

Índice

Ferramentas utilizadas		3
Introdução		4
Modo de funcionamento do sistema		5
Modo de funcionamento do sistema	(continuação)	6
Modo de funcionamento do sistema		7
Módulo de controlo do modo de funcionamento		8
Módulo de controlo do modo de funcionamento		9
Módulo de controlo do modo de funcionamento		10
Módulo de controlo do modo de funcionamento - Mapas de Karnaugh do flip-flop JK)	•	
Módulo de controlo do modo de funcionamento - Mapas de Karnaugh do flip-flop JK)	•	
Módulo de controlo do modo de funcionamento resultados – Circuito simplificado no simulador Logisir	•	13
Módulo de controlo do modo do mecanismo de os resultados – Modelo ASM)	, ·	14
Módulo de controlo do modo do mecanismo de os (Procedimento de resultados – Tabela de verdade)	3	15
Módulo de controlo do modo do mecanismo de os resultados – Tabela excitação T e saídas)	3 `	16
Módulo de controlo do modo do mecanismo de os resultados – Mapas de Karnaugh do flip-flop T)	•	17
Módulo de controlo do modo do mecanismo de os resultados – Circuito simplificado no simulador Logisir	•	18
Módulos implementados (Controlador do aqueced	or)	19
Conclusão		20

ESCOLA DE CIÊNCIAS E TECNOLOGIA Licenciatura Engenharia Informática

Ferramentas utilizadas

	Simulador Logisim;
\Box	Dia;
\Box	Photoshop;
\Box	Paint.
\Box	Word.

Introdução

Pretende-se criar um Sistema de controlo de um aquecedor elétrico.					
O sistema é composto pelos seguintes botões:					
□ Botão para ligar/desligar o aquecedor (BL);					
□ Botão para controlar o modo de funcionamento (BM);					
□ Botão para ligar/desligar o mecanismo de oscilação (BO).					
E os seguintes módulos:					
□ Módulo de controle do modo de funcionamento;					
☐ Módulo de controle do mecanismo de oscilação.					

Modo de funcionamento do sistema

O sistema por defeito encontra-se desligado, sendo que este altera o seu estado quando se pressiona o botão ligar/desligar (BL). O botão toma respetivamente valor 1 e 0 quando o sistema está ligado ou desligado.

Assumindo que o sistema está ligado, este irá comportar-se da seguinte forma.

Após se inicializar o sistema através do clicar do botão (BL) este irá ligar sempre em primeiro a ventilação (MV) em conjunto com uma resistência (R1). Este será o comportamento que o sistema irá tomar em todas as suas inicializações (ver **Fig.1**).

Fig.1 - Modo inicial (1 resistência).

Se for pressionado o botão modo de funcionamento (BM) enquanto o sistema apresenta as características descritas anteriormente, este irá ligar uma segunda resistência (R2), mantendo a ventilação e a primeira resistência (ver **Fig.2**).

Fig.2 - Segundo modo (2 resistências).

Modo de funcionamento do sistema

(continuação)

Pressionando novamente o mesmo botão, ir-se-á desligar as duas resistências previamente ligadas, mantendo somente a ventilação (ver **Fig.3**).

Clicando novamente no botão modo de funcionamento fará com que o sistema volte ao estado inicial (ver **Fig.1**).

Fig.3 - Terceiro Modo (ventilação).

Tendo abrangido todos os modos do de funcionamento do aquecedor eis que fica em falta o modo de oscilação. Este pode ser ativado com o pressionar do botão (BO) (ver **Fig.4**).

Fig.4 – Modo inicial com oscilação.

Modo de funcionamento do sistema

(continuação)

Obtendo o aquecedor um comportamento de oscilação, sendo que este oscilará 2 vezes para a direita em seguida 2 vezes para a esquerda, Este comportamento continua até que o motor (MO) para, ou seja, se for premido novamente o botão de oscilação.

(Procedimento de resultados - Modelo ASM)

Entradas: BL (botão para ligar/desligar o aquecedor) e BM (botão para controlar o modo de funcionamento).

Saídas: R1 (Resistência 1), R2 (Resistência 2) e MV (Motor que aciona

a ventoinha de ventilação).

Fig.5 – Modelo ASM do módulo de controlo do modo de funcionamento.

(Procedimento de resultados – Tabela de verdade)

BL	ВМ	Q _n Estado atual	Q _{n+1} Estado seguinte	MV	R1	R2	X ₁	x ₀		n+1 X ₀	J ₁	K ₁	J _o	K ₀
0	-	а	a	0	0	0	0	0	0	0	0	-	0	-
1	-	a	b	0	0	0	0	0	0	1	0	-	1	-
0	-	b	a	1	1	0	0	1	0	0	0	-	-	1
1	0	b	b	1	1	0	0	1	0	1	0	-	-	0
1	1	b	С	1	1	0	0	1	1	0	1	-	-	1
0	-	С	а	1	1	1	1	0	0	0	-	1	0	-
1	0	С	С	1	1	1	1	0	1	0	-	0	0	-
1	1	С	d	1	1	1	1	0	1	1	-	0	1	-
0	-	d	a	1	0	0	1	1	0	0	-	1	-	1
1	0	d	d	1	0	0	1	1	1	1	-	0	-	0
1	1	d	b	1	0	0	1	1	0	1	-	1	-	0

Fig.6 – Tabela de verdade do módulo de controlo do modo de funcionamento.

(Procedimento de resultados – Tabela excitação JK e saídas)

Q _n	Q_{n+1}	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

Fig.7 – Tabela de excitação do flip-flop JK.

