Question	Scheme	Marks
9(a)	$\left(1 - 8x^{2}\right)^{-\frac{1}{2}} = 1 + \left(-\frac{1}{2}\right)\left(-8x^{2}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2} - 1\right)\left(-8x^{2}\right)^{2}}{2!}$	M1
	$+\frac{\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right)\left(-\frac{1}{2}-2\right)\left(-8x^{2}\right)^{3}}{3!}$	
	$\left(1 - 8x^2\right)^{-\frac{1}{2}} = 1 + 4x^2 + 24x^4 + 160x^6 + \dots$	A1A1 [3]
(b)	$((a+bx))(1+4x^2+24x^4+160x^6)) = (a+bx+4ax^2)+4bx^3+24ax^4$	M1A1ft
	$4b = 20 \Rightarrow b = 5$	A1
	$24a = 48 \Rightarrow a = 2$	A1 [4]
(c)	$\left(\int_0^{0.2} \mathbf{g}(x) dx = \int_0^{0.2} \left(\frac{2 + 5x}{\sqrt{1 - 8x^2}} \right) dx = \right)$	
	$\int_0^{0.2} \left("2" + "5" x + "8" x^2 + "20" x^3 + "48" x^4 \right) dx$	M1
	$\left[\int_0^{0.2} g(x) dx = \right] \left[2x + \frac{5x^2}{2} + \frac{8x^3}{3} + \frac{20x^4}{4} + \frac{48x^5}{5} \right]_0^{0.2}$	M1
	$\left(\int_0^{0.2} g(x) dx = \right) 2 \times 0.2 + \frac{5 \times 0.2^2}{2} + \frac{8 \times 0.2^3}{3} + \frac{20 \times 0.2^4}{4} + \frac{48 \times 0.2^5}{5} \right)$	M1
	= $0.532405333 \approx 0.5324$ Note: The calculator value is 0.5347698	A1 [4]
Total 11 1		

Part	Mark	Notes
	M1	For an attempt at the binomial expansion.
(a)	IVII	The expansion must:
		 Begin with 1 The denominators must be correct
		• The powers of $-8x^2$ must be correct eg $(-8x^2)^2$
		Do not allow missing brackets unless recovered later – this is a general point of marking. Ignore any terms with powers higher than 3.
		Allow a misread of $\frac{1}{2}$ for $-\frac{1}{2}$ but not $8x^2$ for $-8x^2$ - see gen guidance for misreads.
	A1	Following M1 (this is a general point of marking, A marks can only follow M marks). All conditions above met and at least one algebraic term correct and simplified.
	A1	Fully correct and simplified
(b)	M1	For attempting to expand $(a+bx)(1+cx^2+dx^4+)$ to reach at least the correct terms in x^3
		and x^4 for their expansion from part (a) ie $4bx^3$ and $24ax^4$ or cbx^3 and dax^4
		Ignore terms with powers higher than 4.
		It is only necessary to see the correct terms (for their expansion) in x^3 and x^4 .
		They must be using an expansion from (a) of the form $1+cx^2+dx^4+$
		This mark may be implied from any following working.
	A1ft	For a fully correct expansion in terms of x , a and b , up to the term in x^4
		or for $4b = 20$ AND $24a = 48$.
		or if using an incorrect expansion from part (a) of the form $1+cx^2+dx^4+$
		for a fully correct expansion or $cb = 20$ AND $da = 48$.
		Ignore terms with powers higher than 4.
	A1ft	Either a or b correct
		ft their expansion from (a) of the form $1+cx^2+dx^4+$
		and $cb = 20$ AND $da = 48$.
	A1ft	Both a and b correct.
	1111	ft their expansion from (a) of the form $1+cx^2+dx^4+$
		and $cb = 20$ AND $da = 48$.
(c)	M1	For using their expansion from (b) with the correct limits.
(0)	1,11	Although their expression does not need to be fully correct, it must be clear it has arisen from
		attempting to find a and b in part (b) and using these values.
		The expression must include the first 5 terms in their expansion of the form
		$p + qx + rx^2 + sx^3 + tx^4$ from part (b) using their a and b and may include more for this mark.
		It is not necessary to see the integral sign, if the candidate clearly integrates later.
		Similarly, if the limits are not present until substitution, this mark can be awarded.
	M1	For an attempt to integrate an expression (see general guidance) – no power of x to decrease.
		This is not a dependent method mark and the mark is for an attempt to integrate, but they
		must integrate all their terms and there must be a minimum of 2 algebraic terms.
	M1	For substitution of the given limits the correct way around. There must be at least one correct
		substitution of limits into their changed expression with a minimum of 2 algebraic terms (ie
		this again is not a dependent method mark). 0 need not be substituted if substitution into the
		changed expression gives an evaluation of 0.
		This may be implied by a correct answer, but must be shown if the final answer is not correct.
	A1	For awrt 0.5324 ie condone more decimal places.
The gue	stion door	s not demand that students use algebraic integration or show their working clearly and therefore

The question does not demand that students use algebraic integration or show their working clearly and therefore **a correct answer of 0.5324....** may imply the method marks and full marks should be awarded. A value of 0.5347.....will score 0 marks.