Appunti di Algebra Superiore

Github Repository: Oxke/appunti/AlgebraSuperiore

Primo semestre, 2025 - 2026, prof. Alberto Canonaco

Libri utili

- Per la parte di algebra omologica Hilton-Stammbach, Osborne e Weibel.
- Dispense sui moduli (su KIRO) utili
- Aluffi, Algebra Chapter 0

Il corso è di 60 ore, non perché sia più pesante ma perché dovrebbero esserci ore di esercitazioni (non sarà necessariamente vero ma Canonaco cercherà di andare un po' nel dettaglio, fornire esempi e controesempi per quanto possibile)

0.1 Richiami sugli Anelli

Per convenzione, parlando di anelli si parlerà sempre di anelli con unità

Definizione 0.1.1: Anello

Un **anello** $A, +, \cdot$ è un gruppo abeliano A, + (con 0 elemento neutro) e contemporaneamente un monoide A, \cdot (cn 1 elemento neutro). Inoltre le due operazioni sono legate dalle proprietà distributive

$$a(b+c) = ab + ac$$
 ; $(b+c)a = ba + ca$

Diremo che l'anello è **commutativo** se l'operazione \cdot è commutativa

Per quasi tutto ciò che si vedrà in questo corso non è necessario andare a disturbare anelli non commutativi, dunque si useranno quasi sempre anelli commutativi.

Esempio 0.1.1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{Z}/n\mathbb{Z}$

Esempio 0.1.2. Se A è un anello (commutativo), allora i polinomi a coefficienti in Λ e con variabili in Λ costituiscono l'anello $A[x_{\lambda} \mid \lambda \in \Lambda]$

Esempio 0.1.3 (Anello Banale). L'anello composto da un solo elemento $\{0 = 1\}$

Esempio 0.1.4 (Non comm.). A anello, allora l'anello $M_n(A)$ delle matrici $n \times n$ a coefficienti in A non è commutativo se n > 1 (e se non è l'anello banale ma dai l'anello banale non esiste davvero)

Esempio 0.1.5. Endomorfismi Se (G, +) è un gruppo abeliano, allora End(G) è anello con + determinato da (f + g)(a) = f(a) + g(a) e · dato dalla composizione $(f \circ g)(a) = f(g(a))$

In generale se G, G' sono gruppi con (G, +) abeliano, allora l'insieme Hom(G', G) degli omomorfismi da G' a G è un sottogruppo di $G^{G'}$ il gruppo delle funzioni da G' a G.

Infatti se X è un insieme allora G^X è un gruppo con (f+g)(a)=f(a)+g(a)

Definizione 0.1.2: Invertibile

 $a \in A$ è invertibile a sinistra (destra) se $\exists a' \in A$ tale che a'a = 1 (aa' = 1). a viene detto **invertibile** se $\exists a' \in A$ tale che a'a = aa' = 1

Osservazione (invertibile \iff invertibile a destra e sinistra). solo una implicazione non è ovvia. Se $a', a'' \in A$ sono tali che a'a = aa'' = 1 allora

$$(a'a)a'' = a'(aa'')$$

 $1a'' = a'' = a' = a'1$

quindi a è invertibile e $a^{-1} = a' = a''$

Osservazione (Gruppo degli invertibili). L'insieme degli elementi invertibili forma un gruppo con l'operazione di prodotto e si indica con A^*

In generale, se $1 \neq 0$, allora $A^* \subseteq A \setminus \{0\}$

Definizione 0.1.3: Anello con Divisione

A si dice anello con divisione se $A^* = A \setminus \{0\}$. Un campo è un anello con divisione commutativo.

Definizione 0.1.4: Divisore di zero

 $a \in A$ è detto divisore di zero a sinistra (destra) se $\exists a' \in A \setminus \{0\}$ tale che aa' = 0 (a'a = 0)

Osservazione. Divisore di zero a sinistra: aa' = 0. Invertibile a sinistra: a'a = 1

Definizione 0.1.5: Dominio

A viene detto **dominio** se $A \neq 0$ e A non ha divisori di zero. Viene inoltre chiamato **dominio** di integrità se è commutativo.

Esempio 0.1.6. I campi, \mathbb{Z} , se A dominio d'integrità, allora anche $A[x_{\lambda} \mid \lambda \in \Lambda]$ è dominio d'integrità.

Osservazione. $A \neq 0$ tale che $\forall 0 \neq a \in A$ è invertibile a sinistra, allora A è un anello con divisione.

Dimostrazione. $\exists a' \in A$ tale che a'a = 1 ma anche $\exists a'' \in A : a''a' = 1$. Allora a' è invertibile a sinistra e a destra, infatti

$$a'^{-1} = a = a'' \implies a \in A^*$$

Definizione 0.1.6: Sottoanello

 $A'\subseteq A$ è sottoanello di A se (A',+)<(A,+), $ab\in A'$ per ogni $a,b\in A'$ e $1\in A'$

Esempio 0.1.7. $\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}\subseteq\mathbb{H}$ sono tutti sottoanelli

Esempio 0.1.8. $A \subseteq A[X]$ sottoanello

Definizione 0.1.7: Ideale

 $I\subseteq A$ è un'ideale sinistro (destro) se (I,+)<(A,+)e $ab\in I$ $(ba\in I),\,\forall a\in A$ e $\forall b\in I.$

Un ideale bilatero è un ideale sia sinistro che destro.

Esempio 0.1.9. Gli ideali in \mathbb{Z} sono tutti e soli della forma $n\mathbb{Z}$, con $n \in \mathbb{N}$

Osservazione. Se I è un ideale sinistro o destro allora

$$I = A \iff I \cap A^* \neq \emptyset$$

quindi A con divisione \implies gli unici ideali sinistri o destri sono $\{0\}$ e A

Definizione 0.1.8: Anello opposto

L'anello opposto di un anello A è A^{op} , con $(A^{op}, +) := (A, +)$ e con prodotto ab in A^{op} definito come ba in A

Osservazione. $(A^{op})^{op} = A \in A^{op} = A \iff A \text{ commutativo}$

Proposizione 0.1.1 (Anello Quoziente). Se $I \subseteq A$ ideale, allora il gruppo abeliano A/I, + è un anello con prodotto $\overline{a}\overline{b} := \overline{ab}$, dove $\overline{a} := a + I \in A/I$

Definizione 0.1.9: omomorfismo di anelli

Siano A, B anelli. $f: A \to B$ è **omomorfismo** di anelli se, $\forall a, a' \in A$

- i) f(a + a') = f(a) + f(a')
- ii) f(aa') = f(a)f(a')
- iii) $f(1_A) = 1_B$

ed è **isomorfismo** se è un omomorfismo biunivoco

Osservazione. f omomorfismo è isomorfismo $\iff \exists f': B \to A$ omomorfismo tale che $f' \circ f = \mathrm{id}_A$ e $f \circ f' = \mathrm{id}_B$

Indicheremo $A \cong B$ se esiste un isomorfismo tra $A \in B$

Proposizione 0.1.2. Se $f: A \to B$ è un omomorfismo allora

- 1. $A' \subseteq A$ è sottoanello $\implies f(A') \subseteq B$ è sottoanello.
- 2. $B' \subseteq B$ sottoanello $\implies f^{-1}(B') \subseteq A$ è sottoanello
- 3. $J \subseteq B$ è ideale (sinistro / destro) $\implies f^{-1}(J) \subseteq A$ è ideale (sinistro / destro). In particolare $\operatorname{Ker} f := f^{-1}(0_B) \subseteq A$ è ideale
- 4. f suriettivo e $I \subseteq A$ $ideale \implies f(I) \subseteq B$ \grave{e} ideale

Osservazione. $f: A \to B$ è iniettivo \iff Ker $f = \{0_A\}$ e in tal caso $A \cong \text{Im} f := f(A)$ che dunque è sottoanello di B

Teorema 0.1.3: Omomorfismo

 $f:A\to B$ è omomorfismo di anelli, $I\subseteq A$ ideale tale che $I\subseteq \mathrm{Ker} f$. Allora

 $\exists ! \overline{f} : A/I \to B$ omomorfismo tale che $\overline{f}(\overline{a}) = f(a) \quad \forall a \in A$

$$A \xrightarrow{f} B$$

$$\pi \downarrow \qquad \overline{f}$$

$$A/I$$

Inoltre im $\overline{f} = \text{im} f$ e $\text{Ker} \overline{f} = \text{Ker} f/I$

Proposizione 0.1.4. Gli ideali di A/I sono tutti e soli della forma J/I con $J \subseteq A$ ideale tale che $I \subseteq J$

Teorema 0.1.5: Primo teorema di isomorfismo

 $f:A\to B$ è omomorfismo di anelli, allora im $f\cong A/\mathrm{Ker} f$

Definizione 0.1.10: Ideale massimale (sinistro / destro)

Un ideale J (sinistro/destro) di A è massimale se $\forall I$ ideale (sinistro/destro) tale che $J\subseteq I\subseteq A,$ allora I=J o I=A

Osservazione. Esiste sempre un ideale (sinistro/destro) massimale (lemma di Zorn)

Definizione 0.1.11

L'ideale generato da $U\subseteq A$ è il più piccolo ideale di A che contiene $U=\bigcap_{U\subseteq I\subseteq A \text{ideale}} I$ ed esplicitamente è

$$AUA := \left\{ \sum_{i=1}^{n} a_i u_i b_i : n \in \mathbb{N}, a_i, b_i \in A, u_i \in U \right\}$$

Osservazione. Se A è commutativo e $U=\{u\}$ allora $A\{u\}A=Au=\{au:a\in A\}$ (ideale principale)

Definizione 0.1.12: PID

A è un dominio (d'integrità) a ideali principali (PID) se ogni ideale di A è principale.

