§ 3.3 卷积和

- 巻积和
- 巻积和图解法
- 不进位乘法求卷积
- 巻积和的性质

一、卷积和

1. 序列的时域分解

任意序列f(k) 可表示为

$$f(\mathbf{k}) = \dots + f(-1) \ \delta(\mathbf{k}+1) + f(0) \ \delta(\mathbf{k}) + f(1) \ \delta(\mathbf{k}-1) + f(2) \ \delta(\mathbf{k}-2) + \dots + f(i) \ \delta(\mathbf{k}-i) + \dots$$

$$=\sum_{i=-\infty}^{\infty}f(i)\delta(k-i)$$

2.任意序列作用下的零状态响应

根据
$$h(k)$$
的定义: $\delta(k)$ — $h(k)$

由时不变性:
$$\delta(k-i)$$
 $h(k-i)$

曲叠加性:
$$\sum_{i=-\infty}^{\infty} f(i)\delta(k-i)$$

$$\sum_{i=-\infty}^{\infty} f(i)h(k-i)$$

$$f(k)$$

$$y_{zs}(k)$$

$$y_{zs}(k) = \sum_{i=1}^{\infty} f(i)h(k-i)$$
 卷积和

3.卷积和的定义

已知定义在区间($-\infty$, ∞)上的两个函数 $f_1(\mathbf{k})$ 和 $f_2(\mathbf{k})$,则定义和。

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

为 $f_1(\mathbf{k})$ 与 $f_2(\mathbf{k})$ 的**卷积和**,简称**卷积**;记为 $f(\mathbf{k})=f_1(\mathbf{k})*f_2(\mathbf{k})$

注意: 求和是在虚设的变量i下进行的,i为求和变量,k为参变量。结果仍为k的函数。

$$y_{zs}(k) = \sum_{i=-\infty}^{\infty} f(i)h(k-i) = f(k) * h(k)$$

二、卷积的图解法

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

卷积过程可分解为四步:

- (1) 换元: k换为 $i \rightarrow \{f_1(i), f_2(i)\}$
- (2) 反转平移: 由 $f_2(i)$ 反转 $\rightarrow f_2(-i)$ 右移k $\rightarrow f_2(\mathbf{k}-i)$
- (3) 乘积: $f_1(i) f_2(\mathbf{k} i)$
- (4) 求和: i 从 $_{-∞}$ 到 $_{∞}$ 对乘积项求和。

注意: k 为参变量。

三、不进位乘法求卷积

$$f(k) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(k-i)$$

$$= \dots + f_1(-1) f_2(k+1) + f_1(0) f_2(k) + f_1(1) f_2(k-1) + f_1(2) f_2(k-2)$$

$$+ \dots + f_1(i) f_2(k-i) + \dots$$

f(k)=所有两序列序号之和为k的那些样本乘积之和。 如k=2时

$$f(2) = \dots + f_1(-1)f_2(3) + f_1(0)f_2(2) + f_1(1)f_2(1) + f_1(2)f_2(0) + \dots$$

例
$$f_1(\mathbf{k}) = \{0, f_1(1), f_1(2), f_1(3), 0\}$$

 $f_2(\mathbf{k}) = \{0, f_2(0), f_2(1), 0\}$

不进位乘法

排成乘法

$$f_1(1)$$
, $f_1(2)$, $f_1(3)$
 $f_2(0)$, $f_2(1)$

$$f_{1}(1)f_{2}(1) , f_{1}(2)f_{2}(1) , f_{1}(3)f_{2}(1)$$

$$+ \frac{f_{1}(1)f_{2}(0) , f_{1}(2)f_{2}(0) , f_{1}(3)f_{2}(0)}{f_{1}(1)f_{2}(1) + f_{1}(2)f_{2}(0)} f_{1}(3)f_{2}(1)$$

$$f_{1}(1)f_{2}(0) f_{1}(2)f_{2}(1) + f_{1}(3)f_{2}(0)$$

$$f(\mathbf{k}) = \{ 0, f_1(1)f_2(0), f_1(1)f_2(1) + f_1(2)f_2(0) \\ f_1(2)f_2(1) + f_1(3)f_2(0), f_1(3)f_2(1), 0 \}$$

不进位乘法适用有限长序列卷积

$y_{zs}(k)$ 的元素个数?

