Towards a new calibration algorithm for UUB?

Mauricio Suárez Durán and Ioana C. Mariș

IIHE-ULB

September 7, 2021

The current algorithm (OffLine SdCalibrator Module)

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

2

The current algorithm (OffLine SdCalibrator Module)

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

The current algorithm (OffLine SdCalibrator Module)

Find "head-and-shoulder": from the right side of the histogram, search for local maximum (head), surrounded by drops (shoulders) with shoulder/head value ratio less than fChargeWindowShoulderHeadRatio (as default 0.75)

1. Smoothing the histogram by 15-bin sliding window, $H_{\mathcal{S}}$

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)
- 4. Searching for the VEM hump, i.e. first bin for H_{SDS} equal to zero; from right to left.

- 1. Smoothing the histogram by 15-bin sliding window, H_S
- 2. Obtain first derivative of the H_S $(\frac{f(x+1)-f(x-1)}{2h})$, H_{DS} (black line)
- 3. Smoothing H_{DS} , obtaining H_{SDS} (red line)
- 4. Searching for the VEM hump, i.e. first bin for H_{SDS} equal to zero; from right to left.
- 5. Fixing the fitting range using n-bin leftward and n-bin rightward from VEM hump.

Describing the muon hump with a second polynomial

Choosing the number of bins

- 1. Using the hump value from the derivative as initial parameter
- 2. Fixing the number of bins to the left and right with an extra condition of not reaching the valley
- 3. Checking the spread of the VEM values versus number of used n-bin

⇒ A number of about 35 bins is sufficient

From December 2020, this method fit properly all histograms, including the ones for which OffLine-SdCalibrator algorithm fails.

6

Full August.

Conclusions and outlook

Towards a fix of the Offline VEM-calibration

- The OffLine algorithm fails to find for all the calibration histograms the second peak
- Based on the first derivative of the histograms we can correctly identify the muon hump in all cases (18 stations*)
- The new algorithm works on smoothed histograms and the obtained hump values can be used as initial parameters in to obtain the VEM-charge values
- The new algorithm is user-independent
- Implementation in Offline?

Statistics for August (see also Alex's and Corinne's analysis)

- 6/18 stations do not have calibration histograms from August 1st to 27th.
- 0 stations have bad calibration histograms.
- *Station studied: 863 1222 1219 1211 1740 1743 1221 1217 1747 1741 1745 1818 1851 1729 1735 1746 1819 1791

BACKUP

BACKUP Station 863. PMT 2, failed reco. for 25 bins

Full August.

Full August.

Full August.

Full August.

Full August.

Full August.

Full August.