Learning

Learning Agent

Designing a Learning Agent

- Which components are to be affected by learning?
- What is already known (prior knowledge)?
- How are the components and the data represented:
 - Factored representation: A vector of attributes (numerical or categorical, continuous or discrete)
- What kind of feedback is available, if any?

Types of Learning

- Unsupervised learning: The agent needs to organize the object or data with no outside help and no feedback.
 - Clustering: To group objects into meaningful or useful "clusters".
- Reinforcement leaning: The available feedback is the outcome (reward or penalty). This can happen long after the decisions or actions that lead to the outcome.
 - Goal of learning: To minimize penalty and maximize reward.
- Supervised learning: The correct answers are given by an "teacher" during the learning process.
 - Goal of learning: To generate "correct" answers given the inputs.

Learning from Examples

- A form of supervised learning
- A set of example cases (training samples) and their corresponding correct/desired outputs are given.
- The goal is to form a mechanism that, when given an example case, will produce the correct output.

Example of Learning from Examples

Example problem: Learning to decide whether to wait for a table when arriving at a restaurant:

Example of Learning from Examples

The example cases:

Examples	Input Attributes										Output
	Alt.	Bar	Fri/Sat	Hun	Pat.	Price	Rain	Res.	Type	Time	Wait?
x_1	Υ	N	N	Υ	Some	\$\$\$	N	Y	French	0-10	Υ
\boldsymbol{x}_2	Y	Ν	N	Υ	Full	\$	N	Ν	Thai	30-60	N
\boldsymbol{x}_3	N	Υ	N	N	Some	\$	N	7	Burger	0-10	Υ
x_4	Y	Ν	Y	Y	Full	\$	Y	Ν	Thai	10-30	Υ
\boldsymbol{x}_5	Y	7	Y	N	Full	\$\$\$	N	Y	French	>60	N
x_6	N	Y	N	Y	Some	\$\$	Y	Y	Italian	0-10	Υ
\boldsymbol{x}_7	N	Y	N	N	None	\$	Y	Ν	Burger	0-10	N
x_8	N	N	N	Y	Some	\$\$	Y	Y	Thai	0-10	Υ
\boldsymbol{x}_9	N	Y	Y	N	Full	\$	Y	Ν	Burger	>60	N
x_{10}	Y	Y	Y	Y	Full	\$\$\$	N	Y	Italian	10-30	N
x_{11}	N	N	N	N	None	\$	N	Ν	Thai	0-10	N
x_{12}	Y	Y	Y	Y	Full	\$	N	N	Burger	30-60	Y

Decision Tree

The input-output relations are organized into a tree. Each node divides its set of samples into subsets according to a particular input attribute

input attribute. Patrons? Full None Some No Yes WaitEstimate? 30-60 10-30 >60 0 - 10No Alternate? Hungry? Yes Yes No Yes No Fri/Sat? Reservation? Alternate? Yes No Yes No Yes No Yes Bar? No Raining? Yes Yes Yes No Yes No Yes No Yes No Yes

- Main usages of supervised learning:
 - Classification: The expected output is one of several categories. Such an agent / program is called a classifier.
 - Regression: The expected output is a numerical value.
 Example: temperature in weather forecast.
- Both involve some input/output mapping: $f: x \rightarrow y$

Training and testing:

- Training data: Collect samples in the form of $(x \rightarrow y)$.
 - For such a pair of $(x \rightarrow y)$, y is often called the ground-truth or target output of x.
 - If y represents a category (class), then it is also called the class label (or simply the label) of x.
- Training: Derive an estimated model of the mapping *f* using the training data.
- Testing: Using the derive model, determine y for some given x (normally not in the training data).

- There are numerous possible forms (model types) to represent the mapping. Examples:
 - Rule Sets
 - Polynomials
 - Gaussian Mixtures
 - k Nearest Neighbors
 - Decision Trees
 - Neural Networks
 - ...
- There are many possible forms for representing the mapping of a given set of training data. This means that the actual form used is a design choice.
- For each given form of representation, there are <u>parameters</u> to be determined according to the training data.

Stages of learning a model for $f: x \rightarrow y$:

Polynomial? Mixture of Gaussians? Neural networks?

. . .

Polynomial: degree?

Mixture of Gaussians: #Gaussians?

Neural networks: #neurons?

. . .

Polynomial: coefficients

Mixture of Gaussians: means/covars

Neural networks: network weights

...

Training and Testing

Here we will use regression as an example.

Line fitting

y-offsets minimization

ML Materials@CS 221 Stanford

 https://stanfordcs221.github.io/autumn2020/modules/