

Fondamenti di Elettronica

10 Amplificatori operazionali Non idealità

Enrico Zanoni enrico.zanoni@unipd.it

Effetti di non idealità

- Effetti che agiscono in DC
 - tensione di offset di ingresso
 - o correnti di polarizzazione e di offset in ingresso
 - effetto della tensione di offset e della corrente di offset sull'integratore invertente

Tensione di offset di un opamp reale

Figura 2.28 Modello circuitale per un amplificatore operazionale con *offset* di tensione in ingresso pari a V_{OS} .

In un amplificatore operazionale reale, anche se si connettono v- e v+ assieme e li si pone entrambi a 0 V, la tensione di uscita è diversa da zero a causa della tensione «di offset» dovuta alla non idealità del circuito interno dell'amplificatore operazionale: asimmetrie del circuito differenziale, differenze locali di temperatura, ecc.

La tensione di offset (1-5 mV) dipende dalla temperatura (μ V/°C)

Caratteristica di trasferimento con offset

Figura E2.21 Caratteristica di trasferimento di un op amp con $V_{OS} = 5$ mV.

La tensione di offset può essere così grande da causare la saturazione dell'amplificatore anche in assenza di segnale

Amplificazione della tensione di offset in DC

La tensione di offset all'ingresso viene amplificata all'uscita; si sovrappone alla componente continua del segnale in uscita e limita la massima escursione del segnale AC in ingresso

Compensazione della tensione di offset

Molti amplificatori operazionali hanno terminali appositi per «cancellare» = compensare la tensione di offset. Rimane il problema della dipendenza di V_{OS} dalla temperatura

Filtraggio della tensione di offset

l'amplificazione del segnale DC di offset è pari a UNO.

Se si inserisce un filtro passa alto in ingresso, la tensione di offset (che è una tensione DC) non viene più amplificata. La si ritrova ancora all'uscita, ma invariata rispetto al valore che presenta all'ingresso.

Questo però limita l'utilizzazione del circuito alle basse frequenze.

Correnti di bias

Correnti di bias e di offset: la corrente di ingresso dell'operazionale reale non è nulla

Sono correnti DC; possono essere diverse tra loro: offset in corrente $I_{OS} = I_{B1}-I_{B2}$

Tensione di uscita dovuta alle correnti di bias

Ecco come le correnti di bias si riflettono sulla tensione di uscita in una configurazione invertente

Inserendo R3, l'effetto sulla amplificazione ideale è nullo, ma la tensione dovuta alle correnti di bias cambia : $V_0 = -I_{B2}R_3 + R_2(I_{B1}-I_{B2}(R_3/R_1))$

$$V_0 = -I_{B2}R_3 + R_2(I_{B1}-I_{B2}(R_3/R_1));$$
 hp. $I_{B1}=I_{B2}=I_B$, impongo $V_0 = 0$:

$$V_0 = -I_B R_3 + R_2 I_B (1-R_3/R_1) = I_B (R_2 - R_3 (1+R_2/R_1))$$

quindi basta porre $R_3 = R_2/1 + R_2/R_1 = R_1R_2/(R_1 + R_2)$) cioè $R_3 = R_1//R_2$

$$V_0 = -I_{B2}R_3 + R_2(I_{B1}-I_{B2}(R_3/R_1));$$

hp. I_{B1} è diverso da I_{B2} , ovvero I_{B1} - I_{B2} = I_{OS} ; poniamo I_{B1} = I_{B} + I_{OS} /2 e I_{B2} = I_{B} - I_{OS} /2 \rightarrow V_{0} = -((I_{B} - I_{OS} /2) R_{3} + R_{2} (I_{B} + I_{OS} /2) - (I_{B} - I_{OS} /2) R_{2} ((R_{3} / R_{1}));

ora se poniamo $R_3 = R_1R_2/(R_1+R_2)$) allora $V_0 = I_{OS}R_2$ (piccolo)

dimostrazione

$$\begin{split} &V_0 = -I_{B2}R_3 + R_2(I_{B1}-I_{B2}(R_3/R_1)); \\ &\text{se } I_{B1} \stackrel{.}{\text{e}} \text{ diverso da } I_{B2} \text{ , ovvero } I_{B1} - I_{B2} = I_{OS} \text{ poniamo } I_{B1} = I_B + I_{OS}/2 \text{ e} \\ &I_{B2} = I_B - I_{OS}/2 \stackrel{.}{\rightarrow} \\ &V_0 = -((I_B - I_{OS}/2)R_3 + R_2(I_B + I_{OS}/2) - (I_B - I_{OS}/2)R_2((R_3/R_1)); \\ &\text{ora se poniamo } R_3 = R_1R_2/(R_1+R_2) \\ &\text{diventa} \\ &V_0 = -I_BR_3 - (I_{OS}/2)R_3 + R_2I_B + R_2(I_{OS}/2) - I_B(R_2R_3)/R_1) + (I_{OS}/2) \ (R_2R_3)/R_1); \\ &V_0 = -I_BR_1R_2/(R_1+R_2) + ((I_{OS}/2)R_1R_2)/(R_1+R_2) + \\ &+ R_2I_B + R_2(I_{OS}/2) - I_B(R_2^2)/(R_1+R_2) + (I_{OS}/2)(R_2^2)/(R_1+R_2); \\ &V_0 = I_B(-R_1R_2+R_2^2+R_1R_2-R_2^2)/(R_1+R_2) + \\ &((I_{OS}/2)(R_1R_2+R_2^2+R_1R_2+R_2^2)/(R_1+R_2) + \\ &V_0 = 0 + (I_{OS}/2)(2R_2(R_1+R_2)/(R_1+R_2) = I_{OS}R_2 \\ \\ &\text{allora } V_0 = I_{OS}R_2 \end{split}$$

In un amplificatore accoppiato in AC la resistenza DC vista dal terminale invertente è R2; quindi R3 deve essere scelto uguale ad R2

Disaccoppiamento da offset DC amplificatore non invertente

Deve esserci sempre un cammino DC dall'ingresso dell'operazionale a massa, attraverso il generatore di ingresso o l'uscita dell'operazionale. Se non c'è, l'amplificatore non funziona. Nel caso in figura, la resistenza R_3 da v+ verso massa è essenziale per il funzionamento del circuito

Tensione di offset e circuito integratore

Figura 2.37 Determinazione dell'effetto dell'offset di tensione in ingresso V_{OS} sul circuito integratore di Miller. Si noti che dal momento che l'uscita cresce nel tempo, l'amplificatore operazionale prima o poi satura.

Effetto delle correnti di bias sul circuito integratore

saturazione della tensione di uscita

slew-rate: massima variazione istantanea della tensione di uscita

Figura 2.42 (a) Un amplificatore non invertente con guadagno nominale pari a 10 V/V progettato utilizzando un amplificatore operazionale che satura per tensioni di uscita pari a ± 13 V e presenta un limite per la corrente di uscita di ± 20 mA. (b) Quando la sinusoide di ingresso presenta un picco di 1.5 V, la tensione di uscita viene cimata a ± 13 V.

Slew rate

Figura 2.43 (a) Inseguitore a guadagno unitario. (b) Ingresso a gradino. (c) Uscita crescente linearmente che si ottiene quando l'amplificatore operazionale è limitato dallo *slew rate*. (d) Uscita crescente esponenzialmente che si ottiene quando V è sufficientemente piccolo in modo che la pendenza iniziale $(\omega_t V)$ sia minore o uguale a SR.

Effetto dello slew rate su una tensione di uscita sinusoidale

Figura 2.44 Effetto dello slew rate su una forma d'onda d'uscita sinusoidale.