BEST AVAILABLE COPY

Application No.: 10/815,082

Amendment Date: April 25, 2006

Reply to Office Action: January 25, 2006

Page 6

REMARKS/ARGUMENTS

Claims 1-10 and 11-27 remain in this application. Claims 1, 13, 21, and 24-26 have been

amended. Claim 11 has been cancelled.

Claim 24 stands rejected under 35 USC 112, second paragraph, as being indefinite for

failing to particularly point out and distinctly claim the subject matter which applicant

regards as the invention.

The Examiner stated that the term "soliton" is being interpreted as "optical energy". However,

the term "soliton" applies to a very special case of optical energy. The term "soliton" is well

known in the art of optics. It's a pulse of optical energy that travels without changing its

shape. Applicants' attorney is including a brief description of this term, provided by Dr.

Nickolas Borelli, a Corning Scientist, pgs. 60-61 from the book entitled "Fiber Optics

Communications", by Joseph Pallais, along with several papers that explain the solitons in

more detail.

Claim 24 has been amended to state that the optical energy propagates as temporal soliton that

has a wavelength within the photonic band gap. Accordingly, Applicants respectfully submit

that claim 24 is not indefinite.

Claims 1, 4, 6-8, 13, 15, 17, 18 and 25-27 are rejected under 35 USC 103(a) as being

unpatentable over Kawanishi et al (US 6,404,966 B1).

Applicant's claim 1 states that the core region with a loss of less than about 300 dB/km.

The Examiner stated that Kawanishi et all teach an optical fiber where "The photonic band gap

structure guides the optical energy substantially within the core region with loss of about 0.01

dB/km". This statement is different from that made in the cited reference. Col. 3, lns. 39-42 of

the Kawanishi state that "The optical fiber according to the present embodiment can be

expected to have a loss characteristic of about 0.01 dB/km".

That is, the reference never disclosed such fiber, the Kawanishi et al was simply hoping that

the fiber would be capable of this performance. In fact it is not. Because it requires more than

an air filled core to achieve this performance, and because Kawanishi et all does not describe

Application No.: 10/815,082

Amendment Date: April 25, 2006

Reply to Office Action: January 25, 2006

Page 7

these factors, this statement is akin to telling those of skill in the art to look for a needle in the haystack. The Kawanishi reference does not disclose an enabling embodiment that allows the fiber have a loss characteristic of about 0.01 dB/km.

Therefore, claim 1 is not obvious over the Kawanishi reference.

Furthermore, claim 1 has been amended to include the subject matter of the original claim 11, which states that "the optical energy is guided in a mode having a nonlinear refractive index of less than about 10⁻¹⁸ cm²/W."

This parameter contributes to the low loss and is not taught or disclosed by the cited reference. In fact, pg. 7, paragraph [0033] of the Applicants specification discloses that in typically the guided modes have effective nonlinear refractive indices n_2 ranging from $2x10^{-16}$ cm²/W to $4x10^{-16}$ cm²/W while some of the claims call for it being less than 10^{-18} cm²/W. This is at least a factor of 10 different (20 times less) than that of the known fibers.

Claims 4, 6-8 13, 15, 17 and 18 depend from claim 1 as their base claim and, therefore, explicitly incorporate the language of claim 1. Accordingly Applicants respectfully submit that claims 1, 4, 6-8 13, 15, 17 and 18 are not obvious over the Kawanishi reference.

Claims 25-27 (and 13) state that the "optical fiber is configured to support a temporal soliton having a peak power of greater than about 1 MW". Such fiber is not disclosed by the Kawanishi reference, and the Kawanishi reference provides no incentive for having a fiber with this characteristics. Accordingly, claims 13 and 25-27 are not obvious over this reference.

Claims 1-3, 5, 6-10, 13, 14, 16-18 and 25-27 are rejected under 35 USC 103(a) as being unpatentable over Libori et al (US 6,792,188 B2).

Although Libori makes a statement that a low loss fiber is desirable, Libori does not define what is meant by a "low loss", nor provides an enabling embodiment that has the losses in the Applicant's claimed range. A mere statement that something is desirable, without a way of how to achieve such a result, does not constitute an enabling disclosure. The conditions for achievement of loss less than 300 dB/km (or less than 50 dB/km, or less than 20 dB/km) were

Application No.: 10/815,082

Amendment Date: April 25, 2006

Reply to Office Action: January 25, 2006

Page 8

disclosed by the Applicants and were not known to one of ordinary skill in the art, although the

was a long felt need to have a fiber with these characteristics.

