## Trabalho Prático Nº2 –

Eduardo Benjamim Lopes Coelho, Henrique Gabriel dos Santos Neto e Irenel Lopo da Silva {pg47164, pg47238, pg42644}@alunos.uminho.pt

Universidade do Minho

Resumo Neste trabalho pretende-se experimentar várias soluções de streaming a pedido e em tempo real usando o emulador CORE como bancada experimental. O objetivo é em primeiro lugar perceber as opções disponíveis em termos de pilha protocolar e as diferenças conceptuais entre elas. Por outro lado, espera-se também alguma familiarização com os formatos multimédia e como se faz o seu empacotamento (apenas de forma superficial, dada a imensidão de possibilidades), bem como com as ferramentas open source disponíveis para uso.

# Perguntas e Respostas

### Topologia em Estudo



#### Questão 1

Capture três pequenas amostras de tráfego no link de saída do servidor, respectivamente com 1 cliente (VLC), com 2 clientes (VLC) e Firefox) e com 3 clientes (VLC), Firefox

e ffmeg). Identifique a taxa em bps necessária (usando o  $ffmpeg - i \ video1.mp4$  e/ou o próprio wireshark), o encapsulamento usado e o número total de fluxos gerados. Comente a escalabilidade da solução. Ilustre com evidências da realização prática do exercício (ex: capturas de ecrã)

A partir do comando  $ffmpeg-i\ video1.mp4$  registamos que a bitrate para o nosso video de 49 segundos é de 62 kb/s. Para cada cliente, independente do software de recepção é aberto um fluxo de dados HTTP, sendo que desta forma cada stream ocorre sobre TCP, sendo que desta forma cada chunk (pedaço do vídeo) é encapsulado em OGG pelo vlc, seguida pelo cabeçalho HTTP em que cada trama é por sua vez encapsulada num cabeçalho TCP. Com base nisto podemos concluir que embora seja prático implementar o streaming sobre HTTP (visto que é um protocolo aplicacional bastante popular) não é fácil escalar esta solução, visto que para além de estarmos perante um design cliente-servidor que pode provocar quebras de serviços quando estamos perante um grande volume de utilizadores, os mecanismos de controlo de fluxo e congestão do protocolo TCP podem comprometer o serviço por parte do utilizador se este estiver sempre em situações de buffering (o cliente está a aguardar pelos chunks de video).

