

(Lecture 4 – Sequential Estimation and Nonlinear Least Squares)

Dr. John L. Crassidis

University at Buffalo – State University of New York
Department of Mechanical & Aerospace Engineering
Amherst, NY 14260-4400

johnc@buffalo.edu

http://www.buffalo.edu/~johnc

Diagonalization of Weight (i)

- For reasons seen later we want to show that the weight W can always be diagonalized in weighted least squares
 - Take eigenvalue/eigenvector decomposition (remember W is a symmetric matrix) convene diag(eigenvalues) $W = V \Lambda V^T$

$$W=V\Lambda V^T$$

Substitute this into the weighted least squares loss function

$$J = \frac{1}{2} (\tilde{\mathbf{y}} - H \,\hat{\mathbf{x}})^T V \,\Lambda \,V^T (\tilde{\mathbf{y}} - H \,\hat{\mathbf{x}})$$

Define new variables

$$\tilde{\mathbf{z}} \equiv V^T \tilde{\mathbf{y}}$$
 and $\mathcal{H} \equiv V^T H$

Loss function becomes

$$J = \frac{1}{2} (\tilde{\mathbf{z}} - \mathcal{H} \,\hat{\mathbf{x}})^T \Lambda (\tilde{\mathbf{z}} - \mathcal{H} \,\hat{\mathbf{x}})$$

Diagonalization of Weight (ii)

- Note that the weight is now diagonal
- Minimizing the loss function leads to

$$\hat{\mathbf{x}} = (\mathcal{H}^T \Lambda \mathcal{H})^{-1} \mathcal{H}^T \Lambda \, \tilde{\mathbf{z}}$$

- Solution is identical to original weighted least squares solution
 - Substitute new variables to prove this

$$\hat{\mathbf{x}} = (\mathcal{H}^T \Lambda \mathcal{H})^{-1} \mathcal{H}^T \Lambda \, \tilde{\mathbf{z}}$$
$$= (H^T V \Lambda V^T H)^{-1} H^T V \Lambda V^T \tilde{\mathbf{y}}$$

- Using $W = V \Lambda V^T$ now gives

$$\hat{\mathbf{x}} = (H^T W H)^{-1} H^T W \, \tilde{\mathbf{y}}$$

• So in general we can assume that \underline{W} is always diagonal without loss in generality

Sequential Estimation (i)

- In standard least squares an implicit assumption is present, namely, that all measurements are available for simultaneous ("batch") processing
 - In numerous real-world applications, the measurements may become available sequentially in subsets and, immediately upon receipt of a new data subset, it may be desirable to determine new estimates based upon all previous measurements (including the current subset)
 - Employ a sequential process instead of previous batch process in least squares solution
 - To simplify the initial discussion, consider two measurement sets

$$\tilde{\mathbf{y}}_1 = \begin{bmatrix} \tilde{y}_{11} & \tilde{y}_{12} & \cdots & \tilde{y}_{1m_1} \end{bmatrix}^T = \text{an } m_1 \times 1 \text{ vector of measurements}$$

$$\tilde{\mathbf{y}}_2 = \begin{bmatrix} \tilde{y}_{21} & \tilde{y}_{22} & \cdots & \tilde{y}_{2m_2} \end{bmatrix}^T = \text{an } m_2 \times 1 \text{ vector of measurements}$$

Sequential Estimation (ii)

The associated observation equations are given by

$$\tilde{\mathbf{y}}_1 = H_1 \mathbf{x} + \mathbf{v}_1$$
$$\tilde{\mathbf{y}}_2 = H_2 \mathbf{x} + \mathbf{v}_2$$

where

 $H_1 = \text{an } m_1 \times n \text{ known coefficient matrix of maximum rank } n \leq m_1$

 $H_2 = \text{an } m_2 \times n \text{ known coefficient matrix}$

 $\mathbf{v}_1, \mathbf{v}_2 = \text{vectors of measurement errors}$

 $\mathbf{x} = \text{the } n \times 1 \text{ vector of unknown parameters}$

Least squares estimate from first measurement set

$$\hat{\mathbf{x}}_1 = (H_1^T W_1 H_1)^{-1} H_1^T W_1 \tilde{\mathbf{y}}_1$$

where W_1 is an $m_1 \times m_1$ symmetric, positive definite matrix

Sequential Estimation (iii)

- It is possible to consider both measurement subsets simultaneously and determine an estimate based upon both measurement subsets
- Consider the following merged form

where

$$\tilde{\mathbf{y}} = H\mathbf{x} + \mathbf{v}$$

$$\tilde{\mathbf{y}} = \begin{bmatrix} \tilde{\mathbf{y}}_1 \\ \dots \\ \tilde{\mathbf{y}}_2 \end{bmatrix}, \quad H = \begin{bmatrix} H_1 \\ \dots \\ H_2 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \mathbf{v}_1 \\ \dots \\ \mathbf{v}_2 \end{bmatrix}$$

