FEUILLE D'EXERCICES nº 10

Exercice 1 – [RACINES PRIMITIVES MOD p]

Soit p > 2 un nombre premier, on désire trouver une racine primitive modulo p, i.e. un $g \in \mathbb{F}_p^*$ d'ordre p-1.

- 1) Supposons connue une racine primitive modulo p. Comment obtenir les autres?
- 2) On tire g uniformément au hasard dans [1, p-1]. Quelle est la probabilité que g convienne?
- 3) On suppose dorénavant connue la factorisation $p-1=\prod_i \ell_i^{e_i}$, où les ℓ_i sont premiers et distincts. Montrer que $g\in \mathbb{F}_p^*$ est d'ordre p-1 si et seulement si $g^{(p-1)/\ell_i}\neq 1$ pour tout i. On peut donc vérifier si un g explicite convient ou non. Quelle est la complexité binaire de cette vérification?
- **4)** Pour tout i, on désire maintenant trouver un g_i d'ordre $\ell_i^{e_i}$. On tire uniformément au hasard $h \in \mathbb{F}_p^*$ et on pose $g_i := h^{(p-1)/\ell_i^{e_i}}$.
 - a) Comment tester si g_i convient?
 - b) Quelle est la complexité binaire du test?
 - c) Quelle est la probabilité que g_i convienne?
- 5) Montrer que dans un groupe abélien, si x et y ont des ordres m, n premiers entre eux, alors xy est d'ordre mn.
- **6)** En déduire que $g := \prod_i g_i$ est bien d'ordre p-1. Que dire de la complexité de cet algorithme?

Exercice 2 – [AUTOUR DE POCKLINGTON-LEHMER] Rappelons le théorème vu en cours.

Théorème. n > 1 est premier si et seulement si pour tout diviseur premier p de n - 1 il existe un entier a_p tel que

$$a_n^{n-1} \equiv 1 \mod n$$
 et $\operatorname{pgcd}(a_n^{(n-1)/p} - 1, n) = 1$.

1) Supposons que n-1=FU où $\operatorname{pgcd}(F,U)=1,\, F>\sqrt{n}.$ Montrer que n est premier si et seulement si pour tout p premier divisant F il existe un entier a_p tel que

$$a_p^{n-1} \equiv 1 \bmod n \quad \text{et} \quad \operatorname{pgcd}(a_p^{(n-1)/p} - 1, n) = 1.$$

- 2) Supposons que n-1=FU où $\operatorname{pgcd}(F,U)=1$. Supposons que tous les diviseurs premiers de U sont >B avec $BF\geqslant \sqrt{n}$. Montrer que n est premier si et seulement si
 - pour tout diviseur premier p de F il existe un entier a_p tel que

$$a_p^{n-1} \equiv 1 \mod n$$
 et $\operatorname{pgcd}(a_p^{(n-1)/p} - 1, n) = 1$,

 \bullet et il existe un entier a tel que

$$a^{n-1} \equiv 1 \mod n$$
 et $\operatorname{pgcd}(a^F - 1, n) = 1$.

Exercice 3 – [Cantor-Zassenhaus en caractéristique 2] On rappelle l'algorithme de Cantor-Zassenhaus en caractéristique impaire.

Algorithme 1. Factorisation dans $\mathbb{F}_q[x]$.

Entrées: $q = p^k$, où p est un nombre premier impair, $Q \in \mathbb{F}_q[x]$ de degré n, produit de polynômes irréductibles deux à deux distincts de degré d.

Sorties: Un diviseur non trivial de Q, ou bien "échec".

- 1: Tirer au hasard $A \in \mathbb{F}_q[x]$ de degré inférieur à n.
- 2: Calculer $D = \operatorname{pgcd}(A, Q)$. Si $D \neq 1$, sortir D.
- 3: Calculer $B = A^{(q^d-1)/2} 1 \mod Q$
- 4: Calculer $D = \operatorname{pgcd}(B, Q)$. Si $D \neq 1$ et $D \neq Q$, sortir D. Sinon, sortir "échec".
- 1) En appliquant cet algorithme, factoriser le polynôme $x^4 + x^3 + x 1$ de $\mathbb{F}_3[x]$, en prenant d = 2 et A = x 1.
- 2) Soit $m \ge 1$, et soit

