Nokov 系统操作手册

北京度量科技有限公司

BEIJING DULIANG TECHNOLOGY CO., LTD

目录

_,	系统连接	1
	1. 硬件连接	1
	2. 软件安装	2
	3. 软件设置	2
二、	实时设置与数据采集	5
	1. 镜头设置	5
	2. 数据采集	15
三、	数据处理	16
	1. 导入数据	16
	2. 数据截取	17
	3. 建立 MarkerSet	18
	4. 调用已有的 MarkerSet	22
	5. 数据修复	22
	6. 建立刚体	26
	7. 实时应用 MarkerSet	28
四、	数据分析	29
	1. 点、线、角度数据	29
	2. 刚体数据	31

Nokov 操作流程

一、系统连接

1. 硬件连接

(1) 将镜头与三向云台连接,再将三向云台与三脚架或大力夹进行连接(如图 1-1),镜头尽可能按序号均匀分布。

图 1-1

- (2) 将每个镜头通过网线与交换机进行连接,接口无顺序要求。
- (3) 使用一根网线,连接交换机的 LAN 口和电脑,无特定接口;若有多个交换机,需将交换机 A 的 LAN 口与交换机 B 的 NVR 口,交换机 B 的 LAN 口与电脑链接。
- (4) 交换机通电,等待约 30s,确认各镜头已点亮。
- (5) 在电脑的本地连接进行设置,以 Win10 为例,控制面板-网络和 Internet-网络和共享中心-更改适配器设置-以太网(右键)-属性-双击 Internet 协议版本 4-使用下面的 IP地址,其中 IP地址设置为 10.1.1.198,子网掩码为 255.255.255.0,其他不需要设置,点击确定(如图 1-2)。

图 1-2

2. 软件安装

(1) 在操作电脑插上安装 U 盘,可见 U 盘内文件,按照"说明"中的安装顺序安装即可(如图 1-3);

图 1-3

(2) 安装完毕后, 桌面会出现下图图标 (如图 1-4);

图 1-4

(3) 在操作电脑插上加密狗。

3. 软件设置

(1) 确认加密狗插在操作电脑上;

- (2) 鼠标右键桌面上的 NK_Cortex 图标,选择"以管理员身份运行",打开软件;
- (3) 建立数据存档位置——点击软件右上方的 Quick Files 按钮,通过左侧的树状图以及下方的"Add Folder to My Folders",在需要的位置建立文件夹,文件名避免中文或和特殊符号,并点击窗口右下方的"Set as Working Folder"将该文件夹作为存档路径(如图 1-5);

图 1-5

(4) 点击菜单栏 "工具-设置",在弹出窗口选择 Cameras 标签,在下方 IP Address 的下拉菜单中选择 10.1.1.198(如图 1-6);

图 1-6

(4) 点击 Cameras 标签右侧的 Calibration 标签,在 Calibration Up Axis 处选择准备使用的坐标轴形式,Y为Y轴向上的三维坐标系,常用于动画游戏应用,Z为Z轴向上的三维坐标系,常用于科研、体育应用(如图 1-7);

图 1-7

(5) 点击 Calibration 标签右侧的 Tracking 标签,其中的 Min. Cameras to use,表示最小镜头使用数量,一般在使用 8 个以上镜头时,将设置为 3(如图 1-8);

图 1-8

(6) 至此已完成 NK_Cortex 软件的初始设置,即将连接镜头进行实时设置。

二、实时设置与数据采集

1. 镜头设置

- (1) 点击 NK_Cortex 界面左上角的 Live Mode 按钮;
- (2) 点击 NK_Cortex 软件界面左下角的"连接镜头"(如图 2-1),连接镜头;软件将弹出窗口(如图 2-2),若弹出的窗口带"是"、"否"、"取消"三个选项,表示软件实际检测镜头数量与默认配置文件中的镜头数量不符,此时可观察该窗口第二行"** cameras found","**"表示检测到的镜头数量,确认改数量与实际使用镜头数量是否吻合,吻合则点击"是",以连接镜头;

