4Geeks Academy: data science cohort 12

DAY 11: DESCRIPTIVE STATISTICS

TODO

DESCRIPTIVE STATISTICS

Common summary statistics & interpretation

PROBABILITY PROJECT

Submit Probability Exercises in Python Project (Probability module), if you haven't done so already

DESCRIPTIVE STATS PROJECT

Work on Descriptive Statistics Exercises in Python Project (Descriptive Stats module), plan to finish before class Monday

Introduction & basics Weeks 1 - 5

Background needed to think like a data scientist

- 1. Pandas
- 2. Data visualization
- 3. Intro to SQL
- 4. Web Scraping
- 5. API requests
- 6. Calculus and L.Algebra
- 7. Probability
- 8. Descriptive Statistics
- 9. Random Variables
- 10. Hypothesis Testing
- 11. Algorithm Optimization

Data science tools & techniques Weeks 6 - 10

Data science concepts & techniques

- 1. Exploratory analysis
- 2. Your first ML algorithm
- 3. Linear regression
- 4. Decision tree algo
- 5. Random forest
- 6. Boosting algorithms
- 7. Naive bayes algorithm
- 8. K-nearest neighbors
- 9. Unsupervised learning
- 10. Time series forecasting11. Intro to deep learning
- 10. Desir learning
- 12. Deep learning
- 13. Intro to NLP
- 14. Recommendation systems
- 15. ML web app using Flask
- 16. ML web app using Streamlit
- 17. Cloud computing for ML

Final project Week 11 - 16

End-to-end data science application

- 1. Small dev teams
- 2. You pick the topic
- 3. Build and deploy an application
- 4. Pitch it on GeekTalk day

Past project topics:

- 1. Aviation incident prediction
- 2. Workout assistant
- 3. Cancer diagnosis
- 4. Natural disaster forecasting
- 5. Fantasy sports assistant

TOPICS

O1 CENTRAL TENDENCY

O2 SHAPE & DISPERSION

CENTRAL TENDENCY

WHAT Describes a dataset's values with one number

MEAN

- Numpy & Pandas .mean() method
- Average value of the variable

$$mean = \frac{sumof values}{count}$$

MEDIAN

- Numpy & Pandas .median() method
- Middle value when data is sorted
- Less sensitive than mean to skew & outliers

SHAPE & DISPERSION

WHAT Describes a dataset's shape and spread

STANDARD DEVIATION

- Numpy & Pandas .std() method
- Average spread of the data around the mean

QUANTILES

- Numpy & Pandas .percentile() method
- Percentiles: how much data is below a given percentile
- Quantile: divides data into four equal parts (boxplot)

BAYESIAN PROBABILITY

WHAT Treats probability is an expectation given a state of knowledge

Allows for the inclusion of prior knowledge and updating of probability based on new knowledge (Bayesian inference)

HOW Bayes' theorem:

$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

EXAMPLE

A model is trained to detect spam on a dataset of 100,000 emails, 1000 of which are spam. Of flagged emails, 95% are actually spam. It also incorrectly identifies 1% of non-spam emails as spam. If the model flaggs a new email as spam, what is the probability that it really is spam?

There is only a 2.4% chance the new email is spam!

$$P(flagged|spam) = \frac{P(spam|flagged) \times P(spam)}{P(flagged)}$$

$$P(flagged|spam) = \frac{0.95 \times 0.050}{0.019} = 0.024$$