Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Définitions et motivations
	Théorie de la mesure
	2.1. Applications mesurables
	2.2. Mesure et espaces mesurés
	2.3. La mesure de Lebesgue
3.	Intégral de Lebesgue des fonctions mesurables positives
	3.1. Fonctions étagées positives
	3.2. Fonctions mesurables positives
4.	Intégration
	Théorèmes limites et applications
6.	Intégrales multiples $\int_{E_1\times E_2}f\mathrm{d}(\mu_1\otimes\mu_2)$
	6.1. Tribu et mesure produit
	6.2. Théorèmes de Fubini
	6.3. Changement de variables
7.	Liens entre dérivée et intégrale
8.	Au partiel (d'après le prof)

1. Définitions et motivations

On veut étendre l'ensemble des fonctions intégrables

Définition 1.1: Tribu

E un ensemble et $A \in \mathcal{P}(E)$ une famille de parties de E. A est une **tribu** si :

- 1. $E \in \mathcal{A}$
- 2. \mathcal{A} est stable par passage au complémentaire
- 3. \mathcal{A} est stable par réunion dénombrable

Définition 1.2:

E un ensemble, \mathcal{A} une tribu sur E. (E,\mathcal{A}) est appelé **espace mesurable**

Définition 1.3: Tribu engendrée

Soit $\mathcal{C} \subset \mathcal{P}(E)$, on appelle **tribu engendrée** par \mathcal{C} , notée $\sigma(\mathcal{C})$, l'intersection des toutes les tribus contenant \mathcal{C}

Si (E,\mathcal{O}) est un espace topologique, $\sigma(\mathcal{O})=\sigma(\mathcal{F})\coloneqq\mathcal{B}(E)$, avec \mathcal{F} ensemble des fermés de E

On appelle $\mathcal{B}(E)$ la **tribu de Borel** de E

Définition 1.4:

- Tribu image : $f(\mathcal{A}_1) = \left\{B \in E_2 \ | \ f^{-1}(B) \in \mathcal{A}_1 \right\}$
- Tribu réciproque : $f^{-1}(\mathcal{A}_2) = \left\{f^{-1}(B) \subset E_1 \mid B \in \mathcal{A}_2\right\}$

Théorème 1.1: Lemme de transport

Soit $f:E_1\to E_2$ et une classe de parties $E_2,$ notée $\mathcal C.$ Alors

$$\sigma\big(f^{-1}(\mathcal{C})\big) = f^{-1}(\sigma(\mathcal{C}))$$

Définition 1.5: Tribu trace

La tribu trace de $\mathcal{B}(E)$ sur X définie par $\operatorname{tr}(\mathcal{B}) = \{B \cap X \mid B \in \mathcal{B}(E)\}$ est la tribu engendrée par la topologie trace de \mathcal{O} sur X, i.e. par $\sigma(\operatorname{tr}(\mathcal{O}))$

2. Théorie de la mesure

2.1. Applications mesurables

Définition 2.1.1:

f est mesurable de (E_1,\mathcal{A}_1) dans $(E_2,\mathcal{A}_2) \Longleftrightarrow f^{-1}(\mathcal{A}_2) \subset \mathcal{A}_1$ i.e.

$$\forall B \in \mathcal{A}_2, f^{-1}(B) = \{x \in E_1 \mid f(x) \in B\} \in \mathcal{A}_1$$

- Si E_1 et E_2 sont des espaces topologiques et \mathcal{A}_1 , \mathcal{A}_2 des tribus de Borel correspondantes, alors f est **borélienne**
- Si $(E_2, \mathcal{A}_2) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, on parle de fonctions **mesurables**

Méthode 2.1.1: f est mesurable de (E_1, \mathcal{A}_1) dans (E_2, \mathcal{A}_2) ssi

$$\forall B \in \mathcal{A}_2, f^{-1}(B) = \{x \in E_1 \mid f(x) \in B\} \in \mathcal{A}_1$$

Théorème 2.1.1: Critères de mesurabilité

• \mathcal{C} une classe de parties d'un ensemble F, i.e. $\mathcal{C} \subset \mathcal{P}(F), B \coloneqq \sigma(\mathcal{C})$

$$f:(E,\mathcal{A})\to (F,\mathcal{B})$$
mesurable $\Leftrightarrow f^{-1}(\mathcal{C})\subset \mathcal{A}$

