CHAPTER 27: FORECASTING

27.4-1.

(a)
$$F_6 = x_5 = 39$$

$$F_6 = \frac{\sum_{t=1}^{5} x_t}{5} = \frac{5+17+29+41+39}{5} = 26$$

$$F_6 = \frac{\sum\limits_{t=3}^{5} x_t}{3} = \frac{29 + 41 + 39}{3} = 36$$

(d) The demand seems to be rising, so the average forecasting method may be inappropriate, since it uses older, out of data.

27.4-2.

$$F_6 = x_5 = 13$$

$$F_6 = \frac{\sum\limits_{t=1}^{5} x_t}{5} = \frac{15 + 18 + 12 + 17 + 13}{5} = 15$$

$$F_6 = \frac{\sum\limits_{t=3}^{5} x_t}{3} = \frac{12+17+13}{3} = 14$$

(d) The averaging method seems to be the best, since all five months of data are relevant in determining the forecast of sales for the next month.

27.4-3.

$$F_{t+1} = \frac{1977 - 1945}{4} + 2083 = 2091$$

27.4-4

$$F_{t+1} = \frac{793 - 805}{3} + 782 = 778$$

27.4-5.

$$F_{t+1} = \frac{1532 - 1632}{10} + 1551 = 1541$$

27.4-6.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t$$

$$F_{t+1}(0.1) = (0.1)(792) + (1 - 0.1)(782) = 783$$

$$F_{t+1}(0.3) = (0.3)(792) + (1 - 0.3)(782) = 785$$

$$F_{t+1}(0.5) = (0.5)(792) + (1 - 0.5)(782) = 787$$

27.4-7.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t$$

$$F_{t+1}(0.1) = (0.1)(1973) + (1 - 0.1)(2083) = 2072$$

$$F_{t+1}(0.3) = (0.3)(1973) + (1 - 0.3)(2083) = 2050$$

$$F_{t+1}(0.5) = (0.5)(1973) + (1 - 0.5)(2083) = 2028$$

27.4-8.

$$\alpha = 0 \Rightarrow F_{t+1} = F_t = \dots = F_1$$

The forecast remains equal to the best initial guess for the variable and never changes.

$$\alpha = 1 \Rightarrow F_{t+1} = x_t$$

The forecast always equals the current value of the variable.

27.4-9.

(a)
$$F_{t+1} = \alpha x_t + (1-\alpha)F_t \Rightarrow x_t = \frac{1}{\alpha}[F_{t+1} - (1-\alpha)F_t] = 2F_{t+1} - F_t$$

 \Rightarrow Actual demand in April: 2(390) - 380 = 400

Actual demand in May: 2(380) - 390 = 370

(b)
$$F_{\text{Feb}} = 0.5x_{\text{Jan}} + 0.5F_{\text{Jan}}$$

 $F_{\text{March}} = 0.5x_{\text{Feb}} + 0.5F_{\text{Feb}} = 0.5x_{\text{Feb}} + 0.25x_{\text{Jan}} + 0.25F_{\text{Jan}}$
 $x'_{\text{Jan}} = x_{\text{Jan}} + 32, x'_{\text{Feb}} = x_{\text{Feb}}, F'_{\text{Jan}} = F_{\text{Jan}}$
 $\Rightarrow F'_{\text{March}} = F_{\text{March}} + (0.25)(32) = 408$

	Jan	Feb	March	April	May	June
Forecast			408	384	392	381
Actual	400		360	400	370	

27.5-1.

(a)

Quarter	Call Volume	Seasonal Factor
1	6809	$\frac{6809}{7027} = 0.97$
2	6465	$\frac{6465}{7027} = 0.92$
3	6569	$\frac{6569}{7027} = 0.93$
4	8266	$\frac{8266}{7027} = 1.18$

(b)

Quarter	Seasonal Factor	Actual Call Volume	Seasonally Adjusted Call Volume
1	0.97	7257	$\frac{7257}{0.97} = 7481$
2	0.92	7064	$\frac{7064}{0.92} = 7678$
3	0.93	7784	$\frac{7784}{0.93} = 8370$
4	1.18	8724	$\frac{8724}{1.18} = 7393$

(c)

Quarter	Two-year Average	Seasonal Factor
1	7033	$\frac{7033}{7367} = 0.95$
2	6765	$\frac{6765}{7367} = 0.92$
3	7177	$\frac{7177}{7367} = 0.97$
4	8495	$\frac{8495}{7367} = 1.15$

(d)

Quarter	Seasonal Factor	Actual Call Volume	Seasonally Adjusted Call Volume
1	0.95	6992	$\frac{6992}{0.95} = 7360$
2	0.92	6822	$\frac{6822}{0.92} = 7415$
3	0.97	7949	$\frac{7949}{0.97} = 8195$
4	1.15	9650	$\frac{9650}{1.15} = 8391$

27.5-2.

(a)

Quarter	Unemployment Rate	Seasonal Factor
1	0.062	$\frac{0.062}{0.063} = 0.98$
2	0.060	$\frac{0.060}{0.063} = 0.95$
3	0.075	$\frac{0.075}{0.063} = 1.19$
4	0.055	$\frac{0.055}{0.063} = 0.87$

(b)

Quarter	Seasonal Factor	Act. Unemploy. Rate	Seasonally Adj. Unemploy. Rate
1	0.98	0.078	$\frac{0.078}{0.98} = 0.080$
2	0.95	0.074	$\frac{0.074}{0.95} = 0.078$
3	1.19	0.087	$\frac{0.087}{1.19} = 0.073$
4	0.87	0.061	$\frac{0.061}{0.87} = 0.070$

This progression indicates that the state's economy is improving with the unemployment rate decreasing from 8% to 7% (seasonally adjusted) over the four quarters.

27.5-3.

(a)

Quarter	Three-year Average	Seasonal Factor
1	21	$\frac{21}{25} = 0.84$
2	23	$\frac{23}{25} = 0.92$
3	30	$\frac{30}{25} = 1.2$
4	26	$\frac{26}{25} = 1.04$

(b) Seasonally adjusted value: $\frac{28}{1.04} = 27 \Rightarrow \text{forecast:}(27)(0.84) = 23$

(c) Quarter 1: seasonally adjusted value: $23/0.84 = 27 \Rightarrow \text{forecast:}(27)(0.84) = 23$ Quarter 2: seasonally adjusted value: $25/0.92 = 27 \Rightarrow \text{forecast:}(27)(1.20) = 33$ Quarter 3: seasonally adjusted value: $33/1.20 = 27 \Rightarrow \text{forecast:}(27)(1.04) = 28$

(d)

Quarter	Seasonal Factor	Avg. House Sales	Seasonally Adjusted Forecast
1	0.84	25	(25)(0.84) = 21
2	0.92	25	(25)(0.92) = 23
3	1.20	25	(25)(1.20) = 30
4	1.04	25	(25)(1.04) = 26

27.5-4.

(a) - (b) - (c) - (d)
$$\alpha = 0.1, \gamma = 0.2$$

Year	Quarter	Sales	I	F	S
2010	1	6900	0.965		
	2	6700	0.937		
	3	7900	1.105		
	4	7100	0.993		7150
2011	1	8200	0.997	6900	7285
	2	7000	0.941	6826	7303
	3	7300	1.086	8069	7234
	4	7500	1.001	7183	7266
2012	1	9400	1.049	7245	7482
	2	9200	0.992	7043	7711
	3	9800	1.119	8372	7842
	4	9900	1.047	7849	8047
2013	1	11,400	1.113	8442	8329
	2	10,000	1.029	8260	8505
	3	9400	1.116	9513	8495
	4	8400	1.036	8892	8448
2014	1	8800		9402	8394
	2	7600		8633	8293
	3	7500		9256	8136
	4			8431	

- (e) There is a seasonal effect: $1 \xrightarrow{\text{down}} 2$, and it is incorporated by the parameter I.
- (f) There is a substantial error in these estimates, the constant level assumption is not good enough with $\alpha=0.1$ and $\gamma=0.2$.

27.6-1.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_1 = x_0 + T_1 = 3900 + 700 = 4600$$

$$F_2 = (0.25)(4600) + (0.75)(4600) + (0.25)[(0.25)(700) + (0.75)(700)] + (0.75)(700)$$

$$= 5300$$

$$F_3 = (0.25)(5300) + (0.75)(5300) + (0.25)[(0.25)(700) + (0.75)(700)] + (0.75)(700)$$

$$= 6000$$

27.6-2.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_{t+1} = (0.2)(550) + (0.8)(540) + (0.3)[(0.2)(15) + (0.8)(10)] + (0.7)(10) = 552$$
27.6-3.

$$F_{t+1} = \alpha x_t + (1 - \alpha)F_t + \beta[\alpha(x_t - x_{t-1}) + (1 - \alpha)(F_t - F_{t-1})] + (1 - \beta)T_{t+1}$$

$$F_{t+1} = (0.1)(4395) + (0.9)(4975) + (0.2)[(0.1)(280) + (0.9)(255)] + (0.8)(240)$$

$$= 5215$$

27.6-4.

				Exponential			
Time	True	Latest	Estimated	Smoothing	Forecasting		
Period	Value	Trend	Trend	Forecast	Error	Smoothing	Constants
1	15		5.00	15	0	α=	0.2
2	21	5.00	5.00	20	1	β=	0.2
3	24	5.20	5.04	25	1		
4	32	4.79	4.99	30	2	Initial Estim	ates
5	37	5.39	5.07	35	2	Average =	10
6	41	5.38	5.13	41	0	Trend =	5
7	40	5.15	5.14	46	6		
8	47	3.93	4.89	50	3	Mean Abso	lute Deviation
9	51	4.35	4.79	54	3	MAD =	2.3
10	53	4.19	4.67	58	5		
11		3.66	4.46	62		Mean Squa	re Error
12						MSE =	8.8

Forecast for next production yield: 62%

27.7-1.

Quarter	Forecast	True Value	Error
1	327	345	18
2	332	317	15
3	328	336	8
4	330	311	19

$$\begin{aligned} \text{MAD} &= \frac{\text{sum of forecasting errors}}{\text{number of forecasts}} = \frac{18 + 15 + 8 + 19}{4} = 15 \\ \text{MSE} &= \frac{\text{sum of squares of forecasting errors}}{\text{number of forecasts}} = 243.5 \end{aligned}$$

27.7-2.

