```
SEQUENCE LISTING
     <110> Dubin, Adrienne E
           Huvar, Arne
           Erlander, Mark G
 5
           Glass, Charles A
     <120> DNA encoding Isoforms of the human Vanilloid Receptor
10
     <130> Human VR3 receptors
     <140>
     <141>
15
     <160> 17
     <170> PatentIn Ver. 2.1
     <210> 1
20
     <211> 26
     <212> DNA
     <213> Artificial Sequence
25
     <223> Description of Artificial Sequence:
           Oligonucl eotide
     <400> 1
                                                                          26
30
     accggcctat cctctttgac atcgtg
     <210> 2
     <211> 25
35
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
40
           Oligonucl eotide
     <400> 2
                                                                          25
     tgtccgcctt cttgtggggg ttctc
45
     <210> 3
     <211> 48
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
           Oligonucl eotide
55
```

	<400> 3 aacgttggta c	ecge caccat	ggcggattcc	agcgaa ggcc	acagaga g		48
5							
10	<210> 4 <211> 39 <212> DNA <213> Artifi	icial Seque	nce				
4.5	<220> <223> Descri	iption of A nucleotide	rtificial S	equence:			
15	<400> 4 taaagcggcc g	gett caggag	ggaca tcggt	gagcet cac			39
20	<210> 5 <211> 2616						
25	<212> DNA <213> Homo	sapi ens					
23	<400> 5 atggcggatt	ccag cgaagg	ccccc gcgcg	gggccc gggg	aggtggc tga	gctccccg gg	60
30	gatgagagtg	gcac cccagg	tgggg aggct	tttcct ctct	cctccct ggc	caatctgttt	120
30	gagggggagg	atgg ctccct	ttcgc cctca	ccggct gatg	ccagtcgccc	tgctggccca	180
	ggcgatgggc	gaccaaatct	gcgca tgaag	ttccagggcg	ccttccg caa	gggggtgccc	240
35	aaccccatcg	atctgctgga	gtcca cccta	tatgagtcct	cggtggt gcc	tgggccca ag	300
	aaagcaccca	tgga ctcact	gtttgactac	ggcacctatc	gtcaccactc	cagtgacaac	360
	aagaggtgga	ggaa gaagat	catagagaag	cagccg caga	gccccaa agc	ccctgcccct	420
40	cageegeece	ccat cctcaa	agtct tcaac	cggcct atcc	tctttga cat	cgtgtcccgg	480
	ggctccactg	ctga cctgga	cgggc tgctc	ccattcttgc	tgaccca caa	gaaacgcc ta	540
45	actgatgagg	agtt tcgaga	gccat ctacg	gggaagacct	gcctgcc caa	ggccttgctg	600
	aacctgagca	atgg ccgcaa	cgaca ccatc	cctgtg ctgc	tggacat cgc	ggagcgca cc	660
F.2	ggcaacatgc	ggga gttcat	taact cgccc	ttccgt gaca	tctactatcg	aggtcaga ca	720
50	gccctgcaca	tcgc cattga	gcgtcgctgc	aaacac tacg	tggaact tct	cgtggccc ag	780
		+ aan aaaaa	agaga at aga	cacttettee	ageceaa gga	taaaaaaaaac	840

	tacttctact	ttggggagct	gcccc tgtcg	ctggct gcct	gcaccaa cca	gccccacatt	900
	gtcaactacc	tgacggagaa	ccccacaag	aaggcggaca	tgcggcgcca	ggactcgcga	960
5	ggcaacacag 1020	tgct gcatgc	gctgg tggcc	attgct gaca	. acacccgtga	gaacaccaag	
	tttgttacca 1080	agat gtacga	cctgctgctg	ctcaagtgtg	cccgcct ctt	ccccgacagc	
10	aacctggagg 1140	ccgtgctcaa	caacg acggc	ctctcg cccc	tcatgat ggc	tgccaaga cg	
	1200					ggacacacgg	
	1260					gctttatgac	
15	1320					ggtgtacaac	
	1380				ccatcaa tga		
20	1440				acgtggt ctc		
	1500				tggaggg cac		
0.5	1560				aggtcat tac		
25	1620				tgaagaa atg		
	1680				tcatcta ctc		
30	1740	`			acctggccgt		
	1800				gtgggct gaa		
35	1860				ttttccgatt		
35	1920				ccctcct gaa		
	1980				tgcccactta		
40	2040				ttaagct gac		
	2100				tcttcat cat		
4.5	2160				tcattgccct		
45	2220				agctgcagtg		
	2280				aggcctt ccg		
50	2340				gcaggtggtg		
	2400				tcatcaa cga		
	aagaatgaga 2460	ccta ccagta	ttatggcttc	tegeat aceg	tgggccg cct	ccgcaggg at	

egetggteet eggt ggtace eegeg tggtg gaactgaaca agaactegaa eeeggacgag gtggtggtgc ctctggacag catggggaac ccccgctgcg atggccacca gcagggttac ccccgcaagt ggaggactga tgacgccccg ctctag 2616

<210> 6 10 <211> 3500 <212> DNA <213> Homo sapiens

<400> 6 15 caattgggat ttaaacccag ggactatcca gccccaaagc ccttcccacc acaccaqqtg 60 gcctgtcctg gggccagctc tgcacacagg gcctggtgcc cccggggtgc ttqqqaaqtq 120 gcagggcaga ggtgggccct gtggctgttc tggctcagct tctaaaacaa gagcctctgc 180 20 tgggggcaga ggggccgtga acccctgaaa tgttaggcag ataccctgtg ggagctttgt 240 tetgggatge taagaacege ttgaggattt aagetttgee aetttggete eggageaagg 300 25 gcagaggctg agcagtgcag acgggcctgg ggcaggcatg gcggattcca gcgaaggccc 360 ccgcgcgggg cccggggagg tggctgagct ccccggggat gagagtggca ccccaqqtqq 420 ggaggetttt cctctctcct ccctggccaa tctgtttgag ggggaggatg gctccctttc 480 30 gccctcaccg gctgatgcca gtcgccctgc tggcccaggc gatgggcgac caaatctgcg 540 catgaagttc cagggcgcct tccgcaaggg ggtgcccaac cccatcgatc tgctggagtc 600 35 caccctatat gagt cctcgg tggtg cctgg gcccaa gaaa gcaccca tgg actcactg tt 660 tgactacggc acctatcgtc accactccag tgacaacaag aggtggagga agaagatcat 720 agagaagcag ccgcagagcc ccaaagcccc tgcccctcag ccgcccccca tcctcaaagt 780 40 cttcaaccgg cctatcctct ttgacatcgt gtcccggggc tccactgctg acctggacgg 840 gctgctccca ttcttgctga cccacaagaa acgcctaact gatgaggagt ttcgagagcc 900 atctacgggg aagacctgcc tgcccaaggc cttgctgaac ctgagcaatg gccgcaacga 960 45 caccatccct gtgctgctgg acatcgcgga gcgcaccggc aacatgcggg agttcattaa 1020 ctcgcccttc cgtgacatct actatcgagg tcagacagcc ctgcacatcg ccattgagcg 1080

