Last name	
First name	

LARSON—MATH 550—CLASSROOM WORKSHEET 22 Pascal's Triangle & Binomial Coefficients.

Concepts & Notation

• Sec. 5.1. Binomial coefficients, Pascal's triangle.

We let $\binom{n}{m}$ be the number of *m*-subsets of an *n*-set.

- 1. Find a formula for $\binom{n}{m}$ $(0 \le m \le n, m, n \in \mathbb{Z})$.
- 2. Argue the symmetry identity $\binom{n}{k} = \binom{n}{n-k}$.
- 3. We discovered that, in order to *prove* that this triangle is the same as Pascal's triangle, we'd need to prove the *addition formula*:

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}.$$

- 4. We drew a Pascal-style triangle where the 0^{th} (top) level is the single number $\binom{0}{0}$, and where the n^{th} level is the (n+1) numbers $\binom{n}{0}$, $\binom{n}{1}$, ... $\binom{n}{n}$. Find the sums of the rows. How can we interpret these? How can we prove them?
- 5. Find $(x + y)^2$.
- 6. Find $(x+y)^3$ by multiplying $(x+y)(x+y)^2$.
- 7. Find $(x+y)^4$ by multiplying $(x+y)(x+y)^3$.
- 8. Find $(x+y)^n$. How can you reason about this?

The binomial coefficients $\binom{n}{k}$ $(n, k \in \mathbb{Z}^{\geq 0})$ can be generalized to $\binom{r}{k}$ $(r \in \mathbb{R}, k \in \mathbb{Z})$:

$$\binom{r}{k} = \frac{r^{\underline{k}}}{k!} \text{ (if } k \ge 0)$$

$$\binom{r}{k} = 0 \text{ (if } k < 0).$$

- 9. Find $\binom{-1}{2}$.
- 10. Find $\binom{-1}{-1}$.
- 11. Find $\binom{-1}{0}$.
- 12. Find $\binom{\pi}{2}$.
- 13. Argue the absorbtion identity $\binom{r}{k} = \frac{r}{k} \binom{r-1}{k-1}$.

- 14. The (Newton's Generalized) Binomial Theorem says $(x+y)^r = \sum_{k=0}^{\infty} {r \choose k} x^k y^{r-k}$. Does this agree with our formula when $r \in \mathbb{Z}$?
- 15. Find $(x+1)^e$.