(a) Method 1: MAD =
$$\frac{258+499+560+809+609}{5} = 547$$

Method 2: MAD = $\frac{374+471+293+906+396}{5} = 488$

(c) She can use the older data to calculate more forecasting errors and compare MSE and MAD for a longer time span. This may make her feel more comfortable with her decision.

27.7-3.

(a)
$$F_{t+1} = \alpha x_t + (1 - \alpha) F_t$$

 $F_1 = x_0 = 5000$
 $F_2 = (0.25)(4600) + (1 - 0.25)(5000) = 4900$
 $F_3 = (0.25)(5300) + (1 - 0.25)(4900) = 5000$
(b) MAD = $\frac{400 + 400 + 1000}{3} = 600$
(c) MSE = $\frac{400^2 + 400^2 + 1000^2}{3} = 440,000$
(d) $F_{t+1} = = (0.25)(6000) + (1 - 0.25)(5000) = 5250$
27.7-4.

(a) Since sales are relatively stable, the averaging method would be appropriate for forecasting future sales. This method uses a larger sample size than the last-value method, which should make it more accurate and since the older data is still relevant, it should not be excluded, as would be the case in the moving-average method.

(b) Last-Value Method

Time	True	Last-Value	Forecasting
Period	Value	Forecast	Error
1	23		
2	24	23	1
3	22	24	2
4	28	22	6
5	22	28	6
6	27	22	5
7	20	27	7
8	26	20	6
9	21	26	5
10	29	21	8
11	23	29	6
12	28	23	5
13		28	

Mean Absolute Deviation			
MAD =	5.2		
Mean Square Error			
MSE = 30.6			

(c) Averaging Method

Time	True	Averaging	Forecasting
Period	Value	Forecast	Error
1	23		
2	24	23	1
3	22	24	2
4	28	23	5
5	22	24	2
6	27	24	3
7	20	24	4
8	26	24	2
9	21	24	3
10	29	24	5
11	23	24	1
12	28	24	4
13		24	

Mean Absolute Deviation			
3.0			
Mean Square Error			
MSE = 11.1			

(d) Moving-Average Method (n = 3)

		Moving	
Time	True	Average	Forecasting
Period	Value	Forecast	Error
1	23		
2	24		
3	22		
4	28	23	5
5	22	25	3
6	27	24	3
7	20	26	6
8	26	23	3
9	21	24	3
10	29	22	7
11	23	25	2
12	28	24	4
13		27	

Number of previous			
periods	to consider		
n= 3			
Mean Absolute Deviation			
MAD =	3.9		
Mean So	quare Error		

- (e) Considering the MAD values (5.2, 3.0, 3.9), the averaging method is the best.
- (f) Considering the MSE values (30.6, 11.1, 17.4), the averaging method is the best.
- (g) Unless there is a reason to believe that sales will not continue to be relatively stable, the averaging method should be the most accurate in the future as well.

27.7-5.

Ben Swanson should choose 0.1 for the smoothing constant.

Smoothing Constant	MAD	MSE
0.1	2.70	9.44
0.2	2.82	10.24
0.3	2.97	11.20
0.4	3.13	12.35
0.5	3.32	13.75

27.7-6.

- (a) Answers will vary. The averaging or the moving-average methods seem to do a better job than the last-value method.
- (b) For the last-value method, a change in April affects only the forecast of May. For the averaging method, it affects all forecasts after April and for the moving-average method, it affects the forecasts for May, June and July.
- (c) Answers will vary. The averaging and the moving-average methods seem to do slightly better than the last-value method.
- (d) Answers will vary. The averaging and the moving-average methods seem to do slightly better than the last-value method.

27.7-7.

(a) Since the sales level is shifting significantly from month to month and there is no consistent trend, the last-value method seems to be appropriate. The averaging method will not do as well because it places too much weight on the old data. The moving-average method will be better than the averaging method, but it will lag any short-term trends. The exponential smoothing method will also lag trends by placing too much weight on the old data. Exponential smoothing with trend will likely not to do well because the trend is not consistent.

(b) Last-Value Method

Time	True	Last-Value	Forecasting
Period	Value	Forecast	Error
1	126		
2	137	126	11
3	142	137	5
4	150	142	8
5	153	150	3
6	154	153	1
7	148	154	6
8	145	148	3
9	147	145	2
10	151	147	4
11	159	151	8
12	166	159	7
13		166	

Mean Absolute Deviation			
MAD =	5.3		
Mean Square Error			
MSE = 36.2			

Averaging Method

Time	True	Averaging	Forecasting
Period	Value	Forecast	Error
1	126		
2	137	126	11
3	142	132	11
4	150	135	15
5	153	139	14
6	154	142	12
7	148	144	4
8	145	144	1
9	147	144	3
10	151	145	6
11	159	145	14
12	166	147	19
13		148	

Mean Absolute Deviation			
MAD = 10.0			
Mean Square Error			
MSE =	131.4		

Moving-Average Method

		Moving	
Time	True	Average	Forecasting
Period	Value	Forecast	Error
1	126		
2	137		
3	142		
4	150	135	15
5	153	143	10
6	154	148	6
7	148	152	4
8	145	152	7
9	147	149	2
10	151	147	4
11	159	148	11
12	166	152	14
13		159	

Number of previous						
periods to consider						
n= 3						
Mean Al	osolute Deviation					
MAD =	8.1					
Mean Square Error						
MSE =	84.3					

Comparing MAD values (5.3, 10.0, 8.1) and MSE values (36.2, 131.4, 84.3), the last-value method is the best.

(c) Using the template for exponential smoothing with an initial estimate of 120, the following forecast errors are obtained for various values of the smoothing constant α .

α	MAD	MSE
0.1	18.5	382.7
0.2	13.0	210.2
0.3	10.1	139.7
0.4	8.7	104.2
0.5	8.0	82.9

Considering both MAD and MSE, a high value of the smoothing constant seems to be appropriate.

(d) Using the template for exponential smoothing with trend using an initial estimate of 120 for the average value and 10 for the trend, the following forecast errors are obtained for various values of the smoothing constants α and β .

α	β	MAD	MSE
0.1	0.1	25.4	919.6
0.1	0.3	21.2	634.1
0.1	0.5	17.7	450.6
0.3	0.1	13.5	261.9
0.3	0.3	9.8	144.1
0.3	0.5	8.8	111.5
0.5	0.1	8.4	116.1
0.5	0.3	7.0	72.2
0.5	0.5	6.5	61.1

Considering both MAD and MSE, high values of the smoothing constants seem to be appropriate.

(e) The management should use the last-value method to forecast sales. Using this method, the forecast for January of the new year is 166. Exponential smoothing with trend using high smoothing constants, e.g., $\alpha = \beta = 0.5$, also works well. With this method, the forecast for January of the new year is 165.

27.7-8.

- (a) Answers will vary. The last-value method seems to be the best. Exponential smoothing with trend is a close second.
- (b) For the last-value method, a change in April affects only the forecast for May. For the averaging method, exponential smoothing with or without trend, it affects all forecasts after April. For the moving-average method, it affects the forecasts for May, June, and July.
- (c) Answers will vary. The last-value method and exponential smoothing seem to do better than the others.
- (d) Answers will vary. The last-value method and exponential smoothing seem to do better than the others.

27.7-9.

(a)	α	MAD	(b)	α	MAD	(c)	α	MAD	
	0.1	1.51		0.1	1.84		0.1	2.82	
	0.2	1.62		0.2	1.88		0.2	2.54	
	0.3	1.73		0.3	1.92		0.3	2.26	
	0.4	1.84		0.4	2.00		0.4	2.06	
	0.5	1.95		0.5	2.10		0.5	1.90	
C	Choose	$\alpha = 0.1$	1.	Choos	se $\alpha = 0$.1.	Choos	$se \alpha = 0.5$	5.

27.7-10.

(a)	β	MAD	(b)	β	MAD	(c)		β	MAD
	0.1	0.740		0.1	2.61		Ī	0.1	5.66
	0.2	0.749		0.2	2.76		•	0.2	6.02
	0.3	0.759		0.3	2.87		•	0.3	6.23
	0.4	0.770		0.4	2.99		•	0.4	6.36
	0.5	0.782		0.5	3.05		•	0.5	6.54
(Choose	$\beta = 0.1$	i.	Choos	$se \beta = 0$.1.	(Choos	$\overline{\sec \beta} = 0.1.$

27.7-11.

(a) The time series is not stable enough for the moving-average method.

(b)

		Moving	
Time	True	Average	Forecasting
Period	Value	Forecast	Error
1	382		
2	405		
3	398		
4	421	395	26
5	426	408	18
6	415	415	0
7	443	421	22
8	451	428	23
9	446	436	10
10	464	447	17
11		454	

Number of previous						
periods to consider						
n=	3					
	osolute Deviation					
MAD =	16.6					
Mean Square Error						
MSE =	346.0					

(c)

		Exponential				
Time	True	Smoothing	Forecasting			
Period	Value	Forecast	Error			
1	382	380	2	Smoothing Co	onstant	
2	405	381	24	α=	0.5	
3	398	393	5			
4	421	396	26	Initial Estimate		
5	426	408	18	Average =	380	
6	415	417	2			
7	443	416	27	Mean Absolut	e Deviation	
8	451	430	21	MAD =	15	
9	446	440	6			
10	464	443	21	Mean Square Error		
11		454		MSE =	323	

(d)

				Exponential	
Time	True	Latest	Estimated	Smoothing	Forecasting
Period	Value	Trend	Trend	Forecast	Error
1	382		10.00	380	2
2	405	10.50	10.13	391	14
3	398	13.72	11.02	405	7
4	421	9.21	10.57	414	7
5	426	12.32	11.01	427	1
6	415	10.82	10.96	438	23
7	443	5.33	9.55	441	2
8	451	9.94	9.65	451	0
9	446	9.53	9.62	461	15
10	464	5.87	8.68	466	2
11		8.20	8.56	474	

Smoothing Constants						
α =	0.25					
β=	0.25					
Initial Estim	ates					
Average =	370					
Trend =	10					
Mean Absol	ute Deviation					
MAD =	7.3					
Mean Square Error						
MSE =	105.1					

(e) Exponential smoothing with a trend is recommended, since it offers the smallest MAD.

