

Sensitivity studies OD-1D/3D of thermo aeraulic models of industrial premises

Assistance in the identification of influential phenomena

Preparation of experimental protocols for the Zephyr test platform

OpenTURNS Days – June 10th 2021

Pascal Borel (R&D/PRISME)

Proposed Agenda

- 1. Context of industrial thermo-aeraulic studies
- 2. Setup of numerical study experiment of Zephyr laboratory
 - a. Presentation of Zephyr laboratory
 - b. Numerical methodology
 - c. Salome Workflow
 - d. Variables of interest
 - e. Uncertain parameters
- 3. Results and Perspective
 - a. Experience plan results analysis: distribution and dependency
 - b. Metamodeling: sensitivity studies

Context of industrial thermo-aeraulic studies

Context – Objectives of industrial thermal studies

- Assess operability of electrical and I&C cabinet in industrials premises in various situation (consistency with thermal qualification)
 - Thermal transient : steady state, thermal transient with partial or total loss of HVAC
 - Premises configuration : geometry, thermal loads, thermal conditioning

Industrial practices

- Use of 0D/1D codes with a unique thermal potential for the whole cavity :
 - no access to heterogeneity indicators.
 - Some rooms can appear as critic with low margin between predicted temperature and materiel qualification temperature

Numerical Study objectives

- Preliminary identification of influent phenomena on temperature distribution
- Compare 0D/1D-3D code predicted temperatures / thermal power balances (convective / radiative heat flow)
- Focused on geometry of **Zephyr laboratory** test room (building in progress on EDF R&D Chatou site)

Modular laboratory ZEPHYR - Generalities

Assets

- Existing and future nuclear configurations
- Scale 1
- Modularity of the installation
- Multi-client

Main technical objectives

- Experimental evaluation of the metrological performance of innovative measurement systems
- Consolidation of numerical calculation codes used in ventilation.
- Support for the design and commissioning of ventilation installations
- Optimisation in deconstruction (filtration, air locks)

Representative concrete room

- Double enclosure (control of initial conditions in the external skin)
- Representative internal walls (thickness and reinforcement)
- Measurement of all the main thermo-aerodynamic variables:
 - Air flow
 - o Flux at the walls
 - Temperature distributed by optical fiber (Raman)
 - Pressure and hygrometry

Rij / user wall function - size: 0,033m

3D numerical experiments – Cases setup

- Phenomena modelled (3D and 0D)
 - Fluid flow
 - Heat transfers / Conjugate heat transfer
 - Conduction / Convection / Radiant transfers
- Mesh
- SALOME

OM

code.saturne

- Air, Walls and Electrical Cabinet Modelled
- o Elementary size: 0,1m
- Wall functions: integral correlation used for heat flow
- Main numerical parameters
 - Unsteady solver
 - \circ Turbulence : $k \omega$ SST
 - Schemes: upwind for turbulence, centered (with sloped test) for other variables
 - Unsteady solver with 0,1 s reference time step
 - Between 3000 and 6000 iterations required
 - \square Around 10 20 h Cpus cumulated time (0,5 1h with 20 cores)

3D numerical experiments – Case WorkFlow

o Generate mesh

 3D simulation of air flow and solid conduction

o 0D/1D Simulation

Postprocess Results

Mean profiles

Integrate local 3D results

Generate Plans

Wrap case in _exec function

function

- Enables case restart and results saving
- o Evaluate plans until convergency is reached for each case
- Results analysis as a new Data model
 - Dependencies
 - Sensitivity analyses metamodel based

(Code Saturne)

(Persalys)

(TAeZoSyPro with OpenModelica)

(Specific Python library)

(Specific Python Library)

(Specific Code Saturne User functions)

3D numerical experiments – Persalys WorkFlow

- Persalys _exec function
 - Define as a YACS model
 - o Evaluation of the plan with dumped code modification

```
import salome_ot
import os
study,ModèleYACS_0=salome_ot.getYacsPyStudy(code)
import pydefx
pydefx_path = os.path.dirname(pydefx.__file__)
light_executor_path = os.path.join(pydefx_path, "plugins", "lightexecutor.py")
mybuilder = pydefx.slurmbuilder.SlurmBuilder(executor=light_executor_path)
myModel = pydefx.SlurmStudy(schemaBuilder=mybuilder)
ModèleYACS_0.setJobModel(myModel)
```

