

**Project: Medical Appointment No-Show** 

**Course: Python Methodologies for Data Science (PMDS)** 

**Spring 2018, Rutgers Business School** 

**Professor: Lars Sorensen** 

Team: Abhilash Basuru Yethesh Kumar, Ajay Simha Subraveti Ranganatha, Annapoorna Chandrashekar Kadur, Supriya Nanjundaswamy





## List of required Python Machine learning Packages, Third party libraries for Statistical analysis and visualization

```
In [1]: import pandas as pd
    import numpy as np
    # Visualization
    import seaborn as sns
    # Plotting graphs
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.naive_bayes import GaussianNB
    from sklearn import tree
    from sklearn.cluster import KMeans
    from sklearn import metrics
    from sklearn.metrics import classification_report, confusion_matrix
```

#### Read data in csv file using read csv from pandas library

```
In [2]: data = pd.read_csv("C:/Users/byabh/Desktop/pm/project/noshow_appointments.csv"
)
```

## 1. Dataset Check

#### 1.1 Check how many rows and columns we have in dataset

```
In [3]: data.shape
Out[3]: (110527, 14)
```

We have a total of 110527 observations with 14 features in our dataset

#### 1.2 Check information of each attribute

```
In [4]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 110527 entries, 0 to 110526
        Data columns (total 14 columns):
        PatientId
                          110527 non-null float64
        AppointmentID
                          110527 non-null int64
        Gender
                          110527 non-null object
        ScheduledDay
                          110527 non-null object
        AppointmentDay
                          110527 non-null object
                          110527 non-null int64
        Age
        Neighbourhood
                          110527 non-null object
        Scholarship
                          110527 non-null int64
        Hipertension
                          110527 non-null int64
        Diabetes
                          110527 non-null int64
        Alcoholism
                          110527 non-null int64
                          110527 non-null int64
        Handcap
        SMS_received
                          110527 non-null int64
        No-show
                          110527 non-null object
        dtypes: float64(1), int64(8), object(5)
        memory usage: 11.8+ MB
```

### 1.3 Check for any missing values

```
In [5]: data.isnull().sum()
                            0
Out[5]: PatientId
        AppointmentID
                            0
        Gender
                            0
         ScheduledDay
                            0
        AppointmentDay
                            0
                            0
        Age
                            0
        Neighbourhood
         Scholarship
                            0
        Hipertension
                            0
        Diabetes
                            0
        Alcoholism
                            0
                            0
        Handcap
         SMS received
                            0
        No-show
                            0
        dtype: int64
```

#### No missing values observed

#### 1.4 Display the first five rows of the data

```
In [6]: data.head()
```

Out[6]:

|   |   | PatientId    | AppointmentID | Gender | ScheduledDay             | AppointmentDay           | Age | Neighbo          |
|---|---|--------------|---------------|--------|--------------------------|--------------------------|-----|------------------|
| ( | ) | 2.987250e+13 | 5642903       | F      | 2016-04-<br>29T18:38:08Z | 2016-04-<br>29T00:00:00Z | 62  | JARDIM<br>PENHA  |
| , | 1 | 5.589978e+14 | 5642503       | М      | 2016-04-<br>29T16:08:27Z | 2016-04-<br>29T00:00:00Z | 56  | JARDIM<br>PENHA  |
| 2 | 2 | 4.262962e+12 | 5642549       | F      | 2016-04-<br>29T16:19:04Z | 2016-04-<br>29T00:00:00Z | 62  | MATA D.<br>PRAIA |
| ( | 3 | 8.679512e+11 | 5642828       | F      | 2016-04-<br>29T17:29:31Z | 2016-04-<br>29T00:00:00Z | 8   | PONTAL<br>CAMBU  |
| 4 | 4 | 8.841186e+12 | 5642494       | F      | 2016-04-<br>29T16:07:23Z | 2016-04-<br>29T00:00:00Z | 56  | JARDIM<br>PENHA  |
| 4 |   |              |               |        |                          |                          |     |                  |

## 2. Data Cleaning

2.1. Correct the typos in column names - from the above table, we can see Hypertension as Hipertension and Handicap as Handcap. Renamed N0-show to NoShow

2.2. It is always advisable to keep uniform datatime format when working with date and time columns - convert the ScheduledDay and AppointmentDay columns into datetime64 format

```
In [8]: data.ScheduledDay = data.ScheduledDay.apply(np.datetime64)
    data.AppointmentDay = data.AppointmentDay.apply(np.datetime64)
```

#### 2.3 Extract new features from the exisiting features - define two functions timecal and datesep.

whichHour, ScheduledDayDate are the new features extracted by applying the functions on ScheduledDay and AppointmentDay columns. timecal will split the schedule day into hour, min, seconds and round the value to return in what hour of the day appoinment was schedulded, datesep function returns the day of the schedulded and appointment day

```
In [9]: def timecal(timestamp):
    timestamp = str(timestamp)
    hour = int(timestamp[11:13])
    minute = int(timestamp[14:16])
    second = int(timestamp[17:])
    return round(hour + minute/60 + second/3600)

def datesep(day):
    day=str(day)
    day=str(day[:10])
    return day

data['whichHour'] = data.ScheduledDay.apply(timecal)
    data['ScheduledDayDate'] = data.ScheduledDay.apply(datesep)
    data['AppointmentDay'] = data.AppointmentDay.apply(datesep)
```

# 2.4 Calculate what day of the week is the appoinment and what is the difference in number of days between scheduled day and appointment day

```
In [11]: appoint_day = pd.to_datetime(data.AppointmentDay)
    schedul_day = pd.to_datetime(data.ScheduledDay)
    wait_time = appoint_day -schedul_day
    data['days_difference'] = pd.DataFrame(wait_time)
    data['days_difference'] =(data.days_difference/np.timedelta64(1, 'D')).astype(
    int)
```

