

## Programação com Arduino

Curso Superior de Tecnologia em Sistemas Embarcados

Professor: Fernando Silvano Gonçalves fernando.goncalves@ifsc.edu.br
Março de 2023

## Cronograma

| Encontro | Data    | Nº Aulas | Conteúdo                                                                                                                        |
|----------|---------|----------|---------------------------------------------------------------------------------------------------------------------------------|
| 1        | 29-fev. | 04       | Recepção e Apresentação do Unidade / Apresentação do Plano de Ensino / Avaliação Diagnóstica / Introdução a sistemas embarcados |
| 2        | 02-mar. | 04       | Conceitos e Características e Aplicações de Sistemas Embarcados / Histórico de Sistemas Embarcados / Práticas com Arduino       |
| 3        | 07-mar. | 04       | Microcontroladores, Microprocessadores / Periféricos / Introdução ao Arduino / Introdução ao C                                  |
| 4        | 14-mar. | 04       | Introdução à Linguagens de Programação / Comunicação Serial                                                                     |
| 5        | 21-mar. | 04       | Entrada de Dados via Serial                                                                                                     |
| 6        | 28-mar. | 04       | Estruturas de Decisão                                                                                                           |
| 7        | 04-abr. | 04       | Entradas Digital e Analógica / Conversor A/D / Estruturas de Repetição                                                          |
| 8        | 11-abr. | 04       | Estruturas Condicionais                                                                                                         |
| 9        | 18-abr. | 04       | Estruturas de Repetição                                                                                                         |
| 10       | 25-abr. | 04       | Avaliação 01                                                                                                                    |



## Cronograma

| Encontro | Data    | Nº Aulas | Conteúdo                                              |
|----------|---------|----------|-------------------------------------------------------|
| 11       | 02-mai. | 04       | Microcontroladores                                    |
| 12       | 09-mai. | 04       | Entradas e Saídas Digitais                            |
| 13       | 16-mai. | 04       | Conversor Analógico-Digital                           |
| 14       | 18-mai. | 04       | Sensores                                              |
| 15       | 23-mai. | 04       | Comunicação Serial                                    |
| 16       | 06-jun. | 04       | PWM                                                   |
| 17       | 13-jun. | 04       | Temporizadores                                        |
| 18       | 20-jun. | 04       | Interrupções                                          |
| 19       | 27-jun. | 04       | Avaliação 02                                          |
| 20       | 04-jul. | 04       | Conselho de Classe / Atividades de Encerramento da UC |
|          |         | 80       |                                                       |



#### **Pauta**

- Entradas digitais;
- Entradas Analógicas;
- Conversor A\D;
- Estruturas de Repetição;



## **Entradas**

## Entradas



#### **Entradas**

```
pinMode(A1, INPUT);
pinMode(9, INPUT);
```

- Entrada Analógica:
  - Valores entre 0 1023;
- Entrada Digital
  - Valor lógico 0 ou 1;



## **Entradas Digitais**

- 14 Portas Digitais;
- □ 0/5v
  - LOW e HIGH;





## **Configurando Uma Entrada Digital**





#### Acionando um Led Utilizando Botão

```
#define pb 3
#define led 9
int pbValue;
int ledState;
void setup() {
 Serial.begin(9600);
 pinMode(pb, INPUT);
 pinMode(led, OUTPUT);
 ledState = LOW;
```

```
void loop(){
 pbValue = digitalRead(pb);
 Serial.println(pbValue);
 if(pbValue == 1){
   if(ledState == HIGH){
     ledState = LOW;
   } else {
     ledState = HIGH;
   digitalWrite(led, ledState);
 delay(300);
```



#### Atividade Com Botão e Leds

- Crie uma aplicação que faça piscar os três leds em sequência, alternando a cada 1 segundo.
  - Adicione um Botão ao seu projeto que quando pressionado, inverte o sentido que os leds estão piscando.



## Portas Analógicas

- 6 Portas Analógicas
  - □ 0 ~ 5V.





## **Conversor Analógico-Digital**

# Conversor Analógico-Digital



## Conversor Analógico-Digital

- A eletrónica divide-se em dois tipos de sinais: digital e analógico.
- Infelizmente, nem tudo em nosso redor pode ser descrito de uma forma tão simples;
- Em alguns casos se faz necessário ler uma tensão numa faixa de 0 a 5V proporcionalmente.
- Esta é a abordagem analógica.
- □ ATENÇÃO: As entradas do Arduino só são compatíveis com tensões incluídas na seguinte faixa: 0-5V. Outras tensões poderão danificar a placa e até o computador ao qual ligar o circuito.



