

Testes de Hipóteses para os GLM Parte 2

Testes de hipóteses

Os métodos de inferência dos GLMs baseiam-se na teoria de máxima verossimilhança

Temos três estatísticas usadas para testar essa hipótese relativa aos parâmetros β s. Estas estatísticas são deduzidas de distribuições assintóticas de funções adequadas dos Estimadores de Máxima Verossimilhança dos β s.

Razão de Verossimilhança Estatística de Wald

Estatística Escore

Teste de Razão de Verossimilhança

Seja L_0 a Verossimilhança maximizada sob H_0 , e L_1 a verossimilhança maximizada de forma não restrita (permitindo que H_0 ou H_1 seja verdade).

A Razão:

$$\lambda = \frac{L_0}{L_1} \le 1$$

Aplicando o Log, em ambos os lados, temos:

$$\omega = -2\log\lambda = -2(\ell_0 - \ell_1)$$

Em que ℓ_0 e ℓ_1 são as log-verossimilhanças

Teste de Razão de Verossimilhança

Sob H_0 e φ conhecido, a estatística do teste segue distribuição assintótica χ_q^2 com q graus de liberdade, em que q é o número de parâmetros fixados em H_0 .

Iremos rejeitar H_0 a um nível de significância se :

$$\omega < \chi_{q,1-\alpha}^2$$

Obs.: Se **φ é desconhecido**, logo precisa ser estimado, e para esse caso o teste de máximo verossimilhança possui melhor aproximação pela **distribuição F.**

Teste de Wald

- É baseado na distribuição normal assintótica de $\hat{\beta}$, sendo uma generalização a estatística T-Student.
- Teste mais utilizado no caso de hipóteses relativas a um único coeficiente β_r .

Seja $\beta = (\beta_0, \beta_1)$, com β_0 e β_1 compondo uma partição do vetor de parâmetros original, com q e p-q parâmetros, respectivamente.

A estatística de Wald (W) é definida por :

$$W = (\hat{\beta} - \beta)^T \hat{K} (\hat{\beta} - \beta), \text{ em que } K^{-1} = \text{Cov}(\hat{\beta}) \text{ avaliada em } \hat{\beta}.$$

Teste de Wald

A estatística de Wald, sob H_0 e φ conhecido, segue distribuição assintótica χ_q^2 com q graus de liberdade, em que q é o número de parâmetros fixados em H_0 .

Iremos rejeitar H_0 a um nível de significância se :

$$W < \chi_{q,1-\alpha}^2$$

Para o teste com um único parâmetro, com $H_0: \beta_r = \beta_{00}$, temos que:

$$z_W = \frac{\widehat{\beta_r} - \beta_{00}}{\sqrt{Var(\widehat{\beta_r})}}$$

Em que, sob H_0 , segue distribuição assintótica N(0,1), quando ϕ é conhecido

Teste de Escore

Seja $\widehat{\beta_0}$ o estimado de Máximo Verossimilhança para o vetor de parâmetros β sujeito à restrição importa pela hipótese nula.

A Estatística Escore (S_R) ou Estatística de Rao pode ser definida por:

$$S_R = U(\widehat{\beta_{00}})^T K_{00}^{-1} U(\widehat{\beta_{00}})$$

Iremos rejeitar H_0 a um nível de significância se :

$$S_R > \chi_{q,1-\alpha}^2$$

O teste de escore não requer o ajuste do modelo sob H_1 , sendo conveniente quando H_1 é muito mais complexo do que H_0 .

Intervalo de confiança

O IC para qualquer GLM pode ser obtido invertendo as respectivas estatística do teste.

Por exemplo, um IC de 95% de confiança para um único parâmetro β_k é definido pelo conjunto de valores β_{00}

O IC assintótico de 95% de 100(1- α)% para k, baseado na estatística de Wald é representado por:

$$IC[\widehat{\beta_k}; \gamma\%] = \left|\widehat{\beta_k} \pm z_{\alpha/2} \cdot \sqrt{Var(\widehat{\beta_k})}\right|$$

Em que $z_{\alpha/2}$ é o quantil da distribuição normal padrão.

