## **Computer Vision**

Robotics

## **Image Processing**

- Bayer filter
- RGB color space
- YUV
- HSI, HSV
- Convolution operators
- Binarization: Threshold, OTSU
- Erosion, dilation
- Line detection: RANSAC

#### Retina



## Bayer Pattern













## Color constancy



### Farbräume: RGB



# Additive color mixing



# Subtractive color mixing



#### YUV color model

$$Y := 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

$$B = Y + U/0,493$$
 $R = Y + V/0,877$ 
 $G = \frac{1}{0,587} \cdot Y - \frac{0,299}{0,587} \cdot R - \frac{0,114}{0,587} \cdot B$ 
 $\approx 1,704 \cdot Y - 0,509 \cdot R - 0,194 \cdot B$ 

#### Linear transformations

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix},$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}.$$

# YUV example



## Chroma subsampling



#### **HSV**

 $MAX := \max(R, G, B), \ MIN := \min(R, G, B)$ 

$$H := \begin{cases} 0, & \text{falls } MAX = MIN \Leftrightarrow R = G = B \\ 60^{\circ} \cdot \left(0 + \frac{G - B}{MAX - MIN}\right), & \text{falls } MAX = R \\ 60^{\circ} \cdot \left(2 + \frac{B - R}{MAX - MIN}\right), & \text{falls } MAX = G \\ 60^{\circ} \cdot \left(4 + \frac{R - G}{MAX - MIN}\right), & \text{falls } MAX = B \end{cases}$$

$$S_{ ext{HSV}} := \left\{ egin{aligned} 0, & ext{falls } MAX = 0 \Leftrightarrow R = G = B = 0 \ rac{MAX - MIN}{MAX}, & ext{sonst} \end{aligned} 
ight.$$

V := MAX

# **HSV**



Source: Wikipedia

## **HSL**



Source: Wikipedia



## Intensity

$$I_1 = \sqrt{R^2 + G^2 + B^2}$$

$$I_2 = (R + G + B)$$

$$I_3 = \max(R, G, B)$$

# Isoluminosity



## Convolution operators

- Box blurring
- Gaussian blurring
- Edge detection

| 1 | 1 | 2 | 5 | 6 | 3 | 6 | 7 | 3 |
|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 4 | 6 | 7 | 5 | 1 | 8 | 4 |
| 8 | 7 | 6 | 5 | 7 | 6 | 3 | 3 | 4 |
| 2 | 3 | 5 | 6 | 7 | 8 | 2 | 7 | 3 |
| 4 | 5 | 3 | 2 | 1 | 6 | 8 | 7 | 2 |
| 1 | 4 | 5 | 3 | 2 | 6 | 7 | 8 | 1 |
| 2 | 3 | 4 | 5 | 6 | 8 | 9 | 2 | 1 |

Input image



| 1 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 3 |
|---|---|---|---|---|---|---|---|---|
| 3 | 4 | 5 | 6 | 6 | 5 | 5 | 5 | 4 |
| 3 | 5 | 5 | 6 | 7 | 6 | 5 | 4 | 4 |
| 4 | 5 | 5 | 5 | 6 | 6 | 6 | 5 | 3 |
| 3 | 4 | 4 | 4 | 5 | 6 | 7 | 5 | 3 |
| 3 | 4 | 4 | 4 | 5 | 6 | 7 | 5 | 3 |
| 2 | 3 | 3 | 3 | 4 | 5 | 5 | 4 | 2 |

