Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий Кафедра информатики, вычислительной техники и информационной безопасности

Отчё	ёт защищен с ог	ценкой
Преі	подаватель	С.В. Умбетов
«	» <u> </u>	2024 г.

Отчет по лабораторной работе №2 По дисциплине «Программирование» «Линейный вычислительный процесс»

ЛР 09.03.03.32.001

 Студент группы <u>ПИЭ-32</u>
 А. А. Иванов

 Преподаватель <u>ассистент, к. т. н.</u>
 С. В. Умбетов

Лабораторная работа №2

Линейный вычислительный процесс

Цели и задачи работы: изучить функции ввода-вывода данных, программирование вычисления значения выражения.

Задание к работе:

Реализовать линейный вычислительный процесс. Самостоятельно решить задачу в соответствии с индивидуальным вариантом.

Залание принял:	Иванов А.А.

Ход работы

Задание №1. Напишем блок-схему для решения задачи, которая представлена в варианте №8.

Рисунок 1 — Блок-схема для нахождения среднего арифметического

Напишем код программы в среде Visual Studio Code:

```
js > JS 1quest.js > ...

let a = prompt("Введите число a:");

let b = prompt("Введите число b:");

a = parseFloat(a);

b = parseFloat(b);

let arithmeticMean = (a+b)/2;

alert("Среднее арифметическое чисел " + a + " и " + b + " = " + arithmeticMean);

7
```

Рисунок 2 – Код для нахождения среднего арифметического

Проведем тестирование написанной программы и проверим работу с помощью Excel. Ниже представлено сравнение работы кода на сайте и результатов в Excel.

Таблица 1 – Сравнение результатов задания №1

Номер теста	Входные данные		Выходные	Выходные
			данные	данные
				проверки в
				Excel
0	4	8	6	6
1	-10	20	5	5
2	0	100	50	50
3	3.5	7.5	5.5	5.5
4	-5	15	5	5

Подтвердите действие

Среднее арифметическое чисел 4 и 8 = 6

Рисунок 3 — Тестирование скрипта 1.1

D	2 ~	: [× <	$\times \checkmark f_x \checkmark$ =CP3HAY(B2;C2)		
4	А	В	С	D	
1	Номер теста	Входные	данные	Выходные данные	
2	0	4	8	6	
3	1	-10	20	5	
4	2	0	100	50	
5	3	3,5	7,5	5,5	
6	4	-5	15	5	

Рисунок 4 – Проверка в Excel 1.2

Подтвердите действие

Среднее арифметическое чисел -10 и 20 = 5

ОК

Рисунок 5 – Тестирование скрипта 1.3

D	D3 \checkmark : \times \checkmark f_x \checkmark =CP3HAY(B3;C3)				
	А	В	С	D	
1	Номер теста	Входные	данные	Выходные данные	
2	0	4	8	6	
3	1	-10	20	5	
4	2	0	100	50	
5	3	3,5	7,5	5,5	
6	4	-5	15	5	

Рисунок 6 – Проверка в Excel 1.4

Подтвердите действие

Среднее арифметическое чисел 0 и 100 = 50

Рисунок 7 — Тестирование скрипта 1.5

D	D4 \checkmark : \times \checkmark f_x \checkmark =CP3HAY(B4;C4)				
	Α	В	С	D	
1	Номер теста	Входные	данные	Выходные данные	
2	0	4	8	6	
3	1	-10	20	5	
4	2	0	100	50	
5	3	3,5	7,5	5,5	

Рисунок 8 – Проверка в Excel 1.6

Подтвердите действие

Среднее арифметическое чисел 3.5 и 7.5 = 5.5

Рисунок 9 – Тестирование скрипта 1.7

D5					
	Α	В	С	D	
1	Номер теста	Входные	данные	Выходные данные	
2	0	4	8	6	
3	1	-10	20	5	
4	2	0	100	50	
5	3	3,5	7,5	5,5	
6	4	-5	15	5	

Рисунок 10 – Проверка в Excel 1.8

Рисунок 10 – Тестирование скрипта 1.9

D	D6 \checkmark : \times \checkmark f_x \checkmark =CP3HAY(B6;C6)					
	А	В	С	D		
1	Номер теста	Входные,	данные	Выходные данные		
2	0	4	8	6		
3	1	-10	20	5		
4	2	0	100	50		
5	3	3,5	7,5	5,5		
6	4	-5	15	5		

Рисунок 11 – Проверка в Excel 1.10

После сравнения результатов, полученных скриптом и проверки в Excel, можно сделать вывод, что код программы написан верно, так как результаты одинаковые.

