

Indice

Repaso General 1er mes

Unsupervised Learning

Diferencias con Supervised Learning

Tipos

K-Means (Ejemplo Práctico)

PCA (Ejemplo Práctico)

Repaso Python & Colab

Repaso Numpy, Pandas & Matplot

$\mathsf{pandas}_{y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}}$

Repaso Machine learning

Preguntas de investigación

Limpiar datos

Exploración de datos

Construir modélos

Performance

Regresion lineal

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Árboles de decisión

Random Forest

Supervised Learning

Regresión	Clasificación
Predecir un número	Predecir un tipo

Supervised vs UnSupervised Learning

Supervised Learning:

- Por cada x hay una y
- El objetivo es predecir y usando x
- Muchos métodos que usamos en la práctica son supervised

Unsupervised Learning:

- Por cada x no hay y
- El objetivo no es predecir sino investigar x
- Los métodos de unsupervised leen los datos antes y después sugieren que esquema de clasificación se puede aplicar

UnSupervised Learning

Task

Cual es el problema que el modelo quiere solucionar?

Que enfoque de Unsupervised queremos usar?

Por ejemplo, es el clustering jerárquico mejor que el K-means mejor para esta tarea?

Feature engineering & selection

Como decidimos que catacteristicas incluir en nuestro modelo?

UnSupervised Learning

Metodología de aprendizaje

Los algoritmos de clustering son unsupervised, cómo esto afecta nuestro modelo?

Cómo aprenden los modelos de ML?

Cómo el modelo aprende solo

Proceso de optimización

Como los modelos de unsupervised learning se optimizan si no hay función de error?

Usos de UnSupervised Learning

 Datos con muchas dimensiones Investigación de datos sin label

 Detectar relaciones o patrones en nuestros datos

 Necesidad de información urgente

 En la parte de exploración, antes de un algoritmo supervisado

UnSupervised Learning: el futuro del ML

Supervised learning es la guinda del pastel

UnSupervised learning es el pastel mismo

Tipos de Unsupervised learning

Ejercicio supervised vs unsupervised

- Predecir el precio de un diamante en base a sus características
- Reducir features de un dataset de una fábrica
- Agrupar jugadores de baloncesto
- Detectar imagenes
- Categorizar artículos de un periódico

Clustering

Feature 1

Pros y Cons

Pros

- Fácil de representar
- No asume distribuciones subyacentes
- Produce grupos intuitivos
- Puede ser usado en muchas dimensiones

Cons

- Se pierde mucho tiempo en buscar en número optimal de clustering
- El future
 engineering lleva
 mucho tiempo, las
 características
 tienes que ser
 numeradas y
 normalizadas)

Assumption

 Asume la existencia de grupos subyacentes

Ejemplo

Clustering task

Definir los grupos

Saturdays.Al

Que datos podemos sacar?

Dataset of customer features

- Numero de visitas
- Tiempo medio de visita

Tipo de tráfico

• % de visita

Qué características son relevantes para nosotros?

Representación de datos

Definir nuestros clientes

Como aprende el modelo de ML?

$$K = 3$$

Step 1

Número de visitas

Step 1

Media gastada

3 grupos de clientes:

- Gente que hace compras pequeñas pero constantes
- Gente que hace compras grandes frecuentes
- Gente que hace pocas compras

Definición de centroid

Tipos de Unsupervised learning

 La distancia es la distancia Euclidiana, donde la distancia entre 2 vectores U y V es:

$$d = \sqrt{\sum_{n} (u_i - v_i)^2}$$

 En nuestro ejemplo, la diferencia entre el cliente c6 (7,2) y el centro del cluster (4,7) sería la raíz cuadrada de (7-4)^2 + (2-7)^2] = 5.8

Step 2

Número de visitas

Iteration 1, Step 2a

Media gastada

El objetivo es minimizar la distancia del centroide a cada una de las observaciones

Step 3

Iteration 1, Step 2b

Número de visitas

Media gastada

De los 3 centroides, la observación rosa es la más cerca, entonces lo asignamos a esta observación.

Iterar

Iteration 2, Step 2a

Número de visitas

Media gastada

Ya las distancias se están acortando, nos estamos acercando!

Como elegir el número de clusters?

Método de elbow

Como funciona

Ejercicio de clustering

Ejercicio de clustering

Podemos usar las características "tiempo del préstamo" y "tamaño del préstamo"

Cluster con más dimensiones

Ejercicio de clustering 2

Qué pasa si ponemos 4 grupos diferentes?

Principal component analysis

 Algoritmo que nos ayuda a encontrar cuáles variables se relacionan entre ellas y así eliminarlas, dejándonos solo con las importantes.

 Nos ayuda mucho en la parte de feature selection y engineering.

Cómo PCA selecciona los datos

Cumulative_ GPA	Last_year_G PA	Test_scores	Attendance	TutoringNY
3.55	3.65	89%	91%	Υ

Valores con más información

Técnica de reducción de dimensiones

# habitacione s	Precio casa
1	32000
2	100000
4	232000
2	50000

X	у	z	а	***
John	31	M	21st ST.	•••
Jane	42	F	3rd Ave	•••

Cuando tenemos muchos datos, el PCA nos dice cuáles características son importantes.

Definir las variables importantes

Cumulative_ GPA	Last_year_G PA	Test_scores	Attendance	TutoringNY
3.55	3.65	89%	91%	Y
2.76	2.50	73%	90%	

Varianza

Ordenar las caracteristicas

Como funciona este algoritmo?

Estandarizar nuestros datos

Buscar el trend principal

Método de elbow

Como un ordenador lee las imágenes

 Por cada uno de estos 321 x 261 píxeles de la imagen, cada pixel es una característica que se traduce en 321x261=83781 características por sólo 4 observaciones.

 Este es un dataset de gran dimensión, pero podemos usar PCA para simplificarlo.

Imagen Original +83k features

Imagen recreada con 4 componentes principales

GRACIAS!