Statistical Learning HW4

Yaniv Bronshtein

11/28/2021

Import the necessary libraries

```
library(gbm)

## Loaded gbm 2.1.8

library(tree)
library(part)
library(glmnet)

## Loading required package: Matrix

## Loaded glmnet 4.1-2

library(ISLR)
library(superml) #for grid search cu for Q2

## Loading required package: R6

library(caret)

## Loading required package: ggplot2

## Loading required package: lattice
```

Question 1

1. Write a program to implement AdaBoost with trees (Algorithm 10.1). [Hint. The rpart() function has a argument weights, which you need to supply for Step 2(a) of the algorithm. Also, use the control=rpart.control(maxdepth=1) so that a stump is added in each step.] Do the following using your program.

Create a function to compute e

```
compute_e <- function(w, y, y_pred){
  return(sum(w*(y != y_pred)) / sum(w))
}</pre>
```

Create a function to compute alpha

```
compute_alpha <- function(e){
  return(log((1-e)/e))
}</pre>
```

Create a function to update the weights

```
update_weights <- function(w, alpha, y, y_pred){
  return(w*exp(alpha*(y != y_pred)))
}</pre>
```

Create a function to compute the test error

```
compute_test_errors <- function(y, output, n_rounds){
  test_error <- NULL
  for(i in 1:n_rounds){
    test_error <- c(test_error, sum(y != output[i,]) / length(y))
  }
  return(test_error)
}</pre>
```

Ada-boost function

```
adaboost <- function(X_train, X_test, y_train, y_test, tree_depth, n_rounds){</pre>
  #Define the weights. Start with uniform weights
  w <- rep(1/nrow(X_train), nrow(X_train))</pre>
  #This is used for prediction
  classifier <- matrix(0, n_rounds, nrow(X_test))</pre>
  \#Convert \ X\_train \ and \ X\_test \ to \ dataframes
  X_train <- data.frame(X_train)</pre>
  X test <- data.frame(X test)</pre>
  #Train
  alphas <- NULL
  for(i in 1:n_rounds){
    tree <- rpart(y_train ~ ., data=X_train, weights=w, method='class',</pre>
                   control=rpart.control(maxdepth=tree_depth))
    pred_train <- as.integer(as.character(predict(tree, X_train, type='class')))</pre>
    classifier[i,] <- as.integer(as.character(predict(tree, X_test, type='class')))</pre>
    #compute_error() function
    e <- compute_e(w=w, y=y_train, y_pred=pred_train)
    #compute_alpha() function
    alpha <- compute_alpha(e)</pre>
    alphas <- c(alphas, alpha)</pre>
    #update_weights() function
    w <- update_weights(alpha=alpha,w, y=y_train, y_pred=pred_train)
  #Multiply predicted classifier by alpha.
  for(i in 1:n rounds){
    classifier[i,] <- classifier[i,] * alphas[i]</pre>
  }
  #take colsum for each. then take sign()
  output <- ifelse(classifier[1,] < 0, -1, 1)
  for(i in 2:n_rounds){
    output <- rbind(output, ifelse(colSums(classifier[1:i,]) < 0, -1, 1))</pre>
```

```
#get the test classification error
test_errors <- compute_test_errors(y=y_test, output=output, n_rounds=n_rounds)
return(list('Predicted Class' = output, 'Test_Error' = test_errors))
}</pre>
```

Simulate the data

```
set.seed(123)
n.tr=2000; n.te=10000; p=10

X.tr=matrix(rnorm(n.tr*p),nrow=n.tr)
y=apply(X.tr^2,MAR=1,FUN="sum")
y=y>=9.34
y=as.factor(as.numeric(y))
ex1.tr=data.frame(X.tr,y)

X.te=matrix(rnorm(n.te*p),nrow=n.te)
y=apply(X.te^2,MAR=1,FUN="sum")
y=y>=9.34
y=as.factor(as.numeric(y))
ex1.te=data.frame(X.te,y)
```

Create the trees

```
ex1.tree=tree(y~.,ex1.tr)
ex1.tree.pred=predict(ex1.tree,ex1.te,type="class")
test.error.tree=sum(ex1.tree.pred!=ex1.te$y)/n.te

ex1.stump=prune.tree(ex1.tree,best=2,method="deviance")
ex1.stump.pred=predict(ex1.stump,ex1.te,type="class")
test.error.stump=sum(ex1.stump.pred!=ex1.te$y)/n.te
```

