2007年4月 Apr. 2007

文章编号:1671-9352(2007)04-0001-05

MD4 算法分析

黎琳

(山东大学 数学与系统科学学院,山东 济南 250100)

摘要:采用比特追踪法对 MD4 进行攻击,利用差分特性,找到近似碰撞路线,使得给定一个消息 m,可以以高概率找到另一消息 m'产生碰撞,并保持较低的 Hamming 重量.

关键词: Hash 函数; 近似碰撞;差分特征; Hamming 重量

中图分类号: TP309 文献标识码: A

Cryptanalysis of MD4

LI Lin

(School of Math. and System Sci., Shandong Univ., Jinan 250100, Shandong, China)

Abstract: Bit flipping and differential characteristics are used to attack MD4. A near collision path can be found. Given a message m, a message m' can be found with high probability and low hamming weight to get a collision.

Key words: Hash function; near collision; differential characteristics; Hamming weight

0 引言

Hash 函数是信息安全领域重要的研究课题.它不仅可以用于数字签名方案,还可以用于验证信息来源的真实性及信息数据的完整性.它可将任意长度的消息压缩到固定长度的消息摘要.通常,标准 Hash 函数主要分为两大类:MDx 系列,包括 MD4,MD5,HAVAL,RIPEMD,RIPEMD-128 等和 SHA 系列包括 SHA-1, SHA-256 等[1-5].

MD4 算法是 Rivest 于 1990 年提出的 Hash 函数算法.其最初的设计目的是抵抗碰撞攻击和第二原根攻击,但已有的攻击表明未达到其设计目标.1996 年,H. Dobbertin 提出了对 MD4 算法以概率 2⁻²²找到碰撞的成功攻击^[6].1998 年,H. Dobbertin 表明 MD4 算法的前两圈不是单向的,这意味着对于 MD4 的前两圈可能存在原根和第二原根^[7].近期,王小云等提出了一种新的对于 Hash 函数 MD4 和 RIPEMD 的碰撞攻击方法,并应用于 MD5、HAVAL-128、SHA-0 和 SHA-1,取得较大轰动^[8-12].

本文采用王小云等提出的比特追踪的方法对 MD4 的进行攻击,利用差分特性,找到近似碰撞路线,使得给定一个消息 m,可以以高概率找到另一消息 m'产生碰撞,并保持较低的 Hamming 重量.

本文首先在第一部分详细描述了 HMAC 和 MD4 算法,并给出了文中用到的一些符号的定义;第二部分给出了对 MD4 算法的分析方法,最后我们对全文进行了总结.

1 MD4 算法

1.1 MD4 算法

收稿日期:2007-03-26

基金项目:国家自然科学基金重点资助项目(90604036);国家杰出青年基金资助项目(60525201);国家 973 计划资助项目(2007CB807902) 作者简介:黎 琳(1978-),女,博士研究生,主要研究方向对称密码的分析与设计.

MD4 算法是 Rivest 于 1990 年提出的 Hash 函数算法,通过 3 圈操作可以将任意长度的消息压缩成 128 位的 Hash 函数值.算法每圈都包含一个对 32 比特字进行比特运算的高度非线性圈函数,分别为:

$$F(X,Y,X) = (X \land Y) \lor (\neg X \land Z),$$

$$G(X,Y,Z) = (X \land Y) \lor (X \land Z) \lor (Y \land Z),$$

$$H(X,Y,Z) = X \oplus Y \oplus Z.$$

其中, X, Y, Z 是 32 比特的字.运算符 \oplus , \wedge , \vee , \neg 分别表示异或, 与, 或和补运算.

算法中每圈运算都包括 16 步相同的操作. 每步中都有变量 a,b,c,d, 且变量的值将不断得到更新.

$$\phi_0(a,b,c,d,m_k,s) = ((a+F(b,c,d)+m_k) \mod 2^{32}) <<< s,$$

$$\phi_1(a,b,c,d,m_k,s) = ((a+G(b,c,d)+m_k+0x5a827999) \mod 2^{32}) <<< s,$$

$$\phi_2(a,b,c,d,m_k,s) = ((a+H(b,c,d)+m_k+0x6ed9edba1) \mod 2^{32}) <<< s.$$

其中, m_k 是 32 位明文分组,<<< s 表示循环左移 s 位,+ 表示模 2^{20} 的加法运算.

