Chapitre 16. Intégrales à paramètre

I, *J* intervalles d'intérieur non vide, *E* un evn.

1 Le théorème de convergence dominée

1.1 Le théorème de convergence dominée

Théorème 1.1 (Théorème de convergence monotone). Soit $g_n : I \to [0, +\infty]$ mesurables et $g_n : I \to [0, +\infty]$ On suppose que :

- 1. $(g_n)_{n \in \mathbb{N}}$ converge simplement vers g
- 2. $\forall n \in \mathbb{N}, 0 \le g_n \le g_{n+1}$

Alors dans $[0, +\infty]$

$$\lim_{n\to+\infty}\int_I g_n = \int_I g \in [0,+\infty]$$

Corollaire 1.2. Soit $F_0: I \to \mathbb{R}_+$ intégrable et $F_n: I \to \mathbb{R}_+$ $(n \ge 1)$ mesurable.

On suppose:

- 1. $\forall n \in \mathbb{N}, 0 \leq F_{n+1} \leq F_n$
- 2. (F_n) converge simplement vers 0

Alors

$$\int_{I} F_{n} \xrightarrow[n \to +\infty]{} 0$$

1.2 Énoncé du théorème de convergence dominée

Théorème 1.3 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continue par morceaux $(n \in \mathbb{N})$ On suppose :

- 1. $(f_n)_{n\geq 0}$ converge simplement vers $f:I\to \mathbb{K}$ continue par morceaux sur I
- 2. Il existe $\varphi: I \to \mathbb{R}_+$ <u>intégrable</u> telle que $\forall n \in \mathbb{N}, \forall t \in I \mid |f_n(x)| \le \varphi(t)$ (Hypothèse de domination)

Alors les f_n sont intégrables et f aussi et

$$\int_{I} f_{n} \xrightarrow[n \to +\infty]{} \int_{I} f$$

On a même

$$||f_n - f||_1 = \int_I |f_n - f| \xrightarrow[n \to +\infty]{} 0$$

1.3 Premiers exemples d'application

Quelques exercices classiques :

1. Montrer que

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n t \, dt \xrightarrow[n \to +\infty]{} 0$$

2. Soit $f : [0,1] \to \mathbb{K}$ continue.

Montrer que

$$I_n = \int_0^1 f\left(\frac{x}{n}\right) dx \xrightarrow[n \to +\infty]{} f(0)$$

3. Soit $f:[0,1] \to \mathbb{K}$ continue avec $\lim_{t\to\infty} f=0$. Montrer que

$$I_n = \int_0^1 f(nx)dx \xrightarrow[n \to +\infty]{} f(0)$$

4. Soit $n \ge 1$ et

$$I_n = \int_1^{+\infty} e^{-x^n} dx$$

Montrer que $I_n \xrightarrow[n \to +\infty]{} 0$ et $I_n \underset{+\infty}{\sim} \frac{\alpha}{n}$ avec α à exprimer avec une intégrale.

5. Montrer que

$$I_n = \int_0^n \left(1 - \frac{x^2}{n^2}\right)^{n^2} dx \xrightarrow[n \to +\infty]{} \int_0^{+\infty} e^{-x^2} dx$$

1.4 Théorème de convergence dominée appliquée à l'interversion série / suite

Corollaire 1.4 (Théorème de convergence dominée). Soit $f_n: I \to \mathbb{K}$ continues par morceaux $(n \in \mathbb{N})$ On suppose que :

- 1. $\sum f_n$ converge simplement vers $\sum_{n=0}^{+\infty} f_n C^0$ par morceaux.
- 2. Il existe $\varphi:I \to \mathbb{R}_+$ intégrable telle que $\forall n \in \mathbb{N} \, \left| \sum\limits_{k=0}^n f_k \right| \leq \varphi$ (Domination)

Alors les f_n sont intégrables, $\sum f_n$ est intégrable et

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

1.5 Le théorème d'intégration terme à terme

 $\textbf{Th\'eor\`eme 1.5} \ (\ \text{Th\'eor\`eme d'int\'egration terme \`a terme pour les fonctions positives }).$

Soit $f_n: I \to \mathbb{R}_+$ intégrable $(n \in \mathbb{N})$

On suppose que $\sum f_n$ converge simplement et que $\sum_{n=0}^{+\infty} f_n$ est continue par morceaux.

