Analysis and Differential Equations Individual

Please solve the following 6 problems.

1. Let the sequence of functions $\{f_n\}_{n=1}^{\infty}$ in $L^2(\mathbf{R}^d)$ satisfy that $||f_n||_{L^2}=1$.

(1) Show that there exists a subsequence of function $\{f_{n_j}\}_{j=1}^{\infty}$ such that f_{n_j} converges weakly to some function f in $L^2(\mathbf{R}^d)$, i.e.

$$(f_{n_i},g) \to (f,g)$$

for all $g \in L^2(\mathbf{R}^d)$.

(2) If $f_n \to f$ weakly in $L^2(\mathbf{R}^d)$, and $||f_n||_{L^2} \to ||f||_{L^2}$ as $n \to \infty$. Show that $||f_n - f||_{L^2} \to 0$ as $n \to \infty$.

2. Let $f:U\to \mathbb{C}$ be a non-constant holomorphic function where $U\subset \mathbb{C}$ is the open set containing the closure \overline{D} of the unit disk $D = \{z \in \mathbb{C} | |z| < 1\}$.

If
$$|f(z)| = 1$$
, for all $z \in \partial D$, Prove that $D \subset f(\overline{D})$.

3. Prove that if a sequence of harmonic function on the open disk converges uniformly on compact subset of the disk, then the limit is harmonic.

4. Let μ be a Borel measure on \mathbb{R}^n . Let $\rho > 0$, a fixed positive number, and $B_{\rho}(x) =$ $\{y \in \mathbf{R}^n | d(x,y) < \rho\}$. For $x \in \mathbf{R}^n$, define a function:

$$\theta(x): x \to \mu(\overline{B_{\rho}(x)})$$

- 1) Show that θ is upper semi-continuous, i.e. for every $x \in \mathbf{R}^n$, $\theta(x) \geq \limsup_{y \to x} \theta(y)$.
- 2) Give an example of a Borel measure μ , such that the function θ is not continuous.

5. Let g denote a smooth function on \mathbb{R}^n with compact support. Let f denote the function given by the formula

$$f(x) = \frac{1}{n(n-1)\alpha(n)} \int_{\mathbf{R}^n} \frac{1}{|x-y|^{n-2}} g(y) dy.$$

Here $\alpha(n)$ is volume of the unit ball in \mathbb{R}^n .

- (a) Prove that the integral that defines f converges for each $x \in \mathbb{R}^n$.
- (b) Prove that f is differentiable and that the gradient of f if given by the formula

$$\nabla f|_{x} = \frac{1}{n(n-1)\alpha(n)} \int_{\mathbf{R}^{n}} \frac{1}{|x-y|^{n-2}} (\nabla g)|_{y} dy.$$

(c) Prove the f obeys $-\Delta f = g$ with Δ denoting $\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}$.

6. If u is a positive harmonic function on $\mathbb{R}^n \setminus \{0\}$ $(n \geq 2)$, then exist constants $a \geq 0, b \geq 0$ such that

$$u(x) = a + b|x|^{2-n}$$

for all $x \in \mathbb{R}^n \setminus \{0\}$.