50 tegetgeaaa caetaegtgg aacttetegt ggeecaggga getgatgtee aegeecagge 1140

ccgtgggcgc ttcttccagc ccaaggatga ggggggctac ttctactttg gggagctgcc 1200

	cctgtcgctg 1260	gctg cctgca	ccaac cagcc	ccacat tgtc	aactacctga	cggagaac cc
	ccacaagaag 1320	gcggacatgc	ggcgc cagga	ctcgcg aggc	aacacag tgc	tgcatgcgct
5	ggtggccatt 1380	gctgacaaca	cccgt gagaa	caccaa gttt	gttacca aga	tgtacgac ct
	gctgctgctc 1440	aagt gtgccc	gcctcttccc	cgacag caac	ctggagg ccg	tgctcaacaa
10	cgacggcctc 1500	tcgc ccctca	tgatg gctgc	caagac gggc	aagattggga	tctttcagca
	catcatccgg 1560	cggg aggtga	cggat gagga	cacacggcac	ctgtcccgca	agttcaagga
	ctgggcctat 1620	gggc cagtgt	attcc tcgct	ttatga cctc	teeteee tgg	acacgtgt gg
15	ggaagaggcc 1680	tccg tgctgg	agatcctggt	gtacaa cagc	aagattgaga	accgccac ga
	1740					agttcggg gc
20	1800				atggtca tct	
	1860				taccgca cca	
	1920				gtcctgt tct	
25	1980				tctctct tca	
	cttccagctg 2040	ctctacttca	tctactctgt	cctggt gatc	gtctcagcag	ccctctacct
30	ggcagggatc 2100	gagg cctacc	tggccgtgat	ggtctt tgcc	ctggtcctgg	gctggatgaa
	2160				tatagca tca	
	2220				ttgctct tca	
35	cgcttcagcc 2280	ctggtctccc	tcctgaaccc	gtgtgccaac	atgaagg tgt	gcaatgagga
	ccagaccaac 2340	tgca cagtgc	ccact taccc	ctcgtgccgt	gacagcg aga	ccttcagcac
40	cttcctcctg 2400	gacctgttta	agctgaccat	cggcat gggc	gacctggaga	tgctgagcag
	caccaagtac 2460	cccgtggtct	tcatcatcct	gctggt gacc	tacatcatcc	tcacctttgt
	gctgctcctc 2520	aaca tgctca	ttgccctcat	gggcga gaca	gtgggcc agg	tctccaagga
45	2580				ctggaca ttg	
	2640				gtcaccg tgg	
50	ggacggcact 2700	cctgaccgca	ggtgg tgctt	cagggt ggat	gaggtga act	ggtctcactg
	2760				aatgaga cct	-
	tggcttctcg 2820	cata ccgtgg	gccgc ctccg	caggga tcgc	tggtcct cgg	tggtaccccg

	cgt 9		gaa (ctga a	acaag	ga a	ctcg	aacc	g gga	acga	ggtg	gtg	gtgc	ctc	tggad	cagcat
		gaaco	ccc (eget	gcgat	g g	ccac	cagca	a ggg	gtta	cccc	cgca	aagt	gga	ggact	gat ga
5	cgc	_	ctc i	tagg	gacto	gc a	gccc	agcc	c cag	gctt	ctct	gcc	cact	cat	ttcta	agtc ca
	gccg		tc a	agca	gtgco	ct t	ctgg	ggtgt	. cc	ccc	acac	ccts	gctti	tgg	CCCC	agag gc
10	gagg 3120		cag 1	tgga	ggtgo	cc a	ggga	ggcc	c cag	ggac	cctg	tggt	.ccc	ctg	gctct	gcctc
	CCC8		gg (ggtg	3333	ct c	ccgg	ccac	c tgt	cctt	gctc	ctat	.gga (gtc	acata	aagc ca
	acg		agc (ccct	ccaco	ct c	aggc	ccca	gcc	cctg	cctc	tcca	attai	ttt	attt	gctctg
15		cag	gaa (gcga (cgtga	ac c	cctg	cccc	a gct	.gga :	acct	ggca	agag	gcc	ttagg	gacc cc
		ccaa	gtg (cact	gadag	gg c	caag	cccc	a gco	ctca	gcct	gcg	cctg	agc	tgcat	geg ee
20		attt	tg 9	gcag	cgtgg	gc a	gctt	tgcaa	a ggg	ggct	gggg	ccct	cgg	cgt	gggg	ccat gc
	ctt (gtg 1	ttct	gtagt	g t	ctgg	gattt	gc	cggt	gctc	aata	aaat	gtt	tatto	cattga
	cggt		aaa a	aaaa	aaaaa	aa										
25		-														
	<211	0> 7 L> 8' 2> PH														
30				sapi	ens											
		0> 7	7 ~~	Com	Cox	Clu	Clar	Dro	λνα	7.1.5	Clar	Pro	Cl v	Glu	Val	7 . 1 a
2.5	меt 1	Ата	Asp	ser	ser 5	GIU	GIÀ	PIO	Arg	10	GIY	PIO	GIY	GIU	15	AIa
35	Glu	Leu	Pro	Gly 20	Asp	Glu	Ser	Gly	Thr 25	Pro	Gly	Gly	Glu	Ala 30	Phe	Pro
40	Leu	Ser	Ser 35	Leu	Ala	Asn	Leu	Phe 40	Glu	Gly	Glu	Asp	Gly 45	Ser	Leu	Ser
	Pro	Ser 50	Pro	Ala	Asp	Ala	Ser 55	Arg	Pro	Ala	Gly	Pro 60	Gly	Asp	Gly	Arg
45	Pro 65	Asn	Leu	Arg	Met	Lys 70	Phe	Gln	Gly	Ala	Phe 75	Arg	Lys	Gly	Val	Pro 80
E 0	Asn	Pro	Ile	Asp	Leu 85	Leu	Glu	Ser	Thr	Leu 90	Tyr	Glu	Ser	Ser	Val 95	Val
50	Pro	Gly	Pro	Lys 100	Lys	Ala	Pro	Met	Asp 105	Ser	Leu	Phe	Asp	Tyr 110	Gly	Thr
55	Tyr	Arg	His 115	His	Ser	Ser	Asp	Asn 120	Lys	Arg	Trp	Arg	Lys 125	Lys	Ile	Ile

