IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of

Hideyuki IKOMA et al.

Group Art Unit:

Examiner:

Application No.:

Filing Date:

February 26, 2004

Confirmation No.:

Title: WATER BASED INK COMPOSITION FOR WRITING INSTRUMENT

SUBMISSION OF CERTIFIED COPY OF PRIORITY DOCUMENT

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

The benefit of the filing date of the following priority foreign application(s) in the following foreign country is hereby requested, and the right of priority provided in 35 U.S.C. § 119 is hereby claimed.

Country: Japan

Patent Application No(s).: 2003-051379

Filed: February 27, 2003

In support of this claim, enclosed is a certified copy(ies) of said foreign application(s). Said prior foreign application(s) is referred to in the oath or declaration. Acknowledgment of receipt of the certified copy(ies) is requested.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

P.O. Box 1404 Alexandria, Virginia 22313-1404

(703) 836-6620

Date: February 26, 2004

Ву

Robert G. Mukai

Registration No. 28,531

(Translation)

JAPAN PATENT OFFICE

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application:

February 27, 2003

Application Number:

Patent Application No. 2003-051379

[ST.10/C]:

[JP2003-051379]

Applicant(s):

MITSUBISHI PENCIL CO., LTD.

January 23, 2004

Commissioner, Japan Patent Office Yasuo IMAI (Seal)

Certificate No. P 2004-3002028

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月27日

出 願 番 号

特願2003-051379

Application Number: [ST. 10/C]:

[J P 2 0 0 3 - 0 5 1 3 7 9]

出 願 人
Applicant(s):

三菱鉛筆株式会社

,

2004年 1月23日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

EP0302

【提出日】

平成15年 2月27日

【あて先】

特許庁長官 殿

【国際特許分類】

CO9D 11/16

【発明者】

【住所又は居所】 神奈川県横浜市神奈川区入江二丁目5番12号 三菱鉛

筆株式会社 横浜研究開発センター内

【氏名】

生駒 英行

【発明者】

【住所又は居所】

神奈川県横浜市神奈川区入江二丁目5番12号 三菱鉛

筆株式会社 横浜研究開発センター内

【氏名】

佐久間 聡

【発明者】

【住所又は居所】

神奈川県横浜市神奈川区入江二丁目5番12号 三菱鉛

筆株式会社 横浜研究開発センター内

【氏名】

篠澤 淳一

【特許出願人】

【識別番号】

000005957

【氏名又は名称】 三菱鉛筆株式会社

【代理人】

【識別番号】

100112335

【弁理士】

【氏名又は名称】

藤本 英介

【選任した代理人】

【識別番号】

100101144

【弁理士】

【氏名又は名称】 神田 正義

【選任した代理人】

【識別番号】 100101694

【弁理士】

【氏名又は名称】 宮尾 明茂

【手数料の表示】

【予納台帳番号】 077828

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

要約書 1

【包括委任状番号】 9907257

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 筆記具用水性インキ組成物

【特許請求の範囲】

【請求項1】 少なくとも着色剤と水を含有するインキ組成物において、親水基にアルキレンオキサイド鎖を持ち、平均分子量が3000~20万であるノニオン性高分子界面活性剤をインキ組成物中に0.1~30重量%の範囲で含有することを特徴とする筆記具用水性インキ組成物。

【請求項2】 ノニオン性高分子界面活性剤のHLBが8以上又は曇点が5 0℃以上である請求項1記載の筆記具用水性インキ組成物。

【請求項3】 ノニオン性高分子界面活性剤がNーポリオキシアルキレンポリアルキレンポリアミンである請求項1又は2記載の筆記具用水性インキ組成物

【請求項4】 ノニオン性高分子界面活性剤がポリオキシエチレンポリオキシプロピレンブロックポリマーである請求項1又は2記載の筆記具用水性インキ組成物。

【請求項5】 請求項1~4の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とするボールペン。

【請求項6】 請求項1~4の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とするマーキングペン。

【請求項7】 請求項1~4の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とする万年筆。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は、筆記具用水性インキ組成物に関し、更に詳しくは、非滲み性、書き味及び物性的安定性に優れたボールペン用、マーキングペン用、万年筆用等に好適な筆記具用水性インキ組成物に関する。

[0002]

【従来の技術】

従来、筆記具用水性インキを調整する際、特に低粘度領域〔50mPa·s以下:トキメック社製ELD型粘度計にて測定(25℃)〕を調整する場合、粘度効果による非滲み性を期待できないため、低分子界面活性剤のような紙への浸透速度が大きい材料の種類・添加量に制限があった。

特に、ボールペンのようなボールとチップホルダー間の金属潤滑性を必要とするような仕様である場合、界面活性剤の添加は必須である。

[0003]

しかしながら、金属潤滑性を満足させるために十分な量の界面活性剤を加えると、非滲み性が悪化することとなる。

また、金属潤滑性を必要としないマーキングペンのような機構の場合でも、着 色剤として使用する染着エマルジョンなどに吸着した乳化剤の影響で筆記描線が 滲むなどの課題がある。

[0004]

更に、インキ粘性を非ニュートン粘性にすることで、非滲み性を改良することが可能であるが、特に、顔料インキの場合、非ニュートン粘性付与剤の種類によっては、描線品位は良いが高温経時にて顔料沈降による色別れが発生したり、高温経時での顔料沈降性は良好であるが、描線のボテ・線割れが発生し、描線品位が低く、また低分子界面活性剤を添加しても書き味が向上しないなど、全ての品質を同時に満たすことができないという課題がある。

[0005]

一方、インキボテの発生を抑制し、かつボールの回転によるボール受け座の摩耗を極力防止することにより、良好なインキの吐出性を確保し、長距離の筆記を可能とした水性インキとして、少なくとも、着色剤と、水と、ポリオキシエチレンスチレン化フェニルエーテルとを含有したボールペン用水性インキが知られている。(例えば、特許文献1参照)。

[0006]

【特許文献1】

特開平10-195363号公報(特許請求の範囲、実施例等)

[0007]

3/

しかしながら、上記特許文献1に記載されるボールペン用水性インキに含有せしめるポリオキシエチレンスチレン化フェニルエーテルは、ボールペンチップのボールの回転によるボール受け座の摩耗を極力防止するために潤滑剤として主に使用するものであり、本願発明の書き味、非滲み性及びインキの物性的安定性を発揮せしめるために含有せしめる親水基にアルキレンオキサイド鎖を持ち、平均分子量が3000~20万であるノニオン性高分子界面活性剤とはその作用、物性等も明らかに相違するものである。

[0008]

【発明が解決しようとする課題】

本発明は、上記従来技術の課題等に鑑み、これを解消しようとするものであり、紙面に直接接触することでインキを吐出する機構を具備した筆記具に搭載された場合、長期保管においてもインキ組成が変化することなく、書き味及び非滲み性を著しく向上させた筆記具用水性インキ組成物を提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明者らは、上記の従来の課題等について、鎖意研究を行った結果、少なくとも着色剤と水を含有するインキ組成物において、特定物性のノニオン性高分子界面活性剤をインキ組成物中に特定量含有することにより、上記目的の筆記具用水性インキ組成物が得られることを見い出し、本発明を完成するに至ったのである。

すなわち、本発明は、次の(1)~(7)に存する。

- (1) 少なくとも着色剤と水を含有するインキ組成物において、親水基にアルキレンオキサイド鎖を持ち、平均分子量が3000~20万であるノニオン性高分子界面活性剤をインキ組成物中に0.1~30重量%の範囲で含有することを特徴とする筆記具用水性インキ組成物。
- (2) ノニオン性高分子界面活性剤のHLBが8以上又は曇点が50℃以上である上記(1)記載の筆記具用水性インキ組成物。
- (3) ノニオン性高分子界面活性剤がNーポリオキシアルキレンポリアルキレンポリアミンである上記(1)又は(2)記載の筆記具用水性インキ組成物。

- (4) ノニオン性高分子界面活性剤がポリオキシエチレンポリオキシプロピレンブロックポリマーである上記(1)又は(2)記載の筆記具用水性インキ組成物。
- (5) 上記(1) \sim (4)の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とするボールペン。
- (6) 上記(1)~(4)の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とするマーキングペン。
- (7) 上記(1)~(4)の何れか一つに記載の筆記具用水性インキ組成物を搭載したことを特徴とする万年筆。

[0010]

【発明の実施の形態】

以下に、本発明の実施の形態を詳しく説明する。

本発明の筆記具用水性インキ組成物は、少なくとも着色剤と水を含有するインキ組成物において、親水基にアルキレンオキサイド鎖を持ち、平均分子量が3000~20万であるノニオン性高分子界面活性剤をインキ組成物中に0.1~30重量%の範囲で含有することを特徴とするものであり、ボールペン、マーキングペン、万年筆等の筆記具のインキ収容体に好適に搭載されて紙面直接接触型の筆記具用水性インキとして使用されるものである。

$[0\ 0\ 1\ 1]$

本発明に用いられるノニオン性高分子界面活性剤は、ボールペン、マーキングペン、万年筆等の筆記具の書き味、非滲み性、並びに、インキの物性的安定性、特に非ニュートン粘性を付与した顔料インキの物性的安定性を著しく向上させるものである。

本発明に用いるノニオン性高分子界面活性剤としては、親水基にアルキレンオ キサイド鎖を持ち、平均分子量が3000~20万であるものであれば、特に限 定されないが、好ましくは、Nーポリオキシアルキレンポリアルキレンポリアミ ン、ポリオキシエチレンポリオキシプロピレンブロックポリマーが望ましい。

特に、下記一般式(I)で示されるN-ポリオキシアルキレンポリアルキレンポリアミンの使用が望ましい。

〔上記式(I)中、POはプロピレンオキサイド、EOはエチレンオキサイドであり、<math>n, x, yは正の数であり、上記平均分子量1万~20万の範囲で各々の正の数が決定される。〕

具体的に用いることができるノニオン性高分子界面活性剤としては、上記一般式(I)で示されるNーポリオキシアルキレンポリアルキレンポリアミンである商品名「ディスコール」(第一工業製薬社製)におけるN-509(平均分子量:2万、HLB:9)、N-512(平均分子量:3万、HLB:12)、N-515(平均分子量:5万、HLB:15)、N-518(平均分子量:8万、HLB:10)、ポリオキシエチレンポリオキシプロピレン(EOPO)ブロックポリマーである商品名「エパン」(第一工業製薬社製)におけるエパン485(平均分子量:8000、曇点:100℃以上)、エパン680(平均分子量:8750、曇点:100℃以上)、エパン740(平均分子量:3333、曇点:55℃)、エパン750(平均分子量:4000、曇点:70℃)、エパン785(平均分子量:13333、曇点:100℃以上)などが挙げられる。

[0012]

本発明で用いる上記特性のノニオン性高分子界面活性剤による①書き味、②非 滲み性、及び③物性的安定性の機能等を以下に詳述する。

① ボールペンの場合、書き味に影響するファクターとして、ボールとチップホルダーとの潤滑性及び紙とボールとの潤滑性が大きく寄与している。通常、ボール・チップホルダー間の潤滑性を期待するので有れば含有量を多く含有させる必要があるが、紙とボールの潤滑性で有ればさほど含有量を必要としない。また、ペン芯を装着したマーキングペンや万年筆の場合、紙とインキ吐出部の潤滑性が大きく寄与するため、同様な効果が期待できる。紙とボール(またはペン芯など)との潤滑性メカニズムの詳細は定かではないが、分子中のアルキレンオキサイド鎖が水を水和し、その分子が紙面に吐出された際、セルロース繊維間の水素結合力を低下させ、紙自身を柔らかくし、ボールとの潤滑性を向上させると推察される。

本発明において、紙とボールとの潤滑性効果は、用いる上記特性のノニオン性

また、本発明におけるノニオン性高分子界面活性剤の平均分子量は、3000 ~ 20 万とすることが必要であり、好ましくは、5000 ~ 10 万とすることが望ましい。

この平均分子量が3000未満であると、アルキレンオキサイド鎖が短いため 紙への膨潤効果が小さく、また、20万を越えると、インキ粘度が上昇してしま い、ペン体のインキ流出量が少なくなり、好ましくない。

[0013]

