Amendments to the claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of claims:

1. (Currently amended) A compound of formula (I) or a pharmaceutically acceptable derivative salt and/or N-oxide thereof:

(I)

wherein:

one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, one is CR^{1a} and the remainder are $\frac{CH}{CH}$, or one of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is CR^{1a} and the remainder are CH;

R¹ and R^{1a} are independently hydrogen; hydroxy; (C_{1-6}) alkoxy optionally substituted by (C_{1-6}) alkoxy, amino, piperidyl, guanidino or amidino any of which is optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups, CONH₂, hydroxy, (C_{1-6}) alkylthio, heterocyclylthio, heterocyclyloxy, arylthio, aryloxy, acylthio, acyloxy or (C_{1-6}) alkylsulphonyloxy; (C_{1-6}) alkoxy-substituted (C_{1-6}) alkyl; halogen; (C_{1-6}) alkyl; (C_{1-6}) alkylthio; trifluoromethyl; trifluoromethoxy; nitro; azido; acyl; acyloxy; acylthio; (C_{1-6}) alkylsulphonyl; (C_{1-6}) alkylsulphoxide; arylsulphonyl; arylsulphoxide or an amino, piperidyl, guanidino or amidino group optionally N-substituted by one or two (C_{1-6}) alkyl, acyl or (C_{1-6}) alkylsulphonyl groups;

or when Z^5 is CR^{1a} , R^{1a} may instead be cyano, hydroxymethyl or carboxy;

or R¹ and R^{1a} on adjacent positions may together form ethylenedioxy;

provided that when none of Z^1 , Z^2 , Z^3 , Z^4 and Z^5 is N, then R^1 is not hydrogen;

 R^2 is hydrogen, or (C_{1-4}) alkyl or (C_{2-4}) alkenyl optionally substituted with 1 to 3 groups selected from: amino optionally substituted by one or two (C₁₋₄)alkyl groups; carboxy; (C₁₋ 4)alkoxycarbonyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋ 4)alkenylcarbonyl; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C₁₋₄)alkyl, hydroxy(C₁₋₄)alkyl, aminocarbonyl(C₁₋₄)alkyl, (C₂₋ 4)alkenyl, (C₁₋₄)alkylsulphonyl, trifluoromethylsulphonyl, (C₂₋₄)alkenylsulphonyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl or (C₂₋ 4)alkenylcarbonyl; cyano; tetrazolyl; 2-oxo-oxazolidinyl optionally substituted by R¹⁰; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; 5-oxo-1,2,4oxadiazol-3-yl; halogen; (C₁₋₄)alkylthio; trifluoromethyl; hydroxy optionally substituted by (C₁₋₄)alkyl, (C₂₋₄)alkenyl, (C₁₋₄)alkoxycarbonyl, (C₁₋₄)alkylcarbonyl, (C₂₋₄)alkenyloxycarbonyl, or (C₂₋₄)alkenylcarbonyl; oxo; (C₁₋₄)alkylsulphonyl; (C₂₋ 4)alkenylsulphonyl; er and (C₁₋₄)aminosulphonyl wherein the amino group is optionally substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl;

R³ is in the 2-, 3- or 4-position and is trifluoromethyl or is in the 2-position and is oxo; or R³ is in the 3-position and is fluorine or amino wherein the amino group is optionally substituted by: hydroxy; (C₁₋₆)alkylsulphonyl; trifluoromethylsulphonyl; (C₂₋ 6)alkenylsulphonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenylcarbonyl; (C₁₋ 6)alkoxycarbonyl; (C2-6)alkenyloxycarbonyl; (C1-6)alkyl; or (C2-6)alkenyl; wherein a (C₁₋₆)alkyl or (C₂₋₆)alkenyl moiety may be optionally substituted with up to 2 groups R¹² independently selected from: halogen; (C₁₋₆)alkylthio; trifluoromethyl; cyano; carboxy; tetrazolyl; 2-oxooxazolidinyl; 3-hydroxy-3-cyclobutene-1,2-dione-4-yl; 2,4-thiazolidinedione-5-yl; tetrazol-5-ylaminocarbonyl; 1,2,4-triazol-5-yl optionally substituted by R¹⁰; or-5-oxo-1,2,4-oxadiazol-3-yl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋ 6)alkenyloxycarbonyl; (C₂₋₆)alkenylcarbonyl; hydroxy optionally substituted by (C₁₋ 6) alkyl, (C_{2-6}) alkenyl, (C_{1-6}) alkylcarbonyl, (C_{2-6}) alkenylcarbonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl, or (C_{2-6}) alkenyl; and amino optionally mono- or disubstituted by (C₁₋₆)alkoxycarbonyl, (C₁₋ 6)alkylcarbonyl, (C₂₋₆)alkenyloxycarbonyl, (C₂₋₆)alkenylcarbonyl, (C₁₋₆)alkyl, (C₂₋ 6)alkenyl, (C1-6)alkylsulphonyl, (C2-6)alkenylsulphonyl or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl;

