Temel Radar Prensipleri & Elektronik Karistirma Teknikleri

Ütgm. Erdinç ETKIN HUTEN Bilgisayar Mühendisligi

- . RADAR Radio Detection And Ranging
 - Cisimlere ait mesafe ve açi (azimuth, elevation)
 bilgisi verir
 - Elektromanyetik Enerji'nin bir cisme çarparak geri dönmesi sonucu aradaki geçen zamana bagli olarak mesafe ve yön bilgilerini ölçer

- . Optik cihazlara göre çok büyük avantajlara sahiptir
 - Algilama mesafesi çok daha yüksektir
 - Bulut, duman, gece ve benzeri sartlarda görev yapar
 - Hassas ölçüm yapma imkani verir

DALGA

. Ortalama seviyeden asagi yukari sinuzoidal salinimlar yapan enerjiler.

Frekans (f) / Periyot (T)

• 1 saniyedeki salinim (Cycles) adedi. Hertz cinsinden ifade edilir.

Hiz

EM enerji isik hizinda seyahat eder: 3x10⁸ metre/saniye Isik hizi(c)

DALGA BOYU

• Bir EM dalganin kapladigi mesafe (Lambda: 1)

$$1 = c/f$$

Amplitude (Sinyal Gücü)

Zaman ve Frekans Domaini

Sinyalin zaman ekseninde görünümü.

Sinyalin Frekans Ekseninde görünümü.

Phase

Bir tam sinyal içindeki her noktanın açısal ifadesi.

Phase

Mesafe ve Açi (Azimuth, Elevation) Ölçme

. Mesafe: Sinyal'in hedefe çarpip geri dönme süresi.

. Açi: Antenin yayin yaptigi esnada baktigi yön.

- . Radar sinyalleri isik hizinda seyahat ederler. Bu nedenle asagidaki formülle hedefin mesafesi bulunabilir:
 - Mesafe (NM) = sinyalin seyahat süresi (msec)

 12.4 msec /NM
 - 12.4 msec : sinyalin 1 Mil mesafeyi gidip gelmesi için gereken süre

$$t = \frac{2R}{c}$$

- . Temel Radar Donanimi
 - Transmitter:
 - » Bir sinyal yayınlamak için gerekli tüm componentleri içerir
 - Duplexer:
 - » Ayni antenin hem sinyal yayma hem de algilama için kullanilabilmesi için gereken komponent
 - Receiver inputlarini transmit esnasinda bloke eder.
 - Receiver'in transmitter çalismadigi süre boyunca dönen sinyalleri algilamasina müsade eder

- Anten

» Transmitter'dan sinyalleri toplayarak atmosfere yayar ve atmosferden algilanan enerjiyi receiver'a aktarir

Receiver

» Geri dönen ekolari isleyerek kullanılabilir bir formata sokan komponentlerin tümü

- Skop

» Dönen ekolarin operatöre gösterildigi bölüm

Transmitter

Receiver

$$t = \frac{2R}{c}$$

Radar Sinyal Terminolojileri

Pulse Width (PW)

- . Radar'in RF enerjiyi yaydigi esnada geçen süre
- . Büyük PW daha güçlüdür, ancak daha zayif mesafe çözünürlügü vardir, genelde arama radarlarında kullanılır.
- . Küçük PW, mesafe çözünürlülügü daha yüksektir, daha keskin (kare dalgaya yakin) sinyaller, genelede "Hedef Takip Radarlarında" kullanılır.

Pulse Repetition Interval (PRI)

. Bir Transmission sürecinin tamamlandigi, iki sinyal arasinda geçen süre

Pulse Repetition Frequency (PRF)

- . Birim zamanda radarin transmit ettigi sinyaller
- . PRF = 1/PRI
- . Daha Yüksek PRF = Daha kisa Mesafe ölçümü, ancak daha sik update ettigi için daha dogru bilgi

Rest Time

- . Bir sinyal bitiminden diger sinyalin baslangicina kadar geçen süre.
- . Rest Time = PRI PW

Recovery Time (RT)

. PW'ten sonra, Radar'in gelen sinyalleri isleyemedigi süre (Duplexer, TX->RX)

