Amendments to the Claims:

 (Currently Amended) A catalytic filter for removal of soot particulates from diesel engine exhaust, comprising:

an oxidation catalyst positioned upstream of the catalytic filter, prepared by treating a PGM (platinum group metal) salt and a metal salt comprising a transition/alkali metal salt. Ba salt, or Mg salt with a water-soluble polymer compound and a reducing agent, to obtain a first colloidal mixture solution, which is then washcoated to a catalyst-support-coated monolithic ceramic substrate; and

a catalyzed wall-flow filter positioned downstream of the catalytic filter, prepared by treating a PGM (platinum group metal) salt and a metal salt mixture including at least one catalyst metal selected from a first group of-catalyst metal consisting of Ba, Cr, Mn, Fe, Co, Ni, Cu, Mo, V and Pb to enhance oxidation activity and at least one catalyst metal selected from a second group of-catalyst metal consisting of Li, Na, K, Mg, Ca and Cs to decrease a combustion temperature of soot particulates, with a water-soluble polymer compound and a reducing agent, to obtain a second colloidal mixture solution, which is then washcoated on a catalyst-support-coated wall-flow filter.

- (Original) The catalytic filter according to claim 1, wherein the metal salt mixture
 used for the catalyzed wall-flow filter further comprises at least one selected from a third group
 of catalyst metal to prevent oxidation of sulfur dioxide.
- (Previously Presented) The catalytic filter according to claim 1, wherein the catalyst support comprises a substance selected from the group consisting of active alumina, silica, titania, and combinations thereof.
- 4. (Previously Presented) The catalytic filter according to claim 1, wherein the catalyst support contains $0.1-1.5 \text{ g/in}^3$ of TiO_2 and $0.1-1.5 \text{ g/in}^3$ of SiO_2 , with a weight ratio of TiO_2 to SiO_2 of 2-4:1.

- (Previously Presented) The catalytic filter according to claim 1, wherein the platinum group metal salt comprises Pt, Pd, Ru, Ir, Rh, or combinations thereof.
- 6. (Currently Amended) The catalytic filter according to claim 1, wherein the metal salt comprising a transition/alkali metal salt, Ba salt, or Mg salt comprises Ba, Ce, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, V, W, or combinations thereof, and a weight ratio of the platinum group metal to the transition/alkali metal is in a range of 1:0.1-5.
- (Previously Presented) The catalytic filter according to claim 1, wherein the oxidation catalyst contains 5-45 g/ft³ of platinum group metal.

8. (Cancelled)

- (Previously Presented) The catalytic filter according to claim 1, wherein the catalyzed wall-flow filter contains 5-45 g/ft³ of the platinum group metal, 10-120 g/ft³ of the first group of catalyst metal, and 5-40 g/ft³ of the second group of catalyst metal.
- 10. (Currently Amended) The catalytic filter according to claim 2, wherein the first group of catalyst metal is selected from Ba, Cr, Mn, Fe, Co, Ni, Cu, Mo, V and Pb, and the second group of catalyst metal is selected from Li, Na, K, Mg, Ca and Cs, and the third group of catalyst metal is selected from V. W and Mo.
- 11. (Previously Presented) The catalytic filter according to claim 2, wherein the catalyzed filter contains 5-45 g/ft³ of the platinum group metal, 10-120 g/ft³ of the first group of catalyst metal, 5-40 g/ft³ of the second group of catalyst metal, and 10-150 g/ft³ of the third group of catalyst metal.
- (Previously Presented) The catalytic filter according to claim 1, wherein the catalyst-support-coated monolithic ceramic substrate comprises a flow-through ceramic

honeycomb monolith, and the catalyst-support-coated wall-flow filter comprises a wall-flow ceramic honeycomb filter, ceramic foam, ceramic fiber filter, metal honeycomb, metal foam, or metal mesh.

 (Currently Amended) A method of preparing a catalytic filter for removal of soot particulates from diesel engine exhaust, comprising:

treating a PGM (platinum group metal) salt and a metal salt comprising a transition/alkali metal salt. Ba salt, or Mg salt with a water-soluble polymer compound and a reducing agent, to obtain a first colloidal mixture solution, which is then washcoated to a catalyst-support-coated monolithic ceramic substrate, followed by calcination process at high temperatures, to obtain an oxidation catalyst; and

treating a PGM (platinum group metal) salt and a metal salt mixture including at least one catalyst metal selected from a first group of catalyst metal consisting of Ba. Cr. Mn. Fe. Co. Ni. Cu. Mo. V and Pb to increase oxidation activity for nitrogen oxide and at least one catalyst metal selected from a second group of catalyst metal consisting of Li. Na. K. Mg. Ca and Cs to decrease a combustion temperature of soot particulates, with a water-soluble polymer compound and a reducing agent, to obtain a second colloidal solution, which is then washcoated on a catalyst-support-coated wall-flow filter, followed by calcination process at high temperatures, to obtain a catalyzed wall-flow filter.

