EJERCICIOS RESUELTOS

1) Se está estudiando una planta cuya función de transferencia es G(s), la misma trabaja en bucle cerrado con realimentación negativa donde el transductor se supone ideal (**Kt=1**, ganancia unitaria, sin dinámica ni retardo), tal como se muestra en el siguiente diagrama de bloques:

Se pide:

- a) Diseñar un regulador PID por lugar de raices para que el sistema a bucle cerrado cumpla con las siguientes especificaciones: (Verificar los resultados obtenidos)
 - Máximo sobreimpulso (MP) igual a 40%.
 - Tiempo de establecimiento (ts) igual a 2 segundos.
- b) Diseñar un PID mediante asignacion de polos para que el sistema cumpla con los requisitos solicitados. Detallar y justificar los pasos seguidos para obtener el PID.
- 2) El siguiente diagrama en bloques representa el sistema de control de un servomotor que acciona uno de los ejes de posicionamiento de un robot.

Dónde:

Amplificador => Ka=1

La planta G(s) es:

$$G(s) = \frac{(20s + 120)}{(s^3 + 10s^2 + 29s + 20)}$$

Se pide:

a) Proponga y diseñe un regulador (fundamentando) para que el sistema a bucle cerrado cumpla con los siguientes requisitos:

Verificar mediante la respuesta temporal que se cumplen los requisitos solicitados. Se admite valores de Mp y ts diferentes a los propuestos siempre que no superen un margen de error de un 20% de dichos valores y se fundamente el motivo de la variación.

b) Aplicando Ziegler y Nichols proponga un regulador PID. De la respuesta temporal indique que valores de ts y Mp tiene el sistema con este regulador.

c) Elija uno de los dos reguladores diseñados en b) y c) y fundamentando su elección implemente el mismo mediante un circuito electrónico, indicando los valores de las constantes de tiempo y ganancia en relación a los capacitores y resistencias del circuito.

Modo	<i>K</i> _p	$T_{\rm r}$	$T_{ m d}$	Modo	
P	T/L	-	-	P	
PI	0,9.T/(L)	3.L	-	PI	(
PID	1,2.T/(L)	2.L	0,5.L	PID	

Modo	K_p	T_i	T_d
P	0,50Kc	-	-
PI	0,45 <i>Kc</i>	$P_c/1,2$	-
PID	0,60 <i>Kc</i>	$P_c/2$	$P_c/8$

Método de la curva de reacción

Método de Ciclo Limite