Reti logiche

- Reti combinatorie
 - algebra booleana
 - porte logiche
 - forme canoniche
 - minimizzazione di funzioni
 - operatori NAND, NOR, XOR e NXOR
 - porte a tre stati
 - moduli combinatori:
 - •codificatori, decodificatori, multiplexer e demultiplexer
 - realizzazione di funzioni mediante multiplexer
 - circuito sommatore
 - ALU semplificata
- Reti sequenziali

RISTI LOGICHIZ > RETI SEQUENZIALI

RISTI COMBINATORIZ

CALCOLI 1TERATIVI

Prodotto logico					
Α	В	A · B			
0	0	0			
0	1	0			
1	0	0			
1	1	1			

So	mma	a logica
Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

Comple- mentazione				
Α	Ā			
0	1			
	U			

Tabella 3.1 Tabelle di verità delle tre operazioni fondamentali dell'algebra.

 Una funzione logica può essere espressa in forma algebrica o in forma tabellare:

ESEMPIO

$$f(x,y,z)=x+yz$$

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

$$f(x_1, x_2, x_3) = \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} x_2 x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$$

x_1	x_2	x_3	y
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Tabella 3.2 Esempio di tabella di verità la funzione di tre variabili $y = f(x_1, x_2, x_3)$. Sulle tabelle di verità le configurazioni delle variabili sono riportate ordinatamente per riga. Nel caso specifico, si hanno 8 righe, numerate da 0 a $2^3 - 1 = 7$.

- Idempotenza: x+x=x, xx=xDim. (per induzione perfetta): $1+1=1,0+0=0,1\cdot 1=1,0\cdot 0=0$
- 2. Distributiva: x(y+z)=xy+xz, x+yz=(x+y)(x+z)
- Associativa: x+(y+z)=(x+y)+z,x(yz)=(xy)z
 NB: grazie a questa proprietà le espressioni xyz e x+y+z non risultano ambigue
- 4. Commutativa: x+y=y+x, xy=yx

- 5. Per ogni variabile booleana *x* vale
 - $x+0=x, x\cdot 1=x$
 - $x+1=1, x\cdot 0=0$
 - $x \cdot \neg x = 0, x + \neg x = 1$
 - ¬¬x=x (doppia negazione)
- 6. Assorbimento: x+xy=x, x(x+y)=xDim. $x+xy=x\cdot 1+xy=x(1+y)=x\cdot 1=x$

$$\chi(x+y)=\chi\chi+\chi\gamma=\chi+\chi\gamma$$

- 7. Teorema di De Morgan: $\neg(x+y) = \neg x \cdot \neg y$, $\neg(x \cdot y) = \neg x + \neg y$
 - vale anche nel caso generale di n variabili
- 8. Principio di dualità: qualsiasi proprietà continua a valere se si scambiano tra loro le operazioni · e + e gli 1 con gli 0

- Dimostrare tutte le proprietà finora elencate facendo ricorso al metodo dell'induzione perfetta o gli altri metodi usati
- Verificare come per ogni coppia valga il principio di dualità
- Stabilire quali proprietà non valgono nell'aritmetica classica

- Vediamo ora come realizzare a livello circuitale le operazioni dell'algebra booleana
- Indichiamo con A e B due valori di tensione rispettivamente alto e basso compresi tra +E e –E della tensione di alimentazione
- Possiamo associare A al valore 1 e B al valore 0 (logica positiva), o viceversa (logica negativa)
- Vediamo brevemente i circuiti corrispondenti alla logica positiva

Le porte logiche sono realizzate con un'opportuna combinazione di dispositivi elettronici come diodi e transistor...

Figura 3.4 Realizzazioni elettroniche di circuiti logici elementari e relative relazioni di ingresso uscita.

... Legge di Moore (famiglia Intel)

Data di introduzione	Nome del chip	N. di transistori (/1000)	Tecnologia (μ m) 10-6	Frequenza (MHz)
Novembre 1971	4004	2,3	10	0,108
Aprile 1972	8008	3,5	10	0,500
Aprile 1974	8080	4,5	6	2
Giugno 1978	8086	29	3	5
Febbraio 1982	80286	134	1,5	8
Ottobre 1985	80386	275	1,5	16
Aprile 1989	80486	1.200	1	25
Marzo 1993	Pentium	3.100	0,8	60
Novembre 1995	PentiumPro	5.500	0,6	150
Maggio 1997	Pentium II	7.500	0,35	233
Febbraio 1999	Pentium III	9.500	0,25	450
Novembre 2000	Pentium 4	42.000	0,18	1400
Marzo 2003	Pentium M	77.000	0,13	1300
Gennaio 2006	Core 2	291.000	0,065	1200
Gennaio 2008	Core 2 Quad	820.000	0,045	2500

Tabella 1.2 - Aumento del numero di transistori delle CPU Intel. I dati riportati si riferiscono al modello di introduzione. Per i modelli introdotti in più versioni, la tabella riporta i dati relativi alla versione di più bassa capacità. Per esempio, il PentiumPro è stato introdotto in ben quattro versioni, di cui la meno potente (quella riportata) era tecnologia a $0,6\,\mu m$ e frequenza pari a 150 MHz, mentre la più avanzata era in tecnologia a $0,35\,\mu m$ e frequenza pari a 200 MHz.

