Functional Programming Higher-order functions

Prof. Dr. Peter Thiemann

Albert-Ludwigs-Universität Freiburg, Germany

WS 2022/23

Higher-order functions

- Functions are first-class citizens in Haskell
- A function can be
 - stored in data
 - argument of a (higher-order) functions
 - returned from a function

Examples of higher-order functions

Most higher-order functions are polymorphic

```
map :: (a -> b) -> [a] -> [b] filter :: (a -> Bool) -> [a] -> [a]
```

Examples of higher-order functions

Most higher-order functions are polymorphic

```
map :: (a -> b) -> [a] -> [b] filter :: (a -> Bool) -> [a] -> [a]
```

Example uses

```
> map even [1..5]
[False,True,False,True,False]
> filter even [1..10]
[2,4,6,8,10]
```

Examples of higher-order functions

Most higher-order functions are polymorphic

```
map :: (a -> b) -> [a] -> [b] filter :: (a -> Bool) -> [a] -> [a]
```

Example uses

[2,4,6,8,10]

```
> map even [1..5]
[False,True,False,True,False]
> filter even [1..10]
```

Haskell elides quantifiers in types

map ::
$$\forall a. \forall b. (a \rightarrow b) \rightarrow [a] \rightarrow [b]$$

filter :: $\forall a. (a \rightarrow \mathsf{Bool}) \rightarrow [a] \rightarrow [a]$

Instantiation

Instances of a polymorphic type

Consider

filter ::
$$\forall a.(a \rightarrow \mathsf{Bool}) \rightarrow [a] \rightarrow [a]$$

We may replace (instantiate) a by any type:

filter ::
$$(Int \rightarrow Bool) \rightarrow [Int] \rightarrow [Int]$$

$$\mathsf{filter} \quad :: \quad ([\mathit{Char}] \to \mathsf{Bool}) \to [[\mathit{Char}]] \to [[\mathit{Char}]]$$

Instantiation

Instances of a polymorphic type

Consider

filter ::
$$\forall a.(a \rightarrow \mathsf{Bool}) \rightarrow [a] \rightarrow [a]$$

We may replace (instantiate) a by any type:

filter ::
$$(Int \rightarrow Bool) \rightarrow [Int] \rightarrow [Int]$$

$$\mathsf{filter} \quad :: \quad ([\mathit{Char}] \to \mathsf{Bool}) \to [[\mathit{Char}]] \to [[\mathit{Char}]]$$

Instantiation rule

$$\frac{e :: \forall a.t}{e :: t[a \mapsto t']}$$

Function types

What's the difference between these types?

```
Int -> Int -> Int
Int -> (Int -> Int)
(Int -> Int) -> Int
```

Function types

What's the difference between these types?

```
Int -> Int -> Int
Int -> (Int -> Int)
(Int -> Int) -> Int
```

How many arguments?

```
pick 1 = fst
pick 2 = snd
```

Curried functions

Compare these types

```
type T1 = Int -> Int -> Int
type T2 = (Int, Int) -> Int
```

- Both function types take two integers and return one
- T1 takes the arguments one at a time
- T2 takes both arguments as a pair

Curried functions

Compare these types

```
type T1 = Int -> Int -> Int
type T2 = (Int, Int) -> Int
```

- Both function types take two integers and return one
- T1 takes the arguments one at a time
- T2 takes both arguments as a pair

Haskell prefers types like T1

- A curried type, after logician Haskell B. Curry
- Haskell's namesake
- Predefined functions curry and uncurry map between T1 and T2
- (an isomorphism)

Typing Rule

$$\frac{\text{App}}{e_1 :: t_2 \to t_1} \quad \frac{e_2 :: t_2}{\left(e_1 \ e_2\right) :: t_1}$$

Typing Rule

$$\frac{\text{APP}}{e_1 :: t_2 \to t_1} \quad e_2 :: t_2}{\left(e_1 \ e_2\right) :: t_1}$$

Example

Given

$$\begin{array}{ccc} \operatorname{map} & :: & \forall a. \forall b. (a \to b) \to [a] \to [b] \\ & \operatorname{even} & :: & \operatorname{Int} \to \operatorname{Bool} \\ \\ \underline{\operatorname{map}} & :: \forall a. \forall b. (a \to b) \to [a] \to [b] \\ \hline \operatorname{map} & :: & (\operatorname{Int} \to \operatorname{Bool}) \to [\operatorname{Int}] \to [\operatorname{Bool}] & \operatorname{even} & :: & \operatorname{Int} \to \operatorname{Bool} \\ \hline \operatorname{map} & \operatorname{even} & :: ?? & [1..5] & :: & [\operatorname{Int}] \end{array}$$

map even [1..5] ::??

