	las matrices completas hermíticas 2x2 están formadas por
	Current completes 21 = X1+14, 21 = X2+142,
	73 = x2 + u2 a 2u = xy + iyy Enlonces hemos denotado por
	(At) la matriz adjunta de A: Note deux, una matriz
	cuatro números completos Z1 = x1 + 141, Z2 = x2 + 142, Z3 = x3 + 143 4 Z4 x4 + 144 Entonces memos denotado por (At): la matriz adjunta de Aj Vale decir, una matriz adjunta de otra jera su transpiesta conjugada. Por transpiesta
	ENTENDENDY COMPILE TITOS POT COLUMNAS MANTENIENOS 19 019 9019
	Intactor, A! = Al Por otro ludo hemos definido Tr(A) la traza de una matriz como la suma de los elementos de la diagonal.
	Tr(A) = A: A continuación ejemplificaremos estas dos definiciones
	A = (21 22) => A+ (2) 22) 4 TV (A) = 2, + 24
	[23 24] [22 24]
	C - A - V - L A Courses Degranales terris
	Sin embargo, este par de definiuones fonuonales serán sufluente para resolver este ejercuo.
	1. Considere el españo vectorial de matrices complejas 2x2 con la
	siquiente definición:
	$\langle a b \rangle = Tr(AtB) \equiv (At)^i_j B^j_i \equiv (A*)^j_i B^j_i$
	(a)) - 11 (A)) - (A)
	de producto interno.
	a. Compruebe si esta es una buena definición de producto interno
	El producto intervo definido a Esto para nuestro espacio
	en un esposuo vectorial de matrices se traduce en:
	e de la cranedade);
	The control of the co
	1. Uneolidad <da+pb1c> Tr((da+Bb)c)</da+pb1c>
	= 2 (a(c) + p(b(c) Tr ((da+ Bb) c)
	2. Positividad: rala>>0. = tr(atc)+p Tr(btc)
	2 0 also: (alb) = (bla)
	3. Simetria · Zalos · Demostrolaton:
-	- 11 11 11 11
	3. Simetria: Tr(AtB) = Tr(BtA) Tr((Aa+Bb)tc) = Tr(Adc)+Tr(Bbt)
	Sees A = (21 22) y B = (C1 C2) = d Tr (de) + S Tr (bfc)
	23 24) CS C4 2- Positividad
	(0)11181000
ev	tonces: Tr (A+B) = 21 C1 + 22 C3 + 23 C2 + 24 C4 Tr (B+A) = (2,)2 + (2, 25)
	Demo/trauon.
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	ord 22 E Q y el producto (con 2 = a+bi), se resume en la
C	conmotativo, por la que juma de reales elevados al cuadrado la conmotativo, por la que juma de reales elevados al cuadrado la que siempre será positivo a nula.
1	Tr (ATB) = Tr (BTA) 10 que siempre será positivo o nulo.

b) A partir de esa definición de producto interno construya la definición de norma asociada. Esta definición de norma se conoce como norma de Frobenious.

$$|a| = \sqrt{\langle a|a\rangle}$$

$$\langle a|a\rangle = T_{Y}(A \dagger A)$$

$$S: A = \left(\frac{24}{23} \frac{21}{24}\right) \wedge A^{\dagger} = \left(\frac{27}{25} \left(\frac{25}{24}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{24}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right)^{2} + \left(\frac{2}{25} \left(\frac{27}{25}\right$$

c) A partir de la definición de norma de Frobenious, encuentra la expresión para la definición de distancia entre dos matrices 2×2

C)
$$||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

C) $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

Tr $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$

Tr $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $||A - B||_{+} = \sqrt{\text{Tr}((A - B)^{\dagger}(A - B))}$
 $|$

d) Considere las Matrices de Pauli

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_0 \equiv \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

y compruebe si esas matrices son ortogonales bajo la definición de producto interno de Frobenious

→ /* Demuestre que las matrices de Pauli son ortogonales bajo el prodcuto interno de Frobenious. */;

