

第五章 半导体存储电路

本章目录

- ▶5.1 概述
- ▶5.2 SR锁存器
- ▶5.3 触发器
- ▶5.4 寄存器
- ▶5.5 存储器

2022-9-9

第五章 半导体存储电路

§ 5.1 概述

- 1存储电路
 - •存储单元:只能存储一位数据的电路;
 - •寄存器:存储一组数据的存储电路:
 - •存储器:存储大量数据的存储电路。
- 2 存储单元分类
- ——静态存储单元

由门电路连接而成,包括各种结构的锁存器和触发器,利用正反馈原理存储数据。

——动态存储单元利用电容的电荷存储效应存储数据。

§ 5.2 SR锁存器

一、电路结构与工作原理

1 电路结构

定义: S_D 为置位端或置1输入端, R_D 为复位端或置0输入端; Q=1,Q'=0为锁存器的"1"状态, Q=0,Q'=1为锁存器的"0"状态

2022-9-9

第五章 半导体存储电路

2

§ 5.2 SR锁存器

 S_{D} =1信号消失以后,电路保持1状态不变。

(2)
$$S_D = 0$$
, $R_D = 1$; $Q=0$, $Q'=1$

 $R_{\rm D}$ =1信号消失以后,电路保持0状态不变。

(3)
$$S_D = R_D = 0$$
; 电路维持原来的状态不变。

(4)
$$S_D = R_D = 1$$
; $Q = Q' = 0$

 S_{D} 和 R_{D} 信号同时消失以后,电路状态无法确定。

正常工作时的约束条件: $S_{\rm D}R_{\rm D}=0$

 R_{D}

S_D	R_D	Q	Q^*
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	01
1	1	1	0 ①

§ 5.2 SR锁存器

3 用与非门构成 SR 锁存器

$\overline{S'_D}$	R'_D	Q	Q^*
1	1	0	0
1	1	1	1
0	1	0 1	1 1
1	0	0	0
1	0	1	0
0	0	0	1 ^①
0	0	1	1 ^①

正常工作时的约束条件: $S_{\rm D}R_{\rm D}=0$

2022-9-9

第五章 半导体存储电路

4

§ 5.2 SR锁存器

二、动作特点

输入信号在全部作用时间里,都能直接改变输出端的状态。

例5.2.1 已知由与非门构成的SR锁存器输入端的。 器输入端的进形,试量和创始。 以下,试量和创始。

(a)

1 触发器:

能够存储1位二值信号的基本单元电路。

- 2 触发器的特点:
- (1)具有两个能自行保持的稳定状态,用来表示逻辑状态的0和
- 1,或二进制数的0和1;
- (2)根据不同的输入信号可以置1或0。
- 3 分类:

按触发方式: 电平触发、边沿触发和脉冲触发

按逻辑功能: SR触发器、JK触发器、D触发器、T触发器

按存储数据的原理: 静态触发器和动态触发器

2022-9-9

第五章 半导体存储电路

7

§5.3 触发器

5.3.1 电平触发的触发器

一、电路结构与工作原理

输入控制电路 + SR锁存器 只有触发信号 CLK到达, S和R才起作用

CLK	S	R	Q	Q^*
0	X	X	0	0
0	X	X	1	1
1	0	0	0	0
1	0	0	1	1
1	1	0	0	1
1	1	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	1	0	1 ^①
1	1	1	1	1 ^①

■带异步置位、复位端的电平触发SR触发器

- 二、电平触发方式的动作特点
 - (1)当CLK为有效电平时,触发器才能接受信号;
 - (2)在CLK=1的全部时间里,S和R状态的变化都可能引起输出状态的改变。

2022-9-9

第五章 半导体存储电路

C

§ 5.3 触发器

(a)

■电平触发的 D 触发器

■CMOS传输门结构的电平触发的 D 触发器

D	Q	Q^*
X	0	0
X	1	1
0	0	0
0	1	0
1	0	1
1	1	1
	X 0 0	X 1 0 0 0 1

2022-9-9

第五章 半导体存储电路

1

§ 5.3 触发器

例5.3.2 若电平触发D触发器CLK和输入信号如图所示,试画出Q和 Q'端的波形。设触发器的初始状态Q=0。

5.3.2 边沿触发的触发器

为了提高触发器的可靠性,增强抗干扰能力,希望触发器的次态<u>仅取决于CLK的下降沿(或上升沿)到达时刻</u>的输入信号状态,与在此之前、之后的输入状态没有关系。

