WikiNER: Brute-force Named Entity Recognition leveraging Wikipedia dataset

Mario Mastrandrea, Yuting Yang

December 8, 2022

COM S 579X Natural Language Processing, Fall 2022

What is **Named Entity Recognition**?

Text

Iowa State University of Science and

Technology is a public land-grant

research university in Ames, Iowa.

Tags

- [Organization] Iowa State University of Science and Technology
- [Location] Ames
- [Location] lowa

What is **Named Entity Recognition**?

What is **Named Entity Recognition**?

IOWA STATE UNIVERSITY

Why WikiNER?

The entities in *Wikipedia* are a good source of tags to recognize WHO, WHERE, and WHAT in a sentence

- Massive in the number of entities of each type (i.e., organization, locations, persons)
- Being evolving and expanding
- Applicable to different domains

Use the **top ranked** *Wikipedia* **Named Entities** to label a sentence with a **brute-force approach**

How did we build WikiNER?

- Retrieve Wikipedia top ranked NEs from Wikidata API
- 2. Build a **brute-force model** to perform NER tagging
- 3. **Evaluate** the model using a tagged *corpus* as a benchmark

Retrieve Wikipedia top ranked NEs from Wikidata API

 download .csv file from <u>Wikidata QRank project</u> with ordered Wikipedia entities

Entity	QRank
Q178995	219893853
Q635	113674399
Q866	93345399

2. call *Wikidata* API for each entity to retrieve its **English label**https://www.wikidata.org/w/api.php?action=wbgetentities&ids=Q178995&languages=en&format=json&props=labels

create an output .csv file with the top k Named Entities labels

Entity	QRank	Label
Q178995	219893853	HTTP cookie
Q635	113674399	Cleopatra
Q866	93345399	YouTube

Retrieve Wikipedia top ranked NEs - with aliases

```
def top_N_NEs(
    input_csv_ranking_file_path: str,
    output_csv_file_path: str,
    top_N=1000,
    aliases=False
```

The function we implemented to extract the labels

• It is also possible to retrieve all the **aliases** of a Named Entity with the same API, **increasing** the **performances**!

https://www.wikidata.org/w/api.php?action=wbgetentities&ids=Q178995&languages=en&format=json&props=labels|aliases

Entity	QRank	Label
Q178995	219893853	HTTP cookie
Q178995	219893853	cookie
Q178995	219893853	web cookie
Q178995	219893853	browser cookie
Q178995	219893853	internet cookie
Q178995	219893853	cookies
Q635	113674399	Cleopatra
Q635	113674399	Cleopatra VII Philopator
Q635	113674399	Cleopatra VII
Q866	93345399	YouTube
Q866	93345399	YT

Build a brute-force model to perform NER tagging

```
def brutal_force_NER(
    sentence_tokens: list[str],
    NE_list: list[str],
    tokenizer,
    scheme="BIO"
):
```

The function we implemented to tag a sentence using the Wikipedia NEs with brute-force approach

- 1. Find all the **not-overlapping** *Matches** in the sentence using all the NEs (brute-force)
- 2. Represent this matches according to the specified tagging scheme (i.e., *BIO*, *BILOU*)

*A *Match* is an **occurrence** of a Named Entity in the sentence, represented as a tuple of **indexes** (*a*,*b*): *a* is the **start** index, *b* is the (exclusive) **ending** index

Example of **brute-force tagging**

sentence_tokens = ['I', 'went', 'to', 'school', 'at', 'lowa', 'State', 'University', 'in', 'Fall', '2022']

NE_list = ['Microsoft', 'Iowa State', 'Fall 2022', 'Deep Learning', 'Iowa State University', '2022', 'school']

Matches

BIO and **BILOU** representations

Challenge #1: Overlapping NEs

 We solved the problem of overlapping Named Entities prioritizing always the longest Named Entity

```
sentence_tokens = ['I', 'went', 'to', 'school', 'at', 'lowa', 'State', 'University', 'in', 'Fall', '2022']

NE_list = ['Microsoft', 'lowa State', 'Fall 2022', 'Deep Learning', 'lowa State University', '2022', 'school']
```


overlapping *Matches*

not-overlapping Matches

BIO representation

Supported tagging schemes

Our WikiNER model supports 2 different tagging schemes:

BIO:

B - Beginning

l – Inside

O – Outside

BILOU:

B - Beginning

l – Inside

L – Last

O – Outside

U – Unit

Challenge #2: Entity type (LOC, PER, ORG, MISC, etc.)

 NER problem also expects to find the type of each Named Entity (LOCation, PERson, ORGanization, etc.)

But this is impossible using just a the Wikidata API, since it does not
provide the type of an entity

 Solution: using another model (like BERT) to also find the type of NEs (to be continued)

Evaluate the model using a tagged corpus as benchmark

- Use CoNLL2003 dataset as benchmark
 - It contains a corpus of sentences whose
 Named Entities have been tagged in their respective types using the BIO scheme
- Use the WikiNER model to tag its sentences
- Evaluate the performances comparing the predicted tags with the real tags in the corpus (ignoring the NE type)

token	POS tag	chunk tag	NER tag
EU	NNP	B-NP	B-ORG
rejects	VBZ	B-VP	0
German	JJ	B-NP	B-MISC
call	NN	I-NP	0
to	то	B-VP	0
boycott	VB	I-VP	0
British	JJ	B-NP	B-MISC
lamb	NN	I-NP	0
		0	0
Peter	NNP	B-NP	B-PER

Evaluation metrics

Precision

$$\frac{True\ Positives}{True\ Positives + False\ Positives}$$

Recall

$$\frac{\textit{True Positives}}{\textit{True Positives} + \textit{False Negatives}}$$

F1-score

$$2*\frac{Precision*Recall}{Precision+Recall}$$

Among all the predicted NEs, how many of them were true NEs

Among all the real NEs, how many of them we were able to **predict**

Harmonic mean between *precision* and *recall*

WikiNER performances on CoNLL2003 dataset

- We used segeval library to compute precision, recall and F1-score
- Compare the results using different numbers of Wikipedia top NEs

#NEs	Precision	Recall	F1-score
100	0.94	0.05	0.09
1,000	0.89	0.14	0.24
10,000	0.26	0.22	0.24

#NEs	Precision	Recall	F1-score
100	0.82	0.06	0.11
1,000	0.44	0.17	0.25
10,000	0.15	0.29	0.20

with **no** aliases

with aliases

Timing problems

- WikiNER is a very time-consuming approach!
 - extracting Wikipedia NEs
 - executing the brute-force model

#NEs	time	
100	~20s	
1,000	~3min	
10,000	~30min	

#NEs	no aliases	with aliases
100	~5min	~20min
1,000	~30min	~2h
10,000	~3h	~12h

estimated times to extract NEs

estimated times to execute WikiNER on CoNLL2003

Conclusions

- WikiNER brutal force model is ineffective to perform a NER task
 - Low performances (max recall: 29% 10,000 NEs and aliases)
 - Time-consuming (it takes hours)
 - No NEs types
- Two issues in Wikipedia entities:
 - The presence of **more NEs** naturally **decreases precision** (although **increases recall**)
 - The Wikipedia entities are not universal enough to capture benchmark entities
- Better to resort to more sophisticated models such as BERT (next step)

Questions?

Thank You!