```
In [1]: import numpy as np
In [2]: import matplotlib.pyplot as plt
In [3]: import pandas as pd
In [4]: dataset=pd.read_csv("G:\College\BE\Data Mining\Assignments\Mall_Customers.csv")
In [5]: x=dataset.iloc[:,[3,4]].values
```

In [6]: dataset

Out[6]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	5	6	Female	22	17	76
	6	7	Female	35	18	6
	7	8	Female	23	18	94
	8	9	Male	64	19	3
	9	10	Female	30	19	72
	10	11	Male	67	19	14
	11	12	Female	35	19	99
	12	13	Female	58	20	15
	13	14	Female	24	20	77
	14	15	Male	37	20	13
	15	16	Male	22	20	79
	16	17	Female	35	21	35
	17	18	Male	20	21	66
	18	19	Male	52	23	29
	19	20	Female	35	23	98
	20	21	Male	35	24	35
	21	22	Male	25	24	73
	22		Female	46	25	5
	23	24	Male	31	25	73
	24		Female	54	28	14
	25	26	Male	29	28	82
	26		Female	45	28	32
	27	28	Male	35	28	61
	28	29		40	29	31
	29	30	Female	23	29	87
	170	171	Male	40	87	13
	171	172	Male	28	87	75
	172	173	Male	36	87	10
	173	174	Male	36	87	92

	CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
174	175	Female	52	88	13
175	176	Female	30	88	86
176	177	Male	58	88	15
177	178	Male	27	88	69
178	179	Male	59	93	14
179	180	Male	35	93	90
180	181	Female	37	97	32
181	182	Female	32	97	86
182	183	Male	46	98	15
183	184	Female	29	98	88
184	185	Female	41	99	39
185	186	Male	30	99	97
186	187	Female	54	101	24
187	188	Male	28	101	68
188	189	Female	41	103	17
189	190	Female	36	103	85
190	191	Female	34	103	23
191	192	Female	32	103	69
192	193	Male	33	113	8
193	194	Female	38	113	91
194	195	Female	47	120	16
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

200 rows × 5 columns

In [7]: # Using the elbow method to find the optimal number of clusters
 from sklearn.cluster import KMeans

In [8]: wcss=[]


```
In [10]: # Fitting K-Means to the dataset
kmeans=KMeans(n_clusters=5, init='k-means++', random_state= 42)
y_kmeans= kmeans.fit_predict(x)
```

In [11]: plt.scatter ($x[y_kmeans == 0, 0]$, $x[y_kmeans == 0, 1]$, s = 100, c = 'red', label

Out[11]: <matplotlib.collections.PathCollection at 0x2731dbabdd8>


```
In [12]: # Visualising the clusters
    plt.scatter( x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', label
    plt.scatter( x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', label
    plt.scatter( x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label
    plt.scatter( x[y_kmeans == 3, 0], x[y_kmeans == 3, 1], s = 100, c = 'cyan', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 30
    plt.title('Clusters of customers')
    plt.xlabel('Annual Income (k$)')
    plt.ylabel('Spending Score (1-100)')
    plt.legend()
    plt.show()
```

```
IndexError
                                          Traceback (most recent call last)
<ipython-input-12-bafefef84330> in <module>
      5 plt.scatter( x[y_kmeans == 3, 0], x[y_kmeans == 3, 1], s = 100, c = 'cy
an', label = "Cluster" )
      6 plt.scatter( x[y kmeans == 4, 0], x[y kmeans == 4, 1], s = 100, c = 'ma
genta', label = "Cluster" )
----> 7 plt.scatter( kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,
1], s = 300, c = 5)
      8 plt.title('Clusters of customers')
      9 plt.xlabel('Annual Income (k$)')
~\Anaconda3\lib\site-packages\matplotlib\pyplot.py in scatter(x, y, s, c, marke
r, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, data, **kwarg
s)
                vmin=vmin, vmax=vmax, alpha=alpha, linewidths=linewidths,
   2860
   2861
                verts=verts, edgecolors=edgecolors, **({"data": data} if data
                is not None else {}), **kwargs)
-> 2862
            sci( ret)
   2863
   2864
            return __ret
~\Anaconda3\lib\site-packages\matplotlib\__init__.py in inner(ax, data, *args,
 **kwargs)
   1808
                                "the Matplotlib list!)" % (label_namer, func.__
name ),
   1809
                                RuntimeWarning, stacklevel=2)
-> 1810
                    return func(ax, *args, **kwargs)
   1811
   1812
                inner.__doc__ = _add_data_doc(inner.__doc__,
~\Anaconda3\lib\site-packages\matplotlib\axes\ axes.py in scatter(self, x, y,
 s, c, marker, cmap, norm, vmin, vmax, alpha, linewidths, verts, edgecolors, **
kwargs)
   4209
                    try: # First, does 'c' look suitable for value-mapping?
   4210
                        c array = np.asanyarray(c, dtype=float)
-> 4211
                        n_elem = c_array.shape[0]
   4212
                        if c array.shape in xy shape:
   4213
                            c = np.ma.ravel(c array)
```

IndexError: tuple index out of range


```
In [ ]: plt.scatter( x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', label
    plt.scatter( x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', label
    plt.scatter( x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label
    plt.scatter( x[y_kmeans == 3, 0], x[y_kmeans == 3, 1], s = 100, c = 'cyan', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 0, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label
    plt.scatter( x[y_kmeans == 0, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label
    plt.scatter( x[y_kmeans == 3, 0], x[y_kmeans == 3, 1], s = 100, c = 'cyan', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', label
    plt.scatter( x[y_kmeans == 4, 0], x[
```

```
In []: # Visualising the clusters
plt.scatter( x[y_kmeans == 0, 0], x[y_kmeans == 0, 1], s = 100, c = 'red', label
plt.scatter( x[y_kmeans == 1, 0], x[y_kmeans == 1, 1], s = 100, c = 'blue', label
plt.scatter( x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 100, c = 'green', label
plt.scatter( x[y_kmeans == 3, 0], x[y_kmeans == 3, 1], s = 100, c = 'cyan', label
plt.scatter( x[y_kmeans == 4, 0], x[y_kmeans == 4, 1], s = 100, c = 'magenta', laplt.scatter( kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 30
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
```

```
In []: # Using the dendrogram to find the optimal number of clusters
    import scipy.cluster.hierarchy as sch
    dendrogram = sch.dendrogram(sch.linkage(x, method = 'ward'))
    plt.title('Dendrogram')
    plt.xlabel('Customers')
    plt.ylabel('Euclidean distances')
    plt.show()
```

```
In [ ]: # Fitting Hierarchical Clustering to the dataset
    from sklearn.cluster import AgglomerativeClustering
    hc = AgglomerativeClustering(n_clusters = 5, affinity = 'euclidean', linkage = 'v
    y_hc = hc.fit_predict(x)
```

```
In []: # Visualising the clusters
plt.scatter(x[y_hc == 0, 0], x[y_hc == 0, 1], s = 100, c = 'red', label = 'Cluster', lab
```

In []: