三相直流无刷电机控制器 用户手册

SBMCB4 系列控制器 SBMCB5 系列控制器

第一章 概述

本手册主要介绍 SBMCB4 系列、SBMCB5 系列三相直流无刷电机控制器的产品特性、电气接线、控制方式、外形尺寸以及故障诊断等方面的知识。用户在使用产品前,请详细阅读本手册。如果在使用过程中遇到任何问题,请及时联系反馈给我们。

此两个系列电机控制器具备高效、耐用、平稳、动力强劲、安装简易、外型美观等优点,针对三相直流无刷电机驱动而设计,该控制器实施严格的过流保护、过压欠压保护、过温保护和堵转保护、能够提供强劲的驱动力。本产品采用铝基板加主控板复合式结构,保证产品的可靠性、良好的散热性和外形的美观性。为保障产品的稳定可靠性我们采用欧美一线品牌电子元器件,强大智能微处理器为产品提供了全面精确的控制。用户还可以通过LED 状态指示灯来简单快速地获得诊断信息。

产品可选配 RS485 或 CAN 通讯功能,能够从 RS485 或 CAN 获取转向转速等指令,同时可以将系统的状态(电压、电流、温度、故障信息等)发送给 PLC、ECU 等主机端。通讯协议可联系我们另外索取。

第二章 产品功能和规格

2.1 产品功能

- (1) 驱动电机。适合三相直流无刷电机(带 120° 霍尔)。
- (2)供电电压实时监控。当供电电压高于过压值和低于欠压值时,控制器将停止电机运转,同时故障指示灯报警。
- (3)温度测量和保护功能。当控制器内部温度超出工作温度范围,控制器将停止电机运转,同时故障指示灯报警。
- (4) 内置高精度电流检测。能够严格的控制输入电流和 UVW 输出电流极限,同时监控系统是否过流过载,当过流过载发生,控制器将停止电机运转,同时故障指示灯报警。
- (5) 电机 Hall 信号异常的保护。当控制器系统发现电机 Hall 信号异常时,控制器将停止电机运转,同时故障指示灯报警。
- (6) 堵转保护功能。在输出电流大于一定值时,当电机无法转动时间超过2秒,控制器将停止电机运转,同时故障指示灯报警。
 - (7) 可选配 RS485 或 CAN 通讯功能,可用 PLC、ECU 等主机通讯。

2.2 产品规格

产品型号	额定电压	最大电流	适合功率	产品尺寸
SBMCB4-XXV120A	24V/36V/48V/60V/72V	120A	1.0KW-2.5KW	200*120*60
SBMCB4-XXV150A	24V/36V/48V/60V/72V	150A	2. OKW-3. 5KW	200*120*60
SBMCB5-XXV180A	24V/36V/48V/60V/72V	180A	3. OKW-5. 5KW	200*132*60
SBMCB5B-XXV180A	24V/36V/48V/60V/72V	180A	3. OKW-5. 5KW	200*132*96
SBMCB5-XXV210A	24V/36V/48V/60V/72V	210A	5. OKW-7. 5KW	200*132*60
SBMCB5B-XXV210A	24V/36V/48V/60V/72V	210A	5. OKW-7. 5KW	200*132*96

如选配 RS485 或 CAN, 产品型号会附加相应的 "-485" / "-CAN"

工作温度范围: -40℃~100℃(+20℃)

冷却方式: 自然冷却, 通风良好

控制效率: ≥96% 防水等级: IP65

第三章 接口定义

3.1 电源、电机相线接口

+		U	V	W
+			电源正极	
_			电源负极	
U			电机 U 相	
V		电机 V 相		
W	电机 W 相			

注意: 电机 UVW 的接线顺序请咨询电机厂或我们。

3.2 SBMCB4 和 SBMCB5 系列接插件信号接口

1	2	3	4	5	6	7	8	9	10	21	22	23	24	25	26	27	28
										HVCC	HA	НВ	HC		HGND		
11	12	13	14	15	16	17	18	19	20	29	30	31	32	33	34	35	36
		+5V	油门	地						485A	485B						
										CANL	CANH						

