Теорема о непротиворечивости формальной арифметики

Два вида индукции

Определение (принцип математической индукции)

Какое бы ни было $\varphi(x)$, если $\varphi(0)$ и при всех x выполнено $\varphi(x) \to \varphi(x')$, то при всех x выполнено и само $\varphi(x)$.

Определение (принцип полной математической индукции)

Какое бы ни было $\psi(x)$, если $\psi(0)$ и при всех x выполнено $(\forall t.t \leq x \to \psi(t)) \to \psi(x')$, то при всех x выполнено и само $\psi(x)$.

Теорема

Принципы математической индукции эквивалентны

Доказательство.

- (\Rightarrow) взяв $\varphi:=\psi$, имеем выполненность $\varphi(x)\to \varphi(x')$, значит, $\forall x.\psi(x).$
- (\Leftarrow) возьмём $\psi(x) := \forall t.t \leq x \rightarrow \varphi(t)$.

Наследственные множества

Определение

Назовём вполне упорядоченное отношением (\in) множество S наследственным подмножеством A, если $\forall x.x \in A \to (\forall t.t \in x \to t \in S) \to x \in S$.

Теорема

Единственным наследственным подмножеством вполне упорядоченного множества является оно само.

Доказательство.

Пусть $B\subseteq A$ — наследственное и $B\neq A$. Тогда существует $a=\min(A\setminus B)$. Тогда $(\forall t.t\in a\to t\in B)\to a\in B$ по наследственности B, и выполнено $\forall t.t\in a\to t\in B$ (по минимальности a). Значит, $a\in B$.

Трансфинитная индукция

Теорема (Принцип «полной» трансфинитной индукции)

Если для $\varphi(x)$ (некоторого утверждения теории множеств) и некоторого ординала ε выполнено

$$\forall x.x \in \varepsilon \to (\forall t.t \in x \to \varphi(t)) \to \varphi(x), \text{ to } \forall x.x \in \varepsilon \to \varphi(x).$$

Доказательство.

Рассмотрим $S = \{x \in \varepsilon \mid \varphi(x)\}$. Тогда $x \in S$ равносильно $\varphi(x)$.

Тогда перепишем: $\forall e.e \in \varepsilon \rightarrow (\forall x.x \in e \rightarrow x \in S) \rightarrow e \in S$.

Отсюда по теореме о наследственных множествах S=arepsilon.

Альтернативная формулировка

Теорема

Для ординала ε подмножество $S \in \varepsilon$ — наследственное, если одновременно:

Если $x \in \varepsilon$ и $x = \emptyset$, то $x \in S$;

Если $x \in \varepsilon$ и существует y: y' = x, то $y \in S \to x \in S$; Если $x \in \varepsilon$ и x — предельный, то $(\forall t.t \in x \to t \in S) \to (x \in S)$.

Доказательство.

- (\Rightarrow) очевидно. Докажем (\Leftarrow) : пусть S не наследственное: $E:=\{e\in \varepsilon\mid (\forall t.t\in e\to t\in S)\ \&\ e\notin S\}$ и $E\neq\varnothing$. Тогда пусть $e=\min E$.
 - 1. $e = \emptyset$ или предельный. Тогда $(\forall t.t \in e \rightarrow t \in S) \rightarrow (e \in S)$.
 - 2. e=y'. Тогда $y\in \varepsilon$ (ε ординал) и $(\forall t.t\in y\to t\in S)\to (y\in S)$ (так как e минимальный, для которого S не наследственное). По условию, $(y\in S)\to (e\in S)$, отсюда $(\forall t.t\in e\to t\in S)\to (e\in S)$.