- Use 'slurm study' feature to evaluate point by block (10 for instance)
- Use of default YACS model does not allow executables to be launched with srun command
- Executable to be launched with: srun -exclusive -n X ./my_mpi_program
 - --exclusive options allow slurm to use all allocated resources
 - ☐ Waste some resources when block size increases : reason not identified
 - Example: block size of 10 with 204 cpus allocated on 6 nodes allow evaluations 10 by 10
 - ➤ Block size of 50 with 1020 cpus on 30 nodes allows evaluations 37 by 37 instead of expected 50

Etudes
▼ 🖥 Study_3D_4_f_2_r_1
▼ 🛞 Modèles physiques
 ▼ PhysicalModel Définition Modèle probabiliste ▼ Ⅲ Plans d'expériences
▼ plan_0 ✓ Évaluation ✓ métamodèle_0 ✓ métamodèle_PC
▼ 🎉 Métamodèles
▼ <u>métamodèle_0</u> — Définition — Modèle probabiliste
▼ !## Sensibilité
✓ sensibilité_0
 <u>métamodèle_0_copie0</u> Définition Modèle probabiliste
▼ .f. Tendance centrale

=
_
_
_
_
_
()
_
_
=
-=

_	_
Φ	2
0	Ç
0	5
≥	Š

Methodology

- Study equiprobable situations
- Investigate generic model sensitivity

Dependency

o Independent Copula

3D numerical experiments – Variables of interest

Power balance

- o Radiant/convective heat flow for surface
- HVAC power

$$P_{HVAC} = \dot{m}c_p (T_{supply} - T_{Room})$$

- o Convergency at final time step
 - $cvg = \frac{P_{instationnaire}}{Heatloads}$

Scales

- \circ Power: $P_{heatloads}$
- \circ Dimensionless power : $\frac{P}{P_{heatload}}$
- $\circ \ \ \text{Temperature} \begin{cases} \frac{1}{2}\xi\rho_0 V^2 = \Delta\rho gh = \rho_0\beta\Delta T_{ref}gh \\ \dot{m}c_p\Delta T_{ref} = P_{th} \end{cases} => \begin{cases} V = \left[\frac{2\beta P_{th}gh}{S_{cab}c_p\xi\rho}\right]^{\frac{1}{3}} \\ \Delta T_{ref} = \frac{P_{th}}{\rho V S_{ar}c_p} \end{cases}$

with $\xi = 1 / S_{cab} = 0.07$: cabinet inlet surface

 $_{\odot}$ Dimensionless temperature : $T_n = \frac{T - T_{mean \, 3D}}{\Delta T_{ref}} / \Delta T_n = \frac{\Delta T}{\Delta T_{ref}}$

Temperatures

- T_{moy} 3D / T_{0D} / $T_{outlet 3D}$
- T_{inlet} / T_{outlet} cabinets
- Vertical mean profile temperature:

o 10 layers:
$$\mu_{layer_id}^* = \frac{\sum_{c_id=0}^{n_cells-1} w_{c_id} \times x_{c_id}}{\sum_{c_id=0}^{n_cells-1} w_{c_id}}$$

■ With: w_{c id} weight of cell for layer id

Methodology

- Numerical integration of local 3D variables
- o Project 3D field on a fixed 1D field (mean profile)
- Get similar variables of interest between **0D** and **3D** codes
- Dimensionless variables to help comparison between cases

3D numerical experiments – generated experience plan

- Probabilistic experience plan : Low discrepancy experience plans (Quasi Monte Carlo)
 - o 300 points
 - 17 uncertain parameters
 - Sensible filling rank space given the use of uniform and independent marginal law
 - Try to fill optimize space filling (distance between two points)
- Point number: Compromise between computing time and number of points

62 Study 1/OT Persalys 00105 TITTE Page 127 TempC distribution for each profile layer

Total evaluations

- First experience plan of 16 cases with different numerical setups: 10 000 Cpus days
- Determine sensible compromises between precision and cpu cost of each point evaluation

Evaluations

- 18 points failed due to 3D convergence issues
- Cpus Time: 140
 cumulated days 1.5 day
 (user) on GAIA

Report

- LaTeX PDF report
- Run_id exported as variable of interest to make the link between Persalys experience plan table and detailed run results

Point Values

Catalyst View

Convergence

HVAC balances

Temperature – Power

Balance

(0d/3d)

