

TRIGONOMETRY

ARC LENGTH AND SECTOR AREA (VI)

Contents include:

- Arc Length
- Sector Area
- Area of a Segment

www.mathifyhsc.com.au

• Arc Length

The length of an arc, l, is shown in the diagram below:

To calculate the arc length l, we use the following formula:

$$l = r\theta$$

Where θ is the angle in **radians**

Note that l here is the **minor arc** since $0 < \theta < \pi$. To find the length of the major arc AB, we would do:

 $major\ arc\ AB = circumference - minor\ arc\ AB$

Example 1: Find the length of the minor arc AB in the following diagram:

Solution:

Using the arc length formula:

$$\therefore minor \ length \ AB = r\theta$$
$$= 11 \times \frac{\pi}{3}$$

$$=\frac{11\pi}{3}$$
 units

• Sector Area

The area of the sector AOB is shown in the diagram below:

To calculate the area of the sector AOB, we use the following formula:

$$Area = \frac{1}{2}r^2\theta$$

Where θ is the angle of the sector in **radians**

Note that sector AOB here is the **minor sector** since $0 < \theta < \pi$. To find the area of the major sector AOB, we would do:

 $major\ sector\ AOB = whole\ circle\ area - minor\ sector\ AOB$

Example 2: Find the area of the sector AOB in the following diagram:

Solution:

Following the formula of a sector:

Area of sector AOB =
$$\frac{1}{2}r^2\theta$$

= $\frac{1}{2}(12)^2 \times \frac{7\pi}{12}$
= $\frac{144}{2} \times \frac{7\pi}{12}$
= $72 \times \frac{7\pi}{12}$
= $6 \times 7\pi$
= $42\pi \ units^2$

• Area of a Segment

The area of a minor segment is shown in the diagram below:

The rest of the circle, excluding the minor segment, is called the major segment.

To calculate the area of the minor segment AOB, we use the following formula:

$$Area = \frac{1}{2}r^{2}\theta - \frac{1}{2}r^{2}\sin\theta$$

$$Area of$$

$$sector AOB$$

$$Area of$$

$$\Delta AOB$$

Where θ is the angle in **radians**

Note that to find the area of the major segment, we would do:

$major\ segment = whole\ circle\ area-minor\ segment$

Example 3: Calculate the area of the minor segment in the following diagram:

Solution: