Lecture 18: Oct 3

Last time

• Practice examples

Today

- Midterm 1 practice exam posted on canvas
- Moments and moment generating function

Moments

Example (Minimizing distance) The expected value of a random variable has another property, one that we can think of as relating to the interpretation of EX as a good guess at a value of X.

Suppose we measure the distance between a random variable X and a constant b by $(X-b)^2$. The closer b is to X, the smaller this quantity is. We can now determine the value of b that minimizes $E[(X-b)^2]$ and, hence, will provide us with a good predictor of X. (Note that it does no good to look for a value of b that minimizes $(X-b)^2$, since the answer would depend on X, making it a useless predictor of X.)

We could proceed with the minimization of $E(X - b)^2$ by using calculus, but there is a simpler method:

$$E(X - b)^{2} = E(X - EX + EX - b)^{2}$$

$$= E[(X - EX) + (EX - b)]^{2}$$

$$= E(X - EX)^{2} + (EX - b)^{2} + 2E[(X - EX)(EX - b)],$$

where we have expanded the square. Note that E[(X - EX)(EX - b)] = (EX - b)E(X - EX) = 0, since EX - b is constant and comes out of the expectation, E(X - EX) = EX - EX = 0. This means

$$E(X - b)^{2} = E(X - EX)^{2} + (EX - b)^{2}.$$

Such that $E(X-b)^2$ is minimized at b=EX. And $E(X-EX)^2$ is actually the variance of X $(VarX=E(X-EX)^2)$.

The various moments of a distribution are an important class of expectations.

Definition For each integer n, the nth moment of X (or $F_X(x)$), μ'_n , is

$$\mu_n' = EX^n.$$

The nth central moment of X, μ_n , is

$$\mu_n = E(X - \mu)^n,$$

where $\mu = \mu'_1 = EX$.

Notes:

•
$$\mu'_0 = EX^0 = 1$$

• μ'_1 is the *mean*, usually denoted by μ .

•
$$\mu_0 = E(X - \mu)^0 = 1$$

•
$$\mu_1 = 0$$

•
$$\mu_2 = E(X - EX)^2$$
 is the variance

• $\mu_3 = E(X - EX)^3$ is related to the *skewness*.

• $\mu_4 = E(X - EX)^4$ is related to the kurtosis.

Definition The variance of a random variable X is its second central moment, $Var(X) = E[(X - EX)^2]$. The positive square root of Var(X) is the standard deviation of X.

The variance gives a measure of the degree of spread of a distribution around its mean. Figure 18.1 shows a plot of two samples, one sample draws 100 numbers from a normal distribution with mean 0 and variance 1, N(0,1). The other sample draws 100 numbers from a normal distribution with mean 0 and variance 100, N(0,100).

Figure 18.1: Figure 2.1.2. Two samples of 100 numbers drawn from N(0, 1) and N(0, 100).

Example (Exponential variance) Let X have the exponential (λ) distribution. We can calculate the variance of X now. Solution:

$$Var(X) = E(X - \lambda)^{2}$$
$$= \int_{0}^{\infty} (x - \lambda)^{2} \frac{1}{\lambda} e^{-x/\lambda} dx$$

$$\operatorname{Var}(X) = \int_0^\infty (x^2 - 2x\lambda + \lambda^2) \frac{1}{\lambda} e^{-x/\lambda} dx$$
$$= \int_0^\infty x^2 \frac{1}{\lambda} e^{-x/\lambda} dx - 2 \int_0^\infty x \lambda \frac{1}{\lambda} e^{-x/\lambda} dx + \lambda^2$$
$$= EX^2 - \lambda^2$$
$$= \lambda^2$$

Theorem If X is a random variable with finite variance, then for any constants a and b,

$$\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X)$$
.

