

Session 15

Project I Question

Session 15: Project I

Table of Contents

- 1. Introduction
- 2. Problem Statement
- 3. Output

1. Introduction

This assignment will help you to consolidate the concepts learnt in the session.

2. Problem Statement

1. Get the Metadata from the above files.

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4656 entries, 0 to 4655
Data columns (total 12 columns):
Indicator
                         4656 non-null object
PUBLISH STATES
                        4656 non-null object
Year
                        4656 non-null int64
WHO region
                        4656 non-null object
World Bank income group 4656 non-null object
                        4656 non-null object
Country
Sex
                        4656 non-null object
Display Value
                        4656 non-null int64
Numeric
                         4656 non-null float64
Low
                         0 non-null float64
                         0 non-null float64
High
                          0 non-null float64
Comments
dtypes: float64(4), int64(2), object(6)
memory usage: 436.6+ KB
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117208 entries, 0 to 117207
Data columns (total 21 columns):
STATION
               117208 non-null object
               117208 non-null object
STATION NAME
DATE
               117208 non-null int64
PRCP
               117208 non-null int64
               117208 non-null int64
SNWD
               117208 non-null int64
SNOW
TMAX
              117208 non-null int64
MINT
              117208 non-null int64
WDFG
              117208 non-null int64
              117208 non-null int64
PGTM
              117208 non-null int64
WSFG
              117208 non-null int64
WT09
WT07
              117208 non-null int64
              117208 non-null int64
WT01
              117208 non-null int64
WT06
              117208 non-null int64
WT05
              117208 non-null int64
WT04
              117208 non-null int64
WT16
WT08
              117208 non-null int64
              117208 non-null int64
WT18
WT03
               117208 non-null int64
dtypes: int64(19), object(2)
memory usage: 18.8+ MB
```

2. Get the row names from the above files.

Expected Output:

```
array([ 0, 1, 2, ..., 4653, 4654, 4655], dtype=int64)

array([ 0, 1, 2, ..., 117205, 117206, 117207], dtype=int64)
```

3. Change the column name from any of the above file.

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

4. Change the column name from any of the above file and store the changes made permanently.

Expected Output:

	Indicator_id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

5. Change the names of multiple columns.

Expected Output:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN

6. Arrange values of a particular column in ascending order.

Expected Output:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1270	Life expectancy at birth (years)	Published	1990	Europe	High-income	Germany	Male	72	72.0	NaN	NaN	NaN
3193	Life expectancy at birth (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Male	65	65.0	NaN	NaN	NaN
3194	Life expectancy at birth (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Both sexes	68	68.0	NaN	NaN	NaN
3197	Life expectancy at age 60 (years)	Published	1990	Europe	Lower-middle- income	Republic of Moldova	Male	15	15.0	NaN	NaN	NaN

7. Arrange multiple column values in ascending order.

	Indicator_id	Country	Year	WHO Region	Publication Status
0	Life expectancy at birth (years)	Andorra	1990	Europe	Published
1	Life expectancy at birth (years)	Andorra	2000	Europe	Published
2	Life expectancy at age 60 (years)	Andorra	2012	Europe	Published

8. Make **country** as the first column of the dataframe.

Expected Output:

	Country	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Sex	Display Value	Numeric	Low	High	Comments
0	Andorra	Life expectancy at birth (years)	Published	1990	Europe	High-income	Both sexes	77	77.0	NaN	NaN	NaN
1	Andorra	Life expectancy at birth (years)	Published	2000	Europe	High-income	Both sexes	80	80.0	NaN	NaN	NaN
2	Andorra	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Female	28	28.0	NaN	NaN	NaN
3	Andorra	Life expectancy at age 60 (years)	Published	2000	Europe	High-income	Both sexes	23	23.0	NaN	NaN	NaN
4	United Arab Emirates	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High-income	Female	78	78.0	NaN	NaN	NaN

9. Get the column array using a variable

Expected Output:

```
array(['Europe', 'Europe', 'Europe', ..., 'Africa', 'Africa', 'Africa'], dtype=object)
```

10. Get the subset rows 11, 24, 37

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
11	Life expectancy at birth (years)	Published	2012	Europe	High-income	Austria	Female	83	83.0	NaN	NaN	NaN
24	Life expectancy at age 60 (years)	Published	2012	Western Pacific	High-income	Brunei Darussalam	Female	21	21.0	NaN	NaN	NaN
37	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Cyprus	Female	26	26.0	NaN	NaN	NaN

11. Get the subset rows excluding 5, 12, 23, and 56

Expected Output:

	Indicator_id	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Comments
0	Life expectancy at birth (years)	Published	1990	Europe	High-income	Andorra	Both sexes	77	77.0	NaN	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High-income	Andorra	Both sexes	80	80.0	NaN	NaN	NaN
2	Life expectancy at age 60 (years)	Published	2012	Europe	High-income	Andorra	Female	28	28.0	NaN	NaN	NaN
3	Life expectancy at age 60 (years)	Published	2000	Europe	High-income	Andorra	Both sexes	23	23.0	NaN	NaN	NaN
4	Life expectancy at birth (years)	Published	2012	Eastern Mediterranean	High-income	United Arab Emirates	Female	78	78.0	NaN	NaN	NaN

Load datasets from CSV

users pd.read csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/ users.csv') sessions pd.read csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/ sessions.csv') products pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/ products.csv') transactions = pd.read csv('https://raw.githubusercontent.com/ben519/DataWrangling/master/Data/ transactions.csv') users.head() sessions.head() transactions.head()

12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join)

Expected Output:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	1	2010-08-21	7	2	1	NaN	NaN	NaT	NaT
1	2	2011-05-26	3	4	1	Caroline	female	2012-10-23	2016-06-07
2	3	2011-06-16	3	3	1	Caroline	female	2012-10-23	2016-06-07
3	4	2012-08-26	1	2	3	Charles	male	2012-12-21	NaT
4	5	2013-06-06	2	4	1	Pedro	male	2010-08-01	2010-08-08
5	6	2013-12-23	2	5	6	Pedro	male	2010-08-01	2010-08-08
6	7	2013-12-30	3	4	1	Caroline	female	2012-10-23	2016-06-07
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaT	NaT
8	9	2015-04-24	7	4	3	NaN	NaN	NaT	NaT
9	10	2016-05-08	3	4	4	Caroline	female	2012-10-23	2016-06-07

13. Which transactions have a UserID not in users?

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)

Expected Output:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	2	2011-05-26	3	4	1	Caroline	female	2012-10-23	2016-06-07
1	3	2011-06-16	3	3	1	Caroline	female	2012-10-23	2016-06-07
2	7	2013-12-30	3	4	1	Caroline	female	2012-10-23	2016-06-07
3	10	2016-05-08	3	4	4	Caroline	female	2012-10-23	2016-06-07
4	4	2012-08-26	1	2	3	Charles	male	2012-12-21	NaT
5	5	2013-06-06	2	4	1	Pedro	male	2010-08-01	2010-08-08
6	6	2013-12-23	2	5	6	Pedro	male	2010-08-01	2010-08-08

15. Join users to transactions, displaying all matching rows AND all non-matching rows (full outer join)

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Cancelled
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaT	NaT
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaT	NaT
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23	2016-06-07
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23	2016-06-07
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23	2016-06-07
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21	NaT
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01	2010-08-08
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01	2010-08-08
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaT	NaT
10	NaN	NaT	4.0	NaN	NaN	Brielle	female	2013-07-17	NaT
11	NaN	NaT	5.0	NaN	NaN	Benjamin	male	2010-11-25	NaT

16. Determine which sessions occurred on the same day each user registered

Expected Output:

333							3	
	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate	
Ш	030110	0.00.	Comaci	itegistered	Janochea	0000101110	ocoo.o.i.batc	

17. Build a dataset with every possible (UserID, ProductID) pair (cross join)

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3

18. Determine how much quantity of each product was purchased by each user

	UserID	ProductID	Quantity	
0	1	1	0.0	
1	1	2	3.0	
2	1	3	0.0	
3	1	4	0.0	
4	1	5	0.0	
5	2	1	0.0	
6	2	2	0.0	
7	2	3	0.0	
8	2	4	1.0	
9	2	5	6.0	
10	3	1	0.0	
11	3	2	0.0	
12	3	3	1.0	
13	3	4	6.0	
14	3	5	0.0	

19. For each user, get each possible pair of pair transactions (TransactionID1, TransacationID2)

Expected Output:

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	TransactionDate_y	ProductID_y	Quantity_y
0	1	2010-08-21	7.0	2	1	1	2010-08-21	2	1
1	1	2010-08-21	7.0	2	1	9	2015-04-24	4	3
2	9	2015-04-24	7.0	4	3	1	2010-08-21	2	1
3	9	2015-04-24	7.0	4	3	9	2015-04-24	4	3
4	2	2011-05-26	3.0	4	1	2	2011-05-26	4	1
5	2	2011-05-26	3.0	4	1	3	2011-06-16	3	1
6	2	2011-05-26	3.0	4	1	7	2013-12-30	4	1
7	2	2011-05-26	3.0	4	1	10	2016-05-08	4	4
8	3	2011-06-16	3.0	3	1	2	2011-05-26	4	1
9	3	2011-06-16	3.0	3	1	3	2011-06-16	3	1
10	3	2011-06-16	3.0	3	1	7	2013-12-30	4	1
11	3	2011-06-16	3.0	3	1	10	2016-05-08	4	4
12	7	2013-12-30	3.0	4	1	2	2011-05-26	4	1
13	7	2013-12-30	3.0	4	1	3	2011-06-16	3	1
14	7	2013-12-30	3.0	4	1	7	2013-12-30	4	1

20. Join each user to his/her first occuring transaction in the transactions table

	UserID	User	Gender	Registered	Cancelled	TransactionID	TransactionDate	ProductID	Quantity
0	1	Charles	male	2012-12-21	NaT	4.0	2012-08-26	2.0	3.0
1	2	Pedro	male	2010-08-01	2010-08-08	5.0	2013-06-06	4.0	1.0
2	3	Caroline	female	2012-10-23	2016-06-07	2.0	2011-05-26	4.0	1.0
3	4	Brielle	female	2013-07-17	NaT	NaN	NaT	NaN	NaN
4	5	Benjamin	male	2010-11-25	NaT	NaN	NaT	NaN	NaN

21. Test to see if we can drop columns

