

Nonsmooth Optimization on Riemannian Manifolds in Manopt.jl

Ronny Bergmann

European Operations Research Conference (Euro) 2024 Software for Optimization — Optimization Frameworks Copenhagen,

The Rayleigh Quotient

When minimizing the Rayleigh quotient for a symmetric $A \in \mathbb{R}^{n \times n}$

$$\underset{x \in \mathbb{R}^n \setminus \{0\}}{\operatorname{arg\,min}} \frac{x^{\mathsf{T}} A x}{\|x\|^2}$$

- \triangle Any eigenvector x^* to the smallest EV λ is a minimizer
- no isolated minima and Newton's method diverges
- Constrain the problem to unit vectors ||x|| = 1!

classic constrained optimization (ALM, EPM,...)

Today Utilize the geometry of the sphere

unconstrained optimization

$$\underset{p \in \mathbb{S}^{n-1}}{\operatorname{arg min}} p^{\mathsf{T}} A p$$

adapt unconstrained optimization to Riemannian manifolds.

The Generalized Rayleigh Quotient

More general. Find a basis for the space of eigenvectors to $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_k$:

$$\mathop{\arg\min}_{X\in \mathsf{St}(n,k)}\mathsf{tr}(X^\mathsf{T}AX),\qquad \mathsf{St}(n,k)\coloneqq \big\{X\in \mathbb{R}^{n\times k}\,\big|\,X^\mathsf{T}X=I\big\},$$

- \triangle a problem on the Stiefel manifold St(n, k)
- \triangle Invariant under rotations within a k-dim subspace.
- ♀ Find the best subspace!

$$\underset{\mathsf{span}(X) \in \mathsf{Gr}(n,k)}{\mathsf{arg}} \operatorname{tr}(X^\mathsf{T} A X), \qquad \mathsf{Gr}(n,k) \coloneqq \big\{ \mathsf{span}(X) \, \big| \, X \in \mathsf{St}(n,k) \big\},$$

Nonsmooth Optimization on Riemannian Manifolds

We are looking for numerical algorithms to find

$$\underset{p \in \mathcal{M}}{\operatorname{arg\;min}} f(p)$$

where

- $ightharpoonup \mathcal{M}$ is a Riemannian manifold
- ▶ $f: \mathcal{M} \to \overline{\mathbb{R}}$ is a function
- Λ f might be nonsmooth and/or nonconvex
- Λ might be high-dimensional

A Riemannian Manifold ${\mathcal M}$

A d-dimensional Riemannian manifold can be informally defined as a set \mathcal{M} covered with a "suitable" collection of charts, that identify subsets of \mathcal{M} with open subsets of \mathbb{R}^d and a continuously varying inner product on the tangent spaces.

[Absil, Mahony, and Sepulchre 2008]

A Riemannian Manifold ${\mathcal M}$

Notation.

- lacksquare Logarithmic map $\log_{
 ho}q=\dot{\gamma}(0;
 ho,q)$
- ightharpoonup Exponential map $\exp_{p} X = \gamma_{p,X}(1)$
- Geodesic $\gamma(\cdot; p, q)$
- ► Tangent space $\mathcal{T}_{p}\mathcal{M}$
- ▶ inner product $(\cdot, \cdot)_p$

Numerics.

 \exp_p and \log_p maybe not available efficiently/ in closed form

⇒ use a retraction and its inverse instead.

 \mathcal{M}

Manifolds.jl & Manopt.jl – Why Julia?

Goals.

- abstract definition of manifolds
- ⇒ implement abstract solvers on a generic manifold
- well-documented and well-tested
- ► fast.
- \Rightarrow "Run your favourite solver on your favourite manifold".

Why 💑 Julia?

▶ high-level language, properly typed

- ► multiple dispatch (cf. f(x), f(x::Number), f(x::Int))
- ▶ just-in-time compilation, solves two-language problem ⇒ "nice to write" and as fast as C/C++
- ► I like the community

julialang.org

ManifoldsBase.jl

[Axen, Baran, RB, and Rzecki 2023]

Goal. Provide an interface to implement and use Riemannian manifolds.

Interface AbstractManifold to model manifolds

Functions like exp(M, p, X), log(M, p, X) or retract(M, p, X, method).