+5V	连接航模接收器 VCC 端子		
油门	连接航模接收器 PWM 端子		
地	连接航模接收器 GND 端子		
HVCC	电机转子霍尔信号电源正极		
НА	电机转子霍尔信号 A		
НВ	电机转子霍尔信号 B		
НС	电机转子霍尔信号C		
HGND	电机转子霍尔信号电源负极		
RS485A/CANL	RS485A/CANL 信号(根据选配决定)		
RS485B/CANH	RS485B/CANH 信号(根据选配决定)		

[+5V、油门、地] 端口:

该端口用于连接 RC 信号控制

当操作杆最小位置时,此时要求电机处于反向最大转速运行。 当操作杆最大位置时,此时要求电机处于正向最大转速运行。 当操作杆中间位置时,此时要求电机处于停止状态。

双电机车辆,左右两侧电机控制器的油门应分别连接 RC-PWM1 和 RC-PWM2 同时遥控器需使用通道混动模式。

四电机车辆,同侧电机如需要转向不同,则应该通过寄存器来调节转向。

[HVCC、HA、HB、HC、HGND] 端口:

该5根信号连接电机霍尔5根线,注意顺序。

注意: 在安装电动车控制电路之前务必切断供电电源。

附 1.1 SBMCB4 系列产品外形尺寸

附 1.2 SBMCB5 系列产品外形尺寸

附 1.3 SBMCB5B 系列产品外形尺寸

附 2 LED 指示灯信息描述

LED 状态	说明	故障分析
绿灯常亮 红灯不亮	系统正常	
绿灯不亮 红灯不亮	系统无供电	检查电源是否打开
绿灯不亮 红灯闪烁(1长1短)	过压/欠压	电源电压超出控制器工作允许范围
绿灯不亮 红灯闪烁(1长2短)	过温/低温	控制器温度超出工作允许范围
绿灯不亮 红灯闪烁(1长3短)	过流	检查电机 UVW 接线顺序是否正确, 如接线顺序正确且多次出现此故 障,请更换电机或控制器
绿灯不亮 红灯闪烁(1长4短)	过载	负载过大, 需降低负载, 或更换 更大功率电机和更大功率控制器
绿灯不亮 红灯闪烁(2长1短)	预留	
绿灯不亮 红灯闪烁(2长2短)	预留	
绿灯不亮 红灯闪烁(2长3短)	电机霍尔异常	检查电机霍尔信号与控制器霍尔 信号的连接是否正常,检查电机 霍尔是否损坏
绿灯不亮 红灯闪烁(2长4短)	堵转	电机出现堵转

谢谢惠顾!

本公司对此产品及其用户手册拥有最终修改权和解释权

RS485 总线通讯协议

1.1 RS485 协议格式:

- (1) 协议格式: Modbus RTU 协议
- (2)波特率: 4800/9600/19200/38400/57600 (默认 9600)
- (3) 数据位: 8位
- (4) 奇偶校验位:无
- (5) 停止位: 1位

1.2 控制器寄存器地址表:

写操作内容	数据地址	读操作内容	数据地址
电机目标数据 (方式 A)	0x0000	电压	0x0200
电机目标数据 (方式 B)	0x0001	电流	0x0201
设备节点 ID 码	0x0100	温度	0x0202
通讯波特率	0x0101	电机转速	0x0203
通讯中断限定时间	0x0102	电机状态	0x0204
控制模式和控制途径	0x0103	故障信息	0x0205
运转转向和反馈转向	0x0104	转动圈数	0x0206
最大转速值	0x0105		
最小转速值	0x0106		
恢复出厂设置	0x0F00		

写入寄存器值方式

发送数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Datal 为设备 ID 码;

Data2 为操作码 0x06;

Data3 为寄存器地址高字节, Data4 为寄存器地址低字节;

Data5 为寄存器值高字节, Data6 为寄存器值低字节;

Data7 为 CRC 校验码低字节; Data8 为 CRC 校验码高字节;

返回数据:与接收到的数据一致。【ID为0的广播指令无返回】

读出寄存器值方式

发送数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Datal 为设备 ID 码:

Data2 为操作码 0x03;

Data3 为起始寄存器地址高字节, Data4 为起始寄存器地址低字节;

Data5 为 0x00, Data6 为读出双字节个数;

Data7 为 CRC 校验码低字节; Data8 为 CRC 校验码高字节;

返回数据: Data1 Data2 Data3 Data4--DataN DataN+1 DataN+2

Data1 为设备 ID 码:

Data2 为操作码 0x03;

