Τελεστές από Θεωρία Συνόλων

Ένωση (Union)	U
Τομή (Intersection)	Λ
Διαφορά (Difference)	_
Καρτεσιανό Γινόμενο (Cartesian Product)	×

Σχεσιακοί Τελεστές

Προβολή (Projection)	π
Επιλογή (Selection)	σ
Σύζευξη (Join)	M
Διαίρεση (Division)	•

• Ορισμός: Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n , B_1 , ..., B_m και B_1 , ..., B_m αντίστοιχα. Το αποτέλεσμα της διαίρεσης $R \div S$ είναι μια σχέση T με σχήμα A_1 , ..., A_n , με πλειάδες t τέτοιες ώστε, για κάθε πλειάδα t της t πλειάδα t της t πλειάδα t τον t και t ανήκει στη σχέση t

• Παράδειγμα:

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_1	c_2
a_1	b_2	c_3
a_1	b_2	<i>C</i> ₄
a_1	b_1	c_5

S

 $R \div S$

 c_1

Α	В
a_1	b_1
a_2	b_1
a_1	b_2

• Ορισμός: Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n , B_1 , ..., B_m και B_1 , ..., B_m αντίστοιχα. Το αποτέλεσμα της διαίρεσης $R \div S$ είναι μια σχέση T με σχήμα A_1 , ..., A_n , με πλειάδες t τέτοιες ώστε, για κάθε πλειάδα t της t πλειάδα t της t πλειάδα t τον t και t ανήκει στη σχέση t

• Παράδειγμα:

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_1	c_2
a_1	b_2	c_3
a_1	b_2	c_4
a_1	b_1	<i>c</i> ₅

S

 $R \div S$

 $egin{array}{c} oldsymbol{c} & & & & \\ \hline & c_1 & & & \\ \hline & c_2 & & & \\ \hline \end{array}$

Α	В
a_1	b_2
a_2	b_1

• Ορισμός: Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n , B_1 , ..., B_m και B_1 , ..., B_m αντίστοιχα. Το αποτέλεσμα της διαίρεσης $R \div S$ είναι μια σχέση T με σχήμα A_1 , ..., A_n , με πλειάδες t τέτοιες ώστε, για κάθε πλειάδα t της t πλειάδα t της t πλειάδα t τον t και t ανήκει στη σχέση t

• Παράδειγμα:

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_1	c_2
a_1	b_2	c_3
a_1	b_2	c_4
a_1	b_1	<i>c</i> ₅

S

 $R \div S$

Α	В
a_1	b_2

• Παράδειγμα:

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_1	c_2
a_1	b_2	c_3
a_1	b_2	c_4
a_1	b_1	c_5

S

 $R \div S$

В	C
b_1	c_1

A a_1 a_2

• Ορισμός: Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n , B_1 , ..., B_m και B_1 , ..., B_m αντίστοιχα. Το αποτέλεσμα της διαίρεσης $R \div S$ είναι μια σχέση T με σχήμα A_1 , ..., A_n , με πλειάδες t τέτοιες ώστε, για κάθε πλειάδα t της t0, t1, t2, t3, t4, t5, t6, t7, t8, t8, t9, t

• Παράδειγμα:

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_1	c_2
a_1	b_2	c_3
a_1	b_2	c_4
a_1	b_1	<i>c</i> ₅

S

 $R \div S$

В	С
b_1	c_1
b_2	c_1

 $\frac{\mathbf{A}}{a_1}$

- Η διαίρεση μπορεί να θεωρηθεί ως το αντίστροφο του καρτεσιανού γινομένου
 - Αν $T = R \div S$, τότε η πράξη $T \times S$ δίνει μια σχέση με σχήμα συμβατό με αυτό της R και μπορεί να ισχύει ότι $T \times S = R$.
 - Γενικά, αν $T = R \div S$, τότε η T είναι το μέγιστο δυνατό σύνολο πλειάδων, τέτοιο ώστε $T \times S \subseteq R$.
- Θεώρημα 1: Έστω T και S σχέσεις με σχήματα $A_1, ..., A_n$ και $B_1, ..., B_m$ αντίστοιχα. Αν $R = T \times S$, τότε $T = R \div S$.
- Απόδειξη: Head(R) = {A₁, ..., A_n, B₁, ..., B_m}. Αρκεί να δείξω ότι $T \subseteq R \div S$ και $R \div S \subseteq T$.

