

MC 34 - MANDOS NEUMÁTICOS E HIDRÁULICOS

Mag. Ing. José Luis Becerra Felipe pcmcjbec@upc.edu.pe

Trabajo Parcial – Semana 8

- Portada con logo de la universidad, nombres y códigos de los integrantes
- Cap. 1 Marco teórico, objetivos del sistema automático (hasta 8 ptos)
- Cap. 2 Descripción detallada del funcionamiento del sistema (hasta 10ptos)
- (colocar referencias y fuentes) (2ptos)

TEMA 7 : SISTEMA DE CONTROL NEUMÁTICO

Objetivo de la sesión

"Que el estudiante sea capaz de implementar sistemas de control neumático complejos"

Contenido de la sesión

- Método Intuitivo
- Método de Cascada
- Método Paso a Paso

Logro de la sesión:

Al finalizar la clase el estudiante será capaz de implementar sistemas de control neumático complejos

SISTEMAS DE CONTROL NEUMÁTICOS

PASOS RECOMENDADOS

Paso 1: Funciones necesarias y requisitos a cumplir.

Paso 2: Componentes requeridos para realizar las funciones.

Paso 3: Sistema de control de los actuadores (válvulas distribuidoras, reguladoras de caudal, de bloqueo y reguladoras de presión y elementos de control).

Paso 4: Forma de conexión entre los cilindros y las válvulas (racores, tubos flexibles o rígidos, silenciadores, transmisión de energía, roscas).

Paso 5 : Generación del aire comprimido/presión hidráulica y las unidades de mantenimiento, filtros, secadores, lubricadores, reguladores de presión.

Paso 6 : Secuencias de los movimientos y transmisión de las señales.

Fig. 7.1 Campo de trabajo de los actuadores. Fuente: FESTO

DIAGRAMA DE MOVIMIENTOS

- Representan los movimientos de los actuadores u órganos motrices.
- Diagrama Espacio-Fase: en función de la fase de trabajo para los circuitos secuenciales.
- Diagrama Espacio-Tiempo: en función del tiempo para los circuitos programables.

DIAGRAMA DE MOVIMIENTOS

ESPACIO FASE

ESPACIO TIEMPO

NOMENCLATURA DE ESTADOS NORMA ISO 1219-2

Para circuitos complejos o de más de una página.

A0: Pistón retraído

A1: Pistón extendido

NOMENCLATURA DE ESTADOS NORMA ISO 1219-2

Para circuitos simples se puede usar:

A- : Pistón retraído

A+ : Pistón extendido

EJERCICIO

Para el siguiente sistema, la secuencia de operación es la siguiente:

- 1 Cerrar mordaza neumática para sujetar la pieza. B1 (o B+) (vástago cilindro
- B sale fuera)
- 2 Bajar matriz de marcado. A1 (o A+) (vástago del cilindro A sale fuera)
- 3 Subir matriz de marcado. A0 (o A-) (el vástago del cilindro A entra)
- 4 Abrir mordaza neumática. B0 o B- (el vástago del cilindro B entra)

Hallar el diagrama de Fases

EJERCICIO

La secuencia es B+ A+ A- B-

Fase 1: Velocidad de avance del cilindro B = 6 segundos en salir el vástago.

Fase 2: Velocidad de avance del cilindro A = 8 segundos en salir el vástago.

Fase 3: Tiempo de extensión de los vástagos de los cilindros A y B = 4 segundos.

Fase 4: Velocidad de retracción del cilindro A = 6 segundos en entrar el vástago.

Fase 5: Velocidad de retracción del cilindro B = 6 segundos en entrar el vástago.

MÉTODOS DE SOLUCIÓN

MÉTODO INTUITIVO

"La señal procedente del final de cada movimiento se aplica al siguiente movimiento."

A+B+A-B-

A+B+B-A-

Nos encontramos con señales de activación por ambos lados de la válvula. Las alternativas son las siguientes:

MÉTODOS SISTEMÁTICOS

Existen tres métodos:

- 1. Cascada
- 2. Paso a paso
- 3. Secuencial

MÉTODO CASCADA

MÉTODO CASCADA

PASOS:

- 1. Formar grupos.
- 2. Determinar la condición que habilita cada fase y grupo.
- 3. Listar los elementos a utilizar.
- 4. Realizar el circuito neumático.

PASO 1: FORMAR GRUPOS

No deben haber letras repetidas

GRUPO II: A+ B+ GRUPO II: B- A-

PASO 2: DETERMINAR CONDICIONES

Los cambios de grupo abajo y los cambios de

fase arriba.

PASO 3: LISTAR ELEMENTOS A UTILIZAR

Para el ejemplo:

- 2 Pistones doble efecto.
- 2 Válvulas 5/2 con accionamiento neumático.
- 4 Válvulas 3/2 con accionamiento de rodillo.
- 1 Válvula 3/2 con accionamiento manual.
- 1 Válvula distribuidora 5/2 con accionamiento neumático.
- (# De válvulas distribuidoras = # grupos -1)

PASO 4: IMPLEMENTAR EL CIRCUITO Fluid Sim

- Válvula distribuidora 5/2 en su posición normal alimenta G2.
- El pistón A sale con señal de G1.
- a1 se alimenta con la presión de G1 y acciona B+.
- b1 se alimenta (viene) de G1 y envía señal (va) para cambiar la alimentación de aire de G1 a G2.
- El pistón B retorna con señal de G2.
- b0 se alimenta con la presión de G2 y acciona A-.
- a0 se alimenta (viene) de G2 y envía señal (va) para cambiar la

alimentación de aire de G2 a G1.

EJERCICIO

Implementar la secuencia

- G5: A+ C+ C- B- B+ A-
- G6: A+ B- B+ C+ C- A-
- G2: A+ C+ C- A- B+ B-
- G3: A+ C+ B+ B- C- A-
- G4: A+ A- B- C+ B+ C-
- G1: A+ A- B+ C+ C- B-

MÉTODO PASO A PASO

MÉTODO PASO A PASO

PASOS:

- 1. Formar grupos (Mínimo para 3 grupos)
- 2. Determinar la condición que habilita cada fase y grupo.
- 3. Listar los elementos a utilizar.
- 4. Realizar el circuito neumático.

MÉTODO PASO A PASO

MÉTODO PASO A PASO B+ B- A+A-

PASO 1: FORMAR GRUPOS

No deben haber letras repetidas.

GRUPO I: B+

GRUPO II: B- A+

GRUPO III: A-

MÉTODO PASO A PASO B+ B- A+A-

PASO 2: DETERMINAR CONDICIONES

Los cambios de grupo abajo y los cambios de fase arriba.

MÉTODO PASO A PASO B+ B- A+ A-

PASO 3: LISTAR ELEMENTOS A UTILIZAR

- Para el ejemplo:
- 2 Pistones doble efecto.
- 2 Válvulas 5/2 con accionamiento neumático.
- 4 Válvulas 3/2 con accionamiento de rodillo.
- 1 Válvula 3/2 con accionamiento manual.
- 3 Válvulas distribuidora 3/2 con accionamiento neumático. (# De válvulas distribuidoras = # grupos formados)

MÉTODO PASO A PASO B+ B- A+ A-

PASO 4: IMPLEMENTAR EL CIRCUITO - Fluid Sim

- Cada válvula distribuidora 3/2 será alimentada por la línea principal y alimentará a uno de los grupos.
- La señal de un grupo cerrará el paso de aire de la válvula distribuidora del grupo anterior.
- La válvula que alimenta al último grupo (G3) deberá estar en posición normalmente abierta.
- El pistón B sale con señal de G1.
- b1 se alimenta (viene) de G1 y envía señal (va) para permitir el paso de aire a G2.
- El pistón B retorna con señal de G2.
- El pistón A sale con señal de b0.
- a1 se alimenta (viene) de G2 y envía señal (va) para para permitir el paso de aire a G3.
 - El pistón A retorna con señal de G3.
 - a0 se alimenta (viene) de G3 y envía señal (va) para permitir el paso de aire a G1.

EJERCICIO

Implementar la secuencia

G5: A+ C+ C- B- B+ A-

G6: A+ B- B+ C+ C- A-

G2: A+ C+ C- A- B+ B-

G3: A+ C+ B+ B- C- A-

G4: A+ A- B- C+ B+ C-

G1: A+ A- B+ C+ C- B-

MÉTODO DEL SECUENCIADOR

SECUENCIADOR

Conexiones:

A: Activación de la fase siguiente

B: Desactivación de la fase anterior.

P: Línea de presión.

R: Reset.

Sn: a la válvula que acciona el cilindro.

En: del límite de carrera que da el paso al siguiente módulo.

SECUENCIADOR TIPO A Y TIPO B

El módulo tipo B se coloca al final del secuenciador.

MÉTODO DEL SECUENCIADOR

PASOS:

- 1. Secuenciadores necesarios = al número de fases (uno de ellos siempre será tipo B).
- 2. Para las fases que se repiten utilizar una válvula selectora "or".
- 3. Listar elementos a utilizar.
- 4. Realizar el circuito neumático.

MÉTODO DEL SECUENCIADOR B+ B- A+ A-

PASO 1: SECUENCIADORES NECESARIOS

- 4 FASES = 4 SECUENCIADORES
- 3 SECUENCIADORES TIPO A
- 1 SECUENCIADOR TIPO B

MÉTODO DEL SECUENCIADOR B+ B- A+ A-

PASO 2: FASES QUE SE REPITEN?

No se repiten fases.

MÉTODO DEL SECUENCIADOR B+ B- A+ A-

PASO 3: LISTAR ELEMENTOS A UTILIZAR

- Para el ejemplo:
- 2 Pistones doble efecto.
- 2 Válvulas 5/2 con accionamiento neumático.
- 4 Válvulas 3/2 con accionamiento de rodillo.
- 1 Válvula 3/2 con accionamiento manual.
- 3 secuenciadores tipo A
- 1 secuenciador tipo B

EJERCICIO

Implementar la secuencia

A+ B+ B- C+ C- A-

B-C+C-B+A+A-

Conclusiones

- El diagrama de espacio fase representa los cambios de estado de un actuador neumático, no interviene el tiempo.
- El diagrama de espacio tiempo considera el tiempo transcurrido para cada cambio de estado de un actuador neumático.
- Existen métodos sistemáticos que nos permiten realizar secuencias complejas de sistemas neumáticos.

LOGRO CONSEGUIDO

 En este momento son capaces de diseñar un circuito neumático para sistemas complejos.

GRACIAS

