Xilinx AI SDK Programming Guide

UG1355(v1.0) April 04,2019

Revision History

The following table shows the revision history for this document.

Section	Revision Summary
04/04/201	9 Version 1.0
General updates	Initial Xilinx release

Contents

1	Ove	rview		1
	1.1	The Xi	inx AI SDK	7
		1.1.1	The Xilinx AI SDK Block Diagram	7
		1.1.2	The Xilinx AI SDK Features	8
	1.2	How to	use	8
		1.2.1	The basic Process	9
		1.2.2	Table of Libraries	9
2	Clas	s Index		11
	2.1	Class I	_ist	11
3	Clas	s Docu	mentation	13
	3.1	MultiTa	skResult2 Struct Reference	13
		3.1.1	Detailed Description	13
	3.2	xilinx::	classification::Classification Class Reference	13
		3.2.1	Detailed Description	14
		3.2.2	Member Function Documentation	14
			3.2.2.1 create	14
			3.2.2.2 create_ex	14
			3.2.2.3 lookup	14
			3.2.2.4 run	15
			3.2.2.5 getInputWidth	15
			3.2.2.6 getInputHeight	15
	3.3	xilinx::	classification::ClassificationResult Struct Reference	15
		3.3.1	Detailed Description	16
	3.4	xilinx::	classification::ClassificationResult::Score Struct Reference	16
		3.4.1	Detailed Description	16
	3.5	xilinx::1	acedetect::FaceDetect Class Reference	16
		3.5.1	Detailed Description	17
		3.5.2	Member Function Documentation	17
			3.5.2.1 create	17
			3.5.2.2 create_ex	18

		3.5.2.3	getInputWidth	18
		3.5.2.4	getInputHeight	18
		3.5.2.5	getThreshold	18
		3.5.2.6	setThreshold	19
		3.5.2.7	run	19
3.6	xilinx::f	acedetect:	:FaceDetectResult Struct Reference	19
	3.6.1	Detailed	Description	19
3.7	xilinx::f	acedetect:	:FaceDetectResult::BoundingBox Struct Reference	19
	3.7.1	Detailed	Description	20
	3.7.2	Member	Data Documentation	20
		3.7.2.1	x	20
		3.7.2.2	y	20
		3.7.2.3	width	20
		3.7.2.4	height	20
3.8	xilinx::r	multitask::N	MultiTask Class Reference	20
	3.8.1	Detailed	Description	21
	3.8.2	Member	Function Documentation	21
		3.8.2.1	create	21
		3.8.2.2	getInputWidth	22
		3.8.2.3	getInputHeight	22
		3.8.2.4	run_8UC1	22
		3.8.2.5	run_8UC3	22
3.9	xilinx::r	multitask:: N	MultiTask8UC1 Class Reference	22
	3.9.1	Detailed	Description	23
	3.9.2	Member	Function Documentation	23
		3.9.2.1	create	23
		3.9.2.2	getInputWidth	24
		3.9.2.3	getInputHeight	24
		3.9.2.4	run	24
3.10	xilinx::r	multitask::N	MultiTask8UC3 Class Reference	24
	3.10.1	Detailed	Description	25
	3.10.2	Member	Function Documentation	25
		3.10.2.1	create	25
		3.10.2.2	getInputWidth	25
		3.10.2.3	getInputHeight	25
		3.10.2.4	run	25
3.11	xilinx::r	multitask::N	MultiTaskResult Struct Reference	26
3.12	xilinx::r	multitask::\	/ehicleResult Struct Reference	26
	3.12.1	Detailed	Description	26
3.13	xilinx::c	penpose:	OpenPose Class Reference	26

	3.13.1	Detailed Description	27
	3.13.2	Member Function Documentation	28
		3.13.2.1 create	28
		3.13.2.2 create_ex	28
		3.13.2.3 run	29
		3.13.2.4 getInputWidth	29
		3.13.2.5 getInputHeight	29
3.14	xilinx::c	ppenpose::OpenPoseResult Struct Reference	29
	3.14.1	Detailed Description	29
3.15	xilinx::c	ppenpose::OpenPoseResult::Line Struct Reference	30
	3.15.1	Detailed Description	30
3.16	xilinx::p	posedetect::PoseDetect Class Reference	30
	3.16.1	Detailed Description	30
	3.16.2	Member Function Documentation	31
		3.16.2.1 create	31
		3.16.2.2 getInputWidth	31
		3.16.2.3 getInputHeight	32
		3.16.2.4 run	32
3.17	xilinx::p	posedetect::PoseDetectResult Struct Reference	32
		·	32
	3.17.2	Member Typedef Documentation	33
		3.17.2.1 Pose14Pt	33
3.18	xilinx::p	posedetect::PoseDetectResult::Point Struct Reference	33
	3.18.1	Detailed Description	33
	3.18.2	Member Data Documentation	33
		3.18.2.1 x	33
		3.18.2.2 y	33
3.19	xilinx::r	efinedet::RefineDet Class Reference	33
	3.19.1	Detailed Description	34
	3.19.2	Member Function Documentation	35
		3.19.2.1 create	35
		3.19.2.2 create_ex	35
		3.19.2.3 run	35
			35
		3.19.2.5 getInputHeight	36
3.20	xilinx::r	efinedet::RefineDetResult Struct Reference	36
		Detailed Description	36
3.21		•	36
	3.21.1	Detailed Description	36
	3.21.2	Member Data Documentation	37

		3.21.2.1 x	37
		3.21.2.2 y	37
		3.21.2.3 width	37
		3.21.2.4 height	37
3.22	xilinx::r	roadline::RoadLine Class Reference	37
	3.22.1	Detailed Description	37
	3.22.2	Member Function Documentation	38
		3.22.2.1 create	38
		3.22.2.2 getInputWidth	39
		3.22.2.3 getInputHeight	39
		3.22.2.4 run	39
3.23	xilinx::r	roadline::RoadLineResult Struct Reference	39
	3.23.1	Detailed Description	40
3.24	xilinx::r	roadline::RoadLineResult::Line Struct Reference	40
	3.24.1	Detailed Description	40
	3.24.2	Member Data Documentation	40
		3.24.2.1 type	40
3.25	xilinx::s	segmentation::Segmentation Class Reference	40
	3.25.1	Detailed Description	41
	3.25.2	Member Function Documentation	41
		3.25.2.1 create	41
		3.25.2.2 getInputWidth	42
		3.25.2.3 getInputHeight	42
		3.25.2.4 run_8UC1	42
		3.25.2.5 run_8UC3	42
3.26	xilinx::s	segmentation::Segmentation8UC1 Class Reference	43
	3.26.1	Detailed Description	43
	3.26.2	Member Function Documentation	44
		3.26.2.1 create	44
		3.26.2.2 getInputWidth	44
		3.26.2.3 getInputHeight	44
		3.26.2.4 run	44
3.27	xilinx::s	segmentation::Segmentation8UC3 Class Reference	44
	3.27.1	Detailed Description	45
	3.27.2	Member Function Documentation	45
		3.27.2.1 create	45
		3.27.2.2 getInputWidth	46
		3.27.2.3 getInputHeight	46
		3.27.2.4 run	46
3.28	xilinx::s	segmentation::SegmentationResult Struct Reference	46

	3.28.1	Detailed Description	46
3.29	xilinx::s	sd::SSD Class Reference	46
	3.29.1	Detailed Description	47
	3.29.2	Member Function Documentation	49
		3.29.2.1 create	49
		3.29.2.2 create_ex	49
		3.29.2.3 getInputWidth	50
		3.29.2.4 getInputHeight	50
		3.29.2.5 run	50
3.30	xilinx::s	sd::SSDResult Struct Reference	50
	3.30.1	Detailed Description	51
3.31	xilinx::s	sd::SSDResult::BoundingBox Struct Reference	51
	3.31.1	Detailed Description	51
	3.31.2	Member Data Documentation	51
		3.31.2.1 x	51
		3.31.2.2 y	51
		3.31.2.3 width	51
		3.31.2.4 height	51
3.32	xilinx::y	volov3::YOLOv3 Class Reference	52
	3.32.1	Detailed Description	52
	3.32.2	Member Function Documentation	53
		3.32.2.1 create	53
		3.32.2.2 create_ex	53
		3.32.2.3 getInputWidth	54
		3.32.2.4 getInputHeight	54
		3.32.2.5 run	54
3.33	xilinx::y	volov3::YOLOv3Result Struct Reference	54
	3.33.1	Detailed Description	55
3.34	xilinx::y	rolov3::YOLOv3Result::BoundingBox Struct Reference	55
	3.34.1	Detailed Description	55
	3.34.2	Member Data Documentation	55
		3.34.2.1 x	55
		3.34.2.2 y	55
		3.34.2.3 width	55
		3 34 2 4 haight	55

Chapter 1

Overview

1.1 The Xilinx AI SDK

The Xilinx AI SDK is a set of high level libraries built on top of DNNDK (Deep Neural Network Development Kit) and DPU (Deep-learning Processor Unit). By encapsulates a large number of efficient and high-quality neural networks in the use of DNNDK, the Xilinx AI SDK provides a simple and easy-to-use unified interfaces, which make it easy for users without deep learning knowledge and FPGA knowledge to use deep learning neural networks. the Xilinx AI SDK allows users to focus more on the development of the business layer rather than the underlying hardware.