Исчисление S_{∞}

- 1. Язык: связки \neg , \lor , \forall , =; нелогические символы: $(+),(\cdot),('),0$; переменные: x.
- 2. Аксиомы: все истинные формулы вида $\theta_1 = \theta_2$; все истинные отрицания формул вида $\neg \theta_1 = \theta_2$ (θ_i термы без переменных).
- 3. Структурные (слабые) правила:

$$\frac{\zeta \vee \alpha \vee \beta \vee \delta}{\zeta \vee \beta \vee \alpha \vee \delta} \qquad \frac{\alpha \vee \alpha \vee \delta}{\alpha \vee \delta}$$

сильные правила

$$\frac{\delta}{\alpha \vee \delta} \quad \frac{\neg \alpha \vee \delta \quad \neg \beta \vee \delta}{\neg (\alpha \vee \beta) \vee \delta} \quad \frac{\alpha \vee \delta}{\neg \neg \alpha \vee \delta} \quad \frac{\neg \alpha[\mathsf{x} := \theta] \vee \delta}{(\neg \forall \mathsf{x} . \alpha) \vee \delta}$$

и ещё два правила ...

Ещё правила S_{∞}

бесконечная индукция

$$\frac{\alpha[\mathsf{x} := \overline{\mathsf{0}}] \vee \delta \quad \alpha[\mathsf{x} := \overline{\mathsf{1}}] \vee \delta \quad \alpha[\mathsf{x} := \overline{\mathsf{2}}] \vee \delta \quad \dots}{(\forall \mathsf{x}.\alpha) \vee \delta}$$

сечение

$$\frac{\zeta \vee \alpha \qquad \neg \alpha \vee \delta}{\zeta \vee \delta}$$

Здесь:

 α — секущая формула

Число связок в $\neg \alpha$ — степень сечения.

Дерево доказательства

- 1. Доказательства образуют деревья.
- 2. Каждой формуле в дереве сопоставим порядковое число (ординал).
- Порядковое число заключения любого неструктурного правила строго больше порядкового числа его посылок (больше или равно в случае структурного правила).

$$\frac{(\neg 1 = 0)_1 \quad (\neg 2 = 0)_2 \quad (\neg 3 = 0)_4 \quad (\neg 4 = 0)_8 \dots}{(\forall x. \neg x' = 0)_{\omega}}$$
$$\frac{(\neg \neg \forall x. \neg x' = 0)_{\omega}}{(\neg \neg \forall x. \neg x' = 0)_{\omega+1}}$$

4. Существует конечная максимальная степень сечения в дереве (назовём её степенью вывода).

Любая теорема Φ .А. — теорема S_{∞}

Теорема

Если
$$\vdash_{\phi a} \alpha$$
, то $\vdash_{\infty} |\alpha|_{\infty}$

Пример

Обратное неверно:

$$\frac{\neg \omega(\overline{0}, \overline{\neg \sigma}) \qquad \neg \omega(\overline{1}, \overline{\neg \sigma}) \qquad \neg \omega(\overline{2}, \overline{\neg \sigma}) \qquad \dots}{\forall x. \neg \omega(x, \overline{\neg \sigma})}$$

Теорема

Если Ф.А. противоречива, то противоречива и S_{∞}

Обратимость правил де Моргана, отрицания, бесконечной индукции

Теорема

$$\frac{\neg(\alpha\vee\beta)\vee\delta}{\neg\alpha\vee\delta\quad\neg\beta\vee\delta}\quad\frac{\neg\neg\alpha\vee\delta}{\alpha\vee\delta}\quad\frac{(\forall x.\alpha)\vee\delta}{\alpha[x:=\overline{0}]\vee\delta\quad\alpha[x:=\overline{1}]\vee\delta\quad\alpha[x:=\overline{2}]\vee\delta}$$
 Доказательство.

 $\delta(0)$

 $\neg \neg \alpha \lor \delta(0)$

 $\alpha \vee \delta(2)$

Например, формула вида $\neg\neg\alpha\lor$ δ .

Проследим историю $\neg\neg\alpha$; она могла быть получена:

- ослаблением заменим $\neg \neg \alpha$ на α в этом узле и последующих.
- 2. отрицанием выбросим $\neg \neg \alpha \lor \forall x.\delta(x)$ правило, заменим $\neg \neg \alpha$ на

Устранение сечений

Теорема

Если α имеет вывод степени m>0 порядка t, то можно найти вывод степени строго меньшей m с порядком 2^t .

Доказательство.

Трансфинитная индукция. Пусть для всех деревьев порядка $t_1 < t$ условие выполнено. Покажем, что оно выполнено для порядка t. Рассмотрим заключительное правило. Это может быть...

