Partial Differential Equation - HW 2

SungBin Park, 20150462

October 25, 2018

Problem 1

Step 1. Let a linear transformation from \mathbb{R}^{n+1} to \mathbb{R}^{n+1} sending $s\mapsto r^2s$ and $y_i\mapsto ry_i$, then T sends $E(0,\mathbf{0},1)$ to $E(0,\mathbf{0},r)$ bijectively. To check it, let $(s,y)\in E(0,\mathbf{0},1)$, then $r^2s\leq 0$ and $\frac{1}{(4\pi(-r^2s))^{n/2}}e^{\frac{|ry|^2}{4r^2s}}=\frac{1}{r^n}\frac{1}{(4\pi(-s))^{n/2}}e^{\frac{|y|^2}{4s}}\geq \frac{1}{r^n}$. Since T is injective, T is bijective between $E(0,\mathbf{0},r)$ and $E(0,\mathbf{0},1)$. Therefore,

$$\frac{1}{4} \iint_{E(0,\mathbf{0},1)} \frac{|y|^2}{s^2} dy ds = \frac{1}{4} \iint_{E(0,\mathbf{0},r)} \frac{|y|^2/r^2}{s^2/r^4} \frac{1}{r^{n+2}} dy ds$$
$$= \frac{1}{4r^n} \iint_{E(0,\mathbf{0},r)} \frac{|y|^2}{s^2} dy ds$$

Step 2. Since $e^x \le 1$ for $x \le 0$,

$$\frac{1}{(4\pi(-s))^{n/2}}e^{\frac{|y|^2}{4s}} \ge 1 \text{ for } s \le 0$$

$$\Leftrightarrow 4\pi(-s) \le 1 \text{ and } e^{\frac{|y|^2}{4s}} \ge (4\pi(-s))^{n/2} \text{ and } s \le 0$$

$$\Leftrightarrow -\frac{1}{4\pi} \le s \le 0 \text{ and } |y|^2 \le 2sn\ln(-4\pi s)$$

Therefore, $E(0,0,1) = \left\{ (s,y) \in R^{n+1} : -\frac{1}{4\pi} \le s \le 0, |y|^2 \le -2sn \ln\left(\frac{1}{-4\pi s}\right) \right\}$

Step 3. Since $|y|^2 \le -2sn \ln \left(\frac{1}{-4\pi s}\right)$ is the ball with radius $\left(-2sn \ln \left(\frac{1}{-4\pi s}\right)\right)^{1/2}$,

$$\iint_{E(0,\mathbf{0},1)} \frac{|y|^2}{s^2} dy ds = \int_{-1/4\pi}^0 \int_{B_s} \frac{|y|^2}{s^2} dy ds \text{ (By Fubini theorem)}$$

$$= \int_{-1/4\pi}^0 \frac{1}{s^2} \int_{S^{n-1}} \int_0^{\left(-2sn\ln\left(\frac{1}{-4\pi s}\right)\right)^{1/2}} r^{n+1} dr d\sigma ds \text{ (By Spherical Coord.)}$$

$$= \int_{-1/4\pi}^0 \frac{1}{s^2} \frac{\frac{n}{2}\pi^{n/2}}{\Gamma\left(\frac{n}{2}+2\right)} \left(-2sn\ln\left(\frac{1}{-4\pi s}\right)\right)^{n/2+1} ds$$

Let
$$t = \ln\left(\frac{1}{-4\pi s}\right)$$
, then

$$\begin{split} &\frac{1}{4} \left(\frac{n}{2\pi}\right)^{n/2+2} \frac{\pi^{n/2}}{\Gamma(n/2+2)} \int_0^\infty \frac{(4\pi)^2}{e^{-2t}} \left(e^{-t}t\right)^{n/2+1} e^{-t} dt \\ &= 4 \left(\frac{n}{2}\right)^{n/2+2} \frac{1}{\Gamma(n/2+2)} \int_0^\infty t^{n/2+1} e^{-(n/2)t} dt \\ &= 4 \left(\frac{n}{2}\right)^{n/2+2} \frac{1}{\Gamma(n/2+2)} \left(\frac{2}{n}\right)^{n/2+2} \Gamma(n/2+2) = 4. \end{split}$$

