1103 - Clustering - Design

- 1103 Clustering Design
- Input Dataset
- Numeric Agreement Criteria
- Expectations for Supported Statistics
 - SAS (PROC FASTCLUS)
 - R (stats.kmeans)
 - Python (sklearn)
- Function Usage & Critical Arguments
 - SAS (PROC FASTCLUS)
 - R (stats.kmeans)
 - Python (sklearn)
- Known Incompatibilities
- Comparison Protocol & Metrics
 - Metrics
 - Notes
- Reference

Input Dataset

Mall Customer Dataset is the dataset used in original CAMIS for analyzing R result of running K Means clustering. It consists of 200 customer subjects and four column features (gender, age, annual income, and spending score). Accessible from Kaggle (https://www.kaggle.com/datasets/shwetabh123/mall-customers).

Numeric Agreement Criteria

Within 0.0001 to be considered equivalent (i.e. difference <= 0.0001).

Expectations for Supported Statistics

SAS (PROC FASTCLUS)

- Cluster Summary: frequency, RMS Std Deviation, Maximum Distance from Seed to Observation, Nearest Cluster, Distance Between Cluster Centroids
- Table of statistics for each variable: Total STD, Within STD, R-Square, etc.
- Pseudo F Statistic, Approximate Expected Over-All R-Squared, Cubic Clustering Criterion
- Cluster Means for each variable, Cluster Standard Deviations for each variable

R (stats.kmeans)

• All components:

cluster: Cluster assignment for each observation

centers: Cluster centers (means for each cluster)

totss: Total sum of squares (overall variance)

size: Number of points in each cluster

withins: Vector of within-cluster SS (per cluster)

tot.withinss: Total within-cluster SS

betweenss: Between-cluster SS (explained variance)

size: Number of points in each cluster

iter: Number of iterations until convergence

Other: Within cluster sum of squares by cluster

Python (sklearn)

- Cluster assignment for each customer subject
- Within-cluster sum of squares
- Cluster Sizes
- · Cluster Centers
- Total within-cluster sum of squares
- Number of clusters
- Algorithm used for initialization
- Number of iterations

Function Usage & Critical Arguments

SAS (PROC FASTCLUS)

Data needs to be standardized first using proc stdize

• Arguments include maxlusters , replace , var

```
proc fastclus data=analysis_data_scaled
   maxclusters=5
   out=clustered_data
   outstat=cluster_stats
   outseed=cluster_seeds
   replace = FULL;
   var 'Annual Income (k$)'n 'Spending Score (1-100)'n;
run;
```

R (stats.kmeans)

• Standardization to have a mean of 0 and sd of 1:

```
df1 <- df %>% mutate(across(where(is.numeric), scale))
```

 Arguments: data, number of clusters, number of initial random centroids to try (later finds the best)

```
#make this example reproducible
set.seed(1)
#perform k-means clustering with k = 5 clusters
fit <- kmeans(df1, 5, nstart=25)
#view results
fit</pre>
```

Python (sklearn)

Standardization

```
df1[numeric_columns] = df1[numeric_columns].apply(lambda x: (x - x.mean())
df1_selected = df1.iloc[:, 3:5]
```

• Define KMeans class & call function: n_clusters (number of clusters), n_init (initialization algorithm), random_state

```
kmeans = KMeans(n_clusters=5, n_init=25, random_state=1)
fit = kmeans.fit(df1_selected)
```

· Obtain output statistics

```
fit.n_clusters
fit.n_iter_
fit.cluster_centers_
fit.inertia_
kmeans.predict(df1_selected)
kmeans.get_params()
```

Known Incompatibilities

- Python sklearn StandardScaler() and R's default standardization produce different result. Usually R's standardization approach is preferred.
- Python's cluster id is 0-indexed while R's is 1-index.
- SAS default OUTSTAT doesn't support the display of cluster assignment for each subject. Individual clustering assignment is not stored in the ADaM BDS dataset.
- SAS supports metrics used for estimating the numebr of clusters Cubic Clustering Criterion, Pseudo F Statistic, Overall R-Squared.
- SAS supports RMS Standard Deviation for each cluster.

