Definition 1 (Vector space). A vector space is a special collection of vectors that can be:

- added together to produce more vectors;
- scaled by a scalar to produce more vectors.

Each vector space has a corresponding field.

Definition 2 (Field, informal). A field is essentially a set of scalar. For us, normally \mathbb{R} or \mathbb{C} . When we don't care which one, we will use the notation \mathbb{F} .

Definition 3 (Field). A field is a set \mathbb{F} together with two operations, called addition + and multiplication \times which satisfy the field axioms, which are the following:

1. Associativity: $\forall a, b, c \in \mathbb{F}$:

$$a + (b+c) = (a+b) + c, \quad a \times (b \times c) = (a \times b) \times c$$

2. Commutativity: $\forall a, b, c \in \mathbb{F}$:

$$a+b=b+a$$
, $a \times b = b \times a$

3. Additive and multiplicative identity: $\exists 0 \in \mathbb{F}, 1 \in \mathbb{F}$:

$$a+0=a, \quad a\times 1=a$$

4. Additive inverses: $\forall a \in \mathbb{F}, \exists -a \in \mathbb{F} \text{ such that:}$

$$a + (-a) = 0$$

5. Multiplicative inverses: $\forall a \neq 0 \in \mathbb{F}, \exists \frac{1}{a} \in \mathbb{F} \text{ such that:}$

$$a \times \frac{1}{a} = 1$$

6. Distributivity of multipliation over addition: $\forall a, b, c \in \mathbb{F}$:

$$a \times (b+c) = (a \times b) + (a \times c)$$

Definition 4 (Vector space). A vector space \mathcal{V} over a field \mathbb{F} is a set of objects (called vectors), together with operations of vector addition + and scalar multiplication $\times,$ such that the following for all $u,v,w\in\mathcal{V}$ and scalars $a, b \in \mathbb{F}$ hold:

1. Closure of vector addition:

$$\mathbf{u} + \mathbf{v} \in \mathcal{V}$$

2. Commutativity of addition:

$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3. Associativity of addition:

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

4. Identity of addition:

$$\exists 0 \in \mathcal{V} \ \mathrm{such \ that} \ u+0=u=0+u$$

5. Inverse of addition:

$$\exists -\mathbf{u} \in \mathcal{V} \text{ such that } \mathbf{u} + (-\mathbf{u}) = \mathbf{0} = (-\mathbf{u}) + \mathbf{u}$$

6. Closure of scalar multiplication:

$$a \times \mathbf{u} \in \mathcal{V}$$

7. Distributive law 1:

$$a \times (\mathbf{u} + \mathbf{v}) = a \times \mathbf{u} + a \times \mathbf{v}$$

8. Distributive law 2:

$$(a+b) \times \mathbf{u} = a \times \mathbf{u} + b \times \mathbf{u}$$

9. Associative law:

$$(ab) \times \mathbf{u} = a \times (b \times \mathbf{u})$$

10. Monoidal law:

$$1 \times \mathbf{u} = \mathbf{u}$$

Definition 5 (Subspace). A subspace \mathcal{W} of a vector space \mathcal{V} over a field \mathbb{F} is a subset of $\mathcal{W} \subseteq \mathcal{V}$ that is by itself a vector space of \mathbb{F} :

$$a\mathbf{u} + b\mathbf{v} \in \mathcal{V}, \quad \forall \mathbf{u}, \mathbf{v} \in \mathcal{W}, \quad \forall a, b \in \mathbb{F}$$

Definition 6 ((non)Trivial subspace). The subsets $\{0\}$ and \mathcal{V} are always subspaces of \mathcal{V} . These are called **trivial subspaces**. Similarly, a subspace W of V is said to be **nontrivial** if it is not one of those.

Definition 7 (Proper subspace). A subspace $\mathcal W$ of $\mathcal V$ is said to be a proper subspace if it is not equal to V, eg. $W \subset V$.