#### 2.5 Check for any erroneous values in the dataset

```
In [12]:
         print('Age:',sorted(data.Age.unique()))
         print('Gender:',data.Gender.unique())
         print('Neighbourhood:',data.Neighbourhood.unique())
         print('Scholarship:',data.Scholarship.unique())
         print('Hypertension:',data.Hypertension.unique())
         print('Diabetes:',data.Diabetes.unique())
         print('Alcoholism:',data.Alcoholism.unique())
         print('Handicap:',data.Handicap.unique())
         print('SMS received:',data.SMS received.unique())
         print('whichHour:',data.whichHour.unique())
         print('appointment day:',data.appointment day.unique())
         print('NoShow:',data.NoShow.unique())
         Age: [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1
         9, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 3
         8, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 5
         7, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 7
         6, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 9
         5, 96, 97, 98, 99, 100, 102, 115]
         Gender: ['F' 'M']
         Neighbourhood: ['JARDIM DA PENHA' 'MATA DA PRAIA' 'PONTAL DE CAMBURI' 'REPÚBL
         ICA'
          'GOIABEIRAS' 'ANDORINHAS' 'CONOUISTA' 'NOVA PALESTINA' 'DA PENHA'
          'TABUAZEIRO' 'BENTO FERREIRA' 'SÃO PEDRO' 'SANTA MARTHA' 'SÃO CRISTÓVÃO'
          'MARUÍPE' 'GRANDE VITÓRIA' 'SÃO BENEDITO' 'ILHA DAS CAIEIRAS'
          'SANTO ANDRÉ' 'SOLON BORGES' 'BONFIM' 'JARDIM CAMBURI' 'MARIA ORTIZ'
          'JABOUR' 'ANTÔNIO HONÓRIO' 'RESISTÊNCIA' 'ILHA DE SANTA MARIA'
          'JUCUTUOUARA' 'MONTE BELO' 'MÁRIO CYPRESTE' 'SANTO ANTÔNIO' 'BELA VISTA'
          'PRAIA DO SUÁ' 'SANTA HELENA' 'ITARARÉ' 'INHANGUETÁ' 'UNIVERSITÁRIO'
          'SÃO JOSÉ' 'REDENÇÃO' 'SANTA CLARA' 'CENTRO' 'PARQUE MOSCOSO'
          'DO MOSCOSO' 'SANTOS DUMONT' 'CARATOÍRA' 'ARIOVALDO FAVALESSA'
          'ILHA DO FRADE' 'GURIGICA' 'JOANA D´ARC' 'CONSOLAÇÃO' 'PRAIA DO CANTO'
          'BOA VISTA' 'MORADA DE CAMBURI' 'SANTA LUÍZA' 'SANTA LÚCIA'
          'BARRO VERMELHO' 'ESTRELINHA' 'FORTE SÃO JOÃO' 'FONTE GRANDE'
          'ENSEADA DO SUÁ' 'SANTOS REIS' 'PIEDADE' 'JESUS DE NAZARETH'
          'SANTA TEREZA' 'CRUZAMENTO' 'ILHA DO PRÍNCIPE' 'ROMÃO' 'COMDUSA'
          'SANTA CECÍLIA' 'VILA RUBIM' 'DE LOURDES' 'DO QUADRO' 'DO CABRAL' 'HORTO'
          'SEGURANÇA DO LAR' 'ILHA DO BOI' 'FRADINHOS' 'NAZARETH' 'AEROPORTO'
          'ILHAS OCEÂNICAS DE TRINDADE' 'PARQUE INDUSTRIAL']
         Scholarship: [0 1]
         Hypertension: [1 0]
         Diabetes: [0 1]
         Alcoholism: [0 1]
         Handicap: [0 1 2 3 4]
         SMS received: [0 1]
         whichHour: [19 16 17 9 15 8 13 12 10 11 14 7 18 20 6 21]
         appointment day: ['Friday' 'Tuesday' 'Monday' 'Wednesday' 'Thursday' 'Saturda
         NoShow: ['No' 'Yes']
```

No errored values observed in any columns expect for age. (age = -1, 100, 102, 115) Although we have instances of humans living for 100 or more years, we are treating these values as outliers in our analysis

#### 2.5.1 Remove the outliers from the data

## 2.6 Look into the data after cleaning is completed.

In [77]: data.head()

Out[77]:

|   |   | PatientId    | AppointmentID | Gender | ScheduledDay           | AppointmentDay | Age | Neighbo          |
|---|---|--------------|---------------|--------|------------------------|----------------|-----|------------------|
| 1 | 0 | 2.987250e+13 | 5642903       | F      | 2016-04-29<br>18:38:08 | 2016-04-29     | 62  | JARDIM<br>PENHA  |
| , | 1 | 5.589978e+14 | 5642503       | М      | 2016-04-29<br>16:08:27 | 2016-04-29     | 56  | JARDIM<br>PENHA  |
|   | 2 | 4.262962e+12 | 5642549       | F      | 2016-04-29<br>16:19:04 | 2016-04-29     | 62  | MATA D.<br>PRAIA |
| , | 3 | 8.679512e+11 | 5642828       | F      | 2016-04-29<br>17:29:31 | 2016-04-29     | 8   | PONTAL<br>CAMBU  |
|   | 4 | 8.841186e+12 | 5642494       | F      | 2016-04-29<br>16:07:23 | 2016-04-29     | 56  | JARDIM<br>PENHA  |
|   |   |              |               |        |                        |                |     |                  |

## 3. Exploratory Data Analysis

3.1 Lets look into the number of show or no show cases in our data and plot them

```
In [15]: count = data[['AppointmentID','NoShow']].groupby('NoShow').count()
    print(count)
    plot1 = data[['AppointmentID','NoShow']].groupby('NoShow').count().plot(kind= 'bar',legend=False)
```