れる恐れがある。

② 本発明に用いるノニオン性高分子界面活性剤は、書き味向上だけでなく、非滲み性を著しく向上させることができる。本発明による水性インキ組成物は、ボールペン、マーキングペン、万年筆等により、紙面に直接接触することで紙にインキを付着するものであるので、紙の繊維をかき分けて筆記するような形式となり、紙の毛管半径を大きくする。そのため、インキ浸透速度は、液滴を噴出することで紙面にインキを付着する紙繊維に外的応力がかからないインキジェット方式のものよりも速くなり、非滲み性に関してはより過酷となる。

本発明において、非滲み性のメカニズムの詳細は明確ではないが、用いるノニオン性高分子界面活性剤の分子内に存在するアルキレンオキサイド鎖が長いため、その部分に水和した水分子の影響で高分子が紙の中に浸透できず、紙面上に存在することとなる。そのため、ノニオン性高分子界面活性剤が、紙面上に存在することで紙に対して低分子界面活性剤は高分子界面活性剤に対して軟着能を持つため、紙面への浸透が抑制されると予測される。従って、本発明では、ノニオン性高分子界面活性剤を含有した水性インキ系では、低分子界面活性剤の含有量を比較的多くすることが可能であり、非滲み性、滑らかな書き味を同時に満たすこ

とが可能となるものである。

[0014]

③ 一方、非ニュートン粘性を付与した顔料インキでは、例えば、天然多糖類をインキ中に添加した場合には、経時にて顔料が沈降する。本発明のノニオン性高分子界面活性剤を含有した場合、高温経時においても顔料沈降を発生することなく物性的にも安定することとなる。そのメカニズムの詳細は明らかではないが、天然多糖類の水酸基とノニオン性高分子界面活性剤のアルキレンオキサイド鎖がネットワーク構造を構築し、また、ノニオン性高分子界面活性剤が顔料に対する吸着能があるため、顔料を含めた形での強固なネットワーク構造が作られると予測される。また、着色剤が染料の場合でも同様で、ノニオン性高分子界面活性剤と非ニュートン性付与剤との強固なネットワークが形成されて物性安定化が図れるものとなる。

[0015]

本発明に用いる上記特性を有するノニオン性高分子界面活性剤の含有量は、インキ組成物全量に対して、0.1~30重量%(以下、単に「%」という)とすることが必要であり、好ましくは、0.5~15%とすることが望ましい。

この含有量が 0. 1%未満であると、書き味向上が図れず、また、30%を越えると、ニュートン性インキの場合、粘度が高くなり目標粘度に設定できず、非ニュートン性インキの場合、目標粘度に設定する際、非ニュートン性付与剤の含有量を制限する必要があり、結果としてネットワーク構造が強固なものにならず、顔料沈降等の問題が発生することとなる。

$[0\ 0\ 1\ 6]$

本発明に用いる着色剤としては、特に制限はないが、従来水性インキ組成物に 慣用されている無機系及び有機系顔料、水溶性染料又は低濃度で水に溶解する油 溶性染料の中から選択される任意のものを使用することができる。

無機系顔料としては、例えば、酸化チタン、カーボンブラック、金属粉などが 挙げられ、また、有機系顔料としては、例えば、アゾレーキ、不溶性アゾ顔料、 キレートアゾ顔料、フタロシアニン顔料、ペリレン及びペリノン顔料、アントラ キノン顔料、キナクリドン顔料、染料レーキ、ニトロ顔料、ニトロソ顔料などが 挙げられる。

具体的には、フタロシアニンブルー (C. I. 74160)、フタロシアニングリーン (C. I. 74260)、ハンザイエロー3G (C. I. 11670)、ジスアゾエローGR (C. I. 21100)、ナフトールレッド (C. Iトレッド12390)、パーマネンレッド4R (C. I. 12335)、ブリリアントカーミン6B (C. I. 15850)、キナクリドンレッド (C. I. 4650) などが使用できる。

[0017]

水溶性染料としては、直接染料、酸性染料、食用染料、塩基性染料のいずれも 用いることができる。

用いることができる直接染料としては、例えば、C. I. ダイレクトブラック 17、同19同22、同32、同38、同51、同71、C. I. ダイレクトエロー4、同26、同44、同50、C. I. ダイレクトレッド1、同4、同23、同31、同37、同39、同75、同80、同81、同83、同225、同226、同227、C. I. ダイレクトブルー1、同15、同71、同86、同106、同119等が挙げられる。

[0018]

用いることができる酸性染料としては、例えば、C. I. アシッドブラック1、同2、同24、同26、同31、同52、同107、同109、同110、同119、同154、C. I. アシッドエロー7、同17、同19、同23、同25、同29、同38、同42、同49、同61、同72、同78、同110、同141、同127、同135、同142、C. I. アシッドレッド8、同9、同14、同18同26、同27、同35、同37、同51、同52、同57、同82、同87、同92、同94、同111、同129、同131、同138、同186、同249、同254、同265、同276、C. I. アシッドバイオレッド15、同17、C. I. アシッドブルー1、同7、同9、同15、同22、同23、同25同40、同41、同43、同62、同78、同83、同90、同93、同103同112、同113、同158、C. I. アシッドグリーン3、同9、同16、同25、同27等が挙げられる。

食用染料は、その大部分が直接染料又は酸性染料に含まれるが、含まれないものの一例としては、C. I. フードエロー3が挙げられる。

用いることができる塩基性染料としては、例えば、C. I. ベーシックエロー 1、同2、同21、C. I. ベーシックオレンジ2、同14、同32、C. I. ベーシックレッド1、同2、同9、同14、C. I. ベーシックバイオレット1 、同3、同7、C. I. ベーシックグリーン4、C. I. ベーシックブラウン1 2、C. Iベーシックブラック2、同8等が挙げられる。

[0020]