Data3 为读出的单字节个数;

Data4--DataN 为读出寄存器值,高字节在前,低字节在后; DataN+1 为 CRC 校验码低字节;DataN+2 为 CRC 校验码高字节;

1.3 RS485 操作描述:

(1.A) 电机目标数据(方式A)

寄存器地址0x0000,寄存器默认值0x0000【断电不保存】

注:此寄存器只有在RS485控制模式下才有效。若设定值大于10000,则按10000处理;若设定值小于-10000,则按-10000处理。

在速度闭环模式下,为电机目标转速比【%%】。

在速度开环模式下,为电机目标调制比【%%】。

举例: 设定电机2000rpm正向运转[如最大转速为4000rpm, 2000/4000=5000% → 0x1388] 主机发送: ID 0x06 0x00 0x00 0x13 0x88 CRC CRC 控制器返回: 与接收到的数据一致。

举例: 设定电机1000rpm反向运转[如最大转速为4000rpm, -1000/4000=-2500%→F63C] 主机发送: ID 0x06 0x00 0x00 0xF6 0x3C CRC CRC 控制器返回: 与接收到的数据一致。

举例:设定电机停止

主机发送: ID 0x06 0x00 0x00 0x00 0x00 CRC CRC

控制器返回:与接收到的数据一致。

(1. B) 电机目标数据 (方式 B)

寄存器地址0x0001,寄存器默认值0x0000【断电不保存】

此寄存器区分高低字节,高字节对应ID为奇数的控制器,低字节对应ID为偶数的控制器。 此方式控制电机运转主要应用与双电机驱动的车辆,使用一帧指令可同时控制两侧电机的 运转。【注此帧的ID必须为0x00,才能对两侧不同ID的控制器同时起效】

注:此寄存器只有在RS485控制模式下才有效。若设定值大于100,则按100处理;若设定值小于-100,则按-100处理。

在速度闭环模式下,为电机目标转速比【%】。

在速度开环模式下,为电机目标调制比【%】。

举例:

设定ID=0x01的电机2000rpm正向运转[如最大转速为4000rpm, 2000/4000=50%→0x32] 设定ID=0x02的电机1000rpm反向运转[如最大转速为4000rpm, -1000/4000=-25%→0xE7] 主机发送: 00 0x06 0x00 0x01 0x32 0xE7 CRC CRC

控制器返回: 【ID为0的广播指令无返回】

举例:设定ID=0x01和ID=0x02的电机皆停止运转

主机发送: 00 0x06 0x00 0x01 0x00 0x00 CRC CRC

控制器返回: 【ID为0的广播指令无返回】

(2) 设备 ID 码

寄存器地址0x0100,寄存器默认值0x0000

设备ID码范围只能为0-255。

0x0000为永久ID,其它为特征ID。通讯帧的ID码必须符合特征ID码或永久ID码。(永久ID的优点是可广播方式来设定参数,也可在不知设备ID码时以设备ID为0来操作)举例:将控制器设备ID修改为0x0003

主机发送: 0x00 0x06 0x01 0x00 0x00 0x03 CRC CRC

控制器返回: 【ID为0的广播指令无返回】

(3) 通讯波特率 [系统重新上电后有效]

寄存器地址0x0101,寄存器默认值0x0001对应9600

0x0000对应4800波特率。

0x0001对应9600波特率。

0x0002对应19200波特率。

0x0003对应38400波特率。

0x0004对应57600波特率。

其它值为无效值。

注:此寄存器值修改后,只能在控制器重新上电后,才将以新设定的波特率来通讯。

举例:将通讯波特率修改为19200

主机发送: ID 0x06 0x01 0x01 0x00 0x02 CRC CRC

控制器返回:与接收到的数据一致。

(4) 通讯中断限定时间

寄存器地址0x0102,寄存器默认值0x0000【单位ms】

当PLC主机端与当前控制器通讯中断时间超出此寄存器设置值时,系统自动将0x0000和0x0001寄存器置0而停机,以保护系统采用RS485控制途径时,RS485通讯出现异常而无法停机情况。注:此寄存器值为0时,通讯异常保护功能关闭。

举例:将通讯中断限定时间设为0x2710(十进制10000,10秒)