- 1. $T \subseteq R \div S$ $W \coloneqq R \div S \text{ και Head}(W) = \{A_1, ..., A_n\} = \text{Head}(T). \text{ Έστω t}$ οποιαδήποτε πλειάδα της T. Τότε, για κάθε πλειάδα \mathbf{s} στην S, η $\mathbf{t} \parallel \mathbf{s}$ ανήκει στην $R = T \times S$. Συνεπώς, η \mathbf{t} ανήκει στην $R \div S$ (από τον ορισμό της διαίρεσης). Άρα η \mathbf{t} ανήκει στην \mathbf{W} και $\mathbf{T} \subseteq \mathbf{W}$.
- 2. $R \div S \subseteq T$ $W \coloneqq R \div S$. Έστω w οποιαδήποτε πλειάδα της W. Τότε, για κάθε πλειάδα s στην S, η w||s ανήκει στην R. Από την υπόθεση, $R = T \times S$, δηλαδή κάθε πλειάδα της R προκύπτει από συνένωση μιας πλειάδας της T και μιας της S. Αφού Head(W) = Head(T) τότε πρέπει να υπάρχει πλειάδα t στην T τέτοια ώστε t=w. Άρα η w ανήκει στην T και $W \subseteq T$.

Παραδείγματα Διαίρεσης

• Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών και παραγγελιών:

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

- 1. Βρείτε τους πελάτες που έχουν κάνει παραγγελία για <u>όλα</u> τα προϊόντα που παραγγέλνει ο πελάτης c006.
 - Βρίσκουμε πρώτα τα pid των προϊόντων που έχει παραγγείλει ο c006:

$$PC6 \coloneqq \pi_{pid}(\sigma_{cid='c006'}(ORDERS))$$

Μετά βρίσκουμε τους πελάτες που έχουν κάνει παραγγελία για όλα τα προϊόντα στη σχέση PC6:

$$T \coloneqq \pi_{cid,pid}(ORDERS) \div PC6$$

Προσοχή: η απάντηση $\pi_{cid,pid}(ORDERS \div PC6)$ θα απαιτούσε όλες οι παραγγελίες των προϊόντων PC6 να έχουν όλα τα attributes ίδια (ordno, month, aid, qty, dollars)

Παραδείγματα Διαίρεσης

• Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών και παραγγελιών:

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

- 2. Βρείτε τα ονόματα των πελατών που παραγγέλνουν <u>όλα</u> τα προϊόντα.
 - Βρίσκουμε πρώτα τα pid όλων των προϊόντων:

$$PR \coloneqq \pi_{pid}(PRODUCTS)$$

Μετά βρίσκουμε τα id των πελατών που έχουν παραγγείλει όλα τα προϊόντα στη σχέση PR:

$$ALLPR := \pi_{cid,pid}(ORDERS) \div PR$$

■ Τέλος βρίσκουμε τα ονόματα των πελατών στη σχέση ALLPR:

$$CNAMES := \pi_{cname}(ALLPR \bowtie CUSTOMERS)$$

- Βασικές πράξεις σχεσιακής άλγεβρας: ∪, −, ×, σ, π, ≔.
- Οι πράξεις αυτές αποτελούν ένα ελάχιστο σύνολο: όλες οι υπόλοιπες πράξεις μπορούν να εκφραστούν βάσει αυτών, όπως βλέπουμε στα παρακάτω θεωρήματα.
- Θεώρημα 2: Αν R και S είναι συμβατές σχέσεις, τότε $R \cap S = R (R S)$.
- Απόδειξη: Έστω t οποιαδήποτε πλειάδα της $R \cap S$. Τότε η t ανήκει και στην R και στην S αλλά όχι στην R S. Άρα η t ανήκει στην R (R S). Αντίστροφα, αν η t ανήκει στην R (R S), τότε ανήκει στην R αλλά όχι στην R S. Συνεπώς, πρέπει να ανήκει στην S. Άρα η t είναι πλειάδα της $R \cap S$.

