Ordinary Differential Equations Notes from TAU Course with Additional Information

Lecturer: Ron Erez

Gabriel Domingues

June 28, 2020

Contents

1	First Order ODEs					
	1.1	General Analysis	3			
	1.2	Linearizing ODEs	5			
	1.3	Exact ODEs	7			
2	Theory of Analysis (*)					
	2.1	Limit of Functions	Ć			
	2.2	Existence and Uniqueness	11			
	2.3	Existence and Approximate Solutions	14			
3	Linear ODEs 1					
	3.1	General Analysis	17			
		Fundamental Set and Wronskian				
	3.3	Variation of Parameters	21			
	3.4	Constant Coefficients	23			
4	Linear Systems 2					
	4.1	General Analysis	25			
		Jordanization of Exponential Matrix				
		-				

^{*}Note: Chapter 2 can be skipped on a first reading.

5 Integral and Series Methods			
	5.1	Power Series	31
	5.2	Laplace Transform	33
	5.3	Sturm Liouville Theory	37
		ork is licensed under a Creative Commons ution-NonCommercial-ShareAlike 4.0 Inonal" license.	5)
ternational" license.			

1 First Order ODEs

1.1 General Analysis

Definition 1.1.1 (Implicit ODE). Given a function $\mathcal{F}: U \subset \mathbb{R}^{1+n} \to \mathbb{R}$, an implicit first-order ODE is an equation of the following form:

$$\mathcal{F}(x, y, y', \cdots, y^{(n)}) \equiv 0$$

for a function $y : \mathbb{R} \to \mathbb{R}$ which is n-times differentiable. Further, we call n the order of the ODE. If, possible, we way write it in explicit form (y).

Definition 1.1.2 (First Order ODE). Given a function $F: U \subset \mathbb{R}^2 \to \mathbb{R}$, an (explicit) first-order ODE is an equation of the following form:

$$y' = F(x, y)$$

for a function $y: \mathcal{I} \subseteq \mathbb{R} \to \mathbb{R}$ differentiable.

Lemma 1.1.3 (Constant Function Solutions). For $F: \mathcal{A} \times \mathcal{B} \to \mathbb{R}$, if $\exists \lambda \in \mathbb{R} : \forall x \in \mathcal{A}, F(x,\lambda) = 0$, then $y(x) \equiv \lambda$ is a solution to the differential equation y' = F(x,y).

Proof.
$$y(x) \equiv \lambda \Rightarrow y'(x) \equiv 0 \Rightarrow y'(x) \equiv 0 \equiv F(x, \lambda) = F(x, y(x)).$$

Remark 1.1.4 (Integration). If F is independent of y, that is, F(x,y) = G(x), then the ODE y' = F(x,y) can be resolved by simple integration.

Definition 1.1.5 (Autonomous). If F is independent of x, that is, F(x,y) = G(y), then the ODE y' = F(x,y) is called autonomous.

Lemma 1.1.6. If $y(x) = \gamma(x)$ is a solution to an autonomous ODE, then $y_a(x) = \gamma(x+a)$ is also a solution, for any $a \in \mathbb{R}$.

Proof. Simply, notice
$$y'_a(x) = \gamma'(x+a) = F(x+a, \gamma(x+a)) = G(\gamma(x+a)) = G(y_a(x)) = F(x, y_a(x))$$
, since $y = \gamma(x)$ is a solution.

Lemma 1.1.7 (Substitution / Change of Variables). For the equation y' = F(x, y), let y = G(x, z) for some $G : U \subset \mathbb{R}^2 \to \mathbb{R}$ differentiable. We get:

$$F(x,G(x,z)) = y' = \partial_x G(x,z) + z' \cdot \partial_y G(x,z)$$

which is now an ODE in z, which we may solve z(x) and substitute back y(x) = G(x, z(x)).

Definition 1.1.8 (Higher Order ODE). Given a function $F: U \subset \mathbb{R}^{1+n} \to \mathbb{R}$, an (explicit) n-th order ODE is an equation of the following form:

$$y^{(n)} = F(x, y, \cdots, y^{(n-1)})$$

for a function $y: \mathcal{I} \subseteq \mathbb{R} \to \mathbb{R}$ twice differentiable.

Lemma 1.1.9 (Integration). The solution for $y^{(n)} = f$ is:

$$y(x) = \sum_{k=0}^{n-1} \frac{C_k}{k!} (x-a)^k + \frac{1}{n!} \int_a^x (x-t)^n \cdot f(t) dt$$

Proof.
$$y'(x) = \sum_{k=1}^{n-1} \frac{C_k}{(k-1)!} (x-a)^{k-1} + \frac{1}{(n-1)!} \int_a^x (x-t)^{n-1} \cdot f(t) dt$$
 and, by induction, $y^{(n-1)}(x) = C_{n-1} + \int_a^x f(t) dt$, then $y^{(n)}(x) = f(x)$.

Lemma 1.1.10 (Reduction of Order). If F(x, y, y') is independent of:

- 1. y, that is, F(x, y, y') = G(x, y'), then: let p(x) = y'(x). We get the first-order equation: p'(x) = G(x, p(x))
- 2. x, that is, F(x, y, y') = G(y, y'), then: let p be such that y' = p(y). We get the first-order equation: $p'(y) \cdot p(y) = G(y, p(y))$

Proof. We only prove the last relation, the rest is immediately clear. By the chain rule, $y''(x) = \frac{d(p(y))}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p'(y) \cdot y'(x) = p'(y) \cdot p(y)$

Remark 1.1.11. In the first case, we retrieve y from p by direct integration (cf. 1.1.4). In the second, we use separation of variables (cf. 1.3.4).

1.2 Linearizing ODEs

Theorem 1.2.1 (General First Order Linear ODE). For the equation:

$$y' + P(x) \cdot y = Q(x)$$

let $\mu(x) = \exp\left[\int P(x) dx\right] = \exp\left[\int_a^x P(t) dt\right]$, called the integrating factor. The solution is:

$$y(x) = \frac{1}{\mu(x)} \int \mu(x) \cdot Q(x) dx = \frac{1}{\mu(x)} \left[y(a) + \int_a^x \mu(t) \cdot Q(t) dt \right]$$

where y(a) is arbitrary.

Proof. By definition, we get: $\mu'(x) = P(x) \cdot \mu(x)$ and $\mu(a) = 1$. By multiplying both sides of the integrating factor:

$$y'(x) \cdot \mu(x) + y(x) \cdot P(x) \cdot \mu(x) = \mu(x) \cdot Q(x)$$
$$(y \cdot \mu)'(x) = \mu(x) \cdot Q(x) \text{ (Integrating both sides)}$$
$$y(x) \cdot \mu(x) - y(a) = \int_{a}^{x} \mu(t) \cdot Q(t) dt$$

We have a solution.

Remark 1.2.2. We wrote the indefinite integrals where we can pick any antiderivative.

Our goal now is to find substitutions to transform into a general linear ODE.

Lemma 1.2.3 (Bernoulli ODE). For $\alpha \in \mathbb{R} \setminus \{0, 1\}$:

$$y' + P(x) \cdot y = Q(x) \cdot y^{\alpha}$$

let $z = y^{1-\alpha}$. We get:

$$z' + (1 - \alpha) P(x) \cdot z = (1 - \alpha) Q(x)$$

Proof. Calculate:
$$z' = (1 - \alpha) y^{-\alpha} \cdot y' = (1 - \alpha) y^{-\alpha} \cdot (-P(x) y + Q(x) \cdot y^n) = -(1 - \alpha) P(x) \cdot y^{1-\alpha} + (1 - \alpha) Q(x) = -(1 - \alpha) P(x) \cdot z + (1 - \alpha) Q(x)$$

Definition 1.2.4 (Homogeneous function). A function $F: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is homogeneous of degree k if: $\forall \lambda \in \mathbb{R}$, $\forall x, y \in U$, $F(\lambda \cdot x, \lambda \cdot y) = \lambda^k \cdot F(x, y)$. If F is homogeneous, then the ODE y' = F(x, y) is called homogeneous.

Lemma 1.2.5. If $F: U \subseteq \mathbb{R}^2 \to \mathbb{R}$ is homogeneous of degree k, then exists $G: V \subseteq \mathbb{R} \to \mathbb{R}$ such that $F(x,y) = x^k \cdot G\left(\frac{y}{x}\right)$.

Proof. Let
$$G(z) = F(1,z)$$
. We get: $F(x,y) = F\left(x \cdot 1, x \cdot \frac{y}{x}\right) = x^k \cdot F\left(1, \frac{y}{x}\right) = x^k \cdot G\left(\frac{y}{x}\right)$.

Lemma 1.2.6 (Homogeneous ODE). Let $z = \frac{y}{x}$, then y' = F(x, y) homogeneous of degree k becomes: $x \cdot z' + z = x^k \cdot G(z)$ where G(z) = F(1, z).

Proof.
$$y = x \cdot z$$
 and $F(x, y) = x^k \cdot G(z)$ (cf. 1.2.5). Apply 1.1.7.

1.3 Exact ODEs

Lemma 1.3.1 (Implicit Solution). If $\phi(x,y) = const.$ is such that any curve that satisfies it a solution to the ODE y' = F(x,y), then:

$$F(x,y) = -\frac{\partial_x \phi(x,y)}{\partial_u \phi(x,y)}$$

where ∂_x is the partial derivative.

Proof. We differentiate both sides of $\phi(x, y(x)) = \text{const.}$ wrt x, we get: $\partial_x \phi(x, y(x)) + y'(x) \cdot \partial_y \phi(x, y(x)) = 0$

Definition 1.3.2 (Exact). An ODE of the form $y' = F(x,y) = -\frac{M(x,y)}{N(x,y)}$, which is written:

$$M dx + N dy = 0$$

such that $\partial_y M = \partial_x N$ is called exact.

Theorem 1.3.3 (N&SC Exact). An ODE M dx + N dy = 0 is exact iff $\exists \phi : \mathbb{R}^2 \to \mathbb{R} : \phi(x,y) = const.$ is an implicit solution. Moreover $M = \partial_x \phi$ and $N = \partial_y \phi$.

Proof. The converse was given in 1.3.1 with the observation that $\partial_y \partial_x \phi = \partial_x \partial_y \phi$. By Green, if $\partial_y M = \partial_x N$, then $\vec{L} = (M, N)$ is path-independent. By the converse of the gradient theorem, $\exists \phi : \mathbb{R}^2 \to \mathbb{R} : M = \partial_x \phi$ and $N = \partial_y \phi$. Then, $d\phi = M \, dx + N \, dy = 0 \Rightarrow \phi(x, y) = \text{const.}$, where y can be some (differentiable) function of x on the curve.

Theorem 1.3.4 (Separable First Order). If there are functions ϕ, ψ , such that $F(x,y) = \frac{\varphi(x)}{\psi(y)}$, then there is a solution y(x) given implicitly:

$$\int_{y(a)}^{y} \psi(s) \, ds = \int_{a}^{x} \varphi(t) \, dt$$

where y(a) is arbitrary. Or, equivaletly, $\Psi(y) - \Phi(x) = const.$ is an implicit solution, where Ψ and Φ are antiderivatives of ψ and φ , respectively.

Proof. Follows directly from 1.3.3 with $M(x,y) = -\varphi(x)$ and $N = \psi(y)$, we get $\phi(x,y) = \Psi(y) - \Phi(x)$ is an implicit solution.

