Water Networks

Sai Krishna Kanth Hari

June 2017

Nomenclature

Sets

 δ_i^+ Set of all incoming arcs at node i δ_i^- Set of all outgoing arcs at node i \mathcal{A} Set of all arcs, $\mathcal{S}_e \cup \mathcal{V}_e \cup \mathcal{P}_e$ \mathcal{N} Set of all nodes, $\mathcal{J} \cup \mathcal{W}$ \mathcal{P}_e Set of all pumps \mathcal{S}_e Set of all pipes

Parameters

 \mathcal{V}_e

 β_a Pump scaling factor representing the characteristics of pump(arc) a

 λ_a Friction factor in pipe(arc) a

Set of all valves

 $\overline{h_i}$ Upper bound on potential at a node i

 a_{ij} Arc from node i to j d_i Demand at node $i \in \mathcal{N}$

 k_a Roughness coefficient of pipe(arc) a

 L_a Length of pipe(arc) a

 v_a^{max} Maximum flow velocity allowed in a pipe(arc) a

 $\underline{h_i}$ Lower bound on potential at a node i

Discrete variables

 D_a Diameter of pipe(arc) a s_a On/off status of a valve a

Continuous variables

 h_i Potential at a node i

 hp_a Non-negative variable for modeling pump(arc) a

 q_a Flow in a pipe (arc) a

 w_a Operating speed of pump(arc) a

1 Description

Assumptions:

Steady state.

Flow along the length of the pipe is constant (Potential flow coupling equation).

Friction factor doesn't depend on flow.

Pumps operate at a constant speed.

2 MINLP Formulation

Flow conservation at nodes:

 $Regular\ junctions:$

$$\sum_{a \in \delta_i^+} q_a - \sum_{b \in \delta_i^-} q_b = d_i, \quad \forall i \in \mathcal{J}$$

Reservoirs/Tanks:

$$D_w^{min} - d_w^{current} \leq \sum_{a \in \delta_w^+} q_a - \sum_{b \in \delta_w^-} q_b \leq D_w^{max} - d_w^{current}, \quad \forall w \in \mathcal{W}$$

$$D^{min} \le d_w^{current} \le D^{max}, \quad \forall w \in \mathcal{W}$$

Flow bounds:

$$-\frac{\pi}{4}v_a^{max}D_a^2 \le q_a \le \frac{\pi}{4}v_a^{max}D_a^2, \quad \forall a \in \mathcal{S}_e$$

Potential bounds:

 $Regular\ junctions:$

$$h_i \geq H_i \quad \forall i \in \mathcal{J}$$

 $Water\ Sources:$

$$h_w = H_w, \quad \forall w \in \mathcal{W}$$

Potential-Flow Coupling:

$$(y_a^+ - y_a^-)(h_i - h_j) = \lambda_a \cdot q_a^2, \quad \forall i \in \mathcal{N}, a = a_{ij} \in \delta_i^+$$
$$\lambda_a = \frac{8 \cdot L_a}{\pi^2 \cdot g \cdot D_a^5} \cdot f_a$$

Bi-directional flow:

$$(y_a^+ - 1) \sum_{k \in \mathcal{I}} d_k \le q_a \le (1 - y_a^-) \sum_{k \in \mathcal{I}} d_k$$
$$(1 - y_a^+) (\underline{h_i} - \overline{h_j}) \le h_i - h_j \le (1 - y_a^-) (\overline{h_i} - \underline{h_j})$$
$$y_a^+ + y_a^- = 1$$

Gate Valves (Bi-directional):

$$-s_a \cdot \frac{\pi}{4} v_a^{max} D_a^2 \le q_a \le s_a \cdot \frac{\pi}{4} v_a^{max} D_a^2, \quad \forall a \in \mathcal{V}_e$$

$$(\underline{h_i} - \overline{h_j})(1 - s_a) \le h_i - h_j \le (\overline{h_i} - \underline{h_j})(1 - s_a)$$

