

MEASUREMENT / TECHNICAL REPORT FCC Part 15 Subpart C

Issued: January 13, 2012

Name and Address KO	IICA MINOLTA SENSING, II
---------------------	--------------------------

of the Applicant: 3-91, Daisennishimachi, Sakai-ku, Sakai, Osaka

590-8551, Japan

Test Item: Spectrophotometer

Identification: CM-700d

Serial No.: 01

Sample No.:

FCC ID: VTLCM700d

Sample Receipt Date: November 22, 2011

Test Specification: FCC Part 15 Subpart C, 15.247

Date of Testing: November 24, 28 and 29, 2011

December 2, 3, 5 and 7, 2011

Test Result: PASS

Report Prepared by: Cosmos Corporation

3571-2 Ohnoki, Watarai-cho, Watarai-gun, Mie, Japan 516-2102

Phone: +81-596-63-0707 Fax: +81-596-63-0777

Tested by: (O. Itogawa, EMC Dept. EMC Engineer)

Reviewed by: (Y. Kawahara, EMC Dept. EMC Manager)

(2012-01-13) iNARTE: EMC-002846-NE

Notes:

- 1. This Test Report should not be reproduced except in full, without the written approval of Cosmos Corporation
- 2. All measurement data contained in this Test Report may have uncertainty. A judgment for the limitation should be taken into the count.
- 3. The test result of this Test Report is based on the tests made for sample provided, and it is not applicable to individual product identical to the sample or similar product.

Revision History

Revision Issue Date		Description	Effect Page	Revised By
00	December 27, 2011	Initial Issue	-	-
01	January 13, 2012	Change of description for modulation method Additional of calculation formula of Time of Occupancy Deletion of Spectrum Bandwidth of Direct Sequence Spread Spectrum System Change of limit of Maximum Peak Output Power Deletion of Minimum Standard in Maximum Peak Output Power Deletion of Power Spectrum Density Additional of screen shot of Band Edge Measurement	Page 5, 7, 14, 15, 18, 19, 20, 21, 23, 26, 41 and 42	Yoshida

List of Contents	Page
1. Description of Equipment under Test	5
1.1 Product Description	5
1.2 Antenna Description	6
2. General Information	6
2.1 Test Methodology	6
2.2 Test Facility	6
2.3 Traceability	6
3. Summary of Test Results	7
4. Test Configuration	8
4.1 15. 207 AC Power Conducted Emission in Shield Room	9
4.2 15. 247(d), 15.209 Transmitter Radiated Emissions, 15.247(d) Band Edge (Radiated)	in 3m
Anechoic Chamber	9
4.3 Conducted Emission	10
4.4 Test Mode	
5. Measurement Result	
5.1 15. 207 AC Power Conducted Emission	
5.1.1 Setting Remarks	
5.1.2 Minimum Standard	
5.1.3 Result	11
5.1.4 Measured Data	12
5.2 15. 247(a)(1) Spectrum Bandwidth and Channel Separation of Frequency Hopping	
Spread Spectrum System	13
5.2.1 Setting Remarks	13
5.2.2 Minimum Standard	13
5.2.3 Result	13
5.2.4 Measured Data	14
5.3 15. 247(a)(1) Number of Channels and Time of Occupancy	16
5.3.1 Setting Remarks	
5.3.2 Minimum Standard	
5.3.3 Result	
5.3.4 Measured Data	
5.4 15. 247(b) Maximum Peak Output Power	
5.4.1 Setting Remarks	
5.4.2 Result	
5.4.3 Measured Data	
5.5 15. 247(d) Transmitter Spurious Emissions (Conducted)	
5.5.1 Setting Remarks	
5.5.2 Minimum Standard	
5.5.3 Result	22

Rev.01

5.5	5.4 Measured Data	23
5.6	15. 247(d) Transmitter Radiated Emissions (Radiated)	24
5.6	S.1 Setting Remarks	24
5.6	3.2 Minimum Standard	25
5.6	3.3 Result	25
5.6	5.4 Measured Data	26
5.7	15. 247(d) Band Edge Measurement	39
5.7	7.1 Setting Remarks	39
5.7	7.2 Minimum Standard	39
5.7	7.3 Result	39
5.7	7.4 Measured Data	40
6. Photo	08	43
6.1	Photo of the EUT	43
6.2	Setup Photo (AC Power Conducted Emission)	45
6.3	Setup Photo (Radiated Emission)	46
6.4	Setup Photo (Conducted Emission)	52
7. List o	of Test Measurement Instruments	53
7.1	AC Power Conducted Emission	53
7.2	Radiated Emission Measurement	53
7.3	Conducted Radio Measurement	54

