ECS 171: Machine Learning

Summer 2023
Edwin Solares
easolares@ucdavis.edu
Midterm Review

Dataset

		X					
X ₁	X ₂	X_3	X_4	X_{5}	X_6	X ₇	
Description	Guests	Seat class	Customer ID	Fare	Age	Title	Success
Braund, Mr. Owen Harris; 22	1	3	1	7.25	22	Mr	0
Cumings, Mrs. John Bradley	1	1	2	71.3	38	Mrs	1
Heikkinen, Miss. Laina; 26	0	3	3	7.92	26	Miss	1
Futrelle, Mrs. Jacques Heath	1	1	4	53.1	35	Mrs	1
Allen, Mr. William Henry	0	3	5	8.05	35	Mr	0
Moran, Mr. James;	0	3	6	8.46	0	Mr	0
McCarthy, Mr. Timothy J; 54	0	1	7	51.9	54	Mr	0

Observations

Dataset

X							y	
X ₁	X ₂	X_3	X ₄	X_{5}	X_6	X ₇		
Description	Guests	Seat class	Customer ID	Fare	Age	Title	Success	
Braund, Mr. Owen Harris; 22	1	3	1	7.25	22	Mr	0	
Cumings, Mrs. John Bradley	1	1	2	71.3	38	Mrs	1	
Heikkinen, Miss. Laina; 26	0	3	3	7.92	26	Miss	1	
Futrelle, Mrs. Jacques Heath	1	1	4	53.1	35	Mrs	1	
Allen, Mr. William Henry	0	3	5	8.05	35	Mr	0	
Moran, Mr. James;	0	3	6	8.46	0	Mr	0	
McCarthy, Mr. Timothy J; 54	0	1	7	51.9	54	Mr	0	

Observations

The Iris Dataset

f(x) = y

Model type: Classification, Regression, Clustering

Data Visualization

m-by-*n* matrix

n columns *j* changes

İ
С
h
a
n
g
e
C

٠,,

Description	Guests	Seat class	Customer ID	Fare	Age	Title	Success
Braund, Mr. Owen Harris; 22	1	3	1	7.25	22	Mr	0
Cumings, Mrs. John Bradley	1	1	2	71.3	38	Mrs	1
Heikkinen, Miss. Laina; 26	0	3	3	7.92	26	Miss	1
Futrelle, Mrs. Jacques Heath	1	1	4	53.1	35	Mrs	1
Allen, Mr. William Henry	0	3	5	8.05	35	Mr	0
Moran, Mr. James;	0	3	6	8.46	0	Mr	0
McCarthy, Mr. Timothy J; 54	0	1	7	51.9	54	Mr	0

Data Preprocessing

Goal: Using transforms, scale data to similar values

Scaling Data

- Normalizing Scaling from 0 to 1
- 2. Standardization Scaling data so mean = 0 and standard deviation = 1
 - a. Assumes data is already normally distributed.
- 3. Testing for normality Shapiro-Wilk Test
 - a. Others include Q-Qplot (quantile plots), Histogram plot, Kolmogorov-Smirnov Test

Transform data - Non Constants Transformations

- 1. Log Transformation
- 2. Square Root Transformation
- Cube Root Transformation

Data Preprocessing

Goal: Using transforms, scale data to similar values

Encoding

- 1. Replace categories with integer values
- 2. Create new features based on k # of categories containing binary values

Imputing Data

- Dropping null data
- 2. Replacing null values with mean, median, most frequent values, etc.
- 3. More options discussed after Midterm

Normalizing Data

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Used when data is not normally distributed

Benefits:

- Faster processing for GD methods
- Allows you to view actual importance to predicted values using weights

Implementation:

MinMax Normalization

Standardizing Data

$$z = \frac{x - \mu}{\sigma}$$

Used when data is normally distributed

 $\mu=$ Mean

Benefits:

 $\sigma=$ Standard Deviation

- Much faster processing for GD methods
- Allows you to view actual importance to predicted values using weights

Implementation:

Z-score standardization

Machine Learning Pipeline

Machine Learning Definition

Supervised Machine Learning

- Labeled data set
- Good for prediction
- Example: Classification

Unsupervised Machine Learning

- Unlabeled data set
- Good for data exploration and association rule discovery
- Example: Clustering

Reinforcement Learning

- Interacts with its environment producing actions and discovers errors or rewards through trial and error search.
- Example algorithm: Q-Learning

Supervised Learning

Predicting known labels

Classification

Regression

Naive Bayes

Support Vector Machines

Neural Nets

Decision Trees

Unsupervised Learning

Knowledge Discovery

- Data Exploration
- Descriptive Task
- Un-labeled Dataset
- Common Algorithms

Clustering

- Example: K-means Clustering,
- Hierarchical Clustering, Self-
- Organizing Map
- Association Rule Discovery

What is Machine Learning: Recap

Supervised Learning Generalized

Find a relationship between **X** (input) and **y** (output).

Goal: find $f(X) = \hat{y} \rightarrow y$

Predicting sales for a particular product

Data set Description

- Attribute(s) of the data set (X) includes
 - advertising budget (dollar value)
- Output y i.e., the class attribute
 - sales in thousands of units

Find an approximate yWe will call \hat{y} . Model maps $f(X) = \hat{y} \rightarrow y$ For all seen X and unseen X Advertisement budget (independent variable) X

Prediction of Output Sales (dependent variable) \hat{y}

Output sales (dependent variable) y

Supervised Learning Generalized

Find a relationship between **X** (input) and **y** (output).

Goal: find $f(X) = \hat{y} \rightarrow y$

Predicting sales for a particular product

Data set Description

- Attribute(s) of the data set (X) includes
 - advertising budget (dollar value)
- Output y i.e., the class attribute
 - sales in thousands of units

Advertisement budget (independent variable) *X*

Find an approximate yWe will call \hat{y} . Model maps $f(X) = \hat{y} \rightarrow y$ For all seen X and unseen X

Prediction of Output Sales (dependent variable) \hat{y}

Output sales (dependent variable) y

Machine Learning Evaluation Metrics (wiki)

How many retrieved items are relevant?

How many relevant items are retrieved?

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

Machine Learning Evaluation Metrics

TP,TN, FP, FN (True +, True -, False +, False -)

Precision and Recall

Receiver operating characteristic (ROC) curve and Area under curve (AUC)

Accuracy

F1 Score

- https://developers.google.com/machine-learning/crash-course/classification/true-false-positive
- https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
- https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
- https://developers.google.com/machine-learning/crash-course/classification/accuracy
- https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

Cost Function

When **training** the model, the goal is to **minimize** the **error** and **update** the model **coefficients** to achieve the **best fit** line.

Error is the **difference between predicted value** (Y) generated by the model and the **class attribute value**.

Cost function *L* is used to **measure the error**:

Calculating Error

Find an approximate yWe will call \hat{y} . Model maps $f(X) = \hat{y} \rightarrow y$ For all seen X and unseen X

Expands to $w_1x_1 + w_0$

$$L = \sum_{i=1}^{m} (y_i - \hat{y}_i)^2$$
Observed value Predicted value

 m
 $\sum_{i=1}^{m} (y_i - w_i)^2$
 $i=1$ Observations - Predictions

Dataset

Cross Validation

```
from sklearn import cross_validation

# value of K is 5.
data =
cross_validation.KFold(len(train_set)
, n_folds=5, indices=False)
```

Cross Validation

from sklearn import cross_validation

value of K is 5.
data =
cross_validation.KFold(len(train_set)
, n_folds=5, indices=False)

Cross Validation

Training data performance is typically optimistic

- e.g., error rate on training data
- build a model on the training data
- assess performance on the test data

Disjoint Validation Data Sets for k = 5

Disjoint Validation Data Sets for k = 5

Disjoint Validation Data Sets for k = 5

Identifying a Regression Problem

Do we want to **predict values**/targets?