Uni-directional pump (constant speed):

$$y_a^+ Q_p^{min} \le q_a \le y_a^+ Q_p^{max} \quad \forall$$

$$y_a^+(h_i - h_j) = \alpha_a q_a |q_a| - \beta_a h p_a$$

$$hp_a \ge 0 \quad \forall a \in \mathcal{P}_e$$

3 Convex Relaxation

$$\gamma_a = (y_a^+ - y_a^-)(h_i - h_j) \quad \forall a \in \mathcal{S}_e$$
$$\zeta_a = y_a^+(h_i - h_j) \quad \forall a \in \mathcal{P}_e$$

 $McCormick\ relaxation:$

$$\gamma_a \ge h_j - h_i + (\underline{h_i} - \overline{h_j})(y_a^+ - y_a^- + 1)$$
$$\gamma_a \ge h_i - h_j + (\overline{h_i} - h_j)(y_a^+ - y_a^- - 1)$$

$$\gamma_a \le h_i - h_i + (\overline{h_i} - h_i)(y_a^+ - y_a^- + 1)$$

$$\gamma_a \le h_i - h_j + (\underline{h_i} - \overline{h_j})(y_a^+ - y_a^- - 1)$$

$$\zeta_a \ge h_j - h_i + (\underline{h_i} - \overline{h_j})(y_a^+ + 1)$$

$$\zeta_a \ge h_i - h_j + (\overline{h_i} - h_j)(y_a^+ - 1)$$

$$\zeta_a \le h_j - h_i + (\overline{h_i} - h_j)(y_a^+ + 1)$$

$$\zeta_a \le h_i - h_j + (h_i - \overline{h_j})(y_a^+ - 1)$$

Flow conservation at nodes:

 $Regular\ junctions:$

$$\sum_{a \in \delta_i^+} q_a - \sum_{b \in \delta_i^-} q_b = d_i, \quad \forall i \in \mathcal{J}$$

Reservoirs/Tanks:

$$D_w^{min} \leq \sum_{a \in \delta_w^+} q_a - \sum_{b \in \delta_w^-} q_b \leq D_w^{max}, \quad \forall w \in \mathcal{W}$$

Flow bounds:

$$-\frac{\pi}{4}v_a^{max}D_a^2 \le q_a \le \frac{\pi}{4}v_a^{max}D_a^2, \quad \forall a \in \mathcal{S}_e$$

Potential bounds:

 $Regular\ junctions:$

$$h_i \ge H_i \quad \forall i \in \mathcal{J}$$

Water Sources:

$$h_w = H_w, \quad \forall w \in \mathcal{W}$$

 ${\bf Potential\text{-}Flow\ Coupling:}$

$$\gamma_a \ge \lambda_a . q_a^2, \quad \forall i \in \mathcal{N}, a = a_{ij} \in \delta_i^+$$

$$\lambda_a = \frac{8.L_a}{\pi^2 . q. D_2^5} . f_a$$

 $\underline{\text{Bi-directional flow}}:$

$$(y_a^+ - 1) \sum_{k \in \mathcal{I}} d_k \le q_a \le (1 - y_a^-) \sum_{k \in \mathcal{I}} d_k$$
$$(1 - y_a^+) (\underline{h_i} - \overline{h_j}) \le h_i - h_j \le (1 - y_a^-) (\overline{h_i} - \underline{h_j})$$
$$y_a^+ + y_a^- = 1$$

${\bf Gate\ Valves\ (Bi-directional)}:$

$$-s_a \cdot \frac{\pi}{4} v_a^{max} D_a^2 \le q_a \le s_a \cdot \frac{\pi}{4} v_a^{max} D_a^2, \quad \forall a \in \mathcal{V}_e$$

$$(\underline{h_i} - \overline{h_j})(1 - s_a) \le h_i - h_j \le (\overline{h_i} - \underline{h_j})(1 - s_a)$$

${\bf Uni\text{-}directional\ pump\ (constant\ speed)}:$

$$y_a^+ Q_p^{min} \le q_a \le y_a^+ Q_p^{max} \quad \forall a \in \mathcal{P}_e$$

$$\zeta \ge \alpha_a q_a |q_a|^{\eta_a} - \beta_a h p_a$$

$$hp_a \ge 0 \quad \forall a \in \mathcal{P}_e$$