Projet 6

Détectez des faux billets

Detect counterfeit banknotes

Notre objectif

Créer un algorithme permettant au gouvernement de lutter contre le crime organisé et ses systèmes de faux billets de banque.

Le gouvernement nous a donné accès à un ensemble de données qui contient les caractéristiques géométriques des billets de banque. Nous disposons à la fois de données sur les vrais billets de banque et sur les faux

billets.

	is_genuine	diagonal	height_left	height_right	margin_low	margin_up	length
142	0	171.69	104.18	104.28	5.62	3.23	110.53
85	1	172.10	103.95	103.72	4.49	3.07	113.15
39	1	171.13	104.28	103.14	4.16	2.92	113.00
154	0	171.62	104.21	103.99	5.50	3.45	111.35
110	0	172.10	104.30	104.21	4.07	3.41	111.27
122	0	172.29	104.72	104.86	5.71	3.16	112.15
151	0	171.68	103.89	103.70	5.97	3.03	109.97
48	1	171.73	103.82	103.85	3.97	3.12	112.85
67	1	171.79	103.74	103.48	4.60	2.80	113.35
149	0	171.91	103.91	103.98	4.78	3.65	111.41


```
# check for missing values
 2 print((df.isna().sum()/df.shape[0]*100).round(2))
                0.0
is genuine
diagonal
                0.0
height left
                0.0
                0.0
height right
                0.0
margin low
                0.0
margin up
length
                0.0
dtype: float64
```


ACP

Analyse de la classification

```
K-means model v1 (default parameters)
    # Kmeans clustering model
    kmeans = KMeans(init='random', n clusters=2, n init=10, max iter=300)
    # fit data to the model
    kmeans.fit predict(X scaled)
    # trace each datapoint to its corresponding cluster
    clusters = kmeans.predict(X scaled)
    # add cluster number to the original data
    X scaled clustered = pd.DataFrame(X scaled, columns=X.columns, index=X.index)
    X scaled clustered['cluster'] = clusters
    X scaled clustered['cluster'].value counts()
                K-means model v2 (custom parameters)
     71
Name: cluster.
                     # Kmeans clustering model
                    kmeans = KMeans(init='k-means++', n clusters=2, n init=30, max iter=600)
                     # fit data to the model
                     kmeans.fit predict(X scaled)
                     # trace each datapoint to its corresponding cluster
                    clusters = kmeans.predict(X scaled)
                 10 # add cluster number to the original data
                 11 X scaled clustered = pd.DataFrame(X scaled, columns=X.columns, index=X.index)
                 12 X scaled clustered['cluster'] = clusters
                 14 X scaled clustered['cluster'].value counts()
                Name: cluster, dtype: int64
```


Modèle de prédiction

```
1 # remove height left from formula due to p-value of 0.965
    result = smf.logit(formula = 'is genuine ~ margin low + length', data = df).fit()
    result.summarv()
Optimization terminated successfully.
          Current function value: 0.025254
          Iterations 13
Logit Regression Results
                     is genuine No. Observations:
   Dep. Variable:
                                                      170
                                                      167
         Model:
                          Logit
                                    Df Residuals:
        Method:
                           MIF
                                       Df Model:
          Date: Tue. 01 Feb 2022
                                  Pseudo R-squ.:
                                                   0.9627
                                  Log-Likelihood:
          Time:
                       20:34:17
                                                   -4.2932
     converged:
                          True
                                         LL-Null:
                                                   -115.17
Covariance Type:
                                     LLR p-value: 6.999e-49
                      nonrobust
                       std err
                                  z P>|z|
                                               [0.025
                                                        0.9751
  Intercept -944.4190 377.481 -2.502 0.012 -1684.269 -204.569
             -13.3659
                        5.314 -2.515 0.012
                                              -23.781
                                                        -2.950
margin low
               8.9420
                        3.552 2.518 0.012
                                               1 981
                                                       15 903
     length
```



```
1 # accuracy of the model
2 accuracy = (69 + 99) / 170
3 print("Accuracy is {:.4f}".format(accuracy))
Accuracy is 0.9882
```

Conclusions générales après l'analyse effectuée

```
# La précision du modèle statsmodels
# accuracy of the model
accuracy = (69 + 99) / 170
print("Accuracy is {:.3f}".format(accuracy) + "%")
Accuracy is 0.988%

Banknote id A_1 is FAKE with probability of 0.50000000049562694 %.
Banknote id A_2 is FAKE with probability of 0.5000000000514444 %.
Banknote id A_3 is FAKE with probability of 0.5000003586870496 %.
Banknote id A_4 is REAL with probability of 0.7310174532491766 %.
Banknote id A_5 is REAL with probability of 0.7310585769698161 %.
```

```
# La précision du modèle sklearn
# evaluate predictions via scores
acc = accuracy_score(y_test, yhat)
print("Accuracy is {:.3f}".format(acc) + "%")

Accuracy is 0.982%

Banknote id A_1 is FAKE with probability 0.9714141151831927 %.
Banknote id A_2 is FAKE with probability 0.9866265290303662 %.
Banknote id A_3 is FAKE with probability 0.9716235440178718 %.
Banknote id A_4 is REAL with probability 0.8901433089027112 %.
Banknote id A_5 is REAL with probability 0.9904423766337491 %.
```

We have 2 models with high precision, Statsmodels and Sklearn. First one is slightly higher in accuracy, but we can say that Sklearn is more confident predicting a class of a sample.

Comparing to K-means classification results, they are similar. K-means had one false result, while Logistic Regression from both algorithms contain ~0.012-0.018% error rates.