Pandas

Николай Матхеев nikolay@stego.su

Москва 07.10.2016

Немного лирики

- Изначально Python не обладал библиотеками для анализа данных – все использовали R
- Wes McKinney решил исправить положение и начал работу над Pandas в 2007 году
- Работа продолжается до сих пор, многое еще надо реализовать
- Название pandas не связано с пандами.
- Акроним от "panel data" термин для многомерных массивов данных

Великодушный пожизненный диктатор Pandas

Основные объекты в Pandas

• Series (1D)

```
s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
   -2.091564
a
   0.135039
b
C
  -0.065467
 -1.169783
d
                                 Выравнивание по
                                                  print(s+s[1:])
  -1.609569
                                индексу:
                                                            NaN
                                                  а
dtype: float64
                                                  b
                                                       0.270077
                                                      -0.130934
                                                      -2.339566
                                                      -3.219137
                                                  dtype: float64
```

Основные объекты в Pandas

DataFrame(2D)

df

	A	В	С
2011-01-01	0.352593	0.223594	-0.854430
2011-01-02	-0.922488	-0.348662	0.117223
2011-01-03	-1.148719	-0.348253	1.159168
2011-01-04	-0.873848	-0.006430	-0.436925
2011-01-05	0.296080	0.097156	0.560831
2011-01-06	0.494053	0.711460	-0.233050
2011-01-07	-0.641131	-1.570160	0.288397
2011-01-08	-0.387903	-1.297635	-0.179522

Основные объекты в Pandas

Panel(3D)

wp

```
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 5 (major axis) x 4 (minor axis)
```

Items axis: Item1 to Item2

Major axis axis: 2000-01-01 00:00:00 to 2000-01-05 00:00:00

Minor_axis axis: A to D

wp.ix[0].head()

	A	В	С	D
2000-01-01	0.192770	2.452199	1.255622	-0.415262
2000-01-02	0.001139	-0.694615	1.296104	1.136564
2000-01-03	1.333120	-0.972151	-1.431222	1.231503
2000-01-04	-1.346358	-0.002258	1.324954	-0.064672
2000-01-05	-2.439119	-0.866038	0.837556	-0.071488

Индекс и мультииндекс

	_
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

0
1
2
3
4
5
6
7
8
9
10
11

Работа с внешними данными

Семейство функций: pandas.read_xxx Семейство методов класса: DataFrame.to_xxx. xxx – формат данных. Работают на 2D-уровне

```
    CSV/
    df2 = pd.read_csv('ДЗ_01/выгрузка.csv', sep=';')
    df2.to_csv('data.csv')
```

- e Evcel
 data2 = pd.read_excel(filename, sheetname='1')
- HDF5
- таблицы в СУБД
- JSON
- Буфер обмена
- HTML/XML

Жизнь после загрузки данных

Посмотрим на данные:

head(), tail(), info()

Приведение данных к типам – семейство функций to_xxx. xxx-тип данных()

```
df2.X2 = pd.to_datetime(df2.X2)
```

df2.head(1)

	EVENT_TIME	USER_HASH
0	2015-12-15 01:09:38	7215be4441716d2f96d932ecf20e324145933912

1 rows x 31 columns

df2.tail(1)

	EVENT_TIME	USER_HASH
29303	2016-01-12 23:05:34	f1c4e08219c20f829b9ff07656fb39a0186727t

Посмотреть столбцы:

```
df2.columns
```

Индекс:

```
df2.index
```

RangeIndex(start=0, stop=29304, step=1)

Жизнь после загрузки данных

Узнать типы данных столбцов

df2.dtypes	
EVENT_TIME USER_HASH EVENT_TYPE	object object object

Сортировка данных по столбцу

```
df2.sort_values(by='AMOUNT')
```

Транформирование в NumPy 2d-массив

```
type(df2.values)
```

numpy.ndarray

Статистика по датафрейму:

```
df2.describe().T

/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numpy
eWarning: Invalid value encountered in percentile
    RuntimeWarning)
```

	count	mean	std	min	25%	50%	75%	max
X9	29304.0	7.643216e+01	3.184550e+02	-1440.0000	0.0000	0.000	0.000000	1.585000e+03
X13	29304.0	2.308613e+02	4.951268e+02	-502.0000	0.0000	0.000	0.000000	1.991000e+03

Число уникальных значений

```
for col in df2.columns:
    print(col, ' have {0} unique values'.format(df2[col].nunique()))
```

EVENT_TIME have 28884 unique values USER_HASH have 7608 unique values EVENT_TYPE have 2 unique values

