Objectif. Calculer des probabilités conditionnelles dans un tableau à double entrée.

Exercice 1.

1. Un institut de sondage réalise une étude sur deux PCS (professions et catégories socioprofessionnelles), les employés et les ouvriers. Elle dispose de l'échantillon ci-dessous.

	Femme	Homme	Total
Employé	40	13	53
Ouvrier	9	32	41
Total	49	45	94

Quand on tire au sort une personne dans cet échantillon, on considère les événements F: « La personne est une femme » et E: « La PCS de la personne est "employée" ».

- a) Calculer P(F), P(E) et $P(F \cap E)$.
- b) Supposons que l'on sache que la personne tirée au sort est une femme. Quelle est la probabilité que sa PCS soit « employée » ? Cette probabilité est dite conditionnelle, et est notée $P_F(E)$ ce qui se lit « probabilité de E sachant F ».
- c) Décrire par une phrase $P_E(F)$, puis calculer cette probabilité. Même question pour $P_{\overline{F}}(\overline{E})$.
- 2. D'après l'Insee, si l'on considère ces deux PCS, en France, il y a 57 % d'employés dont 76 % de femmes. On tire au sort une personne de la population parmi celles appartenant à une de ces PCS.
- a) En reprenant les mêmes notations qu'à la question 1., traduire les deux pourcentages de l'énoncé en une probabilité, éventuellement conditionnelle.
- b) Quelle est la probabilité que la personne tirée au sort soit une femme dont la PCS est « employée »? On commencera par donner la formule littérale en utilisant la question 2. a) puis on donnera le résultat sous forme décimale.

Exercice 2. Greg a créé une playlist de 300 titres de différents genres musicaux interprétés par des artistes de différents pays. La répartition de ces titres est donnée par le tableau cidessous.

	Rap	Pop	Electro	Total
Américain	117	34	27	178
Autre	23	61	38	122
Total	140	95	65	300

Quand il lance sa playlist en mode aléatoire, on considère les événements A : « L'interprète du titre joué est américain. », R : « Le titre joué est du rap. », et E : « Le titre joué est de l'électro. ».

- 1. Calculer $P_A(R)$ et $P_{\overline{R}}(A)$.
- 2. Un titre pop est joué. Écrire la probabilité que son interprète soit américain comme une probabilité conditionnelle puis la calculer.

Exercice 3. Dans une boulangerie, on dispose d'une réduction si l'on choisit la formule « dessert mystère » pour laquelle le dessert accompagnant le menu est tiré au hasard. Ceyda choisit cette formule alors que les desserts encore disponibles sont répartis comme suit.

		Chocolat	Vanille	Total
	Tartelette	8	11	19
	Éclair	13	7	20
	Total	21	18	39

On considère les événements E : « Son dessert est un éclair » et V : « Son dessert est à la vanille. »

- 1. Calculer $P_E(V)$, $P_V(E)$, $P_{\overline{E}}(V)$.
- 2. Ceyda voit que son dessert est un éclair. Écrire la probabilité qu'il soit au chocolat comme une probabilité conditionnelle puis la calculer.

Exercice 4. Dans un jeu de construction, il y a des briques de couleurs et de tailles différentes (taille 2 et taille 4). Un enfant dispose de briques selon la répartition ci-dessous.

		Rouge	Jaune	Vert	Total
	Taille 2	97	101	83	281
	Taille 4	74	86	68	228
	Total	171	187	151	509

Il prend une brique au hasard et on considère les événements R : « La brique est rouge », V : « La brique est verte » et T_4 : « La brique est de taille 4. »

- 1. Calculer $P_R(T_4)$, $P_{T_4}(V)$, $P_{\overline{T_4}}(\overline{V})$.
- 2. L'enfant prend une brique de taille 4. Calculer la probabilité qu'elle soit jaune.

Objectif. Calculer avec des probabilités conditionnelles

Exercice 5.

- 1. Soit deux événements A et B tels que P(A) = 0.2 et $P_A(B) = 0.8$. Calculer $P(A \cap B)$.
- 2. Soit deux événements A et B tels que P(A) =