油溶性染料としては、例えば、バリファーストブラック1802、バリファー ストブラック1807、バリファーストバイオレット1701、バリファースト バイオレット1702、バリファーストブルー1603、バリファーストブルー 1605、バリファーストブルー1601、バリファーストレッド1308、バ リファーストレッド1320、バリファーストレッド1355、バリファースト レッド1360、バリファーストイエロー1101、バリファーストイエロー1 105、バリファーストグリーン1501、ニグロシンベースEXBP、ニグロ シンベースEX、BASE OF BASIC DYES ROB-B、BAS E OF BASIC DYES ROGG-B, BASE OF BASIC DYES VB-B, BASE OF BASIC DYES VPB-B, BASE OF BASIC DYES MVB-3 (以上、オリエント化学工 業社製)、アイゼンスピロンブラック GMH-スペシャル、アイゼンスピロン バイオレット C-RH、アイゼンスピロンブルー GNH、アイゼンスピロン ブルー 2BNH、アイゼンスピロンブルー C-RH、アイゼンスピロンレッ ドC-GH、アイゼンスピロンレッド C-BH、アイゼンスピロンイエロー C-GNH、アイゼンスピロンイエロー C-2GH、S.P.T レッド522、S. P. T ブルー111、S. P. Tブルー GLSHスペシャル、S. P. T レッド533、S. P. T オレンジ6、S. B. N バイオレット5 10、S.B.N イエロー510、S.B.N イエロー530 (以上、保土 谷化学工業社製)等が挙げられる。また、これらの油溶性染料を用いる場合は、

これらの着色剤は、それぞれ単独で用いてもよいし、2種類以上を組み合わせ て用いてもよい。

[0021]

これらの着色剤の含有量は、インキ組成物全量に対して、 $0.05 \sim 30\%$ 、 好ましくは、 $1 \sim 15\%$ の範囲とすることが望ましい。

この着色剤の含有量が 0.05%未満では、着色が弱くなり、紙に書いた時の色相が分からなくなってしまうので、好ましくなく、また、30%を越えると、長期に保存した場合、顔料が凝集してしまったり、染料が析出したりしてペン先に詰まり、筆記不良を起こすこととなり、好ましくない。

[0022]

本発明に用いる水としては、精製水、蒸留水、イオン交換水、純水、海洋深層水等を用いることができ、その含有量は、インキ組成物全量に対して、30~90%の範囲内で調整される。

[0023]

本発明の水性インキ組成物は、上記各成分を含有すると共に、インキ種(ゲルインキ系、低粘度インキ系など)、筆記具(ボールペン、マーキングペン、万年筆等)の用途により、更に、これらの用途に通常用いる各種成分(任意成分)、例えば、保湿剤、潤滑剤、防腐剤、pH調節剤、樹脂エマルジョン、腐食抑制剤、増粘剤等を必要に応じて含有することができる。

ペン先の乾燥を防ぐための保湿剤として、水溶性有機溶剤を用いることができる。この水溶性有機溶剤としては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリンなどの水溶性多価アルコール類やエチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)などのセロソルブ類、ジエチレングリコールモノメチルエーテル(メチルカルビトール)、ジエチレングリコールモノエチルエーテル(エチルカルビトール)などのカルビトール類、エチレングリコールモノエチルエーテルアセテートのようなグリコールエーテルエステル類

などが挙げられる。また、グリセリン、ジグリセリン、ポリグリセリンなどの誘導体は、その保湿効果より有機溶剤と同様な効果を得る目的でインキ中に含有することができる。

これらの水溶性有機溶剤の含有量は、インキ組成物全量に対して、通常40% 以下、好ましくは5~40%の範囲とすることが望ましい。この水溶性有機溶剤 の含有量が40%を越えると、描線が乾きづらくなり、好ましくない。

[0024]

潤滑剤としては、例えば、リノール酸カリウム、リシノール酸ナトリウム、オレイン酸カリウム、オレイン酸ナトリウムなどの脂肪酸塩、その他、以下に示すノニオン系界面活性剤、アニオン系界面活性剤等の各界面活性剤を挙げることができる。

潤滑剤としての界面活性剤としては、ノニオン系界面活性剤、アニオン系界面活性剤などが挙げられる。

用いることができるノニオン系界面活性剤としては、例えば、ポリオキシアル キレン高級脂肪酸エステル、多価アルコールの高級脂肪酸エステル及びその誘導 体、糖の高級脂肪酸エステルなどが挙げられ、具体的には、グリセリンの脂肪酸 エステル、ポリグリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステ ル、ペンタエリスリトール脂肪酸エステル、ポリオキシエチレンソルビタン脂肪 酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレ ングリセリン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオ キシエチレンアルキルエーテル、ポリオキシエチレンスチレン化フェニルエーテ ル、ポリオキシエチレンフィトステロール、ポリオキシエチレンポリオキシプロ ピレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリ オキシエチレンヒマシ油、ポリオキシエチレンラノリン、ポリオキシエチレンラ ノリンアルコール、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂 肪酸アミド、ポリオキシエチレンアルキルフェニルホルムアルデヒド縮合物など が挙げられる。なお、これらのノニオン系界面活性剤は、本発明で用いる上記特 性のノニオン性高分子界面活性剤とは、その作用等が相違し、区別化されるもの である。

[0025]

アニオン系界面活性剤としては、例えば、高級脂肪酸アミドのアルキル化スルフォン酸塩、アルキルアリルスルフォン酸塩等が挙げられ、具体的には、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、N-アシルアミノ酸塩、N-アシルメチルタウリン塩、ポリオキシエチレンアルキルエーテル酢酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルエーテルリン酸塩などが挙げられる。

[0026]

これらの潤滑剤の含有量は、特に、低粘度インキ(10mPa·s程度)の場合は、非滲み性の観点から、インキ組成物全量に対して、0.01~2.0%が好ましく、より好ましくは、0.05~1.5%、特に望ましくは0.1~1.2%とすることが望ましい。なお、非ニュートン粘性で100~400mPa·s(せん断速度 3.84s⁻¹の場合)の際は、その粘度効果より含有量を制限しなくともよい。

[0027]

防腐剤としては、例えば、フェノール、イソプロピルメチルフェノール、ペンタクロロフェノールナトリウム、安息香酸、安息香酸ナトリウム、デヒドロ酢酸、デヒドロ酢酸ナトリウム、ソルビン酸、ソルビン酸カリウム、2ーピリヂンチオールー1ーオキサイドナトリウム塩、1,2ーベンズイソチアゾンー3ーオン、5ークロルー2ーメチルー4ーイソチアゾンー3ーオン、2,4ーチアゾリンベンズイミダゾール、パラオキシ安息香酸エステルなどが挙げられる。

[0028]

p H調節剤としては、アミンまたは塩基、例えば、アミノトリエタノールアミン、モノエタノールアミン、ジエタノールアミン等の各種有機アミン、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属の水酸化物の無機アルカリ剤、アンモニアなどが挙げられる。

[0029]

