BAMS1623 DISCRETE MATHEMATICS

Tutorial 10

- 1. Determine whether the relation R is a partial order on the set A.
 - i) $A = \mathbb{Z}$, and a R b if and only if a = 2b.
 - ii) $A = \mathbb{R}$, and a R b if and only if $a \le b$.

iii)
$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

- 2. Find the lexicographic ordering of the following strings of lowercase English letters:
 - i) quack, quick, quicksilver, quicksand, quacking
 - ii) zoo, zero, zoom, zoology, zoological
- 3. Find the lexicographic ordering of the bit strings 0, 01, 11, 001, 010, 011, 0001, and 0101 based on the ordering 0 < 1.
- 4. Write the dual of the following posets.
 - i) $(\{0, 1, 2\}, \leq)$

- ii) (Z⁺, |)
- 5. List all ordered pairs in the partial order whose Hasse diagram is shown as below.

- 6. Draw the Hasse diagram for each of the following posets.
 - i) a is a divisor of b on the set {1, 2, 3, 5, 7, 11, 13}.
 - ii) X is a subset of Y on the set of all subsets of $\{1, 2, 3\}$.

BAMS1623 DISCRETE MATHEMATICS

iii)
$$A = \{1, 2, 3, 4, 5\},$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 7. Consider the partial order of divisibility on the set *A*. Draw the Hasse diagram of the poset and determine which posets are linearly ordered.
 - i) $A = \{1, 2, 3, 4, 5, 10, 15, 30\}$
 - ii) $A = \{3, 6, 12, 36, 72\}$
- 8. Given the Hasse diagram of a partial order R on $A = \{a, b, c, d, e, f, g, h\}$. List the elements of R and write down the maximal and minimal elements of A.

9. Determine the greatest and least elements, if exist, of the following posets.

BAMS1623 DISCRETE MATHEMATICS

- 10. Consider the following posets whose Hasse diagrams are shown. Find, if they exist,
 - i) maximal and minimal elements;
 - ii) all upper bounds of B;
 - iii) all lower bounds of B;
 - iv) the least upper bound of B;
 - v) the greatest lower bound of B.

 $B = \{b, c, d\}$

- 11. Answer the following questions concerning the poset ({3, 5, 9, 15, 24, 45}, |).
 - i) Find the maximal and minimal elements.
 - ii) Determine the greatest element and least element, if exist.
 - iii) Find all upper bounds and least upper bounds of {3, 5}, if exist.
 - iv) Find all lower bounds of {15, 45}. Hence determine the greatest lower bound of {15, 45}, if exist.
- 12. Let $A = \{1, 2, 3, 4, 5, 6\}$ and consider the partial order R on A as $R = \{(6, 6), (6, 5), (6, 4), (6, 3), (6, 2), (6, 1), (5, 5), (5, 3), (5, 2), (5, 1), (4, 4), (4, 3), (4, 2)(4, 1), (3, 3), (3, 2), (3, 1), (2, 2), (1, 1)\}.$
 - i) Draw a Hasse diagram of the poset [A, R].
 - ii) Find the minimal and maximal elements of the poset [A, R].
 - iii) Find the least upper bound of $\{2, 5\}$, if it exists.
 - iv) Find the greatest lower bound of $\{5, 4\}$, if exists.