Alors dans $[0, +\infty]$ on a

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

En particulier

$$\sum_{n=0}^{+\infty} f_n$$
 intégrable $\iff \sum_{n\in\mathbb{N}} \int_I f_n < +\infty$

Dans ces conditions, dans \mathbb{R}_+^*

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

Théorème 1.6 (Théorème d'intégration terme à terme). Soit $f_n : I \to \mathbb{K}$ intégrables $(n \in \mathbb{N})$ On suppose que :

1. $\sum f_n$ converge simplement vers une fonction continue par morceaux.

2.
$$\sum_{n\in\mathbb{N}}\int\limits_{I}|f_{n}|<+\infty$$

Alors $\sum_{n=0}^{+\infty} f_n$ est intégrable et

$$\int_{I} \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_{I} f_n$$

De plus

$$\left| \int_{I} \sum_{n=0}^{+\infty} f_n \right| \le \sum_{n=0}^{+\infty} \int_{I} |f_n|$$

2

2 Continuité et dérivabilité des intégrales à paramètre

2.1 Convergence dominée avec un paramètre continue

Corollaire 2.1. Soit $f:(x,t)\in A\times I\mapsto f(x,t)\in \mathbb{K}$ avec $A\subset E$ (E evn) et a adhérent à A Soit $g:I\to \mathbb{K}$ continue par morceaux.

On suppose:

- 1. Pour tout $t \in I$, $f(x,t) \xrightarrow[x \to a]{} g(t)$
- 2. Pour tout $x \in A$, $t \mapsto f(x,t)$ est C^0 par morceaux.
- 3. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi$ (Domination)

Alors pour tout $x \in A$, $f(x, \cdot)$ (ie. $t \mapsto f(x, t)$) est intégrable, g aussi et

$$\int_{I} f(x,t) dt \xrightarrow[x \to a]{} \int_{I} g(t) dt$$

2.2 Continuité

Théorème 2.2. Soit $A \subset E$ (E evn) et $f:(x,t) \in A \times I \mapsto f(x,t) \in \mathbb{K}$ On suppose :

- 1. Pour tout $x \in A$, $t \mapsto f(x,t)$ est continue par morceaux.
- 2. Pour tout $t \in I$, $x \mapsto f(x, t)$ est continue.
- 3. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in A \times I, |f(x,t)| \leq \varphi$ (Domination)

Alors

$$F: x \in A \mapsto \int_I f(x,t) \, dt$$

est bien définie et continue en A

2.3 Dérivation sous le signe intégral

Théorème 2.3 (Formule de Leibniz). Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$

On suppose:

- 1. À *x* fixé $t \mapsto f(x, t)$ est intégrable sur *I*
- 2. À t fixé $x \mapsto f(x,t)$ est C^1 sur J
- 3. À x fixé $t\mapsto \frac{\partial f}{\partial x}(x,t)$ est continue par morceaux.
- 4. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in J \times I$, $\left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_I f(x,t) dt$$

est de classe C^1 et $\forall x \in J$

$$F'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt$$

Proposition 2.4. Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$ et $k \in \mathbb{N}^*$

On suppose:

1. À t fixé $x \mapsto f(x,t)$ est C^k sur J

2. Pour tout $0 \le i \le k-1$, à x fixé $t \mapsto \frac{\partial^i f}{\partial x^i}(x,t)$ est intégrable sur I

3. À x fixé $t\mapsto \frac{\partial^k f}{\partial x^k}(x,t)$ est continue par morceaux.

4. Il existe $\varphi: I \to \mathbb{R}_+$ intégrable telle que $\forall (x,t) \in J \times I$, $\left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leq \varphi(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_{I} f(x,t) dt$$

est de classe C^k et $\forall i \in [1, k], x \in J$

$$F^{(i)}(x) = \int_{I} \frac{\partial^{i} f}{\partial x^{i}}(x, t) dt$$

Corollaire 2.5. Soit $f: \begin{cases} J \times I \to \mathbb{K} \\ (x,t) \mapsto f(x,t) \end{cases}$

On suppose:

1. À t fixé $x \mapsto f(x,t)$ est $C^{+\infty}$ sur J

2. Pour tout $k \in \mathbb{N}$, à x fixé $t \mapsto \frac{\partial^i f}{\partial x^i}(x,t)$ est continue par morceaux.

3. Pour tout $k \in \mathbb{N}$ il existe $\varphi_k : I \to \mathbb{R}_+$ intégrable avec $\forall (x,t) \in J \times I, \left| \frac{\partial^k f}{\partial x^k}(x,t) \right| \leq \varphi_k(t)$ (Domination)

Alors

$$F: x \in J \mapsto \int_{I} f(x,t) dt$$

est de classe $C^{+\infty}$ et $\forall k \geq 0$, $x \in J$

$$F^{(i)}(x) = \int_{I} \frac{\partial^{i} f}{\partial x^{i}}(x, t) dt$$

2.4 La fonction Γ d'Euler (À savoir retrouver)

Définition 2.6. Pour x > 0 on pose

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

C'est la fonction Gamma d'Euler.

 $\underline{\mathsf{Extension}} : \mathsf{Si}\ z \in \mathbb{C}\ \mathsf{avec}\ \mathsf{Re}(z) > 0\ \mathsf{alors}\ \mathsf{on}\ \mathsf{peut}\ \mathsf{d\'efinir}\ \Gamma(z)\ \mathsf{de}\ \mathsf{la}\ \mathsf{m\`eme}\ \mathsf{façon}.$

Proposition 2.7.

• Pour x > 0, $\Gamma(x+1) = x\Gamma(x)$ En particulier $\forall n \in \mathbb{N}$, $\Gamma(n+1) = n!$

$$\Gamma\left(\frac{1}{2}\right) = \int_{\mathbb{R}} e^{-x^2} \, dx = \sqrt{\pi}$$

Proposition 2.8. La fonction Γ est de classe $C^{+\infty}$ et pour x > 0, $k \in \mathbb{N}$

$$\Gamma^{(k)}(x) = \int_0^{+\infty} (\ln t)^k t^{x-1} e^{-t} \, dt$$

 Γ est convexe et $\lim_{0^+} \Gamma = \lim_{+\infty} \Gamma = +\infty$

2.5 Fonctions à support compact

Définition 2.9. Soit $f: \mathbb{R}^n \to \mathbb{K}$

Le support de f est $S = \{x \in \mathbb{R}^n \mid f(x) \neq 0\}$

On sit que f est à support compact si S est compact ie. borné, autrement dit :

$$\exists R > 0 \, \forall x \in \mathbb{R}^n, \, ||x|| > R \implies f(x) = 0$$

Définition 2.10. Une suite de fonctions régularisantes est une suite de fonctions $\varphi : \mathbb{R} \to \mathbb{R}_+$ \mathcal{C}^{∞} à support contenu dans $[-a_n, a_n]$ où :

- a_n est une suite de \mathbb{R}_+^*
- a_n décroît.
- a_n tend vers 0

et vérifiant $\int\limits_{\mathbb{R}} \varphi_n = 1$

2.6 Intégrales doubles sur un pavé

Théorème 2.11 (Théorème de Fubini). Soit $a \le b$, $v \le d$ et $f: [a,b] \times [c,d] \to \mathbb{K}$ Alors

$$\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy$$

Cette valeur commune est appelée

$$\iint_{[a,b]\times[c,d]} f(x,y)\,dxdy$$

2.7 Fonctions intégrables sur $I \times J$

Proposition 2.12. Soit $f: I \times J \to \mathbb{R}_+$

Sous reserve de régularité de fonction on a dans $[0, +\infty]$

$$\int_{I} \left(\int_{I} f(x, y) \, dy \right) \, dx = \int_{I} \left(\int_{I} f(x, y) \, dx \right) \, dy$$

On note la valeur commune

$$\iint\limits_{I\times I}f\in[0,+\infty]$$

Si $\iint\limits_{I\times J}f<+\infty$ on dit que f est intégrable.

