Biostatistical Methods Project

This diet data set contains information about a study that investigated 78 people using one of three diets. There are seven variables in this dataset. The name and a brief variable description are listed below.

Variable name	Variable
Person	Participant number
gender	Gender, 1 = male, 0 = female
Age	Age (years)
Height	Height (cm)
pre.weight	Weight before the diet (kg)
Diet	Diet,
	1 =control diet,
	2 =test diet BeautyA
	3= test diet BeautyB
weight6weeks	Weight after 6 weeks (kg)

1) The aim of this study was to investigate the weight loss after three different diets. Please create a new variable called **weightlost**, which represents the difference between weight before the diet treatment and the weight after 6 weeks of diet treatment. Furthermore, the researcher thinks that a weight loss of more than 5 kg is considered an effective response to the diet treatment. Please create another variable called **wlostcat**, which has two levels: *effective* if the weight loss is larger than 5kg; *noeffective* if the weight loss is smaller or equal than 5kg.

VIEWTA	BLE: Work.Newdataset								- X
	Person	gender	Age	Height	pre_weight	Diet	weight6weeks	weightLost wL	ostCat ^
1	1	0	22	159	58	1	54.2	3.8 noeffecti	
2	2	0	46	192	60	1	54	6 effective	
3	3	0	55	170	64	1	63.3	0.7 noeffecti	
4	4	0	33	171	64	1	61.1	2.9 noeffecti	
5	5	0	50	170	65	1	62.2	2.8 noeffecti	
6	6	0	50	201	66	1	64	2 noeffecti	
7	7	0	37	174	67	1	65	2 noeffecti	
8	8	0	28	176	69	1	60.5	8.5 effective	
		-							

data newdataset;

set midterm; weightLost =
pre_weight-weight6weeks;

```
if weightLost > 5 then wLostCat = 'effective';
    else if weightLost <= 5 then wLostCat =
'noeffective'; run;</pre>
```

2) Please provide two appropriate descriptive statistics for *all* variables (The six original variables and the two new created variables, excluding Person ID). <u>Please presenting your results in a single summary table</u>. You will need to manually create this table and not just attached SAS output.

		The S	SAS System		
		The MEA	ANS Procedu	re	
Variable	N	Mean	Std Dev	Minimum	Maximum
gender	78	0.4487179	0.5005824	0	1.0000000
Age	78	39.1538462	9.8152769	16.0000000	60.0000000
Height	78	170.8205128	11.2766206	141.0000000	201.0000000
pre_weight	78	72.5256410	8.7233443	58.0000000	103.0000000
Diet	78	2.0384615	0.8129201	1.0000000	3.0000000
weight6weeks	78	68.6807692	8.9245038	53.0000000	103.0000000
weightLost	78	3.8448718	2.5514777	-2.1000000	9.2000000

data newdatset1;

set newdataset;

drop Person;

run;

proc means data=newdatset1;

var gender Age Height pre_weight Diet weight6weeks weightLost; run;

	Th	e SAS Sy	stem	
	The	FREQ Prod	cedure	
wLostCat	Frequency	Percent	Cumulative Frequency	Cumulative Percent
effective	25	32.05	25	32.05
noeffecti	53	67.95	78	100.00

proc freq data=newdatset1;

table wLostCat;

run;

3) Is wlostcat associated with diet treatment? Conduct a hypothesis test to answer this question.

Ans.

Step1: Hypothesis

- H0: The wLostCat and Diet are not Associated vs

- H1: The wLostCat and Diet are Associated

Step2:

- Significant level alpha = 0.05 Step3:

Frequency	Tabl	e of w	Lost	Cat	by Die	et
Percent Row Pct				D	iet	
Col Pct	wLostCat	1		2	3	Total
	effective	4		6	15	25
		5.13	7	69	19.23	32.05
		16.00	24	.00	60.00	
		16.67	22	22	55.56	
	noeffecti	20		21	12	53
		25.64	26	92	15.38	67.95
		37.74	39	62	22.64	
		83.33	77.	78	44.44	
	Total	24		27	27	78
		30.77	34.	62	34.62	100.00
Statistic	stics for Tabl		6,5	tCat		
			Lost	tCat	by Die	et
Statistic Chi-Square		e of w	Lost	Cat	by Die	et Prob
Statistic Chi-Square Likelihood	•	e of wi	DF 2	10 10	/alue .6551	Prob 0.0049
Statistic Chi-Square Likelihood	Ratio Chi-Sq	e of wi	DF 2	10 10 8	/alue .6551	Prob 0.0049 0.0052
Statistic Chi-Square Likelihood Mantel-Hae	Ratio Chi-Sq	e of wi	DF 2	10 10 8	/alue .6551 .5248	Prob 0.0049 0.0052

proc freq data=newdatset1; table wLostCat*Diet/chisq; run;

- We are using the Chi-square for the Hypothesis test. Step4:

- From the results above, the value of Chi-square is 10.6551 with degrees of freedom 2 and the p-value is 0.0049.

