What Is Log?

What Is Log?

Year	Population (millions)	Ln (population)
1	170	5.14
400	190	5.25
800	220	5.39
1200	360	5.89
1600	545	6.30
1800	900	6.80
1850	1200	7.09
1900	1625	7.39
1950	2500	7.82
1975	3900	8.27
2000	6080	8.71

What Is Log?

Log and Percentage Change

First difference of natural LOG = percentage change:

- Logging converts
 absolute differences into
 relative (i.e., percentage)
 differences.
- The series
 DIFF(LOG(Y))
 represents the
 percentage change in Y
 from period to period.

Elasticity: Log/Log Models

Dependent Variable : In (\$ Spent)

	Coefficients	Standard Error	t Stat	P-value
Intercept	2.24	0.07	32.06	0.00
log(num promo + 1)	0.32	0.05	6.44	0.00

0.317 = change in log (\$ spent) when log(num promo) increases by 1 unit

log(
$$\$$$
 spent) when log(num promo) is 0 = 2.236 (1) log($\$$ spent) when log(num promo) is 1 = 2.553 (2) (1) - (2) = 0.317