ANALISI IDROLOGICA IN JGRASS h.peakflow

Giuseppe Formetta, Silvia Franceschi, Andrea Antonello, Riccardo Rigon

IDROGEOMORFOLOGIA:PEAKFLOW

È un modello idrologico semidistribuito integrato in JGrass. Lavora utilizzando come base l'approccio GIUH e calcola sia la portata massima che la durata della precipitazione che massimizza la portata.

La teoria su cui si basa è quella:

- idrogramma unitario istantaneo
- l'assunzione che gli ietogrammi di precipitazione abbiano intensità costante durante l'evento

L'approccio all'idrogramma unitario istantaneo geomorfologico GIUH viene affrontato utilizzando la funzione d'ampiezza.

h.peakflow

È un modello idrologico semidistribuito:

- lavora a scala d'evento
- è stato pensato per il calcolo delle precipitazioni massime
- considera la pioggia costante nell'intervallo di simulazione
- calcola la durata di pioggia che massimizza la portata alla chiusura
- calcola la portata massima per un evento dato

PEAKFLOW: PARAMETRI

- Analisi pluviometrica
 - Parametri pluviometrici a e n
 - Evento di pioggia

PEAKFLOW: PARAMETRI

- Analisi pluviometrica
 - Parametri pluviometrici a e n
 - Evento di pioggia
- Analisi idraulica
 - Velocità nei canali
 - Parametro di diffusione

PEAKFLOW: PARAMETRI

- Analisi pluviometrica
 - Parametri pluviometrici a e n
 - Evento di pioggia
- Analisi idraulica
 - Velocità nei canali
 - Parametro di diffusione
- Analisi geomorfologica
 - Funzione d'ampiezza
 - Percentuale satura di bacino
 - Rapporto tra velocità nei canali e nei versanti

È definito come:

$$\log \frac{Ab}{s}$$

dove:

Ab è l'area contribuente in un punto per unita di lunghezza s è la pendenza

- È proporzionale al rapporto tra area cumulata nel pixel e pendenza
- Dipende solo dalla morfologia
- Esprime la tendenza di un pixel a saturarsi
- Aree con valori elevati di indice topografico si saturano prima di aree a basso indice topografico
- Discrimina i siti che danno deflusso superficiale da quelli che danno solo contributo subsuperficiale

- ci possono essere zone all'interno del bacino dove non è definito l'indice topografico
- queste zone sono quelle con pendenza pari a zero per cui il rapporto area cumulata su pendenza tende ad infinito

- ci possono essere zone all'interno del bacino dove non è definito l'indice topografico
- queste zone sono quelle con pendenza pari a zero per cui il rapporto area cumulata su pendenza tende ad infinito
- pixel con pendenza bassa hanno elevata propensione alla saturazione a parità di area cumulata
- si assegna ai pixel con valore nullo di indice topografico che si trovano al l'interno del bacino il valore massimo caratteristico della mappa

if(mybasin ,if(isnull(mybasin_topindex),maxtop,mybasin_topindex),null())

- calcola l'istogramma dei valori di una mappa rispetto a quelli contenuti in un'altra mappa
- i dati della prima mappa vengono raggruppati in un numero prefissato di intervalli e viene calcolato il valore medio della variabile indipendente in ciascun intervallo
- per ogni intervallo corrisponde un set di valori nella seconda mappa dei quali viene calcolata la media e gli altri momenti richiesti dall'utente
- l'output di questo programma è un file e non una mappa

MAPPA 1 MAPPA 2 1 5 15 2 1 2 3 4 6 10 12 16 5 6 7 8

9 7 3 13 9 10 11 12

8 14 4 11 13 14 15 16

Beam: 4

MAPPA 1

1 5 15 2

6 10 12 16

9 7 3 13

8 14 4 11

Beam: 4

classe 1: 1-4

MAPPA 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

MAPPA 1

1 5 15 2

6 10 12 16

9 7 3 13

8 14 4 11

Beam: 4

classe 1: 1-4

classe 2: 4-8

MAPPA 2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 **15** 16

MAPPA 1

MAPPA 2

Beam: 4

classe 1: 1-4

classe 2: 4-8

MAPPA 1

MAPPA 2

Beam: 4

classe 1: 1-4

classe 2: 4-8

classe 4:

mappe sulle quali effettuare i calcoli: può anche essere la stessa mappa

⊖ ○ ⊙	CB
input map with independent variable:	basin_topindex
input map with dependent variable:	basin_topindex
first moment:	1
last moment:	2
number of bins:	100
Create the peakflow input file	
peakflow output file:	/Users/silli/Desktop/dati_migg/tests/basin_topindex
Create the complete output file	
full output file:	
output table widget	
output histogram chart	
O output line chart	
	Cancel i OK

momenti da calcolare: media, varianza, ...

