CS & IT ENGINEERING

Operating Systems

By- Dr. Khaleel Khan Sir

TOPICS TO BE COVERED

Bankers Algorithm

....

Deadlock Detection & Recovery

.

Problem Solving

Algorithm Res-Reg (Pi, Regi, Alloci, Needi, Avail) 1 Regli < Meedi 2. Regli < Avail 3. [Assume to ve Satisfied Regi Avail = Avail - Regi Alloci = Alloci+Regi c) Meedi = Needi - Regli 4. Run Safety Algorithm

4. Run Safety Algorithm 5. 9f System is "SAFE" then brownt Regli edne derry Regli (Block Pi)

Process	Allocation	Max	Available		
1	ABCD	ABCD	ABCD		
P0	0 0 1 2	0 0 1 2	1 5 2 0		
P1	1 0 0 0	1750			
P2	1 3 5 4	2356			
Р3	0 6 3 2	0652			
P4	0 0 1 4	0656			

	Allocation			Request			Available			
	A	В	С	A	В	C	Α	В	C	
PO	0	1	0	0	0	0	0	0	0	
P1	2	0	0	2	0	2 X	<0	1	0>	
P2	3	0	3	0	0	0 x				
Р3	2	1	1	1	0	0 ×				
P4	0	0	2	0	0	2 x				

Detection with Multi-Instance Resource

Apply deadlock detection algorithm to solve the following program. There are five processes and 4 resources types.

Allocation			Request			Available						
	Α	В	С	D	Α	В	С	D	Α	В	С	D
P1	1	0	0	0	0	1	0	0	2	0	0	0
P2	0	1	0	0	0	0	1	0				
Р3	0	0	1	0	0	0	0	1				
P4	0	1	0	1	1	0	0	0				
P5	0	0	0	1	0	0	0	0				

Do a step by step execution of the Dead lock detection algorithm to find the processes are in deadlock? If the system has no deadlock show the execution sequence processes?

de not occurs: 71 (i) Prevention 7 (ii) Avidance 3 (ii) Avidance 3 (iii) Avidance 3 (iv) Detection occurs (iv) Ignorance 3 (i

Which of the following is NOT a valid Deadlock Prevention Scheme?

- A. Release all resources before requesting a new resource.
- B. Number all resources uniquely and never request a lower numbered resource than the last one requested.
- Never request a resource after releasing any resource
- D. Request and be allocated all required resources before execution.

- In deadlock prevention, the request for resources is always granted if the resulting state is safe.
- B. In deadlock avoidance, the request for resources is always granted if the resulting state is safe.
- C. Deadlock avoidance is less restrictive than deadlock prevention.
- D. Deadlock avoidance requires knowledge of resource requirements a priori.

An operating system implements a policy that requires a process to release all resources before making a request for another resource. Select the TRUE statement from the following:

- A. Both starvation and deadlock can occur.
- B. Starvation can occur but deadlock cannot occur.
- C. Starvation cannot occur but deadlock can occur.
- D. Neither starvation nor deadlock can occur.

Q.4

A Computer has six Tape Drives, with n-processes competing for them. Each Process may need two drives. What is the maximum value of 'n' for the System to be Deadlock free?

- A. 6
- B. 5
- **c.** 4
- D. 3

2 Philosopher

$$R = 6$$

$$R = 8$$

$$R = 8$$

An Operating System contains 3 User Processes each requiring 2 units of resource 'R'. The minimum number of units of 'R' such that no Deadlocks will ever arise is

Deadlock-free

$$P_{1} - 1$$

A Computer system has 6 Tape Drives, with 'n' Processes competing for them. Each Process may need 3 Tape Drives. The maximum value of 'n' for which the System is guaranteed to be Deadlock free is: R = C

- B. 3
- **G.** 4
- D. 1

Deadlock

Consider a System having m resources of the same type. These resources are shared by 3 Processes A, B and C, which have peak demands of 3, 4 and 6 respectively. For what value of m Deadlock

will not occur? Mim: II

A.	7
	-

	Man	Marc Deadlock R
A -	3	- 2
B-	4 .	- 3
C -	6	5
		10

Min=10+1=

No seadlock

Consider the following snapshot of a system running n processes. Process i is holding xi instances of a resource R, for $1 \le i \le n$. Currently, all instances of R are occupied. Further, for all i, process i has placed a request for an additional yi instances while holding the xi instances it already has. There are exactly two processes p and q such that yp = yq = 0. Which one of the following can serve as a necessary condition to guarantee that the system is not approaching a deadlock?

