My real analysis exercises

Evgeny Markin

2022

Exercises are from UTM-040 Understanding analysis by Stephen Abbott. Edition is unknown, but the date in the preface is August 2000.

1.2.1

(a) Prove that $\sqrt{3}$ is irrational. Does a simular argument work to show $\sqrt{6}$ is irrational? Suppose that $\sqrt{3}$ is a rational number; then it is true that

$$\exists m \in \mathbf{Z}, n \in \mathbf{N} : \frac{m}{n} = \sqrt{3}$$

where m and n are at their lowest possible terms. Then

$$\sqrt{3}n = m$$

$$3n^2 = m^2$$

Therefore we can state, that m%3=0. Therefore $\exists k:3k=m$. Thus we can reformulate formula as

$$3n^2 = (3k)^2$$

$$n^2 = 3k^2$$

Therefore n%3 = 0 as well. Therefore n and k are not in their possible terms, which conradicts our initial assumtions. Therefore we can state that $\sqrt{3} \notin \mathbf{Q}$.

Let's try the same argument for $\sqrt{6}$.

$$\exists m \in \mathbf{Z}, n \in \mathbf{N} : \frac{m}{n} = \sqrt{6}$$

$$\sqrt{6}n = m$$

$$6n^2 = m^2$$

then m has as their dividers both 2 and 3. Therefore m%2 = 0 and m%3 = 0. Therefore we can proceed with the same argument as earlier

$$6n^2 = (6k)^2$$

$$n^2 = 6k^2$$

Therefore n is divided by 6, etc., etc., $\sqrt{6} \notin \mathbf{Q}$.

(b) Where does the proof of Theorem 1.1.1 break down if we try to use it to prove $\sqrt{4}$ is irrational?

Suppose that $\sqrt{4}$ is a rational number; then it is true that

$$\exists m \in \mathbf{Z}, n \in \mathbf{N} : \frac{m}{n} = \sqrt{2}$$

where m and n are at their lowest possible terms. Then

$$\sqrt{4}n = m$$

$$4n^2 = m^2$$

n can still be odd and m can still be even. In other words, m is divisible by a prime, and the number under the radical consists of two primes. Therefore if a number decomposes to two equal sets of primes, then its square root is a rational number. Otherwise it isn't.

1.2.2

Decide which of the following represent true statements about the nature of sets. For any that are false, provide a specific exapmple where the statement in question does not hold.

(a) if $A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$ are all sets containing an infinite number of elements, then the intersection $\cap_{n=1}^{\infty} A_n$ is infinite as well. -

 $\bigcap_{n=1}^{\infty} A_n = (0, 1/n)$ has no numbers in it.

Proof is easy -

$$\forall x \in \mathbf{R} > 0 : \exists n \in N : 1/n < x$$

(b) if $A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$ are all finite, nonempty sets of real numbers, then the intersection $\cap_{n=1}^{\infty} A_n$ is finite and nonempty.

True.

There is no need for the proof, but I'll supply one anyways. If all A_n are finite and nonempty, then $\exists j \in \mathbb{N} : |A_1| = j$. Therefore, because of the same reasons, there are only j-1 times when

$$A_k \supset A_{k+1}$$

can happen, because after j-1 times the set will be empty. Therefore, because it is finite, their intersection will have finite number of elements and will be non-empty.

$$(c) \ A \cap (B \cup C) = (A \cap B) \cup C$$

False: let

$$x \notin A, x \notin B, x \in C$$

Then

$$x \in A \cap (B \cup C); x \notin = (A \cap B) \cup C$$

$$(c) A \cap (B \cap C) = (A \cap B) \cap C$$

True. Kinda goes without a proof; if you imagine a Vien diagram, then it's obvious.

(c)
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

True. For the same reason as before.

I'm sure that there exist more concrete versions of those proofs, but I'm not required to provide any. My suspition on why is it so, is because it's a little more complicated and requires more knowlege in set theory and/or logic.

1.2.3 (De Morgan's Laws).

Let A and B be subsets of R

(a) If $x \in (A \cap B)^c$, explain why $x \in A^c \cup B^c$. This shows that $(A \cap B)^c \subseteq (A \cap B)^c$. If we have two sets A and B, then \mathbf{R} desintegrates into 4 different sets: A, B, A^c , B^c . Therefore there must exists sets

$$S_1 = A \cap B$$
$$S_2 = A^c \cap B$$
$$S_3 = A \cap B^c$$
$$S_4 = A^c \cap B^c$$

An element cannot be in the set and not in the set at the same time. Therefore, there does not exist an element, which is in two of S_n 's.

For any $x \in \mathbf{R} \to x \in A$ or $x \notin A$. Therefore an element of \mathbf{R} needs to be in at least one of those sets. It is easily seen by

$$A \cap \mathbf{R} = A$$
$$A \cap (B \cup B^c) = A$$
$$(A \cap B) \cup (A \cap B^c)) = A$$

Therefore $\bigcup_{n=1}^4 S_n = \mathbf{R}$ and $\bigcap_{n=1}^4 S_n = \emptyset$.

Suppose $x \in (A \cap B)^c$. Then $x \notin A \cap B$. Therefore $x \in S_2 \cup S_3 \cup S_4$.

Suppose that $x \in A^c \cup B^c$. Then $x \in S_2 \cup S_3 \cup S_4$.

Therefore $(A \cap B)^c \subseteq A^c \cup B^c$.

(b) Prove the reverse inclusion

As seen in part (a)

$$(A \cap B)^c = S_2 \cup S_3 \cup S_4 = A^c \cup B^c$$

(c) Show $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways. No need to do both ways.

$$(A \cup B)^c = S_4 = A^c \cap B^c$$

1.2.4

Verify the triangle inequality in the special cases where

(a) a and b have the same sign

Suppose $a \ge 0$, $b \ge 0$. Then |a| = a and |b| = b. Therefore

$$|a + b| = a + b = |a| + |b| \le |a| + |b|$$

Suppose $a<0,\ b<0.$ Then |a|=-a and |b|=-b; also $a+b<0\to |a+b|=-(a+b)=-a-b.$ Therefore

$$|a+b| = -a + (-b) = |a| + |b| \le |a| + |b|$$

(b) $a \ge 0$, b < 0 and $a + b \ge 0$.

$$a+b \ge 0 \rightarrow a+b = |a+b|$$

Also, |a| = a and |b| = -b. Therefore

$$a+b \ge 0 \rightarrow a \ge -b \rightarrow a \ge |b| \rightarrow |a| \ge |b|$$

$$b \le 0$$

$$2b \leq 0$$

$$b + b < 0$$

$$b < (-b)$$

$$a+b \le a + (-b)$$

$$|a+b| < |a| + |b|$$

1.2.5

Use the triangle inequality ti establish the inequalities

$$(a) |a-b| \le |a| + |b|;$$

$$|a - b| = |a + (-b)| \le |a| + |-b| = |a| + |b|$$

(b)
$$||a| - |b|| \le |a - b|;$$

let
$$a = a + b - b$$
. Then

$$|a| = |a - b + b| \le |a - b| + |b|$$

$$|a| - |b| \le |a - b|$$

$$|b| = |b - a + a| \le |b - a| + |a| = |a - b| + |a|$$

$$|b| - |a| \le |a - b|$$

$$|a| - |b| \ge -|a - b|$$

$$-|a - b| \le |a| - |b| \le |a - b| \to ||a| - |b|| \le |a - b|$$

1.2.6

Given a function f and a subset A of its domain, let f(A) represent the range of f over the set A; that is, $f(A) = \{f(x) : x \in A\}$.

(a) Let $f(x) = x^2$. if A = [0,2] (the closed interval $\{x \in \mathbf{R} : 0 \le x \le 2\}$) and B = [1,4], find f(A) and f(B). Does $f(A \cap B) = f(A) \cap f(B)$ in this case? Does $f(A \cup B) = f(A) \cup f(B)$?

First things first: f(A) = [0, 4]; f(B) = [1, 16] (without any proof because if we don't go with axiomatic stuff, then it is obvious).

$$f(A \cap B) = f([1, 2]) = [1, 4]$$
$$f(A) \cap f(B) = [1, 4]$$

Therefore in this case $f(A) \cap f(B) = f(A \cap B)$.

$$f(A \cup B) = f([0, 4]) = [0, 16] = f(A) \cup f(B)$$

(b) Find two sets A and B for which $f(A \cap B) \neq f(A) \cap f(B)$. Let A = [-1, 0] and B = [0, 1]. Then

$$f(A \cap B) = f(\{0\}) = \{0\}$$
$$f(A) \cap f(B) = [0, 1] \cap [0, 1] = [0, 1] \neq f(A \cap B)$$

(c) Show that, for an arbitrary function $g : \mathbf{R} \to \mathbf{R}$, it is always true that $g(A \cap B) \subseteq g(A) \cap g(B)$ for all sets $A, B \subseteq \mathbf{R}$.

$$x \in g(A \cap B) \to x \in g(A)$$

 $x \in g(A \cap B) \to x \in g(B)$

Therefore

$$x \in g(A \cap B) \to x \in g(A) \cap g(B)$$

Thus

$$g(A \cap B) \subseteq g(A) \cap g(B)$$

(d) Form and prove a conjecture abut the relationship between $g(A \cup B)$ and $g(A) \cup g(B)$ for an arbitrary function g.

$$x \in g(A) \to x \in g(A \cup B)$$

$$x \in g(B) \to x \in g(A \cup B)$$

Therefore

$$x \in g(A) \cup g(B) \to x \in g(A \cup B)$$

Thus

$$g(A) \cup g(B) \subseteq g(A \cup B)$$

Suppose that

$$\exists y \in \mathbf{R} : y \in g(A \cup B); y \notin g(A) \cup g(B)$$

Then $\exists q_1 \in A \cup B : g(q_1) = y$ but

$$\forall q_2 \in A, q_3 \in B : g(q_2) \neq y; g(q_3) \neq y$$

Therefore $q_1 \notin A$ and $q_1 \notin B$. Therefore $q_1 \in A^c \cap B^c$. Using De Morgan rule

$$q_1 \in A^c \cap B^c \to q_1 \in (A \cup B)^c$$

therefore

$$q_1 \notin g(A \cup B)$$

which is a contradiction. Therefore

$$y \in g(A \cup B) \to g(A) \cup g(B)$$

Thus

$$g(A \cup B) \subseteq g(A) \cup g(B)$$

Therefore if we take into account previous conclusion

$$g(A \cup B) = g(A) \cup g(B)$$

for any g.

1.2.7

Given a function $f: D \to \mathbf{R}$ and a subset $B \subseteq \mathbf{R}$, let $f^{-1}(B)$ be the set of all points from the domain D that get mapped into B; that is, $f^{-1}(B) = \{x \in D : f(x) \in B\}$. This is called the preimage of B.

(a) Let $f(x) = x^2$. If A is the closed interval [0,4] and B is the closed interval [-1,1], find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$?

$$f^{-1}(A) = [-2, 2]$$

$$f^{-1}(B) = [-1, 1]$$

$$f^{-1}(A \cap B) = f^{-1}([0, 1]) = [-1, 1] = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}([-1, 4]) = [-2, 2] = f^{-1}(A) \cup f^{-1}(B)$$

(b) The good behaviour of preimages demonstated in (a) is completely general. Show that for an arbitrary function $g: \mathbf{R} \to \mathbf{R}$, it is always true that $g^{-1}(A \cap B) = g^{-1}(A) \cap g^{-1}(B)$ and $g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$ for all sets $A, B \subseteq \mathbf{R}$.

By definition

$$x \in g^{-1}(A \cap B) \to \exists y \in A \cap B : y = g(x)$$

Therefore if we we use the fact $y \in A \cap B \to y \in A$ and $y \in A \cap B \to y \in B$

$$x \in g^{-1}(A \cap B) \to \exists y \in A : y = g(x) \to x \in g^{-1}(A)$$

$$x \in g^{-1}(A \cap B) \to \exists y \in B : y = g(x) \to x \in g^{-1}(B)$$

therefore $x \in g^{-1}(A \cap B)$ implies that $x \in g^{-1}(A)$ and $x \in g^{-1}(B)$, or in other words

$$g^{-1}(A \cap B) \subseteq g^{-1}(A) \cap g^{-1}(B)$$

In other direction:

$$x \in g^{-1}(A) \to \exists y_1 \in A : y_1 = g(x)$$

$$x \in g^{-1}(B) \to \exists y_2 \in B : y_2 = g(x)$$

 $x \in g^{-1}(A) \cap g^{-1}(B)$ implies that $\exists y_1 \in A : g(x) = y_1$ and $\exists y_2 \in B : y_2 = g(x)$. Because g is a function we know, that for every x there exists only one y = g(x). Therefore $y_1 = y_2 = g(x)$. Thus we can state that $y \in A \cap B$.

$$x \in g^{-1}(A) \cap g^{-1}(B) \to \exists y \in A \cap B : y = g(x) \to x \in g^{-1}(A \cap B)$$

Therefore

$$g^{-1}(A) \cap g^{-1}(B) \subseteq g^{-1}(A \cap B)$$

If we take previous conclusion into account, then it follows that

$$g^{-1}(A) \cap g^{-1}(B) = g^{-1}(A \cap B)$$

as desired.

Now let's prove that $g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$:

If $x \in g^{-1}(A) \cup g^{-1}(B)$ then $\exists y \in A : y = g(x)$ or $\exists y \in B : y = g(x)$. If we take into account that $y \in A \to y \in A \cup B$ then we can conclude that

$$x \in g^{-1}(A) \cup g^{-1}(B)) \to \exists y \in A \cup B : y = g(x) \to x \in g^{-1}(A \cup B)$$

Thus

$$g^{-1}(A) \cup g^{-1}(B) \subseteq g^{-1}(A \cup B)$$

In other direction:

$$x \in g^{-1}(A \cup B) \to \exists y \in A \cup B : y = g(x) \to y = g(x)$$

As proven before $g(A \cup B) = g(A) \cup g(B)$ and therefore $y \in g(A \cup B)$ implies that either $y \in g(A)$ or $y \in g(B)$. Therefore

$$x \in g^{-1}(A \cup B) \to x \in g^{-1}(A) \cup g^{-1}(B)$$

$$g^{-1}(A \cup B) \subseteq g^{-1}(A) \cup g^{-1}(B)$$

And if we combine this fact with previous conclusion:

$$g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$$

as desired.

1.2.8

Form the logical negation of each claim. One way to do this is to simply add "It is bot the case that ... " in front of each assertion, but for each statement, try to embed the word "not" as deeply into the resulting sentence as possible (or avoid using it altogether).