1. Description of Equipment under Test

1.1 Product Description

Manufacturer	KONICA MINOLTA SENSING, INC.		
Model (referred to as the EUT)	CM-700d		
Transmitter Type	□WLAN ⊠Bluetooth □Zigbee □RFID		
71	\Box Other ()		
Nominal Voltage	DC5V		
Type of Modulation	GFSK, $\pi/4$ DQPSK, 8DPSK (FHSS)		
Mode of Operation	□duplex □1/2 duplex ⊠simplex □other		
	☐Stand-alone ☐Combined Equipment		
Type of Equipment	□Plug –In Card ⊠Other (Module Unit)		
Type of Antenna	⊠Integral □external □Other		
Type of Power source	☐AC mains ☑Dedicated AC adaptor (AC 100V-AC 240V)		
	⊠DC Voltage ⊠Battery		
Type of Battery (if applicable)	Nickel-metal-hydride battery or Alkaline battery		
Type of Operation	☐Continuous ☐Burst ☒Intermittent		
Stand by Mode	□Available ⊠N/A		
Intended Functions	Bluetooth spectrophotometer		
Bandwidth of the IF filters	N/A		
Frequency Band Lower limit	2400MHz		
Upper limit	2483.5MHz		
Frequency of Operating	2402 to 2480MHz		
Thermal Limitation	$5 ext{ to } 40^{\circ}\! ext{C}$		

Note:

There is CM-600d as similar model of CM-700d.

The difference is only area which the light irradiates.

The enclosure, electronic circuit board, used component, component layout which relates to EMC and RF are same.

The tests were performed on CM-700d, and we confirmed to comply with the requirement.

1.2 Antenna Description

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT.

Therefore, the equipment complies with the antenna requirement of Section 15.203.

No.	No. Type Name Gain		Antenna Type	Remarks	
1	AHD1403-244ST01	+1.65dBi	On board chip antenna	Originally Integrated	

2. General Information

2.1 Test Methodology

All measurement subject to the present report was carried out according to the procedures in ANSI C63.4: 2003.

2.2 Test Facility

All measurement was performed in the following facility;

Cosmos Corporation EMC Lab. Ohnoki

3571-2 Ohnoki, Watarai-cho, Watarai-gun, Mie-ken 516-2102, Japan FCC registration number: 604492

2.3 Traceability

The calibration of measurement equipment used in the test subject to the present report is designed and operated to ensure that the measurement is traceable to national standards of measurement or equivalent abroad.

3. Summary of Test Results

Section	Test Item	Limit	Result
15. 207	AC Power Conducted Emission	See 5.1.2	Pass
15. 247(a)(1)	Spectrum Bandwidth of Frequency Hopping Spread Spectrum System	< 1MHz if using less than 15 non-overlapping channels	Pass
15. 247(a)(1)	Channel Separation	> 2/3 of 20dB BW for systems with output power < 125mW	Pass
15. 247(a)(1)	Number of Channels	> 15 channels	Pass
15. 247(a)(1)	Time of Occupancy	< 0.4 sec in 30 sec period	Pass
15. 247(b)	Maximum Peak Output Power	Max. 125mW	Pass
15. 247(d) 15. 209	Transmitter Radiated Emissions	See 5.5.2 See 5.6.2	Pass
15. 247(d)	Band Edge Measurement	See 5.7.2	Pass
15.215(c)	20 dB Bandwidth.		

4. Test Configuration

	Instrument	Model	Rating
Α	Spectrophotometer (EUT 1)	CM-700d	DC 5V, 2.0A
В	AC Adaptor (EUT 2)	AC-A305	AC 100 – 240V, 50/60Hz, 0.24 – 0.16A

	Cable	Length	Shield	Ferrite Core
a	AC Power Cable	1.8 m	No	No
b	DC Power Cable	1.5 m	No	Yes

Setup diagram of tested system

AC Adaptor

Battery

A

4.2 15. 247(d), 15.209 Transmitter Radiated Emissions, 15.247(d) Band Edge (Radiated) in 3m Anechoic Chamber

4.3 Conducted Emission

4.4 Test Mode

In all test configurations above, EUT makes continuous RF transmitting with manufacturer's specified power.

15.247(b) Maximum Peak Output Power measurement is performed with an external stabilized power supply voltage varied between 85% and 115% of the nominal rated supply voltage in accordance with the section 15.31 (e) of the part.

5. Measurement Result

5.1 15. 207 AC Power Conducted Emission

5.1.1 Setting Remarks

Configure the EUT System in accordance with ANSI C63.4-2003.

Non-conductive board (12mm thick) for EUT and non-conductive table (80cm high) for personal computer were used.

Other power cord of support equipment is connected to another LISN to isolate its emission from the measured emission of EUT.

The measuring port of LISN for support equipment was terminated by the 50Ω Activate the EUT System and run the software prepared for the test, if necessary. Refer to test configuration figure 4.1.

