Database Systems

Functional Dependencies and 3NF

Review: Key

- Superkey
 K → R
- Candidate Key
 K → R
 no K' ⊂ K, s.t. K' → R (minimal最短, 不能再分割出key)
- Primary Key
 - 关系表设计中用于识别元组的候选键

Key

- ❖ Superkey 唯一标识关系表中的属性(集)
- Candidate Key (also called key) A minimal superkey (cannot remove any attribute to make it as a superkey)
- ❖ Primary Key 关系表设计中用于识别元组的候选键

Review: The Closure of FD

- 给定一个FD集合F, 我们可以计算其closure(闭包)
- 阿姆斯特朗公理:
 - Reflexivity
 If X ⊇ Y, then X → Y
 - Augmentation
 If X →Y, then XZ → YZ
 - Transitivity If $X \to Y$, $Y \to Z$, then $X \to Z$
- 衍生规则:
 - Decomposition
 If X → YZ, then X → Y and X → Z
 - Union
 If X → Y and X → Z, then X → YZ
 - Pseudo-transitivity
 If X → Y and WY → Z, then WX → Z

Review: The Closure of Attributes

Definition:

X, Y are attributes of a relation R: $X \rightarrow Y$ is in $F^+ \Leftrightarrow Y \subseteq X^+$

Algorithm:

```
•X^{(0)} := X
•Repeat
X^{(i+1)} := X^{(i)} \cup Z,
where Z is the set of attributes such that there exists Y \rightarrow Z in F, and Y \subset X^{(i)}
•Until X^{(i+1)} := X^{(i)}
•Return X^{(i+1)}
```

Example:

Given R = (loan_no, amount, branch_name, customer_name)

- If loan_no → amount then loan_no+ = {loan_no, amount}
- If we also have loan_no → branch_name
 then loan_no⁺ = {loan_no, amount, branch_name}
- If we also have loan_no → customer_name
 then loan_no+ = {loan_no, amount, branch_name, customer_name}

Review: Canonical Cover 规范覆盖 of FD

Definition:

A canonical cover for F is a set of dependencies F_c such that

- 二者等价
- F_c 冗余
- 每个FD的左侧属性都是唯一的

Algorithm to find canonical cover of F:

```
repeat
```

消除冗余规则:

$$X_1 \rightarrow Y_1$$
 and $X_1 \rightarrow Y_2$ with $X_1 \rightarrow Y_1 Y_2$

Find a functional dependency $X \to Y$ 包含冗余属性,可能是在X侧,也可能在Y侧

Delete it from $X \rightarrow Y$ until F does not change

Review: Normalization

- Decomposition of a relation R with the following goals
 - Lossless (necessary) 无损的 Information lost?
 - Dependency preservation (desirable) FD保留的 (∪_i F_i)⁺ = F⁺?
 - Good form
 1NF, 2NF, 3NF, BCNF
 - 一般来说,当且仅当以下FD中至少有一个存在于 F+ 中时,将 R 分解为 R1 和 R2 才是无损的。
 - $-R_1 \cap R_2 \rightarrow R_1$
 - $-R_1 \cap R_2 \rightarrow R_2$
 - 即,两个schema的交集属性构成至少其中一个schema的key。

Review: Normalization

- Decomposition of a relation R with the following goals
 - Lossless (necessary) 无损的 Information lost?
 - Dependency preservation (desirable) FD保留的 (∪_i F_i)⁺ = F⁺?
 - Good form 1NF, 2NF, 3NF, BCNF

2NF:

R is in 2NF if and only if
for each FD: X → {A} in F⁺
Then
A ∈ X (the FD is trivial), OR
X is not a proper subset of a
candidate key for R, OR
A is a prime attribute

3NF:

R is in 3NF if and only if
 for each FD: X → {A} in F⁺
Then
A ∈ X (trivial FD), OR
X is a superkey for R, OR
A is prime attribute for R

•A prime attribute is an attribute that is part of a candidate key

Exercise 1: The Closure of Attributes

```
R = (A, B, C, D, E)
F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}
Compute A+ and B+:
   A^+ := \{A\}
          := \{A, B, C\} A\rightarrowBC and \{A\} \subset A^+
          := \{A, B, C, D\} B \rightarrow D \text{ and } \{B\} \subset A^+
          := \{A, B, C, D, E\} CD\rightarrow E and \{C, D\} \subset A^+
          ends because A+ stops changing
         := \{B\}
   B+
          := \{B, D\} B\rightarrow D and \{B\} \subset B^+
          ends because B+ stops changing
```

Exercise 2: Candidate Keys

```
R = (A, B, C, D, E)

F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}

List all candidate keys of R.
```

- We have $A^+ = \{A, B, C, D, E\}$ in Exercise 1, then $A \rightarrow ABCDE$, it is a candidate key of R.
- Since E→A,
 then E→ABCDE. (transitivity)
- Since CD→E, then CD→ABCDE. (transitivity)
- Since B→D,
 then BC→CD, then BC→ABCDE. (augmentation, transitivity)

So A, E, CD, BC are candidate keys of R.

```
R = (A, B, C, D, E)

F = \{AC \rightarrow E, ACD \rightarrow B, CE \rightarrow D, B \rightarrow E\}

Find the canonical cover of F.
```

Algorithm:

Repeat

Union

 $X_1 \rightarrow Y_1$ and $X_1 \rightarrow Y_2$ replaced with $X_1 \rightarrow Y_1 Y_2$

Find an extraneous attribute

If an extraneous attribute is found in $X \rightarrow Y$, delete it from $X \rightarrow Y$

Until F does not change

$$R = (A, B, C, D, E)$$

 $F = \{AC \rightarrow E, ACD \rightarrow B, CE \rightarrow D, B \rightarrow E\}$
Find the canonical cover of F.

First loop:

Union

$$Fc^{(1)} = \{AC \rightarrow E, ACD \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

Find an extraneous attribute

Consider ACD→B:

D is extraneous because $AC \rightarrow E$ and $CE \rightarrow D$

Remove D in ACD→B

$$Fc^{(1)} = \{AC \rightarrow E, AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

$$R = (A, B, C, D, E)$$

$$Fc^{(1)} = \{AC \rightarrow E, AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

Second loop:

Union

$$Fc^{(2)} = \{AC \rightarrow BE, CE \rightarrow D, B \rightarrow E\}$$

Find an extraneous attribute

Consider AC→BE:

E is extraneous because B→E

Remove E in AC→BE

$$Fc^{(2)} = \{AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

$$R = (A, B, C, D, E)$$

$$Fc^{(2)} = \{AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

Third loop:

Union

$$Fc^{(3)} = \{AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

Find an extraneous attribute

No extraneous attributes found

Ends because Fc stops changing

$$Fc = \{AC \rightarrow B, CE \rightarrow D, B \rightarrow E\}$$

- 去除无关属性的不同顺序可能会导致不同的 Fc
- Example:

$$R=(A, B, C, D)$$

 $FD = \{A \rightarrow C, BC \rightarrow A, ABC \rightarrow D\}$

- In ABC→D, A is extraneous or C is extraneous
- If we remove A first, we get $F_c = \{A \rightarrow C, BC \rightarrow AD\}$
- If we remove C first, we get $F_c = \{A \rightarrow C, BC \rightarrow A, AB \rightarrow D\}$

Exercise 4: Normal forms

- R=(A, B, C, D, E)
- $FD = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
- Is R in 1NF?
 - Yes. Relational tables are always in 1NF.
- Is R in 2NF?
 - We found candidate keys: A, E, CD, BC.

A→BC	BC are prime attribute	
CD→E	E is a prime attribute	
$B \rightarrow D$	D is a prime attribute	
$E \rightarrow A$	A is a prime attribute	
So R is in 2NF		

2NF:

R is in 2NF if and only if for each FD: $X \rightarrow \{A\}$ in F⁺ Then

 $A \in X$ (the FD is trivial), OR X is not a proper subset of a candidate key for R, OR

A is a prime attribute (候选键的一部分)

2^{NF:} 防止候选键的真 子集决定非主属性

Exercise 4: Normal forms (cont)

- R=(A, B, C, D, E)
- $FD = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
- Is R in 3NF?
 - We found candidate keys: A, E, CD, BC.

A→BC	A is a candidate key	
CD→E	CD is a candidate key	
$B \rightarrow D$	D is a prime attribute	
$E \rightarrow A$	E is a candidate key	
So R is in 3NF		

3NF:

R is in 3NF if and only if for each FD: $X \rightarrow \{A\}$ in F⁺ Then

A ∈ X (trivial FD), ORX is a superkey for R, ORA is prime attribute for R

3NF: 防止非键决定非 主属性

Exercise 4: Normal forms (cont)

- R=(A, B, C, D, E, F)
- $FD = \{A \rightarrow B, BC \rightarrow D, C \rightarrow E, B \rightarrow F\}$
- Is R in 2NF?
 - Candidate key: AC.

2	N	F	

R is in 2NF if and only if for each FD: $X \rightarrow \{A\}$ in F⁺ Then

 $A \in X$ (the FD is trivial), OR X is not a proper subset of a

candidate key for R, OR

A is a prime attribute

	carra	
A→B	A is a proper subset of candidate key AND B is no proper subset t a prime attribute	
$BC \rightarrow D$	BC is not a proper subset of candidate key	
C→E	C is a proper subset of candidate key AND E is not a prime attribute	
B→F	B is not a proper subset of candidate key	
A→B or C→E makes R not in 2NF		

2^{NF}: 防止候选键的真 子集决定非主属性

Exercise 4: Normal forms (cont)

- R=(A, B, C, D, E, F)
- $FD = \{A \rightarrow B, BC \rightarrow D, C \rightarrow E, B \rightarrow F\}$
- Is R in 3NF?
 - 3NF ⊂ 2NF ⊂ 1NF, R is not in 2NF, so R is not in 3NF either.
 - Candidate key: AC.

3NF:

R is in 3NF if and only if for each FD: $X \rightarrow \{A\}$ in F⁺ Then

A ∈ X (trivial FD), OR X is a superkey for R, OR A is prime attribute for R

A→B	A is not a super-key AND B is not a prime attribute	
BC→D	BC is not a super-key AND D is not a prime attribute	
C→E	C is not a super-key AND E is not a prime attribute	
B→F	B is not a super-key AND F is not a prime attribute	
Any one of the FD makes R not in 3NF		

3NF: 防止非键决定非 主属性

Exercise 5: Decomposition

$$R = (A, B, C, D, E, F, G, H)$$

 $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$

- A decomposition of R:
 - Table1: (A, B, C, D)
 - Table2: (D, E, G)
 - Table3: (A, C, D, F, H)
- Is it lossless?

Yes

A decomposition of R into R1 and R2 is **lossless** if and only if the **common** attributes of R1 and R2 is a candidate key for R1 or R2

- (Table1 \cup Table3) \cap Table2 = D (candidate key of Table2)
- Table1

 Table3 = ACD (candidate key of Table1)
 - 一般来说,当且仅当以下FD中至少有一个存在于 F+ 中时,将 R 分解为 R1 和 R2 才是无损的。
 - $-R_1 \cap R_2 \rightarrow R_1$
 - $-R_1 \cap R_2 \rightarrow R_2$
 - 即,两个schema的交集属性构成至少其中一个schema的key。在上述例子中,Position -> T3
 - **Database Management Systems**

Exercise 5: Decomposition (cont)

$$R = (A, B, C, D, E, F, G, H)$$

 $F = \{AC \rightarrow G, D \rightarrow EG, BC \rightarrow D, CG \rightarrow BD, ACD \rightarrow B, CE \rightarrow AG\}$

- A decomposition of R:
 - Table1: (A, B, C, D)
 - Table2: (D, E, G)
 - Table3: (A, C, D, F, H)
- Is it dependency preserving?
 - No (CG→BD is lost)
 - Then the decomposition is dependency preserving if and only if

$$(\bigcup F_i)^+ = F^+$$

即所有子表格FD并集的闭包与原来表格FD闭包一致。

Exercise 6: 3NF

$$R = (A,B,C,D,E)$$
$$F = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$$

● 回顾下3NF的分解算法

Algorithm for 3NF Decomposition:

```
Let R be the initial table with FDs F
Compute the canonical cover F_c of F
S=\emptyset
```

for each FD X \rightarrow Y in the canonical cover F_c S=S \cup (X,Y)

if no schema contains a candidate key for R Choose any candidate key K $S=S \cup K$

Exercise 6: 3NF (cont)

$$R = (A,B,C,D,E)$$
$$F = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$$

- List all candidate keys of R.
 - {ABE, ACE}
- Compute 正则覆盖(最小函数依赖集) F_c
 - F and F_c are equivalent (闭包一样的)
 - F_c contains no redundancy
 - Each left hand side of functional dependency in F_c is unique
- We get

 $F_c = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$, here F_c is the same as F.

Exercise 6: 3NF (cont)

$$R = (A,B,C,D,E)$$
$$F = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$$

- List all candidate keys of R.
 - {ABE, ACE}
- Compute F_c, we get

$$F_c = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$$

For each FD, we generate a table:

$$R_1 = \{\underline{A}, \underline{B}, \underline{C}\}, F_1 = \{AB \rightarrow C, C \rightarrow B\}$$

 $R_2 = \{\underline{A}, D\}, F_2 = \{A \rightarrow D\}$

分解结束了吗?

• No need to generate another table for FD $\{C \rightarrow B\}$, because R_1 already contains B and C.

if no schema contains a candidate key for R Choose any candidate key K S=S ∪ K

Exercise 6: 3NF (cont)

$$R = (A,B,C,D,E)$$
$$F = \{AB \rightarrow C, C \rightarrow B, A \rightarrow D\}$$

- Any table in S contains a candidate key for R?
- Choose any candidate key (ABE) to generate a new table:
 Generate R₃ = {A, B, E}
- So a possible 3NF decomposition of R is:

$$R_1 = \{\underline{\underline{A}, \underline{B}, \underline{C}}, R_2 = \{\underline{\underline{A}, D}\}, R_3 = \{\underline{\underline{A}, \underline{B}, \underline{\underline{E}}}\}$$

Lossless?

Yes

Dependency preserving?

Yes