

Especificação

- Objetivo da aula
 - descrever o que s\(\tilde{a}\) o crit\(\tilde{e}\) ios de teste funcional e apresentar t\(\tilde{e}\) tonicas simples de apoio a essa categoria de testes
- Justificativa
 - testes funcionais são testes caixa fechada e são utilizados para verificar a existência de inadequações ao uso
 - são criados a partir das especificações
 - devem levar em conta o ponto de vista do usuário
 - as expectativas do usuário podem ser (usualmente são) diferentes das especificações
- Texto
 - Pezzè, M.; Young, M.; Teste e Análise de Software; Porto Alegre, RS: Bookman; 2008; capítulo 10; seção 14.3

Mar 2017

Arndt von Staa © LES/DI/PUC-Rio

Especificação recordação

- A especificação deve estabelecer o que um artefato deve fazer do ponto da vista dos diversos interessados (stakeholders)
 - requisitos funcionais estão relacionados com as tarefas do usuário apoiadas pelo artefato
 - o usuário faz parte do sistema intensivo em software
 - requisitos não funcionais estão relacionados com o modo de resolver, ou com as propriedades da solução
 - muitas vezes chamados de requisitos de qualidade (da solução)
 - requisitos inversos coisas que o sistema não deve fazer
 - riscos que não podem ser assumidos
 - requisitos de interface humana
 - e também requisitos de interface com equipamentos e sistemas ou componentes externos

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

- 1

O que é teste funcional?

- O teste funcional tem por objetivo descobrir discrepâncias entre o que o artefato faz e a sua especificação funcional
 - o foco é testar a satisfação dos requisitos funcionais
 - é um teste caixa fechada (caixa preta)
 - assume especificações corretas e completas
- Uma forma ampliada do teste funcional é o teste de aceitação que tem por objetivo descobrir discrepâncias entre o que o artefato faz e os critérios de aceitação especificados
 - além de testar requisitos funcionais, testa também a satisfação de requisitos não funcionais, inversos e de interface humana

Para evitar confusão de terminologia, selecionamos termos que correspondam ao objetivo de teste

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

Л

2

Tipos especiais de teste funcional?

- Especificações podem estar erradas, incompletas, ou desatualizadas
 - o teste de aprovação é uma variante do teste de aceitação e tem por objetivo descobrir discrepâncias entre o que o artefato faz e os atuais anseios explícitos e implícitos do usuário e do cliente, independentemente da especificação
 - leva em conta a possibilidade dos anseios do usuário evoluírem desde o início do desenvolvimento (especificação) até o momento do teste de aceitação
 - tornar disponível partes do sistema pode motivar o usuário a evoluir seus anseios
 - diferença:
 - aceitação → especificado antes de desenvolver, o teste verifica a conformidade com a especificação
 - aprovação (ou adequação) > realizada após estar disponível, o teste verifica a conformidade com os atuais anseios do usuário

Anseio é usado no sentido de desejo (pode ou não ser satisfeito) ou necessidade (deve ser satisfeito)

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

5

Visão abstrata de um teste funcional

- Teste funcional
 - Sempre existe um contexto, ex.
 - base de dados de teste
 - conteúdo desta base de dados
 - Podem existir pré condições específicas para o caso de teste
 - Existem pós condições (oráculo) que descrevem o resultado correto normal a ser produzido
 - o oráculo pode depender de condições de retorno
 - Podem existir pós condições (oráculo) que descrevem o resultado de término anormal a ser produzido, ex.
 - exceções
 - cancelamentos
 - É irrelevante saber como o artefato transforma entrada em resultados

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

	Critéri	o: cobertura de elementos gráficos
		Sistema sis
ftware		Usuário 1 Senha 2
de Soi		Digite os caracteres Captcha 3
nharia		Login Cancelar Mudar senha Esqueci senha
Enge	• Con	dições 5 6 7
o de	- (Campo usuário:
tóri		• 1,a : vazio
oora		• 1,b : igual a um existente
La		• 1,c : igual a um existente, mas com 1 caractere a menos
		• 1,d : igual a um existente, mas com 1 caractere a mais
		• 1,e : máximo permitido + 50 caracteres
		•
	Mar 2017	Arndt von Staa © LES/DI/PUC-Rio 7

