

Empirical Inference

MPI-IS Retreat

Schluchsee, 2025

DINGO: Neural Posterior Estimation for Gravitational Waves

Collaboration including:

- MPI-IS & ELLIS Institute & Uni Tübingen
- Albert Einstein Institute
- University of Nottingham
- University of Rhode Island

Maximilian Dax Annalena Kofler Jonas Wildberger

Talk by Annalena Kofler

DINGC

Posterior Estimation for Gravitational Waves

Black holes merge → Emit gravitational wave

Described by physics parameters

Masses, spins, location, orientation

Posterior Estimation for Gravitational Waves

Black holes merge → Emit gravitational wave → Measured in detectors

Posterior Estimation for Gravitational Waves

Black holes merge → Emit gravitational wave → Measured in detectors

Goal: Extract information about parameters heta from data d

Why Machine Learning?

- Fast (real-time inference)
- Computationally cheap (~ 1 event per day in 2025)
- Accurate (Importance sampling)

Allows for ...

- Searches for interesting physics (e.g., eccentricity¹)
- Pre-merger inference of binary neutron stars²
- Application to future detectors³
- Will be used within LIGO collaboration!

¹Gupte+ 2024, "Evidence for eccentricity in the population of binary black holes observed by LIGO-Virgo-KAGRA", *under review at Phys.Rev.Lett. D* ²Dax+ 2025, "Real-time gravitational-wave inference for binary neutron stars using machine learning", *Nature*

³Santoliquido+, 2025, "Fast and accurate parameter estimation of high-redshift sources with the Einstein Telescope", under review at Phys.Rev.Lett. D

Come talk to us during the coffee break if you have questions!

