Módulo C-CHEIAS

I - MÉTODO RACIONAL

II - HIDROGRAMA UNITÁRIO

III - MÉTODOS ESTATÍSTICOS

IV - MÉTODOS HIDROMETEOROLÓGICOS

V – PROPAGAÇÃO DE CHEIAS

I - MÉTODO RACIONAL

MC.01. Avaliar a vazão resultante de uma precipitação pluvial de frequência decenal, distribuída uniformemente sobre uma bacia hidrográfica <u>impermeável</u> de 2 Km² localizada nas proximidades de Curitiba, sabendo que seu tempo de concentração é de 30 minutos.

MC.02. Faça uma análise de sensibilidade avaliando a vazão em função do tempo de concentração da bacia para as cidades indicadas. A área da bacia é igual a 4,5 Km² e o coeficiente de escoamento superficial igual a 0,4.

TOTAIS PRECIPITADOS EM MILÍMETROS							
CIDADE 15 30 60 120 240							
PARANAGUÁ	44	61	86	116	156		
CURITIBA	44	63	85	93	95		
PTA GROSSA	38	61	71	78	118		
SÃO PAULO	41	52	54	59	62		

MC.03. Calcular pelo método racional a descarga decenal de dimensionamento de um bueiro para drenar uma bacia com as seguintes características:

- Diferença de nível entre o ponto mais alto e o considerado: H = 30 m
- Comprimento do talvegue principal: L = 1,0 Km
- Precipitação para duração de 30 minutos: h30 = 40 mm
- Área de drenagem: A = 0,20 Km²
- Coeficiente de escoamento superficial: c = 0,30

MC.04. A tabela abaixo indica valores de precipitação em uma ilha do Caribe para um tempo de recorrência de 25 anos. Calcule a vazão de projeto para uma bacia de 3,6 Km² de área, coeficiente de escoamento superficial igual a 0,5 e tempo de concentração de 50 minutos.

DURAÇÃO (min)	h (mm)
15	40
30	55
60	85

MC.05. As figuras abaixo indicam isoietas para 30 minutos de duração e períodos de recorrência respectivamente iguais a 25 e 50 anos. Calcule a vazão de projeto para a drenagem de um estacionamento com dimensões 100x300 m nas cidades **A**, **B** e **C**. Use tempo de recorrência de 35 anos e tempo de concentração igual a 20 minutos. Considere a superfície impermeável e despreze perdas por evaporação.

Tr = 25 anos

MC.06. Avaliar a vazão resultante de uma precipitação pluvial de frequência centenal, distribuída uniformemente sobre uma bacia hidrográfica de 1 Km² localizada nas proximidades de Curitiba. Adotar um coeficiente de escoamento de 30 % e um tempo de concentração de 20 minutos.

MC.07. O chamado Método Racional é bastante utilizado pela sua simplicidade. No entanto tem limitações que em alguns casos poderão levar a resultados não realistas. Discuta estas limitações.

MC.08. Considere que os limites físicos do Centro Politécnico representem divisores de água, ou seja, imagine-o como uma pequena bacia de drenagem. Calcule um valor (ou valores) que você ache razoável para a vazão na exultória da bacia. Use um tempo de recorrência de, por exemplo, 10 anos. Faça uma análise de sensibilidade com as variáveis que você achar mais relevantes. Justifique seus cálculos e hipóteses.

MC.09. A tabela abaixo indica valores de precipitação em algumas cidades. Considere uma bacia de drenagem com ____Km² de área e coeficiente de escoamento superficial igual a ____ na cidade de _____. Faça uma análise de sensibilidade para avaliar a vazão em função do tempo de concentração da bacia e do tempo de recorrência. Apresente seus resultados de forma tabular e gráfica.

TOTAIS DE PRECIPITAÇÃO PLUVIAL EM MILÍMETROS

	TEM	PO DE	REC	ORRÊ	NCIA	TEM	PO DE	REC	DRRÊI	NCIA	TEI	MPO F	RECOF	RRÊN(CIA
POSTO	10	ANO	S - dui	ração e	em	25	25 ANOS - duração em				50 ANOS - duração em				
		r	ninuto	S			n	ninutos	3			n	ninutos	3	
	15	30	60	120	240	15	30	60	120	240	15	30	60	120	240
BLUMENAU	31	50	72	80	81	37	65	97	106	101	42	79	121	131	141
S. FRANCISCO DO SUL	35	47	73	97	113	43	59	94	130	152	51	70	113	165	192
PARANAGUÁ	36	51	70	94	122	44	61	86	116	156	52	70	100	139	190
CURITIBA	36	50	67	71	77	44	63	85	93	95	61	74	98	102	112
PONTA GROSSA	31	47	56	63	87	38	61	71	79	110	44	74	86	93	144
SANTOS	39	63	95	119	135	48	63	129	159	176	58	101	162	200	220
SÃO PAULO	34	39	46	51	56	41	52	54	59	62	49	50	60	66	70
UBATUBA	40	60	76	119	209	52	78	90	142	290	66	96	100	168	370
JACAREZINHO	33	48	58	74	77	39	59	71	92	95	44	69	81	109	112