Lemma 1.3.5. For an exact ODE M dx + N dy = 0, the implicit solution is given by the following integral:

$$\phi(x,y) = \int_{x_0}^x M(t,y) dt + \int_{y_0}^y N(x_0,s) ds = \int_{x_0}^x M(t,y_0) dt + \int_{y_0}^y N(x,s) ds$$

Proof. We'll only prove the first one. $\partial_x \phi(x,y) = M(x,y)$ and $\partial_y \phi(x,y) = N(x_0,y) + \int_{x_0}^x M_y(t,y) dt = N(x_0,y) + \int_{x_0}^x N_x(t,y) dt = N(x,y)$

Lemma 1.3.6 (Inexact). Let M dx + N dy = 0, where $\partial_y M \neq \partial_x N$. Consider an integrating factor $\mu(x,y) = \exp \left[\beta(x,y)\right]$ such that $\partial_y(\mu \cdot M) = \partial_x(\mu \cdot N)$, that is:

$$\partial_y M - \partial_x N = N \cdot \partial_x \beta - M \cdot \partial_y \beta$$

We consider these inexact cases where we can express the following as functions of:

1.
$$\xi(x) = \frac{\partial_y M - \partial_x N}{N}$$
: $\mu(x) = \exp\left[\int \xi(x) dx\right] = \exp\left[\int_a^x \xi(t) dt\right]$
2. $\zeta(y) = \frac{\partial_y M - \partial_x N}{-M}$: $\mu(y) = \exp\left[\int \zeta(y) dy\right] = \exp\left[\int_b^y \zeta(s) ds\right]$
3. $\eta(z) = \frac{\partial_y M - \partial_x N}{N \cdot \partial_x z - M \cdot \partial_y z}$: $\mu(z) = \exp\left[\int \eta(z) dz\right] = \exp\left[\int_c^z \eta(r) dr\right]$
where $z = f(x, y)$.

Proof. We check:

- 1. Dividing by N: $\xi(x) = \partial_x \beta \frac{M}{N} \cdot \partial_y \beta$. We get: $\partial_y \beta \equiv 0$ and $\partial_x \beta = \xi$, it satisfies the equation.
- 2. Dividing by -M: $\zeta(y) = \partial_y \beta \frac{N}{M} \cdot \partial_x \beta$. We get: $\partial_x \beta \equiv 0$ and $\partial_y \beta = \zeta$, it satisfies the equation.
- 3. Dividing by $N \cdot \partial_x z M \cdot \partial_y z : \eta(z) = \frac{N \cdot \partial_x \beta M \cdot \partial_y \beta}{N \cdot \partial_x z M \cdot \partial_y z}$. We get: $\partial_x \beta = (\partial_x z) \cdot \eta(z)$ and $\partial_y \beta = (\partial_y z) \cdot \eta(z)$, it satisfies the equation.

2 Theory of Analysis (*)

2.1 Limit of Functions

Definition 2.1.1 (Banach Space). A Banach space E is a normed vector space (norm $\|\cdot\|$) such that every Cauchy sequence converges.

Definition 2.1.2 (Lipschitz). A function $f: E \to F$ between two normed vector spaces, is Lipschitz continuous if, and only if:

$$\exists K > 0 : \forall x, y \in X, \|f(x) - f(y)\|_F \le K \cdot \|x - y\|_E$$

Then, K is called the Lipschitz constant of f. If K < 1, f is called a contraction.

Theorem 2.1.3 (Banach Fixed Point Theorem). Given a Banach space $(E, \|\cdot\|)$, a contraction $F: E \to E$ has a unique fixed point x^* . In particular, $\forall x \in E$,

$$x^* = \lim_{n \to \infty} F^n(x)$$

where $F^n = (F \circ \cdots \circ F)(x)$, n times.

Proof. First, if F has a fixed point, it is unique. If x and y are fixed points, $||x-y|| = ||F(x)-F(y)|| \le K||x-y|| \Leftrightarrow 0 \le (K-1)||x-y|| \Rightarrow ||x-y|| = 0 \Leftrightarrow x = y$, since K < 1. Now, we show that F has a fixed point. By induction, $\forall x \in E$, $||F^{n+1}(x) - F^n(x)|| \le K^n ||F(x) - x||$. Therefore, $\forall m, n \in \mathbb{N}$,

$$||F^{m}(x) - F^{n}(x)|| \le \left| \frac{K^{n} - K^{m}}{1 - K} \right| \cdot ||F(x) - x||$$

Hence, the sequence $\{F^n(x)\}_{n\in\mathbb{N}}$ is Cauchy in E, so it converges to some element x^* . But, $||F^{n+1}(x) - F^n(x)|| \to 0$. Therefore, $||F(x^*) - x^*|| = 0 \Leftrightarrow F(x^*) = x^*$.

Lemma 2.1.4. Given a Banach space $(E, \|\cdot\|)$, a function $F: E \to E$, if F^k is a contraction, for some $k \in \mathbb{N}$, then F has a unique fixed point x^* , given the same as before, that is, $\forall x \in E$, $x^* = \lim_{n \to \infty} F^n(x)$.

^(*) This chapter can be skipped on a first reading.

Proof. By 2.1.3, F^k has a unique fixed point x^* . So, $F^k(F(x^*)) = F(F^k(x^*)) = F(x^*)$, since the fixed point is unique, we must have $F(x^*) = x^*$. To prove uniqueness, observe any fixed point of F is a fixed point of F^k , which is unique.

Definition 2.1.5 (Continuous Function). The space of continuous functions $f:[a,b] \to \mathbb{R}$ is defined as:

$$C([a,b]) = \{f: [a,b] \to \mathbb{R} \mid f \ continuous\}$$

Furthermore, it is a vector space $(C([a,b]),\mathbb{R})$ with pointwise addition and scalar multiplication: (f+g)(x) = f(x) + g(x) and $(\alpha \cdot f) = \alpha \cdot f(x)$

Definition 2.1.6 (Uniform Norm). We define the following norm in C([a,b]):

$$||f||_{\infty} = \sup_{x \in [a,b]} |f(x)|$$

which, we can check obeys every axiom of a norm. We say $f_n \to f$ uniformly iff $||f - f_n||_{\infty} \to 0$

Theorem 2.1.7. C([a,b]) is a Banach space with $\|\cdot\|_{\infty}$. That is, if $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy then, $\exists f \in C([a,b]) : f_n \to f$ uniformly.

Proof. Given in Calculus II.

Corollary 2.1.8. $C([a,b], \mathbb{R}^n) = \{f : [a,b] \to \mathbb{R}^n \mid f_i \in C([a,b])\} \text{ is a Banach Space with norm } ||f||_{\infty} = \sup_{x \in [a,b]} ||f(x)||.$

Lemma 2.1.9. If $f_n \to f$ uniformly in \mathcal{I} , then:

- 1. $\forall x \in \mathcal{I}, f_n(x) \to f(x)$
- 2. if f_n are continuous, and $x_n \to x$, then $f_n(x_n) \to f(x)$.

Proof. Exercise in Calculus II.

Definition 2.1.10 (Equicontinuity). A family $\mathcal{F} \subset C([a,b])$ is equicontinuous at $t \in [a,b]$ if:

$$\forall \epsilon > 0, \exists \delta > 0 : \forall x \in [a, b], |x - t| < \delta \Rightarrow \forall f \in \mathcal{F}, |f(x) - f(t)| < \epsilon$$

 $A \ family \ with \ common \ Lipschitz \ constant \ K \ is \ immediately \ equicontinuous.$

Theorem 2.1.11 (Arzela-Ascoli). A sequence $\{f_n \in C([a,b])\}_{n \in \mathbb{N}}$ that is equicontinuous and bounded (that is, $\{\|f_n\|\}_{n \in \mathbb{N}}$ is bounded) has a converging subsequence.

Proof. Given in Analysis.

2.2 Existence and Uniqueness

Theorem 2.2.1 (Picard-Lindelöf/ E&U). Let $F : \mathcal{R} \subseteq \mathbb{R}^2 \to \mathbb{R}$ be continuous and Lipschitz on y (second variable) defined on the closed rectangle $\mathcal{R} = \mathcal{A} \times \mathcal{B}$. That is, $\forall x \in \mathcal{A}$, $\forall y_1, y_2 \in \mathcal{B}$, $|F(x, y_1) - F(x, y_2)| \leq K|y_1 - y_2|$ for some $K \in \mathbb{R}$. Then, there is a (closed) interval $\mathcal{I} \subseteq \mathcal{A}$ such that the solution to the differential equation:

$$y'(x) = F(x, y(x))$$
 with $y(x_0) = y_0$

exists and is unique on \mathcal{I} , with $x_0 \in \mathcal{I}$.

Proof. First, let $\mathcal{R} = [x_0 - a, x_0 + a] \times [y_0 - b, y_0 + b]$ and $\mathcal{I} = [x_0 - \theta, x_0 + \theta]$ for some $a, b, \theta > 0$. Define $E = \{\gamma \in C(\mathcal{I}) \mid \gamma(x_0) = y_0 \text{ and } \|\gamma - y_0\|_{\infty} \leq b\}$ and require $\theta \leq a$. Then, E is a Banach space with uniform norm (cf. 2.1.7). We define a function $\Gamma : E \to E$ as follows:

$$\Gamma[\varphi](x) = y_0 + \int_{x_0}^x F(t, \varphi(t)) dt$$

Let $M = \sup_{(x,y) \in \mathcal{R}} |F(x,y)|$, which only depends on F. To guarantee that the range of Γ is correct, i.e. $\varphi \in E \Rightarrow \Gamma[\varphi] \in E$, we need:

$$|\Gamma[\varphi](x) - y_0| = \left| \int_{x_0}^x F(t, \varphi(t)) dt \right| \le \int_{x_0}^x \left| F(t, \varphi(t)) \right| dt \le M|x - x_0| \le M \cdot \theta$$

$$\Rightarrow \forall x \in \mathcal{I}, \ \left| \Gamma[\varphi](x) - y_0 \right| \le M \cdot \theta \Rightarrow \ \left\| \Gamma[\varphi] - y_0 \right\|_{\infty} \le M \cdot \theta$$

If we require that $\theta \leq \frac{b}{M}$, we get: $\forall \varphi \in E$, $\Gamma[\varphi] \in E$, as needed. Now, let us prove Γ is a contraction. Since F is Lipschitz on y:

$$\forall x \in \mathcal{I}, \left| \Gamma[\varphi](x) - \Gamma[\psi](x) \right| = \left| \int_{x_0}^x \left[F(t, \varphi(t)) - F(t, \psi(t)) \right] dt \right|$$

$$\leq \int_{x_0}^x \left| F(t, \varphi(t)) - F(t, \psi(t)) \right| dt \leq K \int_{x_0}^x \left| \varphi(t) - \psi(t) \right| dt$$

$$\leq K \cdot |x - x_0| \cdot \|\varphi - \psi\|_{\infty} \leq K \cdot \theta \cdot \|\varphi - \psi\|_{\infty}$$

Hence $\|\Gamma[\varphi] - \Gamma[\psi]\|_{\infty} \leq K \cdot \theta \cdot \|\varphi - \psi\|_{\infty}$. If we choose $\theta < \frac{1}{K}$, Γ is a contraction. By 2.1.3, $\exists ! \gamma \in E : \Gamma[\gamma] = \gamma$. By FTC, $\gamma'(x) = F(x, \gamma(x))$ and $\gamma(x_0) = y_0$, by construction of Γ .

Now that we prove that the theorem is true, we shall try to improve the size/range of the interval \mathcal{I} around x_0 .

