Caratterizzazione di un rivelatore gamma 4π per lo studio della reazione $14N(p,\gamma)15O$ Relatori: Francesca Cavanna, Ranjan Sariyal

Paolo Pusterla

Università degli Studi di Torino

Novembre 2024

Outline

- Obiettivi della tesi
- 2 Il rivelatore
- 3 Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- Efficienza

P. Pusterla (UniTo)

• I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.

P. Pusterla (UniTo) Short Title 3 / 42

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.

P. Pusterla (UniTo) Short Title 3 / 42

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, $\gamma)^{15}$ O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.

P. Pusterla (UniTo) Short Title 3 / 42

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, γ) 15 O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

P. Pusterla (UniTo) Short Title 3

- I neutrini solari giocano un ruolo fondamentale nella determinazione della composizione del Sole.
- Sono prodotti nel ciclo CNO del Sole.
- In particolare, la sezione d'urto della reazione 14 N(p, γ) 15 O è la fonte di errore principale sulle stime del flusso di neutrini, in quanto la più breve dell'intero ciclo.
- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- La tesi ha come obiettivo contribuire alla determinazione della sezione d'urto ad energie 50-370 keV.

P. Pusterla (UniTo) Short Title 3

Il ciclo CNO

Figure: Ciclo Carbonio-Azoto-Ossigeno

P. Pusterla (UniTo) Short Title 4 / 42

• La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.

P. Pusterla (UniTo) Short Title 5 / 42

- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

5 / 42

- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

5 / 42

• Con una $\sigma \approx 10^{-12}$ barn si ha...

P. Pusterla (UniTo) Short Title

- La sezione d'urto di una reazione nucleare è una grandezza utilizzata per descrivere la probabilità che la reazione avvenga.
- La si può calcolare sperimentalmente come:

$$\sigma = \frac{N_{reaz}/\Delta t}{N_{proj}/\Delta t \times N_{bers}/A \times \varepsilon}$$
 (1)

- Con una $\sigma \approx 10^{-12}$ barn si ha...
- Il reaction rate $(N_{reaz}/\Delta t)$ vale quindi appena $1\div 10$ conteggi al giorno

P. Pusterla (UniTo) Short Title 5 / 42

Fondo

Figure: Grafico riportante il rumore di fondo in superficie, sotto una schermatura parziale sottoterra e sotto una schermatura totale sottoterra.

P. Pusterla (UniTo) Short Title 6 / 42

LUNA 400 kV

Figure: L'acceleratore LUNA a 400 kV.

P. Pusterla (UniTo) Short Title 7 / 42

Apparato sperimentale

Table of Contents

- Obiettivi della tesi
- 2 Il rivelatore
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- 7 Efficienza

Obiettivi della tesi

• L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione 14 N(p, γ) 15 O.

P. Pusterla (UniTo) Short Title 10 / 42

Obiettivi della tesi

- L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione 14 N(p, γ) 15 O.
- Nell'esperimento si proietta un intenso fascio di protoni su bersagli solidi di TiN (nitruro di titanio).

P. Pusterla (UniTo) Short Title 10 / 42

Obiettivi della tesi

- L'obiettivo della tesi, incentrato sull'analisi dei dati, è quello di calibrare in energia e caratterizzare in efficienza lo scintillatore 4π utilizzato per la rivelazione di raggi γ nella riproduzione della reazione $^{14}{\rm N}({\rm p},\gamma)^{15}{\rm O}$.
- Nell'esperimento si proietta un intenso fascio di protoni su bersagli solidi di TiN (nitruro di titanio).
- L'analisi dei dati viene confrontata con delle simulazioni in GEANT4.

P. Pusterla (UniTo) Short Title 10 / 42

Table of Contents

- Obiettivi della tesi
- 2 Il rivelatore
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusion
- 7 Efficienza

Il rivelatore 4π

- Si tratta di un rivelatore in germanato di bismuto (Bi₄Ge₃O₁₂, detto BGO), coprente il 95% dell'angolo solido totale attorno al bersaglio.
- Si tratta di uno scintillatore, ossia uno strumento che quando eccitato da radiazione ionizzante, ne assorbe l'energia depositata e la riemette sotto forma di fotoni

Figure: Rappresentazione 3D del rivelatore BGO.

P. Pusterla (UniTo) Short Title 12 / 42

Il rivelatore 4π

 Il cristallo, a simmetria cilindrica, è otticamente separato in 6 spicchi uguali.

