Universidade Federal do Rio Grande do Sul Instituto de Informática

Organização de Computadores Aula 06

Bloco operacional – versão multi-ciclo

Fim da Aula anterior: Ineficiência do Projeto Mono-Ciclo

- Apesar de todas instruções serem executadas num ciclo de relógio e funcionar corretamente, é muito ineficiente,
- Uma das razões é que o ciclo do relógio será determinado pela instrução com tempo de execução maior. Provavelmente a de "load word" que emprega cinco unidades funcionais,
- Além de penalidades maiores na execução de instruções de ponto flutuante ou de instruções mais complexas.
- Além disto numa implementação mono-ciclo, cada unidade funcional só pode ser usada uma única vez em cada ciclo de relógio.
- Uma solução seria duplicar algumas unidades funcionais, mas isto aumentaria o custo de implementação.

Sugestão de solução

- Usar técnicas de implementação que tenham um ciclo de relógio mais curto,
- Vimos na arquitetura mono-ciclo a execução da instrução nos seus diversos passos,
- Podemos usar esses passos para criar uma implementação multiciclo,
- Cada passo na execução gastaria 1 período do relógio, ou um ciclo,
- Esta execução multiciclo, permite que uma unidade funcional seja utilizada mais de uma vez por instrução, desde que em ciclos diferentes do relógio.

Vantagens Multiciclo

- Possibilidade de compartilhamento pode ajudar a reduzir o hardware,
- Possibilidade de executar uma instrução em ciclos diferentes de períodos do relógio,
- Capacidade de compartilhar unidades funcionais no espaço de tempo da execução de uma única instrução

Relógio: mono-ciclo vs. multiciclo

Implementação mono-ciclo

Implementação Multiciclo

Implementação multiciclo:
 menos perda = maior desempenho

Bloco operacional – versão multi-ciclo Caminho de Dados

- 1. Introdução
- 2. Ciclos das instruções
- 3. Bloco operacional completo
- 4. Execução das instruções

Busca de instrução

Decodificação de instrução

Instruções aritméticas

Instruções Load

Instruções Store

Instruções Branch

Instruções Jump

5. Cálculo de desempenho

1. Introdução

- Máquina mono-ciclo
 - todas as operações devem ser feitas em um só ciclo
 - duração do ciclo calculada pelo pior caso
 - leitura da instrução e acesso à memória no mesmo ciclo: duas memórias
 - cálculos de endereço e operações aritméticas no mesmo ciclo: três unidades funcionais (ALU, somadores)
- Máquina multi-ciclo
 - vários ciclos por instrução
 - cada instrução pode ser executada num número diferente de ciclos
 - unidades funcionais podem ser reutilizadas em ciclos distintos
 - pequeno acréscimo de multiplexadores e registradores
- Compromisso no desempenho
 - CPI aumenta => desempenho cai
 - período do relógio diminui => desempenho sobe

Introdução

- Quando é necessário inserir registradores?
 - quando valor é computado num ciclo e utilizado em outro ciclo
 - quando entradas de unidade funcional podem mudar antes que a saída seja salva em outro registrador ou memória
 - Exemplo: Instruction Register
 - memória vai mudar saída devido à atualização do PC e campos da instrução precisam se manter estáveis nas entradas do banco de registradores durante todos os ciclos
- Instrução deve ser dividida em passos de duração similar

2. Ciclos das instruções

- 1. Busca da instrução
- 2. Decodificação da instrução
 Leitura dos registradores mesmo que não sejam utilizados
 Cálculo do endereço do branch mesmo que instrução não seja branch
- 3. Execução da operação instruções tipo R

 Cálculo do endereço efetivo do operando instruções load e store

 Determinar se branch deve ser executado instruções branch
- 4. Acesso à memória instruções load e store Escrita de registrador – instruções tipo R
- 5. Escrita de registrador instruções load