Step5:

- The p-value is 0.0049, which is less than the alpha value which is 0.005. So, we reject the null hypothesis. There is sufficient evidence to support the alternative hypotheses that wLostCat and Diet are associated.
- 4) Is wlostcat associated with gender? Conduct a hypothesis test to answer this question. Ans.

Step1: Hypothesis

- H0: The wLostCat and gender are not Associated vs
- H1: The wLostCat and gender are Associated

Step2:

- Significant level alpha = 0.05 Step3:

proc freq data=newdatset1; table wLostCat*gender/chisq; run;

- We are using the Chi-square for the Hypothesis test.

Ste	n4	•
\sim \sim	М.	

- From the results above, the value of Chi-square is 0.0113 with degrees of freedom 1 and the p-value is 0.9153.

Step5:

- The p-value is 0.9153, which is greater than the alpha value which is 0.005. So, we fail to reject the null hypothesis. There is no sufficient evidence to support the alternative hypotheses that wLostCat and gender are associated.

5) For subjects on BeautyA diet, was there a significant decrease in weight from baseline (pre.weight) to after diet treatment (weight6weeks)? Conduct a hypothesis test to answer this question.

Ans.

Step1: Hypothesis

- H0: uafter - ubefore = 0

VS

- H1: uafter - ubefore not equals to 0

Step2:

- Significant level alpha = 0.05 Step3:

- To define which test we need to use, we take a look at the above graphs. Just want to confirm that the values are distributed normally. From the above QQ plot graph, we see that dots are aligned in a straight line. We can conclude that it is a unimodal and subjects are distributed normally. So we can use t-test. Step4:

				Th	e SA	S Sy	stem			
							ocedu ghtLo			
N	Mea	in	Std	Dev	Std	l Err	Min	imur	n I	Maximum
27	3.025	59	2.5	5234 0.4		4856	-3	2.100	00	7.9000
N	Mean	95	% C	L M	ean	Std	Dev	95%	CL	Std Dev
3.	3.0259		277	4.0	0241	2.	5234	1.9	872	3.4581
				DF	t Va	lue	Pr>	t		
				26	6	.23	<.000)1		

```
proc ttest data=newdatset1 h0=0 alpha=0.05;
var weightLost;
where Diet = 2; run;
```

- From the results above, when n=78, with 26 degrees of freedom, the p-value is < 0.0001 and the t value is 6.23.

Step5:

- The p-value is < 0.0001, which is less than the alpha value which is 0.05. So, we reject the null hypothesis. There is sufficient evidence to support the alternative hypothesis that there is the decrease in weight when compared with before and after the diet for BeautyA. 6) Was there a difference in weight loss (weightlost) between the two diet groups (Beauty A and Beauty B)? Conduct a hypothesis test to answer this question.

Ans.

Step1: Hypothesis

- H0: uBeautyA = uBeautyB

VS

- H1: uBeautyA not equals uBeautyB

Step2:

- Significant level alpha = 0.05 Step3:

				Variat	ole: we	eigh	tLo	st					
Diet	Meth	od	N	Me	an St	td De	ev	Std	Err	Mini	mum	N	laximum
2			27	3.02	59	2.52	34	0.4	856	-2	.1000		7.9000
3			27	5.14	81	2.39	56	0.4	610	0	.5000		9.2000
Diff (1-2)	Poole	ed		-2.12	22	2.460	03	0.6	696				
Diff (1-2)	Satte	rthwaite		-2.12	22			0.6	696				
Diet	Met	hod	1	Mean	95%	CL	Me	an	Sto	Dev	95%	CL	Std Dev
2				0259	2.027	77	7 4.02		2	5234	1.98	72	3.4581
3			5	1481	4.200)5	6.0	958	2	3956	1.88	65	3.2830
Diff (1-2)	Pool	led	-2	1222	-3.465	59 -	0.7	786	2	4603	2.06	51	3.0441
Diff (1-2)	Satt	erthwaite	-2	1222	-3.466	30 -	-0.7	785					
		Method		Varia	ances		DF	t Va	alue	Pr>	t		
	F	ooled		Equal	ı		52	-	3.17	0.00	26		
	5	atterthwa	aite	Uneq	ual	51.	86	3	3.17	0.00	26		
				Fauali	ity of V	/aria	nce	a e			1		
		Method		lum Di			10.00	Valu	e	Pr > F			
		Folded		26	O Bellevi	26	-	1.1		7930			

```
proc ttest data=newdatset1 h0=0 sides=2 alpha=0.005;
class Diet; var weightLost; where Diet
in (2,3); run;
```