27.7-12.

Period	Ι	Data	1	Forecast	1	Error	I
1	1	382	-		-		-
2	1	405	-				-
3	1	398	-				
4	1	421	-	395		26	
5	1	426	-	408		18	
6	1	415	-	415		0	
7	1	443	1	420.67		22.33	
8	1	451	1	428		23	-
9	1	446	1	436.33		9.67	-
10	1	464	1	446.67		17.33	-
11	1	0		453.67			-

Moving-Average Method: The forecasts typically lie below the demands.

Forecasting -- Exponential Smoothing Method MAD = 15.14 MSE = 322.97 alpha = 0.5

Period	- 1	Data	1	Forecast	- 1	Error
1	- 1	382	- 1	380	- 1	2
2	- 1	405	- 1	381	1	24
3	- 1	398	- 1	393	1	5
4	- 1	421	- 1	395.5	1	25.5
5	- 1	426	- 1	408.25	1	17.75
6	- 1	415	- 1	417.12	1	2.12
7	- 1	443	- 1	416.06	1	26.94
8	- 1	451	- 1	429.53	- 1	21.47
9	- 1	446	- 1	440.27	- 1	5.73
10	- 1	464	- 1	443.13	- 1	20.87
11	1	0	- 1	453.57	- 1	

Exponential Smoothing: The forecasts typically lie below the demands.

Period	- 1	Data	- 1	Forecast	- 1	Error
1	- 1	382	- 1	380	- 1	2
2	- 1	405	- 1	390.78	- 1	14.22
3	- 1	398	- 1	406.51	- 1	8.51
4	- 1	421	- 1	414.65	- 1	6.35
5	- 1	426	1	427.82	- 1	1.82
6	- 1	415	1	438.38	- 1	23.38
7	- 1	443	1	440.36	- 1	2.64
8	- 1	451	- 1	450.39	- 1	0.61
9	- 1	446	- 1	459.86	- 1	13.86
10	- 1	464	- 1	463.75	- 1	0.25
11	- 1	0	- 1	471.89	- 1	

Exponential Smoothing with Trend: The forecasts are at about the same level as demands (perhaps slightly above). This indicates that exponential smoothing with trend is the best method to use hereafter.

27.7-13.

(a)

		True		
Year	Quarter	Value	Type of Seas	sonality
1	1	25	Quarterly	
1	2	47		
1	3	68		
1	4	42		Estimate for
2	1	27	Quarter	Seasonal Factor
2	2	46	1	0.5497
2	3	72	2	1.0271
2	4	39	3	1.5190
3	1	24	4	0.9042
3	2	49		
	_			
3	3	70		

(b) Forecast: 27 acre-feet

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting		
Year	Quarter	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	1	25	45					Quarterly
1	2	47	46	45	47	0		
1	3	68	45	46	70	2	Quarter	Seasonal Factor
1	4	42	46	45	40	2	1	0.550
2	1	27	49	46	26	1	2	1.027
2	2	46	45	49	50	4	3	1.519
2	3	72	47	45	68	4	4	0.904
2	4	39	43	47	43	4		
3	1	24	44	43	24	0		
3	2	49	48	44	45	4		
3	3	70	46	48	72	2		
3	4	44	49	46	42	2		
4	1			49	27			
4	2							
4	3							
4	4							
5	1						Mean Abs	solute Deviation
5	2						MAD =	2.4
5	3							
5	4						Mean Squ	are Error
6	1						MSE =	8

(c) Winter: (49)(0.55) = 27, Spring: (49)(1.03) = 50,

Summer: (49)(1.52) = 74, Fall: (49)(0.9) = 44

(d) Forecast: 25 acre-feet

		True	Seasonally Adjusted	Seasonally Adjusted	Actual	Forecasting		
Year	Quarter	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	1	25	45					Quarterly
1	2	47	46	45	47	0		
1	3	68	45	46	69	1	Quarter	Seasonal Factor
1	4	42	46	45	41	1	1	0.550
2	1	27	49	46	25	2	2	1.027
2	2	46	45	46	48	2	3	1.519
2	3	72	47	46	70	2	4	0.904
2	4	39	43	46	42	3		
3	1	24	44	46	25	1		
3	2	49	48	46	47	2		
3	3	70	46	46	70	0		
3	4	44	49	46	41	3		
4	1			46	25			
4	2							
4	3							
4	4							
5	1						Mean Abs	solute Deviation
5	2						MAD =	1.57
5	3							
5	4						Mean Squ	are Error
6	1						MSE =	3.07

(e) Forecast: 26 acre-feet

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Number o	f previous
Year	Quarter	Value	Value	Forecast	Forecast	Error	periods to	consider
1	1	25	45				n =	4
1	2	47	46					
1	3	68	45					Type of Seasonality
1	4	42	46					Quarterly
2	1	27	49	46	25	2		
2	2	46	45	47	48	2	Quarter	Seasonal Factor
2	3	72	47	46	70	2	1	0.550
2	4	39	43	47	42	3	2	1.027
3	1	24	44	46	25	1	3	1.519
3	2	49	48	45	46	3	4	0.904
3	3	70	46	45	69	1		
3	4	44	49	45	41	3		
4	1			47	26			
4	2							
4	3							
4	4							
5	1							
5	2							
5	3							
5	4						Mean Abs	olute Deviation
6	1						MAD =	2.2
6	2							
6	3						Mean Squ	are Error
6	4						MSE =	5.5

(f) Forecast: 25 acre-feet

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Smoothing	Constant
Year	Quarter	Value	Value	Forecast	Forecast	Error	α=	0.1
1	1	25	45	46	25	0		
1	2	47	46	46	47	0	Initial Estim	ate
1	3	68	45	46	70	2	Average =	46
1	4	42	46	46	41	1		
2	1	27	49	46	25	2		Type of Seasonality
2	2	46	45	46	47	1		Quarterly
2	3	72	47	46	70	2		
2	4	39	43	46	42	3	Quarter	Seasonal Factor
3	1	24	44	46	25	1	1	0.550
3	2	49	48	46	47	2	2	1.027
3	3	70	46	46	70	0	3	1.519
3	4	44	49	46	41	3	4	0.904
4	1			46	25			
4	2							
4	3							
4	4							
5	1							
5	2							
5	3							
5	4							
6	1							
6	2							ute Deviation
6	3						MAD =	1.4
6	4							
7	1						Mean Squa	re Error
7	2						MSE =	2.7

- (g) Exponential smoothing results in the lowest MAD value, 1.4.
- (h) Exponential smoothing gives the lowest MSE value, 2.7.

27.7-14.

(a)

		True		
Year	Quarter	Value	Type of Seas	sonality
1	1	23	Quarterly	
1	2	22		
1	3	31		
1	4	26		Estimate for
2	1	19	Quarter	Seasonal Factor
2	2	21	1	0.8400
2	3	27	2	0.9200
2	4	24	3	1.2000
3	1	21	4	1.0400
3	2	26		
3	3	32		
3	4	28		

(b)

(0)								
			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting		
Year	Quarter	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	1	23	27					Quarterly
1	2	22	24	27	25	3		
1	3	31	26	24	29	2	Quarter	Seasonal Factor
1	4	26	25	26	27	1	1	0.840
2	1	19	23	25	21	2	2	0.920
2	2	21	23	23	21	0	3	1.200
2	3	27	23	23	27	0	4	1.040
2	4	24	23	23	23	1		
3	1	21	25	23	19	2		
3	2	26	28	25	23	3		
3	3	32	27	28	34	2		
3	4	28	27	27	28	0		
4	1			27	23			
4	2							
4	3							
4	4							
5	1						Mean Abs	solute Deviation
5	2						MAD =	1.5
5	3							
5	4						Mean Squ	are Error
6	1						MSE =	3

(c)

(0)								
			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting		
Year	Quarter	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	1	23	27					Quarterly
1	2	22	24	27	25	3		
1	3	31	26	26	31	0	Quarter	Seasonal Factor
1	4	26	25	26	27	1	1	0.840
2	1	19	23	26	21	2	2	0.920
2	2	21	23	25	23	2	3	1.200
2	3	27	23	25	30	3	4	1.040
2	4	24	23	24	25	1		
3	1	21	25	24	20	1		
3	2	26	28	24	22	4		
3	3	32	27	25	30	2		
3	4	28	27	25	26	2		
4	1			25	21			
4	2							
4	3							
4	4							
5	1							olute Deviation
5	2						MAD =	1.94
5	3							
5	4						Mean Squ	iare Error
6	1						MSE =	4.85

(d)

(u)								
			Seasonally	_				
		True	Adjusted	Adjusted	Actual	Forecasting	Number o	f previous
Year	Quarter	Value	Value	Forecast	Forecast	Error	periods to	consider
1	1	23	27				n =	4
1	2	22	24					
1	3	31	26					Type of Seasonality
1	4	26	25					Quarterly
2	1	19	23	26	21	2		
2	2	21	23	24	22	1	Quarter	Seasonal Factor
2	3	27	23	24	29	2	1	0.840
2	4	24	23	23	24	0	2	0.920
3	1	21	25	23	19	2	3	1.200
3	2	26	28	23	21	5	4	1.040
3	3	32	27	25	30	2		
3	4	28	27	26	27	1		
4	1			27	22			
4	2							
4	3							
4	4							
5	1							
5	2							
5	3							
5	4						Mean Abs	olute Deviation
6	1						MAD =	2.0
6	2							
6	3						Mean Squ	are Error
6	4						MSE =	5.3

(e)

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Smoothing	Constant
Year	Quarter	Value	Value	Forecast	Forecast	Error	α=	0.25
1	1	23	27	25	21	2		
1	2	22	24	26	24	2	Initial Estim	ate
1	3	31	26	25	30	1	Average =	25
1	4	26	25	25	26	0		
2	1	19	23	25	21	2		Type of Seasonality
2	2	21	23	25	23	2		Quarterly
2	3	27	23	24	29	2		
2	4	24	23	24	25	1	Quarter	Seasonal Factor
3	1	21	25	24	20	1	1	0.840
3	2	26	28	24	22	4	2	0.920
3	3	32	27	25	30	2	3	1.200
3	4	28	27	25	26	2	4	1.040
4	1			26	22			
4	2							
4	3							
4	4							
5	1							
5	2							
5	3							
5	4							
6	1							
6	2						Mean Absol	ute Deviation
6	3						MAD =	1.7
6	4							
7	1						Mean Squar	e Error
7	2						MSE =	3.6

