Function Operations with Proper Notation Review of material to date

The inverse of a function

- 1. Given f(x) = 3x + 2. What is the inverse of the function $f^{-1}(x)$?
 - (a) Rewrite the function reversing x and y. (assume that y and f(x) are interchangeable)
 - (b) Solve for x. Finish by putting y on the left side of the equality.
 - (c) State the answer as $f^{-1}(x)$ equals an expression.

Function substitution

- 2. Given f(x) = 3x + 2. What is f(2x 1)?
 - (a) Perform the substitution, putting 2x 1 in parenthesis.
 - (b) Simplify, beginning each line with a leading equals sign if it is equal to the line above.

Function composition

- 3. Given $f(x) = x^2 + 2$ and $g(x) = x^2$ What is $(f \circ g)(x)$?
 - (a) Rewrite $f \circ g$ and perform the inner substitution (i.e. for g): $f(g(x)) = f(x^2)$
 - (b) Perform the substitution, putting x^2 in parenthesis (and using a leading equals sign).
 - (c) Simplify, beginning each line with a leading equals sign.

Unscaffolded practice problems

Write answers on loose leaf lined paper using the notation practiced in the previous section.

The inverse of a function

Derive the inverse of each function. Simplify the expression.

- 4. $f(x) = \frac{1}{2}x + 2$
- 5. $f(x) = \frac{2}{3}x^2 3$
- 6. $f(x) = \sqrt{x-1} + \frac{1}{2}$

Function substitution

- 7. Given $f(x) = x^2 1$. Simplify f(2x 1)?
- 8. Given $f(x) = x^3$. Simplify f(x+1)?
- 9. Given $f(x) = 4 (2x^2 + x)$. Simplify $f(\frac{1}{2}x 3)$?

Function composition

In each exercise, perform the composition $f \circ g$ and simplify.

- 10. Given $f(x) = \frac{1}{2}x^2 + 1$ and g(x) = 2x
- 11. Given $f(x) = \sqrt{x-4}$ and $g(x) = x^2 + 4$
- 12. Given $f(x) = \frac{1-x}{x^2} + 1$ and g(x) = 2x + 3

New material: factoring quadratics

Factor each function.

- 13. $f(x) = x^2 + 5x + 6$
- 14. $f(x) = x^2 7x + 10$
- 15. $f(x) = x^2 + 3x 10$