

Classe: TSP

Date: Décembre 2019

BTS Blanc Mathématiques

Durée: 2 H

Présentation et orthographe seront pris en compte dans le barème de notation. Les calculatrices graphiques sont autorisées pour ce sujet.

EXERCICE 1: (6 points)

Résoudre dans IR les inéquations suivantes :

$$S = \int -\infty; -2 \left[\cup \int \frac{7}{4}; 1 \right]$$

$$2\rho$$
 2. $\frac{x+5}{4-5x} > \frac{1}{2}$ $S = J - \frac{4}{7}; \frac{4}{7}$

$$2p$$
 3. $\frac{(2x+1)^2-4x}{x^2-4x}<0$ $S = \int 0; 4[$

EXERCICE 2: (10 points)

La fonction f est définie sur $\mathbb{R}\setminus\{1\}$ par $f(x)=\frac{2x^2-x-6}{x-1}$ et on note C_f sa courbe représentative dans un repère orthogonal.

- 1. Déterminer les coordonnées du ou des point(s) d'intersection de C_f et de l'axe des abscisses.
- 2. Déterminer les coordonnées du point d'intersection de C_f et de l'axe des ordonnées. $\begin{cases} x = 0 \\ y = 6 \end{cases}$
- 1. Déterminer les images de 0 et de -2. y=6 $y=\frac{4}{3}$
- 2 4. Déterminer les antécédents (s'ils existent ...) de 6. $x_1 = \frac{7}{2}$
- 5. Déterminer les points d'intersection de C_f avec la droite d'équation y=7x+4. Pas d'inters.
- 29 6. Étudier le signe de f(x) . f(x) > 0 : $[-\frac{3}{2}; 1]$ [v] $[z; +\infty[$

$$f(x) = -9 + 11 - 9 + 11$$

Classe: TSP

Date: Décembre 2019

EXERCICE 3: (4 points)

La courbe ${\it C}$ de la figure ci-dessous est la représentation graphique d'une fonction f définie sur ${\it I\!R}$ dans un repère orthogonal.

0,7 3p

1. Déterminer graphiquement :

a)
$$f(0) = 1$$

b)
$$f(1) = -1$$

c)
$$f(2) = 3$$

1,23p

2. Déterminer l'équation de la tangente T_1 au point d'abscisse 1 et celle de la tangente T_0 au point d'abscisse 0.

20

3. La droite T tangente à la courbe $\mathcal C$ au point d'abscisse -2 et d'ordonnée -1 passe par le point A de coordonnées (1 ; 26). Déterminer par le calcul une équation de T.

Exercice 1:

$$\frac{4}{x-1} \leq \frac{x-3}{x+2}$$

$$\frac{x+5}{x-4} - \frac{x-3}{x+2} \leq 0$$

$$\frac{(x+5)(x+2)-(x-3)(x-1)}{(x-1)(x+2)} \leq 0$$

$$\frac{x^{2}+2x+5x+10-(x^{2}-x-3x+3)}{(x-1)(x+2)} \leq 0$$

$$\frac{x^{2}+7x+10-x^{2}+4x-3}{(x-1)(x+2)} \leq 0$$

$$\frac{11x+7}{(x-1)(x+2)} \le 0$$

$$11x+7>0$$
 $x-1>0$ $x+2>0$ $x>-2$ $x>-2$ $x>-2$ $x>-2$

*	1-00	- 2		- 社		1 +00
$\frac{11x+7}{11}$	_			0	+	+
x-1	_		_		_	+
	_		+		+	+
×+2			+	9	_	+

