ЛАБОРАТОРНАЯ РАБОТА 6. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ

Цели сформировать практические навыки применения вычислительных методов и моделирования, теоретического и экспериментального исследования;

Задачи Вычисление определенных интегралов по формулам прямоугольников, трапеций и Симпсона, Гаусса. Вычисление значений двойных интегралов.

Варианты заданий к задачам 6.1-6.9 даны в ПРИЛОЖЕНИИ 6.А.

Задача 6.1. Вычислить значение интеграла
$$I=\int\limits_{1}^{1.44}P_{n}(x)dx$$
 , где $P_{n}(x)=\sum_{i=0}^{n}c_{i}x^{i}$, с помощью

квадратурных формул трапеций и Симпсона для элементарного отрезка интегрирования. Оценить величину погрешности. Применяя те же квадратурные формулы для составного отрезка интегрирования, вычислить интеграл I с точностью 0.0001. Предварительно оценить шаг интегрирования, при котором достигается заданная точность.

ПОРЯДОК РЕШЕНИЯ ЗАДАЧИ:

- 1. Вычислить значение интеграла I аналитически.
- 2. Задать многочлен $P_n(x)$. Вычислить значение интеграла I по формулам трапеций и Симпсона, считая отрезок [1,1.44] элементарным отрезком интегрирования.
- 3. Найти абсолютные погрешности результатов.
- 4. Используя выражение для остаточных членов интегрирования (см. *ПРИЛОЖЕНИЕ* 6.С), оценить шаги интегрирования, при которых величина погрешности каждой квадратурной формулы будет меньше 0.0001.
- 5. Вычислить значения интеграла по составной квадратурной формуле с найденным шагом.
- 6. Найти абсолютные погрешности результатов.

Задача 6.2. Вычислить интеграл
$$\int_{a}^{b} \sum_{i=0}^{k} c_i x^i dx$$
 (k =0,1,...,5) аналитически и используя

квадратурную формулу, указанную в индивидуальном варианте, с шагом h=(b-a)/2. Для многочленов какой степени используемая квадратурная формула точна и почему? Вычислить значение интеграла при k=5 с шагом h/2. Оценить погрешность по правилу Рунге.

Задача 6.3. Вычислить значение интеграла, используя формулу центральных прямоугольников, с шагом h от $\frac{b-a}{2}$ до $\frac{b-a}{20}$. Построить график зависимости абсолютной погрешности результата от h. Сравнить полученную погрешность с теоретической оценкой абсолютной погрешности.

Задача 6.4. Построить график функции
$$F(x) = \int_a^b f(x,t)dt$$
 , $x_1 \le x \le x_2$. Для вычисления

интеграла с точностью 10^{-8} использовать квадратурную формулу, указанную в индивидуальном варианте, и правило Рунге оценки погрешности.

Задача 6.5. Построить график функции $G(x) = \int_a^x f(t)dt$, $x_1 \le x \le x_2$. Для вычисления

интеграла с точностью 10^{-8} использовать адаптивную процедуру на основе квадратурной формулы, указанной в индивидуальном варианте.

Задача 6.6. Вычислить значение интеграла I из задачи 6.1, используя квадратурную формулу Гаусса с одним, двумя, тремя, четырьмя узлами (см. $\Pi P U Л O Ж E H U E$). Определить абсолютную погрешность результата. Построить гистограмму зависимости погрешности от числа узлов. Убедиться, что квадратурные формулы Гаусса с N+1 (N=0,1,2,3) узлом точны для многочленов I, t, ..., t^m, m=2N+1.

Задача 6.7. Вычислить приближенно площадь фигуры, ограниченной кривыми, указанными в индивидуальном варианте. Точки пересечения кривых найти графически. Для вычисления интегралов с точностью 10^{-8} использовать квадратурную формулу, указанную в индивидуальном варианте, и правило Рунге оценки погрешности.

Задача 6.8. Используя указанный в варианте метод, вычислить двойной интеграл $\int\limits_a^b \int\limits_c^d f(x,y) dx dy$ от функции двух переменных по прямоугольной области

 $D = \{(x,y), x \in [a,b], y \in [c,d]\}$ с точностью $\varepsilon = 0.001$.

ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет по лабораторной работе должен содержать следующие материалы по каждой задаче:

- 1) постановка задачи;
- 2) необходимый теоретический материал;
- 3) вывод оценок погрешности используемых квадратурных формул;
- 4) решение поставленной задачи;
- 5) анализ полученных результатов;
- 6) графический материал (если необходимо);
- 7) тексты программ.

ПРИЛОЖЕНИЕ 6.А

Схема вариантов к лабораторной работе 6

N	Выполняемые задачи	N	Выполняемые задачи	N	Выполняемые задачи
1	6.1.1, 6.2.1, 6.5.1	11	6.1.11, 6.3.4, 6.7.3	21	6.1.21, 6.4.7, 6.5.6
2	6.1.2, 6.3.1, 6.6.2	12	6.1.12, 6.4.4, 6.8.3	22	6.1.22, 6.2.8, 6.6.22
3	6.1.3, 6.4,1, 6.7.1	13	6.1.13, 6.2.5, 6.5.4	23	6.1.23, 6.3.8, 6.7.6
4	6.1.4, 6.2.2, 6.8.1	14	6.1.14, 6.3.5, 6.6.14	24	6.1.24, 6.4.8, 6.8.6
5	6.1.5, 6.3.2, 6.5.2	15	6.1.15, 6.4.5, 6.7.4	25	6.1.25, 6.2.9, 6.5.7
6	6.1.6, 6.4.2, 6.6.6	16	6.1.16, 6.2.6, 6.8.4	26	6.1.26, 6.3.9, 6.6.26
7	6.1.7, 6.2.3, 6.7.2	17	6.1.17, 6.3.6, 6.5.5	27	6.1.27, 6.4.9, 6.7.7
8	6.1.8, 6.3.3, 6.8.2	18	6.1.18, 6.4.6, 6.6.15	28	6.1.28, 6.2.10, 6.8.7
9	6.1.9, 6.4.3, 6.5.3	19	6.1.19, 6.2.7, 6.7.5	29	6.1.29, 6.3.10, 6.5.89
10	6.1.10, 6.2.4, 6.6.10	20	6.1.20, 6.3.7, 6.8.5	30	6.1.30, 6.4.10, 6.6.30

ВАРИАНТЫ ЗАДАНИЙ К ЛАБОРАТОРНОЙ РАБОТЕ 6

Таблица к задаче 6.1

											1	да 10 0.1
N	c_0	c_1	c_2	c_3	c_4	N	c_0	c_1	c_2	c_3	c_4	c_5
6.1.1	0.6	1.3	0	1.2	1.9	6.1.16	5.4	2.1	0.3	2.1	1.6	1.6
6.1.2	1	0.9	0.8	0.7	0.5	6.1.17	0	-2.9	-0.9	0.4	1.9	2.3
6.1.3	0.4	0.3	0.2	0.1	2	6.1.18	5.2	5.3	2.5	0.1	0	2.3
6.1.4	0.1	-0.1	1	1	1	6.1.19	-4.6	-0.4	1.6	0	2.4	-4.1
6.1.5	1.5	0	-2.1	-1.1	3.1	6.1.20	3.5	-0.2	-2.3	-3.1	3.1	5.2
6.1.6	-2.5	-2.1	0	0.4	0.5	6.1.21	2.2	-4.1	0.3	-3.4	3.5	6.5
6.1.7	6.8	1.7	-4.1	0.1	-6.1	6.1.22	0.8	6.5	-4.4	6.1	-3.6	2.4
6.1.8	0	1.4	3.2	1.6	-9.4	6.1.23	7.9	-0.4	2.7	0.7	-2.4	-2.7
6.1.9	1.3	0	-0.1	0.7	8.1	6.1.24	1.3	0.5	2.1	5.7	8.3	-3.7
6.1.10	4.2	-1.2	1.5	0	7.1	6.1.25	-2.7	2.4	4.5	-3.2	6.6	2.4
6.1.11	-2.2	0.7	4.5	0.8	0.6	6.1.26	2.8	-1.5	-0.9	1.8	2.4	5.6
6.1.12	5.3	-1.2	-1.5	1.3	-7.1	6.1.27	3.3	-2.3	0.5	0.3	4.3	-4.3
6.1.13	4.9	5.3	3.3	0.8	5.1	6.1.28	6.1	0	7.5	7.4	0.6	-0.6
6.1.14	0.4	2.7	1.5	1.4	1.1	6.1.29	2.5	-3.3	0	8.4	-5.2	0.9
6.1.15	2.8	-1.2	-1.5	0	6.4	6.1.30	-5.6	-7.2	1.5	4.6	-5.1	7.1

