Artificial Intelligence Decision Trees

Nilsson - briefly mentioned in Chapter 3 (Russell and Norvig - Chapter 18)

Decision Trees; page 1 of 14

credit card application (2)

information from your application:

F1: how long have you lived at your current address? F2: what is your salary?	5 years \$25,000
F3: do you have a savings account?	no
F4: how old are you?	28

information from the credit bureau:

F5: have you ever defaulted on a loan? when?	yes, 8 years ago
F6: how many other credit cards do you already have?	none
F7: have you ever declared bankruptcy?	no

Do we issue a credit card to this person? If yes, a regular or a gold card? classification problem

credit card application (1)

information from your application:

how long have you lived at your current address? what is your salary? do you have a savings account? how old are you?

information from the credit bureau:

have you ever defaulted on a loan? when? how many other credit cards do you have already? have you ever declared bankruptcy?

Decision Trees; page 2 of 14

credit card application (3) inductive learning problem

features class

<u>F1</u>	F2	F3	F4	•••	was it a good idea to issue a credit card to this person?	
5 3 2 9	\$100,000 \$50,000 \$12,000 \$60,000	yes yes no yes	52 40 20 31		yes no yes yes	aining examples
5	\$25,000	no	28		???	ples
a	b	c	d		f(a,b,c,d)	

find a function that is consistent with all training examples and that we believe will make the fewest mistakes on the examples with unknown classes

Decision Trees; page 4 of 14 note: we need bias!

Decision Trees; page 3 of 14

credit card application (4) bias

Decision Trees; page 5 of 14

decision trees (2)

every prop formula corresponds to a decision tree with binary variable every decision tree with binary variables corresponds to a prop formula

convert into disjunctive normal form

(A AND B) OR (NOT A AND NOT B)

decision trees (1) = one particular inductive learning method

learning takes time, classification is fast

in the following: binary values only (not multi-valued, not continuous, not missing)

Decision Trees; page 6 of 14

decision trees (3)

decision trees are often much more compact than tables however, some simple concepts have large decision trees for example: even parity

Decision Trees; page 8 of 14

inductive bias of decision trees

small is beautiful (number of tests, depth)

Occams Razor

there are fewer small decision trees than large ones
thus, there is only a small chance
that ANY small decision tree
that is completely incorrect
will be consistent with all training examples

problem:

finding the smallest decision tree that is consistent will all training examples is NP hard

Decision Trees; page 9 of 14

entropy

assume that there are n examples total n_i examples have class i

$$-\Sigma_i (n_i/n) \log_2 (n_i/n)$$

Decision Trees; page 11 of 14

example

put the most discriminating feature first (= at the root)

_	F1	F2	F3	F4	class
E1:	true	true	false	true	true
E2:	true	false	false	false	true
E3:	true	true	true	true	false
E4:	true	true	true	false	false

Decision Trees; page 10 of 14

F1

E1: true true

example (1)

put the feature first that results in the smallest average entropy

F4

class

true

E3: t	rue false false rue true true rue true true	false true true false false false		
F1	F2	F3	F4	
true / false true / false true / false				
E1: true	E1: true E2: true	E3: false E1: true	E1: true E2: true	
E2: true	E3: false	E4: false E2: true	E3: false E4: false	
E3: false	E4: false			
E4: false				
1.00	0.69	0.00	1.00	

false true

Decision Trees; page 12 of 14

example (2)

why do we want to minimize these entropies? because they are a measure of the remaining work and this work must be small for the tree to be small

left branch: 3 out of 4 examples entropy is 0.9182

right branch: 1 out of 4 examples entropy is 0.0000

average entropy is $3/4 \cdot 0.9182 + 1/4 \cdot 0.0000 = 0.6887$

Decision Trees; page 13 of 14