Sweep Time

. Electron Beam'inin SKOP üzerinde süpürme yapabilmesi için gerekli süre

Listening Time

. Receiver'in hedef ekolarini isleyebildigi dinleme süresi

- . Iki tip dinleme süresi vardir
 - Available LT ve Actual LT

Available Listening Time (LT)

- . RT' den diger sinyalin basina kadar olan süre
- Available LT= PRI (PW+RT)

Actual Listening Time

- . Sinyallerin gerçekten gösterilebildigi süre
- . Actual LT = Sweep Time (PW + RT)

Skop Mesafesi

- . Skop üzerinde gösterilen mesafe
- . Sweep Time parametresine baglidir

INDICATOR RANGE = SWEEP TIME (mSEC) / (12.4 mSEC/NM)

Sinyalin Erisebilecegi Mesafe (Güç)

. Bir sinyalin hedefe ulasip geri döndükten sonra algilanabilmek için gerekli minimum sinyal enerjisi.

Duty Cycle

- . Transmitter'in çalismasinin tüm RX-TX çalismasina orani.
- . Duty Cycle = PW/PRI
- . Duty $Cycle = PW \times PRF$

Peak&Average Power

- . Peak Max Radar gücü (PW esnasinda)
- . Average PRI üzerinde dagitilmis güç

Mesafe Hassasiyeti

- . Radarin mesafe ölçmedeki hassasiyeti
- . Sinyalin yükselen kenariyla ilgilidir

Mesafe Çözünürlülügü

- . Ayni azimuth'a düsen ve birbiriyle yakin mesafede olan hedefleri ayirabilme
- . PW'ye baglidir (1/2 PW).

Sinyal öndeki uçaga (#1) ulasir

.5 msec (1/2 PW) sonra sinyal 492 FEET mesafe alir

1 msec (PW) süre sonra ECHO'lar ayrılabilir.

Radar Beam Parametreleri

Radar Beam Paternleri

- Radar enerjisi yogunlastirilarak bir beam seklinde istenen yöne dogru yönlendirilir
 - » Yansiyan sinyallerin algilanmasinda Ana Lobe kullanilir.
 - Beam Width daha dar oldugu sürece, daha iyi azimuth çözünürlügü ve enerjinin istenen hedefe yönlendirilmesi saglanmis olur.
 - » Yan lobelar istenmeyen bir sekilde enerjinin yayilmasi sonucu olusur ve genelde "Elektronik Karistirmaya" daha kolay maruz kalir

BEAM WIDTH

- . Radar anteninin etkili yayin ve algilama yapabildigi genislik
 - Açi cinsinden ölçülür
 - Anten gücünün yariya düstügü noktadan ölçülür
- . Horizontal beam width (HBW) yatay sektördeki Beam Width
- . Vertical beam width (VBW) dikey sektördeki Beam Width

Azimuth Hassasiyeti

- . Radar'in azimuth ölçümündeki hassasiyeti
- . Radar Beam'inin sekline baglidir

Azimuth Çözünürlügü

- . Ayni mesafedeki iki hedefi ayirabilme yetnegi
- . Yatay Beam Width ile ilgilidir.

Elevation Hassasiyeti & Çözünürlülügü

. Aynen Azimuth'ta oldugu gibidir, ancak dikey sektördedir.

Azimuth/Elevation & Mesafe Çözünürlügü Bizi Nasil Etkiler.

Tarama Tipi & Süresi

- . Tipi Beam'in uzayda yaptigi patern
 - Radar ikaz alicilari (RWR) tarafından algilanabilir
 - Basit ya da karmasik olabilir
- . Süre Bir tarama paternini tamamlamak için gereken süre

Anten Tarama Tipleri

. Basit Scan

 Radar anteninin yatay yada dikey olmak üzere birkaç ekseni taramasi (dairesel yada sektörel)

. Kompleks Scan

 Hem yatay hemde dikey düzlemlerde ayni anda hareket ederek radarin tarama yapabilmesi (conical, helical, spiral, ...)

