

SEQUENCE LISTING

<10> Falco, Saverio Carl
Famodu, Layo
Rafalski, Jan A.
Ramaker, Michael
Tarczynski, Mitchell C.
Thorpe, Catherine

<120> PLANT METHIONINE SYNTHASE GENE AND METHODS FOR INCREASING THE METHIONINE CONTENT OF THE SEEDS OF PLANTS

<130> BB-1067-B

<140>

<141>

<150> 08/703, 829
<151> August 27, 1996

<160> 55

<170> Microsoft Office 97

<210> 1
<211> 2639
<212> DNA
<213> Zea mays

<400> 1

caccacccac	ctcccaactcc	cagttcaccc	cgtcgccctc	ggcgccacca	ctcctcggtcc	60
cccggcgcta	ctccccccgct	ccacgggtcca	aggaaagatg	gcgtccata	ttgttggata	120
ccctcgcatg	ggcccccaaga	gggagctcaa	gtttgccttg	gagtctttct	gggatggaa	180
gagcagcgcc	gaggatttgg	agaaaagttgc	cactgacctg	aggcttagca	tctggaaagca	240
aatgtcagaa	gctgggatca	agtacattcc	cagcaatacc	tcgtcgtaact	acgaccaggt	300
tcttgatacc	acggccatgc	ttggcgctgt	cccagagcgc	tactcttgg	ctggaggcga	360
gattggcttg	agcacctact	tctctatggc	caggggaaat	gccactgtcc	ctgccatgg	420
gatgaccaag	tggtttgata	caaactacca	ctttattgtc	cctgaacttg	gtccaagcac	480
caagttcaca	tacgcttctc	acaaggctgt	ttctgagttac	aaggaggcaa	aggcgctcgg	540
cattgataca	gtcccagtgc	ttgttggacc	agtctcatac	ttgctcctct	ctaagcctgc	600
caagggtgtg	gagaaatctt	tctcttttct	ttcacttctt	ggttagcattc	ttcccatctta	660
caaggaggtt	gttgctgagc	tgaaggcagc	tggtgcttca	tggattcagc	ttgatgagcc	720
tacccttgtt	aaagaccttg	atgctcacga	attggccgca	ttctcttcag	catatgctga	780
actggagtca	tcgttctctg	gattgaatgt	gcttatcgag	acataacttcg	ctgatattcc	840
tgctgagtcc	tacaagaccc	tcacatcatt	gagtgggtgt	actgcttacg	gtttcgatct	900
tatccgtgga	gccaagaccc	ttgatcttat	caggagcagc	ttccctctg	ggaagtacct	960
cttcgctggt	gtttagatgt	gacgcaacat	ttgggctgat	gatcttgcgt	catctcttag	1020
cactcttcat	tctcttgagg	ctgtgctgg	caaggacaaa	cttgtgtgt	caaccccttg	1080
ctcaactgatg	cacaccgctg	ttgaccttgc	aaatgagact	aagctggatg	atgagattaa	1140
gtcatggctt	gcatttgctg	ccaaaaaggt	tgtttaggtt	aatgcccttg	ccaaggcttt	1200
ggcaggccaa	aaggatgagg	tctactttgc	agccaatgct	gctgctcagg	cctcaaggag	1260
atcatcgccc	agggtgacaa	acgaggaggt	ccagaaggct	gcagctgctt	tgaggggatc	1320
tgaccaccgc	cgtttctacca	ctgtttctgc	tagattggat	gctcagcaga	aaaagctcaa	1380
cttccctgtc	cttcccacaa	ccacaattgg	ttcattccct	cagactgtgg	aactcaggag	1440
ggttcgccgt	gaatacaagg	caaagaagat	caccgaggac	gaatacatca	gtccatcaa	1500
ggaagaaatc	agcaagggtcg	tcaagatcca	agaggagctt	gacattgtat	tgcttgtca	1560
tggagagcca	gagagaaatg	acatggttga	gtacttcgtt	gagcaattat	ctggtttgc	1620
gttcactgcc	aacggatggg	tgcaatccta	tggatcacgc	tgtgtgaagc	cacccttatt	1680
ctacgggtat	gtcagccggc	cgaacccat	gactgtttc	tggtccaaga	tggcacagag	1740
catgaccct	cgtcccatga	aggaatgtt	gactggcccg	gtcacaatcc	tcaactggtc	1800
attcgtcagg	aacgaccagc	ctaggttga	gacatgtac	caaatacttc	ttgcaatcaa	1860
aaaggaggtt	gaggatcttg	aggctgctgg	tattcaggtg	atccagatcg	atgaggcagc	1920
tctaaggag	ggtctgcccac	tacgcaagtc	agagcatgca	ttctacccatgg	actggctgt	1980
ccactcttcc	aggatcacca	actgcggagt	ccaggacacc	acccagatcc	acaccacat	2040

gtgctactcc aacttcaacg acatcatcca ctccatcatc gacatggatg ccgatgtat 2100
 cacgatcgag aactcccggt ctgacgagaa gctactgtcc gtcttccgtg agggtgtgaa 2160
 gtacggagct ggcattggcc ctgggtgtctc cgacatccac tctccttagga ttccctccac 2220
 agaggagatc gcagaccgcg tcgagaagat gctcgccgtg ttcgacacca acatcctctg 2280
 ggtgaaccct gactgtggtc tcaagacacg caagtacacg gaggtcaagc ccgcctgac 2340
 caacatggtc tcggccacca agctcatccg caccagctt gccagcgcga aatgaggtcg 2400
 tttgatagct ccatggtctg atagcgccga atgagccagt tgtttgaat aattgggtg 2460
 ttacccctg ttccatggtg ttagtgttag gtagcctct cattggtgag atacgcccgtt 2520
 tcaagatgtg ttctaagtt ggagtgtgtg tttcccttg ggctatgtt ctgggggtat 2580
 gtgtgtgctt tggtaataaa cagaaatgaa atatgcagtc ttccaattga aaaaaaaaaa 2639

<210> 2
 <211> 765
 <212> PRT
 <213> Zea mays

<400> 2
 Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
 1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
 20 25 30

Asp Leu Glu Lys Val Ala Thr Asp Leu Arg Ser Ser Ile Trp Lys Gln
 35 40 45

Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Ser Ser Tyr
 50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Glu
 65 70 75 80

Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly Leu Ser Thr Tyr Phe Ser
 85 90 95

Met Ala Arg Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
 100 105 110

Phe Asp Thr Asn Tyr His Phe Ile Val Pro Glu Leu Gly Pro Ser Thr
 115 120 125

Lys Phe Thr Tyr Ala Ser His Lys Ala Val Ser Glu Tyr Lys Glu Ala
 130 135 140

Lys Ala Leu Gly Ile Asp Thr Val Pro Val Leu Val Gly Pro Val Ser
 145 150 155 160

Tyr Leu Leu Leu Ser Lys Pro Ala Lys Gly Val Glu Lys Ser Phe Ser
 165 170 175

Leu Leu Ser Leu Leu Gly Ser Ile Leu Pro Ile Tyr Lys Glu Val Val
 180 185 190

Ala Glu Leu Lys Ala Ala Gly Ala Ser Trp Ile Gln Leu Asp Glu Pro
 195 200 205

Thr Leu Val Lys Asp Leu Asp Ala His Glu Leu Ala Ala Phe Ser Ser
 210 215 220

Ala Tyr Ala Glu Leu Glu Ser Ser Phe Ser Gly Leu Asn Val Leu Ile
 225 230 235 240

Glu Thr Tyr Phe Ala Asp Ile Pro Ala Glu Ser Tyr Lys Thr Leu Thr
 245 250 255

Ser Leu Ser Gly Val Thr Ala Tyr Gly Phe Asp Leu Ile Arg Gly Ala
 260 265 270
 Lys Thr Leu Asp Leu Ile Arg Ser Ser Phe Pro Ser Gly Lys Tyr Leu
 275 280 285
 Phe Ala Gly Val Val Asp Gly Arg Asn Ile Trp Ala Asp Asp Leu Ala
 290 295 300
 Ala Ser Leu Ser Thr Leu His Ser Leu Glu Ala Val Ala Gly Lys Asp
 305 310 315 320
 Lys Leu Val Val Ser Thr Ser Cys Ser Leu Met His Thr Ala Val Asp
 325 330 335
 Leu Val Asn Glu Thr Lys Leu Asp Asp Glu Ile Lys Ser Trp Leu Ala
 340 345 350
 Phe Ala Ala Gln Lys Val Val Glu Val Asn Ala Leu Ala Lys Ala Leu
 355 360 365
 Ala Gly Gln Lys Asp Glu Val Tyr Phe Ala Ala Asn Ala Ala Ala Gln
 370 375 380
 Ala Ser Arg Arg Ser Ser Pro Arg Val Thr Asn Glu Glu Val Gln Lys
 385 390 395 400
 Ala Ala Ala Ala Leu Arg Gly Ser Asp His Arg Arg Ser Thr Thr Val
 405 410 415
 Ser Ala Arg Leu Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Val Leu
 420 425 430
 Pro Thr Thr Thr Ile Gly Ser Phe Pro Gln Thr Val Glu Leu Arg Arg
 435 440 445
 Val Arg Arg Glu Tyr Lys Ala Lys Lys Ile Thr Glu Asp Glu Tyr Ile
 450 455 460
 Ser Ala Ile Lys Glu Glu Ile Ser Lys Val Val Lys Ile Gln Glu Glu
 465 470 475 480
 Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495
 Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Ala Asn
 500 505 510
 Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525
 Tyr Gly Asp Val Ser Arg Pro Asn Pro Met Thr Val Phe Trp Ser Lys
 530 535 540
 Met Ala Gln Ser Met Thr Pro Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560
 Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575
 Phe Glu Thr Cys Tyr Gln Ile Ala Leu Ala Ile Lys Lys Glu Val Glu
 580 585 590

Asp	Leu	Glu	Ala	Ala	Gly	Ile	Gln	Val	Ile	Gln	Ile	Asp	Glu	Ala	Ala
595							600					605			
Leu	Arg	Glu	Gly	Leu	Pro	Leu	Arg	Lys	Ser	Glu	His	Ala	Phe	Tyr	Leu
610						615					620				
Asp	Trp	Ala	Val	His	Ser	Phe	Arg	Ile	Thr	Asn	Cys	Gly	Val	Gln	Asp
625					630					635			640		
Thr	Thr	Gln	Ile	His	Thr	His	Met	Cys	Tyr	Ser	Asn	Phe	Asn	Asp	Ile
					645				650			655			
Ile	His	Ser	Ile	Ile	Asp	Met	Asp	Ala	Asp	Val	Ile	Thr	Ile	Glu	Asn
					660			665			670				
Ser	Arg	Ser	Asp	Glu	Lys	Leu	Leu	Ser	Val	Phe	Arg	Glu	Gly	Val	Lys
					675			680			685				
Tyr	Gly	Ala	Gly	Ile	Gly	Pro	Gly	Val	Tyr	Asp	Ile	His	Ser	Pro	Arg
					690		695			700					
Ile	Pro	Ser	Thr	Glu	Glu	Ile	Ala	Asp	Arg	Val	Glu	Lys	Met	Leu	Ala
					705		710			715		720			
Val	Phe	Asp	Thr	Asn	Ile	Leu	Trp	Val	Asn	Pro	Asp	Cys	Gly	Leu	Lys
					725			730			735				
Thr	Arg	Lys	Tyr	Thr	Glu	Val	Lys	Pro	Ala	Leu	Thr	Asn	Met	Val	Ser
					740			745			750				
Ala	Thr	Lys	Leu	Ile	Arg	Thr	Gln	Leu	Ala	Ser	Ala	Lys			
					755			760			765				
<210>	3														
<211>	2443														
<212>	DNA														
<213>	Glycine max														
<220>															
<221>	unsure														
<222>	(460)														
<220>															
<221>	unsure														
<222>	(2398)														
<220>															
<221>	unsure														
<222>	(2442)														
<400>	3														
ccctcagaag	cgaagaagaa	gccacagaga	accagtctcc	tactctctct	cacccacaag								60		
aaaaatggca	tctcacatcg	ttggatacc	ccgcatgggt	cccaagagag	agctcaagtt								120		
cgctctcgag	tctttctgg	atggcaagag	cagcgccgag	gatttgcaga	aggtggctgc								180		
tgatctcagg	tcatccatct	ggaagcagat	ggctggtgct	gggatcaagt	acatccccag								240		
caacactttc	tcgttctatg	accagctgct	cgacgccacc	gccaccctcg	gtgccgtccc								300		
ccccaggtac	ggctggaccg	gcggcgagat	tggattcgac	acctacttct	ccatgccag								360		
aggtaatgt	accgtgcctg	ctatggagat	gaccaagtgg	ttcgacacca	actaccactt								420		
tattgtccct	gaattgggccc	ctgatgtgaa	cttcacctan	gcttctcaaa	aggctgttga								480		
tgaatacaca	gaggccaagg	cgcttgagt	ggataccatt	cccgtactcg	ttggccctgt								540		
tacataactt	ttgctctcca	agcctgccaa	gggagtcgag	aaatcctttt	ctctcctctc								600		
tctccttccc	aaggttcttg	ctgtctacaa	ggaagttatt	gctgaccta	aggcagctgg								660		
tgcttcatgg	attcaatttg	atgagcctac	ccttgttctg	gaccttgaat	ctcacaagtt								720		
gcaagctttc	actgacgcat	atgcagaact	tgcacctgct	ttgtctgatc	tgaatgttct								780		

