

Konnektivität im Gehirn

Lutz Althüser, Tobias Frohoff-Hülsmann, Victor Kärcher, Lukas Splitthoff, Timo Wiedemann

Unterstützt durch: Christian Himpe

Überblick

Motivation und Ziel

DCM Modelle
Lineares Modell
Bilineares Modell
Hämodynamisches Modell

Numerische Methoden Euler-Verfahren Runge-Kutta-Verfahren (4. Ordnung)

Numerische Simulation 2-Regionen-System

Literatur

```
from programs import RK4 as RK4
         from programs import Euler as RK1
         from programs import hemodynamicModel as HM
         from programs import bilinearModel as BM
          Parameter Beispiel 1
       T = 100.
       t0 = 0.
       dt = 0.1
                                    # Endzeit
       t = np.arange(t0,T+dt,dt)
                                    # Anfangszeit
                                    # Zeitschrittlaenge
      A = np.array([[-1.,0.,0.],
                                   # Zeitarray
                    [0.3,-1,0.2],
                   [0.6,0.,-1.]]) # Kopplung
     B1 = np.zeros((3,3))
    B2 = np.array([[0 , 0, 0 ],
                                  # Induzierte Kopplung
                   [0.1, 0, 0 ]])
         np.array([B1, B2])
                                 # Zusammenfassen der ind. Kopplung in ein Ar
                                # äußerer Einfluss auf Hirnaktivität
                   (B), len(t)))
  u[1,451:550] = 2.
                               # Stimulus u1
 u[1,251:350] = 5.
 u[1, 691:910] = 2.
                              # Stimulus u2
                              # Stimulus u2
 # Anfangsbedingunden
                              # Stimulus u2
x 0 = np.ones(15)
x_0[0:6] = 0.
# Zusammenfassen der Farameter für das "hemodynamicKodel"
```


Einleitung in DCM - <u>Dynamic Causal Modelling</u>

Interaktion zwischen verschiedenen Hirnregionen

Konnektivität im Gehirn

Über die mathematische Modellierung von Interaktionen zwischen mehreren Regionen des Gehirns.

Ziel

Das Aufstellen eines einfachen und realistischen neuronalen Modells aller betrachteten interagierenden Gehirnregionen.

Lineares Modell

Inputs $u \rightarrow \text{Outputs } z \text{ pro Hirnregion}$

 Inputs
 Outputs

 ▶ direkten Input: Stimulation u der Hirnregion
 ▶ neuronale Aktivität in der Hirnregion

 ▶ ...
 ▶ ...

 $\dot{z} = A + Cu$ Vernetzung von

Hirnregionen

Matrix A: Konnektivitätsmatrix - Verschaltung der Hirnregionen Matrix C: Einfluss der Inputs auf die neuronale Aktivität einer Hirnregion

Taylorentwicklung

$$f(z,u)\approx f(0,0)+\tfrac{\partial f}{\partial z}z+\tfrac{\partial f}{\partial u}u+\tfrac{\partial^2 f}{\partial z\partial u}zu$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- ▶ Dynamik und

Konnektivitat durch drei

Taylorentwicklung

$$f(z, u) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- ▶ Dynamik und

Konnektivität durch dre

Taylorentwicklung

$$f(z, u) \approx f(0, 0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z} = (A + \sum_{i} u_{i} B^{(i)}) z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Mathematische Beschreibung

- Modellierung basierend auf Taylorentwicklung
- ▶ Dynamik und

Konnektivitat durch drei

Parameter A, B, C

- ► A: feste Verknüpfung der Hirnregionen
- ▶ B: Einfluss des Inputs auf Konnektivität
- ► C: Einfluss des Inputs auf neuronale Aktivität der Hirnregionen

Taylorentwicklung

$$f(z,u) \approx f(0,0) + \frac{\partial f}{\partial z}z + \frac{\partial f}{\partial u}u + \frac{\partial^2 f}{\partial z \partial u}zu$$

Bsp: Aktivität der Region 1

$$\dot{z}_1 = a_{11}z_1 + a_{12}z_2 + a_{13}z_3 + u_2b_{13}^{(2)} + c_{11}u_1$$

$$\dot{z} = (A + \sum_{i} u_{i}B^{(i)})z + Cu$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & b_{13} \\ 0 & 0 & b_{23} \\ 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Vergleichbarkeit

Bilineare Modell \Rightarrow Gehirnaktivitäten $z_i(t)$

Experiment (funktionelle MRT) \Rightarrow BOLD-Signal/Kontrast $y_i(t)$ \approx Sauerstoffgehalt der roten Blutkörperchen

Hämodynamisches Modell

4 biophysikalische Zustandsvariablen übermitteln $z_i(t) \rightarrow y_i(t)$:

 $s_i(t)$: Zusammenfassung mehrerer neurogener Signale

 $f_i^{in}(t)$: (sauerstoffreicher) Blutzufluss

 $v_i(t)$: Venenvolumen

 $q_i(t)$: Desoxyhämoglobinmenge

Biophysikalisch:

$$\begin{split} \dot{s}_{i} &= z_{i} - \kappa s_{i} - \gamma (f_{i}^{in} - 1) \\ \dot{f}_{i}^{in} &= s_{i} \\ \dot{v}_{i} &= \frac{1}{\tau} (f_{i}^{in} - f_{i}^{out}) = \frac{1}{\tau} (f_{i}^{in} - v_{i}^{1/\alpha}) \\ \dot{q}_{i} &= \frac{1}{\tau} (f_{i}^{in} E_{i} / \rho - f_{i}^{out} q_{i} / v_{i}) \end{split}$$

$$y_i = V_0(k_1(1-q_i) + k_2(1-q_i/v_i) + k_3(1-v_i))$$

Euler-Verfahren

explizites Verfahren

Runge-Kutta-Verfahren (4. Ordnung)

Analyse der effektiven Konnektivität

Simulation eines 2-Regionen-Systems

$$\dot{z} = \left(A + \sum_{j} u_{j} B^{j}\right) z + Cu$$

$$A = \begin{pmatrix} -1 & 0 \\ 0.5 & -1 \end{pmatrix}$$
 $B_1 = 0$ $B_2 = \begin{pmatrix} 0 & 0 \\ 0.8 & 0 \end{pmatrix}$ $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Vielen Dank für die Aufmerksamkeit!

Literatur

► Dynamic causal modelling

K.J. Friston et al. / NeuroImage 0 (2003)

web.mit.edu/swg/ImagingPubs/connectivity/Dcm_Friston.pdf