Examen final [Jueves 1 de Marzo de 2012]

La evaluación dura 3 (tres) horas. Cada ejercicio debe sumar algún puntaje. Entregar en hojas separadas por ejercicio, numeradas, cada una con apellido en el margen superior derecho. Entregar este enunciado. Respuestas incompletas reciben puntajes incompletos incluso cero si no justifica. No usar libros ni apuntes.

- 1) a) Determine si $q \wedge (\neg r \vee p)$ y $q \vee (r \wedge \neg p)$ son lógicamente equivalentes.
 - b) Escriba la negación de $\exists x \exists y \ ((x > 0 \land y > 0) \rightarrow (x + y = 0))$, con $x, y \in \mathbb{R}$, y determine el valor de verdad de ambas.
 - c) Demuestre por inducción que $2^{n+1} < 1 + (n+1)2^n$ para todo entero n > 0.
- 2) a) En cada caso justifique si es True o False: (i) $\{x\} \subseteq \{x\}$; (ii) $\{x\} \in \{x\}$.
 - b) Sea \boldsymbol{A} la matriz de una relación R de X a Y (relativa a algún orden) donde X,Y son conjuntos finitos. Indique que condiciones debe satisfacer \boldsymbol{A} para que R represente: (i) una función; (ii) una función inyectiva.
 - c) Sean R y S relaciones sobre un conjunto X, demuestre o dé un contrajemplo: si R y S son simétricas, entonces $R \cap S$ es simétrica.
- 3) a) Encuentre el número de soluciones enteras de $x_1+x_2+x_3+x_4=23$, con $x_1\geq 0, x_2\geq 1$, $x_3\geq 2$ y $x_4=4$.
 - b) ¿De cuántas maneras se pueden dividir 13 libros *idénticos* entre las estudiantes Alicia, Betina, Carla y Daniela?
 - c) (i) Demuestre que $C(n,k) \leq 2^n$, para todos los enteros positivos n,k tales que $1 \leq k \leq n$; (ii) Clasifique y resuelva la Relación de Recurrencia (RR) $a_n = -8a_{n-1} 16a_{n-2}$ para todo entero n > 0, con $a_0 = 2$ y $a_1 = -20$.
- 4) Nota: No es estrictamente necesario construir una tabla, en su lugar pueden dibujarse los grafos intermedios que resulten del uso de cada algoritmo.
 - a) En el grafo G_1 de la Fig. 1 (izq.): (i) Trace un ciclo de Euler y uno de Hamilton o justifique que no es posible; (ii) ¿Se cumple en G_1 el teorema que establece que en todo grafo existe un número par de vértices de grado impar? ¿Por qué?
 - b) En el grafo G_1 de la Fig. 1 (izq.): (i) Encuentre un árbol de expansión T_1 mediante búsqueda a lo ancho usando el orden alfabético; (ii) Dibujar T_1 como un árbol con raíz, indicar hojas, niveles y altura de T_1 , y recorrerlo en **posorden**.
 - c) En el grafo G_2 de la Fig. 1 (der.): (i) Utilice el algoritmo de Dijkstra para hallar una trayectoria de longitud mínima entre los vértices A e F, trácela e indique su longitud; (ii) Utilice el algoritmo de Kruskal, para hallar un árbol de expansión mínimo T_2 , mostrando los pasos intermedios e indicando el peso mínimo hallado. Dado que T_2 tiene 9 vértices ¿cuántas aristas debe tener? ¿por qué?

Figura 1: Grafo G_1 (izq.) y grafo ponderado G_2 (der.) para los incisos 4a-4c.