Mean TempC profile

TempC distribution at

cabinet Inlet

· Reminder: implication of 0D approach

$$\sum_{i}^{supply} \left(\dot{m}_{i} c_{p_{i}} T_{i} \right) - \dot{m}_{exhaust} c_{p_{room}} T_{air} + \sum_{i}^{walls} h_{total} S_{wall} (T_{wall} - T_{air}) + W = 0$$

Local energy equation integrated on the whole room volume

 \circ No reason, given expected heterogeneity that T_{air} is the relevant potential in the first equation, $T_{air} = \frac{1}{m_{air}} \iiint_v \rho T dV$

Analysis focused :

- Stratification phenomena (given by the 3D code)
- Consistency between predictions of 3D and 0D code

Global results

 Sensible global mean room temperature distribution given the range of the uncertain parameters

Main dependencies (Spearman indices)

- ΔT_{stratification}: -0,48 Inlet_Z_percent / -0.469 : Inlet_speed / 0,428 : HL_density / 0,179 HL_W_per_Cab / 0,2 Tadj /
- \circ Tn_{sol} :0.483 Inlet_Z_percent / 0.214 Renewal_Rate / 0.42 Inlet Speed / -0.434 HL_density / 0.334 HL_W_Per_Cab

Analysis

- Stratification tends to be mainly linked to supply parameter (geometry and way of supply) combined with the need of a certain amount of heat loads
- Emitters parameters are less influent once heat loads density fixed
- o Emitter inlet temperature always below mean air temperature
 - Cabinets act as an active devices with air inlet on the bottom part and blowing air in upper part of the room

Temperatures: 0D - 3D

Analysis

- \circ T_{0D} globally above $T_{CabInlet}$
 - Case or both are close are linked to case with low absolute temperature stratification
- Over estimation of HVAC power with 0D approach (link to poor ceiling heat transfer estimation)
- \circ Cases with T_{0D} lower than $T_{3D\;Mean}$ combined stratification and exhaust in lower part of the room

3D numerical experiments – Results MetaModels

Objectives

- o Learn dimensionless temperature to
 - Perform quantified sensitivity analysis (Sobol')
 - Perform partial quantified sensitivity analysis (with some influent parameters set as constant)
 - Allow metamodel export for improve 0D modelling of electrical premises

Technics used

- o Polynomial chaos
- Kriging
- Validation criteria
 - $\odot~Q^2=1-\frac{\sum_{j=1}^{n_t}(Y_j-\hat{Y}_j)^2}{\sum_{j=1}^{n_t}(Y_j-\bar{Y}_j)^2} \text{/ Compute with test sample, analytic method and K-Fold}$
 - Qualitive Analysis of residuals distribution
 - Aim is to have a metamodel averagely accurate

3D numerical experiments - MetaModels - Kriging

Parameters

- o Covariance kernel: squared exponential
- \circ Constant tendency with optimize hyper parameters ΔT_n

Results

- All scales within bounds except Wall_f_add_onn (less influent parameter)
 - Scales for normalized parameter $\frac{x \bar{x}}{sd(x)}$
- Acceptable Q2 for 3D based variables

Validation

 ΔT_n – Stratification

Normalized Stratification

 T_n – Inlet Cabinet

3D numerical experiments – MetaModels – Kriging Sensitivity

Method

o Use generated MetaModel to estimate Sobol' indices

Analysis

- Results consistent with Spearman indices and computed kriging scales
- Significant role of interactions
 - Supply geometry and inlet speed and air change rate
 - Deeper investigation of supply geometry and parameters to be done on next experience plans (supply angle, jet turbulence, inlet grid roles ...)
- o Can be used to generate experience plan of lower dimension
 - Projected 1D (all parameters fixed except 1) often tends to have a kriging variance nearly equal to amplitude parameter

 Number of points for model training is low given the input dimension

v35_DeltaTStratif
All parameter fixed except
inlet speed

$$S_i = \frac{Var\left[E[Y|X_i]\right]}{Var[Y]}$$

$$ST_i = 1 - \frac{Var\left[E[Y|X_{\sim i}]\right]}{Var[Y]}$$

3D numerical experiments – MetaModels – Polynomial Chaos

Parameters

Max degree : 2 / Sparse basis

Results

- Slightly lower Q2 than kriging method
- o Lower maximum degree based on explained part of variance
- Specify marginal of input samples improve significantly Q2