```
Code with Output:
my columns = list(data.columns)
my columns
['UserID',
'User',
'Gender',
'Registered',
'Cancelled',
'TransactionID',
'TransactionDate',
'ProductID',
'Quantity']
list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns) #set threshold to drop NAs
['UserID', 'User', 'Gender', 'Registered']
missing_info = list(data.columns[data.isnull().any()])
missing_info
['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
//for col in missing_info:
num_missing = data[data[col].isnull() == True].shape[0]
print('number missing for column {}: {}'.format(col, num_missing))
Output: Count of missing data
number missing for column Cancelled: 3
number missing for column TransactionID: 2
number missing for column TransactionDate: 2
number missing for column ProductID: 2
number missing for column Quantity: 2
```

//for col in missing_info:

```
num_missing = data[data[col].isnull() == True].shape[0]
print('number missing for column {}: {}'.format(col, num_missing)) #count of missing data
for col in missing_info:
percent_missing = data[data[col].isnull() == True].shape[0] / data.shape[0]
print('percent missing for column {}: {}'.format(
col, percent_missing))
```

Output of percentage missing data

percent missing for column Cancelled: 0.6
percent missing for column TransactionID: 0.4
percent missing for column TransactionDate: 0.4
percent missing for column ProductID: 0.4
percent missing for column Quantity: 0.4

NOTE: The solution shared through Github should contain the source code used and the screenshot of the output.

3. Output

N/A