Assignment 3

Data Set Generation and classifying into classes regions, splitting training/testing, Executing the Perceptron/Linear SVM/ Kernel SVM, fine tunning "C" Parameters and "Gamma" values to improve the accuracy between the predicted and calcuted test patterns.

Tabulated the coefficient, accuracy, weighted vectors and intercept along with

Plotting the accuracy graph/tables and Plotting the Datasets features are done here.

Dataset -

(a) Each pattern here is a two-dimensional vector X = x numbers in the range [-5, 5]. , where both x1 and x2 are real (b) A pair of linearly separable classes are C1 and C2 and are shown by one of the dotted lines specifying the boundary x1 = x2. They are given by C1 ={(x1,x2)t :x1 >x2}andC2 = {(x1,x2)t :x1 <x2}. (c) The second pair of linearly separable classes are C3 and C4 as shown by the other dotted line in the Figure. They are given by C3 ={(x1,x2)t :x1 +x2 +1>0}andC4 ={(x1,x2)t :x1 +x2 +1<0}. (d) So, these two pairs of classifiers generate four regions based on the four classes C1, C2, C3, and C4. These four regions are given by R13 ={X :X ∈C1 andX ∈C3}, R14 ={X :X ∈C1 andX ∈C4} and R24 ={X :X ∈C2 andX ∈C4}, R23 ={X :X ∈C2 andX ∈C3} (e) Now the two classes that are not linerally separable are defined using these foure regions as NC1 ={X:X∈R13 orX∈R24},andNC2 = {X:X∈R14 orX∈R23}. So, NC1 is the union of R13 and R24 and similarlyNC2 is the union of R23 and R14.

X1 X2 X1Square X2Square Y C1 C2 C3 C4 R13 R14 R24 R23 NC1 NC2 NC-Class

0 2.60 -2.80 6.76 7.84 1 Yes No Yes No Yes No No No Yes No 1

1 3.40 3.30 11.56 10.89 1 Yes No Yes No Yes No No No Yes No 1

7 -0.50 -1.30 0.25 1.69 1 Yes No No Yes No Yes No No No Yes 0

The patterns are generated between the range[-5,5], classified in [C1.,C2,C3,C4, R31,R24,R14,R24,NC1,NC2] based the above below. If it satisfy the Class - it is marked YES else NO- similar for Regions and NC. Also NC are Labelled as [0,1] and for Kernel Algo - we have [Y] Label since we need to compute for Dimension.

Perceptron Linear SVM, Kernel SVM Data Set [200 300 400] Output

Weighted Vector for Linear SVM for 200 - [0.26, -0.29, 0.31, -0.38], intercept 0.02

Weighted Vector for Linear SVM for 300 - [0.01, -0.01, 0.07, -0.24], intercept 1.05

Weighted Vector for Linear SVM for 400 -[] 0.03, -0.03, 0.15, -0.23], intercept 0.31

Weighted Vector for Perceptron for 200 - [0.26, -0.29, 0.31, -0.38]

Weighted Vector for Perceptron for 300 - [5.5, -1.4, 16.07, -21.48]

Weighted Vector for Perceptron for 400 -[16., -5.6, 22.38, -25.54]

Kernel Intecept for 200 - 0.23,

Kernel Intecept for 300 - 0.15,

Kernel Intecept for 2400 - 0.06,

For Data set [200,300,400]

Accuracy for Linear SVM average = 0.98 + 0.81 + 0.95

Accuracy for Perceptron average = 0.97 + 0.91 + 0.95

Accuracy for Kernel SVM = 0.91 + 0.82 + 0.875

From the experiment it can be seen that Perceptron accuracy > Linear SVM > Kernel SVM.

The 'C' Parameter fined tuned for better accuracy for SVM Linear alogrithm using experiment approach of running the svm linear for different 'C' until optimal accuracy is achieved.

'C Parameter' = 0.025

The 'C' and "Gamma" Parameter fined tuned for better accuracy for SVM Linear alogrithm using experiment approach of running the svm kernel for different 'C' and 'gamma' until optimal accuracy is achieved.

"Gamma Parameter 0.2 and "C" Paramter 1

In []:

Perceptron Linear SVM, Kernel SVM Data Set [500] Output

For Data set [500]

Accuracy for Linear SVM average = 1

Accuracy for Perceptron average = 0.99

Accuracy for Kernel SVM = 0.97

From the experiment it can be seen that Linear SVM > Perceptron accuracy > Kernel SVM.

The 'C' Parameter fined tuned for better accuracy for SVM Linear alogrithm using experiment approach of running the svm linear for different 'C' until optimal accuracy is achieved.

'C Parameter' = 1

The 'C' and "Gamma" Parameter fined tuned for better accuracy for SVM Linear alogrithm using experiment approach of running the svm kernel for different 'C' and 'gamma' until optimal accuracy is achieved.

"Gamma Parameter 0.1 and "C" Parameter 2

-----[Data Set [500 200 300 400]-----

C Parameter fine tuned value for better accuracy 1 Weighted Vector :::: 0 500 {'Weight': array([[1.8 , -1.77, 1.85, -1.83]]), 'intercept': array([-0.31]), 'accuracy': 1.0} Weighted Vector :::: 1 200 {'Weight': array([[1.37, -1.33, 1.36, -1.34]]), 'intercept': array([-0.36]), 'accuracy': 1.0} Weighted Vector :::: 3 400 {'Weight': array([[1.43, -1.55, -1.54]]), 'intercept': array([-0.38]), 'accuracy': 1.0} Weighted Vector :::: 3 400 {'Weight': array([[1.43, -1.48, 1.68, -1.66]]), 'intercept': array([-0.38]), 'accuracy': 1.0}

Accuracy (1+1+1+1)/4

Weighted Vector :::: 500 {'Weight': array([[73.7 , -63.1 , 79.97 , -71.63]]), 'intercept': array([-7.]), 'accuracy': 1.0} Weighted Vector :::: 200 {'Weight': array([[58.4 , -60. , 54.86, -94.68]]), 'intercept': array([-6.]), 'accuracy': 0.925} Weighted Vector :::: 300 {'Weight': array([[44.4 , -50.2 , 48.28, -50.34]]), 'intercept': array([0.]), 'accuracy': 1.0} Weighted Vector :::: 400 {'Weight': array([[64.3 , -72.7 , 80.57, -79.81]]), 'intercept': array([-3.]), 'accuracy': 1.0}

Accuracy ---> (1 + .92 + 1 + 1)/4

W Vector --->

500 DP - [73.7 , -63.1 , 79.97, -71.63

400 DP 58.4, -60., 54.86, -94.68

300 DP 44.4 , -50.2 , 48.28, -50.34

200 64.3 , -72.7 , 80.57, -79.81

Gamma -0.1

C Parameter 1

Based on the experiment done for linear and non-linear pattern, with fine tuning gamma and C parameter. It is observer Linear SVM is perfromed better then Perceptron and Finally Kernel SVM.

```
In [1]: import pandas as pd
import numpy as np
import pandas as pd
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import
from matplotlib import cm
import seaborn as sns
from sklearn.model_selection import train_test_split
import pdb
from sklearn.metrics import accuracy_score
```

Logic to create Data Set

```
In [2]: # Generate random numbers
        #data = np.random.random(-5,5,size=MAX PATTERN)
        # list of random float between a range -5 and 5
        pd.options.display.float format = '{:.2f}'.format
        np.set printoptions(precision=2)
        def data set create(max):
             x data = []
             MAX PATTERN= max
             PER REGION PATTERN = 25 * max / 100
             # Set a length of the list to 10
             no pattern = 1
             region dict = { 'R13':0,'R14':0,'R24':0,'R23':0}
             r13 = []
             r14 = []
             r23 = []
             r24 = []
             region = [r13, r14, r23, r24]
             while (True):
                 # any random float between 50.50 to MAX PATTERN.50
                 # don't use round() if you need number as it is
                 \#x1 = round(np.random.uniform(-5, 5), 1)
                 x1 = round(np.random.uniform(-5, 5), 1)
                 \#x1.append(x)
                 x2 = round(np.random.uniform(-5, 5), 1)
                 \#x2.append(x)
                 \# C1 = \{(x1, x2)t : x1 > x2\} \text{ and } C2 = \{(x1, x2)t : x1 < x2\}.
                 x1Sq = x1 * x1
                 x2Sq = x2 * x2
                 if (x1 == x2)or ((x1 + x2 + 1) == 0):
                     continue
```

```
class_ = { 'C1':'No', 'C2':'No', 'C3':'No', 'C4':'No', 'R13':'No', 'R14':'No',
      'R23':'No','R24':'No', 'NC1':'No','NC2':'No', 'NC-Class':0}
if x1 > x2:
    class_['C1'] = 'Yes'
    class_{['Y']} = 1
if x1 < x2:
    class_['C2'] = 'Yes'
    class_{['Y']} = 0
\#C3 = \{(x1, x2)t : x1 + x2 + 1 > 0\} and C4 = \{(x1, x2)t : x1 + x2 + 1 < 0\}.
res = x1 + x2 + 1
if (res > 0 ):
    class_['C3'] = 'Yes'
if (res < 0) :
    class_['C4'] = 'Yes'
\# R13 ={X : X \inC1 and X \inC3}, R14 ={X : X \inC1 and X \inC4} R24 ={X : X \inC2 and X \inC4},
# R23 = \{X : X \in C2 \text{ and } X \in C3\}
if class ['C1'] == 'Yes' and class ['C3'] == 'Yes':
    if region_dict['R13'] >= PER_REGION_PATTERN:
        continue
    region dict['R13'] = region_dict['R13'] + 1
    class_['R13']= 'Yes'
if class_['C1'] == 'Yes' and class_['C4'] == 'Yes':
    if region_dict['R14'] >= PER_REGION_PATTERN:
        continue
    class_['R14'] = 'Yes'
    region_dict['R14'] = region_dict['R14'] + 1
if class_['C2'] == 'Yes' and class_['C4'] == 'Yes':
    if region dict['R24'] >= PER REGION PATTERN:
        continue
    class ['R24'] = 'Yes'
    region dict['R24'] = region dict['R24'] + 1
if class ['C2'] == 'Yes' and class ['C3'] == 'Yes':
    if region dict['R23'] >= PER REGION PATTERN:
```

```
continue
    class_['R23'] = 'Yes'
    region_dict['R23'] = region_dict['R23'] + 1
if class_['R13'] == 'Yes' or class_['R24'] == 'Yes':
    class_['NC1'] = 'Yes'
    class_['NC-Class'] = 1
if class_['R14'] == 'Yes' or class_['R23'] == 'Yes':
    class_['NC2'] = 'Yes'
    class_['NC-Class'] = 0
d = [x1, x2,
           x1Sq, x2Sq,
           class_['Y'],
           class_['C1'],
           class_['C2'],
           class_['C3'],
           class_['C4'],
           class_['R13'],
           class_['R14'],
           class_['R24'],
           class_['R23'],
           class_['NC1'],
           class_['NC2'],
           class_['NC-Class']]
if class_['R13'] == 'Yes':
    r13.append(d)
if class_['R14'] == 'Yes':
    r14.append(d)
if class_['R24'] == 'Yes':
    r24.append(d)
if class_['R23'] == 'Yes':
    r23.append(d)
x data.append(d)
no pattern = no pattern + 1
if no pattern == MAX PATTERN + 1:
```

```
break

#print(f'No of DPs in Region ----> {region} \n')
df_tmp = pd.DataFrame(x_data, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C4',
'R13','R14','R24','R23','NC1','NC2','NC-Class'])
df_tmp.head()
return(region)
```