(f)

			Seasonally			Seasonally				
		True	Adjusted	Latest	Estimated	Adjusted	Actual	Forecasting	Smoothing (Constant
Year	Quarter	Value	Value	Trend	Trend	Forecast	Forecast	Error	α=	0.25
1	1	23	27		0	25	21	2	β=	0.25
1	2	22	24	1	0	26	24	2		
1	3	31	26	0	0	25	30	1	Initial Estima	ite
1	4	26	25	0	0	26	27	1	Average =	25
2	1	19	23	0	0	25	21	2	Trend =	0
2	2	21	23	-1	0	25	23	2		
2	3	27	23	-1	0	24	29	2		Type of Seasonality
2	4	24	23	-1	0	23	24	0		Quarterly
3	1	21	25	0	0	23	19	2		
3	2	26	28	0	0	23	21	5	Quarter	Seasonal Factor
3	3	32	27	1	0	25	29	3	1	0.840
3	4	28	27	1	0	25	26	2	2	0.920
4	1			1	0	26	22		3	1.200
4	2								4	1.040
4	3									
4	4									
5	1									
5	2									
5	3									
5	4									
6	1									
6	2									
6	3									
6	4									ıte Deviation
7	1								MAD =	2
7	2									
7	3								Mean Squar	
7	4								MSE =	4

- (g) Using the last-value method with seasonality (MAD = 1.5), the forecast for first quarter is 23 houses.
- (h) Quarter 2: (27)(0.92) = 25, Quarter 3: (27)(1.2) = 32, Quarter 4: (27)(1.04) = 28

27.7-15.

(a) Last-Value Method with Seasonality

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting		
Year	Month	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	Jan	68	76					Monthly
1	Feb	71	81	76	66	5		
1	Mar	66	73	81	73	7	Month	Seasonal Factor
1	Apr	72	77	73	67	5	Jan	0.900
1	May	77	80	77	74	3	Feb	0.880
1	June	85	78	80	87	2	Mar	0.910
1	July	94	80	78	91	3	Apr	0.930
1	Aug	96	83	80	92	4	May	0.960
1	Sep	80	82	83	81	1	June	1.090
1	Oct	73	80	82	75	2	July	1.170
1	Nov	84	80	80	84	0	Aug	1.150
1	Dec	89	82	80	86	3	Sep	0.970
2	Jan			82	74		Oct	0.910
2	Feb						Nov	1.050
2	Mar						Dec	1.080
2	Apr							
2	May						Mean Abs	solute Deviation
2	June						MAD =	3.07
2	July							
2	Aug						Mean Squ	uare Error
2	Sep						MSE =	12.89

Averaging Method with Seasonality:

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting		
Year	Month	Value	Value	Forecast	Forecast	Error		Type of Seasonality
1	Jan	68	76					Monthly
1	Feb	71	81	76	66	5		
1	Mar	66	73	78	71	5	Month	Seasonal Factor
1	Apr	72	77	76	71	1	Jan	0.900
1	May	77	80	77	73	4	Feb	0.880
1	June	85	78	77	84	1	Mar	0.910
1	July	94	80	77	91	3	Apr	0.930
1	Aug	96	83	78	89	7	May	0.960
1	Sep	80	82	79	76	4	June	1.090
1	Oct	73	80	79	72	1	July	1.170
1	Nov	84	80	79	83	1	Aug	1.150
1	Dec	89	82	79	86	3	Sep	0.970
2	Jan			79	71		Oct	0.910
2	Feb						Nov	1.050
2	Mar						Dec	1.080
2	Apr							
2	May						Mean Abs	solute Deviation
2	June						MAD =	3.12
2	July							
2	Aug						Mean Sq	uare Error
2	Sep						MSE =	13.07

Moving-Average Method with Seasonality

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Number o	f previous
Year	Month	Value	Value	Forecast	Forecast	Error	periods to	consider
1	Jan	68	76				n =	3
1	Feb	71	81					
1	Mar	66	73					Type of Seasonality
1	Apr	72	77	76	71	1		Monthly
1	May	77	80	77	74	3		
1	June	85	78	77	84	1	Month	Seasonal Factor
1	July	94	80	79	92	2	Jan	0.900
1	Aug	96	83	80	91	5	Feb	0.880
1	Sep	80	82	81	78	2	Mar	0.910
1	Oct	73	80	82	75	2	Apr	0.930
1	Nov	84	80	82	86	2	May	0.960
1	Dec	89	82	81	87	2	June	1.090
2	Jan			81	73		July	1.170
2	Feb						Aug	1.150
2	Mar						Sep	0.970
2	Apr						Oct	0.910
2	May						Nov	1.050
2	June						Dec	1.080
2	July							
2	Aug						Mean Abs	olute Deviation
2	Sep						MAD =	2.18
2	Oct							
2	Nov						Mean Squ	are Error
2	Dec						MSE =	5.79

Exponential Smoothing Method with Seasonality

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Smoothing (Constant
Year	Month	Value	Value	Forecast	Forecast	Error	α =	0.2
1	Jan	68	76	80	72	4		
1	Feb	71	81	79	70	1	Initial Estima	ate
1	Mar	66	73	79	72	6	Average =	80
1	Apr	72	77	78	73	1		
1	May	77	80	78	75	2		Type of Seasonality
1	June	85	78	78	85	0		Monthly
1	July	94	80	78	92	2		
1	Aug	96	83	79	91	5	Month	Seasonal Factor
1	Sep	80	82	80	77	3	Jan	0.900
1	Oct	73	80	80	73	0	Feb	0.880
1	Nov	84	80	80	84	0	Mar	0.910
1	Dec	89	82	80	87	2	Apr	0.930
2	Jan			81	73		May	0.960
2	Feb						June	1.090
2	Mar						July	1.170
2	Apr						Aug	1.150
2	May						Sep	0.970
2	June						Oct	0.910
2	July						Nov	1.050
2	Aug						Dec	1.080
2	Sep							
2	Oct						1	ute Deviation
2	Nov						MAD =	2.34
2	Dec							
3	Jan						Mean Squar	e Error
3	Feb						MSE =	9.31

Method	MAD	MSE
Last-Value	3.07	12.89
Averaging	3.12	13.07
Moving-Average	2.18	5.79
Exponential Smoothing	2.34	9.31

(b) The moving-average method with seasonality has the lowest MAD value. With this method, the forecast for January is 73 passengers.

27.7-16.

(a)

Method	MAD	MSE
Last-Value	2.46	8.34
Averaging	7.06	74.73
Moving-Average	2.79	9.68
Exp. Smoothing	4.28	25.87

(b) Forecast: 94

			Seasonally			Seasonally				
		True	Adjusted	Latest	Estimated	Adjusted	Actual	Forecasting	Smoothing (Constant
Year	Month	Value	Value	Trend	Trend	Forecast	Forecast	Error	α=	0.2
1	Jan	75	83		2	82	74	1	β=	0.2
1	Feb	76	86	2	2	84	74	2		
1	Mar	81	89	2	2	87	79	2	Initial Estima	ate
1	Apr	84	90	3	2	90	83	1	Average =	80
1	May	85	89	2	2	92	88	3	Trend =	2
1	June	99	91	2	2	93	102	3		
1	July	107	91	2	2	95	111	4		Type of Seasonality
1	Aug	108	94	1	2	96	110	2		Monthly
1	Sep	94	97	1	2	97	95	1		
1	Oct	90	99	2	2	99	90	0	Month	Seasonal Factor
1	Nov	106	101	2	2	101	106	0	Jan	0.900
1	Dec	110	102	2	2	103	111	1	Feb	0.880
2	Jan			2	2	104	94		Mar	0.910
2	Feb								Apr	0.930
2	Mar								May	0.960
2	Apr								June	1.090
2	May								July	1.170
2	June								Aug	1.150
2	July								Sep	0.970
2	Aug								Oct	0.910
2	Sep								Nov	1.050
2	Oct								Dec	1.080
2	Nov									
2	Dec								Mean Absolu	ute Deviation
3	Jan								MAD =	1.66
3	Feb									
3	Mar								Mean Squar	e Error
3	Apr								MSE =	4.21

MAD and MSE values are lower than those in (a).

(c) MAD and MSE values obtained are higher than the ones in (b).

			Seasonally			Seasonally				
		True	Adjusted	Latest	Estimated	Adjusted	Actual	Forecasting	Smoothing (Constant
Year	Month	Value	Value	Trend	Trend	Forecast	Forecast	Error	α=	0.2
1	Jan	68	76		0	80	72	4	β=	0.2
1	Feb	71	81	-1	0	79	69	2		
1	Mar	66	73	0	0	79	72	6	Initial Estima	ate
1	Apr	72	77	-1	0	77	72	0	Average =	80
1	May	77	80	0	0	77	74	3	Trend =	0
1	June	85	78	0	0	77	84	1		
1	July	94	80	0	0	77	90	4		Type of Seasonality
1	Aug	96	83	0	0	78	89	7		Monthly
1	Sep	80	82	1	0	79	77	3		
1	Oct	73	80	1	0	80	73	0	Month	Seasonal Factor
1	Nov	84	80	0	0	80	84	0	Jan	0.900
1	Dec	89	82	0	0	80	87	2	Feb	0.880
2	Jan	75	83	1	0	81	73	2	Mar	0.910
2	Feb	76	86	1	0	82	72	4	Apr	0.930
2	Mar	81	89	1	1	83	76	5	May	0.960
2	Apr	84	90	2	1	85	79	5	June	1.090
2	May	85	89	2	1	87	84	1	July	1.170
2	June	99	91	1	1	89	97	2	Aug	1.150
2	July	107	91	1	1	90	106	1	Sep	0.970
2	Aug	108	94	1	1	92	105	3	Oct	0.910
2	Sep	94	97	2	1	93	91	3	Nov	1.050
2	Oct	90	99	2	1	96	87	3	Dec	1.080
2	Nov	106	101	2	2	98	103	3		
2	Dec	110	102	2	2	100	108	2		ute Deviation
3	Jan			2	2	102	92		MAD =	2.74
3	Feb									
3	Mar								Mean Squar	e Error
3	Apr								MSE =	10.44

(d) Exponential smoothing with seasonality and trend (with parameters as in (b) should be used.