Esempio 0.1.10. Campi (non ci sono ideali propri)

Esempio 0.1.11. \mathbb{Z} (con ideali nZ = (n))

Esempio 0.1.12. K[X] con K campo

0.2 Richiami sui Moduli

Definizione 0.2.1: A-modulo

Un A-modulo (di default sinistro) M è un gruppo abeliano (M,+) con una moltiplicazione per scalare definita da

$$\cdot: A \times M \longrightarrow M$$

$$(a, x) \longmapsto ax \in M$$

e tale che, $\forall a, b \in A$ e $\forall x, y \in M$:

- $1) \ a(x+y) = ax + ay$
- $2) \ (a+b)x = ax + bx$
- $3) \ (ab)x = a(bx)$
- 4) 1x = x

Osservazione. Se $\mathbb K$ è un campo, allora un $\mathbb K$ -modulo è uno spazio vettoriale.

Osservazione. Se (M,+) è un gruppo abeliano, data $f:A\times M\to M$ posso definire $\alpha:A\to M^M$ come $\alpha(a)=(x\mapsto ax)$, e quindi le proprietà precedenti si traducono in

- 1. $\alpha(a)(x+y)=\alpha(a)(x)+\alpha(a)(y)$ e dunque $\alpha(a)$ è omomorfismo di gruppi, dunque $\alpha(A)\subseteq \mathrm{End}(M)$
- 2. $\alpha(a+b) = \alpha(a) + \alpha(b)$ dunque $\alpha: A \to \operatorname{End}(M)$ è omomorfismo di gruppi
- 3. $\alpha(a) \circ \alpha(b) = \alpha(ab)$
- 4. $\alpha(1) = \mathrm{id}_M$

Dalla 2,3,4 $\alpha:A\to \operatorname{End}(M)$ è omomorfismo di anelli.

Teorema 0.2.1: Secondo teorema di isomorfismo

Sia M un modulo, con $M', M'' \subseteq M$ sottomoduli. Allora

$$M'/(M'\cap M'')\cong (M'+M'')/M''$$

Dimostrazione. Si prenda $f: M' \to (M' + M'')/M''$ composizione dell'inclusione di M' in M' + M'' e della proiezione a quoziente, dunque è un omomorfismo.

Allora $\text{Ker} f = \{x \in M' : x + M'' = M''\} = M' \cap M''.$

Preso $y \in (M' + M'')/M''$, y = x' + x'' + M'' = x' + M'' = f(x') dunque f è suriettiva. Dal primo teorema di isomorfismo segue la tesi.

Teorema 0.2.2: Terzo teorema di isomorfismo

Dati $M'' \subseteq M' \subseteq M$ sottomoduli e modulo, allora

$$(M/M')/(M'/M'') \cong M/M'$$

Dimostrazione. Sia f la composizione delle due proiezioni a quoziente, dunque è suriettiva. Allora

$$x \in \operatorname{Ker} f \iff \pi(x) \in \operatorname{Ker} \pi' = M'/M''$$

dunque $\operatorname{Ker} f = M'$ da cui la tesi per il primo teorema di isomorfismo.

Proposizione 0.2.3.

- 1. Sia A un anello, allora un A-modulo M è ciclico se e solo se $\exists I \subseteq A$ ideale sinistro tale che $M \cong A/I$
- 2. M è semplice se e solo se $\exists I \subseteq A$ ideale sinistro massimale tale che $M \cong A/I$

Dimostrazione. 1. (\iff) A/I è ciclico (generato da $\overline{1}$). Viceversa per (\implies) so che M=Ax per un qualche $x\in M$. Considerata $f:_AA\to M$ data da $a\mapsto ax$, Kerf è sottomodulo di A, ovvero ideale sinistro. Concludo per il primo teorema di isomorfismo.

2. Se M è semplice allora $\forall 0 \neq x \in M$, M = Ax, dunque M è ciclico e per il punto 1. esiste I ideale sinistro tale che $M \cong A/I$. La proposizione si riduce a dire che A/I è semplice se e solo se I è massimale. Sappiamo che i sottomoduli di A/I sono tutti e soli della forma J/I con $I \subseteq J \subseteq A$ ideale sinistro. Allora $A/I \neq 0 \iff I \neq A$ e gli unici sottomoduli di A/I sono I/I e A/I, ossia gli unici ideali sinistri J tali che $I \subseteq J \subseteq A$ sono I e A.

Osservazione. Con il lemma di Zorn si dimostra che $A \neq 0 \implies$ esiste un ideale sinistro massimale (e dunque esiste un sottomodulo semplice)

0.2.1 Prodotti

Definizione 0.2.2: Prodotto

Supponiamo di avere M_{λ} A-moduli, per $\lambda \in \Lambda$. Allora

$$M:=\prod_{\lambda\in\Lambda}M_\lambda$$
è un $A\text{-modulo detto }\mathbf{prodotto}$ degli M_λ

 $\begin{array}{l} {\rm con}\; (x+y)_{\lambda} := x_{\lambda} + y_{\lambda} \; {\rm e}\; (ax)_{\lambda} = ax_{\lambda} \; {\rm per \; ogni} \; \lambda \in \Lambda \; {\rm e}\; x, y \in M. \\ \forall \mu \in \Lambda \; {\rm esiste} \; p_{\mu} : M \to M_{\mu}, \; (x_{\lambda})_{\lambda \in \Lambda} \mapsto x_{\mu} \; {\rm che} \; \grave{\rm e} \; A \text{-lineare e suriettivo}. \end{array}$

Proposizione 0.2.4 (Proprietà universale del prodotto).

Dati $f_{\mu}: N \to M_{\mu}$ A-lineari $\forall \mu \in \Lambda$, allora esiste unico $f: N \to M$ A-lineare tale che $f_{\mu} = p_{\mu} \circ f$

$$\begin{array}{c}
N \\
f_{\mu} \downarrow \\
M_{\mu} \leftarrow p_{\mu} & \prod_{\lambda \in \Lambda} M_{\lambda}
\end{array}$$

Esercizio 0.2.1

Dimostrare la proprietà universale del prodotto

Definizione 0.2.3: Somma diretta

La somma diretta (o coprodotto) degli M_{λ} è

$$M':=\bigoplus_{\lambda\in\Lambda}M_\lambda=\{(x_\lambda)_{\lambda\in\Lambda}\in M:x_\lambda>0\text{ per finiti }\lambda\subseteq M\}$$

è sottomodulo.

 $\forall \mu \in \Lambda \text{ esiste}$

$$\begin{split} i_{\mu}: M_{\mu} &\longrightarrow M' \\ x &\longmapsto i_{\mu}(x) = (x_{\lambda})_{\lambda \in \Lambda}, \quad x_{\lambda} := \begin{cases} x & \lambda = \mu \\ 0 & \lambda \neq \mu \end{cases} \end{split}$$

che è A-lineare e iniettivo.

Proposizione 0.2.5 (Proprietà universale somma diretta).

$$\begin{array}{c}
N \\
f_{\mu} \\
\downarrow \\
M_{\mu} \xrightarrow{i_{\mu}} \bigoplus_{\lambda \in \Lambda} M_{\lambda}
\end{array}$$

Osservazione. Se $\#\Lambda < +\infty$ allora

$$\bigoplus_{\lambda \in \Lambda} M_{\lambda} = \prod_{\lambda \in \Lambda} M_{\lambda}$$

Nota (zione). Se $M_{\lambda}=M$ per ogni $\lambda\in\Lambda,$ si denota

$$\prod_{\lambda \in \Lambda} M =: M^{\Lambda} \quad \text{e} \quad \bigoplus_{\lambda \in \Lambda} M =: M^{(\Lambda)}$$

Dati $M_{\lambda} \subseteq M$ sottomoduli, con $\lambda \in \Lambda$, sia

$$f: \bigoplus_{\lambda \in \Lambda} M_{\lambda} \to M$$

l'omomorfismo indotto dalle inclusioni $M_\lambda \overset{i_\lambda}{\hookrightarrow} M$, allora

$$\operatorname{im} f =: \sum_{\lambda \in \Lambda} M_\lambda \subseteq M$$
è sottomodulo

Inoltre f è iniettiva se e solo se $M_{\mu} \cap \sum_{\lambda \in \Lambda} \{ \{ \} \} = 0$ per ogni $\mu \in \Lambda$ e in tal caso f induce un isomorfismo tra $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ e $\sum_{\lambda \in \Lambda} M_{\lambda}$ e si può scrivere $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ per indicare il sottomodulo di M

Definizione 0.2.4: Linearmente indipendente, base, modulo libero

Si
a $U\subseteq M$ un insieme, con M A-modulo. Si dice che
 U è A-linearmente indipendente se dati
 $x_1,\dots,x_n\subseteq U$ distinti

$$a_1, \dots, a_n \in A \text{ t.c. } \sum_{i=1}^n a_i x_i = 0 \implies a_1 = \dots = a_n = 0$$

U è detta base di M se è linearmente indipendente e genera M, ossia M=AU. Si dice che M è libero se ammette una base

Esempio 0.2.1. Per ogni Λ , $A^{(\Lambda)}$ è libero con base $\{e_{\lambda} : \lambda \in \Lambda\}$ dove, per ogni $\lambda \in \Lambda$,

$$(e_{\lambda})_{i} = \begin{cases} 1 & \lambda = i \\ 0 & \lambda \neq i \end{cases}$$

Proposizione 0.2.6. Siano L, M A-moduli, con L libero con base $\{l_{\lambda} : \lambda \in \Lambda\}$ tale che $l_{\lambda} \neq l_{\mu}$ se $\lambda \neq \mu$, allora

$$\forall \lambda \in \Lambda \ \exists ! f : L \to M \ A\text{-lineare t.c.} \ f(l_{\lambda}) = x_{\lambda}$$

Corollario 0.2.6.1. Un A-modulo è libero se e solo se è isomorfo a $A^{(\Lambda)}$ per qualche Λ

Dimostrazione.

