Interview Presentation

XUE Boyang, 薛博阳
The Chinese University of Hong Kong
Sep 21th, 2022

Presentation Outline

- > Profile Personal Information.
- Projects Three Research Experiences.
- > Prospects Viewing NLP Research.

Profile

Name: XUE, Boyang.

Research Interest: Language Modeling, Speech Recognition, Machine Learning.

Education:

Bachelor Degree in Huazhong University of Science and Technology (HUST). Sep. 2016 - Jun. 2020 Faculty: Automation, Excellent Class. (GPA 3.54/4.00, Ranking: 7/30)

Research Assistant in The Chinese University of Hong Kong (CUHK). Sep. 2020 - Jul. 2021 Human-Computer Communications Lab, System Engineering Department.

Second-year PhD Candidate in The Chinese University of Hong Kong (CUHK). Aug. 2021 - Present Human-Computer Communications Lab, System Engineering Department. (GPA 3.79/4.00)

Profile

Publications (First Author):

Bayesian Neural Network Language Modeling for Speech Recognition. in IEEE/ACM TASLP, 2022.

Bayesian Transformer Language Models for Speech Recognition. in IEEE ICASSP, 2021.

Deep Learning based Patient-Specific Fetal Heart Rate Detection System on FECG. Chinese Patent, 2020.

Awards & Honors:

National Grand Prize in the 14th NXP Cup National University Intelligent Car Race (Top 3/468).

Excellent Graduate (Top 15%), University Scholarship (2018, Top 10%).

English: IELTS – L: 6.5, R: 7.5, W: 7.0, S: 5.5, Overall: 6.5.

Programming and Development: C, Python, MATLAB, Linux Shell, Latex, PyTorch, Kaldi, et al.

Others: Served as a part-time author in PaperWeekly and Zhihu; Responsible for a PRML project in Datawhale.

NXP Cup National University Intelligent Car Race

- Dec.2017 Aug.2019, Team Leader in Robotic Team, HUST.
- Group1: Kalman filter based self-balanced car.
- Group2: Tracking car for beacon destination.
- Group3: Wireless charge based energy-efficient car.
- Responsible for programming on Cortex-M chips.
 - > Electromagnetic signal and image processing.
 - > Motion control using PID algorithm.
- Auxiliary for circuits design and mechanics.
- Grand Prize (Top 3/468) in 14th NXP Cup National University Intelligent Car Race.

Deep Learning based Patient-Specific FHR Detection System

- > Sep.2019 Jun.2020, Research Intern in Intelligent Manufacturing and Data Science Lab, HUST.
- Co-operated with Tongji Hospital, HUST.
- Main Contributions:
 - Improvements of non-invasive fetal heart rate detection on FECG.
 - > CNN-LSTM based model to detect fetal QRS wave on FECG.
 - > Patient-specific detection method to alleviate intra-differences.
- Dataset: PhysioNet FECG and Tongji FECG dataset.
- Clinical Value: Prenatal diagnosis to reduce fetal mortality.
- Chinese Patent Granted in 2020.

Bayesian Learning based Neural Network Language Models

- > Sep.2020 May.2022, Research Assistant and PhD Student, CUHK.
- > Language Model Application Examples (Key component of a range of Natural Language Processing tasks):
 - \triangleright Speech Recognition: P(read a book) > P(read a boot); Machine Translation: P(what is this) > P(this is what).
- Developments of Statistical Language Models:
 - > N-gram LMs > Neural Network LMs (FNN, RNN, LSTM, Transformer) > Pre-trained LMs (BERT, GPTs)
- Motivation: The use of point estimated parameters of highly complex neural LMs fails to account for model uncertainty and is prone to overfitting and poor generalization on limited training data.
- > Regularization Methods: L1 & L2 penalty and MAP estimation; Dropout method.
- > Address: A Bayesian estimated neural network LMs for uncertainty modeling.

Bayesian Learning Framework and Variational Inference

> Bayesian Learning Framework

- **>** Bayesian Neural Network (BNN) LMs: uncertainty modeling on parameters. $\log P(W|\mathcal{D}) = \log \int P(W|\mathbf{\Theta})p(\mathbf{\Theta}|\mathcal{D})d\mathbf{\Theta}$
- Gaussian Process (GP) based NNLMs: uncertainty modeling on both parameters and structures.
 - Space viewed GP: $f(x) = \lambda^{T} \cdot \phi(x) = \sum_{j=1}^{K} \lambda^{j} \phi^{j}(x)$ $\log P(W|\mathcal{D}) = \log \iint P(W|\mathcal{O}, \lambda) p(\mathcal{O}|\mathcal{D}) p(\lambda|\mathcal{D}) d\mathcal{O}d\lambda$
- > Variational Neural Network (VNN) LMs: uncertainty modeling on hidden representations.

$$\log P(W|\mathcal{D}) = \log \prod_{t=1}^{n} P(w_t|w_0, \dots, w_{t-1}, \mathcal{D}) \approx \log \prod_{t=1}^{n} \int P(w_t|w_0, \dots, w_{t-1}, z_t) p(z_t|h_t, \mathcal{D}) dz_t$$

Variational Inference for Bayesian NNLMs:

Variational lower bound maximization; Approximate $p(\boldsymbol{\theta}|\mathcal{D})$ with $q(\boldsymbol{\theta})$ and $p_{r}(\boldsymbol{\theta})$.

