Graph Search Methods

• A vertex u is reachable from vertex v iff there is a path from v to u.

Graph Search Methods

• A search method starts at a given vertex v and visits/labels/marks every vertex that is reachable from v.

Graph Search Methods

- Many graph problems are solved using a search method.
 - Path from one vertex to another.
 - Is the graph connected?
 - Find a spanning tree, etc.
- Commonly used search methods:
 - Depth-first search(DFS).
 - Breadth-first search(BFS).

Depth-First Search

```
dfs (v)
{ Label vertex v as reached.
  for (each unreached vertex u
                 adjacenct from v)
    dfs(u);
```

Depth-First Search (DFS) in a Binary Tree

Start search at vertex 1.

Label vertex 1 and do a depth first search from either 2 or 4.

Suppose that vertex 2 is selected.

Label vertex 2 and do a depth first search from either 3, 5, or 6. Suppose that vertex 5 is selected.

Label vertex 5 and do a depth first search from either 3, 7, or 9.

Suppose that vertex 9 is selected.

Label vertex 9 and do a depth first search from either 6 or 8.

Suppose that vertex 8 is selected.

Label vertex 8 and return to vertex 9.

From vertex 9 do a DFS(6).

* Label vertex 6 and do a depth first search from either

4 or 7.

Suppose that vertex 4 is selected.

Label vertex 4 and return to 6.

From vertex 6 do a dfs(7).

Label vertex 7 and return to 6.

Return to 9.

Return to 5.

Do a dfs(3).

Label 3 and return to 5.

Return to 2.

Return to 1.

Return to invoking method.

Path from Vertex v to Vertex u

- Start a depth-first search at vertex v.
- ***** Terminate when vertex **u** is visited or when **dfs** ends (whichever occurs first).

***** Time Complexity:

• $O(n^2)$ when adjacency matrix used: If the graph is implemented as an adjacency matrix (a n x n array), then, for each node, need to traverse an entire row of length n in the matrix to discover all its outgoing edges. Note that each row in an adjacency matrix corresponds to a node in the graph, and the said row stores information about edges stemming from the node. So, the complexity of DFS is $O(n * n) = O(n^2)$.

Path from Vertex v to Vertex u

***** Time Complexity:

- O(n+e) when <u>adjacency lists used</u> (e is number of edges): If the graph is implemented using adjacency lists, wherein each node maintains a list of all its adjacent edges, then, for each node, need to discover all its neighbors by traversing its adjacency list just once in linear time. For a directed graph, the sum of the sizes of the adjacency lists of all the nodes is e (total number of edges). So, the complexity of DFS is O(n) + O(e) = O(n + e).
- For an undirected graph, each edge will appear twice in the adjacency list: for an edge ab, a would appear in adjacency list of b, and b would appear in adjacency list of a. So, the overall complexity will be $O(n) + O(2e) \sim O(n + e)$.

DFS implemetation

- Depth first search typically implemented with stack, implicit with recursion or iteratively with an explicit stack
- Start with a node.
- Push that node onto the stack.
- Each time a node is popped off the stack, push all of the new neighbors of that node onto the stack.

DFS implemetation

Start with a node. Let's start at A!

Push the A onto the stack.

DFS implemetation

Pop a node off the stack.

A

Push the new neighbors of root A onto the stack.

A

Pop a node off the stack.

A D

Push the new neighbors of D onto the stack.

A D

Pop a node off the stack.

ADF

Push the new neighbors of F onto the stack.

A D F

Pop a node off the stack.

ADFC

Push the new neighbors of C onto the stack.

ADFC

Pop a node off the stack.

ADFCE

Push the new neighbors of E onto the stack.

ADFCE

Pop a node off the stack.

ADFCEB

Push the new neighbors of B onto the stack.

ADFCEB

The next step would be to pop a node off the stack.

A D F C E B But since the stack is empty, we're done!

- **❖** We got DFS A D F C E B
- *Is it the only one DFS for the given graph?
 - >NO
- *Another DFS for the given graph?
 - >ABCEFD
- **❖** If we want the search to end up **A B C E F D**, push the neighbors into the stack from right to left (e.g. **D**, **C**, **B**).

Breadth First

- **❖** A level order traversal of a tree could be used as a breadth first search
- **❖** Search all nodes in a level before going down to the next level

Breadth-First Search Implementaion

- Visit start vertex and put into a FIFO queue.
- *Repeatedly remove a vertex from the queue, visit its unvisited adjacent vertices, put newly visited vertices into the queue.

Start search at vertex 1.

Visit/mark/label start vertex and put in a FIFO queue.

Remove 1 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 1 from Queue; visit adjacent unvisited vertices;

put in Queue.

Remove 2 from Queue; visit adjacent unvisited vertices;

put in Queue.

Remove 2 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 4 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 4 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 5 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 5 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 3 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 3 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 6 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 6 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 9 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 9 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 7 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 7 from Queue; visit adjacent unvisited vertices; put in Queue.

Remove 8 from Queue; visit adjacent unvisited vertices; put in Queue.

Queue is empty. Search terminates.

BFS - DFS

❖Breadth first search typically implemented with a Queue

❖ Depth first search typically implemented witha stack, implicit with recursion or iteratively
with an explicit stack