

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Eur pâisches Patentamt
Eur pean Patent Office
Office européen des brevets

(11) Publication number:

0 069 971
A1

US PTO
31355 10/767706

012904

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 82106030.8

(51) Int. Cl. 3: H 02 M 1/00

(22) Date of filing: 08.07.82

H 02 M 7/46, H 01 L 25/08

(30) Priority: 10.07.81 JP 107100/81

(71) Applicant: Hitachi, Ltd.
5-1, Marunouchi 1-chome
Chiyoda-ku Tokyo 100(JP)

(43) Date of publication of application:
19.01.83 Bulletin 83/3

(72) Inventor: Yamada, Yukio
2400-4, Tsuda
Katsuta-shi(JP)

(84) Designated Contracting States:
DE FR

(72) Inventor: Itahana, Hiroshi
12-2, Matsudocho-1-chome
Katsuta-shi(JP)

(72) Inventor: Kuwana, Hisashi
21-1, Ishikawacho
Katsuta-shi(JP)

(74) Representative: Strehl, Peter et al.
Strehl, Schübel-Hopf, Schulz Patentanwälte
Widenmayerstrasse 17
D-8000 München 22(DE)

(54) Gate turn-off thyristor stack.

(57) A GTO thyristor stack comprises a pair of GTO thyristors (31, 32; 41, 42) in parallel connection and a pair of diodes (34, 35; 44, 45) in anti-parallel connection therewith. The elements in one of the GTO thyristor pair and the diode pair are located in the middle of the stack structure and sandwiched by the elements in the other with all the elements stacked in electrical connection. The stack structure is clamped by a pair of clamer members (62, 63).

F I G. 3

GATE TURN-OFF THYRISTOR STACK

1 This invention relates to an improvement in
a gate turn-off (hereinafter referred to as GTO) thyristor
stack comprised of GTO thyristors in parallel connection.

Recently, the GTO thyristor having self-
5 turn off capability has been gaining its capacity, and
its application to power conversion devices such as
converters, inverters, choppers or cyclo-converters
has been extending. However, the GTO thyristor has
inherent difficulties in increasing its current capacity
10 and it is general to use two GTO thyristors in parallel
connection.

Another problem encountered in a circuit
utilizing GTO thyristors is that wiring inductance must
be minimized to assure self-turn off function of the GTO
15 thyristor. As the capacity increases, so this problem
becomes difficult to solve.

This accounts for the fact that when the
GTO thyristors are used, for example, to construct a
PWM (pulse width modulation) inverter adapted to drive
20 an induction motor, the distance between these GTO
thyristors in parallel connection and circuit parts
associated therewith must be so designed as to be
minimized.

It is therefore an object of this invention
25 to provide a GTO thyristor stack capable of producing

- 2 -

1 in size two GTO thyristor circuits in parallel connection
each having a GTO thyristor and a diode in anti-parallel
connection therewith, thereby minimizing wiring induct-
ance of the circuits.

5 According to this invention, there is provided
a gate turn-off thyristor stack comprising a pair of
flat type gate turn-off thyristor elements to be connected
in parallel with each other and a pair of flat type
diode elements to be connected in direct parallel with
10 the respective gate turn-off thyristor elements, wherein
all the elements are stacked with electrical connection
between the adjacent elements so that the elements in
one of the gate turn-off thyristor element pair and
the diode element pair are located opposite to each
15 other at the middle of the stack structure and are
sandwiched by the associated elements in the other pair
which are provided on both sides of the stack structure,
respectively, and the resulting stack structure is
clamped by a pair of clamper members.

20 With this construction, the GTO thyristor
elements and the associated diode elements can be
stacked without any intervening insulating members.
As a result, the wiring length can be minimized to
provide a small size of GTO thyristor stack that can
25 minimize the wiring inductance between a GTO thyristor
and an associated diode. Further, symmetrical balance
of circuit impedance is provided.

The preferred embodiments of this invention

1 will now be described in conjunction with the accompanying drawings, in which:

Fig. 1 is a schematic circuit diagram of a three-phase GTO thyristor inverter to which the invention can preferably be applied;

Fig. 2 is a circuit diagram showing a connection of a one-phase component of the inverter of Fig. 1;

Fig. 3 is a plan view of a GTO thyristor stack incorporating the Fig. 2 component in accordance with one embodiment of the invention;

Fig. 4 is an electrical connection diagram of the stack of Fig. 3;

Fig. 5 is a fragmentary electrical connection diagram similar to Fig. 4 but for explaining a GTO thyristor stack in accordance with a further embodiment of the invention;

Fig. 6 is a circuit diagram of another connection of the one-phase component of the inverter of Fig. 1;

Fig. 7 is a plan view of a GTO thyristor stack incorporating the Fig. 6 component in accordance with a still further embodiment of the invention; and

Fig. 8 is an electrical connection diagram of the stack of Fig. 7.

