BAYESIAN ANALYSIS OF VARS, STATE-SPACE MODELS AND DSGES PART II: PREDICTION, MODEL INFERENCE, DECISIONS

Mattias Villani

Division of Statistics and Machine Learning Department of Computer and Information Science Linköping University

LECTURE OVERVIEW

- ► Bayesian prediction
- ► Model comparison
- ► Model evaluation
- ► Bayesian decision making

Univariate AR(4) posterior Foreign interest rate 1980Q2-2005Q4

MARGINALIZATION

- ▶ Wait! How could I plot $p(\phi_1|y_1, ..., y_T)$ in the AR(4). What happend to $\phi_2, \phi_3, \phi_4, c$ and σ^2 ?
- ► Example: Regression model:

$$\mathbf{y}|\mathbf{X}, \boldsymbol{\beta} \sim N\left(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I_n\right)$$
.

- ▶ Posterior $p(\beta, \sigma^2 | \mathbf{y}, \mathbf{X})$ is a (k+1)-dimensional posterior distribution. Hard to visualize!
- ▶ Marginal posterior of β_i

$$p(\beta_i|\mathbf{y},\mathbf{X}) = \int_{\beta_{-i}} \int_{\sigma^2} p(\beta,\sigma^2|\mathbf{y},\mathbf{X}) d\sigma^2 d\beta_{-i}$$

▶ Marginal posteriors are immediately available when we approximate the joint posterior by simulation (MCMC).

PREDICTION/FORECASTING

► Example: Regression model:

$$\mathbf{y}|\mathbf{X}, \boldsymbol{\beta} \sim N(\mathbf{X}\boldsymbol{\beta}, \sigma^2 I_n)$$
.

Posterior predictive distribution for new observation \tilde{y} given \tilde{x} and estimation sample (y, X):

$$p(\tilde{y}|\tilde{\mathbf{x}},\mathbf{y},\mathbf{X}) = \int_{\beta} p(\tilde{y}|\tilde{\mathbf{x}},\beta) p(\beta|\mathbf{y},\mathbf{X}) d\beta$$

- ► The parameter uncertainty is represented in $p(\tilde{y}|\tilde{x}, y, X)$ by averaging over posterior $p(\beta|y, X)$.
- ▶ It can be shown that $p(\tilde{y}|\tilde{x}, y, X)$ is a student-t density.
- ▶ When the integral cannot be computed analytically: simulation!

EXAMPLE: BAYESIAN PREDICTION IN STEADY-STATE AR PROCESSES

► Autoregressive process

$$y_t = \phi_1(y_{t-1} - \mu) + ... + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(0, \sigma^2)$$

- ▶ Simulate a draw from $p(\phi_1, \phi_2, ..., \phi_p, \mu, \sigma|y)$ [Gibbs sampling, Part III]
 - ► Conditional on that draw $\theta^{(1)} = (\phi_1^{(1)}, \phi_2^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$, simulate
 - $\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$
 - $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
 - and so on.
- ightharpoonup Repeat for new θ draws.

BAYESIAN MODEL COMPARISON [1]

- ▶ Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- **Estimated likelihoods** $p_1(\mathbf{y}|\hat{\theta}_1)$ and $p_2(\mathbf{y}|\hat{\theta}_2)$ can not be used directly for model comparison. Bigger models always win.
- **B** Bayesian: the marginal likelihood for model M_k with parameters θ_k

$$p(\mathbf{y}|M_k) = \int p_k(\mathbf{y}|\theta_k) p_k(\theta_k) d\theta_k.$$

- \blacktriangleright θ_k is "removed" by the prior. Not a magic bullet. Priors matter!
- Often reported on log scale:
 - ▶ Strong evidence for M_1 if $3 < \ln p(y|M_1) \ln p(y|M_2) \le 5$
 - ▶ Very strong evidence for M_1 if $\ln p(y|M_1) \ln p(y|M_2) > 5$.

DSGE EXAMPLE [2]

Parameter	Prior distribution		Posterior distributions										
			Instrument rule without policy break		Fixed exchange rate rule		Semi-fixed exchange rate rule		Instrument rule with policy break				
	Type	Mean	Std. dev./df	Median	Std.	Median	Std.	Median	Std.	UIP		Modifie	d UIP
										Median	Std.	Median	Std.
Calvo wages ξ _w	beta	0.750	0.050	0.751	0.047	0.518	0.041	0.669	0.046	0.743	0.049	0.752	0.049
Calvo domestic prices ξ_d	beta	0.750	0.050	0.862	0.046	0.852	0.048	0.885	0.027	0.868	0.044	0.838	0.044
Calvo import cons. prices ξ _{me}	beta	0.750	0.050	0.896	0.017	0.922	0.013	0.900	0.014	0.900	0.017	0.901	0.017
Calvo import inv. prices ξ_{mi}	beta	0.750	0.050	0.946	0.010	0.948	0.008	0.943	0.007	0.946	0.010	0.944	0.010
Calvo export prices ξ_x	beta	0.750	0.050	0.868	0.021	0.870	0.016	0.874	0.020	0.869	0.021	0.883	0.020
Indexationwages Kw	beta	0.500	0.150	0.290	0.098	0.238	0.086	0.287	0.098	0.292	0.100	0.313	0.103
Indexation prices κ_d	beta	0.500	0.150	0.213	0.059	0.163	0.069	0.194	0.052	0.212	0.061	0.218	0.061
					:								
Output response $r_{v,1}$	normal	0.125	0.050	0.129	0.046			0.216	0.051	0.113	0.044	0.138	0.048
Diff. output response $r_{\Delta v, 1}$	normal	0.063	0.050	0.152	0.036			0.142	0.050	0.127	0.041	0.120	0.046
Monetary policy shock $\sigma_{R,1}$	invgamma	0.150	2	0.249	0.024			2.335	0.778	0.398	0.060	0.398	0.066
Inflation target shock σ _g c ₁	invgamma	0.050		0.116	0.041			0.083	0.054	0.148	0.067		0.085
Interest rate smoothing ρ_B ,	beta	0.800	0.050			0.884	0.018	0.864	0.021	0.896	0.018	0.874	0.022
Inflation response $r_{\pi,2}$	truncnormal	1.700	0.100			1.725	0.090	1 747	0.089	1 709	0.099	1.718	0.097
Diff. infl response $r_{\Delta \pi}$?	normal	0.300				0.127	0.023	0.143	0.025	0.104	0.026		
Real exch. rate response $r_{x,2}$	normal	0.000				0.022	0.019	-0.001	0.003	0.038	0.026		
Output response r _{v,2}	normal	0.125				0.269	0.040	0.274	0.039	0.107	0.041		0.041
Diff. output response $r_{\Delta v,2}$	normal	0.063	0.050			0.099	0.031	0.107	0.030	0.104	0.030	0.105	0.030
Monetarypolicy shock $\sigma_{R,2}$	invgamma	0.150				0.102	0.013	0.094	0.011	0.104	0.013		
Inflation target shock $\sigma_{4^c,2}$	invgamma	0.050				0.065	0.030	0.069	0.035	0.080	0.038		0.038
Log marginal likelihood				-2285.8		-2636.7	12	-2348.2	4	-2268.	33	-2252.	57

BAYESIAN MODEL COMPARISON

► The Bayes factor

$$B_{12}(y) = \frac{p(\mathbf{y}|M_1)}{p(\mathbf{y}|M_2)}.$$

Posterior model probabilities

$$\underbrace{\Pr(M_k|\mathbf{y})}_{\text{posterior model prob.}} \propto \underbrace{p(\mathbf{y}|M_k)}_{\text{marginal likelihood prior model prob.}} \cdot \underbrace{\Pr(M_k)}_{\text{prior model prob.}}$$

where

$$p(\mathbf{y}|M_k) = \int p_k(\mathbf{y}|\theta_k) p_k(\theta_k) d\theta_k.$$

- ► Two different priors:
 - priors over the models $Pr(M_k)$
 - prior $p_k(\theta_k)$ for the parameters θ_k within model M_k .

MODEL CHOICE IN MULTIVARIATE TIME SERIES [3]

Multivariate time series

$$\mathbf{x}_t = \alpha \beta' \mathbf{z}_t + \Phi_1 \mathbf{x}_{t-1} + ... \Phi_k \mathbf{x}_{t-k} + \Psi_1 + \Psi_2 t + \Psi_3 t^2 + \varepsilon_t$$

- ► Need to choose:
 - ▶ Lag length, (k = 1, 2..., 4)
 - ▶ **Trend model** (s = 1, 2, ..., 5)
 - ▶ Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

THE MOST PROF	BABLE	(k, r, s)	COM	BINATI	ONS IN	THE	Danish	MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

EXAMPLE: GEOMETRIC VS POISSON

- ► Model 1 **Geometric** with Beta prior:
 - $ightharpoonup y_1,...,y_n|\theta_1 \sim Geo(\theta_1)$
 - $\theta_1 \sim Beta(\alpha_1, \beta_1)$
- ► Model 2 Poisson with Gamma prior:
 - $y_1, ..., y_n | \theta_2 \sim Poisson(\theta_2)$
 - $\theta_2 \sim Gamma(\alpha_2, \beta_2)$
- ightharpoonup Marginal likelihood for M_1

$$p_1(y_1, ..., y_n) = \int p_1(y_1, ..., y_n | \theta_1) p(\theta_1) d\theta_1$$

$$= \frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

► Marginal likelihood for M₂

$$p_2(y_1,...,y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

GEOMETRIC AND POISSON

GEOMETRIC VS POISSON, CONT.

Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

Data: $y_1 = 0$, $y_2 = 0$.

Data: $y_1 = 3$, $y_2 = 3$.							
	$\alpha_1 = 1, \beta_1 = 2$	$lpha_1=1$ 0, $eta_1=2$ 0	$\alpha_1 = 100, \beta_1 = 200$				
	$\alpha_2 = 2$, $\beta_2 = 1$	$lpha_2=$ 20, $eta_2=$ 10	$\alpha_2 = 200, \beta_2 = 100$				
BF_{12}	0.26	0.29	0.30				
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23				
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.23 0.77 VOID				

GEOMETRIC VS POISSON FOR POIS(1) DATA

GEOMETRIC VS POISSON FOR POIS(1) DATA

PROPERTIES OF BAYESIAN MODEL COMPARISON

▶ Consistency when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE}|\mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

▶ "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

where M^* is the model that minimizes Kullback-Leibler distance between $p_M(\mathbf{y})$ and $p_{TRUF}(\mathbf{y})$.

- 1. Smaller models always win when priors are very vague.
- ▶ Improper priors can't be used for model comparison.

MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

► The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

▶ If we assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- ▶ The prediction of y_1 is based on the prior of θ , and is therefore sensitive to the prior.
- ▶ The prediction of y_n uses almost all the data to infer θ . Very little influenced by the prior when n is not small.

NORMAL EXAMPLE

- ▶ Model: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- ▶ Prior: $\theta | \sigma^2 \sim N(0, \kappa^2 \sigma^2)$.
- ▶ Intermediate posterior at time i-1

$$\theta | y_1, ..., y_{i-1} \sim N \left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i - 1 + \kappa^{-2}} \right]$$

where $w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$.

ightharpoonup Predictive density at time i-1

$$y_i|y_1,...,y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i-1+\kappa^{-2}}\right)\right]$$

- ► Terms with *i* large: $y_i|y_1,...,y_{i-1} \stackrel{approx}{\sim} N(\bar{y}_{i-1},\sigma^2)$, not sensitive to κ
- For i=1, $y_1\sim N\left[0,\sigma^2\left(1+\frac{1}{\kappa^{-2}}\right)
 ight]$ can be very sensitive to N

LOG PREDICTIVE SCORE - LPS [4, 5]

- ▶ To reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a better posterior.
- ► Predictive density score: PS

$$PS(n^*) = p(y_{n^*+1}|y_1,...,y_{n^*}) \cdots p(y_n|y_1,...,y_{n-1})$$

- Usually report on log scale: Log Predictive Score (LPS).
- ▶ But which observations to train on (and which to test on)?
- Straightforward for time series.
- ► Cross-sectional data: cross-validation.

MODEL AVERAGING

- Let γ be a quanitity with an interpretation which stays the same across the two models.
- ▶ Example: Prediction $\gamma = (y_{T+1}, ..., y_{T+h})'$.
- ightharpoonup The marginal posterior distribution of γ reads

$$p(\gamma|\mathbf{y}) = p(M_1|\mathbf{y})p_1(\gamma|\mathbf{y}) + p(M_2|\mathbf{y})p_2(\gamma|\mathbf{y}),$$

where $p_k(\gamma|\mathbf{y})$ is the marginal posterior of γ conditional on model k.

- Predictive distribution includes three sources of uncertainty:
 - ▶ Future errors/disturbances (e.g. the ε 's in a regression)
 - ► Parameter uncertainty (the predictive distribution has the parameters integrated out by their posteriors)
 - Model uncertainty (by model averaging)

DECOMPOSE PREDICTION UNCERTAINTY - DSGE [6]

FIGURE 4 Decomposition of the forecast uncertainty. The subgraphs display the relative contribution to the predictive variances of the observed variables at different forecast horizons.

BAYESIAN FORECAST AVERAGING

- Available: forecasts $\hat{x}_{t+h|t}^{(1)},...,\hat{x}_{t+h|t}^{(k)}$ from k different institutes/models.
- ▶ How to combine the forecasts to a single forecast?
- Bayesian solution assuming

$$\hat{\mathbf{x}}_{t+h|t}^{(1)} \sim N\left(x_t \mathbf{1}, \Sigma\right)$$

where Σ describes the covariance between institutes' forecasts.

► Optimal forecast combination [7, 8]:

$$\sum_{j=1}^{K} w_{jt} \hat{x}_{t+h|t}^{(j)}$$

$$(w_{1t}, w_{2t}, ..., w_{kt}) = \frac{\mathbf{1}' \tilde{\Sigma}_{t}^{-1}}{\mathbf{1}' \tilde{\Sigma}_{t}^{-1} \mathbf{1}}$$

$$\tilde{\Sigma}_{t} = \frac{v}{t+V} \Sigma_{0} + \frac{t}{t+V} \hat{\Sigma}_{t},$$

BAYESIAN FORECAST AVERAGING

COMPUTING THE MARGINAL LIKELIHOOD

► Usually difficult to evaluate the integral

$$p(\mathbf{y}) = \int p(\mathbf{y}|\theta)p(\theta)d\theta = E_{p(\theta)}[p(\mathbf{y}|\theta)].$$

▶ Draw from the prior $\theta^{(1)}, ..., \theta^{(N)}$ and use the Monte Carlo estimate

$$\hat{\rho}(\mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \rho(\mathbf{y} | \theta^{(i)}).$$

Unstable if the posterior is somewhat different from the prior.

▶ Importance sampling. Let $\theta^{(1)}$, ..., $\theta^{(N)}$ be iid draws from $g(\theta)$.

$$\int p(\mathbf{y}|\theta)p(\theta)d\theta = \int \frac{p(\mathbf{y}|\theta)p(\theta)}{g(\theta)}g(\theta)d\theta \approx N^{-1}\sum_{i=1}^{N} \frac{p(\mathbf{y}|\theta^{(i)})p(\theta^{(i)})}{g(\theta^{(i)})}$$

▶ Modified Harmonic mean: $g(\theta) = N(\tilde{\theta}, \tilde{\Sigma}) \cdot I_c(\theta)$, where $\tilde{\theta}$ and $\tilde{\Sigma}$ is the posterior mean and covariance matrix estimated from an MCMC chain, and $I_c(\theta) = 1$ if $(\theta - \tilde{\theta})'\tilde{\Sigma}^{-1}(\theta - \tilde{\theta}) \leq c$.

APPROXIMATE MARGINAL LIKELIHOODS

► The Laplace approximation:

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) + \frac{1}{2} \ln |\Sigma| + \frac{p}{2} \ln(2\pi),$$

where $\Sigma = -H^{-1}$ and p is the number of unrestricted parameters in the model.

- Note that $\hat{\theta}$ and H can be obtained with **numerical optimization** with BFGS update of Hessian.
- ► The BIC approximation

$$\ln \hat{p}(\mathbf{y}) = \ln p(\mathbf{y}|\hat{\theta}) + \ln p(\hat{\theta}) - \frac{p}{2} \ln n.$$

POSTERIOR PREDICTIVE ANALYSIS

- ▶ If $p(y|\theta)$ is a 'good' model, then the data actually observed should not differ 'too much' from simulated data from $p(y|\theta)$.
- ► Bayesian: simulate data from the **posterior predictive distribution** [9]:

$$p(y^{rep}|y) = \int p(y^{rep}|\theta)p(\theta|y)d\theta.$$

- \triangleright Difficult to compare y and y^{rep} because of dimensionality.
- ▶ Solution: compare **low-dimensional statistic** $T(y, \theta)$ to $T(y^{rep}, \theta)$.
- ► Evaluates the full probability model consisting of both the likelihood and prior distribution.

POSTERIOR PREDICTIVE ANALYSIS, CONT.

- ▶ **Algorithm** for simulating from the posterior predictive density $p[T(y^{rep})|y]$:
- 1 Draw a $\theta^{(1)}$ from the posterior $p(\theta|y)$.
- 2 Simulate a data-replicate $y^{(1)}$ from $p(y^{rep}|\theta^{(1)})$.
- 3 Compute $T(y^{(1)})$.
- 4 Repeat steps 1-3 a large number of times to obtain a sample from $T(y^{rep})$.
- ▶ We may now compare the observed statistic T(y) with the distribution of $T(v^{rep})$.
- ▶ Posterior predictive p-value: $Pr[T(y^{rep}) \ge T(y)]$
- ► Informal graphical analysis.

POSTERIOR PREDICTIVE ANALYSIS - NORMAL MODEL, MAX STATISTIC

▶ Model: $y_1, ..., y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$. $T(y) = \max_i |y_i|$.

DECISION THEORY

- Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Disease.
- ▶ Let $a \in A$ be an action. Ex: Interest rate, Energy tax, Surgery.
- ▶ Choosing action a when state of nature turns out to be θ gives utility

$$U(a, \theta)$$

► Utility table:

	$ heta_1$	$ heta_2$
a_1	$U(a_1, \theta_1)$	$U(a_1, \theta_2)$
a_2	$U(a_2, \theta_1)$	$U(a_2, \theta_2)$

► Example:

	Rainy	Sunny
Umbrella	50	70
No umbrella	0	100

DECISION THEORY

- **Example loss functions** when both a and θ are continuous:
 - ► Linear: $L(a, \theta) = |a \theta|$ ► Quadratic: $L(a, \theta) = (a - \theta)^2$
 - ► Lin-Lin:

$$L(a,\theta) = \begin{cases} c_1 \cdot |a - \theta| & \text{if } a \le \theta \\ c_2 \cdot |a - \theta| & \text{if } a > \theta \end{cases}$$

- Example:
 - \triangleright θ is the number of items demanded of a product
 - a is the number of items in stock
 - Utility

$$U(a, \theta) = \begin{cases} p \cdot \theta - c_1(a - \theta) & \text{if } a > \theta \text{ [too much stock]} \\ p \cdot a - c_2(\theta - a)^2 & \text{if } a \le \theta \text{ [too little stock]} \end{cases}$$

OPTIMAL DECISION

- Ad hoc decision rules:
 - Minimax. Choose the decision that minimizes the maximum loss.
 - ► Minimax-regret ... bla bla bla ...
- Bayesian theory: Just maximize the posterior expected utility:

$$a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|\mathbf{y})}[U(a, \theta)],$$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

▶ Using simulated draws $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)}$ from $p(\theta|\mathbf{y})$:

$$E_{p(\theta|\mathbf{y})}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

- Separation principle:
- 1. First obtain $p(\theta|y)$
- 2. then form $U(a, \theta)$ and finally
- 3. choose a that maximes $E_{p(\theta|\mathbf{v})}[U(a,\theta)]$.

- R. E. Kass and A. E. Raftery, "Bayes factors," *Journal of the american statistical association*, vol. 90, no. 430, pp. 773–795, 1995.
- M. Adolfson, S. Laséen, J. Lindé, and M. Villani, "Evaluating an estimated new keynesian small open economy model," *Journal of Economic Dynamics and Control*, vol. 32, no. 8, pp. 2690–2721, 2008.
 - J. Corander and M. Villani, "Bayesian assessment of dimensionality in reduced rank regression," *Statistica Neerlandica*, vol. 58, no. 3, pp. 255–270, 2004.
- M. Villani, R. Kohn, and P. Giordani, "Regression density estimation using smooth adaptive gaussian mixtures," *Journal of Econometrics*, vol. 153, no. 2, pp. 155–173, 2009.
- M. Villani, R. Kohn, and D. J. Nott, "Generalized smooth finite mixtures," *Journal of Econometrics*, vol. 171, no. 2, pp. 121–133, 2012.

- M. Adolfson, J. Lindé, and M. Villani, "Forecasting performance of an open economy dsge model," Econometric Reviews, vol. 26, no. 2-4, pp. 289–328, 2007.
- R. L. Winkler, "Combining probability distributions from dependent information sources," Management Science, vol. 27, no. 4, pp. 479–488, 1981.
- M. Adolfson, M. Andersson, J. Linde, M. Villani, and A. Vredin, "Modern forecasting methods in action: Improving macroeconomic analyses at central banks," International Journal of Central Banking, vol. 3, no. 4, pp. 111–144.
- A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis, vol. 2.
 - Taylor & Francis, 2014.