BI / read / 19

BI 1	query	BI / read / 19
BI 2	title	Interaction path between cities
BI 3 BI 4 BI 5 BI 6 BI 7 BI 8 BI 9 BI 10 BI 11 BI 12 BI 13 BI 14 BI 15 BI 16 BI 17 BI 18 BI 19 BI 20	pattern	Find the shortest paths between all pairs of Persons in city1 and city2 city1: City id = \$city1id isLocatedIn shortest paths on person1: Person Case i1: Reply from personA to Person B's Message personA: Person hasCreator hasCreator c: Comment c: Comment
	desc.	Given two Cities city1, city2, find Persons person1, person2 living in these Cities (respectively) with the shortest <i>interaction path</i> between them. If there are multiple pairs of people with shortest paths having the same total weight, return all of them. The shortest path is computed using a weight between two Persons defined as the reciprocal of the number of interactions (direct reply Comments to a Message by the other Person). Therefore, more interactions imply a smaller weight. <i>Note:</i> Interactions are counted both ways, i.e. if Alice writes 2 reply Comments to Bob's Messages and Bob writes 3 reply Comments to Alice's Messages, their total number of interactions is 5.
	params	(A) Small Cities within the same Country with many direct relationships between their inhabitants (B) Small Cities from different Countries with only a few direct relationships between their inhabitants 2 city2Id ID
	result	1 person1.id ID R 2 person2.id ID R 3 totalWeight 32-bit Float C
	sort	1 totalWeight ↑ 2 person1.id ↑ 3 person2.id ↑
	limit	20
	CPs	3.3, 7.6, 7.7, 8.4, 8.6
	relevance	Finding shortest paths between pairs of Persons in Cities can be implemented in theory with an <i>all-pairs shortest</i> paths algorithm. However, this needs to be executed on the whole Person-knows-Person graph (with edge weights derived from the number of interactions) so it is expected to be prohibitively expensive. A better approach is using multiple <i>single-source shortest path algorithms</i> (e.g. from the City with fewer inhibitants). Implementations can either pre-compute edge weights or compute them on-the-fly.