI (0.02	execution.
				Current state of the chip.
CTL_REG_10				00000000: IDLE
				10000001: SLEEP
	7:0			10000010: READY
		R	CHIP_MODE_STA<7:0>	10000100: RFS
(0x0A)				10001000: TFS
				10010000: RX
				10100000: TX
				IDLE indicates that no operation is

Register Name	Bits	R/W	Bit Flag	Description
				performed after the chip is powered
				on.Other values are invalid.
CTL_REG_11	7.0	_	EDEO DONE TIMEO 7:0	Automatic frequency hopping completion
(0x0B)	7:0	R	FREQ_DONE_TIMES<7:0>	times are valid from 0 to 63
CTL_REG_12	7.0	DW	EDEO ODAGE 7:0	Channel interval for automatic frequency
(0x0C)	7:0	RW	FREQ_SPACE<7:0>	hopping.
CTL_REG_13	7:0	RW	FREQ_TIMES<7:0>	Automatic frequency hopping times are
(0x0D)	7.0	INVV	FREQ_TIMES<7.0>	valid from 1 to 64
				RX FIFO full interruption enabled.
	7	RW	RX_FIFO_FULL_EN	0: disable
				1: enable
				RX FIFO not empty interruption enabled.
	6	RW	RX_FIFO_NMTY_EN	0: disable
				1: enable
				RX FIFO unread content exceed the FIFO
	_	DW		TH interruption enabled.
	5	RW	RX_FIFO_TH_EN	0: disable
				1: enable
	4	RW	RESV	Reserve bit, it is set as 0
CTL_REG_14				RX FIFO overflow interruption enabled.
(0x0E)	3	RW	RX_FIFO_OVF_EN	0: disable
				1: enable
				TX FIFO full interruption enabled.
	2	RW	TX_FIFO_FULL_EN	0: disable
				1: enable
			TX_FIFO_NMTY_EN	TX FIFO not empty interruption enabled.
	1	RW		0: disable
				1: enable
				TX FIFO unread content exceed the FIFO
				TH interruption enabled.
	0	RW	TX_FIFO_TH_EN	0: disable
				1: enable
OTI DEC 45	7.1	_	250/	Reserve bit, cannot write, read value can
CTL_REG_15	7:1	R	RESV	be ignored.
(0::05)	0	-	ANT INICED	Instruct the locking antenna of the antenna
(0x0F)	0	R	ANT_INSTR	diversity.
	7:6	RW	RESV	Reserve bit, it has to be set as 0
OTL DE0 40				Selection of interruption source when INT1
CTL_REG_16	F. 0	DVA	INTA OFL 5:0	is mode 1.
(0x10)	5:0	RW	INT1_SEL<5:0>	000000: INT_MIX, all interruption
				combination

Register Name	Bits	R/W	Bit Flag	Description
				000001: ANT_LOCK
				000010: RSSI_PJD_VALID
				000011: PREAM_PASS
				000100: SYNC_PASS
				000101: ADDR_PASS
				000110: CRC_PASS
				000111: PKT_OK
				001000: PKT_DONE
				001001: SLEEP_TMO
				001010: RX_TMO
				001011: RX_FIFO_NMTY
				001100: RX_FIFO_TH
				001101: RX_FIFO_FULL
				001110: RX_FIFO_WBYTE
				001111: RX_FIFO_OVF
			· ·	010000: TX_DONE
				010001: TX_FIFO_NMTY
				010010: TX_FIFO_TH
				010011: TX_FIFO_FULL
				010100: STATE_IS_READY
				010101: STATE_IS_FS
				010110: STATE_IS_RX
				010111: STATE_IS_TX
				011000: LBD_STATUS
				011001: API_CMD_FAILED
				011010: API_DONE
				011011: TX_DC_DONE
				011100: ACK_RECV_FAILED
				011101: TX_RESEND_DONE
				011110: NACK_RECV
				011111: SEQ_MATCH
				100000: CSMA_DONE
				100001: CCA_STATUS
				The polarity of interrupt 1:
	7	RW	INT1_POLAR	0: high active.
				1: low active.
OTI 550 :-				The polarity of interrupt 2:
CTL_REG_17	6	RW	INT2_POLAR	0: high active.
(0x11)				1: low active.
				Selection of interruption source when INT2
	5:0	RW	INT2_SEL<5:0>	is mode 1.

Register Name	Bits	R/W	Bit Flag	Description
				000000: INT_MIX, all interruption
				combination
				000001: ANT_LOCK
				000010: RSSI_PJD_VALID
				000011: PREAM_PASS
				000100: SYNC_PASS
				000101: ADDR_PASS
				000110: CRC_PASS
				000111: PKT_OK
				001000: PKT_DONE
				001001: SLEEP_TMO
				001010: RX_TMO
				001011: RX_FIFO_NMTY
				001100: RX_FIFO_TH
				001101: RX_FIFO_FULL
				001110: RX_FIFO_WBYTE
				001111: RX_FIFO_OVF
				010000: TX_DONE
				010001: TX_FIFO_NMTY
				010010: TX_FIFO_TH
				010011: TX_FIFO_FULL
				010100: STATE_IS_READY
				010101: STATE_IS_FS
				010110: STATE_IS_RX
				010111: STATE_IS_TX
				011000: LBD_STATUS
				011001: API_CMD_FAILED
				011010: API_DONE
				011011: TX_DC_DONE
				011100: ACK_RECV_FAILED
				011101: TX_RESEND_DONE
				011110: NACK_RECV
				011111: SEQ_MATCH
				100000: CSMA_DONE
				100001: CCA_STATUS
	7 514		0: disable SLEEP_TMO interruption	
	7	RW	SLEEP_TMO_EN	1: enable SLEEP_TMO interruption
CTL_REG_18		DW	DV TMO EN	0: disable RX_TMO interruption
(0x12)	6	RW RX_TMO_EN	KA_TIVIO_EIN 	1: enable RX_TMO interruption
	_	DW	TV DONE EN	0: disable TX_DONE interruption
	5	RW	TX_DONE_EN	1: enable TX_DONE interruption