Therefore, $\frac{1}{4} \iint_{E(0,\mathbf{0},1)} \frac{|y|^2}{s^2} dy ds = 1.$

Consequently, $\frac{1}{4r^n} \iint_{E(0,\mathbf{0},r)} \frac{|y|^2}{s^2} dy dx = 1$ for all r > 0.

Problem 2

By change of variable shifting x and t to 0, we can rearrange the formula by

$$\frac{1}{r^n} \iint_{E(t,x;r)} u(s,y) \frac{|s-y|^2}{|t-s|^2} dy ds = \frac{1}{r^n} \iint_{E(0,\mathbf{0};r)} u'(s,y) \frac{|y|^2}{s^2} dy ds
= \iint_{E(0,\mathbf{0};1)} u'(r^2 s', ry') \frac{|y'|^2}{s'^2} dy' ds'$$

where u'(s,y) = u(s+t,y+x) and $s=r^2s', y=ry'$. For simplicity, I'll write u by u'. Let $\phi(r)$ be the RHS of above equation. Our strategy is showing that $\phi(r)$ is constant function, and it means $\phi(r) = \lim_{r \to 0} \phi(r) = r^n u(0,0)$ using continuity of u and the result from problem 1. I'll write E(r) = E(0,0;r). Computing $\phi'(r)$,

$$\begin{split} \phi'(r) &= \frac{\mathrm{d}}{\mathrm{d}r} \iint_{E(1)} u(r^2s',ry') \frac{|y'|^2}{s'^2} dy' ds' \\ &= \iint_{E(1)} (2rs'u_s(r^2s',ry') + y' \cdot \nabla_y u(r^2s',ry')) \frac{|y'|^2}{s'^2} dy' ds' \text{ (Since } \frac{|y|^2}{s^2} \in L^1(E(1)) \text{ and } u \in C(\overline{E(1)}) \\ &= \frac{1}{r^{n+1}} \iint_{E(r)} (2su_s(s,y) + y \cdot \nabla_y u) \frac{|y|^2}{s^2} dy ds \end{split}$$

Let the first term A and last term B.

For simple calculation, I'll introduce a function

$$\varphi(s,y) = -\frac{n}{2}\ln(-4\pi s) + \frac{|y|^2}{4s} + n\ln r$$

Then, we can get a relation $|y|^2 = \sum_{i=1}^n 2sy_i\varphi_{y_i}$, and

$$r^{n+1}A = \iint_{E(r)} 4u_s \sum_{i=1}^n y_i \varphi_{y_i} dy ds$$

$$= \iint_{E(r)} 4 \sum_{i=1}^n \left(\frac{\partial}{\partial y_i} \left(y_i u_s \varphi \right) - u_s \varphi - u_{sy_i} y_i \varphi \right) dy ds$$

$$= -4 \iint_{E(r)} n u_s \varphi + \varphi \sum_{i=1}^n u_{sy_i} y_i dy ds$$

Since

$$\iint_{E(r)} \sum_{i=1}^{n} \frac{\partial}{\partial y_{i}} (y_{i}u_{s}\varphi) dyds = \sum_{i=1}^{n} \int_{-\frac{r^{2}}{4\pi}}^{0} \int_{B(\mathbf{0}, -2ns\ln\left(-\frac{4\pi s}{r^{2}}\right))} \frac{\partial}{\partial y_{i}} (y_{i}u_{s}\varphi) dyds$$

$$= \sum_{i=1}^{n} \int_{-\frac{r^{2}}{4\pi}}^{0} \int_{\partial B(\mathbf{0}, -2ns\ln\left(-\frac{4\pi s}{r^{2}}\right))} (y_{i}u_{s}\varphi) \nu^{i} dyds$$