| Address A | Port A   | Address B    | Port B    | Packets   | Bytes | es Packets A → B Byte |  | es A → B | Packets B → A | Bytes B | → A F      | Rel Start    | D   | uration | Bits/ | s A → B Bits/s |    | s/s B → A  |
|-----------|----------|--------------|-----------|-----------|-------|-----------------------|--|----------|---------------|---------|------------|--------------|-----|---------|-------|----------------|----|------------|
| 10.0.0.20 | 42466    | 10.0.0.10    | 8080      | 3 887     | 3553k | 1 502                 |  | 99k      | 2 385         | 3       | 454k (     | .000000      | ) ( | 51.6793 |       | 12k            |    | 448k       |
| Protocol  |          | $\sim$       |           |           | Pe    | Percent Packets       |  | Packets  | Percent Bytes |         | Bytes      | Bytes Bits/s |     | End Pac | kets  | End Byt        | es | End Bits/s |
| ✓ Frame   |          |              |           |           |       | 100.0                 |  | 3932     | 100.0         | 100.0   |            | 3557290 461k |     | 0       |       | 0              |    | 0          |
| ✓ Ethe    | ernet    |              |           |           |       | 100.0                 |  | 3932     | 1.5           |         | 55048 7138 |              | 8   | 0       |       | 0              |    | 0          |
| ~         | Internet | Protocol Ve  | ersion 6  |           |       | 0.3                   |  | 10       | 0.0           | 400 51  |            |              | 0   |         | 0     |                | 0  |            |
|           | ✓ User   | Datagram     | Protocol  | l         |       | 0.1                   |  | 2        | 0.0           |         | 16 2       |              |     | 0       |       | 0              |    | 0          |
|           | 1        | Multicast Do | omain N   | ame Syste | m     | 0.1                   |  | 2        | 0.0           |         | 90         | 11           |     | 2       |       | 90             |    | 11         |
|           | Ope      | n Shortest P | ath First |           |       | 0.2                   |  | 6        | 0.0           |         | 216 28     |              |     | 6       |       | 216            |    | 28         |
|           | Inter    | rnet Control | Messag    | e Protoco | l v6  | 0.1                   |  | 2        | 0.0           |         | 32 4       |              |     | 2       |       | 32             |    | 4          |
| ~         | Internet | Protocol Ve  | ersion 4  |           |       | 99.6                  |  | 3918     | 2.2           |         | 78360      | 10k          |     | 0       |       | 0              |    | 0          |
|           | ✓ Tran   | smission Co  | ntrol Pro | otocol    |       | 98.9                  |  | 3887     | 96.2          | 342165  |            | 52 443       | ¢   | 3460    |       | 2809294        | 1  | 364k       |
|           | ~        | Hypertext Tr | ransfer P | rotocol   |       | 10.9                  |  | 427      | 16.9          |         | 59961      | 0 77k        |     | 416     |       | 587575         |    | 76k        |
|           |          | Malform      | ned Pack  | et        |       | 0.3                   |  | 11       | 0.0           |         | 0          | 0            |     | 11      |       | 0              |    | 0          |
|           | Ope      | n Shortest P | ath First |           |       | 0.8                   |  | 31       | 0.0           |         | 1364       | 176          |     | 31      |       | 1364           |    | 176        |
|           | Address  | Resolution   | Protoco   | I         |       | 0.1                   |  | 4        | 0.0           |         | 112        | 14           |     | 4       |       | 112            |    | 14         |

Figura 1. Fluxos e Hierarquias - 1 cliente (VLC)

| Address A                | Port A                   | Address B    | Port B   | Packets  | Bytes  | Packets A → B | Bytes A → E | Packets B → A | Bytes B | → A          | Rel Start | Duration | Bits | /s A → B | Bits/s B → A |
|--------------------------|--------------------------|--------------|----------|----------|--------|---------------|-------------|---------------|---------|--------------|-----------|----------|------|----------|--------------|
| 10.0.0.20                | 42466                    | 10.0.0.10    | 8080     | 3 251    | 2880k  | 1 313         | 86          | 5k 1 938      | . 2     | 2793k        | 1.559354  | 59.6667  | 11k  |          | 374k         |
| 10.0.1.20                | 56072                    | 10.0.0.10    | 8080     | 3 206    | 2877k  | 1 266         | 83          | 3k 1 940      | ) 2     | 2793k        | 1.559456  | 59.6664  | 11k  |          | 374k         |
| Protocol                 | Protocol                 |              |          |          | Percen | t Packets     | Packets     | Percent Bytes | 1       | Bytes        | Bits/s    | End Pack | ets  | End Byte | s End Bits/s |
| ✓ Frame                  |                          |              |          |          |        | 100.0         | 6501        | 100.0         | 5       | 5760518 752k |           | 0        |      | 0        | 0            |
| ✓ Ethernet               |                          |              |          |          |        | 100.0         | 6501        | 1.6           | 9       | 91014        | 11k       | 0        |      | 0        | 0            |
| ~                        | Internet                 | t Protocol V | ersion 6 |          |        | 0.1           | 7           | 0.0           | 2       | 280          | 36        | 0        |      | 0        | 0            |
| Open Shortest Path First |                          |              |          |          |        | 0.1           | 7           | 0.0           | 2       | 252          | 32        | 7        |      | 252      | 32           |
| ~                        | Internet                 | t Protocol V | ersion 4 |          |        | 99.8          | 6488        | 2.3           |         | 129760       | 16k       | 0        |      | 0        | 0            |
|                          | ✓ Tran                   | nsmission C  | ontrol P | rotocol  |        | 99.3          | 6457        | 96.1          |         | 553768       | 0 723k    | 5780     |      | 4566954  | 596k         |
|                          | ~                        | Hypertext 7  | Transfer | Protocol |        | 10.4          | 677         | 16.5          | 9       | 951472       | 124k      | 657      |      | 928212   | 121k         |
|                          |                          | Malfori      | med Pac  | ket      |        | 0.3           | 20          | 0.0           |         | )            | 0         | 20       |      | 0        | 0            |
|                          | Open Shortest Path First |              |          |          |        | 0.5           | 31          | 0.0           |         | 1364         | 178       | 31       |      | 1364     | 178          |
|                          | Address                  | s Resolution | n Protoc | ol       |        | 0.1           | 6           | 0.0           | 1       | 168          | 21        | 6        |      | 168      | 21           |