in addition when R^3 is disubstituted with a hydroxy or amino containing substituent and <u>a</u> carboxy containing substituent these may together form a cyclic ester or amide linkage, respectively;

R⁴ is a group -U-R⁵ where

U is selected from CO, SO₂ and CH₂ and

 ${\sf R}^5$ is an optionally substituted bicyclic carbocyclic or heterocyclic ring system (A):

containing up to four heteroatoms in each ring in which

ring (a) is aromatic and ring (b) is non-aromatic;

X¹ is C or N:

 X^2 is N, NR¹³, O, S(O)_x, CO or CR¹⁴;

X³ and X⁵ are independently N or C;

Y¹ is a 0 to 4 atom linker group each atom of which is independently selected from N, NR¹³, O, S(O)_x, CO and CR¹⁴;

 Y^2 is a 2 to 6 atom linker group, each atom of Y^2 being independently selected from N, NR¹³, O, S(O)_X, CO, CR¹⁴ and CR¹⁴R¹⁵; each of R¹⁴ and R¹⁵ is independently selected from: H; (C₁₋₄)alkylthio; halo; carboxy(C₁₋₄)alkyl; halo(C₁₋₄)alkoxy; halo(C₁₋₄)alkyl; (C₁₋₄)alkyl; (C₂₋₄)alkenyl; (C₁₋₄)alkoxycarbonyl; formyl; (C₁₋₄)alkylcarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₂₋₄)alkenyloxycarbonyl; (C₁₋₄)alkylcarbonyloxy; (C₁₋₄)alkoxycarbonyl(C₁₋₄)alkyl; hydroxy; hydroxy(C₁₋₄)alkyl; mercapto(C₁₋₄)alkyl; (C₁₋₄)alkoxy; trifluoromethoxy; nitro; cyano; carboxy; amino or aminocarbonyl optionally substituted as for corresponding substituents in R³; (C₁₋₄)alkylsulphonyl; (C₂₋₄)alkenylsulphonyl; er-aminosulphonyl wherein the amino group is optionally mono- or di-substituted by (C₁₋₄)alkyl or (C₂₋₄)alkenyl; aryl; aryl(C₁₋₄)alkyl; and aryl(C₁₋₄)alkoxy;

each R^{13} is independently H; trifluoromethyl; (C_{1-4}) alkyl optionally substituted by hydroxy, (C_{1-6}) alkoxy, (C_{1-6}) alkylthio, halo or trifluoromethyl; (C_{2-4}) alkenyl; aryl; aryl (C_{1-4}) alkyl; arylcarbonyl; heteroarylcarbonyl; (C_{1-4}) alkylcarbonyl; formyl; (C_{1-6}) alkylsulphonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C_{1-4}) alkoxycarbonyl, (C_{1-4}) alkylcarbonyl, (C_{2-4}) alkenyloxycarbonyl, (C_{2-4}) alkenylcarbonyl, (C_{2-4}) alkenyl and optionally further substituted by (C_{1-4}) alkyl or (C_{2-4}) alkenyl;