Furthermore, as stated above, Claims 25-27 call for the "optical fiber is configured to support a

temporal soliton having a peak power of greater than about 1 MW". Such fiber is not disclosed

by the Liborui reference, and the reference provides no incentive for having a fiber with this

characteristics.

Accordingly, claims 1-3, 5, 6-10, 13, 14, 16-18 and 25-27 are not unpatentable over Libori, et

al.

Claims 1, 4, 6, 7, 11, 12, 15 and 19-27 are rejected under 35 USC 103(a) as being

unpatentable over Fajardo et al (US 6,444,133 B1).

The Fajardo reference does not disclose the fiber with ether a loss of a loss of less than about

300 dB/km, less than 50 dB/km, etc, or that has a nonlinear refractive index of less than about

10⁻¹⁸ cm²/W, or less than 5x10⁻¹⁹ cm²/W. As stated above according to applicant's claims, this

nonlinear refractive index of one to two orders of magnitude smaller than similar known fibers

(and certainly not within general ranges disclosed by prior art fiber references), and this

characteristic has not been disclosed in any of the cited reference. Since the cited references,

neither singly, nor in combination do not recite optical fiber with this feature, claims 1, 4, 6, 7,

11, 12, 15 and 19-27 (or other claim) are not obvious over Fajardo, or other cited references.

Conclusion

Based upon the above amendments, remarks, and papers of records, applicant believes the

pending claims of the above-captioned application are in allowable form and patentable over

the prior art of record. Applicant respectfully requests that a timely Notice of Allowance be

issued in this case.

Applicant believes that no extension of time is necessary to make this Reply timely. Should

applicant be in error, applicant respectfully requests that the Office grant such time extension

pursuant to 37 C.F.R. § 1.136(a) as necessary to make this Reply timely, and hereby authorizes

Application No.: 10/815,082

Amendment Date: April 25, 2006

Reply to Office Action: January 25, 2006

Page 9

the Office to charge any necessary fee or surcharge with respect to said time extension to the deposit account of the undersigned firm of attorneys, Deposit Account 03-3325.

Please direct any questions or comments to Svetlana Z. Short at 607-974-0412.

DATE: 4/25/06

Respectfully submitted,

Svetlana Z. Short Attorney for Assignee

Registration Number: 34,432

Corning Incorporated

SP-TI-03-1

Corning, NY 14831 Phone: 607-974-0412

FIBER OPTIC COMMUNICATIONS

EDITION

JOSEPH C.

where the slope M_0 is approximately -0.095 ps/(nm² × km), λ_0 is the zero-dispersion wavelength, and all wavelengths are in nm. Values of M_0 and λ_0 are often given by the fiber manufacturer. The minus sign is needed because of the negative slope of the dispersion curve. Some reverse the sign conventions followed in this section, so that their dispersion curves have a positive slope and the minus sign is missing in Eq. (3-14).

Example 3-3

Compute the material dispersion at 1.55 μm if the zero-dispersion wavelength is 1.3 μm .

Solution:

It is most straightforward to solve the preceding equation by using the wavelengths expressed in nm. Otherwise, the slope coefficient M_0 would have to be converted into the appropriate units. Thus

$$M = \frac{-0.095}{4} \left(1550 - \frac{1300^4}{1550^3} \right)$$
$$= -18.6 \text{ ps/(nm} \times \text{km)}$$

a result that checks nicely with the value obtained directly from Fig. 3-8.

Example 3-4

Compute the pulse spread when the light source emits at 1320 nm and has a 2-nm spectral width. The zero-dispersion wavelength is 1300 nm.

Solution:

The dispersion turns out to have a magnitude of 1.86 ps/(nm \times km), so that Eq. (3-14) yields a spread of $\Delta(\tau/L) = 2 \times 1.86 = 3.72$ ps/km. A 10-km length of this material would produce a pulse spread of only 37.2 ps = 0.0372

ns, considerably smaller than that computed in Examples 3-1 and 3-2 for propagation at wavelengths farther away from the dispersion minimum.

Solitons

Pulse spreading reduces the bandwidth and data capacity of a fiber communications link in the manner described later in this section. Because of this, many techniques for minimizing pulse spreading have been pursued. A few that we already know about are (1) operating at the zero-dispersion wavelength and (2) choosing very coherent (small spectral width) light sources. These solutions (often applied together) have been common since the mid-1980s. Improvements now take the form of shifting the fiber's zero-dispersion point to wavelengths of lower fiber attenuation and producing more coherent laser sources.

