Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 19:00:34 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3771512945

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	*	s	0	0	0	0	0	0	0	0	0	0
2 Bamfiel	S	*	s	0	0	0	0	0	0	0	0	0
3 PortRen	0	s	*	S	0	0	0	0	0	0	0	0
4 WalkOnB	0	0	s	*	S	0	0	0	0	0	0	0
5 BodegaH	0	0	0	S	*	s	0	0	0	0	0	0
6 Davenpo	0	0	0	0	S	*	s	0	0	0	0	0
7 VistaDe	0	0	0	0	0	S	*	s	0	0	0	0
8 HazardR	0	0	0	0	0	0	s	*	S	0	0	0
9 Refugio	0	0	0	0	0	0	0	s	*	S	0	0
10 Carpint	0	0	0	0	0	0	0	0	s	*	s	0

11 WhitePo	0	0	0	0	0	0	0	0	0	s	*	s	
12 LaJolla	0	0	0	0	0	0	0	0	0	0	s	*	
Order of param	eters:												
1	Θ_1							lispla					
2	Θ_2						<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
3	Θ_3						<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
4	Θ_4							lispla					
5	Θ_5							lispla					
6	Θ_6							lispla					
7	Θ_7							lispla					
8	Θ_8							lispla					
9	Θ_9							lispla					
10	Θ_{10}							lispla					
11	Θ_{11}							lispla					
12	Θ_{12}				_			lispla	-				
13	$ V _{2->1}$	=	M				<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
24	$M_{1->2}$	=	M	2-/	₁ [s]								
25	M $_{3->2}$	=	M	5 /	₂ [s]		<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
36	M $_{2->3}$	=	M		₂ [s]								
37	M _{4->3}	=	M	4->	₃ [s]		<c< td=""><td>lispla</td><td>ayed:</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed:	>			
48	M 3->4	=	M	4-/	₃ [s]								
49	M 5->4	=	M	5 /	₄ [s]		<c< td=""><td>lispla</td><td>ayed</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayed	>			
60	M _{4->5}	=	M		₄ [s]			P 1 -					
61	M 6->5	=	M	6->	₅ [s]	ı	<c< td=""><td>lispla</td><td>ayea</td><td>></td><td></td><td></td><td></td></c<>	lispla	ayea	>			
72	M 5->6	=	M	0-/	_{.5} [s]	ı		l' l .					
73	M 7->6	=	M	/ /	6 [s]	ı	<0	lispla	ayea	>			
84	M 6->7	=	M	1-/	6 [s]	1		امماد	d				
85	M _{8->7}	=	IVI N/I	8->	7 [s]		<0	lispla	ayeu:	>			
96 97	/>0	=	IVI N/I	8->	₇ [s]			liople	avod.				
108	M 9->8	_	IVI	9->	[s] ₈	 	<0	lispla	ayeu:				
109	M _{8->9}		IVI	9->	[s] _{8.}	[[<i>ر</i> ر	lispla	אסעי	_			
120	10-29		IVI	10-	[s] [e]	 	<0	uspie	ay C U.				
121	9-210		M	10-	[s] [e]	 	~~	lispla	אפלי	_			
132	11-/1		NΛ	11–	[s] [s]	[[~(iispic	ay c u.				
133	10-/1		NΛ	11-	[s] [s]	 	~^	lispla	aved.	>			
144	12-/1		M	12-	[s] [و]	 	ν.	iiohic	ay C U.				
	IVI _{11->1}	2	171	12-	>1 [s]	I							
Mutation rate am	nong loci:												Mutation rate is constant
Analysis strategy	y:												Bayesian inference
	•												,

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Slice sampling

Prior distribution for parameter

Parameter Prior Delta Bins Minimum Mean* Maximum Theta Exp window 0.000010 0.010000 10.000000 1.000000 500 0.000100 100000.000000 1000000.000000 100000.000000 Μ Exp window 500

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a]1000Increment (record every x step [b]100Number of concurrent chains (replicates) [c]3Visited (sampled) parameter values [a*b*c]300000Number of discard trees per chain (burn-in)1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

100000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: ../../mcalifornianus_210528.mig

Output file:

Posterior distribution raw histogram file:

Print data:

outfile.txt
bayesfile

No

Print genealogies [only some for some data type]:

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies
1 ElfinCo	1	19
2 Bamfiel	1	23
3 PortRen	1	15
4 WalkOnB	1	16
5 BodegaH	1	7
6 Davenpo	1	17
7 VistaDe	1	19
8 HazardR	1	23
9 Refugio	1	16
10 Carpint	1	19
11 WhitePo	1	11
12 LaJolla	1	8
Total of all populations	1	193