5.1.2 Minimum Standard

15. 207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu H/50$ ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

5.1.3 Result

EUT complies with the requirement.

Uncertainty of measurement $\pm 2.26 \text{ dB}$ Temperature, Humidity $\pm 24^{\circ}\text{C}$, 46 %

5.1.4Measured Data

Measured Value Table

<<Conducted Emission>>

Cosmos Corporation Onoki Lab. Date : 2011/12/07

: CJ11-105994E : 24°C/46% : CM-700d / AC-A305 Model Name Job No : 01 : 0. Itogawa : AC120V, 60Hz / DC5V Serial No. Temp/Humi Operator Condition : Operated Power Supply Remark

: RBW:9kHz(150k-30MHz) Memo

LIMIT : FCC 15.207(QP) FCC 15.207(AV)

	_	Reading	Level		Results Limit Margin							
No	Freq.	QP	AV	C. Fac	QP	AV	QP	AV	QP	AV	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0. 15547	27. 2		10. 2	37.4	17. 5		55. 7	28. 3	38. 2	La	
2	0. 46957	20. 4	17. 3	10.0	30.4	27. 3	56. 5	46. 5	26. 2	19. 2	La	
3	0. 93315	11. 5		10. 1	21.6	18. 8			34. 4	27. 2	La	
4	18. 29138	11. 8		11. 3	23. 1	20. 0		50. 0	36. 9	30.0	La	
5	0. 15596	27. 4	8.8	10. 2	37. 6	19. 0		55. 7	28. 1	36. 7	Lb	
6	0. 46754	22. 3	18. 0	10. 1	32.4	28. 1	56. 6	46. 6	24. 2	18. 5	Lb	
				l								
	1											

5.2 15. 247(a)(1) Spectrum Bandwidth and Channel Separation of Frequency Hopping Spread Spectrum System

5.2.1 Setting Remarks

- The both side of 20dB down value from peak power are measured by using delta-maker function of the spectrum analyzer.
- The spectrum analyzer is set as following;

✓ Frequency Span
✓ Resolution bandwidth
✓ Video bandwidth
✓ Sweep
✓ Detector function
✓ Trace Mode
∴ MHz
∴ 100 kHz
∴ 300 kHz
∴ Auto
∴ Peak
∴ Max Hold

• See test configuration figure 4.3.

5.2.2 Minimum Standard

The maximum permissible 20dB bandwidth is 1MHz, unless more than 15 non-overlapping channels are employed.

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

5.2.3 Result

EUT complies with the requirement.

Uncertainty of measurement $\pm 0.8 \text{ dB}$ Temperature, Humidity $\pm 23 \text{ °C}, 42\%$

5.2.4 Measured Data20dB Bandwidth

Frequency (MHz)	Measured Bandwidth (kHz)	Limit (MHz)						
	20 dB Bandwidth							
	GFSK F1D 1Mbps BASIC DH-5							
2402 (CH00)	1150							
2441 (CH38)	1150							
2480 (CH78)	1150							
2	τ/4DQPSK G1D 2Mbps EDR 2-D	H5						
2402 (CH00)	1460							
2441 (CH38)	1460							
2480 (CH78)	1450							
	8DPSK G1D 3Mbps EDR 3-DH	i i						
2402 (CH00)	1440							
2441 (CH38)	1450							
2480 (CH78)	1430							
	Channel Separation							
Hopping Channel	1010	>20dB Bandwidth and 25(kHz)						

20 dB Bandwidth 2441MHz $\pi/4\mathrm{DQPSK}$ G1D 2Mbps EDR 2-DH5

20 dB Bandwidth 2441MHz

Channel Separation

5.3 15. 247(a)(1) Number of Channels and Time of Occupancy

5.3.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable and a suitable attenuator.
- The Number of Channels is determined by using Max-hold of the spectrum shape of spectrum analyzer.
- Time of Occupancy is determined by using the marker-data function of spectrum analyzer.
- The spectrum analyzer is set as following to measure Number of Channels;

✓ Frequency Span
 ✓ Resolution bandwidth
 ✓ Video bandwidth
 ✓ Sweep Time
 ✓ Detector function
 ✓ Trace Mode
 ∴ To MHz
 ∴ 300 kHz
 ∴ 300 kHz
 ∴ Auto
 ∴ Peak
 ∴ Max Hold

• The spectrum analyzer is set as following to measure Time of Occupancy;

✓ Frequency Span
 ✓ Resolution bandwidth
 ✓ Video bandwidth
 ✓ Detector function
 ✓ Peak
 ✓ Trace Mode
 ∴ Max Hold

• See test configuration figure 4.3.

5.3.2 Minimum Standard

This frequency hopping system must employ minimum of 15 hopping channels.