Another technique that shows promise for reducing pulse spreading is the production of solitons. A soliton is a pulse that travels along a fiber without changing shape. How can this happen? The actual procedure is fairly complicated, but some insight into soliton propagation can be easily developed. Pulses broaden because dispersion causes some wavelengths emitted by the light source to travel faster than other wavelengths. All we need do is find some property of the fiber that counters this tendency. It turns out that such a property does exist. It is a fiber nonlinearity where the index of refraction depends upon the intensity of the light beam. Since the pulse velocity depends on the index of refraction, it is clear that the intensity of the beam can itself influence the speed of the various wavelengths propagating along the fiber. Usually this phenomenon is not observed, because it is quite small and requires a moderately large amount of optical power before becoming significant.

To form a soliton, the initial pulse must have a particular peak energy and pulse shape.

aller than that comii-1 and 3-2 for prophs farther away from turn.

the bandwidth and nmunications link in in this section. Beques for minimizing pursued. A few that (1) operating at the h and (2) choosing ectral width) light (often applied toon since the midvake the form of dispersion point to er attenuation and ser sources.

hat shows promise ig is the production a pulse that travels nging shape. How ctual procedure is ne insight into solieasily developed. dispersion causes by the light source avelengths. All we rty of the fiber that irns out that such a i fiber nonlinearity 1 depends upon the Since the pulse veof refraction, it is ne beam can itself irious wavelengths Usually this phebecause it is quite itely large amount oming significant. initial pulse must y and pulse shape.

To be specific, the product of pulse energy and pulse width must be a constant. The value of the constant depends on the magnitudes of the dispersion and the nonlinearity. With too little power, the nonlinearity is too weak to be effective in compensating for dispersion. If the power is too great, then the pulse may actually continually change widths as it travels, owing to imperfect (and distance-dependent) compensation. In addition, the nonlinear compensation is such that solitons are produced only at wavelengths longer than the zero-dispersion wavelength in glass fibers. That is, the nonlinearity acts with dispersion to further broaden pulses at the shorter wavelengths and only compensates at the longer ones. We conclude that soliton pulses can be expected in silica fibers only when operating in the 1300- to 1600-nm range.

Although solitons retain pulse widths during propagation, solitons do attenuate just like other waves. It will be imperative for long systems that the optical beam be amplified periodically so that the pulse energy not fall below that required for soliton maintenance. Various optical amplifiers (to be described in Section 6-7) are candidates for the amplification process.

Soliton widths of a few picoseconds are realizable. The corresponding data rates (the inverse of the soliton widths) are over 10 Gbps. Multigigabit-per-second systems covering many thousand kilometers with amplifier spacings of several tens of kilometers can be designed with soliton pulses. The product of data rate and fiber path length for such systems is far greater than can be achieved by more conventional fiber techniques.

Information Rate

Pulse spreading limits the information capacity of any transmission system in the manner described in what follows. For numerical calcu-

lations we will use the spreads generated by material dispersion. The equations developed apply regardless of the cause of the distortion. We will investigate the limits on both analog and digital links. Without long and complex derivations, exact results cannot be obtained. Reasonable limits can be developed based on approximate intuitive analyses. The results obtained will be useful in first-order design and will deepen understanding of the ability of fiber links to carry information.

First, consider a sinusoidally modulated beam of light (like that shown in Fig. 3-5). The modulation frequency is f and the period is T = 1/f. Suppose that the source radiates optic wavelengths between λ_1 and λ_2 . How much delay between the fastest and slowest wavelength is acceptable? Figure 3-9 shows the received power at λ_1 and λ_2 when the delay is equal to half the modulation period; that is.

$$\Delta \tau = \frac{T}{2} \tag{3-15}$$

With this amount of delay, the modulation cancels out completely when the two waves are added. Modulated power carried at wavelengths between λ_1 and λ_2 will have delays smaller than T/2 and will partially cancel, resulting in a small signal variation at the receiver. If we take Eq. (3-15) as the maximum

Figure 3-9 Canceling of the modulation when two carrier wavelengths have a delay of half the modulation period. $\Delta \tau = T/2$.

Encyclopedia of Laser Physics and Technology Dr. Rüdiger Paschotta

Last update: 2006-03-28

М G Z T X R S

This encyclopedia is provided by RP Photonics

Utilize this expertise also in the form of consulting services!

