

PRONOSTICO CON REDES NEURONALES

Profesor: Daniel Osorio

DATOS SECUENCIALES

Datos no secuenciales:

- Independencia
 - No hay relación entre registros (filas)
 - No hay relación entre variables (columnas)
- Si se cambia el orden de registros o variables, un modelo aprendido no se afecta

Datos secuenciales:

- Texto: letras, palabras
- Ventas semanales, mensuales
- Secuencias de cromosomas
- Relación de orden (eje dimensional), cambia el significado:
 - 10, 9, 8, 7, 6 vs 6, 7, 8, 9, 10
 - "El vino que me cae bien" vs. "Me cae bien el que vino"

Edad	Ingresos	# Hijos	Tiene carro?
24	3'200.000	0	NO
28	4'500.000	2	SI
45	6'500.000	1	SI
32	4'600.000	0	NO

	Item	Feb	Mar	Abr	May		
Item	Feb	Mar	Abr	May			
001	15.5	16.1	16.8	16.7	.9		
002	8.2	8.6	8.7	8.9	.0		
007	10.2	10.1	9.6	8.7	.2	egresos	
021	4.6	4.5	4.6	4.5	ingr	ingresos	

DATOS SECUENCIALES

- Tareas de modelos con data secuencial:
 - Forecasting univariado y multivariado
 - Pronóstico de valor de acciones
 - Pronóstico de tiempo
 - Pronóstico de inventario
 - Reconocimiento de habla
 - Traducción de texto
 - Clasificación de texto/audio
 - Generación de texto/audio
 - Modelamiento de proteínas
 - ...

ICESI

SECUENCIAS EN REDES NEURONALES DENSAS

Los datos de una serie de tiempo univariada o multivariada son entonces la base de una creación de un **nuevo dataset** teniendo una neurona en la capa de entrada por cada **variables predictora**:

- Valores de los últimos periodos (lag features) que denoten la tendencia de los últimos datos (i.e., ventana móvil con datos de las últimas 8 semanas)
- Valores estacionales de diferentes periodicidades (i.e. datos de los últimos 4 trimestres, datos de los últimos 3 años)
- Valores agregados sobre periodos (i.e. moving average)
- Incluir información de la variable a predecir, pero también de otras covariables predictoras.

Con redes neuronales artificiales tradicionales, que solo involucran **capas densas**, no hablamos propiamente de pronóstico (forecasting) sino de **regresión**. Así hayan correlaciones en las variables predictoras, el modelo las considera como independientes, sin ninguna noción de orden o secuencialidad.

Igualmente en la creación del dataset es necesario definir él o los valores futuros a predecir, teniendo una neurona para cada uno en la capa de salida.

SECUENCIAS EN REDES NEURONALES DENSAS

Las redes tradicionales con capas **densas** permiten realizar tareas de pronóstico sobre datos **univariados**. Es necesario definir la arquitectura de los modelos, estableciendo:

- El número de periodos sobre los cuales se basará el pronóstico: determina el número de neuronas en la capa de entrada
- El número de periodos a pronosticar en el futuro, que determina el número de neuronas en la **capa de salida**. En el caso de pronóstico de múltiples periodos, hay que definir la estrategia a seguir:
 - Crear un solo modelo: capa de salida con una neurona de salida para un único periodo a pronosticar (iterativo), que se desplaza autoregresivamente.
 - Crear un modelo independiente para cada período en el futuro (directo): tantos modelos como periodos a pronosticar, con una neurona en la capa de salida.
 - Crear un solo modelo: capa de salida con tantas neuronas de salida como periodos a pronosticar (salida de vector).

PREPARACIÓN DE DATOS PARA PREDICCIÓN

- Exploración y visualización de datos secuenciales
 - Identificación de estacionalidades y ciclicidades
 - Imputación de valores faltantes según la frecuencia de datos (considerar tendencias y estacionalidades)
 - Normalización y/o transformaciones (opcional, a determinar si mejoran resultados)
- Creación de variables de corte transversal:
 - Lag features: valores anteriores, a diferentes frecuencias (considerar estacionalidades y ciclicidades)
 - Agregaciones móviles: conteos, sumas, promedios, desviaciones, etc.
 - Variables temporales: día de la semana, día del mes, mes, festivos, etc.
 - Variables exógenas: regiones, sucursales, vendedor, etc.
- Particionamiento temporal train/test (barajar los de train).

FORECASTING CON REDES DENSAS TRADICIONALES

Utilizar una red neuronal tradicional para crear un modelo de forecasting:

- Creación de dataset por ventanas de tiempo
- Modelo de red neuronal artificial tradicional para realizar pronósticos a partir de regresión

GRACIAS

REFERENCIAS

- Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python, Jason Brownlee, 2019
- Machine Learning with PyTorch and Scikit-Learn, Sebastian Raschka, Yuxi Liu & Vahid Mirjalili, Packt, 2022
- Statistical and Machine Learning forecasting methods: Concerns and ways forward,
 Makridakis et al., 2018
- Deep Learning for Time-Series Analysis, John Cristian Borges Gamboa, 2017
- Dive into Deep Learning, Aston Zhang, Zachary C. Lipton, Mu Li & Alexander J. Smola, https://d2l.ai/, 2022

