Növénygondozó dokumentáció

Lauer Barnabás PA3TB6 Kőhegyi Kristóf DOZCKC 2023.01.12

Tartalomjegyzék

Alkatrészek	2
Raspberry pi	2
Összeköttetések	2
Szenzorok	2
Elektronika	3
Kód	5
Szenzorok beállítása	5
Talajnedvesség szenzor leolvasás	5
Adatok bekérése	5
Fájl megnyitása appendre	6
Beolvasott adatok kiírása	6
Összeköttetések specifikációja	7

A projekthez felhasznált alkatrészek:

Raspberry PI 2 modell B V1.1

Specifikációk:

4 magos CPU

1 GB RAM

Teljes kompatibilitás a B+ modellel

ver1.1 BCM2836 proc. Core Architecture: ARM

Core Sub-Architecture: ARM7

Quad Core CPU (SoC Broadcom BCM2836 quad core Cortex A7 processor

@ 900MHz (overclockable @ 1.1 GHz), VideoCore IV GPU),

1GB LPDDR2 RAM,

900MHz Board Clock Speed,

40 GPIO Pins,

4 x USB Ports,

4 Pole Stereo Output,

HDMI Port,

10/100 Ethernet,

Micro SD Card Slot

Méret: 85 x 56 mm

6x-os teljesítmény

Összeköttetések

-GPIO kábel

- -GPIO T-típusú cobbler expander
- -Breadboard
- -Csatlakozó kábelek

Szenzorok

AHT10 hőmérséklet és páratartalom érzékelő I2C-vel

specifikációk:

Típus: AHT10

Üzemi feszültség: 1.8 - 6V

Interfész: I2C

Mérési tartomány -40 $^{\circ}$ - 85 $^{\circ}$ C / 0 - 100% relatív páratartalom

Pontosság: ± 0.3 ° C / $\pm 2\%$

Kapacitív talajnedvesség-érzékelő

Specifikációk:

Üzemi feszültség: 3.3V - 5V

Kimenet: 0 - 3.3V páratartalomtól függően

TEMT6000 fényerő érzékelő

Specifikációk:

Üzemi feszültség: 3.3V - 5V

Szkennelési szög: 60°

Analóg kimenet

Spektrum: 390-700 nm

Elektronika

MCP3002 i/p microchip

10-bit resolution

±1 LSB Maximum DNL

±1 LSB maximum INL

Two single-ended channels

On-chip sample and hold

SPI serial interface (modes 0,0 and 1,1)

200kSPS Maximum sampling rate at VDD = 5V

75kSPS Maximum sampling rate at VDD = 2.7V

Low power CMOS technology

KEMET PCB Mount Signal Relay, dc Coil, 2A Switching Current, SPDT

Coil Voltage 3V dc

Contact Configuration SPDT

Mounting Type PCB Mount

Maximum Switching Current AC 2 A

Maximum Switching Current DC 2 A

Maximum Switching Voltage AC 250V ac

Maximum Switching Voltage DC 220V dc

Series EE2

Maximum Switching Power DC 24 W

Kis vízpumpa (Búvár szivattyú)

specifikációk:

Üzemi feszültség: 3V - 6V

Üzemi áram: 180mA

Maximális lökethossz: 40 cm - 110 cm

Átfolyás: 80 liter/óra - 120 liter/óra Kimenet külső átmérője: 7.5 mm Belső lefolyó átmérő: 4.7 mm

Élettartam: 500 óra

Méretek: 45 mm x 24 mm (magasság x átmérő)

KÓD:

```
import signal
import sys
import time
import spidev
import RPi.GPIO as GPIO
import board
import adafruit_ahtx0
import datetime
```

Szenzorok beállítása

```
i2c = board.l2C()
sensor = adafruit_ahtx0.AHTx0(i2c)
spi = spidev.SpiDev(0, 0)
spi.max_speed_hz = 1200000

GPIO.setup(12, GPIO.IN)
GPIO.setwarnings(False)
```