numero di intervalli in cui dividere il range di valori della prima mappa

● ○ 💇	CB /	
input map with independent variable:	basin_topindex	
input map with dependent variable:	basin_topindex	
first moment:	1	
last moment:	2	
number of bins:	100	
Create the peakflow input file		
peakflow output file:	/Users/silli/Desktop/dati_migg/tests/basin_topindex	
O Create the complete output file		
full output file:		
output table widget		
output histogram chart		
O output line chart		
	Cancel i	OK OK

tipologia e percorso del file di output

è possibile selezionare la visualizzazione dei dati in tabella o grafico

$\Theta \cap \Theta$	CB	
input map with independent variable:	basin_topindex	
input map with dependent variable:	basin_topindex	
first moment:	1	
last moment:	2	
number of bins:	100	
Create the peakflow input file peakflow output file:	/Users/silli/Desktop/dati_migg/tests/basin_topindex	()
Create the complete output file		
full output file:		
output table widget output histogram chart		
Output mistogram chart		
O output line chart		
	Cancel i OK	

Il file di output di **h.cb** completo contiene:

- numero di pixel della prima mappa contenuti nell'intervallo
- valore medio dei valori della prima mappa per ogni intervallo
- valore medio dei valori della seconda mappa per ogni intervallo
- varianza dei valori della seconda mappa per ogni intervallo
- momento di ordine superiore calcolato per i valori della seconda mappa

ANALISI DEI VALORI DI UNA MAPPA: h.cb

Il file di output di **h.cb** per Peakflow contiene:

- numero di pixel della prima mappa contenuti nell'intervallo
- valore medio dei valori della seconda mappa per ogni intervallo

ANALISI CON h.cb

ANALISI CON h.cb

PEAKFLOW: SCHEMA DI FUNZIONAMENTO

AREA SATURA

- 1. Definizione della percentuale di saturazione del bacino
 - meccanismo di formazione del deflusso di tipo dunniano (saturazione dal basso)
 - zone sature sono localizzate in prossimità della rete
 - massimo di saturazione: tutte le zone concave del bacino

AREA SATURA

- 1. Definizione della percentuale di saturazione del bacino
 - meccanismo di formazione del deflusso di tipo dunniano (saturazione dal basso)
 - zone sature sono localizzate in prossimità della rete
 - massimo di saturazione: tutte le zone concave del bacino
- 2. Si utilizza l'indice topografico per selezionare le zone sature
 - estrazione del valore di indice topografico a cui corrisponde la percentuale di area satura fissata al punto precedente

AREA SATURA

OPERAZIONI:

- 1. Fissare la percentuale di saturazione del bacino
- 2. Creare la curva di distribuzione di frequenza cumulata dell'indice topografico
- Individuare il valore di indice topografico a cui corrisponde tale percentuale di saturazione
- 4. Estrarre la mappa corrispondente ai pixel saturi per il bacino in esame

AREA SATURA: PERCENTUALE SATURAZIONE

- 1. È stato dimostrato che in generale sui bacini di medie/grandi dimensioni l'area satura in occasione di un evento estremo di piena si attesta sul 40-60% dell'intero bacino
- 2. La percentuale aumenta se diminuiscono le dimensioni del bacino fino ad un massimo pari a tutti i siti concavi
- Sarebbero utili misure di portata o di umidità del suolo per tarare il modello

- 1. fissata una percentuale di saturazione del bacino 40%
- aprire il file estratto con h.cb sulla mappa dell'indice topografico in un foglio di calcolo

- 1. fissata una percentuale di saturazione del bacino 40%
- aprire il file estratto con h.cb sulla mappa dell'indice topografico in un foglio di calcolo
- calcolare la curva di frequenza cumulata dei pixel (indicativi dell'area)
 in funzione del valore di indice topografico

