

Priego Ramírez de Arellano Enrique Jesús 09/12/22 Grupo 11

Objetivo

El alumno deberá aplicar y demostrar los conocimientos adquiridos durante todo el curso.

Descripción

El alumno deberá seleccionar una fachada y un espacio que pueden ser reales o ficticios y presentar imágenes de referencia de dichos espacios para su recreación 3D en OpenGL.

En la imagen de referencia se debe visualizar 7 objetos que el alumno va a recrear virtualmente y donde dichos objetos deben ser lo más parecido a su imagen de referencia, así como su ambientación.

El Proyecto debe contener:

- Animaciones → el proyecto debe contar con 5 animaciones donde sean 3 sencillas y 2 complejas
- Espacio virtual contra la foto de referencia
- Archivo Ejecutable

INSTRUCCIONES

Paso 1: antes de la instalación

Vamos a comprobar que nuestra máquina está lista para que instalemos Visual Studio 2019.

Abra «Mi PC» en el explorador de archivos.

Asegúrese de tener más de 30 GB de espacio disponible en una unidad (se recomienda la unidad C:/).

Paso 2: descarga

Ahora, vamos a obtener nuestra descarga de Visual Studio 2019 para prepararnos para la instalación.

Vaya a https://visualstudio.microsoft.com/es/downloads/ seleccione su versión y descargue, puede trabajar con la versión community que es gratuita.

Ahora ya nos aparece el archivo descargado, en algunos navegadores quizás sea necesario usar "Guardar como".

Paso 3: Instalación

Ejecute el programa de instalación y elija instalar los componentes de desarrollo móvil. Para obtener más información sobre los distintos componentes, consulte Instalación de Visual Studio 2019: Instalar cargas de trabajo.

Asegúrese de que no se estén ejecutando otras versiones de Visual Studio cuando instale Visual Studio 2019.

Localice el archivo, haga clic con el botón derecho y seleccione "Ejecutar como administrador".

Haga clic para ejecutarlo.

Elija los componentes a instalar, al menos debemos tener instalado .net desktop y desktop development with C++.

Realice la instalación y espere hasta que finalice.

Paso 4: descarga

Ya está listo para la acción.

Paso 5: Instalar GitHub Desktop

- 1. Visite la página de descarga de GitHub Desktop.
- 2. Haz clic en Descargar para Windows.

Download for Windows (64bit)

3. En la carpeta Downloads del equipo, haz doble clic en el archivo de configuración

de GitHub Desktop

4. GitHub Desktop se lanzará después de que se complete la instalación. Paso 6: Clonar un repositorio

En el menú File, haga clic en Clone Repository.

1. Haz clic en la pestaña que corresponde a la ubicación del repositorio que deseas clonar. También puede hacer clic en **URL** para especificar manualmente la ubicación del repositorio.

1. Elija el repositorio que quiera clonar en la lista.

1. Haga clic en **Elegir...** y navegue hasta una ruta local donde quiera clonar el repositorio.

1. Haga clic en **Clone** (Clonar).

Paso 7: Configuración del proyecto Abra Visual Studio, una vez abierto seleccionar Abrir un proyecto o una solución

Ir a la carpeta donde se encuentra el Proyecto, que se clone desde Github. Navegar hasta encontrar las siguientes carpetas

Dar click en ProyectoFinal.sIn para abrir el Proyecto

Verificar siempre que en la parte superior se trabaje en una arquitectura x86 sin importar que su equipo sea de 64 bits en caso de que no esté en x86 cambiarlo manualmente, ya que esta arquitectura es más óptima al mandar la información a la GPU.

En la barra de menús de Visual Studio seleccionen Project/Proyecto y vayan la opción Propiedades, tal como lo indica la imagen.

Debe de aparecer una nueva ventana. En la parte de arriba de esta ventana aparece Configuration/Configuración y a su lado una lista desplegable, en la cual deben de seleccionar All Configurations/Todas las Configuraciones, vean imagen como referencia.

Con la anterior opción seleccionada, ahora vayan a Configuration Properties, luego a C/C++, y de ahí a General. Del lado derecho de esta ventana debe aparecer una lista

con dos columnas, seleccionen el primer campo y dar click izquierdo y seleccionar editar.

Seleccionar en la ventana resultante nueva linea y teclear

- \$(SolutionDir)/External Libraries/glm;
- \$(SolutionDir)/External Libraries/assimp/include;
- \$(SolutionDir)/External Libraries/GLFW/include;
- \$(SolutionDir)/External Libraries/GLEW/include;
- %(AdditionalIncludeDirectories)

Terminamos dando aceptar.

Ahora en la lista del lado izquierdo seleccionan Linker/Vinculador y luego General. Del lado derecho de la ventana ahora aparecen otras opciones, de ahí seleccionan Additional Library Directories, dar click izquierdo y seleccionar editar.