tgttgtagacc	tactttgctg	acatccctgc	tgaaggcgtag	aagaccctca	catctctgaa	840
tggcgtaact	gcataatgggt	ttgattttgt	ccgttggaaacc	catactcttgc	atttgatcaa	900
gggtggattt	cccagtggaa	aataccttctt	tgctggaggt	gttgatggaa	ggaacatctg	960
ggccaaatgac	cttgcgtcctt	ctctcaactac	attgcagggt	cttgaggggca	ttgtgggcaa	1020
agataagctt	gttgtgtcca	cctcctcctc	ccttcttcac	actgctgttgc	atcttggtaa	1080
cgagaccaag	ttggatgacg	agatcaagtc	atggctagca	tttgctgcac	aaaaaattgt	1140
tgaagttAAC	gcattggcta	aggcattgtc	tggcaacaag	gatgtggcct	tcttctctgc	1200
taatgctgca	gctcaggcctt	caaggaagtc	ctctccaaga	gtgaccaacg	aggctgttca	1260
gaaggctgct	gctgcattga	agggttcaga	tcatcgccgt	gcaacaaaatg	tcagtgccag	1320
actggatgct	caacaaaaga	agctcaacct	tccaatcctt	ccaaccacca	ctattggatc	1380
ttccctcag	actgttagaac	tgaggagggt	acgcccgtgag	ttcaaggcta	acaagatctc	1440
cgaggaagag	tatgttaagt	caattaagga	ggaaattcgc	aaagttgttgc	aacttcaaga	1500
agagcttgc	attgatgttc	ttgttcatgg	agaaccagag	agaaatgata	tggttgagta	1560
ttccggtgag	caattgttag	gcttgcctt	cactgttaat	gggtgggtgc	aatcctatgg	1620
ttcccggtgt	gtgaagccac	caatcatcta	tggtgatgtg	agccgcccac	agccaatgac	1680
tgtttctgg	tcatctctgg	ctcagagctt	taccaagcgc	ccaatgaagg	gaatgcttac	1740
cggccctgtt	accattctca	actggccctt	tgtagaaat	gaccaaccta	gatctgagac	1800
cacccaccag	attgctttgg	ctatcaagga	cgaagtggag	gacccgtaaa	aggctggcat	1860
cactgttatac	caaattgttg	aagctgctt	gagagagggt	ctgccactga	ggaaatcaga	1920
acaagctcac	tacttggact	ggctgtccca	tgccttcaga	atcaccaatg	ttgggtgtca	1980
ggataccact	cagatccaca	cccacatgtg	ctactccaa	ttcaacgaca	tcatccactc	2040
catcatcgac	atggacgctg	atgttatac	cattgagaac	tctcgctccg	atgagaagct	2100
cctgtcagtc	ttccgtgaag	gtgtgaagta	tggtgctgga	attggccctg	gtgtctatga	2160
catccactcc	ccaagaatac	caccaactga	agaaatcgct	gacagaatca	ataagatgct	2220
tgcagtgctc	gagaagaaca	tcttgggt	caaccctgac	tgtggtctca	agacccgcaa	2280
gtacactgaa	gtgaagccgc	cctcacaaaa	catggttgcc	gcagaaaaac	tcatccgtta	2340
cgaacttgcc	aagtgaatgg	tataagaaag	tagaatctac	aagttcaatg	ggtccgcntt	2400
taaaatacac	caaagaaaaaa	tttcaaaaat	gggttggta	ana		2443

<210> 4
 <211> 763
 <212> PRT
 <213> Glycine max

<220>
 <221> UNSURE
 <222> (132)

<400> 4																										
Met	Ala	Ser	His	Ile	Val	Gly	Tyr	Pro	Arg	Met	Gly	Pro	Lys	Arg	Glu											
1					5					10						15										
Leu	Lys	Phe	Ala	Leu	Glu	Ser	Phe	Trp	Asp	Gly	Lys	Ser	Ser	Ala	Glu											
											25					30										
Asp	Leu	Gln	Lys	Val	Ala	Ala	Asp	Leu	Arg	Ser	Ser	Ile	Trp	Lys	Gln											
											35					40				45						
Met	Ala	Gly	Ala	Gly	Ile	Lys	Tyr	Ile	Pro	Ser	Asn	Thr	Phe	Ser	Phe											
						50					55					60										
Tyr	Asp	Gln	Leu	Leu	Asp	Ala	Thr	Ala	Thr	Leu	Gly	Ala	Val	Pro	Pro											
											65					70				75		80				
Arg	Tyr	Gly	Trp	Thr	Gly	Gly	Glu	Ile	Gly	Phe	Asp	Thr	Tyr	Phe	Ser											
											85					90				95						
Met	Ala	Arg	Gly	Asn	Ala	Thr	Val	Pro	Ala	Met	Glu	Met	Thr	Lys	Trp											
											100					105				110						
Phe	Asp	Thr	Asn	Tyr	His	Phe	Ile	Val	Pro	Glu	Leu	Gly	Pro	Asp	Val											
											115					120				125						

Asn	Phe	Thr	Xaa	Ala	Ser	Gln	Lys	Ala	Val	Asp	Glu	Tyr	Lys	Glu	Ala
130						135					140				
Lys	Ala	Leu	Gly	Val	Asp	Thr	Ile	Pro	Val	Leu	Val	Gly	Pro	Val	Thr
145				150						155					160
Tyr	Leu	Leu	Leu	Ser	Lys	Pro	Ala	Lys	Gly	Val	Glu	Lys	Ser	Phe	Ser
				165					170					175	
Leu	Leu	Ser	Leu	Leu	Pro	Lys	Val	Leu	Ala	Val	Tyr	Lys	Glu	Val	Ile
				180				185					190		
Ala	Asp	Leu	Lys	Ala	Ala	Gly	Ala	Ser	Trp	Ile	Gln	Phe	Asp	Glu	Pro
	195					200					205				
Thr	Leu	Val	Leu	Asp	Leu	Glu	Ser	His	Lys	Leu	Gln	Ala	Phe	Thr	Asp
	210				215					220					
Ala	Tyr	Ala	Glu	Leu	Ala	Pro	Ala	Leu	Ser	Asp	Leu	Asn	Val	Leu	Val
	225				230				235			240			
Glu	Thr	Tyr	Phe	Ala	Asp	Ile	Pro	Ala	Glu	Ala	Tyr	Lys	Thr	Leu	Thr
	245					250					255				
Ser	Leu	Asn	Gly	Val	Thr	Ala	Tyr	Gly	Phe	Asp	Leu	Val	Arg	Gly	Thr
	260				265						270				
His	Thr	Leu	Asp	Leu	Ile	Lys	Gly	Gly	Phe	Pro	Ser	Gly	Lys	Tyr	Leu
	275				280					285					
Phe	Ala	Gly	Val	Val	Asp	Gly	Arg	Asn	Ile	Trp	Ala	Asn	Asp	Leu	Ala
	290					295					300				
Ala	Ser	Leu	Thr	Thr	Leu	Gln	Gly	Leu	Glu	Gly	Ile	Val	Gly	Lys	Asp
	305				310				315			320			
Lys	Leu	Val	Val	Ser	Thr	Ser	Ser	Ser	Leu	Leu	His	Thr	Ala	Val	Asp
				325				330			335				
Leu	Val	Asn	Glu	Thr	Lys	Leu	Asp	Asp	Glu	Ile	Lys	Ser	Trp	Leu	Ala
	340					345					350				
Phe	Ala	Ala	Gln	Lys	Ile	Val	Glu	Val	Asn	Ala	Leu	Ala	Lys	Ala	Leu
	355					360					365				
Ser	Gly	Asn	Lys	Asp	Val	Ala	Phe	Phe	Ser	Ala	Asn	Ala	Ala	Ala	Gln
	370					375					380				
Ala	Ser	Arg	Lys	Ser	Ser	Pro	Arg	Val	Thr	Asn	Glu	Ala	Val	Gln	Lys
	385				390				395			400			
Ala	Ala	Ala	Ala	Leu	Lys	Gly	Ser	Asp	His	Arg	Arg	Ala	Thr	Asn	Val
				405				410			415				
Ser	Ala	Arg	Leu	Asp	Ala	Gln	Gln	Lys	Lys	Leu	Asn	Leu	Pro	Ile	Leu
	420					425					430				
Pro	Thr	Thr	Thr	Ile	Gly	Ser	Phe	Pro	Gln	Thr	Val	Glu	Leu	Arg	Arg
	435					440					445				
Val	Arg	Arg	Glu	Phe	Lys	Ala	Asn	Lys	Ile	Ser	Glu	Glu	Glu	Tyr	Val
	450					455					460				

