Multivariate Gaussian Classifier

Ole Marius Hoel Rindal Cameron Lowell Palmer

December 7, 2015

Bayes' Rule

We can use the Bayes' rule to find an expression for the class with the highest probability

 $p(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)} \tag{1}$

where the probability of being class ω_j given x is equal to the probability of x given ω_j times the prior probability of being class ω_j . This whole thing is over the probability of x, but we're going to argue that we don't need that in a moment. The prior probability of ω_j or $P(\omega_j)$ could be defined differently for each class although in this case we will be assuming the classes are equally likely or $\frac{1}{\#_{classes}}$.

Gaussian Density

Any probability can be used to make $p(x|\omega_j)$, but we want to use the multivariate Gaussian density.

$$p(\vec{x}|\omega_j) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_j|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu_j})^{\mathsf{T}} \Sigma_j^{-1} (\vec{x} - \vec{\mu_j})}$$
(2)

where, $\vec{\mu_j}$ is the mean vector for class j for d features. Giving,

$$\vec{\mu_j} = \begin{bmatrix} \mu_j^1 \\ \mu_j^2 \\ \vdots \\ \mu_j^n \end{bmatrix}$$
 (3)

And Σ_j is the covariance matrix for class j, $|\Sigma_j|$ is its determinant, and Σ_j^{-1} is its inverse.

The Discriminant Function

From (1) we get the discriminant function

$$g_j(x) = p(\omega_j | \vec{x}) = \frac{p(\vec{x} | \omega_j) P(\omega_j)}{p(x)}$$
(4)

but we can ignore p(x) since this is only a normalizing factor and simplify the discriminant function by tossing it out since it won't change which class has the highest probability which is all we care about.

$$g_j(x) = p(\vec{x}|\omega_j)P(\omega_j) \tag{5}$$

Our Discriminant Function

Before presenting our combined Gaussian density and Bayes' rule discriminant function we will want to simplify using the knowledge that

$$\ln(N \cdot M) = \ln(N) + \ln(M) \tag{6}$$

when applied to our simplified Bayes' rule classifier

$$g_i(\vec{x}) = \ln(p(\vec{x}|\omega_i)P(\omega_i)) \tag{7}$$

$$= \ln(p(\vec{x}|\omega_i)) + \ln(P(\omega_i)) \tag{8}$$

Now we can use this newly acquired knowledge to eliminate the exponent yielding a simplified multivariate Gaussian Classifier

$$g_j(\vec{x}) = -\frac{1}{2}(\vec{x} - \vec{\mu_j})^{\mathsf{T}} \Sigma_j^{-1}(\vec{x} - \vec{\mu_j}) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_j| + \ln P(\omega_j)$$
 (9)

Special Cases

Equation (9) can sometimes be simplified given specific knowledge about the covariance matrices.

Case 1: $\Sigma_j = \sigma^2 I$

The features are uncorrelated (independent) and have the same variance. Recalling (9) we can discard everything that is common for all classes, so we get

$$g_j(x) = -\frac{||\vec{x} - \vec{\mu_j}||^2}{2\sigma^2} + \ln P(\omega_j)$$
 (10)

where,

$$||\vec{x} - \vec{\mu_j}||^2 = (\vec{x} - \vec{\mu_j})^{\mathsf{T}} (\vec{x} - \vec{\mu_j})$$
(11)

which is the Euclidian distance. This is known as a minimum distance classifier.

Case 2: Common covariance matrix

Again, recalling (9), but instead of $\Sigma_j = \sigma^2 I$ we have $\Sigma_j = \Sigma$. Since the covariance matrices are equal we can reduce the discriminant function to

$$g_j(\vec{x}) = -\frac{1}{2}(\vec{x} - \vec{\mu_j})^{\mathsf{T}} \Sigma_j^{-1}(\vec{x} - \vec{\mu_j}) + \ln P(\omega_j)$$
 (12)

$$(\vec{x} - \vec{\mu_j})^{\mathsf{T}} \Sigma_j^{-1} (\vec{x} - \vec{\mu_j}) \tag{13}$$

equation (13) is the Mahalanobis distance.