Decorators for implicit or explicit specification of an embedding, a metric, or a group,

Efficiency by providing in-place variants like exp! (M, q, p, X)

Manifolds.jl

Goal. Provide a library of Riemannian manifolds, that is efficiently implemented and well-documented

Meta. generic implementations for $\mathcal{M}^{n\times m}$, $\mathcal{M}_1 \times \mathcal{M}_2$, vector- and tangent-bundles, esp. $T_p\mathcal{M}$, or Lie groups

Library. Implemented functions for

- ► Circle, Sphere, Torus, Hyperbolic, Projective Spaces, Hamiltonian
- ▶ (generalized, symplectic) Stiefel, Rotations
- ▶ (generalized, symplectic) Grassmann, fixed rank matrices
- Symmetric Positive Definite matrices, with fixed determinant
- ▶ (several) Multinomial, (skew-)symmetric, and symplectic matrices
- ► Tucker & Oblique manifold, Kendall's Shape space
- probability simplex, orthogonal and unitary matrices, Rotations, ...

Concrete Manifold Examples.

Before first run] add Manifolds to install the package.

Load packages with using Manifolds and

- ► Euclidean space M1 = \mathbb{R}^3 and 2-sphere M2 = Sphere(2)
- ► their product manifold M3 = M1 × M2
- ► A signal of rotations M4 = SpecialOrthogonal(3)^10
- ► SPDs M5 = SymmetricPositiveDefinite(3) (affine invariant metric)
- ► a different metric M6 = MetricManifold(M5, LogCholeskyMetric())

Then for any of these

- ► Generate a point p=rand(M) and a vector X = rand(M; vector_at=p)
- ▶ and for example exp(M, p, X), or in-place exp! (M, q, p, X)

Manopt.jl

Goal. Provide optimization algorithms on Riemannian manifolds.


```
Features. Given a Problem p and a SolverState s, implement initialize_solver!(p, s) and step_solver!(p, s, i) ⇒ an algorithm in the Manopt.jl interface
```

Highlevel interfaces like gradient_descent(M, f, grad_f) on any manifold M from Manifolds.jl.

All provide debug output, recording, cache & counting capabilities, as well as a library of step sizes and stopping criteria.

Manopt family.

List of Algorithms in Manopt.jl

Derivatve Free Nelder-Mead, Particle Swarm, CMA-ES

Subgradient-based Subgradient Method, Convex Bundle Method,
Proximal Bundle Method

Gradient-based Gradient Descent, Conjugate Gradient, Stochastic, Momentum, Nesterov, Averaged, ...

Quasi-Newton with (L-)BFGS, DFP, Broyden, SR1,...
Levenberg-Marquard

Hessian-based Trust Regions, Adaptive Regularized Cubics (ARC) nonsmooth Chambolle-Pock, Douglas-Rachford, Cyclic Proximal Point constrained Augmented Lagrangian, Exact Penalty, Frank-Wolfe nonconvex Difference of Convex Algorithm, DCPPA

Illustrating a few Keyword Arguments

Given cost f(M,p) and gradient $grad_f(M,p)$, a manifold M and a start point p0.

- ▶ q = gradient_descent(M, f, grad_f, p0) to perform gradient descent
- With Euclidean cost f(E,p) and gradient $\nabla f(E,p)$, use for conversion $q = \text{gradient_descent}(M, f, \nabla f, p0; \text{ objective_type=:Euclidean})$
- print iteration number, cost and change every 10th iterate

- ► record record=[:Iterate, :Cost, :Change], return_state=true Access: get solver result(q) and get record(q)
- ► modify stop: stopping_criterion = StopAfterIteration(100)
- ► cache calls cache=(:LRU, [:Cost, :Gradient], 25) (uses LRUCache.jl)
- ► count calls count=[:Cost, :Gradient] (prints with return state=true)

Numerical Examples

The Riemannian Convex Bundle Method

[RB, Herzog, and Jasa 2024]

- ▶ Given $f: \mathcal{C} \to \mathbb{R}$ on a (geodesically) convex set $\mathcal{C} \subset \mathcal{M}$
- collect
 - ightharpoonup subgradients $X_{q^{(k)}} \in \partial f(q^{(k)})$
 - stabilisation centers $p^{(k)}$ ("best" iterates)
- use this information to
 - lackbox determine the next descent direction $d^{(k)} \in \mathcal{T}_{p^{(k)}}\mathcal{M}$ by solving a QP in $\mathcal{T}_{p^{(k)}}\mathcal{M}$
 - ▶ where $d^{(k)} \in \partial_{c^{(k)}} f(p^{(k)})$
- we stop when both
 - ▶ the approximation $\partial_{c(k)} f(p^{(k)})$ of $\partial f(p^{(k)})$ is "good enough"
 - $ightharpoonup \|d^{(k)}\|$ is "small enough"

The Convex Bundle Method in Manopt.jl

In Manopt.jl a solver call looks like¹


```
p = convex_bundle_method(M, f, \partialf, p0; diameter = \delta, k_max = \Omega, m = 10^{-3}, kwargs...
```

where

- ▶ M is a Riemannian manifold
- ▶ f is the objective function
- ▶ ∂f is a subgradient of the objective function
- ▶ po is an initial point on the manifold

The default stopping criterion for the algorithm is set to

$$-\xi^{(k)} \le 10^{-8}$$
.