1.1.1 The Xilinx AI SDK Block Diagram

The XILINX AI SDK block diagram is shown in the following figure.

Figure 1.1: the Xilinx AI SDK Block Diagram

The user calls the Xilinx AI SDK through the interface to send the image(cv::Mat) to the neural network. the Xilinx

AI SDK will call DNNDK to pruning, quantization, compilation, optimization and so on. Finally, the neural network will runing on the DPU to get the neural network return results.

1.1.2 The Xilinx AI SDK Features

The Xilinx AI SDK Features are listed here.

- · Full stack
- · Embedded
- · Optimized
- · Unified interface
- · Practical application

1.2 How to use

Development language using C++.

First , the users needs to prepare the development board and crosscompilation environment. For detailed environment construction, please refer to the Xilinx AI SDK User Guide .

During the development of the user, you need to pay attention to the header files, library files and caffe model library files. These files in the development environment must match the version provided in the SDK.

Refer to the figure below for dependencies between libraries:

Figure 1.2: the Xilinx AI SDK dependencies between libraries

The grey module is the underlying dependency and does not open the interface for this part.

This libraies can running the FPAG plateform, support ZCU102, ZCU104, Ultra96 and so on.

Figure 1.3: Support FPGA Platform

1.2.1 The basic Process

The basic process:

- select a image (cv::Mat).
- call the create method privided by the corresponding library to get class instance. If need_mean_scale_process set as false, the model will not minus its mean and scale, please use it only int the pre-minus means and scale.
- call getInputWidth() and getInputHeight() to get the network need cols and rows of the input image.
- resize image to inputWidth x inputHeight
- call run() to get result of the network.

1.2.2 Table of Libraries

Network Name	Header file/c++ classes/Library files/modle files	Description
	xilinx/facedetect/detect.hpp	face detection. including:
dpfacedetect	xilinx::facedetect::Detect	DENSE BOX 320x320
uplacedelect	libdpfacedetect.so*	DENSE BOX 640x360
	libdpumodeltiling_v6_320.so	DENSE_BOX_040x300
	libdpumodeltiling_v6_640.so	
	xilinx/ssd/ssd.hpp	object detection , including :
dpssd	xilinx::ssd::SSD	ADAS_VEHICLE_V3_480x360
upssu	libdpssd.so*	TRAFFIC_480x360
	libdpumodelssd_vehicle_v3_480x360.so	ADAS_PEDESTRIAN_640x360
	libdpumodelssd_traffic_480x360.so	MOBILENET_480x360
	libdpumodelssd_pedestrian_640x360.so	MOBILENET_V2_480x360
	libdpumodelssd_mobilenet_480x360.so	VOC_300x300_TF
	libdpumodelssd_mobilenet_v2_480x360.so	
	libdpumodelssd_voc_300x300.so	
	xilinx/classification/classification.hpp	image classification for ImageNet,
dooloosification	xilinx::classification::Classification	including:
dpclassification	libdpclassification.so*	RESNET_50
	libdpumodelresnet_50.so	INCEPTION_V1
	libdpumodelinception_v1.so	INCEPTION_V2
	libdpumodelinception_v2.so	INCEPTION_V3
	libdpumodelinception_v3.so	MOBILENET_V2
	libdpumodelmobilenet_v2.so	RESNET_50_TF
	libdpumodelresnet_50_tf.so	INCEPTION_V1_TF
	libdpumodelinception_v1_tf.so	MOBILENET_V2_TF
	libdpumodelmobilenet_v2_tf.so	
	xilinx/yolov3/yolov3.hpp	for object detection, including:
dayalay 0	xilinx::yolov3::YOLOv3	ADAS_512x256
dpyolov3	libdpyolov3.so*	ADAS_512x288
	libdpumodelyolov3_adas_512x256.so	VOC_416x416
	libdpumodelyolov3_adas_512x288.so	VOC_416x416_TF
	libdpumodelyolov3_voc_416.so	
	libdpumodelyolov3_voc_416x416_tf.so	

	T	
	xilinx/segmentation/segmentation.hpp	
dpsegmentation	xilinx::segmentation::Segmentation	for segmentation
	libdpsegmentation.so*	lor segmentation
	libdpumodelfpn_deconv.so	
	xilinx/refinedet/refinedet.hpp	body detection, including:
darofinadat	xilinx::refinedet::RefineDet	REFINEDET_480x360
dprefinedet	libdprefinedet.so*	REFINEDET_480x360_10G
	libdpumodelrefinedet_480x360.so	REFINEDET_480x360_5G
	libdpumodelrefinedet_480x360_10G.so	REFINEDET_640x480
	libdpumodelrefinedet_480x360_5G.so	
	libdpumodelrefinedet_640x480.so	
	xilinx/roadline/roadline.hpp	
ماميد مااند م	xilinx::roadline::RoadLine	roadline detection
dproadline	libdproadline.so*	roadine detection
	libdpumodelroadline.so	
	xilinx/posedetect/posedetect.hpp	
d	xilinx::posedetect::PoseDetect	1.4 pt prostrue detection
dpposedetect	libdpposedetect.so*	14-pt gesture detection
	libdpumodelpose2.so	
	xilinx/openpose/openpose.hpp	
dnanannaa	xilinx::openpose::OpenPose	14 pt gooture detection
dpopenpose	libdpopenpose.so*	14-pt gesture detection
	libdpumodelopenpose_368x368.so	
	1	

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

MultiTaskResult2	
Struct of the result returned by the MultiTask network, when you need to visualize	13
xilinx::classification::Classification	
Base class for detecting objects in the input image (cv::Mat)	13
xilinx::classification::ClassificationResult	
Struct of the result with the classification network	15
xilinx::classification::ClassificationResult::Score	16
xilinx::facedetect::FaceDetect	
Base class for detecting the position of faces in the input image (cv::Mat)	16
xilinx::facedetect::FaceDetectResult	
Struct of the result with the facedetect network	19
xilinx::facedetect::FaceDetectResult::BoundingBox	
Struct of a face coordinate and confidence	19
xilinx::multitask::MultiTask	
Base class for ADAS MuiltTask from a image (cv::Mat)	20
xilinx::multitask::MultiTask8UC1	
Base class for ADAS MuiltTask8UC1 from a image (cv::Mat)	22
xilinx::multitask::MultiTask8UC3	
Base class for ADAS MuiltTask8UC3 from a image (cv::Mat)	24
xilinx::multitask::MultiTaskResult	26
xilinx::multitask::VehicleResult	
A struct to define detection result of MultiTask	26
xilinx::openpose::OpenPose	
Base class for detecting pose from a input image (cv::Mat)	26
xilinx::openpose::OpenPoseResult	
Struct of the result returned by the OpenPoseResult network	29
xilinx::openpose::OpenPoseResult::Line	
Struct of the line	30
xilinx::posedetect::PoseDetect	
Base class for detecting a pose from a input image (cv::Mat)	30
xilinx::posedetect::PoseDetectResult	
Struct of the result returned by the posedetect network	32
xilinx::posedetect::PoseDetectResult::Point	
Struct of a coordinate point	33
xilinx::refinedet::RefineDet	
Base class for detecting pedestrian in the input image (cv::Mat)	33
xilinx::refinedet::RefineDetResult	
Struct of the result with the refinedet network	36

xilinx::refinedet::RefineDetResult::BoundingBox	
Struct of a object coordinate and confidence	36
xilinx::roadline::RoadLine	
Base class for detecting roadline from a image (cv::Mat)	37
xilinx::roadline::RoadLineResult	
Struct of the result returned by the roadline network	39
xilinx::roadline::RoadLineResult::Line	
Struct of the result returned by the roadline network	40
xilinx::segmentation::Segmentation	
Base class for Segmentation	40
xilinx::segmentation::Segmentation8UC1	
The Class of Segmentation8UC1, this class run function return a cv::Mat with the type is cv_8U-	
C1	43
xilinx::segmentation::Segmentation8UC3	
The Class of Segmentation8UC3, this class run function return a cv::Mat with the type is cv_8U-	
C3	44
xilinx::segmentation::SegmentationResult	
Struct of the result returned by the segementation network	46
xilinx::ssd::SSD	
Base class for detecting position of vehicle, pedestrian and so on	46
xilinx::ssd::SSDResult	
Struct of the result returned by the ssd neuron network	50
xilinx::ssd::SSDResult::BoundingBox	
Struct of a object coordinate ,confidence and classification	51
xilinx::yolov3::YOLOv3	
Base class for detecting objects in a image (cv::Mat)	52
xilinx::yolov3::YOLOv3Result	
Struct of the result returned by the yolov3 neuron network	54
xilinx::yolov3::YOLOv3Result::BoundingBox	55

Chapter 3

Class Documentation

3.1 MultiTaskResult2 Struct Reference

Struct of the result returned by the MultiTask network, when you need to visualize.