- ●用两个电平触发D触发器组成的边沿触发器
- ●维持阻塞触发器
- ●利用门电路传输延迟时间的边沿触发器

2022-9-9

第五章 半导体存储电路

13

§ 5.3 触发器

- 一、电路结构和工作原理
 - 1 用两个电平触发D触发器组成的边沿触发器

●实际的CMOS边沿触发D触发器

(3)特性表

CLK	D	Q	Q^*
X	X	X	Q
†	0	X	0
†	1	X	1

$$(1)CLK=0$$
时, $\begin{cases} TG_1$ 通, TG_2 断 $\rightarrow Q_1=D,Q_1$ 随着 D 而变化 $\\ TG_3$ 断, TG_4 通 $\rightarrow Q$ 保持,反馈通路接通,自锁

2022-9-9

第五章 半导体存储电路

15

§ 5.3 触发器

●带有异步置位、复位端的CMOS边沿触发D触发器

二、动作特点

触发器的次态仅取决于时钟信号的上升沿(也称为正边沿) 或下降沿(也称为负边沿)到达时输入的状态,而与此前、后的 输入状态无关。

例5.3.3 在图示边沿触发器中,已知D端和CLK的电压波形,试画出Q端的波形。设触发器的初始状态Q=0。

2022-9-9

第五章 半导体存储电路

17

§ 5.3 触发器

5.3.3 脉冲触发的触发器

- 一、电路结构与工作原理
 - 1 主从SR触发器

工作原理:

- (1)在CLK=1时,主触发器根据S、R翻转,从触发器保持;
- (2)在CLK由 $1\rightarrow 0$,主触发器保持,从触发器随主触发器的状态翻转,在每个CLK周期,触发器的输出状态只可能改变一次

主从SR触发器的特性表

CLK	S	R	Q	<i>Q</i> *
X	X	X	X	Q
7	0	0	0	0
7	0	0	1	1
_ 	1	0	0	1
7	1	0	1	1
7	0	1	0	0
7	0	1	1	0
	1	1	0	1 ^①
	1	1	1	1 ^①

注: 主从SR触发器在CLK=1期间,主触发器的输出仍会随输入的变化而多次改变,且输入信号仍需遵守SR=0

2022-9-9

第五章 半导体存储电路

19

§5.3 触发器

例5.3.4 若主从SR触发器CLK和输入信号如图所示,试画出Q和Q'端的波形。设触发器的初始状态Q=0。

2 主从JK触发器

为了使主从SR触发器在S=R=1时次态也是确定的,将输出端Q和Q'反馈到输入端,这种触发器称为主从JK触发器。

2022-9-9

第五章 半导体存储电路

2

§ 5.3 触发器

$$Q = 1,"主"保持1$$

 $Q = 0,"主"置1$ $\Rightarrow CLK = 0后,"从"置1$

(2)若J=0, K=1则CLK=1时,

$$(3)$$
若 $J = K = 0$ 则 $CLK = 1$ 时,

$$\begin{cases} Q = 1, \\ Q = 0, \end{cases}$$
 '主"保持 \Rightarrow CLK = 0后,"从"保持

$$(4)$$
若 $J = K = 1则CLK = 1时,$

1958

2022-9-9

主从JK触发器的特性表

CLK	J	K	Q	Q^*
X	X	X	X	Q
<u></u>	0	0	0	0
_ <u></u>	0	0	1	1
T	1	0	0	1
T	1	0	1	1
T	0	1	0	0
T	0	1	1	0
	1	1	0	1
Ţ	1	1	1	0

2022-9-9

第五章 半导体存储电路

23

§ 5.3 触发器

◆具有多输入端的主从JK触发器

2022-9-9

- 二、脉冲触发方式的动作特点
- (1) 触发器的翻转分两步动作。

第一步: 在CLK=1期间主触发器接收信号, 从触发器保持;

第二步: CLK下降沿到来时从触发器按照主触发器的状态翻转, 所以每个CLK周期输出端的状态只能改变一次。

(2) 主触发器是一个电平触发*SR*触发器,在*CLK*=1的全部时间里输入信号都将对主触发器起控制作用。

注: 在CLK=1期间主从JK触发器的主触发器只可能翻转一次。

Q=0时主触发器只能接受置1信号;

Q=1时主触发器只能接受置0信号。

2022-9-9

第五章 半导体存储电路

25

§ 5.3 触发器

例5.3.6 若主从JK触发器 CLK和输入信号如图所示,试画出Q和 Q'端的波形。设触发器的初始状态Q=0。

5.3.4 触发器按逻辑功能的分类

SR触发器、JK触发器、D触发器、T触发器

一、SR 触发器

1 定义:凡在时钟信号作用下逻辑功能符合下表所规定的逻辑功能者,无论触发方式如何,均称为SR触发器 $\frac{1}{|C|}$ $\frac{1}{|C|}$

2 特性方程

$$\begin{cases} Q^* = S'R'Q + SR'Q' + SR'Q = S'R'Q + SR' = S + R'Q \\ SR = 0(约束条件) \end{cases}$$

3 状态转换图

S	R	Q	Q^*
0	0	Q = 0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	不定
1	1	1	不定 不定

