Laboratorio di Calcolo, Canale Pet-Z Prova valutata 09/01/2025

Nome:	_Cognome:
Matricola:	_ 🗆 Ritirata/o

Lo scopo della prova è scrivere un programma per calcolare l'area sottostante una funzione con il metodo $hit\ \mathcal{E}\ miss$.

- 1. Il tempo a disposizione è di 3 ore. Sono ammessi libri di testo, prontuari, appunti. Non si può parlare con nessuno, utilizzare cellulari/tablet/laptop, pena l'annullamento del compito.
- 2. Il programma va scritto e salvato esclusivamente sul computer del laboratorio, a cui si deve accedere utilizzando come username **studente** e come password **informatica**
- 3. Tutti i file vanno salvati in una cartella chiamata LCSR11_NOME_COGNOME nella home directory, dove NOME e COGNOMEindicano rispettivamente il tuo nome e cognome. Ad esempio lo studente *Nicolò De Rossi* deve creare una cartella chiamata LCSR11_NICOLO_DEROSSI contenente tutti i file specificati nel testo. Tutto ciò che non si trova all'interno della cartella suddetta non verrà valutato.
- 4. Consegnare il presente testo indicando nome, cognome e numero di matricola (vedi sopra), barrando la casella "Ritirata/o" se ci si vuole ritirare.
- ▶ Esercizio in C: Si vuole scrivere un programma hitmiss.c che utilizzi il metodo *hit & miss* per calcolare l'area sottostante la funzione

$$f(x) = \sin(3x)\cos(3x)\tanh(x) + 0.5$$
 (1)

nell'intervallo [-1,1]. Siano y_{\min} e y_{\max} rispettivamente i valori minimo e massimo che tale funzione assume nell'intervallo considerato. Si scriva un programma per calcolare, l'area A della superficie compresa tra la funzione f(x) e la retta $y=y_{\min}$ nell'intervallo [-1,1].

Per calcolare l'area A, bisogna generare casualmente in modo uniforme N_p punti nel rettangolo individuato dai punti $(-1, y_{\min})$, $(-1, y_{\max})$, $(1, y_{\max})$ e $(1, y_{\min})$ e contare il numero di volte N_h che tali punti si trovano nell'area grigia mostrata in figura. Una stima dell'area A sarà fornita dalla seguente formula:

$$A = 2(y_{\text{max}} - y_{\text{min}})N_h/N_p \tag{2}$$

Suggerimento: in C la funzione per calcolare tanh(x) è tanh(), definita in math.h. Il programma dovrà:

- 1. Definire tramite una direttiva del precompilatore il numero di punti $N_f = 10000$ per i quali calcolare la funzione f(x) e il numero $N_p = 100000$ (10⁵) di punti da generare.
- 2. Identificare numericamente il valore massimo e minimo della funzione nell'intervallo nel modo seguente:
 - Calcolare il valore della funzione f(x) in N_f punti nell'intervallo [-1,1] e memorizzare questi valori in array bidimensionale chiamato valori e costituito da N_f righe e 2 colonne, dove nella prima colonna verrano memorizzati gli N_f valori di x generati e nella seconda colonna i corrispondenti valori della funzione f(x).
 - Utilizzando i dati contenuti nell'array valori, stimare il valore minimo y_{\min} e massimo y_{\max} assunto dalla funzione f(x) nell'intervallo [-1,1].
- 3. Calcolare l'area A con il metodo $hit \, \mathcal{E} \, miss$, ovvero:
 - Generare a caso N_p di punti all'interno del rettangolo suddetto.
 - Contare il numero di volte N_h in cui tali punti cadono all'interno dell'area grigia mostrata in figura.
 - Calcolare l'area A tramite l'eq. (2).
- 4. Stampare su schermo il valore dell'area A così ottenuto con 5 cifre dopo la virgola, per $N_p = 10^5$. Nello scrivere il programma si richiede che vengano implementate le seguenti funzioni:
 - func(...) che restituisce il valore della funzione f(x) calcolata per il valore passato come argomento
 - riempi(...), che richiede come argomento l'array valori e memorizza in tale array N_f valori della funzione f(x) nell'intervallo [-1,1] come spiegato in precedenza.
 - maxMin(...) che richiede come argomento l'array valori e determina il valore massimo e minimo della funzione f(x) utilizzando tale array. La funzione deve utilizzare due puntatori passati come argomenti per restituire i valori del massimo e del minimo.
 - integrale(...), che calcola l'area A con il metodo $hit \ \mathcal{E}miss$ illustrato in precedenza. Tale funzione prende come argomenti i valori y_{\min} e y_{\max} calcolati in precedenza con la funzione maxMin().

Una volta verificato il corretto funzionamento del programma, modificarlo come segue: invece di fissare il valore di Np tramite il pre-compilatore, definire una variabile in modo che il programma calcoli l'integrale per valori Np pari a 2^{10} , 2^{11} , ... 2^{20} , e scriva in un file di nome integrale.dat il numero di punti generati e il corrispondente valore dell'area A ottenuto. Quest'ultimo va scritto con quattro cifre dopo la virgola. Ci devono quindi essere due valori per ciascuna riga del file.

▶ Esercizio in Python: Creare uno script python chiamato area.py per leggere i dati dal file integrale.dat, e riporti su un grafico l'andamento dell'area A in funzione del numero di punti. Il grafico dovrà riportare una legenda ed opportuni label per gli assi e deve essere salvato con il nome di area.png