Chapter 1 Optimization and Solving Nonlinear Equations

• Optimization Problem: We want to find a point $\theta^* \in \Theta$ (for example, $\Theta = \mathbb{R}^p$) to maximize (or minimize) an objective function $g(\theta)$, denoted by

$$\theta^* = \arg\max_{\theta \in \Theta} g(\theta).$$

- Maximum Likelihood Estimate (MLE): Let X_1, X_2, \dots, X_n be a random sample following a distribution with probability density function (PDF) $f(x_1, \dots, x_n; \theta)$, where θ is a $p \times 1$ vector.
 - For each given x_1, \dots, x_n , $f(x_1, \dots, x_n; \theta)$ considered as a function of the parameter θ is called the *likelihood function* and denoted by $l(\theta)$.
 - The MLE of θ is

$$\hat{\theta}_{MLE} = \arg \max_{\theta \in \Theta} l(\theta) = \arg \max_{\theta \in \Theta} \log l(\theta).$$

• - Suppose X_1, \dots, X_n are i.i.d. following a distribution with PDF $f(x; \theta_0)$, where θ_0 is the true parameter. Let $\hat{\theta}_{MLE}$ be the MLE of θ using X_1, \dots, X_n . Then under certain regulation conditions,

$$\hat{\theta}_{MLE} = \arg \max_{\theta} f(X_1, \dots, X_n; \theta)$$

$$= \arg \max_{\theta} \log f(X_1, \dots, X_n; \theta)$$

$$= \arg \max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log f(X_i; \theta)$$

$$\approx \arg \max_{\theta} \int [\log f(x; \theta)] f(x; \theta_0) dx$$

$$= \theta_0.$$

• Jensen's Inequality: Suppose that X is a random variable with $E|X| < \infty$ and $\phi(\cdot)$ is a concave function, then

$$E[\phi(X)] \le \phi[E(X)].$$

• By Jensen's inequality,

$$\int \left[\log \frac{f(x;\theta)}{f(x;\theta_0)}\right] f(x;\theta_0) dx = E_{\theta_0} \left[\log \frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right]$$

$$\leq \log \left\{ E_{\theta_0} \left[\frac{f(X_1;\theta)}{f(X_1;\theta_0)}\right] \right\} = 0.$$

- Method of Moments Estimate (MME): Let X_1, X_2, \dots, X_n be independent and identically distributed (i.i.d.) random variables following a distribution with probability density function $f(x; \theta_0)$, where θ_0 is a $p \times 1$ vector.
 - The MME of θ_0 is the solution of equations

$$\frac{1}{n}\sum_{i=1}^{n}m(X_i)=E_{\theta}[m(X_i)]=\int m(x)f(x;\theta)\,dx,$$

where $m(X_i) = (m_1(X_i), \dots, m_p(X_i))'$, e.g., $m(X_i) = (X_i, \dots, X_i^p)'$

- We have

$$\hat{\theta}_{MME} = \arg\max_{\theta \in \Theta} \left\{ - \| \frac{1}{n} \sum_{i=1}^{n} m(X_i) - E_{\theta}[m(X_i)] \|_2^2 \right\},$$

where
$$||u||_{2} := \left(\sum_{k=1}^{p} u_{k}^{2}\right)^{1/2}$$
 if $u = (u_{1}, \dots, u_{p})'$.

• Ordinary Least Square (OLS): Let X_i and Y_i be the height and weight of person i, respectively, for $i = 1, \dots, n$. We want to find a linear relationship between X_i and Y_i , that is, find $\theta = (\beta_1, \beta_2)'$ so that $Y_i \approx \beta_1 + \beta_2 X_i$. The parameter θ can be estimated by

$$\hat{\theta} = \arg\min_{(\beta_1, \beta_2)} \sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2 = \arg\max_{(\beta_1, \beta_2)} \left\{ -\sum_{i=1}^n (Y_i - \beta_1 - \beta_2 X_i)^2 \right\}.$$

Population Regression Line

- Example: A Transportation Problem. A chemical company has 2 factories F_1 and F_2 and a dozen retail outlets R_1, R_2, \dots, R_{12} .
 - Each factory F_i can produce a_i tons of a certain chemical product each week, and each retail outlet R_j has a known weekly demand of b_j tons of the product. Suppose that $a_1 + a_2 \ge b_1 + \cdots + b_{12}$.
 - The cost of shipping one ton of the product from factory F_i to retail outlet R_j is c_{ij} .
 - Let θ_{ij} is the number of tons of the product shipped from factory F_i to retail outlet R_j . We find to find the "optimal" $\{\theta_{ij}, i = 1, 2; j = 1, \dots, 12\}$ to minimize the transportation cost, under the constraint that demands of all outlets are satisfied.

• - Consider the optimization problem

$$\min_{\theta_{ij}} \sum_{i=1}^{2} \sum_{j=1}^{12} \theta_{ij} c_{ij} \quad \text{or} \quad \max_{\theta_{ij}} \left\{ -\sum_{i=1}^{2} \sum_{j=1}^{12} \theta_{ij} c_{ij} \right\}$$

subject to

$$\theta_{ij} \ge 0$$
, $\sum_{j=1}^{12} \theta_{ij} \le a_i$, $\sum_{i=1}^{2} \theta_{ij} \ge b_j$, $i = 1, 2; j = 1, \dots, 12$.

• Unconstrained Optimization: Find a point $\theta^* \in \Theta$ to minimize the objective function $g(\theta)$, that is,

$$\theta^* = \arg\max_{\theta \in \Theta} g(\theta).$$

• Constrained Optimization: Find the solution of

$$\max_{\theta \in \Theta} g(\theta)$$

subject to

$$c_i(\theta) = 0, \quad i = 1, \dots, m_1;$$

 $c_i(\theta) \ge 0, \quad i = m_1 + 1, \dots, m,$

where $c_i(\theta) = 0$ is called the *equality constraint*, and $c_i(\theta) \geq 0$ is called the *inequality constraint*.

• In this chapter, we focus on **unconstrained optimization** problems.

• Global Maximizer: A point θ^* is called a global maximizer of $g(\theta)$ if

$$g(\theta^*) \ge g(\theta)$$
 for all $\theta \in \Theta$.

- The global maximizer **may not exist**, for example, $g(\theta) = -\frac{1}{1+\theta^2}$.
- The global maximizer **may not be unique**, for example, $g(\theta) = \min\{-|\theta|, -1\}$.
- Local Maximizer: A point θ^* is called a *local maximizer* if there is a neighborhood $\mathcal{N} \subset \Theta$ of θ^* such that

$$g(\theta^*) \ge g(\theta)$$
 for all $\theta \in \mathcal{N}$.

It is called a *strict local maximizer* if

$$g(\theta^*) > g(\theta)$$
 for all $\theta \in \mathcal{N}$ and $\theta \neq \theta^*$.

• Gradient and Hessian Matrix: The gradient of g at θ is denoted by $\nabla g(\theta) = (\frac{\partial g(\theta)}{\partial \theta_1}, \cdots, \frac{\partial g(\theta)}{\partial \theta_p})'$, and the Hessian matrix of g at θ is denoted by

$$\nabla^2 g(\theta) = \left\{ \frac{\partial^2 g(\theta)}{\partial \theta_i \partial \theta_j} \right\}_{p \times p}.$$

- The Hessian Matrix is a symmetric matrix.
- A point satisfying $\nabla g(\theta) = \mathbf{0}$ is called a *stationary point* of $g(\theta)$, where $\mathbf{0} = (0, \dots, 0)'$.
- Let θ^* be a local maximizer of g. If θ^* is an interior point of Θ and $\nabla g(\theta^*)$ exists, then $\nabla g(\theta^*) = \mathbf{0}$. (Why?)
- When $\nabla g(\theta^*) = \mathbf{0}$, θ^* may not be a local maximizer (or minimizer) of g, for example, $g(\theta) = \theta^3$, consider the point $\theta^* = 0$.

• **Example:** When $g(\theta)$ is not differentiable, the local maximizer (or local minimizer) may not be a stationary point. Consider random variables X_1, \dots, X_n i.i.d. from the $U[0, \theta]$ distribution. The likelihood function is

$$l(\theta) = \frac{1}{\theta^n} \prod_{i=1}^n I(0 \le X_i \le \theta) = \frac{1}{\theta^n} I(\max\{X_1, \dots, X_n\} \le \theta) \prod_{i=1}^n I(X_i > 0).$$

The MLE is $\hat{\theta}_{MLE} = \max\{X_1, \dots, X_n\}$, which is not a stationary point.

• **Theorem:** Suppose that $\nabla^2 g(\theta)$ is continuous at θ^* and that $\nabla g(\theta^*) = 0$ and $\nabla^2 g(\theta^*)$ is negative definite. Then θ^* is a strict local maximizer of g.

• Proof.

- Because $\nabla^2 g(\theta^*)$ is negative definite and $\nabla^2 g(\theta)$ is continuous at θ^* , so $\nabla^2 g(\theta)$ is negative definite for all $\theta \in \mathcal{D} := \{u : || u \theta^* ||_2 < r\}$ for some r > 0.
- For any $\theta \in \mathcal{D}$, we have

$$g(\theta) = g(\theta^*) + \nabla g(\theta^*)^T (\theta - \theta^*) + \frac{1}{2} (\theta - \theta^*)^T \nabla^2 g(\bar{\theta}) (\theta - \theta^*)$$
$$= g(\theta^*) + \frac{1}{2} (\theta - \theta^*)^T \nabla^2 g(\bar{\theta}) (\theta - \theta^*),$$

where $\bar{\theta} \in \mathcal{D}$ is a point between θ^* and θ .

- Since $\nabla^2 g(\bar{\theta})$ is negative definite, we have $g(\theta) < g(\theta^*)$ if $\theta \in \mathcal{D}$ and $\theta \neq \theta^*$. Therefore, θ^* is a strict local maximizer of g.

