

人类赖以生存的空气

日期:	时间:	姓名:
Date:	_ Time:	Name:

初露锋芒

学习目标

&

重难点

1、了解空气的主要成分,记住空气中各成分的体积分数;掌握空气中氧气体积分数的测定实验。

2、掌握分子的性质;掌握用粒子的观点解释某些常见的现象。

3、认识分子是保持物质化学性质的最小粒子;能用分子的观点来区别物理变化和 化学变化、纯净物和混合物。

掌握空气中氧气体积分数的测定实验,能利用相对原子质量进行简单的计算。

根深蒂固

知识点一、空气的组成

空气的主要成分是氮气和氧气,分别约占空气总体积的4/5和1/5。

空气的成分按体积计算如下表:

气体	氮气(N ₂)	氧气 (02)	稀有气体(氦气、	二氧化碳(CO ₂)	其他气体和杂质
			氖气、氩气等)		
占空气总体积的比例	78%	21%	0. 94%	0.03%	0. 03%

- 1. 空气中各气体的含量是体积分数,不是质量分数。
- 2. 氮气:是无色、无味的气体,密度比空气略小,难溶于水。氮气的化学性质不活泼。主要用途是用作保护气、合成氮肥等。
- 3. 氧气: 是无色、无味的气体,密度比空气大,不易溶于水。主要用途是供给呼吸和支持燃烧; 医疗、潜水、气焊、炼钢、宇航等都需要用到氧气。
- 4. 稀有气体: 氦、氖、氩、氪、氙等气体的总称。是无色、无味的气体,难溶于水。 化学性质很不活泼,一般情况下不与其他物质反应。通常作保护气、制成多种电光 源、用于激光技术; 氦用于飞艇填充,制造低温环境; 氙用于探照灯,医疗麻醉。

知识点二、测定空气中氧气含量的方法

1. 实验原理:

利用红磷在空气中燃烧,将集气瓶内氧气消耗掉,生成<u>五氧化二磷</u>白色固体,使密闭容器内压强减小;在大气压作用下,进入集气瓶内水的体积即为减少的氧气的体积。

磷+氧气 ──点燃 → 五氧化二磷

- 2. 实验装置:
- 3. 实验步骤:
 - (1) 将仪器连接好并检查装置的气密性。
 - (2) 在集气瓶底装入少量的水,再把剩余的容积分成五等份并做上记号。
 - (3) 用弹簧夹夹紧乳胶管。
 - (4) 在燃烧匙内放入过量的红磷。
 - (5) 点燃红磷迅速伸入集气瓶中,并把塞子塞紧。
 - (6) 红磷燃烧停止,待集气瓶冷却到室温后,打开弹簧夹。

- 4. 实验现象:
- (1) 红磷燃烧,发黄白光产生大量白烟并放出热量。
- (2) 打开弹簧夹后烧杯中的水倒吸入集气瓶中,进入水的体积约占集气瓶中空气体积的 1/5。
- 5. 实验结论:

氧气约占空气体积的 1/5。

注意:

- 1. 可燃物必须选用燃烧后生成物为固体的物质。不能选用木炭、硫等,因为木炭、硫燃烧产生的是气体物质, 且与所耗氧气体积相同,使瓶内外气压相等,水不会倒吸入瓶中。
- 2. 红磷必须过量,燃烧时才能使容器内氧气消耗完。
- 3. 红磷燃烧停止后,要等集气瓶内温度降至室温,方可打开弹簧夹。
- 4. 该实验还能得到的结论: 氮气(集气瓶内剩余的气体主要是氮气)具有不能燃烧、不支持燃烧和难溶于水的性质。
- 5. 实验后测得氧气的体积分数小于 21%的原因:
- (1) 红磷的量不足(则不能将集气瓶内空气中的氧气完全反应掉,集气瓶内水面上升不到原瓶内空气体积的 1/5,导致测得空气中氧气的体积分数偏小)。
- (2)装置漏气(当集气瓶内氧气耗尽时,瓶内压强减小,瓶外空气会进入集气瓶内,导致进入水的体积减小,测得的氧气的体积分数偏小)。
- (3)装置未冷却到室温就打开弹簧夹(温度较高气体压强较大,进入瓶内水的体积减小,引起测定结果偏低)。 6.测定结果大于 21%的原因:
- (1) 点燃红磷前未用弹簧夹夹紧乳胶管(红磷燃烧放热会使部分空气由导管逸出,烧杯水中冒气泡;最后造成水进入集气瓶的体积大于 1/5)。
- (2) 将点燃的燃烧匙伸入瓶内太慢(放出的热将瓶内的部分空气赶出瓶外,冷却后打开止水夹,进入集气瓶水的体积大于 1/5)。

