Bellman-Ford Algorithm

- A Bellman-Ford algorithm is also guaranteed to find the shortest path in a graph
- Bellman-Ford is slower than Dijkstra's algorithm.
- o handling graphs with negative edge weights.
- o detecting negative cycles.

The idea behind Bellman Ford Algorithm:

- o starts with a single source.
- calculates the distance to each node.
- o The distance is initially unknown and assumed to be infinite.
- the algorithm relaxes those paths by identifying a few shorter paths.
 Hence it is said that Bellman-Ford is based on "Principle of Relaxation".

Principle of Relaxation of Edges for Bellman-Ford:

 if we relax the edges N times, and there is any change in the shortest distance of any node between the N-1th and Nth relaxation than a negative cycle exists, otherwise not exist.

Working of Bellman-Ford Algorithm to Detect the Negative cycle in the graph

Initialize The Distance Array

Distance Array Dist[]

	Α	В	С	D	Е	F
[0	00	00	8	00	∞

B C D E F 5 00 00 00 00

1st Relaxation Of Edges

2nd Relaxation Of Edges

3rd Relaxation Of Edges

4th Relaxation Of Edges

5th Relaxation Of Edges

Result: A negative cycle (D->F->E) exists in the graph.

Algorithm

- Initialize distance array dist[] for each vertex 'v' as dist[v] = INFINITY
- Assume any vertex (let's say '0') as source and assign dist = 0.
- Relax all the edges(u,v,weight) N-1 times as per the below condition:
 - dist[v] = minimum(dist[v], distance[u] + weight)
- Now, Relax all the edges one more time i.e. the Nth time and based on the below two cases we can detect the negative cycle:
 - Case 1 (Negative cycle exists): For any edge(u, v, weight), if dist[u] + weight < dist[v]
 - Case 2 (No Negative cycle): case 1 fails for all the edges.

Detect Cycle in a Directed Graph

- It is based on the idea that there is a cycle in a graph only if there is a back edge present in the graph.
- o To find cycle in a directed graph we can use the Depth First Traversal (**DFS**) technique.
- o If during recursion, we reach a node that is already in the **recursion stack**, there is a cycle present in the graph.

steps to Implement the idea

Create a recursive **DFS** function that has the following parameters – **current vertex**, **visited array**, and **recursion stack**.

Mark the current node as visited and also mark the index in the recursion stack.

Iterate a loop for all the vertices and for each vertex, call the recursive function <u>if it is not yet</u> visited

- In each recursion call, Find all the adjacent vertices of the current vertex which are not visited:
 - If an adjacent vertex is already marked in the recursion stack then return true.
 - Otherwise, call the recursive function for that adjacent vertex.

Example of a Directed Graph

visited
recStack

U	1	2	3
true	false	false	false
true	false	false	false

visited	
recStack	

	_	_	•
true	true	false	false
true	true	false	false

	-	_	
true	true	true	false
true	true	true	false

visited
recStack

•	_	-	
true	true	true	true
true	true	true	true

visited recStack

true	true	true	true
true	true	true	false