

3D Vision and Machine Perception

Prof. Kyungdon Joo

3D Vision & Robotics Lab.

Al Graduate School (AIGS) & Computer Science and Engineering (CSE)

Some materials, figures, and slides (used for this course) are from textbooks, published papers, and other open lectures

Recap: The camera as a coordinate transformation

$$x = PX$$

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

homogeneous image coordinates 3 x 1 camera matrix 3 x 4 homogeneous world coordinates 4 x 1

Recap: Generalizing the camera matrix

• In general, there are three, generally different, coordinate systems

• We need to know the transformations between them.

Recap: Generalizing the camera matrix

• In particular, the camera origin and image origin may be different:

• How does the camera matrix change?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & 0 & 0 \ 0 & f & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

Recap: Generalizing the camera matrix

• In particular, the camera origin and image origin may be different:

• How does the camera matrix change?

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x & 0 \ 0 & f & p_y & 0 \ 0 & 0 & 1 & 0 \ \end{array}
ight]$$

shift vector transforming camera origin to image origin

Recap: Camera matrix decomposition

We can decompose the camera matrix like this:

$$\mathbf{P} = \left[egin{array}{cccc} f & 0 & p_x \ 0 & f & p_y \ 0 & 0 & 1 \end{array}
ight] \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \end{array}
ight]$$

2D to 2D, accounting for not unit focal length and origin shift

(homogeneous) transformation from (homogeneous) perspective projection from 3D to 2D, assuming image plane at z = 1 and shared camera/image origin

also written as:
$$\mathbf{P} = \mathbf{K}[\mathbf{I}|\mathbf{0}]$$
 where $\mathbf{K} = \left[egin{array}{cccccc} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{array} \right]$

Recap: World-to-camera coordinate system transformation

$$m{R} \cdot m{(}m{\widetilde{X}}_{m{w}} - m{\widetilde{C}} m{)}$$
 rotate translate

Recap: Modeling the coordinate system transformation

• In heterogeneous coordinates, we have:

$$\widetilde{\mathbf{X}}_{\mathbf{c}} = \mathbf{R} \cdot (\widetilde{\mathbf{X}}_{\mathbf{w}} - \widetilde{\mathbf{C}})$$

• In homogeneous coordinates, we have:

$$\begin{bmatrix} X_c \\ Y_c \\ Z_c \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & -\mathbf{RC} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \quad \text{or} \quad \mathbf{X_c} = \begin{bmatrix} \mathbf{R} & -\mathbf{R\tilde{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X_w}$$

Recap: Incorporating the transform in the camera matrix

• The previous camera matrix is for homogeneous 3D coordinates in camera coordinate systems:

$$\mathbf{x} = \mathbf{P}\mathbf{X}_{\mathbf{c}} = \mathbf{K}[\mathbf{I}|\mathbf{0}]\mathbf{X}_{\mathbf{c}}$$

• We also just derived:

$$\mathbf{X_c} = \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix} \mathbf{X_w}$$

Recap: Putting it all together

• We can write everything into a single projection:

$$x = PX_w$$

The camera matrix now looks like:

$$\mathbf{P} = \begin{bmatrix} f & 0 & p_x \\ 0 & f & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{R} & -\mathbf{R}\tilde{\mathbf{C}} \\ \mathbf{0} & 1 \end{bmatrix}$$

intrinsic parameters (3×3) : correspond to camera internals (image-to-image transformation)

perspective projection (3×4) : maps 3D to 2D points (camera-to-image transformation)

P = K[R|t]

intrinsic and extrinsic parameters

extrinsic parameters (4×4) : correspond to camera externals (world-to-camera transformation)

Perspective distortion

Finite projective camera

$$\mathbf{P} = \left[egin{array}{cccc} lpha_x & s & p_x \ 0 & lpha_y & p_y \ 0 & 0 & 1 \end{array}
ight] \, \left[\mathbf{R} \, \left| \, -\mathbf{RC} \,
ight]$$

what does this matrix look like if the camera and world have the same coordinate system?

Finite projective camera

• The pinhole camera and all of the more general cameras we have seen so far have "perspective distortion".

$$\mathbf{P} = \begin{bmatrix} \alpha_x & s & p_x \\ 0 & \alpha_y & p_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

perspective projection from (homogeneous) 3D to 2D coordinates

The 2D view of the (rearranged) pinhole camera

• Perspective projection in 2D

Forced perspective

The Ames room illusion

The Ames room illusion

Magnification depends on depth

• What happens as we change the focal length?