Definition 8 (Span). Let \mathcal{V} be a vector space over \mathbb{F} and $\mathcal{S} \subseteq \mathcal{V}$. The span $\mathrm{Span}(\mathcal{S})$ is the intersection of all subspaces that contain \mathcal{S} . If \mathcal{S} is non-empty, then $\mathrm{Span}(\mathcal{S})$ is all of the linear combinations of all finitely many vectors in S.

$$\mathrm{Span}(\mathcal{S}) = \begin{cases} \sum_{i=1}^k a_i \mathbf{v}_i \mid \mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{S}, a_1, \dots, a_k \in \mathbb{F}, k \in \mathbb{N} & \text{non-empty} \\ \{\mathbf{0}\} & \text{empty} \end{cases}$$

Definition 9 (Sum of two subspaces). Let S_1 and S_2 be subspaces of a vector space V over a field \mathbb{F} . Then the **sum** of S_1 and S_2 is defined as:

$$S_1 + S_2 = \operatorname{Span}(S_1 \cup S_2) = \{\mathbf{u} + \mathbf{v} \mid \mathbf{u} \in S_1, \mathbf{v} \in S_2\}$$

Definition 10 (Direct sum). If $S_1 \cap S_2 = \{0\}$, then $S_1 + S_2$ is referred to as **direct sum**, and is denoted by \oplus .

Definition 11 (Linear dependence & independence).

- A finite set of vectors $\{\mathbf v_1,\dots,\mathbf v_k\}$ in a vector space $\mathcal V$ over a field \mathbb{F} is **linearly dependent** if and only if there are scalars $a_1, \ldots, a_k \in \mathbb{F}$, **not all zero**, such that $\sum_{i=1}^k a_i \mathbf{v}_i = 0$. • A finite set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is **linearly independent** if
- they are not linearly dependent, i.e. if $\sum_{i=1}^k a_i \mathbf{v}_i = 0$ then we must have $a_1 = \ldots = a_k = 0$.

Definition 12 (Basis). A set of vectors that is linearly independent and spans some vector space forms a basis for that vector space. A set \mathcal{B} (which could be countably infinite) is a basis for the vector space \mathcal{V} if and only if:

- $\operatorname{Span}(\mathcal{B}) = \mathcal{V};$
- B is linearly independent.

Definition 13 (Finite-dimensional). A vector space is finitedimensional if it has a finite basis.

Definition 14 (Dimension). The dimension of a vector space \mathcal{V} , written as $\dim(\mathcal{V})$, over \mathbb{F} is the number of vectors of any basis of \mathcal{V} over

Definition 15 (Orthogonal/orthonormal vectors). A list of vectors $\mathbf{v}_1, \dots, \mathbf{v}_m \in \mathbb{C}^n$ is orthogonal if:

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \mathbf{v}_i^* \mathbf{v}_j = \mathbf{v}_i^* \mathbf{v}_i = 0, \quad \forall i, j \in \{1, \dots, m\}$$

Furthermore, the list is orthonormal if:

$$\|\mathbf{v}_i\|^1 = \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 1, \quad \forall i \in \{1, \dots, m\}$$

Definition 16 (Linear map). Let $\mathcal U$ and $\mathcal V$ be vector spaces over the same field $\mathbb F$. The mapping $\mathbf f:\mathcal U\to\mathcal V$ is called **linear** if:

$$\mathbf{f}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{f}(\mathbf{x}) + \beta \mathbf{f}(\mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathcal{U}, \quad \forall \alpha, \beta \in \mathbb{F}$$

Definition 17 (Invertible map). Let \mathcal{U}, \mathcal{V} be vector spaces over the same field \mathbb{F} . The mapping $\mathbf{f}: \mathcal{U} \to \mathcal{V}$ is called invertible if $\exists ! \mathbf{g}: \mathcal{V} \to \mathcal{U}$ such that:

- $\begin{array}{ll} 1. & \mathbf{g} \circ \mathbf{f} : \mathcal{U} \to \mathcal{U}, & \mathbf{g} \circ \mathbf{f}(\mathbf{u}) = \mathbf{u}, & \forall \mathbf{u} \in \mathcal{U} \\ 2. & \mathbf{f} \circ \mathbf{g} : \mathcal{V} \to \mathcal{V}, & \mathbf{f} \circ \mathbf{g}(\mathbf{v}) = \mathbf{v}, & \forall \mathbf{v} \in \mathcal{V} \end{array}$

f is invertible if it is a bijection.