Critério: cobertura de elementos gráficos

- Dado um esboço ou desenho da janela, crie um identificador único para cada elemento (widget) da interface gráfica
 - widgets: caixas, botões, seletores, atalhos, réguas . . .
 - o id é usualmente um número, ou um nome (string) bem curto
- Gere casos de teste úteis
 - leve em conta as especificidades de cada widget
 - utilize os critérios de valoração para definir as especificidades
 - para cada um dos casos de teste marque todos os itens por ele exercitados
- Gere a suíte de teste
 - gere diferentes casos até que todos os itens tenham sido marcados pelo menos uma vez, e todas as condições de valoração pertinentes tenham sido consideradas
 - verifique problemas de mascaramento e ambiguidade

Mar 2017

Arndt von Staa © LES/DI/PUC-Ri

Cobertura de elementos gráficos

a dimensão do campo deve

um número "grande" qualquer

estar documentada ->

documentação técnica

- Especificidades de cada widget, ex:
 - list box testar cada item da lista
 - radio button testar cada alternativa
 - campo de entrada, testar:
 - vazio,
 - com 1 caractere,
 - com dimCampo caracteres,
 - com dimCampo+1 caracteres
 - com dimCampo+500 caracteres
 - barra de rolagem: seta, elevador, até o limite, além do limite
 - atalhos (hot keys)← devem estar documentados
 - botões testar cada botão
 - existindo campos condicionais, testar cada resultado de condição. Caso seja condição composta: cada condição elementar

Mar 2017

Arndt von Staa © LES/DI/PUC-Rio

Exemplo de casos de teste : lista corrida

- Usuário vazio, Senha vazio, Captcha igual, Login
 - Campo usuário não existe
- Isso é uma boa resposta?
- Usuário vazio, Senha vazio, Captcha igual, Cancela
 - cancela acesso
- Usuário vazio, Senha vazio, Captcha igual, Mudar senha
 - Campo usuário deve conter no mínimo n1 caracteres
- Usuário vazio, Senha vazio, Captcha igual, Esqueci senha
 - Campo usuário deve conter no mínimo n1 caracteres
- Usuário existe, Senha vazio, Captcha igual, Login
 - Campo senha não existe Isso é uma boa resposta?
- Usuário existe mas digitou -1, Senha vazio, Captcha igual, Login
 - Usuário não está cadastrado
- . . .

Mar 2017

Arndt von Staa © LES/DI/PUC-Rid

Cobertura de elementos gráficos

- Como saber se a lista está completa?
- Solução proposta: usar uma tabela de decisão
- Tabelas de decisão permitem realizar verificações
 - está completa?
 - é não ambígua?
 - ambiguidade: um determinado conjunto de decisões pode resultar em duas ou mais respostas (ações, oráculos) diferentes
 - está correta?
 - rever se conjuntos de decisões mapeiam corretamente sobre ações ou oráculos é mais fácil ao usar tabelas de decisão

Mar 201

Arndt von Staa © LES/DI/PUC-Rig

11

Exemplo casos gerados: tabela de decisão LES Usuário vazio s existe incompleta existe -1 s s existe +1 s preenchida de máximo +50 forma não Senha vazio sistemática existe S s s s s s s existe -1 existe +1 máximo +50 existe de outro não deveria Captcha s s s s s s f s s s corretos s testar com Botões Login S S S S S máx +50? Cancela Troca s s s Esqueci Ação Autoriza s Erro de uso s s Troca senha s Nova senha s Cancela

