

Corso di Laurea in

"Ingegneria Informatica, Elettronica e delle Telecomunicazioni"

Architettura dei Calcolatori Elettronici

Introduzione al corso

Andrea Prati

II corso

- Architettura dei Calcolatori Elettronici (ACE)
- Crediti: 6 CFU (corrispondenti a circa 48 ore di lezione)
- Orario:
 - Martedì 10.30-12.30 Aula C
 - Mercoledì 10.30-12.30 Lab. 1-2-3
- Ad un certo punto faremo laboratorio
- Modalità d'esame: due prove (indipendenti):
 - Una prova scritta, su argomenti orali
 - Una prova pratica in laboratorio sull'assembly
- Docente: Prof. Andrea Prati (andrea.prati@unipr.it) interno: 6223 ricev.: su appuntamento
- Materiale su: http://elly2022.dia.unipr.it

Contenuti del corso

- Architettura dei calcolatori
- Le CPU
 - Organizzazione
 - Funzionamento
 - CISC/RISC
 - Parallelismo
- Le Memorie
- Input/Output
- Assembly 8086/8087
- Assembly x86

Materiale e testi di riferimento

- Oltre alle dispense su Elly, si consigliano i seguenti testi:
- G. Conte, A. Mazzeo, N. Mazzocca, P. Prinetto, "Architettura dei Calcolatori", Città Studi ed., 2017
- A.S. Tanenbaum e T. Austin, "Architettura dei Calcolatori: un approccio strutturale", sesta ed., Pearson/Prentice Hall, 2013
- Giacomo Bucci, "Calcolatori elettronici Architettura e organizzazione",
 Mc Graw-Hill, 2009
- William Stallings, "Architettura e organizzazione dei calcolatori. Progetto e prestazioni", ottava ed., Pearson Prentice-Hall, 2010
- Carl Hamacher, Zvonko Vranesic, Safwat Zaky, "Introduzione all'architettura dei calcolatori", seconda ed., McGraw-Hill, 2007
- Randall Hyde, The Art of Assembly Programming (http://www.planetpdf.com/codecuts/pdfs/aoa.pdf)

INTRODUZIONE AI CALCOLATORI ELETTRONICI

Cos'è un Calcolatore Elettronico

L'elaboratore o calcolatore elettronico svolge in automatico l'operazione di elaborare i dati a seconda delle istruzioni ricevute

Il concetto di algoritmo

- Il calcolatore elettronico per risolvere un problema utilizza un algoritmo, cioè un insieme di azioni (o istruzioni) che, eseguite secondo un ordine prestabilito, permettono di trovare il risultato cercato sulla base dei dati in ingresso
- Il concetto di algoritmo è uno dei concetti di base dell'intera matematica: i più semplici ed antichi algoritmi sono le regole per eseguire le operazioni dell'aritmetica elementare, formulate dal matematico arabo medioevale *Al-Khuwarizmi*, da cui deriva appunto il nome di algoritmo.
- Un computer è un rapidissimo esecutore di sequenze di istruzioni (gli algoritmi)

L'uso dei calcolatori elettronici

Strumento di word processing data analysis...

Strumento di gestione delle informazioni (server)

Componente essenziale di robot e Veicoli, strumenti di comunicazione...

Strumento di controllo di sistemi complessi..

Strumento di progettazione CAD-CAM

Calcolatore Elettronico

- Funzioni del calcolatore:
 - Elaborazione (calcolo)
 - Memorizzazione
 - Trasmissione
 - Controllo
- Sistema gerarchico

Figure 1.1 A Functional View of the Computer

Calcolatore Elettronico

Le funzioni previste corrispondono in prima approssimazione a 4 elementi:

CPU (Central Processing Unit), a sua volta suddiviso

in:

- Unità di Controllo
- ALU (unità aritmetico/logica)
- Registri (generali o dedicati)
- Interconnessioni
- Memoria
- Sistema di I/O
- Bus vari

