Name: Richard

R. Hammack

Score:_

Directions: Problems 1–3 on Page 1 are short-answer. For all other problems you must show your work. This test is closed-book and closed-notes. No calculators or other electronic devices.

1. (12 points)

(a) Let
$$X = \{...-2, 8, 18, 28, 38, 48, 58, ...\}$$
. Write X -in-set-builder notation. $X = \{-2 + 10n : n \in \mathbb{Z}\}$ or $X = \{8 + 10n : n \in \mathbb{Z}\}$ etc.

(b) $\{5n : n \in \mathbb{Z}, n^2 \le 16\} = \{-20, -15, -10, -5, 0, 5, 10, 15, 20\}$

(c)
$$\bigcup_{n\in\mathbb{N}}\left\{x\in\mathbb{R}:|x|>1/n\right\}=\boxed{\mathbb{R}-\frac{2}{9}0}\quad\text{or}\quad\left\{x\in\mathbb{R}:x\neq0\right\}$$

2. (12 points) Suppose A and B are sets for which |A| = m and |B| = n. Find the cardinalities:

(a)
$$|\mathscr{P}(A) - \{A\}| = 2^{m}$$

(b)
$$|\mathscr{P}(A) \times \mathscr{P}(A \times B)| = 2^m 2^{mn} = \boxed{2^{m+mn}} = \boxed{2^m (1+n)}$$

(c)
$$|\{X \in \mathcal{P}(B) : |X| = 5\}| = \left(\begin{array}{c} n \\ 5 \end{array}\right) \left(\begin{array}{c} 1 \\ 3 \end{array}\right)$$

3. (4 points)

(a) Here are the first several rows of Pascal's triangle. Write the next row.

(b) Use part (a) to find the coefficient of x^3y^3 in $(2x-y)^6$. Simplify your answer as much as possible.

$$20(2x)^{3}(-y^{3}) = -20.8 x^{3}y^{3} = -160 x^{3}y^{3}$$

Thus the coefficient is $[-160]$

4. (12 points) This question concerns the following statement.

For every real number x, there is a real number y for which xy > x.

(a) Is this statement true or false? Explain.

False because if
$$x=0$$
, there is no y for which $xy>x$, that is, $0y>0$.

(b) Write the statement in symbolic form.

(c) Form the negation of your answer from (b) above, and simplify.

$$\sim (\forall x \in R, \exists y \in R, xy > x)$$

$$= \exists x \in R, \forall y \in R, \lambda(xy > x)$$

$$= \exists x \in R, \forall y \in R, \lambda(xy > x)$$

(d) Write the negation from (c) above as a well-formed English sentence.

There is a real number 2 with the property that $xy \le x$ for every real number y.

How many 10-digit integers have fewer than four 0's? 5. (10 points) of these 61:11 ((2) 98 of these 1111 ((9) 99 of these 1.1.1.1.1.1 < 9'0 of these 03 no (Note: a O can't go in the leading position because otherwise we wouldn't have a 10-digit number.)

By the addition principle, the answer is

\[\begin{pmatrix} 9 \qq 1 \qq \qq 10 \\ \qq \qq 10 \end{pmatrix}
\] 6. (10 points) How many 5-digit positive integers are there that are even or contain no 0's? A (even) B (no 0's) 11260 | 11262 11264 78992 78996 11267 11269 78993 | | A | = 9,10,10,10,5 | 13| = 9999 1AAB = 9.9. Answer: | AUB = IA | + IB | - IANB |

 $= 45000 + 9^5 - 4.94$

7. (10 points) Suppose $x \in \mathbb{Z}$. Prove: If $x^2 - 6x + 5$ is even, then x is odd. [Use contrapositive.]

Proof Suppose x is not odd. Then \dot{x} is even, so x = 2a for some $a \in \mathbb{Z}$. So $\chi^2 - 6x + 5 = (2a)^2 - 6(2a) + 5 = 4a^2 - 12a + 4 + 1$ $= 2(2a^2 - 6a + 2) + 1$. We have shown that $\chi^2 - 6x + 5 = 2b + 1$. for $b = 2a^2 - 6a + 2$. Therefore $\chi^2 - 6x + 5$. is odd.

8. (10 points) Prove that $\sqrt{2}$ is irrational.

[Use contradiction.]

Proof Suppose for the sake of contradiction that $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{a}{b}$ for integers a and b. We may assume this fraction is fully reduced, so a and b are not both even. Observe that

$$\sqrt{2} = \frac{a}{b}$$
 $\sqrt{2} = \frac{a}{b}^{2}$
 $2b^{2} = a^{2}$
 (x)

Consequently a is even which means a is even, so b must be odd. But a even means a = 2n for some $n \in \mathbb{Z}$. Putting this into equation (*) gives $2b^2 = (2n)^2$ or $2b^2 = 4n^2$ so $b^2 = 2n^2$. Hence b^2 is even, so b is even. Thus b is both even and odd, a contradiction \mathbb{Z}

9. (10 points) Prove: If a and b are integers, then $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$. [Use direct proof]

Proof Assume 9 b are integers.

Then by the binomial theorem,

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
.

Then $(a+b)^3 - (a^3 + b^3) = 3a^2b + 3ab^2 = 3(a^2b + ab^2)$.

Then $(a+b)^3 - (a^3 + b^3) = 3a^2b + 3ab^2 = 3(a^2b + ab^2)$.

From this, $3 \mid ((a+b)^3 - (a^3 + b^3))$ which implies $(a+b)^3 = a^3 + b^3$ (mod 3)

10. (10 points) Prove: If $n \in \mathbb{Z}$, then $4 \mid n^2$ or $4 \mid (n^2 + 3)$.

Proof (Direct) Assume $n \in \mathbb{Z}$ Case F Suppose n is even. Then n = 2afor some $a \in \mathbb{Z}$, and $n^2 = 4a^2$. This means $4/n^2$.

Case II Suppose n is odd. Then n = 2a + 1for some $a \in \mathbb{Z}$ and $n^2 + 3 = (2a + 1)^2 + 3$ $= 4a^2 + 4a + 1 + 3 = 4a^2 + 4a + 4 = 4(a^2 + a + 1).$ This means $4(n^2 + 3)$.

The cases above show 4/n2 or 4/(n2+3).