Задание 1. Исследование Грамианов. Придумайте матрицу $A \in \mathbb{R}^{2 \times 2}$ такую, что все её собственные числа имеют отрицательную вещественную часть, а также матрицы $B \in \mathbb{R}^{2 \times 1}$ и $C \in \mathbb{R}^{2 \times 2}$. Найдите Грамианы управляемости P и наблюдаемости Q системы

$$\dot{x} = Ax + Bu, \quad y = Cx.$$

Постройте графическое изображение эллипсоида управляемости

$$\left\{ x \in \mathbb{R}^2 \mid x^T P^{-1} x = 1 \right\}.$$

Подайте на систему несколько (не менее четырёх) различных входных воздействий u(t) таких, что $||u||_2 = 1$, при этом положите x(0) = 0. Постройте графики траекторий вектора состояния системы поверх графического изображения эллипсоида управляемости. При выборе хотя бы одного из управляющих воздействий воспользуйтесь формулой для программного управления из первой лабораторной. Найдите собственные числа и собственные вектора матрицы P, продемонстрируйте их графический смысл.

Постройте графическое изображение ограничивающего эллипсоида по выходу

$$\left\{ y \in \mathbb{R}^2 \mid y^T (CPC^T)^{-1} y = 1 \right\}.$$

Для каждой из полученных ранее траекторий вектора состояния найдите соответствующую траекторию выхода и постройте её график поверх графического изображения эллипсоида. Найдите собственные числа и собственные вектора матрицы CPC^T , продемонстрируйте их графический смысл.

Постройте графическое изображение эллипсоида наблюдаемости

$$\left\{ x \in \mathbb{R}^2 \mid x^T Q x = 1 \right\}.$$

Выберите несколько (не менее четырёх) различных начальных условий $x(0) = x_0$ таких, что $x_0^T Q x_0 = 1$ при этом положите $u \equiv 0$. Для каждого начального условия постройте графики компонент выхода системы y(t) и найдите величину $||y||_2$. Найдите собственные числа и собственные вектора матрицы Q, продемонстрируйте их графический смысл.

Найдите Γ_{ie} , Γ_{ep} и Γ_{ee} данной системы.

Найдите передаточную матрицу W(s) системы и вычислите (по определению, без использования матриц) нормы $\|W\|_{\mathcal{H}_2}$ и $\|W\|_{\mathcal{H}_\infty}$. Затем вычислите эти же нормы с использованием матричных соотношений.

Задание 2. Исследование передаточных матриц. Придумайте две неквадратные передаточные матрицы по возможности большой размерности. Для каждой из матриц постройте графики AЧX её компонент, а также график зависимости сингулярных чисел от частоты. Вычислите \mathcal{H}_2 и \mathcal{H}_∞ нормы каждой из матриц.

Задание 3. Синтез \mathcal{H}_2 -регулятора по состоянию. Постройте математическую модель простого тела (тележки). Задайте регулируемый выход в трёх различных вариантах. Для каждого из вариантов регулируемого выхода синтезируйте соответствующий \mathcal{H}_2 -регулятор по состоянию. В каждом случае найдите передаточную функцию (матрицу) замкнутой системы от внешнего возмущения (действующего аддитивно с управлением) к регулируемому выходу, постройте для неё графики покомпонентных АЧХ и график сингулярных чисел, найдите её \mathcal{H}_2 и \mathcal{H}_∞ нормы. Проведите моделирование замкнутой системы при внешних возмущениях.

Задание 4. Синтез \mathcal{H}_2 -регулятора по выходу. Постройте математическую модель простого тела (тележки), в которой измеряемым выходом является её координата. Задайте регулируемый выход в трёх различных вариантах. Для каждого из вариантов регулируемого выхода синтезируйте соответствующий \mathcal{H}_2 -регулятор по выходу, включающий в себя наблюдатель. В каждом случае найдите передаточную функцию (матрицу) замкнутой системы от внешних сигналов (возмущений и помех) к регулируемому выходу, постройте для неё графики покомпонентных АЧХ и график сингулярных чисел, найдите её \mathcal{H}_2 и \mathcal{H}_∞ нормы. Проведите моделирование замкнутой системы при внешних возмущениях и помехах измерения.

Задание 5. Синтез \mathcal{H}_{∞} -регулятора по состоянию. Возьмите модель тележки из задания 3. Самостоятельно выберите какой-то один вариант регулируемого выхода. Выберите четыре различных значения параметра $\gamma > 0$, и для каждого из значений синтезируйте соответствующий \mathcal{H}_{∞} -регулятор по состоянию. В каждом случае найдите передаточную функцию (матрицу) замкнутой системы от внешнего возмущения к регулируемому выходу, постройте для неё графики покомпонентных АЧХ и график сингулярных чисел, найдите её \mathcal{H}_2 и \mathcal{H}_{∞} нормы. Для самого маленького из выбранных значений γ проведите моделирование замкнутой системы при синусоидальных внешних воздействиях различной частоты.

Задание 6. Синтез \mathcal{H}_{∞} -регулятора по выходу. Возьмите модель тележки из задания 4. Самостоятельно выберите какой-то один вариант регулируемого выхода. Выберите четыре различных значения параметра $\gamma > 0$, и для каждого из значений синтезируйте соответствующий \mathcal{H}_{∞} -регулятор по выходу, включающий в себя наблюдатель. В каждом случае найдите передаточную функцию (матрицу) замкнутой системы от внешних сигналов (возмущений и помех) к регулируемому выходу, постройте для неё графики покомпонентных АЧХ и график сингулярных чисел, найдите её \mathcal{H}_2 и \mathcal{H}_{∞} нормы. Для самого маленького из выбранных значений γ проведите моделирование замкнутой системы при синусоидальных внешних воздействиях различной частоты.

Задание 7. Выводы. Напишите содержательные выводы к каждому из заданий.