樹脂エマルジョンは、アルカリ増粘型も含むものであるが、粘度調整剤や顔料 分散剤または耐水性付与剤として含有せしめるものである。例えば、ポリ塩化ビ ニル、ポリ塩化ビニリデン、ポリスチレン、ポリエチレン、ポリカーボネイト、ポリウレタン、ポリメチルメタクリレート、ベンゾグアナミン樹脂、スチレン・アクリロトリル共重合体、変性アクリルメチルメタクリレート・スチレン共重合体、アクリル酸アルキルエステル共重合物、アクリロニトリル・アクリル酸アルキルエステル共重合物、スチレン・アクリル酸アルキルエステル共重合物、スチレン・メタクリル酸アルキルエステル・アクリル酸アルキルエステル共重合物、スチレン・アクリロニトリル・メタクリル酸アルキルエステル・アクリル酸アルキルエステル・アクリル酸アルキルエステル共重合物、メタクリル酸アルキルエステル・アクリル酸アルキルエステル共重合物、メタクリル酸・アクリル酸アルキルエステル共重合物、アクリル酸・メタクリル酸・アクリル酸アルキルエステル共重合物、塩化ビニリデン・アクリル酸アルキルエステル共重合物などが挙げられる

[0030]

増粘剤は、有機系増粘剤と無機系増粘剤に大別されるが、有機系増粘剤としては、例えば、アクリル系合成高分子、天然ガム、セルロース、多糖類が使用できる。具体的には、アラビアガム、トラガカントガム、グアーガム、ローカストビーンガム、アルギン酸、カラギーナン、ゼラチン、カゼイン、キサンタンガム、サクシノグリカン、アルカラン、デキストラン、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、デンプングリコール酸ナトリウム、アルギン酸プロピレングリコールエステル、ポリビニルアルコール、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリエチレンオキサイド、酢酸ビニルとポリビニルピロリドンの共重合体、架橋型アクリル酸重合体、スチレンアクリル酸共重合体の塩などが挙げられる。

無機系増粘剤としては、例えば、スメクタイト、ベントナイト、ケイソウ土等の粘土類、二酸化珪素等の微少粒体等が挙げられる。

これらの増粘剤の含有量は、インキの粘度値により適宜増減される。

[0031]

腐食抑制剤としては、例えば、トリルトリアゾール、ベンゾトリアゾール及び その誘導体、リン酸オクチル、チオリン酸ジオクチル等の脂肪酸リン誘導体、イ ミダゾール、ベンゾイミダゾール及びその誘導体、2-メルカプトベンゾチアゾール、オクチルメタンスルホン酸、ジシクロヘキシルアンモニウム・ナイトライト、ジイソプロピルアンモニウム・ナイトライト、プロパルギルアルコール、ジアルキルチオ尿素などが挙げられる。

[0032]

本発明の水性インキ組成物のpHに関しては、筆記具(ペン体)仕様により異なる。

すなわち、マーキングペンのような場合、アルカリ溶解型の添加剤を使用する場合を除いて、特に調整する必要はない。これに対して、ペン先に金属材質を用いているボールペンや万年筆のような仕様の場合のみ、インキ組成物のpHを7~10の範囲に調整することが好ましい(測定温度:25℃、測定機器:ホリバ社製pHメーター)。

このpHを上記範囲($7\sim10$)に調整するのは、金属ボールペンチップの防錆と共に、顔料の分散に仕様する分散剤の凝集や着色剤として使用する酸性染料の未溶解を防ぐためである。

ボールペンの場合は、通常、ボールペンチップはボールとホルダーにより構成されており、少なくとこれらの一部が金属で構成されている場合には、錆に対する配慮が必要であり、本発明にような水性インキの場合は、防錆対策は必須条件となる。例えば、ボールペンチップ材料として一般的なタングステンカーバイトを用いる場合には、上記範囲(7~10)内であれば、コバルトやタングステンの溶出による筆記性能への悪影響が生じないこととなるので好ましい。

また、万年筆のような機構の場合、錆びやすい金属片を用いる場合、防錆対策が必要となるが、プラスティック片を用いる場合は、防錆対策によるpH調整の必要はないものとなる。

[0033]

本発明の水性インキ組成物の粘度は、幅広い粘度領域で用いることができる。 ニュートン粘性インキ粘度が 1~10 mPa·sのような低粘度インキの場合は 、非滲み性、書き味に優れた効果を発揮することとなる。

また、粘度が10~100mPa·s程度のインキに関しても、上記低粘度イ

ンキと同様な効果が期待できる。更に、非ニュートン粘性インキで剪断速度 $3.84 s^{-1}$ におけるインキ粘度が $100 \sim 4000 mPa \cdot s$ 程度の場合、非ニュートン性付与剤と強固なネットワーク構造を構築し、物性安定性を図ることができる。

[0034]

本発明の水性インキ組成物の表面張力は、16~45mN/m(測定温度:25℃、測定機器:協和界面科学社製、表面張力測定器)の範囲でインキの粘度、筆記具種等を勘案して適宜設定することが好ましい。

例えば、本発明の水性インキ組成物の粘度が $1\sim10\,\mathrm{mPa\cdot s}$ ($25\,\mathrm{C}$)程度の低粘度インキとして後述する直留直液方式の筆記具に使用する場合には、ペン体の品質を維持するために、インキの表面張力を $35\sim45\,\mathrm{mN/mm}$ に調整されることが好ましく、より好ましくは、 $37\sim42\,\mathrm{mN/m}$ 、特に望ましくは $38\sim40\,\mathrm{mN/m}$ とすることが望ましく、また、同様の粘度で後記する中綿方式の筆記具に使用する場合は、ペン体の品質を維持するためにインキの表面張力は $25\sim40\,\mathrm{mN/m}$ に調整されることが好ましく、より好ましくは $27\sim38\,\mathrm{mN/m}$ 、特に望ましくは、 $30\sim36\,\mathrm{mN/m}$ とすることが望ましい。

以上の各方式の筆記具において、インキの表面張力がそれぞれ上記の好ましい 範囲を下回ると(各範囲の最小値未満であると)、筆記描線が滲みやすくなった り、ペン体品質に悪影響(直流・吹き出し等)を生じることがあり、それぞれ上 記の好ましい範囲(各範囲の最大値)を越えると、ペンの書き味や流量安定性が 低下することがある。

