Вероятность переобучения плотных и разреженных семейств алгоритмов

И.О.Толстихин iliya.tolstikhin@gmail.com

Научный руководитель — к.ф-м.н. К.В.Воронцов октябрь 2010

Содержание

- 🚺 Проблема переобучения
 - Постановка задачи
 - Завышенность классических оценок
 - Экспериментальное измерение факторов завышенности
- Расслоенные и связные семейства алгоритмов
 - Модельные семейства
 - Точная оценка вероятности переобучения для шара
 - Приближение оценки шара d его нижними слоями
- Плотные семейства алгоритмов
 - Модельное семейство
 - Точная оценка вероятности переобучения для слоя шара
 - Разреженные подмножества слоя шара

Постановка задачи

Объекты
$$\mathbb{X}=\{x_1,\ldots,x_L\};$$
 алгоритмы $A=\{a_1,\ldots,a_D\};$ $I(a,x)=[$ алгоритм a ошибается на объекте $x];$ $n(a,X)-$ число ошибок a на выборке $X;$ $\nu(a,X)=n(a,X)/|X|-$ частота ошибок a на выборке $X.$ Статистическое обучение: $a(X)=\arg\min_{a\in A}n(a,X).$ Переобучение: $\nu(a,X')-\nu(a,X)\geqslant \varepsilon.$

Пример. Бинарная $L \times D$ -матрица ошибок, $L = \ell + k$:

	a_1	a_2	a 3	a 4	a 5	a 6	a 7	a 8	a_D	
<i>X</i> ₁	1	1	0	0	0	1	1	1	1	
x_2	0	0	0	0	1	1	1	1	1	$oldsymbol{X}$, обучение
x_ℓ	0	0	1	0	0	0	0	0	0	
x_1'	0	0	0	1	1	1	1	1	0	
x_2'	0	0	0	1	0	0	0	1	1	X^\prime , контроль
x'_k	0	1	1	1	1	1	0	0	0	

Задача: оценить вероятность переобучения.

Основная задача — оценить вероятность переобучения

$$Q_{\varepsilon} = \mathsf{P}\Big[\nu\big(\mathsf{a}(\mathsf{X}),\mathsf{X}'\big) - \nu\big(\mathsf{a}(\mathsf{X}),\mathsf{X}\big) \geqslant \varepsilon\Big].$$

Теорема (Вапник и Червоненкис, 1971)

Для любой выборки, метода обучения и числа $arepsilon \in (0,1)$

$$Q_{\varepsilon} \leqslant \mathsf{P} \Big[\sup_{a \in A} (\nu(a, X') - \nu(a, X)) \geqslant \varepsilon \Big] \leqslant |A| \max_{m} H_{\mathsf{L}}^{\ell, m} \left(\frac{\ell}{\mathsf{L}} \left(m - \varepsilon k \right) \right),$$

где
$$H_L^{\ell,m}(z)=\sum_{s=0}^{\lfloor z\rfloor} \frac{C_m^s C_{L-m}^{\ell-s}}{C_L^\ell}$$
 — гипергеометрическая функция распределения.

Основная проблема — завышенность оценки:

в реальных задачах
$$|A| \sim 10^6 - 10^{12}$$

Выявление причин завышенности

Основные причины завышенности:

- не учитывается расслоение семейства алгоритмов: чем выше уровень ошибок m, тем меньше вероятность получить алгоритм в результате обучения (завышенность в 10^2 – 10^5 раз);
- не учитывается связность семейства алгоритмов: чем больше схожих алгоритмов, тем сильнее завышенность (завышенность в 10^3-10^4 раз).

Реальные семейства, как правило, расслоены и связны.

Vorontsov K. V. Combinatorial probability and the tightness of generalization bounds // Pattern Recognition and Image Analysis. MAIK Nauka. No 2, Vol. 18, 2008, Pp. 243–259.

Гипотеза

Вероятность переобучения расслоенного и связного множества алгоритмов может быть аппроксимирована вероятностью переобучения его подмножества, состоящего из существенно различных алгоритмов нижних слоев.

Модельные семейства

 A_m-m -й слой булева куба $\{0,1\}^L-$ множество алгоритмов, допускающих на полной выборке m ошибок.

Шар алгоритмов Нижние слои шара

Точная оценка для шара алгоритмов

A — хэммингов шар радиуса r_0 с центром в некотором элементе m-го слоя.

Теорема (Оценка для шара)

Точная оценка вероятности переобучения этого семейства есть

$$\begin{aligned} Q_{\varepsilon} &= \sum_{i=0}^{r_0} h_{L}^{\ell,m}(i) \frac{\sum_{r_1=0}^{r_0} \sum_{n_1=0}^{r_1} S\left(n_1, r_1, i\right) \left[m + r_1 - 2n_1 \geqslant \varepsilon k\right]}{\sum_{r_2=0}^{r_0} \sum_{n_2=0}^{r_2} S\left(n_2, r_2, i\right)} + \\ &+ \sum_{i=r_0+1}^{\lfloor s_d + \frac{rk}{L} \rfloor} h_{L}^{\ell,m}(i). \end{aligned}$$

где
$$h_L^{\ell,m}(i) = \frac{C_m^i C_{L-m}^{\ell-i}}{C_\ell^\ell}$$
, $S\left(n,r,i\right) = C_{m-i}^{n-i} C_{k-m+i}^{r-n}$, $s_d = \frac{\ell}{L}(m-\varepsilon k)$.

Вклады слоёв шара

Рис.: Вклады слоёв шара в вероятность переобучения

Точная оценка для нижних слоев шара

A — хэммингов шар радиуса r_0 с центром в некотором элементе m-го слоя в пересечении с d его нижними слоями.

