Equilibrium Search Model

労働経済学 2

川田恵介

Table of contents

1	課題	2
2	Job posting behaviour	2
2.1	自由参入条件	2
2.2	定常状態	3
2.3	フロー条件	3
2.4	まとめ	3
3	Diamond Paradox (Diamond 1971)	3
3.1	Primitive な競争市場モデル	3
3.2	需要独占モデル	4
3.3	サーチモデル	4
3.4	直感	4
3.5	重要な点	4
3.6	例: "市場間" の Switching cost	5
3.7	例: 企業間の Switching cost	5
3.8	まとめ	5
4	DMP モデル	5
4.1	賃金決定	6
4.2	賃金決定	6
4.3	解釈	6
4.4	均衡	6
4.5	性質	7
4.6	最適性	7
4.7	まとめ	7
E	Commetitive / Diverted Search Model	7

5.1	Competitive search model	8
5.2	特徴	8
5.3	均衡賃金	8
5.4	まとめ	8
6	実証への含意	8
6.1	自由参入条件の含意	9
6.2	余剰の分配ルールの含意....................................	9
6.3	求職者の期待効用	9
6.4	対数変換	9
6.5	例	10
6.6	求職者の分解	10
6.7	例	11
Refer	rence	11

1 課題

- Beveridige curve/Matching function/フロー条件が成り立っていたとしても、実際の求人倍率の変化 は説明できない
 - 賃金の変化も説明できない
- 求人数や賃金などを Pin-down できるモデルが必要
 - 意思決定を導入
- 注: Equilibrium Search Model は、Pissarides (2000) のタイトルだが、一般的ではない

2 Job posting behaviour

• 企業による新規求人についての意思決定を考える

2.1 自由参入条件

• 所与の $\{u,w\}$ の下で、企業数 v は以下の条件式を満たすように決まる

$$\underbrace{k}_{\text{求人費用}} = \underbrace{q}_{\text{充足確率}} \times (\underbrace{y}_{\text{限界収入}} - \underbrace{w}_{\text{賃金}})$$

• マッチング関数が一次同時であれば、均衡求人倍率 θ^* が定まる

2.2 定常状態

- フロー条件とマッチング関数より、Beveridge Curve が決まる (Slide10)
 - 定常状態における u と v の関係性が決まる
- 自由参入条件より、 $\theta=v/u$ が決まる
- 2本の式を解けば、定常状態における求職者数 u^* と求人数 v^* が決まる

2.3 フロー条件

- u,v とは、独立して θ^* は決まる
 - マッチング関数が一次同時であれば、入職確率 p^* も決まる
- フロー条件は、

$$u_{t+1} = u_t + \lambda(n - u_t) - p^* u_t$$

- 求職者数の動学式を得られる

2.4 まとめ

- 賃金が決まれば、求人倍率やフロー条件、定常状態における求職者数が決まる
 - 賃金はどのように決まる?

3 Diamond Paradox (Diamond 1971)

- 標準的な価格 (賃金) 決定 + サーチ (より一般には switching cost)、を組み合わせるとモデルが" 破綻する"
 - 失業状態と同水準の賃金が均衡となる
 - * "誰も失職を恐れないはず"

3.1 Primitive な競争市場モデル

- どのくらいの賃金を払うかは、企業が決める(と解釈しても良い)
- 市場の競争が激しい (≃ switching costs がない) ので、均衡賃金 (≃ 相場) に対して
 - 低い賃金をつけると誰も働いてくれない

- 同じ賃金をつけると何人でも雇える
 - * 高い賃金をつける理由がない

3.2 需要独占モデル

- 労働者にとって選択肢となる企業が限られている (地域、技能等)
- 市場の競争が弱く、個々の企業が賃金相場を"操作"できるので
 - 競争市場に比べて、低い賃金相場を設定
 - *「労働供給が減り、十分に労働者を雇えない」という弊害とのトレードオフ
- 競争市場に比べて、低賃金と少ない雇用(少ない労働供給)が発生する。
 - サーベイ (Manning 2021)

3.3 サーチモデル

- 大量の企業が潜在的に存在したとしても、他の企業を探すためにサーチ活動を行う必要がある
 - Search friction が存在
 - * 一般には、Switching costs
- Diamond Paradox: 企業が賃金をオファーするのであれば、失職状態と同じ効用を保証する水準まで低下する

3.4 直感

- 賃金相場が 30 万円であったとしても、Search friction に伴う転職費用 (Switching cost) 分だけ低い賃金をつければ、引き抜かれない
 - 他の企業も同じように考えるので、賃金相場が低下する
 - * 失職状態と同じ効用まで低下が止まらない

3.5 重要な点

- 一般にパラメタ (Switching cost) を変化させれば、モデルの予測は変化する
- パラメタの値を正確に知ることは難しいので、理論モデルは近似モデルとして解釈する場合が多い
 - 非連続な変化が生じる場合、理論モデルを、近似モデルとして用いること疑義が生じる

3.6 例: "市場間"の Switching cost

- ある労働市場 (医者) に参入するためには費用がかかる
- Switching $\cos t = 0$: 医者の賃金が他よりも高いのであれば、医者市場への労働供給が増加する
 - 市場間賃金格差は生じない
- Switching cost > 0: 労働供給が十分に増えないので、賃金格差が残る
- Switching cost $\rightarrow 0$: 賃金格差はほぼ 0 となる
- Switching cost $\simeq 0$ ならば、Switching cost = 0 を現実の近似として利用できる

3.7 例: 企業間の Switching cost

- 連続な変化が生じる
- Switching cost = 0: 競争市場均衡 (賃金 = 限界収益)
- Switching cost > 0:賃金 = 失職状態と変わらない水準
- Switching cost $\rightarrow 0$: 賃金 = 失職状態と変わらない水準
 - cost がほんの少し増加しただけで、予測が決定的に変化する (Diamond Paradox)
- Switching $\cos t \simeq 0$ だとしても、Switching $\cos t = 0$ は現実を近似できないはず
 - Switching cost > 0 の予測は、現実と大きく矛盾する

3.8 まとめ

• 企業間の Swihcing costs の導入は、モデルを"破綻させる"

4 DMP モデル

- Diamond Paradox を解決する代表的なモデル
 - 景気循環モデルで失業を取り扱う際にも、よく導入される
- ここでは静学モデルを紹介
 - 動学化しても大きくは変わらない (Rogerson, Shimer, and Wright 2005)

4.1 賃金決定

- 企業と従業員との間の"賃金交渉"で、賃金は決定
- Nash 交渉を導入
 - − 労働者の余剰: w − b
 - 企業の余剰: y-w
 - 労使の余剰 = 労働者の余剰 + 企業の余剰 = y b
 - 労使の余剰から、一定の割合 β を労働者に分配
 - * β はパラメタとして扱う

4.2 賃金決定

• 賃金は以下の解

$$\underline{\beta(y-b)} = \underline{w-b}$$
 労働者への分配 労働者の余剰

• 均衡賃金:

$$w = \beta y + (1 - \beta)b$$

- $-\beta=1$ ならば競争市場均衡
- $-\beta = 0$ ならば Diamond Paradox

4.3 解釈

- 文字通りの賃金交渉と解釈するのは、難しい場合が多い
 - 米国などを除き、個別の賃金交渉は一般的ではない
 - 労働組合による交渉も、組合組織の低下 (労働組合基礎調査) などを考えると、すべての市場で重要な役割を果たしているかは微妙
- Matching function と同様に、black box な分配式として解釈する立場も有力
 - 代替案: Competitive/Directed search model

4.4 均衡

• 均衡賃金:

$$w = \beta y + (1 - \beta)b$$

• 均衡求人倍率: 自由参入条件に代入すると

$$k = q(y-w)$$

$$k = (1-\beta)q(y-b)$$

4.5 性質

• β , y, b の変化と q について、以下の性質が成り立つ

$$k = (1 - \underbrace{\beta}_{\downarrow}) \times \underbrace{q}_{\uparrow} \times (\underbrace{y}_{\uparrow} - \underbrace{b}_{\downarrow})$$

- 雇用からの企業の収益が低下するため、その分充足率が高くないと均衡にならない
- q は θ の減少関数なので、求人倍率が低下する
 - 求人数が減る

4.6 最適性

- 均衡における求人倍率と賃金は、社会全体での余剰 (= 労働者の総余剰 + 企業の総余剰) を最大化せず、一般に非効率
 - 例外は、労働者への分配率 β とマッチング関数の形状に、特定の関係性が生じている場合のみ
 - $-\beta =$ マッチング関数の求人数についての弾力性 (Hosios condition (Hosios 1990))
- 私見では、実証との相性は良くない
 - 労働者への分配率 β の推定が難しい
 - * 余剰の分配であり、一般的な労働分配率 (賃金/(企業の利益 + 賃金)) とは異なることに注意

4.7 まとめ

- かなり扱いやすく、景気循環モデルにも盛んに用いられる
- 多くの拡張も行われている
 - 代表例: 雇用解消の意思決定 (Mortensen and Pissarides 1994)、On-the-job search (Pissarides 1994)

5 Competitive/Directed Search Model

• 賃金は交渉で決まるのではなく、求人の際に企業が"提示"し、その水準にコミットする

- 「高い賃金を提示すると、多くの応募者が集まり、求人が埋まりやすくなる」というトレードオフが発生し、Diamond paradox を回避できる
- サーベイ: Wright et al. (2021)

5.1 Competitive search model

- マッチングは提示賃金ごとに分割された"労働市場"で行われる
 - 市場ごとの求人倍率 $\theta(w)$ が存在
- 企業: 期待利益 q(w)(y-w) を最大化するように w を決定
- 求職者: 期待効用 p(w)(w-b) を最大するように w を決定
- + 自由参入条件

5.2 特徴

- w と θ の間に、正の関係性
- 企業視点: 高い賃金を提示すると、q(w) が高くなり、求人が埋まりやすい
- 労働者視点: 高い賃金を提示している市場は、p(w) が低くなり、求人が埋まりにくい

5.3 均衡賃金

.

