MTH215A: Number Theory: Assignment - 1

Sarthak Rout

October 7, 2020

1 Solutions

1.1 Q1

By Euclid's Division Algorithm,

$$5490 = 4 \cdot 1324 + 194$$

$$1324 = 6 \cdot 194 + 160$$

$$194 = 1 \cdot 160 + 34$$

$$160 = 4 \cdot 34 + 24$$

$$34 = 1 \cdot 24 + 10$$

$$24 = 2 \cdot 10 + 4$$

$$10 = 2 \cdot 4 + 2$$

$$4 = 2 \cdot 2 + 0$$
(1)

$$24 \cdot 2 = 5 \cdot 10 - 2$$

$$5 \cdot 34 = 7 \cdot 24 + 2$$

$$7 \cdot 160 = 33 \cdot 34 - 2$$

$$33 \cdot 194 = 40 \cdot 160 + 2$$

$$1324 \cdot 40 = 273 \cdot 194 - 2$$

$$2 = 273 \cdot 5490 - 1132 \cdot 1324$$
(2)

GCD(5490, 1324) = d = 2. x = -1132 and y = 273

1.2 Q2

On the contrary, let us assume $4 \mid n^2 + 2$, then n^2 must be even as 2 divides 4 and 2 both.

So, let $n = 2 \cdot k$ for some integer k. Then, $4 \mid (2k)^2 + 2 \implies 4 \mid 4k^2 + 2 \implies 4 \mid 2$ which is a contradiction. So, our initial assumption was incorrect and $4 \nmid n^2 + 2$.

1.3 Q3

1.3.1

If n is odd, then n = 2k + 1 for some integer k. Then $n^2 - 1 = 4k(k+1)$. Now, if k is even, k(k+1) is even and if k is odd, k+1 is even, hence k(k+1) is even for all integral values of k. So, $2 \mid k(k+1) \implies 8 \mid 4k(k+1) = n^2 - 1$.

1.3.2

 $n^3 - n = (n-1) \cdot n \cdot (n+1)$. It is product of 3 consecutive numbers.

Lemma: Product of n consecutive numbers is divisible by n.

As there are only n possible remainders when a number is divided by n, n consecutive numbers must give n consecutive remainders in an order, whose product will be 0 as one remainder is definitely 0.

So, the product of 3 consecutive numbers is divisible by 3. But, at the same time, it also has product of 2 consecutive numbers $(n-1) \cdot n$ or $n \cdot (n+1)$ as it's factors so, it is also divisible by 2. So, as (2, 3) = 1, $2 \cdot 3 = 6 \mid n^3 - n$.

1.4 Q4

Consider binomial expansion of $n^k - 1 = (1 + (n-1))^k - 1 = 1 + k \cdot (n-1) + {k \choose 2} \cdot (n-1)^2 + W \cdot (n-1)^2 - 1$.

As higher order terms have higher powers of (n-1) greater than 2, if we take $(n-1)^2$ as common, we will have W as an integral factor.

(⇒) So, $n^k - 1 = k \cdot (n-1) + W \cdot (n-1)^2$. If $(n-1)^2 \mid n^k - 1$, then, $(n-1)^2 \mid k \cdot (n-1) \implies (n-1) \mid k$. Hence, ⇒ is proved.

 (\Leftarrow) Similarly, if $(n-1) \mid k \implies (n-1)^2 \mid k \cdot (n-1) \implies (n-1)^2 \mid k \cdot (n-1) + W' \cdot (n-1)^2$ for some integer W'. Hence, \Leftarrow is also proved.

1.5 Q5

For the general statement, let $a \cdot b = c^n$ with (a, b) = 1.

Let us assume in general, $a = x^n \cdot s$ and $b = y^n \cdot t$ where s has factors $p_i^{a_i}$ and t has factors $p_j^{a_j}$ where $p_i and p_j$ are primes, such that $0 \le a_1, a_2 < n$. (s, t) = 1 as (a, b) = 1. $ab = c^n = x^n \cdot y^n \cdot s \cdot t \implies s \cdot t = (\frac{c}{xy})^n$.

This means every p_k which is a factor of $(\frac{c}{xy})^n$ has exponent $z \cdot n$. As s and t are co-prime, p_k must be a factor of either s or t. As described before, all prime factors of s and t have exponent e, $0 \le e < n$. So, z must be zero, which means that there are no prime factors but $s \cdot t = 1$ which implies, $s = t = 1 \implies a = x^n$ and $b = y^n$. As we have proved the general case, the particular case for n = 2 must also be true.

1.6 Q6

Assuming $\operatorname{ord}_p n$ is the maximum number of times p divides n.

Let $p^{x_1} \mid a$, $p^{x_2} \mid b$ and $p^x \mid a+b$ where the powers are the maximum that divide the corresponding number.

This $\implies x_1 = \operatorname{ord}_p a$, $x_2 = \operatorname{ord}_p b$ and $x = \operatorname{ord}_p (a+b)$

~

 $\implies a = k_1 p^{x_1} , b = k_2 p^{x_2} \text{ and } a + b = k p^x \text{ with } p \nmid k, k_1, k_2$ $\implies k_1 p^{x_1} + k_2 p^{x_2} = k p^x. \text{ WALOG, let } x_1 \leq x_2$ $\implies k_1 + k_2 \cdot p^{x_2 - x_1} = k \cdot p^{x_0 - x_1}$ $\text{Case 1: } x_1 \neq x_2 \implies p^{x_0 - x_1} \mid k_1 + k_2 \cdot p^{x_2 - x_1} \implies p^{x_0 - x_1} \mid k_1 \implies x_0 - x_1 = 0 \implies x_0 = x_1 = \min(x_1, x_2)(\because p \nmid k_1)$ $\text{Case 2: } x_1 = x_2 \implies k_1 + k_2 = k \cdot p^{x_0 - x_1}. \text{ If } x_0 < x_1, \text{ then } k_1 + k_2 = \frac{k}{p^{x_1 - x_0}} \text{ which is not an integer as } p \nmid k. \text{ So }, x \geq x_1 = \min(x_1, x_2).$ Hence, proved.

1.7 Q7

In the proofs below, if a variable is parameterised to be $v = a + b \cdot t$. t_{min} is defined as $t_{min} = \frac{-a}{b}$ the minimum value of t for the variable to achieve a positive value. In this case, b would be positive. Similarly, t_{max} is defined as $t_{max} = \frac{-a}{b}$ maximum value of t for the variable to remain positive. In this case, b would be negative.

1.7.1

GCD(18, 5):

$$18 = 5 \cdot 3 + 3
5 = 3 \cdot 1 + 2
3 = 2 \cdot 1 + 1
2 = 1 \cdot 2 + 0
\implies 5 = 2 \cdot 3 - 1$$
(3)

GCD(18,5) = 1 and LCM(18,5) = 90.

 $1 = 2 \cdot 18 - 7 \cdot 5 \implies 48 = 96 \cdot 18 - 336 \cdot 5$

 $18x - 90 + 5y + 90 = 1 \implies 18(x - 5) + 5(y + 18) = 1$

 \implies if x_0 and y_0 are solutions, $x_0 - 5 \cdot t$ and $y_0 + 18 \cdot t$ are also solutions. So, general solutions are: $x = 96 - 5 \cdot t$, $y = -336 + 18 \cdot t$.

For positive solutions, $t_{max} = 19$ and $t_{min} = 19$ from both equations. So there is only one solution: x = 96 - 95 = 1 and $y = -336 + 18 \cdot 19 = 6$.

1.7.2

GCD(54, 21):

$$54 = 21 \cdot 2 + 12$$

$$21 = 12 \cdot 1 + 9$$

$$12 = 9 \cdot 1 + 3$$

$$9 = 3 \cdot 3 + 0$$

$$\Rightarrow 21 = 2 \cdot 12 - 3$$

$$2 \cdot 54 = 4 \cdot 21 + 21 + 3$$

$$3 = 2 \cdot 54 - 5 \cdot 21$$

$$(4)$$

GCD(54, 21) = 3 and $LCM(54, 21) = 18 \cdot 7 \cdot 3$ $3 = 2 \cdot 54 - 5 \cdot 21 \implies 243 = 162 \cdot 54 - 405 \cdot 21$. $54x - LCM + 21y + LCM = 3 \implies 54(x - 7) + 21(y + 18) = 3$

 \implies if x_0 and y_0 are solutions, $(x_0 - 7 \cdot t, y_0 + 18 \cdot t)$ are also solutions. So, general solutions are: $x = 162 - 7 \cdot t, y = -405 + 18 \cdot t$.

