12: Maximum Flow

- Maximum Flow Problem
- The Ford-Fulkerson method
- Maximum bipartite matching

Flow networks:

- A flow network G=(V,E): a directed graph, where each edge $(u,v) \in E$ has a nonnegative capacity c(u,v) >= 0.
- If $(u,v) \notin E$, we assume that c(u,v)=0.

two distinct nodes: a source s and a sink t. SINK: SOURCE: *Node with net inflow; Node with net outflow:* Consumption point Production point 12 20 16 CAPACITY: 10 Maximum flow on an edge 13 14

Flow:

- Given: G=(V, E): a flow network with capacity function c. s---the source and t--- the sink.
- A flow in G: a real-valued function $f: E \rightarrow R$ satisfying the following two properties:
- Capacity constraint: For all $u,v \in V$, we require $f(u,v) \le c(u,v)$.
- Flow conservation: For all $v \in V \{s,t\}$, we require

$$\sum_{e.in.v} f(e) = \sum_{e.out.v} f(e)$$

Net flow and value of a flow f:

- The quantity f (u,v) is called the net flow from vertex u to vertex v.
- The value of a flow is defined as

$$|f| = \sum_{v \in V} f(s, v)$$

- The total flow from the source (s) to any other vertices.
- The same as the total flow from any vertices to the sink (t).

A flow f in G with value |f| = 19.

Maximum-flow problem:

- Given a flow network G with source s and sink t
- Find a flow of maximum value from s to t.
- How to solve it efficiently?

The Ford-Fulkerson method:

- Ford-Fulkerson method
 - it is a "method" rather than an "algorithm" because it encompasses several implementations with different running times.
 - The Ford-Fulkerson method depends on three important ideas:
 - residual networks
 - augmenting paths, and
 - cuts.

Continue:

- FORD-FULKERSON-METHOD(G,s,t)
- initialize flow f to 0
- while there exists an *augmenting* path p
- do augment flow f along p
- return f

Example

Residual networks:

- Given a flow network and a flow, the **residual network** consists of edges that can admit more net flow.
- f: a flow in G.
- The residual capacity of (u,v), given by:
 - $c_f(u,v) = c(u,v)-f(u,v)$
 - in the other direction
 - $c_f(v,u) = c(v, u) + f(u, v).$

Fact 1:

- Let G=(V,E) be a flow network with source s and sink t, and let f be a flow in G.
- Let G_f be the residual network of G induced by f, and let f' be a flow in G_f . Then, the flow sum f+f' is a flow in G with value
- f+f': the flow in the same direction will be added.
 the flow in different directions will be cancelled.

Augment paths:

- Given a flow network G=(V,E) and a flow f, an augment path is a simple path from f to f in the residual network f
- Residual capacity of p: the maximum amount of net flow that we can ship along p, i.e.,
 c_f(p)=min{c_f(u,v):(u,v) is on p}.

The residual capacity is 1.

Cut and flow

- FORD-FULKERSON(G,s,t)
- for each edge $(u,v) \in E[G]$
- do $f[u,v] \leftarrow 0$
- $f[v,u] \leftarrow 0$
- while there exists a path p from s to t in the residual network G_f
- $\operatorname{do} c_f(p) \leftarrow \min\{c_f(u,v): (u,v) \text{ is in } p\}$
- for each edge (u,v) in p
- do f[u,v] \leftarrow f[u,v]+c_f(p)

example of an execution

Network

example of an execution


```
for each edge (u, v) \in E[G]

do f [u, v] = 0

f [v, u] = 0

while there exists a path p from s to t

in the residual network G_f

do c_f(p) = \min\{c_f(u, v) \mid (u, v) \in p\}

for each edge (u, v) in p

do f [u, v] = f [u, v] + c_f(p)
```

example of an execution


```
for each edge (u, v) \in E[G]

do f[u, v] = 0

f[v, u] = 0

while there exists a path p from s to t

in the residual network G_f

do c_f(p) = \min\{c_f(u, v) \mid (u, v) \in p\}

for each edge (u, v) in p

do f[u, v] = f[u, v] + c_f(p)
```

example of an execution

temporary variable:

$$c_f(p) = 12$$

example of an execution

for each edge $(u, v) \in E[G]$

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

new flow network G

temporary variable:

$$c_f(p) = 12$$

example of an execution

for each edge $(u, v) \in E[G]$ do f [u, v] = 0 f [v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge $(u, v) \in E[G]$ do f [u, v] = 0 f [v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge
$$(u, v) \in E[G]$$

do f [u, v] = 0
f [v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge $(u, v) \in E[G]$

