Семинар по функциональному анализу. 315 группа, 11.05.20 (56-ой день карантина)

"Спектр вполне непрерывных и самосопряженных операторов"

Перед решением задач по этой теме рекомендуется самостоятельно прочитать параграф 23.3, 23.4 (стр. 249 – 254) из книги В.А. Треногина "Функциональный анализ".

Теорема 1. Пусть X – комплексное банахово пространство, u A – вполне непрерывный оператор. Тогда дискретный спектр оператора A состоит из не более чем счетного множества собственных значений, единственной предельной точкой которых может служить лишь точка $\lambda = 0$. Если X бесконечномерно, то 0 пренадлежит спектру (не обязательно точечному). Собственное подпространство оператора A, соответствующее собственному значению $\lambda \neq 0$, конечномерно.

Теорема 2. Пусть A – вполне непрерывный самосопряженный оператор в комплексном гильбертовом пространстве H. Тогда

- если $A \neq 0$, то A имеет по крайней мере одно собственное значение, отличное от нуля;
- ullet все собственные значения A вещественны и расположены на отрезке $[m,M],\ \mbox{г} de$

$$m = \inf_{||x||=1} \langle Ax, x \rangle, \ M = \sup_{||x||=1} \langle Ax, x \rangle;$$

• если $M \neq 0$, то M является наибольшим собственным значением A; если $m \neq 0$, то m является наименьшим собственным значением A.

Теорема 3 (Гильберт-Шмидт). Если A – вполне непрерывный самосопряженный оператор в комплексном гильбертовом пространстве H, то при любом $x \in H$ элемент Ax разлагается в сходящийся ряд Фурье по ортонормированной системе собственных векторов оператора A.

Теорема 4. Если A – вполне непрерывный самосопряженный оператор в сепарабельном комплексном гильбертовом пространстве H, то в H существует ортонормированный базис из собственных векторов оператора A.

Задача 1 (ТПС, 20.1). Доказать, что оператор $A: l_2 \to l_2$,

$$Ax = (0, x_1, x_2/2, x_3/3, ...)$$

вполне непрерывен, и найти его спектр.

Решение: Для любого $x \in \mathbb{B}_1(0) ||Ax|| \le ||x|| \le 1$. Кроме того,

$$\sum_{n=k}^{+\infty} x_n^2 \le \sum_{n=k}^{+\infty} \frac{1}{n^2} < \infty.$$

Следовательно, $A\mathbb{B}_1(0)$ является предкомпактным множеством, а оператор A вполне непрерывен.

Спектр состоит лишь из не более чем счетного числа собственных значений. Соотношение $Ax = \lambda x$ не выполняется ни при каких λ , при $x \neq 0$. Непрерывный спектр содержит $\lambda = 0$.

Задача 2 (ТПС, 20.2). Доказать, что оператор $A: L_2[-1,1] \to L_2[-1,1]$,

$$Ax(s) = \int_{-1}^{1} s^2 tx(t)dt.$$

вполне непрерывен, и найти его спектр.

Peweнue: Для любого $x(\cdot) \in \mathbb{B}_1(0)$

$$||Ax||_{L_{2}}^{2} = \left(\int_{-1}^{1} tx(t)dt\right)^{2} \left(\int_{-1}^{1} s^{4}ds\right) \le ||t||_{L_{2}}^{2} \frac{2}{5} = \frac{4}{15};$$

$$||(Ax)(\cdot+h)-(Ax)(\cdot)||_{L_{2}}^{2} = \left(\int_{-1}^{1} tx(t)dt\right)^{2} \left(\int_{-1}^{1} ((s+h)^{4}-s^{4})ds\right) \leq \frac{2h}{3} \int_{-1}^{1} ((2s+h)((s+h)^{2}+s^{2}))ds \to 0,$$

при $h \to 0$, равномерно по $x(\cdot) \in \mathbb{B}_1(0)$. Следовательно, $A\mathbb{B}_1(0)$ предкомпактно, а оператор A вполне непрерывен.

Рассмотрим уравнение $Ax = \lambda x$. Домножим его на s и проинтегрируем:

$$\left(\int_{-1}^{1} s^3 ds\right) \left(\int_{-1}^{1} tx(t)dt\right) = \lambda \left(\int_{-1}^{1} sx(s)ds\right) = 0.$$

Следовательно, $\lambda=0$ — единственное собственное значение. Ему соответствуют, например, собственные функции x(t) — четные. Других собственных значений нет. При $\lambda\neq 0$ рассмотрим уравнение $Ax-\lambda x=y$. Решение этого уравнения можно найти в форме $x(s)=(y(s)-cs^2)/\lambda$ (достаточно подставить и найти c). Следовательно, для любого $y(t)\in L_2[-1,1]$ существует корень уравнения x(t), а потому все $\lambda\neq 0$ — регулярные точки.

Задача 3 (ТПС, 20.7). Доказать, что оператор $A: L_2[0,1] \to L_2[0,1]$, Ax(t) = tx(t) самосопряженный, и найти его спектр.

Pewenue: Для любых $x,y\in L_2[0,1]$ $\langle Ax,y\rangle=\int_0^1 tx(t)y(t)dt=\langle x,Ay\rangle$. Следовательно, оператор A самосопряжен.

Рассмотрим уравнение $Ax=\lambda y$. Следовательно, $(t-\lambda)x(t)=0$ почти всюду. Но такое возможно только при x(t)=0 п.в. Следовательно, собственных значений нет. В то же время, при $\lambda\in[0,1]$ $\operatorname{im}(A-\lambda I)\neq L_2[0,1]$ (функции из образа принимают малые значения в окрестности точки λ), но замыкание образа (в $L_2[0,1]$) все же совпадает с $L_2[0,1]$. Резольвента задается соотношение $x(t)=\frac{y(t)}{t-\lambda}$ – это линейный оператор не является непрерывным. Значит [0,1] – непрерывный спектр.

Задача 4 (ТПС, 20.18). Пусть A – вполне непрерывный самосопряженный оператор в гильбертовом пространстве H, u его спектр состоит из собственных значений 0 и 1. Доказать, что A – оператор ортогонального проектирования.

Решение: Пусть $M = \{x \in H : Ax = x\}$ — собственное подпространство, соответствующее $\lambda = 1$. Тогда M инвариантно относительно A. Из самосопряженности A следует инвариантность M^{\perp} относительно A. Если $Ax \neq 0$ при некотором $x \in M^{\perp}$, то в подпространстве M^{\perp} найдется ненулевое собственное значение оператора A. Оно не может быть равным 1, в силу построения. Получается противоречие. Следовательно, Ax = 0, $\forall x \in M^{\perp}$. А это и означает, что A — оператор ортогонального проектирования.

Домашнее задание: N 20.3, 20.5, 20.11, 20.12, 20.15.