线性代数 B 试题 (A 卷)

座号	班级	学号	姓名
₩ 二	ガナ スガ	玄 岩	U + 2
/ _	クエンス	.1 1	УТ- ¹ П

(试卷共7页, 八道大题. 解答题必须有解题过程, 试卷后面空白页撕下做稿纸, 试卷不得拆散)

题号	_	11	11]	四	五	六	七	八	总分
得分									
签名									

- 一、 填空题 (每小题 4 分, 共 20 分)
- 1、已知 $\alpha = (1,2,3)$, $\beta = (1,\frac{1}{2},\frac{1}{3})$,设 $A = \alpha^T \beta$,其中 $\alpha^T \in \alpha$ 的转置,则 $A^4 = \underline{}$
- 2、二次型 $f(x_1,x_2,x_3)=2x_1^2+3x_2^2+tx_3^2+2x_1x_2+2x_1x_3$ 是正定的,则 t 的取值范围是
- 3、矩阵乘积 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 5 & 4 \\ 1 & 8 & 5 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ =_______
- 4、设A是 3×4 矩阵且r(A)=3,若 α_1,α_2 为非齐次线性方程组 $AX=\beta$ 的 2 个不同的解,则它的通解为_____
- 5、设矩阵 \mathbf{A} 与 \mathbf{B} 相似, 其中 $\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & a \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$. 则有,

二、(10分)讨论a取何值时,下列线性方程组

$$\begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} a-3 \\ -2 \\ -2 \end{pmatrix}$$

(1)有唯一解;(2)无解;(3)有无穷解,并在有无穷多解时,用其导出方程组的基础解系表示方程组的通解。

三、(10分)设A,B为n阶方阵,且满足AB+B-2A=3I,

(1) 证明**B**-2**I** 为可逆矩阵;

(2) 若
$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求矩阵 \mathbf{B} 。

四、(10 分) 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{pmatrix}$$
, \mathbf{A}^* 是其伴随矩阵,试求行列式 $|(\frac{1}{2}\mathbf{A})^* + (4\mathbf{A})^{-1}|_{\circ}$

五、(10 分) 设向量组 $\boldsymbol{\alpha}_1 = (1,0,2,1)^T$, $\boldsymbol{\alpha}_2 = (1,2,0,1)^T$, $\boldsymbol{\alpha}_3 = (2,1,3,0)^T$, $\boldsymbol{\alpha}_4 = (2,5,-1,4)^T$, $\boldsymbol{\alpha}_5 = (1,-1,3,-1)^T$,

- (1) 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ 的秩和一个极大无关组;
- (2) 用所求的极大无关组线性表出剩余的向量。

六、(14分)设 $\alpha_1, \alpha_2, \alpha_3$ 是向量空间 R^3 的一个基, $\beta_1 = 2\alpha_2 + 3\alpha_3, \beta_2 = \alpha_2 + 2\alpha_3, \beta_3 = 3\alpha_1$

- (1) 证明 β_1 , β_2 , β_3 也是 R^3 的一个基;
- (2) 求基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵;
- (3) 设向量 $\gamma_1 = \alpha_1 \alpha_2 + 2\alpha_3$, $\gamma_2 = \beta_1 \beta_2 + 2\beta_3$, 求 $\gamma_1 \gamma_2$ 分别关于基 $\alpha_1, \alpha_2, \alpha_3$ 和基 $\beta_1, \beta_2, \beta_3$ 的坐标。

七、(15 分) 设二次型 $f(x_1, x_2, x_3) = x_1^2 - 2x_2^2 - 2x_3^2 - 4x_1x_2 + 4x_1x_3 + 8x_2x_3$,

- (1) 写出二次型 $f(x_1, x_2, x_3) = \boldsymbol{X}^T \boldsymbol{A} \boldsymbol{X}$ 的矩阵 \boldsymbol{A} ;
- (2) 求一个正交矩阵Q,使 Q^TAQ 成对角矩阵;
- (3) 求 $|A^2-2A-2I|$ 的值。

八、(6分)已知A为3阶方阵, $\lambda_1,\lambda_2,\lambda_3$ 为A的三个不同的特征值, $\alpha_1,\alpha_2,\alpha_3$ 分别为相应的特征向量,又 $\beta=\alpha_1+\alpha_2+\alpha_3$,试证: $\beta,A\beta,A^2\beta$ 线性无关。