Critério: Tabelas de decisão

- Contexto típico para o uso de tabelas de decisão:
 - tabelas de decisão têm por objetivo simplificar o entendimento de decisões compostas
 - cada combinação de decisões dispara um determinado conjunto de uma ou mais ações
 - teste: cada combinação de decisões corresponde a um determinado oráculo
- Problema: um número grande de condições aninhadas pode ser muito difícil de tratar
 - tabelas de decisão são exponenciais: n condições binárias resultam em 2**n possíveis casos de teste
 - chama-se isso de explosão combinatória
 - problema comum em testes sistemáticos

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

13

Tabelas de decisão: sintaxe

- Na tabela abaixo são identificadas *n* decisões e *k* ações
- Cada uma das L colunas define uma combinação de condições que, se satisfeitas, ativam uma ou mais ações
- Cada coluna corresponde a um caso de teste

Col 1 Col 2 ··· Col L

Decisão 1			
Decisão 2			
			ı
Decisão n			
Ação 1			
Ação 2			
Ação k			

Mar 2017

rndt von Staa © LES/DI/PUC-Ric

Tabelas de decisão

- Usualmente as tabelas utilizam decisões binárias
- As condições de uma decisão podem ser

S ou V ou Tverdadeiro

N ou F ou F falso

- indiferente (tanto faz se verdadeiro ou falso)
 - a decisão pode, ou não, ser avaliada
 - reduz o número de colunas, cada "-" corresponde a duas colunas
 - cuidado com ambiguidades

N/A não se aplica

- a decisão <mark>não será avaliada</mark> em virtude das condições definidas para as outras decisões
- tratada como indiferente para fins de avaliação da tabela

Condição é o valor esperado de uma decisão

Mar 201

Arndt von Staa © LES/DI/PUC-Ric

1.5

Tabelas de decisão

- Decisões não binárias devem ser convertidas em uma coletânea de decisões binárias.
- Ex.
 - a relação a <= x < b pode ser convertida nas seguintes decisões, a e b são dados x é selecionado
 - a ε == x ⇒ não vale
 - a == x ⇒ vale
 - $a + \varepsilon == x \implies vale$
 - b ε == x \Rightarrow vale
 - b == x ⇒ não vale
 - b + ε == x \Rightarrow não vale

Mar 2017

Arndt von Staa © LES/DI/PUC-Ri

	Exemplo										LES
		está no interva tiliza dados já						o ro	aroo	, do	valorooão
	O exemplo ui	iliza uauos ja	vaio	iauc	15 SC	gun	uo a	15 16	yras	ue	valulação -
Software		x == -1	s	n	n	n	n	n	n	n	
		x == 0	-	s	n	n	n	n	n	n	
ia de		x == 1	-	-	S	n	n	n	n	n	
Engenharia		x == 50	-	-	-	s	n	n	n	n	
		x == 98	-	-	-	-	s	n	n	n	
rio de	x < 100 = x <= 99	x == 99	-	-	-	-	-	s	n	n	
aboratório		x == 100	-	-	-	-	-	-	s	n	
Labo		x vale		х	х	х	х	х			
		x não vale	х						х		
		impossível								х	por que?
	Mar 2017		Arndt	von St	taa © I	LES/DI	/PUC-I	Rio			17

Tabelas de decisão: casos especiais

- Conjunto obrigatório é um conjunto de 2 ou mais decisões no qual pelo menos uma deve resultar na condição *V*
 - exemplo: a decisão ternária x < N, x == N e x > N, forma um conjunto obrigatório em que cada decisão é mutuamente exclusiva com as demais
 - três linhas correspondem a 2ⁿ colunas
 - no caso n == 3

Mutuamente exclusivo e obrigatório

x < N	Т	Т	Т	Т	F	F	F	F
x == N	Т	Т	F	F	Т	Т	F	F
x > N	Т	F	Т	F	Т	F	Т	F
	imp	imp	imp	x < N	imp	x == N	x > N	imp

Mar 2017

Arndt von Staa © LES/DI/PUC-R

19

Tabelas de decisão: casos especiais

- mascaramento ou consequência de outra decisão em um conjunto de decisões: ocorre se uma decisão resultar em verdadeiro e então as outras necessariamente resultarão em verdadeiro (ou falso).
 - exemplo: se particionarmos os valores de uma variável em 4 faixas, teremos ao todo as seguintes 6 condições binárias:
 - x < V1 , V1 <= x , x < V2 , V2 <= x , x < V3 , V3 <= x em que V1 < V2 < V3
 - se x < V1 então, por transitividade, também x < V2
 - ou seja, x < V1 mascara a condição x < V2

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

Tabelas de decisão: casos especiais

- Verificação da ambiguidade (redundância, inconsistência)
 - uma coluna X é ambígua com relação a outra Y, se existirem condições que permitam selecionar simultaneamente as duas

x < n1	Т	_	_	F
x < n2	_	Т	_	F
x < n3	_	_	Т	F
conta	4	4	4	1

Se o total da contagem der mais do que 2ⁿ existem colunas ambíguas Mas para totais menores também podem existir ambiguidades!

3 deveria ser 8

Mar 201

ndt von Staa © LES/DI/PUC-Rio

23

Tabelas de decisão: casos especiais

- Verificação da completeza em tabelas com n decisões binárias:
 - no quadro completo devem existir $L == 2^n$ colunas
 - cada condição indiferente conta por duas alternativas.
 - as alternativas em uma coluna são multiplicadas
 - uma forma simples é criar tabelas com campos indiferentes e N/A somente à esquerda

x < n1	Т	F	F	F
x < n2	_	Т	F	F
x < n3	_	_	Т	F
conta	4	2	1	1

Mar 2017

Arndt von Staa © LES/DI/PUC-Rio

Usuário	vazio						
	existe						
	existe -1						
	existe +1						
	máximo +50						· Qual seria o númer
Senha	vazio						total de colunas?
	existe						
	existe -1						Qual seria o núme
	existe +1						aproximado de colunas, levando ei
	máximo +50						conta as restrições
	existe de outro						dos grupos
Captcha	corretos						
Botões	Login						
	Cancela						
	Troca						
	Esqueci						
Ação	Autoriza						
	Erro de uso						1
	Troca senha						1
	Nova senha						
	Cancela						
Controle	num colunas						
Controle	Troca senha Nova senha Cancela						

Quem são usuário e cliente?

recordação

- Usuário (user) pode ser
 - pessoa interessada no serviço prestado pelo artefato sob teste
 - pessoa interessada em manter o artefato sob teste
 - pessoa interessada em por em operação o artefato sob teste
 - pessoa interessada em compor o artefato sob teste com outros
 - outro artefato (software) com o qual o artefato sob teste interagirá
 - equipamento (máquina) com o qual o artefato sob teste interagirá
 - . . .
- Cliente (customer) é a pessoa ou organização
 - que disponibiliza recursos para a aquisição, desenvolvimento ou manutenção do artefato
 - interessada na redução de custos e riscos incorridos pelos processos
 - interessada na viabilização de um serviço impossível de ser realizado sem o emprego de sistemas intensivos em software
 - - -

Mar 201

Arndt von Staa © LES/DI/PUC-Ri

27

Referências bibliográficas

- Caldeira, L.R.N.; Geração semi-automática de massas de testes funcionais a partir da composição de casos de uso e tabelas de decisão; Dissertação de Mestrado, DI/PUC-Rio; 17/ago/2010
- Delamaro, M.E.; Maldonado, J.C.; Jino, M.; Introdução ao Teste de Software; Rio de Janeiro, RJ: Elsevier / Campus; 2007
- Kaner, C.; Falk, J.; Nguyen, H.Q.; Testing Computer Software; 2nd edition; London: Thomson; 1993
- Lachtermacher, L.; : Geração Automática de Dados de Teste através de Tabelas de Decisão; Dissertação de Mestrado, DI/PUC-Rio; 5/3/2010
- Mousavi, M.; Decision Table-Based Testing; Lecture notes; Eindhoven University of Technology; 2008
- Myers, G.J.; The Art of Software Testing; 2nd edition; New York: John Wiley & Sons; 2004

Mar 2017

Arndt von Staa © LES/DI/PUC-Ric