Lys Ser Ile Lys Glu Glu Ile Arg Lys Val Val Glu Leu Gln Glu Glu
 465 470 475 480

Leu Asp Ile Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met
 485 490 495

Val Glu Tyr Phe Gly Glu Gln Leu Ser Gly Phe Ala Phe Thr Val Asn
 500 505 510

Gly Trp Val Gln Ser Tyr Gly Ser Arg Cys Val Lys Pro Pro Ile Ile
 515 520 525

Tyr Gly Asp Val Ser Arg Pro Lys Pro Met Thr Val Phe Trp Ser Ser
 530 535 540

Leu Ala Gln Ser Phe Thr Lys Arg Pro Met Lys Gly Met Leu Thr Gly
 545 550 555 560

Pro Val Thr Ile Leu Asn Trp Ser Phe Val Arg Asn Asp Gln Pro Arg
 565 570 575

Ser Glu Thr Thr Tyr Gln Ile Ala Leu Ala Ile Lys Asp Glu Val Glu
 580 585 590

Asp Leu Glu Lys Ala Gly Ile Thr Val Ile Gln Ile Asp Glu Ala Ala
 595 600 605

Leu Arg Glu Gly Leu Pro Leu Arg Lys Ser Glu Gln Ala His Tyr Leu
 610 615 620

Asp Trp Ala Val His Ala Phe Arg Ile Thr Asn Val Gly Val Gln Asp
 625 630 635 640

Thr Thr Gln Ile His Thr His Met Cys Tyr Ser Asn Phe Asn Asp Ile
 645 650 655

Ile His Ser Ile Ile Asp Met Asp Ala Asp Val Ile Thr Ile Glu Asn
 660 665 670

Ser Arg Ser Asp Glu Lys Leu Leu Ser Val Phe Arg Glu Gly Val Lys
 675 680 685

Tyr Gly Ala Gly Ile Gly Pro Gly Val Tyr Asp Ile His Ser Pro Arg
 690 695 700

Ile Pro Pro Thr Glu Glu Ile Ala Asp Arg Ile Asn Lys Met Leu Ala
 705 710 715 720

Val Leu Glu Lys Asn Ile Leu Trp Val Asn Pro Asp Cys Gly Leu Lys
 725 730 735

Thr Arg Lys Tyr Thr Glu Val Lys Pro Pro Ser Gln Asn Met Val Ala
 740 745 750

Ala Ala Lys Leu Ile Arg Tyr Glu Leu Ala Lys
 755 760

<210> 5
 <211> 2296
 <212> DNA
 <213> Nicotiana plumbaginifolia

<400> 5
atggcatctc acattgttgg atatccccgt atgggcccaa agagagagct gaaatttgct 60
ctcgagtctt tctgggatgg gaagaggcgc tgaggacttgc aagaagggtgg ctgcagacct 120
aaggcttcc atctggaaac agatggctga tgctggcatc aagtacatcc ccagcaacac 180
attctttac tatgatcagg tgcttgacac aactgcaatg ctcgggtctg tcccggttag 240
gtacaattgg gctgggtggtg agatagcatt tgacacttac ttctccatgg ccagagggaaa 300
tgcctctgtc cctgctatgg agatgaccaa gtggtttgac accaactacc acttcattgt 360
ccctgagttg ggacctgatg ttaactttc ttatgcttct cacaaggcag tagatgagta 420
caaagaggcc aaggggcttg gtgtagacac gttccagtc cttattggc cagtctcata 480
cttggttgcta tccaaacactg ctaagggtgt tgagaaatcc ttccctctt tgcacttct 540
tgacaaagtc cttccaatct acaaggaagt tattgcagaa ttgaaggctg ctggtgcttc 600
ttggattcag tttgatgaac ctacacttgt gttggatctc caagctcacc aattggaagc 660
cttcactaag gcctatgccg agttggaaatc atctctgtct ggtcttaatg ttctcactga 720
aacctacttc gctgacgtcc ctgctgaagc attcaaaacc ctcactgct tgaagggagt 780
tactgcctt ggtttgact tggttcgtgg agtcagacc cttgatttga tcaaagggtgg 840
cttcccttca ggcaagtact tggggctgg agtggtcgac ggaaggaaca tctggcaaaa 900
tgatcttgc gcatcttta acctcctgca atctctttag ggtatttttg gaaaagacaa 960
actagttgtc tccacatctt gctcaattct tcataactgt gttgatcttgc tcaatgagac 1020
taagctagat gatgaaatca agtcatggtt ggcgtttgtc gccaaaaaag tagttgaagt 1080
taacgctttg gccaaaggcat tggctggtca caaggatgag gcattcttct ctgcaaatgc 1140
taccgctcag gcttccagga aatcctctcc aagagtgaca aatgaagctg tccaaaaggc 1200
tgctgctgca cttaagggtt ctgaccaccg ccgtgctaca aatgtcagtt ctagacttga 1260
tgcccaacaa aagaaactta acctcccagt tctcccaaca accaccatttgc ggtccttccc 1320
tcagacagtg gagcttagga gagttcgccg tgaataacaag gccaagaaga tctctgagga 1380
agagtatgtt aaggccatca aggcaagaaat caagaaggctc gtgtatctcc aggaagagct 1440
cgacatcgat gtcttggttc acggagagcc agagaggaat gatatggtttgc aataacttcgg 1500
agagcagctt tctggtttg ctttcactgc taatggatgg gttcaatctt atggatctcg 1560
atgtgtgaag ccaccaatta tctatggta tgtgagccgc cccaaacccaa tgactgtatt 1620
ctggtccaaa acagctcaga gcatgaccaa gcgcggcaatg aaggaaatgc ttaccggcc 1680
agttaccatt ctcaacttgt ctttgtcag aaatgaccag ccaagatttgc aaacttgcta 1740
ccagattgtt ttggccatta agatgaagt ggaagatttgc gagaaggcag gcatcactgt 1800
tatccaaatt gatgaagctg ctttggagaga ggggttgcct ctaaggaagg ctgagcacgc 1860
tttttacttg aactgggctg tccactcctt cagaatcacc aacgtcggca ttcaagacac 1920
cacccagatc cacacacaca tgtgctactc caacttcaat gacattatcc actctatcat 1980
gacatggat gctgatgtga tcacaattga gaactcacgg tccgatgaga agctcctctc 2040
agttttcagg gagggagttt agtatggtgc tggaaatttgc cctgggtgtct atgacatcca 2100
ctcccttaga ataccatcaa cggaagagat tgctgacaga gttaacaaga tgcttgctgt 2160
cttgacacc aacatcttgt gggtcaaccc agattgtggt ctcaagactc gcaagtacgc 2220
gaggtaaag ccagccctcg agaacatggt ttctgctgcc aaggccatcc gcacccaaact 2280
gccagctcc aagtga 2296

<210> 6

<211> 765

<212> PRT

<213> Nicotiana plumbaginifolia

<400> 6

Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu

1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
20 25 30

Asp Leu Lys Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
35 40 45

Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Ala
65 70 75 80

Arg Tyr Asn Trp Ala Gly Gly Glu Ile Ala Phe Asp Thr Tyr Phe Ser
85 90 95

Met	Ala	Arg	Gly	Asn	Ala	Ser	Val	Pro	Ala	Met	Glu	Met	Thr	Lys	Trp
100										105				110	
Phe	Asp	Thr	Asn	Tyr	His	Phe	Ile	Val	Pro	Glu	Leu	Gly	Pro	Asp	Val
115										120				125	
Asn	Phe	Ser	Tyr	Ala	Ser	His	Lys	Ala	Val	Asp	Glu	Tyr	Lys	Glu	Ala
130										135				140	
Lys	Gly	Leu	Gly	Val	Asp	Thr	Val	Pro	Val	Leu	Ile	Gly	Pro	Val	Ser
145										150				155	
Tyr	Leu	Leu	Leu	Ser	Lys	Pro	Ala	Lys	Gly	Val	Glu	Lys	Ser	Phe	Pro
165										170				175	
Leu	Leu	Ser	Leu	Leu	Asp	Lys	Val	Leu	Pro	Ile	Tyr	Lys	Glu	Val	Ile
180										185				190	
Ala	Glu	Leu	Lys	Ala	Ala	Gly	Ala	Ser	Trp	Ile	Gln	Phe	Asp	Glu	Pro
195										200				205	
Thr	Leu	Val	Leu	Asp	Leu	Gln	Ala	His	Gln	Leu	Glu	Ala	Phe	Thr	Lys
210										215				220	
Ala	Tyr	Ala	Glu	Leu	Glu	Ser	Ser	Leu	Ser	Gly	Leu	Asn	Val	Leu	Thr
225										230				235	
Glu	Thr	Tyr	Phe	Ala	Asp	Val	Pro	Ala	Glu	Ala	Phe	Lys	Thr	Leu	Thr
245										250				255	
Ala	Leu	Lys	Gly	Val	Thr	Ala	Phe	Gly	Phe	Asp	Leu	Val	Arg	Gly	Ala
260										265				270	
Gln	Thr	Leu	Asp	Leu	Ile	Lys	Gly	Gly	Phe	Pro	Ser	Gly	Lys	Tyr	Leu
275										280				285	
Phe	Ala	Gly	Val	Val	Asp	Gly	Arg	Asn	Ile	Trp	Ala	Asn	Asp	Leu	Ala
290										295				300	
Ala	Ser	Leu	Asn	Leu	Leu	Gln	Ser	Leu	Glu	Gly	Ile	Val	Gly	Lys	Asp
305										310				315	
Lys	Leu	Val	Val	Ser	Thr	Ser	Cys	Ser	Leu	Leu	His	Thr	Ala	Val	Asp
325										330				335	
Leu	Val	Asn	Glu	Thr	Lys	Leu	Asp	Asp	Glu	Ile	Lys	Ser	Trp	Leu	Ala
340										345				350	
Phe	Ala	Ala	Gln	Lys	Val	Val	Glu	Val	Asn	Ala	Leu	Ala	Lys	Ala	Leu
355										360				365	
Ala	Gly	His	Lys	Asp	Glu	Ala	Phe	Phe	Ser	Ala	Asn	Ala	Thr	Ala	Gln
370										375				380	
Ala	Ser	Arg	Lys	Ser	Ser	Pro	Arg	Val	Thr	Asn	Glu	Ala	Val	Gln	Lys
385										390				395	
Ala	Ala	Ala	Ala	Leu	Lys	Gly	Ser	Asp	His	Arg	Arg	Ala	Thr	Asn	Val
405										410				415	
Ser	Ser	Arg	Leu	Asp	Ala	Gln	Gln	Lys	Lys	Leu	Asn	Leu	Pro	Val	Leu
420										425				430	

Pro	Thr	Thr	Thr	Ile	Gly	Ser	Phe	Pro	Gln	Thr	Val	Glu	Leu	Arg	Arg
435							440					445			
Val	Arg	Arg	Glu	Tyr	Lys	Ala	Lys	Lys	Ile	Ser	Glu	Glu	Glu	Tyr	Val
450					455						460				
Lys	Ala	Ile	Lys	Ala	Glu	Ile	Lys	Lys	Val	Val	Asp	Leu	Gln	Glu	Glu
465					470					475					480
Leu	Asp	Ile	Asp	Val	Leu	Val	His	Gly	Glu	Pro	Glu	Arg	Asn	Asp	Met
				485					490					495	
Val	Glu	Tyr	Phe	Gly	Glu	Gln	Leu	Ser	Gly	Phe	Ala	Phe	Thr	Ala	Asn
				500				505					510		
Gly	Trp	Val	Gln	Ser	Tyr	Gly	Ser	Arg	Cys	Val	Lys	Pro	Pro	Ile	Ile
				515			520				525				
Tyr	Gly	Asp	Val	Ser	Arg	Pro	Asn	Pro	Met	Thr	Val	Phe	Trp	Ser	Lys
				530			535				540				
Thr	Ala	Gln	Ser	Met	Thr	Lys	Arg	Pro	Met	Lys	Gly	Met	Leu	Thr	Gly
				545		550				555				560	
Pro	Val	Thr	Ile	Leu	Asn	Trp	Ser	Phe	Val	Arg	Asn	Asp	Gln	Pro	Arg
				565					570					575	
Phe	Glu	Thr	Cys	Tyr	Gln	Ile	Ala	Leu	Ala	Ile	Lys	Asp	Glu	Val	Glu
				580				585					590		
Asp	Leu	Glu	Lys	Ala	Gly	Ile	Thr	Val	Ile	Gln	Ile	Asp	Glu	Ala	Ala
				595				600				605			
Leu	Arg	Glu	Gly	Leu	Pro	Leu	Arg	Lys	Ala	Glu	His	Ala	Phe	Tyr	Leu
				610			615				620				
Asn	Trp	Ala	Val	His	Ser	Phe	Arg	Ile	Thr	Asn	Val	Gly	Ile	Gln	Asp
				625			630				635			640	
Thr	Thr	Gln	Ile	His	Thr	His	Met	Cys	Tyr	Ser	Asn	Phe	Asn	Asp	Ile
									645				650		655
Ile	His	Ser	Ile	Ile	Asp	Met	Asp	Ala	Asp	Val	Ile	Thr	Ile	Glu	Asn
				660					665				670		
Ser	Arg	Ser	Asp	Glu	Lys	Leu	Leu	Ser	Val	Phe	Arg	Glu	Gly	Val	Lys
				675				680				685			
Tyr	Gly	Ala	Gly	Ile	Gly	Pro	Gly	Val	Tyr	Asp	Ile	His	Ser	Pro	Arg
				690			695				700				
Ile	Pro	Ser	Thr	Glu	Glu	Ile	Ala	Asp	Arg	Val	Asn	Lys	Met	Leu	Ala
				705				710			715			720	
Val	Leu	Asp	Thr	Asn	Ile	Leu	Trp	Val	Asn	Pro	Asp	Cys	Gly	Leu	Lys
					725				730				735		
Thr	Arg	Lys	Tyr	Ala	Glu	Val	Lys	Pro	Ala	Leu	Glu	Asn	Met	Val	Ser
				740				745					750		
Ala	Ala	Lys	Ala	Ile	Arg	Thr	Gln	Leu	Ala	Ser	Ser	Lys			
				755				760				765			

<210> 7
 <211> 475
 <212> DNA
 <213> Triticum aestivum

<220>
 <221> unsure
 <222> (344)

<220>
 <221> unsure
 <222> (367)

<220>
 <221> unsure
 <222> (433)

<220>
 <221> unsure
 <222> (452)

<220>
 <221> unsure
 <222> (473)..(474)

<400> 7
 cgccatcctc ctcctctccc cctatcgctc tcctcccat ctccggcgcc gctccgcgac 60
 tcctccaagg aaagatggca tcccacattt ttggataccc tcgcattggc cccaaaggagg 120
 agctcaagtt tgccttggag tctttctggg atggaaagag cagcgctgag gatttggaga 180
 aggttgcgcg cgcacctcagg gccagcatct ggaagcagat gtcagaggct gggattaaat 240
 acattcccaag caacaccttc tcatactatg accaggtgct tgacacaacg gccatgctt 300
 gtgccgtccc ggaccgctac tcatggactg gcggagagat tggncacagc acctacttct 360
 caatggncaa gggcaatgcc actgtccctg ctatggagat gaccaagtgg tttgacacca 420
 actaacactt cantgtgcct gaattgagcc ancaaccaag ttctcatatg ctnna 475

<210> 8
 <211> 124
 <212> PRT
 <213> Triticum aestivum

<220>
 <221> UNSURE
 <222> (98)

<220>
 <221> UNSURE
 <222> (117)

<220>
 <221> UNSURE
 <222> (120)

<400> 8
 Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
 1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Gly Lys Ser Ser Ala Glu
 20 25 30

Asp Leu Glu Lys Val Ala Ala Asp Leu Arg Ala Ser Ile Trp Lys Gln
 35 40 45

Met Ser Glu Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
 50 55 60

Tyr Asp Gln Val Leu Asp Thr Thr Ala Met Leu Gly Ala Val Pro Asp
65 70 75 80

Arg Tyr Ser Trp Thr Gly Gly Glu Ile Gly His Ser Thr Tyr Phe Ser
85 90 95

Met Xaa Lys Gly Asn Ala Thr Val Pro Ala Met Glu Met Thr Lys Trp
100 105 110

Phe Asp Thr Asn Xaa His Phe Xaa Val Pro Glu Leu
115 120

<210> 9
<211> 628
<212> DNA
<213> *Triticum aestivum*

<220>
<221> unsure
<222> (219)

<220>
<221> unsure
<222> (254)

<220>
<221> unsure
<222> (300)

<220>
<221> unsure
<222> (319)

<220>
<221> unsure
<222> (331)

<220>
<221> unsure
<222> (335)

<220>
<221> unsure
<222> (338)

<220>
<221> unsure
<222> (348)

<220>
<221> unsure
<222> (350)

<220>
<221> unsure
<222> (360)

<220>
<221> unsure
<222> (413)

<220>
<221> unsure
<222> (416)

<220>
<221> unsure
<222> (424)

<220>
<221> unsure
<222> (428)

<220>
<221> unsure
<222> (440)

<220>
<221> unsure
<222> (455)

<220>
<221> unsure
<222> (469)

<220>
<221> unsure
<222> (473)

<220>
<221> unsure
<222> (484)

<220>
<221> unsure
<222> (504)

<220>
<221> unsure
<222> (506)

<220>
<221> unsure
<222> (526)

<220>
<221> unsure
<222> (533)

<220>
<221> unsure
<222> (535)

<220>
<221> unsure
<222> (552)

<220>
<221> unsure
<222> (568)

<220>
<221> unsure
<222> (580)

<220>
 <221> unsure
 <222> (598)

<220>
 <221> unsure
 <222> (600)

<220>
 <221> unsure
 <222> (606)

<220>
 <221> unsure
 <222> (613)

<400> 9
 ggtcgtcacc cagagtgaac aattaggagg ttcagaaggc tgccggctgct ttgaaggct 60
 ctgaccacccg ccgtgctacc cctgtctctg ctagactgga cgctcagcag aagaagctca 120
 accttcctat cctcccaaca acaacaattg gttcattccc tcagacaatg gacctcagga 180
 gggtccgccc tgagtacaag gcgaaagaag atctctgang aggagtatgt cagtgctatc 240
 aaggaagaaa ttancaaagg ttgtcaagat tcaaagagga gcttgacatt gatgttctcn 300
 tccaatggag aagcctgana aaaatgacat ngttnaanta cttcggcnn caaattatcn 360
 gggtttgcaa ttactgccaa tggatgggtg caatcctatg gattacttgc gttnaancacc 420
 gatnatcnat gggatgtaan cggcccaaccc atganatctt ctggtcaana tgntcaggac 480
 atancctccc ccaatgaagg aatntnacgg cctttaaattc ccaacnggct ttntnagaac 540
 acaaccaggt tnagaatgca caaattcnct gccataaaaan gagtttaggtt ccagctgn 600
 atcagngtca atnatagggg cccaaagg 628

<210> 10
 <211> 118
 <212> PRT
 <213> *Triticum aestivum*

<220>
 <221> UNSURE
 <222> (8)

<220>
 <221> UNSURE
 <222> (72) .. (73)

<220>
 <221> UNSURE
 <222> (84)

<220>
 <221> UNSURE
 <222> (100)

<220>
 <221> UNSURE
 <222> (106)

<220>
 <221> UNSURE
 <222> (110)

<220>
 <221> UNSURE
 <222> (112)

<220>
 <221> UNSURE
 <222> (116)

<400> 10
 Ser Ser Pro Arg Val Asn Asn Xaa Glu Val Gln Lys Ala Ala Ala Ala
 1 5 10 15

Leu Lys Gly Ser Asp His Arg Arg Ala Thr Pro Val Ser Ala Arg Leu
 20 25 30

Asp Ala Gln Gln Lys Lys Leu Asn Leu Pro Ile Leu Pro Thr Thr Thr
 35 40 45

Ile Gly Ser Phe Pro Gln Thr Met Asp Leu Arg Arg Val Arg Arg Glu
 50 55 60

Tyr Lys Ala Lys Glu Asp Leu Xaa Xaa Gly Val Cys Gln Cys Tyr Gln
 65 70 75 80

Gly Arg Asn Xaa Gln Arg Leu Ser Arg Phe Lys Glu Glu Leu Asp Ile
 85 90 95

Asp Val Leu Xaa Gln Trp Arg Ser Leu Xaa Lys Met Thr Xaa Val Xaa
 100 105 110

Tyr Phe Gly Xaa Gln Ile
 115

<210> 11
 <211> 765
 <212> PRT
 <213> Catharanthus roseus

<400> 11
 Met Ala Ser His Ile Val Gly Tyr Pro Arg Met Gly Pro Lys Arg Glu
 1 5 10 15

Leu Lys Phe Ala Leu Glu Ser Phe Trp Asp Lys Lys Ser Ser Ala Glu
 20 25 30

Asp Leu Gln Lys Val Ala Ala Asp Leu Arg Ser Ser Ile Trp Lys Gln
 35 40 45

Met Ala Asp Ala Gly Ile Lys Tyr Ile Pro Ser Asn Thr Phe Ser Tyr
 50 55 60

Tyr Asp Gln Val Leu Asp Thr Ala Thr Met Leu Gly Ala Val Pro Pro
 65 70 75 80

Arg Tyr Asn Phe Ala Gly Gly Glu Ile Gly Phe Asp Thr Tyr Phe Ser
 85 90 95

Met Ala Arg Gly Asn Ala Ser Val Pro Ala Met Glu Met Thr Lys Trp
 100 105 110

Phe Asp Thr Asn Tyr His Tyr Ile Val Pro Glu Leu Gly Pro Glu Val
 115 120 125

Asn Phe Ser Tyr Ala Ser His Lys Ala Val Asn Glu Tyr Lys Glu Ala
 130 135 140

Lys Glu Leu Gly Val Asp Thr Val Pro Val Leu Val Gly Pro Val Thr
 145 150 155 160

Phe	Leu	Leu	Leu	Ser	Lys	Pro	Ala	Lys	Gly	Val	Glu	Lys	Thr	Phe	Pro
165														175	
Leu	Leu	Ser	Leu	Leu	Asp	Lys	Ile	Leu	Pro	Val	Tyr	Lys	Glu	Val	Ile
180														190	
Gly	Glu	Leu	Lys	Ala	Ala	Gly	Ala	Ser	Trp	Ile	Gln	Phe	Asp	Glu	Pro
195														205	
Thr	Leu	Val	Leu	Asp	Leu	Glu	Ser	His	Gln	Leu	Glu	Ala	Phe	Thr	Lys
210														220	
Ala	Tyr	Ser	Glu	Leu	Glu	Ser	Thr	Leu	Ser	Gly	Leu	Asn	Val	Ile	Val
225														240	
Glu	Thr	Tyr	Phe	Ala	Asp	Ile	Pro	Ala	Glu	Thr	Tyr	Lys	Ile	Leu	Thr
245														255	
Ala	Leu	Lys	Gly	Val	Thr	Gly	Phe	Gly	Phe	Asp	Leu	Val	Arg	Gly	Ala
260														270	
Lys	Thr	Leu	Asp	Leu	Ile	Lys	Gly	Gly	Phe	Pro	Ser	Gly	Lys	Tyr	Leu
275														285	
Phe	Ala	Gly	Val	Val	Asp	Gly	Arg	Asn	Ile	Trp	Ala	Asn	Asp	Leu	Ala
290														300	
Ala	Ser	Leu	Ser	Thr	Leu	Gln	Ser	Leu	Glu	Gly	Ile	Val	Gly	Lys	Asp
305														320	
Lys	Leu	Val	Val	Ser	Thr	Ser	Cys	Ser	Leu	Leu	His	Thr	Ala	Val	Asp
325														335	
Leu	Val	Asn	Glu	Pro	Lys	Leu	Asp	Lys	Glu	Ile	Lys	Ser	Trp	Leu	Ala
340														350	
Phe	Ala	Ala	Gln	Lys	Val	Val	Glu	Val	Asn	Ala	Leu	Ala	Lys	Ala	Leu
355														365	
Ala	Gly	Glu	Lys	Asp	Glu	Ala	Phe	Phe	Ser	Glu	Asn	Ala	Ala	Ala	Gln
370														380	
Ala	Ser	Arg	Lys	Ser	Ser	Pro	Arg	Val	Thr	Asn	Gln	Ala	Val	Gln	Lys
385														400	
Ala	Ala	Ala	Ala	Leu	Arg	Gly	Ser	Asp	His	Arg	Arg	Ala	Thr	Thr	Val
405														415	
Ser	Ala	Arg	Leu	Asp	Ala	Gln	Gln	Lys	Lys	Leu	Asn	Leu	Pro	Val	Leu
420														430	
Pro	Thr	Thr	Thr	Ile	Gly	Ser	Phe	Pro	Gln	Thr	Leu	Glu	Leu	Arg	Arg
435														445	
Val	Arg	Arg	Glu	Tyr	Lys	Ala	Lys	Lys	Ile	Ser	Glu	Asp	Asp	Tyr	Val
450														460	
Lys	Ala	Ile	Lys	Glu	Glu	Ile	Ser	Lys	Val	Val	Lys	Leu	Gln	Glu	Glu
465														480	
Leu	Asp	Ile	Asp	Val	Leu	Val	His	Gly	Glu	Pro	Glu	Arg	Asn	Asp	Met
485														495	

