Elementos de Probabilidades - Formulário

Cap. I: Probabilidades

[Probabilidade - definição e propriedades] Uma probabilidade sobre um espaço amostral Ω é uma função que a cada acontecimento $A \subseteq \Omega$ associa um número real, P(A), que satisfaz 3 axiomas:

- i) $P(A) \ge 0$;
- ii) $P(\Omega) = 1$;
- iii) $P(A_1 \cup A_2 \cup A_3 \cup ...) = P(A_1) + P(A_2) + P(A_3) + ...$, para quaisquer $A_1, A_2, A_3, ...$ disjuntos 2 a 2.

Propriedades: Sejam $A, B, A_1, A_2, \ldots, A_n$ subconjuntos de Ω .

- i) $P(\overline{A}) = 1 P(A)$
- ii) Se $A \subseteq B$ então $P(A) \le P(B)$ e $P(B \cap \overline{A}) = P(B) P(A)$
- iii) $P(\varnothing) = 0 e 0 \le P(A) \le 1$
- iv) $P(B \cap \overline{A}) = P(B) P(B \cap A)$
- v) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- vi) [Fórmula de Poincaré

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i=1}^n \sum_{j=i+1}^n P(A_i \cap A_j) + \sum_{i=1}^n \sum_{j=i+1}^n \sum_{k=j+1}^n P(A_i \cap A_j \cap A_k)$$
$$- \sum_{i=1}^n \sum_{j=i+1}^n \sum_{k=j+1}^n \sum_{l=k+1}^n P(A_i \cap A_j \cap A_k \cap A_l) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$

[Probabilidade condicionada - definição e propriedades] Seja B um acontecimento tal que P(B) > 0. A probabilidade de A condicionada por B é dada por: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$.

Teorema da Probabilidade Total e Fórmula de Bayes: Se $A_1, A_2, \ldots, A_n, \ldots$ formam uma partição de Ω e $P(A_i) > 0$, $i = 1, 2, \ldots$, então

$$P(B) = P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2) + \dots + P(B \mid A_n)P(A_n) + \dots$$
 [TPT]

Se
$$P(B) > 0$$
, tem-se, para $k \in \mathbb{N}$,
$$P(B \mid A_k) P(A_k) = \frac{P(B \mid A_1) P(A_1) + P(B \mid A_2) P(A_2) + \ldots + P(B \mid A_n) P(A_n) + \ldots}{P(B \mid A_1) P(A_1) + P(B \mid A_2) P(A_2) + \ldots + P(B \mid A_n) P(A_n) + \ldots}$$
 [Bayes]

[Acontecimentos independentes - definição] Dados n acontecimentos, diz-se que são independentes se, para quaisquer r desses acontecimentos, com $2 \le r \le n$, a probabilidade da intersecção dos r acontecimentos é igual ao produto das respetivas probabilidades.

Em particular, dois acontecimentos, $A \in B$, dizem-se independentes se $P(A \cap B) = P(A)P(B)$.

Cap. II: Variáveis Aleatórias (v.a.'s)

[**Discreta**] X diz-se v.a. discreta se o seu contradomínio é um conjunto finito ou infinito numerável. É caracterizada pelo contradomínio, $C_X = \{x_1, x_2, x_3, \ldots\}$, e pela função massa de probabilidade (f.m.p.)

$$X: \left\{ \begin{array}{cccc} x_1 & x_2 & x_3 & \dots \\ P(X=x_1) & P(X=x_2) & P(X=x_3) & \dots \end{array} \right.$$

Para um qualquer $B \subseteq \mathbb{R}$, tem-se: $P(X \in B) = \sum_{x_i \in C_X : x_i \in B} P(X = x_i)$.

[Contínua] X diz-se v.a. contínua se o seu contradomínio é um conjunto infinito não numerável e é caracterizada por uma função densidade de probabilidade, f.

Para um qualquer $B \subseteq \mathbb{R}$, tem-se: $P(X \in B) = \int f(x)dx$.