AppointmentID

NoShow

No 88199 Yes 22316



#### 3.2 Build correlation matrix to see how each variables are correlated with each other

In [16]: corr = data[data.columns].corr()
 corr

Out[16]:

|                 | PatientId | AppointmentID | Age       | Scholarship | Hypertension | Diabe  |
|-----------------|-----------|---------------|-----------|-------------|--------------|--------|
| PatientId       | 1.000000  | 0.004039      | -0.004158 | -0.002873   | -0.006484    | 0.0016 |
| AppointmentID   | 0.004039  | 1.000000      | -0.019220 | 0.022632    | 0.012764     | 0.0226 |
| Age             | -0.004158 | -0.019220     | 1.000000  | -0.092407   | 0.504907     | 0.2926 |
| Scholarship     | -0.002873 | 0.022632      | -0.092407 | 1.000000    | -0.019740    | -0.024 |
| Hypertension    | -0.006484 | 0.012764      | 0.504907  | -0.019740   | 1.000000     | 0.4330 |
| Diabetes        | 0.001612  | 0.022643      | 0.292612  | -0.024904   | 0.433092     | 1.0000 |
| Alcoholism      | 0.011016  | 0.032954      | 0.095908  | 0.035016    | 0.087968     | 0.0184 |
| Handicap        | -0.007760 | 0.014008      | 0.077126  | -0.008489   | 0.080328     | 0.0576 |
| SMS_received    | -0.009774 | -0.256617     | 0.012729  | 0.001182    | -0.006318    | -0.014 |
| whichHour       | 0.002588  | -0.050203     | 0.013544  | -0.024274   | -0.033945    | -0.014 |
| days_difference | -0.001095 | -0.771190     | 0.032718  | -0.030076   | -0.018757    | -0.028 |

In [17]: f, ax = plt.subplots(figsize=(8, 8))
 sns.heatmap(corr, mask=np.zeros\_like(corr, dtype=np.bool), cmap=sns.diverging\_
 palette(220, 10, as\_cmap=True), square=True, ax=ax, annot=True)

Out[17]: <matplotlib.axes.\_subplots.AxesSubplot at 0x167da745160>



From correlation matrix, we can see that age is positively correlated with hypertension(0.5) meaning as age increases hypertension tends to increase by 50% and similarly diabetes has positive correlation of 0.29 with age.

#### 3.3 Gender analysis - number of men and women who showed up or missed their appointments

In [18]: gender=data.groupby(['Gender','NoShow'])['NoShow'].size()
 print(gender)
 plot2= data.groupby('Gender')['NoShow'].value\_counts(normalize = True).plot(ki nd='bar')

| Gender | NoShow |       |
|--------|--------|-------|
| F      | No     | 57239 |
|        | Yes    | 14591 |
| M      | No     | 30960 |
|        | Yes    | 7725  |

Name: NoShow, dtype: int64



We can see that women visit hospitals slightly more than men. But we don't have any data to analyize why this pattern.

3.4 Plot the number of men and women suffering from each of the medical problems in the data

In [19]: problem=data[['Gender','Hypertension', 'Diabetes', 'Alcoholism', 'Handicap']].
 groupby(['Gender']).sum()
 print(problem)
 plot3=data[['Gender','Hypertension', 'Diabetes', 'Alcoholism', 'Handicap']].gr
 oupby(['Gender']).sum().plot(kind='barh',figsize=(21,12))

| uhbei.reiiz toii | viabetes | Alconolism | напаісар |
|------------------|----------|------------|----------|
|                  |          |            |          |
| 15338            | 5606     | 1223       | 1400     |
| 6462             | 2337     | 2137       | 1053     |
|                  | 15338    | 15338 5606 |          |



#### 3.5 create a new class feature\_analysis which will:

- 1. The class feature analysis, takes the feature(Diabetes, Hypertension, etc) as input to the class followed by a constructor and two methds: Visual and calc.
- 2. visual class: Plots the countplot using the feature assigned from the dataframe
- 3. calc class: Calculates what percentage of patients missed appointments

```
In [20]: class feature_analysis(object):
    def __init__(self,feature):
        self.feature = feature

    def visual(self,df):
        sns.countplot(self.feature,data=df,hue='NoShow',palette='viridis')

    def calc(self,df,x):
        percentage = (sum((df[self.feature]==x) & (df['NoShow']=='Yes'))/sum(df[self.feature]==x))*100
        print('The Percentage of {} patients not attending appointments is: {}
%'.format(self.feature,round(percentage,2)))
```

# 3.6 Using the class written above, plot the graphs for percentage of each diseased pateint's show or no show

```
In [21]: f1 = feature_analysis('Diabetes')
    f1.visual(data)
    f1.calc(data,1)
```

The Percentage of Diabetes patients not attending appointments is: 18.0%



```
In [22]: f2 = feature_analysis('Alcoholism')
    f2.visual(data)
    f2.calc(data,1)
```

The Percentage of Alcoholism patients not attending appointments is: 20.15%



```
In [23]: f3 = feature_analysis('Handicap')
    f3.visual(data)
    f3.calc(data,1)
```

The Percentage of Handicap patients not attending appointments is: 17.83%



```
In [24]: f4 = feature_analysis('Hypertension')
    f4.visual(data)
    f4.calc(data,1)
```

The Percentage of Hypertension patients not attending appointments is: 17.3%



## 3.7 Which day of the week were more appointments booked?

```
In [25]: weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturda'
y']
for index,i in enumerate(weekdays):
    j = data[data.appointment_day==i]
    count = len(j)
    total_count = len(data)
    perc = (count/total_count)*100
    print(i,count)
    plt.bar(index,perc)
plt.xticks(range(len(weekdays)),weekdays, rotation=45)
plt.title('Day of the week for appointment')
plt.show()
```

Monday 22712 Tuesday 25637 Wednesday 25866 Thursday 17244 Friday 19017 Saturday 39



#### 3.8 Which day of the week were more appointments missed?

```
In [26]: no_Show_Yes=data[data['NoShow']=='Yes']
    weekdays = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday'
    ]
    for index,i in enumerate(weekdays):
        k=no_Show_Yes[no_Show_Yes.appointment_day==i]
        count=len(k)
        total_count=len(no_Show_Yes)
        perc=(count/total_count)*100
        print(i,count,perc)
        plt.bar(index,perc)

plt.xticks(range(len(weekdays)),weekdays, rotation=45)
    plt.title('Percent of No-Show per DayOfWeek')
    plt.show()
```

Monday 4689 21.011830077074745 Tuesday 5152 23.086574654956085 Wednesday 5093 22.822190356694747 Thursday 3336 14.94891557626815 Friday 4037 18.090159526796917 Saturday 9 0.04032980820935651