3 Convergence en moyenne quadratique

3.1 La convergence en moyenne

Définition 3.1. Soit $f_n \in L^1(I, \mathbb{K})$ et $f \in L^1(I, \mathbb{K})$ $n \in \mathbb{N}$ On dit que f_n converge en moyenne vers f si

$$||f_n - f||_1 \to 0$$

On dit que f_n converge en moyenne quadratique vers f si

$$||f_n - f||_2 = \sqrt{\int_I |f_n - f|^2} \to 0$$

5

On note $L^\infty(I,\mathbb{K})$ l'ensemble des fonctions continues par morceaux sur I bornées. Alors

$$L^{\infty} \subset L^{2}(I) \subset L^{1}(I)$$

Ces inclusions sont strictes si I n'est pas un segment.

3.2 Complément : Base hilbertienne

Théorème 3.2 (Inégalité de Bessel-Parseval). Soit E préhilbertien, $(e_n)_{n\in\mathbb{N}}$ un système orthonormé et $x\in E$ Alors $(\langle e_n,x\rangle^2)_{n\in\mathbb{N}}$ est sommable (ie. $(\langle e_n,x\rangle)_{n\in\mathbb{N}}\in l^2$) et

$$\sum_{n\in\mathbb{N}} \langle e_n, x \rangle^2 \le ||x||^2$$

Définition 3.3. Soit *E* préhilbertien et $(e_n)_{n\in\mathbb{N}}$ un système orthonormé.

On dit que $(e_n)_{n\in\mathbb{N}}$ est une base hilbertienne si $\overline{\mathrm{Vect}(e_n)}=E$

Théorème 3.4 (Identité de Parseval). Soit E préhilbertien, $(e_n)_{n\in\mathbb{N}}$ une base hilbertienne et $x\in E$ On a pour $\|\cdot\|_E$

$$x = \sum_{n=0}^{+\infty} \langle e_n, x \rangle e_n = \lim_{N \to +\infty} \sum_{n=0}^{N} \langle e_n, x \rangle e_n$$
$$\|x\|^2 = \sum_{n \in \mathbb{N}} \langle e_n, x \rangle^2$$

Définition 3.5. $\langle e_n, x \rangle$ est le coefficient de Fourrier de x selon e_n dans la base hilbertienne $(e_k)_{k \in \mathbb{N}}$

3.3 Complément : séries de Fourrier

Proposition 3.6. Soit $f \in \mathcal{C}_{2\pi}(\mathbb{R},\mathbb{R})$ (fonctions continues 2π -périodiques) muni de $\langle f,g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} fg dx$

On note
$$\begin{cases} c_k : x \mapsto \cos kx \\ s_k : x \mapsto \sin kx \end{cases} \text{ avec } k \in \mathbb{N}$$

Alors

$$f = \langle 1, f \rangle 1 + \sum_{n=1}^{+\infty} (2\langle c_n, f \rangle c_n + 2\langle s_n, f \rangle s_n)$$

On pose

$$a_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 2\langle c_n, f \rangle \quad \text{ et } \quad b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx = 2\langle s_n, f \rangle$$

Alors

$$f = \frac{a_0(f)}{2} + \sum_{n=1}^{+\infty} (a_n(f)c_n + b_n(f)s_n)$$

Au sens de $\| \|_2$

Corollaire 3.7 (Parseval). Si $f \in \mathcal{C}_{2\pi}(\mathbb{R}, \mathbb{R})$

Alors

$$|||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^2 = \frac{a_0(f)^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n(f)^2 + b_n(f)^2 \right)$$

Proposition 3.8. Soit $f \in \mathcal{C}_{2\pi}(\mathbb{R},\mathbb{C})$ (fonctions continues 2π -périodiques) muni de $\langle f,g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f}g$

On note $e_n: x \mapsto e^{inx}$

On pose

$$c_n(f) = \langle e_n, f \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

Alors

$$f = \sum_{-\infty}^{+\infty} c_n(f) e_n$$

$$f = \lim_{n \to +\infty} \sum_{n = -N}^{N} c_n(f) e_n$$

Corollaire 3.9 (Parseval). Si $f \in \mathcal{C}_{2\pi}(\mathbb{R}, \mathbb{R})$

Alors

$$||f||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 = \frac{1}{2} \sum_{n \in \mathbb{Z}} |c_n(f)|^2$$

3.4 Complément : les intégrales à connaître

Proposition 3.10 (Intégrale de Gauss).

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} \quad \text{et} \quad \int_{0}^{+\infty} e^{-x^2} dx = \int_{-\infty}^{0} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

Proposition 3.11 (Intégrale de Dirichlet).

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$