TCT 시험 안내 (시스템&솔루션개발)

전사기술체계혁신 TF

Cloud와 On-Premise 환경에서 요구되는 솔루션의 최적화된 아키텍처를 설계하고 핵심 메커니즘을 유연하게 구현하기 위해 필요한 요소기술(통신, 데이터, 알고리즘, 프로세싱 등)을 분석/설계/개발할 수 있는 역량 측정

■ 기본사항

◆ 응시형태: 집합응시

◆ 문항구성: 필기형(객관식/단답식) 7문항 / 실기형(코딩) 1문항(소문항 5)

◆ 시험시간 : 필기+실기 250분 (단, 필기 시간은 20분으로 제한함)

인터넷 검색 : 가능참고자료 지참 : 가능

■ 출제범위

소분류	대모듈	소모듈	문항수	배점
DX 기술 (이론)	Cloud	Cloud 기본	3	20
		Computing, Containers, Storage,		
		Networking & Content Delivery, Security,		
		Identity, & Compliance, Management Service		
		Cloud Architecture		
	AI	인공지능(AI)의 기초적인 개념	4	
		AI 활용 기술		
시스템&솔루션 개발 (실기)	언어	Java, C#	1 (소문항 5)	80
		(C는 주스킬 선택자가 소수일 경우, 변경 가능)		
	아키텍처 설계	Software Architecture		
	기반 프레임워크	Base Framework		
	통신	Network programing		
	데이터	Basic Data Structure, File IO		
	알고리즘	Basic Algorithm, Encryption/Decryption		
	프로세싱	Thread, Async, Polling		
	DX 요소기술	API Gateway, Service Mesh, RealTime Streaming , AI 등 주요 기술		
합계				100

- ※ 모듈별 문항수와 배점은 차수에 따라 달라질 수 있습니다.
- ※ 실기시험에서 DX 요소기술을 솔루션화하거나 활용하는 시나리오로 출제가 됩니다.
 - 구현 프로그램에서 활용할 수 있는 Mock 을 제공하며 개발 화면 환경은 '21 년과 동일
 - 필요한 외부 라이브러리는 다운로드 후 활용 가능(C 언어 경우 사전 제공 라이브러리를 별도 공지함)

■ 주요 변경사항

- 시험 출제 및 응시 환경에 대해서는 21년과 동일한 방식을 유지하여 변화에 대한 스트레스를 최소화하는 방향으로 진행
- ◆ 실기형 문항 C 언어 선택은 '22년까지 유지하고, '23년부터는 폐지함

■ 학습자료

- ◆ Cloud 필기테스트 출제범위
 - TECH Wiki > Cloud > Cloud 서비스
 - TECH Wiki > Cloud > Cloud 서비스 > Private Cloud > Cloud 플랫폼 > Kubemetes 기반 솔루션 가이드
 - TECH Wiki > Cloud > Cloud 서비스 > Private Cloud > Cloud 플랫폼 > Serverless Computing 활용가이드
 - AWS Document(https://docs.aws.amazon.com)
 - GCP Document (https://docs.microsoft.com/en-us/learn/, https://www.microsoft.com/handsonlabs)
 - Azure Document(https://cloud.google.com/docs/)
 - * 베타 서비스 제외
- ◆ 필기테스트 상세 출제범위 (TECH Wiki > 아키텍처 > 하위 내용, CSP 3사 Document > 하위 내용) [Cloud 서비스 상세 출제범위]
 - > Cloud 서비스 > Amazon Web Service > 클라우드 개발 가이드
 - > Cloud 서비스 > Amazon Web Service > 클라우드 아키텍처 가이드
 - > Cloud 서비스 > Azure > 클라우드 개발 가이드(Azure)
 - > Cloud 서비스 > Azure > 클라우드 아키텍처 가이드(Azure)
 - > Cloud 서비스 > Google Cloud Platform > GCP 이해하기 1. GCP 개요

[Kubernetes 기반 솔루션 가이드 상세 출제범위]

- > Kubernetes 기반 솔루션 가이드 > AKS 가이드 (Azure) > AKS 아키텍처 가이드
- > Kubernetes 기반 솔루션 가이드 > EKS 가이드 (AWS) > EKS 아키텍처 가이드
- > Kubernetes 기반 솔루션 가이드 > GKE 가이드 (Google) > GKE 아키텍처 가이드

[Serverless Computing 활용가이드 상세 출제범위]

- > Serverless Computing 활용가이드 > 2. 서버리스 컴퓨팅이란 무엇인가?
- > Serverless Computing 활용가이드 > 3. 서버리스 컴퓨팅 특징
- > Serverless Computing 활용가이드 > 4. 서버리스 컴퓨팅 도입시 고려사항
- > Serverless Computing 활용가이드 > 6. 서버리스 컴퓨팅 아키텍처 설계

[AWS Document 상세 출제범위]

- > Compute > EC2, EC2 Image Builder, Lambda
- > Containers > ECR, ECS, EKS, App2Container
- > Networking & Content Delivery > API Gateway, VPC, Route3
- > Storage > S3, EBS, EFS, S3 Glacier
- > Security, Identity, & Compliance > IAM
- > Management & Governance > CloudFormation, CloudWatch, AppConfig, Auto Scaling,

[GCP Document 상세 출제범위]

- > 컴퓨팅 > Compute Engine, 선점형 VM, 보안 VM,
- > 컨테이너 > GKE, Container Registry,
- > 네트워킹 > VPC, Cloud Router, Cloud NAT, Cloud Load Balancing
- > 보안 및 ID > IAM, Resource Manager, 보안 VM, VPC 서비스 제어, Cloud Key Management Service
- > 서버리스 컴퓨팅 > Cloud Functions, Cloud Run
- > 관리도구 > Cloud Console, Cloud Shell, 비용 관리, Cloud APIs

[Azure Document 상세 출제범위]

- > Azure Fundamentals : Describe core Azure concepts
- > Azure Fundamentals : Describe core Azure services
- > Azure Fundamentals : Describe core solutions and management tools on Azure
- > Azure Fundamentals : Describe general security and network security features
- > Azure Fundamentals: Describe identity, governance, privacy, and compliance features
- > Azure Fundamentals : Describe Azure cost management and service level agreements
- ◆ AI 기초적인 개념 및 활용 기술
 - TECH Wiki > AI빅데이터 > AI > [AI Tech Letter] > 1 ~ 12편

■ 실습환경

• 응시 환경에서 HTTP 통신 시나리오가 활용되는 경우 아래 Library 를 포함하여 제공할 예정이며, 그 외 Library 를 선택하여 Download 하여 사용도 가능합니다.

[Java]

- Http Server: Jetty 9 Embedded (https://www.eclipse.org/jetty/documentation/jetty-9/index.html#jetty-helloworld)
- Http Client : Jetty 9 HttpClient
 (https://www.eclipse.org/jetty/documentation/jetty-9/index.html#http-client)
- Json: Google Gson 2.8.6 (https://github.com/google/gson)

[C#]

- Http Server (https://docs.microsoft.com/ko-kr/dotnet/api/system.net.httplistener)
- Http Client (https://docs.microsoft.com/ko-kr/dotnet/api/system.net.http.httpclient)
- Json : Newtonsoft.Json (https://www.newtonsoft.com/json)

[C]

- Http Server : libmicrohttpd (https://www.gnu.org/software/libmicrohttpd/)

- Http Client : libcurl (https://curl.se/libcurl/)

- Json : json-c(https://github.com/json-c/json-c)