#include <xilinx/multitask/multitask.hpp>

3.1.1 Detailed Description

Struct of the result returned by the MultiTask network, when you need to visualize.

3.2 xilinx::classification::Classification Class Reference

Base class for detecting objects in the input image (cv::Mat).

#include <xilinx/classification/classification.hpp>

Public Member Functions

- Classification (const Classification &)=delete
- virtual ClassificationResult run (const cv::Mat &image)=0

Function of get running result of the Classification neuron network.

virtual int getInputWidth () const =0

Function to get InputWidth of the classification network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the classification network (input image rows).

Static Public Member Functions

- static std::unique_ptr
 - < Classification > create (Type type, bool need_preprocess=true)

Factory function to get a instance of derived classes of class Classification.

- · static std::unique_ptr
 - < Classification > create_ex (const std::string &model_name, bool need_preprocess=true)

Factory function to get a instance of derived classes of class Classification.

static const char * lookup (int index)

Get the classification corresponding by index.

3.2.1 Detailed Description

Base class for detecting objects in the input image (cv::Mat).

Input is a image (cv::Mat).

Output is index and score of objects in the input image.

· sample code:

3.2.2 Member Function Documentation

3.2.2.1 static std::unique_ptr<Classification> xilinx::classification::Classification::create (Type type, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class Classification.

Parameters

type	Enum Type
@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of Classification class.

3.2.2.2 static std::unique_ptr<Classification> xilinx::classification::Classification::create_ex (const std::string & model_name, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class Classification.

Parameters

type	string
@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of Classification class.

3.2.2.3 static const char* xilinx::classification::Classification::lookup(int index) [static]

Get the classification corresponding by index.

Parameters

index,the network result

Returns

classification

3.2.2.4 virtual ClassificationResult xilinx::classification::Classification::run (const cv::Mat & image) [pure virtual]

Function of get running result of the Classification neuron network.

Parameters

img Input data of input image (cv::Mat).

Returns

ClassificationResult.

3.2.2.5 virtual int xilinx::classification::Classification::getInputWidth() const [pure virtual]

Function to get InputWidth of the classification network (input image cols).

Returns

InputWidth of the classification network

3.2.2.6 virtual int xilinx::classification::Classification::getInputHeight() const [pure virtual]

Function to get InputHeigth of the classification network (input image rows).

Returns

InputHeight of the classification network.

3.3 xilinx::classification::ClassificationResult Struct Reference

Struct of the result with the classification network.

#include <xilinx/classification/classification.hpp>

Classes

• struct Score

Public Attributes

• int width

width of a input image

· int height

height of a input image

std::vector < Score > scores
 all objects, a vector of Score.

3.3.1 Detailed Description

Struct of the result with the classification network.

3.4 xilinx::classification::ClassificationResult::Score Struct Reference

#include <xilinx/classification/classification.hpp>

Public Attributes

• int index

Result's index in ImageNet.

· float score

Confidence of this category.

3.4.1 Detailed Description

Struct of a classification

3.5 xilinx::facedetect::FaceDetect Class Reference

Base class for detecting the position of faces in the input image (cv::Mat).

#include <xilinx/facedetect/facedetect.hpp>

Public Member Functions

• virtual int getInputWidth () const =0

Function to get InputWidth of the facedetect network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the facedetect network (input image rows).

virtual float getThreshold () const =0

Function to get detect threshold.

• virtual void setThreshold (float threshold)=0

Function of set detect threshold.

virtual FaceDetectResult run (const cv::Mat &img)=0

Function of get running result of the facedetect network.

Static Public Member Functions

· static std::unique ptr

< FaceDetect > create (Type type, bool need_preprocess=true)

Factory function to get a instance of derived classes of class FaceDetect.

• static std::unique_ptr

< FaceDetect > create_ex (const std::string &model_name, bool need_preprocess=true)

Factory function to get instance of derived classes of class FaceDetect.

Protected Member Functions

- FaceDetect (const FaceDetect &)=delete
- FaceDetect & operator= (const FaceDetect &)=delete

3.5.1 Detailed Description

Base class for detecting the position of faces in the input image (cv::Mat).

Input is a image (cv::Mat).

Output is a vector of position and score infomation for faces in the input image.

sample code:

Display of the facedetect model results:

Figure 3.1: facedetect result image

3.5.2 Member Function Documentation

3.5.2.1 static std::unique_ptr<FaceDetect> xilinx::facedetect::FaceDetect::create (Type type, bool need_preprocess = true) [inline], [static]

Factory function to get a instance of derived classes of class FaceDetect.

Support 2 types of input size:

- 1. width = 640 and height = 360
- 2. width = 320 and height = 320

Parameters

type	DENSE_BOX_320 or DENSE_BOX_640
need_mean	Normalize with mean/scale or not, default value is true.
scale_process	

Returns

An instance of FaceDetect class.

3.5.2.2 static std::unique_ptr<FaceDetect> xilinx::facedetect::FaceDetect::create_ex (const std::string & model_name, bool need_preprocess = true) [static]

Factory function to get instance of derived classes of class FaceDetect.

Note

for internal use

Parameters

mod	le_name	Model name
need	_mean	Normalize with mean/scale or not, default value is true.
scale	_process	

Returns

An instance of FaceDetect class.

3.5.2.3 virtual int xilinx::facedetect::FaceDetect::getInputWidth() const [pure virtual]

Function to get InputWidth of the facedetect network (input image cols).

Returns

InputWidth of the facedetect network

3.5.2.4 virtual int xilinx::facedetect::FaceDetect::getInputHeight() const [pure virtual]

Function to get InputHeigth of the facedetect network (input image rows).

Returns

InputHeight of the facedetect network.

3.5.2.5 virtual float xilinx::facedetect::FaceDetect::getThreshold () const [pure virtual]

Function to get detect threshold.

Returns

detect threshold, the value range from 0 to 1.

3.5.2.6 virtual void xilinx::facedetect::FaceDetect::setThreshold (float threshold) [pure virtual]

Function of set detect threshold.

Note

The results will filter by detect threshold (score > threshold).

Parameters

threshold,th	he value range from 0 to 1.	

3.5.2.7 virtual FaceDetectResult xilinx::facedetect::FaceDetect::run (const cv::Mat & img) [pure virtual]

Function of get running result of the facedetect network.

Parameters

img	Input Data , input image (cv::Mat) need to be resized to InputWidth and InputHeight required
	by the network.

Returns

the results of the face detect network , a collection of FaceDetectResult filter by score >= det_threshold

3.6 xilinx::facedetect::FaceDetectResult Struct Reference

Struct of the result with the facedetect network.

#include <xilinx/facedetect/facedetect.hpp>

Classes

· struct BoundingBox

Struct of a face coordinate and confidence.

Public Attributes

• int width

width of a input image

· int height

height of a input image

std::vector < BoundingBox > rects

all faces, a vector of BoundingBox

3.6.1 Detailed Description

Struct of the result with the facedetect network.

3.7 xilinx::facedetect::FaceDetectResult::BoundingBox Struct Reference

Struct of a face coordinate and confidence.

#include <xilinx/facedetect/facedetect.hpp>

Public Attributes

- float x
- float y
- · float width
- · float height
- · float score

face confidence, the value range from 0 to 1.

3.7.1 Detailed Description

Struct of a face coordinate and confidence.

3.7.2 Member Data Documentation

3.7.2.1 float xilinx::facedetect::FaceDetectResult::BoundingBox::x

x-coordinate, x is normalized relative to the input image cols, the value range from 0 to 1.

