SEMANA 7

COMPUTAÇÃO CIENTÍFICA

RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES POR MÉTODOS DIRETOS E ITERATIVOS

PARTE III

MÉTODOS DIRETOS

D. MATRIZ INVERSA E CONDICIONAMENTO

Computação Científica

prof. Marco Villaça

Eliminação de Gauss x Fatoração LU

- Embora seja um método seguro para resolver sistemas de equações lineares da forma [A] {x} = {b}, a Eliminação de Gauss se torna ineficiente ao resolver sistemas com a mesma matriz [A], mas com diferentes vetores {b}, pois manipula [A] e {b} juntos.
- A Fatoração LU separa a eliminação da matriz [A], das manipulações do vetor {b}. Assim, após [A] ser decomposta, ela pode ser utilizada na solução do sistema para múltiplos vetores {b}.
- O cálculo eficiente da matriz inversa de [A] utiliza essa vantagem da Fatoração LU

Matriz inversa

• Se a matriz [A] é quadrada, existe uma outra matriz [A]⁻¹, chamada inversa de [A] tal que:

[A]
$$[A]^{-1} = [I]$$

ou para um sistema 3 x 3:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

ullet A equação indica que a matriz inversa de A pode ser calculada coluna a coluna.

Matriz inversa

• Por exemplo, a primeira coluna de $[A]^{-1}$ é obtida resolvendo-se o sistema

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

• Ou seja, para uma matriz $n \times n$, se um vetor com 1 na *i-ésima* linha e zero nas demais for usado, o resultado será a *i-ésima* coluna da matriz inversa.

• Use a fatoração LU com pivotamento para calcular a matriz inversa de

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Inicia-se, fazendo U = A. O processo de eliminação progressiva começa trocando-se a primeira linha pela segunda linha na matriz U e na matriz P:

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathsf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Após, multiplica-se a primeira linha de A por 2/3 e subtrai-se o resultado da segunda linha, obtendo

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 1 & 1 & 1 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ l_{24} & l_{22} & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$$

$$\mathsf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Na sequência, multiplica-se a primeira linha de A por 1/3 e subtrai-se o resultado da terceira linha, obtendo

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 1/3 & 2/3 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & l_{32} & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{vmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & l_{32} & 1 \end{vmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 Para completar a eliminação progressiva não há necessidade de pivotamento. Assim multiplica-se a segunda linha por 1/2 e subtraindo o resultado da terceira linha, chega-se a:

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

$$\mathsf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Obtidas as matrizes L e U, inicia-se o procedimento para obter a primeira coluna da matriz inversa efetuando-se o procedimento de substituição progressiva com o vetor $\{b\} = \{0 \ 1 \ 0\}^T$ para obter {d}. Dessa forma, define-se o sistema triangular inferior

$$\begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \begin{pmatrix} d_{11} \\ d_{21} \\ d_{31} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \begin{pmatrix} x_{11} \\ x_{21} \\ x_{31} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1/2 \end{pmatrix}$$

que resolvido por substituição regressiva resulta em $\{x\}^T = \{1 -2 1\}$, que é a primeira coluna da matriz inversa.

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

$$\mathsf{P} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Para a obtenção da segunda coluna, o sistema triangular inferior é

$$\begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \begin{pmatrix} d_{12} \\ d_{22} \\ d_{32} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \begin{pmatrix} x_{12} \\ x_{22} \\ x_{32} \end{pmatrix} = \begin{pmatrix} 1 \\ -2/3 \\ 0 \end{pmatrix}$$

que resolvido por substituição regressiva resulta em $\{x\}^T = \{1 -1 0\}$, que é a segunda coluna da matriz inversa.

$$U = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \qquad L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Para a obtenção da terceira e última, o sistema triangular inferior é

$$\begin{bmatrix} 1 & 0 & 0 \\ 2/3 & 1 & 0 \\ 1/3 & 1/2 & 1 \end{bmatrix} \begin{pmatrix} d_{13} \\ d_{23} \\ d_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{bmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{33} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

