

Implementation of Sub Machine-Code Genetic Programming for Digit Recognition using the DEAP Python Library

Andrea Bettati Gianmarco Carraglia

Outline

- Project Objective
- Genetic Programming
- Digit Recognition
- Python DEAP Library
- Evolutionary Algorithm: eaSimple
- Developed Software
- Conclusions and future work

Project Objective

Main goal: train a set of binary classifiers for digit recognition using DEAP and Smc technique (i.e. bit-wise operators).

Our project directly relates with the studies of Prof. Cagnoni (described in [cagnoni2005]): it is a direct extension of his paper.

[cagnoni2005]	Our Implementation				
10-classes digit classifier	10 binary digit classifiers				
developed in C	developed in Python				
Smc Technique	Smc Technique				
Binary tree encoding	Binary tree encoding				
Population variation strategy: VarOr	Population variation strategy: VarAnd				
32 bit operands/operators	64 bit operands/operators				

Genetic Programming

Biological evolution-emulating approach to machine learning

Random generation of a population of N individuals or chromosomes

composed by genes

Fitness evaluation

Evolution of population

Genetic Programming - Fitness Evaluation

- Assigning a fitness value to every individual based on its ability to compete with other individuals
- Fitness score evaluated using entries of the confusion matrix and size of the associated binary tree:

$$F=1-\sqrt{rac{fp^2+fn^2}{N_p^2+N_n^2}}-K_sSize$$

Genetic Programming - Evolution

- Based on the fitness score, an individual can be passed down to the next generation(iteration of the algorithm)
- Also, every individual has a probability to experience:
 - Crossover
 - Mutation (low probability)

Digit Recognition - Data Set

- 10 classifiers to recognize 0-9 digits
- With a data set composed of:
 - Training set of 6024 entries of digits
 - Test set of 5010 entries of handwritten digits
- Both digitalized from a license-plate database

Digit Recognition - Encoding

Digit Recognition - Binary Trees

Each individuals is a binary tree with a 1-1 relation with a logical function: each node is a bitwise operator and every leaf is an input of the function

OUTPUT = (ARGO AND ARGO) AND (LSH3(ARG1 OR 1_CONST))

Digit Recognition - Binary Tree operators

- Every node(bitwise operator) in a tree can be:
 - AND
 - \circ OR
 - \circ NOT
 - XOR
 - NAND
 - NOR
 - Left/Right bit shift operations

- Every leaf(64 bit operand) in a tree can be:
 - ARG0
 - ARG1
 - 000...01 constant
 - 000...00 constant
 - Random 64 bit constant

Digit Recognition - Output

- The output will be a 64 bit word, in which every bit is a possible classifier
- According to the fitness value the best bit will be selected
- The couple [fitness value, best bit] will characterize the individual

Python DEAP Library

- A novel evolutionary computation framework written in Python.
- Works with parallelisation mechanism such as multiprocessing.
- Open Source (code on <u>GitHub</u>).
- Provides classes and methods to implement and tune classical GP data structures and algorithms

Python DEAP Library

The DEAP library provides **classes** and **methods** to **implement** and **tune** classical GP **data structures** and **algorithms**.

Typical workflow:

- Define individual type and primitives set
- 2. Define a **fitness function**
- 3. Register type's attributes (e.g. initialization)
- Register and decorate operators (e.g. crossover/mate and mutation)
- 5. Call the **evolutionary algorithm** (e.g. eaSimple)
- Evaluate best individual

Problem description

Training

Test

DEAP - Individual Type and Primitives Set

Individual Type: Prefix Tree

```
creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMin)
```

Primitives Set:

```
pset = gp.PrimitiveSetTyped("MAIN", [int, int], int)
pset.addPrimitive(operator. and , [int, int], int)
pset.addPrimitive(operator. or , [int, int], int)
pset.addPrimitive(operator. invert , [int], int)
pset.addPrimitive(operator. xor , [int, int], int)
pset.addPrimitive(nand, [int, int], int)
pset.addPrimitive(nor, [int, int], int)
pset.addPrimitive(rshift1, [int], int)
pset.addPrimitive(Ishift1, [int], int)
pset.addPrimitive(rshift2, [int], int)
pset.addPrimitive(Ishift2, [int], int)
pset.addPrimitive(rshift4, [int], int)
pset.addPrimitive(Ishift4, [int], int)
```

Constants Leaves:

```
pset.addPrimitive(const0, [], int)
pset.addPrimitive(const1, [], int)
pset.addEphemeralConstant("ERC",

lambda: random.randint(0, 2 ** word_len - 1), int)
```

eaSimple: "This algorithm reproduces the simplest evolutionary algorithm as presented in chapter 7 of <u>Back, Fogel and Michalewicz, "Evolutionary Computation 1: Basic Algorithms and Operators", 2000"</u>

```
Python pseudocode:
  evaluate(population)
  for g in range(ngen):
    population = select(population, len(population))
    offspring = varAnd(population, toolbox, cxpb, mutpb)
    evaluate(offspring)
    population = offspring
```

1:1 replacement ratio: the selection procedure is stochastic and can select multiple times the same individual.

```
offspring = varAnd(population,
toolbox, expb, mutpb)
```

varAnd function is applied to produce the next generation population.

deap.tools.selTournament: "Select the best individual
among tournsize randomly chosen individuals, k times."
(here k = len (population))

Evaluate the new individuals and compute the statistics on this evaluate(offspring) population: calls user-defined fitness function **INDIVIDUAL** func = toolbox.compile(expr=individual) 64 BITS OUTPUT WORD ARG0 tree result = func(ARG0, ARG1) 0 0 ARG1 For every input pair (ARG0, ARG1) (i.e. every image in the training set) each bit is evaluated as a binary classifier for the selected digit and a fitness value is obtained: the lowest is returned as the fitness for the individual.

Developed Software

Developed Software - Numerical Results

Upon executing the Smc GP main.py script, two results are dumped to the memory:

- A textual output (appended to the file dataset/results_dump.csv)
- A graphical representation of the best individual (best_tree.pdf)

Textual Output

This information is appended to the dump file each time a complete experiment (training + best individual evaluation) is executed.

Developed Software - Numerical Results

Conclusions

A set of single digit classifier was built using the DEAP Library, and compared to the results in [cagnoni2005]. Here's a comparison of the used parameters.

Parameter	gen num	рор	1G H	tournsize	mut H	сх Н	cxpb	mutpb
[cagnoni2005]	1000	1000	5-7	7	4-6, 12	12	0.8	0.03
Our Implementation	400	1000	5-7	7	4-6, 12	12	0.5	0.1

Conclusions

So far results keep up fairly well with the ones from the previously developed classifiers (data relative to **test set**, taken from [cagnoni2005]).

DIGIT	0	1	2	3	4	5	6	7	8	9
TNR	99.87	99.56	99.69	99.45	99.58	99.42	99.69	99.69	99.47	99.58
TPR	97.21	98.00	95.21	95.81	95.21	93.81	94.41	94.01	93.21	96.01
TNR (DEAP)	99.89	99.6	99.53	99.45	99.76	99.87	98.98	99.69	99.53	
TPR (DEAP)	96.41	95.01	95.81	86.83	95.41	90.02	83.64	93.01	89.82	

Future Work

- Extend classification to 10 classes (e.g. combining the outputs of 10 binary classifiers).
- Explore different implementations of the Evolutionary Algorithm and Fitness Function.
- Make scriptable the file Smc_GP_main.py, to try out different parameters configurations within a single run.

Bibliography

- [cagnoni2005] S. Cagnoni, F. Bergenti, M. Mordonini, and G. Adorni, "Evolving Binary Classifiers Through Parallel Computation of Multiple Fitness Cases"
- V. Mallawaarachchi, <u>"Introduction to Genetic Algorithms Including Example Code"</u>
- DEAP 1.3.1 documentation