[0035]

一方、本発明の水性インキ組成物において、擬塑性を付加させ、せん断速度 3 . $84 \, \mathrm{s}^{-1}$ における粘度が $100 \, \mathrm{o} \, \mathrm{o} \, \mathrm{o} \, \mathrm{o} \, \mathrm{o} \, \mathrm{mPa} \, \mathrm{e} \, \mathrm{s} \, (25\, \mathrm{C})$ 程度の中粘度インキとする場合、またはニュートニアン粘性インキで粘度が $10 \, \mathrm{o} \, \mathrm{o} \, \mathrm{mPa} \, \mathrm{e} \, \mathrm{s} \, \mathrm{s} \, (25\, \mathrm{C})$ の場合には、表面張力を $16 \, \mathrm{o} \, \mathrm{3.8\, mN/m} \, \mathrm{o} \, \mathrm{m} \, \mathrm{m} \, \mathrm{e} \, \mathrm{m} \, \mathrm{s} \, \mathrm{e} \, \mathrm{s} \, \mathrm{e} \, \mathrm{s} \, \mathrm{e} \, \mathrm{s} \, \mathrm{e} \,$

この表面張力が16mN/m未満では、直流現象を起こしやすく、また、顔料

の沈降や凝集を起こしやすくなってしまうこととなる。一方、38mN/mを越えると、ボテ現象や、線割れ現象を起こしやすく、更に保存環境や筆記状態によってインキ流出量が不安定になり、描線の濃度や幅にバラツキを生じやすくなってしまうことがある。

[0036]

このように構成される本発明の水性インキ組成物は、各種筆記具に用いられる。すなわち、上記各種成分(着色剤、水、ノニオン性高分子界面活性剤、各種任意成分等)からなる構成される水性インキ組成物を充填したインキ収容管に、ステンレス、真鍮及び洋白のような金属材質からなる群から選ばれた少なくとも一種からなる材質のチップホルダー及び超硬合金、ジルコニア、炭化珪素、ステンレス鋼球からなる群から選ばれた少なくとも一種からなる材質のボールを有するペン先を具備するボールペン、または、樹脂製合成繊維を円筒形に収束形成したペン芯を具備するマーキングペン、またはペン先に金属片、プラスチック片を具備し、金属間、プラスチック間の毛細管力によりインキを誘導する万年筆等に用いることができる。

[0037]

本発明の水性インキ組成物が搭載される筆記具の構造としては、例えば、中綿 方式筆記具、または、筆記具にインキを直接貯蔵する直液方式筆記具等が挙げら れる。

上記中綿方式、直液方式の筆記具のうち、中綿方式の筆記具としては、上述の本発明の水性インキ組成物を吸蔵させた中綿を収容した軸筒、その中綿に接続される繊維束等からなる中継芯、ボールとチップホルダーからなるペン先などから構成される中綿式ボールペン、インキ吸蔵中綿と樹脂製合成繊維を円筒形に収束形成したペン芯からなる中綿式マーキングペンなどが挙げられる。

[0038]

また、直液方式の筆記具には、2種類あり、インキを直接貯溜するインキタンク、該インキタンク内の空気が温度上昇などによって膨張した場合インキタンクから押し出されるインキをペン先(またはペン芯)や空気孔からボタ落ちさせないために一時的に保留するインキ保留体、ボール、チップホルダーからなるペン

先または樹脂製合成繊維を円筒形に収束形成したペン芯、金属・プラスチック片をペン先とする万年筆ペン先などから構成されるもの(以下、「直留方式」と称す)と、インキを直接貯溜するチューブ、ボール、チップホルダーからなるペン先または樹脂製合成繊維を円筒形に収束形成したペン芯、金属・プラスチック片をペン先とする万年筆ペン先などからから構成されるもの(以下、「貯留方式」と称す)が挙げられる。

[0039]

以上に示した筆記具は、本発明の水性インキ組成物の粘度領域により区別して用いることができる。例えば、インキ粘度が $1\sim10\,\mathrm{mPa\cdot s}$ のものは、中綿方式および直留直液方式に好適に用いられる。また、せん断速度 $3.84\,\mathrm{s^{-1}}$ におけるインキ粘度が $100\sim400\,\mathrm{mpa\cdot s}$ 程度のもの、またはニュートニアン粘性で粘度が $10\sim100\,\mathrm{mPa\cdot s}$ のインキは、貯留直液方式筆記具に使用される。

[0040]

このように構成される本発明の水性インキ組成物では、上記特性のノニオン性高分子界面活性剤をインキ組成物中に 0.1~30%含有することで、書き味、非滲み性、経時安定性の全てに関して満足した品質を得ることができる。そのメカニズムは上述の如く、書き味に関しては、アルキレンオキサイド鎖に水和した水が紙面を膨潤することで向上し、非滲み性に関しては低分子界面活性剤がノニオン性高分子活性剤に吸着することで、紙面への選択浸透を防ぎ、非ニュートン粘性顔料インキでの経時顔料沈降性に関しては、非ニュートン性付与剤とアルキレンオキサイド鎖が強固なネットワークを形成することにより優れた物性的安定性を発揮することができるものとなる。

また、本発明の筆記具(ボールペン、マーキングペン、万年筆)は、本発明の 水性インキ組成物を搭載するので、非滲み性、書き味及び物性的安定性に優れた ものとなる。

[0041]

【実施例】

次に、本発明を実施例及び比較例によって、更に具体的に説明するが、本発明

は、下記実施例によって何ら限定されるものではない。なお、以下の実施例等における配合単位は、重量%であり、全量100重量%である。

[0042]

(実施例1)

下記の各成分を3時間混合・撹拌後、サンドミルにて5時間分散し、黒色の水性ボールペン用顔料インキを調製した。

着色剤:カーボンブラック MA-100(三菱化学社製)	8.	0
ノニオン性高分子界面活性剤:ディスコールN-509		
(平均分子量:2万、HLB:9、第一工業製薬社製)	2.	0
溶剤:グリセリン	10.	0
プロピレングリコール	10.	0
p H調整剤:トリエタノールアミン	2.	0
アミノメチルプロパノール	0.	2
潤滑剤:ポリオキシエチレンアルキルエーテル燐酸エステル	0.	1
(プライサーフA-219B、第一工業製薬社製)		
防錆剤:ベンゾトリアゾール	0.	3
防腐剤:1,2-ベンズイソチアゾリン-3-オン		
(ゼネカ製:Proxel BDN)	0.	1
精製水	残	部

