MATHEMATICS FOR ML

SMAI (CSE471)

Content

- 1. Vectors, Norms
- 2. Matrix, Determinant & Trace
- 3. System of equations : : Matrix formulation
- 4. Triangular Matrices
- 5. Positive Definite Matrices
- 6. Cholesky decomposition
- 7. Eigen values & vectors
- 8. SVD

Vectors

- By default we write vectors as column vectors.
- Adding two vectors a, b $\in \mathbb{R}^n$ component-wise results in another vector: a + b = c $\in \mathbb{R}^n$.
- Multiplying $a \in R^n$ by $\lambda \in R$ results in a scaled vector $\lambda a \in R^n$.

$$\boldsymbol{a} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \in \mathbb{R}^3$$

Linear Independence

Definition 2.12 (Linear (In)dependence). Let us consider a vector space V with $k \in \mathbb{N}$ and $x_1, \ldots, x_k \in V$. If there is a non-trivial linear combination, such that $\mathbf{0} = \sum_{i=1}^k \lambda_i x_i$ with at least one $\lambda_i \neq 0$, the vectors x_1, \ldots, x_k are linearly dependent. If only the trivial solution exists, i.e., $\lambda_1 = \ldots = \lambda_k = 0$ the vectors x_1, \ldots, x_k are linearly independent.

Generating Set and Span

Definition 2.13 (Generating Set and Span). Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and set of vectors $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$. If every vector $v \in \mathcal{V}$ can be expressed as a linear combination of x_1, \dots, x_k , \mathcal{A} is called a generating set of V. The set of all linear combinations of vectors in \mathcal{A} is called the span of \mathcal{A} . If \mathcal{A} spans the vector space V, we write $V = \operatorname{span}[\mathcal{A}]$ or $V = \operatorname{span}[x_1, \dots, x_k]$.

Basis

Definition 2.14 (Basis). Consider a vector space $V = (\mathcal{V}, +, \cdot)$ and $\mathcal{A} \subseteq \mathcal{V}$. A generating set \mathcal{A} of V is called *minimal* if there exists no smaller set $\tilde{\mathcal{A}} \subseteq \mathcal{A} \subseteq \mathcal{V}$ that spans V. Every linearly independent generating set of V is minimal and is called a *basis* of V.

Norm

Definition 3.1 (Norm). A norm on a vector space V is a function

$$\|\cdot\|:V\to\mathbb{R}\,,\tag{3.1}$$

$$x \mapsto \|x\|$$
, (3.2)

which assigns each vector x its length $||x|| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $x, y \in V$ the following hold:

- Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$
- Positive definite: $\|x\| \ge 0$ and $\|x\| = 0 \iff x = 0$

Norm

L₁ Norm

The Manhattan norm on \mathbb{R}^n is defined for $\boldsymbol{x} \in \mathbb{R}^n$ as

$$\|x\|_1 := \sum_{i=1}^n |x_i|,$$
 (3.3)

L₂ Norm

The Euclidean norm of $x \in \mathbb{R}^n$ is defined as

$$\|\boldsymbol{x}\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{\boldsymbol{x}^{\top} \boldsymbol{x}}$$
 (3.4)

L_o Norm

$$||x||_0 = \sqrt[0]{\sum_i x_i^0}$$

-> Gives the total number of non-zero elements

 L_{∞} Norm

$$||x||_{\infty} = \sqrt[\infty]{\sum_{i} x_{i}^{\infty}} = max|x_{i}|$$

 $L_{_{D}}$ Norm

$$\left\|\mathbf{x}
ight\|_p := \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$$

Matrix

A matrix is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}.$$

Rank of Matrix The number of linearly independent columns of a matrix $A \in \mathbb{R}^{m \times n}$ equals the number of linearly independent rows and is called the rank of A and is denoted by rk(A).

Properties of Determinant

- Swapping two rows/columns changes the sign of det(A).
- $\det(\mathbf{A}) = \det(\mathbf{A}^{\top}).$
- $\det(\mathbf{A}\mathbf{B}) = \det(\mathbf{A})\det(\mathbf{B}).$
- $\det(\lambda \mathbf{A}) = \lambda^n \det(\mathbf{A}).$
- A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has $\det(\mathbf{A}) \neq 0$ if and only if $\operatorname{rk}(\mathbf{A}) = n$. In other words, \mathbf{A} is invertible if and only if it is full rank.

Trace

Trace is defined as:

$$\operatorname{tr}(oldsymbol{A}) := \sum_{i=1}^n a_{ii}$$
 , i.e. , the trace is the sum of the diagonal elements of A.