For positive solutions, $t_{max} = 23$ and $t_{min} = 23$ from both equations. So, there is only one solution: x = 1, y = 9.

1.7.3

GCD(158, 57):

$$158 = 57 \cdot 2 + 44$$

$$57 = 44 \cdot 1 + 13$$

$$44 = 13 \cdot 3 + 5$$

$$13 = 5 \cdot 2 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1$$

$$2 = 1 \cdot 2 + 0$$

$$\implies 5 = 3 \cdot 2 - 1$$

$$13 \cdot 2 = 5 \cdot 5 + 1$$

$$44 \cdot 5 = 13 \cdot 17 - 1$$

$$57 \cdot 17 = 44 \cdot 22 + 1$$

$$158 \cdot 22 = 57 \cdot 61 - 1$$

$$\implies 1 = 57 \cdot 61 - 158 \cdot 22$$

$$7 = 57 \cdot 427 - 158 \cdot 154$$

$$(5)$$

GCD(158, 57) = 1 and $LCM(157, 58) = 157 \cdot 58$

 $158x - 57y = 7 \implies 158(x + 57) + -57(y + 158) = 1$. The general solutions are $(x = -154 + 57 \cdot t, y = -427 + 158 \cdot t)$ for some integer t.

For positive solutions, $t = \max(\text{ceil}(\frac{154}{57}), \text{ceil}(\frac{427}{158})) = 3$. So, the set of positive solutions is $(x = -154 + 57 \cdot t, y = -427 + 158 \cdot t), t \ge 3$ is an integer.

1.8 Q8

Let d be the GCD of (n! + 1, (n + 1)! + 1).

Then, $d \mid n! + 1$, $d \mid (n+1)! + 1$.

 $\implies d \mid (n+1)(n!+1) \implies d \mid (n+1)!+n+1 \implies d \mid (n+1)!+n+1-((n+1)!+1) = n \ (\because d \mid (n+1)!+1)$

 $\implies d \mid n! \implies d \mid n! + 1 - (n!) = 1 \implies d = 1.$

Hence, proved.

1.9 Q9

Consider 3 cases: b > a, b = a and b < a

- Case b > a: $2^b 2^a = 2^a \cdot (2^{b-a} 1) > 2 \cdot 1(\because a \ge 1 \text{ and } 2^{b-a} 1 \ge 2 1 = 1) \implies 2^b 1 > 2^a + 1$. Hence, $2^b 1 \nmid 2^a + 1$ if b > a.
- Case b = a: $k(2^a 1) = 2^a + 1 \implies 2^a = \frac{k+1}{k-1} = 1 + \frac{2}{k-1}$ This is an integer only for k = 2 and k = 3 for which a = b = 1 < 3. Hence, $2^b 1 \nmid 2^a + 1$ if b = a and $b \ge 3$.
- Case b < a:

Lemma: $2^b - 1 \nmid 2^b$ (: then $2^b - 1 \mid 1$ which is not possible as $b \geq 3$) Assume, $2^b - 1 \mid 2^a + 1 \implies 2^b - 1 \mid 2^a + 2^b = 2^b \cdot (2^{a-b} - 1) \implies 2^b - 1 \mid (2^{a-b} - 1)$. So, if this relation holds for (b, a), it also holds for (b, a - b) and inductively, (b, a - kb) for some integer k. But, at some point, $a - kb \leq b$. Then, we saw in cases 1 and 2 that such as relation doesn't hold if $b \geq a$.

Hence, the original relation doesn't hold and thus our assumption fails; $2^b - 1 \nmid 2^a + 1$ if b > a too .

Hence, $2^b - 1 \nmid 2^a + 1$ if b >= 3.

