Análise de Algoritmos

Prof. Marcelo Keese Albertini

Faculdade de Computação - Universidade Federal de Uberlândia Lista de exercícios 0: Introdução

- 1. Informalmente, o que é um procedimento? O que é um algoritmo? Qual é a diferença entre procedimento e algoritmo? Dê um exemplo de procedimento que eventualmente resulta em resposta incorreto mas ainda assim é útil.
- 2. Para cada período de tempo disponível $T_{max} \in \{1 \text{ segundo}, 1 \text{ minuto}, 1 \text{ hora}, 1 \text{ dia}, 1 \text{ ano}, 1 \text{ século}\}$, determine o maior tamanho da instância de um problema que um algoritmo que executa em $f(n) \in \{\lg n, \sqrt{n}, n, n \lg n, n^2, 2^n, n!\}$ microsegundos pode resolver.
 - 3. Descreva o modelo computacional Random Access Machine. Porque ele é usado?
- 4. Escreva um algoritmo de ordenação Bubblesort. Faça a análise de pior e melhor caso do número de comparações e trocas para esse algoritmo.
- 5. Escreva o Insertion sort. Em quais situações o desempenho do Bubblesort pode ser considerado equivalente ao do Insertion sort?
 - **6.** Mostre que, no melhor caso, o Insertion sort tem tempo de execução em $\Omega(n)$ mas não em $\omega(n)$.
 - 7. Mostre que o Insertion sort não tem tempo de execução em $\Theta(n^2)$.
 - **8.** Mostre que o Insertion sort não tem tempo de execução em $o(n^2)$.
- $\bf 9.$ Analise o algoritmo Counting Sort considerando operações de acesso a arrays. Para quais tamanho de instâncias N e quais casos (pior ou melhor) o algoritmo Bubblesort pode usar menos operações de acesso a vetores?
 - **10.** Expresse a função $n^3/1000-100n^2-100n+3$ em notação Θ .
 - **11.** É verdade que se f(n) = O(g(n)) então g(n) = O(f(n))?
 - **12.** É verdade que se f(n) = O(g(n)) então $g(n) = \Omega(f(n))$?
 - **13.** É verdade que se f(n) = O(g(n)) então g(n) = o(f(n))?
 - **14.** É verdade que se f(n) = O(g(n)) então $g(n) = \omega(f(n))$?
 - **15.** Mostre que $f(n) = n \lg n + O(n)$ implica em $f(n) = \Theta(n \log n)$.
- **16.** Indique com "sim" ou "não", na tabela a seguir, quais pares de expressões (A, B) em que $A \in o, O, \Omega, \omega, \theta$ de B. Considere que $k \ge 1$, $\epsilon > 0$ e c > 1 são constantes.

	A	В	0	O	Ω	ω	Θ
a.	$\lg n$	n^{ϵ}					
b.	n^k	c^n					
c.	\sqrt{n}	$n^{\sin n}$					
d.	2^n	$2^{n/2}$					
e.	$n^{\lg c}$	$c^{\lg n}$					
f.	$\lg(n!)$	$\lg(n^n)$					

- 17. Prove ou conteste as seguintes relações sobre a notação little-oh:
- $n^2 = o(n^3)$
- 3n = o(10n)
- $\lg n = o(n)$

- $n \lg n = \Omega(n)$
- $n \lg n = \Omega(n^2)$
- $\lg(x+y) = O(\lg(x*y))$
- $\max(x, y) = O(x + y)$
- $\lg n^2 = o(\lg n^3)$
- se 0
- se b > 1 constante, $b^n = o(n!)$
- $\sqrt{n} = o(n)$
- $n\sqrt{n} = o(n^2)$
- $\sqrt{n} \lg n = o(n \lg n)$
- $\lg n = o(\sqrt{n})$
- $n^{10} = o(2^n)$
- $10^{1.5n} = o(n!)$
- $3 = \lg n$
- $2 = (9/10)^n$
- $\frac{n^3}{10} = o(n^3)$
- $2^n = o(2^{n+1})$
- $6(\ln n)^3 = o(n)$
- $n^2 \lg n = o(n^3)$
- $\lg(n^3) = o(1.5)$
- $3^n 2\sqrt{n} = o(n^3)$
- $\lg n = o(\lg(2n))$
- $3^n = o(3^{2n})$
- $n^4\sqrt{n} = o(n!)$
- $\bullet \sqrt{\lg n} = o(n^{2/5})$
- n! = o((n+1)!)
- $5n^2 = o(n\sqrt{n})$
- $e^n = o(\pi^n)$
- $\lg(e^n) = o(\lg(\pi^n))$
- $10 \lg n = o(2^n)$
- $\sqrt{n \lg n} = o(n)$
- $\ln(n!) = o(n \ln(n))$

18. Ordene usando a notação o(.):

$$\sqrt{n} \lg n \ \lg(n^{10}) \ \sqrt{n!} \ \frac{1}{\lg n} \ n^2 \lg n \ n^{5/2} \ [\lg n]^2 \ [\lg 10]^n$$

19. Prove ou conteste as seguintes relações:

•
$$n^2 \sim n^2/2$$

•
$$n^2 \sim n^2 + 10n$$

•
$$2^{n+1} = O(2^n)$$

•
$$2^{2n} = O(2^n)$$

•
$$\log(n!) = \Theta(n \log n)$$

•
$$O(\log_{\sqrt{N}} N) = O(1)$$

•
$$\sqrt{N(N-1)(N-2)} = o(N^2)$$

•
$$(n+a)^b = \Theta(n^b)$$
 para constantes $a, b \in \mathbb{R}^+$

•
$$o(g(n)) \cap \omega(g(n)) = \emptyset$$

- **20.** Em quais condições é verdade que se f(n) = O(g(n)) então g(n) = O(f(n))?
- **21.** Ordene as seguintes funções por ordem de crescimento, ou seja, encontre uma lista ordenada $g_1, g_2, g_3, \ldots, g_{32}$ das funções satisfazendo $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \ldots, g_{31} = \Omega(g_{32})$.

Divida essa lista em subgrupos tal que f(n) e g(n) pertencem aos mesmo grupo se e somente se $f(n) = \Theta(g(n))$.

	$\lg(\lg^* n)$	$2^{\lg^* n}$	$(\sqrt{2})^{\lg n}$	n^2	n!	$(\lg n)!$	$(3/2)^n$	n^3
	$\lg^2 n$	$\lg(n!)$	2^{2^n}	$n^{1/\lg n}$	$\ln \ln n$	$\lg^* n$	$n2^n$	$n^{\lg\lg n}$
Ī	$\ln n$	1	$2^{\lg n}$	e^n	$4^{\lg n}$	(n+1)!	$\sqrt{\lg n}$	$\lg^*(\lg n)$
	$2^{\sqrt{2 \lg n}}$	n	2^n	$n \lg n$	$2^{2^{n+1}}$	2^{n2^n}	$(\lg n)^{\lg n}$	n/\sqrt{n}

22. Dê um exemplo do porquê a afirmação "O tempo de execução do algoritmo A é pelo menos $O(n^2)$ " é absurda.