Fig.8 – Mapa Karnaugh da saída R2 (Resistência 2).

Fig.9 – Mapa Karnaugh da saída R1 (Resistência 1).

Fig.10 – Mapa Karnaugh da saída MV (Motor que aciona a ventoinha de ventilação).

(Procedimento de resultados – Mapas de Karnaugh do flip-flop JK)

	J_1	Α			,	
	SL BM X ₁ X ₀	00	01	11	10	
	00	0	0	-	-	DI DM V V
Α	01	0	0	-	-	BL BM X ₁ X ₀ 1 1 0 1 1 1 1 1 A = BL * BM * X ₀
	11	0	1	-	-	J ₁ = BL * BM * X ₀
•	10	0	0	-	-	

Fig.11 – Mapa de Karnaugh para J1.

Fig.12 – Mapa de Karnaugh para K1.

(Procedimento de resultados – Mapas de Karnaugh do flip-flop JK)

	J_0			•		
	SL BM X ₁ X ₀	00	01	11	10	BL BM X ₁ X ₀ 1 1 0 0
	00	0	-	-	0	1 1 0 1 1 1 1 1 1 1 1 0 B = BL*BM
вА	01	0	-	-	0	BL BM X ₁ X ₀ 1 1 0 0 1 1 0 1
	11	1	-	-	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
ľ	10	1	-	-	0	$J_0 = BL * BM + BL * \overline{X}_1$

Fig.13 – Mapa de Karnaugh para J0.

Fig.14 – Mapa de Karnaugh para K0.

(Procedimento de resultados – Circuito simplificado no simulador Logisim)

Fig.15 – Circuito simplificado no simulador Logisim para o módulo de controlo do modo de funcionamento

(Procedimento de resultados – Modelo ASM)

Entradas: MO (motor do mecanismo de oscilação).

Saídas: SD (sentido direita) e

SE (sentido esquerda)

Fig.16 – Modelo ASM do módulo de controlo do modo do mecanismo de oscilação.

(Procedimento de resultados – Tabela de verdade)

МО	Q _n Estado atual	Q _{n+1} Estado seguinte	SD	SE		Q _n	x ₀		ν _{n+1} Χ ₁		T ₂	T ₁	T ₀
0	а	a	0	0	0	0	0	0	0	0	0	0	0
1	а	b	0	0	0	0	0	0	0	1	0	0	1
0	b	a	0	0	0	0	1	0	0	0	0	0	1
1	b	С	1	0	0	0	1	0	1	0	0	1	1
0	С	a	0	0	0	1	0	0	0	0	0	1	0
1	С	d	1	0	0	1	0	0	1	1	0	0	1
0	d	a	0	0	0	1	1	0	0	0	0	1	1
1	d	e	0	1	0	1	1	1	0	0	1	1	1
0	е	a	0	0	1	0	0	0	0	0	1	0	0
1	е	b	0	1	1	0	0	0	0	1	1	0	1

Fig.17 – Tabela de verdade do módulo de controlo do modo do mecanismo de oscilação.

(Procedimento de resultados – Tabela excitação T e saídas)

Q _n	Q _{n+1}	Т
0	0	0
0	1	1
1	0	1
1	1	0

Fig.18 – Tabela de excitação do flip-flop T.

Fig.19 - Mapa Karnaugh da saída SD (sentido direita).

Fig.20 – Mapa Karnaugh da saída SE (sentido esquerda).

(Procedimento de resultados – Mapas de Karnaugh do flip-flop T)

Fig.21 – Mapa de Karnaugh para T2.

Fig.22 - Mapa de Karnaugh para T1.

Fig.23 - Mapa de Karnaugh para T0.

(Procedimento de resultados – Circuito simplificado no simulador Logisim)

Fig.24 – Circuito simplificado no simulador Logisim para o módulo de controlo do modo do mecanismo de oscilação.

Módulos implementados (Controlador do aquecedor)

Fig.25 – Controlador do aquecedor.

ESCOLA DE CIÊNCIAS E TECNOLOGIA Licenciatura Engenharia Informática

Conclusão

Etapas

	Modulo de controle do modo de funcionamento:
	Definição das entradas e saídas;
	Desenho do modelo ASM;
	☐ Tabela de verdade das entradas e saídas;
	☐ Mapas de Karnaugh e as respetivas expressões das entradas e saídas;
	□ Projeção do circuito.
\triangleright	Módulo de controle do mecanismo de oscilação:
	Definição das entradas e saídas;
	Desenho do modelo ASM;
	☐ Tabela de verdade das entradas e saídas;
	☐ Mapas de Karnaugh e as respetivas expressões das entradas e saídas;
	□ Projeção do circuito.

Tomadas de decisão

No decorrer do projeto foram surgindo questões quanto ao seu desenvolvimento. Sendo o primeiro obstáculo, qual o tipo de flip-flop a ser usado no primeiro módulo, o controlador do modo de funcionamento. Tendo o grupo unanimemente chegado à conclusão que faria sentido usar o Flip-Flop JK visto que se trata de um sistema que é controlado por um botão de pressão.

No desenvolver do segundo módulo, o motor de oscilação. Inicialmente usouse o tipo de Flip-Flop JK, mas por tentativas a posteriori concluiu-se que o uso do Flip-Flop T seria o mais indicado, pois trata-se somente de transições de estado sem influências impactantes pelas entradas.

Após uma troca de ideia entre os membros do grupo, optou-se por usar um único *clock* para todo o circuito.