1	ſ	Δ	П	٦_	Λ	Λ.	\mathbf{F}_{i}	X
⊥ν		$^{-}$		_	- 1 1	/ I		/ \

C++

Полная документация к виблиотеке по работе с матрицами и СЛУ. Оформлено при помощи $pmathbb{P} \mathbf{T}_{\mathbf{E}} \mathbf{X}$.

Студент: Шаламов Иван.

Группа: 151.

Содержание

1	Вступление.	2
2	Препроцессорные директивы.	3
3	Функции и методы их использования.	4
4	Основные принципы работы.	6
5	Классификация возможных ошибок.	8
6	Использованные при создании библиотеки источники и материалы.	9
7	Заключение.	10

1 Вступление.

- Данная библиотека создавалась с целью ее дальнейшего использования в программном решении Систем Линейных Уравнений (далее СЛУ).
- Основные объекты, фигурирующие в ее использовании матрицы и вектора, составленные из вещественных чисел.
- Элементы матриц коэффициенты при неизвестных в СЛУ.
- Элементы векторов свободные члены СЛУ.
- Библиотека содержит несколько функций, позволяющих пользователю взаимодействовать с программой при решении СЛУ.

2 Препроцессорные директивы.

Препроцессорные директивы отвечают за подключение заголовочных файлов и определение некоторых констант. В данной библиотеке представлены следующие из них:

- # define Matrix vector < vector <double> > (Определение типа данных vector < vector <double> > одним словом Matrix).
- # define Vector vector <double> (Определение типа данных vector <double> одним словом Vector).
- # include <iostream> (Поток ввода-вывода).
- # include <vector> (Для использования STL-контейнера Vector).
- # include $\langle cstdlib \rangle$ (Для использования функции exit(1) при возникновении ошибок).
- # include <iomanip> (Для разметки данных (setw) при выводе их на экран в консоли).
- # include <cmath> (Для использования математических операций sqrt и pow).
- # include <fstream> (Поток ввода-вывода в/из файл/а).
- # include <string> (Для использования STL-контейнера String).

3 Функции и методы их использования.

Библиотека содержит следующие функции:

• Для работы с LU-разложением:

ValueNLU – функция возвращения целочисленного значения n, аргументы – int n, возвращает введенное число.

SetMatrixLU – функция заполнения элементов матриц A, L, U, R числами, аргументы – Matrix A, L, U, R, int n, возвращаемое значение – void.

SetVectorLU – функция заполнения элементов векторов bLU, yLU, xLU числами, аргументы – Vector bLU, yLU, xLU, int n, возвращаемое значение – void.

CompositionLU – функция проверки корректности LU-разложения путем перемножения матриц L и U, аргументы – Matrix L, U, R, int n, возвращаемое значение – void.

ShowMatrixLU – функция вывода элементов матрицы на экран в консоли, аргументы – Matrix A, возвращаемое значение – void.

LU – функция реализации LU-разложения матрицы A, аргументы – Matrix A, L, U, R, int n, возвращаемое значение – void.

ShowVectorLU – функция вывода элементов вектора на экран в консоли, аргументы – Vector xLU, возвращаемое значение – void.

GaussLU – функция реализации метода Гаусса (LU) для решения СЛУ, аргументы – Matrix A, L, U, R, Vector bLU, yLU, xLU, int n, возвращаемое значение – void.

• Для работы с LLT-разложением:

ValueMC – функция возвращения целочисленного значения m, аргументы – int m, возвращает введенное число.

SetMatrixC – функция заполнения элементов матриц B, LC, LT, V числами, аргументы – Matrix B, LC, LT, V, int m, возвращаемое значение – void.

SetVector C – функция заполнения элементов векторов bC, yC, xC числами, аргументы – Vector bC, yC, xC, int m, возвращаемое значение – void.

TransposeC – функция транспонирования матрицы, аргументы – Matrix B, LT, int m, возвращаемое значение – void.

CompositionC – функция проверки корректности LLT-разложения путем перемножения матриц L и L^T , аргументы – Matrix LC, LT, V, int m, возвращаемое значение – void.

ShowMatrixC – функция вывода элементов матрицы на экран в консоли, аргументы – Matrix B, возвращаемое значение – void.

Cholesky – функция реализации LLT-разложения матрицы B, аргументы – Matrix B, LC, LT, V, int m, возвращаемое значение – void.

ShowVector C – функция вывода элементов вектора на экран в консоли, аргументы – Vector xC, возвращаемое значение – void.

CholeskyLLT – функция реализации метода Холецкого (LLT) для решения СЛУ, аргументы – Matrix B, LC, LT, V, Vector bC, yC, xC, int m, возвращаемое значение – void.

4 Основные принципы работы.

- Если Вам необходимо решить СЛУ, то Вы можете использовать данную библиотеку следующим образом:
 - 1 Обозначить Matrix A/B, L/LC, U/LT, R/V, Vector bLU/bC, yLU/yC, xLU/xC, int n/m.
 - 2 Использовать функцию ValueNLU/ValueMC, обозначив количество неизвестных переменных в системе.
 - 3 Использовать функцию **GaussLU/CholeskyLLT** для решения СЛУ при помощи метода Гаусса (LU)/Холецкого (LLT).
 - 4 Библиотека также рассчитана на одновременное использование обоих методов решения СЛУ.
- Библиотека рассчитана на то, что пользователь будет вызывать непосредственно функции **GaussLU** или **CholeskyLLT** для пошагового решения СЛУ, но также возможно использование имеющихся функций в любом другом порядке.
- Библиотека рассчитана на работу с пользователем при помощи инсрукций, выводимых на экран в консоли, то есть Вам достаточно использовать какую-либо функцию и далее следовать предложенным инструкциям.
- Если при использовании функций заполнения матриц или векторов Вы хотели бы считать данные из файла, то необходимо сделать следующее:

- 1 В файл 1.txt ввести матрицу NXN, элементами которой являются коэффициенты при неизвестных в исходной СЛУ (необходимо ввести именно столько элементов, сколько имеется коэффициентов в исходной СЛУ), если Вы хотите решить СЛУ методом Гаусса (LU), далее выбрать в консоли чтение из файла.
- 2 В файл 2.txt ввести вектор, элементами которого являются свободные члены в исходной СЛУ (**необходимо** ввести именно столько элементов, сколько имеется свободных членов в исходной СЛУ), если Вы хотите решить СЛУ методом Гаусса (LU), далее выбрать в консоли чтение из файла.
- 3 В файл 4.txt ввести матрицу МХМ, элементами которой являются коэффициенты при неизвестных в исходной СЛУ (необходимо ввести именно столько элементов, сколько имеется коэффициентов в исходной СЛУ), если Вы хотите решить СЛУ методом Холецкого (LLT), далее выбрать в консоли чтение из файла.
- 4 В файл 5.txt ввести вектор, элементами которого являются свободные члены в исходной СЛУ (необходимо ввести именно столько элементов, сколько имеется свободных членов в исходной СЛУ), если Вы хотите решить СЛУ методом Холецкого (LLT), далее выбрать в консоли чтение из файла.
- Файл 3.txt предназначен для вывода в него ошибок, которые могут возникнуть при решении СЛУ методом Гаусса (LU) или методом Холецкого (LLT), подробней о возможных ошибках см. в параграфе Классификация возможных ошибок.

5 Классификация возможных ошибок.

В ходе решения исходной СЛУ могут возникнуть различные ошибки, в библиотеке они отслеживаются через исключения и при возникновении записываются в файл 3.txt, а также выводятся на экран в консоли. Причины их возмножного возникновения описаны в классификации ошибок:

- Error 1: It's impossible to realize the LU-decomposition, since there is a division by 0 (В ходе процесса LU-разложения было обнаружено деление на 0, исходная СЛУ не имеет решений).
- Error 2: It's impossible to realize the LLT-decomposition, since the proposed matrix isn't symmetric (Осуществить LLT-разложение невозможно, так как введенная Вами или считанная из файла матрица коэффициентов не является симметричной).
- Error 3: It's impossible to realize the LLT-decomposition, since the proposed matrix isn't positive-definite (Осуществить LLT-разложение невозможно, так как введенная Вами или считанная из файла матрица коэффициентов не является положительно определенной).
- Error 4: It's impossible to realize the LLT-decomposition, since there is a division by 0 (В ходе процесса LLT-разложения было обнаружено деление на 0, исходная СЛУ не имеет решений).
- Error 5: It's impossible to solve the system by the Gaussian Elimination (LU-decomposition)/ Cholesky Decomposition (LLT-decomposition) method, since there is a division by 0 in the algorithm (В ходе решения исходной СЛУ методом Гаусса (LU)/Холецкого (LLT) было обнаружено деление на 0, исходная СЛУ не имеет решений).
- Error 6: Unable to open the file (Файла, который Вы пытаетесь открыть не существует).
- Error 7: Please, enter 1 or 2 to continue (Вы ввели не 1 или 2 для считывания из файла или ввода данных для решения исходной СЛУ).
- Error 8: Please, enter n/m > 0 to solve the system of linear equations (Вы ввели ≤ 0 значение количества неизвестных в исходной СЛУ).

6 Использованные при создании библиотеки источники и материалы.

- http://ru.wikipedia.org/wiki/LU-разложение.
- http://ru.wikipedia.org/wiki/Разложение Холецкого.
- http://algowiki-project.org/ru/Разложение_ Холецкого_ (метод_ квадратного_ корня).
- http://algowiki-project.org/ru/Метод_ Холецкого_ (нахождение_ симметричного_ треугольного_ разложения).
- http://algowiki-project.org/ru/Обратная подстановка (вещественный вариант).
- http://algowiki-project.org/ru/Прямая_ подстановка_ (вещественный_ вариант).

7 Заключение.

Данная библиотека была собрана на базе Code::Blocks 16.01. Все права защищены.