

Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Understanding the unique Ohmic-junction for enhancing the photocatalytic activity of CoS₂/MgIn₂S₄ towards hydrogen production

Jiangshan Li ^{a,1}, Jun Yao ^{a,1}, Qiang Yu ^a, Xiao Zhang ^a, Sónia A.C. Carabineiro ^b, Xianqiang Xiong ^{a,*}, Chenglin Wu ^a, Kangle Lv ^{c,*}

- ^a School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
- b LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
- ^c College of Resources and Environment, South-Central Minzu University, Wuhan 430074, China

ARTICLE INFO

Keywords: ${\rm MgIn}_2{\rm S}_4$ ${\rm CoS}_2$ Photocatalytic hydrogen production Ohmic junction

ABSTRACT

 $MgIn_2S_4$ is a photocatalyst with a suitable band gap for renewable energy production, but its effectiveness is hindered by pronounced photocorrosion, insufficient surface active sites and rapid charge recombination. Herein, we report the synthesis of $CoS_2/MgIn_2S_4$ Ohmic junction with a robust internal electric field. The optimized $CoS_2/MgIn_2S_4$ photocatalyst with a CoS_2 loading of 20.5 wt%, depicts a maximum H_2 evolution rate of 290 μ mol g⁻¹ h⁻¹, which is 3.1 times higher than the value of $MgIn_2S_4$. The improved photocatalytic activity of $CoS_2/MgIn_2S_4$ can be attributed to the intimate Ohmic junction at the $CoS_2/MgIn_2S_4$ interface, which promotes effective photoelectron transfer from $MgIn_2S_4$ to CoS_2 . Simultaneously, CoS_2 can act as an efficient surface cocatalyst, with an optimal hydrogen-adsorption Gibbs free energy, enabling highly efficient proton reduction at the catalyst/ H_2O interface. The present work introduces a novel approach to modulate interfaces, creating transition metal sulfide cocatalysts for photocatalysts, resulting in high photocatalytic performance.

1. Introduction

In light of the pressing challenges dealing with environmental pollution and energy crisis, the need to develop sustainable and clean energy solutions to address the imminent fuel issue becomes increasingly evident [1,2]. The process of photocatalytic hydrogen evolution, where abundant solar energy is harvested and converted into hydrogen energy, is considered a promising technology that can serve as a reliable source of clean energy for human society [3,4]. While numerous semiconductor-based photocatalysts have been optimized for H2 production, photocatalytic technology still faces several obstacles, including narrow spectral response ranges, low carrier separation efficiency and insufficient redox-active sites [5-8]. 2D layered semiconductors are ideal photocatalysts, mainly due to their large specific area and excellent electron mobility [9–11]. Moreover, these materials offer a larger number of active sites, with abundant channels for the migration and separation of photogenerated charge carriers. This is highly advantageous for enhancing the photocatalytic H₂ evolution [12, 13].

MgIn₂S₄ stands out as a unique material, with distinct properties and advantages for photocatalysis [14]. These include an optimal band gap for effective visible light absorption, robust chemical and thermal stability, ensuring durability and consistent performance, and a composition of abundant, non-toxic and cost-effective elements [15,16]. Due to these advantages, MgIn₂S₄ exhibits a wide range of applications in photocatalysis, including environmental pollution degradation [16], CO2 reduction [17], photoreduction of heavy metal ions [18], H2 evolution [15] and hydrocarbon evolution [19]. However, pristine MgIn₂S₄ shows some drawbacks, including weak separation efficiency of photoexcitons, photocorrosion and poor cycle stability, which adversely affect its photocatalytic performance [20]. Several approaches have been proposed in order to overcome these flaws, including doping [20], morphological regulation [21] and construction of heterojunctions [15]. Most modification research primarily concentrates on the treatment of environmental pollutants, while the investigations toward H₂ evolution are still limited. A detailed examination of the existing literature reveals that only six studies report the performance of MgIn₂S₄-based materials in terms of solar H₂ production. Moreover, these works primarily focus

E-mail addresses: 11337061@zju.edu.cn (X. Xiong), lvkangle@mail.scuec.edu.cn (K. Lv).

^{*} Corresponding authors.

 $^{^{1}\,}$ These authors contributed equally to this work.

on the use of the heterojunction strategy to enhance the photocatalytic activity of $MgIn_2S_4$ through its coupling with other semiconductors. For example, Parida and colleagues have reported on two pn junctions (B-doped $C_3N_4/MgIn_2S_4$ [15] and p-MoS₂/n-MgIn₂S₄ [20]) and two Z-scheme heterojunctions (MgIn₂S₄/UiO-66-NH₂ [22] and TiO₂@-Ti₃C₂/MgIn₂S₄ [23]), effectively promoting charge separation and migration. This results in a remarkably enhanced rate of H₂ evolution. Additionally, Niu *et al.* have reported a type-II MgIn₂S₄/CdS heterojunction for photocatalytic H₂ evolution, demonstrating an enhanced H₂ production of 52.14 µmol g⁻¹ h⁻¹ [16]. Despite these successes, the obtained H₂ evolution rate is considerably lower than the amount achieved using other ternary metal sulfides, such as ZnIn₂S₄ [24] and CdIn₂S₄ [25]. Therefore, there is a compelling need for the research community to improve the photocatalytic performance of MgIn₂S₄ photocatalysts for H₂ production.

In many semiconductor photocatalysts, the loading of cocatalysts is an efficient method for enhancing photocatalytic performance [26–29]. This is because cocatalyst loading can suppress recombination of charge carriers by trapping electrons of semiconductor photocatalysts and provide active sites for surface proton reduction [27,30]. Conversely, conventional semiconductor/semiconductor heterojunctions primarily improve charge separation while making a smaller contribution to the charge transfer process at the catalyst/ $\rm H_2O$ interface. Taking these factors into account, it can be predicted that the MgIn₂S₄/co-catalyst system will exhibit superior photocatalytic H₂ evolution activity compared to the traditional semiconductor/semiconductor heterojunctions. However, cocatalyst coupling with MgIn₂S₄ for photocatalytic H₂ evolution has not yet been reported.

Transition metal sulfides, including Co₉S₈, MoS₂, CoS₂, NiS and NiCo₂S₄ are extensively utilized as noble-metal free cocatalysts in semiconductor photocatalysts due to their satisfactory electrical conductivity and lower conduction band potentials [31-35]. These cocatalysts can effectively extract photogenerated electrons from semiconductor photocatalysts, promoting efficient charge separation and thereby enhancing the overall photocatalytic activity. Among the various transition metal sulfides, pyrite-type CoS2 exhibits significant potential for cocatalyst utilization due to its exclusive metallic characteristics, extensive spectral absorption with 0 band gap, exceptional electrocatalytic hydrogen evolution reaction (HER) activity and excellent chemical stability [36]. The majority of other transition metal sulfides, however, exhibit semiconductor properties, characterized by limited electronic conductivity, thereby resulting in a limited improvement in hydrogen evolution performance [37]. In contrast, several studies demonstrate that CoS₂ enhances the photocatalytic H₂ evolution of CdS [36], C₃N₄ [38], and ZnIn₂S₄ [39] photocatalysts. Therefore, CoS₂ has the potential to act as a promising cocatalyst for increasing the hydrogen evolution capabilities of the MgIn₂S₄ photocatalyst. First, considering the band structure, CoS2 exhibits metallic properties and a lower work function range of 4.7–5.1 eV [40], making it possible to form an Ohmic junction- with MgIn₂S₄. This prevents reverse carrier transport, thereby improving carrier separation and migration efficiency. Moreover, considering interface quality, the cubic crystalline structure of CoS₂ closely aligns with that of cubic MgIn₂S₄, leading to a favorable lattice match at the interface between the two phases. Specifically, the coordinatively unsaturated sulfur atoms found on the surface of MgIn₂S₄ can function as anchoring sites for cobalt atoms from CoS2, leading to the formation of interfacial cobalt-sulfur bonds. These interfacial bonds are similar to the bulk cobalt-sulfur bond present in CoS₂, potentially acting as an atomic-level interfacial bridge that facilitates electron transfer. Given these advantages, CoS2 and MgIn2S4 can be coupled to create Ohmic junctions with efficient electron transfer channels at the CoS₂/MgIn₂S₄ interface. Simultaneously, CoS₂ can also promote electron injection at the catalyst/H₂O interface, due to its catalytic effect, leading to an overall improvement in the photocatalytic H₂ evolution activity. Despite these potential benefits, there is currently no publication dealing with the construction of a similar design, and the precise

contribution of CoS_2 in enhancing the activity of photocatalytic hydrogen evolution remains insufficiently elucidated, thus needing investigation.