Perform boosting

Generate the adaboost plots

```
plot(1:ntree, ex1.boost$Test_Error, type="1", col="orange", xlab="Boosting Iterations", ylab="Test Error
abline(h=test.error.tree,lty=2,col="purple")
abline(h=test.error.stump,lty=2,col="gray")
legend("bottomleft", c("AdaBoost","Stump","21 Node Tree"),
col=c("orange","gray","purple"), lty=c(1,2,2))
```


(b) Investigate the number of iterations needed to make the test error start to rise in the figure above.

Result of investigation led to choosing 1200 rounds

Part c). Function to compute the error rate

```
error.rate=function(m,newdata,ntree){
  err=array(0,c(3,ntree))
  rownames(err)=c("Mis","Exp","Dev")
  for (i in 1:ntree){
   p=dim(newdata)[2]-1
   pp=predict(m,newdata=newdata[,1:p], n.trees=i)
    err[2,i]=mean(exp(-pp*(2*newdata$y-1)))
   err[3,i]=mean(log(1+exp(-2*pp*(2*newdata$y-1))))
   pp=pp>=0
   pp=as.numeric(pp)
   err[1,i]=mean(pp!=newdata$y)
  }
  err
}
m1=gbm(y~.,data=ex1.tr,distribution="bernoulli",n.trees=ntree,
interaction.depth=1, shrinkage=1, bag.fraction=1)
m2=gbm(y~.,data=ex1.tr,distribution="bernoulli",n.trees=ntree,
interaction.depth=9, shrinkage=1, bag.fraction=1)
m3=gbm(y~.,data=ex1.tr,distribution="bernoulli",n.trees=ntree,
interaction.depth=19, shrinkage=1, bag.fraction=1)
err1=error.rate(m1,newdata=ex1.te,ntree=ntree)
err2=error.rate(m2,newdata=ex1.te,ntree=ntree)
err3=error.rate(m3,newdata=ex1.te,ntree=ntree)
par(mar=c(4.5,4.5,.5,.4))
plot(1:ntree, ex1.boost$Test_Error, type="l", col="orange", xlab="Boosting Iterations",
ylab="Test Error" ,ylim=c(0,0.5))
lines(1:ntree,err1[1,],type="l",col="purple")
lines(1:ntree,err2[1,],type="l",col="gray")
lines(1:ntree,err3[1,],type="1",col="blue")
legend("topright", c("AdaBoost", "Stump", "10 Node", "20 Node"),
col=c("orange","purple","gray","blue"), lty=rep(1,4))
```


Question 2

Read in data

```
spam <- read.table('../data/spam.txt')
spam_ind <- read.table('../data/spam_ind.txt')</pre>
```

Perform 50-50 train test split

```
set.seed(123)

train <- sample(1:nrow(spam), 0.5*nrow(spam))
spam_train <- spam[train,]
spam_test <- spam[-train,]
spam_ind_train <- spam_ind[[1]][train]
spam_ind_test <- spam_ind[[1]][-train]</pre>
```

Helper function for tuning

```
get_test_err <- function(gbm_model, spam_test, spam_ind_test){
   gbm_prob <- predict(gbm_model, spam_test, type='response') #get prediction probabilities
   gbm_pred <- rep('0', nrow(spam_test)) #Default 0 classification
   gbm_pred[gbm_prob > .5] <- '1' #Use 0.5 threshold to get 1 classification

confusion_matrix <- table(gbm_pred, spam_ind_test) #Generate confusion matrix
   err <- 1-(confusion_matrix[1]+confusion_matrix[4])/nrow(spam_test) #Get the test error
   return(err)
}</pre>
```

Experiment with various interaction depth values.

```
tune_interaction_depth <- function(){
  test_error <- NULL

for(i in 1:6){
    set.seed(123)

    gbm_model <- gbm(formula=spam_ind_train ~ .,data=spam_train,interaction.depth=i)

    err <- get_test_err(gbm_model, spam_test, spam_ind_test)
    test_error <- c(test_error, err)
  }
  return(test_error)
}</pre>
```