$$\log P(\mathcal{D}) = \log \int P(\mathcal{D}|\boldsymbol{\theta}) p_{\mathrm{r}}(\boldsymbol{\theta}) d\boldsymbol{\theta} \ge \int \log P(\mathcal{D}|\boldsymbol{\theta}) q(\boldsymbol{\theta}) d\boldsymbol{\theta} - \mathrm{KL}[q(\boldsymbol{\theta})||p_{\mathrm{r}}(\boldsymbol{\theta})]$$

> Three Tricks: 1) Gaussian Assumption; $q(\theta) \sim \mathcal{N}(\theta | \mu, \sigma^2)$, $p_r(\theta) \sim \mathcal{N}(\theta | \mu_r, \sigma_r^2)$

Fig. 1 Point and Bayesian estimated Neural Networks

2) Mento Carlo Sampling; 3) Re-parameterization Trick for Sampling. $\theta = \mu + \epsilon \odot \sigma$, $\epsilon \sim \mathcal{N}(0, 1)$

Scalability Issue and Uncertainty Analysis of Bayesian NNLMs

Increased Computational Cost:

- linearly in terms of Monte Carlo samples A minimal number for balance between convergence speed and performance.
- exponentially with respect to number of positions to be Bayesian estimated NAS to automatically select.

Uncertainty Analysis:

- Fixed model size varying from different sizes of data.
- Changing model complexity versus constant data quantity.
- Parameter uncertainty: Signal-to-Noise Ratio (SNR). $SNR_{\Theta} = \frac{|\mu|}{2}$

ID	LM	Subset of Training Data / SNR									
1	B-LSTM	5%/ 0.3	10%/ 0.4	25%/ 0.5	50%/ 0.7	100%/ 1.1					
2	B-Transformer	5%/0.6	10%/ 0.8	25%/1.1	50%/ 2.0	100%/ 3.3					
	LM	Hidden (FFN) Layer Dimensionality / SNR									
3	B-LSTM	128/ 5.1	256/ 2.6	512/ 1.4	1024/ 1.1	2048/ 2.0					
4	B-Transformer	512/ 8.2	1024/ 4.3	2048/ 3.0	4096/ 3.3	8192/ 3.7					

Experimental Results and Developments of Bayesian NNLMs

- > Bayesian Transformer Language Models for Speech Recognition. in IEEE ICASSP, 2021.
 - ➤ Dataset: 34M Switchboard Telephone corpus;

ID	LM	PPL		12000		rt02	rt03		
	2.1.	(swbd)	swbd	callhm	swbd1	swbd2	swbd3	fsh	swbd
1	4gram	-	9.7	18.0	11.5	15.3	20.0	12.6	19.5
2	Standard Transformer	41.50	7.9	15.7	9.5	12.8	17.4	10.4	17.3
3	Bayesian Transformer	39.42	7.6	15.2	9.3	12.5	17.0	10.1	16.9

2.4M DementiaBank Pitt corpus.

·	ID	LMs	Adapt	PPL	WER(%)		
:	1	Standard Transformer	fine-tuning	14.56	30.25		
	2	Bayesian Transformer	bayes-adapt	13.99	29.88		

- > Main Contributions: 1) First Attempt of variational BNN based Transformer LM; 2) Domain adaptation.
- Bayesian Neural Network Language Modeling for Speech Recognition. in IEEE/ACM TASLP, 2022.
 - ➤ Dataset: 15M AMI Meeting Room data;

2.5M LRS2 Overlapped Speech corpus.

ID	LMs		PPL WER(%) of eval		ID	LM				WER(%)				
			ihm	sdm1	mdm8	Avg.		Livi	(Test)	clean	TF masking	Filter & Sum	MVDR	Avg.
1	Transformer + LSTM + 3g	55.1	15.6	34.3	30.4	26.8	1	Transformer + LSTM + 4g	65.8	5.3	12.2	11.3	11.6	10.1
2	Transformer(L2) + LSTM(L2) + Transformer + LSTM + 3g	51.4	15.5	34.2	30.2	26.6	2	Transformer(L2) + LSTM(L2) + Transformer + LSTM + 4g	64.8	5.2	12.2	11.1	11.4	10.0
3	Bayesian Transformer + Bayesian LSTM + Transformer + LSTM + 3g	47.9	15.3 [†]	33.8^{\dagger}	29.9 [†]	26.3 [†]	3	GP Transformer + GP LSTM + Transformer + LSTM + 4g	63.7	4.7*	11.4*	10.7*	10.8*	9.4*

- Main Contributions: 1) Systematic Bayesian framework (BNN, GP, VNN) on both Transformer and LSTM-RNN LMs;
 - 2) Multiple LM combinations for SOTA performance; 3) Ablation study of L1, L2 and MAP regularizations;
 - 4) Computational cost reduction; 5) Uncertainty analysis in terms of model complexity and data quantity.

Prospects

Some Perspectives in Language Modeling Research

- > Language modeling is the key to make the machine understand humans and achieve artificial intelligence.
- > Model compression and quantization for both model size and computational cost.
- > Extracting more syntactic representations combined with semantic information in LMs.
 - > Brain science and cognitive science (Broca's Area and Wernicke's Area).
- > Multi-modal language modeling to mimic human's behaviors.
- PhD Pursuit: broaden my horizon for more interested and original research.

Thank you!