Таблица к задаче 6.2

N	c_0	c_1	c_2	c_3	c_4	c_5	a	b	Квадратурная формула
6.2.1	1	0.9	0.8	0.7	0.8	1	0	1	правых прямоугольников
6.2.2	0.4	0.3	0.2	0.1	2	1	-1	0	центральных прямоугольников

6.2.3	0.1	-0.1	1	1	1	1	0	1	трапеций
6.2.4	1	1	1	1	-1	0.8	-1	0	Симпсона
6.2.5	1	1	0.3	0.4	0.5	0.6	0	1	правых прямоугольников
6.2.6	0.1	1	1	1	1	1	0	1	центральных прямоугольников
6.2.7	1	1	0.1	1	1	1	-1	0	трапеций
6.2.8	1	-1	1	0.1	1	1	-1	1	Симпсона
6.2.9	0.1	-1	-1	-1	1	0.1	0	1	правых прямоугольников
6.2.10	1	-1	1	1	1	1	-1	1	Симпсона

Таблица к задаче 6.3

					Тиониц	, ,	
N	f(x)	a	b	N	f(x)	a	Ъ
6.3.1	$(2x)^3\cos(x)$	0	$\pi/2$	6.3.6	$(\cos(x)-x)e^{x^2}$	$-\pi/2$	0
6.3.2	$e^{-2\sin(x)}$	$-\pi/2$	0	6.3.7	$\sqrt[3]{2x}\left(\cos(x^2)-2\right)$	$-\pi/2$	0
6.3.3	$(x+2x^4)\cdot\sin(x^2)$	0	$\pi/2$	6.3.8	$x^2 \left(\sin(\sqrt[3]{x}) - 3 \right)$	$\pi/4$	$\pi/2$
6.3.4	$\left(x^2 - 2x^3\right)\cos(x^2)$	$-\pi$	0	6.3.9	$\ln\left(2x+\sin\left(x^2\right)\right)$	1	4
6.3.5	$\sin(x)e^{x^2}$	$\pi/4$	$\pi/2$	6.3.10	$4\ln\left(\cos\left(x^3\right) + x^2\right)$	0	2

Таблица к задаче 6.4

						полица к зада те о. т
N	f(x,t)	a	ь	\mathbf{x}_1	X 2	Метод
6.4.1	$\sin(xt^2)$	0	1	-5	0	трапеций
6.4.2	$(t+\sin(x))(t^2x+1)$	-1	1	-2	2	Симпсона
6.4.3	$\cos(2x+t)\sin(3x-t)$	-2	0	0	0.5	трапеций
6.4.4	$t\sin(xt^2)$	0	1.5	0	3	Симпсона
6.4.5	$\cos(t^2\sin x)$	-1	1	1	3	трапеций
6.4.6	$\cos(t^3+x^2)$	0	2	0	2	Симпсона
6.4.7	$\sin(t^2 + xt)$	0	2	0	2	трапеций
6.4.8	$t^2 \left(1 - \cos(xt)\right)$	1	4	1	3	Симпсона
6.4.9	$\cos(x+5t)\sin(2x-t)$	0	3	-2	-1	трапеций
6.4.10	$\cos(xt^2)$	0	2	1	1.5	Симпсона

