

Permissions

Permission Groups

- Owner: It applies only to the owner of the file or directory; this will not impact the actions of other
 users.
- **Group**: It applies only to the group that has been assigned to the file or directory; it will not affect the actions of other users.
- All Users: It applies to all other users on the system; this is the permission group that you want to watch the most.

Permission Types

- Read: User can view the contents of the file.
- Write: User can modify a file or directory.
- **Execute**: User can run a file or view the contents of a directory.

Permission Commands

- id: It displays user identity.
- chmod: It allows you to modify the access rights of a file/directory.
- umask: It sets the default file permissions.
- **su**: It allows you to temporarily become the superuser.
- **sudo**: It allows you to execute a command as another user.
- **chown**: It allows you to change a file's ownership.
- chgrp: It allows you to change a file's group ownership.
- passwd: It allows you to change a user's password.
- Running the **id** Command:

```
[me@localhost ~]$ id
uid=1000(me) gid=1000(me) groups=1000(me) context=unconfined_u:unconfined_r:unco
nfined_t:s0-s0:c0.c1023
```

After creating new account:

```
[you@localhost ~]$ id
uid=1001(you) gid=1001(you) groups=1001(you) context=unconfined_u:unconfined_r:u
nconfined t:s0-s0:c0.c1023
```

To view permission settings, use 1s command:

```
[me@localhost ~1$ ls -1 sample.txt
```

Sample result"

```
-rw-rw-r--. 1 me me 28 Nov 17 14:06 sample.txt
```

Common File Types:

Attribute	File Type
-	A regular file
d	A directory
1	A symbolic link
С	A character special file
	This file type refers to a device that handles data
	as a stream of bytes, such as terminal or modem.
b	A block special file
	This file type refers to a device that handles data
	in blocks, such as hard-drive or CD-ROM drive.

File Mode:

Owner	Group	World
rwx	rwx	rwx

03 Handout 1 *Property of STI
Page 1 of 5

• Octal Notation used for **chmod** command:

Octal	Binary	File Mode
0	000	
1	001	x
2	010	-W-
3	011	-WX
4	100	r
5	101	r-x
6	110	rw-
7	111	rwx

• File Permission Values"

Value	Meaning	
777	(rwxrwxrwx) It sets no restrictions on permissions. Anybody may do anything. This is	
	not a recommended setting.	
755	(rwxr-xr-x) The file's owner may read, write, and execute the file. All others may	
	read and execute the file. This setting is common for programs that are used by all users.	
700	(rwx) The file's owner may read, write, and execute the file. Others are not	
	given any rights. This setting is useful for programs that only the owner may use and	
	must be kept private from others.	
666	(rw-rw-rw-) All users may read and modify the file.	
644	(rw-rr) The owner may read and modify the file, while all others may only read	
	the file. This is a common setting for data files that everybody may read, but only the	
	owner may change.	
600	(rw) The owner may read and modify the file. All others have no rights. This is	
	a common setting for data files that the owner wants to keep private.	

• Sample Usage:

```
[me@localhost ~1$ ls -l sample.txt
-rw-rw-r--. 1 me me 28 Nov 17 14:06 sample.txt
[me@localhost ~1$ chmod 600 sample.txt
[me@localhost ~1$ ls -l sample.txt
-rw-----. 1 me me 28 Nov 17 14:06 sample.txt
```

• Directory Permission Values:

Value	Meaning
777	(rwxrwxrwx) It sets no restrictions on permissions. Anybody may list files, create new
	files in the directory, and delete files in the directory. This is not a recommended setting.
755	(rwxr-xr-x) The directory owner has full access. All others may list the directory, but
	cannot create files nor delete them. This setting is common for directories that you wish
	to share with other users.
700	(rwx) The directory owner has full access. Others are not given any rights. This
	setting is useful for directories that only the owner may use and must be kept private
	from others.

• Symbolic Notation:

Symbol	Meaning
u	The directory or file owner
g	The group owner
0	Others
а	Short for all
	The combination of u, g, and o

03 Handout 1 *Property of STI
Page 2 of 5

• Examples of Symbolic Notation:

Notation	Meaning
u+x	It allows execute permission for the owner .
u-x	It removes execute permission from the owner.
+X	It allows execute permission for the owner, group, and everyone else. This is equivalent
o-rw	It removes the read and write permission from anyone besides the owner and group owner.
go=rw	It sets the group owner and anyone besides the owner to have read and write permission. It removes the execute permissions from the group owner and others.
u+x, go=rx	It adds execute permission for the owner and sets the permissions for the group and others to read and execute. Multiple specifications may be separated by commas.

