main.md 1/18/2023

Integration with U-Substitution and Natural Logarithms

We can solve a complex integral that contains a binomial in the denominator of f(x) using u-substitution.

Question 1:

Solve the integral below using u-substitution and natural logarithms.

$$\int \frac{5x}{(x^2+5)} dx$$

Prepare the U-Substitution:

Set μ to $(x^2 + 5)$ then solve for $d\mu$

let
$$\mu = (x^2 + 5)$$

let $d\mu = \frac{d}{dx} [\mu] dx$
 $\therefore d\mu = \frac{d}{dx} [(x^2 + 5)] dx$
 $\therefore dx = \frac{d\mu}{2x}$

Solve the equation:

Solve the equation by dividing 5x by 2x then moving the resulting $\frac{5}{2}$ to the front of the integral. Then, use the natural logarithm function (ln) to integrate the remaining variables.

$$= \int \frac{5x}{\mu} \frac{d\mu}{2x}$$

$$= \frac{5}{2} \int \frac{1}{\mu} d\mu$$

$$= \frac{5}{2} \ln(\mu) + c$$

$$= \frac{5}{2} \ln(x^2 + 5) + c$$

$$\therefore \int \frac{5x}{(x^2 + 5)} dx = \frac{5}{2} \ln(x^2 + 5) + c$$

Integrals for Mr.N

main.md 1/18/2023

Question 1: Easy

Solve with Integration by Parts:

 $\int x^2 \cos(3x) dx$

Question 2: Medium

Solve by completing the square:

$$\int \frac{(x+4)}{(x^2+2x+5)} dx$$

Question 3: Hard

Solve with Feynman's Technique:

$$\int_0^\infty \frac{\sin x}{x} dx$$

Notes

Derivation

The derivation of a function is defined as f(x)

$$f(x)' = \frac{d}{dx}[f(x)]$$

The derivation of the natural logarithm function is as follows:

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln(\mu) = \frac{\mu\prime}{\mu}$$

Natural Logarithms and Integrals

The natural logarithm function is denoted by the symbol ln and is defined as follows:

$$\int \, \tfrac{1}{\mu} = \tfrac{\ln(\mu)}{\mu\prime} + c$$