 $\implies M$ libero con base $\{x_{\lambda} : \lambda \in \Lambda\}$ con $x_{\lambda} \neq x_{\mu}$ se $\lambda \neq \mu$. Allora per la proposizione

$$\exists ! f: A^{\Lambda} \to M$$
 A-lineare t.c. $f(e_{\lambda}) = x_{\lambda}$

per ogni $\lambda \in \Lambda$. Allora im $f = \langle x_\lambda : \lambda \in \Lambda \rangle_A = M$ e f è iniettivo perché gli x_λ sono linearmente indipendenti.

<≡ ovvio

Corollario 0.2.6.2. Ogni A-modulo è insomorfo a un quoziente di un modulo libero $(A^{(\Lambda)} per un qualche \Lambda)$.

Inoltre un A-modulo è finitamente generato se e solo se è isomorfo a un quoziente di A^n , $n \in \mathbb{N}$

Dimostrazione. Sia $\{x_{\lambda}\}_{{\lambda}\in\Lambda}$ un insieme di generatori di un modulo M. Per la proposizione $\exists! f: A^{(\Lambda)} \to M$ A-lineare tale che $\mathrm{fl}_{\lambda} = x_{\lambda}$ per ogni $\lambda \in \Lambda$. Allora $\mathrm{Im} f = M$ e dunque per il primo teorema di isomorfismo $M \neq A^{(\Lambda)}/\mathrm{ker} f$.

Per la seconda parte se M è finitamente generato posso scegliere Λ finito e viceversa $M \neq A^n/N$ è finitamente generato perché A^n lo è e $\pi: A^n \to A^n/N$ è un omomorfismo suriettivo.

Proposizione 0.2.7. A è con divisione se e solo se ogni suo A-modulo è libero

Dimostrazione.

- ⇒ (complementi di algebra)
- \Leftarrow Sia M un A-modulo semplice. Per ipotesi è libero, allora $M \cong A^{(\Lambda)}$ per un qualche Λ . Ma se $\#\Lambda > 1$ allora $A^{(\Lambda)}$ non è semplice $(A \subseteq A^{(\Lambda)})$ è un sottomodulo non banale). Inoltre $\Lambda \neq \emptyset$ $(A^{(\emptyset)}) = \{0\}$ non è semplice).

Ne consegue che $M\cong A$ e dunque A è con divisione

Esempio 0.2.2. Con $A = \mathbb{Z}$, $\mathbb{Z}/p\mathbb{Z}$ non è libero

Si può dimostrare che se A è con divisione, allora tutte le basi di un A-modulo (libero) M hanno la stessa cardinalità, che viene detta rango e indicata con $\operatorname{rk}_A M$.

In generale non tutte le basi di un A-modulo libero hanno la stessa cardinalità, esistono infatti anelli A non banali tali che ${}_A^A \cong_A A^n$ per $ogni \ n \in \mathbb{N}$.

Esempio 0.2.3. Sia $A=\operatorname{End}_{\mathbb{K}}(V)$ con \mathbb{K} campo e $\dim_{\mathbb{K}}(V)=+\infty$

Si dimostra che se $A \to B$ è omomorfismo di anelli e il rango dei B-modulli liberi è ben definito allora anche il rango degli A-moduli liberi è ben definito. Di conseguenza se $A \neq 0$ è commutativo allora il rango degli A-moduli liberi è ben definito ($\exists I \subseteq A$ ideale massimale e $\pi: A \to A/I$ omomorfismo con A/I campo)

0.2.2 restrizione degli scalari

Siano A, B anelli, con $f: A \to B$ omomorfismo di anelli. Allora se M è un B-modulo allora M è anche un A-modulo con ax := f(a)x. Si dice allora che ${}_AM$ è ottenuto da ${}_BM$ per **restrizione degli scalari** attraverso f.

Inoltre se $M'\subseteq M$ è B-sottomodulo allora è anche un A-sottomodulo e se $g:M\to N$ è B-lineare allora g è anche A-lineare.

Prima della prossima definizione ricordiamo che il **centro** di un anello è sottoanello, con il centro l'insieme degli elementi che commutano con tutti gli altri elementi e indicato con Z(A),

$$Z(A) := \{ z \in A : za = az \ \forall a \in A \}$$

Definizione 0.2.5

Sia A commutativo. Allora una A-algebra è un omomorfismo di anelli $f:A\to B$ tale che im $f\subseteq Z(B)$

Se f è evidente si dice che B è una A-algebra

Esempio 0.2.4. $M_n(A)$ è una A-algebra con $a\mapsto\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$

Esempio 0.2.5. Se $A=\mathbb{Z}$ per ogni B anello l'unico omomorfismo di anelli $\mathbb{Z}\to B$ è una \mathbb{Z} -algebra. Infatti l'omomorfismo unico $\mathbb{Z}\to Z(B)$ deve essere lo stesso di $\mathbb{Z}\to B$

Definizione 0.2.6: Morfismo di A-algebre

Siano $f:A\to B,\ g:A\to C$ A-algebre. Un (omo/iso/...)morfismo di A-algebre da f a g è $h:B\to C$ (omo/iso/...)morfismo di anelli tale che $h\circ f=g$

Esempio 0.2.6. Ogni omomorfismo di anelli è omomorfismo di Z-algebre.

Esempio 0.2.7. Sia $f:A\to B$ una A-algebra. Allora $\forall I\subseteq B$ ideale B/I è A-algebra con $\pi\circ f$

Osservazione (motivazione della definizione). Se $f: A \to B$ A-algebra, allora B è un anello e A-modulo (per restrizione degli scalari) tale che

$$a(bb') = (ab)b' = b(ab')$$

Lemma 0.2.8. Sia $0 \to M' \xrightarrow{i} M \xrightarrow{p} M''$ una successione esatta di A-moduli. Siano $f': A^m \to M'$ e $f'': A^n \to M''$ omomorfismi. Allora esiste un diagramma commutativo con righe esatte

$$0 \longrightarrow A^{m} \longrightarrow A^{m+n} \longrightarrow A^{n} \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

Dimostrazione.

Proposizione 0.2.9. Sia $0 \to M' \xrightarrow{i} M \xrightarrow{p} M''$ esatta di A-moduli. Allora

- 1. $Mf.g. \implies M''f.g.$
- 2. $M', M''f.g. \implies Mf.g.$
- 3. $M', M''f.p. \implies Mf.p.$

4.
$$Mf.g., M''f.p. \implies M'f.g.$$

5.
$$M'f.g., Mf.p. \implies M''f.g.$$

Dimostrazione.

- 1. già visto
- 2. In esercizio la dimostrazione diretta. In alternativa possiamo applicare il lemma 0.2.2. Infatti esistono $f':A^m\to M'$ e $f'':A^n\to M''$ omomorfismi suriettivi e per il lemma 0.2.2 il diagramma

$$0 \longrightarrow A^{m} \longrightarrow A^{m+n} \longrightarrow A^{n} \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$

commuta. Applicando ora il lemma del serpente otteniamo la successione esatta

$$\operatorname{coKer} f' = 0 \to \operatorname{coKer} f \to 0 = \operatorname{coKer} f'' \implies \operatorname{coKer} f = 0 \implies Mf.g.$$

3. Si può fare una dimostrazione simile a quella precedente e applicando il lemma del serpente troviamo la successione esatta

$$0 \to \operatorname{Ker} f' \to \operatorname{Ker} f \to \operatorname{Ker} f'' \to 0 = \operatorname{coKer} f'$$

per il punto 1. M è finitamente generato e dunque M è finitamente presentato.

4. $M''f.p. \implies \exists$ successione esatta $A^m \xrightarrow{g} A^n \xrightarrow{h} M'' \rightarrow 0$. Esiste dunque il diagramma commutativo

$$A^{m} \xrightarrow{g} A^{n} \xrightarrow{h} M'' \xrightarrow{} 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{\text{id}}$$

$$0 \longrightarrow M' \xrightarrow{i} M \xrightarrow{p} M'' \longrightarrow 0$$

infatti voglio ftale che $p\circ f=h$ e posso come prima (esercizio). allora per il lemma del serpente trovo che

$$0 \to \operatorname{coKer} f' \to \operatorname{coKer} f \to 0 = \operatorname{coKer}_{\operatorname{id}_{M''}}$$

è una successione esatta, e dunque $\operatorname{coKer} f' \cong \operatorname{coKer} f = M/\operatorname{Im} f$ per cui

$$0 \to \operatorname{Im} f' \to M' \to \operatorname{coKer} f' \to 0$$

è esatta. Concludiamo che $\mathrm{Im} f'\cong A^m/\mathrm{Ker} f'$ e dunque è f.g., da cui anche M' è finitamente generato per il punto 1.

