Docket No. 244118US0CONT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Koji OHSUMI, et al.			GAU:	
SERIAL N	NO:NEW APPLICATION		EXAMINER:	
FILED:	HEREWITH			
FOR:	N-SUBSTITUTED PYR. DIABETES CONTAINII		RIVATIVES AND THERAPEUTIC AGENT FO	R
		REQUEST FOR PRI	IORITY	
	SIONER FOR PATENTS DRIA, VIRGINIA 22313			
SIR:				
	enefit of the filing date of Int provisions of 35 U.S.C. §120		P02/04238, filed April 26, 2002, is claimed pursua	ant
☐ Full benefit of the filing date(s) of §119(e):		U.S. Provisional Application(s <u>Application No.</u>	s) is claimed pursuant to the provisions of 35 U.S. <u>Date Filed</u>	.C.
	cants claim any right to prior ovisions of 35 U.S.C. §119, a		ications to which they may be entitled pursuant to	
In the mat	ter of the above-identified ap	plication for patent, notice is l	hereby given that the applicants claim as priority:	
COUNTR	<u>RY</u>	APPLICATION NUMBER		
Japan Japan		2001-131265 2001-263717	April 27, 2001 August 31, 2001	
			7 tagast 31, 2001	
	copies of the corresponding C e submitted herewith	Convention Application(s)		
	Il be submitted prior to paym	ent of the Final Fee		
	ere filed in prior application S			
	• • •	onal Bureau in PCT Application	on Number	
Re	ceipt of the certified copies be knowledged as evidenced by	by the International Bureau in	a timely manner under PCT Rule 17.1(a) has been	n
□ (A) Application Serial No.(s) w	vere filed in prior application S	Serial No. filed ; and	
□ (B) Application Serial No.(s)			
Į	are submitted herewith			
I	will be submitted prior to	payment of the Final Fee		
			Respectfully Submitted,	
			OBLON, SPIVAK, McCLELLAND,	
			MAIER & NEUSTADT, P.C.	
			a Me	
			Stephen G. Baxter	
Custome	er Number		Registration No. 32,884	
228	350			
Tel. (703) 41	13-3000		Vincent K. Shier, Ph.D.	
Fax. (703) 413-2220			Desistantian No. 50 550	

(OSMMN 05/03)

Registration No. 50,552

H JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日

Date of Application:

2001年 4月27日

出 願 番 Application Number:

特願2001-131265

[ST. 10/C]:

[JP2001-131265]

出 願 人 Applicant(s):

味の素株式会社

2003年 8月29日

特許庁長官 Commissioner, Japan Patent Office

【書類名】 特許願

【整理番号】 Y110388

【提出日】 平成13年 4月27日

【あて先】 特許庁長官殿

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 畑中 敏宏

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 松枝 裕之

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 大角 幸治

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 石田 希

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 影山 陽子

【発明者】

【住所又は居所】 神奈川県川崎市川崎区鈴木町1-1 味の素株式会社

医薬研究所内

【氏名】 前園 克己

【発明者】

神奈川県川崎市川崎区鈴木町1-1 味の素株式会社 【住所又は居所】

医薬研究所内

【氏名】

近藤 信雄

【特許出願人】

【識別番号】

000000066

【氏名又は名称】 味の素株式会社

【代理人】

【識別番号】

100059959

【弁理士】

【氏名又は名称】 中村 稔

【選任した代理人】

【識別番号】

100067013

【弁理士】

【氏名又は名称】 大塚 文昭

【選任した代理人】

【識別番号】 100082005

【弁理士】

【氏名又は名称】 熊倉 禎男

【選任した代理人】

【識別番号】 100065189

【弁理士】

【氏名又は名称】 宍戸 嘉一

【選任した代理人】

【識別番号】

100096194

【弁理士】

【氏名又は名称】 竹内 英人

【選任した代理人】

【識別番号】 100074228

【弁理士】

【氏名又は名称】 今城 俊夫

【選任した代理人】

【識別番号】 100084009

【弁理士】

【氏名又は名称】 小川 信夫

【選任した代理人】

【識別番号】 100082821

【弁理士】

【氏名又は名称】 村社 厚夫

【選任した代理人】

【識別番号】 100086771

【弁理士】

【氏名又は名称】 西島 孝喜

【選任した代理人】

【識別番号】 100084663

【弁理士】

【氏名又は名称】 箱田 篤

【手数料の表示】

【予納台帳番号】 008604

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】 要約書

1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 新規ピラゾール誘導体及びそれらを含有する糖尿病治療薬【特許請求の範囲】

【請求項1】 下記一般式 (1A) 又は(1B) で表されるピラゾール誘導体またはその医薬的に許容しうる塩。

【化1】

[式中、Xはβ-D-グルコピラノシル基(その1若しくは複数の水酸基がアシル化されていてもよい)を表し、Yは低級アルキル基、パーフルオロ低級アルキル基のいずれかを表し、Zは置換されていてもよい環状アルキル基、置換されていてもよい環状不飽和アルキル基を有する低級アルキル基、置換されていてもよい環状不飽和アルキル基を有する低級アルキル基のいずれかを表し、R1~R5は同じでも異なっていてもよく、水素原子、低級アルキル基、パーフルオロ低級アルキル基、低級アルコキシ基、パーフルオロ低級アルキル基、低級アルコキシ基、低級アルキルチオ基、低級アルコキシ基、低級アルキルチオ基、低級アルキルアミノ基、ハロゲノ基、低級アルカノイル基、アルケニル基、環状アルケニル基、アルキニル基、置換されていてもよいフェニル基、低級アルコキシカルボニル基のいずれかを表し、nは0から3の整数を表す。]

【請求項2】 一般式(1A) 又は(1B) において、Yがトリフルオロメチル 基である請求項1記載のピラゾール誘導体またはその医薬的に許容しうる塩。

【請求項3】 一般式(1A) 又は(1B) において、Yがトリフルオロメチル 基であり、nが1である請求項1記載のピラゾール誘導体またはその医薬的に許容 しうる塩。

【請求項4】 一般式 (1A) 又は(1B) において、Yがトリフルオロメチル 基であり、nが1であり、Xが β -D-グルコピラノシル基(この基は炭素数 2 から 2 0 のアルカノイル基、低級アルコキシカルボニル基、及びベンゾイル基から選 ばれる基で1もしくは複数の水酸基がアシル化されていてもよい)である請求項1 記載のピラゾール誘導体またはその医薬的に許容しうる塩。

【請求項5】 請求項1記載の化合物またはその医薬的に許容しうる塩。 【化2】

$$\begin{array}{c} \text{Et} \\ \text{CF}_3 \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \text{OH} \\ \end{array}$$

$$\begin{array}{c} \mathsf{Et} \\ \mathsf{CF_3} \\ \mathsf{N} \\ \mathsf{OH} \\ \mathsf{OH}$$

【請求項6】 請求項1から5のいずれか1項記載のピラゾール誘導体またはその医薬的に許容しうる塩を含有する医薬組成物。

【請求項7】 請求項1から5のいずれか1項記載のピラゾール誘導体またはその医薬的に許容しうる塩を含有する糖尿病治療薬。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は新規なピラゾール誘導体およびそれらの化合物を有効成分とする糖尿 病治療薬に関する。

[0002]

【従来の技術】

Na+-dependent glucose transporter (SGLT) はグルコースを輸送する膜蛋白質であり、SGLT-1, SGLT-2が知られている。腎臓の尿細管では主にSGLT-2が発現している。腎臓の尿細管のSGLTは原尿中のグルコースを再吸収し、取り込まれたグルコースは血流にのって体内で再利用される。SGLT-2を阻害すれば、腎臓の尿細管でのグルコースの取り込み量が低下し、グルコースは尿から排泄される。その結果、血糖値が低下すると考えられる。今のところ、臨床で使用されている腎臓でのグルコース再吸収を阻害する薬剤はない。

[0003]

【発明が解決しようとする課題】

本発明は、新規ピラゾール誘導体を提供することを目的とする。

本発明は、又、該新規化合物を含有する医薬組成物を提供することを目的とする。

本発明は、又、該新規化合物を含有する糖尿病の治療剤を提供することを目的とする。

本発明は、合成が容易であり、毒性が低く、治療効果の高い糖尿病治療薬を見いだし、それを医薬品として提供することを目的とする。

[0004]

【課題を解決するための手段】

本発明者らはピラゾール骨格にグルコース(すなわち、 β —D-グルコピラノース)が結合した誘導体(1A)又は(1B)を種々合成し、それらの尿糖排出作用をを鋭意探索した結果、特に、一般式(1A)又は(1B)においてZが置換されていてもよい環状アルキル基、置換されていてもよい環状不飽和アルキル基、不飽和結合を有する低級アルキル基、置換されていてもよい環状アルキル基を有する低級アルキル基、置換されていてもよい環状不飽和アルキル基を有する低級アルキル基のいずれかで表される化合物に動物試験で顕著な尿糖排出作用を有することを見いだし、本発明を完成するに至った。これらの化合物は今までに合成されておらず、全く新規なピラゾール-0-グリコシド誘導体である。

すなわち、本発明は下記一般式 (1A) 又は(1B) で示されるピラゾール誘導体またはその医薬的に許容しうる塩を提供する。

[0005]

【化3】

[0006]

[式中、Xは β -D-グルコピラノシル基(その1若しくは複数の水酸基がアシル化されていてもよい)を表し、Yは低級アルキル基、パーフルオロ低級アルキル基のいずれかを表し、Zは置換されていてもよい環状アルキル基、置換されていてもよい環状不飽和アルキル基を有する低級アルキル基、置換されていてもよい環状不飽和アルキル基を有する低級アルキル基のいずれかを表し、R1~R5は同じでも異なっていてもよく、水素原子、低級アルキル基、パーフルオロ低級アルキル基、低級アルコキシ基、パーフルオロ低

級アルコキシ基、低級アルキルチオ基、パーフルオロ低級アルキルチオ基、低級アルキルアミノ基、ハロゲノ基、低級アルカノイル基、アルケニル基、環状アルケニル基、アルキニル基、置換されていてもよいフェニル基、低級アルコキシカルボニル基のいずれかを表し、nは0から3の整数を表す。]

[0007]

