Stats 120B Homework 2: Due Jan. 25

- 1. [15 pts] Let $I(\cdot)$ be the indicator function. Prove $I_{A\cap B} = I_A \times I_B$ for any two sets A and B.
- 2. Let X and Y follow a bivariate normal distribution with means (3,2), variances (1,4) and covariance c. In other words,

$$\left(\begin{array}{c} X \\ Y \end{array}\right) \sim N\left(\left(\begin{array}{c} 3 \\ 2 \end{array}\right), \left(\begin{array}{cc} 1 & c \\ c & 4 \end{array}\right)\right)$$

- (a) [10 pts] What's the marginal distribution of X?
- (b) [10 pts] If c = 0, what's the conditional variance of W = Y + 999 given X = 999? Explain.
- (c) [10 pts] If c = 1, find the covariance between 2X and X + Y.
- (d) [10 pts] If c = .5. Consider two conditional expectations E(Y|X=1) and E(Y|X=2). Which one is bigger? Explain.
- 3. [15 pts] Suppose that two random variables X_1 and X_2 have a bivariate normal distribution, and $Var(X_1) = Var(X_2)$. Show that the sum $X_1 + X_2$ and the difference $X_1 X_2$ are independent.
- 4. Let X_1 and X_2 be two random variables following Binomial distribution $Bin(n_1, p)$ and $Bin(n_2, p)$, respectively. Assume that X_1 and X_2 are independent.
 - (a) [10 pts] The mgf of binomial distribution Bin(n, p) is $(1 p + pe^t)^n$. Use this fact to obtain the distribution of $X_1 + X_2$.
 - (b) [20 pts] Find the probability $P(X_1 + X_2 = 1 | X_2 = k)$ for k = 0 and 1. Then use the law of total probability to find $P(X_1 + X_2 = 1)$.