- Θεώρημα 3: Αν R και S είναι σχέσεις με σχήματα $A_1, ..., A_n, B_1, ..., B_k$ και $B_1, ..., B_k, C_1, ..., C_m$ $(n, m, k \ge 0)$ αντίστοιχα, τότε η $R \bowtie S$ μπορεί να εκφραστεί χρησιμοποιώντας \times , σ , π .
- Απόδειξη: Έστω $T := \sigma_{R.B_1 = S.B_1 \wedge \cdots \wedge R.B_k = S.B_k}(R \times S)$. Πρέπει να αφαιρέσουμε διπλότυπα γνωρίσματα από την T.

```
Έστω T_1 := \pi_{R.A_1,...,R.A_n,R.B_1,...,R.B_k,S.C_1,...,S.C_m}(T).
```

Ορίζουμε σχέση T_2 με το παρακάτω σχήμα και τις πλειάδες της T_1 : $T_2(A_1, ..., A_n, B_1, ..., B_k, C_1, ..., C_m) := T_1$.

Tότε $T_2 = R \bowtie S$.

- <u>Θεώρημα 4:</u> Η διαίρεση μπορεί να εκφραστεί χρησιμοποιώντας ×, π, –.
- Απόδειξη: Έστω R και S σχέσεις με σχήματα $A_1, ..., A_n, B_1, ..., B_m$ και $B_1, ..., B_m$ αντίστοιχα. Τότε

$$R \div S = \pi_{A_1,...,A_n}(R) - \pi_{A_1,...,A_n}((\pi_{A_1,...,A_n}(R) \times S) - R)$$

Έστω \mathbf{u} πλειάδα που ανήκει στη σχέση του δεξιού μέλους. Τότε, η \mathbf{u} ανήκει στην $\pi_{A_1,\ldots,A_n}(R)$ αλλά όχι στην $\pi_{A_1,\ldots,A_n}\left(\left(\pi_{A_1,\ldots,A_n}(R)\times S\right)-R\right)$. Έστω ότι υπάρχει πλειάδα \mathbf{s} στην S τέτοια ώστε η πλειάδα $\mathbf{u}||\mathbf{s}$ να μην ανήκει στην \mathbf{R} . Αυτό σημαίνει ότι η \mathbf{u} θα ανήκει στην $\pi_{A_1,\ldots,A_n}\left(\left(\pi_{A_1,\ldots,A_n}(R)\times S\right)-R\right)$, το οποίο είναι άτοπο. Επομένως, για

 $\pi_{A_1,\ldots,A_n}\left(\left(\pi_{A_1,\ldots,A_n}(R)\times S\right)-R\right)$, το οποίο είναι άτοπο. Επομένως, για κάθε πλειάδα \mathbf{s} στην S, η πλειάδα $\mathbf{u}\|\mathbf{s}$ ανήκει στην R. Άρα η \mathbf{u} ανήκει στην $R \div S$.

- <u>Θεώρημα 4:</u> Η διαίρεση μπορεί να εκφραστεί χρησιμοποιώντας ×, π, –.
- Απόδειξη: Έστω R και S σχέσεις με σχήματα $A_1, ..., A_n, B_1, ..., B_m$ και $B_1, ..., B_m$ αντίστοιχα. Τότε

$$R \div S = \pi_{A_1,...,A_n}(R) - \pi_{A_1,...,A_n}((\pi_{A_1,...,A_n}(R) \times S) - R)$$

Αντίστροφα, αν \mathbf{u} πλειάδα που ανήκει στην $R \div S$, τότε η \mathbf{u} ανήκει στην $\pi_{A_1,\dots,A_n}(R)$. Επίσης η \mathbf{u} δε μπορεί να ανήκει στην $\pi_{A_1,\dots,A_n}\left(\left(\pi_{A_1,\dots,A_n}(R)\times S\right)-R\right)$ διότι αυτό θα σήμαινε ότι υπάρχει πλειάδα \mathbf{s} στην \mathbf{s} τέτοια ώστε η πλειάδα $\mathbf{u}\|\mathbf{s}$ να ανήκει στην $\pi_{A_1,\dots,A_n}(R)\times S$ αλλά όχι στην \mathbf{s} . Επομένως, η \mathbf{u} θα ανήκει στην $\pi_{A_1,\dots,A_n}(R) - \pi_{A_1,\dots,A_n}\left(\left(\pi_{A_1,\dots,A_n}(R)\times S\right)-R\right)$.