The invention may preferably be applied to a three-phase GTO thyristor inverter as schematically shown in Fig. 1. Connected between terminals 1 and 2 of a DC power source are arms 3 to 8 each having,

1 as principal component, GTO thyristor circuits in parallel connection. The arms are termed U_1 and U_2 , V_1 and V_2 , and W_1 and W_2 corresponding to U, V and W phases at a three-phase AC terminal 9.

5 Fig. 2 shows a circuit construction of a one-phase component of the inverter. A circuit of the U_1 arm 3, for example, comprises GTO thyristors 31 and 32 connected in parallel through a current balancer 33. The GTO thyristors 31 and 32 are respectively connected
10 with diodes 34 and 35 in anti-parallel relationship and snubber capacitors 36 and 37 in parallel relationship. As well known in the art, the connection of the diodes 34 and 35 to the GTO thyristors is direct one whereas the connection of the snubber capacitors 36 and 37 to the
15 GTO thyristors is indirect one in which a parallel connection of a diode and a resistor is usually inserted. The parallel GTO thyristor circuits are connected in series with a reactor 38 which is connected in parallel with a diode 39 and in back-to-back relationship with
20 each of the GTO thyristors 31 and 32. The U_2 arm 4 is the same construction as the U_1 arm 3 excepting that the position of a parallel connection of a reactor 48 and a diode 49 is reversed. Although not illustrated, the components corresponding to V and W phases have each a
25 similar circuit construction.

Fig. 3 shows one embodiment of a GTO thyristor stack in accordance with the invention, with the same elements as those in Fig. 2 designated by the same

1 reference numerals. As shown, the stack also comprises
insulating plates 50 to 53, electrically conductive
heat sinks 54 to 59, a compression spring 60, a steel
ball 61, clamps 62 and 63, and connecting conductors
5 64 to 77.

Taking the U_1 arm 3, for instance, a pair of
diodes 34 and 35 in anti-parallel connection relationship
with the GTO thyristors 31 and 32 are stacked in the
middle of the stack structure with the connecting conductor
10 73 interposed. The GTO thyristors 31 and 32 are stacked
on the opposite sides of the paired diodes 34 and 35
through the intervening heat sinks 57 and 58. Thus,
the diodes 34 and 35 are sandwiched by the GTO thyristors
31 and 32. The GTO thyristors 31 and 32 have outer sides
15 electrically connected to the connecting conductors 70
and 75. These conductors are connected to the conductor
73 electrically connected in common to the diodes 34 and
35, thus constituting a point e in Fig. 2. On the
outside of the conductor 75 are stacked the insulating
20 plate 52, conductor 76, diode 39, heat sink 59 and
conductor 77 in succession.

The U_2 arm 4 has the same stacking as the U_1
arm 3 with the intervening insulating plate 51, with the
only exception of elimination of an insulating plate
25 between the conductor 66 and diode 49.

Fig. 4 shows the electrical connection of
the Fig. 3 stack. Points a to i in Fig. 4 respectively
correspond to those in Figs. 2 and 3.

1 In the Fig. 3 embodiment, the stacking of
the paired GTO thyristors in parallel connection and
the diode associated therewith in anti-parallel relation-
ship does not require any insulating members. Accordingly,
5 the number of lead conductors acting as terminals can
be reduced as compared with a structure requiring insulat-
ing members, and the heat sink can belong in common to
adjacent elements. Thus, the stack structure can be
made compact, whereby the wiring length can be decreased
10 to minimize the wiring inductance and, at the same time,
the balance of impedance of electrical conductor wiring
between two arms each having a GTO thyristor and a diode
associated can be gained to get balance of current.
Also, since the central diodes are sandwiched by two
15 GTO thyristors, the length of wirings to the snubber
capacitors 36, 37 and 46, 47 of a relatively large size
can be reduced as shown in Fig. 3. As previously
described, the capacitor is usually connected to the GTO
thyristor via a parallel connection of a diode and a
20 resistor not shown in this figure. As a result, even
if the stack structure is combined with the capacitors
of large capacity in consideration of switching speed,
that is, di/dt of the GTO thyristors and the heat sinks
of small size that are cooled with freon, the wiring
25 inductance can be minimized without increasing the length
of wirings between the GTO thyristors and the capacitors.

Generally, the GTO thyristor element is
constructed such that its thermal resistance is lower

1 on the anod A side than on the cathode K side so that
most of generat d heat is dissipated through the anode
A. The anti-parallel diode, on the other hand, has
usually larger tolerance in terms of current capacity
5 than the GTO thyristor. In other words, the GTO thyristor
typically has a smaller current capacity than the
packaged diode of the same size and hence it is satis-
fied with cooling of one side surface. In view of the
above, the heat sink having one side surface in contact
10 with the anode of the GTO thyristor and the other side
surface in contact with the diode as shown in Figs. 3
and 4 succeeds in reducing itself in number.

