

日本国特許庁
JAPAN PATENT OFFICE

JC978 U.S. PTO
JC10/039642
10/24/01

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office

出願年月日
Date of Application:

2000年10月25日

出願番号
Application Number:

特願2000-325136

出願人
Applicant(s):

富士写真フィルム株式会社

2001年 9月12日

特許庁長官
Commissioner,
Japan Patent Office

及川耕造

出証番号 出証特2001-3084199

【書類名】 特許願
【整理番号】 A01461MA
【提出日】 平成12年10月25日
【あて先】 特許庁長官 殿
【国際特許分類】 C12N 15/11
【発明者】
【住所又は居所】 埼玉県朝霞市泉水3丁目11番46号 富士写真フィルム株式会社 朝霞研究所内
【氏名】 須藤 幸夫
【特許出願人】
【識別番号】 000005201
【氏名又は名称】 富士写真フィルム株式会社
【代理人】
【識別番号】 100096219
【弁理士】
【氏名又は名称】 今村 正純
【連絡先】 03-3271-1331
【選任した代理人】
【識別番号】 100092635
【弁理士】
【氏名又は名称】 塩澤 寿夫
【選任した代理人】
【識別番号】 100095843
【弁理士】
【氏名又は名称】 益田 淳爾
【手数料の表示】
【予納台帳番号】 038357
【納付金額】 21,000円

特2000-325136

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9800464

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 二本鎖DNAの分析方法

【特許請求の範囲】

【請求項1】 検体中の二本鎖DNAの分析方法であって、

(1) 支持体上に固定された2本鎖DNA認識物質と該検体とを接触させる工程、及び、

(2) 該2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程、を含む、上記の分析方法。

【請求項2】 2本鎖DNA認識物質が二本鎖DNA認識抗体である、請求項1に記載の分析方法。

【請求項3】 2本鎖DNA認識物質がDNA転写因子である、請求項1に記載の分析方法。

【請求項4】 2本鎖DNA認識物質がZnフィンガーモチーフまたはリングフィンガーモチーフをもつタンパク質である、請求項1に記載の分析方法。

【請求項5】 2本鎖DNA認識物質がペプチド核酸である、請求項1に記載の分析方法。

【請求項6】 2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程において、反応系にDNA2本鎖を認識する挿入剤を添加し、該2本鎖DNAに挿入された挿入剤を検出することにより、該検体中の該二本鎖DNAを測定することを特徴とする、請求項1から5の何れかに記載の分析方法。

【請求項7】 該挿入剤がDNAインターラーカレーターである、請求項6に記載の分析方法。

【請求項8】 該DNAインターラーカレーターが電気化学的活性を有し、該DNAインターラーカレーターを電気化学的手法により検出することにより、該検体中の該二本鎖DNAを測定する、請求項7に記載の分析方法。

【請求項9】 DNAインターラーカレーターを、蛍光法、発光法または表面プラズモン法により検出する、請求項7に記載の分析方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、検体中に存在する2本鎖核酸（特に、二本鎖DNA）を分析する方法に関し、検体中に存在する2本鎖核酸の存在量を定量する方法にも関する。また、本発明は、遺伝子解析に応用された場合、SNP（Single Nucleotide Polymorphism）等の遺伝子多型の分析及び解析にも利用できる。また、本発明は、検体中に存在するウイルス、菌体などに由来する外来遺伝子群を検出する手法にも利用できる。

【0002】

【従来の技術】

標的となる核酸試料、または標的核酸試料と相補的な塩基配列を含むDNAまたはRNA断片である核酸プローブのいずれか一方を固相に固定し、これとの間でハイブリダイゼーション反応を行う方法は、1975年にE.M.Southernにより開発され、いわゆるサザンプロッティング法として多用されてきている（J.Mol.Biol 98,503(1975)）。サザンプロッティング法では、核酸試料を電気泳動した後にニトロセルロースやナイロン膜などに固定し、相補的な配列をもつ核酸プローブと接触することになる。

【0003】

この方法とは逆に、核酸プローブを固定化し、標的核酸と接触させることにより、標的核酸量を測定する方法も開発され、遺伝子解析や、遺伝子診断等に利用されてきている。また、Southern等は多数の核酸プローブをアレイ状に支持体に固定化したDNAアレイを開発し、ガラス支持体上のDNAがその相補的なDNAと結合することを実証した。また、Affymax社は、Southernの考え方と、Photoresist法によるDNA固相合成技術の組み合わせによりDNAアレイの高密度化技術の開発に成功し、GeneChipの形で商品化されるに至っている（S. Fodor; Science 277, 393(1997)、Nature Genetics Supplement 21,20(1999)）。

