Formale Grundlagen der Informatik I Abgabe der Hausaufgaben Übungsgruppe 24 am Freitag, d. 25. Juni 2015

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Philipp Quach 6706421 4quach@informatik.uni-hamburg.de 25. Juni 2015

Aufgabe 10.4

[/2]

Beweisen Sie, dass eine Inferenzregel $R = \frac{F_1, \dots, F_n}{G}$ genau dann korrekt ist, wenn $\{F_1, \dots, F_n\} \models G$ gilt. (Nutzen Sie dazu die Definition der Korrektheit einer Inferenzregel auf Folie 31.)

Definition: Wenn $M \vdash_R H$ (durch Benutzen von R wird aus einer Formel M die Formel H), dann auch $M \vDash H$ (jede Belegung, die M wahr macht, macht auch H wahr). Daraus folgt, dass $M \vdash_R H$ gleichbedeutend ist mit:

Wir haben eine Menge aus Formeln A_1, \ldots, A_m , eine Inferenzregel $R = \frac{B_1, \ldots, B_m}{C}$ und eine Formel H.

Wir formen um:

$$R = \frac{B_1, \dots, B_m}{C} \quad \text{Sei } n \leq m \wedge A_1, \dots, A_{m-x} \equiv B_1, \dots, B_n \quad | x \geq 0$$

$$R = \frac{A_1, \dots, A_m}{C} \quad \text{Da } A_1, \dots, A_{m-x} \text{ die benutzen Formeln aus } M \text{ sind,}$$

$$\text{sei nun } C \text{ die geschlussfolgerte Formel (also H)}$$

$$R = \frac{A_1, \dots, A_m}{H} \quad A_1, \dots, A_{m-x} \in M \Rightarrow M \geq \{A_1, \dots, A_{m-x}\}$$

$$\Rightarrow \text{Für } A_1, \dots, A_{m-x} \text{ kann auch M eingesetzt werden,}$$

$$\text{da die zusätzlichen Formeln nicht benutzt werden müssen.}$$

$$R = \frac{M}{H}$$

Am Anfang wurde definiert, dass $M \vDash H$ gilt. Nun ist:

$$\frac{F_1, \dots, F_n}{G} = R = \frac{M}{H}$$
 s. links:
$$\begin{cases} M = F_1, \dots, F_n \\ H = G \end{cases}$$

$$\Rightarrow M \vDash H \equiv \{F_1, \dots, F_n\} \vDash H$$

Aufgabe 10.5

/3

Aufgabe 10.5.1

Seien $F = ((A \Leftrightarrow B) \land B \land \neg C)$ und $G = ((B \lor \neg C) \Leftrightarrow \neg C) \land \neg C \land \neg (B \lor \neg C)$. Geben Sie eine Substitution sub an mit sub(F) = G oder begründen Sie, warum dies nicht möglich ist.

Da nur atomare Formeln substituiert werden können, muss der Bijunktionspfeil erhalten bleiben, da in beiden Formeln nur jeweils einer vorkommt. $\Rightarrow \sup(A) = (B \vee \neg C)$ Die Position der Formeln ergibt dann $\operatorname{dub}(B) = (\neg C)$. Durch $\operatorname{sub}(C) = (B \vee \neg C)$ wird aus F G.

Aufgabe 10.5.2

Zeigen Sie, dass für jede Formel F und jede Substitution sub gilt: Wenn F eine Tautologie ist, dann ist auch sub(F) eine Tautologie. Vervollständigen Sie dazu den Beweis aus der Vorlesung. Führen Sie insb. die dort nicht ausgeführte strukturelle Induktion.

Seien A_1, \ldots, A_n die in F vorkommenden Aussagensymbole und \mathcal{A} eine Belegung. Sei \mathcal{A}' eine neue Belegung mit $\mathcal{A}'(A_i) := \mathcal{A}(\operatorname{sub}(A_i))$.

Dies ist möglich, da alle A_i kontingent sind.

Sei B eine Behauptung: $\mathcal{A}'(F) = \mathcal{A}(\operatorname{sub}(F))$.

- 1. Induktionsanfang: B gilt für jede atomare Formel (gegeben durch die Definition von \mathcal{A}')
- 2. Induktionsannahme: "B(C)" \wedge "B(D)" gelte für "C" \wedge "D".
- 3. Induktionsschritt: Unter Annahme von (2) gilt:

$$B(\neg C) \overset{\text{laut Def. v. } \mathcal{A}}{=} \text{sub}(\neg C) \overset{\text{s. Vl 17 S. 5}}{=} \neg \text{sub}(C) \overset{l.Def. v. \mathcal{A}}{=} \neg B(C) \text{ (gilt wegen (2))}$$

$$B(C \circ D) \overset{l.Def. v. \mathcal{A}}{=} \text{sub}((C \circ D) \overset{\text{s. Vl 17 S. 5}}{=} \text{sub}(C) \circ \text{sub}(D) \overset{l.Def. v. \mathcal{A}}{=} B(C) \circ B(D) \text{ (gilt wegen (2))}$$

$$\circ \in \{ \lor, \land, \Rightarrow, \Leftrightarrow \}$$

Aufgabe 10.6

/7

Aufgabe 10.6.1

Zeigen oder Widerlegen Sie, dass die folgenden Inferenzregeln korrekt sind:

$$\frac{A \Rightarrow B, B \Rightarrow A}{\neg B \lor A} \qquad \qquad \frac{(A \lor B) \Rightarrow C, \neg C \land \neg B}{A \lor B}$$

 \Rightarrow bewiesen, da $(\neg B \lor A)$ auch dann wahr ist, wenn $((A \Rightarrow B) \land (B \Rightarrow A))$ wahr ist.

A	B	C	$A \lor B$	$(A \vee B) \Rightarrow C$	$\neg C$	$\neg B$	$\neg C \land \neg B$
0	0	0	0	0	1	1	1
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	1	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	0	1	0	0
1	1	1	1	1	0	0	0

 \Rightarrow widerlegt, da $(A \lor B)$ an mindestens einer Stelle wahr ist, an der $(A \lor B) \Rightarrow C$ und $C \land \neg B$ wahr sind.

Aufgabe 10.6.2

Sei $\mathcal{C} = (\mathcal{L}_{AL}, Ax, \mathcal{R})$ ein Kalkül der Aussagenlogik mit $Ax = \{A \Rightarrow (B \Rightarrow A)\}$ und $R = \{\frac{\neg G, F \Rightarrow G}{\neg F}, \frac{\neg G, F \land G}{F}\}$. Sei ferner $M = \{A \lor C, \neg(E \Rightarrow C)\}$. Zeigen Sie $M \vdash_{\rfloor} A$ durch Angabe einer Ableitung.

$$R_1 = \frac{\neg G, F \Rightarrow G}{\neg F} \hat{=} \text{Modus Tollens (MT)} \land R_2 = \frac{\neg G, F \land G}{F} \hat{=} \text{Disjunktiver Syllogismus (DS)}$$

$$M \vdash (E \Rightarrow C) \quad [\text{aus M}]$$

$$\vdash C \Rightarrow (E \Rightarrow C) \quad [Ax \text{ mit sub}(A) = C \land \text{sub}(B) = E]$$

$$\vdash \neg C \quad [\text{MT mit sub}(G) = (E \Rightarrow C) \land \text{sub}(F) = C]$$

$$\vdash A \lor C \quad [\text{aus M}]$$

$$\vdash A \quad [\text{DS1 mit sub}(G) = \neg C \land \text{sub}(F) = A]$$

$$(1)$$