Definition 18 (Isomorphism for vector spaces). Let \mathcal{U}, \mathcal{V} be vector spaces over the same field $\mathbb F$ with the same dimension. The mapping $\mathbf{f}:\mathcal{U}\to\mathcal{V}$ is called an isomorphism if it is both linear and invertible. In this case, we say that \mathcal{U} and \mathcal{V} are isomorphic.

Definition 19 (Transpose). The transpose of a matrix \mathbf{A} , denoted \mathbf{A}^{\top} , is defined as for any $\mathbf{A} \in \mathbb{F}^{m \times n}$:

$$[\mathbf{A}^{\top}]_{ij} = [\mathbf{A}]_{ji}$$

Definition 20 (Hermitian transpose). The conjugate transpose, adjoint or Hermitian transpose of a matrix \mathbf{A} , denoted \mathbf{A}^* (or \mathbf{A}^H) is defined as the following: for any $\mathbf{A} \in \mathbb{C}^{m \times n}$:

$$[\mathbf{A}^*]_{ij} = [\bar{\mathbf{A}}]_{ji} \text{ or } \mathbf{A}^* = (\bar{\mathbf{A}})^{\top}$$

Definition 21 (Symmetric). A square matrix $\mathbf{A} \in \mathbb{F}^{n \times n}$ is symmetric

$$\mathbf{A}^{\top} = \mathbf{A}$$

Definition 22 (Skew-symmetric). A square matrix $\mathbf{A} \in \mathbb{F}^{n \times n}$ is skewsymmetric if

$$\mathbf{A}^\top = -\mathbf{A}$$

Definition 23 (Orthogonal). A square matrix $\mathbf{A} \in \mathbb{F}^{n \times n}$ is orthogonal

$$\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}$$

where **I** is the $n \times n$ identity matrix.

Definition 24 (Hermitian). A square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian

$$\mathbf{A}^* = \mathbf{A}$$

Definition 25 (Skew-Hermitian). A square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is skew-Hermitian if

$$A^* = -A$$

Definition 26 (Unitary). A square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitary if

$$\mathbf{A}^*\mathbf{A} = \mathbf{I}$$

where **I** is the $n \times n$ identity matrix.

Definition 27 (Normal). A square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is normal if

$$A^*A = AA^*$$

Definition 28 (Sum of two matrices). For any $\mathbf{A}, \mathbf{B} \in \mathbb{F}^{m \times n}$, the sum of A and B is:

$$[\mathbf{A} + \mathbf{B}]_{ij} = [\mathbf{A}]_{ij} + [\mathbf{B}]_{ij}$$

Definition 29 (Scalar multiplication of matrices). For any $\mathbf{A} \in \mathbb{F}^{m \times n}$, the scalar multiplication of that matrix by λ is defined as:

$$[\lambda \mathbf{A}]_{ij} = \lambda [\mathbf{A}]_{ij}$$

Definition 30 (Matrix inner product). For any $\mathbf{A} \in \mathbb{F}^{m \times n}$ and $\mathbf{B} \in \mathbb{F}^{n \times p}$, we have $\mathbf{AB} \in \mathbb{F}^{m \times p}$, where:

$$[\mathbf{AB}]_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

where $[\mathbf{AB}]_{ij}$ is the inner-product of the *i*th row of \mathbf{A} and the *j*th column of B.

Definition 31 (Matrix outer product). Let

$$\mathbf{A} = [\mathbf{a}_1 \mid \mathbf{a}_2 \mid \dots \mid \mathbf{a}_n]$$
$$\mathbf{B} = [\mathbf{b}_1 \mid \mathbf{b}_2 \mid \dots \mid \mathbf{b}_n]^{\top}$$

We can combine this to obtain AB:

$$\mathbf{A}\mathbf{B} = \sum_{i=1}^n \mathbf{a}_i \mathbf{b}_i^{ op}$$

where AB is the sum of outer-products of columns of A and the corresponding rows of B.

