Развитие инструментов предиктивной аналитики в целях повышения эффективности мониторинга проектов в сфере жилищного строительства

Ефремов Сергей

Московский физико-технический институт Физтех-школа прикладной математики и информатики Кафедра технологий цифровой трансформации

Научный руководитель канд. экон. наук, доц. А;А. Помулев

Москва, 2022 г.

Постановка задачи

Проблема

Для определения потенциально возможных финансовых рисков необходим мониторинг проектов в сфере жилищного строительства.

Оценка даты фактической готовности

Предлагается строить прогноз ключевого макропараметра объекта жилищного строительства — даты фактической готовности.

Предложение

Проанализировать признаковое описание объектов строительства и построить эффективную регрессионную модель, способную предсказывать дату фактической готовности.

Литература

Работы по проектному финансированию

- Kipf T. N., Welling M. Semi-Supervised Classification with Graph Convolutional Networks // Proceedings of the 5th International Conference on Learning Representations, 2017
- Wu Z., Pan S., Chen F., Long G., Zhang C., Yu P. S. A Comprehensive Survey on Graph Neural Networks // IEEE Transactions on Neural Networks and Learning Systems, 2020

Работы по алгоритмам машинного обучения

- Derevyanko G., Grudinin S., Bengio Y., Lamoureux G. Deep convolutional networks for quality assessment of protein folds // Bioinformatics (Oxford, England), 2018
- Pagès G., Charmettant B., Grudinin S. Protein model quality assessment using 3D oriented convolutional neural networks // Bioinformatics (Oxford, England), 2019
- Baldassarre F., Menéndez Hurtado D., Elofsson A., Azizpour H. GraphQA: Protein model quality assessment using graph convolutional network // Submitted to Bioinformatics, 2020

Входные данные

Схема источников данных

Жилищное строительство

Архитектура модели

Схематичное изображение исследованных моделей

Предобработка

Mетод k-средних

$$a(x_i) = \underset{1 \leq k \leq K}{\operatorname{argmin}} \rho(x_i, c_k) -$$
критерий принадлежности к кластеру;

$$c_k = rac{1}{\sum\limits_{i=1}^{I} [a(x_i) = k]} \sum\limits_{i=1}^{I} [a(x_i) = k] x_i$$
 — центр кластера

Результат работы k-means для разного количества кластеров

Предобработка

Пороговая классификация

$$a_i \le \frac{p_j \cdot |R|}{\sum\limits_{k \in R} p_k} \le a_{i+1}; \qquad a_1 \approx 0, 8; a_2 \approx 1, 2; a_3 \approx 1, 5.$$

Распределение значений признака f

7/14

Предобработка

Модель	Внутреннее	Внешнее	Индекс
	расстояние	расстояние	Данна
k — means ⁺⁺ 5	18,7	28,9	1,15
$k-means^{++}$ 4	15,9	28,1	1,31
$k-means^{++}$ 3	19,4	23,9	1,05
Пороговая классификация	20,2	27,4	1,23

Сравнение метрик качества $k-means^{++}$ для разного количества кластеров

Ядро модели

Линейная регрессия

$$\frac{1}{l}\sum_{i=1}^{l}(\langle \omega, x_i \rangle - y_i)^2 \to \min_{\omega}.$$

Градиентный бустинг

$$a_N(x) = \sum_{n=0}^N \gamma_n b_n(x)$$
 — взвешенная сумма базовых алгоритмов

$$\sum_{i=1}^{l} L(y_i, a_{N-1}(x_i) + \gamma_N b_N(x_i)) \to \min_{b_N, \gamma_N}.$$

Метрики оценки качества

MSE

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

 R^2

$$R^{2}(a, X) = 1 - \frac{\sum_{i=1}^{I} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{I} (y_{i} - \bar{y})^{2}}$$

MAE

$$MAE(a, X) = \frac{1}{I} \sum_{i=1}^{I} |a(x_i) - y_i|$$

MAPE

$$MAPE(a, X) = 100\% \times \frac{1}{I} \sum_{i=1}^{I} \frac{|a(x_i) - y_i|}{|y_i|}$$

Сравнение результатов

Модель	MSE	R^2	MAE	MAPE
LinearRegression	61564	0,516	307	20%
$k-means^{++}$ & LinearRegression	45671	0,634	260	17,7%
f-clas & LinearRegression	43282	0,652	248	17,3%
f-clas & LightGBM	24467	0,808	224	13,6%
LightGBM	22009	0,827	196	12%

Показатели качества построенных моделей

Индикация проблем

Визуализация для пользователя

Результат работы модели на первое июня показал, что доля объектов в красной зоне около 1.5%, а объектов в желтой зоне порядка 20%

Градиент с шагом в год

Экономический эффект

Необходимость мониторинга

- Плюс
- Еще плюс
- Снова плюс

Плюсы автоматизации

- Плюс
- Еще плюс
- Снова плюс

Выносится на защиту

Полученные результаты

- Разработано несколько методов прогнозирования даты фактической готовности объектов жилищного строительства
- Предложены методы предварительной предобработки данных для повышения качества прогноза модели
- Результаты работы алгоритмов показывают состоятельность подхода и репрезентативность результата

Дальнейшие исследования

- Возможно обобщение модели на другие важные для проектного мониторинга признаки
- Переход к прогнозированию динамически изменяющихся показателей
- Обогащение признакового пространства показателями импортозависимости