Lemma 2.2.2 (Interval of E&U). For F satisfing conditions of Picard-Lindelöf (cf. 2.2.1), the interval of solution $\mathcal{I} = [x_0 - \theta, x_0 + \theta]$, where $\theta = \min \left\{ a, \frac{b}{M} \right\}$ and $M = \sup_{(x,y) \in \mathcal{R}} |F(x,y)|$.

Proof. The requirements $\theta \leq a$ and $\theta \leq \frac{b}{M}$ do not change. However, we may drop $\theta < \frac{1}{K}$ for the following reason: Instead of Γ being a contraction, we shall prove $\exists k \in \mathbb{N} : \Gamma^k$ is a contraction. As before,

$$\forall x \in \mathcal{I}, \left| \Gamma^{k}[\varphi](x) - \Gamma^{k}[\psi](x) \right| \leq K \int_{x_{0}}^{x} \left| \Gamma^{k-1}[\varphi](t) - \Gamma^{k-1}[\psi](t) \right| dt$$

$$\leq \dots \leq \frac{1}{k!} K^{k} \cdot |x - x_{0}|^{k} \cdot \|\varphi - \psi\|_{\infty} \leq \frac{(K \cdot \theta)^{k}}{k!} \|\varphi - \psi\|_{\infty}$$

Using the integral $\left| \int_{x_0}^x \int_{x_0}^{t_1} \int_{x_0}^{t_2} \cdots \int_{x_0}^{t_{k-1}} dt_1 dt_2 \cdots dt_k \right| = \frac{|x - x_0|^k}{k!}$ (it's a simplex). For sufficiently large $k \in \mathbb{N}$, $\frac{(K \cdot \theta)^k}{k!} < 1$, so Γ^k is a contraction. By 2.1.4, this is sufficient for existence and uniqueness of a fixed point. \square

Theorem 2.2.3 (E& U for Systems). Let $\underline{F} : \mathcal{R} \subseteq \mathbb{R}^{1+n} \to \mathbb{R}^n$ be continuous and Lipschitz on \underline{y} (second variable) defined on the closed cylinder $\mathcal{R} = \mathcal{A} \times \mathcal{B}$ for $\mathcal{A} \subseteq \mathbb{R}$. That is,

$$\forall\,x\in\mathcal{A}\,,\,\forall\,\underline{y}_1,\underline{y}_2\in\mathcal{B}\,,\,\|\underline{F}(x,\underline{y}_1)-\underline{F}(x,\underline{y}_2)\|\leq K\|\underline{y}_1-\underline{y}_2\|$$

for some $K \in \mathbb{R}$. Then, there is a (closed) interval $\mathcal{I} \subseteq \mathcal{A}$ such that the solution to the differential system:

$$\underline{y}'(x) = \underline{F}(x, \underline{y}(x))$$
 with $\underline{y}(x_0) = \underline{y}_0$

exists and is unique on \mathcal{I} , with $x_0 \in \mathcal{I}$.

Proof. Let $\mathcal{R} = [x_0 - a, x_0 + a] \times K_b(\underline{y}_0)$ (cf. Calculus II) and define the set $E = \{\underline{\gamma} \in C(\mathcal{I}, \mathbb{R}^n) \mid \underline{\gamma}(x_0) = \underline{y}_0 \text{ and } \|\underline{\gamma} - \underline{y}_0\|_{\infty} \leq b \}$ (cf. 2.1.8). The proof

follows exactly as 2.2.1 and 2.2.2 with the same estimate $\theta = \min \left\{ a, \frac{b}{M} \right\}$, where $M = \sup_{(x,y) \in \mathcal{R}} \|\underline{F}(x,\underline{y})\|$.

Lemma 2.2.4 (Picard Iteration). Let $\varphi_0(x) \equiv y_0$, define:

$$\varphi_n(x) = y_0 + \int_{x_0}^x F(t, \varphi_{n-1}(t)) dt$$

for $n \in \mathbb{N}$. Then, $\{\varphi_n\}_{n \in \mathbb{N}}$ converges uniformly to the solution of y' = F(x,y), with $y(x_0) = y_0$.

Proof. Follow directly from 2.1.3, using Γ defined in 2.2.1.

Example 2.2.5. If want to solve $y' = 2x \cdot y$ with y(0) = 1, we get, by induction:

$$\varphi_0(x) = 1; \varphi_1(x) = 1 + \int_0^x 2t \, dt = 1 + x^2 \Rightarrow \varphi_n(x) = \sum_{k=0}^n \frac{x^{2k}}{k!}$$

Hence, taking the limit, $y(x) = e^{x^2}$.

Definition 2.2.6 (Uniqueness Property). An ODE said to have the uniqueness property if $\gamma_1 : \mathcal{I}_1 \to \mathbb{R}$ and $\gamma_2 : \mathcal{I}_2 \to \mathbb{R}$ are both solutions and $\exists x_0 \in \mathcal{I}_1 \cap \mathcal{I}_2 : \gamma_1(x_0) = \gamma_2(x_0)$, then:

$$\forall x \in \mathcal{I}_1 \cap \mathcal{I}_2, \ \gamma_1(x) = \gamma_2(x)$$

Theorem 2.2.7 (Extension of Picard-Lindelöf). If $F : \mathcal{R} \subseteq \mathbb{R}^2 \to \mathbb{R}$ is continuous and Lipschitz on y (second variable), then y' = F(x, y) has the uniqueness property (cf. 2.2.6).

Proof. Let $\mathcal{J} = \{x \in \mathcal{I}_1 \cap \mathcal{I}_2 \mid \gamma_1(x) = \gamma_2(x)\}$. $x_0 \in \mathcal{J}$, so it is not empty. Since γ_1 and γ_2 are continuous, $\mathcal{J} = (\gamma_2 - \gamma_1)^{-1}(\{0\})$ is closed (on $\mathcal{I}_1 \cap \mathcal{I}_2$). Take $s_0 \in \mathcal{J}$. By Picard-Lindelöf, $\exists \theta > 0$: the solution to y' = F(x,y) and $y(s_0) = \gamma_1(s_0) = \gamma_2(s_0)$ exists and is unique in $(s_0 - \theta, s_0 + \theta)$. Hence, $(s_0 - \theta, s_0 + \theta) \cap (\mathcal{I}_1 \cap \mathcal{I}_2) \subseteq \mathcal{J}$. Therefore, \mathcal{J} is open (on $\mathcal{I}_1 \cap \mathcal{I}_2$). By connectedness (cf. Calculus II), a non-empty open and closed set must be $\mathcal{J} = \mathcal{I}_1 \cap \mathcal{I}_2$.

2.3 Existence and Approximate Solutions

Lemma 2.3.1 (Smooth Approximation). Let $\underline{F}: U \subseteq \mathbb{R}^k \to \mathbb{R}^n$ continuous, then there is a sequence $\{\underline{F}_n \in C^{\infty}(U, \mathbb{R}^n)\}_{n \in \mathbb{N}}$ the converge uniformly to \underline{F} in compact subsets of U (cf. Calculus II).

Proof. Define $\varphi_n \in C^{\infty}(\mathbb{R}^k, \mathbb{R})$ (called a mollifier) such that $\varphi_n(\underline{x}) = 0$ if $\|\underline{x}\| \geq \frac{1}{n}$, $\forall \underline{x} \in \mathbb{R}^k$, $\varphi_n(\underline{x}) \geq 0$ and $\int_{\mathbb{R}^k} \varphi_n(\underline{x}) d^k \underline{x} = \int_{K_{\frac{1}{n}}(\underline{0})} \varphi_n(\underline{x}) d^k \underline{x} = 1$ (there are many examples). Then, define

$$\underline{F}_n(\underline{x}) = \int_{\mathbb{R}^k} \varphi_n(\underline{x} - \underline{y}) \cdot \underline{F}(\underline{y}) d^k \underline{y} = \int_{\mathbb{R}^k} \varphi_n(\underline{y}) \cdot \underline{F}(\underline{x} - \underline{y}) d^k \underline{y}$$

by Leibnitz Rule (cf. Calculus I), $\underline{F}_n^{(j)}(\underline{x}) = \int_{\mathbb{R}^k} \varphi_n^{(j)}(\underline{x} - \underline{y}) \cdot \underline{F}(\underline{y}) \, d^k \underline{y}$. So, \underline{F}_n is C^{∞} . Now, we prove that $\underline{F}_n \to \underline{F}$ uniformly on some compact set $\mathcal{R} \subseteq U$. Calculing: $\|\underline{F}_n(\underline{x}) - \underline{F}(\underline{x})\| = \left\|\int_{\mathbb{R}^k} \varphi_n(\underline{x} - \underline{y}) \cdot \left[\underline{F}(\underline{y}) - \underline{F}(\underline{x})\right] \, d^k \underline{y}\right\| \le \int_{\mathbb{R}^k} \varphi_n(\underline{x} - \underline{y}) \cdot \left\|\underline{F}(\underline{y}) - \underline{F}(\underline{x})\right\| \, d^k \underline{y} = \int_{K_{\frac{1}{n}}(\underline{x})} \varphi_n(\underline{x} - \underline{y}) \cdot \left\|\underline{F}(\underline{y}) - \underline{F}(\underline{x})\right\| \, d^k \underline{y}.$ Since \underline{F} is continuous, it is uniformly continuous on \mathcal{R} (cf. Calculus II). Hence $\forall \epsilon > 0$, $\exists \delta > 0$: $\forall \underline{x}, \underline{y} \in \mathcal{R}$, $\|\underline{x} - \underline{y}\| < \delta \Rightarrow \|\underline{F}(\underline{x}) - \underline{F}(\underline{y})\| < \epsilon$. Choose $\frac{1}{\pi} \le \delta$, then $\|\underline{F}_n(\underline{x}) - \underline{F}(\underline{x})\| < \epsilon$. Therefore, $\underline{F}_n \to \underline{F}$ uniformly. \square

Corollary 2.3.2. The following are true:

- (i) $\forall n \in \mathbb{N}$, $\sup_{x \in U} \|\underline{F}_n(\underline{x})\| \le \sup_{\underline{x} \in U} \|\underline{F}(\underline{x})\|$
- (ii) \underline{F}_n are Lipschitz with a common constant.

Proof. Since
$$\varphi_n$$
 is C^{∞} , it is Lipschitz continuous. $\|\underline{F}_n(\underline{x}_2) - \underline{F}_n(\underline{x}_1)\| \le \int_{\mathcal{R}} \|\varphi_n(\underline{x}_2 - \underline{y}) - \varphi_n(\underline{x}_1 - \underline{y})\| \cdot \underline{F}(\underline{y}) d^k \underline{y} \le K \cdot \|\underline{x}_2 - \underline{x}_1\| \cdot \int_{\mathcal{R}} \underline{F}(\underline{y}) d^k \underline{y}.$

Theorem 2.3.3 (Peano Existence). Let $\underline{F} : \mathcal{R} \subseteq \mathbb{R}^{1+n} \to \mathbb{R}^n$ be continuous, where \mathcal{R} is a closed cylinder. Then, there is a (closed) interval \mathcal{I} such that the solution to the differential equation/system:

$$\underline{y}'(x) = \underline{F}(x, \underline{y}(x)) \text{ with } \underline{y}(x_0) = \underline{y}_0$$

exists on \mathcal{I} , with $x_0 \in \mathcal{I}$.

