MAE3145: Homework 2

Due date: October 5, 2016

Problem 1 The relative motion of the two-body problem is described by

$$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r}.\tag{1}$$

The specific angular momentum \vec{h} and the eccentricity \vec{e} are defined as follows:

$$\vec{h} = \vec{r} \times \vec{v}, \quad \vec{e} = \frac{\vec{v} \times \vec{h}}{\mu} - \frac{\vec{r}}{r}.$$

In class, we found that \vec{h} is fixed, i.e. $\dot{\vec{h}} = 0$. Here, we wish to show \vec{e} is fixed according to the following steps:

- (a) Using (1), show that $\frac{d}{dt}(\vec{v} \times \vec{h}) = -\frac{\mu}{r^3}\vec{r} \times \vec{h}$.
- (b) Using the definition of \vec{h} , show that $\frac{1}{r^3}\vec{r}\times\vec{h}=\frac{\vec{r}\dot{r}-\dot{\vec{r}}r}{r^2}$. (Hint: $\vec{a}\times(\vec{b}\times\vec{c})=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c},\ \vec{r}\cdot\vec{r}=r^2$, and $\vec{r}\cdot\dot{\vec{r}}=r\dot{r}$).
- (c) Show that $\frac{d}{dt}\frac{\vec{r}}{r} = -\frac{\vec{r}\vec{r} \dot{\vec{r}}\vec{r}}{r^2}$.
- (d) By combining the results of parts (a), (b), and (c), show that $\frac{d}{dt}\vec{e}=0$, i.e, the eccentricity vector is fixed.

Problem 2 A satellite is on an elliptic orbit around the Earth with a perigee radius of $r_p = 7000 \, \mathrm{km}$ and an apogee radius of $r_a = 70000 \, \mathrm{km}$. Assume that the gravitational parameter and the radius of the Earth are $\mu = 398600 \, \mathrm{km}^3/\mathrm{s}^2$, and $R_E = 6378 \, \mathrm{km}$, respectively. Determine the following parameters (specify units in km, sec, degree).

- (a) eccentricity e
- (b) period T
- (c) specific energy \mathcal{E}
- (d) true anomaly θ at which the altitude is $1000 \, \mathrm{km}$.
- (e) velocity v_r, v_θ at the point found in part (d).

Problem 3 The specific energy and angular momentum of several asteroids heading toward the Earth have been measured as follows:

Asteroid	$\mathcal{E} (\mathrm{km}^2/\mathrm{s}^2)$	$h (\mathrm{km^2/s})$
1	1	1×10^5
2	100	1×10^5
3	0	7×10^{4}
4	0	8×10^{4}
5	10	8×10^{4}

We wish to determine whether any asteroid is likely to hit the Earth. The trajectory of an asteroid is assumed to be the solution of the two-body problem of the asteroid and the Earth, where $\mu_E=398600\,\mathrm{km^3/s^2}$.

(a) Using the fact that \mathcal{E} and h are conserved, show that the distance at the periapsis r_p satisfies the following quadratic equation:

$$2\mathcal{E}\,r_p^2 + 2\mu_E\,r_p - h^2 = 0. \tag{2}$$

(Hint: at the periapsis, h = rv since \vec{r} is perpendicular to \vec{v} .)

(b) Calculate r_p for all asteroids, and determine which asteroid will hit the surface of the Earth: an asteroid will hit the Earth if $r_p < R_E = 6378$ km.

(Hint: In Matlab, the quadratic equation $ax^2 + bx + c = 0$ can be solved by the command roots ([a b c]).)

- (c) For each asteroid that hits the surface of the Earth, calculate its impact velocity at the surface of the Earth. (Note: the impact velocity is not same as the velocity at the periapsis.)
- (d) For each asteroid that does not hit the surface of the Earth, calculate its velocity when it is closest to the Earth.