(1) Publication number:

0 217 286

EUROPEAN PATENT APPLICATION ®

- (21) Application number: 86113166.2
- 2 Date of filing: 24.09.86

⑤ Int. Cl.⁴: C07C 103/737 , C07C 103/84 , C07C 123/00, C07C 143/76, C07C 143/80, C07C 149/42, C07D 207/16, C07D 211/16, C07D 211/32, C07D 211/58, C07D 211/62

- Priority: 27.09.85 JP 212240/85 04.03.86 JP 45348/86
- O Date of publication of application: 08.04.87 Bulletin 87/15
- Designated Contracting States: BE CH DE FR GB IT LI NL SE

- Applicant: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) Applicant: Showa Denko Kabushiki Kaisha 10-12, Shiba Daimon 2-chome Minato-ku Tokyo 105(JP)
- Inventor: Okamoto, Shosuke 15-18, Asahigaoka 3-chome Tarumi-ku Kobe-shi Hyogo(JP) inventor: Okada, Yoshio 542-1, Aza Shimizu

Okuradani Akashi-shi Hyogo(JP) inventor: Okunomiya, Akiko 13-2, Nakayamatedori 7-chome Chuo-ku Kobe-shi Hyogo(JP)

Inventor: Naito, Taketoshi SHOWA DENKO

K.K.

Selkagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Kimura, Yoshio SHOWA DENKO K.K. Seikagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Yamada, Morihiko SHOWA DENKO

Seikagakukenkyusho 24-25, Tamagawa

2-chome

Ota-ku Tokyo(JP)

Inventor: Ohno, Norio SHOWA DENKO K.K. Selkagakukenkyusho 24-25, Tamagawa 2-chome

Ota-ku Tokyo(JP)

inventor: Katsuura, Yasuhiro SHOWA DENKO

Seikagakukenkyush 24-25, Tamagawa

2-ch me

Ota-ku T kyo(JP)

Inventor: Seki, Yumi SHOWA DENKO K.K.

Selkagakukenkyusho 24-25, Tamagawa 2-ch me Ota-ku Tokyo(JP) Widenmayerstrasse 17 Postfach 22 03 45 D-8000 München 22(DE)

- Representative: Strehl, Schübel-Hopf, Groening, Schulz
- (S) Phenylalanine derivative and proteinase inhibitor.
- (57) A phenylalanine derivative having the formula (I):

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

C₁-C₄ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkoxycarbonyl, cufamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

C₄-C₂ cycloalkyl which may be substituted with hydroxy, C₁-C₄ alkoxy, hydroxylcarbonyl, C₁-C₄ alkoxycarbonyl, or C₁-C₄ alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylmercapto, C_1 - C_4 alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C_1 - C_4 alkylwhich may further be substituted with C_1 - C_4 alkylcarbonyl, hydroxycarbonyl, or C_1 - C_4 alkoxycarbonyl;

pyridyl which may be substituted with halogen or C₁-C₄ alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R1 and R2 may form with the nitrogen atom at-

tached thereto a ring structure as morpholino; thiomorpholino; or piperidyl which may be substituted with phenylcarbonyl, benzyl, or C,-C4 alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

piperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C_1 - C_4 alkyl; C_2 - C_4 alkenyl; benzyl which may be substituted with halogen, C_1 - C_4 alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may b substituted with nitro; phenylsulfonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable salt thereof.

This ph nylalanine derivative is effective as a proteinase inhibitor.

PHENYLALANINE DERIVATIVE AND PROTEINASE INHIBITOR

15

20

25

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates to a novel phenylalanine derivative, more particularly to a phenylalanine derivative having a proteinase inhibition activity or a pharmaceutically acceptable salt thereof. The present invention also relates to a proteinase inhibitor containing the phenylalanine derivative as the effective ingredient.

2. Description of the Related Art

It is well known in the art that various proteinases are present in human organisms. Examples of such proteinases are plasmin, trypsin, kallikrein, urokinase, and the like. As is also known, when these proteinases are abnormally activated for some reason, various diseases are caused. For example, hemorrhagic diseases are caused when abnormally activated plasmin is present in a relatively large amount in the blood. Also, plasmin participates in inflammation and it is considered to cause inflammatory diseases. For this reason, a substance capable of exhibiting a proteinase inhibition activity is useful as a clinical remedy or medicine, and various investigations in the prior art have been made for the development of such substances. For example, antiplasmins are useful as hematostatic agents, antiinflammatory agents or antiallergic agents, antitrypsins are useful for the therapy of pancreatitis, antikallikreins are useful as therapeutical agents for inflammation, and antiurokinases are useful for the inhibition of hemorrhagic symptoms in the thrombolytic therapeutical method with urokinase. Accordingly, developments of proteinase inhibitors having such activities have progressed in the prior art, but their proteinase inhibition activities are low and not satisfactory for practical application as medicines. Further, compounds having satisfactory inhibition activities against various proteinases have not been developed.

SUMMARY OF THE INVENTION

Accordingly, the objects of the present invention are to eliminate the above-mentioned disadvantages of the prior art and to provide a compound having a satisfactory inhibition activity in practical application but still having satisfactory inhibition activities against various proteinases, and a proteinase inhibitor containing the compound as the effective ingredient.

Other objects and advantages of the present invention will be apparent from the following description.

In accordance with the present invention, there is provided a phenylalanine derivative having the formula (I):

$$\begin{array}{c} \stackrel{\text{H}}{\underset{\text{CH}_2}{\text{NCH}_2}} & \stackrel{\text{T}}{\underset{\text{CH}_2}{\text{CONHCHCON}}} & \\ & \stackrel{\text{R}^1}{\underset{\text{CH}_2}{\text{CH}_2}} & \\ & \\ &$$

where R¹ and R² are independently hydrogen provided that both R¹ and R² are not hydrogen at the same time;

 C_1 - C_2 alkyl which may be substituted with hydroxy, hydroxycarbonyl, C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylmercapto, C_1 - C_4 alkoxy, carbamoyl, sulfamoyl,

pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

 C_4 - C_8 cycloalkyl which may be substituted with hydroxy, C_1 - C_4 alkoxy, hydroxylcarbonyl, C_1 - C_4 alkoxycarbonyl, or C_1 - C_4 alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C,-C4 alkoxy;

pyrimldyl;

N-benzylazacyclohexyl; and

R' and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

pyperidine substituted with C₁-C₄ alkyl, phenyl C₁-C₄ alkyl, phenylcarbonyl, or C₁-C₄ alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C_1 - C_4 alkyl; C_2 - C_4 alkenyl; benzyl which may be substituted with halogen, C_1 - C_4 alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with nitro;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of a D-configuration, L-configuration and DL-configuration, or a pharmaceutical acceptable salt thereof. Examples of such a salt may include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, etc.; organic salts such as oxalate, succinate, glycolate, malate, citrate, maleate, lactate, benzenesulfonate, toluenesulfonate, methanesulfonate, etc.

In accordance with the present invention, there is also provided a proteinase inhibitor comprising the phenylalanine derivative of the above formula - (I) or a pharmaceutically acceptable salt thereof as the active ingredient.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

Typical examples of the compound represented by the above formula are listed in Table I.

The compounds listed in the Table are mumbered, respectively, and in the following description, the individual compounds are designated in terms of said compound Nos. for the purpose of convenience.

For the compounds indicated as (DL) in the chemical structure, this means that their carbons are mixtures of D-and L-forms; in the compounds indicated as (L), this means that their carbons are-L-form; and, in the compounds Indicated as (D), this means that its carbon is D-form. The asymmetric carbon atoms in the phenylalanine skeleton having no indications are all L-forms. In the physical properties shown in Table I, NMR represents a nuclear magnetic resonance spectrum indicated by δ (i.e., delta) (ppm) representing the chemical shifts. The determination was carried out by using as a solvent CDCl₃ (i.e., heavy chloroform), (CD₃)-2SO (i.e., de-dimethylsulfoxide), D2O (i.e., heavy water), or CD₂OD (i.e., heavy methanol) alone or in any mixture thereof, and by using as an internal standard TMS (i.e., tetramethylsilane). In the parenthesis after the & number, the number of the hydrogen atom and the symbols s, d, t, q, m, and broad, thereafter, denote singlet, doublet, triplet, quartet, multiplet, and broad absorbance, respectively. The absorbance based on the solvent is omitted from the Table.

IR represents an infrared absorption spectrum in which a potassium bromide tablet is used in the determination unless otherwise noted. When a solution is used in the determination, the kind of solvent is listed in parenthesis. The number listed in the Table represents a wave number in units of cm⁻¹, and only the main absorption peaks are listed in the Table.

MS represents a mass spectrum, and the results are shown as M/e (i.e., the mass of the cation fragment divided by the charge) of the main peaks.

50

	Physical Properties	CDC13, THS 6 0.80—2.20(1011, m) 2.402.60(211, d)		NPIR: 20XCD, 0D-CDCI, THS 6 0.802.20(1011, m) 2.52 (211, d)	2.60 (311,s) 2.903.24(211,n) 4.76 (111,n) 7.127.96(911,n)	5XCDC13-CD30D, TNS 6 0.762.28(1011, m) 2.49 (211, d) 2.56 (311, s) 2.843.20(211, m)	4.68 5.02 (21) 007.93(13)	CD ₃ OD, TNS δ 0.762.28(1011, m) 2.45 (211, d) 2.55 (211, d) 2.803.10(211, m) 4.65 (111, m) 6.85 (411, dd) 7.76 (411, dd)
		HS: N/e 483,327,287,253		IR: 3300,2925,2850,1675, 1640,1595,1520,1310, 1265,1255,1175,815,	695	1R: 3300, 2030, 2860, 1680, 1642, 1598, 1530, 1510, 1270, 1245, 1178, 1015, 840	- IR:	3300, 2925, 2860, 1640, 1590, 1510, 1260, 1175, 835
Table 1	Control		II, WCII, - CONIICIICONII - C-C-		СП,	Octi, -0	II, NCII, - CONIICIICUNII- OII	$\begin{array}{c} & & & \\$
	Š			7		6	4	

	. 5	
50XCD ₃ 0D-CDCI ₃ , THS 6 0.80-2.26(10H, m) 2.50-2.68(5H, broad) 2.90-3.20(2H, m) 5.01 (2H, s) 6.80-7.96(12H, m)	50%CD ₃ 0D-CDCI ₃ , THS 5 0.802.30(10II, m) 2.60 (3II.s) 2.863.18(2II, m) 3.76 (3II.s) 4.70 (1II, m) 6.96 (4II, m) 7.78 (4II, dd)	NMR: 50%CD ₂ 0D-CDCI ₃ , TNS 8 0.802.25 (10II,m) 2.55 (2II,d) 3.04 (2II,m) 4.70 (1II,m) 5.04 (2II,s) 6.847.50(13II,m)
18: 3230, 2925, 2860, 1675, 1645, 1595, 1530, 1510, 1265, 1240, 1175, 1010, 810	JR: 3300, 2930, 2860, 1680, 1670, 1590, 1510, 1265, 1245, 1175, 1030, 830	18: 3290, 2930, 2860, 1640, 1600, 1510, 1480, 1450, 1240, 1220, 1000
11.2 MCII.2 - CONHICIICONII - C-CII.2		II, NCII,
ശ	9 , 2	

	5	
50XCD ₃ 0D-CDCl ₃ , TNS 5 0.8-2.25 {10ll, m} 2.55 {2ll, d} 2.90-3.20(2ll. m) 5.06 {2ll, s} 6.887.48(13ll, m)	NMR: CDC13, THS	NMR: CDC13-CD3-0D, THS
18: 3280, 2930, 2860, 1665, 1640, 1610, 1530, 1510, 1240, 1215, 1010, 830	IS: IVe 485,467,438,393, 365,329,282,237, 197,91	IKS: IVe 493,359,343,197, 134
112 ИСП2 - СОНІІСПСОИ 112 ИСП2 - СОНІІСПС	II ₂ MCII ₂ - CONIICIICONII - CONIICII -	

•	

NNR: (CD ₃) ₂ SO, THS 6 0.702.68(1011, m) 3.52 (111.m) 5.04 (211.s) 6.767.72(1311, m)	•	NMR: CDC1CD3.0D.THS	6 3.00-3.40(211,m) 3.80 {211,s} 4.80-5.00(111,m) 6.60-7.80(1311,m)
NS: N/c 510,393,363,309, 281,237,226,197,127	18: 3300, 2930, 2860, 1680, 1645, 1595, 1530, 1510, 1200, 1140	HS: N/e 389,297,239	
	OCII, -F	11, NC11, - CONIICIICUNII - C-CI13 CI13, SO, 11	II. NCII CONIICIICONII - CONIICII -
=	12	<u>e</u> .	