MC.10. O quadro abaixo é semelhante às tabelas que mostram totais de precipitação pluvial (mm) para diferentes tempos de recorrência e de duração.

TOTAIS DE PRECIPITAÇÃO PLUVIAL EM MILÍMETROS

CIDADE	TEMPO DE RECORRÊNCIA 10 ANOS - duração em minutos						TEMPO DE RECORRÊNCIA 50 ANOS - duração em minutos			
	15	15 30 60 120 240					30	60	120	240
PARIS	а	a b c d e					g	h	i	j

- Use estes dados para calcular a vazão (em m³/s) em uma bacia de drenagem com 3,6 Km² de área e coeficiente de escoamento superficial igual a 0,5, para uma recorrência de 50 anos.
- Apresente seus resultados no quadro abaixo:

Td (min)	Q (m ³ /s)
15	
30	
60	

II - HIDROGRAMA UNITÁRIO

MC.11. Construa o hidrograma unitário para uma bacia hidrográfica de 1058 Km², à partir do hidrograma tabulado abaixo, resultante de uma precipitação isolada de 61,47 mm. A unidade de vazão é m³/s.

DIA	HORA	Q _{TOTAL}	$\mathbf{Q}_{\mathrm{SUB}}$	Q _{SUPER}	Q _{UNIT}
	0	11,1	11,1		
10	6	17,2	11,0		
	12	28,0	10,0		
	18	42,0	10,6		
	0	57,0	11,0		
11	6	64,5	11,3		
	12	53,0	11,6		
	18	48,6	12,0		
	0	44,4	12,4		
12	6	35,5	12,7		
	12	29,9	13,0		
	18	27,8	13,4		
	0	26,2	13,8		
13	6	23,2	14,1		
	12	20,5	14,4		
	18	19,2	14,8		
	0	18,3	15,2		
14	6	17,5	15,5		
	12	16,8	15,8		
	18	16,2	16,2		

- **MC.12.** A tabela abaixo apresenta um hidrograma de cheia (em m³/s) resultante de uma precipitação uniformemente distribuída de 80 mm. Adotando um coeficiente de escoamento superficial de 25%:
 - a) Calcule a área da bacia hidrográfica.
 - b) Determine as ordenadas do hidrograma unitário.

DIA	Q _{TOTAL}	\mathbf{Q}_{SUB}	Q _{SUPER}	Q _{UNIT}
4	11	11		
5	30	10		
6	59	9		
7	68	8		
8	55	11		
9	34	14		
10	25	13		
11	20	12		
12	17	11		
13	14	10		
14	11	9		
15	8	8		

- MC.13. A tabulação abaixo apresenta um hidrograma de cheia (em m³/s) observado em uma bacia de 4147,2 Km² de área.
 - a) Calcule a precipitação efetiva que deu origem a esta cheia.
 - b) Determine as ordenadas do hidrograma unitário.

DIA	HORA	Q _{TOTAL}	Q _{SUB}	Q _{SUPER}	Q _{UNIT}
	0	60	60		
5	6	210	60		
	12	360	60		
	18	510	60		
	0	660	60		
6	6	610	60		
	12	560	60		
	18	510	60		
	0	460	60		
7	6	410	60		
	12	360	60		
	18	310	60		
	0	260	60		
8	6	210	60		
	12	160	60		
	18	110	60		
9	0	60	60		

MC.14. A tabela abaixo apresenta os valores do hidrograma unitário de uma bacia hidrográfica. A unidade de vazão é m³/s. Faça uma previsão do futuro e avalie a resposta da bacia em termos de vazão, se cair sobre ela uma chuva de 47 mm, com duração igual à duração da chuva do hidrograma unitário. Estudos anteriores mostram um coeficiente de escoamento superficial igual a 0,21.