- f_1, f_2 mesurables $\Rightarrow f_1 \circ f_2$ mesurable
- Si $\mathcal{A}=\mathcal{B}(E)$ et $\mathcal{B}=\mathcal{B}(F)$ tribus de Borel, f continue $\Rightarrow f$ mesurable
- $f:[a,b] \to \mathbb{R}$ cpm $(a < b \in \mathbb{R})$, alors f mesurable de $([a,b],\mathcal{B}([a,b]))$ dans $(\mathbb{R},\mathcal{B}(\mathbb{R}))$

Théorème 2.1.2: Limite d'une suite de fonction

 $(f_n)_n$ une suite de fonctions **mesurables** sur (E,\mathcal{A}) à valeurs dans $|(\mathbb{R})|$

- 1. $\sup_{n} f_n$ et $\inf_{n} f_n$ sont **mesurables**
- 2. $\lim_{n\to +\infty} \sup f_n = \lim_{n\to +\infty} \sup_{k\geq n} f_k$ et $\lim_{n\to +\infty} \inf f_n = \lim_{n\to +\infty} \sup_{k\geq n} f_k$ sont **mesurables**
- 3. Si $(f_n)_n \xrightarrow[n \to \infty]{\mathcal{CS}} f$, alors f est **mesurable**

2.2. Mesure et espaces mesurés

Définition 2.2.1: Mesure

Soit (E, \mathcal{A}) un espace mesurable. on appelle **mesure** sur (E, \mathcal{A}) une application $\mu: \mathcal{A} \to \overline{\mathbb{R}}_+ := \mathbb{R}_+ \cup \{+\infty\}$ telle que

1.
$$\mu(\emptyset) = 0$$

2.
$$\forall A_1, A_2, ..., A_n \in \mathcal{A}$$
 2 à 2 disjoints : $\mu\left(\bigsqcup_n A_n\right) = \sum_n \mu(A_n)$ (σ -additivité)

Méthode 2.2.1: Montrer que μ est une mesure

- existence
- $\mu(\emptyset) = 0$
- σ -additivité

Définition 2.2.2: Espace mesuré

Soit (E, \mathcal{A}) un espace mesurable et μ une mesure dessus.

On appelle Soit (E, \mathcal{A}, μ) espace mesuré.

Définition 2.2.3: Soit (E, \mathcal{A}) un espace mesurable. Une mesure μ est dite :

- 1. finie si $\mu(E) < +\infty$
- 2. de probabilité si $\mu(E) = 1$
- 3. σ -finie si

$$\exists {(A_n)}_n \in \mathcal{A}^{\mathbb{N}} \mid E = \bigcup_n A_n$$

et
$$\mu(A_n) < +\infty \forall n$$

Exemple: Exercice 2.3.3. du cours que je laisse pour Nouloun

- $\mu(\emptyset) = 1$ car \emptyset est dénombrable
- Soient $A_1,...,A_n \in \mathcal{A}$ 2 à 2 disjoints On a A_i et A_j dénombrables et disjoints donc $A_i \cup A_j$ dénombrable Donc $\mu\big(A_i \cup A_j\big) = 0 = 0 + 0 = \mu(A_i) + \mu\big(A_j\big)$ Donc $\mu\Big(\bigcup_n (A_n)\Big) = \sum_n (\mu(A_n))$

Donc μ est une mesure

Définition 2.2.4: Pour (E, \mathcal{A}, μ) un espace mesuré.

 $A \in \mathcal{A}$ est négligeable si $\mu(A) = 0$

Théorème 2.2.1: Mesure image

Soient (E_1, \mathcal{A}_1) , (E_2, \mathcal{A}_2) deux espaces mesurables. $\mu: \mathcal{A}_1 \to \overline{\mathbb{R}}_+$ une mesure sur (E_1, \mathcal{A}_1) et f mesurable de (E_1, \mathcal{A}_1) dans (E_2, \mathcal{A}_2)

On pose

$$\mu: \begin{cases} \mathcal{A}_2 \to \overline{\mathbb{R}}_+ \\ B \mapsto \mu_f(B) \coloneqq \mu(f^{-1}(B)) \end{cases}$$

 μ_f est une mesure sur (E_2,\mathcal{A}_2) appelée **mesure image** de μ par f.