知识点三、分子

- 1. 分子是真实存在的:
- (1) 能闻到花香酒香及品红的扩散等现象,充分说明物质是由分子等微粒构成的,分子在不断地运动。
- (2) 运用现代科学技术手段已观察到了一些分子和原子,也充分证明分子是真实存在的。
- 2. 分子的定义: 分子是保持物质化学性质的一种粒子。
- (1)构成物质的每一个分子与该物质的化学性质是一致的,分子保持的是物质的化学性质,如氧气的化学性质由氧分子保持,二氧化碳的化学性质由二氧化碳分子保持。

- (2)分子不保持物质的物理性质。物质的物理性质(如颜色、状态)是由大量分子聚集在一起才能表现出来的,是宏观现象,不是单个分子能表现出来的。
- 3. 分子的性质:
 - (1)分子的质量和体积都很小。
 - (2)分子在不断地运动。温度越高分子运动的速率越快,如阳光下湿衣物干得快。
- (3)分子之间有<u>间隔</u>。气体的分子之间间隔较大,液体和固体的分子之间间隔较小。气体比液体和固体容易压缩,不同液体混合后的总体积小于二者的原体积之和,都说明分子之间有间隔。
- (4) 同种物质的分子性质相同,不同种物质的分子性质不同。我们都有这样的生活体验: 若口渴了,可以喝水解渴,吃几块冰块也可以解渴,这就说明: 水和冰都具有相同的性质,因为水和冰都是由水分子构成的,同种物质的分子,性质是相同的。

注意:

- 1. 构成物质的微粒具有质量小、体积小、不断运动、有间隔等基本特征。
- 2. 分子是构成物质的一种粒子, 而不是唯一的微粒, 构成物质的微粒还有原子、离子。
- 3. 分子是由原子构成的,不同分子的构成是不同的。如 1 个水分子是由两个氢原子和一个氧原子构成的,而 1 个氢分子是由两个氢原子构成的。

知识点四、从分子的观点理解有关概念

1. 物理变化和化学变化:由分子构成的物质,发生物理变化时,分子本身没有发生变化,即没有生成新物质。如水的三态变化,只是水分子的聚集状态改变了,水分子本身并没有变。

当物质发生化学变化时,分子本身发生了改变,生成了其他物质的分子。如水在通电条件下分解生成氢气和氧气,这时水分子就变成了氧分子和氢分子,即在化学变化中分子本身发生了改变。

水分子分解示意图

- 2. 纯净物和混合物:从分子的观点看,由同种分子构成的物质是纯净物;由多种分子构成的物质是混合物。在混合物中各成分是不确定的,所以混合物也就不会保持一定的性质;而纯净物中只有一种分子,所以纯净物具有确定的物理性质和化学性质。
- 3. 物理变化和化学变化的本质区别在于变化后分子是否发生了改变。

知识点五、原子

- 1. 原子的定义: 原子是化学变化中的最小粒子。
- 2. 原子的性质(与分子相似):
- (1)原子的质量和体积都很小。
- (2)原子在不断地运动。
- (3)原子之间一般都有间隔。
- (4)同种原子性质相同,不同种原子性质不同。
- 3. 分子与原子的比较:

	分子	原子
	(1) 分子是保持物质化学性质的一种	(1)原子是化学变化中的最小粒子
区别	粒子	(2)原子在化学变化中不可再分
	(2) 分子在化学变化中可以再分	(2) 原了任化子文化中小可再为
	(1) 原子可以构成分子,分子在化学	变化中可以分成原子
联系	(2) 分子和原子都是构成物质的粒子	,都可以直接构成物质
	(3) 分子比构成它的原子大	

化学反应的实质:在化学变化中,分子分成更小的粒子——原子,原子再重新组合成新的分子,这就是化学 反应的实质。化学反应的过程实质上是构成物质的分子分裂为原子、原子重新组合成新的分子的过程。所以说 原子是化学变化中的最小微粒,在化学变化中不能再分成更小的粒子。

元素是同一类原子的总称

知识点六、原子的构成

1. 原子是由下列粒子构成的:

原子由原子核和核外电子(带负电荷)构成,原子核由质子(带正电荷)以及中子(不带电)构成,但并不是所有的原子都是由这三种粒子构成的。例如:普通的氢原子核内没有中子。

2. 原子中的等量关系:核电荷数=质子数=核外电子数

在原子中,原子核所带的正电荷数(核电荷数)就是质子所带的电荷数(中子不带电),每个质子带1个

单位正电荷,每个电子带一个单位负电荷,原子整体是呈电中性的粒子。

3. 原子内部结构揭秘一散射实验(如下图所示):

1911年,英国科学家卢瑟福用一束平行高速运动的 α 粒子 (α 粒子是带两个单位正电荷的氦原子) 轰击金箔时,发现大多数 α 粒子能穿透金箔,而且不改变原来的运动方向,但是也有一小部分 α 粒子改变了原来的运动路径,甚至有极少数的 α 粒子好像碰到了坚硬不可穿透的质点而被弹了回来。实验结论:

- (1) 原子核体积很小,原子内部有很大空间,所以大多数α粒子能穿透金箔;
- (2) 原子核带正电, α粒子途经原子核附近时,受到斥力而改变了运动方向;
- (3) 金原子核的质量比α粒子大得多, 当α粒子碰到体积很小的金原子核被弹了回来。

注意:

- 1. 原子是由居于原子中心带正电的原子核和核外带负电的电子构成,原子核又是由质子和中子构成,质子带正电,中子不带电;原子核所带正电荷(核电荷数)和核外电子所带负电荷相等,但电性相反,所以整个原子不显电性。
- 2. 区分原子的种类,依据的是原子的质子数(核电荷数),因为不同种类的原子,核内的质子数不同。

知识点七、相对原子质量

1. 概念:以一种碳原子质量的 1/12 为标准,其他原子的质量跟它相比较所得到的比,就是这种原子的相对原子质量(符号为 Ar)。根据这个标准,氢的相对原子质量约为 1,氧的相对原子质量约为 16。

常见元素相对原子质量:

核电荷数	1	6	7	8	11	12	13	15	16	17	19	20	26	29
元素	Н	С	N	0	Na	Mg	A1	Р	S	C1	K	Ca	Fe	Cu
相对原子质量	1	12	14	16	23	24	27	31	32	35.5	39	40	56	64

2. 计算式:

3. 化合物式量(相对分子质量): 化学式中各原子的相对原子质量的总和就是化合物式量,用符号 M_r表示。 常见元素相对原子质量

注意:

- 1. 相对原子质量只是一个比值,单位是"1"(一般不读也不写),不是原子的实际质量。
- 2. 每个质子和每个中子的质量都约等于 1 个电子质量的 1836 倍,即电子质量很小,跟质子和中子相比可以忽略不计。原子的质量主要集中在质子和中子(即原子核)上。
- 3. 在相对原子质量计算中,所选用的一种碳原子是碳 12,是含 6 个质子和 6 个中子的碳原子,它的质量的 1/12 约等于 $1.66\times10^{-27}\,\mathrm{kg}$ 。
- 4. 几种原子的质子数、中子数、核外电子数及相对原子质量比较:

原子种类	质子数	中子数	核外电子数	相对原子质量
氢	1	0	1	1
碳	6	6	6	12
氧	8	8	8	16
钠	11	12	11	23
氯	17	18	17	35. 5
铁	26	30	26	56

通过分析上表,得到以下结论:

- (1) 质子数=核外电子数;
- (2) 相对原子质量≈质子数+中子数;
- (3) 原子核内质子数不一定等于中子数;
- (4) 原子核内质子数不同,原子的种类不同;
- (5) 不是所有的原子核内都有中子(或普通的氢原子核内无中子)。
- 5. 以 Fe₂0₃为例计算物质的化合物式量:

Fe₂O₃的化合物式量=56×2+16×3==160

枝繁叶茂

【例 1】空气中氮气的体积分数大约是()

A. 21%

B. 31% C. 50%

D. 78%

【答案】D

举一反三:

【变式】下列关于空气的说法正确的是()

A. 空气的成分按体积分数计算,大约是: 氮气 79%,氧气 20%,稀有气体 0.94%,二氧化碳 0.03%,其他气 体和杂质 0.03%

B. 空气的成分按质量分数计算, 大约是: 氮气 78%, 氧气 21%, 稀有气体 0.94%, 二氧化碳 0.03%, 其他气 体和杂质 0.03%

- C. 空气中各气体成分及其含量一定是固定不变的
- D. 空气中含量最多的气体是氮气

【答案】D

【例 2】为了测定空气的成分,按右图所示装置做实验:

- (1) 将燃烧匙中过量的红磷点燃后放入集气瓶中,能观察到的现象
- (2) 反应停止, 待集气瓶冷却后打开止水夹, 烧杯中的水

,约达到集气瓶内空气体积的 为止。

- <u>点燃</u> → 氮化镁(固体) (4) 已知镁+氧气—<u>点燃</u> **→**氧化镁(固体) 镁+氮气— 根据上述反应推论,能否用镁代替红磷测定空气成分呢?
- 【答案】(1)红磷在空气中燃烧,产生大量白烟,放出热量
 - (2) 沿导管进入集气瓶中 1/5
 - (3) 空气中含有氧气,大约占空气总体积 1/5
 - (4) 不能

举一反三:

【变式】如图所示,在一个具有刻度和可以左右滑动的活塞的玻璃容器里放入白 磷(足量),活塞左端管内密封有空气,右端的管口跟空气连通。将玻璃容器固定 在盛有80℃热水(恒温)的烧杯上,进行实验(白磷被加热到40℃时即能着火

燃烧)。试回答:

- (1) 实验过程中可观察到: 白磷燃烧,产生_____,活塞先向右移动(白磷燃烧放热使气体膨胀),燃烧停止 冷却后再向左移动,最终停在刻度 处。
- (2) 由此实验可以得出,空气中氧气的体积约占空气体积的

【答案】(1) 白烟 4

(2) 1/5

【例3】下列关于分子的说法中,错误的是()

- A. 分子在化学变化中发生变化
- B. 分子是保持物质化学性质的最小粒子
- C. 冰、雪、露水的分子都是水分子
- D. 液态物质的分子肉眼看得见, 气态物质的分子肉眼看不见

【答案】D

举一反三:

【变式1】下列物质由分子直接构成的()

A. 铁

B. 水 C. 氯化钠

D. 金刚石

【答案】B

【变式 2】下列关于分子和原子的说法,正确的是()

- A. 分子构成物质,原子也能直接构成物质
- B. 分子不停地运动,原子静止不动
- C. 在化学反应前后,分子和原子的种类保持不变
- D. 不同种类的原子,不能相互结合成分子

【例 4】用分子的观点解释下列现象:

- (1) 为什么把湿衣服晾在太阳能晒着的地方干得快?
- (2) 在一定温度下,一定量的气体受压时,体积为什么缩小?
- 【答案】(1)太阳晒着的地方温度高,分子运动的速度快,水分蒸发的快,因此衣服干得就快。
 - (2) 气体分子之间有较大的间隔,气体受压时,气体分子间的间隔缩小,因此气体所占的体积也减小。

【例 5】右图中不同的球代表不同元素的原子。

下列说法中错误的是()

A. 该反应的反应物可能属于氧化物

- B. 该反应的反应物属于化合物
- C. 该反应类型为分解反应
- D. 该反应生成物都属于化合物

【答案】D

【例 6】(1)向容积为 250ml 的细颈玻璃仪器 A(如下图所示)中加水至虚线处,再滴几滴红墨水,一段时间 后, A 中的现象是_____, 说明____。

(2)继续向 A 中加酒精至刻度线处(凹液面最低处正好与刻度线相切),塞紧玻璃塞,将 A 中液体倒转 摇匀,重复两次。静置一段时间后,A中的现象为 ______,说明____,说明_____(仪 器A细颈部分的作用是便于观察液面变化)。

【答案】(1)水由无色变成红色

分子在不停地运动

(2) 液面低于刻度线 分子间存在间隔

举一反三:

【变式1】生活中的下列现象,用分子的相关知识解释不正确的是()

- A. 湿衣服晾在太阳底下干得快,说明分子运动速率与温度有关
- B. 成熟的菠萝蜜会散发出浓浓的香味,说明分子在不断地运动
- C. 水沸腾时, 掀起壶盖, 说明分子大小随温度升高而增大
- D. 液化石油气须加压后贮存在钢瓶中,说明分子之间有间隙

【答案】C

【变式 2】下列现象或事实,用分子的相关知识加以解释,其中不正确的是()

	现象或事实	解释
A	热胀冷缩	分子大小随温度改变而改变
В	酒香不怕巷子深	分子不断地运动
С	氧气可供人呼吸,一氧化碳有毒	构成物质的分子不同,物质的性质不同

D 水通电后生成氢气和氧气	在化学变化中分子可以再分
【答案】A	
【例7】不论哪种物质,都是由极小的原子组成	的,这种看法是于 1808 年提出的, 称为()
A. 道尔顿原子说 B. 法拉第原子说 C.	. 阿伏加德罗原子说 D. 波意尔原子说
【答案】A	
【例8】原子是由居于原子中心的带电的	的
电量和核外电子所带的电量,但电性_	,因此原子电性。
【答案】正 原子核 负 电子 相等	相反 不显
【例9】氢原子核内有一个质子,下面的推论正	确的是()
A. 氢的原子核内必然有一个中子 B.	. 氢原子中必然有一个电子
C. 氢原子必然带一个单位正电荷 D.	. 氢原子核内必然有一个电子
【答案】B	
举一反三:	
【变式1】原子核由和两种粒子	构成,其中带正电,不带电。
【答案】质子 中子 质子 中子	
【变式2】已知某一原子的核电荷数,可以确定	它的())
A. 相对原子质量 B. 质子数 C.	中子数与质子数的和 D. 中子数
【答案】B	
【例 10】据英国《自然》杂志报道,科学家最过	近研制成了以锶原子做钟摆的"光晶格钟",成了世界上最精
确的钟。已知一种锶原子的相对原子质量为88,	其质子数是 38,则这种锶原子的核外电子数为()
A. 38 B. 50 C. 88	D. 126
【答案】A	
【例 11】某原子的质量是 2. 657×10 ⁻²⁶ Kg,一个	、碳原子的质量是 1.993×10 ⁻²⁶ Kg,该原子的相对原子质量是
()	
A. 16 g B. 1/16 C. 16 D. 2	$2.657 \times 10^{-26} \mathrm{Kg/12}$
【答案】C	
【例 12】 写出下列物质化学式并计算其化合物	式量(写出计算过程)。
(1) 一氧化碳	;
(2) 氧化铝	0
【答案】 (1) CO: 12+16 ==28 (2) Al ₂ (0_3 : $27 \times 2 + 16 \times 3 == 102$

举一反三:

【变式】已知铁的相对原子质量为 56, 核电荷数为 26, 则铁原子中质子数为_____个, 中子数为_____个,核外电子数为 _____个。

【答案】26 30 26

【例 13】填空

- a. 空气中氮气与氧气的体积比约为____。
- b. 小亮同学利用如图所示的装置测定空气里氧气的含量. 他先在燃烧匙中放入足量的红磷,塞紧橡皮塞,然后用凸透镜聚光照射集气瓶中的红磷。

