

جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الأول, 2024/2023

# DIGITAL COMMUNICATIONS LAB

# **Experiment 1**

# Basics of BER calculations and channel models

By:

Yahia Walid Mohamad Eldakhakhny ( 19016891 )

Zyad Alaa Elsayed Goubashy (19015728)

Ragai Ahmed Abdelfattah Awad ( 19015655 )



جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الأول, 2024/2023

# Experiment

## Part 1

**Example 1:** the receiver gives a 0 bit as output. This output does not depend at all on what the channel is giving out.

| Questions                                                                                                |                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the corresponding BER for that receiver? You do not need to implement it in the mfile to answer. | Given the channel input has 50% chance of 1s or 0s the BER = 0.5                                                                                                                                                           |
| What is the reason behind the performance of this receiver?                                              | Each 1 input gives of an error, while each 0 input is correct, so always 50% of the bits are received incorrectly, assuming the channel input is of truly random 0s and 1s, if 1s are 70% of the input then the BER is 70% |

**Example 2:** the receiver gives random output, i.e., 0s and 1s with a probability of 0.5. Again, this output is not based on what the channel is giving out.

| Questions                                                                                                |                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the corresponding BER for that receiver? You do not need to implement it in the mfile to answer. | chance of 1s and 0s, the BER is 0.5                                                                                                                             |
| What is the reason behind the performance of this receiver?                                              | Each 1 input has error probability of 50% and each 0 input has error probability of 50%, and at whatever percentage mix of 1s and 0s the error rate will be 50% |

| Questions                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| What is the corresponding BER for receivers 1 and 2 above? You do not need to implement the two receivers to answer. | Receiver 1 depends on the number of 1s in the input (would be 0.5 in case of random input), receiver 2 is always 0.5                                                                                                                                                                                                                                                                                                        |
| What is the reason behind the performance of these two receivers?                                                    | For receiver 1: Each 1 input gives of an error, while each 0 input is correct, so always 50% of the bits are received incorrectly, assuming the channel input is of truly random 0s and 1s, if 1s are 70% of the input then the BER is 70%  For receiver 2: Each 1 input has error probability of 50% and each 0 input has error probability of 50%, and at whatever percentage mix of 1s and 0s the error rate will be 50% |
| What is the BER of the best receiver?                                                                                | Last receiver BER = 0.207                                                                                                                                                                                                                                                                                                                                                                                                   |



جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الأول, 2024/2023

# Part 2

| Questions                                                                              |                                                                                                                          |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| What is the BER of the best receiver?                                                  | The best receiver with 5 repetitions has a better BER at lower p values than 0.5 specifically at p = 0.2 the BER =0.0608 |
| What is the expected (theoretical) BER if the number of repetitions is increase to 10? | Theoretically it should reach 0.049, by analysis of the valid bit condition from symbols $(1-2*p) = (1-2*BER)^{(N/2)}$   |
| What is the cost/downside of using the transmitter in Part 2?                          | The number of repetitions means using more resources whether time or bandwidth                                           |

# Part 3

| Questions                        |                                                                      |
|----------------------------------|----------------------------------------------------------------------|
| What is the BER of the best      | The last receiver achieved similar results to the part 1 -a receiver |
| receiver?                        | with approx. 0.2 BER, the best so far is part2a                      |
| What is the reason behind such a | The correlation between bits make them reducible to one bit similar  |
| performance?                     | to part1-a case                                                      |



جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدر اسى الأول, 2024/2023

Part 3-a





جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الأول, 2024/2023



| Which of the three systems have       | Part 2-a with 5 repetitions                                          |
|---------------------------------------|----------------------------------------------------------------------|
| the best performance in terms of BER? |                                                                      |
|                                       |                                                                      |
| If the receiver you designed in       | Just flipping the logic of the system, would yield new BER of 1- old |
| any of the previous parts attain a    | BER                                                                  |
| BER more than 0.5, how can it be      |                                                                      |
| changed to attain a maximum of        |                                                                      |
| 0.5 BER?                              |                                                                      |

Alexandria University Faculty of Engineering Electrical and Electronic Engineering Department

Course: Digital Communications Lab

Lab No. 1: Basics of BER calculation and channel modeling

#### Contents

- Simulation parameters
- Part 1: BER for simple BSC channel
- Part 1-a: Effect of bit flipping probability on BER
- WRITE YOUR CODE HERE
- Part 2: BER for simple bit-flipping channel with multiple samples
- Part 2-a: Effect of bit flipping probability on BER
- WRITE YOUR CODE HERE
- Part 3: BER for simple bit-flipping channel with multiple samples and correlated channel
- Part 3-a: Effect of bit flipping probability on BER
- WRITE YOUR CODE HERE
- Part 4: Effect of number of repetitions on BER
- WRITE YOUR CODE HERE

