IEEE PES Task Force on Benchmark Systems for Stability Controls

Ian Hiskens

November 19, 2013

Abstract

This report summarizes a study of an IEEE 10-generator, 39-bus system. Three types of analysis were performed: load flow, small disturbance analysis, and dynamic simulation. All analysis was carried out using MATLAB, and this report's objective is to demonstrate how to use MATLAB to obtain results that are comparable to benchmark results from other analysis methods. Data from other methods may be found on the website www.sel.eesc.usp.br/ieee.

Contents

1	Sys	tem Model	9
	1.1	Generators	3
		1.1.1 State Variable Model	3
		1.1.2 Model Parameters	;
		1.1.3 AVR Model	4
		1.1.4 AVR Parameters	5
		1.1.5 PSS Model	Ę
		1.1.6 PSS Parameters	6
		1.1.7 Governor Model	6
	1.2	Loads	7
		1.2.1 Load Model	7
		1.2.2 Load Parameters	7
	1.3	Lines and Transformers	8
	1.4	Power and Voltage Setpoints	10
2	Loa	d Flow Results	11
3	Sma	all Disturbance Analysis	12
4	Dyr	namic Simulation	13
5	Δητ	pendix	15
J	5.1	Accessing Simulation Data with MATLAB®	15
	0.1	5.1.1 Variable Indexing	15
		5.1.2 Example Application	16
	5.2	Contents of file 39bus.out	18
	0.2	Concents of the Cobab Coac	10
\mathbf{L}	\mathbf{ist}	of Figures	
	1	IEEE 39-bus network	2
	2	AVR block diagram	4
	3	PSS block diagram	6
	4	Graphical depiction of Eigenvalues	12
	5	δ (in radians) versus time for generators	13

6	ω (in percent per-unit) for generators	14
7	Contents of file 39bus.out (Page 1 of 4)	19

List of Tables

1	Generator inertia data
2	Generator data
3	Generator AVR parameters
4	Generator PSS parameters
5	Generator setpoint data
6	Active and reactive power draws for all loads at initial voltage
7	Network data
8	Power and voltage setpoint data
9	Power flow results
10	Eigenvalues calculated through small disturbance analysis
11	Mapping from MATLAB® files to simulation data

The IEEE 39-bus system analyzed in this report is commonly known as "the 10-machine New-England Power System." This system's parameters are specified in a paper by T. Athay et al[1] and are published in a book titled 'Energy Function Analysis for Power System Stability'[2]. A diagram of the system is shown in Figure 1, and system models and parameters are introduced in the following section.

Figure 1: IEEE 39-bus network

1 System Model

1.1 Generators

1.1.1 State Variable Model

Generator analysis was carried out using a fourth-order model, as defined in the equations below. Equations 1 through 4 model the generator, while the remaining equations relate various parameters. Parameter values for the model are shown in Table 2 on the system base MVA. For more information on this generator model and its parameters, refer to Sauer and Pai pages 101-103 [3].

$$\dot{E}'_q = \frac{1}{T'_{do}} (-E'_q - (x_d - x'_d)I_d + E_{fd}) \tag{1}$$

$$\dot{E}'_d = \frac{1}{T'_{qo}} (-E'_d + (x_q - x'_q)I_q)$$
 (2)

$$\dot{\delta} = \omega \tag{3}$$

$$\dot{\omega} = \frac{1}{M} (T_{mech} - (\phi_d I_q - \phi_q I_d) - D_\omega) \tag{4}$$

$$0 = r_a I_d + \phi_a + V_d \tag{5}$$

$$0 = r_a I_q - \phi_d + V_q \tag{6}$$

$$0 = -\phi_d - x_d' I_d + E_g' \tag{7}$$

$$0 = -\phi_q - x_q' I_q - E_d' \tag{8}$$

$$0 = V_d \sin \delta + V_a \cos \delta - V_r \tag{9}$$

$$0 = V_a \sin \delta - V_d \cos \delta - V_i \tag{10}$$

$$0 = I_d \sin \delta + I_q \cos \delta - I_r \tag{11}$$

$$0 = I_q \sin \delta - I_d \cos \delta - I_i \tag{12}$$

1.1.2 Model Parameters

Generator inertia data is given in Table 1. Note that the per unit conversion for M associated with ω is in radians per second. Also, we changed the value of T'_{qo} for Unit 10 from 0.0 to 0.10.

Table 1: Generator inertia data

Unit No.	M=2*H
1	$2 \cdot 500.0/(120\pi)$
2	$2\cdot 30.3/(120\pi)$
3	$2 \cdot 35.8/(120\pi)$
4	$2 \cdot 28.6/(120\pi)$
5	$2\cdot 26.0/(120\pi)$
6	$2 \cdot 34.8/(120\pi)$
7	$2\cdot 26.4/(120\pi)$
8	$2\cdot 24.3/(120\pi)$
9	$2 \cdot 34.5/(120\pi)$
10	$2\cdot 42.0/(120\pi)$

All other generator parameters are set according to Table 2.

Unit No.	Н	R_a	x'_d	x'_q	x_d	x_q	T'_{do}	T'_{qo}	x_l
1	500	0	0.006	0.008	0.02	0.019	7	0.7	0.003
2	30.3	0	0.0697	0.17	0.295	0.282	6.56	1.5	0.035
3	35.8	0	0.0531	0.0876	0.2495	0.237	5.7	1.5	0.0304
4	28.6	0	0.0436	0.166	0.262	0.258	5.69	1.5	0.0295
5	26	0	0.132	0.166	0.67	0.62	5.4	0.44	0.054
6	34.8	0	0.05	0.0814	0.254	0.241	7.3	0.4	0.0224
7	26.4	0	0.049	0.186	0.295	0.292	5.66	1.5	0.0322
8	24.3	0	0.057	0.0911	0.29	0.28	6.7	0.41	0.028
9	34.5	0	0.057	0.0587	0.2106	0.205	4.79	1.96	0.0298
10	42	0	0.031	0.008	0.1	0.069	10.2	0	0.0125

Table 2: Generator data

1.1.3 AVR Model

All generators in the system are equipped with automatic voltage regulators (AVRs). We chose to use static AVRs with E_{fd} limiters. The model for this controller is shown in Figure 2 below.

Figure 2: AVR block diagram

AVR parameters are related according to equations 13 to 24.

$$\dot{V}_f = \frac{1}{T_R} (V_T - V_f) \tag{13}$$

$$\dot{E}_{fd} = \frac{1}{T_A} (K_A x_{tgr} - E_{fd}) \tag{14}$$

$$\dot{x}_i = x_{err} - x_{tgr} \tag{15}$$

$$\dot{V}_{REF} = \begin{cases} 0 & \text{when } t > 0 \\ V_T - V_{\text{setpoint}} & \text{when } t < 0 \end{cases}$$
(16)

$$0 = V_T^2 - (V_r^2 + V_i^2) (17)$$

$$0 = T_B x_{tqr} - T_C x_{err} - x_i \tag{18}$$

$$0 = x_{err} - (V_{REF} + V_{PSS} - V_f) (19)$$

$$0 = E_{fd} - E_{fd} \tag{20}$$

$$0 = E_{fd} - E_{fd}$$

$$(20)$$
Upper Limit Detector < 0

$$0 = \text{Upper Limit Switch} - 1$$

$$0 = \text{Upper Limit Detector} - E_{fd} - E_{fd,\text{Max}}$$

$$(21)$$
Upper Limit Detector > 0

$$0 = \text{Upper Limit Switch}$$

$$0 = \text{Upper Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} > 0$$

$$0 = \text{Lower Limit Switch} - 1$$

$$0 = \text{Lower Limit Detector} - E_{fd} - E_{fd,\text{Min}}$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

$$1 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd})$$

Upper Limit Detector
$$> 0$$

$$\begin{cases}
0 = \text{Upper Limit Switch} \\
0 = \text{Upper Limit Detector} - (K_A x_{tgr} - E_{fd})
\end{cases}$$
(22)

Lower Limit Detector
$$> 0$$

$$\begin{cases} 0 = \text{Lower Limit Switch} - 1\\ 0 = \text{Lower Limit Detector} - E_{fd} - E_{fd,\text{Min}} \end{cases}$$
 (23)

Lower Limit Detector
$$< 0$$

$$\begin{cases} 0 = \text{Lower Limit Switch} \\ 0 = \text{Lower Limit Detector} - (K_A x_{tgr} - E_{fd}) \end{cases}$$
 (24)

AVR Parameters

AVR parameters, as defined in the previous section, are specified in Table 3.

Table 3: Generator AVR parameters

Unit No.	T_R	K_A	T_A	T_B	T_C	$V_{ m setpoint}$	$E_{fd,\mathrm{Max}}$	$E_{fd,\mathrm{Min}}$
1	0.01	200.0	0.015	10.0	1.0	1.0300	5.0	-5.0
2	0.01	200.0	0.015	10.0	1.0	0.9820	5.0	-5.0
3	0.01	200.0	0.015	10.0	1.0	0.9831	5.0	-5.0
4	0.01	200.0	0.015	10.0	1.0	0.9972	5.0	-5.0
5	0.01	200.0	0.015	10.0	1.0	1.0123	5.0	-5.0
6	0.01	200.0	0.015	10.0	1.0	1.0493	5.0	-5.0
7	0.01	200.0	0.015	10.0	1.0	1.0635	5.0	-5.0
8	0.01	200.0	0.015	10.0	1.0	1.0278	5.0	-5.0
9	0.01	200.0	0.015	10.0	1.0	1.0265	5.0	-5.0
10	0.01	200.0	0.015	10.0	1.0	1.0475	5.0	-5.0

1.1.5 PSS Model

Each generator in the system is equipped with a δ and ω type PSS with two phase shift blocks. The model for this PSS is shown in Figure 3 below.

Figure 3: PSS block diagram

PSS parameters are related according to equations 25 to 33.

$$\dot{x}_W = \frac{V_W}{T_W} \tag{25}$$

$$\dot{x}_P = V_W - V_P \tag{26}$$

$$\dot{x}_Q = V_P - V_{\text{out}} \tag{27}$$

$$0 = \omega K_{PSS} - V_W - x_W \tag{28}$$

$$0 = V_P T_2 - V_W T_1 - x_P (29)$$

$$0 = V_{\text{out}} T_4 - V_P T_3 - x_Q \tag{30}$$

$$0 = x_{PSS,\text{Max}} - V_{\text{out}} - (V_{PSS,\text{Max}} - V_{\text{out}})$$
(31)

$$0 = V_{\text{out}} - x_{PSS,\text{Min}} - (V_{\text{out}} - V_{PSS,\text{Min}})$$
(32)

$$0 = \begin{cases} V_{PSS} - x_{PSS,\text{Max}} & \text{when } (V_{PSS,\text{Max}} - V_{\text{out}}) < 0 \\ V_{PSS} - x_{PSS,\text{Min}} & \text{when } (V_{\text{out}} - V_{PSS,\text{Min}}) < 0 \\ V_{PSS} - V_{\text{out}} & \text{otherwise} \end{cases}$$

$$(33)$$

1.1.6 PSS Parameters

PSS parameters defined in the previous section are specified according to Table 4.

Table 4: Generator PSS parameters

Unit No.	K	T_W	T_1	T_2	T_3	T_4	$V_{PSS,{ m Max}}$	$V_{PSS, m Min}$
1	$1.0/(120\pi)$	10.0	5.0	0.60	3.0	0.50	0.2	-0.2
2	$0.5/(120\pi)$	10.0	5.0	0.40	1.0	0.10	0.2	-0.2
3	$0.5/(120\pi)$	10.0	3.0	0.20	2.0	0.20	0.2	-0.2
4	$2.0/(120\pi)$	10.0	1.0	0.10	1.0	0.30	0.2	-0.2
5	$1.0/(120\pi)$	10.0	1.5	0.20	1.0	0.10	0.2	-0.2
6	$4.0/(120\pi)$	10.0	0.5	0.10	0.5	0.05	0.2	-0.2
7	$7.5/(120\pi)$	10.0	0.2	0.02	0.5	0.10	0.2	-0.2
8	$2.0/(120\pi)$	10.0	1.0	0.20	1.0	0.10	0.2	-0.2
9	$2.0/(120\pi)$	10.0	1.0	0.50	2.0	0.10	0.2	-0.2
10	$1.0/(120\pi)$	10.0	1.0	0.05	3.0	0.50	0.2	-0.2

1.1.7 Governor Model

No governor dynamics are included in our analysis, and each generator's mechanical torque is assumed to be constant. Since Unit 2 is the angle reference and resides at the swing node, $P_{\text{set point}}$ is determined by the

power flow initialization. The value of $P_{\text{set point}}$ is given for each generator in Table 5 on the system base of 100 MVA.

Table 5:	Generator	setpoint	data
----------	-----------	----------	------

Unit No.	$P_{ m set\ point}$
1	10.00
2	-
3	6.50
4	6.32
5	5.08
6	6.50
7	5.60
8	5.40
9	8.30
10	2.50

Loads 1.2

Load Model

We use a constant impedance load model in our analysis. Loads modeled this way are voltage dependent and behave according to the following equations.

if
$$t < 0$$

$$\begin{cases}
0 = P_0 + V_r I_r + V_i I_i \\
0 = Q_0 + V_i I_r - V_r I_i \\
V = (V_r^2 + V_i^2)^2
\end{cases}$$
(34)

if
$$t < 0$$

$$\begin{cases}
0 = P_0 + V_r I_r + V_i I_i \\
0 = Q_0 + V_i I_r - V_r I_i \\
V = (V_r^2 + V_i^2)^2
\end{cases}$$

$$(34)$$
if $t > 0$

$$\begin{cases}
0 = P_0 \left(\frac{V}{V_0}\right)^{\alpha} + V_r I_r + V_i I_i \\
0 = Q_0 \left(\frac{V}{V_0}\right)^{\beta} + V_i I_r + V_r I_i \\
V = (V_r^2 + V_i^2)^2
\end{cases}$$

1.2.2**Load Parameters**

Table 6 contains load behavior at initial voltage. Due to the voltage dependence discussed above, these values may not be accurate after voltages change.

Table 6: Active and reactive power draws for all loads at initial voltage

Bus	Load					
Das	P [PU]	Q [pu]				
1	0.000	0.000				
2	0.000	0.000				
3	3.220	0.024				
4	5.000	1.840				
5	0.000	0.000				
6	0.000	0.000				
7	2.338	0.840				
8	5.220	1.760				
9	0.000	0.000				
10	0.000	0.000				
11	0.000	0.000				
12	0.075	0.880				
13	0.000	0.000				
14	0.000	0.000				
15	3.200	1.530				
16	3.290	0.323				
17	0.000	0.000				
18	1.580	0.300				
19	0.000	0.000				
20	6.280	1.030				
21	2.740	1.150				
22	0.000	0.000				
23	2.475	0.846				
24	3.086	-0.920				
25	2.240	0.472				
26	1.390	0.170				
27	2.810	0.755				
28	2.060	0.276				
29	2.835	0.269				
31	0.092	0.046				
39	11.040	2.500				

1.3 Lines and Transformers

Network data for the system is shown in Table 7. As with generator data, all values are given on the system base MVA at $60~\mathrm{Hz}$.

Table 7: Network data

	Li	ne Data			Transforme	er Tap
From Bus	To Bus	R	X	В	Magnitude	Angle
1	2	0.0035	0.0411	0.6987	-	-
1	39	0.001	0.025	0.75	-	-
2	3	0.0013	0.0151	0.2572	_	-
2	25	0.007	0.0086	0.146	_	-
3	4	0.0013	0.0213	0.2214	-	-
3	18	0.0011	0.0133	0.2138	_	-
4	5	0.0008	0.0128	0.1342	-	-
4	14	0.0008	0.0129	0.1382	-	-
5	6	0.0002	0.0026	0.0434	-	-
5	8	0.0008	0.0112	0.1476	-	-
6	7	0.0006	0.0092	0.113	-	-
6	11	0.0007	0.0082	0.1389	-	-
7	8	0.0004	0.0046	0.078	-	-
8	9	0.0023	0.0363	0.3804	-	-
9	39	0.001	0.025	1.2	-	-
10	11	0.0004	0.0043	0.0729	-	-
10	13	0.0004	0.0043	0.0729	-	-
13	14	0.0009	0.0101	0.1723	-	-
14	15	0.0018	0.0217	0.366	-	-
15	16	0.0009	0.0094	0.171	-	-
16	17	0.0007	0.0089	0.1342	-	-
16	19	0.0016	0.0195	0.304	-	-
16	21	0.0008	0.0135	0.2548	-	-
16	24	0.0003	0.0059	0.068	-	-
17	18	0.0007	0.0082	0.1319	-	-
17	27	0.0013	0.0173	0.3216	-	-
21	22	0.0008	0.014	0.2565	-	-
22	23	0.0006	0.0096	0.1846	-	-
23	24	0.0022	0.035	0.361	-	-
25	26	0.0032	0.0323	0.513	-	-
26	27	0.0014	0.0147	0.2396	-	-
26	28	0.0043	0.0474	0.7802	-	-
26	29	0.0057	0.0625	1.029	-	-
28	29	0.0014	0.0151	0.249	-	-
12	11	0.0016	0.0435	0	1.006	0
12	13	0.0016	0.0435	0	1.006	0
6	31	0	0.025	0	1.07	0
10	32	0	0.02	0	1.07	0
19	33	0.0007	0.0142	0	1.07	0
20	34	0.0009	0.018	0	1.009	0
22	35	0	0.0143	0	1.025	0
23	36	0.0005	0.0272	0	1	0
25	37	0.0006	0.0232	0	1.025	0
2	30	0	0.0181	0	1.025	0
29	38	0.0008	0.0156	0	1.025	0
19	20	0.0007	0.0138	0	1.06	0

1.4 Power and Voltage Setpoints

Table 8 contains power and voltage setpoint data, specified on the system MVA base. Note that Generator 2 is the swing node, and Generator 1 represents the aggregation of a large number of generators.