each x is independently 0, 1 or 2

n is 0 and AB is NR 11 CO, CO-CR 8 R 9 , CR 6 R 7 -CO, NHR 11 SO $_{2}$, CR 6 R 7 -SO $_{2}$ or CR 6 R 7 -CR 8 R 9 , provided that R 8 and R 9 are not optionally substituted hydroxy or amino and R 6 and R 8 do not represent a bond:

or n is 1 and AB is NR¹¹CO, CO-CR⁸R⁹, CR⁶R⁷-CO, NR¹¹SO₂, CONR¹¹, CR⁶R⁷-CR⁸R⁹, O-CR⁸R⁹ or NR¹¹-CR⁸R⁹;

each of R^6 , R^7 , R^8 and R^9 is independently selected from: hydrogen; (C₁₋₆)alkoxy; (C₁₋₆)alkylthio; halo; trifluoromethyl; azido; (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkyl; (C₁₋₆)

6)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; (C₂₋₆)alkenyloxycarbonyl; (C₂₋

 $_6$)alkenylcarbonyl; hydroxy, amino or aminocarbonyl optionally substituted as for corresponding substituents in R 3 ; (C $_{1-6}$)alkylsulphonyl; (C $_{2-6}$)alkenylsulphonyl; $_{6}$ and aminosulphonyl wherein the amino group is optionally substituted by (C $_{1-6}$)alkyl or (C $_{2-6}$)alkenyl;

or when n=1 R^6 and R^8 together represent a bond and R^7 and R^9 are as above defined:

or R⁶ and R⁷ or R⁸ and R⁹ together represent oxo;

 R^{10} is selected from (C1-4)alkyl; (C2-4)alkenyl and aryl any of which may be optionally substituted by a group R^{12} as defined above; carboxy; aminocarbonyl wherein the amino group is optionally substituted by hydroxy, (C1-6)alkyl, (C2-6)alkenyl, (C1-6)alkylsulphonyl, trifluoromethylsulphonyl, (C2-6)alkenylsulphonyl, (C1-6)alkoxycarbonyl, (C1-6)alkylcarbonyl, (C2-6)alkenylcarbonyl or (C2-6)alkenylcarbonyl and optionally further substituted by (C1-6)alkyl or (C2-6)alkenyl; and

R¹¹ is hydrogen; trifluoromethyl, (C₁₋₆)alkyl; (C₂₋₆)alkenyl; (C₁₋₆)alkoxycarbonyl; (C₁₋₆)alkylcarbonyl; or aminocarbonyl wherein the amino group is optionally substituted by (C₁₋₆)alkoxycarbonyl, (C₁₋₆)alkylcarbonyl, (C₂₋₆)alkenylcarbonyl, (C₁₋₆)alkenylcarbonyl, (C₁₋₆)alkyl or (C₂₋₆)alkenyl; and optionally further substituted by (C₁₋₆)alkyl or (C₂₋₆)alkenyl;

or where one of R³ and R⁶, R⁷, R⁸ or R⁹ contains a carboxy group and the other contains a hydroxy or amino group they may together form a cyclic ester or amide linkage.

2. (Original) A compound according to claim 1 wherein Z^5 is CH, C-Cl or N, Z^3 is CH or CF and Z^1 , Z^2 and Z^4 are each CH, or Z^1 is N, Z^3 is CH and Z^2 and Z^4 are each CH and Z^5 is CH or C-Cl.

3. (Previously presented) A compound according to claim 1 wherein R^1 is methoxy and R^{1a} is H or when Z^3 is CR^{1a} it may be C-F or when Z^5 is CR^{1a} it may be C-F or C-Cl.