Validation

0.0224732

 ΔT_n – Stratification

 T_n – Inlet Cabinet

Courbe d'aiustement de la validation croisée K-Fold

3D numerical experiments – MetaModels – Kriging Sensitivity

- Analysis
 - Consistent Sobol indices between the two models

$$ST_i = 1 - \frac{Var\left[E[Y|X_{\sim i}]\right]}{Var[Y]}$$

3D numerical experiments – Estimate conditional marginal law¹

Method

- Select a sample from the evaluated experience plan based on quantile of a variable of interest
- \circ Let Y_s be a threshold on the output, e.g. computed from a quantile of Y. Plot the unconditional distribution of each marginal input X_i and the conditional distribution $X_i \mid Y > Y_s$, where If the variable X_i is independent from the event $X_i \mid Y > Y_s$, then the two distributions are equal. Otherwise, there is a dependency
- \circ Chosen variable of interest : $\Delta T_{statification}$

Analysis

- A significant stratification modify the input parameter distribution for the most influent parameters
- These parameters are the same than the ones previously identified (with Spearman indices and then Sobol' indices estimation with MetaModel)

Conclusions and perspectives

Conclusion

- o Tool chain operational for thermo aeraulic sensitivity studies: Based on Salome plateform
- o First quantification of influent parameters leading to air mix in industrial premises
 - Significant role of supply : need further investigation on its modelling
- o MetaModelling of integrated local 3D variable with reasonable accuracy
 - CFD with y+ =1:5000 cpus days -> 3D with integral correlation: 20 h cpus -> MetaModel: 0,001 s
- o **OD** model generally **overestimate** temperature of interest due to the perfect air mix hypothesis

Perspectives

- Select group of influent parameters (optimal size base on first or total Sobol' indices) and re-evaluate experience plan with a lower input dimension
- o **Implement MetaModel** of stratification in **0D** tool by export it and re import in Modelica Model (work in progress with Phimeca python.h based for wrapping python object in C function)
 - Quantify error propagation in 0D model based on MetaModel residuals distribution
- \circ Perform dimensional analysis (Vaschy-Buckingham theorem) and try to calibrate traditional π functions

Acknowledgments:

- Sofiane Benhamadouche / Martin Ferrand / Thomas Fonty / Chai Koren / Yvan Fournier: for their CFD expertise and help for advanced use of Code Saturne
- o Michael Baudin / Ovidiu Mirescu: For their advice in the use of Persalys/OpenTURNS and their uncertainties expertise

Thank you for your attention

ANNEXE

Rappels de la méthode TIPPI (PIRT)

L1.01 d:

- Proposer une identification à priori des phénomènes influents sur la base d'une approche théorique
- Réaliser une première quantification sur la base d'expériences numériques s'inspirant de la géométrie du local Zephyr
- Approche itérative

Périmètre

- o Problématique vaste et multiphysique
- Les situations thermo aérauliques de locaux industriels nécessiteraient plusieurs PIRT
- Focus on steady state with Zephyr test room laboratory configuration

Order of magnitude of the studied case

• Pour le cas de locaux industriels, les ordre de grandeurs sont:

$$OV_0 = 1m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 10 degC / \lambda_{metal} = 50 W.m^{-1}.K^{-1} / \lambda_{beton} = 2.3 W.m^{-1}.K^{-1}$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m / \rho_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m.s^{-1} / \delta p_0 = 1 kg.m^{-3} / \delta p_0 = 1 Pa$$

$$OV_0 = 1 m.s^{-1} / L = 1 m.s^{-1} / \delta p_0 = 1 kg.m^{-3} / \delta p_0 = 1 kg.m^{-3}$$

- Ce qui conduit
 - Pour les parois : $Ra \approx 1e9 1e10$
 - $\circ Ri \approx 1$ loin de singularité
 - \circ Re \approx 1e5: écoulement turbulent, notamment au niveau des jets
 - \circ Pr \approx 0,7
 - $\circ Bi_{metal} \approx 3e^{-3} / Bi_{beton} \approx 3e^{-1}$
- Ces nombres seront à réévaluer de manière plus précises selon les cas étudiés ; les valeurs mentionnées sont utiles pour situer le problème