Typing Rule

$$\frac{\mathsf{APP}}{e_1 :: t_2 \to t_1} \quad e_2 :: t_2}{\left(e_1 \ e_2\right) :: t_1}$$

Example

Given

$$\begin{array}{ccc} \operatorname{map} & :: & \forall a. \forall b. (a \to b) \to [a] \to [b] \\ \operatorname{even} & :: & \operatorname{Int} \to \operatorname{Bool} \\ \\ \underline{\operatorname{map}} :: \forall a. \forall b. (a \to b) \to [a] \to [b] \\ \hline \operatorname{map} :: & (\operatorname{Int} \to \operatorname{Bool}) \to [\operatorname{Int}] \to [\operatorname{Bool}] & \operatorname{even} :: \operatorname{Int} \to \operatorname{Bool} \\ \\ \underline{\operatorname{map}} & \operatorname{even} :: [\operatorname{Int}] \to [\operatorname{Bool}] & [1..5] :: [\operatorname{Int}] \\ \\ & \operatorname{map} & \operatorname{even} & [1..5] :: ?? \end{array}$$

Typing Rule

$$\frac{\mathsf{APP}}{e_1 :: t_2 \to t_1} \quad e_2 :: t_2}{\left(e_1 \ e_2\right) :: t_1}$$

Example

Given

$$\begin{array}{ccc} \operatorname{map} & :: & \forall a. \forall b. (a \to b) \to [a] \to [b] \\ \operatorname{even} & :: & \operatorname{Int} \to \operatorname{Bool} \\ \\ \underline{\operatorname{map}} :: \forall a. \forall b. (a \to b) \to [a] \to [b] \\ \underline{\operatorname{map}} :: & (\operatorname{Int} \to \operatorname{Bool}) \to [\operatorname{Int}] \to [\operatorname{Bool}] & \operatorname{even} :: \operatorname{Int} \to \operatorname{Bool} \\ \\ \underline{\operatorname{map}} \operatorname{even} :: & [\operatorname{Int}] \to [\operatorname{Bool}] & [1..5] :: [\operatorname{Int}] \\ \\ \underline{\operatorname{map}} \operatorname{even} & [1..5] :: [\operatorname{Bool}] & \end{array}$$

Designing a higher-order function

Designing a higher-order function

```
Two functions on lists

sum [] = 0

sum (x:xs) = x + sum xs

product [] = 1

product (x:xs) = x * product xs
```

Designing a higher-order function

Two functions on lists

```
sum [] = 0
sum (x:xs) = x + sum xs

product [] = 1
product (x:xs) = x * product xs
```

The common pattern

```
g(x:xs) = x f g(xs)
```

with parameters

- z :: b is a value
- f :: a -> b -> b is a combining function
- \Rightarrow Represent g by some foldr' f z

The foldr function: Intuition

Making the pattern into a higher-order function

Abstracting over value and combining function

```
foldr' f z [] = z
foldr' f z (x:xs) = x 'f' foldr' f z xs
```

where

- o z :: b is a value
- \bullet f :: a -> b -> b is a combining function

Making the pattern into a higher-order function

Abstracting over value and combining function

```
foldr' f z [] = z
foldr' f z (x:xs) = x 'f' foldr' f z xs
```

where

- z :: b is a value
- \bullet f :: a -> b -> b is a combining function

What's the type of foldr'?

Making the pattern into a higher-order function

Abstracting over value and combining function

```
foldr' f z [] = z
foldr' f z (x:xs) = x 'f' foldr' f z xs
```

where

- z :: b is a value
- f :: a -> b -> b is a combining function

What's the type of foldr'?

Making the pattern into a higher-order function

Abstracting over value and combining function

```
foldr' f z [] = z
foldr' f z (x:xs) = x 'f' foldr' f z xs
```

where

- z :: b is a value
- f :: a -> b -> b is a combining function

What's the type of foldr'?

Also known as reduce

map + reduce = MapReduce

Foldr in action

sum and product

```
sum xs = foldr (+) 0 xs
product xs = foldr (*) 1 xs
```

Foldr in action

sum and product

```
sum xs = foldr (+) 0 xs
product xs = foldr (*) 1 xs
```

more functions

```
or xs = undefined
and xs = undefined
concat xs = undefined
maximum (x:xs) = undefined
```

```
f1
f1 xs = foldr (:) [] xs
```

```
f1
f1 xs = foldr (:) [] xs
f2
f2 xs ys = foldr (:) ys xs
```

```
f1
f1 xs = foldr (:) [] xs
```

```
f2
f2 xs ys = foldr (:) ys xs
```

```
f3 xs = foldr snoc [] xs
where snoc x ys = ys++[x]
```

12/23

```
f1
f1 xs = foldr (:) [] xs

f2
f2 xs ys = foldr (:) ys xs
```

```
f3
f3 xs = foldr snoc [] xs
where snoc x ys = ys++[x]
```

```
f4
f4 f xs = foldr fc [] xs
where fc x ys = f x:ys
```

Transforming functions

Useful operations on functions

- partial application
- operator sections
- function composition
- anonymous functions aka lambda expressions
- eta conversion

Partial application

```
take :: Int -> [a] -> [a]
take 5 :: [a] -> [a]

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr (+) :: Int -> [Int] -> Int
foldr (+) 0 :: [Int] -> Int
```

- Partial application = function application with "too few" arguments
- Result is a function
- Can be used like any other function