- A local maximizer may not be a global maximizer. Many algorithms for nonlinear optimization problems seek only a local maximizer. We often need to try different initial points.
- Convex Set: A set $S \subset \mathbb{R}^p$ is a *convex set* if for any two points $\theta_1 \in S$ and $\theta_2 \in S$, we have $\alpha \theta_1 + (1 \alpha)\theta_2 \in S$ for all $0 \le \alpha \le 1$.
- Convex Function and Concave Function: A function $g(\theta)$ defined on a convex set Θ is called a *convex function* if

$$g(\alpha\theta_1 + (1-\alpha)\theta_2) \le \alpha g(\theta_1) + (1-\alpha)g(\theta_2)$$
 for all $0 \le \alpha \le 1$.

It is called a *concave function* if

$$g(\alpha\theta_1 + (1-\alpha)\theta_2) \ge \alpha g(\theta_1) + (1-\alpha)g(\theta_2)$$
 for all $0 \le \alpha \le 1$.

• **Remark:** If $g(\theta)$ is convex, then $-g(\theta)$ is concave.

• **Theorem:** When g is concave, any local maximizer θ^* is a global maximizer of g. If in addition g is differentiable, then any stationary point θ^* is a global maximizer of g.

• Proof.

– Suppose that θ^* is a local but not a global maximizer. Then there exist a point θ_0 with $g(\theta_0) > g(\theta^*)$. For any point $\theta_1 = \alpha \theta^* + (1 - \alpha)\theta_0$, $0 < \alpha < 1$, between θ^* and θ_0 , we have

$$g(\theta_1) = g(\alpha \theta^* + (1 - \alpha)\theta_0)$$

$$\geq \alpha g(\theta^*) + (1 - \alpha)g(\theta_0) > g(\theta^*),$$

which implies θ^* is not a local maximizer. So we arrive at a contradiction. Therefore, θ^* must be a global maximizer.

• - If g is differentiable, suppose that $\nabla g(\theta^*) = \mathbf{0}$ but θ^* is not a global maximizer. Let θ_0 be the point satisfying $g(\theta_0) > g(\theta^*)$. Consider

$$\frac{d}{d\lambda} g(\theta^* + \lambda(\theta_0 - \theta^*))\big|_{\lambda=0} = \lim_{\lambda \to 0+} \frac{g(\theta^* + \lambda(\theta_0 - \theta^*)) - g(\theta^*)}{\lambda}$$

$$\geq \lim_{\lambda \to 0+} \frac{\lambda g(\theta_0) + (1 - \lambda)g(\theta^*) - g(\theta^*)}{\lambda}$$

$$= g(\theta_0) - g(\theta^*) > 0.$$

But we also have

$$\frac{d}{d\lambda} g(\theta^* + \lambda(\theta_0 - \theta^*))\big|_{\lambda=0} = \nabla g(\theta^*)^T (\theta_0 - \theta^*) = 0,$$

and arrive at a contradiction. Hence, θ^* is a global maximizer.

- Smooth Cases: Suppose $g''(\theta)$ exists and is continuous, and the maximizer is in the interior of Θ . We want to find the stationary point of g. Let θ^* be a solution of the equation $g'(\theta) = 0$.
 - If $g''(\theta^*) < 0$, then θ^* is a local maximizer of $g(\theta)$.
 - If g is concave, θ^* is a global maximizer of $g(\theta)$.
- In the following, we focus on finding the solution of the equation

$$h(\theta) = 0$$

with $h(\theta) = g'(\theta)$.

• Example: Consider the optimization problem

$$\max_{0<\theta<\infty} \left\{ \frac{\log \theta}{1+\theta} \right\}.$$

We want to find

$$\theta^* = \arg \max_{\theta} g(\theta) \quad \text{with } g(\theta) = \frac{\log \theta}{1 + \theta},$$

Equivalently, we want to find

$$\theta^* = \arg \operatorname{zero}_{\theta} h(\theta),$$

where

$$h(\theta) = g'(\theta) = \frac{1 + 1/\theta - \log \theta}{(1 + \theta)^2}.$$

This problem does not have an analytic solution, we need to use **numerical method** to find θ^* .

- **Bisection Method:** Suppose $h(\theta)$ is **continuous**. If a < b and h(a)h(b) < 0, there must be a zero point within the interval (a, b).
 - Let t = 0, find $a_0 < b_0$ such that $h(a_0)h(b_0) < 0$. Let $h_a = h(a_0)$ and $h_b = h(b_0)$.
 - Until $|b_t a_t| < \epsilon$:
 - * Let $c \leftarrow (a_t + b_t)/2$ and $h_c = h(c)$ (if $h_c = 0$, we find the solution).
 - * If $h_a h_c < 0$, let $a_{t+1} = a_t$, $b_{t+1} = c$ and $h_b = h_c$; if $h_b h_c < 0$, let $a_{t+1} = c$, $h_a = h_c$ and $b_{t+1} = b_t$.
 - $*t \leftarrow t+1.$
 - Let $\hat{\theta}^* = (a_t + b_t)/2$.