5. M è finitamente generato, dunque M'' è finitamente generato per il punto 0. Come prima $\exists A^m \to A^n, A^n \to M''$ omomorfismi suriettivi e trovo il diagramma del lemma 0.2.2 e applicando il lemma del serpente ottengo la successione esatta

$$\operatorname{Ker} f \to \operatorname{Ker} f'' \to 0 = \operatorname{coKer} f'$$

Sia ora $f:A^{m+n}\to M$ suriettiva, allora

$$0 \to \operatorname{Ker} f \to A^{m+n} \to M \to 0$$

è esatta, A^{m+n} è finitamente generata, M è finitamente presentato, dunque Kerf è f.g., quindi per il punto 3. Kerf'' è f.g. e per il punto 0. M è f.p.

Esercizio 0.2.2

Dimostrare il punto 1. della dimostrazione precedente direttamente.

Corollario 0.2.9.1. Sia $M = \bigoplus_{i=1}^n M_i$. Allora $M \in f.g. / f.p.$ se e solo se $M_i \in f.g. / f.p.$ per ogni i.

Dimostrazione. La successione $0 \to \bigoplus_{i=1}^{n-1} M_i \to M \to M_n \to 0$ è esatta, dunque

- \implies unsando induzione su n e i punti 1. e 2. della proposizione precedente
- \iff M_n è f.g. per il punto 0., ed è f.p. per il punto 4.

Osservazione. per il punto 3., se M è f.p. allora ogni $A^n \xrightarrow{p} M \to 0$ esatta si estende a

П

$$A^m \to A^n \xrightarrow{p} M \to 0$$

Osservazione. Sia A non noetheriano. Allora $\exists M$ A-modulo f.g. non noetheriamo, ad esempio M=A, ossia $\exists M'\subseteq M$ sottomodulo non f.g. e in tal caso anche quando M è finitamente presentato, ad esempio nel caso M=A, M/M' non è f.p. perché contraddirrebbe il punto 3.

Uno può chiedersi dato un modulo se i suoi sottomoduli finitamente generati siano anche moduli finitamente presentati. Quessto non è in generale vero ma motiva la seguente definizione

Definizione 0.2.7: Modulo coerente

Uno modulo M è detto **coerente** se è finitamente generato e tutti i suoi sottomoduli finitamente generati sono finitamente presentati.

Osservazione. Chiaramente essendo $M \subseteq M$ un sottomodulo, se è coerente è anche f.p.

Definizione 0.2.8: Anello coerente

Un anello A è **coerente** (a sinistra) se ${}_{A}A$ è A-modulo coerente (ossia tutti gli ideali sinistri f.g. di A sono f.p.)

Osservazione. Se A è noetheriano e M è un A-modulo, allora

$$M$$
 coerente $\iff M$ f.p. $\iff M$ f.g. $\iff M$ noetheriano

in particolare A è coerente.

Dimostrazione. Sappiamo già che M noetheriano se e solo se M f.g. Resta da dimostrare dunque che M noetheriano se e solo se M è coerente. So che $M' \subseteq M$ f.g. è noetheriano (perché M lo è). Allora esiste la successione esatta

$$0 \to \operatorname{Ker} p \to A^n \xrightarrow{p} M' \to 0$$

Ora poiché A è noetheriano, anche A^n lo è, e dunque Kerp è noetheriano, dunque Kerp è f.g. e infine M' è f.p.

Osservazione. Sia A coerente non noetheriano, allora ${}_AA$ è coerente non noetheriano

Esempio 0.2.8. Sia A non noetheriano, $I \subseteq A$ ideale sinistro non f.g., allora A/I è f.g. non f.p. e A/I può anche essere notheriano.

Un esempio è
$$A = \mathbb{K}[X_n | n \in \mathbb{N}], I = (X_n | n \in \mathbb{N}), A/I = \mathbb{K}$$

Osservazione. Sia $f: M \to N$ A-lineare, con M, N finitamente generati. Allora $\mathrm{Im} f \cong M/\mathrm{Ker} f$ e $\mathrm{coKer} f \cong N/\mathrm{Im} f$ sono finitamente generati (punto 0. della proposizione) ma non necessariamente anche $\mathrm{Ker} f$ se A è non noetheriano.

Proposizione 0.2.10. Sia $0 \to M' \xrightarrow{i} m \xrightarrow{p} M'' \to 0$ esatta di A-moduli.

- 1. M' f.g. e M coerente, allora M" è coerente
- 2. M', M" coerenti, allora M è coerente
- 3. M è coerente, M'' è f.p., allora M' è coerente

in particolare M', M, M'' sono coerenti se due di essi lo sono.

Dimostrazione. 1. M'' è f.g. per il punto 0. della proposizione 0.2.2. $N'' \subseteq M''$ è f.g., allora c'è una successione esatta

$$0 \to M' \to N := p^{-1}(N'') \to N'' \to 0$$

Allora N è f.g. per 1. di0.2.2e dunque N è f.p. perché M è coerente, da cui $N^{\prime\prime}$ è f.p. per 4. di0.2.2

2. M è f.g. per 1. di 0.2.2, se $N\subseteq M$ sottomodulo finitamente generato, allora esiste la successione esatta

$$0 \to N' := i^{-1}(N) \to N \to N'' := p(N) \to 0$$

Allora N'' è f.g. per 0. di 0.2.2 da cui N'' è f.p. per la coerenza di M, dunque N' è f.g. per 3. di 0.2.2. Segue dalla oerenza di M' che N' è f.p. e dunque N lo è per 2. di 0.2.2

3. M' è f.g. per 3. di 0.2.2 dunque M' è coerente perché $M'\cong i(M')\subseteq M$ sottomodulo è f.g. e M è coerente.

Esercizio 0.2.3

mostrare che

$$\bigoplus_{i=1}^{n} M_i \text{ coerente } \iff M_i \text{ coerente } \forall i$$

Corollario 0.2.10.1. Sia $f: M \to N$ A-lineare, M, N coerenti, allora $\operatorname{Ker} f, \operatorname{Im} f, \operatorname{coKer} f$ sono coerenti.

Dimostrazione. Im $f \cong M/\text{Ker } f$ è f.g. per 0. di 0.2.2

Corollario 0.2.10.2. Se A è coerente e M è un A-modulo f.p., allora M è coerente.

Dimostrazione. Basta osservare che per definizione esiste una successione esatta

$$A^m \stackrel{f}{\to} A^n \to M \to 0$$

e in particolare dunque $M\cong \operatorname{coKer} f$ e poiché A^m e A^n sono coerenti, lo è pure M

Esempio 0.2.9. Sia A commutativo tale che $A[X_1, \ldots, X_n]$ sia coerente $\forall n \in \mathbb{N}$ (ad esempio A noetheriano, per il teorema della base di Hilbert) Allora $A[X_{\lambda}|\lambda \in \Lambda]$ è coerente $\forall \Lambda$, anche se non è noetheriano per $\#\Lambda = +\infty$ e $A \neq 0$.

Idea della dimostrazione. Sia $I\subseteq B$ ideale f.g., ossia $I=(f_1,\ldots,f_n)$. Allora $\exists \Lambda_0\subseteq \Lambda$ finito tale che $f_1\in B_0:=A[X_\lambda|\lambda\in\Lambda_0]$

Esempio 0.2.10 (Anello non coerente). Presi A e B come prima, ma supponiamo che $A=\mathbb{K}$ campo. Prendiamo dunque $J:=(X_{\lambda}|\lambda\in\Lambda),$ con $\#\Lambda=+\infty.$ Allora preso

$$C = B/J^2$$

non è coerente. Preso infatti ad esempio

$$I = C\overline{X_{\lambda}} \text{ con } \lambda \in \Lambda$$

è f.g. ma non f.p. perché c'è la successione esatta

$$0 \to J/J^2 \to C \to I \to 0$$

e J/J^2 è C-modulo annullato da J/J^2 e come $C/(J/J^2)\cong B/J\cong \mathbb{K}$ -modulo ha dimensione ∞ con base $\{\overline{x_\lambda}|\lambda\in\Lambda\}$

Capitolo 1

Categorie

Definizione 1.0.1: Categoria

Una categoria C è data da una classe di oggetti $\mathrm{Ob}(C)$ e $\forall X,Y \in \mathrm{Ob}(C)$ da un insieme di morfismi da X a Y indicato con $\mathrm{Hom}(X,Y) = \mathrm{Hom}_C(X,Y) = C(X,Y)$ e da una azione composizione di morfismi, cioè $\forall X,Y,Z \in \mathrm{Ob}(C)$ (anche scritto $X,Y,Z \in C$) un'operazione

$$C(X,Y) \times C(Y,Z) \to C(X,Z)(f,g) \qquad \mapsto g \circ f$$

tale che

- 0. $C(X,Y) \cap C(X',Y') \neq \emptyset \implies X = X' \in Y = Y'$

$$h \circ (q \circ f) = (h \circ q) \circ f$$

2. $\forall X \in C$ esiste $1_X = \mathrm{id}_X \in C(X,X)$ che è elemento neutro di X cioè $\forall Y \in C$ e $\forall f \in C(X,Y)$,

$$f \circ 1_X = f$$
 , $1_Y \circ f = f$

Esempio 1.0.1. La categoria degli insiemi Set che ha come oggetti tutti gli insiemi e $\forall X, Y \in \text{Set}$ i morfismi $\text{Set}(X, Y) = \{f : X \to Y\}$ le funzioni e \circ la composizione di funzioni