3.9 Lets look at the location of hospitals, which neighbourhood has more appointments?

```
In [27]: location=data.groupby(['Neighbourhood'],sort=False).size()
    print(location.sort_values())
    location_plot=data.groupby(['Neighbourhood']).size().plot(kind='bar',figsize=(
    20,10))
    plt.xticks(rotation=90)
```

| Neighbourhood               |            |
|-----------------------------|------------|
| PARQUE INDUSTRIAL           | 1          |
| ILHAS OCEÂNICAS DE TRINDADE | 2          |
| AEROPORTO                   | 8          |
| ILHA DO FRADE               | 10         |
| ILHA DO BOI                 | 35         |
| PONTAL DE CAMBURI           | 69         |
| MORADA DE CAMBURI           | 96         |
| NAZARETH                    | 135        |
| SEGURANÇA DO LAR            | 145        |
| UNIVERSITÁRIO               | 152        |
| HORTO                       | 175        |
| SANTA HELENA                | 178        |
| ENSEADA DO SUÁ              | 235        |
| FRADINHOS                   | 258        |
| ANTÔNIO HONÓRIO             | 270        |
| ARIOVALDO FAVALESSA         | 282        |
| DE LOURDES                  | 305        |
| COMDUSA                     | 310        |
| BOA VISTA                   | 312        |
| MÁRIO CYPRESTE              | 371        |
| DO MOSCOSO                  | 413        |
| BARRO VERMELHO              | 423        |
| SANTA LUÍZA                 | 428        |
| SANTA LÚCIA                 | 438        |
| SANTA CECÍLIA               | 448        |
| PIEDADE                     | 452<br>469 |
| SOLON BORGES<br>SANTA CLARA | 469<br>506 |
| ESTRELINHA                  | 538        |
| SANTOS REIS                 | 536<br>547 |
| SANTOS REIS                 |            |
| JOANA D'ARC                 | 1427       |
| SÃO BENEDITO                | 1439       |
| REDENÇÃO                    | 1553       |
| SÃO CRISTÓVÃO               | 1836       |
| ILHA DE SANTA MARIA         | 1885       |
| FORTE SÃO JOÃO              | 1889       |
| MARUÍPE                     | 1901       |
| BELA VISTA                  | 1907       |
| SÃO JOSÉ                    | 1976       |
| GURIGICA                    | 2018       |
| ROMÃO                       | 2214       |
| DA PENHA                    | 2217       |
| ANDORINHAS                  | 2258       |
| NOVA PALESTINA              | 2264       |
| ILHA DO PRÍNCIPE            | 2266       |
| SÃO PEDRO                   | 2448       |
| JABOUR                      | 2509       |
| CARATOÍRA                   | 2565       |
| SANTO ANDRÉ                 | 2571       |
| SANTO ANTÔNIO               | 2746       |
| BONFIM                      | 2773       |
| JESUS DE NAZARETH           | 2853       |
| TABUAZEIRO                  | 3130       |
| SANTA MARTHA                | 3131       |
| CENTRO                      | 3334       |

```
ITARARÉ 3514

JARDIM DA PENHA 3877

RESISTÊNCIA 4431

MARIA ORTIZ 5804

JARDIM CAMBURI 7717
```

Length: 81, dtype: int64



#### 3.10 What percentage of men and women missed their appointments?

Percentage of women who missed their appointment: 13.0 % Percentage of men who missed their appointment: 7.0 %

# 3.10.1 Lets visualize the total percentage of appointments missed in terms of 100% split between men and women



### 3.11 Scholarship analysis to no show

In [30]: sns.countplot(x='Scholarship',data=data,hue='Gender')
 scholarship=data.groupby(['NoShow','Scholarship'])['Scholarship'].count()
 print(scholarship)

| NoShow | Scholarship |       |
|--------|-------------|-------|
| No     | 0           | 79916 |
|        | 1           | 8283  |
| Yes    | 0           | 19738 |
|        | 1           | 2578  |

Name: Scholarship, dtype: int64



# 3.12 NoShow analysis of the appointment\_day and difference in appointment day to scheduled day



## 3.13 Plot the age vs difference in appointment day to schedulded day

```
In [32]: g = sns.FacetGrid(data , hue='NoShow',size=7)
    g.map(plt.scatter,'Age','days_difference', alpha = .7)
    g.add_legend();
    plt.show()
```



#### 3.14 Define a function which will classify the age to Child, Adult and Senior

```
In [33]: def FormatAge (age):
    if age['Age']>0 and age['Age']<=17 :
        return 'Child'
    elif age['Age']>=18 and age['Age'] <50:
        return 'Adult'
    else:
        return 'Senior'</pre>
```

#### 3.14.1 Classification of age based on the above classes.

```
In [34]: data['AgeClass'] = data.apply(FormatAge,axis=1)
```

PMDS\_Project

5/5/2018

3.15 Plot the age distribution in there respective age class and the show /no show of age class

```
In [35]: sns.set_style('darkgrid')
    sns.countplot(data['AgeClass'], alpha =.80,palette="muted")
    plt.title('Age Classes ')
    plt.show()

    print (data.groupby('Age')['NoShow'].value_counts(normalize = True))

    sns.set_style('darkgrid')
    fig = sns.countplot(x='AgeClass', data=data,hue='NoShow', palette="muted");
    plt.show()
```



