Machine Learning Classification using Bayesian Belief Networks

Satishkumar L. Varma

Department of Information Technology SVKM's Dwarkadas J. Sanghvi College of Engineering, Vile Parle, Mumbai. ORCID | Scopus | Google Scholar | Google Site | Website

Outline

- Classification
 - Bayesian Belief Networks
 - Hidden Markov Models
 - Support Vector Machine
 - Maximum Margin Linear Separators
 - Quadratic Programming solution to finding maximum margin separators
 - Kernels for learning non-linear functions
 - Classification using k Nearest Neighbour Algorithm

- Naive Bayes Classifier OR Naive Bayesian Classifier
 - It is useful for text classification and spam filtering
- Bayesian Network OR Bayesian Belief Networks OR Belief Networks or Bayes Nets
 - o It is useful in medical diagnosis, bioinformatics, and NLP

- Naive Bayesian Classifier
- It is based on Bayes' theorem with independence assumptions between predictors.
- It requires less data to get a good result in many cases.
- A Naive Bayesian model is easy to build,
 - o with no complicated iterative parameter estimation which
 - o makes it particularly useful for very large datasets.
- Despite its simplicity, the Naive Bayesian classifier often does surprisingly well and
- It is widely used because it often outperforms more sophisticated classification methods.
- Use it if you're only interested in solving a prediction task: use Naive Bayes.
- Algorithm:
 - \circ Bayes theorem provides a way of calculating the posterior probability, P(c|x), from P(c), P(x), and P(x|c).
 - Naive Bayes classifier assume that the effect of the value of a predictor (x) on a given class (c) is independent of the values of other predictors.
 - This assumption is called class conditional independence.

- P(c|x) is posterior prob. of class (target) given predictor (attribute).
- P(c) is the prior probability of class.
- P(x|c) is the likelihood which is the prob. of predictor given class.
- P(x) is the prior probability of predictor.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

5 Sa

Satishkumar L. Varma

- Example:
- The posterior prob. can be calculated by first, constructing a frequency table for each attribute against target.
- Then, transforming the frequency tables to likelihood tables and
- Finally use the Naive Bayesian equn to calculate the posterior probability for each class.
- The class with the highest posterior probability is the outcome of prediction.

Posterior Probability:

$$P(c \mid x) = P(Yes \mid Sunny) = 0.33 \times 0.64 \div 0.36 = 0.60$$

6

Satishkumar L. Varma

- The zero-frequency problem
 - Add 1 to the count for every attribute value-class combination (Laplace estimator) when an attribute value (Outlook=Overcast) doesn't occur with every class value (Play Golf=no).
- Numerical Predictors
 - Numerical variables need to be transformed to their categorical counterparts (binning) before constructing their frequency tables.
 - Other option is using the distribution of the numerical variable to have a good guess of the frequency.
 - For example, one common practice is to assume normal distributions for numerical variables.
 - The PDF for the normal distribution is defined by two parameters (mean and standard deviation).

					Н	umi	dity			Mean	StDev
$1 \stackrel{n}{\searrow}$		Play Golf	yes	86 96	80	65	70 80	70 9	0 75	79.1	10.2
$\mu = -\sum_{i=1}^{n} x_i$	Mean	Play Goll	no	85 90	70	95 9	91			86.2	9.7
$\sigma = \left[\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2 \right]^0$	Standard deviation	P(humid	ity = '	74 pla	ıy =	yes)	= _	$\frac{1}{2\pi}$	$\overline{0.2}$	$\frac{-\frac{(74-79.1)^2}{2(10.2)^2}}{2(10.2)^2} = 0.$.0344
$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	Normal distribution	P(humid	ity = 7	74 pla	y =	no)	=	1	-\e^-	$\frac{(4-862)^2}{(9.7)^2} = 0.03$	187

 $\sqrt{2\pi}$ (9.7)

- Binning
- Binning or discretization is the process of transforming numerical variables into categorical counterparts.
- An example is to bin values for Age into categories such as 20-39, 40-59, and 60-79.
- Numerical variables are usually discretized in the modeling methods based on frequency tables
 - o e.g., decision trees
- Moreover, binning may improve accuracy of the predictive models by reducing the noise or non-linearity.
- Finally, binning allows easy identification of outliers, invalid and missing values of numerical variables.
- There are two types of binning, unsupervised and supervised.

- Bayesian Network
- A Naive Bayes classifier is a simple model that describes particular class of Bayesian network
 - where all of the features are class-conditionally independent.
- Because of this, there are certain problems that Naive Bayes cannot solve XOR problem.
- Example: XOR
 - You have a learning problem with binary features x1 and x2 and a target variable $y = x1 \times X0 \times x2$.
 - o In a Naive Bayes classifier, x1 and x2 must be treated independently
 - so you would compute things like "The probability that y = 1 given that x1 = 1"
 - hopefully you can see that this isn't helpful,
 - because x1 = 1 doesn't make y = 1 any more or less likely.
 - Since a Bayesian network does not assume independence, it would be able to solve such a problem.
- Bayesian Network Models
 - o It model relationships between features in a very general way.
 - o If you know what these relationships are, or have enough data to derive them,
 - then it may be appropriate to use a Bayesian Network.