¥ П

	. 5	
(CD ₃) ₂ SO, TNS 6 0.702.20(101), m) 2.38 (21), broad) 2.703.05(21), m) 4.60 (111, broad) 5.02 (211, s) 6.857.92(1211, m)	CD3 OD, TNS & 0.502.00(911,m) 2.142.36(111,m) 2.78 (211,4) 2.78 (211,4) 2.843.16(211,m) 4.04 (111,m) 5.00 (211,m) 5.00 (211,m) 6.858.10(1311,m)	CD ₃ OD, TNS 6 0.901.96(911,m) 2.162.37(111,m) 2.903.20(211,d) 5.00 (211,d) 5.00 (211,s) 6.817.86(1811,m)
18: 3300, 2930, 2860, 1680, 1845, 1595, 1530, 1510, 1265, 1240, 1175, 820, 805	1R: 37002200, 1680, 1640, 1610, 1590, 1510, 1265, ' 1230	1R: 3025, 2930, 1660, 1640, 1595, 1530, 1510, 1310, 1280, 1245, 1175, 740, 700
II, NCII, - CONRICIICONII - C-CII,	OCII	$ _{\mathbb{R}^2 \text{NCII}_p} - \langle \bigcirc \rangle - _{\mathbb{R}^2 \text{CONIICIICONII}} - \langle \bigcirc \rangle - _{\mathbb{R}^2 \text{CII}_p} - _{\mathbb{R}^2 \text{CII}_$
- 11	81 .	6.

	······································	5		***************************************
NMR: CD ₃ OD, TMS 6 0.901.96(911,m) 2.162.35(11,m) 2.55 (311,s) 2.78 (211,1)	95. 20	NHR: (CD ₂), SO, THS (CD ₂), SO, THS (SO, TH, W) (SO, TH, SO, SO, TH, SO, SO, SO, SO, SO, SO, SO, SO, SO, SO	6.887.92(1311,m) CD ₃ 0D, THS 6.0801.90(1911,m) 2.082.26(111,m) 2.77 2.803.10(31,m) 4.45 5.02 (11,m) 5.02 (211,s)	·
1R: 2940, 2860, 1680, 1640, 1595, 1530, 1510, 1300		HS: N/e 485,467,432,359, 335,288,244,197, 155,134,91	IR: 3300, 2030, 2860, 1640, 1545, 1570, 1240, 1220	
12 C	II, иСII, - (—) СОИПСІІСОИІІ - (—) - С-СІІ, - ІІСІ		II. NCII CONIICIICONII-CON - CII. · IICI	
20			8	

5 .
CD ₃ 0D, TMS CD ₃ 0D, TMS S 0.822.33(10H, m) 2.723.50(6H, m) 3.30 4.504.62(1H, m) 7.14 (2H, d) 7.14 (2H, d) 7.14 (2H, m) 7.307.48(5H, m) NNR: CD ₃ 0D, TMS S 0.92.0(10H, m) 2.13.1(2H, m) 2.13.1(2H, m) 2.15 2.13.1(2H, m) 2.15 3.13.2(2H, m) 4.7 (1H, broad) 5.0 6.9 (2H, m) 7.18.0(13H, m)
$ _{P} _{P} _{P} - \left(\frac{C _{P}}{C _{P}} - \frac{C _{P}}{C _{P}} - \frac{C _{P}}{C _{P}} \right)$ $ _{P} _{P} _{P} - \left(\frac{C _{P}}{C _{P}} - \frac{C _{P}}{C _{P}} - \frac{C _{P}}{C _{P}} \right)$ $ _{P} _{P}$

CD200, TH <u>:</u>

	5	
(CD ₃) ₂ SO, TMS & 0.701.84(91, m) 2.002.20(111, m) 2.703.00(211, m) 4.66 (111, m) 5.04 (211, m) 5.04 (211, m) 6.847.56(1311, m)		CDC13-CD3 0D, TMS 6 0.902.20(1011, m) 3.603.70(211, m) 4.85 (111, t) 7.307.90(1111, m) 8.15 (211, d)
IR: 3300, 2925, 2860, 1665, 1640, 1580, 1530, 1505, 1495, 1235	NMR: CO ₃ OD, THS S 0.80 1.96(911, m) 2.52 (211, d) 2.56 (311, s) 3.04 (211, d) 4.07 (211, m) 5.40 (211, m) 5.40 (211, m) 6.85 8.04(1311, m)	JS20, 1345, 1280, 1180
II ₂ NCII ₂ - CONINCINCONII - COII ₃	II ₂ NCII ₂ - CONHICHCONII - C-CII ₃	$ _{l_{2}} \text{NCI} _{2} - \left\langle - \right\rangle \cdots \text{CONIICICONII} - \left\langle - \right\rangle - \left\langle - \right\rangle \cdot CI $ (DL.)
30		7

	· · · · · · · · · · · · · · · · · · ·		5	7.77		
			•	•		
		,				
	1R: 3300,2940,1650,1610, 1505,1240,1180		IR: 3350, 2940, 1650, 1600,		841 081 681	3.60-3.68(111, broad) 4.32-4.62(211, broad) 4.62-4.80(311, m) 4.92 (111, s) 5.04 (211, s) 6.80-7.44(911, m)
	OCIII-	II.2 NCII.2 - CONIICIICONII - CII.2 C-CII.3		$ I_2 MC I_2 - CONIICIICONII - CONIICII - CONIICI$	00112-	H ₂ NCH ₂ - CONIICHCONII-CH ₃ · HC1
32		33	,	34		,
			55			

	. 5	,	
	•		,
,			
CD ₂ OD, THS CD ₂ OD, THS S 0.882.36(10II, III) S 0.882.36(10II, III) 2.72 (3II, S) 2.763.22(4II, III) 5.02 (2II, III) 5.02 (2II, III) 6.847.86(12II, III)	NYR: CD ₃ OD, THS 8 0.881.64(1011,m) 1.662.32(211,broad) 2.602.82(211,m) 5.03 (211,m) 6.807.72(1311,m)	NYR: CD ₃ OD, TMS	
0CII ₂ - С СII ₂ ОСII ₂ - ССI ₃ • СИ ₃ SO ₃ II	II ₂ NCII ₂ - CONIICICONII - CI	II ₂ NCII ₂ - CONIICIICONII - CI	
35	36		

CD, OD, THS S 0.90---2.76--3.82---₹ ₩ 38 39 **\$**0

	5		•
	-		·
	•		•
	•		•
101, # 5 111, # 5 131, 8 5 131, 8 5 131, 8 5	(14H, 2) (21, 3) (21, 3) (21, 3) (21, 3) (21, 3) (21, 3)	1011, E 1411, E 211, E 1311, E 1311, E	·
13.236 14.736 14.786 18.386	THS 62.28 03.50 4.30 4.50 5.01	13.24(-2.34(-4.70(-7.92(•
MMR: CD, 0D, TMS 6 0.862 2.703 4.644 5.01 6.848	MMR: CD ₃ 00, TMS \$ 0.862 2.703 4.30 4.50 5.01 6.84	CD ₃ 00, THS 6 0.30-1.45 7.72-1.56-1.56-1.	
2 00			·
·	• • 2IICI		
· 2IICI		5	
	- Cle	· IICI	÷
CONIICIICONII	OCH, CH,	CONIICIICON	
000	00)	100	
	Ž.		•
II ₂ NCII ₂ - <	II ₂ NCII ₂ - <	II ₂ NCII ₂ - <	•
	, .		-
14	42	£ .	

CD, CD, TI & 0.82 CB, 00, Tr ₩ 爱. 爰:: 46 45 44

	CDC13, TMS CDC13, TMS 6 0.802.20 (1411, m) 2.683.48 (711, m) 4.50 (111, t) 4.50 (111, t) 4.885.26(21, m) 8.288.02(1411, m)	
NYR: CD ₃ 00, TMS \$ 0.682.04(17II, broad) 2.062.40(11I, broad) 3.66 5.02 (11, s) 6.628.24(13II, m)	HS: H/e 581,553,425,393, 355,337,334,309, 282,187,91	1R: 3430,3050,2930,1640, 1510,1450,1250,700
II ₂ NCII ₂ - CONIICIICONII - CO ₂ NII ₂ - IICI	$ _{L^2 \times C _{Z^2}} - CONIICIICON - C-$	II2 NCII2 - CONIICIICONCII2 - N - 2IICI
47	48	49

CD, 00, TMS 8 0.92--6 0.80-2.68-

	5	J320,1635,1510,1245
MMR: (7)3 0D, TMS 6 0.92 2.39 (1011, m) 2.80 3.28 (411, m) 4.64 4.75 (111, m) 5.05 (211, m) 6.90 8.50 (1211, m)	CD ₃ OD, TMS & 0.822.32(1011, m) 2.683.22(711, m) 5.04 (211, s) 6.747.46(1311, m)	MS: M/e 523,373,282,236, 197,137
II _e hcii _e - Coniiciiconii - Ci	OCH2 - CONIICIICONIICII2 - COCH3 • HC1	$\frac{0\text{CH}_2}{\text{CH}_2} - \left(\begin{array}{c} 0 \\ \\ \\ \\ \end{array} \right) - \text{CONIICLICONIICH}_2 - \left(\begin{array}{c} 0 \\ \\ \\ \end{array} \right) - \text{OCH}_3 \cdot \text{IICI}$
85	65	

				
	•	•		
	CD ₃ OD, THS S 2.29 (311, s) 3.03.20(211, m)	3.904.10(311.m) 6.807.90(1711,m)		
HS: H/e 497,432,387,359,347,282,256,237,226,237,134,110,91	MS: M/e 493,343,238,197, 134	IR: 1640,1510,1240,815	HS: N/e 503,438,383,365, 347,258,237,226, 210,197,140,112, 110,91	
II ₂ MCII ₂ - CONIICIICONII		II.2 NCII.2 - CONIICIICONII- CO-CH. 11C1	II. NCII CONNICIICONIL	
	63	49		

NMR: CD,00-CDC13,TMS 6 2.2 (fil.s)	3.03.20(2 ,m) 3.83 (2 ,s) 4.80-5.10(3 ,m) 6.80-7.80(16 ,m)	5		
HS: , H/e 507,357,310,237, 197,134		CD ₃ 0D, THS & 0.952.36(10II,m) 2.703.25(4II,m) 4.654.75(1II,m) 5.00 (2II,s) 6.887.72(12II,m)	CD ₀ OD, THS S 0.942.28(1011, m) 2.763.24(411, m) 4.704.80(111, m) 5.00 (211, s) 6.847.80(1711, s)	
Octile-	II ₂ NCII ₂ - CONIICIICONII - CII ₃	$ _{2} \text{MCII}_{2} - \left(\sum_{i=1}^{ CI _{2}} - C_{i} \right)$ $ _{2} \text{MCII}_{2} - \left(\sum_{i=1}^{ CI _{2}} - C_{i} \right)$ $ _{2} \text{MCII}_{2} - \left(\sum_{i=1}^{ CI _{2}} - C_{i} \right)$	$ I_2 \text{ NCII}_2 - \bigcirc \bigcirc I_2 - \bigcirc \bigcirc \bigcirc I_2 - \bigcirc \bigcirc \bigcirc I_2 - \bigcirc \bigcirc \bigcirc \bigcirc I_2 - \bigcirc $	
65		99		

CD, 00, THS 8, 0.92--2 CD, 0D, TM. S 0.90-89 69 20

	5	•	•
		IR: 1640, 1515, 1250, 710	
CD ₃ OD, THS S 0.802.50(12 , m) 2.803.16(3 , m) 4.054.26(4 , m) 4.664.76(1 , m) 5.03 (2 , s) 6.887.92(13 , m)	WR: CD ₃ OD, TMS 6 0.92 2.50 (1211, m) 2.91 3.15 (311, m) 4.02 4.75 (111, m) 6.85 4.75 (111, m) 5.04 (211, m)	MS: N/e 428,254,197,134	
II.2 NCII.2 - CONHICHICONII - CO.2 C.2 II.8	II _e NCII _e - COVIICIICONII-CO _e II _e CII _e C		
11.	72	E	