(%i1) sig1:matrix([0,1],[1,0]);

$$sig1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

(%i2) sig2:matrix([0,-(%i)],[%i,0]);

$$sig2 \begin{bmatrix}
0 & -\%i \\
\%i & 0
\end{bmatrix}$$

(%i3) sig3:matrix([1,0],[0,-1]);

$$sig3 \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

(%i4) sig4:matrix([1,0],[0,1]);

$$sig4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(%i5) c12 = sig1.sig2;

(%05)
$$c12 = \begin{bmatrix} \%i & 0 \\ 0 & -\%i \end{bmatrix}$$

(%i6) c13 = sig1.sig3;

(%06) c13 =
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(%i20) c14:sig1.sig4;

$$\begin{array}{ccc}
\mathbf{C14} & \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}
\end{array}$$

(%i8) c23:sig2.sig3;

(%i9) c24:sig2.sig4;

$$\begin{array}{c} \text{C24} & \left[\begin{matrix} 0 & -\%i \\ \%i & 0 \end{matrix} \right] \end{array}$$

(%i10) c34:sig3.sig4;

→ /*La traza de las matrices es cero, por lo que el producto interno es cero, y por lo tanto son ortogonales */

e) Cuál es la distancia entre las Matrices de Pauli

→ /* Encuentre la distancia entre las matrices de Pauli */;

(%i23) d12cuad:(sig1-sig2).(sig1-sig2);

$$\frac{d12cuad}{0} \begin{bmatrix} (1-\%i)(\%i+1) & 0 \\ 0 & (1-\%i)(\%i+1) \end{bmatrix}$$

(%i21) d13cuad:(sig1-sig3).(sig1-sig3);

$$\frac{d13cuad}{d}\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\rightarrow$$
 /* d(σ 1, σ 3) = 4 */

(%i22) d14cuad:(sig1-sig4).(sig1-sig4);

$$\frac{d14cuad}{d14cuad} \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$$

$$\rightarrow$$
 /* d(σ 1, σ 4) = 4 */

(%i25) d23cuad:(sig2-sig3).(sig2-sig3);

$$\frac{d23cuad}{d23cuad} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

(%i25) d23cuad:(sig2-sig3).(sig2-sig3);

$$\frac{d23cuad}{d23cuad} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\rightarrow$$
 /* d(\sigma 2,\sigma 3) = 4 */

(%i18) d24cuad:(sig2-sig4).(sig2-sig4);

$$\rightarrow$$
 /* d(\sigma 2,\sigma 3) = 4 */

(%i26) d34cuad:(sig3-sig4).(sig3-sig4);

$$\frac{d34cuad}{d34cuad} \begin{bmatrix} 0 & 0 \\ 0 & 4 \end{bmatrix}$$

$$\rightarrow$$
 /* d(\sigma 3,\sigma 4) = 4 */

- f) Muestre que las matrices de Pauli $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$ forman una base para ese espacio vectorial.
 - Sea V el españo jectorial de las matrices complejas 2x2 hermíticas, el conjunto

$$\beta = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

its base para 112

Para que un conjunto sea base de un espano sectorial, estos deben

- 1) Pertenecer al espano.
- 2) ser linealmente dependients/ General el españo vectorial.

Prueba de pertenencia:

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\Rightarrow 6_1 \in \mathbb{V}.$$

$$\Rightarrow 6_2 = \begin{pmatrix} 0 & i^* \\ i & 0 \end{pmatrix} \Rightarrow 6_2^{\dagger} = \begin{pmatrix} 0^* & i^* \\ -i^* & 0^* \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow 6_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow 6_4^{\dagger} = \begin{pmatrix} 1^* & 0^* \\ 0^* & 1^* \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\Rightarrow \sigma_2 \in \mathcal{A}$$

