NAME: Edward strating
DATE: December 10, 2020

CHAPTER 4 TEST: VSEPR THEORY, POLARITY, AND INTERMOLECULAR FORCES

Knowledge	Inquiry		Communication	
/20		/15	1000	/10

INQUIRY (15 Marks)

Complete the table for each of the following molecules: (15 marks)

Chemical Formula	Lewis Structure (indicate dipoles if applicable)	Electron Geometry (General Formula)	VSEPR shape	Polarity of Molecule	Hybridization of Central Atom
SbCl₅	100 : il. 201:	AXS	trigional bip-gramidal	nompolar	sp3d
BrF ₅	FORFES	AXSE	Square pyrarnidal	polar	5p3d2
BBr ₃	24e : Br: Br:	A×3	trigonal planas	non polar	5p²

COMMUNICATION (10 Marks)

 Use the concept of structure and intermolecular forces to explain (in point form) why boiling point of SeCl₄ is greater than SiCl₄. Draw a Lewis structure to aid in your explanation (3 marks)

1)34e : ii - Souly has a lone pair of elections on the central atom

:ci-se-ci: - Forms "season" shape making the molecule more polar

-cl will attract more electrons and cause negative dipole

- therefore seein can form dipole-dipole lond which are

stronger intermolecular forces

:ci-si-ci: -siciy is non-polar and can only form LDF honds

:ci: - therefore seein will form stronger intermolecular honds

and have a higher hoiling point

 Complete the following chart to compare the physical or chemical properties you would expect for AI (s) and AI₂O₃ (s). (4 marks total - ½ mark each box)

Solid	Type of Solid	Conductivity in solid state (yes/no)	Solubility in Water (yes/no)	Description of what structure looks like
Al (s)	Metallie cryslal Structure	7,25	ро	- a "otection sea" - electrons can move freely and conduct electricity -machinity ductile and shin-
Al ₂ O ₃ (s)	tonic crystal Structure	no	Yes	-lultice structure that breaks in clean lines when hit -hard and brittle

- Compare SiF₄ and XeF₄ on the various aspects of molecular shape and related properties given, and choose the letter below that matches the property given. (3 marks - ½ mark for each blank)
 - (a) if the answer is only SiF4
 - (b) If the answer is only XeF4
 - (c) If the answer is both SiF4 and XeF4
 - (d) If the answer is neither SiF4 nor XeF4

:F:	2F=
1	Faxor:
作一个户	,, @
i =:	≉F:
•	• -

- i. Polar molecule
- د_ ii. Symmetrical shape
- ____ iii. Contains lone pairs
- _a_ iv. Has a larger bond angle
- __C__ v. Would not dissolve in water
 - d vi. The presence of double or triple bonds