图 2-1

图 2-2

(3) 连接上镜头后,NK_Cortex 软件最下方将出现与镜头相同数量的方块,表示各个 镜头 (如图 2-3) ;

(4) 点击菜单栏 "窗口——2 窗口: 上/下" (如图 2-4) , 改变窗口布局为上下分布 (如图 2-5) ;

图 2-4

图 2-5

(5) 点击空白窗口,使其边框变为黄色后,点击菜单栏"数据视图——2-D 视图" (或点击键盘 F2 功能键,如图 2-6),改变窗口内容为镜头 2D 画面(如图 2-7);

图 2-6

图 2-7

(6) 点击 NK_Cortex 软件界面左下角的蓝色播放按钮(如图 2-8),让系统进入实时 状态(如图 2-9),镜头 2D 画面将显示实时能看到的反光点、杂点(如图 2-10);

图 2-8

图 2-10

(7) 准备好 L 型标定杆(图 2-11)和 T 型标定杆(图 2-12),并先将 L 型标定杆置于动作捕捉的场地正中央;

图 2-11

图 2-12

(8) 通过点击 NK_Cortex 软件下方的镜头方块(可见图 2-3),观察 L 型标定杆在每个镜头中的位置,调节对应镜头的三向云台,使 L 型标定杆处于镜头的中间偏下的位置;

(9) 可通过点击 NK_Cortex 软件界面左下方的 All On 按钮,同时观察全部镜头(如图 2-13);每个镜头左下角括号里的数表示镜头所能看到的反光标志点数量;

图 2-13

- (10)调节好各个镜头的角度后,确认各镜头的杂点,括号中的数减去场景中实际反光标志点数量(L型标定杆上的4个点),即为杂点数量;
- (11)对场地中的杂点进行去除,常发生的杂点情况有:
 - ——阳光照射;
 - ——金属桌椅货架、地面反光;
 - ——衣服鞋帽上的反光贴/标志、首饰;
 - ——散落于捕捉场景中的反光标志点 (Marker)。

通常去除杂点有三种方法:

- a) 拉上窗帘遮阳光、移除场景中的反光物体;
- b) 调节界面左侧的 Threshold 参数;
- c) 使用软件进行 Mask 处理。
- (12)使用软件进行 Mask 处理,选中需要处理的有杂点的镜头,在"2D 视图"界面中 想住鼠标中键进行拖拉,框中有杂点的区域(如图 2-14),该操作不能在 All On 状态下进行;

图 2-14

(13)可进行多次拖拉,直至完全框中全部杂点,左下角括号内数字稳定为 4 (如图 2-15);

图 2-15

- (14)对于误操作,或想删掉的框中区域,则用鼠标点击选中,使其边框变为红色后, 点击键盘上的 Delete 键即可;
- (15)反复操作,直至全部镜头均只显示 4 个点(括号内数字稳定为 4),可用 All On 进行检查(如图 2-16);

(16)点击菜单栏"文件——保存配置文件",对该配置文件进行保存,文件名避免中文或和特殊符号(如图 2-17);

图 2-17

(17)保持系统处于实时状态,点击 NK_Cortex 软件界面左下角的 Calibrate...,进行标定,在弹出窗口选择 Initial Calibration(如图 2-18),点击 Next;

(18)进行 L 标定,确认各个镜头左下角括号内数字稳定为 4 后,点击 Next (如图 2-19) ,界面下方带数字的方格会变为黄色;

图 2-19

- (19)将 L 型标定杆移出捕捉区域,确保任何镜头都无法观察到,并将 T 型标定杆拿进 捕捉区域;
- (20)进行 T 标定,在弹出窗口中,Wand Length 表示所用 T 型杆两端反光标志点的距离,输入 T 型杆上黄标所标注的数字即可,Duration 为标定时间,一般为 60-120s(如图 2-20),主要根据场地的大小进行调节,点击 Next 后,需要有一操作员手持 T 型标定杆,在捕捉区域内反复缓慢地挥动,尽可能让标定杆的运动轨迹遍布整个捕捉区域(如图 2-21、2-22);

图 2-20

图 2-21

图 2-22

(21)标定时间到后,点击 Next (如图 2-23);

