N BARYONS(S = 0, I = 1/2)

 $p, N^+ = uud; \quad n, N^0 = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.007276466621\pm0.00000000000033$ u Mass $m=938.27208816\pm0.000000029$ MeV $^{[a]}$ $|m_p-m_{\overline{p}}|/m_p<7\times10^{-10}$, CL =90% $^{[b]}$ $|\frac{q_{\overline{p}}}{m_{\overline{p}}}|/(\frac{q_p}{m_p})=1.000000000003\pm0.000000000016$ $|q_p+q_{\overline{p}}|/e<7\times10^{-10}$, CL =90% $^{[b]}$ $|q_p+q_e|/e<1\times10^{-21}$ $^{[c]}$ Magnetic moment $\mu=2.7928473446\pm0.00000000008$ μ_N $(\mu_p+\mu_{\overline{p}})/\mu_p=(0.002\pm0.004)\times10^{-6}$ Electric dipole moment $d<0.021\times10^{-23}$ ecm Electric polarizability $\alpha=(11.2\pm0.4)\times10^{-4}$ fm 3 Magnetic polarizability $\beta=(2.5\pm0.4)\times10^{-4}$ fm 3 (S =1.2) Charge radius, μ_P Lamb shift $=0.84087\pm0.00039$ fm $^{[d]}$ Charge radius $=0.8409\pm0.0004$ fm $^{[d]}$ Magnetic radius $=0.851\pm0.026$ fm $^{[e]}$ Mean life $\tau>9\times10^{29}$ years, CL =90% $(p\to invisible mode)$

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES	Partial mean life (10 ³⁰ years)		idence level	<i>p</i> (MeV/ <i>c</i>)
	Antilepton + meson			
$N ightarrow e^+ \pi$	> 5300 (n), > 2	24000 (p)	90%	459
$N ightarrow \mu^+ \pi$	> 3500 (n), > 3	16000 (p)	90%	453
$N ightarrow u \pi$	> 1100 (n), >	390 (p)	90%	459
$ extstyle ho ightarrow extstyle e^+ \eta$	> 10000		90%	309
$ ho ightarrow \ \mu^+ \eta$	> 4700		90%	297
$n ightarrow u \eta$	> 158		90%	310
$N ightarrow \mathrm{e^+} ho$	> 217 (n), > 72	20 (p)	90%	149
$N ightarrow \ \mu^+ ho$	> 228 (n), > 57	70 (<i>p</i>)	90%	113
N o u ho	> 19 (n), > 162	2 (p)	90%	149
https://pdm.lbl.mov.	Doma 1	Cuaatad.	10 /2 /202	1 10.10

https://pdg.lbl.gov

Page 1

$p \rightarrow e^+ \omega$	> 1600	90%	143
$p \rightarrow \mu^+ \omega$	> 2800	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N ightarrow \ \mu^+ K$	> 26 (n), > 4500 (p)	90%	329
$N \rightarrow \nu K$	> 86 (n), $>$ 5900 (p)	90%	339
$n ightarrow \ u K_S^0$	> 260	90%	338
$p \to e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	>78 (n), >51 (p)	90%	45
	ntilantan masans		
$p \rightarrow e^+\pi^+\pi^-$	ntilepton + mesons	000/	440
$p \rightarrow e^+\pi^+\pi^ p \rightarrow e^+\pi^0\pi^0$	> 82	90%	448
$p \rightarrow e^{+}\pi^{-}\pi^{0}$ $n \rightarrow e^{+}\pi^{-}\pi^{0}$	> 147	90%	449
	> 52	90%	449
$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$p \to \mu^{+} \pi^{0} \pi^{0}$	> 101	90%	427
$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
	Lepton + meson		
$n \rightarrow e^- \pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n ightarrow e^- ho^+$	> 62	90%	150
$n \rightarrow \mu^{-} \rho^{+}$	> 7	90%	115
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330
,	Lanton I masons		
,+ _+	Lepton + mesons	000/	440
$p \rightarrow e^- \pi^+ \pi^+$	> 30	90%	448
$n \rightarrow e^-\pi^+\pi^0$	> 29	90%	449
$p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n \rightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$p \rightarrow e^- \pi^+ K^+$	> 75	90%	320
$p \rightarrow \mu^- \pi^+ K^+$	> 245	90%	279
An	tilepton + photon(s)		
$p \rightarrow e^+ \gamma$	> 670	90%	469
$p \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \rightarrow \nu \gamma$	> 550	90%	470
$p \rightarrow e^{+} \gamma \gamma$	> 100	90%	469
$n \rightarrow \nu \gamma \gamma$	> 219	90%	470
, ,			
	epton + single massless	a = 0 /	
$p \rightarrow e^+ X$	> 790	90%	_
$p \rightarrow \mu^+ X$	> 410	90%	_

Three (or more) leptons

	- (or more) represe		
$ ho ightarrow \ e^+ e^+ e^-$	> 34000	90%	469
$ ho ightarrow \ e^+ \mu^+ \mu^-$	> 9200	90%	457
$ ho ightarrow e^+ u u$	> 170	90%	469
$n ightarrow e^+ e^- u$	> 257	90%	470
$n ightarrow \ \mu^+ e^- u$	> 83	90%	464
$n \rightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow ~\mu^+ e^+ e^-$	> 23000	90%	463
$ ho ightarrow ~\mu^-e^+e^+$	> 19000	90%	463
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 10000	90%	439
$ ho ightarrow \ \mu^+ u u$	> 220	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 11000	90%	457
n o 3 u	$> 5 \times 10^{-4}$	90%	470
	nclusive modes		
$N ightarrow e^+$ anything	> 0.6 (n, p)	90%	_
$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%	_
$N ightarrow \ e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

Created: 10/3/2024 18:48

The following are lifetime limits per iron nucleus.

$pp \rightarrow \pi^+\pi^+$	> 72.2	90%	_
$pn \rightarrow \pi^+\pi^0$	> 170	90%	_
$nn \rightarrow \pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 404	90%	_
$pp \rightarrow K^+K^+$	> 170	90%	_
$pp ightarrow e^+e^+$	> 5.8	90%	_
$pp ightarrow e^+ \mu^+$	> 3.6	90%	_
$ ho ho ightarrow \ \mu^+\mu^+$	> 1.7	90%	_
$pn \rightarrow e^+ \overline{\nu}$	> 260	90%	_
$pn ightarrow \mu^+ \overline{ u}$	> 200	90%	_
$pn o au^+ \overline{ u}_{ au}$	> 29	90%	_
$nn \rightarrow \text{ invisible}$	> 1.4	90%	_
$\mathit{nn} ightarrow \ u_{e} \overline{ u}_{e}$	> 1.4	90%	_
nn $ ightarrow u_{\mu}\overline{ u}_{\mu}$	> 1.4	90%	_
$pn \rightarrow \text{invisible}$	> 0.06	90%	_
$pp \rightarrow \text{ invisible}$	> 0.11	90%	_

P DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	$p \pmod{p}$
$\overline{ ho} ightarrow e^- \gamma$	$>7\times10^{5}$	90%	469
$\overline{p} \rightarrow \mu^- \gamma$	$> 5 \times 10^4$	90%	463
$\overline{p} \rightarrow e^{-}\pi^{0}$	$> 4 \times 10^5$	90%	459

https://pdg.lbl.gov

Page 3

$ \overline{p} \rightarrow \mu^{-} \pi^{0} $ $ \overline{p} \rightarrow e^{-} \eta $ $ \overline{p} \rightarrow \mu^{-} \eta $ $ \overline{p} \rightarrow e^{-} K_{S}^{0} $ $ \overline{p} \rightarrow \mu^{-} K_{S}^{0} $ $ \overline{p} \rightarrow e^{-} K_{L}^{0} $ $ \overline{p} \rightarrow \mu^{-} K_{L}^{0} $ $ \overline{p} \rightarrow \mu^{-} K_{L}^{0} $ $ \overline{p} \rightarrow e^{-} \gamma \gamma $	$ > 5 \times 10^{4} $ $ > 2 \times 10^{4} $ $ > 8 \times 10^{3} $ $ > 900 $ $ > 4 \times 10^{3} $ $ > 9 \times 10^{3} $ $ > 7 \times 10^{3} $ $ > 2 \times 10^{4} $	90% 90% 90% 90% 90% 90%	453 309 297 337 326 337 326
· <u>L</u>			
$\overline{p} \rightarrow \mu^{-} K_{L}^{0}$ $\overline{p} \rightarrow e^{-} \gamma \gamma$	$ > 7 \times 10^3 $ $ > 2 \times 10^4 $	90% 90%	326 469
$\frac{\overline{p} \to \mu^- \gamma \gamma}{\overline{p} \to e^- \omega}$	$> 2 \times 10^4$ > 200	90% 90%	463 143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.0086649160\pm0.0000000005$ u Mass $m=939.5654205\pm0.0000005$ MeV [a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 5) \times 10^{-5}$ $m_n - m_p = 1.2933324 \pm 0.0000005 \text{ MeV}$ = 0.00138844919(45) uMean life $\tau = 878.4 \pm 0.5 \text{ s}$ (S = 1.8) $c\tau = 2.6335 \times 10^8 \text{ km}$ Magnetic moment $\mu=-1.9130427\pm0.0000005~\mu_N$ Electric dipole moment $d < 0.18 \times 10^{-25}$ ecm, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1155 \pm 0.0017 \text{ fm}^2$ Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n \overline{n}$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n\overline{n}$ -oscillation time > 4.7×10^8 s, CL = 90% [f] (bound n) Mean nn'-oscillation time > 448 s, CL = 90% [g]

$pe^-\nu_e$ decay parameters [h]

n DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (<i>p</i> MeV/ <i>c</i>)
$pe^-\overline{ u}_e$	100 %		1
$pe^-\overline{ u}_e\gamma$	[k] $(9.2\pm0.7)\times10^{-2}$	₁ –3	1
hydrogen-atom $\overline{ u}_e$	< 2.7 × 10	95%	1.19
Charge conserv	vation (Q) violating r	node	
$ \rho \nu_e \overline{\nu}_e $ Q	< 8 × 10	o ⁻²⁷ 68%	1

$N(1440) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1360 to 1380 (\approx 1370) MeV -2Im(pole position) = 180 to 205 (\approx 190) MeV Breit-Wigner mass = 1410 to 1470 (\approx 1440) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	398
$N\eta$	<1 %	†
$N\pi\pi$	17–50 %	347
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–27 %	147
$N\sigma$	11–23 %	_
$p\gamma$, helicity $=1/2$	0.035–0.048 %	414
$n\gamma$, helicity=1/2	0.02-0.04 %	413

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 120 (\approx 110) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–65 %	453
$N\eta$	0.07-0.09 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %	225
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	7–11 %	225
$N \rho$	10–16 %	†
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	10–16 %	†

https://pdg.lbl.gov

Page 5

$N ho$, $S\!\!=\!\!1/2$, $D\!\!-\!\!$ wave	0.2-0.4 %	†
$N\sigma$	<10 %	_
$p\gamma$	0.31-0.52 %	467
$p\gamma$, helicity=1/2	0.01-0.02 %	467
$p\gamma$, helicity=3/2	0.30-0.50 %	467
$n\gamma$	0.30-0.53 %	466
$n\gamma$, helicity $=1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25-0.45 %	466

N(1535) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1500 to 1520 (\approx 1510) MeV -2Im(pole position) = 80 to 130 (\approx 110) MeV Breit-Wigner mass = 1515 to 1545 (\approx 1530) MeV Breit-Wigner full width = 125 to 175 (\approx 150) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	32–52 %	464
$N\eta$	30–55 %	176
$N\pi\pi$	4–31 %	422
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	1-4 %	240
$N \rho$	2–17 %	†
$N ho$, $S\!\!=\!\!1/2$, $S\!\!-\!\!$ wave	2–16 %	†
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	<1 %	†
$N\sigma$	2–10 %	_
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity=1/2	0.15-0.30 %	477
$n\gamma$, helicity=1/2	0.01-0.25 %	477

N(1650) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Re(pole position) = 1650 to 1680 (\approx 1665) MeV -2Im(pole position) = 100 to 170 (\approx 135) MeV Breit-Wigner mass = 1635 to 1665 (\approx 1650) MeV Breit-Wigner full width = 100 to 150 (\approx 125) MeV

N(1650) DECAY MODES	Fraction (Γ_i	p (MeV/c)
$N\pi$	50–70 %	547
$N\eta$	15–35 %	348
ΛK	5-15 %	169
$N\pi\pi$	20-58 %	514
$\Delta(1232)\pi$, $ extit{\it D}$ -wave	6–18 %	345
https://pdg.lbl.gov	Page 6	Created: 10/3/2024 18:48

$N \rho$	12–22 %	†
$N\rho$, $S=1/2$, S -wave	<4 %	†
$N\rho$, $S=3/2$, D -wave	12–18 %	†
$N\sigma$	2–18 %	_
$N(1440)\pi$	6–26 %	150
$p\gamma$, helicity=1/2	0.04–0.20 %	558
$n\gamma$, helicity=1/2	0.003-0.17 %	557

N(1675) 5/2

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 1650 to 1660 (\approx 1655) MeV -2Im(pole position) = 120 to 150 (\approx 135) MeV Breit-Wigner mass = 1665 to 1680 (\approx 1675) MeV Breit-Wigner full width = 130 to 160 (\approx 145) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	38–42 %	564
$N\eta$	< 1 %	376
ΛK	<0.04 %	216
$N\pi\pi$	25–45 %	532
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	23–37 %	366
N $ ho$	0.1–0.9 %	†
$N \rho$, $S=1/2$	<0.2 %	†
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	0.1–0.7 %	†
$N\sigma$	3–7 %	_
$oldsymbol{ ho}\gamma$	0-0.02 %	575
$ ho\gamma$, helicity $=1/2$	0-0.01 %	575
$p\gamma$, helicity=3/2	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity=1/2	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1660 to 1680 (\approx 1670) MeV -2Im(pole position) = 110 to 135 (\approx 120) MeV Breit-Wigner mass = 1680 to 1690 (\approx 1685) MeV Breit-Wigner full width = 115 to 130 (\approx 120) MeV

N(1680) DECAY MODES	Fraction (Γ_i	$/\Gamma$) $p \text{ (MeV/}c)$
$N\pi$	60–70 %	571
https://pdg.lbl.gov	Page 7	Created: 10/3/2024 18:48

$N\eta$	<1 %	386
$N\pi\pi$	28–53 %	539
Δ (1232) π	11–23 %	374
${\it \Delta}(1232)\pi$, $\it P$ -wave	4–10 %	374
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	1–13 %	374
N ho	8-11 %	†
$N ho$, $S\!\!=\!\!3/2$, $P\!\!$ -wave	6–8 %	†
N $ ho$, $S\!\!=\!\!3/2$, $F\!\!$ -wave	2–3 %	†
$N\sigma$	9–19 %	_
$oldsymbol{ ho}\gamma$	0.21-0.32 %	581
$p\gamma$, helicity=1/2	0.001-0.011 %	581
$p\gamma$, helicity=3/2	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity $=1/2$	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

N(1700) 3/2

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 100 to 300 (\approx 200) MeV Breit-Wigner mass = 1650 to 1800 (\approx 1720) MeV Breit-Wigner full width = 100 to 300 (\approx 200) MeV

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–17 %	594
$N\eta$	1–2 %	422
$N\omega$	10–34 %	†
ΛK	1–2 %	283
$N\pi\pi$	>89 %	564
$\Delta(1232)\pi$	55–85 %	402
$\mathit{\Delta}(1232)\pi$, $\mathit{S} ext{-}wave$	50–80 %	402
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	4–14 %	402
$N\rho$, $S=3/2$, S -wave	32–44 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	3–11 %	225
$N(1520)\pi$	<4 %	145
$oldsymbol{ ho}\gamma$	0.01-0.05 %	604
$p\gamma$, helicity $=1/2$	0.0-0.024 %	604
$p\gamma$, helicity=3/2	0.002-0.026 %	604
$n\gamma$	0.01-0.13 %	603
$n\gamma$, helicity $=1/2$	0.0–0.09 %	603
$n\gamma$, helicity=3/2	0.01–0.05 %	603

$N(1710) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 80 to 160 (\approx 120) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 80 to 200 (\approx 140) MeV

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛK	5–25 %	269
ΣK	seen	138
$N\pi\pi$	14–48 %	557
${\it \Delta}(1232)\pi$, $\it P$ -wave	3–9 %	394
$N\rho$, $S=1/2$, P -wave	11–23 %	†
$N\sigma$	<16 %	_
$N(1535)\pi$	9–21 %	113
$p\gamma$, helicity $=1/2$	0.002-0.08 %	598
$n\gamma$, helicity= $1/2$	0.0-0.02%	597

N(1720) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Created: 10/3/2024 18:48

Re(pole position) = 1660 to 1710 (\approx 1680) MeV -2Im(pole position) = 150 to 300 (\approx 200) MeV Breit-Wigner mass = 1680 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–14 %	594
$N\eta$	1–5 %	422
N ω	12–40 %	†
ΛK	4–19 %	283
$N\pi\pi$	>50 %	564
$\Delta(1232)\pi$	47–89 %	402
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}$ wave	47–77 %	402
${\it \Delta}(1232)\pi$, $\it F-wave$	<12 %	402
$N\rho$, $S=1/2$, P -wave	1–2 %	74
$N\sigma$	2–14 %	_

$N(1440)\pi$	<2 %	225
$N(1520)\pi$, $\it S-wave$	1–5 %	145
$p\gamma$	0.05-0.25 %	604
$ ho\gamma$, helicity $=1/2$	0.05-0.15 %	604
$p\gamma$, helicity=3/2	0.002-0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity $=1/2$	0.0-0.01 %	603
$n\gamma$, helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

was N(2080)

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 100 to 220 (\approx 160) MeV Breit-Wigner mass = 1850 to 1920 (\approx 1875) MeV Breit-Wigner full width = 120 to 250 (\approx 200) MeV

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–11 %	695
$N\eta$	3–16 %	559
$N\omega$	15–25 %	371
ΛK	1-2 %	454
ΣK	0.3–1.1 %	384
$N\pi\pi$	>56 %	670
$\Delta(1232)\pi$	4–44 %	520
${\it \Delta}(1232)\pi$, $\it S$ -wave	2-21 %	520
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	2-23 %	520
$N\rho$, $S=3/2$, S -wave	36–56 %	379
$N\sigma$	16–60 %	_
$N(1440)\pi$	2-8 %	365
$N(1520)\pi$	<2 %	301
$\Lambda K^*(892)$	<0.2 %	†
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity $=1/2$	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity= $1/2$	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

$N(1880) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1820 to 1900 (\approx 1860) MeV -2Im(pole position) = 180 to 280 (\approx 230) MeV Breit-Wigner mass = 1830 to 1930 (\approx 1880) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

N(1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–31 %	698
$N\eta$	1–55 %	563
$N\omega$	12–28 %	377
ΛK	1–3 %	459
ΣK	10–24 %	389
$N\pi\pi$	>32 %	673
$\Delta(1232)\pi$	5–42 %	524
$N\rho$, $S=1/2$, P -wave	19–45 %	385
$N\sigma$	8–40 %	539
$N(1535)\pi$	4–12 %	293
<i>N</i> a ₀ (980)	1–5 %	†
ΛK*(892)	0.5–1.1 %	†
$p\gamma$, helicity $=1/2$	seen	706
$n\gamma$, helicity=1/2	0.002-0.63 %	705

N(1895) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Created: 10/3/2024 18:48

was N(2090)

Re(pole position) = 1890 to 1930 (\approx 1910) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1870 to 1920 (\approx 1895) MeV Breit-Wigner full width = 80 to 200 (\approx 120) MeV

N(1895) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2–18 %	707
$N\eta$	15–45 %	575
$N \eta'$	10–40 %	†
$N\omega$	16-40 %	395
ΛK	3–23 %	473
ΣK	6–20 %	405
$N\pi\pi$	17–74 %	683
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	3-11 %	535

N ho	14–50 %	403
$N\rho$, $S=1/2$, S -wave	<18 %	403
$N\rho$, $S=3/2$, D -wave	14–32 %	403
$N\sigma$	<13 %	_
$N(1440)\pi$	2-12 %	382
$\Lambda K^{*}(892)$	4–9 %	†
$p\gamma$, helicity= $1/2$	0.01-0.06 %	715
$n\gamma$, helicity=1/2	0.003-0.05 %	715

N(1900) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1900 to 1940 (\approx 1920) MeV -2Im(pole position) = 90 to 160 (\approx 130) MeV Breit-Wigner mass = 1890 to 1950 (\approx 1920) MeV Breit-Wigner full width = 100 to 320 (\approx 200) MeV

N(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	1–20 %	723
$N\eta$	2–14 %	595
$N\eta'$	4–8 %	151
$N\omega$	7–13 %	424
ΛK	2–20 %	495
ΣK	3–7 %	431
$N\pi\pi$	>56 %	699
$\Delta(1232)\pi$	30–70 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	9–25 %	553
${\it \Delta}(1232)\pi$, $\it F-wave$	21–45 %	553
N ho, $S=1/2$	25–40 %	432
$N\sigma$	1–7 %	_
$N(1520)\pi$	7–23 %	341
$N(1535)\pi$	4–10 %	328
ΛK*(892)	< 0.2 %	†
$p\gamma$	0.001-0.025 %	731
$p\gamma$, helicity=1/2	0.001-0.021 %	731
$p\gamma$, helicity=3/2	<0.003 %	731
$n\gamma$	<0.040 %	730
$n\gamma$, helicity=1/2	<0.007 %	730
$n\gamma$, helicity=3/2	<0.033 %	730

N(2060) 5/2⁻

 $I(J^P) = \frac{1}{2}(\frac{5}{2})$

was N(2200)

Re(pole position) = 2020 to 2130 (\approx 2070) MeV -2Im(pole position) = 350 to 430 (\approx 400) MeV Breit-Wigner mass = 2030 to 2200 (\approx 2100) MeV Breit-Wigner full width = 300 to 450 (\approx 400) MeV

N(2060) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–12 %	834
$N\eta$	2–38 %	729
$N\omega$	1-7 %	600
ΛΚ	10–20 %	644
ΣK	1–5 %	593
$N\pi\pi$	12–52 %	814
$arDelta(1232)\pi$, $ extit{D} ext{-}$ wave	4-10 %	680
$N \rho$	5–33 %	605
$N\rho$, $S=1/2$, P -wave	<10 %	605
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	5-23 %	605
$N\sigma$	3–9 %	-
$N(1440)\pi$	4–14 %	544
$N(1520)\pi$, $ extit{ }P ext{-}$ wave	9–21 %	490
$N(1680)\pi$, $\it S-wave$	8–22 %	353
$\Lambda K^*(892)$	0.3–1.3 %	307
$p\gamma$	0.03-0.19 %	840
$p\gamma$, helicity=1/2	0.02-0.08 %	840
$p\gamma$, helicity=3/2	0.01-0.10 %	840
$n\gamma$	0.003-0.07 %	840
$n\gamma$, helicity $=1/2$	0.001–0.02 %	840
$n\gamma$, helicity=3/2	0.002-0.05 %	840

N(2100) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 240 to 340 (\approx 300) MeV Breit-Wigner mass = 2050 to 2150 (\approx 2100) MeV Breit-Wigner full width = 200 to 320 (\approx 260) MeV

N(2100) DECAY MODES	Fraction (Γ_i/Γ_i)	$p ext{ (MeV/}c)$
$N\pi$	8-32 %	834
$N\eta$	5–45 %	729
https://pdg.lbl.gov	Page 13	Created: 10/3/2024 18:48

$\mathcal{N}\eta'$	5-11 %	451
$N\omega$	10–25 %	600
ΛK	<1.0 %	644
$N\pi\pi$	>55 %	814
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	6–14 %	680
$N\rho$, $S=1/2$, P -wave	35–70	605
$N\sigma$	14–35 %	_
$N(1535)\pi$	26–34 %	478
ΛK*(892)	3–11 %	307
$p\gamma$, helicity=1/2	0.001-0.13 %	840
$n\gamma$, helicity=1/2	0.004-0.09 %	840

N(2120) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 200 to 360 (\approx 280) MeV Breit-Wigner mass = 2060 to 2160 (\approx 2120) MeV Breit-Wigner full width = 260 to 360 (\approx 300) MeV

N(2120) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	846
$N\eta$	1-5 %	743
$N \eta'$	2-6 %	474
$N\omega$	4–20 %	617
ΛK	6–11 %	660
$N\pi\pi$	>27 %	827
$\Delta(1232)\pi$	>23 %	693
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–70 %	693
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	8–45 %	693
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	< 3 %	622
$N\sigma$	4–15 %	_
$N(1535)\pi$	7–23 %	494
ΛK*(892)	< 0.2 %	339
$oldsymbol{ ho}\gamma$	0.16–2.1 %	852
$p\gamma$, helicity $=1/2$	0.07-0.80 %	852
$p\gamma$, helicity=3/2	0.09-1.3 %	852
$n\gamma$	0.04-0.72 %	852
$n\gamma$, helicity $=1/2$	0.04-0.60 %	852
$n\gamma$, helicity= $3/2$	0.001–0.12 %	852

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2})$$

Re(pole position) = 1950 to 2150 (\approx 2050) MeV -2Im(pole position) = 300 to 500 (\approx 400) MeV Breit-Wigner mass = 2140 to 2220 (\approx 2180) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	10–20 %	882
$N\eta$	1-5 %	785
$N\omega$	8–20 %	667
ΛK	0.2-0.8 %	705
$N\pi\pi$	22-51 %	864
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	19–31 %	734
$N\rho$, $S=3/2$, D -wave	<11 %	672
$N\sigma$	3–9 %	_
ΛK*(892)	0.2-0.8 %	423
$p\gamma$	<0.08 %	888
$p\gamma$, helicity $=1/2$	<0.06 %	888
$p\gamma$, helicity $=3/2$	<0.02 %	888
$n\gamma$	<0.04 %	888
$n\gamma$, helicity $=1/2$	<0.01 %	888
$n\gamma$, helicity=3/2	<0.03 %	888

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Re(pole position) = 2130 to 2200 (\approx 2150) MeV -2Im(pole position) = 360 to 480 (\approx 400) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–30 %	924

N(2250) 9/2⁻

$$I(J^P) = \frac{1}{2}(\frac{9}{2})$$

Created: 10/3/2024 18:48

Re(pole position) = 2100 to 2200 (\approx 2150) MeV -2Im(pole position) = 350 to 500 (\approx 420) MeV Breit-Wigner mass = 2250 to 2320 (\approx 2280) MeV Breit-Wigner full width = 300 to 600 (\approx 500) MeV

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5-15 %	941
$N\eta$	<5 %	852
ΛK	1-3 %	777

N(2600) 11/2⁻

$$I(J^P) = \frac{1}{2}(\frac{11}{2}^-)$$

Breit-Wigner mass = 2550 to 2750 (≈ 2600) MeV Breit-Wigner full width = 500 to 800 (≈ 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–8 %	1126

\triangle BARYONS (S=0, I=3/2)

 $\Delta^{++} = uuu$, $\Delta^{+} = uud$, $\Delta^{0} = udd$, $\Delta^{-} = ddd$

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Created: 10/3/2024 18:48

Re(pole position) = 1209 to 1211 (\approx 1210) MeV -2Im(pole position) = 98 to 102 (\approx 100) MeV

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV

Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	99.4 %	229
$N\gamma$	0.55-0.65 %	259
$N\gamma$, helicity $=1/2$	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44-0.52 %	259
pe^+e^-	$(4.2\pm0.7)\times10^{-5}$	259

△(1600) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1470 to 1590 (\approx 1520) MeV -2Im(pole position) = 150 to 320 (\approx 280) MeV Breit-Wigner mass = 1500 to 1640 (\approx 1570) MeV Breit-Wigner full width = 200 to 300 (\approx 250) MeV

△(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–24%	492
$N\pi\pi$	58–84 %	454
$\Delta(1232)\pi$	58–82 %	276
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	72–82%	276
${\it \Delta}(1232)\pi$, $\it F-wave$	<2%	276
$N(1440)\pi$	17–27%	†
$N\gamma$	0.001-0.035 %	505
$N\gamma$, helicity=1/2	0.0-0.02 %	505
$N\gamma$, helicity=3/2	0.001-0.015 %	505

△(1620) 1/2⁻

$$I(J^P) = \frac{3}{2}(\frac{1}{2})$$

Re(pole position) = 1590 to 1610 (\approx 1600) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1590 to 1630 (\approx 1610) MeV Breit-Wigner full width = 110 to 150 (\approx 130) MeV

△(1620) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	25–35 %	520
$N\pi\pi$	>67 %	484
$arDelta(1232)\pi$, $ extit{D} ext{-}$ wave	44–72 %	311
$N \rho$	23–32%	†
$N ho$, $S \!\!=\!\! 1/2$, $S \!\!$ -wave	23–32%	†
$N\rho$, $S=3/2$, D -wave	<0.04%	†
$N(1440)\pi$	<9 %	98
$N\gamma$, helicity=1/2	0.03-0.10 %	532

∆(1700) 3/2[−]

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Created: 10/3/2024 18:48

Re(pole position) = 1640 to 1690 (\approx 1665) MeV -2Im(pole position) = 200 to 300 (\approx 250) MeV Breit-Wigner mass = 1690 to 1730 (\approx 1710) MeV Breit-Wigner full width = 220 to 380 (\approx 300) MeV

https://pdg.lbl.gov

Page 17

Δ(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	10-20 %	588
$N\pi\pi$	>31 %	557
$\Delta(1232)\pi$	9–70 %	394
${\it \Delta}(1232)\pi$, $\it S-wave$	5–54 %	394
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	4–16 %	394
$N\rho$, $S=3/2$, S -wave	22–32%	†
$N(1520)\pi$, $ extit{P}$ -wave	1–5 %	133
$N(1535)\pi$	0.5–1.5 %	113
$\Delta(1232)\eta$	3–7 %	†
$N\gamma$	0.22-0.60 %	598
$N\gamma$, helicity $=1/2$	0.12-0.30 %	598
$N\gamma$, helicity=3/2	0.10-0.30 %	598

⊿(1900) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2})$$

Re(pole position) = 1830 to 1900 (\approx 1865) MeV -2Im(pole position) = 180 to 300 (\approx 240) MeV Breit-Wigner mass = 1840 to 1920 (\approx 1860) MeV Breit-Wigner full width = 180 to 320 (\approx 250) MeV

△(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	4–12%	685
ΣK	seen	367
$N\pi\pi$	> 52%	660
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	30–70%	509
N ho	22–60 %	360
$N ho$, $S \!\!=\! 1/2$, $S \!\!$ -wave	11–35%	360
$N\rho$, $S=3/2$, D -wave	11–25%	360
$N(1440)\pi$	3–32%	353
$N(1520)\pi$	2–10%	288
$\Delta(1232)\eta$	< 2%	251
$N\gamma$, helicity=1/2	0.06–0.43 %	693

△(1905) 5/2⁺

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Created: 10/3/2024 18:48

Re(pole position) = 1750 to 1800 (\approx 1770) MeV -2Im(pole position) = 260 to 340 (\approx 300) MeV Breit-Wigner mass = 1855 to 1910 (\approx 1880) MeV Breit-Wigner full width = 270 to 400 (\approx 330) MeV

Δ (1905) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	9–15%	698
$N\pi\pi$	>65%	673
$\Delta(1232)\pi$	>48%	524
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}$ wave	8–43%	524
$\mathit{\Delta}(1232)\pi$, $\mathit{F} ext{-}$ wave	40–58%	524
$N\rho$, $S=3/2$, P -wave	17–35%	385
$N(1535)\pi$	< 1 %	293
$N(1680)\pi$, $ extit{P}$ -wave	5–15%	133
Δ (1232) η	2–6%	282
$N\gamma$	0.012-0.036 %	706
$N\gamma$, helicity=1/2	0.002-0.006 %	706
$N\gamma$, helicity=3/2	0.01–0.03 %	706

△(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1800 to 1900 (\approx 1850) MeV -2Im(pole position) = 200 to 500 (\approx 350) MeV Breit-Wigner mass = 1850 to 1950 (\approx 1900) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	10–30%	710	
ΣK	4–14%	410	
Δ (1232) π	34–66%	539	
$\mathcal{N}(1440)\pi$	3–45%	386	
Δ (1232) η	5–13%	310	
$N\gamma$, helicity=1/2	0.0-0.02 %	718	

△(1920) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1870 to 1970 (\approx 1920) MeV Breit-Wigner full width = 240 to 360 (\approx 300) MeV

Δ (1920) DECAY MODES	Fraction (Γ_{i}	p (MeV/c)
$N\pi$	5–20 %	723
ΣK	2-6 %	431
$N\pi\pi$	>46 %	699
$\Delta(1232)\pi$	>46 %	553
https://pdg.lbl.gov	Page 19	Created: 10/3/2024 18:48

$\Delta(1232)\pi$, $ extit{\it P}$ -wave	2–28 %	553
${\it \Delta}(1232)\pi$, $\it F$ -wave	44–72 %	553
$N(1440)\pi$, $ extit{P}$ -wave	4–86 %	403
$N(1520)\pi$, $\it S-wave$	<5 %	341
$N(1535)\pi$	<2 %	328
<i>N a</i> ₀ (980)	seen	41
$\Delta(1232)\eta$	5–17 %	336
$N\gamma$	0.01-0.84 %	731
N γ , helicity $=1/2$	0.0-0.42 %	731
$N\gamma$, helicity=3/2	0.01–0.42 %	731

△(1930) 5/2[−]

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1820 to 1880 (\approx 1850) MeV -2Im(pole position) = 300 to 450 (\approx 320) MeV Breit-Wigner mass = 1900 to 2000 (\approx 1950) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity= $1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

