

Statistics and Data Science for Engineers E178 / ME276DS

Linear regression Part 1

$$\mathcal{D} = \{(x_i, y_i)\}_{24}$$

\boldsymbol{x}	y
2.704286	0.323832
-2.063888	-0.954098
0.606690	0.300653
-2.876493	0.043129
-1.725965	-0.816896
-1.174547	-1.156533
0.671117	0.720568
-1.247132	-0.946372
-1.801957	-1.087639
1.850384	0.952331
1.105398	0.829523
-2.267771	-0.778359
0.280262	0.472226
1.650797	0.808036
2.368964	0.530195
-2.728636	-0.707794
-0.667936	-0.880451
-1.314393	-0.891488
-2.552696	-0.468816
1.892769	1.047608
-0.849206	-0.653065
-1.134106	-1.231050
1.377637	1.367601
1.279469	1.590128
1.279469	1.590128

K-bins

Interpolation.

Simple linear regression demo

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}{\partial x} + \frac{\partial}{\partial x} = \frac{\partial}$$

Sample (point) estimates
$$\chi \in \mathbb{R}^{\nu}$$
 $D=1$.

$$\begin{cases} \hat{\mu}_X = \frac{1}{N} \sum x_i & \dots & \text{E[X]} \\ \hat{\mu}_Y = \frac{1}{N} \sum y_i & \dots & \text{E[Y]}. \end{cases}$$

$$\hat{\sigma}_X^2 = \frac{1}{N-1} \sum (x_i - \hat{\mu}_X)^2 \dots \text{Var}[X] \qquad \hat{\sigma}_Y^2 = \frac{1}{N-1} \sum (y_i - \hat{\mu}_Y)^2 \dots \text{Var}[Y]$$

x: ER, y: ER.

2: {(xi, yi)},

$$\frac{1}{N-1}\sum_{i}(y_i-\hat{\mu}_Y)^2 \dots \text{Var}\left(\mathbf{Y}\right)$$

$$\frac{1}{N-1}\sum_{i}(x_i-\hat{\mu}_X)(y_i-\hat{\mu}_Y) \dots \left(\mathbf{Gu}\left(\mathbf{X}_1\mathbf{Y}\right)\right)$$

$$\frac{1}{-1}\sum_{i=1}^{N}(y_{i}-\hat{\mu}_{Y})^{2}\dots\text{Var}\left(Y\right)$$

$$\frac{1}{-1}\sum_{i=1}^{N}(x_{i}-\hat{\mu}_{X})(y_{i}-\hat{\mu}_{Y})\dots\text{Cov}\left(X_{i}Y\right)$$

$$\frac{XY}{\hat{\sigma}}\text{ C }\left(-1,1\right) \text{ same le correlation } P_{XY}$$

$$\hat{\sigma}_{XY} = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \hat{\mu}_X)(y_i - \hat{\mu}_Y) \dots Cov(X,Y)$$

$$r = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X \hat{\sigma}_Y} \quad \text{Cov} \quad \text{Cov}(X,Y)$$
 coefficient

$$\overline{\chi} \widehat{\sigma}_{Y}$$
 $\overline{\chi} \widehat{\sigma}_{Y}$
 $\overline{\chi} \widehat{\sigma}$

Centering transformation

Linear model

$$\hat{y}_i = h(x_i; \theta_0, \theta_1) = \theta_0 + x_i \theta_1$$
 $i = 1 ... N$

Centered linear model

$$\hat{y}_i^c = \theta_0^c + x_i^c \theta_1^c$$

$$\begin{cases} \theta_{0}^{c} = \theta_{1} \\ \theta_{0}^{c} = \theta_{0} - \hat{\mu}_{Y} + \hat{\mu}_{X} \theta, \end{cases}$$

optimal parameters.

$$(\hat{\theta}_0,\hat{\theta}_1) = \underset{(\theta_0,\theta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \quad \sum_{i=1}^N L_2(y_i,h(x_i;\theta_0,\theta_1))$$

$$egin{array}{c} \mathsf{min} \ \mathbb{R}^2 \end{array}$$

$$\sum_{i=1}^{n} L_2(y_i,h(x_i;\theta_i))$$

$$(\theta_0, \theta_1)$$
 Least s

$$^{(\theta_0,\theta_1)\in\mathbb{R}}$$

$$(\hat{y}_i - y_i)^2$$

$$= \underset{(\theta_0,\theta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \quad \sum_{i=1}^N (\hat{y}_i)$$

Centered problem:
$$(\hat{ heta}_0^c,\hat{ heta}_1^c)=$$

$$(\hat{\theta}_0^c, \hat{\theta}_1^c) = \underset{(\theta_0, \theta_1) \in \mathbb{R}^2}{\operatorname{argmin}} \sum_{i=1}^N (\theta_0 + x_i^c \theta_1 - y_i^c)^2$$

Stationary => global optimum.

Centered problem: Stationary points

$$J(\theta_0, \theta_1) = \sum_{i=1}^{N} (\theta_0 + x_i^c \theta_1 - y_i^c)^2$$

$$\frac{1}{N} \sum_{i=1}^{N} (\theta_0 + x_i^c \theta_1 - y_i^c)^2 \qquad \qquad \frac{1}{N} \sum_{i=1}^{N} (x_i^c - \hat{y}_i^c)^2 \qquad \qquad \frac{1}{N} \sum_{i$$

$$\begin{array}{l} \bullet \quad \frac{\partial J}{\partial \theta_0} = 2 \sum (\theta_0 + x_i^c \theta_1 - y_i^c) \\ = 2 \left(N \theta_0 + \left(\sum x_i^c \right) \theta_1 - \sum y_i^c \right) \\ = 2 N \theta_0 \quad \text{To} \end{array}$$

$$\begin{split} \bullet \quad & \frac{\partial J}{\partial \theta_1} = 2 \sum (\theta_0 + x_i^c \theta_1 - y_i^c) x_i^c \\ & = 2 \left(\theta_0 \sum x_i^c + \theta_1 \sum (x_i^c)^2 - \sum x_i^c y_i^c \right) \end{split}$$

$$(N-1) \widehat{G}_{xy}$$

$$\geq (x_1^2)^2 = 2(x_1 - f_{xy})^2 = (N-1) \widehat{G}_{x}^2$$

$$= \widehat{G}_{xy}^2 = \widehat{G}_{xy}^2 = \widehat{G}_{yy}^2$$

Simple linear regression: Solution

$$\hat{\theta}_1 = \frac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}$$

$$\hat{\theta}_0 = \hat{\mu}_Y - \hat{\mu}_X \hat{\theta}_1$$

$$\hat{\sigma}_X \hat{\sigma}_Y = \hat{\sigma}_X \hat{\sigma}_Y = \hat{\sigma}_X \hat{\sigma}_X \hat{\sigma}_Y = \hat{\sigma}_X \hat{\sigma$$

Simple linear regression: Performance

coefficient
$$R^2=1-\frac{\sum(y_i-\hat{y}_i)^2}{\sum(y_i-\hat{\mu}_Y)^2}$$

$$=:$$

$$=r^2 \dots \text{ Gyuare of the correlation}.$$

Statistical properties of simple linear regression

x's (inputs) are fixed.

Assumed data generating process:

$$y_i = \theta_0^* + x_i \theta_1^* + \varepsilon_i$$
 linear function
$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$
 Cause an noise

$$\hat{Q}_{0} = \hat{h}_{x} - \hat{h}_{x} \hat{\theta}_{1}$$

$$\hat{Q}_{1} = \hat{Q}_{0} + \hat{Q}_{1} \cdot \chi_{1}$$

$$\hat{Q}_{1} = \hat{Q}_{0} + \hat{Q}_{1} \cdot \chi_{1}$$

point estimators

Do Di y

L unbased?