CD, OD, TMS 8 0.94--K∕e ₹ ::

	5	
·		
	•	
, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	, 357, , 197,	, , , , , , , , , , , , , , , , , , ,
95,479 93,374 16,298 17,226		650, 16 270, 11
513,495,479,465, 411,393,374,365, 357,316,298,266, 252,237,226,210, 177,91	507,489,38 286,252,23 160,134,91	1R: 3400, 2940, 1650, 1600, 1500, 1365, 1270, 1180, 870
N/e	75 FS	3400, 1500, 870
. BC!	. IDII •	Ξ
	→ -3E	
OCII2-CONIICII2 CII2-CONIICII2 CII2-CONIICII2 CII2-CII2-CII2-CII2-CII2-CII2-CII	OCII ₂ - OCII ₂ - CONIICII CII ₂ - CONIICII CII ₂ - CONIICII CONIICII CII ₂ - CONIICII CONIICII CII ₂ - CONIICII CIIICII CIIIC	
OCII, CII, CII, CII, CII, CII, CII, CII,	OCII-	CII2 CII2 CII2
	II ₂ NCII ₂ - (Ų
JI ₂ NGII ₂ - (II ₂ NCII ₂ -
12	82	62

	5 .	·
·		
	•	·
40,	379, 253, 183,	344 134,
IR: 2930, 1640, 1510, 1240, 895	1,393, 2,272, 8,210,	424,387,359,343, 297,226,197,134, 93
1640, 1	519, 501, 363, 282, 237, 228, 91	424,38° 297,221
IR: 2830, 695	₹ ₹ •	K K
5		
15H •		• 1101
G. G. G.	1 5	5
OCII ₂ - CONIICIICONII	OCH, CONIICIICONII-	- CONIICIICONII
-con	NO	CONI
J- ACII 2 - C	II ₂ NCII ₂ - (II ₂ NGII ₂ -
	≓ 	. —
08	8	83

CD₈ 0D, TMS & 0.92--2.76--

	11 ₂ NCII ₂ - CONIICIICONII - CO ₂ C ₂ II ₃ CII ₂ CII ₂ CII ₂ CII ₂ CII ₂ CII ₃ IICI	CO,00,TMS 6 0.902.35(13H,m) 2.58 (3H,m) 4.32-4.44(2H,m) 4.32-4.44(2H,m) 5.15 (2H,m) 5.15 (2H,m) 6.808.08(12H,m)		
	$ I_{2}NC I_{2}- \bigcirc CO_{2}II$ CII_{2} CII_{2} CII_{2} CII_{2} CII_{3} CII_{3} CII_{4} CII_{5} CII_{5} CII_{5} CII_{5} CII_{5} CII_{5}	WW: CD 00, TMS S 0.962.32(1011, m) 2.56 (311, s) 2.992.70(211, m) 2.703.20(211, m) 4.604.72(111, m) 5.12 (211, s) 6.808.02(1211, m)		5
· ·	OCI ₂ - CONIICIICONII - CONIICIICONII - IIC1	HS: H/e 387,351,134	1R: 3360,2950,1640,1515, 1240	

	5		•
	1R: 3430,3300,3050,2840, 1735,1640,1610,1515, 1240,1180,1025		
IR: 2950, 1640, 1510, 1345, 1245	HS: H/e 571,415,374,237, 226,218,197,179, 106,91	HS: M/e 500,393,362,344, 226,197,91	•
	Oction 15	He MCIIe - COMINCIICONII - CIIe COe CIIe CIIe - IICI	II2 NCII2 - CONIICIICONIICII2 - III - ZIICI
68	06		

	5	
		ir: 2950, 1735, 1645, 1515, 1240
WIR: CDs 00, TMS S 1.02.34 (1011, m) 2.50 (311, s) 2.80 - (211, m) 3.043.30(211, m) 4.72 (111, m) 6.908.08(1211, m)	HS: M/e 434,344,298,277, 254,226,197,185, 164,134,93	HS: N/e 557,512,252,172, 134
	OCII ₂ - CONIICIICONIICII ₂ - OCII ₂ - CONIICIICONIICII ₂ - ON OCII ₂ - OCIICI	$\frac{0\text{CH}_2}{ \mathbf{l}_2 } - \frac{0}{ \mathbf{c}_1 ^2} - \frac{0}{ \mathbf{c}_1 ^2}$ $\frac{\text{CH}_2}{ \mathbf{c}_1 ^2} - \frac{1}{ \mathbf{c}_1 ^2} - \frac{1}{ \mathbf{c}_1 ^2}$
	96	

		•
	·	
		•
·	•	
ê cara	G.C.C.C.	
38(24) 04(5) 56(1) 44(8)	84(1411, 10(311, 11) (211, 5 80(111, 11) 87(1211, 12)	
0, TKS -702 -603 -414 -5-06 -87	0, TMS -701. -803. -4.18 -384. -867.	•
CO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CD ₂ O	
	·	
:	<u>.</u>	
CG; ~ CG;	~ Cis ~	•
OCII2CIICONII-	OCII2-	
CONII	-coniid	
II ₂ NCII ₂ -	II ₂ NCII ₂	
-		
102		· · · · · · · · · · · · · · · · · · ·
	OCI 2 - CI	

C0300, TF 8 0.8 2.72 ය. මේ මේ 轰: ≅ 104 105 106

•	5	
1R: 3230, 2930, 1738, 1645, 1535, 1508, 1242	M/e 549,504,383,302, 282,187	CD ₃ OD, TMS 6 0.801.80(1411, m) 3.03.30(311, m) 4.18 (211, s) 4.70 (111, m) 6.888.20(1211, m)
OCI ₂ - C OCI	OCII ₂ - OCII	$ I_2 NCI _2 - CONIICIICONII - CII_3$ $ I_2 NCI _2 - CONIICIICONII - CII_3$ $ I_2 NCI _2 - CONIICIICONII - CII_3$
201.	80 55	109

	. 5	
	CDC13-CD30D,THS 6 0.802.30(1011,m) 2.803.10(211,m) 4.26 (211,d) 4.26 (211,d) 5.02 (211,d) 6.707.64(1311,m)	
HS: H/e 543,498;393,387, 302,282,197,134	IR: 3400,3300,3030,2830, 1640,1510,1240,1220	NS: N/e 494,478,459,433,387,344,281,197,150,106
112 HCI12 - CONHCHCON - CO2 CI12 CI13 • HCI	OCII 2 - CONIICIICONIICII 2 - C - F - 11C1	OCII 2 - CONIICIICONIICII 2 - CONIICIICONIICIIICONIICII 2 - CONIICIICONIICII 2 - CONIICIICONIICIIICONIICII 2 - CONIICIICONIICII 2 - CONIICIICIICONIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICONIICIICIICIICONIICIICIICIICONIICIICIICONIICIICIICONIICIICIICIICIICIICIICIICIICIICIICIICIIC
011		12

	5	
CDC13-CD3-0D, THS & 3.03.16 (211,m) & 4.12 (211,s) 4.78 (111,t) 5.02 (211,s) 5.02 (211,s) 6.807.80(1711,m)	CDC1s-CDsOD, TMS 6 0.801.90(1011,m) 2.953.10(211,m) 3.503.70(111,m) 4.12 4.12 4.10 6.807.90(1311,m)	
IR: 3420,3280,2860,2930, 1630,1510,1240,1220	IR: 3430, 2840, 2860, 1640, . 1515, 1240	1R: 3430,3030,2940,1695, 1640,1610,1510,1455, 1240,1230,1140,990, 910,810,740
II ₂ NCII ₂ - CONIICHCONIICII ₂ - CO-F - IIC1	II ₂ NCII ₂ - CONIICIICONII - CONIICIICONII - CII	II ₂ NCH ₂ - CONIICHCONII - CH ₃ • IIC1
= 13	*	

	5	
	1R: 36002400,1690,1610	CD ₃ OD, TMS 6 2.56 (311,s) 3.10-3.30(211,m) 4.60-4.80(111,m) 5.00 (211,s) 6.80-8.00(1711,m)
IR: 3410, 1745, 1640, 1515, 1245, 1225	KS: We 387,187,151,91	ik: 3420,3030,1670,1840, 1600,1530,1510,1270
$ _{2} _{1} _{2} $	0CII ₂ - COLICIONII - CII ₂ CO ₂ II • IICI	$\frac{0Cl_2}{Cl_2} - CONIICIICONII - C-Cl_3 - IIC1$
911		8

	5	
CD ₃ OD, THS S 0.802.30(1011, ts) 2.803.20(211, td) 4.504.80(111, ts) 5.02 (211, ts) 6.807.70(1311, ts)		
IR: 3420,3300,3030,2930, 1740,1845,1610,1515, 1320,1240	IR: 3430,3030,2950,1730, 1640,1610,1510,1310, 1240	MMR: CD ₃ 0D, TMS S 0.902.40(1011, m) 2.58 (311, s) 2.80 (211, d) 3.10 (211, m) 7.08.90(1111, m)
II ₂ NCII ₂ - CONIICIICONII - CF ₃ · IICI	$\frac{0\text{CII}_{\textbf{z}}}{\text{CII}_{\textbf{z}}} - \frac{0}{\text{CII}_{\textbf{z}}}$ $\frac{0\text{CII}_{\textbf{z}}}{\text{CII}_{\textbf{z}}} - \frac{0}{\text{COMIICIICONIICII}_{\textbf{z}}} - \frac{0}{\text{CF}_{\textbf{z}}} - \text{IICI}$	0-K -N02 C 2 0 C 2 0 C 2 0 0 0 0 0 0 0 0 0
611	120	121

	•			
MMR: CD ₃ DD, TMS S 0.902.36(10H, M) 2.56 (3H, S) 2.79 (2H, d) 3.09 (2H, M) 4.70 (1H, M)	5.04 (211, m) 6.847.96(1111, m) NMR:	Cb ₃ 0b, TMS & 0.802.36(1011, m) 2.453.20(411, m) 4.68 (111, m) 5.00 (211, s) 6.829.10(1311, m)	CD ₃ OD, TMS & 0.902.36(1011, m) 2.56 (311, s) 2.79 (211, d) 3.10 (211, m) 4.70 (211, m) 5.04 (111, m) 6.888.64(1111, m)	
	IIz NCIIz - CUNIICIICONII - C-CH3 · IICI OCIIz - C	II ₂ NCII ₂ - CONIICIICONII - CONIICIICONII - CONIII -	OCII 2 - CI OCII 2 - CI	
125	126			

CD₃ 00, THS 8 0.90--2 69.0 8.0 9.0 ¥.:

		5	
NHR:	CD ₃ OD, THS S 3.03.40(211,m) 4.18 (211,s) 4.604.90(111,m) 7.108.0 (1311,m)	NMR: CD ₃ 0D, TMS	
IR:	3400,3350,3160,1670, 1650,1600,1510,1380, 1330,1155,1125	iR: 3430, 2860, 2880, 1745, 1630, 1450, 1310, 1285, 1200, 1175	1R: 34:0,3000,2960,2900, 1745,1730,1645,1285, 1120
	II ₂ HCII ₂ - CONIICIICONII - CF ₃	CO ₂ CII ₂ CO ₂ CII ₃ CII ₂ CII ₂	CO ₂ CO ₂ CO ₂ CO ₂ CO ₂ CONIICHCON CII ₂ CII ₂ CII ₂
131		<u> </u>	133

		5	
CD ₃ OD, TMS δ 3.103.40 (211, π) 4.14 (311, ε) 4.805.0 (111, π) 7.108.80(1211, π)	NAR:	CD ₃ OD, TMS S 2.56 (311, s) 3.103.30(21, m) 4.16 (211, s) 4.905.0 (111, m) 7.108.0 (1311, m)	
3430,3030,2960,1640, 1615,1550,1500,1295, 1010	≚	3430,3030,2930,1670, 1640,1630,1600,1500, 1410,1360,1310,1270, 1180	NMR: CD ₃ OD, TMS 6 0.5002.34(10H, m) 2.80 (2H, d) 3.10 (2H, m) 8.969.40(11H, m)
II2 NCII2 - CONHCIICONII - N. OCII3 . 21ICI		$\begin{array}{c} \left(\begin{array}{c} C \\ C \\ C \end{array} \right) \\ \left(\begin{array}{c} C \\ C \end{array} \right) $	II _E NCII ₂ - CONIICIICONII - CI
134	135	•	136