 $-\pi_{A,B}$

• Παράδειγμα: $R \div S = \pi_{A,B}(R) - \pi_{A,B}\left(\left(\pi_{A,B}(R) \times S\right) - \right)$

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_3	c_2
a_1	b_4	c_3
a_1	b_2	<i>C</i> ₄
a_1	b_1	c_5

Α	В
a_1	b_1
a_2	b_1
a_1	b_2
a_2	b_3
a_1	b_4

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_2	b_3	c_1
a_1	b_4	c_1

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_3	c_2
a_1	b_4	c_3
a_1	b_2	c_4
a_1	b_1	<i>c</i> ₅

 C_1

R

 $R \div S$ b_1 b_1 a_2 b_2 a_1 HY 360 - Lecture 5

В

16/10/2012)

• Παράδειγμα: $R \div S = \pi_{A,B}(R) - \pi_{A,B}\left(\left(\pi_{A,B}(R) \times S\right) - R\right)$

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_3	c_2
a_1	b_4	c_3
a_1	b_2	C ₄

 b_1

Α	В	
a_1	b_1	
a_2	b_1	_π. <u>-</u>
a_1	b_2	$-\pi_{A,B}$
a_2	b_3	
a_1	b_4	

Α	В	С
a_2	b_3	c_1
a_1	b_4	c_1

 $\frac{\mathsf{S}}{\mathsf{c}}$

 a_1

R

 $R \div S$

 c_5

C₁
HY 360 - Lecture 5

Α	В
a_1	b_1
a_2	b_1
a_1	b_2

• Παράδειγμα: $R \div S = \pi_{A,B}(R) - \pi_{A,B}\left(\left(\pi_{A,B}(R) \times S\right)\right)$

Α	В	С
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_3	c_2
a_1	b_4	c_3
a_1	b_2	<i>C</i> ₄
	7	

Α	В
a_1	b_1
a_2	b_1
a_1	b_2
a_2	b_3
a_1	b_4

Α	В
a_2	b_3
a_1	b_4

S	
С	
c_1	

 a_1

HY 360 - Lecture 5

R

 $R \div S$

 c_5

А	В
a_1	b_1
a_2	b_1
a_1	b_2

Α	В
a_1	b_1
a_2	b_1
a_1	b_2

16/10/2012

• Παράδειγμα: $R \div S = \pi_{A,B}(R) - \pi_{A,B}\left(\left(\pi_{A,B}(R) \times S\right) - R\right)$

(ב	0
a_1	b_1	c_1
a_2	b_1	c_1
a_1	b_2	c_1
a_1	b_2	c_2
a_2	b_3	c_2
a_1	b_4	c_3
a_1	b_2	<i>C</i> ₄
a_{1}	b_1	C.

Α	В
a_1	b_1
a_2	b_1
a_1	b_2

R

 $R \div S$

HY 360 - Lecture 5

Α	В
a_1	b_1
a_2	b_1
a_1	b_2

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A := AGENTS

O:= ORDERS

aid	aname	city	percent	C	ordno	month	cid	aid	pid	qty	dollars
-----	-------	------	---------	---	-------	-------	-----	-----	-----	-----	---------

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

1. Βρείτε τα ονόματα των πελατών που παραγγέλνουν τουλάχιστον ένα προϊόν με τιμή \$0.50.

$$\pi_{cname}\left(\left(\pi_{pid}\left(\sigma_{price=0.50}(P)\right)\bowtie O\right)\bowtie C\right)$$

2. Βρείτε τα ονόματα των πελατών που δεν κάνουν καμία παραγγελία μέσω του πράκτορα a03.

$$\pi_{cname} ((\pi_{cid}(C) - \pi_{cid}(\sigma_{aid='a03'}(O))) \bowtie C)$$

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A := AGENTS

O:= ORDERS

aid	aname	city	percent		ordno	month	cid	aid	pid	qty	dollars
-----	-------	------	---------	--	-------	-------	-----	-----	-----	-----	---------

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

3. Βρείτε τους πελάτες που κάνουν παραγγελίες μόνο μέσω του πράκτορα a03.

$$\pi_{cid}(O) - \pi_{cid}(\sigma_{aid \neq 'a03'}(O))$$

4. Βρείτε τα προϊόντα που δεν έχουν παραγγελθεί ποτέ από πελάτη στη Νέα Υόρκη μέσω πράκτορα στη Βοστώνη.

$$\pi_{pid}(P) - \pi_{pid}\left(\left(\pi_{cid}\left(\sigma_{city='New\ York'}(C)\right)\bowtie 0\bowtie \sigma_{city='Boston'}(A)\right)\right)$$

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A := AGENTS

O:= ORDERS

aid	aname	city	percent		ordno	month	cid	aid	pid	qty	dollars
-----	-------	------	---------	--	-------	-------	-----	-----	-----	-----	---------

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

5. Βρείτε τα ονόματα των πελατών που παραγγέλνουν <u>όλα</u> τα προϊόντα με τιμή \$0.50.

$$\pi_{cname}\left(C \bowtie \left(\pi_{cid,pid}(O) \div \pi_{pid}\left(\sigma_{price=0.50}(P)\right)\right)\right)$$

6. Βρείτε τους πελάτες που παραγγέλνουν <u>όλα</u> τα προϊόντα που παραγγέλνει οποιοσδήποτε.

$$\pi_{cid,pid}(O) \div \pi_{pid}(O)$$

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A:= AGENTS

O:= ORDERS

aid	aname	city	percent	ordn	o month	cid	aid	pid	qty	dollars
-----	-------	------	---------	------	---------	-----	-----	-----	-----	---------

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

7. Βρείτε τους πράκτορες που παίρνουν παραγγελίες από τουλάχιστον <u>όλα</u> τα προϊόντα που παραγγέλνει ο πελάτης c004.

$$\pi_{aid,pid}(O) \div \pi_{pid}(\sigma_{cid='c004'}(O))$$

8. Βρείτε τους πελάτες που παραγγέλνουν και το προϊόν p01 και το προϊόν p07. $\pi_{cid}\big(\sigma_{pid='p01'}(O)\big) \cap \pi_{cid}\big(\sigma_{pid='p07'}(O)\big)$

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A := AGENTS

O:= ORDERS

aid	aname	city	percent	ordno	month	cid	aid	pid	qty	dollars
-----	-------	------	---------	-------	-------	-----	-----	-----	-----	---------

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

9. Βρείτε τους πελάτες που κάνουν παραγγελία μέσω τουλάχιστον ενός πράκτορα που κάνει παραγγελία για το προϊόν p03.

$$\pi_{cid}\left(O\bowtie\pi_{aid}\left(\sigma_{pid='p03'}(O)\right)\right)$$

10. Βρείτε τους πελάτες που έχουν την ίδια έκπτωση με οποιονδήποτε πελάτη στο Dallas ή στη Βοστώνη.

$$\pi_{cid}\left(\mathbb{C}\bowtie\pi_{discnt}\left(\sigma_{city='Dallas'\lor city='Boston'}(C)\right)\right)$$

Έστω οι παρακάτω σχέσεις για βάση προϊόντων, πελατών, πρακτόρων και παραγγελιών: P:= PRODUCTS
 C:= CUSTOMERS

pid pname city qtty price

cid cname city discnt

A := AGENTS

O:= ORDERS

aid aname city percent ordno month cid aid pid qty dollars

Εκφράστε τις παρακάτω επερωτήσεις σε σχεσιακή άλγεβρα.