Solitons

home | previous | next | feedback

Definition: pulses with a certain balance of nonlinear and dispersive effects

In general, the temporal and spectral shape of a short optical pulse changes during propagation in a transparent medium due to the Kerr effect and dispersion. Under certain circumstances, however, the effects of Kerr nonlinearity and dispersion can exactly cancel each other, apart from a constant phase delay per unit propagation distance, so that the temporal and spectral shape of the pulses is preserved even over long propagation distances. The conditions for that to happen are:

For a positive value of the nonlinear coefficient n_2 (as is usual for most madia) the dispersion needs to $P(t) = P_p \operatorname{sech}^2(t/\tau) = \frac{P_p}{\cosh^2(t/\tau)}$

has to be that of an unchirped sech² pulse (assuming that the group delay dispersion is constant):

 $E_{\rm p} = \frac{2|D|}{|\gamma|\tau}$

The pulse energy $E_{\rm p}$ and soliton րնlse duration have to meet the following condition:

offers femtosecond fiber lasers and optical frequency synthesizers.

Comparison of Technologies

Get a solid basis for your technological and investment decisions. RP Photonics gives impartial advice.

Europhoton 2006 Conference

in Pisa, Italy, Sept. 10-15: submit your paper now! Deadline: April 19.

Laser Modeling

e.g. concerning cavity design, optimized power efficiency, beam quality, etc.: the key to advanced product designs. Contact RP Photonics!

In-House Staff Training

e.g. on diode-pumped solid state lasers, nonlinear frequency conversion, fiber optics, etc.: tailored courses will boost the effectiveness of your team!

RP Q-switch

A powerful software tool for designing Q-switched lasers. See the details.

Your Advertisement at This Place

will be seen by many thousands of visitors per month. Check the details.

Here, the full-width-at-half-maximum pulse duration is about 1.76 times , y is the SPM coefficient (in rad per Watt and

peak or the pulse would experience it only the nonlinearity alone would act on it. This soliton phase shift is constant over time or frequency, i.e., it does not lead to a chirp, and it is in many situations not relevant.

Fig.: Solid curve: time-dependent nonlinear phase shift alone (without dispersion), which is proportional to the optical intensity. Dotted curve: overall phase shift, resulting from the combined action of nonlinearity and dispersion on a soliton. The constant phase shift does not modify the temporal or spectral shape of the pulse.

The most remarkable fact is actually not the possibility of such a balance of dispersion and nonlinearity, but rather the fact that soliton solutions of the nonlinear wave equation are very stable: even for substantial deviations of the initial pulse from the exact soliton solution, the pulse automatically "finds" the correct soliton shape shredding some of its energy into a socalled dispersive wave, a weak background which has too little intensity experience significant nonlinear effects and temporally broadens as a result of dispersion. Solitons are also very stable against changes of the properties of the medium, provided that these changes occur over distances which are long compared to the socalled soliton period (defined as the propagation distance in which the constant phase delay is $\pi/4$). This means that solitons can adiabatically adapt their shape to slowly varying parameters of the medium. Also, solitons can accommodate to some amount of higher-order dispersion; they than automatically adjust their chane to

achieve the mentioned balance under the given conditions.

If the pulse energy is the square of an integer number times the fundamental soliton energy, one has a so-called higher-order soliton. Such pulses do not have a preserved shape, but their shape periodically varies, with the period being the above mentioned soliton period. However, higher-order solitons can break up into fundamental solitons under the influence of higher-order dispersion and other disturbing effects. They are by far not as stable as fundamental solitons.

Fig.: Relation between soliton pulse energy and pulse duration in a single-mode fiber. The solid curve applies to fundamental solitons, the dotted curves to higher-order solitons (orders 2, 3, 4).

Fundamental soliton pulses are technically very important, in particular long-distance optical communications and in mode-locked lasers (→ soliton mode locking). In the latter situation, soliton-like pulses can be formed when the typically lumped pieces of dispersion and nonlinearity in the laser cavity are sufficiently weak per cavity round trip. Solitons are also applied in various techniques for pulse compression using optical fibers; an adiabatic soliton example is compression.

Soliton propagation, possibly with additional disturbing effects, can be investigated with numerical simulations

(→ pulse propagation modeling). There are also some analytical tools, e.g. soliton perturbation theory, where one derives equations for small deviations of pulses from the ideal soliton shape.

Apart from the temporal solitons as discussed above, there are also *spatial solitons*. In that case, a nonlinearity of the medium (possibly of photorefractive type) cancels the diffraction, so that a beam with constant beam radius can be formed even in a medium which would be homogeneous without the influence of the light beam.