DIA	HORA	Q _{UNIT}	Q _{SUPER}
	0	ZERO	
1	6	17	
	12	47,5	
	18	86,5	
	0	127	
2	6	147	
	12	114	
	18	101	
	0	88	
3	6	63	
	12	46	
	18	39,5	
	0	34	
4	6	25	
	12	17	
	18	12	
	0	8	·
5	6	5,5	
	12	2,5	·
	18	ZERO	

MC.15. Ocorreu uma precipitação média de **P** milímetros sobre uma bacia hidrográfica e 40% desta precipitação transformou-se em escoamento superficial. O hidrograma observado na exutória da bacia é apresentado abaixo em forma tabular. Calcule a área da bacia em km².

TEMPO (horas)	0	10	20	30	40	50	60	70	80	90	100
VAZÕES (m ³ /s)	31,25	25,00	20,00	130,00	102,50	75,00	47,50	20,00	16,00	12,80	10,24

MC.16. A tabela abaixo reproduz o hidrograma unitário (em m³/s) derivado à partir de uma precipitação de 6 horas de duração. Use esta informação para avaliar a resposta da bacia a duas precipitações de 6 horas de duração - espaçadas em 18 horas - com as seguintes características:

CHUVA	ALTURA PRECIPITADA (mm)	COEFICIENTE C
1	25	0,20
2	50	0,30

HORA	Q _{UNIT}
0	0
6	12
12	24
18	36
24	30
30	24
36	18
42	12
48	6
54	0

MC.17. A tabela abaixo reproduz o hidrograma unitário (em m³/s) derivado à partir de uma precipitação de 12 horas de duração. Avalie a resposta da bacia quando sujeita a uma precipitação efetiva de 3 cm acumulados em 36 horas de chuva uniforme. Represente graficamente o hidrograma resultante.

HORA	Q _{UNIT}
0	0
12 h	15
0	30
12 h	25
0	20
12 h	15
0	10
12 h	5
0	0

1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOTAL

MC.18. A tabela abaixo reproduz o hidrograma unitário (em m³/s) derivado à partir de uma precipitação de 6 horas de duração. Avalie a resposta da bacia em termos de escoamento superficial para a seguinte seqüência de precipitações:

CHUVA	DIA	INÍCIO	TÉRMINO	PEFETIVA (mm)
1	10	8:00 h	14:00 h	15 mm
2	10	20:00 h	2:00 h	20 mm
3	11	8:00 h	14:00 h	15 mm

HORA	QUNIT
0	zero
6	60
12	120
18	180
0	240
6	220
12	200
18	180
0	160
6	140
12	120
18	100
0	80
6	60
12	40
18	20
0	zero

MC.19. A tabela abaixo reproduz o hidrograma unitário (m³/s) derivado à partir de uma precipitação de 6 horas de duração. Avalie a resposta da bacia em termos de escoamento superficial para a seguinte seqüência de precipitações: (Note que a duração da chuva 3 é diferente ...)

CHUVA	DIA	INÍCIO	TÉRMINO	PEFETIVA (mm)
1	20	8:00 h	14:00 h	15 mm
2	21	20:00 h	2:00 h	20 mm
3	22	2:00 h	14:00 h	15 mm

HORA	QUNIT
0	zero
6	150
12	300
18	450
0	600
6	550
12	500
18	450
0	400
6	350
12	300
18	250
0	200
6	150
12	100
18	50
0	zero
12 18	100 50

MC.20. O hidrograma unitário de uma bacia hidrográfica, para chuvas de 30 minutos de duração, é dado abaixo (assuma forma triangular). Calcule a vazão de pico proveniente de uma chuva de 60 minutos de duração, coeficiente de escoamento igual a 0,3 e tempo de recorrência de 10 anos. Discretize o hidrograma com intervalos de 30 minutos.

• Equação de chuva de Curitiba : $i = \frac{99,154.T_R^{0,27}}{\left(t+26\right)^{1/5}}$

TEMPO (horas)	0	1	5
VAZÃO (m ³ /s)	0	4,44	0

HORA	QUNIT	1ª. CHUVA	2ª. CHUVA	QSUPERTOTAL
0	zero			
0h30'				
1 h	4,44			
1h30'				
2 h				
2h30'				
3 h				
3h30'				
4 h				
4h30'				
5 h	zero			

MC.21 O hidrograma unitário de uma bacia hidrográfica, para chuvas de 30 minutos de duração, é dado abaixo. Calcule a vazão de pico proveniente de uma chuva com tempo de recorrência de 25 anos, de 90 minutos de duração. Use coeficiente de escoamento superficial igual a 0,3. Discretize o hidrograma com intervalos de 30 minutos.