- Bayesian Network OR Bayesian Belief Networks OR Belief Networks or Bayes Nets
- It is a type of probabilistic graphical model.
- It represents the relationship between variables in the form of a directed acyclic graph (DAG)
- It is used for reasoning, learning and decision making.
- It can handle uncertainty.
- It can incorporate prior knowledge into the model.
- It is useful in medical diagnosis, bioinformatics, and NLP

10

- Construction of a Bayesian network
- Let us assume that the problem can be defined in terms of n random variables.
- Steps for the construction of a Bayesian network:
 - 1. Choose an ordering of variables X1, ... ,Xn
 - o 2. For i = 1 to n
 - add Xi to the network
 - select parents from X1, ... ,Xi-1 such that
 - P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)
 - This choice of parents guarantees:
 - \blacksquare P (X1, ..., Xn) = πi =1P (Xi | X1, ..., Xi-1) (chain rule)
 - \blacksquare = πi =1P (Xi | Parents(Xi)) (by construction)

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid Parents(X_i))$$

- Step 1:
- 1.1 Determine what the propositional (random) variables should be.
- 1.2 Determine causal (or another type of influence) relationships and develop the topology of the network.
- Variables are
 - Burglary, Earthquake, Alarm, M1 Calls, M2 Calls
- The Network topology reflecting the "causal" knowledge is as follows:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call
- The resulting Topology of the Bayesian Network is shown here:

- Step 2: To specify a conditional probability table or CPT for each node.
- Burglary B:
 - P (B=T) = 0.001 ('B' is TRUE i.e burglary has occurred)
 - P (B=F) = 0.999 ('B' is FALSE i.e burglary has not occurred)
- Fire F:
 - P (F=T) = 0.002 ('F' is TRUE i.e fire has occurred)
 - P (F=F) = 0.998 ('F' is FALSE i.e fire has not occurred)

Alarm A P(A B		B,E)				
В	F	P (A=T)	P (A=F)	Alarm A node can be TRUE or FALSE (i.e may have rung or may not have rung).		
Т	T	0.95	0.05	It has two parent nodes burglary B and fire F which can be TRUE or FALSE		
Т	F	0.94	0.06	i.e it may have occurred or may not have occurred depending upon diff. conditions.		
F	Т	0.29	0.71			
F	F	0.001	0.999			

Perso	n M1	P(M1 A)	
Α	P (M1=T)	P (M1=F)	Person M1 node can be TRUE or FALSE (i.e may have called person XYZ or not).
T	0.95	0.05	It has a parent node, the alarm A, which can be TRUE or FALSE;
F	0.05	0.95	That is it may have rung or may not have rung, upon burglary B or fire F.

Person M2		P(M2 A)	
Α	P (M2=T)	P (M2=F)	Person M2 node can be TRUE or FALSE (i.e may have called person XYZ or not).
T	0.8	0.2	It has a parent node, the alarm A, which can be TRUE or FALSE;
F	0.01	0.99	That is it may have rung or may not have rung, upon burglary B or fire F.

- Example: Calculating Conditional Probability of Events using Bayesian Belief Networks
- Question:
 - Find the probability that M1 is TRUE (M1 has called XYZ), M2 is TRUE (M2 has called XYZ)
 - o when the alarm 'A' rang, but no burglary 'B' and fire 'F' has occurred.
 - o i.e Find the probability => P (M1, M2, A, -B, -F)
 - M1. M2 & A are TRUE events and -B & -F are FALSE events
- Solution <u>PDF</u>

- Capabilities in terms of the analytics disciplines
 - Descriptive analytics
 - Diagnostic analytics
 - Causal Al.
 - Predictive analytics
 - Prescriptive analytics

Satishkumar L. Varma

- Applications of Bayesian Belief Networks
- Medical Diagnosis:
 - o To model relationships between symptoms, diseases, and risk factors.
- Risk Assessment and Decision-Making:
 - o To assess risks by modeling dependencies among factors such as
 - market volatility, economic indicators, and credit scores.
- Machine Learning and Data Mining:
 - o To discover patterns to predict outcomes, such as fraud detection in banking,
 - o by analyzing dependencies between variables.

- Advantages of Bayesian Belief Networks
- Handling Uncertainty:
 - To handle uncertainty by updating probabilities dynamically when new evidence becomes available.
- Flexibility and Scalability:
 - To scale to larger networks through incremental updates.
- Incorporating Expert Knowledge:
 - To integrate expert knowledge with data-driven models.
- Challenges and Limitations
- Computational Complexity:
 - o Computationally expensive as the number of variables and dependencies increases.
- Scaling Issues:
 - Flexible but scaling to very large networks introduces challenges.
- Defining Accurate Priors:
 - Assigning accurate prior probabilities is crucial for the network's reliability.

References

Text books:

- 1. Ethem Alpaydin, "Introduction to Machine Learning, 4th Edition, The MIT Press, 2020.
- 2. Peter Harrington, "Machine Learning in Action", 1st Edition, Dreamtech Press, 2012."
- 3. Tom Mitchell, "Machine Learning", 1st Edition, McGraw Hill, 2017.
- 4. Andreas C, Müller and Sarah Guido, "Introduction to Machine Learning with Python: A Guide for Data Scientists", 1ed, O'reilly, 2016.
- 5. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", 1st Edition, MIT Press, 2012."

Reference Books:

- 6. Aurélien Géron, "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow", 2nd Edition, Shroff/O'Reilly, 2019.
- 7. Witten Ian H., Eibe Frank, Mark A. Hall, and Christopher J. Pal., "Data Mining: Practical machine learning tools and techniques", 1st Edition, Morgan Kaufmann, 2016.
- 8. Han, Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Morgan Kaufmann, 2012.
- 9. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar, "Foundations of Machine Learning", 1ed, MIT Press, 2012.
- 10. H. Dunham, "Data Mining: Introductory and Advanced Topics", 1st Edition, Pearson Education, 2006.

Thank You.