Talajnedvesség szenzor leolvasás

```
def get_adc(channel):
    if channel != 0:
        channel = 1
    msg = 0b11
    msg = ((msg << 1) + channel) << 5
    msg = [msg, 0b00000000]
    reply = spi.xfer2(msg)
    adc = 0
    for n in reply:
        adc = (adc << 8) + n
    adc = adc >> 1
    return adc
```

Adatok bekérése

```
print("Udvozoljuk a hazi novenygondozo beallitasainal!\n")
ido=int(input("Kérem adja meg hany percenkent legyen ellenorzes "))
i=0
while i<1 or i>3:
    i=int(input("Kérem adja meg a noveny homersekletigenyet\n1-hidegturo\n2-semleges\n3-melegturo "))
if i==1:
    hom=8
elif i==2:
    hom=10
elif i==3:
```

```
hom=12
j=0
while j<1 or j>2:
    j=int(input("Kérem adja meg a noveny talajanak minoseget\n1-viragfold\n2-homokos talaj "))
if j==1:
    taln=380
elif j==2:
    taln=420
```

Fájl megnyitása appendre

```
fki=open("adatok.txt","a")
if __name__ == '__main___':
  try:
    while True:
      print("ellenorzes volt")
      now = datetime.datetime.now() #Jelenlegi idő lekérése
      current time = now.strftime("%D %H:%M:%S")
      print("\nAktuális idő=",current_time, file=fki)
      print("Hőmérséklet: %0.1f C" % sensor.temperature, file=fki) #Hőmérséklet beolvasás és kiírás
      print("Páratartalom: %0.1f %%" % sensor.relative_humidity, file=fki) #Páratartalom beolvasás és kiírás
      adc_0 = get_adc(1)
      print("Talajnedvesség szenzor érték:", adc 0, file=fki)
      if GPIO.input(12)==1: #Fényérzékelő adatbeolvasás
         print("A növény napos helyen van", file=fki)
         print("A nővény árnyékos helyen van", file=fki)
      if adc 0>taln: #Locsolási feltétel ellenőrzés
         print("\nLocsolás történt", file=fki)
         if sensor.temperature>(hom+15) or sensor.relative humidity<30:
         elif sensor.temperature<(hom+5) or sensor.relative_humidity>0:
           mp=2
         else:
           mp=3
         #Motor üzemeltetés
         GPIO.setup(26, GPIO.OUT)
        GPIO.output(26, True)
         time.sleep(mp)
         GPIO.output(26, False)
      time.sleep(ido*60)
  finally:
    GPIO.cleanup()
```

Összeköttetések

Alkatrészek	Leírás	
-Raspberry PI 2 modell B V1.1	A felhasznált raspberry modell 16 GB SD kártya Rasberry pi OS Fejlesztői környezet: Geany	
-GPIO kábel	Rasberry pinek és a T cobbler csatlakoztatására	
-GPIO T-típusú cobbler expander	A breadbordhoz csatlakoztatva	
-Breadboard	Összeköttetések megvalósításához	
-Csatlakozó kábelek	Összeköttetések megvalósításához	
-AHT10 hőmérséklet és páratartalom érzékelő I2C-vel	I2C interfészen csatlakozik a rasberryhez Érzékelő csatlakozás: GPIO2 és GPIO3 VIN: 3.3V PWR GND: GND	
-Kis vízpumpa	Mivel a raspberry nem bírta el, ezért külön áramforrás kellet neki. Relén keresztül kapcsolható. VIN: GPIO26	
-Kapacitív talajnedvesség-érzékelő	MCP 3002 ADC-vel csatlakoztatva VIN: 5V PWR (3.3V nem volt elég) AOUT: MCP3002 chip CH1 GND: GND	
-TEMT6000 fényerő érzékelő	VIN: 5V PWR GND: GND SIGNAL: GPIO12	
-MCP3002 i/p microchip	CS/SHDN 1 8	
WENAET DCD Manual Circuit Dala de C 11 24	CH1: Kapacitív talajnedvesség szenzor aout V _{SS} : GND V _{DD} : 5V PWR CLK: GPIO11 D _{OUT} : GPIO9 D _{IN} : GPIO10	
KEMET PCB Mount Signal Relay, dc Coil, 2A Switching Current, SPDT	INPUT: 5V (külön táp) VIN: GPIO26 GND: GND	