Proof. Let $\mathcal{R} = [x_0 - a, x_0 + a] \times K_b(\underline{y}_0)$. Take $\{\underline{F}_n \in C^\infty(\mathbb{R}^n)\}_{n \in \mathbb{N}}$ that converge uniformly to F (cf. 2.3.1). By 2.2.1, 2.2.2 and 2.3.2, for each $n \in \mathbb{N}$ there is a unique solution $\underline{y}_n(x)$ to the equation $\underline{y}_n'(x) = F_n(x, \underline{y}_n(x))$ with $\underline{y}_n(x_0) = \underline{y}_0$ on the interval $[x_0 - \theta_n, x_0 + \theta_n]$ where $\theta_n = \min \left\{a, \frac{b}{M_n}\right\}$. Using 2.3.2, we define $\theta = \min \left\{a, \frac{b}{M}\right\} \leq \theta_n$ and $\mathcal{I} = [x_0 - \theta, x_0 + \theta]$. Writing in integral form: $\underline{y}_n(x) = \underline{y}_0 + \int_{x_0}^x \underline{F}_n(t, \underline{y}_n(t)) \, dt$. We now prove $\left\{\underline{y}_n\right\}_{n \in \mathbb{N}}$ is equicontinuous: (cf. 2.1.10)

$$\|\underline{y}_n(x_2) - \underline{y}_n(x_1)\| = \left\| \int_{x_1}^{x_2} \underline{F}_n(t, \underline{y}_n(t)) dt \right\| \le M \cdot |x_2 - x_1|$$

By 2.1.11, there is a converging subsequence $\left\{\underline{y}_{n_k}\right\}_{k\in\mathbb{N}}$ let $\underline{y}_{n_k} \to \underline{y}$ uniformly in \mathcal{I} . Taking $n=n_k\to\infty$ on both sides of the integral equation, and using 2.1.9 $\underline{F}_{n_k}(t,\underline{y}_{n_k}(t))\to\underline{F}(t,\underline{y}(t))$, then, \underline{y} is a solution to $\underline{y}(x)=\underline{y}_0+\int_{x_0}^x \underline{F}(t,\underline{y}(t))\,dt$, hence it is a solution to the initial value system in \mathcal{I} . \square

Remark 2.3.4. The proof of 2.3.3 is simply to take an approximation of \underline{F} , solve each ODE using 2.2.1 and show the solutions converge to a solution to the original ODE.

Lemma 2.3.5 (Grönwall). Let $\forall x > a$, $u'(x) \leq \beta(x) \cdot u(x)$, then

$$\forall x \ge a, u(x) \le u(a) \cdot \exp\left[\int_a^x \beta(t) dt\right]$$

Proof. Let $v(x) = \exp\left[\int_a^x \beta(t) dt\right]$, so $v'(x) = \beta(x) \cdot v(x)$ and $v(x) \ge 0$. By the quotient rule:

$$\frac{d}{dx}\left(\frac{u(x)}{v(x)}\right) = \frac{u'(x)\cdot v(x) - u(x)\cdot v'(x)}{v(x)^2} = \frac{u'(x) - \beta(x)\cdot u(x)}{v(x)} \le 0$$

Then, $\frac{u(x)}{v(x)}$ is monotonically decreasing (technically, non-increasing). Then,

$$\forall x \le a, \frac{u(x)}{v(x)} \le \frac{u(a)}{v(a)} = u(a).$$

Corollary 2.3.6. Same statement as 2.2.7.

Proof. Define: $u(x) = \int_{x_0}^{x} ||\gamma_1(t) - \gamma_2(t)|| dt$. Then:

$$u'(x) = \|\gamma_1(x) - \gamma_2(x)\| = \left\| \int_{x_0}^x \left[F(t, \gamma_1(t)) - F(t, \gamma_2(t)) \right] dt \right\|$$

$$\leq \int_{x_0}^x \|F(t, \gamma_1(t)) - F(t, \gamma_2(t))\| dt \leq K \cdot \int_{x_0}^x \|\gamma_1(t) - \gamma_2(t)\| dt = K \cdot u(x)$$

Moreover, $u(x_0) = 0$ and $u(x) \ge 0$. By 2.3.5, $u(x) \le u(x_0) \cdot e^{K(x-x_0)} = 0$. Hence, $u(x) \equiv 0$, then $u'(x) \equiv 0$, so $\gamma_1 \equiv \gamma_2$.

3 Linear ODEs

3.1 General Analysis

Definition 3.1.1 (Linear ODE). For $\mathcal{F}: U \subset \mathbb{R}^{1+n} \to \mathbb{R}$, the implicit ODE $\mathcal{F}(x, y', \dots, y^{(n)}) = 0$ is called linear iff F is linear on $y', \dots, y^{(n)}$, equivaletly:

$$\sum_{k=0}^{n} a_k(x) \cdot y^{(k)} = b(x)$$

For functions $a_k(x)$ and b(x). Where $y^{(0)} = y$.

Definition 3.1.2 (Homogeneous Linear ODE). If $b(x) \equiv 0$ in the following definition, the ODE is homogeneous.

Definition 3.1.3 (Differential Operator). *Define the operator:*

$$L: C^{n}(\mathbb{R}) \to C(\mathbb{R})$$

$$\varphi \mapsto L[\varphi](x) = \sum_{k=0}^{n} a_{k}(x) \cdot \varphi^{(k)}(x)$$

Then, the ODE $\sum_{k=0}^{n} a_k(x) \cdot y^{(k)} = b(x)$ is expressed as L[y](x) = b(x). We may rewrite it as:

$$L = \sum_{k=0}^{n} a_k(x) \cdot \mathfrak{D}^k$$

where \mathfrak{D} is the differentiating operator.

Lemma 3.1.4. The operator L is linear, where $C^n(\mathbb{R})$ is equipped with addition and scalar multiplication of functions.

Proof. The differentiating operator is linear (cf. Calculus I) and multiplication operators $a_k(x)$ · id are also linear. By composition and sum (cf. Linear Algebra), L is linear.

Corollary 3.1.5. The set of solutions to a homogeneous ODE $L[y] \equiv 0$ is $\ker(L)$, hence it is a vector subpace of $C^n(\mathbb{R})$.

3.2 Fundamental Set and Wronskian

Definition 3.2.1. A set $\{y_1, y_2, \dots, y_n\} \subset C^n(\mathcal{I})$ is linearly dependent if:

$$\exists (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \setminus \{\vec{0}\} : \sum_{k=1}^n a_k \cdot y_k(x) \equiv 0$$

It is linear independent otherwise. For that set, $\mathcal{Y} = (y_1, \dots, y_n)$ ordered as a sequence, we define the fundamental matrix:

$$M_{\mathcal{Y}}(x) = \begin{bmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{bmatrix}$$

and the Wronskian: $W_{\mathcal{Y}}(x) = \det(M_{\mathcal{Y}}(x))$

Lemma 3.2.2. A set $\mathcal{Y} = \{y_1, y_2, \cdots, y_n\} \subset C^n(\mathcal{I})$ is linearly dependent iff $W_{\mathcal{Y}} \equiv 0$.

Proof. By definition, it is linearly independent iff $\exists (a_1, a_2, \dots, a_n) \in \mathbb{R}^n \setminus \{\vec{0}\}$: $\sum_{k=1}^n a_k \cdot y_k(x) \equiv 0$. Differentiating, we obtain the following system:

$$\begin{bmatrix} y_1(x) & y_2(x) & \cdots & y_n(x) \\ y'_1(x) & y'_2(x) & \cdots & y'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

which, for a given $x \in \mathcal{I}$, has a non-trivial solution iff the determinant is zero (cf. Linear Algebra), that is, $W_{\mathcal{Y}}(x) = 0$.

Corollary 3.2.3. $\exists x_0 \in \mathcal{I} : W_{\mathcal{Y}}(x_0) \neq 0 \text{ iff } \mathcal{Y} \text{ is linearly independent.}$

Definition 3.2.4. For a linear ODE L[y](x) = b(x), a linear independent set of solutions for the homogeneous equation is called a fundamental set.

Theorem 3.2.5 (Abel's Formula). Let $y_1, y_2, \dots y_n$ be solutions to the homogeneous $ODE \sum_{k=0}^{n} a_k(x) \cdot y^{(k)}(x) \equiv 0$, then:

$$W_{\mathcal{Y}}(x) = C \exp\left[-\int \frac{a_{n-1}(x)}{a_n(x)} dx\right] = W_{\mathcal{Y}}(a) \cdot \exp\left[-\int_a^x \frac{a_{n-1}(t)}{a_n(t)} dt\right]$$

Proof. By the product rule,

$$W_{\mathcal{Y}}'(x) = \begin{vmatrix} y_1' & y_2' & \cdots & y_n' \\ y_1' & y_2' & \cdots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} + \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y_1'' & y_2'' & \cdots & y_n'' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} + \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \\ y_1'' & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix} + \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-2)} & y_2^{(n-2)} & \cdots & y_n^{(n-2)} \\ y_1'' & y_2^{(n)} & \cdots & y_n^{(n-2)} \\ \vdots & \vdots & \ddots & \vdots \\ y_1'' & y_2^{(n)} & \cdots & y_n^{(n-2)} \\ -\sum_{k=0}^{n-1} \frac{a_k(x)}{a_n(x)} \cdot y_1^{(k)} & -\sum_{k=0}^{n-1} \frac{a_k(x)}{a_n(x)} \cdot y_2^{(k)} & \cdots & -\sum_{k=0}^{n-1} \frac{a_k(x)}{a_n(x)} \cdot y_n^{(k)} \\ \vdots & \vdots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_2'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_1'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_1'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_1'' & \cdots & y_n \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ y_1'' & y_1'' & y_1'' & \cdots & y_$$

The result follows by 1.2.1.

Corollary 3.2.6. For solutions of a homogeneous ODE, the Wronskian is either zero everywhere or non-zero everywhere. Hence, for a fundamental set \mathcal{Y} , $\forall x \in \mathcal{I}$, $W_{\mathcal{Y}}(x) \neq 0$.

Theorem 3.2.7. For a fundamental set \mathcal{Y} of the homogeneous ODE $L[y] \equiv 0$, then

$$\ker(L) = \operatorname{Span}(\mathcal{Y})$$

Proof. By existence and uniqueness theorem, we need to prove that every initial condition can be achieved by a linear combination of y_1, y_2, \dots, y_n . Let $\sum_{k=1}^{n} \alpha_k \cdot y_k(x) = y(x)$, by differentiating and checking the initial conditions:

$$\begin{bmatrix} y_1(x_0) & y_2(x_0) & \cdots & y_n(x_0) \\ y'_1(x_0) & y'_2(x_0) & \cdots & y'_n(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \cdots & y_n^{(n-1)}(x_0) \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} y(x_0) \\ y'(x_0) \\ \vdots \\ y^{(n-1)}(x_0) \end{bmatrix}$$

the matrix is invertible since $W_{\mathcal{Y}}(x_0) \neq 0$ (due to 3.2.6)

Corollary 3.2.8. The solution to the ODE $L[y] \equiv 0$ with an initial values at x_0 is given by:

$$y_h(x) = \begin{bmatrix} y_1(x) \\ y_2(x) \\ \vdots \\ y_n(x) \end{bmatrix}^t M_{\mathcal{Y}}^{-1}(x_0) \begin{bmatrix} y(x_0) \\ y'(x_0) \\ \vdots \\ y^{(n-1)}(x_0) \end{bmatrix}$$

where $\mathcal{Y} = (y_1, y_2, \cdots, y_n)$ is a fundamental set.