| Age | NoShow |              |
|-----|--------|--------------|
| 0   | No     | 0.819441     |
|     | Yes    | 0.180559     |
| 1   | No     | 0.817422     |
| _   | Yes    | 0.182578     |
| 2   | No     | 0.844252     |
|     | Yes    | 0.155748     |
| 3   | No     | 0.816920     |
|     | Yes    | 0.183080     |
| 4   | No     | 0.782910     |
|     | Yes    | 0.217090     |
| 5   | No     | 0.785091     |
|     | Yes    | 0.214909     |
| 6   | No     | 0.792242     |
|     | Yes    | 0.207758     |
| 7   | No     | 0.789068     |
|     | Yes    | 0.210932     |
| 8   | No     | 0.776685     |
|     | Yes    | 0.223315     |
| 9   | No     | 0.734694     |
|     | Yes    | 0.265306     |
| 10  | No     | 0.761381     |
|     | Yes    | 0.238619     |
| 11  | No     | 0.793305     |
|     | Yes    | 0.206695     |
| 12  | No     | 0.750916     |
|     | Yes    | 0.249084     |
| 13  | No     | 0.725295     |
|     | Yes    | 0.274705     |
| 14  | No     | 0.717352     |
|     | Yes    | 0.282648     |
| 84  | Yes    | <br>0.112540 |
| 85  | No     | 0.821818     |
| 00  | Yes    | 0.178182     |
| 86  | No     | 0.838462     |
| 00  | Yes    | 0.161538     |
| 87  | No     | 0.853261     |
| 07  | Yes    | 0.146739     |
| 88  | No     | 0.904762     |
| 00  | Yes    | 0.095238     |
| 89  | No     | 0.832370     |
| 0,5 | Yes    | 0.167630     |
| 90  | No     | 0.788991     |
| -   | Yes    | 0.211009     |
| 91  | No     | 0.803030     |
| -   | Yes    | 0.196970     |
| 92  | No     | 0.767442     |
| -   | Yes    | 0.232558     |
| 93  | No     | 0.811321     |
|     | Yes    | 0.188679     |
| 94  | No     | 0.818182     |
|     | Yes    | 0.181818     |
| 95  | No     | 0.750000     |
|     | Yes    | 0.250000     |
| 96  | No     | 0.941176     |
| -   | Yes    | 0.058824     |
|     |        |              |

```
97 No 0.818182
Yes 0.181818
98 No 0.833333
Yes 0.166667
99 No 1.000000
```

Name: NoShow, Length: 199, dtype: float64



## 3.16 Plot of Show/Noshow to SMS Received

```
In [36]: ax = sns.countplot(x=data.SMS_received, hue=data.NoShow, data=data)
    ax.set_title("Show/NoShow for SMSReceived")
    x_ticks_labels=['No SMSReceived', 'SMSReceived']
    ax.set_xticklabels(x_ticks_labels)
    plt.show()
```



## 3.17 Scholorship Analysis for Show/NoShow

```
In [37]: df_s_ratio = data[data.NoShow == 'No'].groupby(['Scholarship']).size()/data.gr
oupby(['Scholarship']).size()
    ax = sns.barplot(x=df_s_ratio.index, y=df_s_ratio, palette="RdBu_r")
    ax.set_title("Percentage for Scholarship")
    x_ticks_labels=['No Scholarship', 'Scholarship']
    ax.set_xticklabels(x_ticks_labels)
    plt.show()
```



From the above graph, we can see that 80% have come for the visit with no Scholarship and 75% came to visit with Scholarship.

## 4. Machine Learning Models

#### 4.1 Create model with NoShow as the predictor variable. Convert categorical values to 0 and 1

```
In [38]: Y = data['NoShow']
Y = Y.map({'No': 0, 'Yes': 1})

X = data.drop(labels = ['NoShow', 'PatientId', 'AppointmentID'], axis = 1)
X['Neighbourhood'] = X['Neighbourhood'].astype('category').cat.codes
X['appointment_day'] = X['appointment_day'].astype('category').cat.codes
X['Gender'] = X['Gender'].map({'M': 0, 'F': 1})
```

#### 4.1.1 Drop the columns which are not required for model analysis

```
In [39]: X = X.drop(labels = ['ScheduledDay', 'AppointmentDay', 'ScheduledDayDate','Age
Class'], axis = 1)
```

#### 4.1.2 split the data into training and testing dataset in the ratio 75:25

```
In [40]: x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, rand
om_state=0)
```

#### 4.2 LogisticRegression

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. The outcome is measured with a dichotomous variable (in which there are only two possible outcomes).

In logistic regression, the dependent variable is binary or dichotomous, i.e. it only contains data coded as 1 (TRUE, success etc.) or 0 (FALSE, failure etc.). In this case, the outcome is Show or No-Show.

The goal of logistic regression is to find the best fitting model to describe the relationship between the dichotomous characteristic of interest and a set of independent variables. Logistic regression generates the coefficients of a formula to predict a logit transformation of the probability of presence of the characteristic of interest

```
In [41]:
         model1 = LogisticRegression()
         model1.fit(x train, y train)
Out[41]: LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                    intercept scaling=1, max iter=100, multi class='ovr', n jobs=1,
                    penalty='12', random_state=None, solver='liblinear', tol=0.0001,
                   verbose=0, warm start=False)
In [42]:
         predictions = model1.predict(x test)
In [43]:
         score = model1.score(x test, y test)
         print(score)
         0.7961200188208042
In [44]:
         cm = metrics.confusion matrix(y test, predictions)
         print(cm)
         [[21891
                   215]
                   105]]
          5418
         print(classification_report(y_test, predictions))
In [45]:
                                    recall f1-score
                       precision
                                                        support
                    0
                            0.80
                                      0.99
                                                0.89
                                                          22106
                    1
                            0.33
                                      0.02
                                                0.04
                                                           5523
                                      0.80
                            0.71
                                                0.72
                                                          27629
         avg / total
```

```
In [46]: plt.figure(figsize=(6,6))
    sns.heatmap(cm, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'g
    ist_rainbow_r');
    plt.ylabel('Actual label');
    plt.xlabel('Predicted label');
    all_sample_title = 'Accuracy Score: {0}'.format(score)
    plt.title(all_sample_title, size = 15);
```



In [47]: df1=pd.DataFrame({'Actual':y\_test, 'Predicted':predictions})
df1

## Out[47]:

|        | Actual | Predicted |
|--------|--------|-----------|
| 103525 | 0      | 0         |
| 72652  | 0      | 0         |
| 35774  | 0      | 0         |
| 72608  | 0      | 0         |
| 74580  | 0      | 0         |
| 73699  | 0      | 0         |
| 68464  | 0      | 0         |
| 58340  | 0      | 0         |
| 87300  | 0      | 1         |
| 63746  | 0      | 0         |
| 35261  | 0      | 0         |
| 10557  | 1      | 0         |
| 7112   | 0      | 0         |
| 89639  | 1      | 0         |
| 29490  | 0      | 0         |
| 56405  | 0      | 0         |
| 11816  | 0      | 0         |
| 17589  | 0      | 0         |
| 181    | 0      | 0         |
| 72192  | 0      | 0         |
| 12407  | 0      | 0         |
| 48020  | 0      | 0         |
| 48834  | 0      | 0         |
| 64928  | 0      | 0         |
| 66173  | 0      | 0         |
| 5219   | 0      | 0         |
| 90548  | 0      | 0         |
| 11677  | 0      | 0         |
| 26155  | 0      | 0         |
| 81615  | 0      | 0         |
|        |        |           |
| 1732   | 0      | 0         |

