Problema E

Grafos

Arquivo fonte: grafos.{c | cc | java | py2 | py3}

Autor: Prof. Rodrigo Bossini Tavares Moreira

A Teoria dos Grafos consiste no estudo de objetos denominados — quem adivinharia — grafos. É muito fácil definir um grafo matematicamente. Observe: um grafo é um par ordenado G=[V,E]em que:

V é seu conjunto de **vértices** $E \subseteq \{\{x,y\}|x,y\in V \land x\neq y\}\}$ é seu conjunto de **arestas**

Viu como é fácil?!

Vejamos um exemplo gráfico. Digamos que $V = \{a,b,c\}$ e $E = \{\{a,b\},\{b,c\}\}$. A Figura 1 ilustra essa criatura graficamente.

Há diferentes tipos de grafos. Alguns possuem "ciclos" e outros não. Alguns são "conectados" e outros não são. Veja mais alguns exemplos na Figura 2.

Figura 2

Em azul: um ciclo

Esse aqui não tem ciclo algum

Intituitivamente, esse grafo é conectado: há pelo menos um caminho entre cada par de vértices

Observe como esse grafo não é conectado.

Nem precisa dizer. Você já está achando o assunto super interessante e está ansioso por explorar mais características dos grafos. Nós sabemos. Não é à toa que Leonhard já os estudava nos idos anos de 1700 e alguma coisa.

Entre os diferentes tipos de grafos, há um que se destaca. Ele possui as seguintes propriedades.

- Um de seus vértices é apontado como especial e denominado raiz.
- É conectado.
- Não possui ciclo algum.
- Cada vértice tem, no máximo, dois filhos. Os filhos de um vértice são vértices também.
- Vértices sem filho algum são chamados folhas.
- Vértices que não são folhas, são vértices internos.

Veja um exemplo de criatura que tem todas essas características na Figura 3.

Raiz...folhas... é grafo mas parece árvore, né? De ponta-cabeça, verdade. Você deve estar se perguntando por que esse tipo de grafo seria tão importante. Ele tem diferentes aplicações: compressão de dados, índices para bancos de dados, ordenação etc. Pode ter certeza de que algum aplicativo ou dispositivo que você usou ou usa no dia a dia emprega uma estrutura assim para resolver algum tipo de problema computacional.

A sua missão neste problema é se aprofundar no estudo sobre essas árvores, digo, grafos, e responder às seguintes perguntas, considerando que eles são **completos**. A Figura 4 mostra um exemplo de grafo (árvore, criatura, whatever) completo(a).

Ao se aprofundar nos estudos, você deverá responder às seguintes perguntas referentes a uma criatura semelhante àquela exibida na Figura 4, considerando que ela tenha **n** vértices.

- Quantos vértices internos ela tem?
- Qual a sua altura?

Ah, antes que nos esqueçamos, a altura de uma criatura assim é o número de **arestas** existentes no caminho entre a raiz e uma de suas folhas. A criatura da Figura 4, por exemplo, tem altura 3.

Entrada

A primeira linha da entrada contém um número inteiro $1 \le t \le 100$. t linhas seguem. Cada linha possui um único número inteiro $1 \le n \le 2^{20}$, que representa o número de vértices de uma criatura completa, como aquela da Figura 4.

Saída

Para cada caso de teste, seu programa deve produzir dois números inteiros, numa única linha, separados por um único espaço em branco. O primeiro deve ser o número de vértices internos da criatura. O segundo deve ser a sua altura. Não devem existir quaisquer outros espaços em branco. Também não deve haver linha em branco no final.

Exemplo

Entrada

2

3

7

Saída

1 1

32