(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-288138

(43)公開日 平成9年(1997)11月4日

(51) Int.Cl. ⁶ G 0 1 R 31/0	識別記号 12	庁内整理番号	F I G 0 1 R 3	1/02		技術表	示箇所
H 0 2 H 3/0	18			H 0 2 H 3/08		P	
					•	T	
3/1	6		3/16			A	
			存益請求	未請求	請求項の数1	OL (全	3 頁)
(21)出願番号	特願平8-99833		(71)出願人	00000510	08		
				株式会社	日立製作所		
(22)出願日	平成8年(1996)4月	平成8年(1996)4月22日		東京都千	代田区神田駿河	可台四丁目 6 都	番地
			(71)出願人	390023928			
			日立エンジニアリング			株式会社	
			茨城県日		立市幸町3丁目2番1号		
			(72)発明者	玉手 真	人		-
					立市幸町三丁		工立日
				ンジニア	プリング株式会社	性内	
			(72)発明者	11-431-4			
					立市幸町三丁		日立エ
·					プリング株式会社	吐内	
			(74)代理人	弁理士	小川 勝男		
				最終頁に続く			

(54) 【発明の名称】 短絡検出回路

(57)【要約】

【課題】ツェナーダイオードと発光ダイオードにより短 絡を検出する。

【解決手段】抵抗,ツェナーダイオード,発光ダイオードを追加して短絡を検出する。

図 1

3/31/05, EAST Version: 2.0.1.4

1

【特許請求の範囲】

【請求項1】短絡時の保護用のヒューズと電磁弁の開閉 用のリレー接点と現場に設置している電磁弁からなる回 路において、上記リレー接点と上記電磁弁との間に抵抗 を有し上記抵抗と並列にツェナーダイオードと発光ダイ オードとを備えた経路を有したことを特徴とする短絡検 出回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はヒューズを介して電 10 源を供給する電磁弁回路に関する。

[0002]

【従来の技術】従来電磁弁を開閉させようとする時は、 図3に示すように制御盤の電源AとBよりヒューズ1と リレー接点2を介して供給される。

【0003】ヒューズの目的は、ヒューズで分岐された 回路が短絡時に過電流が流れ、その過電流でヒューズを 溶断し回路と電流から切り離す。

【0004】ところが電磁弁の設置場所によってはケー ブルが長くなり、ケーブルの末端で短絡するとケーブル 自体の抵抗のため、ヒューズを切る程の過電流が流れな いことがある。また、短絡が抵抗 $O[\Omega]$ (完全短絡) で短絡せずにある抵抗をもって短絡した場合(不完全短 絡)にも同様に、ヒューズを切る程の過電流が流れない ことがある。そのため、短絡が起きて電磁弁の開閉操作 が不能になっても、これを検出することができないとい う改善すべき点があった。

[0005]

【発明が解決しようとする課題】本発明の目的は従来の ヒューズでは検出できない程度の短絡電流が流れた場合 30 の短絡事故を検出することにある。

[0006]

【課題を解決するための手段】ツェナーダイオードの特 性を図2に示す。

【0007】順方向特性とは、通常のダイオードの順方 向特性と同様電圧がかかれば導通する特性を持つ。

【0008】逆方向特性とは、順方向特性と逆の向きに 電圧をかけた場合に、ある一定値(降伏電圧: Vェ)ま では不導通の特性を持ち、その値を超えると導通する特* *性である。

【0009】この特性に注目し、図1に示すように電磁 弁に電源を供給するルート (ルートC) の片側に抵抗を 入れ、この抵抗と並列のルート (ルートD) にツェナー ダイオードと発光ダイオードを直列に接続する。抵抗値 は、定格負荷時には抵抗での電圧降下がVzを超えない 様に、また短絡時にはVzを超える様に選定する。

2

【0010】上記により電磁弁回路に短絡が発生する と、発光ダイオードが点灯し短絡を検出できる。

[0011]

【発明の実施の形態】図1に実施例を示す。

【0012】電磁弁3は、制御盤の電源(AとB)より ヒューズ1と電磁弁を開閉するためのリレー接点2を介 して電源が供給される。抵抗6.ツェナーダイオード 発光ダイオード5は図に示すようにリレー接点2と 電磁弁3の間に抵抗6と並列に接続される。

【0013】そこで通常時(短絡が起きていない時)は 式1により抵抗6にかかる電圧は1∨となる。これは、 ツェナーダイオードの降伏電圧Vz=2(V)より低い 電圧であるためルートDの方からは電流は流れず、ルー トCを通って電流が流れる。短絡が起きた場合は流れる 電流が過電流となり、ヒューズ1の設定値5A以上の時 はヒューズが溶断して短絡がヒューズ1で検知できる。 【0014】しかし、電磁弁の設置場所によっては長く 敷設したケーブルの末端で短絡した場合やある抵抗をも って短絡した場合(不完全短絡)はヒューズ1を溶断す る程の過電流が流れないケースがある。