Osservazione. Se ho C tale che valgano solo 1. e 2. e non necessariamente 0. posso ottenere la categoria C' che soddisfa anche 0. ponendo Ob(C') := Ob(C) e

$$C'(X,Y) := \{X\} \times C(X,Y) \times \{Y\}$$

Esempio 1.0.2. Le categorie concrete, in cui gli oggetti sono insiemi con qualche struttura e i morfismi sono funzioni tra insiemi che preservano la struttura (con \circ sempre la composizione di funzioni). In particolare:

- La categoria **Grp** dei gruppi, dove gli oggetti sono i gruppi e i morfismi gli omomorfismi di gruppi
- La categoria Rng degli anelli
- Dato un anello A,la categoria $\mathtt{A}-\mathtt{Mod}$ / $\mathtt{Mod}-\mathtt{A}$ degli A-moduli sinistri / destri

- Dato un anello commutativo A, la categoria A Alg delle A-algebre
- La categoria Top degli spazi topologici (con funzioni continue come morfismi)

Nota. Dato $f \in C(X,Y)$ si può indicare con $f:X \to Y$ "come fosse una funzione"

Esempio 1.0.3. Le categorie discrete, cioè tali che gli unici morfismi sono 1_X per ogni $X \in C$.

Esempio 1.0.4. C tale che $\forall X,Y\in C,\ \#C(X,Y)=1,$ ottengo una relazione \leq su $\mathrm{Ob}(C)$ in cui

$$X \preccurlyeq Y \iff C(X,Y) \neq \emptyset$$

e \preccurlyeq è riflessivo (perché $\exists 1_X \in C(X,X) \forall X \in C)$ e transitivo, perché $\exists \circ.$ Ne consegue che \preccurlyeq è un preordine

Viceversa, data una relazione di preordine \leq su un insieme (o una classe) S, ottengo una categoria C con $\mathrm{Ob}(C) := S$ e $\forall X, Y \in S$,

$$C(X,Y) := \begin{cases} \{f_{X,Y}\} & \text{se } X \preceq Y \\ \varnothing & \text{altrimenti} \end{cases}$$

con l'unica composizione possibile

Esempio 1.0.5 (Categoria Vuota). Prendendo $Ob(C) = \emptyset$

Osservazione. $\forall X \in C$ con C una categoria, $\operatorname{End}_C(X) := C(X,X)$ è un monoide con \circ , ne consegue il prossimo esempio

Esempio 1.0.6 (Monoide). Una categoria con un solo oggetto è un monoide. Viceversa ogni monoide può essere visto come categoria di un solo oggetto.

Esempio 1.0.7 (Diagrammi). Possiamo definire categorie date da diagrammi, in cui si rappresentano i morfismi (non l'identità). Ad esempio:

$$\bullet \longrightarrow \bullet \qquad \bullet \Longrightarrow \bullet \qquad \bullet \longrightarrow \bullet \longleftarrow \bullet$$

sono tre categorie diverse, rispettivamente con 2, 2, e 3 oggetti

Definizione 1.0.2: Categoria opposta

La categoria opposta di C è denotata C^{op} ed è definita da

$$Ob(C^{op}) := Ob(C) \quad C^{op}(X, Y) := C(Y, X)$$

con composizione in \circ^{op} data da $f \circ^{op} g := g \circ f$

Osservazione.

$$(C^{op})^{op} = C$$

Esempio 1.0.8 (Categoria Prodotto). Siano C_{λ} per $\lambda \in \Lambda$ delle categorie. Allora la categoria prodotto

$$C:=\prod_{\lambda\in\Lambda}C_\lambda$$

è definita da

$$\mathrm{Ob}(C) := \prod_{\lambda \in \Lambda} \mathrm{Ob}(C_{\lambda})$$

$$C((X_{\lambda})_{\lambda \in \Lambda}, (Y_{\lambda})_{\lambda \in \Lambda}) := \prod_{\lambda \in \Lambda} C_{\lambda}(X_{\lambda}, Y_{\lambda})$$

$$(g_{\lambda})_{\lambda \in \Lambda} \circ (f_{\lambda})_{\lambda \in \Lambda} := (g_{\lambda} \circ f_{\lambda})_{\lambda \in \Lambda}$$

Esempio 1.0.9 (Cateogoria Coprodotto). La categoria coprodotto

$$C := \coprod_{\lambda \in \Lambda} C_{\lambda}$$

è definita con $\mathrm{Ob}(C) := \coprod_{\lambda \in \Lambda} \mathrm{Ob}(C_{\lambda})$ l'unione disgiunta.

$$\forall X,Y \in C \quad C(X,Y) := \begin{cases} C_{\lambda}(X,Y) & \text{ se } X,Y \in C_{\lambda} \text{ per qualche } \lambda \in \Lambda \\ \varnothing & \text{ altrimenti} \end{cases}$$

 $con \circ ovvia.$

Definizione 1.0.3: Sottocategoria

Sia C una categoria. Allora una sottocategoria C' di C è data da una sottoclasse $\mathrm{Ob}(C')\subseteq \mathrm{Ob}(C)$ e $\forall X,Y\in C'$ da un sottoinsieme $C'(X,Y)\subseteq C(X,Y)$ tale che \circ si restringe a C' e $1_X\in C'(X,X)$ per ogni $X\in C'$. In particolare C' è una categoria.

Esempio 1.0.10. Se C è un monoide (cateogoria di un oggetto), allora le sottocategorie non vuote di C sono i sottomonoidi.

Definizione 1.0.4: Sottocategoria Piena

Una sottocategoria C' di C si dice **piena** se C'(X,Y) = C(X,Y) per ogni $X,Y \in C'$

Osservazione. Una sottocategoria piena di C equivale a dare una sottoclasse di $\operatorname{Ob}(C)$

Esempio 1.0.11 (Gruppi Abeliani). Ab \subseteq Grp sottocategoria piena dei gruppi abeliani. Similmente anche CRng \subseteq Rng sottocategoria piena degli anelli commutativi.

Oltre alle sotto-strutture sono anche importanti i quozienti, e anche qui possiamo dare una definizione astratta

Definizione 1.0.5: Congruenza

Una congruenza \sim su una categoria C è data da una relazione di equivalenza \sim su C(X,Y) $\forall X,Y\in C$ tale che

$$\forall X,Y,Z \in C, \, \forall f,f' \in C(X,Y) \, \forall g,g' \in C(Y,Z) \quad f \sim f',g \sim g' \implies g \circ f \sim g' \circ f'$$
 equivalentemente $g \sim g' \implies g \circ f \sim g' \circ f$ e $h \circ g \sim h \circ g'$

Definizione 1.0.6: Quoziente

Sia \sim una congruenza su C,allora possiamo definire la categoria quoziente C/\sim definita da

$$\mathrm{Ob}(C/\sim) = \mathrm{Ob}(C) \quad (C/\sim)(X,Y) := C(X,Y)/\sim \quad \forall X,Y \in C$$

e \circ è indotta da quella di C, ossia

$$\overline{g}\circ\overline{f}:=\overline{g\circ f}$$

Esempio 1.0.12 (Omotopia). Sia $C = \text{Top e } \sim_h \text{l'omotopia, ossia } f, g: X \to Y$ sono omotope se $\exists H: X \times [0,1] \to Y$ continue tali che

$$f(x) = H(x,0), \quad g(x) = H(x,1) \quad \forall x \in X$$

e si ottiene Toph := Top/ \sim_h

Esempio 1.0.13 (Gruppo quoziente). Sia G un gruppo (visto come monoide, ossia categoria di un oggetto) e sia $H \triangleleft G$ e \sim su G data da $a \sim b \iff aH = bH$. Allora G/N è la categoria quoziente G/\sim . Viceversa ogni \sim congruenza su G si può scrivere in tal modo prendendo $H = \{a \in G : a \sim 1\} \triangleleft G$ (esercizio).

Definizione 1.0.7: morfismo invertibile

Sia $f: X \to Y$ un morfismo in una categoria C. Allora esso è invertibile a sinistra (destra) se $\exists f': Y \to X$ tale che $f' \circ f = 1_X$ ($f \circ f' = 1_Y$).

Osservazione. f è invertibile a sinistra (destra) in C, allora f è invertibile a destra (sinistra) in C^{op}

Definizione 1.0.8: Isomorfismo

 $f: X \to Y$ è un **isomorfismo** se $\exists f': Y \to X$ tale che $f' \circ f = 1_X$ e $f \circ f' = 1_Y$

Osservazione. f è isomorfismo se e solo se f è invertibile a destra e a sinistra.

Dimostrazione.

 \implies ovvio

 $\iff \exists f', f'' \text{ tale che } f' \circ f = 1_X \text{ e } f \circ f'' = 1_Y, \text{ allora}$

$$f'\circ (f\circ f'')=f'=f''=(f'\circ f)\circ f''$$

e dunque f è invertibile.

In particolare dunque la f' della definizione di isomorfismo è unica e viene denotata f^{-1}

Definizione 1.0.9

Siano $X,Y\in C$. Allora X e Y sono isomorfe $(X\cong Y)$ se esiste un $f:X\to Y$ isomorfismo.