			Α	В	С	D	
1. fi	ficacta	1	MEDIA	PIXEL	CUMULATA	NORMALIZZATA	
	fissata una	2	1.15	2	2	0	O
_		3	1.28	13	15	0	
2.	aprire il file	4	1.47	21	36	0	topografico in un
		5	1.64	57	93	0	
	foglio di cal	6	1.81	139	232	0.01	
		7	1.98	351	583	0.01	
3.	calcolare la	8	2.15	711	1294	0.03	ilcativi deli area)
		9	2.31	1291	2585	0.06	
		10	2.48	1736	4321	0.09	
	in funzione	11	2.65	1830	6151	0.13	_
		12	2.81	1630	7781	0.17	_
		13	2.99	1586	9367	0.2	_
		14	3.15	1604	10971	0.24	_
		15	3.32	1810	12781	0.28	
		16	3.49	1773	14554	0.32	_
		17	3.66	1770	16324	0.36	_
		18	3.83	1835	18159	0.4	_
		19	4	1740	19899	0.43	
		20	4.17	1740	21639	0.47	_
		21	4.34	1810	23449	0.51	_
		22	4.5	1695	25144	0.55	_
		23	4.67	1550	26694	0.58	
		24	4.84	1524	28218	0.62	
		25	5.01	1395	29613	0.65	
		26	5.18	1344	30957		
		27	5.35	1330	32287	0.71	

- 1. fissata una percentuale di saturazione del bacino 40%
- aprire il file estratto con h.cb sulla mappa dell'indice topografico in un foglio di calcolo
- calcolare la curva di frequenza cumulata dei pixel (indicativi dell'area)
 in funzione del valore di indice topografico
- 4. cercare nel grafico il valore di indice topografico che corrisponde al valore scelto di area satura (40%)

- per l'interpretazione del grafico si consideri che alti valori di indice topografico significano alta propensione alla saturazione
- una saturazione del 40% significa che il 60% dell'area del bacino ha un valore di indice topografico inferiore
- 3. i pixel con valore di indice topografico superiore a quello corrispondente al 60% dell'area sono quindi saturi (40%)

1. per l'interpretazione del grafico si consideri che alti valori di indice to-

1. per l'interpretazione del grafico si consideri che alti valori di indice to-

DEFINIZIONE DELL'AREA SATURA

Per definire spazialmente l'area satura occorre estrarre dal bacino i pixel con indice topografico superiore al valore soglia individuato nel grafico (4.7) usando lo strumento di calcolo su mappe.

basin_sat40=if(basin_topindex_corr>= 4.7 ,1 ,null())

DEFINIZIONE DELL'AREA SATURA

Per definire spaz
con indice topog
(4.7) usando lo s
basin_s

al bacino i pixel uato nel grafico

,null())

DEFINIZIONE DELL'AREA SATURA

al bacino i pixel uato nel grafico

,null())

DEFINIZIONE DELL'AREA INSATURA

Per definire spazialmente l'area insatura occorre estrarre dal bacino i pixel con indice topografico inferiore al valore soglia individuato nel grafico (2.22) usando lo strumento di calcolo su mappe.

basin_insat40=if(basin_topindex_corr<4.7,1 ,null())</pre>

DEFINIZIONE DELL'AREA INSATURA

Per definire spaz xel con indice tor (2.22) usando lo basin_i

dal bacino i piuato nel grafico

,null())

PEAKFLOW: SCHEMA DI FUNZIONAMENTO

Per definire i tempi di residenza nel bacino ci si può appoggiare alla mappa delle distanze riscalate.

Le distanze riscalate dalla sezione di chiusura si calcolano con il comando:

Horton Machine → Attributi del bacino → h.rescaleddistance

Per definire i tempi di residenza nel bacino ci si può appoggiare alla mappa delle distanze riscalate.

Le distanze riscalate dalla sezione di chiusura si calcolano con il comando:

Horton Machine → Attributi del bacino → h.rescaleddistance

$$X = X_c + \frac{v_c}{v_h} \cdot X_h$$

Si considerino rapporti di velocità tra la velocità nei canali e nei versanti diversi per il deflusso superficiale e subsuperficiale.

Rapporti più bassi per il deflusso superficiale e dell'ordine delle centinaia per il subsuperficiale.

PEAKFLOW: SCHEMA DI FUNZIONAMENTO

LA FUNZIONE D'AMPIEZZA

La funzione d'ampiezza rappresenta la distribuzione delle distanze dalla sezione di chiusura. Numericamente è costituita dal numero di pixel posti a distanza uguale dalla sezione di chiusura (misurata lungo le direzioni di drenaggio a partire dalla sezione di chiusura).