<u>Nota</u>: $f: \mathbb{R} \to \mathbb{R}$ é uma função densidade de probabilidade se $f(x) \geq 0, \forall x \in \mathbb{R}, \text{ e } \int_{-\infty}^{+\infty} f(x) dx = 1.$

[Função de distribuição - definição e propriedades] A função de distribuição da v.a. X é

$$F: \quad \mathbb{R} \quad \longrightarrow \quad [0,1]$$

$$c \quad \mapsto \quad F(c) = P(X \le c) \quad .$$

Propriedades:

- F é não decrescente
- F é contínua à direita
- iii)
- $\lim_{c \to -\infty} F(c) = 0 \quad \text{e} \quad \lim_{c \to +\infty} F(c) = 1$ Para todo o $a, b \in \mathbb{R}$, com a < b, tem-se $P(a < X \le b) = F(b) F(a)$ iv)

Cap. III: Parâmetros de Localização e Dispersão e Independência de V.A.'s

[Valor médio, variância e desvio-padrão]

O valor médio da v.a. X, denotado por μ_X ou E[X], é dado p

$$\mu_X = \sum_{x_i \in C_X} x_i P(X = x_i) \quad , \qquad \mu_X = \int_{-\infty}^{+\infty} x f(x) dx.$$
(caso discreto) (caso contínuo)

A <u>variância</u> da v.a X, denotada por σ_X^2 ou Var[X], é dada por $Var[X] = E[(X - \mu_X)^2]$. Em particular, quando $E[X^2]$ existe, a variância reduz-se a $Var[X] = E[X^2] - (E[X])^2$, ou seja, a

$$Var[X] = \begin{bmatrix} \sum_{x_i \in C_X} x_i^2 P(X = x_i) \end{bmatrix} - (E[X])^2 , \quad Var[X] = \begin{bmatrix} \int_{-\infty}^{+\infty} x^2 f(x) dx \end{bmatrix} - (E[X])^2.$$
(caso discreto) (caso contínuo)

O desvio-padrão da v.a X, denotado por σ_X , é dado por $\sigma_X = \sqrt{\sigma_X^2}$.

[Quantil de ordem p] Se a v.a. X tem função de distribuição F, o quantil de ordem p de X, com $p \in]0,1[$, denota-se por χ_p , é dado por $\chi_p = \inf\{c \in \mathbb{R} : F(c) \geq p\}$.

[Variáveis independentes] Dadas $n \geq 2$ variáveis aleatórias, X_1, X_2, \dots, X_n , estas dizem-se independentes se, para todos os B_1, B_2, \ldots, B_n subconjuntos de \mathbb{R} ,

$$P((X_1, X_2, \dots, X_n) \in (B_1 \times B_2 \times \dots \times B_n)) = \prod_{i=1}^n P(X_i \in B_i).$$

[Propriedades do valor médio e variância] Para quaisquer v.a.'s X, X_1, X_2, \dots, X_n , tem-se

- E[aX+b]=aE[X]+b e $Var[aX+b]=a^2Var[X]$, quaisquer que sejam as constantes $a,b\in\mathbb{R}$
- $E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots + E[X_n]$
- Se as v.a.'s são independentes então $Var[X_1+X_2+\ldots+X_n]=Var[X_1]+Var[X_2]+\ldots+Var[X_n]$
- Se as v.a.'s são independentes então $E[X_1 X_2 \dots X_n] = E[X_1]E[X_2]\dots E[X_n]$

Cap. IV: Distribuições de Probabilidade Mais Utilizadas na Prática

[Distribuição Binomial] Diz-se que X segue a distribuição Binomial com parâmetros $n \in p$, com $n \in \mathbb{N} \in p \in]0,1[$, abrevia-se por $X \sim Bin(n,p)$, se X é discreta com $C_X = \{0,1,\ldots,n\}$ e f.m.p. dada por

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}, \ k \in C_X. \quad \underline{\text{Nota}} : E[X] = np \ e \ Var[X] = np(1-p).$$

Quando n=1, a distribuição Binomial é conhecida por Bernoulli(p)