Table 8: Power and voltage setpoint data

Bus	Type	Voltage	Load			Genera	tor
		[PU]	MW	MVar	MW	MVar	Unit No.
1	PQ	-	0	0	0	0	
2	\overline{PQ}	-	0	0	0	0	
3	\overline{PQ}	-	322	2.4	0	0	
4	\overline{PQ}	-	500	184	0	0	
5	\overline{PQ}	-	0	0	0	0	
6	PQ	-	0	0	0	0	
7	\overline{PQ}	-	233.8	84	0	0	
8	PQ	-	522	176	0	0	
9	PQ	-	0	0	0	0	
10	PQ	-	0	0	0	0	
11	PQ	-	0	0	0	0	
12	PQ	-	7.5	88	0	0	
13	PQ	-	0	0	0	0	
14	PQ	-	0	0	0	0	
15	PQ	-	320	153	0	0	
16	PQ	-	329	32.3	0	0	
17	PQ	-	0	0	0	0	
18	PQ	-	158	30	0	0	
19	PQ	-	0	0	0	0	
20	PQ	-	628	103	0	0	
21	PQ	-	274	115	0	0	
22	PQ	-	0	0	0	0	
23	PQ	-	247.5	84.6	0	0	
24	PQ	-	308.6	-92	0	0	
25	PQ	-	224	47.2	0	0	
26	PQ	-	139	17	0	0	
27	PQ	-	281	75.5	0	0	
28	PQ	-	206	27.6	0	0	
29	PQ	-	283.5	26.9	0	0	
30	PV	1.0475	0	0	250	-	Gen10
31	PV	0.982	9.2	4.6	-	-	Gen2
32	PV	0.9831	0	0	650	-	Gen3
33	PV	0.9972	0	0	632	-	Gen4
34	PV	1.0123	0	0	508	-	Gen5
35	PV	1.0493	0	0	650	-	Gen6
36	PV	1.0635	0	0	560	-	Gen7
37	PV	1.0278	0	0	540	-	Gen 8
38	PV	1.0265	0	0	830	-	Gen9
39	PV	1.03	1104	250	1000	_	Gen1

This completes the description of the system and its model. The remainder of this report focuses on the three analyses performed on the system: load flow, small signal stability assessment via Eigenvalue calculation, and numerical simulation. The results of load flow analysis are presented in the next section.

2 Load Flow Results

Load flow for the system was calculated using MATLAB. The results are in Table 9. Note that all voltages, active power values, and reactive power values are given in per unit on the system MVA base.

For a more complete description of power flow, including flow on each line, see Section 5.2 in the Appendix.

Table 9: Power flow results

Bus	V	Angle [deg]	Bus	Total	Loa	ad		Generat	or
			Р	Q	Р	Q	Р	Q	Unit No.
1	1.0474	-8.44	0	0	0	0			
2	1.0487	-5.75	0	0	0	0			
3	1.0302	-8.6	-322	-2.4	-322	-2.4			
4	1.0039	-9.61	-500	-184	-500	-184			
5	1.0053	-8.61	0	0	0	0			
6	1.0077	-7.95	0	0	0	0			
7	0.997	-10.12	-233.8	-84	-233.8	-84			
8	0.996	-10.62	-522	-176	-522	-176			
9	1.0282	-10.32	0	0	0	0			
10	1.0172	-5.43	0	0	0	0			
11	1.0127	-6.28	0	0	0	0			
12	1.0002	-6.24	-7.5	-88	-7.5	-88			
13	1.0143	-6.1	0	0	0	0			
14	1.0117	-7.66	0	0	0	0			
15	1.0154	-7.74	-320	-153	-320	-153			
16	1.0318	-6.19	-329	-32.3	-329	-32.3			
17	1.0336	-7.3	0	0	0	0			
18	1.0309	-8.22	-158	-30	-158	-30			
19	1.0499	-1.02	0	0	0	0			
20	0.9912	-2.01	-628	-103	-628	-103			
21	1.0318	-3.78	-274	-115	-274	-115			
22	1.0498	0.67	0	0	0	0			
23	1.0448	0.47	-247.5	-84.6	-247.5	-84.6			
24	1.0373	-6.07	-308.6	92.2	-308.6	92.2			
25	1.0576	-4.36	-224	-47.2	-224	-47.2			
26	1.0521	-5.53	-139	-17	-139	-17			
27	1.0377	-7.5	-281	-75.5	-281	-75.5			
28	1.0501	-2.01	-206	-27.6	-206	-27.6			
29	1.0499	0.74	-283.5	-26.9	-283.5	-26.9			
30	1.0475	-3.33	250	146.16			250	146.16	10
31	0.982	0	511.61	193.65	-9.2	-4.6	520.81	198.25	2
32	0.9831	2.57	650	205.14			650	205.14	3
33	0.9972	4.19	632	109.91			632	109.91	4
34	1.0123	3.17	508	165.76			508	165.76	5
35	1.0493	5.63	650	212.41			650	212.41	6
36	1.0635	8.32	560	101.17			560	101.17	7
37	1.0278	2.42	540	0.44			540	0.44	8
38	1.0265	7.81	830	22.84			830	22.84	9
39	1.03	-10.05	-104	-161.7	-1104	-250	1000	88.28	1

3 Small Disturbance Analysis

Small signal stability was assessed by calculating Eigenvalues of the system. To find Eigenvalues, we first calculated reduced A matrices as follows:

$$\dot{x} = f(x,y) \mid 0 = g(x,y)$$
 Differential eq. Algebraic eq. Linearize:
$$\Delta \dot{x} = f_x \Delta x + f_y \Delta y \mid 0 = g_x \Delta x + g_y \Delta y$$
 Eliminate algebraic equations:
$$\Delta \dot{x} = (f_x - f_y g_y^{-1} g_x) \Delta x$$
 Reduced A matrices

Eigenvalues, which correspond to machine oscillatory modes, are calculated from the reduced A matrices. Some Eigenvalues of our system are given in Table 10 below. To access all Eigenvalues calculated in our analysis, see Section 5.1 in the Appendix.