- As the dataset size is more than 30 observations, we are using ttest for the hypothesis. Step4:
- From the results above, if we check the equality of variances, the p-value is 0.7930 which is greater than the alpha value 0.005.

Step5:

- So, we conclude that even though both the groups have equal variances, we consider the Satterthwaite method, where the t value is -3.17 in the confidence interval of (-4.0856, 0.1591) and the p-value is 0.0026 which is less than 0.05.
- So, we reject the null Hypothesis, and the results show that there is sufficient evidence that the mean score of BeautyB weight loss is different frm that of Beauty A, which in turn is greater than that of BeautyA.
- If we check the mean of the two groups BeautyA (3.0259) is less than BeautyB (5.1481) giving supportive evidence for the statement above.

7) Similarly, is there difference in weight loss between the three types of diet (control group, Beauty A and Beauty B)? Conduct a hypothesis test to answer this question.

Ans.

Step1: Hypothesis

- H0: uControl = uBeautyA = uBeautyB

VS

- H1: Atleast one group has difference in weight loss from given diet groups.

Step2:

- Significant level alpha = 0.05 Step3:

		The SAS Sys	stem		
		The GLM Prod	edure		
	De	ependent Variable	: weightLost		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	71.0936895	35.5468447	6.20	0.0032
Error	75	430.1792593	5.7357235		

ANOVA table proc glm data=newdatset1; class Diet; model

weightLost=Diet;

run; - I'm going to use ANOVA procedure for this hypothesis. So, we build an ANOVA table.

Step4:

- From the results above, we see that the F-statistic is 6.20 and p-value is 0.0032 Step5:
- Since the p-value is less than the alpha value 0.05 (0.0032 < 0.05), we reject our null hypothesis and conclude that one of the group results is different from other diet groups.
 - To identify which pairs are different we perform pairwise comparision using Tukey's method when alpha = 0.05.

		The SA	S Syst	tem			
ustm	ent f	The GLN Least Squ or Multiple (iares I	Mean	S	Kra	
Diet	we	ightLost LS	MEAN	LSN	IEAN Numi	oer	
1		3.300			1		
2		3.025	2				
3		5.148	14815			3	
	Pr>	t Squares N t for H0: LS pendent Va	SMean((i)=L	SMean(j)		
	i/j	1		2	3		
	1		0.91	25	0.0201		
	2	0.9125			0.0048		
-							

- Comparision between pairs:
- 1. From the above screenshot, when we compare the p-values between the control group (1) and BeautyA (2), the p-value is 0.9125 which is greater than the alpha value 0.05. From which we can conclude that there is no difference of weight loss between Control group and BeautyA.
- 2. When we compare the p-values between groups BeautyA (2) and BeautyB (3), the pvalue is 0.0048 which is less than the alpha value 0.05. From which we can conclude that there is a significant difference in weight loss between BeautyA and BeautyB.
- 3. When we compare the p-values between groups Control group (1) and BeautyB (3), the p-value os 0.0201 which is less than the alpha value 0.05. From which we can conclude that there is significant difference of weight loss between BeautyB and Control group.

proc glm data=newdatset1;

class Diet;

model

weightLost=Diet;

lsmeans Diet/adjust=tukey;

run;

- 4. The above graph also gives sufficient evidence for the above-mentioned conclusions about the different groups.
- 8) To further assess the amount of weight lost, we would also like to examine the differences across the diets after adjusting for gender. Is there a difference between the diets?

 Conduct a hypothesis test to answer this question.

Ans.

As we would like to find if there is a difference between the diet groups after adjudting the gender, we want to check if there is an interaction that exists or not.