¹full documentation: manoptil.org/stable/solvers/convex bundle method/

Denoising a Signal on Hyperbolic Space \mathcal{H}^2

- ▶ signal $q \in \mathcal{M}$, $(\mathcal{H}^2)^n$, n = 496
- ▶ noisy signal $\bar{q} \in \mathcal{M}$, $\bar{q}_i = \exp_{q_i} X_i$, $\sigma = 0.1$
- ► ROF Model:

$$rg \min_{p \in \mathcal{M}} \ rac{1}{n} \, \mathrm{d}_{\mathcal{M}}(p,q)^2 \ + lpha \sum_{i=1}^{n-1} \mathrm{d}_{\mathcal{H}^2}(p_i,p_{i+1})$$

- Setting $\alpha = 0.05$ yields reconstruction p^* .
- ▶ in RCBM: set diam(dom f) = b > 0. (in practice: $b = floatmax() \approx 10^{308}$)

Algorithms for Denoising a Signal

► Riemannian Convex Bundle Method (RCBM)

[RB, Herzog, and Jasa 2024]

Proximal Bundle Algorithm (PBA)

[Hoseini Monjezi, Nobakhtian, and Pouryayevali 2021]

Subgradient Method (SGM)

[O. Ferreira and Oliveira 1998]

► Cyclic Proximal Point Algorithm (CPPA)

[Bačák 2014]

Algorithm	Iter.	Time (sec.)	Objective	Error
RCBM	3417	51.393	1.7929×10^{-3}	3.3194×10^{-4}
PBA	15 000	102.387	1.8153×10^{-3}	4.3874×10^{-4}
SGM	15 000	99.604	1.7920×10^{-3}	3.3080×10^{-4}
CPPA	15 000	94.200	1.7928×10^{-3}	3.3230×10^{-4}

The Riemannian DC Algorithm

To solve a Difference of Convex problem

$$\underset{p \in \mathcal{M}}{\operatorname{arg \, min}} g(p) - h(p).$$

use

The Riemannian Difference of Convex Algorithm.

Input: An initial point $p^{(0)} \in \text{dom}(g)$, g and $\partial_{\mathcal{M}} h$

- 1: Set k = 0.
- 2: while not converged do
- 3: Take $X^{(k)} \in \partial_{\mathcal{M}} h(p^{(k)})$
- 4: Compute the next iterate $p^{(k+1)}$ as

$$p^{(k+1)} \in rg \min_{p \in \mathcal{M}} g(p) - \left(X^{(k)}, \log_{p^{(k)}} p \right)_{p^{(k)}}.$$

- 5: Set $k \leftarrow k + 1$
- 6. end while

The Difference of Convex Algorithm in Manopt.jl

The algorithm is implemented and released in Julia using Manopt.jl². It can be used with any manifold from Manifolds.jl

A solver call looks like

```
q = difference_of_convex_algorithm(M, f, g, \partial h, p0) where one has to implement f(M, p), g(M, p), and \partial h(M, p).
```

- ▶ a sub problem is generated if keyword grad_g= is set
- ▶ an efficient version of its cost and gradient is provided
- you can specify the sub-solver using sub_state= to also set up the specific parameters of your favourite algorithm

²see https://manoptjl.org/stable/solvers/difference of convex/

Rosenbrock and First Order Methods

Problem. We consider the classical Rosenbrock example³

$$\underset{x \in \mathbb{R}^2}{\arg \min} \, \alpha (x_1^2 - x_2)^2 + (x_1 - b)^2,$$

where a, b > 0, usually b = 1 and $a \gg b$, here: $a = 2 \cdot 10^5$.

Known Minimizer
$$x^* = \begin{pmatrix} b \\ b^2 \end{pmatrix}$$
 with cost $f(x^*) = 0$.