References

[1] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and solitons in optical fibers", Phys. Rev. Lett. 45, 1095 (1980)

See also: Kerr effect, dispersion, soliton period, sech²-shaped pulses, higher-order solitons, adiabatic soliton compression, pulse compression, Gordon-Haus jitter, pulse propagation modeling

Ask RP Photonics for advice on details of soliton pulse propagation, e.g. numerical modeling.

Encyclopedia of Laser Physics and Technology Dr. Rüdiger Paschotta

part of the Virtual Library

Last update: 2006-02-19

М C G Ζ T U X Υ R S 0 Q

Quasi-soliton pulses

home | previous | next | feedback

Definition: soliton-like pulses in lasers or fiber-optic links

Optical pulses circulating in the cavity of a mode-locked laser can experience chromatic dispersion and the Kerr nonlinearity. If the dispersion is anomalous, this can lead to the formation of quasisoliton pulses. These are not exactly solitons, since the dispersion and nonlinearity usually come in discrete portions, and the pulse energy varies during a cavity round trip. Nevertheless, the pulses may behave like solitons if the effects of dispersion and nonlinearity are not too strong during one round trip, and other effects are still weaker. One can then exploit the advantages of soliton mode locking, namely the generation of rather short pulses with low chirp.

A special kind of quasi-soliton pulses has been discovered in semiconductor lasers, particularly in vertical external cavity surface-emitting lasers (VECSELs). Here, the effect of the Kerr nonlinearity is usually rather weak, but light-induced changes of the carrier density can lead to nonlinear phase changes which are similar to those from the Kerr effect with negative n_2 coefficient, even though they do not instantly follow the variations of optical intensity. In that case, quasi-soliton pulses can be formed in the normal dispersion regime. A consequence is that the pulses can be close to the Fourier transform limit.

Soliton-like pulses also occur in fiber-optic links.

Reference:

- R. Paschotta et al., "Soliton-like pulse shaping mechanism in passively mode-locked surface-emitting semiconductor lasers", Appl. Phys. B 75, 445 (2002)

See also: solitons, mode locking, soliton mode locking

This encyclopedia is provided by

Utilize this expertise also in the form of consulting services!

Comparison of Technologies

Get a solid basis for your technological and investment decisions. RP Photonics gives impartial advice.

In-House Staff Training

e.g. on diode-pumped solid state lasers, nonlinear frequency conversion, fiber optics, etc.: tailored courses will boost the effectiveness of your team!

RP Q-switch

A powerful software tool for designing Q-switched lasers. See the details.

offers femtosecond fiber lasers and optical frequency synthesizers.

Europhoton 2006 Conference

in Pisa, Italy, Sept. 10-15: submit your paper now! Deadline: April 19.

Laser Modeling

e.g. concerning cavity design, optimized power efficiency, beam quality, etc.: the key to advanced product designs. Contact RP Photonics!

Your Advertisement at This Place

will be seen by many thousands of visitors per month. Check the details.

This is the html version of the file http://www.physics.ohio-state.edu/~dws/class/880.uf/hw/hw05.mod.pdf. Google automatically generates html versions of documents as we crawl the web.

To link to or bookmark this page, use the following url: http://www.google.com/search?

q=cache:IUPQXAaVGrAJ:www.physics.ohio-

state.edu/~dws/class/880.uf/hw/hw05.mod.pdf+soliton+pulses+definition&hl=en&gl=us&ct=clnk&cd=5

Google is neither affiliated with the authors of this page nor responsible for its content.

These search terms have been highlighted: soliton pulses definition

Page 1

Changes to problems 3 and 4 from HW #5 and a modest simplification.

The changes.

 $_{0}$ instead of the intensity FWHM pulse width τ (i) Agrawal and many others use T dispersion lengths where T 0 is the characteristic time for a sech pulse according $E = E_0$ sech(t/T₀). As given in the class notes, τ $_{\rm p} = 1.763 * {\rm T}_{\rm o}$ for a sech pulse. dispersion lengths are defined as:

$$L_{D} = \frac{T_{0}^{2}}{\beta_{2}}$$
 and $L'_{D} = \frac{T_{0}^{3}}{\beta_{3}}$

The homework problem specifies a Gaussian pulse with $\boldsymbol{\tau}$ $_{\rm p}$ = 100 fs so it makes assian pulse with τ $_{p} = 100$ fs so it makes $_{0}$ defined by E = E $_{0}$ exp[- t^{2}/T_{0}^{2}]. In this cas characteristic time for a Gaussian T $\tau_p = 1.665*~T_0$ to find T_0 , but people often use the relation for a sech pulse anyway. isn't large, so do as you see fit. Just make clear what your choice is.