Target data continuous?

Does it **plot well** in a **scatter plot** i.e. y = mx + b where x can be any order

- Linear
- Polynomial
- Logistic
- Logarithmic
- Exponential

Visualizing the Math

 $m \times n * n \times 1$ matrix multiplication creates an $m \times 1$ vector

$$w_0 + x \qquad W = \hat{y}$$

$$w_0 + \begin{bmatrix} x_{1,1} & \dots & x_{1,n} \\ x_{2,1} & \dots & x_{2,n} \\ \dots & \dots & \dots \\ x_{m,1} & \dots & x_{m,n} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix} = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \dots \\ \hat{y}_m \end{bmatrix}$$

Where W is a column vector

Visualizing the Math

Simple Linear Regression Function

$$\begin{bmatrix} 1 & x_{1,1} \\ 1 & x_{2,1} \\ \dots & \dots \\ 1 & x_{m,1} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = \begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \dots \\ \hat{y_m} \end{bmatrix}$$

1st Order Simple Polynomial Regression

2nd Order Polynomial Regression

$$\begin{bmatrix} 1 & x_{1,1} & (x_{1,1})^2 \\ 1 & x_{2,1} & (x_{2,1})^2 \\ \dots & \dots & \vdots \\ 1 & x_{m,1} & (x_{m,1})^2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \dots \\ \hat{y_m} \end{bmatrix}$$

nth Order Polynomial Regression

		X			W	=	ŷ
[1 1 	$x_{1,1}^{1}$ $x_{2,1}^{1}$ $x_{m,1}^{1}$	$x_{1,2}^{2}$ $x_{2,2}^{2}$ $x_{m,2}^{2}$	••••	$\begin{bmatrix} x_{1,n}^n \\ x_{2,n}^n \\ \dots \\ x_{m,n}^n \end{bmatrix}$	$\begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_n \end{bmatrix}$		$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \dots \\ \hat{y_m} \end{bmatrix}$

Where $oldsymbol{W}$ is a column vector

Polynomial Fit

(credit) Dr. Alexander Ihler

Fitting

Square of the Error Visual

daughter height vs. mother height

Ordinary Least Squares (OLS)

$$RSS_{t} := min(RSS_{t-1})$$
, where w is changed at each time step t

$$RSS = \sum_{i=1}^{m} (y_i - w \cdot x_i)^2$$
Observations - Predictions

We want to find some change in \mathbf{w} where (Observations - Predictions)² = 0 Rate of change = 0

$$find \frac{\delta}{\delta w} RSS = 0$$

Where W is a column vector

Expands to $w_1x_1 + w_0$

Finding the Derivative in our Loss Function

$$RSS = \sum_{i=1}^{m} (y_i - w \cdot x_i)^2$$
Observations - Predictions

Take the derivative

we the derivative
$$\frac{\delta}{\delta w} \sum_{i=1}^m (y_i - x_i w)^2 = 0$$

 $2\sum x_i(y_i-x_i\hat{w})-(y_i-x_i\hat{w})=0$

OLS Method

$$\widehat{w} = \frac{\sum_{i=1}^{m} (y_i - \overline{y})(x_i - \overline{x})}{\sum_{i=1}^{m} (x_i - \overline{x})^2}$$

$$\sigma_{xy} = \sum_{i=1}^{m} (y_i - \overline{y})(x_i - \overline{x})$$

$$\sigma_{x} = \sum_{i=1}^{m} (x_{i} - \overline{x})$$

$$\widehat{w} = \frac{\sigma_{xy}}{\sigma_x^2}$$
 approximation

Covariance(x,y)/Variance(x)

$$\frac{\delta}{\delta w}$$
 $\frac{1}{2m} \sum_{i=1}^m (y_i - \hat{y})^2 = 0$ Expands to $w_1 x_1 + w_0$ $2\sum_{i=1}^m x_i (y_i - x_i \hat{w}) - (y_i - x_i \hat{w}) = 0$

J(w) = + when cost is going up J(w) = - when cost is going down So we want to min J(w)

Gradient Descent Methods

$$J(w_j)_t := J(w_j)_{t-1} - \alpha \left(\frac{1}{m} \sum_{i=1}^m (y_i - x_i w) + \frac{1}{m} \sum_{i=1}^m x_i (y_i - x_i w)\right)$$

Batch GD → Performing GD on all observations

 $SGD \rightarrow Calculating \ GD \ \& \ performing \ step \ on \ a \ randomly \ selected \ observation$ mini-Batch $GD \rightarrow SGD$ but with several data points (a subset of observations)

Neural Networks can use either, but computation is expensive so SGD is often used

Update theta from previous theta - alpha*derivatives that include w₁ and w₀

Standard Logistic Growth Function

$$f(x)=rac{L}{1+e^{-k(x-x_0)}}$$

f(x) = output of the function

L = the curve's maximum value

k = logistic growth rate or steepness of the curve

 x_0 = the x value of the sigmoid midpoint

x = real number

$$L=1, k=1, x_0=0$$
,

 \hat{Y}_i Is our prediction given formula on the right, but is given a value of 0 or 1 based on the threshold of 0.5

Prior to threshold we can say our raw value is our probability. As our raw value is continuous from 0 to 1.

$$\gamma_i = \begin{cases} 0 \text{ ; predicted value } < \text{thresold} \\ 1 \text{ ; predicted value } \ge \text{threshold} \end{cases}$$

ŷ; Is our prediction given formula on the right, but is given a value of 0 or 1 based on the threshold of 0.5 Prior to threshold we can say our raw value is our probability. As our raw value is continuous from 0 to 1.

$$\hat{y} = \frac{1}{1 + e^{(\mu - x)/s}}$$

$$= \frac{1}{1 + e^{(\mu - x)/s}}$$

where
$$w_0 = -\mu/s$$
 and $w_1 = 1/s$: we can solve for μ and s

$$\mu = w_0/w_1 \text{ and } s = 1/w_1$$

Where we have Bernoulli observations And p_k is the probability of $y_k=1$ and $1-p_k$ is the probability $y_k=0$

The log loss for the *k*-th point is:

We can say p_k is our raw value, which is our probability of of $y_k = 1$ given x_i w

$$\mathsf{Cost} \, egin{cases} -\ln p_k & ext{if } y_k = 1, \ -\ln (1-p_k) & ext{if } y_k = 0. \end{cases}$$

$$-y_k \ln p_k - (1-y_k) \ln (1-p_k)$$

$$\ell = \sum_{k:y_k=1}^{N} \ln(p_k) + \sum_{k:y_k=0}^{N} \ln(1-p_k) = \sum_{k=1}^{K} \left(\left. y_k \ln(p_k) + (1-y_k) \ln(1-p_k)
ight)$$

 $J(w) = d/dw \ell^* 1/k$

The log loss for the *k*-th point is:

log-likelihood

$$\ell = \sum_{k:y_k=1}^{K} \ln(p_k) + \sum_{k:y_k=0}^{K} \ln(1-p_k) = \sum_{k=1}^{K} \left(\left. y_k \ln(p_k) + (1-y_k) \ln(1-p_k)
ight)
ight)$$

$$J(w) = 1/k d/dw \ell$$

d/dw
$$\ell$$
 = $\sum_{k=1}^{N} \left(y_k - p_k \right) + \left(y_k - p_k \right) x_k$

Logistic Regression: Parameter Estimation

$$0=rac{\partial \ell}{\partial eta_0}=\sum_{k=1}^{N}(y_k-p_k)$$

$$0 = rac{\partial \ell}{\partial eta_1} = \sum_{k=1}^K (y_k - p_k) x_k$$

Lasso & Ridge Regression

$$Cost(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{y})^2$$

Lasso

$$Cost(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{y})^2 + \lambda \sum_{i=1}^{D} |w_i|$$

Ridge

$$Cost(w) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - \hat{y})^2 + \lambda \sum_{j=1}^{D} w_j^2$$