MD4 的初始值为:

$$(a,b,c,d) = (0x67452301,0xefcdab89,0x98badcfe,0x10325476).$$

对于消息 \overline{M} 的一个 512 比特的消息分组 $M, M = (m_0, m_1, \dots m_{15})$,运算过程如下:

- (1) 消息分组 M 的输入值为(aa, bb, cc, dd). 如果 M 是第一个 512 比特被压缩的分组,则其初始值为(aa, bb, cc, dd),否则其初始值是前一个消息分组压缩后的输出值.
 - (2) 完成以下 48 步运算(3 圈)

For
$$j = 1,2,3$$
,
For $i = 0,1,2,3$,
 $a = \phi_j(a,b,c,d,\omega_{j,4i},s_{j,4i})$,
 $d = \phi_j(a,b,c,d,\omega_{j,4i+1},s_{j,4i+1})$,
 $c = \phi_j(a,b,c,d,\omega_{j,4i+2},s_{j,4i+2})$,
 $b = \phi_j(a,b,c,d,\omega_{j,4i+3},s_{j,4i+3})$.

其中 $,s_{j,4i+k}(k=0,1,2,3)$ 是常量. 每圈中消息字的顺序及移位值见参考文献[1].

(3) 将链接变量 a,b,c,d 分别加入输入链接变量产生当前消息分组的最终链接变量.

$$aa = (a + aa) \mod 2^{32},$$

 $bb = (b + bb) \mod 2^{32},$
 $cc = (c + cc) \mod 2^{32},$
 $dd = (d + dd) \mod 2^{32}.$

如果 M 是最后一个消息分组,则 $H(\overline{M}) = aa \mid bb \mid cc \mid dd$ 是消息 \overline{M} 的 Hash 函数值.否则以(aa, bb, cc, dd)作为输入值,对下一个 512 比特的消息分组重复以上过程.

1.2 符号说明

为了便于说明,我们定义以下符号.

- (1) $M = (m_0, m_1, \dots m_{15})$ 与 $M' = (m'_0, m'_1, \dots m'_{15})$ 是两个 512 比特的消息分组.
- (2) a_i , d_i , c_i , b_i 分别表示消息分组 M 第 4i-3, 4i-2, 4i-1, 4i 步的输出, 其中 $1 \le i \le 16$.
- (3) a'_i , d'_i , c'_i , b'_i 分别表示消息分组 M'第 4i-3, 4i-2, 4i-1, 4i 步的输出, 其中 $1 \le i \le 16$.
- (4) $\Delta m_i = m'_i m_i$ 表示两个消息字的模差分.这些差分可正可负,用于描述带的差分特征.
- (5) $a_{i,j}$, $b_{i,j}$, $c_{i,j}$, $d_{i,j}$ 分别表示 a_i , b_i , c_i , d_i 第 j 比特的值, 其中, 第 1 比特表示最低比特位, 第 32 比特表示最高比特位.
- (6) $x_i[j]$, $x_i[-j]$ 是 x_i 只改变第j 比特后的值. $x_i[j]$ 的值表示将 x_i 的第j 比特从 0 变到 1; $x_i[-j]$ 表示 x_i 的第j 比特从 1 变到 0.
 - $(7) x_i[\pm j_1, \pm j_2, \cdots \pm j_l]$ 表示连续改变 x_i 的第 $j_1, j_2, \cdots j_l$ 比特后的值.

3

2 对 MD4 算法的攻击

利用比特追踪法对任意 512 比特的消息 m,选取 $m' = m + \Delta m = (m'_0, m'_1, \cdots m'_{15})$. 如果每步某个输入变量仅改变一个或少数几个比特,则该步输出值可能不发生变化或仅改变一个或少数几个比特. 根据这些改变的差分特性及非线性函数性质,我们可以找出近似碰撞路线及满足路线的充分条件.

2.1 选择明文差分

定义两个明文 m 和 m' 的关分 Δm :

$$m = (m_0, m_1, \dots m_{15}),$$

 $m' = (m'_0, m'_1, \dots m'_{15}),$

令 $\Delta m = m' - m = (\Delta m_0, \Delta m_1, \dots \Delta m_{15})$,经过分析,我们选择明文差分满足:

$$\Delta m_7 = 2^{21} ,$$

就可以找到近似碰撞.

2.2 确定差分特性

表 1 表示差分特性.表中 1~7 列分别表示步数,消息变量,选择的消息的顺序,移位值,明文差分,输出差分,输出变量值.

表 1 碰撞的差分特征 Table 1 Differential characteristics of the collision differential for MD4

Output for M'Output difference Output for M Δm_i m_i Step a_1 3 1 a_1 m_0 d_1 7 2 d_1 m_1 c_1 11 3 c_1 m_2 b_1 19 4 b_1 m_3 a_2 3 5 a_2 m_4 d_2 7 6 d_2 m_5 c_2 11 7 c_2 m_6 $b_2[9]$ 2^{21} 19 8 b_2 m_7 a_3 3 9 m_8 a_3 d_3 7 10 d_3 m_9 c_3 11 11 c_3 m_{10} 2^{27} $b_3[-28, -29, -30, -31, 32]$ 19 12 b_3 m_{11} a_4 3 13 a_4 m_{12} $d_4[-7]$ 7 d_4 14 m_{13} c_4 11 15 c_4 $b_4[15]$ 2^{14} 19 16 b_4 m_{15} 3 17 m_0 a_5 $d_5[12,13,14,-15]$ -2^{11} 5 18 d_5 m_{Λ} c_5 19 c_5 m_{s} b_5 13 20 b_5 m_{12} a_6 3 21 a_6 m_1 $d_6[-17]$ -2^{16} 5 22 d_6 m_5 c_6 23 c_6 m_9 b_6 b_6 13 24 m_{13} a_7 3 25 a_7 m_2 $d_7[-22]$ -2^{21} 5 d_7 26 m_6 9 c_7 27 c_7 b_7 13 28 b_7 m_{14} 3 a_8 29 a_8

妨	丰
一大	n

Step	Output for M	m_i	s_i	Δm_i	Output difference	Output for M'
30	d_8	m_7	5	2 ²¹		d_8
31	c_8	m_{11}	9			c_8
32	b_9	m_{15}	13			b_9
•••	•••	•••	•••	•••	•••	•••
43	c_{11}	m_5	11			c_{11}
44	\boldsymbol{b}_{11}	m_{13}	15			b_{11}
45	a_{12}	m_3	3			a_{12}
46	d_{12}	m_{11}	9			d_{12}
47	c_{12}	m_7	11	2^{21}	2^{32}	$c_{12}[1]$
48	b_{12}	m_{15}	15		215	$b_{12}[16]$

2.3 确定满足差分特征的充分条件

根据差分特征和非线性函数的性质,我们能得到满足表 1 中差分特征的充分条件表.从表 2,我们可以得到近似碰撞概率分别为 2^{-s6}.

表 2 碰撞的充分条件
Table 2 Sufficient conditions for collisions of MD4

	Table 2 Sufficient conditions for collisions of MD4						
Step	Output for M						
1	$oldsymbol{a}_1$						
2	\boldsymbol{d}_1						
3	c_1						
4	$b_{\scriptscriptstyle 1}$						
5	a_2						
6	d_2						
7	c_2	$c_{2,9} = d_{2,9}$					
8	b_2	$b_{2,9} = 0$					
9	a_3	$a_{3,9} = 0$					
10	d_3	$d_{3,9} = 1$					
11	c_3	$c_{3,28} = d_{3,28}$, $c_{3,29} = d_{3,29}$, $c_{3,30} = d_{3,30}$, $c_{3,31} = d_{3,31}$, $c_{3,32} = d_{3,32}$					
12	b_3	$b_{3,28} = 1$, $b_{3,29} = 1$, $b_{3,30} = 1$, $b_{3,31} = 1$, $b_{3,32} = 0$, $a_{4,7} = b_{3,7}$					
13	a_4	$a_{4,28} = 0$, $a_{4,29} = 0$, $a_{4,30} = 0$, $a_{4,31} = 0$, $a_{4,32} = 1$					
14	d_{4}	$d_{4,7} = 1$, $d_{4,28} = 1$, $d_{4,29} = 1$, $d_{4,30} = 1$, $d_{4,31} = 1$, $d_{4,32} = 1$					
15	c_{4}	$c_{4,7}=0, c_{4,15}=d_{4,15}$					
16	b_4	$b_{4,15} = 0, b_{4,7} = c_{4,7}$					
17	a_5	$a_{5,11} = c_{4,11}$, $a_{5,12} = b_{4,12}$, $a_{5,13} = b_{4,13}$, $a_{5,14} = b_{4,14}$					
18	d_5	$d_{5,12}=0$, $d_{5,13}=0$, $d_{5,14}=0$, $d_{5,15}=1$					
19	c_{5}	$c_{5,12} = a_{5,12}$, $c_{5,13} = a_{5,13}$, $c_{5,14} = a_{5,14}$, $c_{5,15} = a_{5,15} + 1$					
20	b_5	$b_{5,12}=c_{5,12}$, $b_{5,13}=c_{5,13}$, $b_{5,14}=c_{5,14}$, $b_{5,15}=c_{5,15}$					
21	a_6	$a_{6,17} = b_{5,17}$					
22	d_6	$d_{6,17} = 1$					
23	c_6	$c_{6,17} = a_{6,17}$					
24	b_6	$b_{6,17}=c_{6,17}$					
25	a_7	$a_{7,22} = b_{6,22}$					
26	d_7	$d_{7,22}=1$					
27	c_7	$c_{7,22} = a_{7,22}$					
28	b_7	$b_{7.22} = c_{7.22}$					
29	a_8						
30	d_8						
31	c_8						