3.7.2.2 float xilinx::facedetect::FaceDetectResult::BoundingBox::y

y-coordinate, y is normalized relative to the input image rows, the value range from 0 to 1.

3.7.2.3 float xilinx::facedetect::FaceDetectResult::BoundingBox::width

face width, width is normalized relative to the input image cols, the value range from 0 to 1.

3.7.2.4 float xilinx::facedetect::FaceDetectResult::BoundingBox::height

face height, heigth is normalized relative to the input image rows, the value range from 0 to 1.

3.8 xilinx::multitask::MultiTask Class Reference

Base class for ADAS MuiltTask from a image (cv::Mat).

#include <xilinx/multitask/multitask.hpp>

Public Member Functions

• virtual int getInputWidth () const =0

Function to get InputWidth of the multitask network (input image cols).

virtual int getInputHeight () const =0

Function to get InputHight of the multitask network (input image rows).

• virtual MultiTaskResult run 8UC1 (const cv::Mat &image)=0

Function of get running result from the MultiTask network.

virtual MultiTaskResult run_8UC3 (const cv::Mat &image)=0

Function of get running result from the MultiTask network.

Static Public Member Functions

- static std::unique_ptr< MultiTask > create (bool need_preprocess=true)

 Factory function to get a instance of derived classes of class MuliTask.
- static std::unique_ptr< MultiTask > create_ex (const std::string &model_name, bool need_preprocess=true)

Protected Member Functions

• MultiTask (const MultiTask &)=delete

3.8.1 Detailed Description

Base class for ADAS MuiltTask from a image (cv::Mat).

Input a image (cv::Mat).

Output is struct MultiTaskResult include segmentation results, detection detection results and vehicle towards; sample code:

```
auto det = xilinx::multitask::MultiTask::create();
auto image = cv::imread("sample_multitask.jpg");
auto result = det->run_8UC3(image);
cv::imwrite("res.jpg",result.segmentation);
```

Display of the multitask model results:

Figure 3.2: multitask visualization result image

3.8.2 Member Function Documentation

3.8.2.1 static std::unique_ptr<MultiTask> xilinx::multitask::MultiTask::create (bool need_preprocess = true)
[inline],[static]

Factory function to get a instance of derived classes of class MuliTask.

Parameters

need	normalize with mean/scale or not, default value is true.
perprocess	

Returns

An instance of MultiTask class.

3.8.2.2 virtual int xilinx::multitask::MultiTask::getInputWidth() const [pure virtual]

Function to get InputWidth of the multitask network (input image cols).

Returns

InputWidth of the multitask network.

3.8.2.3 virtual int xilinx::multitask::MultiTask::getInputHeight() const [pure virtual]

Function to get InputHight of the multitask network (input image rows).

Returns

InputHeight of the multitask network.

3.8.2.4 virtual MultiTaskResult xilinx::multitask::MultiTask::run_8UC1 (const cv::Mat & image) [pure virtual]

Function of get running result from the MultiTask network.

Note

The type is CV_8UC1 of the MultiTaskResult.segmentation.

Parameters

image	Input image

Returns

The struct of MultiTaskResult

3.8.2.5 virtual MultiTaskResult xilinx::multitask::MultiTask::run_8UC3 (const cv::Mat & image) [pure virtual]

Function of get running result from the MultiTask network.

Note

The type is CV_8UC3 of the MultiTaskResult.segmentation.

Parameters

image	Input image;

Returns

The struct of MultiTaskResult

3.9 xilinx::multitask::MultiTask8UC1 Class Reference

Base class for ADAS MuiltTask8UC1 from a image (cv::Mat).

#include <xilinx/multitask/multitask.hpp>

Public Member Functions

· virtual int getInputWidth () const

Function to get InputWidth of the multitask network (input image cols).

virtual int getInputHeight () const

Function to get InputHight of the multitask network (input image rows).

virtual MultiTaskResult run (const cv::Mat &image)

Function of get running result from the MultiTask network.

Static Public Member Functions

- · static std::unique ptr
 - < MultiTask8UC1 > create (bool need_preprocess=true)

Factory function to get a instance of derived classes of class MuliTask8UC1.

- · static std::unique ptr
 - < MultiTask8UC1 > create_ex (const std::string &model_name, bool need_preprocess=true)

Protected Member Functions

- MultiTask8UC1 (std::unique_ptr< MultiTask > multitask)
- MultiTask8UC1 (const MultiTask8UC1 &)=delete

3.9.1 Detailed Description

Base class for ADAS MuiltTask8UC1 from a image (cv::Mat).

Input a image (cv::Mat). Output is struct MultiTaskResult include segmentation results, detection results and vehicle towards; The result cv::Mat type is CV_8UC1

sample code:

```
auto det = xilinx::multitask::MultiTask8UC1::create();
auto image = cv::imread("sample_multitask.jpg");
auto result = det->run(image);
cv::imwrite("res.jpg",result.segmentation);
```

3.9.2 Member Function Documentation

3.9.2.1 static std::unique_ptr<MultiTask8UC1> xilinx::multitask::MultiTask8UC1::create (bool need_preprocess = true)
[inline], [static]

Factory function to get a instance of derived classes of class MuliTask8UC1.

Parameters

need	normalize with mean/scale or not, default value is true.
perprocess	

Returns

An instance of MultiTask8UC1 class.

3.9.2.2 virtual int xilinx::multitask::MultiTask8UC1::getInputWidth() const [inline], [virtual]

Function to get InputWidth of the multitask network (input image cols).

Returns

InputWidth of the multitask network.

3.9.2.3 virtual int xilinx::multitask::MultiTask8UC1::getInputHeight() const [inline], [virtual]

Function to get InputHight of the multitask network (input image rows).

Returns

InputHeight of the multitask network.

3.9.2.4 virtual MultiTaskResult xilinx::multitask::MultiTask8UC1::run (const cv::Mat & image) [inline], [virtual]

Function of get running result from the MultiTask network.

Note

The type is CV_8UC1 of the MultiTaskResult.segmentation.

Parameters

image	Input image

Returns

The struct of MultiTaskResult

3.10 xilinx::multitask::MultiTask8UC3 Class Reference

Base class for ADAS MuiltTask8UC3 from a image (cv::Mat).

#include <xilinx/multitask/multitask.hpp>

Public Member Functions

• virtual int getInputWidth () const

Function to get InputWidth of the multitask network (input image cols).

virtual int getInputHeight () const

Function to get InputHight of the multitask network (input image rows).

• virtual MultiTaskResult run (const cv::Mat &image)

Function of get running result from the MultiTask network.

Static Public Member Functions

- · static std::unique ptr
 - < MultiTask8UC3 > create (bool need_preprocess=true)

Factory function to get a instance of derived classes of class MuliTask8UC3.

- static std::unique_ptr
 - < MultiTask8UC3 > create_ex (const std::string &model_name, bool need_preprocess=true)

Protected Member Functions

- MultiTask8UC3 (std::unique_ptr< MultiTask > multitask)
- MultiTask8UC3 (const MultiTask8UC3 &)=delete

3.10.1 Detailed Description

Base class for ADAS MuiltTask8UC3 from a image (cv::Mat).

Input a image (cv::Mat). Output is struct MultiTaskResult include segmentation results, detection results and vehicle towards; The result cv::Mat type is CV_8UC3

sample code:

```
auto det = xilinx::multitask::MultiTask8UC3::create();
auto image = cv::imread("sample_multitask.jpg");
auto result = det->run(image);
cv::imwrite("res.jpg",result.segmentation);
```

3.10.2 Member Function Documentation

```
3.10.2.1 static std::unique_ptr< MultiTask8UC3> xilinx::multitask::MultiTask8UC3::create ( bool need_preprocess = true ) [inline], [static]
```

Factory function to get a instance of derived classes of class MuliTask8UC3.

Parameters

need	normalize with mean/scale or not, default value is true.
perprocess	

Returns

An instance of MultiTask8UC3 class.

```
3.10.2.2 virtual int xilinx::multitask::MultiTask8UC3::getInputWidth( ) const [inline], [virtual]
```

Function to get InputWidth of the multitask network (input image cols).

Returns

InputWidth of the multitask network.

```
3.10.2.3 virtual int xilinx::multitask::MultiTask8UC3::getInputHeight() const [inline], [virtual]
```

Function to get InputHight of the multitask network (input image rows).

Returns

InputHeight of the multitask network.

3.10.2.4 virtual MultiTaskResult xilinx::multitask::MultiTask8UC3::run (const cv::Mat & image) [inline], [virtual]

Function of get running result from the MultiTask network.

Note

The type is CV_8UC3 of the MultiTaskResult.segmentation.