- (a) For all real numbers satisfying a < b, there exist an $n \in \mathbb{N}$ such that a + 1/n < b. There exist real numbers a < b such that $a + 1/n \ge b$ for all $n \in \mathbb{N}$.
 - (b) Between every two distinct real numbers, there is a rational number

There exist two real numbers, such that there are only irrational numbers between them.

(c) For all natural numbers $n \in \mathbb{N}$, \sqrt{n} is either a natural number or an irrational number

There exist a natural number $n \in \mathbb{N}$, such that \sqrt{n} is a rational number, that is not a natural number. (This one is a little bit weird if we try to negate this, but "not" is stuffed as deep as possible)

(d) Given any real number $x \in \mathbf{R}$, there exist $n \in \mathbf{N}$ satisfying n > xThere exist a real number $x \in \mathbf{R}$, such that for all $n \in \mathbf{N}$ it is true that $n \le x$.

1.2.9

Show that the sequence $(x_1, x_2, x_3, ...)$ defined in Example 1.2.7 is bounded above by 2; that is, prove that $x_n \leq 2$ for every $n \in \mathbb{N}$.

The mentioned sequence is defined by

$$x_1 = 1$$
$$x_{n+1} = (1/2)x_n + 1$$

A great advice about induction states, that when you hear words "prove" and "sequence" in the same sentence, then the word "recursion" should pop up in your head. So here we go

Base case: $x_1 \leq 2$.

Inductive proposition: $x_n \leq 2$

Inductive step:

$$x_n \le 2$$

$$(1/2)x_n \le 1$$

$$(1/2)x_n + 1 \le 2$$

$$x_{n+1} = (1/2)x_n + 1 \le 2$$

$$x_{n+1} \le 2$$

as desired.

1.2.10

Let $y_1 = 1$, and for each $n \in \mathbb{N}$ define $y_{n+1} = (3 * y_n + 4)/4$.

(a) Use induction to prove that the sequence satisfies $y_n < 4$ for all $n \in \mathbb{N}$.

Base case: $y_1 = 1 < 4$

Inductive proposition: $y_n < 4$

Inductive step:

$$y_n < 4$$

$$3 * y_n < 12$$

$$3 * y_n + 4 < 16$$

$$(3 * y_n + 4)/4 < 4$$

$$y_{n+1} = (3 * y_n + 4)/4 < 4$$

$$y_{n+1} < 4$$

as desired.

(b) Use another induction to show the sequence $(y_1, y_2, y_3, ...)$ is increasing We need to show that $y_{n+1} - y_n \ge 0$

As shown earlier

$$y_n < 4$$

therefore

$$y_n < 4$$

$$\frac{y_n}{4} < 1$$

$$1 > \frac{y_n}{4}$$

$$1 - \frac{y_n}{4} > 0$$

$$1 + (\frac{3y_n}{4} - y_n) > 0$$

$$\frac{3y_n}{4} + 1 - y_n > 0$$

$$(3 * y_n + 4)/4 - y_n > 0$$

$$y_{n+1} - y_n > 0$$

as desired.

1.2.11

If a set A contains n elements, prove that the number of different subsets of A is equal to 2^n . (Keep in mind that the empty set \emptyset is considered to be a subset of every set.)

This proof is dumb, but intuitive:

Every subset is corresponding to a number in binary number: 0 for excluded, 1 for included. Therefore there exist 2^n possible combinations.

For a more concrete proof let's resort to induction.

Base case(s): subsets of \emptyset are \emptyset itseft ($2^0 = 1$ in total). Subsets of set with one element are \emptyset and set itself ($2^1 = 1$ in total).

Proposition is that set with n elements has 2^n subsets.

Inductive step is that for set with n+1 elements can either have or hot have the n+1'th element. Therefore there exist $2^n + 2^n = 2 * 2^n = 2^{n+1}$ subsets, as desired.

1.2.12

For this exerice, assume Exercise 1.2.3 has been successfully completed (as it was)

(a) Show how induction can be used to conclude that

$$(A_1 \cup A_2 \cup \dots \cup A_n) = A_1^c \cap A_2^c \cap \dots \cap A_n^c$$

First of all, base case

$$(A_1 \cup A_2)^c = A_1^c \cap A_2^c$$

Proposition

$$(A_1 \cup A_2 \cup \dots \cup A_n) = A_1^c \cap A_2^c \cap \dots \cap A_n^c$$

Step

$$(A_1 \cup A_2 \cup ... \cup A_n \cup A_{n+1}) = A_1^c \cap A_2^c \cap ... \cap A_n^c \cap A_{n+1}^c$$

Let us denote $Q = A_1^c \cap A_2^c \cap ... \cap A_n^c$. Then by inductive proposition

$$A_1^c \cap A_2^c \cap \dots \cap A_n^c \cap A_{n+1}^c = Q \cap A_{n+1}^c = (Q^c \cup A_{n+1}) = (A_1 \cup A_2 \cup \dots \cup A_n \cup A_{n+1})$$

as desired.

(b) Explain why induction cannot be used to conclude

$$(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c$$

It might be useful to consider part (a) of Exercise 1.2.2.

Induction cannot be used on this one, because for induction we need finite set of elements. This stands on the fact, that if induction works for some case, then it works for

n-1'th element, and for n-2'th element and this way all the way down to the base case. As an example of why it doesn't work, we can take into accound exercise 1.2.2, where all of the elements have infinite number of elements, and their intersection would have infinite amount of elements for any finite number of elements, but it is not true for the infinite amount.

(c) Is the statement in part (b) valid? If so, write a proof that does not use induction. Suppose that

$$x \in (U_{n=1}^{\infty} A_n)^c$$

Then $x \notin A_n$ for every $n \in \mathbf{N}$. Therefore $x \in A_n^c$ for every $n \in \mathbf{N}$. Therefore $x \in \bigcap_{n=1}^{\infty} A_n^c$. Thus

$$(\bigcup_{n=1}^{\infty} A_n)^c \subseteq \bigcap_{n=1}^{\infty} A_n^c$$

Suppose that $x \in \bigcap_{n=1}^{\infty} A_n^c$. Then $x \notin A_n$ for every $n \in \mathbb{N}$. Therefore $x \notin (U_{n=1}^{\infty} A_n)$ for every $n \in \mathbb{N}$. Therefore $x \in (U_{n=1}^{\infty} A_n)$ for every $n \in \mathbb{N}$. Therefore

$$\bigcap_{n=1}^{\infty} A_n^c \subseteq (\bigcup_{n=1}^{\infty} A_n)^c$$

Thus if we combine two statements

$$(\bigcup_{n=1}^{\infty} A_n)^c = \bigcap_{n=1}^{\infty} A_n^c$$

as desired.

1.3.1

Let $\mathbf{Z}_5 = \{0, 1, 2, 3, 4, 5\}$ and define addition and multiplication modulo 5. In other words, compute the integer remainder when a+b and ab are divided by 5, and use this as the value for the sum and product, respectively.

(a) Show that, given any element $z \neq 0$ in \mathbb{Z}_5 , there exists an element y such that z + y = 0. The element y is called the additive inverse of z.

It is true, that for every of those elements we can set y = 5 - z, for which it is true that z + y = 5 and (z + y)%5 = 0 as desired.

(b) Show that, given any element $z \neq 0$ in \mathbb{Z}_5 , there exists an element x such that zx = 1. The element x is called the multiplicative inverse of z.

$$(1*1)\%5 = 1$$

$$(2*3)\%5 = 1$$

$$(3*2)\%5 = 1$$

$$(4*4)\%5 = 1$$

as desired.

(c) The existence of additive and multiplicative inverses is part of the definition of a field. Investigate the set $\mathbb{Z}_4 = \{0,1,2,3\}$ (where addition and multiplication are defined modulo 4) for the existense of additive and multiplicative inverses. Make a conjecture about the values of n for which additive inverses exist in \mathbb{Z}_n , and then form another conjecture about the existence of multiplicative inverses.

For \mathbb{Z}_4 we define additive inverse the same way we defined it in the part (a) (4-z=y). For multiplicative inverse we have the way with 1, but any for 2 we don't have multiplicative inverse.

Therefore the conjecture about the additive inserse is that every Z_n with addition defined as addition modulo n we have additive inverse.

Proof of it is that every element of \mathbf{Z}_n is less than n, and that because of this there exists $s = n - x \in \mathbf{Z}_n$

For multiplicative inverse the conjecture is that it exists only when n is a prime number.

1.3.2

(a) Write a formal definition in the style of Definition 1.3.2 for the infinum or greatest lower bound of a set

A real number s is the greatest lower bound for a set $A \subseteq \mathbf{R}$ if it meets the following two criteria:

- (i) s is a lower bound
- (ii) if b is any lower bound for A, then $s \geq b$.
- (b) Now, state and prove a version of Lemma 1.3.7 for greatest lower bounds.

Lemma for greatest lower bounds

Assume $s \in \mathbf{R}$ is a lower bound for a set $A \subseteq \mathbf{R}$. Then, s = inf(A) if and only if, for every choice of $\epsilon > 0$, there exists an element $a \in A$ satisfying $s + \epsilon > a$.

Proof:

In one direction: Suppose s = inf(A). Then, by definition of greatest lower bound, there does not exist a lower bound, greater than s. In other words, suppose that there exist $\epsilon > 0$ such that there is no element $a \in A$ such that $a < s + \epsilon$. Then $s + \epsilon$ is a lower bound, which is greater than s, therefore s is not a greatest lower bound, which is a contradiction. Therefore there does not exist $\epsilon > 0$ for which there exist no $a \in A$ such that $a < s + \epsilon$. Therefore for every $\epsilon > 0$ there exist an $a \in A$ such that $a < s + \epsilon$, as desired.

In other direction: suppose that s is a lower bound and for every $\epsilon > 0$ there exist $a \in A$ such that $a < s + \epsilon$. Then any number $s + \epsilon$ is not a lower bound. Therefore any number, which is greater than s is not a lower bound. Therefore any lower bound is less or equal to s. Therefore s is a greatest lower bound.

Maybe this proof is a little bit more coplicated, than it should be, but at least every step is followed properly.

1.3.3

(a) Let A be bounded below, and define $B = \{b \in \mathbf{R} : b \text{ is a lower bound for } A\}$. Show that sup(B) = inf(A).

B is a set, therefore Axiom of Completeness states that there exist real number $k = \sup(B)$. Therefore all lower bounds are less or equal to k.

In order to prove that k is infinum, we need to show that it is a lower bound.

We do it by contradiction: suppose that k is not a lower bound. Therefore there exists $a \in A$ such that k > a. Let $\epsilon = k - a > 0$. Then, because $k = \sup(B)$ there exist $b \in B$ such that $k - \epsilon < b$. Therefore a < b. Therefore there exist an element of A, that is less than lower bound of A. Therefore b is not a lower bound. Therefore we have a contradiction. Thus k is a lower bound.

Because k is a lower bound, $k \in B$ by definition of B. Therefore it is a lower bound, that is greater or equal to any other lower bounds, because it is a supremum of B. Therefore it is an infinum of A by definition of infinum.

(b) Use (a) to explain why there is no need to assert that greatest upper bound exist as part of the Axiom of Completeness.

Proof of part (a) does not take into account the fact, that A (that is bounded below) has an infinum. We prove its existence of the infinum by the fact, that we have a set of lower bounds (which is in its turn has a supremum by Axiom of Completeness), and setting the fact, that its supremum is lower bound itself and therefore proving that it is in the set of lower bounds and therefore setting the fact, that it exists.

(c) Propose another way to use the Axiom of Completeness to prove that sets bounded below have greatest lower bounds.

The only idea, that goes into my mind is to create set $B = \{-a : a \in A\}$. Then it'll have a supremum, for which the inverse will be the infinum of the set. We can polish this idea with some theorems and axioms, but I'm satisfied with the current proof already, and nobody is requiring it.

1.3.4

Assume that A abd B are nonempty, bounded above, and satisfy $B \subseteq A$. Show $sup(B) \le sup(A)$.

We prove it by contradiction: let $B \subseteq A$ and

Then let $\epsilon = \sup(B) - \sup(A) > 0$. Then by lemma we have

$$b \in B: b > sup(B) - \epsilon$$

$$b \in B: b > sup(B) - sup(B) + sup(A)$$

$$b \in B : b > sup(A)$$

Therefore b > sup(A), which is an upper bound for A and by extension $\forall a \in A : b > a$. Therefore $b \notin A$ and $b \in B$. Therefore $B \not\subseteq A$, which is a contradiction. Therefore $sup(B) \le sup(A)$.

1.3.5

Let $A \subseteq \mathbf{R}$ be bounded above, and let $c \in \mathbf{R}$. Define the sets c + A and cA by $c + A = \{c + a : a \in A\}$ and $cA = \{ca : a \in A\}$

(a) Show that sup(c+A) = c + sup(A).

We gonna prove it by contradiction

Suppose c + sup(A) is not an upper bound of c + A. Then

$$\exists n \in c + A : n > c + sup(A)$$

let us call such element l; also, by the definition of c + A

$$\forall n \in c + A : \exists a \in A : c + a = n$$

therefore

$$\exists a \in A : c + a = l$$

because l > c + sup(A)

$$c + a > c + sup(A)$$

 $a > sup(A)$

Which is a contradiction. Therefore c + sup(A) is an upper bound for c + A.

Suppose $c + sup(A) \neq sup(c + A)$. Then sup(c + A) is less than c + sup(A). Let $\epsilon = c + sup(A) - sup(c + A)$. Then

$$\exists k \in A : k > sup(A) - \epsilon$$

$$k > sup(A) - c - sup(A) + sup(c + A)$$

$$k > -c + sup(c + A)$$

Therefore

$$\exists h \in c + A : h = k + c$$

$$h - c = k$$

$$h - c > -c + sup(c + A)$$

$$h > sup(c + A)$$

therefore

$$\exists h \in c + A : h > sup(c + A)$$

which is a contradiction. Therefore c + sup(A) = sup(c + A), as desired.

(b) If $c \ge 0$, show that sup(cA) = c * sup(A)

If c = 0, then it $cA = \{0\}$, and the case is trivial. Therefore let's discuss further case when c > 0.

Suppose c * sup(A) is not an upper bound for cA.

Then

$$\exists q \in cA : q > c * sup(A)$$

by the definition of cA

$$\exists j \in A: q = cj$$

therefore

$$q > c * sup(A)$$

$$cj > c * sup(A)$$

Which is a contradiction, because $j \in A$. Therefore c * sup(A) is an upper bound for cA.