This study introduces a series of CoS₂/MgIn₂S₄ heterojunction photocatalysts, synthesized through a facile two-step hydrothermal method that combines CoS2 nanoparticles and 3D MgIn2S4 micro-flowers. The 3D micro-flower-like structure of MgIn₂S₄, characterized by a significant surface area, promotes the effective dispersion of CoS₂ nanoparticles. Under Xe-light illumination, the composite containing 20.5 wt% of CoS₂ nanoparticles exhibits a remarkable enhancement in the photocatalytic H₂ evolution, achieving a maximum rate 3.1 times higher than the value of pristine MgIn₂S₄ micro-flowers. The enhancement in activity surpasses that of the noble-metal-modified MgIn₂S₄ system, highlighting the particularly effective role of CoS₂ in enhancing the photocatalytic performance of MgIn₂S₄. Additionally, we demonstrate for the first time that CoS2 can form a robust Ohmic junction with MgIn2S4 due to a matched band structure, facilitating the effective extraction of photogenerated electrons from MgIn₂S₄ to CoS₂ through an internal electric field (IEF). This discovery is novel, as almost all other reported CoS2modified semiconductor systems demonstrate a Schottky junction charge mechanism [5,40], instead of the Ohmic junction. The Ohmic junctions enhance the separation efficiency of photogenerated electron-hole pairs, compared to the Schottky junctions. This enhancement occurs by eliminating the interfacial energy barrier, leading to an increased availability of charge carriers for photocatalytic reactions. This insight is supported by Density Functional Theory (DFT) calculations, in situ irradiated X-ray photoelectron spectroscopy, and KPFM. Moreover, this work elucidates the catalytic role of CoS₂, demonstrating its capability to modify the surface proton reduction kinetics. This study also highlights the synergy between transition metal sulfide and semiconductor photocatalysts, demonstrating their potential for optimizing photocatalysis.

2. Experimental section

2.1. Synthesis of CoS2

The CoS_2 compound was synthesized using a simple hydrothermal technique [41]. In detail, a solution was prepared by dissolving 4 mmol of $Na_2S_2O_3\cdot 6$ H_2O and 2 mmol of $Co(NO_3)_2\cdot 6$ H_2O in 40 mL of deionized water, which was then stirred for 10 min. Subsequently, 20 mL of ethylene glycol and 10 mL of ethanol were introduced into the solution, and the mixture was stirred for 2 h. The resulting CoS_2 particles were thoroughly washed with deionized water and ethanol, and subsequently dried at 60 °C for 12 h.

2.2. Synthesis of CoS₂/MgIn₂S₄

Scheme 1 provides a concise overview of the process used to synthesize the CoS₂/MgIn₂S₄ composite. In this method, CoS₂ nanoparticles were prepared through a hydrothermal method, as previously described. Subsequently, 0.5 mmol of MgCl2 and 1 mmol of InCl3 were dissolved in 70 mL of ethylene glycol using a supersonic apparatus for 30 min. The synthesized CoS2 (in varying amounts) was combined with thioacetamide (4 mmol) in the above solution. The resulting aqueous solution was magnetically stirred for 30 min, transferred to a stainless autoclave and heated for 12 h at 180 °C. After natural cooling, the resultant precipitate was collected by centrifugation and washed thrice with deionized water and absolute ethanol. Finally, the resulting product was dried overnight at 60 °C. Synthesized samples were denoted as x wt% CoS₂/MgIn₂S₄, where x wt% represents the weight proportions of CoS₂ to MgIn₂S₄ in the composite materials, as determined by ICP-AES. The same synthetic procedure was used to produce bare MgIn₂S₄, except for the addition of CoS₂ nanoparticles.

Further details on characterization, photocatalytic hydrogen production and electrochemical measurements can be found in the

Scheme 1. Illustration of the preparation process of CoS₂/MgIn₂S₄.

Supporting Information.

3. Results and discussion

3.1. Characterization of photocatalysts

The present study demonstrates the successful synthesis of a series of robustly coupled $CoS_2/MgIn_2S_4$ heterojunction photocatalysts through a straightforward two-step hydrothermal method, as illustrated in Scheme 1. In the initial hydrothermal treatment, CoS_2 crystal nuclei are generated through the nucleation of cobalt nitrate and sodium thiosulfate precursors. Subsequently, these nuclei undergo a growth process, leading to the aggregation of some CoS_2 nanoparticles, due to reduced surface energy. Under high temperature and pressure conditions, the initial crystal nucleus of $MgIn_2S_4$ tend to immobilize on the CoS_2 surface over time, driven by surface energies, and eventually self-assemble *in situ* to

form a marigold flower-like sphere structure of $MgIn_2S_4$, resulting in heterogeneous $CoS_2/MgIn_2S_4$ nanocomposites.

Fig. 1a-c show SEM images highlighting the morphological characteristics of CoS₂, MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄ composites. MgIn₂S₄ shows a micrometer-sized architecture composed of numerous nanoflakes interconnected by numerous nanosheets (Fig. 1a) These nanoflake sheets form several microspheres that resemble marigold micro-flowers, with diameters ranging from 1.5 to 3.0 μm . Fig. 1b presents a SEM image of CoS₂ along with the corresponding particle size distribution histogram in the inset. The predominant particle sizes range from 0.3 μm to 1.0 μm , with the maximum observed size reaching 1.33 μm . In contrast to pure MgIn₂S₄, the 20.5 wt% CoS₂/MgIn₂S₄ composite (Fig. 1c) displays well-dispersed CoS₂ nanoparticles loaded on the nanosheets, indicating the successful coupling of CoS₂ to the flower-like MgIn₂S₄.

Transmission electron microscopy (TEM) and colour elemental

Fig. 1. (a-c) SEM images of MgIn₂S₄, CoS₂ and 20.5 wt% CoS₂/MgIn₂S₄. (d-e) TEM images of MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄. (f) HRTEM and (g-k) elemental mapping images of 20.5 wt% CoS₂/MgIn₂S₄.

mapping analyses can be employed to provide a comprehensive characterization of the microstructure of MgIn₂S₄ and 20.5 wt% CoS₂/ MgIn₂S₄ (Fig. 1). In the TEM image of pristine MgIn₂S₄ (Fig. 1d), a distinct 3D marigold flower-like structure is clearly visible, formed by interlacing flake-type MgIn₂S₄ nanosheets. MgIn₂S₄ displays lattice fringes of approximately 0.32 nm, corresponding to its (311) plane (Fig. S1). In contrast, Fig. 1e-f reveal a distinct heterojunction pattern of the CoS₂/MgIn₂S₄ composite. The CoS₂ nanoparticles are distributed on the surface of MgIn₂S₄ micro-flowers, closely interconnecting with each other in such a way that the gauze-like edge of MgIn₂S₄ contacts with CoS_2 nanoparticles, demonstrating the fabrication of heterojunction photocatalysts. In a highly magnified HRTEM image (Fig. 1f), two different lattice spacings are observed, separated by an intimate junction between the two photocatalysts, namely 0.25 nm, corresponding to the cubic CoS₂ plane (210), and 0.32 nm, that corresponds to the cubic MgIn₂S₄ plane (311). Moreover, the colour elemental mapping images depicted in Fig. 1h-k illustrate the coexistence and uniform dispersion of multiple elements within the $20.5 \text{ wt}\% \text{ CoS}_2/\text{MgIn}_2\text{S}_4$ heterojunction photocatalysts.

X-ray diffraction measurements can be used to identify the crystal structures and phases of MgIn₂S₄, CoS₂ and CoS₂/MgIn₂S₄ composites with varying CoS₂ contents (Fig. 2a). In the case of pristine MgIn₂S₄, the three characteristic diffraction peaks at 27.8°, 33.7° and 48.4° can be assigned to (311), (400), and (440) planes of cubic MgIn₂S₄ (JCPDS #31–0792), respectively [14,18]. For pure CoS₂, the diffraction peaks at 20 values of 27.8°, 32.3°, 36.2°, 39.8°, 46.4°, and 54.9° can be successfully indexed to the (111), (200), (210), (211), (220), and (311) planes of cubic CoS₂ (JCPDS #41–1471), respectively [40]. In both samples, no diffraction peaks attributed to impurities are observed, demonstrating the high purity of CoS₂ and MgIn₂S₄. In the CoS₂/MgIn₂S₄ composites, all X-ray diffraction (XRD) peaks display a combination of MgIn₂S₄ and CoS₂, with peak intensity increasing with CoS₂ content increase. This indicates the successful coupling of MgIn₂S₄ and

CoS₂.