Properties of Trace:

$$\begin{aligned} &\operatorname{tr}(\boldsymbol{A}+\boldsymbol{B})=\operatorname{tr}(\boldsymbol{A})+\operatorname{tr}(\boldsymbol{B}) \text{ for } \boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times n} \\ &\operatorname{tr}(\alpha \boldsymbol{A})=\alpha \operatorname{tr}(\boldsymbol{A}), \alpha \in \mathbb{R} \text{ for } \boldsymbol{A} \in \mathbb{R}^{n \times n} \\ &\operatorname{tr}(\boldsymbol{I}_n)=n \\ &\operatorname{tr}(\boldsymbol{A}\boldsymbol{B})=\operatorname{tr}(\boldsymbol{B}\boldsymbol{A}) \text{ for } \boldsymbol{A} \in \mathbb{R}^{n \times k}, \boldsymbol{B} \in \mathbb{R}^{k \times n} \end{aligned}$$

System Of Equations: Matrix Formulation

If we consider the system of linear equations

$$2x_1 + 3x_2 + 5x_3 = 1$$

 $4x_1 - 2x_2 - 7x_3 = 8$ (2.35)
 $9x_1 + 5x_2 - 3x_3 = 2$

and use the rules for matrix multiplication, we can write this equation system in a more compact form as

$$\begin{bmatrix} 2 & 3 & 5 \\ 4 & -2 & -7 \\ 9 & 5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \\ 2 \end{bmatrix}.$$
 (2.36)

Triangular Matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{00} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{a}_{10} & \mathbf{a}_{11} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{a}_{20} & \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{0} & \mathbf{0} \\ \mathbf{a}_{30} & \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} & \mathbf{0} \\ \mathbf{a}_{40} & \mathbf{a}_{41} & \mathbf{a}_{42} & \mathbf{a}_{43} & \mathbf{a}_{44} \end{bmatrix}$$

Lower Triangular Matrix

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{00} & \mathbf{a}_{01} & \mathbf{a}_{02} & \mathbf{a}_{03} & \mathbf{a}_{04} \\ 0 & \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \mathbf{a}_{14} \\ 0 & 0 & \mathbf{a}_{22} & \mathbf{a}_{23} & \mathbf{a}_{24} \\ 0 & 0 & 0 & \mathbf{a}_{33} & \mathbf{a}_{34} \\ 0 & 0 & 0 & 0 & \mathbf{a}_{44} \end{bmatrix}$$

Upper Triangular Matrix

Solve Lx = b

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

Each addition, multiplication, division is considered 1 flop.

We solve for x as:

$$x_{1} = \frac{b_{1}}{a_{11}}$$

$$x_{2} = \frac{b_{2} - a_{21}x_{1}}{a_{22}}$$

$$x_{3} = \frac{b_{3} - a_{31}x_{1} - a_{32}x_{2}}{a_{33}}$$

$$\vdots$$

$$x_{n} = \frac{b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \dots - a_{n,n1}x_{n1}}{a_{n1}}$$

Flops Count :

$$1 + 3 + 5 + \dots + (2n-1) = n^2$$

Positive Definite (PD) Matrix

A matrix is said to be positive definite if it satisfies

- 1. The matrix is Symmetric
 - · A symmetric matrix is a square matrix that is equal to its transpose
- 2. $x^T Ax > 0 \ \forall x$

Example
$$A = \begin{bmatrix} 7 & 2 \\ 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 7 & 2 \\ 2 & 1 \end{bmatrix}$$

$$X^{T}A = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 7 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$e^{\mathsf{T}} \mathbf{A} \times = [$$

$$= [$$

$$= \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 7x_1 + 2x_2 \\ 2x_1 + x_2 \end{bmatrix}$$

 $= 7x_1^2 + 2x_1x_2 + 2x_1x_2 + x_2^2$

 $= 7x_1^2 + 4x_1x_2 + x_2^2 = \int (x_1, x_2)$

Cholesky Decomposition

Theorem 4.18 (Cholesky Decomposition). A symmetric, positive definite matrix A can be factorized into a product $A = LL^{\top}$, where L is a lower-triangular matrix with positive diagonal elements:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ l_{n1} & \cdots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & \cdots & l_{n1} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & l_{nn} \end{bmatrix} . \tag{4.44}$$

L is called the Cholesky factor of A, and L is unique.

$$\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^T \\ 0^T & L_{22} \end{bmatrix}$$

A matrix is postive semi definite (PSD) if the second constraint is relaxed as $x^T A x \ge 0 \ \forall x$

$$\begin{bmatrix} a_{11} & A_{21}^T \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ L_{21} & L_{22} \end{bmatrix} \begin{bmatrix} l_{11} & L_{21}^T \\ 0^T & L_{22}^T \end{bmatrix}$$