The maximum permissible time of occupancy is 400 ms within the minimum time period required to hop through all channels.

5.3.3 Result

EUT complies with the requirement.

Number of Channels

Uncertainty of measurement result: 1 usec
Temperature, Humidity : 22 °C, 47%

Time of Occupancy

Uncertainty of measurement result: 1 usec
Temperature, Humidity : 23 °C, 42%

Stop 2.450 00GHz

Band 0

5.3.4 Measured Data

Start 2.398 00GHz

Zone Center = 2.416 096 000GHz

Number of Channels

Time of Occupancy

GFSK F1D 1Mbps BASIC DH-5

Frequency	Power Supply	Cycle	ON Time	Duty cycle	Dwell	Limit	Margin
(MHz)	Voltage (V)	(ms)	(ms)		Time (s)	(s)	(s)
2441(39CH)	5.00	3.75	3.11	0.83	0.33	0.40	0.07

π/4 QPSK G1D 2Mbps EDR 2-DH5

Frequency (MHz)	Power Supply Voltage (V)	Cycle (ms)	ON Time (ms)	Duty cycle	Dwell Time (s)	Limit (s)	Margin (s)
2441(39CH)	5.00	2.50	1.85	0.74	0.30	0.40	0.10

8DPSK G1D 3Mbps EDR 3-DH5

Frequency (MHz)	Power Supply Voltage (V)	Cycle (ms)	ON Time (ms)	Duty cycle	Dwell Time (s)	Limit (s)	Margin (s)
2441(39CH)	5.00	2.50	1.86	0.74	0.30	0.40	0.10

Sample calculation: $(0.4 \times 79) \div (79 \times 3.75) \times 3.11 = 0.33 \text{sec}$

ON Time

(ON+OFF Time)

5.4 15. 247(b) Maximum Peak Output Power

5.4.1 Setting Remarks

- See test configuration figure 4.3.
- · The maximum peak output power is measured as following;

EUT directly connects to the spectrum analyzer via calibrated coaxial cable and a suitable attenuator.

The spectrum analyzer is set as following;

✓ Frequency span
 ✓ Resolution bandwidth
 ✓ Video bandwidth
 ✓ 3 MHz
 ✓ Wideo bandwidth
 ✓ Sweep
 ✓ Auto
 ✓ Detector function
 ✓ Peak
 ✓ Trace Mode
 ∴ Max Hold

5.4.2 Result

EUT complies with the requirement.

Uncertainty of measurement result: $\pm 0.5 \text{ dB}$ Temperature, Humidity : 23°C, 42%

5.4.3 Measured Data

[Voltage -15%]

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Limit (W)	Margin (W)							
	FSK F1D 1M	bps BASIC DI									
2402 (CH00)	11.33	0.014	0.125	0.111							
2441 (CH39)	11.95	0.016	0.125	0.109							
2480 (CH78)	11.50	0.014	0.125	0.111							
π/4 QPSK G1D 2Mbps EDR 2-DH5											
2402 (CH00)	9.05	0.008	0.125	0.117							
2441 (CH39)	9.78	0.010	0.125	0.115							
2480 (CH78)	9.14	0.008	0.125	0.117							
8:	DPSK G1D 3M	Mbps EDR 3-I)H5								
2402 (CH00)	9.52	0.009	0.125	0.116							
2441 (CH39)	10.08	0.010	0.125	0.115							
2480 (CH78)	9.63	0.009	0.125	0.116							

[Normal Voltage]

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Limit (W)	Margin (W)							
GFSK F1D 1Mbps BASIC DH-5											
2402 (CH00)	11.48	0.014	0.125	0.111							
2441 (CH39)	11.93	0.016	0.125	0.109							
2480 (CH78)	11.49	0.014	0.125	0.111							
$\pi I 4$	QPSK G1D 2	Mbps EDR 2	DH5								
2402 (CH00)	9.06	0.008	0.125	0.117							
2441 (CH39)	9.77	0.009	0.125	0.116							
2480 (CH78)	9.21	0.008	0.125	0.117							
8	DPSK G1D 31	Abps EDR 3-I)H5								
2402 (CH00)	9.47	0.009	0.125	0.116							
2441 (CH39)	10.13	0.010	0.125	0.115							
2480 (CH78)	9.59	0.009	0.125	0.116							

[Voltage +15%]

Frequency (MHz)	Peak Power (dBm)	Peak Power (W)	Limit (W)	Margin (W)								
GFSK F1D 1Mbps BASIC DH-5												
2402 (CH00)	11.34	0.014	0.125	0.111								
2441 (CH39)	11.96	0.016	0.125	0.109								
2480 (CH78)	11.50	0.014	0.125	0.111								
π/4	QPSK G1D 2	Mbps EDR 2	DH5									
2402 (CH00)	9.11	0.008	0.125	0.117								
2441 (CH39)	9.75	0.009	0.125	0.116								
2480 (CH78)	9.29	0.008	0.125	0.117								
83	DPSK G1D 31	Abps EDR 3-I)H5									
2402 (CH00)	9.43	0.009	0.125	0.116								
2441 (CH39)	10.17	0.010	0.125	0.115								
2480 (CH78)	9.61	0.009	0.125	0.116								

5.5 15. 247(d) Transmitter Spurious Emissions (Conducted)

5.5.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable.
- The Spectrums are scanned from the lowest generated frequency of EUT up to the 10th harmonics by using the spectrum analyzer.
- The spectrum analyzer is set as following;

✓ Resolution bandwidth
✓ Video bandwidth
✓ Sweep
✓ Detector function
✓ Trace Mode
∴ Max Hold

• See test configuration figure 4.3.

5.5.2 Minimum Standard

15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required.

5.5.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: $\pm 0.8 \text{ dB}$ Temperature, Humidity : 23°C, 42%

5.5.4 Measured Data

Transmitter 2402MHz CH00 GFSK F1D 1Mbps BASIC DH-5 MS2687B 2011/12/02 21:32:42 PeakSearch

5.6 15. 247(d) Transmitter Radiated Emissions (Radiated)

5.6.1 Setting Remarks

- The data lists in "5.5.4 Measured Data" list the significant emission frequencies, measured levels, correction factor (includes cable and antenna corrections), the corrected reading, plus the limit.
- In the frequency range between 30MHz to 25GHz (as 10th harmonics), the Electric Field Strength is measured in accordance with ANSI C63.4: 2003 and CISPR22: 1997.
- The test setup is made in accordance with ANSI C63.4: 2003.
- The antenna is measured at 1-4m height.
- The EUT is placed on the non-conductive table in the center of turntable. The height of this table is 0.8m.
- The measurement is carried out with both horizontal and vertical antenna polarization.
- The highest radiation from the equipment is recorded.
- By varying the configuration of the test sample and the cable routing, it is attempted to maximize the emission.
- The test receiver with Quasi Peak and Average detector is in compliance with CISPR 16-1:1993.
- The spectrum analyzer is set as following;
- The carrier level (or,noise levels) was (or were) measured at eath position of all three axes X,Y and Z,and the position that has the maximuum noise was determined.
- With the position, the noise levels of all the frequencies was measured.

(Frequency range : 30 - 1000 MHz)

✓ Resolution bandwidth
 ✓ Video bandwidth
 ✓ Detector function
 ✓ Trace Mode
 ∴ Max Hold

(Frequency range : Above 1000 MHz)

✓ Resolution bandwidth : 1 MHz
 ✓ Video bandwidth : 1 MHz
 ✓ Detector function : Peak
 ✓ Trace Mode : Max Hold

• EMI Test Receiver analyzer is set as following;

✓ IF bandwidth : 120 kHz (Quasi-Peak Detector) ✓ IF bandwidth : 1 MHz (Average Detector)

• See test configuration figure 4.2.

5.6.2 Minimum Standard

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F (kHz)	300
0.490-1.705	24000/F (kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., § 15.231 and § 15.241.

5.6.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: ± 3.28 dB

Temperature, Humidity : Refer to each data table

5.6.4 Measured Data 30MHz to 1GHz

<< Radiated Emission>>

Cosmos Corporation Onoki Lab. Date : 2011/11/28 23:15:51

Date . 2011/

 Model Name
 : CM-700d / AC-A305
 Job No
 : CJ11-105994E

 Serial No.
 : 01
 Temp./Humi.
 : 20°C/43%

 Operator
 : 0. Itogawa
 Condition
 : CH00 2402MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:30M~1GHz (120kHz)

LIMIT : Fcc15C 15_209 (3m) 30MHz-1000MHz

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	191. 999	31.0	13. 9	5. 6	27.8	22. 7	43. 5	20. 8	Hori.	240		BC	
2	56. 246		10. 6	4. 6	28. 4	21. 9		18. 1	Vert.	100	123		
3	133. 607			5. 3	28. 1	22. 4	43. 5	21. 1	Vert.	100	33		
4	191. 979			5. 6			43. 5	14. 3		100			
5	340. 045			7. 1				18. 8		149	134		
6	522. 269	28. 4	18. 0	8. 2	28. 8	25. 8	46. 0	20. 2	Vert.	100	0	LP	

Measured Data (Continued) 5.6.4

<< Radiated Emission>>

Cosmos Corporation Onoki Lab. Date : 2011/11/29 00:09:05

Model Name Serial No. : CM-700d / AC-A305 Job No Temp./Humi. Condition

: CJ11-105994E : 20°C/43% : CH39 2441MHz : Angle1 BDR 1Mbps Operator 0. Itogawa : AC120V, 60Hz / DC5V Power Supply Remark