Suppose $c * sup(A) \neq sup(cA)$. Then sup(cA) is less than c * sup(A).

$$c*sup(A) > sup(cA)$$

$$c*sup(A) - sup(cA) > 0$$

$$\frac{c*sup(A) - sup(cA)}{c} > 0$$

Let $\epsilon = \frac{c*sup(A) - sup(cA)}{c}$. Then

$$\exists k \in A : k > \sup(A) - \epsilon$$
$$k > \sup(A) - \frac{c * \sup(A) - \sup(cA)}{c}$$
$$k > \sup(A) - \sup(A) - \sup(cA)/c$$
$$k > \sup(cA)/c$$

Therefore

$$\exists h \in cA : h = ck$$
$$h/c = k$$
$$h/c > \sup(cA)/c$$

$$h > \sup(cA)$$

therefore

$$\exists h \in cA : h > \sup(cA)$$

Which is a contradiction. Therefore sup(cA) = c * sup(A) as desired.

(c) Postulate a simular type of statement for $\sup(cA)$ for the case c < 0

Proposition: suppose that A is bounded below; if c < 0 then sup(cA) = c * inf(A)

Suppose c * inf(A) is not an upper bound for cA.

Then

$$\exists q \in cA : q > c * inf(A)$$

by the definition of cA

$$\exists j \in A : q = cj$$

therefore

$$q > c * inf(A)$$

$$cj > c * inf(A)$$

Which is a contradiction, because $j \in A$. Therefore c * sup(A) is an upper bound for cA.

Suppose $c * inf(A) \neq sup(cA)$. Then sup(cA) is less than c * inf(A).

$$sup(cA) < c * inf(A)$$

$$sup(cA) - c * inf(A) < 0$$

$$\frac{sup(cA) - c * inf(A)}{c} > 0$$

Let $\epsilon = \frac{\sup(cA) - c*\inf(A)}{c} > 0$. Then

$$\exists k \in A : k < inf(A) + \epsilon$$

$$k < inf(A) + \epsilon$$

$$k < inf(A) + \frac{sup(cA) - c * inf(A)}{c}$$

$$k < inf(A) + sup(cA)/c - inf(A)$$

$$k < sup(cA)/c$$

Therefore

$$\exists h \in cA : h = ck$$

$$h/c = k$$

$$h/c = k < \sup(cA)/c$$

$$h/c < \sup(cA)/c$$

$$h > \sup(cA)$$

therefore

$$\exists h \in cA : h > \sup(cA)$$

Which is a contradiction. Therefore sup(cA) = c * inf(A) as desired.

1.3.6

Compute, without proofs, the suprema and infima of the following sets:

(a)
$$\{n \in \mathbf{N} : n^2 < 10\}$$

$$sup = 3$$
, $inf = 1$.

(b)
$$\{n/(m+n): m, n \in N\}$$

$$sup = 1/2, inf = 0.$$

(c)
$$\{n/(2n+1) : n \in \mathbf{N}\}$$

$$sup = 1/2, inf = 1/3.$$

(d)
$$\{n/m : m, n \in \mathbf{N} \text{ with } m+n \leq 10\}$$

$$sup = 9$$
, $inf = 1/9$.

1.3.7

Prove that if a is an upper bound for A, and if a is also an element A, then it must be that $a = \sup(A)$

Let's prove this one by contradiction

Suppose that $a \neq sup(A)$. Because a is still an upper bound, sup(A) < a, Therefore $a \in A$, but sup(A) < a, which is a contradiction. Therefore a = sup(A).

1.3.8

If sup(A) < sup(B), then show that there exists an element $b \in B$, that is an upper bound for A.

Let
$$\epsilon = sup(B) - sup(A)$$
. Then

$$\exists b \in B : b > \sup(B) - \epsilon$$
$$b > \sup(B) - \epsilon$$

$$b > sup(B) - sup(B) + sup(A)$$

 $b > sup(A)$

therefore b is an upper bound for A.

1.3.9

Without worryong about formal proofs for the moment, decide if the following statements about suprema and infima are true or false. For any that are false, supply an example where the claim in question does not appear to hold.

- (a) A finite, nonempty set always contains its supremum True
- (b) If a < L for every element a in the set A, then sup(A) < L. False. sup((0,1)) = 1; $\forall a \in (0,1) : a < 1$, therefore sup(A) = L.
- (c) If A and B are sets with the property that a < b for every $a \in A$ and $b \in B$, then it follows that sup(a) < inf(B)

False. sup((0,1)) = inf((1,2))

(d) If sup(A) = s and sup(B) = t, then sup(A + B) = s + t. The set A + B is defined as $A + B = \{a + b : a \in A \text{ and } b \in B\}$.

True

(e) If $sup(A) \leq sup(B)$, then there exists an element $b \in B$ that is an upper bound for A.

False. sup([1,2]) = sup((1,2))

1.4.1

Without doing too much work, show how to prove Theorem 1.4.3 in the case where a < 0 by converting this case into the already proven.

First of all, let's state the theorem itself.

Theorem 1.4.3 (Density of Q in R). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Then let's talk about the possible cases for a < 0. Then b > a by the assumtions of the theorem. Therefore $b \ge 0$ or b < 0. If b > 0 then there exist 0 between them. If b = 0, then there exist a rational number b = 0 < 1/n < -a, and by extention a < 1/n < b as desired. Therefore we will have some work to do only with case b < 0.

It is proven, that $a_1 < r < b_1$ if $0 \le a_1 < b_1$. Therefore for a < b < 0. Therefore -a > -b > 0. Therefore if we set $a_1 = -b$ and $b_1 = -a$ then by previously stated theorem, there exist

$$a_1 < r < b_1$$

$$-b < r < -a$$

$$b > r > a$$

$$a < r < b$$

as desired.

1.4.2

Recall that I stands for the set of irrational numbers.

(a) Show that if $a, b \in \mathbf{Q}$, then ab and a + b are elements of \mathbf{Q} as well. Because $a, b \in Q \exists m_1, m_2 \in \mathbf{Z}, \exists n_1, n_2 \in \mathbf{N}$ such that

$$a = \frac{m_1}{n_1}$$
$$b = \frac{m_2}{n_2}$$

therefore

$$a+b = \frac{m_1}{n_1} + \frac{m_2}{n_2} = \frac{m_1 n_2 + m_2 n_1}{n_1 n_2}$$

Z is presumed closed under addition and N is presumed closed under N, therefore

$$a + b = \frac{m_1 n_2 + m_2 n_1}{n_1 n_2} \in \mathbf{Q}$$

also **Z** is closed under multiplication, and therefore

$$ab = \frac{m_1 m_2}{n_1 n_2} \in \mathbf{Q}$$

(b) Show that if $a \in \mathbf{Q}$ and $t \in \mathbf{I}$, then $a + t \in \mathbf{I}$ and $at \in \mathbf{I}$ as long as $a \neq 0$. We prove both things by contradiction.

Suppose $a+t \in \mathbf{Q}$. Then $\exists b \in Q : a+t=b$. Also, $a \in Q \to -a \in Q$. Therfore

$$a + t = b$$

$$t = b - a$$

Therfore, because Q is closed under addition (as we discussed previously), $t \in Q$, which is a contradiction. Therefore $a + t \in I$.

Suppose $at \in Q$ for $a \neq 0$. Then

$$\exists b \in Q : at = b$$

therefore if $a = m/n \in Q$, then 1/a = n/m in Q. Therefore

$$t = b/a$$

Therefore $t \in Q$, which is a contradiction. Therefore $at \in I$ for $a \neq 0$.

(c) Part (a) can be summarized by saing that Q is closed under addition and multiplication. Is I closed under addition and multiplication? Given two irrational numbers s and t, what can we say about s + t and st.

I is not closed under addition, nor under multiplication. Proof is $\sqrt{2}+1$ and $0-\sqrt{2}$ are both irrational, but

$$\sqrt{2} + 1 - \sqrt{2} = 1 \in Q$$

and

$$\sqrt{2} * \sqrt{2} = 2 \in Q$$

1.4.3

Using Exercise 1.4.2, supply a proof for Corollary 1.4.4 by applying Theorem 1.4.3 to the real numbers $a - \sqrt{2}$ and $b - \sqrt{2}$.

First, let's state Corollary 1.4.4.

Given any two real numbers a < b, there exists an irrational number t satisfying a < t < b.

We know, that between two numbers $a_1 < b_1$ there exists a rational number r, for which it is true

$$a_1 < r < b_1$$

Let $a_1 = a + \sqrt{2}$ and $b_1 = b + \sqrt{2}$. Then

$$a_1 < r < b_1$$
$$a + \sqrt{2} < r < b + \sqrt{2}$$

$$a < r - \sqrt{2} < b$$

As we know, $r-\sqrt{2}$ is an irrational number, therefore between a and b there exists an irrational number.

1.4.4

Use the Archimedean Property of R to rigorously prove that $\inf\{1/n : n \in N\} = 0$ It is true, that $\forall n \in N : n > 0$. Therefore

Therfore 0 is a lower bound for 1/n. Also, because of Archimededean Property, if we take any $\forall \epsilon > 0 : \exists 1/n : 1/n < \epsilon$

$$\forall \epsilon > 0 : \exists 1/n : 1/n < \epsilon$$

$$\forall \epsilon > 0 : \exists 1/n : 0 + \epsilon > 1/n$$

Therfore for every ϵ there exists an element of a set such that $0 + \epsilon$ is greater than this set. Therefore 0 is an infinum of this set, as desired.

1.4.5

Prove that $\bigcap_{n=1}^{\infty}(0,1/n)=\emptyset$. Notice that this demonstrates that the Nested Interval Property must be closed for the conclusion of the theorem to hold.

First of all, 1/n > 0 implies, that if $y \le 0$ then $y \notin (0, 1/n)$ for any $n \in N$.

Because of the Archimedean Property, for every $y \in R > 0$ there exists $n \in N$ such that 1/n < y. Therefore there does not exist y > 0 such that $y \ge 1/n$ for every $n \in N$. Therefore for every $y \ge 0$ there exist $n \in N$ such that $y \notin (0, 1/n)$.

Therefore there are no real numbers in $\bigcap_{n=1}^{\infty} (0, 1/n)$. Therefore

$$\cap_{n=1}^{\infty}(0,1/n)=\emptyset$$

as desired.

This conclusion proves, that if we have use an open interval for nested interval property, then we'll have a problem.

1.4.6

(a) Finish the proof of Theorem 1.4.5 by showing that the assumption $\alpha^2 > 2$ leads to a contradiction of the fact that $\alpha = \sup(T)$.

First, Theorem 1.4.5 states that there exists a real number $\alpha \in R$ satisfying $\alpha^2 = 2$. Our assumption is that

$$T = \{t \in R : t^2 < 2\}$$
 and $\alpha = \sup(T)$

Our strategy is to state that if $a^2 > 2$, then a is not a least upper bound. If a is an least upper bound for T, then it is true, that

$$\forall \epsilon > 0 : \exists t \in T : t > \alpha - \epsilon$$

Therefore for every $n \in N$

$$\exists t \in T : t > \alpha - 1/n$$

Now let us follow with the proof. For all $n \in N$.

$$t > \alpha - 1/n$$

$$\alpha - 1/n < t$$

$$(\alpha - 1/n)^2 < t^2$$

$$(\alpha - 1/n)^2 < t^2$$

$$\alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} < t^2$$

$$\alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} < t^2$$

Let's justify something now. $1^2=1<2$, therefore $1<\alpha$. Therefore $2\alpha-1>0$. Also, because $\alpha^2>2,\ \alpha^2-2>0$. Therefore

$$\frac{\alpha^2 - 2}{2\alpha - 1} > 0 \in R$$

Now, let us pick $n \in N$ such that

$$1/n < \frac{\alpha^2 - 2}{2\alpha - 1}$$

then

$$1/n < \frac{\alpha^2 - 2}{2\alpha - 1}$$

$$1/n^2 < \frac{\alpha^2 - 2}{2\alpha - 1}$$

$$n^2 > \frac{2\alpha - 1}{\alpha^2 - 2}$$

$$\frac{2\alpha - 1}{n^2} < \alpha^2 - 2$$

$$\frac{2\alpha}{n^2} - \frac{1}{n^2} < \alpha^2 - 2$$

$$-\alpha^2 + \frac{2\alpha}{n^2} - \frac{1}{n^2} < -2$$

$$\alpha^2 - \frac{2\alpha}{n^2} + \frac{1}{n^2} > 2$$

$$\alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} > 2$$

but

$$\alpha^2 - \frac{2\alpha}{n} + \frac{1}{n^2} < t^2 < 2$$

Therefore we have a contradiction. Therefore $\alpha \leq 2$. Therefore $\alpha = 2$, as desired. Phew.

(b) Modify the argument to prove the existence of \sqrt{B} for any real number $b \ge 0$. Let's discuss the case $a^2 < b$.

$$(\alpha + 1/n)^2 = \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n^2} < \alpha^2 + \frac{2\alpha}{n} + \frac{1}{n} = \alpha + \frac{2\alpha + 1}{n}$$

Let

$$\frac{1}{n} < \frac{b-\alpha}{2\alpha+1}$$

then

$$(\alpha + \frac{1}{n})^2 = \alpha^2 + (b - \alpha^2) = b$$

Therefore $\alpha + 1/n \in T$. Therefore $a^2 \geq b$.

Now let

$$1/n < \frac{\alpha^2 - b}{2\alpha - 1}$$

. Then by reasoning in the last part of exercise we can state, that $\alpha^2 \leq b$. Therefore $\alpha^2 = b$, as desired.

1.4.7

Finish the following proof for Theorem 1.4.12.

First of all, let us state Theorem 1.4.12

If $A \subseteq B$ and B is countable, then A is either contable, finite or empty.

Assume B is a countable set. Thus, there exists $f: N \to B$, which 1-1 and onto. Let $A \subseteq B$ be an infinite subset of B. We must show that A is countable.

Let $n_1 = min\{n \in N : f(n) \in A\}$. As a start to a definition of $g : N \to A$, set $g(1) = f(n_1)$. Show how to inductively continue this process to produce a 1-1 function g from N onto A.

Proposition: $g(n) = f(n_n)$.