• Equação de chuva de Curitiba : $i = \frac{99,154.T_R^{0,277}}{\left(t + 26\right)^{1/5}}$

HORA	Q _{UNIT}	1ª. CHUVA	2ª. CHUVA	3ª. CHUVA	Q _{SUPER} TOTAL
0					
0h30'					
1 h					
1h30'					
2 h					
2h30'					
3 h					
3h30'					
4 h					
4h30'					
5 h					
		'			

MC.22. O hidrograma unitário de uma certa bacia, válido para chuvas de 1 hora de duração, é representado por um triângulo cujos vértices têm as seguintes coordenadas:

A (0h; 0 m
3
/s), **B** (3h; 12 m 3 /s) e **C** (9h; 0 m 3 /s).

- a) Determine o hidrograma unitário válido para chuvas de 2 horas de duração.
- b) Determine o hidrograma unitário válido para chuvas de 4 horas de duração.
- c) Calcule a área de bacia.

MC.23. A figura abaixo representa o hidrograma de escoamento superficial resultante de duas precipitações consecutivas com 6 horas de duração cada, assim distribuídas:

0 - 6 horas: Total precipitado = 40 mm (coeficiente de deflúvio c = 0.5) 6 - 12 horas: Total precipitado = 25 mm (coeficiente de deflúvio c = 0.8)

• A partir destes resultados derivar um hidrograma unitário para chuvas de 6 horas de duração.

HORAS	HIDROG. UNITÁRIO	VAZÃO TOTAL
	UNITARIO	TOTAL
0	Quŋ	0
6	Qu ₆	5
12	Qu ₁₂	20
18	Qu ₁₈	50
24	Qu ₂₄	40
30	Qu30	5
36	Qu36	0

MC.24. Considere a seguinte precipitação efetiva sobre uma bacia de drenagem com 25,2 km² de área:

INTERVALO DE TEMPO	ALTURA
(horas)	(mm)
0 - 1	40
1 - 2	20
2 - 3	0
3 - 4	40

• A resposta da bacia a esta precipitação é o hidrograma indicado abaixo (escoamento superficial):

TEMPO (horas)	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
VAZÃO (m ³ /s)	0	10	25	40	65	76	80	84	74	64	54	44	34	24	14	8	4	0

- Calcule o hidrograma unitário para essa bacia para chuvas de 1 hora de duração.
- Apresente seus resultados na forma tabular.

II - HIDROGRAMA UNITÁRIO SINTÉTICO

- **MC.25.** Determinada bacia de drenagem possue área igual a 100 km², comprimento da bacia até o divisor igual a 20 km e distância da projeção do centro de gravidade da bacia até a exutória igual a 10 km. Calcular, aplicando o método do hidrograma unitário sintético e considerando que os coeficientes numéricos **C**_t e **C**_p variam respectivamente entre os valores 1,8 a 2,2 e 0,56 a 0.69:
- a) A máxima vazão a ser drenada utilizando o critério menos favorável (a favor da segurança).
- b) A máxima vazão a ser drenada utilizando o critério mais favorável (a favor da economia).
- c) A variação percentual entre os valores de vazão obtidos acima, em relação ao maior valor.
- **MC.26.** Ao aplicar o método do hidrograma unitário sintético de Snyder você tem dúvidas quanto aos valores dos coeficientes C_t e C_p a serem adotados. Se você for extremamente conservador (no sentido de superdimensionar a obra) encontrará uma vazão Q_{max} . Se você for extremamente arrojado (no sentido de subdimensionar a obra) encontrará uma vazão Q_{min} . Quanto vale a relação Q_{max}/Q_{min} ?
- MC.27. A figura 1 em anexo, representa o Hidrograma Unitário Sintético de Snyder derivado para a bacia do Rio Iraí na seção da ponte da rodovia do encanamento. Este H.U.S. foi utilizado nos estudos da famosa cheia de 1983. Use este H.U.S. para prever a vazão máxima, a hora de sua ocorrência e a duração do escoamento superficial como resultado da precipitação mostrada graficamente abaixo (figura 2).
- Considere um coeficiente de escoamento superficial igual a 50%. Observe que para resolver a questão você não precisa calcular todo o hidrograma resultante.

HU_IRAI.DOC

Figura I - Hidrograma unitário para a bacia do Rio Iraí, na seção da ponte na PR-415.

