Objective: \$967, 835, 417, 406; without intervention: \$1,007, 327, 292, 147 (Desired optimality gap: 80%; actual: 77%. Lower Bound: \$222,356,000,000. Time to solve: 50s) $C' = \$10,000, C^{D} = \$10,000,000$

One Period=7 days (costs scaled by 1,000,000 during optimization)
Solved using solve_and_process_vaccination_T_vax_20_S0_antivax_factor_0.35_KV_0.05

1 1

\$2.1e+ \$1.4e+ \$9.1e+ \$3.2e+ \$2e+09 \$3e+08 \$1.8e+ \$1.2e+ \$8.8e+ 0.536 0.677 0.925

\$4.5e+08 \$0.0 \$4.5e+08 1.000

1

\$5.7e+10 \$3.7e+09 \$5.3e+10 0.509

\$9.6e+ \$2.1e+ \$2.9e+ \$3e+08 \$2.8e+ \$3.2e+ \$9.3e+ \$1.8e+ \$2.5e+ 0.925 0.579 0.536

Movement

A: $\$[5000,10000]\cdot10^2$

B: \$[10000,20000] \cdot 10^2 **C: \$[10** ,**14**] 10² P: [.95 ,.93]

A: $\$[0 , 0] \cdot 10^2$ B: $\$[0 , 0] 10^2$

C: $\$[10 , 14] \cdot 10^2$ P: [.99 ,.95]

P: [.99 ,.95 ,.93]

P: [.99 ,.95 ,.93]

P: [.99 ,.95 ,.93]

7. Border Control A: $\$[5000,10000]\cdot10^2$

A: \$[0]] 10^2

B: \$[0] 10^2

C: \$[10]·10² P: [.93]

B: \$[10000,20000] 10²

C: \$[10 ,14] 10² P: [.95 ,.93]

8. Physical Distancing

Cost Per Period: TOTAL

Probability Factor

Cost Per Period: POLICY Cost Per Period: DISEASE

A: \$[5000 ,10000] 10² **B:** \$[10000,20000] 10² **C: \$[10** ,**14**] 10² P: [.95 ,.93]

4. Restaurants

5. Masking

6. Mega Events