【0015】不完全短絡を例にとると、20〔Ω〕の抵 抗をもって不完全短絡した場合、式2により、全体の電 流は3.33 (A)で流れている。ヒューズ1の設定値 は5〔A〕なのでヒューズ1は溶断せず短絡を検出でき ない。ところが、全体の電流が3.33 (A)流れてい れば、抵抗6の所には式3より33.3 (V)の電圧が かかっており、ツェナーダイオード4の降伏電圧の設定 値2〔V〕よりも高い値なのでルートDの方を通る様に なる。すると発光ダイオードが点灯し短絡が検出するこ とができる。

[0016]

【数1】

V2 = V0 - V1 = 100 - 99 = 1 (V) $V1 = V0 \times (R1/(R1+R2))$ by $V1 = 100 \times (1000/(1000+10))$ =99(V)

…(数1)

ただし.

V0:電源Aの電圧 [V] R1:電磁弁3の抵抗〔Ω〕

 $R1 = W/I^2 = 10/0.1^2 = 1000(\Omega)$

I:通常時に全体に流れる電流 [A]

W:電磁弁の容量 (W)

V1:電磁弁3にかかる電圧〔V〕 V2:抵抗6にかかる電圧(V)

※R2:抵抗6の抵抗(Ω)

[0017] 【数2】

 $I = V0/(R3 + R2) \pm 0$

3/31/05, EAST Version: 2.0.1.4

Ж

3 I=100/(20+10)=3.33(A) 4 …(数2)

V 0:電源Aの電圧 (V)

* I: 不完全短絡時の電流〔A〕

R3: 不完全短絡の抵抗〔Ω〕

[0018]

R2:抵抗6の抵抗[Ω]

【数3】

 $E = R2 \times I \downarrow 0$

 $E = 1.0 \times 3.33 = 33.3$ (V)

…(数3)

R2:抵抗6の抵抗〔Ω〕

I:不完全短絡時の電流〔A〕

E:抵抗6の両端の電圧(V)

[0019]

※【図1】本発明の一実施例の回路図。

【図2】ツェナーダイオードの特性図。

【図3】従来技術による回路図。

10 【符号の説明】

1…ヒューズ、2…リレー接点、3…電磁弁、4…ツェナーダイオード、5…発光ダイオード、6…抵抗、A,

※ B…電源、C, D…ルート。

【発明の効果】本発明により電磁弁における短絡を発光 ダイオードの点灯により感知することができる。

【図面の簡単な説明】

【図1】

【図2】

2 2

【図3】

2 1

迎方向特性 斑方向特性

⊠ 3

V₂: 降伏電圧 (V)

フロントページの続き

(72)発明者 今野 功

茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 DERWENT-ACC-NO: 1998-029250

DERWENT-WEEK:

199803

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Short circuit detector circuit - has

resistor and route

equipped with zener diode and light

emitting diode which

are connected in parallel manner

PATENT-ASSIGNEE: HITACHI ENG CO LTD[HITJ] , HITACHI

LTD[HITA]

PRIORITY-DATA: 1996JP-0099833 (April 22, 1996)

PATENT-FAMILY:

PUB-NO PUB-DATE

LANGUAGE PAGES MAIN-IPC

November 4, 1997 N/AJP 09288138 A

003 G01R 031/02

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

N/A1996JP-JP 09288138A

0099833 April 22, 1996

INT-CL (IPC): G01R031/02, H02H003/08, H02H003/16

ABSTRACTED-PUB-NO: JP 09288138A

BASIC-ABSTRACT:

The circuit consists of a fuse (1) which is used for productive purpose at the time of short circuit. A relay contact (2) is used to open and/or close the connection of a solenoid valve (3).

A resistor (6) is connected between the relay contacts and the solenoid valves.

The route (D) equipped with a zener diode (4) and a light emitting diode (5) is parallelly connected to the resistor.

ADVANTAGE - Detects short circuit in solenoid valve, at early stages.

CHOSEN-DRAWING: Dwg.1/3

TITLE-TERMS: SHORT CIRCUIT DETECT CIRCUIT RESISTOR ROUTE

EQUIP ZENER DIODE

LIGHT EMIT DIODE CONNECT PARALLEL MANNER

DERWENT-CLASS: S01 X13

EPI-CODES: S01-G04A1; S01-G10; X13-C01A; X13-C01B;

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1998-023496