Val	Glu	Tyr	Phe	Gly	Glu	Gln	Leu	Ser	Gly	Phe	Ala	Phe	Thr	Ala	Asn
500							505						510		
Gly	Trp	Val	Gln	Ser	Tyr	Gly	Ser	Arg	Cys	Val	Lys	Pro	Pro	Ile	Ile
515							520						525		
Tyr	Gly	Asp	Val	Ser	Arg	Pro	Asn	Pro	Met	Thr	Val	Phe	Trp	Ser	Gln
530							535						540		
Thr	Ala	Gln	Ser	Met	Thr	Lys	Arg	Pro	Met	Lys	Gly	Met	Leu	Thr	Gly
545						550					555			560	
Pro	Val	Thr	Ile	Leu	Asn	Trp	Ser	Phe	Val	Arg	Asn	Asp	Gln	Pro	Arg
565								570						575	
Phe	Glu	Thr	Cys	Tyr	Gln	Ile	Ala	Leu	Ala	Ile	Lys	Asp	Glu	Val	Glu
580								585						590	
Asp	Leu	Glu	Lys	Ala	Gly	Ile	Asn	Val	Ile	Gln	Ile	Asp	Glu	Ala	Ala
595							600						605		
Leu	Arg	Glu	Gly	Leu	Pro	Leu	Arg	Lys	Ala	Glu	His	Ala	Phe	Tyr	Leu
610							615						620		
Asp	Trp	Ala	Val	His	Ser	Phe	Arg	Ile	Thr	Asn	Leu	Pro	Leu	Gln	Asp
625							630						635		640
Thr	Thr	Gln	Ile	His	Thr	His	Met	Cys	Tyr	Ser	Asn	Phe	Asn	Asp	Ile
							645						650		655
Ile	His	Ser	Ile	Ile	Asp	Met	Asp	Ala	Asp	Val	Met	Thr	Ile	Glu	Asn
							660						665		670
Ser	Arg	Ser	Ser	Glu	Lys	Leu	Leu	Ser	Val	Phe	Arg	Glu	Gly	Val	Lys
							675						680		685
Tyr	Gly	Ala	Gly	Ile	Gly	Pro	Gly	Val	Tyr	Asp	Ile	His	Ser	Pro	Arg
							690						695		700
Ile	Pro	Ser	Thr	Glu	Glu	Ile	Ala	Asp	Arg	Ile	Asn	Lys	Met	Leu	Ala
705							710						715		720
Val	Leu	Asp	Thr	Asn	Ile	Leu	Trp	Val	Asn	Pro	Asp	Cys	Gly	Leu	Lys
							725						730		735
Thr	Arg	Lys	Tyr	Ala	Glu	Val	Lys	Pro	Ala	Leu	Glu	Asn	Met	Val	Ser
							740						745		750
Ala	Ala	Lys	Leu	Ile	Arg	Thr	Gln	Leu	Ala	Ser	Ala	Lys			
							755						760		765
<210>	12														
<211>	32														
<212>	DNA														
<213>	Artificial Sequence														
<220>															
<223>	Description of Artificial Sequence:	Synthetic oligonucleotide													
<400>	12														
	atccaaacaat	gtgagatgtc	atgaattctg	ac											32
<210>	13														
<211>	32														

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 13
 gtcagaattc atgacatctc acattgttgg at 32

 <210> 14
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 14
 ctcacggtcc gatgagaagc tcct 24

 <210> 15
 <211> 31
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 15
 gatcggtacc tcacttggag ctggcaagtt g 31

 <210> 16
 <211> 1638
 <212> DNA
 <213> Zea mays

 <400> 16
 gaattccggc tcgaagccgc cgcgaccgaa cgagcgaagc gtcccttccc gcccggacgc 60
 cggaaacccta gctcctctta cgccatggcc accgtgtcgc tcactccgca ggcggcttcc 120
 tccacccgagt cccggcggcgc cctggcctct gccaccatcc tccgcttccc gccaaacttc 180
 gtccgcctcc gccggcggcgg atgtcagcgc aattcctaac gctaagggttgc cgcagccg 240
 cggccgtcgta ttggccgagc gtaacctgtct cggctccgac gccagcctcg ccgtccacgc 300
 gggggagagg ctgggaagaa ggatagccac ggatgctatc accacgcccgg tagtgaacac 360
 gtcggcctac tgggtcaaca actcgcaaga gctaatcgac ttttaaggagg ggaggcatgc 420
 tagcttcgag tatgggaggt atgggaaacc gaccacggag gcatttagaga agaagatgag 480
 cgcactggag aaagcagagt ccaccgtgtt tgggtcgta gggatgtatc cagctgtggc 540
 tatgctcagc gcacttgcgc ctgctgggtt gcacattgtt accaccacgg attgctaccg 600
 caagacaagg atttacatgg aaaatgagct ccctaagagg ggaatttcga tgactgtcat 660
 taggcctgct gacatggatg ctctccaaa tgccttggac aacaataatg tatctttttt 720
 cttcacggag actcctacaa atccatttt cagatgcatt gatattgaac atgtatcaa 780
 tatgtgccat agcaaggagg cgttgctttt tattgacagt actttcgctt cacctatcaa 840
 tcagaaggca ttaacttttag gtgtcgactt atttattcat tctgcaacga agtacattgc 900
 tggacacaat gatgttattt gaggatgcgt cagtggcaga gatgagttttag tttccaaagt 960
 tcgtatatttac caccatgttag ttgggtgtt tctaaacccg aatgctcggtt accttattcct 1020
 tcgaggtatg aagacactgc atctccgtt gcaatgtcag aacgacactg ctcttcggat 1080
 ggcccagttt ttagaggagg atccaaatg tgcgtgtt tactatcctg gcttggcaag 1140
 tcaccctgaa catcacattt ccaagagtca aatgactggc tttggcggtt ttgttagttt 1200
 tgaggttgc ttggatgtt gatgtcgat gaaatttattt gattctgttta aaatacccta 1260
 tcatgcgcct tctttggat gctgtgagat cataattgtt cagcctgcca tcatgtccta 1320
 ctgggattca aaggaggcgc gggacatcta cgggatcaag gacaacctga tcaggttcag 1380
 cattggatgtt gaggatctcg aggtatctaa gaacgatctc gtgcaggccc tcgagaagat 1440
 ctaagcaactc taatcagttt gtattgacaa aatatgaggt gatggctgtc ttggatctt 1500
 tcaagatctg tgacaatgtt atgagctgtt gactgcgtt aagttctttt ttgtttttttt 1560

tatccgtcaa	attcaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1620										
aaaaaaaaaa	aactcgag					1638										
<210> 17																
<211> 480																
<212> PRT																
<213> Zea mays																
<400> 17																
Asn	Ser	Gly	Ser	Lys	Pro	Pro	Arg	Pro	Asn	Glu	Arg	Ser	Val	Pro	Ser	
1				5					10					15		
Arg	Ala	Asp	Ala	Glu	Thr	Leu	Ala	Pro	Leu	Thr	Pro	Trp	Pro	Pro	Cys	
					20				25				30			
Arg	Ser	Leu	Arg	Arg	Ser	Ser	Pro	Pro	Ser	Pro	Ala	Ala	Pro	Trp		
					35				40			45				
Pro	Leu	Pro	Pro	Ser	Ser	Ala	Ser	Arg	Gln	Thr	Ser	Ser	Ala	Ser	Ala	
						50			55			60				
Ala	Ala	Asp	Val	Ser	Ala	Ile	Pro	Asn	Ala	Lys	Val	Ala	Gln	Pro	Ser	
						65			70		75			80		
Ala	Val	Val	Leu	Ala	Glu	Arg	Asn	Leu	Leu	Gly	Ser	Asp	Ala	Ser	Leu	
					85				90			95				
Ala	Val	His	Ala	Gly	Glu	Arg	Leu	Gly	Arg	Arg	Ile	Ala	Thr	Asp	Ala	
					100				105			110				
Ile	Thr	Thr	Pro	Val	Val	Asn	Thr	Ser	Ala	Tyr	Trp	Phe	Asn	Asn	Ser	
					115				120			125				
Gln	Glu	Leu	Ile	Asp	Phe	Lys	Glu	Gly	Arg	His	Ala	Ser	Phe	Glu	Tyr	
					130				135			140				
Gly	Arg	Tyr	Gly	Asn	Pro	Thr	Thr	Glu	Ala	Leu	Glu	Lys	Lys	Met	Ser	
					145				150		155			160		
Ala	Leu	Glu	Lys	Ala	Glu	Ser	Thr	Val	Phe	Val	Ala	Ser	Gly	Met	Tyr	
					165				170			175				
Ala	Ala	Val	Ala	Met	Leu	Ser	Ala	Leu	Val	Pro	Ala	Gly	Gly	His	Ile	
					180				185			190				
Val	Thr	Thr	Asp	Cys	Tyr	Arg	Lys	Thr	Arg	Ile	Tyr	Met	Glu	Asn		
					195				200			205				
Glu	Leu	Pro	Lys	Arg	Gly	Ile	Ser	Met	Thr	Val	Ile	Arg	Pro	Ala	Asp	
					210				215			220				
Met	Asp	Ala	Leu	Gln	Asn	Ala	Leu	Asp	Asn	Asn	Asn	Val	Ser	Leu	Phe	
					225				230			235			240	
Phe	Thr	Glu	Thr	Pro	Thr	Asn	Pro	Phe	Leu	Arg	Cys	Ile	Asp	Ile	Glu	
					245				250			255				
His	Val	Ser	Asn	Met	Cys	His	Ser	Lys	Gly	Ala	Leu	Leu	Cys	Ile	Asp	
					260				265			270				
Ser	Thr	Phe	Ala	Ser	Pro	Ile	Asn	Gln	Lys	Ala	Leu	Thr	Leu	Gly	Ala	
					275				280			285				

Asp	Leu	Val	Ile	His	Ser	Ala	Thr	Lys	Tyr	Ile	Ala	Gly	His	Asn	Asp
290															300
Val	Ile	Gly	Gly	Cys	Val	Ser	Gly	Arg	Asp	Glu	Leu	Val	Ser	Lys	Val
305															320
Arg	Ile	Tyr	His	His	Val	Val	Gly	Gly	Val	Leu	Asn	Pro	Asn	Ala	Ala
															335
Tyr	Leu	Ile	Leu	Arg	Gly	Met	Lys	Thr	Leu	His	Leu	Arg	Val	Gln	Cys
															350
Gln	Asn	Asp	Thr	Ala	Leu	Arg	Met	Ala	Gln	Phe	Leu	Glu	Glu	His	Pro
															365
Lys	Ile	Ala	Arg	Val	Tyr	Tyr	Pro	Gly	Leu	Pro	Ser	His	Pro	Glu	His
															380
His	Ile	Ala	Lys	Ser	Gln	Met	Thr	Gly	Phe	Gly	Gly	Val	Val	Ser	Phe
															400
Glu	Val	Ala	Gly	Asp	Phe	Asp	Ala	Thr	Arg	Lys	Phe	Ile	Asp	Ser	Val
															415
Lys	Ile	Pro	Tyr	His	Ala	Pro	Ser	Phe	Gly	Gly	Cys	Glu	Ser	Ile	Ile
															430
Asp	Gln	Pro	Ala	Ile	Met	Ser	Tyr	Trp	Asp	Ser	Lys	Glu	Gln	Arg	Asp
															445
Ile	Tyr	Gly	Ile	Lys	Asp	Asn	Leu	Ile	Arg	Phe	Ser	Ile	Gly	Val	Glu
															460
Asp	Phe	Glu	Asp	Leu	Lys	Asn	Asp	Leu	Val	Gln	Ala	Leu	Glu	Lys	Ile
															480