Magnification depends on focal length

What if...

1. Set focal length to half.

What if...

real-world

object

1. Set focal length to half.

2. Set depth to half

focal depth Z length f

is this the same image as the one I had at focal length 2f and distance 2Z?

Perspective distortion

long focal length

mid focal length

short focal length

Perspective distortion

Vertigo effect

How would you create this effect?

More intrinsic

More Intrinsic parameter

- Radial distortion
 - We assume that the basic camera model follows pinhole model.
 - Unfortunately, cameras do use lens

distorted image

Undistorted image

More Intrinsic parameter

- Tangential distortion
 - Tangential distortion occurs when the lens and image plane are not parallel.

Calibration

- Camera calibration is to estimate both
 - Camera intrinsic parameter
 - Extrinsic parameter (pose estimation)
- Why the calibration is necessary?
 - If we know the origin direction of ray,
 - We can back projection → 3D reconstruction

Type of camera calibration

Camera-base sensor systems

Single camera system

Multi-camera system (stereo system)

Camera-LiDAR system

Calibration of each system

Single camera system

- Calibration goal:
 - intrinsic parameters

Multi-camera system (stereo system)

- Calibration goal:
 - Intrinsic parameters (for each)
 - Extrinsic parameters btw them

Camera-LiDAR system

- Calibration goal:
 - Intrinsic parameters
 - Extrinsic parameters btw them

$$x_u = x + \underbrace{(x - x_c) \cdot (k_1 \cdot r^2 + k_2 \cdot r^4 + \cdots)}_{ ext{radial terms}}$$
 $y_u = y + \underbrace{(y - y_c) \cdot (k_1 \cdot r^2 + k_2 \cdot r^4 + \cdots)}_{ ext{radial terms}}$

btw camera and LiDAR

Application of each system

RGB Sensor System

Stereo object matching network (ICRA'21)

RGB-LiDAR Sensor System

 Stereo-LiDAR fusion for depth estimation (RA-Letter + ICRA'21)

[1] Choe et al. "Volumetric Propagation Network: Stereo-LiDAR Fusion for High-Quality Depth Estimation." RA-L (with ICRA presentation) 2021

RGB-NIR-LiDAR Sensor System

Adaptive Cost Volume Fusion Network for Multi-Modal
 Depth Estimation in Changing Environments (RA-Letter + ICRA'22)

[1] Park et al. "Adaptive Cost Volume Fusion Network for Multi-Modal Depth Estimation in Changing Environment." RA-L (with ICRA presentation) 2021

Geometric camera calibration

	Structure (scene geometry)	Motion (camera geometry)	Measurements
Camera Calibration (a.k.a. Pose Estimation)	known	estimate	3D to 2D correspondences
Triangulation	estimate	known	2D to 2D correspondences
Reconstruction	estimate	estimate	2D to 2D correspondences

Geometric camera calibration

Given a set of matched points

$$\{\mathbf{X}_i, \boldsymbol{x}_i\}$$
 point in point in 3D space the image

And camera model

$$oldsymbol{x} = oldsymbol{f}(\mathbf{X}; oldsymbol{p}) = \mathbf{P}\mathbf{X}$$
projection parameters matrix

• Find the (pose) estimate of

 ${f P}$

we'll use a **perspective** camera model for pose estimation

Same setup as homography estimation (slightly different derivation here)

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

What are the unknowns?

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 \\ p_5 & p_6 & p_7 & p_8 \\ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

Heterogeneous coordinates

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = \left[egin{array}{ccc} --- & oldsymbol{p}_1^ op & --- \ --- & oldsymbol{p}_2^ op & --- \ --- & oldsymbol{p}_3^ op & --- \end{array}
ight] \left[egin{array}{c} x \ X \ \end{array}
ight]$$

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \hspace{0.5cm} y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

(non-linear relation between coordinates)

• How can we make these relations linear?

