Векторные пространства

Содержание

§1	Определение векторного пространства	1
§2	Линейные комбинации и оболочки	2
§3	Базис и размерность	3

§1. Определение векторного пространства

Опр. 1.1. Векторным (линейным) пространством над полем \mathbb{F} (например, \mathbb{R} или \mathbb{C}) называется множество V с операциями сложения и умножения на элементы поля \mathbb{F} , обладающими следующими свойствами (аксиомами векторного пространства):

- 1. Относительно сложения V есть абелева группа;
- 2. $\lambda(a+b) = \lambda a + \lambda b$ для любых $a, b \in V, \lambda \in \mathbb{F}$;
- 3. $(\lambda + \mu)a = \lambda a + \mu a$ для любых $\lambda, \mu \in \mathbb{F}, a \in V$;
- 4. $(\lambda \mu)a = \lambda(\mu a)$ для любых $\lambda, \mu \in \mathbb{F}, a \in V$;
- 5. 1a = a для любого $a \in V$.

NtB. Элементы пространства V называются **векторами**, поля \mathbb{F} — **скалярами** или **числами**. Векторные пространства над полем \mathbb{R} называются **вещественными**, над \mathbb{C} — **комплексными**.

NtB. Наличие противоположного элемента позволяет ввести операцию вычитания: a - b := a + (-b).

Пемма 1.1. Следствия аксиом векторного пространства (докажите ux!):

- 1. $\lambda 0 = 0$ для любого $\lambda \in \mathbb{F}$ (здесь 0 нулевой вектор);
- 2. $\lambda(-a) = \lambda a$ для любых $\lambda \in \mathbb{F}, a \in V$;
- 3. $\lambda(a-b) = \lambda a \lambda b$ для любых $\lambda \in \mathbb{F}$, $a, b \in V$;
- 4. 0a = 0 для любого $a \in V$ (здесь 0 слева скаляр, справа вектор);
- 5. (-1)a = -a для любого $a \in V$;
- 6. $(\lambda \mu)a = \lambda a \mu a$ для любых $\lambda, \mu \in \mathbb{F}, a \in V$.

Пример 1.1. Примеры линейных пространств:

(a) Пространство $\{0\}$, состоящее только из нулевого вектора;

- (б) Множество \mathbb{F}^n столбцов высоты n с элементами из \mathbb{F} относительно операций поэлементного сложения и умножения на числа $apu \phi memuvec \kappa o e$ или $\kappa oop du hamho e$ пространство;
- (в) Множество $F(X, \mathbb{F})$ всех функций на множестве X со значениями в поле \mathbb{F} относительно операций поточечного сложения и умножения на числа;
- (г) Множество \mathbb{C} с привычными операциями можно рассматривать как векторное пространство над \mathbb{R} ;
- (д) Геометрические векторы со стандартными операциями сложения и умножения на числа;
- (e) Вещественные квадратные матрицы n-того порядка $M_n(\mathbb{R})$ относительно стандартных операций сложения и умножения на числа;
- (ж) Вещественные многочлены $\mathbb{R}[x]$ с естественными операциями;
- (3) Вещественные многочлены степени ровно n с естественными операциями не являются векторным пространством.

§2. Линейные комбинации и оболочки

- Опр. 2.1. Выражение вида $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$ ($\lambda_i \in \mathbb{F}$) называется линейной комбинацией векторов $a_1, \ldots, a_n \in V$. Скаляры λ_i называются коэффициентами линейной комбинации. Говорят, что вектор b линейно выражается через векторы a_1, \ldots, a_n , если он равен некоторой их линейной комбинации.
- Опр. 2.2. Линейной оболочкой подмножества $S\subseteq V$ называется множество всех векторов V, представимых в виде конечных линейных комбинаций элементов из S. Она обозначается $\langle S \rangle$. Говорят, что пространство V порождается множеством S, если $\langle S \rangle = V$

Пример 2.1. Примеры линейных оболочек:

- (а) Линейная оболочка матричных единиц $E_{11},\dots,E_{nn}\in M_n(\mathbb{R})$ множество диагональных матриц n-ного порядка;
- (б) Линейная оболочка многочленов $1,x,x^2\in\mathbb{R}[x]$ все вещественные многочлены степени не выше второй;
- (в) Пространство $\mathbb{R}[x]_3$ вещественных многочленов степени не выше 3 порождается, например, множеством $5x^3, x^3-7, 4x^2, 2x+9, 3x, 2$.
- **Опр. 2.3.** Линейная комбинация $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$ ($\lambda_i \in \mathbb{F}$) векторов $a_1, \ldots, a_n \in V$ называется **тривиальной**, если $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$, и **нетривиальной** в противном случае.
- **Опр. 2.4.** Векторы $a_1, a_2, \ldots, a_n \in V$ называются *линейно зависимыми*, если существует их нетривиальная линейная комбинация, равная нулю, и *линейно независимыми* в противном случае.

