

The Simple High Available Server able

Virtuelle Cold-Standby Server mit Linux

Schlomo Schapiro
Principal Consultant
Leitung Virtualisierung & Open Source

Agenda

- Hintergrundinformationen
- The Simple High Available Linux File Server
- Vorteile: Virtuelle Cold-Standby Server

Kundensituation

- Landesvermessung und Geobasisinformation Brandenburg
 - Katasterdaten des Landes Brandenburg
 - Amtliche Karten, Luftbilder usw.
 - Sammelt, speichert und verarbeitet Geoinformationsdaten
 - In Potsdam und Frankfurt / Oder
 - Heavily IT dependant
 - HP ist Hauptlieferant
 - 3 EVA (~40 TB)
 - > 100 Server

Die Problemsituation

- Viele Systeme speichern Daten auf vielen Fileserver und lokal
- Viele komplexe Datenbeziehungen mit viel FTP und Kopien zwischen UNIX/Linux Servern und Windows Systemen
- Z.T. sehr große Datenvolumina, Performanceprobleme
- Lokale Benutzeraccounts auf vielen Systemen (UNIX/Linux)
- Lösung: Storage Konsolidierung
- Laufendes Projekt

Ziele der Storage Konsolidierung

- Einheitliches Storage für UNIX/Linux und Windows
- Zentralisiertes Storage
- Hochverfügbarkeit & Notfallwiederherstellung
- Gute Unterstützung der Protokolle
- CIFS: Windows ACL, Access Based Enumeration, DFS Replication, AD Integration
- NFS: Version 2 und 3, Posix ACL, AD Integration mit RFC2307
- I FTP, RSYNC, SCP

Entscheidungsprozess & Kriterien

- Wirtschaftliche und technische Argumente
- Wichtige Kriterien
 - Investitionen und Betriebskosten für 3 Jahre (bis 2010)
 - Verfügbarkeit und Zuverlässigkeit (Lösungen ohne eigenes Storage benutzen die vorhandene EVA 8xxx)
 - "Qualität" der CIFS und NFS Implementieren, Interoperabilität
 - Einfache Nutzung und Verwaltung
 - Effizientes Backup mit CommVault Galaxy, präferiert LAN-free
- Optionale Kriterien
 - Asynchrone Protokolle unterstützt (RSYNC, FTP ...)
 - Integrierte Replikation zu einem unabhängigen 2. Storage
 - Zukünftige Storage Strategie stärken

Ergebnis: Linux File Server

- Positiv
 - Sehr redundant
 - NFS und CIFS ACL Integration
 - Beste und weiteste Protokollunterstützung
 - Backup (CommVault Galaxy) mit LAN-free Agent
 - Integrierte Replikation der Daten auf 2. Storage
 - Keine Implikation für Storage Strategie
 - Linux Wissen kann genutzt werden
- Negativ
 - Unvollständige CIFS-Unterstützung (Samba)
 - Verwaltung mit Shell Kommandos

Agenda

- Hintergrundinformationen
- **The Simple High Available Linux File Server**
- Vorteile: Virtuelle Cold-Standby Server

The Simple High Available Linux File Server

Komponenten

- Hardware (alles von HP)
 - DL 380 G5
 - **EVA 8000 (30TB)**
 - 4x MSA60 (36TB)
 - mehrere DL Server als ESX Server (für das Rechenzentrum)
- Software
 - SuSE Enterprise Linux 10 SP1
 - Samba, NFS
 - LVM, LVM Snapshots (smbsnap)
 - rsync
 - Virtuelle Maschine auf VMware ESX 3 (normalerweise aus)

Aufgaben – SAN Boot

- SAN Boot mit Multipathing (DM-MPIO)
 - Möglich mit SLES10SP1
 - dm-multipath bereits Teil der initrd
 - Installation in der VM
 - Siehe auch Artikel in i'X 04/2008 p. 142
 - Dual Boot Hardware und Virtuelle Maschine (Treiber ...)
 - Den versehentlichen Boot der VM verhindern (per ISO Image)

Aufgaben – Lokales Storage

- Lokales Storage verwalten
 - Automatisches Cloning des Produktionssystems auf das lokale Storage
 - Modifikationen des Boot Prozesses vom lokalen Storage (RAID-1)
 - Lokales Storage an Stelle des SAN Storage (ro) mounten
 - Nächtliches rsync aller Daten aus dem SAN zum lokalen Storage
 - Vorbereitung des lokalen Systems, als Produktivsystem genutzt zu werden (mit manueller Rückkopie)