Parameters

image	Input image

Returns

The struct of MultiTaskResult

3.11 xilinx::multitask::MultiTaskResult Struct Reference

Public Attributes

- · int width
- · int height
- std::vector< VehicleResult > vehicle
- cv::Mat segmentation

3.12 xilinx::multitask::VehicleResult Struct Reference

A struct to define detection result of MultiTask.

#include <xilinx/multitask/multitask.hpp>

Public Attributes

- int label
- · float score
- float x
- · float y
- · float width
- · float height
- · float angle

3.12.1 Detailed Description

A struct to define detection result of MultiTask.

3.13 xilinx::openpose::OpenPose Class Reference

Base class for detecting pose from a input image (cv::Mat).

#include <xilinx/openpose/openpose.hpp>

Public Member Functions

- OpenPose (const OpenPose &)=delete
- virtual OpenPoseResult run (const cv::Mat &image)=0

Function of get running result of the openpose neuron network.

• virtual int getInputWidth () const =0

Function to get InputWidth of the openpose network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the openpose network (input image rows).

Static Public Member Functions

- static std::unique_ptr< OpenPose > create (bool need_preprocess=true)
 - Factory function to get a instance of derived classes of class OpenPose.
- static std::unique_ptr< OpenPose > create_ex (const std::string &model_name, bool need_preprocess=true)

 Factory function to get a instance of derived classes of class OpenPose.

3.13.1 Detailed Description

Base class for detecting pose from a input image (cv::Mat).

Input a image (cv::Mat).

Output is OpenPoseResult.

sample code:

```
auto image = cv::imread(argv[1]);
if (image.empty()) {
  std::cerr << "cannot load " << argv[1] << std::endl;</pre>
 abort();
auto det = xilinx::openpose::OpenPose::create();
int width = det->getInputWidth();
int height = det->getInputHeight();
cv::Mat res_img;
cv::resize(image, res_img, cv::Size(width, height));
auto results = det->run(res_img);
for(auto &r : results.poses) {
  cv::Point2f a = r.point_a;
  cv::Point2f b = r.point_b;
  a.x = a.x * image.cols;
a.y = a.y * image.rows;
  b.x = b.x * image.cols;
 b.y = b.y * image.rows;
  cv::circle(image, a, 5, cv::Scalar(0, 255, 0), -1); cv::circle(image, b, 5, cv::Scalar(0, 255, 0), -1);
  cv::line(image, a, b, cv::Scalar(255, 0, 0), 3, 4);
cv::imwrite("sample_openpose_result.jpg", image);
```

Display of the openpose model results:

Figure 3.3: openpose image

3.13.2 Member Function Documentation

3.13.2.1 static std::unique_ptr<OpenPose> xilinx::openpose::OpenPose::create (bool need_preprocess = true) [inline], [static]

Factory function to get a instance of derived classes of class OpenPose.

Parameters

need_mean	Normalize with mean/scale or not, default value is true.
scale_process	

Returns

An instance of OpenPose class.

3.13.2.2 static std::unique_ptr<OpenPose> xilinx::openpose::OpenPose::create_ex (const std::string & model_name, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class OpenPose.

Parameters

model_name	openpose_368x368
need_mean	Normalize with mean/scale or not, default value is true.
scale_process	

Returns

An instance of OpenPose class.

3.13.2.3 virtual OpenPoseResult xilinx::openpose::OpenPose::run (const cv::Mat & image) [pure virtual]

Function of get running result of the openpose neuron network.

Parameters

Input data of input image (cv::Mat).

Returns

OpenPoseResult.

3.13.2.4 virtual int xilinx::openpose::OpenPose::getInputWidth() const [pure virtual]

Function to get InputWidth of the openpose network (input image cols).

Returns

InputWidth of the openpose network

3.13.2.5 virtual int xilinx::openpose::OpenPose::getInputHeight() const [pure virtual]

Function to get InputHeigth of the openpose network (input image rows).

Returns

InputHeight of the openpose network.

xilinx::openpose::OpenPoseResult Struct Reference

Struct of the result returned by the OpenPoseResult network.

#include <xilinx/openpose/openpose.hpp>

Classes

struct Line

Struct of the line.

Public Attributes

· int width

width of input image.

· int height

height of input image.

std::vector< Line > poses

a vector of Line.

3.14.1 Detailed Description

Struct of the result returned by the OpenPoseResult network.

3.15 xilinx::openpose::OpenPoseResult::Line Struct Reference

Struct of the line.

```
#include <xilinx/openpose/openpose.hpp>
```

Public Attributes

```
    cv::Point2f point_a
        point A.
    cv::Point2f point_b
        point B.
```

3.15.1 Detailed Description

Struct of the line.

3.16 xilinx::posedetect::PoseDetect Class Reference

Base class for detecting a pose from a input image (cv::Mat).

```
#include <xilinx/posedetect/posedetect.hpp>
```

Public Member Functions

- PoseDetect (const PoseDetect &)=delete
- virtual int getInputWidth () const =0

Function to get InputWidth of the PoseDetect network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the PoseDetect network (input image rows).

• virtual PoseDetectResult run (const cv::Mat &image)=0

Function of get running result of the posedetect neuron network.

Static Public Member Functions

```
· static std::unique_ptr
```

< PoseDetect > create (bool need_preprocess=true)

Factory function to get a instance of derived classes of class PoseDetect.

3.16.1 Detailed Description

Base class for detecting a pose from a input image (cv::Mat).

Note

support detect a signle pose.

Input a image (cv::Mat).

Output is PoseDetectResult.

sample code:


```
auto det = xilinx::posedetect::PoseDetect::create();
auto image = cv::imread("sample.jpg");
auto results = det->run(image);
for(auto result: results.pose14pt) {
    std::cout << result << std::endl;
}</pre>
```

Display of the posedetect model results:

Figure 3.4: pose detect image

3.16.2 Member Function Documentation

3.16.2.1 static std::unique_ptr<PoseDetect> xilinx::posedetect::PoseDetect::create (bool need_preprocess = true)
[static]

Factory function to get a instance of derived classes of class PoseDetect.

Parameters

need mean -	Normalize with mean/scale or not, default value is true.
	· · · · · · · · · · · · · · · · · · ·
scale process	

Returns

An instance of PoseDetect class.

3.16.2.2 virtual int xilinx::posedetect::PoseDetect::getInputWidth() const [pure virtual]

Function to get InputWidth of the PoseDetect network (input image cols).

Returns

InputWidth of the PoseDetect network.

3.16.2.3 virtual int xilinx::posedetect::PoseDetect::getInputHeight()const [pure virtual]

Function to get InputHeigth of the PoseDetect network (input image rows).

Returns

InputHeight of the PoseDetect network.

3.16.2.4 virtual PoseDetectResult xilinx::posedetect::PoseDetect::run (const cv::Mat & image) [pure virtual]

Function of get running result of the posedetect neuron network.

Parameters

img Input data of input image (cv::Mat).

Returns

PoseDetectResult.

3.17 xilinx::posedetect::PoseDetectResult Struct Reference

Struct of the result returned by the posedetect network.

#include <xilinx/posedetect/posedetect.hpp>

Classes

struct Point

Struct of a coordinate point.

Public Types

• using Pose14Pt = std::array< Point, 14 >

Public Attributes

• int width

width of input image.

int height

height of input image.

• Pose14Pt pose14pt

the pose of input image.

3.17.1 Detailed Description

Struct of the result returned by the posedetect network.

3.17.2 Member Typedef Documentation

3.17.2.1 using xilinx::posedetect::PoseDetectResult::Pose14Pt = std::array<Point, 14>

a pose, represented by 14 coordinate points. 1: R_shoulder, 2: R_elbow, 3: R_wrist, 4: L_shoulder, 5: L_elbow, 6: L_wrist, 7: R_hip, 8: R_knee, 9: R_ankle, 10: L_hip, 11: L_knee, 12: L_ankle, 13: head, 14: neck

3.18 xilinx::posedetect::PoseDetectResult::Point Struct Reference

Struct of a coordinate point.

#include <xilinx/posedetect/posedetect.hpp>

Public Attributes

- float x
- float y

3.18.1 Detailed Description

Struct of a coordinate point.

3.18.2 Member Data Documentation

3.18.2.1 float xilinx::posedetect::PoseDetectResult::Point::x

x-coordinate, x is normalized relative to the input image cols ,the value range from 0 to 1.

3.18.2.2 float xilinx::posedetect::PoseDetectResult::Point::y

y-coordinate, y is normalized relative to the input image rows ,the value range from 0 to 1.