Assume a block diagonal structure for weighting matrix

$$W = \begin{bmatrix} W_1 & \vdots & 0 \\ \dots & & \dots \\ 0 & \vdots & W_2 \end{bmatrix}$$

As shown before we can always assume it's diagonal if needed

Sequential Estimation (iv)

• Solution based on all measurements is denoted by $\hat{\mathbf{x}}_2$

$$\hat{\mathbf{x}}_2 = (H^T W H)^{-1} H^T W \tilde{\mathbf{y}}$$

- Note that this is equivalent to $\hat{\mathbf{x}}$ in standard squares
 - Does not use only the second measurement set (careful here)
- Goal is to find $\hat{\mathbf{x}}_2$ based on $\hat{\mathbf{x}}_1$ and $\tilde{\mathbf{y}}_2$ only
- Because of block structure in W, we have

$$\hat{\mathbf{x}}_2 = [H_1^T W_1 H_1 + H_2^T W_2 H_2]^{-1} (H_1^T W_1 \tilde{\mathbf{y}}_1 + H_2^T W_2 \tilde{\mathbf{y}}_2)$$

Define the following

$$P_1 \equiv [H_1^T W_1 H_1]^{-1}$$

$$P_2 \equiv [H_1^T W_1 H_1 + H_2^T W_2 H_2]^{-1}$$

Then we have (assuming inverses exist)

$$P_2^{-1} = P_1^{-1} + H_2^T W_2 H_2, \quad (1) \qquad \hat{\mathbf{x}}_1 = P_1 H_1^T W_1 \tilde{\mathbf{y}}_1 \qquad (2)$$
$$\hat{\mathbf{x}}_2 = P_2 (H_1^T W_1 \tilde{\mathbf{y}}_1 + H_2^T W_2 \tilde{\mathbf{y}}_2) \quad (3)$$

Sequential Estimation (v)

• Pre-multiply Eq. (2) by the inverse of P_1

$$P_1^{-1}\hat{\mathbf{x}}_1 = H_1^T W_1 \tilde{\mathbf{y}}_1$$

- From Eq. (1) we have $P_1^{-1} = P_2^{-1} H_2^T W_2 H_2$
- Substituting this into the previous equation gives

$$H_1^T W_1 \tilde{\mathbf{y}}_1 = P_2^{-1} \hat{\mathbf{x}}_1 - H_2^T W_2 H_2 \hat{\mathbf{x}}_1$$

• Substituting this expression into Eq. (3) yields

$$\hat{\mathbf{x}}_2 = \hat{\mathbf{x}}_1 + K_2(\tilde{\mathbf{y}}_2 - H_2\hat{\mathbf{x}}_1)$$
 where
$$K_2 \equiv P_2H_2^TW_2$$

 Note that we have now achieved our goal of having the estimate at the second "time" be only a function of the previous "time" estimate and current "time" measurement

8

Sequential Estimation (vi)

- We now have a mechanism to sequentially provide an updated estimate based upon the previous estimate and associated side calculations
- We can easily generalize these equations to use the $k^{\rm th}$ estimate to determine the estimate at k+1 from the k+1 subset of measurements
- General form is given by

where

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k + K_{k+1}(\tilde{\mathbf{y}}_{k+1} - H_{k+1}\hat{\mathbf{x}}_k)$$
 "Kalman
$$K_{k+1} = P_{k+1}H_{k+1}^TW_{k+1}$$
 Gain Matrix"
$$P_{k+1}^{-1} = P_k^{-1} + H_{k+1}^TW_{k+1}H_{k+1}$$

- Update equation is known as Kalman update equation
 - We will see this update form again later!
- Specific form for P_{NN}^{-1} is known as the information matrix recursion.
 - Must invert an $n \times n$ matrix at each time step

Sequential Estimation (vii)

- The current approach for computing P_{k+1} involves computing its inverse, which offers no advantage over inverting the normal equations in their original batch processing
 - This is due to the fact that an $n \times n$ inverse must still be performed
 - Is there a more judicious form? The answer is yes
- Using the matrix inversion lemma

$$[A + BCD]^{-1} = A^{-1} - A^{-1}B(DA^{-1}B + C^{-1})^{-1}DA^{-1}$$

with

$$A=P_k^{-1}, \quad B=H_{k+1}^T, \quad C=W_{k+1}, \quad D=H_{k+1}$$
 to

leads to

$$P_{k+1} = P_k - P_k H_{k+1}^T \left(H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right)^{-1} H_{k+1} P_k$$
 (4)

