Notes du cours génie logiciel

(sessions 4 & 5)

• DFD(formalisme)

• DFD(exemple)

MOF(modèle organisationnel de flux)

Les ellipses représentent des acteurs. Pas de numérotation

Modèle de processus logiciel

Il décrit les processus mis en œuvre dans le cadre du développement logiciel

Règles:

- 2 tâches ne peuvent être reliées par une flèche, elles doivent être séparées par des artefacts.
- Une tâche ne peut être représentée tant que ses artefacts d'entrée n'existent pas.
- Il doit y avoir au moins une tâche de départ et une tâche de fin
- Toutes les tâches doivent être accessibles depuis la tâche de départ.
- Il doit y avoir un trajet depuis chaque tâche jusqu'à la fin.

SADT(caractéristiques):

- Modélisation descendante, modulaire, hiérarchique et structurée.
- Distinction entre les entrées et les contrôles.
- 2 types de modélisation: actigrammes et datagrammes.

Un modèle SADT est composé :

- Des Diagrammes d'activité (actigrammes).
- des diagrammes de données (datagrammes).
- Diagrammes PES(pour explication seulement).
- Un glossaire.
- Des conditions d'activation.

Actigramme:

- Identifié par un verbe d'action
- Génère une donnée en sortie
- Transforme, modifie l'état d'une donnée d'entrée à partir de données de contrôle.

Exemple:

Actigramme « définir méthode de calcul »

Datagramme:

- Identifié par son nom
- Crée à partir des activités génératrices sous le contrôle des activités de contrôle. Une
- Donnée est conservée par l'activité de sortie.
- Les mécanismes expriment pour un datagramme le dispositif de mémorisation des données.

Exemple: datagramme « nombre »

On a plus tendance à utiliser l'actigramme.

Matrice activités/ données:

	D1	D2	•••
A1	E/S/C		
A2			
••••			

E/S/C : entrée, sortie, contrôle

Matrice données/ activités:

	A1	A2	•••
D1			
D2			

G: génératrice

U: utilisatrice

C: contrôle

Schémas:

Conditions d'activation:

On modifie tant que le nombre d'erreurs détectées est inférieur à un nombre déterminé Notation:

A1.(quantité(C1)) ≥ 5

Modifier ne sera activé que si le nombre des erreurs est ≥ 5

Diagramme de structure:

- Les rectangles= les modules.
- Types flèches: appels simples, appels conditionnels, appels répétitifs...
- Petite flèche: correspondent aux flux de données(paramètres, données retournées)

Propriété:

Un module de niveau i est implanté par des modules de niveau i+1 qui lui sont liés.

Fan-in: nombre d'appels entrants(réutilisation de module)

Fan-out : nombre d'appels sortants

Fan-in très grand
→ module fréquent

Fan-out très grand

→grande complexité

Notations:

La flèche en bleu signifie « traite et retourne y