图 2-23

(22)之后软件将进行计算,计算停止时,Wand Length 的 Avg 数值越接近黄标上的数字,说明场景的计算越精确,若 Finish 按键可点击(如图 2-24),则说明标定通过;若弹窗报错,则说明标定不通过,可通过点击 Previews 依次返回上一步、上上步检查是否在标定过程中出现杂点,或是 T 型标定杆的覆盖区域不够;

图 2-24

(23)点击 Finish 后,软件弹窗,提示标定已完成(如图 2-25);此时可以通过菜单栏 "文件"再次保存配置文件;

图 2-25

(24)点击菜单栏"布局——1窗口",使软件仅显示三维界面,该三维界面可通过键盘 Alt 键+鼠标左键/鼠标中键/鼠标右键,分别进行旋转/平移/缩放的功能;同时点击界面左下角的蓝色播放按钮,使系统处于实时状态(如图 2-26)

图 2-26

2. 数据采集

(1) 点击界面下方的 Recording Settings...,在弹出窗口中勾选 Raw Camera Data、Tracking ASCII、Tracking Binary,捕捉时间通常设置为指定的时间(如 60s,则系统自动在 60s 时停止数据采集),或设置比较大的时间(如 9999s),以便手动开始和手动停止捕捉(如图 2-27、2-28),设置完成后关闭窗口;

图 2-28

(2) 在 Name 处填入需要采集的数据文件名,文件名避免中文或和特殊符号,确认后点击回车(如图 2-29);

图 2-29

(3) 确认采集数据文件名后,点击右侧的红色录制按钮(如图 2-30),开始采集数据(如图 2-31)在 Recording 字样消失前再次点击红色按钮,即可停止录制;

图 2-31

(4) 录制一组数据后,红色按钮边上#符号后数字会变为2,表示即将录制是该文件名的第二组数据,在文件名不变的情况下,每录制一组数据后,该数字均会递进(如图2-32、2-33)

图 2-33

(5) 假如第二组数据(#2)录制时有问题,或出于其他原因,想重新录制改组数据,即将数字更改为2,同时勾选下方的"覆盖同名文件",点击录制按钮,重新进行录制(如图2-34),对其他组数据也可一样操作;

图 2-34

三、数据处理

1. 导入数据

(1) 点击 NK_Cortex 软件界面左上角的 Post Process 按钮,进入后处理界面(如图 3-1)

(2) 点击菜单栏"文件"- "加载动捕数据",导入在 Live Mode 捕捉好的数据文件,或从界面右上方的 Capture 下拉菜单直接选择左侧路径下存在的数据文件(捕捉文件后缀名为.cap)(如图 3-2、3-3);

图 3-1

图 3-2

(3) 通过拖动界面下方时间轴的红色线条,来快速地在 3D 界面中查看所导入数据的捕捉内容,或是通过点击时间轴下方的操作按钮,进行播放、倒放、逐帧前进/倒退等操作(如图 3-3);

图 3-3

2. 数据截取

(1) 在时间轴左右侧各有一个 Selected 输入框,如对一个总计 1800 帧的数据,截取 其中的 200-1600 帧,即在两个 Selected 输入框中分别输入 200 和 1600 (如图 3-4);

图 3-4

(2) 点击菜单栏"文件"-"截取动捕数据…",在弹出的窗口中,Output Files 默认全选, Frames 处选择 Save Selected Frames,点击 Export Trimmed Capture (如图 3-5),选择保存路径及文件名后点击保存;

图 3-5

(3) 之后可从界面右上方 Capture 处,或菜单栏 File- Load Capture 处载入截取后的.cap 文件(如图 3-6);

图 3-6

(4) 可见时间轴变为 1401 帧,即为截取后的数据(如图 3-7);

图 3-7

(5) 截取数据时需注意,截取的第一帧和最后一帧数据反光标志点数量与实际捕捉的 反光标志点数量是相同的。

3. 建立 MarkerSet

(1) 以采集该 Marker 支架为例,由 6 个反光标志点组成(如图 3-8);

