Lab 9: Optimization using Logical Effort

Alex Anderson

ECEN 714-603

First, the critical path was determined from the 4-bit adder circuit:

From this, there are 9 stages (8 NAND and 1 XOR). The calculations of the lobelow:	ogical effort are

(2)
$$G = I[8]$$
:

 $g_{nud} = \frac{Cin}{Cin} = \frac{8}{3}$
 $g_{nud} = \frac{Cin}{Cin,in} = \frac{9}{3}$
 $G = g_{ker} \cdot g_{nud} = \frac{8}{3} + (\frac{9}{3}) = \frac{9}{3} = \frac{26.637}{3}$
 $H = \frac{C_{ost}/AM}{C_{ost}} = \frac{8}{3} + (\frac{9}{3}) = \frac{9}{3} = \frac{26.637}{3}$
 $H = \frac{C_{ost}/AM}{C_{ost}} = \frac{8}{6.548} + \frac{9}{3.275} + \frac{9}{6.548} + \frac{9}{6.548}$

The design with the updated sizing was tested using the same cases as Lab 5:

Table 1: Non-Optimized Results

Input Case	Power	Sum Delay	Carry Delay
A=0000	204.6uW	S3=1.102nS	1.202ns
B=1111		S2=850ps	
C=1		S1=598.5ps	
		S0=361ps	
A=1010	207.1uW	S3=1.157ns	1.176ns
B=0101		S2=907.5ps	
C=0		S1=658.2ps	
		S0=416.7ps	
A=1010	204.6uW	S3=1.102ns	1.202ns
B=0101		S2=850.7ps	
C=1		S1=599.1ps	
		S0=358.3ps	
A=1100	209.9uW	S3=850.1ps	463.3ps
B=1000		S2=636.5ps	
C=0		S1=602.6ps	
		S0=392.8ps	

Table 2: Optimized Results

Input Case	Power	Sum Delay	Carry Delay
A=0000	394.7uW	S3=899.4ps	956.5ps
B=1111		S2=659.1ps	
C=1		S1=418.6ps	
		S0=162.3ps	
A=1010	392.8uW	S3=918.2ps	1ns
B=0101		S2=666.2ps	
C=0		S1=414.5ps	
		S0=150.9ps	
A=1010	394.5uW	S3=899.4ps	956.5ps
B=0101		S2=659.1ps	
C=1		S1=418.6ps	
		S0=162.3ps	
A=1100	430.6uW	S3=692.8ps	254.5ps
B=1000		S2=400.3ps	_
C=0		S1=436.0ps	
		S0=277.3ps	

Overall, the delays improved on average by 18% while the power consumption increased by 95%.

Table 3: Area Comparison

Design	Approx. Area (um^2)
Optimized	59.424
Non-Optimized	17.12