Noriance?

$$\hat{ heta}_1$$
 as an estimate of $heta_1^*$

$$heta_1$$
 as an estimate $\hat{ heta}_1 = rac{\hat{\sigma}_{XY}}{\hat{\sigma}_X^2}$

$$= \frac{1}{\hat{\sigma}_X^2} \frac{1}{N-1} \sum x_i^c y_i^c$$

$$= \frac{1}{(N-1)\hat{\sigma}_{\mathbf{Y}}^2} \sum x_i^c \left(\theta_1^* x_i^c + \varepsilon_i - \bar{\varepsilon}\right)$$

$$=\frac{1}{(N-1)\hat{\sigma}_X^2}\left(\theta_1^*\sum(x_i^c)^2+\sum x_i^c\varepsilon_i-\bar{\varepsilon}\sum x_i^c\right)$$

$$=\frac{\theta_1^*}{\hat{\sigma}_X^2}\frac{\sum (x_i^c)^2}{(N-1)}+\frac{\sum x_i^c\varepsilon_i}{(N-1)\hat{\sigma}_X^2}$$

$$=\theta_1^* + \frac{\sum x_i^c \varepsilon_i}{(N-1)\hat{\sigma}_X^2} \qquad \text{everyting is obtaining the except the 2i.}$$

Define: $\bar{\varepsilon} = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{j}$

Use:
$$y_i^c = x_i^c \theta_1^* + \varepsilon_i - \bar{\varepsilon}$$
 (proved in the reader)

$\widehat{ heta}_1$ as an estimate of $heta_1^*$

$$\hat{\theta}_1 = \theta_1^* + \frac{\sum x_i^c \varepsilon_i}{(2\pi - 1)^{\frac{2}{3}}}$$

$$\Rightarrow \hat{\Theta}_1 = \theta_1^* + \frac{\sum x_i \mathcal{E}_i}{(N-1)\hat{\sigma}_X^2}$$

$$E\left[\hat{\Theta}_{1}\right] = E\left[\theta_{1}^{*} + \frac{\sum x_{i}^{c}\mathcal{E}_{i}}{(N-1)\hat{\sigma}_{X}^{2}}\right]$$

$$= \theta_1^* + \frac{\sum x_i^c E\left[\mathcal{E}_i\right]}{(N-1)\hat{\sigma}_X^2}$$

$$=\theta_1^*$$

$\hat{ heta}_1$ as an estimate of $heta_1^*$

$$\begin{split} Var[\hat{\Theta}_1] &= Var\left[\theta_1^* + \underbrace{\sum x_i^2 \mathcal{E}_i}_{(N-1)\hat{\sigma}_X^2}\right] \\ &= \sum \left(\frac{(x_i^c)^2}{(N-1)^2 \hat{\sigma}_X^4} Var[\mathcal{E}_i]\right) \\ &= \underbrace{\frac{\sigma^2}{(N-1)^2 \hat{\sigma}_X^4}}_{\text{vertical}} \sum_{\text{vertical}} var_i^2 \\ &= \frac{\sigma^2}{(N-1)\hat{\sigma}_X^2} \end{split}$$

$$heta_0$$
 as an estimate of $heta_0^*$

Substitute RVs:

$$\hat{\theta}_0 = \theta_0^* + \hat{\mu}_X \theta_1^* + \bar{\varepsilon} - \hat{\mu}_X \hat{\theta}_1$$

$$\hat{\Theta}_0 = \theta_0^* + \hat{\mu}_X \theta_1^* + \bar{\mathcal{E}} - \hat{\mu}_X \hat{\Theta}_1$$

$$\frac{\mathcal{E}}{\mathcal{E}} = \frac{1}{N} \mathcal{E} \mathcal{E};$$

$$\mathcal{E} \left[\mathcal{E} \right] = 0 \quad \text{Vor} \left[\mathcal{E} \right] = \frac{1}{N}$$
(proved in the reader)

$$\begin{split} E[\hat{\Theta}_0] &= E\left[\theta_0^* + \hat{\mu}_X\theta_1^* + \bar{\mathcal{E}} - \hat{\mu}_X\hat{\Theta}_1\right] \\ &= \theta_0^* \quad ... \quad \text{unbiked} \end{split}$$

