

Comparing ActiGraph CentrePoint Insight Watch, GT9X Link, and wGT3X-BT Accelerometers to NHANES 2011-2014 GT3X+ Devices using an orbital shaker

KEYSTONE, COLORADO, USA 2022

Samuel LaMunion¹, Joe Nguyen², Robert Brychta¹, Richard Troiano³, Karl Friedl⁴, and Kong Chen¹

¹National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Diabetes, Endocrinology, and Obesity Branch, Bethesda, MD, ²ActiGraph Corporation, LLC, Pensacola, FL, ³ Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, and ⁴U.S. Army Research Institute of Environmental Medicine, Natick, MA

Background & Introduction

- ActiGraph devices are among the most frequently used research-grade devices used to objectively assess physical activity, sedentary behavior, and sleep in a variety of research settings.
- Cross-study comparison
 - Inter- and intra-generational devices differences
- Orbital shaker example: Rothney et al. 2008
 - Documented inter- and intragenerational device differences
- Gap in the literature
 - Primarily legacy generations
 - Mostly counts, no raw data examination

Study Objective

- The purpose of this study was to examine the inter- and intra-generational comparability
 of five generations of ActiGraph devices, across a broad frequency range using a
 mechanical shaker.
- We will compare the five ActiGraph generations to a NIST-certified criterion measure of acceleration (Lord Microstrain 3DM) and the wGT3X-BT, GT9X, and CPIW to GT3X+ devices used in the 2011-2014 NHANES cycles

Methods: Shaker

Methods: Shaker Protocol

Shaker Test Profile

- 0-250 RPM in 25 RPM increments
- $\sim 0-3.7 \, \text{g's}$
 - 11 total frequencies including zero
 - 5 minutes at each frequency
 - Middle 3 minutes used for analyses
 - Four Total Runs
 - 30 and 80 Hz sampling frequencies (32 and 64 Hz CPIW)
 - XY and XZ orientation
 - Mean from four runs presented here as overall summary

Components to Characterize

- n = 15 of each device type (n = 11 for CPIWv2)
- Baseline Offset
 - Difference from 1 g vector magnitude at rest
- Signal Drift
 - Change in the baseline sensor signal over time.
 - Baseline at beginning minus baseline at end
- Dynamic Response
 - The change in the sensor signal during applied accelerations above the force of gravity

National Institute of Diabetes and Digestive and Kidney Diseases

There are measurable inter-and intra-generational differences in baseline offset (bias from 1*g*)

Inter-and intra-generational signal drift is negligible

Drift = baseline signal at start minus baseline signal at the end

There are measurable inter-and intra-generational differences in the dynamic response compared to a criterion accelerometer

Current Device Statistical Equivalence as a Percent Difference from the GT3X+ NHANES Devices

Discussion

Strengths

- Inclusion of a NISTcertified criterion accelerometer
- Inclusion of devices used in NHANES
- Reproducible protocol

Limitations

- Small n of devices tested
- Short duration for signal drift evaluation

Summary and Conclusions

- All generations of ActiGraph accelerometers were within 5% of the criterion NIST-certified 3DM accelerometer.
- At the highest frequencies, the wGT3X-BT and GT9X were significantly lower (> 50 milli-g's) compared to the criterion 3DM.
- Similar to the comparison to the 3DM, all current generation devices were with 5% of the NHANES GT3X+ devices and the wGT3X-BT and GT9X were >50 milli-g's different at the highest frequencies (>200 RPM, \sim 3 g's)

Thank You!

Thank you to my co-authors:

Joe Nguyen

Dr. Rick Troiano

Dr. Karl Friedl

Dr. Kong Chen

Dr. Rob Brychta

Sam LaMunion

Postdoctoral Intramural Research Training Award Fellow
The National Institutes of Health – Bethesda, MD
National Institute of Diabetes, Digestive, and Kidney Diseases
Diabetes, Endocrinology, and Obesity Branch
Human Energy and Body Weight Regulation Core
Metabolic Clinical Research Unit

E-mail: samuel.lamunion@nih.gov

Recalibration Procedure Example