Logic for SVM Kernel

```
In [3]: def SVM Kernel fit(x data, y data, test data):
                                                  \#test x = test data.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Clas
                                  s'1, axis=1)
                                                  test x = test data.drop(['X1Square', 'X2Square','Y','C1','C2','C3','C4','R13','R14','R24','R23',
                                   'NC1','NC2','NC-Class'], axis=1)
                                                 x_data = x_data.drop(['X1Square', 'X2Square'],axis=1)
                                                  #print(f'{x data}')
                                                 test y = test data['NC-Class']
                                                  from sklearn.svm import SVC
                                                  from sklearn import svm
                                                  # fit the model
                                                  #for name, penalty in (('unreg', 1), ('reg', 0.05)):
                                                  #clf =svm.SVC(kernel='rbf', random state=1, gamma=0.4, C=1)
                                                 \max q = 0
                                                 \max c = 0
                                                 m = 0
                                                  #for q, c in [(0.1,1), (0.1,2), (0.1,3), (0.1,4), (0.2,1), (0.2,2), (0.2,3), (0.2,4), (0.3,1), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.4,4), (0.
                                  3,2), (0.3,3), (0.3,4),
                                                  \#(0.2,2), (0.2,1), (0.2,3), (0.3,4), (0.3,2), (0.3,1), (0.3,3), (0.3,4), (0.4,1), (0.3,3), (0.4,4)
                                   ), (0.7,1), (0.7,2), (0.7,3), (0.7,4), (0.8,1), (0.8,2), (0.8,3), (0.8,4):
                                                 #for q,c in [(0.2,2), (0.2,1), (0.2,3), (0.3,4), (0.3,2), (0.3,1), (0.3,3), (0.3,4), (0.4,1),
                                     (0.3,3), (0.4,4) 1:
                                                  #for q, c in [(0.7,1), (0.7,2), (0.7,3), (0.7,4), (0.8,1), (0.8,2), (0.8,3), (0.8,4), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,
                                  2), (1,3), (1,4) 1:
                                                  for q in [.1,.2,.3,.4,.5,.6,.7,.8,.9]:
                                                                  for c in [1,2,3,4,5,6,7,8,9]:
                                                                                  clf =svm.SVC(kernel='rbf', random state=1, gamma=q, C=c)
                                                                                  clf.fit(x data, y data)
```

Logic for Linear SVM

```
In [4]: def SVM Linear fit(x data, y data, test data):
            test x = test data.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Class'],
        axis=1)
            test y = test data['NC-Class']
            from sklearn.svm import SVC
            from sklearn import svm
            # fit the model
            m = 0
            p = 0
            for penalty in [ 1, .8, .6, .4, .2, .1 , 0.05, 0.025]:
                clf = svm.SVC(kernel='linear', C=penalty)
                clf.fit(x data, y data)
                y pred = clf.predict(test x)
                # get the separating hyperplane
                formatted float = clf.coef
                #print(f'coef {formatted float}')
                acc = accuracy score(test y, y pred)
                if m < acc:</pre>
                    m = acc
                    coef = clf.coef
                    intercept = clf.intercept
                    p = penalty
            print('C Parameter fine tuned vlaue for better accuracy ', p)
            return ( m, coef , intercept )
```

Logic for perceptron classifier

```
In [5]: import pdb
        cluster list pattern={}
        Error Threshold List=[]
        pd.options.display.float format = '{:.2f}'.format
        cluster_leader_list= []
        accuracy list = []
        def perceptron fit(x data, y data, test data):
            from sklearn.datasets import load digits
            from sklearn.linear model import Perceptron
            test x = test data.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Class'],
        axis=1)
            test y = test data['NC-Class']
            clf = Perceptron(tol=1e-3, random state=0)
            clf.fit(x data, y data)
            y pred = clf.predict(test x)
            #print(f' coef ---> {clf.coef }')
            #print(f' intercept ---> {clf.intercept }')
            acc = accuracy score(test y, y pred)
            return ( acc, clf.coef , clf.intercept )
```

Logic for dividing the Dataset for training and testing for 200,300,400

```
In [6]: '''
        data = [0, -0.5, 0, 0.25],
        [-1,-0.5, 1, 0.25],
        [0.5, 0, -0.25, 0],
        [0.5, 1, -0.25, -1]
        from sklearn.model selection import train test split
        w = \{\}
        index = '0'
        weight perceptron vector list = []
        weight SVM Linear vector list = []
        weight SVM Kernel vector list = []
        count = 1
        size = [200, 300, 400]
        for max in size:
        #for max in [500]:
            reg = data set create(max)
            df train all region = []
            df test all region = []
            for r in req:
                #print(f'{r}')
                d = pd.DataFrame(r, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C4','R13',
         'R14','R24','R23','NC1','NC2','NC-Class'])
                d = d.reset index(drop=True)
                #print(f' {d.iloc[0:max*25/100].to string()}' )
                val = max /100 * .20
                train,test = train test split(d, train size = val)
```

```
df train all region.append(train.iloc[5:10])
       df test all region.append(test)
   x train = pd.concat(df_train_all_region)
   x_train.sample(frac=1)
   x train = x train.reset index(drop=True)
   x_test = pd.concat(df_test_all_region)
   x test = x test.reset index(drop=True)
   df_tmp = pd.DataFrame(_x_train, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
    #print(df tmp.to string())
   df = df tmp.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Class'], axis=
1)
   df_test = pd.DataFrame(_x_test, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
   df = df.reset index(drop=True)
   #print(df.to string())
   w = 4
   h = 4
   d = 70
   plt.figure(figsize=(10, 4), dpi=d)
   st = f'Size[{max}] Feature'
   plt.xlabel(st, fontsize=14, color='black')
   plt.ylabel("X1 & X2 Feature ",fontsize=14, color='red')
   plt.title('Perceptron/SVM-Linear/SVM-Kernel Classification',fontsize=20, color='red')
   plt.plot(df['X1'], '*',color='g',markersize=8)
   plt.plot(df['X2'], 'o',color='r',markersize=8)
   print('\n-----| Data Set [200 300 400 ]-----\n')
    for classifier in ['svm','percept','kernel-svm']:
    #for classifier in ['kernel-svm']:
```

```
print('\n----\n')
if (classifier == 'percept'):
   print('\n----\n')
   (acc, coef_, intercept_) = perceptron_fit(df,df_tmp['NC-Class'],df_test)
   w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
   weight perceptron_vector_list.append(w)
   acc_list =[]
   for i,w in enumerate(weight_perceptron_vector_list):
      acc_list.append(w['accuracy'])
      print( f'Weighted Vector :::: {size[i]} {w} ')
      #print( f'Weighted Vector :::: {i } {w} ')
   if (count ==4):
      w = 4
      h = 4
      d = 70
      plt.figure(figsize=(10, 4), dpi=d)
      plt.xlabel(" size Feature ", fontsize=14, color='black')
      plt.ylabel("w['accuracy'] Feature ",fontsize=14, color='black')
      plt.title('Perceptron Classification',fontsize=20, color='black')
      plt.plot(size,acc_list,'o')
if (classifier == 'svm'):
   print('\n----\n')
   (acc, coef_, intercept_) = SVM Linear fit(df,df tmp['NC-Class'],df test)
   w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
   weight_SVM_Linear_vector_list.append(w)
   acc list =[]
   for i,w in enumerate(weight SVM Linear vector list):
      acc list.append(w['accuracy'])
      print( f'Weighted Vector :::: {i } {size[i]} {w} ')
      #print( f'Weighted Vector :::: {i } {w} ')
   if (count ==4):
```

```
w = 4
       h = 4
       d = 70
       plt.figure(figsize=(10, 4), dpi=d)
       plt.xlabel(" size Feature ", fontsize=14, color='black')
       plt.ylabel("w['accuracy'] Feature ",fontsize=20, color='black')
       plt.title('SVM Linear Classification')
       plt.plot(size,acc list,'o')
if (classifier == 'kernel-svm'):
   print('\n----\n')
   print('\n+++++++++++++++++ Kernel SVM +++++++++++++++++\n')
   from sklearn.svm import SVC
   from sklearn import svm
   #plot decision regions(df, df tmp['NC-Class'], svm, test idx=None, resolution=0.02)
   #weight vector list = []
   (acc, coef_, intercept_ ) = SVM Kernel fit(df,df tmp['NC-Class'],df test)
   w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
   weight_SVM_Kernel_vector_list.append(w)
   acc list =[]
   for i,w in enumerate(weight_SVM_Kernel_vector_list):
       acc_list.append(w['accuracy'])
       print( f'Weighted Vector :::: {size[i]} {w} ')
       #print( f'Weighted Vector :::: {i } {w} ')
   # Visualize the decision boundaries
   if (count ==4):
       d = { 'Size of Data ':size, 'Accuracy':acc_list}
       df = pd.DataFrame(data=d)
       df.head(len(size))
       w = 4
       h = 4
       d = 70
       plt.figure(figsize=(10, 4), dpi=d)
```

```
plt.xlabel(" size Feature ", fontsize=12, color='black')
    plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
    plt.title('SVM KERNEL Classification')
    plt.plot(size,acc_list,'o')
count = count + 1
```

```
------ Data Set [200 300 400 ]------
C Parameter fine tuned vlaue for better accuracy 0.1
Weighted Vector :::: 0 200 {'Weight': array([[ 0.17, -0.26, 0.25, -0.32]]), 'intercept ': array([0.
26]), 'accuracy': 0.96666666666667}
Weighted Vector :::: 200 {'Weight': array([[ 3.9 , -10.8 , 31.07, -23.42]]), 'intercept_': array
------ Data Set [200 300 400 ]------
```

```
C Parameter fine tuned vlaue for better accuracy 0.1
Weighted Vector :::: 0 200 {'Weight': array([[ 0.17, -0.26, 0.25, -0.32]]), 'intercept_': array([0.
26]), 'accuracy': 0.96666666666667}
Weighted Vector :::: 1 300 {'Weight': array([[ 0.01, -0.22, 0.23, -0.33]]), 'intercept_': array([0.
59]), 'accuracy': 0.9083333333333333333
Weighted Vector :::: 200 {'Weight': array([[ 3.9 , -10.8 , 31.07, -23.42]]), 'intercept_': array
Weighted Vector :::: 300 {'Weight': array([[ -2.7 , -2.6 , 22.79, -24.54]]), 'intercept_': array
========accuracy 0.3 2 0.85
Weighted Vector :::: 300 {'Weight': 0, 'intercept_': array([0.02]), 'accuracy': 0.85}
------ Data Set [200 300 400 ]------
```

```
C Parameter fine tuned vlaue for better accuracy 0.1
Weighted Vector :::: 0 200 {'Weight': array([[ 0.17, -0.26, 0.25, -0.32]]), 'intercept ': array([0.
26]), 'accuracy': 0.966666666666667}
Weighted Vector :::: 1 300 {'Weight': array([[ 0.01, -0.22, 0.23, -0.33]]), 'intercept_': array([0.
Weighted Vector :::: 2 400 {'Weight': array([[ 0.24, -0.36, 0.23, -0.38]]), 'intercept ': array([0.
63]), 'accuracy': 0.9625}
Weighted Vector :::: 200 {'Weight': array([[ 3.9 , -10.8 , 31.07, -23.42]]), 'intercept_': array
Weighted Vector :::: 300 {'Weight': array([[ -2.7 , -2.6 , 22.79, -24.54]]), 'intercept ': array
Weighted Vector :::: 400 {'Weight': array([[ 18.9 , -13.6 , 22.41, -26.84]]), 'intercept ': array
([-3.]), 'accuracy': 0.9375}
=========accuracy 0.1 2 0.9375
Weighted Vector :::: 300 {'Weight': 0, 'intercept ': array([0.02]), 'accuracy': 0.85}
Weighted Vector :::: 400 {'Weight': 0, 'intercept ': array([0.12]), 'accuracy': 0.9375}
```


