Slice closures of indexed languages and word equations with counting constraints

Laura Ciobanu¹ and Georg Zetzsche²

¹Hariot-Watt University, Edinburgh

²Max Planck Institute for Software Systems (MPI-SWS)

MOSCA 2025

Word equations with counting constraints Word equation: YabX = XbaZ.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$.

Solution: homomorphism $\sigma: \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$.

Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

• Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

- Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable.
- Open problem: What about length constraints "|X| = |Y|"?

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

- Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable. • One problem: What about length constraints "|Y| = |Y|"
- Open problem: What about length constraints "|X| = |Y|"?

For $\mathcal{X} = \{X_1, \dots, X_k\}$, we encode a solution $\sigma \colon \mathcal{X} \to A^*$

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

- Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable.
- Open problem: What about length constraints "|X| = |Y|"?

For
$$\mathcal{X}=\{X_1,\ldots,X_k\}$$
, we encode a solution $\sigma\colon\mathcal{X}\to A^*$ as
$$\mathrm{enc}(\sigma)=\sigma(X_1)\#\cdots\#\sigma(X_k)$$

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

- Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable.
- Open problem: What about length constraints "|X| = |Y|"?

For
$$\mathcal{X}=\{X_1,\ldots,X_k\}$$
, we encode a solution $\sigma\colon\mathcal{X}\to A^*$ as
$$\mathrm{enc}(\sigma)=\sigma(X_1)\#\cdots\#\sigma(X_k)$$

Theorem (Ciobanu, Diekert, Elder, ICALP 2015)

Given word equation with rational constraints, the language $\{\operatorname{enc}(\sigma) \mid \sigma \text{ is a solution}\}$ is an EDT0L language, in particular indexed.

Word equation: YabX = XbaZ. Formally: (U, V) with $U, V \in (A \cup \mathcal{X})^*$. Solution: homomorphism $\sigma \colon \mathcal{X}^* \to A^*$ with $\sigma(U) = \sigma(V)$.

Theorem (Makanin 1977)

Solvability of word equations is decidable.

Büchi & Senger 1988

- Adding constraints " $|X|_a = |Y|_b$ " \rightarrow undecidable.
- Open problem: What about length constraints "|X| = |Y|"?

For
$$\mathcal{X}=\{X_1,\ldots,X_k\}$$
, we encode a solution $\sigma\colon\mathcal{X}\to A^*$ as
$$\mathrm{enc}(\sigma)=\sigma(X_1)\#\cdots\#\sigma(X_k)$$

Theorem (Ciobanu, Diekert, Elder, ICALP 2015)

Given word equation with rational constraints, the language $\{\operatorname{enc}(\sigma)\mid \sigma \text{ is a solution}\}$ is an EDT0L language, in particular indexed.

Useful for decidability of any counting constraints?

Context-free $X \to YZ$, $X \to x$ etc.

Context-free

 $X \rightarrow YZ$, $X \rightarrow x$ etc. stack gets copied

Context-free $X \to YZ$, $X \to x$ etc. stack gets copied Push productions $X \to Y\gamma$

Context-free $X \to YZ$, $X \to x$ etc. stack gets copied $X \to Y\gamma$ push letter on stack

Context-free $X \to YZ$, $X \to x$ etc. stack gets copied Push productions $X \to Y\gamma$ push letter on stack Pop productions $X\gamma \to Y$

Context-free $X \to YZ, X \to x$ etc. stack gets copied Push productions $X \to Y\gamma$ push letter on stack Pop productions $X\gamma \to Y$ pop letter from stack

Context-free $X \rightarrow YZ, X \rightarrow x$ etc. stack gets copied Push productions $X \rightarrow Y\gamma$ push letter on stack Pop productions $X\gamma \rightarrow Y$ pop letter from stack

• introduced: Aho (1968)

 $\begin{array}{ll} \text{Context-free} & X \to YZ, \, X \to x \text{ etc.} \\ & \text{stack gets copied} \\ \text{Push productions} & X \to Y\gamma \\ & \text{push letter on stack} \\ \text{Pop productions} & X\gamma \to Y \\ & \text{pop letter from stack} \end{array}$

- introduced: Aho (1968)
- equivalent to Higher-Order Recursion Schemes (HORS) of order 2