3.19 xilinx::refinedet::RefineDet Class Reference

Base class for detecting pedestrian in the input image (cv::Mat).

#include <xilinx/refinedet/refinedet.hpp>

Public Member Functions

- RefineDet (const RefineDet &)=delete
- virtual RefineDetResult run (const cv::Mat &image)=0

Function of get running result of the RefineDet neuron network.

• virtual int getInputWidth () const =0

Function to get InputWidth of the refinedet network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the refinedet network (input image rows).

Static Public Member Functions

- static std::unique_ptr< RefineDet > create (Type type=REFINEDET_480x360, bool need_preprocess=true)

 Factory function to get a instance of derived classes of class RefineDet.
- static std::unique_ptr< RefineDet > create_ex (const std::string &model_name, bool need_preprocess=true)

 Factory function to get a instance of derived classes of class RefineDet.

3.19.1 Detailed Description

Base class for detecting pedestrian in the input image (cv::Mat).

Input is a image (cv::Mat).

Output is position and score of pedestrian in the input image.

sample code:

Display of the refinedet_REFINEDET_640x480 model results:

Figure 3.5: REFINEDET_640x360 detect result

3.19.2 Member Function Documentation

3.19.2.1 static std::unique_ptr<RefineDet> xilinx::refinedet::RefineDet::create (Type type = REFINEDET_480x360, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class RefineDet.

Parameters

type	Enum Type
@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of RefineDet class.

3.19.2.2 static std::unique_ptr<RefineDet> xilinx::refinedet::RefineDet::create_ex (const std::string & model_name, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class RefineDet.

Note

for internal use

Parameters

[type	string
	@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of RefineDet class.

3.19.2.3 virtual RefineDetResult xilinx::refinedet::RefineDet::run (const cv::Mat & image) [pure virtual]

Function of get running result of the RefineDet neuron network.

Parameters

ima	Input data of input image (cv::Mat).
IIIIg	input data of input image (cviviat).

Returns

A vector of RefineDetResult.

3.19.2.4 virtual int xilinx::refinedet::RefineDet::getInputWidth() const [pure virtual]

Function to get InputWidth of the refinedet network (input image cols).

Returns

InputWidth of the refinedet network

3.19.2.5 virtual int xilinx::refinedet::RefineDet::getInputHeight() const [pure virtual]

Function to get InputHeigth of the refinedet network (input image rows).

Returns

InputHeight of the refinedet network.

3.20 xilinx::refinedet::RefineDetResult Struct Reference

Struct of the result with the refinedet network.

#include <xilinx/refinedet/refinedet.hpp>

Classes

struct BoundingBox

Struct of a object coordinate and confidence.

Public Attributes

· int width

width of the input image.

· int height

height of the input image.

 $\bullet \ \, \text{std::vector} < \mathsf{BoundingBox} > \mathsf{bboxes}$

the vector of BoundingBox.

3.20.1 Detailed Description

Struct of the result with the refinedet network.

3.21 xilinx::refinedet::RefineDetResult::BoundingBox Struct Reference

Struct of a object coordinate and confidence.

#include <xilinx/refinedet/refinedet.hpp>

Public Attributes

- float x
- float y
- · float width
- float heightfloat score

body detection confidence, the value range from 0 to 1.

3.21.1 Detailed Description

Struct of a object coordinate and confidence.

3.21.2 Member Data Documentation

3.21.2.1 float xilinx::refinedet::RefineDetResult::BoundingBox::x

x-coordinate, x is normalized relative to the input image cols, the value range from 0 to 1.

3.21.2.2 float xilinx::refinedet::RefineDetResult::BoundingBox::y

y-coordinate, y is normalized relative to the input image rows, the value range from 0 to 1.

3.21.2.3 float xilinx::refinedet::RefineDetResult::BoundingBox::width

body width , width is normalized relative to the input image cols , the value range from 0 to 1.

3.21.2.4 float xilinx::refinedet::RefineDetResult::BoundingBox::height

body height, height is normalized relative to the input image rows, the value range from 0 to 1.

3.22 xilinx::roadline::RoadLine Class Reference

Base class for detecting roadline from a image (cv::Mat).

#include <xilinx/roadline/roadline.hpp>

Public Member Functions

• virtual int getInputWidth () const =0

Function to get InputWidth of the roadline network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHight of the roadline network (input image rows).

• virtual RoadLineResult run (const cv::Mat &image)=0

Function of get running result of the RoadLine network.

Static Public Member Functions

• static std::unique_ptr< RoadLine > create (bool need_preprocess=true)

Factory function to get a instance of derived classes of class RoadLine.

Protected Member Functions

• RoadLine (const RoadLine &)=delete

3.22.1 Detailed Description

Base class for detecting roadline from a image (cv::Mat).

Input is a image (cv::Mat).

Output road line type and points maked road line.

Note

The input image size is 640x480

sample code:

```
auto det = xilinx::roadline::RoadLine::create();
auto image = cv::imread(argv[1]);
if(image.empty()) {
    cerr << "cannot load " << argv[1] << endl;
    abort();
}

std::vector<int> color1 = {0, 255, 0, 0, 100, 255};
std::vector<int> color2 = {0, 0, 255, 0, 100, 255};
std::vector<int> color3 = {0, 0, 0, 255, 100, 255};

RoadLineResult results = det->run(image);
for(auto line : result.lines) {
    std::vector<cv::Point> points_poly = line.points_cluster;
    int type == line.type;
    if(type == 2 && points_poly[0].x < image.rows * 0.5)
        continue;
    cv::polylines(image, points_poly, false, Scalar(color1[type], color2[type], color3[type]), \
3, CV_AA, 0);
}
cv::imwrite("results.jpg",image);</pre>
```

Display of the roadline model results:

Figure 3.6: roadline result image

3.22.2 Member Function Documentation

Factory function to get a instance of derived classes of class RoadLine.

need_process | normalize with mean/scale or not, default value is true.

Returns

An instance of RoadLine class.

3.22.2.2 virtual int xilinx::roadline::RoadLine::getInputWidth() const [pure virtual]

Function to get InputWidth of the roadline network (input image cols).

Returns

InputWidth of the roadline network.

3.22.2.3 virtual int xilinx::roadline::RoadLine::getInputHeight() const [pure virtual]

Function to get InputHight of the roadline network (input image rows).

Returns

InputHeight of the roadline network.

3.22.2.4 virtual RoadLineResult xilinx::roadline::RoadLine::run (const cv::Mat & image) [pure virtual]

Function of get running result of the RoadLine network.

Parameters

img Input data, input image (cv::Mat) need to resized as 640x480.

Returns

The struct of RoadLineResult

3.23 xilinx::roadline::RoadLineResult Struct Reference

Struct of the result returned by the roadline network.

#include <xilinx/roadline/roadline.hpp>

Classes

· struct Line

Struct of the result returned by the roadline network.

Public Attributes

• int width

width of input image.

· int height

height of input image.

std::vector< Line > lines

the vector of line

3.23.1 Detailed Description

Struct of the result returned by the roadline network.

3.24 xilinx::roadline::RoadLineResult::Line Struct Reference

Struct of the result returned by the roadline network.

#include <xilinx/roadline/roadline.hpp>

Public Attributes

- int type
- std::vector < cv::Point > points_cluster
 point clusters, make line from these.

3.24.1 Detailed Description

Struct of the result returned by the roadline network.

3.24.2 Member Data Documentation

3.24.2.1 int xilinx::roadline::RoadLineResult::Line::type

road line type, the value range from 0 to 3.

- 0 : background
- 1 : white dotted line
- 2 : white solid line
- 3 : yollow line

3.25 xilinx::segmentation::Segmentation Class Reference

Base class for Segmentation.

#include <xilinx/segmentation/segmentation.hpp>

Public Member Functions

- virtual int getInputWidth () const =0
 - Function to get InputWidth of the segmentation network (input image cols).
- virtual int getInputHeight () const =0
 - Function to get InputHight of the segmentation network (input image rows).
- virtual SegmentationResult run_8UC1 (const cv::Mat &image)=0
 - Function of get running result of the segmentation network.
- virtual SegmentationResult run_8UC3 (const cv::Mat &image)=0

Function of get running result of the segmentation network.

Static Public Member Functions

- · static std::unique ptr
 - < Segmentation > create (Type type, bool need_preprocess=true)

Factory function to get a instance of derived classes of class Segmentation.

Protected Member Functions

Segmentation (const Segmentation &)=delete

3.25.1 Detailed Description

Base class for Segmentation.

Input is a image (cv:Mat).