0.92

0.85

0.94

Accuracy for SVM Kernel - size [200,300,400]

200

300

400

0

```
In [8]: w = 4
h = 4
d = 70
plt.figure(figsize=(10, 4), dpi=d)
plt.xlabel(" size Feature ", fontsize=12, color='black')
plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
plt.title('SVM KERNEL Classification')
plt.plot(size,acc_list,'o')
```

Out[8]: [<matplotlib.lines.Line2D at 0x125038490>]

Accuracy for SVM Linear - size [200,300,400]

```
In [9]: acc_list =[]
    for i,w in enumerate(weight_SVM_Linear_vector_list):
        acc_list.append(w['accuracy'])

d = { 'Size of Data ':size,'Accuracy Calculation for SVM Linear ':acc_list}
    df = pd.DataFrame(data=d)
    df.head(len(size))
```

Out[9]:

Size of Data	Accuracy (Calculation	for SVM Linear
--------------	------------	-------------	----------------

0	200	0.97
1	300	0.91
2	400	0.96

```
In [10]: w = 4
h = 4
d = 70
plt.figure(figsize=(10, 4), dpi=d)
plt.xlabel(" size Feature ", fontsize=12, color='black')
plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
plt.title('SVM Linear Classification')
plt.plot(size,acc_list,'o')
```

Out[10]: [<matplotlib.lines.Line2D at 0x1250879a0>]

Accuracy for Perceptron - size [200,300,400]

```
In [11]: acc_list =[]
    for i,w in enumerate(weight_perceptron_vector_list):
        acc_list.append(w['accuracy'])

    d = { 'Size of Data ':size,'Accuracy Calculation for Perceptron Algo ':acc_list}
    df = pd.DataFrame(data=d)
    df.head(len(size))
```

0.94

Out[11]:

	Size of Data	Accuracy Calculation for Perceptron Algo
0	200	0.93
1	300	0.93

400

```
In [12]:
         d = 70
         plt.figure(figsize=(10, 4), dpi=d)
         plt.xlabel(" size Feature ", fontsize=12, color='black')
         plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
         plt.title('Perceptron Classification')
         plt.plot(size,acc_list,'o')
```

Out[12]: [<matplotlib.lines.Line2D at 0x1250e7550>]

Training Data set sample Output

In [13]: df_tmp.head(100)

Out[13]:

	X 1	X2	X1Square	X2Square	Y	C1	C2	СЗ	C4	R13	R14	R24	R23	NC1	NC2	NC-Class
0	2.10	-2.10	4.41	4.41	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
1	3.10	1.70	9.61	2.89	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
2	4.60	-3.60	21.16	12.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
3	1.00	-1.00	1.00	1.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
4	2.30	1.50	5.29	2.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
5	2.30	-3.60	5.29	12.96	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
6	-0.80	-2.70	0.64	7.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
7	-0.00	-2.60	0.00	6.76	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
8	1.50	-3.60	2.25	12.96	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
9	-0.60	-2.60	0.36	6.76	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
10	-3.10	3.30	9.61	10.89	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
11	-2.20	1.60	4.84	2.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
12	-0.50	1.80	0.25	3.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
13	-3.40	2.50	11.56	6.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
14	1.80	3.60	3.24	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
15	-4.40	0.40	19.36	0.16	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
16	-3.80	-2.80	14.44	7.84	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
17	-5.00	-3.80	25.00	14.44	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
18	-1.50	0.20	2.25	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
19	-3.40	-2.90	11.56	8.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1

In [14]: df_test.head(100)

Out[14]:

	X 1	X2	X1Square	X2Square	Y	C1	C2	СЗ	C4	R13	R14	R24	R23	NC1	NC2	NC-Class
0	3.50	1.20	12.25	1.44	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
1	1.30	-1.00	1.69	1.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
2	2.90	0.70	8.41	0.49	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
3	4.10	-2.70	16.81	7.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
4	4.90	-4.40	24.01	19.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
75	-3.20	2.00	10.24	4.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
76	-4.20	1.90	17.64	3.61	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
77	-1.30	-0.20	1.69	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
78	-1.70	0.20	2.89	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
79	-3.30	-2.50	10.89	6.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1

