

Wie es begann – das Patent

Bob Metcalfes Ethernet-Entwurf vom 22.5.1973: Mehrere Drucker an einem zentralen Rechner

Ethernet ist die wichtigste LAN-Technologie, ursprünglich basierend auf Bus-Topologie

Anfänge:

- Konzipiert am XEROX PARC (R. Metcalfe, D. Boggs) Anfang der 70er Jahre
- Erstes Ethernet konnte bis zu 256 Rechner bei max. Kabellänge von 1.000m mit Bandbreite 2,94 Mbps vernetzen
- IEEE ratifizierte 10Mbps-Ethernet-Spezifikation der Allianz aus Xerox, Digital, Intel

Basiskomponenten:

- Ethernet-Kabel physikalisches Medium "Ether"
- CSMA/CD Regelwerk für konkurrierenden Zugriff auf das Übertragungsmedium
- Ethernet-Datenpakete (Frame, Rahmen) Struktur der zu sendenden Datensätze

Im OSI-Modell ist mit Ethernet sowohl die physische Schicht (OSI Layer 1) als auch die Data-Link-Schicht (OSI Layer 2) festgelegt.

Ethernet im TCP/IP-Protokollstapel:

Anwendung	HTTP	IMAP	SMTP	DNS	
Transport	TCP			UDP	
Internet	IP (IPv4, IPv6)				
Netzzugang	Ethernet				

Ethernet – das Grundprinzip: Bus mit CSMA/CD

Grundprinzip:

Datenpakete werden über den Ethernet-Kabel versendet. Alle angeschlossenen Rechner empfangen jedes Datenpaket, doch nur der Zielrechner verarbeitet es.

Ethernet-Vielfachzugriffsalgorithmus:

Carrier Sense Multiple Access / Collision Detection

- Sobald ein Rechner ein Paket sendet, wird es von allen angeschlossenen Rechnern **Broadcast** empfangen
- Zu jedem Zeitpunkt kann höchstens ein Paket übertragen werden; werden zwei Pakete gleichzeitig übertragen, kommt es zur Kollision
- CSMA/CD regelt
 - konkurrierenden Sendezugriff der Rechner
 - Auflösung von Kollisionen

<u>Grundregeln</u>

- Carrier Sensing:
 - Rechner "horcht" auf Ether, bevor er sendet
 - Ist Ether besetzt, wartet er eine zufällige Zeitspanne "Back Off-Time" ab
- Collision Detection:
 - Rechner horchen, ob eine Kollision stattgefunden hat
 - Wenn ja, wird Übertragung abgebrochen "JAM Signal"

Ethernet-Datenpaketformat

Grundstruktur der Datenpakete ist bei allen Ethernet-Technologien gleich

- Präambel 7 bzw. 8 Byte
 - 7 Bytes beginnen mit "10101010" wecken Empfänger und dienen zur Synchronisation
 - letztes Byte endet mit "10101011" zeigt Beginn des eigentlichen Pakets an
- Zieladresse und Ursprungsadresse jeweils 6 Byte
- Typfeld weist Paket als Paket des Ethernet-Protokolls (also des Data-Link-Layer) aus
- Nutzdaten 46 bis 1500 Byte mit abschließender Prüfsumme 4 Byte

Das Typfeld in der MAC-Adresse

- Wertebereich 0-1500:
 Länge des Datenblocks (Kompatibilität zu Ethernet I)
- Wertebereich >1500:
 höhere Protokolle (Kompatibilität zu Ethernet II)
 - IEEE 802.3 3.1.a Basic MAC frame
 - IEEE 802.3 3.1.b Tagged MAC frame _

Typfeld	Protokoll
0x0800	IP Internet Protocol, Version 4 (IPv4)
0x0806	Address Resolution Protocol (ARP)
0x0842	Wake on LAN (WoL)
0x8035	Reverse Address Resolution Protocol (RARP)
0x809B	AppleTalk (EtherTalk)
0x80F3	Appletalk Address Resolution Protocol (AARP)
0x8100	VLAN Tag (VLAN)
0x8137	Novell IPX (alt)
0-0420	Marrell

VLAN Tagged Frame: IEEE 802.3q

Ethernet Topologien in der Praxis

STERN mittels Switch (UTP/RJ45)

Die **Sterntopologie** dient der direkten und lokalen Vernetzung von Hosts in einem LAN.

Erstreckt sich das LAN über einen größeren Versorgungsbereich, so werden häufig mehrere Sterntopologien als **Baumstruktur** zusammengefasst. Dabei wird zunächst der Datenverkehr in den lokalen Sterntopologien **aggregiert** und über leistungsfähige Uplinks (in der Regel Glasfaser) zu einem übergeordneten Switch verbunden. Dieser aggregiert die Uplink-Schnittstellen und führt den Datenverkehr zu einem **zentralen Router**, der gleichzeitig die Verbindung in das **Internet** herstellt. Diese Architektur kommt zum Beispiel bei der Vernetzung mehrerer Etagen in einem Gebäude oder mehrerer Gebäude auf einem Campus, wie etwa der HFU, zum Einsatz.

Ethernet Collision Domain und HW-Komponenten

Domänen:

- Broadcast Domain alle Rechner im Netz, die per Broadcast versendete Pakete empfangen können
- Collision Domain alle Rechner, zwischen denen es bei gleichzeitigem Senden zu einer Kollision kommen kann
- Ein Ethernet-Segment besteht aus Gruppe der Rechner, die über ein Ethernet-Kabel verbunden sind
 - Jedes Ethernet-Segment bildet eine Collision Domain

Hardwarekomponenten

Ethernet-Segmente können über verschiedene Zwischensysteme verbunden werden

Hub/Repeater – verbinden einzelne Segmente zu größerem Verbund, der sich wie eine einzige Collision Domain verhält (physikalische Verbindung).

Bridges – verbinden verschiedene, physikalisch getrennte Collision Domains, in denen jeweils parallel kommuniziert werden kann

Switches – leiten Pakete nur über den jeweiligen Port an das Ziel-Segment des LANs weiter

Router – können verschiedene Ethernet-LANs miteinander verbinden

Ein Hub stellt lediglich physikalische Verbindungen her. Kollisionen <u>und</u> Broadcasts sind über einen Hub daher möglich.

Ein Switch terminiert eine Kollisionsdomäne. Broadcasts zur Adressauflösung werden dennoch weitergeleitet.

Broadcast Domain

Collision Domain

Router

Hub/Repeater

Host 1 Host 2 Host 3 Host 4 Host 5

Der Ethernet Switch

Der Switch ist heute das zentrale Zwischensystem für Stern- und Baumstrukturen in Ethernet-basierten LAN. Jeder Host wird direkt an einen Switch-Port angebunden, der die physikalische Übertragungsschicht terminiert. Dadurch können keine Kollisionen mehr auftreten. Das Grundprinzip der Adressauflösung über Broadcast wird dabei jedoch beibehalten. Daher bildet eine Switch-Topographie zwar eine Broadcast Domäne, jedoch keine Collision-Domain. Das CSMA/CD-Verfahren ist daher nicht mehr zwingend notwendig, wird aber noch genutzt. In dem Gigabit-Ethernet-Standard wird das Verfahren jedoch nicht mehr unterstützt.

Ein Switch arbeitet auf der Sicherungsschicht:

- Empfängt Ethernet-Rahmen, puffert sie und leitet sie weiter
- Untersucht den Header eines Rahmens und leitet ihn gezielt anhand der Empfängeradresse auf eine Ausgangsleitung weiter
- Wenn ein Frame von einem Switch weitergeleitet wird, dann verwendet der Switch CSMA/CD

Transparent

Endsysteme wissen nichts über die Gegenwart eines Switches

Plug-and-Play, selbst lernend

Switches müssen nicht konfiguriert werden

Switching-Prinzip

- Jeder Host hat einen eigenen Link zum Switch
- Das Ethernet-Protokoll wird auf jedem Link verwendet, es kann jedoch keine Kollisionen geben; Vollduplex
 - Jeder Link ist eine eigene Kollisionsdomäne
- Switching:

E-nach-B und D-nach-A gleichzeitig ohne Kollisionen möglich

Geht nicht mit einem Hub!

Selbstkonfiguration der Adressen – Learning Bridge

Woher weiß der Switch, dass B über Interface 4 zu erreichen ist?

- Jeder Switch besitzt eine Switch-Tabelle mit folgenden Einträgen:
 - MAC-Adresse eines Hosts
 - Schnittstelle, über die der Host erreicht werden kann
 - Zeitstempel
- Ein Switch lernt, welche Hosts er über eine gegebene Schnittstelle erreichen kann:
 - Wenn er einen Rahmen empfängt, dann lernt der Switch, dass der Absender hinter dieser Schnittstelle liegen muss
 - Er trägt diese Information in die Switch-Tabelle ein
- Beispiel: A schickt einen Rahmen an D

MAC-Adr.	Schnitt.	TTL
Α	5	60

Switch mit sechs Schnittstellen (1,2,3,4,5,6)

	Hinweis: Der	animierte	Inhalt ist	nur in	dem	Bealeitvideo	sichtbar
--	--------------	-----------	------------	--------	-----	--------------	----------

Ethernet-Varianten und Entwicklungsgeschichte

Ethernet-Varianten unterscheiden sich in Bezug auf

- Medien: Koaxialkabel, Twisted-Pair, Glasfaserkabel, ...
- Begrenzungsparameter, Anzahl anschließbarer Rechner, Bandbreiten, Topologie, ...

Entwicklung

- 1980 10 MBit/s
- 1995 100 MBit/s Fast Ethernet
- 1999 1 GBit/s Ethernet Gigabit-Ethernet
 - Ursprünglich Backbone-Technologie, heute auch im LAN
- 2001 10 GBit/s Ethernet
 - Einsatz in MAN und WAN
- 2014 2,5 GBit/s und 5,0 Gbit/s Ethernet
 - günstigere Verkabelung/Hardware, Power over Ethernet (PoE) möglich

Ethernet in a Nutshell:

- Ethernet kann mehrere hundert Rechner im Umkreis von ca. 1 km vernetzen
- Relativ hohe Datenrate
- Geringe Verzögerung durch Verzicht auf Speicher und Transportlogik
- Sehr einfache Algorithmen für Zugriff auf Übertragungsmedium und Adressierung
- Effiziente Nutzung und faire Zugriffsverteilung für alle Teilnehmer
- Hohe Zuverlässigkeit, keine zentrale Steuerung
- Hohe Stabilität auch unter Last

Ethernet hat sich gegenüber den anderen LAN-Technologien weitgehend durchgesetzt und diese vom Markt verdrängt.

Bitte beachten Sie auch das Video von Bob Metcalfie zu Geschichte und Zukunft von Ethernet in der Linkliste

