2022 春高等代数习题课

2022-4-22 第四次习题课

第一题. 对于 $\mathscr{A}\in\mathcal{L}(\mathbb{F}^3),$ 若 \mathscr{A} 在基 $\alpha_1=\begin{pmatrix}-1\\1\\1\end{pmatrix},$ $\alpha_2=\begin{pmatrix}1\\-1\\1\end{pmatrix},$ $\alpha_3=\begin{pmatrix}1\\1\\-1\end{pmatrix}$ 下的矩阵为

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$
, 证明:

(1). ∅ 是可逆线性变换;

(2). 求
$$\mathscr{A}$$
 在基 $\varepsilon_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\varepsilon_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\varepsilon_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 下的矩阵。

证明. (1). 要证明 \mathscr{A} 是可逆线性变换, 只要证 $\det A \neq 0$ 即可:

$$\det A = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 2 & 0 \end{vmatrix} = \begin{vmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 2 & 0 \end{vmatrix} = (-1)^4 \begin{vmatrix} 1 & 1 \\ -2 & 2 \end{vmatrix} = 4 \neq 0.$$

(2). 由已知条件, $\mathscr{A}(\alpha_1,\alpha_2,\alpha_3)=(\alpha_1,\alpha_2,\alpha_3)A$. 令 $(\alpha_1,\alpha_2,\alpha_3)$ 到 $(\varepsilon_1,\varepsilon_2,\varepsilon_3)$ 的过渡矩阵为 P, 即 $(\varepsilon_1,\varepsilon_2,\varepsilon_3)=(\alpha_1,\alpha_2,\alpha_3)P$,那么

$$\mathscr{A}(\varepsilon_1, \varepsilon_2, \varepsilon_3) = \mathscr{A}(\alpha_1, \alpha_2, \alpha_3)P = (\alpha_1, \alpha_2, \alpha_3)AP = (\varepsilon_1, \varepsilon_2, \varepsilon_3)P^{-1}AP.$$

容易看出 $P^{-1}=\begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$,利用 $P=(P^{-1})^{-1}=\frac{1}{\det P^{-1}}(P^{-1})^*$ 解得 $P=\frac{1}{4}\begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$,所以 $\mathscr A$ 在基 $\varepsilon_1,\varepsilon_2,\varepsilon_3$ 下的矩阵为

$$P^{-1}AP = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3 & -1 & 2 \\ 3 & 1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$

第二题. 在向量空间 $V=\mathbb{F}[x]$ 中定义线性变换 \mathscr{A},\mathscr{B} 如下:

$$\mathscr{A}(f(x)) = f'(x), \ \mathscr{B}(f(x)) = xf(x), \quad \forall f(x) \in V.$$

对于 $W = \mathbb{F}_n[x] = \{a_n x^n + \dots + a_1 x + a_0 \mid a_i \in \mathbb{F}, \ 0 \leqslant i \leqslant n\}$

- (1). 证明 W 是 $\mathscr{B}\mathscr{A}$ 的不变子空间;
- (2). 求 $\operatorname{Im}((\mathscr{B}\mathscr{A})^n)$ 和 $\ker((\mathscr{B}\mathscr{A})^n)$ 的维数与一组基。

解: 这是课本上的原题。

- (1). 任取 $f(x) \in V$, 有 $\mathscr{B}\mathscr{A}(f(x)) = \mathscr{B}(\mathscr{A}(f(x))) = \mathscr{B}(f'(x)) = xf'(x)$. 令 $f(x) = a_nx^n + \cdots + a_1x + a_0 \in W$, 那么 $\mathscr{B}\mathscr{A}(f(x)) = na_nx^n + \cdots + a_1x \in W$. 所以 W 是 $\mathscr{B}\mathscr{A}$ 的不变子空间。
- (2). 我们首先将 $\mathscr{B}\mathscr{A}$ 视作 W 上的线性变换。由 $\mathscr{B}\mathscr{A}(a_nx^n+\cdots+a_1x+a_0)=na_nx^n+\cdots+a_1x$ 容易看出 $(\mathscr{B}\mathscr{A})^n(a_nx^n+\cdots+a_1x+a_0)=n^na_nx^n+\cdots+a_1x$.