<210> 18

<211> 3639

<212> DNA

<213> Zea mays

<400> 18

tctagattac	ataatacacc	taataatctt	gtgttgttg	tttacttctc	aacttattta	60
agttggatta	tattccatct	tttctttttt	atttgtctgt	tttagttaaa	aatgaactaa	120
caaacgacaa	atattcgaga	acgagatagt	ataatctata	ggataatcag	acatgtcctt	180
agagggtgtt	tgtttagaat	tataatatgt	atagaatata	taatccaaca	aattttgaac	240
taacaagttt	aaaatttgat	agattatata	atctgggcac	attataatcc	taaacaacaaca	300
ccatcttagt	aatttttat	ttagtgctcc	gtttggatgt	gaagaagatg	gagttgaata	360
ccaaatcatg	tatgatactg	aaatgagatg	taattttaaat	tctattgttt	ggatgtcggt	420
gaattggagt	ttgaagttat	gcggtctaatt	tttacgcaat	accgagatga	gactttatac	480
taggagaggg	gtttcttagtt	atagcctaatt	tctaaagaat	tgagtctcta	tttccaaatc	540
ttaattttat	gcaactaaac	aacacaattt	agaaaaactg	tttcaattt	cttattctgt	600
gctccaaacg	aggtggagta	tttagaaagta	gataagcgcc	tctgctgcac	gaagcgatga	660
acgcactctg	acggcttgc	cactacaaat	aagccgcacc	gcatttcgga	aggccacgcg	720
accgcaccc	ccccgaagct	gccgcgaccg	atcgagcgaa	gcgtcgctcc	ccgcgcgcgc	780
gccaaaaccc	tagttctcc	tactccatgg	ccactgtctc	gctcaccccg	caggctgtct	840
tctccacgg	gtccgggtggc	gccctggcct	ctgctaccat	cctccgcttt	ccgccaaact	900
ttgtccgcca	gcttagcacc	aaggcacgccc	gcaactgcag	caacatcgcc	gtcgccgaga	960
tcgtcgccgc	cgcgtggtcc	gactgccccg	ccgctcgccc	ccacttaggc	ggcggcgccc	1020
gccgcgcccc	cggcgtggcc	tcctcccacg	ccgcggctgc	atcgccgcgc	gccgcgcgcct	1080
ccgcggccgc	ggaggtcagc	gcaattccca	acgctaaggt	tgcgcaaccg	tccgcccgtcg	1140
tcttgccgca	gcgtaacctg	ctcggtccg	acgcccagcct	cgccgtccac	gcgggttaccc	1200
taccctgcta	gctcgctct	ttactgtaag	atctaggttc	tatgcttttt	tcccctttcg	1260
atgattcctt	tgtggctttt	ctgccttttt	atctgaaaca	ggggagaggc	tgggaagaag	1320

gatgccacg	gatgcgatca	ccacaccgg	agtgaacacg	tcggcctact	ggttcaacaa	1380
ctcgcaagag	ctaattcgact	ttaaggtagt	gaatattcgt	gcttgctctt	gtctaatttg	1440
acggatgtga	gttttgcacgc	cgaaatatta	agtttatct	gttccttagg	aggggaggca	1500
tgctagcttc	gagttatggga	ggtatggaa	cccgaccacg	gaggcattag	agaagaagat	1560
gaggtgatgc	tcgatagtgg	aatgtcgac	accctgttgg	ttgcatttg	ctggaggcta	1620
aacagttgcg	tgttctcatg	gtgcagcgca	ctggagaaag	cagagtccac	agtgttcgtg	1680
gcatcgggga	tgtatgcagc	tgccgctatg	ctcagtgcac	ttgttccggc	tggggcac	1740
attgtgacca	ccacggattg	ctaccggaaa	acaaggattt	acatggaaac	ttagctcccc	1800
aagaggggaa	tttcggtaat	accatgcgat	ctttaagct	ctacttgtt	ttagaacggg	1860
acatctgcta	tcactattgg	ttgtcttcct	gtcaactgtgc	tacagtagtg	ggtctacaat	1920
gaacttgctc	ttattcagtt	aaaattactc	tgtcgttttg	tccttatcta	gctaatagtc	1980
tctacaaagt	tcaattttactt	cagcatagcc	aataggagta	gcataactac	tgcaggat	2040
atgaacaata	tcctttgcag	tagctgttgg	gagtacacag	tacagtagtg	cttcagactt	2100
tattcttgt	actgcattgg	gtgaagccac	atagggtttg	ccgagtgcac	gtgcaccagg	2160
aaaaaaaacaa	tttctacttt	tctagtgatt	aaaaactaaa	ttttaccact	catgcacacc	2220
ctaattttta	attagagaag	attttcaata	catgtgtata	ttgaaatgtc	aagtgtgcac	2280
tcggattctc	cggcctctag	cttcgcccga	ctgcaatgtc	aataggattt	gctatctgta	2340
aaggatttaa	gtagaactgc	ttgtggtaat	aaattttagg	atccctcaca	ataagattt	2400
ttatataatc	acaccatcta	ccagttgaaa	tgcagtgaga	gcactttgt	agttgtatac	2460
caatgttct	cacgcttcac	ttagcatgtg	atactgttta	tgctcagatg	actgtcatta	2520
ggcctgctga	catggatgct	ctacaaaatg	cgttggacaa	caataatgtg	agtgtggat	2580
catttccatt	gccctgatc	gtggtaaaaa	acatacatta	atacattgc	aatgttagcc	2640
taacctttag	gccatgtcag	gtatctctt	tcttcacgga	gactcccaca	aatccatttc	2700
tcagatgcat	tgatattgaa	catgtatcaa	atatgtgcc	tagcaaggga	gcgttgcttt	2760
gtatcgacag	tactttgcc	tcccctatca	atcagaaggc	actgacttta	ggcgctgacc	2820
tagttattca	ttctgcaaca	aagtacattt	ctggacacaa	cgatgtgagt	tgatatactg	2880
aaccccatct	cccctcatta	aagttatgtg	tttgcacatt	gcactaacta	gtacttcaac	2940
ttcccagggt	attggaggat	gcgtcagtgg	cagagatgag	ttggtttcca	aagtccgtat	3000
ttatcaccat	gtggttggtg	gtgttctaaa	cccggttaagt	ttagattgtt	aaagtttgt	3060
ttccatttat	ttcatcttcc	ttgcacaggt	tgtatgtatt	tacagattcc	catagttaca	3120
agcttctatt	tttataaggta	gaaaatcgtg	taattttctt	tagtagcata	tgttaggtt	3180
agaaaaataa	tttgctttct	ctgagtatca	caaaccgcat	ccagttctct	gttacatgaa	3240
ctagaattct	ggttctggaa	aggaagaaat	aggatatgtt	ctgtgcactg	caatataatat	3300
ctaattcatta	atccggagct	ttatgtcaca	gactcacagg	ccaggctacc	actttatgaa	3360
atattccaaa	ttatgtctgt	ctcaaaatgg	aatgactcat	gttgtactct	gttccaacgt	3420
tttcaaatac	tgacttaggt	tctagttgcc	cggacaccga	ctaggtgatt	aatcgtgact	3480
aggcattgac	tagtcacgat	tagtttgag	ctagtcgaac	ttatcaacaa	cttgttccag	3540
gcaatataatt	gcagtactat	gccttattga	ttgggtatata	aatgaattt	tagcacacag	3600
ataqaqcaqa	aqtaaqacaa	attaacacaa	agttctaga			3639

<210> 19
<211> 509
<212> PRT
<213> Zea mays

<400> 19
 Met Ala Thr Val Ser Leu Thr Pro Gln Ala Val Phe Ser Thr Glu Ser
 1 5 10 15
 Gly Gly Ala Leu Ala Ser Ala Thr Ile Leu Arg Phe Pro Pro Asn Phe
 20 25 30
 Val Arg Gln Leu Ser Thr Lys Ala Arg Arg Asn Cys Ser Asn Ile Gly
 35 40 45
 Val Ala Gln Ile Val Ala Ala Ala Trp Ser Asp Cys Pro Ala Ala Arg
 50 55 60
 Pro His Leu Gly Gly Gly Arg Arg Ala Arg Gly Val Ala Ser Ser
 65 70 75 80
 His Ala Ala Ala Ala Ser Ala Ala Ala Ala Ser Ala Ala Ala Glu
 85 90 95

Val	Ser	Ala	Ile	Pro	Asn	Ala	Lys	Val	Ala	Gln	Pro	Ser	Ala	Val	Val
100								105						110	
Leu	Ala	Glu	Arg	Asn	Leu	Leu	Gly	Ser	Asp	Ala	Ser	Leu	Ala	Val	His
115								120						125	
Ala	Gly	Glu	Arg	Leu	Gly	Arg	Arg	Ile	Ala	Thr	Asp	Ala	Ile	Thr	Thr
130								135						140	
Pro	Val	Val	Asn	Thr	Ser	Ala	Tyr	Trp	Phe	Asn	Asn	Ser	Gln	Glu	Leu
145								150						155	
Ile	Asp	Phe	Lys	Glu	Gly	Arg	His	Ala	Ser	Phe	Glu	Tyr	Gly	Arg	Tyr
165								170						175	
Gly	Asn	Pro	Thr	Thr	Glu	Ala	Leu	Glu	Lys	Lys	Met	Ser	Ala	Leu	Glu
180								185						190	
Lys	Ala	Glu	Ser	Thr	Val	Phe	Val	Ala	Ser	Gly	Met	Tyr	Ala	Ala	Val
195								200						205	
Ala	Met	Leu	Ser	Ala	Leu	Val	Pro	Ala	Gly	Gly	His	Ile	Val	Thr	Thr
210								215						220	
Thr	Asp	Cys	Tyr	Arg	Lys	Thr	Arg	Ile	Tyr	Met	Glu	Asn	Glu	Leu	Pro
225								230						235	
Lys	Arg	Gly	Ile	Ser	Met	Thr	Val	Ile	Arg	Pro	Ala	Asp	Met	Asp	Ala
245								250						255	
Leu	Gln	Asn	Ala	Leu	Asp	Asn	Asn	Val	Ser	Leu	Phe	Phe	Thr	Glu	
260								265						270	
Thr	Pro	Thr	Asn	Pro	Phe	Leu	Arg	Cys	Ile	Asp	Ile	Glu	His	Val	Ser
275								280						285	
Asn	Met	Cys	His	Ser	Lys	Gly	Ala	Leu	Leu	Cys	Ile	Asp	Ser	Thr	Phe
290								295						300	
Ala	Ser	Pro	Ile	Asn	Gln	Lys	Ala	Leu	Thr	Leu	Gly	Ala	Asp	Leu	Val
305								310						315	
Ile	His	Ser	Ala	Thr	Lys	Tyr	Ile	Ala	Gly	His	Asn	Asp	Val	Ile	Gly
325								330						335	
Gly	Cys	Val	Ser	Gly	Arg	Asp	Glu	Leu	Val	Ser	Lys	Val	Arg	Ile	Tyr
340								345						350	
His	His	Val	Val	Gly	Gly	Val	Leu	Asn	Pro	Asn	Ala	Ala	Tyr	Leu	Ile
355								360						365	
Leu	Arg	Gly	Met	Lys	Thr	Leu	His	Leu	Arg	Val	Gln	Cys	Gln	Asn	Asp
370								375						380	
Thr	Ala	Leu	Arg	Met	Ala	Gln	Phe	Leu	Glu	Glu	His	Pro	Lys	Ile	Ala
385								390						395	
Arg	Val	Tyr	Tyr	Pro	Gly	Leu	Pro	Ser	His	Pro	Glu	His	His	Ile	Ala
405								410						415	
Lys	Ser	Gln	Met	Thr	Gly	Phe	Gly	Val	Val	Ser	Phe	Glu	Val	Ala	
420								425						430	