Register Name	Bits	R/W	Bit Flag	Description
	4	DW	DDEAM DAGG EN	0: disable PREAM_PASS interruption
	4	RW	PREAM_PASS_EN	1: enable PREAM_PASS interruption
	2	DW	SVAIC DASS EN	0: disable SYNC_PASS interruption
	3	RW	SYNC_PASS_EN	1: enable SYNC_PASS interruption
	2	DW	ADDD DACC EN	0: disable ADDR_PASS interruption
	2	RW	ADDR_PASS_EN	1: enable ADDR_PASS interruption
	1	RW	CRC_PASS_EN	0: disable CRC_PASS interruption
	ı	KVV	CRC_FA33_EN	1: enable CRC_PASS interruption
	0	RW	PKT_DONE_EN	0: disable PKT_DONE interruption
	O	KVV	FRI_DONE_EN	1: enable PKT_DONE interruption
				The polarity of interrupt 3:
	7	RW	INT3_POLAR	0: high effective
				1: low effective
				0: Save the FIFO content in the SLEEP
	6	RW	PD_FIFO	state
	0	KVV		1: The FIFO content is not saved in the
				SLEEP state
	5	RW	FIFO_TH<8>	The 8 th bit of FIFO_TH.
	4	RW	FIFO_AUTO_CLR_RX_EN	Automatically clear RX FIFO content
				before configuring into RX.
				0: not clear
				1: clear
CTL_REG_19	3	3 RW	FIFO_AUTO_RES_TX_EN	Restore TX FIFO automatically after each
(0x13)				packet transmission. If it requires to send
				more than 1 packet repeatedly
				(TX_PKT_NUM> 0), this bit must be set as 1.
				0: TX FIFO can only be written through SPI
				1: SPI supports Read operation on TX FIFO.
	2	RW	FIFO_TX_TEST_EN	This bit is only valid to TX FIFO. It should
				always be set as 0 except for user testing
				usage.
	1	RW	FIFO_MERGE_EN	0: separate as 2 128-byte FIFOs.
		1000	TH G_WENGE_EN	1: merge into 1 256-byte FIFO.
				When FIFO under merged mode,
	0	RW	FIFO_TX_RX_SEL	0: FIFO can be used as TX FIFO
				1: FIFO can be used as RX FIFO
				The FIFO filling threshold unit is byte.
CTL_REG_20				For RX, when the unread data exceed the
(0x14)	7:0	7:0 RW	FIFO_TH<7:0>	threshold, RX_FIFO_TH_FLG is set to 1;
(5/(1.1)				for TX, when the unsent data is under the
				threshold, TX_FIFO_TH_FLG is set to 0.

Register Name	Bits	R/W	Bit Flag	Description
				When FIFO_MERGE_EN = 0, the valid range
				is 1 - 127.;
				When FIFO_MERGE_EN = 1, the valid
				range is 1 - 255.
	7	RW	RESV	Reserve bit, it has to be set as 0.
	6	RW	RSSI_PJD_VALID_EN	0: disable RSSI_PJD_VALID interruption
	0	IXVV	NGGI_I JD_VALID_LIN	1: enable RSSI_PJD_VALID interruption
	5	RW	OP_CMD_FAILED_EN	0: disable API_CMD_FAILED interruption
	ວ	KVV	OF_CMD_FAILED_EN	1: enable API_CMD_FAILED interruption
	4	DIA	D001 0011 FN	0: disable RSSI_COLL interruption
071 050 04	4	RW	RSSI_COLL_EN	1: enable RSSI_COLL interruption
CTL_REG_21		5)4/	DICT EDD EN	0: disable PKT_ERR interruption
(0x15)	3	RW	PKT_ERR_EN	1: enable PKT_ERR interruption
	_			0: disable LBD_STATUS interruption
	2	RW	LBD_STATUS_EN	1: enable LBD_STATUS interruption
			LBD_STOP_EN	0: disable LBD_STOP interruption
	1	RW		1: enable LBD_STOP interruption
	0 RV		LD_STOP_EN	0: disable LD_STOP interruption
		RW		1: enable LD_STOP interruption
	7	RW	FREQ_HOP_MANU_EN	0: disable manually fast frequency sweep
				1: enable manually fast frequency sweep
	6	RW	RX_HOP_PERSIST	RX automatically frequency hopping
				setting:
				0: complete the setting times
				1: keep going
				In the case of RX frequency hopping, users
				can select to back to a certain state and
				return back to RX state to continue
	5	RW	FREQ_SW_STATE	receiving the next channel when it is
CTL_REG_22	3		1.1.2.2.511.1.2	overtime.
(0x16)				0: back to READY state
(0,10)				1: back to RFS state
				0: not reverse the transmission data input
				from GPIO.
	4	RW	TX_DATA_INV	1: reverse the transmission data input from
				GPIO.
	3	RW	RESV	Reserve bit, it has to be set as 0.
	3	1744	I NEOV	Control the two output values of the TX/RX
				antenna switch:
	2	RW	TRX_SWT_INV	
				0: not reverse
				1: reverse

Register Name	Bits	R/W	Bit Flag	Description
				Set the GPIO 0 and GPIO 1 as the control
		D.M.		output of TX / RX antenna switch. It has
	1	RW	TRX_SWT_EN	higher priority than the GPIO0_SEL and
				GPIO1_SEL.
	0	DW	ANT LOCK FN	0: disable ANT_LOCK interruption
	0	RW	ANT_LOCK_EN	1: enable ANT_LOCK interruption
	7	RW	API_DONE_EN	0: disable API_DONE interruption
	7	KVV	API_DONE_EN	1: enable API_DONE interruption
	6	RW	CCA_STATUS_EN	0: disable CCA_STATUS interruption
	O	INVV	CCA_STATUS_EN	1: enable CCA_STATUS interruption
	5	RW	CSMA_DONE_EN	0: disable CSMA_DONE interruption
	3	IXVV	CSWA_DONE_EN	1: enable CSMA_DONE interruption
	4	RW	TX_DC_DONE_EN	0: disable TX_DC_DONE interruption
	7	IXVV	TA_BO_BOINE_EIN	1: enable TX_DC_DONE interruption
CTL_REG_23				0: disable ACK_RECV_FAILED
(0x17)	3	RW	ACK_RECV_FAILED_EN	interruption
				1: enable ACK_RECV_FAILED interruption
	2	RW	TX_RESEND_DONE_EN	0: disable TX_RESEND_DONE
				interruption
				1: enable TX_RESEND_DONE interruption
	1 R	RW	NACK_RECV_EN	0: disable NACK_RECV interruption
				1: enable NACK_RECV interruption
	0 RV	RW	SEQ_MATCH_EN	0: disable SEQ_MATCH interruption
				1: enable SEQ_MATCH interruption
	7:6	R	RESV	Reserve bit, it is set as 0.
	5	R	SLEEP_TMO_FLG	SLEEP_TMO interruption flag
	4	R	RX_TMO_FLG	RX_TMO interruption flag
	3	R	TX_DONE_FLG	TX_DONE interruption flag
				SLEEP_TMO interruption clear
CTL_REG_24	2	W	SLEEP_TMO_CLR	0: no action
(0x18)				1: clear
				RX_TMO interruption clear
	1	W	RX_TMO_CLR	0: no action
				1: clear
	0	147	TV DONE OLD	TX_DONE interruption clear
	0 W	VV	TX_DONE_CLR	0: no action
	7.5	W	DECV	1: clear
CTL_REG_25	7:5	VV	RESV	Reserve bit, it has to be set as 0.
(0x19)	1	\//	PREAM_PASS_CLR	PREAM_PASS interruption clear
(0.13)	4	4 W		0: no action
		<u> </u>		1: clear