ET TEKNIKLERI

- . NOISE (GÜRÜLTÜ)
- . DECEPTION (ALDATMA)

ELEKTRONIK TAARUZ

- . Elektro Manyetik enerjinin düsmanin Elektronik Harekat kabiliyetini azaltmak veya tamamen ortadan kaldirmak amaciyla kullanilmasi,
 - -Düsmanin EM spektrumu kullanmasini engellemek amaciyla tedbirler almak
 - -Bu amaçla EM enerjiyi kullanan silahlarin tedarik edilmesi.

ET = EK??

- . ET: Bir radari karistirmak amaciyla ondan bilgi toplamak ve ona karsi EM enerjiyi kullanarak yayin yapmaktir.
- EK: ET'ye maruz kalan radarin bununla bas etmek için çesitli teknikler uygulamasi.

Ne zaman karistirma yapilir?

- . Kendini Koruma Sistemleri Tarafindan
 - Düsman radarlarini kendini korumak amaciyla karistirir
 - Mirage 2000, F-16, Prowler,

. Stand Off Karistirma

- Diger unsurlari korumak amaciyla düsman radarinin karistirilmasi
- EC-130H, EA-6B

Noise Vs. Deception

. Gürültü:

- "Module Edilmemis"
- Asiri RF gücü kullanarak radarin mesafe ölçmesini engellemek
- . Aldatma Karistirmasi
 - Düsman radarina yanlis bilgi göndermek
 - Eger dogru yapilirsa, düsman radari tarafından fark edilmeyebilir.

GÜRÜLTÜ KARISTIRMA TEKNIKLERI

. Jammer, düsman radar frekansini kapsayacak sekilde, sürekli olarak ve yeterince echo'yu bastiracak kadar güçlü olmalidir.

GÜRÜLTÜ KARISTIRMASI

- . Düsman tarafından kullanılan sistemlerin EM enerjinin yayınlanması, yansitilmasi seklinde köreltilmesi hedeflenir
- . Gelistirilen ilk tekniklerden biridir
- . Daha çok eski sistemlere karsi etkilidir
- . Yüksek güce ihtiyaç vardir
- . Düsman radarinin MESAFE ölçümünü hedefler

GÜCÜN BELIRLENMESI

- . Signal to noise orani (S/N)
 - Düsman Radar'inda olusturdugumuz sinyalin (ECHO) jammer tarafindan üretilen Noise (gürültü) a orani
 - ECHO'nun gücü Noise'dan fazla olmazsa ECHO düsman radari tarafından görülemeyebilir
 - Noise karistirmasi s/n oranini azaltmayi hedefler

Burn-Through Mesafesi

- S/N = 1 oldugu mesafe
- . SAM radarlari jammer sistemlerine göre çok daha yüksek RF gücüne sahiptirler
- . Radar sinyali hedefe çarpip geri dönmek zorunda oldugundan jammer sinyalinden 2 kat fazla mesafe kateder (jammer fiziksel olarak avantajli)
- . Mesafe azaldıkça bu avantaj da azalir ve radar hedefi yakalayabilir

Burnthrough Mesafesinin Içinde bir hedef

Radar Burn Through

. Sinyal Güç Denklemi:

$$S = \frac{P_T G_T S A_R}{16 p^2 R^4}$$

S = Power of Radar Echo (Watts)

P_T = Peak Power Transmitted (Watts)

 G_T = Antenna Gain

S = Radar Cross Section (Meters²)

 $A_R = Antenna Capture Area (Meters²)$

R = Range to Target (Meters)

^{* 16}p²R⁴ comes from spherical spreading of energy in both directions

Radar Burn Through

. Noise Karistirma Denklemi:

$$JN = \frac{P_J G_J A_R}{4 p R^2} X \frac{B_R}{B_J}$$

JN = **Jamming Noise**

P_J = Power of Jammer (Watts)

G_J = Gain of Jamming Antenna

 A_R = Receiver Antenna Capture Area (M^2)

R = Range From Aircraft to Radar (Meters)

 B_R = Bandwidth of the Radar Receiver (MHz)

 B_J = Bandwidth of the Jamming Signal (MHz)

