DLCV HW4 Report

B04901069 電機三 林志皓

Problem 1 VAE

1. Architecture & Implementation Details

VAE:			
Layer (type)	Output Shape	Param #	Connected to
input 1 (InputLayer)	(None, 64, 64, 3)	0	
conv2d 1 (Conv2D)	(None, 64, 64, 128)	1664	input 1[0][0]
conv2d 2 (Conv2D)	(None, 64, 64, 256)	131328	conv2d 1[0][0]
max pooling2d 1 (MaxPooling2D)	(None, 16, 16, 256)	0	conv2d 2[0][0]
conv2d 3 (Conv2D)	(None, 16, 16, 512)	524800	max pooling2d 1[0][0]
conv2d 4 (Conv2D)	(None, 16, 16, 512)	1049088	conv2d 3[0][0]
max pooling2d 2 (MaxPooling2D)	(None, 4, 4, 512)	0	conv2d 4[0][0]
flatten 1 (Flatten)	(None, 8192)	0	max pooling2d 2[0][0]
dense 1 (Dense)	(None, 1024)	8389632	flatten 1[0][0]
dense 2 (Dense)	(None, 1024)	8389632	flatten 1[0][0]
lambda 1 (Lambda)	(None, 1024)	0	dense 1[0][0] dense 2[0][0]
reshape 1 (Reshape)	(None, 1, 1, 1024)	0	lambda 1[0][0]
conv2d transpose 1 (Conv2DTrans	(None, 4, 4, 1024)	16778240	reshape 1[0][0]
conv2d transpose 2 (Conv2DTrans	(None, 16, 16, 512)	8389120	conv2d transpose 1[0][0]
conv2d 5 (Conv2D)	(None, 16, 16, 256)	524544	conv2d transpose 2[0][0]
conv2d transpose 3 (Conv2DTrans	(None, 32, 32, 128)	131200	conv2d 5[0][0]
conv2d transpose 4 (Conv2DTrans	(None, 64, 64, 3)	1539	conv2d transpose 3[0][0]
Total params: 44,310,787 Trainable params: 44,310,787 Non-trainable params: 0			

Structure of VAE

在 encoder 的部分,我用 convolution & maxpooling layers 讓影像越來越小,深度越來越深,接近 latent space 的時候 flatten 成兩條分別為 1024 維的 mean & variance layer,再依據公式合成為 latent space。

而在 decoder 的部分, 我先將 latent space reshape 為(batchs, 1, 1, 1024) 在使用許多層的 convolutionTranspose 將其放大至原圖大小(64, 64, 3)

Optimizer 我使用 Adam(Ir = 1e-4), 在第一個 epoch 時就能達到還不錯的水準, 而我在 KL lambda 值得選擇上做過許多嘗試,最後選擇 1e-5 這個數值,最後 reconstruct & random generate 的效果都不算差。

2.Learning Curve

Fig1_2.jpg

3. 10 reconstruction Images of test images

4. 32 Random generated Images

Fig1_4.jpg

5.tSNE

Fig1_5.jpg (藍色為男性,紅色為女性)

6.What I observe & learn from implementing VAE

在訓練的過程中,我認為最關鍵的是 KL lambda 值的選擇。這個值是 reconstruction & random generation 之間的平衡取捨,我測試過許多不同的值,甚至有設過 0,generate 出來的東西跟人臉還是有一定的相似度,那時我覺得滿神奇的,後來想了想,推測是就算沒有 variance 算進去,mean 的distribution 還是有一定程度的規則可以產生出圖(雖然 quality 不好就是了)經過實驗,我最終選擇 1e-5 這個數值,產生如上的結果。

Problem 2 GAN

1. Architecture & Implementation Details

Layer (type)	Output Shape	Param #	
input 1 (InputLayer)	(None, 1024)	Θ	
reshape 1 (Reshape)	(None, 1, 1, 1024)	Θ	
conv2d transpose 1 (Conv2DTr	(None, 4, 4, 1024)	16778240	
conv2d transpose 2 (Conv2DTr	(None, 16, 16, 512)	8389120	
conv2d 1 (Conv2D)	(None, 16, 16, 256)	524544	
conv2d transpose 3 (Conv2DTr	(None, 32, 32, 128)	131200	
conv2d transpose 4 (Conv2DTr	(None, 64, 64, 3)	1539	
Total params: 25,824,643 Trainable params: 25,824,643 Non-trainable params: 0			

Generator

Discriminator:		
Layer (type)	Output Shape	Param #
input 2 (InputLayer)	(None, 64, 64, 3)	Θ
conv2d 2 (Conv2D)	(None, 64, 64, 128)	1664
conv2d 3 (Conv2D)	(None, 64, 64, 256)	131328
max pooling2d 1 (MaxPooling2	(None, 16, 16, 256)	Θ
conv2d 4 (Conv2D)	(None, 16, 16, 512)	524800
conv2d 5 (Conv2D)	(None, 16, 16, 512)	1049088
max pooling2d 2 (MaxPooling2	(None, 4, 4, 512)	Θ
flatten 1 (Flatten)	(None, 8192)	Θ
dense 1 (Dense)	(None, 1024)	8389632
dense 2 (Dense)	(None, 1)	1025
Total params: 10,097,537 Trainable params: 10,097,537 Non-trainable params: 0		

Discriminator

我使用上一題的結果,將 VAE 的 encoder 當作 GAN 的 discriminator,因為 encoder 已被訓練,可萃取出影像的特徵(但這邊拿掉 variance 的那層,留下 mean 的),因此再加上一個一維 Full connected layer,即是一個還不錯的 discriminator。

