## Math 231b Problem Set 8

Lev Kruglyak

**Due:** April 11, 2023

## **Problem 1.** Homology with local coefficients.

Let X denote a path-connected and semilocally simply-connected space, and let  $\widetilde{X} \to X$  denote its universal cover.

**a.** Prove that  $S_*(\widetilde{X}; R)$  is a complex of free  $R[\pi_1(X)]$ -modules, where  $\pi_1(X)$  acts via deck transformations on  $\widetilde{X}$ .

Recall that  $S_n(\widetilde{X};R) = R \operatorname{Sin}_n(\widetilde{X})$  is a free R-module. Now recall that we also have an action of  $\pi_1(X)$  on  $\operatorname{Sin}_n(\widetilde{X})$ , and the induced map  $\operatorname{Sin}_n(\widetilde{X}) \to \operatorname{Sin}_n(X)$  has fibers exactly the orbits of this action. Similarly,  $R[\pi_1(X)]$  acts on  $S_n(\widetilde{X};R)$ , and the orbits of this action are the fibers of the map  $S_n(\widetilde{X};R) \to S_n(X;R)$ . Notice that since  $\Delta^n$  is simply connected, we can lift any  $\sigma: \Delta^n \to X$  to some  $\widetilde{\sigma}: \Delta^n \to \widetilde{X}$ . Then  $\widetilde{\sigma} \cdot R[\pi_1(X)]$  is exactly the fiber of  $R\sigma$  so we have the direct sum decomposition:

$$S_n(\widetilde{X}; R) = \bigoplus_{\sigma \in Sin_n(X)} \widetilde{\sigma} \cdot R[\pi_1(X)]$$

and thus it is a free  $R[\pi_1(X)]$ -module. The boundary maps are clearly seen to be  $R[\pi_1(X)]$ -module homomorphisms, since the inclusion of faces doesn't affect the choice of lifting. Thus  $S_*(\widetilde{X};R)$  is a complex of  $R[\pi_1(X)]$ -modules.

**b.** In the setting of (a), prove that a short exact seuquce of  $R[\pi_1(X)]$ -modules  $0 \to M_1 \to M_2 \to M_3 \to 0$  gives rise to a long exact sequence:

$$\cdots \longrightarrow H_{n+1}(X;M_3) \longrightarrow H_n(X;M_1) \longrightarrow H_n(X;M_2) \longrightarrow H_n(X;M_3) \longrightarrow H_{n-1}(X;M_1) \longrightarrow \cdots$$

Recall that tensoring with free modules is exact. Thus, we have an SES of chain complexes of  $R[\pi_1(X)]$ modules:

$$0 \longrightarrow S_*(\widetilde{X}; R) \otimes_{R[\pi_1(X)]} M_1 \longrightarrow S_*(\widetilde{X}; R) \otimes_{R[\pi_1(X)]} M_2 \longrightarrow S_*(\widetilde{X}; R) \otimes_{R[\pi_1(X)]} M_3 \longrightarrow 0$$

This leads to a LES in homology, and the homology of these chain complexes are exactly  $H_*(X; M_*)$  by construction.

**c.** Prove that  $H_*(K(G,1);M) \cong \operatorname{Tor}_*^{R[G]}(R,M)$  by noting that  $S_*(\widetilde{K(G,1)};R)$  is a resolution of R by free R[G]-modules. This is usually called the *group homology* of G with cofficients in M and is denoted  $H_*(G;M)$ .

Consider the canonical map  $S_0(\widetilde{K(G,1)};R) \to R$  which sends any  $r \cdot \sigma$  to r. The kernel of this map is generated by  $r \cdot (a-b)$ , where  $a, b : \Delta^0 \to \widetilde{K(G,1)}$ . This is exactly the image of the differential  $S_1(\widetilde{K(G,1)};R) \to S_0(\widetilde{K(G,1)};R)$ , so  $S_*(\widetilde{K(G,1)};R)$  is naturally a resolution of R by free R[G]-modules. Then, by construction of Tor and homology with local coefficients, we have:

$$H_*(K(G,1);M) = H_*(S_*(\widetilde{K(G,1)};R) \otimes_{R[G]} M) = \operatorname{Tor}_*^{R[G]}(R,M).$$

**Problem 2.** Let  $\mathbb{Z}(-1)$  denote the  $\mathbb{Z}[C_2]$ -module on which the generator of  $C_2$  acts by -1. Compute  $H_*(\mathbb{RP}^n; \mathbb{Z}(-1))$ .