80 rows × 16 columns

Running Perceptron/Linear/Kernel SVM for Dataset -500,200,300,400

```
In [15]: from sklearn.model selection import train test split
         W = \{\}
         index = '0'
         size = [500, 200, 300, 400]
         weight perceptron vector list = []
         weight SVM Linear vector list = []
         weight SVM Kernel vector list = []
         count = 1
         for max in size:
             reg = data set create(max)
             df train all region = []
             df test all region = []
             for r in req:
                 #print(f'{r}')
                 d = pd.DataFrame(r, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C4','R13',
         'R14','R24','R23','NC1','NC2','NC-Class'])
                 d = d.reset index(drop=True)
                 #print(f' {d.iloc[0:max*25/100].to string()}')
                 train, test = train test split(d, train size = 0.80)
                 df train all region.append(train)
                 df test all region.append(test)
             x train = pd.concat(df_train_all region)
             x train = x train.reset index(drop=True)
             _x_test = pd.concat(df_test_all_region)
             x test = x test.reset index(drop=True)
             df tmp = pd.DataFrame( x train, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
         4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
             #print(df tmp.to string())
```

```
df = df tmp.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Class'], axis=
1)
   df test = pd.DataFrame( x test, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
   df = df.reset index(drop=True)
   #print(df.to string())
   w = 4
   h = 4
   d = 70
   plt.figure(figsize=(10, 4), dpi=d)
   st = f'Size[{max}] Feature'
   plt.xlabel(st, fontsize=14, color='black')
   plt.ylabel("X1 & X2 Feature ",fontsize=14, color='red')
   plt.title('Perceptron SVM (Linear Kernel) Classification', fontsize=20, color='red')
   plt.plot(df['X1'], '*',color='g',markersize=8)
   plt.plot(df['X2'], 'o',color='r',markersize=8)
   print('\n------ | Data Set | 500 200 300 400 |-----\n')
   for classifier in ['svm', 'percept', 'kernel-svm']:
   #for classifier in ['kernel-svm']:
       if (classifier == 'percept'):
          print('\n----\n')
          (acc, coef_, intercept_ ) = perceptron fit(df,df tmp['NC-Class'],df test)
          w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
          weight perceptron vector list.append(w)
          acc list =[]
          for i,w in enumerate(weight perceptron vector list):
              acc list.append(w['accuracy'])
              print( f'Weighted Vector :::: {size[i]} {w} ')
              #print( f'Weighted Vector :::: {i } {w} ')
```

```
if (count ==4):
      w = 4
      h = 4
      d = 70
      plt.figure(figsize=(10, 4), dpi=d)
      plt.xlabel(" size Feature ", fontsize=14, color='black')
      plt.ylabel("w['accuracy'] Feature ",fontsize=14, color='black')
      plt.title('Perceptron Classification',fontsize=20, color='black')
      plt.plot(size,acc list,'o')
if (classifier == 'svm'):
   print('\n----\n')
   (acc, coef_, intercept_) = SVM Linear fit(df,df_tmp['NC-Class'],df_test)
   w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
   weight SVM Linear vector list.append(w)
   acc list =[]
   for i,w in enumerate(weight_SVM_Linear_vector_list):
      acc_list.append(w['accuracy'])
      print( f'Weighted Vector :::: {i } {size[i]} {w} ')
      #print( f'Weighted Vector :::: {i } {w} ')
   if (count ==4):
      w = 4
      h = 4
      d = 70
      plt.figure(figsize=(10, 4), dpi=d)
      plt.xlabel(" size Feature ", fontsize=14, color='black')
      plt.ylabel("w['accuracy'] Feature ",fontsize=20, color='black')
      plt.title('SVM Linear Classification')
      plt.plot(size,acc_list,'o')
if (classifier == 'kernel-svm'):
   print('\n----\n')
   print('\n+++++++++++++++++ Kernel SVM ++++++++++++++++++\n')
```

```
from sklearn import svm
        #plot decision regions(df, df tmp['NC-Class'], svm, test idx=None, resolution=0.02)
        #weight vector list = []
        (acc, coef_, intercept_ ) = SVM Kernel fit(df,df_tmp['NC-Class'],df_test)
        w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
       weight SVM Kernel vector list.append(w)
        acc list =[]
        for i,w in enumerate(weight_SVM Kernel_vector_list):
            acc list.append(w['accuracy'])
            print( f'Weighted Vector :::: {size[i]} {w} ')
            #print( f'Weighted Vector :::: {i } {w} ')
        # Visualize the decision boundaries
        if (count ==4):
            d = { 'Size of Data ':size, 'Accuracy':acc_list}
            df = pd.DataFrame(data=d)
            df.head(len(size))
            w = 4
            h = 4
            d = 70
            plt.figure(figsize=(10, 4), dpi=d)
           plt.xlabel(" size Feature ", fontsize=12, color='black')
            plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
            plt.title('SVM KERNEL Classification')
           plt.plot(size,acc_list,'o')
count = count + 1
```

```
------- Data Set [ 500 200 300 400 ]------
C Parameter fine tuned vlaue for better accuracy 1
Weighted Vector :::: 0 500 {'Weight': array([[ 2.07, -1.86, 1.95, -1.98]]), 'intercept ': array([0.
12]), 'accuracy': 1.0}
Weighted Vector :::: 500 {'Weight': array([[ 80.4 , -69.7 , 85.84, -90.75]]), 'intercept ': array
([4.]), 'accuracy': 0.97}
========accuracy 0.1 1 0.99
Weighted Vector :::: 500 {'Weight': 0, 'intercept ': array([-0.03]), 'accuracy': 0.99}
------ Data Set [ 500 200 300 400 ]------
C Parameter fine tuned vlaue for better accuracy 1
Weighted Vector :::: 0 500 {'Weight': array([[ 2.07, -1.86, 1.95, -1.98]]), 'intercept ': array([0.
12]), 'accuracy': 1.0}
Weighted Vector :::: 1 200 {'Weight': array([[ 0.77, -0.88, 1. , -1. ]]), 'intercept ': array([-
0.23]), 'accuracy': 1.0}
```

```
Weighted Vector :::: 500 {'Weight': array([[ 80.4 , -69.7 , 85.84, -90.75]]), 'intercept_': array
([4.]), 'accuracy': 0.97}
Weighted Vector :::: 200 {'Weight': array([[ 60.6 , -47.9 , 77.76, -79.11]]), 'intercept_': array
([8.]), 'accuracy': 0.975}
Weighted Vector :::: 500 {'Weight': 0, 'intercept_': array([-0.03]), 'accuracy': 0.99}
Weighted Vector :::: 200 {'Weight': 0, 'intercept_': array([-0.05]), 'accuracy': 1.0}
------ Data Set [ 500 200 300 400 ]-----
C Parameter fine tuned vlaue for better accuracy 1
Weighted Vector :::: 0 500 {'Weight': array([[ 2.07, -1.86, 1.95, -1.98]]), 'intercept_': array([0.
12]), 'accuracy': 1.0}
Weighted Vector :::: 1 200 {'Weight': array([[ 0.77, -0.88, 1. , -1. ]]), 'intercept_': array([-
0.23]), 'accuracy': 1.0}
Weighted Vector :::: 2 300 {'Weight': array([[ 1.6 , -1.59, 1.62, -1.66]]), 'intercept_': array([-
0.03]), 'accuracy': 1.0}
Weighted Vector :::: 500 {'Weight': array([[ 80.4 , -69.7 , 85.84, -90.75]]), 'intercept ': array
([4.]), 'accuracy': 0.97}
Weighted Vector :::: 200 {'Weight': array([[ 60.6 , -47.9 , 77.76, -79.11]]), 'intercept_': array
([8.]), 'accuracy': 0.975}
```

```
Weighted Vector :::: 300 {'Weight': array([[ 36.1 , -31.4 , 36.01, -36.52]]), 'intercept ': array
([1.]), 'accuracy': 1.0}
Weighted Vector :::: 500 {'Weight': 0, 'intercept_': array([-0.03]), 'accuracy': 0.99}
Weighted Vector :::: 200 {'Weight': 0, 'intercept_': array([-0.05]), 'accuracy': 1.0}
Weighted Vector :::: 300 {'Weight': 0, 'intercept_': array([-0.01]), 'accuracy': 1.0}
------ Data Set [ 500 200 300 400 ]-----
C Parameter fine tuned vlaue for better accuracy 0.4
Weighted Vector :::: 0 500 {'Weight': array([[ 2.07, -1.86, 1.95, -1.98]]), 'intercept_': array([0.
12]), 'accuracy': 1.0}
Weighted Vector :::: 1 200 {'Weight': array([[ 0.77, -0.88, 1. , -1. ]]), 'intercept_': array([-
0.23]), 'accuracy': 1.0}
Weighted Vector :::: 2 300 {'Weight': array([[ 1.6 , -1.59, 1.62, -1.66]]), 'intercept_': array([-
0.03]), 'accuracy': 1.0}
Weighted Vector :::: 3 400 {'Weight': array([[ 0.95, -1.18,  1.06, -1.13]]), 'intercept_': array([0.
18]), 'accuracy': 1.0}
Weighted Vector :::: 500 {'Weight': array([[ 80.4 , -69.7 , 85.84, -90.75]]), 'intercept ': array
([4.]), 'accuracy': 0.97}
Weighted Vector :::: 200 {'Weight': array([[ 60.6 , -47.9 , 77.76, -79.11]]), 'intercept ': array
([8.]), 'accuracy': 0.975}
Weighted Vector :::: 300 {'Weight': array([[ 36.1 , -31.4 , 36.01, -36.52]]), 'intercept ': array
([1.]), 'accuracy': 1.0}
Weighted Vector :::: 400 {'Weight': array([[ 43.3 , -50. , 53.45, -57.76]]), 'intercept ': array
```

Perceptron SVM (Linear Kernel) Classification

Accuracy for SVM Kernel - size [500,200,300,400]

```
In [16]: acc_list =[]
    for i,w in enumerate(weight_SVM_Kernel_vector_list):
        acc_list.append(w['accuracy'])

d = { 'Size of Data ':size,'Accuracy Calculation for SVM Kernel ':acc_list}
    df = pd.DataFrame(data=d)
    df.head(len(size))
```

1.00

1.00

Out[16]:

2

3

300

400

	Size of Data	Accuracy Calculation for SVM Kernel
0	500	0.99
1	200	1.00

```
In [17]: w = 4
h = 4
d = 70
plt.figure(figsize=(10, 4), dpi=d)
plt.xlabel(" size Feature ", fontsize=12, color='black')
plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
plt.title('SVM Kernel Classification')
plt.plot(size,acc_list,'o')
```

Out[17]: [<matplotlib.lines.Line2D at 0x125827a30>]

Accuracy for SVM Linear - size [500,200,300,400]

```
In [18]: acc_list =[]
    for i,w in enumerate(weight_SVM_Linear_vector_list):
        acc_list.append(w['accuracy'])

    d = { 'Size of Data ':size,'Accuracy Calculation for SVM Linear ':acc_list}
    df = pd.DataFrame(data=d)
    df.head(len(size))
```

Out[18]:

Size of Data	Accuracy Calculation for SVM Linear
--------------	-------------------------------------

0	500	1.00
1	200	1.00
2	300	1.00
3	400	1.00

```
In [ ]:
```

In []:

```
In [19]: w = 4
h = 4
d = 70
plt.figure(figsize=(10, 4), dpi=d)
plt.xlabel(" size Feature ", fontsize=12, color='black')
plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
plt.title('SVM Linear Classification')
plt.plot(size,acc_list,'o')
```

Out[19]: [<matplotlib.lines.Line2D at 0x12587fb50>]

Accuracy for Perceptron - size [500,200,300,400]

```
In [20]: acc_list =[]
    for i,w in enumerate(weight_perceptron_vector_list):
        acc_list.append(w['accuracy'])

d = { 'Size of Data ':size, 'Accuracy Calculation for Perceptron ':acc_list}
    df = pd.DataFrame(data=d)
    df.head(len(size))
```

Out[20]:

Size of Data	Accuracy	Calculation '	for l	Perceptron
--------------	----------	---------------	-------	------------

0	500	0.97
1	200	0.97
2	300	1.00
3	400	1.00

```
In [ ]:
```

```
In [21]: w = 4
h = 4
d = 70
plt.figure(figsize=(10, 4), dpi=d)
plt.xlabel(" size Feature ", fontsize=12, color='black')
plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
plt.title('Perceptron Classification')
plt.plot(size,acc_list,'o')
```

Out[21]: [<matplotlib.lines.Line2D at 0x1258d8730>]