137	\$0 <u>\$</u> 0-0	N.K.:		
	II ₂ NCH ₂ - CONIICIICONII - CI	CD ₃ 00, TMS & 0.902.36(1011, m) 2.80 (211, d) 3.10 (211, m) 6.908.64(1111, m)	•	
138		,432,		
	II.2 NGII.2 - CONIIICIICONII - N	190,133,106	·	
139	OCII ² -Z	1R: 3420,1700,1640,1540, 1300		
	II≥NCII2 - CONHCIICONII-CO2 II → IICI		·	

	6	
NMR: CD, OD, TMS 6 3.103.30(211, m) 4.14 (311, s) 4.18 (211, s) 4.704.90(111, m) 5.0 (211, s) 5.0 (211, s) 6.808.80(1611, m)	CDaOD, THS & 0.902.40(1011, m) & 2.803.20(211, d) & 1.80(211, m) & 4.504.70(111, m) & 5.02 (211, s) & 5.02 (211, s)	
1R: 3430,3030,2950,2620, 1645,1615,1550,1510, 1440,1300,1235	IR: 3430,3030,2830,1850, 1620,1550,1510,1480, 1440,1300,1220	6 0.90232 (2104,m) 2.78 (214,d) 3.08 (211,m) 4.68 (111,m) 6.647.80(1311,m)
II.2 NCII.2 - CONIICIICONII - NCII.3 · 2IIC1	OCII ₂ - CONIICIICONII - NOCII ₃ • 21IC1	$ _{L^{2}} \text{NCII}_{2} - \left(\begin{array}{c} C \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\ C \\ C \\ C \\ C \end{array} \right) - CONIICIICONII - \left(\begin{array}{c} 0 \\ C \\$
140	141	

144 CD CD CD CD CD CD CD	143		W.R.:		
$\begin{array}{c} 0 - CO_2 C \Pi_2 - C \\ & B \Gamma \\ & & B \Gamma \\ \\ & & B \Gamma \\ & & B $	·	CII ₂ CII ₃ CII ₄ CII ₅ CI	CD ₂ OD, THS S 0.802.32(17H, m) 2.783.20(6H, m) 4.60 (1H, m) 7.048.94(7H, m)		
$ R = 0 - CO_2 C I_2 - C_2 C I_2 - C_2 C I_3 - C_3 - C_3$	144)			
$ _{L^{2} \text{KCH}_{2}} - \langle - \rangle \cdots \text{CONIICHCONII} - \langle - \rangle \cdot _{L^{2} - \text{CI}_{1}} - _{L^{2}} _{L^{2}} _{L^{2}} _{L^{2} + \text{CONIICHCONII}} - \langle - \rangle \cdot _{L^{2} \text{CI}_{1}} - _{L^{2}} _{L^{2} \text{CI}_{1}} _{L^{2} \text{CI}_{1}} - _{L^{2} \text{CI}_{1$. •	0-c0 ₂ Cll ₂ 8r	IR: 1760,1690,1680,1580, 1510,1440		5
IR:		CII2 0 0 CONIICHCONII- C-C-CII3			
CI (1760)	145	0-c02 CII2 - Q	::	·	
CII2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Ĺ <u>.</u>			
_		CII ₂ CII ₂ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 *		

149	Oction Control	NYR:	
	II.2 NCII.e - CONIICIICONII(CII.e.).e - CONIICIICONII(CII.e.).e - CONIICIICONII(CII.e.).e - CONIICIICONII(CII.e.).e	CD ₂ 0D, TMS 6 2.883.12(211, broad) 3.68 (211,5) 4.124.28(511,m) 5.02 (211,5) 6.848.76(1711,m)	
150	. NN	MAR:	
	II ₂ NCII ₂ - COMIICIICONII - CIICI	S 0.902.00(10II, m) 2.102.30(2II, m) 2.80 (4II, m) 4.90 (1II, t) 7.407.70(4II, m) 7.958.70(4II, m)	
151	OCII2-5	HS: M/e 540,390,237,197, 154,134	030, 2950, 16
	$ I_2 NC I_2 - CONIICIICONII - CONII OCII_3 · 211CI OCII_3$		1320, 810, 700 1020, 810, 700

CII2 CII2 -CONHCIICONII-
CONIICHCONCII2 N · 21ICI
NO2 CIIe CIIe CIIe CCIIe), CIII)

158			
	II ₂ MCII ₂ - CONIICIICONIICII ₂ - CONICIICONIICII ₂ - CONIICIICONIICII ₂ - CONICIICONIICII ₂ - CONICIICIICONIICII ₂ - CONICIICIICONIICII ₂ - CONICIICIICONIICII ₂ - CONICIICIICONIICII ₂ - CONICIICIICONIICIII ₂ - CONICIICIICONIICIII ₂ - CONICIICIICONIICIII ₂ - CONICIICIICONIICIIICIICIICIICIICIICIICIICIICIICIICII	IR: 3420, 3280, 2940, 1680, 1650, 1520, 1350, 1220, 1105, 1040, 860, 760	
159	S.	ж:	
	CH2 CH2	3450,3200,3000,2850, 2670,2000,1745,1605, 1505,1485,1350,1230, 1105,1005,840,750, 700	5
160		.S:	
•		N/e 473,430,415,345, 317,205,128,113, 86	
	II2 NCH2 - CUNCONIICIICON N-CUNCON32 - IICI		

CD₃OD-D₂O₁ S O.78--1 2.92--3

ξ . 165

	5	_
1R: 3430,3020,2940,1730, 1700,1640,1610,1510, 1320,1220,820		
rS: n/e 177,107,94,67	NMR: CD, 0D, TMS 6 0.902.36(1011, m) 6.928.96(711, m)	KS: K/e 254,139,107,93
II ₂ NCII ₂ - CONIICIICONII - N 21ICI	0-{\rightarrow \rightarrow \ri	II ₂ HCII ₂ - CONIICIICONIICII ₂ - NO ₂
167	89	691

	5	
CDCLs, TMS & 0.802.20(1011, m) 2.55 (211, d) 2.923.28(311, m) 4.805.20(311, m) 6.768.84(1111, m)	1R: 3270, 2940, 1640, 1530, 1510, 1380, 1090	CD ₃ OD, TMS 6 0.802.28(12H, m) 2.703.36(8H, m) 3.27 (3H, s) 4.424.52(1H, m) 5.02 (2H, s) 6.91 (2H, s) 7.317.50(5H, m)
II ₂ NCII ₂ - CONIICIICONII- N	II ₂ NCII ₂ - CONHCIICONII - CII ₃ • 2IIC1	II ₂ NCII ₂ - CONIICIICONII(CII ₂ > ₃ OCII ₃ · IICI
173	174	175

·				
	0-Cll ₂ -Cll ₂	CD ₂ OD, TMS C 1.701.98(4H, m) 2.903.92(7H, m) 4.18 (2H, s) 5.01 (3H, m) 5.01 (3H, m)		
=	H2NCII2- CONHCIICONIICII2-CII ÇII2 · HCI	8.847.85(12H, m)	<u>~</u>	
. ZG	$ _{\mathbb{R}} \text{ NCH}_2 - \left\langle - \right\rangle - \text{Conilchiconii} - \left\langle - \right\rangle - \left\langle - \right\rangle - \left\langle - \right\rangle$	н/е 483,328,197	3430,3060,2830,1710, 1640,1600,1530,1410, 1310,1280,700	5
	0-CII2-	ភ		,
- Ta	CII2 CII2 II2 NCII2 - ()CONIICIICONII - () OCII3 - 2IICI	M/e 548,390,197,154		
	OCII,			

•						
	99		° 0:			
	,2940,1730,1640 ,1370,1200,1180 ,870		IR: 3400,3050,2940,1640 1510,1350,860,760			
. 8	3400,2940 1500,1370 1150,870		1R: 3400,		-	
·	·		•	• 211C1		
• di		· SIICI		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
) usu		CONICIICONII-(0 <u>v</u>	CH ₂ CH ₂ CH ₂ CONIICIICONIICI		
		II ₂ NCII ₂ - C	,	II ₂ NCII ₂ -		
		N ²	·	=	•	
182			30			

The compounds of the present invention can be synthesized by various combinations of the socalled peptide synthesis methods.

- i) Mixed acid anhydride method [Ann, Chem., 572,] 190 (1951)
- 2) Acid chloride method [Biochemistry., 4, 2219 (1960)]
- 3) Phosphazo method [Chem. Ber., <u>93</u>, 2387 (1960)]
- 4) Dicyclohexylcarbodiimide method [J. Am. Chem. Soc., 77, 1067 (1955)]
- 5) Active ester method using, for exampl N-hydroxysuccinimide [J. Am. Chem. Soc., <u>85</u>, 3039 (1963)].

It should be noted, however, that not all of the compounds can be synthesized according to the methods as mentioned here, but that it is necessary to combine the above-mentioned methods appropriately for the respective compounds. Among these methods, typical examples of the reaction routes are shown below.

Route A

For carrying out synthesis from ① to ② ,① is dissolved in an appropriate solvent such as THF, dimethylsulfoxide diethyl ether, dioxane, and the like, and an appropriate base such as triethylamine, pyridine, and the like, is added in an amount of I equivalent to 5 equivalents, preferably 2 to 3 equivalents relative to ① . To this reaction mixture is added ethyl chlorocarbonate as such or as a solu-

- tion dissolved in the solvent used as the reaction solvent, at one time or in several divided portions. The temperature of the reaction mixture is maintained at -10°C to 30°C, preferably 5 to 10°C. The reaction time is from I hour to 50 hours, preferably from 5 to 20 hours. After a conventional post-treatment, 0.5 to 2 equivalents of
- HN R₂

are added and the reaction is carried out at -10°C to 30°C, preferably 5 to 20°C, for I to 50 hours, preferably 5 to 20 hours. Then, after a conventional post-treatment, (3) is obtained.

The reaction from 3 to 4 may be carried out by allowing 5 to react with I to I0 equivalents, preferably 3 to 7 equivalents relative to 3 of 4N-HCI dioxane solution at room temperature. Then,

after a conventional post-treatment, (4) is obtained. The reactions from (4) to (6) can be carried out in the same way as from (1) to (4), whereby (6) can be obtained.

10

0 217 286

Route B

$$\begin{array}{c|c} & & & & \\ & & & & \\ \text{H}_2\text{NCHCON} & & & \\ \hline & \\ \hline & &$$

$$\xrightarrow{4\text{N-HCl }/ \ 0} \text{H}_{2}\text{N-Y-CONFICHCON} \xrightarrow{R_{1}} \text{R}_{2}$$

For syntheses from 1 to 3 and from 4 to 5, there may be employed, for example, the methods as described in J. Am. Chem. Soc., 77 1067 (1955). For the reactions from 3 to 4 and from 5 to 6, the methods as described in route A may be used.

50

40

45

Route C

30

45

For syntheses from 3 to 7, there may be employed, for example, the methods as described in synthesis 685 (1976), J. Chem. Soc. Perkin Trans 1 490 (1977).

For synthesis from \bigcirc to \bigcirc , \bigcirc is dissolved in an appropriate solvent such as DMF, DMSO, toluene, and the like, and NaH is added in an amount of I equivalent to 5 equivalents, preferably I equivalent to 2 equivalents relative to \bigcirc . To this reaction mixture is added a solution of R₂-A dissolved in the solvent used as the reaction solvent, and the reaction is carried out at room temperature from 2 hours to 50 hours, preferably from 4 to 6 hours. Then, after a conventional post-treatment, \bigcirc is obtained. For synthesis \bigcirc to \bigcirc , the methods from \bigcirc to \bigcirc in route A may be used.

EXAMPLES

The present invention will now be further illustrated by, but is by no means limited to, the following Examples. In the following, preparation of typical compounds is described by referring to specific examples.

Example |

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (Compound No. 2)

N-(t-butyloxycarbonyl)-L-phenylalanine (i) (5.30 g) was dissolved in dry tetrahydrofuran (80 ml), triethylamine (3 ml) was added to the resultant solution and ethyl chlorocarbonate (2.40 g) was added to the mixture under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-acetylaniline (2.70 g) and the mixture was stirred at room temperature for I0 hours. To the reaction mixture was added ice-water (300 ml) and the precipitated crystalline substance was collected by filtration, thoroughly washed and dried to give 7.07 g of N-(t-butyloxycarbonyl)-L-phenylalanine 4-acetylanilide (II).