Bisection Method

- **Remark:** If we want to find the maximizer of $g(\theta)$, we would expect $h(a_0) = g'(a_0) > 0$ and $h(b_0) = g'(b_0) < 0$.
- How to determine the initial interval (a_0, b_0) in bisection method? Suppose we want to find the maximizer of $g(\theta)$ on $(-\infty, \infty)$.
- We first take a point θ_0 . If $h(\theta_0) > 0$, let $a_0 = \theta_0$ and $h_a = h(\theta_0)$; if $h(\theta_0) < 0$, let $b_0 = \theta_0$ and $h_b = h(\theta_0)$. Assume that $h(\theta_0) > 0$, we need to determine b_0 .
 - Set h > 0 and $\gamma > 1$. Let $b_0 = a_0 + h$ and $h_b = h(b_0)$.
 - Until $h_a h_b < 0$:
 - * Let $h \leftarrow \gamma h$.
 - * Compute $b_0 = a_0 + h$ and $h_b = h(b_0)$.

• Newton's Method: Suppose at iteration t, we have $\theta^{(t)}$. Consider the Taylor series expansion

$$h(\theta) \approx h(\theta^{(t)}) + h'(\theta^{(t)})(\theta - \theta^{(t)}).$$

So we can let

$$\theta^{(t+1)} = \theta^{(t)} - h(\theta^{(t)})/h'(\theta^{(t)}).$$

• Remarks:

- The method is also called the Newton-Raphson method.
- We can stop the algorithm when $h(\theta^{(t)})$ is close to 0.
- When $h(\theta) = g'(\theta)$, we have

$$\theta^{(t+1)} = \theta^{(t)} - g'(\theta^{(t)})/g''(\theta^{(t)}).$$

– If we want to find the maximizer of $g(\theta)$, we would expect $g''(\theta^{(t)}) < 0$.

Newton's Method

• - Different from the bisection method, the Newton's method could diverge.

• **Secant Method:** When it is difficult to calculate $h'(\theta^{(t)})$, we can use $\frac{h(\theta^{(t)}) - h(\theta^{(t-1)})}{\theta^{(t)} - \theta^{(t-1)}}$ to replace it, then we have

$$\theta^{(t+1)} = \theta^{(t)} - h(\theta^{(t)}) \cdot \frac{\theta^{(t)} - \theta^{(t-1)}}{h(\theta^{(t)}) - h(\theta^{(t-1)})}.$$

• Remarks:

– When $h(\theta) = g'(\theta)$, we have

$$\theta^{(t+1)} = \theta^{(t)} - g'(\theta^{(t)}) \cdot \frac{\theta^{(t)} - \theta^{(t-1)}}{g'(\theta^{(t)}) - g'(\theta^{(t-1)})}.$$

- The secant method need two starting points $\theta^{(0)}$ and $\theta^{(1)}$.

Secant Method

• Convergence Order: The performance of a root-finding approach is typically measured by its order of convergence to the true root θ^* . Let $\epsilon^{(t)} = \theta^{(t)} - \theta^*$. A method has convergence order β if $\lim_{t\to\infty} \epsilon^{(t)} = 0$ and

$$\lim_{t \to \infty} \frac{|\epsilon^{(t)}|}{|\epsilon^{(t-1)}|^{\beta}} = c$$

for some constant c > 0 and $\beta > 0$.

• Remarks:

– If a method has the convergence order β with constant c, then

$$|\epsilon^{(t)}| \approx c|\epsilon^{(t-1)}|^{\beta} \approx \cdots \approx c^{1+\cdots+\beta^{t-1}} \cdot |\epsilon^{(0)}|^{\beta^t}.$$

– When $\beta = 1$ and c < 1, we call the method has a linear convergence order.

- For the **bisection method**, $\lim_{t\to\infty} \frac{|\epsilon^{(t)}|}{|\epsilon^{(t-1)}|^{\beta}}$ may not exist for any β , but we have $\frac{|\epsilon^{(t)}|}{|\epsilon^{(t-1)}|} \approx \frac{|b_t a_t|}{|b_{t-1} a_{t-1}|} = 0.5$. It approximately has a linear convergence order.
 - For the **Newton's method**,
 - * We have

$$\epsilon^{(t+1)} = \theta^{(t+1)} - \theta^* = \theta^{(t)} - \theta^* - h(\theta^{(t)}) / h'(\theta^{(t)}).$$

* Note that

$$0 = h(\theta^*) = h(\theta^{(t)}) + h'(\theta^{(t)})(\theta^* - \theta^{(t)}) + \frac{1}{2}h''(u_t)(\theta^* - \theta^{(t)})^2,$$

where u_t is a point between $\theta^{(t)}$ and θ^* . Then

$$\theta^{(t)} - \theta^* = \left[h(\theta^{(t)}) + \frac{1}{2}h''(u_t)(\theta^* - \theta^{(t)})^2\right]/h'(\theta^{(t)}).$$

 \bullet - * Thus,

$$\epsilon^{(t+1)} = \theta^{(t)} - \theta^* - h(\theta^{(t)})/h'(\theta^{(t)}) = \frac{1}{2}h''(u_t)(\epsilon^{(t)})^2/h'(\theta^{(t)}).$$

* Suppose we already know that $\theta^{(t)} \to \theta^*$ as $t \to \infty$, then under some regulation conditions,

$$\lim_{t \to \infty} \frac{|\epsilon^{(t+1)}|}{|\epsilon^{(t)}|^2} \to \frac{1}{2} |h''(\theta^*)|/|h'(\theta^*)|,$$

and the Newton's method has a convergence order $\beta=2$ when $h'(\theta^*)\neq 0$.

- Under certain conditions, we can show the **secant method** has a convergence order $\beta = (1 + \sqrt{5})/2 \approx 1.62$.
- Under certain conditions, the Newton's method converges faster than the secant method and the bisection method.

- Now we consider finding $\theta^* = \arg \max_{\theta} g(\theta)$ when $g(\theta)$ is not differentiable or when $h(\theta) = g'(\theta)$ is difficult to calculate.
- Golden Section Search Method: Suppose we know that $g(\theta)$ is concave in $[a_0, b_0]$ and its maximizer $\theta^* \in (a_0, b_0)$. Let c < d be two points within the interval (a_0, b_0) .
 - If $g(c) \leq g(d)$, then the maximizer $\theta^* \in (c, b_0)$. (Why?)
 - If $g(c) \ge g(d)$, then the maximizer $\theta^* \in (a_0, d)$.
 - We take $c = a_0 + (1 \rho)(b_0 a_0) = \rho a_0 + (1 \rho)b_0$ and $d = a_0 + \rho(b_0 a_0) = (1 \rho)a_0 + \rho b_0$, where $\rho = \frac{\sqrt{5}-1}{2} \approx 0.618$. Here c and d are golden section points of the interval (a_0, b_0) .
 - Note that c is a golden section point of (a_0, d) and d is a golden section point of (c, b).

Golden Section Search Method

• Golden Section Search Method:

- When t = 0, set $c = \rho a_0 + (1 \rho)b_0$ and $d = (1 \rho)a_0 + \rho b_0$. Compute $g_c = g(c)$ and $g_d = g(d)$.
- Until $|b_t a_t| < \epsilon$:
 - * If $g_c < g_d$, let $a_{t+1} \leftarrow c$, $b_{t+1} \leftarrow b_t$, $c \leftarrow d$ and $g_c \leftarrow g_d$. Then set $d = (1 \rho)a_{t+1} + \rho b_{t+1}$ and compute $g_d = g(d)$.
 - * Else, let $a_{t+1} \leftarrow a_t$, $b_{t+1} \leftarrow d$, $d \leftarrow c$ and $g_d \leftarrow g_c$. Then set $c = \rho a_{t+1} + (1-\rho)b_{t+1}$ and compute $g_c = g(c)$.
 - $*t \leftarrow t+1$.
- Let $\hat{\theta}^* = (a_t + b_t)/2$.
- **Remark:** We have $|b_{t+1} a_{t+1}|/|b_t a_t| = \rho \approx 0.618$. The golden section search method approximately has a linear convergence order.

1.3 Multivariate Problems

- Multivariate Maximization: We want to find a point $\theta^* \in \Theta \subset \mathbb{R}^p$ to maximize the objective function $g(\theta)$, where the dimension of θ is p > 1.
- Line Search Strategy: Suppose we have $\theta^{(t)}$ at iteration t. Then we choose a direction $u^{(t)}$, and search along this direction from $\theta^{(t)}$ for a new point with a larger function value. Particularly, we can let

$$\alpha_t = \arg\max_{\alpha > 0} g(\theta^{(t)} + \alpha u^{(t)})$$

and set

$$\theta^{(t+1)} = \theta^{(t)} + \alpha_t u^{(t)}.$$

• Remarks:

- Consider the Taylor series expansion $g(\theta^{(t)} + \alpha u^{(t)}) = g(\theta^{(t)}) + \alpha \nabla g(\theta^{(t)})^T u^{(t)} + o(\alpha)$. We should choose $u^{(t)}$ so that $\nabla g(\theta^{(t)})^T u^{(t)} > 0$.

1.3 Multivariate Problems

- We can let $u^{(t)} = \frac{g(\theta^{(t)})}{\partial \theta_k} \cdot e_k$ if t = lp + k for integers l and k, where $e_k = (0, \dots, 0, 1, 0, \dots, 0)$ is a $p \times 1$ vector with the kth entry being 1 and other entries being 0. It is called the *coordinate ascent method*.
 - Suppose $u^{(t)}$ is a unit direction, that is, $||u^{(t)}||_2 = 1$. Then

$$g(\theta^{(t)} + \alpha u^{(t)}) \approx g(\theta^{(t)}) + \alpha \nabla g(\theta^{(t)})^T u^{(t)}$$

$$\leq g(\theta^{(t)}) + \alpha \| \nabla g(\theta^{(t)}) \|_2.$$

The value of $g(\theta^{(t)} + \alpha u^{(t)})$ has the most rapid decrease when $u^{(t)} = \frac{\nabla g(\theta^{(t)})}{\|\nabla g(\theta^{(t)})\|_2}$. If we set $u^{(t)} = \nabla g(\theta^{(t)})$, the method is called the *steepest* ascent method.

– If we want to solve a **minimization problem**, we should let $u^{(t)} = -\nabla g(\theta^{(t)})$ and the method is called the *steepest descent method*.

1.3 Multivariate Problems

• Newton's Method: Suppose we have $\theta^{(t)}$ at iteration t. Consider

$$\begin{split} g(\theta) \\ &\approx g(\theta^{(t)}) + \nabla g(\theta^{(t)})^T (\theta - \theta^{(t)}) + \frac{1}{2} (\theta - \theta^{(t)})^T \nabla^2 g(\theta^{(t)}) (\theta - \theta^{(t)}) \\ &= \frac{1}{2} \Big\{ \theta - \theta^{(t)} + \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}) \Big\}^T \nabla^2 g(\theta^{(t)}) \Big\{ \theta - \theta^{(t)} + \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}) \Big\} \\ &\qquad \qquad - \frac{1}{2} \nabla g(\theta^{(t)})^T \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}) + g(\theta^{(t)}). \end{split}$$

The Newton's method let

$$\theta^{(t+1)} = \theta^{(t)} - \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}).$$

• Remarks:

– If we want to solve a maximization (minimization) problem, we would expect $\nabla^2 g(\theta^{(t)})$ to be a negative (positive) definite matrix.

- The Newton's method does not require a line search step.
 - When $\nabla^2 g(\theta^{(t)})$ is negative definite, we have

$$\nabla g(\theta^{(t)})^T \Big[- \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}) \Big] > 0.$$

So we can also consider a line search strategy with $u^{(t)} = -\left[\nabla^2 g(\theta^{(t)})\right]^{-1} \nabla g(\theta^{(t)})$, that is,

$$\theta^{(t+1)} = \theta^{(t)} - \alpha_t \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}).$$

where

$$\alpha_t = \arg\max_{\alpha > 0} g \left(\theta^{(t)} - \alpha \left[\nabla^2 g(\theta^{(t)}) \right]^{-1} \nabla g(\theta^{(t)}) \right).$$

Here $u^{(t)} = -\left[\nabla^2 g(\theta^{(t)})\right]^{-1} \nabla g(\theta^{(t)})$ is also called the Newton direction.

• Example: Logistic Regression. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be independent and identically distributed random vectors, where $Y_i \in \{0, 1\}$ and X_i , $i = 1, \dots, n$, are d-dimensional random vectors. Consider a logistic regression model

$$P(Y_i = 1 \mid X_i = x_i, \beta) = \frac{\exp\{x_i^T \beta\}}{1 + \exp\{x_i^T \beta\}}.$$

Given observations $(x_1, y_1), \dots, (x_n, y_n)$, we want to estimate $\beta = (\beta_1, \dots, \beta_d)^T$.

- A logit function is defined as $logit(u) = log(\frac{u}{1-u})$ for 0 < u < 1. The logistic regression model assumes

$$\operatorname{logit}(P(Y_i = 1 \mid X_i = x_i; \beta)) = x_i^T \beta.$$

- Note that the conditional probability mass function

$$f(y_i \mid x_i; \beta) := P(Y_i = y_i \mid X_i = x_i; \beta) = \frac{\left(\exp\{x_i^T \beta\}\right)^{g_i}}{1 + \exp\{x_i^T \beta\}}.$$

• The likelihood function can be written as

$$l(\beta) = f(y_1, \dots, y_n, x_1, \dots, x_n; \beta)$$

= $\prod_{i=1}^n f(y_i | x_i; \beta) f(x_i) = \prod_{i=1}^n \frac{\left(\exp\{x_i^T \beta\}\right)^{y_i}}{1 + \exp\{x_i^T \beta\}} \cdot f(x_i),$

and the log-likelihood function is

$$\log l(\beta) = c + \sum_{i=1}^{n} y_i \cdot x_i^T \beta - \sum_{i=1}^{n} \log \left[1 + \exp\{x_i^T \beta\} \right].$$

- The gradient and Hessian of $\log l(\beta)$ are

$$\nabla \log l(\beta) = \sum_{i=1}^{n} y_i \cdot x_i - \sum_{i=1}^{n} \frac{1}{1 + \exp\{-x_i^T \beta\}} \cdot x_i,$$
and
$$\nabla^2 \log l(\beta) = -\sum_{i=1}^{n} \frac{\exp\{-x_i^T \beta\}}{\left[1 + \exp\{-x_i^T \beta\}\right]^2} \cdot x_i x_i^T.$$

It is easy to see that $\log l(\beta)$ is concave. We can use the Newton's method to find $\hat{\beta}_{MLE}$.

