Metric Space

Yang

August 11, 2023

Contents

1	Metric Space			
	1.1	Definition		
	1.2	Subspace	2	
	1.3	Examples	2	
2	Open set, Closed set, Neighborhood			
	2.1	Ball and Sphere	4	
	2.2	Open set and Closed set	1	

1 Metric Space

1.1 Definition

A metric space is a pair (X,d), where X is a set and d is a metric on X (or *distance function* on X), that is, a function defined on $X \times X$ such that for all $x,y,z \in X$ we have:

- 1. *d* is real-valued, finite and nonnegative.
- 2. d(x,y) = 0 if and only if x = y.
- 3. d(x,y) = d(y,x)
- 4. $d(x,y) \le d(x,z) + d(z,y)$

1.2 Subspace

A **subspace** (Y, \widetilde{d}) of (X, d) is obtained if we take a subset $Y \subset X$ and restrict d to $Y \times Y$ is the restriction

$$\widetilde{d} = d|_{Y \times Y}$$

 \widetilde{d} is called the metric induced on Y by d.

1.3 Examples

 $\begin{array}{lll} & & & d(\mathbf{x},\mathbf{y}) = |x-y| \\ & \text{Euclidean space } R^n \text{, unitary space } C^n \text{, complex C} \\ & \text{Sequence space } l^\infty \text{(bounded)} \\ & & d(\mathbf{x},\mathbf{y}) = \sup_{j \in N} |\xi_j - \eta_j| \\ & & d(x,y) = \sup_{j \in N} |\xi_j - \eta_j| \\ & & d(x,y) = \max_{j \in N} |x(t) - y(t)| \\ & \text{Discrete metric space} \\ & & d(x,y) = \max_{t \in J} |x(t) - y(t)| \\ & \text{Sequence space s} \\ & & d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} \\ & & d(x,y) = \sup_{j \in N} |x(t) - y(t)| \\ & \text{Space } l^p \\ & & d(x,y) = (\sum_{j=1}^{\infty} |\xi_j - \eta_j|^p)^{1/p} \end{array}$

2 Open set, Closed set, Neighborhood

2.1 Ball and Sphere

Definition: Given a point $x_0 \in X$ and a real number r > 0, we define three types of set:

(a)
$$B(x_0; r) = \{x \in X | d(x, x_0) < r\}$$
 (Open shell)

(b)
$$\widetilde{B}(x_0; r) = \{x \in X | d(x, x_0) \le r\}$$
 (Closed shell)

(c)
$$S(x_0; r) = \{x \in X | d(x, x_0) = r\}$$
 (Sphere)

We see that an open ball of radius r is the set of all points in X whose distance from the center of the ball is less than r. Furthermore, the definition immediately implies that

$$S(x_0; r) = \widetilde{B}(x_0; r) - B(x_0; r)$$

2.2 Open set and Closed set

A subset M of a metric space X is said to be **open** if it contains a ball about each of its points.

A subset K of X is said to **closed** if its complement (in X) is open, that is, $K^C = X - K$ is open.

An open ball $B(x_0; \epsilon)$ of radius ϵ is often called an ϵ - neighborhood of x_0 .