$$S = \left[-\infty; -2 \right[\cup \left[-\frac{\tau}{41}; 1 \right[$$

$$\frac{x+5}{4-5x} > \frac{1}{2}$$

$$\frac{x+5}{4-5x} - \frac{1}{2} > 0$$

$$\frac{2(x+5)-(4-5x)}{2(4-5x)} > 0$$

$$\frac{2\times+10-4+5\times}{8-10\times}>0$$

$$7 \times 7 - 6 = 0$$
 $8 - 10 \times 7 - 8$
 $8 - 1$

×	- 10	-67		4 +00
Fx+6	-	•	+	+
8-10x	+		+	_
Pr	-	0	+	_

3.
$$\frac{(2x+1)^2 - 4x}{x^2 - 4x} \leq 0$$

$$\frac{4x^2 + kx + 1 - kx}{x^2 - kx} \le 0$$

$$\frac{4x^2+4}{x^2-4x}<0$$

Toujevis positif

$$\Delta = 16$$

$$x_1 = \frac{4+4}{2} = 4 \quad x_2 = \frac{4-4}{2} = 0$$

$$+ \frac{4}{2} + \frac{4}{2} = 0$$

X		0	4	+0	
4x2+1	+	1		+	
x²-hx	+	_	-	+	
0.5	+	-	-	+	
Pr	1 +	11			

Exercice 2:

1.
$$\begin{cases} y = \frac{2x^2 - x - 6}{x - 1} \\ y = 0 \end{cases} \Rightarrow \frac{2x^2 - x - 6}{x - 1} = 0$$

$$\frac{2x^2 - x - 6}{x - 1} = 0$$

$$x - 1 = 0$$

$$x = 1 \quad \forall . T.$$

$$2x^{2}-x-6=0$$

$$\Delta = (-1)^{2}-4\times2\times(-6)=1+48=49$$

$$x_{1} = \frac{4+7}{4}=2 \qquad x_{2} = \frac{4-7}{4}=-\frac{6}{4}=-\frac{3}{2}$$

=> Devx intersections:
$$\begin{cases} x_1 = 2 \\ y = 0 \end{cases}$$
 et $\begin{cases} x_2 = -\frac{3}{2} \\ y = 0 \end{cases}$

2.
$$y = \frac{2x^2 - x - 6}{x - 1}$$
 => $y = \frac{-6}{-1} = 6$

=> Une intersection:
$$1 \times = 0$$

 $1 \times = 0$

3. Image de 0:
$$y = \frac{-6}{-1} = 6$$

Image de -2: $y = \frac{2 \times 2^2 + 2 - 6}{-2 - 1} = \frac{8 + 2 - 6}{-3} = \frac{4}{-3} = -\frac{4}{3}$

$$4. \qquad \frac{2x^2 - x - 6}{x - 4} = 6$$

$$\frac{2x^2 - x - 6}{x - 4} - 6 = 0$$

$$\frac{2x^2 - x - 6 - 6(x - 1)}{x - 1} = 0$$

$$\frac{2x^2 - x - 16 - 6x + 16}{x - 1} = 0$$

$$\frac{2x^2 - 7x}{x - 1} = 0$$

$$2x^2 - 7x = 0$$

$$\Delta = 49$$
 $x_1 = \frac{7+7}{4} = \frac{7}{2}$ $x_2 = \frac{7-7}{4} = 0$

5.
$$y = \frac{2x^2 - x - 6}{x - 1}$$
 => $\frac{2x^2 - x - 6}{x - 1} = 7x + 4$

$$\frac{2x^2-x-6}{x-4}-(7x+4)=0$$

$$\frac{2x^{2}-x-6-(7x+4)(x-4)}{x-4}=0$$

$$\begin{array}{ccc} x-1=0 & \\ x=1 & \text{V.I.} \end{array}$$

$$2x^2-x-6-(7x^2-7x+hx-h)=0$$

$$2x^2 - x - 6 - 7x^2 + 3x + 4 = 0$$

$$-5x^2+2x-2=0$$

$$\Delta = 1 - 4 \times 2 \times (-6) = 49$$

$$x_1 = \frac{1+7}{4} = 2$$
 $x_2 = \frac{1-7}{4} = -\frac{3}{2}$

2-1>0	
x > 1	v. I.

×	-00	- 3/2	3	1	2	4 00
$2x^2-x-6$	+	•			•	+
x-1			_	+		+
f(x)	_	•	+	-	þ	+

Exercice 3:

1. a)
$$f(0) = 1$$
 b) $f(1) = -1$ c) $f(2) = 3$

c)
$$f(2) = 3$$

2.
$$T_1: y=-1$$
 $T_0: y=-3x+1$

$$T_0: y = 3x + 1$$

$$a = \frac{26 - (-1)}{4 - (-2)} = \frac{27}{3} = 9$$
 => T: $y = 9x + b$

$$\Rightarrow$$
 26 = 9 × 1 + b

=>
$$T: y = 9x + 17$$