MEK4250

Exercises for Finite Elements in Computational Mechanics

August Femtehjell

January 24, 2025

Contents

1 Elliptic equations and the finite element method

1

1 Elliptic equations and the finite element method

Exercise 1.1 Consider the problem $-u''(x) = x^2$ on the unit interval with u(0) = u(1) = 0. Let $u = \sum_{k=1}^{N} u_k \sin(\pi kx)$ and $v = \sin(\pi lx)$ for l = 1, ..., N, for e.g. N = 10, 20, 40 and solve (1.9). What is the error in L_2 and L_{∞} .

Solution 1.1 In this exercise, we use the Galerkin method to solve the problem, wishing to solve the problem as Au = b, where

$$A_{ij} = \int_{\Omega} k \nabla N_j \cdot \nabla N_i \, dx,$$
$$b_i = \int_{\Omega} f N_i \, dx + \int_{\partial \Omega_N} h N_i \, ds.$$

We begin by noting that

$$\nabla N_i = \frac{d}{dx}\sin(\pi ix) = \pi i\cos(\pi ix),$$

such that

$$\int_{\Omega} k \nabla N_j \cdot \nabla N_i \, dx = \int_0^1 k \pi^2 i j \cos(\pi j x) \cos(\pi i x) \, dx = \frac{\pi^2 i^2}{2} \delta_{ij}.$$

As we are given that the Dirichlet boundary conditions cover the entire boundary, and $\partial\Omega_D\cap\partial\Omega_N=\emptyset$, we have that the Neumann boundary integral is zero. The b

vector is then given by

$$b_i = \int_{\Omega} f N_i \, dx = \int_0^1 x^2 \sin(\pi i x) \, dx = \frac{(2 - \pi^2 i^2)(-1)^i - 2}{\pi^3 i^3}.$$

Setting up and solving the system for varying N is then rather simples, implemented in exercise_1_1.py. This gives the errors presented in Table 1, with the plotted solution in Figure 1a.

Table 1: Errors of approximations of u for varying N, with sine basis functions.

\overline{N}	L_2	L_{∞}
10	0.001791	0.000224
20	0.000338	0.000059
40	0.000062	0.000015

Figure 1: Approximation of u with N=40 sine basis functions.

Exercise 1.2 Consider the same problem as in the previous exercise, but using the Bernstein polynomials. That is, the basis for the Bernstein polynomial of order N on the unit inteval is $B_k^N(x) = x^k(1-x)^{N-k}$ for k = 0, ..., N. Let $u = \sum_{k=0}^{N} u_k B_k^N(x)$ and $v = B_l^N(x)$ for l = 0, ..., N and solve (1.9). What is the error in L_2 and L_{∞} in terms of N for N = 1, 2, ..., 10. Remark: Do the basis functions satisfy the boundary conditions? Should some of them be removed?

Solution 1.2 The Bernstein polynomials B_0^N and B_N^N both need to be removed, as they do not satisfy the Dirichlet boundary conditions, as $B_0^N(0) = 1 = B_N^N(1)$.

We therefore need at least N=3, in order to get an at least somewhat viable solution.

The Bernstein basis polynomials are defined as

$$B_k^N(x) = \binom{N}{k} x^k (1-x)^{N-k}.$$

Some useful properties which might come in handy are

1. The derivative of a basis polynomials is

$$(B_k^N(x))' = N(B_{k-1}^{N-1}(x) - B_k^{n-1}(x)),$$

where we follow the convention of setting $B_{-1}^N(x) = 0 = B_{N+1}^N(x)$.

2. The definite integral on the unit line is given by

$$\int_0^1 B_k^N(x) = \frac{1}{N+1} \quad \text{for } k = 0, 1, \dots, N.$$

3. The multiple of two Bernstein polynomials is

$$B_{k}^{N}(x) \cdot B_{q}^{M}(x) = \binom{N}{k} x^{k} (1-x)^{N-k} \binom{M}{q} x^{q} (1-x)^{M-q}$$

$$= \binom{N}{k} \binom{M}{q} x^{k+q} (1-x)^{N+M-k-q}$$

$$= \frac{\binom{N}{k} \binom{M}{q}}{\binom{N+M}{k+q}} B_{k+q}^{N+M}(x)$$

From these, we can gather that

$$\int_0^1 B_k^N(x) B_q^M(x) \ dx = \frac{\binom{N}{k} \binom{M}{q}}{\binom{N+M}{k+q}} \int_0^1 B_{k+q}^{N+M}(x) \ dx = \frac{\binom{N}{k} \binom{M}{q}}{(N+M+1)\binom{N+M}{k+q}}.$$

The terms in the stiffness matrix are then given by

$$A_{ij} = \int_{0}^{1} \nabla B_{i}^{N}(x) \cdot \nabla B_{j}^{N}(x) dx$$

$$= N^{2} \int_{0}^{1} \left(B_{i-1}^{N-1} - B_{i}^{N-1} \right) \left(B_{j-1}^{N-1} - B_{j}^{N-1} \right) dx$$

$$= N^{2} \int_{0}^{1} B_{i-1}^{N-1} B_{j-1}^{N-1} - B_{i}^{N-1} B_{j-1}^{N-1} - B_{i-1}^{N-1} B_{j}^{N-1} + B_{i}^{N-1} B_{j}^{N-1} dx$$

$$= N^{2} \int_{0}^{1} \alpha_{i-1,j-1} B_{i+j-2}^{2N-2} - (\alpha_{i,j-1} + \alpha_{i-1,j}) B_{i+j-1}^{2N-2} + \alpha_{i,j} B_{i+j}^{2N-2} dx$$

$$= \frac{N^{2}}{2N-1} \left(\frac{\binom{N-1}{i-1} \binom{N-1}{j-1}}{\binom{2N-2}{i+j-2}} - \frac{\binom{N-1}{i} \binom{N-1}{j-1} + \binom{N-1}{i-1} \binom{N-1}{j}}{\binom{2N-2}{i+j-1}} + \frac{\binom{N-1}{i} \binom{N-1}{j}}{\binom{2N-2}{i+j}} \right)$$

This can likely be written much nicer, however I cannot be bothered to do that right now.

Opting to take the easy way out instead, and utilizing sympy to solve the integrals, we can implement the solution in exercise_1_2.py. The errors are presented in Table 2. As we can read from the table, the polynomial approximation is exact for N > 3, which is expected as the Bernstein polynomials are exact for polynomials of degree N.

Table 2: Errors of approximations of u for varying N, with Bernstein basis functions.

N	L_2
2 3 4–10	$ \begin{array}{r} \sqrt{1330} \\ \hline 6300 \\ \sqrt{70} \\ \hline 12600 \\ \end{array} $

Exercise 1.3 Consider the same problem as in the previous exercise, but with $-u''(x) = \sin(k\pi x)$ for k = 1 and k = 10.

Solution 1.3 The approach for this is approximately the same, however we need to figure out the true solution in order to calculate the error.

$$u''(x) = -\sin(k\pi x)$$

$$u'(x) = \frac{1}{k\pi}\cos(k\pi x) + C_1$$

$$u(x) = \frac{1}{k^2\pi^2}\sin(k\pi x) + C_1x + C_2.$$

As we have Dirichlet boundary conditions, we then set $C_1 = 0 = C_2$.