Summary of Linear Algebra Concepts

Inverse of a Matrix

If the inverse of a matrix A, denoted as A^{-1} , exists, then it satisfies the following properties:

$$(A^{-1})^{-1} = A,$$

 $(AB)^{-1} = B^{-1}A^{-1},$
 $AA^{-1} = A^{-1}A = I,$

where I is the identity matrix, and the inverse is unique.

LDU Decomposition

For a symmetric matrix A, the LDU decomposition is unique and satisfies:

$$A = LDL^T$$
.

where L is a lower triangular matrix with unit diagonal, D is a diagonal matrix, and L^T is the transpose of L.

Vector Space Axioms

The axioms for vector space operations over the real numbers $\mathbb R$ include:

Addition

For all vectors $v, w, u \in V$:

- Commutativity: v + w = w + v.
- Associativity: (v+w) + u = v + (w+u).
- Existence of additive identity: There exists a zero vector 0 such that v + 0 = v.
- Existence of additive inverses: For every v, there exists -v such that v + (-v) = 0.

Scalar Multiplication

For all scalars $c, d \in \mathbb{R}$ and vectors $v \in V$:

- Distributivity over vector addition: c(v+w) = cv + cw.
- Distributivity over scalar addition: (c+d)v = cv + dv.
- Compatibility with field multiplication: c(dv) = (cd)v.
- Identity element of scalar multiplication: 1v = v.

Subspaces

A subspace W of a vector space V is itself a vector space and must be closed under addition and scalar multiplication.

Linear Dependence and Independence

Vectors $\{v_1, v_2, \dots, v_n\}$ are said to be linearly dependent if there exist scalars, not all zero, such that:

$$a_1v_1 + a_2v_2 + \ldots + a_nv_n = 0.$$

They are linearly independent if the only solution is $a_1 = a_2 = \ldots = a_n = 0$.

Basis and Dimension

A set of vectors $\{v_1, v_2, \dots, v_k\}$ forms a basis of vector space V if:

- They are linearly independent.
- They span V, meaning any vector in V can be expressed as a linear combination of the basis vectors.

The dimension of V, denoted $\dim(V)$, is the number of vectors in a basis for V.

General Principles

Given a vector space V, a subset W is a subspace of V if:

- For all $v, w \in W$, $v + w \in W$.
- For all $v \in W$ and $c \in \mathbb{R}$, $cv \in W$.

In other words, W must be closed under vector addition and scalar multiplication.

Further Definitions

Linear Transformation

A linear transformation is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

Image and Kernel

For a matrix $A \in \mathbb{R}^{m \times n}$:

- The image of A, denoted im(A), is the span of the column vectors of A.
- The kernel of A, denoted $\ker(A)$, is the set of all vectors $x \in \mathbb{R}^n$ such that Ax = 0.

Basis Transformation

If $\{v_1, v_2, \dots, v_n\}$ forms a basis for \mathbb{R}^n and a vector $w \in \mathbb{R}^n$, then w can be expressed uniquely as:

$$w = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n,$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are unique scalars.