

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Übungsblatt 10

25.01.21

Aufgabe 1 (\mathbb{R} als unendlichdimensionaler \mathbb{Q} -Vektorraum)

(10 Punkte)

 \mathbb{R} ist eine Körpererweiterung von \mathbb{Q} und somit ein \mathbb{Q} -Vektorraum. Für $n \in \mathbb{N}$ seien p_1, \ldots, p_n paarweise verschiedene Primzahlen. Wir betrachten die Menge

$$M := \{ \log(p_i) \mid i \in \{1, \dots, n\} \} \subseteq \mathbb{R}.$$

a) Beweisen Sie, dass die Menge M über \mathbb{Z} linear unabhängig ist, also, dass Folgendes gilt:

$$\forall z_1, \dots z_n \in \mathbb{Z} : \left(\sum_{i=1}^n z_i \log(p_i) = 0 \implies z_1 = \dots = z_n = 0\right)$$

Hinweis: Diese Aussage ist unabhängig von der Basis des Logarithmus. Sie dürfen ohne Beweis die Logarithmengesetze und die Eindeutigkeit der Primfaktorzerlegung (Satz 3.4.17) verwenden.

- b) Folgern Sie aus Teilaufgabe a), dass M auch über \mathbb{Q} linear unabhängig ist.
- c) Wie ändert sich Ihre Antwort, wenn stattdessen \mathbb{R} als \mathbb{R} -Vektorraum betrachtet wird?
- d) Folgern Sie, dass \mathbb{R} als \mathbb{Q} -Vektorraum unendlichdimensional ist.

Hinweis: Teilaufgabe a) ist der schwierigste Teil. Wenn Sie Teilaufgabe a) nicht gelöst haben, dürfen Sie das Ergebnis natürlich trotzdem in b)-d) weiterverwenden.

Aufgabe 2 (Dualbasen in \mathbb{K}^n)

(10 Punkte)

Es sei \mathbb{K} ein Körper, $n \in \mathbb{N}$ und $A \in \mathbb{K}^{n \times n}$ eine invertierbare Matrix, deren Spalten wir mit $a_1, \ldots, a_n \in \mathbb{K}^n$ bezeichnen. Die Zeilen von A^{-1} bezeichnen wir mit $\tilde{a}_1, \ldots, \tilde{a}_n \in \mathbb{K}^{1 \times n}$. Außerdem definieren wir die Abbildungen

$$b_i \colon \mathbb{K}^n \to \mathbb{K}$$

$$v \mapsto \tilde{a}_i \cdot v$$

für alle $i = 1, \dots n$. Beweisen Sie:

- a) Die Vektoren a_1, \ldots, a_n bilden eine Basis von \mathbb{K}^n .
- b) Es gilt $b_i \in (\mathbb{K}^n)^*$ und (b_1, \ldots, b_n) ist die duale Basis zu $(a_1, \ldots a_n)$.

Aufgabe 3 (Lineare Unabhängigkeit von Linearformen)

(10 Punkte)

Es seien \mathbb{K} ein Körper, V ein n-dimensionaler \mathbb{K} -Vektorraum. Für $d \leq n$ seien $\ell_1, \ldots, \ell_d \in V^*$ nicht-triviale Linearformen auf V. Weiter bezeichne U_i den Kern von ℓ_i und es sei $U = \bigcap_{i=1}^d U_i$. Beweisen Sie:

- a) Für alle $i \in \{1, ..., d\}$ ist $1 + \dim U_i = n$ und es ist $d + \dim U \ge n$.
- b) Sind die ℓ_1, \ldots, ℓ_d linear unabhängig, dann gilt dim(U) = n d. Hinweis: Betrachten Sie den Rang der Abbildung

$$\ell: V \to \mathbb{K}^d$$

$$x \mapsto \begin{pmatrix} \ell_1(x) \\ \vdots \\ \ell_d(x) \end{pmatrix}.$$

c) Gilt in Teilaufgabe b) auch die umgekehrte Implikation?

Aufgabe 4 (Bilinearformen und Linearformen)

(10 Punkte)

Es sei V ein Vektorraum über einem Körper \mathbb{K} . Eine Abbildung $\beta: V \times V \to \mathbb{K}$ wird Bilinearform auf V genannt, wenn für alle $x \in V$ die Abbildungen

$$\beta(x,\cdot):V\to\mathbb{K} \qquad \text{und} \qquad \beta(\cdot,x):V\to\mathbb{K} \\ y\mapsto\beta(x,y) \qquad \qquad y\mapsto\beta(y,x)$$

linear sind. Beweisen Sie folgende Aussagen:

a) Ist β eine Bilinearform auf V, dann ist für alle $x \in V$ die Abbildung

$$\Phi_{\beta}: V \to V^*$$
$$x \mapsto \beta(x, \cdot)$$

linear.

- b) Ist umgekehrt $\varphi: V \to V^*$ eine lineare Abbildung, dann gibt es eine Bilinearform β auf V mit $\Phi_{\beta} = \varphi$.
- c) Nun wählen wir $V = \mathbb{R}^4$ und $\beta(x,y) = -x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4$. Bestimmen Sie die Darstellungsmatrix $M_{B^*,B}(\Phi_{\beta})$ von Φ_{β} bezüglich einer von Ihnen gewählten geordneten Basis B von V und der dazugehörigen dualen geordneten Basis B^* von V^* .

Abgabe bis Montag, den 01.02.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.