

UNIVERSIDADE FEDERAL DE MINAS GERAIS

Programa de Pós-Graduação em Engenharia Elétrica

Trabalho Computacional – Otimização Multiobjetivo (EEE910) Data de entrega: definida no Moodle

Professor: Lucas S. Batista

APRESENTAÇÃO

Este trabalho tem por intuito abordar, de forma conjunta, grande parte dos conceitos vistos na disciplina "EEE910 - Otimização Multiobjetivo". Para tal, propõe-se a seguir um problema relacionado ao gerenciamento ótimo da política de manutenção de um conjunto de equipamentos de uma empresa. De forma geral, o aluno deverá compreender e formular o problema, além de discutir e apresentar algoritmos para a sua solução. O aluno também deverá analisar os resultados empregando o indicador de qualidade indicado e, por fim, escolher a ação (solução) a ser implementada usando um método específico de auxílio a tomada de decisão.

Especificação do problema

Deseja-se determinar a política de manutenção ótima para cada um dos 500 equipamentos de uma empresa, considerando-se a minimização do custo de manutenção e a minimização do custo de falha esperado.

• Equipamentos:

- Cada equipamento tem uma importância distinta na empresa, a qual é estimada com base no custo decorrente de uma falha no equipamento. Equipamentos mais importantes têm custo de falha maior, enquanto que equipamentos menos importantes têm custo de falha menor.
- Os equipamentos foram separados em quatro grupos (clusters), conforme suas características construtivas e de uso. Para cada um desses grupos foi construído um modelo que estima a probabilidade de falha do equipamento tendo em conta sua idade e o horizonte de planejamento da manutenção.

 As características dos equipamentos estão disponíveis no arquivo EquipDB.csv, onde cada linha representa um equipamento e as colunas (separadas por vírgulas) contém as seguintes informações:

Coluna 1: ID – código de identificação do equipamento (varia de 1 a 500).

 ${f Coluna~2:}~t_0$ – tempo em que o equipamento está operando desde sua data de instalação até o dia atual.

Coluna 3: cluster – código do cluster (grupo) que melhor modela a probabilidade de falha daquele equipamento (varia de 1 a 4).

Coluna 4: custo de falha – custo decorrente da eventual falha do equipamento.

O arquivo EquipDB.csv contém 500 linhas e 4 colunas.

• Planos de manutenção:

- Durante o horizonte de planejamento da manutenção, cada equipamento deve ser enquadrado necessariamente em um dos três planos de manutenção disponíveis: 1) nenhuma manutenção; 2) manutenção intermediária, e; 3) manutenção detalhada.
- Cada plano de manutenção tem um custo específico, sendo que quanto mais detalhada a manutenção mais cara ela é.
- O efeito do regime de manutenção na probabilidade de falha é modelado por meio de um fator de risco (k), que é utilizado como multiplicador do tempo para o qual se está estimando a probabilidade de falha do equipamento $(\Delta t' = k \cdot \Delta t)$. Quanto mais detalhado o plano de manutenção, menor o fator de risco.
- As características dos planos de manutenção estão disponíveis no arquivo MPDB.csv, onde cada linha representa um plano de manutenção e as colunas (separadas por vírgulas) contém as seguintes informações:

Coluna 1: ID - código de identificação do plano de manutenção (varia de 1 a 3).

Coluna 2: k – fator de risco associado ao plano de manutenção.

Coluna 3: custo – custo de aplicação do plano de manutenção para um equipamento, no horizonte de planejamento da manutenção.

O arquivo MPDB.csv contém 3 linhas e 3 colunas.

• Clusters:

- Ao todo foram considerados 4 clusters.
- Cada cluster representa um modelo que descreve a probabilidade de falha de um equipamento enquadrado naquele grupo.
- As probabilidades de falhas foram determinadas por meio de distribuições de Weibull, com parâmetro de escala η e parâmetro de forma β .
- A probabilidade $p_{i,j}$ de falha de um equipamento i, sob o plano de manutenção j, até um dado horizonte de planejamento da manutenção (Δt) é estimada pela equação (1), que determina a probabilidade de falha de um equipamento até Δt dado que ele não falhou até a data atual (t_0) .

$$p_{i,j} = \frac{F_i(t_0 + k_j \Delta t) - F_i(t_0)}{1 - F_i(t_0)}$$
(1)

onde:

$$F_i(t) = 1 - \exp\left[-\left(\frac{t}{\eta_i}\right)^{\beta_i}\right] \tag{2}$$

 As características dos *clusters* estão disponíveis no arquivo *ClusterDB.csv*, onde cada linha representa um *cluster* e as colunas (separadas por vírgulas) contém as seguintes informações:

Coluna 1: ID – código de identificação do *cluster* (varia de 1 a 4).

Coluna 2: η – parâmetro de escala do modelo de Weibull que descreve o *cluster* (em anos).

