

Scientific Computing 372

Exercises 5: Numerical differentiation and integration

1. (a) Given the data,

х	1.5	1.9	2.1	2.4	2.6	3.1
f(x)	1.0628	1.3961	1.5432	1.7349	1.8423	2.0397

compute f'(2) and f''(2) using

- i. polynomial interpolation over three nearest-neighbour points, and
- ii. the natural cubic spline interpolant spanning all these data points.
- (b) Determine f'(0) and f'(1) from the following noisy data:

X	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4
f(x)	1.9934	2.1465	2.2129	2.1790	2.0683	1.98448	1.7655	1.5891

- i. First, determine the best polynomial fit in the least-squares sense; then write down an equation for the derivative, and substitute for the required x.
- ii. Plot the interpolating function together with the set of original data points.
- (c) Use polynomial interpolation to compute f' and f'' at x = 0, using the following data:

x	-2.2	-0.3	0.8	1.9
f(x)	15.180	10.962	1.920	-2.040

Given that $f(x) = x^3 - 0.3x^2 - 8.56x + 8.448$, gauge the accuracy of the result.

- 2. For parts (a) to (c), also solve the integrals by using Scientific Python. In particular, consider how to to use scipy.integrate.quad.
 - (a) Determine

$$\int_1^\infty \frac{dx}{1+x^4},$$

with the trapezoidal rule using five panels and compare the result with the "exact" integral 0.24375. Hint: Use the transformation x = 1/t.

(b) Evaluate the integral

$$\int_0^\infty \frac{x \, dx}{e^x + 1}$$

by Gauss-Legendre quadrature to six decimal places. *Hint*: Substitute $e^x = \ln(1/t)$.

(c) Evaluate

$$\int_0^{\pi/4} \frac{dx}{\sqrt{\sin x}}$$

with Romberg integration. *Hint*: Use the transformation $\sin x = t^2$.

(d) A power spike in an electric circuit results in the current

$$i(t) = i_0 e^{-t/t_0} \sin \frac{2t}{t_0}$$

across a resistor. The energy *E* dissipated by the resistor is

$$E = \int_0^\infty R[i(t)]^2 dt.$$

Find *E* using the data $i_0 = 100$ A, $R = 0.5 \Omega$, and $t_0 = 0.01$ s.

(e) Determine how many nodes are required to evaluate

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx$$

with Gauss–Legendre quadrature to six decimal places. The exact integral, round to six decimal places, is 1.41815.