Quantum II midterm question

Vincent Baker

May 12, 2015

1 Problem 1: "Graph thing with the lines"

Recall the lowering operator $L_{-}|j, m\rangle = \sqrt{(j+m)(j-m+1)}|j, m-1\rangle$. The lowering operator is the same for any angular momentum state (orbit, spin or total).

The 6 states of an electron with orbital angular momentum 1, spin $\frac{1}{2}$ are shown below.

The top-right state $|{}^{\ell}_{m_{\ell}}{}^{s}_{m_{s}}\rangle = |{}^{1}_{1}{}^{1/2}_{1/2}\rangle$ can be written in the TOTAL angular momentum basis as $|{}^{J}_{M_{J}}\rangle = |{}^{3/2}_{3/2}\rangle$.

a) In the total angular momentum basis apply the lowering operator J_{-} to the top-right state basis to find the next lower state.

$$J_{-}|_{3/2}^{3/2}\rangle = \alpha|_{1/2}^{3/2}\rangle$$
 (1.1)

b) Also apply the lowering operator $(L_- + S_-)$ to the top-right state in the spin-orbit basis:

$$(L_{-} + S_{-}) \begin{vmatrix} 1 & 1/2 \\ 1 & 1/2 \end{vmatrix} = \beta \begin{vmatrix} 1 & 1/2 \\ 0 & 1/2 \end{vmatrix} + \gamma \begin{vmatrix} 1 & 1/2 \\ 1 & -1/2 \end{vmatrix}$$
 (1.2)

c) Use 1.1 and 1.2 to write the total angular momentum state $|{}^{3/2}_{1/2}\rangle$ as a linear combination of the spin-orbit states $|{}^{1}_{0}\>^{1/2}\rangle$ and $|{}^{1}_{1}\>^{1/2}\>^{1/2}\rangle$.

2 Solution

a) Applying J_{-} we find:

$$J_{-}|_{3/2}^{3/2}\rangle = \sqrt{3}|_{1/2}^{3/2}\rangle$$
 (2.1)

b) Applying $(L_- + S_-)$ we find:

$$(L_{-} + S_{-}) \left| {}^{1}_{1} \right| {}^{1/2}_{1/2} \rangle = \sqrt{2} \left| {}^{1}_{0} \right| {}^{1/2}_{1/2} \rangle + \sqrt{1} \left| {}^{1}_{1} \right| {}^{1/2}_{1/2} \rangle$$
 (2.2)

c) We can therefore write the total angular momentum state as:

$$\begin{vmatrix} 3/2 \\ 1/2 \end{vmatrix} = \sqrt{\frac{2}{3}} \begin{vmatrix} 1 & 1/2 \\ 0 & 1/2 \end{vmatrix} + \sqrt{\frac{1}{3}} \begin{vmatrix} 1 & 1/2 \\ 1 & -1/2 \end{vmatrix}$$
 (2.3)