True
False
2. For a finite sample size $n, \hat{ heta}_{ML} \sim N\left(heta, I^{-1}(heta) ight)$.
True
_ False
3. Let eta_j be the parameter associated with predictor x_j in a binomial regression model. For a reasonably large sample size n , a standard normal "z-test" can be used to test $H_0: eta_j = 0 \ \ vs. \ \ H_1: eta \neq 0,$
True
False
4. Let $X_1,,X_n$ be a random sample from a distribution with pdf $f(x;\theta)$, and let $\hat{\theta}$ be the maximum likelihood estimator of θ . Then
$\left(\hat{ heta}_{ML} - rac{1.96}{\sqrt{nI(heta)}} , \hat{ heta}_{ML} + rac{1.96}{\sqrt{nI(heta)}} ight)$
is an approximate 95% confidence interval for $ heta.$
True
False
 Goodness of fit metrics - such as the residual deviance - are not useful for the binomial regression with a Bernoull (0/1) response.
True
False

1. The maximum likelihood estimator is asymptotically unbiased.

6. Cconsider a logistic regression fit an independent response $Y_i \sim Binomial(1,p)$ and a single predictor variable x. The linear predictor is:

$$\eta_i = \beta_0 + \beta_1 x_i$$
.

Test $H_0: eta_1=0 \ \ vs \ \ H_1: eta_1
eq 0$ by computing the appropriate p-value, rounded to the hundredths place.

Coefficients:

0.11

0.05

1

0.22

7. Cconsider a logistic regression fit an independent response $Y_i \sim Binomial(1,p)$ and a single predictor variable x. The linear predictor is:

$$\eta_i = \beta_0 + \beta_1 x_i.$$

Use maximum likelihood theory to construct an approximate 95% confidence interval for β_0 . Round all values to the hundredths place.

Coefficients:

(-2.28, -0.22)

(-0.47, 3.31)

(-2.48, -0.02)