Problems from Foundations of Machine Learning by Mohri et al.

- 1. Simplified AdaBoost. Suppose we simplify AdaBoost by setting the parambeter α_t to a fixed value $\alpha_t = \alpha > 0$, independent of round t.
 - (a) Let γ be such that $\left(\frac{1}{2} \epsilon_t\right) \geq \gamma > 0$. Find the optimal α as a function of γ wrt empirical error.
 - (b) For the value of α that you found, does the algorithm assign the same probability mass to correctly classified and misclassified examples at each round? If not, which set has higher probability?
 - (c) Using the previous value of α , give a bound on the empirical error of the algorithm as a function only of γ and the number of rounds of boosting (T).
- 2. Update guarantee. Assume that the main weak learner assumption of AdaBoost holds. Let h_t be the base learner selected at round t. Show that the base learner h_{t+1} selected at round t+1 must be different from h_t .
- 3. Fix $\epsilon \in (0, .5)$. Let the training data be m points. $\frac{m}{4}$ negative points are each at (1, 1) and (-1, -1); $\frac{m(1-\epsilon)}{4}$ points are each at (1, -1); and $\frac{m(1+\epsilon)}{4}$ points are at (-1, +1). What does AdaBoost do with boosting stumps as the base learner? What solution does the algorithm return after T rounds?