矩阵理论作业8

刘彦铭 ID: 122033910081

Last Edited: 2022 年 11 月 18 日

书面作业: 59页: 2、5、6

(见课程群) 例 4.13: 假设 f, g 是数域 F 上 n 维空间 V 的线性变换, 且 fg=0, g^2 =g. 求证:

- (1) $V = \ker(f) + \ker(g)$;
- (2) $V=\ker(f)$ $\ker(g)$ 当且仅当 r(f)+r(g)=n.

1. 习题 2

 \Rightarrow : 不妨设 $\sigma: V = W \oplus W^{\perp} \to W$, 其中 (w_1, \dots, w_r) 是 W 子线性空间的一组标准正交基, (w_{r+1}, \dots, w_n) 是 W^{\perp} 上的一组标准正交基,显然 $(w_1,\cdots,w_r,w_{r+1},\cdots w_n)$ 构成 $V=W\oplus W^{\perp}$ 的一组标准正交基。 对于 V 上的任意一组标准正交基 α_1,\cdots,α_n ,存在可逆矩阵 Q 使得 $(\alpha_1,\cdots,\alpha_n)=(w_1,\cdots,w_n)Q$, 由于两组都是标准正交基,故而 Q 是酉矩阵。考虑设 σ 在标准正交基 $\{\alpha_i\}$ 下对应矩阵 A, 则有

$$(\alpha_1, \cdots, \alpha_n)A = \sigma(\alpha_1, \cdots, \alpha_n) = \sigma(w_1, \cdots, w_r, w_{r+1}, \cdots, w_n)Q$$

$$= (w_1, \cdots, w_r, w_{r+1}, \cdots, w_n) \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} Q$$

$$= (\alpha_1, \cdots, \alpha_n)Q^* \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix} Q$$

所以 $A = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q$ 是 Hermite 矩阵。又 $A^2 = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star \left[\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array} \right] Q = Q^\star$

 \Leftarrow : 不妨设 σ 在某组标准正交基 $\alpha_1, \cdots, \alpha_n$ 下对应矩阵 A, A 是幂等的 Hermite 矩阵。对于 Hermite 矩阵 A, 存在酉矩阵 $U=(u_1,\cdots,u_n)$ 以及实对角矩阵 Λ , 使得 $A=U\Lambda U^*$. 由于是幂等的, $A^2=U\Lambda^2 U^*=$ $A = U\Lambda U^*$, 即 $\Lambda^2 = \Lambda$. 所以 Λ 对角线元素为 1 或 0. 不妨设 $\Lambda = \begin{bmatrix} E_r & 0 \\ 0 & 0 \end{bmatrix}$, 则 $A = \sum_{i=1}^r u_i u_i^*$. 容 易验证 $\forall i \leq r, Au_i = u_i, \forall i > r, Au_i = 0.$

构造 $W=\{(\alpha_1,\cdots,\alpha_n)x|x=\sum_{i=1}^rc_iu_i,c_i\in\mathbb{F}\}$, 从而 $W^\perp=\{(\alpha_1,\cdots,\alpha_n)x|x=\sum_{i=r+1}^nc_iu_i,c_i\in\mathbb{F}\}$, 容易验证 $V=W\oplus W^\perp$, 且 σ 是从 V 到 W 的一个正交投影变换, 即 $\forall v\in W,\sigma v=v,\,\forall v\in\mathbb{F}\}$ $W^{\perp}, \sigma v = 0.$

2. 习题 5

- (1) $[A,B] := tr(A^*B) = \sum_{i} (A^*B)_{ii} = \sum_{i} \sum_{k} (A^*)_{ik} B_{ik} = \sum_{i} \sum_{k} \overline{A_{ki}} B_{ki}$. 容易验证:

 - * 对称性: $[B,A] = \sum_{i} \sum_{k} \overline{B_{ki}} A_{ki} = \sum_{i} \sum_{k} \overline{A_{ki}} \overline{B_{ki}} = \overline{[A,B]}.$ * 线性性: $[A,\alpha C + \beta D] = \sum_{i} \sum_{k} \overline{A_{ki}} (\alpha C_{ki} + \beta D_{ki}) = \alpha \sum_{i} \sum_{k} \overline{A_{ki}} C_{ki} + \beta \sum_{i} \sum_{k} \overline{A_{ki}} D_{ki} = \overline{A_{ki}} \overline{A_{ki}} C_{ki}$ $\alpha[A,C] + \beta[A,D].$
 - * 正定性: $[A,A] = \sum_{i} \sum_{k} \overline{A_{ki}} A_{ki} = \sum_{i} \sum_{k} |A_{ki}|_{2}^{2} \ge 0$, 当且仅当 A = 0 时取等号。

该内积空间的一个标准正交基 $\{E_{ij}|i,j\in\{1,2,3,4\}\}$.

3. 习题 6

(1) 容易验证 $E_{11}, E_{12} + E_{21}, E_{22}$ 是 W 的一组基。所以 $B \in W^{\perp}$,当且仅当 $[E_{11}, B] = 0, [E_{12} + E_{21}, B] = 0, [E_{22}, B] = 0$. 设 $B = b_{11}E_{11} + b_{12}E_{12} + b_{21}E_{21} + b_{22}E_{22}$,则有

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{12} \\ b_{21} \\ b_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \text{ fill } [b_{11}, b_{12}, b_{21}, b_{22}]^{\top} = [0, t, -t, 0]^{\top}, t \in \mathbb{R}.$$

所以正交补子空间 $W^{\perp} = \{t(E_{12} - E_{21}) | t \in \mathbb{R}\}.$

(2) 由于
$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
 = $A + B = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0.5 \\ -0.5 & 0 \end{bmatrix}$, 其中 $A \in W, B \in W^{\perp}$, 所以在 W 上的正交投影为 A , 即 $\begin{bmatrix} 1 & 0.5 \\ 0.5 & 0 \end{bmatrix}$.

4. 补充例 4.13

对于 $\forall \beta \in \operatorname{im}(g)$,存在 $\gamma \in V$, $g\gamma = v$. 所以 $f\beta = f(g\gamma) = (fg)\gamma = 0$,即 $\beta \in \ker(f)$,故 $\operatorname{im}(g) \subseteq \ker(f)$. 根据课上讲到的结论(或者考查 g 在某组基下对应的矩阵 A 并运用作业 7 中证明的 55 页习题 4 的结论)有: $r(g) + r(I_V - g) = n$.容易验证 $\operatorname{im}(I_V - g) \subseteq \ker(g)$,因为对任意 $(I_V - g)\gamma, \gamma \in V$ 有 $g(I_V - g)\gamma = 0$. 而 $\dim \ker(g) = n - r(g) = r(I_V - g) = \dim \operatorname{im}(I_V - g)$,所以有 $\ker(g) = \operatorname{im}(I_V - g)$.

考虑任意 $x \in \operatorname{im}(g) \cap \operatorname{im}(I_V - g) = \operatorname{im}(g) \cap \ker(g)$, 有 $x = g\gamma$, 且 $0 = gx = g^2\gamma = g\gamma = x$. 所以 $\operatorname{im}(g) \cap \operatorname{im}(I_V - g) = \{0\}$. 所以有 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V - g)$.

- (1) 对于任意 $v \in V \ker(f)$, 由于 $v \notin \ker(f)$, $\operatorname{im}(g) \subseteq \ker(f)$, 所以 $v \notin \operatorname{im}(g)$. 又 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V g)$, 所以 $v \in \operatorname{im}(I_V g) = \ker(g)$. 这就验证了 $V = \ker(f) + \ker(g)$.
- (2) ⇒: 若 $V = \ker(f) \oplus \ker(g)$, 则 $n = \dim \ker(f) + \dim \ker(g) = n r(f) + n r(g)$, 故 r(f) + r(g) = n. \Leftarrow : 若 r(f) + r(g) = n, 则 $\dim \ker(f) = n - r(f) = r(g) = \dim \operatorname{im}(g)$. 又 $\operatorname{im}(g) \subseteq \ker(f)$, 故此时 $\ker(f) = \operatorname{im}(g)$. 又因为 $\ker(g) = \operatorname{im}(I_V - g)$, 所以 $V = \operatorname{im}(g) \oplus \operatorname{im}(I_V - g) = \ker(f) \oplus \ker(g)$.