$$= 0$$

for $\varphi \equiv 0$ in $\partial E - \{0, \mathbf{0}\}$. (ν^i) is ith component of outward pointing unit normal vector.) By $\frac{\partial}{\partial s} (u_{y_i} y_i \varphi) = u_{sy_i} y_i \varphi + u_{y_i} \varphi y_i \varphi_s$

$$\iint_{E(r)} \varphi \sum_{i=1}^{n} u_{sy_i} y_i dy ds = \iint_{E(r)} \sum_{i=1}^{n} \frac{\partial}{\partial s} \left(u_{y_i} y_i \varphi \right) - u_{y_i} y_i \varphi_s dy ds$$

Let $s_0(y)$ and $s_1(y)$ is the the boundary points of s for fixed $y \neq \mathbf{0}$, and $\{y\} \times (s_0(y), s_1(y))$ is in the heat ball. In the integration on E(r), we can neglect y = 0 case since it $\{\mathbf{0}\} \times (-1/4\pi, 0)$ is measure zero set in Ω . Then,

$$\begin{split} \iint_{E(r)} \frac{\partial}{\partial s} \left(u_{y_i} y_i \varphi \right) dy ds &= \int_{|y|^2 \leq \frac{n r^2}{2\pi e}} \int_{s_0(y)}^{s_1(y)} \frac{\partial}{\partial s} \left(u_{y_i} y_i \varphi \right) ds dy \\ &= \int_{|y|^2 \leq \frac{n r^2}{2\pi e}} u_{y_i}(s_1(y), y), y) y_i \varphi(s_1(y)) - u_{y_i}(s_0(y), y), y) y_i \varphi(s_0(y)) dy = 0. \end{split}$$

because $\varphi(s_0(y)) = \varphi(s_1(y)) = 0$ for $y \neq \mathbf{0}$.

Therefore,

$$\begin{split} r^{n+1}A &= -4 \iint_{E(r)} nu_s \varphi + \varphi \sum_{i=1}^n u_{sy_i} y_i dy ds = -4 \iint_{E(r)} nu_s \varphi - \varphi \sum_{i=1}^n u_{y_i} y_i \varphi_s dy ds \\ &= -4 \iint_{E(r)} nu_s \varphi - \sum_{i=1}^n u_{y_i} y_i \left(-\frac{n}{2s} - \frac{|y|^2}{4s^2} \right) dy ds \\ &= \iint_{E(r)} -4nu_s \varphi - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds - B. \end{split}$$

Since u is a solution for heat equation,

$$\phi'(r) = A + B = \iint_{E(r)} -4nu_s \varphi - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds$$

$$= \iint_{E(r)} -4n\varphi \triangle_y u - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds$$

$$= \iint_{E(r)} \sum_{i=1}^n -4nu_{y_i} \varphi_{y_i} - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds$$

$$= \iint_{E(r)} \sum_{i=1}^n \frac{2n}{s} u_{y_i} y_i - \frac{2n}{s} \sum_{i=1}^n u_{y_i} y_i dy ds = 0.$$

The intermediate step $\varphi \triangle_y u \to u_{y_i} \varphi_{y_i}$ uses the fact that $\varphi = 0$ on $\partial E(r) - \{(0, \mathbf{0})\}$ as in s case.

Consequently, ϕ is a constant function. Since u is continuous and by problem 1,

$$\lim_{r \to 0+} \frac{1}{r^n} \iint_{E(0,\mathbf{0};r)} u(s,y) \frac{\left|y\right|^2}{s^2} dy ds = 4u(0,0)$$

Hence,

$$\frac{1}{4r^n} \iint_{E(t,x;r)} u(s,y) \frac{\left|s-y\right|^2}{\left|t-s\right|^2} dy ds = u(t,x)$$

for all r > 0.