- The matrix inverse is now the size of the dimension of the measurement subset, which is often much less than n
 - This usually significantly saves on the computations even though two inverses are required

10

Sequential Estimation (viii)

- The Kalman gain can also be rearranged in several alternate forms
- One of the more common is obtained by substituting Eq. (4) into the Kalman gain equation $K_{k+1} = P_{k+1}H_{k+1}^TW_{k+1}$ to give

$$K_{k+1} = \left[P_k - P_k H_{k+1}^T \left(H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right)^{-1} H_{k+1} P_k \right] H_{k+1}^T W_{k+1}$$

$$= P_k H_{k+1}^T \left[I - \left(H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right)^{-1} H_{k+1} P_k H_{k+1}^T \right] W_{k+1}$$

• Now, factoring $(H_{k+1}P_kH_{k+1}^T+W_{k+1}^{-1})^{-1}$ outside of the square brackets leads directly to

$$K_{k+1} = P_k H_{k+1}^T \left(H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right)^{-1} \left[W_{k+1}^{-1} + H_{k+1} P_k H_{k+1}^T - H_{k+1} P_k H_{k+1}^T \right] W_{k+1}$$

Leads simply to

$$K_{k+1} = P_k H_{k+1}^T \left[H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right]^{-1}$$

Sequential Estimation (ix)

Now have the covariance recursion form

$$\hat{\mathbf{x}}_{k+1} = \hat{\mathbf{x}}_k + K_{k+1}(\tilde{\mathbf{y}}_{k+1} - H_{k+1}\hat{\mathbf{x}}_k)$$

$$K_{k+1} = P_k H_{k+1}^T \left[H_{k+1} P_k H_{k+1}^T + W_{k+1}^{-1} \right]^{-1}$$

$$P_{k+1} = \left[I - K_{k+1} H_{k+1} \right] P_k$$

- Requires inverse of the size of current measurement
 - Usually much smaller than n
- Must initialize both the estimate and P
 - Can use a small batch of n measurements, or can use the following

$$P_1 = \left[\frac{1}{\alpha^2} I + H_1^T W_1 H_1 \right]^{-1}, \quad \hat{\mathbf{x}}_1 = P_1 \left[\frac{1}{\alpha} \boldsymbol{\beta} + H_1^T W_1 \tilde{\mathbf{y}}_1 \right]$$

where α is a very "large" number and β is a vector of "small" numbers

 It can be shown that the estimate at the last point of the sequential process is equal to the batch solution

10⁻⁵

2

Time (Sec)

Sequential Example (i)

• Use previous state-space model example - 10 patch to same

10⁻⁶

10⁻⁸

2

Time (Sec)

8

10

Estimates converge to batch solution at last point

10

4

Sequential Example (ii)

```
% Get Truth and Measurements
dt=0.1;tf=10;
t=[0:dt:tf];
m=length(t);
a=-1;b=1;c=1;d=0;u=[100;zeros(m-1,1)];
[ad,bd]=c2d(a,b,dt);
y=dlsim(ad,bd,c,d,u);
ym=y+0.08*randn(m,1);

% Weight and H Matrix
w=inv(0.08^2);
h=[ym(1:m-1) u(1:m-1)];
```

母

Sequential Example (iii)

```
% Initial Conditions for Sequential Algorithm
alpha=1e3;
beta=[1e-2;1e-2];
p0=inv(1/alpha/alpha*eye(2)+h(1,:)*w*h(1,:));
x0=p0*(1/alpha*beta+h(1,:)'*w*ym(2));
% Sequential Least Squares
xr = zeros(m-1,2); xr(1,:) = x0';
p=zeros(m-1,2);p(1,:)=diag(p0)';pp=p0;
for i=1:m-2;
k=pp*h(i+1,:)*inv(h(i+1,:)*pp*h(i+1,:)+inv(w));
pp=(eye(2)-k*h(i+1,:))*pp;
xr(i+1,:)=xr(i,:)+(k*(ym(i+2)-h(i+1,:)*xr(i,:)'))'; % need y {k+2} measurement
p(i+1,:)=diag(pp)';
end
```


Nonlinear Least Squares (i) - BATCH ONG

Many systems involve nonlinearities of the form

$$\tilde{\mathbf{y}} = \mathbf{f}(\mathbf{x}) + \mathbf{v}$$

Estimate and residual are given by

$$\hat{\mathbf{y}} = \mathbf{f}(\hat{\mathbf{x}})$$

 $\mathbf{e} = \tilde{\mathbf{y}} - \hat{\mathbf{y}} \equiv \Delta \mathbf{y}$, $\tilde{\mathbf{y}} = \mathbf{f}(\hat{\mathbf{x}}) + \mathbf{e}$