$$\Rightarrow \sigma_3 \in \mathcal{A}$$

.. β ∈ 1

```
Independenced lineal
Planteamos la siquiente combinación lineal:
                Z_A \left(\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array}\right) + Z_2 \left(\begin{array}{c} 0 & -i \\ i & 0 \end{array}\right) + Z_3 \left(\begin{array}{c} 1 & 0 \\ 0 & -1 \end{array}\right) + Z_4 \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array}\right) = \left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right)
\left(\begin{array}{c} a_{4}+b_{4}i\right)\left(\begin{array}{c} 0 & 4 \\ 4 & 0 \end{array}\right)+\left(\begin{array}{c} a_{2}+b_{2}i\right)\left(\begin{array}{c} 0 & -i \\ i & 0 \end{array}\right)+\left(\begin{array}{c} a_{3}+b_{3}i\right)\left(\begin{array}{c} 4 & 0 \\ 0 & -4 \end{array}\right)+\left(\begin{array}{c} a_{4}+b_{4}i\right)\left(\begin{array}{c} 4 & 0 \\ 0 & 4 \end{array}\right)=\left(\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}\right)
    Iqualdmos según el principio de iqualdad:
                                                   astibs + au + iby = 0
            a4+164 - azi+62
                                                                                       = 0
           a4+264+a22-62
                                                                                      + 0
                                                 - az-ibz+oy+iby = 0
       Descomponemos el s.E.L por sus partes reales o imaginarias
                                                         \begin{cases}
2b_3 + 2b_4 = 0 & 4/\\
1b_4 - 2a_2 = 0 & 2/\\
1b_4 + 2a_2 = 0 & 3/\\
-1b_3 + 2b_4 = 0 & 4/
\end{cases}
            a3 + a4 = 0 4/
04 + bz = 0 2/
a4 - bz = 0 3/
                                                ٨
          -a3 +a4 = 0 4/
                                                                      2
                                                                         Sol (2)
        501 (1)
                                                                       De 1/1 b3 = - b4
       de 1/ : a3 = -dy
                                                                           a 4//: -i(-b4)+ib4=0
2ib4=0
by=0
         a 4/1-1-aul+dy =0
                               204 = 0
04 = 0
          por lo que ay = a = 0
                                                                                 por lo que by = b3 = 0
                                                                        y De 2/1 d2 = 61
           de 2/1 a, = - bz
            \frac{d}{dx} \frac{3}{1} (-b_2) - b_2 = 0 \\ - 2b_2 = 0 \\ b_2 = 0
                                                                                   a 31 ibati(ba) =0
                                                                                                       2164 = 0
                                                                                                            64 = 0
                                                                                 por lo que b1 = az = 0
                   por lo que bz = 01 = 0.
```

: Como 21 = 22 = 23 = 24 = 0, & es linealmente

independiente.

h) Explore si se pueden construir subespacios vectoriales de matrices reales e imaginarias puras.

A (
$$A \circ O$$
) + B ($O - i$) + C ($A \circ O$) + D ($O \circ A$) = ($2i \circ 22$)

($2i \circ 22$) = ($A + C - iB + D$) = H

($2i \circ 22$) = ($A + C - iB + D$) = H

($2i \circ 22$) = ($A + C \circ B + D$) = H

($2i \circ 22$) = ($A + C \circ B + D$) = H

($2i \circ 22$) = ($A + C \circ B + D$) = H

($2i \circ 22$) = ($2i \circ 22$)

($2i \circ 22$) = H

($2i \circ$

- 2. Considere dos espacios vectoriales de polinomios de grado ≤ 2 , $\mathcal{P}_2(x)$ y $\mathcal{G}_2(y)$. Se puede construir un espacio tesorial a partir de estos espacios vectoriales mediante el producto exterior $\mathcal{T}_2(xy) = \mathcal{P}_2(x) \otimes \mathcal{G}_2(y)$ de tal manera que cualquier polinomio en dos variables puede ser escrito como $\mathcal{T}_2(xy) = c^{ij} \left| \mathbf{e}_i^{\mathcal{P}}, \mathbf{e}_j^{\mathcal{G}} \right\rangle$. Donde $\left\{ \left| \mathbf{e}_i^{\mathcal{P}} \right\rangle \right\}$ corresponden a bases ortogonales para los espacios vectoriales $\mathcal{P}_2(x)$ y $\mathcal{G}_2(y)$, respectivamente.
 - a) Considere el polinomio $p^{\mathcal{P}}(x) = x^2 + x + 3$ y expréselo en término de la base de polinomios de Legendre $\{|e_i^{\mathcal{P}}\rangle\} \leftrightarrow \{|P_i(x)\rangle\}$ (2ptos)