Задание №2. Напишем блок-схему для решения задачи, которая представлена в варианте №8.

Рисунок 12 – Блок-схема для перестановки двузначного числа

Напишем код в программе Visual Studio Code:

```
js > Js 2quest.js > ...

let twoDigit = prompt("Введите двузначное число: ");

twoDigit = parseFloat(twoDigit);

let reverseTwoDigit = String(twoDigit % 10) + String(Math.floor(twoDigit / 10));

alert("Перестановка цифр числа " + twoDigit + " = " + reverseTwoDigit);
```

Рисунок 13 – Код для перестановки двузначного числа

Проведем тестирование написанной программы и проверим работу с помощью Excel. Ниже представлено сравнение работы кода на сайте и результатов в Excel.

Таблица 2 – Сравнение результатов задания №2

Номер теста	Входные данные	Выходные данные	Выходные данные
			проверки в Excel
0	24	42	42
1	73	37	37
2	56	65	65
3	89	98	98
4	31	13	13

Подтвердите действие на 127.0.0.1:8848

Перестановка цифр числа 24 = 42

Рисунок 14 — Тестирование скрипта 2.1

C	2 ~	$[\times \checkmark fx \checkmark] = ($	СЦЕП(ОСТАТ(В2;10	9);	ЧАСТЬ	HOE(B2;10	9))
	А	В	С	D	Е	F	
1	Номер теста	Входные данные	Выходные данные				
2	0	24	42				
3	1	73	37				
4	2	56	65				
5	3	89	98				
6	4	31	13				

Рисунок 15 – Проверка результатов в Excel 2.2

Рисунок 16 – Тестирование скрипта 2.3

Рисунок 17 – Проверка результатов в Excel 2.4

Перестановка цифр числа 56 = 65

Рисунок 18 – Тестирование скрипта 2.5

C	4 ~	$[\times \checkmark fx \checkmark]$	СЦЕП(ОСТАТ(В4;10);	ЧАСТЬ	HOE(B4;10)))
	Α	В	С	D	Е	F	
1	Номер теста	Входные данные	Выходные данные				
2	0	24	42				
3	1	73	37				
4	2	56	65				
5	3	89	98				
6	4	31	13				

Рисунок 19 – Проверка результатов в Excel 2.6

Рисунок 20 – Тестирование скрипта 2.7

C	5 ~	$[\times \checkmark fx \checkmark]$	СЦЕП(ОСТАТ(В5;10);	ЧАСТІ	HOE(B5;10	9))
	А	В	С	D	E	F	
1	Номер теста	Входные данные	Выходные данные				
2	0	24	42				
3	1	73	37				
4	2	56	65				
5	3	89	98				
6	4	31	13				

Рисунок 21 – Проверка результатов в Excel 2.8

Рисунок 22 – Тестирование скрипта 2.9

Рисунок 23 – Проверка результатов в Excel 2.10

После сравнения результатов, полученных на сайте и проверки в Excel, можно сделать вывод, что код программы написан верно, так как результаты одинаковые.

Вывод

В ходе выполнения лабораторной работы по основам JavaScript, я приобрел практические навыки работы с переменными, операторами и базовыми функциями языка. Я вычислил среднее арифметическое для набора чисел и разработал алгоритм для перестановки цифр двузначного числа.

Сначала было необходимо создать скрипт для нахождения среднего арифметического. Для этого я использовал суммирование числе и деление их на два. Такой подход позволяет легко адаптировать код для работы с любым набором чисел.

Далее, для перестановки цифр двузначного числа, я применил математические операции. Использовав целочисленное деление и остаток от деления и, поменяв их местами, удалось достичь корректного результата.

Тестирование помогло мне понять важность проверки кода для его правильной работы. Тестирование я выполнял в программе Excel.

Лабораторная работа помогла мне углубить понимание работы с базовыми математическими операциями в JavaScript, а также освоить структурирование программного кода.

Ссылканаудалённыйрепозиторий:https://github.com/Linokan/ivanov_pie_32_a_lab2