1. Komplexe Zahlen

```
\mathbb{R}^2 = \{(a,b): a,b \in \mathbb{R}\} Für (a,b),(c,d) \in \mathbb{R}^2 definieren wir : (a,b)+(c,d):=(a+c,b+d);(a,b)\cdot(c,d):=(ac-bd,ad+bc) Wir setzen abkürzend: i:=(0,1) (imaginäre Einheit). Dann: i^2=(-1,0)
```

Satz 1.1

 \mathbb{R}^2 ist mit obiger Addition und Multiplikation ein Körper. Dieser wird mit \mathbb{C} bezeichnet und heißt Körper der Komplexen Zahlen.

- (1) (0,0) ist das neutrale Element bzgl. der Addition. (1,0) ist das neutrale Element bzgl. der Multiplikation.
- (2) Für $(a,b) \in \mathbb{C}$ ist (-a,-b) das inverse Element bzgl. der Addition Für $(a,b) \in \mathbb{C} \setminus \{(0,0)\}$ ist $(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2})$ das inverse Element bzgl. der Multiplikation

Beweis

Nachrechnen!

Definiere $\varphi: \mathbb{R} \to \mathbb{C}$ durch $\varphi(a) := (a,0) \quad (a \in \mathbb{R})$. Dann gilt: $\varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a) \cdot \varphi(b), \varphi(0) = (0,0), \varphi(1) = (1,0)$. φ ist also ein injektiver Körperhomomorphismus. Also: $\mathbb{R} \subseteq \mathbb{C}$. Wir schreiben a statt (a,0) für $a \in \mathbb{R}$. Insbesondere: $i^2 = -1$.

Satz 1.2

Jedes $z \in \mathbb{C}$ hat eine eindeutige Darstellung z = a + ib mit $a, b \in \mathbb{R}$ Re z := a (Realteil von z), Im z := b (Imaginärteil von z)

Beweis

Sei $z=(a,b)\in\mathbb{C}$ $(a,b\in\mathbb{R}); z=(a,0)+(0,b)=(a,0)+(0,1)\cdot(b,0)=a+ib$ Eindeutigkeit: klar

Definition

Sei $z = a + ib \in \mathbb{C}$ $(a, b \in \mathbb{R})$

(1) $\bar{z} := a - ib$ heißt die zu z konjugiert komplexe Zahl

1. Komplexe Zahlen

(2) $|z| := (a^2 + b^2)^{\frac{1}{2}} (= ||(a, b)|| = \text{eukl. Norm von } (a, b) \in \mathbb{R}^2)$ heißt **Betrag von** $z; |z| \ge 0$

Geometrische Veranschaulichung von C: Komplexe Ebene

|z| =Abstand von z und 0

Satz 1.3

Seien $z, w \in \mathbb{C}$

- (1) Re $z = \frac{1}{2}(z + \overline{z})$; Im $z = \frac{1}{2i}(z \overline{z})$; $z \in \mathbb{R} \iff z = \overline{z}$; $\overline{\overline{z}} = z$; $z = w \iff \operatorname{Re} z = \operatorname{Re} w$, Im $z = \operatorname{Im} w$; $|z| = 0 \iff z = 0$
- (2) $\overline{z+w} = \overline{z} + \overline{w}; \overline{zw} = \overline{z} \cdot \overline{w}; \frac{1}{w} = \frac{1}{\overline{w}}, \text{ falls } w \neq 0$
- (3) $|\operatorname{Re} z| \le |z|$; $|\operatorname{Im} z| \le |z|$
- (4) $|\bar{z}| = |z|; |z|^2 = z \cdot \bar{z} = \bar{z} \cdot z;$ für $z \neq 0: \frac{1}{z} = \frac{\bar{z}}{z \cdot \bar{z}} = \frac{\bar{z}}{|z|^2}$
- (5) $|zw| = |z| \cdot |w|; |\frac{1}{w}| = \frac{1}{|w|}$ falls $w \neq 0$
- (6) $|z+w| \le |z| + |w|$ (Dreiecksungleichung)
- (7) $||z| |w|| \le |z w|$

Beweis

- (1) (5): nachrechnen!
- (7) folgt aus (6) wörtlich wie in \mathbb{R}
- $(6) |z+w|^2 \stackrel{(3)}{=} (z+w)(z+\bar{w}) \stackrel{(2)}{=} (z+w)(\bar{z}+\bar{w}) = z\bar{z} + z\bar{w} + \bar{z}w + w\bar{w}$
- $\stackrel{(1),(3)}{=} |z|^2 + 2\operatorname{Re}(z\bar{w}) + |w|^2 \le |z|^2 + 2|\operatorname{Re}(z\bar{w})| + |w|^2$
- $\stackrel{(3)}{\leq} |z|^2 + 2|z\bar{w}| + |w|^2 = |z|^2 + 2|z||w| + |w|^2 = (|z| + |w|)^2$

Polarkoordinaten

Sei $z = x + iy \in \mathbb{C} \setminus \{0\}$ $(x, y \in \mathbb{R})$. r := |z|

Bekannt: $\exists \varphi \in \mathbb{R} : x = r \cos \varphi, y = r \sin \varphi$

Dann: $z = x + iy = r(\cos \varphi + i \sin \varphi) = |z|(\cos \varphi + i \sin \varphi)$

Die Zahl φ heißt **ein** Argument von z und wird mit arg z bezeichnet. Mit φ ist auch $\varphi+2k\pi$ $(k \in \mathbb{Z})$ ein Argument von z.

Aber: es gibt genau ein $\varphi \in (-\pi, \pi]$ mit $z = |z|(\cos \varphi + i \sin \varphi)$. Dieses φ heißt der **Hauptwert** des **Arguments** und wird mit Arg z bezeichnet.

Seien $z_1 = |z|(\cos \varphi_1 + i \sin \varphi_1), z_2 = |z|(\cos \varphi_2 + i \sin \varphi_2) \in \mathbb{C} \setminus \{0\} (\varphi_1, \varphi_2 \in \mathbb{R}).$

Aus Additionstheoremen von Sinus und Cosinus folgt:

(*) $z_1 \cdot z_2 = |z_1||z_2|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$

Aus (*) folgt induktiv:

Satz 1.4 (Formel von de Moivre)

$$(\cos \varphi + i \sin \varphi)^n = \cos(n\varphi) + i \sin(n\varphi) \quad \forall n \in \mathbb{N}_0 \, \forall \varphi \in \mathbb{R}$$

Wurzeln:

Beachte: $z^0 := 1 \quad \forall z \in \mathbb{C}$

Definition

Sei $a \in \mathbb{C} \setminus \{0\}$ und $n \in \mathbb{N}$. Jedes $z \in \mathbb{C}$ mit $z^n = a$ heißt eine n-te Wurzel aus a.

Satz 1.5

Sei $a \in \mathbb{C} \setminus \{0\}, n \in \mathbb{N}$ und $a = |a|(\cos \varphi + i \sin \varphi) \quad (\varphi \in \mathbb{R})$ Für $k = 0, 1, \dots, n - 1$ setze $z_k = \sqrt[n]{|a|} \left(\cos\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right) + i \sin\left(\frac{\varphi}{n} + \frac{2k\pi}{n}\right)\right)$ Dann:

- (1) $z_i \neq z_k$ für $j \neq k$
- (2) für $z \in \mathbb{C} : z^n = a \iff z \in \{z_0, z_1, \dots, z_{n-1}\}$

Spezialfall: a=1

$$z_k = \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n})$$
 $(k = 0, \dots, n-1)n$ -te Einheitswurzeln

Beispiel

$$a = 1, n = 4, z_k = \cos(\frac{k\pi}{2}) + i\sin(\frac{k\pi}{2})$$
 $(k = 0, ..., 3)$
 $z_0 = 1, z_1 = i, z_2 = -1, z_3 = -i$

Beweis (von 1.5)

(1) Übung

$$(2) \ " \Leftarrow " : z_k^n \stackrel{1.4}{=} |a| \Big(\cos(\varphi + 2k\pi) + i \sin(\varphi + 2k\pi) \Big) = |a| (\cos\varphi + i \sin\varphi) = a$$

$$" \Rightarrow " : \operatorname{Sei} z^n = a \implies |z| = \sqrt[n]{|a|}, z \neq 0;$$

$$\operatorname{Sei} z = |z| (\cos\alpha + i \sin\alpha) \quad (\alpha \in \mathbb{R})$$

$$a = |a| (\cos\varphi + i \sin\varphi) = z^n \stackrel{1.4}{=} |z|^n \Big(\cos(n\alpha) + i \sin(n\alpha) \Big)$$

$$\implies \cos\varphi = \cos(n\alpha), \sin\varphi = \sin(n\alpha)$$

$$\implies \exists j \in \mathbb{Z} : n\alpha = \varphi + 2\pi j \implies \alpha = \frac{\varphi}{n} + \frac{2\pi j}{n}$$

$$\exists l \in \mathbb{Z}, k \in \{0, \dots, n-1\} : j = ln + k$$

$$\implies \frac{j}{n} = l + \frac{k}{n} = \alpha = \frac{\varphi}{n} + 2\pi (l + \frac{k}{n}) = \frac{\varphi}{n} + \frac{2\pi k}{n} + 2\pi l$$

$$\implies \cos\alpha = \cos\frac{\varphi}{n} + \frac{2\pi k}{n}, \sin\alpha = \sin\frac{\varphi}{n} + \frac{2\pi k}{n}$$

$$\implies z = z_k$$