b) Seleccione ahora dos polinomios $p^{\mathcal{P}}(x) = x^2 + x + 3$ y $p^{\mathcal{G}}(y) = y + 1$. Construya el tensor, $p^{\mathcal{P} \otimes \mathcal{G}}(x,y) = p^{\mathcal{P}}(x) \otimes p^{\mathcal{G}}(y)$, mediante el producto exterior de esos polinomios. (2ptos)

c) Elija las bases de monomios $\{1, x, x^2\}$ y $\{1, y, y^2\}$ e identifique las componentes c^{ij} del tensor $p^{\mathcal{P}\otimes\mathcal{G}}(x,y)$ al expandir ese tensor respecto a estas bases en el espacio tensorial $\mathcal{T}_2(xy) = \mathcal{P}_2(x) \otimes \mathcal{G}_2(y)$. (2ptos)

d) Ahora suponga las bases de polinomios de Legendre, $\{|\mathbf{e}_i^{\mathcal{P}}\rangle\} \leftrightarrow \{|P_i(x)\rangle\}$ y $\{|\mathbf{e}_j^{\mathcal{G}}\rangle\}$ \leftrightarrow $\{|P_j(y)\rangle\}$, para $\mathcal{P}_2(x)$ y $\mathcal{G}_2(y)$. Calcule las componentes \tilde{c}^{ij} del tensor $p^{\mathcal{P}\otimes\mathcal{G}}(x,y)$ respecto a estas bases en el espacio tensorial $\mathcal{T}_2(xy) = \mathcal{P}_2(x) \otimes \mathcal{G}_2(y)$. (4ptos)

$$(y+1)x^{2} + (y+1)x + (3y+3) = \tilde{c}^{11}(1) + \tilde{c}^{13}(x) + \tilde{c}^{13}(\frac{1}{2}(3x^{2}-1))$$

$$(y+1)x^{2} + (y+1)x + (3y+3) = \tilde{c}^{11}(1) + \tilde{c}^{12}(x) + \frac{3}{2}x^{2}\tilde{c}^{13}(\tilde{c}^{13}(1))$$

$$(3y+3) = \tilde{c}^{11} = \tilde{c}^{13} - (3y+3) + (y+1) = \tilde{c}^{11} - (3y+10)$$

$$(x^{2} + x + 3)y + (x^{2} + 3) = \tilde{c}^{21}(1) + \tilde{c}^{22}(y) + \tilde{c}^{23}(\frac{1}{2}(3x^{2}-1))$$

$$\tilde{c}^{23} = 0$$

$$\tilde{c}^{23} = x^{2} + x + 3$$

 En un espacio vectorial Minkowskian, M construimos dos bases ortonormales que llamaremos tétrada.

Primero consideraremos una base de vectores "cartesianos" $\{|e_t\rangle, |e_x\rangle, |e_y\rangle, |e_z\rangle\}$ y construimos una tétrada de vectores $\{\mathbf{v} = v^{\alpha} |e_{\alpha}\rangle, \mathbf{k} = k^{\alpha} |e_{\alpha}\rangle, \mathbf{l} = v^{\alpha} |e_{\alpha}\rangle, \mathbf{s} = v^{\alpha} |e_{\alpha}\rangle\}$ con componentes

$$v^{\alpha} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad k^{\alpha} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad l^{\alpha} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{y} \quad s^{\alpha} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

En estas coordenadas cartesianas $(t, x, y, z) \equiv (x^0, x^1, x^2, x^3)$, suponemos ahora un sistema de unidades simplificas con la velocidad de la luz c = 1, y podemos representar el elemento de línea como

$$\mathrm{d}s^2 = \eta_{\alpha\beta}\mathrm{d}x^\alpha\mathrm{d}x^\beta = -\mathrm{d}t^2 + \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2\,.$$

Las componentes del tensor métrico puede ser escritas en términos de la tétrada como

$$\eta_{\alpha\beta} = -v_{\alpha}v_{\beta} + k_{\alpha}k_{\beta} + l_{\alpha}l_{\beta} + s_{\alpha}s_{\beta} .$$