Gly	Asp	Phe	Asp	Ala	Thr	Arg	Lys	Phe	Ile	Asp	Ser	Val	Lys	Ile	Pro
435						440							445		
Tyr	His	Ala	Pro	Ser	Phe	Gly	Gly	Cys	Glu	Ser	Ile	Ile	Asp	Gln	Pro
450					455				460						
Ala	Ile	Met	Ser	Tyr	Trp	Asp	Ser	Lys	Glu	Gln	Arg	Asp	Ile	Tyr	Gly
465					470				475				480		
Ile	Lys	Asp	Asn	Leu	Ile	Arg	Phe	Ser	Ile	Gly	Val	Glu	Asp	Phe	Glu
					485				490				495		
Asp	Leu	Lys	Asn	Asp	Leu	Val	Gln	Ala	Leu	Glu	Lys	Ile			
					500				505						

<210> 20
 <211> 14
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 20
 aattcatgag tgca 14

<210> 21
 <211> 14
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 21
 aatttgcact catg 14

<210> 22
 <211> 1350
 <212> DNA
 <213> Escherichia coli

<400> 22
 atggctgaaa ttgttgtctc caaatttggc ggtaccagcg tagctgattt tgacgccatg 60
 aaccgcagcg ctgatattgt gctttctgat gccaacgtgc gtttagttgt cctctcggt 120
 tctgctggta tcactaatct gctggtcgtt tagctgaag gactggaaacc tggcgagcga 180
 ttcgaaaaac tcgacgctat ccgcaacatc cagtttgcctt ttctggaaacg tctgcgttac 240
 ccgaacgtta tccgtgaaga gattgaacgt ctgctggaga acattactgt tctggcagaa 300
 gcgccggcgc tggcaacgtc tccggcgtt acagatgagc tggtcagcca cggcgagctg 360
 atgtcgaccc tgctgtttgt tgagatcctg cgcgaacgcg atgttcaggc acagtggttt 420
 gatgtacgta aagtgtatgcg taccaacgac cgatttggtc gtgcagagcc agatatagcc 480
 gcgctggcgg aactggccgc gctgcagctg ctcccacgtc tcaatgaagg cttagtgtatc 540
 acccagggat ttatcggttag cgaaaataaa ggtcgtaaaa cgacgcttgg ccgtggaggc 600
 agcgattata cggcagccctt gctggcggag gctttacacg catctcgtgt tgatatctgg 660
 accgacgtcc cgggcatctt caccaccgtt ccacgcgtt tttccgcagc aaaacgcatt 720
 gatgaaaatcg cggttgcgcg agcggcagag atggcaactt ttgggtcaaa agtactgcatt 780
 ccggcaacgt tgctacccgc agtacgcgcg gatatcccgg tctttgtcgg ctccagcaaa 840
 gaccacgcg caggtggta gctgggtgtc aataaaaactg aaaatccgcc gctgttccgc 900
 gctctggcgc ttctcgcaaa tcagactctg ctcactttgc acagectgaa tatgctgcatt 960
 tctcgccgtt tcctcgccgta agttttcggtt atcctcgccg ggcataatat ttccggtagac 1020
 ttaatcacca cgtcagaagt gagcgtggca ttaacccttg ataccaccgg ttcaacacctcc 1080
 actggcgata cggtgctgac gcaatctctg ctgatggagc tttccgcact gtgtcgggtg 1140
 gaggtggaaag aaggtctggc gctggtcgcg ttgattggca atgacctgtc aaaagcctgc 1200
 gccgttggca aagaggtatt cggcgtactg gaaccgttca acattcgcat gatttgttat 1260

ggcgcatcca gccataacct gtgcttcctg gtgccccggcg aagatgccga gcaggtggtg 1320
 caaaaaactgc atagtaattt gttttagttaa 1350

<210> 23
 <211> 449
 <212> PRT
 <213> Escherichia coli

<400> 23
 Met Ala Glu Ile Val Val Ser Lys Phe Gly Gly Thr Ser Val Ala Asp
 1 5 10 15

Phe Asp Ala Met Asn Arg Ser Ala Asp Ile Val Leu Ser Asp Ala Asn
 20 25 30

Val Arg Leu Val Val Leu Ser Ala Ser Ala Gly Ile Thr Asn Leu Leu
 35 40 45

Val Ala Leu Ala Glu Gly Leu Glu Pro Gly Glu Arg Phe Glu Lys Leu
 50 55 60

Asp Ala Ile Arg Asn Ile Gln Phe Ala Ile Leu Glu Arg Leu Arg Tyr
 65 70 75 80

Pro Asn Val Ile Arg Glu Glu Ile Glu Arg Leu Leu Glu Asn Ile Thr
 85 90 95

Val Leu Ala Glu Ala Ala Leu Ala Thr Ser Pro Ala Leu Thr Asp
 100 105 110

Glu Leu Val Ser His Gly Glu Leu Met Ser Thr Leu Leu Phe Val Glu
 115 120 125

Ile Leu Arg Glu Arg Asp Val Gln Ala Gln Trp Phe Asp Val Arg Lys
 130 135 140

Val Met Arg Thr Asn Asp Arg Phe Gly Arg Ala Glu Pro Asp Ile Ala
 145 150 155 160

Ala Leu Ala Glu Leu Ala Ala Leu Gln Leu Leu Pro Arg Leu Asn Glu
 165 170 175

Gly Leu Val Ile Thr Gln Gly Phe Ile Gly Ser Glu Asn Lys Gly Arg
 180 185 190

Thr Thr Thr Leu Gly Arg Gly Ser Asp Tyr Thr Ala Ala Leu Leu
 195 200 205

Ala Glu Ala Leu His Ala Ser Arg Val Asp Ile Trp Thr Asp Val Pro
 210 215 220

Gly Ile Tyr Thr Thr Asp Pro Arg Val Val Ser Ala Ala Lys Arg Ile
 225 230 235 240

Asp Glu Ile Ala Phe Ala Glu Ala Ala Glu Met Ala Thr Phe Gly Ala
 245 250 255

Lys Val Leu His Pro Ala Thr Leu Leu Pro Ala Val Arg Ser Asp Ile
 260 265 270

Pro Val Phe Val Gly Ser Ser Lys Asp Pro Arg Ala Gly Gly Thr Leu
 275 280 285

Val Cys Asn Lys Thr Glu Asn Pro Pro Leu Phe Arg Ala Leu Ala Leu
290 295 300

Arg Arg Asn Gln Thr Leu Leu Thr Leu His Ser Leu Asn Met Leu His
305 310 315 320

Ser Arg Gly Phe Leu Ala Glu Val Phe Gly Ile Leu Ala Arg His Asn
325 330 335

Ile Ser Val Asp Leu Ile Thr Thr Ser Glu Val Ser Val Ala Leu Thr
340 345 350

Leu Asp Thr Thr Gly Ser Thr Ser Thr Gly Asp Thr Leu Leu Thr Gln
355 360 365

Ser Leu Leu Met Glu Leu Ser Ala Leu Cys Arg Val Glu Val Glu Glu
370 375 380

Gly Leu Ala Leu Val Ala Leu Ile Gly Asn Asp Leu Ser Lys Ala Cys
385 390 395 400

Ala Val Gly Lys Glu Val Phe Gly Val Leu Glu Pro Phe Asn Ile Arg
405 410 415

Met Ile Cys Tyr Gly Ala Ser Ser His Asn Leu Cys Phe Leu Val Pro
420 425 430

Gly Glu Asp Ala Glu Gln Val Val Gln Lys Leu His Ser Asn Leu Phe
435 440 445

Glu

<210> 24

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 24

gatccatggc tgaaattgtt gtctccaaat ttggcg

36

<210> 25

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 25

gtaccgccaa atttggagac aacaatttca gccatg

36

<210> 26

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

```

<400> 26
atggcagcca agatgcttgc attgttcgct 30

<210> 27
<211> 30
<212> DNA
<213> Artificial Sequence

<220> .
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 27
gaatgcagca ccaacaaagg gttgctgtaa 30

<210> 28
<211> 2123
<212> DNA
<213> Zea mays

<400> 28
tctagaggct attaccatct ctactcacgg gtcgttaggg ttagtgaggta ggctacagct 60
ggtgacaatc ctactcaccc tttgtaatcc tctacggctc tacgcgtagt taattggta 120
gatgtcaacc ccctctctaa gtggcagtag tggcgttgg tataacctgct agtgcctggg 180
gatgttctat ttttcttagta gtgcttgatc aaacattgca tagtttgact tggacaaac 240
tgtctgatat atatatatat ttttggcag agggagcagt aagaacttat ttagaaatgt 300
aatcatttgt taaaaaaggt ttaatttgc tgctttctt cgtaatgtt gtttcacat 360
tagattttct ttgtgttata tacactggat acatacaaatt tcagttgcag tagtctctta 420
atccacatca gctaggcata ctttagcaaa agcataattac acaaattctag tgtgcctgtc 480
gtcacattct caataaactc gtcatgttt actaaaaagta cctttcgaa gcatcatatt 540
aatccgaaaa cagtttaggaa agtctccaaa tctgaccaaa tgccaaatgtca tcgtccagct 600
tatcagcatc caactttcag tttcgcatgt gctagaaatt gttttcatc tacatggcca 660
ttgttgactg catgcatcta taaataggac cttagacgatc aatcgcaatc gcatatccac 720
tattctctag gaagcaaggg aatcacatcg ccatggcagc caagatgtt gcattgtttg 780
cgctccttagc tctttgtgca accgcccacta gtgctaccca tatcccaggg cacttgcac 840
cactactgtat gccattggct accatgaacc catggatgca gtactgcatt aagcaacagg 900
gggttgccaa cttgttagcg tggccgaccc tgatgctgca gcaactgttgc gcctcaccgc 960
ttcagcagtg ccagatgcca atgatgatgc cgggtatgt gccaccgatg acgatgatgc 1020
cgatgccgag tatgatgcca tcgatgatgg tgccgactat gatgtcacca atgacgatgg 1080
ctagtatgtat gccgcccattg atgatgcca gcatgatttc accaatgacg atgcccagta 1140
tgatgccttc gatgataatg ccgaccatga tgtcaccaat gattatgccg agtatgatgc 1200
caccaatgtat gatgccgagc atgggtgtcac caatgatgtat gccaaacatg atgacagtgc 1260
cacaatgtta ctctggttct atctcacaca ttatacaaca acaacaatta ccattcatgt 1320
tcagccccac agccatggcg atccccacca tggttttaca gcagccctt gttggtgctg 1380
cattcttagat ctagatataa gcattttgtt agtacccaaat aatgaagtcg gcatgccatc 1440
gcatacgact cattgttttag gaataaaaca agctaataat gactttctc tcattataac 1500
ttatatctct ccatgtctgt ttgtgtgtt gtaatgtctg ttaatcttag tagatttat 1560
tgtatataata accatgtatt ctctccattc caaattataat gtcttgcatt tcaagataaa 1620
tagtttaac catacctaga cattatgtat atataaggcg cttaaacaaa gctatgtact 1680
cagtaaaatc aaaacgactt acaatttaaa atttagaaag tacatttttta ttaatagact 1740
aggtagtac ttgtgcgttgc caacggaaac atataataac ataataactt atataacaaa 1800
tgtatcttat attgttataa aaaatatttc ataatccatt tgtaatccta gtcatacata 1860
aattttgtta ttttaattta gttgtttcac tactacattg caaccattag tatcatgcag 1920
acttcgatata atgccaagat ttgcattgtc tcattcattga agagcacatg tcacacactgc 1980
cggtagaagt tctctcgatc attgtcagtc atcaggtacg caccaccata cacgcttgc 2040
taaacaacaaa aacaagtgtt atgtttgcg aagagaatta agacaggcag acacaaagct 2100
acccgacgat ggcgagtcgg tca 2123

<210> 29
<211> 211
<212> PRT
<213> Zea mays