Step: let $n_{n+1} = min\{k > n \in N : f(k) \in A\}$. Then $f(n) < n_{n+1} \notin n_{n+1}$. Therefore $g(n+1) = f(n_{n+1})$. Therefore

$$\forall n_1 \neq n_2, k_1, k_2 \in N \exists g(n_1) = f(k_1) \neq g(n_2) = f(k_2)$$

and

$$\forall l \in g(N) \exists k \in N : g(k) = f(n_k) = l$$

Therefore there exist a bijective function $g: N \to A$. Therefore A is countable, as desired. If A is not infinite, then it's finite (duh). Same with empty.

1.4.8

Use the following outline to supply for the statements in Theorem 1.4.13.

First of all, let's state Theorem 1.4.13

- (i) If $A_1, A_2, ... A_m$ are each countable sets, then the union $A_1 \cup A_2 \cup ... \cup A_m$ is countable.
- (ii) If A_n is countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.
- (a) First, prove statement (i) for two countable sets, A_1 and A_2 . Example 1.4.8 (ii) may be a useful reference. Some technicalities can be avoided by first replacing A_2 , with the set $B_2 = A_2 \setminus A_1 = \{x \in A_2 : x \notin A_1\}$. The point of this is that the union $A_1 \cup B_2$ is equal to $A_1 \cup A_2$ and the sets A_1 and B_2 are disjoint. (What happens if B_2 is finite?)

Let us first set $B_2 = A_2 \setminus A_1$. We will do it in order to have two useful properties:

$$a \in B_2 \to a \in A_1^c \cup A_2 \to a \notin A_1$$

 $A_1 \cup B_2 = A_1 \cup (A_1^c \cap B_2) = (A_1 \cap A_1^c) \cup (A_1 \cap B_2) = A_1 \cap B_2$

Let's finally begin with the proof. $B_2 \subseteq A_2$. By using previous theorem we can state, that B_2 is either countable, finite, or empty. If it is empty, then $A_1 \cup A_2 = A_1$, and therefore is countable.

For the finite case we'll need function, that returns the n'th smallest element of the set. We can argue, that this function does not need the rigorous definition, but we'll give it anyways:

$$s_F(1) = \{x \in F : \forall y \in F : x \le y\}$$

$$s_F(n) = \{x \in F \setminus \{s(1), ..., s(n-1)\}\} : \forall y \in F \setminus \{s(1), ..., s(n-1)\}\} : x \le y\}$$

for the finite set $F \subseteq R$.

$$\forall n_1 > n_2 \in N : s_F(n_2) \notin F \setminus \{s(1), ..., s(n_1 - 1)\} \rightarrow s_F(n_1) \neq s_F(n_2)$$

therefore the function is injecttive

We remove one element at every iteration from F every iteration, therefore $\{s_F(1), ... s_F(|F|)\}$ spans the whole set F. Therefore the function is surjective. Therefore the function is bijective.

Now let us define $q: N \to A_1 \cup B_2$. Let $g_1: N \to A_1$ be a bijective function, that exists, because the set A_1 is countable. Then

$$q(x) = \begin{cases} s_{B_2}(x) & \text{if } x \le |B_2| \\ g_1(x - |B_2|) & \text{if } x > |B_2| \end{cases}$$
 (1)

Let's analyse this function. If $x_1 < x_2 \le |B_2|$ or $x_1 > x_2 > |B_2|$, then $q(x_1) \ne q(x_2)$ by injectivity of s_{B_2} or $g_1(x)$ respectively. If $x_1 \le |B_2| < x_2$, then $q(x_1) \in B_2$ and $q(x_2) \in A_1$. Those two sets are disjoint, and therefore $q(x_1) \ne q(x_2)$. Therefore for all possible $x_1, x_2 \in N \to q(x_1) \ne q(x_2)$. Therefore the function is injective.

Let $b \in N$ and $N_b = \{x \in N > b\}$. Also let $N_a = \{x \in N_b : x - b\}$. Then

$$\forall c \in N_a : \exists v \in N_b : c = v - b$$

$$\forall v \in N_b : \exists n \in N : v = n + b$$

$$\forall c \in N_a : \exists n \in N : c = n$$

therfore $N \subseteq N_a$.

$$\forall n \in N : \exists v \in N_b : v = n + b$$
$$\forall v \in N_b : \exists c \in N_a : c = v - b$$
$$\forall n \in N : \exists c \in N_a : c = n$$

therfore $N_a \subseteq N$. Thus $N = N_a$.

Therefore

$$\forall x > |B_2| : \exists n \in N : g_1(x - |B_2|) = g_1(n)$$

Therefore g_1 spans the whole set A_1 . s_{B_2} spans the whole B_2 by surjectivity of s. Therefore q spans $A_1 \cup B_2$. Therefore it is surjective.

Therefore $A_1 \cup B_2$ is bijective, therefore $A_1 \cup B_2$ is countable if B_2 is finite. One last thing, that I want to add before finishing this case is to acknowledge the fact, that this theorem is true not for real numbers only. This fact throws our minimal element part out of the proof. This misfortune can be avoided through the usage of lists and by converting sets into them. I did not use this fact here because of the need to axiomaticly define lists, which I can, but don't want to do.

Now let us proceed with the case when B_2 is countable. Let $g_1: N \to A_1$ be a bijective function for A_1 and $g_2: N \to B_2$ be a bijective function for B_2 (both of those exist because of the fact, that both of the sets are countable). Let $q: N \to A_1 \cup B_2$ be defined as

$$q(x) = \begin{cases} g_1((x+1)/2) \text{ if x is odd} \\ g_2(x/2) \text{if x is even} \end{cases}$$
 (2)

Then $\forall n_1 \neq n_2 \in N \rightarrow g(n_1) \neq g(n_2)$ because of either injectivity of both functions, or because of the fact, that both sets are disjoint. Therefore q is injective. Also

$$x \text{ is odd} : (x+1)/2 = x \text{ is even} : x/2 = N$$

Therefore q spans $A_1 \cup B_2$. Therefore the function is surjective.

Thus q is bijective and $A_1 \cup B_2 = A_1 \cup B_2$ is countable if B_2 is countable.

Therefore for any countable sets A_1 and A_2 it is true, that their union is countable as well

Now, explain how the more general statement in (i) follows

We prove the first part of the teorem by induction.

Base: $A_1 \cup A_2$ is countable.

Proposition: $\bigcup_{n=1}^{m} A_n$ is countable for $m \in N$.

Step:

$$\bigcup_{n=1}^{m+1} A_n = \bigcup_{n=1}^{m} A_n \cup A_{m+1}$$

 $\bigcup_{n=1}^{m} A_n$ is a countable set because of the proposition. A_{m+1} is countable by assumtion of the theorem. Therefore $\bigcup_{n=1}^{m+1} A_n$ is a union of two countable sets, and therefore is itself contable, as desired.

(b) Explain why induction connot be used to prove part (ii) of Theorem 1.4.13 from part (i)

Induction cannot be used to prove part (ii) because of the fact, that induction relies of finality of the given set.

(c) Show how arranging N into the two-dimentional array

leads to a proof of a Theorem 1.4.13 (ii)

This proof will not be as rigorous as the ones before that, but i'll try them anyways. Let us convert all of the given sets onto lists. Then let us construct lists

$$l_1 = A_{1_1}$$

$$l_2 = A_{2_1}, A_{1_2}$$

$$l_3 = A_{3_1}, A_{2_2}, A_{3_1}$$
...
$$l_n = A_{n_1}, A_{n-1_2}, A_{n-2_31}...$$

if A_{n_n} already has been included into the lists $l_{1..n-1}$, then we don't include it in the list. Then if we concatenate all of those lists together, then we will have function $q: N \to \bigcup_{n=1}^{\infty} A_n$ which is defined as

q(x) = x'th element of the final list

This function will be injective, because we threw out already included elements, and will be surjective, because all of the elements of $\bigcup_{n=1}^{\infty} A_n$ are eventually in the list. Thus, we have a bijective function between N and $\bigcup_{n=1}^{\infty} A_n$. Therefore $\bigcup_{n=1}^{\infty} A_n$ is countable, as desired.

1.4.9

(a) Given sets A and B, explain why $A \sim B$ is equivalent to asserting $B \sim A$.

Short answer: bijectivity implies inversability.

Medius answer: injectivity leads us to the fact, that for every element of codomain there exists only one element of the domain and by extension lets us define inverse function in the first place; surjectivity guarantees, that the inverse function is defined for every element of the domain.

Long answer:

 $A \sim B$ implies, that there exists a bijective function $g: A \to B$. Bijective means that

$$\forall a_1 \neq a_2 \in A \rightarrow g(a) \neq g(b)$$

$$\forall b \in B : \exists a \in A : g(a) = b$$

This implies that for all $b \in B$ there exist only one $a \in A$ such that g(a) = b. This fact lets us define $g^{-1}: B \to A$ as

$$g^{-1}(b) = a$$
 such that $g(a) = b$

Then

$$\forall b_1 \neq b_2 \in B \to g^{-1}(b_1) \neq g^{-1}(b_2)$$

because g is a function and therefore $g^{-1}(b_1) \neq g^{-1}(b_2) \rightarrow g(a_1) \neq g(a_2) \rightarrow a_1 \neq a_2$. Therefore g^{-1} is injective.

$$\forall a \in A : \exists g(a) \to \exists b \in B : g^{-1}(b) = a$$

and therefore

$$\forall a \in A : \exists b \in B : g^{-1}(b) = a$$

therefore function is surjective.

Therefore the function is bijective and therefore $B \sim A$.

Therefore $A \sim B \iff B \sim A$, as desired.

(b) For three sets A, B and C, show that $A \sim B$ and $B \sim C$ implies $A \sim C$. These two properties are what is meant by saying that \sim is an equivalence relation.

Because $A \sim B$ and $B \sim C$ there exist two bijective functions $g_1: A \to B$ and $g_2: B \to C$. Therefore

$$\forall a_1 \neq a_2 \in A \to g_1(a_1) \neq g_1(a_2)$$

$$\forall b_1 \neq b_2 \in B \to g_2(b_1) \neq g_2(b_2)$$

therefore

$$\forall a_1 \neq a_2 \in A \rightarrow g_1(a_1) \neq g_1(a_2) \rightarrow g_2(g_1(a_1)) \neq g_2(g_1(a_2))$$

Also

$$\forall a \in A : \exists b \in B : g_1(a) = b$$

$$\forall b \in B : \exists c \in C : g_2(b) = c$$

and therefore

$$\forall a \in A : \exists b \in B : g_1(a) = b \rightarrow \exists c \in C : g_2(g_1(a)) \in C$$

Therefore $g_2 \circ g_1 : A \to C$ is a bijective function. Therefore $A \sim C$, as desired.

1.4.10

Show that the set of all finite subsets of N is a countable set. (It turns out that the set of all subsets of N is not a countable set. This is a title of Section 1.5)

Our strategy here will be to show that for every $n \in N$ set of sets of length n is countable, therefore their union is countable.

Maybe I should proceed with induction. Base: First of all, set N in countable. Therefore the set of sets of length 1 is countable.

Proposition: Suppose that set of sets of length $n \in N$ is countable.

Step: Because set of sets of length N is countable, let us take a set S_m . Then, let us add a number into in , which is not already in this set. To be more precise, let us define

$$N_m = N \setminus S_m$$

$$S_{m_k} = S_m \cup \{\text{k'th number of } N_m\}$$

Then each of S_{m_k} is a union of countable sets, and therefore countable. Therefore $\bigcup_{k=1}^{\infty} S_{m_k} = S_{m+1}$ is countable.

Therefore each set of sets of length $n \in N$ is countable. Therefore their union is countable. Therefore set of finite subsets of N is countable, as desired.

1.4.11

Consider the open interval (0,1), and let S be the set of points in the open unit square; that is, $S = \{(x,y) : 0 \le x, y \le 1\}$

(a) Find a 1-1 function, that maps (0, 1) into, but not necessarily onto, S. (This is easy.)

Yeah, it is. Let g(x) = (x, 0.5).

(b) Use the fact that every real number has a decimal expansion to produce a 1-1 function that maps S into (0, 1). Discuss whether the formulated function is onto. (Keep in mind that any terminating decimal expansion such as .235 represents the same real number as .23499999999).

Let $g(x,y): S \to (0,1)$ be such a function, that maps digits of x into the odd digits of the result, and y into the event digits of the result. As an example

$$q(.235, .746) = .273456$$

This function is into, because we are essentially writing two dirrerent numbers in an odd way. Therefore $\forall s_1, s_2 \in S \rightarrow g(s_1) \neq g(s_2)$

The problem arises with surjectivity. Suppose that we have a number x = 0.2. If this function would be the output of our function, then y would need to be 0; Therefore the function is not surjective.

The Schroder-Bernstein Theorem discussed in Exercise 1.4.13 to follow can now be applied to conclude that $(0,1) \sim S$

1.4.12

A real number $x \in R$ is called algebraic if there exists integers $a_0, a_1, a_2, ..., a_n \in Z$, not all zero, such that

$$a_n x^n + a_{n-1} x^{x-1} + \dots + a_1 x + a_0 = 0$$

Said another way, a real number is algebraic if it is the root of a polynomial with integer coefficients. Real numbers that are not algebraic are called transcendental numbers. Reread the last paragraph of Section 1.1. The final question posed here is closely related to the question of whether or not transcendental numbers exist.

(a) Show that $\sqrt{2}$, $\sqrt[3]{2}$ and $\sqrt{3} + \sqrt{2}$ are algebraic.

Let $a_0 = -2$, $a_1 = 0$ and $a_2 = 1$. Then

$$a_2x^2 + a_1x + a_0 = 0$$
$$x^2 + 0 - 2 = 0$$
$$x^2 = 2$$
$$x = \sqrt{2} \text{ or } x = -\sqrt{2}$$

Therefore $\sqrt{2}$ is algebraic.

Let $a_0 = -2$, $a_1 = 0$, $a_2 = 0$ and $a_3 = 1$. Then

$$a_3x^3 + a_2x^2 + a_1x + a_0 = 0$$

$$x^{3} + 0 - 2 = 0$$
$$x^{3} = 2$$
$$x = \sqrt[3]{2}$$

Therefore $\sqrt[3]{2}$ is algebraic.

Let $a_0 = 1$, $a_1 = 0$, $a_2 = -10$, $a_3 = 0$ and $a_4 = 1$. Then

$$x^{4} - 10x^{2} + 1 = 0$$

$$x^{4} - 10x^{2} + 25 = 24$$

$$(x^{2} - 5)^{2} = 4 * 6$$

$$x^{2} - 5 = 2\sqrt{6}$$

$$x^{2} = 5 + 2\sqrt{6}$$

$$x^{2} = 2 + 3 + 2\sqrt{2}\sqrt{3}$$

$$x = \sqrt{2} + \sqrt{3}$$

Therefore $\sqrt{2} + \sqrt{3}$ is algebraic.