NOISE JAMMING

- . SPOT NOISE
- . SWEEP SPOT NOISE
- . BARRAGE NOISE

SPOT JAMMING

- . Belirlenen bir frekans bölgesi/kanalinin karistirilmasi
- . Dar bant genisliginde (BW) çalisir
- . Avantajlari
 - Tüm güç bir sinyalin üzerindedir;
 100% dwell time
- . Dezavantajlari
 - Ayni anda sadece bir sinyal karistirilabilir
 - Frekans atlayan radarlarda basarili olamayabilir

SPOT

BARRAGE NOISE

- . Birkaç frekansin/kanalin ayni anda karistirilmasi
- AVANTAJLARI
 - AYNI ANDA BIRÇOK
 FREKANS KAPLANIR
 - RF-AGILE RADARLAR
 - 100% DWELL TIME

- DEZAVANTAJLARI
 - GÜÇ DAGILIMI DÜSÜKTÜR

SWEEP SPOT NOISE

- . Dar bantli bir Noise sinyalini genis bir RF bandinda süpürmek
- . Avantajlari -- birkaç sinyal sirayla kapsanabilir
- . *Dezavantajlari* -- kisa dwell time

Hedef Takip Radarlari

Takip Radarlarina Karsi Aldatma Tekkileri

- . Bu teknikler takip radarlarinin kilidinin kirdirmayi hedefler
- . Üç ana grupta incelenebilir
 - -MESAFE -- ZAMAN
 - -HIZ -- FREKANS
 - -ACI -- AMPLITUDE

Takip Radarlari Hangi Bilgilere Ihtiyaç Duyar?

- . Açi
 - Azimuth ve elevation bilgisinin kombinasyonu
 - EN ÖNEMLI BILGIDIR!!!
- . Mesafe
 - Oldukça önemlidir, ancak gerekli olmayabilir
- . Hiz
 - Oldukça önemlidir, ancak gerekli olmayabilir

Takip Radarlarini Noise Teknigiyle Karistirabilir miyiz?

- . Evet, arama radarlarında oldugu gibi noise teknigi kullanarak mesafe bilgisi köreltilebilir, ANCAK ...
- . Hedef Takip Radarlari "Track on Jam" kabiliyetine sahiptir ve bazi füzelerin "Home on Jam" yetenegi vardir.
- . Eger düz bir Noise teknigiyle bu tip radarlari karistirirsaniz sonunda vurulursunuz.

O halde Hedef Takip Radarlari Nasil Karistirilmalidir?

- . Aldatma Teknikleri!!
 - Mesafe Aldatmasi
 - Hiz Aldatmasi
 - Açi Aldatmasi
- . Karistirma sistemleri bu tekniklerin birçok kombinasyonlarini kullanırlar

MESAFE ALDATMASI, RANGE GATE PULL OFF (RGPO)

. Ilk önce sinyal üzeri kaplanır daha sonra bir hareket denklemi yardımıyla kontrol edilen gecikmeli karistirma sinyali yayınlanır.

RGPO

- . Birçok modern radarlar bu tip bir karistirmayi anlayabilir
- . Genelde bu teknik otomatik takip yapan bu radarlari manuel tracking moduna geçmeye zorlar (operatör), birkaç saniye süre kazandirir
- . Leading Edge Tracking yapan sistemlere karsi kisitli etkisi vardir.

HIZ ALDATMASI (FREKANS)

- . VELOCITY GATE PULL OFF (VGPO)
- . DOPPLER sistemlerde kullanilir.

Açi Teknikleri Amplitude Modation (AM)

- . Kare Dalga ya da Sinuzoidal Dalga tarafindan Conical-Scan-Rate degeriyle module edilen sinyaller dizisi
- . CONSCAN Radarlara karsi kullanilir

\mathbf{AM}

. Tehditin Scan-Rate'i ile senkron bir sekilde jammer sinyalininin amplitude'ü degistirilir.

Açi Teknikleri Monopulse

Cross Eye

- 2 jammer gerekir
 - » yaklasik (approx 150') mesafede
 - » Ayni sinyali yayinlarlar
 - » 180° farkli faz
- Etki:
 - » Dalga yapisi bozulur
 - » Açisal hatalar olusturur

Temel Radar Prensipleri & & Elektronik Karistirma Teknikleri

Ütgm. Erdinç ETKIN HUTEN Bilgisayar Mühendisligi

