Трюки для трансформеров

ВШЭ ФКН, NLP

Warmup

Постепенное увеличение скорости обучения на ранних шагах оптимизации.

Warmup

Трансформеры не учатся без warmup!

Figure 8: Effect of the warmup steps on a single GPU. All trained on CzEng 1.0 with the default batch size (1500) and learning rate (0.20).

Batch size

Figure 5: Effect of the batch size with the BASE model. All trained on a single GPU.

Batch size

Figure 6: Effect of the batch size with the BIG model. All trained on a single GPU.

Еще трюки

- SGD не работает, используйте Adam (AdamW, LAMB, AdaFactor, ...)
- Аккумулирование градиентов
- Группировка текстов по длине
- Gradient clipping
- Mixed-precision
- Лучше мало чистых текстов, чем много грязных
- Для warmup можно взять меньше батчи и короче тексты

Positional encodings, Google

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$$

- Уникально кодируют все позиции
- Все значения лежат в [-1; 1]
- Можно восстановить относительное расположение токенов:

$$PE(p+k) = R \cdot PE(p)$$
, где R – матрица поворота

Relative Position Encodings (RPE), Google

Явно передаем в модель информацию об относительном расположении токенов

RelativeAttention = Softmax
$$\left(\frac{QK^{\top} + S^{rel}}{\sqrt{D_h}}\right)V$$
.

$$S^{rel}=QR$$
 , где $R\in\mathbb{R}^{[L imes L imes d]}$ – это матрица с эмбеддингами разностей позиций [query pos – key pos]

Rotary Position Embeddings (RoPE)

- Выходы Q и K матриц домножаются на блочную матрицу поворота
- m и n позиции токенов

$$\boldsymbol{q}_m^\intercal \boldsymbol{k}_n = (\boldsymbol{R}_{\Theta,m}^d \boldsymbol{W}_q \boldsymbol{x}_m)^\intercal (\boldsymbol{R}_{\Theta,n}^d \boldsymbol{W}_k \boldsymbol{x}_n) = \boldsymbol{x}^\intercal \boldsymbol{W}_q R_{\Theta,n-m}^d \boldsymbol{W}_k \boldsymbol{x}_n$$

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$

$$\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}$$

Rotary Position Embeddings (RoPE)

Figure 2: Long-term decay of RoPE.

Rotary Position Embeddings (RoPE)

Attention with Linear Biases (ALiBi), Meta

Добавляем линейный сдвиг к score в attention.

$$\operatorname{softmax}(\mathbf{q}_i \mathbf{K}^{\top} + m \cdot [-(i-1), ..., -2, -1, 0])$$

Для каждой головы свой $m_i=2^{-\frac{\imath}{2}}$

Attention with Linear Biases (ALiBi), Meta

Position Interpolation, Meta

Если модель училась на длине текста L, то на длине текста L' > L она не будет работать.

Идея: заменим номер позиции с S на LS / L'

Position Interpolation, Meta

RoPE is used here

_	Model				Context V		Size
Size	Context Window	Method	2048	4096	8192	16384	32768
7B	2048	None	7.20	$> 10^{3}$	$> 10^{3}$	$> 10^{3}$	$> 10^{3}$
7B	8192	FT	7.21	7.34	7.69	-	-
7B	8192	PI	7.13	6.96	6.95	-	-
7B	16384	PI	7.11	6.93	6.82	6.83	-
7B	32768	PI	7.23	7.04	6.91	6.80	6.77
13B	2048	None	6.59	-	-	-	-
13B	8192	FT	6.56	6.57	6.69	-	-
13B	8192	PI	6.55	6.42	6.42	-	-
13B	16384	PI	6.56	6.42	6.31	6.32	-
13B	32768	PI	6.54	6.40	6.28	6.18	6.09
33B	2048	None	5.82	-	-	-	-
33B	8192	FT	5.88	5.99	6.21	-	-
33B	8192	PI	5.82	5.69	5.71	-	-
33B	16384	PI	5.87	5.74	5.67	5.68	-
65B	2048	None	5.49	-	-	-	-
65B	8192	PI	5.42	5.32	5.37	-	_