所以当 $\mathrm{char}(\mathbb{F})=0$ 时,任取 $g(x)=b_nx^n+\cdots+b_1x$,总有 $(\mathscr{B}\mathscr{A})^n\left(\frac{b_n}{n^n}x^n+\cdots+b_1x\right)=g(x)$. 于是

$$\operatorname{Im}((\mathscr{B}\mathscr{A})^n) = \{a_n x^n + \dots + a_1 x \mid a_i \in \mathbb{F}, \ 1 \leqslant i \leqslant n\}$$

其维数为 n, 基可取为 $\{x^n,\ldots,x\}$. $\ker((\mathscr{B}\mathscr{A})^n)$ 维数为 1, 可取常值函数 (多项式) f(x)=1 为其一组基。

当 $char(\mathbb{F}) = p, p$ 为某个素数时,有

$$(\mathscr{B}\mathscr{A})^n(a_nx^n + \dots + a_1x + a_0) = \sum_{\substack{1 \le k \le n \\ p\nmid k}} k^n a_k x^k$$

此时有

$$\operatorname{Im}((\mathscr{B}\mathscr{A})^n) = \left\{ \sum_{\substack{1 \leqslant k \leqslant n \\ p \nmid k}} a_k x^k \, \middle| \, a_k \in \mathbb{F}, \, 1 \leqslant k \leqslant n, \, p \nmid k \right\}$$

它的一组基可取为 $\{x^k \mid 1 \leqslant k \leqslant n, q \nmid k\}$,维数等于 $n - \left\lfloor \frac{n}{p} \right\rfloor$. $\ker((\mathscr{B}\mathscr{A})^n)$ 维数等于 $\#(\{0\} \cup \{k \mid 1 \leqslant k \leqslant n, p \nmid k\}) = 1 + \left\lfloor \frac{n}{p} \right\rfloor$. 它的一组基可以取为 $1, x^p, \ldots, x^{mp}$,其中 $m = \left\lfloor \frac{n}{p} \right\rfloor$.

若将 \mathscr{B} 视作 V 上的线性变换,则 $\operatorname{char}(\mathbb{F})=0$ 时,关于核空间的论断不变。象空间基为 $\{x^m\mid m\in\mathbb{N}_+\}$,是一个无穷维线性空间。 $\operatorname{char}(\mathbb{F})=p$ 时,核空间一组基可以取为 $\{x^m\mid m\in\mathbb{N},\ p\mid m\}$,象空间基为 $\{x^m\mid m\in\mathbb{N}_+,\ p\nmid m\}$,都是无穷维线性空间。

第三题. 在
$$V = M_n(\mathbb{F})$$
 中定义变换 $\sigma: X \mapsto AX, \forall X \in V,$ 其中 $A = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$,

 $\lambda_1,\ldots,\lambda_n$ 两两不同。

- (1). 证明 σ 是 V 上的线性变换;
- (2). 判断 σ 能否对角化, 并证明你的结论。

解: (1). **任取** $a_1, a_2 \in \mathbb{F}, X_1, X_2 \in V$, **有**

$$\sigma(a_1X_1 + a_2X_2) = A(a_1X_1 + a_2X_2) = a_1AX_1 + a_2AX_2 = a_1\sigma(X_1) + a_2\sigma(X_2).$$

所以 σ 是 V 上的线性变换。

(2) 由于 $\lambda_1,\ldots,\lambda_n$ 两两不同, 所以 A 可以对角化, 即存在可逆方阵 P, 使得 $PAP^{-1}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)=\Lambda.$

