$\Delta t_1 = 15 \, \text{мин}$. Федя понял, что после возвращения домой Шарик какое-то время $\Delta \tau_1$ отдыхал в тенечке под забором.

2.1 Найдите сколько времени $\Delta \tau_1$ Шарик отдыхал возле дома.

Шарик получил законную взбучку за опоздание и категорическое указание: к следующей встрече полностью восстановить разработанный график движения, то есть четвертая встреча должна произойти в расчетное время. Видимо, Федя убежден в наличии физических знаний и математических способностей у Шарика. Временем «дружеской беседы» можно пренебречь и в этом случае.

2.2 С какой средней скоростью должен бежать Шарик, чтобы четвертая встреча произошла в расчетное время? В какой момент времени Шарик вернется домой в этот раз?

Шарик выполнил поставленную задачу — четвертая встреча произошла точно в расчетное время! После этого он получил возможность совершить очередной круг с прежней, плановой скоростью. Шарик легко добежал до дома в Простоквашино, доложил Матроскину и побежал обратно! Каково же было его удивление, когда от догнал Федю точно на входе в деревню Кефирино, хотя по плану Федор должен был прийти в нее раньше! Шарик понял, что Федя тоже где-то немного отдохнул!

2.3 Сколько времени Δt_2 отдыхал Федя?

Распрощавшись с Федей, Шарик честно, по графику вернулся домой и получил законное вознаграждение!

- 2.4 Постройте на бланке №2 графики реальных законов движения Федора и Шарика.
- **2.5** Рассчитайте, на сколько Шарик удлинил свой путь ΔL из-за незапланированного отдыха.

Не забудьте сдать бланк с построенными графиками!

Задача 9- 2. Тепловая разминка

1. В калориметре при общей температуре, равной температуре плавления льда $t_0=0,0^{\circ}C$ находится смесь воды и льда общей массой $m=0,60\,\mathrm{kf}$. Теплоемкости воды и льда в сосуде одинаковы. Найдите количество теплоты Q_1 , необходимое для повышения температуры системы на $\Delta t_1=1,0^{\circ}C$. Определите количество теплоты Q_2 , необходимое для понижения температуры системы на $\Delta t_1=1,0^{\circ}C$. Вычислите отношение η средних теплоемкостей системы в первом и втором случаях. Теплообменом

с окружающей средой пренебречь. Удельная теплоемкость льда — $c_1 = 2,1 \frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$, воды —

$$c_2=4,2\frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ} C}$$
 , удельная теплота плавления льда — $\lambda=0,33\frac{MДж}{\kappa \Gamma}$.

2. При определенных условиях лед и вода (переохлажденная вода) в калориметре могут находиться в тепловом равновесии и при отрицательной температуре $t_1 = -2,0\,^{\circ}C$. Если подобную систему нагревать с некоторой постоянной

мощностью, то ее температура изменяется со временем так, как показано на рисунке. Масса смеси воды и льда $m=0.60\,\mathrm{kr}$. Теплоемкости воды и льда в сосуде одинаковы. Определите мощность P нагревателя. Найдите время τ_1 плавления льда в калориметре и время τ_2 дальнейшего разогрева системы до температуры $t_2=20\,\mathrm{^o}C$. Теплообменом с окружающей средой пренебречь.

3. При образовании насыщенного раствора солей (например, алюминиевых квасцов) концентрация η ,% раствора (отношение массы m_1

растворенного вещества к массе m_2 жидкости $\eta = \frac{m_1}{m_2}$) изменяется в зависимости от температуры так, как показано на рисунке. Удельная теплоемкость соли в растворенном состоянии в $c_1 = 2,40 \frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$, в

кристаллическом состоянии $c_3 = 1,20 \frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$, удельная

теплоемкость жидкости (растворителя) — $c_2=3,60\frac{\kappa Дж}{\kappa \Gamma \cdot {}^{\circ}C}$. В начальном состоянии в сосуд, содержащий $m_2=1,00 \, \kappa z$ растворителя, опустили $m=0,600 \, \kappa z$ соли и тщательно перемешали. Постройте график зависимости теплоемкости системы C(t) от температуры. Найдите количество теплоты Q, необходимое для нагрева насыщенного раствора от температуры $t_1=50,0\,{}^{\circ}C$ до температуры $t_2=100\,{}^{\circ}C$. Теплообменом с окружающей средой пренебречь. Кипение в системе отсутствует. Удельной теплотой растворения пренебречь.

Задача 9-3. Скольжение.

1. Шайба массы m лежит на горизонтальном сухом столе. Коэффициент трения шайбы о стол постоянен и равен μ . Шайбе толчком сообщают

горизонтальную скорость v_0 . Какой путь пройдет шайба по столу до полной остановки?

- 2. Шайба массы m лежит на горизонтальном смазанном маслом столе. При движении шайбы со стороны стола действует сила вязкого трения пропорциональная скорости шайбы $\vec{F} = -b\vec{v}$, b постоянный известный коэффициент. Шайбе толчком сообщают горизонтальную скорость v_0 . Какой путь пройдет шайба по столу до полной остановки?
- 3. На длинной горизонтальной доске, размещенной на горизонтальной поверхности, расположена

цепочка из N небольших одинаковых шайб. Шайбы находятся на расстоянии l друг от друга, первая шайба находится на краю доски. Доску вместе с шайбами разогнали до