Figura 2. Fluxos e Hierarquias - 2 clientes (VLC e Firefox)

| Address A                                       | Port A  | Address B    | Port B    | Packets  | Bytes  | Packets A → B | Bytes A → B | Packets B → A | Bytes B → A | Rel Start | Duration  | Bits/s A → B  | Bits/s B → A |
|-------------------------------------------------|---------|--------------|-----------|----------|--------|---------------|-------------|---------------|-------------|-----------|-----------|---------------|--------------|
| 10.0.0.20                                       | 42466   | 10.0.0.10    | 8080      | 3 473    | 3114k  | 1 378         | 90          | k 2 095       | 3023k       | 0.000000  | 60.9581   | 11k           | 396k         |
| 10.0.1.20                                       | 56072   | 10.0.0.10    | 8080      | 3 401    | 3109k  | 1 305         | 86          | k 2 096       | 3023k       | 0.000271  | 60.9581   | 11k           | 396k         |
| 10.0.1.21                                       | 37300   | 10.0.0.10    | 8080      | 3 415    | 3113k  | 1 316         | 87          | k 2 099       | 3026k       | 0.002242  | 60.9567   | 11k           | 397k         |
| Protocol                                        |         | ~            |           |          | Percer | nt Packets    | Packets     | Percent Bytes | Bytes       | Bits/s    | End Packe | ets End Bytes | End Bits/s   |
| ✓ Frame                                         |         |              |           |          |        | 100.0         | 10334       | 100.0         | 93410       | 93 1209k  | 0         | 0             | 0            |
| ✓ Ethernet                                      |         |              |           |          |        | 100.0         | 10334       | 1.5           | 14467       | 6 18k     | 0         | 0             | 0            |
| <ul> <li>Internet Protocol Version 6</li> </ul> |         |              |           |          |        | 0.1           | 6           | 0.0           | 240         | 240 31 0  |           | 0             | 0            |
|                                                 | Op      | en Shortest  | Path Fin  | st       |        | 0.1           | 6           | 0.0           | 216         | 27        | 6         | 216           | 27           |
| ~                                               | Interne | t Protocol \ | Version 4 | ļ        |        | 99.9          | 10320       | 2.2           | 20640       | 0 26k     | 0         | 0             | 0            |
|                                                 | ✓ Tra   | nsmission C  | Control P | rotocol  |        | 99.6          | 10289       | 96.2          | 89879       | 73 1163k  | 9187      | 7411437       | 959k         |
|                                                 | ~       | Hypertext    | Transfer  | Protocol |        | 10.7          | 1102        | 16.5          | 15456       | 46 200k   | 1063      | 1501219       | 194k         |
|                                                 |         | Malfor       | med Pac   | ket      |        | 0.4           | 39          | 0.0           | 0           | 0         | 39        | 0             | 0            |
|                                                 | Op      | en Shortest  | Path Fin  | st       |        | 0.3           | 31          | 0.0           | 1364        | 176       | 31        | 1364          | 176          |
|                                                 | Addres  | s Resolutio  | n Protoc  | :ol      |        | 0.1           | 8           | 0.0           | 224         | 29 8      |           | 224           | 29           |

