

Packet Switched Networks

Acknowledgements

These Slides have been adapted from the originals made available by J. Kurose and K. Ross All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Goals

- Understanding principles behind packet switched networks
- Introducing some examples of packed switched networks

- Link-layer switches
- Switched Ethernet
- Virtual LANs
- Wide-Area Packet Switched Networks
- Link virtualization

Ethernet Hubs

- Physical-layer ("dumb") repeater
 - bits coming in one link go out all other links at same rate
 - all nodes connected to hub can collide with one another
 - no frame buffering
 - no CSMA/CD at hub: host NICs detect collisions

Ethernet switch

- Switch is a link-layer device: takes an active role
 - store, forward Ethernet frames
 - examine incoming frame's MAC address
 - *selectively* forward frame to one-or-more outgoing links when frame is to be forwarded on segment
 - uses CSMA/CD to access segment
- transparent: hosts unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
 - but A-to-A' and C to A' can not happen simultaneously

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

<u>A:</u> each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60

Switch table (initially empty)

Switch: frame filtering/forwarding

when frame received at switch:

- 1. record incoming link, MAC address of sending host
- 2. index switch table using MAC destination address

```
3. if entry found for destination then {
if destination on segment from which frame arrived then drop frame
else forward frame on interface indicated by entry
}
else flood /* forward on all interfaces except arriving interface */
```


Self-learning, forwarding: example

- frame destination, A', location unknown: flood
- destination A location known: selectively send on just one link

MAC addr	interface	TTL
A	1	60 60
A	4	60

switch table (initially empty)

- Link-layer switches
- Switched Ethernet
- Virtual LANs
- Wide-Area Packet Switched Networks
- Link virtualization

Interconnecting switches

self-learning switches can be connected together:

Q: sending from A to G - how does S₁ know to forward frame destined to G via S₄ and S₃?

<u>A:</u> self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 $\underline{\mathbf{Q}}$: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine network-layer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

Small institutional network

Datacenter networks

10's to 100's of thousands of hosts, often closely coupled, in close proximity:

- e-business (e.g. Amazon)
- content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
- search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- reliability
- managing/balancing load
- avoiding (processing, networking, data) bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Border routers

connections outside datacenter

Tier-1 switches

connecting to ~16 T-2s below

Tier-2 switches

connecting to ~16 TORs below

Top of Rack (TOR) switch

- one per rack
- 40-100Gbps Ethernet to blades

Server racks

20- 40 server blades: hosts

- Link-layer switches
- Switched Ethernet
- Virtual LANs
- Wide-Area Packet Switched Networks
- Link virtualization

Virtual LANs (VLANs): motivation

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy issues

Virtual LANs (VLANs): motivation

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy, efficiency issues

administrative issues:

 CS user moves office to EE - physically attached to EE switch, but wants to remain logically attached to CS switch

Virtual Local Area Network (VLAN)

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches

Port-based VLANs

- traffic isolation: frames to/from ports
 1-8 can only reach ports
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANS spanning multiple switches

trunk port: carries frames between VLANS defined over multiple physical switches

- frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
- 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format

- Link-layer switches
- Switched Ethernet
- Virtual LANs
- Wide-Area Packet Switched Networks
- Link virtualization

Switched Ethernet

Packet-Switched Wide-Area Networks (WANs)

- Nodes identified through a unique address
 - Similar to the Ethernet MAC address

Type of Service

- Connectionless
- Each packet is managed on an individual basis
- Also known as datagram service

Connection

- A Virtual Circuit is preliminary established
- All packets follow the same path

Virtual Circuit

Source-to-destination path

- behaves much like telephone circuit
- performance-wise
- network actions along sourceto-dest path

call setup, teardown for each call before data can flow

VC Implementation

A VC consists of:

- path from source to destination
- 2. VC numbers, one number for each link along path
- 3. entries in forwarding tables in routers along path

- A packet belonging to VC carriesVC number
 - rather than dest address
- VC number can be changed on each link
 - New VC number comes from forwarding table

Forwarding Table

Forwarding table in A switch

Incoming interface	Incoming VC #	Outgoing interface	Outgoing VC #
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••		•••	

Switches maintain connection state information!

Datagram service

- no call setup
- switches: no state about endto-end connections
 - no concept of "connection"
- packets between the same source-destination pair may take different paths

 packets forwarded using destination host address

Forwarding Table

MAC address	Interface	TTL
Α	1	60
A'	4	60

Destination Address Range	Link Interface
11001000 00010111 000 <mark>10000 00000000000</mark>	0
11001000 00010111 000 <mark>11000 00000000000</mark>	1
11001000 00010111 000 <mark>11001 00000000000</mark>	2
otherwise	3

- Link-layer switches
- Switched Ethernet
- Virtual LANs
- Wide-Area Packet Switched Networks
- Link virtualization

Virtual Links

- Virtualization of resources: powerful abstraction in systems engineering:
 - virtual memory
 - virtual devices
 - virtual machines: e.g., java

Virtual Link:

- The path from S to D is regarded as a point-to-point virtual link
- Just like a physical point-to-point link
- The service type is thus not relevant from the Internet point of view

Summary

- Principles behind packet switched networks
- Switched LANS, VLANs
- Wide-Area Packet-Switched Networks
- Virtualized networks as a point-to point link