Plot the test Error for interaction depth

xlab='Depth Values',

ylab='Test Error')

axis(1, at=1:6, 1:6)

main='Testing Interaction Depth',

Testing Interaction Depth

note from the above plot that the minimum test error happens at an interaction depth of 1. Thus we will continue using the default value of 1 during our testing of shrinkage

We

Now let us test shrinkage

```
tune_shrinkage <- function(){
  test_error <- NULL
  for(i in 0:5){
    set.seed(123)
    gbm_model <- gbm(spam_ind_train ~ ., data=spam_train, shrinkage=0.1 - 0.02*i)
    err <- get_test_err(gbm_model, spam_test, spam_ind_test)
    test_error <- c(test_error, err)
  }
  return(test_error)
}</pre>
```

Get test errors and plot for varying shrinkage

```
test_error <- tune_shrinkage()

## Distribution not specified, assuming bernoulli ...

## Using 100 trees...

## Using 100 trees...

## Distribution not specified, assuming bernoulli ...

## Using 100 trees...

## Using 100 trees...

## Using 100 trees...

## Using 100 trees...</pre>
```

Testing Shrinkage

on the graph of the test error, the best shrinkage should be 0 but I will use 0.02

Now let us test bag.fraction

```
tune_bag_fraction <- function(){
  test_error <- NULL
  for(i in 1:6){
    set.seed(123)
    gbm_model <- gbm(spam_ind_train ~ .,data=spam_train, shrinkage=0.02,bag.fraction=1-0.1*i)
    err <- get_test_err(gbm_model, spam_test, spam_ind_test)
    test_error <- c(test_error, err)
  }
  return(test_error)
}</pre>
```

Get test errors and plot for varying bag.fraction

```
test_error <- tune_bag_fraction()</pre>
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli \dots
## Using 100 trees...
plot(test_error,
     type='b',
     xaxt = 'n',
     xlab='Bag fraction value',
     ylab='Test Error',
     main='Testing Bag Fraction')
axis(1, at=1:6, labels=c(0.9, 0.8, 0.7, 0.6, 0.5, 0.4))
```

Testing Bag Fraction

generate plot

```
plot(test_error, type='b', xaxt = 'n', xlab='Bag Fraction', ylab='Test Error')
axis(1, at=1:5, labels=c(0.9, 0.8, 0.7, 0.6, 0.5))

O O O
```


Based on the plot, I will set the bag.fraction to 0.9

Now let us test the final parameter of n.trees

```
tune_ntrees <- function(){</pre>
  test_error <- NULL</pre>
  for(i in 0:3){
    set.seed(123)
    gbm_model <- gbm(spam_ind_train ~ .,</pre>
                       data=spam_train,
                       shrinkage=0.02,
                       bag.fraction=0.9,
                       n.trees=100 + 300*i
    err <- get_test_err(gbm_model, spam_test, spam_ind_test)</pre>
    test_error <- c(test_error, err)</pre>
  }
  return(test_error)
}
test_error <- tune_ntrees()</pre>
## Distribution not specified, assuming bernoulli ...
## Using 100 trees...
## Distribution not specified, assuming bernoulli ...
## Using 400 trees...
## Distribution not specified, assuming bernoulli ...
## Using 700 trees...
```

Tuning Number of Iterations

on the results of the plot, I will stick to using 100 trees

Let us fit the final optimal model

[1] 0.3289874

Now let's try logistic regression

```
lr_model <- glm(spam_ind_train ~ ., data=spam_train, family='binomial')</pre>
lr_test_err <- get_test_err(lr_model, spam_test, spam_ind_test)</pre>
lr_test_err
## [1] 0.3311604
And now SVM
svm_model <- glm(spam_ind_train ~ ., data=spam_train, family='binomial')</pre>
lr_test_err <- get_test_err(lr_model, spam_test, spam_ind_test) #can recycle helper from before</pre>
lr_test_err
## [1] 0.3311604
svm_model <- svm(spam_ind_train ~ .,</pre>
                data=spam_train,
                kernel='radial',
                probability=TRUE)
svm_prob <- as.numeric(predict(svm_model, spam_test, probability=TRUE))</pre>
svm_pred <- rep('0', nrow(spam_test))</pre>
svm_prob[svm_prob > .5] <- '1'</pre>
confusion_matrix <- table(svm_pred, spam_ind_test)</pre>
svm_test_err <- 1-((confusion_matrix[1] + confusion_matrix[4])/nrow(spam_test))</pre>
svm_test_err
## [1] NA
```