Register Name	Bits	R/W	Bit Flag	Description
				SYNC_PASS interruption clear
	3	W	SYNC_PASS_CLR	0: no action
				1: clear
				ADDR_PASS interruption clear
	2	W	ADDR_PASS_CLR	0: no action
				1: clear
				CRC_PASS interruption clear
	1	W	CRC_PASS_CLR	0: no action
				1: clear
				PKT_DONE interruption clear
	0	W	PKT_DONE_CLR	0: no action
				1: clear
	7:6	R	RESV	Reserve bit, read value can be ignored
	5	R	SYNC1_PASS_FLG	SYNC1_PASS interruption flag
071 050 00	4	R	PREAM_PASS_FLG	PREAM_PASS interruption flag
CTL_REG_26	3	R	SYNC_PASS_FLG	SYNC_PASS interruption flag
(0x1A)	2	R	ADDR_PASS_FLG	ADDR_PASS interruption flag
	1	R	CRC_PASS_FLG	CRC_PASS interruption flag
	0	R	PKT_DONE_FLG	PKT_DONE interruption flag
	7:3	W	RESV	Reserve bit, it has to be set as 0.
				Provides manually restore TX FIFO
	2	W	TX_FIFO_RESTORE	function. Restore means reset red pointer
				and keep the write pointer unchanged,
				which makes TX FIFO back to unread state
CTL_REG_27				and resend the already filled in data.
(0x1B)				0: invalid, 1: clear RX FIFO
(67.12)	1	W	RX_FIFO_CLR	Users don't need to set it back to 0 when the
			TOC_FIT O_OLIN	bit is 1 since it will back to 0 internally.
				0: invalid, 1: clear TX FIFO
	0	W	TX_FIFO_CLR	Users don't need to set it back to 0 when the
	U	, , ,	1X_1 0_0E X	bit is 1 since it will back to 0 internally.
				Interruption flag of RX FIFO full
	7	R	RX_FIFO_FULL_FLG	0: invalid
	1	I N	KX_FIFO_FOLL_FLG	1: valid
CTL DEC 20	6	R	DV FIFO NIMTY FLO	Interruption flag of RX FIFO not empty 0: invalid
CTL_REG_28	6	K	RX_FIFO_NMTY_FLG	
(0x1C)				1: valid
				Interruption indicates that RX FIFO unread
	5	R	RX_FIFO_TH_FLG	content exceeds FIFO TH
				0: invalid
				1: valid

Register Name	Bits	R/W	Bit Flag	Description
	4	-	DEOV	Reserved bit. The read value can be
	4	R	RESV	ignored
				Interruption indicates RX FIFO overflow
	3	R	RX_FIFO_OVF_FLG	0: invalid
				1: valid
				Interruption indicates TX FIFO full
	2	R	TX_FIFO_FULL_FLG	0: invalid
				1: valid
				Interruption indicates TX FIFO not empty
	1	R	TX_FIFO_NMTY_FLG	0: invalid
				1: valid
				Interruption indicates that TX FIFO unread
	0	R	TX_FIFO_TH_FLG	content exceeds FIFO TH
			17_111 6_111_120	0: invalid
				1: valid
	7:5	W	RESV	Reserve bit, it has to be set as 0.
		W	ANT_LOCK_CLR	ANT_LOCK interruption clear
	4			0: no action
				1: clear
	3	W	OP_CMD_FAILED_CLR	OP_CMD_FAILED interruption clear
				0: no action
071 570 11				1: clear
CTL_REG_29		,,,,	5001 0011 015	RSSI_COLL interruption clear
(0x1D)	2	W	RSSI_COLL_CLR	0: no action
				1: clear
	,	107	DICT FDD OLD	PKT_ERR interruption clear
	1	W	PKT_ERR_CLR	0: no action 1: clear
				LBD_STATUS interruption clear
	0	W	LED STATUS OLD	·
		VV	LBD_STATUS_CLR	0: no action 1: clear
	7:5	R	RESV	Reserve bit, read data can be ignored.
	4	R	ANT_LOCK_FLAG	ANT_LOCK interruption flag
CTL_REG_30	3	R	OP_CMD_FAILED_FLG	OP_CMD_FAILED interruption flag
(0x1E)	2	R	RSSI_COLL_FLG	RSSI_COLL interruption flag
(OXIL)	1	R	PKT_ERR_FLG	PKT_ERR interruption flag
	0	R	LBD_STATUS_FLG	LBD_STATUS interruption flag
		'`		API_DONE interruption clear
CTL_REG_31	7	W	API_DONE_CLR	0: no action
(0x1F)				1: clear
(5.11)	6	W	CCA_STATUS_CLR	CCA_STATUS interruption clear
		, v	00/1_01/1100_0LIN	33/1_01/11/00 intorruption deal

Register Name	Bits	R/W	Bit Flag	Description
				0: no action
				1: clear
				CSMA_DONE interruption clear
	5	W	CSMA_DONE_CLR	0: no action
				1: clear
				TX_DC_DONE interruption clear
	4	W	TX_DC_DONE_CLR	0: no action
				1: clear
				ACK_RECV_FAILED interruption clear
	3	W	ACK_RECV_FAILED_CLR	0: no action
				1: clear
				TX_RESEND_DONE interruption clear
	2	W	TX_RESEND_DONE_CLR	0: no action
				1: clear
				NACK_RECV interruption clear
	1	W	NACK_RECV_CLR	0: no action
				1: clear
				SEQ_MATCH interruption clear
	0	W	SEQ_MATCH_CLR	0: no action
				1: clear
	7	R	API_DONE_FLG	API_DONE interruption flag
	6	R	CCA_STATUS_FLG	CCA_STATUS interruption flag
	5	R	CSMA_DONE_FLG	CSMA_DONE interruption flag
CTL_REG_32	4	R	TX_DC_DONE_FLG	TX_DC_DONE interruption flag
(0x20)	3	R	ACK_RECV_FAILED_FLG	ACK_RECV_FAILED interruption flag
	2	R	TX_RESEND_DONE_FLG	TX_RESEND_DONE interruption flag
	1	R	NACK_RECV_FLG	NACK_RECV interruption flag
	0	R	SEQ_MATCH_FLG	SEQ_MATCH interruption flag
				In the case of antenna diversity, the RSSI
CTL_REG_33	4.0		DOOL VALUE MIN 7:0	read value of the antenna with the lower
(0x21)	1:0	R	RSSI_VALUE_MIN<7:0>	receiving signal strength is obtained
				among the two antennas,
CTL_REG_34	7.0	-	DOOL VALUE 7:0	The DOOL read water 1997 1997 1997
(0x22)	7:0	R	RSSI_VALUE<7:0>	The RSSI read value, with a unit of dbm
CTL_REG_35	7.0	Г	LDD DATA 7:0	Louis attenue data attana araba
(0x23)	7:0	R	LBD_DATA<7:0>	Low battery detection. value
CTL_REG_36	7.0	ר	TEMP DATA -7:0	Tomporatura detection value
(0x24)	7:0	R	TEMP_DATA<7:0>	Temperature detection value
CTL_REG_37	7.0	_	EDEO CHANE ACT TO	The current used channel value under
(0x25)	7:0	R	FREQ_CHANL_ACT<7:0>	automatic frequency hopping.
CTL_REG_38	7:0	R	SEQNUM_TX_OUT<7:0>	Currently TX sequence value.