Figura 3. Fluxos e Hierarquias - 3 clientes (VLC, Firefox e ffplay)

Todas as tramas foram encapsuladas no formato OGG de modo a haver maior compatibilidade entre browsers e dispositivos. O cliente VLC encontra-se no Laptop1 que possui o endereço 10.0.1.20, o cliente firefox encontra-se no Laptop2 que possui o endereço 10.0.1.20 e o cliente fiplay encontra-se no Laptop3 que possui o endereço 10.0.1.21.

#### Questão 2

Diga qual a largura de banda necessária, em bits por segundo, para que o cliente de streaming consiga receber o vídeo no firefox e qual a pilha protocolar usada neste cenário.

Tendo em conta a estrutura do protocolo DASH no caso em estudo, a largura de banda necessária para que o cliente assista o vídeo varia conforme a qualidade que este está a ver, ou seja conforme o ficheiro que esteja a receber. Para o tamanho de  $180 \times 120$  pixeis, o vídeo está codificado para ter um débito de 207kbps, para o tamanho de  $360 \times 240$  pixeis o video apresenta uma bitrate de 521kbps enquanto que para o tamanho maior ( $540 \times 360$  pixeis) o bitrate necessário será aproximadamente 1018kbps.

Adicionalmente, existe um overhead de dados e um possível atraso que é apresentado em cada trama de dados que é provocado pelo protocolo aplicacional (HTTP) e consequentemente pelo protocolo de transporte correspondente (TCP) que impacta bastante a continuidade de serviço devido aos mecanismos de controlo de fluxo e congestão que pode atrasar bastante os dados, e provocar jitter no serviço.

Durante o streaming em si o débito pode variar entre valores próximos aos três valores anteriores visto que o cliente indica qual dos formatos pretende ver conforme a sua conexão de forma a garantir a disponibilidade e continuidade do serviço ao longo do tempo.

#### Questão 3

Ajuste o débito dos links da topologia de modo que o cliente no portátil 2 exiba o vídeo de menor resolução e o cliente no portátil 1 exiba o vídeo com mais resolução. Mostre evidências.



Figura 4. Topologia da rede com débito reduzido

# Streaming ERS: etapa 2 DASH Streaming ERS: etapa 2 DASH



Streaming ERS: etapa 2 DASH



Figura 5. Transição de formatos no browser do Laptop2

#### Questão 4

Descreva o funcionamento do DASH neste caso concreto, referindo o papel do ficheiro MPD criado.

O protocolo *DASH* sobre *http* tem o objetivo de permitir a um utilizador um acesso constante a um serviço de *streaming* mesmo em redes sujeitas a vários erros e atrasos a partir de vários dados e métodos de software. Para exemplificar melhor o funcionamento deste protocolo, a largura de banda do Laptop 2 foi limitada a 512kps de forma a visualizar melhor o padrão do protocolo nas amostras realizadas como é visivel na Figura 4.

Para garantir o serviço, o protocolo DASH consiste em disponibilizar um serviço com adaptive bitrate~(ABR), ou seja um cliente poderá assistir ao mesmo fluxo de conteúdo a partir de vários débitos diferentes, o que resulta em conteúdo com qualidades diferentes. Um conteúdo destinado a este serviço é primeiramente sujeito a uma codificação de várias formas diferentes, que permitirão ao

sistema disponibilizar o conteúdo em vários bitrates diferentes, a partir de vários fatores, tais como: resoluções diferentes e compressões com perdas. No nosso caso, estes ficheiros correspondem aos vídeos  $video2\_180\_120\_200k\_dash.mp4$ ,  $video2\_360\_240\_500k\_dash.mp4$  e  $video2\_540\_360\_1000k\_dash.mp4$  que originaram de uma recodificação do ficheiro video2.mp4 em várias resoluções diferentes.

