

Devoir maison n°6

à rendre le 20/11

Exercice 1

On définit deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par $u_0=0$, $v_0=8$ et les relations de récurrence :

$$\begin{cases} u_{n+1} &= \frac{3}{4}u_n + \frac{1}{4}v_n \\ v_{n+1} &= \frac{1}{4}u_n + \frac{3}{4}v_n \end{cases}$$

pour tout $n \in \mathbb{N}$.

- 1. Calculer u_1 , v_1 , u_2 et v_2 . Placer ces nombres, ainsi que u_0 et v_0 , sur une droite graduée.
- 2. On pose $s_n = v_n + u_n$ et $d_n = v_n u_n$ pour tout $n \in \mathbb{N}$. Prouver que $(s_n)_{n \in \mathbb{N}}$ est constante et que $(d_n)_{n \in \mathbb{N}}$ est géométrique.
- 3. Exprimer d_n , puis u_n et v_n en fonction de $n \in \mathbb{N}$.

Exercice 2

La suite $(u_n)_{n\in\mathbb{N}}$ est définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + n - 1.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Démontrer par récurrence que pour tout $n \in \mathbb{N}$:

$$u_n = 2^n - n$$
.