The reason for the emphasis on sech pulses is that soliton pulses have a sech profile. So interesting in their own right and are of key interest for high-speed communications.

- (ii) I'd like to change the information requested as well.
 - (a) Plot the spectral phase at z=L in addition to the other plots.
 - (b) Use a medium length of $\pi/2$ and π and don't worry about plotting the spectrum. This you see what is going on, especially if you look at lengths intermediate between z $z = \pi/2$. You might want to take a second look at the notes section on solitons and definition of "N".

The simplification. You can do the following instead if you like:

The NSE is:

$$\frac{\partial A}{\partial z} = -\frac{i}{2} \beta_2 \frac{\partial^2 A}{\partial \tau^2} + \frac{1}{6} \beta_3 \frac{\partial^3 A}{\partial \tau^3} + i \gamma A^2 A$$

where $A(z,\tau)$ is the electric field envelope. Recall we have

 $A z, \mathbf{t}) = P_{a} U z, \mathbf{t}),$

...

6

cie

್ಲಾ

· ::

e

0

(some tain by

manifest-2: full of : meticu FR -- 50

ng solici-n attitude nncem -Gk holos nal cavity

e between not inter-olving, or on) 3 a lay: con-quality or firmly and on (waited party) c PRUDENT: character tal or con

s (~ gold)
ess n or sphere) or sphere/ low percep-suspension qualities of solid: as a e joined to-

soldago, an L solidare, No. Amer pread at the ne on a unit

1931): SOLI-ris-tik\ adj :haracterized solid] (1848) community with figures

make solid. dy fixed (fac-pact, or hard state of being

mpression of as formed by eture, or reactor behavior of stals of a sub-perfections on izing the deciral in the deciral in

fr. L. solid onstantine and , fr. LL; fr. its

luction-, fluction at FLUID] (ca. terial (as soil)

splil-o-quize \-,kwiz\ vi -quized; -quiz-ing (1759) : to utter a soliloquy

AIDNE — soli-itari-ly \sal->-ter->-le\ adv — soli-itari-ness \sal->-ter-e-ne\ adv — soli-itari-ness \sal->-ter-e-ne\ adv — soli-itari-ness \sal->-ter-e-ne\ adv — soli-itary n. pl -tar-ies (15c) 1: one who lives or seeks to live a solitary solitary n. pl -tar-ies \sal->-tiar2 \ n pl \solitary + \frac{1}{2}-\text{on} \left(ca. 1975): solitary waves \sal->-tiar2 \ n pl \solitary + \frac{1}{2}-\text{on} \left(ca. 1975): solitary waves \sal->-tiar2 \ n pl \solitary + \frac{1}{2}-\text{on} \left(ca. 1975): solitary waves \sal->-tiar2 \ n pl \solitary \text{on} \frac{1}{2} \ n \text{on} \left(ca. 1975): solitary waves \sal->-tiar2 \ n pl \solitary \text{on} \frac{1}{2} \ n \text{on} \left(ca. 1975): solitary waves \sal->-tiar2 \ n \text{on} \text{on} \frac{1}{2} \ n \text{on} \frac{1}{2} \ n \text{on} \text{on} \frac{1}{2} \ n \text{on} \frac{1}

OFFICIAL SOCIATION, SECUSION mean the state of one who is alone.

SulTIDE may imply a condition of being apart from all human beings of being cut off by wish or compulsion from one's usual associates; SULTION Stresses detachment from others often involuntarily; SECLU-SON SUBJECTS a shutting away or keeping apart from others often consting deliberate withdrawal from the world or retirement to a quiet

lie.

lichidinar-i-an \säl-3-,(y)\u00fcd-3n-'er-\u00e3-2n\n \n [L solitudin-, solitudo + \u00e4-ainn](1691): RECLUSE

sheret \u00e4\u00e3a-2-'ret\n [F](1826): a flexible steel shoe forming part of a redival suit of armor — see ARMOR illustration

shell-za-tion \u00e4-s\u00e3-2-s-shn\n \n [F solmisation, fr. solmiser to sol-fa, \u00e4.sulfir, ML) + \u00e4-iser-ize](1730): the act, practice, or stime of \u00e4-sing sullables to denote the tones of a musical scale

samuzation (sai-ma-za-shan) n [F solmisation, it. solmiser to sol-ta, it. solfir. ML) + mi (fr. ML) + is-ser-ize] (1730): the act, practice, or yitm of using syllables to denote the tones of a musical scale blo \\$6.0\]io\ n, pl solos [It, fr. solo alone, fr. L solus] (1695) 1 or pl soli \\$6.0\]io\ n, pl solos [It, fr. solo alone, fr. L solus] (1695) 1 or pl soli \\$6.0\]io\ a: a musical composition for a single voice or instruant with or without accompaniment b: the featured part of a constituent with or without accompaniment b: the featured part of a constituent or similar work 2: a performance in which the performer has a partner or associate 3: any of several card games in which a player decis to play without a partner against the other players bloady (1712): without a companion: ALONE (Ily \rightarrow\) bis odo (172): without a companion: ALONE (Ily \rightarrow\) bis odo (176): of, relating to, or being a solo (a \rightarrow\) performance) bis no solo decision of the performance without one's instructor bisid \\$6.1\rightarrow\) an airplane without one's instructor bisid \\$6.1\rightarrow\) an airplane without one's instructor bisid \\$6.1\rightarrow\) an airplane without one 's instructor bisid \\$6.1\rightarrow\) and \\$6.0\rightarrow\) and \\$6.0\rightarrow\) an [LL, fr. Heb \\$6.0\rightarrow\) as son of David and \\$6.0\rightarrow\) an emblay a son of David and \\$6.0\rightarrow\) and \\$6.0\rightarrow\)

sau inangles torming a o-pointed state of the state of th

Semand areas petrologo solo-onets (säl-o-'nets\ n [Russ solonets salt not extracted faccotion] (1936): any of a group of intrazonal dark hard alkaline the rolved by leaching and alkalizing from solonchak — sol-o-netz-ic

| Resik\\ adj | ca. | co. | co

The single service of the sun's passing a solstice which is reached by the sun each year about June 22 and December 23 which is reached by the sun's passing as solstitum, in sols and service at which is reached by the sun each year about June 22 and December 24 to begin summer in the northern hemisphere and about Details (381-581), sol-, adj [L solstituin], fr. sols and more at Solar, STAND] (13c) 1: one of the two points on sealing more at Solar, STAND] (13c) 1: one of the two points on sealing at which its distance from the celestial equator is greatest at which is reached by the sun each year about June 22d and December 24d to begin summer in the northern hemisphere and about Details (381-stish-s), sol-, adj [L solstituinis, fr. solstitium] (1559) the solstituing to, or characteristic of a solstice and esp. the summer challed high solstituing at or associated with a solstice ship solstituing (381-ys-bil-st-\overline{\text{N}} n (1661) 1: the quality or state of being the solstituing substance that will dissolve in a given the solstitute of an other substance.

2: the amount of a substance stand another substance shifted (sal-ya-ba-lay w -lized; -liz-ing (ca. 1926): to make soluble (sal-ya-ba-lay w -lized; -liz-ing (ca. 1926): to make soluble (sal-ya-ba-lay sal-ya-ba-lay sal-ya-ba-la

The increase the solubility of — soluble leave to being loosened or breight (181) ye-bal adj [ME, fr. MF, capable of being loosened or breight. LL solubilis, fr. L solvere to loosen, dissolve — more at precision of the last susceptible of being dissolved in or as if in a fluid stable of being emulsified: EMULSIFIABLE (a ~ oil) 2: subject to the last subject of explained (~ questions) and (1875): where GLASS 4 the RNA n (ca. 1961): TRANSFER RNA

so-lum \'sō-ləm\ n. pl so-la \-lə\ or solums [NL, fr. L, ground, soil] (1935): the altered layer of soil above the parent material that includes

the A- and B-horizons so-lus \'sō-los\ adv or adj [L] (1599): ALONE — often used in stage directions

rections solute \sial-, y\u00fcit\n \n \lb solutus. pp.\u00e3 (1902): a dissolved substance solution \so-\u00e4\u00e3 \u00e3 \u00e3\u00e3\u00e3 \u00e3 \u00e3\u00e

TRUTH SET

: TRUTH SET

Solutrean \so-\frac{1}{10}-tr\(\tilde{c}\)-\tilde{c}\) adj [Solutr\(\tilde{c}\), village in France] (1888): of or relating to an upper Paleolithic culture characterized by leaf-shaped finely flaked stone implements

solvable \s\(\tilde{sal}\)-\tilde{c}\)-\tilde{c}\) sol\(\tilde{d}\) adj (1676): susceptible of solution or of being solved, resolved, or explained — solvability \s\(\tilde{sal}\)-\tilde{c}\)-\tilde{c}\.

