

Network Science. VK Project

Ishimtsev Vladislav

National Research University «Higher School of Economics»

12 April 2016

Network summary

- Attributes: city, country, name, sex
- Number of nodes 82, number of edges 284

Network summary Degree distribution

- min degree 1, max degree 29
- Clustering coefficient: 0.51

Structural analysis

R

Closest random graph

- Barabasi-Albert model (n = 82, m = 3)
- Erdos-Renyi model (n = 82, p = 0.075)

• Small World model (n = 82, k = 6, p = 0.15, 0.5, 1)

* in all model number of edges $\approx 250 - 300$

Structural analysis Degree centrality

TOP 5 Dmitrij Galkin 0.358 Ashot Eljazjan 0.246 Maks Vorob'ev 0.235 Ksenija Shnel' 0.222 Marina Volosnikova 0.198

Structural analysis Closeness centrality

TOP 5

Dmitrij Galkin	0.478
Marina Volosnikova	0.455
Natal'ja Iljushechkina	0.421
Maks Vorob'ev	0.421
Ksenija Shnel'	0.409

^{*} at this part we consider only the largest connected component

Structural analysis Betweeness centrality

TOP 5

Dmitrij Galkin	0.318
Marina Volosnikova	0.298
Viktorija Ishimtseva	0.285
Maks Matuzenko	0.114
Natal'ja Iljushechkina	0.085

Structural analysis PageRank

TOP 5

Dmitrij Galkin 0.046
Viktorija Ishimtseva 0.035
Ashot Eljazjan 0.028
Marina Volosnikova 0.028
Ksenija Shnel' 0.027

Structural analysis Comparison

	Correla	tion co	efficient	
	D	C	В	PR
D	1.	0.67	0.64	-0.04
C	0.67	1.	0.42	-0.03
В	0.64	0.42	1.	-0.08
PR	-0.04	-0.03	-0.08	1.

Spearman correlation				
	D	C	В	PR
D	1.	8.0	0.67	0.05
C	0.8	1.	0.53	0.08
В	0.67	0.53	1.	0.02
PR	0.05	0.08	0.02	1.

Structural analysis Assortativity & Similarity

Attribute	degree city		country	sex
Assortativity	0.014	0.119	0.069	0.164

Adjacency Matrix

Community detection Clique search

Maximal Clique size	2	3	4	5	6
Count	20	18	32	35	3

6-cliques

Greedy optimization of modularity

Community structure based on the betweenness of the edges

Community detection algorithm of Latapy & Pons, based on random walks

Multilevel spectral recursive partitioning algorithm