本発明は、上記ピラゾール誘導体またはその医薬的に許容しうる塩を有効成分とする医薬組成物を提供する。

本発明は、又、上記ピラゾール誘導体またはその医薬的に許容しうる塩を有効 成分とする糖尿病治療薬を提供する。

[0008]

【発明の実施の形態】

本明細書において、「低級アルキル」とは、炭素数1から6のアルキル基を表す。アルキル基、パーフルオロ低級アルキル基、低級アルコキシ基、パーフルオロ低級アルコキシ基、低級アルキルチオ基、パーフルオロ低級アルキルチオ基、低級アルカノイル基、アルケニル基、アルキニル基、低級アルカノイル基、アルケニル基、アルキニル基、低級アルコキシカルボニル基における「アルキル」、「アルケニル」、「アルキニル」は、直鎖でも分岐してもよい。

アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、イソプロピル基、イソブチル基、イソペンチル基等が挙げられ、パーフルオロ低級アルキル基としては、トリフルオロメチル基、トリフルオロエチル基、2,2,2,-トリフルオロエチル基、トリフルオロプロピル基等が挙げられ、低級アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基等が挙げられ、パーフルオロ低級アルコキシ基としては、トリフルオロメトキシ基、トリフルオロエトキシ基等が挙げられ、低級アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基等が挙げられ、パーフルオロ低級アルキルチオ基としては、トリフルオロメチルチオ基、トリフルオロエチルチオ基等が挙げられ、低級アルキルアミノ基、エチルチオ基、アリフルオロエチルチオ基等が挙げられ、低級アルキルアミノ基、ジメチルアミノ基、ジエチルアミノ基等が挙げられ、低級アルカノイル基としては、アセチル基、プロピオニル基等が挙げられ、

アルケニル基としては、ビニル基、プロペニル基、2-メチル-1-プロペニル基等が挙げられ、アルキニル基としては、エチニル基等が挙げられ、アラルキル基としては、ベンジル基、ベンゼン環が置換されていてもよいベンジル基、フェネチル基、ベンゼン環が置換されていてもよいフェネチル基等が挙げられ、ハロゲノ基としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子が挙げられる。また、低級アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル等が挙げられる。

[0009]

「置換されていてもよい環状アルキル基」としては、置換されていてもよい炭 素数3~7の環状アルキル基を表し、例えば、シクロプロピル基、シクロブチル 基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられ、こ れらの環には、メチル基、エチル基、メトキシ基、エトキシ基、フッ素原子、塩 素原子、臭素原子等が置換されていてもよい。「置換されていてもよい環状不飽 和アルキル基」としてはシクロペンテニル基、シクロヘキセニル基が挙げられ、 これらの環には、メチル基、エチル基、メトキシ基、エトキシ基、フッ素原子、 塩素原子、臭素原子等が置換されていてもよい。また、「置換されていてもよい 環状アルキル基を有する低級アルキル基」としては例えば、シクロブチルメチル 基、シクロブチルエチル基、シクロペンチルメチル基、シクロペンチルエチル基 、シクロヘキシルメチル基、シクロヘキシルエチル基等が挙げられこれらの環に は、メチル基、エチル基、メトキシ基、エトキシ基、フッ素原子、塩素原子、臭 素原子等が置換されていてもよい。「置換されていてもよい環状不飽和アルキル 基を有する低級アルキル基」としてはシクロペンテエニルメチル基、シクロヘキ セニルメチル基が挙げられ、これらの環には、メチル基、エチル基、メトキシ基 、エトキシ基、フッ素原子、塩素原子、臭素原子等が置換されていてもよい。

[0010]

水酸基をアシル化するための基としては、アシル基、カーバメート基が挙げられ、アシル基としては、アセチル基、プロピオニル基、ベンゾイル基、ピバロイル基等が挙げられ、カーバメート基としては、炭酸メチル基、炭酸エチル基、炭酸プロピル基、炭酸イソプロピル基、炭酸フェニル基等が挙げられる。

$[0\ 0\ 1\ 1]$

上記一般式 (1A) 又は(1B) において、Xで表される基としての β -D-グルコピラノシル基は、その 1 若しくは複数の水酸基がアシル化されていてもよく、特に、この基は炭素数 2 から 2 0 のアルカノイル基、低級アルコキシカルボニル基、及びベンゾイル基から選ばれる基で1もしくは複数の水酸基がアシル化されていてもよく、例えば、6-アセチル- β -D-グルコピラノシル基、6-カルボメトキシ- β -D-グルコピラノシル基が挙げられる。

Xで表される基としては、特に、 β -D-グルコピラノシル基、6-アセチル- β -D-グルコピラノシル基、6-カルボメトキシ- β -D-グルコピラノシル基であるのが好ましい。更には、 β -D-グルコピラノシル基、が好ましい。

[0012]

Yで表される基としては、炭素数1から6のパーフルオロ低級アルキル基が好ましく、特に、トリフルオロメチル基が好ましい。

Yで表される基としては、炭素数1から6の低級アルキル基が好ましく、特に、メチル基が好ましい。

Zで表される基としては、置換されていてもよい環状アルキル基が好ましく、 炭素数3~7の環状アルキル基が更に好ましく、特にシクロブチル基、シクロペンチル基が好ましい。また、Zで表される基としては、不飽和結合を有する低級 アルキル基も好ましく、不飽和結合を有する炭素数2~6のアルキル基が更に好ましく、特にアリル基、ビニル基が好ましい。Zで表される基としては、置換されていてもよい環状不飽和アルキル基が好ましく、炭素数4~7の環状アルキル 基が更に好ましく、特にシクロペンテニル基、シクロヘキセニル基が好ましい。