图 3-8

(2) 点击菜单栏"文件" - "New MarkerSet..." , 在弹出窗口中选择 Create a Identifying Template Markerset , 并为 MarkerSet 命名 , 完成后点击 Create Object (如图 3-9) , 关闭窗口;

图 3-9

(3) 界面右侧出现一列标签栏,点击 Markers 标签栏,双击空白部分输入 Marker 名称,回车以确认(如图 3-10、3-11);

图 3-11

(4) 可通过点击下方的 Color 以更改 Marker 的指示颜色 (如图 3-12)

图 3-12

(5) 通过拖动时间轴,选择数据完整的帧(无缺/多 Marker,无错点,通常为首帧),点击工具栏"快速识别",会弹出窗口显示 Locate Marker,根据 Locate Marker 所选中的 Marker,在 3D 界面点击对应的点,进行匹配(如图 3-13);

图 3-13

(6) 若匹配过程中有 Marker 点错位置,可点击右侧的 Marker 列表,选择点错的 Marker,重新匹配,完成最后一个 Marker 的匹配后,快速识别窗口将自动关闭(如图 3-14);

图 3-14

- (7) 在匹配过程中,可通过按住 Alt+鼠标左/右/滚轮键,变换 3D 视图的角度,以确认 Marker 的实际位置;
- (8) 完成所有 Marker 匹配后,点击窗口右侧的 Links 标签栏,点击 Create Links for Template,在弹出窗口中选择连线的颜色后,点击 Marker 并摁住鼠标左键,对相关的 Marker 用线进行连接,直至将所有 Marker 连上,并关闭 Create Links 窗口(如图 3-15、3-16);

图 3-15

图 3-16

(9) 点击界面右下角双向箭头按钮(如图 3-17) ,以选中所有帧,点击上方工具栏的"矫正",将第一帧的设置应用到所有帧;

图 3-17

- (10) 点击菜单栏 "文件" Save MarkerSet, 保存 MarkerSet (文件后缀名.mars);
- (11) 点击菜单栏 "文件" Save Capture, 保存捕捉文件;

4. 调用已有的 MarkerSet

- (1) 若有与捕捉文件中 Marker 定义相匹配,且已建立好的 MarkerSet,可在菜单栏"文件"- Add MarkerSet...或是从工具栏下方的 Add/Remove...加载对应的 MarkerSet文件;
- (2) 重复 3. 建立 MarkerSet 的(3)-(10)操作;

5. 数据修复

(1) 点击菜单栏"布局"- "2窗口:上/下",让主界面分割为上下两个窗口,选中窗格时会有橙色边框,点击菜单栏"数据视图",让其中一个窗口显示"3D视图",一个窗口选择"标志点 XYZ 图表"(如图 3-19),或点击键盘上相应快捷键;

图 3-19

(2) 在右侧选择所要看的 Marker,即可在窗口中看到该 Marker 的 XYZ 坐标曲线(如图 3-20);

图 3-20

(3) 检查各 Marker 点,看数据是否有丢失,可通过观察曲线是否断开,或曲线图上方是 否有小竖线显示,其表示所处的帧位数据丢失(如图 3-21)

图 3-21

(4) 通过摁住鼠标中键进行拖动,将有丢失数据的部分包含在内(如图 3-22);

图 3-22

(5) 点击上方工具栏"三次方连接",将丢失的数据补上(如图 3-23),需要注意,如果 丢失的数据波动较大、或连续丢失帧数较多,不建议进行修补;

图 3-23

- (6) 对 MarkerSet 中的 Marker 点逐个进行修补;
- (7) 曲线图上方的斜线表示数据不平滑,对数据应用上无较多影响,可不作处理;若有需要,可点击界面右下角双向箭头按钮(如图 3-24),选中所有帧后,点击工具栏 "Smooth"进行平滑处理(如图 3-25);

图 3-24

图 3-25

(8) 在选中所有帧的情况下,点击工具栏"删除未命名",以清除数据中可能存在的杂点 (如图 3-26);

图 3-26

(9) 点击菜单栏"文件"-"保存动捕数据",保存已处理好的数据;

