Final Project: Milestone 2

Mourad Askar, Gerardo Palacios, Joe Paszkiewicz, Ramoskaite, Evelina^{1,2}

 1 DSC 425 - Time Series Analysis and Forecasting 2 DePaul University

Final Project: Milestone 2

Crypto-Currency and Stock Data

```
"RIOT"
                              "COIN"
                                          "HOOD"
                                                      "BTC-USD"
## [1] "SPY"
                                                                 "ETH-USD"
                                                                             "ADA-USD"
## [8] "DOGE-USD"
##
        Index
                          RIOT.Adjusted
##
           :2016-10-03
                                 : 0.650
    Min.
    1st Qu.:2018-01-03
                          1st Qu.: 2.300
##
   Median :2019-04-05
                          Median : 3.487
##
    Mean
           :2019-04-05
                          Mean
                                 : 9.347
##
    3rd Qu.:2020-07-07
                          3rd Qu.: 7.850
           :2021-10-05
##
    Max.
                          Max.
                                 :77.900
```

Graphing the Time Series

Figure 1 shows the time series for Ethereum over the past 5 years. It appears to be a multiplicative, non-stationary time series with an exponential positive trend that has exploded most recently in 2021.

autoplot(data)

Figure 1

Figure 2, we can see the time series with a log transformation. It has transformed the exponential behavior into something more linear. There still remains a general increasing trend, and appears to be more additive.

autoplot(log(data))

 $Figure\ 2$

Figure 3, we can see the log returns. The plot shows general white noise with a few outliers in 2017 and 2020.

autoplot(diff(log(data)))

Figure 3

Auto-correlation

Figure 4 is the ACF plot. Auto-correlation has a strong presence in this time series. The ACF gradually decreases indicating a non-stationary series.

```
acf(log(data), na.action = na.pass)
```

Series log(data)

Figure 4

Ljung Box Test

This can be further confirmed by performing the Ljung Box test. At lag 1, the Ljung-Box p-value is close to zero. This indicates that at the 99% confidence, the null hypothesis is rejected and one can conclude that the series is not independently distributed and exhibit serial correlation.

```
Box.test(log(data), lag = 1, type = "Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: log(data)
## X-squared = 1254.4, df = 1, p-value < 2.2e-16</pre>
```

Coinbase and Cardano

Coinbase Summary Statistics

##	Index		COIN.Adjusted	
##	Min.	:2021-04-14	Min.	:220.6
##	1st Qu	:2021-05-26	1st Qu	.:231.5
##	Median	:2021-07-10	Median	:244.3
##	Mean	:2021-07-09	Mean	:251.9
##	3rd Qu	:2021-08-22	3rd Qu	.:259.2
##	Max.	:2021-10-05	Max.	:342.0

Cardano Summary Statistics

##	Index		ADA-USD.Adjusted	
##	Min.	:2017-10-01	Min.	:0.01854
##	1st Qu	.:2018-10-02	1st Qu	.:0.04753
##	Median	:2019-10-04	Median	:0.09333
##	Mean	:2019-10-04	Mean	:0.36573
##	3rd Qu	.:2020-10-04	3rd Qu	.:0.29569
##	Max.	:2021-10-06	Max.	:2.96824
##			NA's	:4

Graphing the Time Series

The figures below show the time series for Coinbase and Cardano (ADA-USD) since their inception in 2021 and 2017, respectively. While Cardano appears to be a multiplicative, non-stationary time series, Coinbase seem to be an additive time series.

In the figures below we can see both time series with a log transformation. The log transformation did not affect Coinbase much, confirming the additive nature. On the other hand, it has transformed Cardano's into a more stable form.

Figure 5

Figure 6

```
autoplot(log(stock.COIN)) +
  ggtitle('Coinbase "Log"')
```

Coinbase "Log"

Figure γ

```
autoplot(log(stock.ADA)) +
  ggtitle('Cardano ADA-USD "Log"')
```

The figures below, we can see the log returns. The plot shows general white noise in both tickers with a few outliers fro Cardano in late 2017 and early 2020.

```
autoplot(diff(log(stock.COIN))) +
ggtitle('Coinbase "Log Returns"')
```

```
autoplot(diff(log(stock.ADA))) +
ggtitle('Cardano ADA-USD "Log Returns"')
```


Figure 8

Figure 9

Figure 10

Auto-correlation

The ACF plots shows that Cardano's Auto-correlation has a strong presence in this time series. The ACF gradually decreases indicating a non-stationary series. Coinbase's ACF quickly decays indicating also indicating non-stationary series.

```
acf(log(stock.COIN), na.action = na.pass)
```

```
acf(log(stock.ADA), na.action = na.pass)
```

Series log(stock.COIN)

Figure 11

Series log(stock.ADA)

Figure 12

Ljung Box Test

This can be further confirmed by performing the Ljung Box test. At lag 100, the Ljung-Box p-value is close to zero. This indicates that at the 99% confidence, the null hypothesis is rejected and one can conclude that the series is not independently distributed and exhibit serial correlation.

```
Box.test(log(stock.COIN), lag = 100, type = "Ljung-Box")

##
## Box-Ljung test
##
## data: log(stock.COIN)
## X-squared = 941.17, df = 100, p-value < 2.2e-16

Box.test(log(stock.ADA), lag = 100, type = "Ljung-Box")

##
## Box-Ljung test
##
## data: log(stock.ADA)
## X-squared = 87142, df = 100, p-value < 2.2e-16</pre>
```