Statistical Inference Course Project Part1

Yao Bin

June 12, 2015

Overview

- In this study, we investigate the exponential distribution in R and compared it with the Central Limit Theorem. The distribution of averages of 40 exponentials are investigated.
- Code chunks of the data analysis and plots are listed in appendix section in the end of this document.

Simulations

The exponential distribution can be simulated in R with rexp(n,lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also 1/lambda.

In this study, we set n=40 and lambda=0.2. Generate 1000 simulations of averages of 40 random exponentials: (see Chunk1)

Sample Mean versus Theoretical Mean

As mentioned above, the theoretical mean mean_t=1/lambda

- [1] "Theoretical mean mean t= 5"
- [1] "Sample mean mean s= 5.0096"

The sample mean **5.0096** is close to theoretical mean **5**.

Here, we draw a plot to show that the sample mean compared with the theoretical mean.

Histogram of Sample Mean versus Theoretical Mean

Sample Variance versus Theoretical Variance

The theoretical variance for the exponential distribution is sigma^2 = (1/lambda)^2/n. The sample variance is calculated by var() function in R.

- [1] "Theoretical variance var_t = 0.625"
- [1] "Sample variance var_s= 0.6589"

Also, the sample variance **0.6589** is close to theoretical variance **0.625**.

Distribution

Here, 2 methods were performed to assess if the sample means were roughly normally distributed.(see Chunk5)

1. Standard normal density curve

Draw a normal density curve over the distribution of the sample means, and compare it with the distribution density curve.

The normal density curve mostly matched the distribution density curve.

2. Q-Q plot

Quantile-quantile plot (Q-Q plot) is also a widely used method to check the normality of a distribution.

The Q-Q plot shows the points scatter along the line, which indicates that this distibution is close to normal distribution.

In conculsion, the distribution of the sample means were approximately a normal distribution.

Appendix: Code Chunks

Chunk1. Parameter setting and simulations

```
# set the parameters
n=40
simu=1000
lambda=0.2
# simulation
exp<-NULL
for(i in 1:simu) exp<-c(exp, mean(rexp(n=n, rate=lambda)))</pre>
```

Chunk2. Calculating theoretical mean and sample mean

```
# theoretical mean
mean_t<-1/lambda
# sample mean
mean_s<-mean(exp)
mean_t; mean_s</pre>
```

Chunk3. Plotting theoretical mean and sample mean

Chunk4. Calculating theoretical variance and sample variance

```
# theoretical variance
var_t<-(1/lambda)^2/n
# sample variance
var_s<-var(exp)
var_t;var_s</pre>
```

Chunk5. Distribution test

```
# plot histogram of the sample means
hist(exp, prob=T, col="lightgreen",xlab="Sample Mean", main="Histogram
of Sample Mean")
# plot sample distribution
lines(density(exp), lwd=2, col="darkgreen")
# plot normal distribution
curve(dnorm(x, mean=mean(exp), sd=sd(exp)), add=T, lwd=2, col="red")
legend("topright",c("Sample", "Normal"), col=c("darkgreen", "red"), lwd
```

```
# Q-Q plot
qqnorm(exp)
qqline(exp, col="red", lwd=2)
```