Table 10: Eigenvalues calculated through small disturbance analysis

Index	Real part	Imaginary part
27	-2.553	j10.566
29	-1.8494	j10.028
31	-1.5817	j8.5503
33	-2.5633	j8.6706
35	-1.8626	j7.4388
37	-1.3118	j7.1081
39	-1.8437	j7.0812
41	-1.523	j6.3180
57	-2.9563	j2.5076

The Eigenvalues in Table 10 are plotted in Figure 4.

Figure 4: Graphical depiction of Eigenvalues

4 Dynamic Simulation

Dynamic simulation was performed for a three-phase fault at Bus 16 occurring at t=0.5s. The fault impedance is 0.001 PU, and it is cleared at t=0.7s. The simulation method used was numerical trapezoidal integration with a time step of 20 ms.

Figure 5 shows the generator state δ as a function of time for the ten generators, with Unit 1 as the angle reference. Figure 6 on the following page shows the generator state ω as a function of time for the ten generators.

Figure 5: δ (in radians) versus time for generators

Figure 6: ω (in percent per-unit) for generators

To generate these and other figures from the ${\tt MATLAB}$ files available on the website, see "Accessing Simulation Data with MATLAB" in the appendix.

5 Appendix

5.1 Accessing Simulation Data with MATLAB®

There are seven MATLAB[®].mat files available for download. Each .mat file has a csv counterpart for those who prefer to work with Excel or another CSV-friendly program (the procedure described here may be adapted for such programs). Each file is described below.

- time.mat is a row vector with 677 elements. This vector represents the simulation time period with increments of 20ms. To observe the variation of any model variable with respect to time, simply plot the corresponding row of x.mat or y.mat versus time.mat.
- x.mat contains 209 row vectors, each corresponding to a model state variable. See Table 11.
- x0.mat contains 209 elements corresponding to initial values of model state variables. It is indexed the same as x.mat.
- y.mat contains 617 row vectors, each corresponding to a non-state variable in the model. See Table 11.
- y0.mat contains 617 elements corresponding to initial values of non-state variables. It is indexed the same as y.mat.
- Aeig.mat contains 209 complex elements corresponding to system Eigenvalues. To obtain any entry of Table 10, one need only extract the element of Aeig corresponding to that entry's Index. Of course, there are many more Eigenvalues stored in Aeig than those listed in Table 10, and all Eigenvalues may be easily plotted so long as care is taken in isolating the real and imaginary parts.
- Ared.mat is a 209-by-209 variable containing reduced A matrix data for the system. (Reduced A matrices are discussed in Section 3.)

Model state variables are stored in x.mat while non-state variables are located in y.mat. Table 11 maps from these files to specific model variables by specifying the range of variables corresponding to each component of the model. The order of variables within a component's range is discussed in the next five subsections.

Model	Model ID	x ra	<u> </u>	y ra	<u> </u>	Description
		from	to	from	to	
Generator	G1	1	4	1	13	4 x states and 13 y variables
	G10	37	49	118	130	
AVR	G1	110	114	438	448	5 x states and 11 y variables
	G10	155	159	537	547	
PSS	G1	160	164	548	554	5 x states and 7 y variables
	G10	205	209	611	617	
Load	Bus1	47	48	303	306	2 x states and 4 y variables
	Bus39	107	108	423	426	(x states are real and reactive power)
Network	Bus1			131	134	4 y variables
	Bus39			283	286	

Table 11: Mapping from MATLAB® files to simulation data

5.1.1 Variable Indexing

This section defines all variables contained in the MATLAB files. When writing code to extract specific variables, refer to this section to determine which indices to use.

Generator Variables (See Section 1.1.1)

$x_1 \\ x_2 \\ x_3 \\ x_4$: : : :	$\begin{array}{c} E_q' \\ E_d' \\ \delta \\ \omega \end{array}$	y_1 y_2 y_3 y_4 y_5 y_6 y_7 y_8 y_9 y_{10} y_{11} y_{12}	: : : : : : : : : : : : : : : : : : : :	$V_r V_i V_i I_r I_i V_d V_q I_d I_q \psi_d \psi_q E_{fd} \omega$
				:	
			y_{13}	:	T_{mech}

AVR Variables (See Section 1.1.3)

			y_1	:	V_r
			y_2	:	V_{i}
			y_3	:	V_T
œ.		V_{\bullet}	y_4	$y_4 : V_{PSS}$	V_{PSS}
$\begin{array}{c} x_1 \\ x_2 \end{array}$		E_{fd}	y_5	:	x_{err}
		x_i	y_6	:	x_{tgr}
x_3		V_{REF}	y_7	:	E_{fd}^{-}
x_4	•	vREF	y_8	:	Upper Limit Detector
			y_9	:	Lower Limit Detector
			y_{10}	:	Upper Limit Switch
			y_{11}	:	Lower Limit Switch

PSS Variables (See Section 1.1.5)

Load Variables (See Section 1.2.1)

Network Variables (See ??) Network variables are indexed in the MATLAB files as follows:

5.1.2 Example Application

The code below will generate Figures 5 and 6. By modifying or adapting this code, the reader may plot or manipulate any variables in x.mat and y.mat.

(Note: The placeholders "TIMEPATH", "XPATH", and "YPATH" should be replaced with paths to the respective files on your computer.)

```
%% Import Data
% Import time.mat
newData = load('-mat', 'TIMEPATH\time.mat');
% Create new variables in the base workspace from those fields.
vars = fieldnames(newData);
for i = 1:length(vars)
    assignin('base', vars{i}, newData.(vars{i}));
% Import x.mat
newData = load('-mat', 'XPATH\x.mat');
% Create new variables in the base workspace from those fields.
vars = fieldnames(newData);
for i = 1:length(vars)
    assignin('base', vars{i}, newData.(vars{i}));
end
% Import y.mat
newData = load('-mat', 'YPATH\y.mat');
\% Create new variables in the base workspace from those fields.
vars = fieldnames(newData);
for i = 1:length(vars)
    assignin('base', vars{i}, newData.(vars{i}));
end
clear newData, clear vars
%% Plot x or y vs. time
% Plot omega vs time
figure('name','Generator Omega vs Time')
for i = 1:10
    subplot(5,2,i);
    p = plot(time, x(i*4 - 0,:)./4, 'k'); % Note factor of 1/4
    set(p,'LineWidth',1);
    figtitle = strcat('Gen',num2str(i));
    title(figtitle)
    if or(i==9,i==10)
        xlabel('Time [sec]')
    end
    ylabel('Omega [% PU]')
    grid on
end
% Plot delta vs time
figure('name','Generator Delta vs Time')
for i = 1:10
    subplot(5,2,i);
    p = plot(time, x(i*4 - 1,:)-x(3,:), 'k'); % Subtract Unit 1 (angle reference)
    set(p,'LineWidth',1);
```

