CENG424

Logic for Computer Science Assignment 3

Zeynep Sıla Egül e2380335@ceng.metu.edu.tr

Question 1

1.

 $\forall u (know(i,\!u) \iff eq(u,\!nothing))$

Object constants:

i means the person that says the given sentence, nothing means nothing.

Relation constants:

know(x,y) means x know(s) y, in this case i know nothing.

eq(x,y) means x is equal to y, in this case u is nothing.

2.

 $\forall u(period(u) \Longrightarrow (mark(u) \land (indicate(u,abbreviation) \lor indicate(u,endofsentence)))) \\ Object \ constants:$

abbrevation respesents an abbreviation.

endofsentence represents end of a sentence.

Relation constants:

period(x) means x is a period, in this case u is a period.

mark(x) means x is a punctuation mark, in this case u is a punctuation mark.

indicate(x,y) means x indicate(s) y, in this case u indicates an abbreviation.

Question 2

1.	$\forall x (P(x) \lor Q(x))$	Premise
2.	$\exists x \neg Q(x)$	Premise
9	$\forall m(D(m) \longrightarrow D(m))$	Dromico

3. $\forall x (R(x) \Longrightarrow \neg P(x))$ Premise

4. $P(a) \lor Q(a)$ Universal Instantiation: 1 5. $\neg Q(a)$ Existential Instantiation: 2 6. $R(a) \Rightarrow \neg P(a)$ Universal Instantiation: 3

7. P(a) Disjunction Elimination: 4,5

8. $\neg R(a)$ Modus Tolens: 6,7

9. $\exists y \neg R(y)$ Existential Introduction

Question 3

Set of premises:

P(a, b, 0.6)

P(a, c, 0.4)

P(b, d, 0.3)

P(b, e, 0.5)

P(b, f, 0.2)

P(c, q, 0.9)

P(c, h, 0.1)

P(e, i, 0.9)

P(e, j, 0.1)

The proof using natural deduction:

First, start by choosing path $a\rightarrow b$ where P(a, b, 0.6).

Possible paths from here are: $a \rightarrow b \rightarrow d$, $a \rightarrow b \rightarrow e$, and $a \rightarrow b \rightarrow f$.

 $a \rightarrow b \rightarrow d$: P(a, d, 0.18) by 0.6×0.3 and this path ends at node d, failing to reach node j.

 $a\rightarrow b\rightarrow e$: P(a,e,0.3) by 0.6×0.5 and there are two more possible paths from this node which are $a\rightarrow b\rightarrow e\rightarrow i$ and $a\rightarrow b\rightarrow e\rightarrow j$.

If node i is chosen after node e,

 $a \rightarrow b \rightarrow e \rightarrow i$: P(a, i, 0.27) by $(0.6 \times 0.5) \times 0.9$ and this path ends at node i, failing to reach node j.

If node i is chosen after node e,

 $a \rightarrow b \rightarrow e \rightarrow j$: P(a, j, 0.03) by $(0.6 \times 0.5) \times 0.1$ and this path ends at node j, which is the desired end node.

 $a\rightarrow b\rightarrow f$: P(a, f, 0.12) by 0.6×0.2 and this path ends at node f, failing to reach j.

After these computations, choose path $a\rightarrow c$ where P(a, c, 0.4).

Possible paths from here are: $a \rightarrow c \rightarrow g$, $a \rightarrow c \rightarrow h$.

a \rightarrow c \rightarrow g: P(a, g, 0.36) by 0.4×0.9 and this path ends at node g, failing to reach node j.

 $a \rightarrow c \rightarrow h$: P(a, h, 0.04) by 0.4×0.1 and this path ends at node h, failing to reach node j.

As a result of all possible path computations that starts from a, there is only one path that ends at node j which is $a \rightarrow b \rightarrow e \rightarrow j$. Thus, the probability of the computation ending at node j is p = 0.03 from P(a, j, 0.03).