Sample Usage:

```
[me@localhost ~1$ ls -l sample.txt
-rw-----. 1 me me 28 Nov 17 14:06 sample.txt
[me@localhost ~1$ chmod g+rw sample.txt
[me@localhost ~1$ ls -l sample.txt
-rw-rw---. 1 me me 28 Nov 17 14:06 sample.txt
```

• The umask Command:

```
[me@localhost ~]$ rm -f sample.txt
[me@localhost ~]$ umask
0002
[me@localhost ~]$ > sample.txt
[me@localhost ~]$ ls -l sample.txt
-rw-rw-r--. 1 me me 0 Nov 17 17:14 sample.txt
```

• Setting **umask**:

```
[me@localhost ~]$ rm sample.txt
[me@localhost ~]$ umask 0000
[me@localhost ~]$ > sample.txt
[me@localhost ~]$ ls -l sample.txt
-rw-rw-rw-. 1 me me 0 Nov 17 17:25 sample.txt
```

• Binary equivalent (0002):

```
[me@localhost ~1$ rm -f sample.txt
[me@localhost ~1$ umask
0002
[me@localhost ~1$ > sample.txt
[me@localhost ~1$ ls -l sample.txt
-rw-rw-r--. 1 me me 0 Nov 17 17:14 sample.txt
```

Mask	000 000 000 010
Result	rw- rw- r

Binary equivalent (0000):

```
[me@localhost ~]$ rm sample.txt
[me@localhost ~]$ umask 0000
[me@localhost ~]$ > sample.txt
[me@localhost ~]$ ls -l sample.txt
-rw-rw-rw-. 1 me me 0 Nov 17 17:25 sample.txt
```

Original File Mode	rw- rw- r
Mask	000 000 000 000
Result	rw- rw-

03 Handout 1 *Property of STI
Page 3 of 5

Binary equivalent (0022):

```
[me@localhost ~]$ ls -l sample.txt
-rw-rw-rw-. 1 me me 0 Nov 17 17:41 sample.txt
[me@localhost ~]$ rm sample.txt
[me@localhost ~]$ umask 0022
[me@localhost ~]$ > sample.txt
[me@localhost ~]$ ls -l sample.txt
-rw-r--r--. 1 me me 0 Nov 17 17:47 sample.txt
```

Original File Mode	rw- rw-
Mask	000 000 010 010
Result	rw- r r

The su Command:

```
[me@localhost ~]$ su -
Password:
Last login: Thu Nov 17 13:57:31 PHT 2016 on tty1
[root@localhost ~]# exit
logout
[me@localhost ~]$ _
```

```
[me@localhost ~]$ su -l you
Password:
Last login: Thu Nov 17 12:01:02 PHT 2016 on tty1
[you@localhost ~]$ _
```

• The **sudo** Command:

```
[me@localhost ~1$ sudo backup_script
[sudo] password for me: _
```

Sample arguments for the chown command:

Argument	Result
nika	The ownership of the file is changed from its
	current owner to user "nika".
nika:users	The ownership of the file is changed from its
	current owner to user "nika" and from its
	current group owner to group "users".
:admins	The ownership of the file is changed from its
	current group owner to group "admins".
nika:	The ownership of the file is changed from its
	current owner to user "nika". The group owner
	is the login group of user "nika" too.

Sample Usages:

```
[me@localhost ~1$ ls -l sample.txt

-rw-rw-rw-. 1 me me 0 Nov 18 10:28 sample.txt

[me@localhost ~1$ sudo chown you sample.txt

[me@localhost ~1$ ls -l sample.txt

-rw-rw-rw-. 1 you me 0 Nov 18 10:28 sample.txt

[me@localhost ~1$ sudo chown :you sample.txt

[me@localhost ~1$ ls -l sample.txt

-rw-rw-rw-. 1 you you 0 Nov 18 10:28 sample.txt

[me@localhost ~1$ sudo chown me:me sample.txt

[me@localhost ~1$ ls -l sample.txt

-rw-rw-rw-. 1 me me 0 Nov 18 10:28 sample.txt
```

03 Handout 1 *Property of STI
Page 4 of 5

The chgrp Command:

```
[me@localhost ~1$ ls -l sample.txt
-rw-rw-rw-. 1 me me 0 Nov 18 10:28 sample.txt
[me@localhost ~1$ sudo chgrp you sample.txt
[sudo] password for me:
[me@localhost ~1$ ls -l sample.txt
-rw-rw-rw-. 1 me you 0 Nov 18 10:28 sample.txt
```

The passwd Command:

```
Ime@localhost ~1$ passwd
Changing password for user me.
Changing password for me.
(current) UNIX password:
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
```

```
[me@localhost ~1$ sudo passwd you
[sudo] password for me:
Changing password for user you.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
```

References:

Barret, Daniel J. (2016). Linux pocket guide. 3rd ed. USA: O'Reilly Media, Inc.

Fox, Richard. (2015). Linux with operating system concepts. USA: CRC Press, Taylor & Francis Group, LLC.

Shotts, William E. Jr. (2016). The linux command line. 3rd ed. USA: No Starch Press.

03 Handout 1 *Property of STI
Page 5 of 5