TEORÍA DE LA COMPUTACIÓN Y VERIFICACIÓN DE PROGRAMAS 2024 Trabajo Práctico Nro 1

Máguinas de Turing. Jerarquía de la Computabilidad.

Comentario: Los ejercicios 5 y 6 son un poco más difíciles, resolverlos da un mayor bonus para la calificación de la materia.

Ejercicio 1. Responder breve y claramente los siguientes incisos:

- 1. ¿Qué es un problema computacional de decisión? ¿Es el tipo de problema más general que se puede formular?
- 2. Dados $\Sigma = \{a, b, c\}$ y L = $\{a^nb^nc^n \mid n \ge 0\}$, obtener $\Sigma^* \cap L$, $\Sigma^* \cup L$, y el complemento de L con respecto a Σ^* .
- 3. En la clase teórica 1 se hace referencia al problema de satisfactibilidad de las fórmulas booleanas. Formular las tres formas del problema, teniendo en cuenta las tres visiones de MT consideradas: calculadora, aceptadora o reconocedora, y generadora.
- 4. ¿Qué postula la Tesis de Church-Turing?
- 5. ¿Cuándo dos MT son equivalentes? ¿Cuándo dos modelos de MT son equivalentes?
- 6. ¿En qué difieren entre sí los lenguajes recursivos, los lenguajes recursivamente numerables no recursivos, y los lenguajes no recursivamente numerables?
- 7. Probar que $R \subseteq RE \subseteq \mathfrak{L}$. Ayuda: usar directamente las definiciones.
- 8. ¿Qué lenguajes de la clase CO-RE tienen MT que los aceptan? ¿También los deciden?
- 9. Justificar por qué los lenguajes universal Σ^* y vacío \emptyset son recursivos.
- 10. Justificar por qué un lenguaje finito es recursivo.
- 11. Justificar por qué si L₁ ∈ CO-RE y L₂ ∈ CO-RE, entonces (L₁ ∩ L₂) ∈ CO-RE. Ayuda: una manera de resolverlo es utilizando las leyes de De Morgan del álgebra de Boole.

Ejercicio 2. Construir una MT, con cualquier cantidad de cintas, que acepte de la manera más eficiente posible el lenguaje $L = \{a^nb^nc^n \mid n \ge 0\}$. Comentario: Plantear primero la idea general.

Ejercicio 3. Explicar (informal pero claramente) cómo simular una MT por otra que en un paso no pueda simultáneamente modificar un símbolo y moverse.

Ejercicio 4. Probar:

- 1. La clase R es cerrada con respecto a la operación de unión. *Ayuda: la prueba es similar a la desarrollada para la intersección*.
- 2. La clase RE es cerrada con respecto a la operación de intersección. Ayuda: la prueba es similar a la desarrollada para la clase R.

Ejercicio 5. Sean L_1 y L_2 dos lenguajes recursivamente numerables de números naturales codificados en unario (por ejemplo, el número 5 se representa con 11111). Probar que también es recursivamente numerable el lenguaje $L = \{x \mid x \text{ es un número natural codificado en unario, y existen y, z, tales que y + z = x, con y <math>\in L_1, z \in L_2\}$.

Ayuda: la prueba es similar a la vista en clase, de la propiedad de clausura de la clase RE con respecto a la operación de concatenación.

Ejercicio 6. Dada una MT M_1 con alfabeto $\Sigma = \{0, 1\}$:

- 1. Construir una MT M2 que determine si L(M1) tiene al menos una cadena.
- 2. ¿Se puede construir además una MT M_3 para determinar si $L(M_1)$ tiene a lo sumo una cadena? Justificar.

Ayuda para la parte (1): Si $L(M_1)$ tiene al menos una cadena, entonces existe al menos una cadena w de unos y ceros, de tamaño n, tal que M_1 a partir de w acepta en k pasos. Teniendo en cuenta esto, pensar cómo M_2 podría simular M_1 considerando todas las cadenas de unos y ceros hasta encontrar eventualmente una que M_1 acepte (¡cuidándose de los casos en que M_1 entre en loop!).