Figure 1.4 A Top-Down View of a Computer

La storia dei calcolatori elettronici

1834	Analytical Engine (Babbage) – primo "computer" digitale		
→ 1946	ENIAC (Electronic Numerical Integrator And Calculator) – University of Pennsylvania (DoD) – J.P. Eckert, J. Mauchly (120 m³, 180 m², 30 ton, 20 registri a 10 cifre, 1900 somme/s)		
1951	UNIVAC-I – primo calcolatore comm. – 250,000 \$ - 48 esempl.		
1952	IBM 701 (prima solo macchine da ufficio)		
1952	Macchina IAS di Princeton (macchina di Von Neumann)		
1962	IBM 709x (primo calcolatore scientifico di discreta potenza)		
→ 1964	IBM S/360 – primo tentativo di def. di architettura primi		
1964	CDC 6600 – primo supercalcolatore (poi Cray)		
1965	DEC PDP 8 – primo minicalcolatore (< \$20.000) – accum. a 8 bit		
1970	DEC PDP 11 – calcolatore a 16 bit, unico bus		
→ 1971	microprocessore (Intel) CPU 4004 (sistema MCS-4) – a 4 bit		
1972	Intel 8008 – prima CPU a 8 bit (30 micros./istr.)		

La storia dei calcolatori elettronici

National PACE – prima CPU single chip a 16 bit	
Intel 8080 – seguito da Motorola MC6800 e Zilog Z80	
Cray-1 – primo supercomputer vettoriale	
Intel 8086 – primo processore di seconda generazione in grado di di indirizzare oltre a 64kB – seguito da MC68000 e Z8000	
DEC VAX – riferimento per i mainframe futuri	
Intel 8088 – processore a 8 bit con architettura int. a 16 bit	
IBM 801 – primo processore RISC (32 bit)	
IBM S/370 – compatibile con S/360	
RISC I – University of Berkley	
MC68020 – prima CPU a 32 con <i>cache</i> istruzioni integrata + MMU	
MIPS – University of Standford	
Intel 80386 - CPU a 32 bit con MMU integrata	
MC68030 – prima CPU con cache separate e MMU (32 bit)	

La storia dei calcolatori elettronici

	1989	MC68040 – prima CPU con anche FPU
	1989	Intel 80486 – cache integrata
>	inizi '90	PowerPC – archit. RISC, da unione IBM, Apple e Motorola
>	1993	Pentium – nuova architettura superscalare
	1995	Pentium Pro – esecuzione speculativa, predizione salti,
	1997	Pentium II – tecnologia MMX (modifica ISA)
	1999	Pentium III – istruzioni per la gestione della grafica 3D
	2000	Pentium 4 – istruzioni multimediali
	6/2001	Itanium Merced – IA-64 congiunta Intel-HP – esperimento
	6/2002	Itanium 2 McKinley – commerciale
>	5/2005	Intel Pentium D (EE 840), AMD Athlon 64 X2 – arch. dual-core
	7/2006	Intel Core 2 Duo (Core microarch.) – fine Pentium
	2008	Intel Core 2 Quad – fino al Q9300 (2.4 GhZ, L2 6MB)
	2014	Intel Core i7 Extreme – fino a i7-5960X (8 core,3.5 Ghz,L2 20MB)

Generazioni dei calcolatori

- GENERAZIONE 0 Computer Meccanici (1642-1945):
 - "Pascalina" (1642) solo somme e sottrazioni
 - Macchina di Von Leibnitz (1672) anche molt. e divisioni
 - Analytical Engine (Babbage 1834) programmi su schede perf.
- <u>GENERAZIONE 1</u> Valvole (1945-1955):
 - Guidata da necessità belliche/militari
 - Enormi e consumavano molta energia
 - ENIAC, EDVAC, UNIVAC, IAS
- **GENERAZIONE 2** Transistor (1955-1965):
 - Più piccoli e efficienti grazie ai transistor
 - Sviluppo hardware (organ. bus, ...) e software (ling. alto livello)
 - PDP, Cray, IBM, ...

GENERAZIONE 0 – Computer M

- solo so .eibnitz (1 (Babbage lvole (194 sità bellich

avano molta energia

NIVAC, IAS

ansistor (1955-1965):

enti grazie ai transistor

e (organ. bus, ...) e software (ling. alto livello)

of holes made in these cards determined the weaving pattern made by the loom

and highly-elaborate designs were possible.

Generazioni dei calcolatori

- GENERAZIONE 0 Computer Meccanici (1642)
 - "Pascalina" (1642) solo somme e sottraz
 - Macchina di Von Leibnitz (1672) anche m
 - Analytical Engine (Babbage 1834) prog
- **GENERAZIONE 1** Valvole (1945-1955):

Generazioni dei calcolatori

- GENERAZIONE 3 Circuiti integrati (1965-1980):
 - Necessità di capacità computazionali sempre maggiori
 - Concetto di architettura → IBM S/360
 - Nasce il concetto di multiprogrammazione
 - Spazio indirizzi a 24 bit
- GENERAZIONE 4 Integrazione a grandissima scala (1980-oggi)
 - Espansione esponenziale di tutti i componenti
 - Migrazione verso GUI
 - Nascita dei microprocessori
- GENERAZIONE 5 Computer avanzati (wearable, intelligenti, ...) (???)
 - Ancora in sviluppo
 - Molti esperimenti, ma niente ancora di commerciale
 - Esempi: MPP, quantum computing, biological computing, ...

Generazioni dei calcolatori

- GENERAZIONE 3 Circuiti integrati (1965-1980):
 - Necessità di capacità computazionali sempre maggiori

- Molti esperimenti, ma niente ancora di commerciale
- Esempi: MPP, quantum computing, biological computing, ...

Analytical engine (1834, gen. 0)

- Macchina completamente meccanica a schede perforate
- Di fatto mai terminata
- Ada Lovelace Byron → prima programmatrice

ENIAC (1946-, generazione 1)

- 450 m2, 30 tonnellate, 18.000 valvole termoioniche, 140 kW, 15.000 relè etc. etc.
- 20 accumulatori di 10 cifre decimali
- Turing completo

Architettura di von Neumann (1946)

- STORED PROGRAM COMPUTER
- Componenti principali:
 - MEMORIA: per dati e istruzioni
 - Meccanismi di Input/Output: interfaccia mondo esterno
 - CPU: unità di controllo + unità aritmetico-logica

Architettura di Harvard

• Spazio di memoria separato tra dati e istruzioni

IAS Computer (1952)

- Institute of Advanced Studies (Princeton)
- Basato sul modello di von Neumann
- Memoria organizzata su parole da 40 bit (interi)
 - Sistema binario
- 1024 parole complessivamente

Figure 2.2 IAS Memory Formats

IAS: struttura

Figure 2.3 Expanded Structure of IAS Computer

IAS: registri

- Memory Buffer Register (40 bit)
- Memory Address Register
- Instruction Register (8 bit)
- Instruction Buffer Register (40 bit)
- Program Counter
- Accumulator
- Multiplier/Quotient

IAS: funzionamento

M(X) = contents of memory location whose address is X (i:j) = bits i through j

IAS: set di istruzioni

		Symbolic	
Instruction Type	Opcode	Representation	Description
	00001010	LOAD MQ	Transfer contents of register MQ to the accumulator AC
	00001001	LOAD MQ,M(X)	Transfer contents of memory location X to MQ
Data transfer	00100001	STOR M(X)	Transfer contents of accumulator to memory location X
	00000001	LOAD M(X)	Transfer $M(X)$ to the accumulator
	00000010	LOAD - M(X)	Transfer $-M(X)$ to the accumulator
	00000011	LOAD IM(X)	Transfer absolute value of $M(X)$ to the accumulator
	00000100	LOAD - M(X)	Transfer $- M(X) $ to the accumulator
Unconditional	00001101	JUMP M(X,0:19)	Take next instruction from left half of M(X)
branch	00001110	JUMP M(X,20:39)	Take next instruction from right half of $M(X)$
Conditional	00001111	JUMP+ M(X,0:19)	If number in the accumulator is nonnegative, take next instruction from left half of $M(X)$
branch	00010000	JUMP+	If number in the accumulator is
		M(X,20:39)	nonnegative, take next instruction from right half of $M(X)$
	00000101	ADD M(X)	Add M(X) to AC; put the result in AC
	00000111	ADD M(X)	Add $ M(X) $ to AC; put the result in AC
	00000110	SUB M(X)	Subtract $M(X)$ from AC; put the result in AC
	00001000	SUB M(X)	Subtract $ M(X) $ from AC; put the remainder in AC
Arithmetic	00001011	MUL M(X)	Multiply M(X) by MQ; put most significant bits of result in AC, put least significant bits in MQ
	00001100	DIV M(X)	Divide AC by $M(X)$; put the quotient in MQ and the remainder in AC
	00010100	LSH	Multiply accumulator by 2, i.e., shift left one bit position
	00010101	RSH	Divide accumulator by 2, i.e., shift right one position
Address modify	00010010	STOR M(X,8:19)	Replace left address field at M(X) by 12 rightmost bits of AC
Address mounty	00010011	STOR M(X,28:39)	Replace right address field at M(X) by 12 rightmost bits of AC