Definition 32 (Determinant). The determinant of a matrix A is a function det : $\mathbb{F}^{n \times n} \to \mathbb{F}$ defined as (the Leibniz formula):

$$\det \mathbf{A} = \sum_{\pi \in \mathcal{D}} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i\pi_{i}}$$

Definition 33 (Trace). The trace of a matrix A is a function Trace : $\mathbb{F}^{n \times n} \to \mathbb{F}$ that is defined by:

$$\operatorname{Trace}(\mathbf{A}) = \sum_{i} a_{ii}$$

Definition 34 (Matrix representation). The $m \times n$ matrix **A** defined by the scalars a_{ij} is called the **matrix representation** of **f** in the ordered bases $\mathcal{B}_{\mathcal{U}}$ and $\mathcal{B}_{\mathcal{V}}$.

Definition 35 (Domain of a matrix). The domain of A is Domain(A) =

Definition 36 (Range of a matrix). The range of **A** is

Range(
$$\mathbf{A}$$
) = { $\mathbf{y} \in \mathbb{F}^m \mid \mathbf{y} = \mathbf{A}\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{F}^n$ }

Note that $\operatorname{Range}(\mathbf{A})$ is a subspace of \mathbb{F}^m (doesn't have to be mdimensional, just has to be $\leq m$).

Definition 37 (Rank of a matrix). The rank of a matrix A is the dimension of the range of that matrix: $\dim(\text{Range}(\mathbf{A})) = \text{Rank}(A)$.

Definition 38 (Full-rank). A full-rank matrix $\mathbf{A} \in \mathbb{F}^{m \times n}$ is a matrix with rank = $\min\{m, n\}$.

Definition 39 (Rank-deficient). A rank-deficient matrix $\mathbf{A} \in \mathbb{F}^{m \times n}$ is a matrix with rank $< \min\{m, n\}$.

Definition 40 (Nullspace). The nullspace of a matrix, denoted Null(A) or Kernel(**A**) is the set of all $\mathbf{x} \in \mathbb{F}^n$ such that $\mathbf{A}\mathbf{x} = \mathbf{0}$:

$$Null(\mathbf{A}) = Kernel(\mathbf{A}) = \{ \mathbf{x} \in \mathbb{F}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0} \}$$

Note that $\text{Null}(\mathbf{A})$ is a subspace of \mathbb{F}^n (once again, doesn't have to be n-dim.)

Definition 41 (Nullity of a matrix). The nullity of a matrix **A** is the dimension of the nullspace of that matrix: $\dim(\text{Null}(\mathbf{A})) = \text{Nullity}(A)$.

Definition 42 (Orthogonal complement). The orthogonal complement of a subspace \mathcal{S} , denoted \mathcal{S}^{\perp} , is:

$$\mathcal{S}^{\perp} = \{ \mathbf{v} \mid \langle \mathbf{v}, \mathbf{w} \rangle = 0, \forall \mathbf{w} \in \mathcal{S} \}$$

Essentially all the vectors that are orthogonal to the whole subspace.

Definition 43 (Column space). The column space of a matrix A, denoted colsp(A), is simply the range of A:

$$colsp(\mathbf{A}) = Range(\mathbf{A}) = {\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{C}^m}$$

Definition 44 (Row space). The row space of a matrix \mathbf{A} , denoted $rowsp(\mathbf{A})$, is simply the range of \mathbf{A}^{\perp} :

$$\operatorname{rowsp}(\mathbf{A}) = \operatorname{Range}(\mathbf{A}^\top) = \{\mathbf{A}^\top \mathbf{x} \mid \mathbf{x} \in \mathbb{C}^n\}$$

Definition 45 (Non-singular). $\mathbf{A} \in \mathbb{F}^{n \times n}$ is said to be non-singular if

Definition 46 (Pseudo-inverse). For any $\mathbf{A} \in \mathbb{F}^{m \times n}$ matrix, $\exists ! \mathbf{A}^{\dagger} \in$ $\mathbb{F}^{n \times m}$ called the pseudo-inverse that satisfies the following four properties:

- AA[†]A = A;
 A[†]AA[†] = A[†];
 (AA[†])* = AA[†];
 (A[†]A)* = A[†]A.