En general, las componentes de los vectores de la tétrada "cartesiana" unitaria satisfacen las condiciones de ortonormalidad $-v_{\alpha}v^{\alpha}=k_{\alpha}k^{\alpha}=l_{\alpha}l^{\alpha}=s_{\alpha}s^{\alpha}=1;$ $v_{\alpha}k^{\alpha}=v_{\alpha}l^{\alpha}=v_{\alpha}s^{\alpha}=k_{\alpha}l^{\alpha}=k_{\alpha}s^{\alpha}=0.$

Igualmente podemos construir una tétrada dual $\left\{ \tilde{\mathbf{v}}^{\star} = \tilde{v}_{\alpha} \langle \tilde{\mathbf{e}}^{\alpha} |, \tilde{\mathbf{k}}^{\star} = \tilde{k}_{\alpha} \langle \tilde{\mathbf{e}}^{\alpha} |, \tilde{\mathbf{l}}^{\star} = \tilde{l}_{\alpha} \langle \tilde{\mathbf{e}}^{\alpha} |, \tilde{\mathbf{s}}^{\star} = \tilde{s}_{\alpha} \langle \tilde{\mathbf{e}}^{\alpha} | \right\}$ para las coordenadas esféricas, $(t, r, \theta, \phi) \equiv (\tilde{x}^{0}, \tilde{x}^{1}, \tilde{x}^{2}, \tilde{x}^{3})$, a partir de una base $\left\{ \langle e^{t} |, \langle e^{r} |, \langle e^{\theta} |, \langle e^{\phi} | \right\} \right\}$

con componentes $\tilde{v}_{\alpha}=(-1,0,0,0)$, $\tilde{k}_{\alpha}=(0,1,0,0)$, $\tilde{l}_{\alpha}=(0,0,r,0)$ y $\tilde{s}_{\alpha}=(0,0,0,r \, {\rm sen} \theta)$, de tal forma que en estas coordenadas representamos el elemento de línea como

$$\mathrm{d}s^2 = \eta_{\alpha\beta}\mathrm{d}x^\alpha\mathrm{d}x^\beta \equiv \mathrm{d}\tilde{s}^2 = \tilde{\eta}_{\alpha\beta}\mathrm{d}\tilde{x}^\alpha\mathrm{d}\tilde{x}^\beta = -\mathrm{d}t^2 + \mathrm{d}r^2 + r^2\mathrm{d}\theta^2 + r^2\sin^2\theta\,\mathrm{d}\phi^2\,.$$

Obviamente

$$\tilde{\eta}_{\alpha\beta} = -\tilde{v}_{\alpha}\tilde{v}_{\beta} + \tilde{k}_{\alpha}\tilde{k}_{\beta} + \tilde{l}_{\alpha}\tilde{l}_{\beta} + \tilde{s}_{\alpha}\tilde{s}_{\beta}.$$

y esta tétrada también cumple con las relaciones de ortogonalidad antes mencionadas.

Las componentes de cualquier vector puede ser escritas en término de combinaciones lineales del la tétrada de la forma

$$a^{\alpha} = a_{v}v^{\alpha} + a_{k}k^{\alpha} + a_{l}l^{\alpha} + a_{s}s^{\alpha} = \tilde{a}_{v}\tilde{v}^{\alpha} + \tilde{a}_{k}\tilde{k}^{\alpha} + \tilde{a}_{l}\tilde{s}^{\alpha} + \tilde{a}_{s}\tilde{s}^{\alpha}.$$

Con todo lo anterior, considere el tensor de Maxwell en coordenadas cartesianas definido como:

$$F_{\mu\alpha} = \begin{pmatrix} 0 & E^x & E^y & E^z \\ -E^x & 0 & -B^z & B^y \\ -E^y & B^z & 0 & -B^x \\ -E^z & -B^y & B^x & 0 \end{pmatrix}, \text{ otra vez con: } \eta_{\mu\nu} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

donde $\mathbf{E} = (E^x, E^y, E^z)$ y $\mathbf{B} = (B^x, B^y, B^z)$ son los campos eléctricos y magnéticos respectivamente, medidos en coordenadas cartesianas por un observador O.

a) A partir de las condiciones de ortogonalidad para la tétrada $\{\tilde{\mathbf{v}}, \tilde{\mathbf{k}}, \tilde{\mathbf{l}}, \tilde{\mathbf{s}}\}$ en coordenadas esféricas, $(t, r, \theta, \phi) \equiv (\tilde{x}^0, \tilde{x}^1, \tilde{x}^2, \tilde{x}^3)$ encontrar sus componentes contravariantes (2ptos).

