$t_{I} \sim$

٠,,

Fig. 2

Fig. 3

48

de All Marking and confidential control on the same is a control to the transfer of the tran

Fig. 4

 $\eta \sim$

Fig. 5.

58

Fig. 6

44 38 38 30 50 50	90 91 82 91 91 76 91
METULIALL TVAAAE-G GISPRAVW QFRNMIKCTI PESDPLKDYN MKELVLAALL TVAAAE-G GISPRAVW QFRKMIKCVI PESDPLKDYN MKLLVLAVLL TNAVLL-V GV-DGGLW QFRKMIKCVI PGSDPFLEYN MYPAHLLVLL TVCVSLLEAS SIPARPLNLY QFGNMIQCAN HGRRPTLAYA MNPAHLLILS AVCVSLLGAA NVPPQHLNLY QFRMILGE- TGKNPLTSYS MRTLW IVAVCL-I GV-EGSLL EFGMILGE- TGKNPLTSYS MRTLW INAVLL-V GV-EGDLW QFGQMILKE- TGKLPFPYYT MRTLW IVGAGQ-A GLNSRALW QFNGMIKCKI PSSEPLLDFN MRLLVLAALL TVGAGQ-A GLNSRALW QFNGMIKCKI PSSEPLLDFN	binding site FYGGYCGAGW SGCDGEEPGD DIDECCRIHD TOTYSEAKKLD SCKFLLDNPY DYGCYCGAGS SGTPWD ELDACCTHUD TOTGKVTGCN P-KL-GKYTY NYGCYCGAGS SGTPWD ELDACCCTHUD NCYDQAKKLD SCKFLLDNPY NYGCYCGAGS SGTPWD ELDACCCYHD NCYDQAKKLD SCKFLLDNPY NYGCYCGAGS SGTPWD ELDACCCYHD NCYGGAGK-K GC-YPTL TYGCYCGAGS SGTPWD ELDACCCYHD NCYGGAGK-K GC-YPTL TYGCYCGAGS GGTPWD PIDECCCYHD NCYGGARKLD SCKVLVDNPY NYGCYCGAGS GGTPWD DIDECCYHD NCYKQAKKLD SCKVLVDNPY NYGCYCGAGS GGTPWD DIDECCYHD NCYKQAKKLD SCKVLVDNPY NYGCYCGAGS GGTPWD DIDECCYHD CYGAKLT NCKPK TYGCYCGAGS GGTPWD DIDECCYHD CYGA
D49050 D00035 D10070 M21054 X12605 X53406 X53471 X76289 Y00120	D49050 D00035 D10070 M21054 X12605 X53406 X53471 X76289 Y00120

 $\eta \propto$

Fig. 6 cont.

130 125 125 132 132 125 125 134	
KNCMRKVKKA GKIGFSRKCPYEMAMAT MTSGMDMAIMLS-Q TKIYSYSCSG SEITCSSKNK DCDAFICNCD RSAAICFSKAPY-N SWNNGDIVCE GDGPCKEVC	
KCPYEMAMAT SKNK DCQAFICNCD SVC- ECDRAAAICF SKNK ECEAFICNCD SKT- GCERSVCDCD SAG TCARIVCDCD CGT- SCENRICECD CGT- SCENRICECD SGT- FCERQICECD SENN ACEAFICNCD	
KNCMRKVKKA GKIGFSRK TKIYSYSCSG SEITCSSKNK SWNNGDIVCE GDGPCKEVC- THTYSYSCSG SAITCSSKNK T-LYSWQCIE KTPTCNSKT- TKTYSYTCTK PNLTCTDAAG TDRYKYHREN GAIVCGKGT- TDRYSYSREN GVIICGEGT- TNNYSYSCSG DGPYCNSKT-	LGTQKLEL KEHKNLDTKKYC YPASNCQEDSEPC KAHKNLDTKKYCQS KKNYNIDTEKRQQ INNFMISSTHCQ YPDFLCKKESEKC YPDVLCKKPAEKC KEHKNLDKKKC
D49050 .D00035 D10070 M21054 X12605 X53406 X53471 X76289 Y00120	D49050 D00035 D10070 M21054 X12605 X53471 X76289 Y00120

Fig. 7

	3.0	83 88 76	
31 ATGIESTSVGKGCKRK LLGSTPAKDQGCSRT LLGSTPAKDQGCSRT SATSPPPPPCSRS	76	CDALDXCC 83 CDCXDGXCMVHDH 88 CDDLDACCRDHDHCV 76	active site
16 LLLVTASRGLNEG-D LLLVTASRGLNEG-D VFLAAGVLS	61	MYCGI MYCGI MYCGV	Ca ²⁺ -binding site
1 N-terminal D47724 MRFFLKLAPRCSVLLL D47653 MRFFLKLAPRCSVLLL D49050MPPRSPLLAL	46		Ca ² *-

 $a\, \gamma$