• Seek to find $\hat{\mathbf{x}}$ that minimizes

$$J = \frac{1}{2} \mathbf{e}^T W \mathbf{e} = \frac{1}{2} [\tilde{\mathbf{y}} - \mathbf{f}(\hat{\mathbf{x}})]^T W [\tilde{\mathbf{y}} - \mathbf{f}(\hat{\mathbf{x}})]$$

- Simple solution only given in special cases
- Must use an iterative approach in general
 - Nonlinear least squares is such an approach
 - Others too, like gradient method

Nonlinear Least Squares (ii)

 Let's say that the estimate is given by some current value plus a correction

$$\hat{\mathbf{x}} = \mathbf{x}_c + \Delta \mathbf{x}$$

 Say that the correction is small, and now we linearize the nonlinear function about the current value using a firstorder Taylor series expansion

$$\mathbf{f}(\hat{\mathbf{x}}) pprox \mathbf{f}(\mathbf{x}_c) + H\Delta\mathbf{x}, \quad H \equiv \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_c}$$

 Measurement residual "after the correction" can be linearly approximated now

$$\Delta \mathbf{y} \equiv \tilde{\mathbf{y}} - \mathbf{f}(\hat{\mathbf{x}}) \approx \tilde{\mathbf{y}} - \mathbf{f}(\mathbf{x}_c) - H\Delta \mathbf{x} = \Delta \mathbf{y}_c - H\Delta \mathbf{x}$$

where the residual "before the correction" is

$$\Delta \mathbf{y}_c \equiv \tilde{\mathbf{y}} - \mathbf{f}(\mathbf{x}_c)$$

Nonlinear Least Squares (iii)

- Now suppose we wish to determine the correction term, which can be done using linear least squares now
- We now minimize

$$J = \frac{1}{2} \Delta \mathbf{y}^T W \Delta \mathbf{y} \equiv \frac{1}{2} (\Delta \mathbf{y}_c - H \Delta \mathbf{x})^T W (\Delta \mathbf{y}_c - H \Delta \mathbf{x})$$

Solution is given by

Locks like weished Linear least squares

$$\Delta \mathbf{x} = (H^T W H)^{-1} H^T W \Delta \mathbf{y}_c$$

- Notes
 - Same conditions apply for matrix inverse to exist
 - Solution converges rapidly if initial guess is good
 - May diverge quickly if initial guess is not good
 - Gradient solution has "opposite" effect
 - Levenberg-Marquardt algorithm combines good features of both
 - Start with LM and transition to NLS as solution converges

Nonlinear Least Squares (iv)

NLS Example I

Simple case

$$y = x^3 + 6x^2 + 11x + 6 = 0,$$
 $\mathbf{y} = y = 0$ $\mathbf{f}(\mathbf{x}) = f(x) = x^3 + 6x^2 + 11x + 6$

Correction becomes (Newton root solver)

$$x = x_c - \left[\frac{\partial f}{\partial x} \Big|_{x_c} \right]^{-1} f(x_c)$$

iteration	iteration x		x	
0	0.0000	-1.6000	-5.0000	
1	-0.5455	-2.2462	-4.0769	
2	-0.8490	-1.9635	-3.5006	
3	-0.9747	-2.0001	-3.1742	
4	-0.9991	-2.0000	-3.0324	
5	-1.0000	-2.0000	-3.0015	
6	-1.0000	-2.0000	-3.0000	
7	-1.0000	-2.0000	-3.0000	

Started iterations using three distinct initial guesses

Converges to the three roots of a equation

NLS Example II (i)

 Consider previous discrete-time state model, but now wish to determine continuous-time parameters

$$y_{k+1} = \left[e^{a\Delta t}\right]y_k + \left[\frac{b}{a}(e^{a\Delta t} - 1)\right]u_k$$

Must use nonlinear least squares approach now

$$\mathbf{x} = \begin{bmatrix} a & b \end{bmatrix}^{T}$$

$$\tilde{\mathbf{y}} = \begin{bmatrix} \tilde{y}_{2} & \tilde{y}_{3} & \cdots & \tilde{y}_{101} \end{bmatrix}^{T}$$

$$f_{k} = \begin{bmatrix} e^{a\Delta t} \end{bmatrix} y_{k} + \begin{bmatrix} \frac{b}{a} (e^{a\Delta t} - 1) \end{bmatrix} u_{k}$$

