

- Introducción
 - Objetivos
 - Descripción del problema
 - Aplicaciones
- 2 Matemáticas
- Conclusiones y vías futuras

Objetivos

- Conocer la disciplina del aprendizaje de métricas de distancia.
- Estudiar los fundamentos matemáticos del aprendizaje de métricas de distancia.
- Analizar los principales algoritmos de aprendizaje de métricas de distancia.
- Desarrollar un software que integre los algoritmos de aprendizaje estudiados.

El aprendizaje de métricas de distancia

¿Qué es?

Es una rama del aprendizaje automático cuya finalidad es apender distancias a partir de los datos.

Definición

Sea X un conjunto no vacío. Una distancia sobre X es una aplicación $d: X \times X \to \mathbb{R}$, verificando:

- **2** d(x,y) = d(y,x) para cualesquiera $x,y \in X$ (simetría)
- **3** $d(x,z) \le d(x,y) + d(y,z)$ para cualesquiera $x,y,z \in X$ (designaldad triangular).
- **Pseudodistancias:** Exigen solo d(x,x) = 0 en **1**.

¿Por qué distancias?

Los clasificadores de vecinos cercanos

Problema

- Los algoritmos basados en distancias suelen utilizar distancias fijas.
- Solución: Aprender distancias.

¿Cómo aprender una distancia?

Definición (Distancias de Mahalanobis)

Sea $M \in \mathcal{M}_d(\mathbb{R})$ semidefinida positiva. Entonces, $d_M \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, dada por

$$d(x,y) = \sqrt{(x-y)^T M(x-y)}$$

es una (pseudo-)distancia, denominada distancia de Mahalanobis.

Enfoque principal del aprendizaje de métricas de distancia Aprender distancias de Mahalanobis sobre espacios vectoriales d-dimensionales.

Dos opciones:

- Aprender M.
- ② Aprender una aplicación lineal L. Entonces, $M = L^T L$ y $d_M(x, y)^2 = ||L(x - y)||_2^2$.

1-NN

Mejora de clasificadores basados en distancias

 $M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Mejora de clasificadores basados en distancias

 $M \approx \begin{pmatrix} 0 & -0.004 \\ -0.004 & 27.5 \end{pmatrix}$

Mejora de clasificadores basados en distancias

 $L \approx \begin{pmatrix} -0.0001 & 0.073 \\ -0.0008 & 5.24 \end{pmatrix}$

Organización de datos y reducción de dimensionalidad

Organización de datos y reducción de dimensionalidad

Organización de datos y reducción de dimensionalidad

- 1 Introducción
- 2 Matemáticas
 - Análisis convexo
 - Análisis matricial
 - Teoría de la información
- Conclusiones y vías futuras

Las matemáticas bajo el aprendizaje de métricas de distancia

- Análisis convexo. De gran importancia en la mayoría de algoritmos de aprendizaje de métricas de distancia.
- Análisis matricial. Las matrices son la herramienta fundamental para modelar el problema.
- **Teoría de la información.** Presente en algunos de los algoritmos.

Hiperplanos soporte

Definición (Hiperplano soporte)

Sean $T: \mathbb{R}^d \to \mathbb{R}$ lineal, $\alpha \in \mathbb{R}$ y $P = \{x \in \mathbb{R}^d : T(x) = \alpha\}$ hiperplano. Definimos $P^+ = \{x \in \mathbb{R}^d : T(x) \ge \alpha\}$ y $P^- = \{x \in \mathbb{R}^d : T(x) \le \alpha\}$. P es un hiperplano soporte para $K \subset \mathbb{R}^d$ si $P \cap \overline{K} \ne \emptyset$ y $K \subset P^+$ o $K \subset P^-$.

Teorema (Teorema del hiperplano soporte)

- **1** Si $K \subset \mathbb{R}^d$ es convexo y cerrado, para cada $x_0 \in \operatorname{Fr} K$ existe un hiperplano soporte P de K tal que $x_0 \in P$.
- ② Todo conjunto convexo cerrado y propio de \mathbb{R}^d es la intersección de todos sus semiespacios soporte.
- § Sea $K \subset \mathbb{R}^d$ un conjunto cerrado con interior no vacío. Entonces, K es convexo si y solo si para todo $x \in \operatorname{Fr} K$ existe un hiperplano soporte P de K con $x \in P$.

Teorema (Proyección convexa)

Si $K \subset \mathbb{R}^d$ es no vacío, cerrado y convexo, entonces, para cada $x \in \mathbb{R}^d$ existe un único punto $P_K(x) \in K$ tal que $d(x, K) = d(x, P_K(x))$: la proyección convexa de x sobre K.

Método de las proyecciones iteradas

- Introducción
- 2 Matemáticas
- Conclusiones y vías futuras