ochig solved, resolved, of explained — solvedining (salved insolved), of explained — solvedining (solved) an aggregate that consists of a solute ion or molecule with one or more solvent molecules; also: a substance (as a hydrate) containing such ions
2 solvate vs solvated; solvateing (1917): to make part of a solvate — solvation \(\salpha \subseteq \s

solvent \-v=nt\ adj [L solvent., solvens, prp. of solvere to dissolve, pay] (1630) 1: able to pay all legal debts 2: that dissolves or can dissolve \(\sim \text{fluids} \) \(\sim \text{action of water} \) — solvently adv \(> \text{solvent of the solve} \) (1671) 1: a usu, liquid substance capable of dissolving or dispersing one or more other substances 2: something that provides a solution 3: something that eliminates or attenuates something esp. unwanted — sol-vent-less \-las\ adj \\
solventy-sis \sai-val-a-sas, sol-\ n [NL, fr. E solvent + -o- + -lysis] (ca. 1924): a chemical reaction (as hydrolysis) of a solvent and solute that results in the formation of new compounds — sol-vo-lytic \sai-val-vallitik, sol-\ adj

results in the formation of new compounds — sol-vo-lyt-ic \säl-va-lit-ik, sôl-\adj
'so-ma\n [Skt; akin to Av haoma, a Zoroastrian ritual drink, Gk hyein to rain — more at suck] (1827) 1: an East Indian leafless vine (Sarcostemma acidum) of the milkweed family with a milky acid juice 2: an intoxicating plant juice of ancient India used as an offering to the gods and as a drink of immortality by worshipers in Vedic ritual and worshiped as a Vedic god 'soma n, pl so-ma-ta \'sō-mat-\operatorname or somat, soma, fr. Gk sōmat-, sōma body (ca. 1885) 1: the body of an organism 2: all of an organism except the germ cells 3: CELL BODY
So-ma-il \'sō-mai-\operatorname or somalis (1850) 1: a member of a people of Somaliland apparently of mixed Mediterranean and Negroid stock 2: the Cushitic language of the Somali people so many adj (1533) 1: constituting an unspecified number (read so many chapters each night) 2: constituting a group or pack (behaved like so many animals)
somat- or somato- comb form [NL, fr. Gk sōmat-, sōmat-, fr. sōmat-, sōma

so many ady (1933) 1: constituting an unspecified number (read so many chapters each night) 2: constituting a group or pack (behaved like so many animals) somat- or somato- comb form [NL, fr. Gk sōmat-, sōmato-, fr. sōmat-, sōma body; akin to L tumēre to swell — more at THUMB]: body (somatology) so-mati-(sō-mat-ik, sɔ-\adj [Gk sōmatikos, fr. sōmat-, sōma] (ca. 1775) 1: of, relating to, or affecting the body esp. as distinguished from the germ plasm or the psyche 2: of or relating to the wall of the body: PARIETAL — so-mati-feally \(\cdot\)-i-k(s-\)-i\\epsilon adv somatic cell n (1888): one of the cells of the body that compose the tissues, organs, and parts of that individual other than the germ cells so-ma-tolo-ogy \(\cdot\)-sō-ma-'al-\(\cdot\)-j\\epsilon n for the propose propose the comparative study of human evolution, variation, and classification esp. through measurement and observation — so-ma-to-log-i-cal \(\cdot\)-sō-mat-\(\cdot\)-ind-\(\cdot\)-no so-ma-to-log-i-cal \(\cdot\)-sō-mat-\(\cdot\)-ind-\(\cdot\)-ind-\(\cdot\)no so-mat-o-log-i-cal \(\cdot\)-sō-mat-med-in \(\cdot\) so-mat-\(\cdot\)-med-\(\cdot\)-in \(\cdot\) no so-ma-to-log-i-cal \(\cdot\)-sō-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-ma-to-log-i-cal \(\cdot\)-sō-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-ma-to-log-i-cal \(\cdot\)-sō-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdot\)-ind-\(\cdot\)-in \(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdot\)-ind-\(\cdot\)-ind-\(\cdot\) no so-mat-\(\cdot\)-ind-\(\cdo\)-ind-\(\cdot\)-ind-\(\cdot\)

\a\abut \a\kitten, F table \ar\further \a\ash \a\ace \a\cot, car \au\out \ch\chin \e\bet \e\easy \g\ go \i\hit \i\ ice \j

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKÉWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.