De seguida os ficheiros anteriores são mapeados num ficheiro  $MPEG-DASH\ (MPD)$ , maioritariamente conhecido como manifest. O manifest consiste num ficheiro de texto com formato semelhante a um XML, que define e mapeia as respetivas divisões entre os vários formatos codificados. Este ficheiro é transferido pelo cliente antes de este aceder ao fluxo de dados e permite a este escolher um dado chunk (pedaço do vídeo) do ficheiro codificado conforme o bitrate desejado, a partir de um índice corresponde ao instante atual do vídeo no cliente. Como sugerido anteriormente, esta escolha do ficheiro e consequentemente da largura de banda (bitrate) usada ocorre conforme o estado da sessão do cliente (ou seja, o delay, o jitter, as perdas de informação, entre outros).

Estes comportamentos foram registados no caso em estudo. Como referido anteriormente, o Laptop 2 foi limitado de forma a não permitir larguras de banda superiores a 512kbps. Desta forma foi feito um pedido HTTP ao streamer para o ficheiro  $video_dash.html$  que, por sua vez, efetuará outros pedidos HTTP. Estas comunicações foram capturadas com recurso ao wireshark e, por sua vez, foram filtradas as tramas HTTP pois, para além de serem as únicas tramas com fácil interpretação humana, possuem a informação necessária para estudarmos o protocolo. Os resultados encontram-se na figura 6. O primeiro pedido relevante, correspondente ao manifest presente na trama 22, ocorre, como referido anteriormente, antes da transmissão de conteúdo para permitir ao cliente escolher qual o ficheiro que possui o bitrate melhor para a sua situção. De seguida podemos ver que o cliente pediu uma trama de resolução média ( $360 \times 180$ , trama 30), visto que em principio conseguiria com base na topologia atual cumprir os requisitos de 500kbps que este exige. Ora, isto não se verificou porque, rapidamente, o vídeo, no browser, entrou em buffering, visto que o segundo chunk não chegou rápido o suficiente para cumprir o débito de consumo do utilizador. Tendo isto em conta, o protocolo pediu pela resolução inferior à originalmente pedida ( $180 \times 120$ , tramas 925, 1258 e 1591) e prosseguiu com esta até a transmissão terminar. Esta transição é visível na figura 5.

| No. | Time           | Source    | Destination | Protocol | Length Info                                    |
|-----|----------------|-----------|-------------|----------|------------------------------------------------|
|     | 6 2.6080556    | 10.0.1.20 | 10.0.0.10   | HTTP     | 501 GET /video_dash.html HTTP/1.1              |
|     | 14 2.6824905   | 10.0.1.20 | 10.0.0.10   | HTTP     | 439 GET /dash.all.debug.js HTTP/1.1            |
|     | 22 2.7551432   | 10.0.1.20 | 10.0.0.10   | HTTP     | 502 GET /video_manifest.mpd HTTP/1.1           |
|     | 30 3.1394680   | 10.0.1.20 | 10.0.0.10   | HTTP     | 398 GET /video2_360_240_500k_dash.mp4 HTTP/1.1 |
|     | 925 18.405271  | 10.0.1.20 | 10.0.0.10   | HTTP     | 399 GET /video2_180_120_200k_dash.mp4 HTTP/1.1 |
|     | 1258 23.053328 | 10.0.1.20 | 10.0.0.10   | HTTP     | 400 GET /video2_180_120_200k_dash.mp4 HTTP/1.1 |
|     | 1591 27.711210 | 10.0.1.20 | 10.0.0.10   | HTTP     | 400 GET /video2_180_120_200k_dash.mp4 HTTP/1.1 |
|     | 8 2.6081904    | 10.0.0.10 | 10.0.1.20   | HTTP     | 272 HTTP/1.1 304 Not Modified                  |
|     | 16 2.6826333   | 10.0.0.10 | 10.0.1.20   | HTTP     | 272 HTTP/1.1 304 Not Modified                  |
|     | 24 2.7553244   | 10.0.0.10 | 10.0.1.20   | HTTP     | 273 HTTP/1.1 304 Not Modified                  |
|     | 802 12.160989  | 10.0.0.10 | 10.0.1.20   | MP4      | 1496                                           |
|     | 1233 22.121688 | 10.0.0.10 | 10.0.1.20   | MP4      | 841                                            |
|     | 1566 26.769717 | 10.0.0.10 | 10.0.1.20   | MP4      | 841                                            |