R1~R5で表される基としては、炭素数1から6の低級アルキル基、、炭素数1から6の低級アルキルチオ基が好ましく、特に、メチル基、エチル基、メチルチオ基、エチルチオ基が好ましい。

nとしては、1の整数が特に好ましい。

[0013]

又、一般式 (1A) 又は(1B) において、Yがトリフルオロメチル基であるのが 好ましい。 又、一般式 (1A) 又は(1B) において、Yがトリフルオロメチル基であり、nが1 であるのが好ましい。

又、一般式 (1A) 又は(1B) において、Yがトリフルオロメチル基であり、<math>nが1 であり、Xがβ-D-グルコピラノシル基(この基は炭素数 2 から 2 0 のアルカノイル基、低級アルコキシカルボニル基、及びベンゾイル基から選ばれる基で1 もしくは複数の水酸基がアシル化されていてもよい)であるのが好ましい。

[0014]

又、一般式 (1A) 又は(1B) において、Yがトリフルオロメチル基であり、nが 1であり、Xが β -D-グルコピラノシル基であるのが好ましい。

又、一般式(1A)において、Yがトリフルオロメチル基であり、nが1であり、Xが6-アセチル- β -D-グルコピラノシル基であるのが好ましい。

又、一般式 (1A) 又は(1B) において、Yがトリフルオロメチル基であり、nが1 であり、Xが6-カルボメトキシ- β -D-グルコピラノシル基であるのが好ましい。

[0015]

また、以下に示されるいずれかの化合物またはその医薬的に許容しうる塩が好ましい。

[0016]

1' -シクロブチルー4' - [(4 - エチルフェニル) メチル] - 5' -メチル-1H-ピラゾールー3' -O- $\beta -$ D-グルコピラノシド

1' -シクロペンチル-4' - [(4- エチルフェニル) メチル] -5' -メチ

 $\nu-1H-$ ピラゾー $\nu-3$ ' $-O-\beta-D-$ グルコピラノシド

1' -シクロヘキシルー $4' - [(4 - x + y) + y + y] - 5' - y + y - 1H - ピラゾールー<math>3' - O - \beta - D - \emptyset$ ルコピラノシド

[0017]

1' -シクロペンチルー4' - [(4- エチルフェニル) メチル] -5' -トリフルオロメチルー1H-ピラゾール-3' -O- (6-カルボメトキシ) - β - D-グルコピラノシド

1' -シクロヘキシル-4' - [(4- エチルフェニル) メチル] -5' -トリフルオロメチル-1H-ピラゾール-3' -O- (6-カルボメトキシ) - β - D-グルコピラノシド

[0018]

1' -シクロブチル-4' - [(4- エチルフェニル) メチル] -5' -メチル -1H-ピラゾール-3' -O- (6-カルボメトキシ) - β -D-グルコピラ ノシド

 $1' - \nu \rho D + \nu - 4' - [(4 - x + \nu \tau x - \nu) x + \nu] - 5' - x + \nu - 1H - \nu - 3' - 0 - (6 - \tau \mu x + \nu) - \beta - D - \gamma \nu \tau \nu - \gamma \nu$

1'-(3-シクロペンテン-1-イル)-4'-[(4- エチルフェニル) メチ

 $[\mu] - 5$, [-3] - 3, [-3] - 0 [6] - 3, [-3] -

[0019]

上記のうち、特に、以下に示される化合物またはその医薬的に許容しうる塩が 好ましい。

[0020]

【化4】

$$\begin{array}{c} \text{Et} \\ \text{CF}_3 \\ \text{OH} \\ \text{OH}$$

[0021]

本発明のピラゾール誘導体 (1A) 又は(1B) の製造方法の例として、例えば、X が β -D-グルコピラノシル基である場合、次に示す方法を用いることにより製造することができる。

[0022]

【化5】

[0023]

発明の化合物(11)で表される化合物は、例えば、1,2-ジヒドロ-4ー [(4 - エチルフェニル)メチル] - 5 - (トリフルオロメチル)- 3H-ピラゾール- 3- オン(4)の水酸基をtert-ブチルジメチルシリルクロライドで保護して(5)とし、光延法によってシクロブチルアルコールとピラゾール上の窒素を反応させて(6)とすることができる。ついで、(6)のTBS基を希塩酸で脱保護したのちに、2,3,4 ,6-テトラ-0-アセチル- α -D-グルコピラノシルブロマイド(8)と炭酸カリウム存在下、クロロホルム-水中で一晩反応させて、クロマトグラフィーなどを用い

て精製し、テトラ-0-アセチル中間体(9)を得、次いで水酸化ナトリウム水溶液で脱保護することにより(10)を得ることが出来る。得られた(10)の1級水酸基にクロロ炭酸メチルを反応させることにより(11)を得ることができる。

[0024]