Running Perceptron/Linear/Kernel SVM for Dataset -500

```
In [22]: from sklearn.model selection import train test split
         W = \{\}
         index = '0'
         size = [500]
         weight perceptron vector list = []
         weight SVM Linear vector list = []
         weight SVM Kernel vector list = []
         count = 1
         for max in size:
             reg = data set create(max)
             df train all region = []
             df test all region = []
             for r in req:
                 #print(f'{r}')
                 d = pd.DataFrame(r, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C4','R13',
         'R14','R24','R23','NC1','NC2','NC-Class'])
                 d = d.reset index(drop=True)
                 #print(f' {d.iloc[0:max*25/100].to string()}' )
                 train, test = train test split(d, train size = 0.80)
                 df train all region.append(train)
                 df test all region.append(test)
             x train = pd.concat(df_train_all region)
             x train = x train.reset index(drop=True)
             _x_test = pd.concat(df_test_all_region)
             x test = x test.reset index(drop=True)
             df tmp = pd.DataFrame( x train, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
         4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
             print(df tmp.to string())
```

```
df = df tmp.drop(['Y','C1','C2','C3','C4','R13','R14','R24','R23','NC1','NC2','NC-Class'], axis=
1)
   df test = pd.DataFrame( x test, columns=['X1','X2', 'X1Square', 'X2Square','Y','C1','C2','C3','C
4','R13','R14','R24','R23','NC1','NC2','NC-Class'])
   df = df.reset index(drop=True)
   print(df.to_string())
   w = 4
   h = 4
   d = 70
   plt.figure(figsize=(10, 4), dpi=d)
   st = f'Size[{max}] Feature'
   plt.xlabel(st, fontsize=14, color='black')
   plt.ylabel("X1 & X2 Feature ",fontsize=14, color='red')
   plt.title('Perceptron SVM (Linear Kernel) Classification', fontsize=20, color='red')
   plt.plot(df['X1'], '*',color='g',markersize=8)
   plt.plot(df['X2'], 'o',color='r',markersize=8)
   print('\n-----| Data Set [500]-----\n')
   for classifier in ['svm', 'percept', 'kernel-svm']:
   #for classifier in ['kernel-svm']:
       if (classifier == 'percept'):
          print('\n----\n')
          (acc, coef_, intercept_ ) = perceptron fit(df,df tmp['NC-Class'],df test)
          w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
          weight perceptron vector list.append(w)
          acc list =[]
          for i,w in enumerate(weight perceptron vector list):
              acc list.append(w['accuracy'])
              print( f'Weighted Vector :::: {size[i]} {w} ')
              #print( f'Weighted Vector :::: {i } {w} ')
```

```
if (count ==4):
      w = 4
      h = 4
      d = 70
      plt.figure(figsize=(10, 4), dpi=d)
      plt.xlabel(" size Feature ", fontsize=14, color='black')
      plt.ylabel("w['accuracy'] Feature ",fontsize=14, color='black')
      plt.title('Perceptron Classification',fontsize=20, color='black')
      plt.plot(size,acc list,'o')
if (classifier == 'svm'):
   print('\n----\n')
   (acc, coef_, intercept_) = SVM Linear fit(df,df_tmp['NC-Class'],df_test)
   w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
   weight SVM Linear vector list.append(w)
   acc list =[]
   for i,w in enumerate(weight_SVM_Linear_vector_list):
      acc_list.append(w['accuracy'])
      print( f'Weighted Vector :::: {i } {size[i]} {w} ')
      #print( f'Weighted Vector :::: {i } {w} ')
   if (count ==4):
      w = 4
      h = 4
      d = 70
      plt.figure(figsize=(10, 4), dpi=d)
      plt.xlabel(" size Feature ", fontsize=14, color='black')
      plt.ylabel("w['accuracy'] Feature ",fontsize=20, color='black')
      plt.title('SVM Linear Classification')
      plt.plot(size,acc_list,'o')
if (classifier == 'kernel-svm'):
   print('\n----\n')
   print('\n+++++++++++++++++ Kernel SVM ++++++++++++++++++\n')
```

```
from sklearn import svm
       #plot decision regions(df, df tmp['NC-Class'], svm, test idx=None, resolution=0.02)
        #weight vector list = []
       (acc, coef_, intercept_) = SVM Kernel fit(df,df_tmp['NC-Class'],df_test)
       w = { 'Weight' : coef_, 'intercept_': intercept_, 'accuracy': acc}
       weight SVM Kernel vector list.append(w)
        acc list =[]
       for i,w in enumerate(weight_SVM Kernel_vector_list):
            acc list.append(w['accuracy'])
           print( f'Weighted Vector :::: {size[i]} {w} ')
            #print( f'Weighted Vector :::: {i } {w} ')
        # Visualize the decision boundaries
        if (count ==4):
            d = { 'Size of Data ':size, 'Accuracy':acc_list}
           df = pd.DataFrame(data=d)
           df.head(len(size))
            w = 4
            h = 4
           d = 70
           plt.figure(figsize=(10, 4), dpi=d)
           plt.xlabel(" size Feature ", fontsize=12, color='black')
            plt.ylabel("w['accuracy'] Feature ",fontsize=12, color='black')
           plt.title('SVM KERNEL Classification')
           plt.plot(size,acc_list,'o')
count = count + 1
```

	X1 X2	X1Square	X2Square	Y	C1	C2	C3	C4	R13	R14	R24	R23	NC1	NC2	NC-Class
0	4.90 -2.50	24.01	6.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
1	4.20 -4.40	17.64	19.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
2	1.80 -2.70	3.24	7.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
3	4.00 -3.60	16.00	12.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
4	4.50 -0.70	20.25	0.49	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
5	4.20 0.10	17.64	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
6	2.10 -2.70	4.41	7.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
7	4.10 3.20	16.81	10.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
8	0.90 0.30	0.81	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
9	1.90 -1.40	3.61	1.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
10	0.30 -0.90	0.09	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
11	2.70 -3.60	7.29	12.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
12	2.80 0.10	7.84	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
13	3.40 -3.20	11.56	10.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
14	4.40 0.20	19.36	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
15	2.70 1.30	7.29	1.69	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
16	0.70 0.30	0.49	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
17	4.70 4.60	22.09	21.16	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
18	3.90 3.60	15.21	12.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
19	4.20 -1.90	17.64	3.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
20	1.30 0.10	1.69	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
21	4.10 -2.80	16.81	7.84	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
22	4.70 4.40	22.09	19.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
23	2.70 -3.30	7.29	10.89	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
24	1.50 0.30	2.25	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
25	4.70 3.20	22.09	10.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
26	1.30 -0.40	1.69	0.16	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
27	4.30 -4.60	18.49	21.16	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
28	0.90 0.00	0.81	0.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
29	3.50 0.90	12.25	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
30	0.50 -0.20	0.25	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
31	2.90 2.20	8.41	4.84	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
32	3.50 -1.60	12.25	2.56	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
33	3.00 1.50	9.00	2.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
34	4.10 -3.30	16.81	10.89	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
35	1.30 0.20	1.69	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
36	1.10 0.70	1.21	0.49	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
37	3.20 -2.80	10.24	7.84	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
38	4.50 2.30	20.25	5.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
39	1.60 1.50	2.56	2.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
40	4.90 -0.30	24.01	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
41	3.50 -2.30	12.25	5.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1

42	1.60 1.40	2.56	1.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
43	0.60 0.00	0.36	0.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
44	4.30 -0.80	18.49	0.64	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
45	3.60 -1.00	12.96	1.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
46	3.10 0.90	9.61	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
47	-0.20 -0.30	0.04	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
48	3.70 -4.10	13.69	16.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
49	2.20 0.20	4.84	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
50	4.90 -3.30	24.01	10.89	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
51	2.80 -2.50	7.84	6.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
52	4.50 -2.30	20.25	5.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
53	2.00 0.20	4.00	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
54	1.90 1.00	3.61	1.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
55	4.40 0.90	19.36	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
56	2.30 -2.00	5.29	4.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
57	3.60 1.20	12.96	1.44	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
58	3.10 0.60	9.61	0.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
59	-0.20 -0.50	0.04	0.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
60	5.00 2.30	25.00	5.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
61	4.40 3.40	19.36	11.56	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
62	2.40 -0.80	5.76	0.64	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
63	4.20 0.60	17.64	0.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
64	4.80 -3.10	23.04	9.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
65	4.80 3.10	23.04	9.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
66	2.80 2.70	7.84	7.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
67	4.40 -0.20	19.36	0.04	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
68	4.10 -3.20	16.81	10.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
69	2.90 1.90	8.41	3.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
70	2.80 -1.20	7.84	1.44	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
71	2.10 -2.00	4.41	4.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
72	0.40 0.10	0.16	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
73	2.50 0.50	6.25	0.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
74	1.50 0.10	2.25	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
75	2.10 -2.80	4.41	7.84	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
76	3.20 -0.30	10.24	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
77	2.80 -2.00	7.84	4.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
78	3.00 -2.50	9.00	6.25	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
79	2.70 -2.70	7.29	7.29	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
80	4.90 -0.70	24.01	0.49	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
81	4.70 -3.40	22.09	11.56	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
82	4.70 - 1.70	22.09	2.89	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
83	3.50 1.90	12.25	3.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
84	4.60 1.40	21.16	1.96	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1

85	5.00	-2.60	25.00	6.76	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
86	1.50	1.30	2.25	1.69	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
87	3.40	-3.40	11.56	11.56	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
88	1.60	-1.80	2.56	3.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
89	4.40	1.80	19.36	3.24	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
90	4.90	0.30	24.01	0.09	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
91	3.30	-0.90	10.89	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
92	2.20	0.90	4.84	0.81	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
93	4.60	2.90	21.16	8.41	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
94	4.80	3.10	23.04	9.61	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
95	1.20	-0.60	1.44	0.36	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
96	3.90	2.00	15.21	4.00	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
97	0.70	-0.10	0.49	0.01	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
98	1.70	0.80	2.89	0.64	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
99	4.40	1.60	19.36	2.56	1	Yes	No	Yes	No	Yes	No	No	No	Yes	No	1
100	-3.70	-4.40	13.69	19.36	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
101	1.70	-4.70	2.89	22.09	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
102	0.10	-3.40	0.01	11.56	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
103	-0.20	-4.00	0.04	16.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
104	-2.20	-3.60	4.84	12.96	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
105	1.80	-3.30	3.24	10.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
106	0.50	-3.40	0.25	11.56	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
107	1.50	-3.40	2.25	11.56	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
108	1.00	-3.20	1.00	10.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
109	2.70	-4.70	7.29	22.09	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
110	-3.20	-3.40	10.24	11.56	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
111	-2.10	-3.50	4.41	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
112	-1.10	-3.70	1.21	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
113	0.30	-3.70	0.09	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
114	-2.70	-4.40	7.29	19.36	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
115	-1.30	-3.60	1.69	12.96	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
116	-1.90	-3.00	3.61	9.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
117	2.00	-3.50	4.00	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
118	-2.90	-3.20	8.41	10.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
119	-1.10	-3.30	1.21	10.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
120	0.20	-5.00	0.04	25.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
121	-0.10	-3.90	0.01	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
122	-2.70	-4.30	7.29	18.49	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
123	-0.20	-1.70	0.04	2.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
124	-1.90	-2.00	3.61	4.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
125	-0.20	-2.30	0.04	5.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
126	0.30	-1.40	0.09	1.96	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
127	-2.30	-3.30	5.29	10.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0

128 0.90 -4.10	0.81	16.81	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
129 2.00 -3.20	4.00	10.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
130 -0.90 -3.10	0.81	9.61	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
131 -1.40 -1.80	1.96	3.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
132 -2.60 -4.00	6.76	16.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
133 -4.20 -4.60	17.64	21.16	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
134 0.20 -3.70	0.04	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
135 -2.20 -3.50	4.84	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
136 -4.40 -4.90	19.36	24.01	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
137 -1.80 -2.80	3.24	7.84	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
138 -0.80 -0.90	0.64	0.81	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
139 3.40 -4.50	11.56	20.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
140 -1.30 -3.50	1.69	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
141 2.80 -4.20	7.84	17.64	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
142 0.10 -3.30	0.01	10.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
143 -2.00 -3.00	4.00	9.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
144 -2.60 -4.70	6.76	22.09	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
145 1.90 -4.90	3.61	24.01	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
146 -3.00 -3.90	9.00	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
147 -4.00 -4.90	16.00	24.01	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
148 -0.80 -2.90	0.64	8.41	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
149 0.50 -2.10	0.25	4.41	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
150 -4.10 -5.00	16.81	25.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
151 2.30 -3.90	5.29	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
152 -1.20 -2.00	1.44	4.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
153 0.50 -3.50	0.25	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
154 -1.50 -2.80	2.25	7.84	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
155 -0.10 -3.80	0.01	14.44	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
156 0.90 -2.30	0.81	5.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
157 1.70 -4.20	2.89	17.64	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
158 -0.30 -3.50	0.09	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
159 1.80 -4.60	3.24	21.16	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
160 1.10 -3.90	1.21	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
161 1.00 -3.00	1.00	9.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
162 -4.20 -4.40	17.64	19.36	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
163 0.90 -3.70	0.81	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
164 -1.70 -3.80	2.89	14.44	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
165 -1.00 -1.70	1.00	2.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
166 0.30 -3.90	0.09	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
167 -3.10 -4.60	9.61	21.16	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
168 -1.90 -2.60	3.61	6.76	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
169 0.80 -2.10	0.64	4.41	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
170 1.80 -4.20	3.24	17.64	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0