3.3 Variation of Parameters

Theorem 3.3.1. A particular solution to $L[y](x) = \sum_{k=0}^{n} a_k(x) \cdot y^{(k)} = b(x)$ is given by:

$$y_p(x) = \int_a^x \left[\sum_{k=1}^n \omega_k(t) \cdot y_k(x) \right] b(t) dt = \sum_{k=1}^n \left[\int_a^x \omega_k(t) \cdot b(t) dt \right] \cdot y_k(x)$$

where $\mathcal{Y} = (y_1, \dots, y_{n-1}, y_n)$ is a fundamental set and ω_k are given by:

$$\begin{bmatrix} \omega_1(x) \\ \vdots \\ \omega_{n-1}(x) \\ \omega_n(x) \end{bmatrix} = \frac{1}{a_n(x)} M_{\mathcal{Y}}^{-1}(x) \vec{e}_n$$

Proof. We differentiate the formula for $y_p(x)$:

$$y_{p}'(x) = b(x) \cdot \sum_{k=1}^{n} \omega_{k}(x) \cdot y_{k}(x) + \int_{a}^{x} \left[\sum_{k=1}^{n} \omega_{k}(t) \cdot y_{k}'(x) \right] b(t) dt$$

$$= \int_{a}^{x} \left[\sum_{k=1}^{n} \omega_{k}(t) \cdot y_{k}'(x) \right] b(t) dt$$

$$y_{p}^{(j)}(x) = \int_{a}^{x} \left[\sum_{k=1}^{n} \omega_{k}(t) \cdot y_{k}^{(j)}(x) \right] b(t) dt \text{ for } 0 \leq j \leq n-1$$

$$y_{p}^{(n)}(x) = b(x) \cdot \sum_{k=1}^{n} \omega_{k}(x) \cdot y_{k}^{(n-1)}(x) + \int_{a}^{x} \left[\sum_{k=1}^{n} \omega_{k}(t) \cdot y_{k}^{(n)}(x) \right] b(t) dt$$

$$= \frac{b(x)}{a_{n}(x)} + \int_{a}^{x} \left[\sum_{k=1}^{n} \omega_{k}(t) \cdot y_{k}^{(n)}(x) \right] b(t) dt$$

Finally, we have:

$$\sum_{j=0}^{n} a_j(x) \cdot y_p^{(j)}(x) = b(x) + \int_a^x \left[\sum_{k=1}^n \omega_k(t) \cdot \left(\sum_{j=0}^n a_j(x) \cdot y_k^{(j)}(x) \right) \right] b(t) dt = b(x)$$

hence, it is a solution. Further, it is the unique solution for the initial condition $y^{(j)}(a) = 0$ for $0 \le j \le n - 1$.

Corollary 3.3.2. The solution to the ODE L[y](x) = b(x) with the initial values at x_0 is given by: $y(x) = y_p(x) + y_h(x)$ (cf. 4.1.9,3.3.1).

Theorem 3.3.3. Let $y_0(x)$ be a solution to $L[y] \equiv 0$. Then,

$$y(x) = y_0(x) \cdot \int \gamma(x) dx = y_0(x) \cdot \left(\gamma_0 + \int_a^x \gamma(t) dt\right)$$

where $\gamma(x)$ is a solution a (n-1)-th degree linear ODE.

Proof. Let $y(x) = Y(x) \cdot y_0(x)$. Leibnitz: $y^{(k)} = \sum_{j=0}^k {k \choose j} Y^{(j)}(x) \cdot y_0^{(k-j)}(x)$

$$0 \equiv \sum_{k=0}^{n} a_k(x) \cdot y^{(k)} = \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{k}{j} a_k(x) \cdot Y^{(j)}(x) \cdot y_0^{(k-j)}(x)$$
$$= Y(x) \cdot \sum_{k=0}^{n} a_k(x) \cdot y_0^{(k)}(x) + \sum_{k=1}^{n} \sum_{j=1}^{k} \binom{k}{j} a_k(x) \cdot Y^{(j)}(x) \cdot y_0^{(k-j)}(x)$$
$$= \sum_{j=1}^{n} \left[\sum_{k=j}^{n} \binom{k}{j} a_k(x) \cdot y_0^{(k-j)}(x) \right] Y^{(j)}(x) \equiv 0$$

Hence, let $Y(x) = \gamma_0 + \int_a^x \gamma(t) dt$. We get the ODE: $\sum_{k=0}^{n-1} b_k(x) \cdot \gamma^{(k)}(x) \equiv 0$ defined by $b_j(x) = \sum_{k=j+1}^n \binom{k}{j+1} a_k(x) \cdot y_0^{(k-j-1)}(x)$. Further, $b_{n-1}(x) = a_n(x) \not\equiv 0$, hence the order is n-1.

Corollary 3.3.4. A n-th order linear ODE has a fundamental set of size n.

3.4 Constant Coefficients

Definition 3.4.1 (Characteristic Polynomial). For the homogeneous linear ODE $\sum_{k=0}^{n} a_k \cdot y^{(k)}(x) \equiv 0$ with $a_k \in \mathbb{R}$, define the polynomial:

$$\chi(s) = \sum_{k=0}^{n} a_k \cdot s^k$$

We may rewrite it as $L = \sum_{k=0}^{n} a_k \cdot \mathfrak{D}^k = \chi(\mathfrak{D})$ where \mathfrak{D} is the differentiating operator.

Lemma 3.4.2 (Factoring). Let χ be the characteristic polynomial of L, then, if χ can be factored into:

$$\chi(s) = a_n \prod_{i=1}^{N} (s - \lambda_i)^{\mu_i} \Rightarrow L = a_n \prod_{i=1}^{N} (\mathfrak{D} - \lambda_i \cdot \mathrm{id})^{\mu_i}$$

where \prod in L means composition.

Proof. First, we show $\mathfrak{D} - \lambda_i \cdot \mathrm{id}$ and $\mathfrak{D} - \lambda_j \cdot \mathrm{id}$ commute:

$$(\mathfrak{D} - \lambda_i \cdot \mathrm{id}) \circ (\mathfrak{D} - \lambda_j \cdot \mathrm{id})[\varphi] = (\mathfrak{D} - \lambda_i \cdot \mathrm{id})[\varphi' - \lambda_j \cdot \varphi]$$

$$= \varphi'' - (\lambda_i + \lambda_j) \cdot \varphi' + \lambda_i \lambda_j \cdot \varphi = \varphi'' - (\lambda_j + \lambda_i) \cdot \varphi' + \lambda_j \lambda_i \cdot \varphi$$

$$= \cdots = (\mathfrak{D} - \lambda_j \cdot \mathrm{id}) \circ (\mathfrak{D} - \lambda_i \cdot \mathrm{id})[\varphi]$$

The rest follows from $L = \chi(\mathfrak{D})$.

Remark 3.4.3. By Fundamental Theorem of Algebra, every polynomial can be factored as such.

Lemma 3.4.4 (Exponential Solutions). Let $\gamma(x) \in \ker(\mathfrak{D} - \lambda \cdot \mathrm{id})^{\mu}$, iff $e^{-\lambda x} \gamma(x) \in \ker(\mathfrak{D}^{\mu}) = \mathbb{R}_{\mu-1}[x]$. That is

$$\ker(\mathfrak{D} - \lambda \cdot \mathrm{id})^{\mu} = \left\{ \wp(x) \cdot e^{\lambda x} \mid \wp \in \mathbb{R}_{\mu - 1}[x] \right\}$$

Proof. $\mathfrak{D}\left[e^{-\lambda x}\gamma(x)\right]=e^{-\lambda x}\cdot(\mathfrak{D}-\lambda\cdot\mathrm{id})\big[\gamma(x)\big]$ and, by induction, we get: $\mathfrak{D}^{\mu}\left[e^{-\lambda x}\gamma(x)\right]=e^{-\lambda x}\cdot(\mathfrak{D}-\lambda\cdot\mathrm{id})^{\mu}\big[\gamma(x)\big]$

Theorem 3.4.5. For $\chi(s) = a_n \prod_{i=1}^{N} (s - \lambda_i)^{\mu_i}$, then

$$\mathcal{Y} = \{ x^k e^{\lambda_i x} \mid 0 \le k \le \mu_i - 1, \ 1 \le i \le N \}$$

is a fundamental set of $\sum_{k=0}^{n} a_k \cdot y^{(k)}(x) \equiv 0$

Proof. We will show $W_{\mathcal{Y}}(0) \neq 0$ (cf. 3.2.6). It can be shown that $W_{\mathcal{Y}}(0) = \prod_{i < j} (\lambda_i - \lambda_j)^{\mu_i \mu_j}$, which is clearly non-zero, but we'll stick with showing the determinant is non-zero.

Remark 3.4.6. We allowed our solution to be $y : \mathbb{R} \to \mathbb{C}$. However, we can express the solution set as purely real function, which are useful since, if the initial conditions and the coefficients are real, then the solutions are real (cf. 3.2.7)

Lemma 3.4.7 (Complex Roots). For a complex root $s = \alpha + \beta i$, there is another root $s = \alpha - \beta i$ and the solutions $\{e^{\alpha x} \cos(\beta x), e^{\alpha x} \sin(\beta x)\}$ substitute for $\{e^{(\alpha+\beta i)x}, e^{(\alpha-\beta i)x}\}$ on 3.4.5.

Proof. Since $\chi \in \mathbb{R}[s]$, taking the conjugate of $\chi(s) = 0$ shows $s \in \mathbb{C}$ is a root iff $\bar{s} \in \mathbb{C}$. Further, Euler's Formula shows:

$$y(x) = f(x) e^{(\alpha + \beta i)x} + g(x) e^{(\alpha - \beta i)x}$$

$$= e^{\alpha x} \left[(f(x) + g(x)) \cos(\beta x) + i(f(x) - g(x)) \sin(\beta x) \right]$$

$$= \tilde{f}(x) e^{\alpha x} \cos(\beta x) + \tilde{g}(x) e^{\alpha x} \sin(\beta x)$$

4 Linear Systems

4.1 General Analysis

Definition 4.1.1 (First Order System). Given a function $\underline{F}: U \subset \mathbb{R}^{1+n} \to \mathbb{R}^n$, an (explicit) first-order system is a vector equation of the following form:

$$y' = \underline{F}(x, y)$$

for a function $\underline{y}: \mathcal{I} \subseteq \mathbb{R} \to \mathbb{R}^n$ differentiable. The system is linear, if there are $\mathcal{A}: \mathbb{R} \to \overline{M_n(\mathbb{R})}$ (cf. Linear Algebra) and $\underline{b}: \mathbb{R} \to \mathbb{R}^n: \underline{F}(x,\underline{y}) = \mathcal{A}(x) y + \underline{b}(x)$, hence:

$$\underline{y}' = \mathcal{A}(x)\,\underline{y} + \underline{b}(x)$$

Lemma 4.1.2 (Phase Transformation). Let $F: U \subseteq \mathbb{R}^{1+n} \to \mathbb{R}$, then, there is a function $\underline{F}: U \subseteq \mathbb{R}^{1+n} \to \mathbb{R}^n$, so the $ODE[y^{(n)}] = F(x, y, \dots, y^{(n-1)})$

becomes
$$\underline{y}' = \underline{F}(x, \underline{y})$$
 which is first order on $\underline{y} = \begin{bmatrix} y \\ \vdots \\ y^{(n-1)} \end{bmatrix}$.

