$$\frac{d}{dt}f(x(t)) = f'(x(t))x'(t), \quad \text{i.e. } \frac{df}{dt} = \frac{df}{dx}\frac{dx}{dt}.$$

Here's an informal way to understand the chain rule.

* The inhearisation of f says: $f(x+\delta x)\approx f(x)+f'(x)\delta x.$ Write $x+\delta x$ for $x(t+\delta t)$. Using the linearisation of x:

$$x + \delta x = x(t + \delta t) \approx x(t) + x'(t)\delta t$$

 $\delta x \approx x'(t)\delta t$

Substituting into (*):

$$f(x(t+\delta t)) \approx f(x(t)) + f'(x(t))x'(t)\delta t$$
.

Compare the above to the linearisation of the composite function f(x(t)):

$$f(x(t+\delta t)) \approx f(x(t)) + \left| \frac{d}{dt} f(x(t)) \right| \delta t.$$

So the quantities in the blue rectangles should be the same.

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 8, Page 1 of 10

Imagine that you are walking on \mathbb{R}^2 , and your position at time t is (x(t),y(t)). The temperature at the point (x,y) is f(x,y). So the temperature that you feel at time t is the composite function f(x(t),y(t)). What is $\frac{d}{dt}f((x(t),y(t)),$ the Now we derive a simple example of a multivariate chain rule in the same way. rate of change of temperature that you feel?

 $f(x + \delta x, y + \delta y) \approx f(x, y) + \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y.$ The linearisation of the temperature function is

This is not a rigorous

proof because we

haven't checked that

And the linearisations of \boldsymbol{x} and \boldsymbol{y} tell us that

$$\delta x \approx \frac{df}{dx} \delta t; \quad \delta y \approx \frac{df}{dy} \delta t.$$

general version of this argument on p10. For

rigorous and more

enough. We sketch a

the errors are small

Substituting into (*)

from
$$f(x(t+\delta t),y(t+\delta t)) \approx f(x,y) + \frac{\partial f}{\partial x} \frac{df}{dx} \delta t + \frac{\partial f}{\partial y} \frac{df}{dy} \delta t$$
.

Comparing with the linearisation of f(x(t),y(t)): $\frac{df}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}.$

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 8, Page 2 of 10 textbook.)

page of §12.5 in the

proof, see the first

a different rigorous

We showed that, if f(x,y) is a 2-variable function, and x and y are functions of

 $\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$

 \parallel

 $\frac{df}{dt}$

Example: Let $f(x,y)=xy^2$, and $x=\ln t,y=3t^2$. Find $\frac{df}{dt}$.

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

Now suppose x,y are multivariate functions, e.g. x(s,t),y(s,t).

To find $\frac{\partial f}{\partial t}$, we treat s as a constant throughout, so

$$\frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t};$$
$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}.$$

And similarly:

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}.$$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}.$$

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}.$$

In ex. sheet #15 Q2, we are given f(x,y,z) and $x(s,t)=e^{st}$, $y(s,t)=t^2$, $z(s,t)=s^2+1.$ The chain rule says

$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s},$$

but the second term (in y) is unnecessary because y does not depend on s. To functions depend on which variables. Then the terms in the chain rule for $rac{\partial f}{\partial s}$ simplify things in such cases, we can draw a dependency chart showing which correspond to all the paths from s to f.

dealing with a triple composition (e.g. if swhen there are many variables, or when Dependency charts can be really useful and t here are functions of u, v, w

HKBU Math 2205 Multivariate Calculus

HKBU Math 2205 Multivariate Calculus Semester 2 2017, Week 8, Page 5 of 10

Semester 2 2017, Week 8, Page 6 of 10

As in the 1D case, we can compute higher order derivatives of composite functions by applying the chain rule repeatedly. **Example**: Let f(x,y) be a two variable function, and x=2s+3t,y=st. Find an expression for $\frac{\sigma}{\partial s\partial t}f(x(s,t),y(s,t))$ in terms of the partial derivatives of f.

The chain rule in terms of Jacobian matrices and the derivative linear transformation

Remember from p4 that, for
$$f(x,y)$$
, $x(s,t)$, $y(s,t)$, we have
$$\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

In the notation of Jacobian matrices, we have

In the notation of Jacobian matrices, we have
$$Df(s,t) = \begin{pmatrix} \frac{\partial f}{\partial s} & \frac{\partial f}{\partial t} \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial s} & \frac{\partial x}{\partial t} \\ \frac{\partial y}{\partial s} & \frac{\partial y}{\partial t} \end{pmatrix} = Df(x(s,t),y(s,t))D\mathbf{g}(s,t),$$

writing g(s,t) for (x(s,t),y(s,t)) (i.e. $g_1 = x$ and $g_2 = y$).

