Somith Das

Assignment ASN6 due 11/06/2019 at 11:59pm PST

2019W1_ELEC_201_101102

1. (3 points)

In the circuits below, and assuming that the diodes are ideal, determine the voltage V_o , in volts, and the current I_D , in mA, for each (a), (b), (c) and (d).

 $R = 3 k\Omega$, $V_s = 6 \text{ volts}$

Figure:

(a) $V_o = _V$

$$I_D = \underline{\hspace{1cm}} mA$$

(b) $V_o = __V$

 $I_D = \underline{\hspace{1cm}} mA$

(c) $V_o = _V$

 $I_D = \underline{\qquad} mA$

(d) $V_o = _V$

 $I_D = \underline{\hspace{1cm}} mA$

Correct Answers:

- 0
- 2
- 6
- 0
- -60
- 0
- 2

2. (2 points)

For the two configurations in the figure, and assuming that inputs V_1 and V_2 can be either 5V (true) or 0V (false), and considering also that any voltage below 2.5V deemed a true logic value, demonstrate that one of them is a logic OR gate and the

other is a logic AND gate (which is which?). Suggestion: build a truth table for all possible inputs and outputs.

Figure:

- (a) [?/OR /AND]
- **(b)** [?/OR /AND]

Correct Answers:

- OR
- AND

3. (2 points)

The blue LED in the circuit below exhibits a constant voltage drop of 3V when forward bias. Assuming $V_{DC} = 10$ V, compute the value of R for a diode current $I_D = 6$ mA.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

Diode circuit

 $\mathbf{R} = \underline{\hspace{1cm}} \Omega$

Correct Answers:

• 1166.67

4. (6 points)

The silicon diode in the figure below has an Is = 9.27e-10 A and n = 1.5. Compute the diode operating point, if R = 9000 Ω and V_{dc} = 10.7 volts. Assume that V_T = 0.025 volts.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

Diode circuit

(a) Diode operating current : ____ mA

(b) Diode operating voltage : $_ V$

Correct Answers:

• 1.1305

• 0.525524

5. (6 points)

The silicon diodes in the figure below have an Is = 8.32e-10 A and n = 2. Compute the diodes operating point, if I = 5.6 mA. Assume that $V_T = 0.025$ volts.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

Diode circuit

(a) Diode 1 operating current : ____ mA

(b) Diode 1 operating voltage : $__V$

(c) Diode 2 operating current : ____ mA

(d) Diode 2 operating voltage : $__V$

Correct Answers:

• 4.09393

• 0.770447

• 1.50607

• 0.720447

6. (6 points)

The silicon diodes in the figure below have an Is = 8.32e-10 A and n = 2. Compute the diodes operating point, if R = 1831 Ω . Assume that $V_T = 0.025$ volts.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

Diode circuit

(a) Diode 1 operating current : ____ mA

(b) Diode 1 operating voltage : ____ V

(c) Diode 2 operating current : ____ mA

(d) Diode 2 operating voltage : $_ V$

Correct Answers:

- 4.43791
- 0.774481
- 0.600606
- 0.674481

7. (6 points)

In the circuit below the three diodes are identical with Is = 8.32e-07 mA, n = 2, $V_T = 0.025$ V, and VDC = 7.5 V. if $I_D = 1.1$ mA, compute V_D (the voltage drop accross any of the diodes) and R.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) $V_D : _ V$
- (b) $\mathbf{R} : \underline{\hspace{1cm}} \Omega$

Correct Answers:

- 0.704737
- 4896.17

8. (5 points)

A diode has a voltage drop of 0.6V @ 1.9mA with n = 2 and $V_T = 0.025$ V. Find the piecewise model for the diode such that it is exact both at 1.9mA and 12mA.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) r_D : ___ Ω
- **(b)** v_{D0} : ____ *Volts*

Correct Answers:

- 9.12402
- 0.582664

9. (12 points)

The diode in the circuit shown exhibits a VD=0.7V @ 1.8mA, n=2, VT=0.025V. In the circuit VDC=11.1V, R1=2000 Ω , R2=15000 Ω , and Vac=1V. Assume C1 has infinite capacitance and is operating at steady state. Calculate the total diode voltage vD=VD+vd*sin(wt).

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- **(b)** $vd : _V$

Correct Answers:

- 0.752789
- 0.000640787

10. (5 points)

For the diode zener in the circuit below we know that V_Z =5.1 V, I_{ZT} =49 mA, and r_Z =7 Ω . If Vx=14 V and Rx=33 Ω , calculate Vo and Iz.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) I_Z : ____ mA
- **(b)** V_o : ____ V

Correct Answers:

- 231.075
- 6.37453

11. (5 points)

The diode in the half wave rectifier below can be represented as a voltage drop of V_{DO} =0.7 V in series with a resistor R_D =2 Ω .