while there exists a path p from s to t in the residual network G_f

do
$$c_f(p) = min\{c_f(u, v) | (u, v) \in p\}$$

for $each\ edge\ (u, v)\ in\ p$
do $f[u, v] = f[u, v] + c_f(p)$

new flow network G

temporary variable:

$$c_f(p) = 4$$

example of an execution

for each edge $(u, v) \in E[G]$ do f[u, v] = 0 f[v, u] = 0while there exists a path p from s to t in the residual network G_f do $c_f(p) = \min\{c_f(u, v) \mid (u, v) \in p\}$ for each edge (u, v) in p do $f[u, v] = f[u, v] + c_f(p)$

temporary variable: $c_f(p) = 4$

example of an execution

for each edge $(u, v) \in E[G]$

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge $(u, v) \in E[G]$

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge $(u, v) \in E[G]$ do f[u, v] = 0

f[v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge $(u, v) \in E[G]$ do f [u, v] = 0 f [v, u] = 0 while there exists a path p from s to t in the residual network G_f do $c_f(p) = \min\{c_f(u, v) | (u, v) \in p\}$ for each edge (u, v) in p do f [u, v] = f [u, v] + $c_f(p)$

temporary variable: $c_f(p) = 7$

example of an execution

for each edge
$$(u, v) \in E[G]$$

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

new flow network G

temporary variable:

$$c_f(p) = 7$$

example of an execution

for each edge
$$(u, v) \in E[G]$$

do f [u, v] = 0
f [v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for } \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

example of an execution

for each edge
$$(u, v) \in E[G]$$

do f [u, v] = 0
f [v, u] = 0

while there exists a path p from s to t in the residual network G_f

$$\begin{aligned} \textbf{do} \ c_f(p) &= \min\{c_f(u, \, v) \mid (u, \, v) \in p\} \\ \textbf{for} \ each \ edge \ (u, \, v) \ in \ p \\ \textbf{do} \ f \ [u, \, v] &= f \ [u, \, v] + c_f(p) \end{aligned}$$

Finally we have: |f| = f(s, V) = 23

Time complexity:

- If each c(e) is an *integer*, then time complexity is $O(|E|f^*)$, where f^* is the maximum flow.
- Reason: each time the flow is increased by at least one.
- This might not be a polynomial time algorithm since f* can be represented by log (f*) bits. So, the input size might be log(f*).

The Basic Ford-Fulkerson Algorithm

- With time O ($E |f^*|$), the algorithm is **not** polynomial.
- Ford-Fulkerson may perform very badly

|f*|=2,000,000

CSE 3101 38

Run Ford-Fulkerson on this example

Augmenting Path

Residual Network

CSE 3101 39

Augmenting Path

Residual Network

CSE 3101

- Repeat 999,999 more times...
- Can we do better than this?

CSE 3101 41

The Edmonds-Karp algorithm

- Find the augment path using breadth-first search.
- Breadth-first search gives the shortest path for graphs (Assuming the length of each edge is 1.)
- Time complexity of Edmonds-Karp algorithm is $O(V*E^2)$.
- The proof is very hard and is not required here.

Breadth-first search

Path: s->v1->v3->t Path: s->v2->v4->t. (a)

Example:

Applying breadth first search

Residual graph

Again Run BFS So the obvious path is s-b-t

Maximum bipartite matching

Maximum Bipartite Matching

■ A bipartite graph is a graph G=(V,E) in which V can be divided into two parts L and R such that every edge in E is between a vertex in L and a vertex in R.

 e.g. vertices in L represent skilled workers and vertices in R represent jobs. An edge connects workers to jobs they can perform.

• A matching in a graph is a subset M of E, such that for all vertices v in V, at most one edge of M is incident on v.

• A maximum matching is a matching of maximum cardinality (maximum number of edges).

not maximum

maximum

A Maximum Matching

- No matching of cardinality 4, because only one of v and u can be matched.
- In the workers-jobs example a max-matching provides work for as many people as possible.

Solving the Maximum Bipartite Matching Problem

- Reduce the maximum bipartite matching problem on graph **G** to the max-flow problem on a corresponding flow network **G**'.
- Solve using Ford-Fulkerson method.

Corresponding Flow Network

- To form the corresponding flow network **G'** of the bipartite graph **G**:
 - Add a source vertex s and edges from s to L.
 - Direct the edges in E from L to R.
 - Add a sink vertex t and edges from R to t.
 - Assign a capacity of 1 to all edges.
- Claim: max-flow in G' corresponds to a max-bipartite-matching on G.

Example

$$|M| = 3$$

$$\leftarrow \rightarrow$$

$$_{53}$$
 max flow = $|f|$ = 3