

2020 YEAR 12 MATHEMATICS: METHODS Test 2 (Integration)

40

		_		_	_		NAME:			
					O					
()	L	L	E	G	E	TEACHER:	Al	FRIDAY	WHITE

Marks:

Calculator-Free

Formula sheet provided

Working time: 20 minutes

23

QUESTION 1

[13 marks - 2, 2, 3, 3, 1, 2]

Determine the following.

a) $\int 3x^2 - \frac{1}{\sqrt{x}} + x - 8 \ dx$	b) $\int -2\cos x \sin^4 x \ dx$
c) $\int_{-\pi}^{\pi} \cos 3x \ dx$	d) $\int_0^1 (x^2 - x)^2 dx$
e) $\frac{d}{dx} \left(\int_{\pi}^{x} \sin t \ dt \right)$	f) $\int_0^{\pi} \frac{d}{dt} \left(-\cos \frac{t}{2} \right) dt$

Given that $\int_{-1}^{2} f(x) dx = 6$ and $\int_{6}^{2} f(x) dx = -8$, evaluate the following definite integrals.

- a) $\int_{2}^{-1} f(x) \, dx$
- b) $\int_{-1}^{6} f(x) dx$
- c) $\int_{6}^{2} 3f(x) 4 \ dx$

QUESTION 3

[4 marks]

Given that $f'(x) = \frac{6-x^4}{x^2}$ and f(x) passes through the point (3, -9), determine f(x).