To the above compound (II) (2.29 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (30 ml) and ice-cooling was removed, followed by stirring at room temperature for 30 minutes. To this solution was added ether (300 ml) and the precipitated crystalline substance was collected by filtration, washed with ether and dried under a reduced pressure to quantitatively obtain L-phenylalanine 4-acetylanilide hydrochloride (III).

35

40

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (I.62 g) was dissolved in dry tetrahydrofuran (50 ml), triethylamine (0.96 ml) was added to the resultant solution and ethyl chlorocarbonate (0.76 g) was added under ice-cooling to the mixture, followed by stirring for 30 minutes. To this solution was added the hydrochloride salt (III) previously obtained and triethylamine (2 ml) was added to the mixture, followed by stirring at room temperature for 3 hours. Ice-water (200 ml) was added to the reaction mixture and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to give 2.62 g of N-[trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarbonyl}-L-phenylalanine 4-acetylanilide (IV).

To the above compound (IV) (2.60 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (25 ml) and the mixture was stirred at room temperature for 30 minutes. The mixture was concentrated under a reduced pressure, and the residue was dissolved in water (I00 ml) and sodium carbonate (I.05 g) was added to the resultant solution. The precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-L-phenylalanine 4-acetylanilide (V) (I.90 g).

Example 2

Synthesis of N-(trans-4-aminomethylcvclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (Compound No. 3)

Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (I.4I g) was made into a mixed acid anhydride following a conventional method. and 4-benzyloxy-Lphenylalanine-4-acetylanilide hydrochloride previously synthesized following a conventional method was added thereto and the mixture was stirred with addition of triethylamine (I.7 ml) at room temperature for 3 hours. Then, post-treatment was carried out following the procedure as described in Example I to give N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-acetylanilide (I) (2.46 g).

The above compound (I) (2.40 g) was treated with 4N-hydrogen chloride/dioxane and, following the procedure of Example I, N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide (II) (I.50 g) was obtained.

Example 3

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide - (Compound No. 4)

Ethanol was added to the N-(trans-4-aminomethylcyclohexyl-carbonyl)-4-benzyloxy-L-phenylalanine 4-acetylanilide prepared in Example 2 (100 mg), palladium black (20 mg) and cyclohexene (2.5 ml) and the mixture was stirred under reflux of ethanol for 30 minutes. The solid was collected by filtration, and concentrated to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (79 mg).

Example 4

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (Compound No. 5)

N-(t-butyloxycarbonyl)-4mixture of benzyloxy-L-phenylalanine 4-acetylanilide (I) (4.88 g), pailadium black (0.60 g), cyclohexene (15 ml) and ethanol (100 ml) was subjected to the reaction under reflux of ethanol for I hour. After cooling, the solid was filtered off and the filtrate was concentrated to obtain : N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (II) (3.90 g). The compound (II) without purification was dissolved in N,N-dimethylformamide (100 ml) and the solution was stirred with addition of sodium hydride (60% content) (0.44 g) at room temperature for 30 minutes. To this solution was added 4-chlorobenzyl chloride (I.6I g) and the reaction was carried out at room temperature for 10 hours. ice-water (500 ml) was added to the reaction mixture, and the precipitated crystalline substance was collected by filtration, thoroughly washed with water and dried to N-(t-butyloxycarbonyl)-4-(4-chlorobenzyloxy)-L-phenylalanine 4-acetylanilide (III) (3.65 g). The compound (III) was treated in a conventional manner to synthesize N-(trans-4-aminomethylcyclohexylcarbonyi)-4-(4-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (IV).

Example 5

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-methoxy-L-phenylalanine 4-acetylanilide - (Compound No. 6)

N-(t-butoxyoxycarbonyl)-4-benzyloxy-Lph nylalanine 4-acetylanilide (0.49 g), palladium black (0.10 g) and cyclohexene (4 ml) were reacted with ethanol (20 ml) under reflux for I hour. After cooling, the solid was filtered off and the filtrate

was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.39 g). The compound (I) was dissolved in dimethylformamide (6 ml) and oily sodium hydride (0.04 g) was added to the r_sultant solution. The mixture was stirred at room temperature for 30 minutes. To this mixture was added a dimethylformamide (2 ml) solution of methyl iodide (0.15 g) and the reaction was carried out at room temperature for 6 hours. Ice-water was added to the reaction mixture, and the resultant oily substance was extracted with ethyl acetate. After a conventional treatment, N-(t-butyloxycarbonyl)-4methoxy-L-phenylalanine 4-acetylanilide (II) (0.21 g) was obtained. N-(trans-4-aminomethyl cyclohexylcarbonyl)-4-methoxy-L-phenylalanine etylanilide (0.08 g) was obtained from the compound (II) (0.19 g), following the procedure of Exam-

Example 6 7

Synthesis of N-(4-aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (Compound No. 10)

N-(4-benzyloxycarbonylaminomethylbenzoyl)-4-benzyloxy-L-phenylalanine 4-benzoylanilide (I) - (0.20 g) was dissolved in 30% hydrobromic acid/acetic acid solution (I0 ml) and the solution was stirred at room temperature for 30 minutes. Excessive reagent was removed with ether by decantation, water was added to the residue and the mixture was made alkaline with sodium carbonate, followed by extraction with methylene chloride. According to a conventional method, N-(4-aminomethylbenzoyl)-4-hydroxy-L-phenylalanine 4-benzoylanilide (II) (0.II g) was obtained.

Example 7

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (Compound No. 16)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (3.71 g) was dissolved in dry tetrahydrofuran (I00 ml) and, under Ice cooling, triethylamine (I.5 ml) was added thereto. After stirring for I5 minutes, ethyl chlorocarbonate (I.10 g) was added, followed by stirring for 30 minutes. To this solution was added 3-aminopyridine (0.94 g) and the reaction was carried out at room temperature for 7 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure.

The residue was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3-pyridylamide (II) (I,0) g) was obtained.

The compound (II) (0.90 g) was dissolved in dry 1,4-dioxane (10 ml) and, to this solution, 4N hydrogen chloride/dioxane solution (25 ml) was added and, at room temperature, the mixture was stirred for I hour. The precipitated substance was collected by filtration and dried. This product was added to a mixed acid anhydride, which was previously synthesized from 4-(t-butyloxycarbonyl)aminomethyl cyclohexyl carboxylic acid (0.54 g), triethylamine (0.31 ml), and ethyl chlorocarbonate -(0.23 g). Furthermore, to this mixture were added triethylamine (0.62 ml) and N,N-dimethylformamide (5 ml) followed by stirring at room temperature for 3 hours. To the reaction mixture was added icewater (100 ml) and the precipitated substance was collected by filtration. After thoroughly washing with water and drying, N-(trans-4-(t-butyloxycarbonyl)-aminomethylcyclohexylcarbonyl-4-benzyloxy-Lphenylalanine 3-pyridylamide (III) (0.98 g) was obtained.

The compound (III) (0.95 g) was dissolved in dry I,4-dioxane (I0 mI) and, to this solution, 4N-hydrogen chloride/dioxane solution (20 mI) was added, followed by stirring at room temperature for 2 hours. The precipitated substance was collected by filtration and dried to obtain N-(trans-4-aminomethylcyclohexylcarbonyI)-4-benzyloxy-L-phenylalanine 3-pyridylamide dihydrochloride (0.90 g).

Example 8

30

40

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound 23)

N-(t-butyloxycarbonyl)-4mixture of benzyloxy-L-phenylalanine cyclohexylamide (0.68 g) obtained in Example 4, palladium black (0.10 g). cyclohexene (4 ml), and ethanol (20 ml) was allowed to react under reflux of ethanol for one hour, while stirring. After cooling, the solid was filtered off and the filtrate was concentrated under reduced pressure to obtain N-(t-butyloxycarbonyl-4-hydroxy-L-phenylalanine cyclohexylamide (I) (0.54 g). The compound (i) (0.54 g) was dissolved, without purification, in N,N-dimethylformamide (I0 ml), followed by adding sodium hydride (0.06 g) thereto. The mixture was stirred at room temperature for 30 minutes. To this solution was added a solution of phenacyl bromide (0.30 g) in N,N-dimethylformamide (5 ml). The reaction was carried out at room temperature for 4 hours, followed by adding

10

ice-water ther to. The r sultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide (II) - (0.6I g) was obtained. From the compound (II), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-phenacyloxy-L-phenylalanine cyclohexylamide hydrochloride (0.38 g) was obtained, following the procedure of Example 7.

Example 9

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-D.L-phenylalanine 4-benzoylanilide hydrochloride (Compound No. 31)

N-(t-butyloxycarbonyl)-4-nitro-D,Lphenylalanine (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under icecooling to the resultant solution, followed by stirring for 20 minutes. 4-benzoylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for 12 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-D,L-phenylalanine zovlanitide (I) was obtained. To the above compound (I) (0.37 g) was added 4N-hydrogen chloride/dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-D,L-phenylalanine 4-benzoylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethyl chlorocarbonate -(0.09 g) was added to the solution under icecooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.33 g) and the mixture was stirred at room temperature for 12 hours. According to a conventional posttreatment, 0.29 g of N-[trans-4-(t-butyloxy carbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-D,Lphenylalanine 4-benzoylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4N-hydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcycloh xylcarbonyl)-4-nitro-D,L-phenylalanin 4-benzoylanilide hydrochloride was obtained.

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylam:ide hydrochloride (Compound No. 34)

Triethylamine (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added 4-cis/trans-methyl-cyclohexylamine (0.43 g) and the mixture was stirred at room temperature for I0 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate washed with water and dried to give 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-cis/trans-methyl-cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxanesolution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to give quantitatively 4-benzyloxy-Lphenylalanine: 4-cis/trans-methylcyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to a solution of trans-4-(tbutyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.62 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I mi), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to give 0.2 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4benzyloxy-L-phenylalanine 4-cis/trans-methylcyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under a reduced pressure to give 0.1 g of N-(trans-4aminomethylcyclohexylcarbonyl)-4-benzyloxy-Lphenylalanine 4-cis/trans-methylcyclohexylamide hydrochloride.

Example II

Example 10

45

50

N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide methane sulfonate (Compound No. 35)

N-(t-butyloxycarbonyl)-4-(benzyloxy)-Lphenylalanine 4-acetylanilide (1.2 g), palladium black (0.15 g) and cyclohexane (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-chlorobenzylchloride (0.4 g) in dimethylformamide (5 ml) was allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water (I00 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (I.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (I2 ml) to obtain 4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(III). The above compound (III) was suspended in dimethylformamide (I0 ml) -tetrahydrofuran (I0 ml) dry solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid mixed acid anhydride were added under ice-cooling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarbonyi]-4-(3chlorobenzyloxy)-L-phenylalanine 4-acetylanilide -(IV) (I.3I g) was obtained. The above compound -(IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (IO ml) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. This was dissolved in water (100 ml) and the substance precipitated by addition of sodium carbonate was suspended in methanol (30 ml) - methylenechloride (30 ml) solution and methanesulfonic acid (0.13 g) was added to the suspension, followed by stirring at room temperature for I hour, to obtain a transparent solution. After evaporation of the solvent under reduced pressure, recrystallization from ethanolsolution gave N-(trans-4-aminomethylcyclohexylcarborryl)-4-(3-chlorobenzyloxy)-Lphenylalanine 4-acetylanilidemethanesulfonate (I.I g).

Example 12

Synthesis of N-(trans-4-aminomethylcyclohexyl carbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride (Compound No. 47)

Triethylamin (I.5 ml) was added to a solution of N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-sulfamoylahiline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to give I.3 g of N-(t-butyloxycarbonyl)-4benzyloxy-L-phenylalanine 4-sulfamoylanilide (II). To the above compound (II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4-benzyloxy-L-phenylalanine 4-sul-famoylanilide hydrochloride (III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethyl chlorocarbonate (0.1 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (iii) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-Itrans-

aminomethylcyclohexylcarbonyl]-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-sulfamoylanilide hydrochloride was obtained.