171 -4.80	-5.00	23.04	25.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
172 -1.30	-4.60	1.69	21.16	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
173 -1.10	-2.70	1.21	7.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
174 -0.60	-4.90	0.36	24.01	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
175 -1.50	-3.70	2.25	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
176 -3.30	-3.70	10.89	13.69	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
177 1.00	-4.40	1.00	19.36	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
178 1.00	-3.10	1.00	9.61	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
179 -1.00	-1.10	1.00	1.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
180 1.90	-4.80	3.61	23.04	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
181 -1.20	-4.70	1.44	22.09	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
182 1.80	-3.50	3.24	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
183 1.40	-3.50	1.96	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
184 -0.80	-2.70	0.64	7.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
185 -0.80	-4.40	0.64	19.36	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
186 0.20	-2.70	0.04	7.29	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
187 1.80	-3.90	3.24	15.21	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
188 -3.10	-4.30	9.61	18.49	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
189 -1.20	-3.20	1.44	10.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
190 -1.40	-1.90	1.96	3.61	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
191 -0.60	-2.00	0.36	4.00	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
192 -1.30	-1.50	1.69	2.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
193 -4.10	-4.50	16.81	20.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
194 -2.90	-3.20	8.41	10.24	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
195 1.10	-2.60	1.21	6.76	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
196 0.90	-2.60	0.81	6.76	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
197 -2.00	-2.20	4.00	4.84	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
198 -0.30	-3.30	0.09	10.89	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
199 -2.60	-3.50	6.76	12.25	1	Yes	No	No	Yes	No	Yes	No	No	No	Yes	0
200 -0.90	1.90	0.81	3.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
201 2.60	4.10	6.76	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
202 -1.40	0.70	1.96	0.49	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
203 -3.70	3.40	13.69	11.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
204 0.40	2.90	0.16	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
205 0.60	3.00	0.36	9.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
206 0.30	1.30	0.09	1.69	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
207 2.10	3.00	4.41	9.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
208 0.10	2.90	0.01	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
209 2.80	3.90	7.84	15.21	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
210 -2.80	4.50	7.84	20.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
211 2.10	3.60	4.41	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
212 -1.30	0.90	1.69	0.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
213 -1.30	0.90	1.69	0.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0

214 1.20	3.10	1.44	9.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
215 -0.70	3.40	0.49	11.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
216 -0.40	1.80	0.16	3.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
217 -0.90	3.60	0.81	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
218 2.20	3.20	4.84	10.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
219 -1.40	0.70	1.96	0.49	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
220 0.20	0.60	0.04	0.36	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
221 -1.20	2.90	1.44	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
222 -2.60	3.10	6.76	9.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
223 -1.50	1.60	2.25	2.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
224 -2.10	3.50	4.41	12.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
225 3.40	4.50	11.56	20.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
226 0.40	1.80	0.16	3.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
227 -1.50	1.60	2.25	2.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
228 -1.40	3.10	1.96	9.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
229 -0.50	1.90	0.25	3.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
230 -4.10	5.00	16.81	25.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
231 0.60	4.70	0.36	22.09	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
232 0.20	4.50	0.04	20.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
233 2.30	2.40	5.29	5.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
234 2.20	4.80	4.84	23.04	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
235 0.10	3.40	0.01	11.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
236 -0.40	2.50	0.16	6.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
237 1.80	2.70	3.24	7.29	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
238 -0.60	3.60	0.36	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
239 -4.50	4.30	20.25	18.49	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
240 -1.40	2.80	1.96	7.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
241 -3.40	3.90	11.56	15.21	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
242 2.90	4.50	8.41	20.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
243 -0.20	2.80	0.04	7.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
244 3.00	3.40	9.00	11.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
245 0.70	3.00	0.49	9.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
246 -3.70	3.60	13.69	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
247 -1.30	2.60	1.69	6.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
248 -2.00	2.20	4.00	4.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
249 -1.40	4.10	1.96	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
250 -0.10	4.40	0.01	19.36	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
251 -0.30	1.80	0.09	3.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
252 -2.50	4.10	6.25	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
253 -2.90	3.30	8.41	10.89	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
254 -0.90	0.10	0.81	0.01	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
255 -1.00	0.50	1.00	0.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
256 -2.60	1.90	6.76	3.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0

257 1.40	5.00	1.96	25.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
258 1.30	2.90	1.69	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
259 1.60	4.40	2.56	19.36	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
260 3.20	4.30	10.24	18.49	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
261 1.40	2.60	1.96	6.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
262 -1.30	2.40	1.69	5.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
263 1.90	3.60	3.61	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
264 -4.30	4.60	18.49	21.16	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
265 -3.60	2.90	12.96	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
266 -0.90	4.10	0.81	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
267 0.20	2.10	0.04	4.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
268 0.80	2.80	0.64	7.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
269 -1.80	1.40	3.24	1.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
270 -1.50	2.20	2.25	4.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
271 2.40	2.70	5.76	7.29	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
272 1.60	3.60	2.56	12.96	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
273 -1.50	1.20	2.25	1.44	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
274 1.70	3.80	2.89	14.44	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
275 1.20	3.90	1.44	15.21	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
276 -0.70	4.70	0.49	22.09	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
277 -0.20	-0.10	0.04	0.01	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
278 0.70	2.00	0.49	4.00	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
279 -0.40	1.90	0.16	3.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
280 0.50	0.60	0.25	0.36	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
281 -2.90	2.90	8.41	8.41	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
282 -3.10	3.20	9.61	10.24	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
283 -2.40	3.10	5.76	9.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
284 0.90	3.40	0.81	11.56	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
285 -4.10	4.50	16.81	20.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
286 1.10	1.50	1.21	2.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
287 -2.10	3.50	4.41	12.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
288 -4.50	4.10	20.25	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
289 1.00	2.70	1.00	7.29	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
290 2.90	3.70	8.41	13.69	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
291 0.70	3.90	0.49	15.21	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
292 2.10	4.10	4.41	16.81	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
293 -3.50	3.50	12.25	12.25	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
294 -2.40	2.40	5.76	5.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
295 -0.30	3.10	0.09	9.61	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
296 -0.50	2.80	0.25	7.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
297 -0.60	2.80	0.36	7.84	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
298 -0.80	4.80	0.64	23.04	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0
299 -0.40	2.40	0.16	5.76	0	No	Yes	Yes	No	No	No	No	Yes	No	Yes	0

300 -4.80 -3.60	23.04	12.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
301 -3.50 1.30	12.25	1.69	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
302 -3.80 1.00	14.44	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
303 -1.50 -1.10	2.25	1.21	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
304 -3.40 0.30	11.56	0.09	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
305 -3.10 -1.40	9.61	1.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
306 -4.00 0.50	16.00	0.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
307 -3.30 -2.00	10.89	4.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
308 -3.40 0.90	11.56	0.81	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
309 -3.50 0.70	12.25	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
310 -3.60 -3.20	12.96	10.24	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
311 -3.30 1.40	10.89	1.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
312 -2.40 -0.00	5.76	0.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
313 -1.70 -0.70	2.89	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
314 -2.50 -1.50	6.25	2.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
315 -2.90 -0.40	8.41	0.16	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
316 -4.30 0.30	18.49	0.09	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
317 -4.40 0.20	19.36	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
318 -3.70 -0.00	13.69	0.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
319 -4.90 -2.70	24.01	7.29	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
320 -2.40 1.20	5.76	1.44	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
321 -3.60 2.50	12.96	6.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
322 -4.10 0.20	16.81	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
323 -4.20 0.10	17.64	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
324 -1.80 -1.30	3.24	1.69	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
325 -4.50 -3.20	20.25	10.24	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
326 -3.40 -2.70	11.56	7.29	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
327 -2.80 0.90	7.84	0.81	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
328 -2.40 -1.20	5.76	1.44	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
329 -2.90 -0.10	8.41	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
330 -3.40 1.60	11.56	2.56	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
331 -1.90 0.50	3.61	0.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
332 -2.30 -0.00	5.29	0.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
333 -2.50 -1.90	6.25	3.61	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
334 -5.00 2.30	25.00	5.29	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
335 -3.00 -2.00	9.00	4.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
336 -2.90 0.10	8.41	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
337 -3.00 0.60	9.00	0.36	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
338 -4.20 -3.10	17.64	9.61	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
339 -1.70 0.10	2.89	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
340 -2.40 0.30	5.76	0.09	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
341 -2.70 -0.70	7.29	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
342 -4.00 2.50	16.00	6.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1

343 -1.40	-1.00	1.96	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
344 -1.70	-0.00	2.89	0.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
345 -3.20	-0.10	10.24	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
346 -4.50	-1.50	20.25	2.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
347 -4.90	-3.60	24.01	12.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
348 -4.40	-1.00	19.36	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
349 -3.50	-1.40	12.25	1.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
350 -1.30	-0.70	1.69	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
351 -4.50	3.40	20.25	11.56	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
352 -2.40	-0.10	5.76	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
353 -3.90	-2.50	15.21	6.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
354 -5.00	-4.60	25.00	21.16	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
355 -4.50	-0.20	20.25	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
356 -4.40	-1.60	19.36	2.56	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
357 -4.50	-2.60	20.25	6.76	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
358 -4.50	2.10	20.25	4.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
359 -1.10	-1.00	1.21	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
360 -4.30	-2.10	18.49	4.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
361 -2.10	0.60	4.41	0.36	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
362 -4.80	1.00	23.04	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
363 -3.60	2.10	12.96	4.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
364 -4.20	-3.80	17.64	14.44	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
365 -1.80	-1.20	3.24	1.44	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
366 -2.90	-1.50	8.41	2.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
367 -2.30	-2.00	5.29	4.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
368 -2.70	-0.50	7.29	0.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
369 -4.20	-0.60	17.64	0.36	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
370 -1.70	-0.80	2.89	0.64	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
371 -4.10	-2.30	16.81	5.29	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
372 -4.30	2.00	18.49	4.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
373 -4.10	-3.60	16.81	12.96	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
374 -4.60	-2.50	21.16	6.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
375 -2.30	0.20	5.29	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
376 -3.00	-2.90	9.00	8.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
377 -4.70	-3.20	22.09	10.24	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
378 -4.80	2.90	23.04	8.41	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
379 -3.40	0.60	11.56	0.36	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
380 -4.80	-2.60	23.04	6.76	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
381 -3.80	2.30	14.44	5.29	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
382 -1.60	-1.50	2.56	2.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
383 -4.30	1.00	18.49	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
384 -4.10	2.80	16.81	7.84	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
385 -1.60	0.20	2.56	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1

