Comunicação sem Fio WLAN (802.11)

WLAN: Parte I Técnicas de Modulação, Taxas de Transmissão e Alcance

Faixa de Freqüências

faixa	desde	até	comprimento da onda
ELF	30 Hz	300 Hz	10 ⁷ metros
VF	300Hz	3 KHz	10 ⁶ metros
VLF	3KHz	30 KHz	10 5 metros
LF	30 KHz	300 KHz	10 ⁴ metros
MF	300 KHz	3 MHz	10 ³ metros
HF	3 MHz	30 MHz	10 ² metros
VHF	30 MHz	300 MHz	10 metros
UHF	300 MHz	3 GHz	1 metro
SHF	3 GHz	30 GHz	10 - 1 metros
EHF	30 GHz	300 GHz	10 - 2 metros
Ondas Milimétricas	acima de	300 GHz	10 - 4 metros
Raios Infravermelhos	10 11 Hz	10 ¹⁵ Hz	0,7 ⁻⁶ metros
Luz visível	10 ¹⁵ Hz	10 ¹⁵ Hz	0,4 ^{- 6} metros
Raios Ultravioletas	10 ¹⁵ Hz	10 ¹⁶ Hz	10 -8 metros
Raios "X"	10 ¹⁷ Hz	10 ²⁰ Hz	10 - 9 metros
Raios "Gama"	10 ¹⁹ Hz		10 - 13 metros
Raios "Cósmicos"	10 ²² Hz		10 ^{- 14} metros

FREQUENCIAS USADAS NA COMUNICAÇÃO SEM FIO

Faixa de Freqüências

- VHF: Very High Frequency
 - De 30 MHz até 300 MHz.
 - Rádio FM e TV aberta, desde o canal 2 até o canal 13.
- UHF: Ultra High Frequency
 - De 300 MHz até 3.000 MHz (ou 3 GHz)
 - Canais de TV UHF e canais para telefonia celular.
 - Inclui as redes WLAN da faixa de 2.4GHz
- SHF: Super High Frequency
 - Vai desde 3 GHz até 30 GHz.
 - Satélite Banda "C", Banda "Ku" e as freqüências para Radio
 - Incluir as redes WLAN na faixa de 5.8GHz

RADIO, TV E CELULAR E WiFi

FAIXA DE FREQUENCIAS	SERVIÇOS		
20 a 20.000 Hz	Sons audíveis		
530 a 1.600 KHz	Rádio AM: 107 canais de 10 KHz		
54 a 70 MHz e 76 a 88 MHz	Televisão VHF: Canais 2,3,4 e 5,6		
88 MHz a 108 MHz	Rádio FM: 99 canais de 200 KHz		
174 a 216 MHz e 470 a 806 MHz	Televisão VHF: Canais 7 a 13 e 14 a 69		
824 a 894 MHz	Telefonia Celular Banda "A" e "B"		
896 a 3.000 MHz	Outros Serviços, inclui WiFi (2.4 GHz)		
3,7 a 4,2 GHz	Descida de sinal de Satélite Banda "C		
5,150 a 5,825GHz	Outros Serviços, inclui WiFi (5.8 GHz)		
5,925 a 6,425 GHz	Subida de sinal de Satélite Banda "C"		
6,425 a 7,125 GHz	Sistema Digital		
10,7 a 11,7 GHz	Rádio Digital		
10,7 a 12,2 GHz e 13,75 a 14,8 GHz	Descida e Subida de sinal de Satélite Banda "Ku"		
14,5 a 15,35 GHz	Rádio Digital		

Freqüências Licenciadas e Não Licenciadas

- A Anatel (Agência Nacional de Telecomunicações) regulamenta o uso de freqüências no Brasil.
- As frequências são classificadas em licenciadas e não licenciadas:
- LICENCIADAS: é necessário pedir licença para a Anatel
 - A licença é restrita a uma região, e envolve pagamento pelos direitos de uso na forma de leilão e taxas anuais.
 - A ANATEL garante que equipamentos não irão operar com a mesma freqüência na mesma região, de forma a não haver interferência.
- NÃO LICENCIADAS: não é necessário pedir licença para Anatel
 - O equipamento deve obedecer a limites impostos a sua potência máxima.
 - Equipamentos operam na mesma faixa de frequência e podem interferir entre si.

Padrões de Comunicação sem Fio

Figura da INATEL

Padrões de Redes sem FIO

WPAN: Wireless Personal Area	 Utilizado para interligar dispositivos próximos, com métodos de comunicação com baixa potência 		
Network	Exemplo: Bluetooth (IEEE 802.15.1)		
WLAN: Wireless Local Area	• Permite criar redes de pequeno alcance, similares as redes locais guiadas		
Network	• Exemplo: WiFi (IEEE 802.11 e suas variantes, a, b, g e n).		
	As redes WiFi podem ter sua cobertura expandida usando a abordagem Mesh (IEEE 802.11s)		
WMAN: Wireless	• Permite criar redes com capacidade de cobrir cidades		
Metropolitan Area Network	• Exemplo: WiMax (IEEE 802.16)		
WWAN:	Permite cobrir áreas de alcance ilimitado		
Wireless Wide Area Networks	• Exemplo: Mobile Broadband Wireless Access (MBWA) (IEEE 802.20)		

Freqüência de Operação

- Os padrões IEEE 802.11 operam em frequências não licenciadas:
 - O IEEE 802.11b e g operam na frequência não licenciada de 2.4 GHz.
 - Essa freqüência é denominada ISM (destinada a aplicações Industriais, Científicas e Médicas)
 - O IEEE 802.1a opera na faixa de 5 GHz.
 - O padrão IEEE 802.11n opera em ambas as faixas.
- A faixa ISM é ligeiramente diferente em alguns países.

Region	Allocated Spectrum		
US	2.4000 - 2.4835 GHz		
Europe	2.4000 - 2.4835 GHz		
Japan	2.471 - 2.497 GHz		
France	2.4465 - 2.4835 GHz		
Spain	2.445 - 2.475 GHz		

Table 1 Global Spectrum Allocation at 2.4 GHz

Freqüências não Licenciadas no Brasil

FAIXA DE FREQUENCIAS	INDOOR	OUTDOO R	PMAX. (W)	PMAX. (Dbm)
902 a 907,5	SIM	SIM	4	36
915 a 928	SIM	SIM	4	36
2400 a 2483,5 Cidades > 500 mil hab.	SIM	SIM	0,4	26
2400 a 2483,5 Cidades =< 500 mil hab.	SIM	SIM	4	36
5150 a 5350	SIM	NÃO	0,2	23
5470 a 5725	SIM	SIM	1	30
5725 a 5825	SIM	SIM	4	36

Padrões WLAN: WiFi

- Os padrões WLAN definidos pelo IEEE pertencem a família IEEE 802.11
- Eles são conhecidos pela denominação comercial WiFi (Wireless Fidelity)
- Ao longo do tempo foram elaboradas várias versões do padrão, que diferem quanto:
 - a) A técnica de modulação utilizada
 - b) A máxima velocidade de transmissão
 - c) A faixa de frequência de operação

Padrões WiFi

	802.11a	802.11b	802.11g	802.11n
Standard approved by IEEE	January 2000	December 1999	June 2003	Expected in 2007
Maximum data rate	54 Mbps	11 Mbps	54 Mbps	600 Mbps
Different data rate configurations	8	4	12	576
Typical range	75 feet	100 feet	150 feet	150 feet
Modulation technologies (1)	OFDM	DSSS, CCK	DSSS, CCK, OFDM	DSSS, CCK, OFDM+
RF band	5 GHz	2.4 GHz	2.4 GHz	2.4 GHz and 5 GHz
Number of spatial streams and antennas	1	1	1	Up to 4
Channel width	20 MHz	20 MHz	20 MHz	20 MHz or 40 MHz
Number of channels	23	3	3	26