Recall that the homology with local coefficients was defined in terms of the universal cover, as:

$$H_*(\mathbb{RP}^n; \mathbb{Z}(-1)) = H_*(S_*(S^n) \otimes_{\mathbb{Z}[C_2]} \mathbb{Z}(-1)).$$

We can replace  $S_*(-)$  here by cellular chains  $C_*(-)$  without affecting the isomorphism class of the homology, but we need a choice of CW structure on  $S^n$ . Consider the cellular decomposition of  $S^n$  with two cells attached in each dimension in a way that respects the antipodal map. More explicitly, we start with two 0-cells  $e_+^0$ ,  $e_-^0$  on antipodal points of the sphere. Next we add two 1-cells  $e_+^1$  and  $e_-^1$  as arcs on a great circle, with  $de_+^1 = e_+^0 - e_-^0$  and  $de_-^1 = e_-^0 - e_+^0$ . We keep building up  $S^n$ , alternating the signs in each dimension so the antipodality is preserved. Notice then that the action of the only nontrivial deck automorphism of the covering  $S^n \to \mathbb{RP}^n$  simply transposes these two cells. Thus, as a chain complex of  $\mathbb{Z}[C_2]$ -modules,  $C_*(S^n)$  looks like:

$$0 \longrightarrow \mathbb{Z}[C_2]^{\times (1+(-1)^n \tau)} \mathbb{Z}[C_2] \longrightarrow \cdots \longrightarrow \mathbb{Z}[C_2] \xrightarrow{\times (1+\tau)} \mathbb{Z}[C_2] \xrightarrow{\times (1-\tau)} \mathbb{Z}[C_2] \longrightarrow 0$$

where  $\tau$  is the generator of  $C_2$ . When we tensor this with  $\mathbb{Z}(-1)$  over  $\mathbb{Z}[C_2]$ , we get the chain complex:

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\times (1-(-1)^n)} \mathbb{Z} \longrightarrow \cdots \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \longrightarrow 0$$

From this, we get our desired homology:

$$H_k(\mathbb{RP}^n; \mathbb{Z}(-1)) = \begin{cases} \mathbb{Z}/2\mathbb{Z} & k < n, k \text{ even,} \\ 0 & \text{otherwise.} \end{cases}$$

**Problem 3.** Using the fibrations  $U(n-1) \to U(n) \to U(n)/U(n-1) \cong S^{2n-1}$ , prove by induction on n that  $H^*(U(n);\mathbb{Z}) \cong \mathbb{Z}[x_1,x_3,\ldots,x_{2n-1}]/(x_1^2,x_3^2,\ldots,x_{2n-1}^2)$ .

Let's begin with the base case of U(2). Recall that  $U(1) \simeq S^1$ , so we have a fibration  $S^1 \to U(2) \to S^3$ . Using the cohomological Serre spectral sequence, we have the  $E_2$ -page:

$$E_2^{3,0} = \mathbb{Z}x_3 \qquad \mathbb{Z}x_1x_3$$

$$0 \qquad 0$$

$$0 \qquad 0$$

$$\mathbb{Z} \qquad E_2^{0,1} = \mathbb{Z}x_1$$

Here note that if we let  $x_1$  and  $x_3$  be generators of  $E_2^{0,1}$  and  $E_2^{3,0}$  respectively, we get  $x_1x_3$  as a generator of  $E_2^{3,1}$ . Notice that  $x_1^2 = 0$  and  $x_2^2 = 0$  follow by a simple degree check. Since there are no non-trivial differential

maps, the spectral sequence collapses at  $E_2$ , so we get the ring structure  $H^*(U(2); \mathbb{Z}) = \mathbb{Z}[x_1, x_3]/(x_1^2, x_3^2)$ . Now suppose by induction that we had the desired ring structure on  $H^*(U(n-1); \mathbb{Z})$ . The fibration  $U(n-1) \to U(n) \to S^{2n-1}$  gives us the  $E_2$  page of a spectral sequence:

| ;<br> |                      |                         |   |                         |                            |                         |                            |
|-------|----------------------|-------------------------|---|-------------------------|----------------------------|-------------------------|----------------------------|
|       | $\mathbb{Z}x_{2n-1}$ | $\mathbb{Z}x_1x_{2n-1}$ | 0 | $\mathbb{Z}x_3x_{2n-1}$ | $\mathbb{Z}x_1x_3x_{2n-1}$ | $\mathbb{Z}x_5x_{2n-1}$ | $\mathbb{Z}x_1x_5x_{2n-1}$ |
|       | 0                    | 0                       | 0 | 0                       | 0                          | 0                       | 0                          |
|       | :                    | ÷                       | ÷ | :                       | :                          | :                       | ÷                          |
|       | 0                    | 0                       | 0 | 0                       | 0                          | 0                       | 0                          |
|       | $\mathbb{Z}$         | $\mathbb{Z}x_1$         | 0 | $\mathbb{Z}x_3$         | $\mathbb{Z}x_1x_3$         | $\mathbb{Z}x_5$         | $\mathbb{Z}x_1x_5$         |
|       |                      |                         |   |                         |                            |                         |                            |