Partials

$$\frac{\partial f_k}{\partial a} = \Delta t \left[e^{a\Delta t} \right] y_k + \left[\frac{b}{a^2} (1 - e^{a\Delta t}) + \frac{b}{a} \Delta t e^{a\Delta t} \right] u_k$$

$$\frac{\partial f_k}{\partial b} = \frac{1}{a} (e^{a\Delta t} - 1) u_k$$

NLS Example II (ii)

The matrix H is given by

$$H = \begin{bmatrix} \Delta t \left[e^{a\Delta t} \right] \tilde{y}_1 + \left[\frac{b}{a^2} (1 - e^{a\Delta t}) + \frac{b}{a} \Delta t e^{a\Delta t} \right] u_1 & \frac{1}{a} (e^{a\Delta t} - 1) u_1 \\ \Delta t \left[e^{a\Delta t} \right] \tilde{y}_2 + \left[\frac{b}{a^2} (1 - e^{a\Delta t}) + \frac{b}{a} \Delta t e^{a\Delta t} \right] u_2 & \frac{1}{a} (e^{a\Delta t} - 1) u_2 \\ \vdots & \vdots & \vdots \\ \Delta t \left[e^{a\Delta t} \right] \tilde{y}_{100} + \left[\frac{b}{a^2} (1 - e^{a\Delta t}) + \frac{b}{a} \Delta t e^{a\Delta t} \right] u_{100} & \frac{1}{a} (e^{a\Delta t} - 1) u_{100} \end{bmatrix}$$

• Iterations, starting at 5 and 5

iteration	\hat{a}	\hat{b}
0	5.0000	5.0000
1	0.4876	1.9540
2	-0.8954	1.0634
3	-1.0003	0.9988
4	-1.0009	0.9985
5	-1.0009	0.9985
6	-1.0009	0.9985

True values are given by -1 and 1, so good performance is given

43

NLS Example II (iii)

```
% Get Truth and Measurements
dt=0.1;tf=10;
t=[0:dt:tf];
m=length(t);
a=-1;b=1;c=1;d=0;u=[100;zeros(m-1,1)];
[ad,bd]=c2d(a,b,dt);
y=dlsim(ad,bd,c,d,u);
ym=y+0.08*randn(m,1);
w=inv(0.08^2);
% Initialize Variables
h=[ym(1:m-1)u(1:m-1)];
clear xe
xe(1,:)=[5 5];
xx=100000;
```

NLS Example II (iv)

```
% Nonlinear Least Squares
i=1;
while norm(xx) > 1e-8
if i > 50, break; end
aa=xe(i,1);bb=xe(i,2);
ea=exp(aa*dt);
h=[dt*ym(1:m-1)*ea+(bb/aa^2*(1-ea)+bb/aa*dt*ea)*u(1:m-1) 1/aa*(ea-1)*u(1:m-1)];
xx=inv(h'*w*h)*h'*w*(ym(2:m)-ym(1:m-1)*ea-bb/aa*(ea-1)*u(1:m-1));
xe(i+1,:)=xe(i,:)+xx';
i=i+1;
end
iteration results=xe
disp(' ')
[phie,game]=c2d(xe(i,1),xe(i,2),dt)
```


NLS Example III (i)

• Under certain approximations, the pitch θ and yaw ψ attitude dynamics of an inertially and aerodynamically symmetric projectile can be modeled via

$$\theta(t) = k_1 e^{\lambda_1 t} \cos(\omega_1 t + \delta_1) + k_2 e^{\lambda_2 t} \cos(\omega_2 t + \delta_2) + k_3 e^{\lambda_3 t} \cos(\omega_3 t + \delta_3) + k_4$$

$$\psi(t) = k_1 e^{\lambda_1 t} \sin(\omega_1 t + \delta_1) + k_2 e^{\lambda_2 t} \sin(\omega_2 t + \delta_2) + k_3 e^{\lambda_3 t} \sin(\omega_3 t + \delta_3) + k_5$$

where k_1 , k_2 , k_3 , k_4 , k_5 , λ_1 , λ_2 , λ_3 , ω_1 , ω_2 , ω_3 , δ_1 , δ_2 , δ_3 are 14 constants which can be related to the aerodynamic and mass characteristics of the projectile and to the initial motion conditions

- These constants are often estimated by nonlinear least squares to "best fit" measured pitch and yaw histories modeled by the above equations
- Consider simulated measurements of $\theta(t)$ and $\psi(t)$ with the measurement error generated by using a zero-mean Gaussian noise process with a standard deviation given by $\sigma=0.0002$
- 52 measurements are sampled at 1 second intervals

NLS Example III (ii)

26

 (52×14)