Register Name	Bits	R/W	Bit Flag	Description
(0x26)				
CTL_REG_39 (0x27)	7:0	R	SEQNUM_TX_OUT<15:8>	

1.2 PAGE 0, Configuration Register (0x28 - 0x77)

Registers in this area is used for configurations of packet format, FIFO, and system operating mechanism.

Table 3. PAGE 0 (0x28 - 0x77), Configuration Register Description

Register Name	Bits	R/W	Bit Flag	Description
	7:3	RW	RX_PREAM_SIZE<4:0>	Preamble length in RX mode with a range of 0 -31 length units. 0 represents it does not detect Preamble; 1
				represents it detects Preamble with 1 length unit, and so on.
CTL_REG_40	2	RW	PREAM_LENG_UNIT	The length unit of Preamble is shared by TX and RX.: 0: the length unit is 8 bits
(0x28)				1: the length unit is 4 bits
				Select data mode for transmitting and receiving data.
				0: Direct mode (default)
	1:0	RW	DATA_MODE<1:0>	1: NA
				2: Packet mode
CTL DEC 44				3: NA
CTL_REG_41 (0x29)	7:0	RW	TX_PREAM_SIZE<7:0>	The Preamble length in TX mode can be configured with a range of 0 - 65535 length units. 0 represents it does
CTL_REG_42				not send out Preamble; 1 represents it sends out
(0x2A)	7:0	RW	TX_PREAM_SIZE<15:8>	Preamble with 1 length unit, and so on.
CTL_REG_43				The Preamble value is shared by both TX and RX:
(0x2B)	7:0	RW	PREAM_VALUE<7:0>	When PREAM_LEN_UNIT = 0, all the 8 bits are valid.
				When PREAM_LEN_UNIT = 1, only bits <3:0> is valid.
				Sync detection mode:
	7	RW	SYNC_MODE_SEL	0: normal mode
				1: compatible with 802.15.4 mode
				Number of error-tolerant bits for Sync Word detection
CTL_REG_44 (0x2C)				in RX mode:
				0: not allowed for error
	6:4	RW	SYNC_TOL<2:0>	1: allowed for error receiving of 1bit
				2: allowed for error receiving of 2bits
				3: allowed for error receiving of 3bits
				4: allowed for error receiving of 4bits

Register Name	Bits	R/W	Bit Flag	Description
				5: allowed for error receiving of 5bits
				6: allowed for error receiving of 6bits
				7: allowed for error receiving of 7bits
				Sync Word length:
				0: 1 byte
				1: 2 bytes
				2: 3 bytes
	3:1	RW	SYNC_SIZE<2:0>	3: 4 bytes
				4: 5 bytes
				5: 6 bytes
				6: 7 bytes
				7: 8 bytes
				The enabling Manchester Codec of Sync Word
	0	RW	SYNC_MAN_EN	0: disable
				1: enable
CTL_REG_45	7:0	RW	SYNC_VALUE<7:0>	
(0x2D)	7.0	INVV	STNC_VALUE (7.0)	
CTL_REG_46	7:0	RW	SYNC_VALUE<15:8>	
(0x2E)	7.0	INVV	STNC_VALUE (15.6)	
CTL_REG_47	7:0	RW	SYNC_VALUE<23:16>	
(0x2F)	7.0	1200	01110_VALUE\20.102	
CTL_REG_48	7:0	RW	SYNC_VALUE<31:24>	Suna Ward values are filled into different registers
(0x30)	7.0	17.00	OTIVO_VALUE COT.242	Sync Word values are filled into different registers
CTL_REG_49	7:0	RW	SYNC_VALUE<39:32>	according to the SYNC_SIZE Settings, more details
(0x31)	7.0	1000	01110_V/1E0E<00.022	please refer to the following table.
CTL_REG_50	7:0	RW	SYNC_VALUE<47:40>	
(0x32)	7.0		0.110_v/120E\41.40/	
CTL_REG_51	7:0	RW	SYNC_VALUE<55:48>	
(0x33)	7.5		5.115_1/125E 100.102	
CTL_REG_52	7:0	RW	SYNC_VALUE<63:56>	
(0x34)			00_1/1202 100.002	
CTL_REG_53	7:0	RW	SYNC_FEC_VALUE<7:0>	
(0x35)	7.5		0.110_1	
CTL_REG_54	7:0	RW	SYNC_FEC_VALUE<15:8>	
(0x36)				The value of Sync_fec is filled into different registers
CTL_REG_55	7:0	RW	SYNC_FEC_VALUE<23:16>	according to the SYNC_SIZE setting, more details
(0x37)				please refer to the following table.
CTL_REG_56	7:0	RW	SYNC_FEC_VALUE<31:24>	
(0x38)				
CTL_REG_57	7:0	RW	SYNC_FEC_VALUE<39:32>	
(0x39)			55 15_v/155100.02/	

Register Name	Bits	R/W	Bit Flag	Description
CTL_REG_58 (0x3A)	7:0	RW	SYNC_FEC_VALUE<47:40>	
CTL_REG_59 (0x3B)	7:0	RW	SYNC_FEC_VALUE<55:48>	
CTL_REG_60 (0x3C)	7:0	RW	SYNC_FEC_VALUE<63:56>	
CTL_REG_61 (0x3D)	7:0	RW	PAYLOAD_LENGTH<7:0>	The length of the content excluding PREAMBLE and SYNC in the packet format. Payload = length (optional)
CTL_REG_62 (0x3E)	7:0	RW	PAYLOAD_LENGTH<15:8>	+ address (optional) + fcs1 (optional) + fcs2 (optional) + data. Both of the destination and data source are FIFO. This configuration is applicable to both packets with fixed length and variable length.
	7	RW	INTERLEAVE_EN	The enabling of interleaving function. 0: disable. 1: enable.
	6	RW	RESV	Reserved bit, it has to be set as 0
	5	RW	LENGTH_SIZE	Length selection of the variable length packet: 0: 1 byte, supporting variable packet length up to 255 bytes. 1: 2 bytes, supporting variable packet length up to 65535 bytes.
CTL_REG_63 (0x3F)	4	RW	PAGGYBACKING_EN	Whether the automatic reply packet carries payload: 0: not carry payload 1: carry payload
	2	RW	ADDR_LEN_CONF	The positions of Node ID and Length Byte in variable-length packet. 0: Node ID is before length Byte. 1: Node ID is after length Byte.
	1	RW	PAYLOAD_BIT_ORDER	0: encoding each byte MSB of payload+CRC first 1: encoding each byte LSB of payload+CRC first
	0	RW	PKT_TYPE	Packet length type 0: fixed packet length 1: variable packet length
O	7	RW	SYNC_VALUE_SEL	It's valid when SYNC_MODE_SEL is 0. 0: select SYNC_VALUE. 1: select SYNC_FEC_VALUE.
CTL_REG_64 (0x40)	6	RW	ADDR_SPLIT_MODE	The configuration of splitting address. 0: Only DEST ADDR, that is, NODE_ADDR is used to configure DEST ADDR only. 1: DEST ADDR + SRC ADDR, that is, the higher 16 bits of NODE_ADDR are used to configure DEST ADDR and