Fig. 5 shows an electrical connection of
a further embodiment of a GTO thyristor stack in accord-
15 ance with the invention. As shown therein, a pair of
flat type GTO thyristors may be stacked in the middle
of the stack structure and sandwiched by diodes in anti-
parallel connection.

Figs. 6, 7 and 8, similar to Figs. 2, 3 and 4,
20 show a still further embodiment of a GTO thyristor stack
in accordance with the invention, in which the same
elements as those in Figs. 2, 3 and 4 are designated
by the same reference numerals and will not be detailed.

What is different from the previous embodiment is
25 that the position of a current balancer 43 is shifted toward
a point P representative of an AC terminal. This connec-
tion permits elimination of an insulating member between
a diode 39 and a GTO thyristor 31 as shown in Figs. 7 and 8.

WHAT IS CLAIMED IS

1. A gate turn-off thyristor stack comprising a pair of flat type gate turn-off thyristor elements (31, 32; 41, 42) to be connected in parallel with each other and a pair of flat type diode elements (34, 35; 44, 45) to be connected in direct parallel with the respective gate turn-off thyristor elements, wherein all the elements are stacked with electrical connection between the adjacent elements so that the elements in one of the gate turn-off thyristor element pair and the diode element pair are located opposite to each other at the middle of the stack structure and are sandwiched by the associated elements in the other pair which are provided on both sides of the stack structure, respectively, and the resulting stack structure is clamped by a pair of clamper members (62, 63).
2. A gate turn-off thyristor stack according to claim 1, wherein an electrically conductive heat dissipating member (55; 56; 57; 58) is interposed only between the gate turn-off thyristor element and the associated diode element adjacent thereto.
3. A gate turn-off thyristor stack according to claim 1, wherein said one pair located at the middle of the stack structure is the diode element pair and said other pair provided on the both sides of the stack structure is the gate turn-off thyristor element pair.
4. A gate turn-off thyristor stack according to claim 1, wherein said one pair located at the middle of

the stack structure is the gate turn-off thyristor element pair and said other pair provided on the both sides of the stack structure is the diode element pair.

5. A gate turn-off thyristor stack comprising two arms (3, 4) which are to be connected in series with each other and each of which include a pair of flat type gate turn-off thyristor elements (31, 32; 41, 42) to be connected in parallel with each other and a pair of flat type diode elements (34, 35; 44, 45) to be connected in direct parallel with the respective gate turn-off thyristor elements, wherein all the elements in each of said two arms are stacked with electrical connection between the adjacent elements so that the elements in one of the gate turn-off thyristor element pair and the diode element pair are located opposite to each other at the middle of the stack structure and are sandwiched by the associated elements in the other pair which are provided on both sides of the stack structure, respectively, said two arms each having the stack structure are integrally series-assembled with an insulating member (51) interposed therebetween, and the resulting assembly is clamped by a pair of clamer members (62, 63).

6. A gate turn-off thyristor stack according to claim 5, wherein each of said two arms includes other semiconductor element (39; 49) and said two arms are integrally series-assembled including the respective other semiconductor elements.

0069971

- 10 -

7. A gate turn-off thyristor stack according to
claim 5, wherein an electrically conductive heat dis-
sipating element (55; 56; 57; 58) is disposed only on
one side surface of the gate turn-off thyristor element.

0069971

1/2

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

0069971

2/2

FIG. 6

FIG. 7

FIG. 8

European Patent
Office

EUROPEAN SEARCH REPORT

0069971

Application number

EP 82 10 6030.8

DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim
A	<u>US - A - 3 943 426</u> (G. THIELE et al.) * abstract; column 2, lines 12 to 53; fig. 1 *	1,2
A	<u>US - A - 3 573 574</u> (R.O. DAVIS) * column 1, line 21 to column 2, line 47; fig. 1, 4 *	1
A	<u>US - A - 3 753 052</u> (D.B. ROSSER)	
A	<u>DE - A1 - 2 838 412</u> (R. BOSCH) <u>GB - A - 2 014 360</u>	
		TECHNICAL FIELDS SEARCHED (Int.Cl.)
		H 01 L 23/48 H 01 L 25/08 H 02 M 1/00 H 02 M 7/00
		CATEGORY OF CITED DOCUMENTS
X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons &: member of the same patent family, corresponding document		
The present search report has been drawn up for all claims		
Place of search	Date of completion of the search	Examiner
Berlin	07-09-1982	FAORO