Transistor nei processori

Qualche breve cenno sul loro funzionamento

Figura 3.4 Realizzazioni elettroniche di circuiti logici elementari e relative relazioni di ingresso uscita.

Sostituzione A = 1, B = 0:

x1	x2	Z
0	0	0
0	1	0
1	0	0
1	1	1

x1	x2	Z
0	0	0
0	1	1
1	0	1
1	1	1

x z 0 1 1 0	

Sostituzione A = 0, B = 1:

x1	x2	Z
1	1	1
1	0	1
0	1	1
0	0	0

Figura 3.5 Tabelle di verità per le funzioni di ingresso uscita di Figura 3.4.

Figura 3.6 Simboli standard per le porte AND, OR e NOT.

- Grazie alle porte logiche, è possibile rappresentare ogni funzione mediante circuiti logici nel seguente modo
 - si sostituiscono gli operatori con le porte corrispondenti
 - si prendono le variabili, costanti ed espressioni come ingressi e uscite nelle porte

• Esempio: f(x,y,z)=xy+z corrisponde al seguente circuito

I forma canonica: somma di prodotti

- Le così dette forme canoniche permettono il passaggio sistematico (in modo meccanico e deterministico) da una funzione booleana data in forma tabellare ad una sua rappresentazione come espressione booleana (rete a due livelli)
- Data una funzione di n variabili descritta tramite una tabella di verità, è sempre possibile ottenere un' espressione detta prima forma canonica
- Tale forma è costituita dalla somma di un numero di termini pari al numero di righe nella tabella dove la funzione ha valore 1
- Ogni termine corrisponde ad una riga ed è costituito dal prodotto di tutte le n variabili, ognuna delle quali compare in modo diretto se nella riga è pari ad 1, in modo negato altrimenti
- Tali termini sono chiamati prodotti fondamentali o mintermini, e corrispondono a funzioni che valgono 1 solo nella riga corrispondente
- La prima forma canonica ottenuta è detta somma di prodotti fondamentali o mintermini

Esempio

•
$$f(x,y,z)=x+yz$$

					1		
mintermini	X	У	Z	f			
$m_0 = \neg x \neg y \neg z$	0	0	0	0			
$m_1 = \neg x \neg y z$	0	0	1	0			
$m_2 = \neg x y \neg z$	0	1	0	0			
$m_3 = \neg x y z$	0	1	1	1	 →	m_3	$f(x,y,z) = m_3 + m_4 + m_5 + m_6 + m_7 =$
$m_4 = x \neg y \neg z$	1	0	0	1	 →	m_4	$= \neg x y z + x \neg y \neg z + x \neg y z +$
m ₅ = x¬y z	1	0	1	1		m_5	x y¬z + x y z
m ₆ = x y¬z	1	1	0	1	 →	m_6	
$m_7 = x y z$	1	1	1	1	 →	m_7	

• Un modo sintetico per esprimere tale funzione è $f(x,y,z)=\sum_3(3,4,5,6,7)$

- Per ottenere la stessa forma canonica a partire da un' espressione è possibile usare il seguente metodo:
 - si trasforma la formula in somma di prodotti (tramite la proprietà distributiva)
 - si moltiplica ogni prodotto per il termine $(x+\neg x)$ per ogni variabile mancante x
 - si applica la proprietà distributiva e di idempotenza

Esempio:

$$f(x,y,z) = x+yz=x(y+\neg y)(z+\neg z)+(x+\neg x) \ yz=$$

$$=(xy+x\neg y) \ (z+\neg z)+xyz+\neg xyz=$$

$$=(xy+x\neg y)z+(xy+x\neg y)\neg z+xyz+\neg xyz=$$

$$=xyz+xy\neg z+x\neg yz+x\neg y\neg z+xyz+\neg xyz=$$

$$=xyz+xy\neg z+x\neg yz+x\neg y\neg z+xyz$$

Il forma canonica: prodotto di somme

- Data una funzione di n variabili descritta tramite una tabella di verità, è sempre possibile ottenere un' espressione detta seconda forma canonica
- Tale forma è costituita dal prodotto di un numero di termini pari al numero di righe nella tabella dove la funzione ha valore 0
- Ogni termine corrisponde ad una riga ed è costituito dalla somma di tutte le n variabili, ognuna delle quali compare in modo diretto se nella riga è pari ad 0, in modo negato altrimenti
- Tali termini sono chiamati somme fondamentali o maxtermini, e corrispondono a funzioni che valgono 0 solo nella riga corrispondente
- La seconda forma canonica ottenuta è detta prodotto di somme fondamentali o maxtermini