1.10 Q10

 $a^{2^m} - 1 = a^{2^n \cdot 2^{m-n}} - 1 = (a^{2^n})^{2^{m-n}} - 1$. Let $a^{2^n} = r$ and $2^{m-n-1} = s \implies 2^{m-n} = 2s$ be two integers. Then $a^{2^m} - 1 = r^{2s} - 1$.

Hence, $r^2-1\mid (r^2)^s-1(\because r^2=1)$ is a root of the corresponding polynomial $(r^2)^s-1=0)$.

Hence, $a^{2^n} + 1 = r + 1 \mid r^2 - 1 \mid a^{2^m} - 1$.

Let $d = GCD(a^{2^n} + 1, a^{2^m} + 1) \implies d \mid a^{2^n} + 1, d \mid a^{2^m} + 1$.

From the above relation, $a^{2^n} + 1 \mid a^{2^m} + 1 - 2 \implies d \mid a^{2^m} + 1 - 2$ and $d \mid a^{2^m} + 1 \implies d \mid 2$.

Only, when a is odd, both $a^{2^n} + 1$ and $a^{2^m} + 1$ are even; d is 2 (maximum value), otherwise, $d \nmid 2$ as both $a^{2^n} + 1$ and $a^{2^m} + 1$ are odd. Then, d = 1.

Hence, the original proposition is proved.

1.11 Q11

Let me prove the contrapositive: If n is not a power of 2, $2^n + 1$ is not prime; composite.

If n is not a power of 2, $n = 2^k \cdot (2 \cdot m + 1)$ where m > 0. Then, $2^n + 1 = 2^{2^k \cdot (2 \cdot m + 1)} + 1 = (2^{2^k})^{2 \cdot m + 1} + 1$. This has a proper factor which is not equal to 1 or the number itself, $2^{2^k} + 1$ as $2 \cdot m + 1$ is an odd number greater than 1.

1.12 Q12

Let GCD(m, n) = k. Then, $a^m - 1 = a^{kx} - 1$ and $a^n - 1 = a^{ky} - 1$ as $a^k - 1$ is a common factor. WALOG, assuming m > n.

 $d \mid a^m - 1$ and $d \mid a^n - 1 \implies d \mid a^m - a^n = (a^n - 1) \cdot (a^{m-n} - 1) + a^{m-n} - 1 \implies d \mid a^{m-n} - 1$. Let $x\mathcal{R}y$ on set on \mathcal{Z} if $d \mid a^{|x|} - 1$ and $d \mid a^{|y|} - 1$. So, we have $mRn \implies n\mathcal{R}(m-n)$ and $n\mathcal{R}(n-m)$.

Applying this to itself multiple times, we have $n\mathcal{R}(m-2n), n\mathcal{R}(m-3n)...$ and $n\mathcal{R}(2m-n), n\mathcal{R}(3m-n)$. So, by applying this relation multiple times with itself or with other relations, we can generate any linear combination of m and n.

This means, $d \mid a^{|pm+qn|} - 1$ where p, q are arbitrary integers. Since by Euclid's lemma, the minimum positive value of pm + qn is (m, n) = k, we have $d = a^k - 1$ as it is smallest value that is a multiple of d that d divides which is itself.

1.13 Q13

By Euclid's division lemma, we have au + bv = d = 1 has infinite solutions of the form:

$$(u_0 + \frac{b \cdot t}{d}, v_0 - \frac{a \cdot t}{d}) = (u, v) = (u_0 + b \cdot t, v_0 - a \cdot t)$$

with u_0 and v_0 derived from the division algorithm.

We need u > 0 and v < 0 so, $u_0 + b \cdot t > 0 \implies t > \frac{-u_0}{b}$ and $v_0 - a \cdot t < 0 \implies t > \frac{v_0}{a}$. So, we can take maximum of these two values and set $t = \max\left(\frac{-u_0}{b}, \frac{v_0}{a}\right)$ to get our required values x and y.

