

Dirección General de EDUCACIÓN TÉCNICA Y FORMACIÓN PROFESIONAL

Ejercicio 1: Análisis de circuitos combinacionales Dado el siguiente circuito combinacional que utiliza puertas AND, OR y NOT, analizar la función lógica que representa y expresarla en forma de minitérminos y maxitérminos.

	Entradas Salidas												
A ₀	A ₁	A ₂	A ₃	A ₄	A ₅	As	A ₇	A ₀	A ₉	So	St	S	S
0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	0	0	1

Ejercicio 2: Síntesis de circuitos combinacionales Dada las siguientes funciones lógicas, simplificarlas utilizando el método de Karnaugh y construir un circuito combinacional que la represente utilizando puertas lógicas básicas.

a) $F(A, B, C, D) = \Sigma m(1, 3, 5, 6, 9, 11, 12, 14)$

Α	В	С	D	F	
0	0	0	0		
0	0	0	1	1	A'.B'.C'.D
0	0	1	0		
0	0	1	1	1	A'.B'.C.D
0	1	0	0		
0	1	0	1	1	A'.B.C'.D
0	1	1	0	1	A'.B.C.D'
0	1	1	1		
1	0	0	0		
1	0	0	1	1	A.B'.C'.D
1	0	1	0		
1	0	1	1	1	A.B'.C.D
1	1	0	0	1	A.B.C'.D'
1	1	0	1		
1	1	1	0	1	A.B.C.D'
1	1	1	1		

CD AB	00	01	11	10	
00	0	1	1	0	
01	M	0	0	Ē	
11	1	0	0	1	
10	0	1	1	0	

F=B'.D+B.D'

A'.B'.C.D+ A'.B.C'.D+ A'.B.C.D'+ A.B'.C'.D+ A.B'.C.D+ A.B.C'.D'+ A.B.C.D'

b) $F(A, B, C, D) = \Pi M(2, 4, 7, 8, 10, 13, 14, 15)$

Α	В	С	D	F	
0	0	0	0		
0	0	0	1		
0	0	1	0	0	A'.B'.C.D'
0	0	1	1		
0	1	0	0	0	A'.B.C'.D'
0	1	0	1		
0	1	1	0		
0	1	1	1	0	A'.B.C.D
1	0	0	0	0	A.B'.C'.D'
1	0	0	1		
1	0	1	0	0	A.B'.C.D'
1	0	1	1		
1	1	0	0		
1	1	0	1	0	A.B.C'.D
1	1	1	0	0	A.B.C.D'
1	1	1	1	0	A.B.C.D

CD	00	01	11	10
AB				
00	1	1	1	
01	0	1	0	1
11	1	0	0	0
10	0	1	1	0

F= B'D+A'C'D+A'B'C'D'+ABC'D'+A'BCD'

(A'.B'.C.D')*(A'.B.C'.D')*(A'.B.C.D)*(A.B'.C'.D')*(A.B.C'.D)*(A.B.C.D')*(A.B.C.D)

3: Diseño de un decodificador Diseñar un decodificador 3-a-8 utilizando puertas lógicas AND, OR y NOT. El decodificador debe convertir un código binario de 3 bits en 8 salidas, activando una salida única correspondiente al valor binario de entrada.

F	S7	S6	S5	S4	S3	S2	S1	S0	12	11	10
10'.11'.12'	0	0	0	0	0	0	0	1	0	0	0
10'.11'.12	0	0	0	0	0	0	1	0	1	0	0
10'.11.12'	0	0	0	0	0	1	0	0	0	1	0
10'.11.12	0	0	0	0	1	0	0	0	1	1	0
10.11'.12'	0	0	0	1	0	0	0	0	0	0	1
10.11'.12	0	0	1	0	0	0	0	0	1	0	1
10.11.12'	0	1	0	0	0	0	0	0	0	1	1
10.11.12	1	0	0	0	0	0	0	0	1	1	1

Electrónica Microcontrolada

Dirección General de EDUCACIÓN TÉCNICA Y

Ejercicio 4: Introducción a circuitos secuenciales y flip-flops Investigar y describir brevemente las características y tipos de flip-flops (SR, D, JK, T). Explicar cómo estos elementos de memoria pueden ser utilizados en circuitos secuenciales.

Bistable: Mantienen un estado estable (0 o 1) hasta recibir una señal de control.

Sincronizados: Cambian de estado solo en flancos específicos del reloj.

Memoria: Almacenan un bit de información.

Versátiles: Se utilizan en una amplia gama de circuitos secuenciales.

Tipos de flip-flops:

Flip-flop SR (Set-Reset): Entradas: S (Set) y R (Reset).

Función:

S = 1: Establece el estado a 1. R = 1: Establece el estado a 0. S = R = 1: Estado indeterminado.

Aplicaciones: Sincronización de señales, almacenamiento temporal de datos.

Entrada: D (Data).

Función:

D = 1: Establece el estado a 1 en el siguiente flanco de subida del reloj. D = 0: Establece el estado a 0 en el siguiente flanco de subida del reloj.

Aplicaciones: Registros de desplazamiento, contadores.

Flip-flop JK (J-K):

Entradas: J y K.

Función:

J = 1, K = 0: Establece el estado a 1 en el siguiente flanco de subida del reloj.

J = 0, K = 1: Establece el estado a 0 en el siguiente flanco de subida del reloj.

J = 1, K = 1: Conmuta el estado (1 a 0 o 0 a 1) en el siguiente flanco de subida del reloj.

J = K = 0: No cambia el estado.

Aplicaciones: Registros de desplazamiento, contadores, divisores de frecuencia.

Flip-flop T (Toggle):

Entrada: T (Toggle).

Función:

T = 1: Conmuta el estado (1 a 0 o 0 a 1) en el siguiente flanco de subida del reloj.

T = 0: No cambia el estado.

Aplicaciones: Contadores asíncronos, divisores de frecuencia.

Aplicaciones de los flip-flops:

Los flip-flops son componentes esenciales en la construcción de circuitos secuenciales, como:

Máquinas de estado finito: Almacenan el estado actual de la máquina y determinan el siguiente estado en función de las entradas y el estado actual.

Contadores: Cuentan eventos o pulsos de entrada.

Registros: Almacenan datos binarios en microprocesadores y otros sistemas digitales.

Divisores de frecuencia: Dividen la frecuencia de una señal de reloj.