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi \colon \{a_1, \dots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \dots, |w|_{a_n})$$

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

```
\Psi \colon \{a_1, \dots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \dots, |w|_{a_n})
For context free I \colon \mathbb{W}(I) is comilinear
```

For context-free L: $\Psi(L)$ is semilinear

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi\colon \{a_1,\ldots,a_n\}^*\to \mathbb{N}^n,\quad \Psi(w)=(|w|_{a_1},\ldots,|w|_{a_n})$$

For context-free L: $\Psi(L)$ is semilinear

Sets definable in first-order logic in $(\mathbb{N},+,\leqslant,0,1)$

Presburger arithmetic: decidable logic!

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi \colon \{a_1, \ldots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \ldots, |w|_{a_n})$$

For context-free L: $\Psi(L)$ is semilinear \rightarrow many decidability properties

Sets definable in first-order logic in $(\mathbb{N},+,\leqslant,0,1)$

Presburger arithmetic: decidable logic!

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi \colon \{a_1, \dots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \dots, |w|_{a_n})$$

For context-free L: $\Psi(L)$ is semilinear \rightarrow many decidability properties

For indexed languages (Uezato & Minamide, Kobayashi, Z.)

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi \colon \{a_1, \ldots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \ldots, |w|_{a_n})$$

For context-free L: $\Psi(L)$ is semilinear \rightarrow many decidability properties

For indexed languages (Uezato & Minamide, Kobayashi, Z.)

•
$$L \cap \{a^n b^n \mid n \geqslant 0\} \stackrel{?}{=} \emptyset$$

undecidable

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

 $\Psi : \{a_1, \ldots, a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1}, \ldots, |w|_{a_n})$

For context-free L: $\Psi(L)$ is semilinear \rightarrow many decidability properties

For indexed languages (Uezato & Minamide, Kobayashi, Z.)

• $L \cap \{a^n b^n \mid n \ge 0\} \stackrel{?}{=} \varnothing$, $L \cap \{a^m b^n \mid m \ge n\} \stackrel{?}{=} \varnothing$ both undecidable

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

 $\Psi \colon \{a_1,\ldots,a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1},\ldots,|w|_{a_n})$

For context-free L: $\Psi(L)$ is semilinear ightarrow many decidability properties

For indexed languages (Uezato & Minamide, Kobayashi, Z.)

- $L \cap \{a^n b^n \mid n \ge 0\} \stackrel{?}{=} \emptyset$, $L \cap \{a^m b^n \mid m \ge n\} \stackrel{?}{=} \emptyset$ both undecidable
- $L \subseteq W$ well-nested words over [and] undecidable

Raised by Kobayashi (J. ACM 2013)

Challenge: Find decidable counting properties

Parikh image

$$\Psi \colon \{a_1,\ldots,a_n\}^* \to \mathbb{N}^n, \quad \Psi(w) = (|w|_{a_1},\ldots,|w|_{a_n})$$

For context-free L: $\Psi(L)$ is semilinear \rightarrow many decidability properties

For indexed languages (Uezato & Minamide, Kobayashi, Z.)

- $L \cap \{a^n b^n \mid n \ge 0\} \stackrel{?}{=} \emptyset$, $L \cap \{a^m b^n \mid m \ge n\} \stackrel{?}{=} \emptyset$ both undecidable
- $L \subseteq$ well-nested words over [and] undecidable
- $L \stackrel{?}{\subseteq}$ same number of a's and b's decidability open (Kobayashi 2019)

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$.

A set $S\subseteq \mathbb{N}^d$ is linear if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \dots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

A set $S\subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$
 with $u, u_1, \dots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

Presburger arithmetic

Presburger antillilet

First-order logic over the structure
$$\langle \mathbb{N}; +, \leq, 0, 1 \rangle$$
. For example: $\exists y \colon x = y + y \quad \exists y \colon \exists z \colon \varphi(y) \land \psi(z) \land x \geqslant y + z$

$$2y \cdot \lambda \quad y + y \quad 2y \cdot 2z \cdot \varphi(y) \wedge \varphi(z) \wedge \lambda > y + z$$

A formula φ with d free variables defines the set $\{x \in \mathbb{N}^d \mid \varphi(x)\}$.

