Road Accident Severity Prediction - Documentation

Overview

This project aims to predict the severity of road accidents based on various input features using a machine learning model deployed with Flask. The model leverages Random Forest classification for accurate predictions. This document covers API details, model performance, setup instructions, and testing results.

1. API Documentation

Endpoints

}

1. POST /predict (Predict Accident Severity)

```
Method: POST
Request Body (JSON):
{
 "num vehicles": 2,
 "time": 14,
 "road class": "A",
 "road_surface": "Wet / Damp",
 "lighting": "Darkness: street lights present and lit",
 "weather": "Fine without high winds",
 "casualty_severity": "Slight",
 "sex_of_casualty": "Male",
 "age_of_casualty": 35,
 "type_of_vehicle": "Car",
 "age_group": "60-69",
 "vehicle_group": "Two-Wheeled Vehicle"
}
Response (JSON):
 "severity": "Driver"
```

2. GET /health (Health Check)

• Method: GET

• Response:

•

• "status": "API is running"

• }

2. Model Performance Metrics

• Algorithm: Random Forest Classifier

• Accuracy: 60%

• Precision: 60%

• **Recall:** 99%

• **F1-Score**: 75%

• Class Imbalance Handling: SMOTE (Synthetic Minority Over-sampling Technique)

3. Setup Guide

Prerequisites:

- Python 3.8+
- pip

Installation Steps:

- 1. Clone the Repository:
- 2. git clone https://github.com/Abuhamida/road-accident-severity-prediction.git
- 3. cd road-accident-severity-prediction
- 4. Create a Virtual Environment:
- 5. python -m venv venv
- 6. source venv/bin/activate # Linux/macOS
- 7. venv\Scripts\activate # Windows
- 8. Install Dependencies:
- 9. pip install -r requirements.txt

10. Run the Flask Application:

11. python app.py

The app will be available at: http://127.0.0.1:5000/

4. Testing Results

Running Unit Tests

- Execute unit tests with:
- python -m unittest tests/test_app.py
- Expected Output:
- •
- Ran 3 tests in 0.046s
- •
- OK

Key Functionalities Tested:

- API endpoint response validation.
- Model prediction accuracy.
- Edge cases and error handling.

5. Screenshots

Homepage Interface:

Prediction Result:

6. Troubleshooting

App Not Starting?

- Ensure best_model.pkl, label_encoders.pkl, and scaler.pkl are in the root directory.
- Confirm Python version compatibility.

Test Failures?

- Ensure form keys in test_app.py match those in app.py.
- Check if the Flask app is running before executing tests.

7. Contact Information

• Author: Mohamed Ramdan AbuHamida

• **GitHub:** <u>Abuhamida</u>

• LinkedIn: Mohamed AbuHamida

• Email: mohamedabuhamida3@gamil.com