

Medical Image Analysis Koen Van Leemput

Image registration

Combine information contained in different scans

Images need to be spatially aligned!

Image registration

Combine information contained in different scans

Images need to be spatially aligned!

Example: PET/MR

Before registration...

Example: PET/MR

... after registration

Example: CT/MR

Before registration...

Example: CT/MR

... after registration

Example: longitudinal scans

Patient with multiple sclerosis (MS)

Example: longitudinal scans

Patient with multiple sclerosis (MS)

Example: population studies

Example: population studies

Example: population studies

Coordinate systems

For each image, there are *two* coordinate systems:

- Voxel coordinates $\mathbf{v} = (v_1, v_2, v_3)^{\mathrm{T}}$ World coordinates $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$ (integer indices)
- (in mm)

Conversion: x = Av + t

Coordinate systems

$$\mathbf{A} = \begin{pmatrix} -0.8923 & -0.0802 & -0.3732 \\ -0.0850 & 0.8921 & 0.3528 \\ -0.0612 & -0.0696 & 4.9512 \end{pmatrix}$$

$$\mathbf{t} = \begin{pmatrix} 129.2834 \\ -98.7363 \\ -27.6911 \end{pmatrix}$$

World coordinates = convention

Aalto-yliopisto
Aalto-universitetet
Aalto University

Right – Anterior – Superior (RAS)

<u>Left – Posterior – Superior</u> (LPS)

Homogeneous coordinates

Vectors are augmented with a 1 at the end

$$m{v}$$
 Idea: Rewrite $\mathbf{x} = \mathbf{A}\mathbf{v} + \mathbf{t}$, i.e, $\left(egin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right) = \left(egin{array}{c} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{array} \right) \left(egin{array}{c} v_1 \\ v_2 \\ v_3 \end{array} \right) + \left(egin{array}{c} t_1 \\ t_2 \\ t_3 \end{array} \right)$

as:
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ 1 \end{pmatrix} = \underbrace{\begin{pmatrix} a_{1,1} & a_{1,2} & a_{1,3} & t_1 \\ a_{2,1} & a_{2,2} & a_{2,3} & t_2 \\ a_{3,1} & a_{3,2} & a_{3,3} & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{M}} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ 1 \end{pmatrix}$$

✔ Benefit: map voxel indices using only matrix multiplications

$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$

 $\mathbf{y} = (y_1, \dots, y_D)^{\mathrm{T}}$

$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$

$$\mathbf{y}(\mathbf{x},\mathbf{w}) = \left(egin{array}{c} y_1(\mathbf{x},\mathbf{w}) \ dots \ y_D(\mathbf{x},\mathbf{w}) \end{array}
ight)$$

$$\mathbf{y} = (y_1, \dots, y_D)^{\mathrm{T}}$$

$$\mathbf{x} = (x_1, \dots, x_D)^{\mathrm{T}}$$

 $y_d(\mathbf{x}, \mathbf{w})$

controls how points x in the fixed image move along the d-th direction in the moving image as the parameters w are varied

$$\mathbf{y} = (y_1, \dots, y_D)^{\mathrm{T}}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \left(egin{array}{cc} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \end{array}
ight) \quad ext{and} \quad \mathbf{t} = \left(egin{array}{c} t_1 \ t_2 \end{array}
ight)$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \left(egin{array}{cc} a_{1,1} & a_{1,2} \ a_{2,1} & a_{2,2} \end{array}
ight) \quad ext{and} \quad \mathbf{t} = \left(egin{array}{c} t_1 \ t_2 \end{array}
ight)$$

 $y_d(\mathbf{x}, \mathbf{w})$

controls how points ${\bf x}$ in the fixed image move along the d-th direction in the moving image as the parameters ${\bf w}$ are varied

$$y_d(\mathbf{x}, \mathbf{w}_d) = t_d + a_{d,1}x_1 + \ldots + a_{d,D}x_D$$

$$\mathbf{w}_d = (t_d, a_{d,1}, \dots, a_{d,D})^{\mathrm{T}}$$

$$\mathbf{w} = (\mathbf{w}_1^{\mathrm{T}}, \dots, \mathbf{w}_D^{\mathrm{T}})^{\mathrm{T}}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} 23 \\ 0 \end{pmatrix}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \begin{pmatrix} 1.4 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} 23 \\ 0 \end{pmatrix}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \begin{pmatrix} 1.4 & 0.5 \\ 0.0 & 1.0 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} 23 \\ 0 \end{pmatrix}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} 23 \\ 6 \end{pmatrix}$$

$$y(x, w) = Ax + t$$

$$\mathbf{A} = \begin{pmatrix} 1.4 & 0.5 \\ 0.2 & 0.9 \end{pmatrix}, \ \mathbf{t} = \begin{pmatrix} 23 \\ 6 \end{pmatrix}$$

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{R}\mathbf{x} + \mathbf{t}, \quad \mathbf{R}^T \mathbf{R} = \mathbf{I} \text{ and } \det(\mathbf{R}) = 1$$

Task: why do $\mathbf{R}^T\mathbf{R}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ and $\det(\mathbf{R})=1$ impose a rotation?