III - MÉTODOS ESTATÍSTICOS

- **MC.28.** Com base em **n** anos de observações, a média e o desvio-padrão das maiores vazões de cada ano valem respectivamente 2000 m³/s e 1000 m³/s. Aplicar o método de Gumbel para avaliar a vazão de enchente de frequência centenal.
- **MC.29.** A aplicação do método de Gumbel aos dados de enchente de uma certa bacia hidrográfica conduziu à conclusão que as cheias decenal e centenal valem, respectivamente, 9915 m³/s e 15411 m³/s. Determinar a cheia decamilenar.
- **MC.30.** Se você estiver projetando um papel probabilístico de Gumbel, e adotar 5 cm como a distância entre as abcissas correspondentes aos tempos de recorrência de 1,1 e 5 anos, qual deverá ser a distância entre as abcissas correspondentes aos tempos de recorrência?
- a) de 1,1 e 10 anos;
- **b)** de 1,1 e 100 anos;
- **c)** de 1,1 e 1000 anos;
- d) de 10 e 100 anos:
- e) de 100 e 1000 anos.
- **MC.31.** As máximas vazões diárias anuais em uma seção de uma bacia hidrográfica estão relacionadas a seguir. Pede-se que seja ajustada a distribuição de Gumbel a estas vazões máximas, e que:
- a) Sejam grafadas as vazões observadas e seus Tempos de Recorrência estimados, no papel de Gumbel em anexo;
- b) Seja colocada no gráfico a distribuição ajustada;
- c) Seja preenchido o quadro abaixo a partir de soluções analíticas (não gráficas).

Q			326	612
Tr	100	100		

ANOS	1931	32	33	34	35	36	37	38	39	1940	41	42	43	44	45
VAZÕES (m ³ /s)	272	278	62	178	272	133	380	274	251	56	172	169	135	146	299

MC.32. A tabulação abaixo mostra as máximas vazões anuais de uma certa bacia. Calcular as cheias centenal e milenar, pelo método de Gumbel. (EF/1991/FG)

ANO	1	2	3	4	5	6	7	8	9	10
VAZÃO (m ³ /s)	1270	894	1000	258	258	769	425	884	509	1400
ANO	11	12	13	14	15	16	17	18	19	20
VAZÃO (m ³ /s)	1000	724	817	1140	829	625	1080	1390	1080	956

- MC.33. Sabendo que a cheia decenal vale 330,46 m³/s, e que a cheia centenal vale 513,67 m³/s, calcular a cheia decamilenar.
- **MC.34.** Se a vazão decenal de enchente em certa estação hidrométrica for de 100 unidades de vazão, e se a lei de Gumbel for aplicável, então, certamente, a vazão decamilenar é menor de **x**. Pede-se calcular **x** para que a afirmativa acima seja verdadeira.
- **MC.35.** Com base em 20 anos de observação, a média e o desvio padrão das vazões máximas de cada ano foram avaliadas em 2000 m³/s e 1000 m³/s respectivamente. No 21º. ano ocorre uma cheia de 6000 m³/s. Utilizando o método de Gumbel, calcule qual é o acréscimo percentual no valor da vazão decamilenar calculada com os 20 primeiros anos, devido a ocorrência da vazão excepcional no ano 21?

MC.36. A aplicação do método de Gumbel a um local que dispunha de 20 anos de observações permitiu avaliar em 3600 m³/s a cheia decenal, e em 6000 m³/s a cheia centenal. Se no ano seguinte ocorreu uma cheia de 8000 m³/s, quais são as novas avaliações das cheias decenal e centenal ?

- MC.37. Considere uma série anual de vazões máximas com 20 anos de observação conforme os valores abaixo:
 - a) Represente estes pontos na escala probabilística de Gumbel em anexo.
 - b) Indique no gráfico a função teórica de Gumbel.
 - c) Determine as vazões máximas de frequência decenal, centenária, milenar e decamilenar.
 - d) Suponha que no ano 21, ocorra uma vazão máxima igual à vazão milenar calculada anteriormente. Analise de que modo a ocorrência deste evento raro irá alterar os valores previamente calculados, ou seja :
 - Indique no gráfico a nova função de Gumbel.
 - Calcule os novos valores das vazões de frequência decenal, centenária, milenar e decamilenar.
 - **e)** Comente estas mudanças nos valores previamente calculados, e de que modo poderão alterar projetos já definidos. Lembrar a cheia de 1983 no Rio Iguaçú.