If Vp=13 V and R=33 Ω , calculate Vo, the peak voltage at the resistor R.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a) $V_o : _V$

Correct Answers:

−11.5971

12. (5 points)

Both diodes in the circuit below can be represented as a voltage drop of V_{DO} =0.7 V in series with a resistor R_D =2 Ω . If Vp = 150 V, Ra=112 Ω , Rb=191 Ω , calculate the peak currents Ia and Ib. Assume the transformer ratio is 10:1 to the top winding of the transformer and 10:1 to the bottom winding of the transformer.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a) I_a : ___ mA

(b) I_b : ____ mA

Correct Answers:

- 125.439
- -74.0933

13. (5 points)

In the circuit below the transformer secondary delivers a sinusoid of V_s =14 V (rms) @ 60-Hz, the forward bias diodes are represented as a constant voltage drop V_D =0.7 V, and the load resistance R=170 Ω . a) Find the minimun value of C that results in a ripple voltage not larger than 0.5 V peak-to-peak. b) Calculate the average voltage at the output. c) Calculate the average load current.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

(a) $C : _{\mu}F$

(b) V_L : ____ V

(c) I_L : ___ mA

Correct Answers:

- 1803.82
- 18.149
- 106.759

14. (12 points)

In the circuit below Vac is the power outlet voltage in North America: 120 Vrms @ 60 Hz. The forward bias diodes Ds1 and Ds1 are represented as a constant voltage drop V_D =0.7 V, CF1=1360 μ F, CF2=1190 μ F, the LEDs are also represented using a constant voltage drop of V_{LED} =2 V, Rg1 = Rg2=470 Ω , RL1=178 Ω , and RL2=122 Ω .

- a. Calculate the average voltage at terminal VPos.
- b. Calculate the ripple voltage at terminal VPos.
- c. Calculate the average voltage at terminal VNeg.
- d. Calculate the ripple voltage at terminal VNeg.

Tip: Use the Thnin equivalent circuit after the capacitor to calculate the load current.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer,

3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) V_{avePos} : ____ V
- **(b)** V_{rPos} : ____ V
- (c) V_{aveNeg} : ____ V
- **(b)** V_{rNeg} : ____ V

Correct Answers:

- 15.5582
- 1.42467
- −15.2013
- 2.1385

15. (10 points)

Diode D1 in the circuit below can be modeled as constant voltage drop V_D =0.7V. For the zener diode D2 V_Z =6.8V @ I_{ZT} =37mA with r_Z =3.5 Ω . Also C=730 μF and R=103 Ω .

- a. Calculate the average voltage at terminal Vo in V.
- b. Calculate the ripple voltage at terminal Vo in mV.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) V_{oDC} : ____ V
- **(b)** V_{or} : ____ mV

Correct Answers:

- 6.8715
- 43.089

16. (5 points)

The zener diode in the shunt regulator circuit below is a 1N4739A with V_Z =9.1V @ I_{ZT} =28mA, r_Z =5 Ω ; also R=91 Ω .

- a. Calculate the line regulation.
- b. Calculate the load regulation.
- c. If the input voltage changes by 1.5 V, how much does the output voltage changes (in mV)?
- d. If the output current changes by 10 mA, how much does the output voltage changes (in mV)?

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

- (a) Lineregulation: ____
- **(b)** Loadregulation : \square Ω
- (c) ΔV_o : ___ mV
- (d) ΔV_o : ____ mV

Correct Answers:

- 0.0520833
- 4.73958
- 78.125
- 47.3958

17. (5 points)

The zener diodes in the limiter circuit below are 1N4741A with V_Z =11V @ I_{ZT} =23mA, r_Z =8 Ω ; V_{D0} =0.65V when forward bias with a r_D =0.65 Ω . If R=110 Ω :

- a. Calculate the V_o if V_i =3.5V.
- b. Calculate the V_o if V_i =15V.
- c. Calculate the V_o if V_i =-100V.

Note: In this problem, you may only submit numerical answers accurate to 0.02% or better. (i.e. If 4 is the correct answer, 3.9999 will be marked as correct, but 2+2 will be marked as incorrect.)

 $Generated\ by\ \textcircled{c}WeBWorK, http://webwork.maa.org,\ Mathematical\ Association\ of\ America$

- (a) $V_o : _V$
- **(b)** V_o : ____ V
- (c) V_o : ____ V

Correct Answers:

- 3.5
- 11.7236
- −17.9204