Basics of human genetics and terminologies

Dr Ngo Bitoungui Valentina J
Faculty of Medicine and Pharmaceutical Sciences, University of Dschang
National Public Heath Laboratory, Yaoundé, Cameroon

Learning Objectives

- ☐ Understand the basics of genetics
- ☐ Explain the relation of genes to chromosomes
- ☐ Learn to draw and analyse pedigrees

- Heredity: Transmission of traits from one generation to their descendants
- Traits: a distinguishing characteristic that determines a person's appearance
- Genome: the total DNA or biological information present in a cell or an organism
- DNA (deoxyribonucleic acid): the genetic information responsible for the development and function of an organism
 - is a polymer of four simple nucleic acid units called nucleotides

DNA can be found in:

- Chromosomes in nucleus of eukaryotes
- Mitochondria

Nucleus DNA

Mitochondrial DNA

Structure of DNA base pairs base pairs nucleotide sugar-phosphate backbone hydrogen bonds phosphate sugar @ Encyclopædia Britannica, Inc.

(a)

nitrogencontaining

bases

- Chromosomes: structure found inside the nucleus of a cell made of several DNA molecules
- A Human cell contains 23 pairs of chromosomes
- Each chromosome has 2 chromatids joint by a centromere
- Each chromatid contains a DNA molecule
- Every cell in our body has the same DNA

Karyotype: Number and appearance of chromosomes in the nucleus of a eukaryotic cell

Karyotypes

Chromosomes structure and Human genome

 Each chromosome pair contain two similar DNA molecules, one from each parent

Chromosome structure and the Human genome

Chromosomes structure and Human genome

- The total DNA of these chromosomes is called human genome.
- Most human cells are diploid and each cell contains a total of 2m of DNA.
- The long DNA interact with nucleoproteins to form nucleosomes
- A group of nucleosomes (about six) are further supercoiled to form a more condensed structure called chromatin fibres

Chromosomes structure and Human genome

Condensation of chromatin

 The chromatin fibres are further supercoiled to form loops and condensed to form chromosomes.

- Gene is the basic physical and functional unit of heredity
- Some encode proteins that form the shape and characters of the organism.
- Gene is present on the chromosome in a site called Locus

Alleles

- Each pair of genes carries the code for a certain character
- As chromosomes are present in pairs,
 each gene is also present twice, each one
 is called an allele
- The two alleles although carry the same character, however, may be different forms of this character

- Homozygote: The presence of two identical alleles at a particular gene locus
- Heterozygote: when the two alleles different

- Phenotype: an individual's observable traits: height, skin/eye color...
- Genotype: genetic contribution to the phenotype

- Dominant: is always expressed when present
- Recessive: is only expressed when no dominant genes are present.
 - ☐ dominant allele + dominant allele = **dominant phenotype**
 - dominant allele + recessive allele = dominant phenotype
 - □ recessive allele + recessive allele = recessive phenotype

- The expression of a gene is a series of chemical syntheses and reactions leading to the production of a protein:
- First step, synthesis of an mRNA: this is TRANSCRIPTION.
- Second stage, the mRNA is "read" allowing the synthesis of the protein: this is TRANSLATION.

Structure of a gene

- Exons: are coding sequences of a gene that can be translated to protein
- •Introns: are non-coding nucleic acid within a gene that separate exons and does not code for proteins

Some chromosomes are richer in genes than others

Number of Nucleotides in Exons

- DNA sequence in any two people is 99.9% identical
- Only 0.1% is unique!

What makes the genome unique?

A change in the usual DNA sequence at a particular gene locus (Mutation) can occur and change the outcome.

```
Original sequence:
5'-GCC ATT TCA ACT GCC TGC AGC 3'
           MUTATION
5'-GCC ATT TCG AGC CTG CAC TAG C 3'
                                       insertion
              shifting the reading frame
5'-GCC ATT TCG CCT GCA CTA GC 3'
                                       loss
```

Example

Abnormal Red Blood Cell

Normal Red Blood Cell

Nucleotide

What is a Pedigree

A family tree is a genealogical chart showing the ancestry, descent, and relationship of all members of a family

- Provides a clear record of genetic information in a family
- Provides medical data
- Demonstrates biological relationships
- A tool for establishing the pattern of inheritance
- Used to calculate risks
- Identifies at-risk family members
- Can be used as a psychosocial tool

Pedigree Rules

- Must be easy to read
- Must use standardized symbols
- Indicate the proband/index person with an arrow
- Indicate when a person is diseased
- 3 generations
- Multiple miscarriages can be indicative of genetic disorders
- If possible add age of onset of condition
- Be vigilant of the way you ask questions (E.g. Marriage)
- For research label all individuals who you have taken a sample for

Can someone else understand your pedigree??

Pedigree Key

Individuals

Pedigree Key

Drawing a Pedigree

Step 1: Start with the proband/consultant (male or female)

Step 2: If proband/consultant is an adult draw their partner

Step 3: Draw the children, miscarriages or stillbirths of the proband

Drawing a Pedigree

Step 4: Draw children from previous relationships

Step 5: Draw the siblings & half siblings of the proband/consultant and of their partner

Drawing a Pedigree

Step 6: Draw the parents of the proband/consultant and partner

Remember to add all the important information (eg: death, medical conditions)

NOTE: If the proband is a child, you will draw their siblings, parents and half siblings.

Then you will draw uncles and aunts and grandparents

Merci