VAZÕES (m ³ /s)	6030	4560	2573	3900	3150	3408	1365	4080	5580	3150	2385	2250	3317	2640	4050
(/															

- MC.38. A análise de uma série de máximas vazões anuais apresentou os seguintes resultados:
 - Média das máximas anuais: 1200 m³/s.
 - Fatores de frequência (Gumbel) para períodos de recorrência de 10 e 100 anos respectivamente iguais a 1,625 (Tr = 10 anos) e 3,836 (Tr = 100 anos).
 - Desvio padrão da série de máximas vazões: 400 m³/s.
 - Determinar, a partir desses dados, as vazões de enchente correspondentes a períodos de recorrência de 10, 100 e 1000 anos
- MC.39. Com base em 30 anos de observação, calculou-se que as máximas vazões anuais apresentam média de 2000 m³/s e desvio padrão de 1000 m³/s. Calcular as cheias decenal e centenária:
- a) analiticamente, confundindo parâmetros amostrais com populacionais;
- b) Utilizando a tabela de Reid.

TABELA DE REID

-			
n	T = 10	T = 50	T = 100
20	1,625	3,179	3,836
30	1,541	3,026	3,653
40	1,495	2,943	3,554

MC.40. Os dados de totais anuais precipitados de uma determinada bacia, em 10 anos de observação, apresentam os resultados abaixo.

1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
1300	1450	1500	900	650	1100	1300	1200	1400	1500

- Qual o tempo de recorrência correspondente aos valores 1500 mm e 900 mm ?
- MC.41. Complete o quadro abaixo referente a vazões de enchente calculadas pelo método de Gumbel.

T (anos)	10	100	1000
Q (m ³ /s)	2305	4137	

- MC.42. Abaixo estão representados os valores de uma série anual de vazões.
- a) Represente estes pontos na escala de Gumbel em anexo.
- b) Represente neste gráfico a função de distribuição teórica de Gumbel.
- c) Determine as vazões: decenal, centenária, milenar e decamilenar.

	1														
VAZÕES (m ³ /s)	2010	1520	860	1300	1050	1140	460	1360	1860	1050	795	750	1100	880	1350

Média: 1166 m³/s Desvio padrão: 416 m³/s

- **MC.43.** Considere a série anual de vazões apresentadas abaixo, cuja média é igual a 3496 m³/s e o desvio padrão é igual a 1251 m³/s.
 - a) Represente estes pontos na escala probabilística de Gumbel em anexo.
 - b) Indique no gráfico a função teórica de Gumbel.
 - c) Determine graficamente e analiticamente as vazões: decenal, centenária, milenar e decamilenar de acordo com o critério de Gumbel.
 - d) Suponha que em 1984 a vazão máxima observada seja igual à vazão milenar calculada no item anterior. Analise de que modo a ocorrência deste evento raro irá alterar os valores previamente calculados, ou seja:
 - d.1) Indique no gráfico a nova função de Gumbel.
 - d.2) Determine os novos valores das vazões decenal, centenária, milenar e decamilenar.
 - e) Comente estas mudanças nos valores previamente calculados, e de que modo poderão alterar projetos já definidos.

															1983
VAZÃO (m ³ /s)	6030	4560	2573	3900	3150	3408	1366	4080	5580	3150	2385	2250	3317	2640	4050

- **MC.44.** Você foi incumbido do dimensionamento do vertedor de uma usina hidrelétrica cuja área de drenagem é da ordem de 500 km². Considere três diferentes situações relativamente aos dados:
 - a) Existem registros das vazões médias diárias dos últimos 50 anos no local do aproveitamento.
 - **b)** Existem registros de alguns hidrogramas medidos na seção do projeto e os respectivos registros das precipitações que deram origem a esses hidrogramas.
 - c) Não existem dados.
 - Discuta como você obteria a vazão de projeto nas três situações.

IV - PROPAGAÇÃO DE CHEIAS

MC.45. Estudos hidrológicos em determinado trecho de um rio, definiram os valores de **x** (coeficiente que exprime o grau de participação da vazão afluente na caracterização do volume acumulado no trecho), e **k** (constante de acumulação), respectivamente iguais a 0,10 e 1,0. Determinar à partir do hidrograma de cheia medido na seção de montante, abaixo indicado, o hidrograma resultante na seção de juzante. Considerar escoamento permanente no início do período.

DIA	VAZÃO (m ³ /s)		
18	2,0		
19	2,0		
20	3,0		
21	5,0		
22	6,0		
23	4,0		
24	3,5		
25	2,0		
26	2,0		

MC.46. À partir dos hidrogramas afluentes e efluentes abaixo tabelados, determinar os coeficientes x e k (método de Muskingum).