Register Name	Bits	R/W	Bit Flag	Description
				the lower 16 bits are used to configure SRC ADDR.
	5	RW	ADDR_FREE_EN	The enabling bit to separate ADDR detection circuit in RX mode. 0: disable. 1: enable.
	4	RW	ADDR_ERR_MASK	Upon ADDR detection error, it will output the PKT_ERR interrupt and synchronously reset decoder circuit. This bit controls whether to reset the circuit at the same time. 0: reset synchronously 1: not reset synchronously
	3:2	RW	ADDR_SIZE<1:0>	The length of ADDR. 0: 1 byte 1: 2 bytes 2: 3 bytes 3: 4 bytes When ADDR_SPLIT_MODE is 1, it represents that DEST ADDR and SRC ADDR occupy 1~2 bytes respectively.
	1:0	RW	ADDR_ DET_MODE <1:0>	The detection mode of ADDR. 0: not detect. 1: it transmits the content of ADDR_VALUE in TX mode and identifies the content of ADDR_VALUE in RX mode. 2: it transmits the content of ADDR_VALUE in TX mode; and identifies both the content of ADDR_VALUE and the content all 0 in RX mode. 3: it transmits the content of ADDR_VALUE in TX mode; it identifies both the content of ADDR_VALUE and the content of all 0 or all 1 in RX mode.
CTL_REG_65 (0x41)	7:0	RW	SRC_ADDR<7:0>	ADDR value of the local source device, it can be
CTL_REG_66 (0x42)	7:0	RW	SRC_ADDR<15:8>	configured 1 to 2 bytes.
CTL_REG_67 (0x41)	7:0	RW	DEST_ADDR<7:0>	ADDR value of the destination device, it can be
CTL_REG_68 (0x42)	7:0	RW	DEST_ADDR<15:8>	configured 1 to 2 bytes.
CTL_REG_69 (0x45)	7:0	RW	SRC_BITMASK<7:0>	The bit mask decides whether to compare each receiving bit of the corresponding SRC_ADDR.
CTL_REG_70 (0x46)	7:0	RW	SRC_BITMASK<15:8>	allowed to compare not compare
CTL_REG_71	7:0	RW	DEST_BITMASK<7:0>	The bit mask decides whether to compare each

Register Name	Bits	R/W	Bit Flag	Description
(0x47)				receiving bit of the corresponding DEST_ADDR.
CTL_REG_72	7.0	DW	DECT DITMACK 45.0.	0: allowed to compare
(0x48)	7:0	RW	DEST_BITMASK<15:8>	1: not compare
				Byte number of the CRC verification code
				0: 1 byte.
	7:6	RW	CRC_SIZE<1:0>	1: 2 bytes.
				2: 3 bytes.
				3: 4 bytes.
				Receiving/sending sequence of CRC
	5	RW	CRC_BYTE_SWAP	0: sending/receiving higher byte first.
				1: sending/receiving lower byte first.
1				Whether to reverse CRC code.
1	4	RW	CRC_BIT_INV	0: not reverse CRC code.
CTL_REG_73				1: reverse CRC code bit by bit.
(0x49)				The CRC calculation range.
l	3	RW	CRC_RANGE	0: the entire payload.
				1: data only.
l	2	RW	CRC_REFIN	The bit sequence reverse of the input byte in CRC
		IXVV	ONO_NEI IIV	calculation.
		RW	CRC_BIT_ORDER	Receiving/sending bit sequence of CRC
	1			0: sending/receiving higher byte first.
				1: sending/receiving lower byte first.
				CRC enabling.
	0	RW	CRC_EN	0: disable.
				1: enable.
CTL_REG_74	7:0	RW	CRC_SEED<7:0>	
(0x4A)				
CTL_REG_75	7:0	RW	CRC_SEED<15:8>	
(0x4B)	7.0	i i i	ONO_0EED<10.02	The initial value of the polynomial for CRC.
CTL_REG_76	7:0	RW	CRC_SEED<23:16>	The initial value of the polynomial for exce.
(0x4C)	7.0	IXVV	ONO_GEED<23.10>	
CTL_REG_77	7:0	RW	CRC_SEED<31:24>	
(0x4D)	7.0	1700	ONO_OLLD\01.242	
CTL_REG_78	7:0	RW	CRC_POLY<7:0>	
(0x4E)	7.0	1744	ONO_I OLI <1.02	
CTL_REG_79	7:0	RW	CPC POLV >15:0>	
(0x4F)	7.0		CRC_POLY <15:8>	The polynomial for CPC coloulation
CTL_REG_80	7.0	DIA	CBC BOLV 222/465	The polynomial for CRC calculation.
(0x50)	7:0	RW	CRC_POLY <23:16>	
CTL_REG_81	7.0	DIA	CBC BOLV -24-24-	
(0x51)	7:0	RW	CRC_POLY <31:24>	

Register Name	Bits	R/W	Bit Flag	Description
				Reverse sequence of all the output bytes in CRC
	7	DW	CDC DEFOLIT	calculation
	7	RW	CRC_REFOUT	0: From MSB to LSB;
				1: From LSB to MSB.
	6	RW	WHITEN_SEED<8>	The highest bit of WHITEN_SEED.
				The seed type under PN7 whitening codec
	_	DW	WILLIAM CEED TYPE	polynomial.
	5	RW	WHITEN_SEED_TYPE	0: PN7 seed is calculated according to A7139
				1: PN7 seed is the valued defined in whiten_seed.
				The method of whitening encoding/decoding.
OT! DEC 00				0: PN9 CCITT encoding/decoding
CTL_REG_82	4:3	RW	WHITEN_TYPE<1:0>	1: PN9 IBM encoding/decoding
(0x52)				2: PN7 encoding/decoding
				3: invalid
				The enabling of whitening encoding/decoding.
	2	RW	WHITEN_EN	0: disable.
				1: enable.
		RW	MANCH_TYPE	The way of Manchester encoding/decoding.
	1			0: 01 represents 1 and 10 represents 0.
				1: 10 represents 1 and 01 represents 0.
		RW	MANCH_EN	The enabling of Manchester encoding/decoding.
	0			0: disable.
				1: enable.
				The seed for the polynomial of the whitening
CTL_REG_83			WHITEN_SEED<7:0>	encoding/decoding.
(0x53)	7:0	RW		If it is PN9, it takes all 9 bit
				If it is PN7, it takes lower 7bit
				Mismatch happens at CRC receiving
	7	RW	CRCERR_CLR_FIFO_EN	0: not clear RX FIFO
				1: clear RX FIFO
				Whether to contain FCS2
	6	RW	FCS2_EN	0: with no FCS2
				1: with FCS2
CTL_REG_84				Whether to compare the receiving sequence number
(0x54)				with the local transmitting sequence number at the
	5	RW	SEQNUM_MATCH_EN	TX terminal under TX ack.
				0: no need to compare
				1: need to compare
				The size of SEQNUM.
	4	RW	SEQNUM_SIZE	0: 1 byte.
				1: 2 bytes.

