Parcial de Señales y Sistemas (66.74 y 86.05)

16 de mayo de 2022

- 1. Dada una señal de la forma $x(t) = \cos(2 \pi f_0 t + \phi_0)$, se pide a dos alumnos que realicen un muestreo de x(t) e identifique el valor de f_0 . El primer alumno realiza el muestreo con una frecuencia de muestreo $f_{2} = 150Hz$, obteniendo la señal $x_1[n]$, y logra medir un $f_{01} = 50Hz$. El segundo alumno emplea una frecuencia de muestreo $f_{2} = 240Hz$, obteniendo la señal $x_2[n]$, y mide un $f_{02} = 20Hz$. Se pide:
 - a) Graficar la amplitud de los espectros de frecuencias de x(t), $x_1[n]$ y $x_2[n]$.
 - b) Basado en la información suministrada, ¿se puede determinar el valor de f_0 de la señal x(t)? ¿o un conjunto de valores posibles?
 - c) Con la información extra de que $f_0 < 1000Hz$, ¿se puede determinar el valor de f_0 ?

Ejemplo de una señal $x(t) = cos(2\pi \cdot fo \cdot t + \Theta)$

Tendra una transforamada de fourier (Las negativas las marco punteadas)

Muestreos:

Alumno 1:

$$fs1 = 150 Hz$$

$$\omega$$
s1 = 300 π

$$\omega$$
o1 = 100 π

En terminos de x1[n]:

$$\Omega$$
s1 = ω s1/fs1 = 2π

$$\Omega$$
o1 = $2\pi/3$

Como el muestreo del segundo alumno toma muestras mas cercanas , la representacion sera mas fiel y se puede constatar que el del primer alumno presenta aliasing. Sin embargo , no se puede afirmar que el segundo no contenga aliasing.

Sin embargo , ambas frecuencias encontradas seran armonicos de la señal es decir , se debe llegar a fo como combinacion lineal de :

$$fo = fo1 + n*fs2$$

$$fo = fo2 + n*fs2$$

si se muestreo correctamente fo = fon + 0*fs

La frecuencia fo , debe cumplir f01 = F02

$$f01=50+n\cdot150$$

 $f01 = \{ 50 \text{ Hz}, 200 \text{ Hz}, 350 \text{ Hz}, 500 \text{ Hz}, 650 \text{ Hz}, 800 \text{ Hz} \dots \}$

 $f02 = 20 + m \cdot 240$

f02= {20 Hz, 260 Hz, 500 Hz, 740 Hz, 980 Hz....}

Pero no se puede hallar la frecuencia fundamental,

c) Con la información extra de que f0 < 1000Hz ¿se puede determinar el valor de f0 ?

 $f10=50+n\cdot150$

flo = { 50 Hz , 200 Hz , 350 Hz ,500 Hz , 650 Hz , 800 Hz}

 $f20=20+m\cdot240$

f20 = {20 Hz , 260 Hz , 500 Hz , 740 Hz , 980 Hz....}

fo = 500 Hz , ya que es la primer coincdencia y es menor a 1 kHz

$$H_1(\omega) = \frac{1}{2} \left[H_0(\omega - \omega_0) + H_0(\omega + \omega_0) \right] \qquad H_2(\omega) = \frac{-1}{2j} \left[H_0(\omega - \omega_0) - H_0(\omega + \omega_0) \right]$$

donde $H_0(\omega)$ es como en la figura. Esquematizar el módulo del espectro de $x_1(t), x_2(t), x_3(t), x_4(t)$ y y(t) cuando el sistema es alimentado por una entrada x(t) cuya transformada de fourier $X(\omega)$ se muestra en la figura.

Grafico las transformadas de x(t), h1(t),h2(t), $cos(\omega o t)$ y $sen(\omega o t)$

Para $H2(j\omega)$ calculo su modulo ,porque coincide con $H1(j\omega)$

$$x1(t) = x(t)*h1(t)$$

$$X1(\omega) = X(\omega)H1(\omega)$$

- 3. Consideremos la interconexión de sistemas LTI, $h_1[n]$, $h_2[n]$, $h_3[n]$ y $h_4[n]$, como el de la figura. Se pide:
 - a) Exprese la respuesta al impulso h[n] del sistema total equivalente, en terminos de las respuestas al impulso de cada subsistema $h_1[n]$, $h_2[n]$, $h_3[n]$ y $h_4[n]$.
 - b) Determine h[n] cuando:

$$h_1[n] = \frac{1}{2}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{2}\delta[n-2] \qquad h_2[n] = h_3[n] = (n-1)u[n] \qquad h_4[n] = \delta[n-2]$$

- c) ¿El sistema total es estable? ¿es causal?
- d) Determine la respuesta del sistema, y[n], cuando la entrada es $x[n] = \delta[n] + \delta[n-1] 2\delta[n-2]$.

a)

 $h_t[n] = h1[n] *h2[n] - (h1[n] *h3[n]) *h4[n]$

b) El sistema no es estable , pero si es causal

c) Determine la respuesta del sistema, y[n], cuando la entrada

$$x[n] = \delta[n] + \delta[n-1] - 2\delta[n-2].$$

 $y1[n] = (\delta[n] + \delta[n-1] - 2\delta[n-2])*((1/2)\delta[n] + (1/4)\delta[n-1] + (1/2)\delta[n-2])$ 1 **y1[n]**