Here the bottom row has the given multiplicative structure since it's simply the cohomology of U(n-1). The top row must have the same multiplicative structure, but here we list a degree 2n-1 generator in the  $E_2^{2n-1,0}$  term, which generates the rest of the multiplicative structure. Again, there are no nontrivial differentials so we get  $H^*(U(n)) = H^*(U(n-1))[x_{2n-1}]/(x_{2n-1}^2)$  as desired.

**Problem 4.** Let  $f: S^2 \to S^2$  be a map of degree 2. Compute the homology of its homotopy fiber.

Since  $S^2$  is simply-connected, we can make a lot of useful reductions in the Serre fibration. First note that by the note from class, the fiber sequence  $F \to S^2 \to S^2$  can be used in the Serre fibration, so we get a spectral sequence with  $E^2$ -page given by

$$E_{s,t}^2 = H_s(S^2; H_t(F)).$$

Note also that the fiber sequence gives us a SES of the form:

s

$$0 \longrightarrow \pi_1(S^2) \xrightarrow{2 \times} \pi_1(S^2) \longrightarrow \pi_1(F) \longrightarrow 0$$

This implies that  $\pi_1(F) \cong \mathbb{Z}/2\mathbb{Z}$ , and by the Hurewicz isomorphism this also tells us that  $H_1(F) \cong \mathbb{Z}/2\mathbb{Z}$ . Next, looking at the spectral sequence, we get:



Since each chain only has one potentially non-trivial differential, the  $E^3$ -page is in fact the  $E^\infty$ -page, so we

get the  $E^{\infty}$ -page:



here the bottom row corresponds to the homology of  $S^2$ , the total space. Firstly, note that  $H_0(F) \cong \mathbb{Z}$ , this is expected. Next, we remember from the Hurewicz argument that  $H_1(F) \cong \mathbb{Z}/2\mathbb{Z}$ , so since coker  $d_0^2 = 0$ , it follows that the map  $H_0(F) \to H_1(F)$  is the reduction mod 2. This means that  $\ker d_0^2 = 2\mathbb{Z}$  and so coker  $d_1^2 = 0$ . Next, we know that  $\ker d_i^2 = 0$  for all  $i \geq 1$ , and coker  $d_i^2 = 0$  for all  $i \geq 2$ . Combining this with the fact that coker  $d_1^2 = 0$ , this means that  $d_k^2 : H_k(F) \to H_{k+1}(F)$  is an isomorphism for  $k \geq 1$ . So to conclude,

$$H_k(F) \cong \begin{cases} \mathbb{Z} & k = 0, \\ \mathbb{Z}/2\mathbb{Z} & \text{otherwise.} \end{cases}$$

## **Problem 5.** Induced homology isomorphisms.

Here we will prove some criteria for maps to induce homology isomorphisms.

**a.** Show that if  $p: E \to B$  is a fibration and each fiber has the homology of a point, then p induces an isomorphism in homology.

Consider the Serre spectral sequence, which has  $E_{s,t}^2 = H_s(B; H_t(F_b))$ . Since the fibers have the homology of a point, the only non-trivial groups here are  $E_{s,0}^2 = H_s(B)$ . Note that there are no non-trivial differential maps, so the spectral sequence collapses here at the  $E^2$  page. It thus follows that the edge homomorphisms  $H_n(E) \to H_n(B)$ , which are exactly the induced map  $p_*$ , are isomorphisms.

**b.** Show that any weak equivalence  $f: X \to Y$  induces a homology isomorphism.

Notice that for any  $y \in Y$ , the homotopy fiber sequence  $F_y(f) \to X \to Y$  extends to a long exact sequence of homotopy groups, however since  $\pi_k(X) \to \pi_k(Y)$  is an isomorphism, it follows that  $F_y(f)$  has trivial homotopy groups, so it is weakly contractible. This implies that it has the homology of a point by the Hurewicz homomorphism, so we can apply the previous problem to see that f induces a homology isomorphism.