(b) Fix $n \in N$, and let A_n be the algebraic numbers obtained as roots of polynomials with integer coefficients that have degree n. Using the fact that every polynomial has a finite number of roots, show that A_n is countable. (For each $m \in N$, consider polynomicals $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ that satisfy $|a_n| + |a_{n-1}| + ... + |a_1| + |a_0| \le m$.)

Let us fix $m \in M$, then there exist a finite number of $a_n, ..., a_1, a_0 \in Z$ such that $|a_n| + |a_{n-1}| + ... + |a_1| + |a_0| \le 0$. Therefore for each $m \in M$ there are finitely many combinations of coefficients and thus finitely many numbers of roots. Therefore let us correspont each root, with a number $n \in N$ is ascending order (keeping in mind, we should check, that this number is not already in the function). Then we'll get a bijective function from N to all the possible roots of polynomials with integral coefficiens. Therefore A_n is countable.

(c) Now, argue that the set of all algebraic numbers is countable. What may we conclude about the set of transcendental numbers?

Because A_n is countable for each $n \in N$ we know, that $\bigcup_{n=1}^{\infty} A_n$ is countable as well. By definition, algebraic number is a root of one of such polynomials, and therefore algebraic numbers are a countable set.

The fact, that the set of algebraic numbers is countable presents us with a fact, that the set of transcedental numbers is not countable (because if it was, then the set of real numbers would be a union of two countable sets and therefore countable as well).

1.4.13 (Schroder-Bernstein Theorem)

Assume that there exists a 1-1 function $f: X \to Y$ and another 1-1 function $g: Y \to X$. Follow the steps to show that there exists a 1-1, onto function $h: X \to Y$ and hence $X \sim Y$.

(a) The range of f is defined by $f(X) = \{y \in Y : y = f(x) \text{ for some } x \in X.$ Let $y \in f(X)$. (Because f is not necessarily onto, the range f(X) may not be all of Y.) Explain why there exists a unique $x \in X$ such that f(x) = y. Now define $f^{-1}(y) = x$, and show that f^{-1} is a 1-1 function from f(X) onto X.

Because f is given to be injective, it is true that

$$\forall x_1 \neq x_2 \in X \to f(x_1) \neq f(x_2)$$

f is also a function. By definition of a function we know, that for every element of domain there exists only one element of codomain. Therefore

$$\forall f(x_1) \neq f(x_2) \in f(X) \rightarrow x_1 \neq x_2$$

By plugging y into the equation we have

$$\forall y_1 \neq y_2 \in f(X) \rightarrow x_1 \neq x_2$$

Thus we can define $f^{-1}: f(X) \to X$:

$$f^{-1}(y) = \{x \in X : f(x) = y\}$$

This function will be injective by the fact that

$$\forall y_1 \neq y_2 \in f(X) \to x_1 \neq x_2 \to f^{-1}(x_1) \neq f^{-1}(x_2)$$

In a similar way, we can also defin the 1-1 function $g^{-1}: g(X) \to Y$ Same logic applies to g(x). Therefore we have

$$g^{-1}(x) = \{ y \in Y : g(y) = x \}$$

which by the same logic is injective.

(b) Let $x \in X$ be arbitrary. Let the chain C_x be the set consisting of all elements of the form

(1) ...,
$$f^{-1}(g^{-1}(x)), g^{-1}(x), x, f(x), g(f(x)), f(g(f(x))), ...$$

Explain why the number of elements to the left of x in the above chain may be zero, finite, or infinite

The number of elements on the left is 0, if there does not exists $y \in Y$ such that g(y) = x.

The number of elements on the left is finite number, if after some element l there does not exist an element $y \in Y$ or $x \in X$, such that g(y) = l or f(x) = l.

The number of elements on the left is infinite, if there exist both of those numbers for every element (for example, if both functions are onto).

(c) Show that any two chains are either identical, or completely disjoint

Suppose that $x_1 \neq x_2$. Then $f(x_1) \neq f(x_2)$ by injectivity of f. Also, $f(x) \in Y$, and therefore $g(f(x_1)) \neq g(f(x_2))$ and so on.

 f^{-1} and g^{-1} are injective as well. Therefore the same logic applies. Thus we can state that

$$\forall x_1 \neq x_2 \to C_{x_1} \cap C_{x_2} = \emptyset$$

and

$$\forall x_1 = x_2 \to C_{x_1} \cap C_{x_2} = C_{x_1} = C_{x_2}$$

(d) Note that the terms of the chain in (1) alternate between elements of X and elements of Y. Given a chain C_x , we want to focus on $C_x \cap Y$, which is just a part of the chain that sits in Y.

Define the set A to be the union of all chains C_x satisfying $C_x \cap Y \subseteq f(X)$. Let B constst if the union of the remaining chains not in A. Show that any chain contained in B must be of the form

$$y, g(y), f(g(y)), g(f(g(y))), \dots$$

where y is an element of Y that is not in f(X)

Let A and B be defined as in the exercise text. Then

$$\forall C_x \in B : \exists c \in C_x : c \in Y \text{ and } c \notin f(X)$$

. Thus

$$\nexists x \in X : f(x) = c$$

at the same time

$$c \in Y \to \exists x \in X : g(y) = x$$

Becaus $g: Y \to g(Y) \subseteq X$ and $f: X \to f(X) \subseteq Y$ we can write the chain in the form

Substituting c with y we get

where $y \notin f(X)$, as desired.

(e) Let $X_1 = A \cap X$, $X_2 = B \cap X$, $Y_1 = A \cap Y$, and $Y_2 = B \cap Y$. Show that f maps X_1 onto Y_1 and that g maps Y_2 onto X_2 . Use this infortation to prove $X \sim Y$.

Let X_1, X_2, Y_1 and Y_2 be defined as in exercise text. Then let us discuss $f(X_1)$

$$A = \{C_x : C_x \cap Y \subseteq f(X)\}$$

$$X_1 = \{C_x \cap X : C_x \cap Y \subseteq f(X)\}$$

$$Y_1 = \{C_x \cap Y : C_x \cap X \subseteq g(Y)\}$$

therefore

$$\forall y \in Y_1 : \exists x \in X_1 : f(x) = y$$

and

$$\forall x \in X_2 : \exists y \in Y_2 : g(y) = x$$

Or in other words, $f: X_1 \to Y_1$ is surjective(onto).

By the same logic, $g: Y_2 \to X_2$ is also surjective.

Let us define function $h: X \to Y$

$$h(x) = \begin{cases} f(x) & \text{if } x \in X_1\\ g^{-1}(x) & \text{if } x \in X_2 \end{cases}$$
 (3)

Functions f and g^{-1} are both injective. $X_1 \cap X_2 = \emptyset$. Therefore h is injective as well. Also, $X_1 \cup X_2 = X$, and both f and g are surjective. Therefore h is surjective as well.

Therefore this function is bijective. Therefore we have a bijective function from X to Y. Therefore $X \sim Y$, as desired.

1.5.1

Show that $(0,1) = \{x \in R : 0 < x < 1\}$ is uncountable if and only if R is uncountable. Let

$$f(x) = \frac{2x - 2}{x^2 - 2x}$$

Calsulus shows that this function maps $(0,1) \to R$. Also, it shows, that ist is increasing and therefore it is bijective. Thus there exist a bijective. Thus $(0,1) \sim R$. Therefore it is uncountable if and only if R is uncountable.

1.5.2

(a) Explain why the real number $x = b_1b_2b_3...$ cannot be f(1). If f(1) = b then

$$b_1 = 2 \to b_1 \neq 2$$

$$b_1 \neq 2 \rightarrow b_1 = 2$$

Therefore we have a contradiction.

(b) Now, explain why $x \neq f(2)$, and in general why $x \neq f(n)$ for any $n \in N$. If f(1) = b then

$$b_n = 2 \rightarrow b_n \neq 2$$

$$b_n \neq 2 \rightarrow b_n = 2$$

Therefore we have a contradiction for $n \in N$.

(c) Point ount the contradiction that arises from these observations and conclude that (0,1) is uncountable.

If (0,1) is countable, then $b \in (0,1)$, but it cannot be correspondent to $n \in N$ for any $f: N \to (0,1)$. Therefore either $b \notin (0,1)$ or (0,1) is not countable. Because $b \in (0,1)$ we conclude that (0,1) is uncountable.

1.5.3

Supply rebuttals to the following complaints about the proof of Theorem 1.5.1

(a) Every rational number has a decimal expansion so we could apply this same argument to show that the set of rational numbers between 0 and 1 is uncountable. However, because we know that any subset of Q must me countable, the proof of Theorem 1.5.1 must be flawed

We can try to apply the same argument to Q, but now we have a problem with the fact, that every rational number in decimal expansion repeats itself after some point or another. Therefore $b \notin Q$, therefore we cannot conclude anything.

(b) A few numbers have two different decimal representations. Specifically, any decimal expansion that terminates can also be written with repeating 9's. For instance, 1/2 can be written as .5 or as .4999.... Doesn't this cause some problems?

No, it doesn't. And the reason on why it doesn't cause any problems is because our argument stems on the fact, that given $b \in R$ is not in the set, if the set is countable. Therefore different representations problem is irrelevant.

1.5.4

Let S be the set consisting of all sequences of 0's and 1's. Observee that S is not a particular sequence, but rather a large set whose elements are sequences; namely,

$$S = \{(a_1, a_2, a_3, ...) : a_n = 0 \text{ or } 1\}$$

As an example, the sequence (1, 0, 1, 0, 1, 0, ...) is an element of S, as the sequence (1, 1, 1, 1, ...).

Give a rigorous argument, that S is uncountable

I don't know, if it counts, as rigorous, but here we go.

Each $s \in S$ corresponds to a binary reresentation of a number in (0,1). Therefore $S \sim (0,1) \sim R$, therefore it is uncountable.

We can work around sets and NIP to show the same thing if we want to, but I dont want to.

1.5.5

(a) Let $A = \{a, b, c\}$. List the eight elements of P(A). (Do not forget that \emptyset is considered to be a subset of every set.)

$$\emptyset, \{a\}, \{b\}, \{b,a\}, \{c\}, \{c,a\}, \{c,b\}, \{c,b,a\}$$

(b) If A is finite with n elements, show that P(A) has 2^n elements. (Constructing a particular subset of A can be interpreted as making a series of decisions about whether or not toinclude each element of A.

Repeat of 1.2.11

This proof is dumb, but intuitive:

Every subset is corresponding to a number in binary number: 0 for excluded, 1 for included. Therefore there exist 2^n possible combinations.

For a more concrete proof let's resort to induction.

Base case(s): subsets of \emptyset are \emptyset itseft ($2^0 = 1$ in total). Subsets of set with one element are \emptyset and set itself ($2^1 = 1$ in total).

Proposition is that set with n elements has 2^n subsets.

Inductive step is that for set with n+1 elements can either have or hot have the n+1'th element. Therefore there exist $2^n + 2^n = 2 * 2^n = 2^{n+1}$ subsets, as desired.

1.5.6

(a) Using the particular set $A = \{a, b, c\}$, exhibit two different 1-1 mappings from A to P(A)

$$f_1(x) = \begin{cases} a \to \{a\} \\ b \to \{b\} \\ c \to \{c\} \end{cases} \tag{4}$$

$$f_2(x) = \begin{cases} a \to \emptyset \\ b \to \{b\} \\ c \to \{c\} \end{cases}$$
 (5)

(b) Letting $B = \{1, 2, 3, 4\}$, produce an example of a 1-1 map $g: B \to P(B)$.

$$f_3(x) = \begin{cases} 1 \to 1 \\ 2 \to 2 \\ 3 \to 3 \\ 4 \to 4 \end{cases}$$
 (6)

(c) Explain why, in parts (a) and (b), it is impossible to construct mappings, that are onto

1.5.7

Return to the particular functions constructed in Exercise 1.5.6 and construct subset B that results using the preceding rule. In each case, note that B is not in the range of the function used.

For f_1 :

$$B = \{\emptyset\}$$

For f_2 :

$$B = \{a\}$$

For f_3 :

$$B = \{\emptyset\}$$

1.5.8

(a) First, show that the case $a' \in B$ leads to a contradiction.

Suppose that $a' \in B$. By definition of $B, a \notin f(a')$. Therefore we have a contradiction.

(b) Now, finish the argument by showing that the case $a' \notin B$ is equally unacceptable.

Suppose that $a' \notin B$. Therefore, by definition of B, $a' \notin B \to a' \in B$. Therefore we have a contradiction. Thus, we cannot construct a surjective map from A to P(A). Therefore $A \not\sim P(A)$.

1.5.9

As a final exercise, answer each of the following be establishing a 1-1 correspondence with a set of known cardinality.

(a) Is the set of all function from $\{0,1\}$ to N countable or uncountable? Examples of such functions

$$f_1 = \begin{cases} \{0\} \to 5\\ \{1\} \to 123 \end{cases} \tag{7}$$

$$f_2 = \begin{cases} \{0\} \to 7\\ \{1\} \to 7 \end{cases} \tag{8}$$

Each of those functions we can correspond to a set of $Q^+ = q \in Q : q > 0$, which is countable (infinite subset of a countable set \rightarrow countable).

To clarify my result, think of f(0) as of numerator, and f(1) as denumenator.

(b) Is the set of all function from N to $\{0,1\}$ countable or uncountable.

Uncountable. Each of those function we can correspond to a sequence of 0's and 1's from Exercise 1.5.4.

(c) Given a set B, a subset A of P(B) is called an antichain, if no element of A is a subset of any other element of A. Does P(N) contain an uncountable antichain?

Yes, it does. We can correspond a function from N to $\{0,1\}$ to an antichain by adding element 2n to the set, if the n'th element of a sequence is 0, and adding 2n-1 to the set, if the n'th position is 1. Therefore, for 2 different chains we will have two different sets, each of which will be different by all least two numbers, and therefore not a subset of each other.

4.4.1

 \mathbf{a}

Show that $f(x) = x^3$ is continuous on all of **R**.