: RBW:30M~1GHz(120kHz) Memo

LIMIT : Fcc15C 15_209 (3m) 30MHz-1000MHz

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1					27. 8		43. 5	21. 1	Hori.	338	20		
2					28. 4					100			
3					28. 1	22. 0		21.5	Vert.	100	12		
4					27. 8			15. 3		100	70		
5 6						25. 7				128	309 0		
0	521. 838	28. 3	18. 0	8. 2	28. 8	25. 7	46. 0	20. 3	Vert.	100	U	LP	

<< Radiated Emission>>

Cosmos Corporation Onoki Lab. Date : 2011/11/29 00:54:21

 Model Name
 : CM-700d / AC-A305
 Job No
 : CJ11-105994E

 Serial No.
 : 01
 Temp. /Humi.
 : 20°C/43%

 Operator
 : 0. Itogawa
 Condition
 : CH78 2480MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:30M∼1GHz (120kHz)

LIMIT : Fcc15C 15_209 (3m) 30MHz-1000MHz

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Туре	
1	191. 788	27. 1	13. 9	5. 6	27. 8	18. 8	43. 5	24. 7	Hori.	254	220	BC	
2	58. 240	36. 1	10. 5	4. 6	28. 4	22. 8	40. 0	17. 2	Vert.	100	157	BC	
3	146. 127			5. 4	28. 1	19. 8		23. 7		100			
4	191. 999			5. 6	27. 8			14. 9		100		BC	
5	386. 543			7. 4	28. 1	24. 5		21.5		139			
6	511. 944	28. 2	17. 9	8. 2	28. 8	25. 5	46. 0	20. 5	Vert.	100	0	LP	

<< Radiated Emission>>

Cosmos Corporation Onoki Lab. Date: 2011/11/29 01:47:14

 Model Name
 : CM-700d / AC-A305
 Job No
 : CJ11-105994E

 Serial No.
 : 01
 Temp. /Humi.
 : 20°C/43%

 Operator
 : 0. Itogawa
 Condition
 : CH00 2402MHz

 Power Supply
 : Battery DC6V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:30M~1GHz (120kHz)

LIMIT: Fcc15C 15_209 (3m) 30MHz-1000MHz

No	Freq.		Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	158. 001			5. 5	28. 1	20. 1	43. 5	23. 4		100	47	BC	
2	170. 095			5. 6	28. 0		43. 5	24. 8		100	0	BC	
3	191. 989			5. 6	27. 8	26. 5	43. 5	17. 0		100	168		
4	363. 922			7. 2	28. 0	27. 8	46. 0	18. 2		151	295		
5	432. 009			7. 7			46. 0	17. 2		127	265		
6	521. 838	29. 6	18. 0	8. 2	28. 8	27. 0	46. 0	19.0	Vert.	100	0	LP	
					İ		j	j					

5.6.4 Measured Data (Continued)1GHz to 18GHz

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/24 11:51:58

 Model Name
 : CM-700d / AC-A305
 Job No.
 : CJ11-105994E

 Serial No.
 : 01
 Temp/Humi
 : 20°C/43%

 Operator
 : 0.1togawa
 Condition
 : CH00 2402MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:1GHz ~ (1MHz)

LIMIT: FCC Subpart C 15. 209 (3m) 1G-26. 5GHz (AV)

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4803. 920	50. 1	31. 0	6. 3	36. 3	51. 1	54. 0	2. 9	Hori.	100	169		AV
2	7205. 460	28. 3	35. 1	7. 5	33. 7	37. 2	54. 0	16.8	Hori.	100	223		AV
3				6. 3		38. 4	54. 0	15. 6		121	86		AV
4	7205. 420	28. 0	35. 1	7. 5	33. 7	36. 9	54. 0	17. 1	Vert.	102	202		AV
				-									
			İ										
				-									

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/24 11:51:58

 Model Name
 : CM-700d / AC-A305
 Job No.
 : CJ11-105994E

 Serial No.
 : 01
 Temp/Humi
 : 20°C/43%

 Operator
 : 0. Itogawa
 Condition
 : CH00 2402MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:1GHz ~ (1MHz)

LIMIT: FCC Subpart C 15. 209 (3m) 1G-26. 5GHz (PK)

No	Freq.		Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]		Type	
1	4803. 920			6. 3	36.3		74. 0	17. 7		100			PK
2	7205. 460			7. 5	33. 7	49. 8	74. 0			100			PK
3				6. 3	36. 2	47. 8	74. 0			121	86		PK
4	7205. 420	40. 9	35. 1	7. 5	33.7	49. 8	74. 0	24. 2	Vert.	102	202		PK
				-	-								
				1									
			ĺ	İ									
			i										
				1									
			ĺ	İ									

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/28 21:05:04

Model Name Serial No. : CM-700d / AC-A305 Job No. Temp/Humi Condition Remark Operator

: CJ11-105994E : 22°C/42% : CH39 2441MHz : Angle1 BDR 1Mbps : 0. Itogawa : AC120V, 60Hz / DC5V Power Supply : RBW:1GHz~ (1MHz)

LIMIT : FCC Subpart C 15. 209 (3m) 1G-26. 5GHz (AV)

No	Freq.		Ant. Fac		Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4882. 277			6. 3	36. 1		54. 0	5. 4	Hori.	100	159		AV
2	9763. 263				33. 5		54. 0	14. 4		100	120		AV
3	4882. 257	40. 1	31. 1	6. 3	36. 1	41. 4	54. 0	12. 6	Vert.	103	130		AV

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date: 2011/11/28 21:05:04

Memo : $RBW:1GHz \sim (1MHz)$

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz (PK)

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4882. 277		31. 1	6. 3	36. 1	55. 9	74. 0	18. 1	Hori.	100	159		PK
2	9763. 263			9. 2	33. 5		74. 0		Hori.	100			PK
3	4882. 257	48. 5	31. 1	6. 3	36. 1	49. 8	74. 0	24. 2	Vert.	103	130		PK
			-										
										l l			

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/28 21:37:35

 Model Name
 : CM-700d / AC-A305
 Job No.
 : CJ11-105994E

 Serial No.
 : 01
 Temp/Humi
 : 22°C/42%

 Operator
 : 0. Itogawa
 Condition
 : CH78 2480MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:1GHz ∼ (1MHz)

LIMIT: FCC Subpart C 15. 209 (3m) 1G-26. 5GHz (AV)

No	Freq.		Ant. Fac		Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4959. 937							2. 6		109	153		AV
2	4959. 626	42. 4	31. 2	6. 3	35. 9	44. 0	54. 0	10.0	Vert.	101	136		AV

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/28 21:37:35

 Model Name
 : CM-700d / AC-A305
 Job No.
 : CJ11-105994E

 Serial No.
 : 01
 Temp/Humi
 : 22°C/42%

 Operator
 : 0. Itogawa
 Condition
 : CH78 2480MHz

 Power Supply
 : AC120V, 60Hz / DC5V
 Remark
 : Angle1 BDR 1Mbps

Memo : RBW:1GHz ∼ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz (PK)

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4959. 937	55. 1	31. 2	6. 3	35. 9	56. 7	74. 0	17. 3	Hori.	109	153		PK
2	4959. 626	50. 5	31. 2	6. 3	35. 9	52. 1	74. 0	21.9	Vert.	101	136		PK
					1								
							1						

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date : 2011/11/29 22:05:00

Memo : $RBW:1GHz \sim (1MHz)$

LIMIT: FCC Subpart C 15.209 (3m) 1G-26.5GHz (AV)

No	Freq.	Reading	Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4960. 308		31. 2	6. 3	35. 9	50. 5	54. 0	3. 5		109	153		AV
2	4959. 972	46. 4	31. 2	6. 3	35. 9	48. 0	54. 0	6.0	Vert.	103	157		AV

5.6.4 Measured Data (Continued)

RADIATED EMISSION

Cosmos Corporation Onoki Lab. Date: 2011/11/29 22:05:00

Memo : RBW:1GHz ~ (1MHz)

LIMIT : FCC Subpart C 15.209 (3m) 1G-26.5GHz (PK)

No	Freq.		Ant. Fac	Loss	Gain	Result	Limit	Margin	Pola.	Height	Angle	Ant	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	[cm]	[deg]	Type	
1	4960. 308			6. 3				16. 0		109	153		PK
2	4959. 972	52. 3	31. 2	6. 3	35. 9	53. 9	74. 0	20. 1	Vert.	103	157		PK
										i i			
										İ			
										i i			

-TEPTO-DV/RE Ver1.80.0020

<u> </u>	lev.01
5.6.4 Measured Data (Continued)	
18GHz to 26.5GHz	
No spurious emission for RF was found in 18GHz to 26.5GHz.	
*Note: The all data of 5.6.4 are the data of GFSK F1D 1Mbps BASIC DH-5 which is	
the worst modulation mode.	