		D	The G		Proced		st				
Source		DF				lean Squ		F Val	ie D	r>f	
Model		5		3699		19.2739				17,072	
Error Corrected Total		72							10 0.	0010	
		77	501.	501.2729							
	R-Squa	re	Coeff Var	Ro	ot MSE	weight	tLost	Mear	1		
	0.1922	50	61.67759	2.	371424		3.8	44872	2		
Sou	rce	DF	Type I	SS	Mean	Square	F Va	lue	Pr > F		
Diet		2	71.09368	946	35.5	4684473	6	3.32	0.0030		
gen	der	1	0.13552	633	0.13552633		0	0.02	0.8771	771	
Diet	*gender	2	25.14070	363	12.5	7035182	2	2.24	0.1143		
Sou	rce	DF	Type III	SS	Mean	Square	F Va	lue	Pr > F		
Diet		2	62.24180	512	31.1	2090256	5	5.53	0.0058		
gen	der	1	0.06660	309	0.0	6660309	0	0.01	0.9136		
Diet	*gender	2	25.14070	363	12.5	7035182	-	2.24	0.1143		

proc glm data=newdatset1;

class Diet gender;

model weightLost=Diet gender Diet*gender; run;

From the above results, we see that p-value is 0.1143 which is greater than alpha value 0.05, which states that interaction is insignificant.

- We use Two-way ANOVA without interaction

Step1: Hypothises

- H0: uControl = uBeautyA = uBeautyB when gender is adjusted vs
- H1: Atleast one group has difference in weight loss from given diet groups and when gender is adjusted.

Step2:

- Significant level alpha = 0.05 Step3:
- As we have confirmed that the interaction is insignificant, we use two-way ANOVA without interaction. Step4:

				The	SAS Sys	ster	n				
				The G	LM Prod	edu	ıre				
			De	ependent \	/ariable	: we	eightl	ost			
Sou	rce	- 1	DF	Sum of S	quares	res Mean So		quare	F	Value	Pr > F
Model			3	71.2	292158		23.74	30719		4.09	0.0097
Error			74	430.0	437329		5.81	14018			
Corrected Total		tal	77	501.2	729487						
	R-S	quare		Coeff Var	Root M	SE	wei	ghtLos	t M	lean	
		42097		62.69871	2.4106	85				4872	
	Source	DF		Type I SS	Mean	Square		F Value		Pr > F	
	Diet	2	7	71.09368946	35.5	468	4473	6.12	12	0.0035	5
	gende	1		0.13552633	0.1	355	2633	0.0	02	0.8790)
	Source	DF		Type III SS	Mean	Sq	uare	F Valu	ue Pr>		
	Diet	2	7	71.00703119	35.5	035	1559	6.	11	0.0035	5
	gende	- 1		0.13552633	0.13552633		0.02 0.		0.8790		

proc glm data=newdatset1; class
Diet gender; model

weightLost=Diet gender;

lsmeans Diet gender/adjust=tukey; run;

- The F-statistic is 6.12 and p-value is 0.0035 which is less than the alpha value 0.05. Step5:
- Since the p-value is less than the alpha value, we reject our null hypothesis and conclude that at least one group has difference in the weight loss when compared with othe diet groups. To identify the pairs which are different, we perform pairwise comparision and adjusted using Tukey's adjustment at alpha = 0.05.

Diet	weightLost LSMEAN			LSMEAN Number		
1	3.29300610			1		
2	3.0243717		37172	2		
3	5.14348555		48555	3		
	Pr>	t Squares N t for H0: LS pendent Va	Mean	(i)=L9	Mean(j)	
i	i/j	1		2	3	
	1		0.91	70	0.0210	
1	2	0.9170			0.0052	
						1

- Comparision between pairs:
- 1. From the above screenshot, when we compare the p-values between the control group (1) and BeautyA (2), the p-value is 0.9170 which is greater than the alpha value 0.05. From which we can conclude that there is no difference in weight loss between Control group and BeautyA when the gender is adjusted.
- 2. When we compare the p-values between groups BeautyA (2) and BeautyB (3), the p-value is 0.0052 which is less than the alpha value 0.05. From this, we can conclude that there is a significant difference in weight loss between BeautyA and BeautyB when the gender is adjusted.
- 3. When we compare the p-values between groups Control group (1) and BeautyB (3), the pvalue os 0.0210 which is less than the alpha value 0.05. From this, we can conclude that there is significant difference of weight loss between BeautyB and Control group when the gender is adjusted.