6. 建立刚体

- (1) 对于已经建立好 MarkerSet 并完成修复的数据,可以建立刚体;刚体至少需要由 3 个 Marker 点来定义,这三个点分别用来定义刚体的起点、止点和 XY 平面,通过该软件 可以得到刚体的欧拉角数据,常用于无人机、机械臂等应用场景;
- (2) 在界面右侧点击 Segments 标签栏,双击空白部分输入预设的刚体名称 (如图 3-27);

图 3-27

(3) 选择设置好的刚体,点击软件界面右上方的 Skeleton Engine,在下拉菜单中选择 Skeleton Builder (SkB) (如图 3-28);

图 3-28

(4) 此时在软件界面右下方可见该刚体的具体参数选项,Origin Marker 表示刚体的起点,Long Axis (Bone) 表示刚体的止点,Plane Axis 表示与起止点一同构建 XY 平面的点,可通过下拉菜单来选择对应的 Marker 点(如图 3-29);

图 3-29

- (5) 重复(2)-(4)步骤可建立多个刚体;
- (6) 如有需要,可在刚体参数修改 Parent Segment 选项,以选择所设刚体的父段刚体;
- (7) 完成刚体建立后,勾选软件界面左下角 Skeleton 选项,并点击 Calculate,可在 3-D 视图中生成刚体形象(如图 3-30);

图 3-30

(8) 保存数据;

7. 实时应用 MarkerSet

- (1) 软件支持在实时模式 (Live Mode) 下实时显示 MarkerSet, 即定义名称的 Marker 和连线, 通常与 SDK 配合使用;
- (2) 在 Post Process 下对已经完成数据修复的带 MarkerSet 的捕捉文件,点击上方工具栏的"模版建立…",在弹出的窗口中,Frame Range 选择 All,注意观察右侧 Fames Used 的总帧数和可用帧数,可用帧数如果过少将导致建立的 Template 不可用(如图 3-18),需要重新进行数据修复(详见 5. 数据修复);

*注意:在捕捉人时,通过 Create Template 让 Live Mode 下实时显示 Marker 及连线需要受试人员为同一个人,且 Marker 位置无变动。

图 3-18

四、数据分析

1. 点、线、角度数据

(1) 点击菜单栏"布局"-"2窗口:上/下",让界面显示上下两个窗口,选中窗格时会有橙色边框,点击菜单栏"数据视图",让其中一个窗口显示"3-D视图",一个窗口选择"分析图表",会有窗口弹出(如图 4-1);

图 4-1

(2) 弹出的分析窗口有三个标签,其中"位移/速度/加速度"表示对 Marker 点所在位置 (坐标)、速度、加速度进行分析,如选中速度,点击任意 Marker,在图表处可显 示不同时间该点在各方向上的速度(如图 4-2);

图 4-2

(3) "距离"表示对 Marker 点之间直线距离的计算分析,点击"第一标志点",在 3D 界面选择 Marker,再点击"第二标志点",在 3D 界面选择另一个 Marker,同样会在图表处显示数据和曲线(如图 4-3);

图 4-3

(4) "角度"表示对 Marker 点所连直线的夹角,同样在 From、to 选择 Marker,图表处会显示两组 From-To 直线所呈夹角的角度变化(如图 4-4);

图 4-4

(5) 在每个标签下,均可点击"输出.ts (时间序列)文件"进行数据导出,导出的.ts 文件可以用记事本或 Excel 打开 (使用 Excel 查看时需将文件拖入 Excel 窗口才可打开);

2. 刚体数据

- (1) 点击菜单栏 "文件" "加载动捕数据" , 若处理好的动捕数据的 MarkerSet 中含有建立好的刚体,可导出刚体的欧拉角数据;
- (2) 点击菜单栏 "文件" "输出..." "输出 HRT 文件..." ;
- (3) 在弹出窗口中选择所需的"欧拉角顺序 Euler Angle Order",右侧"基础位置选项 Base Position Options"通常选择第一个选项"No Base Position"(如图 4-3);

图 4-5

- (4) 点击 Export Skeleton (.htr) 以导出刚体数据;
- (5) 将导出的.htr 文件拖入 Excel 表格中,即可打开刚体数据文件(如图 4-4)。

图 4-6