【0004】

このように、ハイブリダイゼーションを用いるDNAの検出方法は、大きく進歩してきている。しかしながら、上記した分析方法は、mRNA等の1本鎖核酸の検出には極めて有効であるものの、2本鎖核酸を検出するためには、ハイブリ

ダイゼーション前に検体中の2本鎖核酸を熱変性し、1本鎖にするという煩雑な操作が必要となる。

【0005】

例えば、分析の対象がゲノム中のDNAである場合、対象DNAは2本鎖を形成している。例えば、P.N.Gillies等は電気アドレス法で(Nature Biotechnology, 17,365(1999))、また、R.J.Cho等は高密度オリゴDNAアレイにより(Nature Genetics 23,203(1999))、SNPの検出を行っている。しかし、いずれの場合も、DNAの測定のためには、検体中の標的DNA部分をPCRで増幅したのち、熱変性により1本鎖に変性するという煩雑な操作を行う必要がある。

【0006】

一方、2本鎖DNAを検出する方法として、インターラーカレーターが知られている。特許第2573443号公報には、インターラーカレーターを用いるDNAの検出方法が開示されているが、この方法でも、固定化されたDNAと反応させるために2本鎖DNAを予め1本鎖に変性する必要があった。

【0007】

【発明が解決しようとする課題】

本発明は、上記従来技術の問題点を解消することを解決すべき課題とした。即ち、本発明は、二本鎖DNAを変性することなくそのまま分析するための方法を提供することを解決すべき課題とした。本発明はまた、簡便かつ高感度な2本鎖DNAの分析方法を提供することを解決すべき課題とした。さらに本発明は、短時間かつ高感度で、ある遺伝子およびその多型を検出する目的に利用できる二本鎖DNAの分析方法を提供することを解決すべき課題とした。

【0008】

【課題を解決するための手段】

本発明者らは上記課題を解決するために銳意検討した結果、支持体上に固定された2本鎖DNA認識物質に検体を接触させ、該2本鎖DNA認識物質と結合した二本鎖DNAを測定することにより、二本鎖DNAを変性することなくそのまま分析することが可能になることを見出した。さらに本発明者らは、2本鎖DNA認識物質と結合した二本鎖DNAの量は、DNAインターラーカレーターのような

2本鎖挿入剤を用いることにより、高感度で検出することができることを見出した。本発明はこれらの知見に基づいて完成したものである。

【0009】

本発明によれば、検体中の二本鎖DNAの分析方法であって、

- (1) 支持体上に固定された2本鎖DNA認識物質と該検体とを接触させる工程、及び、
- (2) 該2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程、を含む、上記の分析方法が提供される。

好ましくは、2本鎖DNA認識物質は二本鎖DNA認識抗体、DNA転写因子、Znフィンガーモチーフ又はリングフィンガーモチーフを有するタンパク質、あるいはペプチド核酸である。

【0010】

好ましくは、該2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程においては、反応系にDNA2本鎖を認識する挿入剤を添加し、該2本鎖DNAに挿入された挿入剤を検出することにより、該検体中の該2本鎖DNAが測定される。

好ましくは、該挿入剤はDNAインターラーカレーターである。

好ましくは、該DNAインターラーカレーターは電気化学的活性を有し、該DNAインターラーカレーターを電気化学的手法により検出することにより、該検体中の該2本鎖DNAが測定される。

好ましくは、DNAインターラーカレーターを、蛍光法、発光法または表面プラズモン法により検出する。

【0011】

【発明の実施の形態】

以下、本発明の実施の形態について詳細に説明する。

本発明による検体中の二本鎖DNAの分析方法は、

- (1) 支持体上に固定された2本鎖DNA認識物質と該検体とを接触させる工程、及び、
- (2) 該2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程、

