Республиканская олимпиада по математике, 2015 год, 10 класс

- 1. Окружность ω , описанная около треугольника ABC, пересекает стороны AD и DC, параллелограмма ABCD, во второй раз в точках A_1 и C_1 соответственно. Обозначим через E точку пересечения прямых AC и A_1C_1 . Пусть BF диаметр ω , а точка O_1 симметрична центру ω относительно AC. Докажите, что прямые FO_1 и DE перпендикулярны. $(M. \ Kyhrooheuh)$
- **2.** Дано натуральное число a. Докажите, что для любого натурального m существует бесконечно много натуральных n таких, что количество делителей числа $na^n + 1$ делится на m. (Сатылханов K.)
- **3.** На плоскости заданы 2015 точек, никакие три из которых не лежат на одной прямой и никакие четыре на одной окружности. Рассмотрим окружности, проходящие через три точки из данного множества и разбивающие остальные пополам, то есть 1006 лежит внутри окружности, а 1006 вне нее. Докажите, что найдутся хотя бы три окружности из рассмотренных, пересекающиеся по двум точкам из данного множества. (Ильясов С.)
- **4.** Дана функция $f: \mathbb{Z} \to \mathbb{Z}$ такая, что для любых целых x и y выполнено $f(x-f(y))-f(2x-f(y))=f(x)^2$. Докажите, что для всех целых x справедливо равенство f(f(x))=0. Здесь \mathbb{Z} множество целых чисел. (Ильясов C.)
- **5.** Даны две окружности ω_1 и ω_2 , отрезки AB и CD общие внешние касательные к ним (точки A и C лежат на ω_1 , а точки B и D на ω_2). Прямая AD во второй раз пересекает окружность ω_1 в точке P, а окружность ω_2 в точке Q. Пусть касательная к ω_1 в точке P пересекает AB в точке R, а касательная к ω_2 в точке Q пересекает CD в точке S. M середина отрезка RS. Докажите, что MP = MQ. (M. Kунгожин)
- **6.** Даны натуральные числа k, ℓ и $a_1, a_2, ..., a_k$ ($\ell \ge 2$). Докажите, что для любого натурального M существует натуральное число x, такое, что каждое из чисел x, x+1, ..., x+M-1 не представимо в виде $a_i^n+m^\ell$, где n и m целые неотрицательные числа ($1 \le i \le k$). (Сатылханов K.)