

SUSTAINABLE PACKAGING SOLUTION & WORKSHOP

DESIGN MONO-PE SUSTAINABLE POUCH FOR LIQUID DETERGENTS IN FLEXIBLE PACKAGING

GROUP 2

- DINH MANH TUAN HCMC University of Technology 4th year
- 2. LE THANH TAI HCMC University of Technology 4th year
- DANG THANH LIEM HCMC University of Technology and Education 3th year

Global Flexible Packaging Market

Market value, 2023

~4%

Compound annual Growth rate

Source: FMI report

Pouch Market outlook to 2033

Market value, end of 2022

~5,3%

Compound annual Growth rate

Sales of pouches in 2033

Source: FMI report

Vietnam Hand sanitizer market

Amounted Revenue, 2023

~9,21%

Compound annual Growth rate

~500%

Growth after the outbreak of **COVID-19 pandemic**

Source: Statista

Liquid detergent – Hand sanitizer

Emollients

Product

Manufacturer: Unilever

Vendor: Aeon

Specification:

- **Liquid detergent**
- **Bag form (spout pouch)**
- **Volume: 1 liter**

Commercial hand sanitizer liquid

Source: Aeon mall

Conventional package for liquid detergent

Technical Parameters				
Application	Packaging volume	500-2000gram		
	Packaging content	detergent		
	Pouches style	laundry detergent plastic bag		
Spout pouches material structure		PET/Nylon/LLDPE		
Spout pouch thickness		120-140micron		
Spout inner diameter(Φ)		9.6mm/10mm/15mm		
Spout step(gap)		Non-step/single		
Can it to be withstand	hot filling?	No		
	pasteurization?	No		
	retorting?	No		

PET/Nylon/LLDPE

Source: Zarcos America

Our proposal

Concern Properties

Tensile strength

LLDPE (40 – 50 μm): 8 – 12 Mpa

HDPE (50-60 μm): 8 – 35 Mpa

BOPE (25 μm): 84 – 181 MPa

Young Modulus

LLDPE $(40 - 50 \mu m)$: 0,011 - 0,413 GPa

HDPE (50-60 μm): 0,02 – 1,35 GPa

Concern Properties

Elongation at break

LLDPE $(40 - 50 \ \mu m)$: 0,8 - 1000%

HDPE (50-60 μm): 350 - 1700%

BOPE (25 μm): 58,4 - 231,7%

Oxygen Permeation value

EVOH (5 μm): 0,3 - 1,2 $\frac{cc.mm}{m^2.day.atm}$

Concern Properties

Vapor Transmission rate

LLDPE: 12 – 19 $\frac{g.mm}{m^2.day}$

HDPE: 1.5 – 12 $\frac{g.mm}{m^2.day}$

EVOH: 23 – 60 $\frac{g.mm}{m^2.day}$

RECYCLABILITY

Source: https://doi.org/10.1016/j.wasman.2021.01.015

RECYCLABILITY

CEFLEX Standard

PE content > 95%

High mechanical recyclable efficiency

Cost savings

Source: DOI: 10.1126/sciadv.aba759

Computational model

Permeability model

$$\frac{P}{x} = \frac{V_A}{(p_{in} - p_{out}).A_s.t}$$
 (1)

With: $\frac{P}{x}$ is the permeance for 1 layer $\left[\frac{cm^3}{m^2 day atm}\right]$

$$\left[\frac{P}{x}\right]_{total} = \frac{1}{\left(\frac{x_1}{P_1} + \frac{x_2}{P_2} + \dots + \frac{x_n}{P_n}\right)_{in}}$$
 (2)

With: $\left[\frac{P}{x}\right]_{total}$ is the permeance for multilayer

Diffusion model

$$\frac{\partial C}{\partial t} = \frac{D.\partial^2 C}{\partial x^2}$$
 (3)

With: C is the concentration of gas $\left[\frac{mol}{cm^3}\right]$; x is the thickness of layer [cm]

Computational model

Correction with Environment

Temperature:

$$P = P_o e^{-\frac{E}{R}(\frac{1}{T} - \frac{1}{T_o})}$$
 (4)

Relative Humidity:

$$RH_{j} = RH_{out} - \left[\frac{(\sum_{i=1}^{j-1} \frac{x_{i}}{P_{i}} + \frac{x_{j}}{2P_{j}})(RH_{out} - RH_{in})}{\sum_{i=1}^{x_{i}} P_{i}}\right]$$
(5)

Table 1: Input data

Material	Reference	Water vapor permeability coefficient ^{a,b}	O ₂ permeability coefficient ^{b,c}	CO ₂ permeability coefficient ^{b,c}		Cost [US\$/kg] ^b
ULDPE	Attane 4001, Dow Chemical	0.0209	46.8397	_d	0.905	2.75
PP	Marlex	0.0217	30.0728	_d	0.910	0.99
PET	Mylar, DuPont	0.0625	0.8205	2.3026	1.330	1.50
LLDPE	Sclair 11F9, DuPont Canada	0.0088	32.4815	200.0000	0.921	0.90
EVOH	Eval E, Eval Company	0.6100	0.0057 ^e	0.0633 ^e	1.140	5.83
PA AMORFO	Selar PA 3426, Dupont	0.5500	0.1704 ^e	_d	1.100	2.93
Tie	_d	_d	_d	1.00	_	

Oxygen permeance: high barrier films					
Structure	Measured permeance (mL (STP)/m ² day atm)	Calculated permeance (mL (STP)/m ² day atm)	Variation (%)		
PA (46 μm)/EVOH-F (8 μm)/PP (28 μm)/PE-m (25 μm)	0.84	0.81	3.83		
PP (18 μm)/EVOH F (4 μm)/PP (18 μm)	1.67	1.68	-0.93		
PE (21 μm)/EVOH L (4 μm)/PE (16 μm)	0.87	0.85	1.80		

Table 2: Oxygen permeance: comparison experiment and model calculated between data

Source: DOI: 10.1177/8756087913484920

Optimization algorithm

Machine learning Model

Maintain propertise

Reduce usage Material

Cost savings

2.00

Optimized

1.767

6.58

0.8983

Body packaging dimension

Design standard

FACE WIDTH by FINISHED BAG LENGTH ... TOP WIDTH, BOTTOM WIDTH, VALVE SIZE

A) Most of the time, top and bottom valve widths are the same. This is expressed-

Example: 18 1/2 x 22 - 3 3/4 TBV

Stone Container Corp. of Chicago Standard

 $V_{m_{est}} \sim 1.12 L$

Caps dimension

3D Design

Drawing

Fabrication process diagram

Packaging Paste ability

Typical melting points of different grades of PE			
LDPE	105 - 115°C		
LLDPE	110 - 120°C		
HDPE	125 - 135°C		
EVA	90 - 100°C		
mPE	90 - 100°C		
Typical SIT of different types of PE			
LDPE	85 - 95°C		
LLDPE	80 - 90°C		
HDPE	100 - 110°C		
EVA	75- 85°C		
mPE	75 - 85°C		

Regarding stucture

Regarding cost

New spout design

SUMMARY

Achieve sustainable trends

Can achieve compatible performance

Ability to reuse the product

Ensure the recycling process

THANK YOU FOR ATTENTION!