Homework 4

Thomas Kim tsk389 51835

David Munoz dam2989 51840

 $\ensuremath{\mathsf{CS331}}$ Algorithms and Complexity

Problem Q1. Given n samples and unambiguous ImgComp, design a divide and conquer algorithm which can report whether more than 50% of samples belong to a single class. Prove correctness and runtime.

Problem Q2. FindLocalMinimum(G)

- 1: Define quad(v) to be (the set of vertices in the same quadrant of G as v) unioned with (any elements of B which border the previous set).
- 2: Let B, C, T, TC be defined on G as specified in the problem.
- 3: $minVert \leftarrow min_{v \in S \cup T} F(v)$
- 4: if $minVert \in S \lor minVert \in TC$ then
- 5: return minVert
- 6: else
- 7: return FindLocalMinimum(quad(minVert))
- 8: end if

Lemma 1: For all such grids G, there exists a local minimum.

Proof. There are a finite number of squares each with unique weight w_i .

Let the set $W = \{w_1, w_2, ..., w_i\}$

By the well-ordering principle, there exists a least element of W.

By definition, this least element is less than each of its neighbors, because it is less than every other weight in the set.

Thus, it is a local (global) minimum.

Base case: Note that there are no bases cases by lemma 1.

Proof of correctness:

Proof.

Proof of runtime:

Proof. The recurrence associated with this algorithm is $T(n) = T(\frac{n}{2}) + \theta(n)$

Expanding this recurrence, $T(n) = T(\frac{n}{4}) + c\frac{n}{2} + n$

$$= \sum_{i=1}^{n} c_{\frac{n}{2^i}}$$

Therefore the total runtime is $\theta(n)$.

Problem Q3(a).

In this example, the middle node will be chosen and the two side nodes discarded for a total weight of 3.

If the middle node was discarded and the two side nodes chosen, the total weight would have been 4 > 3.

Problem Q3(b).

In this example, the maximum weight independent set includes nodes v_1 and v_4 , but 1 is odd and 4 is even.

Problem Q3(c). Let the set of independent vertices $S_i \subset \{v_1, v_2, v_3, \dots, v_i\}, i \leq n$ have some weight W_i

Let each vertex v_i have some weight w_i

Suppose S_i includes vertex v_i . S_i can therefore cannot include v_{i-1} , so $W_i = W_{i-2} + w_i$

Suppose S_i does not include v_i . $W_i = W_{i-1}$

Base case(s): $W_0 = 0, W_1 = w_1$

Algorithm: $W_i = max(W_{i-1}, W_{i-2} + w_i)$

return W_n

Memoization: W_j only has to be computed once for each unique j.

Proof of correctness:

Proof. Suppose W_n is not the maximum weight.

This means either W_{i-1} or W_{i-2} wasn't maximized.

This continues, with some W_{i-k} not being maximized.

However, W_0 and W_1 are always maximized by definition.

Thus, W_{i-k} , k = i must be maximized.

This contradicts the original assumption, since each step is guaranteed to maximize the weight if the previous step is maximized.

Proof of runtime:

Proof. W_0, W_1, \ldots, W_n will all be calculated exactly once due to memoization.

The time required to calculate W_i is O(1), since it is a single comparison and a single addition.

Therefore, the total complexity is O(n).

3