Goal. Compare first-order methods, e.g. using the (Euclidean) gradient

$$\nabla f(x) = \begin{pmatrix} 4a(x_1^2 - x_2) \\ -2a(x_1^2 - x_2) \end{pmatrix} + \begin{pmatrix} 2(x_1 - b) \\ 0 \end{pmatrix}$$

³available online in ManoptExamples.il

A "Rosenbrock-Metric" on \mathbb{R}^2

In our Riemannian framework, we can introduce a new metric on \mathbb{R}^2 as

$$G_{\!
ho} \coloneqq egin{pmatrix} 1 + 4 p_1^2 & -2 p_1 \ -2 p_1 & 1 \end{pmatrix}, \ ext{with inverse} \ G_{\!
ho}^{-1} = egin{pmatrix} 1 & 2 p_1 \ 2 p_1 & 1 + 4 p_1^2 \end{pmatrix}.$$

We obtain $(X, Y)_p = X^T G_p Y$

The exponential and logarithmic map are given as

$$\exp_p(X) = \begin{pmatrix} p_1 + X_1 \\ p_2 + X_2 + X_1^2 \end{pmatrix}, \qquad \log_p(q) = \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 - (q_1 - p_1)^2 \end{pmatrix}.$$

Manifolds.jl:

Implement these functions on $MetricManifold(\mathbb{R}^2)$, RosenbrockMetric()).

The Riemannian Gradient w.r.t. the new Metric

Let $f: \mathcal{M} \to \mathbb{R}$. Given the Euclidean gradient $\nabla f(p)$, its Riemannian gradient grad $f: \mathcal{M} \to T\mathcal{M}$ is given by

$$\operatorname{\mathsf{grad}} f(p) = G_p^{-1} \nabla f(p).$$

While we could implement this denoting $abla f(p) = ig(f_1'(p) \ f_2'(p)ig)^{\mathsf{T}}$ using

$$\left\langle \operatorname{grad} f(q), \log_q p \right\rangle_q = (p_1 - q_1) f_1'(q) + (p_2 - q_2 - (p_1 - q_1)^2) f_2'(q),$$

but it is automatically done in Manopt.jl.

The Experiment Setup

Algorithms. We now compare

- **1.** The Euclidean gradient descent algorithm on \mathbb{R}^2 ,
- **2.** The Riemannian gradient descent algorithm on \mathcal{M} ,
- **3.** The Difference of Convex Algorithm on \mathbb{R}^2 ,
- **4.** The Difference of Convex Algorithm on \mathcal{M} .

For DCA third we split f into f(x) = g(x) - h(x) with

$$g(x) = a(x_1^2 - x_2)^2 + 2(x_1 - b)^2$$
 and $h(x) = (x_1 - b)^2$.

Initial point.
$$p_0 = \frac{1}{10} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 with cost $f(p_0) \approx 7220.81$.

Stopping Criterion.

$$d_{\mathcal{M}}(p^{(k)}, p^{(k-1)}) < 10^{-16} \text{ or } \|\text{grad } f(p^{(k)})\|_p < 10^{-16}.$$

Algorithm	Runtime (sec.)	# Iterations
Euclidean GD	305.567	53 073 227
Euclidean DCA	58.268	50 588
Riemannian GD	18.894	2 454 017
Riemannian DCA	7.704	2 459

Summary

- ManifolddsBase.jl provides an interface to implement a manifold
- Manifolds.jl implements a library of manifolds using the interface
- ▶ Manopt.jl provides optimization algorithms on these manifolds

Outlook.

- ► couple Manopt.jl with (Euclidean) AD tools using ManifoldDiff.jl
- ► What is (Fenchel) duality on manifolds?

Selected References

Axen, S. D., M. Baran, RB, and K. Rzecki (2023). "Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds". In: *ACM Transactions on Mathematical Software*. Accepted for pulication. DOI: 10.1145/3618296. arXiv: 2106.08777.

RB (2022). "Manopt.jl: Optimization on Manifolds in Julia". In: Journal of Open Source Software 7.70, p. 3866, DOI: 10.21105/joss.03866.

RB, O. P. Ferreira, E. M. Santos, and J. C. d. O. Souza (2024). "The difference of convex algorithm on Hadamard manifolds". In: *Journal of Optimization Theory and Applications*. DOI: 10.1007/s10957-024-02392-8. arXiv: 2112.05250.

RB, R. Herzog, and H. Jasa (2024). The Riemannian convex bundle method. arXiv: 2402.13670.

Boumal, N. (2023). An introduction to optimization on smooth manifolds. Cambridge University Press. URL: https://www.nicolasboumal.net/book.

Interested in Numerical Differential Geometry? Join amundiffgeo.zulipchat.com! Pronnybergmann.net/talks/2024-EURO-Manoptjl.pdf