Proof. Define:
$$\underline{F}: U \subseteq \mathbb{R}^{1+n} \to \mathbb{R}^n \text{ s.t. } \underline{F}\left(x, \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}\right) = \begin{bmatrix} y_2 \\ \vdots \\ F(x, y_1, \cdots, y_n) \end{bmatrix}.$$

Then, the ODE wil take the form:

$$\underline{F}(x,\underline{y}) = \underline{F}\left(x, \begin{bmatrix} y \\ \vdots \\ y^{(n-1)} \end{bmatrix}\right) = \begin{bmatrix} y' \\ \vdots \\ y^{(n-1)} \\ F(x,y,\cdots,y^{(n-1)}) \end{bmatrix} = \begin{bmatrix} y' \\ \vdots \\ y^{(n-1)} \\ y^{(n)} \end{bmatrix} = \underline{y}'$$

which is what we were looking for.

Corollary 4.1.3. For the equation $y^{(n)} + \sum_{i=0}^{n-1} a_k(x) \cdot y^{(k)}(x) = b(x)$, we get:

$$\underline{y}' = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0(x) & -a_1(x) & -a_2(x) & \cdots & -a_{n-1}(x) \end{bmatrix} \underline{y} + b(x) \underline{e}_n$$

Definition 4.1.4. A set $\{\underline{y}_1,\underline{y}_2,\cdots,\underline{y}_n\}\subset C^1(\mathcal{I},\mathbb{R}^n)$ is linearly dependent if: $\exists (a_1,a_2,\cdots,a_n)\in\mathbb{R}^n\setminus\{\underline{0}\}:\sum_{k=1}^n a_k\cdot\underline{y}_k(x)\equiv\underline{0}$. It is linear independent otherwise. For that set, $\mathcal{Y}=(\underline{y}_1,\cdots,\underline{y}_n)$ ordered as a sequence, we define the fundamental matrix:

$$M_{\mathcal{Y}}(x) = \left[\begin{array}{ccc} | & | & | \\ \underline{y}_1 & \underline{y}_2 & \cdots & \underline{y}_n \\ | & | & & | \end{array} \right]$$

and the Wronskian: $W_{\mathcal{Y}}(x) = \det(M_{\mathcal{Y}}(x))$. This first with 3.2.1 due to 4.1.2.

Remark 4.1.5. The ODE $\underline{y}' = \mathcal{A}(x) \underline{y} + \underline{b}(x)$ can be expressed as $L[\underline{y}](x) = \underline{b}(x)$. We may rewrite it as: $L = \mathfrak{D} - \mathcal{A}(x)$ where \mathfrak{D} is tuple differentiation.

Definition 4.1.6. For a linear ODE $L[\underline{y}](x) = \underline{b}(x)$, a linear independent set of solutions for the homogeneous equation is called a fundamental set.

Theorem 4.1.7 (Liouville Formula). Let $\mathcal{Y} = (\underline{y}_1, \underline{y}_2, \dots \underline{y}_n)$ be solutions to the homogeneous ODE $\underline{y}' = \mathcal{A}(x)\,\underline{y}$, then:

$$W_{\mathcal{Y}}(x) = C \exp \left[\int \operatorname{tr}(\mathcal{A}(x)) dx \right] = W_{\mathcal{Y}}(a) \cdot \exp \left[\int_{a}^{x} \operatorname{tr}(\mathcal{A}(t)) dt \right]$$

Proof. By the product rule,

$$W_{\mathcal{Y}}'(x) = \begin{vmatrix} y_{1,1}' & y_{2,1}' & \cdots & y_{n,1} \\ y_{1,2} & y_{2,2} & \cdots & y_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1,n} & y_{2,n} & \cdots & y_{n,n} \end{vmatrix} + \cdots + \begin{vmatrix} y_{1,1} & y_{2,1} & \cdots & y_{n,1} \\ y_{1,2} & y_{2,2} & \cdots & y_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1,n} & y_{2,n} & \cdots & y_{n,n} \end{vmatrix} + \cdots + \begin{vmatrix} y_{1,1} & y_{2,1} & \cdots & y_{n,1} \\ y_{1,n} & y_{2,n} & \cdots & y_{n,n} \end{vmatrix} + \begin{vmatrix} y_{1,1} & y_{2,1} & \cdots & y_{n,1} \\ y_{1,2} & y_{2,2} & \cdots & y_{n,2} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1,n} & y_{2,n} & \cdots & y_{n,n} \end{vmatrix} + \cdots + \begin{vmatrix} y_{1,1} & y_{2,1} & \cdots & y_{n,1} \\ y_{1,2} & y_{2,2} & \cdots & y_{n,n} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{n,k} \cdot y_{1,k} & \sum_{k=1}^{n} a_{n,k} \cdot y_{2,k} & \cdots & \sum_{k=1}^{n} a_{n,k} \cdot y_{n,k} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1,n} & \cdots & y_{n,n} \end{vmatrix} + \cdots + \begin{vmatrix} y_{1,1} & \cdots & y_{n,1} \\ y_{1,2} & y_{2,2} & \cdots & y_{n,2} \\ \vdots & \ddots & \vdots \\ y_{1,n} & \cdots & y_{n,n} \end{vmatrix} + \cdots + \begin{vmatrix} y_{1,1} & \cdots & y_{n,1} \\ y_{1,2} & \cdots & y_{n,2} \\ \vdots & \ddots & \vdots \\ a_{n,n} \cdot y_{1,n} & \cdots & a_{n,n} \cdot y_{n,n} \end{vmatrix} = (a_{1,1} + \cdots + a_{n,n}) \cdot W_{\mathcal{Y}}(x) = \operatorname{tr}(\mathcal{A}(x)) \cdot W_{\mathcal{Y}}(x)$$

The result follows by 1.2.1.

Lemma 4.1.8. For a linear system $\underline{y}' = \mathcal{A}(x) \underline{y} + \underline{b}(x)$ and $\mathcal{Y} = (\underline{y}_1, \underline{y}_2, \cdots, \underline{y}_n)$ be fundamental solutions $(L[\underline{y}] \equiv \underline{0})$, then $\ker(L) = \operatorname{Span}(\mathcal{Y})$.

Proof. Analogous to 3.2.7.

Corollary 4.1.9. The solution to the ODE $L[\underline{y}] \equiv \underline{0}$ with an initial values at x_0 is given by:

$$y_h(x) = M_{\mathcal{Y}}(x) M_{\mathcal{Y}}^{-1}(x_0) \underline{y}(x_0)$$

where $\mathcal{Y} = (\underline{y}_1, \underline{y}_2, \cdots, \underline{y}_n)$ is a fundamental set.

Remark 4.1.10. The fundamental matrix satisfies: $M'_{\mathcal{Y}}(x) = \mathcal{A}(x) M_{\mathcal{Y}}(x)$.

Lemma 4.1.11 (Variation of Parameters). A particular solution to $L[\underline{y}](x) = \underline{y}' - \mathcal{A}(x) \underline{y} = \underline{b}(x)$ is given by:

$$\underline{\underline{y}}_p(x) = M_{\mathcal{Y}}(x) \int_0^x M_{\mathcal{Y}}^{-1}(t) \ \underline{b}(t) \ dt$$

where $\mathcal{Y} = (y_1, \dots, y_{n-1}, y_n)$ is a fundamental set.

Proof. By direct calculation (Leibnitz rules):

$$\underline{y}_p'(x) = M_{\mathcal{Y}}'(x) \int_a^x M_{\mathcal{Y}}^{-1}(t) \ \underline{b}(t) \ dt + M_{\mathcal{Y}}(x) \ M_{\mathcal{Y}}^{-1}(x) \ \underline{b}(x) = \mathcal{A}(x) \ \underline{y}_p(x) + \underline{b}(x)$$

since
$$M_{\mathcal{Y}}'(x) = \mathcal{A}(x) M_{\mathcal{Y}}(x)$$
.

4.2 Jordanization of Exponential Matrix

Definition 4.2.1 (Matrix Exponential). For $A \in M_n(\mathbb{C})$, define:

$$\exp(Ax) = \sum_{k=0}^{\infty} \frac{1}{k!} \cdot (Ax)^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot A^k$$

(considering $A^n = A \times \cdots \times A$ and $A^0 = I$) which converges entrywise to the matrix $\exp(Ax) \in GL_n(\mathbb{C})$ (cf. Linear Algebra) for every $A \in M_n(\mathbb{C})$ and $x \in \mathbb{C}$.

Theorem 4.2.2. For the ODE $\underline{y}' = A\underline{y}$, the solution is $\underline{y} = \exp(Ax)\underline{y}(0)$. Moreover, $\ker(L) = \operatorname{cols}(\exp(Ax))$ for L[y] = y' - Ay.

Proof. Calculating: $\underline{y}(x) = \exp(Ax) \underline{y}(\vec{0}) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot A^k \underline{y}(0)$

$$\underline{y}'(x) = \sum_{k=0}^{\infty} \frac{k \cdot x^{k-1}}{k!} \cdot A^k \, \underline{y}(0) = \sum_{k=1}^{\infty} \frac{x^{k-1}}{(k-1)!} \cdot A^k \, \underline{y}(0)$$
$$= \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot A^{k+1} \, \underline{y}(0) = A \, \exp(A \, x) \, \underline{y}(0) = A \, \underline{y}(x)$$

Further, it can be rewritten as: $\underline{y}(x) = \exp[A(x-x_0)]\underline{y}(x_0)$, which is the unique solution for any given $y(x_0)$.

Corollary 4.2.3. A fundamental set \mathcal{Y} for y' = Ay is: $M_{\mathcal{Y}}(x) = \exp(Ax)$.

Lemma 4.2.4. For $A, B \in M_n(\mathbb{C})$, if $A \sim B$ (cf. Linear Algebra), that is, $\exists P \in GL_n(\mathbb{C}) : A = PBP^{-1}$, then: $\forall x \in \mathbb{C}$, $\exp(Ax) = P\exp(Bx)P^{-1}$, and so, $\exp(Ax) \sim \exp(Bx)$.

Proof. Calculating:
$$\exp(A\,x) = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot A^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot (P\,B\,P^{-1})^k = \sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot P\,B^k\,P^{-1} = P\,\left[\sum_{k=0}^{\infty} \frac{x^k}{k!} \cdot B^k\right]\,P^{-1} = P\,\exp(B\,x)\,P^{-1}$$

Corollary 4.2.5. If A is diagonalizable (cf. Linear Algebra), then the exponential is: $\exp(Ax) = P \exp(\Lambda x) P^{-1}$, for $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k)$ and $\exp(\Lambda x) = \operatorname{diag}(e^{\lambda_1 x}, \dots, e^{\lambda_k x})$. Moreover,

$$cols(exp(Ax)) = Span(\underline{v}_1 e^{\lambda_1 x}, \cdots, \underline{v}_k e^{\lambda_k x})$$

where \underline{v}_i are eigenvectors with eigenvalue λ_i .

Lemma 4.2.6. For $A, B \in M_n(\mathbb{R})$, if AB = BA, then $\exp(Ax) \exp(Bx) = \exp((A+B)x)$.

Proof. If follows from the same arithmetics that shows $e^{ax} \cdot e^{bx} = e^{(a+b)x}$.

Definition 4.2.7. A chain of generalized eigenvectors, also called a Jordan chain, of $A \in M_n(\mathbb{C})$ with eigenvalue λ is sequence $C_m(\lambda) = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_m) \in (\mathbb{C}^n \setminus \{\underline{0}\})^m$ such that:

$$A \underline{v}_1 = \lambda \cdot \underline{v}_1$$
 and $A \underline{v}_k = \lambda \cdot \underline{v}_k + \underline{v}_{k-1}$ for $2 \le k \le m$

Lemma 4.2.8. A Jordan chain of A, $C_m(\lambda)$, is a linear independent sequence in sols $(A - \lambda I)^m$ (cf. Linear Algebra).