Osservazione. 1_X è isomorfismo e $1_X^{-1}=1_X$. Se f isomorfismo allora f^{-1} isomorfismo e $(f^{-1})^{-1}=f$. Se f,g isomorfismi componibili, allora $g\circ f$ è isomorfismo e $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$

Ne segue che \cong è una relazione di equivalenza su $\mathrm{Ob}(C)$

Definizione 1.0.10

Un morfismo $f: X \to Y$ in C è detto **monomorfismo** se $\forall Z \in C$ la funzione

$$f_*: C(Z,X) \longrightarrow C(Z,Y)$$

 $g \longmapsto f_*(g) = f \circ g$

è iniettiva

Definizione 1.0.11: Epimorfismo

f è un **epimorfismo** in C se è monomorfismo in C^{op} , ossia $\forall Z \in C$ la funzione

$$f^*: C(Y,Z) \longrightarrow C(X,Z)$$

 $g \longmapsto f^*(g) = g \circ f$

è iniettiva.

Proposizione 1.0.1. f è invertibile a sinistra (destra), allora f è monomorfismo (epimorfismo)

Dimostrazione. Basta dimostrare che se f è invertibile a sinistra, allora è mono.

Sappiamo che $\exists f': Y \to X$ tale che $f' \circ f = 1_X$. Dobbiamo dimostrare che f_* è iniettiva. Siano $g, h \in C(Z, X)$ tali che $f_*(g) = f_*(h)$. Allora $f \circ g = f \circ g$, da cui $f' \circ f \circ g = f' \circ f \circ h$ e dunque g = h

Proposizione 1.0.2. Sia C concreta. Allora

f invertibile a sinistra (destra) \implies f iniettiva (suriettiva) \implies f mono (epi)

Dimostrazione. Non possiamo usare il trick della categoria opposta, perché non è detto che C^{op} sia ancora concreta.

Sia f' tale che $f' \circ f = 1_X$ $(f \circ f' = 1_Y)$, allora chiaramente f iniettiva (suriettiva) perché le composizioni 1_X e 1_Y sono biunivoche.

Se f è iniettiva, allora se f è suriettiva, allora $\hfill\Box$

In generale non vale nessuna delle \iff .

Esempio 1.0.14. In Set se $f: X \to Y$ è suriettiva, allora f è invertibile a sinistra. Infatti basta scegliere (AOC) $f'(y) \in f^{-1}\{y\}$ per ogni $y \in Y$. Inoltre se $X \neq \emptyset$ e $f: X \to Y$ è iniettiva, allora f è invertibile a sinistra.

Esercizio 1.0.1

In A-Mod, mostrare che $f:M\to N$ iniettiva è invertibile a sinistra se e solo se $Im(f)\subseteq N$ è addendo diretto.

Mostrare che $f:M\to N$ suriettiva è invertibile a destra se e solo se $\mathrm{Ker}(f)\subseteq M$ è addendo diretto

Concludere che valgono sempre entrambe le implicazioni se e solo se A è semisemplice.

Esempio 1.0.15. In Set, se f è mono (epi), allora f è iniettiva (suriettiva).

Infatti, poniamo per assurdo $f: X \to Y$ non iniettiva, dunque siano $x, y \in X$ tali che f(x) = f(y). Allora preso $Z = \{z\}$ e $g, h: Z \to X$ tali che g(z) = x e h(z) = y abbiamo che $f \circ g = f \circ h$ da cui g = h e dunque x = y

Supponiamo fnon suriettiva, mostrare per esercizio $\exists g,h:Y\to Z$ tali che $g\neq h$ ma $g\circ f=h\circ f$

Esempio 1.0.16. In $A-\operatorname{Mod} f:M\to N$ è mono (epi), allora f è iniettiva (suriettiva).

Infatti $i: \operatorname{Ker} f \to M$ inclusione tale che $f \circ i = 0$ e anche $0: \operatorname{Ker} f \to M$ è tale che $f \circ 0 = 0$. Concludiamo che i = 0 e dunque $\operatorname{Ker} f = 0$.

Similmente $\pi:N\to \operatorname{coKer} f$ è tale che $\pi\circ f=0$ e se f è epi allora $0=\pi$ e dunque $\operatorname{coKer} f=0$ e dunque f è suriettiva.

Esempio 1.0.17. In Grp f mono (epi), allora f iniettiva (suriettiva)

Per mono \implies iniettiva si può usare la stessa dei moduli, mentre per l'altra è un po' più complicato, ma si dimostra che è vero lo stesso

Esempio 1.0.18. In Rng $f: A \to B$ mono, allora f iniettiva.

Tuttavia f epi **non implica** f suriettiva. Ad esempio preso $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$ è epi, infatti $\forall A$ anello esiste al più un omomorfismo $\mathbb{Q} \to A$ ($f: \mathbb{Q} \to A$ sia omomorfismo, allora $f|_{\mathbb{Z}}$ è l'unico omomorfismo e $f(\frac{a}{b}) = f(a)f(b)^{-1}$). Chiaramente però non è suriettiva.

Definizione 1.0.12: Funtore

Un funtore $F: C \to D$ tra 2 categorie è dato da una funzione $F: \mathrm{Ob}(C) \to \mathrm{Ob}(D)$ e $\forall X, X' \in C$ una funzione $F = F_{X,X'}: C(X,X') \to D(F(X),F(X'))$ tale che

$$F(g \circ f) = F(g) \circ F(f)$$

(se f e g sono componibili in C) e $F(1_X) = 1_{F(X)}$ per ogni $X \in C$

Proposizione 1.0.3. Sia F un funtore e f invertibile a sinistra (destra). Allora F(f) è invertibile a sinistra (destra)

Dimostrazione. $\exists f'$ tale che $f' \circ f = 1_X$, allora $F(f') \circ F(f) = F(f' \circ f) = F(1_X) = 1_{F(X)}$.

Osservazione. Segue che f iso, allora F(f) iso e $F(f)^{-1} = F(f^{-1})$

Esempio 1.0.19. Sia $C' \subseteq C$ sottocategoria. Allora $C' \to C$, $X \mapsto X$ e $f \mapsto f$ è un funtore

Esempio 1.0.20. Se \sim è una congruenza, allora $C\to C/\sim$ è un funtore, con $X\mapsto X$ e $f\mapsto \overline{f}$

Esempio 1.0.21 (Funtore dimenticante). $C \to \mathsf{Set}$ con C categoria discreta e $X \mapsto X, \, f \mapsto f$ è un funtore, che "dimentica" la struttura aggiunta.

Analogamente anche Rng \to Ab, con $(A,+,\cdot) \to (A,+)$ è un funtore dimenticante.

Osservazione. Notare che il secondo funtore dimenticante non preserva gli epimorfismi. Sarebbe infatti $i:\mathbb{Z}\to\mathbb{Q}$ l'inclusione è un'epimorfismo in Rng ma non in Ab

Esempio 1.0.22. Sia $A \to B$ un omomorfismo di anelli. Allora la restrizione degli scalare è un funtore $B - Mod \to A - Mod$

Esempio 1.0.23. Funtore tra 2 categorie discrete C e D è una funzione $\mathrm{Ob}(C) \to \mathrm{Ob}(D)$

Esempio 1.0.24. Un funtore tra 2 preordini C e D è una funzione $\mathrm{Ob}(C) \to \mathrm{Ob}(D)$ che preserva la relazione di preordine.

Esempio 1.0.25. Un funtore tra 2 monoidi è un omomorfismo di monoidi.

Più in generale dato G un monoide e una categoria C , un funtore $G\to C$ è dato da $X\in C$ e da un omomorfismo di monoidi $G\to {\rm End}_C(X)$

Se G è un gruppo un funtore $G \to C$ è dato da $X \in C$ e un omomorfismo di gruppi $G \to \operatorname{Aut}_C(X)$. Ad esempio se $C = \operatorname{Set}$ il funtore dà un'azione di un gruppo su un insieme. Similmente se $C = \mathbb{K}$ -spazi vettoriali ho una rappresentazione di G.

Esempio 1.0.26 (Funtore costante). Date C, D categorie preso $Y \subseteq D$ si può considerare il funtore costante di valore $Y, C \to D, X \mapsto Y$ e $f \mapsto 1_Y$

Esempio 1.0.27. Presa Top_* la categoria degli spazi topologici puntati, il gruppo fondamentale

$$\pi_1: \mathtt{Top}_* o \mathtt{Grp}$$

è un funtore

Esempio 1.0.28. $\forall n \in \mathbb{N}$ ci sono funtori di omologia (singolare)

$$H_n: \mathtt{Top} o \mathtt{Ab}$$

Teorema 1.0.4: Omomorfismo

Sia ~ una congruenza su C e $F:C\to D$ un funtore tale che se $f\sim f'$ in C allora F(f)=F(f'). Allora esiste un unico funtore $\overline{F}:C/_{\sim}\to D$ tale che $\overline{F}(\overline{f})=F(f)$ per ogni f morfismo di C

Esempio 1.0.29. Negli esempi precedenti se f e f' sono omotope, allora $\pi_1(f) = \pi_1(f')$ e $H_n(f) = H_n(f')$, dunque inducono funtori

$$\pi_1: \mathtt{Toph}_* o \mathtt{Grp} \quad H_n: \mathtt{Toph} o \mathtt{Ab}$$

Nota. I funtori che abbiamo definito si dicono anche funtori covarianti

Definizione 1.0.13: funtore controvariante

Un funtore controvariante $C \to D$ è un funtore (covariante) $C^{op} \to D$.

