Semestrální projekt 3: Srovnávací studie vytápění - tepelné čerpadlo vs. plynový kotel

Základní informace

• **Předmět:** Praktické použití fyziky a chemie

• Typ projektu: Teoretická srovnávací studie

• Časová dotace: 16 týdnů (2 hodiny týdně + domácí příprava)

• Práce v týmu: 2-3 studenti

Charakteristika projektu

Studenti zpracují komplexní srovnávací studii dvou nejběžnějších způsobů vytápění rodinných domů v ČR. Projekt zahrnuje teoretické základy obou technologií, detailní výpočty provozních nákladů, environmentální analýzu a ekonomické vyhodnocení včetně citlivostní analýzy na změny cen energií.

Cíle projektu

Hlavní cíl

Objektivně porovnat tepelné čerpadlo a plynový kondenzační kotel z technického, ekonomického a environmentálního hlediska pro konkrétní modelový dům.

Dílčí cíle

- 1. Pochopit termodynamické principy obou technologií
- 2. Naučit se komplexní ekonomické hodnocení investic
- 3. Osvojit si výpočet carbon footprint
- 4. Rozvíjet kritické myšlení při hodnocení technologií
- 5. Připravit podklady pro racionální rozhodování

Zadání projektu

- 1. Teoretický základ (30% hodnocení)
- 1.1 Tepelné čerpadlo Termodynamické principy Carnotův cyklus ideální případ Skutečný chladicí oběh
 Kompresorový cyklus (detailní popis) Absorpční tepelná čerpadla (princip)

Typy tepelných čerpadel Podrobně popište: - Vzduch-voda (charakteristika, COP) - Země-voda (vrty, plošné kolektory) - Voda-voda (studny, podmínky) - Vzduch-vzduch (split systémy)

Klíčové parametry - COP (Coefficient of Performance) - SCOP (Seasonal COP) - Bivalentní bod - Ekvitermní regulace

1.2 Plynový kondenzační kotel Principy spalování - Stechiometrie spalování zemního plynu - Výhřevnost vs. spalné teplo - Kondenzace spalin

Technologie kondenzačních kotlů - Konstrukce výměníku - Modulace výkonu - Neutralizace kondenzátu - Lambda sonda

Účinnost - Normovaný stupeň využití - Závislost na teplotě zpátečky - Sezónní účinnost

1.3 Srovnání principů

- Exergetická analýza obou systémů
- Primární energie vs. dodaná energie
- Konverzní faktory

2. Modelový objekt (10% hodnocení)

Parametry domu

- Zastavěná plocha: $150~\mathrm{m}^2$
- Vytápěná plocha: 135 m²
- Počet podlaží: 2 (přízemí + patro)
- Počet obyvatel: 4
- Konstrukce: zděná, zateplená (U = 0,25 W/m²K)
- Okna: trojskla (Uw = $0.8 \text{ W/m}^2\text{K}$)
- Tepelná ztráta: 12 kW při -15°C

Otopná soustava

- Podlahové vytápění (35/28°C)
- Radiátory v koupelnách (55/45°C)
- Akumulační nádrž 500 l

Lokalita

- Klimatická oblast: Praha
- Průměrná roční teplota: 9,1°C
- Délka otopného období: 242 dnů
- Denostupně: 3 680 K \cdot den
- 3. Výpočetní analýza (40% hodnocení)
- **3.1 Potřeba tepla Vytápění** Roční potřeba tepla [GJ/rok] Měsíční rozložení spotřeby Špičkový výkon [kW] Průměrný výkon v topné sezóně [kW]

Teplá voda - Denní spotřeba: 50 l/osoba při 55°C - Roční potřeba tepla pro TUV [GJ/rok] - Letní/zimní provoz

3.2 Varianta A: Tepelné čerpadlo vzduch-voda Návrh systému - Výběr konkrétního modelu (použijte reálný katalog) - Jmenovitý výkon při A7/W35 - COP při různých teplotách - Bivalentní provoz (elektrokotel 6 kW)

Výpočty spotřeby - Měsíční spotřeba elektřiny [kWh] - SCOP pro danou lokalitu - Spotřeba bivalentního zdroje - Roční spotřeba celkem [kWh/rok]