- 1) Máxima velocidade estimada
- 2) Número de taxas de transmissão
- 3) Alcance máximo
- 4) Métodos de Modulação
- 5) Freqüência de operação
- 6) Número de antenas
- 7) Largura de canal
- 8) Número de canais

Modulação

- A modulação ter por objetivo adequar o sinal transmitido para a freqüência usada na tecnologia de transmissão.
- Por exemplo: o padrão IEEE 802.11b estabelece:
 - Freqüência Portadora: 2.4GHz
 - Largura do Canal: 20 MHz
 - Taxa Máxima de Transmissão: 11 Mbps (Mega bits por segundo)
- As técnicas de modulação estabelecem uma eficiência espectral, isto é, uma relação entre bps (taxa de transmissão) e Hertz (freqüência de transmissão).
- Por exemplo, no caso do IEEE 802.11, na taxa máxima de transmissão:
 - eficiência espectral = 20 MHz/ 11 Mbits/s ≅ 1.8 bps/Hz

Velocidades dos padrões IEEE 802.11

11Mbps/

5.5 Mbps/

2.0 Mbps/
 1.0 Mbps

Se o ambiente for muito ruidoso, pode ser necessário empregar técnicas de modulação mais conservadoras, com uma relação menor de bps/Hz. Quando isso acontece, a velocidade máxima da taxa de transmissão é reduzida.

Representação do Sinal em Símbolos (CHIPPING)

- Técnica para tornar o sinal mais robusto em relação ao ruído.
 - Cada bit é representado por um símbolo (CHIP), contendo vários bits. A redundância do sinal permite verificar e compensar erros.
- As técnicas de chipping usadas em Wifi:
 - Baker Code, CCK, etc.

Espalhamento Espectral (Spread Spectrum)

- Consiste em codificar e modificar o sinal de informação executando o seu espalhamento no espectro de frequências.
- A codificação em símbolos gera um sinal espalhado, que ocupa uma banda maior que a informação original, porém possui baixa densidade de potência e, portanto, apresenta uma baixa relação sinal/ruído.

Técnicas de Modulação e Probabilidade de Erro

Fixed Broadband Wireless, Harry R. Anderson

Exemplo: IEEE 802.11n

Data rate (Mbps)	Constel- lation	Code rate	Bandwidth (MHz)	Relação Sinal Ruído E _s /N ₀ [dB]
6	BPSK	1/2	20	2.1
9	BPSK	3/4	20	6.2
12	QPSK	1/2	20	4.9
18	QPSK	3/4	20	9.5
24	16QAM	1/2	20	10.5
36	16QAM	3/4	20	15.4
48	64QAM	2/3	20	18.1
54	64QAM	3/4	20	20.2
63	64QAM	7/8	20	25.8
63	128QAM	3/4	20	22.9
73.5	128QAM	7/8	20	28.0
84	256QAM	7/8	20	30.6

Técnicas de Modulação

- Os padrões IEEE 802.11 utilizam diferentes técnicas de modulação:
- FHSS: Frequency Hopping Spread Spectrum
 - Usado apenas no padrão original IEEE 802.11
 - Atualmente usado em técnicas PAM como Bluetooth
 - Usado também em tecnologias de celular CDMA
- DHSS: Direct Sequency Spread Spectrum
 - Usado no IEEE 802.11b, g e n (na frequência de 2.4GHz)
- OFDM: Orthogonal Frequency Division Multiplexing
 - Usado no IEEE 802.11a e n (na frequência de 5GHz)

FHSS (Frequency Hoping Spread Spectrum)

- O FHSS é usado na banda ISM (Industrial Scientific and Medical) (banda de 2.4 a 2.4835 GHz, aproximadamente 80 MHz).
- A banda de frequência é dividida em 79 canais de frequência com 1 MHz de largura.
- Ao contrário de outras técnicas, a transmissão muda frequentemente de canal, segundo uma seqüência pseudo-randômica (justificando o nome salto em frequencia).
- Nesse método, todas as estações devem mudar de freqüência em sincronismo. Isso é obtido utilizando-se um mesmo gerador de números pseudo-aleatórios.
- O FHSS é razoavelmente insensível à interferência de rádio, e tem como principal desvantagem sua baixa largura de banda.

