Tabela 13.1 Uma tabela de transformadas z

	X(s)	x(t) ou $x(k)$	X(z)
1	1	δ(t)	1
2	e-kTs	$\delta(t-kT)$	z-k
3	<u>1</u>	Į(t)	$\frac{z}{z-1}$
4	$\frac{1}{s^2}$	t	$\frac{\hat{T}z}{(z-1)^2}$
5	$\frac{1}{s+a}$	e-ai	$\frac{z}{z - e^{-aT}}$
6	$\frac{a}{s(s+a)}$	1 - e-ai	$\frac{(1 - e^{-aT})z}{(z - 1)(z - e^{-aT})}$
7	$\frac{\omega}{s^2 + \omega^2}$	sen ωt	$\frac{z \operatorname{sen} \omega T}{z^2 - 2z \cos \omega T + 1}$
8	$\frac{s}{s^2 + \omega^2}$	cos ωt	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
9	$\frac{1}{(s+a)^2}$	te-at	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$
10	$\frac{\omega}{(s+a)^2+\omega^2}$	e−a≀sen ω≀	$\frac{ze^{-aT}\operatorname{sen}\omega T}{z^2-2ze^{-aT}\operatorname{cos}\omega T+e^{-2aT}}$
11	$\frac{s+a}{(s+a)^2+\omega^2}$	e⁻at cos ωt	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
12	$\frac{2}{s^3}$	12	$\frac{T^2z(z+1)}{(z-1)^3}$
13		a ^k	$\frac{z}{z-a}$
14		$a^k \cos k\pi$	$\frac{z}{z+a}$
15	$\frac{a}{s^2(s+a)}$	$t - \frac{(1 - e^{-at})}{a}$	$\frac{Tz}{(z-1)^2} - \frac{(1-e^{-aT})z}{a(z-1)(z-e^{-aT})}$

Tabela 13.2 Propriedades da transformada z

	x(t) ou $x(k)$	$\mathcal{Z}[x(t) \text{ ou } \mathcal{Z}[x(k)]$
1	ax(t)	aX(z)
2	$x_1(t) + x_2(t)$	$X_1(z) + X_2(z)$
3	x(t+T) ou $x(k+1)$	zX(z)-zx(0)
4	x(t+2T)	$z^2X(z)-z^2x(0)-zx(T)$
5	x(k+2)	$z^2X(z)-z^2x(0)-zx(1)$
6	x(t+kT)	$z^kX(z)-z^kx(0)-z^{k-1}x(T)-\cdots-zx(kT-T)$
7	x(k+m)	$z^{m}X(z)-z^{m}x(0)-z^{m-1}x(1)-\cdots-zx(m-1)$
8	tx(t)	$-Tz\frac{d}{dz}\left[X(z)\right]$
9	kx(k)	$-z\frac{d}{dz}\left[X(z)\right]$
10	$e^{-at}x(t)$	$X(ze^{aT})$
11	$e^{-ak}x(k)$	X(ze ^a)
12	$a^k x(k)$	$X\left(\frac{z}{a}\right)$
13	ka ^k x(k)	$-z\frac{d}{dz}\left[X\left(\frac{z}{a}\right)\right]$
14	x(0)	$\lim_{z\to\infty} X(z) \text{ se o limite existe}$
15	x(∞)	$\lim_{z \to 1} \{(z-1)X(z)\} \text{ se } \frac{z-1}{z} X(z) \text{ \'e analítica sobre}$ e fora do círculo unitário
16	$\sum_{k=0}^{\infty} x(k)$	X(1)
17	$\sum_{k=0}^{n} x(kT)y(nT-kT)$	(Convolução Discreta) <i>X(z)Y(z)</i>