Cours de Télécommunication (Transmission BdB)

Ayoub Bouchama

April 24, 2023

Contents

1	Modulation numérique en bande de Base et notion d'efficacité spectrale			
	1.1	Principe		
	1.2	Mapping		
	1.3	Densité spectrale de puissance		
		1.3.1 NRZ à 2 niveaux		
		1.3.2 Signal biphase ou manchester		
	1.4	Bande occupée par le signal transmis 'B'		
	1.5	Efficacité spectrale		
2	Inte	erférences entre symboles et critère de Nyquist		
_	2.1	Schéma de la chaîne de transmission		
	$\frac{2.1}{2.2}$	Réponse impulsionnelle globale		
	$\frac{2.2}{2.3}$	Critère de Nyquist		
	$\frac{2.3}{2.4}$	Condition sur canal pou respecter le critère de Nyquist		
	2.4	Condition sur canal pou respecter le critere de Nyquist		
3	_	eact du bruit dans la chaine de transmission et notion d'efficacité en puissance		
	3.1	Filtre adapté		
	3.2	Décision		
		3.2.1 Cas Binaire		
		3.2.2 Cas 4-aire		
	3.3	Taux d'erreur symbole (TES)		
		3.3.1 Cas Binaire		
		3.3.2 Cas 4-aire		
	3.4	Taux d'erreur binaire (TEB)		
	3.5	Efficacité en puissance		
_	• .			
L	ıst	of Figures		
	1	Quelques exemples du mapping		
	2	Signal NRZ à deux niveaux		
	3	Signal biphase ou manchester		
	4	La bande B		
	5	Shema de la chaine de transmission		
	6	Critère de Nyquist sans canal		
	7	Filtre adapté		
	8	Décision dans le cas binaire		
	9	Décision dans le cas 4-aire		
	10	TES dans le cas binaire		
	11	TES dans le cas 4-aire		
	12	TEB 8		
	13	Relation entre TEB et l'efficacité en puissance		

1 Modulation numérique en bande de Base et notion d'efficacité spectrale

1.1 Principe

Le principe de la modulation en bande base :

```
- Découper la séquence binaire en bloc de n bits ***** n=1 si par exemple le signal est constitué des bits [0\ 1] ***** n=2 si par exemple le signal est constitué des signal [00\ 01\ 10\ 11] *****
```

- Associer un symbole M-aire à chaque bloc ($M=2^n$)
- $-R_b = 1/T_b$
- $R_s = 1/T_s$
- $T_s = n * T_b$
- $R_s = R_b/n$
- $R_s = R_b/log2(M)$
- $N_s = T_s/T_e$

1.2 Mapping

Le mapping consiste à correspondre à chaque bits un symbole et de tracer le filtre de mise en forme h.

Symboles ak

-V +V

bits

0

h (t)	
+1	_•t
T_S	

Mapping		
bits	Symboles <u>a</u> _k	
0	0	
1	+V	

Figure 1: Quelques exemples du mapping

1.3 Densité spectrale de puissance

1.3.1 NRZ à 2 niveaux

La densité spectrale d'un signal NRZ à deux niveaux est :

$$S_x(f) = T_s * [sin(\pi * f * T_s)/(\pi * f * T_s)]^2 = T_s * sinc(\pi * f * T_s)^2$$

Figure 2: Signal NRZ à deux niveaux

1.3.2 Signal biphase ou manchester

La densité spectrale d'un signal biphase ou manchester est :

$$S_x(f) = T_s * [sin(\pi * f * T_s/2)^2/(\pi * f * T_s/2)]^2$$

Figure 3: Signal biphase ou manchester

1.4 Bande occupée par le signal transmis 'B'

Definition 1 : Bande de fréquence B concentrant x% de l'énergie du signal (valeurs typiques : 95 à 99)

$$\frac{\int_0^B S_x(f)df}{\int_0^\infty S_x(f)df} = \frac{x}{100}$$

Definition 2 : Bande de fréquence B au délà de laquelle l'atténuation minimale est de x dB (valeurs typiques : 20 à 30 dB)

