Листок 11

Семинарские задачи

Задача 11.1. Найдите предел последовательности точек $\{x_n\}$ в \mathbb{R}^k с евклидовой метрикой, или докажите, что его не существует:

$$x_n = \left(\frac{n+1}{n}, \left(\frac{n-3}{n}\right)^{2n}, n^2(\cos(1/n) - 1), \log_n(n+5)\right) \in \mathbb{R}^4.$$

Определение предела функции по множеству.

(Определение по Гейне) Число A называют пределом функции f(x) по множеству X в точке x_0 (x_0 — предельная точка множества X), если для любой последовательности точек $x^{(m)} \in$ $X, x^{(m)} \neq x_0$, сходящейся к x_0 , числовая последовательность $f(x^{(m)})$ сходится к A.

(Определение по Коши) Число A называют пределом функции f(x) в точке x_0 , если

$$\forall \varepsilon > 0 \ \exists \delta \in (0, \delta_0] : \forall x \in \overset{\circ}{U_{\delta}}(x_0) \cap X \quad f(x) \in U_{\varepsilon}(A).$$

Обозначение $\lim_{\substack{x \to x_0 \\ y}} f(x) = A$.

Определение предела функции по направлению. Предел по направлению \bar{l} в точке x_0 предел по прямой $X_l = \{x_0 + l \cdot t \mid t \in \mathbb{R}\}.$

Задача 11.2. Найдите пределы функции $\frac{x^2y}{y^2+x^4}$ по всем направлениям в точке (0,0). Существует ли обычный предел этой функции в точке (0,0)?

Определение. Повторным пределом функции f(x,y) называется последовательное вычисление пределов по каждой переменной $\lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$.

Задача 11.3. Не всегда последовательное вычисление предела дает одинаковый результат: докажите, что $\lim_{x\to 0} \left(\lim_{y\to 0} \frac{x-y}{x+y}\right) = 1$ и $\lim_{y\to 0} \left(\lim_{x\to 0} \frac{x-y}{x+y}\right) = -1$.

Задача 11.4. Из существования повторного предела не следует существование «обычного» предела: найдите их у функции $f(x,y) = \frac{xy^2}{x^2+y^4}$ в точке (0,0).

Задача 11.5. Из существования «обычного» предела не следует существование повторного предела: найдите их у функции $f(u,v) = \left\{ \begin{array}{ll} (u+v)\sin\frac{1}{u}\sin\frac{1}{v}, & uv \neq 0 \\ 0, & uv = 0 \end{array} \right.$

Задача 11.6. Найдите пределы, используя полярную систему координат:

a)
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sinh(xy)}{x^2 + y^2}$$
 6) $\lim_{\substack{x \to 0 \\ y \to 0}} \frac{\sinh(x^2y)}{x^2 + y^2}$

Определение. Функция $f(x) = f(x_1, x_2, \dots, x_n)$ непрерывна по переменной x_i в точке $v_0 =$ (v_1,v_2,\ldots,v_n) , если функция $g(x_i)=f(v_1,v_2,\ldots,x_i,\ldots,v_n)$ непрерывна в точке v_i .

Задача 11.7. Докажите, что функция непрерывна по каждой переменной в точке (0,0), но не является непрерывной в этой точке $f(u,v) = \begin{cases} \frac{uv^2}{u^2+v^4}, & u^2+v^2 \neq 0\\ 0, & u^2+v^2=0 \end{cases}$

Домашние задачи

а)
$$u = \frac{x^3 - y}{x^3 + y}$$
; б) $u = \frac{xy}{x^2 + y^2}$; в) $u = \frac{y^2 - x^2}{y^2 + x^2}$; г) $u = \frac{x^2y^2}{x^2y^2 + (x - y)^2}$; д) $u = x + y \sin \frac{1}{x}$.

Задача 11.8. Найдите $\lim_{x\to 0}\lim_{y\to 0}u$, $\lim_{y\to 0}\lim_{x\to 0}u$ и $\lim_{x\to 0}u$ если: а) $u=\frac{x^3-y}{x^3+y};$ б) $u=\frac{xy}{x^2+y^2};$ в) $u=\frac{y^2-x^2}{y^2+x^2};$ г) $u=\frac{x^2y^2}{x^2y^2+(x-y)^2};$ д) $u=x+y\sin\frac{1}{x}.$ Задача 11.9. Найдите предел функции $f(x,y)=\frac{y-2x^2}{y-x^2}$ в точке (0;0) по прямой $x=\alpha t,y=\beta t,\alpha^2+\beta^2\neq 0;$ докажите, что $\lim_{x\to 0}f(x,y)$ не существует.

Задача 11.10. Выяснить, является ли в точке (0;0) функт

$$u = \begin{cases} xy/(x^2 + y^2), & \text{если} \quad x^2 + y^2 \neq 0, \\ 0, & \text{если} \quad x^2 + y^2 = 0, \end{cases}$$

 $\mathbf{6}$) непрерывной по y; \mathbf{a}) непрерывной по x;

Дополнительные задачи

Задача 11.11. Найдите предел последовательности точек $\{x_n\}$ в \mathbb{R}^k с евклидовой метрикой, или докажите, что его не существует: $(x_{n+1},y_{n+1})=\left(\frac{x_n}{y_n},1+\frac{1}{y_n}\right)$ $(x_1,y_1)=(1,1)$