5.2 Contents of file 39bus.out

The next four pages show the contents of the file 39bus.out. This file contains power flow data with enough granularity to observe flows on all lines.

BUS Bus1	100. 0 1. 0474PU 104. 7KV	-8.44 TO Bus2 TO Gen39	CKT MW 100.0 1 -124.34 100.0 1 124.34	MVAR MVA -28. 32 127. 52 28. 32 127. 52	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.50 -70.92 0.18 -76.30
BUS Bus10	100. 0 1. 0172PU 101. 7KV	-5.43 TO Bus11 TO Bus13 TO Gen32	CKT MW 100.0 1 365.25 100.0 1 284.75 100.0 1 -650.00	MVAR MVA 70. 36 371. 96 38. 65 287. 37 -109. 01 659. 08	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.54 -1.74 0.32 -4.07 0.00 96.14 1.0700FX
BUS Bus11	100.0 1.0127PU 101.3KV	-6. 28 TO Bus6 TO Bus10 TO Bus12	CKT MW 100.0 1 364.76 100.0 1 -364.71 100.0 1 -0.06	MVAR MVA 29. 01 365. 92 -72. 10 371. 77 43. 09 43. 09	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0. 92 -3. 43 0. 54 -1. 74 0. 03 0. 79 1. 0060UN
BUS Bus12	100. 0 1. 0002PU 100. 0KV	-6. 24 LOAD TO Bus11 TO Bus13	CKT MW 7.50 100.0 1 0.09 100.0 1 -7.59	MVAR MVA 88. 00 88. 32 -42. 30 42. 30 -45. 70 46. 32	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0. 03
BUS Bus13	100. 0 1. 0143PU 101. 4KV	-6. 10 TO Bus10 TO Bus14 TO Bus12	CKT MW 100.0 1 -284.43 100.0 1 276.81 100.0 1 7.62	MVAR MVA -42. 72 287. 62 -3. 92 276. 84 46. 64 47. 26	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.54 -1.74 0.32 -4.07 0.00 96.14 1.0700FX MW(LOSS) MVAR(LOSS) TAP 0.92 -3.43 0.54 -1.74 0.03 0.79 1.0060UN MW(LOSS) MVAR(LOSS) TAP 0.03 0.79 1.0060FX 0.03 0.94 1.0060FX MW(LOSS) MVAR(LOSS) TAP 0.32 -4.07 0.67 -10.16 0.03 0.94 1.0060UN
BUS Bus14	100.0 1.0117PU 101.2KV	-7.66 TO Bus4 TO Bus13 TO Bus15	CKT MW 100.0 1 271.01 100.0 1 -276.14 100.0 1 5.14	MVAR MVA 42. 41 274. 31 -6. 23 276. 21 -36. 17 36. 54	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.59 -4.47 0.67 -10.16 0.01 -37.53 MW(LOSS) MVAR(LOSS) TAP 0.01 -37.53 1.04 -7.02
BUS Bus15	100.0 1.0154PU 101.5KV	-7.74 LOAD TO Bus14 TO Bus16	CKT MW 320.00 100.0 1 -5.13 100.0 1 -314.87	MVAR MVA 153. 00 354. 70 -1. 36 5. 31 -151. 64 349. 48	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0. 01 -37. 53 1. 04 -7. 02
300 300 10	103. 2KV	LOAD TO Bus15 TO Bus17 TO Bus19 TO Bus21 TO Bus24	329.00 100.0 1 315.91 100.0 1 230.04 100.0 1 -502.68 100.0 1 -329.60 100.0 1 -42.68	32.30 330.58 144.63 347.45 -43.63 234.14 -48.08 504.97 13.03 329.85 -98.24 107.11		1. 04
BUS Bus17	100. 0 1. 0336PU 103. 4KV	-7.30 TO Bus16 TO Bus18 TO Bus27	CKT MW 100.0 1 -229.68 100.0 1 210.66 100.0 1 19.02	MVAR MVA 33. 85 232. 16 9. 73 210. 88 -43. 58 47. 55	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.36 -9.78 0.29 -10.63 0.01 -34.32
BUS Bus18	100. 0 1. 0309PU 103. 1KV	-8. 22 LOAD TO Bus3 TO Bus17	CKT MW 158.00 100.0 1 52.36 100.0 1 -210.36	MVAR MVA 30. 00 160. 82 -9. 64 53. 24 -20. 36 211. 35	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0. 36 -9. 78 0. 29 -10. 63 0. 01 -34. 32 MW(LOSS) MVAR(LOSS) TAP 0. 03 -22. 36 0. 29 -10. 63
BUS Bus19	105. OKV	T0 Bus16 T0 Gen33 T0 Bus20	100.0 1 506.49 100.0 1 -629.10 100.0 1 122.62	61. 62 510. 22 -51. 14 631. 18 -10. 48 123. 06	(,(,	3. 81 13. 54 2. 90 58. 76 1. 0700FX 0. 11 2. 13 1. 0600FX
BUS Bus2	100. 0 1. 0487PU 104. 9KV	-5. 75 T0 Bus1 T0 Bus3 T0 Bus25 T0 Gen30	CKT MW 100.0 1 124.83 100.0 1 364.26 100.0 1 -239.09 100.0 1 -250.00	MVAR MVA -42.60 131.90 92.24 375.76 82.68 252.98 -132.32 282.86	MW(NOM) MVR(NOM)	MW(LOSS) MVAR(LOSS) TAP 0.50 -70.92 1.70 -8.02 4.16 -11.08 0.00 13.83 1.0250FX
BUS Bus20	100. 0 0. 9912PU 99. 1KV	-2. 01 LOAD	CKT MW 628.00	MVAR MVA 103.00 636.39 Page	WW (NOW) WVK (NOW)	MW(LOSS) MVAR(LOSS) TAP