In order to show, that f is continous we need to show, that $\forall \epsilon \in \mathbf{R} \; \exists \delta \; \text{s.t.}$

$$|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon$$

Let's rewrite the first formula

$$|f(x) - f(c)| = |x^3 - c^3| = |(x - c)(x^2 + cx + c^2)| = |x - c||x^2 + cx + c^2|$$

We can put |x-c| can be as small as we want it to be. Therefore we need an upper bound for $|x^2+cx+c^2|$.

$$|x^2 + cx + c^2| \le |x^2| + |cx| + |c^2| \le (|c| + 1)^2 + |c|(|c| + 1) + |c|^2$$

Therefore if we take $\delta = min\{1, \epsilon/((|c|+1)^2 + |c|(|c|+1) + |c|^2)\}$ then

$$|x^{3} - c^{3}| = |x - c||x^{2} + cx + c^{2}| \le \epsilon \frac{((|c| + 1)^{2} + |c|(|c| + 1) + |c|^{2})}{((|c| + 1)^{2} + |c|(|c| + 1) + |c|^{2})} = \epsilon$$

Therefore $f(x) = x^3$ is continous on **R**.

(b)

Argue, using Theorem 4.4.6, that f is not uniformly continuous on R

Theorem 4.4.6 (Sequential Criterion for Nonuniform Continuity). A function $f: A \to \mathbf{R}$ fails to be uniformly continuous on A if $\exists \epsilon > 0$ and two sequences (x_n) and (y_n) in A satisfying

$$|x_n - y_n| \to 0$$
 but $|f(x_n) - f(y_n) \le \epsilon_0$

In order to show that $f(x) = x^3$ is not uniformly continuous on **R** let us use sequences

$$x_n = n$$
$$y_n = (n + 1/n)$$

Firstly

$$|x_n - y_n| = |n - n - 1/n| = |-1/n| = 1/n \to 0$$

on the other hand

$$|f(x_n) - f(y_n)| = |n^3 - (n+1/n)^3| = |n^3 - (n^3 + 3\frac{n^2}{n} + 3\frac{n}{n^2} + \frac{1}{n^3})| =$$
$$= |-3n - \frac{3}{n} - \frac{1}{n^3}| \le |3n| \to \infty$$

rmaxima seems to eraborate this statement, therefore $|x_n-y_n|\to 0$ but $|f(x_n)-f(y_n)\to 0$

Therefore $f(x) = x^3$ is not uniformly continous on **R**.

(c)

 ∞

Show that f is uniformly continuous on any bounded subset of R.

Suppose that $A \subset \mathbf{R}$ and $\exists M \in \mathbf{R}$ s.t. $\forall x \in A \ x \leq M$ (i.e. A is bounded M) Then, $\forall c \in A$ and $\forall \epsilon \in \mathbf{R}$

$$\frac{\epsilon}{((|M|+1)^2+|M|(|M|+1)+|M|^2} \leq \frac{\epsilon}{((|c|+1)^2+|c|(|c|+1)+|c|^2}$$

Therefore if we take

$$\delta = \min\{1, \frac{\epsilon}{((|M|+1)^2 + |M|(|M|+1) + |M|^2}\}$$

then $|x-c| < \delta$ implies, that $|f(x) - f(c)| < \epsilon$, therefore making f(x) uniformly continous by definition

4.4.2

Show that $f(x) = 1/x^3$ is uniformly continous on the set $[1, \infty)$, but is not on the set [0, 1]. In order to show, that f(x) is continous on the set $[1, \infty)$ let us first prove that it is just continous, with the hope that δ is not dependent on x

$$|\frac{1}{x^3} - \frac{1}{c^3}| = |\frac{c^3 - x^3}{x^3 c^3}| = |\frac{(c - x)(x^2 + cx + c^2)}{x^3 c^3}| = |(c - x)\frac{x^2 + cx + c^2}{x^3 c^3}| = |c - x||\frac{x^2 + cx + c^2}{x^3 c^3}| = |c - x||\frac{x^2 + cx + c^2}{x^3 c^3}| = |c - x||\frac{x^2 + cx + c^2}{x^3 c^3}|$$

Therefore we need to show that if δ is bounded above at 1, then $\left|\frac{x^2+cx+c^2}{x^3c^3}\right|$ is bounded above at $[1,\infty)$ by some constant, but (0,1] isn't.

$$\left|\frac{x^2+cx+c^2}{x^3c^3}\right| = \left|\frac{1}{c^3x} + \frac{1}{c^2x^2} + \frac{1}{cx^3}\right| \le \left|\frac{1}{c^3x}\right| + \left|\frac{1}{c^2x^2}\right| + \left|\frac{1}{cx^3}\right|$$

for $x \in [1, \infty)$ each of those fractions are bounded above by 1, therefore for $x \in [1, \infty)$

$$\left| \frac{x^2 + cx + c^2}{x^3 c^3} \right| \le 3$$

therefore if we pick $\delta < \epsilon/3$ then it follows, that $|f(x) - f(c)| < \epsilon$ for $x \in [1, \infty)$ on the other hand,

$$\lim_{x \to 0} (|\frac{x^2 + cx + c^2}{x^3 c^3}|) \to \infty$$

Therefore we will need smaller deltas as we approach 0; to put it more concretely let's use the theorem for **Sequential Criterion for Nonuniform Continuity**.

Let us pick

$$x_n = 1/n$$
$$y_n = 1/(n+1)$$

then

$$|x_n - y_n| = \left|\frac{1}{n} - \frac{1}{n+1}\right| = \left|\frac{n+1-n}{n(n+1)}\right| = \left|\frac{1}{n^2+1}\right| \to 0$$

but

$$|f(x_n) - f(y_n)| = |1/(\frac{1}{n})^3 - 1/(\frac{1}{n+1})^3| = |1/(\frac{1}{n^3}) - 1/(\frac{1}{(n+1)^3})| = |n^3 - (n+1)^3| =$$
$$= |n^3 - (n^3 + 3n^2 + 3n + 1)| = |3n^2 + 3n + 1| \to \infty$$

therefore by **4.4.6** f(x) is not uniformly continuous on (0,1], as desired

4.4.3

Furnish the details (including an argument for Exercise 3.3.1 if it is not already done) for the proof of the Extreme Value Theorem (Theorem 4.4.3).

Let us first complete 3.3.1

Exercise 3.3.1. Show that if K is compact, then $\sup K$ and $\inf K$ both exist and are elements of K.

Because K is compact, it is both closed and bound; therefore, because it is bounded,

$$\exists M \in \mathbf{R} > 0 : \forall x \in K$$
$$|x| \le M$$

Therefore there exist lower and upper bound of K. Therefore, by axiom of completenss, there exist both sup(K) and inf(K) (i.e. both least upper bound and greatest lower bound) Now let's prove that there exists a sequence that converges to either sup(k) or inf(k). To be continued...

4.2.1

Use Definition 4.2.1 to supply a proof for the following limit statements.

- (a) $\lim_{x\to 2} (2x+4) = 8$.
- (b) $\lim_{x\to 0} x^3 = 0$.
- (c) $\lim_{x\to 2} x^3 = 8$.
- (d) $\lim_{x\to\pi}[[x]]=3$, where [[x]] denotes the greatest integer less than or equal to x. Let's first state Definition 4.2.1

Definition 4.2.1. Let $f: A \to \mathbf{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to c} f(x) = L$ provided that, for all $\epsilon > 0$, there exists a $\delta > 0$ such that whenever $0 < |x-c| < \delta$ (and $x \in A$) it follows that $|f(x) - L| < \epsilon$.

(a):

$$|f(x) - L| = |2x + 4 - 8| = |2x - 4| = 2|x - 2| < \epsilon$$
 $|x - 2| < \frac{\epsilon}{2}$

$$\delta = \frac{\epsilon}{2} \to |2x + 4 - 8| < \epsilon$$

as desired.

(b):

$$|f(x) - L| = |x^3 - 0| = |x^3| = |x|^3 < \epsilon$$
$$|x| < \sqrt[3]{\epsilon}$$
$$\delta = \sqrt[3]{\epsilon} \to |x^3| < \epsilon$$

as desired.

(c):

$$|f(x) - L| = |x^3 - 8| = |(x - 2)(x^2 + 2x + 4)| = |x - 2||x^2 + 2x + 4| < \epsilon$$
$$|x - 2| < \frac{\epsilon}{|x^2 + 2x + 4|}$$

Suppose that we set the maximum delta at 1; then upper bound for $|x^2 + 2x + 4|$ is:

$$|x^{2} + 2x + 4| \le |x^{2}| + |2x| + 4 = |x|^{2} + 2|x| + 4 \le (|c| + 1)^{2} + 2(|c| + 1) + 4 =$$

$$= (2+1)^{2} + 2(2+1) + 4 = 9 + 6 + 4 = 19$$

Therefore

$$\delta = min\{1, \epsilon/19\} \rightarrow |x^3 - 8| = |x - 2||x^2 + 2x + 4| < \frac{\epsilon}{19} * 19 = \epsilon$$

as desired.

(d):

$$|[[x]] - 3| = [[0.1415926...]] = 0 < \epsilon$$

Suppose that we pick $\delta = 0.1$, then any $x \in V_{\delta}$ will satisfy $|[[x]] - 3| = 0 < \epsilon$ for any $\epsilon > 0$ as desired.

4.2.2

Assume a particular $\delta > 0$ has been constructed as a suitable response to a particular ϵ challenge. Then, any larger/smaller (pick one) δ will also suffice.

Smaller. This follows from the fact, that

$$\delta_1 < \delta_2 \to V_{\delta_1} \subset V_{\delta_2}$$

4.2.3

Use Corollary 4.2.5 to show that each of the following limits does not exist.

- (a) $\lim_{x\to 0} |x|/x$
- (b) $\lim_{x\to 1} g(x)$ where g is Dirichlet's function from Section 4.1.

I'll not state corollary 4.2.5 function here, because it's tedious, but it'll be obvious which corollary I'm talking about by the context.

(a): let

$$(x_n) = 1/n$$

$$(y_n) = -1/n$$

then

$$(x_n) \to 0; (y_n) \to 0$$

but

$$|x_n|/x_n = 1$$
$$|y_n|/y_n = -1$$

therefore the limit does not exist.

(b):

The Dirichlet function is

$$D(x) = \begin{cases} 1 & \text{if } x \in \mathbf{Q} \\ 0 & \text{if } x \notin \mathbf{Q} \end{cases}$$
 (9)

let

$$(x_n) = 2/n + 1$$
$$(y_n) = \sqrt{2}/n + 1$$

then

$$(x_n) \to 1; (y_n) \to 1$$

but

$$(x_n) = 2/n + 1 \in \mathbf{Q}$$

 $(y_n) = \sqrt{2}/n + 1 \notin \mathbf{Q}$

therefore

$$D(x_n) = 1$$
$$D(y_n) = 0$$

thus the function is not continuous at 1

4.2.4

Review the definition of Thomae's function t(x) from Section 4.1.

- (a) Construct three different sequences (x_n) , (y_n) , and (z_n) , each of which converges to 1 without using the number 1 as a term in the sequence.
 - (b) Now, compute $\lim t(x_n)$, $\lim t(y_n)$, and $\lim t(z_n)$.

(c) Make an educated conjecture for $\lim_{x\to 1} t(x)$, and use Definition 4.2.1B to verify the claim. Given $\epsilon > 0$, consider the set of points $\{x \in \mathbf{R} : t(x)\epsilon\}$. Argue that all the points in this set are isolated.

The definition of Thomae function is

$$t(x) = \begin{cases} 1 & \text{if } x = 0\\ 1/n & \text{if } x = m/n \in \mathbf{Q} \setminus \{0\}\\ 0 & \text{if } x \notin \mathbf{Q} \end{cases}$$
 (10)

(a): Let our three sequences be

$$(x_n) = n/(n+1)$$

 $(y_n) = (n+1)/n$
 $(z_n) = \sum_{i=1}^{n} \frac{1}{2^n}$

(b):

$$t(x_n) = \{1/2, 1/3, 1/4, 1/5, 1/6, 1/7...\}$$

$$t(y_n) = \{1, 1/2, 1/3, 1/4, 1/5, 1/6...\}$$

$$t(z_n) = \{1/2, 1/4, 1/8, 1/16...\}$$

(c): The educated conjecture here is that $\lim_{x\to 1} t(x) = 0$

In order to prove that conjecture author suggests, that we use $\epsilon - \delta$ definition. Let's try it;

$$|t(x)| < \epsilon$$

For all $\epsilon \in \mathbf{R} > 0$

Therefore by archimedes property there exists a number $n \in \mathbb{N}$ s.t. $\frac{1}{n} < \epsilon$. Thus suppose that we have $\delta = 1/n$. Then our proposition is that

$$\forall b \in (1 - 1/n; 1 + 1/n) \to |t(b)| < \epsilon$$

If $b \notin \mathbf{Q}$ then t(b) = 0 and therefore $|t(b)| < \epsilon$; therefore we need to prove, that any number $b = m_1/n_1 \in (1-1/n; 1+1/n) \cap \mathbf{Q}$ is such, that $|t(b)| = 1/n_1 < 1/n$. Also suppose $m_1 = n_1 + k$ (it's worth noting that in this case $k \in \mathbf{Z}$); then

$$1 - \frac{1}{n} < \frac{m_1}{n_1} < 1 + \frac{1}{n}$$
$$1 - \frac{1}{n} < \frac{n_1 + k}{n_1} < 1 + \frac{1}{n}$$

$$1 - \frac{1}{n} < 1 + \frac{k}{n_1} < 1 + \frac{1}{n}$$

$$-\frac{1}{n} < \frac{k}{n_1} < \frac{1}{n}$$

$$|\frac{k}{n_1}| < \frac{1}{n}$$

$$|k||\frac{1}{n_1}| = |k||t(\frac{1}{n_1})| < \frac{1}{n}$$

therefore because $k \in \mathbf{Z}$

$$|t(\frac{1}{n_1})| = |\frac{1}{n_1}| < \frac{1}{n|k|} < \frac{1}{n}$$

thus for each $\epsilon > 0$ we can find a corresponding $\delta > 0$ as desired.

4.2.5

Suppose that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$

- $(ii) \lim_{x \to c} [f(x) + g(x)] = L + M$
- (iii) $\lim_{x\to c} [f(x)g(x)] = LM$
- (a) Supply the details for how Corollary 4.2.4 part (ii) follows from the sequential criterion for functional limits in Theorem 4.2.3 and the Algebraic Limit Theorem for sequences proved in Chapter 2.

