绝密★考试结束前

宁波市 2024 学年 期末九校联考 高三数学试题

注意事项:

- 1. 答卷前, 务必将自己的姓名, 考生号等填写在答题卡和试卷指定位置上。
- 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改 动,用橡皮擦干净后,再涂其他答案标号。回答非选择题时,将答案写在答题卡上,写在本 试卷上无效。
- 3. 请保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。

第 | 卷

- 一、选择题: 本题共 8 小题,每小题 5 分,共 40 分,在每小题给出的四个选项中,只有一个选项是 符合题目要求的.
- 1. 已知复数z满足 $(2+i)\cdot z=5$,则z=

A. 2

D. 2+i

2. 已知全集 $U = \{x \mid -2 < x < 4\}$, 集合 $A = \{x \mid |x-1| \le 1\}$, 则 $C_U A =$

A. [0,2]

B. $(-2,0] \cup [2,4)$ C. (0,2)

D. $(-2,0) \cup (2,4)$

3. 已知向量 $\vec{a} = (x, x-6), \vec{b} = (1, x-4), 则 x = 2 是 \vec{a} / / \vec{b}$ 的

A. 充要条件

B. 充分不必要条件

C. 必要不充分条件

D. 既不充分也不必要条件

4. $\left(1+\frac{1}{x}\right)(1-x)^6$ 的展开式中, x^2 的系数为

A. -5

B. 5

C. 15

D. 35

5. 圆台的上下底面半径分别为 1 和 3, 圆台的母线与下底面所成角为 $\frac{\pi}{3}$, 则圆台的体积为

A. $7\sqrt{3}\pi$

B. $8\sqrt{3}\pi$

C. $\frac{25}{3}\sqrt{3}\pi$ D. $\frac{26}{3}\sqrt{3}\pi$

6. 下列不等式正确的为

A. $7^{\sqrt{5}} > 8^{\sqrt{5}}$

B. $1.6^{0.4} < 0.4^{1.6}$

C. $\log_2 3 > \log_3 4$

D. $\sin 2 < \sin \frac{\pi}{2}$

7. 如图,直线 $y=\pm m$ 与函数 $f(x)=\sin(\omega x+\varphi)(\omega>0,0<\varphi<\pi)$ 交点的横坐标分别为 x_1 , x_2 , x_3 ,

若 $x_1+x_2=\frac{\pi}{6}$, $x_2+x_3=\frac{2\pi}{3}$, 则 $f\left(\frac{\pi}{4}\right)=$

A. $\frac{1}{2}$

B. $\frac{\sqrt{2}}{2}$

C. $\frac{\sqrt{3}}{2}$

D. 1

微信公众号: 浙考神墙750 QQ: 2754808740

8. 在平面直角坐标系中,若点 $A(4+2\cos\theta,1+2\sin\theta)$ 到直线 y=kx+2 的距离不小于 2,则 k 的取值范围为

A.
$$k \ge 2$$

B.
$$k \ge \frac{15}{8}$$

C.
$$k \ge 2$$
或 $k \le -2$

D.
$$k \ge \frac{15}{8}$$
 $\vec{\boxtimes} k \le -\frac{15}{8}$

- 二、**选择题:** 本题共 3 小题,每小题 6 分,共 18 分.在每小题给出的选项中,有多项符合题目要求,全部选对的得 6 分,部分选对的得部分分,有选错的得 0 分.
- 9. 从 40 个能歌善舞的人中选择 15 个人参加艺术节表演,其中 7 个人唱歌,8 个人跳舞,共有多少种选择方式,下列各式表述正确的为

A.
$$C_{40}^{15}C_{15}^{7}$$

B.
$$C_{40}^7 C_{33}^8$$

$$C. C_{40}^8 C_{32}^7$$

D.
$$C_{15}^7 C_{25}^8$$

- 10. 如图,圆锥SO的底面圆直径为AB, OS = OA, $CO \perp AB$, D为底面圆上的动点,则
 - A. 当直线SD与AB所成角为60°时,直线SD与OC所成角为30°
 - B. 当直线 SD 与 AB 所成角为 60° 时,直线 SD 与 OC 所成角为 60°
 - C. 直线 SD 与 AB 所成角的最小值为 45°
 - D. 直线SD与AB所成角的最大值为 60°
- 11. 已知函数 $f(x) = \frac{2 \cdot 4^x}{4^x + 4}$, 数列 $\{a_n\}$ 满足 $a_n = f(\frac{n}{1013})(n \in N^*)$, 前 n 项和 B