1.14 Q14

Let $x^a = y^b = N$. Let $\operatorname{ord}_p N = z$ for prime factor p of N where $p \mid x$ and $p \mid y$. Let $\operatorname{ord}_p x = z_1$ and $\operatorname{ord}_p y = z_2$. We have $a \cdot z_1 = b \cdot z_2 = z$. As (a, b) = 1, $b \mid z_1$ and $a \mid z_2 \implies \frac{z_1}{b} = \frac{z_2}{a} = \frac{z}{a \cdot b} = k_p$ for some integer k and the prime p.

This holds true for all primes that are factors of N and hence, prime factors of x and y. Let us define n to be product of all such primes raised to the power k_p .

We see that, $ord_p n^a = a \cdot k_p = z_2 = ord_p y$ for all prime factors of y and n^a . Hence, $n^a = y$ and similarly, $n^b = x$ as required.

1.15 Q15

Let $\prod_{d|n} d = K$. When, $d \mid n$, we have $\frac{n}{d} \mid n$. So, $\prod_{d|n} \frac{n}{d} = K$ also.

Multiplying, both of these equations and pairing d and $\frac{n}{d}$, we have $\prod_{d|n} d \cdot \frac{n}{d} = K^2$

$$\implies \prod_{d\mid n} n = K^2 \implies n^{d(n)} = K^2 \implies K = n^{\frac{d(n)}{2}}.$$

1.16 Q16

 $\mu^2(d)$ is equal to 1 only when d is square-free else it is 0.

In $\sum_{d|n} \mu^2(d)$, we are counting the number of square-free divisors of n. Let $n = p_1^{a_1} \cdot p_2^{a_2} \dots p_k^{a_k}$. We can equivalently substitute n by $n' = \prod_{1 \le i \le k} p_i$ as μ^2 is nonzero

only when d is square-free.

Then,
$$\sum_{d|n} \mu^2(d) = \sum_{d|n'} \mu^2(d) = 1 + \binom{k}{1} + \binom{k}{2} + \binom{k}{3} \dots \binom{k}{k} = 2^k$$
 where $\binom{k}{i}$ is number of such divisors which have only i distinct prime factors out of k with exponent 1. As $k = \omega(n)$ (number of prime factors of n), $\sum_{d|n} \mu^2(d) = 2^{\omega(n)}$.

1.17 Q17

We have Mobius Inversion Formula, $\mu * f = g \implies f = u * g$ where μ is the Mobius function.

1.17.1

To prove, $\mu * \tau = u$. We have, $u * u = \sum_{d|n} u(\frac{n}{d}) \cdot u(d) = \sum_{d|n} 1 = \tau(n) = \text{number}$ of divisors of n = d(n).

As $u * u = \tau \implies u = \mu * \tau$ by Mobius Inversion Formula as required.

1.17.2

To prove, $\mu * \sigma = E$. We have, $u * E = \sum_{d|n} u(\frac{n}{d}) \cdot E(d) = \sum_{d|n} d = \sigma(n) = \text{sum of all divisors of } n$.

As $u * E = \sigma \implies E = \mu * \sigma$ by Mobius Inversion Formula as required.

1.18 Q18

d(n) is a completely multiplicative function: d(mn) = d(m).d(n) (: product of factors of m and n is a factor of the product mn).

So, it is sufficient to prove this relation for $n = p^a$.

LHS =
$$\sum_{k|n} (d(k))^3 = \sum_{0 \le i \le a} (d(p^i))^3 = \sum_{0 \le i \le a} (i+1)^3 = 1^3 + 2^3 + \dots + (a+1)^3 = (\frac{(a+1)(a+2)}{2})^2$$
.

RHS = $(\sum_{k|n} d(k))^2 = (\sum_{0 \le i \le a} d(p^i))^2 = (\sum_{0 \le i \le a} (i+1))^2 = (\frac{(a+1)(a+2)}{2})^2 = LHS$. Hence, proved.

1.19 Q19

We have the base case $\mu * log = \Lambda$, so when n has more than 1 distinct prime factor, it is 0.

As $\mu(n)$ is nonzero only on square-free numbers, it is enough to prove it for $n = p_1 \cdot p_2 \dots p_k$ with k > m. Consider, $log(p_i) = a_i$. Then, in $\sum_{d|n} \mu(d) \cdot log^m(d) = \sum_{d|n} \mu(d) \cdot (\sum_t a_i)^m = \sum_{d|n} (-1)^t \cdot (\sum_t a_i)^m$ where t is number of $log(p_i)$ in each term.

