Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Original) A compound of formula I

in free or salt or solvate form, wherein

X is $-R^1$ -Ar- R^2 or $-R^a$ -Y;

Ar denotes a phenylene group optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkoxy- C_1 - C_{10} -alkyl, phenyl, C_1 - C_{10} -alkyl substituted by phenyl, C_1 - C_{10} -alkyl-substituted phenyl or by C_1 - C_{10} -alkoxy-substituted phenyl;

 R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_{10} -alkylene and R^2 is hydrogen, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or halogen or R^1 and R^2 together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_{10} -alkylene optionally substituted by hydroxy, C_1 - C_{10} -alkoxy, C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl; and

Y is C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_2 - C_{10} -alkenyl or C_2 - C_{10} -alkynyl optionally substituted by halo, cyano, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or halo- C_1 - C_{10} -alkyl;

 C_3 - C_{10} -cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_3 - C_{10} -cycloalkyl, C_7 - C_{14} -aralkyl, C_7 - C_{14} -aralkyloxy or C_6 - C_{10} -aryl, where C_3 - C_{10} -cycloalkyl, C_7 - C_{14} -aralkyl, C_7 - C_{14} -aralkyloxy or C_6 - C_{10} -aryl are optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or halo- C_1 - C_{10} -alkyl;

 C_6 - C_{10} -aryl optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkyl, phenoxy, C_1 - C_{10} -alkylthio, C_6 - C_{10} -aryl, 4- to 10- membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom, or by NR^bR^c where R^b and R^c are each independently C_1 - C_{10} -alkyl optionally substituted by hydroxy, C_1 - C_{10} -alkoxy or phenyl or R^b may additionally be hydrogen;

phenoxy optionally substituted by C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or by phenyl optionally substituted by C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

a 4- to 10-membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom, said heterocyclic ring being optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, halo- C_1 - C_{10} -alkyl, C_6 - C_{10} -aryl, C_7 - C_{14} -aralkyl, C_7 - C_{14} -aralkyloxy, C_1 - C_{10} -alkoxycarbonyl or a 4- to 10-membered heterocyclyl- C_1 - C_{10} -alkyl;

-NR^dR^e where R^d is hydrogen or C₁-C₁₀-alkyl and R^e is C₁-C₁₀-alkyl optionally substituted by hydroxy, or R^e is C₆-C₁₀-aryl optionally substituted by halo, or R^e is a 4- to 10-membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom which ring is optionally substituted by phenyl or halo-substituted phenyl or R^e is C₆-C₁₀-arylsulfonyl optionally substituted by C₁-C₁₀-alkylamino or di(C₁-C₁₀-alkyl)amino;

-SR^f where R^f is C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or C_1 - C_{10} -haloalkyl; or

-CONHR g where R g is C₁-C₁₀-alkyl, C₃-C₁₀-cycloalkyl or C₆-C₁₀-aryl;

provided that when R^a is a bond, Y is not C₁-C₅-alkyl.

Claim 2. (Original) A compound according to claim 1, in which X is -R¹-Ar-R² or -R^a-Y;

Ar denotes a phenylene group optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or by C_1 - C_{10} -alkoxy substituted by phenyl;

 R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_{10} -alkylene and R^2 is hydrogen,

or R¹ and R² together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_{10} -alkylene optionally substituted by hydroxy, C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl; and

Y is C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or C_2 - C_{10} -alkynyl; C_3 - C_{10} -cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C_1 - C_{10} -alkyl, C_3 - C_{10} -cycloalkyl, C_7 - C_{14} -aralkyl, C_7 - C_{14} -aralkyloxy optionally substituted by halo, or by C_6 - C_{10} -aryl optionally substituted by C_1 -

 C_{10} -alkyl or C_1 - C_{10} -alkoxy; C_6 - C_{10} -aryl optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, phenoxy, C_1 - C_{10} -alkylthio, C_6 - C_{10} -aryl, a 4- to 10-membered heterocyclic ring having at least one ring nitrogen atom, or by NR^bR^c where R^b and R^c are each independently C_1 - C_{10} -alkyl optionally substituted by hydroxy or phenyl or R^b may additionally be hydrogen; phenoxy optionally substituted by C_1 - C_{10} -alkoxy; a 4- to 10-membered heterocyclic ring having at least one ring nitrogen or oxygen atom, said heterocyclic ring being optionally substituted by C_1 - C_{10} -alkyl, C_6 - C_{10} -aryl, C_7 - C_{14} -aralkyl, C_1 - C_{10} -alkoxycarbonyl or by a 4- to 10-membered heterocyclyl- C_1 - C_{10} -alkyl; -NR^dR^e where R^d is hydrogen or C_1 - C_{10} -alkyl and R^e is C_1 - C_{10} -alkyl, or R^e is a 4- to 10-membered heterocyclic ring having at least one ring nitrogen or oxygen atom which ring is optionally substituted by halo-substituted phenyl or R^e is C_6 - C_{10} -arylsulfonyl optionally substituted by di(C_1 - C_{10} -alkyl)amino; -SR^f where R^f is C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl optionally substituted by halo or C_1 - C_{10} -haloalkyl; or -CONHR^g where R^g is C_3 - C_{10} -cycloalkyl or C_6 - C_{10} -aryl.

Claim 3. (Original) A compound according to claim 2, in which X is $-R^1$ -Ar- R^2 or $-R^a$ -Y;

Ar denotes a phenylene group optionally substituted by halo, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or by C_1 - C_4 -alkoxy substituted by phenyl;

 R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_4 -alkylene and R^2 is hydrogen,

or R¹ and R² together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring, especially a 5-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_4 -alkylene optionally substituted by hydroxy, C_6 - C_8 -aryl or C_7 - C_{10} -aralkyl; and

Y is C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or C_2 - C_4 -alkynyl; C_3 - C_6 -cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C_1 - C_8 -alkyl, C_3 - C_6 -cycloalkyl, C_7 - C_{10} -aralkyloxy optionally substituted by halo, or by C_6 - C_8 -aryl optionally substituted by C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy; C_6 - C_8 -aryl optionally substituted by halo, hydroxy, C_1 - C_4 -alkyl, phenoxy, C_1 - C_4 -alkylthio, C_6 - C_8 -aryl, a 4- to 8-membered heterocyclic ring having at least one ring nitrogen atom, or by NR^bR^c where R^b and R^c are each independently C_1 - C_4 -alkyl optionally substituted by hydroxy or phenyl or R^b may additionally be hydrogen; phenoxy optionally substituted by C_1 - C_4 -alkoxy; a 4- to 8-membered heterocyclic ring having at least one ring nitrogen or oxygen atom, said heterocyclic ring being optionally substituted by C_1 - C_4 -alkyl, C_6 - C_8 -aryl, C_7 - C_{10} -aralkyl, C_1 - C_4 -alkoxycarbonyl or by a 4- to 8-membered heterocyclyl- C_1 - C_4 -alkyl; - NR^dR^e where R^d is hydrogen or C_1 - C_4 -alkyl and R^e is C_1 - C_4 -alkyl, or R^e is a 4- to 8-membered heterocyclic ring having at least one ring nitrogen or sulphur atom which ring is optionally substituted by halosubstituted phenyl or R^e is C_6 - C_8 -arylsulfonyl optionally substituted by di(C_1 - C_4 -alkyl)amino; - SR^f where R^f is C_6 - C_8 -aryl or C_7 - C_{10} -aralkyl optionally substituted by halo or C_1 - C_4 -haloalkyl; or - C_6 - C_8 -aryl or C_7 - C_{10} -aralkyl optionally substituted by halo or C_1 - C_4 -haloalkyl; or - C_6 - C_8 -aryl or C_7 - C_8 -cycloalkyl of C_6 - C_8 -aryl.

Claim 4. (Original) A compound according to claim 1 in free or salt or solvate form, wherein X is -R¹-Ar-R² or -R^a-Y;

Ar denotes a phenylene group optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkyl, phenyl, C_1 - C_{10} -alkyl substituted by phenyl, C_1 - C_{10} -alkoxy substituted by phenyl, C_1 - C_{10} -alkyl-substituted phenyl or by C_1 - C_{10} -alkoxy-substituted phenyl; R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_{10} -alkylene and R^2 is hydrogen, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or halogen or R^1 and R^2 together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_{10} -alkylene optionally substituted by hydroxy, C_1 - C_{10} -alkoxy, C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl; and

Y is C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl optionally substituted by halo, cyano, hydroxy, C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy or halo-C₁-C₁₀-alkyl; C₃-C₁₀-cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C₁-C₁₀-alkyl, C₁-C₁₀-alkoxy, C₃-C₁₀-cycloalkyl, C₇-C₁₄-aralkyl, C₇-C₁₄-aralkyloxy or C₆-C₁₀-aryl optionally substituted by halo, hydroxy, C₁-C₁₀-alkyl, C₁-C₁₀-alkyl;

 C_6 - C_{10} -aryl optionally substituted by halo, hydroxy, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkyl, phenoxy, C_1 - C_{10} -alkylthio, C_6 - C_{10} -aryl, 4- to 10- membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom, or by NR^bR^c where R^b and R^c are each independently C_1 - C_{10} -alkyl optionally substituted by hydroxy, C_1 - C_{10} -alkoxy or phenyl or R^b may additionally be hydrogen;

phenoxy optionally substituted by C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or by phenyl optionally substituted by C_1 - C_{10} -alkyl or C_1 - C_{10} -alkoxy;

- a 4- to 10-membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom, said heterocyclic ring being optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, halo- C_1 - C_{10} -alkyl, C_6 - C_{10} -aryl, C_7 - C_{14} -aralkyl, C_7 - C_{14} -aralkyloxy, C_1 - C_{10} -alkoxycarbonyl or a 4- to 10-membered heterocyclyl- C_1 - C_{10} -alkyl;
- -NR^dR^e where R^d is hydrogen or C_1 - C_{10} -alkyl and R^e is C_1 - C_{10} -alkyl optionally substituted by hydroxy, or R^e is C_6 - C_{10} -aryl optionally substituted by halo, or R^e is a 4- to 10-membered heterocyclic ring having at least one ring nitrogen, oxygen or sulphur atom which ring is optionally substituted by phenyl or halo-substituted phenyl or R^e is C_6 - C_{10} -arylsulfonyl optionally substituted by C_1 - C_{10} -alkylamino or di(C_1 - C_{10} -alkyl)-amino;
- -SR^f where R^f is C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or C_1 - C_{10} -haloalkyl; or
- -CONHR 9 where R 9 is C1-C10-alkyl, C3-C10-cycloalkyl or C6-C10-aryl.

Claim 5. (Original) A compound according to claim 4, in which X is -R¹-Ar-R² or -R^a-Y;

Ar denotes a phenylene group optionally substituted by halo, C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy or by C_1 - C_{10} -alkoxy substituted by phenyl;

 R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_{10} -alkylene and R^2 is hydrogen,

or R¹ and R² together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_{10} -alkylene optionally substituted by hydroxy, C_6 - C_{10} -aryl or C_7 - C_{14} -aralkyl; and

Y is C_1-C_{10} -alkyl, C_1-C_{10} -alkoxy or C_2-C_{10} -alkynyl; C_3-C_{10} -cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C_1-C_{10} -alkyl, C_3-C_{10} -cycloalkyl, C_7-C_{14} -aralkyl, C_7-C_{14} -aralkyloxy or C_6-C_{10} -aryl; C_6-C_{10} -aryl optionally substituted by halo, hydroxy, C_1-C_{10} -alkyl, phenoxy, C_1-C_{10} -alkylthio, C_6-C_{10} -aryl, a 4- to 10-membered heterocyclic ring having at least one ring nitrogen atom, or by NR^bR^c where R^b and R^c are each independently C_1-C_{10} -alkyl optionally substituted by hydroxy or phenyl or R^b may additionally be hydrogen; phenoxy optionally substituted by C_1-C_{10} -alkoxy; a 4- to 10-membered heterocyclic ring having at least one ring nitrogen or oxygen atom, said heterocyclic ring being optionally substituted by C_1-C_{10} -alkyl, C_1-C_{10} -alkoxycarbonyl or by a 4- to 10-membered heterocyclyl- C_1-C_{10} -alkyl; -NR^dR^e where R^d is hydrogen or C_1-C_{10} -alkyl and R^e is C_1-C_{10} -alkyl, or R^e is a 4- to 10-membered heterocyclic ring having at least one ring nitrogen or oxygen atom which ring is optionally substituted by halo-substituted phenyl or R^e is C_6-C_{10} -arylsulfonyl optionally substituted by halo substituted phenyl or R^e is C_6-C_{10} -arylsulfonyl optionally substituted by halo or C_1-C_{10} -haloalkyl; or -CONHR^g where R^g is C_3-C_{10} -cycloalkyl or C_6-C_{10} -aryl.

Claim 6. (Original) A compound according to claim 4, in which X is $-R^1$ -Ar- R^2 or R^a -Y:

Ar denotes a phenylene group optionally substituted by halo, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or by C_1 - C_4 -alkoxy substituted by phenyl;

 R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_4 -alkylene and R^2 is hydrogen,

or R¹ and R² together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring, especially a 5-membered cycloaliphatic ring;

 R^a is a bond or C_1 - C_4 -alkylene optionally substituted by hydroxy, C_6 - C_8 -aryl or C_7 - C_{10} -aralkyl; and

Y is C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or C_2 - C_4 -alkynyl; C_3 - C_6 -cycloalkyl optionally fused to one or more benzene rings and optionally substituted by C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_7 - C_{10} -aralkyloxy or C_6 - C_8 -aryl; C_6 - C_8 -aryl optionally substituted by halo, hydroxy, C_1 - C_4 -alkyl, phenoxy,

 C_1 - C_4 -alkylthio, C_6 - C_8 -aryl, a 4- to 8-membered heterocyclic ring having at least one ring nitrogen atom, or by NR^bR^c where R^b and R^c are each independently C_1 - C_4 -alkyl optionally substituted by hydroxy or phenyl or R^b may additionally be hydrogen; phenoxy optionally substituted by C_1 - C_4 -alkoxy; a 4- to 8-membered heterocyclic ring having at least one ring nitrogen or oxygen atom, said heterocyclic ring being optionally substituted by C_1 - C_4 -alkyl, C_6 - C_8 -aryl, C_7 - C_{10} -aralkyl, C_1 - C_4 -alkoxycarbonyl or by a 4- to 8-membered heterocyclyl- C_1 - C_4 -alkyl; -NR^dR^e where R^d is hydrogen or C_1 - C_4 -alkyl and R^e is C_1 - C_4 -alkyl, or R^e is a 4- to 8-membered heterocyclic ring having at least one ring nitrogen or sulphur atom which ring is optionally substituted by halo-substituted phenyl or R^e is C_6 - C_8 -arylsulfonyl optionally substituted by halo or C_1 - C_4 -alkyl)amino; -SR^f where R^f is C_6 - C_8 -aryl or C_7 - C_{10} -aralkyl optionally substituted by halo or C_1 - C_4 -haloalkyl; or -CONHR^g where R^g is C_3 - C_6 -cycloalkyl or C_6 - C_8 -aryl.

Claim 7. (Original) A compound according to claim 1 that is also a compound of formula II

in free or salt or solvate form, where

Ar denotes a phenylene group optionally substituted by one or more substituents selected from halogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, or C_1 - C_8 -alkoxy substituted by phenyl, C_1 - C_8 -alkyl-substituted phenyl or by C_1 - C_8 -alkoxy-substituted phenyl, R^1 and R^2 are attached to adjacent carbon atoms in Ar, and either R^1 is C_1 - C_8 -alkylene and R^2 is hydrogen, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy or halogen or R^1 and R^2 together with the carbon atoms in Ar to which they are attached denote a 5-, 6- or 7-membered cycloaliphatic ring.

Claim 8. (Original) A compound according to claim 7 that is also a compound of formula III

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5

in free or salt or solvate form, where R^1 is C_2 - C_4 -alkylene and R^2 is hydrogen, or R^1 and R^2 together with the carbon atoms to which they are attached on the indicated benzene ring denote a 5-membered cycloaliphatic ring, R^3 and R^6 are each hydrogen, R^4 is hydrogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -alkoxy substituted by phenyl and R^5 is hydrogen or C_1 - C_4 -alkyl.

Claims 9-14. (Canceled)

Claim 15. (New) A compound of formula I as defined in claim 1, which is also a compound of formula XII

wherein T and X are as shown in the following table:

T	X
HOC	
HO C	
HO_c	CH ₃ O-CH ₃
HO_c	CH ₃
HO_c	CH ₃
но_с	CH ₃
но,,, с	CH ₃
HO_c	CH ₃
но	СН3

Claim 16. (New) A compound of formula I as defined in claim 1, which is also a compound of formula XIII

wherein X is as shown in the following table:

X
O CH ₃
CH ₃ CH ₃
CH ₃
CH ₃
CH ₃
CH ₃
O CH ₃
O CH ₃
СН³
CH ₃
H ₃ C CH ₃
O_CH3

CH ₃
H ₃ C CH ₃
CH₃
ĒH ₃
. ĒH ₃
CH ₃
CH3
CI
CI
ÇH ₃
CH3 CH3
CH ₃ CH ₃
CH ₃ CH ₃
ÇH ₃
° Y

CH₃ CH₃

Claim 17. (New) A compound of formula I as defined in claim 1, which is also a compound of formula XIII

wherein X is as shown in the following table:

X
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
СН3
H N S
OH
H ₃ C CH ₃
CH ₃
H ₃ C — CH ₃
CH ₃ CH ₃

N O CH₃
H ₃ C CH ₃ CH ₃ CH ₃ CH ₃
CH ₃ CH ₃ CH ₃
O CH ₃
QH QH
ÇH ₃
CH ₃
H ₃ C _{//,,}

ī	
	H ₃ C
	H ₃ C
	H ₂ C
	6,11.
	mu. T
	0,11,1
	III
	¥ ~
	CH ₃
	CH₃
	H ₃ C S
	CH ₃
	F F
	H ₃ Ç
	CH ₃
ı	<u> </u>

· A
Cl
s ,
cis mixture
CIS ITIIXUIE
trans mixture
, , , , , , , , , , , , , , , , , , ,
J
H ₃ C
H ₃ C
H ₃ C,
H ₃ C CH ₃
/
N CH ₃
F _F
CH ₃
CH ₃
CH ₃
CH₃

™, CH³
СН3
CH ₃
CH ₃
CH ₃
N CH ₃
CH₃
CH ₃
H
Н
S N
CI
H ₃ C
CH ₃
H ₃ C—
В сн.
Ĥ
<u> </u>

Claim 18. (New) A compound of formula I as defined in claim 1, which is also a compound of formula XII

wherein T and X are as shown in the following table:

T	X
T HO C	
HO_c	H ₃ C
но	СН
HOAC	
HO▲c	н,с
HO_C	
HO▲c	H ₃ C

140	ÇH ₃
HO_c	H ₃ C
1	
40	
но_с	CH₃
	\rightarrow
HO.	
ĬĬ	H ₃ C
HO_c	H ₃ C O
HO_c	CH ₃
1 1	H ₃ C
HO_c	н,с
110	~
HO_C	н,с-0
	Γ
HO.	H ₃ C,
но_с	H ₃ C 0
'	
	<i></i>
HO▲ç	H ₃ C CH ₃
	CH ₃
но	H C CH CH3
	H ₃ C CH ₃
	/ ~ ~
HO_c	H ₃ C
	→

trans mixture

Claim 19. (New) A pharmaceutical composition comprising as active ingredient a compound according to claim 1, optionally together with a pharmaceutically acceptable diluent or carrier therefor.

Claim 20. (New) A pharmaceutical composition comprising as active ingredient a compound according to claim 4, optionally together with a pharmaceutically acceptable diluent or carrier therefor.

Claim 21. (New) A pharmaceutical composition comprising as active ingredient a compound according to claim 7, optionally together with a pharmaceutically acceptable diluent or carrier therefor.

Claim 22. (New) A pharmaceutical composition comprising a compound of formula I as defined in claim 1 in combination with another drug substance which is an anti-inflammatory, a bronchodilator or an antihistamine.

Claim 23. (New) A composition according to claim 22 wherein the another drug substance is a beta-2 adrenoceptor agonist.

Claim 24. (New) A composition according to claim 23 wherein the beta-2 adrenoceptor agonist is selected from the group consisting of salbutamol, terbutaline, salmeterol, formoterol and the compound of formula

in free or pharmaceutically acceptable salt or solvate form.

Claim 25. (New) A method of treating a condition that is prevented or alleviated by activation of the β_2 -adrenoreceptor in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 26. (New) A method of treating an obstructive or inflammatory airways disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 27. (New) A method of treating asthma or chronic obstructive pulmonary disease in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 28. (New) A process for the preparation of a compound of formula I as claimed in claim 1 which comprises:

(i) either (A) reacting a compound of formula IV

where X is as defined in Claim 1 and R^7 denotes a protecting group, to replace R^7 by hydrogen,

or (B) reacting a compound of formula V

$$R^7 - N - X$$
HO
 S
 $O - R^9$
 V

where X and R^7 are as hereinbefore defined and R^8 and R^9 each independently denote a protecting group, to convert groups R^7 , R^8 and R^9 to hydrogen; and

(ii) recovering the compound of formula I in free or salt or solvate form.