3. Bloco operacional completo Multiciclo

Bloco Operacional Mono-Ciclo

Comparando com BO mono-ciclo

- Uma única memória para dados e instruções
- Uma única ULA unidade lógica e aritmética para todas as operações
 - operações das instruções tipo R
 - cálculo de PC = PC + 4
 - cálculo de endereço efetivo de memória: base + deslocamento
 - cálculo de endereço de desvio: PC + deslocamento
- Novos registradores
 - Registrador de Instruções
 - Registrador de Dados da Memória (MDR)
 - A e B: guardam valores dos operandos do banco de registradores
 - ALU out: guarda valor da saída da ALU
- Novos multiplexadores ou extensão dos já existentes

Registradores Adicionados

- São adicionados ao caminho de dados os seguintes registradores temporários:
- O Registrador de Instruções IR,
- O Registrador de Dados da Memória MDR,
- Os Registradores A e B para guardar os valores dos operandos,
- O Registrador UAL Saída para guardar a saída da UAL

Multiplexadores adicionados

- Em substituição das 3 UALs da implementação Mono-Ciclo por 1 UAL tornou-se necessário acrescentar:
- Um multiplexador na primeira entrada da UAL para escolher entre o registrador A e o PC,
- Um multiplexador na segunda entrada da UAL para escolher entre a saída do registrador B que vem do banco de registradores, a constante 4, a extensão do sinal de incremento e a extensão do sinal de incremento deslocado de 2.

Sinais de controle de 1 bit

Nome do sinal	Efeito quando inativo	Efeito quando ativo
RegDst	O número do registrador-destino no banco de registradores vem do campo rt	O número do registrador-destino no banco de registradores vem do campo rd.
EscReg	Nenhum	O registrador de propósito geral selecionado pelo número do registrador de escrita é atualizado com o valor da entrada Dado de Escrita.
UALFonteA	O primeiro operando da UAL é o PC	O primeiro operando da UAL vem do registrador A.
LerMem	Nenhum	O conteúdo da memória no endereço especificado na entrada Endereço é colocado na saída Dado de Saída.
EscMem	- Nenhum -	O conteúdo da memória no endereço especificado na entrada Endereço é substituído pelo valor na entrada Dado a ser Escrito.
MemParaReg	O valor colocado na entrada Dado a ser Escrito do banco de registradores vem de UALOut.	O valor na entrada Dado a ser Escrito do banco de registradores vem do MDR.
louD	O PC é usado para fornecer o endereço da unidade de memória.	UALSaída é usada para fornecer o endereço para a unidade de memória.
IREsc	Nenhum	A saída da unidade de memória é escrita no IR.
PCEsc	Nenhum	O PC é atualizado. A fonte é controlada pelo sinal FontePC.
PCEscCond	Nenhum	O PC é atualizado se a saída Zero da UAL também estiver ativa.

Sinais de Controle de 2 bits

Nome do sinal	Valor	Efeito		
UALOp	00	A UAL efetua uma operação de soma.		
	01	A UAL efetua uma operação de subtração.		
	10	O campo funct (função) da instrução determina a operação da UAL.		
	00	A segunda entrada da UAL vem do registrador B.		
estanciação, para	01	A segunda entrada da UAL é a constante 4.		
UALFonteB	10	A segunda entrada da UAL é a extensão do sinal dos 16 bits menos significativos do IR.		
	11	A segunda entrada da UAL é a extensão do sinal dos 16 bits menos significativos do IR deslocados 2 bits à esquerda.		
North coldinate	00	A saída da UAL (PC + 4) é enviada ao PC para atualizar seu valor.		
FontePC	01	O conteúdo de UALSaída (o endereço-alvo do desvio condicional) é enviado ao PC para atualizar seu va		
	10	O endereço-alvo do desvio incondicional (IR[25-0]), deslocado 2 bits à esquerda e concatenado com PC + 4[31-28] é enviado ao PC para atualizar seu valor.		