Problem 3

Step 1. First, we need to assume that the convergence radius of u is ∞ , so that we can safely differentiate the series term by term. To satisfy $u_t - u_{xx} = 0$ for $t > 0, x \in \mathbb{R}$,

$$u_t - u_{xx} = \sum_{j=0}^{\infty} \left(\frac{\partial g_j(t)}{\partial t} - (j+1)(j+2)g_{j+2}(t) \right) x^j = 0.$$

By uniqueness of power series in the convergence region, $\frac{\partial g_j(t)}{\partial t} - (j+1)(j+2)g_{j+2} = 0$ for all $j \ge 0$ iff $u_t - u_{xx} = 0$.

To satisfy initial condition u(0,x)=0 for $x\in\mathbb{R}$, $\sum_{j=0}^{\infty}g_{j}(0)x^{j}=0$, $g_{j}(0)$ should be 0 for all j followed by uniqueness of power series.

Step 2. I'll use induction for proof. Let g_i be

$$g_j(t) = \begin{cases} 0 & j \text{ is odd.} \\ \frac{1}{(2(j/2))!} \frac{d^{(j/2)}}{dt^{(j/2)}} g(t) & j \text{ is even.} \end{cases}$$
 (1)

for j < 2n. The starting case is given in the problem. For j = 2n,

$$g_{2n} = \frac{1}{(2n-1)(2n)} \frac{\partial g_{2n-2}(t)}{\partial t} = \frac{1}{2n!} \frac{d^n}{dt^n} g(t).$$

For j = 2n + 1,

$$g_{2n+1} = \frac{1}{(2n)(2n+1)} \frac{\partial g_{2n-1}(t)}{\partial t} = 0.$$

Therefore, (1) is valid.

Step 3. Since $\frac{1}{z^2}$ is holomorphic without z=0, $e^{-\frac{1}{z^2}}$ is holomorphic without z=0. For t>0, let r=t/8 be a radius of open disk centred at $t\in\mathbb{R}$ in \mathbb{C} . Let the boundary of the disk C. Then by Cauchy integral formula,

$$\left| \frac{d^k}{dt^k} g(t) \right| \le \frac{k!}{2\pi} \oint_C \left| \frac{e^{-\frac{1}{z^2}}}{(z-t)^{k+1}} \right| dz \le \frac{k!}{2\pi} r^{-k} \max_C \left| e^{-\frac{1}{z^2}} \right|$$

and if we let z = x + iy, $x, y \in \mathbb{R}$,

$$\left| e^{-\frac{1}{z^2}} \right| = \left| e^{-\frac{x^2 - y^2}{(x^2 + y^2)^2}} \right| \le \left| e^{-\frac{1280}{1681}t^{-2}} \right| \le \left| e^{-\frac{1}{2t^2}} \right|.$$

Therefore, if we set $\theta = \frac{1}{8}$,

$$\left|\frac{d^k}{dt^k}g(t)\right| \leq k! \left(\frac{1}{8}t\right)^{-k} e^{-\frac{1}{2t^2}}$$

If $t \leq 0$, it is obvious inequality since $g^{(k)}(t) = 0$ for t < 0 and $\lim_{t \to 0} g^{(k)}(t) = 0$.(For all $k \in \mathbb{N}$, there exists polynomial about $\frac{1}{t} P_k\left(\frac{1}{t}\right)$ such that $g^{(k)}(t) = P_k\left(\frac{1}{t}\right) e^{-\frac{1}{t^2}}$ and we know that for any $j \in \mathbb{N}$, $\frac{1}{t^j} e^{-\frac{1}{t^2}} \to 0$ as $t \to 0+$. Therefore, $g^{(k)}(t) \to 0$ as $t \to 0$.)

Step 4. Let g_i as in Step 2. Then,

$$\left| g_{2k}(t)x^{2k} \right| \le \frac{k!}{(2k)!} e^{-\frac{1}{2t^2}} \left(\frac{8x^2}{t} \right)^k.$$

The radius of convergence of RHS is

$$R^2 \le \lim_{k \to \infty} (2k+1) \frac{t}{4},$$

and it means $\sum g_{2k}(t)x^{2k}$ converges for all t>0 and $x\in\mathbb{R}$.