Figura 6. Captura de Tráfego HTTP DASH no Laptop 2

#### Questão 5

Compare o cenário unicast aplicado com o cenário multicast. Mostre vantagens e desvantagens na solução multicast ao nível da rede, no que diz respeito a escalabilidade (aumento do  $n^{o}$  de clientes) e tráfego na rede. Tire as suas conclusões.

No cenário *multicast*, cada *frame* de vídeo e áudio do conteúdo a ser transmitido atravessa a rede uma vez, porque o servidor envia os dados para o *ipmulticast* da rede, que por sua vez envia os dados para cada cliente. Esta abordagem tem a desvantagem de, uma vez que os clientes estão a ver a mesma *stream* não têm acesso a opcões de controlo tais como pausar, avançar e retroceder. Por outro lado, tem a vantagem de utilizar menos débito e de gerar menos tráfego na rede.

O modelo de *streamingmulticast* não escala facilmente em redes heterogéneas nem na rede pública. O *multicast* assume que todos os clientes que estão a visualizar a *stream* têm a mesma capacidade de largura de banda e que estão a utilizar um dispositivo semelhante. Isto dificulta o escalamento para os clientes que têm uma largura de banda menor ou com muita variação, ou dispositivos diferentes do que a stream espera.

No cenário unicast, é enviada uma cópia do vídeo para cada cliente. Esta abordagem permite os utilizadores pausarem, retrocederem e avançarem no contéudo que estão a visualizar, no entanto, utiliza mais débito e gera bastante mais tráfego na rede podendo levar ao seu congestionamento e, eventualmente, perda de pacotes.

Deste modo, o modelo de *streamingunicast* é mais escalável, na medida em que permite que o conteúdo a ser transmitido se adapte à largura de banda e dispositivos dos clientes.

Por último, é importante considerar que configurar uma solução *multicast* é mais complexo que configurar uma solução *unicast*.