Question 3

 $Note:code\ similar\ to\ textbook$

Relative influence

```
##
                          rel.inf
                  var
## PPERSAUT PPERSAUT 14.80774876
## MKOOPKLA MKOOPKLA
                       9.27926304
## MOPLHOOG MOPLHOOG
                       7.20458021
## MBERMIDD MBERMIDD
                       5.80450799
## ABRAND
              ABRAND
                       4.72082026
## PBRAND
              PBRAND
                       4.67070835
## MGODGE
              MGODGE
                       3.90249875
## MOSTYPE
             MOSTYPE
                       3.70400708
## MINK3045 MINK3045
                       3.51848111
## PWAPART
             PWAPART
                       2.55586639
## MAUT2
               MAUT2
                       2.29814565
## MSKC
                       2.26497001
                MSKC
                MSKA
## MSKA
                       2.13157597
## MGODPR
              MGODPR
                       2.07393754
## MSKB1
               MSKB1
                       1.97512491
## MBERARBG MBERARBG
                       1.94931343
## MINKGEM
             MINKGEM
                       1.83874748
## MAUTO
               MAUTO
                       1.81299626
## MAUT1
               MAUT1
                       1.68260965
## PBYSTAND PBYSTAND
                       1.55339478
## MGODOV
              {\tt MGODOV}
                       1.53431349
## MRELOV
              MRELOV
                       1.38890523
## MBERHOOG MBERHOOG
                       1.38336457
## MFWEKIND MFWEKIND
                       1.36597373
## MOPLMIDD MOPLMIDD
                       1.12384966
## MFGEKIND MFGEKIND
                       1.05566262
## MINK4575 MINK4575
                       0.99080443
## MINK7512 MINK7512
                       0.98653289
## MRELGE
              MRELGE
                       0.97034935
## MHHUUR
              MHHUUR
                       0.92027440
## MGODRK
              MGODRK
                       0.90829746
## APERSAUT APERSAUT
                       0.84499956
```

```
## MHKOOP
              MHKOOP
                      0.73585266
## PMOTSCO
             PMOTSCO
                      0.60794972
## MINKM30
             MINKM30
                      0.56090709
## MBERBOER MBERBOER
                      0.51425164
## MZFONDS
             MZFONDS
                      0.50093585
## MOSHOOFD MOSHOOFD
                      0.49999606
## MFALLEEN MFALLEEN
                      0.44680656
## MGEMLEEF MGEMLEEF
                      0.43344020
  MBERARBO MBERARBO
                      0.40783627
## MSKD
                MSKD
                      0.35170003
## PLEVEN
              PLEVEN
                      0.30407487
             MGEMOMV
                      0.30297317
## MGEMOMV
## MSKB2
               MSKB2
                      0.26525383
                      0.24063375
## MINK123M MINK123M
## MZPART
              MZPART
                      0.23795909
## MRELSA
              MRELSA
                      0.19430348
                      0.12361145
## MOPLLAAG MOPLLAAG
## MAANTHUI MAANTHUI
                      0.04888925
## MBERZELF MBERZELF
                      0.0000000
## PWABEDR
             PWABEDR
                      0.0000000
## PWALAND
             PWALAND
                      0.00000000
## PBESAUT
             PBESAUT
                      0.0000000
## PVRAAUT
             PVRAAUT
                      0.0000000
## PAANHANG PAANHANG
                      0.0000000
## PTRACTOR PTRACTOR
                      0.0000000
## PWERKT
              PWERKT
                      0.0000000
## PBROM
               PBROM
                      0.0000000
## PPERSONG PPERSONG
                      0.0000000
             PGEZONG
                      0.0000000
## PGEZONG
## PWAOREG
             PWAOREG
                      0.0000000
## PZEILPL
             PZEILPL
                      0.00000000
## PPLEZIER PPLEZIER
                      0.0000000
## PFIETS
              PFIETS
                      0.0000000
## PINBOED
             PINBOED
                      0.0000000
## AWAPART
             AWAPART
                      0.0000000
                      0.0000000
## AWABEDR
             AWABEDR
## AWALAND
             AWALAND
                      0.0000000
## ABESAUT
             ABESAUT
                      0.0000000
## AMOTSCO
             AMOTSCO
                      0.0000000
                      0.00000000
## AVRAAUT
             AVRAAUT
## AAANHANG AAANHANG
                      0.0000000
## ATRACTOR ATRACTOR
                      0.0000000
## AWERKT
              AWERKT
                      0.0000000
## ABROM
               ABROM
                      0.0000000
              ALEVEN
## ALEVEN
                      0.0000000
## APERSONG APERSONG
                      0.0000000
## AGEZONG
             AGEZONG
                      0.0000000
## AWAOREG
             AWAOREG
                      0.0000000
## AZEILPL
             AZEILPL
                      0.0000000
## APLEZIER APLEZIER
                      0.0000000
                      0.00000000
## AFIETS
              AFIETS
## AINBOED
             AINBOED
                      0.0000000
## ABYSTAND ABYSTAND
                      0.0000000
```

