Trabalho de casa 1 - Markov Chains

a)

A Markov Chain é caracterizada pelo par (X, P) em que X é o conjunto de estados possíveis tal que $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ e P é a transition probability matrix¹.

Cada estado x_i corresponde a uma célula do tabuleiro de jogo. Por exemplo, no nosso exercício, a célula do centro corresponde ao estado 10.

Dado o facto de existirem 6 resultados equiprováveis no lançamento do dado, a matriz \mathbf{P} é dada por $\mathbf{P} = \frac{1}{6} \sum_{d=1}^{6} P_d$ em que P_d corresponde à transition probability matrix assumindo que o dado mostra sempre o valor d.

Para simplificar e seguindo a sugestão do enunciado, comecemos por calcular P_1 . Na figura ao lado, podemos observar uma representação gráfica das transições no caso do valor do dado = 1.

Com base nesta representação, obtivemos a matriz P_1 representada na tabela seguinte.

MD1 a)	1	2	3	4	5	6	7	8	9	10
1	0,	0,3333	0,	0,	0,	0,3333	0,3333	0,	0,	0,
2	0,5	0,	0,5	0,	0,	0,	0,	0,	0,	0,
3	0,	0,3333	0,	0,3333	0,	0,	0,	0,3333	0,	0,
4	0,	0,	0,5	0,	0,5	0,	0,	0,	0,	0,
5	0,	0,	0,	0,3333	0,	0,3333	0,	0,	0,3333	0,
6	0,5	0,	0,	0,	0,5	0,	0,	0,	0,	0,
7	0,5	0,	0,	0,	0,	0,	0,	0,	0,	0,5
8	0,	0,	0,5	0,	0,	0,	0,	0,	0,	0,5
9	0,	0,	0,	0,	0,5	0,	0,	0,	0,	0,5
10	0,	0,	0,	0,	0,	0,	0,3333	0,3333	0,3333	0,

Para obter a matriz P_2 basta considerarmos que uma jogada com dado = 2 corresponde a realizar duas jogadas seguidas com dado = 1, logo P_2 é dado por P_2 = P_1 x P_1 .

Assim, as restantes matrizes P_d são calculadas através das potências da matriz P_1 e, substituindo os resultados em $\mathbf{P} = \frac{1}{6}\sum_{d=1}^6 P_d$, obtemos a transition probability matrix pretendida representada na tabela seguinte.

MDT a)	1	2	3	4	5	6	7	8	9	10
1	0,1852	0,1235	0,1049	0,0432	0,1049	0,1235	0,1235	0,0432	0,0432	0,1049
2	0,1852	0,1235	0,1852	0,0833	0,0648	0,0833	0,0833	0,0833	0,0432	0,0648
3	0,1049	0,1235	0,1852	0,1235	0,1049	0,0432	0,0432	0,1235	0,0432	0,1049
4	0,0648	0,0833	0,1852	0,1235	0,1852	0,0833	0,0432	0,0833	0,0833	0,0648
5	0,1049	0,0432	0,1049	0,1235	0,1852	0,1235	0,0432	0,0432	0,1235	0,1049
6	0,1852	0,0833	0,0648	0,0833	0,1852	0,1235	0,0833	0,0432	0,0833	0,0648
7	0,1852	0,0833	0,0648	0,0432	0,0648	0,0833	0,1235	0,0833	0,0833	0,1852
8	0,0648	0,0833	0,1852	0,0833	0,0648	0,0432	0,0833	0,1235	0,0833	0,1852
9	0,0648	0,0432	0,0648	0,0833	0,1852	0,0833	0,0833	0,0833	0,1235	0,1852
10	0,1049	0,0432	0,1049	0,0432	0,1049	0,0432	0,1235	0,1235	0,1235	0,1852

¹ https://en.wikipedia.org/wiki/Stochastic matrix

_

b)

A seguinte matriz corresponde à potência de 3 da matriz $\bf P$ e representa a probabilidade de o jogador estar em cada célula ao fim de t=3.

M b) t=3	1	2	3	4	5	6	7	8	9	10
1	0,1289	0,0849	0,1237	0,0818	0,1237	0,0849	0,0849	0,0818	0,0818	0,1237
2	0,1273	0,0859	0,1273	0,0833	0,1227	0,0833	0,0833	0,0833	0,0807	0,1227
3	0,1237	0,0849	0,1289	0,0849	0,1237	0,0818	0,0818	0,0849	0,0818	0,1237
4	0,1227	0,0833	0,1273	0,0859	0,1273	0,0833	0,0807	0,0833	0,0833	0,1227
5	0,1237	0,0818	0,1237	0,0849	0,1289	0,0849	0,0818	0,0818	0,0849	0,1237
6	0,1273	0,0833	0,1227	0,0833	0,1273	0,0859	0,0833	0,0807	0,0833	0,1227
7	0,1273	0,0833	0,1227	0,0807	0,1227	0,0833	0,0859	0,0833	0,0833	0,1273
8	0,1227	0,0833	0,1273	0,0833	0,1227	0,0807	0,0833	0,0859	0,0833	0,1273
9	0,1227	0,0807	0,1227	0,0833	0,1273	0,0833	0,0833	0,0833	0,0859	0,1273
10	0,1237	0,0818	0,1237	0,0818	0,1237	0,0818	0,0849	0,0849	0,0849	0,1289

Logo a distribuição pelos estados em t=3 é:

	1	2	3	4	5	6	7	8	9	10
$\mu_3 =$	0,1237	0,0818	0,1237	0,0818	0,1237	0,0818	0,0849	0,0849	0,0849	0,1289