△(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Created: 10/3/2024 18:48

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

△(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	729
ΣK	0.3-0.5 %	441
$N\pi\pi$	37–77 %	706
${\it \Delta}(1232)\pi$, $\it F$ -wave	1-9 %	560
$N(1680)\pi$, $ extit{P}$ -wave	3–9 %	191
$\Delta(1232)\eta$	< 0.6 %	349
$N\gamma$	0.06-0.14 %	737
N γ , helicity $=1/2$	0.03-0.05 %	737
$N\gamma$, helicity=3/2	0.04–0.09 %	737

∆(2200) 7/2[−]

$$I(J^P) = \frac{3}{2}(\frac{7}{2})$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 260 to 420 (\approx 340) MeV Breit-Wigner mass = 2150 to 2250 (\approx 2200) MeV Breit-Wigner full width = 200 to 500 (\approx 350) MeV

△(2200) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	2-8 %	894
ΣK	1–7 %	672
$N\pi\pi$	>45 %	876
$\Delta\pi$	>45 %	747
$\Delta\pi$, $\emph{D} ext{-}$ wave	>40 %	747
$\Delta\pi$, $\emph{G} ext{-}$ wave	5–25 %	747
$\Delta\eta$, $ extit{D}$ -wave	seen	614

△(2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Re(pole position) = 2300 to 2500 (\approx 2400) MeV -2Im(pole position) = 350 to 550 (\approx 450) MeV Breit-Wigner mass = 2300 to 2600 (\approx 2450) MeV Breit-Wigner full width = 300 to 700 (\approx 500) MeV

Δ(2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5-10 %	1040

$$\Lambda$$
 BARYONS $(S = -1, I = 0)$
 $\Lambda^0 = uds$

Λ

$$I(J^P) = 0(\frac{1}{2}^+)$$

Created: 10/3/2024 18:48

Mass $m=1115.683\pm0.006$ MeV $(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5}$ (S = 1.6) Mean life $\tau=(2.617\pm0.010)\times 10^{-10}$ s (S = 1.5) $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})\ /\ \tau_{\Lambda}=(0.9\pm3.2)\times 10^{-3}$ $c\tau=7.845$ cm

Magnetic moment $\mu=-0.613\pm0.004~\mu_{\it N}$ Electric dipole moment $d<~1.5\times10^{-16}~e\,{\rm cm},~{\rm CL}=95\%$

Decay parameters

$$\begin{array}{llll} p\pi^{-} & \alpha_{-} = 0.747 \pm 0.009 & (S = 2.5) \\ \overline{p}\pi^{+} & \alpha_{+} = -0.757 \pm 0.004 \\ \overline{\alpha}_{0} \; \text{FOR} \; \overline{\Lambda} \to \; \overline{n}\pi^{0} = -0.692 \pm 0.017 \\ \alpha_{\gamma} \; \text{FOR} \; \Lambda \to \; n\gamma = -0.16 \pm 0.11 \\ p\pi^{-} & \phi_{-} = (-6.5 \pm 3.5)^{\circ} \\ \text{"} & \gamma_{-} = 0.76 \, ^{[I]} \\ \text{"} & \Delta_{-} = (8 \pm 4)^{\circ} \, ^{[I]} \\ \overline{\alpha}_{0} \; / \; \alpha_{+} \; \text{in} \; \overline{\Lambda} \to \; \overline{n}\pi^{0}, \; \overline{\Lambda} \to \; \overline{p}\pi^{+} = 0.913 \pm 0.030 \\ \text{R} = \left| \mathsf{G}_{E}/\mathsf{G}_{M} \right| \; \text{in} \; \Lambda \to \; p\pi^{-}, \; \overline{\Lambda} \to \; \overline{p}\pi^{+} = 0.96 \pm 0.14 \\ \Delta \Phi = \Phi_{E} \; - \; \Phi_{M} \; \text{in} \; \Lambda \to \; p\pi^{-}, \; \overline{\Lambda} \to \; \overline{p}\pi^{+} = 37 \pm 13 \; \text{degrees} \\ n\pi^{0} & \alpha_{0} = 0.75 \pm 0.05 \\ pe^{-}\overline{\nu}_{e} & g_{A}/g_{V} = -0.718 \pm 0.015 \, ^{[h]} \end{array}$$

A DECAY MODES		Fraction (Γ	$_{i}/\Gamma)$ Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^-$		(64.1 ±0	0.5) %		101
$n\pi^0$		(35.9 ± 0.00)	0.5) %		104
$n\gamma$		(8.3 ± 0)	$0.7) \times 10^{-4}$		162
$p\pi^-\gamma$		[n] (8.5 \pm	1.4) \times 10 ⁻⁴		101
$pe^-\overline{ u}_e$		`	$0.14) \times 10^{-4}$		163
ρ $\mu^-\overline{ u}_\mu$		(1.51 ± 0)	$0.19) \times 10^{-4}$		131
Lepton (L) and/or Baryon (B) number violating decay modes					
π^+e^-	L,B	< 6	\times 10 ⁻⁷	90%	549
$\pi^+\mu^-$	L,B	< 6	\times 10 ⁻⁷	90%	544
π^-e^+	L,B	< 4	\times 10 ⁻⁷	90%	549
$\pi^-\mu^+$	L,B	< 6	\times 10 ⁻⁷	90%	544
K^+e^-	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^+\mu^-$	L,B	< 3	\times 10 ⁻⁶	90%	441
K^-e^+	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^-\mu^+$	L,B	< 3	\times 10 ⁻⁶	90%	441
$K_S^0 \nu$	L,B	< 2	\times 10 ⁻⁵	90%	447
$\overline{p}\pi^+$	В	< 9	\times 10 ⁻⁷	90%	101

Λ(1405) 1/2⁻

invisible

$$I(J^P) = 0(\frac{1}{2})$$

< 7.4

 $\times 10^{-5}$

90%

Created: 10/3/2024 18:48

Mass $m=1405.1^{+1.3}_{-1.0}~{
m MeV}$ Full width $\Gamma=50.5\pm2.0~{
m MeV}$ Below $\overline{K}~N$ threshold

A(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Λ(1520) 3/2⁻

$$I(J^P) = 0(\frac{3}{2}^-)$$

Mass m=1518 to 1520 (≈ 1519) MeV $^{[o]}$ Full width $\Gamma=15$ to 17 (≈ 16) MeV $^{[o]}$

Λ(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	$(45 \pm 1)\%$	242
$\Sigma \pi$	$(42 \pm 1)\%$	268
$\Lambda\pi\pi$	(10 ± 1) %	259
$\Sigma \pi \pi$	($0.9\ \pm0.1$) %	168
$\Lambda\gamma$	$(0.85\pm0.15)\%$	350

Λ(1600) 1/2⁺

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=1570 to 1630 (≈ 1600) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV

Λ(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15-30 %	343
$\Sigma \pi$	10–60 %	338
$\Lambda\sigma$	$(19\!\pm\!4)~\%$	_
$\Sigma(1385)\pi$	(9±4)%	158

Λ(1670) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 10/3/2024 18:48

Mass m=1670 to 1678 (≈ 1674) MeV Full width $\Gamma=25$ to 35 (≈ 30) MeV

Λ(1670) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	20–30 %	418
$\Sigma \pi$	25–55 %	398
$\Lambda\eta$	10–25 %	88
$\Sigma(1385)\pi$, $ extit{D}$ -wave	(6.0±2.0) %	235
$N\overline{K}^*(892)$, $S=3/2$, D -wave	$(5\pm4)\%$	†
$\Lambda\sigma$	(20 ±8)%	_

Λ(1690) 3/2[—]

$$I(J^P) = 0(\frac{3}{2}^-)$$

Mass m=1685 to 1695 (≈ 1690) MeV Full width $\Gamma=60$ to 80 (≈ 70) MeV

Λ(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	433
$\Sigma \pi$	20–40 %	410
$\Lambda\sigma$	(5.0 ± 2.0) %	_
$\Lambda\pi\pi$	\sim 25 $\%$	419
$\Sigma \pi \pi$	\sim 20 %	358
$\Sigma(1385)\pi$, $\emph{S} ext{-}$ wave	(9 ±5)%	251
$\Sigma(1385)\pi$, $ extit{D} ext{-wave}$	(3.0 ± 2.0) %	251

Λ(1800) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass m=1750 to $1850~(\approx 1800)~{\rm MeV}$ Full width $\Gamma=150$ to $250~(\approx 200)~{\rm MeV}$

Λ(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Lambda\sigma$	$(15 \pm 4)\%$	_
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	0.01 to 0.10	326
$N\overline{K}^*(892)$	seen	†

Λ(1810) 1/2⁺

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Created: 10/3/2024 18:48

Mass m=1740 to 1840 (≈ 1790) MeV Full width $\Gamma=50$ to 170 (≈ 110) MeV

Λ(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.35	520
$\Sigma \pi$	$(16 \pm \ 5)\ \%$	487
$\Sigma(1385)\pi$	$(40\pm 15)~\%$	340
$N\overline{K}^*(892)$	30–60 %	†

 $\Lambda(1820) 5/2^{+}$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width $\Gamma=70$ to 90 (≈ 80) MeV

Λ(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	55–65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^*(892)$, $S=3/2$, P -wave	(3.0 ± 1.0) %	†

Λ(1830) 5/2⁻

$$I(J^P) = 0(\frac{5}{2}^-)$$

Mass m=1820 to 1830 (≈ 1825) MeV Full width $\Gamma=60$ to 120 (≈ 90) MeV

A(1830) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
NK	0.04 to 0.08	549
$\Sigma \pi$	35–75 %	512
$\Sigma(1385)\pi$	>15 %	370
$\Sigma(1385)\pi$, $ extit{\it D}$ -wave	$(40 \pm 15) \%$	3.2 370

Λ(1890) 3/2⁺

$$I(J^P) = O(\frac{3}{2}^+)$$

Created: 10/3/2024 18:48

Mass m=1870 to 1910 (≈ 1890) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Λ(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.24 to 0.36	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$	seen	423
$arSigma(1385)\pi$, $\mathit{P} ext{-}$ wave	$(6.0 \pm 3.0) \%$	423
$arSigma(1385)\pi$, $ extit{\it F}$ -wave	$(4.0 \pm 2.0) \%$	423
$N\overline{K}^*(892)$	seen	236

Λ(2100) 7/2⁻

$$I(J^P) = 0(\frac{7}{2})$$

Mass m=2090 to 2110 (≈ 2100) MeV Full width $\Gamma=100$ to 250 (≈ 200) MeV

A(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
N K	25–35 %	751
$\Sigma \pi$	\sim 5 %	705
$\Lambda\eta$	<3 %	617
ΞK	<3 %	491
$\Lambda\omega$	<8 %	443
$\Sigma(1385)\pi$, $ extit{ G-wave}$	$(1.0\pm1.0)~\%$	584
$N\overline{K}^*(892)$	10–20 %	515
$N\overline{K}^*(892)$, $S=3/2$, D -wave	(4.0±2.0) %	515

Λ (2110) 5/2 $^{+}$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m=2050 to 2130 (≈ 2090) MeV Full width $\Gamma=200$ to 300 (≈ 250) MeV

Λ(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5–25 %	744
$\Sigma \pi$	10–40 %	698
$\Lambda\omega$	seen	432
$arLambda\omega$, $\mathit{S}{=}3/2$, $\mathit{P}{ ext{-}}$ wave	(5.0±2.0) %	432
$\Sigma(1385)\pi$	seen	576
N K* (892)	10–60 %	505

Λ(2350) 9/2⁺

$$I(J^P) = 0(\frac{9}{2}^+)$$

Created: 10/3/2024 18:48

Mass m=2340 to 2370 (≈ 2350) MeV Full width $\Gamma=100$ to 250 (≈ 150) MeV

Λ(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	\sim 12 %	915
$\Sigma \pi$	\sim 10 %	867

Σ BARYONS (S=-1, I=1)

 $\Sigma^+ = uus$, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass $m=1189.37\pm0.07~{\rm MeV}~~({\rm S}=2.2)$ Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}~{\rm s}$ $c\tau=2.404~{\rm cm}$ $\left(\tau_{\Sigma^+}-\tau_{\overline\Sigma^-}\right)/\tau_{\Sigma^+}=-0.0006\pm0.0012$ Magnetic moment $\mu=2.458\pm0.010~\mu_N~~({\rm S}=2.1)$ $\left(\mu_{\Sigma^+}+\mu_{\overline\Sigma^-}\right)/\mu_{\Sigma^+}=0.014\pm0.015$ $\Gamma(\Sigma^+\to n\ell^+\nu)/\Gamma(\Sigma^-\to n\ell^-\overline\nu_\ell)~<~0.043$

Decay parameters

$$\begin{array}{lll} \rho\pi^{0} & \alpha_{0} = -0.982 \pm 0.014 \\ \overline{\rho}\pi^{0} & \overline{\alpha}_{0} = 0.99 \pm 0.04 \\ (\alpha_{0} + \overline{\alpha}_{0}) \, / \, (\alpha_{0} - \overline{\alpha}_{0}) = 0.00 \pm 0.04 \\ \rho\pi^{0} & \phi_{0} = (36 \pm 34)^{\circ} \\ \text{"} & \gamma_{0} = 0.16 \, ^{[f]} \\ \text{"} & \Delta_{0} = (187 \pm 6)^{\circ} \, ^{[f]} \\ n\pi^{+} & \alpha_{+} = (4.89 \pm 0.26) \times 10^{-2} \\ \text{"} & \phi_{+} = (167 \pm 20)^{\circ} \quad (S = 1.1) \\ \overline{\alpha}_{-} \text{ FOR } \overline{\Sigma}^{-} \rightarrow \overline{n}\pi^{-} = (-5.7 \pm 0.5) \times 10^{-2} \\ \overline{\alpha}_{-} \, / \, \overline{\alpha}_{0} = (-5.7 \pm 0.6) \times 10^{-2} \\ (\alpha_{+} + \overline{\alpha}_{-}) \, / \, (\alpha_{+} - \overline{\alpha}_{-}) = (-8 \pm 6) \times 10^{-2} \\ \text{"} & \gamma_{+} = -0.97 \, ^{[f]} \\ \text{"} & \Delta_{+} = (-73 ^{+133}_{-10})^{\circ} \, ^{[f]} \\ \rho\gamma & \alpha_{\gamma} = -0.69 \pm 0.05 \end{array}$$

		Scale factor/	р
Σ ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$ ho\pi^0$	$(51.47\pm0.30)\%$		189
$n\pi^+$	(48.43 ± 0.30) %		185
$oldsymbol{ ho}\gamma$	$(1.04\pm0.06)\times10$	s=2.4	225
$n\pi^+\gamma$	[n] $(4.5 \pm 0.5) \times 10$)-4	185
$\Lambda e^+ \nu_e$	(2.3 ± 0.4) \times 10	₎ –5	71

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

https://pdg.lbl.gov

Page 27

$$n\mu^{+}\nu_{\mu}$$
 SQ $< 3.0 \times 10^{-5} \text{ CL}=90\%$ 202 $pe^{+}e^{-}$ $S1$ $< 7 \times 10^{-6}$ 225 $p\mu^{+}\mu^{-}$ $S1$ $(2.4 {}^{+1.7}_{-1.3}) \times 10^{-8}$ 121

$$\Sigma_0$$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1192.642\pm0.024$$
 MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c\tau=2.22\times10^{-11}$ m

Transition magnetic moment $\left|\mu_{arSigma_{arN}}
ight|=1.61\pm0.08~\mu_{arN}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\gamma$	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
$\Lambda e^+ e^-$	[p] 5 × 10 ⁻³		74

Σ-

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Mass
$$m=1197.449\pm0.029$$
 MeV (S = 1.1) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.029$ MeV (S = 1.1) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm Magnetic moment $\mu=-1.160\pm0.025$ μ_{N} (S = 1.7) Σ^- charge radius = 0.78 \pm 0.10 fm

Decay parameters

$$n\pi^ \alpha_- = -0.068 \pm 0.008$$
 " $\phi_- = (10 \pm 15)^\circ$ " $\gamma_- = 0.98$ [/] " $\Delta_- = (249^+_{-120})^\circ$ [/] $\alpha_- = (249^+_{-120})^\circ$ [/] $\alpha_- = (249^+_{-120})^\circ$ [/] " $\alpha_- = (249^+_{-120})^\circ$

Σ - DECAY MODES		Fraction ($\Gamma_i/\Gamma)$	Confidence	level	<i>p</i> (MeV/ <i>c</i>)
$n\pi^-$		(99.848	± 0.00	5) %		193
$n\pi^-\gamma$	[n] (4.6	± 0.6	$) \times 10^{-4}$		193
$ne^-\overline{ u}_e$		(1.017	± 0.03	$4) \times 10^{-3}$		230
n $\mu^-\overline{ u}_\mu$		(4.5	± 0.4	$) \times 10^{-4}$		210
$\Lambda e^{-}\overline{\nu}_{e}$		(5.73	± 0.27	$) \times 10^{-5}$		79
$\Sigma^+ X$		< 1.2		× 10 ⁻⁴	90%	_
	Lepton number	(L) violat	ting n	nodes		
p e	L	< 6.7		\times 10 ⁻⁵	90%	231

Σ (1385) 3/2⁺

$$I(J^P) = 1(\frac{3}{2}^+)$$

$$\Sigma(1385)^+$$
 mass $m=1382.83\pm0.34$ MeV (S = 1.9) $\Sigma(1385)^0$ mass $m=1383.7\pm1.0$ MeV (S = 1.4) $\Sigma(1385)^-$ mass $m=1387.2\pm0.5$ MeV (S = 2.2) $\Sigma(1385)^+$ full width $\Gamma=36.2\pm0.7$ MeV $\Sigma(1385)^0$ full width $\Gamma=36\pm5$ MeV $\Sigma(1385)^-$ full width $\Gamma=39.4\pm2.1$ MeV (S = 1.7) Below $\overline{K}\,N$ threshold

Σ (1385) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
$\Lambda\pi$	(87.0 ± 1.5) %		208
$\Sigma \pi$	(11.7 ± 1.5) %		129
$\Lambda\gamma$	$(1.25^{+0.13}_{-0.12})\%$		241
$\Sigma^+ \gamma$	(7.0 ± 1.7) $ imes 1$	10-3	180
$\Sigma^-\gamma$	< 2.4 × 1	10^{-4} 90%	173

Σ (1660) 1/2⁺

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Re(pole position) = 1585 ± 20 MeV -2Im(pole position) = 290^{+140}_{-40} MeV Mass m=1640 to 1680 (≈ 1660) MeV Full width $\Gamma=100$ to 300 (≈ 200) MeV

Σ (1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15 ($pprox$ 010)	405
$\Lambda\pi$	$(35 \pm 12)\%$	440
$\Sigma \pi$	$(37 \pm 10)\%$	387

https://pdg.lbl.gov

Page 29

$\Sigma \sigma$	
$\Lambda(1405)$	π

$$(20 \pm 8)\%$$

 $(4.0 \pm 2.0)\%$

199

Σ(1670) 3/2⁻

$$I(J^P)=1(\tfrac{3}{2}^-)$$

Mass m=1665 to 1685 (≈ 1675) MeV Full width $\Gamma=40$ to 100 (≈ 70) MeV

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	419
$\Lambda\pi$	5–15 %	452
$\Sigma \pi$	30–60 %	398
$\Sigma \sigma$	$(7.0 \pm 3.0) \%$	-

Σ(1750) 1/2⁻

$$I(J^P)=1(\tfrac{1}{2}^-)$$

Mass m=1700 to $1800~(\approx 1750)$ MeV Full width $\Gamma=100$ to $200~(\approx 150)$ MeV

Σ (1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	486
$\Lambda\pi$	(14 ± 5) %	507
$\Sigma \pi$	(16 ± 4) %	456
$\Sigma \eta$	15–55 %	98
$\Sigma(1385)\pi$, $ extit{\it D} ext{-}$ wave	< 1 %	305
$\Lambda(1520)\pi$	($2.0~\pm1.0$) %	175
$N\overline{K}^*(892)$, $S=1/2$	$(8 \pm 4)\%$	†

Σ(1775) 5/2⁻

$$I(J^P)=1(\frac{5}{2}^-)$$

Created: 10/3/2024 18:48

Mass m=1770 to 1780 (≈ 1775) MeV Full width $\Gamma=105$ to 135 (≈ 120) MeV

Σ (1775) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	475
$\Sigma(1385)\pi$	8–12%	327
$\Lambda(1520)\pi$, $ extit{P-wave}$	17–23%	202

Σ(1910) 3/2⁻

$$I(J^P) = 1(\frac{3}{2}^-)$$

was $\Sigma(1940)$

Mass m=1870 to 1950 (≈ 1910) MeV Full width $\Gamma=150$ to 300 (≈ 220) MeV

Σ(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
N K	0.01 to 0.05 ($pprox$ 0.02)	615
$\Lambda\pi$	(6 \pm 4)%	619
$\Sigma \pi$	(86 ± 21) %	574
$\Sigma(1385)\pi$	seen	439
$\Lambda(1520)\pi$	seen	329
$\Delta(1232)\overline{K}$	(3.0 ± 1.0) %	377
$N\overline{K}^*(892)$	seen	274
$N\overline{K}^*(892)$, $S\!\!=\!\!1/2$, $D\!\!$ -wave	(1.0 ± 1.0) %	274

Σ (1915) $5/2^+$

$$I(J^P)=1(\tfrac{5}{2}^+)$$

Mass m=1900 to 1935 (≈ 1915) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Σ(1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\overline{K}$	0.05 to 0.15	618
$\Lambda\pi$	($6.0~\pm2.0$) %	623
$\Sigma \pi$	$(10.0\ \pm 2.0)\ \%$	577
$\Sigma(1385)\pi$, $\it P-wave$	$(2.0 \pm 2.0)\%$	443
$\mathit{\Sigma}(1385)\pi$, $\mathit{F} ext{-}$ wave	$(4.0 \pm 2.0)\%$	443
$arLambda(1520)\pi$, $ extit{D}$ -wave	(8.0 ± 2.0) %	334
$N\overline{K}^*(892)$, $S=1/2$, F -wave	$(5.0 \pm 3.0) \%$	282
$N\overline{K}^{*}(892)$, $S=3/2$, F -wave	$(5.0 \pm 2.0) \%$	282
$\Delta \overline{K}$, $ extit{P}$ -wave	(16 ± 5) %	383
$\Delta \overline{K}$, \emph{F} -wave	(5.0 ± 3.0) %	383

Σ (2030) 7/2⁺

$$I(J^P)=1(\tfrac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV

Σ (2030) DECAY MODES	Fraction (Γ_i /	p (MeV/c)
NK	17–23 %	702
https://pdg.lbl.gov	Page 31	Created: 10/3/2024 18:48

$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
$\equiv K$	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$oldsymbol{\Sigma}(1385)\pi$, $\emph{F} ext{-}$ wave	$(1.0\pm1.0)\%$	532
$\Lambda(1520)\pi$	10–20 %	431
$\Delta(1232)\overline{K}$	10–20 %	498
$\Delta(1232)\overline{K}$, $\mathit{F} ext{-}$ wave	(15 ± 5)%	498
$\Delta(1232)\overline{K}$, $ extit{H} ext{-wave}$	$(1.0\pm1.0)\%$	498
$N\overline{K}^*(892)$, $S=3/2$, F -wave	(14 ± 8)%	439

\equiv BARYONS (S=-2, I=1/2)

$$\Xi^0=uss$$
, $\Xi^-=dss$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1314.86\pm0.20~{
m MeV}$$
 $m_{\Xi^-}-m_{\Xi^0}=6.85\pm0.21~{
m MeV}$ Mean life $\tau=(2.90\pm0.09)\times10^{-10}~{
m s}$ $c au=8.71~{
m cm}$ Magnetic moment $\mu=-1.250\pm0.014~\mu_N$

 $\alpha = -0.349 \pm 0.009$

Decay parameters

 $\Lambda \pi^0$

$$\begin{array}{lll} \alpha \; {\rm FOR} \; \overline{\Xi}{}^0 \to \; \overline{\Lambda} \pi^0 = 0.379 \pm 0.004 \\ {\rm ''} \qquad \qquad \phi = (0.3 \pm 0.6)^\circ \\ \phi \; {\rm ANGLE} \; {\rm FOR} \; \overline{\Xi}{}^0 \to \; \overline{\Lambda} \pi^0 \; {\rm with} \; {\rm tan} \phi = \beta/\gamma = -0.3 \pm 0.6 \\ \; {\rm degrees} \\ \Delta \phi_{CP}(\Xi^0) = (\; \phi_{\overline{\Xi}^0} + \phi_{\Xi^0} \;)/2 = 0.0 \pm 0.4 \; {\rm degrees} \\ A_{CP} \; {\rm FOR} \; \overline{\Xi}{}^0 \to \; \overline{\Lambda} \pi^0, \; \overline{\Xi}{}^0 \to \; \overline{\Lambda} \pi^0 = (-5 \pm 7) \times 10^{-3} \\ {\rm ''} \qquad \qquad \gamma = 0.85 \; {\rm [I]} \\ {\rm ''} \qquad \qquad \Delta = (218^{+12}_{-19})^\circ \; {\rm [I]} \\ \Lambda \gamma \qquad \qquad \alpha = -0.70 \pm 0.07 \\ \Lambda e^+ \, e^- \qquad \alpha = -0.8 \pm 0.2 \\ \Sigma^0 \gamma \qquad \qquad \alpha = -0.69 \pm 0.06 \\ \Sigma^+ \, e^- \overline{\nu}_e \qquad g_1(0)/f_1(0) = 1.22 \pm 0.05 \\ \Sigma^+ \, e^- \overline{\nu}_e \qquad f_2(0)/f_1(0) = 2.0 \pm 0.9 \\ \end{array}$$

≡ ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Confidence	level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^0$		(99.524±0.01	12) %		135
$\Lambda\gamma$		(1.17 ± 0.07)	7) \times 10 ⁻³		184
$\Lambda e^+ e^-$		(7.6 ± 0.6)	$) \times 10^{-6}$		184
$\Sigma^0 \gamma$		(3.33 ± 0.10)	$) \times 10^{-3}$		117
$\Sigma^+ e^- \overline{ u}_e$		(2.52 ± 0.08)	$3) \times 10^{-4}$		120
$\Sigma^+ \mu^- \overline{ u}_{\mu}$		(2.33 ± 0.35)	$5) \times 10^{-6}$		64
$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 2$ forbidden (S2) modes					
$\Sigma^-\mathrm{e}^+ u_{e}$	SQ	< 1.6	$\times10^{-4}$	90%	112
$\Sigma^- \mu^+ u_\mu$	SQ	< 9	\times 10 ⁻⁴	90%	49
$p\pi^-$	<i>S2</i>	< 8	\times 10 ⁻⁶	90%	299
$pe^-\overline{ u}_e$	52	< 1.3	\times 10 ⁻³		323
$ ho\mu^-\overline{ u}_\mu$	52	< 1.3	\times 10 ⁻³		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1321.71\pm0.07~{\rm MeV}$$
 $\left(m_{\Xi^-}-m_{\overline{\Xi}^+}\right)/m_{\Xi^-}=\left(-3\pm9\right)\times10^{-5}$ Mean life $\tau=\left(1.639\pm0.015\right)\times10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ $\left(\tau_{\Xi^-}-\tau_{\overline{\Xi}^+}\right)/\tau_{\Xi^-}=-0.01\pm0.07$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$ $\left(\mu_{\Xi^-}+\mu_{\overline{\Xi}^+}\right)/\left|\mu_{\Xi^-}\right|=+0.01\pm0.05$

Decay parameters

$$\begin{array}{lll} \varLambda\pi^{-} & \alpha = -0.390 \pm 0.007 & (\mathsf{S} = 2.0) \\ \alpha(\overline{\Xi}^{+}) \text{ for } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = 0.371 \pm 0.007 \\ (\alpha + \overline{\alpha}) \ / \ (\alpha - \overline{\alpha}) \text{ for } \overline{\Xi}^{-} \to \overline{\varLambda}\pi^{-}, \ \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = (6 \pm 14) \times 10^{-3} \\ [\alpha(\overline{\Xi}^{-})\alpha_{-}(\varLambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\varLambda})] \ / \ [\text{ sum }] = (0 \pm 7) \times 10^{-4} \\ \text{"} & \phi = (-1.2 \pm 1.0)^{\circ} & (\mathsf{S} = 1.4) \\ \phi \text{ ANGLE FOR } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} & (\tan\phi = \beta/\gamma) = (-1.2 \pm 1.2)^{\circ} \\ \Delta\Phi_{CP} = (\Phi_{-} + \Phi_{+})/2 = (-0.3 \pm 0.8)^{\circ} \\ \text{"} & \gamma = 0.89 \ [^{f}] \\ \text{"} & \Delta = (175.9 \pm 1.5)^{\circ} \ [^{f}] \\ \varLambda e^{-} \overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ [^{h}] \end{array}$$

≡ − DECAY MODES		Fraction (Γ_i/Γ)	Confiden	ce level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^-$		(99.887 ± 0.03)	s5) %		140
$\Sigma^-\gamma$		(1.27 ± 0.23	$3) \times 10^{-4}$		118
$\Lambda e^- \overline{ u}_e$		(5.63 ± 0.31	$\times 10^{-4}$		190
$\Lambda\mu^-\overline{ u}_\mu$		$(3.5 \begin{array}{c} +3.5 \\ -2.2 \end{array}$	$) \times 10^{-4}$		163
$\Sigma^0 e^- \overline{ u}_e$		(8.7 ± 1.7)	$) \times 10^{-5}$		123
$\Sigma^0 \mu^- \overline{ u}_\mu$		< 8	$\times 10^{-4}$	90%	70
$\equiv^0 e^{-\frac{r}{\nu_e}}$		< 2.59	$\times 10^{-4}$	90%	7
	$\Delta S = 2$ fo	rbidden (<i>S2</i>) mo	des		
$n\pi^-$	<i>S</i> 2	< 1.9	$\times10^{-5}$	90%	304
$ne^-\overline{ u}_e$	<i>S2</i>	< 3.2	$\times 10^{-3}$	90%	327
n $\mu^-\overline{ u}_\mu$	52	< 1.5	%	90%	314
$p\pi^-\pi^-$	52	< 4	$\times 10^{-4}$	90%	223
$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4	\times 10 ⁻⁴	90%	305
$m{p}\pi^-\mu^-\overline{ u}_\mu$	52	< 4	$\times 10^{-4}$	90%	251
$p\mu^-\mu^-$	L	< 4	× 10 ⁻⁸	90%	272

Ξ(1530) 3/2⁺

$$I(J^P) = \tfrac{1}{2}(\tfrac{3}{2}^+)$$

$$\Xi(1530)^0$$
 mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9^{+1.7}_{-1.9}$ MeV

 ≡(1530) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\equiv \pi$	100 %		158
$\equiv \gamma$	<3.7 %	90%	202

Ξ(1690)

$$I(J^P) = \frac{1}{2}(??)$$

Created: 10/3/2024 18:48

Mass $m=1690\pm 10$ MeV $^{[o]}$ Full width $\Gamma=20\pm 15$ MeV

 <i>≡</i> (1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	240
$\Sigma \overline{K}$	seen	70
$\equiv \pi$	seen	311
$\Xi^{-}\pi^{+}\pi^{-}$	possibly seen	213

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Mass $m=1823\pm 5$ MeV $^{[o]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[o]}$

≡ (1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

Ξ(1950)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1950\pm15$ MeV $^{\ [o]}$ Full width $\Gamma=60\pm20$ MeV $^{\ [o]}$

 ≡(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	522
$\Sigma \overline{K}$	possibly seen	460
$\equiv \pi$	seen	519

Ξ(2030)

$$I(J^P) = \tfrac{1}{2}(\geq \tfrac{5}{2}?)$$

Created: 10/3/2024 18:48

Mass $m=2025\pm 5$ MeV $^{[o]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[o]}$

≡ (2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	\sim 20 %	585
$\Sigma \overline{K}$	\sim 80 %	529
$\equiv \pi$	small	574
$\Xi(1530)\pi$	small	416
$\Lambda K \pi$	small	499
$\Sigma \overline{K} \pi$	small	428

Ω BARYONS (S=-3, I=0)

$$\Omega^-=sss$$

 Ω^{-}

$$I(J^P) = O(\frac{3}{2}^+)$$

 $J^P=\frac{3}{2}^+$ is the quark-model prediction; and J=3/2 is fairly well established.

Mass
$$m=1672.45\pm0.29~{\rm MeV}$$
 $(m_{\Omega^-}-m_{\overline{\Omega}^+})\ /\ m_{\Omega^-}=(-1\pm8)\times 10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times 10^{-10}~{\rm s}$ $c\tau=2.461~{\rm cm}$ $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})\ /\ \tau_{\Omega^-}=0.00\pm0.05$ Magnetic moment $\mu=-2.02\pm0.05~\mu_N$

Decay parameters

$$\alpha(\Omega^{-}) \ \alpha_{-}(\Lambda) \ {\rm FOR} \ \Omega^{-} \to \Lambda K^{-} = 0.0115 \pm 0.0015$$
 $\Lambda K^{-} \qquad \alpha = 0.0154 \pm 0.0020$ $\Lambda K^{-}, \ \overline{\Lambda} K^{+} \ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13$ $\Xi^{0} \pi^{-} \qquad \alpha = 0.09 \pm 0.14$ $\Xi^{-} \pi^{0} \qquad \alpha = 0.05 \pm 0.21$

		Sc	ale factor/	p	
Ω- DECAY MODES	Fraction (Γ_i/Γ)	Confid	dence level	(MeV/c)	
ΛK^-	(67.7 ± 0.7) %	%		211	
$\equiv^0 \pi^-$	(24.3 ± 0.7) %	6	S=1.5	294	
$\equiv -\pi^0$	$(8.55\pm0.33)\%$	6		289	
$\equiv^-\pi^+\pi^-$	$(3.7 \begin{array}{c} +0.7 \\ -0.6 \end{array})$	× 10 ⁻⁴		189	
Ξ (1530) ⁰ π^-	< 7	< 10 ⁻⁵	CL=90%	17	
$\equiv^0 e^- \overline{\nu}_e$	$(5.6 \pm 2.8) \times$	< 10 ⁻³		319	
$\equiv -\gamma$	< 4.6	< 10 ⁻⁴	CL=90%	314	
$\Delta S = 2$ forbidden (S2) modes					
$\Lambda \pi^-$ S2	< 2.9	< 10 ⁻⁶	CL=90%	449	

$$\Omega(2012)^-$$

$$I(J^P) = 0(?^-)$$

Mass $m = 2012.4 \pm 0.9 \text{ MeV}$ Full width $\Gamma = 6.4^{+3.0}_{-2.6} \text{ MeV}$

Branching fractions are given relative to the one **DEFINED AS 1**.