| Address A               | Port A                                   | Address B        | Port B    | Packets   | Bytes | Packets A → B   | Bytes A → B | Packets B → A | Bytes B | → A R  | el Start | Duration | Bits/s A | → B   | Bits/s B → A | ı |
|-------------------------|------------------------------------------|------------------|-----------|-----------|-------|-----------------|-------------|---------------|---------|--------|----------|----------|----------|-------|--------------|---|
| 10.0.0.10               | 33388                                    | 224.0.0.100      | 5555      | 5 832     | 4399  | k 5 832         | 4399k       | 0             |         | 0 0    | .000000  | 162.2645 |          | 216k  |              | 0 |
| 10.0.0.10               | 56767                                    | 224.2.127.254    | 9875      | 33        | 12    | k 33            | 12k         | 0             |         | 0 1    | .864720  | 160.4318 |          | 602   |              | 0 |
| 10.0.0.10               | 33389                                    | 224.0.0.100      | 5556      | 32        | 224   | 0 32            | 2240        | 0             |         | 0 1    | .864764  | 155.7509 |          | 115   |              | 0 |
| Protocol                |                                          | ~                |           |           | ı     | Percent Packets | Packets     | Percent Bytes |         | Bytes  | Bits/s   | End Pack | ets End  | Bytes | End Bits/s   | ; |
| <ul><li>Frame</li></ul> |                                          |                  |           |           |       | 100.0           | 5898        | 100.0         |         | 441362 | 8 217k   | 0        | 0        |       | 0            |   |
| ✓ Ethe                  | ✓ Ethernet                               |                  |           |           |       |                 | 5898        | 1.9           |         | 82572  | 4070     | 0        | 0        |       | 0            |   |
| V                       | nternet F                                | Protocol Version | on 6      |           |       | 0.0             | 1           | 0.0           |         | 40     | 1        | 0        | 0        |       | 0            |   |
|                         | Interr                                   | net Control Me   | ssage Pr  | otocol v6 |       | 0.0             | 1           | 0.0           |         | 16     | 0        | 1        | 16       |       | 0            |   |
| V 1                     | nternet F                                | Protocol Version | n 4       |           |       | 100.0           | 5897        | 2.7           |         | 117940 | 5813     | 0        | 0        |       | 0            |   |
|                         | ✓ User                                   | Datagram Pro     | tocol     |           |       | 100.0           | 5897        | 1.1           |         | 47176  | 2325     | 0        | 0        |       | 0            |   |
|                         | < S                                      | ession Annour    | cement    | Protocol  |       | 0.6             | 33          | 0.2           |         | 10692  | 527      | 0        | 0        |       | 0            |   |
|                         |                                          | Session Des      | cription  | Protocol  |       | 0.6             | 33          | 0.2           |         | 9900   | 487      | 33       | 9900     | )     | 487          |   |
|                         | ✓ R                                      | eal-Time Trans   | sport Pro | tocol     |       | 98.0            | 5779        | 93.5          |         | 412471 | 1 203k   | 0        | 0        |       | 0            |   |
|                         | MP4V-ES                                  |                  |           |           |       |                 | 5779        | 91.9          |         | 405536 | 3 199k   | 5779     | 405      | 363   | 199k         |   |
|                         | Real-time Transport Control Protocol 0.5 |                  |           |           |       |                 |             | 0.0           |         | 896    | 44       | 32       | 896      |       | 44           |   |
|                         | D                                        | ata              |           |           |       | 0.9             | 53          | 0.7           |         | 29585  | 1458     | 53       | 2958     | 35    | 1458         |   |

