

Tissue Regeneration

Tissue Regeneration

Human Tissue Regeneration Potential

1% of our body weight/day

Human Tissue Regeneration Potential

1% of our body weight/day

Dynamic States of Tissues
Tissue Homeostasis
Tissue Repair
Tissue Formation

Cell proliferation or replenishment

Tissue or Cell production process	Species	Characteristic Time (days)
Erythropoiesis	rat	2.5
Myelopoiesis	rat	1.4
Hematopoiesis	human	2.3
Small intestinal epithelium	human rate	4-6 1-2
Epidermis	human	7-100
Corneal epithelium	human	7
Lymphatic cells	rat (thymus) rat (spleen)	7 15
Epithelial cells	rat (vagina) human (cervix)	3.9 5.7
Spermatogonia	human	74
Renal intestinal cells	mouse	165
Hepatic cells	rat	400-500

Aitken and Bagli, Nature

Tissue Repair

Tissue Repair – wound healing

Tissue Repair – wound healing

Tissue Repair – wound healing

Tissue dynamics differ in adult and fetal wound healing

Adult	Fetal
Slow	Rapid
Imperfect	Efficient, minimal scarring
Contraction via myofibroblasts	Contraction via fibroblasts
Epithelial migration	Epithelial purse string
High inflammation	Minimal inflammation
High epithelial proliferation	Low epithelial penetration
Bundled collagen	"Basketweave" collagen
ECM – fibronectin and tenasin	ECM – Collagen III and hyaluronic acid
High tension	Low tension

Actin "purse-string" closure

Collagen alignment

Xenograft Allograft Autograft

Xenograft Allograft Autograft

Human Skin Human skin equivalent

Xenograft Allograft Autograft

http://www.burnsurvivor.com/skin_substitutes.html www.drshingledecker.com

Pore size variation

$$\frac{\underline{t}_{\underline{d}}}{t_{s}} \approx 1$$

 t_d - template degradation rate t_s - normal wound healing rate

Tissue Dynamics

Tissue Homeostasis Tissue Repair

Tissue Formation

Cellular-fate processes

- 1. Cell replication
- 2. Cell differentiation
- 3. Cell death
- 4. Cell motion
- 5. Cell adhesion

Next Module

Cell and Tissue Engineering: Morphogenesis

