BoxOffice Analytics

Date: April 20, 2016

Prepared By: Akansha K, Bharath CS,

Chirag M, Parth P

Objectives

- Support production houses for prediction of movie success in early stages
- Aid production decisions
 - Pre-Production phase
 - Prediction intervals for ROI's
 - Pre-Release Stage
 - Predictive analytics for movies' revenue
 - Predictive analytics for classification of blockbusters

Data set

Sources

- Movie Lens
 - 1M user ratings
 - 6040 user demographic information
 - o 3952 movies with release year, genre
- 2. Web Scrapping
 - IMDB: Movie Metadata (Cast, Director, Production House, etc.)
 - Box Office Mojo: Financials (Gross Domestic Revenue, Budget)

Data Preparation

- Aggregated movie ratings for all user demographics
- Assigned binary variables for Sequels, Top 30 actors, Directors & Production house
- Grouped similar genres to ease analyses

Pre Production Phase - KMeans ++

Predictions using meta data only

Feature Vector: 13 Covariates

Movie Year	Sequel	Budget	Top Actors	Top Actresses	Top	Directors T	Top Production	Gen	1 Gen	2 G	en 3	Gen	4	Gen	5 Ger	16
Philadelphia 1993	8 0	2.6e+07	1	0		0	0		0	0	0		0		0	1
The Piano, 1993	3 0	7.0e+06	0	1		0	1		0	0	0		0		0	1

Decision Variables

- K: # of Clusters
- Covariates included in Feature Vector
- Similarity Measure

Works well for n >> p!

Cost function for k-means++

Value Proposition of Clustering

Performance of Different Clusters

- Distribution of Revenues & Sequels differ across clusters
- Mean Budgets and Ratings weakly correlated with ROI
- % of Movies with Top Actors don't vary across clusters

Data Transformations for regression

MovieID	Movie	Year	Sequel	Revenue	Budget	Top.30.Actors	Genre1	MAge1	FAge1
1	Toy Story	1995	0	191796233	30000000	1	1	3.83	4.07
2	Jumanji	1995	0	100475249	50000000	1	1	3.05	3.72

After log transformation of Revenue and Budget

Revenue Prediction - Pre Release Phase

- Entire data set is divided into 75% training and 25% test data sets
- Log(Revenue) is regressed against all other variables
- MSE is calculated by predicting performance on test set

Variable	importance	hased on	Random	Forest
variable i	Inpulance	Daseu OII	Namuom	i Oi Coi

Method	MSE
Linear Regression	2.01
Subset Selection	1.98
Ridge	1.98
Lasso	1.99
Trees	2.07
Random Forest	1.56

MSE value is based on log transformation → Back-transformed MSE = e^{MSE}
Approximate error in revenue prediction is 3X
Owing to lesser predictability, we explore other ways to classify revenues!

Blockbuster Prediction- Pre Release Phase

- Blockbuster is defined as a movie with *Return on Investment* more than 2X
- A regression is run on to predict if the movie is a blockbuster or not
- Focus on reducing False Positive Rates (FPR) to reduce classification of not-blockbusters as blockbusters

Method	FPR	DR
Logistic Regression	21.93%	58.16%
Trees	24.56%	56.74%
Random Forest	17.10%	60.28%

Takeaways and Limitations

Pre-production phase

- New movie can be clustered to a batch of older movies
- Range for expected ROI can be predicted at some level of statistical significance

Pre-release phase

- Approximate range of revenue prediction can be provided
- Conservatively, movies can be classified with as blockbuster or not with an accuracy of 75%

Limitations

- Lack of user ratings for various demographics
- Limited availability of revenue and budget introduces bias
- Revenues includes only domestic box office collection

Future Work

- Use budget allocation data for promoting movies to specific populations based on demographic data
- Use marketing mix data for allocating budgets for promotion in different media for maximizing returns
- Access cleaner data sets to avoid biases in ratings
- Ease analysis of preference of metadata to specific populations
- Predictive clustering of new movies using KMeans++ or EM techniques for quantifiable results

Please reach out in case you turn to Film Production!

THANK YOU!