□ 编写程序,实现一阶逻辑归结算法,并用于求解给出的三个逻辑推理问题,要求输出按照如下格式:

```
1. (P(x),Q(g(x)))
```

- 2. $(R(a),Q(z),\neg P(a))$
- 3. $R[1a,2c]{X=a}$ (Q(g(a)),R(a),Q(z))

.

- "1a"表示第一个子句(1-th)中的第一个(a-th)个原子公式, 即P(x).
- "2c"表示第二个子句(1-th)中的第三个 (c-th)个原子公式, 即 ¬P(a).
- "1a"和"2c"是冲突的, 所以应用最小合一 $\{X = a\}$.

[&]quot;R"表示归结步骤.

- ☐ Aipine Club
 - A(tony)
 - A(mike)
 - A(john)
 - L(tony, rain)
 - L(tony, snow)
 - \blacksquare ($\neg A(x), S(x), C(x)$)
 - \blacksquare (\neg C(y), \neg L(y, rain))
 - \blacksquare (L(z, snow), \neg S(z))
 - \blacksquare (\neg L(tony, u), \neg L(mike, u))
 - \blacksquare (L(tony, v), L(mike, v))
 - \blacksquare ($\neg A(w)$, $\neg C(w)$, S(w))

```
[sysu hpcedu 302@cpn238 ~/scc22/lsr/mp linpack/resoluation] python main.py
A(tony)
A(mike)
A(john)
L(tony, rain)
L(tony, snow)
(\neg A(x), S(x), C(x))
(\neg C(y), \neg L(y, rain))
(L(z, snow), \neg S(z))
(\neg L(tony, u), \neg L(mike, u))
(L(tony, v), L(mike, v))
(\neg A(w), \neg C(w), S(w))
R[2,11a](w=mike) = \neg C(mike), S(mike)
R[2,6a](x=mike) = S(mike),C(mike)
R[5,9a](u=snow) = \neg L(mike,snow)
R[12b,13a] = S(mike)
R[8a,14](z=mike) = \neg S(mike)
R[15,16] = []
```

- ☐ Graduate Student
 - GradStudent(sue)
 - (¬GradStudent(x), Student(x))
 - (¬Student(x), HardWorker(x))
 - HardWorker(sue)

```
[sysu_hpcedu_302@cpn238 ~/scc22/lsr/mp_linpack/resoluation]$ python main.py
4
GradStudent(sue)
(¬GradStudent(x), Student(x))
(¬Student(x), HardWorker(x))
¬HardWorker(sue)
R[3b,4](x=sue) = ¬Student(sue)
R[1,2a](x=sue) = Student(sue)
R[5,6] = []
```

- ☐ Block World
 - On(aa,bb)
 - On(bb,cc)
 - Green(aa)
 - Green(cc)
 - \blacksquare (\neg On(x,y), \neg Green(x), Green(y))

```
[sysu_hpcedu_302@cpn238 ~/scc22/lsr/mp_linpack/resoluation]$ python main.py
5
On(aa,bb)
On(bb,cc)
Green(aa)
~Green(cc)
(~On(x,y), ~Green(x), Green(y))
R[4,5c](y=cc) = ~On(x,cc),~Green(x)
R[3,5b](x=aa) = ~On(aa,y),Green(y)
R[2,6a](x=bb) = ~Green(bb)
R[1,7a](y=bb) = Green(bb)
R[8,9] = []
```