信息素更新

在 t 时刻, 设 \hat{s} 是目前为止的最好可行解, 而 s_t 是当前 t 时刻的最好可行解. 设 $f(\hat{s})$ 和 $f(s_t)$ 是对应的目标函数值.

信息素更新

在 t 时刻, 设 \hat{s} 是目前为止的最好可行解, 而 s_t 是当前 t 时刻的最好可行解. 设 $f(\hat{s})$ 和 $f(s_t)$ 是对应的目标函数值.

如果 $f(s_t) < f(\hat{s})$, 则 $\hat{s} \leftarrow s_t$

信息素更新

在 t 时刻, 设 \hat{s} 是目前为止的最好可行解, 而 s_t 是当前 t 时刻的最好可行解. 设 $f(\hat{s})$ 和 $f(s_t)$ 是对应的目标函数值.

如果 $f(s_t) < f(\hat{s})$, 则 $\hat{s} \leftarrow s_t$

在 ŝ 的弧上增强信息素, 而在其它弧上挥发信息素.

信息素增强和挥发的方法一:

$$au_{ij}(t) = \left\{egin{array}{ll} (1-
ho_{t-1}) au_{ij}(t-1) + rac{
ho_{t-1}}{|\hat{\mathbf{s}}|}, & ext{if } (i,j) \in \hat{\mathbf{s}} \ (1-
ho_{t-1}) au_{ij}(t-1), & ext{otherwise,} \end{array}
ight.$$

其中 ρ_t , $0 < \rho_t < 1$ 是挥发因子, 且满足

$$\rho_t \leq 1 - \frac{\ln t}{\ln(t+1)}, (t \geq K), \qquad \sum_{t=1}^{\infty} \rho_t = \infty.$$

信息素增强和挥发的方法二(MAX-MIN 方法):

$$au_{ij}(t) = \left\{egin{array}{l} \max\{(1-
ho) au_{ij}(t-1) + rac{
ho}{|\hat{\mathbf{s}}|}, au_{ ext{min}}(t-1)\}, \ & ext{if } (i,j) \in \hat{\mathbf{s}} \ \\ \max\{(1-
ho) au_{ij}(t-1), au_{ ext{min}}(t-1)\}, \ & ext{otherwise,} \end{array}
ight.$$

其中 ρ , $0 < \rho < 1$ 是挥发因子, 而 $\tau_{\min}(t-1)$ 为一个实数.

信息素增强和挥发的方法三:

$$au_{ij}(t) = \left\{egin{array}{l} \max\{(1-
ho) au_{ij}(t-1) +
ho g(\hat{m{s}}), au_{ ext{min}}\}, \ & ext{if } (i,j) \in \hat{m{s}} \ \max\{(1-
ho) au_{ij}(t-1), au_{ ext{min}}\}, \ & ext{otherwise,} \end{array}
ight.$$

其中 ρ , $0 < \rho < 1$ 是挥发因子, τ_{min} 是一个参数, 而 g(s), $0 < g(s) < +\infty$ 是一个函数满足 $f(s) < f(s') \Rightarrow g(s) \ge g(s')$, 如可取 g(s) = 1/(|f(s)| + 1).

例

四城市非对称 TSP

Figure: 四城市 TSP

距离矩阵为

$$D = (d_{ij}) = \begin{pmatrix} 0 & 1 & 0.5 & 1 \\ 1 & 0 & 1 & 1 \\ 1.5 & 5 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

假设蚁群中有四只蚂蚁, 所有蚂蚁都从城市 A 出发,用方法一观察信息素的增强和挥发变化情况. 设挥发因子 $\rho_k = \frac{1}{2}$.

初始信息素

$$\tau(0) = (\tau_{ij}(0)) = \begin{pmatrix} 0 & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & 0 & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & 0 & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & 0 \end{pmatrix}$$

假设四只蚂蚁行走的路线分别为

第一只
$$s_1$$
: $A o B o C o D o A$, $f(s_1) = 4$; 第二只 s_2 : $A o C o D o B o A$, $f(s_2) = 3.5$; 第三只 s_3 : $A o D o C o B o A$, $f(s_3) = 8$; 第四只 s_4 : $A o B o D o C o A$, $f(s_4) = 4.5$. 当前最优解为 s_2 .

信息素更新为

$$au(1) = (au_{ij}(1)) = egin{pmatrix} 0 & rac{1}{24} & rac{1}{6} & rac{1}{24} \ rac{1}{6} & 0 & rac{1}{24} & rac{1}{24} \ rac{1}{24} & rac{1}{24} & 0 & rac{1}{6} \ rac{1}{24} & rac{1}{6} & rac{1}{24} & 0 \end{pmatrix}$$

由于 s_2 为全局最优解, 无论蚂蚁行走路线如何,信息素更新为

$$\tau(2) = (\tau_{ij}(2)) = \begin{pmatrix} 0 & \frac{1}{48} & \frac{5}{24} & \frac{1}{48} \\ \frac{5}{24} & 0 & \frac{1}{48} & \frac{1}{48} \\ \frac{1}{48} & \frac{1}{48} & 0 & \frac{5}{24} \\ \frac{1}{48} & \frac{5}{24} & \frac{1}{48} & 0 \end{pmatrix}$$

$$\tau(3) = (\tau_{ij}(3)) = \begin{pmatrix} 0 & \frac{1}{96} & \frac{11}{48} & \frac{1}{96} \\ \frac{11}{48} & 0 & \frac{1}{96} & \frac{1}{96} \\ \frac{1}{96} & \frac{1}{96} & 0 & \frac{11}{48} \\ \frac{1}{96} & \frac{11}{48} & \frac{1}{96} & 0 \end{pmatrix}$$