27.7-17.

(a) Based on past sales:

		True		
Year	Month	Value	Type of Seas	sonality
1	Jan	352	Monthly	
1	Feb	329		
1	Mar	365		
1	Apr	358		Estimate for
1	May	412	Month	Seasonal Factor
1	June	446	Jan	0.8082
1	July	420	Feb	0.8074
1	Aug	471	Mar	0.8764
1	Sep	355	Apr	0.9213
1	Oct	312	May	1.016
1	Nov	567	June	1.105
1	Dec	533	July	1.018
2	Jan	317	Aug	1.189
2	Feb	331	Sep	0.806
2	Mar	344	Oct	0.761
2	Apr	386	Nov	1.437
2	May	423	Dec	1.256
2	June	472		
2	July	415		
2	Aug	492		
2	Sep	340		
2	Oct	301		
2	Nov	629		
2	Dec	505		
3	Jan	338		
3	Feb	346		
3	Mar	383		
3	Apr	404		
3	May	431		
3	June	459		
3	July	433		
3	Aug	518		
3	Sep	309		
3	Oct	335		
3	Nov	594		
3	Dec	527		

(b) Moving Average with Seasonality

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Number of	f previous
Year	Month	Value	Value	Forecast	Forecast	Error	periods to	
1	Jan						n =	3
1	Feb							
1	Mar							Type of Seasonality
1	Apr							Monthly
1	May							
1	June						Month	Seasonal Factor
1	July						Jan	0.808
1	Aug						Feb	0.807
1	Sep						Mar	0.876
1	Oct	335	440				Apr	0.921
1	Nov	594	413				May	1.016
1	Dec	527	420				June	1.105
2	Jan	364	450	424	343	21	July	1.018
2	Feb	343	425	428	345	2	Aug	1.189
2	Mar	391	446	432	378	13	Sep	0.806
2	Apr	437	474	440	406	31	Oct	0.761
2	May	458	451	448	456	2	Nov	1.437
2	June	494	447	457	505	11	Dec	1.256
2	July	468	460	457	465	3		
2	Aug	555	467	453	538	17	Mean Abs	olute Deviation
2	Sep	387	480	458	369	18	MAD =	13.30
2	Oct	364	478	469	357	7		
2	Nov	662	461	475	683	21	Mean Squ	are Error
2	Dec	581	463	473	594	13	MSE =	249.09
3	Jan			467	378			

(c) Exponential Smoothing with Seasonality

			Seasonally	Seasonally				
		True	Adjusted	Adjusted	Actual	Forecasting	Smoothing	Constant
Year	Month	Value	Value	Forecast	Forecast	Error	α=	0.2
1	Jan	364	450	420	339	25		
1	Feb	343	425	426	344	1	Initial Estim	ate
1	Mar	391	446	426	373	18	Average =	420
1	Apr	437	474	430	396	41		
1	May	458	451	439	446	12		Type of Seasonality
1	June	494	447	441	488	6		Monthly
1	July	468	460	442	450	18		
1	Aug	555	467	446	530	25	Month	Seasonal Factor
1	Sep	387	480	450	363	24	Jan	0.808
1	Oct	364	478	456	347	17	Feb	0.807
1	Nov	662	461	461	662	0	Mar	0.876
1	Dec	581	463	461	579	2	Apr	0.921
2	Jan			461	373		May	1.016
2	Feb						June	1.105
2	Mar						July	1.018
2	Apr						Aug	1.189
2	May						Sep	0.806
2	June						Oct	0.761
2	July						Nov	1.437
2	Aug						Dec	1.256
2	Sep							
2	Oct						Mean Absol	ute Deviation
2	Nov						MAD =	15.83
2	Dec							
3	Jan						Mean Squar	re Error
3	Feb						MSE =	384.99

(d) Exponential Smoothing with Seasonality and Trend

			Seasonally			Seasonally				
		True	Adjusted	Latest	Estimated	Adjusted	Actual	Forecasting	Smoothing C	Constant
Year	Month	Value	Value	Trend	Trend	Forecast	Forecast	Error	α=	0.2
1	Jan	364	450		0	420	339	25	β=	0.2
1	Feb	343	425	6	1	427	345	2		
1	Mar	391	446	1	1	428	375	16	Initial Estima	ite
1	Apr	437	474	5	2	433	399	38	Average =	420
1	May	458	451	10	3	445	452	6	Trend =	0
1	June	494	447	5	4	450	497	3		
1	July	468	460	3	4	453	461	7		Type of Seasonality
1	Aug	555	467	5	4	458	545	10		Monthly
1	Sep	387	480	6	4	464	374	13		
1	Oct	364	478	7	5	472	359	5	Month	Seasonal Factor
1	Nov	662	461	6	5	479	688	26	Jan	0.808
1	Dec	581	463	2	4	479	602	21	Feb	0.807
2	Jan			1	4	480	388		Mar	0.876
2	Feb								Apr	0.921
2	Mar								May	1.016
2	Apr								June	1.105
2	May								July	1.018
2	June								Aug	1.189
2	July								Sep	0.806
2	Aug								Oct	0.761
2	Sep								Nov	1.437
2	Oct								Dec	1.256
2	Nov									
2	Dec								Mean Absolu	ite Deviation
3	Jan								MAD =	14.26
3	Feb									
3	Mar								Mean Square	e Error
3	Apr								MSE =	314.71

(e) The moving-average method results in the best MAD value (13.30) and the best MSE value (249.09).

(f)

Month	Avg. Forecast	Forecasting Error				
January	341	23				
February	345	2				
March	375	16				
April	400	37				
May	451	7				
June	497	3				
July	459	9				
August	537	18				
September	369	18				
October	354	10				
November	677	15				
December	592	12				

MAD = 14.17

(g) The moving-average method performed better than the average of all three, so it should be used next year.

27.7-18.

Quarter	Sales	Forecast a)	Squared Error a)	Forecast b)	Squared Error b)	Forecast c)	Squared Error c)	Forecast d)	Squared Error d)
1	6900								
2	6700								
3	7900			6880	1040400	6840	1123600	6500	
4	7100			6982	13924	7158	3364	6846	64516
5	8200	7150	1102500	6994	1454918	7141	1122328	6871	1766082
6	7000	7475	225625	7114	13092	7458	210149	7338	114384
7	7300	7550	62500	7103	38818	7321	437	7275	637
8	7500	7400	10000	7123	142370	7315	34364	7323	31458
9	9400	7500	3610000	7160	5015754	7370	4119934	7432	3872612
10	9200	7800	1960000	7384	3296509	7979	1490434	8256	891432
11	9800	8350	2102500	7566	4991051	8345	2115813	8857	888430
12	9900	8975	855625	7789	4454884	8782	1250390	9543	127179
13	11400	9575	3330625	8000	11557236	9117	5210929	10086	1727552
14	10000	10075	5625	8340	2754386	9802	39173	11034	1068141
15	9400	10275	765625	8506	798647	9861	212940	11184	3182671
16	8400	10175	3150625	8596	38297	9723	1750377	10949	6496332
17	8800	9800	1000000	8576	50119	9326	276795	10255	2116296
18	7600	9150	2402500	8599	997030	9168	2459499	9758	4656936
19	7500	8550	1102500	8499	997327	8698	1434713	8856	1838858
	MSE		1445750		2214986		1344426		1811971

SMALLEST

27.7-19.

Quarter	Sale	3	Forecast a)	Squared Error a)	Forecast b)	Squared Error b)	Forecast c)	Squared Error c)	Forecast d)	Squared Error d)
1		546								
2	100	528								- 1
3		530			544	202	541	112	510	400
4	14.27	508			543	1210	537	866	500	67
5	40.115	647	528	14161	539	11599	523	15277	487	25665
6	4.34	594	553	1661	550	1930	560	1124	534	3622
7	1.37	665	570		554	12218	631	1149	556	11828
8	yi. w	630	604	702	566	4158	641	127	603	727
9	57,15	736	634	10404	572	26907	655	6642	628	11727
10	17.8	724	656	4590	588	18396	679	2030	687	1404
11.	1000	813	689	15438	602	44549	732	6496	727	7314
	MSE			8004		13463		3758		6973

smallest

27.9-1.

(a)

(b) y = 410 + 17.6x

(c)

(d)
$$y = 410 + (17.6)(11) = 604$$

(e)
$$y = 410 + (17.6)(20) = 762$$

(f) The average growth in monthly sales is 17.6.

27.9-2.

(a)

(b)

(c)
$$y = 3900 + 700x$$

(d)
$$y(\text{Year 4}) = 3900 + (700)(4) = 6700$$

 $y(\text{Year 5}) = 3900 + (700)(5) = 7400$
 $y(\text{Year 6}) = 3900 + (700)(6) = 8100$
 $y(\text{Year 7}) = 3900 + (700)(7) = 8800$
 $y(\text{Year 8}) = 3900 + (700)(8) = 9500$

(e) It does not make sense to use the forecast obtained earlier, 9500. The relationship between the variables has changed and thus the linear regression that was used is no longer appropriate.

(f)

$$y = 5228 + 92.9x$$

 $y = 5228 + (92.9)(8) = 5971$

The linear regression line does not provide a close fit to the data. Consequently, the forecast that it provides for year 8 is not likely to be accurate. It does not make sense to continue to use a linear regression line when changing conditions cause a large shift in the underlying trend in the data.

(g)

				Exponential			
Time	True	Latest	Estimated	Smoothing	Forecasting		
Period	Value	Trend	Trend	Forecast	Error	Smoothing Constants	
1	4,600		700.00	4,600	0	α=	0.5
2	5,300	700.00	700.00	5,300	0	β=	0.5
3	6,000	700.00	700.00	6,000	0		
4	6,300	700.00	700.00	6,700	400	Initial Estima	tes
5	6,200	500.00	600.00	7,100	900	Average =	3,900
6	5,600	150.00	375.00	7,025	1,425	Trend =	700
7	5,200	-337.50	18.75	6,331	1,131		
8		-546.88	-264.06	5,502		Mean Absolu	te Deviation
9						MAD =	550.9
10							
11						Mean Square	Error
12						MSE =	611,478.8

Casual forecasting takes all the data into account, even the data from before changing conditions cause a shift. Exponential smoothing with trend adjusts to shifts in the underlying trend.

27.9-3.

(a)

(b) y = 380.27 + 8.15x

Time	Independent	Dependent		Estimation	Square	Linear R	egression Line
Period	Variable	Variable	Estimate	Error	of Error	y = a + b	x
1	1	382	388	6.42	41	a =	380.27
2	2	405	397	8.43	71	b =	8.15
3	3	398	405	6.72	45		
4	4	421	413	8.13	66		
5	5	426	421	4.98	25	Estimato	r
6	6	415	429	14.18	201	If x =	5,000
7	7	443	437	5.67	32		
8	8	451	445	5.52	30	then y=	41,137.84
9	9	446	454	7.63	58		
10	10	464	462	2.22	5		

(c)

- (d) y = 380 + (8.15)(11) = 470
- (e) y = 380 + (8.15)(15) = 503
- (f) The average growth per year is 8.15 tons.

(g)

27.9-4.

- (a) The amount of advertising is the independent variable and sales is the dependent variable.
- (b)

(c) y = 8.71 + 0.031x

- (d) y = 8.71 + (0.031)(300) = 18,000 passengers
- (e) $22 = 8.71 + (0.031)(x) \Rightarrow x = $429,000$
- (f) An increase of 31 passengers can be attained.

27.9-5.

- (a) If the sales increase from 16 to 19 when the amount of advertising is 225, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.
- (b) If the sales increase from 23 to 26 when the amount of advertising is 450, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.
- (c) If the sales increase from 20 to 23 when the amount of advertising is 350, then the linear regression line shifts below this point. The line actually shifts up, but not as much as the data point has shifted up.

27.9-6.

(a) The number of flying hours is the independent variable and the number of wing flaps needed is the dependent variable.

(b)

(c) y = -3.382 + 0.093x

Time	Independent	Dependent		Estimation	Square	Linear Re	egression Line
Period	Variable	Variable	Estimate	Error	of Error	y = a + b	X
1	162	12	12	0.30	0	a =	-3.382
2	149	9	10	1.49	2	b =	0.093
3	185	13	14	0.84	1		
4	171	14	13	1.46	2		
5	138	10	9	0.53	0	Estimator	•
6	154	11	11	0.04	0	If x =	150
7							
8						then y=	10.584

(d)

(e)
$$y = -3.382 + (0.093)(150) = 11$$

(f)
$$y = -3.382 + (0.093)(200) = 15$$

27.9-7. Joe should use the linear regression line y = -9.95 + 0.097x to develop a forecast for jobs in the future.

Time	Independent	Dependent		Estimation	Square
Period	Variable	Variable	Estimate	Error	of Error
1	323	24	22	2.48	6
2	359	23	25	2.02	4
3	396	28	29	0.63	0
4	421	32	31	0.93	1
5	457	34	35	0.57	0
6	472	37	36	0.97	1
7	446	33	34	0.50	0
8	407	30	30	0.30	0
9	374	27	26	0.51	0
10	343	22	23	1.47	2

Linear Regression Line							
y = a + bx							
a =	-9.954						
b =	0.097						

27.9-8.

(a)
$$\hat{y}(x) = 121.04 - 1.0346x \Rightarrow \hat{y}(55) = 64.137$$

(b)
$$t_{0.025:5} = 2.571, s_{y|x} = 6.34$$

$$\sqrt{1 + \frac{1}{7} + \frac{(x_t - \overline{x})^2}{\sum (x_t - \overline{x})^2}} = 1.0735$$

The 95% prediction interval is [46.64, 81.64].

(c) By interpolation:

$$t_{0.0125:5} = 3.365 - \frac{0.0025}{0.015}(3.365 - 2.571) = 3.233$$

The simultaneous 95% prediction interval is [42.13, 86.14].

(d) By interpolation:

$$c^{**} = 10.722 + \frac{1}{2}(11.150 - 10.722) = 10.936$$

The simultaneous tolerance interval is [37.1, 91.2].

27.9-9.

(a)
$$\sum_{i=1}^{5} x = 20, \sum_{i=1}^{5} y = 40, \sum_{i=1}^{5} xy = 242, \sum_{i=1}^{5} x^2 = 120$$
$$\Rightarrow \widehat{y}(x) = -0.2 + 2.05x \Rightarrow \widehat{y}(10) = 20.3$$

(b)
$$s_{y|x}^2 = 0.6333, t_{0.025:3} = 3.182$$

$$\sqrt{\frac{1}{5} + \frac{(x_t - \overline{x})^2}{\sum (x_i - \overline{x})^2}} = \sqrt{1.1}$$

The 95% prediction interval is [17.64, 22.9].

(c)

$$\sqrt{1 + \frac{1}{5} + \frac{(x_t - \overline{x})^2}{\sum (x_i - \overline{x})^2}} = \sqrt{2.1}$$

The 95% prediction interval is [16.630, 23.970].

(d) By interpolation:

$$c^{**} = 11.150 + \frac{1}{2}(14.953 - 11.150) = 13.0515$$

The simultaneous tolerance interval is [9.406, 31.194].

27.9-10.

(a)

$$k = \frac{\sum_{i=1}^{5} x_i y_i - \left(\sum_{i=1}^{5} x_i \sum_{i=1}^{5} y_i\right)/5}{\sum_{i=1}^{5} x_i^2 - \left(\sum_{i=1}^{5} x_i\right)^2/5} = \frac{19.96 - 0}{10 - 0} = 1.996$$

$$\log g = \frac{\sum_{i=1}^{5} (y_i - kx_i)}{5} = \frac{0.08}{5} = 0.016$$

$$\log t = 3 \Rightarrow \log r = 0.016 + 1.996 \times 3 = 6.004$$

The forecast for the distance traveled when $\log t = 3$ is then $10^{6.004}$, which is approximately one million.

(b)

$\log t$	$\log r$	$\widehat{E}(\log r)$
-2.0	-3.95	-
-1.0	-2.12	-
0.0	0.08	-3.767
1.0	2.20	-3.382
2.0	3.87	-2.824
3.0	_	-2.155

 $\Rightarrow \log r = 0.016 + 1.996 \log t$

(c)

$\log t$	$\log r$	$\alpha x + (1 - \alpha)F$	Trend	$\widehat{E}(\log r)$
-2.0	-3.95	-3.950	1.996	_
-1.0	-2.12	-1.971	1.994	_
0.0	0.08	0.029	1.995	0.024
1.0	2.20	2.042	1.997	2.024
2.0	3.87	4.022	1.995	4.039
3.0	_	_	_	6.017

27.9-11.

$$Q = \sum_{i=1}^{n} (y_i - bx_i)^2 \Rightarrow \frac{dQ}{db} = \sum_{i=1}^{n} -2x_i(y_i - bx_i) = 0 \Rightarrow B = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

Cases

- 27-1 a) We need to forecast the call volume for each day separately.
 - 1) To obtain the seasonally adjusted call volume for the past 13 weeks, we first have to determine the seasonal factors. Because call volumes follow seasonal patterns within the week, we have to calculate a seasonal factor for Monday, Tuesday, Wednesday, Thursday, and Friday. We use the Template for Seasonal Factors. The 0 values for holidays should not factor into the average. Leaving them blank (rather than 0) accomplishes this. (A blank value does not factor into the AVERAGE function in Excel that is used to calculate the seasonal values.) Using this template (shown on the following page, the seasonal factors for Monday, Tuesday, Wednesday, Thursday, and Friday are 1.238, 1.131, 0.999, 0.850, and 0.762, respectively.

	Α	В	С	D	E	F	G
1			te for Se				
2							
3				True			
4		Week	Day	Value		Type of Seas	onality
5 6		44 44	Mon Tue	1,130 851		Daily	
7		44	Wed	859			
8		44	Thur	828			Estimate for
9		44	Fri	726		Day	Seasonal Factor
10		45	Mon	1,085		Mon	1.238
11		45	Tue	1,042		Tue	1.131
12 13	-	45 45	Wed Thur	892 840		Wed Thur	0.999 0.850
14		45	Fri	799		Fri	0.762
15		46	Mon	1,303			
16		46	Tue	1,121			
17		46	Wed	1,003			
18 19	_	46 46	Thur Fri	1,113			
20	\vdash	46	Mon	1,005 2,652			+
21		47	Tue	2,825			
22		47	Wed	1,841			
23		47	Thur				
24		47	Fri	4.040			A
25	<u> </u>	48	Mon	1,949			Average Call Volume
26 27	\vdash	48 48	Tue Wed	1,507 989			1,025
28		48	Thur	990			
29		48	Fri	1,084			
30		49	Mon	1,260			
31		49	Tue	1,134			
32	_	49	Wed	941			
33 34		49 49	Thur Fri	847 714			
35		50	Mon	1,002			
36		50	Tue	847			
37		50	Wed	922			
38		50	Thur	842			
39 40		50 51	Fri Mon	784 823			
41		51	Tue	020			
42		51	Wed				
43		51	Thur	401			
44	<u> </u>	51	Fri	429			
45 46	\vdash	52/1 52/1	Mon Tue	1,209 830			
47	\vdash	52/1	Wed	000			
48		52/1	Thur	1,082			
49		52/1	Fri	841			
50		2	Mon	1,362 1,174			
51 52	\vdash	2	Tue Wed	967			
53		2	Thur	930			
54		2	Fri	853			
55		3	Mon	924			
56	<u> </u>	3	Tue	954			-
57 58	\vdash	3	Wed Thur	1,346 904			+
59	\vdash	3	Fri	758			
60		4	Mon	886			
61		4	Tue	878			
62		4	Wed	802			
63 64	\vdash	4	Thur Fri	945 610			+
65		5	Mon	910			
66		5	Tue	754			
67		5	Wed	705			
68		5	Thur	729			
69		5	Fri	772			

2) To forecast the call volume for the next week using the last-value forecasting method, we need to use the Last Value with Seasonality template. To forecast the next week, we need only start with the last Friday value since the Last Value method only looks at the previous day.