[0043]

(比較例1)

上記実施例1のノニオン性高分子界面活性剤を同量のスチレンアクリル酸樹脂 アンモニウム塩にする以外は、上記実施例1と同様の方法で黒色水性ボールペン 用インキを調製した。

[0044]

(実施例2)

下記の配合組成に従い、3時間混合・撹拌し、水性マーキングペン用蛍光緑色 インキを調製した。

着色剤:NKW3902グリーントナー(日本蛍光社製) 50.0

溶剤:グリセリン 10.0
 保湿剤:尿素 10.0
 ノニオン性高分子界面活性剤:ディスコールN-518
 (平均分子量:8万、HLB:18、第一工業製薬社製) 0.5
 防腐剤:バイオエース (イソチアゾリン系防腐剤、ケイアイ化成社製) 0.3
 精製水: 残 部

[0045]

(比較例2)

上記実施例2のノニオン性高分子界面活性剤を同量の精製水にする以外は、上 記実施例2と同様の方法で蛍光緑色水性マーキングペン用インキを調製した。

 $[0\ 0\ 4\ 6]$

(実施例3)

下記の配合組成に従い、実施例1と同様の方法で、非ニュートン粘性赤色水性 ボールペン用顔料インキを調製した。

着色剤:ナフトールレッド

防錆剤:ベンゾトリアゾール

(住友化学社製:スミトーンスカーレット)	6. 0
溶剤:グリセリン	4. 0
溶剤:エチレングリコール	20.0
分散剤:スチレンアクリル酸樹脂アンモニウム塩	3. 0
ノニオン性高分子界面活性剤:ディスコールN-518	
(平均分子量:8万、HLB:18、第一工業製薬社製)	2. 0
潤滑剤:ポリオキシエチレンアルキルエーテルリン酸エステル	1. 0
(RS-410、東邦化学社製、以下同様)	
p H調整剤:アミノメチルプロパノール	0.5
増粘剤:キサンタンガム	0.3
防腐剤:1,2ーベンズイソチアゾリンー3ーオン	
(ゼネカ製:Proxel BDN)	0.1

0.3

精製水:

残 部

[0047]

(比較例3)

上記実施例3のノニオン性高分子界面活性剤を同量の精製水にする以外は、上記実施例3と同様の方法で非ニュートン粘性赤色水性ボールペン用顔料インキを調製した。

[0048]

(実施例4)

下記の各成分を3時間混合・撹拌後、水性万年筆用黒色染料インキを調製した

着色剤:ウォーターブラック187LM

(黒色染料インキ、オリエント化学社製) 5.0

ノニオン性高分子界面活性剤:ディスコールN-509

(平均分子量:2万、HLB:9、第一工業製薬社製) 2.0

溶剤:グリセリン 10.0

溶剤:ジエチレングリコール 10.0

潤滑剤:ポリオキシエチレンアルキルエーテルリン酸エステル 0.1

p H 調整剤: トリエタノールアミン 2.0

防腐剤:1,2-ベンズイソチアゾリン-3-オン

(ゼネカ製:Proxel BDN) 0.1

防錆剤:ベンゾトリアゾール 0.3

[0049]

(比較例4)

上記実施例4のノニオン性高分子界面活性剤を同量の精製水にする以外は、上 記実施例4と同様の方法で水性万年筆用黒色染料インキを調製した。

[0050]

(実施例5)

下記の各成分を3時間混合・撹拌後、サンドミルにて5時間分散し、黒色の水

性ボールペン用顔料インキを調製した。

着色剤:カーボンブラック MA-100 (三菱化学社製)

8.0

ノニオン性高分子界面活性剤:エパン785

(平均分子量:13333、曇点:100℃以上、第一工業製薬社製)1.5

溶剤:グリセリン

10.0

プロピレングリコール

10.0

p H調整剤:トリエタノールアミン

2.0

アミノメチルプロパノール

0. 2

潤滑剤:ポリオキシエチレンアルキルエーテル燐酸エステル

0.1

(プライサーフA-219B、第一工業製薬社製)

防錆剤:ベンゾトリアゾール

0.3

防腐剤:1,2-ベンズイソチアゾリン-3-オン

(ゼネカ製:Proxel BDN)

0.1

精製水

残 部

[0051]

(比較例5)

上記実施例5のノニオン性高分子界面活性剤を同量のスチレンアクリル樹脂にする以外は、上記実施例5と同様の方法で黒色水性ボールペン用インキを調製した。

[0052]

(実施例6)

下記の配合組成に従い、3時間混合・撹拌し、水性マーキングペン用蛍光緑色 インキを調製した。

着色剤:NKW3902グリーントナー(日本蛍光社製)

50.0

ノニオン性高分子界面活性剤:エパン740

(平均分子量:3333、曇点:55℃、第一工業製薬社製)

0.5

溶剤:グリセリン

10.0

保湿剤:尿素

10.0

防腐剤:バイオエース

(イソチアゾリン系防腐剤、ケイアイ化成社製)

0.3

精製水:

残 部

[0053]

(比較例 6)

上記実施例6のノニオン性高分子界面活性剤を同量の精製水にする以外は、上 記実施例6と同様の方法で蛍光緑色水性マーキングペン用インキを調製した。

[0054]

(実施例7)

下記の配合組成に従い、実施例5と同様の方法で、非ニュートン粘性赤色水性 ボールペン用顔料インキを調製した。

着色剤:ナフトールレッド

(住友化学社製:スミトーンスカーレット) 6.0

ノニオン性高分子界面活性剤:エパン485

(平均分子量:8000、曇点:100℃以上、第一工業製薬社製) 2.0

溶剤:グリセリン 4.0

溶剤:プロピレングリコール 20.0

分散剤:スチレンアクリル酸樹脂アンモニウム塩 3.0

潤滑剤:ポリオキシエチレンアルキルエーテルリン酸エステル 1.0

(RS-410、東邦化学社製、以下同様)

p H調整剤: アミノメチルプロパノール 0.5

増粘剤:キサンタンガム 0.3

防腐剤:1.2ーベンズイソチアゾリンー3ーオン

(ゼネカ製:Proxel BDN) 0.1

防錆剤:ベンゾトリアゾール 0.3

精製水: 残 部

[0055]