```

<400> 29
 Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala
 1 5 10 15
 Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu
 20 25 30
 Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln
 35 40 45
 Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln
 50 55 60
 Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro
 65 70 75 80
 Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro
 85 90 95
 Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met
 100 105 110
 Met Pro Pro Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro
 115 120 125
 Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile
 130 135 140
 Met Pro Ser Met Met Pro Pro Met Met Met Pro Ser Met Val Ser Pro
 145 150 155 160
 Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser
 165 170 175
 Ile Ser His Ile Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro
 180 185 190
 Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly
 195 200 205
 Ala Ala Phe
 210

<210> 30
 <211> 17
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 30
 atgaaccctt ggatgca 17

 <210> 31
 <211> 17
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 31
 cccacagcaa tggcgat 17

```

<210> 32
<211> 639
<212> DNA
<213> Zea mays

<400> 32
ccatggcagc caagatgtt gcattgttg cgctccttagc tctttgtca accggccacta 60
gtgctaccca tatcccgagg cacttgtcac cactactgtat gccattggct accatgaacc 120
cttggatgca gtactgcac aagcaacagg gggttgccaa cttgttagcg tggccgaccc 180
tgatgctgca gcaactgtt gcctcaccgc ttcagcagtg ccagatgcca atgatgatgc 240
cgggtatgtat gccaccgatg acgatgtgc cgatgcccag tatgtatgcca tcgatgatgg 300
tgccgactat gatgtcacca atgacgtatgg ctagtatgtat gccgcccgtatg atgatgccaa 360
gcatgatttc accaatgacg atgcccagta tgatgccttc gatgataatg ccgaccatga 420
tgtcaccaat gattatgccc agtatgtatgc caccaatgtat gatgcccagc atgggtgtcac 480
caatgtatgtat gccaaacatg atgacgtatgc cacaatgtta ctctggttct atctcacaca 540
ttataacaaca acaacaatccattatgt tcagccccac agcaatggcg atcccaccca 600
tgttcttaca gcagcccttt gttgggtgtc cattctaga 639

<210> 33
<211> 211
<212> PRT
<213> Zea mays

<400> 33
Met Ala Ala Lys Met Phe Ala Leu Phe Ala Leu Leu Ala Leu Cys Ala
1 5 10 15

Thr Ala Thr Ser Ala Thr His Ile Pro Gly His Leu Ser Pro Leu Leu
20 25 30

Met Pro Leu Ala Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln
35 40 45

Gln Gly Val Ala Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln
50 55 60

Leu Leu Ala Ser Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro
65 70 75 80

Gly Met Met Pro Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro
85 90 95

Ser Met Met Val Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met
100 105 110

Met Pro Pro Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro
115 120 125

Ser Met Met Pro Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile
130 135 140

Met Pro Ser Met Met Pro Pro Met Met Pro Ser Met Val Ser Pro
145 150 155 160

Met Met Met Pro Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser
165 170 175

Ile Ser His Ile Ile Gln Gln Gln Leu Pro Phe Met Phe Ser Pro
180 185 190

Thr Ala Met Ala Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly
195 200 205

```

Ala Ala Phe
 210

<210> 34
 <211> 13
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 34
 ctagccccggg tac 13

<210> 35
 <211> 13
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 35
 ctaggttaccc ggg 13

<210> 36
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 36
 ccacttcatg acccatatcc cagggcactt 30

<210> 37
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 37
 ttcttatctag aatgcagcac caacaaaggg 30

<210> 38
 <211> 579
 <212> DNA
 <213> Zea mays

<400> 38
 tcatgaccca tatcccaggg cacttgtcac cactactgat gccattggct accatgaacc 60
 cttggatgca gtactgcatg aagcaacagg gggttgccaa cttgttagcg tggccgaccc 120
 ttagtgcac gcaactgttg gcctcaccgc ttcagcagtg ccagatgcca atgatgatgc 180
 cgggtatgtat gccaccgatg acgatgatgc cgatgccgag tatgtatgcca tcgatgatgg 240
 tgccgactat gatgtcacca atgacgatgg ctagtatgat gccgcccgtg atgatgccaa 300
 gcatgatttc accaatgacg atgccgagta ttagtgcattc gatgataatg ccgaccatga 360
 tgtcaccaat gattatgccg agtatgatgc caccaatgat gatgccgagc atgggtgtcac 420
 caatgatgat gccaaacatg atgacagtgc cacaatgtt cttctgggttct atctcacaca 480
 ttataacaaca acaacaattt ccattcatgt tcagccccac agcaatggcg atccccaccca 540
 tgttcttaca gcagcccttt gttgggtgctg cattctaga 579

<210> 39
 <211> 191
 <212> PRT
 <213> Zea mays

<400> 39
 Met Thr His Ile Pro Gly His Leu Ser Pro Leu Leu Met Pro Leu Ala
 1 5 10 15

Thr Met Asn Pro Trp Met Gln Tyr Cys Met Lys Gln Gln Gly Val Ala
 20 25 30

Asn Leu Leu Ala Trp Pro Thr Leu Met Leu Gln Gln Leu Leu Ala Ser
 35 40 45

Pro Leu Gln Gln Cys Gln Met Pro Met Met Met Pro Gly Met Met Pro
 50 55 60

Pro Met Thr Met Met Pro Met Pro Ser Met Met Pro Ser Met Met Val
 65 70 75 80

Pro Thr Met Met Ser Pro Met Thr Met Ala Ser Met Met Pro Pro Met
 85 90 95

Met Met Pro Ser Met Ile Ser Pro Met Thr Met Pro Ser Met Met Pro
 100 105 110

Ser Met Ile Met Pro Thr Met Met Ser Pro Met Ile Met Pro Ser Met
 115 120 125

Met Pro Pro Met Met Pro Ser Met Val Ser Pro Met Met Met Pro
 130 135 140

Asn Met Met Thr Val Pro Gln Cys Tyr Ser Gly Ser Ile Ser His Ile
 145 150 155 160

Ile Gln Gln Gln Gln Leu Pro Phe Met Phe Ser Pro Thr Ala Met Ala
 165 170 175

Ile Pro Pro Met Phe Leu Gln Gln Pro Phe Val Gly Ala Ala Phe
 180 185 190

<210> 40
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 40
 ctagaaggct cggcaacgtc agcaacggcg gaagaatccg gtg 43

<210> 41
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 41
 catgcaccgg attcttccgc cgttgctgac gttgccgagg ctt 43

42
55
DNA
Artificial Sequence

<210> 42
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

42
55
55

43
55
DNA
Artificial Sequence

<210> 43
<211> 55
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

43
55

43
55

44
59
DNA
Artificial Sequence

<210> 44
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

44
59

44
59

45
59
DNA
Artificial Sequence

<210> 45
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

45
59

45
59

46
75
DNA
Artificial Sequence

<210> 46
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

46
75

46
75

47
75
DNA
Artificial Sequence

<210> 47
<211> 75
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 10010
 10011
 10012
 10013
 10014
 10015
 10016
 10017
 10018
 10019
 10020
 10021
 10022
 10023
 10024
 10025
 10026
 10027
 10028
 10029
 10030
 10031
 10032
 10033
 10034
 10035
 10036
 10037
 10038
 10039
 10040
 10041
 10042
 10043
 10044
 10045
 10046
 10047
 10048
 10049
 10050
 10051
 10052
 10053
 10054
 10055
 10056
 10057
 10058
 10059
 10060
 10061
 10062
 10063
 10064
 10065
 10066
 10067
 10068
 10069
 10070
 10071
 10072
 10073
 10074
 10075
 10076
 10077
 10078
 10079
 10080
 10081
 10082
 10083
 10084
 10085
 10086
 10087
 10088
 10089
 10090
 10091
 10092
 10093
 10094
 10095
 10096

<212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 53
 gaaaccatgg ccagtgtat tgcgcaggca 30

<210> 54
 <211> 29
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide

 <400> 54
 gaaaggtaacc ttacaacaac tgtgccagc 29

<210> 55
 <211> 1494
 <212> DNA
 <213> Glycine max

 <220>
 <221> unsure
 <222> (1461)

<220>
 <221> unsure
 <222> (1464)

<220>
 <221> unsure
 <222> (1465)

<400> 55
 atttgcagca caaaaagttt ttgaagtaaa tgccttggcc aaggcattgt ctggacagaa 60
 ggatgaggtt ttctttctg ctaatgctgc tgccttggct tcaaggaagt cctccccaaag 120
 ggtgataaat gaggctgtcc aaaaagccgc tgctgctctg aagggtctcg atcatcgag 180
 ggccacaaat gtttagtgcca ggttggatgc tcaacagaag aaattgaatc tttctgttct 240
 tccaaacaact acaattggat cttccctca aactgcccgtt cttagaagrg twcgcgtga 300
 attcaaggct aacaagatct ccgaggaaga gtatgthaag tcaatttaagg aggaaattcg 360
 caaagttgtt garcttcaag aagagcttga tattgatgtt cttgttcatg gagaaccaga 420
 gagaaatgtat atggttgagt acttcgggtga rcaattgtca ggctttgcct tcacygtt 480
 tgggtgggtg caatcctatg gttcccggtt ygtgaagcca ccratcatct atggtgatgt 540
 gagccgccccca aagccaatga cygtcttctg gtcatctctg gctcagagct ttaccaagcg 600
 cccaaatgaag ggaatgctta ccggtcctgt taccattctc aactggkccct ttgtwagaaa 660
 tgaccaacactt agatctgaga ccacccatcca gattgcttgc gctatcaagg acgaagtgg 720
 ggaccttggaa aaggctggca tcactgttat ccaaattgtat gaagctgctt tgagagaggg 780
 tctgccactt rggaaatcag aacaagctca ctacttggac tgggctgtcc atgccttcag 840
 aatcaccaat gttgggtgtc aggataccac tcagatccac acccacatgt gctactccaa 900
 cttcaacgcac atcatccact ccatcatcga catggacgct gatgttatca ccattgagaa 960
 ctctcgctcc gatgagaagc tcctgtcagt cttccgtgaa ggtgtgaagt atggtgctgg 1020
 aattgscctt ggtgtctatg acatccactc cccaaagaata ccaccaactg aagaaatcgc 1080
 tgacagaatc aataagatgc tggcagtgtc cgagaagaac atcttgggg tcaaccctga 1140
 ctgtggcttc aagacccgca agtacactga agtgaagccc gccctcacaa acatgggtgc 1200
 cgcagcaaaa ctcatccgtt acgaacttgc caagtgaatg gtataagaaa gtagaatcta 1260
 caagttcatt ggttctgctt ttataataca ccaaagaaaa attttctata ttgggttgg 1320
 tcaataaccg tgggtggat atttagatgt tttagcatgc tctgtgagca attgattctt 1380
 cctcaacccc tctccctta ttttcccaa ctccgtttt ccctaatttca tggttatct 1440
 ttgctttgcc gcaatcctta ntnngatat gaaatattac cagtttgc cttttttttt 1494