描述触发器逻辑功能的方法:特性表、特性方程和状态转换图

2022-9-9

第五章 半导体存储电路

27

§ 5.3 触发器

二、JK触发器

1 定义: 凡在时钟信号作用下逻辑功能符合下表所规定的逻辑功能者,无论触发方式如何,均称为JK触发器

2 特性方程

$$Q^* = JQ' + K'Q$$

3 状态转换图

\boldsymbol{J}	K	Q	Q^*
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

三、T触发器

1 定义:凡在时钟信号作用下逻辑功能符合下表所规定的逻辑功能者,无论触发方式如何,均称为*T*触发器 —————

2 特性方程

$$Q^* = TQ' + T'Q$$

3 状态转换图与逻辑符号

T	$\boldsymbol{\varrho}$	Q^*
0	0	0
0	1	1
1	0	1
1	1	0

2022-9-9

第五章 半导体存储电路

29

§ 5.3 触发器

四、D 触发器

- 1 定义:凡在时钟信号作用下逻辑功能符合下表所规定的逻辑功能者,无论触发方式如何,均称为*D*触发器 —————
- 2 特性方程

$$Q^* = D$$

3 状态转换图

\boldsymbol{D}	Q	Q^*
0	0	0
0	1	0
1	0	1
1	1	1

五、不同逻辑功能的触发器间的转换

●将 JK 触发器用作 SR、T 触发器

2022-9-9

第五章 半导体存储电路

3

§ 5.3 触发器

六、触发器的电路结构和逻辑功能、触发方式的关系

1 电路结构和逻辑功能

触发器的电路结构和逻辑功能之间不存在固定的对应关系。

●两个电平触发D触发器构成的边沿触发JK触发器(CC4027)

 $Q^* = D = ((J + Q)' + KQ)' = JQ' + K'Q$

2 电路结构和触发方式

电路的触发方式是由电路结构决定的,即电路结构形式与触发方式之间有固定的对应关系。

- ▶凡是采用同步SR结构的触发器,一定是电平触发方式;
- ▶凡是采用两个电平触发D触发器结构、维持阻塞结构或者 利用门电路传输延迟时间结构组成的触发器,一定是边沿触 发方式。
- ▶凡是采用主从SR结构的触发器,一定是脉冲触发方式;

2022-9-9

第五章 半导体存储电路

33

§ 5.3 触发器

5.3.5 触发器的动态特性

一、建立时间 $t_{\rm su}$

建立时间是指输入信号应先于 CLK 动作沿到达的时间。

二、保持时间 t_h

保持时间是指 CLK 动作沿到达后输入信号仍需要保持不变的时间。

三、传输延迟时间 t_{pd}

传输延迟时间是指从 CLK 动作沿开始到输出端新状态稳定地建立起来的时间。

四、最高时钟频率 f_{max}

触发器在连续、重复翻转的情况下,时钟信号可达到的最高重复频率。

§ 5.4 寄存器

用于寄存一组二值代码,N位寄存器由N个触发器组成,可储存一组N位的二值代码。

例: 74LS75的逻辑图

例: 74HC175的逻辑图

2022-9-9

第五章 半导体存储电路

35

§ 5.5 存储器

一、半导体存储器的定义及性能指标

定义: 半导体存储器是一种能存储大量二值信息的器件。

性能指标:存储容量和存取速度

- 二、存储器的分类
- 1按制造工艺分类
- ——双极型
- ——MOS型

2 按存、取功能分类

——随机存储器(RAM)

静态存储器(SRAM)

动态存储器(DRAM)

——只读存储器(ROM)

掩模ROM

可编程ROM(PROM)

可擦除的可编程ROM(EPROM)

紫外线擦除的可编程ROM(UVEPROM) 电信号可擦除的可编程ROM(E²PROM) 快闪存储器(Flash Memory)

2022-9-9

第五章 半导体存储电路

37

§ 5.5 存储器

- 5.5.1 静态随机存储器 (SRAM)
- 一、SRAM的结构与工作原理

两个概念:

- ▶ 并行输出的一组数据称为"字"
- ▶ 存储器的容量: "字数 × 位数"

例: 1024×4位 RAM的结构框图

2022-9-9

第五章 半导体存储电路

§ 5.5 存储器

二、SRAM的静态存储单元

 $T_1 \sim T_4$ 为基本锁存器,作存储单元

 $X_i = 1$ 时, T_5, T_6 导通,Q、Q'与 B_i 、 B'_i 接通

 $Y_i = 1$ 时, T_7, T_8 导通, B_i 、 B_i' 与读/写控制

电路接通

 $X_i = 1, Y_j = 1$ 时, $\left\{ \begin{array}{l} \hat{\mathbf{g}}_i \hat{\mathbf{f}} \\ \hat{\mathbf{g}}_j \hat{\mathbf{g}} \end{array} \right\}$ 单元与缓冲器相连

