	Mars Rover	Team	Cornell Mars	ITU Rover	UWRT	Ryerson Rams	SJSU	Team
	Design Team	Continuum	Rover	Team	Robotics	Robotics (R3)	Robotics	Anveshak
					Team			
	Missouri	University of	Cornell	Istanbul	University of	Ryerson	San Jose State	Indian Institute
School Name	University of	Wroclaw,	University, USA	Technical	Waterloo,	University,	University, USA	of Technology,
School Name	Science and	Poland		University,	Canada	Canada		Madras
	Technology			Turkey				
Final Score (Rank)	403.4 (1)	336.3 (2)	264.1 (11)	243.1 (13)	225.7 (15)	190.9 (21)	164.3 (26)	151.4 (29)
	Raspberry Pi,	A Banana Pi,	A Intel NUC	A Raspberry Pi	A FitPC	A Jetson TX1	Odroid XU4,	A Thinkpad
Computers on	TIVA-C	3x Raspberry Pi,	N82E16856102053,	3 with 64gb SD	miniature	with 32 GB SD	and Teensy 3.2	T460 laptop
rover	Connected,	1x Jetson	and 8x PIC32 MX530F128H	card running	fanless PC	card, Ubuntu	microcontroller	running Ubuntu
	MSP-432,	(optionally),	microcontroller	Ubuntu 16.04,		16.04, and 2x		14.04, and
ت	Launchpad-	multiple STM		STM32F103		Arduino Mega		Arduino
	C2000	microcontrollers		microcontrollers		microcontrollers		microcontrollers
lovetieke	Xbox Controller,	Logitech	Logitech Gamepad	-	2x Logitech	Xbox 360	Logitech Extreme	2x Logitech F310
Joysticks	Logitech Extreme 3D Pro	Gamepads	F310, Thrustmaster VG	Extreme 3D Pro, one for driving	joysticks for the arm, and an Xbox	Controller for drive,	3D Pro Joystick	Gamepads, one for telemetry
3	55		T16000M FCS	and one for the	controller for	Logitech Extreme		control and one
			Joystick	arm	driving	3D Pro for arm		for auger/arm
	Lorex, Sony	Standard	Logitech HD	5 IP cameras used	2x Pointgrey	ZED depth	CCD 700TVL	SJ-CAM, IP-Camera,
6	EFFIO CCD	Raspberry Pi	Laptop	for security and an	cameras, 1x	camera,	Composite	and a Logitech webcam. Cameras
Cameras	Superhead	cameras and	Webcam C615,	Xbox 360 Kinect v1 for image	USB Camera	2x BL170	video cameras	were interfaced using
0		two with wide	x264 video	processing and		degree fisheye	(RunCam Swift	the "motion" Linux package, though it
		angle lenses	encoding	fake laser		cameras	2.0)	lags and quality was
	MTI/ 2220	Libian CDC	LICCIahalast	Dadialiak MON	Minunaturin	Liny FM Carina	LIDIau CDC 7	not great ROS All Sensors
GPS ♀	MTK 3339	Ublox GPS	USGlobalsat BU-353-S4	Radiolink M8N	Microstrain	Linx FM Series GPS Receiver	UBlox GPS 7	Android App
•	LSM9DS1	Tried multiple	SparkFun SEN-	GY-80	Microstrain	MPU-9250	BNO055	ROS All Sensors
IMU •	231413231	units, nothing	13762, chip:	G. 00	Wilerostrain	module, couldn't	5110033	Android App on
		really worked	MPU-9250			get it working		Moto Play G4 phone
	Energia, TI	ROS kinetic with	ROS packages	ROS Kinetic with	ROS Indigo with	ROS Kinetic with	Custom	We used ROS
	motorware,	joint_state_	control-toolbox, dwa- local-planner, gazebo-	packages	packages	packages rqt_image_view,	framework	Kinetic and Indigo
Software	OpenCV	controller, rviz, rqt, robot_localization,	ros-pkgs, gpsd-client,	depthimagetolasers can, huksy_control,	socket_canbridge, rosbridge_server,	rtabmap, move_base,	RoverCore-S,	with packages joy, rosserial, amcl, and
Packages	·	and more	image-transport-	move_base,	teleop_twist_joy,	mapviz, joy,	RoverCore-F,	robot_localization
>_			plugins, image-rotate, pid, ros-controllers,	actionlib, cv_bridge,	and more	rtimulib_ros, zed_ros_wrapper,	RoverCore-MC,	
/_			spacenav-node, usb-	image_transport		rgbd_odometry,	built in house	
			cam, rplidar-ros, and gmapping	and more		usb_cam, and nmea_navsat_driver		
	OpenCV,	Implemented on our	ROS move_base	ROS move_base and	move_base and	ZED depth camera,	GPS and drive	We had plans of
	Python	own using GPS and distance to the goal. A		as a backup waypoint navigation using yaw	robot_	rtabmap, move_base. We first teleoperate to	system, no	using AMCL and
Autonomous	•	control PID with some		and gps. Also, a C++	localization	build a SLAM map and	need for	sensor fusion by
System		constraints and logic		OpenCV tennis ball		find the tennis ball by	anything else	making use of the
#		to back up if necessary to leads us		finding algorithm on top of ROS. We could		human eye, then we go back to the start		existing packages in ROS, but ran
-		to a given point. Goals		find and navigate to		and set an		out of time.
		are set when previous one was reached.		the tennis ball from 8m		autonomous goal in the SLAM map.		