5.7 15. 247(d) Band Edge Measurement

5.7.1 Setting Remarks

- EUT directly connects to the spectrum analyzer via calibrated coaxial cable.
- The emission at the band edge is measured by using the marker function of spectrum analyzer.
- The peak of the in-band emission is measured by using the marker to peak function of spectrum analyzer.
- · This measurement is repeated in both side of the spectrum.
- The spectrum analyzer is set as following;

✓ Frequency Span : 30MHz

✓ Resolution bandwidth : 300kHz (1% of frequency span)

✓ Video bandwidth :> RBW
 ✓ Sweep : Auto
 ✓ Detector function : Peak
 ✓ Trace Mode : Max Hold

- Where band edge spectrum is too rough to find precise edge point, larger RBW i.e. 1MHz, 3MHz shall be applied as severer condition.
- See test configuration figure 4.2.

5.7.2 Minimum Standard

In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency of Emission (MHz)	Limit of the band edge spurious emission (dBµV)			
Below 2,400	Peak	Average		
Above 2,483.5	74	54		

5.7.3 Result

EUT complies with the requirement.

Uncertainty of measurement result: $\pm 2.6 \text{ dB}$ Temperature, Humidity : 20°C, 43%

5.7.4 Measured Data

The band edge emissions are calculated as following;

	Horiz	ontal	Vertical		
CH	CH00	CH78	CH00	CH78	
	(2402MHz)	(2480MHz)	(2402MHz)	(2480MHz)	
Pmax	108.27	108.65	108.32	108.33	
Pav	94.53	94.92	94.58	94.62	
Pdev	45.99	56.45	47.98	54.94	
Pdav	37.83	50.42	37.80	50.13	
c.f.	-3.70	-3.70	-3.70	-3.70	
Ebe	58.58	48.50	56.64	49.69	
Eav	53.00	40.80	53.08	40.79	
Limit(Ebe)	74.00	74.00	74.00	74.00	
Limit(Eav)	54.00	54.00	54.00	54.00	
Margin(Ebe)	15.42	25.50	17.36	24.31	
Margin(Eav)	1.00	13.20	0.92	13.21	

 $P_{\text{max}} \qquad : \quad \text{Maximum peak power of the fundamental.}$

 P_{av} : Average of the fundamental.

 P_{dev} : The amplitude delta between the peak power and the band

edge emission.

 P_{dav} : The amplitude delta between the average power and the band

edge emission.

E_{be} : Band edge emission.

 E_{av} : Average of the band edge emission.

6. Photos

6.1 Photo of the EUT

6.1 Photo of the EUT (Continued)

6.2 Setup Photo (AC Power Conducted Emission)

6.3 Setup Photo (Radiated Emission)

30MHz - 1GHz (AC Adaptor)

30MHz - 1GHz (Battery)

1GHz - 18GHz (AC Adaptor)

1GHz - 18GHz (Battery)

18GHz - 26.5GHz (AC Adaptor)

18GHz - 26.5GHz (Battery)

6.4 Setup Photo (Conducted Emission)

7. List of Test Measurement Instruments

7.1 AC Power Conducted Emission

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Spectrum Analyzer	ADVANTEST CORPORATION	R3132	110401625	November, 2011 November, 2012
EMI Test Receiver	ROHDE& SCHWARZ	ESCS30	100335	November, 2011 November, 2012
Artificial-Mains Network	KYORITSU CORPORATION	KNW-341F	8S-2996-1	November, 2011 November, 2012
RF Selector	TSJ	RFM-E221	3148	October, 2011 October, 2012

7.2 Radiated Emission Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
Programmable AC/DC Power Source	NF Corporation	ES18000W	425779	Confirmed before Test
RF Selector	TSJ	RFM-E121	03149	October, 2011 October, 2012
EMI Test Receiver (20Hz to 40GHz)	ROHDE& SCHWARZ	ESIB40	100211	January, 2011 January, 2012
Biconical Antenna (30MHz to 300MHz)	SCHWARZBECK	VHBB9124 BBA9106	9124-311	October, 2011 October, 2012
Log-Periodic Antenna (300MHz to 1GHz)	SCHWARZBECK	UHALP9108A	645	October, 2011 October, 2012
Horn Antenna (1GHz to 12.5GHz)	SCHWARZBECK	BBHA9120D	443	October, 2011 October, 2012
Horn Antenna (12.5GHz to 18GHz)	ETS LINDGREN	3160-08	00033782	September, 2011 September, 2012
Horn Antenna (18GHz to 26.5GHz)	ETS LINDGREN	3160-09	00034723	September, 2011 September, 2012
Pre Amp (30MHz to 1GHz)	HEWLETT PACKARD	8447D	2944A07891	October, 2011 October, 2012
Pre Amp (1GHz to 12.75GHz)	TSJ	MLA-0120AM L-34		June, 2011 June, 2012

7.3 Conducted Radio Measurement

Instruments	Manufacturer	Model / Type	Serial No.	Calibration Date Next Calibration
DC Power Source	KIKUSUI	PAN60-6A	JK002503	
Spectrum Analyzer	Anritsu	MS2687B	6200162706	November, 2011 November, 2012