[Distribuição de Poisson] Diz-se que X segue a distribuição de Poisson com parâmetro λ , com $\lambda \in \mathbb{R}^+$, abrevia-se por $X \sim Poisson(\lambda)$, se X é discreta com $C_X = \mathbb{N}_0$ e f.m.p. dada por

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, 2, 3, \dots$$
 Nota $E[X] = Var[X] = \lambda.$

[Distribuição Uniforme em [a, b]] Diz-se que X segue a distribuição Uniforme no intervalo [a, b], abrevia-se por $X \sim U([a,b])$, se X é contínua e tem função densidade de probabilidade dada por

$$f(x) = \left\{ \begin{array}{ccc} \frac{1}{b-a} & \text{se} & a \le x \le b \\ 0 & \text{se} & \text{caso contrário} \end{array} \right..$$

A função de distribuição é $F_X(c) = \begin{cases} 0 & se & c < a \\ \frac{c-a}{b-a} & se & a \le c \le b \\ 1 & se & c > b \end{cases}$. Nota: $E[X] = \frac{a+b}{2}$ e $Var[X] = \frac{(b-a)^2}{12}$.

[Distribuição Exponencial] Diz-se que T segue a distribuição Exponencial com parâmetro λ , com $\lambda \in \mathbb{R}^+$, abrevia-se por $T \sim Exp(\lambda)$, se T é contínua e tem função densidade de probabilidade dada por

$$f(x) = \begin{cases} 0 & se \quad x < 0 \\ \lambda e^{-\lambda x} & se \quad x \ge 0 \end{cases}.$$

A função de distribuição é $F_T(c) = \left\{ \begin{array}{ccc} 0 & se & c < 0 \\ 1 - e^{-\lambda c} & se & c \geq 0 \end{array} \right.$. Nota: $E[T] = \frac{1}{\lambda} \ \mathrm{e} \ Var[T] = \frac{1}{\lambda^2}$.

[Distribuição Normal] Diz-se que X segue a distribuição Normal com parâmetros μ e σ^2 , com $\mu \in \mathbb{R}$ e $\sigma \in \mathbb{R}^+$, abrevia-se por $X \sim N(\mu, \sigma^2)$, se X é contínua e tem função densidade de probabilidade dada por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}, \ x \in \mathbb{R}. \ \ \underline{\mathrm{Nota}}: E[X] = \mu \ \mathrm{e} \ Var[X] = \sigma^2.$$

Propriedades da distribuição Normal:

- i) A função densidade de probabilidade da N(0,1) é simétrica relativamente à origem, pelo que:

 - $F_{N(0,1)}(-c)=1-F_{N(0,1)}(c), c\in\mathbb{R};$ os respectivos quantis de ordem p e 1-p são simétricos, i.e., $\chi_p=-\chi_{1-p}, p\in]0,1[;$
 - se $Z \sim N(0,1)$ então $P(|Z| \leq b) = 2P(0 < Z \leq b), b \in \mathbb{R}^+$.
- ii) Se $X \sim N(\mu, \sigma^2)$ então, para quaisquer contantes reais $a \neq 0$ e $b, aX + b \sim N(a\mu + b, a^2\sigma^2)$. Em particular, se $X \sim N(\mu, \sigma^2)$, então $\frac{X \mu}{\sigma} \sim N(0, 1)$.
- iii) Sejam X_1, \ldots, X_n v.a.'s independentes e tais que $X_i \sim N\left(\mu_i, \sigma_i^2\right), i = 1, \ldots, n$. Então, para quaisquer constantes reais, a_1, a_2, \ldots, a_n , não todas nulas,

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right).$$

Em particular, se X_1, X_2, \ldots, X_n formam uma amostra aleatória proveniente de $X \sim N(\mu, \sigma^2)$,

$$\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right),$$

em que $\overline{X}_n \equiv \frac{1}{n} \sum_{i=1}^n X_i$.

Tabela da Distribuição Normal Reduzida

Z	0	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0.0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000