 $\begin{vmatrix} 3 & 2 & 1 \\ 0 & 2/3 & 7/3 \\ 0 & 0 & -1/2 \end{vmatrix} \begin{pmatrix} x_{13} \\ x_{23} \\ x_{23} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ que resolvido por substituição regressiva resulta em $\{x\}^T = \{-4 \quad 7 \quad -2\}, \text{ que \'e a terceira coluna da matriz }.$

$$A^{-1} = \begin{bmatrix} 1 & 1 & -4 \\ -2 & -1 & 7 \\ 1 & 0 & -2 \end{bmatrix}$$

A matriz inversa e a resposta a estímulos

- Em um sistema $[A] \{x\} = \{b\}$
 - A matriz [A] contém os parâmetros que expressam como as partes do sistema interagem;
 - $\{x\}$ representa o estado ou respostas do sistema
 - $\{b\}$ representam os estímulos externos que conduzem o sistema

A matriz inversa e a resposta a estímulos

• A matriz inversa pode ser utilizada para fornecer a solução do sistema $[A]\{x\} = \{b\}$:

$${x} = [A]^{-1} {b}$$

ou

$$\begin{cases} x_1 = a_{11}^{-1}b_1 + a_{12}^{-1}b_2 + a_{13}^{-1}b_3 \\ x_2 = a_{21}^{-1}b_1 + a_{22}^{-1}b_2 + a_{23}^{-1}b_3 \\ x_3 = a_{31}^{-1}b_1 + a_{32}^{-1}b_2 + a_{33}^{-1}b_3 \end{cases}$$

 Cada elemento da matriz inversa representa a resposta de uma parte do sistema a um estímulo unitário de outra parte do sistema

A matriz inversa e a resposta a estímulos

- Observe que a formulação anterior é linear, valendo:
 - A superposição em um sistema submetido a vários estímulos diferentes, as respostas podem ser calculadas individualmente e os resultados somados para se obter a resposta total.
 - A proporcionalidade a multiplicação de um estímulo por um valor faz com que a resposta a esse estímulo seja multiplicada pelo mesmo valor.
- Assim, a solução pela matriz inversa fornece um meio para se compreender as inter-relações das partes de um sistema.

Para o circuito da
 Figura, calcule a
 contribuição de cada
 uma das fonte de
 tensão para a corrente
 i₁ e encontre o novo
 valor da fonte de 6 V
 para que a corrente i₁
 reduza para 2 A.

$$\begin{bmatrix} -13 & 1 & 6 & 0 & 0 \\ 1 & -7 & 2 & 2 & 0 \\ 6 & 2 & -16 & 2 & 6 \\ 0 & 2 & 2 & -7 & 1 \\ 0 & 0 & 6 & 1 & -13 \end{bmatrix} \begin{pmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \end{pmatrix} = \begin{pmatrix} -12 \\ -6 \\ 0 \\ -10 \\ -8 \end{pmatrix}$$

 Invertendo a matriz de coeficientes [A], obtém-se o sistema abaixo (verifique):

• Separando a equação que representa i_1 , obtém-se

$$i_1 = 0.109106 \cdot 12 + 0.043373 \cdot 6 + 0.034752 \cdot 10 + 0.031519 \cdot 8$$

• Assim, a fonte de tensão de 12 V contribui com 1,309272 A para a composição de i_1 , a fonte de 6 V com 0,260238 A, a fonte de 10 V com 0,34752 A e a fonte de 8 V com 0,252152 A.

$$i_1 = 0.109106 \cdot 12 + 0.043373 \cdot 6 + 0.034752 \cdot 10 + 0.031519 \cdot 8$$

$$i_1 = 2$$
 $6 \rightarrow v$

$$2 = 1,309272 + 0,043373 \cdot v + 0,34752 + 0,252152$$

$$v \cong 2,10 V$$

Análise de erro e condicionamento de um sistema

Um sistema linear

$$[A]\{x\} = \{b\}$$

- é bem condicionado se pequenas mudanças no sistema levam a pequenas mudanças na solução e mal condicionado se pequenas mudanças levam a grandes mudanças na solução.
- Em geral, o determinante da matriz [A] de um sistema mal condicionado é, numericamente, muito próximo de zero.
- A matriz inversa também fornece uma maneira de avaliar se um sistema é mal condicionado. Se existirem elementos de $[A]^{-1}$ que sejam muito maiores que os elementos de [A], é provável que o sistema seja mal condicionado.