$$\underline{\nabla} \cdot \rho \underline{V} = 0$$

$$\frac{\partial \hat{\rho} \underline{\hat{V}}}{\partial \hat{\tau}} + \underline{\hat{V}} (\hat{\rho} \underline{\hat{V}} \underline{\hat{V}}) = -Eu \underline{\hat{V}} \hat{p} + \frac{1}{Re} \underline{\hat{V}} \underline{\hat{G}}' - Ri e_{\underline{Z}}$$

$$\frac{\partial \hat{T}}{\partial \hat{t}} + \hat{\rho} \underline{\hat{V}} \cdot \underline{\hat{V}} \hat{T} = \frac{1}{\sqrt{RaPr}} \underline{\hat{V}} \hat{\lambda} \underline{\hat{V}} \hat{T}$$

$$\hat{p} = \frac{p - \rho_0 \underline{g} \cdot \underline{x}}{\delta p_0} / \hat{\rho} = \frac{\rho}{\rho_0} / \hat{t} = \frac{V_0}{L} t / \underline{\hat{x}} = \frac{\underline{x}}{L} / \underline{\hat{V}} = \frac{\underline{V}}{V_0} / \underline{\hat{V}} = L\underline{V}$$

$$Eu = \frac{\delta p}{\rho_0 V_0^2} / Re = \frac{\rho_0 V_0 L}{\mu_0} / Ri = \frac{g \beta \Delta T L}{V_0^2}$$

$$\frac{\rho c_p g \beta \Delta T L^3}{\delta p_0} / Re = \frac{\rho g \beta \Delta T L^3}{\delta p_0} / Re = \frac{\rho g \beta \Delta T L^3}{\delta p_0} + Re = \frac{\rho g \beta \Delta T L^3}{\delta p_0}$$

:
$$Pr = \frac{\mu_0 c_p}{\lambda_0} / Ra = GrPr = \frac{\rho c_p g \beta \Delta T L^3}{\lambda \nu} / Gr = \frac{\rho g \beta \Delta T L^3}{\mu} \propto Re^2$$

3D numerical experiments – tools used

- · Numerical tools used
 - o Code Saturne (CFD)
 - Salome platform
 - Geom/Smesh Modules(CAO/meshing)
 - Persalys Module (YACS model)
 - OpenModelica with TAeZoSysPro library
 - Use of ModelicaScripting library to wrap OpenModelica Model in Persalys exec function
- · Specific development for this study
 - Python library to drive global model within Persalys _exec (3600 lines)
 - Automatic meshing generation (to account uncertain geometric parameter)
 - Run Cases (Saturne and TAeZoSypro) in parallel
 - ☐ Handle RESU directory unique name
 - ☐ Possibility to restart 3D model if convergency not reached
 - Possibility to only read already run case to extract other variable of interest
 - Post processing tools (matplotlib graph generation)

- o Features to monitor global quantities for code saturne
 - Mean Profiles on all or part of the mesh (MEDCoupling or CS STL) by layer (c++ 3800 lines)
 - Balance by zone (surfaces/volumes) to monitor radiant/convective thermal exchanges and hvac power (3000 c lines)
- Various Python UNIX tools to handle amount of data generated (1 To of data generated for a total of 12 000 cpus day)
- _exec function writing for models drive (5800 lines)
- Python meshing function

Persalys

3D numerical experiments – Workflow

Persalys

- Setup meshing script (uncertain geometrical parameter parts)
- Setup Code Saturne (uncertain parmeter : physical properties / limite conditions)
- Setup equivalent 0D/1D TAeZoSysPro model (with accounted uncertain parameters)
- Setup persalys function _exec and test (if __name__=='__main__':)
- Generate Persalys study with several decoupled steps
 - Use of Persalys YACS model modified with the use of slurm study feature: enable executables launch with srun command within an allocated batch on cluster (default YACS model launched branches with srun command, preventing other use of srun command)
 - Example : evaluate 300 point, each point require 20 Cpus, by block of 10 (total of 6 GAIA nodes with 204 Cpus requested)
 - o Generate probabilistic experience plan based on uncertain parameters probabilistic model and csv export
 - o Create another study with the same YACS model and create and imported csv experience plan
 - Run the experience plan as many time as required for all points to reach convergency
 - o Create other YACS model, same uncertain parameters but with other variables of interest
 - _exec function will only read already run point
 - 1 for power balance / 1 for temperatures / 1 for dimensionless number
- Result analysis within Persalys
 - o Experience plan result analyse
 - Use experience plan as data model to generate MetaModel
 - Perform sensivity/central tendency analyses
 - Export MetaModel to improve 0D/1D models

```
import salome_ot
import os
study,ModèleYACS_0=salome_ot.getYacsPyStudy(code)
import pydefx
pydefx_path = os.path.dirname(pydefx.__file__)
light_executor_path = os.path.join(pydefx_path, "plugins", "lightexecutor.py")
mybuilder = pydefx.slurmbuilder.SlurmBuilder(executor=light_executor_path)
myModel = pydefx.SlurmStudy(schemaBuilder=mybuilder)
ModèleYACS_0.setJobModel(myModel)
```


tendanceCentral..

