

Univ.-Prof. Dr. Radu Ioan Boţ

Nonlinear Optimization

Exercise session 3

13. (a) Solve

(b) Verfiy if $x = (2,4)^T$ is an optimal solution of the optimization problem

min
$$(x_1 - 4)^2 + (x_2 - 3)^2$$
.
s.t. $x_1^2 \le x_2$
 $x_2 \le 4$

Determine a KKT point of this optimization problem.

(3 points)

14. Solve the following optimization problem

min
$$\sum_{i=1}^{n} (x_i - a_i)^2$$
.
s.t. $\sum_{i=1}^{n} x_i^2 \le 1$
 $\sum_{i=1}^{n} x_i = 0$

(3 points)

15. Let be the function

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x) = 3x_1^4 - 4x_1^2x_2 + x_2^2.$$

Prove that the following statements are true:

- (a) $x^* = (0,0)^T$ is a critical point of f;
- (b) $x^* = (0,0)^T$ is a strict local minimum of f along any line going through the origin;
- (c) $x^* = (0,0)^T$ is not a local minimum of f.

(3 points)

16. (a) Formulate a statement concerning the solutions of the optimization problem

$$\begin{array}{ll} \max & x_1 \\ \text{u.d.N.} & x_1^2 + x_2^2 \le 1 \\ & (x_1 - 1)^2 + x_2^2 \ge 1 \\ & x_1 + x_2 \ge 1 \end{array}$$

by using geometric arguments and verify this statement by means of analytical arguments.

(b) Verfiy if $x^* = (1, 1)^T$ fulfills the constraint qualifications (LICQ), (MFCQ) and (ABADIE-CQ) for the optimization problem

$$\begin{array}{ll} \min & x_1. \\ \text{s.t.} & x_1 + x_2 - 2 \leq 0 \\ & x_1 x_2 \geq 1 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$$

(3 points)

17. Find out, by using second order optimality conditions, if $x^* = (0,0)^T$ is a local minimum of

where m > 0. (3 points)

18. Let $\{t_k\}_{k\geq 0}\subseteq \mathbb{R}$ be a monotonically decreasing sequence and t^* an accumulation point of it. Show that the sequence $\{t_k\}_{k\geq 0}$ converges to t^* . (2 points)