Análise de erro e condicionamento de um sistema

Considere os próximos 3 sistemas:

 Pequenas variações nos coeficientes das matrizes fazem as soluções ficarem bem distintas, isto é, pequenas variações nos dados de entrada acarretaram em grandes variações na solução do sistema.

Número de condição

• Uma boa medida do mal condicionamento de um sistema é o número de condição k(A), definido como:

$$k(A) = \begin{cases} ||A|| ||A^{-1}|| \text{ se a \'e invertivel} \\ \infty \text{ sen\~ao} \end{cases}$$

 Como o número de condição é definido em termos de normas, uma medida de magnitude de vetores e matrizes, torna-se necessário uma breve discussão sobre normas.

Normas de vetores e matrizes

- Se pode definir uma infinidade de normas em um espaço vetorial \mathbb{F}^n , entretanto, as mais conhecidas são as normas-p.
- Se p = 2, tem-se uma norma bem conhecida, a norma Euclidiana:

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

• Estendendo esta norma para uma matriz $m \times n$, obtém-se a norma de Frobenius:

$$||A||_f = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2}$$

Normas de vetores e matrizes

Norma p geral

$$||x||_p = \int_{1}^{p} \sum_{i=1}^{n} |x_i|^p$$

- Vetores:
- Soma dos valores absolutos dos elementos

$$||x||_1 = \sum_{i=1}^n |x_i|$$

 O elemento de maior valor absoluto (norma uniforme)

$$||x||_{\infty} = \max_{1 \le l \le n} |x_i|$$

- Matrizes:
- Norma soma das colunas

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| = coluna \ de \ maior \ soma$$

Norma soma das linhas (norma uniforme)

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = linha de maior soma$$

Número de condição de matrizes

Ao resolver um sistema

$$[A] \{x\} = \{b\}$$

podem ocorrer problemas de condicionamento e de estabilidade numérica.

 Os problemas de estabilidade numérica estão relacionados com o algoritmo que utilizamos para resolver o sistema. Por exemplo, para evitar os problemas de instabilidade numérica, utiliza-se o método de eliminação de Gauss com pivotamento.

Número de condição de matrizes

Ao resolver um sistema

$$[A] \{x\} = \{b\}$$

podem ocorrer problemas de condicionamento e de estabilidade numérica.

 No entanto, se o sistema for mal condicionado, essas técnicas de pesquisa de pivô deixam de ser úteis, já que um problema mal condicionado será sempre numericamente instável. É importante, portanto, identificar quais os sistemas que nos podem trazer problemas de condicionamento

24

Número de condição de matrizes

- Pode ser mostrado que o número de condição $\kappa(A)$ mede a transferência de erro da matriz [A] e do vetor $\{b\}$ para a solução $\{x\}$.
- A regra de ouro é que se $k(A) = 10^k$, então se espera perder pelo menos k dígitos de precisão na resolução o sistema $[A]\{x\} = \{b\}$.
- Quando a solução é sensível a pequenas mudanças nos componente de $\{b\}$ ou nos coeficientes de [A], a matriz [A] possue um grande número de condição.
- Nesse caso, se diz que [A] é mal condicionada. Resumidamente, quanto maior o número da condição, mais mal condicionado o sistema.