11. Βρείτε τα προϊόντα που παραγγέλνονται από πράκτορες που κάνουν παραγγελίες για πελάτες που παραγγέλνουν τουλάχιστον ένα προϊόν από πράκτορα που έχει κάνει παραγγελία για τον πελάτη c001.

$$\pi_{pid}\left(O\bowtie\left(\pi_{aid}\left(O\bowtie\left(\pi_{cid}(O\bowtie\left(\pi_{aid}(\sigma_{cid='c001'}(O))\right)\right)\right)\right)\right)$$

12. Βρείτε τα προϊόντα που δεν παραγγέλνονται από οποιονδήποτε πελάτη ζει σε πόλη της οποίας το όνομα ξεκινάει με D.

$$\pi_{pid}(P) - \pi_{pid}\left(0 \bowtie_{23/10/2012} \sigma_{city \geq 'D' \land city < 'E'}(C)\right)$$

- Εξωτερική σύζευξη (Outer Join ⋈₀): συνδυάζει τόσο τις πλειάδες που ταιριάζουν όσο και αυτές που δεν ταιριάζουν, παράγοντας μια σχέση που περιέχει όλες τις τιμές που εμφανίζονται στις δύο σχέσεις πάνω στις οποίες γίνεται η σύζευξη.
- Ορισμός: Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n , B_1 , ..., B_k και B_1 , ..., B_k , C_1 , ..., C_m αντίστοιχα. Το αποτέλεσμα της εξωτερικής σύζευξης $R\bowtie_O S$ είναι μια σχέση με σχήμα A_1 , ..., A_n , B_1 , ..., B_k , C_1 , ..., C_m , ενώ μια πλειάδα t ανήκει στη σχέση αυτή αν:
- Υπάρχουν πλειάδες $\mathbf u$ και $\mathbf v$ στις $\mathbf R$ και $\mathbf S$ αντίστοιχα, οι οποίες μπορούν να συζευχθούν και τότε $t[A_i]=u[A_i], i=1,\ldots,n, t[B_i]=u[B_i]=v[B_i], i=1,\ldots,k$ και $t[\mathbf C_i]=v[C_i], i=1,\ldots,m$.
- 2. Υπάρχει πλειάδα $\mathbf u$ στην R τέτοια ώστε να μην υπάρχει καμία πλειάδα $\mathbf v$ στην $\mathbf S$ που να μπορεί να συζευχθεί με αυτή. Τότε $t[\mathbf D]=u[D]$ για κάθε γνώρισμα $\mathbf D$ στο Head(R) και $t[\mathbf D]=null$ για κάθε γνώρισμα $\mathbf D$ στο $\mathbf C_1,\dots,\mathbf C_m$
- 3. Υπάρχει πλειάδα \mathbf{v} στην \mathbf{S} τέτοια ώστε να μην υπάρχει καμία πλειάδα \mathbf{u} στην \mathbf{R} που να μπορεί να συζευχθεί με αυτή. Τότε $\mathbf{t}[\mathbf{D}] = \mathbf{v}[\mathbf{D}]$ για κάθε γνώρισμα \mathbf{D} στο $\mathbf{Head}(\mathbf{S})$ και $\mathbf{t}[\mathbf{D}] = \mathbf{null}$ για κάθε γνώρισμα \mathbf{D} στο $\mathbf{A}_1, \dots, \mathbf{A}_n$.

 Παράδειγμα: Δώστε το όνομα, αναγνωριστικό και συνολικό ποσό πωλήσεων για όλους τους πράκτορες, ανεξάρτητα από το αν έχουν κάνει πωλήσεις ή όχι.

AGENTS									
aid	aname	city	percent						

SALES		
aid	total	

 Η απάντηση π_{aname,aid,total} (AGENTS ⋈ SALES) είναι λανθασμένη, διότι δεν περιέχει πράκτορες που δεν έχουν κάνει πωλήσεις. Πρέπει να χρησιμοποιήσουμε outer join:

 $\pi_{aname,aid,total}(AGENTS \bowtie_{O} SALES)$

• Στην περίπτωση των πρακτόρων που δεν έκαναν πωλήσεις (δεν υπάρχουν δηλαδή στον πίνακα SALES), στην τιμή του γνωρίσματος total στο αποτέλεσμα θα μπει null.

- Αριστερή Εξωτερική σύζευξη (Left Outer Join ⋈_{LO}): όπως η εξωτερική σύζευξη, μόνο που διατηρούνται οι πλειάδες που δεν ταιριάζουν από τη σχέση αριστερά από τον τελεστή και συμπληρώνονται με null οι τιμές που λείπουν από τη σχέση δεξιά από τον τελεστή. Οι πλειάδες που δεν ταιριάζουν από τη σχέση δεξιά παραλείπονται.
- Δεξιά Εξωτερική σύζευξη (Right Outer Join ⋈_{RO}): όπως η εξωτερική σύζευξη, μόνο που διατηρούνται οι πλειάδες που δεν ταιριάζουν από τη σχέση δεξιά από τον τελεστή και συμπληρώνονται με null οι τιμές που λείπουν από τη σχέση αριστερά από τον τελεστή. Οι πλειάδες που δεν ταιριάζουν από τη σχέση αριστερά παραλείπονται.