$\Omega(2012)^-$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
$\equiv^0 K^-$	DEFINED AS 1		403
$ \overline{\Xi}^{-}\overline{K}^{0} $	0.83 ± 0.21		392
$\equiv^0 \pi^0 K^-$	< 0.30	90%	245
$\equiv^0 \pi^- \overline{K}^0$	< 0.21	90%	230
$ \bar{\Xi}^{-}\pi^{0}\overline{K}^{0} $	< 0.7	90%	226
$\Xi^-\pi^+K^-$	< 0.08	90%	224

$\Omega(2250)^-$

$$I(J^P) = 0(??)$$

Mass $m=2252\pm 9~{\rm MeV}$ Full width $\Gamma=55\pm 18~{\rm MeV}$

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi^-\pi^+\kappa^-}$	seen	532
$\Xi(1530)^0 K^-$	seen	437

CHARMED BARYONS (C=+1)

$$\begin{split} \Lambda_c^+ &= u\,d\,c, \quad \Sigma_c^{++} = u\,u\,c, \quad \Sigma_c^+ = u\,d\,c, \quad \Sigma_c^0 = d\,d\,c, \\ \Xi_c^+ &= u\,s\,c, \quad \Xi_c^0 = d\,s\,c, \quad \Omega_c^0 = s\,s\,c \end{split}$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=2286.46\pm0.14$$
 MeV
Mean life $\tau=(202.6\pm1.0)\times10^{-15}$ s $c\tau=60.75~\mu\mathrm{m}$

Decay asymmetry parameters

$$Λπ^+$$
 $α = -0.755 \pm 0.006$
 $α$ FOR $Λ_c^+ → Λρ^+ = -0.76 \pm 0.07$

https://pdg.lbl.gov

Page 37

$$\begin{split} \Sigma^{+}\pi^{0} & \alpha = -0.484 \pm 0.027 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Sigma^{+}\eta = -0.99 \pm 0.06 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Sigma^{+}\eta' = -0.46 \pm 0.07 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Sigma^{0}\pi^{+} = -0.466 \pm 0.018 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Sigma(1385)^{+}\pi^{0} = -0.92 \pm 0.09 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Sigma(1385)^{0}\pi^{+} = -0.79 \pm 0.11 \\ \Lambda\ell^{+}\nu_{\ell} & \alpha = -0.875 \pm 0.033 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \rho K_{S}^{0} = 0.2 \pm 0.5 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \rho K_{S}^{0} = 0.2 \pm 0.5 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda K^{+} = -0.58 \pm 0.05 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1405)\pi^{+} = 0.58 \pm 0.28 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1520)\pi^{+} = 0.93 \pm 0.09 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)\pi^{+} = 0.2 \pm 0.5 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)\pi^{+} = 0.82 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)\pi^{+} = 0.958 \pm 0.034 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1690)\pi^{+} = 0.958 \pm 0.034 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)^{+}\pi^{+} = 0.55 \pm 0.04 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)^{+}\pi^{+} = 0.55 \pm 0.04 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)^{+}\pi^{+} = 0.55 \pm 0.04 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1600)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1700)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1700)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{+} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-} = 0.22 \pm 0.08 \\ \alpha & \text{FOR } \Lambda_{c}^{+} \to \Lambda(1400)^{+}\pi^{-}$$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ \to p \overline{K}^*(892)^0$ seen in $\Lambda_c^+ \to p K^- \pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0$ decays.

Λ ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
C DECAT MODES	Traction (1 ₁ /1)	Confidence level	(IVIEV/C)
Hadronic modes witl	haporn: $S=-1$	final states	
pK_S^0	$(1.59\pm\ 0.07)~\%$	% S=1.1	873
$pK^-\pi^+$	$(6.24\pm\ 0.28)$ %		823
$p\overline{K}_{0}^{*}(700)^{0}$	$(1.9 \pm 0.6) >$		715
$p\overline{K}^{*}(892)^{0}$	[q] (1.39 ± 0.07) %		685
$pK_0^*(1430)$	$(9.2 \pm 1.8) >$		†
$\Delta(1232)^{++}K^{-}$	$(1.76\pm\ 0.09)$ %		710
$\Delta(1600)^{++}K^{-}$	(2.8 ± 1.0)		_
$\Delta(1700)^{++}K^{-}$	(2.4 ± 0.6)		_
$\Lambda(1405)^{0}\pi^{+}$	(4.8 ± 1.9) >		_
$\Lambda(1520)\pi^{+}$	[q] (1.16 ± 0.16)		628
$\Lambda(1600)\pi^{+}$	$(3.2 \pm 1.2) >$		571
$\Lambda(1670)\pi^{+}$	(7.4 ± 2.1)		516
$\Lambda(1690)\pi^{+}$	(7.4 ± 2.2)		504
$\Lambda(2000)\pi^+$	(6.0 ± 0.7)		234
$pK^-\pi^+$ nonresonant $pK^0_S\pi^0$	(3.5 ± 0.4) %		823
$nK_{S}^{0}\pi^{+}$	$(1.96\pm 0.12)\%$		823
$nK - \pi^+ \pi^+$	(1.82 ± 0.25) %		821
$p \frac{K}{K^0} \eta$	(1.90 ± 0.12) %		756
$pK_{S}^{0}\pi^{+}\pi^{-}$	$(8.8 \pm 0.6) > (1.59 \pm 0.11) \%$		568 754
$pK_S^{\pi+\pi}$,		
$pK^*(892)^-\pi^+$	(4.43 ± 0.28) % $[q]$ (1.4 ± 0.5) %		759 580
$p(K^-\pi^+)_{\text{nonresonant}}\pi^0$	[q] (1.4 ± 0.5) % (4.6 ± 0.8) %		759
$\Delta(1232) \overline{K}^*(892)$	(4.0 ± 0.8) /	0	419
$pK^{-}2\pi^{+}\pi^{-}$	(1.4 ± 0.9) >	_{< 10} -3	671
$pK^{-}\pi^{+}2\pi^{0}$	(10 ± 5)		678
•			
	thaporn: $S=0$ f		0.45
$p\pi^0 \ n\pi^+$		$< 10^{-5}$ CL=90%	945
	(6.6 ± 1.3) > (1.57± 0.12) >		944
$p\eta \ p\eta'$	(1.57 ± 0.12) (4.8 ± 0.9)		856 639
$p\omega(782)^{0}$	(1.11 ± 0.21)		751
$p\pi^+\pi^-$	(4.59 ± 0.25)		927
$pf_0(980)$	$[q] (3.4 \pm 2.3) >$		614
$n\pi^{+}\pi^{0}$	(6.4 ± 0.9)		927
$n\pi^+\pi^-\pi^+$	$(4.5 \pm 0.8) >$		895
$p2\pi^{+}2\pi^{-}$	(2.2 ± 1.4)		852
V+ V=	(1061005)	10-3	64.6

 pK^+K^-

 $(1.06\pm\ 0.05)\times10^{-3}$

616

$oldsymbol{ ho}\phi$	[q] $(1.06 \pm 0.14) \times 10^{-3}$		590
$ ho {\sf K}^+ {\sf K}^-$ non- ϕ	$(5.2 \pm 1.1) \times 10^{-4}$		616
$pK_S^0K_S^0$	$(2.35\pm0.18)\times10^{-4}$		610
$p\phi\pi^0$	$(10 \pm 4) \times 10^{-5}$		460
$pK^+K^-\pi^0$ nonresonant	$< 6.3 \times 10^{-5}$	CL=90%	494
•			
	a hyperon: $S = -1$ final s		064
$\Lambda \pi^{+}$	$(1.29\pm\ 0.05)\%$	S=1.1	864
$\Lambda(1670)\pi^+$, $\Lambda(1670) \rightarrow \eta \Lambda$ $\Lambda \pi^+ \pi^0$	$(3.5 \pm 0.5) \times 10^{-3}$		_
	(7.02 ± 0.35) %	S=1.1	844
$\Lambda \rho^+$	$(4.0 \pm 0.5)\%$		636
$\Sigma(1385)^+\pi^0$, $\Sigma^+ o \Lambda\pi^+$ $\Sigma(1385)^0\pi^+$, $\Sigma^0 o \Lambda\pi^0$	$(5.0 \pm 0.7) \times 10^{-3}$		_
	$(5.6 \pm 0.8) \times 10^{-3}$		_
$\Lambda \pi^{-} 2\pi^{+}$	(3.61 ± 0.26) %	S=1.4	807
$\Sigma(1385)^+\pi^+\pi^-$, Σ^{*+} $ o$	(1.0 ± 0.5) %		688
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} ightarrow$	$(7.6 \pm 1.4) \times 10^{-3}$		688
$\Lambda\pi^-$,		
$\Lambda \pi^+ \rho^0$	$(1.4 \pm 0.6)\%$		524
$\Sigma(1385)^+ ho^0$, $\Sigma^{*+} ightarrow$ $\Lambda\pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda\pi^-2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda \pi^- \pi^0 2\pi^+$ total	(2.2 ± 0.8) %		757
$\Lambda\pi^+\eta$	[q] ($1.84\pm~0.11$) %	S=1.1	691
$\Sigma(1385)^+ \eta$	[q] $(9.1 \pm 2.0) \times 10^{-3}$		570
$\Lambda \pi^+ \omega$	[q] (1.5 \pm 0.5) %		517
$\Lambda\pi^-\pi^02\pi^+$, no η or ω	$< 8 \times 10^{-3}$	CL=90%	757
$\Lambda K^{+} \overline{K}{}^{0}$	$(5.6 \pm 1.1) \times 10^{-3}$	S=1.9	443
$\Xi(1690)^0K^+$, $\Xi^{*0} ightarrow$	$(1.6 \pm 0.5) \times 10^{-3}$		286
$\sum_{i=1}^{0} \pi^{+}$	(1.27± 0.06) %	S=1.1	825
$\Sigma^0 \pi^+ \eta$	$(7.5 \pm 0.8) \times 10^{-3}$		635
$\Sigma^+\pi^0$	(1.24± 0.09) %		827
$\Sigma^+ \eta$	$(3.2 \pm 0.5) \times 10^{-3}$		713
$\sum_{i=1}^{n} \eta'_{i}$	$(4.1 \pm 0.8) \times 10^{-3}$		391
$\Sigma^+\pi^+\pi^-$	(4.47± 0.22) %	S=1.2	804
$\Sigma^+ ho_0^0$	< 1.7 %	CL=95%	575
$\Sigma^- 2\pi^+$	$(1.86\pm~0.18)~\%$		799
$\sum_{n=0}^{\infty} \pi^{+} \pi^{0}$	(3.5 ± 0.4) %		803
$\Sigma^+ \pi^0 \pi^0$	$(1.54\pm\ 0.14)\ \%$		806
$\Sigma^0\pi^-2\pi^+$	$(1.10\pm~0.30)~\%$		763
$\Sigma^+\omega$	$(~1.69\pm~0.20)~\%$		569
$\Sigma^-\pi^02\pi^+$	(2.1 ± 0.4) %		762
$\Sigma^+ K^+ K^-$	$(3.59\pm0.35)\times10^{-3}$	S=1.1	349
$\Sigma^+\phi$	[q] $(3.9 \pm 0.5) \times 10^{-3}$	S=1.1	295
${\it \Xi}(1690)^0{\it K}^+$, ${\it \Xi}^{*0}$ $ ightarrow$	$(1.01\pm 0.25) \times 10^{-3}$		286

$\Sigma^+ K^+ K^-$ nonresonant	$< 8 \times 10^{-4}$	CL=90%	349
$\equiv^0 K^+$	$(5.5 \pm 0.7) \times 10^{-3}$		653
$\equiv K^+ \pi^+$	$(6.2 \pm 0.5) \times 10^{-3}$	S=1.1	565
$\Xi(1530)^0K^+$	$(4.3 \pm 0.9) \times 10^{-3}$	S=1.1	473
Hadronic modes wit	th a hyperon: $S = 0$ final s	tates	
ΛK^+	$(6.42 \pm 0.31) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	$< 5 \times 10^{-4}$	CL=90%	637
$\Sigma^0 K^+$	$(3.70\pm0.31)\times10^{-4}$		735
$\Sigma^+ K^0_S$	$(4.7 \pm 1.4) \times 10^{-4}$		736
$\Sigma^0 K^+\pi^+\pi^-$	$< 2.5 \times 10^{-4}$	CL=90%	574
$\Sigma^+ {\mathcal K}^+ \pi^-$	$(2.00\pm\ 0.26)\times10^{-3}$		670
$\Sigma^+ \mathcal{K}^* (892)^0$	[q] (3.5 \pm 1.0) \times 10 ⁻³		470
$\Sigma^+ {\mathcal K}^+ \pi^- \pi^0$	$< 1.1 \times 10^{-3}$		581
$\Sigma^- K^+ \pi^+$	$< 1.2 \times 10^{-3}$	CL=90%	664
Doubly Cab	oibbo-suppressed modes		
$pK^+\pi^-$	$(1.11\pm 0.17) \times 10^{-4}$		823
Sem	ileptonic modes		
$\Lambda e^+ \nu_e$	(3.56± 0.13) %		871
$\Lambda \pi^+ \pi^- e^+ \nu_e$	$< 3.9 \times 10^{-4}$	CL=90%	843
$pK^-e^+\nu_e$	$(8.8 \pm 1.8) \times 10^{-4}$		874
$pK_{S}^{0}\pi^{-}e^{+}\nu_{e}$	$< 3.3 \times 10^{-4}$	CL=90%	821
$\Lambda(1520) e^{+} \nu_{e}$	$(1.0 \pm 0.5) \times 10^{-3}$		639
$\Lambda(1405)^0 e^+ \nu_e$, $\Lambda^0 \rightarrow p K^-$	$(4.2 \pm 1.9) \times 10^{-4}$		_
$\Lambda \mu^+ u_\mu$	(3.48 ± 0.17) %		867
· In	clusive modes		
e ⁺ anything	(4.06± 0.13) %		_
p anything	$(50 \pm 16)\%$		_
n anything	$(32.6 \pm 1.6)\%$		_
Λ anything	$(38.2 {}^{+}_{-} {}^{2.9}_{2.4})\%$		_
K^0_{S} anything	$(9.9 \pm 0.7)\%$		_
3prongs	$(24 \pm 8)\%$		_
A.C. 1			

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	$\times 10^{-6}$ CL=90%	951
$p\mu^+\mu^-$ non-resonant	C1	< 7.7	$\times 10^{-8}$ CL=90%	937
$pe^+\mu^-$	LF	< 9.9	$\times10^{-6}$ CL=90%	947
$pe^-\mu^+$	LF	< 1.9	$ imes 10^{-5}$ CL=90%	947

$ \overline{p}2e^+ $ $ \overline{p}2\mu^+ $ $ \overline{p}e^+\mu^+ $	L,B L,B L,B	< 2.7 < 9.4 < 1.6	$\times 10^{-6}$	CL=90% CL=90% CL=90%	951 937 947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812
$\Sigma^+\gamma$	Radia	etive modes < 2.5	× 10 ⁻⁴	CL=90%	834
$p\gamma_D$		tic modes r] < 8.0	\times 10 ⁻⁵	CL=90%	_

$\Lambda_c(2595)^+$

$$I(J^P) = 0(\frac{1}{2}^-)$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28 \; {\rm MeV}$$
 $m - m_{\Lambda_c^+} = 305.79 \pm 0.24 \; {\rm MeV}$ Full width $\Gamma = 2.6 \pm 0.6 \; {\rm MeV}$

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[s] —	117
$\Sigma_c(2455)^{++}\pi^- \ \Sigma_c(2455)^0\pi^+$	24 \pm 7 %	3
Σ_c (2455) $^0\pi^+$	24 \pm 7 %	3
$\Lambda_c^+\pi^+\pi^-$ 3-body	18 \pm 10 $\%$	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[t] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = 0(\frac{3}{2}^-)$$

Created: 10/3/2024 18:48

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^{\it -}$ is the quark-model prediction.

Mass
$$m=2628.00\pm0.15$$
 MeV $m-m_{\Lambda_c^+}=341.54\pm0.05$ MeV Full width $\Gamma<0.52$ MeV, CL $=90\%$

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

$\Lambda_c(2625)^+$ DECAY MODES	F	raction (I	- _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ \pi^+ \pi^-$	[<i>u</i>]	66.67	%		184
$\Sigma_c(2455)^{++}\pi^-$		($3.42\pm$	(0.27) %		103
$\Sigma_c(2455)^0\pi^+$		($3.46\pm$	0.31) %		103
$\Lambda_c^+\pi^+\pi^-$ 3-body		large			184
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[t] ·	< 60	%	90%	293
$\Lambda_c^+ \gamma$	•	< 35	%	90%	319

$\Lambda_c(2860)^+$

$$I(J^P)=0(\tfrac{3}{2}^+)$$

Mass $m = 2856.1^{+2.3}_{-6.0} \text{ MeV}$ Full width $\Gamma = 68^{+12}_{-22} \text{ MeV}$

Λ_c (2860) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$D^0 p$	seen	259	

$\Lambda_c(2880)^+$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass $m = 2881.63 \pm 0.24$ MeV $m - m_{\Lambda_c^+} = 595.17 \pm 0.28$ MeV Full width $\Gamma = 5.6^{+0.8}_{-0.6}$ MeV

Λ_c (2880) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_{c}(2520)^{0}, ++\pi^{\pm}$	seen	317
ρD^0	seen	316

$\Lambda_{c}(2940)^{+}$

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Created: 10/3/2024 18:48

 $\overline{J^P=3/2^-}$ is favored, but is not certain

Mass
$$m=2939.6^{\,+\,1.3}_{\,-\,1.5}~{
m MeV}$$

Full width $\Gamma=20^{\,+\,6}_{\,-\,5}~{
m MeV}$

Λ_c (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
p D ⁰	seen	420
Σ_c (2455) $^{0,++}\pi^{\pm}$	seen	_

$\Sigma_c(2455)$

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{split} & \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ & \Sigma_c(2455)^{+} \quad \text{mass } m = 2452.65 ^{+0.22}_{-0.16} \text{ MeV} \\ & \Sigma_c(2455)^{0} \quad \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ & M_{\Sigma_c(2455)^{++}} - M_{\Lambda_c^+} = 167.510 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c(2455)^{++}} - M_{\Lambda_c^+} = 166.19 ^{+0.16}_{-0.08} \text{ MeV} \\ & M_{\Sigma_c(2455)^{+}} - M_{\Lambda_c^+} = 167.290 \pm 0.017 \text{ MeV} \\ & M_{\Sigma_c(2455)^{++}} - M_{\Sigma_c(2455)^{0}} = 0.220 \pm 0.013 \text{ MeV} \\ & M_{\Sigma_c(2455)^{++}} - M_{\Sigma_c(2455)^{0}} = -1.10 ^{+0.16}_{-0.08} \text{ MeV} \\ & \Sigma_c(2455)^{++} \text{full width } \Gamma = 1.89 ^{+0.09}_{-0.18} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2455)^{+} \quad \text{full width } \Gamma = 2.3 \pm 0.4 \text{ MeV} \\ & \Sigma_c(2455)^{0} \quad \text{full width } \Gamma = 1.83 ^{+0.11}_{-0.19} \text{ MeV} \quad (\text{S} = 1.2) \end{split}$$

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_{c} (2455) DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$\Lambda_c^+ \pi$$

 \approx 100 %

94

$\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\begin{split} &\Sigma_c(2520)^{++} \text{mass } m = 2518.41 \pm 0.22 \text{ MeV} \quad (\text{S} = 1.3) \\ &\Sigma_c(2520)^{+} \quad \text{mass } m = 2517.4^{+0.7}_{-0.5} \text{ MeV} \\ &\Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.21 \text{ MeV} \quad (\text{S} = 1.2) \\ &m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95 \pm 0.18 \text{ MeV} \quad (\text{S} = 1.8) \\ &m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 230.9^{+0.7}_{-0.5} \text{ MeV} \\ &m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02 \pm 0.15 \text{ MeV} \quad (\text{S} = 1.4) \\ &m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ &\Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ &\Sigma_c(2520)^{+} \quad \text{full width } \Gamma = 17.2^{+4.0}_{-2.2} \text{ MeV} \\ &\Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

https://pdg.lbl.gov

Page 44

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

Σ_c (2520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+\pi$	pprox 100 %	179

 $\Sigma_c(2800)$

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & \Sigma_c(2800)^{++} \text{ full width } \Gamma = 75^{+22}_{-17} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ full width } \Gamma = 60^{+60}_{-40} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ full width } \Gamma = 72^{+22}_{-15} \text{ MeV} \end{split}$$

Σ_c (2800) DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$\Lambda_c^+ \pi$$

seen

443

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2467.71\pm0.23$$
 MeV (S $=1.3$) Mean life $au=(453\pm5)\times10^{-15}$ s $c au=135.8~\mu{\rm m}$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Xi_c^+ \to \Sigma^+ \overline{K}^* (892)^0$ seen in $\Xi_c^+ \to \Sigma^+ K^- \pi^+$ has been multiplied up to include $\overline{K}^* (892)^0 \to \overline{K}^0 \pi^0$ decays.

 Ξ_c^+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Cabibbo-favored (S = -2) decays

$$p2K_{S}^{0}$$
 $(2.5\pm1.3)\times10^{-3}$ 766
 $\Lambda\overline{K}^{0}\pi^{+}$ — 852
 $\Sigma(1385)^{+}\overline{K}^{0}$ $[q]$ $(2.9\pm2.0)\%$ 746

https://pdg.lbl.gov

Page 45

$\Lambda K^- 2\pi^+$	(9 ±4	4) \times 10 ⁻³		787
$\Lambda \overline{K}^{*}(892)^{0} \pi^{+}$	[q] < 5		CL=90%	608
Σ (1385) $^+$ K $^ \pi^+$	[q] < 6	$\times 10^{-3}$	CL=90%	678
$\Sigma^+ K^- \pi^+$	(2.7±	1.2) %		810
$\Sigma^+\overline{K}^*(892)^0$	[q] (2.3 ± 1)	1.1) %		658
$\Sigma^0 \mathcal{K}^- 2\pi^+$	(8 ±	5) \times 10 ⁻³		735
$\equiv^0 \pi^+$	$(1.6\pm 0$	0.8) %		876
$\equiv -2\pi^+$	(2.9±	1.3) %		851
$\Xi(1530)^{0}\pi^{+}$	[q] < 2.9	\times 10 ⁻³	CL=90%	749
$\Xi(1620)^0\pi^+$	seen			_
$\Xi(1690)^0\pi^+$	seen			644
$\equiv^0 \pi^+ \pi^0$	(6.7 ± 3)	3.5) %		856
$= 0 \pi^{-} 2\pi^{+}$	(5.0 ± 2)	2.6) %		818
$\equiv^0 e^+ \nu_e$	(7 ± 4)	4) %		884
Ω^- K $^+$ π^+	(2.0 ± 1)	$1.5) \times 10^{-3}$		399

Cabibbo-suppressed decays

$ hoK^-\pi^+$		(6.2 ± 3)	$.0) \times 10^{-3}$	S=1.5	944
$p\overline{K}^*(892)^0$	[q]	$(3.3 \pm 1$	$.7) \times 10^{-3}$		828
$\Sigma^+\pi^+\pi^-$		$(1.4 \pm 0$.8) %		922
$\Sigma^- 2\pi^+$		(5.1 ± 3)	$.4) \times 10^{-3}$		918
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$		(4.3 ± 2)	$.5) \times 10^{-3}$		579
$\Sigma^+\phi$	[q] <	< 3.2	$\times 10^{-3}$	CL=90%	549
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<	< 1.3	$\times 10^{-3}$	CL=90%	501
$\Sigma^+ K^-$			4		
$p\phi(1020)$		(1.2 ± 0)	$.6) \times 10^{-4}$		751

$$I(J^P)=\tfrac{1}{2}(\tfrac{1}{2}^+)$$

Created: 10/3/2024 18:48

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2470.44\pm0.28$$
 MeV (S $=1.2$) $m_{\Xi_c^0}-m_{\Xi_c^+}=2.72\pm0.23$ MeV (S $=1.1$) Mean life $\tau=(150.4\pm2.8)\times10^{-15}$ s (S $=1.4$) $c\tau=45.1~\mu{\rm m}$

Decay asymmetry parameters

$$\overline{\Xi}^{-}\pi^{+}$$
 $\alpha = -0.64 \pm 0.05$
 $\alpha \text{ FOR } \overline{\Xi}^{0} \to \overline{\Xi}^{+}\pi^{-} = 0.61 \pm 0.05$
 $\alpha \text{ FOR } \overline{\Xi}^{0} \to \Lambda \overline{K}^{*}(892)^{0} = 0.15 \pm 0.22$
 $\alpha \text{ FOR } \overline{\Xi}^{0}_{c} \to \Sigma^{+}K^{*}(892)^{-} = -0.52 \pm 0.30$

≡ ⁰ _c DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Cabibbo-	favored decays		
$pK^-K^-\pi^+$	$(4.9 \pm 1.0) \times 10$	₀ -3	676
$pK^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \rightarrow K^-\pi^+$	$(2.0 \pm 0.6) \times 10^{-2}$	₀ –3	413
$ ho K^- K^- \pi^+$ (no $ \overline{K}^{*0})$	$(3.0 \pm 0.8) \times 10^{-2}$	₀ –3	676
ΛK_S^0	$(3.2 \pm 0.6) \times 10$	₀ –3	906
$\Lambda K^- \pi^+$	(1.45 ± 0.28) %		856
$\Lambda \overline{K}^{*}(892)^{0}$	$(2.6 \pm 0.6) \times 10$	₀ –3	717
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen		786
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen		703
$\Sigma^0 K^0_S$	$(5.4 \pm 1.4) \times 10$	0^{-4}	864
$\Sigma^+ K^-$	$(1.8 \pm 0.4) \times 10$		868
$\Sigma^0 \overline{K}^* (892)^0$	$(9.9 \pm 1.9) \times 10$	₀ –3	658
$\Sigma^+ K^*$ (892) $^-$	$(4.9 \pm 1.3) \times 10$	₀ –3	661
$\Xi^-\pi^+$	$(1.43\pm0.27)~\%$		875
$\Xi^{-}\pi^{+}\pi^{+}\pi^{-}$	(4.8 ± 2.3) %	_	816
$\equiv^0_0 \phi$, $\phi \rightarrow K^+ K^-$	$(5.2 \pm 1.2) \times 10^{-2}$		_
$\equiv^0 K^+ K^-$ nonresonant	(5.6 ± 1.2) \times 10		444
$\Omega^- K^+$	$(4.2 \pm 0.9) \times 10$	0-3	522
$\Xi^- e^+ \nu_e$	(1.05 ± 0.20) %		882
$\Xi^-\mu^+ u_\mu$	$(1.01\pm0.21)~\%$		878
$\equiv^0 \gamma$	$< 1.7 \times 10$	0^{-4} 90%	885
Cabibbo-su	ippressed decays		
	$(5.5 \pm 1.1) \times 10^{-2}$	0-3	115
$\Lambda_c^+ \pi^- \equiv K^+$	$(3.9 \pm 1.1) \times 10^{-2}$		789
$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.3) \times 10$		648
$\Lambda\phi$	$(4.9 \pm 1.3) \times 10$		621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Created: 10/3/2024 18:48

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.2\pm0.5~{\rm MeV}~{\rm (S=1.1)}$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{+}}=110.5\pm0.4~{\rm MeV}$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-0.5\pm0.6~{\rm MeV}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

='+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= \frac{1}{2} \gamma$	seen	108

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m = 2578.7 \pm 0.5 \text{ MeV}$$
 $m_{\Xi_c'^0} - m_{\Xi_c^0} = 108.3 \pm 0.4 \text{ MeV}$

The $\Xi_c^{\prime 0}$ – Ξ_c^0 mass difference is too small for any strong decay to occur.

$= \frac{c}{c}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$=\frac{0}{c}\gamma$	seen	106

$\Xi_c(2645)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.10\pm0.30$ MeV (S = 1.2) $Ξ_c(2645)^0$ mass $m=2646.16\pm0.25$ MeV (S = 1.3) $m_{Ξ_c(2645)^+}-m_{Ξ_c^0}=174.67\pm0.09$ MeV $m_{Ξ_c(2645)^0}-m_{Ξ_c^+}=178.45\pm0.10$ MeV $m_{Ξ_c(2645)^+}-m_{Ξ_c(2645)^0}=-1.06\pm0.27$ MeV (S = 1.1) $Ξ_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $Ξ_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

 $\Xi_{\mathcal{C}} \, \pi$ is the only strong decay allowed to a $\Xi_{\mathcal{C}}$ resonance having this mass.

Fraction (Γ_i/Γ)	p (MeV/c)
seen	102
seen	106
	seen

$$\Xi_c(2790)$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

 $\overline{J^P}$ has not been measured; $\frac{1}{2}$ is the quark-model prediction.

$$egin{aligned} & \Xi_c(2790)^+ \; {
m mass} = 2791.9 \pm 0.5 \; {
m MeV} \\ & \Xi_c(2790)^0 \; {
m mass} = 2793.9 \pm 0.5 \; {
m MeV} \\ & m_{\Xi_c(2790)^+} - m_{\Xi_c'^0} = 213.20 \pm 0.22 \; {
m MeV} \\ & m_{\Xi_c(2790)^0} - m_{\Xi_c'^+} = 215.70 \pm 0.22 \; {
m MeV} \\ & m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -2.0 \pm 0.7 \; {
m MeV} \\ & \Xi_c(2790)^+ \; {
m width} = 8.9 \pm 1.0 \; {
m MeV} \\ & \Xi_c(2790)^0 \; {
m width} = 10.0 \pm 1.1 \; {
m MeV} \end{aligned}$$

Ξ_c (2790) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c'}\pi$	seen	159
$\Lambda_c^+ K^-$	seen	98

$\Xi_c(2815)$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 J^P has not been measured; $\frac{3}{2}^-$ is the quark-model prediction.

$$egin{aligned} & \Xi_c(2815)^+ \ {
m mass} \ m = 2816.51 \pm 0.25 \ {
m MeV} \ ({
m S}=1.2) \ & \Xi_c(2815)^0 \ {
m mass} \ m = 2819.79 \pm 0.30 \ {
m MeV} \ ({
m S}=1.1) \ & m_{\Xi_c(2815)^+} - m_{\Xi_c^+} = 348.80 \pm 0.10 \ {
m MeV} \ & m_{\Xi_c(2815)^0} - m_{\Xi_c^0} = 349.35 \pm 0.11 \ {
m MeV} \ & m_{\Xi_c(2815)^+} - m_{\Xi_c(2815)^0} = -3.27 \pm 0.27 \ {
m MeV} \ & \Xi_c(2815)^+ \ {
m full} \ {
m width} \ \Gamma = 2.43 \pm 0.26 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ \Gamma = 2.54 \pm 0.25 \ {
m MeV} \ & \Xi_c(2815)^0 \ {
m full} \ {
m width} \ {
m full} \ {
m full} \ {
m width} \ {
m full} \ {
m width} \ {
m full} \ {
m full} \ {
m width} \ {
m full} \ {
m full} \ {
m width} \ {
m full} \ {
m full} \ {
m width} \ {
m full} \ {
m ful$$

The $\Xi_{c} \pi \pi$ modes are consistent with being entirely via $\Xi_{c}(2645)\pi$.

Ξ_{c} (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c'\pi$	seen	188
$\Xi_{c}(2645)\pi$	seen	102
$\Xi_c(2645)\pi$ $\Xi_c^0\gamma$	seen	325

$$\Xi_c(2970)$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

was $\Xi_c(2980)$

$$\Xi_c(2970)^+$$
 $m=2964.3\pm1.5$ MeV (S = 3.9) $\Xi_c(2970)^0$ $m=2967.1\pm1.7$ MeV (S = 6.7) $m_{\Xi_c(2970)^+}-m_{\Xi_c^+}=496.6\pm1.5$ MeV (S = 3.7) $m_{\Xi_c(2970)^0}-m_{\Xi_c^0}=496.7\pm1.8$ MeV (S = 5.3) $m_{\Xi_c(2970)^+}-m_{\Xi_c(2970)^0}=-2.8\pm1.9$ MeV (S = 4.8) $\Xi_c(2970)^+$ width $\Gamma=20.9^{+2.4}_{-3.5}$ MeV (S = 1.2)

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	223
$\Sigma_c(2455)\overline{K}$	seen	122
$\Lambda_c^+\overline{K}$	not seen	410
$ \Lambda_c^+ \frac{c}{K} \Lambda_c^+ K^- \equiv_c 2\pi \equiv_c' \pi $	seen	410
$\Xi_c 2\pi$	seen	381
$\Xi_c'\pi$	seen	_
$\Xi_c(2645)\pi$	seen	274

$\Xi_c(3055)$

$$I(J^P) = ?(??)$$

Mass $m = 3055.9 \pm 0.4$ MeV Full width $\Gamma = 7.8 \pm 1.9$ MeV

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σ^{++} K $^-$	seen	_
ΛD^+	seen	316

$\Xi_c(3080)$

$$I(J^P) = \frac{1}{2}(?^?)$$

$$\Xi_c(3080)^+ \ m = 3077.2 \pm 0.4 \ {
m MeV}$$

 $\Xi_c(3080)^0 \ m = 3079.9 \pm 1.4 \ {
m MeV} \ ({
m S}=1.3)$
 $\Xi_c(3080)^+ \ {
m width} \ \Gamma = 3.6 \pm 1.1 \ {
m MeV} \ ({
m S}=1.5)$
 $\Xi_c(3080)^0 \ {
m width} \ \Gamma = 5.6 \pm 2.2 \ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i /	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	415
Σ_c (2455) \overline{K}	seen	342
$\Sigma_c(2455)^{++} K^-$	seen	342
https://pdg.lbl.gov	Page 50	Created: 10/3/2024 18:48

Σ_c (2520) $^{++}$ K $^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+ \overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} \pi^+ \pi^-$	not seen	144
ΛD^+	seen	362

$$I(J^P) = 0(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S $=1.3$)
Mean life $au=(273\pm12)\times10^{-15}$ s $c au=82~\mu{\rm m}$

No absolute branching fractions have been measured. The following are branching ratios relative to $\Omega^-\pi^+$.

