UNIVERSIDADE FEDERAL DE SANTA MARIA

Departamento de Matemática Prof. Felipe C. Minuzzi

Lista de exercícios - Solução de equações lineares

Questão 1. Utilize o método da bissecção para encontrar as raízes das funções abaixo com erro relativo menor que 1e-3:

- a) $f(x) = \ln(x) + 2x$
- b) $f(x) = e^x \sin(x)$

Questão 2. Considere a equação $\sqrt{x} = \cos(x)$. Use o método da bisseção com intervalo inicial [a, b] = [0, 1] e $x^{(1)} = (a + b)/2$ para calcular a aproximação $x^{(4)}$ da solução desta equação.

Questão 3. Trace o gráfico e isole as três primeiras raízes positivas da função:

$$f(x) = 5\sin(x^2) - \exp\left(\frac{x}{10}\right) \tag{1}$$

em intervalos de comprimento 0,1. Então, use o método da bisseção para obter aproximações dos zeros desta função com precisão de 10^{-5} .

Questão 4. O polinômio $f(x) = x^4 - 4x^2 + 4$ possui raízes duplas em $\sqrt{2}$ e $-\sqrt{2}$. O método da bisseção pode ser aplicado a f? Explique.

Questão 5. Resolver a equação $e^x = x + 2$ é equivalente a calcular os pontos fixos da função $g(x) = e^x - 2$. Use a iteração do ponto fixo com $x_0 = -1.8$ para obter uma aproximação de uma das soluções da equação dada com 8 dígitos significativos (tolerância $\epsilon = 1e - 8$).

Questão 6. Considere as seguintes iterações de ponto fixo:

a)
$$x^{(n+1)} = \ln\left(\frac{10}{x^{(n)}}\right)$$

b)
$$x^{(n+1)} = 10e^{-x^{(n)}}$$

Tomando $x_0 = 1$, verifique se estas sequências são convergentes.

Questão 7. Na hidráulica, o fator de atrito de Darcy é dado pela implicitamente pela equação de Colebrook-White:

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon}{14.8R_h} + \frac{2.51}{\text{Re}\sqrt{f}}\right) \tag{2}$$

onde f é o fator de atrito, ε é a rugosidade do tubo em metros, R_h é o raio hidráulico em metros e Re é o número de Reynolds. Considere $\varepsilon = 2mm$, $R_h = 5cm$ e Re = 10000 e obtenha o valor de f pela iteração:

$$x^{(n+1)} = -2\log_{10}\left(\frac{\varepsilon}{14.8R_h} + \frac{2.51x^{(n)}}{\text{Re}}\right)$$
(3)

Questão 8. Encontre numericamente as três primeiras raízes positivas da equação dada por:

$$\cos(x) = \frac{x}{10 + x^2} \tag{4}$$

com erro absoluto inferior a 10^{-6} .

Questão 9 Considere o seguinte modelo para crescimento populacional em um país:

$$P(t) = A + Be^{\lambda t}. (5)$$

onde t é dado em anos. Use t em anos e t=0 para 1960. Encontre os parâmetros A, B e λ com base nos anos de 1960, 1970 e 1991 conforme tabela:

Ano	população
1960	70992343
1970	94508583
1980	121150573
1991	146917459

Use esses parâmetros para calcular a população em 1980 e compare com o valor do censo. Dica: considere $\frac{P(31)-P(0)}{P(10)-P(0)}$ e reduza o sistema a uma equação apenas na variável λ .

Questão 10. A concentração sanguínea de um medicamente é modelado pela seguinte expressão

$$c(t) = Ate^{-\lambda t} \tag{6}$$

onde t > 0 é o tempo em minutos decorrido desde a administração da droga. A é a quantidade administrada em mg/ml e λ é a constante de tempo em min⁻¹. Responda:

- a) Sendo $\lambda=1/3$, em que instantes de tempo a concentração é metade do valor máximo. Calcule com precisão de segundos.
- b) Sendo $\lambda = 1/3$ e A = 100mq/ml, durante quanto tempo a concentração permanece maior que 10mq/ml.

Questão 11. Depois de acionado um sistema de aquecedores, a temperatura em um forno evolui conforme a seguinte equação

$$T(t) = 500 - 800e^{-t} + 600e^{-t/3}. (7)$$

onde T é a temperatura em Kelvin e t é tempo em horas.

- a) Obtenha analiticamente o valor de $\lim_{t\to\infty} T(t)$.
- b) Obtenha analiticamente o valor máximo de T(t) e o instante de tempo quando o máximo acontece
- c) Obtenha numericamente com precisão de minutos o tempo decorrido até que a temperatura passe pela primeira vez pelo valor de equilíbrio obtido no item a.
- d) Obtenha numericamente com precisão de minutos a duração do período durante o qual a temperatura permanece pelo menos 20% superior ao valor de equilíbrio.

Questão 12. Determine um limitante para o número de iterações necessárias para obter uma aproximação com precisão de 10^{-4} da solução de $x^3 - x - 1 = 0$ no intervalo [1, 2]. Determine uma aproximação da raiz com essa ordem de precisão.

Questão 13. Uma indústria consome energia elétrica de duas usinas fornecedoras. O custo de fornecimento em reais por hora como função da potência consumida em kW é dada pelas seguintes funções

$$C_1(x) = 500 + .27x + 4.1 \cdot 10^{-5}x^2 + 2.1 \cdot 10^{-7}x^3 + 4.2 \cdot 10^{-10}x^4$$
(8)

$$C_2(x) = 1000 + .22x + 6.3 \cdot 10^{-5}x^2 + 8.5 \cdot 10^{-7}x^3$$
 (9)

Onde $C_1(x)$ e $C_2(x)$ são os custos de fornecimento das usinas 1 e 2, respectivamente. Calcule o custo mínimo da energia elétrica quando a potência total consumida é 1500kW. Obs: lembre que o custo mínimo é calculado pela raíz da função.

Questão 14. Mostre que o teorema do ponto fixo se aplica a função $g(x) = \cos(x)$ no intervalo [0.5, 1], isto é, a iteração de ponto fixo converge para a solução da equação $\cos x = x$. Então, calcule as iterações do ponto fixo com aproximação inicial $x_0 = 0.7$.

Gabarito

Questão 1. a) $\overline{x} \approx 0.43$, b) $\overline{x} \approx -n\pi$, $n = 1, 2, 3, 4, \dots$

Questão 2. $\overline{x} \approx 0.6875$

Questão 3. Intervalo (0,4,0,5), zero 0,45931. Intervalo (1,7,1,8), zero 1,7036. Intervalo (2,5,2,6), zero 2,5582.

Questão 5. $\overline{x} \approx -1.8414057$

Questão 6. a)
$$x_{k+1}=\frac{x_{k-1}f(x_k)-x_kf(x)k-1)}{f(x_k)-f(x_{k-1})}$$
 b) $\overline{x}_1=2$ e $\overline{x}_2=-2$

Questão 7. $\overline{x} \approx 0.0431266$

Questão 8. $\bar{x}_1 \approx 1.4506619$, $\bar{x}_2 \approx 4.8574864$, $\bar{x}_3 = 7.7430681$.

Questão 9. 118940992

Questão 10. a) 42 s e 8 min2 s, b) 14 min56 s.

Questão 11. a) 500 K, b) 700 K em $t = 3 \ln(2)$, c) 26 min, d) 4 h27 min.

Questão 12. $n > 12.29 \ {\rm e} \ \overline{x} \approx 1.3248291015625$

Questão 13. Aproximadamente 2500 reais por hora.