

Data Mining Lab

Fall 2017
Elvis Saravia
ellfae@gmail.com

king - man + woman = ?

Expectations for this lab

- Environment Setup
- Data preprocessing
- Training Models
- Evaluation of Models
- Assignment

Knowledge Discovery (KDD) Process

Word Vector Representations

Represent the meaning of a word?

Words and phrases directly represent an idea

Words and signs are used to express an idea in work of writing, art, etc.

How does a computer represent meaning of a word?

Represent the meaning of a word on a computer?

Solution: Taxonomy, such as WordNet and ConceptNet, that contains hypernyms (is-a) relationships and synonyms sets.

Problems with Discrete Representation

- Low Coverage fails to capture all word nuances (e.g., synonyms)
- **Difficult to keep up to date** we just keep inventing new words like *boo* and *fab*
- **Subjective** because it requires human annotation

Problems with Discrete Representation

Most Natural Language Processing (NLP) and rule-based approaches regard words as **atomic symbols** ("each word a nation on its own")

- Word Similarity Fails no clear *relationship* between words
- Curse of Dimensionality too many dimensions; too much sparsity; memory inefficient

One-hot representation

$$\overrightarrow{Motel} \cdot \overrightarrow{Hotel}^T = 0$$

Distribution Similarity Based Representations

Idea: represent words through it neighbours or the context in which they are used

Solution: dense vector representation for predicting words appearing in its context

"You shall know a word by the company it keeps"

-J. R. Firth 1957

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

These words will represent banking

 ■

Distributed representation (low-dimension vector)

hotel = [0.728 0.234 -0.23 0.223]

Word2vec (faster and simpler)

Ideas:

- Word vectors are trained so that they become good features for predicting context (surrounding) words
- 2. Every word is mapped to a **unique word vector**
- 3. Similar words tend to be **close to each other** in a vector space

Algorithm:

- Initialize random vectors
- 2. Pick an objective function
- 3. Do gradient descent

Architectures: CBOW and Skip-gram

CBOW - predicts the current word based on the context

$$J_{\theta} = \frac{1}{T} \sum_{t=1}^{T} \log p(w_t \mid w_{t-n}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+n}).$$

Skip-gram - predicts surrounding words given the current word

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j}|w_t)$$

variables to optimize denotes window range

Feedforward Neural Net Language Model (NNLM)

Paper source: https://arxiv.org/pdf/1301.3781.pdf

Quiz:)

Review Skip-gram architecture

Example: "The fox jumped over the lazy dog"

Objective function: maximize the likelihood of seeing the context words given the target word

How to define this prob. distribution?

Hard work pays off

Features:

Vector Arithmetic.

Application Opportunities

- 1. Smart Search engines
- Context-aware conversational bots

Research Opportunities

- Machine translation
- 2. Recommendation systems
- 3. Feature engineering

References

- Main Repository: https://github.com/omarsar/data-mining-lab-fall-2
- Other resources:
 - O Gensim guide for word2vec: https://goo.gl/i2UrdH
- Original word2vec paper: https://goo.gl/7b72S9
- Stanford NLP with Deep Learning Course: http://web.stanford.edu/class/cs224n/syllabus.html
- Text Mining Overview: https://goo.gl/uNJDrs
- word2vec online calculator: http://rare-technologies.com/word2vec-tutorial/#app

Code Session

Sentence Classification

Task: Classify text into one of 4 emotions

Data: SemEval 2017 Task - Emotion Intensity

	id	text	emotion	intensity
617	20617	Recording some more #FNAF and had to FaceTime	fear	0.458
992	20992	@darwinwatersons @pennyfitzger31 @gumballwatte	fear	0.271
144	20144	@Budget car rental you have made realize why	fear	0.729
224	20224	Retweeted Dr. Rand Paul (@RandPaul):\n\nStop f	fear	0.667
385	40385	@SimonSSSJ123 @EllieG10853 @Onision @Eugenia_C	sadness	0.485
574	10574	@MMASOCCERFAN @outmagazine No offense but the	anger	0.417
281	10281	Have wee pop socks on and they KEEP FALLING OF	anger	0.562
579	30579	@Devilligan It's a beautifully sincere balanci	joy	0.375
609	10609	I've been wanting salty fries from McDonald's	anger	0.396
231	30231	Ryan Gosling and Eva Mendes finally ; B joyfu	joy	0.620

Data

You ever just find that the people around you really irritate you sometimes? That's me right now

You ever just find that the people around you really irritate you sometimes? That's me right now

Data

r U scared to present in front of the class? severe anxiety... whats That r u sad sometimes?? go get ur depression checked out IMEDIATELY!!!

r U scared to present in front of the class? severe anxiety... whats That r u sad sometimes?? go get ur depression checked out IMEDIATELY!!!

Demo