# Discussões Projeto 4

# 1 Tarefa a

Utilizando as equações (5), (4) e (3) foi elaborado 6 gráficos utilizando  $\epsilon = \{0.01, 0.001, 0.0001\} s$  com  $V_o = \{0, 10\} ms^{-1}$ , dispostos abaixo:



Figura 1: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ e=0.01\,s;$ 



Figura 2: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ e=0.01\,s;$ 



Figura 3: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ e=0.001\,s;$ 



Figura 4: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ e=0.001\,s;$ 



Figura 5: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ e=0.0001\,s;$ 



Figura 6: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o = 10 \, ms^{-1}$ ;  $y_0 = 100 \, m$ ;  $a = -10 \, ms^{-2}$ ;  $e = 0.0001 \, s$ ;

De acordo com os gráficos acima é possível perceber que o y(t) e v(t) estão de acordo com a previsão teórica do seu movimento. Ademais, é notório que com a redução do valor  $\epsilon$  utilizado, a precisão da descrição do movimento é aumentada. Logo, para fins de melhor resolução, será adotado para as outras tarefas desse projeto o valor  $\epsilon = 0.0001$ .

#### 2 Tarefa b

Repetindo o problema anterior, porém considerando a resistência do ar, com os valores de  $\gamma = \{0.1, 0.01\}s^{-1}$  obtêm os seguintes gráficos:



Figura 7: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ \gamma=0.1\,s^{-1}\ e=0.0001\,s;$ 



Figura 8: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};~y_0=100\,m;~a=-10\,ms^{-2};~\gamma=0.1\,s^{-1}~e=0.0001\,s;$ 



Figura 9: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ \gamma=0.01\,s^{-1}\ e=0.0001\,s;$ 



Figura 10: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};\ y_0=100\,m;\ a=-10\,ms^{-2};\ \gamma=0.01\,s^{-1}\ e=0.0001\,s;$ 

A partir da equação:

$$v_t = \lim_{t \to \infty} \frac{v_o - gt}{\gamma t + 1}$$

Calcula-se a previsão teórica da velocidade terminal, que, respectivamente para cada  $\gamma$ , é  $v_t = \{100, 1000\} \, ms^{-1}$ . Com isso, é percebido, a partir da análise dos gráficos, que em todos os casos a velocidade terminal não é atingida, desse modo, para fins de validar o modelo computacional proposto é realizado novamente os cálculos com  $y_o = 1000 \, m$ , embora seja perceptível que a velocidade da partícula não é mais uma constante nas figuras 7 e 8:



Figura 11: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=1000\,m;\ a=-10\,ms^{-2};\ \gamma=0.1\,s^{-1}\ e=0.0001\,s;$ 



Figura 12: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};\ y_0=1000\,m;\ a=-10\,ms^{-2};\ \gamma=0.1\,s^{-1}\ e=0.0001\,s;$ 



Figura 13: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=0\,ms^{-1};\ y_0=1000\,m;\ a=-10\,ms^{-2};\ \gamma=0.01\,s^{-1}\ e=0.0001\,s;$ 



Figura 14: Resultado do calculo iterativo do método computacional proposto utilizando  $v_o=10\,ms^{-1};\ y_0=1000\,m;\ a=-10\,ms^{-2};\ \gamma=0.01\,s^{-1}\ e=0.0001\,s;$ 

Sendo assim, pode-se perceber que somente quando o  $\gamma=0.1\,s^{-1}$ , figuras 11 e 12, a velocidade terminal é atingida, pois com o  $\gamma=0.01\,s^{-1}$  seria necessário uma altura maior, para que seja adquirido uma maior velocidade de queda, a fim de atingir a velocidade terminal.

#### 3 Tarefa c

Aplicando a mesma abordagem da tarefa a, e adaptando-a para que descreva o lançamento de um projétil, com os parâmetros  $y_o = 100 \, m; \ x_o = 0 \, m; \ v_o = 10 \, ms^{-1}; \ a_y = -10 \, ms^{-2};$  e os ângulos de lançamento  $\alpha = \{-\pi/4, 0, \pi/4\}$ , foi elaborado os gráficos a seguir:



Figura 15: Distribuição da quantidade de bêbados por sua posição



Figura 16: Distribuição da quantidade de bêbados por sua posição



Figura 17: Distribuição da quantidade de bêbados por sua posição

## 4 Tarefa d

Aplicando a mesma abordagem da tarefa c, e adaptando-a com a proposta da tarefa b, e utilizando os parâmetros  $y_o=100\,m;\;x_o=0\,m;\;v_o=10\,ms^{-1};\;a_{o_y}=-10-\gamma v_{o_y}\,ms^{-2};\;a_{o_y}=-\gamma v_{o_x}\,ms^{-2};\;\gamma=0.1\,s^{-1};$  e os ângulos de lançamento  $\alpha=\{-\pi/4,0,\pi/4\},$  foi elaborado os gráficos a seguir:



Figura 18: Distribuição da quantidade de bêbados por sua posição



Figura 19: Distribuição da quantidade de bêbados por sua posição



Figura 20: Distribuição da quantidade de bêbados por sua posição

Com isso, percebe-se que os resultados estão condizentes com a previsão teórica, sendo a principal diferença da tarefa c que a velocidade horizontal não é mais constante.

#### 5 Tarefa e

Aplicando a mesma abordagem da tarefa c, e adaptando-a para que quando o projétil se choque contra o solo, ele perca uma fração  $d_x=d_y=0.3$  das componentes  $v_x$  e  $v_y$ , e utilizando os parâmetros  $y_o=100\,m;\ x_o=0\,m;\ v_o=\{0,10\}\,ms^{-1};\ a_{o_y}=-10\,ms^{-2};\ a_{o_x}=0\,ms^{-2};$  e os ângulos de lançamento  $\alpha=\{-\pi/4,0,\pi/4\}$ , foi elaborado os gráficos a seguir:



Figura 21: Resultado do calculo iterativo do método computacional proposto



Figura 22: Resultado do calculo iterativo do método computacional proposto



Figura 23: Resultado do calculo iterativo do método computacional proposto



Figura 24: Resultado do calculo iterativo do método computacional proposto



Figura 25: Resultado do calculo iterativo do método computacional proposto



Figura 26: Resultado do calculo iterativo do método computacional proposto;

## 6 Tarefa f

Aplicando a mesma abordagem da tarefa e, entretanto, agora considerando a resistência do ar com um fator  $\gamma=0.1s^{-1}$  e utilizando os parâmetros  $d_x=d_y=0.3;\ y_o=100\,m;\ x_o=0\,m;\ v_o=\{0,10\}\,ms^{-1};\ a_{o_y}=-10-\gamma v_{o_y}\,ms^{-2};\ a_{o_y}=-\gamma v_{o_x}\,ms^{-2};\ \gamma=0.1\,s^{-1};$  e os ângulos de lançamento  $\alpha=\{-\pi/4,0,\pi/4\}$ , foi elaborado os gráficos a seguir:



Figura 27: Resultado do calculo iterativo do método computacional proposto



Figura 28: Resultado do calculo iterativo do método computacional proposto



Figura 29: Resultado do calculo iterativo do método computacional proposto



Figura 30: Resultado do calculo iterativo do método computacional proposto



Figura 31: Resultado do calculo iterativo do método computacional proposto



Figura 32: Resultado do calculo iterativo do método computacional proposto;