КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

	(назва факультету, інституту)	
Кафедра	ядерної фізики	
	«ЗАТВЕРД Заступник жавчажно	декана
РОБОЧА ПЕ	РОГРАМА НАВЧАЛЬНОЇ ДІ	АСЦИПЛІНИ
	Динаміка ядерних реакторів	
	(повна назва навчальної дисципліни) для студентів	
галузь знань	10 Природничі науки (шифр і назва)	
спеціальність	(шифріназва) 104 — "Фізика та астрономія"	
	104 — "Фізика та астрономія" (инфр і назва спеціальності)	
освітній рівень	Магістр (молодиий бакалавр, бакалавр, магістр)	
освітня програма	Ядерна енергетика	
вид дисципліни	вибіркова	
	Форма навчання	денна
	Навчальний рік	2021/2022
	Семестр	3_
	Кількість кредитів ECTS	6_
	Мова викладання, навчання	
	та оцінювання	українська
	Форма заключного контролю	екзамен
Викладач: докт. техн. н (Науково-педагогічн	<u>наук, В.І.Борисенко</u> ні працівники, які забезпечують викладання даної дисципліни у відповідне	ому навчальному році)
Про	олонговано: на 20_/20_ н.р() «» 20р.
	на 20_/20_ н.р(піднис, ПІБ, дата)	
	на 20/20 н.р(підпис, ПІБ, дата)) «» 20p.

КИЇВ – 2021

Розробники: Борисенко Володимир Іванович, доктор технічних наук

ЗАТВЕРДЖЕНО

Зав. кафедри ядерної фізики

(<u>Каденко І.М.</u> (прізвище та ініціали)

Протокол № <u>11</u> від «<u>10</u>» <u>червня</u> 2021 р.

Схвалено науково - методичною комісією фізичного факультету

Протокол від « 22 » червня 2021 року № 4

Голова науково-методичної комісії

(.R.О хілО)

ВСТУП

1. Мета дисципліни — надання студентам базових знань, щодо розрахунків динаміки ядерних реакторів.

2. Попередні вимоги до опанування або вибору навчальної дисципліни:

- 1. Успішне опанування загальних курсів "Математичний аналіз", "Аналітична геометрія", "Теорія ймовірностей", "Диференціальні рівняння", а також наступних спеціальних курсів: "Обладнання ядерних енергетичних установок" та "Ядерна безпека АЕС".
- 2. Вміти розв'язувати задачі в рамках загальних математичних курсів, а також курсів фізики та спеціальних курсів.
- 3. Володіти навичками роботи на комп'ютері щодо інформаційного пошуку в мережі Інтернет, а також числового вирішення математичних задач..

3. Анотація навчальної дисципліни:

Навчальна дисципліна "Динаміка ядерних реакторів" ϵ складовою циклу професійної підготовки фахівців освітньо-кваліфікаційного рівня "магістр".

Курс "Динаміка ядерних реакторів" дозволить значно покращити професійну підготовку студентів кафедри ядерної фізики, що пов'язано з набуттям нових навичок студентами для розрахунку параметрів ядерних реакторів та систем ядерних енергетичних установок для убезпечення використання ядерної енергії в енергетиці, медицині, прикладних та фундаментальних дослідженнях.

Структура курсу: робота з вивчення програмного матеріалу поділяється на два змістові модулі. У першому змістовному модулі вивчається матеріал за темою «Динаміка ядерного реактора нульової потужності», у другому — «Динаміка ядерного реактора зі зворотними зв'язками».

4. Завдання (навчальні цілі) — Сформувати у студенів уявлення про сучасні галузі застосування ядерної енергії.

5. Результати навчання за дисципліною:

Результат навчання (1. знати; 2. вміти; 3. комунікація; 4. автономність та відповідальність)		Методи викладання і навчання	Методи оцінювання	Відсоток у підсумковій оцінці з	
Код	Результат навчання	пиочиппл	Оцінювиння	дисципліни дисципліни	
1.1	Знати особливості розрахунку	лекція	Контрольні	50	
різних типів реакторів та			завдання		
	підходи до динаміки ядерних				
	реакторів				
2.1	Вміти розв'язувати основні типи	лекція	Контрольні	50	
	задач з ядерної енергетики.		завдання		

6. Співвідношення результатів навчання дисципліни із програмними результатами навчання (необов'язково для вибіркових дисциплін)