NtB. Понятие *системы векторов* отличается от понятия множества векторов следующим:

- 1. Векторы системы занумерованы (если не менять сами векторы, но поменять лишь их нумерацию, получим уже другую систему);
- 2. Среди них могут быть равные.

Может быть *пустая система*, состоящая из пустого множества векторов.

Пример 2.2. Примеры линейной зависимости:

- (a) Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой;
- (б) Система, состоящая из двух векторов, линейно зависима тогда и только тогда, когда эти векторы пропорциональны;
- (в) Три геометрических векторы линейной зависимы тогда и только тогда, когда они компланарны;
- (г) Векторы 1, $x, x^2 \in \mathbb{R}[x]$ линейно независимы, векторы 2, $3x, 5+x \in \mathbb{R}[x]$ линейно независимы.

Лемма 2.1. Свойтсва линейно (не)зависимых систем:

- 1. Система векторов линейно зависима тогда и только тогда, когда один из этих столбцов есть линейная комбинация остальных;
- 2. Если система векторов содержит линейно зависимую подсистему, то вся система линейно зависима:
- 3. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

§3. Базис и размерность

Опр. 3.1. Система векторов $\{e_1,e_2,\ldots,e_n\}\subseteq V$ называется **базисом** векторного пространства V, если каждый вектор $a\in V$ единственным образом выражается через e_1,e_2,\ldots,e_n . Коэффициенты этого выражения называются **координатами** вектора a в данном базисе.

NtB. Переход от вектора к его координатам в некотором базисе позволяет вместо изначального пространства рассматривать соответствующее координатное пространство.

Пример 3.1. Примеры базисов:

(a) Любые два неколлинеарных вектора составляют базис пространства геометрических векторов плоскости;

- (б) Единичные столбцы $(1,0,\ldots,0)^T,\,(0,1,\ldots,0)^T,\,\ldots,\,(0,0,\ldots,1)^T$ составляют базис пространства \mathbb{F}^n ;
- (в) Система $\{1,i\}$ является базисом $\mathbb C$ как векторного пространства над $\mathbb R$. Координатами комплексного числа в данном базисе являются его вещественная и мнимая части;
- (г) Стандартные матричные единицы E_{ij} образуют базис пространства $M_n(\mathbb{R})$;
- (д) Система $\{x^n, x^{n-1}, \dots, x, 1\}$ базис пространства $\mathbb{R}[x]_n$ вещественных многочленов степени не выше n.

Лемма 3.1. Набор векторов e_1, e_2, \ldots, e_n , порождающий векторное пространство V, является базисом тогда и только тогда, когда он линейной независим.

Доказательство. Если $\sum \lambda_i e_i = 0$ и не все λ_i нулевые, то любой вектор $x = \sum x_i e_i$ допускает другое выражение $x = \sum (x_i + \lambda_i) e_i$ через векторы e_i . Обратно, если $x = \sum x_i e_i = \sum \widetilde{x}_i e_i$ — два различных представления одного вектора, то, перенося правую часть в середину, получаем линейную зависимость $\sum (x_i - \widetilde{x}_i) = 0$.

 ${f NtB.}$ В силу данной леммы можно переформулировать определение базиса следующим образом: *базисом* векторного пространства V называется всякая линейно независимая система, порождающая пространство V.

NtB. Не во всяком векторном пространстве существует базис в смысле данного выше определения. Вообще, если в пространстве существует базис из n векторов, то и любой другой базис этого пространства тоже содержит n векторов. Число элементов произвольного базиса (если он существует) в V называется pasmephocmью пространства V и обозначается $\dim V$. В пространстве $\{0\}$ базисом по определению является пустая система (то есть его размерность равна нулю). Если базиса в смысле данного вышего определения не существует, то можно считать, что $\dim V = \infty$. Если $\dim V < \infty$, то пространство называется κ онечномерным.

Теорема 3.1. (свойство монотонности размерности) Любое подпространство U конечномерного пространства V тоже конечномерно, причём $\dim U \leqslant \dim V$. Более того, если $U \neq V$, то неравенство строгое.