How can we make these relations linear?

$$x' = rac{oldsymbol{p}_1^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}} \hspace{0.5cm} y' = rac{oldsymbol{p}_2^ op oldsymbol{X}}{oldsymbol{p}_3^ op oldsymbol{X}}$$

• Make them linear with algebraic manipulation...

$$\boldsymbol{p}_2^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} y' = 0$$

$$\boldsymbol{p}_1^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} x' = 0$$

 Now we can setup a system of linear equations with multiple point correspondences

$$\boldsymbol{p}_2^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} y' = 0$$

$$\boldsymbol{p}_1^{\top} \boldsymbol{X} - \boldsymbol{p}_3^{\top} \boldsymbol{X} x' = 0$$

How do we proceed?

$$m{p}_2^ op m{X} - m{p}_3^ op m{X} y' = 0$$
 $m{p}_1^ op m{X} - m{p}_3^ op m{X} x' = 0$ in matrix form ... $egin{bmatrix} m{X}^ op & m{0} & -x' m{X}^ op & m{p}_1 \\ m{0} & m{X}^ op & -y' m{X}^ op \end{bmatrix} egin{bmatrix} m{p}_1 \\ m{p}_2 \\ m{p}_2 \end{bmatrix} = m{0}$

• How do we proceed?

$$egin{aligned} oldsymbol{p}_2^ op oldsymbol{X} - oldsymbol{p}_3^ op oldsymbol{X}_1^ op - oldsymbol{y}_1^ op oldsymbol{X}_1^ op - oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{p}_1 = oldsymbol{0} \ egin{align*} oldsymbol{p}_1^ op oldsymbol{X}_1^ op - oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{p}_1^ op oldsymbol{p}_2^ op oldsymbol{p}_3 \end{bmatrix} = oldsymbol{0} \ egin{align*} oldsymbol{p}_1^ op oldsymbol{X}_1^ op - oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{y}_1^ op oldsymbol{p}_2^ op oldsymbol{p}_3 \end{bmatrix} = oldsymbol{0} \ oldsymbol{p}_1^ op oldsymbol{y}_1^ op oldsymbol{p}_1^ op oldsymbol{y}_1^ op oldsymbol{$$

How do we solve this system?

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{X}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{x}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{0} & oldsymbol{x}_N^ op & oldsymbol{0} \end{array}
ight]$$

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

SVD

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{X}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op &$$

ullet Solutions $oldsymbol{x}$ is the column of V corresponding to smallest singular value of

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{ op}$$

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathbf{A}\boldsymbol{x}\|^2 \text{ subject to } \|\boldsymbol{x}\|^2 = 1$$

$$\mathbf{A} = \left[egin{array}{cccc} oldsymbol{X}_1^ op & oldsymbol{0} & -x'oldsymbol{X}_1^ op \ oldsymbol{0} & oldsymbol{X}_1^ op & -y'oldsymbol{X}_1^ op \ oldsymbol{X}_N^ op & oldsymbol{0} & -x'oldsymbol{X}_N^ op \ oldsymbol{0} & oldsymbol{X}_N^ op & -y'oldsymbol{X}_N^ op \ oldsymbol{x}_N^ op & -y'oldsymbol{x}$$

ullet Equivalently, solution ullet is the Eigenvector corresponding to smallest Eigenvalue of

$$\mathbf{A}^{\top}\mathbf{A}$$

Now we have:

$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

• Are we done?

Almost there...

$$\mathbf{P} = \left[egin{array}{cccc} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

 How do you get the intrinsic and extrinsic parameters from the projection matrix?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$
 $= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$
 $= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix}$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$
 $= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$
 $= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$

Find the camera center **c**

What is the projection of the camera center?

Find intrinsic K and rotation R

$$\mathbf{P} = egin{bmatrix} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{bmatrix} \ \mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}] \ &= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}] \ &= [\mathbf{M}|-\mathbf{M}\mathbf{c}] \ \end{pmatrix}$$

Find the camera center **c**

$$\mathbf{Pc} = \mathbf{0}$$

How do we compute the camera center from this?

Find intrinsic K and rotation R

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **c**

$$Pc = 0$$

SVD of P! c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic K and rotation R

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$
 $\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$

$$egin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{K}|\mathbf{t}] \ &= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}] \ &= [\mathbf{M}|-\mathbf{M}\mathbf{c}] \end{aligned}$$

Find the camera center **c**

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P! c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic K and rotation R

$$M = KR$$

Any useful properties of K and R we can use?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$egin{aligned} \mathbf{P} &= \mathbf{K}[\mathbf{R}|\mathbf{t}] \ &= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}] \ &= [\mathbf{M}|-\mathbf{M}\mathbf{c}] \end{aligned}$$

Find the camera center **c**

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P! c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic K and rotation R

$$\mathbf{M} = \mathbf{KR}$$

right upper orthogonal triangle

How do we find K and R?