Ω_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Cabibbo-favored (S = -3) decays — relative to $\Omega^-\pi^+$ $\Omega^-\pi^+$ **DEFINED AS 1** 821 $\Omega^-\pi^+\pi^0$ 797 1.80 ± 0.33 $\Omega^- \rho^+$ 90% > 1.3532 $\Omega^-\pi^-2\pi^+$ 0.31 ± 0.05 753 $\Omega^- e^+ \nu_e$ 1.98 ± 0.15 829 $\Omega^- \mu^+ \nu_\mu$ 1.94 ± 0.21 824 =0 \overline{K}^0 1.64 ± 0.29 950 $\Xi^0 K^- \pi^+$ 1.20 ± 0.18 901 $\equiv^0 \overline{K}^{*0}$. $\overline{K}^{*0} \rightarrow K^- \pi^+$ 0.68 ± 0.16 764 $\Omega(2012)^{-}\pi^{+}, \Omega(2012)^{-} \rightarrow \Xi^{-}\overline{K^{0}}\pi^{+}$ 0.12 ± 0.05 2.12 ± 0.28 895 $\Omega(2012)^{-}\pi^{+}, \ \Omega(2012)^{-} \rightarrow \Xi^{-}K^{0}$ $\Xi^{-}K^{-}2\pi^{+}$ 0.12 ± 0.06 0.63 ± 0.09 830 $\Xi(1530)^{0}K^{-}\pi^{+}, \ \Xi^{*0} \rightarrow$ 0.21 ± 0.06 757 0.34 ± 0.11 653 $pK^-K^-\pi^+$ 864 seen $\Sigma^+ K^- K^- \pi^+$ < 0.32 90% 689 $\Lambda \overline{K}{}^{0} \overline{K}{}^{0}$ 1.72 ± 0.35 837

Singly Cabibbo-suppressed modes — relative to $\Omega^-\pi^+$

$$\Xi^- \pi^+$$
 0.25 ± 0.06 - $\Omega^- K^+$ < 0.29 90% -

https://pdg.lbl.gov

Page 51

Doubly Cabibbo-suppressed modes — relative to $\Omega^-\pi^+$

 $\Xi^- K^+$

< 0.07

90%

 $\Omega_c(2770)^0$

$$I(J^P)=0(\tfrac{3}{2}^+)$$

 J^P has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2765.9\pm2.0~{
m MeV}~{
m (S}=1.2)$$
 $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^{0}=70.7^{+0.8}_{-0.9}~{
m MeV}$

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

 $\Omega_c(2770)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Omega_c^0 \gamma$

presumably 100%

70

 $\Omega_c(3000)^0$

$$I(J^P) = ?(??)$$

Mass $m=3000.46\pm0.25~\mathrm{MeV}$ Full width $\Gamma=3.8^{+1.6}_{-0.4}~\mathrm{MeV}$

 $\Omega_c(3000)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

182

 $\Omega_c(3050)^0$

$$I(J^P) = ?(??)$$

Mass $m=3050.17\pm0.19~{\rm MeV}$ Full width $\Gamma < 1.8~{\rm MeV},~{\rm CL}=95\%$

 $\Omega_c(3050)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/*c*)

 $\Xi_{s}^{+}K^{-}$

seen

278

 $\Omega_c(3065)^0$

$$I(J^P) = ?(??)$$

Mass $m=3065.58\pm0.21~{\rm MeV}$ Full width $\Gamma=3.4^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S}=1.7)$

 $\Omega_c(3065)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

303

https://pdg.lbl.gov

Page 52

 $\Omega_c(3090)^0$

$$I(J^P) = ?(??)$$

Mass $m = 3090.15 \pm 0.26 \text{ MeV}$ Full width $\Gamma = 8.5^{+0.8}_{-1.7} \text{ MeV}$

 $\Omega_c(3090)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

340

 $\Omega_c(3120)^0$

$$I(J^P) = ?(??)$$

Mass $m=3118.98^{+0.27}_{-0.35}~{\rm MeV}$ Full width $\Gamma~<~2.5~{\rm MeV},~{\rm CL}=95\%$

 $\Omega_c(3120)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

379

 $\Omega_c(3185)^0$

$$I(J^P) = ?(??)$$

Mass $m=3185^{+7.6}_{-1.9}~{
m MeV}$ Full width $\Gamma=50^{+12}_{-21}~{
m MeV}$

 $\Omega_c(3185)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

460

 $\Omega_c(3327)^0$

$$I(J^P) = ?(??)$$

Mass $m = 3327.1^{+1.2}_{-1.8} \text{ MeV}$ Full width $\Gamma = 20^{+14}_{-5} \text{ MeV}$

 Ω_c (3327) 0 DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 10/3/2024 18:48

 $\Xi_c^+ K$

seen

610

DOUBLY CHARMED BARYONS (C=+2)

$$\Xi_{cc}^{++} = \textit{ucc}, \, \Xi_{cc}^{+} = \textit{dcc}, \, \Omega_{cc}^{+} = \textit{scc}$$

$$I(J^P) = ?(??)$$

Mass $m=3621.6\pm0.4$ MeV Mean life $au=(256\pm27)\times10^{-15}$ s

$=\frac{++}{cc}$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_{c}^{+} K^{-} \pi^{+} \pi^{+}$	DEFINED AS 1		880
$\Xi_c^+\pi^+,\ \Xi_c^+ o pK^-\pi^+$	$0.0022\!\pm\!0.0006$		_
$\Xi_c^{\prime+}\pi^+, \ \Xi_c^{\prime+} \rightarrow \ \Xi_c^+\gamma, \ \Xi_c^+ \rightarrow$	$0.0031\!\pm\!0.0009$		_
$pK^-\pi^+ \ D^+pK^-\pi^+$			
$D^+ p K^- \pi^+$	< 0.017	90%	562

BOTTOM BARYONS

$$(B=-1)$$

$$\Lambda_b^0 = udb, \ \Sigma_b^0 = udb, \ \Sigma_b^+ = uub, \ \Sigma_b^- = ddb$$

 $\Xi_b^0 = usb, \ \Xi_b^- = dsb, \ \Omega_b^- = ssb$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$I(J^P)$$
 not yet measured; $0(\frac{1}{2}^+)$ is the quark model prediction. Mass $m=5619.60\pm0.17$ MeV $m_{A_b^0}-m_{B^0}=339.2\pm1.4$ MeV $m_{A_b^0}-m_{B^+}=339.72\pm0.28$ MeV Mean life $\tau=(1.471\pm0.009)\times10^{-12}$ s $c\tau=441.0~\mu{\rm m}$ $A_{CP}(\Lambda_b\to p\pi^-)=-0.025\pm0.029$ (S = 1.2) $A_{CP}(\Lambda_b\to pK^-)=-0.025\pm0.022$ $A_{CP}(\Lambda_b\to pK^-)=0.12\pm0.09$ $\Delta A_{CP}(pK^-/\pi^-)=0.014\pm0.024$ $A_{CP}(\Lambda_b\to p\overline{K}^0\pi^-)=0.22\pm0.13$

$$\begin{array}{l} \Delta A_{CP}(J/\psi p\pi^-/K^-) = (5.7 \pm 2.7) \times 10^{-2} \\ A_{CP}(\Lambda_b \to \Lambda K^+\pi^-) = -0.53 \pm 0.25 \\ A_{CP}(\Lambda_b \to \Lambda K^+K^-) = -0.28 \pm 0.12 \\ \Delta A_{CP}(\Lambda_b^0 \to pK^-\mu^+\mu^-) = (-4 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) = (1.1 \pm 2.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pa_1(1260)^-) = (-1 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to N(1520)^0 \rho(770)^0) = (2 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \Delta (1232)^{++}\pi^-\pi^-) = (0.1 \pm 3.3) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK^-\pi^+\pi^-)_{LBM}) = (3.5 \pm 1.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to N(1520)^0 K^*(892)^0) = (5.5 \pm 2.5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to N(1520)^0 K^*(892)^0) = (5.5 \pm 2.5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520) \rho(770)^0) = (1 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK_1(1410)^-) = (5 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK_1(1410)^-) = (5 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK^-K^+\pi^-) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK^-K^+K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to pK^-K^+K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^-K^+K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \phi(1020) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (pK^-)_{highmass} \to (-0.39 \pm 0.04) \\ \Delta A_{CP}(\Lambda_b^0 \to (-0.39 \pm 0.04) + (-0.39 \pm 0.04) \\ \Delta A_{CP}(\Lambda_b^0 \to (-0.39 \pm 0.04) + (-0.$$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

A _b DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\overline{J/\psi(1S)\it{\Lambda}\! imes B(b ightarrow \it{\Lambda}^0_b)}$	(5.8 ±0.8)×	₁₀ -5	1740
$ hoD^0\pi^-$	(6.2 ± 0.6) \times	10^{-4}	2370
$ hoD^+\pi^-\pi^-$	(2.7 ± 0.4) \times 1	10^{-4}	2332
$\rho D^*(2010)^+\pi^-\pi^-$	(5.2 ± 1.0) \times	10^{-4}	2277
pD^0K^-	(4.5 \pm 0.8) $ imes$ 1	10^{-5}	2269
$ ho J/\psi \pi^-$	($2.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$) $ imes$	10^{-5}	1755
$p\pi^-J/\psi$, $J/\psi ightarrow \mu^+\mu^-$	($1.6~\pm0.8$) \times	10^{-6}	-

https://pdg.lbl.gov

Page 55

$ ho J/\psi K^-$	$(3.2 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 10^{-4}$		1589
$p\eta_c(1S)K^-$	$(1.06\pm0.26)\times10^{-4}$		1670
$P_{c\overline{c}}(4312)^+K^-, P_{c\overline{c}}^+ \rightarrow$	$< 2.5 \times 10^{-5}$	CL=95%	_
$p\eta_c(1S)$			
$P_{c\overline{c}}(4380)^{+}K^{-}, P_{c\overline{c}}^{+} \rightarrow$	[ν] (2.7 \pm 1.4) \times 10 ⁻⁵		_
pJ/ψ	,		
P_c (4450) $^+$ K $^-$, P_c $ ightarrow$	[v] (1.3 \pm 0.4) \times 10 ⁻⁵		_
$ ho J/\psi$			
$\chi_{c1}(1P) \rho K^-$	$(7.6 \ ^{+1.5}_{-1.3}\) imes 10^{-5}$		1242
$\chi_{c1}(1P) p \pi^-$	($5.0 \ ^{+1.3}_{-1.1}$) $ imes 10^{-6}$		1462
$\chi_{c2}(1P) p K^-$	$(7.7 \begin{array}{c} +1.6 \\ -1.4 \end{array}) \times 10^{-5}$		1198
$\chi_{c2}(1P) p \pi^-$	$(4.8 \pm 1.9) \times 10^{-6}$		1427
$pJ/\psi(1S)\pi^+\pi^-K^-$	` ′		
$\rho J/\psi(13)\pi \cdot \pi \cdot K$	$(6.6 \begin{array}{c} +1.3 \\ -1.1 \end{array}) \times 10^{-5}$		1410
$p\psi(2S)K^-$	$(6.6 \ ^{+1.2}_{-1.0}) \times 10^{-5}$		1063
$\chi_{c1}(3872) p K^-$	$(3.5 \pm 1.3) \times 10^{-5}$		837
$\chi_{c1}(3872)\Lambda(1520)$	$(2.0 \pm 0.9) \times 10^{-5}$		721
ψ (2S) $ ho\pi^-$	$(7.5 \begin{array}{c} +1.6 \\ -1.4 \end{array}) \times 10^{-6}$		1320
$ ho \overline{K}{}^0 \pi^-$	$(1.3 \pm 0.4) \times 10^{-5}$		2693
pK^0K^-	$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_c^+ \pi^-$	(4.9 ± 0.4) $\times 10^{-3}$	S=1.2	2342
$\Lambda_c^+ \pi^ \Lambda_c^+ K^-$	$(3.56\pm0.28)\times10^{-4}$	S=1.2	2314
$\Lambda_{c}^{+} a_{1}(1260)^{-}$	seen		2153
Λ ⁺ D ⁻	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_c^+ D_s^-$	(1.10±0.10) %		1833
$\Lambda_{c}^{c} \pi^{+} \pi^{-} \pi^{-}$	$(7.6 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_c(2595)^+\pi^-$,	$(3.4 \pm 1.4) \times 10^{-4}$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$	(3) // _3		
$\Lambda_c(2625)^+\pi^-$	$(3.3 \pm 1.3) \times 10^{-4}$		2193
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$	(3.3 ±1.3) × 13		2130
$\Sigma_c(2455)^0\pi^+\pi^-$, $\Sigma_c^0 o$	$(5.7 \pm 2.2) \times 10^{-4}$		2265
$\Lambda_c^+\pi^-$	(3.7 ±2.2) × 10		2203
$\Sigma_c(2455)^{++}\pi^-\pi^-$, Σ_c^{++} \to	$(3.2 \pm 1.5) \times 10^{-4}$		2265
	(3.2 ±1.5) × 10		2265
$\Lambda_c^+ \pi^+ \ \Lambda_c^+ K^+ K^- \pi^-$	$(1.02\pm0.11)\times10^{-3}$		2184
$\Lambda_c^+ p \overline{p} \pi^-$	$(2.63\pm0.27)\times10^{-4}$		
L			1805
$\Sigma_c(2455)^0 p \overline{p}, \Sigma_c^0 \rightarrow$	$(2.3 \pm 0.5) \times 10^{-5}$		_
$\Lambda_c^+\pi^-$			

$\Sigma_c(2520)^0 p \overline{p},\; \Sigma_c(2520)^0 ightarrow \Lambda_c^+ \pi^-$	$(3.1 \pm 0.7) \times 10^{-5}$		-
$\Lambda_c^+ \ell^- \overline{\overline{ u}}_\ell$ anything	[x] (10.9 ± 2.2) %		_
$\Lambda_c^+ \ell^- \overline{\nu}_\ell$	$(6.2 \begin{array}{c} +1.4 \\ -1.3 \end{array})\%$	23	45
$\Lambda_c^+ \tau^- \overline{\nu}_{\tau}$	$(1.9 \pm 0.5)\%$	19:	33
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ± 3.1)%	23:	35
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(7.9 \ ^{+4.0}_{-3.5}) \times 10^{-3}$	22	12
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	($1.3 \begin{array}{l} +0.6 \\ -0.5 \end{array}$) %	21	95
p h ⁻	$[y] < 2.3 \times 10^{-5}$	CL=90% 27	30
$ ho\pi^-$	$(4.6 \pm 0.8) \times 10^{-6}$	27:	30
pK ⁻	$(5.5 \pm 1.0) \times 10^{-6}$	27	09
pD_s^-	$(1.25\pm0.13)\times10^{-5}$	23	64
$ ho \mu^- \overline{ u}_\mu$	$(4.1 \pm 1.0) \times 10^{-4}$	273	30
$\Lambda\mu^+\mu^-$	$(1.08\pm0.28)\times10^{-6}$	26	95
$\rho\pi^-\mu^+\mu^-$	$(6.9 \pm 2.5) \times 10^{-8}$	27:	20
$pK^-e^+e^-$	$(3.1 \pm 0.6) \times 10^{-7}$	27	80
$ hoK^-\mu^+\mu^-$	$(2.6 \ ^{+0.5}_{-0.4}) \times 10^{-7}$	26	85
$\Lambda\gamma$	$(7.1 \pm 1.7) \times 10^{-6}$	269	99
$\Lambda\eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$	26	70
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90% 26	11
$\Lambda \pi^+ \pi^-$	$(4.6 \pm 1.9) \times 10^{-6}$	26	92
$\Lambda K^+ \pi^-$	$(5.6 \pm 1.2) \times 10^{-6}$	26	60
$\Lambda K^+ K^-$	$(1.60\pm0.21)\times10^{-5}$	260	05
$\Lambda\phi$	$(9.8 \pm 2.6) \times 10^{-6}$	259	99
$p\pi^-\pi^+\pi^-$	$(2.08\pm0.21)\times10^{-5}$	27	15
$pK^{-}K^{+}\pi^{-}$	$(4.0 \pm 0.6) \times 10^{-6}$	26	
$pK^{-}\pi^{+}\pi^{-}$	$(5.0 \pm 0.5) \times 10^{-5}$	26	
p K - K + K -	$(1.25\pm0.13)\times10^{-5}$	25:	24

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Created: 10/3/2024 18:48

Mass $m=5912.19\pm0.17~{\rm MeV}$ Full width $\Gamma~<~0.25~{\rm MeV},~{\rm CL}=90\%$

Λ _b (5912) ^o DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	86

$$\Lambda_b(5920)^0$$

$$J^P = \frac{3}{2}^-$$

Mass $m=5920.09\pm0.17~{\rm MeV}$ Full width $\Gamma~<~0.19~{\rm MeV},~{\rm CL}=90\%$

$\Lambda_b(5920)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

108

$\Lambda_b(6070)^0$

$$J^{P} = \frac{1}{2}^{+}$$

Quantum numbers based on quark model expectations.