Результати навчання дисципліни		
Програмні результати навчання	1.1	2.1
РН01. Використовувати концептуальні та спеціалізовані знання	+	
і розуміння актуальних проблем і досягнень обраних напрямів		
сучасної теоретичної і експериментальної фізики та/або		
астрономії для розв'язання складних задач і практичних		
проблем.		
РН07. Оцінювати новизну та достовірність наукових результатів		+
з обраного напряму фізики та астрономії, оприлюднених у		
формі публікацій чи усної доповіді.		
РН08. Презентувати результати досліджень у формі доповідей		+
на семінарах, конференціях тощо, здійснювати професійний		
письмовий опис наукового дослідження, враховуючи вимоги,		
мету та цільову аудиторію.		
РН11. Застосовувати теорії, принципи і методи фізики та	+	+
астрономії для розв'язання складних міждисциплінарних		
наукових і прикладних задач.		
РН12. Розробляти та застосовувати ефективні алгоритми та	+	
спеціалізоване програмне забезпечення для дослідження		
моделей фізичних та астрономічних об'єктів і процесів, обробки		
результатів експериментів і спостережень.		
РН13. Створювати фізичні, математичні і комп'ютерні моделі		+
природних об'єктів та явищ, перевіряти їх адекватність,		
досліджувати їх для отримання нових висновків та поглиблення		
розуміння природи, аналізувати обмеження.		
РН14. Розробляти та викладати фізичні навчальні дисципліни у	+	+
закладах вищої, фахової передвищої, професійної (професійно-		
технічної), загальної середньої та позашкільної освіти,		
застосовувати сучасні освітні технології та методики,		
здійснювати необхідну консультативну та методичну підтримку		
здобувачів освіти.		
РН15. Планувати наукові дослідження з урахуванням цілей та	+	+
обмежень, обирати ефективні методи дослідження, робити		
обгрунтовані висновки за результатами дослідження.		
РН18. Володіти основами фізики реакторів, ядерної безпеки	+	+
АЕС, експлуатації ядерних енергоблоків		
РН19. Застосовувати фізичні моделі та прийоми аналізу	+	+
достовірності фізичних моделей для розв'язання прикладних		
задач в області ядерної енергетики;		
РН22. Вміти розробляти програмне забезпечення для керування	+	+
експериментальним обладнанням		
		•

РН23. Вміти використовувати методи розрахунку радіаційного	+	+
захисту для медичних установок та іншого обладнання, яке		
використовує джерела іонізуючого випромінювання.		

Контроль знань і розподіл балів, які отримують студенти.

Контроль здійснюється за модульно-рейтинговою системою.

У змістовий модуль 1 (ЗМ1) входять теми 1 - 2, а у змістовий модуль 2 (ЗМ2) – теми 3-4. Обов'язковим для іспиту/заліку є виконання і захист домашних самостійних завдань, та позитивна оцінка за кожну з модульних контрольних робіт.

Оиінювання за формами контролю:

	3M1		3M 2	
	Min. – 15балів	<i>Max.</i> – 30 бали	Min. – 15 бали	<i>Max.</i> – 30 балів
Усна відповідь				
Доповнення				
Лабораторна робота				
Домашні самостійні завдання	5	10	5	10
Реферат				
Модульна контрольна робота 1	10	20	10	20
Модульна контрольна робота 2				

 $^{^{&}quot;}$ " — мінімальна/максимальна оцінку, яку може отримати студент. 1 — мінімальна/максимальна залікова кількість робіт чи завдань.

Для студентів, які набрали сумарно меншу кількість балів ніж критичнорозрахунковий мінімум — 30 балів для одержання іспиту/заліку обов'язково: випадку отримання незадовільної контрольної модульної рейтингової оцінки студент повинен повторно пройти модульний контроль в установленому порядку. При повторному проходженні модульного контролю або його допуску до модульної контрольної роботи за клопотанням деканату контрольної модульної максимальна величина рейтингової оцінки зменшується на один бал у порівнянні з наведеною вище.

У випадку відсутності студента з поважних причин відпрацювання та перездачі МКР здійснюються у відповідності до "Положення про порядок оцінювання знань студентів при кредитно-модульній системі організації навчального процесу" від 1 жовтня 2010 року.

При простому розрахунку отримаємо:

	Змістовий модуль1	Змістовий модуль2	іспит / залік	Підсумкова оцінка
Мінімум	15	15	30/	60
Максимум	30	30	40/	100

При цьому, кількість балів:

- 1-34 відповідає оцінці «незадовільно» з обов'язковим повторним вивченням дисципліни;
- 35-59 відповідає оцінці «незадовільно» з можливістю повторного складання;
- 60-64 відповідає оцінці «задовільно» («достатньо»);
- 65-74 відповідає оцінці «задовільно»;
- 75 84 відповідає оцінці «добре»;
- 85 89 відповідає оцінці «добре» («дуже добре»);
- 90 100 відповідає оцінці «відмінно».

Шкала відповідності (за умови іспиту)

Шкала відповідності (за умови заліку)

За 100 – бальною шкалою	За національною шкалою		
90 – 100	5	відмінно	
85 – 89	4		
75 – 84	4	добре	
65 – 74	2		
60 - 64	3	задовільно	
35 – 59	2	не задовільно	
1 – 34			

За 100 – бальною шкалою	За національною шкалою
90 – 100	
85 – 89	
75 – 84	Зараховано
65 – 74	
60 - 64	
1 – 59	не зараховано

СТРУКТУРА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ ТЕМАТИЧНИЙ ПЛАН ЛЕКЦІЙ І ПРАКТИЧНИХ ЗАНЯТЬ

.No			Кількість годин		
п/п	Назва лекції	лекції	Лабораторні роботи	C/P	
	Змістовий модуль 1 Динаміка ядерного реактора нульово	oï nomyə	кності		
1	Тема 1. Кінетика нейтронів в ядерному реакторі: Миттєві нейтрони; Характеристики продуктів поділу	4	3	20	
2	Тема 2. Нейтрони, що запізнюються, та їх ядра — попередники: Нейтрони, що запізнюються; Запізніле гамма-випромінення та фотонейтрони	6	3	20	
3	Тема 3. Рівняння обернених годин: Зв'язок між реактивністю та періодом реактора; Зв'язок між реактивністю та періодом реактора для складних систем.		-	20	
	Модульна контрольна робота 1		2		
	Змістовий модуль 2 . Динаміка ядерного реактора зі зворотними зв'язками				
4	Тема 4. Визначення кінетичних параметрів ядерного реактора: Статистичні методі визначення реактивності; Динамічні методі визначення реактивності.	4	3	20	
5	Тема 5. Кінетика реактора зі зворотними зв'язками: Ефекти реактивності; Кінетика реактора зі зворотними зв'язками.	6	3	20	
6	Тема 6. Теорія стійкості ядерного реактора: Питання нелінійної динаміки; Просторова стійкість ядерного реактора	4	3	20	
	Підсумкова модульна контрольна робота		2		
	ВСЬОГО	45	15	120	

Загальний обсяг **180** год., в тому числі: Лекцій — **45** год. Лабораторні роботи — **15** год. Самостійна робота **- 120** год.

РЕКОМЕНДОВАНА ЛІТЕРАТУРА:

Основна: (Базова)

- 1. Физические основы кинетики ядерных реакторов./ Кипин Дж. Р. М.: Атомиздат, 1967. 428 с
- 2. Динамика ядерных реакторов. / В.Ф.Колесов, П.А. Леппик, С.П.Павлов и др.-М.: Энергоатомиздат, 1990. 518 с.
- 3. Основы теории и методы расчета ядерных энергетических реакторов. Бартоломей Γ . Γ . и др.-M. Энергоатомиздат. 1989. 512 с.

- 4. Физика ядерных реакторов. С.В.Широков, 1998. 288 с.
- 5. ВВЭР-1000: физические основы эксплуатации, ядерное топливо, безопасность /А.М.Афров, С.А.Андрушечко, В.Ф.Украинцев и др.- М.: Университетская книга, Логос, 2006.-488 с.

Додаткова:

- 6. Ядерные энергетические реакторы. С.В.Широков, 1997. 280 с.
- 7. Теория ядерных реакторов. Фейнберг С.М. и др.М.: Атомиздат, 1978. -400 с.

В тому числі й інтернет ресурси

- 1. http://www.icjt.org/nukestat/index.html
- 2. www.worldnuclearorg/education/whyu.htm
- 3. http://nuclphys.sinp.msu.ru/