 $Var\left[\hat{\Theta}_{0}\right] = \frac{\sigma^{2}}{N} + \frac{\sigma^{2}\hat{\mu}_{X}^{2}}{(N-1)\hat{\sigma}_{X}^{2}}$

(proved in the reader)

$$E[\hat{\Theta}_0] =$$

\hat{y}_i as an estimate of y_i^*

Express in terms of well described quantities:
$$\hat{y}_i = \theta_0^* + \hat{\mu}_X \theta_1^* + \bar{\varepsilon} + x_i^c \hat{\theta}_1$$
 \text{v.}
$$\hat{Y}_i = \theta_0^* + \hat{\mu}_X \theta_1^* + \bar{\mathcal{E}} + x_i^c \hat{\Theta}_1$$
 Substitute RVs:
$$\hat{Y}_i = \theta_0^* + \hat{\mu}_X \theta_1^* + \bar{\mathcal{E}} + x_i^c \hat{\Theta}_1$$

 $E[\hat{Y}_i] = heta_0^* + x_i heta_1^* \dots$ de unbresed ? (proved in the reader)

(proved in the reader)

(proved in the reader)

$$E[\hat{Y}_i] = \theta_0^* + x_i \theta_1^* \qquad \text{(protest)}$$

$$Var[\hat{Y}_i] = \frac{\sigma^2}{N} + \frac{\sigma^2 (x_i - \hat{\mu}_X)^2}{\sum_{j=1}^N (x_j - \hat{\mu}_X)^2} \qquad \text{(protest)}$$

Prediction uncertainty in simple linear regression

now expected value and variance Know the distributions.

Confidence intervals and hypothesis tests

- Find confidence interval for the parameters
- Find confidence interval for the output
- Hypothesis test:

$$H_0: \quad \theta_{\parallel} = 0$$

$$H_1: \quad \theta_{\bullet} \neq 0$$

• Unknown σ^2 :

$$\hat{\sigma}^2 = \frac{1}{N - D} \sum_{i=1}^N (y_i - \hat{y}_i)^2$$

and use t-test

A/±/A//./D D

does not depend on X

" In does depend on X

D>1

Multiple linear regression (D > 1)

$$\mathcal{D} = \{(x_i, y_i)\}_N = \{(x_i^1, \dots, x_i^D, y_i)\}_N$$

$$x_i = [x_i^1 \dots x_i^D] \in \mathbb{R}^{1 \times D}$$

$$\mathbf{X} = \begin{bmatrix} x_1^1 \dots x_1^D \\ \vdots & \vdots \\ x_N^1 \dots x_N^D \end{bmatrix} \in \mathbb{R}^{N \times D}$$

$$\hat{\mu}_X = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^{N \times 1}$$

$$\hat{\mu}_Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^{N \times 1}$$

$$\hat{\mu}_Y = \begin{bmatrix} x_1^T \\ y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^{N \times 1}$$

Data-centering transformation:

$$\mathbf{X}^c = \mathbf{X} - \mathbf{1}_N \hat{\mu}_X$$
 $\mathbf{1}_N^T \mathbf{X}^c = \mathbf{0}_D$ $\mathbf{Y}^c = \mathbf{Y} - \mathbf{1}_N \hat{\mu}_Y$ $\mathbf{1}_N^T \mathbf{Y}^c = 0$

$$\begin{split} \hat{y}_i &= \theta_0 + x_i^1 \theta_1 + \dots + x_i^D \theta_D \\ &= \theta_0 + x_i \, \underline{\theta}_1 \end{split}$$

$$\underline{\theta}_1 = \begin{bmatrix} \theta_1 \\ \vdots \\ \theta^D \end{bmatrix} \in \mathbb{R}^{D \times 1}$$

$$\hat{\mathbf{Y}} = \mathbf{1}_N \theta_0 + \mathbf{X} \underline{\theta}_1$$

$$egin{aligned} \hat{\mathbf{Y}} &= \mathbf{1}_N \theta_0 + \mathbf{X} \underline{\theta}_1 \\ \hat{\mathbf{Y}}^c &= \mathbf{1}_N \theta_0^c + \mathbf{X}^c \underline{\theta}_1^c \end{aligned}$$