DSSS (Direct Sequence Spread Spectrum)

- Também utilizada na banda ISM de 2,4 GHz.
- Utiliza canais mais largos, e técnicas de modulação que fazem o sinal ocupar toda a banda do canal.
 - Nesta técnica, a banda de 80 MHz é dividida em 14 canais de 22MHz.
 - Canais adjacentes sobrepõe um ao outro parcialmente, com 3 dos 14 canais sendo totalmente não sobrepostos.
- Os dados são enviados por um destes canais de 22MHz sem saltos para outras freqüências.
- Tanto o DSSS quanto o FHSS são muito sensíveis a presença de obstáculos e outras interferências, que reduzem significativamente sua taxa de operação.

Canais DSSS

 Observa-se que apesar da modulação DSS definir 14 canais, apenas 3 não são sobrepostos.

DSSS First Set: 3 non-overlapping channels:

DSSS Second Set: 6 half-overlapping channels

Figure 1. Wi-Fi Channelization

OFDM (Orthogonal Frequency Division Multiplexing)

- Utilizada na banda ISM de 5 GHz;
- Divide o sinal em muitas bandas estreitas, em contraposição ao uso de uma única banda larga, provendo maior imunidade à interferência de banda estreita e a possibilidade de utilizar bandas não-contíguas.
- Divide a banda em canais de 20 MHz, que por sua vez são divididos em 52 subcanais de aproximadamente 300 KHz.
 - Quatro subcanais são utilizados para a correção de erros e para manter a coerência do sinal de freqüência. Os 48 subcanais restantes são para dados.
- O OFDM provê um transporte robusto, mesmo quando a transmissão dos sinais de rádio é refletida por vários pontos devido a obstáculos.

Cálculo da Potência Recebida

- Para determinar o máximo alcance e a taxa de transmissão de uma rede sem fio, deve-se determinar a potencia do sinal que chega no receptor.
- A potência do sinal é geralmente expressa em dBm, conforme a fórmula abaixo:
 - $dBm = (10Log_{10}(milliWatts))$
 - -1 mW = 0 dBm
- A conversão de dBm para Watts é dado pela fórmula abaixo:
 - Watts = 10((dBm 30)/10)
 - milliWatts = 10(dBm/10)

Potencia no Receptor

- Considerando o cenário abaixo a potência recebida pelo Receptor é dado pela fórmula:
- $P_R = P_T + G_{AT} + G_{AR} P_L$
- onde:
- P_R = Potencia Recebida
- G_{AT} = Ganho da antena do transmissor
- G_{AR} = Ganho da antena do receptor
- P_L = Perdas de percurso sem obstáculos

Perda de Potência com a Distância

- A fórmula que determina a perda de potência ao longo de um percurso sem obstáculos é dada abaixo:
- Onde:
 - d = distância entre as antes do transmissor e receptor em m
 - λ = comprimento de onda do sinal em metros
- O comprimento de onda do sinal é dado pela relação: $\lambda = c / f$
- $\alpha = 3,2$ Onde:
 - c é a velocidade da luz 3. 10 8 metros/s
 - f é a frequencia de transmissão: 2.4 109 Hz ou 5.8 109 Hz

$$P_L(dB) = 10 \cdot \log_{10} \left[\left(\frac{4 \cdot \pi \cdot d}{\lambda} \right)^2 \right]$$
 ou $d = \frac{\lambda \cdot 10^{PL(dB)/20}}{4 \cdot \pi}$