N2 adsorption-desorption can be used to assess the surface areas and pore sizes of pristine MgIn₂S₄ nanosheets, pure CoS₂ nanoparticles and 20.5 wt% CoS₂/MgIn₂S₄ composites. The N₂ adsorption-desorption isotherms for the three samples are presented in Fig. 2b. CoS2 exhibits a type III isotherm, whereas MgIn₂S₄ displays a shape similar to a type IV isotherm with a distinctive H3-type hysteresis loop, indicating the presence of mesopores. The mesoporous structure is likely formed by the aggregation of 2D MgIn₂S₄ nanosheets, creating 3D micro-flowers [42]. The isotherm of the 20.5 wt% CoS₂/MgIn₂S₄ composite is similar to the isotherm obtained for pristine MgIn₂S₄, but with an increased adsorbed volume. The Barrett-Joyner-Halenda (BJH) method, utilizing the absorption branch of the isotherm, can be used to further confirm the presence of the mesoporous structure in these three samples. The BJH adsorption average pore diameters are approximately 14.43 nm for MgIn₂S₄ and 13.93 nm for the 20.5 wt% CoS₂/MgIn₂S₄, both falling within the mesoporous range. According to BET calculations, the surface areas of MgIn₂S₄, CoS₂ and the 20.5 wt% CoS₂/MgIn₂S₄ composite are 15.22, 4.08, and 28.26 m² g⁻¹, respectively (Table S1). Clearly, the CoS₂/MgIn₂S₄ composite exhibits a significant improvement in the BET surface area compared to pristine MgIn₂S₄. This increase can be attributed to the efficient dispersion of CoS2 nanoparticles on MgIn2S4 nanosheets, as observed in the SEM images (Fig. 1), which effectively reduces the aggregation of CoS2 particles by forming heterogeneous interfaces. The good dispersion of CoS2 can be attributed to the positive role of the high surface energy of MgIn₂S₄ nanosheets during the in situ growth process, acting as an efficient platform for the distribution of CoS₂ nanoparticles. To validate whether the dispersion of CoS₂ is indeed responsible for the enhanced specific surface area, we conducted a comparative study involving the direct physical mixing of CoS2 aggregates with MgIn₂S₄ nanosheets through grinding, followed by a comparison of their specific surface areas (Fig. S2). SEM analysis (Fig. S3) revealed significant aggregation of CoS2 within the physically mixed

Fig. 2. (a) XRD diffractograms of CoS₂, MgIn₂S₄, and x wt% CoS₂/MgIn₂S₄. (b) N₂ adsorption-desorption isotherms and (c) pore size distribution curves of MgIn₂S₄, CoS₂ and 20.5 wt% CoS₂/MgIn₂S₄. d) UV-vis spectra of CoS₂, MgIn₂S₄ and x wt% CoS₂/MgIn₂S₄.

 $\text{CoS}_2/\text{MgIn}_2S_4$ composite. As expected, the specific surface area of this mixture (13.56 m^2 g $^{-1}$) was markedly lower, compared to that of the $\text{CoS}_2/\text{MgIn}_2S_4$ (28.26 m^2 g $^{-1}$) synthesized through a two-step hydrothermal approach. This demonstrates the substantial impact of CoS_2 dispersion on the improvement of the specific surface area.

In this study, the optical properties of MgIn $_2$ S $_4$ nanosheets, pure CoS $_2$ nanoparticles and their composites have been investigated using ultraviolet-visible diffuse reflectance (UV–vis DRS) spectra (Fig. 2d). Pristine MgIn $_2$ S $_4$ exhibits light absorption from the ultraviolet to the visible light region, with the absorption threshold at \sim 600 nm due to a direct optical transition [18]. The band gap value of MgIn $_2$ S $_4$ is estimated to be approximately 2.18 eV using the Tauc plot (Fig. S4). In contrast to the bare MgIn $_2$ S $_4$ samples, black CoS $_2$ exhibits broad absorption over the entire wavelength range of 200–800 nm. The CoS $_2$ /MgIn $_2$ S $_4$ hybrid photocatalysts display an obvious red shift in absorbance edge, compared to pure MgIn $_2$ S $_4$. With increasing CoS $_2$ content, CoS $_2$ /MgIn $_2$ S $_4$ hybrid samples exhibit improved visible light

absorption abilities. The enhanced light absorption is attributed to the background adsorption of black-colored CoS_2 , confirming the successful loading of CoS_2 onto $MgIn_2S_4$.

3.2. Photocatalytic activity evaluation

The photocatalytic H_2 evolution on pure CoS_2 , $MgIn_2S_4$, and $CoS_2/MgIn_2S_4$ composite photocatalysts has been evaluated under Xe lamp irradiation using a 20% TEOA (triethanolamine) aqueous solution as a sacrificial agent. The time curves of hydrogen evolution for pure CoS_2 , $MgIn_2S_4$, and x wt% $CoS_2/MgIn_2S_4$ composite photocatalysts are presented in Fig. 3a. At 4 h of photoirradiation, the bare $MgIn_2S_4$ sample only exhibits a modest hydrogen evolution of $280 \mu mol g^{-1}$. This result indicates the significantly low photocatalytic H_2 evolution activity of $MgIn_2S_4$ photocatalyst, likely attributed to its low charge separation and transfer efficiency. In addition, the neat CoS_2 shows no hydrogen evolution, aligning with previous findings [36,43,44]. Compared to

Fig. 3. (a) Time profiles of photocatalytic hydrogen generation of $MgIn_2S_4$, CoS_2 , and x wt% $CoS_2/MgIn_2S_4$. (b) Rate of H_2 production on x wt% $CoS_2/MgIn_2S_4$. (c) Wavelength dependence of AQE for 20.5 wt% $CoS_2/MgIn_2S_4$ at 420 nm wavelength. (d) Time profiles of photocatalytic hydrogen generation and (e) photocatalytic hydrogen generation rate of the calculated H_2 evolution with various sacrificial agents for 20.5 wt% $CoS_2/MgIn_2S_4$. f) Cyclic H_2 evolution over 20.5 wt% $CoS_2/MgIn_2S_4$.

individual MgIn $_2S_4$ and CoS $_2$ photocatalysts, the CoS $_2$ /MgIn $_2S_4$ composite photocatalysts demonstrate a significantly higher hydrogen evolution rate. As the CoS $_2$ content increases, the H $_2$ evolution of the composite photocatalysts also increases, reaching a maximum at 20.5 wt %, after which it declines. The decrease in the hydrogen evolution rate at higher CoS $_2$ loading (30.4 wt%) might be attributed to the light shielding effect of CoS $_2$, diminishing the light absorption of the MgIn $_2S_4$ photocatalyst and thereby reducing the generation of electron-hole pairs for the photocatalytic reaction.

The optimized 20.5 wt% CoS₂/MgIn₂S₄ photocatalyst exhibits an impressive H₂ evolution rate of 1160 µmol g⁻¹ within 4 h of light irradiation, nearly 3.1 times higher than the value of the MgIn₂S₄ sample. At a wavelength of 420 nm, the 20.5 wt% CoS2/MgIn2S4 photocatalyst demonstrates an apparent quantum efficiency (AQE) of 0.6% (Fig. 3c). It is noteworthy that, despite the relatively lower hydrogen production activity of the CoS2/MgIn2S4 composite, compared to other ternary metal sulfides such as ZnIn₂S₄ [25,45], this discrepancy is likely attributable to the intrinsic defects within MgIn₂S₄, limiting carrier mobility towards the surface. Nevertheless, the 20.5 wt% CoS₂/MgIn₂S₄ photocatalyst developed in this study demonstrates similar or even superior performance compared to other MgIn₂S₄-based photocatalysts. For example, Jing et al. have examined the activity of a PANI-MgIn₂S₄ composite for photocatalytic H2 production and have reported a rate of 17.53 μmol g⁻¹ h⁻¹, significantly lower than the rate observed in our system [18]. Similarly, Liu et al. have obtained a 3D/1D MgIn₂S₄/CdS heterojunction system, with a H_2 generation rate of only 52.14 μ mol g⁻¹ h^{-1} in TEOA aqueous solution [16]. Furthermore, we have conducted a comparative analysis of the photocatalytic H2 activity between the 20.5 wt% CoS₂/MgIn₂S₄ system and noble-metal (Au or Pt) modified MgIn₂S₄ systems, under identical experimental conditions. Our findings reveal that the introduction of Au results in a 2-fold increase in H2 production on MgIn₂S₄ (Fig. S5), while the presence of Pt enhances the activity by only 31%, both being lower than the enhancement achieved with 20.5 wt% $CoS_2/MgIn_2S_4$. These results unequivocally demonstrate the significant improvement of the photocatalytic activity of $MgIn_2S_4$ through the introduction of the CoS2 cocatalyst.

A systematic study of the impact of various sacrificial reagents, namely lactic acid (LA), Na₂S/Na₂SO₃, methanol (MeOH), and ethylene glycol (EG) on the hydrogen production activity of 20.5 wt% CoS₂/MgIn₂S₄ photocatalysts is presented in Fig. 3d. The results indicate a significant decrease in hydrogen production activity when these scavengers are employed, with LA exhibiting the highest hydrogen production activity at only 67 μ mol g $^{-1}$ h $^{-1}$. In this study, TEOA stands out as the most effective among the tested scavengers, possibly due to its alkaline nature, which enhances its absorption capability [46]. This increases the surface electronegativity of the catalyst, facilitating the capture of positively charged holes and resulting in optimal hydrogen production activity.

