UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ (UTFPR) PROJETO REA

JOE MICHAEL HIDEYUKI FURUYA TAKAHASSI

RECURSOS DE INTERACAO EDUCACIONAL DIGITAL APLICADOS A FISICA, QUIMICA, A MATEMATICA E AS ENGENHARIAS USANDO O SCILAB E O PYTHON

PROGRAMA DE APOIO AO DESENVOLVIMENTO DE RECURSOS EDUCACIONAIS ABERTOS NA GRADUAÇÃO DA UTFPR (ÁREAS TRANSVERSAIS)

CURITIBA

2021

JOE MICHAEL HIDEYUKI FURUYA TAKAHASSI

RECURSOS DE INTERACAO EDUCACIONAL DIGITAL APLICADOS A FISICA, QUIMICA, A MATEMATICA E AS ENGENHARIAS USANDO O SCILAB E O PYTHON

Apostila elaborada para o projeto de Recursos Educacionais Abertos descritos no edital 26/2021 e ofertada pela UTFPR, apresentado aos avaliadores da banca como requisito para a conclusão do projeto.

Orientador: Prof. Dr. Antônio Carlos Amaro de

Faria Júnior

CURITIBA

2021

LISTA DE FIGURAS

FIGURA 1	_	Foto do módulo Wi-Fi ESP8266.	15
FIGURA 2	_	Foto do módulo Bluetooth HC-05	15

LISTA DE TABELAS

TABELA 1	_	Comparativo entre módulos ESP8266 e HC-05	16

SUMÁRIO

·	
- 	13
1.1 MOTIVAÇÃO	13
	13
2 EXEMPLOS PRÁTICOS	14
2.1 EXEMPLO DE ANÁLISE DE TECNOLOGIA - COMUNICAÇÃO SEM FIO	14
2.1.1 Wi-Fi	14
2.1.2 Bluetooth	15
2.1.3 Comparativo entre tecnologias de comunicação sem fio	15
3 METODOLOGIA	17
3.1 VISÃO GERAL	17
^	17
3.3 PROJETO DE HARDWARE	17
3.4 PROJETO DE SOFTWARE	17
3.5 INTEGRAÇÃO	17
4 EXPERIMENTOS E RESULTADOS	18
5 CRONOGRAMA E CUSTOS DO PROJETO	19
5.1 CRONOGRAMA	19
5.2 CUSTOS	19
6 CONCLUSÕES	20
~	20
6.2 TRABALHOS FUTUROS	20

1 INTRODUÇÃO

1.1 MOTIVAÇÃO

Esse material foi elaborado para o projeto "Recursos de Interação Educacional Digital Aplicados à Física, Química, à Matemática e às Engenharias usando o Scilab e o Python", ofertado pela UTFPR e pertencente ao Edital 26/2021. Para cada exemplo, foi exibido os respectivos códigos fontes assim como foi escrito uma explicação dos principais conceitos relacionados àquele tema.

1.2 OBJETIVOS

O objetivo do projeto é auxiliar o estudante no aprendizado de conceitos importantes tanto no campo da Física, Química, Matemática e Engenharias, através da elaboração de exemplos práticos no ambiente Jupyter Lab. Para isso, foi consultado diversas referências bibliográficas assim como foi utilizado bibliotecas do Python pertinentes para cada exemplo em questão.

2 EXEMPLOS PRÁTICOS

Nesta Seção serão apresentadas as diferentes tecnologias disponíveis para resolver cada parte do projeto, seguidas de uma tabela comparativa das principais características, e a escolha justificada. Todas as figuras e tabelas devem ser referenciadas no texto antes de aparecer no documento. A Seção 2.1 mostra um exemplo resumido do que deve ser feito para cada sensor, módulo, material, etc.

Nesta seção serão apresentadas diversos exemplos

2.1 EXEMPLO DE ANÁLISE DE TECNOLOGIA - COMUNICAÇÃO SEM FIO

Como mostrado na Seção ??, o projeto proposto necessita de um módulo de comunicação sem fio para interagir com o aplicativo no celular do usuário. Foram analisadas as tecnologias Wi-Fi e Bluetooth, visto que estas estão presentes em praticamente todos os *smartphones* modernos.

2.1.1 WI-FI

A tecnologia Wi-Fi é tecnologia de rede sem fio criada em 1998 pela Wi-Fi Alliance, baseada no padrão IEEE 802.11. Ela é hoje a tecnologia mais comum para conexão sem fio de dispositivos à internet em dispositivos pessoais (??). Um dos módulos mais comuns para aplicações de IoT (Internet das Coisas) é o ESP8266 (??), que tem baixo custo e fácil disponibilidade de compra. Este módulo é mostrado na Figura 1.

Figura 1: Foto do módulo Wi-Fi ESP8266.

2.1.2 BLUETOOTH

A tecnologia Bluetooth foi criada em 1989, com o objetivo de substituir o protocolo RS-232 na comunicação de curta distância entre objetos fixos (citar referência). O módulo mais comum para IoT é o HC-05, mostrado na Figura 2.

Figura 2: Foto do módulo Bluetooth HC-05.

2.1.3 COMPARATIVO ENTRE TECNOLOGIAS DE COMUNICAÇÃO SEM FIO

Na Tabela 1 são comparadas as principais características dos módulos ESP8266 e HC-05. Esta tabela foi criada com o auxílio do site www.tablesgenerator.com.

O módulo ESP8266 tem maior alcance e menor custo que o HC-05, como pode ser visto na Tabela 1. Porém, como o projeto proposto será alimentado por bateria, é essencial diminuir o consumo de corrente do sistema. Por isso, foi escolhido o módulo HC-05. Além

	ESP8266	HC-05
Alcance	50m	10m
Consumo	170mA	40mA
Preço	R\$ 22,90	R\$ 25,90

Tabela 1: Comparativo entre módulos ESP8266 e HC-05

disso, o desenvolvimento de aplicações com comunicação Bluetooth já é dominado pela equipe, reduzindo a dificuldade da implementação.

3 METODOLOGIA

3.1 VISÃO GERAL

* Obs.: nao esqueça de apresentar o diagrama de blocos do sistema.

3.2 PROJETO MECÂNICO

3.3 PROJETO DE HARDWARE

* Obs.: nao esqueça de apresentar o diagrama de blocos do hardware.

3.4 PROJETO DE SOFTWARE

* Obs.: nao esqueça de apresentar os diagramas de estados (statecharts) do software.

3.5 INTEGRAÇÃO

4 EXPERIMENTOS E RESULTADOS

5 CRONOGRAMA E CUSTOS DO PROJETO

5.1 CRONOGRAMA

* Apresentar o cronograma proposto e o final (lista e Diagrama de Gantt).

5.2 CUSTOS

* Apresentar o custo do projeto (tabela)

6 CONCLUSÕES

- 6.1 CONCLUSÕES
- 6.2 TRABALHOS FUTUROS