Proof:

From the definition, we have

$$Var (aX + b) = E [(aX + b) - E(aX + b)]^{2}$$

$$= E(aX - aEX)^{2}$$

$$= a^{2}E(X - EX)^{2}$$

$$= a^{2}Var (X).$$

It is sometimes to use an alternative formula for the variance, given by

$$Var(X) = E(X^2) - (EX)^2,$$

which is easily established by

$$Var(X) = E(X - EX)^{2} = E[X^{2} - 2XEX + (EX)^{2}]$$
$$= EX^{2} - 2(EX)^{2} + (EX)^{2}$$
$$= EX^{2} - (EX)^{2}.$$

Example (Binomial variance) Let $X \sim Binomial(n, p)$, that is,

$$\Pr(X = x) = \binom{n}{x} p^x (1 - p)^{n - x}.$$

What is the variance of X?

Solutions:

Method #1:

We want to find EX^2 first. We use the

$$EX^{2} = \sum_{x=0}^{n} x^{2} \binom{n}{x} p^{x} (1-p)^{n-x}.$$

we use the same property $x^2 \binom{n}{x} = xn \binom{n-1}{x-1}$. We then have

$$EX^{2} = n \sum_{x=1}^{n} x \binom{n-1}{x-1} p^{x} (1-p)^{n-x}$$

$$= n \sum_{y=0}^{n-1} (y+1) \binom{n-1}{y} p^{y+1} (1-p)^{n-1-y}$$

$$= n p \sum_{y=0}^{n-1} y \binom{n-1}{y} p^{y} (1-p)^{n-1-y} + n p \sum_{y=0}^{n-1} \binom{n-1}{y} p^{y} (1-p)^{n-1-y}$$

$$= n p \cdot (n-1) p + n p$$

$$= n (n-1) p^{2} + n p.$$

And now

$$Var (X) = EX^{2} - (EX)^{2}$$

$$= n(n-1)p^{2} + np - (np)^{2}$$

$$= np - np^{2}$$

$$= np(1-p).$$

Method #2:

Recall that we could write $X = \sum_{i=1}^{n} I_i$, where $I_i \stackrel{\text{i.i.d.}}{\sim} Bernoulli(p)$. Then

$$\operatorname{Var}(X) = \operatorname{Var}\left(\sum_{i=1}^{n} I_{i}\right)$$

$$= \sum_{i=0}^{n} \operatorname{Var}(I_{i}) \qquad (I_{i}\text{'s are independent})$$

$$= n\operatorname{Var}(I_{i}) \qquad (I_{i}\text{'s are identically distributed})$$

$$= n\left[E(I_{i}^{2}) - (EI_{i})^{2}\right]$$

$$= n\left[p - p^{2}\right]$$

$$= np(1 - p).$$

Definition Let X be a random variable with cdf F_X . The moment generating function (mgf) of X (or F_X), denoted by $M_X(t)$, is

$$M_X(t) = Ee^{tX},$$

provided that the expectation exists for t in some neighborhood of 0. That is, there is an h > 0 such that, for all t in -h < t < h, Ee^{tX} exists. If the expectation does not exist in a neighborhood of 0, we say that the moment generating function does not exist.

More explicitly, we can write the mgf of X as

$$M_X(t) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$
, if X is continuous,

or

$$M_X(t) = \sum_x e^{tx} \Pr(X = x)$$
, if X is discrete.

It is easy to see how the mgf generates moments as in the following theorem.

Theorem If X has mgf $M_X(t)$, then

$$EX^n = M_X^{(n)}(0),$$

where we define

$$M_X^{(0)} = \frac{d^n}{dt^n} M_X(t) \bigg|_{t=0}.$$

That is, the n^{th} moment is equal to the n^{th} derivative of $M_X(t)$ evaluated at t=0. Proof:

$$\frac{d}{dt}M_X(t) = \frac{d}{dt} \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\frac{d}{dt} e^{tx}\right) f_X(x) dx$$

$$= \int_{-\infty}^{\infty} \left(x e^{tx}\right) f_X(x) dx$$

$$= E(X e^{tX}).$$

Therefore,

$$\left. \frac{d}{dt} M_X(t) \right|_{t=0} = E(Xe^{tX}) \bigg|_{t=0} = EX.$$

Proceeding in an analogous manner, we can establish that

$$\left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0} = E(X^n e^{tX}) \bigg|_{t=0} = EX^n.$$