	Glu	Lys 130	Gln	Pro	Gln	Ser	Pro 135	Lys	Ala	Pro	Ala	Pro 140	Gln	Pro	Pro	Pro
5	Ile 145	Leu	Lys	Val	Phe	Asn 150	Arg	Pro	Ile	Leu	Phe 155	Asp	Ile	Val	Ser	Arg 160
10	Gly	Ser	Thr	Ala	Asp 165	Leu	Asp	Gly	Leu	Leu 170	Pro	Phe	Leu	Leu	Thr 175	His
10	Lys	Lys	Arg	Leu 180	Thr	Asp	Glu	Glu	Phe 185	Arg	Glu	Pro	Ser	Thr 190	Gly	Lys
15	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
20	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
25	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
				260					265				Arg	270		
30	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
35	305					310					315		Gln			320
40					325					330			Asp		335	
				340					345				Leu	350		
45			355					360					365			Asn
		370					375					380				Gly
50	385					390					395		Glu			400
55	His	Leu	Ser	Arg	Lys 405	Phe	Lys	Asp	Trp	Ala 410	Tyr	Gly	Pro	Val	Tyr 415	Ser

	Ser	Leu	Tyr	Asp 420	Leu	Ser	Ser	Leu	Asp 425	Thr	Cys	Gly	Glu	Glu 430	Ala	Ser
5	Val	Leu	Glu 435	Ile	Leu	Val	Tyr	Asn 440	Ser	Lys	Ile	Glu	Asn 445	Arg	His	Glu
	Met	Leu 450	Ala	Val	Glu	Pro	Ile 455	Asn	Glu	Leu	Leu	Arg 460	Asp	Lys	Trp	Arg
10	Lys 465	Phe	Gly	Ala	Val	Ser 470	Phe	Tyr	Ile	Asn	Val 475	Val	Ser	Tyr	Leu	Cys 480
15	Ala	Met	Val	Ile	Phe 485	Thr	Leu	Thr	Ala	Tyr 490	Tyr	Gln	Pro	Leu	Glu 495	Gly
	Thr	Pro	Pro	Tyr 500	Pro	Tyr	Arg	Thr	Thr 505	Val	Asp	Tyr	Leu	Arg 510	Leu	Ala
20	Gly	Glu	Val 515	Ile	Thr	Leu	Phe	Thr 520	Gly	Val	Leu	Phe	Phe 525	Ile	Thr	Asn
	Ile	Lys 530	Asp	Leu	Phe	Met	Lys 535	Lys	Cys	Pro	Gly	Val 540	Asn	Ser	Leu	Phe
25	Ile 545	Asp	Gly	Ser	Phe	Gln 550	Leu	Leu	Tyr	Phe	Ile 555	Tyr	Ser	Val	Leu	Val 560
30	Ile	Val	Ser	Ala	Ala 565	Leu	Tyr	Leu	Ala	Gly 570	Ile	Glu	Ala	Tyr	Leu 575	Ala
	Val	Met	Val	Phe 580	Ala	Leu	Val	Leu	Gly 585	Trp	Met	Asn	Ala	Leu 590	Tyr	Phe
35	Thr	Arg	Gly 595	Leu	Lys	Leu	Thr	Gly 600	Thr	Tyr	Ser	Ile	Met 605	Ile	Gln	Lys
	Ile	Leu 610	Phe	Lys	Asp	Leu	Phe 615	Arg	Phe	Leu	Leu	Val 620	Tyr	Leu	Leu	Phe
40	Met 625	Ile	Gly	Tyr	Ala	Ser 630	Ala	Leu	Val	Ser	Leu 635	Leu	Asn	Pro	Cys	Ala 640
45	Asn	Met	Lys	Val	Cys 645	Asn	Glu	Asp	Gln	Thr 650	Asn	Cys	Thr	Val	Pro 655	Thr
	Tyr	Pro	Ser	Cys 660	Arg	Asp	Ser	Glu	Thr 665	Phe	Ser	Thr	Phe	Leu 670	Leu	Asp
50	Leu	Phe	Lys 675	Leu	Thr	Ile	Gly	Met 680	Gly	Asp	Leu	Glu	Met 685	Leu	Ser	Ser
	Thr	Lys 690	Tyr	Pro	Val	Val	Phe 695	Ile	Ile	Leu	Leu	Val 700	Thr	Tyr	Ile	Ile
5 5	Leu	Thr	Phe	Val	Leu	Leu	Leu	Asn	Met	Leu	Ile	Ala	Leu	Met	Gly	Glu