Mass
$$m=6072.3\pm2.9~{\rm MeV}$$

Full width $\Gamma=72\pm11~{\rm MeV}$

$\Lambda_b(6070)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

343

$\Lambda_b(6146)^0$

$$J^{P} = \frac{3}{2}^{+}$$

Mass
$$m=6146.2\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6146)^0}-m_{\Lambda_b^0}^{}=526.55\pm0.34~{
m MeV}$ Full width $\Gamma=2.9\pm1.3~{
m MeV}$

Λ_b (6146)⁰ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda^0_{\mu} \pi^+ \pi^-$$

seen

427

$\Lambda_b(6152)^0$

$$J^P = \frac{5}{2}^+$$

Mass
$$m=6152.5\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6152)^0}-m_{\Lambda_b^0}^{}=532.89\pm0.28~{
m MeV}$ $m_{\Lambda_b(6152)^0}-m_{\Lambda_b(6146)^0}^{}=6.34\pm0.32~{
m MeV}$ Full width $\Gamma=2.1\pm0.9~{
m MeV}$

$\Lambda_b(6152)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 10/3/2024 18:48

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

434

$$\Sigma_b$$

$$I(J^P) = 1(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5810.56 \pm 0.25$$
 MeV
Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV
 $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -5.06 \pm 0.18$ MeV
 $\Gamma(\Sigma_b^+) = 5.0 \pm 0.5$ MeV
 $\Gamma(\Sigma_b^-) = 5.3 \pm 0.5$ MeV

Σ_b DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\Lambda_h^0 \pi$$

dominant

133

 Σ_b^*

$$I(J^P) = 1(\frac{3}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5830.32 \pm 0.27 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5834.74 \pm 0.30 \text{ MeV}$
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -4.37 \pm 0.33 \text{ MeV}$ (S = 1.6)
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{+}} = 19.73 \pm 0.18$
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b^{-}} = 19.09 \pm 0.22$
 $\Gamma(\Sigma_b^{*+}) = 9.4 \pm 0.5 \text{ MeV}$
 $\Gamma(\Sigma_b^{*-}) = 10.4 \pm 0.8 \text{ MeV}$ (S = 1.3)
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_h^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

159

 $\Sigma_b(6097)^+$

$$J^{P} = ?$$
?

Mass
$$m=6095.8\pm1.7~\text{MeV}$$

Full width $\Gamma=31\pm6~\text{MeV}$

Σ_b (6097)⁺ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\overline{\Lambda_b \pi^+ \times B(b \to \Sigma_b(6097)^+)}$$

seer

 Σ_b (6097) $^-$

$$J^{P} = ?^{?}$$

Mass $m=6098.0\pm1.8~{\rm MeV}$ Full width $\Gamma=29\pm4~{\rm MeV}$

https://pdg.lbl.gov

Page 59

Σ_b (6097) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b \pi^- imes B(b o \Sigma_b (6097)^-)$	seen	_

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^-) = 5797.0 \pm 0.6 \; {
m MeV} \quad ({
m S} = 1.7) \ m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.46 \pm 0.31 \; {
m MeV} \quad ({
m S} = 1.3) \ m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.6 \; {
m MeV} \ {
m Mean life} \; au_{\Xi_b^-} = (1.572 \pm 0.040) imes 10^{-12} \; {
m s}$$

=_b DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$J/\psi \Xi^- \times B(b \to \Xi_b^-)$	$(1.02^{+0.26}_{-0.21}) \times 1$	0-5	1782
$J/\psi \Lambda K^- \times B(b \rightarrow \Xi_b^-)$	$(2.5 \pm 0.4) \times 1$	0-6	1631
$pK^-K^- \times B(b \rightarrow \Xi_b^-)$	$(3.7~\pm0.8~) imes1$	0-8	2731
pK ⁻ K ⁻	seen		2731
$pK^-\pi^-$	seen		2783
$\Lambda_b^0 \pi^- \times B(b \to \Xi_b^-)/B(b \to \Lambda_b^0)$	$(7.0 \pm 0.9) \times 1$	0^{-4}	99
$=0$ π^-	seen		2367
Σ (1385) K^-	$(2.6 \pm 2.3) \times 1$	0 ⁻⁷	2707
$\Lambda(1405) K^{-}$	(1.9 ± 1.2) $ imes 1$	0 ⁻⁷	2702
$\Lambda(1520) K^{-}$	$(7.6 \pm 3.2) \times 1$	0 ⁻⁷	2673
$\Lambda(1670) K^{-}$	$(4.5 \pm 2.3) \times 1$	0 ⁻⁷	2629
Σ (1775) K^-	$(2.2 \pm 1.5) \times 1$	0^{-7}	2599
$\Sigma(1915)K^-$	$(2.6 \pm 2.5) \times 1$	0 ⁻⁷	2553
$\Xi^{-}\gamma$	< 1.3 × 1	0^{-4} 95%	_

Ξ₀

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^0) = 5791.9 \pm 0.5 \; {
m MeV}$$
 $m_{\Xi_b^0} - m_{A_b^0} = 172.5 \pm 0.4 \; {
m MeV}$ Mean life $\tau_{\Xi_b^0} = (1.480 \pm 0.030) imes 10^{-12} \; {
m s}$

≡ ⁰ _b DECAY MODES	Fraction $(\Gamma_i/\Gamma$) Confidence lev	vel (MeV/c)
$pD^0K^- imes B(b o \ \Xi_b^0)$	(1.7 ±0.5)	× 10 ⁻⁶	2374
$p\overline{K}{}^0\pi^- \times B(b \to \overline{\Xi}_b^0)/B(\overline{b} \to \overline{\Xi}_b^0)$	< 1.6	$\times 10^{-6}$ 90	2783
B^0)			

https://pdg.lbl.gov

Page 60

$pK^0K^- imes{\sf B}(b o\ \Xi_b^0)/{\sf B}(\overline{b} o$	< 1.1	\times 10 ⁻⁶	90%	2730
B^0)				
$\Lambda\pi^+\pi^- imes B(b o \ \Xi_b^0)/B(b o$	< 1.7	\times 10 ⁻⁶	90%	2781
A_b^0)				
$\Lambda K^-\pi^+ \times B(b \to \Xi_b^0)/B(b \to \Xi_b^0)$	< 8	$\times 10^{-7}$	90%	2751
Λ_b^0)				
$\Lambda K^{+}K^{-} \times B(b \rightarrow \Xi_{b}^{0})/B(b \rightarrow$	< 3	$\times 10^{-7}$	90%	2698
Λ_b^0)				
$J/\psi ilde{\Lambda}$	seen			1868
$J/\psi \equiv^0$	seen			1785
$\Lambda_c^+ K^- \times B(b \to \Xi_b^0)$	(6 ± 4)	$\times 10^{-7}$		2416
$pK^-\pi^+\pi^- \times B(b \rightarrow$	(1.9 ± 0.00)	$0.4) \times 10^{-6}$		2766
$\Xi_b^0)/B(b o \Lambda_b^0)$				
$pK^-K^-\pi^+ \times B(b \rightarrow$	(1.70 ± 0)	$(0.30) \times 10^{-6}$		2704
$arphi_b^0)/{\sf B}(b o arLambda_b^0)$				
$pK^-K^+K^- \times B(b \rightarrow$	(1.7 ± 0)	$0.9 \) \times 10^{-7}$		2620
$arphi_b^0)/{\sf B}(b o arLambda_b^0)$				

$\Xi_b'(5935)^-$

$$J^P = \frac{1}{2}^+$$

Mass $m=5935.1\pm0.5~{\rm MeV}$ Full width $\Gamma=0.03\pm0.032~{\rm MeV}$

<i>Ξ′_b</i> (5935) [−] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(11.8 ± 1.8) %	31
$\Xi_b'(5935)^-)/B(\overline{b} o \Xi_b^0)$		

$$\Xi_b(5945)^0$$

$$J^P = \frac{3}{2}^+$$

Mass $m=5952.3\pm0.6~{\rm MeV}$ Full width $\Gamma=0.87\pm0.08~{\rm MeV}$

Ξ_b (5945) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-\pi^+}$	seen	78

 $\Xi_b(5955)^-$

$$J^P = \frac{3}{2}^+$$

Mass $m=5955.7\pm0.5~{\rm MeV}$ Full width $\Gamma=1.43\pm0.11~{\rm MeV}$

https://pdg.lbl.gov

Page 61

<i>≡_b</i> (5955) [−] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(20.7±3.5) %	84
$\Xi_b^*(5955)^-)/B(\overline{b} o \ \Xi_b^0)$		

$$\Xi_b(6087)^0$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

J, *P* need confirmation.

Mass $m = 6087.2 \pm 0.5 \text{ MeV}$ Full width $\Gamma=2.4\pm0.5~\text{MeV}$

$\equiv_b (6087)^0$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

$$\equiv^0_b \pi^+ \pi^-$$

seen

$$\Xi_b(6095)^0$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

J, *P* need confirmation.

Mass $m=6095.3\pm0.5~\mathrm{MeV}$ Full width $\Gamma = 0.50 \pm 0.35$ MeV

Ξ_b (6095)⁰ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

$$= \frac{\pi^0}{b} \pi^+ \pi^-$$

seen

$$\Xi_b(6100)^-$$

$$J^{P} = \frac{3}{2}$$

 $J^P = \frac{3}{2}^-$ J, P need confirmation.

Mass $m = 6099.8 \pm 0.6 \text{ MeV}$ Full width $\Gamma = 0.94 \pm 0.31 \; \text{MeV}$

Ξ_b (6100) DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

$$\Xi_b^- \pi^+ \pi^-$$

128

$\Xi_b(6227)^2$

$$J^{P} = ?^{?}$$

Mass $m=6227.9\pm0.9~\mathrm{MeV}$ Full width $\Gamma=19.9\pm2.6$ MeV

Ξ_b (6227) DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

Scale factor
$$(MeV/c)$$

$$\Lambda_b^0 K^- \times B(b \rightarrow \Xi_b(6227))/B(b \rightarrow \Lambda_b^0)$$

$$(3.20\pm0.35)\times10^{-3}$$

336

https://pdg.lbl.gov

Page 62

$$\Xi_b^0 \pi^- \times \mathsf{B}(b \to \Xi_b(6227))/\mathsf{B}(b \to \Xi_b^0)$$

(2.8
$$\pm 1.1$$
) %

398

$$\Xi_b(6227)^0$$

$$J^{P} = ?$$
?

Mass $m=6226.8\pm1.6~\mathrm{MeV}$ Full width $\Gamma=19^{+5}_{-4}~\text{MeV}$

Ξ_b (6227)0 DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

$$\Xi_b^- \pi^+ \times \mathsf{B}(b \to \Xi_b(6227)^0)/\mathsf{B}(b \to \Xi_b^-)$$

$$(4.5\pm0.9)$$
 %

398

$$=b(0221)^{\alpha})/D(D \rightarrow = 1$$

$\Xi_b(6327)^0$

$$J^{P} = ?^{?}$$

Mass $m = 6327.28 \pm 0.35 \; \text{MeV}$ Full width Γ < 2.56 MeV, CL = 95%

$\Xi_b(6327)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 K^- \pi^+$$

seen

298

$\Xi_b(6333)^0$

$$J^{P} = ?^{?}$$

Mass $m = 6332.69 \pm 0.28 \text{ MeV}$ Full width Γ < 1.92 MeV, CL = 95%

Ξ_b (6333)⁰ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 K^- \pi^+$$

seen

309

$$I(J^P) = 0(\frac{1}{2}^+)$$

I, J, P need confirmation.

Created: 10/3/2024 18:48

Mass $m = 6045.8 \pm 0.8 \text{ MeV}$

$$m_{\Omega_b^-} - m_{\Lambda_b^0} = 426.4 \pm 2.2 \text{ MeV} \ m_{\Omega_b^-} - m_{\Xi_b^-} = 248.5 \pm 0.6 \text{ MeV} \$$

Mean life
$$au = (1.64^{+0.18}_{-0.17}) \times 10^{-12} \text{ s}$$

 $au(\Omega_b^-)/ au(\Xi_b^-)$ mean life ratio $=1.11\pm0.16$

Ω_b^- DECAY MODES	Fraction ((Γ_i/Γ)	Scale factor/ Confidence level	•
$J/\psi \Omega^- imes B(b o \Omega_b)$	(1.4^{+0}_{-0})	$^{.5}_{.4}) \times 10^{-6}$	S=1.6	1805
$ ho {\mathsf K}^- {\mathsf K}^- imes {\mathsf B}(\overline{b} o \ \Omega_b)$	< 2.3	\times 10 ⁻⁹	CL=90%	2865
$ ho\pi^-\pi^- imes B(\overline{b} o~\Omega_b)$	< 1.5	\times 10 ⁻⁸	CL=90%	2943
$ ho K^- \pi^- imes B(\overline{b} o \Omega_b)$	< 7	$\times 10^{-9}$	CL=90%	2915
$\Omega_c^0\pi^-$	seen			2420
$\Omega_c^0 \pi^-$, $\Omega_c^0 \rightarrow pK^-K^-\pi^+$	seen			_
$\Xi_c^+ K^- \pi^-$	seen			2473

$\Omega_b(6316)^-$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m=6315.6\pm0.6$ MeV Full width $\Gamma~<~4.2$ MeV, CL =95%

Ω_b (6316) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0}$ K^-	seen	168

$\Omega_b(6330)^-$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m=6330.3\pm0.6$ MeV Full width $\Gamma < 4.7$ MeV, CL =95%

Ω_b (6330) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0} K^-$	seen	206

$$\Omega_b(6340)^-$$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m=6339.7\pm0.6$ MeV Full width $\Gamma~<~1.8$ MeV, CL =95%

Ω_b (6340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0}K^-$	seen	227

$$\Omega_b(6350)^-$$

$$I(J^P) = ?(??)$$

I, J, P need confirmation.

Mass $m=6349.8\pm0.6$ MeV Full width Γ < 3.2 MeV, CL = 95%

https://pdg.lbl.gov

Page 64

Ω_b (6350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^0} K^-$	seen	248

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$(5.8^{+}_{-})^{2.3}$		_
$(5.6\pm\ 1.2)\ \%$		_
$(70 \pm 22)\%$		_
(3.8 ± 0.6) %		_
(3.2 ± 0.8) %		_
$(39 \pm 7)\%$		_
$(4.6\pm\ 1.4)\times10^{-3}$	1.2	_
	$(5.8^{+}_{-} \begin{array}{c} 2.3 \\ 2.0 \end{array}) \%$ $(5.6 \pm 1.2) \%$ $(70 \pm 22) \%$ $(3.8 \pm 0.6) \%$ $(3.2 \pm 0.8) \%$ $(39 \pm 7) \%$	(5.8 + 2.3) % $(5.6 \pm 1.2) \%$ $(70 \pm 22) \%$ $(3.8 \pm 0.6) \%$ $(3.2 \pm 0.8) \%$ $(39 \pm 7) \%$

EXOTIC BARYONS

$$P_{c\overline{c}s}(4338)^0$$

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 10/3/2024 18:48

Mass $m=4338.2\pm0.8$ MeV Full width $\Gamma=7.0\pm1.8$ MeV

$P_{C\overline{C}s}$ (4338) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ Λ	seen	_

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [g] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [h] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\ \sigma_{\lambda\nu}\ q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [i] Time-reversal invariance requires this to be 0° or 180° .
- [j] This coefficient is zero if time invariance is not violated.
- [k] This limit is for γ energies between 0.4 and 782 keV.
- [/] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1 - lpha^2} \, \cos\!\phi$$
 ,
$$\tan\!\Delta = - \frac{1}{lpha} \, \sqrt{1 - lpha^2} \, \sin\!\phi \, .$$

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [n] See the Listings for the pion momentum range used in this measurement.
- [o] Our estimate. See the Particle Listings for details.
- [p] A theoretical value using QED.
- [q] This branching fraction includes all the decay modes of the final-state resonance.

Created: 10/3/2024 18:48

[\emph{r}] Here $\gamma_{\emph{D}}$ stands for a dark photon.

- [s] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [t] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [u] Assuming isospin conservation, so that the other third is $\Lambda_c^+ \, \pi^0 \, \pi^0$.
- $\left[v\right]P_{c}^{+}$ is a pentaquark-charmonium state.
- [x] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [y] Here h^- means π^- or K^- .