Since $\frac{k!}{(2k)!}e^{-\frac{1}{2t^2}}\left(\frac{8x^2}{t}\right)^k \leq \frac{1}{k!}e^{-\frac{1}{2t^2}}\left(\frac{8x^2}{t}\right)^k$, by replacing $\frac{8x^2}{t}$ by z, we can get

$$\left| \sum g_{2k}(t)x^{2k} \right| \le e^{-\frac{1}{2t^2}} \sum \frac{1}{k!} z^k = e^{-\frac{1}{2t^2} + \frac{8x^2}{t}}$$

for fixed t>0 with convergence of radius ∞ . As $t\to 0$, $e^{-\frac{1}{2t^2}+\frac{8x^2}{t}}\to 0$. Therefore,

$$\sum g_{2k}(t)x^{2k} \to 0 \text{ as } t \to 0.$$

Problem 4

Consider the following PDE:

$$u_t - \Delta_x u = f(t, x)e^{ct} \quad \text{for } t > 0, x \in \mathbb{R}^n, \quad u(0, x) = g(x)$$
(2)

Then, $f(t,x)e^{ct}$ and g(x) are smooth and have compact supports. Therefore, there exists a solution u satisfying (2):

$$u(x,y) = \int_{\mathbb{R}^n} \Phi(x-y,t)g(y)dy + \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s)f(y,s)e^{ct}dyds$$

Let's consider $u' = ue^{-ct}$, then

$$u'_{t} - \triangle_{x}u' + cu' = u_{t}e^{-ct} - cue^{ct} - \triangle_{x}ue^{ct} + cue^{ct} = (u_{t} - \triangle_{x}u)e^{ct} = f(t, x)$$

$$u'(0, x) = ue^{c \cdot 0} = u = g(x)$$

for t > 0 and $x \in \mathbb{R}^n$. Therefore,

$$e^{-ct}\left(\int_{\mathbb{R}^n}\Phi(x-y,t)g(y)dy+\int_0^t\int_{\mathbb{R}^n}\Phi(x-y,t-s)f(y,s)e^{ct}dyds\right)$$

is a solution for the problem.

Problem 5

Let u be:

$$u(t,x) = \frac{1}{2}[g(x+t) + g(x-t)] + \frac{1}{2} \int_{x-t}^{x+t} h(y)dy + \frac{1}{2} \int_{0}^{t} \int_{x+t-s}^{x-t+s} f(y,s)dyds.$$
 (3)

First, u is a smooth function since g, h, f are. Also,

$$u_{t} = \frac{1}{2} \left(g'(x+t) - g'(x-t) \right) + \left(h(x+t) + h(x-t) \right) + \frac{1}{2} \int_{0}^{t} f(x+t-s,s) + f(x-t+s,s) ds$$

$$u_{tt} = \frac{1}{2} \left(g''(x+t) + g''(x-t) \right) + \left(h'(x+t) - h'(x-t) \right) + f(x) + \int_{0}^{t} f_{t}(x+t-s) + f_{t}(x-t+s) ds$$

$$u_{x} = \frac{1}{2} \left(g'(x+t) + g'(x-t) \right) + \left(h(x+t) - h(x-t) \right) + \frac{1}{2} \int_{0}^{t} f(x+t-s,s) - f(x-t+s,s) ds$$

$$u_{xx} = \frac{1}{2} \left(g''(x+t) + g''(x-t) \right) + \left(h'(x+t) - h'(x-t) \right) + \frac{1}{2} \int_{0}^{t} f_{x}(x+t-s,s) - f_{x}(x-t+s,s) ds$$

$$= \frac{1}{2} \left(g''(x+t) + g''(x-t) \right) + \left(h'(x+t) - h'(x-t) \right) + \frac{1}{2} \int_{0}^{t} f_{t}(x+t-s,s) + f_{t}(x-t+s,s) ds$$

$$= u_{tt} - f(x,t)$$

Therefore, $u_{tt} - u_{xx} = f(x, t)$.