Esempio

•
$$f(x,y,z)=x+yz$$

	4			1
നാ	Vta	rm	In	
шa	xte		111	

$$M_0 = x + y + z$$

$$M_1 = x + y + \neg z$$

$$M_2 = x + \neg y + z$$

$$M_3 = x + \neg y + \neg z$$

$$M_4 = \neg x + y + z$$

$$M_5 = \neg x + y + \neg z$$

$$M_6 = \neg x + \neg y + z$$

$$M_7 = \neg x + \neg y + \neg z$$

X	У	Z	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

	M_0			
	M_1	$f(x,y,z) = M_0M_1M_2 =$		
→	M_2	$= (x+y+z)(x+y+\neg z)(x+\neg y+z)$		

Un modo sintetico per esprimere tale funzione è

$$f(x,y,z) = \prod_{3} (0,1,2)$$

- Per ottenere la stessa forma canonica a partire da un' espressione è possibile usare il seguente metodo:
 - si trasforma la formula in prodotti di somme (tramite la proprietà distributiva)
 - si aggiunge ad ogni addendo il termine (x·¬x) per ogni variabile mancante x
 - si applica la proprietà distributiva e di idempotenza
- Esempio:

$$f(x,y,z) = x+yz = (x+y)(x+z) = (x+y+(z\cdot \neg z))(x+(y\cdot \neg y)+z) = = (x+y+z)(x+y+\neg z)(x+y+z)(x+\neg y+z) = = (x+y+z)(x+y+\neg z)(x+\neg y+z)$$

$$f(x_1y_1z) = x + yz = 0$$

$$= (x + y)(x + z) = (5p)$$

$$= (x + y + z)(x + y + z)(x + y + z)$$

$$= (3/4)5/67$$

$$\begin{cases} (x_1y_1z) = x + yz = (59 \text{ More }) \\ = (x_1y_1z) = x + xyz + xyz + xyz + xyz = xyz + xyz + xyz = xyz = xyz + xyz + xyz + xyz + xyz + xyz = xyz + xyz + xyz + xyz + xyz + xyz + xyz = xyz + xyz +$$

- E' possibile andare da una forma canonica all'altra in modo diretto a partire dalla notazione concisa
- Esempio: $f(x,y,z) = \sum_{3} (3,4,5,6,7) = \prod_{3} (0,1,2)$

indici delle righe che non compaiono nella sommatoria, compaiono nella produttoria e viceversa

Vediamo come ottenere l'asserto applicando il teorema di De Morgan:

$$\neg f(x,y,z) = \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2 = \neg x \neg y \neg z + \neg x \neg y z + \neg x y \neg z \qquad \text{le righe a 0 diventano a 1}$$

$$f(x,y,z) = \neg \neg f(x,y,z) = \neg (\mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2) =$$

$$= \neg (\neg x \neg y \neg z + \neg x \neg y z + \neg x y \neg z) =$$

$$= \neg (\neg x \neg y \neg z) \cdot \neg (\neg x \neg y z) \cdot \neg (\neg x y \neg z) =$$

 $=(x+y+z)\cdot(x+y+z)\cdot(x+z+z)=M_0\cdot M_1\cdot M_2$

- Un' espressione è in forma SP se è costituita dalla somma di prodotti (complementi a parte)
- Una forma canonica SP è un caso particolare di forma SP
- Esempio: wx+yz, ¬wx+y¬z,...
- Ad una forma SP corrisponde naturalmente un circuito a due livelli, in cui il livello di ingresso è dato da tutte porte AND e quello di uscita da una porta OR
- Un' espressione è in forma PS se è costituita dal prodotto di somme e (complementi a parte)
- Una forma canonica PS è un caso particolare di forma PS
- Esempio: x(¬y+z), (w+¬x)(¬y+¬z),...
- Ad una forma PS corrisponde naturalmente un circuito a due livelli, in cui il livello di ingresso è dato da tutte porte OR e quello di uscita da una porta AND
- NB: la strutturazione a livelli non tiene conto delle porte NOT, in quanto solitamente nei circuiti tutti gli ingressi sono disponibili sia in forma diretta che complementata

$$f(w,x,y,v,z)=wxy+vz$$

$$f(w,x,y,z) = (\neg w+x)(y+z)$$

1) xy7 +xy

Some commice

2)
$$A(B+BC) =$$

bound committee

Sop

= AB + ABC =

= ABC + ABC

= $\frac{7}{3}(4,5) = \frac{7}{3}(0,1,2,3,6,7)$

3)
$$(x+y)(x+y) = g(x,7/2)$$

Posser Rollo Pos De SoP
 $(x+y+3)(x+y+2)(x+y+2)$
 $(x+y+3)(x+y+2) = T(3(0,1,2,3) =$
 $= \sum_{3} (4,5,6,7) = xyz + xyz$