Econometrics July 1, 2023

Topic 18: Eigenvalue and Spike Models

by Sai Zhang

Key points: .

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

18.1 Motivation

Consider n independent observations $\mathbf{X}_i \in \mathbb{R}^p$ drawn from a $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, then the covariance can be decomposed into 2 parts, white noise and low rank

$$\Sigma = \text{Cov}(\mathbf{X}_i) = \mathbf{I} + \sum_{k=1}^{M} \theta_k \nu_k \nu_k' = \Sigma_0 + \mathbf{\Phi}$$

where M denotes the **number of spikes** in the distribution of eigenvalues. The idea is: spikes deviate from a reference model along a **small fixed number** of unknown directions. If $\Phi = 0$, then none of the sample eigenvalues is separated from the bulk.

Why a spike model is interesting? A spike model can help determine the latent dimension of the data, some examples being

- Principal component analysis (PCA): spikes are related to the directions of the most variations of the data, i.e., the principal components
- Clustering model: M spikes is equivalent to M+1 clusters
- Economic significance: *M* is related to the number of factor loadings

Then the question is threefold:

- How to determine *M*
- How to estimate v_k
- How to test θ_k

Under rank one alternative, we would like to test the hypothesis

$$H_1: \mathbf{\Sigma} = \mathbf{I}_p + \theta \mathbf{\nu} \mathbf{\nu}', \theta > 0$$

against the null

$$H_0: \mathbf{\Sigma} = \mathbf{I}_p$$

with the key assumptions:

A1 Gaussian error

A2 large p: $p \le n$ but allows $p/n \to \gamma \in (0,1)$

Under these assumptions, for the $n \times p$ data matrix $\mathbf{X} = (\mathbf{X}_1' \cdots \mathbf{X}_n')'$, $\mathbf{X}'\mathbf{X}$ has a p-dimensional **Wishart** distribution $W_p(n, \Sigma)$ with the degree of freedom n and covariance matrix Σ , which is a *random matrix*.

If $\mathbf{Y} = \mathbf{M} + \mathbf{X}$, that is, the sum of the *random matrix* \mathbf{X} and a *deterministic matrix* \mathbf{M} (also $n \times p$), then $\mathbf{Y'Y}$ has a p-dimensional Wishart distribution $W_p(n, \Sigma, \Psi)$ with n degrees of freedom, covariance matrix Σ and non-centrality matrix $\mathbf{\Psi} = \Sigma^{-1}\mathbf{M'M}$.

Definition 18.1.1: Density of Wishart Distribution

The PDF of Wishart distribution is defined as

$$f(\mathbf{X}) = \frac{1}{2^{np/2} \Gamma_p\left(\frac{n}{2}\right) |\mathbf{\Sigma}|^{n/2}} |\mathbf{X}|^{(n-p-1)/2} \exp\left(-\frac{1}{2} \operatorname{tr}\left(\mathbf{\Sigma}^{-1} \mathbf{X}\right)\right)$$

where **X** is a symmetric positive semidefinite and $\Gamma_p\left(\frac{n}{2}\right)$ is a multivariate gamma function such that

$$\Gamma_p\left(\frac{n}{2}\right) = \pi^{\frac{p(p-1)}{4}} \prod_{j=1}^p \Gamma\left(\frac{n}{2} - \frac{j-1}{2}\right)$$

Notice that the sample covariance matrix $S = \frac{1}{n}X'X$ is just a scaled version of Wishart distribution

$$n\mathbf{S} = \mathbf{X}'\mathbf{X} \sim W_n(n, \mathbf{\Sigma})$$

For $\Sigma = \mathbf{I}_{v}$, the empirical distribution fo eigenvalues converges to Marcenko-Pastur distribution

$$f^{\text{MP}}(x) = \frac{1}{2\pi\gamma x} \sqrt{(b_+ - x)(x - b_-)}$$

where $b_{\pm} = (1 \pm \sqrt{\gamma})^2$. Then:

• under $H_0: \Sigma = \mathbf{I}_p$, we have

$$n^{2/3} \left(\frac{\lambda_1 - \mu(\gamma)}{\sigma(\gamma)} \right) \stackrel{d}{\to} TW_1$$

where TW₁ is the Tracy-Widom distribution

• under $H_1: \Sigma = \mathbf{I}_p + \theta \nu \nu', \theta > 0$, if θ is strong $(\theta \gg \sqrt{\gamma})$, then

$$n^{1/2} \left(\frac{\lambda_1 - \rho(\theta, \gamma)}{\tau(\theta, \gamma)} \right) \stackrel{d}{\to} \mathcal{N}(0, 1)$$

Here, the largest eigenvalue test is the best test. **But** when the signal is weak $(0 \le \theta < \sqrt{\gamma})$, the largest eigenvalue under the alternative converges to the same distribution as null:

$$n^{2/3} \left(\frac{\lambda_1 - \rho(\theta, \gamma)}{\tau(\theta, \gamma)} \right) \xrightarrow{d} TW_1$$

which means that the largest eigenvalue test *fails*. On top of this, **resampling** also fails when *p* is large.

Next, we develop another test to cope with these problems.

18.2 Johnstone and Onatski (2020)

Figure 18.1: Failure of Resampling Test (n = p = 100)

References

Iain M Johnstone and Alexei Onatski. Testing in high-dimensional spiked models. *The Annals of Statistics*, 48(3), 2020.