上記の方法により製造した本発明のピラゾール-0-グリコシド誘導体は、常法の単離精製手段、例えば溶媒による抽出、クロマトグラフィー、結晶化によって 反応混合物から容易に分離し、かつ精製することが出来る。

[0025]

また、本発明化合物における水酸基は、生体内で水酸基に交換される適当な置換基により置換されていてもよい。例えば、水酸基の置換基としては、アシル基、カーバメート基が挙げられ、アシル基としては例えば、炭素数2から20のアルカノイル基、ベンゾイル基が挙げられ、カーバメート基としては例えば、低級アルコキシカルボニル基が挙げられる。

[0026]

本発明の一般式 (1A) 又は(1B) で示される化合物が塩の形態を成し得る場合、その塩は医薬的に許容しうるものであればよく、例えば、式中に酸性基が存在する場合の酸性基に対しては、アンモニウム塩、ナトリウム、カリウム等のアルカリ金属との塩、カルシウム、マグネシウム等のアルカリ土類金属との塩、アルミニウム塩、亜鉛塩、トリエチルアミン、エタノールアミン、モルホリン、ピペリジン、ジシクロヘキシルアミン等の有機アミンとの塩、アルギニン、リジン等の塩基性アミノ酸との塩が挙げることができる。式中に塩基性基が存在する場合の塩基性基に対しては、塩酸、硫酸、リン酸などの無機酸との塩、シュウ酸、酢酸、クエン酸、リンゴ酸、安息香酸、マレイン酸、フマル酸、酒石酸、コハク酸、グルタミン酸等の有機カルボン酸との塩、メタンスルホン酸、pートルエンスルホン酸等の有機スルホン酸との塩が挙げることができる。塩を形成する方法としては、一般式 (1A) 又は(1B) の化合物と必要な酸または塩基とを適当な量比で溶媒、分散剤中で混合することや、他の塩の形より陽イオン交換または陰イオン交換を行うことによっても得られる。

本発明の一般式 (1A) 又は(1B) で示される化合物にはその溶媒和物、例えば

水和物、アルコール付加物等も含んでいる。

[0027]

本発明において、一般式(1A)または(1B)で示される化合物またはその塩を有効 成分とする阻害剤は、医薬品として、特に糖尿病の治療に利用できる。

[0028]

本発明において、前記ピラゾール-0-グリコシド誘導体を医薬品として、例えば糖尿病治療薬として使用する場合には、経口投与もしくは非経口投与(筋肉内、皮下、静脈内、坐薬等)により投与される。上記目的のために用いる投与量は、目的とする治療効果、投与方法、治療期間、年齢、体重などにより決定されるが、経口もしくは非経口のルートにより、通常成人一日あたりの投与量として経口投与の場合で $1 \mu g \sim 1 0 g$ 、非経口投与の場合で $0.01 \mu g \sim 1 g$ を用いる。

[0029]

さらに、本発明のピラゾール-0-グリコシド誘導体を経口用製剤として調製す る場合には賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味 矯臭剤などを加えた後、常法により例えば錠剤、散剤、丸剤、顆粒剤、カプセル 剤、坐剤、溶液剤、糖衣剤、デボー剤、またはシロップ剤などとする。賦形剤と しては、例えば乳糖、コーンスターチ、白糖、ブトウ糖、ソルビット、結晶セル ロースなどが、結合剤としては例えば、ポリビニルアルコール、ポリビニルエー テル、エチルセルロース、メチルセルロース、アラビアゴム、トラガント、ゼラ チン、シェラック、ヒドロキシプロピルセルロース、ヒドロキシプロピルスター チ、ポリビニルピロリドン等が、崩壊剤としては例えばデンプン、寒天、ゼラチ ン末、結晶セルロース、炭酸カルシウム、炭酸水素ナトリウム、クエン酸カルシ ウム、デキストラン、ペクチン等が、滑沢剤としては例えば、ステアリン酸マグ ネシウム、タルク、ポリエチレングリコール、シリカ、硬化植物油等が、着色剤 としては医薬品に添加することが許可されているものが、矯味矯臭剤としては、 ココア末、ハッカ脳、芳香酸、ハッカ油、竜脳、桂皮末等が用いられる。これら の錠剤または顆粒剤には、糖衣、ゼラチン衣、その他必要により適宜コーティン グすることはもちろん差しつかえない。

注射剤を調整する場合には必要により p H調整剤、緩衝剤、安定化剤、保存剤などを添加し、常法により皮下、筋肉内、静脈内注射剤とする。

[0030]

【実施例】

以下の実施例により本発明を詳細に説明する。これらは本発明の好ましい実施 態様でありこれらの実施例によって限定されるものではない。

[0031]

実施例1

1' ーシクロブチルー4' ー [(4- エチルフェニル) メチル] ー <math>5' ートリフルオロメチルー1Hーピラゾールー3' ー $O-\beta$ ーDーグルコピラノシドの合成 工程1

4-[(4-エチルフェニル) メチル]-5-トリフルオロメチルー<math>3-O-t-ブチルジメチルシリルー1H-ピラゾールの合成

1,2-ジヒドロー4ー [(4-エチルフェニル) メチル) -5ートリフルオロメチルー3H-ピラゾールー3ーオン4.76g(17.6mmol) (J. Med. Chem 1996, 39, 3920-3928に記載の方法で調製)、イミダゾール1.57g (23.1mmol)をジメチルホルムアミド20mlに溶かし、tーブチルジメチルシリルクロライド2.98g (19.8mmol)を加えて室温で30分攪拌した。水100mlを加えて、酢酸エチルーヘキサン(2:1の混合溶媒)で3回抽出した。有機相を水洗し、硫酸ナトリウムで乾燥させて、濃縮し目的物6.9gを得た。(17.9mmol,定量的)

 $1_{\rm H-NMR}(300{\rm MHz},~{\rm CDC1_3})$ $\delta: 0.21~(6{\rm H,~s}),~0.93~(9{\rm H,~s}),~1.19~(3{\rm H,~t,~J}=7.6~{\rm Hz}),~2.59~(2{\rm H,~q,~J}=7.6~{\rm Hz}),~3.74~(2{\rm H,~s}),~7.09~(4{\rm H,~m})$ ESI-MS(m/z) $269~[({\rm M-TBS})^{-}]$

[0032]

工程2

1-シクロブチルー4-[(4-エチルフェニル)メチル]-5-トリフルオロメチル-3-O-t-ブチルジメチルシリルー1H-ピラゾールの合成

4-[(4-x+y)] + (4-x+y) +

フィン1.9g(7.2mmol)、シクロブタノール0.71g(9.8mmol)を無水テトラヒドロフラン15mlに溶かし、室温で攪拌した。アゾジカルボン酸ジエチルの40%トルエン溶液3.4ml(7.5mmol)をゆっくりと加えた。20分後、濃縮してヘキサン20mlを加え、沈殿を濾別後、濃縮した。シリカゲルカラム(ヘキサン→5%酢酸エチル/ヘキサン)で精製して目的物1.4g(3.3mmol)を得た。(51%)

 $\begin{array}{l} 1_{H-NMR}(300\text{MHz},~\text{CDC1}_3) ~\delta:~0.27~(6\text{H, s}),~0.96~(9\text{H, s}),~1.20~(3\text{H, t},~\text{J}=7),~2.26-2.34~(2\text{H, m}),~2.59~(2\text{H, q},~\text{J}=7.5~\text{Hz}),~2.54-2.67~(2\text{H, m}),~2.72~(2\text{H, s}),~4.67~(1\text{H, quint, J}=8.1~\text{Hz}),~7.06~(2\text{H, d},~\text{J}=8.5~\text{Hz}),~7.10~(2\text{H, d},~\text{J}=8.5~\text{Hz})~(2\text{M}/\text{z})~[323~(\text{M}-\text{TBS})^{-}] \\ \end{array}$

[0033]

工程3

1-シクロブチルー4- [(4-エチルフェニル)メチル]-5-トリフルオロメチル-1H-ピラゾール の合成

1-シクロブチルー4-[(4-x+v)フェニル)メチル]-5-トリフルオロメチルー3-Oーt-ブチルジメチルシリルー1Hーピラゾール1.4g(3.3mmo1)をテトラヒドロフラン25m1, メタノール5m1に溶かした後、1MーHC1水溶液を5m1加えて、室温で1晩攪拌した。水100m1を加え、酢酸エチル10m1で3回抽出した。無水硫酸ナトリウムで乾燥、濃縮後、シリカゲルカラム(ヘキサン $\rightarrow 5$ %酢酸エチル/ヘキサン)で精製して目的物0.84g(2.6mmo1)を得た。(78%)

 $\begin{array}{l} {\rm 1_{H-NMR}(300MHz,\ CDCl_3)} \quad \delta:\ 1.20\ (3H,\ t,\ J=7.5\ Hz),\ 1.70-1.90\ (2H,\ m),\ 2\\ .28-2.36\ (2H,\ m),\ 2.59\ (2H,\ q,\ J=7.5\ Hz),\ 2.55-2.68\ (2H,\ m),\ 3.80\ (2H,\ s),\ 4.75\ (1H,\ pseudo\ quint,\ J=8.1\ Hz),\ 7.10\ (2H,\ d,\ J=8.8\ Hz),\ 7.18\\ (2H,\ d,\ J=8.8\ Hz)\ ESI-MS(\ m/z)\ [325\ (M+H)^+],\ [323\ (M-H)^-] \\ \end{array}$

[0034]

工程4

1' -シクロブチルー4' - [(4- エチルフェニル) メチル] -5' -トリフルオロメチル -1H-ピラゾール-3' -O-(2,3,4,6-テトラアセチル) - β -D-グルコピラノシドの合成

1-シクロブチル-4-[(4-エチルフェニル)メチル]-5-トリフルオロ

[0035]

工程5

1' ーシクロブチルー4' ー $[(4-x+\nu)7x+\nu) \times +\nu]$ ー 5' ートリフルオロメチルー1Hーピラゾールー3' ー0ー β ーDーグルコピラノシドの合成 1' ーシクロブチルー4' ー $[(4-x+\nu)7x+\nu) \times +\nu]$ ー 5' ートリフルオロメチル ー1Hーピラゾールー3' ー0ー $(2,3,4,6-\tau)$ トラアセチル)ー β ー0ーグルコピラノシドの粗精製物2. 1gをエタノール20m1に溶かし、14N NaOH 水溶液14mlを加えて室温で攪拌した。15時間後、飽和食塩水150ml、水10mlを加え酢酸 150mlで3回抽出した。濃縮後、シリカゲルカラム(ジクロロメタン)170mlを加えのMHz、170mlの170