In addition, the H_2 yield of the optimized catalyst (20.5 wt% $CoS_2/MgIn_2S_4$) has been evaluated in TEOA aqueous solution under Xe light irradiation for 20 h, as illustrated in Fig. 3f. After five cycles of experimentation, the 20.5 wt% $CoS_2/MgIn_2S_4$ material has demonstrated excellent recyclability, retaining 97.5% of its original activity. The structural stability of 20.5 wt% $CoS_2/MgIn_2S_4$ has been further evaluated through XRD, scanning electron microscopy (SEM), and XPS spectra (Figs. S6–8). Post-cycle measurements reveal that the crystal structure and morphology of the 20.5 wt% $CoS_2/MgIn_2S_4$ hybrid remain virtually unchanged, and the XPS intensity is almost unaltered except for a slight shift in binding energy, confirming its remarkable stability.

3.3. Photocatalytic mechanism study

In photocatalytic processes, multiple factors contribute to the overall photocatalytic activity, including phase crystallinity, microstructure, specific area, light absorption, charge separation and transfer. The synergy of these key factors collectively determines the overall

photocatalytic efficiency. Given that CoS₂/MgIn₂S₄ hybrid photocatalysts exhibit similar crystallinity and microstructure, the enhanced photocatalytic activity cannot be solely attributed to alterations in these variables. As depicted in Fig. 2d, the CoS2 decorated MgIn2S4 demonstrates a broader photo-absorption range at 550-800 nm, compared to bare MgIn₂S₄, suggesting a potential contribution to increased photoactivity. However, the control experiment in Fig. S9 reveals that the CoS₂/MgIn₂S₄ photocatalyst fails to produce H₂ when irradiated with light at wavelengths \geq 550 nm. This result indicates that the increased photo-absorption is not the sole factor enhancing the photocatalytic activity. Therefore, the improved photocatalytic activity is primarily attributed to faster charge separation and/or more efficient charge injection facilitated by the tight Ohmic-Junction interactions between CoS₂ and MgIn₂S₄. Notably, the H₂ evolution rate is significantly lower when CoS2 and MgIn2S4 are physically mixed, compared to the hydrothermally produced 20.5 wt% CoS₂/MgIn₂S₄ composite presented in this study (Fig. S10). This observation provides evidence that the formation of an intimate CoS2/MgIn2S4 heterojunction is crucial for achieving high-efficiency H2 evolution.

In the following sections, the impact of tight CoS₂/MgIn₂S₄ heterojunctions on carrier separation and transfer dynamics is explored. The photoluminescence (PL) spectrum has been employed to investigate the high separation efficiency between photogenerated holes and electrons in CoS₂/MgIn₂S₄ hybrid photocatalysts. The steady-state fluorescence spectra of MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄ composites with excitation wavelengths of 300 nm are presented in Fig. 4a. Bare MgIn₂S₄ displays an intense and broad spectrum of fluorescence emission between 400 and 700 nm, indicative of charge carrier recombination and energy relaxation [18]. The PL intensity of MgIn₂S₄ significantly decreases with the incorporation of CoS₂, suggesting that CoS₂/MgIn₂S₄ provides better photoinduced electron-hole separation than MgIn₂S₄. Time-resolved transient photoluminescence spectra have also been used to further explore the charge separation process on both pristine MgIn₂S₄ and CoS₂/MgIn₂S₄ samples. Fig. 4b shows the fluorescence decay curves analysed using a bi-exponential model [47,48]. Remarkably, the 20.5 wt% CoS₂/MgIn₂S₄ sample exhibits a longer average decay lifetime (0.47 ns) compared to bare MgIn₂S₄ (0.42 ns), indicating an effective enhancement in charge separation within the CoS₂/MgIn₂S₄ heterostructure.

An electrochemical impedance spectrum (EIS) has been obtained to investigate the impact of CoS₂ on the interfacial charge transfer kinetics. Fig. 4c depicts the Nyquist plots of MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄ composite obtained at open circuit potential. A semi-arc is typically observed in EIS measurements when the electrode undergoes charge transfer [16]. The semiarc radius provides insight into the resistance to interfacial charge transfer, with the charge transfer resistance being proportional to the radius. Fig. 4c shows that the 20.5 wt% CoS₂/MgIn₂S₄ hybrids exhibit a smaller arc radius than MgIn₂S₄, suggesting a better charge transfer efficiency. The reduced resistivity is further confirmed by Hall effect tests (Fig. 4d), where the bare MgIn₂S₄ shows significantly higher resistivity than CoS₂/MgIn₂S₄. This can be attributed to the presence of CoS2, which improves the conductance of MgIn₂S₄. Moreover, the Hall test demonstrates that the CoS₂/MgIn₂S₄ sample displays higher Hall mobility and charge carrier concentration than MgIn₂S₄. This indicates that the incorporation of CoS₂ and the presence of a strong IEF facilitate efficient separation and migration of photogenerated charges. Based on these results, it is obvious that the modification of MgIn₂S₄ with CoS₂ enhances the charge separation and transfer efficiency of the photocatalyst, significantly improving H2 evolution.

DFT calculations provide further insight into the effective charge separation and transfer. The XRD results demonstrate a significant exposure of the CoS_2 (200) and $MgIn_2S_4$ (440) facets in the CoS_2 / $MgIn_2S_4$ composites (Fig. 2a). Consequently, we conducted first-principles DFT simulations (Figs. 5a and 5b) targeting the cubic phases of CoS_2 (200) and $MgIn_2S_4$ (440) surfaces. The work functions of

Fig. 4. (a) PL spectra and (b) time-resolved transient photoluminescence decay of $MgIn_2S_4$ and 20.5 wt% $CoS_2/MgIn_2S_4$ composite. (c) EIS plots and (d) Hall parameters of $MgIn_2S_4$ and 20.5 wt% $CoS_2/MgIn_2S_4$ composite.

CoS₂ and MgIn₂S₄ are 5.1 and 5.9 eV, respectively. The Fermi level (E_F) is then calculated with the equation: $E_F = -W_F + Ev$ [36], where W_F , and Ev denote the work function and vacuum energy (defined as 0 eV), respectively. The calculated Fermi energies of CoS2 (200) and MgIn2S4 (440) are -5.1 eV and -5.9 eV, respectively. In this scenario, electrons tend to migrate from CoS2 to MgIn2S4 upon contact, establishing a new Fermi level equilibrium. This electron migration induces a downward bending of the energy band in MgIn₂S₄, resulting in the formation of a space charge region where an Ohmic contact is established across the heterojunction. To further demonstrate charge transfer at the CoS₂/MgIn₂S₄ interface, the 3D charge-density and planar-averaged differential charge density have been calculated, as shown in Figs. 5c and 5d. The yellow and blue regions correspond to the accumulation and depletion of charges, respectively. This calculation reveals that the electrons are predominantly localized on the MgIn₂S₄ surface, while holes are concentrated near the CoS₂ side, indicating effective electron migration at the CoS₂/MgIn₂S₄ interface. This shift induces a strong interfacial electric field between the heterojunctions, proving a robust driving force to promote the photogenerated electron transfer from MgIn₂S₄ to CoS₂. Although DFT offers a powerful tool for the analysis of work functions and differential charge calculations, its accuracy is limited by inherent approximations in the exchange-correlation functional, surface and interface models, and charge distribution analysis methods. Recognizing these limitations is crucial for accurately interpreting DFT results. Therefore, our primary focus will shift to the experimental examination of the charge transfer process in the following section.