Example 13

4-(t-butyloxycarbonyl)-

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide hydrochloride (Compound No. 59)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (4.46 g) was dissolved in dry tetrahydrofuran (II0 mI) and triethylamine (I.80 mI) was added under ice-cooling, followed by stirring for I5 minutes. To this solution was added ethyl chlorocarbonate (I.44 g) and the mixture was stirred for 30 minutes. After adding 4-amino-2-chloropyridine (I.54 g), the reaction was carried out

45

15

20

25

35

at room temperature for I0 hours. The solid was filtered off and the filtrate was concentrated under a reduced pressure. The residue was extracted with ethyl acetate. The extract was purified with a column chromatography to obtain N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)-pyridylamide (II) (0.60 g). Following the procedure of Example 7, the final compound N-(trans-4-aminomethylcyclohexylcarbonyl)-4-benzyloxy-L-phenylalanine 4-(2-chloro)pyridylamide hydrochloride (III) (0.67 g) was obtained from the compound (II).

Example I4

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(4-toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 79)

N-(t-butyloxycarbonyl)-4-hydroxy-Lphenylalanine 4-acetylanilide (0.57)and triethylamine (0.5 ml) were dissolved in dichloromethane (IO ml) -tetrahydrofuran (IO ml) solution and 4-toluenesulfonyl chloride (0.38 g) was added at room temperature, followed by stirring for 3 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-toluenesulfonyloxy)-Lphenylalanine 4-acetylanilide (I) (0.8 g) was obtained. The above compound (i) (0.8 g) was treated with 4N hydrogen chloride/dioxane solution (2.2 ml) to obtain 4-(4-toluenesulfonyloxy)-Lphenyialanine 4-acetylanilide hydrochloride (II) (0.7 g). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.7 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide (III) (0.32 g) was obtained. The above compound -(III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(4toluenesulfonyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

Example 15

N-(4-aminomethylbenzovicarbonyl)-4-benzyloxy-L-phenylalanine 3.4-dimethylcyclohexylamide hydro-

chloride (Compound No. 80)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (0.3 g) and 3,4-dimethylcyclohexylamine (0.1 g) were dissolved in dry methylene chloride (30 ml) and I-ethyl-3-(3dimethylaminopropyl)carbodiimide hydrochloride -(0.2 g) was added to the solution, followed by stirring at room temperature for I2 hours. According to a conventional post-treatment, N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (I) (0.32 g) was obtained. The above compound (I) (0.3 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain 4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (ii) (0.26 g). The above compound (II) (0.28 g) and 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.16 g) were dissolved in dry methylene chloride (20 ml) -pyridinesolution, and I-ethyl-3-(3-dimethylaminopropyl)carbodilmide hydrochloride (0.15 g) was added to the solution. The reaction was carried out at room temperature for 12 hours. After a conventional posttreatment. N-[4-(t-butyloxycarbonyi)aminomethylbenzoyl]-4-benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide (III) (0.23 g) was obtained. The above compound (III) was allowed to react with 4N-hydrogen chloride/dioxane solution to (2 ml) obtain N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 3,4-dimethylcyclohexylamide hydrochloride (0.18 g).

Example 16

Synthesis of N-(trans-4-aminomethylcvclohexylcar-bonyl)-4-(4-nitrophenyloxy)-L-phenylalanine 4-ac-etylanilide hydrochloride (Compound No. 95)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-acetylanilide (I.59 g) in dimethyl sulfoxide (I0 ml) were added potassium hydroxide (0.25 g) and 4-nitrobromobenzene (0.8) g), and the mixture was heated at 80 -90°C and stirred for 10 hours. After conventional post-treatment N-(t-butyloxycarbonyl)-4-(4-nitrophenyloxy)-Lphenylalanine 4-acetylanilide (I) (0.62 g) was obtained. The above compound (I) (0.6 g) was allowed to react with 4N-hydrogen chloride/dioxane solution obtain : 4-(4-nitrophenyloxy-Lto phenylalanine 4-acetylanilide hydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic mixed acid anhydride obtained in Example 5 to obtain . N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyi]-4-(4-

35

nitrophenyloxy)-L-phenylalanine 4-acetylanilide (II) - (0.54 g). The above compound (II) (0.54 g) was allowed to react with 4N-hydrogen chloride/dioxane solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-nitrophenoxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.39 g).

Example 17

Synthesis of N-(4-aminomethylbenzoyl)-4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (Compound No. 96)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine (I) (2.00 g) was dissolved in dry tetrahydrofuran (50 ml) and, under ice-cooling, triethylamine (0.81 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.64 g) was added thereto, followed by stirring for 30 minutes. To this solution was added 4-picolylamine (0.58 g) and the mixture was stirred at room temperature for 5 hours. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate. After a conventional post-treatment N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine picolylamide (II) (I.60 g) was obtained. To the compound (II) (I.60 g) 4N-hydrogen chloride/dioxane solution (15 ml) was added, followed by stirring at room temperature for 30 minutes. The precipitated substance was collected by filtration and dried to quantitatively obtain 4-benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (III).

On the other hand, N-4-(t-butyloxycarbonyl)aminomethyl benzoic acid (0.60 g) was dissolved in dry tetrahydrofuran (10 ml) and N,N-dimethylformamide (5 ml) and, under ice-cooling, triethylamine (I.20 ml) was added thereto. After stirring for 15 minutes, ethyl chlorocarbonate (0.29 g) was added thereto, followed by stirring for 30 minutes. To this solution was added the above-prepared compound (III), followed by stirring for 3 hours at room temperature. The solid was filtered off and the filtrate was concentrated under reduced pressure. The residue was extracted with ethyl acetate and, after a conventional post-treatment, N-4-(t-butyloxycarbonyl)aminomethylbenzoyl-4-benzyloxy-Lphenylalanine 4-picolylamide (IV) (0.45 g) was obtained. To this compound (IV) (0.45 g) was added 4N hydrogen chloride/dioxane solution (4.5 ml) and the precipitated substance was collected by filtration. After drying, N-(4-aminomethylbenzoyl)-4benzyloxy-L-phenylalanine 4-picolylamide dihydrochloride (0.39 g) was obtained.

Synthesis of N-(4-aminomethylbenzoyl)-4-benzyloxy-L-phenylalanine cyclohexylamide hydrochloride (Compound No. II4)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (2.0 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate - (0.65 g) was added under ice-cooling, followed by stirring for 30 minutes.

To this solution was added cychlohexylamine - (0.43 g) and the mixture was stirred at room temperature for I0 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water, and dried to obtain 2.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine cyclohexylamide (II).

To the above compound (II) (I.0 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (4.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (30 ml) was added to this solution and the precipitatedcrystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to quantitatively obtain 4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride (III). On the other hand, triethylamine (0.6 ml) was added to 4-(t-butyloxycarbonyl)aminomethylbenzoic acid (0.62 g) dissolved in dry tetrahydrofuran (30 mi) and ethyl chlorocarbonate (0.25 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.73 g) and triethylamine (I mi), and the mixture was stirred at room temperature for 3 hours. After evaporation of the solvent, the residue was extracted with ethyl acetate, washed with water and dried to obtain 0.2 g of N-[4-(t-butyloxycarbonyl)aminomethylbenzoyl]-4-benzyloxy-Lphenylalanine cyclohexylamide (IV). To the above compound (IV) (0.2 g) was added under ice-cooling 4N-hydrogenchloride/dioxane solution (0.5 ml) and the mixture was stirred at room temperature for 30 minutes. Hexane (20 ml) was added to this solution and the precipitated crystalline substance was collected by filtration, washed with ether and then dried under reduced pressure to obtain 0.1 g of N-(4-aminomethylbenzoyl)-4-benzyloxy-Lphenylalanine cyclohexylamide hydrochloride.

Example 19

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide hydrochloride (Compound No. II9)

Example 18

Triethylamine (I.5 ml) was added to a solution N-(t-butyloxycarbonyl)-4-benzyloxy-Lof phenylalanine (I) (2 g) dissolved in dry tetrahydrofuran (30 ml) and ethyl chlorocarbonate -(0.65 g) was added under ice-cooling, followed by stirring for 30 minutes. To this solution was added 4-trifluoromethylaniline (0.65 g) and the mixture was stirred at room temperature for 10 hours. Posttreatment was carried out in the same manner as in Example I to obtain I.3 g of N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine trifluoromethylanilide (II). To the above compound -(II) (0.5 g) was added under ice-cooling 4N-hydrogen chloride/dioxane solution (3 ml) and the mixture was stirred at room temperature for 30 minutes. Post-treatment conducted in the same manner as in Example I gave quantitatively 4benzyloxy-L-phenylalanine 4-trifluoromethylanilide -(III). On the other hand, trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid (0.25 g) and triethylamine (0.2 ml) were added, and ethylchlorocarbonate (0.1 g) was added under icecooling, followed by stirring for 30 minutes. To this solution were added the above compound (III) (0.42 g) and triethylamine (I ml), and the mixture was stirred at room temperature for 3 hours. After extraction with chloroform, according to the same post-treatment as in Example I, 0.28 g of N-{trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarbonyl]-4-benzyloxy-Lphenylalanine 4-trifluoromethylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was

aminomethylcyclonexylcarbonyl-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide (IV) was obtained. To the above compound (IV) (0.28 g) was added 4N-hydrogen chloride/dioxane solution (2 ml) and, after stirring at room temperature for 30 minutes, following the same procedure as in Example I, 0.15 g of N-(trans-4-aminomethylcyclonexyl-carbonyl)-4-benzyloxy-L-phenylalanine 4-trifluoromethylanilide hydrochloride was obtained.

Example 20

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. [2])

To a solution of N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (0.57 g) in dry dimethylsulfoxide (I0 mI) was added oily sodium hydride (0.07 g), followed by stirring at room temperature for 30 minutes. Then, 2-chloro-5-nitropyridine (0.28 g) was added and stirred at room temperature for I0 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(5-nitro-2-pyridyloxy-L-phenylalanine 4-acetylanilide (I) (0.70 g) was obtained. The abov compound (I) (0.70 g)

was tr ated with 4N hydrogen chloride/dioxane solution (I5 ml) to obtain 4-(5-nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (II) (0.65 g).

On the other hand, trans-4-(t-butyloxycarbonyl) aminomethylcyclohexylcarboxylic acid (0.37 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (20 ml) and ethyl chlorocarbonate -(0.16 g) was added under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) (0.65 g) and, after neutralizing with triethylamine, the mixture was stirred at room temperature for 12 hours. According to a conventional post-treatment N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(5nitro-2-pyridyloxy)-L-phenylalanine 4-acetylanilide (III) (0.32 g) was obtained. The above compound (III) (0.32 g) was treated with 4N-hydrogen chloride/dioxane solution (I ml) to obtain N-(trans-4aminomethylcyclohexylcarbonyl)-4-(5-nitro-2pyridyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (0.2 g).

25 Example 21

30

40

50

55

N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 122)

N-(t-butyloxycarbonyl)-4-benzyloxy-Lphenylalanine 4-acetylanilide (l.2 g), palladium black (0.15 g) and cyclohexene (8 ml) were added into ethanol (40 ml) and the reaction was carried out under reflux of ethanol for I hour. After cooling, the mixture was filtered and a filtrate was concentrated under a reduced pressure to obtain N-(tbutyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-acetylanilide (I) (0.99 g). The above compound (I) -(0.99 g) was dissolved in dimethylformamide (30 ml), added with oily sodium hydride (0.1 g) and the mixture was stirred at room temperature for 30 minutes. A solution of 3-cyanobenzylbromide (0.4 g) in dimethylformamide (5 ml) was added and allowed to react at room temperature for 6 hours, and the reaction mixture was poured into ice-water-(100 ml) and extracted with ethyl acetate. A conventional post-treatment was carried out to obtain N-(tbutyloxycarbonyi)-4-(3-cyanobenzyloxy)-Lphenylalanine 4-acetylanilide (II) (I.25 g). The above compound (II) (I.25 g) was allowed to react with 4Nhydrogen chloride/dioxane (12 ml) to obtain 4-(3cyanobenzyloxy)-L-phenylalanine 4-acetylanilide -

Th abov compound (III) was suspended in dimethylformamide (I0 ml) -tetrahydrofuran (I0 ml) solution, and triethylamine (0.4 ml) and trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic

40

acid mixed acid anhydride were added under leaceoling, followed by stirring for 30 minutes. Further, the reaction was carried out at room temperature for 3 hours. After a conventional post-treatment, N-[trans-4-(t-butyloxycarbonyl)-

aminomethylcyclohexylcarbonyl]-4-(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide - (IV) (I.3I g) was obtained. The above compound - (IV) (I.3I g) was allowed to react with 4N-hydrogen chloride/dioxane solution (I0 mI) for I hour, and the crystalline substance precipitated by addition of hexane was collected by filtration. The product was recrystallized from an ethanol-ether solution to obtain N-(trans-4-aminomethylcyclohexylcarbonyl)-4-

(3-cyanobenzyloxy)-L-phenylalanine 4-acetylanilide

Example 22

hydrochloride (I.I g).

