TITLE

AUTHOR

INSTITUCIÓN

DATE

Contents

- 1 Introduction
- 2 Conclusions

AUTHOR TITLE 2/14

Problem Statement

AUTHOR TITLE 3/14

Golden Rule

Generation = Consumption, $\forall t$

Origin of major problems...

Electric system

- **Generators**: produce electric power from primary sources.
- **Transmission network**: from power plants to substations.
- **Substations**: power conditioning and safety mechanism.
- **Distribution network**: from substations to consumers.
- Consumption: transforms electric power into work.

Problems

Generation must adapt to consumption, but ...

■ Grid:

- Centralized system
- Ageing infrastructure
- Generation far from consumption
- lueen Losses \longrightarrow Efficiency $\downarrow \downarrow$

■ Consumption:

- High variability
- High responsiveness
- System stress
- Grid oversizing

Solution(I): Evolution of the grid

- Centralized
- ↓ Efficiency
- ↓ Communication

- Distributed
- ↑ Integration
- ↑ Participation

AUTHOR TITLE 7/14

Solution(II): Smart Grid

Definition

An electricity network that uses communication technologies to coordinate the needs and capabilities of all grid members to operate efficiently, minimising costs and environmental impacts while maximising reliability, resilience and stability.

TITLE 8/14 **AUTHOR**

Variability reduction: DSM

AUTHOR TITLE 9/14

Thesis Aim

Objective

Development of an adaptive algorithm to manage the consumption of a collective of individuals with the presence of distributed energy resources (PV + local storage).

The algorithm enhances the efficiency of a grid by reducing the variability of the aggregated consumption.

AUTHOR TITLE 10/14

Contents

- 1 Introduction
- 2 Conclusions

Conclusions

AUTHOR TITLE 12/14

Questions