Consider the expression, $E = \prod_{1 \le i \le k} (e^{\lambda a_i} - 1) = \prod_{1 \le i \le k} ((\lambda a_i) + \frac{(\lambda a_i)^2}{2!} + \frac{(\lambda a_i)^3}{3!} \dots).$

The coefficient of $\lambda^m = 0$ because, m < k and we have at least one factor of λ from each term. But if we consider finding a combinatorial expression for λ^m , we get $(-1)^{k-1} \cdot \frac{\lambda^m}{m!} \cdot ((a_1^m) + (a_2^m) + (a_3^m) \dots (a_k^m) + (-1)^{-1} (a_1 + a_2)^m + \dots + (-1)^{-m+1} \cdot (a_1 + a_2 + a_3 \dots a_k)^m)$ $= (-1)^{k-1} \cdot \frac{\lambda^m}{m!} \cdot \sum_{d|n} (-1)^{-t} \cdot (\sum_t a_i)^m = (-1)^{k-1} \cdot \frac{\lambda^m}{m!} \cdot \sum_{d|n} (-1)^t \cdot (\sum_t a_i)^m = 0.$ This implies, that our original expression $\sum_{d|n} (-1)^t \cdot (\sum_t a_i)^m$ must be 0.

For Example: Consider $n = p_1 \cdot p_2 \cdot p_3 \implies a = log(p_1), b = log(p_2)$ and $c = log(p_3)$ and m = 2. We have to prove $(a^2+b^2+c^2)-(a+b)^2-(b+c)^2-(c+a)^2+(a+b+c)^2=0$. Now consider, $E = (e^{\lambda a}-1)\cdot(e^{\lambda b}-1)\cdot(e^{\lambda c}-1)$. The coefficient of λ^2 is the coefficient of λ^2 in $(e^{\lambda a}+e^{\lambda b}+e^{\lambda c}-e^{\lambda(a+b)}-e^{\lambda(b+c)}-e^{\lambda(c+a)}+e^{\lambda(a+b+c)})=(-1)^2\cdot\frac{\lambda^2}{2!}\cdot(a^2+b^2+c^2)-(a+b)^2-(b+c)^2-(c+a)^2+(a+b+c)^2)$ which is 0 as, in Taylor Expansion of E, we have at least one λ from each factor of E.

1.20 Q20

As g(n) and f(n) are positive, we have LHS = log(g(n)) = (log(f) * a)(n) and RHS = log(f(n)) = (log(g) * b)(n).

We have (a * b)(n) = I(n) by definition.

Multiplying by log(f(n)) both sides, we have $((log(f))*a)*b = log(f)*I \implies (log(g)*b)(n) = log(f)(n)(:: LHS) = RHS.$

Similarly, multiplying by log(g(n)) both sides of b*a = I, we have $((log(g))*b)*a = log(g)*I \implies (log(f)*a)(n) = log(g)(n)(::RHS) = LHS$. Hence, proved LHS \iff RHS.

1.21 Q21

1.21.1

We have Mobius Inversion Formula $\mu * f = g \implies f = u * g$ where μ is the Mobius function.

So,
$$F_1 * u = \sum_{d|n} (\sum_{1 \le k \le n, (k,d)=1} f(\frac{k}{d})) = \sum_{qd=n} (\sum_{1 \le k \le n, (qk,n)=q} f(\frac{kq}{n}))$$
. Now, $(kq, n) = q$ allows

all values less than q that have some GCD with n, so that the inner sum sums up all the $k \leq n$ that same GCD q. So, the expression is same as F.

1.21.2

Using the above result, we have to prove $\left(\sum_{1 \le k \le n(k,n)=1} e\left(\frac{k}{n}\right)\right) * u = I. \Longrightarrow \sum_{1 \le k \le n} e\left(\frac{k}{n}\right)$.