The experimental observation of photogenerated electron transfer in the $CoS_2/MgIn_2S_4$ composite has been confirmed by synchronous illumination X-ray photoelectron spectroscopy (SI-XPS), as shown in

Fig. 6a. Fig. S11 presents the full survey XPS spectra of 20.5 wt% CoS₂/ MgIn₂S₄ measured in the dark and under irradiation, detecting Mg, In, S, and Co elements in the composite photocatalyst. In the dark, the Mg 1 s spectrum of pure Mg In₂S₄ exhibits a peak at approximately 1303.9 eV (Fig. 6b), attributed to Mg 1 s in a +2 oxidation state [14]. The In 3d spectra display two peaks at around 445.0 and 452.5 eV (Fig. 6c), corresponding to the $3d_{5/2}$ and $3d_{3/2}$ orbitals of In, respectively [16]. The S 2p spectra of pure MgIn₂S₄ (Fig. 6d) show two peaks at 161.9 eV (S $2p_{3/2}$) and 163.1 eV(S $2p_{1/2}$), indicative of the binding energy associated with S²⁻ [20]. In Fig. 6e, the high-resolution Co 2p XPS spectra of the 20.5 wt% CoS₂/MgIn₂S₄ composite reveal six distinct peaks. These peaks can be categorized into two sets of spin-orbit double peaks and two satellite peaks. The first set of double peaks is observed at 778.5 and 781.2 eV, while the second set is observed at 793.9 and 796.5 eV, corresponding to Co 2p_{3/2} and Co 2p_{1/2} binding energies, respectively. These peaks indicate that the composite catalyst contains both Co²⁺ and Co³⁺ species [36]. Generally, a change in the binding energy of an element is considered indicative of charge transfer between elements [49-51]. Compared with the XPS results obtained in the dark, the Co 2p_{1/2} and 2p_{3/2} signals of CoS₂/MgIn₂S₄ under illumination shift negatively by 0.3 eV and 0.5 eV, respectively, and the S $2p_{1/2}$ and $2p_{3/2}$ signals of CoS₂/MgIn₂S₄ under illumination shift negatively by 0.2 eV and 0.1 eV, while the Mg 1 s, and In $3d_{3/2}$ and $3d_{5/2}$ signals of CoS₂/MgIn₂S₄ peaks show a positive shift of 0.3, 0.1, and 0.1 eV (Fig. 6b-e), respectively. These results demonstrate that photogenerated electrons flow from MgIn₂S₄ to CoS₂ during light irradiation, which is in agreement with the results obtained by DFT calculations.

The photoelectron transfer dynamics can be further revealed through the analysis of surface photovoltage (SPV) spectra acquired from

Fig. 5. (a-b) Work functions of CoS2 and MgIn2S4. (c-d) 3D and planar averaged charge density difference for the 20.5 wt% CoS2/MgIn2S4 model.

MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄ samples (Fig. 6f). The MgIn₂S₄ sample exhibits a broad and positive SPV signal, aligning with its photo absorption profile (Fig. 2d), particularly in the wavelength range of 300-600 nm. Interestingly, the introduction of CoS₂ results in a substantial reduction and near disappearance of the SPV signal. Typically, a higher SPV signal indicates enhanced charge separation efficiency, correlating with superior photocatalytic performance [52]. However, it is important to note that, despite demonstrating higher H₂ production activity, the CoS₂/MgIn₂S₄ sample displays a lower SPV response. This phenomenon is frequently observed in noble-metal-modified photocatalytic systems, where metals efficiently capture photogenerated electrons, decreasing surface charge and weakening SPV signals, while simultaneously improving photocatalytic activity [53]. Thus, similarly to noble metals, CoS2 effectively captures photogenerated electrons of MgIn₂S₄, resulting in a reduced SPV signal. This electron transfer mechanism aligns with observations from in situ XPS, providing additional support for the existence of an Ohmic-junction.

The electron transfer dynamics at the $CoS_2/MgIn_2S_4$ interface can be further elucidated through irradiated KPFM. Fig. 7 presents the typical height image, contact potential difference (CPD) maps in both dark and light conditions, as well as the corresponding CPD curves of $MgIn_2S_4$ and 20.5 wt% $CoS_2/MgIn_2S_4$, using Xe lamps for sample irradiation. Figs. 7d1 and 7d2 illustrate the CPD variation along a straight line for $MgIn_2S_4$ and $CoS_2/MgIn_2S_4$, before and after illumination. Prior illumination, $MgIn_2S_4$ exhibits a CPD distribution of -9.1-17.3 mV, increasing to -7.6-25.3 mV after illumination. The enhancement of CPD under illumination indicates the transfer of photogenerated electrons from $MgIn_2S_4$ to the catalyst surface [54]. In the dark, the CPD of $CoS_2/MgIn_2S_4$ ranges from 14.8 to 49.8 mV, and under light

illumination, it increases to 26.6-59.2 mV. Previous studies by Zhang et al. have established a positive correlation between the CPD of a particular material and its built-in electric field [55]. The CoS₂/MgIn₂S₄ heterojunction exhibits a higher CPD compared to the unmodified MgIn₂S₄ photocatalyst, indicating a more robust built-in electric field. This observation is consistent with the formation of an Ohmic junction. Furthermore, surface photovoltage can be determined by calculating the difference in contact potential difference (\Delta CPD) under light and dark conditions (see Fig. S12 for details). It is evident that the Δ CPD of CoS₂/MgIn₂S₄ (20.7 mV) is significantly higher than the value of MgIn₂S₄ (16.1 mV), as shown in Figs. 7d1 and 7d2. These findings demonstrate a notable increase in the production of photogenerated carriers following light illumination for the CoS2/MgIn2S4 system, aligning with the observed enhancement in the rate of hydrogen evolution. The increase in photogenerated carriers can be attributed to the efficient separation of charges at the interface of CoS₂/MgIn₂S₄, leading to a larger accumulation of electrons on the surface of CoS₂/MgIn₂S₄. Under the same illumination conditions, the higher electron accumulation at the CoS2/MgIn2S4 surface is associated with the transfer of photogenerated electrons from MgIn₂S₄ to CoS₂, thereby increasing the number of electrons on the photocatalyst surface and substantially elevating the CPD. This increase in surface electron generation facilitates the reduction of water molecules to form H₂, ultimately enhancing the photocatalytic activity of MgIn₂S₄.

The application of DFT calculations to assess the hydrogen evolution reaction (HER) activity allows deeper insights into the role of CoS_2 in facilitating proton reduction on the $MgIn_2S_4$ photocatalyst surface. This is confirmed by the noteworthy correlation observed between the hydrogen-adsorption Gibbs free energy (ΔG_{H^*}) and the HER activity

Fig. 6. (a) Schematic representation of the experimental setup for SI-XPS measurements. In-situ irradiated high-resolution XPS spectra of 20.5 wt% CoS₂/MgIn₂S₄ before and after light irradiation: (b) Mg 1 s, (c) In 3d, (d) S 2p and (e) Co 2p, and (f) SPV spectra of MgIn₂S₄ and 20.5 wt% CoS₂/MgIn₂S₄ samples.

[56]. Generally, a three-state diagram, involving an initial state of H⁺ + e⁻, an intermediate adsorbed H*, and a final product of H₂, is commonly used to summarize the entire HER process [57]. The ΔG_{H^*} value, representing the Gibbs free energy of the intermediate state, is a critical determinant of the HER activity for various catalyst types [58]. According to the Sabatier principle, an excessively positive ΔG_{H^*} value indicates weak H adsorption, while excessively negative values result in strong H* binding, hindering H2 desorption [59]. Thus, for a HER catalyst to exhibit high efficiency, it is crucial that its ΔG_{H^*} value approaches zero [60]. The predominant exposed facets of cubic CoS2 and MgIn₂S₄ nanosheets are (200) and (440), as determined above (Fig. 3a). Consequently, DFT-based computations can be used to determine the ΔG_{H^*} values for the sites located on the most exposed surface of CoS₂, MgIn₂S₄, and CoS₂/MgIn₂S₄. As depicted in Fig. 8a, the computed ΔG_{H^*} values for CoS2, MgIn2S4, and CoS2/MgIn2S4 are 0.48, 1.58, and 0.44 eV, respectively. $CoS_2/MgIn_2S_4$ exhibits the lowest ΔG_{H^*} , ensuring

efficient proton acceptance for H^* formation and rapid hydrogen desorption. This aligns with its superior experimental HER performance, compared to CoS_2 and pure $MgIn_2S_4$. Consequently, $CoS_2/MgIn_2S_4$ demonstrates significantly stronger photocatalytic activity for H_2 evolution than $MgIn_2S_4$.

Moreover, the linear sweep voltammetry (LSV) measurements of the $CoS_2/MgIn_2S_4$ catalyst demonstrate superior HER catalytic activity compared to the $MgIn_2S_4$ catalyst alone. The LSV curves for $MgIn_2S_4$, and the 5 wt% $CoS_2/MgIn_2S_4$ samples are presented in Fig. 8b. A cathodic current onset potential of -0.34 V (vs. Ag/AgCl) is observed for $MgIn_2S_4$, indicating a substantial energy barrier for hydrogen reduction from water. In contrast, the 5 wt% $CoS_2/MgIn_2S_4$ exhibits a lower onset potential for the cathodic current, approximately -0.24 V (vs Ag/AgCl), and displays a much larger current density. These results confirm that CoS_2 is an effective electrocatalyst that promotes H_2 evolution, in agreement with previous studies [61,62]. Consequently, the

Fig. 7. (a) AFM image, (b-c) KPFM potential images and (d) corresponding contact potential difference curves along the line in the dark and under illumination for (a1–d1) MgIn₂S₄ and (a2–d2) 20.5 wt% CoS₂/MgIn₂S₄, respectively.

Fig. 8. (a) Gibbs free energy for H* adsorption on different catalysts of CoS_2 , $MgIn_2S_4$ and 20.5 wt% $CoS_2/MgIn_2S_4$. (b) Current–voltage curves for proton reduction of $MgIn_2S_4$ and 20.5 wt% $CoS_2/MgIn_2S_4$, measured in the N_2 -saturated Na_2SO_4 solution.

Fig. 9. Schematic illustration of IEF-induced CoS₂/MgIn₂S₄ Ohmic-Junction for H₂ production.

decoration of CoS_2 nanoparticles on $MgIn_2S_4$ nanosheets introduces new active sites, leading to a substantial enhancement in the intrinsic HER activity of the material.

A mechanistic insight into the photocatalytic H₂-evolution activity on the CoS₂/MgIn₂S₄ composites is summarized in Fig. 9. Firstly, the Mott-Schottky plot analysis (Fig. S13) has been employed to determine the energy band structure of MgIn₂S₄. The positive slope of the Mott-Schottky plot indicates that MgIn₂S₄ is a n-type semiconductor, and the measured flat-band potential (E_{fb}) is 0.04 V versus NHE. E_{fb} is generally 0.20 eV lower than the conduction band potential (E_{CB}) for ntype semiconductor [25]. As a result, the obtained E_{CB} of MgIn₂S₄ is -0.16 V vs. NHE. In the bare MgIn₂S₄ structure, the calculated band gap energy (E_g) is 2.18 eV, thus the valence band potential (E_{VB}) is 2.02 V vs NHE, determined through the formula $E_{VB} = E_{CB} + E_{g}$. Moreover, the energy levels of the band edges on the electrochemical scale (V vs. NHE) can be converted to the values *E* (eV) vs. vacuum energy level using the formula E (eV) = $-4.5 - E_{NHE}$ (V) [63]. Consequently, the E_{CB} and E_{VB} of $MgIn_2S_4$ are -4.34 and -6.52 eV vs. vacuum energy level, respectively. According to our DFT calculations, the Fermi level of CoS₂ (-5.1 eV) is higher than that of MgIn₂S₄ (-5.9 eV).

Based on the aforementioned results, Fig. 9a illustrates the band alignment between MgIn₂S₄ and CoS₂. Upon forming an intimate heterojunction, depicted in Fig. 9b, the free electrons in CoS₂ migrate to MgIn₂S₄, reducing the Fermi level (E_f) in CoS₂ and increasing the Fermi level of MgIn₂S₄ until equilibrium is reached. This electron transfer results in a positive charge on CoS₂ surface due to electron depletion and a negative charge on MgIn₂S₄ due to electron accumulation. The charge distribution establishes an IEF from CoS₂ to MgIn₂S₄, facilitating the separation and migration of photogenerated carriers. The accumulated electron induce a downward band bending in MgIn₂S₄, forming an Ohmic junction with CoS₂.

Upon light excitation, the photogenerated electrons in the $MgIn_2S_4$ conduction band accelerate towards the CoS_2 cocatalyst through the Ohmic junction. The absence of an interfacial barrier in the Ohmic contact allows the IEF to propel charge transfer, amplifying the separation and promoting the accumulation of electrons in CoS_2 for active participation in the hydrogen evolution reaction. The validity of the charge transfer mechanism is supported by the results obtained from in situ XPS spectra (Fig. 6a-e), SPV analysis (Fig. 6f), and in situ KPFM measurements (Fig. 7).

Furthermore, the superior catalytic activity of CoS_2 for H_2 evolution and its lower hydrogen-adsorption Gibbs free energy compared to $MgIn_2S_4$ (Fig. 8) result in rapid consumption of electrons on CoS_2 by adsorbed H^+ ions. The remaining holes on $MgIn_2S_4$ are oxidized by TEOA molecules, enhancing the photocatalytic efficiency of the $MgIn_2S_4$ photocatalyst for hydrogen production through the fulfillment of two primary functions: Enhancing charge carrier separation by capturing electrons from $MgIn_2S_4$ under light exposure, and acting as a catalyst for surface hydrogen reduction. Consequently, the $CoS_2/MgIn_2S_4$ material demonstrates superior photocatalytic hydrogen evolution performance and remarkable photostability.

4. Conclusions

In summary, this study successfully employed a facile hydrothermal method to incorporate CoS_2 nanoparticles onto the surface of 3D MgIn $_2\text{S}_4$ micro-flowers. The optimized $\text{CoS}_2/\text{MgIn}_2\text{S}_4$ composite, with a 20.5 wt% CoS_2 loading, demonstrated a remarkable hydrogen generation efficiency of 290 µmol g $^{-1}$ h $^{-1}$ and an AQE of 0.6% at 420 nm. These values were 3.1 times higher than those observed for pristine 3D MgIn $_2\text{S}_4$ micro-flowers. Notably, the CoS_2 loading minimally affected the crystal structure or morphology of MgIn $_2\text{S}_4$, yet contributed to an increase in specific surface area. This enhanced photocatalytic activity was attributed to the different work functions of CoS_2 and MgIn $_2\text{S}_4$, resulting in an Ohmic junction and a robust internal electric field at the $\text{CoS}_2/\text{MgIn}_2\text{S}_4$ interface. This facilitated an efficient transfer of

photogenerated electrons from $MgIn_2S_4$ to CoS_2 . Furthermore, DFT calculations confirmed that the CoS_2 cocatalyst in $CoS_2/MgIn_2S_4$ possessed an optimal ΔG_{H^*} value, beneficial to surface proton reduction at the catalyst/ H_2O interface.

This study introduced an innovative approach to address the challenge of slow charge separation and transfer kinetics in the photocatalytic $\rm H_2$ evolution process by incorporating a $\rm CoS_2$ cocatalyst. The simultaneous enhancement of charge separation and transfer kinetics at the dual interfaces (semiconductor/cocatalyst and cocatalyst/ $\rm H_2O$), achieved through this strategy, significantly improved the $\rm H_2$ evolution rate. Consequently, this research laid the foundation for the development of semiconductors-based photocatalysts with a multi-interface regulating strategy.

CRediT authorship contribution statement

Jiangshan Li: Writing – original draft, Investigation. Jun Yao: Writing – original draft, Investigation, Formal analysis. Chenglin Wu: Formal analysis. Kangle Lv: Writing – review & editing, Formal analysis, Conceptualization. Qiang Yu: Investigation, Formal analysis, Data curation. Xiao Zhang: Investigation, Formal analysis. Sónia A.C. Carabineiro: Writing – review & editing. Xianqiang Xiong: Writing – review & editing, Supervision, Resources, Formal analysis, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22102112 and 51672312), joint supported by Hubei Provincial Natural Science Foundation and Huangshi of China (2022CFD001), the Domestic Visiting Scholar "Teacher Professional Development Project" (FX2023052), the Zhejiang Provincial Natural Science Foundation of China (LQ21B030003), and the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (2023C03135), the Fundamental Research Funds for the Central Universities of South-Central Minzu University (CZP22001 & CZZ21012), and FCT/MCTES (DOIs: 10.54499/CEE-CINST/00102/2018/CP1567/CT0026, 10.54499/LA/P/0008/2020, 10.54499/UIDP/50006/2020 and 10.54499/UIDB/50006/2020 from LAQV).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.123950.

References

- [1] X. Feng, H. Shang, J. Zhou, X. Ma, X. Gao, D. Wang, B. Zhang, Y. Zhao, Heterostructured core-shell CoS_{1.097}@ZnIn₂S₄ nanosheets for enhanced photocatalytic hydrogen evolution under visible light, Chem. Eng. J. 457 (2023) 141192.
- [2] M. Eisapour, H. Zhao, J. Zhao, T. Roostaei, Z. Li, A. Omidkar, J. Hu, Z. Chen, p-n heterojunction of nickel oxide on titanium dioxide nanosheets for hydrogen and value-added chemicals coproduction from glycerol photoreforming, J. Colloid Interface Sci. 647 (2023) 255–263.
- [3] M. Yang, Y. Li, Z. Jin, In situ XPS proved graphdiyne (C_nH_{2n-2})-based CoFe LDH/CuI/GD double S-scheme heterojunction photocatalyst for hydrogen evolution, Sep. Purif. Technol. 311 (2023) 123229.

- [4] J. Li, M. Li, Y. Li, X. Guo, Z. Jin, Lotus-leaf-like Bi₂O₂CO₃ nanosheet combined with Mo₂S₃ for higher photocatalytic hydrogen evolution, Sep. Purif. Technol. 288 (2022) 120588.
- [5] B. Wang, S. Guo, X. Xin, Y. Zhang, Y. Wang, C. Li, Y. Song, D. Deng, X. Li, A. J. Sobrido, M.-M. Titirici, Heat diffusion-induced gradient energy level in multishell bisulfides for highly efficient photocatalytic hydrogen production, Adv. Energy Mater. 10 (2020) 2001575.
- [6] S. Guo, X. Li, X. Ren, L. Yang, J. Zhu, B. Wei, Optical and electrical enhancement of hydrogen evolution by MoS₂@MoO₃ core–shell nanowires with designed tunable plasmon resonance, Adv. Funct. Mater. 28 (2018) 1802567.
- [7] J. Ran, G. Gao, F.-T. Li, T.-Y. Ma, A. Du, S.-Z. Qiao, Ti₃C₂ MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production, Nat. Commun. 8 (2017) 13907.
- [8] Y. Chao, P. Zhou, N. Li, J. Lai, Y. Yang, Y. Zhang, Y. Tang, W. Yang, Y. Du, D. Su, Y. Tan, S. Guo, Ultrathin visible-light-driven Mo incorporating In₂O₃–ZnIn₂Se₄ Z-scheme nanosheet photocatalysts, Adv. Mater. 31 (2019) 1807226.
- [9] Z.-K. Shen, M. Cheng, Y.-J. Yuan, L. Pei, J. Zhong, J. Guan, X. Li, Z.-J. Li, L. Bao, X. Zhang, Z.-T. Yu, Z. Zou, Identifying the role of interface chemical bonds in activating charge transfer for enhanced photocatalytic nitrogen fixation of Ni₂Pblack phosphorus photocatalysts, Appl. Catal. B 295 (2021) 120274.
- [10] P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D.D. Dionysiou, S. C. Pillai, 2D nanomaterials for photocatalytic hydrogen production, ACS Energy Lett. 4 (2019) 1687–1709.
- [11] Y.-J. Yuan, N. Lu, L. Bao, R. Tang, F.-G. Zhang, J. Guan, H.-D. Wang, Q.-Y. Liu, Q. Cheng, Z.-T. Yu, Z. Zou, SiP Nanosheets: A metal-free two-dimensional photocatalyst for visible-light photocatalytic H₂ production and nitrogen fixation, ACS Nano 16 (2022) 12174–12184.
- [12] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.-Z. Qiao, Emerging two-dimensional nanomaterials for electrocatalysis, Chem. Rev. 118 (2018) 6337–6408.
- [13] Y. Wang, X. Fang, J. Zeng, S. Li, X. Wang, B. Zhang, 0D/2D/3D ternary Au/Ti₃C₂/ TiO₂ photocatalyst based on accelerating charge transfer and enhanced stability for efficiently hydrogen production, Appl. Surf. Sci. 615 (2023) 156397.
- [14] K. Qi, M. Song, X. Xie, Y. Wen, Z. Wang, B. Wei, Z. Wang, CQDs/biochar from reed straw modified Z-scheme MgIn₂S₄/BiOCl with enhanced visible-light photocatalytic performance for carbamazepine degradation in water, Chemosphere 287 (2022) 132192.
- [15] G. Swain, S. Sultana, K. Parida, Constructing a novel surfactant-free MoS₂ nanosheet modified MgIn₂S₄ marigold microflower: an efficient visible-light driven ²D-²D p-n heterojunction photocatalyst toward HER and pH regulated NRR, ACS Sustain. Chem. Eng. 8 (2020) 4848–4862.
- [16] H.-Y. Liu, C.-G. Niu, H. Guo, C. Liang, D.-W. Huang, L. Zhang, Y.-Y. Yang, L. Li, In suit constructing 2D/1D MgIn₂S₄/CdS heterojunction system with enhanced photocatalytic activity towards treatment of wastewater and H₂ production, J. Colloid Interface Sci. 576 (2020) 264–279.
- [17] C. Zeng, Q. Zeng, C. Dai, L. Zhang, Y. Hu, Fabrication of Bi-BiOCl/MgIn₂S₄ heterostructure with step-scheme mechanism for carbon dioxide photoreduction into methane, J. CO2 Util. 45 (2021) 101453.
- [18] L. Jing, Y. Xu, M. Xie, J. Liu, J. Deng, L. Huang, H. Xu, H. Li, Three dimensional polyaniline/MgIn₂S₄ nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H₂ production, Chem. Eng. J. 360 (2019) 1601–1612.
- [19] Z.-w Zhang, R.-t Guo, J.-y Tang, Y.-f Miao, J.-w Gu, W.-g Pan, Fabrication of Bi-BiOCl/MgIn₂S₄ heterostructure with step-scheme mechanism for carbon dioxide photoreduction into methane, J. CO2 Util. 45 (2021) 101453.
- [20] L. Acharya, G. Swain, B.P. Mishra, R. Acharya, K. Parida, Development of MgIn₂S₄ microflower-embedded exfoliated B-doped g-C₃N₄ nanosheets: p-n heterojunction photocatalysts toward photocatalytic water reduction and H₂O₂ production under visible-light irradiation, ACS Appl. Energy Mater. 5 (2022) 2838–2852.
- [21] W. Yang, Y. Dong, Z. Wang, Y. Li, C. Dai, D. Ma, Y. Jia, Z. Yang, C. Zeng, Synthesis, characterization, and photocatalytic activity of stannum-doped MgIn₂S₄, Micro, J. Alloy. Compd. 860 (2021) 158446.
- [22] S.P. Tripathy, S. Subudhi, A. Ray, P. Behera, G. Swain, M. Chakraborty, K. Parida, MgIn₂S₄/UiO-66-NH₂ MOF-based heterostructure: visible-light-responsive Z-scheme-mediated synergistically enhanced photocatalytic performance toward hydrogen and oxygen evolution, Langmuir 39 (2023) 7294–7306.
- [23] L. Biswal, L. Acharya, B.P. Mishra, S. Das, G. Swain, K. Parida, Interfacial solid-state mediator-based Z-scheme heterojunction TiO₂@Ti₃C₂/MgIn₂S₄ microflower for efficient photocatalytic pharmaceutical micropollutant degradation and hydrogen generation: stability, kinetics, and mechanistic insights, ACS Appl. Energy Mater. 6 (2023) 2081–2096.
- [24] W. Yang, S.-S. Xu, Y. Niu, Y. Zhang, J. Xu, Ni₁₂P₅-supported marigold-shaped CdIn₂S₄: a 2D/3D non-noble-metal catalyst for visible-light-driven hydrogen production, J. Phys. Chem. C 127 (2023) 4853–4861.
- [25] K. Chen, Y. Shi, P. Shu, Z. Luo, W. Shi, F. Guo, Construction of core-shell FeS₂@ ZnIn₂S₄ hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H₂ production, Chem. Eng. J. 454 (2023) 140053
- [26] G.Z.S. Ling, S.-F. Ng, W.-J. Ong, Tailor-engineered 2D cocatalysts: harnessing electron-hole redox center of 2D g-C₃N₄ photocatalysts toward solar-to-chemical conversion and environmental purification, Adv. Funct. Mater. 32 (2022) 2111875.
- [27] H. Zhao, L. Jian, M. Gong, M. Jing, H. Li, Q. Mao, T. Lu, Y. Guo, R. Ji, W. Chi, Y. Dong, Y. Zhu, Transition-metal-based cocatalysts for photocatalytic water splitting, Small Struct. 3 (2022) 2100229.