为 S_n .则

- A. 函数 y = f(x) 的对称中心为(1,1)
- B. 函数 y = f(x-1)-1 为奇函数
- C. 不等式 f(3x+1)+f(2x-3)>2 的解集为 $(\frac{4}{5},+\infty)$
- D. 若 $S_{2025} = \frac{2025}{2}(a+b)$, b > 0, 则 $\frac{1}{2|a|} + \frac{|a|}{b}$ 的最小值为 $\frac{3}{4}$

第Ⅱ卷

- 三、填空题:本题共3小题,每小题5分,共15分.
- 12. 已知数据 x_1 , x_2 , x_3 , … , x_n 的平均数为 3,方差为 1,则数据 $3x_1+1$, $3x_2+1$, $3x_3+1$, … ,

 $3x_{,,}+1$ 的平均数与方差的和为 \blacktriangle

- 13. 过点 $A\left(-\frac{1}{8},\frac{1}{8}\right)$ 的直线 l 与抛物线 $x^2=2py(p>0)$ 交于 M, N 两点,且 $OM\perp ON$, $OA\perp MN$,则 p= ______.
- 14. 已知函数 $f(x) = \frac{1}{2}x^2 + tx(1 \ln x)$ 有两个极值点 x_1 , x_2 , 当 $1 < \frac{x_2}{x_1} < 2$ 时,t的取值范围是______.

微信公众号: 浙考神墙750 QQ: 2754808740

- 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
- 15. (本题满分 13 分) 甲、乙两个箱子装有大小及外观相同的小球, 甲箱中有 5 个白球和 3 个黑球, 乙箱中有 4 个白球和 3 个黑球.
 - (1) 若从甲箱中任取2个小球, 求这2个小球同色的概率:
 - (2) 若先从甲箱中任取 2 个小球放入乙箱中,然后再从乙箱中任取 1 个小球,求从乙箱中取出的球是白球的概率.

- 16. (本题满分 15 分) 已知函数 $f(x) = x^2 + x$.数列 $\{x_n\} (x_n < -1)$ 的首项 $x_1 = \frac{e}{1-e}$.以后各项按如下方式取定:记曲线 y = f(x)在 $(x_n, f(x_n))$ 处的切线为 l_n ,若 $f'(x_n) \neq 0$,则记 l_n 与 x 轴交点的横坐标是 x_{n+1} .
 - (1) 证明: 数列 $\left\{ \ln \frac{x_n}{x_n+1} \right\}$ 为等比数列;
 - (2) 设 $a_n = \ln \frac{x_n}{x_n + 1}$,求数列 $\{n \cdot a_n\}$ 的前n项和 S_n .

- 17. (本题满分 15 分) 如图,三棱锥 A-BCD 中,BC=CD=BD=2, $AB=AC=\sqrt{2}$.异面直线 AC 和 BD 所成角的余弦值为 $\frac{\sqrt{2}}{A}$,点 F 是线段 AD 上的一个动点.
 - (1) 证明: 平面 *ABC* ⊥ 平面 *BCD*;
 - (2) 若二面角B-CF-D的正弦值为 $\frac{\sqrt{33}}{7}$,求DF.

微信公众号: 浙考神墙750 QQ: 2754808740

18. (本题满分 17 分)如图,双曲线 C_1 : $x^2 - \frac{y^2}{3} = 1$ 的左右焦点分别为 F_1 , F_2 , 双曲线 C_2 : $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1(a > 0, b > 0)$ 与 C_1 有相同的渐近线和焦距.过 C_1 上一点 $P(x_0, y_0)$ 作 C_2 的两条切线,切点分别为 A, B , A 在 x 轴上方,连接 AB 交 C_1 于点 M .

(注: 过曲线 $\frac{x^2}{m} + \frac{y^2}{n} = 1$ 外一点 (x', y') 作曲线的两条切线,则两切点所在直线方程为

$$\frac{x'x}{m} + \frac{y'y}{n} = 1$$

- (1) 求双曲线 C_2 的方程;
- (2) 证明:直线 AB 与 C_1 切于点 M ,且 $\left|AM\right| = \left|BM\right|$;
- (3) 当点 $P(x_0, y_0)$ 在第三象限,且 $PM //BF_2$ 时,求 $S_{\Delta MF_1F_2}$ 的值.

19. (本题满分 17 分)

- (1) 证明: $\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cdot \cos \frac{\alpha \beta}{2}$;
- (2) 当 $0 < \alpha < \beta < \frac{\pi}{2}$ 时,利用所给图形证明(1)中等式;
- (3) 如图, $\triangle ABC$ 的外接圆半径为 1,AB > AC, $\angle ABC$ 的一个外角的角平分线交外接圆于点 D,过 D作 $DM \perp AB$ 于点 M,利用(1)中等式,证明:2AM = BA + BC

题(3)图