• <u>Παράδειγμα:</u> Δώστε το όνομα, αναγνωριστικό και συνολικό ποσό πωλήσεων για όλους τους ειδικούς πράκτορες του παρακάτω πίνακα: SPECIAL AGENTS

aid	aname	city	percent
a01	Smith	New York	6
a04	Gray	New York	6
a06	Brown	Tokyo	7

SALES

aid	total
a01	850.00
a02	400.00
a03	3900.00
a05	2400.00
a06	900.00
a07	650.00

• $\pi_{aname,aid,total}(SPECIAL_AGENTS \bowtie_O SALES)$

Με την παραπάνω πράξη έχουμε ανεπιθύμητα αποτελέσματα:

aname	aid	total
Smith	a01	850.00
null	a02	400.00
null	a03	3900.00
Gray	a04	null
null	a05	2400.00
Brown	a06	900.00
null	a07	650.00

Παράδειγμα: Δώστε το όνομα, αναγνωριστικό και συνολικό ποσό πωλήσεων για όλους τους ειδικούς πράκτορες του παρακάτω πίνακα:
 SPECIAL AGENTS

aid	aname	city	percent
a01	Smith	New York	6
a04	Gray	New York	6
a06	Brown	Tokyo	7

SA	Τ.	EC
2A	بل.	E2

aid	total
a01	850.00
a02	400.00
a03	3900.00
a05	2400.00
a06	900.00
a07	650.00

• $\pi_{aname,aid,total}(SPECIAL_AGENTS \bowtie_{LO} SALES)$

Αντικαθιστώντας με αριστερή εξωτερική σύζευξη έχουμε:

aname	aid	total
Smith	a01	850.00
Gray	a04	null
Brown	a06	900.00

- <u>θ-σύζευξη (Theta Join):</u> επιτρέπει σύζευξη βάσει άλλων συνθηκών, εκτός της ισότητας μεταξύ ομώνυμων γνωρισμάτων (φυσική σύζευξη – natural join) που είδαμε μέχρι τώρα.
- <u>Ορισμός 2:</u> Έστω σχέσεις R, S με σχήματα A_1 , ..., A_n και B_1 , ..., B_m αντίστοιχα. Αν τα γνωρίσματα A_i και B_j έχουν το ίδιο πεδίο τιμών και $\theta \in \{>, <, \ge, \ne\}$, τότε $R \bowtie_{A_i\theta B_j} S$ είναι σχέση με σχήμα A_1 , ..., A_n , B_1 , ..., B_m και οι πλειάδες που ανήκουν σε αυτή έχουν τη μορφή $(a_1, ..., a_n, b_1, ..., b_m)$ όπου $(a_1, ..., a_n \in R)$, $(b_1, ..., b_m \in S)$ και $a_i\theta b_j$.
- Σημείωση: Αν το θ είναι το =, η σύζευξη ονομάζεται σύζευξη ισότητας (equijoin).

• <u>Παράδειγμα:</u> Βρείτε τους αριθμούς των παραγγελιών για τις οποίες η ποσότητα ξεπερνάει την υπάρχουσα ποσότητα για το προϊόν που παραγγέλλεται.

PRODUCTS

pid	pname	city	qtty	price
-----	-------	------	------	-------

ORDERS

ordno	month	cid	aid	pid	qty	dollars
-------	-------	-----	-----	-----	-----	---------

 $\pi_{ordno} (\mathit{ORDERS} \bowtie_{\mathit{ORDERS.qty}} \mathit{PRODUCTS.qtty} \mathit{PRODUCTS})$ ή ισοδύναμα:

 $\pi_{ordno}(\sigma_{ORDERS.qty>PRODUCTS.tty}(ORDERS \times PRODUCTS))$