$$\frac{0.1 \text{ (a)}}{2} \int \frac{x}{x^2 + \sin x} dx$$

Let
$$f(x) = \frac{x}{x}$$
, $f(x) = \frac{1}{x}$; both f and g are continuous on $[2,\infty)$

$$\lim_{x\to\infty} \frac{f}{g} = \lim_{x\to\infty} \frac{x^2}{x^2 + \sin x} = \lim_{x\to\infty} \frac{1}{1 + \frac{\sin x}{x^2}} = 1$$

July diverges, so does July duc.

6)
$$\int_{-1}^{\infty} \frac{1}{\sqrt{x^{4}+1}} dx = \int_{-1}^{1} \frac{1}{\sqrt{x^{4}+1}} dx + \int_{-1}^{\infty} \frac{1}{\sqrt{x^{4}+1}} dx = 1 + 1_{2}$$
Since
$$\frac{1}{\sqrt{x^{4}+1}} \text{ is possitive, } I_{1} = \int_{-1}^{1} \frac{1}{\sqrt{x^{4}+1}} dx \text{ is regulat to Some}$$

$$\frac{1}{\sqrt{x^{4}+1}} \times x^{4}$$

$$\Rightarrow \sqrt{x^{4}+1} \times x^{4}$$

$$\Rightarrow \frac{1}{\sqrt{x^{4}+1}} \times \sqrt{x^{4}}$$

$$\Rightarrow \frac{1}{\sqrt{x^{4}+1}} \times \frac{1}{\sqrt{x^{4}}} = \frac{1}{x^{2}}$$

$$\Rightarrow \frac{1}{\sqrt{x^{4}+1}} \times \frac{1}{\sqrt{x^{4}+1}} = \frac{1}{x^{4}} = \frac{1}{x^{4}}$$

$$\Rightarrow \frac{1}{\sqrt{x^{4}+1}} \times \frac{1}{\sqrt{x^{4}+1}} = \frac{1}{x^{4}} = \frac{1}{x^{4}}$$

$$\Rightarrow \frac{1}{\sqrt{x^{4}+1}} \times \frac{1}{\sqrt{x^{4}+1}} = \frac{1}{x^{4}} = \frac{1}$$

Taking
$$f(x) = \frac{1}{x + c_0 x^2}$$
, $f(x) = \frac{1}{x}$

Therefore, both
$$\int f(x) dx$$
 and $\int g(x) dx$

$$\lim_{N\to\infty} \frac{f}{g} = \lim_{N\to\infty} \frac{1}{1 + \frac{\cos^2 k}{x}} = 1$$

f and g are

Notice
$$\frac{x\cos x}{e^x} \times \frac{x}{e^x}$$
, and
$$\int_0^{\infty} \frac{x}{e^x} dx = \int_0^{\infty} xe^{-x} dx = \lim_{b \to \infty} \left[-xe^{-x} \right]_0^b + \int_0^{\infty} e^{-x} dx$$

$$= \lim_{b \to \infty} \left[-xe^{-x} \right]_0^b - e^{-x} = \lim_{b \to \infty} \left[-xe^{-x} \right]_0^b$$

 $\Rightarrow \int_{6}^{\infty} \frac{x}{e^{x}} dx = 1$

Therefore, Since $\int \frac{x}{e^x} dx$ converges, so does $\int \frac{x \cos^2 x}{e^x} dx$.

Let
$$u = 2\pi \times$$
 when; $x = 0$, $u = 0$

$$\Rightarrow \frac{du}{2\pi} = dx$$
, $x = 1$, 2π

$$\Rightarrow \int_{0}^{1} \tan(2\pi x) dx = \frac{1}{2\pi} \int_{0}^{2\pi} \tan(u) du$$

Since tau (0) has VAs at To and 315,

the above integral does not converge.

(4)
$$\int_{-\infty}^{\infty} x e^{-x^{2}} dx = \int_{-\infty}^{\infty} x e^{-x^{2}} dx$$

$$= \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx + \lim_{\substack{b > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx$$

$$= \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx + \lim_{\substack{b > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx$$

$$= \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx = \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx$$

$$= \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx = \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx = 0$$
Therefore,
$$\int_{-\infty}^{\infty} x e^{-x^{2}} dx = \lim_{\substack{a > 0 \ a > 0}} \int_{-\infty}^{\infty} x e^{-x^{2}} dx = 0$$

Q.2. (a) Diameter of a typical

Cross-Section =
$$\sec x - \tan x$$

$$\Rightarrow Radius = \frac{\sec x - \tan x}{2}$$
 $x = \frac{\pi}{3}$

Volume = To [2 Sec x - 2 Sec x tenx - 1] dx = To [tanx - Secx - 2] = 53 12 - 122

2 Secxtanx - 1]

Than

extenx - 1] dx =
$$\frac{\pi}{2}$$
[t

<u>(b</u>).

length of base = secx - tanx.

If dx is the thickness;

Therefore;

Volume = $\int_{-\pi/2}^{\pi/2} \left[2 \sec^2 x - 2 \sec x + \cos x - 1 \right] dx = \left[2 + \cos x - 2 \sec x - x \right] - \pi/2$ = 4 13 - 20