ML Data Prep

Created Date: 2022-08-01

Metadata 🌑

Title: Preparing & Cleaning Data for Machine Learning

• Author: Andrew Jones

Reference: Data Science Infinity

Links & Tags @

• Index: Course Note Index

Atomic Tag: #datascience

Subatomic Tags: #machinelearning #dataengineering

• Related Notes: DSI ML Guide

Steps for Data Cleaning & Preparation

Jupyter Notebook: Data Preparation Templates

- Missing Values
- Duplicate Data & Low Variation Data
- Incorrect & Irrelevant Data
- Categorical Variables
- Outliers
- Feature Scaling
- Feature Engineering & Selection
- Validation Split (Training Set, Test or Validation Set)

Missing Values

- ML models don't always know how to process NULL or missing values
- Missing values should be dropped when appropriate, or filled with predicted values
 - We can replace NULL values with the mean, median, or mode using Pandas
 - We can use a simple imputer to replace NULL values with mean, median, or mode using Scikit-Learn
 - We can use a KNN imputer to replace NULL values with nearest neighbor using Scikit-Learn
 - KNN algorithm will dynamically impute missing values using numerical data points across the entire data set (instead of a single column)
 - May give a better estimation of what the missing value will be
 - The argument n_neighbors can be used to determine how many neighbors we want the algorithm to take into consideration

Categorical Variables

- ML models cannot apply numerical importance to categorical variables
- Simply adding a type id can imply an order or scale that will cause inaccurate model results
- Best practice is to create dummy variables using "One Hot Encoding"

- One hot encoding is a representation of categorical variables as binary vectors
- Create new columns that represent the categories in binary
- The new columns can be used as input variables and the original column can be discarded
- Potential downfall is the "Dummy Variable Trap"
 - When input variables perfectly predict each other (multicollinearity) mainly an issue with regression modeling
 - You can drop one of the new binary category columns for each set of dummy variables created

House Price	Bedroom Count	House Size (sq. ft)	House Age	Location Type	Rural	Suburban	Urban
\$500,000	4	2,400	9	Rural	1	0	0
\$950,000	6	4,000	17	Sububan	 0	1	V
\$100,000	1	800	50	Fkural	1	0	0
\$820,000	5	3,800	11	Rural	1	0	0
\$920,000	5	3,900	10	Urban	0	0	1

Dealing with Outliers

- An outlier is any value that differs significantly from other values
- Identifying an outlier is situational

•

- They can skew averages and ML results but in some cases they should be left in the model
- Options for handling outliers
 - Keep them
 - Remove them
 - Replace them (can be considered data manipulation)
- Identifying outliers with boxplots

 Identifying outliers with the normal distribution (outside of 3 standard deviations)

Feature Scaling for ML

- Force the values from different columns to exist on the same scale,
- Enhances the learning capabilities of the model
- Most common techniques;

- Standardization
 - Rescales each data point to have a mean (μ) of 0 and a standard deviation (σ) of 1
 - $x_{standardized} = \frac{x-\mu}{\sigma}$
 - x Data Point
 - $\mu(X)$ Column Mean
 - $\sigma(X)$ Column Standard Deviation
- Normalization
 - Rescales each data point so that it exists in a range between 0 and 1
 - $x_{normalized} = \frac{x min(x)}{max(X) min(X)}$
 - x Data Point
 - min(X) Column Min
 - max(X) Column Max
- Standardization is more commonly used but if your model requires all positive variables, use normalization
- This is not always a requirement and comes down to accuracy vs interpretation
 - Scaling values makes it harder to interpret the true meaning of coefficients in terms of actual values
 - Algorithms that rely on distance comparisons (K-Means, KNN) requires feature scaling

Feature Selection

- Process used to select the input variables that are most important to your ML task
- Improves model accuracy by eliminating unnecessary noise
- Lower computational cost
- Model is easier to understand and explain
- Implementing feature selection;
 - Correlation Matrix
 - Shows associations between numeric variables

- Scores between -1 and 1, stronger relationships closer to 1
- Input variables correlated with each other can introduce multicollinearity in regression models
- Downside to correlation matrix is it doesn't really tell us which features to drop, we base our decisions on assumptions and pre-defined limits
- Univariate Feature Selection
 - Applies statistical tests to find relationships between the output variable and each input variable, in isolation
 - Potential downside is that it only considers variables in isolation

Regression

Input Variable	f-score	p-value	
Input B	120	0.001	
Input C	19	0.04	
Input A	0.44	0.28	

Classification

Input Variable	chi²	p-value	
Input B	7	0.008	
Input C	1.7	0.09	
Input A	0.21	0.38	

- Recursive Feature Elimination (RFE) (usually best choice)
 - Fits a model with all input variables, then iteratively removes those with the weakest relationship until the desired number of features is reached
 - Model is re-fit after each variable is dropped
 - After a variable is dropped, the relationships will change
 - Using the desired number of features can be problematic as it is likely a "best guess"
 - Can use cross-validation to split data into different chunks and build different models
 - Algorithm will compare models to see which provided the best accuracy
 - Will tell you how many input variables should be kept and which ones they are

- Data should be split into two groups (order must be shuffled)
 - Training set (usually 70-80%)
 - Testing set (remaining 20-30%)

- Running models on training data can led to overfitting
 - Overfitting is where a model learns the patterns within the training data too well and results in poor performance on new data
- Another option to the above visual is Cross-Validation (K-Fold Cross Validation)
 - K denotes the number of evenly sized groups (folds) our data is divided into
 - Splitting the training and testing data so each fold is used as a testing set once
 - The results of each iteration can be compared for model accuracy