Also,

$$\lim_{\substack{(x,t)\to(x_0,0)\\t>0}} u(t,x) = g(x_0,0), \lim_{\substack{(x,t)\to(x_0,0)\\t>0}} u_t(x,t) = h(x_0,0)$$

since u_t and u is continuous on \mathbb{R}^2 .

Hence, (3) is a solution for the problem.

Problem 6

WLOG, let $x \leq y$. I'll show that

$$u(y) - u(x) = \int_{y}^{x} u'dt$$

Since $u' \in L^p(0,1)$, $\int_x^y |u'| dt \le ||u'||_{L^p(\Omega)}$, and $u' \in L^1(\Omega)$.

If x = y, it is trivially equal, so I'll set x < y. Fix small enough $0 < \epsilon < \frac{x+y}{2}$ and consider $\phi_{\epsilon}(t) \in C_c^{\infty}((x,y))$ such that $\phi_{\epsilon} \equiv 1$ in $[x+\epsilon,y-\epsilon]$. Define

$$\eta_{\delta}(x) = \begin{cases} \frac{1}{\delta} e^{\frac{1}{\frac{x^2}{\delta^2} - 1}} & (\text{For } |x| < \delta) \\ 0 & (\text{For } |x| \ge \delta) \end{cases}$$

I'll set the $\phi_{\epsilon}(t)$ by

$$\phi_{\epsilon}(t) = \begin{cases} \int_{x}^{t} \eta_{\epsilon}(\sigma - x) d\sigma / \int_{x}^{x+\epsilon} \eta_{\epsilon}(\sigma - x) d\sigma & (\text{For } x \leq t < \frac{x+y}{2}) \\ 1 - \left(\int_{y-\epsilon}^{t} \eta_{\epsilon}(\sigma - (y-\epsilon)) d\sigma / \int_{y-\epsilon}^{y} \eta_{\epsilon}(\sigma - (y-\epsilon)) d\sigma \right) & (\text{For } \frac{x+y}{2} \leq t \leq y) \end{cases}$$

Then,

$$\int_{\Omega} u\phi_{\epsilon}' dt = \int_{x}^{x+\epsilon} u\phi_{\epsilon}' dt + \int_{y-\epsilon}^{y} u\phi_{\epsilon}' dt$$
$$= -\int_{\Omega} u'\phi_{\epsilon} dt = -\int_{x}^{y} u'\phi_{\epsilon} dt.$$

Since $u' \in L^1(\Omega)$, $|u'\phi_{\epsilon}| \le |u'|$, and $\phi_{\epsilon} \to 1$ in [x,y] a.e., so by Lebesgue dominance convergence theorem, $\lim_{\epsilon \to 0} \int_x^y u'\phi_{\epsilon}dt = \int_x^y u'dt$.

Let's consider $\int_x^{x+\epsilon} u\phi'_{\epsilon} dt$. We know that $\int_x^{x+\epsilon} \phi'_{\epsilon} dt = \phi_{\epsilon}(x+\epsilon) - \phi_{\epsilon}(x) = 1$ and $\int_0^{\epsilon} \eta_{\epsilon}(\sigma) \sigma = \int_0^1 \eta(\sigma) \sigma = \int_0^1 \eta(\sigma) \sigma$ C > 0. Therefore,

$$\int_{x}^{x+\epsilon} u\phi'_{\epsilon}dt = C^{-1} \int_{x}^{x+\epsilon} (u - u(x))\eta_{\epsilon}(t - x)dt + \int_{0}^{\epsilon} u(x)\phi'_{\epsilon}dt$$
$$= \int_{x}^{x+\epsilon} (u - u(x))\eta_{\epsilon}(t - x)dt + u(x).$$