Figura 7. Fluxos de Tramas UDP e Hierarquia de protocolos em Multicast

| Address A | ^              | Port A    | Address B   | Port B    | Packets | Bytes    | Packets A | → B   | Bytes A | → B   | Packets B - | → A   E | ytes B → A | Rel Sta | rt Duration | Bits/s A → B | Bits/s B → A |
|-----------|----------------|-----------|-------------|-----------|---------|----------|-----------|-------|---------|-------|-------------|---------|------------|---------|-------------|--------------|--------------|
| 10.0.0.10 |                | 55051     | 10.0.1.21   | 5556      | 21      | 1470     |           | 21    |         | 1470  |             | 0       |            | 2.8897  | 10 100.4820 | 117          | 7            |
| 10.0.0.10 |                |           | 10.0.1.21   | 5555      | 3 903   | 3095k    |           | 3 903 |         | 3095k |             | 0       |            | 2.8897  | 51 102.3939 | 241          | k            |
| Protocol  |                | ~         |             |           | Pe      | rcent Pa | ckets     | ı     | Packets | Perce | ent Bytes   |         | Bytes      | Bits/s  | End Packets | End Bytes    | End Bits/s   |
| ✓ Frame   |                |           |             |           |         | 1        | 0.00      | 4     | 1011    |       | 100.0       |         | 3108799    | 225k    | 0           | 0            | 0            |
| ✓ Eth     | ernet          |           |             |           |         | 1        | 0.00      | 4     | 1011    |       | 1.8         |         | 56154      | 4079    | 0           | 0            | 0            |
| ~         | Internet Prote | ocol Ver  | sion 6      |           |         |          | 0.4       | 1     | 15      |       | 0.0         |         | 600        | 43      | 0           | 0            | 0            |
|           | ✓ User Data    | agram P   | rotocol     |           |         |          | 0.0       | 2     | 2       |       | 0.0         |         | 16         | 1       | 0           | 0            | 0            |
|           | Multi          | cast Do   | main Name   | System    |         |          | 0.0       | 2     | 2       |       | 0.0         |         | 282        | 20      | 2           | 282          | 20           |
|           | Open Sho       | ortest Pa | th First    |           |         |          | 0.3       | 1     | 11      |       | 0.0         |         | 396        | 28      | 11          | 396          | 28           |
|           | 6              |           | 0.0         | 2         | 2       |          | 0.0       |       | 32      | 2     | 2           | 32      | 2          |         |             |              |              |
| ~         | Internet Prote | ocol Ver  | sion 4      |           |         |          | 99.5      | 3     | 3990    |       | 2.6         |         | 79800      | 5797    | 0           | 0            | 0            |
|           | ✓ User Data    | agram P   | rotocol     |           |         | !        | 97.8      | 3     | 3924    |       | 1.0         |         | 31392      | 2280    | 0           | 0            | 0            |
|           | Real-          | time Tra  | ansport Cor | ntrol Pro | tocol   |          | 0.5       | 2     | 21      |       | 0.0         |         | 588        | 42      | 21          | 588          | 42           |
|           | Data           |           |             |           |         |          | 97.3      | 3     | 3903    |       | 94.3        |         | 2931839    | 212k    | 3903        | 2931839      | 212k         |
|           | Open Sho       | ortest Pa | th First    |           |         |          | 1.4       | 5     | 66      |       | 0.1         |         | 2464       | 179     | 56          | 2464         | 179          |
|           | ✓ Internet 0   | Control   | Message Pr  | otocol    |         |          | 0.2       | 1     | 10      |       | 0.2         |         | 5068       | 368     | 0           | 0            | 0            |
|           | Real-          | time Tra  | ansport Cor | ntrol Pro | tocol   |          | 0.0       | 1     | I       |       | 0.0         |         | 28         | 2       | 1           | 28           | 2            |
|           | Data           |           |             |           |         |          | 0.2       | 9     | )       |       | 0.2         |         | 4680       | 340     | 9           | 4680         | 340          |
|           | Address Reso   | olution F | Protocol    |           |         |          | 0.1       | 6     | 5       |       | 0.0         |         | 168        | 12      | 6           | 168          | 12           |
|           | Address Reso   | olution f | Protocol    |           |         |          | 0.1       | 6     | 5       |       | 0.0         |         | 168        | 12      | 6           | 168          | 12           |

Figura 8. Fluxos de Tramas UDP e Hierarquia de protocolos em Unicast

#### Conclusões

Ao experimentar várias soluções de *streaming*, conseguimos aprofundar o nosso conhecimento do funcionamento de aplicações de *streaming* de conteúdo multimédia.

Na verdade, ao utilizar diferentes aplicações tais como o VLC e o ffmpeg conseguimos perceber as opções disponíveis em termos de pilha protocolar e as suas diferenças conceptuais. Para além disso, aprendemos novas funcionalidades da nossa conhecida aplicação VLC.

A primeira parte demonstrou-nos os problemas que podem ocorrer quando se faz streaming HTTP simples sem adaptação dinâmica de débito.

Numa segunda parte, conseguimos verificar o funcionamento do protocolo DASH e o modo como possibilita a adaptação do serviço de  $streaming\ HTTP$  simples às condições do cliente, com recurso ao ficheiro MPEG-DASH(MPD).

Por último, ao testar o streaming RTP/RTCPunicast sobre UDP e multicast com anúnicos SAP fomos capazes de compreender muito melhor as diferenças entre estes dois cenários, tal como as várias vantagens e desvantagens de cada um.

Em suma, este trabalho foi uma excelente oportunidade de concretizar todos os conhecimentos teóricos sobre os serviços de *streaming* de multimédia, exemplificando as diferenças entre as várias opções da pilha protocolar e modos de *streaming*.