ZILFIMIAN

KNN2/KNN (Q9L10)

53% (10/19)

- ✓ 1. KNN is
 - A data-driven method
 - (B) model-driven method
 - (c) I do not know
- ✓ 2. The dependent variable of the classification is
 - A categorical
 - (B) numeric
 - C I do not know
- ✓ 3. KNN can be used for regression
 - A Yes
 - B) No
 - (c) I do not know
- 4. In the case of KNN classification we use
 - A average of outcomes
 - B majority voting scheme
 - (c) I do not know
- ★ 5. Which of these errors will increase constantly by increasing k?
 - (A) train error
 - B test error
 - **c** both
 - D I do not know
- 6. This function can be used to perform KNN classificationin R
 - (A) knn()
 - B k_nn()
 - (c) knnreg()
 - knearneib()
 - (E) I do not know

	_	
×	10.	In the case of small k we have overfitting
	В	underfitting
	(c)	it depends on the situation
	D	I do not know
✓	11.	Why do we need scaling in KNN?
	(A)	to avoid overfitting
	\bigcirc B	to avoid underfitting
	C	to have "equal" weights for variables
	D	I do not know
/	12.	Let k = n, (n- number of observations), K-NN is same as
	(A)	random guessing
	В	everything will be classified as the most probable class (in total)
	(c)	everything will be classified as the least probable class (in total)
	D	I do not know
	Hrips	Page 2 of 4

 \times 7. With the increase of k, the decision boundary will be

8. KNN algorithm is sensitive to outliers

A is a supervised learning algorithm.

B is an unsupervised learning algorithm.

simplified

more complex

I do not know

I do not know

I do not know

unchanged

True False

9. KNN

X	13. This function can be used to perform K-NN regression in R
	(A) knn.reg
	B knnforreg
	C regknn
	D knnforregression
	E I do not know
×	14. Do you need to worry about scaling with one explanatory variable?
	14. Do you need to worry about scaling with one explanatory variable? (A) No
	B Yes
	C I do not know
	C) Tuo not know
	15. n - the number of observation,
	m - the number of explanatory variables
	When n=k, m=1, the decision boundary for regression is
	A a line
	B a stepwise constant function
	(C) a stepwise quadratic function
	(D) I do not know
	16. Which of these algorithms can be used to fill the missing values
	A KNN for regression
	B KNN for classification
	c both
	D I do not know
X	17. Which one is better: KNN regression or Linear regression ?
	A KNN outperform LR if the parametric form that has been selected is close to the true form of f
	B LR outperform KNN if the parametric form that has been selected is close to the true form of f
	C KNN will always outperform the LR
	D I do not know

Hripsime Page 3 of 4

X 18. Which one is the Disadvantage of KNN? A required assumptions B cannot be applied for regression C difficult to perform D the problem of high dimensional data E I do not know X 19. The best k for train set equals to A 1 B 2 C 0 D I do not know 20. What is the Parzen window

Kernel density estimation

Hripsime Page 4 of 4