Seconda generazione: i transistor

- Dagli anni `50
- Transistor:
 - Stato solido
 - Piccole dimensioni
 - Consumano e riscaldano meno

IBM 709x

- Fixed point
- Floating point
- Double precision

Figure 2.5 An IBM 7094 Configuration

Terza generazione: i circuiti integrati (SSI, MSI, LSI)

- DEC (Digital), 12 bit, economico
- Omnibus: controllo, indirizzi, dati, etc.

PDP-8: Il bus singolo

- Dagli anni '60
- Minicomputer

PDP11

VAX780

Legge di Moore

1965; Gordon Moore - co-founder of Intel

Le prestazioni dei processori, e il numero di transistor ad esso relativo, raddoppiano ogni 18 mesi

Observed number of transistors that could be put on a single chip was doubling every year

The pace slowed to a doubling every 18 months in the 1970's but has sustained that rate ever since

Consequences of Moore's law:

The cost of computer logic and memory circuitry has fallen at a dramatic rate

The electrical path length is shortened, increasing operating speed

Computer
becomes
smaller and is
more
convenient to
use in a variety
of
environments

Reduction in power and cooling requirements

Fewer interchip connections

Quarta generazione: VLSI (1980-)

- Realizzo di una singola CPU con sola piastrina silicio
- Nascono i Personal Computer (PC)

Personal computer Apple

M24 Olivetti

La legge di Moore rimane tuttora valida

La legge di Moore rimane tuttora valida

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 2012 REPRESENT BCA ESTIMATES.

Limiti della legge di Moore

- Di natura economica
- Limite fisico (già raggiunto?)
 - Effetti parassiti
- Soluzioni:
 - Riduzione frequenza
 - Parallelismo

Seconda legge di Moore

- Il costo di una fabbrica di chip raddoppia da una generazione all'altra
- Nel 2008 i chip Pentium II e PowerPC costeranno circa 75 cent (1998)

 Sarebbe molto più economico costruire sistemi su larga scala a partire da funzioni minori, interconnesse separatamente. La disponibilità di varie applicazioni, unita al design e alle modalità di realizzazione, consentirebbe alle società di gestire la produzione più rapidamente e a costi minori.

Legge di Amdahl

- Riguarda l'approccio ovvero l'algoritmo
- Dato un algoritmo è possibile individuare calcoli eseguibili in maniera indipendente:
 - Componente "sequenziale"
 - Componente "parallelizzabile"
- Se ho piú processori ho la possibilità di ridurre i tempi di esecuzione

$$S = \frac{1}{(1-f) + \frac{f}{N}}$$

- N: numero processori
- f: frazione dell'algoritmo parallelizzabile
- S: aumento velocità

Legge di Amdahl

Va scelto l'algoritmo piú adatto

Figure 2.14 Amdahl's Law for Multiprocessors

Come ottenere parallelismo?

- Differenti approcci "storici"
- Parallelismo "estrinseco":
 - Reti di CPU
 - Reti di calcolatori
- Parallelismo "intrinseco":
 - Pipelining
 - Coprocessori paralleli
 - Architetture multicore

Supercalcolatori: CM2

Architettura ad elevato parallelismo (migliaia di processori) Operativa a Parma tra il 1990 e il 1996

MMX poi SSE (SIMD)

- MultiMedia eXtensions, Multiple/Matrix Math eXtension
 - Pentium MMX (fine anni `90)
 - Operazioni intere su 8 registri a 64 bit partizionabili
 - Sovrapposto a FPU
 - C'è già la GPU
- Streaming SIMD Extensions (differenti versioni)
 - 8 registri a 128 bit
 - 4 numeri a virgola mobile (32)

Cluster

I moderni sistemi paralleli sfruttano la disponibilità di nodi di calcolo ad alte prestazioni disponibili sul mercato a costi ridotti. NOW - Network of Workstation

Multicore

Multi-core Processor

Impatto sull'evoluzione tecnologica

