Sciences Industrielles de l'Ingénieur

Activation

Patrick Dupas, http://patrick.dupas.chez-alice.fr/.

Savoirs et compétences :

Identification de la FTBF

Objectif Identifier les caractéristiques de la FTBF d'un système à partir d'une réponse temporelle et fréquentielle. Caractériser la stabilité du système.

Un système a fait l'objet d'essais temporel et harmoniques.

Question 1 En utilisant la réponse temporelle, identifier la fonction de transfert du système

Correction Le premier dépassement a une valeur de 30,4%. On a $D_{\%} = e^{-\frac{\pi \zeta}{\sqrt{1-\xi^2}}} \Rightarrow \ln D = -\frac{\pi \xi}{\sqrt{1-\xi^2}} \Rightarrow$ $\left(\sqrt{1-\xi^{2}}\right) = -\frac{\pi\xi}{\ln D} \Rightarrow 1-\xi^{2} = \frac{\pi^{2}\xi^{2}}{(\ln D)^{2}} \Rightarrow 1 = \xi^{2}\left(1 + \frac{\pi^{2}}{(\ln D)^{2}}\right) \Rightarrow \xi^{2} = \frac{1}{1 + \frac{\pi^{2}}{(\ln D)^{2}}} \Rightarrow \xi = 0,35.$ La pseudo-période est de 0.475 s. On a $T_p = \frac{2\pi}{\omega_0 \sqrt{1-\xi^2}} \iff \omega_0 = \frac{2\pi}{T_p \sqrt{1-\xi^2}}$ et $\omega_0 = 14.15 \, \mathrm{rad \, s^{-1}}$.

On a donc K = 1, $\xi = 0.35$ et $\omega_0 = 14.15 \,\text{rad s}^{-1}$

Question 2 En utilisant la réponse fréquentielle, identifier à nouveau la fonction de transfert du système.

Correction On observe une réponse harmonique constituée d'une asymptote horizontale quand ω tend vers 0 et d'une asymptote de pente -40 dB/decade. Il en résulte qu'on peut modéliser le système par un second ordre.

Lorsque ω tend vers 0, le gain est nul; donc K = 1.

L'intersection des asymptotes a lieu pour $\omega_0 = 14.14 \, \text{rad s}^{-1}$.

À la résonance, on mesure un gain de $20\log A_{\max} = 3.59\,\mathrm{dB} \Rightarrow A_{\max} = 1,51$. On a donc $A_{\max} = \frac{1}{2\xi\sqrt{1-\xi^2}}$

 $\Leftrightarrow 2\xi\sqrt{1-\xi^2}A_{\max} = 1 \Rightarrow 4\xi^2\left(1-\xi^2\right)A_{\max}^2 = 1 \Rightarrow 4\xi^2A_{\max}^2 - 4\xi^4A_{\max}^2 - 1 = 0 \Rightarrow \xi^4 - \xi^2 + \frac{1}{4A_{\max}^2} = 0. \text{ En posant } \xi^2 = X,$

 $X^2 - X + \frac{1}{4A_{\max}^2} = 0$. On a alors $\Delta = 1 - \frac{1}{A_{\max}^2}$ et $X_{1,2} = \frac{1 \pm \sqrt{\Delta}}{2} \simeq \frac{1 \pm 0.75}{2}$. On a donc $X_1 = 0.125$, $X_2 = 0.875$ et

 $\xi_1 = 0,35, \ \xi_2 = 0,94$. Étant donné qu'il existe une résonance, on prend $\xi = 0,35$. On a donc $K = 1, \ \xi = 0,35$ et $\omega_0 = 14.15 \, \mathrm{rad} \, \mathrm{s}^{-1}$ et $F(p) = \frac{1}{1 + 0,05p + 0,005p^2}$

Question 3 Conclure.

Correction On retrouve les mêmes coefficients.

Question 4 Caractériser la stabilité à partir des éléments de la FTBF.

Correction On a un système du second ordre. Le système est stable.

Étude de la stabilité

Question 5 *Justifier la forme du schéma-blocs retenu pour modéliser la FTBO qui sera notée* H(p).