若: f(k)序列

h(k)序列

则 $y_{zs}(k)$ 序列

$$n_1 \leq k \leq n_2$$
,

 $n_3 \le k \le n_4$

 $(n_1 + n_3) \le k \le (n_2 + n_4)$

例如: f(k): $0 \le k \le 3$ 4个元素

h(k): $0 \le k \le 4$ 5个元素

 $y_{zs}(k)$: $0 \le k \le 7$ 8个元素

举例

四、卷积和的性质

- 1. 满足乘法的三律: (1) 交换律,(2) 分配律,(3) 结合律.
- 2. $f(\mathbf{k}) * \delta(\mathbf{k}) = f(\mathbf{k})$, $f(\mathbf{k}) * \delta(\mathbf{k} \mathbf{k}_0) = f(\mathbf{k} \mathbf{k}_0)$

3.
$$f(\mathbf{k}) * \varepsilon(\mathbf{k}) = \sum_{i=-\infty}^{k} f(i)$$

4.
$$f_1(\mathbf{k} - \mathbf{k}_1) * f_2(\mathbf{k} - \mathbf{k}_2) = f_1(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) * f_2(\mathbf{k})$$

5.
$$\nabla [f_1(\mathbf{k}) * f_2(\mathbf{k})] = \nabla f_1(\mathbf{k}) * f_2(\mathbf{k}) = f_1(\mathbf{k}) * \nabla f_2(\mathbf{k})$$

用定义求卷积和例

例:
$$f(k) = a^k \varepsilon(k)$$
, $h(k) = b^k \varepsilon(k)$, $\sharp y_{zs}(k)$ 。

$$\mu: y_{zs}(k) = f(k) * h(k)$$

$$= \sum_{i=-\infty}^{\infty} f(i)h(k-i) = \sum_{i=-\infty}^{\infty} a^{i} \varepsilon(i)b^{k-i} \varepsilon(k-i)$$

当
$$i < 0$$
, $\varepsilon(i) = 0$; 当 $i > k$ 时, $\varepsilon(k - i) = 0$

$$y_{zs}(k) = \left[\sum_{i=0}^{k} a^{i} b^{k-i}\right] \varepsilon(k) = b^{k} \left[\sum_{i=0}^{k} \left(\frac{a}{b}\right)^{i}\right] \varepsilon(k) = \begin{cases} b^{k} \frac{1 - \left(\frac{a}{b}\right)^{k+1}}{1 - \frac{a}{b}} & , a \neq b \\ b^{k}(k+1) & , a = b \end{cases}$$

$$\varepsilon(k)$$
* $\varepsilon(k) = (k+1) \varepsilon(k)$ a=b=1

图解法求卷积和例

例: $f_1(\mathbf{k})$ 、 $f_2(\mathbf{k})$ 如图所示,已知 $f(\mathbf{k}) = f_1(\mathbf{k}) * f_2(\mathbf{k})$,求f(2) = ?

解: $f(2) = \sum_{i=-\infty}^{\infty} f_1(i) f_2(2-i)$

- (1) 换元
- (2) $f_2(i)$ 反转得 $f_2(-i)$
- (3) $f_2(-i)$ 右移2得 $f_2(2-i)$
- (4) $f_1(i)$ 乘 $f_2(2-i)$
- (5) 求和,得f(2) = 4.5

不进位乘法求卷积和例

解

2, 1, 5 $\{0, 6, 11, 19, 32, 6, 30\}$ $\uparrow k=1$

性质求卷积和例

例1复合系统中

$$h_1(\mathbf{k}) = \mathcal{E}(\mathbf{k}), h_2(\mathbf{k}) =$$
 $\mathcal{E}(\mathbf{k} - 5), 求复合系统$ 的单位序列响应 $h(\mathbf{k})$ 。 $f(\mathbf{k})$ $h_2(\mathbf{k})$ $h_2(\mathbf{k})$ $h_2(\mathbf{k})$ $h_2(\mathbf{k})$ $h_2(\mathbf{k})$ $h_2(\mathbf{k})$

$$\begin{aligned} h(k) &= [\delta(k) * h_1(k) - \delta(k) * h_2(k)] * h_1(k) \\ &= [h_1(k) - h_2(k)] * h_1(k) \\ &= h_1(k) * h_1(k) - h_2(k) * h_1(k) \\ &= \epsilon(k) * \epsilon(k) - \epsilon(k-5) * \epsilon(k) \\ &= (k+1) \epsilon(k) - (k+1-5) \epsilon(k-5) \\ &= (k+1) \epsilon(k) - (k-4) \epsilon(k-5) \end{aligned}$$