	Α	В	С	D	E	F	G	Н	- 1	J	K
1	Te	mpla									
2											
3					Seasonally	Seasonally					
4				True	Adjusted	Adjusted	Actual	Forecasting			
5		Week	Day	Value	Value	Forecast	Forecast	Error			Type of Seasonality
6		5	Mon								Daily
7		5	Tue								
8		5	Wed							Day	Seasonal Factor
9		5	Thur							Mon	1.238
10		5	Fri	772	1,013					Tue	1.131
11		6	Mon	1,254	1,013	1,013	1,254	0		Wed	0.999
12		6	Tue	1,146	1,013	1,013	1,146	0		Thur	0.850
13		6	Wed	1,012	1,013	1,013	1,012	0		Fri	0.762
14		6	Thur	860	1,012	1,013	860	0			
15		6	Fri	771	1,012	1,012	771	0			

The forecasted call volume for the next week is 5,045 calls: 1,254 calls are received on Monday, 1,148 calls are received on Tuesday, 1,012 calls are received on Wednesday, 860 calls are received on Thursday, and 771 calls are received on Friday.

3) To forecast the call volume for the next week using the averaging forecasting method, we need to use the Averaging with Seasonality template.

	Α	В	С	D	E	F	G	Н	I J	K
1	Τe	mpla	te for A	/eraging	Forecasti	ng Method	with Sea	sonality		
2					Seasonally	Seasonally				
4				True	Adjusted	Adjusted	Actual	Forecasting		
5		Week	Day	Value	Value	Forecast	Forecast	Error		Type of Seasonality
6		44	Mon	1,130	913	1 0.00001	. 0.00001			Daily
7		44	Tue	851	752	913	1,033	182		1
8		44	Wed	859	860	833	832	27	Day	Seasonal Factor
9		44	Thur Fri	828 726	975 953	842 875	715 667	113 59	Mon Tue	1.238 1.131
11		45	Mon	1,085	877	890	1,102	17	Wed	0.999
12		45	Tue	1,042	921	888	1,005	37	Thur	0.850
13		45	Wed	892	893	893	892	0	Fri	0.762
14		45	Thur	840	989	893	759	81		
15		45 46	Fri Mon	799 1,303	1,048	903 918	689	110 167		
16 17		46	Tue	1,121	1,053 991	930	1,136 1,052	69		
18		46	Wed	1,003	1,004	935	934	69		
19		46	Thur	1,113	1,310	941	799	314		
20		46	Fri	1,005	1,319	967	737	268		
21		47 47	Mon Tue	2,652 2,825	2,143 2,497	990 1,062	1,226 1,202	1,426 1,623	Mean Aboo	lute Deviation
23		47	Wed	1,841	1,842	1,147	1,202	695	MAD =	267 27
24		47	Thur	0	0	1,185	1,007	1,007	1417 (15) =	201.21
25		47	Fri	0	0	1,123	856	856	Mean Squa	re Error
26		48	Mon	1,949	1,575	1,067	1,321	628	MSE =	187,916.17
27		48	Tue	1,507	1,332	1,091	1,234	273		
28		48	Wed	989	990	1,102	1,101	112		
29 30		48 48	<u>Thur</u> Fri	990 1,084	1,165 1,422	1,097 1,100	932 838	58 246		
31		49	Mon	1,260	1.018	1,113	1,377	117		
32		49	Tue	1,134	1,002	1,109	1,255	121		
33		49	Wed	941	942	1,105	1,104	163		
34 35		49 49	<u>Thur</u> Fri	847 714	997 937	1,099 1,096	934 835	87 121		
36		50	Mon	1,002	810	1,096	1,350	348		
37		50	Tue	847	749	1,081	1,224	377		
38		50	Wed	922	923	1,071	1,070	148		
39		50	Thur	842	991	1,067	906	64		
40 41		50 51	Fri Mon	784 823	1,029 665	1,064 1,063	811 1,316	27 493		
42		51	Tue	023	0	1,052	1,191	1,191		
43		51	Wed	0	0	1,024	1,023	1,023		
44		51	Thur	401	472	997	847	446		
45		51	Fri	429	563	983	750	321		
46 47		52/1 52/1	Mon Tue	1,209 830	977 734	973 973	1,204 1,101	5 271		
48		52/1	Wed	0	0	967	967	967		
49		52/1	Thur	1,082	1,274	945	803	279		
50		52/1	Fri	841	1,103	952	726	115		
51 52	-	2	Mon Tue	1,362 1,174	1,100 1,038	956 959	1,183 1,085	179 89	-	
53	\vdash	2	Wed	967	968	960	960	7		
54		2	Thur	930	1,095	961	816	114		
55		2	Fri	853	1,119	963	734	119		
56		3	Mon	924	746	966	1,196	272		
57 58		3	Tue Wed	954 1,346	843 1,347	962 960	1,089 959	135 387	+	
59		3	Thur	904	1,064	967	822	82		
60		3	Fri	758	995	969	738	20		
61		4	Mon	886	716	969	1,200	314		
62 63		4	Tue Wed	878 802	776 803	965 962	1,092 961	214 159		
64		4	Thur	945	1,112	959	815	130		
65	L	4	Fri	610	800	961	733	123		
66		5	Mon	910	735	959	1,187	277		
67		5	Tue	754 705	666	955	1,081	327		
68 69		5 5	Wed Thur	705 729	706 858	950 947	950 804	245 75		
70		5	Fri	772	1,013	947	720	52		
71		6	Mon	1171	946	946	1,171	0		
72		6	Tue	1071	947	946	1,071	0		
73		6	Wed	945	946	946	945	0		
74 75		6	Thur Fri	804 721	946 946	946 946	804 721	0		
13		U	FII	121	540	540	121	V		L

The forecasted call volume for the next week is 4,712 calls: 1,171 calls are received on Monday, 1,071 calls are received on Tuesday, 945 calls are received on Wednesday, 804 calls are received on Thursday, and 721 calls are received on Friday.

4) To forecast the call volume for the next week using the moving-average forecasting method, we need to use the Moving Averaging with Seasonality template. Since only the past 5 days are used in the forecast, we start with Monday of the last week to forecast through Friday of the next week.

	Α	В	С	D	Е	F	G	Н	- 1	J	K
1	Te	mpla	te for M	oving-A	verage For	ecasting M	ethod wit	h Seasonal	ity		
2											
3					Seasonally	Seasonally					
4				True	Adjusted	Adjusted	Actual	Forecasting		Number of	previous
5		Week	Day	Value	Value	Forecast	Forecast	Error		periods to	consider
6		5	Mon	910	735					n =	5
7		5	Tue	754	666						
8		5	Wed	705	706						Type of Seasonality
9		5	Thur	729	858						Daily
10		5	Fri	772	1,013						
11		6	Mon	985	796	796	985	0		Day	Seasonal Factor
12		6	Tue	914	808	808	914	0		Mon	1.238
13		6	Wed	835	836	836	835	0		Tue	1.131
14		6	Thur	732	862	862	732	0		Wed	0.999
15		6	Fri	658	863	863	658	0		Thur	0.850
16		7	Mon			833	1,031			Fri	0.762

The forecasted call volume for the next week is 4,124 calls: 985 calls are received on Monday, 914 calls are received on Tuesday, 835 calls are received on Wednesday, 732 calls are received on Thursday, and 658 calls are received on Friday.

5) To forecast the call volume for the next week using the exponential smoothing forecasting method, we need to use the Exponential with Seasonality template. We start with the initial estimate of 1,125 calls (the average number of calls on non-holidays during the previous 13 weeks).

	Α	В	С	D	E	F	G	Н		J	K
1								hod with Se	aso		K
2											
3				_	Seasonally	Seasonally					
<u>4</u> 5		Week	Day	True Value	Adjusted Value	Adjusted Forecast	Actual Forecast	Forecasting Error		Smoothing Co $\alpha =$	nstant 0.1
6		44	Mon	1,130	913	1,025	1,269	139			0.1
7		44	Tue	851	752	1,014	1,147	296		Initial Estimate	
<u>8</u> 9		44 44	Wed Thur	859 828	860 975	988 975	987 828	128 0		Average =	1,025
10		44	Fri	726	953	975	743	17			Type of Seasonality
11		45 45	Mon	1,085	877	973 963	1,204	119			Daily
12		45	Tue Wed	1,042 892	921 893	959	1,089 958	47 66		Day	Seasonal Factor
14		45	Thur	840	989	952	809	31		Mon	1.238
15		45	Fri	799	1,048	956	728	71 108		Tue	1.131
16 17		46 46	Mon Tue	1,303 1,121	1,053 991	965 974	1,195 1,102	19		Wed Thur	0.999 0.850
18		46	Wed	1,003	1,004	976	975	28		Fri	0.762
19		46	Thur	1,113	1,310	978	831	282			
20 21		46 47	Fri Mon	1,005 2,652	1,319 2,143	1,012 1,042	771 1,290	234 1,362			
22		47	Tue	2,825	2,497	1,152	1,304	1,521			
23 24		47 47	Wed Thur	1,841 0	1,842 0	1,287 1,342	1,286 1,140	555 1,140			
25		47	Fri	0	0	1,342	921	921			
26		48	Mon	1,949	1,575	1,087	1,346	603			
27		48 48	Tue Wed	1,507 989	1,332 990	1,136	1,285	222 166		Mean Absolute MAD =	
28 29		48	Thur	999	1,165	1,156 1,139	1,155 968	22		WAD =	261.3
30		48	Fri	1,084	1,422	1,142	870	214		Mean Square E	rror
31		49	Mon	1,260	1,018	1,170	1,448	188		MSE =	171,377.0
32		49 49	Tue Wed	1,134 941	1,002 942	1,155 1,139	1,306 1,138	172 197			
34		49	Thur	847	997	1,120	951	104			
35		49	Fri	714	937	1,107	844	130			
36 37	_	50 50	Mon Tue	1,002 847	810 749	1,090 1,062	1,350 1,202	348 355			
38		50	Wed	922	923	1,031	1,030	108			
39		50	Thur	842	991	1,020	867	25			
40		50 51	Fri Mon	784 823	1,029 665	1,017 1,018	775 1,260	9 437			
42		51	Tue	0	0	983	1,112	1,112			
43		51	Wed	0	0	885	884	884			
44 45		51 51	Thur Fri	401 429	472 563	796 764	676 582	275 153			
46		52/1	Mon	1,209	977	744	921	288			
47		52/1	Tue	830 0	734 0	767 764	868 763	38			
48 49		52/1 52/1	Wed Thur	1,082	1,274	687	584	763 498			
50		52/1	Fri	841	1,103	746	568	273			
51 52		2	Mon Tue	1,362 1,174	1,100 1,038	782 814	968 920	394 254			
53		2	Wed	967	968	836	835	132			
54		2	Thur	930	1,095	849	721	209			
55 56		3	Fri Mon	853 924	1,119 746	874 898	666 1,112	187 188			
57		3	Tue	954	843	883	999	45			
58		3	Wed	1,346	1,347	879	878	468			
59 60		3	Thur Fri	904 758	1,064 995	926 940	787 716	117 42			
61		4	Mon	886	716	945	1,170	284			
62 63		4	Tue Wed	878 802	776 803	922 908	1,043 907	165 105			
64		4	Thur	945	1,112	897	762	183			
65		4	Fri	610	800	919	700	90			
66 67		5 5	Mon Tue	910 754	735 666	907 890	1,122 1,007	212 253			
68		5	Wed	705	706	867	867	162			
69		5	Thur	729	858	851	723	6			
70 71		5 6	Fri Mon	772 1074	1,013 868	852 868	649 1,074	123 0			
72		6	Tue	982	868	868	982	0			
73		6	Wed	867	868	868	867	0			
74 75		6	Thur Fri	737 661	867 867	868 868	737 661	0			
75		6	Fri	661	867	868	001	U			