设 λ 是 σ 的一个特征值, 对应特征向量为 X, 即 $\sigma(X) = \lambda X$, 那么 $P^{-1}\Lambda PX = \lambda X$, 等价于

 $\Lambda PX = \lambda PX$. 记 $PX = (a_{ij})$, 那么有

$$\begin{pmatrix} \lambda_1 a_{11} & \lambda_1 a_{12} & \cdots & \lambda_1 a_{1n} \\ \lambda_2 a_{21} & \lambda_2 a_{22} & \cdots & \lambda_2 a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_n a_{n1} & \lambda_n a_{n2} & \cdots & \lambda_1 a_{nn} \end{pmatrix} = (\lambda a_{ij})$$

上式 $\lambda=\lambda_i$ 的解有 $E_{i1},\ldots,E_{in},i=1,\ldots,n$, 其中 E_{ij} 为第 (i,j) 位元素值为 1, 其余位置值为 0 的 n 阶方阵。从而知 $\sigma(X)=\lambda X$ 能解得 n 个特征值 $\lambda_1,\ldots,\lambda_n$, 其中每个 λ_i 对应的特征向量有 n 个,为 $P^{-1}E_{i1},\ldots,P^{-1}E_{in},i=1,\ldots,n$. 所以 σ 可以对角化。

第四题. 设 V 是 $\mathbb C$ 上 n 维向量空间, $\mathscr A\in\mathcal L(V)$,且 $\varphi_\mathscr A(\lambda)=(\lambda-\lambda_0)^mg(\lambda)$, $g(\lambda_0)\neq 0$. 用 W_{λ_0} 表示 V 的属于 λ_0 的根子空间,证明

$$W_{\lambda_0} = \{ g(\mathscr{A}) \alpha \mid \alpha \in V \}.$$

证明: 习题课讲过类似的题目。任取 $\alpha \in V$, 有 $(\mathscr{A} - \lambda_0)^m g(\mathscr{A})(\alpha) = \varphi_{\mathscr{A}}(\mathscr{A})(\alpha) = 0$, 所以 $W \supseteq \{g(\mathscr{A})\alpha \mid \alpha \in V\}$. 下证 $W \subseteq \{g(\mathscr{A})\alpha \mid \alpha \in V\}$.

任取 $\beta \in W_{\lambda_0}$, 那么存在非负整数 k 使得 $(\mathscr{A} - \lambda_0)^k \beta = 0$. 我们希望找到某个 $\alpha \in V$, 使得 $g(\mathscr{A})\alpha = \beta$.

由于多项式 $(\lambda-\lambda_0)^m,\,g(\lambda)$ 互素,所以存在多项式 $u(\lambda),v(\lambda)\in\mathbb{F}[\lambda],$ 使得 $u(\lambda)(\lambda-\lambda_0)^m+v(\lambda)g(\lambda)=1.$ 那么

$$\beta = (u(\mathscr{A})(\mathscr{A} - \lambda_0)^m + v(\mathscr{A})g(\mathscr{A}))\beta = u(\mathscr{A})(\mathscr{A} - \lambda_0)^m\beta + g(\mathscr{A})(v(\mathscr{A})\beta)$$

下面我们证明 $u(\mathscr{A})(\mathscr{A}-\lambda_0)^m\beta=0$. 假设 k 是使得 $(\mathscr{A}-\lambda_0)^k\beta=0$ 成立的最小的非负整数。如果 $k\leqslant m$,则证明完毕。若 k>m,那么

$$(\mathscr{A} - \lambda_0)^{k-m}\beta = u(\mathscr{A})(\mathscr{A} - \lambda_0)^k\beta + g(\mathscr{A})(\mathscr{A} - \lambda_0)^{k-m}(v(\mathscr{A})\beta) = g(\mathscr{A})(\mathscr{A} - \lambda_0)^{k-m}(v(\mathscr{A})\beta)$$

若 $k\geqslant 2m$,则上式右边等于 $\varphi_{\mathscr{A}}(\mathscr{A})(\mathscr{A}-\lambda_0)^{k-2m}(v(\mathscr{A})\beta)=0$. 此时 k-m 也满足 $(\mathscr{A}-\lambda_0)^{k-m}\beta=0$,与 k 的极小性矛盾。若 k<2m,那么上式左右两边同时用 $(\mathscr{A}-\lambda_0)^{2m-k}$ 作用,有

$$(\mathscr{A} - \lambda_0)^m \beta = \varphi_{\mathscr{A}}(\mathscr{A})(v(\mathscr{A})\beta) = 0.$$

这也与 k>m 以及 k 的极小性的假设矛盾。所以必然有 $k\leqslant m$. 于是,我们证明了 $\beta=g(\mathscr{A})(v(\mathscr{A})\beta)$,从而有

$$W_{\lambda_0} = \{ g(\mathscr{A}) \alpha \mid \alpha \in V \}.$$

第五题. 设 A 是数域 \mathbb{F} 上 n 阶幂零矩阵, 且 A 的最小多项式 $d(\lambda) = \lambda^m, m \leqslant n$. 证明

$$r(A) \leqslant \frac{(m-1)n}{m}.$$

证明. 将 A 视作 $\mathbb F$ 的代数闭包 $\overline{\mathbb F}$ 上的矩阵,秩不改变。由于 A 是 n 阶幂零矩阵,所以 A 的 Jordan 标准形可以写为 $\mathrm{diag}(J_{r_1}(0),\ldots,J_{r_s}(0))$. 由于 A 的最小多项式 $d(\lambda)=\lambda^m$,所以 $\forall 1\leqslant i\leqslant s$,有 $r_i\leqslant m$. 于是我们有

$$\begin{cases} \operatorname{rank}(A) = \sum\limits_{i=1}^{s} \operatorname{rank} J_{r_i}(0) = \sum\limits_{i=1}^{s} r_i - 1, \\ \sum\limits_{i=1}^{s} r_i = n, \\ r_i \leqslant m, \; \forall 1 \leqslant i \leqslant s. \end{cases}$$

于是 $\operatorname{rank} A = n - s \leqslant n - \frac{n}{m} = \frac{(m-1)n}{m}.$ 我们以下说明,可以不用将 A 视作 $\overline{\mathbb{F}}$ 上的矩阵,也有 A 相似于 Jordan 形 $\operatorname{diag}(J_{r_1}(0),\ldots,J_{r_s}(0))$ 的结论。我们考虑 A 的有理标准形 (或循环标准形) $\mathrm{diag}(C_{r_1},\ldots,C_{r_s})$, 这些 C_{r_i} 是 A 的不变因子

组 λ^{r_i} 的友阵。多项式 λ^{r_i} 的友阵是 $\begin{pmatrix} 0 & & & 0 \\ 1 & \ddots & & \vdots \\ & \ddots & \ddots & \vdots \end{pmatrix}$,这是一个 λ^{r_i} 的友阵是 λ^{r_i} 的友体是 λ^{r_i} 的友体和 λ^{r_i}

A 相似于 Jordan 形 diag $(J_{r_1}(0),\ldots,J_{r_s}(0))$.

第六题. 设 $\mathscr A$ 是 n 维向量空间 V 的一个线性变换。对于 V 的一组基 $lpha_1,lpha_2,\ldots,lpha_n$ 和 lpha = $x_1\alpha_1+\cdots+x_n\alpha_n$, 有

$$\mathscr{A}\alpha = x_n\alpha_1 + \dots + x_1\alpha_n,$$

判断 🛭 是否可对角化, 并证明你的结论。

解: 设 λ 为 $\mathscr A$ 的一个特征值, $\sum\limits_{i=1}^n x_i\alpha_i\neq 0$ 为对应的特征向量,即 x_1,\ldots,x_n 不全为 0,且有

$$\lambda(\sum_{i=1}^{n} x_i \alpha_i) = \mathscr{A}(\sum_{i=1}^{n} x_i \alpha_i) = \sum_{i=1}^{n} x_{n+1-i} \alpha_i.$$

于是有

$$\begin{cases} \lambda x_i = x_{n+1-i} \\ \lambda x_{n+1-i} = x_i \\ \lambda \neq 0, \end{cases}$$

解得 $\lambda = \pm 1$.