Provozní náklady - Tarif D57
d (NT/VT) - Měsíční platby za jistič - Roční náklady na vytápění [Kč] - Náklady na TUV [Kč]

3.3 Varianta B: Kondenzační kotel Návrh systému - Výběr kotle (15-20 kW, modulace 1:10) - Účinnost při různých režimech - Odkouření, komín

Výpočty spotřeby - Měsíční spotřeba plynu [m³] - Průměrná sezónní účinnost [%] - Roční spotřeba [m³/rok]

Provozní náklady - Cena plynu (komodita + distribuce) - Měsíční platby za kapacitu - Roční náklady celkem [Kč]

 $\textbf{3.4 Environmentální analýza} \quad \textbf{Emise CO} \quad - \text{ Emisní faktory: - Elektřina ČR: 0,43 kg CO /kWh - Zemní plyn: 0,20 kg CO /kWh - Roční emise - tepelné čerpadlo [t CO] - Roční emise - plynový kotel [t CO] - Úspora emisí [%]$

Primární energie - Faktor primární energie: - Elektřina: 2,6 - Zemní plyn: 1,1 - Spotřeba primární energie [GJ/rok]

- 4. Ekonomická analýza (20% hodnocení)
- **4.1 Investiční náklady Tepelné čerpadlo** Jednotka TČ: [Kč] Akumulační nádrž: [Kč] Elektroinstalace (jistič, kabeláž): [Kč] Montáž a uvedení do provozu: [Kč] Projektová dokumentace: [Kč] **Celkem:** [Kč]

Plynový kotel - Kondenzační kotel: [Kč] - Odkouření, komín: [Kč] - Plynová přípojka: [Kč] - Montáž a regulace: [Kč] - Revize a projekt: [Kč] - **Celkem:** [Kč]

4.2 TCO analýza (15 let) Pro obě varianty vypočítejte: - Investiční náklady - Provozní náklady (diskontované, i = 4%) - Náklady na údržbu a servis - Náklady na reinvestice (výměna kompresoru/kotle) - **TCO celkem**

4.3 Citlivostní analýza Analyzujte vliv změny: - Ceny elektřiny: $\pm 30\%$ - Ceny plynu: $\pm 30\%$ - Kombinace obou - Vliv dotace na TČ (30% invest. nákladů)

Vytvořte: - Tabulku citlivosti - Graf bodu zvratu - Spider diagram

4.4 Finanční metody hodnocení

- NPV obou variant
- IRR rozdílové investice
- Prostá doba návratnosti
- Diskontovaná doba návratnosti

Výstupy projektu

1. Odborná zpráva (15-20 stran)

Povinná struktura: 1. Titulní strana 2. Abstrakt (CZ + EN, max. 250 slov) 3. Obsah 4. Seznam symbolů a zkratek 5. Úvod - Motivace studie - Současný stav problematiky - Cíle práce 6. Teoretická část - Princip tepelného čerpadla - Princip kondenzačního kotle - Srovnání technologií 7. Metodika - Popis modelového domu - Výpočtové postupy - Použité normy a předpisy 8. Výsledky - Energetická bilance - Provozní náklady - Environmentální dopady 9. Ekonomické vyhodnocení - TCO analýza - Citlivostní analýza - Doporučení 10. Diskuze - Srovnání s literaturou - Limity studie - Další faktory 11. Závěr 12. Literatura (min. 15 zdrojů) 13. Přílohy - Detailní výpočty - Katalogové listy - Grafy a tabulky

2. Prezentace výsledků

PowerPoint prezentace (20 snímků) - Úvod do problematiky - Princip technologií (animace) - Modelový dům - Klíčové výpočty - Srovnávací grafy: - Roční náklady - Emise CO - TCO - Citlivostní analýza - Závěry a doporučení

3. Poster pro veřejnost

- Formát: A1
- Obsah:
 - Infografika obou systémů
 - Porovnání v číslech
 - Environmentální aspekty
 - Kdy se co vyplatí

4. Kalkulačka pro rozhodování

- Excel soubor s parametry
- Možnost zadat vlastní údaje
- Automatický výpočet a doporučení