- A. $\min(x_p, x_q) < \max_{k \neq p, q} y_k$
- B. $x_p + x_q \ge \min_{k \ne p, q} y_k$
- $(x_p, x_q) > 1$
- D. $min(x_p, x_q) > 1$

Consider the Following Resource Allocation Graph. Find if the System is in Deadlock State.

An operating system uses the *Banker's algorithm* for deadlock avoidance when managing the allocation of three resource types X, Y, and Z to three processes P0, P1, and P2. The table given below presents the current system state. Here, the *Allocation* matrix shows the current number of resources of each type allocated to each process and the *Max* matrix shows the maximum number of resources of each type required by each process during its execution.

	Al	locat	ion	Max			
	X	Y	Z	X	Y	Z	
PO	0	0	1	8	4	3	
P1	3	2	0	6	2	0	
P2	2	1	1	3	3	3	

There are 3 units of type X, 2 units of type Y and 2 units of type Z still available. The system is currently in a safe state. Consider the following independent requests for additional resources in the current state:

REQ1: P0 requests 0 units of X, 0 units of Y and 2 units of Z REQ2: P1 requests 2 units of X, 0 units of Y and 0 units of Z

Which one of the following is TRUE?

- A. Only REQ1 can be permitted.
- B. Only REQ2 can be permitted.
- C. Both REQ1 and REQ2 can be permitted.
- D. Neither REQ1 nor REQ2 can be permitted.

Consider a System with n Processes <P $_1$P $_n$ >. Each Process is allocated x_i copies of R (resources) and makes a request for y_i copies of R. There are exactly 2 Processes A and B whose request is zero. Further there are 'k' instances of R free available. What is the condition for stating that system is not approaching deadlock (System is said to be not approaching deadlock if minimum request of Process is satisfiable) Also compute the total instances of R in System.

A system contains three programs, and each requires three tape units for its operation. The minimum number of tape units which the system must have such that deadlocks never arise is ______.

A system shares 9 tape drives. The current allocation and maximum requirement of tape drives for three processes are shown below:

Which of the following best describes current state of the system?

Process	Current Allocation	Maximum Requirement		
P1	3	7		
P2	1	6		
P3	3	5		

- A. Safe, Deadlocked
- B. Safe, Not Deadlocked
- c. Not Safe, Deadlocked
- D. Not Safe, Not Deadlocked

Which of the following statements is/are TRUE with respect to deadlocks?

- A. Circular wait is a necessary condition for the formation of deadlock.
- B. In a system where each resource has more than one instance, a cycle in its wait-for graph indicates the presence of a deadlock.
- If the current allocation of resources to processes leads the system to unsafe state, then deadlock will necessarily occur.
- D. In the resource-allocation graph of a system, if every edge is an assignment edge, then the system is not in deadlock state.

In a system, there are three types of resources: E, F and G. Four processes P0, P1, P2 and P3 execute concurrently. At the outset, the processes have declared their maximum resource requirements using a matrix named Max as given below. For example, Max[P2, F] is the maximum number of instances of F that P2 would require. The number of instances of the resources allocated to the various processes at any given state is given by a

matrix named Allocation. Consider a state of the system with the allocation

matrix as shown below, and in which 3 instances of E and 3 instances of F

Allocation					М	ax	
	Е	F	G		Е	F	G
P0	1	0	1	P0	4	3	1
P1	1	1	2	P1	2	1	4
P2	1	0	3	P2	1	3	3
Р3	2	0	0	Р3	5	4	1

are the only resources available.

- A. The system is in safe state
- B. The system is not in safe state, but would be safe if one more instance of E were available
- C. The system is not in safe state, but would be safe if one more instance of F were available
- D. The system is not in safe state, but would be safe if one more instance of G were available

$$x = 1, y = 2$$

В.

$$x = 2, y = 1$$

C.

$$x = 2, y = 2$$

D.

$$x = 1, y = 1$$

