Batch Normalization Orthogonalizes Representations in Deep Random Networks

Hadi Daneshmand, Amir Joudaki, Francis Bach INRIA Paris, ETH Zurich, INRIA-ENS-PSL Paris

NeurIPS@Paris 2021

Batch normalization (BN)

- ▶ BN is one of the main building block of modern neural networks¹
- BN is cited +30K in the literature
- The underlying mechanism of BN is a fundamental open problem in machine learning that has been discussed in various keynotes and plenary talks.
- Even with random weights networks with BN achieves surprisingly good performance².

¹loffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in *ICML* (2015).

²Frankle, J., Schwab, D. J. & Morcos, A. S. Training batchnorm and only batchnorm:

- ► BN(M) normalizes M row-wise
- Representations:

$$H_{\ell+1} = \left(rac{1}{\sqrt{\textit{width}}}
ight) \textit{BN}(W_\ell H_\ell)$$

▶ W_ℓ : (width × width) with Gaussian elements

We study a Markov chain of matrices

- ► BN(M) normalizes M row-wise
- Representations:

$$H_{\ell+1} = \left(rac{1}{\sqrt{\mathit{width}}}
ight) \mathit{BN}(W_\ell H_\ell)$$

▶ W_ℓ : (width × width) with Gaussian elements

- ▶ \mathbf{E} orthogonality gap(H_{ℓ}) $= \mathcal{O}\left((1-\alpha)^{\ell} + \frac{\text{batchsize}}{\alpha\sqrt{\text{width}}}\right)$
- ▶ Wasser.₂ $(W_{\ell}H_{\ell}, \text{Gaussian})^2 = \mathcal{O}\left((1-\alpha)^{\ell} \left(\text{batchsize}\right) + \frac{(\text{batchsize})^2}{\alpha\sqrt{\text{width}}}\right)$

- ▶ Define: orthogonality gap(H) := $\left\| \left(\frac{1}{\|H\|_F^2} \right) H^\top H \left(\frac{1}{\|I_n\|_F^2} \right) I_n \right\|_F$.
- Assume there exists an absolute positive constant α such that the minimum singular value of H_k is greater than (or equal to) α for all $k = 1, ..., \ell$.

▶ Recall α is the minimum of smallest singular value of $\{H_1, \ldots, H_\ell\}$.

Modern NN vs. historical NN

BN	Without BN

Modern NN vs. historical NN

BN	Without BN
1 ()	1
$oldsymbol{E} \left[orth.\ gap(H_\infty) ight] = \mathcal{O}\left(rac{batch\ size}{lpha\sqrt{width}} ight)$	$oxed{E\left[orth.\ gap(H_\infty') ight]} = \Theta(1)$

The orthogonality influences training

³Lubana, E. S., Dick, R. P. & Tanaka, H. Beyond BatchNorm: Towards a General Understanding of Normalization in Deep Learning. *arXiv* preprint *arXiv*:2106.05956 (2021).

Replacing BN with orthogonalization

Saving training time by starting from orthogonal representations

MLPs with ReLU and without BN for classifying CIFAR-10 Red: standard initialization with low orthogonality gaps Blue: novel initialization ensuring orthogonal representations

$$\mathsf{Wasserstein}_2\big(\textit{W}_\ell\textit{H}_\ell,\mathsf{Gaussian}\big)^2 = \mathcal{O}\left((1-\alpha)^\ell\left(\mathsf{batchsize}\right) + \frac{(\mathsf{batchsize})^2}{\alpha\sqrt{\mathsf{width}}}\right)$$

History of Gaussian approximation for NNs

History of Gaussian approximation for NNs

Applications of the Gaussian approximation

Inria_ 1

Towards a theory-driven architectural design

- ▶ The influence of modern neural components on representations
 - ReLU activations
 - Convolutions layers
 - Normalization layers
 - Residual connections
- Theoretical study of optimization and random representations.
- Design of efficient neural architectures based on theoretical understanding