Register Name	Bits	R/W	Bit Flag	Description
	3	RW	SEQNUM_AUTO_INC	Whether the TX SEQNUM increase automatically 0: not increase 1: increase by 1 automatically for each packet.
	2	RW	SEQNUM_EN	0: disable SEQNUM field (namely FCS1) 1: enable SEQNUM field (namely FCS1)
	1:0	RW	RESV	Reserve bit and it has to write as 0.
CTL_REG_85 (0x55)	7:0	RW	TX_PKT_NUM<7:0>	The repeatedly send out packet number under TX mode each time:
CTL_REG_86 (0x56)	7:0	RW	TX_PKT_NUM<15:8>	0-65535 represents sending out 1-65536 packets.
CTL_REG_87 (0x57)	7:0	RW	SEQNUM_TX_IN<7:0>	The initializing value of TX SEQNUM.
CTL_REG_88 (0x58)	7:0	RW	SEQNUM_TX_IN<15:8>	70,
CTL_REG_89 (0x59)	7:0	RW	TX_PKT_GAP<7:0>	The interval between packets when transmitting packets repeatedly under TX mode 0-255 represents for 1-256 Symbol interval between packets.
CTL_REG_90 (0x5A)	7:0	RW	RSSI_CAL_OFFSET<7:0>	It is used for manually offset the deviation of RSSI reading value, which is filled after actual measurement.
CTL_REG_91 (0x5B)	7:0	RW	FCS2_TX_IN<7:0>	The transmitting value of FCS2 at TX side.
CTL_REG_92 (0x5C)	7:0	RW	FCS2_RX_OUT<7:0>	Output the received FCS2 value into the register in FCS2 enabling.
				Polynomial selection of the NRNSC:
	7	RW	FEC_TICC	O: In FEC polynomial structure, u _i takes reverse output 1: In FEC polynomial structure, u _i doesn't take reverse output
CTL_REG_93	6:2	RW	FEC_PAD_CODE<12:8>	The padding code of FEC is configured higher5 bits.
(0x5D)				Whether FEC selects RSC or NRNSC.
	1	RW	FEC_RSC_NRNSC_SEL	0: RSC.
				1: NRNSC.
	0	RW	FEC_EN	The enabling bit of FEC. 0: disable FEC encoding/decoding. 1: enable FEC encoding/decoding.
CTL_REG_94 (0x5E)	7:0	RW	FEC_PAD_CODE<7:0>	The padding code of FEC is configured lower 8 bits.
CTL_REG_95	7:6	RW	MAP_4FSK_3_LEVEL<1:0>	The code value that represents the highest level in

Register Name	Bits	R/W	Bit Flag	Description
(0x5F)				4FSK in RX mode.
	5:4	RW	MAP_4FSK_2_LEVEL<1:0>	The code value that represents the second highest level in 4FSK in RX mode.
	3:2	RW	MAP_4FSK_1_LEVEL<1:0>	The code value that represents the third highest level in 4FSK in RX mode.
	1:0	RW	MAP_4FSK_0_LEVEL<1:0>	The code value that represents the fourth highest level in 4FSK in RX mode.
	7	RW	RESV	Reserve bit and it has to write as 0.
	6:4	RW	TX_EXIT_STATE<2:0>	Exiting the setting status automatically once it completes the transmission. 1: SLEEP 2: READY 3: TFS 4: TX 5: RFS 6: RX Others: SLEEP The chip only exits TX automatically after transmission completes under packet mode, otherwise it will wait until the MCU sends the go_* command to switch.
CTL_REG_96 (0x60)	3	RW	TX_AUTO_HOP_EN	TX AUTO HOP enabling 0: disable 1: enable
	2	RW	TX_ACK_EN	Enabling ACK function under TX mode 0: disable 1: enable
	1	RW	TX_DC_PERSIST_EN	Configuration of duty cycle transmission in TX mode. 0: exit when the number of times configured in TX_DC_TIMES is reached. 1: keep in duty cycle mode until this bit is configured as 0.
	0	RW	TX_DC_EN	TX Duty Cycle enabling 0: disable 1: enable
	7	RW	CSMA_EN	CSMA enabling 0: disable 1: enable
CTL_REG_97 (0x61)	6:4	RW	RX_EXIT_STATE<2:0>	Exiting the setting status automatically once it completed the receiving. 1: SLEEP 2: READY 3: TFS

Register Name	Bits	R/W	Bit Flag	Description
				4: TX
				5: RFS
				6: RX
				Others: SLEEP
				The chip only exits RX automatically after receiving
				completes under packet mode, otherwise it will wait until
				the MCU sends the go_* command to switch.
				RX TIMER enabling
	3	RW	RX_TIMER_EN	0: disable
				1: enable
				RX ACK enabling
	2	RW	RX_ACK_EN	0: disable
				1: enable
				RX AUTO HOP enabling
	1	RW	RX_AUTO_HOP_EN	0: disable
				1: enable
				RX Duty Cycle enabling
	0	RW	RX_DC_EN	0: disable
				1: enable
				Whether stays in the current state or immediately
				returns back to the RX_EXIT_STATE configured state
	7	DW	DICT DONE EVIT EN	after receiving the PKT_DONE signal.
	7	RW	PKT_DONE_EXIT_EN	0: stay in current state after receiving the PKT_DONE
				signal.
CTL_REG_98				1: return to the state configured in RX_EXIT_STATE.
(0x62)				There are 7 modes to select in low power
	6:4	RW	RX_HOP_SLP_MODE<2:0>	auto-frequency-hopping configuration. More details
				please refer to table 4.
				There are 14 modes to select in selection of low
	3:0	RW	SLP_MODE<3:0>	power receiving configuration. More details please
				refer to table 5.
CTL_REG_99	7:0	RW	SLEEP_TIMER_M<7:0>	The counting time of SLEEP TIMER is defined as the
(0x63)	7.0	IXVV	SEELT _THWEIN_INCT.07	formula of:
CTL_REG_100	7:5	RW	SLEEP_TIMER_M<10:8>	T = M x 2^(R+1) x 31.25 us
(0x64)	4:0	RW	SLEEP_TIMER_R<4:0>	The values of R range from 0-26
CTL_REG_101	7.0	DVA	DV THED TO THE	The counting time of RX T1 TIMER is defined as the
(0x65)	7:0	RW	RX_TIMER_T1_M<7:0>	formula of:
CTL_REG_102	7:5	RW	RX_TIMER_T1_M<10:8>	T = M x 2^(R+1) x 20 us
(0x66)	4:0	RW	RX_TIMER_T1_R<4:0>	The values of R range from 0-21
CTL_REG_103				The counting time of RX T2 TIMER is defined as the
(0x67)	7:0	RW	RX_TIMER_T2_M<7:0>	formula of:
CTL_REG_104	7:5	RW	RX TIMER TO M>10.2	T = M x 2^(R+1) x 20 us
J1L_I\LG_104	7.5	1744	RX_TIMER_T2_M<10:8>	1 = 111 A Z (101 1) A ZO 40

