On the Statistical Consistency of Algorithms for Binary Classification under Class Imbalance

Aditya K. Menon¹, Harikrishna Narasimhan², Shivani Agarwal² and Sanjay Chawla³

¹University of California, San Diego
 ²Indian Institute of Science, Bangalore
 ³University of Sydney and NICTA, Sydney

- Medical Diagnosis
- Text Retrieval
- Credit Risk Minimization
- Fraud Detection
- •

- Medical Diagnosis
- Text Retrieval
- Credit Risk Minimization
- Fraud Detection
-

Standard misclassification error ill-suited!

Measure	Definition	References
A-Mean (AM)	(TPR + TNR)/2	Chan & Stolfo (1998);
		Powers et al. (2005) ;
		Gu et al. (2009) ;
		KDD Cup 2001 challenge
G-Mean (GM)	$\sqrt{\mathrm{TPR}\cdot\mathrm{TNR}}$	Kubat & Matwin (1997);
		Daskalaki et al. (2006)
H-Mean (HM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$	Kennedy et al. (2009)
Q-Mean (QM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$ $1 - ((\text{FPR})^2 + (\text{FNR})^2)/2$	Lawrence et al. (1998)
F_1	$2/(\frac{1}{\text{Prec}} + \frac{1}{\text{TPR}})$	Lewis & Gale (1994)
	1100 1110	Gu et al. (2009)
G-TP/PR	$\sqrt{\text{TPR} \cdot \text{Prec}}$	Daskalaki et al. (2006)
AUC-ROC	Area under ROC curve	Ling et al. (1998)
AUC-PR	Area under precision-recall curve	Davis & Goadrich (2006)
		Liu & Chawla (2011)

Measure	Definition	References
A-Mean (AM)	(TPR + TNR)/2	Chan & Stolfo (1998);
		Powers et al. (2005) ;
		Gu et al. (2009) ;
		KDD Cup 2001 challenge
G-Mean (GM)	$\sqrt{\text{TPR} \cdot \text{TNR}}$	Kubat & Matwin (1997);
		Daskalaki et al. (2006)
H-Mean (HM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$	Kennedy et al. (2009)
Q-Mean (QM)	$2/(\frac{1}{\text{TPR}} + \frac{1}{\text{TNR}})$ $1 - ((\text{FPR})^2 + (\text{FNR})^2)/2$	Lawrence et al. (1998)
F_1	$2/(\frac{1}{\text{Prec}} + \frac{1}{\text{TPR}})$	Lewis & Gale (1994)
	1110	Gu et al. (2009)
G-TP/PR	$\sqrt{\text{TPR} \cdot \text{Prec}}$	Daskalaki et al. (2006)
AUC-ROC	Area under ROC curve	Ling et al. (1998)
AUC-PR	Area under precision-recall curve	Davis & Goadrich (2006)
		Liu & Chawla (2011)

Algorithmic Approaches

- Sampling: (Japkowicz & Stephen, 2002; Chawla et al., 2002, 2003; Van Hulse et al., 2007; He & Garcia, 2009)
 - Over-sample the minority class
 - Under-sample the majority class
 - SMOTE
 - **—** ...
- Plug-in classifier (Elkan, 2001)
- Balanced ERM (Liu & Chawla, 2011; Wallace et al., 2011)

Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

- Learn a class probability estimator from training data *S*.
- Apply a suitable empirical threshold on the class probability estimate.

Two Families of Algorithms

Algorithm 1

Plug-in with Empirical Threshold

- Learn a class probability estimator from training data S.
- Apply a suitable empirical threshold on the class probability estimate:

Algorithm 2 Empirically Balanced ERM

- Learn a binary classifier by minimizing a balanced surrogate loss.
- Balancing terms estimated from training data.

Main Consistency Results

AM-regret

$$\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h: \mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$$

Main Consistency Results

AM-regret

$$\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h:\mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$$

AM-consistency

$$\operatorname{regret}_{D}^{\operatorname{AM}}[h_{S}] \xrightarrow{P} 0$$

Main Consistency Results

AM-regret

$$\operatorname{regret}_{D}^{\operatorname{AM}}[h] = \sup_{h:\mathcal{X} \to \{\pm 1\}} \operatorname{AM}_{D}[h] - \operatorname{AM}_{D}[h]$$

AM-consistency

$$\operatorname{regret}_{D}^{\operatorname{AM}}[h_{S}] \xrightarrow{P} 0$$

Main Results: Under mild conditions on the underlying distribution and under certain assumptions on the surrogate loss function minimized, Algorithms 1 and 2 are AM-consistent.

Key Ingredients in Proofs

Balanced losses (Kotlowski et al, 2011)

$$AM_D[h] = 1 - er_D^{0-1,bal}[h]$$

Decomposition lemma:

$$\operatorname{regret}_{D}^{0\text{-}1,(\widehat{p}_{S})}[h_{S}] \xrightarrow{P} 0 \implies \operatorname{regret}_{D}^{\operatorname{AM}}[h_{S}] \xrightarrow{P} 0$$

- Surrogate regret bounds for cost-sensitive classification (Scott, 2012)
- Proper and strongly proper losses (Reid and Williamson, 2009, 2010; Agarwal, 2013)
- Surrogate regret bounds for standard binary classification (Zhang, 2004; Bartlett et al, 2006)

Experiments

Experiments

AM performance of Plug-in and Balanced ERM comparable to the that of the sampling techniques

Experiments

AM performance of Plug-in and Balanced ERM comparable to the that of the sampling techniques