Esempio 1.0.30. $\forall n \in \mathbb{N}$ i funtori di coomologia (singolare) sono funtori controvarianti $H^n : \text{Top}(\mathbf{h})^{op} \to \text{Ab}$

Esempio 1.0.31. Sia C una categoria, $X \in C$

$$C(X,-):C\to \mathtt{Set}$$

$$Y\mapsto C(X,Y)\quad (f:Y\to Y')\mapsto (f_*:C(X,Y)\to C(X,Y'))$$

$$q\mapsto f\circ q$$

è un funtore perché $(f' \circ f)_* = f'_* \circ f_*$ Analogamente

$$C(-,Y):C^{op}\to \mathtt{Set}$$

$$X\mapsto C(X,Y)\quad (f:X\to X')\mapsto (f^*:C(X',Y)\to C(X,Y))$$

$$g\mapsto g\circ f$$

Osservazione. C'è anche un funtore

$$\begin{split} C(-,=): C^{op} \times C &\to \mathtt{Set} \\ (X,Y) &\mapsto C(X,Y) \\ (f:X \to X',g:Y \to Y') &\mapsto (f^*:C(X',Y) \to C(X,Y), g_*:C(X,Y) \to C(X,Y')) \end{split}$$

Esempio 1.0.32. Per ogni gruppo G, preso il sottogruppo dei commutatori [G,G], allora per ogni $f:G\to H$ omomorfismo di gruppi, $f([G,G])\subseteq [H,H]$ quindi si ottiene un funtore

$$\begin{aligned} \mathtt{Grp} &\to \mathtt{Grp} \\ G &\mapsto [G,G] \\ (f:G\to H) &\to (f|_{[G,G]}:[G,G]\to [H,H]) \end{aligned}$$

e anche

$$\begin{split} \operatorname{Abel}: \operatorname{\mathsf{Grp}} \to \operatorname{\mathsf{Ab}} \\ G &\mapsto \frac{G}{[G,G]} \text{ (abelianizzato di } G \text{)} \\ (f:G\to H) &\mapsto \left(\overline{f}:\frac{G}{[G,G]}\to \frac{H}{[H,H]}\right) \\ & \qquad \qquad G \xrightarrow{\quad f \quad } H \\ & \downarrow^p \qquad \qquad \downarrow^q \\ & \qquad \qquad \stackrel{G}{\underset{[G,G]}{\longrightarrow}} \xrightarrow{\stackrel{H}{\underset{[H,H]}{\longrightarrow}}} \end{split}$$

Esercizio 1.0.2

Indicando con Z(X) il centro di X,

- a. Mostrare che non esiste un funtore $F:\operatorname{Rng}\to\operatorname{Rng}$ tale che $\forall A\in\operatorname{Rng}$ F(A)=Z(A).
- b. Mostrare che non esiste un funtore $F: \mathtt{Grp} \to \mathtt{Ab}$ tale che $\forall G \in \mathtt{Grp}\ F(G) = Z(G)$.

Supponiamo l'esistenza di F.

a. Se prendo $i:\mathbb{C}\hookrightarrow\mathbb{H}$, allora $F(\mathbb{C})=\mathbb{C}$ e $F(\mathbb{H})=\mathbb{R}$. A tal punto però $F(i):\mathbb{C}\to\mathbb{R}$ che non esiste perché altrimenti

$$-1 = F(i)(-1) = F(i)(i^2) = F(i)(i)^2$$

b. Consideriamo

$$\{(1),(12)\} \stackrel{i}{\hookrightarrow} S_3 \stackrel{\varepsilon}{\rightarrow} \{\pm 1\}$$

Allora $\varepsilon \circ i = \mathrm{Id}_{C_2}$. Allora avremmo

$$0_{\operatorname{End}(C_2)} = F(\varepsilon) \circ F(i) = F(\varepsilon \circ i) = F(\operatorname{id}_{C_2}) = \operatorname{id}_{C_2}$$

L'identità

$$id_C: C \to C \quad X \mapsto X \quad f \mapsto f$$

è un funtore Si possono comporre i funtori. Dati ad esempio

$$C \stackrel{F}{\to} D \stackrel{G}{\to} E$$

funtori, possiamo definire $G\circ F:C\to E$ come $X\mapsto G(F(X))$ e $f\mapsto G(F(f))$ è un funtore.

La composizione è associativa e $F \circ \mathrm{id}_C = F = \mathrm{id}_C \circ F$

In tal modo otteniamo una categoria Cat delle categorie (piccole¹)

¹si potrebbe anche fare di tutte le categorie, ma per motivi insiemistici/logici dovremmo introdurre gli universi di Grothendieck e fare le cose per bene. Al fine di evitare questo inutile sforzo, ci limitiamo a considerare le categorie piccole.

Definizione 1.0.14

Un funtore $F:C\to D$ è un isomorfismo se lo è in Cat, cioè se $\exists G:D\to C$ funtore tale che $G\circ F=\mathrm{id}_C=F\circ G$

Definizione 1.0.15: iniettivo e suriettivo

Un funtore $F:C\to D$ è iniettivo/suriettivo se $F:\mathrm{Ob}(C)\to\mathrm{Ob}(D)$ è iniettivo/suriettivo.

Nel caso in cui F sia sia iniettivo che suriettivo, è **biunivoco**.

Definizione 1.0.16: Fedele e pieno

F è detto **fedele** (**pieno**) se $\forall X,Y \in C, F: C(X,Y) \to D(F(X),F(Y))$ è iniettivo (suriettivo).

Nel caso in cui F sia sia fedele che pieno, si dice che è **pienamente fedele**

Esercizio 1.0.3

 ${\cal F}$ funtore è isomorfismo se e solo se ${\cal F}$ è pienamente fedele e biunivoco.

Esempio 1.0.33. Se $C' \subseteq C$ è una sottocategoria, allora il funtore di inclusione $i: C' \to C$ è iniettivo e fedele ed è pieno se e solo se $C' \subseteq C$ è piena.

Ad esempio se \sim è una congruenza in C , allora il funtore quoziente $C\to C/\sim$ è biunivoco e pieno.

Esempio 1.0.34. Un omomorfismo di monoidi (categorie di un oggetto) è iniettivo (suriettivo) se e solo se come funtore è fedele (pieno). In ogni caso è biunivoco.

Esempio 1.0.35. I funtori dimenticanti $\mathbb{Z}-\mathsf{Mod}\to\mathsf{Ab}\ \mathrm{e}\ \mathbb{Z}-\mathsf{Alg}\to\mathsf{Rng}\ \mathrm{sono}$ isomorfismi.

Esempio 1.0.36. Anche $Mod - A \cong A^{op} - Mod$ ed esiste un isomorfismo (anche se non sono categorie piccole).

Definizione 1.0.17

Un funtore $F:C\to D$ è essenzialmente iniettivo/suriettivo se la funzione ridotta

$$Ob(C)/\cong \to Ob(D)/\cong$$

è iniettivo/suriettivo

Osservazione. Se ${\cal F}$ è suriettivo allora ${\cal F}$ è essenzialmente suriettivo. L'altra implicazione non vale. Ad esempio

$$(\bullet) \longrightarrow (\bullet \rightleftharpoons \bullet)$$

Nessuna delle implicazioni tra iniettiva e essenzialmente iniettiva è vera. Basti considerare

$$(\bullet) \longleftarrow (\bullet \rightleftharpoons \bullet)$$

per essenzialmente iniettiva \Longrightarrow iniettiva e

$$(ullet$$
 $ullet$ $) \longrightarrow (ullet$ $\Longleftrightarrow ullet$ $)$

per iniettiva \Longrightarrow essenzialmente iniettiva.

Proposizione 1.0.5. Sia $F: C \to D$ un funtore pienamente fedele. Allora $F \ \grave{e}$ essenzialmente iniettivo

Dimostrazione. Siano $X,Y\in C$ tali che $F(X)\cong F(Y)$ in D. Devo dimostrare che $X\cong Y$ in C.

Sappiamo che esiste $g: F(X) \to F(Y)$ isomorfismo in D. Poiché F è pieno esiste $f \in C(X,Y)$ tale che F(f) = g. Analogamente $\exists f' \in C(Y,X)$ tale che $F(f') = g^{-1}$.

$$F(f' \circ f) = F(f') \circ F(f) = g^{-1} \circ g = 1_{F(X) = F(1_X)}$$

Se F è fedele, allora $f'\circ f=1_X$ e analogamente $f\circ f'=1_Y$ da cui f è isomorfismo e duque $X\cong Y$

Definizione 1.0.18: Trasformazione naturale

Siano $F, F': C \to D$ funtori.