Coluna 3: β – parâmetro de forma do modelo de Weibull que descreve o *cluster*.

O arquivo ClusterDB.csv contém 4 linhas e 3 colunas.

Modelo:

- O modelo deverá conter duas funções objetivo: 1) minimização do custo de manutenção total, e; 2) minimização do custo esperado de falha total.
- O custo de manutenção total é a soma dos custos dos planos de manutenção adotados para todos os equipamentos.
- O custo esperado de falha de cada equipamento i, sob o plano de manutenção j, é o produto da probabilidade de falha $(p_{i,j})$ e o custo de falha do equipamento. O custo esperado de falha total é a soma dos custos esperados de falha de todos os equipamentos.
- O horizonte de planejamento da manutenção deve ser $\Delta t = 5$ anos.

Com base nessa especificação, pede-se:

i. Formulação:

(a) Construa o modelo matemático de otimização do planejamento da manutenção dos equipamentos da empresa.

ii. Algoritmo de solução:

Discuta e justifique sua escolha de um algoritmo (ou conjunto de algoritmos) adequado para resolver o problema biobjetivo definido no item (i).

iii. Resultados:

Implemente e utilize o algoritmo apresentado no item (ii) para resolver o problema biobjetivo construído. Caso seja utilizado algum método não exato, então o aluno deverá discutir os resultados de, ao menos, cinco execuções.

iv. Análise baseada no indicador de qualidade Hipervolume

Empregue o indicador de qualidade hipervolume (*s-metric*) para mensurar as propriedades de convergência e diversidade da fronteira Pareto aproximada obtida. Para a determinação do hipervolume considere um vetor de referência igual ao vetor anti-utópico ideal. Apresente a formulação, interpretação geométrica e características gerais deste indicador.

v. Tomada de decisão

Empregue uma técnica de auxílio à tomada de decisão para escolha de uma ação (solução) final a ser implementada. Justifique e discuta apropriadamente todo o processo de auxílio à tomada de decisão. Por simplicidade, caso tenha executado o algoritmo mais de uma vez (abordagem não exata), considere a fronteira não-dominada obtida a partir da união de todas as fronteiras encontradas.

A estratégia de decisão utilizada deve ser adequadamente definida e apresentada. É importante notar que neste trabalho você representa o projetista e, portanto, é responsável pela definição de pesos e demais parâmetros necessários.

Empregue no mínimo três (03) atributos no processo de decisão, i.e., as duas funções objetivo e pelo menos mais um critério adicional que considerar pertinente.

vi. Pacote final a ser enviado ao professor

No final deste TC, o aluno deverá entregar o relatório do trabalho, códigos desenvolvidos, e arquivo .csv (Comma-separated Values) contendo a melhor fronteira Pareto estimada obtida. No caso de múltiplas execuções do algoritmo, o aluno deverá reportar quantas execuções foram realizadas para obtenção da solução.

Deverá existir um arquivo *main*, responsável pela execução de toda a otimização, e cuja saída seja o arquivo .*csv* mencionado anteriormente. Essa função será executada pelo professor para verificação dos resultados.

No arquivo .csv, cada linha deve representar uma solução obtida e cada coluna indica o índice do plano de manutenção adotado para o equipamento correspondente. Dessa forma, esse .csv possuirá número de soluções linhas e 500 colunas.

Para facilitar a organização e avaliação pelo professor, o .csv gerado deve conter o nome e sobrenome do aluno, e.g., LucasBatista.csv.

O relatório, código desenvolvido e arquivo .csv de saída, deverão ser enviados somente via plataforma Moodle.

vii. Avaliação do TC

Este TC representa uma avaliação de 40 pontos, em que 10 pontos serão atribuídos de acordo com a qualidade das soluções obtidas. Essa medida de qualidade baseia-se no valor do hipervolume. A pontuação relacionada está definida na Tabela 1.

A avaliação do hipervolume será realizada com base no CSV submetido pelo aluno, utilizando a função EvalParetoApp.m¹. Esta função é compatível tanto com o Matlab quanto com o GNU Octave.

¹A sintaxe de chamada da função é Hipervolume = EvalParetoApp('Nome do arquivo.csv').

Tabela 1: Pontuação associada ao valor do Hipervolume alcançado.

Hipervolume	Pontuação
$HVI \ge 0.6288$	10 pontos + 5 pontos extras
$0.6000 \le HVI < 0.6288$	10 pontos
$0.5500 \le HVI < 0.6000$	7 pontos
$0.5000 \le HVI < 0.5500$	5 pontos
$0.3500 \le HVI < 0.5000$	3 pontos
HVI < 0.3500	0 pontos

NOTA

O atendimento a todos os itens estabelecidos, bem como a apresentação e organização formal deste TC, são fundamentais para uma boa avaliação do mesmo. Para o texto final, o aluno deve empregar um dos "templates" disponibilizados na página da disciplina.