主机发送: ID 0x06 0x01 0x02 0x27 0x10 CRC CRC

控制器返回:与接收到的数据一致。

举例:关闭通讯中断的自我保护功能

主机发送: ID 0x06 0x01 0x02 0x00 0x00 CRC CRC

控制器返回:与接收到的数据一致。

(5) 控制模式和控制途径「系统重新上电后有效]

寄存器地址0x0103, 寄存器默认值0x0004

高字节为控制模式: 0x00为速度开环模式:

0x01为速度闭环模式。

其它值为无效值。

低字节为控制途径: 0x03为RS485 0x0000或0x0001寄存器控制途径;

0x04为RC-PWM控制途径。

其它错误值可能带来控制紊乱。

控制途径由物理信号控制改为RS485控制时,系统自动将0x0000和0x0001寄存器值置0,以防切换为RS485控制时电机以之前设定的目标值突然运转。

举例:设定为速度闭环模式,同时采用RS485通讯控制:

主机发送: ID 0x06 0x01 0x03 0x01 0x03 CRC CRC 控制器返回: 与接收到的数据一致。

举例:设定为速度开环模式,同时采用RC-PWM控制:

主机发送: ID 0x06 0x01 0x03 0x00 0x04 CRC CRC

控制器返回:与接收到的数据一致。

(6) 运转转向和反馈转向 [系统重新上电后有效]

寄存器地址0x0104,寄存器默认值0x0101

高字节为电机运转转向极性的设置值。≠0为正极性,=0为负极性。

低字节为电机反馈转向极性的设置值。≠0为正极性,=0为负极性。

当发现电机运转转向颠倒,或者反馈的电机转向颠倒,可以通过此寄存器相应字节做极性反置切换。

举例:设定电机运转转向为正极性,电机反馈转向为负极性。

主机发送: ID 0x06 0x01 0x04 0x01 0x00 CRC CRC

控制器返回:与接收到的数据一致。

(7) 最大转速值「系统重新上电后有效]

寄存器地址0x0105,寄存器默认值0x0FA0【单位RPM】

最大转速值仅在速度闭环模式下起效,速度开环模式下无影响。

举例: 将最大转速改为5000RPM。 [5000→0x1388]

主机发送: ID 0x06 0x01 0x05 0x13 0x88 CRC CRC

控制器返回:与接收到的数据一致。

(8) 最小转速值「系统重新上电后有效]

寄存器地址0x0106,寄存器默认值0x00C8【单位RPM】

最小转速值仅在速度闭环模式下起效,速度开环模式下无影响。

速度闭环模式下,如果0x0000或0x0001电机目标数据折算出的转速小于最小转速值,则电机停止运行。

举例: 将最小转速改为100RPM。「100→0x0064]

主机发送: ID 0x06 0x01 0x06 0x00 0x64 CRC CRC

控制器返回:与接收到的数据一致。

(9) 回复出厂设置[系统重新上电后有效]

寄存器地址0x0F00

高字节、低字节数值皆无关系,地址为0x0F00就可回复出厂设置。

举例:回复出厂设置

主机发送: ID 0x06 0x0F 0x00 0x00 0x00 CRC CRC

控制器返回:与接收到的数据一致。

(10) 电压

单位: V【误差范围: ±1V】

举例: 单单读取实际电压

主机发送: ID 0x03 0x02 0x00 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

(11) 电流

单位: A【误差范围: ±4A或5%】

举例:单单读取实际电流

主机发送: ID 0x03 0x02 0x01 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

(12) 温度

单位: ℃【误差范围: ±3℃】【实际温度 = 读出值 - 40】

举例:单单读取实际温度

主机发送: ID 0x03 0x02 0x02 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

(13) 电机转速

单位: RPM【误差范围: ±1%】

举例:单单读取实际转速

主机发送: ID 0x03 0x02 0x03 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

(14) 电机状态

0x0000应对电机停止。

0x0001应对电机正转。

0x0002应对电机反转。

0x0003应对电机制动。

举例: 单单读取实际状态

主机发送: ID 0x03 0x02 0x04 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

(15) 故障信息

举例: 单单读取故障信息

主机发送: 0x00 0x03 0x02 0x05 0x00 0x01 CRC CRC 控制器返回: 0x00 0x03 0x02 0x?? 0x?? CRC CRC

返回值分析:

低字节bit0: 1过压,

0不过压

低字节bit1: 1欠压,

0不欠压

低字节bit2: 1控制器过温, 0控制器不过温 低字节bit3: 1控制器低温, 0控制器不低温

低字节bit4: 1过流, 0不过流 低字节bit5: 1过载, 0不过载

低字节bit6: 1电机霍尔异常, 0电机霍尔正常

低字节bit7: 1堵转, 0不堵转

高字节bit0-bit7: 预留

(16) 转动圈数

该寄存器是电子信号转动圈数计数值,为电机转动圈数*电机极对数。 该寄存器值范围-32768~32767,如电子圈数已达寄存器计数极限,将不在继续累加。 举例:单单读取电子信号转动圈数

主机发送: ID 0x03 0x02 0x06 0x00 0x01 CRC CRC

控制器返回: ID 0x03 0x02 0x?? 0x?? CRC CRC

可通过0x06指令对该寄存器做赋值处理。

举例:对寄存器值清零,让其重新计数

主机发送: ID 0x06 0x02 0x06 0x00 0x00 CRC CRC

控制器返回:与接收到的数据一致。

(17) 多寄存器值读取

支持多寄存器读取(最多读取10个连续寄存器值)

举例:一次同时读取电压、电流、温度、转速、状态、故障

主机发送: ID 0x03 0x02 0x00 0x00 0x06 CRC CRC

CAN 总线通讯协议标准版

1.1 CAN 基本信息:

协议格式: CAN-open SDO 协议

通讯速率为: 125Kbps-500Kbps (默认 250Kbps)

帧格式: 11 位标准帧

电机驱动器内置 120 欧姆终端电阻

1.2 控制器寄存器地址表:

写操作内容	数据地址	读操作内容	数据地址
电机目标数据(方式 A)	0x0000	电压	0x0200
电机目标数据(方式B)	0x0001	电流	0x0201
设备节点 ID 码	0x0100	温度	0x0202
通讯波特率	0x0101	电机转速	0x0203
通讯中断限定时间	0x0102	电机状态	0x0204
控制模式和控制途径	0x0103	故障信息	0x0205
运转转向和反馈转向	0x0104	转动圈数	0x0206
最大转速值	0x0105		
最小转速值	0x0106		

写入寄存器值方式

发送 ID: 0x600+节点码

发送数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Data1 为操作码 0x2B;

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00;

Data5 为寄存器值低字节, Data6 为寄存器值高字节;

Data7-Data8 为 0x00 0x00;

返回 ID: 0x580+节点码

返回数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

写入成功返回数据:

Data1 为操作码 0x60:

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00;

Data5-Data8 为 0x00 0x00 0x00 0x00;

写入失败返回数据:

Data1 为操作码 0x80:

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00;

Data5-Data8 为失败故障对应码。

读出寄存器值:

发送 ID: 0x600+节点码

发送数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8

Data1 为操作码 0x40;

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00;

Data5-Data8 为 0x00 0x00 0x00 0x00;

返回 ID: 0x580+节点码

返回数据: Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 读取成功返回数据:

Data1 为操作码 0x4B;

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00;

Data5 为寄存器值低字节, Data6 为寄存器值高字节;

Data7-Data8 为 0x00 0x00;

读取失败返回数据:

Data1 为操作码 0x80;

Data2 为寄存器地址低字节, Data3 为寄存器地址高字节;

Data4 为 0x00:

Data5-Data8 为失败故障对应码。

1.3 CAN 操作描述:

(1.A) 电机目标数据(方式A)

寄存器地址0x0000,寄存器默认值0x0000【断电不保存】

注:此寄存器只有在CAN控制模式下才有效。若设定值大于10000,则按10000处理;若设定值小于-10000,则按-10000处理。

在速度闭环模式下,为电机目标转速比【%%】。

在速度开环模式下,为电机目标调制比【%%】。

举例: 设定电机2000rpm正向运转[如最大转速为4000rpm, 2000/4000=5000%%→0x1388]

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x00 0x00 0x00 0x88 0x13 0x00 0x00

返回ID: 0x580+节点码

举例: 设定电机1000rpm反向运转[如最大转速为4000rpm, -1000/4000=-2500%→F63C]

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x00 0x00 0x00 0x3C 0xF6 0x00 0x00

返回ID: 0x580+节点码

举例:设定电机停止

发送ID: 0x600+节点码

返回ID: 0x580+节点码

(1.B) 电机目标数据(方式B)