- 4. (Previously presented) A compound according to claim 1 wherein R² is hydrogen, carboxymethyl, hydroxyethyl, aminocarbonylmethyl, ethoxycarbonylallyl or carboxyallyl.
- 5. (Previously presented) A compound according to claim 1 wherein R^3 is CF_3 , fluoro, oxo or amino unsubstituted or substituted by (C_{1-6}) alkyl or (C_{2-6}) alkenyl.
- 6. (Previously presented) A compound according to claim 1 wherein n is 0 and either A is CH₂ or CHOH and B is CH₂ or A is NH and B is CO.
- (Previously presented) A compound according to claim 1 wherein –U- is –
 CH₂-.
- 8. (Currently Amended) A compound according to claim 1 wherein in the heterocyclic ring (A) ring (a) is selected from optionally substituted benzo and pyrido and Y^2 has 3-5 atoms including a heteroatom bonded to X^5 selected from NR¹³, O er and S, where R¹³ is other than hydrogen, and NHCO bonded via N to X^3 , or O or NH bonded to X^3 .
- 9. (Currently Amended) A compound according to claim 1 wherein R⁵ is selected from:

```
4H-benzo[1,4] oxazin-3-one-6-yl;
4H-benzo[1,4] thiazin-3-one-6-yl;
2,3-dihydro-[1,4]dioxino[2,3-c]pyridin-7-yl;
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl;
3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl;
7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]oxazin-6-yl; and
7-chloro-3-oxo-3,4-dihydro-2H-pyrido[3,2-b][1,4]thiazin-6-yl.
```

10. (Currently amended) A compound according to claim 1 selected from: 6-({2S,4S})-1-[(R)-2-Hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)ethyl]-2-(trifluoromethyl)piperidin-4-ylamino}methyl)-4H-benzo[1,4]thiazin-3-one;

```
6-({(3R,4S)-1-[(R)-2-Hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)ethyl]-3-
(trifluoromethyl)piperidin-4-ylamino}methyl)-4H-benzo[1,4]thiazin-3-one;
6-({1-[(R)-2-Hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)ethyl]-4-
(trifluoromethyl)piperidin-4-ylamino}methyl)-4H-benzo[1,4]thiazin-3-one;
6-({1-[(R)-2-Hydroxy-2-(6-methoxyquinolin-4-yl)ethyl]-2-oxopiperidin-4-
ylamino}methyl)-4H-benzo[1,4]thiazin-3-one;
6-[({(3S,4R)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-benzo[1,4]thiazin-3-one and 6-[({(3R,4S)-3-fluoro-1-[(R)-2-
hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-
benzo[1,4]thiazin-3-one;
6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 1;
6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]-piperidin-4-
ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 2;
7-Chloro-6-({cis 3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 1;
7-Chloro-6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 2;
6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 1;
6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 2;
7-Chloro-6-[({(3S,4R)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-
ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 7-chloro-6-
[({(3R,4S)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino\methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;
7-Fluoro-6-({(3S,4R)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-
ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 7-fluoro-6-
[({(3R,4S)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino\methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;
7-({(3S,4R)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
vlamino\methyl)-1H-pyrido[2,3-b][1,4]thiazin-2-one and 7-(\{(3R,4S)-3-fluoro-1-[(R)-2-
hydroxy-2-(6-methoxyguinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-1H-pyrido[2,3-
b][1,4]thiazin-2-one:
7-Chloro-6-[((3S,4R)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-
ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one and 7-chloro-6-
[({(3R,4S)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-
ylamino\methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one;
```

6-[({(3S,4S)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 6-[({(3R,4R)-3-fluoro-1-[(R)-2hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2bl[1,4]thiazin-3-one: 6-[({(3S,4S)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one and 6-[({(3R,4R)-3-fluoro-1-[(R)-2hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2b][1,4]oxazin-3-one; 7-Fluoro-6- $[({(3S,4S)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-}]$ ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 7-Fluoro-6-[({(3R,4R)-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4ylamino\methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one; 6-[({(3S,4S)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4ylamino}methyl)-1H-pyrido[2,3-b][1,4]thiazin-3-one and 6-[({(3R,4R)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-1Hpyrido[2,3-b][1,4]thiazin-3-one; 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 1; 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 2; 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)-ethyl]piperidin-4ylamino\methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 1; 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one Diastereoisomer 2; 7-Chloro-6-({cis-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 1; 7-Chloro-6-({cis-3-fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin)ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 2: 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(8-fluoro-6-methoxy-quinolin-4-yl)-ethyl]piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]oxazin-3-one Diastereoisomer 1; 6-({cis-3-Fluoro-1-[(R)-2-hydroxy-2-(8-fluoro-6-methoxy-quinolin-4-yl)-ethyl]piperidin-4ylamino}methyl)-4*H*-pyrido[3,2-*b*][1,4]thiazin-3-one Diastereoisomer 1; 6-({(3R,4S)-1-[2-(3-Chloro-6-methoxy-quinolin-4-yl)-ethyl]-3-fluoro-piperidin-4ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 6-({(3S,4R)-1-[2-(3-Chloro-6methoxy-quinolin-4-yl)-ethyl]-3-fluoro-piperidin-4-ylamino}methyl)-4H-pyrido[3,2b][1,4]thiazin-3-one;

6-({(3R,4S)-3-Fluoro-1-[2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and 6-({(3S,4R)-3-fluoro-1-[2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;

 $6-[({(3S,4R)-3-Fluoro-1-[(S)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and <math>6-[({(3R,4S)-3-fluoro-1-[(S)-2-hydroxy-2-(6-methoxyquinolin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;$

 $6-(\{(3R,4S)-1-[2-(2,3-Dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-3-fluoro-piperidin-4-ylamino\}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and <math>6-(\{(3S,4R)-1-[2-(2,3-dihydro-[1,4]dioxino[2,3-f]quinolin-10-yl)-ethyl]-3-fluoro-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one;$

 $6-(\{(3R,4S)-1-[2-(6,8-Difluoro-quinolin-4-yl)-ethyl]-3-fluoro-piperidin-4-ylamino\}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one and <math>6-(\{(3S,4R)-1-[2-(6,8-difluoro-quinolin-4-yl)-ethyl]-3-fluoro-piperidin-4-ylamino}-methyl)-4H-pyrido[3,2-b][1,4]thiazin-3-one; 6-[(\{(3S,4R)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-benzo[1,4]thiazin-3-one and 6-[(\{(3R,4S)-3-Fluoro-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4H-benzo[1,4]thiazin-3-one;$

6-[({cis-3-Fluoro-1-[(*R*)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4*H*-benzo[1,4]thiazin-3-one Faster running Diastereoisomer;

6-[({(cis-3-Fluoro-1-[(*R*)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)-ethyl]piperidin-4-ylamino}methyl)-4*H*-benzo[1,4]thiazin-3-one Slower-running Diastereoisomer;

 $6-(\{2S,4S)-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)ethyl]-2-(trifluoromethyl)piperidin-4-ylamino}methyl)-4H-pyrido[1,4]thiazin-3-one; <math>6-(\{2S,4R)-1-[(R)-2-hydroxy-2-(6-methoxy-[1,5]naphthyridin-4-yl)ethyl]-2-(trifluoromethyl)piperidin-4-ylamino}methyl)-4H-pyrido[1,4]thiazin-3-one; and the following tabulated compounds of formula (X):$

Isomeric form	A	<u>R</u> 1	R ^{1a}	X	R ⁵
Enantiomer 2	<u>CH</u>	<u>MeO</u>	E	<u>OH</u>	6-[4H-pyrido[3,2-b][1,4]thiazin-3-one]
Enantiomer 1	<u>CH</u>	<u>MeO</u>	E	<u>OH</u>	6-[7-chloro-4H-pyrido[3,2-b][1,4]oxazin-3-one]
Enantiomer 2	<u>CH</u>	<u>MeO</u>	E	<u>OH</u>	6-[4H-pyrido[3,2-b][1,4]oxazin-3-one]]
Enantiomer 2	<u>CH</u>	<u>MeO</u>	H	<u>OH</u>	7-[2,3-dihydro-[1,4]dioxino[2,3-c]pyridine]
Enantiomer 1	<u>CH</u>	<u>MeO</u>	H	<u>OH</u>	7-[2,3-dihydro-[1,4]dioxino[2,3-c]pyridine]
Enantiomer 2	N	MeO	H	Н	6-[4H-pyrido[3,2-b][1,4]thiazin-3-one]
Racemic	CH	<u>F</u>	<u>F</u>	H	6-[4H-pyrido[3,2-b][1,4]oxazin-3-one]]

or a pharmaceutically acceptable derivative salt and/or N-oxide thereof.

11. (Currently amended) A method of treatment of bacterial infections in mammals, particularly in man, which method comprises the administration to a mammal in need of such treatment an effective amount of a compound according to claim 1.

Claims 12 and 13 (Cancelled).

14. (Original) A pharmaceutical composition comprising a compound according to claim 1, and a pharmaceutically acceptable carrier.

Claims 15 and 16 (Cancelled).

17. (Currently amended) A process for preparing a compound of formula (I) according to claim 1, or a pharmaceutically acceptable derivative salt and/or N-oxide thereof, which process comprises reacting a compound of formula (IV) with a compound of formula (V):

$$R^{1}$$

$$Z^{2}$$

$$Z^{3}$$

$$V \rightarrow (CH_{2})_{n} \rightarrow N$$

$$R^{3}$$

$$Q^{2}$$

$$(IV)$$

$$(V)$$

wherein n is as defined in formula (I); $Z^{1'}$, $Z^{2'}$, $Z^{3'}$, $Z^{4'}$, $Z^{5'}$, $R^{1'}$, and $R^{3'}$ are Z^{1} , Z^{2} , Z^{3} , Z^{4} , Z^{5} , R^{1} , and R^{3} are as defined in formula (I) or groups convertible thereto; Q^{1} is $NR^{2'}R^{4'}$ or a group convertible thereto wherein $R^{2'}$ and $R^{4'}$ are R^{2} and R^{4} as defined in formula (I) or groups convertible thereto and Q^{2} is H or $R^{3'}$ or Q^{1} and Q^{2} together form an optionally protected oxo group;

- (i) X is A'-COW, Y is H and n is 0;
- (ii) X is $CR^6=CR^8R^9$, Y is H and n is 0;
- (iii) X is oxirane, Y is H and n is 0;
- (iv) X is N=C=O and Y is H and n is 0;
- (v) one of X and Y is CO₂R^y and the other is CH₂CO₂R^x;
- (vi) X is CHR^6R^7 and Y is $C(=0)R^9$;
- (vii) X is $CR^7 = PR^2_3$ and Y is $C(=0)R^9$ and n=1;
- (viii) X is $C(=0)R^7$ and Y is $CR^9=PR^2_3$ and n=1;
- (ix) Y is COW and X is NHR^{11'} or NR11'COW and n=0 or 1 or when n=1 X is COW and Y is NHR^{11'} or NR11'COW;
- (x) X is NHR^{11} and Y is $C(=0)R^8$ and n=1;
- (xi) X is NHR^{11'} and Y is CR^8R^9W and n=1;
- (xii) X is NR¹¹'COCH₂W or NR¹¹'SO₂CH₂W and Y is H and n=0;
- (xiii) X is $CR^6R^7SO_2W$ and Y is H and n=0;
- (xiv) X is W or OH and Y is CH2OH and n is 1;
- (xv) X is NHR^{11'} and Y is SO₂W or X is NR^{11'}SO₂W and Y is H, and n is 0;

(xvi) X is W and Y is CONHR¹¹;

in which W is a leaving group, e.g. halo or imidazolyl; R^X and R^Y are (C_{1-6}) alkyl; R^X is aryl or (C_{1-6}) alkyl; A' and NR^{11} are A and NR^{11} as defined in formula (I), or groups convertible thereto; and oxirane is:

$$\mathsf{R}^{\mathsf{G}} \underbrace{\mathsf{O}}_{\mathsf{R}^{\mathsf{G}}} \mathsf{R}^{\mathsf{g}}$$

wherein R⁶, R⁸ and R⁹ are as defined in formula (I); and thereafter optionally or as necessary converting Q¹ and Q² to NR²'R⁴'; converting A', Z¹', Z²', Z³', Z⁴', Z⁵', R¹', R²', R³', R⁴' and NR¹¹'; to NR¹¹' to A, Z¹, Z², Z³, Z⁴, Z⁵, R¹, R², R³, R⁴ and NR¹¹; converting A-B to other A-B, interconverting R¹, R², R³ and/or R⁴, and/or forming a pharmaceutically acceptable derivative salt and/or N-oxide thereof.

18. (New) A compound according to claim 1 wherein R³ is fluoro.