Tema 1

Introducción. Estadística descriptiva

Estadística GRUPOS A y B Informática. EPI Gijón. Curso Introducción. Estadística descriptiva

■ Introducción

Distribución de frecuencias

☐ Representaciones gráficas

☐ Medidas descriptivas

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 2

Estadística

Engloba tres concepciones gramaticales diferentes:

- ☐ Colección de datos presentada de forma ordenada y sistemática.
- ☐ **Técnica** de recoger, organizar, resumir, presentar, analizar, generalizar y contrastar resultados de una investigación.
- ☐ Ciencia que busca las leyes generales del comportamiento de colectivos en los aspectos que dependen del azar.

Objeto de la Estadística

- □ La Estadística estudia **fenómenos de naturaleza aleatoria**, es decir, en los que interviene el azar y no es posible predecir el resultado aunque se den las mismas condiciones iniciales.
- ☐ Se distingue así de otras ciencias que estudian **fenómenos deterministas**, en los que la misma causa provoca siempre el mismo efecto.

Conceptos I

- ☐ Se llama **población** al colectivo sobre el que se estudia el fenómeno aleatorio. Su tamaño es **N**.
- ☐ Cada subconjunto de la población elegido en representante de ésta se denomina <u>muestra</u>. Su tamaño es **n**.
- ☐ Los miembros concretos de la población se llaman **individuos** o unidades elementales.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso

5

Conceptos II

- ☐ Si se estudian todos y cada uno de los individuos de la población se habla de un **censo**. En caso contrario se habla de **muestreo**.
- ☐ Se llama **parámetro** a la cantidad que recoge algún aspecto relevante de la <u>población</u>.
- ☐ Se llama **estadístico** a la cantidad que recoge algún aspecto relevante de la muestra.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021

- (

Partes de la Estadística

- ☐ La Estadística Descriptiva tiene por objeto describir la información de la muestra o de la población.
- ☐ La **Inferencia Estadística** extrae conclusiones de la población a partir de las resultados obtenidos en una muestra de ella.

Esquema partes de la Estadística

Caracteres

☐ Se denomina **carácter** a la propiedad que se analiza en la población investigada.

Los hay de dos tipos:

- Caracteres <u>cualitativos o atributos</u>
- Caracteres **cuantitativos o variables**

Estadística GRUPOS A y B Informática. EPI Gijón. Curso

9

11

Caracteres cualitativos

Los caracteres <u>cualitativos (atributos o factores)</u> no se pueden expresar numéricamente.

Las posibles respuestas se llaman modalidades.

Los atributos se clasifican en:

- ☐ Caracteres nominales: no se puede establecer una relación de orden natural entre sus modalidades.
- ☐ Caracteres ordinales: sus modalidades no son cuantificables, pero es posible establecer un orden entre ellas.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 10

Caracteres cuantitativos

- ☐ Son el objeto de nuestro estudio.
- □ Los caracteres <u>cuantitativos o variables</u> se pueden expresar numéricamente. Las posibles respuestas son los <u>valores de la variable</u>. A su vez se clasifican en:
 - ☐ <u>Variable continua</u>: entre cada dos valores de la variable siempre se podría encontrar un valor intermedio. Toma valores en (al menos) un intervalo.
 - ☐ **Variable discreta:** toma un n° finito o numerable de valores.

Organización de datos

- ☐ El resultado de la observación de una **variable** en la población (o en una muestra) es un **conjunto de datos**.
- \square Denotaremos por \mathbb{N} el número total de datos.
- \square Los resultados **diferentes** obtenidos en las N experiencias y ordenados de **forma creciente** son los números $x_1, x_2, ..., x_k$.
- \square $x_1 = Min(X)$ y $x_k = Min(X)$.

Frecuencia absoluta

- □ La <u>frecuencia absoluta</u> de cada resultado x_i se denotará por n_i o por n(x_i), y es el número de veces que aparece dicho resultado en las N experiencias.
- \square Se cumple que $\sum_{i=1}^{k} n_i = N$.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 13

15

Frecuencia relativa

- □ La <u>frecuencia relativa</u> asociada al resultado x_i se denotará f_i o por $f(x_i)$, y es la **proporción** de veces que aparece dicho resultado en las N experiencias.
- $\square \text{ Se verifica } f_i = f(x_i) = \frac{n_i}{N}.$
- \square Además $\sum_{i=1}^{k} f_i = 1$.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 14

Porcentaje

- \square El **porcentaje** asociado al resultado x_i se denotará $\mathbf{p_i}$ o $\mathbf{p(x_i)}$, y es el **porcentaje** de veces que aparece dicho resultado en las N experiencias.
- \square Se verifica $p_i = p(x_i) = f(x_i) \times 100$.
- \square Además $\sum_{i=1}^{k} p_i = 100$.

Variable estadística

- □ El conjunto de pares (x_i, n_i) , (x_i, f_i) o (x_i, p_i) será desde ahora la <u>variable estadística</u> y con ellos se tiene la **distribución de frecuencias** (representada en la tabla estadística).
- ☐ Las variables estadísticas se denotan por **X** (o Y, Z, ...) y representan la propiedad de estudio (si es preciso con unidades de medida) en cada uno de los individuos de la muestra.

Ejemplo

□ Un fabricante de componentes electrónicos se interesa en determinar el tiempo de vida (duración) de cierto tipo de batería. La que sigue es una muestra en horas de vida:

123, 116, 122, 110, 135, 126, 125, 111, 118, 116

- X = tiempo de vida (en horas) de cada una de las baterías. Variable de tipo continuo
- N=10

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 17

Tabla estadística del ejemplo

Xi	n(x _i)	f(x _i)	p(x _i)
110	1	0.1	10%
111	1	0.1	10%
116	2	0.2	20%
118	1	0.1	10%
122	1	0.1	10%
123	1	0.1	10%
125	1	0.1	10%
126	1	0.1	10%
135	1	0.1	10%
	10	1	100%

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 18

Porcentaje acumulado

- □ El <u>porcentaje acumulado</u>, P(x), <u>es el</u> <u>porcentaje de valores menores o iguales que el</u> considerado.
- ☐ En general

$$P(x) = \sum_{\{i/x_i \le x\}} p(x_i).$$

☐ En particular

$$P(x_i) = \sum_{j=1}^{i} p(x_j)$$
.

Ejemplo

Xi	n(x _i)	f(x _i)	p(x _i)	P(x _i)
110	1	0.1	10%	10%
111	1	0.1	10%	20%
116	2	0.2	20%	40%
118	1	0.1	10%	50%
122	1	0.1	10%	60%
123	1	0.1	10%	70%
125	1	0.1	10%	80%
126	1	0.1	10%	90%
135	1	0.1	10%	100%
	10	1	100%	

- □ **P(126)** = porcentaje de baterías con duración no superior a 126 horas = 90%.
- □ **P(120)** = porcentaje de baterías con duración no superior a 120 horas = $p(X \le 120) = P(118) = 50\%$.

Estadística GRUPOS A y B

Informática. EPI Gijón. Curso

Representaciones gráficas

Según los datos que manejemos se pueden realizar las gráficas siguientes:

- ☐ Diagrama de sectores
- ☐ Diagrama de barras
- ☐ Histograma
- Diagrama de cajas

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 21

23

Diagrama de sectores

- ☐ Se divide un círculo en tantos sectores circulares como valores toma la variable. A cada sector se le asigna un ángulo central proporcional a su frecuencia absoluta (relativa o porcentaje).
- ☐ Es la gráfica más adecuada para representar caracteres nominales.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 22

Diagrama de barras

- ☐ Se construye levantando barras horizontales de la misma anchura sobre cada valor de la variable. La altura de cada barra es su frecuencia absoluta (relativa o porcentaje).
- ☐ Es la gráfica más adecuada para representar caracteres ordinales o variables discretas.

Diagrama de barras del ejemplo

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 24

Histograma

- □ Sobre cada uno de los intervalos en los que se subdividen los datos de la variable se levanta una barra cuya altura es su frecuencia absoluta (relativa o porcentaje) del intervalo. También se puede utilizar como altura la densidad (frecuencia del intervalo dividida por la amplitud del intervalo).
- ☐ Es una gráfica adecuada para representar variables continuas.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 25

Histograma del ejemplo

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 26

Diagrama de cajas

- ☐ Se verá asociada al concepto de mediana y cuartiles.
- ☐ Es una gráfica adecuada para representar variables continuas.

Medidas descriptivas

- Las medidas descriptivas son aquellas que tratan de condensar la información proporcionada por la distribución de frecuencias de la característica en estudio.
- ☐ Se subdividen en:
 - Medidas de centralización
 - Medidas de dispersión
 - Medidas de posición

Medidas de centralización

Su objetivo es **resumir** la información contenida en la tabla de frecuencias **en un solo número**.

Manejaremos:

- **□** Media aritmética
- **☐** Mediana
- □ Moda

Estadística GRUPOS A y B Informática. EPI Gijón. Curso

29

Media aritmética

☐ Se calcula como el **promedio** de los datos:

$$\overline{x} = \sum_{i=1}^{k} x_i f_i = \frac{1}{N} \sum_{i=1}^{k} x_i n_i = \sum_{i=1}^{k} \frac{x_i n_i}{N}.$$

- \square A la cantidad $\sum_{i=1}^{k} x_i n_i$ se le denomina **total**.
- ☐ La media se ve muy afectada por valores extremos.
- ☐ La media es un valor único.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021

30

32

Propiedades de la media aritmética

- 1. $\sum_{i=1}^{k} (x_i \overline{x}) f_i = 0$ (la **media de las desviaciones** con respecto a la media **es 0**). Se interpreta como que es el centro de gravedad o punto de equilibrio de la distribución de frecuencias.
- 2. Si la variable X se transforma de la **forma** lineal Y=aX+b, entonces,

$$\overline{y} = a\overline{x} + b$$
.

Ejemplo

- ☐ La siguiente tabla muestra los resultados obtenidos en diferentes mediciones (en mm.) del diámetro interno de unos anillos para pistones de automóviles.
 - X=diámetro interno (en mm.) de un pistón.
 - N=8

x _i	ni	fi	P(x _i)
74.000	1	0.125	12.5%
74.001	1	0.125	25.0%
74.015	1	0.125	37.5%
74.017	1	0.125	50.0%
74.018	1	0.125	62.5%
74.020	1	0.125	75.0%
74.024	1	0.125	87.5%
74.029	1	0.125	100.0%
	8	1	

Cálculo media del ejemplo

- □ El diámetro interior medio de los anillos es 74.0155 mm. El total es 592.124 mm.
- Si las especificaciones del fabricante dicen que el diámetro interior de los anillos es 74.000 mm. y por cada milésima de mm. de error (respecto a lo especificado) supone un coste de 5€. el coste por pieza es

 $C=5000 \times |X-74.000| = 5000(X-74.000)$ y por tanto, el coste medio por pieza

 $\overline{C} = 5000 \times (\overline{X} - 74.000) = 5000 \times (74.0155 - 74.000) = 77.5 \in.$

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 33

Mediana

- ☐ La mediana, Me, es el valor central de los valores de una variable, una vez que éstos han sido ordenados de forma creciente.
- □ Divide a la distribución en dos partes con la misma frecuencia: cada parte al menos N/2 en términos absolutos (½ en términos relativos, un 50%).
- ☐ Al menos el 50% de los datos son menores o iguales que Me (al menos el 50% mayores o iguales que él).

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 34

Cálculo de Me

Se calcula utilizando los porcentajes acumulados, $P(x_i)$.

Se puede estar en dos situaciones:

☐ Hay un valor de la variable x_i con $P(x_i)=50\%$, entonces la mediana sería cualquier valor de $[x_i, x_{i+1}]$ y el representante más habitual:

$$Me = \frac{x_i + x_{i+1}}{2}.$$

 \square En caso contrario, la mediana es el primer valor x_i con porcentaje acumulado superior al valor 50%.

Cálculo Me del ejemplo

Hay un valor x_i de la variable con porcentaje acumulado 50% ($P(x_4)=50\%$), entonces

$$Me = \frac{X_4 + X_5}{2} =$$

$$= \frac{74.017 + 74.018}{2} =$$

$$= 74.0175 \text{ mm.}$$

x _i	n	f _i	P(x _i)
74.000	1	0.125	12.5%
74.001	1	0.125	25.0%
74.015	1	0.125	37.5%
74.017	1	0.125	50.0%
74.018	1	0.125	62.5%
74.020	1	0.125	75.0%
74.024	1	0.125	87.5%
74.029	1	0.125	100.0%
	8	1	

Moda

La moda, Mo, es el valor de **máxima frecuencia**, sea ésta frecuencia la absoluta, la relativa o la porcentual.

- ☐ Puede no ser única.
 - **Ejemplo:** En la distribución anterior **todos** los valores son moda, ya que todos tienen la frecuencia máxima: 1.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 37

Medidas de posición

- ☐ Son medidas que informan de la posición de una dato en la muestra.
- ☐ La idea es la misma que en la **mediana**, pero descomponiendo la distribución en cuatro, diez, o cien partes con la misma frecuencia (cuartiles, deciles, percentiles).

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 38

Cuartiles, deciles

- □ Cuartiles: dividen la distribución en cuatro intervalos con la misma frecuencia (N/4, 0.25 ó 25%). Los cuartiles son 3: P_{25} , P_{50} , P_{75} .
- □ **Deciles**: dividen la distribución en diez intervalos con la misma frecuencia (N/10, 0.10 ó 10%). Los deciles son 9: P_{10} , P_{20} , ..., P_{90} .

Percentiles

- □ Percentiles (centiles): dividen la distribución en cien intervalos con la misma frecuencia (N/100, 0.01 ó 1%). Los percentiles son 99: P_1 , P_2 , ..., P_{99} .
- □ El **percentil de orden k**, **P**_k, es aquel valor de la variable que (una vez ordenados los datos de forma creciente) hace que al menos el k% de los datos sean menores o iguales que él (al menos el 100-k% mayores o iguales que él).

Cálculo de P_k

Se calcula utilizando los porcentajes acumulados, $P(x_i)$.

Se puede estar en dos situaciones:

 \square Hay un valor de la variable x_i con $P(x_i)=k\%$, entonces P_k sería cualquier valor de $[x_i, x_{i+1}]$ y el representante más habitual:

$$\mathbf{P_k} = \frac{\mathbf{x_i} + \mathbf{x_{i+1}}}{2}.$$

 \square En caso contrario, P_k es el primer valor x_i con porcentaje acumulado superior al valor k.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso

41

Cálculo de P_k en el ejemplo

□ Primer cuartil P₂₅:

$$P(x_2) = P(74.001) = 25\%$$
. Por tanto,
$$P_{25} = \frac{74.001 + 74.015}{2} = 74.008 \text{ mm}$$

 \square Tercer cuartil P₇₅:

$$P(x_6) = P(74.020) = 75\%$$
. Por tanto,
$$P_{75} = \frac{74.020 + 74.024}{2} = 74.022 \quad mm.$$

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 42

Cálculo de P_k en el ejemplo

 \square Tercer decil P_{30} :

no existe x_i con $P(x_i) = 30\%$, el primer valor que supera 30% es x_3 .Por tanto:

$$P_{30} = x_3 = 74.015 \text{ mm}.$$

☐ Percentil 82 P₈₂:

no existe x_i con $F(x_i) = 82\%$, el primer valor que supera 82% es x_7 . Por tanto:

$$P_{82} = x_7 = 74.024 \text{ mm}.$$

Medidas de dispersión

Estudian la dispersión de los datos:

- ☐ Dispersión global:
 - Recorrido
 - Recorrido intercuartílico
- ☐ Dispersión en torno a la media:
 - Absoluta:
 - ☐ Varianza
 - Desviación típica
 - Relativa: Coeficiente de variación

Recorridos

☐ **Recorrido o Rango:** Es la diferencia entre el máximo y mínimo de los valores de la variable:

$$\mathbf{R} = \mathbf{x}_{\mathbf{k}} - \mathbf{x}_{\mathbf{1}}.$$

☐ Recorrido intercuartílico: es la diferencia entre el tercer y el primer cuartil:

$$R_{I} = P_{75} - P_{25}$$
.

■ Ejemplo: R=74.029-74.000=0.029 mm.

$$R_{T} = 74.022 - 74.008 = 0.014$$
 mm.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021

45

Varianza

La varianza se calcula a partir de los cuadrados de las desviaciones de los datos respecto a la media:

$$V(X) = S_X^2 = \frac{1}{N-1} \sum_{i=1}^{k} (x_i - \overline{x})^2 \cdot n_i$$

- $\blacksquare S_x^2 \ge 0.$
- Inconveniente: maneja unidades²
- Una varianza grande indica mucha dispersión de datos alrededor de la media

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 46

Desviación típica

La desviación típica o desviación estándar es la raíz cuadrada positiva de la varianza, se representa por $S_{\mathbf{X}}$:

$$S_X = +\sqrt{S_X^2}.$$

- □ Ventaja: maneja las unidades de partida.
- ☐ Una desviación típica grande indica mucha dispersión de datos alrededor de la media.

Cambio lineal

Si Y=aX+b, entonces:

$$S_Y^2 = a^2 S_X^2,$$

$$S_{Y} = |a|S_{X},$$

es decir, la varianza y la desviación típica son invariantes frente a traslaciones.

Cálculo varianza del ejemplo

- □ En los datos del diámetro de los anillos, la varianza es: $S_y^2 = 0.0001 \text{ mm.}^2$
- ☐ Y la desviación típica es:

$$S_X = +\sqrt{S_X^2} = 0.0102$$
 mm.

■ Mientras que para la variable coste en €:

$$C=5000 \times |X-74.000| = 5000(X-74.000)$$

$$S_c^2 = 5000^2 \times S_v^2 = 2621.4286 \in {}^2$$

$$S_{c} = 5000 \times S_{x} = 51.1999 \in.$$

Estadística GRUPOS A y B Informática. EPI Gijón. Curso

49

Coeficiente de variación

El coeficiente de variación es una medida de dispersión relativa **adimensional** y se define por:

$$CV(X) = \frac{S_X}{|\overline{x}|}$$

 \square El coeficiente de variación de **una transformación lineal** Y = aX + b es:

$$CV(Y) = \frac{|a| S_X}{|a\overline{X} + b|}.$$

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 50

Utilidad del coeficiente de variación

El CV se utiliza para:

□ Comparar la dispersión u homogeneidad de los datos de dos distribuciones:

Es menos dispersa o más homogénea la distribución con un CV menor.

☐ Comparar la representatividad de la media en dos distribuciones:

Es más representativa la media de la distribución con un CV menor.

CV en el ejemplo

- □ En el problema del diámetro interior de los anillos se dispone de una segunda muestra de anillos en los que el diámetro interior medio es 25.97 mm. y su desviación es 0.11 mm.
- ☐ Si comparamos la dispersión de las dos distribuciones (o la representatividad de la media):
 - 1ª muestra, CV(X)=0.0001, es decir tiene una dispersión relativa del 0.01%.
 - 2ª muestra, CV(Y)=0.0042, es decir tiene una dispersión relativa del 0.42%.
- → Por tanto, en la primera muestra el diámetro medio es más representativo que en la 2ª, o los datos son más homogéneos (menos diferentes) o menos dispersos relativamente que en la 2ª.

Diagrama de cajas

- ☐ Representación gráfica que muestra características de posición y dispersión de una variable.
- \square Para construirlo se traza una caja con límite inferior P_{25} , límite superior P_{75} y dentro de la caja una línea para indicar la Me. El recorrido intercuartílico R_I es la longitud de la caja.

Además se trazan dos bigotes:

- desde el límite inferior de la caja hasta el valor $Máx(x_1, P_{25}-1.5R_1)$
- desde el límite superior de la caja hasta el valor $Min(x_k, P_{75}+1.5R_I)$

Los datos que se encuentran por fuera de los bigotes superior o inferior se consideran **valores atípicos**.

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 53

Diagrama de cajas del ejemplo

Estadística GRUPOS A y B Informática. EPI Gijón. Curso 2020-2021 54