离散数学 II Discrete Mathematics II

封筠

fengjun@stdu.edu.cn

20-12

课程回顾

陪集和拉格朗日定理:集合的积、逆、 左陪集、代表元素、拉格朗日定理和2个 推论

5-8 同态与同构

讨论两个代数系统之间的联系。着重研究两个代数系统之间的同态关系和同构关系。

●学习本节要熟悉如下术语(10个):

同态映射、同态象、同态核、满同态、 单一同态、自同态、同构映射、自同构、 同余关系、同余类

●要求:

掌握5个定理

一、同态

1、同态映射、同态象

定义5-8.1 设<A, \bigstar >和<B,* >是两个代数系统, \bigstar 和* 分别是A和B上的二元运算,f是从A到B的一个映射, 使得对任意 $\mathbf{a}_1, \mathbf{a}_2 \in \mathbf{A}$,有

 $f(a_1 \bigstar a_2) = f(a_1) * f(a_2)$ (先算后映=先映后算)则称f为由代数结构<A, \bigstar >到<B,* >的同态映射(homomorphism),称代数结构<A, \bigstar >同态于<B,* >,记为A~B。 <f(A),* >称为<A, \bigstar >的一个同态象(image under homomorphism)。其中 $f(A) = \{x | x = f(a), a \in A\} \subseteq B$

两个代数系统在同态意义下的相互联系可以由下图来描述。

2、举例

例1考察代数系统<I,·>,这里I是整数集,·是 普通乘法运算。如果我们对运算结果只感兴趣 于正、负、零之间的特征区别,那么,代数系 统<I,·>中运算结果的特征就可以用另一个代数 系统 $\langle B, \odot \rangle$ 的运算结果来描述,其中 $B=\{E, E, E\}$ 负,零},⊙是定义在B上的二元运算,如下表 所示。

0	正	负	零	
正	正	负	零	
正 负 零	负	正	零	
零	零	零	零	

作映射f: I→B如下:

很显然,对于任意的a,b∈ I,有

$$f(a \cdot b) = f(a) \odot f(b)$$

因此,映射f是由<I,·>到<B,⊙>的一个同态。

例1告诉我们,在<I,·>中研究运算结果的正、负、零的特征就等于在<B,⊙>中的运算特征,可以说,代数系统<B,⊙>描述了<I,·>中运算结果的这些基本特征。而这正是研究两个代数系统之间是否存在同态的重要意义。

应该指出,由一个代数系统到另一个代数 系统可能存在着多于一个的同态。

练习 P221 (1)

证明:如果f是由<A, \bigstar >到<B,*>的同态映射,g是由<B,*>到<C, \triangle >的同态映射,那么g0f是由<A, \bigstar >到<C, \triangle >的同态映射。

证明 已知 $g \circ f$ 是由<A, $\bigstar>$ 到<C, $\triangle>$ 的映射,对任意 a_1 , a_2 \in A,有

$$f(\mathbf{a}_1 \bigstar \mathbf{a}_2) = f(\mathbf{a}_1) * f(\mathbf{a}_2)$$

$$g \circ f(\mathbf{a}_1 \bigstar \mathbf{a}_2) = g(f(\mathbf{a}_1 \bigstar \mathbf{a}_2))$$

$$= g(f(\mathbf{a}_1) * f(\mathbf{a}_2))$$

$$= g(f(\mathbf{a}_1)) \triangle g(f(\mathbf{a}_2))$$

$$= g \circ f(\mathbf{a}_1) \triangle g \circ f(\mathbf{a}_2)$$

所以 $g \circ f$ 是由<A, $\bigstar>$ 到<C, $\triangle>$ 的同态映射。

二、同构

1、定义

定义5-8.2 设f是由<A, \star >到<B,*>的一个同态,如果f是从A到B的一个满射,则f称为满同态;如果f是从A到B的一个入射,则f称为单一同态;如果f是从A到B的一个双射,则f称为同构映射,并称<A, \star >和<B,*>是同构的,记作 $A \cong B$ 。

2、举例

例2设f: R→R定义为对任意x∈R

$$f(x)=5^x$$

那么,f是从<R,+>到<R,·>的一个单一同态。

例3 设 $f: N \rightarrow N_k$ 定义为对任意的 $x \in N$

$$f(x)=x \mod k$$

那么,f是从<N,+>到< N_k ,+ $_k$ >的一个满同态。

例4 设 $H=\{x|x=dn, d是某一个正整数, n\in I\}$,定义映射f: $I\rightarrow H$ 为对任意 $n\in I$

$$f(n)=dn$$

那么,f是从<I,+>到<H,+>的一个同构。

例题1 设 $A = \{a,b,c,d\}$,在A上定义的一个二元运算★如表1所示。又设

B={α,β,γ,δ}, 在**B**上定义的一个二元运算*如表2所示。证明<**A**,★>和<**B**,*>是同构的。

表1

*	a	b	С	d	
a	a	b	c	d	
b	b	a	a	c	
c	b	d	d	c	
d	a	b	c	d	

表2

*	α	β	γ	δ
α	α	β	γ	δ
β	β	α	α	γ
γ	β	δ	δ	γ
δ	α	β	γ	δ

14

证明 考察映射f,使得

 $f(a)=\alpha$, $f(b)=\beta$, $f(c)=\gamma$, $f(d)=\delta$ 显然,f是一个从A到B的双射,由表1和表2 容易验证f是由<A, \bigstar >到<B, * >的一个同态。因此<A, \bigstar >和<B, * >是同构的。如果考察映射g,使得

 $g(a)=\delta$, $g(b)=\gamma$, $g(c)=\beta$, $g(d)=\alpha$ 那么,g也是由<A, >到<B,* >的一个同构。

说明同构映射可以是不唯一的。

例5 下表中的代数系统<A, \bigstar >、<B, Δ >和 <C, * >是同构的。

*	a	b
a	a	b
b	b	a

Δ	偶	奇
偶奇	偶奇	奇偶

*	0°	180°
0°	0°	180°
180°	180°	0°

$$\langle A, \bigstar \rangle$$

$$\langle B, \Delta \rangle$$

$$< C, * >$$

同构这个概念很重要。从上例中可以看到, 形式 上不同的代数系统,如果它们是同构的 话,那么,就可抽象地把它们看作是本质上 相同的代数系统,所不同的只是所用的符号 不同。并且,容易看出同构的逆仍是一个同 构。

3、自同态与自同构

定义5-8.3 设<A, \star >是一个代数系统,如果f 是由<A, \star >到<A, \star >的同态,则称f为自同 态。如果g是由<A, \star >到<A, \star >的同构,则 称g为自同构。

练习 P221 (2)

设<G,*>是一个群,而a \in G,如果f是从 G到G的映射,使得对每一个x \in G,都 有

$$f(\mathbf{x}) = \mathbf{a}^* \mathbf{x}^* \mathbf{a}^{-1}$$

试证明f是从G到G上的自同构。

即要证明f是G上的一个双射,且对任意x,y \in G有 $f(x^*y)=f(x)^*f(y)$

证明 ①任取x, y∈G, x≠y

$$f(x)=a*x*a^{-1}$$

$$f(y)=a*y*a^{-1}$$

若f(x)=f(y),则有x=y,与 $x\neq y$ 矛盾。所以f是入射。

②任取y ∈ G,有

 $x=a^{-1}*y*a \in G$,使得

 $f(x)=a*x*a^{-1}=a*(a^{-1}*y*a)$ * $a^{-1}=y$

所以f是满射。

因此f是G上的一个双射。

③对于任意x, y∈G 有 f(x*y)=a*(x*y)*a-1 =a*x*a-1*a*y*a-1 =f(x)*f(y)

所以f是从G到G上的自同构。

定理5-8.1 设G是代数系统的集合,则G中代数系统之间的同构关系是等价关系。

□证明:

因为任何一个代数系统〈A,★〉可以通过恒等 映射与它自身同构,即自反性成立。

对称性,设〈A, \bigstar 〉 \cong 〈B, *〉且有对应的同构映射f,因为f的逆是由〈B, *〉到〈A, \bigstar 〉的同构映射,即〈B, *〉 \cong 〈A, \bigstar 〉。

传递性,如果f是由〈A, \star 〉到〈B,*〉的同构映射,g是由〈B,*〉到〈C, Δ 〉的同构映射,那么gof就是〈A, \star 〉到〈C, Δ 〉的同构映射。因此同构关系是等价关系。

定理5-8.2 设f是由 $\langle A, \star \rangle$ 到 $\langle B, \star \rangle$ 的一个同态。

- (a) 如果<A, ★>是半群, 那么在f作用下, 同态象< f(A),*>也是半群。
- (b)如果<A,★>是独异点,那么在f作用下,同态象<f(A),*>也是独异点。
- (c) 如果<A, ★>是群, 那么在f作用下, 同态象<f(A),*>也是群。

□证明思路:

先证(a): < f(A),* > 是半群

秒. 证*运算在f(A)上封闭

设<A, ★>是半群,<B,* >是一个代数结构,如果f是由<A, ★>到<B,* >的一个同态。则f(A) \subseteq B。

对于任意的a, b∈f(A), 必有x, y∈A, 使得 f(x)=a, f(y)=b

在A中必有z=x★y, 所以

$$a*b=f(x)*f(y)=f(x + y)=f(z) \in f(A)$$

%.证*在f(A)上满足结合律

对于任意的 $a,b,c \in f(A)$,必有 $x,y,z \in A$,使得

$$f(x)=a$$
, $f(y)=b$, $f(z)=c$

因为★在A上是可结合的,所以

$$a*(b*c)=f(x)*(f(y)*f(z))=f(x)*f(y \bigstar z)$$

$$= \mathbf{f}(\mathbf{x} \bigstar (\mathbf{y} \bigstar \mathbf{z})) = \mathbf{f}((\mathbf{x} \bigstar \mathbf{y}) \bigstar \mathbf{z})$$

$$= \mathbf{f}(\mathbf{x} \star \mathbf{y}) * \mathbf{f}(\mathbf{z}) = (\mathbf{f}(\mathbf{x}) * \mathbf{f}(\mathbf{y})) * \mathbf{f}(\mathbf{z})$$

$$=(a*b)*c$$

证明了< f(A),* > 是半群。

再证(b): < f(A),* >是独异点

设<A, ★>是独异点, e是A中的幺元, 那么 f(e)是f(A)中的幺元。因对于任意的 $a \in f(A)$, 必 $f(x \in A)$, 使得

$$f(x)=a$$

所以
$$a*f(e)=f(x)*f(e)=f(x \star e)=f(x)=a$$

= $f(e \star x)=f(e)*f(x)=f(e)*a$

因此f(e)是<f(A),*>中的幺元,<f(A),*>

最后证(c): < f(A),* > 是群

设<A, ★>是群,对于任意的a∈f(A),必有 $x \in A$,使得 f(x)=a

因为 $\langle A, \star \rangle$ 是群, 所以对于任意的 $\mathbf{x} \in A$, 都有逆元 $\mathbf{x}^{-1} \in A$,且 $\mathbf{f}(\mathbf{x}^{-1}) \in \mathbf{f}(A)$,而

$$f(x)*f(x^{-1})=f(x \bigstar x^{-1})=f(e)=f(x^{-1} \bigstar x)$$
$$= f(x^{-1})*f(x)$$

所以, $f(x^{-1})$ 是f(x)的逆元。即 $f(x^{-1}) = [f(x)]^{-1}$

因此< f(A),* >中的任意元素都有逆元, < f(A),* > 是群。

综合上述(a)、(b)、(c)三步, 定理证毕 口

The End