DIA	Q a1 (m ³ /s)	Q _{a2} (m ³ /s)	Q e1 (m ³ /s)	Q_{e2} (m ³ /s)	ΔV / ΔΤ	V/T	x = 0,1	x = 0,3	x = 0,2
1	7,0		8,0						
2	6,0		7,5						
3	24,0	15,0	11,0	9,3	5,7	5,7	12,3		
4	50,0	37,0	23,0	17,0	20,0	25,7	25,7		
5	70,0		40,0						
6	53,0		56,5						
7	33,5		53,5						
8	22,0		40,0						
9	15,5		29,0						
10	12,0		20,0						
11	10,0		15,0						

MC.47. A tabulação abaixo corresponde à aplicação do método de Muskingum a um certo trecho de um certo rio. Pede-se terminar os cálculos. (3°. TE/1989/FG)

T	Q a1 (m ³ /s)	$Q_{a2} (m^3/s)$	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	10	40	10	20,5
2	40	25	20,5	29,875
3	25	10		
4	10	10		

MC.48. Um engenheiro estava aplicando o método de Muskingum, quando foi interrompido. Pede-se concluir o trabalho, na planilha abaixo: (3°. TE/1986/FG)

T	Q_{a1} (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	12	30	12	15
2	30	42	15	27
3	42			
4	36			
5	36			
6	18			
7	18			

MC.49. A tabela abaixo mostra o hidrograma de vazões afluentes a um reservatório. Obter a máxima vazão efluente, sabendo que a relação entre o volume armazenado no reservatório e o seu nível de água é dada por $\mathbf{V} = \mathbf{5}, \mathbf{184} \cdot \mathbf{h}^{3/2}$ (\mathbf{V} em $\mathbf{10^6}$ m 3 ; \mathbf{h} em metros, medido acima da crista do vertedor) e a relação entre vazão efluente e o nível de água do reservatório é dada por $\mathbf{Q_e} = \mathbf{30} \cdot \mathbf{h}^{3/2}$ ($\mathbf{Q_e}$ em m 3 /s; \mathbf{h} em metros).

DIA	Q a1 (m ³ /s)	
11	100	
12	350	
13	550	
14	400	
15	300	
16	200	
17	100	

MC.50. A tabela abaixo resume informações hidráulicas e topográficas que relacionam a vazão efluente de um reservatório com o volume armazenado acima da crista do vertedor (supostamente desprovido de comportas):

Q_e (m ³ /s)	0	10	20	30	40
V (10 ³ m ³)	0	864	1728	2592	3456

• Dado o hidrograma de vazões afluentes, obter o hidrograma efluente:

DIA	Q _a (m ³ /s)	
1	10	
2	20	
3	30	
4	25	
5	20	
6	15	
7	10	

MC.51. Uma piscina de 5 m por 12 m é alimentada por um riacho cuja vazão média é de 10 l/s. Em condições normais (movimento permanente), o nível de água na piscina é tal que a carga sobre o vertedor que controla a vazão efluente é de 5 cm. Considere o hidrograma de enchente tabelado abaixo como o hidrograma afluente à piscina, determinar a menor borda livre que evita transbordamento da piscina.

t (s)	0	300	600	900	1200	1500	1800
Q a1 (I/s)	10	210	410	310	210	110	10
Q a2 (I/s)							
h ₁ (cm)							
V₁/ Δ t (l/s)							
Q e1 (I/s)							
K							
h2 (cm)							
V₂/ Δ t (l/s)							
Q_{e2} (I/s)							

$$\begin{split} K &= \frac{V_2}{\Delta t} + \frac{Q_{e2}}{2} = \frac{V_1}{\Delta t} + \frac{Q_{a1}}{2} + \frac{Q_{a2}}{2} + \frac{Q_{e1}}{2} \\ Q_e &= k' \cdot h^{3/2} \\ \frac{V}{\Delta t} &= k'' \cdot h \end{split}$$

MC.52. Um barril cilíndrico, de 3 m de altura e 1 m² de seção transversal, que contém 1000 litros de água, está sendo alimentado por uma torneira, com vazão constante igual a 150 l/min. A mesma vazão sai pelo orifício localizado na sua parte inferior. O regime permanente é rompido pelo súbito aumento da vazão de alimentação para 500 l/min, durante 4 minutos, ao fim dos quais a vazão de alimentação volta a ser de 150 l/min. Calcular a máxima vazão efluente do barril, trabalhando com intervalos de discretização de 1 minuto.

MC.53. Com base no hidrograma de cheia medido na seção de montante (vazões médias diárias) obter a vazão máxima na seção de jusante de um trecho de rio caracterizado pelos seguintes parâmetros de Muskingum:

$$C_0 = 0.2 C_1 = 0.4 C_2 = 0.4$$

• Onde:
$$Q_{e2} = C_0 \cdot Q_{a2} + C_1 \cdot Q_{a1} + C_2 \cdot Q_{e1}$$

MC.54. O quadro 1 abaixo apresenta as características de um reservatório (curva Cota x Área) e de seu vertedor sem comportas (curva Cota x Vazão). Avaliar o hidrograma de vazões efluentes levando-se em conta o hidrograma de vazões afluentes tabelado na página seguinte.

