Đề thi giữa kỳ MAT1042

A.

1. Cho hàm số $f(x,y) = (1 + xy^2)^{\frac{1}{xy + x^2}}$

1.1. Tìm và vẽ đồ thị của tập xác định D(f).

1.2. Tính $\lim_{(x,y)\to(0,3)} f(x,y)$.

2. Cho hàm số $f(x,y,z) = \ln(1+x^2+y^2+z^2)$. Tính $\frac{\partial f(x,y,z)}{\partial e}$ theo hướng của Gradf(x,y,z) tại điểm $M_0(\sqrt{2},\sqrt{2},\sqrt{2})$.

3. Chứng minh rằng, hàm số $u = f(x,y,z) = 1/\sqrt{x^2 + y^2 + z^2}$ là nghiệm của phương trình $\nabla u = 0$, trong đó $\nabla = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ là toán tử Laplace.

4. Xác định cực trị của hàm số $z = f(x, y) = x^4 + y^4 - 36xy$.

5. Cho D là hình viên phân $\begin{cases} x^2+y^2 \leq a^2 \\ x+y \geq a \end{cases} \ (a \geq 0). \ Xác định giá trị của a để <math display="block"> \iint\limits_{D} (x+y) dx dy = \frac{1}{3}.$

B.

1. Tính $f_{xy}^{"}(0,0)$ và $f_{yx}^{"}(0,0)$ nếu $f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{khi} \quad (x,y) \neq (0,0) \\ 0 & \text{khi} \quad (x,y) = (0,0) \end{cases}$ 2. Cho hàm số $f(x,y) = \frac{x^m \sin(2y)}{x^2 + 2y^2}$ với x > 0, m > 0. Tìm $\lim_{(x,y) \to (0^+,0)} f(x,y)$ khi $\begin{cases} m > 1 \\ m \le 1 \end{cases}$.

3. Tìm giá trị nhỏ nhất (GTNN) và giá trị lớn nhất (GTLN) của hàm số f(x,y) = xy + x + y trên miền đóng D là hình chữ nhật giới hạn bởi các đường thẳng x = 1, x = 2, y = 2 và y = 3.

4. Xác định cực trị của hàm số $f(x,y) = 6x^2y - 24xy - 6x^2 + 24x + 4y^3 - 15y^2 + 36y + 1$.

5. Tìm giá trị của tham số m $\neq 0$ sao cho $\int_0^1 dy \int_0^1 \sin(mx^2) dx = 0$.

C.

1. Cho hàm số $f(x,y) = \begin{cases} xy \sin \frac{1}{xy} & \text{khi } xy \neq 0 \\ q & \text{khi } xy = 0 \end{cases}$

1.1. Tìm tập xác định D(f) và xác định giá trị của tham số p để hàm số f(x,y) liên tục trên D(f).

1.2. Tính vi phân toàn phần cấp 1 của hàm số f(x,y) tại điểm (0,0) với giá trị của tham số q được xác định ở 1.1.

2. Cho hàm số $u = f(x,y,z) = x\sin(yz)$. Tính Gradf(x,y,z) và $\frac{\partial f(x,y,z)}{\partial z}$ tại điểm $M_0(1,3,0)$ với véc tơ

 $\stackrel{\rightarrow}{e}$ là véc tơ đơn vị của véc tơ $\stackrel{\rightarrow}{v}=\stackrel{\rightarrow}{i}+\stackrel{\rightarrow}{2}\stackrel{\rightarrow}{j}-\stackrel{\rightarrow}{k}$.

3. Tính $f_{xy}^{"}(x,y)$ nếu $f(u) = u^3 và u(x,y) = 2xy + e^{2x}$

4. Xác định cực trị của hàm số $f(x,y) = (x-y)e^{-2x-y^2}$.

5. Cho hình chóp có các đỉnh O(0,0,0), A(a,0,0), B(0,b,0), C(0,0,c) trong hệ tọa độ Descartes Oxyz với a, b, c là các số dương.