Vorteile

- 2 Ebenen der Redundanz
 - Hardware und VM laufen mit dem selben System und denselben Daten Failover ohne Datenverlust
 - I SAN Storage auf lokales Storage repliziert
- Wiederherstellung ~ 5 Min für HW oder Storage Probleme
- Sofortiges Disaster Recovery auch mit vielen TB Daten
- Sehr einfache Lösung keine komplexe Clusterkonfiguration
- Failover: HW neu booten (Storage) oder VM boot (Hardware)
- Administrator behält alles im Griff
- Sehr bezahlbare Lösung keine Extrakosten für Hochverfügbarkeit

System & Samba Setup

- Lokales Storage
 - GPT (>2TB)
 - System auf RAID-1 (MD)
 - LILO (GPT, MD)
- Alles andere via LVM
- I rsync script mit Sicherheitsprüfungen
- AD Integration via RFC2307
- Volume Shadow Copy
- **Map BUILTIN Accounts**

```
passdb backend = tdbsam
smb ports = 445
disable netbios = Yes
name resolve order = wins
inherit acls = Yes
hide unreadable = Yes
idmap backend = ad
idmap uid = 100-20000000
idmap gid = 100-20000000
winbind enum users = Yes
winbind enum groups = Yes
winbind use default domain = Yes
winbind nss info = rfc2307
use sendfile = yes
```


Performance Tuning

- Benchmarks (1GBit):
 - 125 MB/s (NFS)
 - 100 MB/s (CIFS) (>2 streams)

```
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.ipv4.tcp_no_metrics_save = 1
net.ipv4.tcp_moderate_rcvbuf = 1
net.core.netdev_max_backlog = 2500
```

- Nutzen XFS (auf SLES gut unterstützt)
- sysctl.conf (auch auf dem client)
- USE_KERNEL_NFSD_NUMBER="16"
- Bonding für redundante Netzwerkanbindung
- Jumbo Frames hatten keinen meßbaren Effekt auf den Durchsatz, CPU Last um ca. 50% reduziert

Ausblick

- Automatisiertes Failover
 - Heartbeat in der initrd vor dem Mounten
 - Storage und Netzwerk überwachen schwierige Entscheidung
- MD oder LVM Mirror zwischen SAN und lokalem Storage (ist aber kein Disaster Recovery!) als Alternative zu rsync
 - Onlinespiegelung
 - Für Datenbanken usw.
- Multipathing SAN Boot mit RHEL/CentOS, Ubuntu ...

Agenda

- Hintergrundinformationen
- The Simple High Available Linux File Server
- Virtuelle Cold-Standby Server

Cold Standby

- Günstigste und einfachste Form der Hochverfügbarkeit
- Klassischerweise problematisch wegen
 - doppelte Hardwarekosten
 - Datenreplikation vom aktiven zum passiven (=stromlosen) System
- Daher keine Lösung für <u>alle</u> Server im Rechenzentrum

Virtuelle Cold-Standby Server

- Ist ein <u>Betriebskonzept</u>, das die Vorteile der Virtualisierung auch für klassische Hardwareserver nutzt.
- Cold-Standby als günstiges Ausfallkonzept für alle Systeme
- Nebeneffekt:
 - Nachweis der Virtualisierbarkeit eines Systems
 - Bei Ausfall der Hardware Produktivnutzung als VM
- Das ist primär eine Idee und eine Denkweise
- Schickt mir Emails mit Details Eurer Implementierung

Fragen & Antworten

Mehr Open Source Software (schapiro.org/schlomo/projects)

Halle 7.2b Stand 102

Relax & Recover (Linux Disaster Recovery)

RSYNC BACKUP MADE FASY (Backup Software mit Hardlinks)

OpenVPN Gateway Builder (Linux Router selber bauen mit zentraler Verwaltung)

easyVCB (VMware VI3 Backup, w.i.p.)

Schlomo Schapiro Principal Consultant Leitung Virtualisierung und Open Source D-10785 Berlin

sschapiro@probusiness.de +49 160 97846168

probusiness Berlin AG

Potsdamer Platz 11

berlin@probusiness.de +49 30 259378 0