Synthesis of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride (Compound No. 130)

N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine - (0.95 g) and triethylamine (0.4 ml) were dissolved in dry tetrahydrofuran (15 ml), and ethylchlorocarbonate (0.33 g) was added under ice-cooling to the resultant solution, followed by stirring for 20 minutes. 4-acetylaniline (0.6 g) was added to the solution and the mixture was further stirred at room temperature for 12 hours. According to a conventional post-treatment, 0.98 g of N-(t-butyloxycarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide (I) was obtained.

To the above compound (i) (0.37 g) was added 4N-hydrogen chloride-dioxane solution (I.5 ml) and the mixture was stirred at room temperature for I hour. The solid precipitated by addition of ethyl ether (10 ml) into this solution was collected by filtration to give 0.33 g of 4-nitro-L-phenylalanine 4acetylanilide hydrochloride (II). Trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarboxylic acid -(0.2 g) and triethylamine (0.2 ml) were dissolved in dry tetrahydrofuran (15 ml) and ethylchlorocarbonate (0.09 g) was added to the solution under ice-cooling, followed by stirring for 20 minutes. To this solution was added the above compound (II) -(0.33 g) and the mixture was stirred at room temperature for I2 hours. According to a conventional post-treatment, 0.29 g of N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-nitro-Lphenylalanine 4-acetylanilide (III) was obtained. The above compound (III) (0.29 g) was dissolved in 4Nhydrogen chloride/dioxane solution (I ml), the solution was stirred at room temperature for I hour and then ether (8 ml) was added. The crystalline substance precipitated was collected by filtration and subjected to a conventional post-treatment, whereby 0.24 g of N-(trans-4-aminomethylcyclohexylcarbonyl)-4-nitro-L-phenylalanine 4-acetylanilide hydrochloride was obtained.

Example 23

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)-4-(3-chloro-6-nitrophenoxy)-L-phenylalanine 4-pyridylamide dihydrochloride (Compound No. 137)

To a solution of N-(t-butyloxycarbonyl)-4hydroxy-L-phenylalanine 4-pyridylamide (5.35 g) in dimethyl sulfoxide (I00 ml) was added oily sodium hydride (0.62 g), followed by stirring at room temperature for 30 minutes. Thereafter, 2,4-dichloronitrobenzene (2.88 g) was added and stirred at room temperature for 10 hours. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(3-chloro--6-nitrophenoxy)-L-phenylalanine 4-pyridylamide dihydrochloride (6.66 g) was obtained. The above compound (I) (6.50 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (50 ml) to obtain 4-(3-chloro-6-nitrophenoxy-L-phenylalanine 4-pyridylamide dihydrochloride, which was further allowed to react with trans-4-(t-butyloxycarbonyi)aminomethylcyclohexylcarboxylic acid mixed acid. anhydride obtained in Example 5 to obtain N-[trans-4-(t-butyloxycarbonyl)aminomethylcyclohexylcarbonyl]-4-(3-chloro-6nitrophenoxy)-L-phenylalanine 4-pyridylamide (II) -(7.16 g). The above compound (II) (7.00 g) was allowed to react with 4N-hydrogen chloride/dioxane solution (I50 ml) to obtain N-(trans-4-aminomethylcyclohexylcarbonyi)-4-(3-chloro-6-nitrophenoxy)-Lphenylalanine 4-pyridylamide (6.06 g).

Example 24

Synthesis of N-(trans-4-aminomethylcyclohexylcar-bonyl)4-(4-picolyloxy)-L-phenylalanine 4-pic-pecolylamide (Compound No.165)

N-(t-butyloxycarbonyl)-4-benzyloxy-L-phenylalanine (I) (I.86 g) was dissolved in dry tetrahydrofuran (30 ml) and, under ice-cooling, triethylamine (0.75 ml) was added thereto. After stirring for I0 minutes, ethyl chlorocarbonate (0.56 g) was added and stirred for 30 minutes. To this solution was added a solution of 4-pipecoline (0.55 g) in dry tetrahydrofuran (5 ml). The ice bath was removed and the reaction was carried out at room temperature for 2 hours. The precipitate was filtered off and the filtrate was concentrated under reduced pressure. To the residue was added water

20

40

(50 ml), followed by extracting with ethyl acetate. After a conventional post-treatment N-(t-butylox-ycarbonyl)-4-benzyloxy-L-phenylalanine 4-pipecolylamide (II) (I.83 g) was obtained.

A mixtur of the above compound (II) (I.70 g), palladium black (0.20 g), cyclohexene (6 ml), and ethanol (50 ml) was reacted under reflux of ethanol. After cooling, the solid was filtered off and the filtrate was concentrated to obtain N-(t-butyloxycarbonyl)-4-hydroxy-L-phenylalanine 4-pipecolylamide (III) (I.38 a). The compound (III) was dissolved, without purification, in N,N-dimethylformamide (20 ml). To this solution was added oily sodium hydride (60% content) (0.16 g), followed by stirring at room temperature for 30 minutes. To this solution was added a solution of 4-picolyl chloride (0.50 g) in N,N-dimethylformamide (5 ml) and the reaction was carried out at room temperature for 7 hours, ice water was added to the reaction mixture and the resultant oily product was extracted with ethyl acetate. After a conventional post-treatment, N-(t-butyloxycarbonyl)-4-(4-picolyloxy)-L-

phenylalanine 4-pipecolylamide (IV) (I.20 g) was obtained. From the compound (IV), N-(trans-4-aminomethylcyclohexylcarbonyl)-4-(4-picolyloxy)-L-phenylalanine-4-pipecolylamide (0.85 g) following the procedure of Example 6.

The phenylalanine derivatives or the salts thereof according to the present invention, which are an effective component of the proteinase inhibitor of the present invention, have very potent inhibition activities against proteinases such as plasmin, kallikrein, trypsin, and urokinase as shown in the below-mentioned test results. The plasmin inhibition activity is different from the effect exhibited by the antiplasmins of the prior art, when contrasted with known drugs of the prior art such as tranexamic acid or e-aminocaploic acid which selectively inhibits only plasmin among proteinases. For example, some effective ingredients of the proteinase inhibitor according to the present invention exhibit an inhibition activity against urokinase, which is a plasminogen activating enzyme as is well known. This means that the inhibition of this enzyme can provide preferable hemostatics. On the other hand, some of the proteinase inhibitors according to the present invention inhibit antikallikrein activity and antitrypsin activity. This means that these inhibition activities can provide, together with the antiplasmin activity, a strong antiinflammatory agent. For example, the Compound No. 3 in Table 3 is known as the phenylalamine derivative having the structure similar to that of the present invention (see Pharmazie 39, H, I, 68,1984). Furth rmore, the Compound Nos. 4, 5, 6, and 7 are known as phenylalamine derivativ s (see Chem. Abst. 77, 102225j; 86, 39312d; and 80, 92633m).

In the following, antiplasmin activity, antikallikrein activity, antitrypsin activity, antiurokinase activity and antithrombin activity of the present compounds are described in detail by referring to typical test examples.

The measurement methods employed in the following test examples are as described below. The test results are shown in Table 2 by referring to the compound Nos. in the above Table I for the compounds of the present invention, and the test results are shown in Table 4 by showing the structures of the compounds in Table 3 for the commercially available antiplasmins as Comparative Examples.

(I) Evaluation of Antiplasmin Activity

(i) <u>Determination</u> of inhibition activity for fibrin decomposition

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 600 μ l. To this buffer solution, 200 μ l of a 0.2% bovine fibrinogen, 100 μ l of a 0.3 casein unit/ml human plasmin solution, and 100 μ l of a 50 unit/ml bovine thrombin solution, all dissolved in the above-mentioned buffer, are added at a temperature of 37°C In a constant temperature bath. Then, the dissolution time of the fibrin mass formed above is determined. Thus, the concentration I_{10} of the inhibitor sample (i.e., 50% inhibition concentration, μ mol), at which the dissolution time obtained in the absence of the inhibitor (i.e., about 5 minutes) is extended twice, is determined.

(ii) <u>Determination of inhibition activity for S-2251 decomposition</u>

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.4) to make the total volume to 400 μ l. To this solution, 50 μ l of a 3 mM S-225l solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 casein unit/ml human plasmin is added and the mixture is incubated at a temperature of 37°C for 4 minutes. Thereafter, the reaction is stopped by adding 50 μ l of 50% acetic acid.

The absorbance of p-nitroaniline formed in the reaction mixture is determined at 405 nm. Thus, the concentration I_{50} (μ mol) of the inhibitor sample, at which th absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor, is determined.

25

30

(iii) Determination of inhibition activity for fibrinogen

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 400 µl. To this solution, 500 µl of a 0.4% bovine fibrinogen solution and 100 ul of a l casein unit/ml human plasmin solution, all dissolved in the above-mentioned buffer are added at a temperature of 37°C in a constant temperature bath. After the mixture is allowed to stand at a temperature of 37°C for IO minutes, 3800 µI of the above-mentioned buffer containing I3.2 mM of tranexamic acid and 200 µl of a 50 unit/ml bovine thrombin solution are added to terminate the reaction. The mixture is incubated at a temperature of 37°C for 15 minutes to form the fibrin. The fibrin clot thus formed is adhered to or wound around a glass rod and is then washed with water. The amount of the remaining fibrinogen is determined according to a tyrosine coloring method using a phenoi reagent (see J. Biol. Chem., 73, 627 (1927)). From the amount of the remaining fibrinogen thus determined, the amount of decomposed fibringen is calculated. Thus, the concentration Is (µmol) of the inhibitor sample, at which the amount of decomposed fibrinogen is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(2) Evaluation of Antithrombin Activity

(i) Determination of inhibition activity against fibrin formation

An inhibitor sample is dissolved in a 0.18 M borate-physiological salt buffer solution (pH = 7.4) to make the total volume to 500 μ l. To this solution, 400 μ l of a 0.2% bovine fibrinogen solution and 100 μ l of a 4 unit/ml bovine thrombin solution are added at a temperature of 37°C, in a constant temperature bath. Thus, a coagulation time is determined. The inhibitor concentration I_{50} (μ mol), at which the coagulation time obtained in the absence of the inhibitor is extended twice, is determined.

(ii) Determination of inhibition activity for S-2238 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.3) to make a total volume of 400 μ l. To this solution, 50 μ l of a 0.2 mM S-2238 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μ l of a 0.2 unit/ml bovine thrombin solution is added thereto and the absorbance, at 405 nm, of

the p-nitroaniline formed per minute is determined at a temperature of 37°C by using the so-called initial velocity method. Thus, the concentration I_{∞} - (µmol) of the inhibitor sample at which the absorbance is one half (i.e., I/2) of that obtained in the absence of the inhibitor sample, is determined.

(3) Evaluation of Antitrypsin Activity Determination of inhibition activity against S-2238 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-imidazole buffer solution (pH = 8.l) and l25 μ l of a I mM S-2238 solution is added to make the total volume to 1.20 ml. The mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. To this mixture, 0.05 ml of bovine trypsin is added and the absorbance, at 405 nm, of the p-nitroaniline formed per minute is determined at a temperature of 37°C by the so-called initial velocity method. Thus, the concentration $l_{\rm so}$ -(μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(4) Evaluation of Anti-Plasma Kallikrein Activity Determination of inhibition activity for S-2302 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 7.8) to make the total volume to 400 µl. To this solution, 50 µl of a 2 mM S-2302 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperature bath. Then, 50 μl of a 0.12 unit/ml human plasma kallikrein is added and the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 µl of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration I, (umol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

(5) Evaluation of Antiurokinase Activity Determination of inhibiton activity for S-2444 decomposition

An inhibitor sample is dissolved in a 0.05 M Tris-hydrochloric acid buffer solution (pH = 8.8) to make the total volume to 400 μ l. To this solution, 50 μ l of a l mM S-2444 solution is added and the mixture is incubated at a temperature of 37°C for 5 minutes in a constant temperatur bath. Then, 50 μ l of a 500 unit/ml human urokinase is added and

the mixture is incubated at a temperature of 37°C for 5 minutes. Thereafter, 50 μ l of 50% acetic acid is added to terminate the reaction. The absorbance of the p-nitroaniline formed in the reaction mixture is measured at 405 nm. Thus, the concentration l_{50} (μ mol) of the inhibitor sample, at which the absorbance is one half (i.e., 1/2) of that obtained in the absence of the inhibitor sample, is determined.

When the compounds of the present invention are used as a medicine, there are no critical limitations to the administration methods. The present proteinase inhibitor can be formulated by any con-

ventional method in pharmaceutics. For example, the present proteinase inhibitor may be applied in any conventional manner including intravenous injection, intramuscular injection, instillation, and oral administration. Although there are no critical limitations to the administration dosage, the suitable dosage is 100 to 1000 mg/day/person, which can be conveniently decreased or increased as desired, as a matter of course.

	<u> </u>																								
Urokinase	8-2444	=	28	31	25	42	=	80	45	23	19	120	560	330	. 08	3.3	11	40	100	>400	32	09	0.4	130	, 200 .
Plasma Kallikrein	5-2302	1.9	0.85	0.63	0.46	2.0	0.84	2.1	1.7	0.56	1.2	0.16	2.1	1.1	0.37	0.9	8.5	0.38	1.2	09	1.2	1.2	0.46	4.5	>100
Trypein	5-2238	0.30	1.3	0.77	0.84	. 1.1								3.1	1.0		0.52	. 1.0	0.82	2.5	1.8	1.1	0.84	7.5	. 22
andin	Fibrinogen	>50	>1000	>100		>500	•	≻200	>200			>25	×100	>25	>50	>100	>200	>50	>50	>50	>200	×100		>200	>100
upqueaugs s {	5-2238	>100	>1000	>200	•	230		>400	>400			>50	>100	>50	280	>100	>200	> 100	>125	>50°	>1000	>500		>400	>200
	Fibrin	40	21	0.40	0.39	4.6	0.41	4.4	2.9	0.28	0.28	0.31	1.1	0.35	0.95	3.3	. 12	0.095	0.41	0.41	99.0	0.95	0.091	1.0	3.4
Plasmin	S-2251	27	36	8.1	0.00	1.3	0.79	168	6.1	1.5	1.3	1.4	6.9	3.1	1.4	14	23	0.80	1.7	2.3	3.4	3.8	0.58	8.9	5.3
Campound	ş	-	7	m	2	9	12	14	16	17	19	20	26	29	30	31	33	35	36	38	40	44	45	47	48

able 2 (Continued)

Trypsin Plasma Urokinase Kallikrein	en S-2238 S-2302 S-2444		0.42	0.76	0.73 1.4 45			<u>-</u>	10 24 >100	1.1 2.3 65	·	. —	1.2		6.2			1.1 2.4 65	38 .>200 >250	9.2 100 >200		7.0 40 >400	1.5 0.51 58	
Thrombin	S-2238 Fibrinoen	>200	>125 >50	200 >100	730 >500	>125 >50	>125 >250	>200	× 20	>400 >250	>20	>50 >50	>20	×400 ×200	170 >50	•	×400	>125 >100	>50 >25	>50 >50	>100	>50 >25	>200 >20	
	Fibrin	0.19	0.29	0.29	3.3	0.72	0.18	0.58	1.4	0.49	1.0	0.092	0.14	0.65	0.63	0.62	210	.0.88	2.4	0.75	0.33	2.8	0.21	1
Plasma	S-2251	1.0	1.2	1.9	4.6	3.4	4.	1.8	5.6	2.5	2.9	0.80	1.1	1.2	1.7	2.1	220	5.6	5.8	3.8	1.1	8.5	0.89	
Compound	Ŋ.	54.	22	26	57	28	29	62	63	64	65	99	67	89	2	72	73	75	92	. 82	8	82	83 .	ţ

Urokinase	S-2444	>200	78	8.0	>200	320	×100	>200	>150	>200	>300	>20	×100	>150	61	34	26	47	6.3	20	82	34	>250	37	>1000
Plasma Kallikrein	S-2302	120	1.2	0.14	350	3.5	18	40	19	, 02	>50	>25	40	3.7	0.18	0.43	0.078	0.38	3.5	0.41	0.44	8.3	17	99.0	>1000
Trypsin	S-2.238	25	2.5	1.5	77	1.3	1.2	2.5	3.0	0.43	5.8	18	9.5	3.0	0.24	1:0	0.71	08.0	0.45	1.8	1.3	0.50	4.4	1.2	
Thrombin	Fibrinogen	. ~20	×100	×100	>250	>50	•	>20	>20	>40		>20		>20	>200	>20	>50		>200	>20	▶100	>400	>500	>200	≻1000
Thm	S-2238	>200	>200	>400	. 001*	×400		>50		>50	>50			>50	280	>200	92	•		>200	×1000	>400	>200	>400	>1000
	Fibrin -	×20	0.32	0.27	81	0.16	0.12	2.6	0.54	0.27	1.1	1.7	1.4	0.77	0.43	0.31	0.28	0.13	0.83	0.29	0.30	7.1	26	0.58	190
Plasnin	5-2251	33	1.6	0.63	29	0.69	0.78	4.2	4.	0.58	5.2	8.3	3.2	3.4	. 0.95	1.1	0.39	0.49	1.5	1.5	1.4	15	170	0.00	>1000
Contround	Ŋ.	88	83	92	96	102	103	105	106	109	111	113	114	118	121	122	123	125	126	127	128	130	131	137	139

able 2 (Continued)

						_
Urokinase	5-2444	> 100	43	31	45	
Plasma Kallikrein	S-2302	. 81	0.37	0.75	0.58	
Trypsin	8-2238		0.95			
Thrombin	Fibrinogen	> 200	×20	×50	×100	
Th.	S-2238	>200		98	×100	
	Fibrin	2.5	0.051	0.075	0.29	
Plasmin	S-2251	8.8	0.23	0.56	0.64	-
Compound	ġ.	140	144	145	146	

Table 3 (Continued)

Table 3

Table 4

Compound	Plasmi	n	Throm	bin	Trypsin	Plasma	Urokinase
No.	S-2251	Fibrin	S-2238	Fibrinogen	S-2238	Kallikrein S-2302	S-2144
1	75,000	60	>1,000	>1,000	>1,000	>1,000	>1,000
2	180,000	200					
3	>1,000	>1,000	>1,000	>1,000	>300	>1,000	>1,000
4	>200	>200	>200	>200	•••••	>200	>200
5	>100	>100	>100	>100	> 150 ·	>100	>100
, 6	>200	>200	>200	>200		>200	>200
7	>1,000	>1,000	>1,000	>1,.000	>300	>1,000	>1,000
				1			

Claims

40

I. A phenylalanine derivative having the formula (I):

$$\begin{array}{c}
 & \stackrel{\text{H}}{\underset{\text{2}}{\text{NCH}_2}} \\
 & \stackrel{\text{CONHCHCON}}{\underset{\text{R}^2}{\text{CH}_2}}
\end{array}$$

20

25

35

40

where R' and R' are, independently, hydrogen provided that both R' and R' are not hydrogen at the same time:

C₁-C₂ alkyl which may be substituted with hydroxy, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, C₁-C₄ alkylmercapto, C₁-C₄ alkoxy, carbamoyl, sulfamoyl, pyridyl, or phenyl which may further be substituted with nitro, C₁-C₄ alkoxy, or halogen;

 C_s - C_s cycloalkyl which may be substituted with hydroxy, C_s - C_s alkoxy, hydroxylcarbonyl, C_s - C_s alkyl;

phenyl which may be substituted with halogen, nitro, trifluoromethyl, C₁-C₄ alkoxy, C₁-C₄ alkylmercapto, C₁-C₄ alkylcarbonyl, phenylcarbonyl, hydroxycarbonyl, C₁-C₄ alkoxycarbonyl, carbamoyl, sulfamoyl, amidino, pyridylcarbonyl, or C₁-C₄ alkylwhich may further be substituted with C₁-C₄ alkylcarbonyl, hydroxycarbonyl, or C₁-C₄ alkoxycarbonyl;

pyridyl which may be substituted with halogen or C₁-C₄ alkoxy;

pyrimidyl;

N-benzylazacyclohexyl; and

R¹ and R² may form with the nitrogen atom attached thereto a ring structure as morpholino; thiomorpholino; or piperadyl which may be substituted with phenylcarbonyl, benzyl, or C₁-C₄ alkyl;

pyrrolidyl which may be substituted with hydroxycarbonyl or C₁-C₄ alkoxycarbonyl; and

pyperidine substituted with C,-C, alkyl, phenyl C,-

C4 alkyl, phenylcarbonyl, or C1-C4 alkoxycarbonyl;

X is hydrogen; nitro; amino; or -OZ wherein Z is hydrogen; C_1 - C_4 alkyl; C_2 - C_4 alkenyl; benzyl which may be substituted with halogen, C_1 - C_4 alkoxycarbonyl, or cyano; phenylcarbonylmethyl, pyridylmethyl; phenyl which may be substituted with nitro or halogen; pyridyl or pyrimidyl which may be substituted with nitro; phenylsulfonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with C_1 - C_4 alkyl; or benzyloxycarbonyl which may be substituted with halogen;

n is 4 to 10; and

the mark * indicates that the configuration of the carbon may be either one of D-configuration, L-configuration and DL-configuration or a pharmaceutical acceptable sait thereof.

- 2. A phenylalanine derivative as claimed in claim I, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.
- 3. A proteinase inhibitor comprising as an essential component the phenylalanine derivative of claim I or the pharmaceutically acceptable salt thereof.
- 4. A proteinase inhibitor as claimed in claim 3, wherein the pharmaceutically acceptable salt is at least one salt selected from the group consisting of hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, phosphate, oxalate, succinate, glycolate, malate, citrate, lactate, benzene sulfonate, toluene sulfonate, and methane sulfonate.

50

EPO Form 1503 03 82

EUROPEAN SEARCH REPORT

	DOCUMENTS CON	SIDERED TO BE RELEVAN	IT	EP 86113166.2
Category		ith indication, where appropriate, want passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
D,X		ACTS, vol. 101, no. 4, Columbus, Ohio,	1,2	C 07 C 103/737 C 07 C 103/84 C 07 C 123/00
	different Na-and benzoylated amb with aromatic apage 657, column	"Preparation of ryl-sulfonylated or ino acid amides aminomethyl groups" nns 1,2, abstract-nzie 1984, 39(1),68-		C 07 C 143/76 C 07 C 143/80 C 07 C 149/42 C 07 D 207/16 C 07 D 211/16 C 07 D 211/32 C 07 D 211/58 C 07 D 211/62
A		919 (W.S. KNOWLES et al.) line 20 - column	1	C 07 D 213/30 C 07 D 213/40 C 07 D 213/50 C 07 D 213/64 C 07 D 213/75
.				C 07 D 239/34 C 07 D 239/42
P,A	EP - A2 - 0 183	3 271 (SHOWA DENKO K.K.)	1,3	C 07 D 295/18 C 07 D 307/14
	* Compounds stract *	No. 102-140; ab-		TECHNICAL FIELDS SEARCHED (Int. Cl.4)
				C 07 C 103/00 C 07 D
				· ·
	·			
	The precent search report has b	een drawn up for all claims	-	
	Place of search	Date of completion of the search	<u> </u>	Examiner
	VIENNA	16-12-1986		HOFBAUER
y : parti doci A : tech	CATEGORY OF CITED DOCL icularly relevant if taken alone icularly relevant if combined w ument of the same category inclogical background written disclosure	ith another D : document	ent document, ling date cited in the app cited for other	ying the invention but published on, or blication reasons nt family, corresponding

EUROPEAN SEARCH REPORT

agory		indication, where appropriate, nt passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.4)
				C 07 K 5/06 A 61 K 31/16
				A 61 K 31/34 A 61 K 31/40 A 61 K 31/435
				A 61 K 31/505 A 61 K 31/535 A 61 K 31/54
				A 61 K 37/02
				TECHNICAL FIELDS SEARCHED (Int. CI 4)
				SHARTHING (HILL OF -)
•				
				· ·
	·			
	The present search report has b			
	Place of search WIENNA	Date of completion of the search 16-12-1986	,	Examiner HOFBAUER
Y: 1	CATEGORY OF CITED DOCL particularly relevant if taken alone particularly relevant if combined w document of the same category	E : earlier pe	tent documer iling date	erlying the invention It, but published on, or application or reasons