5.1. Lập phương trình đường thẳng đi qua các điểm A, B và phương trình mặt phẳng đi qua các điệm A, B, C.

5.2. Tính diện tích ΔABC và thể tích của hình chóp OABC bằng tích phân hai lớp.

D.

1. Cho hàm số $f(x, y) = (ax + by) \sin \frac{a}{x} \sin \frac{b}{y}$

1.1. Tìm và vẽ đồ thị của tập xác định D(f).

1.2. Tính $\lim_{(x,y)\to(0,0)} f(x,y)$.

2. Cho hàm số $f(x,y) = \frac{x^m}{\sqrt{x^2 + 2y^2}}$ với x > 0, m > 0. Tìm $\lim_{(x,y) \to (0^+,0)} f(x,y)$ khi $\begin{cases} m > 1 \\ m \le 1 \end{cases}$.

3. Cho hàm số $f(x,y)=y\sqrt{y/x}$, chứng minh rằng $x^2f_{x^2}(x,y)=y^2f_{y^2}(x,y)$.

4. Xác định cực trị của hàm số $f(x, y) = xy \ln(x + 2y)$ trên miền x > 0, y > 0.

5. Cho miền $D = \{(x, y) \in \mathbb{R}^2 | y^2 = x, y^2 = 2x, y = ax \}$ (a > 0). Xác định a nếu diện tích của D bằng $\frac{1}{2}$ đvdt.

E.

1. Cho hàm số $f(x,y) = \begin{cases} \frac{xy + y^3}{\ln(1 + x^2 + y^2)} & \text{khi} \quad (x,y) \neq (0,0) \\ 0 & \text{khi} \quad (x,y) = (0,0) \end{cases}$

Tính vi phân toàn phần cấp 1 của hàm số f(x,y) tại điểm (0,0).

2. Cho hàm số $f(x,y) = \frac{x^m y(x^2 + y^2)}{1 - \cos(x^2 + y^2)}$ với x > 0, m > 0. Tìm $\lim_{(x,y) \to (0^+,0)} f(x,y)$ khi $\begin{cases} m > 1 \\ m \le 1 \end{cases}$.

3. Cho hàm số $f(x,y) = \sqrt{x^2 + 2y^2}$. Chứng minh rằng, các hàm số $f_x(x,y), f_y(x,y)$ không liên tục tại điểm (0,0).

4. Xác định cực trị của hàm số $z = f(x, y) = xy + \frac{2}{x} + \frac{4}{y}$ trên miền x > 0, y > 0.

5. Đổi thứ tự tính tích phân để tính $I = \int_{0}^{1} dx \int_{1}^{2-x} cos \left(2y - \frac{y^{2}}{2}\right) dy$

F

1. Tính $f_{xy}^{"}(0,0)$ và $f_{yx}^{"}(0,0)$ nếu $f(x,y) = \begin{cases} \frac{xy^2}{x+y} & \text{khi} & x \neq -y \\ 0 & \text{khi} & x = -y \end{cases}$

2. Cho hàm số z(x,y) xác định từ phương trình $xe^y + 2yz + ze^x = 0$, tính các đạo hàm riêng $z_x'(x,y), z_y'(x,y)$.

3. Cho hàm số $u = f(x,y,z) = x^2y^2z^2$. Tính Gradf(x,y,z) và $\frac{\partial f(x,y,z)}{\partial e}$ tại điểm $M_0(1,-1,3)$ với véc tơ $\stackrel{\rightarrow}{e}$

là véc tơ đơn vị của véc tơ $\overrightarrow{M_0M}$, điểm M có tọa độ (0,1,1).

4. Xác định cực trị của hàm số z = f(x, y) = x + y với điều kiện $\frac{1}{x} + \frac{1}{y} = 1$.

5. Tính $I = \iint_{D} \frac{dxdy}{\sqrt{x^2 + y^2}} v \acute{o}i \ D = \{(x, y) \in R^2 \ | \ 2x \le x^2 + y^2 \le 6x, y \ge x \}$