The forecasted call volume for the next week is 4,322 calls: 1,074 calls are received on Monday, 982 calls are received on Tuesday, 867 calls are received on

- Wednesday, 737 calls are received on Thursday, and 661 calls are received on Friday.
- b) To obtain the mean absolute deviation for each forecasting method, we simply need to subtract the true call volume from the forecasted call volume for each day in the sixth week. We then need to take the absolute value of the five differences. Finally, we need to take the average of these five absolute values to obtain the mean absolute deviation.
 - 1) The spreadsheet for the calculation of the mean absolute deviation for the last-value forecasting method follows.

	А	В	С	D	Е	F	G	Н
1	Last Valu	е						
2								
3			True	Actual	Forecast			
4	Week	Day	Value	Forecast	Error			
5	6	Monday	723	1,254	531			
6	6	Tuesday	677	1,146	469			
7	6	Wednesday	521	1,012	491			
8	6	Thursday	571	860	289		Mean Absolu	te Deviation
9	6	Friday	498	771	273		MAD =	410.6

This method is the least effective of the four methods because this method depends heavily upon the <u>average</u> seasonality factors. If the average seasonality factors are not the true seasonality factors for week 6, a large error will appear because the average seasonality factors are used to transform the Friday call volume in week 5 to forecasts for <u>all</u> call volumes in week 6. We calculated in part (a) that the call volume for Friday is 0.762 times lower than the overall average call volume. In week 6, however, the call volume for Friday is only 0.83 times lower than the average call volume over the week. Also, we calculated that the call volume for Monday is 1.34 times higher than the overall average call volume. In Week 6, however, the call volume for Monday is only 1.21 times higher than the average call volume over the week. These differences introduce a large error.

2) The spreadsheet for the calculation of the mean absolute deviation for the averaging forecasting method appears below.

	Α	В	С	D	E	F	G	Н
1	Averaging							
2								
3			True	Actual	Forecast			
4	Week	Day	Value	Forecast	Error			
5	6	Monday	723	1,171	448			
6	6	Tuesday	677	1,071	394			
7	6	Wednesday	521	945	424			
8	6	Thursday	571	804	233		Mean Absolute Deviatio	
9	6	Friday	498	721	223		MAD =	344.4

This method is the second-most effective of the four methods. Again, the reason lies in the average seasonality factors. Applying the average seasonality factors to an average call volume yields a much more accurate result than applying average seasonality factors to only one call volume. This method is not the most effective method, however, because the centralized call center experiences not only daily seasonality, but also weekly seasonality. For example, the call volumes in weeks 45 and 46 are much greater than the call volumes in week 6. Therefore, these larger call volumes inflate the average call volume, which in turn inflates the forecasts for Week 6.

3) The spreadsheet for the calculation of the mean absolute deviation for the moving-average forecasting method appears below.

	А	В	С	D	E	F	G	Н
1	Moving Average							
2								
3			True	Actual	Forecast			
4	Week	Day	Value	Forecast	Error			
5	6	Monday	723	985	262			
6	6	Tuesday	677	914	237			
7	6	Wednesday	521	835	314			
8	6	Thursday	571	732	161		Mean Absolu	te Deviation
9	6	Friday	498	658	160		MAD =	226.8

This method is the most effective of the four methods because this method only uses the average week 5 call volume to forecast the call volumes for week 6. Again, applying the average seasonality factors to an average call volume yields a much more accurate result than applying average seasonality factors to only one call volume. Also, the average call volume used in this method is not overly inflated since it is an average of the week 5 call volumes, which are closer to the week 6 call volumes than any other of the 13 weeks.

4) The spreadsheet for the calculation of the mean absolute deviation for exponential forecasting method follows.

	Α	В	С	D	E	F	G	Н
1	Expon	ential Smo	oothing					
2								
3			True	Actual	Forecast			
4	Week	Day	Value	Forecast	Error			
5	6	Monday	723	1,074	351			
6	6	Tuesday	677	982	305			
7	6	Wednesday	521	867	346			
8	6	Thursday	571	737	166		Mean Absolute Deviation	
9	6	Friday	498	661	163		MAD =	266.2

This method is nearly as effective as the moving average. This method is a little more effective than the averaging forecasting method because the smoothing constant causes less weight to be placed on the call volumes in the earlier weeks.

- c) This problem is simply a linear regression problem.
 - 1) To find a mathematical relationship, we use the Linear Regression template. The decentralized case volumes are the independent variables, and the centralized case volumes are the dependent variables. Substituting the case volume data, we obtain the following spreadsheet. The relationship is y = 1576 + 0.756x, where x is the decentralized case volume, and y is the estimated centralized case volume.

	Α	В	С	D	E	F	G	Н	I	J
1	Te	mplate	for Linear R	egression						
2		•								
3			Independent	Dependent		Estimation	Square		Linear Re	gression Line
4		Week	Variable	Variable	Estimate	Error	of Error		y = a + bx	1
5		44	612	2,052	2,038	13.84	192		a =	1,576
6		45	721	2,170	2,121	49.45	2,445		b =	0.76
7		46	693	2,779	2,099	679.61	461,872			
8		47	540	2,334	1,984	350.27	122,690			
9		48	1,386	2,514	2,623	109.26	11,938		Estimato	•
10		49	577	1,713	2,012	298.70	89,221		If x =	613
11		50	405	1,927	1,882	45.32	2,054			
12		51	441	1,167	1,909	741.89	550,400		then y=	2,038.9
13		52/1	655	1,549	2,071	521.66	272,132			
14		2	572	2,126	2,008	118.08	13,943			
15		3	475	2,337	1,935	402.41	161,932			
16		4	530	1,916	1,976	60.17	3,620			
17		5	595	2,098	2,025	72.69	5,284			

2) To forecast the week 6 call volume for the centralized call center, we simply input the week 6 decentralized case volume for the value of x in the Estimator section of the Linear Regression Spreadsheet (as shown in part 1 above). The value of y then represents the week 6 centralized case volume. We multiply this value of y by 1.5 to obtain the week 6 centralized call volume. Thus, the forecasted number of calls is 1.5 * 2,038.9 = 3,058.

We then break this weekly call volume into daily call volume. We do this conversion by dividing the weekly call volume by the sum of the seasonal factors calculated in part (a) and then multiplying this weekly call volume by the appropriate seasonal factor to find the call volume for each of the five days of the week. The spreadsheet showing these calculations follows:

	А	В	С
1	Week 6 Call Volume	3058	
2	Daily Call Volume	611.6	
3			
4		Seasonal	Forecasted
5	Day	Factor	Call Volume
6	Monday	1.238	757
7	Tuesday	1.131	692
8	Wednesday	0.999	611
9	Thursday	0.850	520
10	Friday	0.762	466

The forecasted call volume for week 6 is 3,046 calls: 757 calls are received on Monday, 692 calls are received on Tuesday, 611 calls are received on Wednesday, 520 calls are received on Thursday, and 466 calls are received on Friday.

3) To calculate the mean absolute deviation, we need to subtract the true call volume from the forecasted call volume for each day in the sixth week. We then need to take the absolute value of the five differences. Finally, we need to take the average of these five absolute values to obtain the mean absolute deviation.

The spreadsheet for the calculation of the mean absolute deviation follows.

	Α	В	С	D	E	F	G	Н
1	Causa	l Forecast	ing					
2								
3			True	Actual	Forecast			
4	Week	Day	Value	Forecast	Error			
5	6	Monday	723	757	34			
6	6	Tuesday	677	692	15			
7	6	Wednesday	521	611	90			
8	6	Thursday	571	520	51		Mean Absolu	te Deviation
9	6	Friday	498	466	32		MAD =	44.4

This forecasting method is by far the most effective method. The centralized center performs the same services and serves the same population as the decentralized center. Therefore, the call volume trends are the same. Once we have a factor to scale the decentralized call volumes to the centralized call volumes, we have a very effective forecasting method.

d) We would definitely recommend using the causal forecasting method implemented in part (c) because it yields the lowest error. The causal method shows us that the call volume trends remain relatively the same year after year. We had to convert between case volumes and call volumes in part (c), however, and such a conversion introduces error. For example, what if a case generates a higher or lower number of calls? We therefore recommend that call volume data be meticulously recorded as the centralized center continues its operation. Once one year's worth of call volumes have been collected, the causal forecasting model should be updated. The model should be updated to use the historical centralized call volume data instead of the historical decentralized case volume data.