|        | Actual | Predicted |  |
|--------|--------|-----------|--|
| 45243  | 0      | 0         |  |
| 68716  | 0      | 0         |  |
| 24473  | 0      | 0         |  |
| 30678  | 0      | 0         |  |
| 81640  | 0      | 0         |  |
| 102349 | 0      | 0         |  |
| 58784  | 0      | 0         |  |
| 59382  | 0      | 0         |  |
| 48805  | 0      | 0         |  |
| 66440  | 0      | 0         |  |
| 1659   | 0      | 0         |  |
| 108978 | 0      | 0         |  |
| 68588  | 0      | 0         |  |
| 92950  | 0      | 0         |  |
| 90253  | 0      | 0         |  |
| 48203  | 0      | 0         |  |
| 16468  | 1      | 0         |  |
| 31835  | 1      | 0         |  |
| 74055  | 0      | 0         |  |
| 106773 | 1      | 0         |  |
| 52028  | 0      | 0         |  |
| 67135  | 0      | 0         |  |
| 49372  | 0      | 0         |  |
| 49130  | 0      | 0         |  |
| 2627   | 0      | 0         |  |
| 6344   | 0      | 0         |  |
| 27665  | 0      | 0         |  |
| 23222  | 0      | 0         |  |
| 31205  | 1      | 0         |  |

27629 rows × 2 columns

Logistic regression gives accuracy of 79.61% for this data. So, if a new patient data is given as input to this model, we can predict with 79% accuracy if that patient shows up or not for the appointment scheduled.

#### File output

```
In [48]: df1.to_csv('LogisticRegression_classification.csv')
```

#### 4.3 Random Forest

Random forest or random decision forest is an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. For our analysis random forest serves as a classifier for classifying if a patient shows-up.

```
In [49]:
         model2 = RandomForestClassifier(n estimators = 10, max depth = 10)
         model2.fit(x_train, y_train)
Out[49]: RandomForestClassifier(bootstrap=True, class weight=None, criterion='gini',
                      max_depth=10, max_features='auto', max_leaf_nodes=None,
                      min impurity decrease=0.0, min impurity split=None,
                      min samples leaf=1, min samples split=2,
                      min weight fraction leaf=0.0, n estimators=10, n jobs=1,
                      oob score=False, random state=None, verbose=0,
                      warm start=False)
In [50]:
         predictions1 = model2.predict(x_test)
         score1 = model2.score(x_test, y_test)
In [51]:
         print(score1)
         0.7997394042491585
In [52]:
         cm1 = metrics.confusion_matrix(y_test, predictions1)
         print(cm1)
         [[22066
                     40]
          <sup>[</sup> 5493
                     30]]
```

In [53]: print(classification\_report(y\_test, predictions1))

| support | ecall f1-score suppo |      | precision |             |
|---------|----------------------|------|-----------|-------------|
| 22106   | 0.89                 | 1.00 | 0.80      | 0           |
| 5523    | 0.01                 | 0.01 | 0.43      | 1           |
| 27629   | 0.71                 | 0.80 | 0.73      | avg / total |



In [55]: df2=pd.DataFrame({'Actual':y\_test, 'Predicted':predictions1})
df2

# Out[55]:

|        | A e.4: -1 | Due all a tool |
|--------|-----------|----------------|
| 400-0- | Actual    | Predicted      |
| 103525 | 0         | 0              |
| 72652  | 0         | 0              |
| 35774  | 0         | 0              |
| 72608  | 0         | 0              |
| 74580  | 0         | 0              |
| 73699  | 0         | 0              |
| 68464  | 0         | 0              |
| 58340  | 0         | 0              |
| 87300  | 0         | 0              |
| 63746  | 0         | 0              |
| 35261  | 0         | 0              |
| 10557  | 1         | 0              |
| 7112   | 0         | 0              |
| 89639  | 1         | 0              |
| 29490  | 0         | 0              |
| 56405  | 0         | 0              |
| 11816  | 0         | 0              |
| 17589  | 0         | 0              |
| 181    | 0         | 0              |
| 72192  | 0         | 0              |
| 12407  | 0         | 0              |
| 48020  | 0         | 0              |
| 48834  | 0         | 0              |
| 64928  | 0         | 0              |
| 66173  | 0         | 0              |
| 5219   | 0         | 0              |
| 90548  | 0         | 0              |
| 11677  | 0         | 0              |
| 26155  | 0         | 0              |
| 81615  | 0         | 0              |
|        |           |                |
| 1732   | 0         | 0              |

|        | Actual | Predicted |
|--------|--------|-----------|
| 45243  | 0      | 0         |
| 68716  | 0      | 0         |
| 24473  | 0      | 0         |
| 30678  | 0      | 0         |
| 81640  | 0      | 0         |
| 102349 | 0      | 0         |
| 58784  | 0      | 0         |
| 59382  | 0      | 0         |
| 48805  | 0      | 0         |
| 66440  | 0      | 0         |
| 1659   | 0      | 0         |
| 108978 | 0      | 0         |
| 68588  | 0      | 0         |
| 92950  | 0      | 0         |
| 90253  | 0      | 0         |
| 48203  | 0      | 0         |
| 16468  | 1      | 0         |
| 31835  | 1      | 0         |
| 74055  | 0      | 0         |
| 106773 | 1      | 0         |
| 52028  | 0      | 0         |
| 67135  | 0      | 0         |
| 49372  | 0      | 0         |
| 49130  | 0      | 0         |
| 2627   | 0      | 0         |
| 6344   | 0      | 0         |
| 27665  | 0      | 0         |
| 23222  | 0      | 0         |
| 31205  | 1      | 0         |

Random forest gives an accuracy of 79.97% which is better compared to Logistic Regression.

