Počítačové videnie - Príznaky II.

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

10.10.2018

- Obdvod
 - Freeman code
- Statistické momenty
 - Momenty
 - Centrálne momenty
- Farby
 - Histogramy
 - Kvantizácia

Freeman Code

Freeman Code

```
I = imread('jeden.jpg');
BW = imbinarize(I);
B = bwboundaries(BW, 'noholes');
F = Freeman_code(B{1});
```


Obvod - Úloha

Zadanie

Spočítajte obvod špendlíka z obrázku jeden.jpg. Použite imrotate(I, uhol, 'bilinear', 'crop'); a zistite ako sa mení s úhlom.

Definície obdovdu

 N_p , N_n je počeť párnych resp. nepárnych čísel v kóde a N_r je počet rohov (2 po sebe idúce čísla sú rôzne):

$$P_s = N_p + N_n$$

 $P_d = N_p + \sqrt{2}N_n$
 $P_v = 0.948N_p + 1.340N_n$
 $P_c = 0.980N_p + 1.406N_n - 0.091N_r$

0. moment

Definícia

$$m_{0,0} = \int_{R} \int_{R} F(x, y) dxdy \to m_{0,0} = \sum_{i=x}^{X} \sum_{y=1}^{Y} J(x, y)$$

<u>Úlo</u>ha

Vypočítajte nultý moment pre obrázok jeden.png. Čo predstavuje tento moment?

Ďalšie momenty

Definícia

$$m_{p,q} = \int_R \int_R x^p y^q F(x,y) dxdy \rightarrow m_{p,q} = \sum_{x=1}^X \sum_{y=1}^Y x^p y^q J(x,y)$$

Normalizácia

$$n_{p,q} = \frac{m_{p,q}}{m_{0.0}}$$

Úloha

Vypočítajte $n_{0.1}$ a $n_{1.0}$, čo pre obrázok predstavujú?

Centrálne momenty

Definícia

$$\mu_{p,q} = \int_{R} \int_{R} (x - \bar{x})^{p} (y - \bar{y})^{q} F(x, y) dx dy \to$$

$$\mu_{p,q} = \sum_{x=1}^{X} \sum_{y=1}^{Y} (x - \bar{x})^{p} (y - \bar{y})^{q} J(x, y)$$

Normalizácia

$$\eta_{p,q} = \frac{\mu_{p,q}}{m_{0,0}}$$

. Ótazka

Čomu zodpovedá \bar{x} a \bar{y} . Akú výhodu má centrálny moment?

Histogram

imhist

imhist(I) - vráti počty jednotlivých hodnôt pre jasy z obrázka. Histogram aj nakreslí.

Pozor!

Ak chceme aby imhist rozlíšiloval medzi kanálmi, tak ho musíme aplikovať zvlášť po kanáloch.

Úloha

Pre obrázok hrib.jpg nakreslite histogram(y), tak aby z neho boli vidieť jednotlivé kanály.

Farby

Histogram ako príznakový vektor

Príznakový vektor

Histogram je v podstate vektor, ktorý predstavuje početnosť jednotlivých hodnôt intenzít v obrázku. Ak máme histogramy tri môžeme ich dať 'za seba'.

Normalizácia

Histogram by sám o sebe nebol vhodný príznak, keď že napr. väčšie obrázky budú ďaleko od rovnakých ale malých obrázkov. Je preto nutné histogramy normalizovať, napr. predelením celkovým počtom pixelov.

Histogram

Príznakový priestor

Opäť môžeme porovnávať príznaky pomocou metriky. Napr.

$$\rho(\vec{a},\vec{b}) = \sqrt{\sum_{i}^{N} (a_i - b_i)^2}.$$

Úloha

Použite normalizovaný histogram ako príznakový vektor a zistite vzdialenosti obrázkov hrib.jpg, mech.jph a bobule.jpg.

Kvantizácia

Histogram ako príznak

V obrázku je strašne veľa unikátnych RGB trojíc. Štandardný histogram tak nieje úplne vhodný.

Riešenie - kvantizácia

Znížime v obraze počet unikátnych farieb. Tento proces sa nazýva kvantizácia. Výsledkom je tzv. indexovaný obraz. (Prípadne stále RGB obraz s menším počtom farieb.)

Kvantizácia - matlab

rgb2ind

[X, map] = rgb2ind(I,n) - vráti indexovaný obraz X (podobné label matici) s n farbami a mapu $n \times 3$ tj. zoznam trojíc farieb v poradí podľa ktorého sa indexuje.

rgb2ind

X = rgb2ind(I,map) - vráti indexovaný obraz X pre danú mapu.

Kvantizácia - matlab

Kód - zobraznie

```
macbeth_map = load('macbeth.mat', 'macbeth_map');
X = rgb2ind(I,macbeth_map);
imagesc(X);
colormap(macbeth_map);
imhist(X,macbeth_map);
```

Úloha

Porovnajte vzdialenosti rovnakých obrázkov ale na histogramoch indexovaných obrázkov. Indexujte buď mapou Macbeth, alebo použite lubovoľné *n*. Všetky obrázky, ale indexujte pomocou tej istej mapy.