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$. A *semilinear set* is a finite union of linear sets.

Presburger arithmetic

First-order logic over the structure $\langle \mathbb{N}; +, \leq, 0, 1 \rangle$. For example:

$$\exists y : x = y + y \quad \exists y : \exists z : \varphi(y) \land \psi(z) \land x \geqslant y + z$$

A formula φ with d free variables defines the set $\{x \in \mathbb{N}^d \mid \varphi(x)\}.$

Presburger arithmetic is decidable.

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

Presburger arithmetic

First-order logic over the structure $\langle \mathbb{N}; +, \leq, 0, 1 \rangle$. For example:

$$\exists y : x = y + y \quad \exists y : \exists z : \varphi(y) \land \psi(z) \land x \geqslant y + z$$

A formula φ with d free variables defines the set $\{x \in \mathbb{N}^d \mid \varphi(x)\}$.

Theorem (Presburger 1929)

Presburger arithmetic is decidable.

Theorem (Ginsburg & Spanier 1966)

The definable sets are exactly the semilinear sets.

Semilinear sets

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

Presburger arithmetic

First-order logic over the structure $\langle \mathbb{N}; +, \leq, 0, 1 \rangle$. For example:

$$\exists y : x = y + y \quad \exists y : \exists z : \varphi(y) \land \psi(z) \land x \geqslant y + z$$

A formula φ with d free variables defines the set $\{x \in \mathbb{N}^d \mid \varphi(x)\}$.

Theorem (Presburger 1929)

Presburger arithmetic is decidable.

Theorem (Ginsburg & Spanier 1966)

The definable sets are exactly the semilinear sets. This is effective.

Semilinear sets

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

Presburger arithmetic

First-order logic over the structure $\langle \mathbb{N}; +, \leq, 0, 1 \rangle$. For example:

Unfortunately, for indexed languages L, the Parikh image $\Psi(L)$ is not always semilinear.

A formula 4

, , ,)}.

Theorem (Presburger 1929)

Presburger arithmetic is decidable.

Theorem (Ginsburg & Spanier 1966)

The definable sets are exactly the semilinear sets. This is effective.

Semilinear sets

A set $S \subseteq \mathbb{N}^d$ is *linear* if it is of the form

$$S = \{ u + \lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

with $u, u_1, \ldots, u_n \in \mathbb{N}^d$. A semilinear set is a finite union of linear sets.

Presburger arithmetic

First-order logic over the structure $\langle \mathbb{N}; +, \leq, 0, 1 \rangle$. For example:

Unfortunately, for indexed languages L, the Parikh image $\Psi(L)$ is not always semilinear.

A formula q E.g.: $\{a^{n^2} \mid n \in \mathbb{N}\}$ is an indexed language.

Theorem (Presburger 1929)

Presburger arithmetic is decidable.

Theorem (Ginsburg & Spanier 1966)

The definable sets are exactly the semilinear sets. This is effective.

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

• Upward closed sets (w.r.t. component-wise ordering)

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

- Upward closed sets (w.r.t. component-wise ordering)
- Solution sets to linear equation systems: $\{x \in \mathbb{N}^d \mid Ax = b\}$

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

- Upward closed sets (w.r.t. component-wise ordering)
- Solution sets to linear equation systems: $\{x \in \mathbb{N}^d \mid Ax = b\}$
- ullet Congruence relations in \mathbb{N}^d

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

- Upward closed sets (w.r.t. component-wise ordering)
- Solution sets to linear equation systems: $\{x \in \mathbb{N}^d \mid Ax = b\}$
- ullet Congruence relations in \mathbb{N}^d

Theorem (Eilenberg & Schützenberger 1969)

Every slice is semilinear.

A subset $S \subseteq \mathbb{N}^d$ is a *slice* if $u, u + v, u + w \in S$ implies $u + v + w \in S$.

Examples

- Upward closed sets (w.r.t. component-wise ordering)
- Solution sets to linear equation systems: $\{x \in \mathbb{N}^d \mid Ax = b\}$
- Congruence relations in \mathbb{N}^d

Theorem (Eilenberg & Schützenberger 1969)

Every slice is semilinear.

Note: This is not constructive!

Slice closure

For $M \subseteq \mathbb{N}^d$, denote by Slice(M) the *smallest* slice containing M.

Slice closure

For $M \subseteq \mathbb{N}^d$, denote by $\mathsf{Slice}(M)$ the *smallest* slice containing M.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Slice closure

For $M \subseteq \mathbb{N}^d$, denote by $\mathsf{Slice}(M)$ the *smallest* slice containing M.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure Slice($\Psi(L)$) is effectively semilinear.

$$L \subseteq \text{same number of } a \text{'s and } b \text{'s} \iff \Psi(L) \qquad \subseteq \{(n, n) \mid n \geqslant 0\}$$

Slice closure

For $M \subseteq \mathbb{N}^d$, denote by $\mathsf{Slice}(M)$ the *smallest* slice containing M.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure Slice($\Psi(L)$) is effectively semilinear.

$$L \subseteq$$
 same number of a's and b's $\iff \Psi(L) \qquad \subseteq \{(n,n) \mid n \geqslant 0\}$
 $\iff \mathsf{Slice}(\Psi(L)) \qquad \subseteq \{(n,n) \mid n \geqslant 0\}.$

Slice closure

For $M \subseteq \mathbb{N}^d$, denote by $\mathsf{Slice}(M)$ the *smallest* slice containing M.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

$$L \subseteq$$
 same number of a's and b's $\iff \Psi(L) \qquad \subseteq \{(n,n) \mid n \geqslant 0\}$
 $\iff \mathsf{Slice}(\Psi(L)) \qquad \subseteq \{(n,n) \mid n \geqslant 0\}.$

Slice closures encode more

Affine hull of $\Psi(L)$, upward closure $\Psi(u) \uparrow = \{ u \in \mathbb{N}^d \mid \exists v \in \Psi(L) \colon u \geqslant v \}.$

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b$'s after a 's, minus c 's $c,-1$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b\text{'s after } a\text{'s, minus } c\text{'s}$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

$$f(w) = \text{number of } b$$
's after a 's, minus c 's

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

$$f(w) = \text{number of } b$$
's after a 's, minus c 's

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b\text{'s after } a\text{'s, minus } c\text{'s}$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

Question Is there a solution σ with $f(enc(\sigma)) = 0$?

• Length functions: $f(enc(\sigma)) = |\sigma(X)| \quad (\rightarrow \text{ open problem})$

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b\text{'s after } a\text{'s, minus } c\text{'s}$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

- Length functions: $f(enc(\sigma)) = |\sigma(X)| \quad (\rightarrow \text{ open problem})$
- Counting letters: $f(enc(\sigma)) = |\sigma(X)|_a$ (\rightarrow undecidable)

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b\text{'s after } a\text{'s, minus } c\text{'s}$ $c,-1$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

- Length functions: $f(enc(\sigma)) = |\sigma(X)| \quad (\rightarrow \text{ open problem})$
- Counting letters: $f(enc(\sigma)) = |\sigma(X)|_a$ (\rightarrow undecidable)
- Counting positions satisfying MSO properties

$$b,0$$
 $a,0$ $b,1$ $f(w) = \text{number of } b\text{'s after } a\text{'s, minus } c\text{'s}$

Automaton with labels in $A^* \times \mathbb{Z}^n \rightsquigarrow \text{counting function } f: A^* \to \mathbb{Z}^n$

Word equations with counting constraints

Given Word equation (U, V) over $(A \cup \mathcal{X})^*$, counting function $f: (A \cup \{\#\})^* \to \mathbb{Z}^n$

- Length functions: $f(enc(\sigma)) = |\sigma(X)| \quad (\rightarrow \text{ open problem})$
- Counting letters: $f(enc(\sigma)) = |\sigma(X)|_a$ (\rightarrow undecidable)
- Counting positions satisfying MSO properties
- Linear combinations: $f(w) = \lambda_1 f_1(w) + \cdots + \lambda_n f_n(w)$

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

(First decidable extension of word equations by counting constraints)

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

(First decidable extension of word equations by counting constraints)

• Given $f: (A \cup \{\#\})^* \to \mathbb{Z}$, and a word equation (U, V) with rational constraints, construct indexed language

$$L = \{ \mathsf{enc}(\sigma) \mid \sigma \text{ is a solution} \}.$$

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(\operatorname{enc}(\sigma)) \neq 0$.