Arm Cantus!	Custom in solution in	Tried Movelt	Some experiments	Wrote our own	Wrote our own	We had plans to use	We wrote	Open-loop
Arm Control	Energia. interfaced with custom control	but	with Movelt inverse	inverse kinematics	PWM library for	Movelt but due to lack of testing time used	firmware into our	control with
Software	software RED (Rover	implemented	kinematics but used forward kinematics	and simulation in	arm motors	velocity control for	framework for	commands sent
Q	Engagement Display)	our own	at competition	Unity using C#		each joint mapped to	our Teensy 3.2	to an Arduino
	at base station					a joystick	MCUs	

	Mars Rover	Team	Cornell	ITU Rover	UWRT	Ryerson Rams	SJSU	Team
	Design Team	Continuum	Mars Rover	Team	Robotics	Robotics (R3)	Robotics	Anveshak
					Team			
School Name	Missouri University of Science and Technology	University of Wroclaw, Poland	Cornell University, USA	Istanbul Technical University, Turkey	University of Waterloo, Canada	Ryerson University, Canada	San Jose State University, USA	Indian Institute of Technology, Madras
Final Score (Rank)	403.4 (1)	336.3 (2)	264.1 (11)	243.1 (13)	225.7 (15)	190.9 (21)	164.3 (26)	151.4 (29)
Wireless radios and antennas	Ubiquiti 900MHz, Cloverleaf MIMO antenna on rover and dual polarity yagi at base station	Ubiquiti Bullet	Base station antenna was the Ubiquiti AM-2G15- 120, rover antenna was the Super Power Supply B0007ZEK7S, rover and base transceiver was the Ubiquiti Rocket M2	Microhard pDDL2450 could achieve 1km in non-line of sight with 5 dBi omnidirectional antennas. We also backed up comms except the cameras and the TCP link via a RF link with 433 MHz LoRa module.	2.4 GHz and 900 MHz antennas	Ubiquiti M2 Rockets 2.4GHz 802.11n MIMO paired with TP- Link 2408CL omnidirectional antennas	Ubiquiti Rockets M900 and the directional Ubiquiti Loco M900	TP-Link WA 5210 2.4GHz with included directional antenna
Battery System	LGChem18650HE4 Lithium Ion, 80 set up in custom pack, 10 set in parallel with 8 of those sets in series	Custom LiPo modules	1x MaxAmps 7S LIPO Battery	Tattu 6 cell LiPo 22Ah	1x Tattu 6 cell 22Ah Tattu LiPo	Panasonic NCR18650BD 3.7V 3200mAh Li- Ion 4 batteries in series to achieve 14.8V and 6 in parallel to achieve a 19.2Ah	3x Zippy LiPos 7S with a power board we designed	3x 24V LiPo batteries for drive, 2x 12V LiPo batteries for auger/arm
Wired Communication Protocols	I2C, RS232, RoveComm (Custom UDP)	CAN built-into the bananapi with two networks, one for driving wheels, another for the manipulator	CAN bus for interboard, UART for Intel NUC to microcontroller s	I2C for sensors, USB for Raspberry Pi to microcontroller s	CAN for most things, USB for drive motor controller, I2C/SPI for sensors	I2C sensors, USB for cameras, USB serial for Arduinos, UART for GPS, PWM for motor controllers	I2C, UART, Bluetooth (RFCOMM), SPI, PWM, PPM	Serial from the main computer to the various Arduinos
Sensor Fusion	Kalman filtering and custom filtering	robot_ localization	robot_ localization	robot_ localization, custom EKF backup in microcontrollers	robot_ localization	robot_ localization, didn't end up using due to IMU issues	None	None
Team Strengths	Manufacturing capabilities and access to programs that allow us to have many custom components on our rover.	Drive and manipulator controls. Also, I think being just 10 people ups our motivation a lot. Everyone has important work to do	Modularity	Our wireless communication modules. We never lost control or communication to our rover at the competition.	A lot of different experiences from team members because of our coop program.	Tmux for terminal organization, keeping things simple, team dedication, and keeping it fun.	The absolute passion from each and every member of our team as well as our team manage system.	Dedicated team, always ready to learn new things, not shy of challenges. We made great strides in learning ROS in a matter of 3 months.
Improvements for next year	Fix bugs and flaws we found while at URC 2017 and push the boundaries of innovation as we build a new rover.	More field tests of the whole Rover.	Ease of use: easy way to launch and monitor the entire system. Live sensor diagnostics and robust CV.	I really want to add machine learning for finding the tennis ball from further.	Improve our project management.	Clearly labelled wires and pin outs, avoid USB hubs, and a geologist team member.	Secure bigger budget, start earlier, and update our technologies.	More development time, exploit ROS even more, test things more often, more collaboration with other teams.
Source code	github.com/ mst-mrdt	Inverse kinematics only gist.github.com/ danielsnider/5181ca50 cef0ec8fdea5c11279a 9fdbc	https://drive.google. com/open?id=0B1r9 QYTd8YNrWXNjNm dtcGlwMjQ	github.com/ itu-rover	github.com/ uwrobotics	github.com/ teamr3/ URC	github.com/ kammce/ RoverCore-S	github.com/ Team-Anveshak/ rover-control