Comparison Protocol & Metrics

Metrics

To test equality of results from the three packages (SAS, R, Python), we expect

- Since the number of cluster (k) is prespecified, we expect the cluster size for each cluster to agree across packages.
- We expect the cluster center (with two variables, annual income and spending score) for each cluster to agree (within 0.0001) across packages.
- If available, we expect the cluster assignment of each subject (observation) to match.
- If available, we expect the WCSS (within-cluster sum of square) for each cluster and in total to match.

Notes

The method setup such as number of clusters (k) and initialization algorithm can be influential in result comparison. For reference, we used a prespecified number of clusters (k) of 5 and the initialization methods of 'Lloyd' for Sklearn, 'Hartigan and Wong' for R (with n start = 25), and SAS FASTCLUS uses its unique initialization

method of selecting a set of observations as initial cluster seeds and iteratively refining them.

• We identified an existing package difference in our analysis of the Mall Customer Dataset. While R kmeans & Python Sklearn produced the same result (matching cluster size, cluster assignments, cluster center, & WCSS), SAS FASTCLUS yields a slightly varied result: while R & Python obtained 5 clusters of sizes 35, 39, 22, 23, 81, SAS obtained 5 clusters of sizes 21, 38, 21, 39, 81 (disregard the ordering here). The difference can also be viewed in the cluster center statistics (disregard cluster ordering):

SAS:

USUBJID	PARAMCD	PARAM	AVAL
CLUST1	CENINCOME	Cluster Center: Annual Income	1.0523622
CLUST1	CENSPEND	Cluster Center: Spending Score	-1.28122394
CLUST2	CENINCOME	Cluster Center: Annual Income	0.989101
CLUST2	CENSPEND	Cluster Center: Spending Score	1.23640011
CLUST3	CENINCOME	Cluster Center: Annual Income	-1.3262173
CLUST3	CENSPEND	Cluster Center: Spending Score	1.12934389
CLUST4	CENINCOME	Cluster Center: Annual Income	-1.3042458
CLUST4	CENSPEND	Cluster Center: Spending Score	-1.13411939
CLUST5	CENINCOME	Cluster Center: Annual Income	-0.2004097
CLUST5	CENSPEND	Cluster Center: Spending Score	-0.02638995

• Python/R:

USUBJID	PARAMCD	PARAM	AVAL
CLUST1	MEANINC	Cluster 1 Mean Annual Income	-1.350281302
CLUST1	MEANSCOR	Cluster 1 Mean Spending Score	1.155830697
CLUST2	MEANINC	Cluster 2 Mean Annual Income	1.006673546
CLUST2	MEANSCOR	Cluster 2 Mean Spending Score	-1.222467697
CLUST3	MEANINC	Cluster 3 Mean Annual Income	-1.34846826
CLUST3	MEANSCOR	Cluster 3 Mean Spending Score	-1.187916616
CLUST4	MEANINC	Cluster 4 Mean Annual Income	0.989100984
CLUST4	MEANSCOR	Cluster 4 Mean Spending Score	1.236400114
CLUST5	MEANINC	Cluster 5 Mean Annual Income	-0.248824596
CLUST5	MEANSCOR	Cluster 5 Mean Spending Score	-0.013481823

Reference

- Python Sklearn: https://scikitlearn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
- SAS: https://documentation.sas.com/doc/en/statug/15.2/statug_fastclus_toc.htm
- R KMeans: https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html
- Dataset: https://www.kaggle.com/datasets/shwetabh123/mall-customers
- CAMIS clustering result using R: https://psiaims.github.io/CAMIS/Clustering_Knowhow.html
- FASTCLUS initialization: https://www.math.wpi.edu/saspdf/stat/chap27.pdf