

LAB 4 WALTZ COUNTER

CDA 3201C Section 003

NOVEMBER 7, 2019

PROFESSOR PETRIE Summer Poissonnier Z23492880

Grade:

/100

4) [40] Consider the following sequential circuit with two positive-edge-triggered JK flip-flops.

4.a) [4] Trace the timing diagram for the above circuit by hand.

4

Name:

Grade:

/100

4.c) [8] Verify the circuit design/behavior by implementing the circuit using Quartus and the CD4027BE J-K Flip Flop. Review the PowerPoint in this section know how set the value of CLR and X to a value within a time period. SET1 and SET2 are active high so disable them by connecting permanently to low so see how to set a constant (0) throughout the time period, and how to set the fluctuating value of the clock. Turn in a picture of your Schematic and a picture of the VectorWaveForm generated to match the given timing diagram

4.b) [16] Build the above circuit using the CD4027BE dual JK flip-flop logic chip on your breadboard and then connect it to your test platform to test it. Use the chip block diagram below to plan for your wiring. Use 2 logic switches for inputs X and CLR (Reset), and one pulse switch for the Clock. Use 4 LEDs to observe X=J1=K1, Q1=J2=K2*, Q2, and Z=Q1*+Q2*. Tie the SET inputs to low as they are active high. Plan your circuit below.

<u>Observation</u>: If X is kept high, Q1 will toggle at every positive Clock transition because J1=K1=X=1 (toggle mode).

			*	. T	Design •
•	CDA	3201 •	Intro t	o Logic	Design •

Lab Assignment

Grade:

/100

Name:

4.d) [12] From the analysis of the circuit above, draw the State Table and the State Diagram.

State Diagram	: _	
(=1)	(C)0	
YA)	170/	
FOR 1		
(10)	1 (0-)	١

Present	nt State Input O		Output	Next State	Flip Flop Transition	
State	Q2 Q1	i	Z	art a+ art	J282 J1K1	
A	00		1	0 1	01 01 0 01	
B	01		1	1 0	1 01 01 01	
C	10		1	1 1	01 1 01 01	
D	111		0	0	101 01 01 01	

4.e) [60] Build a "Waltz Counter", the Waltz is a dance where you keep time by counting 1, 2, 3, 1, 2, 3, 1, 2, 3, 1...

[10] Draw the State Diagram and Table

State Diagram:

Present State		Input	Output	Next State	Flip Flop Transition	
State	QLQI	i	Z221	Q+ 0,+	Jeke Jahi	
A	00		11'	B 0 1	0x 1x	
B	01		10	C 1 0	1x x1	
C	10		01	A 0 0	11 0%	
	111		XXX	XXX	XX XX	

[10] Figure out the simplest Boolean Algebra Expression for 2 Output bits Z₂ and Z₁

[10] Figure out the simplest Boolean Algebra Expression for JK Flip Flop Inputs J₂ K₂ and J₁ K₁

51=Q2 K2=1 K1=1

[10] Simulate it in Quartus. Turn in picture of Schematic and its generated VectorWaveForm

[20] Plan your wiring below using template below as a guide and wire it using a second CD4027BE J-K Flip

