Question 1. K-Means Clustering

(a) (10 points) Describe the K-means clustering algorithm. An explanation has to include a step-by-step algorithm description together with an explanation of the algorithm convergence.

The answer see on the course site Lecture3_4_Clustering

(b) (10 points) Suppose that the following data is clustered using the K-means method.

	p 1	p ₂	рз	p4	ps	p 6
X	2	2	5	7	1	4
y	10	5	8	5	2	10

Assume that number of clusters K=3 and that the points are initially assigned to clusters as follows:

$$C1 = \{p_1, p_2\}, C2 = \{p_3, p_4\}, C3 = \{p_5, p_6\}.$$

Perform two iterations of the K-means algorithm and explain all the operations, which have been done.

Answer:

The first iteration

	C1={2; 7.5}	C2={6; 6.5}	C3={2.5; 6}
$\mathbf{p_1}$	p_1		
\mathbf{p}_2	p 1		p ₂ C3={2.25; 5.5}
p ₃	p 1	p ₃	p_2
p ₄	p_1	p ₃ , p ₄	p_2
p 5	p_1	p ₃ , p ₄	p_2, p_5
p 6	p ₁	p ₃ , p ₄ , p ₆	p ₂ , p ₅
The class membership	p 1	p3, p4, p6	p2, p5
	C1={2;10}	C2={5; 8.25}	C3={1.5; 3,5}

Second iteration

	C1={2;10}	C2={5; 8.25}	C3={1.5; 3,5}
p 1	p_1		
\mathbf{p}_2	p_1		p_2
p 3	p_1	p_3	p_2
p 4	p_1	p ₃ , p ₄	p_2
p 5	p_1	p ₃ , p ₄	p_2, p_5
p 6	p_1, p_6	p ₃ , p ₄	p ₂ , p ₅
The class membership	p 1, p 6	p3, p4	p 2, p 5

(c) (5 points) A student wants to estimate the number of clusters in a dataset being classified using the K-means method. To this end, the data were clustered in number of clusters from 2 to 4. The histograms of the silhouette values are given below. Which number of clusters is preferred in this case? Explain your answer.

Answer: K=3