$$\mathbf{P} = \left[egin{array}{ccc|c} p_1 & p_2 & p_3 & p_4 \ p_5 & p_6 & p_7 & p_8 \ p_9 & p_{10} & p_{11} & p_{12} \end{array}
ight]$$

$$\mathbf{P} = \mathbf{K}[\mathbf{R}|\mathbf{t}]$$

$$= \mathbf{K}[\mathbf{R}|-\mathbf{R}\mathbf{c}]$$

$$= [\mathbf{M}|-\mathbf{M}\mathbf{c}]$$

Find the camera center **c**

$$\mathbf{Pc} = \mathbf{0}$$

SVD of P! c is the Eigenvector corresponding to smallest Eigenvalue Find intrinsic K and rotation R

$$M = KR$$

QR decomposition

Geometric camera calibration

Given a set of matched points

$$\{\mathbf{X}_i, \boldsymbol{x}_i\}$$
 point in point in 3D space the image

Where do we get these matched points from?

And camera model

$$m{x} = m{f}(\mathbf{X}; m{p}) = \mathbf{P}\mathbf{X}$$

projection parameters camera matrix

• Find the (pose) estimate of

 ${f P}$

we'll use a **perspective** camera model for pose estimation

Checkerboard-based calibration

• Checkerboard pattern on a plane

- Known 3D points:
 - M x N corners (e.g., 8 x 6 corners)
 - Step: fixed step size (e.g., 10mm)
- 2D points (on image domain)
 - Easy to detect

Minimizing reprojection error

Radial distortion

• What causes this distortion?

Radial distortion model

Ideal:

$$x'=f\frac{x}{z}$$

$$y'=f\frac{y}{z}$$

Distorted:

$$x'' = \frac{1}{\lambda} x'$$

$$y'' = \frac{1}{2} y'$$

$$\lambda = 1 + k_1 r^2 + k_2 r^4 + \cdots$$

100 100 200 50 100 150 200 250 300

Radial Component of the Distortion Model

 Pixel error
 = [0.2688, 0.277]

 Focal Length
 = (181.995, 164.699)
 +/- [0.4468, 0.4092]

 Principal Point
 = (175.5, 119.5)
 +/- [0, 0]

 Skew
 = 0
 +/- [0.002255, 0.001728, 0.0003671]

 Radial coefficients
 = (-0.289, 0.08213, -0.01014)
 +/- [0.0002255, 0.001728, 0.0001831]

 Tangential coefficients
 = (-0.0002611, -0.0002235)
 +/- [0.0002153, 0.0001831]

Minimizing reprojection error with radial distortion

Correcting radial distortion

before after

Checkerboard-based calibration

- Advantages:
 - Only requires a plane.
 - Don't have to know positions/orientations.
 - Great code available online!
 - Matlab version: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
 - Also available on OpenCV.
- Disadvantages: need to solve non-linear optimization problem.

Back-Projection by K⁻¹

Back-projection

Back-projection by K⁻¹

 $\mathbf{x} = \mathbf{PX}$ $= \mathbf{K}[\mathbf{I}|\mathbf{0}]\mathbf{X}$

Inverse of intrinsic parameters \mathbf{K}^{-1}

• K vs. K⁻¹

$$\mathbf{K} = \begin{bmatrix} f_{\mathcal{X}} & 0 & c_{\mathcal{X}} \\ 0 & f_{\mathcal{Y}} & c_{\mathcal{Y}} \\ 0 & 0 & 1 \end{bmatrix}_{\text{VS.}}$$

$$\mathbf{K}^{-1} = \begin{bmatrix} 1/f_x & 0 & -c_x/f_x \\ 0 & 1/f_y & -c_y/f_y \\ 0 & 0 & 1 \end{bmatrix}$$

Back-projection

Convert pixel to mm

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \widehat{\mathbf{X}} = \mathbf{K}^{-1} \mathbf{x} = \begin{bmatrix} 1/f_x & 0 & -c_x/f_x \\ 0 & 1/f_y & -c_y/f_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$

$$X = \frac{u - c_{\chi}}{f_{\chi}}$$

Visualization of back-projection

• Normalized coordinate

Visualization of back-projection on 2D (y-z) space

Connection to depth

Property of normalized coordinate

Last element equals to 1 (NOT unit norm)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \widehat{\mathbf{X}} = \mathbf{K}^{-1} \mathbf{x} = \begin{bmatrix} \frac{u - c_x}{f_x} \\ \frac{v - c_y}{f_y} \\ 1 \end{bmatrix}$$

- Relationship to depth map
 - Depth map encodes only Z value of 3D points on 2D image domain
 - Last elements (z-value) of normalized coordinate equals to 1

Depth to 3D point clouds