- (1)由于凸透镜的聚光作用,使红磷的温度______,红磷燃烧;燃烧停止后,燃烧匙里仍有红磷,燃烧停止的原因是。
- (2) 待完全反应冷却到常温后,打开弹簧夹观察到的实验现象是_____,说明____。
- (3) 实验中不能用木炭代替红磷,原因是 。
- c.下图是水分子分解过程示意图,请你从宏观、微观两个方面写出获得的信息。

a. 【答案】4:1

b. 【答案】

- (1) 达到它的着火点 氧气耗尽
- (2) 水进入集气瓶中,约占集气瓶容积的五分之一 氧气约占空气总体积的五分之一

(3) 木炭燃烧生成二氧化碳气体,集气瓶内的气体没有减少

c【答案】

- (1)分子可以分成原子
- (2) 原子在化学变化中不能再分
- (3)每个水分子由2个氢原子和1个氧原子构成
- (4)水通电分解生成氢气与氧气(或水由氢、氧两种元素组成)

B. 品红放入水中,整杯水逐渐变红

【练习1】按体积	门算,空气中含	量最多的是()	
A. 氧气	B. 氮气	C. 稀有气体	D. 水蒸气
		深",从化学的角度	来解释是由于()
A. 分子在不断	地运动	B. 分子间有间隔	i
C. 分子是由原	子构成的	D. 分子在化学变	化中发生了变化
【练习3】"墙角	数枝梅,凌寒独	自开,遥知不是雪,	为有暗香来"(王安石《梅花》)。诗人在远处就能闻
到梅花香味的原因	因是 ()		
A. 分子间有	间隔	B. 分子在	三不断运动
C. 分子的质量	量和体积都很小	D. 分子:	分裂成原子
【练习4】保持水	:(H ₂ 0)的化学作	性质的粒子是 ()	
A. 水分子		B. 氢原子	
C. 氧原子		D. 氢原子和氧原子	
【练习5】生活中	的现象可以用分	子等微粒的知识加以	解释,其中正确的是()
A. 铝锭难被压纳	富,因为铝原子间	门没有间隙	
B. 在花园里可鸣	臭到花香,因为 允)子在不断运动	
C. 石油气加压局	 后贮存在钢瓶中,	因为气体分子体积很	小
D. 温度计里的录	反柱下降,因为 原	 手子随温度的降低而变	沙
【练习6】2008年	F5月12日,我	国汶川发生大地震。	为搜救埋在废墟下的幸存者,调用了许多搜救犬。搜救
犬能根据人体发出	出的气味发现幸存	字者。从微观的角度分	析搜救犬能发现幸存者的原因是()
A. 分子的质量	量很小	B. 不同分子性质	不同
C. 分子不断运	运动	D. 分子间有间隔	j
【练习7】压瘪的]乒乓球放入热水	中重新鼓起,是因为	球内的气体 ()
A. 分子间隔增	大 B. 分子个	` 数增多	子质量增大 D. 分子体积增大
【练习8】某同学	为探究分子的特	性,设计了如下四个	实验,其中能说明分子在不断运动的是()
A. 100mL 酒精 ⁵	和 100 mL 水混合	在一起体积小于 200	mL

- C. 在过氧化氢溶液中加入二氧化锰后得到了氧气
- D. 两支分别装有相同体积空气和水的注射器, 前者比后者容易压缩

【练习9】下列对所给事实的解释中,不正确的是()

- A. 电解水可以生成氢气和氧气,说明分子可分
- B. 火车铁轨夏天膨胀——铁原子的体积发生改变
- C. 水沸腾时, 掀起壶盖, 说明分子之间的间隔大小随温度升高而增大
- D. 二氧化碳能灭火而一氧化碳能燃烧——二氧化碳和一氧化碳的分子构成不同

【练习10】写出下列物质化学式并计算其式量(写出计算过程)。

(1) -W	
(エノ 小	

(2) 碳酸钙 。

【答案与解析】

- 1. 【答案】B 2. 【答案】A 3. 【答案】B 4. 【答案】A
- 5.【答案】B 6.【答案】C 7.【答案】 A 8.【答案】B 9.【答案】B
- 10. 【答案】 (1) H₂0: 1×2+16==18 (2) CaCO₃: 40+12+16×3==100