### 4.3 Naive Bayes Classification

In machine learning, Naive Bayes classifiers (sometimes called the idiot Bayes model) are a family of simple "probabilistic classifiers" based on applying Bayes' theorem with strong (naive) independence assumptions between the features. When dealing with continuous data, a typical assumption is that the continuous values associated with each class are distributed according to a Gaussian distribution. So, we are applying gausian naive bayes model to clasify show or noshow of patients.

```
In [56]:
         model3 = GaussianNB()
In [57]: model3.fit(x_train, y_train)
Out[57]: GaussianNB(priors=None)
In [58]:
         predictions2 = model3.predict(x test)
In [59]:
         score2 = model3.score(x_test, y_test)
         print(score2)
         0.7694451482138333
In [60]:
         cm2 = metrics.confusion_matrix(y_test, predictions2)
         print(cm2)
         [[20489
                  1617]
          [ 4753
                    770]]
In [61]:
         print(classification_report(y_test, predictions2))
                       precision
                                    recall f1-score
                                                        support
                    0
                            0.81
                                      0.93
                                                 0.87
                                                          22106
                    1
                            0.32
                                      0.14
                                                 0.19
                                                           5523
         avg / total
                            0.71
                                      0.77
                                                 0.73
                                                          27629
```



In [63]: df3=pd.DataFrame({'Actual':y\_test, 'Predicted':predictions2})
df3

Out[63]:

|        |        | <b>.</b>  |
|--------|--------|-----------|
|        | Actual | Predicted |
| 103525 | 0      | 0         |
| 72652  | 0      | 0         |
| 35774  | 0      | 0         |
| 72608  | 0      | 0         |
| 74580  | 0      | 0         |
| 73699  | 0      | 0         |
| 68464  | 0      | 0         |
| 58340  | 0      | 0         |
| 87300  | 0      | 1         |
| 63746  | 0      | 0         |
| 35261  | 0      | 0         |
| 10557  | 1      | 0         |
| 7112   | 0      | 0         |
| 89639  | 1      | 0         |
| 29490  | 0      | 0         |
| 56405  | 0      | 0         |
| 11816  | 0      | 0         |
| 17589  | 0      | 0         |
| 181    | 0      | 0         |
| 72192  | 0      | 0         |
| 12407  | 0      | 0         |
| 48020  | 0      | 0         |
| 48834  | 0      | 0         |
| 64928  | 0      | 0         |
| 66173  | 0      | 0         |
| 5219   | 0      | 0         |
| 90548  | 0      | 0         |
| 11677  | 0      | 0         |
| 26155  | 0      | 0         |
| 81615  | 0      | 0         |
|        |        |           |
| 1732   | 0      | 0         |

|        | Actual | Predicted |
|--------|--------|-----------|
| 45243  | 0      | 0         |
| 68716  | 0      | 0         |
| 24473  | 0      | 0         |
| 30678  | 0      | 0         |
| 81640  | 0      | 0         |
| 102349 | 0      | 0         |
| 58784  | 0      | 0         |
| 59382  | 0      | 0         |
| 48805  | 0      | 0         |
| 66440  | 0      | 0         |
| 1659   | 0      | 1         |
| 108978 | 0      | 0         |
| 68588  | 0      | 0         |
| 92950  | 0      | 0         |
| 90253  | 0      | 0         |
| 48203  | 0      | 0         |
| 16468  | 1      | 0         |
| 31835  | 1      | 0         |
| 74055  | 0      | 0         |
| 106773 | 1      | 1         |
| 52028  | 0      | 0         |
| 67135  | 0      | 1         |
| 49372  | 0      | 0         |
| 49130  | 0      | 0         |
| 2627   | 0      | 0         |
| 6344   | 0      | 0         |
| 27665  | 0      | 0         |
| 23222  | 0      | 0         |
| 31205  | 1      | 0         |

Naive bayes gives accuracy of 76.94% to predicit the output.

#### 4.4 Decision Tree

Decision tree is largely used non-parametric effective machine learning modeling technique for regression and classification problems. To find solutions, decision tree makes sequential, hierarchical decision about the outcome variable based on the predictor data. Hierarchical means the model is defined by a series of questions that lead to a class label or a value when applied to any observation. Once set up, the model acts like a protocol in a series of "if this occurs then this occurs" conditions that produce a specific result from the input data. A Non-parametric method means that there are no underlying assumptions about the distribution of the errors or the data. It basically means that the model is constructed based on the observed data.

```
model4 = tree.DecisionTreeClassifier()
In [64]:
         model4.fit(x_train, y_train)
Out[64]: DecisionTreeClassifier(class weight=None, criterion='gini', max depth=None,
                     max_features=None, max_leaf_nodes=None,
                     min impurity decrease=0.0, min impurity split=None,
                     min samples leaf=1, min samples split=2,
                     min weight fraction leaf=0.0, presort=False, random state=None,
                      splitter='best')
In [65]:
         predictions3 = model4.predict(x_test)
In [66]:
         score3 = model4.score(x test, y test)
         print(score3)
         0.7189547214882913
In [67]:
         cm3 = (confusion_matrix(y_test, predictions3))
         print(cm3)
         [[17997 4109]
          [ 3656 1867]]
In [68]:
         print(classification_report(y_test, predictions3))
                      precision
                                    recall f1-score
                                                        support
                   0
                            0.83
                                      0.81
                                                0.82
                                                          22106
                    1
                            0.31
                                      0.34
                                                0.32
                                                          5523
         avg / total
                            0.73
                                      0.72
                                                0.72
                                                          27629
```



In [70]: df4=pd.DataFrame({'Actual':y\_test, 'Predicted':predictions3})
df4

# Out[70]:

|        | A . 1  | Day W. C. |
|--------|--------|-----------|
|        | Actual | Predicted |
| 103525 | 0      | 0         |
| 72652  | 0      | 0         |
| 35774  | 0      | 1         |
| 72608  | 0      | 0         |
| 74580  | 0      | 0         |
| 73699  | 0      | 0         |
| 68464  | 0      | 0         |
| 58340  | 0      | 1         |
| 87300  | 0      | 1         |
| 63746  | 0      | 0         |
| 35261  | 0      | 0         |
| 10557  | 1      | 1         |
| 7112   | 0      | 0         |
| 89639  | 1      | 0         |
| 29490  | 0      | 0         |
| 56405  | 0      | 0         |
| 11816  | 0      | 0         |
| 17589  | 0      | 1         |
| 181    | 0      | 0         |
| 72192  | 0      | 0         |
| 12407  | 0      | 0         |
| 48020  | 0      | 0         |
| 48834  | 0      | 0         |
| 64928  | 0      | 0         |
| 66173  | 0      | 0         |
| 5219   | 0      | 0         |
| 90548  | 0      | 0         |
| 11677  | 0      | 0         |
| 26155  | 0      | 0         |
| 81615  | 0      | 0         |
|        |        |           |
| 1732   | 0      | 0         |