Hodnotící kritéria

Bodové hodnocení (100 bodů)

Oblast	Body	Hodnocené aspekty	
Teoretická část	30	Pochopení principů, úplnost, správnost	
Výpočty	40	Správnost, metodika, interpretace	
Ekonomická analýza	20	TCO, citlivost, finanční metody	
Formální zpracování	10	Struktura, citace, grafy, jazyk	

Známkování

- 90-100 bodů: výborně (1)
- 75-89 bodů: chvalitebně (2)
- 60-74 bodů: dobře (3)
- 45-59 bodů: dostatečně (4)
- méně než 45 bodů: nedostatečně (5)

Bonusové body (max. 10)

- Konzultace s instalační firmou: +3 body
- Reálná data z provozu: +3 body
- Interaktivní kalkulátor (web): +4 body

Časový harmonogram

Týden	Fáze	Činnost	Výstup
1-2	Zahájení	Tvorba týmů, studium zadání	Projektový plán
3-4	Teorie	Studium principů TČ a kotlů	Teoretická rešerše
5-6	Modelování	Definice modelového domu	Technické zadání
7-9	Výpočty I	Energetické výpočty	Energetická bilance
10-11	Výpočty II	Ekonomické výpočty	TCO model
12 - 13	Analýza	Citlivostní analýza	Grafy, tabulky
14	Dokumentace	Psaní zprávy	Draft zprávy
15	Finalizace	Prezentace, poster	Finální dokumenty
16	Obhajoby	Prezentace projektů	Obhajoba

Zdroje informací

Základní literatura

- 1. KARLÍK, R.: Tepelné čerpadlo pro váš dům. Praha: Grada, 2020
- 2. POČINKOVÁ, M., TREUOVÁ, L.: Vytápění. Brno: ERA, 2018
- 3. Vyhláška 78/2013 Sb. o energetické náročnosti budov
- 4. ČSN EN 14511 Tepelná čerpadla
- 5. ČSN EN 15378 Tepelné soustavy v budovách

Online zdroje

- www.tzb-info.cz komplexní informace
- www.mpo.cz dotační programy
- www.eru.cz ceny energií
- www.chmi.cz klimatická data
- výrobci: Viessmann, Bosch, Daikin, Vaillant

Výpočtové nástroje

- PENB kalkulačka (www.mpo-enex.cz)
- Výpočet tepelných ztrát (TZB-info)
- Klimatická data (ČHMÚ)

Katalogy a ceníky

- Tepelná čerpadla: Regulus, NIBE, Daikin
- Plynové kotle: Viessmann, Buderus, Vaillant
- Ceníky energií: ČEZ, E.ON, PRE

Praktické pokyny

Tipy pro kvalitní zpracování

- 1. Používejte reálné údaje katalogy, ceníky
- 2. Ověřujte výpočty kontrola řádu veličin
- 3. Konzultujte využijte všech konzultací
- 4. Dokumentujte zapisujte zdroje průběžně
- 5. Vizualizujte grafy říkají více než tabulky

Nejčastější chyby

- Nereálné hodnoty COP (pozor na podmínky)
- Špatné jednotky (kW vs. kWh)
- Zanedbání pomocné energie (čerpadla)
- Chybějící citlivostní analýza
- Jednostranné hodnocení

Etické aspekty

- Objektivita neskreslovat data
- Transparentnost uvést všechny předpoklady
- Citace korektní uvedení zdrojů

Rozšiřující témata

- Hybridní systémy (TČ + kotel)
- Fotovoltaika + tepelné čerpadlo
- Akumulace tepla
- Smart home řízení
- Dotační politika EU

Konzultace a podpora

Pravidelné konzultace

Středa: 14:00-15:00, kabinet fyziky
Online: MS Teams (rezervace předem)

Kontrolní body

- Týden 4: Schválení teoretické části
- **Týden 9:** Kontrola výpočtů
- Týden 13: Preview prezentace

Odborné konzultace

Po domluvě možnost konzultace s: - Energetický poradce - Projektant TZB - Zástupce výrobce

Kontakt

Vyučující: [Jméno učitele]

Email: [email]

Kabinet: [číslo místnosti] MS Teams: [odkaz na tým]