Rotman

INTRO TO R PROGRAMMING

R Tutorial (RSM358) - Part 2 / Session 4

Plan for Today – Data Analysis with R

A Typical data analysis workflow

- Choice of R packages (many choices to do the same task)
 - Data manipulation
 - Modeling

An example: regression analysis

Data Science/Analysis Workflow

Use this workflow to organize your thoughts and code

https://r4ds.had.co.nz/introduction.html

Using R packages/libraries

• Install an R library (only need to install a library once)

```
install.packages("library_name")
```

Load an R library (before you use a library)

```
library(library_name)
```

- <u>CRAN</u> (The Comprehensive R Archive Network)
 - CRAN Task Views

Choice of Packages

- Data manipulation (in particular, data frame; three popular choices)
 - Option 1: <u>Base R</u> (data frame)
 - Been there since the early days of R
 - Option 2: <u>Tidyverse</u> eco-system (tibble: data frame (95%) + extra)
 - Elegant and consistent design across the eco-system -> easy to use
 - Most R users' choice these days
 - Option 3: <u>Data table package</u> (data.table: data frame (95%) + extra)
 - Fast for even for huge dataset!
- Modeling
 - People converge to the same choice for simple models (e.g., lm(), glm(), etc.)
 - Many choices for advanced modeling (e.g., <u>time series</u>, deep learning, etc.)

An Example: Housing Price & Clean Air

- Manipulate data
 - Load data
 - Create new columns
 - Filter columns and rows
- Build models
 - Multiple linear regressions
- Report and graph
 - Plot a few graphs
 - Report regression results

Obs: 506

price median housing price, \$
 crime crimes committed per capita

3. **nox** nitrous oxide, parts per 100 mill.

4. rooms avg number of rooms per house

5. dist weighted dist. to 5 employ centers

6. radial accessibiliy index to radial hghwys

7. proptax property tax per \$1000

8. stratio average student-teacher ratio

9. lowstat % of people 'lower status'

R Packages: Many choices, which one to use

- Often, a task can be achieved using functions in different libraries
 - R is open and extensible!

- Example: load a csv file to a data frame/tibble/data table
 - Use read.csv() function from the utils library in Base R

- Use <u>read_csv()</u> function from the <u>readr</u> library
- Use vroom library
- Use fread() function from the data.table library

R Packages: Many choices, which one to use

- Start with the one most people use
- Choose one that is well maintained
 - check document, github, etc. for last update date
 - packages maintained by companies (e.g., RStudio Co.) or academic teams
- Choose one that suits your task
- For RSM358
 - Follow the examples in the R lab sections of your textbook (mostly using base R)
 - Follow Prof. Webb's notebook examples

Choice 1: the Regression Example

- Manipulate data (Base R)
 - Load data (<u>read.csv()</u>)
 - Create new columns (base R data frame manipulation)
 - Filter columns and rows (base R data frame manipulation)
- Build models
 - Multiple regression (<u>lm()</u> from stats library in R base)
- Report and graph
 - Base R plot system, <u>plot()</u>
 - Base R <u>summary()</u> function

Choice 2: the Regression Example

- Manipulate data (<u>tidyverse</u> eco-system)
 - Load data (<u>read csv()</u> from the <u>readr</u>)
 - Create new columns (<u>mutate()</u> from <u>dplyr</u>)
 - Filter columns and rows (<u>select()</u> and <u>filter()</u> from <u>dplyr</u>)
- Build models
 - Multiple regression (<u>lm()</u> from stats library in R base)
- Report and graph
 - Graph using ggplot2 and some of its extensions
 - Build a publication-ready table (<u>huxreg()</u> from <u>huxtable</u> library)

Load a CSV file

• read csv() from the readr

```
read_csv(file)
```

```
e.g. hprice <- read_csv("hprice.csv")</pre>
```

- More about <u>read csv()</u>
- More about <u>readr</u>

Data Manipulation: dplyr basics

• Filter observations (rows): filter()

```
filter(my_dataframe, condition1, ...)
e.g., hprice_reg <- filter(hprice, price > 20000)
```

• Create new variables: mutate()

```
mutate(my_dataframe, new_var1 = expression1, ...)
e.g., hprice_reg <- mutate(hprice_reg, lprice = log(price))</pre>
```

• Select variables (columns): select()

```
select(my_dataframe, var1, ...)
e.g., hprice_reg <- select(hprice_reg, lprice, rooms)</pre>
```

Ref. Base R vs dplyr data frame manipulation.

Data Manipulation: Data Pipe (%>%)

```
hprice reg <- filter(hprice, price > 20000)
hprice reg <- mutate(hprice reg, lprice = log(price))</pre>
hprice_reg <- select(hprice reg, lprice, rooms)</pre>
hprice reg <- hprice %>%
  filter(price > 20000) %>%
  mutate(lprice = log(price)) %>%
  select(lprice, rooms)
```

Regression

• Multiple regressions: <u>lm()</u> from stats library in base R

my_model <- lm(y
$$\sim$$
 x1 + x2, data)
$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon_i$$

my_model <- lm(y ~ x1 + x2 + I(x1 * x2), data)
$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon_i$$

Regression result summary: summary()

Ref. https://faculty.chicagobooth.edu/richard.hahn/teaching/FormulaNotation.pdf

Report

- Summary table
 - <u>Summary for Im()</u>: summary(my_model)
- publication-ready table: huxreg() from huxtable library

```
huxtable(my_model1, my_model2, ...)
```

Ref. https://hughjonesd.github.io/huxtable/huxreg.html