|        | Actual | Predicted |
|--------|--------|-----------|
| 45243  | 0      | 0         |
| 68716  | 0      | 0         |
| 24473  | 0      | 1         |
| 30678  | 0      | 0         |
| 81640  | 0      | 1         |
| 102349 | 0      | 1         |
| 58784  | 0      | 0         |
| 59382  | 0      | 0         |
| 48805  | 0      | 0         |
| 66440  | 0      | 0         |
| 1659   | 0      | 0         |
| 108978 | 0      | 0         |
| 68588  | 0      | 0         |
| 92950  | 0      | 0         |
| 90253  | 0      | 0         |
| 48203  | 0      | 0         |
| 16468  | 1      | 0         |
| 31835  | 1      | 0         |
| 74055  | 0      | 0         |
| 106773 | 1      | 0         |
| 52028  | 0      | 0         |
| 67135  | 0      | 1         |
| 49372  | 0      | 0         |
| 49130  | 0      | 0         |
| 2627   | 0      | 1         |
| 6344   | 0      | 0         |
| 27665  | 0      | 0         |
| 23222  | 0      | 0         |
| 31205  | 1      | 1         |

Decision tree predicts with accuracy of 71.89%.

#### 4.5 K Means Clustering

K-means clustering is a type of unsupervised learning, which is used when you have unlabeled data (i.e., data without defined categories or groups). The goal of this algorithm is to find groups in the data, with the number of groups represented by the variable K. The algorithm works iteratively to assign each data point to one of K groups based on the features that are provided. Data points are clustered based on feature similarity. The results of the K-means clustering algorithm are:

The centroids of the K clusters, which can be used to label new data. Labels for the training data (each data point is assigned to a single cluster) Rather than defining groups before looking at the data, clustering allows you to find and analyze the groups that have formed originally.

```
In [71]:
         model5 = KMeans(n clusters=2)
         model5.fit(x train, y train)
Out[71]: KMeans(algorithm='auto', copy x=True, init='k-means++', max iter=300,
             n_clusters=2, n_init=10, n_jobs=1, precompute_distances='auto',
             random state=None, tol=0.0001, verbose=0)
         predictions4 = model5.predict(x test)
In [72]:
         labels = KMeans(2, random state=0).fit predict(x test)
In [73]:
In [74]:
         print(classification_report(y_test, predictions4))
                      precision
                                    recall f1-score
                                                       support
                   0
                            0.78
                                      0.49
                                                0.60
                                                         22106
                    1
                            0.18
                                      0.43
                                                0.25
                                                          5523
         avg / total
                                      0.48
                                                0.53
                                                         27629
                            0.66
```



In [76]: df5=pd.DataFrame({'Actual':y\_test, 'Predicted':predictions4})
df5

# Out[76]:

|        | Actual | Predicted |
|--------|--------|-----------|
| 103525 | 0      | 1         |
| 72652  | 0      | 0         |
| 35774  | 0      | 0         |
| 72608  | 0      | 0         |
| 74580  | 0      | 1         |
| 73699  | 0      | 0         |
| 68464  | 0      | 1         |
| 58340  | 0      | 0         |
| 87300  | 0      | 0         |
| 63746  | 0      | 0         |
| 35261  | 0      | 0         |
| 10557  | 1      | 1         |
| 7112   | 0      | 1         |
| 89639  | 1      | 1         |
| 29490  | 0      | 1         |
| 56405  | 0      | 0         |
| 11816  | 0      | 0         |
| 17589  | 0      | 0         |
| 181    | 0      | 0         |
| 72192  | 0      | 0         |
| 12407  | 0      | 1         |
| 48020  | 0      | 0         |
| 48834  | 0      | 1         |
| 64928  | 0      | 1         |
| 66173  | 0      | 0         |
| 5219   | 0      | 1         |
| 90548  | 0      | 1         |
| 11677  | 0      | 1         |
| 26155  | 0      | 1         |
| 81615  | 0      | 0         |
|        |        |           |
| 1732   | 0      | 0         |

|        | Actual | Predicted |
|--------|--------|-----------|
| 45243  | 0      | 0         |
| 68716  | 0      | 1         |
| 24473  | 0      | 1         |
| 30678  | 0      | 0         |
| 81640  | 0      | 1         |
| 102349 | 0      | 1         |
| 58784  | 0      | 0         |
| 59382  | 0      | 0         |
| 48805  | 0      | 1         |
| 66440  | 0      | 0         |
| 1659   | 0      | 0         |
| 108978 | 0      | 0         |
| 68588  | 0      | 0         |
| 92950  | 0      | 1         |
| 90253  | 0      | 1         |
| 48203  | 0      | 0         |
| 16468  | 1      | 0         |
| 31835  | 1      | 0         |
| 74055  | 0      | 0         |
| 106773 | 1      | 1         |
| 52028  | 0      | 0         |
| 67135  | 0      | 0         |
| 49372  | 0      | 1         |
| 49130  | 0      | 1         |
| 2627   | 0      | 0         |
| 6344   | 0      | 0         |
| 27665  | 0      | 1         |
| 23222  | 0      | 0         |
| 31205  | 1      | 1         |

### 5. Conclusion

- 1. 79.79% did show up for the appointment whereas 20.2% of them did not.
- 2. Women visit hospitals more than men.
- 3. Hypertension is seen more in women which might be one of the reasons why women visit hospitals more than men.
- 4. Alcoholic patients tend to miss the appointments more compared to other diseased patients.
- 5. Most of the appointments were missed on Tuesday and Wednesday and surprisingly most appointments were booked on the same days of the week.
- 6. SMS-Received or Scholorship seem to have no effect on the appointments show or no-show.
- 7. Adults followed by Seniors missed most of the appointments.
- 8. From the models, Random Forest followed by Logistic regression work best for the data.

### **End**