于是,当 n 为偶数时, $\mathscr A$ 对应于特征值 $\lambda=1$ 有 $rac{n}{2}$ 个特征向量 $lpha_i+lpha_{n+1-i},\ i=1,\ldots,rac{n}{2},\mathscr A$ 对应于特征值 $\lambda=-1$ 有 $\frac{n}{2}$ 个特征向量 $\alpha_i-\alpha_{n+1-i},\ i=1,\ldots,\frac{n}{2}.$ 所以此时 $\mathscr A$ 可以对角化。

当 n 是奇数的时候, $\mathscr A$ 对应于特征值 $\lambda=1$ 有 $\frac{n+1}{2}$ 个特征向量 $\alpha_i+\alpha_{n+1-i},\ i=1,\ldots,\frac{n-1}{2},$ 以及 $\alpha_{(n+1)/2}$ 。 $\mathscr A$ 对应于特征值 $\lambda=-1$ 有 $\frac{n-1}{2}$ 个特征向量 $\alpha_i-\alpha_{n+1-i},\ i=1,\ldots,\frac{n-1}{2}.$ 所以 此时 🖋 也可以对角化。

解法二: \mathscr{A} 在这组基 $\alpha_1,\alpha_2,\ldots,\alpha_n$ 下的矩阵表示为 $A=\begin{pmatrix} & & & 1 \\ & & \ddots & \\ & & & \end{pmatrix}$,那么

$$\lambda I - A = \begin{pmatrix} \lambda & & & & -1 \\ & \ddots & & & \ddots \\ & & \lambda & -1 & \\ & & -1 & \lambda & \\ & & \ddots & & \ddots \\ -1 & & & & \lambda \end{pmatrix}, \quad n$$
 为偶数,

或者

$$\lambda I - A = egin{pmatrix} \lambda & & & & & -1 \ & \ddots & & & \ddots & \ & & \lambda & & -1 & & \ & & \lambda - 1 & & & \ & & \lambda - 1 & & & \ & & -1 & & \lambda & & \ & \ddots & & & \ddots & \ -1 & & & & \lambda \end{pmatrix}, \quad n$$
 为奇数

可以算得

$$\det(\lambda I - A) = \begin{cases} (\lambda + 1)^{\frac{n}{2}} (\lambda - 1)^{\frac{n}{2}}, & n \text{ 为偶数,} \\ (\lambda + 1)^{\frac{n-1}{2}} (\lambda - 1)^{\frac{n+1}{2}}, & n \text{ 为偶数,} \end{cases}$$

解得特征值为 ± 1 . 通过解对应的特征方程得到和前一种解法一样的特征向量。

解法三: 容易看出 \mathscr{A}^2 是恒等映射,即 $\mathscr{A}^2 = \mathscr{I}$,所以 \mathscr{A} 的一个零化多项式为 $f(\lambda) = \lambda^2 - 1$,它没有重根,所以 \mathscr{A} 的极小多项式也没有重根,所以 \mathscr{A} 可以对角化。

第七题. 记
$$J_n(0)=\begin{pmatrix}0&1&&&\\&0&\ddots&&\\&&\ddots&1&\\&&&0\end{pmatrix}_{n\times n}$$
 . 若 A 是 n 阶幂零矩阵,且幂零指数为 n . 证明 A 与

