An Ablation Case Study of Flight Delay Predictions: What Modelling Decisions Most Impact Prediction Errors

Dimka Dellenbag (11403373), Michelle Dijkstra (11270926), Jonathan A. Harris MSc (13711180), Sang Pham (13064878) Applied Machine Learning, Team 6

University of Amsterdam

An ablation study was conducted to investigate the effect of decisions related to algorithm selection, encoding techniques, and hyperparameter tuning on flight delay predictions.

Datasets

Train: 2.8M flights (Jan 1st, 2015 – June 30th, 2015) Test: 515K flights (July 1st, 2015 – July 31st, 2015)

Time features: Day, Month Day_of_week Scheduled departure Scheduled arrival

Categorical Features:

airline code, origin_airport_code destination_airport_code

Process

Feature Creation:

is_summer (May-Aug)
is_winter (Jan-Feb)
Time-Zone Difference
Departure Delay
Minutes Between Flights
Scheduled Departures During Same Hour
Scheduled Arrivals During Same Hour

Models

LightGBM grows vertically (faster!)2

Feature Transformation:

Label-Encoding – categorical, time features One-Hot-Encoding – categorical, time features Cyclic Encoding (ex. below)¹ – time features

Neural Network for Linear Regression³

Results

LightGBM Models	MSE		
	Train	Test	Kaggle
Cat. (OHE)	1388.613	1413.354	1459.168
Cat. (LE)	1394.447	1418.027	1440.671
Cat. (LE) + Time (LE)	1392.820	1416.634	1449.406
Cat. (LE) + Time (CE)	1404.323	1427.223	1439.164
Cat. (LE) + Time (OHE)*	1409.049	1432.834	1434.121
Encoding* + Feat. Creation	110.557	116.837	90.482
Encoding* + Feat. Creation + Tuning	40.681	77.803	84.453
Encoding* + Feat. Creation + NN	141.463	109.448	NaN

 $OHE = One-hot\ encoding;\ LE = Label\ encoding;$

Final Kaggle Submission: 84.453 (8th Place)

Discussion

- Model Mean Squared Error (MSE) results from the aggregated effect of many non-trivial decisions, not just algorithm selection.
- Underlying algorithmic math may explain differences in MSE results between transformation options.
- Creatively extracting additional features may dramatically improve MSE and is worth the time investment.
- Experimental Neural Network produced Train and Test MSE values, despite using a truncated subset of the data (300.000 samples).

CE = Cyclic encoding; NN = Neural network model
* Selected encoding transformation workup protocol