Due: Wednesday, July 30th, 2025, 6:10pm

roblems to be turned in: to be announced at July 30th, 5:00pm

Set up: Let $N \in \mathbb{N}$. Consider

$$\Omega_N = \{ \omega = (\omega_1, \omega_2, \dots, \omega_N) : \omega_i \in \{-1, +1\} \}$$

equipped with the uniform distribution, denoted by $\mathbb{P} \equiv \mathbb{P}_N$ given by

 $\mathbb{P}(A) = \frac{|A|}{2^N}$, for any $A \subset \Omega_N$. For $1 \le k \le N$, let $X_K : \Omega_N \to \{-1,1\}$ be given by $X_k(\omega) = \omega_k$ and for $1 \le n \le N$, let $S_n : \Omega_N \to \{-1,1\}$ be given by $S_n(\omega) = \sum_{k=1}^n X_k(\omega)$ and $S_0 = 0$.

- 1. Show that $\{X_i\}_{1 \leq i \leq N}$ are independent and identically distributed with distribution given by $\mathbb{P}(X_1 = 1) = \mathbb{P}(X_1 = -1) = \frac{1}{2}$.
- 2. Prove that an increment $S_m S_k$ for $0 < k < m \le N$ has the same distribution as S_{m-k} .
- 3. Prove that increment $S_m S_k$ is independent of $S_n S_l$ for $0 < l < n < k < m \le N$
- 4. Assume for that $\{a_i\}_{i=1}^{n-1}$ are a set of integers such that $\mathbb{P}(S_{n-1}=a_{n-1},\ldots,S_1=a_1)>0$. Show that

$$P(S_n = a_n \mid S_{n-1} = a_{n-1}, \dots, S_1 = a_1) = \mathbb{P}(S_n = a_n \mid S_{n-1} = a_{n-1})$$

5. Let for $0 < k \le N$, $a \in \mathbb{Z}$, $\mathbb{P}(S_k = a) > 0$. Prove that for $0 < k < m \le N$,

$$\mathbb{P}(S_m = b \mid S_k = a) = \mathbb{P}(S_{m-k} = b - a)$$

for $b \in \mathbb{Z}$.

- 6. Let $a_n, b_n : \mathbb{N} \to \mathbb{R}_+$ be two sequences. We say $a_n \sim b_n$ if there exists $N_0 \in \mathbb{N}$ and $C_1, C_2 > 0$ such that $C_1 b_n \leq a_n \leq C_2 b_n$ for all $n \geq N_0$.
 - (a) Show that $\mathbb{P}(S_{2n}=0) \sim \frac{1}{\sqrt{n}}$
 - (b) Show that $\mathbb{P}(S_{2n} = 0) \mathbb{P}(S_{2n+2} = 0) \sim \frac{1}{n\sqrt{n}}$