P. Pusterla (UniTo) Short Title 13 / 42

Table of Contents

- Obiettivi della tes
- 2 Il rivelatore
- 3 Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- 7 Efficienza

Calibrazione in energia

• Viene effettuata con due sorgenti radioattive, 60-Co e 137-Cs

P. Pusterla (UniTo) Short Title 15 / 42

Calibrazione in energia

• Viene effettuata con due sorgenti radioattive, 60-Co e 137-Cs

Calibrazione in energia

Viene effettuata con due sorgenti radioattive, 60-Co e 137-Cs

Istogrammi

P. Pusterla (UniTo) Short Title 17 / 42

P. Pusterla (UniTo) Short Title 17 / 42

17 / 42

Table of Contents

- Obiettivi della tes
- 2 Il rivelatore
- Calibrazione in energia
- 4 Efficienza
- 5 Simulazioni
- 6 Conclusion
- 7 Efficienza

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.

P. Pusterla (UniTo) Short Title 19 / 42

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

P. Pusterla (UniTo) Short Title 19 / 42

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

• L'attività è calcolata al momento della misurazione.

P. Pusterla (UniTo) Short Title 19 / 42

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto.
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{2}$$

• L'attività è calcolata al momento della misurazione.

Tempo morto

• Il tempo vivo è ricavato dal TTree delle coincidenze, ossia dove lo spicchio del BGO registra i fotoni del pulser nello spettro dei canali

20 / 42

P. Pusterla (UniTo) Short Title

Table of Contents

- Obiettivi della tesi
- 2 Il rivelatore
- 3 Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- 7 Efficienza

Risoluzione energetica

Fit risoluzioni

P. Pusterla (UniTo)

Short Title 23 / 42

Simulazioni

P. Pusterla (UniTo)

Table of Contents

- Obiettivi della tes
- 2 Il rivelatore
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- 7 Efficienza

Conclusione

• Durante la tesi ci è occupato dello studio della reazione...

P. Pusterla (UniTo) Short Title 26 / 42

Conclusione

- Durante la tesi ci è occupato dello studio della reazione...
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza

P. Pusterla (UniTo) Short Title 26 / 42

Conclusione

- Durante la tesi ci è occupato dello studio della reazione...
- Il rivelatore utilizzato è stato calibrato in energia e ne si è calcolata l'efficienza
- Si sono analizzate le simulazioni Monte Carlo, per poi confrontarle coi dati sperimentali

P. Pusterla (UniTo) Short Title 26 / 42

Fine

Grazie per l'attenzione.

P. Pusterla (UniTo) Short Title 27 / 42

Backup

Slide di backup

P. Pusterla (UniTo) Short Title 28 / 4

Proposta dell'esperimento

• A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.

P. Pusterla (UniTo) Short Title 29 / 42

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.

P. Pusterla (UniTo) Short Title 29 / 42

Proposta dell'esperimento

- A energie solari (15-50 keV) la sezione d'urto è troppo piccola per essere misurata direttamente.
- Le stime odierne sono quindi estrapolazioni da energie più alte.
- Il progetto ha come obiettivo determinare la sezione d'urto ad energie 50-370 keV.

P. Pusterla (UniTo) Short Title 29 / 42

Tempo vivo/morto

- Ogni strumento è elettronicamente vincolato a processare il segnale in ingresso
- Questo può richiedere fino a ns
- Un fotone in arrivo durante questo intervallo di tempo non può essere quindi rilevato
- Alla fine della misura verrano osservati meno fotoni di quelli effettivamente giunti allo strumento, perché quest'ultimo è attivo solo per una parte di tempo rispetto al totale della misura.
- L'intervallo in cui lo strumento è attivo e pronto a ricevere nuovi segnali è il *tempo vivo*.

P. Pusterla (UniTo) Short Title 30 / 42

Risultati del fit

Canale	Conversione [keV/CHN]
CHN1	1.1863 ± 0.0009
CHN2	1.1659 ± 0.0013
CHN3	1.3550 ± 0.0019
CHN4	1.2676 ± 0.0006
CHN5	1.2574 ± 0.0010
CHN6	1.1388 ± 0.0014

P. Pusterla (UniTo) Short Title 31

Caratterizzazione in energia

 La caratterizzazione in energia è effettuata utilizzando due sorgenti radioattive: ⁶⁰Co e ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 32 / 42

⁶⁰Co

• II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 33 / 42

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 33 / 42

⁶⁰Co

- II 60 Co decade tramite decadimento β^- (99.75%) in 60 Ni ed emette due raggi gamma di energie 1.17 MeV e 1.33 MeV.
- Ha il vantaggio di emettere raggi gamma ad alta intensità con un'emivita relativamente lunga di 5.27 anni.
- Trova applicazione nella radioterapia del cancro.