From the algebraic limit theorem we know, that if $(a_n) \to a$ and $(b_n) \to b$ then

$$(a_n) + (b_n) = a + b$$

We also know, that for any sequence $(c_n) \to c$ it is true, that $f(c_n) \to L$ and $g(c_n) \to M$; therefore by the algebraic limit theorem

$$f(c_n) + g(c_n) = L + M$$

for any sequence $(c_n) \to c$. Therefore we can state that

$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

as desired

(b) Now, write another proof of Corollary 4.2.4 part (ii) directly from Definition 4.2.1 without using the sequential criterion in Theorem 4.2.3.

 $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$; therefore for any $\epsilon_1 > 0$ we can find $\delta_1 > 0$ s.t.

$$|x-c| < \delta_1 \rightarrow |f(x) - L| < \epsilon_1$$

Also for the same ϵ_1 there exist $\delta_2 > 0$ s.t.

$$|x-c| < \delta_2 \rightarrow |g(x) - M| < \epsilon_1$$

let $\delta_3 = min\{\delta_1, \delta_2\}$; then it is true that

$$|x-c|<\delta_3\to |f(x)-L|<\epsilon_1$$

$$|x-c| < \delta_3 \rightarrow |g(x) - M| < \epsilon_1$$

because $V_{\delta_1} \subseteq V_{\delta_3}$ and $V_{\delta_2} \subseteq V_{\delta_3}$ therefore

$$|f(x) - L| + |g(x) - M| < 2\epsilon_1$$

Therefore

$$|f(x) + g(x) - L - M| = |f(x) - L + g(x) - M| \le |f(x) - L| + |g(x) - M| < 2\epsilon_1$$

Thus for any $\epsilon > 0$ there exist corresponding $\epsilon_1 = \frac{\epsilon}{2}$ for which there exist corresponding $\delta = \min\{\delta_1, \delta_2\}$ (where δ_1 is a delta for f(x) and δ_2 is a delta for g(x)) which satisfies

$$|x - c| < \delta \rightarrow |f(x) + g(x) - (L + M)| < \epsilon$$

therefore $\lim_{x\to c} (f(x) + g(x)) = L + M$ as desired.

(c) Repeat (a) and (b) for Corollary 4.2.4 part (iii).

(a):

From the algebraic limit theorem we know, that if $(a_n) \to a$ and $(b_n) \to b$ then

$$(a_n)(b_n) = ab$$

We also know, that for any sequence $(c_n) \to c$ it is true, that $f(c_n) \to L$ and $g(c_n) \to M$; therefore by the algebraic limit theorem

$$f(c_n)q(c_n) = LM$$

for any sequence $(c_n) \to c$. Therefore we can state that

$$\lim_{x \to c} (f(x)g(x)) = LM$$

as desired

(b):

 $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$;

In order to prove the needed limit let's first use some algebra

$$|f(x)g(x) - LM| =$$

$$|f(x)g(x) + f(x)M - f(x)M - LM| =$$

$$|f(x)(g(x) - M) + M(f(x) - L)| \le |f(x)(g(x) - M)| + |M(f(x) - L)| =$$

$$|f(x)||g(x) - M| + |M||f(x) - L|$$

our strategy is to show that both elements of the last sum are less or equal to $\epsilon/2$ Let $\epsilon > 0$.

$$|M||f(x) - L| < \frac{\epsilon}{2}$$

If M = 0 then the abovementioned inequality always holds and we are free to choose any δ_1 ;

Otherwise tet us pick δ_1 such that inequality

$$|f(x) - L| < \frac{\epsilon}{2|M|}$$

holds.

The next step is a little bit more complicated because we need to work with f(x); let us pick y = 1; then because $\lim_{x\to c} f(x) = L$ we know that there exists δ_2 s.t. $|x-c| < \delta_2 \to |f(x) - L| < 1$.

Therefore

$$|f(x) - L| < 1$$

Little sidenote: let's prove that

$$|a - b| < c \rightarrow |a| < |b| + c$$

Firstly some preliminary stuff

$$|a - b| > 0 \rightarrow c > |a - b| > 0 \rightarrow c > 0$$

$$|a - b| < c \rightarrow -c < a - b < c$$
$$b - c < a < b + c$$

Now let's see all the cases for $a, b \in \mathbf{R}$ if $a \ge 0$ and $b \ge 0$ then

$$a < b + c$$
$$|a| < |b| + c$$

if a < 0 and $b \ge 0$ then

$$b + c \ge 0 > a$$
$$a < b + c$$
$$|a| < |b| + c$$

if $a \ge 0$ and b < 0 then

$$b - c < a < b + c$$

$$-b + c > -a > -b - c$$

$$|b| + c > -a > |b| - c$$

$$-|b| - c < a < c - |b|$$

$$|a| < c - |b| \le c + |b|$$

$$|a| < c + |b|$$

if a < 0 and b < 0 then

$$b - c < a < b + c$$

$$-b + c > -a > -b - c$$

$$|b| + c > |a| > |b| - c$$

$$|b| + c > |a|$$

$$|a| < |b| + c$$

Therefore $\forall a, b \in \mathbf{R}$

$$|a - b| < c \rightarrow |a| < |b| + c$$

as desired.

Back to our exercise:

$$|f(x) - L| < 1$$
$$|f(x)| < |L| + 1$$

Therefore we can state that upper bound for our |f(x)| with $\epsilon=1$ is |L|+1. Thus if we pick δ_2 sufficient for

$$|g(x) - M| < \frac{\epsilon}{2(|L|+1)}$$

therefore if we pick $\delta = min\{\delta_1, \delta_2\}$ then

$$|x-c|<\delta \to \\ |f(x)g(x)-LM| \leq |f(x)||g(x)-M|+|M||f(x)-L| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

therefore $\lim_{x\to c} [f(x)g(x)] = LM$ as desired

4.2.6

Let $g: A \to \mathbf{R}$ and assume that f is bounded function on $A \subseteq \mathbf{R}$ (i.e. there exists M > 0 satisfying $|f(x)| \leq M$ for all $x \in A$). Show that if $\lim_{x\to c} g(x) = 0$, then $\lim_{x\to c} g(x)f(x) = 0$ as well.

Here we can't use an intuitive approach of just using algebraic limit theorem because f(x) may not hav limit at c. Anyways we proceed by $\epsilon - \delta$ approach.

Therefore we need to show that

$$\exists \delta : |f(x)g(x)| < \epsilon$$

First of all,

$$|f(x)g(x)| = |f(x)||g(x)|$$

Then we notice, that because f(x) is bounded

$$\exists M \in \mathbf{R} > 0 : |f(x)| \le M$$

therefore

$$|f(x)||g(x)| < |M||g(x)| = M|g(x)|$$

therefore if we pick δ sufficient for $|g(x)| < \frac{\epsilon}{M}$ then it follows that

$$|f(x)g(x)| \le M|g(x)| < \epsilon$$

therefore

$$\forall \epsilon \in \mathbf{R} \exists \delta : |x - c| < \delta \rightarrow |f(x)g(x)| < \epsilon$$

therefore

$$\lim_{x \to c} [f(x)g(x)] = 0$$

as desired.

4.2.7

(a) The statement $\lim_{x\to 0} 1/x^2 = \infty$ certainly makes intuitive sense. Construct a rigirius definition in the "challenge-response" style of Definition 4.2.1 for a limit statement of the form $\lim_{x\to c} f(x) = \infty$ and use it to prove the previous statement

Definition of limit to infinity Let $f: A \to \mathbf{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to c} f(x) = \infty$ provided that, for all $\epsilon \in \mathbf{R}$, there exists a $\delta > 0$ such that whenever $0 < |x-c| < \delta$ (and $x \in A$) it follows that $f(x) > \epsilon$.

Now we need to show that for $f(x) = 1/x^2$

$$\lim_{x \to 0} f(x) = \infty$$

First

$$f(x) > \epsilon$$

$$\frac{1}{x^2} > \epsilon$$

$$x^2 < \frac{1}{\epsilon}$$

$$x < \sqrt{\frac{1}{\epsilon}}$$

therefore if we pick $\delta = \sqrt{\frac{1}{\epsilon}}$, then it follows that

$$f(x) > \epsilon$$

as desired.

Quick (and insufficient) test in Python seems to corraborate this statement

(b) Now construct a definition for the statement $\lim_{x\to\infty} f(x) = L$. Show $\lim_{x\to\infty} 1/x = 0$

Definition of infinite limit Let $f: A \to \mathbf{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to\infty} f(x) = L$ provided that, for all $\epsilon \in \mathbf{R} > 0$, there exists a δ such that whenever $x > \delta$ (and $x \in A$) it follows that $|f(x) - c| < \epsilon$.

We start as usus al at the ϵ

$$|f(x) - 0| < \epsilon$$

$$|1/x| < \epsilon$$

Given that we can pick any δ as we want, we can pick it at the very least at 0 to get rid of the absolute value

$$1/x < \epsilon$$

$$x > 1/\epsilon$$

therefore $\delta = 1/\epsilon$ then it follows that

$$|f(x) - 0| < \epsilon$$

as desired.

(c) What would a rigorous definition for $\lim_{x\to\infty} f(x) = \infty$ would look like? Give an example of such a limit

Definition of infinite limit to infinity Let $f: A \to \mathbf{R}$, and let c be a limit point of the domain A. We say that $\lim_{x\to\infty} f(x) = \infty$ provided that, for all $\epsilon \in \mathbf{R}$, there exists a δ such that whenever $x > \delta$ (and $x \in A$) it follows that $f(x) > \epsilon$.

The corresponding example of such a limit is f(x) = x.

4.2.8

Assume $f(x) \ge g(x)$ for all x in some set A on which f and g are defined. Show that for any limit point c of A we must have

$$\lim_{x \to c} f(x) \ge \lim_{x \to c} g(x)$$

I'm gonna do it by using contradiction; suppose that f(x) and g(x) are defined as in the exercise, but

$$\lim_{x \to c} f(x) < \lim_{x \to c} g(x)$$

then it follows that there exist a sequence $(a_n) \to c$ such that $f(a_n) \ge g(a_n)$ for all $n \in \mathbb{N}$; Therefore $\lim_{n \to \infty} (f(a_n)) \ge \lim_{n \to \infty} (g(a_n))$ and but it contradicts our initial assumption.

4.2.9 (Squeeze Theorem)

Let f, g and h satisfy $f(x) \ge g(x) \ge h(x)$ for all x in some common domain A. If $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} h(x) = L$ at some limit point c of A, show $\lim_{x\to c} g(x) = L$ as well

As proven in the previous exercise

$$\forall x \in A: f(x) > g(x) \to \lim_{x \to c} f(x) \ge \lim_{x \to c} g(x)$$

therefore

$$\lim_{x \to c} f(x) = L \ge \lim_{x \to c} g(x)$$

and

$$\lim_{x \to c} g(x) \ge \lim_{x \to c} h(x) = L$$

Thus

$$L \ge \lim_{x \to c} g(x) \ge L$$

therefore

$$\lim_{x \to c} g(x) = L$$

as desired.

4.3.1

Let $g(x) = \sqrt[3]{x}$.

(a) Prove that g is continous at c = 0

We're gonna use $\epsilon - \delta$ definition. First of all, let's state that g(0) = 0. Therefore

$$|f(x) - f(c)| = |\sqrt[3]{x} - 0| < \epsilon$$
$$|\sqrt[3]{x}| < \epsilon$$

Here I would like to proof that $\forall x \in \mathbf{R} : |\sqrt[3]{x}| = \sqrt[3]{|x|}$: if $x \ge 0$ then $|\sqrt[3]{x}| = \sqrt[3]{x} = \sqrt[3]{|x|}$; if x < 0 then $|\sqrt[3]{x}| = \sqrt[3]{-x} = \sqrt[3]{|x|}$. Therefore

$$|\sqrt[3]{x}| = \sqrt[3]{|x|} = < \epsilon$$

is justified.

Therefore we can state that

$$|x| = < \epsilon^3$$

Thus if we pick $\delta = \epsilon^3$ then

$$|x - c| = |x| < \delta \to |f(x) - f(c)| = |\sqrt[3]{x} - 0| = |\sqrt[3]{x}| = \sqrt[3]{|x|} < \sqrt[3]{\epsilon^3} = \epsilon$$

Therefore g is continous at 0

(b) Prove that g is continous at a point $c \neq 0$. (The identity $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ will be helpful)

We're gonna use $\epsilon - \delta$ definition once again.

$$|f(x) - f(c)| = |\sqrt[3]{x} - \sqrt[3]{c}| < \epsilon$$

First, let's use a little algebra

$$|\sqrt[3]{x} - \sqrt[3]{c}| = |\sqrt[3]{x} - \sqrt[3]{c}| *1 = |\sqrt[3]{x} - \sqrt[3]{c}| \frac{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})} = \frac{|\sqrt[3]{x} - \sqrt[3]{c}|(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})}$$

Let's look now at the sum $\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}$: $\sqrt[3]{x^2} \ge 0$ because it is a square. For $\sqrt[3]{x} + \sqrt[3]{x^2}$ we need to be able to articulate δ so that both x and c are the same sign; if we fo that then it becomes nonnegative. $\sqrt[3]{c^2} \ge 0$ because it is a square

Therefore if right now we pinky-promise that we will account for unusual delta in the future, then we are able to say that

$$\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2} \ge 0$$

And therefore

$$\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2} = |\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}|$$

Continuing with our initial algebra

$$\frac{|\sqrt[3]{x} - \sqrt[3]{c}|(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})} = \frac{|\sqrt[3]{x} - \sqrt[3]{c}||\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{x}\sqrt[3]{c})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{x}\sqrt[3]{c})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{x}\sqrt[3]{c})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c})} = \frac{|x - c|}{(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[$$

As we disussed earlier $(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2}) \ge 0$ and therefore

$$|x - c| < \epsilon(\sqrt[3]{x^2} + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c^2})$$

Thus, if we pick $\delta = min\{\epsilon(\sqrt[3]{x}^2 + \sqrt[3]{x}\sqrt[3]{c} + \sqrt[3]{c}^2), |x-0|\}$ (we need the second value because we need the sum to be equal to its absolute value;) then

$$|x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon$$

Therefore $f(x) = \sqrt[3]{x}$ is continous on **R**.

4.3.2

(a) Supply a proof for Theorem 4.3.9 using the $\epsilon - \delta$ characterization of continuity. First, let's state the theorem

Theorem 4.3.9 (Composition of Continuous Functions). Given $f: A \to \mathbf{R}$ and $g: B \to \mathbf{R}$, assume that the range $f(A) = \{f(x): x \in A\}$ is contained in the domain B so that the composition $g \circ f = g(f(x))$ is well-defined on A.

If f is continous ac $c \in A$, and if g is continous at $f(c) \in B$, then $g \circ f$ is continous at c.