NLS Example III (iii) - Code this up

The nonlinear least squares variables are given by

$$\mathbf{x}^{(14\times1)} = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 & k_5 & \lambda_1 & \lambda_2 & \lambda_3 & \omega_1 & \omega_2 & \omega_3 & \delta_1 & \delta_2 & \delta_3 \end{bmatrix}^T$$

$$\tilde{\mathbf{y}}^{(52\times1)} = \begin{bmatrix} \tilde{\theta}(0) & \tilde{\psi}(0) & \tilde{\theta}(1) & \tilde{\psi}(1) & \cdots & \tilde{\theta}(25) & \tilde{\psi}(25) \end{bmatrix}^T$$

$$\begin{bmatrix}
\frac{\partial \theta(0)}{\partial x_1} \Big|_{\mathbf{x}_c} & \cdots & \frac{\partial \theta(0)}{\partial x_{14}} \Big|_{\mathbf{x}_c} \\
\frac{\partial \psi(0)}{\partial x_1} \Big|_{\mathbf{x}_c} & \cdots & \frac{\partial \psi(0)}{\partial x_{14}} \Big|_{\mathbf{x}_c} \\
\vdots & & \vdots \\
\frac{\partial \theta(25)}{\partial x_1} \Big|_{\mathbf{x}_c} & \cdots & \frac{\partial \theta(25)}{\partial x_{14}} \Big|_{\mathbf{x}_c}
\end{bmatrix},$$

$$\frac{\partial \psi(25)}{\partial x_1} \Big|_{\mathbf{x}_c} & \cdots & \frac{\partial \psi(25)}{\partial x_{14}} \Big|_{\mathbf{x}_c}$$

$$W = 10^{8} \begin{bmatrix} 0.25 & 0 \\ 0.25 & 0 \\ 0.25 & \\$$

27

NLS Example III (iv)

Convergence history

Parameter	Iteration Number				σ
	0	1	2	5	
k_1	0.5000	0.1852	0.1975	0.1999	0.0006
k_2	0.2500	0.1075	0.1012	0.0997	0.0005
k_3	0.1250	0.0567	0.0505	0.0500	0.0001
k_4	0.0000	-0.0006	0.0001	0.0002	0.0001
k_5	0.0000	-0.0018	-0.0005	0.0001	0.0001
λ_1	-0.1500	-0.1234	-0.0954	-0.0998	0.0004
λ_2	-0.0600	-0.0661	-0.0585	-0.0497	0.0004
λ_3	-0.0300	-0.0398	-0.0338	-0.0250	0.0002
ω_1	0.2600	0.2490	0.2471	0.2500	0.0004
ω_2	0.5500	0.5300	0.4955	0.4999	0.0004
ω_3	0.9500	0.9697	1.0068	0.9998	0.0002
δ_1	0.0100	0.0344	0.0143	0.0010	0.0031
δ_2	0.0100	-0.0447	0.0051	0.0001	0.0048
δ_3^-	0.0100	0.0024	-0.0570	-0.0001	0.0024
_	I				28

NLS Example III (v)

- Observe the rather dramatic convergence progress shown in the results
- The rightmost column is obtained by taking the square root of the 14 diagonal elements of $(H^TWH)^{-1}$ on the final iteration
 - We prove this interpretation later
 - Note that the convergence errors are comparable in size to the corresponding $\boldsymbol{\sigma}$
 - Weighted sum square of residuals at each iteration is given by

Cost	Iteration Number					
	0	1	2		5	
J	1.08×10^7	2.51×10^5	1.17×10^4		1.93×10^{1}	

 Dramatic convergence is evidenced by the decrease of the weighted sum square of the residuals by six orders of magnitude in five iterations

29

母

LM Algorithm (i)

• Levenberg-Marquardt (LM) algorithm used to overcome the deficiencies of both NLS and the gradient algorithms

\[
\times \text{livear redion of loss function}
\]

$$J = \frac{1}{2} \Delta \mathbf{y}^T W \Delta \mathbf{y} \equiv \frac{1}{2} [\tilde{\mathbf{y}} - \mathbf{f}(\hat{\mathbf{x}})]^T W [\tilde{\mathbf{y}} - \mathbf{f}(\hat{\mathbf{x}})]$$
 (1)

• Take the gradient with respect to the estimate, evaluated at \mathbf{x}_{c}

$$|\nabla_{\hat{\mathbf{x}}}J|_{\mathbf{x}_c} = -H^T W[\tilde{\mathbf{y}} - \mathbf{f}(\mathbf{x}_c)] \equiv -H^T W \Delta \mathbf{y}_c$$

where

$$H \equiv \left. \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \right|_{\mathbf{x}_c}$$