QUADRO 1 - CARACTERÍSTICAS DO RESERVATÓRIO E VERTEDOR

COTA	Qe	ÁREA
0,00	0,00	4 047 000
0,30	14,90	4 128 000
0,60	42,28	4 209 000
0,90	77,48	4 249 000
1,20	119,16	4 290 000
1,50	166,83	4 371 000
1,80	217,33	4 452 000
2,10	272,94	4 533 000
2,40	334,80	4 614 000
2,70	405,73	4 695 000

VOLUME	V / ΔT	2V / ΔT	Q _e +2V/∆T
0,00	0,00	0,00	0,00
1 226 000	56,771	113,542	128,44
2 477 000	114,666	229,33	271,61
3 745 000	173,403	346,81	424,28
5 026 000	232,701	465,40	584,56
6 326 000	292,847	585,69	752,52
7 649 000	354,118	708,24	925,57
8 997 000	416,514	833,03	1105,97
10 369 000	480,035	960,07	1294,87
11 765 000	544,681	1089,36	1495,09

Analise de forma esquemática a forma do hidrograma efluente caso o vertedor tivesse :

- a) O dobro da capacidade de vazão (para a mesma cota)
- b) Metade da capacidade de vazão (idem)

^{• ###}**T** = 6 X 60 X 60 = 21 600 segundos

DIA	HORA	Q _{a1}	Q _{a2}	Q _{e1}	2V ₁ /	Т	SOMA "K"	Q _{e2}	2V ₂ /	Т
18	24	42.56		42.56						
	6	42,56								
19	12	45,40								
	18	56,75								
	24	87,96								
	6	147,54								
20	12	272,38								
	18	353,24								
	24	343,31								
	6	314,94								
21	12	289,40								
	18	263,86								
	24	241,17								
	6	219.00								
22	12	198,61								
	18	179,00								
	24	161,72								
	6	145,00								
23	12	133,35								
	18	119,00								
	24	110,65								
	6	99,00								
24	12	90,79								
	18	84,00								
	24	79,44								
	6	73,00								
25	12	68,02								
	18	67,00								
	24	68,42								
	6	63,00								
26	12	56,75								
	18	55,00								
	24	53,91								
	6	51,00								
27	12	50,00								
	18	49,00								
	24	48,23								
	6	45,00								
28	12	44,00								
	18	43,00								
	24	42,56								
	6	42.00								
29	12	41,00								
	18	40,00								
	24	39,00								
30	6	39,72								

MC.55. A tabela abaixo resume informações hidráulicas e topográficas que relacionam a vazão efluente de um reservatório com o volume armazenado acima da crista do vertedor (sem comportas). Qual será a máxima vazão efluente ?

Qe (m ³ /s)	0	10	20	30	40
VOLUME (10 ³ m ³)	0	864	1728	2592	3456
V / T (m ³ /s)					
Q _e + 2V/ T					

HIDROGRAMA AFLUENTE

VAZÕES MÉDIAS DIÁRIAS (m ³ /s)	10	20	30	25	20	15	10	
--	----	----	----	----	----	----	----	--

MC.56. Com base no hidrograma de cheia medido na seção de montante, apresentado a seguir, obter o hidrograma na seção de jusante de um trecho caracterizado pelos seguintes parâmetros de Muskingum:

$$C_0 = 0.16$$
 $C_1 = 0.40$ $C_2 = 0.44$

DIA	Q (m ³ /s)		
1	2,0		
2	3,0		
3	5,0		
4	6,0		
5	4,0		
6	3,5		
7	2,0		
8	2,0		

MC.57. Sua estagiária deixou incompleta a planilha abaixo que trata de uma aplicação de Muskingum. Complete-a.

t	Q a1 (m ³ /s)	Q a2 (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
1	4	15	4	6,20
2	15	10	6,20	10,48
3	10	6		
4	6	3		

MC.58. Complete, na tabulação abaixo, a aplicação do método de Muskigum.

ĺ	t	Q_{a1} (m ³ /s)	Q_{a2} (m ³ /s)	Q_{e1} (m ³ /s)	Q_{e2} (m ³ /s)
ĺ	1	12	30	12	21
	2	30	41,40	21	33
I	3	41,40	35,64		
ĺ	4	35,64	30,144		