In general, the Jacobian matrix of a composite function is the matrix product of the Jacobian matrices

$$D(\mathbf{f} \circ \mathbf{g})(\mathbf{t}) = D\mathbf{f}(\mathbf{g}(\mathbf{t}))D\mathbf{g}(\mathbf{t}).$$

transformations, this says that the derivative of a composition is a composition of Because the product of matrices correspond to the composition of linear

II the derivatives. HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 8, Page 7 of 10

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 8, Page 8 of 10

Example: Let $g:\mathbb{R}^2 o \mathbb{R}^3$ be a function such that $\mid D$

$$\mathbf{g}(1,2) = (1,2,1) \text{ and } D\mathbf{g}(1,2) = \begin{pmatrix} 1/2 & 1/2 \\ 2 & 1 \\ 1 & 0 \end{pmatrix}.$$

Let $\mathbf{f}:\mathbb{R}^3 \to \mathbb{R}^2$ be given by $\mathbf{f}(x,y) = (x^2 e^y, y^2 z)$. Find $D(\mathbf{f} \circ \mathbf{g})(1,2)$.

$$D(\mathbf{f} \circ \mathbf{g})(\mathbf{t}) = D\mathbf{f}(\mathbf{g}(\mathbf{t}))D\mathbf{g}(\mathbf{t}).$$

The main idea is the linearisation argument on pp1-2. We will show carefully that the errors in the linearisation are small compared to $|\delta t|$, as required in the definition of the derivative.

Non-examinable: the proof of the chain rule (different from the textbook)

We wish to show that $D(\mathbf{f} \circ \mathbf{g})(\mathbf{t}) = D\mathbf{f}(\mathbf{g}(\mathbf{t}))D\mathbf{g}(\mathbf{t})$. So we need to show that $D\mathbf{f}(\mathbf{g}(\mathbf{t}))D\mathbf{g}(\mathbf{t})$ satisfies the definition of the derivative $D(\mathbf{f} \circ \mathbf{g})$, i.e.

$$(\mathbf{f} \circ \mathbf{g})(\mathbf{t} + \delta \mathbf{t}) - (\mathbf{f} \circ \mathbf{g})(\mathbf{t}) - [D\mathbf{f}(\mathbf{g}(\mathbf{t}))][D\mathbf{g}(\mathbf{t})]\delta \mathbf{t} \rightarrow 0 \text{ as } \delta \mathbf{t} \rightarrow \mathbf{0}.$$

Let $\mathbf{x} = \mathbf{g}(\mathbf{t})$ and $\mathbf{x} + \delta \mathbf{x} = \mathbf{g}(\mathbf{t} + \delta \mathbf{t})$, and rewrite the expression above as

$$= \underbrace{\frac{\mathbf{f}(\mathbf{g}(\mathbf{t} + \delta \mathbf{t})) - \mathbf{f}(\mathbf{g}(\mathbf{t})) - [D\mathbf{f}(\mathbf{g}(\mathbf{t}))]\delta\mathbf{x}}{|\delta \mathbf{t}|} + \underbrace{\frac{[D\mathbf{f}(\mathbf{g}(\mathbf{t}))]\delta\mathbf{x} - [D\mathbf{f}(\mathbf{g}(\mathbf{t}))][D\mathbf{g}(\mathbf{t})]\delta\mathbf{t}}{|\delta \mathbf{t}|}}_{|\delta \mathbf{t}|} + \underbrace{\frac{[D\mathbf{f}(\mathbf{g}(\mathbf{t}))]\delta\mathbf{x} - [D\mathbf{f}(\mathbf{g}(\mathbf{t}))][D\mathbf{g}(\mathbf{t})]\delta\mathbf{t}}{|\delta \mathbf{t}|}}_{|\delta \mathbf{t}|} + \underbrace{\frac{\mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x}) - [D\mathbf{f}(\mathbf{x})]\delta\mathbf{x}}{|\delta \mathbf{t}|}}_{|\delta \mathbf{t}|}$$

goes to 0 because $D\mathbf{f}$ HKBU $_{Ma}$ is the derivative of \mathbf{f} .

is finite because x = g is differentiable.

x = g goes to 0 because Dg is the derivative of g = x.

HKBU Math 2205 Multivariate Calculus

Semester 2 2017, Week 8, Page 9 of 10