Link Explanation for Heterogeneous Graphs

Abhijit Gupta, advised by Rex Ying 12/09/2022

 Explainability builds trust, promotes fairness, and can improve human-in-the-loop performance

Multiple Tasks

- Why is an item recommended to a user? → Explain Link Prediction
- Why is the molecule mutagenic? → Explain Graph Classification
- Why is the user classified as fraudulent → Explain Node Classification

 Explainability builds trust, promotes fairness, and can improve human-in-the-loop performance

Multiple Tasks

- Why is an item recommended to a user? → Explain Link Prediction
- Why is the molecule mutagenic? → Explain Graph Classification
- Why is the user classified as fraudulent → Explain Node Classification

 Explainability builds trust, promotes fairness, and can improve human-in-the-loop performance

Multiple Tasks

Heterogeneous Graph Explanation

- Why is an item recommended to a user? → Explain Link Prediction
- Why is the molecule mutagenic? → Explain Graph Classification
- Why is the user classified as fraudulent → Explain Node Classification

Types of Explanations

Node feature vector Feature excluded from explanation

Feature explanation

Problem Statement

- Explaining Link Prediction
 - Positive edges only

Support Heterogeneous Graphs

Instance-level Perturbation methods

Focus on Structural explanation, Model explanation

Rethinking Explanation Format

 Explanations are restricted to immediate neighbors for increased interpretability real world use cases.

More suggestions for you

GNNExplainer

Explain by Mutual Information (MI):

Maximize MI between label and explanation $\max_{v \in V} MI(V, (A \cup V)) = H(V) - H(V)A = A$

$$\max_{G_S} MI(Y; (A_S, X_S)) = H(Y) - H(Y|A = A_S, X = X_S^F)$$

Use continuous relaxation, optimize the expected adjacency matrix A_s

Modifications: Do not optimize X_S, only optimize 1-hop neighborhood in A_S

SubgraphX

 Uses Monte Carlo Tree Search (MCTS) and Shapley values to find subgraph explanations.

$$\phi(\mathcal{G}_i) = rac{1}{T} \sum_{t=1}^{T} (f(S_i \cup \{\mathcal{G}_i\}) - f(S_i))$$
 Output excluding explanation

• **Modifications**: Remove MCTS component, reduce T from 100 to 5 to improve inference time.

Evaluation Metrics

Focus on explaining model outputs, not necessarily phenomenon

- Measure fidelity for varying sparsity
 - Necessary and sufficient explanations, Characterization measures both

$$fid^{prob} = \frac{1}{N} \sum_{i=1}^{N} (f(G_C)_{y_i} - f(G_{C \setminus S})_{y_i})$$

$$fid^{prob} = \frac{1}{N} \sum_{i=1}^{N} (f(G_C)_{y_i} - f(G_S)_{y_i})$$

$$charact = \frac{w_+ + w_-}{\frac{w_+}{fid_+} + \frac{w_-}{1 - fid_-}}$$

Initial Results

Facebook Ego (Homogeneous) and IMDB (Heterogeneous) datasets

Modified GNNExplainer

 New loss function encourages ordering of candidate nodes, handles varying neighborhood sizes better.

Encourages smaller explanations (in # of nodes)

$$L_{\text{old}} = -H(Y|G = G_S) + \alpha \sum_{e_i \in E_S} e_i + \beta \cdot \text{CrossEntropy}(E_S)$$
 Encourages discrete mask

Optimizes explanation towards target

$$L_{\text{new}} = -H(Y|G = G_S) + \alpha \left(\left(\frac{1}{|E_S|} \sum_{e_i \in E_S} e_i \right) - 0.5 \right)^2 \frac{\text{Encourages continuous mask}}{-\beta \cdot \text{CrossEntropy}(E_S)}$$

Encourages medium explanation (in % of nodes)

Modified GNNExplainer Results

Moderate improvement on Facebook, substantial improvement on IMDB

Modified SubgraphX

- Normally, SubgraphX masks node by setting all features to 0
- Since every candidate node is adjacent to the target link, only mask the edge between the node and the target endpoint.

Combined Results: Facebook

Combined Results: IMDB

Open-Source Contributions

- Contributed to PyTorch Geometric Explainability Sprint
 - New GNNExplainer implementation, Link Explanation support, Heterogeneous Graph support

GNNExplainer migration #5967 So Merged rusty1s merged 61 commits into pyg-team:master from dufourc1:gnn_explainer_migration 12 14 days ago GNNExplainer Edge Task Level #6056 So Merged rusty1s merged 75 commits into pyg-team:master from avgupta456:link-explanation 12 10 days ago

Heterogeneous Explanation #6091

17 Open avgupta456 wants to merge 23 commits into pyg-team:master from avgupta456:hetero-explain

Next Steps

• Improve scalability of masking implementation, run larger experiments

Extend to the LastFM heterogeneous dataset for more results and insights

 Develop new explanation formats, methods leveraging heterogeneous graph meta-paths

Questions?