O. How to turn a generalize function of
$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$$
 into a g.f of $\sum_{n=0}^{\infty} a_n x^n$?

A. Do the Laplace Transform

For $f(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$, $\int_{0}^{\infty} f(x) \frac{dx}{dx} = \int_{0}^{\infty} \left(\frac{f(x)}{x} \right) = \sum_{n=0}^{\infty} a_n x^n$

I Given $f(x) = x^n$, $\int_{0}^{\infty} \left(\frac{f(x)}{x} \right) = \sum_{n=0}^{\infty} \frac{a_n}{n!} \left(\frac{n!}{x^{n+1}} \right) = \int_{0}^{\infty} \sum_{n=0}^{\infty} a_n \left(\frac{1}{x} \right)^n$

Then let $X = \frac{1}{x}$ and divide by x^0 .

D. $\sum_{n=0}^{\infty} \frac{1}{n!} x^n = e^{x}$, $\int_{0}^{\infty} \left(e^{x} \right) = \int_{0}^{\infty} \frac{1}{x^{n+1}} \left(e^{x} \right) = \int_{0}^{\infty} \frac{1}{x^{$

$$\begin{bmatrix} a_1 & a_2 & a_3 & a_4 & a$$

It The q-analogues of n, n! (2) for n=0,1,2,... are

Thm. [n] != \(\int \) q inv (o) (123) (132) PI. By induction [n]!: [n] [n-1]! = (11q+..., q^n-1) \(\int \) einu(e)

Multiplying requires a choice of a power and a oes,

Let's just pick one gi and ores, Place n in position j, rending backwards 1 3 2 4 7 5 6 132 So q' q' = q''' , so increments the inversions by ; which is covert