Topologie & Calcul différentiel

Quizz 1

précisant	le ou les	es cas ci-dessous, préciser si la notion définie est une distance ou pas, en conditions invalidées. Décrire, lorsqu'il s'agit d'une distance, et que cela ne des boules.		
Vrai 🗆	Faux □	La somme de deux distances		
Vrai 🗆	Faux □	Le produit de deux distances		
Vrai □	Faux \square	Le symbole de Kronecker $(x,y) \in X \times X \mapsto \delta_{xy} = 1$ si $x \neq y$, et 0 sinon.		
Vrai \square (y_1,\ldots,y_n)	Faux \square y_n de \mathbb{R}^n .	Le nombre de composantes différentes entre deux vecteurs (x_1, \dots, x_n) et		
2) Dans chacun des cas ci-dessous, préciser si l'ensemble proposé est un ouvert ou pas $(\mathbb{R}^n$ est supposé muni de la distance euclidienne canonique)				
Vrai 🗆	Faux □	$]0,+\infty[\subset\mathbb{R}$		
Vrai \Box	Faux □	$\mathbb Q$		
Vrai 🗆	Faux □	$\bigcup]q_k-1/2^k, q_k+1/2^k[$, où q_k est une énumération des rationnels.		
(•) Vrai \Box Faux \Box $\bigcap]q_k-1/2^k, q_k+1/2^k[$, où q_k est une énumération des rationnels.				
Vrai □	Faux □	$]0,1[\times]0,1[\times\{0\}\subset\mathbb{R}^3$		
3) Soit X un espace métrique, et $A \subset B \subset X$.				
Vrai 🗆	Faux □	$ar{A}\subset \overline{B}$		
Vrai 🗆	Faux □	$\partial A \subset \partial B$		
(\bullet) Vrai \square Faux \square Un ensemble discret est d'intérieur vide.				
4) Suite	s			
Vrai 🗆	Faux □	Une suite convergente sur $\mathbb R$ est bornée		
Vrai □	Fашх □	Une suite bornée sur ℝ est convergente		

(•) Vrai	□ Faux	\square Une suite sur $\mathbb R$ peut admettre une infinité de valeurs d'adhérence
Vrai □	Faux □	Une partie K finie d'un espace métrique est toujours compacte.
Vrai □	Faux □	Une partie finie d'un espace métrique est toujours complète .
Vrai □ pacte.	Faux □	L'image réciproque d'un compact par une application continue est com-