Since $\|\eta_{\epsilon}\|_{L^{\infty}} = \frac{1}{\epsilon}$ and $C^{-1} \left| \int_{x}^{x+\epsilon} (u-u(x)) \eta_{\epsilon}(t-x) dt \right| \leq \frac{\|\eta_{\epsilon}\|_{L^{\infty}}}{C} \left| \frac{1}{\epsilon} \int_{x}^{x+\epsilon} (u-u(x)) dt \right|$, by Lebesgue differential theorem, $\int_{x}^{x+\epsilon} (u-u(x)) \eta_{\epsilon}(t-x) dt \to 0$ as $\epsilon \to 0$. Therefore, $\int_{x}^{x+\epsilon} u \phi'_{\epsilon} dt \to u(x)$ as $\epsilon \to 0$. By the same reason, $\int_{y-\epsilon}^{y} u \phi'_{\epsilon} dt \to -u(y)$ as $\epsilon \to 0$. Therefore,

$$\int_{x}^{y} u'dt = u(y) - u(x)$$

a.e. and

$$|u(y) - u(x)| \le \left| \int_{x}^{y} u' dt \right| \le |x - y|^{1 - \frac{1}{p}} ||u'||_{L^{p}(\Omega)}$$

by Hölder's inequality.

Problem 7

Because u is compactly supported, we can set B be a large ball containing the compact support of u and set u=0 out of compact support for integration; it does not effect the integration. Since $p\geq 2$, we can do integration by parts:

$$\begin{split} \int_{U} |Du|^{p} dx &= \sum_{i=1}^{n} \int_{B} u_{x_{i}} u_{x_{i}} |Du|^{p-2} dx \\ &= -\sum_{i,j=1}^{n} \int_{B} u \left(u_{x_{i}x_{i}} |Du|^{p-2} + u_{x_{i}} u_{x_{j}} u_{x_{j}x_{i}} |Du|^{p-4} \right) dx \quad \text{Since } u \equiv 0 \text{ at boundary} \\ &\leq -\sum_{i,j=1}^{n} \int_{B} u \left(u_{x_{i}x_{i}} |Du|^{p-2} + B u_{x_{j}x_{i}} |Du|^{p-2} \right) dx \quad \text{Since } \sum_{i,j} u_{x_{i}} u_{x_{j}} \leq n |Du^{2}| \text{ by Cauchy-Schwarz inequality} \\ &\leq -C \int_{B} u |D^{2}u| \left(|Du|^{p-2} \right) dx \quad \text{By the same reason.} \\ &\leq \left| C \int_{U} u |D^{2}u| \left(|Du|^{p-2} \right) dx \right| \end{split}$$

for some constant B and C depends on n.

Let p > 2, then by the Hölder's inequality,

$$\left|\int_{U}u\left|D^{2}u\right|\left(\left|Du\right|^{p-2}\right)dx\right|^{p}\leq\left(\int_{U}\left|u\right|D^{2}u\right|\left|^{\frac{p}{2}}dx\right)^{2}\left(\int_{U}\left|Du\right|^{p}dx\right)^{p-2}$$

If $\int_{U} |Du|^{p} dx = 0$, then the original inequality satisfied, so we can assume $\int_{U} |Du|^{p} dx > 0$. Then,

$$\left(\int_{U}\left|Du\right|^{p}dx\right)^{2} \leq C^{p}\left(\int_{U}\left|u\right|D^{2}u\right|\left|\frac{p}{2}dx\right)^{2} \leq C^{p}\left(\int_{U}\left|u\right|^{p}dx\right)\left(\int_{U}\left|D^{2}u\right|^{p}dx\right)$$

Therefore,

$$||Du||_{L^p} \le C||u||_{L^p}^{1/2}||D^u||_{L^p}^{1/2}$$

for $2 \le p \le \infty$ and all $u \in C_c^{\infty}(U)$.