[0036]

実施例2

1' -シクロブチル-4' - [(4- エチルフェニル) メチル] -5' -トリフ

ルオロメチルー1Hーピラゾール-3' -O -O $(6-カルボメトキシ) - \beta - D$ - グルコピラノシドの合成

1' -シクロブチルー4' - [(4- xチルフェニル) xチル] - 5' - トリフルオロメチルー]Hーピラゾールー[3' -O-[β -D-グルコピラノシド [0.18g (0.32mmo1) e2, e4, e3-コリジン[2.0mlに溶かし、-50[0に冷却した。クロロ炭酸メチル[0.035ml (0.45mmo1) e50元に溶却して室温に戻した。[2 7時間後、酢酸エチル[20ml, [1M HCI水溶液[20ml[62ml[62ml[7ml $[]7ml<math>[]7ml{[}7ml{]}7ml{[}7ml{]}7ml{]}9ml{[}7ml{[}7ml{]}9ml{]}9ml{[}7ml{[}7ml{]}9ml{]}9ml{[}7ml{[}7ml{]}9ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{]}9ml{[}7ml{[}7ml{]}9ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml{[}7ml{[}7ml{[}7ml{[}7ml{]}9ml{[}7ml$

 $\begin{array}{l} 1_{H-NMR}(300\text{MHz}, \ \text{CDC1}_3) \quad \delta: \ 1.20 \quad (3\text{H, t, J} = 7.6 \ \text{Hz}), \ 1.71\text{-}1.86 \quad (2\text{H, m}), \ 2\\ .29\text{-}2.38 \quad (2\text{H, m}), \ 2.48 \quad (1\text{H, d, J} = 2.6 \ \text{Hz}), \ 2.60\text{-}2.68 \quad (2\text{H, m}), \ 2.60 \quad (2\text{H, q, J} = 7.6 \ \text{Hz}), \ 2.68 \quad (1\text{H, s}), \ 2.72 \quad (1\text{H, s}), \ 3.49\text{-}3.65 \quad (4\text{H, m}), \ 3.72 \quad (1\text{H, d, J} = 15.2 \ \text{Hz}), \ 3.79 \quad (3\text{H, s}), \ 3.87 \quad (1\text{H, d, J} = 15.2 \ \text{Hz}), \ 4.32 \quad (1\text{H, dd}), \ J = 12.0, \ 2.1 \ \text{Hz}), \ 4.48 \quad (1\text{H, dd, J} = 12.0, \ 4.1 \ \text{Hz}), \ 4.74 \quad (1\text{H, pseudo q}), \ 2.20 \quad (1\text{H, d, J} = 7.9 \ \text{Hz}), \ 7.10 \quad (4\text{H, s}) \\ MS(ESI) \quad \text{m/z} \quad [545 \quad (\text{M+H})^+], \quad [543 \quad (\text{M-H})^-] \\ \end{array}$

[0037]

実施例3

1' ーシクロペンチルー 4' ー [(4- エチルフェニル) メチル] ー <math>5' ートリフルオロメチルー1H-ピラゾールー3' ーO- β -D-グルコピラノシドの合成工程1

1-シクロペンチル-4-[(4-エチルフェニル)メチル]-5-トリフルオロ メチル-3-O-t-ブチルジメチルシリル-1H-ピラゾールの合成

実施例1の工程2と同様にシクロブタノールの代わりにシクロペンタノールを 用いて目的物を得た。

(86%)

工程2

1-シクロペンチル-4- [(4-エチルフェニル)メチル]-5-トリフルオロメチル-1H-ピラゾールの合成

実施例1の工程3と同様に、1-シクロペンチルー4-[(4-エチルフェニル)メチル]-5-トリフルオロメチルー3-O-t-ブチルジメチルシリルー1H-ピラゾールより目的物を得た。(95%)

 $1_{H-NMR}(300 \text{MHz}, \text{CDC1}_3)$ $\delta:1.20$ (3H, t, J=7.6Hz), 1.50-1.70 (2H, m), 1.80-2.10 (6H, m), 2.60 (2H, q, J=7.6Hz), 3.79 (2H, s), 4.53-4.68 (1H, m), 7.09 (2H, d, J=8.1Hz), 7.17 (2H, d, J=8.1Hz), 10.1-10.2 (1H, br) MS(ESI) m/z 339 [(M+H)+], [337 (M-H)-]

[0038]

工程3

1' -シクロペンチル-4' - [(4- xチルフェニル) yチル] -5' -トリフルオロメチル -1H-ピラゾール-3' -O- (2,3,4,6-テトラアセチル) - β -D-グルコピラノシドの合成

実施例 1 の工程 4 と同様に、1 ーシクロペンチルー 4 ー [(4 ーエチルフェニル) メチル] ー 5 ートリフルオロメチルー1Hーピラゾールより目的物の粗精製物を得た。