Переименование и удаление колонок

```
df2.rename(columns={'EVENT_TIME':'MEGAEVENT'}, inplace=False)
```

MEGAEVENT USER_HASH

EVENT_TYPE

```
df2.drop(1,axis=0, inplace=True)

del df['AMOUNT']
df.drop('AMOUNT', axis=0)
```

```
axis=0 - ось "строк"
axis=1 - ось "столбцов"
```

Выборка данных и индексация

.loc

- Выборка по меткам:
 - одна метка
 - список меток
 - диапазон меток

```
In [41]: dfl.loc['20130102':'20130104']
Out[41]:
            0.357021 - 0.674600 - 1.776904 - 0.968914
In [88]: df1.iloc[:, lambda df: [0, 1]]
Out[88]:
a -0.023688 2.410179
b -0.251905 -2.213588
```

– callable (какая-нибудь функция – доступно с 0.18.1)

.iloc

- Выборка по позиции:
 - целое число
 - список int'ов
 - срез (1:7 к примеру)
 - callable (какая-нибудь функция доступно с 0.18.1)

.ix

Смешанный способ (полезен при наличии мультииндекса)

Выборка данных и индексация

.query(numexpr, *args)

```
dff = pd.DataFrame(np.random.rand(10, 3), columns=list('abc'))
dff.query('(a < b) & (b < c)')</pre>
```

	a	b	С
0	0.195293	0.369608	0.529688

Есть целесообразность использования:

- 1) выразительность условия выбоорки
- 2) на больших объемах **query** производительней (за счет распараллеливания)

Но нужно иметь установленный numexpr (входит в anaconda)

Выборка данных и индексация

Переиндексация

```
sss = pd.Series([10,20,60], index=[1,2,6])

sss.reindex(index=[1,2,3,4,5,6], method='ffill')

1    10
2    20
3    20
4    20
5    20
6    60
```

Итерация:

Семейство методов iterXXX:

- iterrows (по строкам)
- itertuples (по строкам)
- iteritems (по столбцам)

df

```
x y z
a 1 1 0
b 2 2 0
c 1 3 0
d 2 3 0
```

```
for index, rows in df.iteritems():
    print(index, rows)
```

```
x a 1
b 2
c 1
d 2
Name: x, dtype: int64
y a 1
b 2
c 3
d 3
```

Сравнения

df1 > df2

	x	y
0	False	False
1	True	False
2	False	False

Результат сравнения – датафрейм с булевыми значениями

```
(df1 > df2).any(axis=1)
```

```
0 False
1 True
2 False
dtype: bool
```

```
(df1 >= df2).all()
```

```
x True
y True
dtype: bool
```

NaN (not a number)

df1.mean()

A 1.5

B 1.5

dtype: float64

Некоторые функции игнорируют NaN-значения

df1.apply(np.cumsum)

	A	В
0	1.0	2.0
1	NaN	NaN
2	3.0	3.0

NaN (not a number)

Что же делать с NaN?

- dropna() удаление строк датафрейма, в которых есть NaN-значения
- fillna() заполнить NaN-ячейки указанным параметром
- ffill() заполнение соседними значениями (доступны разные стратегии заполнения)

df1.dropna()

	Α	В
0	1.0	2.0
2	2.0	1.0

df1.fillna(0)

	Α	В
0	1.0	2.0
1	0.0	0.0
2	2.0	1.0

df1.fillna(method='ffill')

	A	В
0	1.0	2.0
1	1.0	2.0
2	2.0	1.0

NaN (not a number)

Как бороться с ним:

Интерполяция – interpolate(method, *args)

```
In [60]: df = DataFrame({'A': [1, 2.1, np.nan, 4.7, 5.6, 6.8],
                       'B': [.25, np.nan, np.nan, 4, 12.2, 14.4]})
   . . . . :
In [61]: df
Out[61]:
    A
           В
0 1.0 0.25
1 2.1
      NaN
      NaN
2 NaN
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
In [62]: df.interpolate()
Out[62]:
    Α
           В
0 1.0 0.25
1 2.1 1.50
2 3.4 2.75
3 4.7 4.00
4 5.6 12.20
5 6.8 14.40
```

apply и applymap:

apply(func, *args)
 Применяет func по всем

столбцам/строкам датафрейма (axis)

applymap(func, *args)
 Применяет func по всем
 элементам датафрейма (axis)

	b	d	е
Utah	-0.222829	1.431772	-1.667800
Ohio	0.337446	-1.205942	0.894948
Texas	-1.248979	0.350620	1.099477
Oregon	0.510153	-0.137684	1.015742

Склейка датафреймов:

Конкатенация

```
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
                    'B': ['B0', 'B1', 'B2', 'B3'],
                    'C': ['C0', 'C1', 'C2', 'C3'],
                    'D': ['D0', 'D1', 'D2', 'D3']},
                    index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
                    'B': ['B4', 'B5', 'B6', 'B7'],
                    'C': ['C4', 'C5', 'C6', 'C7'],
                    'D': ['D4', 'D5', 'D6', 'D7']},
                     index=[4, 5, 6, 7])
df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
                    'B': ['B8', 'B9', 'B10', 'B11'],
                    'C': ['C8', 'C9', 'C10', 'C11'],
                    'D': ['D8', 'D9', 'D10', 'D11']},
                    index=[8, 9, 10, 11])
frames = [df1, df2, df3]
result = pd.concat(frames)
```

		df1					Result		
	Α	В	С	D					
0	A0	В0	α	D0		Α	В	С	D
1	Al	B1	C1	D1	0	AD	В0	00	D0
2	A2	B2	C2	D2	1	Al	B1	C1	D1
3	A3	В3	СЗ	D3	2	A2	B2	C2	D2
		df2			3	A3	В3		D3
	Α	В	С	D		AS	B3	СЗ	US
4	A4	B4	C4	D4	4	A4	B4	C4	D4
5	A5	B5	C5	D5	5	A5	B5	C5	D5
6	A6	B6	05	D6	6	Аб	B6	O5	D6
7	A7	B7	C7	D7	7	A7	В7	C7	D7
		df3							
	Α	В	С	D	8	AB	B8	C8	DB
8	A8	B8	C8	DB	9	A9	B9	C9	D9
9	A9	B9	C9	D9	10	A10	B10	C10	D10
10	A10	B10	C10	D10	11	A11	B11	C11	D11
11	A11	B11	C11	D11					

Группировка - .groupby()

План действий

- Разделяем данные на группы (по некоторому критерию)
- Применяем к каждой группе некую функцию
- Получаем результат

Функция:

- Агрегация (статистика по группе)
- Трансформация (изменение/формирование значений по группе)
- Фильтрация (удаление некоторых групп)

Группировка

Для каждого уникального А найти минимальный В:

```
d.sort_values('B').\
groupby('A', as_index=False).\
first()
```

```
d.sort_values('B').\
groupby('A').groups

{1: [0, 3], 2: [1, 2], 3: [5, 4]}
```

	A	В			A	В				
0	1	1		0	1	1		<u> </u>		
1	2	2		5	3	1			A	В
2	2	3	=>	1	2	2	=>	0	1	1
3	1	3		4	3	2		1	2	2
4	3	2		2	2	3		2	3	1
5	3	1		3	1	3				

Агрегация

.aggregate(*func, *args)

d.groupby('A').aggregate(np.sum) d.groupby('A').aggregate([np.sum, np.mean, np.std])

	В
A	
1	4
2	5
3	3

	В		
	sum	mean	std
A			
1	4	2.0	1.414214
2	5	2.5	0.707107
3	3	1.5	0.707107

Фильтрация

	A	В	С
0	1	3	5
1	2	4	5
2	2	3	5
3	1	4	6
4	1	3	6
5	2	3	6
6	2	4	6

d.groupby	('A').filter(\	
lambda x:	x['B'].sum()>10,	dropna=False)

	A	В	C
0	NaN	NaN	NaN
1	2.0	4.0	5.0
2	2.0	3.0	5.0
3	NaN	NaN	NaN
4	NaN	NaN	NaN
5	2.0	3.0	6.0
6	2.0	4.0	6.0

Строки

Функции доступны через атрибут датафрейма **str**

```
mail name

0 bunny666@mail.ru Даша

1 swaglover@ya.ru Саша

2 dontscrew@sts.su Маша
```

```
import re
df.mail.str.match('([\w\d]+)@(\w+)\\.(\w+)')
/Library/Frameworks/Python.framework/Versions.
In future versions of pandas, match will char
from ipykernel import kernelapp as app

0    (bunny666, mail, ru)
1    (swaglover, ya, ru)
2    (dontscrew, sts, su)
Name: mail, dtype: object
```

```
nomail
swaglover@ya.ru
dontscrew@sts.su
Name: mail, dtype: object
```

```
pd.Series(['a1', 'b2', 'c3']).\
str.extract('(?P<letter>[ab])(?P<digit>\d)', expand=False)
```

	letter	digit
0	а	1
1	b	2
2	NaN	NaN

Работа на дом:

• Пролистать туториалы:

http://pandas.pydata.org/pandas-docs/version/0.18.1/tutorials.html