Definition 47 (Vector norm). Given a vector space \mathcal{V} over \mathbb{F} , a norm is a non-negative real-valued function $\|\cdot\|:\mathcal{V}\to[0,\infty)$ with the following properties, namely:

- Sub-additivity/triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$;
- Absolute homogeneity: $\|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|$;
- Positive definiteness: $\|\alpha \mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$.

Definition 48 (Vector *p*-norms). The *p*-norms are the following:

$$\begin{array}{ll} \ell_1 & \text{Manhattan norm} & \|\mathbf{x}\|_1 = \sum_{i=1}^d |x_i| \\ \\ \ell_2 & \text{Euclidean norm} & \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^d |x_i|^2} = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} \\ \\ \ell_\infty & \text{max norm} & \|\mathbf{x}\|_\infty = \max_{i=1,\dots,d} |x_i| \\ \\ \ell_p & \left(\sum_{i=1}^d |x_i|^p\right)^{1/p} \end{array}$$

Definition 49 (Weighted Euclidean norm). Let W be a diagonal matrix with positive diagonal elements. The weighted Euclidean norm is defined as:

$$\|\mathbf{x}\|_{\mathbf{W}} \triangleq \sqrt{\langle \mathbf{x}, \mathbf{W} \mathbf{x} \rangle}$$

Definition 50 (Frobenius norm). Given any $\mathbf{A} \in \mathbb{C}^{m \times n}$, the ℓ_2 norm of the associated mn-dimensional vector is the Frobenius norm of the

$$\|\mathbf{A}\|_F \triangleq \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{\frac{1}{2}}$$

Definition 51 (Induced matrix norm). Consider an arbitrary matrix $\mathbf{A} \in \mathbb{F}^{m \times s}$. Given any two norms $\|\cdot\|_p$ and $\|\cdot\|_q$ respectively on Domain(A), Range(A), the corresponding induced matrix norm is defined as:

$$\|\mathbf{A}\|_{p,q} \triangleq \max_{\substack{\mathbf{x} \in \mathbb{F}^m \\ \mathbf{x} \neq \mathbf{0}}} \frac{\|\mathbf{A}\mathbf{x}\|_q}{\|\mathbf{x}\|_p} = \max_{\substack{\mathbf{x} \in \mathbb{F}^m \\ \|\mathbf{x}\|_p = 1}} \|\mathbf{A}\mathbf{x}\|_q$$

A common abbreviation if p = q is to shorten $\|\mathbf{A}\|_{p,p}$ to $\|\mathbf{A}\|_p$.

Definition 52 (Condition of MVP). Let $\mathbf{A} \in \mathbb{C}^{m \times n}$, and consider any vector norm $\|\cdot\|$ with its induced matrix norm. For a given vector \mathbf{x} , the condition of MVP for **A** is defined as:

$$\kappa(\mathbf{A};\mathbf{x}) \triangleq \max_{\delta\mathbf{x}} \left(\left\| \frac{\mathbf{A}\delta\mathbf{x} \|}{\|\delta\mathbf{x}\|} \middle/ \frac{\|\mathbf{A}\mathbf{x}\|}{\|\mathbf{x}\|} \right) = \frac{\|\mathbf{A}\|\|\mathbf{x}\|}{\|\mathbf{A}\mathbf{x}\|}$$

Definition 53 (Condition Number). In the above, if $m \geq n$ and **A** has full column rank, then the condition number of **A**, relative to $\|\cdot\|$, is defined as:

$$\kappa(\mathbf{A}) = \max_{\mathbf{x}} \kappa(\mathbf{A}; \mathbf{x}) = \|\mathbf{A}\| \|\mathbf{A}^{\dagger}\|$$

Definition 54 (Well and ill-conditioned). If $\kappa(\mathbf{A})$ is small, \mathbf{A} is said to be well-conditioned. If $\kappa(\mathbf{A})$ is large, \mathbf{A} is ill-conditioned.

