Ahora bien, $i^2 = -1$, $i^3 = -i^4 = 1$, $i^5 = i$, etc. Por lo tanto, (B.25) se puede escribir como

$$e^{i\theta} = 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} - \cdots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \cdots\right) + \left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \cdots\right)$$

$$=\cos\theta + i \sin\theta$$

Con lo cual se completa la demostración.

PROBLEMAS

De los problemas 1 al 7 realice las operaciones indicadas.

1.
$$(2-3i)+(7-4i)$$

2.
$$3(4+i) - 5(-3+6i)$$

3.
$$5i(2+3i)+4(6-2i)$$

4.
$$(1+i)(1-i)$$

5.
$$(2-3i)(4+7i)$$

6.
$$(6+7i)(3-7i)$$

7.
$$(-3 + 2i)(7 + 3i)$$

De los problemas 8 al 20 convierta el número complejo a su forma polar.

10.
$$5 + 5i$$

11.
$$-2 - 2i$$

12.
$$-1-i$$

14.
$$2 + 2\sqrt{3}i$$

15.
$$3\sqrt{3} + 3i$$

16.
$$1 - \sqrt{3}i$$

17.
$$\sqrt{3} - i$$

18.
$$4\sqrt{3} - 4i$$

19.
$$-1 + i\sqrt{3}$$

20.
$$6\sqrt{3} - 6i$$

De los problemas 21 al 33 convierta de la forma polar a la forma cartesiana.

21.
$$e^{3\pi i}$$

22.
$$2e^{-7\pi i}$$

23.
$$e^{2\pi i}$$

24.
$$\frac{1}{2}e^{\frac{3\pi i}{4}}$$

25.
$$\frac{1}{2}e^{\frac{-3\pi i}{4}}$$

26.
$$5e^{\frac{\pi i}{4}}$$

27.
$$6e^{\frac{\pi i}{6}}$$

28.
$$4e^{\frac{-5\pi i}{6}}$$

29.
$$4e^{\frac{-5\pi i}{6}}$$

30.
$$3e^{\frac{-3\pi i}{4}}$$

31.
$$3e^{\frac{-2\pi i}{3}}$$

32.
$$\sqrt{3}e^{\frac{23\pi i}{4}}$$

33.
$$\sqrt{2}e^{\frac{\pi i}{4}}$$

En los problemas 34 al 45 calcule el conjugado del número dado.

34.
$$5 + 2i$$

35.
$$3-4i$$

36.
$$-3 + 8i$$

37.
$$4 + 6i$$

38.
$$-4 - 2i$$

41.
$$7e^{\frac{2\pi i}{7}}$$

42.
$$2e^{\frac{\pi i}{7}}$$

43.
$$7e^{\frac{-3\pi i}{5}}$$

44.
$$3e^{\frac{-4\pi i}{11}}$$

45.
$$e^{0.012i}$$

46. Demuestre que
$$z = \alpha + i\beta$$
 es real si y sólo si $z = \overline{z}$. [Sugerencia: Si $z = \overline{z}$ demuestre que $\beta = 0.1$

47. Demuestre que
$$z = \alpha + i\beta$$
 es imaginario si y sólo si $z = -\overline{z}$. [Sugerencia: Si $z = -\overline{z}$ demuestre que $\alpha = 0.1$

48. Demuestre que para cualquier número complejo
$$z$$
, $z\overline{z} = |z|^2$.