Task: why do $\mathbf{R}^T\mathbf{R}=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ and $\det(\mathbf{R})=1$ impose a rotation?

 \checkmark Manually annotate N corresponding points in two images:

Register the images by minimizing the distance between matching point pairs:

$$E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{y}(\mathbf{x}_n, \mathbf{w})\|^2$$

Applied to affine registration:
$$E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{A}\mathbf{x}_n - \mathbf{t}\|^2$$

Task 1: if A = I, what is t?

<u>Hint:</u> remember that $\|\mathbf{a} - \mathbf{b}\|^2 = \sum_{d=1}^{D} (a_d - b_d)^2$

Applied to affine registration:
$$E(\mathbf{w}) = \sum^{N} \|\mathbf{y}_n - \mathbf{A}\mathbf{x}_n - \mathbf{t}\|^2$$

Task 1: if A = I, what is t?

<u>Hint:</u> remember that $\|\mathbf{a} - \mathbf{b}\|^2 = \sum_{d=1}^{D} (a_d - b_d)^2$

Applied to affine registration: $E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{A}\mathbf{x}_n - \mathbf{t}\|^2 = \sum_{n=1}^{N} \sum_{d}^{D} (y_{n,d} - t_d - \sum_{d'=1}^{D} x_{n,d'} a_{d,d'})^2$

Task 1: if A = I, what is t?

<u>Hint:</u> remember that $\|\mathbf{a} - \mathbf{b}\|^2 = \sum_{d=1}^{D} (a_d - b_d)^2$

Task 1: if A = I, what is t?

<u>Hint:</u> remember that $\|\mathbf{a} - \mathbf{b}\|^2 = \sum_{d=1}^{D} (a_d - b_d)^2$

Applied to affine registration:
$$E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{A}\mathbf{x}_n - \mathbf{t}\|^2 = \sum_{n=1}^{N} \sum_{d}^{D} (y_{n,d} - t_d - \sum_{d'=1}^{D} x_{n,d'} a_{d,d'})^2$$

$$= \sum_{d}^{D} \sum_{n=1}^{N} (y_{n,d} - t_d - \sum_{d'=1}^{D} x_{n,d'} a_{d,d'})^2$$

Applied to affine registration: $E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{A}\mathbf{x}_n - \mathbf{t}\|^2 = \sum_{n=1}^{N} \sum_{d}^{D} (y_{n,d} - t_d - \sum_{d'=1}^{D} x_{n,d'} a_{d,d'})^2$

Task 1: if A = I, what is t?

<u>Hint:</u> remember that $\|\mathbf{a} - \mathbf{b}\|^2 = \sum_{d=1}^{D} (a_d - b_d)^2$

$$\overline{n=1} \ \overline{d} \qquad \overline{d'=1}$$

$$= \sum_{d}^{D} \sum_{n=1}^{N} (y_{n,d} - t_d - \sum_{d'=1}^{D} x_{n,d'} a_{d,d'})^2$$

$$\begin{pmatrix} t_d \\ a_{d,1} \\ \vdots \\ a_{d,D} \end{pmatrix} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \begin{pmatrix} y_{1,d} \\ \vdots \\ y_{N,d} \end{pmatrix}$$
where $\mathbf{X} = \begin{pmatrix} 1 & x_{1,1} & \cdots & x_{1,D} \\ 1 & x_{2,1} & \cdots & x_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N,1} & \cdots & x_{N,D} \end{pmatrix}$

Before registration

After registration

Applied to rigid registration:
$$E(\mathbf{w}) = \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{R}\mathbf{x}_n - \mathbf{t}\|^2$$

- ightharpoonup Constraints ${f R}^T{f R}={f I}$ and $\det({f R})=1$ make the math much more complicated!
- ✓ Solution:

$$\mathbf{R} = \mathbf{V}\mathbf{U}^{\mathrm{T}}, \quad \sum_{n=1}^{N} \tilde{\mathbf{x}}_{n} \tilde{\mathbf{y}}_{n}^{\mathrm{T}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}, \quad \mathbf{U}^{\mathrm{T}} \mathbf{U} = \mathbf{I}, \quad \mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{I}$$
 $\mathbf{t} = \bar{\mathbf{y}} - \mathbf{R} \bar{\mathbf{x}},$ where $\tilde{\mathbf{x}}_{n} = \mathbf{x}_{n} - \bar{\mathbf{x}}$ and $\tilde{\mathbf{y}}_{n} = \mathbf{y}_{n} - \bar{\mathbf{y}}$ with $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$ and $\bar{\mathbf{y}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{y}_{n}$ ("flip" a column of \mathbf{R} if $\det(\mathbf{R}) = -1$)