Definition 55 (Eigenvalue and eigenvector). Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. If we have:

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \quad \mathbf{v} \in \mathbb{C}^n, \mathbf{v} \neq \mathbf{0}, \lambda \in \mathbb{C}$$

then:

- λ is called an eigenvalue of **A**;
- \mathbf{v} is called an eigenvector of \mathbf{A} associated with λ ;
- the pair (λ, \mathbf{v}) is an eigenpair for \mathbf{A} .

Definition 56 (Spectrum). The spectrum of $\mathbf{A} \in \mathbb{C}^{n \times n}$, denoted by spec(\mathbf{A}), is the set of all eigenvalues of \mathbf{A} :

$$\operatorname{spec}(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \exists \mathbf{v} \neq \mathbf{0}, \mathbf{A}\mathbf{v} = \lambda \mathbf{v}\}$$

Definition 57 (Spectral radius). The spectral radius of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is the maximum magnitude of an eigenvector in the spectrum of that matrix:

$$\rho(\mathbf{A}) \triangleq \max_{\lambda \in \operatorname{spec}(\mathbf{A})} |\lambda|$$

Definition 58 (Matrix polynomial). Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. Then a matrix polynomial of degree k is defined as:

$$p(\mathbf{A}) = \sum_{i=0}^{k} a_i \mathbf{A}^i$$

for $a_i \in \mathbb{C}, i = 1, 2, \dots, k$.

Definition 59 (Eigenspace). The eigenspace associated with an eigenvalue λ is the subspace defined as:

$$\begin{split} \mathcal{E}_{\lambda}(\mathbf{A}) &= \mathrm{Null}(\mathbf{A} - \lambda \mathbf{I}) \\ &= \{ \mathbf{v} \mid (\mathbf{A} - \lambda \mathbf{I}) \mathbf{v} = 0 \} \\ &= \{ \text{all eigenvectors of } \mathbf{A} \text{ associated with } \lambda \} \cup \{ \mathbf{0} \} \end{split}$$

Definition 60 (Algebraic multiplicity). The algebraic multiplicity of λ is the multiplicity of λ as a root of the characteristic polynomial.

Definition 61 (Geometric multiplicity). The geometric multiplicity of λ is the dimension of the associated eigenspace:

$$\dim(\mathcal{E}_{\lambda}(\mathbf{A})) = \dim(\mathrm{Null}(\mathbf{A} - \lambda \mathbf{I}))$$

Definition 62 (Simple eigenvalue). The eigenvalue λ of **A** is said to be simple if its algebraic multiplicity is 1.

Definition 63 (Defective matrix). A matrix is defective if it has an eigenvalue λ for which:

$$\dim(\mathcal{E}_{\lambda}(\mathbf{A})) < m(\lambda)$$

Definition 64 (Similarity transformation). Let $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$. We say that \mathbf{B} is similar to \mathbf{A} if there exists a non-singular matrix $\mathbf{S} \in \mathbb{C}^{n \times n}$ such that:

$$\mathbf{B} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S}$$

Definition 65 (Diagonalisable matrix). If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is similar to a diagonal matrix (pre and post multiplied), then \mathbf{A} is said to be diagonalisable

Definition 66 (Jordan block). A **Jordan block J**_k(λ) is a $k \times k$ upper triangular matrix of the form:

$$\mathbf{J}_k(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & \\ & & & \lambda & 1 \end{pmatrix}$$

In particular, $\mathbf{J}_1(\lambda) = (\lambda)$ and $\mathbf{J}_2(\lambda) = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$.

Definition 67 (Unitarily diagonalisable matrix). We say that $\bf A$ is unitarily diagonalisable if it is unitarily similar to a diagonal matrix.