Operator sections

```
-- subtraction
(-) :: Int -> Int -> Int
-- subtract one
(- 1) :: Int -> Int
-- subtract from one
(1 -) :: Int -> Int
-- less than 0
(< 0) :: Int -> Bool
-- greater than 0
(0 >) :: Int -> Bool
```

can be done with every infix function

Example

 Remove spaces from string as in this example removeSpaces "abc def \n ghi" == "abcdefghi"

Example

- Remove spaces from string as in this example removeSpaces "abc def \n ghi" == "abcdefghi"
- isSpace :: Char -> Bool

In module Data.Char

Example

- Remove spaces from string as in this example removeSpaces "abc def \n ghi" == "abcdefghi"
- In module Data.Char
 isSpace :: Char -> Bool
- yields definition
 removeSpaces xs = filter (not . isSpace) xs

Example

- Remove spaces from string as in this example removeSpaces "abc def \n ghi" == "abcdefghi"
- In module Data.Char isSpace :: Char -> Bool
- yields definition
 removeSpaces xs = filter (not . isSpace) xs
- Operator "." is function composition defined by
 (f . g) x = f (g x)

Function composition

Example

- Remove spaces from string as in this example removeSpaces "abc def \n ghi" == "abcdefghi"
- In module Data.Char isSpace :: Char -> Bool
- yields definition
 removeSpaces xs = filter (not . isSpace) xs
- Operator "." is function composition defined by
 - $(f \cdot g) x = f (g x)$
- What's the type of (.)?

Function composition

Example

- Remove spaces from string as in this example
 removeSpaces "abc def \n ghi" == "abcdefghi"
- In module Data.Char
 - isSpace :: Char -> Bool
- yields definition
 - removeSpaces xs = filter (not . isSpace) xs
- Operator "." is function composition defined by

$$(f . g) x = f (g x)$$

- What's the type of (.)?
- (.) :: (b -> c) -> (a -> b) -> (a -> c)

Usual function definition

$$snoc x ys = ys++[x]$$

Usual function definition

$$snoc x ys = ys++[x]$$

 Alternative: define snoc using an anonymous function aka lambda expression

$$snoc = \ x ys \rightarrow ys++[x]$$

Nowadays, the Unicode lambda can also be used

Usual function definition

$$snoc x ys = ys++[x]$$

Alternative: define snoc using an anonymous function aka lambda expression

$$snoc = \ x ys \rightarrow ys++[x]$$

Nowadays, the Unicode lambda can also be used

Often for function used in one place as in

```
f3 xs = foldr snoc [] xs
where snoc x ys = ys++[x]
```

Usual function definition

$$snoc x ys = ys++[x]$$

Alternative: define snoc using an anonymous function aka lambda expression

$$snoc = \ \ x \ ys \rightarrow ys++[x]$$

Nowadays, the Unicode lambda can also be used

• Often for function used in one place as in

Equivalently replace snoc by its definition

f3'
$$xs = foldr (\ x \ ys \rightarrow ys++[x]) [] xs$$

Usual function definition

$$snoc x ys = ys++[x]$$

Alternative: define snoc using an anonymous function aka lambda expression

$$snoc = \ \ x \ ys \rightarrow ys++[x]$$

Nowadays, the Unicode lambda can also be used

• Often for function used in one place as in

• Equivalently replace snoc by its definition

f3'
$$xs = foldr (\ x ys \rightarrow ys++[x]) [] xs$$

• Shorten more using partial application

f3'' xs = foldr (
$$\ x \rightarrow (++[x])$$
) [] xs

Eta conversion

A number of definitions have the form

$$f x = g x$$

where x does not occur in g

② In such cases, the formal parameter x is redundant:

$$f = g$$

is an equivalent definition.

- The transformation from (1) to (2) is called **eta reduction**. ¹
- The typing of an eta-reduced definition is more restricted.

¹Reverse transformation: **eta expansion**; both directions: **eta conversion**

Examples for eta-reduced definitions

```
sum = foldr (+) 0
product = foldr (*) 1
or = foldr (||) False
and = foldr (&&) True
concat = foldr (++) []
removeSpaces = filter (not . isSpace)
```

Exercises

```
takeLine :: String -> String
-- takeLine "abc\ndef\nghi\n" == "abc"

takeWhile' :: (a -> Bool) -> [a] -> [a]
dropWhile' :: (a -> Bool) -> [a] -> [a]
```

Exercises

```
lines :: String -> [String]
-- lines "abc\ndef\nghi\n" == ["abc", "def", "ghi"]
segments' :: (a -> Bool) -> [a] -> [[a]]
words :: String -> [String]
-- words "abc def ghi" == ["abc", "def", "ghi"]
```

Exercises

Define a function that counts how many times words occur in a text and displays each word with its count.

```
wordCounts :: String -> [String]
Example use

*Main> putStr (wordCounts "hello clouds\nhello sky")
clouds: 1
hello: 2
sky: 1
```

22 / 23

Wrapup

Higher-order functions

- take functions as parameters,
- often have polymorphic types,
- abstract common patterns (map, filter, foldr),
- enable powerful programming techniques (partial application, operator sections, function composition, anonymous functions, eta conversion).