- Example: Neural Network. Let $(X_1, Y_1), \dots, (X_n, Y_n)$ be independent and identically distributed random vectors, where $Y_i \in \{0, 1\}$ and $X_i = (X_{i1}, \dots, X_{id})^T$, $i = 1, \dots, n$, are d-dimensional random vectors. We want to find a model to fit $P(Y_i = 1 \mid X_i = x_i)$.
 - The logistic model assumes $P(Y_i = 1 \mid X_i = x_i) := y_i^* = h\left(\sum_{j=1}^d w_j x_{ij}\right)$, where $h(u) = 1/(1 + e^{-u}) = e^u/(1 + e^u)$ is called the *logistic function* or *sigmoid function* (in machine learning).

Logistic model (Julie Nutini, University of British Columbia)

• - Neural network assumes a structure with multiple layers.

* Input
$$x_i = (x_{i1}, \dots, x_{id})^T$$
.

* For
$$l = 1, \dots, k$$
, compute $z_{il} = h\left(\sum_{j=1}^{d} W_{lj} x_{ij}\right)$.

* Output
$$P(Y_i = 1 | X_i = x_i) = y_i^* = h(\sum_{l=1}^k w_l z_{il}).$$

Neural network (Julie Nutini, University of British Columbia)

- - Training of a neural network:
 - * The model parameters are $\theta = (w_1, \dots, w_l, W_{11}, \dots, W_{kd})^T$.
 - * Given observations $(x_1, y_1), \dots, (x_n, y_n)$, we want to find θ to maximize the log-likelihood function

$$\log l(\theta) = \sum_{i=1}^{n} \log \left[f(y_i \mid x_i; \theta) f(x_i) \right]$$

$$= c + \sum_{i=1}^{n} \log \left\{ \left[P(Y_i = 1 \mid X_i = x_i; \theta) \right]^{y_i} \left[P(Y_i = 0 \mid X_i = x_i; \theta) \right]^{1 - y_i} \right\}$$

$$= c + \sum_{i=1}^{n} \left[y_i \log P(Y_i = 1 \mid X_i = x_i; \theta) + (1 - y_i) \log P(Y_i = 0 \mid X_i = x_i; \theta) \right]$$

$$= c + \sum_{i=1}^{n} \left[y_i \log y_i^* + (1 - y_i) \log(1 - y_i^*) \right].$$

• - Define

$$L_i(\theta) = y_i \log y_i^* + (1 - y_i) \log(1 - y_i^*),$$

where $y_i^* := P(Y_i = 1 | X_i = x_i; \theta)$. Then $\log l(\theta) = c + \sum_{i=1}^n L_i(\theta)$.

- Training steps:
 - * Repeat until some stopping criterion is satisfied:

For
$$i = 1, \dots, n$$
, let

$$\theta^{(t+1)} \leftarrow \theta^{(t)} + \alpha \nabla_{\theta} L_i(\theta^{(t)}),$$

where α is a small positive number.

– For a given θ , how to compute $\nabla_{\theta} L_i(\theta)$?

- We can compute $\nabla_{\theta} L_i(\theta)$ using backpropagation (chain rule).
 - * Compute $dL_i(\theta)/dy_i^* = y_i/y_i^* (1-y_i)/(1-y_i^*)$.
 - * For $l = 1, \dots, k$, compute

$$\partial L_i(\theta)/\partial w_l = dL_i(\theta)/dy_i^* \cdot \partial y_i^*/\partial w_l,$$

where $\partial y_i^*/\partial w_l = h'\left(\sum_{l=1}^k w_l z_{il}\right) \cdot z_{il}$.

- * For $l = 1, \dots, k$,
 - · Compute

$$\partial L_i(\theta)/\partial z_{il} = dL_i(\theta)/dy_i^* \cdot \partial y_i^*/\partial z_{il},$$

where $\partial y_i^*/\partial z_{il} = h'(\sum_{l=1}^k w_l z_{il}) \cdot w_l$.

· For $j = 1, \dots, d$, compute

$$\partial L_i(\theta)/\partial W_{lj} = \partial L_i(\theta)/\partial z_{il} \cdot \partial z_{il}/\partial W_{lj},$$

where $\partial z_{il}/\partial W_{lj} = h'(\sum_{j=1}^d W_{lj}x_{ij}) \cdot x_{ij}$.

