

Introduction

• Supervised learning algorithm.

- Training dataset: $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\}.$
- \bullet Input data comprise D features. For example, the *i*th example

$$\mathbf{x}^{(i)} = (x_1^{(i)}, x_2^{(i)}, \dots, x_D^{(i)})$$

• Objective: Predict y_* for an unobserved example \mathbf{x}_* .

Example

- Problem: Assign class to \mathbf{x}_* .
- Prediction based on nearest K examples to \mathbf{x}_* .
 - Assign \mathbf{x}_* to the class with the highest number of occurrences in the K nearest examples.

Example

- The algorithm needs a value of K.
- Suppose we take K = 5.
- Assign \mathbf{x}_* to class \blacksquare .

4

Mathematics

- Let $N_K(\mathcal{D}, \mathbf{x}_*)$ be the set comprising K closest points to \mathbf{x}_* in \mathcal{D} .
- Prediction:

$$y_* = \arg\max_{c_j} \sum_{\mathbf{x}^{(i)} \in N_K(\mathcal{D}, \mathbf{x}_*)} \mathbb{1}_{(y^{(i)} = c_j)}$$

• $\mathbb{1}_z$ is the indicator function:

$$\mathbb{1}_z = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{if } z \text{ is false} \end{cases}$$

• Probabilistic modelling:

$$p(y_* = c_j | \mathcal{D}, \mathbf{x}_*, K) = \frac{1}{K} \sum_{\mathbf{x}^{(i)} \in N_K(\mathcal{D}, \mathbf{x}_*)} \mathbb{1}_{(y^{(i)} = c_j)}$$

• Assign \mathbf{x}_* to the class with the highest probability.

Distance metric

• Euclidean distance

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sqrt{\sum_{p=1}^{D} (x_p^{(i)} - x_p^{(j)})^2}$$

$$= \sqrt{\sum_{p=1}^{D} (x_p^{(i)})^2 + \sum_{p=1}^{D} (x_p^{(j)})^2 - 2\sum_{p=1}^{D} x_p^{(i)} x_p^{(j)}}$$

$$= \sqrt{||\mathbf{x}^{(i)}||^2 + ||\mathbf{x}^{(j)}||^2 - 2(\mathbf{x}^{(i)})^T \mathbf{x}^{(j)}}$$

- $||\mathbf{x}^{(i)}||$ is the norm of vector $\mathbf{x}^{(i)}$.
- $(\mathbf{x}^{(i)})^T \mathbf{x}^{(j)}$ is the inner product of $\mathbf{x}^{(i)}$ and $\mathbf{x}^{(j)}$.

Distance metric

• General distance metric – Minkowski distance

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \left(\sum_{p=1}^{D} |x_p^{(i)} - x_p^{(j)}|^m\right)^{1/m}$$

- -m=2 indicates Euclidean distance (l_2 -norm)
- -m=1 indicates Manhattan distance (l_1 -norm)
- $-m \to \infty$ indicates Maximum Norm
- Hamming distance (categorical attributes):

$$d(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sum_{d=1}^{D} \mathbb{1}_{\mathbf{x}_d^{(i)} \neq \mathbf{x}_d^{(j)}}$$

Procedure

- Find the class y_* of the new data point \mathbf{x}_* .
 - Compute the distance from \mathbf{x}_* to all points in the training dataset.
 - Sort all the points based on their distance from \mathbf{x}_* .
 - Choose the K closest points to \mathbf{x}_* .
 - Find the class (label) with the most number of occurrence among the K nearest neighbours. Suppose that class is c_j .
 - Assign \mathbf{x}_* to class c_j i.e. $y_* = c_j$.
- Note, features need to be normalized.
 - Standardize the inputs: Zero mean and unit variance.
 - For example, replace $x_p^{(i)}$ with $(x_p^{(i)} \overline{x}_p)/\sigma_p$ where

$$\overline{x}_p = \frac{1}{N} \sum_{i=1}^N x_p^{(i)} \qquad \text{and} \qquad \sigma_p^2 = \frac{1}{N} \sum_{i=1}^N \left(x_p^{(i)} - \overline{x}_p \right)^2$$

K value

- For small values of K:
 - Produces more number of small-sized regions for the classes.
 - Can lead to overfitting.

9

K value

- For large values of K:
 - Produces lesser number of regions.
 - Can lead to underfitting.

K value estimation

ullet Estimate K based on error on validation dataset or through cross-validation.

Weighted K-NN

• All the K nearest neighbours receive the same importance. However, points close to \mathbf{x}_* should have more influence than those far away.

Procedure

- Let $N_K(\mathcal{D}, \mathbf{x}_*)$ be the set comprising K closest points to \mathbf{x}_* in \mathcal{D} .
- Weighted K-NN: Each point in $N_K(\mathcal{D}, \mathbf{x}_*)$ is assigned a weight depending upon its distance from \mathbf{x}_* .
 - Let $w(\mathbf{x}, \mathbf{x}_*)$ be the weight assigned to $\mathbf{x} \in N_K(\mathcal{D}, \mathbf{x}_*)$.
- $w(\mathbf{x}, \mathbf{x}_*)$ is high if \mathbf{x} is close to \mathbf{x}_* .
- $w(\mathbf{x}, \mathbf{x}_*)$ is low if \mathbf{x} is far from \mathbf{x}_* .
- Prediction:

$$y_* = \arg\max_{c_j} \sum_{\mathbf{x}^{(i)} \in N_K(\mathcal{D}, \mathbf{x}_*)} \mathbb{1}_{(y^{(i)} = c_j)} w(\mathbf{x}^{(i)}, \mathbf{x}_*)$$

Weight function

• Examples of weight functions:

