OpenStreetMap Data Project

Map Area

Hong Kong, China

- https://www.openstreetmap.org/node/2833125787
- https://mapzen.com/data/metro-extracts/

This is an amazing city where I am living with my family. I have been staying here for more than ten years, so I'm interested to see what database querying reveals, and I would like to take this opportunity to contribute to its improvement on OpenStreetMap.org.

Problems Encountered in the Map

After initially downloading a small sample size file and running it against a provisional data.py file, I noticed two main problems with the data, which I will discuss in the following order:

- Overabbreviated street names ("d'Aguilar St")
- "Incorrect" postal codes (No zip code for Hong Kong, but a small count of numbers begin with "51" indicate areas outside this region.)

Overabbreviated Street Names

Once the data was imported to SQL, some basic querying revealed street name abbreviations and postal code incorrect. To deal with the over abbreviations, I tried to iterate over each word in an address, correcting them to their respective mappings in audit.py using the following function:

This updated all substrings in problematic address strings, such that: "1 Stewart Rd" becomes: "1 Stewart Road"; "d'Aguilar St" becomes: "d'Aguilar Street".

Postal Codes

Because Hong Kong is a Special Administrative Region, no postal code is available for this place. However, SQL query still returned some inputs as "incorrect postal code":

Here are the top ten results, beginning with the highest count:

```
value, count
518000,11
510623,7
510180,6
519000,6
510290,5
518048,5
519087,5
518038,4
518067,4
"QBML 2",4
```

From the postal codes beginning with the number of 510, I suspected that the mistakes might come from miscounting neighboring cities in mainland China as part of Hong Kong, such as Shenzhen and Zhuhai. To explore this, I performed another aggregation to verify a certain suspicion...

Sort cities by count, descending

```
ORDER BY count DESC LIMIT 10;
```

And, the results, edited for readability:

```
"香港 Hong Kong",363
"屯門 Tuen Mun",128
"荃灣 Tsuen Wan",75
"Sai Kung",53
"广东省深圳市",50
"Hong Kong",49
"Ta Kwu Ling",41
"深圳",40
Zhuhai,37
Shenzhen,31
```

These results confirmed my suspicion that this metro extract would perhaps also include surrounding cities near Hong Kong.

Data Overview and Additional Ideas

This section contains basic statistics about the dataset, the SQL queries used to gather them, and some additional ideas about the data in context.

File sizes

```
524381500 May 13 12:25 hong-kong_china.osm
433334272 May 16 15:17 hongkong.db
205059894 May 16 12:44 nodes.csv
6170640 May 16 12:44 nodes_tags.csv
15059326 May 16 12:54 ways.csv
70380086 May 16 12:54 ways_nodes.csv
23481938 May 16 12:54 ways_tags.csv
```

Number of nodes

```
sqlite> SELECT COUNT(*) FROM nodes; 2506176
```

Number of ways

```
sqlite> SELECT COUNT(*) FROM ways; 256776
```

Number of unique users

```
sqlite> SELECT COUNT(DISTINCT(e.uid))
FROM (SELECT uid FROM nodes UNION ALL SELECT uid FROM ways) e;
1645
```

Top 10 contributing users

```
sqlite> SELECT e.user, COUNT(*) as num
FROM (SELECT user FROM nodes UNION ALL SELECT user FROM ways) e
GROUP BY e.user
ORDER BY num DESC
LIMIT 10;

hlaw,501492
MarsmanRom,234505
Popolon,160601
sn0wblind,121198
fsxy,98243
katpatuka,96604
KX675,79276
fdulezi,79028
rainy3519446,58106
tomlee721,52607
```

Number of users only having 1 post

```
sqlite> SELECT COUNT(*)
FROM
     (SELECT e.user, COUNT(*) as num
     FROM (SELECT user FROM nodes UNION ALL SELECT user FROM ways) e
     GROUP BY e.user
     HAVING num=1) u;
```

295

Top 10 appearing amenities

```
sqlite> SELECT value, COUNT(*) as num
FROM nodes_tags
WHERE key='amenity'
GROUP BY value
ORDER BY num DESC
LIMIT 10;
restaurant,769
shelter,660
bus_station,567
bank,561
parking,557
fast_food,329
fuel,238
taxi,230
place_of_worship,221
```

Most popular cuisines

```
sqlite> SELECT nodes_tags.value, COUNT(*) as num
FROM nodes tags
    JOIN (SELECT DISTINCT(id) FROM nodes tags WHERE
value='restaurant') i
   ON nodes tags.id=i.id
WHERE nodes_tags.key='cuisine'
GROUP BY nodes tags.value
ORDER BY num DESC
LIMIT 10;
chinese, 137
japanese,21
indian, 15
italian,9
pizza,9
regional,9
international,8
burger,7
thai,7
french,6
```

Additional Ideas

Contributor statistics

Similar to other regions in the OpenStreetMap project, the contributions of users seems skewed, as expected. Here are some user percentage statistics:

- Top user contribution percentage ("hlaw") 18.15%
- Combined Top 10 users contribution 53.63%

Amenity statistics

Restaurants was the top appearing of amenities in Hong Kong. If combining restaurants and fast_food, there were total 4132 counts, 26.57% of the top 10 appearing amenities. In addition, bank ranked the 4th in the amenities, indicating Hong Kong as an international cuisine and financial center.

Conclusion

After this review of the data I noticed that the Hong Kong area is incomplete, though I believe it has been well cleaned for the purposes of this exercise. OpenStreetMap project is a very good start for data wrangling beginners like me. I have been making progress on learning basic codings for data wrangling, as well as using SQL to review the database.