Figure 7: Contents of file 39bus.out (Page 1 of 4)

		TO Gen34 TO Bus19	100.0 1 -505.49 -115.61 100.0 1 -122.51 12.61	39bus. out 518. 54 123. 15	2. 51 50. 16 1. 0090FX 0. 11 2. 13 1. 0600UN
BUS Bus21	100. 0 1. 0318PU 103. 2KV	-3.78 LOAD TO Bus16 TO Bus22	CKT MW MVAR 274.00 115.00 100.0 1 330.42 -26.29 100.0 1 -604.42 -88.71	MVA MW(NOM) MVR(NOM) 297. 15 331. 46 610. 89	MW(LOSS) MVAR(LOSS) TAP 0. 82 -13. 26 2. 79 21. 00
BUS Bus22	100. 0 1. 0498PU 105. 0KV	0. 67 T0 Bus21 T0 Bus23 T0 Gen35	CKT MW MVAR 100.0 1 607.21 109.71 100.0 1 42.80 41.97 100.0 1 -650.00 -151.68	MVA MW(NOM) MVR(NOM) 617.04 59.94 667.46	MW(LOSS) MVAR(LOSS) TAP 2. 79 21. 00 0. 02 -19. 85 0. 00 60. 73 1. 0250FX
BUS Bus23	100. 0 1. 0448PU 104. 5KV	0. 47 LOAD TO Bus22 TO Bus24 TO Gen36	CKT MW MVAR 247.50 84.60 100.0 1 -42.77 -61.82 100.0 1 353.84 0.51 100.0 1 -558.57 -23.30	MVA MW(NOM) MVR(NOM) 261.56 75.17 353.84 559.05	MW(LOSS) MVAR(LOSS) TAP 0. 02 -19. 85 2. 53 1. 15 1. 43 77. 88 1. 0000FX
BUS Bus24	100. 0 1. 0373PU 103. 7KV	-6.07 LOAD TO Bus16 TO Bus23	CKT MW MVAR 308.60 -92.20 100.0 1 42.71 91.56 100.0 1 -351.31 0.64	MVA MW(NOM) MVR(NOM) 322.08 101.04 351.31	MW(LOSS) MVAR(LOSS) TAP 0.03 -6.68 2.53 1.15
BUS Bus25	100. 0 1. 0576PU 105. 8KV	-4. 36 LOAD TO Bus2 TO Bus26 TO Gen37	CKT MW MVAR 224.00 47.20 100.0 1 243.25 -93.76 100.0 1 71.09 -17.04 100.0 1 -538.34 63.60	MVA MW(NOM) MVR(NOM) 228.92 260.70 73.10 542.09	MW(LOSS) MVAR(LOSS) TAP 4. 16 -11. 08 0. 15 -55. 58 1. 66 64. 04 1. 0250FX
BUS Bus26	100. 0 1. 0521PU 105. 2KV	-5. 53 LOAD TO Bus25 TO Bus27 TO Bus28 TO Bus29	NWAR NVAR NVAR	MVA MW(NOM) MVR(NOM) 140.04 80.73 271.77 142.49 191.88	MW(LOSS) MVAR(LOSS) TAP 0. 15
BUS Bus27	100. 0 1. 0377PU 103. 8KV	-7.50 LOAD TO Bus17 TO Bus26	CKT MW MVAR 281. 00 75. 50 100. 0 1 -19. 01 9. 26 100. 0 1 -261. 99 -84. 76	MVA MW(NOM) MVR(NOM) 290. 97 21. 14 275. 36	MW(LOSS) MVAR(LOSS) TAP 0. 01 -34. 32 0. 96 -16. 09
BUS Bus28	100. 0 1. 0501PU 105. 0KV	-2.01 LOAD TO Bus26 TO Bus29	CKT MW MVAR 206.00 27.60 100.0 1 141.61 -55.82 100.0 1 -347.61 28.22	MVA MW(NOM) MVR(NOM) 207.84 152.22 348.76	MW(LOSS) MVAR(LOSS) TAP 0. 79 -77. 51 1. 56 -10. 67
BUS Bus29		0. 74 LOAD TO Bus26 TO Bus28 TO Gen38	CKT MW MVAR 283.50 26.90 100.0 1 192.10 -67.24 100.0 1 349.17 -38.88 100.0 1 -824.77 79.23	MVA MW(NOM) MVR(NOM) 284.77 203.53 351.33 828.56	MW(LOSS) MVAR(LOSS) TAP 1. 91 -92.68 1. 56 -10.67 5. 23 102.07 1.0250FX
BUS Bus3	100. 0 1. 0302PU 103. 0KV	-8.60 LOAD TO Bus2 TO Bus4 TO Bus18	CKT MW MVAR 322.00 2.40 100.0 1 -362.56 -100.26 100.0 1 92.89 110.58 100.0 1 -52.33 -12.72	MVA 322.01 376.16 144.42 53.86	MW(LOSS) MVAR(LOSS) TAP 1.70 -8.02 0.29 -18.17 0.03 -22.36
BUS Bus4	100. 0 1. 0039PU 100. 4KV	0 41	CKT MW MVAR 500.00 184.00 100.0 1 -92.60 -128.75 100.0 1 -136.98 -8.37 100.0 1 -270.41 -46.88	MVA MW/NOM> MVD (NOM)	MM/LOSS) MVAD/LOSS) TAD
BUS Bus5	100. 0 1. 0053PU 100. 5KV	-8. 61 TO Bus4 TO Bus6 TO Bus8	CKT MW MVAR 100.0 1 137.13 -2.79 100.0 1 -454.42 -55.95 100.0 1 317.29 58.74	MVA MW(NOM) MVR(NOM) 137.16 457.85 322.68 Page 2	MW(LOSS) MVAR(LOSS) TAP 0.15 -11.16 0.41 0.99 0.83 -3.14

		39bus. out	
BUS Bus6	100. 0 1. 0077PU 100. 8KV	-7.95 CKT MW MVAR MVA MW(NOM) MVR(NOM) T0 Bus5 100.0 1 454.84 56.94 458.39 T0 Bus7 100.0 1 420.62 91.57 430.47 T0 Bus11 100.0 1 -363.85 -32.44 365.29 T0 Gen31 100.0 1 -511.61 -116.07 524.61	MW(LOSS) MVAR(LOSS) TAP 0.41 0.99 1.10 5.53 0.92 -3.43 0.00 77.58 1.0700FX
BUS Bus7	100. 0 0. 9970PU 99. 7KV	-10.12 CKT MW MVAR MVA MW(NOM) MVR(NOM) LOAD 233.80 84.00 248.43 TO Bus6 100.0 1 -419.52 -86.04 428.25 TO Bus8 100.0 1 185.72 2.04 185.73	MW(LUSS) MVAR(LUSS) TAP
BUS Bus8	100. 0 0. 9960PU 99. 6KV		MW(LOSS) MVAR(LOSS) TAP 0. 83 -3. 14 0. 14 -6. 15 0. 18 -36. 06
BUS Bus9	100. 0 1. 0282PU 102. 8KV	-10.32 CKT MW MVAR MVA MW(NOM) MVR(NOM) TO Bus8 100.0 1 20.15 69.88 72.73 TO Gen39 100.0 1 -20.15 -69.88 72.73	MW(LOSS) MVAR(LOSS) TAP 0. 18 - 36. 06 0. 00 -126. 98
BUS Gen30	100. 0 1. 0475PU 104. 8KV		MW(LOSS) MVAR(LOSS) TAP 0.00 13.83 1.0250UN
BUS Gen31	100. 0 0. 9820PU 98. 2KV	0.00 CKT MW MVAR MVAR MVA MW(NOM) MVR(NOM) LOAD 9.20 4.60 10.29 GENERATION 520.81 198.25 557.27 (0.00 0.00) TO Bus6 100.0 1 511.61 193.65 547.03	MW(LOSS) MVAR(LOSS) TAP 0.00 77.58 1.0700UN
BUS Gen32	100. 0 0. 9831PU 98. 3KV	2.57 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 650.00 205.15 681.60 (650.00 0.00) T0 Bus10 100.0 1 650.00 205.15 681.60	MW(LOSS) MVAR(LOSS) TAP 0.00 96.14 1.0700UN
BUS Gen33	100. 0 0. 9972PU 99. 7KV	4.19 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 632.00 109.91 641.49 (632.00 0.00) TO Bus19 100.0 1 632.00 109.91 641.49	MW(LOSS) MVAR(LOSS) TAP 2. 90 58. 76 1. 0700UN
BUS Gen34	100. 0 1. 0123PU 101. 2KV	3.18 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 508.00 165.76 534.36 (508.00 0.00) TO Bus2O 100.0 1 508.00 165.76 534.36	MW(LOSS) MVAR(LOSS) TAP 2.51 50.16 1.0090UN
BUS Gen35	100. 0 1. 0493PU 104. 9KV	5. 63 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 650. 00 212. 41 683. 83 (650. 00 0. 00) TO Bus22 100. 0 1 650. 00 212. 41 683. 83	MW(LOSS) MVAR(LOSS) TAP 0.00 60.73 1.0250UN
BUS Gen36	100. 0 1. 0635PU 106. 4KV	8.32 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 560.00 101.17 569.07 (560.00 0.00) TO Bus23 100.0 1 560.00 101.17 569.07	MW(LOSS) MVAR(LOSS) TAP 1.43 77.88 1.0000UN
BUS Gen37	100. 0 1. 0278PU 102. 8KV	2. 42 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 540.00 0. 44 540.00 (540.00 0. 00) TO Bus 25 100.0 1 540.00 0. 44 540.00	MW(LOSS) MVAR(LOSS) TAP 1.66 64.04 1.0250UN
BUS Gen38	100. 0 1. 0265PU 102. 6KV	7.81 CKT MW MVAR MVA MW(NOM) MVR(NOM) GENERATION 830.00 22.84 830.31 (830.00 0.00) TO Bus29 100.0 1 830.00 22.84 830.31	MW(LOSS) MVAR(LOSS) TAP 5. 23 102. 07 1. 0250UN
BUS Gen39	100. 0 1. 0300PU 103. 0KV	-10.05 CKT MW MVAR MVA MW(NOM) MVR(NOM) LOAD 1104.00 250.00 1131.95 GENERATION 1000.00 88.28 1003.89 (1000.00 0.00) TO Bus1 100.0 1 -124.15 -104.61 162.35 TO Bus9 100.0 1 20.15 -57.10 60.56	MW(LOSS) MVAR(LOSS) TAP 0.18 -76.30 0.00 -126.98

SYSTEM TOTALS

Page 3

	MW	MVAR
GENERATI ON	6140.81	1250.37
LOAD	6097.10	1408.90
LOSSES	43.71	-158.52
BUS SHUNTS	0.00	0.00
LINE SHUNTS	0.00	0.00
SWITCHED SHUNTS		0.00

0.00

0.01

BASE MVA: 100.0 TOLERANCE: 0.000100 PU

SLACK BUSES Gen31 100.0

MI SMATCH

39bus. out

References

- [1] T. Athay, R. Podmore, and S. Virmani. "A Practical Method for the Direct Analysis of Transient Stability". In: *IEEE Transactions on Power Apparatus and Systems* PAS-98 (2 Mar. 1979), pp. 573–584.
- [2] M. A. Pai. Energy function analysis for power system stability. The Kluwer international series in engineering and computer science. Power electronics and power systems. Boston: Kluwer Academic Publishers, 1989.
- [3] Peter W Sauer and M. A Pai. Power system dynamics and stability. English. Champaign, IL.: Stipes Publishing L.L.C., 2006.