Таблица к задаче 6.5

N	f(t)	a	\mathbf{x}_1	\mathbf{x}_2	N	f(t)	a	\mathbf{x}_1	\mathbf{x}_2	Квадратурная
										формула
6.5.1	$\sin t^2$	0	0	2	6.5.6	$t^{2} - 3$	0	0	4	трапеций
						$\overline{t^2+2}$				
6.5.2	$(t+1)\cos t$	0	0	4	6.5.7	$t^2 - 2$	-1	0	3	Симпсона
						e^{t}				

6.5.3	$\cos e^t$	1	1	2	6.5.8	$\sin e^t$	0	0	1.5	трапеций
6.5.4	$\frac{t^2 - t - 1}{t^2 + t + 5}$	0	1	2	6.5.9	$t \sin t$	0	0	5	Симпсона
6.5.5	$\frac{\sin t}{t^2 + 1}$	0	1	4	6.5.10	$\cos t^2$	0	0	2	трапеций

Таблица к задаче 6.7

					тастица к	, 1
N	Кривая 1	Кривая 2	N	Кривая 1	Кривая 2	Метод
6.7.1	$x^2 + 0.5y^2 = 1$		6.7.5	$y^2 = 2x$	$y^2 = 4(x-1)^3$	трапе-
					,	ций
6.7.2	$y^2 = 4x$	$x^2 = 4y$	6.7.6	$x^2 + y^2 = 8$	$y^2 = 2x$	Симп-
						сона
6.7.3	$y = x^2 + 2x$	y = x + 2	6.7.7	$y = 6 - x - 2x^2$	y = x + 2	трапе-
						ций
6.7.4	$y = 27/\left(x^2 + 9\right)$	$y = x^2/6$	6.7.8	y = 3/x	y = 4 - x	Симп-
	, ,					сона

Таблица к задаче 6.8

						тиолици к зиди те ото
N	f(x,y)	a	Ъ	c	d	Квадратурная формула
6.8.1	$\sin(xy^2)$	0	1	-5	0	трапеций
6.8.2	$(y+\sin(x))(y^2x+1)$	-1	1	-2	2	Симпсона
6.8.3	$\cos(2x+y)\sin(3x-y)$	-2	0	0	0.5	центральных
						прямоугольников
6.8.4	$y\sin(xy^2)$	0	1.5	0	3	Симпсона
6.8.5	$\cos(y^2\sin x)$	-1	1	1	3	трапеций
6.8.6	$\cos(y^3 + x^2)$	0	2	0	2	центральных прямоугольников
6.8.7	$\sin(y^2 + xy)$	0	2	0	2	трапеций
6.8.8	$y^2 \left(1 - \cos(xy)\right)$	1	4	1	3	Симпсона

ПРИЛОЖЕНИЕ

Значения узлов t_i и весов A_i квадратурной формулы Гаусса

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \sum_{i=0}^{N} A_{i} f\left(\frac{a+b}{2} + \frac{b-a}{2}t_{i}\right)$$

с числом узлов от 1 до 4:

Узлы и	Число	Число узлов	Число узлов	Число узлов
веса	узлов 1	2	3	4
t_0	0	-0.577350269189626	-0.77459666929954	-0.861136311594052
A_0	2	1.0000000000000000	0.555555555556	0.347854845137454
t_1		0.577350269189626	0.00000000000000	-0.339981043584856
A_{l}		1.0000000000000000	0.888888888888	0.652145154862546
t_2			0.77459666929954	0.339981043584856
A_2			0.555555555556	0.652145154862546
t_3				-0.861136311594052
A_3				0.347854845137454