2.3. La mesure de Lebesgue

Théorème 2.3.1: Mesure de Lebesgue (ou mesure de Borel-Lebesgue)

Il existe une **unique** mesure μ_d sur les boréliens de \mathbb{R}^d telle que la mesure de tout pavé $\prod_{i=1}^d]a_i, b_{i[}$ est :

$$\mu_d \left(\bigcap_{i=1}^d]a_i, b_i[\right) = \prod_{i=1}^d (b_i - a_i)$$

Elle est appelée **mesure de Lebesgue** et notée μ si il n'y a pas d'ambiguïté sur la dimension.

3. Intégral de Lebesgue des fonctions mesurables positives

3.1. Fonctions étagées positives

Définition 3.1.1: Fonctions étagée

f est une fonction étagée si elle s'écrit : $f=\sum_{i\in I}\alpha_i\mathbbm{1}_{A_i}$ avec $A_i=f^{-1}(\{\alpha_i\})=:\{f=\alpha_i\}$

Définition 3.1.2: Intégrale d'une fonction étagée

On appelle intégrale d'une fonction étagée f positive par rapport à la mesure μ sur (E,\mathcal{A}) :

$$\int_E f \mathrm{d} \mu \coloneqq \sum_{\alpha \in f(E)} \alpha \mu \big(f^{-1}(\{\alpha\}) \big) \in [0, +\infty[$$

Si $\int_E f d\mu < +\infty$, on dit que \boldsymbol{f} est intégrable

3.2. Fonctions mesurables positives

Théorème 3.2.1: Toute fonction de \mathcal{M}_+ est limite d'une suite de fonctions de \mathcal{E}_+ (étagées positives)

Définition 3.2.1:

On appelle intégrale d'une fonction mesurable **positive** f par rapport à μ sur (E, \mathcal{A}) :

$$\int_E f \mathrm{d}\mu = \sup \left\{ \int_E \varphi \mathrm{d}\mu \mid \varphi \in \mathcal{E}_+ \text{ et } \varphi \leq f \right\} \in [0, +\infty[$$

6

Si $\int_E \varphi d\mu < +\infty$, on dit que f est intégrable

Corollaire 3.2.1: $\mu(A)=0 \Rightarrow \int_E f \mathbb{1}_A \mathrm{d}\mu = \int_A f \mathrm{d}\mu = 0$

Corollaire 3.2.2: Si $f \leq g$ et g est intégrable, alors f est intégrable

Théorème 3.2.2: Si μ est finie, alors $\forall f \in \mathcal{M}_+$, si f est bornée alors f est intégrable

Corollaire 3.2.3: $\forall f \in \mathcal{M}_+, \int_E f \mathrm{d}\mu < +\infty \Rightarrow \mu(\{f=+\infty\}) = 0$

Théorème 3.2.3: Théorème de convergence monotone

Si $(f_n)_n$ est une suite croissante de $\mathcal{M}_+(\mathcal{A}),$ alors $f\coloneqq \lim_{n\to\infty} f_n\in \mathcal{M}_+(\mathcal{A})$ et

$$\int_E f \mathrm{d}\mu = \int_E \Bigl(\lim_{n \to +\infty} f_n\Bigr) \mathrm{d}\mu = \lim_{n \to \infty} \int_E f_n \mathrm{d}\mu$$

Utilité : On veut calculer l'intégrale de f, on sait pas faire, on peut faire l'intégrale des f_n puis passer à la limite.