Output Image

Convolution operation

|                |            |                |   |   |   | -              |            | _              |
|----------------|------------|----------------|---|---|---|----------------|------------|----------------|
| 11             | 11         | <b>1</b> 2     | 5 | 6 | 3 | 6              | 7          | 3              |
| <b>1</b> 2     | <b>1</b> 3 | 14             | 6 | 7 | 5 | 1              | 8          | 4              |
| <sup>1</sup> 8 | <b>1</b> 7 | <sup>1</sup> 6 | 5 | 7 | 6 | 3              | 3          | 4              |
| 2              | 3          | 5              | 6 | 7 | 8 | 2              | 7          | 3              |
| 4              | 5          | 3              | 2 | 1 | 6 | <b>1</b> 8     | <b>1</b> 7 | <b>1</b> 2     |
| 1              | 4          | 5              | 3 | 2 | 6 | <b>1</b> 7     | <b>1</b> 8 | <b>1</b> 1     |
| 2              | 3          | 4              | 5 | 6 | 8 | <sup>1</sup> 9 | <b>1</b> 2 | <sup>1</sup> 1 |
|                |            |                |   |   |   |                |            |                |

# Blurring

| Box blur<br>(normalized)            | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |  |
|-------------------------------------|----------------------------------------------------------------------------------|--|
| Gaussian blur 3 x 3 (approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ |  |

| Operation      | Kernel                                                                      | Image result |
|----------------|-----------------------------------------------------------------------------|--------------|
| Identity       | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$         |              |
|                | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$       |              |
| Edge detection | $egin{bmatrix} 0 & 1 & 0 \ 1 & -4 & 1 \ 0 & 1 & 0 \end{bmatrix}$            |              |
|                | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |              |

## Sobel operator

$$\mathbf{G}_x = egin{bmatrix} +1 & 0 & -1 \ +2 & 0 & -2 \ +1 & 0 & -1 \end{bmatrix} * \mathbf{A} \quad ext{and} \quad \mathbf{G}_y = egin{bmatrix} +1 & +2 & +1 \ 0 & 0 & 0 \ -1 & -2 & -1 \end{bmatrix} * \mathbf{A}$$



|           | Prewitt                                                                 | Sobel                                                                  | Kirsch                                                                    |
|-----------|-------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|
| East      | $\begin{vmatrix} 1 & 1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & -1 \end{vmatrix}$ | $\begin{vmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{vmatrix}$ | $\begin{vmatrix} 5 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & -3 & -3 \end{vmatrix}$  |
| Northeast | $\begin{vmatrix} 1 & -1 & -1 \\ 1 & -2 & -1 \\ 1 & 1 & 1 \end{vmatrix}$ | $\begin{vmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{vmatrix}$ | $\begin{vmatrix} -3 & -3 & -3 \\ 5 & 0 & -3 \\ 5 & 5 & -3 \end{vmatrix}$  |
| North     | $\begin{vmatrix} -1 & -1 & -1 \\ 1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ | $\begin{vmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{vmatrix}$ | $\begin{vmatrix} -3 & -3 & -3 \\ -3 & 0 & -3 \\ 5 & 5 & 5 \end{vmatrix}$  |
| Northwest | $\begin{vmatrix} -1 & -1 & 1 \\ -1 & -2 & 1 \\ 1 & 1 & 1 \end{vmatrix}$ | $\begin{vmatrix} -2 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 2 \end{vmatrix}$ | $\begin{vmatrix} -3 & -3 & -3 \\ -3 & 0 & 5 \\ -3 & 5 & 5 \end{vmatrix}$  |
| West      | $\begin{vmatrix} -1 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & 1 & 1 \end{vmatrix}$ | $\begin{vmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{vmatrix}$ | $\begin{vmatrix} -3 & -3 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & 5 \end{vmatrix}$  |
| Southwest | $\begin{vmatrix} 1 & 1 & 1 \\ -1 & -2 & 1 \\ -1 & -1 & 1 \end{vmatrix}$ | $\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{vmatrix}$ | $\begin{vmatrix} -3 & 5 & 5 \\ -3 & 0 & 5 \\ -3 & -3 & -3 \end{vmatrix}$  |
| South     | $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ -1 & -1 & -1 \end{vmatrix}$ | $\begin{vmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{vmatrix}$ | $\begin{vmatrix} 5 & 5 & 5 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{vmatrix}$  |
| Southeast | $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -1 \end{vmatrix}$ | $\begin{vmatrix} 2 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -2 \end{vmatrix}$ | $\begin{vmatrix} 5 & 5 & -3 \\ -3 & 0 & -3 \\ -3 & -3 & -3 \end{vmatrix}$ |

