

PH2282 part 6: Confidence Intervals

Applied Multi-Messenger Astronomy 2: Statistical and Machine Learning Methods in Particle and Astrophysics

Hans Niederhausen and Matteo Agostini TUM - summer term 2019

Topics of this block of lectures

About my lectures (upcoming three Fridays):

- Introduction to IceCube (and relevant physics)
- Statistical models: describing the detection process
- Monte Carlo Generation: understanding importance weights
- Example application: discovering diffuse astrophysical neutrinos
- Asymptotic properties of maximum likelihood methods
- for today: Interval estimation and confidence regions
- **Example application**: Searching for a point source of neutrinos in the sky (bonus topic, to be added at a later time)

Outline of today's lecture

- summary of last lecture
- concept of **power** of a hypothesis test
- concept of confidence sets
- concept of coverage
- example: CI on normal mean using a pivot
- general Construction: Inversion of Likelihood Ratio Tests
- example: our toy-problem (gaussian signal on uniform bg)
- example and exercise: IceCube diffuse flux measurement

Summary of Previous Lectures: Diffuse Neutrino Flux

ingredients for the IceCube discovery analysis:

- maximum likelihood fitting, hypothesis testing using likelihood ratio $(H_0: \Phi_{astro} = 0 \text{ and } H_1: \Phi_{astro} > 0$, with $\lambda = -2 \log L0/L1$ as TS)
- weighted Monte Carlo simulation to predict expected number of counts in each bin (for some assumption about the signal and background flux)

Summary of Previous Lectures: Large Sample Theory and Point Estimation

The distribution of the MLE converges to a normal distribution (with variance given by the CRB bound). The MLE is ...

- a consistent estimator. bias and variance converge to 0.
- an asymptotically efficient estimator. smallest possible variance as n grows large.
- asymptotically normal.

These are the reasons why maximum likelihood is so popular.

Summary of Previous Lectures: Large Sample Theory and Likelihood Ratio Testing

Reminder

given two hypotheses $H0: \theta = \theta_0$ and $H1: \theta \neq \theta_0$ the likelihood ratio test-statistic $\lambda(\mathbf{x})$ is defined as

$$\lambda(\mathbf{x}) = -2\log\Lambda(\mathbf{x}) = -2\log\left\{\frac{\sup_{\nu}L(\theta_0, \nu \mid \mathbf{x})}{\sup_{\nu, \theta}L(\theta, \nu \mid \mathbf{x})}\right\}$$
(1)

Wilk's Theorem

As the sample size increases, the distribution of the likelihood ratio test-statistic (??) converges to a χ^2 distribution with number of degrees of freedom k equal to the difference in number of free parameters specified by each hypothesis. In our notation $k = \dim \theta$.

$$f_{\lambda}(\lambda; \theta_0) \underset{n \to \infty}{\longrightarrow} \chi^2(k)$$
 (2)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Summary of Previous Lectures: Large Sample Theory and Likelihood Ratio Testing

Wilk's Theorem (cont'd)

Unfortunately there are strict regularity conditions. Here are the two most important ones

- θ_0 needs to be an interior point of Θ
- ullet nuisance parameters u that are only present under H1 are another issue
- ... several minor ones (typically not important)

Some extensions exists that might be useful (see Chernoff 1954, Gross, Vitells 2010) in such situations.

Summary of Previous Lectures: Large Sample Theory: The Toy Problem

Example: Our standard toy problem (with fixed sample size)

In the following treat p_s as the only unknown in the problem - and thus as a parameter.

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Large Sample Theory: The Toy Problem

Application to our standard toy problem (with 2 parameters: p_s , μ_s)

Two different hypothesis tests satisfying Wilk's theorem

Case 1: $H0: p_s = 0.2$ and $H1: p_s \neq 0.2$ (k=1)

Case 2: $H0: p_s = 0.2, \ \mu_s = 10.0 \ \text{and} \ H1: p_s \neq 0.2, \ \mu_s \neq 10.0 \ (k=2)$

Large Sample Theory: The Toy Problem

Large Sample Theory: The Toy Problem

Questions about previous lectures?

Hypothesis Tests: Statistical Power

Hypothesis Tests: Statistical Power

The power function $\beta(\theta)$ of a hypothesis test with rejection region R is the probability of the test rejecting H0: $\theta = \theta_0$ as a function of the parameters θ in the model

$$\beta(\theta) = P_{\theta}(TS(\mathbf{X}) \in R) \tag{4}$$

example: gaussian mean $H0: \mu = \mu_0$ and $H1: \mu \neq \mu_0$ (σ known) (check ipython notebook)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

Hypothesis Tests: Statistical Power

- the **ideal** power function would be equal to 1 through the parameter space of the alternative hypothesis and 0 throughout the null-space **good metric to judge tests**
- if you have to choose between two tests with same type I error probability, take the one that has larger power in the parameter space of the alternative hypothesis.
- **discovery potential**: value of $\theta' \neq \theta_0$ with $\beta(\theta') = 0.5$ (need to define rejection region, e.g. the 5σ criterion)

(beware of tests with small power: rejection of H_0 would not make H_1 more plausible.)

Confidence Intervals

Goal: calculate some range/region that has some probability to contain the true (unknown) parameter/s.

- Probability does not refer to the parameter (the true parameter is a fixed constant, not a random variable.) but to the region/interval that we obtain from the data.
- Generally speaking: different data results in a different region/interval (albeit construction is the same).