386	-3.40	-0.80	11.56	0.64	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
387	-4.60	1.00	21.16	1.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
388	-4.70	0.70	22.09	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
389	-1.40	-0.10	1.96	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
390	-3.40	-0.70	11.56	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
391	-4.80	-0.10	23.04	0.01	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
392	-3.40	0.70	11.56	0.49	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
393	-1.50	-1.30	2.25	1.69	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
394	-4.70	-3.50	22.09	12.25	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
395	-2.60	0.40	6.76	0.16	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
396	-4.80	0.20	23.04	0.04	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
397	-3.30	1.70	10.89	2.89	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
398	-4.70	-0.00	22.09	0.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
399	-4.70	3.00	22.09	9.00	0	No	Yes	No	Yes	No	No	Yes	No	Yes	No	1
	X1	X2	X1Square	X2Square												
0	4.90	-2.50	24.01	6.25												
1	4.20	-4.40	17.64	19.36												
2	1.80	-2.70	3.24	7.29												
3	4.00	-3.60	16.00	12.96												
4	4.50	-0.70	20.25	0.49												
5	4.20	0.10	17.64	0.01												
6	2.10	-2.70	4.41	7.29												
7	4.10	3.20	16.81	10.24												
8	0.90	0.30	0.81	0.09												
9	1.90	-1.40	3.61	1.96												
10	0.30	-0.90	0.09	0.81												
11	2.70	-3.60	7.29	12.96												
12	2.80	0.10	7.84	0.01												
13	3.40	-3.20	11.56	10.24												
14	4.40	0.20	19.36	0.04												
15	2.70	1.30	7.29	1.69												
16	0.70	0.30	0.49	0.09												
17	4.70	4.60	22.09	21.16												
18	3.90	3.60	15.21	12.96												
19	4.20	-1.90	17.64	3.61												
20	1.30	0.10	1.69	0.01												
21		-2.80	16.81	7.84												
22		4.40	22.09	19.36												
23		-3.30	7.29	10.89												
24		0.30	2.25	0.09												
25		3.20	22.09	10.24												
26		-0.40	1.69	0.16												
27	4.30	-4.60	18.49	21.16												

28	0.90	0.00	0.81	0.00
29	3.50	0.90	12.25	0.81
30	0.50	-0.20	0.25	0.04
31	2.90	2.20	8.41	4.84
32	3.50	-1.60	12.25	2.56
33	3.00	1.50	9.00	2.25
34	4.10	-3.30	16.81	10.89
35	1.30	0.20	1.69	0.04
36	1.10	0.70	1.21	0.49
37	3.20	-2.80	10.24	7.84
38	4.50	2.30	20.25	5.29
39	1.60	1.50	2.56	2.25
40		-0.30	24.01	0.09
41		-2.30	12.25	5.29
42	1.60	1.40	2.56	1.96
43	0.60	0.00	0.36	0.00
44		-0.80	18.49	0.64
45		-1.00	12.96	1.00
46	3.10	0.90	9.61	0.81
47	-0.20	-0.30	0.04	0.09
48	3.70	-4.10	13.69	16.81
49	2.20	0.20	4.84	0.04
50	4.90	-3.30	24.01	10.89
51	2.80	-2.50	7.84	6.25
52	4.50	-2.30	20.25	5.29
53	2.00	0.20	4.00	0.04
54	1.90	1.00	3.61	1.00
55	4.40	0.90	19.36	0.81
56	2.30	-2.00	5.29	4.00
57	3.60	1.20	12.96	1.44
58	3.10	0.60	9.61	0.36
59	-0.20	-0.50	0.04	0.25
60	5.00	2.30	25.00	5.29
61	4.40	3.40	19.36	11.56
62	2.40	-0.80	5.76	0.64
63	4.20	0.60	17.64	0.36
64	4.80	-3.10	23.04	9.61
65	4.80	3.10	23.04	9.61
66	2.80	2.70	7.84	7.29
67	4.40	-0.20	19.36	0.04
68	4.10	-3.20	16.81	10.24
69	2.90	1.90	8.41	3.61
70	2.80	-1.20	7.84	1.44

71	2.10	-2.00	4.41	4.00
72	0.40	0.10	0.16	0.01
73	2.50	0.50	6.25	0.25
74	1.50	0.10	2.25	0.01
75	2.10	-2.80	4.41	7.84
76	3.20	-0.30	10.24	0.09
77	2.80	-2.00	7.84	4.00
78	3.00	-2.50	9.00	6.25
79	2.70	-2.70	7.29	7.29
80	4.90	-0.70	24.01	0.49
81	4.70	-3.40	22.09	11.56
82	4.70	-1.70	22.09	2.89
83	3.50	1.90	12.25	3.61
84	4.60	1.40	21.16	1.96
85	5.00	-2.60	25.00	6.76
86	1.50	1.30	2.25	1.69
87	3.40	-3.40	11.56	11.56
88	1.60	-1.80	2.56	3.24
89	4.40	1.80	19.36	3.24
90	4.90	0.30	24.01	0.09
91	3.30	-0.90	10.89	0.81
92	2.20	0.90	4.84	0.81
93	4.60	2.90	21.16	8.41
94	4.80	3.10	23.04	9.61
95	1.20	-0.60	1.44	0.36
96	3.90	2.00	15.21	4.00
97	0.70	-0.10	0.49	0.01
98	1.70	0.80	2.89	0.64
99	4.40	1.60	19.36	2.56
100	-3.70	-4.40	13.69	19.36
101	1.70	-4.70	2.89	22.09
102	0.10	-3.40	0.01	11.56
103	-0.20	-4.00	0.04	16.00
104	-2.20	-3.60	4.84	12.96
105	1.80	-3.30	3.24	10.89
106	0.50	-3.40	0.25	11.56
107		-3.40	2.25	11.56
108	1.00	-3.20	1.00	10.24
109		-4.70	7.29	22.09
110	-3.20		10.24	11.56
111	-2.10		4.41	12.25
112	-1.10	-3.70	1.21	13.69
113	0.30	-3.70	0.09	13.69

114 -2.70	-4.40	7.29	19.36
115 -1.30	-3.60	1.69	12.96
116 -1.90	-3.00	3.61	9.00
117 2.00	-3.50	4.00	12.25
118 -2.90	-3.20	8.41	10.24
119 -1.10	-3.30	1.21	10.89
120 0.20	-5.00	0.04	25.00
121 -0.10	-3.90	0.01	15.21
122 -2.70	-4.30	7.29	18.49
123 -0.20	-1.70	0.04	2.89
124 -1.90	-2.00	3.61	4.00
125 -0.20	-2.30	0.04	5.29
126 0.30	-1.40	0.09	1.96
127 -2.30	-3.30	5.29	10.89
128 0.90	-4.10	0.81	16.81
129 2.00	-3.20	4.00	10.24
130 -0.90	-3.10	0.81	9.61
131 -1.40	-1.80	1.96	3.24
132 -2.60	-4.00	6.76	16.00
133 -4.20	-4.60	17.64	21.16
134 0.20	-3.70	0.04	13.69
135 -2.20	-3.50	4.84	12.25
136 -4.40	-4.90	19.36	24.01
137 -1.80	-2.80	3.24	7.84
138 -0.80	-0.90	0.64	0.81
139 3.40	-4.50	11.56	20.25
140 -1.30	-3.50	1.69	12.25
141 2.80	-4.20	7.84	17.64
142 0.10	-3.30	0.01	10.89
143 -2.00	-3.00	4.00	9.00
144 -2.60	-4.70	6.76	22.09
145 1.90	-4.90	3.61	24.01
146 -3.00	-3.90	9.00	15.21
147 -4.00	-4.90	16.00	24.01
148 -0.80	-2.90	0.64	8.41
149 0.50	-2.10	0.25	4.41
150 -4.10	-5.00	16.81	25.00
151 2.30	-3.90	5.29	15.21
152 -1.20	-2.00	1.44	4.00
153 0.50	-3.50	0.25	12.25
154 -1.50	-2.80	2.25	7.84
155 -0.10	-3.80	0.01	14.44
156 0.90	-2.30	0.81	5.29

157	1.70	-4.20	2.89	17.64
158	-0.30	-3.50	0.09	12.25
159	1.80	-4.60	3.24	21.16
160	1.10	-3.90	1.21	15.21
161	1.00	-3.00	1.00	9.00
162	-4.20	-4.40	17.64	19.36
163	0.90	-3.70	0.81	13.69
164	-1.70	-3.80	2.89	14.44
165	-1.00	-1.70	1.00	2.89
166	0.30	-3.90	0.09	15.21
167	-3.10	-4.60	9.61	21.16
168	-1.90	-2.60	3.61	6.76
169	0.80	-2.10	0.64	4.41
170	1.80	-4.20	3.24	17.64
171	-4.80	-5.00	23.04	25.00
172	-1.30	-4.60	1.69	21.16
173	-1.10	-2.70	1.21	7.29
174	-0.60	-4.90	0.36	24.01
175	-1.50	-3.70	2.25	13.69
176	-3.30	-3.70	10.89	13.69
177	1.00	-4.40	1.00	19.36
178	1.00	-3.10	1.00	9.61
179	-1.00	-1.10	1.00	1.21
180	1.90	-4.80	3.61	23.04
181	-1.20	-4.70	1.44	22.09
182	1.80	-3.50	3.24	12.25
183	1.40	-3.50	1.96	12.25
184		-2.70	0.64	7.29
185	-0.80	-4.40	0.64	19.36
186		-2.70	0.04	7.29
187	1.80	-3.90	3.24	15.21
188	-3.10	-4.30	9.61	18.49
189		-3.20	1.44	10.24
190	-1.40	-1.90	1.96	3.61
191	-0.60	-2.00	0.36	4.00
192	-1.30	-1.50	1.69	2.25
193	-4.10	-4.50	16.81	20.25
194	-2.90	-3.20	8.41	10.24
195		-2.60	1.21	6.76
196		-2.60	0.81	6.76
197		-2.20	4.00	4.84
198		-3.30	0.09	10.89
199	-2.60	-3.50	6.76	12.25
193 194 195 196 197 198	-4.10 -2.90 1.10 0.90 -2.00 -0.30	-4.50 -3.20 -2.60 -2.60 -2.20 -3.30	16.81 8.41 1.21 0.81 4.00 0.09	20.25 10.24 6.76 6.76 4.84