The sum in the expression is a GP. When n=1, the sum $=e^{i2\pi}=1$, otherwise the sum

$$\frac{e^{\frac{i2\pi}{n}} \cdot e^{i2\pi} - 1}{e^{\frac{i2\pi}{n}} - 1} = 0$$

. So, it is exactly I(n).

1.22 Q22

Observation: $a - 1 \le \sqrt{a^2 - 1} < a \implies (a - 1)^2 \le a^2 - 1 < a^2 \implies 2 - 2a \le 0 \le 1 \implies a \ge 1$. So, a can be any natural number.

In the function, $f(n) = \lfloor \sqrt{n} \rfloor - \lfloor \sqrt{n-1} \rfloor$.

Case 1: If n is a perfect square $= a^2 \implies f(n) = a - (a - 1) = 1$.

Case 2: If $n = a^2 + 1$, f(n) = a - a = 0.

Case 3: Otherwise, both n and n-1 lie between 2 perfect squares and f(n)=0. Consider, $0=f(p_1)\cdot f(p_2)=f(p_1\cdot p_2)=0$ where $p_1\neq p_2$ are primes. But, $0=f(p_1)\cdot f(p_1)\neq f(p_1^2)=1$. Hence, f(n) is multiplicative but not completely multiplicative.

$1.23 \quad Q23$

Consider, $F(p_1) = \prod_{d|p_1} f(d) = f(1) \cdot f(p_1)$ and $F(p_2) = \prod_{d|p_2} f(d) = f(1) \cdot f(p_2)$. Now, $F(p_1 \cdot p_2) = \prod_{d|p_1 \cdot p_2} f(d) = f(1) \cdot f(p_1) \cdot f(p_2) \cdot f(p_1 \cdot p_2)$ which is not equal to $F(p_1) \cdot F(p_2)$ as $f(p_1)$ and $f(p_2)$ appear twice each in the RHS but once each in the LHS. So, F(n) is not multiplicative.

$1.24 \quad Q24$

The argument of f((k,n)) is (k,n)=d which must divide n. The number of times, $1 \le k \le n, (k,n)=d$ is $\phi(n/d)$ as $(k,n)=d \implies (\frac{k}{d},\frac{n}{d})=1$.

So, $\sum_{1 \le k \le n} f((k,n)) = \sum_{d|n} f(d) \cdot \phi(n/d) \implies g(n) = \phi(n)$. Hence, such an function $g = \phi$ exists which is multiplicative arithmetic function as required.

Now, in lectures we have proved $\phi = \mu * E$ and E is completely multiplicative by definition. So, if $f = (k, n)\mu(k, n) = \mu E \implies f * g = (\mu E) * \phi = (\mu E) * (\mu * E) = (\mu E * E) * \mu = \mu(\because \mu E \text{ is the Dirichlet Arithmetic Inverse of 'E' which is completely multiplicative). Hence, proved.$

1.25 Q25

In Liouville's function, $\lambda(n) = (-1)^{\omega(n)} \implies \lambda(n) = (-1)^{\sum_{1 \le i \le k} a_i}$ where a_i is the exponent of the i^{th} prime p_i in prime factorisation of n.

 $\implies \lambda(n) = (-1)^{1 \le i \le k} a_i \% 2$ (: $(-1)^2 = 1$)) where % represents modulo symbol.

Now, consider $n=p^2\cdot b$ where b is completely square-free. In this representation, a prime p_i is a factor of b if and only if it occurs odd number of times. So, $b=\prod_{1\leq i\leq k}p_i^{a_i\%2}$.

Let $S = \sum_{d^2|n} \mu(\frac{n}{d^2}) = \mu(\frac{p^2 \cdot b}{d^2})$. $\mu(\frac{p^2 \cdot b}{d^2})$ is non zero only when its argument is square

free. So, d = p and $S = \mu(b) = (-1)^{K_b}$ where K_b is the number of prime factors of b and these prime factors occur odd number of times in prime factorisation of n.

As defined above, $K_b = \sum_{1 \le i \le k} a_i \% 2$. Hence, $(-1)^{K_b} = \mathcal{S} = \sum_{d^2 \mid n} \mu(\frac{n}{d^2}) = \lambda(n)$.