工程4

1' -シクロペンチルー4' - [(4- xチルフェニル) yチル] -5' -トリフルオロメチルー1H-ピラゾール-3' -O- β -D-グルコピラノシドの合成実施例1の工程5と同様に、1' -シクロペンチル-4' - [(4- xチルフェニル) y +ル] -5' -トリフルオロメチル -1H-ピラゾール-3' -O-

(2,3,4,6-テトラアセチル) $-\beta$ - D - ϕ ν - ν ν - ν

 $1_{H-NMR}(300 \text{MHz}, \text{CD}_3 \text{OD})$ $\delta = 1.19$ (3H, t, J = 7.6 Hz), 1.62-1.68 (2H, m), 1 .87-2.04 (6H, m), 2.57 (2H, q, J = 7.6 Hz), 3.32-3.45 (3H, m), 3.67 (1H, dd, J = 12.0, 5.0Hz), 3.78-3.82 (3H, m), 4.70 (1H, pseudo quint, J = 6.9 Hz), 5.30-5.37 (1H, m), 7.06 (4H, s) MS(ESI) m/z [501 (M+H)+], [499 (M-H)-]

[0039]

実施例4

1' -シクロペンチルー4' - [(4- エチルフェニル) メチル] -5' -トリフルオロメチルー1H-ピラゾール-3' -O-(6-カルボメトキシ)- $\beta-$ D-グルコピラノシドの合成

 $\begin{array}{l} 1_{H-NMR}(300\text{MHz}, \ \text{CDCl}_3) \quad \delta: \ 1.20 \quad (3\text{H}, \ \text{t}, \ \text{J} = 7.5 \ \text{Hz}), \ 1.60\text{--}1.70 \quad (2\text{H}, \ \text{m}), \ 1.84\text{--}1.94 \quad (2\text{H}, \ \text{m}), \ 1.98\text{--}2.04 \quad (4\text{H}, \ \text{m}), \ 2.55 \quad (1\text{H}, \ \text{d}, \ \text{J} = 2.3 \ \text{Hz}), \ 2.60 \quad (2\text{H}, \ \text{d}, \ \text{J} = 7.5 \ \text{Hz}), \ 2.75 \quad (1\text{H}, \ \text{d}, \ \text{J} = 2.1 \ \text{Hz}), \ 2.85 \quad (1\text{H}, \ \text{d}, \ \text{J} = 2.6 \ \text{Hz}), \ 3.4 \\ 7-3.63 \quad (4\text{H}, \ \text{m}), \ 3.72 \quad (1\text{H}, \ \text{dd}, \ \text{J} = 15.8, \ 1.2 \ \text{Hz}), \ 3.78 \quad (3\text{H}, \ \text{s}), \ 3.87 \quad (1\text{H}, \ \text{d}, \ \text{J} = 15.8 \ \text{Hz}), \ 4.36 \quad (1\text{H}, \ \text{dd}, \ \text{J} = 12.0, \ 1.8 \ \text{Hz}), \ 4.45 \quad (1\text{H}, \ \text{dd}, \ \text{J} = 12.0, \ 1.8 \ \text{Hz}), \ 4.66 \quad (1\text{H}, \ \text{pseudo quint}, \ \text{J} = 6.9 \ \text{Hz}), \ 5.14 \quad (1\text{H}, \ \text{d}, \ \text{J} = 7.9 \ \text{Hz}), \ 7.10 \quad (4\text{H}, \ \text{s}) \ \text{MS(ESI)} \ \text{m/z} \ [559 \quad (\text{M}+\text{H})^+], \ [557 \quad (\text{M}-\text{H})^-] \end{array}$

実施例1~4の構造を下記に示す。

[0040]

【化6】

実施例1の化合物

実施例2の化合物

実施例3の化合物

実施例4の化合物

[0041]

実施例5

ラット尿糖排出作用の評価

5週齢の雄性Wistar ラット(日本チャールスリバー株式会社より購入)を約一週間代謝ケージで予備飼育した後に実験に用いた。被験化合物をオリーブオイルに懸濁して、ラットの体重 1 kgあたり5mlの投与量となるように20mg/ml溶液を作製

した。

ラットを4時間絶食後、午前11時に被験化合物をラットに100mg/kg経口投与し た。投与直後から投与24時間後までの尿を採集し、尿量を測定後、グルコースオ キシダーゼ法にて尿中グルコース濃度を測定して一日あたり、個体あたりの尿へ のグルコース排泄量を計算した。

結果を表2に示す。

[0042]

【表1】 表1

試験化合物	<u>尿糖排泄量(m g)</u>
実施例2の化合物	6 5 6
実施例4の化合物	4 5 2

[0043]

上記から明らかのごとく新規ピラゾール誘導体は優れた尿糖排泄作用を示した

【発明の効果】

本発明の新規ピラゾール誘導体は優れた抗糖尿病作用を示し、医薬産業上極め て有用である。

【書類名】

要約書

【要約】

【課題】 治療効果の高い抗糖尿病薬を提供すること。

【解決手段】 下記式で表されるピラゾール-0-グリコシド誘導体又はその類縁体を、糖尿病治療薬として用いる。

【化1】

特願2001-131265

出願人履歴情報

識別番号

[000000066]

1. 変更年月日 [変更理由]

1991年 7月 2日 住所変更

住 所 名

東京都中央区京橋1丁目15番1号

味の素株式会社