Computer Vision HW1

安捷 1601210097 2017 年 3 月 21 日

1 算法实现介绍

在这一次作业中,我按照作业要求,分别实现了 Harris 角点检测算法与 SIFT 特征检测与描述子生成算法,并针对作业中要求的具体问题,基于 MATLAB 编程实现了相关要求,其中,Harris 角点检测算法我使用了 MATLAB 自带 Harris 角点检测函数; SIFT 算子我使用了 vl-feat 工具包。

2 脚本功能介绍

为完成作业要求,我共编写三个 MATLAB 脚本,下面分别介绍其功能及对应的问题:

- harris_robustness_test.m 对应于作业的问题 1, 用于测试 harris 角点检测算法对于旋转、缩放的鲁棒性;
- **sift_robustness_test.m** 对应于作业的问题 2, 用于测试 SIFT 检测子对于图像旋转、缩放的鲁棒性;
- **sift_descriptor_robustness_test.m** 对应于作业的问题 3, 用于测试 SIFT 描述子对于 图像亮度、对比度、噪声、模糊的鲁棒性;

3 各脚本参数设置

3.1 harris_robustness_test.m 参数设置

参数名称	参数值	参数含义
IMG_PATH	'cover_1.jpg'	图像路径
$MIN_QUALITY$	0.01	Harris 角点检测阈值
$ROTATE_ANGLE$	15	旋转角度
SCALE_FACTOR	1.2	缩放倍数

表 1: harris_robustness_test.m 参数表

3.2 sift_robustness_test.m 参数设置

参数名称	参数值	参数含义
IMG_PATH	'cover_1.jpg'	图像路径
PEAK_THRESH	1	SIFT 算法峰阈值
EDGE_THRESH	5	SIFT 算法边阈值
$ROTATE_ANGLE$	15	旋转角度
$SCALE_FACTOR$	1.2	缩放倍数

表 2: sift_robustness_test.m 参数表

3.3 sift_descriptor_robustness_test.m 参数设置

参数名称	参数值	参数含义
IMG_PATH	'building.jpg'	图像路径
PEAK_THRESH	1	SIFT 算法峰阈值
$EDGE_THRESH$	5	SIFT 算法边阈值
ROTATE_ANGLE	15	旋转角度
SCALE_FACTOR	1.2	缩放倍数
BRIGHTNESS_MINUS_MAX	-100	最大亮度减小值
BRIGHTNESS_PLUS_MAX	100	最大亮度增加值
${\tt BRIGHTNESS_CHANGE_LEVEL}$	20	亮度增减幅度
CONTRAST_MIN	0.5	最小对比度调整值
$CONTRAST_MAX$	2.0	最大对比度调整值
$CONTRAST_CHANGE_LEVEL$	0.25	对比度调整幅度
NOISE_MIN	0	最小高斯噪声标准差
$NOISE_MAX$	30	最大高斯噪声标准差
NOISE_CHANGE_LEVEL	5	高斯噪声标准差调整幅度
$GAUSS_MIN$	1	最小高斯模糊标准差
$GAUSS_MAX$	10	最大高斯模糊标准差
${\tt GAUSS_CHANGE_LEVEL}$	1	高斯模糊标准差调整幅度

表 3: sift_descriptor_robustness_test.m 参数表

4 运行结果及作业问题解答

鉴于在上一节已经详细列出了我在实现算法的过程中使用的参数,因此,在这里我不再详细叙述算法实现中的参数,只是在回答作业中问题的时候给出必要的参数,并且,我将主

要以图表的方式来展示结果。

4.1 Robustness of Harris Keypoints to Rotation and Scaling

(a)

这里我设置的参数 MIN_QUALITY= 0.01, 针对 cover_1.jpg, 检测到了 516 个角点, 结果如下:从上图中可以看出,角点主要位于中间英文字母的边缘部分及证件的边缘部分,

图 1: Harris 角点检测的结果

为了研究主要角点所在的位置, 我绘制了已检测出角点权重的分布图, 如下:

图 2: Harris 角点的权重

从图中可以看出,主要亮点均位于证件中字母所在的位置,这一结果证实了我上述断言,即:角点主要位于字母的边缘及证件的边缘部分。

(b)

图 3: 图像旋转情况下 Harris 角点检出率的分布

从图中可以看出,图像旋转时,在旋转角度为 0, 90, 180, 270, 360 度时,Harris 角点的检出率为 100%,而其他角度 Harris 角点的检出率也有明显的对应特点,产生这种情况的原因在于 Harris 角点检测中采用的差分格式,由于 Harris 算子使用的离散差分不具有旋转对称性,且图像旋转非上述角度时存在插值问题,因此 Harris 算子很难找到对应的角点,导致了检出率较低。

(c)

图 4: 图像缩放情况下 Harris 角点检出率的分布 从图中可以看出,Harris 在缩放的情况下不具有较好的鲁棒性。

其余数据的数值实验结果

图 5: Harris 角点检测的结果

图 6: Harris 角点的权重

图 7: 图像旋转情况下 Harris 角点检出率的分布

图 8: 图像缩放情况下 Harris 角点检出率的分布

4.2 Robustness of SIFT Keypoints to Rotation and Scaling

这里我设置了两个参数,分别为: PEAK_THRESH= 1, EDGE_THRESH= 5, 共检出 503 个特征。

(a)

图 9: SIFT 算子检测的结果

从图中可以看出,SIFT 特征主要出现在有显著结构信息的地方,相对于 Harris 角点来说,SIFT 算法检出特征的分布更加广泛。

(b)

- (a) 图像旋转情况下 SIFT 算子检出率的分布
- (b) 图像旋转情况下 Harris 角点检出率的分布

图 10: 图像旋转情况下两种算法检出率的对比

从上图可以看出, SIFT 算子在旋转情况下依然具有 100% 的检出率, 因此显然 SIFT 算子对于旋转具有更好的鲁棒性。

(c)

- (a) 图像缩放情况下 SIFT 算子检出率的分布
- (b) 图像缩放情况下 Harris 角点检出率的分布

图 11: 图像缩放情况下两种算法检出率的对比

从上图可以看出, SIFT 算子在缩放情况下依然具有 100% 的检出率, 因此显然 SIFT 算子对于缩放具有更好的鲁棒性。

其余数据的数值实验结果

图 12: SIFT 算子检测的结果

- (a) 图像旋转情况下 SIFT 算子检出率的分布
- (b) 图像旋转情况下 Harris 角点检出率的分布

图 13: 图像旋转情况下两种算法检出率的对比

(a) 图像缩放情况下 SIFT 算子检出率的分布

(b) 图像缩放情况下 Harris 角点检出率的分布

图 14: 图像缩放情况下两种算法检出率的对比

4.3 Robustness of the SIFT Descriptor

(a)

图 15: SIFT 算子检测的结果

(b)

图 16: SIFT 算子随亮度改变的检出率分布

(c)

图 17: SIFT 算子随对比度改变的检出率分布

(d)

图 18: SIFT 算子随高斯噪声水平改变的检出率分布

(e)

图 19: SIFT 算子随高斯模糊水平改变的检出率分布

从上面各图可以看出,SIFT 算子随亮度,对比度,噪声水平,模糊水平的增加检出率逐渐降低,其中,SIFT 算子对亮度,对比度和噪声在小幅度变化的情况下具有较好的鲁棒性,SIFT 算子的检出率不会有较大变化,而在大幅度变化的情况下,随着图像细节的逐渐丢失,SIFT 算子也不再具有鲁棒性。

5 软件版本及测试平台信息

这部分内容请参看源代码所在文件夹内的 REAME 文件。