Теорема (Оценка для нижних слоев шара)

Точная оценка вероятности переобучения этого семейства есть

$$Q_{\varepsilon} = \sum_{i=0}^{r_0} h_{L}^{\ell,m}(i) \frac{\sum_{r=0}^{r_0} \sum_{n=0}^{r} S'(n,r,i) [m+r-2n \geqslant \varepsilon k]}{\sum_{r=0}^{r_0} \sum_{n=0}^{r} S'(n,r,i)} + \sum_{i=r_0+1}^{\lfloor s_d + \frac{rk}{L} \rfloor} h_{L}^{\ell,m}(i),$$

гле

$$h_L^{\ell,m}(i) = \frac{C_m^i C_{\ell-m}^{\ell-i}}{C_\ell^\ell}, \quad S'(n,r,i) = C_{m-i}^{n-i} C_{k-m+i}^{r-n} [r+r_0+1 \leqslant 2n+d],$$

 $s_d = \frac{\ell}{T} (m-\varepsilon k).$

Оценки для нижних слоёв шара

Рис.: Зависимость Q_{ε} и $\log_{10}|A|$ от числа d нижних слоев шара, при $\ell=k=100,\ m=10,\ r_0=4,\ \varepsilon=0.07.$

Зависимость $Q_{arepsilon}$ от числа алгоритмов в семейства

Рис.: Оценки Q_{ε} для шара алгоритмов и D случайных алгоритмов из трех его нижних слоев, при $\ell=k=100,\ m=10,\ r_0=4,\ \varepsilon=0.07.$

Модельное семейство

Слой шара

Точная оценка для слоя шара

 $B(m,r_0)$ — пересечение m-го слоя булева куба $\{0,1\}^L$ с хэмминговым шаром радиуса r_0 с центром в некотором элементе m-го слоя.

Теорема (Оценка для слоя шара)

Если μ минимизирует частоту ошибок на обучающей выборке, то достижимая верхняя оценка вероятности переобучения этого семейства есть

$$Q_{\varepsilon} = H_L^{\ell,m} (s_d + \lfloor r_0/2 \rfloor),$$

где
$$s_d = \frac{\ell}{L} (m - \varepsilon k)$$
.

Зависимость Q_{ε} от радиуса шара

Рис.: Зависимость вероятности переобучения Q_{ε} и $\log_{10}|A|$ от радиуса шара r_0 для m-го слоя шара, при $I=k=100,\ m=10,\ \varepsilon=0.05.$

Зависимость Q_{ε} от числа алгоритмов в семейства

Рис.: Оценки Q_{ε} для слоя шара и его случайного подмножества из D алгоритмов, при $I=k=100,\ m=10,\ r_0=4,\ \varepsilon=0.05.$

Лемма

Пусть
$$A \subset A_m$$
 и $a \in A_m \setminus A$.
Тогда $Q_{\varepsilon}(A) \leqslant Q_{\varepsilon}(A \cup \{a\})$.

 $S(m,r_0)$ — пересечение m-го слоя булева куба $\{0,1\}^L$ с хэмминговой сферой радиуса r_0 с центром в некотором элементе m-го слоя.

Теорема

Пусть
$$m = n(a, \mathbb{X})$$
 и $k \geqslant m + \lfloor r_0/2 \rfloor$.
Тогда вероятности переобучения множеств $B(m, r_0)$ и $S(m, 2 | r_0/2 |)$ совпадают.

Подмножества B' и B''

$$B'(m, r_0), B''(m, r_0) \subset S(m, 2\lfloor r_0/2 \rfloor);$$

$$|B'(m, r_0)| = C_m^{\lfloor r_0/2 \rfloor};$$

$$|B''(m, r_0)| = C_m^{\lfloor r_0/2 \rfloor} \frac{L-m}{\lfloor r_0/2 \rfloor};$$

Оценки вероятности переобучения для подмножеств B' и B''

Теорема (Подмножество B')

Точная оценка вероятности переобучения семейства $B'(m,r_0)$ есть

$$Q_arepsilon = \sum_{i=0}^m \sum_{j=0}^h \sum_{p=0}^\delta rac{C_m^i C_h^j C_\delta^p}{C_L^\ell} imes \ imes \left(\left[i < \delta
ight] \left[p \leqslant s_d(arepsilon)
ight] + \left[i \geqslant \delta
ight] \left[i + p \leqslant \delta + s_d(arepsilon)
ight]
ight),$$
 где $h = L - m - \delta$, $s_d(arepsilon) = rac{\ell}{L} (m - arepsilon k)$, $\delta = \lfloor r_0/2
floor$.

Теорема (Подмножество B'')

Пусть $\ell < \frac{L-m}{\lfloor r_0/2 \rfloor}$. Тогда вероятности переобучения множеств $B''(m,r_0)$ и $B(m,r_0)$ совпадают.

Приближение оценки слоя шара подмножествами В' и В"

Рис.: Оценки Q_{ε} для слоя шара, множеств $B'(m,r_0)$, $B''(m,r_0)$ и случайного подмножества D алгоритмов из слоя шара, при $I=k=100,\ m=10,\ r_0=4,\ \varepsilon=0.05.$

Результаты и открытые вопросы

Полученные результаты.

- Показано, что вероятность переобучения расслоенных и связных семейств алгоритмов может быть аппроксимирована вероятностью переобучения его подмножества, состоящего из существенно различных алгоритмов, допускающих мало ошибок.
- Показано, что вероятность переобучения плотного семейства алгоритмов может быть аппроксимирована его немногочисленным разреженным подмножеством.

Открытые вопросы.

- Вопрос о возможности аппроксимации вероятности переобучения реальных семейств алгоритмами из их нижних слоев остаётся открытым.
- Эксперименты показывают, что выбранные разреженные подмножества избыточны.