Documentation pas-math

Version 1.07 – 14 octobre 2016

Stéphane Pasquet

	Sommaire		
1 Introduction et installation			
2 Les commandes		2	
2.1	Les ensembles	2	
2.2	Les repères et analyse fonctionnelle	3	
2.3	Notations géométriques	4	
2.4	Probabilités	5	
2.5	Divers	5	
3 Ajo	3 Ajout de commandes 6		

1 Introduction et installation

J'ai souhaité écrire cette extension dans le but de simplifier la saisie des documents mathématiques, mais surtout harmoniser l'écriture d'un même ouvrage. J'ai donc voulu créer des commandes qui permettent d'écrire des objets mathématiques de façon rapide et efficace sans que l'on se demande la façon dont on a écrit telle ou telle chose au début du document.

Le package pas-math charge automatiquement les extensions suivantes :

```
amsmath
amssymb
amsfonts
esvect
ifthen
kpfonts si pas-math est appelé avec l'option [kpfonts].
```

Sous Ubuntu, on pourra décompresser pas-math.zip dans le répertoire :

```
./texlive/texmf-local/tex/latex/
```

de sorte à avoir :

```
./texlive/texmf-local/tex/latex/pas-math/latex/pas-math.sty
./texlive/texmf-local/tex/latex/pas-math/doc/pas-math.tex
./texlive/texmf-local/tex/latex/pas-math/doc/pas-math.pdf
./texlive/texmf-local/tex/latex/pas-math/doc/doc.codes.tex
./texlive/texmf-local/tex/latex/pas-math/doc/doc.styles.tex
```

Après installation, n'oubliez pas de taper la commande texhash dans le terminal pour mettre à jour la base de données des extensions.

Avec Miktex (sous Windows) ou macTex (sous Mac OS), j'imagine que l'arborescence ressemble à ce qui est écrit précédemment.

2 Les commandes

Les commandes suivantes peuvent être utilisées hors mode mathématique, sauf celles qui sont mentionnées comme ne fonctionnant uniquement qu'en mode mathématique.

Il va de soit que ces commandes sont intéressantes quand on utilise un éditeur avec auto-complétion (comme, par exemple, TexMaker).

2.1 Les ensembles

Commandes	Résultats
\N	N
\D	D
\Z	\mathbb{Z}
\ Q	Q
\R	\mathbb{R}
\C	C
\intervFF{3}{5}	[3;5]
$\intervF0{3}{+\infty}$	[3;+∞[
\interv0F{\dfrac{3}{2}}{5}	$\left]\frac{3}{2};5\right]$
\interv00{\dfrac{3}{2}}{5}	$\left]\frac{3}{2};5\right[$
\entInterv{a}{b}	$\llbracket a;b rbracket$

Les intervalles sont mis dans une boîte; ainsi, l'intervalle affiché ne peut pas être coupé en fin de ligne.

2.2 Les repères et analyse fonctionnelle

Commandes	Résultats		
\Rij	$(0; \vec{i}, \vec{j})$		
\Ruv	$(O; \overrightarrow{u}, \overrightarrow{v})$		
\Rijk	$(0; \vec{\imath}, \vec{\jmath}, \vec{k})$		
Ces trois commandes peuvent recevoir un argument : le nom de l'origine :			
\Rij[\$\Omega\$]	$(\Omega; \overrightarrow{\iota}, \overrightarrow{\jmath})$		
\Rijk[A]	$(A; \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$		
\coord{-1}{2}	(-1;2)		
\coordEsp{-1}{2}{5}	(-1;2;5)		
lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{3x^2 + 1}{6x^2 + 1}$		
Cette commande peut recevoir un argument : le nom de la fonction :			
$\label{lem:config} $$ \left(C\left(z-1\right)^{C}\left(z\right)^{C}\left(z-1\right)^{C+1}$ $	$g: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ $z \mapsto \frac{z-1}{z+1}$		
\dx (à mettre dans une intégrale)	d <i>x</i>		
Cette commande admet un argument : le nom de la variable d'intégration :			
\dx[t]	d <i>t</i>		
\dint (uniquement en mode mathématique)	$\int_{a}^{b} f(x) \mathrm{d}x$		
$\label{limite} $$ \prod_{x}{0}{f(x)=0}$$	$\lim_{x \to 0} f(x) = 0$		
Cette commande admet un argument optionnel :			
\limite[x>0\\y>0]{x}{0}{f(x,y)=0}	$\lim_{\substack{x \to 0 \\ x > 0 \\ y > 0}} f(x, y) = 0$		

2.3 Notations géométriques

Commandes	Résultats	
\angle{ABC}	ÂBC	
\angleor{OA}{OB}	$(\overrightarrow{OA}, \overrightarrow{OB})$	
\arc{AB}	ÂB	
$\pythagore{BC}{AB}{AC}$	$BC^2 = AB^2 + AC^2$	
\thales{AB}{AM}{AC}{AN}{BC}{MN}	$\frac{AB}{AM} = \frac{AC}{AN} = \frac{BC}{MN}$	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{AB}{AM} = \frac{AC}{AN}$	
\barycentre{A}{B}{C}	$\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$	
Cette commande admet une option : le nom du barycentre.		
\barycentre[\$\Omega\$]{A}{B}{C}	$\overrightarrow{\Omega A} + \overrightarrow{\Omega B} + \overrightarrow{\Omega C} = \overrightarrow{0}$	
\norme{AB}	AB	
\prodscal{AB}{\\$Omega\$C}	$\overrightarrow{AB} \cdot \overrightarrow{\Omega C}$	

2.4 Probabilités

Commandes	Résultats	
\evcont{A}	Ā	
\union{A}{\evcont{B}}	$A \cup \overline{B}$	
\inter{A}{B}	A∩B	
\proba{A}	P(A)	
\probamin{A\$_1\$}	<i>p</i> (A ₁)	
\esp{X}	E(X)	
Cette commande admet un argument optionnel :		
\esp[\text{E}]{X}	E (X)	
\var{X}	V (X)	
Cette commande admet un argument optionnel :		
\var[\text{V}]{X}	V(X)	
\ectype{X}	σ(X)	
\probavar{X}{-2}	P(X = -2)	
Cette commande admet un argument optionnel :		
\probavar[\geqslant]{X}{-2}	$P(X \geqslant -2)$	
\probacond{A}{B}	P _B (A)	
\probacond{X\$geqslant 2\$}{(X\$leqslant 3\$)}	$P_{(X \leqslant 3)}(X \geqslant 2)$	
\probacondmin{A}{B}	<i>p</i> _B (A)	

2.5 Divers

Commandes	Résultats
\pourcent{x}; \pourcent{30,5}	x%;30,5%
\fact{n}	n!
$\sl \{n\}\{n\}\{n\}$	$(u_n)_{n\geqslant 0}$
\e, \$\e^x\$	e(le nombre), e^x (la fonction)
\i, \j	i, j
\jexp, \jalg	$e^{i\frac{\pi}{3}}, \frac{1}{2} + i\frac{\sqrt{3}}{2}$
\pgcd{a}{b}, \pgcd*{a}{b}	$\operatorname{pgcd}(a;b), \operatorname{PGCD}(a;b)$
\ppcm{a}{b}, \ppcm*{a}{b}	$\operatorname{ppcm}(a; b), \operatorname{PPCM}(a; b)$

3 Ajout de commandes

Bien entendu, je n'ai pas pensé à toutes les simplifications possibles. Aussi, si vous voulez contribuer à cette extension, vous pouvez m'envoyer vos suggestions.