 $J_n(0)$ 相似, 并求出 A 的最小多项式和特征多项式。

解: 由于 $A^{n-1}\neq 0$, 所以存在 $\alpha\in\mathbb{F}^n$, $\alpha\neq 0$, 使得 $A^{n-1}\alpha\neq 0$. 考虑向量组 $A^{n-1}\alpha,\ldots,A\alpha,\alpha$, 假若它们线性相关,则存在一组不全为 0 的数 $\lambda_0,\ldots,\lambda_{n-1}$ 使得 $\lambda_0\alpha+\cdots+\lambda_{n-1}A^{n-1}\alpha=0$. 那么

$$0 = A^{n-1}(\lambda_0 \alpha + \dots + \lambda_{n-1} A^{n-1} \alpha) = \lambda_0 A^{n-1} \alpha + \lambda_1 A^n \alpha + \dots + \lambda_{n-1} A^{2n-2} \alpha = \lambda_0 A^{n-1} \alpha,$$

从而必须有 $\lambda_0=0$. 依次可推出 $\lambda_1=\cdots=\lambda_{n-1}=0$. 于是假设不成立,向量组 $A^{n-1}\alpha,\ldots,A\alpha,\alpha$ 线性无关,构成了 \mathbb{F}^n 的一组基。A 在这组基下的矩阵表示即为 $J_n(0)$. A 的极小多项式与特征多项式都是 $f(\lambda)=\lambda^n$.

第八题. 若
$$A$$
 相似于 $J_1=\begin{pmatrix}J_{m_1}(0)&&&&\\&\ddots&&&\\&&J_{m_s}(0)\end{pmatrix}$ 和 $J_2=\begin{pmatrix}J_{n_1}(0)&&&\\&\ddots&&\\&&J_{n_t}(0)\end{pmatrix}$,证明 $s=t$,

并且适当调整顺序后可使得 $J_{n_1}(0),\ldots,J_{n_s}(0)$ 与 $J_{m_1}(0),\ldots,J_{m_s}(0)$ 相等 (即 $\{m_1,\ldots,m_s\}=\{n_1,\ldots,n_s\}$)。

证明: 由于 $s=\dim(\ker(0I-J_1)), t=\dim(\ker(0I-J_2))$ 为特征值 0 对应的特征空间的维数,而 J_1,J_2 都相似于 A,所以

$$s=t=\dim(\ker(0I-A))=\dim(\ker A).$$

由于 A, J_1, J_2 相似, 所以 $\forall k \in \mathbb{N}$, 有

$$\operatorname{rank} A^k = \operatorname{rank} J_1^k = \operatorname{rank} J_2^k$$

对于 r 阶 Jordan 块 $J_r(0)$, 有 rank $J_r(0)^k = \max\{0, r-k\}$, 进而有

$$\operatorname{rank} J_1^k = \sum_{i=1}^s \max\{0, m_i - k\}, \quad \operatorname{rank} J_1^k = \sum_{i=1}^s \max\{0, n_i - k\}.$$

他们的二阶差分分别为 ($k \geqslant 1$)

$$\begin{split} D_1(k) := & \operatorname{rank} J_1^{k+1} + \operatorname{rank} J_1^{k-1} - 2 \operatorname{rank} J_1^k = \#\{i \mid 1 \leqslant i \leqslant s, \ m_i = k\} \\ D_2(k) := & \operatorname{rank} J_2^{k+1} + \operatorname{rank} J_2^{k-1} - 2 \operatorname{rank} J_2^k = \#\{i \mid 1 \leqslant i \leqslant s, \ n_i = k\} \end{split}$$

于是对于任意 $k \geqslant 1$ 都有

$$\#\{i \mid 1 \leqslant i \leqslant s, \ m_i = k\} = D_1(k) = D_2(k) = \#\{i \mid 1 \leqslant i \leqslant s, \ n_i = k\}$$

所以存在 s 阶对称群中的一个元素 σ , 使得 $\sigma(m_1,\cdots,m_s)=(n_1,\cdots,n_s)$, 即在不计一个置换作用的意义下, A 的 Jordan 标准形是唯一的。