(比較例7)

上記実施例7のノニオン性高分子界面活性剤をエパン410 (平均分子量:1333、曇点:35℃、第一工業製薬社製)にする以外は、上記実施例7と同様

の方法で非ニュートン粘性赤色水性ボールペン用顔料インキを調製した。

[0056]

(実施例8)

下記の各成分を3時間混合・撹拌後、水性万年筆用黒色染料インキを調製した

着色剤:ウォーターブラック187LM

(黒色染料トナー、オリエント化学社製)

5. 0

ノニオン性高分子界面活性剤:エパン680

(平均分子量:8750、曇点:100℃以上、第一工業製薬社製) 1.0

溶剤:グリセリン 10.0

溶剤:ジエチレングリコール 10.0

潤滑剤:ポリオキシエチレンアルキルエーテルリン酸エステル

(プライサーフA-219B、第一工業製薬社製) 0.1

p H 調整剤: トリエタノールアミン 2.0

防腐剤:1,2-ベンズイソチアゾリン-3-オン

(ゼネカ製: Proxel BDN)0.1

防錆剤:ベンゾトリアゾール 0.3

精製水: 残 部

[0057]

(比較例8)

上記実施例8のノニオン性高分子界面活性剤を同量のエパン720(平均分子量:2500、曇点:25℃、第一工業製薬社製)に変更する以外は、上記実施例8と同様の方法で水性万年筆用 色染料インキを調製した。

[0058]

上記で得られた実施例 $1 \sim 8$ 及び比較例 $1 \sim 8$ の各水性インキ組成物のインキ pH、インキ表面張力、インキ粘度を下記の各方法で測定した。これらの結果を下記表 1 に示す。

(インキ p Hの測定方法)

ホリバ社製のpHメーター (測定温度25℃) で測定した。

(インキ表面張力の測定)

協和界面科学社製の表面張力測定器 (測定温度 2 5 ℃) で測定した。

(インキ粘度の測定)

トキメック社製のELD型粘度計(測定温度25℃)で測定した。

[0059]

また、得られた各実施例及び比較例の水性インキ組成物は、以下の仕様の各筆 記具①~④に夫々充填し、組み立てた。

①直液直留方式ボールペン (ボール径 φ 0. 7 mm)

実施例1と5、比較例1と5

②中綿方式マーキングペン

実施例2と6、比較例2と6

③直液貯留方式ボールペン(ボール径 φ 0. 7 mm)

実施例3と7、比較例3と7

④直液直留方式万年筆

実施例4と8、比較例4と8

[0060]

上記の仕様の組合わせで各5本×4種の筆記具を作製して、下記各評価方法により、保存性(経時物性安定性)、滲み性、書き味の評価を行った。

これらの結果を下記表1に示す。

[0061]

[保存性評価(経時物性安定性評価)方法]

評価基準:

〇:経時物性変化なし

×:経時増粘傾向又は経時顔料沈降傾向あり

[0062]

[滲み性評価方法]

各筆記具を用いて原稿用紙に「三菱鉛筆」と筆記し、下記評価基準にて評価した。

評価基準:

○:滲みなし

△:若干滲む

×:滲みが激しい

[0063]

〔書き味評価方法〕

各筆記具を用いて原稿用紙に螺旋筆記・「三菱鉛筆」と筆記し、下記評価基準 にて評価した。

評価基準:

○:書き味良好

△:「三菱鉛筆」筆記では書き味が重い

×:螺旋筆記・「三菱鉛筆」筆記ともに書き味がカリカリする

[0064]

【表1】

	インキの物性			評価		
	インキ	インキ表面	インキ	保存性	非潜み性	書き味
	рН	張力(mN/m)	粘度(mPas)			
実施例1	8.5	40.5	4.7	0	0	0
実施例 2	5.6	35.0	5.0	0	0	0
実施例3	8.5	32.7	1080	0	0	0
実施例 4	8.5	39.0	3.5	0	0	0
実施例 5	8.5	40.0	4.2	0	0	0
実施例 6	5.6	33.5	4.8	0	0	0
実施例7	8.5	32.5	975	0	0	0
実施例8	8.5	38.7	3.1	0	0	0
比較例 1	8.5	41.5	4.3	0	×	Δ
比較例 2	5.6	35.4	4.5	0	Δ	×
比較例3	8.5	33.0	853	×	0	0
比較例 4	8.5	39.7	3.0	0	×	Δ
比較例 5	8.5	41.5	4.3	0	×	Δ
比較例 6	5.6	35.4	4.5	0	Δ	×
比較例7	8.5	32.9	920	×	0	0
比較例8	8.5	37.7	3.3	×	×	0

[0065]

上記表1の結果から明らかように、本発明の範囲となる実施例 $1 \sim 8$ は、本発明の範囲外となる比較例 $1 \sim 8$ に較べて、非滲み性、書き味及び物性的安定性に優れたものとなることが判明した。

[0066]

【発明の効果】

本発明によれば、書き味、非滲み性及び経時安定性の全てに優れた水性インキ 組成物及びこの優れた効果を有する水性インキ組成物を搭載したボールペン、マ ーキングペン、万年筆が提供される。

【要約】

【課題】 非滲み性、書き味及び物性的安定性に優れたボールペン用、マーキングペン用、万年筆用等に好適な筆記具用水性インキ組成物を提供する。

【解決手段】 少なくとも着色剤と水を含有するインキ組成物において、親水基にアルキレンオキサイド鎖を持ち、平均分子量が3000~20万であるノニオン性高分子界面活性剤をインキ組成物中に0.1~30重量%の範囲で含有することを特徴とする筆記具用水性インキ組成物。

ノニオン性高分子界面活性剤のHLBは8以上又は曇点は50℃以上であることが好ましく、このノニオン性高分子界面活性剤としては、N-ポリオキシアルキレンポリアルキレンポリアミン、ポリオキシエチレンポリオキシプロピレンブロックポリマーが挙げられる。

【選択図】 なし

特願2003-051379

出願人履歴情報

識別番号

[000005957]

1. 変更年月日

1990年 8月21日

[変更理由]

新規登録

住 所

東京都品川区東大井5丁目23番37号

氏 名

三菱鉛筆株式会社