Linear Recurrence

(1 sec, 512mb)

จงเขียนโปรแกรมเพื่อคำนวณ recurrence relation R(n) จากค่า k, a_0 , a_1 , ..., a_{k-1} , c_1 , c_2 , ..., c_k ที่กำหนดให้ โดย R(n) มีสมการเป็นดังต่อไปนี้

$$R(n) = \begin{cases} c_1 R(n-1) + c_2 R(n-2) + \cdots + c_k R(n-k), & n \ge k \\ a_n, & n < k \end{cases}$$

อย่างไรก็ตาม เนื่องจากค่า R(n) อาจจะมีค่าสูงมาก ๆ จึงให้แสดงค่า R(n) mod 32717 แทน จากตัวอย่างข้างบน หาก k = 2, c1 = c2 = 1, a0 = 0 และ a1 = 1 จะได้ว่า R(n) ก็คือ Fibonacci Number นั่นเอง

อย่าลืมว่า
$$a \cdot b \mod k = ((a \mod k)(b \mod k)) \mod k$$
 และ $a + b \mod k = ((a \mod k) + (b \mod k)) \mod k$

ข้อมูลนำเข้า

- บรรทัดแรกประกอบด้วยจำนวนเต็ม 2 ตัวคือ k และ n
- บรรทัดที่สองประกอบด้วยจำนวนเต็ม k ตัวคือ c_1,\dots,c_k โดยที่ $0\leq c_i\leq 1000$
- บรรทัดที่สามประกอบด้วยจำนวนเต็ม k ตัวคือ a_0 , ... , a_{k-1} โดยที่ $0 \le a_i \le 1000$

ข้อมูลส่งออก

• มีหนึ่งบรรทัด ระบุค่าของ R(n) mod 32717

ชุดข้อมูลทดสอบ

- 10% k = 2, n <= 5
- 15% k = 2, n <= 1,000
- 15% k <= 5, n <= 4
- 15% k <= 5, n <= 20
- 45% k <= 1,000, n <= 1,000

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2 4	424
2 10	
23	
2 892	15200
6 4	
50	
3 4	252
732	
442	
5 16	19462
061018	
0 10 9 0 4	
6 982	408
574995	
526794	