Fitting gbm() with n.trees = 1000 shrinkage 0.01, we get predictors appear to be most PPERSAUT, MKOOP-KLA, MOPLHOOG, and MBERMIDD deemed most important

```
gbm_prob <- predict(gbm_model, te, type='response')</pre>
gbm_pred <- rep('No', nrow(Caravan)-1000)</pre>
gbm_pred[gbm_prob > .2] <- 'Yes'</pre>
confusion_matrix <- table(gbm_pred, te$Purchase)</pre>
confusion_matrix
##
## gbm_pred
               No
                   Yes
##
        No 4407
                   254
##
        Yes 126
                    35
cat('Precision:', confusion_matrix[4]/(confusion_matrix[2] + confusion_matrix[4]))
## Precision: 0.2173913
Fraction of people who made the purchase is around 20%
glm_model <- glm(tr$Purchase ~ ., data=tr, family=binomial)</pre>
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
glm_prob <- predict(glm_model, te, type='response')</pre>
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
## prediction from a rank-deficient fit may be misleading
glm_pred <- rep('No', nrow(Caravan)-1000)</pre>
glm_pred[glm_prob > .2] <- 'Yes'</pre>
confusion_matrix <- table(glm_pred, te$Purchase)</pre>
cat('Precision:', confusion_matrix[4]/(confusion_matrix[2] + confusion_matrix[4]))
```

Precision: 0.1421569

Logistic Regression is not nearly as high as boosting. Around half as precise

4. Derive expression (10.12) of ESL for the update of B in Ada Boost

10.11 in the text shows that
$$(e^{B}-e^{-B}) \underset{i=1}{\overset{*}{\succeq}} w_{i}^{(m)} + e^{B} \cdot \underset{y_{i} \neq G(x_{i})}{\overset{*}{\succeq}} w_{i}^{(m)}$$

We are given in (10.9) that:

$$(Bm_1 Gm) = arg min \stackrel{N}{\geq} wi^{(m)} exp(-By_1 G(x_1))$$

Separate:

$$\leq w_i^{(m)} \exp(-\beta) - \leq w_i^{(m)} \exp(\beta) = 0$$
 $y_i = 6(x_i)$
 $y_i = 6(x_i)$

$$\leq w_i^{(m)} \exp(-\beta) = \leq w_i^{(m)} \exp(\beta)$$

 $y_i = 6(x_i)$ $y_i \neq 6(x_i)$

Multiplying	Both Sides b	y e ^B (and thvo	ugh a	series	of steps:	
exp(2	(B)= <u>Ey;=664.</u> Ey;=66x) Wi(m) i) Wi(m)					
	= 1-erm erm	•	*kUb.	anilah	D MY MA	as the	
	- SILW		Minim	ized u	veighted	as the error roter	_
		6	emm= 2	V Wi (m)	Ilyi & Gm W; LW	^J (×))	
				212			
We arrive	at 10.12:	B= = 12 lo	1-erm erm		M		