续表			
Step	Output for M		
32	b_9		
•••	•••		
43	$oldsymbol{c}_{11}$		
44	$oldsymbol{b}_{11}$		
45	a_{12}		
46	d_{12}		
47	c_{12}	$c_{12,1} = 0$	
48	b_{12}	$c_{12,1} = 0$ $b_{12,17} = 0$	

根据表 1 和表 2,我们给定一消息 m,可以找到另一消息 m',产生碰撞,其概率为 2^{-8} , Hamming 重量为 2.

3 结论

本文采用比特追踪法对 MD4 进行攻击,利用差分特性,找到近似碰撞路线,使得给定一个消息 m,可以以高概率找到另一消息 m'产生碰撞,其概率为 2^{-56} , Hamming 重量为 2.通过给定的路线跟条件,可能存在两个明文分组间的较好的第二原根攻击.也可用于秘密前缀的 HMAC-MD4 的密钥恢复攻击.

参考文献:

- [1] Rivest R L. The MD4 message digest algorithm[A]. Advances in Cryptology, Crypto'90[C]. Berlin: Springer-Verlag, 1990.
- [2] Rivest R L. The MD5 message digest algorithm [S]. Request for Comments (RFC 1320), Internet Activities Board, Internet Privacy Task Force, 1992.
- [3] Zheng Y, Pieprzyk J, Seberry J. Haval-A one-way hashing algorithm with variable length of output [A]. Advances in Cryptology, Auscrypto'92 Processings [C]. New York: Springer-Verlag, 1992. 83 ~ 104.
- [4] Dobbertin H, Bosselaers A, Preneel B. RIPEMD-160: A strengthened version of RIPEMD[A]. Fast Software Encryption, LNCS 1039 [C]. Berlin: Springer-Verlag, 1996. 71-82.
- [5] Dobbertin H. RIPEMD with two round compress function is not collision-free [J]. Journal of Cryptology, 1997, 10:51 ~ 69.
- [6] Dobbertin H. Cryptanalysis of MD4[A]. Fast Software Encryption, LNCS 1039[C]. Berlin: Springer-Verlag, 1996.
- [7] Dobbertin H. The first two rounds of MD4 are not one-way [A]. Fast Software Encryption, LNCS 1372 [C]. Berlin: Springer-Verlag, 1998. 284 ~ 292.
- [8] Wang X Y, Yu H B. How to break MD5 and other hash functions [A]. Eurocrypt '05, LNCS 3621 [C]. Berlin: Springer-Verlag, 2005. 19 ~ 35.
- [9] Wang X Y, Lai X J, Feng D G, et al. Cryptanalysis of the hash functions mD4 and RIPEMD[A]. Advances in Cryptology-Eurocrypt 05, LNCS3494[C]. Berlin: Springer-Verlag, 2005. 1 ~ 18.
- [10] Wang X Y, Feng D G, Yu X Y. An attack on HAVAL function Haval-128[J]. Science in China Ser F Information Sciences, 2005, 48 (5):1 ~ 12.
- [11] Wang X Y, Yu H B, Lisa Y. Efficient collision search attacks on SHA-0[A]. Crypto'05, LNCS 3621[C]. Berlin: Springer-Verlag, 2005. 1 ~ 16.
- [12] Wang X Y, Lisa Y, Yu H B. Finding collisions on the full SHA-1[A]. Crypto'05, LNCS 3621[C]. Berlin: Springer-Verlag, 2005. 17 ~ 36.

(编辑:李晓红)