

### Potential of neural network triggers for the Water-Cherenkov detector array of the Pierre Auger Observatory



Paul Filip - High Energy Universe seminar 01.06.23







- Around ~1600 stations
- Triangular 1.5 km grid spacing
- Ongoing upgrade from UB → UUB
  - 3 Water-Cherenkov detectors (WCD)
  - 1 Surface scintillator detector (SSD)
  - 1 Radio antenna





- Around ~1600 stations
- Triangular 1.5 km grid spacing
- Ongoing upgrade from UB → UUB
  - 3 Water-Cherenkov detectors (WCD)
  - 1 Surface scintillator detector (SSD)
  - 1 Radio antenna

# Too comput. expensive to read all measured data at all times!

→ Implement trigger hierarchy













- Threshold trigger (Th)
- Time over threshold (ToT) & ToT-like triggers













# **Current station-level trigger algorithms**



- Threshold trigger (Th)
  - PMTs register signal  $S \ge 3.2 \text{ VEM}_{\text{Peak}} (1.75 \text{ VEM}_{\text{Peak}} \text{ for T1})$
  - Threshold must be exceeded simultaneously for all PMTs



# **Current station-level trigger algorithms**



- Threshold trigger (Th)
  - PMTs register signal  $S \ge 3.2 \text{ VEM}_{\text{Peak}} (1.75 \text{ VEM}_{\text{Peak}} \text{ for T1})$
  - Threshold must be exceeded simultaneously for all PMTs



28.10.2023

# Karlsruhe Institute of Technology

# **Current station-level trigger algorithms**

- Time over threshold (ToT)
  - More than 12 bins with  $S \ge 0.2 \text{ VEM}_{\text{Peak}}$  in any 120 bin window
  - At least 2 out of 3 PMTs meet above critera



28.10.2023

# **Current station-level trigger algorithms**



- ToT deconvoluted (ToTd)
  - Deconvolute input data stream with exponential factor
  - Feed deconvoluted trace into ToT algorithm



# Karlsruhe Institute of Technology

# **Current station-level trigger algorithms**

- Multiplicity of positive steps (MoPS)
  - Count number of rising flanks within 120 bin window
  - At least 2 PMTs have 4 (or more) rising flanks



28.10.2023





Signal strength /  $VEM_{Ch.}$ 

 $10^{0}$ 

- **100% eff.**  $\approx 1 \text{ VEM}_{Ch.}$  $\Leftrightarrow 3 \text{ EeV } (10^{18.5} \text{ eV})$
- Can we do better?
  - Photon search
  - Neutrino search
  - GZ effect
  - ...

 $10^{1}$ 

 $10^{-1}$ 

 $10^{-2}$ 

1.0





- **100% eff.** ≈ 1 VEM<sub>Ch.</sub>  $\Leftrightarrow$  3 EeV (10<sup>18.5</sup> eV)
- Can we do better?
  - Photon search
  - Neutrino search
  - GZ effect
  - ...
- Adjust thresholds
  - Better sensitivity
  - Worse specificity
  - What about SNR?





- Adjust thresholds
  - Better sensitivity
  - Worse specificity
  - What about SNR?
  - → gets way worse!
- Use ML triggers
  - Bayesian classifier
  - Neural networks
- Design limitation
  - Bandwidth limit
  - Performance limit
  - Storage limit







- Long-Short-Term-Memory (LSTM) architecture
  - Has internal connections that point from output to input
  - Earlier processed information can influence later calculations
  - Treat time series very efficiently / elegantly





- Long-Short-Term-Memory (LSTM) architecture
  - Has internal connections that point from output to input
  - Earlier processed information can influence later calculations
  - Treat time series very efficiently / elegantly
- Forget-Gate
  - What to keep from previous iterations
- Input-Gate
  - What to save from this iteration
- Output-Gate
  - What to output from (updated) cell state





- Long-Short-Term-Memory (LSTM) architecture
  - Has internal connections that point from output to input
  - Earlier processed information can influence later calculations
  - Treat time series very efficiently / elegantly
- Forget-Gate
  - What to keep from previous iterations
- Input-Gate
  - What to save from this iteration
- Output-Gate
  - What to output from (updated) cell state





- Long-Short-Term-Memory (LSTM) architecture
  - Has internal connections that point from output to input
  - Earlier processed information can influence later calculations
  - Treat time series very efficiently / elegantly
- Forget-Gate
  - What to keep from previous iterations
- Input-Gate
  - What to save from this iteration
- Output-Gate
  - What to output from (updated) cell state







- LSTM performance better than Th trigger
- Can be better than ToT for  $t_S = 0.5 \text{ VEM}_{Ch}$ .
- Just 44 parameters
- Effects on event level detection efficiency?



- Most drastic gains at inclinations  $\theta \approx 60^{\circ}$  (+16.5%)
- **Possibly higher gains at**  $65^{\circ} \le \theta < 90^{\circ} \dots$



# **Summary / Outlook**



- Test data-driven, machine learning concepts
  - Bayesian classifier promising, but needs lots of finetuning
  - Neural networks work out of the box but "too efficient"
  - Control trigger rate by implementing charge cut
- Convolutional neural networks
  - Performance of simple CNN architectures on par with Th-Trigger
  - Filtered & downsampled data preferred over full bandwidth input
- LSTM / recurrent neural networks
  - First results indicate better performance than ToT
  - Large gains in event detection efficiency at high shower angles

## **Summary / Outlook**



- Lot of work needed until prototyping stage is left
  - Presented results stem from simulations only
  - No primary distinction, only data from protons considered
  - Only one hadronic interaction model (QGSJET-II.04)
- Ground work is completed
  - Key assumptions have been tested and verified to hold true
  - Analysis chain is implemented and ready to run
- Upcoming dataset of easily accessible (. csv) WCD time traces
  - 40k (proton primary) events, tagged by  $\theta$ ,  $\phi$ , E, SPD,  $n_{\mu}$ , ...
  - Please tell us what other data you would be interested in



# Backup









28.10.2023













# Random traces – Power spectrum





# **Trace building**





28.10.2023

#### **Muon cut**





#### Kernel size





# **Network parameters**



| Туре | Input size | Kernel size | $n_{train}$    | w/ dense extension |
|------|------------|-------------|----------------|--------------------|
| CNN  | (3, 120)   | (3,3)       | 140            | 834                |
| CNN  | (3, 120)   | (3, 10)     | 216            | 534                |
| CNN  | (3, 120)   | (3,30)      | 444            | 714                |
| CNN  | (3,40)     | (3,3)       | 84             | 210                |
| CNN  | (3,60)     | (3,3)       | 100            | 290                |
| CNN  | (3,90)     | (3,3)       | 120            | 390                |
| CNN  | (3,240)    | (3,3)       | 220            | 890                |
| LSTM | (3, 120)   | _           | 12             | (single layer)     |
| LSTM | (3, 120)   | _           | (three layers) | 44                 |

# **LSTM** permutations



