# Numerical Approximations of $\pi$

Ian Mitchell\*

June 20, 2018

#### Abstract

Python has allowed for  $\pi$  to be approximated in many easier ways than before. Using an algorithm where an n number of points are placed and the areas of a square and a circle are compared,  $\pi$  can be approximated to varying degrees of accuracy. However, the algorithm is a very brute-force method, and can heavily use system resources. In general, it would be easier to symbollically or numerically solve a Gaussian integral.

# 1 Introduction and Trial

 $\pi$  can be numerically approximated using many different methods. However, in this case, we are using a recursive Monte-carlo-like method in Python to essentially average all the areas of the circle. To compare, the Gaussian integral  $f(x) = \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \pi$  is used. It can be noted that e is an irrational number itself. However, e has a few clear definitions such as  $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ . It can be noted that the accuracy in which the algorithm measures  $\pi$  at increases signifiant to the context of the context of

It can be noted that the accuracy in which the algorithm measures  $\pi$  at increases signifigantly increases with each decimal place. You can see based on the table of trials below. A total of 10 trials were done for each of the values of n.

| $\overline{n = 10}$ | n = 100 | n = 1000 | n = 10000 | n = 100000 |
|---------------------|---------|----------|-----------|------------|
| 2.8                 | 3.12    | 3.18     | 3.1104    | 3.147      |
| 3.2                 | 3.16    | 3.124    | 3.146     | 3.14876    |
| 3.6                 | 3.24    | 3.168    | 3.1332    | 3.15028    |
| 3.6                 | 2.8     | 3.164    | 3.1544    | 3.1456     |
| 3.2                 | 3.12    | 3.192    | 3.1496    | 3.1436     |
| 1.6                 | 3.08    | 3.056    | 3.0976    | 3.135      |
| 2.4                 | 3.08    | 3.132    | 3.1508    | 3.14416    |
| 3.2                 | 3.0     | 3.08     | 3.1352    | 3.14248    |
| 2.8                 | 3.44    | 3.048    | 3.1476    | 3.13816    |
| 2.4                 | 3.16    | 3.14     | 3.1372    | 3.14184    |
|                     |         |          |           |            |

Table 1: Values of  $\pi$  put through the approximater.

<sup>\*</sup>Ian.Mitchell\_001@gmx.com



Figure 1:  $\pi$  approximated to n=100000 places.



Figure 2: Values of the approximation for  $\pi$ .

| n = 10  | n = 100 | n = 1000 | n = 10000 | n = 100000 |
|---------|---------|----------|-----------|------------|
| 0.58788 | 0.15492 | 0.04874  | 0.60126   | 0.00442    |

Table 2: Standard deviation for each value of n.

 $\begin{bmatrix} 1 \end{bmatrix}$ 

$${}^{1}\sigma = \sum_{i} \sqrt{\frac{(x_i - \bar{x})^2}{n - 2}}$$

### 2 Conclusions

As can be seen from the graph, the graph allows for the circle to go outside of what a circle is. This can mess up the values of  $\pi$  since the area is different than that of a *true* cirle's area. However, the actual size of the 'circle' is rather similar to a true *circle*. Yet, it is accurate provided enough points are given. The main fault of this can simply be tossed away if one were to use the Gaussian integral

$$f(x) = \left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \pi.$$

The use of this integral would serve to be much simpler on calculations and on computer resources. However, problems arise if one does not have a library or program for any sort of symbolic computation (i.e. SymPy, Maxima, or Mathematica $^{\text{TM}}$ ). Yet, the resources used by this algorithm is far more taxing on system resources—negating this solution for lower-performing computers.

## 3 Code

```
In [1]: ### PI APPROXIMATER ###
        %matplotlib inline
        import matplotlib.pyplot as plt
        import numpy as np
        from numpy import random
        from sympy import *
        # Sympy approximation
        X = symbols('X')
        f = \exp(-(X**2))
        Pi_1 = N((integrate(f, (X, -oo, oo)))**2)
        # Numpy approximation
        ## Credit to Andrew Dotson with his video "How to Estimate Pi Numerically in Pyt
        n = input("Input the number of points. n = ") # Number of points
        # print('Input your amount of points. n = ')
        circlex = []
        circley = []
```

```
squarex = []
squarey = []
i = 1
# Approximation for pi
while i<=int(n):</pre>
    x = random.uniform(-1, 1)
    y = random.uniform(-1, 1)
    if (x**2 + y**2 \le 1):
        circlex.append(x)
        circley.append(y)
    else:
        squarex.append(x)
        squarey.append(y)
    i+=1
Pi_2 = 4*len(circlex)/float(n)
plt.plot(circlex,circley,'r.')
plt.plot(squarex,squarey,'b.')
plt.grid
plt.title('Approximation for \pi')
# Plot the approximation
# ----
```

According to sympy,  $\pi$  is equal to 3.14159265358979. However, the circle approximated it

print("According to sympy,  $\pi$  is equal to  $\{0\}$ . However, the circle approximated in



In [2]: ### STANDARD DEVIATION OF THE POINTS FROM THE APPROXIMATER ###

```
import matplotlib.pyplot as plt
import numpy as np
from numpy import random
from sympy import *

A = [2.8, 3.2, 3.6, 3.6, 3.2, 1.6, 2.4, 3.2, 2.8, 2.4]
B = [3.12, 3.16, 3.24, 2.8, 3.12, 3.08, 3.08, 3.0, 3.44, 3.16]
C = [3.18, 3.124, 3.168, 3.164, 3.192, 3.056, 3.132, 3.08, 3.048, 3.14]
D = [3.1104, 3.146, 1.1332, 3.1544, 3.1496, 3.0976, 3.1508, 3.1352, 3.1476, 3.13
E = [3.147, 3.14876, 3.15028, 3.1456, 3.1436, 3.135, 3.14416, 3.14248, 3.13816,

dev_A = np.round(np.std(A),5)
dev_B = np.round(np.std(B),5)
dev_C = np.round(np.std(C),5)
dev_D = np.round(np.std(D),5)
dev_E = np.round(np.std(E),5)

print("|{0}|{1}|{2}|{3}|{4}|".format(dev_A, dev_B, dev_C, dev_D, dev_E))
```

0.58788 0.15492 0.04874 0.60126 0.00442

```
In [3]: ### PLOT OF THE POINTS FOR THE APPROXIMATER ###
        %matplotlib inline
        import matplotlib.pyplot as plt
        import numpy as np
        from numpy import random
        from sympy import *
        A = [2.8, 3.2, 3.6, 3.6, 3.2, 1.6, 2.4, 3.2, 2.8, 2.4]
        B = [3.12, 3.16, 3.24, 2.8, 3.12, 3.08, 3.08, 3.0, 3.44, 3.16]
        C = [3.18, 3.124, 3.168, 3.164, 3.192, 3.056, 3.132, 3.08, 3.048, 3.14]
        D = [3.1104, 3.146, 1.1332, 3.1544, 3.1496, 3.0976, 3.1508, 3.1352, 3.1476, 3.13
        E = [3.147, 3.14876, 3.15028, 3.1456, 3.1436, 3.135, 3.14416, 3.14248, 3.13816,
        Number = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
        #plt.subplot(2,1,1)
        plt.plot(Number, A, label="$n = 10$")
        #plt.subplot(1,2,1)
        plt.plot(Number, B, label="$n = 100$")
        #plt.subplot(1,1,1)
        plt.plot(Number, C, label="$n = 1000$")
        #plt.subplot(1,1,2)
        plt.plot(Number, D, label="n = 10000")
        #plt.subplot(2,2,2)
        plt.plot(Number, E, label="n = 100000")
        #plt.plot[B, 'b.']
        plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3,
                   ncol=2, mode="expand", borderaxespad=0.)
        plt.savefig('pi_pictures/values.png')
        # Used index.jpg instead since it actually features **THE WHOLE PLOT. **
        plt.show()
```