Optimization problem

$$\text{Original:} \quad (\widehat{\theta}_0,\underline{\widehat{\theta}}_1) = \mathop{\rm argmin}_{(\theta_0,\theta_1) \in \mathbb{R}^{D+1}} \quad \sum_{i=1}^N \left(\theta_0 + x_i \, \underline{\theta}_1 - y_i\right)^2$$

$$\text{Matrix:} \quad (\hat{\theta}_0, \underline{\hat{\theta}}_1) = \operatorname*{argmin}_{(\theta_0, \underline{\theta}_1) \in \mathbb{R}^{D+1}} \left(\mathbf{1}_N \theta_0 + \mathbf{X} \, \underline{\theta}_1 - \mathbf{Y} \right)^T (\mathbf{1}_N \theta_0 + \mathbf{X} \, \underline{\theta}_1 - \mathbf{Y})$$

$$\text{Centered:} \quad (\hat{\theta}_0^c, \underline{\hat{\theta}}_1^c) = \operatorname*{argmin}_{(\theta_0, \underline{\theta}_1) \in \mathbb{R}^{D+1}} \left(\mathbf{1}_N \theta_0 + \mathbf{X}^c \, \underline{\theta}_1 - \mathbf{Y}^c \right)^T \left(\mathbf{1}_N \theta_0 + \mathbf{X}^c \, \underline{\theta}_1 - \mathbf{Y}^c \right)$$

$$\begin{array}{ll} \textbf{Condensed:} & (\hat{\theta}^c_0, \underline{\hat{\theta}}^c_1) = \underset{\underline{\theta}^c \in \mathbb{R}^{D+1}}{\operatorname{argmin}} & \left(\mathbb{X} \ \underline{\theta}^c - \mathbf{Y}^c\right)^T \left(\mathbb{X} \ \underline{\theta}^c - \mathbf{Y}^c\right) \end{array}$$

where
$$\mathbb{X} = \begin{bmatrix} \mathbf{1}_N & \mathbf{X}^c \end{bmatrix}$$
 $\underline{\theta}^c = \begin{bmatrix} \theta_0^c \\ \underline{\theta}_1^c \end{bmatrix}$

Cost function:

$$\begin{split} J(\underline{\theta}^c) &= \left(\mathbb{X} \, \underline{\theta}^c - \mathbf{Y}^c \right)^T \left(\mathbb{X} \, \underline{\theta}^c - \mathbf{Y}^c \right) \\ &= \left((\theta^c)^T \mathbb{X}^T - (\mathbf{Y}^c)^T \right) \left(\mathbb{X} \, \theta^c - \mathbf{Y}^c \right) \end{split}$$

$$= (\underline{\boldsymbol{\theta}}^c)^T \mathbb{X}^T \mathbb{X} \underline{\boldsymbol{\theta}}^c - 2 (\mathbf{Y}^c)^T \mathbb{X} \, \underline{\boldsymbol{\theta}}^c + (\mathbf{Y}^c)^T \mathbf{Y}^c$$

Gradient:
$$\nabla J = 2 \mathbb{X}^T \mathbb{X} \underline{\theta}^c - 2 \mathbb{X}^T \mathbf{Y}^c$$

$\hat{\boldsymbol{\theta}}^c = \left(\mathbb{X}^T \mathbb{X} \right)^{-1} \mathbb{X}^T \mathbf{Y}^c$ **Stationary points:**

Unpack:

$$\begin{bmatrix} \hat{\theta}_0^c \\ \hat{\underline{\theta}}_1^c \end{bmatrix} = \left(\begin{bmatrix} \mathbf{1}_N^T \\ (\mathbf{X}^c)^T \end{bmatrix} \begin{bmatrix} \mathbf{1}_N & \mathbf{X}^c \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{1}_N^T \\ (\mathbf{X}^c)^T \end{bmatrix} \mathbf{Y}^c$$

$$= \quad \vdots$$

$$= \begin{bmatrix} 0 \\ ((\mathbf{X}^c)^T \mathbf{X}^c)^{-1} & (\mathbf{X}^c)^T \mathbf{Y}^c \end{bmatrix}$$

Un-center:

$$\begin{split} \hat{\theta}_0 &= \hat{\mu}_Y - \hat{\mu}_X \underline{\hat{\theta}}_1 \\ \underline{\hat{\theta}}_1 &= \left((\mathbf{X}^c)^T \mathbf{X}^c \right)^{-1} (\mathbf{X}^c)^T \mathbf{Y}^c \end{split}$$

Statistical properties of multiple linear regression

Assumed data generating process:

$$y_i = \theta_0^* + x_i \underline{\theta}_1^* + \varepsilon_i$$
$$\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Centered process:

$$\begin{aligned} y_i^c &= (\theta_0^*)^c + x_i^c \ (\underline{\theta}_1^*)^c + \varepsilon_i^c \\ \varepsilon_i &\sim \mathcal{N}(0, \sigma^2) \end{aligned}$$

$$\hat{\underline{ heta}}_1$$
 as an estimate of $\underline{ heta}_1^*$

$$\underline{\hat{\theta}}_1 = \underline{\theta}_1^* + \Sigma_X^{-1} (\mathbf{X}^c)^T \underline{\varepsilon}^c$$

where
$$\Sigma_X^{-1} = \left((\mathbf{X}^c)^T \mathbf{X}^c \right)^{-1}$$

$$\underline{\hat{\Theta}}_1 = \underline{\theta}_1^* + \Sigma_X^{-1} (\mathbf{X}^c)^T \underline{\mathcal{E}}^c$$

(proved in the reader)

$$E\left[\underline{\hat{\Theta}}_1\right] = \underline{\theta}_1^*$$

$$Var\left[\underline{\hat{\Theta}}_{1}\right] = \sigma^{2}\Sigma_{X}^{-1}$$

$$\hat{\underline{\theta}}_0$$
 as an estimate of $\underline{\theta}_0^*$

$$\hat{\theta}_0 = \theta_0^* + \hat{\mu}_X \underline{\theta}_1^* + \bar{\varepsilon} - \hat{\mu}_X \underline{\hat{\theta}}_1$$

$$\hat{\Theta}_0 = \theta_0^* + \hat{\mu}_X \underline{\theta}_1^* + \bar{\mathcal{E}} - \hat{\mu}_X \underline{\hat{\Theta}}_1$$

$$E\left[\hat{\Theta}_0\right] = \theta_0^*$$

$$Var\left[\hat{\Theta}_{0}\right] = \frac{\sigma^{2}}{N} + \sigma^{2}\hat{\mu}_{X}\Sigma_{X}^{-1}\hat{\mu}_{X}^{T}$$

(proved in the reader)

\widehat{y}_i as an estimate of y_i^*

Same as the scalar case:

$$\hat{Y}_i = \theta_0^* + \hat{\mu}_X \underline{\theta}_1^* + \bar{\mathcal{E}} + x_i^c \underline{\hat{\Theta}}_1$$

$$E[\hat{Y}_i] = \theta_0^* + \theta_1^* x_i$$

$$Var[\hat{Y}_i] = \frac{\sigma^2}{N} + \sigma^2(x_i - \hat{\mu}_X)\Sigma_X^{-1}(x_i - \hat{\mu}_X)^T$$