# Simulation parameters

```
N_bits = 10000; % Total number of bits
p = 0.2; % Channel parameter (probability of bit flipping)
```

#### Part 1: BER for simple BSC channel

```
% Generate a bit sequence
bit_seq = GenerateBits(N_bits); %[DONE] IMPLEMENT THIS: Generate a sequence of bits equal
to the total number of bits

% Pass the bit sequence through the channel
rec_sample_seq = BSC(bit_seq,1,p); % Generate the received samples after passing through
the bit flipping channel

% Decode bits from received bit sequence
rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_1'); % IMPLEMENT THIS: Decode th
e received bits

% Compute the BER
BER_case_1 = ComputeBER(bit_seq,rec_bit_seq); %[DONE] IMPLEMENT THIS: Calculate the bit er
ror rate
```

# Part 1-a: Effect of bit flipping probability on BER

GOAL: Make a plot for the BER versus different values of the channel parameter p

```
p_vect = 0:0.1:1; % Use this vector to extract different values of p
```

```
in your code
BER_case_1_vec = zeros(size(p_vect)); % Use this vector to store the resultant BER
```

#### WRITE YOUR CODE HERE

```
for p_ind = 1:length(p_vect)
    rec_sample_seq = BSC(bit_seq,1,p_vect(p_ind));
    rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_1');
    BER_case_1_vec(p_ind) = ComputeBER(bit_seq,rec_bit_seq);
end
```

# Part 2: BER for simple bit-flipping channel with multiple samples

```
% System parameters
fs = 5; % Number of samples per symbol (bit)
% Generate a bit sequence
bit_seq = GenerateBits(N_bits); % Generate a sequence of bits equal to the total number of
bits

% Generate samples from bits
sample_seq = GenerateSamples(bit_seq,fs); %[DONE] IMPLEMENT THIS: Generate a sequence of s
amples for each bit

% Pass the sample sequence through the channel
rec_sample_seq = BSC(sample_seq,fs,p); % Generate the received samples after passing thr
ough the bit flipping channel

% Decode bits from received bit sequence
rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_2',fs); %[DONE] IMPLEMENT THIS
: Decode the received bits

% Compute the BER
BER_case_2 = ComputeBER(bit_seq,rec_bit_seq); % Calculate the bit error rate
```

## Part 2-a: Effect of bit flipping probability on BER

GOAL: Make a plot for the BER versus different values of the channel parameter p

## WRITE YOUR CODE HERE

```
for p_ind = 1:length(p_vect)
    rec_sample_seq = BSC(sample_seq,fs,p_vect(p_ind));
    rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_2',fs);
    BER_case_2_vec(p_ind) = ComputeBER(bit_seq,rec_bit_seq);
end
```

## Part 3: BER for simple bit-flipping channel with multiple samples and correlated channel

```
fs=5;
```

```
% Generate a bit sequence
bit_seq = GenerateBits(N_bits); % Generate a sequence of bits equal to the total number of
bits

% Generate samples from bits
sample_seq = GenerateSamples(bit_seq,fs); % Generate a sequence of samples for each bit

% Pass the sample sequence through the channel
rec_sample_seq = BSC(sample_seq,fs,p,'correlated'); % Generate the received samples after
passing through the bit flipping channel

% Decode bits from received bit sequence
rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_3',fs); % IMPLEMENT THIS: Deco
de the received bits

% Compute the BER
BER_case_3 = ComputeBER(bit_seq,rec_bit_seq); % Calculate the bit error rate
```

# Part 3-a: Effect of bit flipping probability on BER

GOAL: Make a plot for the BER versus different values of the channel parameter p

```
p_vect = 0:0.1:1; % Use this vector to extract different values of p
in your code
BER_case_3_vec = zeros(size(p_vect)); % Use this vector to store the resultant BER
```

#### WRITE YOUR CODE HERE

```
for p_ind = 1:length(p_vect)
    rec_sample_seq = BSC(sample_seq,fs,p_vect(p_ind),'correlated');
    rec_bit_seq = DecodeBitsFromSamples(rec_sample_seq,'part_3',fs);
    BER_case_3_vec(p_ind) = ComputeBER(bit_seq,rec_bit_seq);
end
```

```
% Plotting results

figure
plot(p_vect,BER_case_1_vec,'x-k','linewidth',2); hold on;
plot(p_vect,BER_case_2_vec,'o-r','linewidth',2); hold on;
plot(p_vect,BER_case_3_vec,'d-b','linewidth',2); hold on;

xlabel('Values of p','fontsize',10)
ylabel('BER','fontsize',10)
legend('Part 1-a','Part 2-a','Part 3-a','fontsize',10)
```

```
Warning: Using an integer to specify the legend location is not supported. Specify the legend location with respect to the axes using the 'Location' parameter.

Warning: Ignoring extra legend entries.
```



