PART A Clearly write down your final answers to each question in the box provided. We will mark *only* what is written in the box. Note Q.3 and 6 would have possible partial marks.

[4] 1. Given the parametric equation of a line: x(t) = 1 + 2t, y(t) = -1 + 3t, z(t) = t. Find the length of the line segment between the points defined by t = 0 and t = 2.

$$t=0: (1,-1,0)$$

 $t=2: (5,5,2)$
 $length = \sqrt{4^2+6^2+2^2}$

[4] 2. Find all values of the constant α so that the line defined by $\frac{x-1}{\alpha} = y = z+1$ is parallel to the plane 4x + 5z + 4 = 0.

direction of line is
$$(x,1,1)$$
 which is perpendicular to the normal $(4,0,5)$ of the plane.

 $(x,1,1) \cdot (4,0,5) = 0$
 $4 \times 4 \cdot 5 = 0$

[4] 3. Given the vector equation of a curve $\mathbf{r}(t) = (2, 3t, 5t^2)$. Set up but DO NOT EVALUATE an integral for the length of the curve between the points (2, 0, 0) and (2, 6, 20).

$$r'(t) = (0,3,10t)$$
 $length = \int_0^2 |r(t)| dt$

DATE: October 18, 2011

DEPARTMENT & COURSE NO: MATH 2130

TIME: 1 hour

MIDTERM PAGE: 2 of 4

EXAMINERS: Lui, Williams

COURSE: Engineering Mathematical Analysis 1

[4] 4. Let
$$f(x,y) = \begin{cases} \alpha, & (x,y) = (0,0); \\ \frac{\sin(3x+6y)}{x+2y}, & (x,y) \neq (0,0). \end{cases}$$
 Find the value of α so that f is continuous at $(0,0)$.

let
$$u = x + 2y$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{u\to 0} \frac{\sin 3u}{u}$$

$$= \lim_{u\to 0} \frac{3\cos 3u}{1} \quad (L'Hupital)$$

[4] 5. Evaluate
$$\lim_{(x,y)\to(0,0)} \frac{2x^2+y^2}{x^2+y^2}$$
.

approach along x-axis
$$(y=0)$$
: $\lim_{x\to 0} \frac{2x^2}{x^2} = 2$

Approach along y-axis
$$(x=0)$$
: $\lim_{y\to 0} \frac{y^2}{y^2} = 1$.

D.N.E.

[4] 6. Let
$$f(x,y) = \sin(x^2 + e^{3y})$$
. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$.

$$\frac{\partial f}{\partial x} = 2 \times \cos(x^2 + e^{3y})$$

$$\frac{\partial^2 f}{\partial x \partial y} = 2 \times (-1) \sin(x^2 + e^{3y}) e^{3y}.$$

$$\frac{2f}{2x} = 2x \cos(x^2 + e^{3y}), \frac{\partial^2 f}{\partial x \partial y} = -6x \sin(x^2 + e^{3y})e^{3y}$$

PART B For questions in this part, show all your work.

[6] 7. Let $z = xyt + 3xy^2$, $x = t + e^t$, $y = t \sin t$. Find $\frac{dz}{dt}$. Write your answer as a function of t alone. There is no need to simplify.

$$\frac{d^{2}}{dt} = \frac{\partial^{2}}{\partial x} \frac{dx}{dt} + \frac{\partial^{2}}{\partial y} \frac{dy}{dt} + \frac{\partial^{2}}{\partial t}$$

$$= (yt + 3y^{2}) (1 + e^{t}) + (xt + 6xy) (xint + tcoxt) + xy$$

$$= (t^{2}xint + 3t^{2}xin^{2}t) (1 + e^{t}) + (t^{2} + te^{t} + 6(t + e^{t})txint) (xint + tcoxt) + (t^{2} + te^{t} + 6(t + e^{t})txint) (xint + tcoxt) + (t^{2} + te^{t}) + xint$$

[8] 8. Find the distance between the line $\frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{4}$ and the line with vector equation $\mathbf{r}(t) = (1,2,3) + t(4,6,8)$.

Note that the lines are parallel

distance =
$$|PQ|$$
 | $|PQ|$ |

DEPARTMENT & COURSE NO: MATH 2130 COURSE: Engineering Mathematical Analysis 1

PAGE: 4 of μ TIME: 1 hour EXAMINERS: Lui, Williams

[12] 9. Sketch the surface $y^2 - 2z^2 + 1 = 0$. Find parametric equations for the curve given by the intersection of the above surface and the plane y + z = 0. The curve is oriented in the clockwise direction when viewing from (0, 10, 0).

$$y=-2$$
 => $1+2^{2}=2x^{2}+27$
 $1=2x^{2}+27$
 $1=\frac{x^{2}}{(x^{2})^{2}}+7$
 $(x^{2}-x^{2})$
 $2=x^{2}+27$
 $2=x^{2}+7$
 $2=x^{2}+7$
 $2=x^{2}+7$
 $2=x^{2}+7$
 $2=x^{2}+7$
 $2=x^{2}+7$
 $2=x^{2}+7$

$$\frac{d}{dt} = \frac{1}{2\pi} \lim_{t \to \infty} \frac{dt}{dt}, \quad x = \cot_{t} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{dt}{dt} dt$$