Firstly, the fact that both f and g are continuous tells that

$$\forall \epsilon_1 \in \mathbf{R} : \exists \delta_1 : |x - c| < \delta_1 \to |f(x) - f(c)| < \epsilon_1$$

$$\forall \epsilon_2 \in \mathbf{R} : \exists \delta_2 : |x - c| < \delta_2 \to |g(x) - g(c)| < \epsilon_2$$

And we need to prove that

$$\forall \epsilon \in \mathbf{R} : \exists \delta : |x - c| < \delta \rightarrow |q(f(x)) - q(f(c))| < \epsilon$$

The main strategy for this one is to plug some delta into some epsilon (or vice versa), and get some use out of it.

Firstly, let's get some things out of the way: let us fix particular $c \in A$ and $\epsilon \in \mathbb{R} > 0$. Then, let's plug this ϵ at f(c) into the continuity of g(x) so we can get a $\delta_g > 0$. Therefore we will have

$$\forall \epsilon \in \mathbf{R} : \exists \delta_g : |x - f(c)| < \delta_g \to |g(x) - g(f(c))| < \epsilon$$

which is kinda close to the thing, that we're trying to prove.

We also know that

$$\forall \epsilon_f \in \mathbf{R} : \exists \delta_f : |x - c| < \delta_f : |f(x) - f(c)| < \epsilon_f$$

therefore it is true that

$$\forall \epsilon \in \mathbf{R} : \exists \delta_g : |y - f(c)| < \delta_g \to |g(y) - g(f(c))| < \epsilon$$
$$\exists \delta_f : |x - c| < \delta_f \to |f(x) - f(c)| < \delta_g$$

From this we can state that

$$\forall \epsilon \in \mathbf{R} > 0 : \exists \delta_f : |x - c| < \delta_f \to |f(x) - f(c)| < \delta_g \to |g(f(x)) - g(f(c))| < \epsilon$$

This doesn't sound too persuasive for me, so I probably need to explore it a little but more.

Suppose that with all the present assumptions, we get the given ϵ . If we plug it into definition of continuity for g(x) at g(f(c)), then we'll get the necessary δ_g . If we plug δ_g as an ϵ for the definition of continuity of f(x), then we'll get δ_f .

We can probably prove it with a little bit more clarity. We need to prove that

$$\forall \epsilon \in \mathbf{R} : \exists \delta : |x - f(c)| < \delta \rightarrow |g(f(x)) - g(f(c))| < \epsilon$$

Firstly, definition of contonuity of g(x) gives us the fact, that

$$\forall \epsilon \in \mathbf{R} : \exists \delta_q : |x - f(c)| < \delta_q \to |g(x) - g(f(c))| < \epsilon$$

then if $x \in f(A)$ then $\exists y \in A \text{ s.t. } f(y) = x \text{ therefore}$

$$\forall \epsilon \in \mathbf{R} : \exists \delta_q : |f(y) - f(c)| < \delta_q \rightarrow |g(f(y)) - g(f(c))| < \epsilon$$

From the definition of continuity of f we know that

$$\forall \epsilon_f \in \mathbf{R} : \exists \delta_f : |x - c| < \delta_f : |f(x) - f(c)| < \epsilon_f$$

Therefore

$$\forall \epsilon \in \mathbf{R} : \exists \delta : |x - f(c)| < \delta \rightarrow |g(f(x)) - g(f(c))| < \epsilon$$

as desired.

(b) Give another proof of this theorem using the sequential characterization of continuity (from Theorem 4.3.2 (iv))

Theorem 4.3.2 (iv) states that if $(x_n) \to c$ (with $x_n \in A$), then $f(x_n) \to f(c)$.

Because f(x) is continous we can state that for every sequence $(x_n) \to c$ it is true that $f(x_n) \to f(c)$. Therefore because $f(x_n)$ is a sequence itself, we can state that $g(f(x_n)) \to g(f(c))$. Therefore it is true, that for every sequence $(x_n) \to c$ it follows, that $g(f(x_n)) \to g(f(c))$. Therefore g(f(x)) is continous, as desired.

4.3.3

Using the $\epsilon - \delta$ characteriation of continuity (and tus using no previous results anbout the sequences), show that the linear function f(x) = ax + b is continuous at every point of R.

Let's start with our usual stuff

$$|f(x) - f(c)| < \epsilon$$

$$|ax + b - (ac + b)| = |ax + b - ac - b| = |a||x - c| < \epsilon$$

$$|x - c| < \epsilon/a$$

Therefore if we pick $\delta = \epsilon/a$ then it follows that $|f(x) - f(c)| < \epsilon$, as desired.

4.3.4

(a) Show using Definition 4.3.1 that any function f with domain \mathbf{Z} with necessarily be continous at every point in its domain.

Suppose that $f: Z \to R$. We need to prove that

$$\forall \epsilon : \exists \delta : |x - c| < \delta \rightarrow |f(x) - f(c)| < \epsilon$$

Suppose that we pick $\delta = 0.1$ (or any other value, such that the only one of the domain values will be in the needed neighborhood). Then there will be only one number in the domain neighborhood, and because of that we can state that

$$|f(x) - f(c)| = |f(c) - f(c)| = 0 < \epsilon$$

Therefore the fucntion is continous, as desired.

(b) Show in general that if c is an isolated point of $A \subseteq \mathbb{R}$, then $f : A \to \mathbb{R}$ is continous at c.

In this particular case we can't just set δ at some number, so we gotta be a little more creative. To be distract myself from getting any unproductive ideas, I should state here that \mathbf{Q} is a set of isolated points.

To be continued

3.2.1

(a) Where in the proof of Theorem 3.2.3 part (ii) does the assumption that the collection of open sets be finite get used

Theorem 3.2.3 states that

(ii) The intersection of a finite collection of open sets is open.

The assumption of the finality of the set is used in the fact, that we need the minimum of the epsilons.

(b) Give an example of an infinite collection of nested open sets

$$O_1 \supseteq O_2 \supseteq O_3 \supseteq O_4 \supseteq \dots$$

whose intersection $\cap_{n=1}^{\infty} O_n$ is closed and nonempty.

First of all, we should state that open is not an opposite of closed in this context. We can get $O_n = (-\infty; \infty)$. Then this definition (technically) fits into the requrement of qs Let $O_n = (1 - 1/n, 2 + 1/n)$. Let us also define

$$A = \bigcap_{n=1}^{\infty} O_n$$

Suppose that $x \in A$. To be continued...

2.2.1

Verify, using the definition of convergence of a sequence, that the following sequencees converge to the proposed limit.

(a)
$$\lim \frac{1}{(6n^2+1)} = 0$$

Let ϵ be arbitrary. Choose $N \in \mathbb{N} : N > \sqrt{\frac{1}{6\epsilon} - \frac{1}{1}}$ (6). Let $n \in N \geq N$. Then

$$n > \sqrt{\frac{1}{6\epsilon} - \frac{1}{6}}$$

$$n^2 > \frac{1}{6\epsilon} - \frac{1}{6}$$

$$6n^2 > 1/\epsilon - 1$$

$$6n^2 + 1 > 1/\epsilon$$

$$\frac{1}{(6n^2 + 1)} < \epsilon$$

$$\left| \frac{1}{(6n^2 + 1)} \right| < \epsilon$$

as desired.

(b)
$$\lim \frac{3n+1}{2n+5} = \frac{3}{2}$$

Let ϵ be arbitrary. Choose $N \in \mathbb{N} : N > \frac{13}{4\epsilon} - 10/4$. Let $n \in \mathbb{N} \geq N$. Then

$$n > \frac{13}{4\epsilon} - 10/4$$

$$4n > \frac{13}{\epsilon} - 10$$

$$4n+10 > \frac{13}{\epsilon}$$

$$\frac{13}{4n+10} < \epsilon$$

$$|\frac{13}{4n+10}| < \epsilon$$

$$|\frac{-13}{4n+10}| < \epsilon$$

$$|\frac{6n+2-6n-15}{4n+10}| < \epsilon$$

$$|\frac{2(3n+1)-3(2n+5)}{2(2n+5)}| < \epsilon$$

$$|\frac{3n+1}{2n+5} - \frac{3}{2}| < \epsilon$$

as desired. (c)
$$\lim \frac{2}{\sqrt{n+3}} = 0$$

Let ϵ be arbitrary. Choose $N \in \mathbb{N} : N > \frac{2}{\epsilon}^2 - 3$. Let $n \in \mathbb{N} \geq N$. Then

$$n > \frac{2^2}{\epsilon} - 3$$

$$n + 3 > \frac{2^2}{\epsilon}$$

$$\sqrt{n+3} > \frac{2}{\epsilon}$$

$$\frac{2}{\sqrt{n+3}} < \epsilon$$

$$|\frac{2}{\sqrt{n+3}}| < \epsilon$$

as desired.

2.2.2

What happens if we reverse the order of the quantifiers on Definition 2.2.3?

Definition: A sequence (x_n) verconges to x if there exists an $\epsilon > 0$ such that for all $N \in \mathbf{N}$ it is true that $n \ge N$ implies $|x_n - x| < \epsilon$.

Give an example of a vercongent sequence. Can you give an example of a vercongent sequence, that is divirgent? What exactly is being described in this strange definition?

An example of a vercongent sequence:

$$(x_n) = 5$$

An example of a vercongent sequence, that is divergent:

$$(x_n) = (-1)^n$$

Here described a bounded sequence (i.e. $|(x_n)| < M$ for some $M > 0 \in R$

2.2.3

Describe what we would have to demonstrate in order to disprove each of the following statements.

(a) At every college in the United States, there is a student who is at least seven feet tall

There exist a college, where every student is shorter than 7 feet.

(b) For all colleges in the United States, there exists a professor who gives every student a grade of either A or B

There exist a college, where every professor gives C or less every time.

(c) There exist a college in the United States where every student is at least six feet tall In all colleges across US there exists a student, who is shorter than 6 feet.

2.2.4

Argue that the sequence

$$1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, (5 zeroes), 1...$$

does not converge to zero. For what values of $\epsilon > 0$ does there exist a response N? For which values of $\epsilon > 0$ is there no suitable response?

If we set $\epsilon = 0.5$, then from time to time elements will get out of the desired range.

For values $\epsilon > 1$ there always exist a suitable N.

For values $0 < \epsilon \le 0$ there exists no responce.

2.2.5

Let [[x]] be the greatest integer less than of equal to x. For example, $[[\pi]] = 3$ and [[3]] = 3. Find $\lim a_n$ and supply proofs for each conclusion if

(a)
$$a_n = [[1/n]]$$

$$\forall n \in N \to 0 < 1/n \le 1$$

$$n \in N \ge 2 \to 0 < 1/n < 1$$

Therefore for n > 2

$$\forall \epsilon > 0 \in R : |[[1/n]]| = [[1/n]] = 0 < \epsilon$$

as desired.

(b)
$$a_n = [[(10 + n)/2n]]$$

Let n ; 10. Then

$$n > 10$$

$$2n > 20$$

$$\frac{10}{2n} < \frac{1}{2}$$

$$0 < \frac{10}{2n} + \frac{1}{2} < 1$$

$$[[\frac{10}{2n} + \frac{1}{2}]] = 0$$

Thus for every $\epsilon > 0$ we can pick N = 10 and it follows that

$$|[[(10+n)/2n]]| < 0$$

Therefore $(a_n) \to 0$, as desired.

Reflecting on these examples, comment on the statement following Definition 2.2.3 that "the smaller the ϵ -neighborhood, the larger N may need to be".

The key word here is "may". It may have to be larger, it may not. In some cases one value works for all of the ϵ 's. I bet my money on the fact, that it can be rigorously proven, that this is the case only for the sequences, that are constant after some term, but I'll skip that

2.2.6

Suppose that for a particular $\epsilon > 0$ we have found a suitable value of N that "works" for a given sequence in the sence of Definition 2.2.3.

(a) Then, any larger/smaller (pick one) N will also work for the same $\epsilon > 0$.

Larger. This fact follows from definition.

(b) Then, this same N will also work for any larger/smaller value of ϵ .

Larger. $x \in V_{\epsilon} \to x \in V_{\epsilon+s}$

2.2.7

Informally speaking, the sequence \sqrt{n} "converges to infinity".

(a) Imitate the logical structure of Definition 2.2.3 to create a rigorous definition for the mathematical statement $\lim x_n = \infty$. Use this definition to prove $\lim \sqrt{n} = \infty$.

Definition of convergence to infinity A sequence (a_n) converges for infinity if, for every $\epsilon \in R$, there exists an $N \in \mathbb{N}$ such that whenever $n \geq N$ it follows that $a_n > \epsilon$.

I relaxed a bit statement about the ϵ , namely substituted $\epsilon > 0$ to $\epsilon \in R$. In case you are wondering, Both cases are the equivalent.

Let $\epsilon \in R$ be arbitrary. Then we can pick $N \in \mathbb{N} : N > \epsilon^2$. Then for $n \in \mathbb{N} > N$:

$$n > \epsilon^2$$

$$\sqrt{n} > \epsilon$$

Therefore the sequence converges to infinity

(b) What does your definition in (a) say about the particular sequence (1,0,2,0,3,0,4,0,5,0,...) It says, that it doesn't converge to infinity (specifically for the case $\epsilon > 0$)

2.2.8

Here are two useful definitions:

- (i) A sequence (a_n) is eventually in a set $A \subseteq R$ if there exists $N \in \mathbb{N}$ such that $a_n \in A$ for all n > N.
- (ii) A sequence (a_n) is frequently in a set $A \subseteq R$ if for every $N \in \mathbb{N}$ there exists $n \ge N$ such that $a_n \in A$.
 - (a) Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$? Frequently
- (b) Which definition is stronger? Does frequently imply eventually or does eventually imply frequently?

Eventually is stronger. Eventually implies frequently.

(c) Give an alternative rephrasing of Definition 2.2.3B using either frequently or eventually. Which is the term we want?

We want to use eventually

A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_{\epsilon}(a)$ of a, sequence is eventually in $V_{\epsilon}(a)$.

(d) Suppose an infinite number of terms of a sequence (x_n) are equal to 2. Is (x_n) necessarily eventually in the interval (1.9, 2.1)? Is it frequently in (1.9, 2.1)?

It is not necessarily eventually in (1.9, 2.1). Example:

$$(1, 2, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, \dots)$$

It is indeed frequently in (1.9, 2.1). This stems from the fact, that before a_n , there exist only a finite number of elements before it. Therefore 2 is bound to be met again at some time.