Register Name	Bits	R/W	Bit Flag	Description	
(0x68)	4:0	RW	RX_TIMER_T2_R<4:0>	The values of R range from 0-21	
	7:6	RW	RESV	Reserve bit can only be set as 0.	
				The random mode of CSMA SLEEP TIMER	
				configured under CSMA:	
	- 1	D)A/		00: Random R value	
	5:4	RW	TIMER_RAND_MODE<1:0>	01: Random M value	
				10: Both of the R value and M are random	
				11: Use the configured fixed value	
				SLEEP TIMER enabling:	
CTL_REG_105	3	RW	SLEEP_TIMER_EN	0: disable	
(0x69)				1: enable	
(0,03)	2	RW	RESV	Reserve bit and it only can be writen as 0	
				Selection of low frequency clock source:	
	1	RW	LFCLK_SEL	0: LFOSC	
				1: LFXO	
				The enabling of output low-frequency clock to GPIO4.	
			LFCLK_OUT_EN	0: disable.	
	0	RW		1: enable.	
				The priority of this item is lower than	
				DIG_CLKOUT_EN and higher than GPIO4_SEL.	
		RW		The condition used to judge that a signal channel is	
				busy in CSMA mode.	
				000: always recognize the signal channel as busy.	
				001: RSSI detected valid no less than once within 4	
				detection windows.	
				010: PJD detected valid no less than once within 4	
				detection windows.	
	7:5		COMA COA MODE 22:0	011: RSSI or PJD detected valid no less than once	
			CSMA_CCA_MODE<2:0>	within 4 detection windows.	
				100: detect SYNC_PASS once.	
CTL_REG_106				101: detect SYNC_PASS once or detect RSSI valid no	
(0x6A)				less than once within 4 detection windows.	
				110: detect SYNC_PASS once or detect PJD valid no	
				less than once within 4 detection windows.	
				111: detect SYNC_PASS once or detect RSSI or PJD	
				valid no less than once within 4 detection windows.	
		RW	CSMA_PERSIST_EN	CSMA operating selection:	
	4			0: exit CSMA mode if the signal channel is still busy	
				when the number of maximum detection times is	
				reached.	
				1: keep on detecting signal channel state until it	
				becomes idle and then transmits the data out.	

Register Name	Bits	R/W	Bit Flag	Description	
	3:2 RW CSMA_CCA_INT_SEL<1:0>		CSMA_CCA_INT_SEL<1:0>	CSMA_CCA_INT interrupt condition: 00: PJD is valid 01: RSSI is valid 10: Both of PJD and RSSI are valid 11: NA	
	1:0	RW	CSMA_CCA_WIN_SEL<1:0>	The size of a single detection window in CSMA: 00: 32-symbol 01: 64-symbol 10: 128-symbol 11: 256-symbol	
CTL_REG_107 (0x6B)	7:0	RW	RX_TIMER_CSMA_M<7:0>	The counting time of RX CSMA TIMER is defined as the formula of:	
CTL_REG_108	7:5	RW	RX_TIMER_CSMA_M<10:8>	$T = M \times 2^{(R+1)} \times 20 \text{ us}$	
(0x6C)	4:0	RW	RX_TIMER_CSMA_R<4:0>	The value range of R is 0 - 21.	
CTL_REG_109 (0x6D)	7:0	RW	LBD_TH<7:0>	If the value is under the low voltage detection threshold, it is recognized as low voltage state.	
CTL_REG_110 (0x6E)	7:0	RW	TX_DC_TIMES<7:0>	Setting the maximum transmitting number in non-Persistent under TX Duty Cycle mode.	
	7	RW	LENGTH_MODE	Length filed structure selection 0: cmt2200 normal packet structure, Value of the Length field equals to packet length. 1: As the Wi-sun packet structure shown in Figure 1, the higher 5 bit of the Length filed is CTL_REG_111[4:0] and the lower 11 bit is the length of PSDU field.	
CTL_REG_111 (0x6F)	6	RW	WISUN_ALLIN	Configuration source of FCS field and DW field 0: Both of the FCS field and DW field are decided by system configuration, while WISUN_FCS and WISUN_DW are invalid. 1: Both of the FCS field and DW field are decided by WISUN_FCS and WISUN_DW, which are compatible with Wi-sun protocol.	
	5	RW	WHITEN_WISUN	 Whitening polynomial selection 0: cmt2200 normal packet supports for 3 kinds of whitening polynomial. 1: Wi-sun protocol supports for whitening polynomial. 	
	4	RW	WISUN_MS	Default as 0	
	3:2	RW	RESV	Reserve bit and it has to write as 0	
	1	RW	WISUN_FCS	CRC bytes of PSDU field 0: 4 Bytes 1: 2 Bytes	
	0	RW	WISUN_DW	Whitening enabling of PSDU field	

Register Name	Bits	R/W	Bit Flag	Description		
				0: disabling		
				1: enabling		
CTL_REG_112	7:0	R	TV DC DONE TIMES 710	Transmission times completed under TX Duty Cycle		
(0x70)	7.0	1	TX_DC_DONE_TIMES<7:0>	mode.		
CTL_REG_113	7:0	RW	TV DS TIMES -7:0	The specified maximum number of repeat		
(0x71)	7.0	INVV	TX_RS_TIMES<7:0>	transmission under TX ACK mode.		
CTL_REG_114	7:0	R	TV DC DONE TIMES 7.0.	The already repeat transmission times under TX		
(0x72)	7.0	IX	TX_RS_DONE_TIMES<7:0>	ACK mode.		
CTL_REG_115	7.0	DW	00MA TIMEO 7.0	The maximum detection times in the non-persistent		
(0x73)	7:0	RW	CSMA_TIMES<7:0>	mode under CSMA.		
CTL_REG_116	7.0	DW		The already repeat transmission times under CSMA		
(0x74)	7:0	RW	CSMA_DONE_TIMES<7:0>	mode.		
CTL_REG_118	7.0	D)A/		The counting time of SLEEP CSMA TIMER is defined		
(0x76)	7:0	RW	SLEEP_TIMER_CSMA_M<7:0>	as the formula of:		
CTL_REG_119	7:5	RW	SLEEP_TIMER_CSMA_M<10:8>	T = M x 2^(R+1) x 31.25 us		
(0x77) 4:0 R\		RW	SLEEP_TIMER_CSMA_R<4:0>	The value of Ranges from 0 to 26.		
EIEO DODT	7:0	W		It is not a register but a port for FIFO read and write		
FIFO_PORT			FIFO_RW_PORT<7:0>	operation. More information please refer to the serial		
(0x7A)				port operation description.		
CDW DODT				It is not a register but a port for register batch reading		
CRW_PORT	7:0	W	REG_CRW_PORT<7:0>	and writing operation. More information please refer		
(0x7B)				to the serial port operation description.		
				It is used for select the page 0, 1, 2 of register:		
				00: PAGE 0		
				01: PAGE 1		
				10: PAGE 2		
PAGE_CTL	7:6	RW	PAGE_SEL<1:0>	11: NA, not allowed to write		
(0x7E)				Regardless of whether the current page is 0,1, or 2,		
, ,				pages can be switches by setting the PAGE_CTL		
				register of 0x7A, which can reflect the current page of		
				the bit.		
	5:0	RW	RESV	Reserve bit and it has to write as 0.		
SOFT_RST		,	0057007			
(0x7F)	7:0	W	SOFTRST	Soft reset address.		

