

Gravitational Lens Finding Challenge

HOW TO FIND A GRAVITATIONAL LENS?

Christoph Schäfer, Rémy Joseph, Thibault Kuntzer

Gravitational lens

- bending of light by a dense mass distribution between a source and an observer
- Images are distorted, displaced, magnified and multiplied

http://hubblesite.org/news center/archive/2000/07/im age/c

http://hubblesite.org/new scenter/archive/releases/1 990/20/image/a/

SLACS: The Sloan Lens ACS Survey

www.SLACS.org

A. Bolton (U. Hawai'i IfA), L. Koopmans (Kopteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

Astronomical Surveys: Creating catalogs of galaxies

Ground Based (KiDS) or Space-based (Euclid)

Kilo-Degree Survey

- 4% area of the Sky
- 1 K estimated galaxy lenses

Euclid (ESA mission)

- 35% area of the Sky
- 5K-10K estimated cluster and group lenses
- 100 K estimated galaxy lenses

KiDs r-band image [2.]

Survey Stamps: 101x101 pixels

Finding gravitational Lenses

Likely False Positives

Gravitational Lens finding Challenge

- Simulated image by the Bologna Lens factory
- Ground and Space-based
- Multi-wavelength for Ground data
- Metrics based on the ROC (Receiver operating characteristic)
- Priority on reducing False Positive

Data sets

Images

101x101 px

Training set

Ground: 20k images x 4 wavelengths

Space: 20k images

Ground Truth

is lensed/ is not lensed

Submission

- Classification: 100k images
- Accessible only once for 48 hours

State of the art

Eye identification (https://spacewarps.org/)

Ad hoc methods

Making use of the physics

First glimpse of machine learning?

Ad hoc methods

• Feature identification (Gavazzi et al. 2014)

• Ring or line finding (Joseph et al. 2014, Paraficz et 2016)

Physics-based method

 CHITAH: Does the configuration of a potential lens system makes physical sens? (Chan et al. 2015)

Machine learning

• Learning of features (105 features : Tramacere et al. 2016)

Convolutional network for images (not published yet)

49 B 5	0 A	51 A	52 B 1	В	2 A 3	В 4	В 7	73 A 7	4 B 7	5 A 7	76 A
209.3525 + 55.6741 53 A 5	209.3780 + 53.4301 4 A	209.6380 + 55.8449	209.7398 + 57.0189 56 B 5	30.2905 -6.3474 B	30.3615 -10.7597 6 A 7	30.4522 -7.5357 A 8	30.7655 -4.4937 B 7	212.6040 + 54.0908 77 A 7	212.7290 + 54.9406 8 A 7	212.8450 + 51.6687 9 A 8	213.0320 + 52.9143 80 A
			•	• •			•	•			
209.7620 + 53.3673 57 A 5	209.8280 + 57.4606 8 B		209.8970 + 56.7132 60 A 9	30.9987 -8.3652 B 1	31.0361 -9.6104 0 A 1	31.2852 -3.9099 1 A 12	31.4770 -6.4598 2 A 8	213.1650 + 53.9570 A 8	213.4510 + 51.7295 2 B 8	213.5430 + 52.8470 3 A	213.6000 + 57.6236 34 A
			0.	•	, 8		•	•			**
209.9210 + 56.1383 61 B 6	210.0069 + 56.9977 2 A		210.3220 + 57.3084 64 A 13		32.2221 -6.9186 4 A 1:	32.3970 -8.3013 A 10	32.4703 -6.5295 B 8	213.9140 + 54.8451 B 8			214.5255 + 54.2136 88 A
	•			-01		• •				•	
210.3420 + 57.0673	210.5270 + 53.4316		210.5840 + 51.7352	32.5096 -3.7956 A 1	32.6591 -7.4773 8 A 1	32.8441 -4.3681 9 B 20	32.9734 -5.9950 A 8		215.3410 + 56.2251 0 B 9		216.3770 + 56.4335
	•				٠		*	* 6	•		
211.4080 + 57.6165	211.8142 + 57.1322 0 A		211.9780 + 56.2218 72 B 21	33.0833 -7.9352 A 2	33.1342 -6.6479	33.1958 -5.8338 3 B 2		216.5700 + 55.1213		217.0550 + 54.8198	217.1570 + 55.4547
•		V.		•	•		2.			0	. 2

Performance of SL classifiers

ML in astrophysics

Classification

- Star/galaxy separation
- Spectral classification
- Galaxy morphology

Regression

- Measurement of shape of galaxies
- Distance of far-away objects (redshifts)

Dimensionality reduction

• • •

Measuring the shape of galaxies

- Same as Strong Lensing
- Much smaller effect
- Probe of Dark Matter
- •WEAK GRAV. LENSING:

1 image shape is modified Effect O(1%) slightly magnified

Statistical approach

A wealth of data to measure and do it well

- Now: $O(10^{6-7})$ galaxies
- Euclid: $O(10^9)$ (!) galaxies
- A few pixels across
- Signal-to-noise ~2-30 (quite noisy!)
- Error on the shape ~1% per galaxy

MegaLUT: a ML shape estimator

Artificial Neural Networks

5 inputs: (physical quantities: shape & intensity)

2 outputs: "shear" (effect of WL)

- Few features, no need for large capacity
- How to deal with noise?

Regression of noisy data points

Goal: accurate regression ⇒ minimise bias

- The network is shown several realisations of the same object
 - "case": same shear, different galaxies
 "rea" same shear & galaxy, different noise
- Cost function is no longer Mean Square Error, but MS Bias

$$MSB(\mathbf{p}) \doteq \frac{1}{n_{\text{case}}} \sum_{k=1}^{n_{\text{case}}} \left(\frac{1}{n_{\text{rea}}} \sum_{i=1}^{n_{\text{rea}}} o_{i,j,k}(\mathbf{p}) - t_{j,k} \right)^2$$

Regression of noisy data points

ML in astrophysics

- ML is just kicking in strong gravitational lensing
- Feel free to try yourselves at the challenge: http://metcalf1.bo.astro.it/blf-portal/gg_challenge.html

- ML for accurate predictions of shape
- Dealing with noisy inputs
- Applications of ML very diverse
- Tailored approaches are necessary (e.g. changing the usual cost function)

Applications for gravitational lenses

- Perfect for the study of Dark Matter
 - Dark-matter cross-section in colliding clusters (Markevitch et al. (2004))
- Act as natural cosmic telescopes
 - Magnification of distant sources (Kneib & Natarajan (2011))
 - Factor 4 to 12 (Richard et al. (2011)).

ML in astrophysics

Classification

- Star/galaxy separation
- Spectral classification
- Galaxy morphology

Regression

- Measurement of shape of galaxies
- Distance of far-away objects (redshifts)

Dimensionality reduction

Information compression for interpolation