Perceptron

Activation Functions

Polynomial

Gaussian

Sigmoid/Logistic

ReLU (Rectified Linear Unit)

max(0,x)

SoftMax

https://cs231n.github.io/neural-networks-1/

https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#elu

Artificial Neuron History

2nd Generation Neuron

https://www.slideshare.net/hitechpro/introduction-to-spiking-neural-networksfrom-a-computational-neuroscience-perspective/30

Simple Neural Net: 2 Hidden Layers

hidden layer 1 hidden layer 2

Deep Neural Net: Several Hidden Layers

Deep Neural Net: Several Hidden Layers

Website

CNN's

Can Have Hidden Layers but Must Have Convolution Layers

Logic Gates Instead of Aggregation Functions

N	TC	100	ANI)	l l	NAN	D		OR			NOI	₹		XOI	₹	X	NO	R
	Ā		AB			\overline{AB}			A + E	3		$\overline{A+B}$	3		$A \oplus I$	3		$A \oplus B$	3
<u>A</u>	>> <u>×</u>	В) <u>x</u>)o—			—	_		> —	8		>-			>
A	X	B	A	X	<u>B</u>	A	X	B	A	X	B	A	X	В	A	X	<u>B</u>	A	X
1	0	0	1	0	0	1	1	0	1	1	0	1	0	0	1	1	0	1	0
		1	0	0 1	1	0	1 0	1	0 1	1	1	0 1	0	1	0	1 0	1	0	0
	A 0	A X 0 1	$ \begin{array}{c cccc} \hline A & X & B \\ \hline 0 & 1 & 0 \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A X B A A X B A A X B A A X B A A X B A A X B A A X B A A X B A A X B A B <td>A AB A X AB B AX BB 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>A AB AB A B B A X B A X B A X O O O O O O O O O O O O O O O O O O</td> <td>A AB AB A B</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>A AB AB AB A+B A B AX BAX <t< td=""><td>A AB AB AB A+B A B A X B A X B A X B A X B A X B B B B B B B B B B B B B B B B B B B</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<></td>	A AB A X AB B AX BB 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A AB AB A B B A X B A X B A X O O O O O O O O O O O O O O O O O O	A AB AB A B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A AB AB AB A+B A B AX BAX BAX <t< td=""><td>A AB AB AB A+B A B A X B A X B A X B A X B A X B B B B B B B B B B B B B B B B B B B</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	A AB AB AB A+B A B A X B A X B A X B A X B A X B B B B B B B B B B B B B B B B B B B	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

Filters

Top Edge Filter

Top Edge Filter

1	1	1
0	0	0
-1	-1	-1

Left Edge Filter

1	0	-1
1	0	-1
1	0	-1

0 value when pixel is uniform Large value when pixel is not uniform Max value when pixel fits pattern

O value when pixel is uniform Large value when pixel is not uniform Max value when pixel fits pattern

0 value when pixel is uniform Large value when pixel is not uniform Max value when pixel fits pattern

O value when pixel is uniform Large value when pixel is not uniform Max value when pixel fits pattern

0 value when pixel is uniform Large value when pixel is not uniform Max value when pixel fits pattern

Activation function = tanh(x)

У

8

15

28

yhat

 W_1

 $w_3 x + b_3$

- $w_1x + b_1$
- tanh(I)

yhat

 W_4

X

 b_2

0

 b_1

0

 $w_2 x + b_2$

 b_3

0

 b_4

0

tanh(1)

 $W_4 x + b_4$

 W_2

 W_3

What is Classification

Using a line to define a boundary

Which is a good fit?

Adding a Margin

What is Classification

Wikipedia

Adding Margin (Recall Inner Products)

$$||\mathbf{v}|| = \text{Length of } \mathbf{v}$$

 $||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2}$

 $\mathbf{v}^{\mathsf{T}}\mathbf{u} = ||\mathbf{v}|| p$ Where p is the projection of u onto v

SVM Classification

Wikipedia