Table 1. Low-power Receiving Options Defined in RX_HOP_SLP_MODE<2:0>

No.	Extension way of RX	Condition for RX Extension	
0	If it is configured as 0, there's no extension and it will	None	
U	exit RX when T1 counting ends.	None	
1		RSSI_VLD is valid	
2	Once the chip meets detection conditions within T1, it will exit T1 and hand over control to MCU.	PREAM_OK is valid	
3	will exit 11 and hand over control to week.	Both of the RSSI_VLD and PREAM_OK are valid.	
4	Once T1 meets the detection conditions, it will switch	RSSI_VLD is valid	
5	to T2; and then once it detects SYNC, it will exit T2	PREAM_OK is valid	
6	and hands over control to MCU, otherwise it exits RX when T2 ends.	Both of the RSSI_VLD and PREAM_OK are valid.	

Table 5. 14 Low-power Receiving Options Defined in SLP_MODE<2:0>

No.	Extension way of RX	Condition for RX Extension
0	RX If it is configured as 0, there's no extension and it will exit RX when T1 counting ends.	None
1		RSSI_VLD is valid
2	Once it meets detection conditions within T1, the chip exits T1 and hands over control to MCU.	PREAM_OK is valid.
3		Both of the RSSI_VLD and PREAM_OK are valid.
4	Once it detects RSSI valid within T1, the chip exits T1 and stays in RX until RSSI unsatisfied and then it exits RX.	RSSI_VLD is valid.
5		RSSI_VLD is valid.
6		PREAM_OK is valid.
7	Once it meets detection conditions within T1, the chip	Both of the RSSI_VLD and PREAM_OK are valid.
8	switches to T2; and then it exits RX when T2 ends.	Either PREAM OK or SYNC OK is valid
9		Either PREAM_OK or NODE_OK is valid
10		Either PREAM OK, SYNC OK, or NODE OK is valid
11	Once T1 meets the detection conditions, it will switch	RSSI_VLD is valid.
12	to T2; and then once it detects SYNC, it will exit T2 and hands over control to MCU, otherwise it exits RX	PREAM_OK is valid.
13	when T2 ends	Both of the RSSI_VLD and PREAM_OK are valid.

1.3 PAGE 1, Configuration Register (0x00 - 0x68)

Table 4. Control Register in PAGE 1 (0x00 - 0x68)

Register Name	Bits	R/W	Bit Name	Description
CMT configuration area (0x00 - 0x0F) TX configuration area (0x10 - 0x27) RX configuration area (0x30 - 0x61)	7:0	RW	Inaccessible	Dedicated registers for CMT usage. The register content is exported from RFPDK and register values are depend on factory test. Configuration registers for TX parameters. The register content output through RFPDK, which is generated from user configurations. Configuration registers for RX parameters. The register content output through RFPDK, which is generated from user configurations.
RX_RSSI_REG_00	7:6	RW	RESV	Reserve bit and it has to write as 0.
(0x62)	5:4	RW	COLL_STEP_SEL<1:0>	Threshold for anti-collision detection: 00: 6dB

Register Name	Bits	R/W	Bit Name	Description
				01: 10dB 00: 16dB 00: 20dB
	3:2	RW	RSSI_UPDATE_SEL	Update condition of RSSI value (with unit of dbm): 00: Keep update at current time 01: Update after receiving PREAM_OK 10: Update after receiving SYNC_OK 11: Update after receiving PKT_DONE
	1	RW	RESV	Reserve bit and it has to write as 0.
	0	RW	COLL_DET_EN	Anti-signal collision detection enabling: 0: disable 1: enable
RX_RSSI_REG_01 (0x63)	7:0	RW	RSSI_ABS_TH<7:0>	Threshold for valid RSSI with unit of dbm.
RX_DOUT_REG_00 (0x64)	4:2	RW	DOUT_ADJUST_SEL<2:0>	The adjusted percentage of duty cycle: 0: 3.33% 1: 6.66% 2: 9.99% 3: 13.32% 4: 16.65% 5: 19.98% 6: 23.21% 7: 26.64%
	1	RW	DOUT_ADJUST_MODE	The adjusted direction of duty cycle. 0: increase duty cycle by 1. 1: decrease duty cycle by 1.
	0	RW	DOUT_ADJUST_EN	The enabling adjusted percentage of duty-cycle output: 0: disable 1: enable
RX_ANTD_REG_00	3:2	RW	ANT_WAIT_PMB<1:0>	The waiting Preamble length of antenna calibration: 00: RX_PREAM_SIZE x 1.5 01: RX_PREAM_SIZE x 2 10: RX_PREAM_SIZE x 2.5 11: RX_PREAM_SIZE x 3
(0x67)	1	RW	ANT_SW_DIS	Enable the antenna skipping switch: 0: enable antenna switch 1: disable antenna switch
	0	RW	ANT_DIV_EN	The antenna diversity enabling: 0: disable 1: enable

2 Revise History

Table 5. Revise History Record

Version No.	Chapter	Description	Date
0.5	All	The initial version	2020-09-17
0.6A	All	Review	2022-01-09
0.7	All	Review	2022-08-12

3 联系方式

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Address: 30th floor, 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Post code: 518055

 Tel:
 +86-755-83231427

 Sales:
 sales@cmostek.com

 Supports:
 support@cmostek.com

Website: www.cmostek.com

All rights reserved at CMOSTEK Microelectronics Co., Ltd.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, CMOSTEK reserves rights to change, correct or modify products or documents at anytime without any notice. Without the written permission of the Company, no unit or individual shall copy part of or all of the contents of this document, and shall not disseminate it in any form. The content of this document will be updated irregularly due to product version upgrades or other reasons. CMOSTEK's products are not recommended to be applied to life-related equipment and systems, and CMOSTEK shall not be liable for any losses caused by the equipment or operation failure of the system in using the device.

CMOSTEK and some other related **CMOSTEK** is registered trademark of CMOSTEK Microelectronics Co., Ltd. However, all other registered names mentioned above are the property of their respective owners.