The method of gradients seeks corrections down the gradient

$$\Delta \mathbf{x} = -\frac{1}{\eta} \nabla_{\hat{\mathbf{x}}} J = \frac{1}{\eta} H^T W \Delta \mathbf{y}_c$$

where $1/\eta$ is a scalar which controls the step size

LM Algorithm (ii)

The LM correction is then given by

$$\Delta \mathbf{x} = (H^T W H + \eta \mathcal{H})^{-1} H^T W \Delta \mathbf{y}_c$$
 (2)

$$\hat{\mathbf{x}} = \mathbf{x}_c + \Delta \mathbf{x} \tag{3}$$

where \mathcal{H} is a diagonal matrix with entries given by the diagonal elements of H^TWH or in some cases simply the identity matrix

- The search direction is an intermediate between the steepest descent and the differential correction direction
- As $\eta \to 0$ the correction is equivalent to the differential correction method () on times least square)
- As $\eta \to \infty$ the correction reduces to a steepest descent search along the negative gradient of J
- Controlling η is a heuristic art form that can be tuned by the user
 - Generally η is large in early iterations and should definitely be reduced toward zero in the region near the minimum

LM Algorithm (iii)

- Typical recipe for implementing the LM algorithm
- 1. Compute Eq. (1) using an initial estimate for $\hat{\mathbf{x}}$, denoted by \mathbf{x}_c .
- 2. Use Eqs. (2) and (3) to update the current estimate with a large value for η (usually much larger than the norm of H^TWH , typically 10 to 100 times the norm).
- 3. Recompute Eq. (1) with the new estimate. If the new value for Eq. (1) is \geq the value computed in step 1, then the new estimate is disregarded and η is replaced by $f\eta$, where f is a fixed positive constant, usually between 1 and 10 (we suggest a default of 5). Otherwise, retain the estimate, and replace η with η/f .
- 4. After each subsequent iteration, compare the new value of Eq. (1) with its value using the previous estimate and replace η with $f\eta$ or η/f as in step 3. The estimate $\hat{\mathbf{x}}$ is retained if J in Eq. (1) continues to decrease and discarded if Eq. (1) increases.

LM Example (i)

- Same as last example
 - Starting value for λ_1 is set to -0.8500 instead of -0.1500
 - For this initial value, the standard least squares solution diverges rapidly with each iteration
 - Use the LM algorithm with $\eta = 1 \times 10^6$
 - Convergence now occurs

Parameter	Iteration Number				
	0	10	15	\cdots 20	
k_1	0.5000	0.3601	0.0844	0.1999	
k_2	0.2500	0.1946	0.2099	0.0997	•
k_3	0.1250	0.0905	0.0620	0.0500	
k_4	0.0000	-0.0062	0.0111	0.0002	1
k_5	0.0000	-0.0047	-0.0004	0.0001	
λ_1	-0.8500	-0.7977	-0.0436	-0.0998)
λ_2	-0.0600	-0.0760	-0.1270	-0.0497	,
λ_3	-0.0300	-0.0418	-0.0436	-0.0250	
ω_1	0.2600	0.1094	0.1621	0.2500	
ω_2	0.5500	0.5505	0.4950	0.4999	
ω_3	0.9500	0.9582	0.9874	0.9998)
δ_1	0.0100	0.0060	0.5068	0.0010	
δ_2	0.0100	-0.1234	-0.3482	0.0001	
δ_3	0.0100	0.1225	0.1918	-0.0001	
η	10^{6}	0.5120	0.0041	$^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$	

由

LM Example (ii)

```
% True Values
k1=0.2;k2=0.1;k3=0.05;k4=0.0001;k5=0.0001;
lam1=-0.1;lam2=-0.05;lam3=-0.025;
w1=0.25;w2=0.5;w3=1.0;
d1=0;d2=0;d3=0;
% Measurements
t=[0:1:25]';m=length(t);
theta=k1*exp(lam1*t).*cos(w1*t+d1)+k2*exp(lam2*t).*cos(w2*t+d2)...
  +k3*exp(lam3*t).*cos(w3*t+d3)+k4;
psi=k1*exp(lam1*t).*sin(w1*t+d1)+k2*exp(lam2*t).*sin(w2*t+d2)...
 +k3*exp(lam3*t).*sin(w3*t+d3)+k5;
thetam=theta+0.0002*randn(m,1);
psim=psi+0.0002*randn(m,1);
ym=[thetam;psim];
% Factor for Levenberg-Marquardt Algorithm
fac=1e6;facc(1)=fac;
```

LM Example (iii)