寄存器地址0x0001,寄存器默认值0x0000【断电不保存】

此寄存器区分高低字节,高字节对应ID为奇数的控制器,低字节对应ID为偶数的控制器。 此方式控制电机运转主要应用与双电机驱动的车辆,使用一帧指令可同时控制两侧电机的 运转。【注此帧的节点码必须为0x00,才能对两侧不同ID的控制器同时起效】

注:此寄存器只有在CAN控制模式下才有效。若设定值大于100,则按100处理;若设定值小于-100,则按-100处理。

在速度闭环模式下,为电机目标转速比【%】。

在速度开环模式下,为电机目标调制比【%】。

举例:

设定ID=0x01的电机2000rpm正向运转[如最大转速为4000rpm, 2000/4000=50%→0x32] 设定ID=0x02的电机1000rpm反向运转[如最大转速为4000rpm, -1000/4000=-25%→0xE7]

发送ID: 0x600

主节点发送数据: 0x2B 0x01 0x00 0x00 0xE7 0x32 0x00 0x00

返回ID: 0x580+节点码

举例:设定ID=0x01和ID=0x02的电机皆停止运转

发送ID: 0x600

主节点发送数据: 0x2B 0x01 0x00 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

(2) 设备节点 ID 码

寄存器地址0x0100,寄存器默认值0x0000

设备节点ID码范围只能为0-127。

0x0000为永久ID,其它为特征ID。通讯帧的节点ID码必须符合特征ID码或永久ID码。(永久ID的优点是可广播方式来设定参数,也可在不知节点ID码时以节点ID为0来操作)

举例:将控制器设备节点ID修改为0x0003

发送ID: 0x600

主节点发送数据: 0x2B 0x00 0x01 0x00 0x03 0x00 0x00 0x00

返回ID: 0x583

(3) 通讯波特率 [系统重新上电后有效]

寄存器地址0x0101,寄存器默认值0x0001对应250Kbps

0x0000对应125K波特率。

0x0001对应250K波特率。

0x0002对应500K波特率。

其它值为无效值。

注: 此寄存器值修改后,只能在控制器重新上电后,才将以新设定的波特率来通讯。

举例:将通讯波特率修改为500Kbps

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x01 0x01 0x00 0x02 0x00 0x00 0x00

返回ID: 0x580+节点码

(4) 通讯中断限定时间

寄存器地址0x0102,寄存器默认值0x0000【单位ms】

当主节点与当前控制器通讯中断时间超出此寄存器设置值时,系统自动将0x0000和0x0001 寄存器置0而停机,以保护系统采用CAN控制途径时,CAN通讯出现异常而无法停机情况。 注:此寄存器值为0时,无通讯保护功能关闭。

举例:将通讯中断限定时间设为0x2710(十进制10000,10秒)

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x02 0x01 0x00 0x10 0x27 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x02 0x01 0x00 0x00 0x00 0x00 0x00

举例:关闭通讯中断的自我保护功能(将寄存器值设为0)

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x02 0x01 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x02 0x01 0x00 0x00 0x00 0x00 0x00

(5) 控制模式和控制途径「系统重新上电后有效]

寄存器地址0x0103,寄存器默认值0x0004

高字节为控制模式: 0x00为速度开环模式;

0x01为速度闭环模式。

其它值为无效值。

低字节为控制途径: 0x03为CAN 0x0000或0x0001寄存器控制途径:

0x04为物理信号RC-PWM控制途径。

其它错误值可能带来控制紊乱。

控制途径由物理信号控制改为CAN控制时,系统自动将0x0000和0x0001寄存器值置0,以防切换为CAN控制时电机以之前设定的目标值突然运转。

举例:设定为速度闭环模式,同时采用CAN通讯控制:

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x03 0x01 0x00 0x03 0x01 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x03 0x01 0x00 0x00 0x00 0x00 0x00

举例:设定为速度开环模式,同时采用RC-PWM控制:

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x03 0x01 0x00 0x04 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x03 0x01 0x00 0x00 0x00 0x00 0x00

(6) 运转转向和反馈转向「系统重新上电后有效]