## Examples

https://pixlr.com/editor/

## Otsu's thresholding



#### Niblak binarization

$$T_{Niblack} = m + k * s$$

$$T_{Niblack} = m + k \sqrt{\frac{1}{NP}} \sum (p_i - m)^2$$

$$= m + k\sqrt{\frac{\sum p_i^2}{NP}} - m^2 = m + k\sqrt{B}$$

## Morphological: Erosion

| 1 | 1 | 1 |
|---|---|---|
| 1 | 1 | 1 |
| 1 | 1 | 1 |

Set of coordinate points =







#### Dilation





## Line fit: Random Sample Consensus



#### **RANSAC**

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC):
   Very general framework for model fitting in the presence of outliers
- Outline
  - Choose a small subset of points uniformly at random
  - Fit a model to that subset
  - Find all remaining points that are "close" to the model and reject the rest as outliers
  - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. <u>Random Sample Consensus: A Paradigm for Model</u> <u>Fitting with Applications to Image Analysis and Automated Cartography</u>. Comm. of the ACM, Vol 24, pp 381-395, 1981.

## RANSAC for line fitting

- Repeat N times:
- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

## Choosing the parameters

- Initial number of points s
  - Typically minimum number needed to fit the model
- Distance threshold t
  - Choose t so probability for inlier is p (e.g. 0.95)
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ :  $t^2=3.84\sigma^2$
- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys

## Choosing the parameters

- Initial number of points s
  - Typically minimum number needed to fit the model
- Distance threshold t
  - Choose t so probability for inlier is p (e.g. 0.95)
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ :  $t^2=3.84\sigma^2$
- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

| (1- | (1- | $(e)^{s}$ | =1-p       |
|-----|-----|-----------|------------|
| 1   | 1-  |           | <b>-</b> P |

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

|   | proportion of outliers $e$ |     |     |     |     |     |      |  |
|---|----------------------------|-----|-----|-----|-----|-----|------|--|
| S | 5%                         | 10% | 20% | 25% | 30% | 40% | 50%  |  |
| 2 | 2                          | 3   | 5   | 6   | 7   | 11  | 17   |  |
| 3 | 3                          | 4   | 7   | 9   | 11  | 19  | 35   |  |
| 4 | 3                          | 5   | 9   | 13  | 17  | 34  | 72   |  |
| 5 | 4                          | 6   | 12  | 17  | 26  | 57  | 146  |  |
| 6 | 4                          | 7   | 16  | 24  | 37  | 97  | 293  |  |
| 7 | 4                          | 8   | 20  | 33  | 54  | 163 | 588  |  |
| 8 | 5                          | 9   | 26  | 44  | 78  | 272 | 1177 |  |
|   |                            |     |     |     |     |     |      |  |

Source: M. Pollefeys

# • Initial humber of positions the parameters

- Typically minimum number needed to fit the model
- Distance threshold t
  - Choose t so probability for inlier is p (e.g. 0.95)
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ :  $t^2=3.84\sigma^2$
- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1-\left(1-e\right)^{s}\right)^{N}=1-p$$

$$N = \log(1-p)/\log(1-(1-e)^s)$$



## Choosing the parameters

- Initial number of points s
  - Typically minimum number needed to fit the model
- Distance threshold t
  - Choose t so probability for inlier is p (e.g. 0.95)
  - Zero-mean Gaussian noise with std. dev.  $\sigma$ :  $t^2=3.84\sigma^2$
- Number of samples N
  - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
  - Should match expected inlier ratio

# Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
  - $-N=\infty$ , sample\_count =0
  - While N >sample\_count
    - Choose a sample and count the number of inliers
    - Set e = 1 (number of inliers)/(total number of points)

Recompute *N* from *e*:

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

Increment the sample\_count by 1

## RANSAC pros and cons

#### Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

#### Cons

- Lots of parameters to tune
- Can't always get a good initialization of the model based on the minimum number of samples
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

## Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

# Example