% Initial Conditions

```
dx = ones(14,1); i=1; clear xe; xe(1,:)=xc';
%Levenberg-Marquardt Algorithm
while norm(dx) > 1e-6,
i=i+1; if (i > 50), break, end
k1e=xc(1);k2e=xc(2);k3e=xc(3);k4e=xc(4);k5e=xc(5);
lam1e=xc(6);lam2e=xc(7);lam3e=xc(8);
w1e=xc(9);w2e=xc(10);w3e=xc(11);
d1e=xc(12);d2e=xc(13);d3e=xc(14);
thetae=k1e*exp(lam1e*t).*cos(w1e*t+d1e)+k2e*exp(lam2e*t).*cos(w2e*t+d2e) ...
   +k3e*exp(lam3e*t).*cos(w3e*t+d3e)+k4e;
psie=k1e*exp(lam1e*t).*sin(w1e*t+d1e)+k2e*exp(lam2e*t).*sin(w2e*t+d2e) ...
  +k3e*exp(lam3e*t).*sin(w3e*t+d3e)+k5e;
```

xc = [0.5; 0.25; 0.125; 0; 0; -0.85; -0.06; -0.03; 0.26; 0.55; 0.95; 0.01; 0.01; 0.01];

LM Example (iv)

```
h=[\exp(lam1e*t).*\cos(w1e*t+d1e)\exp(lam2e*t).*\cos(w2e*t+d2e)...
 \exp(\tan 3e^*t).*\cos(w3e^*t+d3e) ones(m,1) zeros(m,1) ...
 k1e*t.*exp(lam1e*t).*cos(w1e*t+d1e) k2e*t.*exp(lam2e*t).*cos(w2e*t+d2e) ...
 k3e*t.*exp(lam3e*t).*cos(w3e*t+d3e) -k1e*t.*exp(lam1e*t).*sin(w1e*t+d1e) ...
 -k2e*t.*exp(lam2e*t).*sin(w2e*t+d2e) -k3e*t.*exp(lam3e*t).*sin(w3e*t+d3e) ...
 -k1e*exp(lam1e*t).*sin(w1e*t+d1e) -k2e*exp(lam2e*t).*sin(w2e*t+d2e) ...
 -k3e*exp(lam3e*t).*sin(w3e*t+d3e)
 \exp(\text{lam1e*t}).*\sin(\text{w1e*t+d1e}) \exp(\text{lam2e*t}).*\sin(\text{w2e*t+d2e}) \dots
 \exp(\tan 3e^*t).*\sin(w3e^*t+d3e) zeros(m,1) ones(m,1) ...
 k1e*t.*exp(lam1e*t).*sin(w1e*t+d1e) ...
 k2e*t.*exp(lam2e*t).*sin(w2e*t+d2e) ...
 k3e*t.*exp(lam3e*t).*sin(w3e*t+d3e) ...
 k1e*t.*exp(lam1e*t).*cos(w1e*t+d1e) ...
 k2e*t.*exp(lam2e*t).*cos(w2e*t+d2e) ...
 k3e*t.*exp(lam3e*t).*cos(w3e*t+d3e) ...
 k1e*exp(lam1e*t).*cos(w1e*t+d1e) ...
 k2e*exp(lam2e*t).*cos(w2e*t+d2e) ...
 k3e*exp(lam3e*t).*cos(w3e*t+d3e)];
```

LM Example (v)

```
dy=ym-[thetae;psie];
jold=sum(dy'*dy);
dx=inv(h'*h + fac*diag(diag(h'*h)))*h'*(ym-[thetae;psie]);
xc=xc+dx;
xe(i,:)=xc';
k1e=xc(1);k2e=xc(2);k3e=xc(3);k4e=xc(4);k5e=xc(5);
lam1e=xc(6);lam2e=xc(7);lam3e=xc(8);
w1e=xc(9);w2e=xc(10);w3e=xc(11);
d1e=xc(12);d2e=xc(13);d3e=xc(14);
thetae=k1e*exp(lam1e*t).*cos(w1e*t+d1e)+k2e*exp(lam2e*t).*cos(w2e*t+d2e) ...
   +k3e*exp(lam3e*t).*cos(w3e*t+d3e)+k4e;
psie=k1e*exp(lam1e*t).*sin(w1e*t+d1e)+k2e*exp(lam2e*t).*sin(w2e*t+d2e)...
  +k3e*exp(lam3e*t).*sin(w3e*t+d3e)+k5e;
dy=ym-[thetae;psie];
jnew=sum(dy'*dy);
```

LM Example (vi)

```
% Update Factor
if jnew < jold
fac=fac/5;
else
fac=fac*5;
end

facc(i)=fac;

cost(i)=.25e8*dy'*dy*0.5;
```