を含むことを特徴とする。

【0012】

本明細書で言う「検体」の種類は二本鎖DNAを含むものであればその種類は特に制限されず、例えば、末梢静脈血のような血液、白血球、血清、尿、糞便、精液、唾液、培養細胞、各種臓器細胞のような組織細胞、その他核酸を含有する任意の試料を用いることができる。検体は上記のような組織細胞などの試料をそのまま使用してもよいが、好ましくは、検体試料中の細胞を破壊して二本鎖DNAを遊離させたものを検体として使用する。検体試料中の細胞の破壊は、常法により行うことができ、例えば、振とう、超音波等の物理的作用を外部から加えて行うことができる。また、核酸抽出溶液（例えば、SDS、Triton-X、Tween-20等の界面活性剤、又はサポニン、EDTA、プロテアーゼ等を含む溶液等）を用いて、細胞から核酸を遊離させることもできる。核酸抽出溶液を用いて核酸を溶出する場合には、37°C以上の温度でインキュベートすることにより反応を促進することができる。

【0013】

本発明では、支持体上に固定された2本鎖DNA認識物質を使用する。本発明で用いる支持体としては、以下に説明する2本鎖DNA認識物質を固定できるものであれば特に制限されない。好ましい支持体の例としては、ガラス、石英、プラスチック等の非多孔性支持体、ニトロセルロース膜、ナイロン膜、PVDF膜などの多孔性支持体などが挙げられ、あるいは非多孔性支持体と多孔性支持体の複合体を使用することもできる。

【0014】

本発明で用いる2本鎖DNA認識物質としては、二本鎖DNAを認識し、特異的に結合する物質を示す。2本鎖DNA認識物質の具体例としては、DNA転写因子、ミスマッチ修復タンパク質、2本鎖DNA認識抗体、又はペプチド核酸などを挙げることができる。

【0015】

DNA転写因子は、遺伝子上のプロモーター領域に結合して、DNAからmRNAへの転写を制御する物質である（田村隆明著：転写因子（羊土社 1995

年)）。従って、転写因子は特定の配列の2本鎖DNAに特異的に結合することが知られている。

【0016】

多数ある転写因子のうち、Zinc Finger ProteinつまりZinc FingerやRing Fingerモチーフをもつ転写因子群は、真核生物における出現率は非常に高く、ゲノム中の1%はこれをコードしているらしい。Pabo等はZinc Figerモチーフの3次構造を解析、DNAと結合するメカニズムの解明した(Science, 252, 809(1991))。さらに、Choo等は、遺伝子組換法により、特定の配列に結合する自然界にはないZinc Finger Protein群を作製することに成功している(Nature 372, 642 [1994], PNAS91, 11163(1994))。さらに、Scripps Research InstituteのグループはPhage Displayにより新規なZinc Finger Protein群の作製に成功している(PNAS95, 2812, [1998] : 96, 2758(1999))。このように、Zinc Finger Proteinに代表されるDNA転写因子群は、本来2本鎖DNAと結合する性質をもっており、かつ近年の研究によれば、任意のDNA配列を認識する組換体の作製も可能となってきた。このような、タンパク質を固定化することにより、2本鎖DNAを効率良く支持体上に捕捉することが可能である。

【0017】

ミスマッチ修復タンパク質とは、DNA二本鎖の間に生じた不適正塩基対(不正またはミス対合)の修復を行う酵素である。例えば、大腸菌DNAポリメラーゼの場合、 10^8 塩基対に1箇所程度の頻度で鋳型DNAの塩基と対を成さないヌクレオチドを取り込むが、ミスマッチ修復酵素によりこれが修復される。ミスマッチ修復酵素は細胞内で複製直後のDNAに結合して、ミスマッチ塩基対を含む部分のヌクレオチドを除去する。本発明ではミスマッチ修復タンパク質が二本鎖DNAに結合する性質を利用することにより、該タンパク質を2本鎖DNA認識物質として使用することができる。

【0018】

2本鎖DNAを認識する抗体が、全身性エリトマトーデスの患者血清中に出現することは良く知られている。抗体作製技術、遺伝子組換技術の進歩により、このような2本鎖DNA認識モノクローナル抗体の作製が可能となってきた(S

uzuki et al, Int J Mol Med 3, 385, 1999, Barry et al, J Biol Chem 269, 3623(1994)). このような、2本鎖DNA認識抗体は、本発明の2本鎖DNA認識タンパク質として使用することができる。

【0019】

ペプチド核酸は、DNAの骨格構造である糖、リン酸部分をポリアミド骨格で置き換えたもので、DNAとの結合力が強いことで知られている。さらに、ペプチド核酸は、DNA-DNA鎖内に入りこみ3重鎖を形成することが可能である。本発明ではペプチド核酸のこの性質を利用することにより、ペプチド核酸を2本鎖DNA認識物質として使用することができる。