Figure 4: La bande B

1.5 Efficacité spectrale

L'efficacité spectrale est la bande B nécessaire pour passer le débit ${\cal R}_b$ souhaité et on a :

$$B = k * R_s et R_s = \frac{R_b}{log2(M)}$$

Donc:

$$\eta = \frac{R_b}{B} = \frac{log2(M)}{k}$$

2 Interférences entre symboles et critère de Nyquist

2.1 Schéma de la chaîne de transmission

Figure 5: Shema de la chaine de transmission

2.2 Réponse impulsionnelle globale

L'expression de la reponse impulsionnelle globale est :

$$g(t) = h(t) * h_c(t) * h_r(t)$$

h(t): Reponse impulsionnelle du filtre de mise en forme $h_c(t)$: Reponse impulsionnelle du canal de propagation $h_r(t)$: Reponse impulsionnelle du filtre de reception

2.3 Critère de Nyquist

Le critère de Nyquist consiste à vérifier 2 conditions : $g(t_0) \neq 0$ et $g(t_0 + pT_s) = 0$ for $p \in Z^*$

Le critère de Nyquist est satisfait pour t₀=T_s

$$g(t_0)=T_s$$

 $g(t_0+T_s)=g(2T_s)=0$
 $g(t_0-T_s)=g(0)=0$

Figure 6: Critère de Nyquist sans canal

2.4 Condition sur canal pou respecter le critère de Nyquist

Si $B_W > F_{max}$, un canal AWGN à bande limitée B_W permet de continuer à respecter le critère de Nyquist.

Mais, comme $F_{max}=kR_s$, alors $R_s<\frac{B_w}{k}$ pour continuer de respecter le critère de Nyquist.

3 Impact du bruit dans la chaine de transmission et notion d'efficacité en puissance

3.1 Filtre adapté

Figure 7: Filtre adapté

3.2 Décision

3.2.1 Cas Binaire

Figure 8: Décision dans le cas binaire

3.2.2 Cas 4-aire

Figure 9: Décision dans le cas 4-aire

3.3 Taux d'erreur symbole (TES)

3.3.1 Cas Binaire

- ightarrow <u>Cas binaire</u> : $a_m \in \{\pm V\}$, équiprobables et indépendants
 - → Nyquist respecté et seuil de decision en 0

→ Nyquist respecté, seuil de decision en 0 et filtrage adapté

 TES_{min} en fonction de $rac{E_b}{N_0}$ (SNR par bit à l'entrée du récepteur) ?

Filtrage adapté :
$$H_r(f) = \lambda H_e^*(f) e^{-j2\pi f t_0}$$
 ou $H_e(f) = \frac{1}{\lambda} H_r^*((f) e^{-j2\pi f t_0}$
 $\Rightarrow G(f) = H(f) H_c(f) H_r(f) = H_e(f) H_r(f) = \lambda \left| H_e(f) \right|^2 e^{-j2\pi f t_0} = \frac{1}{\lambda} \left| H_r(f) \right|^2 e^{-j2\pi f t_0}$
$$a_k \in \{ \pm V \}$$

Figure 10: TES dans le cas binaire

3.3.2Cas 4-aire

- ightarrow <u>Cas M-aire</u> : $a_m \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$, équiprobables et indépendants
 - → Nyquist respecté et seuil de decision en 0

$$TES = 2\left(\frac{M-1}{M}\right)Q\left(\frac{Vg(t_0)}{\sigma_w}\right)$$

→ Nyquist respecté, seuil de decision en 0 et filtrage adapté

$$TES_{min} = 2\left(\frac{M-1}{M}\right)Q\left(\sqrt{\frac{6log_2(M)}{M^2-1}\frac{E_b}{N_0}}\right)$$

$$a_m \in \{\pm V, \pm 3V, ..., \pm (M-1)V\}$$

Obtenu pour une modulation M-PAM (Bande de base), dans un canal de Nyquist, avec filtrage adapté.

Figure 11: TES dans le cas 4-aire

3.4 Taux d'erreur binaire (TEB)

Le taux d'erreur binaire TEB depend du taux d'erreur symbole TES par la relation :

$$TEB = \frac{TES}{log2(M)}$$

$$(\text{TEB} = \frac{\text{Nbre de bits erron\'es}}{\text{Nbre de bits transmis}} \approx \frac{\text{Nbre symboles erron\'es}}{\text{Nbre symboles transmis x Nbre bits cod\'es par symbole}})_{122}$$

Figure 12: TEB

3.5 Efficacité en puissance

L'efficacité en puissance est SNR par bit nécessaire à l'entrée du récepteur pour atteindre le TEB souhaité.

Figure 13: Relation entre TEB et l'efficacité en puissance