Introduction to Machine Learning Lecture 10 Principle Component Analysis

lan J. Watson

University of Seoul

University of Seoul Graduate Course 2019

Introduction

- https://git.io/ml2019-11
- Today we will look at a dimensional reduction technique call Principal Components Analysis
- This will be good for visualization and to create reduced datasets that can be fit quicker/easier with less resources

Large Dimensions

- High dimensional behaviour is hard to visualize
- As you increase the number of dimensions, the ratio of the volume of a hypersphere to a hypercube tends to 0
 - This mean there is no "center" to high dimensional objects, all points exist on the border
- This has non-intuitive consequences, e.g., the expected value of the difference between the largest and smallest distance between two randomly picked points tends to zero as the dimensions increase

The Curse of Dimensionality

- In ML, each of our "features" is a dimension
- We think naively collecting more features will result in better discrimination
- But in fact, it can lead to worse results due to the
 - We're usually define some kind of "distance" between datapoints when we are building models
 - But with too many dimensions, the distance between points stops being useful, so our algorithms are unable to be trained
 - In high dimensions, the volume becomes so massive, its impossible to get enough datapoints to fill out space
 - The "curse of dimensionality"

In Machine Learning

- The assumption was that we're evenly distributed over the unit hypercube
- The whole point of classification in machine learning is that different categories distribute differently
- Quite often, the data tends to clump in lower dimensional subspaces
- We want to reduce the number of dimensions while retaining variance
 - I.e. we will need feature selection
- PCA is one way to automatically reduce the number of data dimensions in a "sensible" manner

Principal Component Analysis

- In PCA we search for the axis along which the data has the maximum variance
 - This becomes our first axis
- Then, project out that axis, flatten the data onto a hyperplane where the variance due to the first axis is gone (the plane perp. to the axis)
- Now, find the next axis in the (n-1) space with the highest variance
- Keep going until we have a fully orthogonal set of basis vectors
- We can instead stop this procedure after d dimensions
 - Then we have a reduced dimensional dataset

Example Iris Dataset

- Using only the sepal features (length and width, show left), PCA in 2d transforms the data along the diagonal axis (right)
 - In 2D, once we have first vector, second automatically found, since we end up with an orthogonal basis after PCA

Example Iris continued

- Using all the features (bot. right), you can see that mostly the same axis is found, but with some additional variation
 - The covariance of the full datasets removed, not necessarily each individual component to be classified

MNIST after PCA

```
from sklearn.datasets import fetch_openml
from sklearn.decomposition import PCA
import matplotlib.cm as cm
import numpy as np
X, y = fetch_openml('mnist_784', version=1, 4
                    return_X_v=True)
X = X / 255.
pca = PCA(n_components=2)
pca.fit(X)
x = pca.transform(X)
# y is stored as a string
y = y.astype(np.int)
for n in range(10):
    xx = x[y==n]
```

plt.scatter(xx[:,0], xx[:,1],

leg = plt.legend(markerscale=25)

• Two-component PCA on the MNIST digit dataset

s=0.05, label=str(n))

• A 28x28 grayscale image is just a 784-dim. hypercube

MNIST PCA Components

```
pca=PCA(n_components=25)
pca.fit(X)
for i in range(25):
    plt.subplot(5, 5, (i+1))
    plt.imshow(pca.components_[i].reshape(28,28),
               cmap='grav r')
    plt.gca().xaxis.set visible(False)
    plt.gca().vaxis.set_visible(False)
print(np.cumsum(pca.explained_variance_ratio_[:25]))
[0.09746116_0.16901561_0.23051091_0.28454476_0.3334341
0.37648637 0.40926898 0.4381654
                                  0.46574904 0.48917044
0.51023733 0.53061286 0.5476835
                                  0.5646237
                                             0.58045752
 0.59532097 0.60851455 0.62130469 0.6331771
0.65536679 0.66546472 0.67505596 0.68415214 0.69298103
```

- A component is just a vector in the 784D space, so we can plot them as 28x28 images (bearing in mind that here they can go negative)
- First two images in the top row are the components of the prev. page
- We can see what fraction of the variance of the dataset is explained by each component, and take the cumulative sum (np.cumsum) to see the fraction explained by the first N components

As a Compression Technique

- We can use PCA as a rudimentary "compression" technique
- Fit PCA and transform the image, but only keep N components
- Can reconstruct by summing up the components (of course, this also requires you the keep N images, one showing each component)
- Here, we see the first image of MNIST reconstructed with progressively more and more components

Technical Points

- If we represent our data as rows in a matrix X, then PCA is equivalent to finding basis which diagonalizes X^TX
- X^TX is essentially the covariance, so we also have:
 - The principal components are the eigenvectors of the covariance matrix
 - The prinicpal components are a decorrelated basis for our measurement
- The principal components can also be obtained by SVD decomposition
 - $X = USV^T$ where S is diagonal, values gives the "strength" of the decomposition, reducing S to the top n gives the n-dim PCA

```
pca=PCA(2)
pca.fit(x)
X_centered = x - x.mean(axis=0)
U, s, Vt = np.linalg.svd(X_centered.astype(np.float))
c1 = Vt.T[:, 0]
c2 = Vt.T[:, 1]
print("Via SVD:", c1, '\n', c2, '\nVia sklearn PCA:', pca.components_)
Via SVD: [ 0.36158968 -0.08226889    0.85657211    0.35884393]
[-0.65653988 -0.72971237    0.1757674    0.07470647]
Via sklearn PCA: [[ 0.36158968 -0.08226889    0.85657211    0.35884393]
[ 0.65653988    0.72971237 -0.1757674    -0.07470647]]
```

Exercises