

ISLAMIC UNIVERSITY OF TECHNOLOGY

Course Outline and Course Plan

Name of the Teacher	Md. Bakhtiar Hasan	Position	Lecturer			
Department	CSE	Program	B.Sc. Engineering in CSE			
Course Code	CSE 4711	Course Title	Artificial Intelligence			
Academic Year	2021-22	Semester	Winter			
Contact Hours	3.00	Credit Hours	3.00			
Textbooks and Reference books	1. Artificial Intelligence: A Modern Approach (3 rd Edition) 2. Reinforcement Learning: An Introduction (2 nd Edition) 3. Artificial Intelligence: Foundations of Computational Agents	Author of the Books	1. Stuart Russell and Peter Norvig (R&N) 2. Richard S. Sutton and Andrew Barto (S&B) 3. David L. Poole and Alan K. Mackworth			
Prerequisites	A firm grasp on Python Programming Language, Data Structures, Discrete Mathematics, Algorithms, Probability	Curriculum Requirement	Compulsory			
Course Homepage	Google Classroom Code: 77bvgjj					
Teaching Methods/ Approaches	Lecture Demonstration Problem Solving					
Teaching Aids	Multimedia and OHP Board and Marker					

Course Assessment Method								
Attendance (10%)	Quiz/Viva (30%) (Best 3 out of 4) Mid Exam (25%) Final Exam (35%)							
Throughout	1 st Quiz	1 st Quiz 2 nd Quiz 3 rd Quiz 4 th Quiz Week/Date Week/Date						

the Semester	Week/ Date	Week/ Date	Week/ Date	Week/ Date		
	3 rd Week	6 th Week	10 th Week	13 th Week	8 th Week	16 th Week

Course Contents and Objectives	Contents History, Intelligent agents, Uninformed search, Informed search, Constraint satisfaction, Game-playing, Logical agents, Propositional logic, First-order logic, Inference in first-order logic, Resolution, Logic programming, Planning, Plan execution, Uncertainty, Probability theory, Probabilistic inference, Bayesian networks and associated inference algorithms, Optimal decisions under uncertainty, optimal sequential decisions, Markov decision processes, Learning agents, Inductive learning, Decision trees. Objectives Introduce the wide range of topics studied in artificial intelligence, with emphasis on the "core competencies" of intelligent systems - problem-solving, reasoning, decision making, and learning - and on the logical and probabilistic foundations of these activities.
Course Outcomes	CO1 - Apply general artificial intelligence techniques for common problem types (C3) CO2 - Examine various problem scenarios to model environments and agents (C4) CO3 - Recommend solutions to real-life artificial intelligence problems analyzing the existing technique (C5)

	Weekly Plan for Course Content					
Weeks	Topics Task/Readin					
1	Introduction	R&N: 1, 2				
2	Search	R&N: 3.1-3.6				
3	Search	K&N: 3.1-3.0				
4	Company into Catiofa ation Bucklama	DOM: < 1 < 5				
5	Constraint Satisfaction Problems R&N: 6.1-6.5					
6	Compa	R&N: 5.2-5.5,				
7	Game Trees	16.1-16.3				
8	Mankau Davisian Duassa	R&N: 17.1-17.3				
9	Markov Decision Process S&B: 3-4					

10	Daimfausamanti aguning	R&N: 21
11	Reinforcement Learning	S&B: 6.1, 6.2, 6.5
12	Drobability and Payosian Note	R&N: 13.1-13.5,
13	Probability and Bayesian Nets	14.1-14.5
14	Decision Networks	R&N: 16.5, 16.6

Mapping of Course Outcomes (COs) and Program Outcomes (POs) and Evaluation Methods

		Mark Distributions (as %) on COs and POs					
Assessment Method	Marks	CO1	CO2	CO3			
		PO 1	PO 4	PO 2, PO 3			
Attendance (Class Participation)	10%						
Quiz 1/Quiz 2/Quiz 3/Quiz 4	30%						
Mid Semester Exam	25%						
Final Exam	35%						
Total	100%						

Mapping of COs and POs												
Program Outcomes (POs)												
Course Outcomes	1	2	3	4	5	6	7	8	9	10	11	12
CO1	1											
CO2				1								
CO3		1	1									

Students graduating from the Bachelor of Science in Computer Science and Engineering (B. Sc. in CSE) program, upon graduation, will have the ability to: PO1 Engineering Knowledge Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. Problem Analysis Identify, formulate, research, and analyze complex engineering problems and reach substantiated conclusions using the principles of mathematics, the natural

	sciences, and the engineering sciences.
PO3	Design/Development of Solutions Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety and of cultural, societal, and environmental concerns.
PO 4	Investigation Conduct investigations of complex problems, considering experimental design, data analysis, and interpretation, and information synthesis to provide valid conclusions.
PO 5	Modern Tool Usage Create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, to complex engineering activities with an understanding of their limitations.
PO 6	The Engineer and Society Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO 7	Environment and Sustainability Understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate the knowledge of and need for sustainable development.
PO 8	Ethics Apply ethical principles and commit to the professional ethics, responsibilities and norms of the engineering practice.
PO 9	Individual Work and Teamwork Function effectively as an individual and as a member or leader of diverse teams and in multidisciplinary settings.
PO 10	Communication Communicate effectively about complex engineering activities with the engineering community and with society at large. Be able to comprehend and write effective reports, design documentation, make effective presentations and give and receive clear instructions.
PO 11	Project Management and Finance Demonstrate knowledge and understanding of engineering and management principles and apply these to one's work as a team member or a leader to manage projects in multidisciplinary environments.
PO 12	Life-Long Learning Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the broadest context of technological change.

	Table: Knowledge Profile					
At	Attribute					
K1	A systematic, theory-based understanding of the natural sciences applicable to the discipline					
К2	Conceptually based mathematics, numerical analysis, statistics and the formal aspects of computer and information science to support analysis and modeling applicable to the discipline					
К3	A systemic, theory-based formulation of engineering fundamentals required in the engineering discipline					
K 4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline					
K5	Knowledge that supports engineering design in a practice area					
К6	Knowledge of engineering practice (technology) in the practice areas in the engineering discipline					
К7	Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the engineer's professional responsibility to public safety; the impacts of engineering activity; economic, social, cultural, environmental and sustainability					
K8	Engagement with selected knowledge in the research literature of the discipline					

<u>P</u>

Table: R	Table: Range of Complex Engineering Problem Solving				
Attribute	Complex Engineering Problems have characteristic P1 and some or all of P2 to P7				
Depth of knowledge required	P1: Cannot be resolved without in-depth engineering knowledge at the level of one or more of K3, K4, K5, K6, or K8 which allows a fundamentals-based, first principles analytical approach				
Range of conflicting requirements	P2: Involve wide-ranging or conflicting technical, engineering and other issues				
Depth of analysis required	P3: Have no obvious solution and require abstract thinking, originality in analysis to formulate suitable models				
Familiarity of issues	P4: Involve infrequently encountered issues				
Extent of applicable codes	P5: Are outside problems encompassed by standards and codes of practice for professional engineering				
Extent of stakeholder involvement and	P6: Involve diverse groups of stakeholders with widely varying needs.				

conflicting requirements	
Interdependence	P7: Are high-level problems including many component parts or sub-problems

Table: Range of Complex Engineering Activities			
Attribute	Complex activities means (engineering) activities or projects that have some or all of the following characteristics:		
Range of resources	A1: Involve the use of diverse resources (and for this purpose resources include people, money, equipment, materials, information and technologies)		
Level of interaction	A2: Require resolution of significant problems arising from interactions between wide-ranging or conflicting technical, engineering or other issues		
Innovation	A3: Involve creative use of engineering principles and research-based knowledge in novel ways		
Consequences for society and the environment	A4: Involve creative use of engineering principles and research-based knowledge in novel ways		
Familiarity	A5: Can extend beyond previous experiences by applying principles-based approaches		

Grading Policy			
Numeric Grade	Letter Grade	Grade Point	
80% and above	A+	4.00	
75% to less than 80%	А	3.75	
70% to less than 75%	Α-	3.50	
65% to less than 70%	B+	3.25	
60% to less than 65%	В	3.00	
55% to less than 60%	B-	2.75	
50% to less than 55%	C+	2.50	
45% to less than 50%	С	2.25	
40% to less than 45%	D	2.00	
Less than 40%	F	0.00	

Class Schedule			
Day	Section 1	Section 2	
Monday	11:45 a.m.	10:30 a.m.	
Wednesday	08:00 a.m.	11:45 a.m.	

Student Consulting Hour:

• Thursday, 10:30 a.m. - 11:30 a.m. (on request)

Instruction Contact Details:

Md. Bakhtiar Hasan

Lecturer,

Department of Computer Science and Engineering Islamic University of Technology, Room #: 504, 2nd Academic Building. Phone: 01941882844

Email: cse.bakhtiarhasan@iut-dhaka.edu