- [28] Z. Liang, R. Shen, Y.H. Ng, P. Zhang, Q. Xiang, X. Li, A review on 2D MoS₂ cocatalysts in photocatalytic H₂ production, J. Mater. Sci. Technol. 56 (2020) 89–121.
- [29] K. Li, S. Zhang, Y. Li, J. Fan, K. Lv, MXenes as noble-metal-alternative co-catalysts in photocatalysis, Chin. J. Catal. 42 (2021) 3–14.
- [30] R.-T. Guo, Z.-R. Zhang, C. Xia, C.-F. Li, W.-G. Pan, Recent progress of cocatalysts loaded on carbon nitride for selective photoreduction of CO₂ to CH₄, Nanoscale 15 (2023) 8548–8577.
- [31] W. Tan, Y. Li, W. Jiang, C. Gao, C. Zhuang, CdS nanospheres decorated with NiS quantum dots as nobel-metal-free photocatalysts for efficient hydrogen evolution, ACS Appl. Energy Mater. 3 (2020) 8048–8054.
- [32] X. Cai, Z. Zeng, Y. Liu, Z. Li, X. Gu, Y. Zhao, L. Mao, J. Zhang, Visible-light-driven water splitting by yolk-shelled ZnIn₂S₄-based heterostructure without noble-metal co-catalyst and sacrificial agent, Appl. Catal. B 297 (2021) 120391.
- [33] S. Wang, B.Y. Guan, X. Wang, X.W.D. Lou, Formation of hierarchical Co₉S₈@ ZnIn₂S₄ heterostructured cages as an efficient photocatalyst for hydrogen evolution, J. Am. Chem. Soc. 140 (2018) 15145–15148.
- [34] J. Sun, S. Yang, Z. Liang, X. Liu, P. Qiu, H. Cui, J. Tian, Two-dimensional/one-dimensional molybdenum sulfide (MoS₂) nanoflake/graphitic carbon nitride (g-C₃N₄) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity, J. Colloid Interface Sci. 567 (2020) 300–307.
- [35] S. Yang, X. Guo, K. Liu, Y. Li, T. Li, X. Gu, R. Arenal, X. Zheng, W. Li, C. Sun, H. Wang, F. Huang, Size effect of CoS₂ cocatalyst on photocatalytic hydrogen evolution performance of g-C₃N₄, J. Colloid Interface Sci. 635 (2023) 305–315.
- [36] J. Tang, B. Gao, J. Pan, L. Chen, Z. Zhao, S. Shen, J.-K. Guo, C.-T. Au, S.-F. Yin, CdS nanorods anchored with CoS₂ nanoparticles for enhanced photocatalytic hydrogen production, Appl. Catal. A 588 (2019) 117281.
- [37] X. Chen, Y. Yu, J. Li, P. Deng, C. Wang, Y. Hua, Y. Shen, X. Tian, Recent advances in cobalt disulfide for electrochemical hydrogen evolution reaction, Int. J. Hydrogen Energy 48 (2023) 9231–9243.
- [38] H. Li, P. Deng, Y. Hou, Cobalt disulfide/graphitic carbon nitride as an efficient photocatalyst for hydrogen evolution reaction under visible light irradiation, Mater. Lett. 229 (2018) 217–220.
- [39] X. Xi, Q. Dang, G. Wang, W. Chen, L. Tang, ZIF-67-derived flower-like ZnIn₂S₄@ CoS₂ heterostructures for photocatalytic hydrogen production, N. J. Chem. 45 (2021) 20289–20295.
- [40] B.Q. Qiu, C.X. Li, X.Q. Shen, W.L. Wang, H. Ren, Y. Li, J. Tang, Revealing the size effect of metallic CoS₂ on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction, Appl. Catal. A 592 (2020) 117377.
- [41] L. Li, J. Xu, J. Ma, Z. Liu, Y. Li, A bimetallic sulfide CuCo₂S₄ with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution, J. Colloid Interface Sci. 552 (2019) 17–26.
- [42] H. Yin, T. Fan, Y. Cao, P. Li, X. Yao, X. Liu, Construction of three-dimensional MgIn₂S₄ nanoflowers/two-dimensional oxygen-doped g-C₃N₄ nanosheets direct Z-scheme heterojunctions for efficient Cr(VI) reduction: insight into the role of superoxide radicals. J. Hazard. Mater. 420 (2021) 126567.
- [43] T. Liu, Y. Xiong, X. Wang, Y. Xue, W. Liu, J. Tian, Dual cocatalysts and vacancy strategies for enhancing photocatalytic hydrogen production activity of Zn₃ln₂S₆ nanosheets with an apparent quantum efficiency of 66.20, J. Colloid Interface Sci. 640 (2023) 31–40
- [44] S. Zhang, S. Du, Y. Wang, Z. Han, X. Li, G. Li, Q. Hu, H. Xu, C. He, P. Fang, Synergy of yolk-shelled structure and tunable oxygen defect over CdS/CdCO₃-CoS₂: wide band-gap semiconductors assist in efficient visible-light-driven H₂ production and CO₂ reduction, Chem. Eng. J. 454 (2023) 140113.
- [45] Y. Cai, Y. Shi, W. Shi, S. Bai, S. Yang, F. Guo, A one-photon excitation pathway in 0D/3D Co52/ZnIn₂54 composite with nanoparticles on micro-flowers structure for boosted visible-light-driven photocatalytic hydrogen evolution, Compos. Part B Eng. 238 (2022) 109955.
- [46] N. Denisov, J. Yoo, P. Schmuki, Effect of different hole scavengers on the photoelectrochemical properties and photocatalytic hydrogen evolution performance of pristine and Pt-decorated TiO₂ nanotubes, Electrochim. Acta 319 (2019) 61–71.
- [47] S. Meng, C. Chen, X. Gu, H. Wu, Q. Meng, J. Zhang, S. Chen, X. Fu, D. Liu, W. Lei, Efficient photocatalytic H₂ evolution, CO₂ reduction and N₂ fixation coupled with organic synthesis by cocatalyst and vacancies engineering, Appl. Catal. B 285 (2021) 119789.
- [48] M. Zhao, S. Liu, D. Chen, S. Zhang, S.A.C. Carabineiro, K. Lv, A novel S-scheme 3D $ZnIn_2S_4/WO_3$ heterostructure for improved hydrogen production under visible light irradiation, Chin. J. Catal. 43 (2022) 2615–2624.
- [49] P. Zhang, Y. Li, Y. Zhang, R. Hou, X. Zhang, C. Xue, S. Wang, B. Zhu, N. Li, G. Shao, Photogenerated electron transfer process in heterojunctions: in situ irradiation XPS, Small Methods 4 (2020) 2000214.
- [50] Y. Wang, M. Liu, F. Fan, G. Li, J. Duan, Y. Li, G. Jiang, W. Yao, Enhanced full-spectrum photocatalytic activity of 3D carbon-coated C₃N₄ nanowires via giant interfacial electric field, Appl. Catal. B 318 (2022) 121829.
- [51] Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao, P. Zhang, Detecting and quantifying wavelength-dependent electrons transfer in heterostructure catalyst via in situ irradiation XPS, Adv. Sci. 10 (2023) 2205020.
- [52] J. Li, Q. Yu, X. Zhang, X. Xiong, Y. Jin, D. Han, B. Yu, J. Yao, G. Dai, Coupling CoS₂ and CaIn₂S₄ for efficient electron trapping and improved surface catalysis to promote solar hydrogen evolution, Int. J. Hydrogen Energy 52 (2023) 314–326.
- [53] S.W. Verbruggen, J.J.J. Dirckx, J.A. Martens, S. Lenaerts, Surface photovoltage measurements: a quick assessment of the photocatalytic activity? Catal. Today 209 (2013) 215–220.

- [54] R. Zhang, H. Wang, Y. Li, D. Wang, Y. Lin, Z. Li, T. Xie, Investigation on the photocatalytic hydrogen evolution properties of Z-scheme Au NPs/CuInS₂/NCN-CN_x composite photocatalysts, ACS Sustain. Chem. Eng. 9 (2021) 7286–7297.
- [55] J. Li, L. Cai, J. Shang, Y. Yu, L. Zhang, Giant enhancement of internal electric field boosting bulk charge separation for photocatalysis, Adv. Mater. 28 (2016) 4059–4064.
- [56] S.S. Gupta, M.A. van Huis, Intermetallic differences at CdS-metal (Ni, Pd, Pt, and Au) interfaces: from single-atom to subnanometer metal clusters, J. Phys. Chem. C 123 (2019) 9298–9310.
- [57] H. Zhang, Y. Dong, S. Zhao, G. Wang, P. Jiang, J. Zhong, Y. Zhu, Photochemical preparation of atomically dispersed nickel on cadmium sulfide for superior photocatalytic hydrogen evolution, Appl. Catal. B 261 (2020) 118233.
- [58] J. Zhu, Q. Bi, Y. Tao, W. Guo, J. Fan, Y. Min, G. Li, Mo-modified ZnIn₂S₄@NiTiO₃ S-scheme heterojunction with enhanced interfacial electric field for efficient visible-light-driven hydrogen evolution, Adv. Funct. Mater. 33 (2023) 2213131.
- [59] X. Lu, A. Tong, D. Luo, F. Jiang, J. Wei, Y. Huang, Z. Jiang, Z. Lu, Y. Ni, Confining single Pt atoms from Pt clusters on multi-armed CdS for enhanced photocatalytic hydrogen evolution, J. Mater. Chem. A 10 (2022) 4594–4600.
- [60] Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory, Angew. Chem. Int. Ed. 54 (2015) 52–65.
- [61] M. Wang, W. Zhang, F. Zhang, Z. Zhang, B. Tang, J. Li, X. Wang, Theoretical expectation and experimental implementation of in situ Al-doped CoS₂ nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production, ACS Catal. 9 (2019) 1489–1502.
- [62] Y. Hu, Y. Qi, M. Pi, Y. Qiao, L. Hao, Y. Wang, H. Guan, J. Feng, Nanostructure and stoichiometry tailoring of CoS₂ for high performance hydrogen evolution reaction, Int. J. Hydrogen Energy 48 (2023) 16279–16285.
- [63] P. Dong, C. Meng, Y. Yan, B. Zhang, W. Wang, X. Xi, J. Zhang, Ag–Pt bimetallic composite supported on defective C₃N_x nanosheets for plasmon hot electronmediated photocatalytic H₂ evolution, Int. J. Hydrogen Energy 48 (2023) 18670–18684.