Name:	
Student ID:	

İSTANBUL MEDİPOL ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ 2017/2018 EĞİTİM ÖĞRETİM YILI GENEL FİZİK 1 DERSİ GÜZ DÖNEMİ ARA SINAVI SORULARIDIR

Istanbul Medipol University General Physics 1 Midterm 1 November 11, 2017 Closed Book, Closed Notes, No Calculators

On my honor as a student, I have neither given nor received aid on this exa	m.
---	----

- Sign the pledge above.
- Write your name and student ID on every page in the spaces provided above.
- Show all of your work. Your work and answers must be shown on the pages provided.
- Your grade will be based on the correctness of your solution and the clarity of your work leading up to the solution.

Question	Points Earned
1 (20)	
2 (20)	
3 (25)	
4 (25)	
5 (10)	
Total	

The position of a particle is given as a function of time as $\vec{r} = \left(2t^2 \hat{i} - 6t \hat{j}\right)$ meters.

- a) Find the displacement vector $\overrightarrow{\Delta r}$ of the particle between t=1 and t=3 seconds.
- b) Find the average velocity vector \overrightarrow{v}_{avg} of the particle between t=1 and t=3 seconds .
- c) Find the angle between the average velocity vector \overrightarrow{v}_{avg} of the particle and the *x*-axis between t=1 and t=3 seconds .
- d) Find the instantaneous velocity \overrightarrow{v} of the particle at t=2 seconds .

General Physics 1	
Fall 2017	

Name:	
Student ID:	

A runner starts from rest and finishes a 75 meter race in 9 seconds. For the first 15 meters, she runs with constant acceleration and then with constant velocity.

- a) How long does it take for her to run the first 15 meters?
- b) How long does it take for her to run the last 30 meters?
- c) What is her final velocity?
- d) What is her acceleration in the first 15 meters?

Another runner is in the race. She starts from rest at the same time and runs with constant acceleration of 1.5 m/s^2 .

- e) Who wins the race?
- f) At time t = 2 seconds, what is her velocity relative to the first runner?

Name:_____ Student ID:_____

Question 3

A skier leaves the ramp with initial velocity 10 m/s and 36.9° above the horizontal as seen in the picture. The slope below is inclined at 53.1° . Assume g = 10 m/s^2 .

- a) What is the maximum height that the skier reaches? (define your coordinate system first)
- b) What is the distance d from the ramp to where the skier lands? (plug in numbers early on)
- c) What are the velocity components just before the landing?

General Physics 1
Fall 2017

Name:	
Student ID:	

Name:_____ Student ID:

Question 4

A mass M is suspended by a rope, which goes around a pulley and is connected to mass m_1 which sits on an inclined plane. A mass m_2 kg sits on top of m_1 , as shown. The incline angle is θ . The pulley is frictionless, the rope is massless, and there is no friction between m_1 and the incline. However, there is friction between m_1 and m_2 , with coefficients μ_s and μ_k .

Case 1: System is in equilibrium.

- a) Draw a free body diagram for M.
- b) Draw a free body diagram for m_1 and m_2 as a composite body (together as one).
- c) What is M?

Case 2: M is now heavier and moves down with acceleration a.

- d) What is the tension in the rope?
- e) What is the new *M*?

Case 3: M is at its maximum value such that m_2 rides on top of m_1 without slipping.

- f) Draw separate free body diagrams for m_1 and m_2 .
- g) What is the acceleration?
- h) What is the maximum value of M?

General Physics 1
Fall 2017

Name:	
Student ID:	

Name:_	
Student ID:	

A conical pendulum. A bob with mass m at the end of a wire of length l moves in a horizontal circle with constant speed v. The wire makes a fixed angle θ with the vertical direction.

- a) Find the tension *F* in the wire.
- b) Find the period *T*.