Now, we can form the following set of equations from above

•
$$a_{11} = l_{11} \cdot l_{11} \implies l_{11} = \sqrt{a_{11}}$$

•
$$A_{21} = L_{21} \cdot l_{11} \implies L_{21} = \frac{A_{21}}{l_{11}}$$

•
$$A_{22} = L_{21}L_{21}^T + L_{22}L_{22}^T \implies (A_{22} - L_{21}L_{21}^T) = L_{22}L_{22}^T$$

Algorithm: Cholesky

- 1. Calculate $l_{11} = \sqrt{a_{11}}$
- 2. Calculate $L_{21} = \frac{A_{21}}{l_{11}}$
- 3. Use Cholesky to compute L_{22} as $(A_{22} L_{21}L_{21}^T) = L_{22}L_{22}^T$

Question

Compute Cholesky Factorization of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{bmatrix}$

Solution

•
$$l_{11} = \sqrt{a_{11}} = 1$$

•
$$L_{21} = \frac{A_{21}}{l_{11}} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
. Now, $L = \begin{bmatrix} 1 & 0 & 0\\2 & l_{22} & 0\\3 & l_{32} & l_{33}. \end{bmatrix}$

- We have to do Cholesky factorization of A_{22} $L_{21}L_{21}^{T} = \begin{bmatrix} 16 & 20 \\ 20 & 61 \end{bmatrix} = \begin{bmatrix} l_{22} & 0 \\ l_{32} & l_{33} \end{bmatrix} \cdot \begin{bmatrix} l_{22} & l_{32} \\ 0 & l_{23} \end{bmatrix}$
- $l_{22} = \sqrt{a_{22}} = 4$
- $l_{23} = \frac{20}{4} = 5$
- We have to factorize $61 5 \cdot 5 = 36$. This gives l_{33} as 6
- The final answer is

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 20 & 26 \\ 3 & 26 & 70 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$$

Solving linear equations by Cholesky factorization

Solve AX = b where A is PD matrix of order n. $LL^T x = b$

- Cholesky factorization: factor A as LL^T ((1/3)n³ flops).
- 2. Forward substitution: Solve Lw = b (n^2 flops).
- 3. Back substitution: Solve $L^T x = w$ (n^2 flops).

Total cost is $(1/3)n^3 + 2n^2$ or roughly $(1/3)n^3$.

Eigenvectors and Eigenvalues

- An eigenvector is a vector whose direction remains unchanged when a linear transformation is applied to it.
- If the vector space V is finite-dimensional, then the linear transformation T can be represented as a square matrix A (n x n), and the vector x by a non-zero column vector (n x 1), then the eigenvalue equation or eigenequation is given by:

$$Ax = \lambda x \tag{1}$$

$$Ax - \lambda x = 0 (2)$$

$$(A - \lambda I)x = 0 (3)$$

• If x is non-zero, then the above eqn. will have a solution if $|A - \lambda|| = 0$. This equation is called the characteristic equation of A, and is an nth order polynomial in λ with n roots.

SVD decomposition

Theorem 4.22 (SVD Theorem). Let $A^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of A is a decomposition of the form

$$\mathbb{E} \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} = \mathbb{E} \begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix} \mathbb{E} \begin{bmatrix} \mathbf{V} \\ \mathbf{V} \end{bmatrix} \mathbb{E}$$

$$(4.64)$$

with an orthogonal matrix $U \in \mathbb{R}^{m \times m}$ with column vectors u_i , $i = 1, \ldots, m$, and an orthogonal matrix $V \in \mathbb{R}^{n \times n}$ with column vectors v_j , $j = 1, \ldots, n$. Moreover, Σ is an $m \times n$ matrix with $\Sigma_{ii} = \sigma_i \geqslant 0$ and $\Sigma_{ij} = 0$, $i \neq j$.

$$U^{T}U = UU^{T} = I_{m \times m}, V^{T}V = VV^{T} = I_{n \times n}$$

SVD Decomposition

- The left-singular vectors of A are eigenvectors of AA^{\top}
- The right-singular vectors of A are eigenvectors of $A^{\top}A$.
- The non-zero singular values of A are the square roots of the non-zero eigenvalues of AA^{\top} and are equal to the non-zero eigenvalues of $A^{\top}A$.

Let λ be an eigenvalue of $A^T A$, i.e.

$$A^T A x = \lambda x$$

for some $x \neq 0$. We can multiply A from the left and get

$$AA^{T}(Ax) = \lambda(Ax).$$

In the SVD, the entries in the diagonal matrix Σ are all real and non-negative. The diagonal entries σ_i , i = 1,..., r, of Σ are called the singular values. By convention, the singular values are ordered, i.e., $\sigma_1 > \sigma_2 > \sigma_r > 0$.

Computing Inverse using SVD

Let us assume $A = UDV^T$

$$A^{-1} = VD^{-1}U^{T}$$

SVD Example:

http://www.d.umn.edu/~mhampton/m4326svd_example.pdf