Output is struct SegmentationResultShow define before.

sample code:

Figure 3.7: segmentation visulization result image

3.25.2 Member Function Documentation

3.25.2.1 static std::unique_ptr<Segmentation> xilinx::segmentation::Segmentation::create (Type type, bool need_preprocess = true) [static]

Factory function to get a instance of derived classes of class Segmentation.

Each Network has their own scale, such as FPN is 256 * 512;

Type,the	tpye of segmentation network(FPN, ENET, ESPNET)
need	Normalize with mean/scale or not, default value is true.
preprocess	

Returns

An instance of segmentation class.

3.25.2.2 virtual int xilinx::segmentation::Segmentation::getInputWidth() const [pure virtual]

Function to get InputWidth of the segmentation network (input image cols).

Returns

InputWidth of the segmentation network.

3.25.2.3 virtual int xilinx::segmentation::Segmentation::getInputHeight() const [pure virtual]

Function to get InputHight of the segmentation network (input image rows).

Returns

InputHeight of the segmentation network.

3.25.2.4 virtual SegmentationResult xilinx::segmentation::Segmentation::run_8UC1 (const cv::Mat & image) [pure virtual]

Function of get running result of the segmentation network.

Note

The type of CV_8UC1 of the Reuslt's segmentation.

Parameters

ima	Input data of input image (cv::Mat).
iiig	input data of input image (evwat).

Returns

a result include segmentation output data.

3.25.2.5 virtual SegmentationResult xilinx::segmentation::Segmentation::run_8UC3 (const cv::Mat & *image* **) [pure virtual]**

Function of get running result of the segmentation network.

Note

The type of CV_8UC3 of the Reuslt's segmentation.

img	Input data of input image (cv::Mat).

Returns

a result include segmentation image and shape;.

3.26 xilinx::segmentation::Segmentation8UC1 Class Reference

The Class of Segmentation8UC1, this class run function return a cv::Mat with the type is cv_8UC1.

```
#include <xilinx/segmentation/segmentation.hpp>
```

Public Member Functions

virtual int getInputWidth () const

Function to get InputWidth of the segmentation network (input image cols).

· virtual int getInputHeight () const

Function to get InputHight of the segmentation network (input image cols).

virtual SegmentationResult run (const cv::Mat &image)

Function of get running result of the segmentation network.

Static Public Member Functions

- · static std::unique ptr
 - < Segmentation8UC1 > create (Type type, bool need_preprocess=true)

Factory function to get a instance of derived classes of class Segmentation8UC1.

Protected Member Functions

- Segmentation8UC1 (std::unique_ptr< Segmentation > segmentation)
- Segmentation8UC1 (const Segmentation8UC1 &)=delete

3.26.1 Detailed Description

The Class of Segmentation8UC1, this class run function return a cv::Mat with the type is cv 8UC1.

• sample code :

3.26.2 Member Function Documentation

3.26.2.1 static std::unique_ptr<Segmentation8UC1> xilinx::segmentation::Segmentation8UC1::create (Type type, bool need_preprocess = true) [inline], [static]

Factory function to get a instance of derived classes of class Segmentation8UC1.

```
@param Type, the tpye of segmentation network(FPN, ENET, ESPNET)
@param need_preprocess Normalize with mean/scale or not, default value
```

is true.

Returns

An instance of segmentation8UC1 class.

3.26.2.2 virtual int xilinx::segmentation::Segmentation8UC1::getInputWidth() const [inline], [virtual]

Function to get InputWidth of the segmentation network (input image cols).

Returns

InputWidth of the segmentation network.

3.26.2.3 virtual int xilinx::segmentation::Segmentation8UC1::getInputHeight()const [inline], [virtual]

Function to get InputHight of the segmentation network (input image cols).

Returns

InputHeight of the segmentation network.

3.26.2.4 virtual SegmentationResult xilinx::segmentation::Segmentation8UC1::run (const cv::Mat & image) [inline], [virtual]

Function of get running result of the segmentation network.

Note

The result cv::Mat of the type is CV_8UC1.

Parameters

image	Input data of the image (cv::Mat)

Returns

SegmentationResult The result of segmentation network.

3.27 xilinx::segmentation::Segmentation8UC3 Class Reference

The Class of Segmentation8UC3, this class run function return a cv::Mat with the type is cv_8UC3.

#include <xilinx/segmentation/segmentation.hpp>

Public Member Functions

· virtual int getInputWidth () const

Function to get InputWidth of the segmentation network (input image cols).

· virtual int getInputHeight () const

Function to get InputWidth of the segmentation network (input image cols).

virtual SegmentationResult run (const cv::Mat &image)

Function of get running result of the segmentation network.

Static Public Member Functions

- · static std::unique ptr
 - < Segmentation8UC3 > create (Type type, bool need_preprocess=true)

Factory function to get a instance of derived classes of class Segmentation8UC3.

Protected Member Functions

- Segmentation8UC3 (std::unique_ptr< Segmentation > segmentation)
- Segmentation8UC3 (const Segmentation8UC3 &)=delete

3.27.1 Detailed Description

The Class of Segmentation8UC3, this class run function return a cv::Mat with the type is cv 8UC3.

· sample code :

3.27.2 Member Function Documentation

3.27.2.1 static std::unique_ptr<Segmentation8UC3> xilinx::segmentation::Segmentation8UC3::create (Type type, bool need_preprocess = true) [inline], [static]

Factory function to get a instance of derived classes of class Segmentation8UC3.

Parameters

Type,the	tpye of segmentation network(FPN, ENET, ESPNET)
need	Normalize with mean/scale or not, default value is true.
preprocess	

Returns

An instance of segmentation8UC3 class.

3.27.2.2 virtual int xilinx::segmentation::Segmentation8UC3::getInputWidth() const [inline], [virtual]

Function to get InputWidth of the segmentation network (input image cols).

Returns

InputWidth of the segmentation network.

3.27.2.3 virtual int xilinx::segmentation::Segmentation8UC3::getInputHeight() const [inline], [virtual]

Function to get InputWidth of the segmentation network (input image cols).

Returns

InputWidth of the segmentation network.

3.27.2.4 virtual SegmentationResult xilinx::segmentation::Segmentation8UC3::run (const cv::Mat & image) [inline], [virtual]

Function of get running result of the segmentation network.

Note

The result cv::Mat of the type is CV_8UC1.

Parameters

image	Input data of the image (cv::Mat)

Returns

SegmentationResult The result of segmentation network.

3.28 xilinx::segmentation::SegmentationResult Struct Reference

Struct of the result returned by the segementation network.

#include <xilinx/segmentation/segmentation.hpp>

Public Attributes

- · int width
- · int height
- cv::Mat segmentation

3.28.1 Detailed Description

Struct of the result returned by the segementation network.

3.29 xilinx::ssd::SSD Class Reference

Base class for detecting position of vehicle, pedestrian and so on.

#include <xilinx/ssd/ssd.hpp>

Public Member Functions

• virtual int getInputWidth () const =0

Function to get InputWidth of the SSD network (input image cols).

• virtual int getInputHeight () const =0

Function to get InputHeigth of the SSD network (input image rows).

virtual SSDResult run (const cv::Mat &img)=0

Function of get running result of the ssd neuron network.

Static Public Member Functions

• static std::unique_ptr< SSD > create (Type type, bool need_mean_scale_process=true)

Factory function to get a instance of derived classes of class SSD.

static std::unique_ptr< SSD > create_ex (const std::string &model_name, bool need_mean_scale_-process=true)

Factory function to get a instance of derived classes of class SSD.

Protected Member Functions

• SSD (const SSD &)=delete

3.29.1 Detailed Description

Base class for detecting position of vehicle, pedestrian and so on.

Input is a image (cv:Mat).

Output is a vector<SSDResult>.

sample code:

```
Mat img = cv::imread("sample_ssd_TRAFFIC_480x360.jpg");
auto ssd = xilinx::ssd::SSD::create(xilinx::ssd::TRAFFIC_480x360,true);
auto results = ssd->run(img);
for(const auto &r: results.bboxes){
   auto label = r.label;
   auto x = r.x * img.cols;
   auto y = r.y * img.rows;
   auto width = r.width * img.cols;
   auto heigth = r.height * img.rows;
   auto score = r.score;
   std::cout << "RESULT: " << label << "\t" << x << "\t" << y << "\t" << width << "\t" << score << std::endl;</pre>
```

Display of the ssd_TRAFFIC_480x360 model results:

Figure 3.8: out image

Display of the ADAS_VEHICLE_V3_480x360 model results:

Figure 3.9: out image

3.29.2 Member Function Documentation

3.29.2.1 static std::unique_ptr<SSD> xilinx::ssd::SSD::create (Type type, bool need_mean_scale_process = true) [static]

Factory function to get a instance of derived classes of class SSD.

Parameters

type	Enum Type
@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of SSD class.

need_mean_scale_process = true) [static]

Factory function to get a instance of derived classes of class SSD.

Note

for internal use

model_name	String of model name
@param	need_mean_scale_process Normalize with mean/scale or not, default value is true.

Returns

An instance of SSD class.

3.29.2.3 virtual int xilinx::ssd::SSD::getInputWidth()const [pure virtual]

Function to get InputWidth of the SSD network (input image cols).

Returns

InputWidth of the SSD network.

3.29.2.4 virtual int xilinx::ssd::SSD::getInputHeight() const [pure virtual]

Function to get InputHeigth of the SSD network (input image rows).

Returns

InputHeight of the SSD network.

3.29.2.5 virtual SSDResult xilinx::ssd::SSD::run (const cv::Mat & img) [pure virtual]

Function of get running result of the ssd neuron network.

Parameters

img Input data of input image (cv::Mat).	img Input data of input image (cv::Mat).	
--	--	--

Returns

SSDResult.

3.30 xilinx::ssd::SSDResult Struct Reference

Struct of the result returned by the ssd neuron network.

#include <xilinx/ssd/ssd.hpp>

Classes

• struct BoundingBox

Struct of a object coordinate, confidence and classification.

Public Attributes

• int width

Width of input image.

· int height

Height of input image.

std::vector < BoundingBox > bboxes
 all objects, a vector of BoundingBox

3.30.1 Detailed Description

Struct of the result returned by the ssd neuron network.

3.31 xilinx::ssd::SSDResult::BoundingBox Struct Reference

Struct of a object coordinate ,confidence and classification.

#include <xilinx/ssd/ssd.hpp>

Public Attributes

• int label

classification

float score

confidence

- float x
- float y
- float width
- · float height

3.31.1 Detailed Description

Struct of a object coordinate ,confidence and classification.

3.31.2 Member Data Documentation

3.31.2.1 float xilinx::ssd::SSDResult::BoundingBox::x

x-coordinate, x is normalized relative to the input image cols ,the value range from 0 to 1.

3.31.2.2 float xilinx::ssd::SSDResult::BoundingBox::y

y-coordinate, y is normalized relative to the input image rows, the value range from 0 to 1.

3.31.2.3 float xilinx::ssd::SSDResult::BoundingBox::width

width, width is normalized relative to the input image cols ,the value range from 0 to 1.

3.31.2.4 float xilinx::ssd::SSDResult::BoundingBox::height

height, height is normalized relative to the input image rows ,the value range from 0 to 1.

3.32 xilinx::yolov3::YOLOv3 Class Reference

Base class for detecting objects in a image (cv::Mat).

```
#include <xilinx/yolov3/yolov3.hpp>
```

Public Member Functions

- virtual int getInputWidth () const =0
 - Function to get InputWidth of the YOLOv3 network (input image cols).
- virtual int getInputHeight () const =0
 - Function to get InputHeigth of the YOLOv3 network (input image rows).
- virtual YOLOv3Result run (const cv::Mat &image)=0
 - Function of get running result of the YOLOv3 neuron network.

Static Public Member Functions

- static std::unique_ptr< YOLOv3 > create (Type type, bool need_mean_scale_process=true)
 Factory function to get a instance of derived classes of class YOLOv3.
- static std::unique_ptr< YOLOv3 > create_ex (const std::string &model_name, bool need_mean_scale_-process=true)

Factory function to get a instance of derived classes of class YOLOv3.

Protected Member Functions

YOLOv3 (const YOLOv3 &)=delete

3.32.1 Detailed Description

Base class for detecting objects in a image (cv::Mat).

Input is a image (cv::Mat).

Output is position of the pedestrians in the input image.

sample code:

```
auto yolo = xilinx::yolov3::YOLOv3::create(xilinx::yolov3::ADAS_512x256,
Mat img = cv::imread("test.jpg");
auto results = yolo->run(img);
for(auto &box : results.bboxes) {
  int label = box.label;
  float xmin = box.x * img.cols + 1;
float ymin = box.y * img.rows + 1;
float xmax = xmin + box.width * img.cols;
  float ymax = ymin + box.height * img.rows;
  if (xmin < 0.) xmin = 1.;
if (ymin < 0.) ymin = 1.;</pre>
  if(xmax > img.cols) xmax = img.cols;
if(ymax > img.rows) ymax = img.rows;
  float confidence = box.score;
  cout << "RESULT: " << label << "\t" << xmin << "\t" << ymin << "\t" << ymax << "\t" << confidence << "\n";
   if (label == 0) {
    rectangle(img, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 255, 0),
  1, 1, 0);
} else if (label == 1) {
    rectangle(img, Point(xmin, ymin), Point(xmax, ymax), Scalar(255, 0, 0),
   } else if (label == 2) {
```



```
rectangle(img, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 0, 255),
  1, 1, 0);
} else if (label == 3) {
    rectangle(img, Point(xmin, ymin), Point(xmax, ymax),
              Scalar(0, 255, 255), 1, 1, 0);
imwrite("result.jpg", img);
```

Display of the yolov3_ADAS_512x256 model results:

Figure 3.10: out image

3.32.2 Member Function Documentation

3.32.2.1 static std::unique_ptr<YOLOv3> xilinx::yolov3::YOLOv3::create (Type type, bool need_mean_scale_process = true) [static]

Factory function to get a instance of derived classes of class YOLOv3.

Parameters

type	VOC_416x416 or ADAS_512x256
need_mean	Normalize with mean/scale or not, default value is true.
scale_process	

Returns

An instance of YOLOv3 class.

3.32.2.2 static std::unique_ptr<YOLOv3> xilinx::yolov3::YOLOv3::create_ex (const std::string & model_name, bool need_mean_scale_process = true) [static]

Factory function to get a instance of derived classes of class YOLOv3.

Note

for internal use

model_name	
need_mean	Normalize with mean/scale or not, default value is true.
scale_process	

Returns

An instance of YOLOv3 class.

3.32.2.3 virtual int xilinx::yolov3::YOLOv3::getInputWidth() const [pure virtual]

Function to get InputWidth of the YOLOv3 network (input image cols).

Returns

InputWidth of the YOLOv3 network

3.32.2.4 virtual int xilinx::yolov3::YOLOv3::getInputHeight() const [pure virtual]

Function to get InputHeigth of the YOLOv3 network (input image rows).

Returns

InputHeight of the YOLOv3 network.

3.32.2.5 virtual YOLOv3Result xilinx::yolov3::YOLOv3::run(const cv::Mat & image) [pure virtual]

Function of get running result of the YOLOv3 neuron network.

Parameters

image Input data of input image (cv::Mat).
--

Returns

YOLOv3Result.

3.33 xilinx::yolov3::YOLOv3Result Struct Reference

Struct of the result returned by the yolov3 neuron network.

#include <xilinx/yolov3/yolov3.hpp>

Classes

struct BoundingBox

Public Attributes

• int width

Width of input image.

int height

Height of output image.

 $\bullet \ \ \mathsf{std} : \! \mathsf{vector} \! < \! \mathsf{BoundingBox} > \mathsf{bboxes} \\$

all objects, The vector of BoundingBox .

3.33.1 Detailed Description

Struct of the result returned by the yolov3 neuron network.

Note

VOC dataset category:string label[20] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus","car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike","person", "pottedplant", "sheep", "sofa", "train", "tv-monitor"};

ADAS dataset category : string label[3] = {"car", "person", "cycle"};

3.34 xilinx::yolov3::YOLOv3Result::BoundingBox Struct Reference

#include <xilinx/yolov3/yolov3.hpp>

Public Attributes

• int label

classification.

float score

confidence, the range from 0 to 1.

- float x
- float y
- · float width
- · float height

3.34.1 Detailed Description

Struct of detection result with a object

3.34.2 Member Data Documentation

3.34.2.1 float xilinx::yolov3::YOLOv3Result::BoundingBox::x

x-coordinate, x is normalized relative to the input image cols, its value range from 0 to 1.

3.34.2.2 float xilinx::yolov3::YOLOv3Result::BoundingBox::y

y-coordinate, y is normalized relative to the input image rows, its value range from 0 to 1.

3.34.2.3 float xilinx::yolov3::YOLOv3Result::BoundingBox::width

width, width is normalized relative to the input image cols, its value from 0 to 1.

3.34.2.4 float xilinx::yolov3::YOLOv3Result::BoundingBox::height

height, height is normalized relative to the input image rows, its value range from 0 to 1.