Recordence) que:
$$a_{\sigma} = N_{A\sigma} \quad A^{\sigma} \quad A$$

$$\tilde{y} = (-1,0,0,0) \\
\tilde{x} = (0,1,0,0) \\
\tilde{y} = (0,0,0,1; sen(0))$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040 \end{pmatrix} \quad (-1,0,0,0) = \begin{pmatrix} A \\ O \\ O \\ O \end{pmatrix}$$

$$+ K\sigma = N_{A\sigma} \quad K^{\phi}$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040 \end{pmatrix} \quad (0,1,0,0) = \begin{pmatrix} O \\ A \\ O \\ O \end{pmatrix}$$

$$+ R\sigma = N_{A\sigma} \quad K^{\phi}$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040 \end{pmatrix} \quad (0,1,0,0) = \begin{pmatrix} O \\ A \\ O \\ O \end{pmatrix}$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040 \end{pmatrix} \quad (0,0,1,1,0) = \begin{pmatrix} O \\ A \\ O \\ O \end{pmatrix}$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040 \\ 0 & 040 \end{pmatrix} \quad (0,0,0,1; sen(0)) = \begin{pmatrix} O \\ O \\ Y \\ S\sigma = N_{A\sigma} \quad S^{\phi}$$

$$= \begin{pmatrix} -4000 \\ 0 & 400 \\ 0 & 040$$

b) Suponga las siguientes componentes cartesiana para un cuadrivector $a^{\alpha}=(5,3,2,1)$ y encuentre las componentes $(\tilde{a}^0,\tilde{a}^1,\tilde{a}^2,\tilde{a}^3)$, en coordenadas esféricas. (2ptos)

o) The encentrar las componentes
$$(\tilde{a}_0, \tilde{a}_1, \tilde{a}_2, \tilde{a}_3)$$
 del coodrivector $\alpha^* = (5, 3, 2, 1)$

• Expresamas α^* como combinación lineal de las componentes contra variantes de la tetrada en coordenadas esperas $\alpha^* = \tilde{a} \tilde{v}_a + \tilde{a} \tilde{\kappa}_a + \tilde{a} \tilde{l}_a + \tilde{a} \tilde{s}_a$

• Vsando las componentes halladas en el Inciso a).

 $\tilde{a}_0 = \tilde{a}^{\mu} \tilde{v}_a = 5(1) + 3(0) + 2(0) + 1(0) = 5$
 $\tilde{a}_1 = \tilde{a}^{\mu} \tilde{k}_a = 5(0) + 3(0) + 2(r) + 1(0) = 2r$
 $\tilde{a}_2 = \tilde{a}^{\mu} \tilde{l}_a = 5(0) + 3(0) + 2(0) + 1(r \sin \theta) = r \sin \theta$
 $\tilde{a}_3 = \tilde{a}^{\mu} \tilde{l}_a = 5(0) + 3(0) + 2(0) + 1(r \sin \theta) = r \sin \theta$

c) Compruebe que, en coordenadas cartesianas, se cumplen las siguientes proyecciones

$$F_{\mu\alpha}v^{\mu}v^{\alpha} = F_{\mu\alpha}k^{\mu}k^{\alpha} = F_{\mu\alpha}l^{\mu}l^{\alpha} = F_{\mu\alpha}s^{\mu}s^{\alpha} = 0;$$

$$F_{\mu\alpha}v^{\mu}k^{\alpha} = E^x; \quad F_{\mu\alpha}v^{\mu}l^{\alpha} = E^y; \quad F_{\mu\alpha}v^{\mu}k^{\alpha} = E^z.$$

Además complete las proyecciones faltantes. (2ptos)

No entendimos el resto...

Nombres:

Camila Valentina Castillo Lopéz - 2221748

Juan David Verano Ramírez - 2221093