ات ره به مفررسیال در انرسولاسین برسم ۱۳ (۱۵۰ - ۱۵۱ ر ۱۵ - ۱۵۵) به رافتی نماتوان فیلزه ف درد.

روش اعلی ا^۱۵ ما سر

IP = Intercept Point

$$P_{0} = 10 \log \left(\frac{(k_{1}A)^{2}}{\sqrt{2}} \right)^{2} \frac{10^{3}}{R} dBm$$

$$P_{1}P_{\omega_{1}} = 16 \log \left(\frac{(k_{1}A + \frac{94}{4}k_{3}A^{3})^{2}}{\sqrt{2}} \right)^{2} \frac{10^{3}}{R} dBm$$

$$P_{1}P_{\omega_{1}} = 16 \log \left(\frac{(k_{1}A + \frac{94}{4}k_{3}A^{3})^{2}}{\sqrt{2}} \right)^{2} \frac{10^{3}}{R} dBm$$

$$P_{1}P_{\omega_{1}} = 10 \log \left(\frac{(k_{1}A + \frac{94}{4}k_{3}A^{3})^{2}}{\sqrt{2}} \right)^{2} \frac{10^{3}}{R} dBm$$

$$P_0 = P_{IP}$$
 $g P_0 = P_{(2\omega_1 - \omega_2)} \implies \frac{2}{4} \frac{k_1}{6}$

$$\Rightarrow P_{IP} = 10 \log \left(\frac{2}{3} \frac{k_1^3}{|k_3|} \frac{10^3}{R} \right)^{d/6m}$$

$$y = 50^{\circ} \Rightarrow P_{TP} = 10 \log \frac{k_1^3}{1 k_3 1} + 11.25^{\circ}$$

$$A(Q_{IP}^{2}) = \frac{2}{3} \frac{k_{1}}{|k_{3}|} \implies P_{IP}^{2} = 10 \log \frac{1}{|2|} \frac{k_{1}^{3}}{|k_{3}|} \frac{k_{3}^{3}}{|k_{3}|} = P_{IP} - 9^{dBm}$$

$$\Rightarrow P_{(2\omega_1 - \omega_2)} \cong 3P_{\omega_1} - 2P_{IP}$$

درسفی تون باس داری ۹۰۰ ۱۳۰۰

منال: یک درده نه باستخصه شیل زیر رادرانظر سمرمر (۱۹ = ۵۵)

e = 15e - 2e 3

ار برای ای در دهانه راستها ب

 $P_{IP} = 43.52$, $P_{U_1} = -10$, $P_{1dB} = 32.89$ معلوب عام ول تم الرسولاسول رتب سوم درمورى دردهام ا ا بوجه باليه الله عدر الله الم الله الم الله الم المري المررسطع باين وان ركردارد وي تون ارمزول موق استادمرد P(24-62) = 3PW1-2PIP = -117 dBm - ربع دیاسی: عابت برطرش سینال سد بیرند، عابالی توسط مویربه عنوان حدیا بین را عوجه سلیال به عنوان صر بالای مین مهردد. این ربع را بربع دیا صلی تیرنده عابرای کولیم: No = KTOBGF Walt (ع) مره دودهام ر ع معربم مداران ی است $B = \int_{c}^{\infty} G_{f}(f) df$ >> No = -174 dBm + 10 long B+G(dB)+F(dB) $\gamma_{\omega_{1}} - \gamma_{(2\omega_{1} - \omega_{2})} = \frac{2}{3} (\gamma_{\pm p} - \gamma_{(2\omega_{2} - \omega_{1})})$ DR(dB) = 2 [P_{IP} + 174-10 by B-G-F]) BJT در سوارهای زیر است د. می زود: ۱- سوت کسره های با ندرسو و اند بارس ۲ - مرب اسکه های مرهاسی و ملوط استره ها ۳ ساسلاتورها. - بررسی عسرد عیرمعی آلکا: 21 No - معرى مطرسارماره تبوت ليره ; I Cz or vicut (~)

 $\int I_{C} \simeq I_{E} = I_{ES} e^{\frac{V_{be}}{V_{T}}}$ $V_{T} = \frac{KT}{9} \simeq 25 - 26$ ميع جريال دي ا $\Rightarrow I_{RB} = I_{E_3} + (1-\alpha)I_{E_2} \Rightarrow I_{E_2} = \frac{V_{EE} - 0.7}{(2-\alpha)R_B} \approx \frac{V_{EE} - 0.7}{R_B}$ IRB = VEE -VBE VBE (MV) Ic (mA) Ic= Ies e NT المارك عدال سيدسول 2x10 A 760 820 880 100 $B \cdot W \cdot = \frac{F_{H-}F_{L}}{f_{o}}$ $\beta_o = \sqrt{F_H \cdot F_L}$ & B. W. > 10~26/ قور سره بانربارس / 10-20 / B.W. حاق $\left| \frac{Ic}{Li} \right| = \left| Ai \right|$ تعوت سره مای باردسی (۲۱ = ۲۱)

2Gwt
$$= I_o(x) + 2 \sum_{n=1}^{\infty} I_n(x) G_n wt$$

وعدورو فللمرد حسال لرجي الوساسره بالهريع:

 $I_{c}=I_{es}e$ $\Rightarrow I_{c}=I_{es}e$ $\Rightarrow I_{c}=I_{es}e$ $=I_{es}e$ $=I_{es}e$

دلن رور و دی ارمالیره سره

2)
$$y \approx \Rightarrow I_n(x) > 0$$

3)
$$\lim_{x\to 0} \mathbb{I}_{n(x)} = \frac{\left(\frac{x}{2}\right)^n}{n!}$$

3)
$$\lim_{x \to \infty} L_{n}(x) = \frac{\sqrt{dc}}{n!}$$

$$\Rightarrow L_{c} = L_{ES} e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{n}(x) C_{n} n \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[1 + 2 \sum_{n=1}^{\infty} \frac{L_{n}(x)}{L_{o}(x)} C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{n}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x) C_{n} \omega t \right] = \underbrace{L_{ES}}_{C_{o}} L_{o}(x) e^{\sqrt{T}} \left[L_{o}(x) + 2 \sum_{n=1}^{\infty} L_{o}(x$$

 $\frac{\sqrt{dc}}{L_c = L_{ES}e^{\sqrt{T}}} L_{o}(a) = L_{C2}$

$$y = V_i = 0$$
 $\Rightarrow V_{BE} = V_{de}Q = V_T \ln \frac{Jc_2}{I_{es}}$ $\Rightarrow V_{de} = V_{de}Q - V_T \ln I_o(x)$
 $y = 0$ $\Rightarrow V_{BE} = V_{de}Q$

h Io(2)	I.(%)	12(N)
0	0	0
0.062	0.485	0-124
6.236	0.893	0.24
0.823	1.396	0.433
3.30	1.787	0.719
7.93	1.897	0.854
17.6	1.949	0.926
	6.062 6.236 0.823 3.30 7.93	0.062 0.485 6.236 0.893 0.823 1.396 3.30 1.787 7.93 1.897

$$V_0(t) = V_{CC} - R_L I_{C} = V_{CC} - R_L I_{C_2} (1 + 2 \sum_{N=1}^{\infty} \frac{I_{N(N)}}{I_{o(N)}} C_{SNW} t) = V_{Cte} - \sum_{K=1}^{\infty} V_{oK} C_{SKW} t$$

$$V_{0K} = 2R_{L}I_{C}\frac{J_{K}(N)}{J_{0}(N)}$$

$$THD = \int_{K=2}^{\infty} \left(\frac{V_{0K}}{V_{01}}\right)^{2}$$

$$V_{0K} = 2R_{L}I_{C}\frac{J_{K}(N)}{J_{0}(N)}$$