Math 118. Combinatorics.

Problem Set 3. Due on Friday, 2/18/11.

- 1. Prove that the number of maps $f:[n] \to [n]$ such that f(1) = 1 and $f(i) \le 1 + \max\{f(j): j < i\}$ is the Bell number B_n .
- 2. Let $\pi \in \mathcal{S}_n$ be random (chosen from the uniform distribution). Fix $1 \leq k \leq n$. What is the probability that in the disjoint cycle decomposition of π , the length of the cycle containing 1 is k?
- 3. Let $A_d(x)$ denote the dth Eulerian polynomial. Show that every zero of $A_d(x)$ is real. Hint: Recall the formula proved in class relating $A_{d+1}(x)$, $A'_d(x)$ and $A_d(x)$.
- 4. Using only combinatorial arguments and the definitions of $\sec x$ and $\tan x$ in terms of Euler numbers, prove that

$$\frac{d}{dx}\sec^2 x = 2\sec^2 x \tan x.$$

5. A cycle in a permutation is said to be up-down if, when written with its smallest element first, say $(b_1, b_2, ...)$, we have that $b_1 < b_2 > b_3 < ...$ Let Δ_n denote the set of permutations of [n] that can be written as a product of up-down cycles. For example, $(1, 5, 2, 7)(3)(4, 8, 6)(9) \in \Delta_9$, but $(1, 3, 5)(2, 4)(6) \notin \Delta_6$. Prove that

$$|\Delta_n| = E_{n+1}.$$

- 6. Let k < n/2. Find a bijection f from the set of k-element subsets of [n] to the set of (n-k)-element subsets of [n] with the property that for every k-element subset S, $S \subseteq f(S)$.
- 7. (*) Let $C_n \subset S_n$ denote the subset of cyclic permutations, i.e., those that consist of one cycle of length n. Let $D(\pi)$ denote the descent set of π . Prove that for every $I \subseteq [n-1]$,

$$|\{\pi \in \mathcal{C}_{n+1} : D(\pi) \cap [n-1] = I\}| = |\{\sigma \in \mathcal{S}_n : D(\sigma) = I\}|.$$