Bayesian Analysis: Posterior distribution table

ocus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02544
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.18001	0.07001	0.02634
1	Θ_3^-	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01423
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00995
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.02238
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01535
1	Θ_{7}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01856
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01738
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01305
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00623
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01131
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00522
1	M _{2->1}	50000.0	60000.0	71000.0	0.00088	114000.0	81000.0	80506.2
1	M _{1->2}	50000.0	60000.0	71000.0	0.00088	114000.0	81000.0	80506.2
1	$M_{3->2}$	0.0	36000.0	51000.0	64000.0	68000.0	45000.0	38280.6
1	M _{2->3}	0.0	36000.0	51000.0	64000.0	68000.0	45000.0	38280.6
1	$M_{4->3}$	0.0	6000.0	21000.0	34000.0	42000.0	31000.0	48453.6
1	$M_{3->4}$	0.0	6000.0	21000.0	34000.0	42000.0	31000.0	48453.6
1	M _{5->4}	0.0008	30000.0	39000.0	54000.0	64000.0	43000.0	39608.6
1	$M_{4->5}$	0.0008	30000.0	39000.0	54000.0	64000.0	43000.0	39608.6
1	M _{6->5}	46000.0	54000.0	67000.0	78000.0	86000.0	65000.0	47463.3
1	$M_{5->6}$	46000.0	54000.0	67000.0	78000.0	86000.0	65000.0	47463.3
1	M _{7->6}	0.0	6000.0	19000.0	32000.0	60000.0	29000.0	28499.1
1	M _{6->7}	0.0	6000.0	19000.0	32000.0	60000.0	29000.0	28499.1
1	M _{8->7}	44000.0	78000.0	95000.0	106000.0	112000.0	89000.0	83056.4
1	M _{7->8}	44000.0	78000.0	95000.0	106000.0	112000.0	89000.0	83056.4
1	M _{9->8}	0.0	6000.0	21000.0	34000.0	46000.0	35000.0	44978.4
1	M _{8->9}	0.0	6000.0	21000.0	34000.0	46000.0	35000.0	44978.4
1	M _{10->9}	54000.0	62000.0	77000.0	90000.0	98000.0	71000.0	58660.0
1	M _{9->10}	54000.0	62000.0	77000.0	90000.0	98000.0	71000.0	58660.0
1	M _{11->10}	0.0	0.0008	23000.0	34000.0	42000.0	31000.0	45684.8
1	M _{10->11}	0.0	0.0008	23000.0	34000.0	42000.0	31000.0	45684.8
1	M _{12->11}	14000.0	26000.0	43000.0	60000.0	72000.0	57000.0	62889.0
1	M _{11->12}	14000.0	26000.0	43000.0	60000.0	72000.0	57000.0	62889.0

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Citation suggestions:

 Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345 Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968. Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Migrate 3.7.2: (http://popgen.sc.fsu.edu) [program run on 13:45:41]

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2256.436099	(1a)
	-2158.436531	(1b)
Harmonic mean	-1868.168243	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	1031/4357	0.23663
Θ_2^{-}	1035/4367	0.23700
$\Theta_3^{}$	862/4323	0.19940
Θ_4°	1053/4476	0.23525
Θ_5	1160/4430	0.26185
Θ_6	1326/4424	0.29973
Θ_7°	840/4453	0.18864
$\Theta_8^{'}$	1404/4391	0.31974
Θ_{0}	1394/4472	0.31172
Θ_{10}	826/4341	0.19028
9 ₁₁	1594/4562	0.34941
912	938/4495	0.20868
M ¹² _{2->1}	4499/4499	1.00000
$M_{1->2}^{2->1}$	4499/4499	1.00000
$M_{3->2}$	4378/4378	1.00000
$M_{2->3}^{3->2}$	4378/4378	1.00000
$A = \frac{2-3}{4-3}$	4348/4348	1.00000
$M_{3->4}$	4348/4348	1.00000
$M_{5->4}^{5->4}$	4488/4488	1.00000
$A_{4->5}$	4488/4488	1.00000
A 6->5	4467/4467	1.00000
$M_{5->6}^{0->3}$	4467/4467	1.00000
M _{7->6}	4411/4411	1.00000
A 6->7	4411/4411	1.00000
A 8−>7	4363/4363	1.00000
A 7->8	4363/4363	1.00000
M _{9->8}	4446/4446	1.00000
M _{8->9}	4446/4446	1.00000
M _{10->9}	4348/4348	1.00000
$M_{9->10}^{10->9}$	4348/4348	1.00000
11->10 11->10	4464/4464	1.00000
M 10->11	4464/4464	1.00000
$\int_{12->11}^{10->11}$	4330/4330	1.00000
M 11->12	4330/4330	1.00000
Genealogies	33672/150144	0.22426

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.83194	287.23
Θ_2	0.85230	247.88
Θ_3	0.94276	89.33
\mathbf{p}_{4}°	0.78141	390.93
) ₅	0.79878	339.50
06	0.82070	304.48
) ₇	0.86670	214.33
) ₈	0.70355	527.39
$\mathbf{O}_{\mathbf{Q}}$	0.78637	362.87
)10	0.88970	178.93
) ₁₁	0.74894	433.13
12	0.87100	212.88
1 ¹² _{2->1}	0.82506	288.64
A 1->2	0.82506	288.64
$M_{3->2}$	0.82021	300.65
1 2->3	0.82021	300.65
1 4->3	0.78267	365.81
1 3->4	0.78267	365.81
1 5->4	0.82801	284.08
1 4->5	0.82801	284.08
1 6->5	0.83957	262.43
1 5->6	0.83957	262.43
1 7->6	0.85964	227.15
6->7	0.85964	227.15
1 8->7	0.81413	307.21
1 7->8	0.81413	307.21
1 9->8	0.82424	296.22
1 8->9	0.82424	296.22
1 10->9	0.78618	364.47
10->9 9->10	0.78618	364.47
11->10	0.84021	265.99
10->11	0.84021	265.99
10->11	0.83698	268.48
11->12	0.83698	268.48
n[Prob(D G)]	0.97203	42.61

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very

informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.
No warning was recorded during the run