Correction On a
$$H(p) = \frac{S(p)}{E(p)} = \frac{\frac{KG}{(1+\tau p)p}}{1+\frac{KG}{(1+\tau p)p}} = \frac{1}{\frac{\tau}{KG}p^2 + \frac{p}{KG} + 1}.$$

Ainsi, H(p) est un système du second ordre avec un gain unitaire, comme la fonction identifiée dans les premières questions.

On considère le correcteur proportionnel K = 1.

Question 6 Déterminer les valeurs de G et de τ et en déduire H(p).

Correction On a:
$$\frac{1}{\frac{\tau}{G}p^2 + \frac{p}{G} + 1} = \frac{1}{1 + 0.05p + 0.005p^2}$$
. En conséquences, $G = 20$ et $\tau/20 = 0.005 \Rightarrow \tau = 0.1$ s et $FTBO(p) = \frac{20}{(1 + 0.1p)p}$.

Question 7 Déterminer l'erreur statique et l'erreur de traînage.

Question 8 Effectuer les tracés des diagrammes de Bode de la FTBO.

Question 9 Déterminer graphiquement les marges de gains et de phase.

Correction

Question 10 Confirmer ces résultats par le calcul.

Correction La phase ne coupe jamais l'axe des abscisses. Ainsi, La marge de gain n'est pas définie (elle est infinie). Pour déterminer la marge de phase analytiquement :

- 1. On cherche ω_c tel que $G_{dB}(\omega_c) = 0$;
- 2. On calcule $\varphi(\omega_c)$;

3. La marge de phase est de $\varphi(\omega_c)$ – (–180). Cherchons ω_c tel que $G_{\mathrm{dB}}(\omega_c)$ = 0. On a $FTBO(j\omega) = \frac{20}{(1+0,1j\omega)j\omega} = \frac{20}{j\omega-0,1\omega^2}$. $20\log|FTBO(j\omega)| = 20\log 20 - 20\log \sqrt{\omega^2+0,01\omega^4} = 20\log 20 - 20\log \omega\sqrt{1+0,01\omega^2}$. $G_{\mathrm{dB}}(\omega_c) = 0 \Leftrightarrow 20 = \omega_c\sqrt{1+0,01\omega_c^2} \Leftrightarrow 400 = \omega_c^2\left(1+0,01\omega_c^2\right)$ On pose $x = \omega_c^2$ et on a : $400 = x(1+0,01x) \Leftrightarrow x^2 + 100x - 40000 = 0$. On a donc $\Delta = 412,3^2$ et $x_{1,2} = \frac{-100 \pm 412,3}{2}$ on conserve la racine positive et $x_1 = 156,15$ et $\omega_c = 12.5\,\mathrm{rad}\,\mathrm{s}^{-1}$. $\varphi(\omega_c) = \arg(20) - 90 - \arg(1+0,1j\omega_c) = 0 - 90 - \arctan(0,1\omega_c) = 0 - 90 - 51,34 = -141,34^\circ$. La marge de phase est donc de $38,66^\circ$.

Question 11 Conclure par rapport au cahier des charges.

Correction Le système ne sera pas stable vis-à-vis du cahier des charges.

Choix d'un gain

Objectif Déterminer le gain permettant de satisfaire le cahier des charges.

Question 12 Déterminer graphiquement la valeur du correcteur K à placer ans la chaîne directe, afin de respecter les critères de stabilité du cahier des charges.

Question 13 Déterminer analytiquement la valeur du correcteur K à placer ans la chaîne directe, afin de respecter les critères de stabilité du cahier des charges.

Correction On a une phase de -135° pour $\omega = 10 \, \text{rad} \, \text{s}^{-1}$. Il faut donc déterminer K tel que le gain soit nul en $\omega = 10 \, \text{rad} \, \text{s}^{-1}$.

 $20\log 20 - 20\log 10\sqrt{1+0.01\cdot 10^2} = 20\log 20 - 20\log 10\sqrt{2} = 3$ dB. Il faut donc diminuer le gain de 3 dB. On cherche donc K tel que $20\log K = -3$ et il faut prendre K = 0.7.

Question 14 *Quel sera alors le 1^{er} dépassement pour la réponse indicielle du système?*

Correction Dépassement de 23%.