$$T_m = x^{2^{m-1}} + x^{2^{m-2}} + \dots + x^4 + x^2 + x \in \mathbb{F}_2[x].$$

- a) Montrer que $T_m(T_m+1)=x^{2^m}+x$.
- b) En déduire que si $\alpha \in \mathbb{F}_{2^m}$, alors $T_m(\alpha) \in \mathbb{F}_2$.
- c) Montrer que l'application $\alpha \mapsto T_m(\alpha)$ de \mathbb{F}_{2^m} dans \mathbb{F}_2 est une application linéaire de F_2 -espaces vectoriels. En déduire que les ensembles $\{\alpha \in \mathbb{F}_{2^m} : T_m(\alpha) = 0\}$ et $\{\alpha \in \mathbb{F}_{2^m} : T_m(\alpha) = 1\}$ ont même cardinal, soit 2^{m-1} .

Soient maintenant $q=2^k$ et $Q \in \mathbb{F}_q[x]$ de degré n. On suppose que Q est produit de r polynômes irréductibles sur \mathbb{F}_q qu'on note P_1, \ldots, P_r , deux à deux distincts et tous de même degré d. On note $R=\mathbb{F}_q[x]/(Q)$, $R_i=\mathbb{F}_q[x]/(P_i)$ et φ_i l'application canonique de R dans R_i définie par $\varphi_i(P)$ mod Q)=P mod P_i .

- 3) Soit $A \in R$. Montrer que $\varphi_i(T_{kd}(A)) = T_{kd}(\varphi_i(A))$. En déduire que $\varphi_i(T_{kd}(A)) \in \mathbb{F}_2$ et que si A est choisi au hasard dans R avec probabilité uniforme, $T_{kd}(A)$ appartient à \mathbb{F}_2 avec probabilité 2^{1-r} .
- 4) En déduire un algorithme pour factoriser Q et montrer que sa probabilité d'échec est inférieure à 1/2.

Exercice 4 – [ALGORITHME DE BERLEKAMP : UN EXEMPLE SIMPLE] Soit $f = x^4 + x^3 + x - 1 \in \mathbb{F}_3[x]$. On suppose qu'on a déjà calculé $\operatorname{pgcd}(f, f') = 1$.

- 1) Le polynôme f a-t-il des racines dans \mathbb{F}_3 ? En déduire sans calculs $\operatorname{pgcd}(f, x^3 x)$.
- 2) Sachant cela, quelles sont les structures possibles de l'anneau $A = \mathbb{F}_3[x]/(f)$?
- 3) Soit F l'aplication de A dans lui-même qui à x associe x^3 . Écrire la matrice de F Id dans la base $1, x, x^2, x^3$ de A, et calculer son noyau N.

- 4) Prendre un élément a de ce noyau et calculer pgcd (a, f), puis pgcd(a 1, f). Recommencer jusqu'à obtenir un facteur non trivial de f.
- 5) Vérifier que pour tout élément a de N et tout facteur irréductible g de f, il existe bien un entier k tel que

$$a \equiv k \mod q$$
.

Exercice 5 – [ALGORITHME DE BERLEKAMP : UN AUTRE EXEMPLE SIMPLE] Soit $f=x^6+2x^5+x^4+2x^3+x-1\in\mathbb{F}_5[x]$. On suppose qu'on a déjà calculé que $\operatorname{pgcd}(f,f')=1$.

- 1) Le polynôme f a-t-il des racines dans \mathbb{F}_5 ? En déduire sans calculs $\operatorname{pgcd}(f, x^5 x)$.
- 2) Sachant cela, quelles sont les structures possibles de l'anneau $A = \mathbb{F}_5[x]/(f)$?
- 3) Soit F l'aplication de A dans lui-même qui à x associe x^5 . Écrire la matrice de F Id dans la base $1, x, \ldots, x^5$ de A, et calculer son noyau N. On pourra utiliser sans démonstration les résultats suivants.

$$x^{10} \equiv -2x^5 + 2x^4 - x^3 - x^2 + x - 2 \mod f$$

$$x^{15} \equiv -x^5 + 2x^4 - 2x^3 + 2x + 2 \mod f$$

$$x^{20} \equiv -2x^5 + 2x^4 + x^3 + 1 \mod f$$

$$x^{25} \equiv x \mod f.$$

- 4) Combien f possède-t-il de facteurs irréductibles? Quel est leur degré?
- 5) Prendre un élément a de N et calculer pgcd(a, f) et $pgcd(a^2 1, f)$. Recommencer jusqu'à obtenir un facteur non trivial de f.