Mathematically, from data \mathbf{X} we calculate function values $L(\mathbf{X})$ and $U(\mathbf{X})$ which are random variables.

$$[L(\mathbf{X}), U(\mathbf{X})] \quad (two - sided)$$

$$(-\infty, U(\mathbf{X})] \quad or \quad [L(\mathbf{X}), \infty) \quad (one - sided)$$

$$(6)$$

in physics: two-sided intervals often called "uncertainties", one-sided intervals often called "limits". (sometimes gets mixed ... e.g. hard to tell difference on bounded parameter spaces. always check how the construction was done.)

Confidence Intervals: Coverage

coverage := probability that the random interval $[L(\mathbf{X}), U(\mathbf{X})]$ (or limit) happens to overlap with the unknown, true parameter value.

$$P_{\theta}\left(\theta \in [L(\mathbf{X}), \ U(\mathbf{X})]\right) \tag{7}$$

confidence coefficient of an interval (denoted by $1-\alpha$) defined by

$$\inf_{\theta} P_{\theta} \left(\theta \in [L(\mathbf{X}), \ U(\mathbf{X})] \right) = 1 - \alpha$$
 (8)

Can not always guarantee exact coverage (hello nuisance parameters!) - strive to guarantee confidence coefficient (i.e. minimum coverage!). That is usually possible.

Confidence Intervals: Coverage in the normal mean problem

Consider the problem of constructing a confidence interval for the unknown mean μ of a normal distribution (variance σ^2 known) from n observations ($\mathbf{X} = \{X_1, ..., X_n\}$). This can be done using a **pivot** (a function of the parameter and observations, that has a distribution which is independent of the parameter).

$$Q(\mu, \mathbf{X}) = rac{ar{X} - \mu}{\sigma / / \sqrt{n}}$$
 (9)
 $Q \sim N(0, 1)$ (10)

i.e. here Q is a standard normal random variable. Thus can solve

$$P_{\mu}\left(-\mathsf{a}\leq \mathsf{Q}\leq \mathsf{a}
ight)=1-lpha$$

which corresponds to the following confidence set

which corresponds to the following confidence set
$$\left\{\mu: \ \bar{X} - a \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + a \frac{\sigma}{\sqrt{n}} \right\}$$

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

(11)

Confidence Intervals: Coverage in the normal mean problem

Check with Monte-Carlo (see ipython notebook)

Confidence Intervals from inversion of hypothesis tests

If you can construct a level α hypothesis test for the unknown parameter/s specified by H_0 it is always possible to use this test to construct a confidence interval with guaranteed confidence coefficient $1-\alpha$ (see Theorem 9.2.2 in Casella and Berger). This is called **inverting a hypothesis test**. Whether you get two-sided or one-sided intervals depends on the alternative hypothesis

- $H_0: \theta = \theta_0$ and $H_1: \theta \neq \theta_0$ produces two-sided intervals
- $H_0: \theta = \theta_0$ and $H_1: \theta < \theta_0$ produces one-sided intervals (upper-limit)
- $H_0: \theta = \theta_0$ and $H_1: \theta > \theta_0$ produces one-sided intervals (lower-limit)

The more powerful the underlying hypothesis test, the better the interval (smaller range, more accurate).

(Note, the Feldman-Cousins construction is a special case of this. They invert a likelihood ratio test (two-sided) concerning the poisson mean).

Confidence Intervals from inversion of hypothesis tests

Why does it work?

- perform the test on every possible point in parameter space
- if the test rejects the point, simply discard it
- if the point is accepted, add the point to your confidence set
- Whats the coverage of this strategy? (probability that the random set contains true parameter)
- Probability to rejected a parameter if it is true is $\leq \alpha$ by definition (size of test)
- Thus, probability for true parameter to contribute to set is $> 1 \alpha$.
- ullet Hence, probability for set to cover true parameter is $\geq 1-lpha$ by construction

Confidence Intervals from inversion of LRT

We have learned how to construct likelihood ratio tests. Let's invert a likelihood ratio test to obtain a confidence set on the signal fraction p_s in our toy model. (see ipython notebooks)

$$f_X(x;\mu,\sigma,p_s) = \left[p_s \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}} + (1-p_s) \cdot \frac{1}{20} \right]$$

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

(13)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=100 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=10 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

Hans Niederhausen (TUM) and Matteo Agostini (TUM)

 $H_0: p_s = p_s^0$ and $H_1: p_s \neq p_s^0$, sample size n=3 endpoints of interval: intersection points of obs. TS value (white) with critical value (red)

- very simple if your measurement is in the asymptotic regime (lots of data!)
- obtain the critical value (red curve) from wilk's theorem (i.e. appropriate χ^2 -pdf)
- generalizes well to high dimensions, if analysis remains asymptotic
- if asymptotics don't apply, you will run out of CPU quickly as the dimensionality increases (since you need to costruct the TS distributions for each point in parameter space)
- always check a few representative parameter combinations (and also a few extreme ones) first
- be mindful of the power in your tests!)

Inversion of LRT in the IceCube diffuse flux measurement

To construct a joint confidence interval for the normalization and spectral index of the astrophysical neutrino flux, we need to invert a LRT:

$$H_0: (\Phi, \gamma) = (\Phi_0, \gamma_0)$$
 and $H_1: (\Phi, \gamma) \neq (\Phi_0, \gamma_0)$

The asymptotic expectation for the TS distribution would be χ^2 with 2 dof.

Inversion of LRT in the IceCube diffuse flux measurement

if we have sufficient data, we use the χ^2 pdf (left) otherwise we need to obtain (valid) p-values from MC simulations and use those to get the contours (right)

$$p(\mathbf{x_{obs}}) = \sup_{\theta \in \Theta_0} P_{\theta} \left(TS(\mathbf{X}) \ge TS(\mathbf{x_{obs}}) \right) \tag{14}$$

Exercise

• ...

Further Reading

- Casella and Berger
- Asymptotics by Cranmer et. al.
- Maybe FC paper