Definition 68 (Compact SVD). Discard zero entries on Σ to get $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^*$, where $\mathbf{U}_r \in \mathbb{C}^{m \times r}, \mathbf{\Sigma}_r \in \mathbb{C}^{r \times r}, \mathbf{V}_r \in \mathbb{C}^{m \times r}$ as:

$$\mathbf{A} = \underbrace{\begin{pmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_r \end{pmatrix}}_{\mathbf{U}_r} \underbrace{\frac{\mathrm{diag}(\sigma_1, \dots, \sigma_r)}{\mathbf{\Sigma}_r} \underbrace{\begin{pmatrix} \mathbf{v}_1 & \dots & \mathbf{v}_r \end{pmatrix}}_{\mathbf{V}_r^*} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

Definition 69 (Schatten norm). Schatten *p*-norm of a matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ is defined by applying vector *p*-norm to the vector of singular values, i.e.:

$$\|\mathbf{A}\|_p = \left(\sum_{i=1}^{\min m, n} \sigma_i^p\right)^{1/p}$$

Definition 70 (Diagonal matrix). A diagonal matrix \mathbf{D} is of the form:

$$\mathbf{D} = \begin{pmatrix} d_{11} & & & \\ & d_{22} & & \\ & & \ddots & \\ & & & d_{nn} \end{pmatrix}$$

Definition 71 (Block diagonal matrices). A block diagonal matrix D consists of submatrices like the following:

$$\mathbf{D} = \begin{pmatrix} \mathbf{D}_{11} & & & \\ & \mathbf{D}_{22} & & \\ & & \ddots & \\ & & & \mathbf{D}_{bb} \end{pmatrix}$$

Definition 72 (Triangular matrix). A triangular matrix \mathbf{T} is of the following form:

$$\mathbf{T} = \begin{pmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ & t_{22} & \cdots & t_{2n} \\ & & \ddots & \vdots \\ & & & t_{2n} \end{pmatrix}$$

Definition 73 (Block-triangular matrix). A block triangular matrix **T** is a matrix of the form:

$$\mathbf{T} = egin{pmatrix} \mathbf{T}_{11} & \mathbf{T}_{12} & \cdots & \mathbf{T}_{1k} \ & \mathbf{T}_{22} & \cdots & \mathbf{T}_{2k} \ & & \ddots & \vdots \ & & & \mathbf{T}_{kk} \end{pmatrix}$$

Definition 74 (Permutation matrix). A permutation matrix \mathbf{P} is a matrix where exactly one entry in each row and column is equal to 1, and all other entries are 0. For example:

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 1 \end{pmatrix}$$

Definition 75 (Hessenberg matrix). A Hessenberg matrix (upper shown here, but lower is easily seen) **A** or **H** is a matrix of the form:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ & a_{32} & a_{33} & \cdots & a_{3n} \\ & & \ddots & \ddots & \vdots \\ & & & a_{n,n-1} & a_{nn} \end{pmatrix}$$

Definition 76 (Unreduced matrix). A Hessenberg matrix $\bf A$ is said to be unreduced if all of its super(sub)-diagonal entries are non-zero.

Definition 77 (Projection matrix). A matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ is a projection, or idempotent, if $\mathbf{P}^2 = \mathbf{P}$.

Definition 78 (Orthogonal projection). A matrix $\mathbf{P} \in \mathbb{C}^{n \times n}$ is an orthogonal projection if $\mathbf{P}^2 = \mathbf{P}$ and $\mathbf{P}^* = \mathbf{P}$.

Definition 79 (Positive (semi-)definite). If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, it is positive definite if:

$$\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0, \quad \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{R}^n$$

It is positive semi-definite if:

$$\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge 0, \quad \forall \mathbf{x} \in \mathbb{R}^n$$

If $\mathbf{A} \in \mathbb{C}^{n \times n}$ is Hermitian (implied), it is positive definite if:

$$\mathbf{A} \succ \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle > 0, \quad \forall \mathbf{x} \neq \mathbf{0} \in \mathbb{C}^n$$

It is positive semi-definite if:

$$\mathbf{A} \succeq \mathbf{0} \iff \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle \ge 0, \quad \forall \mathbf{x} \in \mathbb{C}^n$$

Definition 80 (Loewner Partial-Order).

$$\begin{array}{l} A \succ B \iff A - B \succ 0 \\ A \succeq B \iff A - B \succeq 0 \end{array}$$

Definition 81 (Schur complement). Let $\mathbf{M} = \begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{C} \end{pmatrix}$. The Schur complement of **A** in **B** is $\mathbf{C} - \mathbf{B}^* \mathbf{A}^{-1} \mathbf{B}$.