Seleccionar en la ventana resultante nueva línea y teclear

- \$(SolutionDir)/External Libraries/glm;
- \$(SolutionDir)/External Libraries/SOIL2/lib;
- \$(SolutionDir)/External Libraries/assimp/lib;
- \$(SolutionDir)/External Libraries/GLEW/lib/Release/Win32;
- \$(SolutionDir)/External Libraries/GLFW/lib-vc2015;

En la pestaña de Entrada/Input de lado derecho en dependencias adicionales añadir opengl32.lib;glew32.lib;glfw3.lib;assimp-vc140-mt.lib;soil2-debug.lib;

Le dan al botón Aplicar y luego al de Aceptar. Con esto cerraron las ventanas que abrieron y se encuentran de nuevo en Visual Studio. ¡Felicidades, ya tienen configurado Visual Studio para trabajar y ver el proyecto!

Compilar

Una vez configurado el proyecto

En la parte superior le damos clic en

Esperar hasta que el Proyecto se visualice

Advertencia:

El tiempo de visualización depende de su PC

Mover el mouse hacia la derecha hasta observar

Desarrollo

Se empezó con la planificación desde octubre 9 del 2022.

Se decidió aprender primero el uso de git para poder ir subiendo los avances del proyecto.

Para los modelos se decidió buscarlos en páginas de internet, y modelar la fachada. Algunas fechas se movieron porque las animaciones se vieron al final del laboratorio, así como las 2 semanas de paro que nos afectó en el calendario escolar Fechas y actividades:

Link del Diagrama de Gantt

https://docs.google.com/spreadsheets/d/1cvuTPeUvA1EZqjk47Jg025Hqxma0-5iDhEB031Whs0M/edit?usp=sharing

Documentación del código

Descripción de carpetas

Shader	Descripción	Modelos que lo usan
lighting	Describe las propiedades de una superficie (como el color alfa y la normal) y un modelo de iluminación calcula la interacción de la	Cangrejo, Roca, Pared, Domo, pecera, puerta, peces, corales
anim	iluminación	Humano
allilli	Shader para poder hacer correctamente la animación por huesos	пинано

Descripción de Variables

Tipo Variable Descripción				
float	rotC	Rotación del cangrejo		
float	UpC	Valor máximo para movimiento de los pies		
Tioat	орс	del cangrejo		
float	DownC	Valor mínimo para movimiento de los pies del cangrejo		
£1eet	Dinas	Valor máximo y mínimo para movimiento		
float	Pinzas	de las pinzas del cangrejo		
float	rotKit	Angulo de rotación para el pez globo		
float	rotTapa	Rotación tapa del cofre		
float	Abrir	Abrir y cerrar puerta		
float	r	Radio de la circunferencia		
float	Radio	Calculo del ángulo de la circunferencia		
float	movY	Movimiento de los peces arriba y abajo		
float	movKitX	Movimiento para las coordenadas del pez globo en X		
float	movKitZ	Movimiento para las coordenadas del pez globo en Z		
float	rotDI1	Movimiento para el keyframe de pies #1		
Tioac	TOURIT	izquierdo y derecho para el cangrejo		
float	rotDI2	Movimiento para el keyframe de pies #2		
		izquierdo y derecho para el cangrejo		
float	rotDI3	Movimiento para el keyframe de pies #3		
		izquierdo y derecho para el cangrejo		
float	rotDI4	Movimiento para el keyframe de pies #4		
		izquierdo y derecho para el cangrejo		
float	rotHands	Movimiento de pinzas para el cangrejo		
float	rotInc	Calculo de incremento para el movimiento de rotDI1		
float	rotInc2	Calculo de incremento para el movimiento		
		de rotDI2		
float	rotInc3	Calculo de incremento para el movimiento		
		de rotDI3		
float	rotInc4	Calculo de incremento para el movimiento de rotDI4		
float	rotInc5	Calculo de incremento para el movimiento		
		de rotDI5		
int	turnangle	Calculo del ángulo a rotar		
bool	myanim	Activación de luz		
bool	circuito	Activación de la animación circuito del pez		
		globo y peces en el volcán		
bool	recorrido1	Activación de la animación circuito del pez		
		globo		

Manual Técnico		
bool	recorrido2	Activación de la animación circuito del pez globo
bool	recorrido3	Activación de la animación circuito de los peces en el volcán
bool	recorrido4	Activación de la animación circuito de los peces en el volcán
bool	recorrido5	Activación de la animación abrir de la tapa del cofre
bool	recorrido6	Activación de la animación cerrar de la tapa del cofre
glm::vec3	LightP2	Valor de luz
glm::vec3	LightP3	Valor de luz

Descripción de Animaciones

Animación	Modelo	Descripción
Cofre	Cofre	Al presionar la tecla C la tapa del cofre se abre Al presionar la tecla V la tapa del cofre se cierra
Pez globo	Pez Globo	Movimiento circular con rotación sobre el plano X y Z de una circunferencia
Peces	Peces en el volcán	Movimiento de arriba abajo
Cangrejo	Cangrejo	Movimiento por keyframes
Humano	Humano	Animación tipo huesos, movimiento

Conclusiones

En este proyecto los modelos cargan sus texturas correctamente, así como las animaciones, cabe destacar que las animaciones complejas se tuvieron que hacer muy rápido por la entrega del proyecto. La implementación de diferentes tipos de iluminación se hace de acuerdo con la reflexión de la dirección de salida de la luz. Para obtenerse la dirección, el reflejo se obtuvo con la incidencia de la luz y la normal.