Phénomènes physiques identifiés

• Les principaux phénomènes physique identifiés à l'échelle du local industriel sont:

Phénomènes physiques	Paramètres géométriques	Paramètres matériaux	Conditions aux limites	Nombre adimensionnel
Conduction thermique dans les solides Béton - Emetteur	Epaisseur des parois Surface des parois	Conductivité thermique $c_p\ et\ ho$	Température adjacente Flux adjacent	Biot
Convection naturelle murs	Surface, Longueur caractéristique	Viscosité $ ho, \lambda_{fluide}$	Température adjacente Flux adjacent	Rayleigh Prandtl
Rayonnement Mur – Mur Emetteur – Enveloppe Enveloppe -Mur	Surface Angles solides entre surfaces	Emissivité	Flux solaire Température ciel	Légende Légende Consection de Reponement Conduction
Inertie thermique	Géométrie des masses Surface d'échange	ρ, c_p, V, λ	-	Fourrier
Transferts enthalpiques	Géométrie du local Position des bouches de soufflages/extraction	eta, ho,c_p,μ,λ	Débit ventilation Localisation entrée/sorties Température de soufflage Charge thermique	-
Stratification thermique	Géométrie du local Géométrie source thermiques (incluant leurs freins aérauliques)	$\beta, \rho, c_p, \mu, \lambda$	Température de soufflage Vitesse de soufflage Charge thermique	Richardson
Effets de jets	Géométrie des obstacles	$\beta, \rho, c_p, \mu, \lambda$	Vitesse de soufflage	Reynolds Richardson
Panaches thermiques	Géométrie du local Géométrie des sources	$\beta, \rho, c_p, \mu, \lambda$	Charge thermique	Rayleigh Reynolds
Configuration Rayleigh Bénard	Géométrie du local	$\beta, \rho, c_p, \mu, \lambda$	Température adjacente	Rayleigh
Mélange turbulent	Géométrie de la pièce Nature des obstacles	$\beta, \rho, c_p, \mu, \lambda$	Vitesse soufflage Charge thermique	Reynolds Rayleigh

Expérience numériques 3D

Configuration

- Utilisation de loi de paroi thermique intégrale pour une estimation correcte des flux thermiques (précision l'ordre de 10-20 %)
- Couplage de l'ensemble des phénomènes (conduction thermique solide, échanges conducto/convectifs, échanges radiatifs) étant donné l'importance de chacun d'entre eux sur la distribution du champs de température
- Utilisation de maillages hexaédriques par bloc avec une taille de cellule élémentaire de 0,01 m
- Modèle de turbulence : $k \omega SST$ (faible sensibilité au modèle de turbulence vis-à-vis des grandeurs d'intérêt intégrales identifiées)
- Approche 3D zonale ou CFD macroscopique : La résolution de la structure local fine de l'écoulement n'est pas réalisée.

Configuration numérique

- Schémas numériques
 - Upwind pour la turbulence
 - SOLU pour les autres variables
- Précision solver : 10e-5 sauf la température 10e-6
- Paramètres temps
 - Variable en temps (IDTVAR=1)
 - ☐ Ref time step: 0,1 s
 - ☐ Time step maximal variation : 0,01
 - CDTVAR:
 - ☐ 20 pour la température pendant 1000-1500 itérations
 - □ Passage à 1 via cs_user_extra_operations.c au bout de 1000-1500 itérations, calcul poursuivi jusqu'à 3000- 4000 itérations
- o A affiner selon les cas

Post Traitement

- Export de tous les bilans et profils en csv
- Export vtk de l'état final
- Export Catalyst : Vue globale, coupe en température et en vitesse
- Génération d'un rapport LaTeX globale : 2 pages par cas d'évaluation

