Rydberg atoms

Tobias Thiele

References

T. Gallagher: Rydberg atoms

Content

Part 1: Rydberg atoms

Part 2: A typical beam experiment

Introduction – What is "Rydberg"?

 Rydberg atoms are (any) atoms in state with high principal quantum number n.

Introduction – What is "Rydberg"?

 Rydberg atoms are (any) atoms in state with high principal quantum number n.

 Rydberg atoms are (any) atoms with exaggerated properties

Introduction – What is "Rydberg"?

 Rydberg atoms are (any) atoms in state with high principal quantum number n.

 Rydberg atoms are (any) atoms with exaggerated properties

Introduction – How was it found?

- In 1885: Balmer series:
 - Visible absorption wavelengths of H:

$$\lambda = \frac{bn^2}{n^2 - 4}$$

Introduction – How was it found?

- In 1885: Balmer series:
 - Visible absorption wavelengths of H:

$$\lambda = \frac{bn^2}{n^2 - 4}$$

- Other series discovered by Lyman, Brackett, Paschen, ...

Introduction – How was it found?

- In 1885: Balmer series:
 - Visible absorption wavelengths of H:

$$\lambda = \frac{bn^2}{n^2 - 4}$$

- Other series discovered by Lyman, Brackett, Paschen, ...
- Summarized by Johannes Rydberg: $\tilde{v} = \tilde{v}_{\infty} \frac{Ry}{n^2}$

Introduction – Generalization

- In 1885: Balmer series:
 - Visible absorption wavelengths of H:

$$\lambda = \frac{bn^2}{n^2 - 4}$$

- Other series discovered by Lyman, Brackett, Paschen, ...
- Quantum Defect was found for other atoms: $\tilde{v} = \tilde{v}_{\infty} \frac{Ry}{(n-\delta_{i})^{2}}$

Introduction – Rydberg formula?

$$E = E_{\infty} - \frac{hRy}{\left(n - \delta_l\right)^2}$$

Introduction – Rydberg formula?

$$E = E_{\infty} - \frac{hRy}{(n - \delta_l)^2} \approx 13.6 \text{ eV}$$

Introduction – Hydrogen?

Quantum Defect?

Rydberg Atom

Rydberg Atom

- Almost like Hydrogen
 - Core with one positive charge
 - One electron

Rydberg Atom

- Almost like Hydrogen
 - Core with one positive charge
 - One electron

What is the difference?

Rydberg Atom

- Almost like Hydrogen
 - Core with one positive charge
 - One electron

- What is the difference?
 - No difference in angular momentum states

(Helium) Energy Structure $W = -\frac{1}{2(n-\delta_l)^2}$

$$W = -\frac{1}{2(n - \delta_l)^2}$$

- δ_i usually measured
 - Only large for low I (s,p,d,f)

$$W = -\frac{1}{2(n - \delta_l)^2}$$

- δ_l usually measured
 - Only large for low I (s,p,d,f)
- He level structure

$$W = -\frac{1}{2(n - \delta_l)^2}$$

- δ_l usually measured
 - Only large for low I (s,p,d,f)
- He level structure

• δ_i is big for s,p

$$W = -\frac{1}{2(n - \delta_l)^2}$$

- δ_l usually measured
 - Only large for low I (s,p,d,f)
- He level structure

• δ_l is big for s,p

Excentric orbits penetrate into core.

Large deviation from Coulomb.

Large phase shift-> large quantum defect

$$W = -\frac{1}{2(n - \delta_l)^2}$$

- δ_l usually measured
 - Only large for low I (s,p,d,f)
- He level structure

• δ_l is big for s,p

$$\bullet \frac{dW}{dn} = \frac{1}{(n - \delta_l)^3}$$

Electron most of the time far away from core

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \right|$$

- Electron most of the time far away from core
 - Strong electric dipole: $\vec{d} = e\vec{r}$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \right|$$

- Electron most of the time far away from core
 - Strong electric dipole: $\vec{d} = e\vec{r}$
 - Proportional to transition matrix element

$$\langle \Psi_f | \vec{d} | \Psi_i \rangle = e \langle \Psi_f | \vec{r} | \Psi_i \rangle = e \langle \Psi_f | r \cos(\theta) | \Psi_i \rangle$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \right|$$

- Electron most of the time far away from core
 - Strong electric dipole: $\vec{d} = e\vec{r}$
 - Proportional to transition matrix element $\langle \Psi_f \middle| \vec{d} \middle| \Psi_i \rangle = e \langle \Psi_f \middle| \vec{r} \middle| \Psi_i \rangle = e \langle \Psi_f \middle| r \cos(\theta) \middle| \Psi_i \rangle$
- We find electric Dipole Moment

$$-\left\langle \Psi_{f} \middle| \vec{d} \middle| \Psi_{i} \right\rangle \propto \left\langle r \right\rangle \left\langle l \pm 1 \middle| \cos(\theta) \middle| l \right\rangle \propto n^{2}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right|$$

- Electron most of the time far away from core
 - Strong electric dipole: $\vec{d} = e\vec{r}$
 - Proportional to transition matrix element $\langle \Psi_f \middle| \vec{d} \middle| \Psi_i \rangle = e \langle \Psi_f \middle| \vec{r} \middle| \Psi_i \rangle = e \langle \Psi_f \middle| r \cos(\theta) \middle| \Psi_i \rangle$
- We find electric Dipole Moment
 - $-\left\langle \Psi_{f} \middle| \vec{d} \middle| \Psi_{i} \right\rangle \propto \left\langle r \right\rangle \left\langle l \pm 1 \middle| \cos(\theta) \middle| l \right\rangle \propto n^{2}$
- Cross Section: $\sigma \propto \langle r \rangle^2 \propto n^4$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4$$

Stark Effect
$$H\Psi = (H_0 + \vec{d}\vec{F})\Psi = E\Psi$$

- For non-Hydrogenic Atom (e.g. Helium)
 - "Exact" solution by numeric diagonalization of

$$\langle \Psi_f | H | \Psi_i \rangle = \langle \Psi_f | H_0 | \Psi_i \rangle + \langle \Psi_f | \vec{d} | \Psi_i \rangle \vec{F}$$

in undisturbed (standard) basis (\tilde{n} ,I,m)

$$W = -\frac{1}{2(n - \delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n - \delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4$$

Stark Effect
$$H\Psi = (H_0 + \vec{d}\vec{F})\Psi = E\Psi$$

- For non-Hydrogenic Atom (e.g. Helium)
 - "Exact" solution by numeric diagonalization of

$$\left\langle \Psi_{f} \left| H \right| \Psi_{i} \right\rangle = \left\langle \Psi_{f} \left| H_{0} \right| \Psi_{i} \right\rangle + \left\langle \Psi_{f} \left| \vec{d} \right| \Psi_{i} \right\rangle \vec{F}$$

in undisturbed (standard) basis (\tilde{n} ,I,m)

$$W = -\frac{1}{2(n-\delta_{l})^{2}}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4$$

Stark Effect
$$H\Psi = (H_0 + \vec{d}\vec{F})\Psi = E\Psi$$

- For non-Hydrogenic Atom (e.g. Helium)
 - "Exact" solution by numeric diagonalization of

$$\langle \Psi_f | H | \Psi_i \rangle = \langle \Psi_f | H_0 | \Psi_i \rangle + \langle \Psi_f | \vec{d} | \Psi_i \rangle \vec{F}$$

in undisturbed (standard) basis (n,l,m)

$$W = -\frac{1}{2(n-\delta_{i})^{2}}$$

Numerov

$$W = -\frac{1}{2(n - \delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n - \delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4$$

Rydberg Atoms very sensitive to electric fields

- Solve:
$$H\Psi = (H_0 + \vec{d}\vec{F})\Psi = E\Psi$$
 in parabolic coordinates

Energy-Field dependence: Perturbation-Theory

$$W = -\frac{1}{2n^2} - \frac{3}{2}F(\underbrace{n_1 - n_2}_k)n + \frac{F}{16}n^4(17n^2 - 3(\underbrace{n_1 - n_2}_k)^2 - 9m^2 + 19) + O(n^5)$$

When do Rydberg atoms ionize?

No field applied

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right|$$

- When do Rydberg atoms ionize?
 - No field applied
 - Electric Field applied

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right|$$

- When do Rydberg atoms ionize?
 - No field applied
 - Electric Field applied
 - Classical ionization:

$$V = -\frac{1}{r} + Fz$$

$$\Rightarrow F_{cl} = \frac{W^2}{4} = \frac{1}{16n^4}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- When do Rydberg atoms ionize?
 - No field applied
 - Electric Field applied
 - Classical ionization:

$$V = -\frac{1}{r} + Fz$$

$$\Rightarrow F_{cl} = \frac{W^2}{4} = \frac{1}{16n^4}$$
- Valid only for

- - Non-H atoms if F is Increased slowly

 $\langle \vec{d} \rangle \approx a_0 n^2 \left| \sigma \propto n^4 \right| F_{IT} \propto n^{-5} \left| F_{cl} \propto \frac{1}{16} n^{-4} \right|$

- When do Rydberg atoms ionize?
 - No field applied
 - Electric Field applied
 - Quasi-Classical ioniz.: $\frac{5}{4}$ -2000 $\frac{1}{F_{cl}}$ $\frac{1}{16n^4}$

$$V(\eta) = 2\left(-\frac{Z_2}{\eta} + \frac{m^2 - 1}{4\eta^2} - \frac{F\eta}{4}\right)^{\frac{2}{3}} -3000$$

$$-4000$$

$$\Rightarrow F = \frac{W^2}{4Z_2}$$

$$-6000$$

$$W = -\frac{1}{2(n - \delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n - \delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- When do Rydberg atoms ionize?
 - No field applied
 - Electric Field applied
 - Quasi-Classical ioniz.: $\frac{5}{4}$ -2000 $\frac{1}{4}$ $\frac{1}{16n^4}$

$$V(\eta) = 2\left(-\frac{Z_2}{\eta} + \frac{m^2 - 1}{4\eta^2} - \frac{F\eta}{4}\right)^{-3000} F_r = \frac{1}{9n^4}$$

$$\Rightarrow F = \frac{W^2}{4Z_2} = \frac{1}{9n^4} \text{ red}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- When do Rydberg atoms ionize?
 - No field applied

$$V(\eta) = 2\left(-\frac{Z_2}{\eta} + \frac{m^2 - 1}{4\eta^2} - \frac{F\eta}{4}\right)^{\frac{2}{3000}} -\frac{1}{4000}$$

$$\Rightarrow F = \frac{W^2}{4Z_2} \begin{vmatrix} = \frac{1}{9n^4} & \text{red} \\ = \frac{2}{9n^4} & \text{blue} \end{vmatrix}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- From Fermis golden rule
 - Einstein A coefficient for two states $n, l \rightarrow n', l'$

$$A_{n',l',n,l} = \frac{4e^2 \omega_{n',l',n,l}^3}{3\hbar c^3} \frac{\max(l,l')}{2l+1} |\langle n'l'|r|nl\rangle|^2$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- From Fermis golden rule
 - Einstein A coefficient for two states $n, l \rightarrow n', l'$

$$A_{n',l',n,l} = \frac{4e^2\omega_{n',l',n,l}^3}{3\hbar c^3} \frac{\max(l,l')}{2l+1} |\langle n'l'|r|nl\rangle|^2$$

- Lifetime
$$\tau_{n,l} = \left(\sum_{n',l' < n,l} A_{n',l',n,l}\right)^{-1}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- From Fermis golden rule
 - Einstein A coefficient for two states $n, l \rightarrow n', l'$

$$A_{n',l',n,l} = \frac{4e^{2}\omega_{n',l',n,l}^{3}}{3\hbar c^{3}} \frac{\max(l,l')}{2l+1} \left| \left\langle n'l'|r|nl \right\rangle \right|^{2}$$

- Lifetime
$$\tau_{n,l} = \left(\sum_{n',l' < n,l} A_{n',l',n,l}\right)^{-1}$$

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4}$$

- From Fermis golden rule
 - Einstein A coefficient for two states $n, l \rightarrow n', l'$

$$A_{n',l',n,l} = \frac{4e^2\omega_{n',l',n,l}^3}{3\hbar c^3} \frac{\max(l,l')}{2l+1} |\langle n'l'|r|nl\rangle|^2$$

- Lifetime
$$\tau_{n,l} = \left(\sum_{n',l' < n,l} A_{n',l',n,l}\right)^{-1}$$

For $l \approx 0: \propto n^{-\frac{3}{2}}$ Overlap of WF

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4} \left| \tau_{n,0} \propto n^3 \right|$$

- From Fermis golden rule
 - Einstein A coefficient for two states $n, l \rightarrow n', l'$

$$A_{n',l',n,l} = \frac{4e^2\omega_{n',l',n,l}^3}{3\hbar c^3} \frac{\max(l,l')}{2l+1} \left| \left\langle n'l' \middle| r \middle| nl \right\rangle \right|^2$$

$$- \text{ Lifetime } \tau_{n,l} = \left(\sum_{n',l' < n,l} A_{n',l',n,l} \right)^{-1}$$
For $l \approx n : \infty n^2$
Overlap of WF

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4} \left| \tau_{n,l} \propto n^3, n^5 \right|$$

$$A_{n',l',n,l} = \frac{4e^2\omega_{n',l',n,l}^3}{3\hbar c^3} \frac{\max(l,l')}{2l+1} \left| \left\langle n'l' | r | nl \right\rangle \right|^2 \qquad \tau_{n,l} = \left(\sum_{n',l' < n,l} A_{n',l',n,l} \right)^{-1}$$

State	Stark State 60 p (n',l') small	Circular state 60 l=59 m=59 $(n',l') \approx (n\pm 1,l\pm 1)$	Statistical mixture
Scaling	n^3 (overlap of $\psi \propto n^{-3/2}$)	n^5 $\langle r \rangle \propto n^2$	$n^{4.5}$
Lifetime	$7.2~\mu$ s	70 ms	≈ms

$$W = -\frac{1}{2(n-\delta_l)^2} \left| \frac{dW}{dn} = \frac{1}{(n-\delta_l)^3} \left| \left\langle \vec{d} \right\rangle \approx a_0 n^2 \right| \sigma \propto n^4 \left| F_{IT} \propto n^{-5} \right| F_{cl} \propto \frac{1}{16} n^{-4} \left| \tau_{n,l} \propto n^{-3}, n^{-5} \right|$$

Part 2- Generation of Rydberg atoms

- Typical Experiments:
 - Beam experiments
 - (ultra) cold atoms
 - Vapor cells

Creation of a cold supersonic beam of Helium.

Speed: 1700m/s, pulsed: 25Hz, temperature atoms=100mK

Excite electrons to the 2s-state, (to overcome very strong binding energy in the xuv range) by means of a discharge – like a lightning.

Actual experiment consists of 5 electrodes. Between the first 2 the atoms get excited to Rydberg states up to n=inf with a dye laser.

Detection: 1.2 kV/cm electric field applied in 10 ns. Rydberg atoms ionize and electrons are Detected at the MCP detector (single particle multiplier).

Results TOF 15μ s

