

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)	
Cancún, Qroo. 14 de Julio de 2011	MC Juan Felipe Pérez Vázquez MC Mijail Armenta Aranceta Dra. Diana Cobos	Se modificó el temario debido a la actualización del programa educativo 2011 de Ingeniería Industrial	

Relación con otras asignaturas

b) Distribuciones de probabilidad

Anteriores	Posteriores
Asignatura(s) a) Investigación de operaciones b) Estadistica inferencial	
	No aplica
Tema(s) a) Programación lineal	

Nombre de la asignatura Departamento o Licenciatura

Investigación de operaciones estocásticas Ingeniería Industrial

Ciclo	Clave	Créditos	Área de formación curricular
3 - 4	IL0311	8	Licenciatura Preespecialidad

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Seminario	48	16	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Representar con Modelos Matemáticos el comportamiento del proceso de logística y análisis de la cadena de suministro, para la simulación de las diferentes alternativas que permitan hacer más eficiente el proceso.

Objetivo procedimental

Aplicar diferentes metodologías para la toma de decisiones en la dirección del proceso logístico y cadena de suministro coordinando la solución de problemas que se presentan en este proceso.

Objetivo actitudinal

Promover el espíritu emprendedor en actividades multidisciplinarias para su aplicación en la solución de problemas.

Unidades y temas

Unidad I. PROGRAMACION LINEAL

Clasificar los diferentes modelos de programación lineal entera para la toma de decisiones en el proceso de administrar la logística y cadena de suministro, como parte integral entre investigación de operaciones.

- 1) Aplicaciones de la programación lineal entera
- 2) Métodos de solución de programación entera.
- 3) Algoritmos de programación entera.

Unidad II. PROGRAMACIÓN DINÁMICA.

Emplear procedimientos matemáticos para la mejora de la eficiencia en el cálculo en problemas de programación dinámica.

- 1) Elementos del modelo de programación dinámica.
- 2) Ejemplos de modelos de programación dinámica.
- 3) Problemas de dimensionalidad en programación dinámica.
- 4) Solución de problemas de programación dinámica.

Unidad III. PROGRAMACIÓN NO LINEAL.

Aplicar los diferentes modelos de programación no lineal para la toma de decisiones en el proceso de administrar la logística y cadena de suministro.

- 1) Algoritmos no lineales irrestrictos.
- 2) Algoritmos no lineales restringidos.
 - a) Programación separable
 - b) Programación cuadrática
 - c) Programación geométrica
 - d) Progrmación estocástica
 - e) Método de combinaciones lineales

Actividades que promueven el aprendizaje

Docente

Exposición dirigida de estudios de caso Ejercicios aplicados Resolución de ejercicios prácticos en equipos Elaboración de gráficos

Estudiante

Investigación bibliográfica Estudio de casos: Modelos de programación lineal. Resolución de ejercicios en equipos Preparación de exposiciones Uso de la computadora

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Exámenes	25
Exposición de ejercicios	25
Diseño de modelos	25
Evaluación de modelos	25
Total	100

Fuentes de referencia básica

Bibliográficas

Bonini, Charles, Hausman, Warren y Bierman, Harold. (2000). Análisis cuantitativo para los negocios. Editorial McGraw-Hill. México.

Gould, Eppen, Schmidt. (1992). Investigación de Operaciones en la Ciencia Administrativa (3a. Edición). Prentice Hall. Harvey M. Wagner. Principles of Operations Research with applications to managerial decision. Prentice-Hall, Inc. ISBN 0137095929.

Hillier, Frederick y Lieberman, Gerald. (1991). Investigación de Operaciones. Editorial McGraw-Hill.

Mathur, Kamlesh y Solow, Daniel. (1996). Investigación de Operaciones. Editorial Prentice-Hall.

Taha, Hamdy. (2004). Investigación de Operaciones. Addison-Wesley Editorial Iberoamericana España. ISBN 9702604982.

Web gráficas

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.7812

Fuentes de referencia complementaria

Bibliográficas

Anderson, Sweeney, Williams. Introducción a los modelos cuantitativos para la administración (1a. Edición). Grupo Editorial Iberoamérica. México.

Davis y Mckewon. (1999). Modelos Cuantitativos para la Administración (1ª Edición). Grupo Editorial Iberoameríca. México. Hillier-Lieberman. (1997). Introducción a la Investigación de Operaciones (6a. Edición). Mc Graw Hill. México.

Mathur Kamlesh, Solow Daniel. Investigación de Operaciones. El arte de la toma de decisiones (1a. Edición). Prentice Hall. Winston, Wayne. (1994). Investigación de Operaciones. Grupo editorial iberoamérica.

Web gráficas

No aplica

Perfil profesiográfico del docente

Académicos

Contar con licenciatura o maestría en ingeniería industrial o mecánica, en matemáticas o afines.

Docentes

Tener experiencia docente mínimo de tres años a nivel superior en asignaturas relacionadas

Profesionales

Tener experiencia en trabajos de aplicación de la investigación de operaciones.