In-Class Final Exam Review Set A, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

+****	false	N > W				
true	raise	$A : m \times n \rightarrow$				
\bowtie	0	If a linear system has more unknowns than equations, then the system has either no solutions or infinitely many solutions.				
0	\otimes	A $n \times n$ matrix A and its echelon form E will always have the same eigenvalues. $\lambda^2 - \lambda - \Rightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \qquad \lambda = 1, -1$				
\bigcirc	\bigcirc	$x^2 - 2xy + 4y^2 \ge 0$ for all real values of x and y .				
\bigcirc	\bigcirc	If matrix A has linearly dependent columns, then $\dim((\operatorname{Row} A)^{\perp}) > 0$.				
\bigcirc	\bigcirc	If λ is an eigenvalue of A , then dim $(\text{Null}(A - \lambda I)) > 0$.				
\bigcirc	\bigcirc	If A has QR decomposition $A = QR$, then $ColA = ColQ$.				
\bigcirc	\bigcirc	If A has LU decomposition $A = LU$, then $rank(A) = rank(U)$.				
\bigcirc	\bigcirc	If A has LU decomposition $A = LU$, then $\dim(\text{Null } A) = \dim(\text{Null } U)$.				

- 2. Give an example of the following.
 - i) A 4×3 lower triangular matrix, A. such that $Col(A)^{\perp}$ is spanned by

the vector
$$\vec{v} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$$
. $A = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 1 \end{pmatrix}$

ii) A 3×4 matrix A, that is in RREF, and satisfies dim $\left(\left(\operatorname{Row}A\right)^{\perp}\right)=2$ and dim $\left(\left(\operatorname{Col}A\right)^{\perp}\right)=1$

$$2. A = \left(\begin{array}{c} \\ \end{array} \right)$$

3. (3 points) Suppose $A = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$. On the grid below, sketch a) $\operatorname{Col}(A)$, and b) the eigenspace corresponding to eigenvalue $\lambda = 5$.

- 4. Fill in the blanks.
 - (a) If $A \in \mathbb{R}^{M \times N}$, M < N, and $A\vec{x} = 0$ does not have a non-trivial solution, how many pivot columns does A have?
 - (b) Consider the following linear transformation.

$$T(x_1, x_2) = (2x_1 - x_2, 4x_1 - 2x_2, x_2 - 2x_1).$$

The domain of T is _____. The image of $\vec{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ under $T(\vec{x})$ is $\begin{pmatrix} & \\ & \end{pmatrix}$. The co-domain of T is _____. The range of T is:

5. Four points in \mathbb{R}^2 with coordinates (t,y) are (0,1), $(\frac{1}{4},\frac{1}{2})$, $(\frac{1}{2},-\frac{1}{2})$, and $(\frac{3}{4},-\frac{1}{2})$. Determine the values of c_1 and c_2 for the curve $y=c_1\cos(2\pi t)+c_2\sin(2\pi t)$ that best fits the points. Write the values you obtain for c_1 and c_2 in the boxes below.

$$c_1 = \boxed{ }$$
 $c_2 = \boxed{ }$

In-Class Final Exam Review Set B, Math 1554, Fall 2019

1. Indicate whether the statements are true or false.

true false

- O For any vector $\vec{y} \in \mathbb{R}^2$ and subspace W, the vector $\vec{v} = \vec{y} \text{proj}_W \vec{y}$ is orthogonal to W.
- \bigcirc If A is $m \times n$ and has linearly dependent columns, then the columns of A cannot span \mathbb{R}^m .
- O If a matrix is invertible it is also diagonalizable.
- \bigcirc If E is an echelon form of A, then Null A = Null E.
- \bigcirc If the SVD of $n \times n$ singular matrix A is $A = U \Sigma V^T$, then Col A = Col U.
- \bigcirc If the SVD of $n \times n$ matrix A is $A = U\Sigma V^T$, r = rankA, then the first r columns of V give a basis for NullA.
- 2. Give an example of:
 - a) a vector $\vec{u} \in \mathbb{R}^3$ such that $\operatorname{proj}_{\vec{p}} \vec{u} = \vec{p}$, where $\vec{u} \neq \vec{p}$, and $\vec{p} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$: $\vec{u} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}$:
 - b) an upper triangular 4×4 matrix A that is in RREF, 0 is its only eigenvalue, and its corresponding eigenspace is 1-dimensional. $A = \begin{pmatrix} & & \\ & & \end{pmatrix}$
 - c) A 3×4 matrix, A, and $\operatorname{Col}(A)^{\perp}$ is spanned by $\begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix}$.
 - d) A 2×2 matrix in RREF that is diagonalizable and not invertible.

3. Suppose $A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix}$. On the grid below, sketch a) the range of $x \to Ax$, b) $(\operatorname{Col} A)^{\perp}$, (c) set of solutions to $A\vec{x} = \begin{pmatrix} 3 \\ 6 \end{pmatrix}$.

- 4. Matrix A is a 2×2 matrix whose eigenvalues are $\lambda_1 = \frac{1}{2}$ and $\lambda_2 = 1$, and whose corresponding eigenvectors are $\vec{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Calculate
 - 1. $A(\vec{v}_1 + 4\vec{v}_2)$
 - 2. A^{10}
 - $3. \lim_{k \to \infty} A^k(\vec{v}_1 + 4\vec{v}_2)$

In-Class Final Exam Review Set C, Math 1554, Fall 2019

1. Indicate whether the statements are possible or impossible.

possible impossible

- \bigcirc $Q(\vec{x}) = \vec{x}^T A \vec{x}$ is a positive definite quadratic form, and $Q(\vec{v}) = 0$, where \vec{v} is an eigenvector of A.
- The maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where a > b > c, for $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 1$, is not unique.
- The location of the maximum value of $Q(\vec{x}) = ax_1^2 + bx_2^2 + cx_3^2$, where a > b > c, for $\vec{x} \in \mathbb{R}^3$, subject to $||\vec{x}|| = 1$, is not unique.
- \bigcirc A is 2×2 , the algebraic multiplicity of eigenvalue $\lambda = 0$ is 1, and $\dim(\operatorname{Col}(A)^{\perp})$ is equal to 0.
- \bigcirc Stochastic matrix P has zero entries and is regular.
- \bigcirc A is a square matrix that is not diagonalizable, but A^2 is diagonalizable.
- \bigcirc The map $T_A(\vec{x}) = A\vec{x}$ is one-to-one but not onto, A is $m \times n$, and m < n.

^{2.} Transform $T_A = A\vec{x}$ reflects points in \mathbb{R}^2 through the line y = 2 + x. Construct a standard matrix for the transform using homogeneous coordinates. Leave your answer as a product of three matrices.

3. Fill in the blanks.

(a)	$T_A = A\vec{x}$, where $A \in \mathbb{R}$	$\mathbb{R}^{2\times 2}$, is a lin	near transform that	first rotates	vectors in \mathbb{R}^2	clockwise
` '	by $\pi/2$ radians about	the origin,	then reflects them	through the	e line $x_1 = x_2$. What is
	the value of $det(A)$?					

(b) B and C are square matrices with det(BC) = -5 and det(C) = 2. What is the value of $det(B) det(C^4)$?

(c) A is a 6×4 matrix in RREF, and rank(A) = 4. How many different matrices can you construct that meet these criteria?

(d) $T_A = A\vec{x}$, where $A \in \mathbb{R}^{2\times 2}$, projects points onto the line $x_1 = x_2$. What is an eigenvalue of A equal to?

(e) If an eigenvalue of A is $\frac{1}{3}$, what is one eigenvalue of A^{-1} equal to?

(f) If A is 30×12 and $A\vec{x} = \vec{b}$ has a unique least squares solution \hat{x} for every \vec{b} in \mathbb{R}^{30} , the dimension of NullA is

4. A is a 2×2 matrix whose nullspace is the line $x_1 = x_2$, and $C = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$. Sketch the nullspace of Y = AC.

5. Construct an SVD of $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Use your SVD to calculate the condition number of A.