Una trasformazione naturale $\alpha: F \to F'$ (si può anche scrivere $\alpha: F \implies F'$) è il dato di un morfismo

$$\alpha_X : F(X) \to F'(X) \text{ in } D \ \forall X \in C$$

tale che $\forall f: X \to Y$ morfismo di C il diagramma

$$F(X) \xrightarrow{F(f)} F(Y)$$

$$\downarrow^{\alpha_X} \qquad \downarrow^{\alpha_Y}$$

$$F'(X) \xrightarrow{F'(f)} F'(Y)$$

commuta in D, cioè $\alpha_Y \circ F(f) = F'(f) \circ \alpha_X$

Esempio 1.0.37. Consideriamo i due funtori Abel : $\operatorname{Grp} \to \operatorname{Grp} e$ id : $\operatorname{Grp} \to \operatorname{Grp} e$

$$\alpha_G: G \longrightarrow \frac{G}{[G,G]}$$

$$a \longmapsto \alpha_G(a) = a[G,G]$$

è naturale perché $\forall f:G \rightarrow H$ in \mathtt{Grp} il diagramma

$$\begin{array}{ccc} G & \xrightarrow{f} & H \\ \downarrow^{\alpha_G} & & \downarrow^{\alpha_H} \\ \frac{G}{[G,G]} & \xrightarrow{\overline{f}} & \frac{H}{[H,H]} \end{array}$$

Esempio 1.0.38. Supponendo di avere $F, F': G \to \mathsf{Set}$ funtori (G gruppo visto come categoria con un oggetto), cioè G-insiemi (azioni di G su insiemi). Allora una trasformazione naturale $\alpha: F \to F'$ è un morfismo di G-insiemi cioè una funzione $\alpha: F(G) \to F'(G)$ tale che $\alpha(gx) = g\alpha(x)$ per ogni $g \in G$ e per ogni $x \in F(G)$.

Osservazione. $\forall F:C\to D,$ $\mathrm{id}_F:F\to F$ data da $(\mathrm{id}_F)_X=\mathrm{id}_{F(X)}$ per ogni $X\in C$ è una trasformazione naturale.

Esercizio 1.0.4

Dati $F, F', F'': C \to D$ funtori, $\alpha: F \to F'$ e $\beta: F' \to F''$ trasformazioni naturali, allora la composizione $\beta \circ \alpha: F \to F''$ è definita da

$$\beta_X \circ \alpha_X =: (\beta \circ \alpha)_X : F(X) \to F''(X)$$

Mostrare che $\alpha \circ \beta$ è una trasformazione naturale

La composizione dell'esercizio precedente è anche detta composizione verticale di trasformazioni naturali, per via di questo disegno esplicativo:

Considerando funtori e trasformazioni naturali, si ottiene (assumiamo sempre C piccola) la categoria $\operatorname{Fun}(C,D)$ (anche denotata D^C) con oggetti i funtori $C \to D$, morfismi le trasformazioni naturali e composizione la composizione verticale.

Definizione 1.0.19

Data una categoria C, la categoria dei morfismi di C è

$$\mathtt{Mor}(C) := \mathtt{Fun}(\cdot \to \cdot, C)$$

che ha come oggetti esattamente $\{f: \to X-Y: f \text{ morfismo di } C\}$ e trasformazioni naturali date da $(X \xrightarrow{f} Y) \to (X' \xrightarrow{f'} Y')$ è data da $(g: X \to X', h: Y \to Y')$ tale che

$$X \xrightarrow{f} Y$$

$$\downarrow^g \qquad \downarrow^h$$

$$X' \xrightarrow{f'} Y'$$

Definizione 1.0.20

Date $F,G:C\to D$ funtori, $\alpha:F\to G$ trasformazione naturale, allora α è isomorfismo (naturale o di funtori) se è isomorfismo in Fun(C,D) cioè se $\exists \beta:G\to F$ trasformazione naturale tale che $\beta\circ\alpha=\mathrm{id}_F,\ \alpha\circ\beta=\mathrm{id}_G.$ In tal caso $F\in G$ si dicono isomorfi (denotato $F\cong G$).

Osservazione. \cong di funtori è una relazione di equivalenza

Esempio 1.0.39. Il primo gruppo di omologia si può vedere come l'abelianizzato del gruppo fondamentale. In linguaggio categorico abbiamo

$$\operatorname{\mathsf{Top}}_* \overset{\pi_1}{ o} \operatorname{\mathsf{Grp}} \overset{\operatorname{Abel}}{ o} \operatorname{\mathsf{Ab}}$$
 e
$$\operatorname{\mathsf{Top}}_* o \operatorname{\mathsf{Top}} \overset{H_1}{ o} \operatorname{\mathsf{Ab}}$$
 $(X, x_0) \mapsto \operatorname{\mathsf{comp.}} \operatorname{c.p.a.} \operatorname{a} x_0$

sono funtori isomorfi

Osservazione. $F\cong F'$ allora F e F' inducono la stessa funzione $\mathrm{Ob}(C)/_{\cong}\to\mathrm{Ob}(D)/_{\cong}$ quindi F è essenzialmente iniettiva / suriettiva se e solo se F' lo è.

Esercizio 1.0.5

Mostrare che non necessariamente la precedente osservazione vale per le proprietà di iniettività e suriettività.

Proposizione 1.0.6. Se $F \cong F'$ allora F è fedele/pieno se e solo se F' è fedele/pieno.

Dimostrazione. Sia $\alpha: F \to F'$ l'isomorfismo. Definiamo $\overline{\alpha} = (g \mapsto \alpha_Y \circ F(F) \circ \alpha_X^{-1})$ Per ogni $X, Y \in C$,

Proposizione 1.0.7. α, β trasformazioni naturali inducono una trasformazione naturale $\beta * \alpha : G \circ F \to G' \circ F'$

$$G(F(X)) \xrightarrow{G(\alpha_X)} G(F'(X))$$

$$\downarrow^{\beta_{F(X)}} \qquad \downarrow^{\beta_{F'(X)}}$$

$$G'(F(X)) \xrightarrow{G'(\alpha_X)} G'(F'(X))$$

dunque
$$(\beta * \alpha)_X := \beta_{F'(X)} \circ G(\alpha_X) = G'(\alpha_x) \circ \beta_{F(X)}$$
.

Dimostrazione che è una trasformazione naturale. Vogliamo mostrare che b*a è naturale, cioè $\forall f:X\to Y$ in C il diagramma

$$G(F(X)) \xrightarrow{G(F(f))} G(F(X))$$

$$\downarrow^{(\beta*\alpha)_X} \qquad \downarrow^{(\beta*\alpha)_Y}$$

$$G'(F'(X)) \xrightarrow{G'(F'(f))} G'(F'(X))$$

commuta. Ma questo è vero perché

$$G'(F'(f)) \circ (\beta * \alpha)_X = G'(F'(f)) \circ G'(\alpha_x) \circ \beta_{F(X)} = G'(F'(f) \circ \alpha_X) \circ \beta_{F(X)} =$$

$$\stackrel{\alpha \text{ nat.}}{=} G'(\alpha_Y \circ F(f)) \circ \beta_{F(X)} = G'(\alpha_Y) \circ G'(F(f) \circ \beta_{F(X)}) =$$

$$\stackrel{\beta \text{ nat.}}{=} G'(\alpha_Y) \circ \beta_{F(Y)} \circ G(F(f)) = (\beta * \alpha)_Y \circ G(F(f))$$

Ovviamente è chiaro che si potrebbe definire allora la categoria delle trasformazioni naturali eccetera e andare avanti all'infinito. Per assiomatizzare queste cose in realtà bisognerebbe esplicitare che abbiamo definito le "2-frecce" e che quindi siamo in una 2-categoria

Nota (zione). Se $\beta = \mathrm{id}_G$ invece di $\mathrm{id}_G * \alpha$ si scrive $G \circ \alpha$ (dunque con $(G \circ \alpha)_X = G(\alpha_X)$). Se $\alpha = \mathrm{id}_F$ invece di $\beta * \mathrm{id}_F$ si scrive $\beta \circ F$ (con $(\beta \circ F)_X = \beta_{F(X)}$). In generale

$$\beta * \alpha = (\beta \circ F') \circ (G \circ \alpha) = (G' \circ \alpha) \circ (\beta \circ F)$$

Osservazione. Se α,β sono isomorfismi, allora $\beta*\alpha$ è isomorfismo. Questo significa che se

$$F \cong F', \quad G \cong G' \implies G \circ F \cong G' \circ F'$$

cioè l'isomorfismo di funtori è una congruenza su \mathtt{Cat} e quindi si ottiene la categoria $\mathtt{Cat}/_{\cong}$

Definizione 1.0.21: Equivalenza

Un funtore $F:C\to D$ è un'equivalenza se $\exists G:D\to C$ funtore tale che $G\circ F\cong \mathrm{id}_G$ e $F\circ G\cong \mathrm{id}_D$.

Un tale G si dice un quasi-inverso di F.

Osservazione. F è un'equivalenza se e solo se \overline{F} in $\mathtt{Cat}/_{\cong}$ è un isomorfismo.

Segue che se $F\cong F'$, allora F è un'equivalenza se e solo se F' è un'equivalenza e un quasi-inverso di F è unico a meno di isomorfismo e l'equivalente di categorie è una relazione di equivalenza su Cat

Teorema 1.0.8: Finalmente un teorema

Un funtore $F:C\to D$ è un'equivalenza se e solo se F è pienamente fedele e essenzialmente suriettivo

Osservazione. Non è necessario aggiungere l'ipotesi che F sia essenzialmente iniettivo perché come mostrato prima pienamente fedele implica essenzialmente iniettivo (ma non essenzialmente suriettivo).

Esempio 1.0.40. Supponiamo che $C' \subseteq C$ sia una sottocategoria piena. Allora il funtore di inclusione $C' \hookrightarrow C$ è pienamente fedele ed è essenzialmente suriettivo (quindi è un'equivalenza) se e solo se $\forall X \in C$ esiste $X' \in C'$ tale che $X \cong X'$.