PL (dB) =
$$40$$
 (dB) + $10 \cdot \alpha \cdot \log_{10}(d)$
 $\alpha = 3,2$ Valor típico para ambiente indoor

Exemplo

Wireless Signal Rates1

With Automatic Fallback

- 54Mbps
 48Mbps
- 36Mbps
 24Mbps
- 18Mbps 12Mbps
- 11Mbps 9Mbps
- 6Mbps
 5.5Mbps
- · 2Mbps · 1Mbps

Security

- 64/128-bit WEP
- WPA —Wi-Fi Protected Access (64/128-bit WEP with TKIP, MIC, IV Expansion, Shared Key Authentication)
- WPA-PSK
- 802.1x

Media Access Control CSMA/CA with ACK

Wireless Frequency Range 2.4GHz to 2.4835GHz

Receiver Sensitivity

- 54Mbps OFDM, 10% PER,-68dBm)
- 48Mbps OFDM, 10% PER,-68dBm)
- 36Mbps OFDM, 10% PER,-75dBm)
- 24Mbps OFDM, 10% PER,-79dBm)
- 18Mbps OFDM, 10% PER,-82dBm)
- 12Mbps OFDM, 10% PER,-84dBm)
- 11Mbps CCK, 8% PER,-82dBm)
- 9Mbps OFDM, 10% PER,-87dBm)
- 6Mbps OFDM, 10% PER,-88dBm)
- 5.5Mbps CCK, 8% PER,-85dBm)
- 2Mbps QPSK, 8% PER,-86dBm)
- 1Mbps BPSK, 8% PER,-89dBm)

Wireless Operating Range²

Indoors: Up to 328 ft (100 meters)
Outdoors: Up to 1312 ft (400 meters)

Modulation Technology

- Orthogonal Frequency Division Multiplexing (OFDM)
- Complementary Code Keying (CCK)

Wireless Transmit Power 15dBm (32mW) ± 2dB

External Antenna Type

1.0dBi gain with reverse SMA connector

Access Point D-Link IEEE 802.11g

PER = taxa de perda de pacotes

Exercício

Considerando a especificação técnica do Bridge Dlink DWL-G800-AP, comparar o alcance OUTDOOR especificado na ficha técnica com o valor estimado usando modelo de perda de percurso de espaço livre. A potência de transmissão do equipamento é e o ganho da antena transmissora omnidirecional é.

Assumir:

- Taxa de Transmissão Intermediária = 36Mbps
- Canal de Operação Intermediário = Canal 6 = 2,437GHz
 (Freqüência Central)
- Ganho das antenas do transmissor e receptor = 1 dB

Resolução

- 1) Para operar na taxa de 36Mbps, conforme a ficha técnica do equipamento é necessária uma potência mínima recebida de:
 - -75 dBm.
- 2) A perda de percurso máxima é dado pela fórmula:
 - $-P_L=P_T+G_{AT}+G_{AR}-P_R=15+1+1-(-75)=92 \text{ dBm}$
- 3) O comprimento de onda na frequência de 2.437GHz é:
 - $-\lambda = c/f = 3.10^8 / 2.437.10^9 = 0,1231m$
- 4) A distância máxima é dada por:

$$d = \frac{\lambda \cdot 10^{92/20}}{4 \cdot \pi} = 390 \, m$$

Exercício

 Determine a máxima distância de transmissão entre dois equipamentos operando WiFi na freqüência de 2.4 GHz.
 Considere os seguintes parâmetros

Assumir:

- Taxa de Transmissão Intermediária = 2Mbps
- Freqüência de transmissão = 2,437 GHz
- Ganho das antenas do transmissor e receptor = 6 dBi
- Potência mínima do sinal recebido no receptor: -86 dBm
- Potência do transmissor: 15 dBm