Can you arrange the following sets from smallest to largest?

Integers (\mathbb{Z}) Even integers Multiples of 3 Perfect squares Prime numbers Integer powers of 2 Non-negative integers (\mathbb{N}) Pairs of integers $(\mathbb{Z} \times \mathbb{Z})$ Rational numbers (\mathbb{Q}) Functions from $\{ \spadesuit, \heartsuit, \diamondsuit, \clubsuit \}$ to \mathbb{Z} Finite sets of integers	\aleph_0
Sets of integers $(2^{\mathbb{Z}})$ Functions from \mathbb{Z} to $\{\spadesuit, \heartsuit, \diamondsuit, \clubsuit\}$ Functions from \mathbb{Z} to \mathbb{Z} Real numbers (\mathbb{R}) Complex numbers (\mathbb{C}) Spacetime (\mathbb{R}^4) Functions from \mathbb{Z} to \mathbb{R} Finite sets of real numbers	2^{\aleph_0}
Sets of real numbers $(2^{\mathbb{R}})$ Functions from \mathbb{R} to \mathbb{Z} Functions from \mathbb{R} to \mathbb{R}	$2^{2^{\aleph_0}}$
Sets of curves in \mathbb{R}^3	$2^{2^{2\aleph_0}}$

For any integer
$$n \ge 0$$
, define $[n] = \{x \in \mathbb{Z} \mid 1 \le x \le n\} = \{1, 2, 3, \dots, n\}$. (For example: $[0] = \emptyset$, $[1] = \{1\}$, $[5] = \{1, 2, 3, 4, 5\}$.)

Every *finite* set X has the same cardinality as [n] for some unique non-negative integer n.

If
$$X \approx [n]$$
, we **define** $|X| = n$.

•	So	are	there	more	even	integers	than	odd	integers	?
---	----	-----	-------	------	------	----------	------	-----	----------	---

• Are there more integers than even integers?

• Are there more even integers than integers divisible by 107?

• Are there more integers than positive integers?

• How many positive rational numbers are there?

$$1/1$$
 $1/2$ $1/3$ $1/4$... $2/1$ $2/2$ $2/3$ $2/4$... $3/1$ $3/2$ $3/3$ $3/4$... $4/1$ $4/2$ $4/3$ $4/4$... \vdots \vdots \vdots \vdots \vdots \vdots

The following function is a bijection from \mathbb{N} to \mathbb{Q} !

$$R(0)=0,$$

$$R(n)=\frac{1}{2\lfloor R(n-1)\rfloor-R(n-1)+1} \quad \text{for all integers } n\geq 1.$$

$$0, 1, \frac{1}{2}, 2, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}, 3, \frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, 4, \frac{1}{5}, \frac{5}{4}, \frac{4}{7}, \frac{7}{3}, \frac{3}{8}, \frac{8}{5}, \frac{5}{7}, \frac{7}{2}, \frac{2}{7}, \dots$$

• How many real numbers are in the interval $0 \le x < 1$?

Theorem: $\mathbb{Z}^+ \not\approx [0,1)$

Proof: Suppose $f: \mathbb{Z} \to [0,1)$ is a bijection.

Write out a list containing each number f(n) in decimal.

$$f(1) = 0.\underline{\mathbf{0}}000000000...$$

$$f(2) = 0.0\underline{\mathbf{1}}2345678...$$

$$f(3) = 0.31\underline{\mathbf{4}}159653...$$

$$f(4) = 0.271\underline{\mathbf{8}}28182...$$

$$f(5) = 0.1414\underline{\mathbf{2}}1400...$$

$$f(6) = 0.11235\underline{\mathbf{9}}549...$$

$$\vdots$$

Let x be any number with the following property:

For all n, the nth digit of $x \neq$ the nth digit of f(n).

With the list above, we could take x = 0.358214...

Then $x \neq f(n)$ for all positive integers n.

So f is not a bijection after all!

The real numbers are *uncountable*!

A set X is *infinite* if and only if there is an injection $f: \mathbb{N} \to A$.

A set X is *countable* if and only if there is a function $f: A \to \mathbb{N}$.

Every function $f : \mathbb{N} \to \{0,1\}$ defines an infinite string of bits. So the set of functions is uncountable.

On the other hand, any *program* can be represented as a *finite* string of bits.

So the set of programs is countable.

Almost all functions are uncomputable!