Proof. Notice $\forall 1 \leq k \leq m$, $(A - \lambda I)^k \underline{v}_k = \underline{0}$ and $(A - \lambda I)^{k-1} \underline{v}_k = \underline{v}_{k-1} \neq \underline{0}$. Hence, they are in $\operatorname{sols}(A - \lambda I)^m$. To prove linear independence, let $\sum_{k=1}^m \alpha_k \cdot \underline{v}_k = \underline{0}$. Applying $(A - \lambda I)^{m-1}$ to both sides gives $\alpha_m \cdot \underline{v}_{m-1} = \underline{0} \Rightarrow \alpha_m = 0$. By induction on applying $(A - \lambda I)^k$ and getting $\alpha_k = 0$, we get, $\forall 1 \leq k \leq m$, $\alpha_k = 0$. Therefore, the chain is linearly independent.

Theorem 4.2.9. For any $A \in M_n(\mathbb{R})$ there is a set of Jordan chains of A whose union is a basis of \mathbb{R}^n .

Proof. By induction on n:

- Base Case: A is a multiplication operator, so it has a unique eigenvector and eigenvalue.
- Take an eigenvalue λ of A, dim $cols(A \lambda I) = n dim sols(A \lambda I) \le n 1$. By induction, there is a set of Jordan chains of A whose union is a basis of $cols(A \lambda I)$.
 - If $cols(A \lambda I) \cap sols(A \lambda I) = \{\underline{0}\}$, then there are $am(\lambda) = sols(A \lambda I)$ linearly independent eigenvectors.
 - Then, there is a chain of λ in $\operatorname{cols}(A \lambda I)$. Take one of those chains $\mathcal{C}_{m-1}(\lambda) = (\underline{v}_1, \cdots, \underline{v}_{m-1})$. Since $\underline{v}_{m-1} \in \operatorname{cols}(A \lambda I)$, $\exists \underline{v}_m \in \mathbb{R}^n : (A \lambda I) \underline{v}_m = \underline{v}_{m-1}$. Hence, the chain increases by 1: $\mathcal{C}_m(\lambda) = (\underline{v}_1, \cdots, \underline{v}_m)$. So, every eigenvector is in a chain, which may include just itself $\mathcal{C}_1(\lambda) = (\underline{u}_1)$.

Hence, we added dim $\operatorname{sols}(A - \lambda I)$ vectors to the chains. Therefore, we have a set of Jordan chains of A whose union is a basis of \mathbb{R}^n , since we have n linearly independent vectors.

Corollary 4.2.10. For each eigenvalue, there is a set of Jordan chains of A, each with same eigenvalue λ , with $am(\lambda)$ (cf. Linear Algebra) vectors in the union.

Theorem 4.2.11. Let $C_m(\lambda) = (\underline{v}_1, \dots, \underline{v}_m)$ be a Jordan chain of A. Then, the following are linearly independent solutions to y' = Ay, for $1 \le k \le m$:

$$\underline{y}_k(x) = e^{\lambda x} \sum_{j=0}^{k-1} \frac{x^j}{j!} \cdot \underline{v}_{k-j}$$

Proof. Sufficient to notice $\underline{y}_k(x) = \exp(A\,x)\,\underline{v}_k = e^{\lambda x} \exp((A-\lambda\,I)\,x)\,\underline{v} = e^{\lambda x} \sum_{j=0}^{k-1} \frac{x^j}{j!} \cdot \underline{v}_{k-j}$, since $(A-\lambda\,I)^j\,\underline{v}_k = \underline{v}_{k-j}$, for j < k, and $(A-\lambda\,I)^k\,\underline{v}_k = \underline{0}$, which is a solution due to 4.2.2.

5 Integral and Series Methods

5.1 Power Series

Definition 5.1.1 (Classification of points). For $y'' + p(x) \cdot y' + q(x) \cdot y = 0$, a point x_0 is called an ordinary point of the ODE if p(x) and q(x) are analytic functions at x_0 , otherwise, it is a singular point. Moreover, a point x_0 is called a regular singular point if $x \cdot p(x)$ and $x^2 \cdot q(x)$ are analytic functions at x_0 .

Remark 5.1.2. The radius of convergence of $y(x) = \sum_{n\geq 0} a_n (x-x_0)^n$ is $\frac{1}{R_{x_0}(y)} = \limsup \sqrt[n]{|a_n|}$ (cf. Calculus I).

Lemma 5.1.3 (Cauchy product).

$$\left[\sum_{n\geq 0} a_n (x - x_0)^n\right] \cdot \left[\sum_{n\geq 0} b_n (x - x_0)^n\right] = \sum_{n\geq 0} \left[\sum_{k=0}^n a_{n-k} \cdot b_k\right] (x - x_0)^n$$

Proof. Direct calculation: $c_n = \sum_{i+j=n} a_i \cdot b_j$.

Theorem 5.1.4. If x_0 is an ordinary point of $y'' + p(x) \cdot y' + q(x) \cdot y = 0$, then there is a solution y that is analytic at x_0 . Furthermore, $R_{x_0}(y) \ge \min\{R_{x_0}(p), R_{x_0}(q)\}$

Proof. Take $y(x) = \sum_{n \ge 0} a_n (x - x_0)^n$. We get:

$$0 = y'' + p(x) \cdot y' + q(x) \cdot y = y'' + y' \cdot \sum_{n \ge 0} p_n (x - x_0)^n + y \cdot \sum_{n \ge 0} q_n (x - x_0)^n$$

$$= \sum_{n \ge 0} \left[(n+2)(n+1) a_{n+2} + \sum_{k=0}^n \left(p_{n-k} \cdot (k+1) a_{k+1} + q_{n-k} \cdot a_k \right) \right] (x - x_0)^n$$

$$\Leftrightarrow a_{n+2} = -\frac{1}{(n+2)(n+1)} \sum_{k=0}^n \left(p_{n-k} \cdot (k+1) a_{k+1} + q_{n-k} \cdot a_k \right)$$

Hence we get all the coefficients by induction, so y (uniquely) defined, given a_0 and a_1 .

Definition 5.1.5 (Indicial Polynomial). For $(x-x_0)^2 \cdot y'' + (x-x_0) \cdot p(x) \cdot y' + q(x) \cdot y = 0$ where p and q are analytic at x_0 , hence x_0 is a regular singular point. Define $\iota(s) = s(s-1) + p(x_0) \cdot s + q(x_0)$.

Theorem 5.1.6 (Frobenius Method). Let x_0 be a regular singular point for the ODE: $(x - x_0)^2 \cdot y'' + (x - x_0) \cdot p(x) \cdot y' + q(x) \cdot y = 0$ and λ be a root of the indicial polynomial. Then, there is a solution $y(x) = (x - x_0)^{\lambda} \cdot z(x)$, where z is analytic at x_0 .

Proof. Take
$$y(x) = \sum_{n\geq 0} a_n (x - x_0)^{n+\lambda}$$
. We get:

$$0 = (x - x_0)^2 y'' + p(x) \cdot (x - x_0) y' + q(x) \cdot y$$

$$= \sum_{n \ge 0} \left[(n + \lambda)(n + \lambda - 1) a_n + \sum_{k=0}^n \left(p_{n-k} (n + \lambda) + q_{n-k} \right) a_k \right] (x - x_0)^{n+\lambda}$$

$$\Leftrightarrow a_n = -\frac{1}{n(n+2\lambda - 1 + p_0)} \sum_{k=0}^{n-1} \left(p_{n-k} (n + \lambda) + q_{n-k} \right) a_k$$

Hence we get all the coefficients by induction, so y (uniquely) defined, given a_0 and a_1 . Observe there is some difficulty when $2\lambda - 1 + p_0 = \iota'(\lambda)$ is a negative integer.

5.2 Laplace Transform

Definition 5.2.1 (Exponential Type). A function $f : [0\infty) \to \mathbb{R}$ is of exponential type if: $\exists K > 0, a \in \mathbb{R} : \forall t > 0, |f(t)| \leq K e^{at}$.

Definition 5.2.2 (Laplace Transform). Given a function $f:[0,\infty)\to\mathbb{R}$ of exponential type, we define the Laplace transform: $F:\mathcal{I}\subseteq\mathbb{R}\to\mathbb{R}$ as:

$$F(s) = \mathcal{L}\left\{f(t)\right\}(s) = \int_0^\infty f(t) e^{-st} dt$$

Obviously, this operation is linear.

Theorem 5.2.3 (Formulae). For $F(s) = \mathcal{L}\{f(t)\}(s)$:

(i)
$$\mathcal{L}\left\{f(t)\cdot e^{at}\right\}(s) = F(s-a)$$

(ii)
$$\mathcal{L}\left\{f(at)\right\}(s) = \frac{1}{a}F\left(\frac{s}{a}\right) \text{ for } a > 0.$$

(iii)
$$\mathcal{L}\left\{f^{(n)}(t)\right\}(s) = s^n F(s) - \sum_{k=1}^n s^{n-k} \cdot f^{(k-1)}(0^+)$$

(iv)
$$\mathcal{L}\{f(t)\cdot t^n\}(s) = (-1)^n \cdot F^{(n)}(s)$$

Proof. We prove each one:

(i)
$$\mathcal{L}\left\{f(t)\cdot e^{at}\right\}(s) = \int_0^\infty f(t)\,e^{at}\,e^{-st}\,dt = \int_0^\infty f(t)\,e^{-(s-a)t}\,dt = F(s-a)$$
 by definition.

(ii)
$$\mathcal{L}\left\{f(at)\right\}(s) = \int_0^\infty f(at) e^{-st} dt = \int_0^\infty f(\tau) e^{-\frac{s}{a}\tau} \frac{1}{a} d\tau = \frac{1}{a} F\left(\frac{s}{a}\right)$$

(iii) By integration by parts, and applying induction:

$$\mathcal{L}\left\{f'(t)\right\}(s) = \int_0^\infty f'(t) e^{-st} dt = \left[f(t) e^{-st}\right]_0^\infty + s \int_0^\infty f(t) e^{-st} dt$$

$$= s F(s) - f(0^+)$$

$$\Rightarrow \mathcal{L}\left\{f^{(n)}(t)\right\}(s) = s \mathcal{L}\left\{f^{(n-1)}(t)\right\}(s) - f^{(n-1)}(0)$$

$$= s \cdot s^{n-1} F(s) - s \sum_{k=1}^{n-1} s^{n-1-k} \cdot f^{(k-1)}(0^+) - f^{(n-1)}(0^+)$$

$$= s^n F(s) - \sum_{k=1}^n s^{n-k} \cdot f^{(k-1)}(0^+)$$

(iv) Using Leibnitz Rule for Integration (cf. Calculus I)

$$\mathcal{L}\{f(t) \cdot t^n\}(s) = \int_0^\infty f(t) \, t^n \, e^{-st} \, dt = (-1)^n \int_0^\infty \frac{\partial^n}{\partial s^n} \, \left[f(t) \, e^{-st} \right] dt$$
$$= (-1)^n \, \frac{d^n}{ds^n} \, \int_0^\infty f(t) \, e^{-st} \, dt = (-1)^n \cdot F^{(n)}(s)$$

Remark 5.2.4. We defined $f(0^+) = \lim_{t \to 0^+} f(t)$. If f is C^n , we can ignore it on formula (iii) and instead take f(0).

