Lesson 5: Memory Management

Areas of running program

Managing dynamic memory

5.1 The 5 Memory Areas

- 5 areas of a running C++ program
 - Const data
 - Stack
 - Free store
 - Heap
 - Global / static
- Guidelines

5.2 Header File <new>

- Provides features to manage memory
 - Functions
 - Types
 - Constants
- Additional notes

5.3 Memory Exhaustion – bad_alloc

- Sample code
 - Demonstrates running out of memory
 - bad_alloc thrown

5.4 Memory Exhaustion - nothrow

- Sample code
 - Demonstrates running out of memory
 - bad_alloc *not* thrown

5.5 Registering Memory Allocation Handler

- Register handler called when out of memory
- Uses:
 - Can free up memory to allow app to keep running

5.6 Call Global Allocators & Deallocators

- Call global memory allocators
- Call global memory deallocators

5.7 Replace Global Allocators & Deallocators

- Replace global memory allocators
- Replace global memory deallocators
- Benefit
 - Can control global memory management
- Dangerous

5.8 Custom Class Allocators & Deallocators

- Replace class' memory allocators
- Replace class' memory deallocators
- Benefit
 - Control when expensive objects created / destroyed
 - Implement memory pool
- Guidelines

5.9 Quiz: What's Wrong with Code?

- Analyze code
 - Determine how allocators & deallocators are being used incorrectly
- Guidelines

5.10 Quiz: Which Deallactors Get Called?

- Analyze code
 - Understand behavior with arrays
- Guidelines

5.11 auto_ptr

- auto_ptr
 - Standard class that cleans up dynamically allocated object
- Sample unsafe code not using auto_ptr
- Sample safe code using auto_ptr
- Resource Acquisition Is Initialization (RAII)
- Guidelines