寄存器地址0x0104,寄存器默认值0x0101

高字节为电机运转转向极性的设置值。≠0为正极性,=0为负极性。

低字节为电机反馈转向极性的设置值。≠0为正极性,=0为负极性。

当发现电机运转转向颠倒,或者反馈的电机转向颠倒,可以通过此寄存器相应字节做极性反置切换。

举例:设定电机运转转向为正极性,电机反馈转向为负极性。

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x04 0x01 0x00 0x00 0x01 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x04 0x01 0x00 0x00 0x00 0x00 0x00

(7) 最大转速值[系统重新上电后有效]

寄存器地址0x0105,寄存器默认值0x0FA0【单位RPM】

最大转速值仅在速度闭环模式下起效,速度开环模式下无影响。

举例: 将额定转速改为5000RPM。[5000→0x1388]

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x05 0x01 0x00 0x88 0x13 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x60 0x05 0x01 0x00 0x00 0x00 0x00 0x00

(8) 最小转速值 [系统重新上电后有效]

寄存器地址0x0106,寄存器默认值0x00C8【单位RPM】

最小转速值仅在速度闭环模式下起效,速度开环模式下无影响。

速度闭环模式下,如果0x0000或0x0001电机目标数据折算出的转速小于最小转速值,则电机停止运行。

举例: 将额定转速改为100RPM。[100→0x0064]

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x06 0x01 0x00 0x64 0x00 0x00 0x00

返回ID: 0x580+节点码

(9) 回复出厂设置[系统重新上电后有效]

寄存器地址0x0F00

高字节、低字节数值皆无关系,地址为0x0F00就可回复出厂设置。

举例:回复出厂设置

发送ID: 0x600+节点码

主节点发送数据: 0x2B 0x00 0x0F 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

(10) 电压

单位: V【误差范围: ±1V】

举例:读取实际电压

发送ID: 0x600+节点码

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x00 0x02 0x00 0x?? 0x?? 0x00 0x00

(11) 电流

单位: A【误差范围: ±4A或5%内】

举例:读取实际电流

发送ID: 0x600+节点码

主节点发送数据: 0x40 0x01 0x02 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x01 0x02 0x00 0x?? 0x?? 0x00 0x00

(12) 温度

单位: ℃【误差范围: ±3℃】 【实际温度 = 读出值 - 40】

举例:读取实际温度

发送ID: 0x600+节点码

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x02 0x02 0x00 0x?? 0x?? 0x00 0x00

(13) 电机转速

单位: RPM【误差范围: ±1%】

举例: 读取实际转速

发送ID: 0x600+节点码

主节点发送数据: 0x40 0x03 0x02 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x03 0x02 0x00 0x?? 0x?? 0x00 0x00

(14) 电机状态

0x0000应对电机停止。

0x0001应对电机正转。

0x0002应对电机反转。

0x0003应对电机制动。

举例:读取实际状态

发送ID: 0x600+节点码

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x04 0x02 0x00 0x?? 0x?? 0x00 0x00

(15) 故障信息

举例:读取故障信息

发送ID: 0x600+节点码

主节点发送数据: 0x40 0x05 0x02 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x05 0x02 0x00 0x?? 0x?? 0x00 0x00

返回值分析: Data5为低字节, Data6为高字节

低字节bit0: 1过压,

0不过压

低字节bit1: 1欠压,

0不欠压

低字节bit2: 1控制器过温,

0控制器不过温

低字节bit3: 1控制器低温,

0控制器不低温

低字节bit4: 1过流,

0不过流

低字节bit5: 1过载,

0不过载

低字节bit6: 1电机霍尔异常,

0电机霍尔正常

低字节bit7: 1堵转,

0不堵转

高字节bit0-bit7: 预留

(16) 转动圈数

该寄存器是电子信号转动圈数计数值,为电机转动圈数*电机极对数。

该寄存器值范围-32768~32767,如电子圈数已达寄存器计数极限,将不在继续累加。

举例: 单单读取电子信号转动圈数

发送ID: 0x600+节点码

主节点发送数据: 0x40 0x06 0x02 0x00 0x00 0x00 0x00 0x00

返回ID: 0x580+节点码

控制器返回数据: 0x4B 0x06 0x02 0x00 0x?? 0x?? 0x00 0x00

可通过0x06指令对该寄存器做赋值处理。

举例:对寄存器值清零,让其重新计数

发送ID: 0x600+节点码

控制器返回数据: 0x60 0x06 0x02 0x00 0x?? 0x?? 0x00 0x00