Definition 82 (Diagonally dominant matrix). A matrix ${\bf A}$ is diagonally dominant if it is of the form

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

and the magnitude of the diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries in that row:

$$|a_{ii}| \ge \sum_{i \ne j} |a_{ij}|, \quad \forall i.$$

Definition 83 (Banded matrices). A matrix A is banded if other than inside a band of diagonals, all other elements are nonzero, eg.

Definition 84 (Non-asymptotic rate of convergence). If $\|\mathbf{T}\| < 1$, from $\|\mathbf{e}_k\| \leq \|\mathbf{T}\|^k \|\mathbf{e}_0\|$, it follows that after $k \geq \log(\varepsilon)/\log(\|\mathbf{T}\|)$, we have $\|\mathbf{e}_k\| \leq \varepsilon \|\mathbf{e}_0\|$ If $\|\mathbf{T}\| < 1$, then the factor $\|\mathbf{T}\|$ is called the nonasymptotic rate of convergence.

Definition 85 (Residual polynomial). A residual polynomial is a polynomial of degree k where $p_k(0) = 1$.

Definition 86 (Chebyshev polynomials of the first kind). Chebyshev polynomials of the first kind are defined recursively as:

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x), \quad k \ge 1$

Alternatively, we have explicit expressions:

$$T_k(x) = \begin{cases} \cos(k \arccos(x)) & |x| \le 1\\ \frac{1}{2} \left[(x + \sqrt{x^2 - 1})^k + (x + \sqrt{x^2 - 1})^{-k} \right] & |x| \le 1 \end{cases}$$

Definition 87 (Krylov subspace). The Krylov subspace of order k generated by the matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ and the vector $\mathbf{v} \in \mathbb{C}^n$ is defined as:

$$\mathcal{K}_k(\mathbf{A}, \mathbf{v}) = \operatorname{Span}\{\mathbf{v}, \mathbf{A}\mathbf{v}, \dots, \mathbf{A}^{k-1}\mathbf{v}\}, \quad k \ge 1$$

and where $\mathcal{K}_0(\mathbf{A}, \mathbf{v}) = \{\mathbf{0}\}$ (since all subspaces have to contain zero).

Definition 88 (Projection method). A projection method consists of a search subspace \mathcal{K}_k with $\dim(\mathcal{K}_k) = k$, a constraint subspace \mathcal{L}_k with $\dim(\mathcal{L}_k) = k$ and the Petrov-Galerkin conditions, which are to find some $\mathbf{x}_k \in \mathbf{x}_0 + \mathcal{K}_k$ such that $\mathbf{r}_k \perp \mathcal{L}_k$. A projection method is orthogonal if we wish to find $\mathcal{L}_k = \mathcal{K}_k$, and oblique if we wish to find $\mathcal{L}_k = \mathbf{A}\mathcal{K}_k$. More formally, let $\mathbf{x}_k = \mathbf{x}_0 + \mathbf{z}_k, \mathbf{z}_k \in \mathcal{K}_k$. Then the Petrov-Galerkin conditions imply $\mathbf{r}_0 - \mathbf{A}\mathbf{z}_k \perp \mathcal{L}_k$. So the projection method is defined

find
$$\mathbf{x}_k = \mathbf{x}_0 + \mathbf{z}_k$$
 such that
$$\begin{cases} \mathbf{z}_k \in \mathcal{K}_k \\ \langle \mathbf{r}_0 - \mathbf{A} \mathbf{z}_k, \mathbf{w} \rangle = 0, & \forall \mathbf{w} \in \mathcal{L}_k \end{cases}$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$u_{nn}$$