【0020】

上記した2本鎖DNA認識物質は、そのまま支持体上に固定化することができる。具体的には、2本鎖DNA認識物質を含む溶液を支持体上に点着し、一定時間放置することにより、2本鎖DNA認識物質を支持体上に固定化することができる。

【0021】

検体中の標的DNAは、PCR法などで増幅することなく直接検出するのが好ましいが、予め増幅したのちに検出してもよい。

標的DNAまたはその増幅体は、予め標識しておくことにより容易に検出可能である。DNAを標識するには、酵素(Reverse Transcriptase, DNAPolymerase R NAPolymerase, Terminal deoxytransferaseなど)を用いる方法がよく用いられるが、化学反応により、直接標識物質を結合させてもよい。このような標識方法については、公知の技術として成書に記載されている（野村慎太郎著 脱アイソトープ実験プロトコール1、秀潤社1994年、脱アイソトープ実験プロトコール2、秀潤社1998年、村松正明著 DNAマイクロアレイと最新PCR法標識物質 秀潤社2000年）。標識物質は、検出可能なシグナルを作ることの可能な物質であることが好ましい。標識物質が、酵素や触媒のような、シグナルの増幅能力のある物質である場合、DNAの検出感度は大きく向上する。該標識物質はまた、ビオチンーアビシン、抗原-抗体、ハプテン-抗体のような特異結合対の片方であって、その結合相手を介して標識物質を標的DNAに結合させてもよい

【0022】

しかしながら、前述の標識操作は、一般的に煩雑であるので、さらに好ましい検出方法としては、検体中のDNAを予め標識せずに測定する方法を挙げることができる。これには、例えば2本鎖DNAを認識するDNA挿入剤、いわゆるDNAインターラーカーを用いることができる。DNAインターラーカーの使用により、検出操作が簡単になるだけではなく、検出感度も向上する。例えば、1000 bpのDNAを検出する場合、いわゆる標識法は多くとも数個の標識物質しか導入できないのであるが、インターラーカーを使用する場合は100個以上の標識物質を導入することが可能である。

【0023】

DNAインターラーカーは、そのもの自体が検出可能なシグナルを形成できる物質であってもよいが、その側鎖にシグナル形成物質を結合していたり、ビオチンーアビシン、抗原-抗体、ハプテン-抗体のような特異結合対を介してインターラーカーに結合していてもよい。

本発明における、検出可能なシグナルは、例えば、蛍光検出、発光検出、化学発光検出、生物発光検出、電気化学発光検出、放射能検出、電気化学検出、比色検出により検出可能なシグナルであることが好ましいが、これらに限定されるものではない。

【0024】

好ましいDNAインターラーカーの例として、蛍光性色素のようにインターラーカー自身がシグナル形成能力をもっていてもよいが、インターラーカーとシグナル形成物質との複合体であってもよい。インターラーカーとシグナル形成物質との複合体は、例えば、下記一般式(1)、(2)のようなものをあげることができる

一般式(1) X-L₁-I-L₂-Y

一般式(2) X-L₁-I

(一般式(1)、(2)において、Iは2本鎖DNAに挿入される物質を示し、L₁、L₂はリンカー配列を示し、X及びYは、検出可能な分子を示す。)

【0025】

一般式(1)及び(2)においてIで示される2本鎖DNAに挿入される物質は、好ましくは、分子中にフェニル基等の平板状挿入基を有し、該挿入基が二本鎖DNAの塩基対と塩基対の間に介入することによって、二本鎖DNAと結合することができる物質を言う。

【0026】

一般式(1)及び(2)においてL1, L2で示されるリンカー配列は特に限定されず、例えば、アルキレン基、-O-基、-CO-基、-NH-基又はこれらの組み合わせから成る基などを例示することができる。

【0027】

一般式(1)及び(2)においてX, Yが示す検出可能な分子の具体例としては、Fluorescein、Rhodamin、Cy5、Cy3、Texas Red、ルテニウム錯体等に代表される蛍光色素団、ビオチンーアビジン、抗原-抗体、ハプテン-抗体のような特異結合対を形成する物質、フェロセン誘導体に代表される電気化学的検出可能な物質、ルシゲニン誘導体、ルミノール誘導体のような発光性の物質、またいわゆるEIA(酵素免疫測定法)で使用しているような酵素等を挙げることができる。