而 generator 的方面,我也是用 VAE 的 decoder 進行實作,因此在訓練初期即能產生一定程度的影像。

而我的 generator 進步速度較跟不上 discriminator,因此在訓練 generator 時我會用較多張的 image,比例跟訓練 discriminator 大概是 5 倍左右,才比較不會有其中一方爛掉的狀況發生。

2. Learning curve

Fig2_2.jpg

綠色: Loss of Discriminator when feeding fake images

藍色: Loss of Generator

紅色: Loss of Discriminator when feeding valid images

依據圖中可看出 Discriminator 對於 fake image 能越來越分辨出來,而 generator 的 loss 並無明顯下降,甚至有點上升,個人推測是因為 generator 的進步速度跟不太上 discriminator 的關係。

3. 32 Random generated images

Fig2_3.jpg

4. What I've observed and learned from implementing GAN

我認為 GAN 比起 VAE 更加難以訓練,因為希望 discriminator 和 generator 能同時互相督促對方進步,因此每次訓練的張數、兩者之間訓練量的比例都必須多加嘗試,才能讓兩者都有在訓練的狀態。我有很多次失敗的例子,是參數沒調好,導致 discriminator 因為 fit 太多張 valid image 而導致幾乎只會預測出 1 的結果,對於 generator 的訓練就沒有效果;因此試過許多參數的選擇,才有讓兩者之間呈現互相競爭的關係。

5. Compare difference between image generated by VAE & GAN

在訓練 GAN 的過程中,很常會看到圖片的結果越來越不平滑而出現一塊塊的 顆粒,或是略有方塊格線的痕跡。然而我不確定此為 Model 本身的特性,或是 我沒有把他訓練好。

Problem 3 ACGAN

1. Architecture & implementation Details

Generator:			
Layer (type)	Output	Shape	Param #
input 1 (InputLayer)	(None,	1024)	0
reshape 1 (Reshape)	(None,	1, 1, 1024)	0
conv2d transpose 1 (Conv2DTr	(None,	4, 4, 1024)	16778240
conv2d transpose 2 (Conv2DTr	(None,	16, 16, 512)	8389120
conv2d 1 (Conv2D)	(None,	16, 16, 256)	524544
conv2d transpose 3 (Conv2DTr	(None,	32, 32, 128)	131200
conv2d transpose 4 (Conv2DTr	(None,	64, 64, 3)	1539
Total params: 25,824,643			

Total params: 25,824,643
Trainable params: 25,824,643
Non-trainable params: 0

Generator

Discriminator:			
Layer (type)	Output Shape	Param #	Connected to
input 2 (InputLayer)	(None, 64, 64, 3)	0	
conv2d 2 (Conv2D)	(None, 64, 64, 128) 1664	input 2[0][0] input 2[0][0]
conv2d 3 (Conv2D)	(None, 64, 64, 256) 131328	conv2d 2[0][0] conv2d 2[1][0]
max pooling2d 1 (MaxPooling2D)	(None, 16, 16, 256) 0	conv2d 3[0][0] conv2d 3[1][0]
conv2d 4 (Conv2D)	(None, 16, 16, 512	524800	max pooling2d 1[0][0] max pooling2d 1[1][0]
conv2d 5 (Conv2D)	(None, 16, 16, 512) 1049088	conv2d 4[0][0] conv2d 4[1][0]
max pooling2d 2 (MaxPooling2D)	(None, 4, 4, 512)	0	conv2d 5[0][0] conv2d 5[1][0]
flatten 1 (Flatten)	(None, 8192)	0	max pooling2d 2[0][0] max pooling2d 2[1][0]
dense 1 (Dense)	(None, 1024)	8389632	flatten 1[0][0] flatten 1[1][0]
vadility (Dense)	(None, 1)	1025	dense 1[0][0]
lebel (Dense)	(None, 1)	1025	dense 1[1][0]
Total params: 10,098,562 Trainable params: 10,098,562 Non-trainable params: 0			

Discriminator

在 input 的部分,是一條長度 1024 的 vector,最後一個數值為 0 或 1 ,分别代表"無" 和"有"某個 attribute,期望 model 能因此產生相對應的 image。

而 Discriminator 的部分,output 有兩個長度為 1 的 Full-connected layer,分別判斷"是否為真圖?"與"是否具有某向指定特徵?",分別都用 softmax 為 activation function 以及使用 binary cross-entropy 作為 loss function。

在訓練 discriminator 時,餵 fake image 的方式是隨機製造 fake image,而 attribute 的部分則是隨機產生 0/1 讓 model 去 fit;分配訓練的比例則是: Train Discriminator with 500 valid image
Train Discriminator with 500 fake image
Train Generator with 1000 noise

2. Learning Curve

Fig3_2.jpg 上圖中藍色折線都代表關於 attribute 是否正確的 loss, 而紅色折線代表關於是否為真圖的 loss

關於是否為真圖,Discriminator 預測假圖的能力看的出來有隨時間增強,而 generator 的表現或許沒進步那麼多因此 loss 卻有微升的狀況;關於是否具有該 attribute 的部分,由圖中可以看出 discriminator 與 generator 都有隨時間增強的狀況,然而實際情形並不如預期順利(詳見下圖)

3. plot 10 pair generated images

Fig3_3.jpg

上排為'具有'attribute 的圖下排為'不具有'attribute 的圖片Attribute:smile