

UNIVERSITY OF COLOMBO SCHOOL OF COMPUTING

DEGREE OF BACHELOR OF INFORMATION TECHNOLOGY (EXTERNAL) Academic Year 2017 –1st Year Examination – Semester 1

EN1201: Introductory Mathematics

Multiple Choice Question Paper 28th May 2017 (TWO HOUR)

Important Instructions:

- The duration of the paper is **2(two) hours**.
- The medium of instruction and questions is English.
- The paper has 40 questions and 7 pages.
- All guestions are of the MCQ (Multiple Choice Questions) type.
- All questions should be answered.
- Each question will have 5 (five) choices with one or more correct answers.
- All questions will carry equal marks.
- There will be a penalty for incorrect responses to discourage guessing.
- The mark given for a question will vary from 0 (*All the incorrect choices are marked* & no correct choices are marked) to +1 (*All the correct choices are marked* & no incorrect choices are marked).
- Answers should be marked on the special answer sheet provided.
- Note that questions appear on both sides of the paper. If a page is not printed, please inform the supervisor immediately.
- Calculators are not allowed.
- Mark the correct choices on the question paper first and then transfer them to the given answer sheet which will be machine marked. Please completely read and follow the instructions given on the other side of the answer sheet before you shade your correct choices.

If $x + y = 5$				
(a) 16	(b) 24	(c) 30	(d) 31	(e) 34
If $\sqrt{2} + \sqrt{5} = k$	$(\sqrt{2}-1)$, then k is	equal to		
(b) $\sqrt{3} +$	$\frac{\sqrt{5}}{\sqrt{5}} (\sqrt{2} + \sqrt{1})$ $\sqrt{5} + \sqrt{10} + \sqrt{15}$			
(d) $\sqrt{2}$ +	$ \sqrt{5} + \sqrt{8} + \sqrt{10} \sqrt{4} + \sqrt{5} + \sqrt{10} \sqrt{3} + \sqrt{5} + \sqrt{10} $			
The length and l	breadth of a rectang	le are 12 cm and 8	cm respectively to t	he nearest cm. T
	the area for the recta		em respectively to t	are nearest em. 1
(a) 96	(b) 87.5	(c) 86.25	(d) 106.5	(e) 97.75
How many perfo	ect squares are there	e between 109 and 1	199 ?	
How many perfo	ect squares are there (b) 3	e between 109 and 1 (c) 5	(d) 7	(e) 6
(a) 4	(b) 3			(e) 6
(a) 4	(b) 3			(e) 6
(a) 4	(b) 3			(e) 6 (e) -2
(a) 4 $\frac{(-1)^2 + (-1)^3}{(-1)^4 + (-1)^6}$ is equal (a) 1	(b) 3 Qual to	(c) 5 (c) -1	(d) 7 (d) 2	
(a) 4 $\frac{(-1)^2 + (-1)^3}{(-1)^4 + (-1)^6}$ is equal (a) 1	(b) 3 qual to (b) 0	(c) 5 (c) -1	(d) 7 (d) 2	
(a) 4 $\frac{(-1)^2 + (-1)^3}{(-1)^4 + (-1)^6}$ is equal to (a) 1 The Greatest County (a) 210	(b) 3 qual to (b) 0 ommon Divisor of 2	(c) 5 (c) -1 $2^3 \times 3^2 \times 5$ and 3 (c) 36	(d) 7 (d) 2 $3 \times 2^2 \times 7$ is	(e) -2
(a) 4 $\frac{(-1)^2 + (-1)^3}{(-1)^4 + (-1)^6}$ is equal to (a) 1 The Greatest County (a) 210	(b) 3 qual to (b) 0 ommon Divisor of 2 (b) 108	(c) 5 (c) -1 $2^3 \times 3^2 \times 5$ and 3 (c) 36	(d) 7 (d) 2 $3 \times 2^2 \times 7$ is	(e) -2
(a) 4 $\frac{(-1)^2 + (-1)^3}{(-1)^4 + (-1)^6}$ is equal to the Greatest Council (a) 210 The sum 2+4+6 (a) 50 × 51	(b) 3 qual to (b) 0 pmmon Divisor of 2 (b) 108 +8++100 is equal	(c) 5 (c) -1 $2^3 \times 3^2 \times 5$ and 3 (c) 36 al to (c) 2450	(d) 7 (d) 2 $3 \times 2^2 \times 7$ is (d) 72 (d) 49 × 50	(e) -2 (e) 35 (e) 2550

9)	If the area of a square is $36cm^2$, then the length in centimeters of a side of an equilateral triangle which has the same perimeter as that of the square is
	which has the same perimeter as that of the square is

(a) 8

(b) 12

(c) 6

(d) 9

(e) 18

1+3+5+7+9+.....+999 is equal to 10)

(a) 350000

(b) 250000

(c) 200000

(d) 225000

(e) 275000

11) If x = 100 then $x + x^{-1} + x^{-2}$ is equal to

(a) 100.1010

(b) 100.1001

(c) 100.0011

(d) 100.0101

(e) 100.0011

If $x - \frac{1}{x} = 10$, then $x^2 + \frac{1}{x^2}$ is equal to

(a) 99

(b) 100

(c) 101

(d) 102

(e) 98

 $\frac{x^2}{(x-1)(x+1)}$ is equal to 13)

(a)
$$1 + \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(b) $1 - \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$
(c) $1 + \frac{1}{2(x-1)} + \frac{1}{2(x+1)}$
(d) $\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$
(e) $\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$

(b)
$$1 - \frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

(c)
$$1 + \frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$

(d)
$$\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$$

(e)
$$\frac{1}{2(x-1)} - \frac{1}{2(x+1)}$$

 $1+8999 \times 9001$ is equal to

(a) 81,009,000

14)

(b) 81,000,000

(c) 80,109,000

(d) 80,100,000

(e) 81,000,900

15)	Which of the follow	ing is/are an equat	ion of lines perpe	endicular to the line y	=4x-7?
	(a) $y + 4x = 7$	(b) $y = -\frac{1}{4}x + 2$	(c) $4y + x = 7$	(d) x - 4y = -1	(e) $x + y = 4$
16)	If $(x-3)(x-5) >$	0 then the possib	le values of x are		
	(a) $x > 5$ (d) $3 < x < 5$	(b) <i>x</i> (e) 3	< 3 ≤ <i>x</i> ≤ 5	(c) $x > 3$	
17)	The solution to $\left \frac{3x}{1-x} \right $	= 4 is/are			
	(a) -4	(b) $-\frac{4}{7}$	$(c)\frac{2}{7}$	(d) 4	(e) $\frac{4}{7}$
18)	If $A = \{x : 3 < x \le$	7) and $B = \{x : -1\}$	$-1 \le x < 5$, the	en $A \cap B'$ is equal to	
	(a) $\{x:5 < x < 0 \}$ (b) $\{x:5 \le x \le 0 \}$ (c) $\{x:5 < x \le 0 \}$ (d) $\{x:3 < x < 0 \}$ (e) $\{x:3 \le x \le 0 \}$	7) 7} 5}			
19)	The area of the region	on bounded by $ x $	+ y = 5 is		
	(a) 100 square u	nits (b) 5	0 square units	(c) 25 square	units
	(d) 10 square un	its (e) 2	20 square units		
20)	The volume of a tria as cross-section is ed	• •	ngth 10 cm and a	n equilateral triangle o	of side length 8 cm
	(a) 160 cm^3 (d) $160\sqrt{3} \text{ cm}^3$		$40\sqrt{3} \text{ cm}^3$ $320\sqrt{3} \text{ cm}^3$	(c) 320 cm ³	
21)	If the area of Sri Lan then the ratio of the			that of Russia is $5.6 \times$ is	10 ⁶ square kilometer
	(a) 3:400 (d) 14:425	(b) 3:5	500 4 : 465	(c) 3:40	

22)	The least positive integer k such that $96k$ is a perfect square is
	(a) 3 (b) 9 (c) 12 (d) 6 (e) 18
23)	If three angles of a quadrilateral are 88°, 90° and 92° degrees to the nearest degree, then the largest possible value of the fourth angle is
	(a) 92.5° (b) 91.5° (c) 90.5° (d) 89.5° (e) 93.5°
24)	The volume of a hollow cubic vessel is 125,000 cm ³ . Then the volume of the largest cylinder the can be placed inside the vessel is
	(a) $31,000\pi$ cm ³ (b) $62,500\pi$ cm ³ (c) $62,000\pi$ cm ³
	(d) $31,250\pi$ cm ³ (e) $125,000\pi$ cm ³
25)	The volume of a solid hemisphere A is 125 times that of another hemisphere B. If the base radiu of B is 10 cm, then the base radius of A is
	(a) 25 cm (b) 50 cm (c) 35 cm (d) 125 cm (e) 62.5 cm
26)	If $\tan x = \frac{5}{12}$ and x is an acute angle, then $\frac{1}{\sin x}$ is equal to
	(a) 12/5 (b) 5/12 (c) 5/13 (d) 13/5 (e) 13/12
27)	If $x_n^2 = -31 + (-2)^n$, then x_8 could be
	(a) $\sqrt{97}$ (b) $-\sqrt{97}$ (c) -15 (d) 15 (e) not a real number
28)	A, B and C share an amount of money in the ratio 9:5:4. If A and B together get Rs. 5,600 the C's share is equal to
	(a) Rs. 2,000 (b) Rs. 800 (c) Rs. 1,600 (d) Rs. 3,200 (e) Rs. 2,400

	(a) 5 hours (d) 6 hours	`	b) 4 hours e) 2 hours m	(c) 3 h	nours more than onday	on Monda	У
0)	The number of i						
	(a) 8	(b) 14	(c) 11	(d) 10	(e) 12	2	
<i>1)</i>	Which of the fo	_	re true?				
	I. $\sin 45^{\circ} = \sin 45^{\circ}$						
	II. $\cos 65^{\circ} = \sin 65^{\circ}$ III. $\tan 45^{\circ} = \cos 65^{\circ}$						
	111. tall 45 = cos	, 00					
	(a) I,II and II	I (b) I a	nd II (c	c) I and III	(d) II and III	(e)	Ionly
2)	If $\theta = 60^{\circ}$, then	which of th	e following	has the smalle	st value		
2)	If $\theta = 60^{\theta}$, then $(a) \sin \theta$	which of the (b) cos		has the smalle c) tan θ	st value (d) sec θ		(e) cosec θ
3)	(a) $\sin \theta$ A man invests I	(b) cos	at the beginning θ	c) $\tan \theta$ ning of a year	(d) $\sec \theta$ in an account the	•	10% interest
3)	(a) $\sin \theta$	(b) cos	at the beginning θ	c) $\tan \theta$ ning of a year	(d) $\sec \theta$ in an account the	•	10% interest
3)	(a) sin θ A man invests I annum compour	(b) cos Rs.100,000 anded semi-an	at the beginn nually. The	c) $\tan \theta$ ning of a year	(d) $\sec \theta$ in an account the dependence at the beginning	ng of the f	10% interest
3) 2	(a) sin θ A man invests I annum compour	(b) cos Rs.100,000 anded semi-an 05) ⁶ (b) 100 s his price wi	at the beginn nually. The $0.000(1.05)^7$	c) $\tan \theta$ ning of a year account balance (c) 100,000(1.0 iit on cost price	(d) $\sec \theta$ in an account the dependence at the beginning $(d) 100,000$	ng of the f	10% interest fourth year is,
3) 2	(a) $\sin \theta$ A man invests I annum compour (a) $100,000(1.6)$ If a trader marks	(b) cos Rs.100,000 anded semi-an 05)6 (b) 100 s his price wiffective prof	at the beginn nually. The $0.000(1.05)^7$	c) $\tan \theta$ ning of a year account balance (c) 100,000(1.0 iit on cost price	in an account the december of	ng of the f	10% interest fourth year is,

A solid cylindrical metal block of radius r and height 2r is melted and solid spheres of radius $\frac{3r}{8}$ are made. The maximum number of spheres that can be made is,

(a) 56

(b) 42

(c) 28

(d) 29

(e) 14

The sum of n terms of a series is $s_n = \frac{5a - 3n^2}{2}$. Then the 4th term of this series is 37)

Amal gave $\frac{1}{4}$ of the sweets he had to his brother and $\frac{3}{7}$ of the remaining sweets to his sister. Which of the following number of sweets will allow this distribution? 38)

(b) 56

(c)48

(d) 24

(e) 28

A circular pond of radius r is surrounded by a circular path, where the area of the path is equal to 39) the area of the pond. Then the width of the path is $(a) \left(\sqrt{3} - 1\right)r \quad (b) \left(1 - \frac{1}{\sqrt{2}}\right)r \quad (c) \left(\sqrt{2} - 1\right)r \quad (d) \left(1 + \frac{1}{\sqrt{2}}\right)r \quad (e) \left(\sqrt{2} + 1\right)r$

If $x = \frac{1}{p - \frac{p^2}{p+1}}$ and $x \ne 1$, then p is equal to $(a) \frac{1}{x-1} \qquad (b) \frac{1}{x+1} \qquad (c) \frac{1}{(x-1)^2} \qquad (d) \frac{1}{(x+1)^2}$