- 14. (Original) The method according to claim 13, wherein the metal salt mixture used for the catalyzed wall-flow filter further comprises at least one selected from a third group of catalyst metal to prevent oxidation of sulfur dioxide.
- (Previously Presented) The method according to claim 13, wherein the watersoluble polymer compound comprises polyvinylalcohol, polyvinylpyrrolidone, or polymethylacrylate.

- (Previously Presented) The method according to claim 13, wherein the reducing agent comprises methanol, ethanol, hydrazine, or a mixture of methanol/sodium hydroxide.
- 17. (Previously Presented) The method according to claim 13, wherein the catalyst-support comprises a substance selected from the group consisting of active alumina, silica, titania, and combinations thereof.
- (Previously Presented) The method according to claim 13, wherein the platinum group metal salt comprises Pt, Pd, Ru, Ir, Rh, or combinations thereof.
- 19. (Currently Amended) The method according to claim 13, wherein the <u>metal salt comprising a transition/alkali metal salt. Ba salt. or Mg salt comprises</u> Ba, Ce, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, V, W, or combinations thereof, and a weight ratio of the PGM to the transition/alkali metal is in a range of 1:0.1-5.

20. (Cancelled)

- 21. (Currently Amended) The method according to claim 14, wherein the first group of catalyst metal is selected from among Ba, Cr, Mn, Fe, Co, Ni, Cu, Mo, V and Pb, and the second group of catalyst metal is selected from among Li, Na, K, Mg, Ca and Cs, and the third group of catalyst metal is selected from among V, W and Mo.
- 22. (Previously Presented) The catalytic filter according to claim 2, wherein the catalyst support comprises a substance selected from the group consisting of active alumina, silica, titania, and combinations thereof.
- 23. (Previously Presented) The catalytic filter according to claim 2, wherein the catalyst support contains 0.1-1.5 g/in³ of TiO₂ and 0.1-1.5 g/in³ of SiO₂, with a weight ratio of TiO₂ to SiO₂ of 2-4:1.

- (Previously Presented) The catalytic filter according to claim 2, wherein the platinum group metal salt comprises Pt, Pd, Ru, Ir, Rh, or combinations thereof.
- 25. (Currently Amended) The catalytic filter according to claim 2, wherein the metal salt comprising a transition/alkali metal salt, Ba salt, or Mg salt comprises Ba, Ce, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, V, W, or combinations thereof, and a weight ratio of the platinum group metal to the transition/alkali metal is in a range of 1:0.1-5.
- (Previously Presented) The catalytic filter according to claim 2, wherein the oxidation catalyst contains 5-45 g/ft³ of platinum group metal.

27. (Cancelled)

- 28. (Previously Presented) The catalytic filter according to claim 10, wherein the catalyzed filter contains 5-45 g/ft³ of the platinum group metal, 10-120 g/ft³ of the first group of catalyst metal, 5-40 g/ft³ of the second group of catalyst metal, and 10-150 g/ft³ of the third group of catalyst metal.
- 29. (Previously Presented) The catalytic filter according to claim 2, wherein the catalyst-support-coated monolithic ceramic substrate comprises flow-through ceramic honeycomb monolith, and the catalyst-support-coated wall-flow filter comprises wall-flow ceramic honeycomb filter, ceramic foam, ceramic fiber filter, metal honeycomb, metal foam, or metal mesh.
- (Previously Presented) The method according to claim 14, wherein the watersoluble polymer compound comprises polyvinylalcohol, polyvinylpyrrolidone, or polymethylacrylate.

- (Previously Presented) The method according to claim 14, wherein the reducing agent comprises methanol, ethanol, hydrazine, or a mixture of methanol/sodium hydroxide.
- (Previously Presented) The method according to claim 14, wherein the catalystsupport comprises active alumina, silica and/or titania.
- (Previously Presented) The method according to claim 14, wherein the platinum group metal salt comprises Pt, Pd, Ru, Ir, Rh, or combinations thereof.
- 34. (Currently Amended) The method according to claim 14, wherein the <u>metal salt comprising a transition/alkali metal salt, Ba salt, or Mg salt comprises Ba, Ce, Co, Cr, Cs, Cu, Fe, K, Mg, Mn, Mo, Ni, Pb, V, W, or combinations thereof, and a weight ratio of the PGM to the transition/alkali metal is in a range of 1:0.1-5.</u>