200 -0.90		0.81	3.61
201 2.60		6.76	16.81
202 -1.40	0.70	1.96	0.49
203 -3.70	3.40	13.69	11.56
204 0.40	2.90	0.16	8.41
205 0.60	3.00	0.36	9.00
206 0.30	1.30	0.09	1.69
207 2.10	3.00	4.41	9.00
208 0.10	2.90	0.01	8.41
209 2.80	3.90	7.84	15.21
210 -2.80	4.50	7.84	20.25
211 2.10	3.60	4.41	12.96
212 -1.30	0.90	1.69	0.81
213 -1.30	0.90	1.69	0.81
214 1.20	3.10	1.44	9.61
215 -0.70	3.40	0.49	11.56
216 -0.40	1.80	0.16	3.24
217 -0.90	3.60	0.81	12.96
218 2.20	3.20	4.84	10.24
219 -1.40	0.70	1.96	0.49
220 0.20	0.60	0.04	0.36
221 -1.20	2.90	1.44	8.41
222 -2.60	3.10	6.76	9.61
223 -1.50	1.60	2.25	2.56
224 -2.10	3.50	4.41	12.25
225 3.40	4.50	11.56	20.25
226 0.40	1.80	0.16	3.24
227 -1.50	1.60	2.25	2.56
228 -1.40	3.10	1.96	9.61
229 -0.50	1.90	0.25	3.61
230 -4.10	5.00	16.81	25.00
231 0.60	4.70	0.36	22.09
232 0.20	4.50	0.04	20.25
233 2.30	2.40	5.29	5.76
234 2.20	4.80	4.84	23.04
235 0.10	3.40	0.01	11.56
236 -0.40	2.50	0.16	6.25
237 1.80	2.70	3.24	7.29
238 -0.60	3.60	0.36	12.96
239 -4.50	4.30	20.25	18.49
240 -1.40		1.96	7.84
241 -3.40	3.90	11.56	15.21
242 2.90	4.50	8.41	20.25

243 -0.20	2.80	0.04	7.84
244 3.00	3.40	9.00	11.56
245 0.70	3.00	0.49	9.00
246 -3.70	3.60	13.69	12.96
247 -1.30	2.60	1.69	6.76
248 -2.00	2.20	4.00	4.84
249 -1.40	4.10	1.96	16.81
250 -0.10	4.40	0.01	19.36
251 -0.30	1.80	0.09	3.24
252 -2.50	4.10	6.25	16.81
253 -2.90	3.30	8.41	10.89
254 -0.90	0.10	0.81	0.01
255 -1.00	0.50	1.00	0.25
256 -2.60	1.90	6.76	3.61
257 1.40	5.00	1.96	25.00
258 1.30	2.90	1.69	8.41
259 1.60	4.40	2.56	19.36
260 3.20	4.30	10.24	18.49
261 1.40	2.60	1.96	6.76
262 -1.30	2.40	1.69	5.76
263 1.90	3.60	3.61	12.96
264 -4.30	4.60	18.49	21.16
265 -3.60	2.90	12.96	8.41
266 -0.90	4.10	0.81	16.81
267 0.20	2.10	0.04	4.41
268 0.80	2.80	0.64	7.84
269 -1.80	1.40	3.24	1.96
270 -1.50	2.20	2.25	4.84
271 2.40	2.70	5.76	7.29
272 1.60	3.60	2.56	12.96
273 -1.50	1.20	2.25	1.44
274 1.70	3.80	2.89	14.44
275 1.20	3.90	1.44	15.21
276 -0.70	4.70	0.49	22.09
277 -0.20	-0.10	0.04	0.01
278 0.70	2.00	0.49	4.00
279 -0.40	1.90	0.16	3.61
280 0.50	0.60	0.25	0.36
281 -2.90	2.90	8.41	8.41
282 -3.10	3.20	9.61	10.24
283 -2.40	3.10	5.76	9.61
284 0.90	3.40	0.81	11.56
285 -4.10	4.50	16.81	20.25

286 1.10	1.50	1.21	2.25
287 -2.10	3.50	4.41	12.25
288 -4.50	4.10	20.25	16.81
289 1.00	2.70	1.00	7.29
290 2.90	3.70	8.41	13.69
291 0.70	3.90	0.49	15.21
292 2.10	4.10	4.41	16.81
293 -3.50	3.50	12.25	12.25
294 -2.40	2.40	5.76	5.76
295 -0.30	3.10	0.09	9.61
296 -0.50	2.80	0.25	7.84
297 -0.60	2.80	0.36	7.84
298 -0.80	4.80	0.64	23.04
299 -0.40	2.40	0.16	5.76
300 -4.80	-3.60	23.04	12.96
301 -3.50	1.30	12.25	1.69
302 -3.80	1.00	14.44	1.00
303 -1.50	-1.10	2.25	1.21
304 -3.40	0.30	11.56	0.09
305 -3.10	-1.40	9.61	1.96
306 -4.00	0.50	16.00	0.25
307 -3.30	-2.00	10.89	4.00
308 -3.40	0.90	11.56	0.81
309 -3.50	0.70	12.25	0.49
310 -3.60	-3.20	12.96	10.24
311 -3.30	1.40	10.89	1.96
312 -2.40	-0.00	5.76	0.00
313 -1.70	-0.70	2.89	0.49
314 -2.50	-1.50	6.25	2.25
315 -2.90	-0.40	8.41	0.16
316 -4.30	0.30	18.49	0.09
317 -4.40	0.20	19.36	0.04
318 -3.70	-0.00	13.69	0.00
319 -4.90	-2.70	24.01	7.29
320 -2.40	1.20	5.76	1.44
321 -3.60	2.50	12.96	6.25
322 -4.10	0.20	16.81	0.04
323 -4.20	0.10	17.64	0.01
324 -1.80	-1.30	3.24	1.69
325 -4.50	-3.20	20.25	10.24
326 -3.40	-2.70	11.56	7.29
327 -2.80	0.90	7.84	0.81
328 -2.40	-1.20	5.76	1.44

329 -2.90	-0.10	8.41	0.01
330 -3.40	1.60	11.56	2.56
331 -1.90	0.50	3.61	0.25
332 -2.30	-0.00	5.29	0.00
333 -2.50	-1.90	6.25	3.61
334 -5.00	2.30	25.00	5.29
335 -3.00	-2.00	9.00	4.00
336 -2.90	0.10	8.41	0.01
337 -3.00	0.60	9.00	0.36
338 -4.20	-3.10	17.64	9.61
339 -1.70	0.10	2.89	0.01
340 -2.40	0.30	5.76	0.09
341 -2.70	-0.70	7.29	0.49
342 -4.00	2.50	16.00	6.25
343 -1.40	-1.00	1.96	1.00
344 -1.70	-0.00	2.89	0.00
345 -3.20	-0.10	10.24	0.01
346 -4.50	-1.50	20.25	2.25
347 -4.90	-3.60	24.01	12.96
348 -4.40	-1.00	19.36	1.00
349 -3.50	-1.40	12.25	1.96
350 -1.30	-0.70	1.69	0.49
351 -4.50	3.40	20.25	11.56
352 -2.40	-0.10	5.76	0.01
353 -3.90	-2.50	15.21	6.25
354 -5.00	-4.60	25.00	21.16
355 -4.50	-0.20	20.25	0.04
356 -4.40	-1.60	19.36	2.56
357 -4.50	-2.60	20.25	6.76
358 -4.50	2.10	20.25	4.41
359 -1.10	-1.00	1.21	1.00
360 -4.30	-2.10	18.49	4.41
361 -2.10	0.60	4.41	0.36
362 -4.80	1.00	23.04	1.00
363 -3.60	2.10	12.96	4.41
364 -4.20	-3.80	17.64	14.44
365 -1.80	-1.20	3.24	1.44
366 -2.90	-1.50	8.41	2.25
367 -2.30	-2.00	5.29	4.00
368 -2.70	-0.50	7.29	0.25
369 -4.20	-0.60	17.64	0.36
370 -1.70	-0.80	2.89	0.64
371 -4.10	-2.30	16.81	5.29

```
372 -4.30 2.00
                 18.49
                          4.00
373 -4.10 -3.60
                          12.96
                 16.81
                          6.25
374 -4.60 -2.50
                  21.16
375 -2.30 0.20
                 5.29
                          0.04
376 -3.00 -2.90
                 9.00
                          8.41
377 -4.70 -3.20
                           10.24
                  22.09
378 -4.80 2.90
                  23.04
                            8.41
                            0.36
379 -3.40 0.60
                  11.56
                          6.76
380 -4.80 -2.60
                 23.04
381 -3.80 2.30
               14.44
                            5.29
382 -1.60 -1.50
                  2.56
                            2.25
383 -4.30 1.00
                            1.00
                 18.49
                 16.81
                            7.84
384 -4.10 2.80
                 2.56
                          0.04
385 -1.60 0.20
386 -3.40 -0.80
                 11.56
                            0.64
387 -4.60 1.00
                  21.16
                           1.00
                  22.09
                            0.49
388 -4.70 0.70
                 1.96
389 -1.40 -0.10
                            0.01
390 -3.40 -0.70
                 11.56
                          0.49
391 -4.80 -0.10
                  23.04
                            0.01
392 -3.40 0.70
               11.56
                          0.49
393 -1.50 -1.30
                  2.25
                           1.69
394 -4.70 -3.50
               22.09
                           12.25
395 -2.60 0.40
                 6.76
                          0.16
396 -4.80 0.20
                  23.04
                          0.04
                         2.89
397 -3.30 1.70
                 10.89
398 -4.70 -0.00
                  22.09
                          0.00
399 -4.70 3.00
                  22.09
                            9.00
```

----[Data Set [500]-----

C Parameter fine tuned vlaue for better accuracy 1
Weighted Vector :::: 0 500 {'Weight': array([[1.62, -1.66, 1.63, -1.62]]), 'intercept_': array([0.04]), 'accuracy': 1.0}

Accuracy for SVM Kernel - size [500]

Accuracy for SVM Linear - size [500]

Accuracy for Perceptron- size [500]