FORMLER TILL NATIONELLT PROV I MATEMATIK KURS C OCH D

ALGEBRA

Regler

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)(a-b) = a^{2} - b^{2}$$
 (konjugatregeln)
$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

Andragradsekvationer Ekvationen $x^2 + px + q = 0$ har rötterna

$$x_1 = -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 - q} \text{ och } x_2 = -\frac{p}{2} - \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

där $x_1 + x_2 = -p \text{ och } x_1 \cdot x_2 = q$

ARITMETIK

Prefix

T	G	M	k	h	d	c	m	μ	n	p
tera	giga	mega	kilo	hekto	deci	centi	milli	mikro	nano	piko
10 ¹²	10 ⁹	10^{6}	10^3	10^2	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²

Potenser

För reella tal x och y och positiva tal a och b gäller

$$a^{x}a^{y} = a^{x+y} \qquad \frac{a^{x}}{a^{y}} = a^{x-y} \qquad \left(a^{x}\right)^{y} = a^{xy}$$

$$a^{x}b^{x} = (ab)^{x} \qquad \frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x} \qquad a^{\frac{1}{n}} = \sqrt[n]{a}$$

$$a^{-x} = \frac{1}{a^{x}} \qquad a^{0} = 1$$

Logaritmer

För positiva tal *y* gäller:

$$10^x = y \iff x = \lg y \qquad e^x = y \iff x = \ln y$$

För positiva tal x och y gäller:

$$\lg xy = \lg x + \lg y \qquad \qquad \lg \frac{x}{y} = \lg x - \lg y$$
$$\lg x^p = p \cdot \lg x$$

Geometrisk summa

$$a + ak + ak^{2} + ... + ak^{n-1} = \frac{a(k^{n} - 1)}{k - 1} \operatorname{där} k \neq 1$$

DIFFERENTIAL- OCH INTEGRALKALKYL

Derivatans definition

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Deriveringsregler

Funktion	Derivata					
x^a där a är ett reellt tal	ax^{a-1}					
$a^x (a > 0)$	$a^x \ln a$					
$ \ln x (x > 0) $	$\frac{1}{x}$					
e^x	e ^x					
$e^{k\alpha}$	$k \cdot e^{kx}$					
1	$-\frac{1}{x^2}$					
x	x^2					
$\sin x$	$\cos x$					
$\cos x$	$-\sin x$					
tan x	$1 + \tan^2 x = \frac{1}{\cos^2 x}$					
f(x) + g(x)	f'(x) + g'(x)					
$f(x) \cdot g(x)$	$f(x) \cdot g'(x) + f'(x) \cdot g(x)$					
$\frac{f(x)}{g(x)} (g(x) \neq 0)$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{(g(x))^2}$					

Kedjeregeln

Om y = f(z) och z = g(x) är två deriverbara funktioner så gäller för den sammansatta funktionen y = f(g(x)) att

$$y' = f'(g(x)) \cdot g'(x)$$
 eller $\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx}$

Några primitiva funktioner

f(x)	F(x)
	(C är en reell konstant)
k	kx + C
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$
$\frac{1}{x}(x \neq 0)$	$\ln x + C$
e^x	$e^x + C$
$a^x (a > 0, a \neq 1)$	$\frac{a^x}{\ln a} + C$
$\sin x$	$-\cos x + C$
$\cos x$	$\sin x + C$

FUNKTIONSLÄRA

Räta linjen

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Riktningskoefficient för linje genom punkterna (x_1, y_1) och

$$(x_2, y_2)$$
 där $x_1 \neq x_2$

y = kx + m

Linje genom punkten (0, m)med riktningskoefficienten k

$$y - y_1 = k(x - x_1)$$

Linje genom punkten (x_1, y_1) med riktningskoefficienten k

Exponentialfunktioner

$$y = C \cdot a^x$$

 $k_1 \cdot k_2 = -1$

C och a är konstanter a > 0 och $a \ne 1$

Potensfunktioner

$$y = C \cdot x^a$$

GEOMETRI

Pythagoras sats $a^2 + b^2 = c^2$

$$a^2 + b^2 = c^2$$

Triangel

area =
$$\frac{bh}{2}$$

Parallellogram

$$area = bh$$

Parallelltrapets

area =
$$\frac{h(a+b)}{2}$$

Cirkel

$$area = \pi r^2 = \frac{\pi d^2}{4}$$

omkrets =
$$2\pi r = \pi d$$

Cirkelsektor

bågen
$$b = \frac{\alpha}{360} \cdot 2\pi r$$

$$area = \frac{\alpha}{360} \cdot \pi r^2 = \frac{br}{2}$$

Prisma

$$volym = Bh$$

Cylinder

Rak cirkulär cylinder

$$volym = \pi r^2 h$$

mantelarea = $2\pi rh$

Pyramid

$$volym = \frac{Bh}{3}$$

Kon

Rak cirkulär kon

$$volym = \frac{\pi r^2 h}{3}$$

mantelarea = πrs

Klot

$$volym = \frac{4\pi r^3}{3}$$

area = $4\pi r^2$

Likformighet

För likformiga geometriska figurer gäller att motsvarande vinklar är lika stora och att förhållandet mellan motsvarande sidor är lika.

Trianglarna ABC och DEF är likformiga.

Då gäller
$$\frac{b}{e} = \frac{c}{f}$$

Skala

Areaskalan = (Längdskalan)² Volymskalan = (Längdskalan)³

Vinklar

När två räta linjer skär varandra är sidovinklarnas summa 180° (t.ex. u + v= 180°) och vertikalvinklar lika stora (t.ex. w = v).

När en linje L_1 skär två andra inbördes parallella linjer L_2 och L_3 så är likbelägna vinklar lika stora (t.ex. v = w) och alternatvinklar lika stora (t.ex. u = w)

Omvänt gäller att om alternatvinklar eller likbelägna vinklar är lika stora så är linjerna L_2 och L_3 parallella.

Topptriangel- och transversalsatsen

Om DE är parallell med AB gäller

$$\frac{DE}{AB} = \frac{CD}{AC} = \frac{CE}{BC} \text{ och}$$

$$\frac{CD}{AD} = \frac{CE}{BE}$$

Bisektrissatsen

$$\frac{AD}{BD} = \frac{AC}{BC}$$

Kordasatsen

$$ab = cd$$

Randvinkelsatsen

Medelpunktsvinkeln till en cirkelbåge är dubbelt så stor som randvinkeln till samma cirkelbåge (u = 2v)

NUMERISKA METODER

Newton-Raphsons iterations formel: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Ekvationslösning

Integraler Intervallet $a_0 \le x \le a_n$ delas in i *n* delintervall.

Mittpunkten i varje delintervall betecknas x_1, x_2, \dots, x_n

Rektangelmetoden: $\int_{a_0}^{a_n} f(x) dx = \frac{a_n - a_0}{n} (f(x_1) + f(x_2) + ... + f(x_n))$ Trapetsmetoden: $\int_{a_0}^{a_n} f(x) dx = \frac{a_n - a_0}{2n} (f(a_0) + 2f(a_1) + 2f(a_2) + ... + 2f(a_{n-1}) + f(a_n))$

TRIGONOMETRI

Definitioner ABC är en rätvinklig triangel.

$$\sin A = \frac{a}{b} \quad \left(\frac{motstående \, katet}{hypotenusan}\right)$$

$$\cos A = \frac{c}{b} \quad \left(\frac{n \ddot{a}r liggande \, katet}{hypotenusan} \right)$$
$$\tan A = \frac{a}{c} \quad \left(\frac{motst \mathring{a}ende \, katet}{n \ddot{a}r liggande \, katet} \right)$$

$$\tan A = \frac{a}{c} \quad \left(\frac{motstående \, katet}{n \ddot{a}r liggande \, katet} \right)$$

OP är radie i en enhetscirkel. Koordinaterna för P är (x_1, y_1)

$$\sin v = y_1$$

$$\cos v = x_1$$

$$\tan v = \frac{y_1}{x_1}$$

Sinussatsen

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Cosinussatsen

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Areasatsen

$$arean = \frac{ab\sin C}{2}$$

Trigonometriska formler

$$\sin^{2} \alpha + \cos^{2} \alpha = 1$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^{2} \alpha - \sin^{2} \alpha = 2\cos^{2} \alpha - 1 = 1 - 2\sin^{2} \alpha$$

$$\sin^{2} \frac{\alpha}{2} = \frac{1 - \cos \alpha}{2}$$

$$\cos^{2} \frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$$

$$a \sin x + b \cos x = c \sin(x + v)$$
 där $c = \sqrt{a^2 + b^2}$ och $\tan v = \frac{b}{a}$

Exakta värden

Vinkel v	(grader)	0°	30°	45°	60°	90°	120°	135°	150°	180°
	(radianer)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
	sin v	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
	cosv	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan v		0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Ej def.	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0