Key-value Store: mini-Project 2018

Andrea RAR, Ryan SIOW, Jonas EPPER

Résumé

Résumé

 $\textbf{Keywords:} \ \text{Key-valuestore, threads,}...$

Table des matières

1	Introduction	3
	titre 2.1 soustitre	3
3	Conclusion	3
\mathbf{A}	Code source A.1 Phase d'initialisation	4 4
В	User Manual	4

1 Introduction

Intro...

2 titre

italique: exemple italique

2.1 soustitre

FIGURE 1 – TEDA Clock

3 Conclusion

...

Références

- [1] Ananth Murthy, Chandan Yeshwanth, Shrisha Rao. Distributed Approximation Algorithms for the Multiple Knapsack Problem. 2 Février 2017.
- [2] Richard M. Karp. Reducibility Among Combinatorial Problems. R.E. Miller et J. W. Thatcher, 1972.
- [3] Stephen Cook. The Complexity of Theorem-Proving Procedures. Conference Record of Third Annual ACM Symposium on Theory of Computing (STOC), 1971.
- [4] Ralph C. Merkle, Martin E. Hellman. *Hiding information and signatures in trapdoor knapsacks*. IEEE Transaction on Information Theory, 1978.
- [5] Thomas Messias. P = NP ou P = /= NP, le problème de maths à un million de dollars. http://www.slate.fr/story/109569/probleme-million-dollars, Last visited: 17.12.2017.

A Code source

A.1 Phase d'initialisation

Exemple sous titre

FIGURE 2 – Phase d'initialisation.

B User Manual

Pour un guide d'utilisation des codes, voir le fichier, en annexe.