Figure: Schema di decadimento del ¹³⁷Cs.

^{137}Cs

• II 137 Cs decade sempre tramite decadimento β^- .

Figure: Schema di decadimento del ¹³⁷Cs.

P. Pusterla (UniTo) Short Title 34 / 42

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.

Figure: Schema di decadimento del ¹³⁷Cs.

¹³⁷Cs

- II 137 Cs decade sempre tramite decadimento β^- .
- Il 94.6% dei decadimenti hanno come prodotto uno stato metastabile del ¹³⁷Ba.
- Questo stato eccitato emette l'85% delle volte raggi gamma di 661.7 keV decadendo nello stato fondamentale del ¹³⁷Ba (tutti i raggi gamma provenienti dal ¹³⁷Cs sono prodotti così).

Figure: Schema di decadimento del ¹³⁷Cs.

34 / 42

ROOT

- L'analisi dati dell'esperimento è compiuta in ROOT
- Il vantaggio di utilizzarlo è una discreta ottimizzazione per quanto riguarda l'analisi di grandi moli di dati grazie al formato file .root
- Si utilizza principalmente in ambito di fisica delle particelle

P. Pusterla (UniTo) Short Title 35 / 42

Struttura dei dati

- I dati ricavati sono contenuti in file .root
- Ogni file .root contiene 8 istogrammi, con indici da 0 a 7, di conteggi
- L'istogramma 0 contiene il pulser, utilizzato per calcolare il tempo vivo dello scintillatore
- Gli istogrammi da 1 a 6 sono i singoli spicchi del BGO
- L'istogramma 7 è la corrente del fascio incidente sul BGO

P. Pusterla (UniTo) Short Title 36 / 42

Picco somma

- Può accadere che lo strumento riveli due fotoni emessi dallo stesso evento contemporaneamente
- In tal caso, viene registrato come un unico fotone, ma con energia pari alla somma delle energie dei fotoni

P. Pusterla (UniTo) Short Title 37 / 42

Residui

 I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta

P. Pusterla (UniTo) Short Title 38 / 42

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione

Residui

- I residui sono la differenza tra i valori in energia noti e quelli assunti dalla retta
- Sono una rappresentazione della bontà della calibrazione
- In generale una calibrazione è buona se i residui non superano la decina di keV

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

P. Pusterla (UniTo) Short Title 39 / 42

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

P. Pusterla (UniTo) Short Title 39 / 42

 Per il calcolo dell'efficienza è necessario trovare il numero di conteggi nei picchi gaussiani. Si possono applicare due metodi diversi per trovarlo:

Trapezio

- Metodo geometrico
- Consiste nell'isolare la regione del picco e rimuoverne il fondo trapezoidale
- Adatto solo per il cesio: i due picchi del cobalto non sono sufficientemente risolti dallo strumento

Parametrico

- Metodo che sfrutta i parametri del fit
- Il coefficiente di normalizzazione del picco gaussiano è il numero di conteggi nel picco
- Adatto per cesio e cobalto

P. Pusterla (UniTo) Short Title 39 / 42

Table of Contents

- Obiettivi della tes
- 2 Il rivelatore
- Calibrazione in energia
- 4 Efficienza
- Simulazioni
- 6 Conclusion
- Efficienza

Efficienza

• L'efficienza è un fattore fondamentale per ricavare la sezione d'urto

P. Pusterla (UniTo) Short Title 41 / 42

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{3}$$

P. Pusterla (UniTo) Short Title 41 / 42

Efficienza

- L'efficienza è un fattore fondamentale per ricavare la sezione d'urto
- Si può stimare dalla formula:

$$\varepsilon = \frac{N_{cont.}}{A(t*)\Delta t} \tag{3}$$

• L'attività è calcolata al momento della misurazione.

P. Pusterla (UniTo) Short Title 41 / 42

P. Pusterla (UniTo) Short Title