

According to Fáry's theorem, any planar graph can be drawn as a planar straight-line graph. This problem studies which of these straight-line graphs are the smallest.

Given a planar graph G let S_G be the set of all straight-line embeddings of G where the shortest edge has length 1. Given an embedding E, let $\ell(E)$ be the average edge length, and let $f(G) = \inf{\{\ell(E) : E \in S_G\}}$.

Figure 1: Conjectured minimal embeddings showing $f(K_4) \leq \frac{3\sqrt{3}+3}{6}$ and $f(K_5 \setminus \{e\}) \leq \frac{3\sqrt{3}+4+\sqrt{28}}{9}$.

Figure 2: Smallest (?) grids that contain all planar simple graphs on n vertices are $[3] \times [4]$ for n = 5 and $[5] \times [4]$ for n = 6.

Question. Given some graph G, what is f(G)?

Related.

- 1. How does $\max\{f(G): G \text{ is planar with } n \text{ vertices}\}\$ grow with respect to n?
- 2. What if the vertices must be on \mathbb{Z}^2 ? What is the smallest square that can contain all planar graphs with n vertices?
- 3. What is the smallest nmk such that K_n can be drawn in $[n] \times [m] \times k$ with straight-line edges and no edges intersecting?
- 4. Is it always possible to write a planar graph as a straight-line graph with integer edge lengths? If not, when is this possible? If so, what's the minimal edge sum?
- 5. What is the longest non-self-intersecting polygonal chain that can fit in an $n \times m$ grid?
- 6. What is the supremum of $\ell(E)$ over all straight-line embeddings with longest edge at most 1? Are these just rescalings of the original case?

References.

Problem 74.

Problem 85.

https://oeis.org/A000109