(First decidable extension of word equations by counting constraints)

• Given $f: (A \cup \{\#\})^* \to \mathbb{Z}$, and a word equation (U, V) with rational constraints, construct indexed language

$$L = \{ enc(\sigma) \mid \sigma \text{ is a solution} \}.$$

From L, construct indexed language K with

$$\{f(\mathsf{enc}(\sigma)) \mid \sigma \text{ is a solution}\} = \{|w|_a - |w|_b \mid w \in K\}$$

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

(First decidable extension of word equations by counting constraints)

• Given $f: (A \cup \{\#\})^* \to \mathbb{Z}$, and a word equation (U, V) with rational constraints, construct indexed language

$$L = \{ enc(\sigma) \mid \sigma \text{ is a solution} \}.$$

2 From L, construct indexed language K with

$$\{f(\mathsf{enc}(\sigma)) \mid \sigma \text{ is a solution}\} = \{|w|_a - |w|_b \mid w \in K\}$$

3 Check if $K \subseteq$ same number of a's and b's.

$S\beta$ $S\alpha\beta$ $R\alpha\beta$ $R\alpha\beta$ $A\beta$ $A\beta$ $R\beta$ a $R\beta$ à

Building trees

Building trees Plugging

guig

Building trees

- Plugging
 - Nesting

Building trees

- Plugging
- Nesting

- Plugging
 - Nesting

 \leadsto operator $\mathcal D$ on subsets of $\mathbb N^{N \cup T}$

- Plugging
 - Nesting

 \leadsto operator $\mathcal D$ on subsets of $\mathbb N^{N \cup \mathcal T}$ with

derivable vectors =
$$\bigcup_{i>0} \mathcal{D}^i(\emptyset)$$

vectors over non-terminals and terminals with empty-stack to empty-stack derivations

$$Slphaeta$$
 $Rlphaeta$
 $Rlphaeta$
 $Rlpha$
 $Reta$
 $Reta$

$$ightarrow$$
 operator $\mathcal D$ on subsets of $\mathbb N^{N \cup T}$ with
$$\operatorname{derivable\ vectors} = \left(\begin{array}{c} \int \mathcal D^i(\varnothing) \end{array} \right)$$

- Plugging
 - Nesting

$$\leadsto$$
 operator $\mathcal D$ on subsets of $\mathbb N^{N \cup T}$ with

derivable vectors
$$=\bigcup_{i\geqslant 0}\mathcal{D}^i(\varnothing)$$

Show that

$$\mathsf{Slice}(\bigcup_{i\geqslant 0}\mathcal{D}^i(\varnothing))=\bigcup_{i\geqslant 0}(\mathsf{Slice}\circ\mathcal{D})^i(\varnothing))$$

$$egin{array}{c} oldsymbol{S} \ oldsymbol{S} \ oldsymbol{S} \ oldsymbol{S} \ oldsymbol{lpha} \ oldsymbol{S} \ oldsymbol{A} \ oldsymbol{B} \ oldsymbol{S} \ oldsymbol{lpha} \ oldsymbol{S} \ oldsymbol{lpha} \ oldsymbol{S} \ oldsymbol{lpha} \ oldsymbol{S} \ oldsymbol{A} \ oldsymbol{S} \$$

- Plugging
- Nesting

 \rightsquigarrow operator \mathcal{D} on subsets of $\mathbb{N}^{N \cup T}$ with

 \mathcal{D} definable in Presburger arithmetic

Slice(M) effectively semilinear for semilinear M (Grabowski 1981)

Show that

$$\mathsf{Slice}(\bigcup_{i\geqslant 0}\mathcal{D}^i(\varnothing))=\bigcup_{i\geqslant 0}(\mathsf{Slice}\circ\mathcal{D})^i(\varnothing))$$