• **Profile MLE:** Suppose the parameter $\theta = (\theta_1, \theta_2)$, where θ_1 is a $p_1 \times 1$ vector and θ_2 is a $p_2 \times 1$ vector. The dimension of θ is $p = p_1 + p_2$. We want to find the MLE

$$(\hat{\theta}_{1,MLE}, \hat{\theta}_{2,MLE}) = \arg \max_{\theta_1, \theta_2} \log l(\theta_1, \theta_2).$$

- Assume that for any given θ_1 , it is easy to find

$$\hat{\theta}_2(\theta_1) = \arg \max_{\theta_2} \log l(\theta_1, \theta_2).$$

- Then we can reduce the p-dimensional optimization problem to a p_1 dimensional optimization problem, that is,

$$\hat{\theta}_{1,MLE} = \arg\max_{\theta_1} \log l \left[\theta_1, \hat{\theta}_2(\theta_1) \right]$$

and

$$\hat{ heta}_{2,MLE} = \hat{ heta}_2(\hat{ heta}_{1,MLE}).$$

• **Example:** Assume that X_1, \dots, X_n are i.i.d. following a Gamma (α, λ) distribution with the probability density function

$$f(x; \alpha, \lambda) = \begin{cases} \frac{\lambda^{\alpha} x^{\alpha - 1}}{\Gamma(\alpha)} e^{-\lambda x} & x > 0, \\ 0 & \text{otherwise,} \end{cases}$$

where $\alpha > 0$, $\lambda > 0$ and $\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$.

- The log-likelihood function is

$$\log l(\alpha, \lambda) = n\alpha \log \lambda - n \log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \log(X_i) - \lambda \sum_{i=1}^{n} X_i.$$

- For each given $\alpha > 0$, it is easy to find

$$\hat{\lambda}(\alpha) = \arg\max_{\lambda} \log l(\alpha, \lambda) = \alpha/\overline{X}_n,$$

where
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

• To find the MLE of α and λ , we need to solve the following maximization problem

$$\hat{\alpha}_{MLE} = \max_{\alpha} \left\{ n\alpha \log \alpha - n\alpha \log \overline{X}_n - n\log \Gamma(\alpha) + (\alpha - 1) \sum_{i=1}^{n} \log(X_i) - n\alpha \right\}$$

and let $\hat{\lambda}_{MLE} = \hat{\alpha}_{MLE}/\overline{X}_n$.

- 1. If $\mathcal{X} \subset \mathbb{R}^p$ is a convex set, prove that $\mathcal{Y} = \{y = Ax + b : x \in \mathcal{X}\}$ is also a convex set, where A is a $q \times p$ matrix and b is a $q \times 1$ vector.
- 2. Suppose $g_1(\theta)$ and $g_2(\theta)$ are convex functions. Prove that (1) for any $\alpha > 0$ and $\beta > 0$, $\alpha g_1(\theta) + \beta g_2(\theta)$ is convex; (2) max $\{g_1(\theta), g_2(\theta)\}$ is convex.
- 3. Let $g(\theta) = \frac{1}{2} \theta^T A \theta + b^T \theta + c$, where A is a $p \times p$ negative definite matrix, b is a $p \times 1$ vector, and c is a scalar. Find the maximum value and maximizer of $g(\theta)$.

- 4. The following data are i.i.d. samples from a Cauchy $(\theta,1)$, $-\infty < \theta < \infty$, distribution with the probability density function $f(x;\theta) = \frac{1}{\pi(1+(x-\theta)^2)}$, $-\infty < x < \infty$:
 - 1.77, -0.23, 2.76, 3.80, 3.47, 56.75, -1.34, 4.24, -2.44, 3.29, 3.71, -2.40, 4.53, -0.07, -1.05, -13.87, -2.53, -1.75, 0.27, 43.21.
 - (a) Graph the log-likelihood function. Find the MLE for θ using the Newton's method. Try all of the following starting points: -11, -1, 0, 1.5, 8 and 38. Discuss your results.
 - (b) Apply the bisection method with starting points -1 and 1. Use additional runs to illustrate manners in which the bisection method may fail to find the global maximum.
 - (c) From starting values of $(\theta^{(0)}, \theta^{(1)}) = (-2, -1)$, apply the secant method to estimate θ . What happens when $(\theta^{(0)}, \theta^{(1)}) = (-3, 3)$?

- 5. Consider the probability density function $f(x;\theta) = (1 \cos(x \theta))/2\pi$ for $0 \le x \le 2\pi$, where θ is a parameter between $-\pi$ and π . The following i.i.d. data arise from this density: 3.91, 4.85, 2.28, 4.06, 3.70, 4.04, 5.46, 3.53, 2.28, 1.96, 2.53, 3.88, 2.22, 3.47, 4.82, 2.46, 2.99, 2.54, 0.52, 2.50. We want to estimate θ .
 - (a) Graph the log likelihood function between $-\pi$ and π .
 - (b) Find the method of moments estimator of θ .
 - (c) Find the MLE for θ using the Newton's method, using the result from (b) as the starting value. What solutions do you find when you start at -2.7 and 2.7?

6. Suppose (X_{1i}, X_{2i}, Y_i) , $i = 1, \dots, n$, are i.i.d. following the logistic model

$$P(Y_i = 1 \mid X_{1i}, X_{2i}; \beta) = \frac{\exp\{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}\}}{1 + \exp\{\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}\}}.$$

Find the MLE of $\beta = (\beta_0, \beta_1, \beta_2)$.