Retour sur la question 1 de l'exercice A52

Je rappelle l'énoncé de la question 1. La fonction f est définie sur \mathbb{R}^+ , à valeurs dans \mathbb{R}^+ , continue sur $]0; +\infty[$ et vérifie

$$\forall x > 0, f(x) < x.$$
 (*)

On demande de montrer que f(0) = 0. C'est effectivement faux, en général. On donnera un contre-exemple ci-dessous (c'est le genre de fonction dont on a parlé en TD). Par contre, si f est continue sur \mathbb{R}^+ (donc continue en 0), alors, il est vrai que f(0) = 0.

Contre-exemple. Considérons f définie par f(0) = 1 et, pour x > 0, $f(x) = \exp\left(-\frac{1}{x}\right)$. Alors f est définie sur \mathbb{R}^+ , continue sur $\mathbb{R}^{+,*}$ et vérifie (\star) , mais $f(0) \neq 0$.

En effet, pour vérifier (\star) , on étudie la fonction $g: x \mapsto \frac{f(x)}{x}$ définie pour x > 0. Dans notre cas,

f est dérivable et on a $g'(x) = \frac{(\frac{1}{x}-1)\exp(-\frac{1}{x})}{x^2}$. On montre alors que g' est positive sur [0;1] et négative sur $[1;+\infty]$. Par conséquent, g atteint son maximum en 1 et on a $g(1)=f(1)=e^{-1}<1$. Donc, $\forall x>0, g(x)<1$, i.e. f(x)< x.

Conclusion: je me suis trompé ce matin, l'énoncé était faux.