La funzione d'ampiezza riscalata tiene conto della diversa velocità dell'acqua nella rete e nei versanti introducendo **r** come rapporto tra la velocità nei canali e nei versanti.

LA FUNZIONE D'AMPIEZZA

Calcolo della distanza dalla sezione di chiusura

- h.D2O considerando velocità uniforme nei versanti e nella rete
- h.rescaleddistance considerando velocità diverse nei versanti e nella rete

LA FUNZIONE D'AMPIEZZA

Calcolo della distanza dalla sezione di chiusura

- h.D2O considerando velocità uniforme nei versanti e nella rete
- h.rescaleddistance considerando velocità diverse nei versanti e nella rete

Calcolo della funzione d'ampiezza ridistribuendo i valori di distanza dalla sezione di chiusura con h.cb.

ESEMPIO DI FUNZIONE D'AMPIEZZA

ESEMPIO DI FUNZIONE D'AMPIEZZA

FUNZIONE D'AMPIEZZA IN PEAKFLOW

In Peakflow vengono considerati separatamente il deflusso superficiale e subsuperficiale.

Si lavora nell'ipotesi di comportamento dunniano (saturazione dal basso o per eccesso di saturazione) quindi il deflusso superficiale si ha dove il suolo è già saturo.

La porzione di bacino satura è in equilibrio tra deflusso superficiale e subsuperficiale, la porzione non satura del bacino concorre solo alla formazione del deflusso subsuperficiale.

FUNZIONE D'AMPIEZZA: ZONE SATURE

- Riguarda solamente le zone sature del bacino
- Si utilizzano mappe delle distanze riscalate con valori di **r** bassi (5 20)
- Si ritaglia la mappa delle distanze riscalate limitatamente ai siti saturi (r.mapcalc)

FUNZIONE D'AMPIEZZA: ZONE SATURE

- Riguarda solam
- Si utilizzano ma
- Si ritaglia la ma (r.mapcalc)

r bassi (5 – 20) nte ai siti saturi

FUNZIONE D'AMPIEZZA: ZONE SATURE

- Riguarda solamente le zone sature del bacino
- Si utilizzano mappe delle distanze riscalate con valori di **r** bassi (5 20)
- Si ritaglia la mappa delle distanze riscalate limitatamente ai siti saturi (r.mapcalc)
- Si calcola la funzione d'ampiezza (h.cb)

FUNZIONE D'AMPIEZZA: ZONE NON SATURE

- Riguarda solamente le zone non sature del bacino
- Si utilizzano mappe delle distanze riscalate con valori di **r** alti (50 200)
- Si ritaglia la mappa delle distanze riscalate per i siti non saturi (r.mapcalc)
- Si calcola la funzione d'ampiezza (h.cb)

FUNZIONE D'AMPIEZZA RISCALATE

Zone non sature

FUNZIONE D'AMPIEZZA RISCALATE

Zone sature

Zone non sature

PEAKFLOW: SCHEMA DI FUNZIONAMENTO

PIOGGIA

Peakflow può essere eseguito in due modalità:

- piogge statistiche: si utilizzano i parametri delle curve di possibilità pluviometrica per il tempo di ritorno desiderato
 - il programma calcola la portata massima e la pioggia che genera la portata massima (intensità e durata)
 - la pioggia viene considerata costante su tutto l'intervallo di tempo

PIOGGIA

Peakflow può essere eseguito in due modalità:

- 1. piogge statistiche: si utilizzano i parametri delle curve di possibilità pluviometrica per il tempo di ritorno desiderato
 - il programma calcola la portata massima e la pioggia che genera la portata massima (intensità e durata)
 - la pioggia viene considerata costante su tutto l'intervallo di tempo
- 3. un **evento di pioggia misurato**: viene richiesto in input un file con la pioggia misurata nella forma

data ora pioggia_misurata

FUNZIONE D'AMPIEZZA

Risposta idrologica di un bacino con una pioggia della durata pari a 3 istanti

PEAKFLOW: SCHEMA DI FUNZIONAMENTO

In console vengono riportati la durata della precipitazione che ha generato la portata massima e il valore di picco di portata.

```
| Catalog | Web | Search | Table | Console |
```


GRAZIE DELL'ATTENZIONE...