$$w = \beta y + (1 - \beta)b$$

- ただし $\beta = マッチング関数の求人数についての弾力性$
- Hosios condition を満たしており、均衡は効率的

5.4 まとめ

- DMP の Black box な部分 (分配ルール) について、一定の説明を与える
 - Directed Search model: ゲーム理論による、マッチング関数の説明を提供
- 扱いやすさ (Menzio and Shi 2010)、効率性が担保される点も含めて、優れた Benchmark を提供

6 実証への含意

• 伝統的には、Calibration などを活用したモデル全体を推定するアプローチが主流

- 例: Shimer (2005)
 - * 関数系を特定化する必要がある
- Kawata and Sato (2021): 求人・求職データ + 最低限の特定化のみで、余剰の変化を分析でる

6.1 自由参入条件の含意

ある時点 t について、

$$k_t = \underbrace{q_t}_{m_t/v_t} \times (y_t - w_t)$$

• $k_t = k_{t'} = k$ ならば、

$$\underbrace{\frac{v_t}{v_{t'}} imes \frac{m_{t'}}{m_t}}_{\mathcal{T}-\mathcal{S}$$
 = $\underbrace{\frac{y_t - w_t}{y_{t'} - w_{t'}}}_{\mathcal{T}-\mathcal{S}$ から観察可能 マッチング後の企業の余剰

6.2 余剰の分配ルールの含意

•

$$(1-\beta_t)(w_t-b_t) = \beta_t(y_t-w_t)$$

• $\beta_t = \beta_{t'} = \beta \ \text{TSI}$

$$\dfrac{w_t-b_t}{w_{t'}-b_{t'}} = \dfrac{y_t-w_t}{y_{t'}-w_{t'}}$$
労働者のマッチング後の余剰
$$= \dfrac{v_t}{v_{t'}} imes \dfrac{m_{t'}}{m_t}$$
データから観察可能

6.3 求職者の期待効用

• 期待効用の定義より

$$\begin{split} \frac{p_t(w_t - b_t)}{\underbrace{p_{t'}}_{t'}(w_{t'} - b_{t'})} &= \frac{p_t}{p_{t'}} \times \frac{v_t}{v_{t'}} \times \frac{m_{t'}}{m_t} \\ &= \underbrace{\frac{\theta_t}{\theta_{t'}}}_{=v_{t'}/u_{t'}} \end{split}$$

6.4 対数変換

• 対数変換すると

$$\log(p_t(w_t - b_t)) - \log(p_{t'}(w_{t'} - b_{t'})) = \log\theta_t - \log\theta_{t'}$$

• 期待効用の対数変化 (~ 変化率) は、求人倍率の対数変化と一致

6.5 例

6.6 求職者の分解

• 途中式

$$\frac{p_t(w_t-b_t)}{p_{t'}(w_{t'}-b_{t'})} = \frac{p_t}{p_{t'}} \times \frac{v_t}{v_{t'}} \times \frac{m_{t'}}{m_t}$$

• 対数変換

$$\begin{split} \log(p_t) - \log(p_{t'}) + \log(w_t - b_t) - \log(w_{t'} - b_{t'}) \\ = \log(p_t) - \log(p_{t'}) + \log(\frac{v_t}{m_t}) - \log(\frac{v_t'}{m_{t'}}) \end{split}$$

• 仕事の見つけやすさ + 見つけた後の余剰

6.7 例

Reference

Diamond, Peter A. 1971. "A Model of Price Adjustment." *Journal of Economic Theory* 3 (2): 156–68. Hosios, Arthur J. 1990. "On the Efficiency of Matching and Related Models of Search and Unemployment." *The Review of Economic Studies* 57 (2): 279–98.

Kawata, Keisuke, and Yasuhiro Sato. 2021. "A First Aid Kit to Assess Welfare Impacts." *Economics Letters* 205: 109928.

Manning, Alan. 2021. "Monopsony in Labor Markets: A Review." ILR Review 74 (1): 3-26.

Menzio, Guido, and Shouyong Shi. 2010. "Block Recursive Equilibria for Stochastic Models of Search on the Job." *Journal of Economic Theory* 145 (4): 1453–94.

Mortensen, Dale T, and Christopher A Pissarides. 1994. "Job Creation and Job Destruction in the Theory of Unemployment." *The Review of Economic Studies* 61 (3): 397–415.

Pissarides, Christopher A. 1994. "Search Unemployment with on-the-Job Search." The Review of Economic Studies 61 (3): 457–75.

——. 2000. Equilibrium Unemployment Theory. MIT press.

Rogerson, Richard, Robert Shimer, and Randall Wright. 2005. "Search-Theoretic Models of the Labor Market: A Survey." *Journal of Economic Literature* 43 (4): 959–88.

Shimer, Robert. 2005. "The Cyclical Behavior of Equilibrium Unemployment and Vacancies." *American Economic Review* 95 (1): 25–49.

Wright, Randall, Philipp Kircher, Benoît Julien, and Veronica Guerrieri. 2021. "Directed Search and Competitive Search Equilibrium: A Guided Tour." *Journal of Economic Literature* 59 (1): 90–148.