Corollaire 3.2.4: Pour toute suite $(f_n) \in \mathcal{M}_+ : \sum_n f_n \in \mathcal{M}_+$ et

$$\int_{E} \left(\sum_{n} f_{n} \right) d\mu = \sum_{n} \left(\int_{E} f_{n} d\mu \right)$$

Proposition 3.2.1: $\forall f \in \mathcal{M}_+: \int_E f \mathrm{d}\mu = 0 \Leftrightarrow \mu(\{f \neq 0\}) = 0$

4. Intégration

Définition 4.1: Intégrale d'une fonction de $\mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$

$$\int_{E} f d\mu = \int_{E} f^{+} d\mu + \int_{E} f^{-} d\mu$$

Proposition 4.1: $f \in \mathcal{L}^1 \Leftrightarrow \left| \int_E f \mathrm{d}\mu \right| \leq \int_E |f| \mathrm{d}\mu < +\infty$

5. Théorèmes limites et applications

Théorème 5.1: Convergence monotone

Soit (E,\mathcal{A},μ) un espace mesuré et $(f_n)\in\mathcal{M}(\mathcal{A},\mathcal{B}(\mathbb{R}))^{\mathbb{N}}$

On suppose que:

- $(f_n)_{pp}$ est une suite croissante de $\mathcal{M}_+(\mathcal{A})$ $f_n \xrightarrow{} f$, f mesurable

Alors, on a:

$$\int_{E} f \mathrm{d}\mu = \lim_{n} f_{n} \mathrm{d}\mu$$

Théorème 5.2: Convergence dominée

Soit (E, \mathcal{A}, μ) un espace mesuré et $(f_n) \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))^{\mathbb{N}}$

On suppose que:

- $\exists g \in \mathcal{M}_+$ intégrable sur E telle que $\forall n \in \mathbb{N} : |f_n| \leq g$ μ -pp
- $f_n \xrightarrow{\text{p.p.}} f$, f mesurable

Alors, on a:

$$\int_{E} f \mathrm{d}\mu = \lim_{n} f_{n} \mathrm{d}\mu$$

Théorème 5.3: Continuité sous le signe intégrale

Soit (E, \mathcal{A}, μ) un espace mesuré et $(f_n) \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))^{\mathbb{N}}$

On suppose que:

- $\forall u \in \mathcal{I}, x \mapsto f(u, x) \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ (mesurable)
- $\exists u_{\infty} \in \mathcal{I}$ tel que pour presque tout $x, u \mapsto f(u, x)$ est continue en u_{∞}
- $\exists g \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ positive et intégrable telle que pour presque tout x, $\forall u \in \mathcal{I}, |f(u,x)| \leq g(x)$

Alors, on a:

 $u\mapsto F(u)=\int_E f(u,x)\mathrm{d}\mu(x)$ est définie en tout points de $\mathcal I$ et continue en u_∞

8

Théorème 5.4: Dérivation sous le signe intégrale

Soit (E,\mathcal{A},μ) un espace mesuré et $(f_n)\in\mathcal{M}(\mathcal{A},\mathcal{B}(\mathbb{R}))^{\mathbb{N}}$

On suppose que:

- $\forall u \in \mathcal{I}, x \mapsto f(u, x) \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ (mesurable)
- $\forall u \in \mathcal{I}, x \mapsto f(u, x)$ est intégrable
- $u_\infty \mathcal{I}$ telle que pour presque tout $x,\,\frac{\partial f}{\partial u}(u_\infty;x)$ existe
- $\exists g \in \mathcal{M}(\mathcal{A}, \mathcal{B}(\mathbb{R}))$ positive et intégrable telle que pour presque tout x, $\forall u \in \mathcal{I}, |f(u,x) f(u_{\infty},x)| \leq g(x)|u u_{\infty}|$

Alors, on a:

 $u\mapsto F(u)=\int_E f(u,x)\mathrm{d}\mu(x)$ est définie en tout points de $\mathcal I$ et dérivable en u_∞

$$F'(u_{\infty}) = \int_{E} \frac{\partial f}{\partial u}(u_{\infty}, x) \mathrm{d}\mu(x)$$

6. Intégrales multiples $\int_{E_1 \times E_2} f d(\mu_1 \otimes \mu_2)$

6.1. Tribu et mesure produit

Définition 6.1.1: Mesure produit

Pour $(E_1, \mathcal{A}_1, \mu_1)$, $(E_2, \mathcal{A}_2, \mu_2)$, on appelle tribu produit sur $E_1 \times E_2$ notée $\mathcal{A}_1 \times \mathcal{A}_2$ la plus petite tribu contenant les ensembles de la forme $A_1 \times A_2$ avec $\forall i \in \{1, 2\} A_i \subset \mathcal{A}_i$