Corollary 5.2.5. Calculating: $\mathcal{L}\{1\}(s) = \int_0^\infty e^{-st} dt = \frac{1}{s} \text{ for } s > 0.$ Hence,

(i)
$$\mathcal{L}\left\{e^{at}\right\}(s) = \frac{1}{s-a} \text{ for } s > a$$

(ii)
$$\mathcal{L}\left\{t^{n}\right\}(s) = \frac{n!}{s^{n+1}} \text{ for } s > 0$$

(iii)
$$\mathcal{L}\{t^n e^{at}\}(s) = \frac{n!}{(s-a)^{n+1}} \text{ for } s > a$$

Corollary 5.2.6. Taking real and imaginary parts, evaluating the integral as usual:

(i)
$$\mathcal{L}\left\{\cos(at)\right\}(s) = \frac{s}{s^2 + a^2}$$

(ii)
$$\mathcal{L}\left\{\sin(at)\right\}(s) = \frac{a}{s^2 + a^2}$$

Lemma 5.2.7. Let $u(t) = \begin{cases} 1 & \text{if } t \geq 0 \\ 0 & \text{otherwise} \end{cases}$ be the Heaviside step function. Then: $\mathcal{L}\left\{f(t-\tau)\cdot u(t-\tau)\right\}(s) = e^{-\tau s}F(s)$.

Proof. Calculate:
$$\mathcal{L}\left\{f(t-\tau)\cdot u(t-\tau)\right\}(s) = \int_0^\infty f(t-\tau)\cdot u(t-\tau)\,e^{-st}\,dt = \int_0^\infty f(t-\tau)\,e^{-st}\,dt = \int_0^\infty f(t-\tau)\,e^{-st}\,dt = \int_0^\infty f(t)\,e^{-s(t+\tau)}\,dt = e^{-\tau s}\,F(s)$$

Theorem 5.2.8 (Convolution). Given $f, g : [0, \infty) \to \mathbb{R}$ be functions of exponential type. Define $(f * g) : [0, \infty) \to \mathbb{R}$ s.t.:

$$(f * g)(t) = \int_0^t f(\tau) \cdot g(t - \tau) d\tau$$

which is a commutative and associative operation, called the convolution. Then, $\mathcal{L}\{f*g\}(s) = F(s) \cdot G(s)$.

Proof. By changing the boundaries of integration and using the previous result:

$$\mathcal{L}\left\{f\ast g\right\}(s) = \int_0^\infty (f\ast g)(t)\,e^{-st}\,dt = \int_0^\infty \int_0^t f(\tau)\cdot g(t-\tau)\,e^{-st}\,d\tau\,dt$$

$$= \int_0^\infty \int_t^\infty f(\tau)\cdot g(t-\tau)\,e^{-st}\,dt\,d\tau = \int_0^\infty f(\tau)\cdot \mathcal{L}\left\{g(t-\tau)\,u(t-\tau)\right\}(s)\,d\tau$$

$$= \int_0^\infty f(\tau)\cdot e^{-\tau s}\,G(s)\,d\tau = F(s)\cdot G(s)$$

Theorem 5.2.9 (Transfer Function). For the linear ODE $\sum_{k=0}^{n} a_k \cdot y^{(k)}(x) = f(x)$ with $a_k \in \mathbb{R}$, the particular solution is given by:

$$y_p(x) = (f * K)(x) = \int_0^x f(t) \cdot K(x - t) dt$$

where $K(t) = \mathcal{L}^{-1}\left\{\frac{1}{\chi(s)}\right\}$ (t) is called the transfer function.

Proof. Since $y(0) = y'(0) = \cdots = y^{(n-1)}(0) = 0$, taking Laplace transform of both sides, we get:

$$\sum_{k=0}^{n} a_k s^k \cdot Y(s) = \chi(s) \cdot Y(s) = F(s) \Rightarrow Y(s) = F(s) \cdot \frac{1}{\chi(s)}$$

it follows from the previous theorem.

Corollary 5.2.10. By partial fraction decomposition of $\frac{1}{\chi(s)}$, we get the solution of 3.3.1 with fundemental set as in 3.4.5.

Theorem 5.2.11 (Initial and Final Value).

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} s\cdot F(s) \ \ and \ \ \lim_{t\to \infty} f(t) = \lim_{s\to 0} s\cdot F(s)$$

Proof. By substitution, we get:

$$s \cdot F(s) = \int_0^\infty f\left(\frac{t}{s}\right) e^{-t} dt$$

the results follow by dominated convergence theorem.

5.3 Sturm Liouville Theory

Definition 5.3.1 (SL problem). A Sturm-Liouville (boundary value) problem is a triple:

(i)
$$\left(p(x) \cdot y'(x)\right)' - q(x) \cdot y(x) + \lambda \cdot r(x) \cdot y(x) \equiv 0$$

(ii)
$$\alpha_1 \cdot y(a) + \alpha_2 \cdot y'(a) = 0$$
 where $(\alpha_1, \alpha_2) \neq (0, 0)$.

(iii)
$$\beta_1 \cdot y(b) + \beta_2 \cdot y'(b) = 0$$
 where $(\beta_1, \beta_2) \neq (0, 0)$.

Define the linear operator:

$$L[y](x) = \frac{1}{r(x)} \left[-\left(p(x) \cdot y'(x)\right)' + q(x) \cdot y(x)\right]$$

and let $B_a[y] = \alpha_1 \cdot y(a) + \alpha_2 \cdot y'(a)$, $B_b[y] = \beta_1 \cdot y(b) + \beta_2 \cdot y'(b)$. Then the problem becomes: $L[y] = \lambda \cdot y$ and $B_a[y] = B_b[y] = 0$.

Definition 5.3.2 (Inner Product on Continuous Functions). Define the following inner products on continuous complex-valued functions on an interval $\mathcal{I} = [a, b]$. For function r > 0:

$$\langle f, g \rangle = \int_{a}^{b} f(x) \cdot \overline{g(x)} \cdot r(x) \, dx$$

which obeys every property of inner product (cf. Linear Algebra).

Theorem 5.3.3 (Lagrange's Identity). $\langle L[f], g \rangle - \langle f, L[g] \rangle = p(x) \cdot W_{(f,\overline{g})}(x) \Big|_a^b$. *Proof.*

$$\begin{split} \langle L[f],g\rangle &= \int_a^b \left[-\left(p(x)\cdot f'(x)\right)' + q(x)\cdot f(x)\right]\cdot \overline{g(x)}\,dx \\ &= -\int_a^b \left(p(x)\cdot f'(x)\right)'\cdot \overline{g(x)}\,dx + \int_a^b q(x)\cdot f(x)\cdot \overline{g(x)}\,dx \\ &= -p(x)\cdot f'(x)\cdot \overline{g(x)}\bigg|_a^b + \int_a^b p(x)\cdot f'(x)\cdot \overline{g'(x)}\,dx + \int_a^b q(x)\cdot f(x)\cdot \overline{g(x)}\,dx \\ &= p(x)\cdot W_{(f,\overline{g})}(x)\bigg|_a^b - \int_a^b f(x)\cdot \overline{\left(p(x)\cdot g'(x)\right)'}\,dx + \int_a^b f(x)\cdot \overline{q(x)\cdot g(x)}\,dx \\ &= p(x)\cdot W_{(f,\overline{g})}(x)\bigg|_a^b + \langle f, L[g]\rangle \end{split}$$

Lemma 5.3.4. For two functions $f, g: B_a[f] = B_a[g] = 0 \Leftrightarrow W_{(f,g)}(a) = 0$, the same for b.

Proof. $B_a[f] = B_a[g] = 0$ are two homogeneous linear equations with non-trivial solution. Hence, the Wronskian is zero.

Corollary 5.3.5. If f and g obey the boundary conditions: $\langle L[f], g \rangle = \langle f, L[g] \rangle$, that is, L is a self-adjoint operator on the set of piecewise continuous functions that obey the boundary conditions. It is **actually** self adjoint since the two domains match.

Remark 5.3.6. If we define $L[y](x) = -(p(x) \cdot y'(x))' + q(x) \cdot y(x)$, then it is self adjoint of the inner product with $r \equiv 1$. We, however, shall use the other one since the weighted inner product appears much more often and the SL problem becomes exactly an eigenvalue problem.

Lemma 5.3.7 (Real Eigenvalues). All eigenvalues of L are real.

Proof. Let
$$L[y] = \lambda \cdot y$$
, then, by 5.3.5: $\lambda \cdot \langle y, y \rangle = \langle L[y], y \rangle = \langle y, L[y] \rangle = \overline{\lambda} \cdot \langle y, y \rangle \Rightarrow (\lambda - \overline{\lambda}) \cdot \langle y, y \rangle = 0 \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}.$

Theorem 5.3.8 (Sturm-Liouville). Let y_n and y_m be eigenfunctions with distinct eigenvalues λ_n and λ_m , respectively, that is, $\lambda_n \neq \lambda_m$. Then, they are orthogonal (with respect to the weighted inner product). Further, the multiplicity of each eigenvalue is one.

Proof. By 5.3.5 and 5.3.7, we get: $\lambda_n \cdot \langle y_n, y_m \rangle = \langle L[y_n], y_m \rangle = \langle y_n, L[y_m] \rangle = \lambda_m \cdot \langle y_n, y_m \rangle \Rightarrow (\lambda_n - \lambda_m) \cdot \langle y_n, y_m \rangle = 0 \Rightarrow \langle y_n, y_m \rangle = 0$. Suppose there are two linearly independent solutions y_n and \tilde{y}_n . However, then by 2.2.7 every solution of the ODE obeys the boundary conditions, contraction.

Theorem 5.3.9 (Generalized Fourier Series). For f piecewise continuous in [a,b], and $\{y_n\}_{n=0}^{\infty}$ be eigenfunction of a SL problem (L, B_a, B_b) , then $\exists \{a_n \in \mathbb{R}\}_{n=0}^{\infty} : \forall x \in [a,b]$,

$$\frac{f(x^{+}) + f(x^{-})}{2} = \sum_{n=0}^{\infty} a_n \cdot y_n(x)$$

Where $f(x^{\pm}) = \lim_{x' \to x^{\pm}} f(x')$. Of course, if f is continuous at x, then the LHS equals f(x). In particular, $a_n = \frac{\langle f, y_n \rangle}{\langle y_n, y_n \rangle}$.

Proof. Pythagoras: $\left\| f - \sum_{n=0}^{N} a_n \cdot y_n \right\|^2 = \|f\|^2 - \sum_{n=0}^{N} |a_n|^2 \cdot \|y_n\|^2 \Rightarrow \|f\|^2 \ge \sum_{n=0}^{N} |a_n|^2 \cdot \|y_n\|^2$ (Bessel), hence it converges uniformly by Weierstrass (M-test and Boundedness).

Lemma 5.3.10 (Rayleigh Quotient). For each pair (λ_n, y_n) : $\lambda_n = \frac{\langle L[y_n], y_n \rangle}{\langle y_n, y_n \rangle}$, where y_n is its respective eigenfunction.

Proof. The quotient follows by: $L[y_n] = \lambda_n \cdot y_n \Rightarrow \langle L[y_n], y_n \rangle = \lambda_n \cdot \langle y_n, y_n \rangle$.

Theorem 5.3.11 (Min-Max Theorem). In view of 5.3.7, 5.3.5 and 5.3.10, the eigenvalues are ordered: $\lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$

Proof. Ommited here. \Box