- 1. Не сечение.
- 2. Сечение, секущая формула элементарная.
- 3. Сечение, секущая формула $\neg \alpha$.
- **4**. Сечение, секущая формула $\alpha \lor \beta$.
- 5. Сечение, секущая формула $\forall x.\alpha$.

Случай 1. Не сечение

$$\frac{(\pi_0)_{t_0} \quad (\pi_1)_{t_1} \quad (\pi_2)t_2 \quad \dots}{(\alpha)_t}$$

Заменим доказательства посылок $(\pi_i)_{t_i}$ на $(\pi_i')_{2^{t_i}}$ по индукционному предположению.

- 1. Поскольку степени посылок $m_i' < m_i$, то $\max m_i' < \max m_i$.
- 2. Поскольку $t_i \le t$, то $2^{t_i} \le 2^t$.

Случай 5. Сечение с формулой вида $\forall x.\alpha$

$$\frac{\zeta \vee \forall x.\alpha \quad (\neg \forall x.\alpha) \vee \delta}{\zeta \vee \delta}$$

Причём степень и порядок выводов компонент, соответственно, (m_1, t_1) и (m_2, t_2) .

- 1. По индукции, вывод $\zeta \vee \forall x. \alpha$ можно упростить до $(m_1', 2^{t_1})$.
- 2. По обратимости, можно построить вывод $\zeta \vee \alpha[x := \theta]$ за $(m'_1, 2^{t_1})$.
- 3. В формуле $(\neg \forall x.\alpha) \lor \delta$ формула $\neg \forall x.\alpha$ получена либо ослаблением, либо квантификацией из $\neg \alpha[x := \theta_k] \lor \delta_k$.
 - 3.1 Каждое правило квантификации заменим на:

$$\frac{\zeta \vee \alpha[\mathsf{x} := \theta_k] \quad (\neg \alpha[\mathsf{x} := \theta_k]) \vee \delta_k}{\zeta \vee \delta_k}$$

- 3.2 Остальные вхождения $\neg \forall x. \alpha$ заменим на ζ (в правилах ослабления).
- 4. В получившемся дереве меньше степень так как в $\neg \alpha[x := \theta]$ меньше связок, чем в $\neg \forall x.\alpha$.

Случай 5. Как перестроим доказательство

Теорема об устранении сечений

Определение

Итерационная экспонента

$$(a\uparrow)^m(t) = \left\{ \begin{array}{ll} t, & m=0\\ a^{(a\uparrow)^{m-1}(t)}, & m>0 \end{array} \right.$$

Теорема

Если $\vdash_{\infty} \sigma$ степени m порядка t, то найдётся доказательство без сечений порядка $(2\uparrow)^m(t)$

Доказательство.

В силу конечности m воспользуемся индукцией по m и теоремой об уменьшении степени.

Порядок трансфинитной индукции

Определение

 $arepsilon_0$ — неподвижная точка $arepsilon_0=\omega^{arepsilon_0}$

Иначе говоря, $\varepsilon_0 = \{\omega, \omega^\omega, \omega^{\omega^\omega}, (\omega\uparrow)^3(\omega), (\omega\uparrow)^4(\omega), \dots\}$. Очевидно, что теорема об устранении сечений может быть доказана трансфинитной индукцией до ординала ε_0 (максимальный порядок дерева вывода, при правильной нумерации вершин).

Непротиворечивость формальной арифметики

Теорема

Система S_{∞} непротиворечива

Доказательство.

Рассмотрим формулу $\neg 0=0$. Если эта формула выводима в S_{∞} , то она выводима и в S_{∞} без сечений. Тогда какое заключительное правило?

- 1. Правило Де-Моргана? Нет отрицаний дизъюнкции $(\neg(\alpha \lor \beta) \lor \delta)$.
- 2. Отрицание? Нет двойного отрицания ($\neg \neg \alpha \lor \delta$).
- 3. Бесконечная индукция или квантификация? Нет квантора.
- **4**. Ослабление? Нет дизъюнкции $(\alpha \lor \delta)$.

То есть, неизбежно, $\neg 0 = 0$ — аксиома, что также неверно.