- Train the model longer
- Use bigger batches
- Collect more data

- Dynamic masking
- Without NSP

Masking	SQuAD 2.0	MNLI-m	SST-2
reference	76.3	84.3	92.8
Our reimp	lementation:		
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9

- Train the model longer
- Use bigger batches
- Collect more data

- Dynamic masking
- Without NSP

Masking	SQuAD 2.0	MNLI-m	SST-2
reference	76.3	84.3	92.8
Our reimp	lementation:		
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1 M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

- Train the model longer
- Use bigger batches
- Collect more data

- Dynamic masking
- Without NSP

Masking	SQuAD 2.0	MNLI-m	SST-2
reference	76.3	84.3	92.8
Our reimp	lementation:		
static	78.3	84.3	92.5
dynamic	78.7	84.0	92.9

bsz	steps	lr	ppl	MNLI-m	SST-2
256	1 M	1e-4	3.99	84.7	92.7
2K	125K	7e-4	3.68	85.2	92.9
8K	31K	1e-3	3.77	84.6	92.8

- BookCorpus + Wikipedia (16GB)
- CC-News (76GB)

- OpenWebText (38GB)
- Stories (31GB)

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8 K	100 K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE} with BOOKS + WIKI XLNet _{LARGE}	13GB	256	1M	90.9/81.8	86.6	93.7
with BOOKS + WIKI	13GB	256	1 M	94.0/87.8	88.4	94.4
+ additional data	126GB	2K	500K	94.5/88.8	89.8	95.6

- We can improve quality by scaling a model, but it requires higher computational costs.
- ALBERT propose embedding matrix factorization and parameter sharing to make model lighter.
- Replace NSP loss with SOP loss.

- We can improve quality by scaling a model, but it requires higher computational costs.
- ALBERT propose embedding matrix factorization and parameter sharing to make model lighter.
- Replace NSP loss with SOP loss.

$$x \in OHE(V)$$
 $emb(x) = x \underbrace{A}_{[V,H]}$
 $emb_{fact}(x) = x \underbrace{A}_{[V,E]} \underbrace{B}_{[E,H]}$

- We can improve quality by scaling a model, but it requires higher computational costs.
- ALBERT propose embedding matrix factorization and parameter sharing to make model lighter.
- Replace NSP loss with SOP loss.

$$x \in OHE(V)$$

$$emb(x) = x \underbrace{A}_{[V,H]}$$

$$emb_{fact}(x) = x \underbrace{A}_{[V,E]} \underbrace{B}_{[V,E]}$$

Mod	lel	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	Speedup
	base	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3	4.7x
BERT	large	334M	92.2/85.5	85.0/82.2	86.6	93.0	73.9	85.2	1.0
	base	12M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1	5.6x
ALBERT	large	18M	90.6/83.9	82.3/79.4	83.5	91.7	68.5	82.4	1.7x
ALDEKI	xlarge	60M	92.5/86.1	86.1/83.1	86.4	92.4	74.8	85.5	0.6x
	xxlarge	235M	94.1/88.3	88.1/85.1	88.0	95.2	82.3	88.7	0.3x

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single	models on	dev								
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	_	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	-
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	-	-
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	-	-
Ensembles on test	(from lead	derboard (as of Sep	ot. 16, 20	019)					
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

- A denoising autoencoder for pretraining seg2seg models.
- Attempts to connect BERT (due to the bidirectional encoder) with GPT (with the left-to-right decoder).

- A denoising autoencoder for pretraining seq2seq models.
- Attempts to connect BERT (due to the bidirectional encoder) with GPT (with the left-to-right decoder).

- Token Classification: Top hidden state of the decoder is used as a representation for each word. This representation is used to classify the token.
- Sequence Generation Tasks: Standard autoregressive scheme.
- Machine Translation: BART's encoder embedding layer is replaced with a randomly initialized encoder. The new encoder can use a separate vocabulary from the original BART model.

Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	=	-	-
Masked Language Model (BERT)	90.0	83.5	24.77	7.87	12.59	7.06
Masked Seq2seq $(MASS)$	87.0	82.1	23.40	6.80	11.43	6.19
Language Model (GPT)	76.7	80.1	21.40	7.00	11.51	6.56
Permuted Language Model $(XLNet)$	89.1	83.7	24.03	7.69	12.23	6.96
Multitask Masked Language Model	89.2	82.4	23.73	7.50	12.39	6.74
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

- Has two encoder networks: generator G (small) and discriminator D (ELECTRA)
- Generator learns on MLM objective and predicts masked tokens
- Discriminator learns to distinguish generated tokens from original

$$m_i \sim ext{unif}\{1,n\} ext{ for } i=1 ext{ to } k$$
 $egin{aligned} oldsymbol{x}^{ ext{masked}} &= ext{REPLACE}(oldsymbol{x},oldsymbol{m}, ext{ [MASK]}) \ \hat{x}_i \sim p_G(x_i|oldsymbol{x}^{ ext{masked}}) ext{ for } i \in oldsymbol{m} \end{aligned} egin{aligned} oldsymbol{x}^{ ext{corrupt}} &= ext{REPLACE}(oldsymbol{x},oldsymbol{m},\hat{oldsymbol{x}}) \end{aligned}$

$$\mathcal{L}_{ ext{MLM}}(oldsymbol{x}, heta_G) = \mathbb{E}\left(\sum_{i \in oldsymbol{m}} -\log p_G(x_i | oldsymbol{x}^{ ext{masked}})
ight)$$

$$\mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D) = \mathbb{E}\left(\sum_{t=1}^{n} -\mathbb{1}(x_t^{\text{corrupt}} = x_t) \log D(\boldsymbol{x}^{\text{corrupt}}, t) - \mathbb{1}(x_t^{\text{corrupt}} \neq x_t) \log(1 - D(\boldsymbol{x}^{\text{corrupt}}, t))\right)$$

$$\min_{\theta_G, \theta_D} \sum_{\boldsymbol{x} \in \mathcal{X}} \mathcal{L}_{\text{MLM}}(\boldsymbol{x}, \theta_G) + \lambda \mathcal{L}_{\text{Disc}}(\boldsymbol{x}, \theta_D)$$

Model	Train FLOPs	Params	_	D 1.1 dev		D 2.0 dev	SQuAD 2.0 test	
	114111 1 2 0 1 5		EM	F1	EM	F1	EM	F1
BERT-Base	6.4e19 (0.09x)	110M	80.8	88.5	_	_	_	_
BERT	1.9e20(0.27x)	335M	84.1	90.9	79.0	81.8	80.0	83.0
SpanBERT	7.1e20(1x)	335M	88.8	94.6	85.7	88.7	85.7	88.7
XLNet-Base	6.6e19 (0.09x)	117 M	81.3	_	78.5	_	_	_
XLNet	3.9e21(5.4x)	360M	89.7	95.1	87.9	90.6	87.9	90.7
RoBERTa-100K	6.4e20 (0.90x)	356M	_	94.0	_	87.7	_	_
RoBERTa-500K	3.2e21 (4.5x)	356M	88.9	94.6	86.5	89.4	86.8	89.8
ALBERT	3.1e22 (44x)	235M	89.3	94.8	87.4	90.2	88.1	90.9
BERT (ours)	7.1e20 (1x)	335M	88.0	93.7	84.7	87.5	_	_
ELECTRA-Base	6.4e19(0.09x)	110 M	84.5	90.8	80.5	83.3	_	_
ELECTRA-400K	7.1e20(1x)	335M	88.7	94.2	86.9	89.6	_	_
ELECTRA-1.75M	3.1e21 (4.4x)	335M	89.7	94.9	88.0	90.6	88.7	91.4

Conclusions

- More data is better
- Bigger model is better
- The choice of pre-train task hugely depends on the downstream task