Lecture 1: Norm and Hilbert Space

Liu Bo

June 25, 2020

1 Norm

Definition 1 (Vector Space). A vector space V over a field k is a set of vectors which come with addition $(+: V \times V \rightarrow V)$ and scalar multiplication $(\cdot: k \times V \to V)$ along with some classic axioms: commutativity, associativity, identity, and inverse of addition, identity of multiplication, and distributivity.

Definition 2 (Norm). Given a vector space **X** over a subfield F of the complex numbers \mathbb{C} , a norm is a real-values function $p: \mathbf{X} \to \mathbb{R}$ with the following properties, where |s| denotes the usual absolute value of a scalr s:

- 1. Positive Definite: $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$.
- 2. Homogeneity: $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in V$ and $\lambda \in \mathbb{R}$.
- 3. Triangle Inequality: $||x + y|| \le ||x|| + ||y||$.

Example 1. Absolute-value norm

$$||x|| = |x|$$
.

Example 2. Euclidean norm
$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + \dots + x_n^2}$$

Example 3. Finite-dimensional complex normed spaces

On an n-dimensional examplex space \mathbb{C}^n , the most common is $\|\mathbf{z}\| =$ $\sqrt{|z_1|^2 + \dots + |z_n|^2} = \sqrt{z_1 \overline{z_1} + \dots + z_n \overline{z_n}}$ In inner product form, this is $\|\mathbf{x}\| = \sqrt{\mathbf{x}^H \mathbf{x}}$

Example 4. Manhattan norm

$$\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|.$$

Example 5. p-norm

Let $p \ge 1$ be a real number. The p-norm (also called l_p -norm) of a vector \mathbf{x} is $\|\mathbf{x}\| = (\sum_{i=1}^n |x_i|^p)^{1/p}$

As p approaches ∞ the p-norm approaches the infinity norm: $\|\mathbf{x}\| = \max_i |x_i|$

Example 6. Infinite dimensions

The generalization of the above norms to an infinite number of components leads to l^p and \boldsymbol{L}^p spaces, with norms

 $\|\boldsymbol{x}\| = (\sum_{i \in \mathbb{N}} |x_i|^p)^{1/p}$ and $\|f\|_{p,\boldsymbol{X}} = (\int_{\boldsymbol{X}} |f(x)|^p dx)^{1/p}$

2 Hilbert Space

Definition 3. Inner product

Inner product is a map

$$\langle \cdot, \cdot \rangle : \textbf{\textit{V}} \times \textbf{\textit{V}} \rightarrow \textbf{\textit{F}}$$

that satisfies the following three properties for all vectors $x, t, z \in V$ and all scalars $a, b \in F$.

- 1. Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- 2. Linearity in the first argument: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$.
- 3. Psotive definite: if x is not zero, then $\langle x, x \rangle > 0$

Definition 4. Inner product vector space

An inner product vector space is a vector space V over the field F together with an inner product.

Definition 5. Cauchy sequency

A sequence x_1, x_2, x_3, \cdots in a metric space (\mathbf{X}, d) is called Cauchy if for every positive real number $r \geq 0$ there is a positive interger \mathbf{N} such that for all positive integers $m, n \geq \mathbf{N}$,

$$d(x_m, x_n) \le r.$$

Definition 6. Complete space

A metric space (X, d) is complete if every Cauchy sequence of points in X has a limit that is also in X.

Definition 7. Hilbert Space

A Hilbert space H is a real or complex inner product space that is also a complete metrix space with respect to the distance function induced by the inner product.

good examples are needed here.

Example 7. Lebesgue spaces

Example 8. Examples