【0028】

X, Yが特異結合対を形成する物質である場合、X, Yを介してFluorescein、Rhodamin、Cy5、Cy3、Texas Red、ルテニウム錯体等に代表される蛍光色素団、フェロセン誘導体に代表される電気化学的検出可能な物質、ルシゲニン誘導体、ルミノール誘導体のような発光性の物質、またいわゆるEIA(酵素免疫測定法)で使用しているような酵素等を結合させることができる。

【0029】

本発明で用いる電気化学的、光化学的に活性な挿入剤は特に限定されるものではなく、例えばエチジウム、エチジウムブロマイド、アクリジン、アミノアクリジン、アクリジンオレンジ、ビスベンチミド、ジアミノフェニルインドール、プロフラビン、エリブチシン、アクチノマイシンD、チアゾール、クロモマイシン、ドーノマイシン、マイトマイシンC、並びにこれらの誘導体等を用いることが

できる。また、その他の使用可能な挿入剤としては、特開昭62-282599号公報に記載されたものが挙げられる。

さらに本発明で用いることができる挿入剤の具体例を示す。

【0030】

【化1】

【0031】

本発明の好ましい実施態様としては、2本鎖DNAと結合する物質を固定化したスライドを作成し、該スライドと検体を反応させる手法が挙げられる。このとき、2本鎖遺伝子挿入剤は、検体である2本鎖DNAがスライド上の2本鎖DNAと結合する物質と反応した後に添加してもよいし、同時に加えててもよい。

以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されることはない。

【0032】

【実施例】

(1) 抗体の固定化

2本鎖認識抗体を含むPBS溶液(フナコシ社製、 $1\text{ }\mu\text{g}/\text{ml}$) $1\text{ }\mu\text{l}$ をスライドガラス(3D LINK:Thermodics社製)に点着し、12時間放置した。さらにこのスライドガラスを、0.5MのGlycineホウ酸に30分間浸漬したのちPBSにより洗浄した。

【0033】

(2) サンプルの調製

Human alpha 2-HS-glycoprotein(HSGP)の翻訳領域(ORF)をpBluescript II SK-のマルチクローニングサイトのNotI、XbaIサイト間にクローニングした。このベクターを鋳型にして、HSGP cDNAをPCR法により増幅した。

【0034】

(3) 反応

PCRで増幅したcDNAをTEに溶解し、0.1 μM 溶液を調製し、これをサンプルAとした。サンプルAを95℃で3分間煮沸後、氷浴で急冷し一本鎖サンプルBを調整した。

サンプルA及びサンプルBを各々 $10\text{ }\mu\text{l}$ ずつ上記の(1)で作製した抗体固定化スライド上のスポット部分に点着し、1時間放置後、TE溶液により洗浄した。さらに、このスライドをSybrGreen溶液(Molecular Probe社、1000倍希釈TE溶液)に20分間浸漬したのち、TEにより洗浄した。

洗浄済みスライドガラスを風乾後、FLA2000(富士写真フィルム株式会社製)により633nm励起による蛍光強度を測定した。結果を以下に示す。

【0035】

蛍光強度

サンプルA 14300 LAU

サンプルB 6400 LAU

バックグラウンド 3500 LAU

(LAUは蛍光強度に比例する単位)

【0036】

上記結果より、本発明の方法により、二本鎖DNAを検出できることが示された。

【0037】

【発明の効果】

本発明により二本鎖DNAを変性することなくそのまま分析することができる。また本発明の方法によれば、簡便かつ高感度に2本鎖DNAを分析することができる。

【書類名】 要約書

【要約】

【課題】 二本鎖DNAを変性することなくそのまま分析するための方法を提供すること。

【解決手段】 検体中の二本鎖DNAの分析方法であって、

(1) 支持体上に固定された2本鎖DNA認識物質と該検体とを接触させる工程、及び、

(2) 該2本鎖DNA認識物質と結合した二本鎖DNAを測定する工程、を含む、上記の分析方法。

【選択図】 なし

特2000-325136

出願人履歴情報

識別番号 [000005201]

1. 変更年月日 1990年 8月14日

[変更理由] 新規登録

住 所 神奈川県南足柄市中沼210番地

氏 名 富士写真フィルム株式会社