

Ensemble Learning

Ensemble Mgreatlearning

- Ensembles are machine learning methods following predictions if e from multiple separate models.
- The central motivation is rooted under the belief that a committee of experts working together can perform better than a single expert.

GreatlearningBoth Regression and Classification can be done using Ensemble learning

- Combining the individual predictions can be done by using either voting or averaging
- The individual ensemble learners need to be:
 - Different from each other (independent errors)
 - Can be weak (slightly better than random): Because of the number of models in an Ensemble method, computational requirements are much higher than that of evaluating a single model. So ensembles are a way to compensate for poor models by performing a lot of extra computation.

Common Ensemble Treatlearning (Bootstrap Aggregation) Learning for Life

- Bagging (Bootstrap Aggregation)
 - Reduced chances of over fitting by training each model only with a randomly chosen subset of the training data. Training can be done in parallel.
 - Essentially trains a large number of "strong" learners in parallel (each model is an over fit for that subset of the data)
 - Combines (averaging or voting) these learners together to "smooth out" predictions.

Boosting

- Trains a large number of "weak" learners in sequence. A weak learner is a simple model that is only slightly better than random (eg. One depth decision tree).
- Miss-classified data weights are increased for training the next model. So training has to be done in sequence.
- Boosting then combines all the weak learners into a single strong learner.

Bagging uses complex models and tries to "smooth out" their predictions, while Boosting uses simple models and tries to "boost" their aggregate complexity.

Boosting Mercatlearning Learning for Life

- AdaBoosting (Adaptive Boosting)
 - In AdaBoost, the successive learners are created with a focus on the ill fitted data of the previous learner
 - Each successive learner focuses more and more on the harder to fit data i.e. their residuals in the previous tree

Gradient Boosting

- Each learner is fit on a modified version of original data (original data is replaced with the x values and residuals from previous learner
- By fitting new models to the residuals, the overall learner gradually improves in areas where residuals are initially high

greatlearning Learning for Life