- Plugging
 - Nesting

 \leadsto operator $\mathcal D$ on subsets of $\mathbb N^{N \cup T}$ with

derivable vectors
$$=\bigcup_{i\geqslant 0}\mathcal{D}^i(\varnothing)$$

Show that

$$\begin{aligned} \mathsf{Slice}(\bigcup_{i\geqslant 0}\mathcal{D}^i(\varnothing)) &= \bigcup_{i\geqslant 0} (\mathsf{Slice}\circ \mathcal{D})^i(\varnothing)) \\ &= \bigcup_{i=0}^n (\mathsf{Slice}\circ \mathcal{D})^i(\varnothing) \end{aligned}$$

$$\begin{array}{c|cccc} S & & & & \\ & S\beta & & & \\ & & & & \\ S\alpha\beta & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

- Plugging
 - Nesting

 \rightsquigarrow operator \mathcal{D} on subsets of $\mathbb{N}^{N \cup T}$ with

derivable vectors = $\bigcup \mathcal{D}^i(\emptyset)$

 $= \bigcup (\mathsf{Slice} \circ \mathcal{D})^i(\varnothing)$

 $\mathsf{Slice}(\bigcup_{i>0}\mathcal{D}^i(\varnothing))=\bigcup_{i>0}(\mathsf{Slice}\circ\mathcal{D})^i(\varnothing))$

Key property of slices

 $\mathsf{Slice}(\mathsf{derivable}\;\mathsf{vectors}\cap\mathbb{N}^{\mathsf{T}})=\mathsf{Slice}(\mathsf{derivable}\;\mathsf{vectors})\cap\mathbb{N}^{\mathsf{T}}$

Theorem (Eilenberg & Schützenberger 1969)

If $S_1 \subseteq S_2 \subseteq \cdots$ are slices, then there is an $i \geqslant 1$ with $S_i = S_{i+1} = \cdots$.

Theorem (Eilenberg & Schützenberger 1969)

If $S_1 \subseteq S_2 \subseteq \cdots$ are slices, then there is an $i \geqslant 1$ with $S_i = S_{i+1} = \cdots$.

Lemma

Slices are finitely generated (as slices).

Theorem (Eilenberg & Schützenberger 1969)

If $S_1 \subseteq S_2 \subseteq \cdots$ are slices, then there is an $i \geqslant 1$ with $S_i = S_{i+1} = \cdots$.

Lemma

Slices are finitely generated (as slices).

Proof.

For a slice $S \subseteq \mathbb{N}^d$, consider a linear set

$$L_i = \{ u + \lambda_1 u_1 + \dots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

in S and consider the finite set $F_i = \{u, u + u_1, u + u_2, \dots, u + u_n\}$.

Then S is generated by $\bigcup_i F_i$.

Theorem (Eilenberg & Schützenberger 1969)

If $S_1 \subseteq S_2 \subseteq \cdots$ are slices, then there is an $i \geqslant 1$ with $S_i = S_{i+1} = \cdots$.

Lemma

Slices are finitely generated (as slices).

Proof.

For a slice $S \subseteq \mathbb{N}^d$, consider a linear set

$$L_i = \{ u + \lambda_1 u_1 + \dots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

in S and consider the finite set $F_i = \{u, u + u_1, u + u_2, \dots, u + u_n\}$. Then S is generated by $\bigcup_i F_i$.

If $S_1 \subseteq S_2 \subseteq \cdots$, then $\bigcup_j S_j$ is a slice, and thus finitely generated.

Theorem (Eilenberg & Schützenberger 1969)

If $S_1 \subseteq S_2 \subseteq \cdots$ are slices, then there is an $i \geqslant 1$ with $S_i = S_{i+1} = \cdots$.

Lemma

Slices are finitely generated (as slices).

Proof.

For a slice $S \subseteq \mathbb{N}^d$, consider a linear set

$$L_i = \{ u + \lambda_1 u_1 + \dots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{N} \}$$

in S and consider the finite set $F_i = \{u, u + u_1, u + u_2, \dots, u + u_n\}$. Then S is generated by $\bigcup_i F_i$.

If $S_1 \subseteq S_2 \subseteq \cdots$, then $\bigcup_j S_j$ is a slice, and thus finitely generated. These finitely many vectors must occur in some S_i , hence $S_i = S_{i+1} = \cdots$.

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Theorem (≈ Grabowski 1981)

Given a semilinear $M\subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Theorem (≈ Grabowski 1981)

Given a semilinear $M\subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \operatorname{Slice}(M)$.

