Power Supplies 101 Lab

4-Jan-2018

Using a breadboard

Circuit connections

Power supply buses

Internals of board

Using a Multimeter

- Voltage across
- Current through
- Resistance of
- Continuity of

Using an Oscilloscope

- Axes
- Coupling
- Triggering
- Cursors
- Measuring

Build your AC-DC supply!

Watch polarity:

- Diode stripes
- Capacitor +/-

Experiment with it

- Change R_{LOAD}
- Change C

Isolated supplies

Some supplies have isolated outputs

- Also called galvanic isolation
- Provides safety
- Reduces noise between circuits by avoiding hard connected ground nodes

Supplies can be added or subtracted by connecting them:

 e.g. Two +5V supplies can be turned into +/-5V

Try it out! More detail on how switch mode supplies work

Bored? Try this bipolar supply:

Bored? Try this doubler:

This is sort of a variant of a "charge pump" or "flying capacitor" converter which is an inductor-less boost converter. This is a simple circuit for low current x2, x4, x6, etc. or inverting conversion.

In a DC circuit you could run an oscillator (e.g. 555 timer) and feed it into a couple of diodes and caps to generate a negative supply such as -5V from +5V.

A free pin on an Arduino could feed a charge pump (tone(1000)).

Bored? Try some of all of this:

Bored? Try some of all of this: