MATH 127 Calculus for the Sciences

Lecture 16

Today's lecture

Last time

Calculus of trig functions

- 1. Derivatives and anti-derivatives of trig functions;
- 2. those things about inverses and reciprocals of trig functions.

This time

Course note coverage Section 2.6, 2.7.1

Finally done with trigs

Factorial Function, Implicitly Defined Functions

Quiz is today

Factorial function

From today, you will never be allowed to use exclaimation mark in math! Sorry.

Definition For any integer $n \ge 1$,

$$n! = 1 \cdot 2 \cdot \cdot \cdot n$$

read as "n factorial". We also define specially

$$0! = 1$$

Example We know

$$3! = \boxed{1 \cdot 2 \cdot 3} = \boxed{6}$$

Factorial function

Example What is 2.5!?

Example What is the derivative of y = x!?

- (1) 2.5 is not an integer, so 2.5! does not make souse.
- (2) Derivative only made some for furthers with real input. but x! takes input in indegers.

Factorial function

Example Simplify $\frac{n!}{(n+1)!}$.

n is an integer n>0 and 1120

$$\frac{n!}{(n+1)!} = \frac{1}{1 \cdot 2 \cdot 3 \cdot 4 \cdots n} = \frac{1}{n+1}$$

Binomial theorem

The main reason we care about factorial functions is be cause they show up when you try to expand $(x+y)^N$.

Theorem For any integer $n \ge 1$, we have

$$(x+y)^{n} = \binom{n}{n} x^{n} y^{0} + \binom{n}{n-1} x^{n-1} y^{1} + \dots + \binom{n}{1} x^{1} y^{n-1} + \binom{n}{0} x^{0} y^{n}.$$

Definition The terms $\binom{n}{m}$ are called binomial coefficients given by

The integers
$$n, m$$
 must satisfy $n \ge 0$, $m \ge 0$ $n \ge m$

Example

$$\binom{5}{3} = \frac{5!}{(5-2)! \cdot 3!} = \frac{\cancel{1 \cdot 2 \cdot 4 \cdot 5}}{(! \cdot 2)(\cancel{1 \cdot 2 \cdot 3})} = |0|$$

Remember the formula of a circle? it is

$$x^2 + y^2 = 1$$

The radius of this circle is 1 This is an example of an implicit function, an explicit expression for it is

$$y = \pm \sqrt{1 - x^2}$$

But a function can only have one output given a input, so this is not a function.

Function given by an equation, which does not have an explicit form, are called **implicitly defined function**.

regulary simplex	Implifitly defined furtien	parametrised funders
y=x, f=a.cs\ais) y=x ¹ ,	y=x y ³ =x ¹ y=x	?

Example Some implicitly defined functions do not have an explicit

 $y = \dots$ form, like

$$y^2 = 1 - x^2$$
 $y = x \sqrt{1 - x^2}$

But some do, like

$$y = 1 - x$$

and

$$x^2 + y = 0$$

You can take derivative of an implicitly defined function, by taking derivative of both sides of equations.

Example Find y' (with respect to the input variable x) of the implicitly defined function

$$x^2 + y^2 = 3$$

Derivate of LHS is

Dervate of RHS is

$$S_{x+2y-y'} = 0$$

$$y' = \frac{-2x}{2y} = 0$$

by chain rule

You can take derivative of an implicitly defined function, by taking derivative of both sides of equations.

Example Find x' (with respect to the input variable z) of the implicitly defined function

$$\ln(x) + \sin(z)^2 = 3x + z$$

$$\frac{1}{x} \cdot x' + 2\sin(z) \cdot \cos(z) = 3x' + 1$$

$$\left(\frac{1}{x} - 3\right) x' = 1 - 2\sin(z) \cos(z)$$

$$x' = \frac{1 - 2\sin(z) \cos(z)}{\frac{1}{x} - 3}$$

Tangent line of implicitly defined functions

You can express the tangent line of an implicitly defined function

(some function involving
$$x, y = 0$$

as usual using point-slope form: say at a point (a, b)

$$y = \frac{dy}{dx}\bigg|_{x=a} \cdot (x-a) + b$$

Example Find the tangent line at $(1, \sqrt{3})$ of

$$x^2 + y^2 = 4$$

$$x^{2} + y^{2} = 4$$
(1) Find y'
$$2x + 2yy' = 0$$

$$y' = \frac{-2x}{2y} = \frac{-x}{y}$$
(3) The drynd line is
$$y = -\frac{1}{\sqrt{3}}(x-1) + \sqrt{3}$$

Example

Remark

Elliptic curves are implicitly defined functions used in encryption (so they are useful in real life I guess).

Example Find the tangent line at $(1, \cancel{\aleph})$ of the elliptic curve

$$y^2 = x^3 - x + 1$$

Find y:

$$2yy' = 3x^{2} - 1$$

$$y' = \frac{3x^{2} - 1}{2y}$$

$$y' = \frac{3x^{2} - 1}{2y}$$

$$y' = 1(x - 1) + 1$$

$$= x$$