Dynamic programming:

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Computing Slice(M):

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Computing Slice(M):

Enumerate semilinear sets R. For each R:

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Computing Slice(*M*):

Enumerate semilinear sets R. For each R:

• Check $R \subseteq \mathsf{Slice}(M)$: Build generating set F and check $F \subseteq \mathsf{Slice}(M)$

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \mathsf{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Computing Slice(M):

Enumerate semilinear sets R. For each R:

- Check $R \subseteq \operatorname{Slice}(M)$: Build generating set F and check $F \subseteq \operatorname{Slice}(M)$
- ullet Check that R is a slice: can be stated in Presburger arithmetic

Theorem (≈ Grabowski 1981)

Given a semilinear $M \subseteq \mathbb{N}^d$, the set $\mathsf{Slice}(M)$ is effectively semilinear.

Observation

Given semilinear $M \subseteq \mathbb{N}^d$ and $u \in \mathbb{N}^d$, one can decide whether $u \in \operatorname{Slice}(M)$.

Dynamic programming:

a vector can only be obtained from smaller vectors.

Computing Slice(*M*):

Enumerate semilinear sets R. For each R:

- Check $R \subseteq \operatorname{Slice}(M)$: Build generating set F and check $F \subseteq \operatorname{Slice}(M)$
 - ullet Check that R is a slice: can be stated in Presburger arithmetic

If both checks succeed, we know R = Slice(M).

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\mathsf{Slice}(M \cap \mathbb{N}^T) = \mathsf{Slice}(M) \cap \mathbb{N}^T$.

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\mathsf{Slice}(M \cap \mathbb{N}^T) = \mathsf{Slice}(M) \cap \mathbb{N}^T$.

⊆:

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\mathsf{Slice}(M \cap \mathbb{N}^T) = \mathsf{Slice}(M) \cap \mathbb{N}^T$.

 $\subseteq:\ \mathbb{N}^{\mathit{T}}$ is closed under the slice operation

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\operatorname{Slice}(M \cap \mathbb{N}^T) = \operatorname{Slice}(M) \cap \mathbb{N}^T$.

 $\subseteq: \ \mathbb{N}^{\mathcal{T}}$ is closed under the slice operation

⊇:

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\mathsf{Slice}(M \cap \mathbb{N}^T) = \mathsf{Slice}(M) \cap \mathbb{N}^T$.

- \subseteq : \mathbb{N}_{-}^{T} is closed under the slice operation
- $\supseteq: \mathbb{N}^T$ can only be produced from vectors in \mathbb{N}^T

Key property of slices

For $M \subseteq \mathbb{N}^{N \cup T}$, we have $\mathsf{Slice}(M \cap \mathbb{N}^T) = \mathsf{Slice}(M) \cap \mathbb{N}^T$.

- \subseteq : $\mathbb{N}_{\underline{}}^{T}$ is closed under the slice operation
- \supseteq : \mathbb{N}^T can only be produced from vectors in \mathbb{N}^T

Slices closure vs. other counting closures

Not true for existing closure operators (affine hull, Zariski closure)!

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $Slice(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(\operatorname{enc}(\sigma)) \neq 0$.

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $Slice(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(\operatorname{enc}(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure Slice($\Psi(L)$) is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

• Complexity bounds? (So far, not even Ackermann...)

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

- Complexity bounds? (So far, not even Ackermann...)
 - Polynomial equations?

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

- Complexity bounds? (So far, not even Ackermann...)
 - Polynomial equations?
 - Higher order?

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

- Complexity bounds? (So far, not even Ackermann...)
- Polynomial equations?
- Higher order?

Exploit EDT0L

Here: relied on indexed languages (closure properties!)

Theorem (Ciobanu & Z., LICS 2024)

For indexed L, its slice closure $\mathsf{Slice}(\Psi(L))$ is effectively semilinear.

Corollary

Given a word equation, rational constraints, and counting function f, one can decide if there is a solution σ with $f(enc(\sigma)) \neq 0$.

Ongoing work with Corto Mascle & Richard Mandel

- Complexity bounds? (So far, not even Ackermann...)
- Polynomial equations?
- Higher order?

Exploit EDT0L

Here: relied on indexed languages (closure properties!)

Can Ciobanu, Diekert & Elder 2015 be strengthened, to avoid detour?