705 710 715 720 Thr Val Gly Gln Val Ser Lys Glu Ser Lys His Ile Trp Lys Leu Gln 5 Trp Ala Thr Thr Ile Leu Asp Ile Glu Arg Ser Phe Pro Val Phe Leu Arg Lys Ala Phe Arg Ser Gly Glu Met Val Thr Val Gly Lys Ser Ser 10 760 Asp Gly Thr Pro Asp Arg Arg Trp Cys Phe Arg Val Asp Glu Val Asn 15 Trp Ser His Trp Asn Gln Asn Leu Gly Ile Ile Asn Glu Asp Pro Gly 785 795 Lys Asn Glu Thr Tyr Gln Tyr Tyr Gly Phe Ser His Thr Val Gly Arg 20 Leu Arg Arg Asp Arg Trp Ser Ser Val Val Pro Arg Val Val Glu Leu 825 Asn Lys Asn Ser Asn Pro Asp Glu Val Val Val Pro Leu Asp Ser Met 25 840 Gly Asn Pro Arg Cys Asp Gly His Gln Gln Gly Tyr Pro Arg Lys Trp 30 Arg Thr Asp Asp Ala Pro Leu <210> 8 35 <211> 2436 <212> DNA <213> Homo sapiens <400> 8 40 atggcggatt ccag cgaagg ccccc gcgcg gggccc gggg aggtggctga gctccccg gg 60 gatgagagtg gcaccccagg tggggaggct tttcctctct cctccctggc caatctgttt 120 gagggggagg atggctccct ttcgccctca ccggctgatg ccagtcgccc tgctggccca 180 45 ggcgatgggc gaccaaatct gcgcatgaag ttccagggcg ccttccgcaa gggggtgccc 240 aaccccatcg atctgctgga gtccacccta tatgagtcct cggtggtgcc tgggcccaag 300 50 aaagcaccca tggactcact gtttgactac ggcacctatc gtcaccactc cagtgacaac 360

aagaggtgga ggaagaagat catagagaag cagccgcaga gccccaaagc ccctgcccct 420

cagoegeece ceatecteaa agtetteaac eggeetatee tetttgaeat egtgteeegg 480

ggotocactg otgalootgga ogggotgoto coattottgo tgaloccalcaa galaacgoota 540 actgatgagg agtt tegaga gecat etaeg gggaagaeet geetgeeeaa ggeettgetg 600 5 aacctgagca atggccgcaa cgacaccatc cctgtgctgc tggacatcgc ggagcgcacc 660 ggcaacatgc gggagttcat taactcgccc ttccgtgaca tctactatcg aggtcagaca 720 geoctgeaca tegecattga gegtegetge aaacactaeg tggaacttet egtggeecag 780 10 ggagetgatg teca egecca ggecegtggg egettettee ageccaa gga tgaggggg gc 840 tacttetact ttggggaget geceetgteg etgget geet geaceaacea geeceaeatt 900 15 gteaactacc tgacggagaa cccccacaag aaggcggaca tgcggcgcca ggactcgcga 960 ggcaacacag tgctgcatgc gctggtggcc attgctgaca acacccgtga gaacaccaag 1020 tttgttacca agatgtacga cctgctgctg ctcaagtgtg cccgcctctt ccccgacagc 20 aacctggagg ccgtgctcaa caacgacggc ctctcgcccc tcatgatggc tgccaagacg ggcaagattg agaaccgcca cgagatgctg gctgtggagc ccatcaatga actgctgcgg gacaagtggc gcaagttcgg ggccgtctcc ttctacatca acgtggtctc ctacctgtgt gccatggtca tottcactot cacegootae taceagoogc tggagggcae acegoogtae ccttaccgca ccacggtgga ctacctgcgg ctggctggcg aggtcattac gctcttcact 30 ggggtcctgt tcttcatcac caacatcaaa gacttgttca tgaagaaatg ccctggagtg aattetetet teattgatgg eteetteeag etgetetaet teatetaete tgteetggtg 35 atogtotcag cago cotota cotgg caggg atogaggect acctggcogt gatggtottt gccctggtcc tgggctggat gaatgccctt tacttcaccc gtgggctgaa gctgacgggg acctatagea teatgateea gaagattete tteaaggace titteegatt cetgetegte 40 tacttgetet teatgategg etaegettea geeetggtet eeeteetgaa eeegtgtgee aacatgaagg tgtgcaatga ggaccagacc aactgcacag tgcccactta cccctcgtgc 45 egtgacageg agacetteag cacetteete etggacetgt ttaagetgac categgeatg ggcgacctgg agatgctgag cagcaccaag taccccgtgg tettcatcat cctgctggtg 1920 acctacatea tecteacett tgtgetgete etcaacatge teattgeeet catgggegag 50 acagtgggcc aggtctccaa ggagagcaag cacatctgga agctgcagtg ggccaccacc atcctggaca ttgagcgctc cttccccgta ttcctgagga aggccttccg ctctggggag 2100

55

180

atggtcaccg tgggcaagag ctcggacggc actectgacc gcaggtggtg cttcagggtg 2160 gatgaggtga actggtctca ctggaaccag aacttgggca tcatcaacga ggacccgggc 2220 5 aagaatgaga ceta ceagta ttatggette tegeataceg tgggeegeet cegeagggat 2280 cgctggtcct cggtggtacc ccgcgtggtg gaactgaaca agaactcgaa cccggacgag gtggtggtgc ctctggacag catggggaac ccccgctgcg atggccacca gcagggttac 10 2400 ccccgcaagt ggaggactga tgacgccccg ctctag 2436 15 <210> 9 <211> 811 <212> PRT <213> Homo sapiens 20 <400> 9 Met Ala Asp Ser Ser Glu Gly Pro Arg Ala Gly Pro Gly Glu Val Ala 5 Glu Leu Pro Gly Asp Glu Ser Gly Thr Pro Gly Gly Glu Ala Phe Pro 25 Leu Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Asp Gly Ser Leu Ser 45 30 Pro Ser Pro Ala Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg Pro Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro 35 Asn Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val 90 Pro Gly Pro Lys Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr 40 Tyr Arg His His Ser Ser Asp Asn Lys Arg Trp Arg Lys Lys Ile Ile 120 45 Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro 130 Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg 150 155 50 Gly Ser Thr Ala Asp Leu Asp Gly Leu Leu Pro Phe Leu Leu Thr His 165 Lys Lys Arg Leu Thr Asp Glu Glu Phe Arg Glu Pro Ser Thr Gly Lys

185

is a manual substitution of the contraction of the

	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
5	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
10	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
10	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
15	Leu	Val	Ala	Gln 260	Gly	Ala	Asp	Val	His 265	Ala	Gln	Ala	Arg	Gly 270	Arg	Phe
	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
20	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
25	Thr 305	Glu	Asn	Pro	His	Lys 310	Lys	Ala	Asp	Met	Arg 315	Arg	Gln	Asp	Ser	Arg 320
	Gly	Asn	Thr	Val	Leu 325	His	Ala	Leu	Val	Ala 330	Ile	Ala	Asp	Asn	Thr 335	Arg
30	Glu	Asn	Thr	Lys 340	Phe	Val	Thr	Lys	Met 345	Tyr	Asp	Leu	Leu	Leu 350	Leu	Lys
	Cys	Ala	Arg 355	Leu	Phe	Pro	Asp	Ser 360	Asn	Leu	Glu	Ala	Val 365	Leu	Asn	Asn
35	Asp	Gly 370	Leu	Ser	Pro	Leu	Met 375	Met	Ala	Ala	Lys	Thr 380	Gly	Lys	Ile	Glu
40	Asn 385	Arg	His	Glu	Met	Leu 390	Ala	Val	Glu	Pro	Ile 395	Asn	Glu	Leu	Leu	Arg 400
	Asp	Lys	Trp	Arg	Lys 405	Phe	Gly	Ala	Val	Ser 410	Phe	Tyr	Ile	Asn	Val 415	Val
45	Ser	Tyr	Leu	Cys 420	Ala	Met	Val	Ile	Phe 425	Thr	Leu	Thr	Ala	Tyr 430	Tyr	Gln
	Pro	Leu	Glu 435	Gly	Thr	Pro	Pro	Tyr 440	Pro	Tyr	Arg	Thr	Thr 445	Val	Asp	Tyr
50	Leu	Arg 450	Leu	Ala	Gly	Glu	Val 455	Ile	Thr	Leu	Phe	Thr 460	Gly	Val	Leu	Phe
55	Phe 465	Ile	Thr	Asn	Ile	Lys 470	Asp	Leu	Phe	Met	Lys 475	Lys	Cys	Pro	Gly	Val 480

	Asn	Ser	Leu	Phe	Ile 485	Asp	Gly	Ser	Phe	Gln 490	Leu	Leu	Tyr	Phe	Ile 495	Tyr
5	Ser	Val	Leu	Val 500	Ile	Val	Ser	Ala	Ala 505	Leu	Tyr	Leu	Ala	Gly 510	Ile	Glu
	Ala	Tyr	Leu 515	Ala	Val	Met	Val	Phe 520	Ala	Leu	Val	Leu	Gly 525	Trp	Met	Asn
10	Ala	Leu 530	Tyr	Phe	Thr	Arg	Gly 535	Leu	Lys	Leu	Thr	Gly 540	Thr	Tyr	Ser	Ile
15	Met 545	Ile	Gln	Lys	Ile	Leu 550	Phe	Lys	Asp	Leu	Phe 555	Arg	Phe	Leu	Leu	Val 560
	Tyr	Leu	Leu	Phe	Met 565	Ile	Gly	Tyr	Ala	Ser 570	Ala	Leu	Val	Ser	Leu 575	Leu
20	Asn	Pro	Cys	Ala 580	Asn	Met	Lys	Val	Cys 585	Asn	Glu	Asp	Gln	Thr 590	Asn	Cys
	Thr	Val	Pro 595	Thr	Tyr	Pro	Ser	Cys 600	Arg	Asp	Ser	Glu	Thr 605	Phe	Ser	Thr
25		610		•			Lys 615				-	620	•	-		
30	Met 625	Leu	Ser	Ser	Thr	Lys 630	Tyr	Pro	Val	Val	Phe 635	Ile	Ile	Leu	Leu	Val 640
	Thr	Tyr	Ile	Ile	Leu 645	Thr	Phe	Val	Leu	Leu 650	Leu	Asn	Met	Leu	Ile 655	Ala
35	Leu	Met	Gly	Glu 660	Thr	Val	Gly	Gln	Val 665	Ser	Lys	Glu	Ser	Lys 670	His	Ile
	-	-	675		_		Thr	680			-		685	-		
40		690			J	•	Ala 695		J		•	700				
45	705					710	Thr				715					720
	_				725		His			730			-		735	
50				740			Glu		745					750		
	Thr	Val	Gly 755	Arg	Leu	Arg	Arg	Asp 760	Arg	Trp	Ser	Ser	Val 765	Val	Pro	Arg
55	Val	Val	Glu	Leu	Asn	Lys	Asn	Ser	Asn	Pro	Asp	Glu	Val	Val	Val	Pro

770 775 780

Leu Asp Ser Met Gly Asn Pro Arg Cys Asp Gly His Gln Gln Gly Tyr
785 790 795 800

Pro Arg Lys Trp Arg Thr Asp Asp Ala Pro Leu 805 810

10 <210> 10 <211> 2229 <212> DNA

5

55

1200

ORT-1601

<213> Homo sapiens

15 <400> 10 atggeggatt ceagegaagg ceeeegegeg gggeeegggg aggtggetga geteeeeggg 60 gatgagagtg gcaccccagg tggggaggct tttcctctct cctccctggc caatctgttt 120 20 gagggggagg atggctccct ttcgccctca ccggctgatg ccagtcgccc tgctggccca 180 ggcgatgggc gaccaaatct gcgcatgaag ttccagggcg ccttccgcaa gggggtgccc 240 aaccccatcg atctgctgga gtccacccta tatgagtcct cggtggtgcc tgggcccaag 300 25 aaagcaccca tggactcact gtttgactac ggcacctatc gtcaccactc cagtgacaac 360 aaqaqqtqqa qqaaqaat cataqaqaaq cagccgcaqa gccccaaagc ccctgcccct 420 30 cagoogooco coatootoaa agtottoaac eggeetatee tettiga cat egigteeegg 480 ggetecactg etgacetgga egggetgete ceattettge tgacecacaa gaaaegeeta 540 actgatgagg agtttegaga gccatctaeg gggaagacct gcctgcccaa ggccttgctg 600 35 aacctgagca atggccgcaa cgacaccatc cetgtgctgc tggacatcgc ggagcgcacc 660 ggcaacatga gggagttcat taactcgccc ttccgtgaca tctactatcg aggtcagaca 720 40 geoetgeaca tegecattga gegtegetge aaacactaeg tggaacttet egtggeecag 780 ggagetgatg teeaegeeca ggeeegtggg egettettee ageeeaagga tgagggggge 840 tacttctact ttggggagct gcccctgtcg ctggctgcct gcaccaacca gccccacatt 900 45 gtcaactacc tgacggagaa cccccacaag aaggcggaca tgcggcgcca ggactcgcga 960 gqcaacacag tgctgcatgc gctggtggcc attgctgaca acacccgtga gaacaccaag 50 tttgttacca agatgtacga cctgctgctg ctcaagtgtg cccgcctctt ccccgacagc aacctggagg ccgtgctcaa caacgacggc ctctcgcccc tcatgatggc tgccaagacg

n naisti Mi

ggcaagattg ggat ctttca gcacatcatc cggcgggagg tgacggatga ggacacacgg

cacctgtccc gcaagttcaa ggactgggcc tatgggccag tgtattcctc gctttatgac 1260 ctctcctccc tgga cacgtg tggggaagag gcctccgtgc tggagatcct ggtgtacaac agcaagattg agaa ccgcca cgagatgctg gctgtggagc ccatcaatga actgctgcgg gacaagtggc gcaagttcgg ggccgtctcc ttctacatca acgtggtctc ctacctgtgt 1440 gccatggtca tcttcactct caccgcctac taccagccgc tggagggcac accgccgtac 10 cettacegea ceaeggtgga ctacetgegg etggetggeg aggteattae getetteaet ggggtcctgt tcttcttcac caacatcaaa gacttgttca tgaagaaatg ccctggagtg 1620 15 aattetetet teattgatgg eteetteeag etgetetaet teatetaete tgteetggtg ategteteag eageceteta cetggeaggg ategaggeet acetggeegt gatggtettt gccctggtcc tgggctggat gaatgccctt tacttcaccc gtgggctgaa gctgacgggg acctatagea teatgateea gaagattete tteaaggace tttteegatt cetgetegte tacttgetet teatgategg etaegettea gecetggtet eceteetgaa eeegtgtgee aacatgaagg tgtgcaatga ggaccagacc aactgcacag tgcccactta cccctcgtgc cgtgacagcg agaccttcag caccttcctc ctggacctgt ttaagctgac catcggcatg ggcgacctgg agatgctgag cagcaccaag taccccgtgg tcttcatcat cctgctggtg 30 2100 acctacatca tecteacett tgtgetgete eteaacatge teattgeeet eatgggegag acagtgggec aggtetecaa ggagageaag cacatetgga agetgeagag eggeaggege 2220 35 aggctgtga 2229 <210> 11 <211> 4059 40 <212> DNA <213> Homo sapiens <400> 11 tgtgcaggcc agggagggct ttccagagga gcccagttga gctggaacac cagtggggag 60 45 gagttgacca gcaa aggtgc aggga gggat cagcactttg cactggggag cagagtttgt 120 gcactgggga agtcaactca agtattggag cetcagttte etgttetgta aaatgggtte 180 50 atcatgacag tgtttgatga ggaaaaggac tgccggccta cacagcaagt ccacatggat 240 tttctgagec cctcctgtgc ctgaagccca cggttaatgg ttctgcctta gcaggtgctt 300

11.11

	accacgtgcc	aggcactgca	ctgca ctggc	cactggactg	catgttctgt	ccatgagg ct	360
	tggatatccc	catcttacag	atcag gaagc	tgaggctatg	aaatgtcgac	ttgctcaa tg	420
5						ctccaaagct	
						ttgaccctga	
						ttgtgtttcc	
10						aaccacat ct	
						ctggcagcac	
15						gggttctgcc	
13						gcaggcat gg	
20						cccgggga tg	
						ctgtttgagg	960
	gggaggatgg 1020	ctccctttcg	ccctcaccgg	ctgatgccag	tegecet get	ggcccagg cg	
25	atgggcgacc 1080	aaat ctgcgc	atgaagttcc	agggcg cctt	ccgcaag ggg	gtgcccaa cc	
	ccatcgatct 1140	gctggagtcc	accct atatg	agtcct cggt	ggtgcct ggg	cccaagaaag	
30	cacccatgga 1200	ctca ctgttt	gacta cggca	cctatcgtca	ccactccagt	gacaacaa ga	
	ggtggaggaa 1260	gaagatcata	gagaa gcagc	cgcaga gccc	caaagcc cct	gcccctcagc	
	cgcccccat	cctcaaagtc	ttcaa ccggc	ctatcctctt	tgacatcgtg	tcccggggct	
35		cctggacggg	ctgct cccat	tcttgctgac	ccacaagaaa	cgcctaactg	
		tcga gagcca	tctacgggga	agacct gcct	gcccaaggcc	ttgctgaacc	
40		ccgc aacgac	accat ccctg	tgctgc tgga	catcgcg gag	cgcaccgg ca	
		gttcattaac	tcgcccttcc	gtgaca tcta	ctatcga ggt	cagacagc cc	
		catt gagcgt	cgctg caaac	actacg tgga	acttctcgtg	gcccaggg ag	
45		egee caggee	cgtgg gcgct	tcttccagcc	caaggat gag	gggggcta ct	
		ggag ctgccc	ctgtcgctgg	ctgcct gcac	caaccag ccc	cacattgt ca	
50	_ · - ·	ggagaacccc	cacaa gaagg	cggaca tgcg	gcgccag gac	tcgcgagg ca	
J (gcat gcgctg	gtggc cattg	ctgaca acac	ccgtgagaac	accaagtt tg	
		gtacgacctg	ctgctgctca	agtgtgcccg	cctcttc ccc	gacagcaa cc	

tggaggccgt gctcaacaac gacggcctct cgcccctcat gatggctgcc aagacgggca 1980 agattgggat ctttcagcac atcatccggc gggaggtgac ggatgaggac acacggcacc 2040 tgtcccgcaa gttcaaggac tgggcctatg ggccagtgta ttcctcgctt tatgacctct cctccctgga cacgtgtggg gaagaggcct ccgtgctgga gatcctggtg tacaacagca agattgagaa ccgccacgag atgctggctg tggagcccat caatgaactg ctgcgggaca 10 agtggcgcaa gttcggggcc gtctccttct acatcaacgt ggtctcctac ctgtgtgcca tggtcatctt cactctcacc gcctactacc agccgctgga gggcacaccg ccgtaccctt accgcaccac ggtggactac ctgcggctgg ctggcgaggt cattacgctc ttcactgggg 15 tectgttett etteaceaac ateaaagaet tgtteatgaa gaaatgeeet ggagtgaatt ctctcttcat tgatggctcc ttccagctgc tctacttcat ctactctgtc ctggtgatcg teteageage cetetacetg geagggateg aggeetacet ggeegtgatg gtetttgeee tggtcctggg ctggatgaat gccctttact tcacccgtgg gctgaagctg acggggacct atagcatcat gate cagaag attetettea aggacetttt cegatteetg etegtetaet tgctcttcat gatcggctac gcttcagccc tggtctccct cctgaacccg tgtgccaaca tgaaggtgtg caatgaggac cagaccaact gcacagtgcc cacttacccc tcgtgccgtg 30 acagcgagac cttcagcacc ttcctcctgg acctgtttaa gctgaccatc ggcatgggcg acctggagat gctgagcagc accaagtacc ccgtggtett catcatcctg ctggtgacct acatcatect cacettigtg etgetectea acatgeteat tgeceteatg ggegagaeag 35 tgggccaggt ctccaaggag agcaagcaca tctggaagct gcagagcggc aggcgcaggc tgtgaggete acegatgtee etectgacee teecteeceg cagtgggeca ecaccateet 40 3120 ggacattgag egeteettee eegtatteet gaggaaggee tteegetetg gggagatggt caccgtgggc aagagctcgg acggcactcc tgaccgcagg tggtgcttca gggtggatga 3240 ggtgaactgg tctcactgga accagaactt gggcatcatc aacgaggacc cgggcaagaa tgagacetae eagtattatg gettetegea tacegtggge egecteegea gggategetg gtcctcggtg gtaccccgcg tggtggaact gaacaagaac tcgaacccgg acgaggtggt 50 3420 ggtgcctctg gacagcatgg ggaacccccg ctgcgatggc caccagcagg gttacccccg caagtggagg actgatgacg ccccgctcta gggactgcag cccagcccca gcttctctgc 3540

ccactcattt ctagtccage egeatttcag cagtgccttc tggggtgtcc ccccacaccc tgctttggcc ccag aggcga gggaccagtg gaggtgccag ggaggcccca ggaccctgtg gtcccctggc tctgcctccc caccctgggg tgggggctcc cggccacctg tcttgctcct atggagtcac ataagccaac gccagagccc ctccacctca ggccccagcc cctgcctctc cattatttat ttgctctgct ctcaggaagc gacgtgaccc ctgccccagc tggaacctgg 10 cagaggeett aggaceeegt teeaagtgea etgeeeggee aageeeeage eteageetge geotgagetg catglegecal cattlettgge agegtggeag etttgealagg ggetgggglee 3960 ctcggcgtgg ggccatgcct tctgtgtgtt ctgtagtgtc tgggatttgc cggtgctcaa taaatgttta ttcattgacg gtggaaaaaa aaaaaaaaa 4059 20 <210> 12 <211> 742 <212> PRT <213> Homo sapiens 25 <400> 12 Met Ala Asp Ser Ser Glu Gly Pro Arg Ala Gly Pro Gly Glu Val Ala Glu Leu Pro Gly Asp Glu Ser Gly Thr Pro Gly Gly Glu Ala Phe Pro 25 Leu Ser Ser Leu Ala Asn Leu Phe Glu Gly Glu Asp Gly Ser Leu Ser 35 Pro Ser Pro Ala Asp Ala Ser Arg Pro Ala Gly Pro Gly Asp Gly Arg Pro Asn Leu Arg Met Lys Phe Gln Gly Ala Phe Arg Lys Gly Val Pro 40 70 Asn Pro Ile Asp Leu Leu Glu Ser Thr Leu Tyr Glu Ser Ser Val Val 90 45 Pro Gly Pro Lys Lys Ala Pro Met Asp Ser Leu Phe Asp Tyr Gly Thr Tyr Arg His His Ser Ser Asp Asn Lys Arg Trp Arg Lys Lys Ile Ile 50 Glu Lys Gln Pro Gln Ser Pro Lys Ala Pro Ala Pro Gln Pro Pro Pro 130 135 Ile Leu Lys Val Phe Asn Arg Pro Ile Leu Phe Asp Ile Val Ser Arg 55 150 155

	Gly	Ser	Thr	Ala	Asp 165	Leu	Asp	Gly	Leu	Leu 170	Pro	Phe	Leu	Leu	Thr 175	His
5	Lys	Lys	Arg	Leu 180	Thr	Asp	Glu	Glu	Phe 185	Arg	Glu	Pro	Ser	Thr 190	Gly	Lys
10	Thr	Cys	Leu 195	Pro	Lys	Ala	Leu	Leu 200	Asn	Leu	Ser	Asn	Gly 205	Arg	Asn	Asp
	Thr	Ile 210	Pro	Val	Leu	Leu	Asp 215	Ile	Ala	Glu	Arg	Thr 220	Gly	Asn	Met	Arg
15	Glu 225	Phe	Ile	Asn	Ser	Pro 230	Phe	Arg	Asp	Ile	Tyr 235	Tyr	Arg	Gly	Gln	Thr 240
	Ala	Leu	His	Ile	Ala 245	Ile	Glu	Arg	Arg	Cys 250	Lys	His	Tyr	Val	Glu 255	Leu
20	Leu	Val	Ala	Gln 260	Gly	Ala	Asp	Val	His 265	Ala	Gln	Ala	Arg	Gly 270	Arg	Phe
25	Phe	Gln	Pro 275	Lys	Asp	Glu	Gly	Gly 280	Tyr	Phe	Tyr	Phe	Gly 285	Glu	Leu	Pro
~3	Leu	Ser 290	Leu	Ala	Ala	Cys	Thr 295	Asn	Gln	Pro	His	Ile 300	Val	Asn	Tyr	Leu
30	Thr 305	Glu	Asn	Pro	His	Lys 310	Lys	Ala	Asp	Met	Arg 315	Arg	Gln	Asp	Ser	Arg 320
	Gly	Asn	Thr	Val	Leu 325	His	Ala	Leu	Val	Ala 330	Ile	Ala	Asp	Asn	Thr 335	Arg
35	Glu	Asn	Thr	Lys 340	Phe	Val	Thr	Lys	Met 345	Tyr	Asp	Leu	Leu	Leu 350	Leu	Lys
40	Cys	Ala	Arg 355	Leu	Phe	Pro	Asp	Ser 360	Asn	Leu	Glu	Ala	Val 365	Leu	Asn	Asn
	Asp	Gly 370	Leu	Ser	Pro	Leu	Met 375	Met	Ala	Ala	Lys	Thr 380	Gly	Lys	Ile	Gly
45	Ile 385	Phe	Gln	His	Ile	Ile 390	Arg	Arg	Glu	Val	Thr 395	Asp	Glu	Asp	Thr	Arg 400
	His	Leu	Ser	Arg	Lys 405	Phe	Lys	Asp	Trp	Ala 410	Tyr	Gly	Pro	Val	Tyr 415	Ser
50	Ser	Leu	Tyr	Asp 420	Leu	Ser	Ser	Leu	Asp 425	Thr	Cys	Gly	Glu	Glu 430	Ala	Ser
55	Val	Leu	Glu 435	Ile	Leu	Val	Tyr	Asn 440	Ser	Lys	Ile	Glu	Asn 445	Arg	His	Glu

	70. 5	7	71 T	**- 7	~ 7	D	T 7 -	3	0 3	T		3	7	T	m	7
	Met	ьеи 450	Ala	Val	Glu	Pro	11e 455	Asn	Glu	Leu	Leu	Arg 460	Asp	ьys	Trp	Arg
5	Lys 465	Phe	Gly	Ala	Val	Ser 470	Phe	Tyr	Ile	Asn	Val 475	Val	Ser	Tyr	Leu	Cys 480
	Ala	Met	Val	Ile	Phe 485	Thr	Leu	Thr	Ala	Tyr 490	Tyr	Gln	Pro	Leu	Glu 495	Gly
10	Thr	Pro	Pro	Tyr 500	Pro	Tyr	Arg	Thr	Thr 505	Val	Asp	Tyr	Leu	Arg 510	Leu	Ala
1.5	Gly	Glu	Val 515	Ile	Thr	Leu	Phe	Thr 520	Gly	Val	Leu	Phe	Phe 525	Phe	Thr	Asn
15	Ile	Lys 530	Asp	Leu	Phe	Met	Lys 535	Lys	Cys	Pro	Gly	Val 540	Asn	Ser	Leu	Phe
20	Ile 545	Asp	Gly	Ser	Phe	Gln 550	Leu	Leu	Tyr	Phe	Ile 555	Tyr	Ser	Val	Leu	Val 560
	Ile	Val	Ser	Ala	Ala 565	Leu	Tyr	Leu	Ala	Gly 570	Ile	Glu	Ala	Tyr	Leu 575	Ala
25	Val	Met	Val	Phe 580	Ala	Leu	Val	Leu	Gly 585	Trp	Met	Asn	Ala	Leu 590	Tyr	Phe
	Thr	Arg	Gly 595	Leu	Lys	Leu	Thr	Gly 600	Thr	Tyr	Ser	Ile	Met 605	Ile	Gln	Lys
30	Ile	Leu 610	Phe	Lys	Asp	Leu	Phe 615	Arg	Phe	Leu	Leu	Val 620	Tyr	Leu	Leu	Phe
35	Met 625	Ile	Gly	Tyr	Ala	Ser 630	Ala	Leu	Val	Ser	Leu 635	Leu	Asn	Pro	Cys	Ala 640
	Asn	Met	Lys	Val	Cys 645	Asn	Glu	Asp	Gln	Thr 650	Asn	Cys	Thr	Val	Pro 655	Thr
40	Tyr	Pro	Ser	Cys 660	Arg	Asp	Ser	Glu	Thr 665	Phe	Ser	Thr	Phe	Leu 670	Leu	Asp
4.5	Leu	Phe	Lys 675	Leu	Thr	Ile	Gly	Met 680	Gly	Asp	Leu	Glu	Met 685	Leu	Ser	Ser
45	Thr	Lys 690	Tyr	Pro	Val	Val	Phe 695	Ile	Ile	Leu	Leu	Val 700	Thr	Tyr	Ile	Ile
50	Leu 705	Thr	Phe	Val	Leu	Leu 710	Leu	Asn	Met	Leu	Ile 715	Ala	Leu	Met	Gly	Glu 720
	Thr	Val	Gly	Gln	Val 725	Ser	Lys	Glu	Ser	Lys 730	His	Ile	Trp	Lys	Leu 735	Gln
55	Ser	Gly	Arg	Arg	Arg	Leu										

```
<210> 13
     <211> 25
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
10
           oligonucleotide
     <400> 13
                                                                          25
     ctacctgacg gagaaccccc acaag
15
     <210> 14
     <211> 26
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:
           oligonucl eotide
     <400> 14
                                                                          26
     gtagtaggcg gtgagactga agatga
30
     <210> 15
     <211> 51
     <212> DNA
35
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:
           oligonucl eotide
40
     <400> 15
     aacgttggcg gccgcgccac catggcggat tccagcgaag gcccccgcgc g
                                                                         51
45
     <210> 16
     <211> 30
     <212> DNA
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:
           oligonucl eotide
     <400> 16
```

aacgtttcta gactgggctg cagtccctag

30

	,	
5	<210> 17 <211> 233 <212> DNA <213> Artificial Sequence	
10	<220> <223> Description of Artificial Sequence: DNA MicroArray probe	
15	<400> 17 ccaccatcct ggacattgag cgctccttcc ccgtattcct gaggaaggcc ttccgctctg	60
	gggagatggt caccgtgggc aagagctcgg acggcactcc tgaccgcagt ggtgcttcag	12
20	ggtggatgag gtgaactggt ctcactggaa ccagaacttg ggcatcatca acgaggaccc	18
20	gggcaagaat gagacctacc agtattatgg cttctcgcat accgtgggcc gcc	23