当CS' = 0时,

若R/W'=1,则 A_1 导通, A_2 与 A_3 截止, R/W'=1

 $Q \rightarrow I/O$, 读操作

若R/W'=0,则 A_1 截止, A_2 与 A_3 导通,

 $I/O \rightarrow Q$,写操作

六管NMOS静态存储单元

*5.5.2 动态随机存储器 (DRAM)

一、DRAM的动态存储单元

2022-9-9

第五章 半导体存储电路

4

§ 5.5 存储器

5.5.3 只读存储器 (ROM)

一、ROM的结构与工作原理

● 举例

地	址		数	据	
A ₁	$\mathbf{A_0}$	D_3	$\mathbf{D_2}$	\mathbf{D}_1	\mathbf{D}_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

2022-9-9

第五章 半导体存储电路

43

§ 5.5 存储器

● 举例

两个概念:

- ▶ 存储矩阵的每个交叉点是一个"存储单元",存储单元中 有器件相当于存入"1",无器件相当于存入"0"
- ▶ 存储器的容量: "4×4位"

二、ROM的分类

1 掩模只读存储器(Mask ROM)

特点:

- ▶ 电路结构简单,集成度高;
- ▶ 批量生产,价格便宜;
- ▶ 出厂时数据已经"固化",不能更改;
- ▶ 非易失性。

2022-9-9

第五章 半导体存储电路

45

§ 5.5 存储器

- 2 可编程只读存储器 (PROM)
 - ●总体结构与掩模ROM一样, 但存储单元不同

- *熔丝由易熔合金制成;
- *出厂时,每个交叉点都制作了存储元件
- *编程时将不用的熔丝烧断
- *写入时,要使用编程器

2022-9-9

- 3 用电信号擦除的可编程只读存储器——闪存(Flash Memory)
 - 总体结构与掩模ROM一样,但存储单元不同
 - (1) 浮栅MOS管结构

(2) 浮栅MOS管工作原理

若 G_f 上未充负电荷,则 G_c 处正常逻辑高电平下导通 若 G_f 上充以负电荷,则 G_c 处正常逻辑高电平下不导通

2022-9-9

第五章 半导体存储电路

47

§ 5.5 存储器

(3) Flash工作原理

向 G_f 充电利用雪崩注入方式,D-S加正压(6V), V_{SS} 接0 G_c 加12V, 10μ s的正脉冲

 G_f 放电,利用隧道效应 $G_c = 0, V_{ss}$ 加12V,100ms的正脉冲 G_f 上电荷经隧道区放电

5.5.4 存储器容量的扩展

一、位扩展方式

适用于每片RAM,ROM字数够用而位数不够时

接法: 将各片的地址线、读写线、片选线并联即可

例: 用八片1024 x 1位→ 1024 x 8位的RAM

2022-9-9

第五章 半导体存储电路

49

§ 5.5 存储器

二、字扩展方式

适用于每片RAM,ROM位数够用而字数不够时

例: 用四片256 x 8位→1024 x 8位 RAM

用 A_9 , A_8 两位代码区分四片即将 A_9 A。译成 $Y_0' \sim Y_3'$, 分别接四片的CS'

$\overline{A_9}$	A_8	Y_0'	Y_1'	Y_2'	<i>Y</i> ₃ '
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

数据线: $I/O_0 \sim I/O_7$

地址线: $A_0 \sim A_7$

读/写信号: R/W'

片选信号: CS'

例: 用四片256 x 8位→1024 x 8位 RAM

2022-9-9

第五章 半导体存储电路

51

§ 5.5 存储器

5.5.5 用存储器实现组合逻辑函数

一、基本原理

地	址		数	据	
$\mathbf{A_1}$	$\mathbf{A_0}$	D_3	\mathbf{D}_2	\mathbf{D}_{1}	\mathbf{D}_0
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	1	0

从ROM的数据表可见: 若以地址线为输入变量, 则数据线即为一组关于地 址变量的逻辑函数。

2022-9-9

第五章 半导体存储电路

52

二、举例

例5.5.2 用ROM产生如下一组多输出逻辑函数:

$$\begin{cases} Y_1 = A'BC + A'B'C \\ Y_2 = AB'CD' + BCD' + A'BCD \\ Y_3 = ABCD' + A'BC'D' \\ Y_4 = A'B'CD' + ABCD \end{cases}$$

解: 最小项之和为

$$\begin{cases} Y_1 = \sum m(2,3,6,7) \\ Y_2 = \sum m(6,7,10,14) \\ Y_3 = \sum m(4,14) \\ Y_4 = \sum m(2,15) \end{cases}$$

2022-9-9

第五章 半导体存储电路

53

§ 5.5 存储器

二、举例

2022-9-9