計量経済 I: 定期試験

村澤 康友

2023年7月25日

注意:3 問とも解答すること.結果より思考過程を重視するので,途中計算等も必ず書くこと(部分点は大いに与えるが,結果のみの解答は0 点とする).

- 1. (20点) 以下で定義される計量経済学の専門用語をそれぞれ書きなさい.
 - (a) 2 群の回帰係数の差の有無の F 検定.
 - (b) 説明変数に内生変数があることで生じる OLS 推定量の偏り.
 - (c) 非確率的な個別効果.
 - (d) 処置群の各観測値に対し、共変量の値で対照群の観測値を対応させ、2 つの結果の差で条件付き平均処置効果を推定する手法.
- 2. (30 点) 回帰モデルの定式化について,以下の問いに答えなさい. ただし D はダミー変数,X,Y,Z は 連続確率変数とする.
 - (a) Y の (X,D) 上への交差項を含む回帰モデルは

$$E(Y|X,D) = \alpha + \beta X + \gamma D + \delta X D$$

D から Y への限界効果 E(Y|X,D=1) - E(Y|X,D=0) を求めなさい.

(b) Y の (X,Z) 上への 2 次回帰モデルは

$$E(Y|X,Z) = \alpha + \beta_1 X + \beta_2 X^2 + \gamma_1 Z + \gamma_2 Z^2 + \delta X Z$$

Z から Y への限界効果を求めなさい.

(c) D の X 上への回帰モデルが確率モデルとなることを示しなさい.

3. (50 点)「教育の収益率」を推定したい. そこであるデータを用いて 2SLS でミンサー方程式を推定した. 分析結果のコンピューター出力は以下の通りであった.

モデル 1: 二段階最小二乗法 (2SLS), 観測: 1-734

従属変数: lincome

内生変数 (instrumented): yeduc

操作変数: const exper exper2 payeduc moyeduc sibs

不均一分散頑健標準誤差, バリアント HC1

	係数		標準誤差			t 値		p 値	
const	4.5434	 5	0.31	 5256		 14.41	1	.27e-041	***
yeduc	0.0685	564	0.02	10698		3.254	. 0	.0012	***
exper	0.0612	705	0.01	55314		3.945	8	.75e-05	***
exper2	-0.0010	6162	0.000	058252	26	-1.822	. 0	.0688	*
Mean depende	ent var	6.1708	357	S.D.	dep	endent	var	0.3560	20
Sum squared	resid	70.408	367	S.E.	of i	regress	ion	0.3105	64
R-squared		0.246	519	Adjus	sted	R-squa	red	0.2434	23
F(3, 730)		25.029	962	P-val	lue(l	F)		2.02e-	15

ハウスマン (Hausman) 検定 -

帰無仮説: OLS 推定値は一致性を持つ

漸近的検定統計量: カイ二乗(1) = 0.609293

なお、p値(p-value) = 0.435054

データを無作為標本とみなして, この分析に関する以下の問いに答えなさい.

- (a)「教育の収益率」とは何かを説明し、その推定値を単位も含めて正確に(丸めずに)答えなさい.
- (b) ミンサー方程式の説明変数・被説明変数を上記出力中の変数記号で列挙し,各変数記号の意味を説明しなさい.
- (c) 外生変数を除く操作変数を上記出力中の変数記号で列挙し、各変数記号の意味を説明しなさい.
- (d) ミンサー方程式を OLS で推定すべきでないと考える理由を, 適切なキーワードを用いて簡潔に説明しなさい.
- (e) ハウスマン検定の結果を踏まえ、この分析で OLS でなく 2SLS を使用する必要性の有無を、具体的な数値を参照して簡潔に論じなさい.

解答例

- 1. 計量経済学の基本用語
 - (a) チョウ検定
 - (b) 内生性バイアス
 - (c) 固定効果
 - (d) マッチング法
- 2. 回帰モデルの定式化
 - (a) 回帰式に D = 1,0 を代入すれば

$$E(Y|X, D = 1) = \alpha + \beta X + \gamma + \delta X$$

$$E(Y|X, D = 0) = \alpha + \beta X$$

2式の差は $\gamma + \delta X$.

- E(Y|X, D=1), E(Y|X, D=0) で各 4 点.
- D は離散なので微分で求めるのはダメ.

$$Y = \alpha + \beta_1 X + \beta_2 X^2 + \gamma_1 Z + \gamma_2 Z^2 + \delta X Z + U$$

$$E(U|X,Z) = 0$$

Z は連続なので偏微分すると

$$\frac{\partial Y}{\partial Z} = \gamma_1 + 2\gamma_2 Z + \delta X$$

- $\partial Y/\partial Z$ の計算間違いは 2 点.
- $\partial Y/\partial X$ を求めてもダメ.
- (c) 期待値の定義より

$$\begin{split} \mathbf{E}(D|X) &:= 1 \cdot \Pr[D=1|X] + 0 \cdot \Pr[D=0|X] \\ &= \Pr[D=1|X] \end{split}$$

したがって E(D|X) を与える回帰モデルは Pr[D=1|X] を与える確率モデル.

- E(D|X) = Pr[D = 1|X] を証明しなければダメ.
- 3. 操作変数法
 - (a)「教育の収益率」は「修学年数が1年増えることによる年収の増加率」、その推定値は6.85564%。
 - 各5点.
 - 単位なし・丸めた推定値・0.0685564 などは 1 点.
 - (b) 説明変数は yeduc(修学年数), exper(就業可能年数), exper2(就業可能年数の2乗). 被説明変数は lincome (年収の対数値).
 - 説明変数 5 点,被説明変数 5 点.
 - 説明変数の過不足は 0 点.
 - 記号のみは各1点.
 - (c) 外生変数を除く操作変数は payeduc (父親の修学年数), moyeduc (母親の修学年数), sibs (兄弟姉妹数).

- 外生変数を除かなければ 0 点. 過不足も 0 点.
- 記号のみは 1 点.
- (d) 年収と修学年数はともに能力に依存すると考えられる. その場合, 修学年数は内生変数となり, OLS だと内生性バイアスが生じる.
 - 「内生性バイアス」がなければ 0 点.
- (e) ハウスマン検定の p 値は 0.435054 なので,帰無仮説「OLS 推定値は一致性を持つ」は通常の有意 水準で棄却されない. したがってこの分析では 2SLS を使用する必要性はなかったとも言える.
 - p 値を参照しなければ 0 点.