## Conversor Analógico-Digital

- Para o processamento de sinais analógicos, é utilizado o chamado ADC: conversor analógico-digital;
- Este é um dos periféricos mais populares encontrados em microcontroladores;
- O seu trabalho é converter uma tensão aplicada na entrada do sistema num formato digital.
- Cada conversor possui uma quantidade de bits 8, 12, 16...
- Conforme a quantidade de bits, maior a precisão do conversor.



## Exemplo de Uso Conversor Analógico-Digital





## Exemplo de Uso Conversor Analógico-Digital

```
#define pot A0
int potValue;
void setup() {
 Serial.begin(9600);
  pinMode(pot, INPUT);
```

```
void loop(){
 potValue = analogRead(pot);
 Serial.println(potValue);
 delay(1000);
```



#### Prática com Conversor A/D



- Ajuste o programa com display e leds para apresentar na tela do display a leitura do potenciômetro;
- Conforme a leitura do potenciômetro faça o acionamento led conforme descrito abaixo:

| Faixa de Valor | Leds Acionados   |
|----------------|------------------|
| 0 - 250        | LED 1            |
| 251 - 500      | LEDs 1 e 2       |
| 501 - 750      | LEDs 1, 2 e 3    |
| 751 - 1023     | LEDs 1, 2, 3 e 4 |



### Estruturas de Condicionais

# Estruturas de Repetição



## Estruturas de Repetição

- Laços for;
  - Laço de repetições até que a condição de saída especificada seja falsa;
- Instrução do while;
  - Executa instruções enquanto a condição de saída seja falsa;



### Instrução For

```
for([expressão inicial]; [condição]; [incremento]){
    sequência de comandos
}
```

- Expressão inicial: inicializa o laço de repetição;
- Condição: avaliada a cada laço, caso seja verdadeira o laço é executado, caso contrário a execução do laço termina;
- Incremento: atualiza a expressão e retorna para avaliação da condição;
- Sequência de comandos: executado a cada interação do laço de repetição;



## Instrução For

```
int soma (){
   int x, soma = 0;
   for(x = 0; x < 30; x++){
     soma += x;
   return soma;
```



### Instrução Do While

```
do{
    sequência de comandos
} while([condição])
```

- Sequência de comandos: instrução executada pelo menos uma vez antes da verificação da condição.
- □ Condição: avaliada ao final de cada execução, caso seja verdadeira as instruções são executadas novamente, caso contrário a execução termina;



## Instrução Do While

```
int main(){
   int x = 0, soma = 0;
   do{
     soma += x;
     X++;
   } while (x < 5)</pre>
   Serial.println(soma);
```



### Instrução While

```
while([condição]){
  sequência de comandos
}
```

- Sequência de comandos: instrução executada somente se a condição for satisfeita;
- ☐ Condição: avaliada no início de cada execução, caso seja verdadeira as instruções são executadas, caso contrário a execução termina;



## Instrução While

```
int main(){
   int x = 0, soma = 0;
   while (x < 5){
     soma += x;
     X++;
   Serial.println(soma);
```



#### **Break e Continue**

```
void buscaLetra(char c){
 char a[11] = "teste busca";
 for(int i = 0; i < strlen(a); i++){
   if(a[i] == c){
     Serial.println(i);
     break;
```

```
while(i < 5){
 j++;
 if(i == 3){
   continue;
 n +=1;
Serial.println("%d", n);
```

## Praticando com Estruturas de Repetição

Com base no conteúdo apresentado, crie as seguintes funções:

#### 1) Crie um programa onde você tenha um Array de números:

- i. Peça ao usuário que informe um número que ele deseja buscar;
- ii. Percorra esse Array buscando o número informado;
- iii. Caso número seja encontrado imprimir a posição no array;
- iv. Caso o número não seja encontrado imprimir a mensagem "número não encontrado".

#### 2) Crie um programa que receba um número:

- A cada interação decrementa 1 do valor recebido e imprimir o valor restante;
- ii. Você deve parar de subtrair quando o valor for menor que 0 (zero);





# Obrigado!

Fernando Silvano Gonçalves

fernando.goncalves@ifsc.edu.br

se.cst.tub@ifsc.edu.br