Théorème 6.1.1:

Pour $(E_1,\mathcal{A}_1,\mu_1),(E_2,\mathcal{A}_2,\mu_2),$ il existe une unique mesure m sur $(E_1\times E_2,\mathcal{A}_1\otimes \mathcal{A}_2)$ vérifiant :

$$\forall (A_1, A_2) \in \mathcal{A}_1 \times \mathcal{A}_2 : m(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2)$$

Cette mesure est σ -finie et est appelée mesure produit

On note $m := \mu_1 \otimes \mu_2$

6.2. Théorèmes de Fubini

Théorème 6.2.1: Fubini-Tonelli

Pour $(E_1, \mathcal{A}_1, \mu_1), (E_2, \mathcal{A}_2, \mu_2)$, où les mesures sont σ -finies. Soit $f: E_1 \times E_2 \to \mathbb{R}_+ \cup \{+\infty\}$ mesurable positive. On définint :

$$\varphi(x) = \int_{E_2} f(x,y) \mathrm{d}\mu_2(y), \psi(y) = \int_{E_1} f(x,y) \mathrm{d}\mu_1(x)$$

Elles sont mesurables et positives et on a :

$$\int_{E_1} \varphi \mathrm{d} \mu_1 = \int_{E_1 \times E_2} f \mathrm{d} (\mu_1 \otimes (\mu_2)) = \int_{E_2} \psi \mathrm{d} \mu_2$$

Théorème 6.2.2: Fubini-Lebesgue

Pour $(E_1, \mathcal{A}_1, \mu_1), (E_2, \mathcal{A}_2, \mu_2)$, où les mesures sont σ -finies. Soit $f: E_1 \times E_2 \to \mathbb{R}_+ \cup \{+\infty\}$ mesurable positive. On définint :

$$\varphi(x) = \int_{E_2} f(x,y) \mathrm{d}\mu_2(y), \psi(y) = \int_{E_1} f(x,y) \mathrm{d}\mu_1(x)$$

Si f est $\mu_1\otimes\mu_2$ intégrable alors φ et ψ sont resp. μ_1 intégrable et μ_2 -intégrable et on a :

$$\int_{E_1} \varphi \mathrm{d} \mu_1 = \int_{E_1 \times E_2} f \mathrm{d} (\mu_1 \otimes (\mu_2)) = \int_{E_2} \psi \mathrm{d} \mu_2$$

6.3. Changement de variables

Théorème 6.3.1:

Uouvert de \mathbb{R}^d et $\varphi:U\to\mathbb{R}^d$

 φ réalise un $\mathcal{C}^1\text{-difféomorphisme}$ de U sur $V=\varphi(U)$ ssi

- φ est \mathcal{C}^1 sur U
- φ est injective
- $\forall u \in U : \det(J_{\varphi}(u)) \neq 0$

Théorème 6.3.2: Changement de variables Pour U,V ouverts de \mathbb{R}^d , $\varphi:U\to V$ un \mathcal{C}^1 -difféomorphisme et $f:V\to\mathbb{R}$ borélienne sur V intégrable. Alors $f\circ\varphi:U\to\mathbb{R}$ est intégrable et

$$\int_V f \mathrm{d}\lambda = \int_U (f \circ \varphi) \Big| \mathrm{det} \Big(J_\varphi \Big) \Big| \mathrm{d}\lambda$$

Ne pas oublier la valeur absolue!

7. Liens entre dérivée et intégrale

Théorème 7.1: $\mathcal{L}^1(E, \mathcal{A}, \mu)$ ou $\mathcal{L}^1(\mu)$ ou \mathcal{L}^1 est l'ensemble des fonctions intégrables L^1 est l'ensemble des fonctions mesurables

8. Au partiel (d'après le prof)

- à l'examen, est-ce que l'indicatrice est mesurable pour un (E,\mathcal{A}) donné (voir exemple 2.2.1)
- il peut mettre des exemples du cours mais surtout des exos de TD
- il a déjà mis exemple 5.3.1 par exemple