Summary of trend features

Trend features

Different types of trend need different features

The trend section is structured as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$

Linear models

Type of feature

Type of trend

- Feature which track time.
- Linear trend.
- Non-linear trends.

Features for piecewise linear regression.

- · Changepoints.
- Non-linear trends.

Transformations to make the target linear.

Non-linear trends.

Tree-based models

- De-trend $\tilde{y}_t = y_t T_t$, use tree to forecast \tilde{y}_t , and forecast trend separately T_t .
- More advance tree algorithms.
- Feature which tracks time needed alongside the above points.

Fitting a linear trend using time

Time	Daily Sales	t
2020-02-12	23	0
2020-02-13	30	1
2020-02-14	35	2
2020-02-15	30	3
2020-02-16	Ś	4
2020-02-17	Ś	5
2020-02-18	Ś	6

Fitting a non-linear trend using time

Time	Daily Sales	t	t^2
2020-02-12	23	0	0
2020-02-13	30	1	1
2020-02-14	35	2	4
2020-02-15	30	3	9
2020-02-16	Ś	4	16
2020-02-17	Ś	5	25
2020-02-18	Ś	6	36

$$y_{t} = \beta_{0} + \beta_{1}t + \beta_{2}t_{2} + \beta_{3}t_{3}$$

$$t_{2} = 0 \quad \text{if } t < T_{1}$$

$$= t - T_{1} \quad \text{if } t \ge T_{1}$$

$$t_{3} = 0 \quad \text{if } t < T_{2}$$

$$= t - T_{2} \quad \text{if } t \ge T_{2}$$

Time	У
2020-02-12	23
2020-02-13	30
2020-02-14	35
2020-02-15	30
2020-02-16	20
2020-02-17	34
2020-02-18	12
2020-02-19	Ś
2020-02-20	Ś
2020-02-21	Ś

$$y_{t} = \beta_{0} + \beta_{1}t + \beta_{2}t_{2} + \beta_{3}t_{3}$$

$$t_{2} = 0 \quad \text{if } t < T_{1}$$

$$= t - T_{1} \quad \text{if } t \ge T_{1}$$

$$t_{3} = 0 \quad \text{if } t < T_{2}$$

$$= t - T_{2} \quad \text{if } t \ge T_{2}$$

Time	У	t (days)
2020-02-12	23	0
2020-02-13	30	1
2020-02-14	35	2
2020-02-15	30	3
2020-02-16	20	4
2020-02-17	34	5
2020-02-18	12	6
2020-02-19	Ś	7
2020-02-20	Ś	8
2020-02-21	Ś	9

$$y_{t} = \beta_{0} + \beta_{1}t + \beta_{2}t_{2} + \beta_{3}t_{3}$$

$$t_{2} = 0 \quad \text{if } t < T_{1}$$

$$= t - T_{1} \quad \text{if } t \ge T_{1}$$

$$t_{3} = 0 \quad \text{if } t < T_{2}$$

$$= t - T_{2} \quad \text{if } t \ge T_{2}$$

	Time	У	t (days)	t_2 (days)
	2020-02-12	23	0	0
	2020-02-13	30	1	0
T_1	2020-02-14	35	2	0
	2020-02-15	30	3	1
	2020-02-16	20	4	2
T_2	2020-02-17	34	5	3
	2020-02-18	12	6	4
	2020-02-19	Ś	7	5
	2020-02-20	Ś	8	6
	2020-02-21	Ś	9	7

$$y_{t} = \beta_{0} + \beta_{1}t + \beta_{2}t_{2} + \beta_{3}t_{3}$$

$$t_{2} = 0 \quad \text{if } t < T_{1}$$

$$= t - T_{1} \quad \text{if } t \ge T_{1}$$

$$t_{3} = 0 \quad \text{if } t < T_{2}$$

$$= t - T_{2} \quad \text{if } t \ge T_{2}$$

	Time	У	t (days)	t ₂ (days)	t ₃ (days)
	2020-02-12	23	0	0	0
	2020-02-13	30	1	0	0
T_1	2020-02-14	35	2	0	0
	2020-02-15	30	3	1	0
	2020-02-16	20	4	2	0
T_2	2020-02-17	34	5	3	0
	2020-02-18	12	6	4	1
	2020-02-19	Ś	7	5	2
	2020-02-20	Ś	8	6	3
	2020-02-21	Ś	9	7	4

Features:

- Time since start (t)
- Changepoint 1
 - 2008-01-01
- Changepoint 2
 - 2009-05-01

Trees cannot extrapolate

How to use Tree-based models if there is trend?

De-trend the time series first

Use more advanced tree algorithms

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$

How to use Tree-based models if there is trend?

De-trend the time series first

Features: time, lag 1 & 12 of y

Use more advanced tree algorithms

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$$
 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots$

How to use Tree-based models if there is trend?

De-trend the time series first

Features: time, lag 1 & 12 of y

Use more advanced tree algorithms

Features:

- Time & lag 1, 2, 3, & 12 of y
- Window mean of size 12 of y

Summary

Time can be used to model different types of trend.

Linear models can model nonlinear trends via feature engineering.

Tree-based models require a different approach to trend.