 A matriz de Hilbert, notoriamente mal condicionada, pode ser genericamente representada por

$$H = \left(\frac{1}{i+j-1}\right)_{i,j=1...n} = \begin{bmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \cdots & \frac{1}{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \cdots & \frac{1}{2n-1} \end{bmatrix}$$

 Usar a norma da soma das linhas para calcular o número de condicionamento de uma matriz de Hilbert 4 x 4

$$[H] = \left(\frac{1}{i+j-1}\right)_{i,j=1...n} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

A soma dos elementos da primeira linha será a norma da soma das linhas:

$$||H||_{\infty} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} = 2,083333$$

E a inversa da matriz é

$$[H]^{-1} = \begin{bmatrix} 16 & -120 & 240 & -140 \\ -120 & 1200 & -2700 & 1680 \\ 240 & -2700 & 6480 & -4200 \\ -140 & 1680 & -4200 & 2800 \end{bmatrix}$$

cujo a norma vale

$$||H^{-1}||_{\infty} = |240| + |-2700| + |6480| + |-4200| = 13620$$

Assim, o número de condicionamento da Matriz de Hilbert 4 x 4 será:

$$k(H) = ||H||||H^{-1}|| = 28375$$

resultado que apontaria para um sistema mal condicionado. A extensão desse mal condicionamento pode ser quantificada calculando-se

$$c = log 28375 = 4,452936$$

 Para o padrão IEEE 754 de precisão simples, o número de dígitos significativos é

$$t = \log_{10} 2^{24} = 7.2$$

Logo, a solução poderá apresentar erros de arredondamento de até

$$10^{c-t} = 10^{4,45-7,2} \cong 1.8 \times 10^{-3}$$

Normas e número de condicionamento no Scilab

- O Scilab possui funções implícitas para calcular as normas e o número de condição de uma matriz:
 - norm(A [,flag]);
 - cond(A [,flag]);

onde, A é um vetor ou matriz e flag é uma string representando o tipo de norma: 1, 2, 'inf' ou 'fro'

Obs: Norma 2 ou espectral: $||A||_2 = \sqrt{\lambda_{\max}(A^T A)}$

 Usando o Scilab calcule o número de condicionamento de uma matriz de Hilbert 4 x 4 pelas normas da soma das colunas, da soma das linhas e de Frobenius.

$$[H] = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}$$

• Os seguintes comandos em uma sessão Scilab geram os resultados solicitados, onde o comando $inv_A = testmatrix('hilb', 4)$ gera a inversa da matriz de Hilbert 4×4 .

```
--> inv_A = testmatrix('hilb',4)
inv_A =
```

```
16.-120.240.-140.-120.1200.-2700.1680.240.-2700.6480.-4200.-140.1680.-4200.2800.
```

$$H = \begin{bmatrix} 1 & 1/2 & 1/3 & 1/4 \\ 1/2 & 1/3 & 1/4 & 1/5 \\ 1/3 & 1/4 & 1/5 & 1/6 \\ 1/4 & 1/5 & 1/6 & 1/7 \end{bmatrix}$$

```
--> A1 = cond(inv A, 1)
A1 =
   28375.
--> A inf = cond(inv A, 'inf')
A inf =
   28375.
--> A fro = cond(inv A, 'fro')
A fro =
   15613.794
```

Calcule para a matriz [A] do Exemplo 2:

- (a) A norma de soma das linhas e o número de condição de A baseado nessa norma. Confira manualmente os resultados.
- (b) A norma de Frobenius e o número de condição de A baseado nessa norma. Confira manualmente os resultados.
- (c) Caracterize o sistema quanto ao condicionamento.

Exercício 1

Exercício 2

Encontre o sistema de equações $[R] \{i\} = \{E\}$

que representa o circuito e

- a) calcule cada uma das correntes de malha;
- b) calcule o novo valor de cada uma das fontes de tensão tal que a corrente i₂ seja de 1,5 A com uma contribuição de 0,5 A de cada uma das fontes.

Bibliografia e crédito das figuras

CHAPRA, Steven. Applied numerical methods with MATHLAB for engineers and scientists. McGrawHill, 2012.

CHAPRA, Steven e CANALE, Raymond. **Numerical methods for engineers.** McGrawHill, 2010.

EULER, L. Anleitung zur Algebra. Lund, 1771.