נוסחאון מתמטיקה

4 יחידות לימוד

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$a^2 - b^2 = (a - b)(a + b)$$
 אלגברה:

$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$
 $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

;
$$(a \neq 0) ax^2 + bx + c = 0$$
 משוואה ריבועית:

	$-b\pm\sqrt{b^2-4ac}$: השורשים
$x_{1,2} =$	2a	ושון שים:

סדרה הנדסית	סדרה חשבונית	בדרות:
$\begin{cases} a_1 = a \\ a_{n+1} = a_n \cdot q \end{cases}$	$\begin{cases} a_1 = a \\ a_{n+1} = a_n + d \end{cases}$: כלל נסיגה
$a_n = a_1 \cdot q^{n-1}$	$a_n = a_1 + (n-1)d$: איבר n-י
$S_n = \frac{a_1(q^n - 1)}{q - 1}$	$S_{n} = \frac{n \cdot (a_{1} + a_{n})}{2}$: סכום
$S = \frac{a_1}{1-q}$ יסכום אינסופי:	$S_{n} = \frac{n \cdot [2a_{1} + (n-1)d]}{2}$	

 $(b \neq 0 \ a \neq 0)$ מזקות:

$$(a \cdot b)^x = a^x \cdot b^x$$
 ; $(\frac{a}{b})^x = \frac{a^x}{b^x}$; $(a^x)^y = a^{x \cdot y}$; $(a^x)^y = a^{x \cdot y}$; $(a^x)^y = a^{x \cdot y}$; $(a^x)^y = a^{x \cdot y}$

גדילה ודעיכה:

 $M_t = M_0 \cdot q^t$.q או הדילה (או הדעיכה) ליחידת זמן

$$\log_{a}(a^{b}) = b$$
 ; $a^{\log_{a}b} = b$; $\log_{b}c = \frac{\log_{a}c}{\log_{a}b}$: $(a,b,c>0;a,b\neq 1)$

$$\log_a(b \cdot c) = \log_a b + \log_a c \qquad ; \quad \log_a \left(\frac{b}{c}\right) = \log_a b - \log_a c \qquad ; \quad \log_a(b^t) = t \cdot \log_a b$$

 $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_1} : (\mathbf{x}_2, \mathbf{y}_2) \quad (\mathbf{x}_1, \mathbf{y}_1)$ שיפוע, m, של ישר העובר דרך הנקודות $\mathbf{y} = \mathbf{y}_1 = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$ אוואת ישר $\mathbf{y} = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$ שיפוע $\mathbf{y} = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$ אוואת ישר $\mathbf{y} = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$ אוואת ישר $\mathbf{y} = \mathbf{m}(\mathbf{x} - \mathbf{x}_1)$

:הם: $B(x_2,y_2)$ י- ה $A(x_1,y_1)$ של קטע שקצותיו של אל $M(x_{\mathrm{M}},y_{\mathrm{M}})$ הם: שיעורי נקודת האמצע

$$x_{M} = \frac{x_{1} + x_{2}}{2}$$
 ; $y_{M} = \frac{y_{1} + y_{2}}{2}$

$$d = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$$
 : $B(x_2, y_2)$ ו- $A(x_1, y_1)$ בין הנקודות $d = \sqrt{\left(x_2 - x_1\right)^2 + \left(y_2 - y_1\right)^2}$

 $\mathbf{m}_1 \cdot \mathbf{m}_2 = -1$ שני ישרים, בעלי שיפועים \mathbf{m}_1 , ו- \mathbf{m}_2 מאונכים זה לזה אם ורק אם

 $(x-a)^2 + (y-b)^2 = R^2$: R משוואת מעגל שמרכזו (a,b) משוואת מעגל מעגל מעגל אמרכזו

הסתברות:

נוסחת ברנולי – ההסתברות ל-k הצלחות מתוך n ניסיונות בהתפלגות בינומית כאשר ההסתברות

$$egin{pmatrix} n \\ k \end{pmatrix} = rac{n!}{k!(n-k)!}$$
 באשר $P_n(k) = inom{n}{k}p^k \cdot (1-p)^{n-k}$: p להצלחה היא

 $P(A/B) = \frac{P(B/A) \cdot P(A)}{P(B)}$: נוסחת בייס $P(A/B) = \frac{P(A \cap B)}{P(B)}$

:טריגונומטרייה

 $\sin(\alpha\pm\beta) = \sin\alpha\cdot\cos\beta\pm\cos\alpha\cdot\sin\beta \qquad ; \qquad \cos(\alpha\pm\beta) = \cos\alpha\cdot\cos\beta\mp\sin\alpha\cdot\sin\beta$ $\sin2\alpha = 2\sin\alpha\cdot\cos\alpha \qquad ; \qquad \cos2\alpha = \cos^2\alpha-\sin^2\alpha = 1-2\sin^2\alpha = 2\cos^2\alpha-1$ (משפט הסינוסים: $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$

(b-לואה בין a היא הזווית הכלואה איז γ) $c^2=a^2+b^2-2ab\cdot\cos\gamma$: משפט הקוסינוסים

$$S = rac{1}{2} lpha R^2$$
 : שטח גַּזרה של $lpha \ell = lpha R$: אורך קשת של $lpha \ell = lpha R$

(c-b b איא הזווית הכלואה בין מ א S =
$$\frac{1}{2} \cdot \mathbf{b} \cdot \mathbf{c} \cdot \sin \alpha$$
 שטח משולש:

גופים במרחב:

(גובה הגוף) אובה הבסיס,
$$-h$$
 שטח הבסיס, $-h$ שטח הבסיס, $-h$ נפח: עפרה ישרה וגליל ישר: נפח:

שטח מעטפת :
$$M = P \cdot h$$
 גובה הגוף) שטח מעטפת : $M = P \cdot h$

(פור: נפח:
$$-h$$
 שטח הבסיס, $-h$ שטח הבסיס, $-h$ נפח: $V = \frac{B \cdot h}{3}$ נפח:

(רדיוס העיגול,
$$-\ell$$
 - הקו היוצר) אטח מעטפת מעטפת: שטח מעטפת שטח מעטפת:

חשבון דיפרנציאלי ואינטגרלי:

נגזרות:

$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$
 ; $(x^t)' = tx^{t-1}$

$$(\sin x)' = \cos x$$
 ; $(\cos x)' = -\sin x$; $(\tan x)' = \frac{1}{\cos^2 x}$

$$(\ln x)' = \frac{1}{x}$$
 ; $(a^x)' = a^x \cdot \ln a$; $(\log_a x)' = \frac{1}{x \cdot \ln a}$

$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
 : נגזרת של מכפלת פונקציות

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$
 נגזרת של מנת פונקציות :

$$\left[f\left(u(x)\right)\right]'=f'(u)\cdot u'(x)$$
 : נגזרת של פונקציה מורכבת

(נגזרת פנימית) א לפי u היא נגזרת של u'(x)

. (נגזרת חיצונית) u לפי f לפי היא נגזרת של f'(u)

$$\int \frac{1}{x} dx = \ln \left| x \right| + C \qquad \qquad ; \quad (t \neq -1) \quad \text{ and } t) \quad \int x^t dx = \frac{x^{t+1}}{t+1} + C \qquad \qquad \vdots$$

 $\int\!f(mx+b)dx = \frac{1}{m}F(mx+b) + C \quad \text{if } f(x) \text{ אז} \quad f(x)$ אם F(x) היא פונקציה קדומה של הפונקציה ל