

Data-Center Network Management

Network Management

Prof. Dr. Panagiotis Papadimitriou

Data-Center Networks

- Major players build and operate data centers:
 - Amazon, Google, HP, Microsoft, Facebook, etc.
- Features:
 - Massive scale:
 - Usually tens of thousands servers (up to hundreds of thousands servers
 - Commoditization:
 - Wide use of commodity (inexpensive) hardware (i.e., servers and switches)
 - Server virtualization:
 - Widespread adoption of server virtualization to maximize resource utilization
 - A large number of virtual machines may be hosted on a single server using technologies such as VMWare, Xen, etc.

- Main Goals:
 - Performance:
 - Fast execution of applications (e.g., Map-Reduce jobs)
 - Energy efficiency:
 - Increased consolidation (e.g., shut down redundant servers) to achieve energy savings
 - Minimal configuration overhead:
 - Host/service discovery
 - Mobility support (e.g., VM migration)
 - Scalability:
 - Scaling data-center network to tens or hundreds of servers

- Tree-based topologies:
 - Suitable either for flows that enter/leave the DC or for data transfers within the same rack
 - Poor performance with data transfers among different racks
 - Not fault-tolerant

- Bisection bandwidth is the sum of the core link bandwidths
- Full bisection bandwidth:

The total bandwidth of the core links should be equal to the sum of all server links bandwidth

- Oversubscription factor (O):
 - is adjusted taking into account the locality of data transfers and the traffic rate/pattern

- Multiple Equal Cost Paths (ECMP)
- Full bisection bandwidth

- Multiple Equal Cost Paths (ECMP)
- Full bisection bandwidth

- Multiple Equal Cost Paths (ECMP)
- Full bisection bandwidth

- Multiple Equal Cost Paths (ECMP)
- Full bisection bandwidth

- Special case of a Clos topology:
 - (k/2)² k-port core switches, k pods each one with two layers of k/2 switches and k²/4 servers, k³/4 servers in total

- Special case of a Clos topology:
 - (k/2)² k-port core switches, k pods each one with two layers of k/2 switches and k²/4 servers, k³/4 servers in total

- Special case of a Clos topology:
 - (k/2)² k-port core switches, k pods each one with two layers of k/2 switches and k²/4 servers, k³/4 servers in total

- Special case of a Clos topology:
 - (k/2)² k-port core switches, k pods each one with two layers of k/2 switches and k²/4 servers, k³/4 servers in total

- Special case of a Clos topology:
 - (k/2)² k-port core switches, k pods each one with two layers of k/2 switches and k²/4 servers, k³/4 servers in total

- Network-wide flooding:
 - Large number of control messages while disseminating host information
- Large forwarding tables:
 - Switches have to maintain large forwarding tables
 - Forwarding table size is proportional to the number of hosts due to flat addressing
- Broadcast traffic:
 - ARP and DHCP broadcasts consume bandwidth and processing resources at hosts and switches
- Spanning tree:
 - Waste of bandwidth at unused links
 - Load imbalance

- Spanning-tree inefficiencies:
 - Limited bandwidth utilization, since many links are not used
 - Requires very expensive core switches with large switching capacity

- Spanning-tree inefficiencies:
 - Limited bandwidth utilization, since many links are not used
 - Requires very expensive core switches with large switching capacity

- Configuration overhead:
 - Administrators should assign manually prefixes to subnets
 - Host IP address assignment via DCHP should be consistent with prefix assignment
 - Network topology changes require manual reconfiguration
- Limited mobility support:
 - Host mobility is restricted within a subnet where the host can maintain its IP address
 - Mobility across subnets requires reconfiguration (e.g., IP address reassignment) and may cause service disruption

Smart Path Assignment in Networks (SPAIN)

Multi-Path Routing with SPAIN

Institut für Kommunikations-Technik

- Goal:
 - Provide multi-path routing using VLANs
 - Should work on arbitrary DC network topologies
- Offline computation of the network:
 - Topology discovery
 - Path computation
 - Assignment of paths to VLANs

- Compute the smallest set of paths that exploit all redundancy
- Consider only paths between edge switches

- Simple assignment:
 - Each path is assigned to a separate VLAN
 - Limited by the maximum number of VLANs (4096)
 - Scales only to a small number of switches

- Assignment proposed by SPAIN:
 - 1 VLAN is used for a set of paths
 - Greedy VLAN packing algorithm for optimizing path assignment

Institut für Kommunikations-Technik

PortLand

Main Features

- PortLand is a single logical layer-2 data center network fabric that scales to millions of (virtual) end-points
- PortLand internally separates host identity from host location:
 - uses IP address as host identifier
 - introduces "Pseudo MAC" (PMAC) addresses internally to encode endpoint location
- PortLand runs on commodity switch hardware with unmodified hosts

- PortLand assumes hierarchical structure of data center networks:
 - e.g., fat-tree topology (multi-rooted tree)

- PMAC addressing for packet forwarding and routing:
 - Besides IP and MAC, each end-host is assigned with a unique PMAC address
 - PMAC encodes the location of each end-host
- PMAC address format: pod.position.port.vmid
 - pod: pod number of the edge switch (16 bits)
 - position: position of the edge switch within the pod (8 bits)
 - port: switch port number (8 bits)
 - vmid: virtual machine ID for demultiplexing (16 bits)

- Centralized Fabric Manager:
 - maintains (IP, PMAC) bindings, assisting ARP resolution
 - maintains the switch-level topology, facilitating fault-tolerant routing
 - maintains soft state, eliminating the need for manual configuration

PMAC Assignment

Institut für Kommunikations-Technik

PMAC Assignment

Institut für Kommunikations-Technik

PMAC 00-00-01-03-00-00

IP MAC

172.23.180.137 84-2B-2B-A5-A5-77

PMAC Assignment

Fabric Manager

IP	MAC
172.23.180.137	84-2B-2B-A5-A5-77

IP	MAC
172.23.192.120	A3-B4-21-87-D4-12

Institut für Kommunikations-Technik

Fabric Manager

IP	PMAC
172.23.180.137	00-00-01-03-00-00
172.23.192.120	00-02-01-02-00-00

l l Leibniz l 0 2 Universität l 0 4 Hannover

IP	PMAC
172.23.180.137	00-00-01-03-00-00
172.23.192.120	00-02-01-02-00-00

IP	MAC
172.23.180.137	84-2B-2B-A5-A5-77

IP	MAC
172.23.192.120	A3-B4-21-87-D4-12

Fabric Manager

IP	PMAC
172.23.180.137	00-00-01-03-00-00
172.23.192.120	00-02-01-02-00-00

IP	MAC
172.23.180.137	84-2B-2B-A5-A5-77

IP	MAC
172.23.192.120	A3-B4-21-87-D4-12

Fabric Manager

IP	PMAC
172.23.180.137	00-00-01-03-00-00
172.23.192.120	00-02-01-02-00-00

IP	MAC
172.23.180.137	84-2B-2B-A5-A5-77

IP	MAC
172.23.192.120	A3-B4-21-87-D4-12

Fabric Manager

IP	PMAC
172.23.180.137	00-00-01-03-00-00
172.23.192.120	00-02-01-02-00-00

IP	MAC	PMAC
172.23.192.120	A3-B4-21-87-D4-12	00-02-01-02-00-00

IP	MAC
172.23.192.120	A3-B4-21-87-D4-12

- Location Discovery Messages (LDMs) are exchanged between neighboring switches
- Switches self-discover the following location information on boot:
 - Tree level / role:
 - Based on neighbor identity
 - Position number:
 - Aggregation switches assist edge switches in choosing a unique position number
 - Pod number:
 - Fabric manager assists switches in choosing pod number

- LDMs include the following information:
 - Switch identifier:
 - Globally unique ID for each switch (e.g., the lowest MAC address of all local ports)
 - Pod number:
 - Unique pod number shared by all switches in the same pod
 - Position number:
 - Unique number for each switch in the same pod
 - Tree level:
 - Number that indicates whether a switch is an edge (0), aggregation (1) or core switch (2)
 - Up/down:
 - A bit that indicates whether a switch port is facing downward or upward in the fat tree

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			0

Switch ID	Pod Number	Position	Tree Level
A1-25-EB-23-2A-10			

Switch ID	Pod Number	Position	Tree Level
A1-25-EB-23-2A-10			

Switch ID	Pod Number	Position	Tree Level
A1-25-EB-23-2A-10			1

Switch ID	Pod Number	Position	Tree Level
B1-25-34-13-2A-10			

Switch ID	Pod Number	Position	Tree Level
B1-25-34-13-2A-10			

Switch ID	Pod Number	Position	Tree Level
B1-25-34-13-2A-10			2

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			0

P	ro	nose	Position	n ()
•	10	PUSU	i Ositio	

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			0

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01			0

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01		0	0

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01		0	0

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01		0	0

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01	0	0	0

Distribute Pod Number

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01	0	0	0

Distribute Pod Number

Switch ID	Pod Number	Position	Tree Level
A0-2B-FB-23-34-01	0	0	0

References

- A. Greenberg, et al., VL2: A Scalable and Flexible Data Center Network, ACM SIGCOMM 2009
- J. Mudigonda, et al., SPAIN: COTS Data-Center Ethernet for Multipathing over Arbitrary Topologies, USENIX NSDI 2010
- C. Guo, et al., **BCube: A High Performance, Server-centric Network Architecture for Modular Data Centers**, ACM SIGCOMM 2009
- R. Mysore, et al., **PortLand: A Scalable Fault-Tolerant Layer Data Center Network Fabric**, ACM SIGCOMM 2009
- A. Vahdat, et al., Scale-Out Networking in the Data Center, IEEE Micro 2010
- Transparent Interconnection of Lots of Links (TRILL), IETF, http://datatracker.ietf.org/wg/trill/charter/