Execução das Instruções

Busca de Instrução

4. Execução das instruções

Execução das Instruções

Decodificação de Instrução

2º ciclo - Decodificação de instrução (+ leitura de registradores, + cálculo de end. branch)

Execução das Instruções

Instruções Aritméticas

Instruções aritméticas – 3º ciclo

Instruções aritméticas – 4º ciclo

Execução das Instruções

Instruções Load/Store

Instruções Load/Store – 3º ciclo

Instrução Load – 4º ciclo

Instrução Load – 5° ciclo

Instruções Load/Store – 3º ciclo

Instrução Store – 4º ciclo

Execução das Instruções

Instrução Branch

Instrução Branch – 3º ciclo

Execução das Instruções

Instrução Jump

Instrução Jump – 3º ciclo

Resumo dos passos para executar as instruções

Nome do passo	Ação nas instruções de tipo R	Ação nas instruções de referência à memória	Ação na instrução de desvio condicional	Ação na instrução de desvio incondicional
Busca da instrução	IR = Memória[PC] PC = PC + 4			
Decodificação da instrução/busca dos valores dos registradores	A = Reg [IR[25-21]] B = Reg [IR[20-16]] UALSaída = PC + extensão de sinal (IR[15-0]) << 2)			
Execução, cálculo do endereço, término de uma instrução de branch/jump	ALUOut = A op B	UALSaída = A + extensão de sinal (IR[15-0])	se (A == B) então PC = UALSaída	PC = PC [31-28] II (IR[25-0]<<2)
Término de uma instrução de referência à memória ou de tipo R	Reg [IR[15–11]] = UALSaída	Load: MDR = memória[UALSaída] ou Store: Memória [ALUOut] = B		
Término de leitura da memória		Load: Reg[IR[20-16]] = MDR	description of the second	

5. Cálculo de desempenho

- Clock pode ter período de 1 ns (1 GHz), considerando ...
 - 1 ns para acessos à memória
 - 0.5 ns para acessos ao banco de registradores
 - 0.5 ns para operações na ALU
 - 0 ns para demais blocos (muxs, portas, ...)
- Com estes valores, período da versão mono-ciclo teria 3.5 ns
 - busca da instrução na memória 1ns
 - acesso registradores 0,5 ns
 - acesso a ULA 0,5 ns
 - endereçar memória 1ns
 - acesso banco de registradores 0,5 ns

Cálculo de desempenho

- O clock da máquina multi-ciclo poderia ser duplicado (2 GHz) se acessos à memória fossem realizados em 2 ciclos de 0.5 ns cada
- CPI para cada tipo de instrução

	vers	ão 1 GHz	versão 2 GHz	
_	load:	5	7	
_	store:	4	6	
_	tipo R:	4	5	
_	branch:	3	4	
_	jump:	3	4	

Cálculo de desempenho

- Mix de instruções do compilador gcc
 22% loads, 11% stores, 49% tipo R, 16% branches, 2% jumps
- CPI médio na máquina multi-ciclo

$$= 0.22 \times 5 + 0.11 \times 4 + 0.49 \times 4 + 0.18 \times 3 = 4.04$$
 na versão 1 GHz

$$= 0.22 \times 7 + 0.11 \times 6 + 0.49 \times 5 + 0.18 \times 4 = 5.37$$
 na versão 2 GHz

- Tempo total de execução do programa gcc no MIPS mono-ciclo
 - = N x CPI x período do clock
 - $= N \times 1 \times 3.5 \text{ ns} = 3.5 \text{ N} \times 10^{-9}$
- Tempo total de execução do programa gcc no MIPS multi-ciclo
 - = N x CPI médio x período do clock
 - $= N \times 4.04 \times 1 \text{ ns} = 4.04 \text{ N} \times 10^{-9} \text{ na versão } 1 \text{ GHz}$
 - $= N \times 5.37 \times 0.5 \text{ ns} = 2.685 \text{ N} \times 10^{-9} \text{ na versão 2 GHz}$

FIM