Part 4: Effect of number of repetitions on BER

GOAL: Make a plot for the BER versus the number of repetitions used in the transmitter of part 2 There is no template code for this part. Please write your own complete code here. You can re-use any of the codes in the previous parts

```
\mbox{\ensuremath{\$}} Generate a bit sequence
               = 1:20;
fs vect
                                      % Use this vector to extract different values of p i
n your code
p=0.2;
BER_case_4_vec = zeros(size(fs_vect)); % Use this vector to store the resultant BER
bit_seq = GenerateBits(N_bits); % Generate a sequence of bits equal to the total number of
bits
for fs ind = 1:length(fs vect)
    % Generate samples from bits
    sample_seq = GenerateSamples(bit_seq,fs_vect(fs_ind)); %[DONE] IMPLEMENT THIS: Generat
e a sequence of samples for each bit
    rec sample seq = BSC(sample seq,fs vect(fs ind),p);
    rec bit seq = DecodeBitsFromSamples(rec sample seq,'part 2',fs vect(fs ind));
    BER_case_4_vec(fs_ind) = ComputeBER(bit_seq,rec_bit_seq);
end
figure
plot(fs_vect, BER_case_4_vec, 'linewidth', 2); hold on;
xlabel('Values of fs','fontsize',10)
ylabel('BER','fontsize',10)
```

# WRITE YOUR CODE HERE



■ WRITE YOUR CODE FOR PART 2 HERE

## WRITE YOUR CODE FOR PART 2 HERE

```
for index = 1:length(bit_seq)
  if bit_seq(index) == 1
     sample_seq = [sample_seq ones(1, fs)];
  else
     sample_seq = [sample_seq zeros(1, fs)];
  end
end
```

```
end
```

```
Not enough input arguments.
Error in GenerateSamples (line 15)
   for index = 1:length(bit_seq)
```

## ■ WRITE YOUR CODE HERE

```
function bit_seq = GenerateBits(N_bits)

% Inputs:
% N_bits: Number of bits in the sequence
% Outputs:
% bit_seq: The sequence of generated bits
%
% This function generates a sequence of bits with length equal to N_bits
```

# WRITE YOUR CODE HERE

```
bit_seq=randi([0 1],1,N_bits);

Not enough input arguments.

Error in GenerateBits (line 11)
bit_seq=randi([0 1],1,N_bits);
```

## ■ WRITE YOUR CODE HERE

```
function bit_seq = GenerateBits(N_bits)

% Inputs:
% N_bits: Number of bits in the sequence
% Outputs:
% bit_seq: The sequence of generated bits
%
% This function generates a sequence of bits with length equal to N_bits
```

# WRITE YOUR CODE HERE

```
bit_seq=randi([0 1],1,N_bits);

Not enough input arguments.

Error in GenerateBits (line 11)
bit_seq=randi([0 1],1,N_bits);
```

- WRITE YOUR CODE HERE
- WRITE YOUR CODE HERE

```
function BER = ComputeBER(bit_seq,rec_bit_seq)
%
   Inputs:
    bit_seq:    The input bit sequence
%    rec_bit_seq: The output bit sequence
% Outputs:
    BER:    Computed BER
%
% This function takes the input and output bit sequences and computes the
% BER
```

## WRITE YOUR CODE HERE

```
counter =0;
l=length(bit_seq);
```

## WRITE YOUR CODE HERE

```
for i=1:1:1
    if bit_seq(i)~=rec_bit_seq(i)
    counter=counter+1;
    end
end
BER=counter/length(bit_seq);
end
```

```
Not enough input arguments.

Error in ComputeBER (line 14)
l=length(bit_seq);
```

```
function rec sample seq = BSC(sample seq,fs,p,channel type)
응
% Inputs:
% sample_seq: The input sample sequence to the channel
% fs: The sampling frequency used to generate the sample sequence
% p:
                   The bit flipping probability
% channel_type: The type of channel, 'independent' or 'correlated'
% Outputs:
% rec sample seq: The sequence of sample sequence after passing through the channel
% This function takes the sample sequence passing through the channel, and
% generates the output sample sequence based on the specified channel type
% and parameters
sample seq = ~~sample seq;
rec sample seq = zeros(size(sample seq));
rec_sample_seq = ~~rec_sample_seq;
if (nargin <= 3)</pre>
    channel_type = 'independent';
end
switch channel type
   case 'independent'
       channel_effect = rand(size(rec_sample_seq)) <=p;</pre>
    case 'correlated'
        channel effect = rand(1,length(rec_sample_seq)/fs)<=p;</pre>
        channel effect = repmat(channel effect, fs, 1);
        channel effect = channel effect(:)';
end
rec sample seq = xor(sample seq,channel effect);
rec sample seq = rec sample seq + 0;
```

```
Not enough input arguments.

Error in BSC (line 15)

sample seq = ~~sample seq;
```