Union-Find.

Given n elements X, X, -- , Xn optimile:

(1) make set $(x) \longrightarrow \{x\}$

(1) findset(x) -> return the name of the set centaining or

(3) union (x,y) -> morse the reto containing x and the set and containing y

Strategy.

(1) use trees to represent a set the not is the name of the set

(X) - name of the set

X2 X4

X3

union-by-vank whon union (x, y) we will convect the rout of the shorter tree to the rout of the shorter tree to the

With union-by-rank, find and union are O(legin) operations

Prof (By induction on the rank k)

Observation: the number of nucles ever reaching rank k is bounded by $\frac{n}{2^k}$

The number of node that can reach rank lagn is $\leq \frac{n}{2 \log n} = 1$

lugn is the maximum height of any tree in the data structure

Pruf by induction on k

Basis k=0 maximum Observe that the number of nodes that can have rank 0 is $\leq n$

 $\frac{n}{2^{\circ}} = n$

With path compression, for m finele operations, the running time (m+n)(lyxn) Tower function: 2 Towar (n) Example. Forvar (3) = 22 = 16 Towar $(4) = 2^{2} = 2^{16} = 64k$ Towar $(6) = 2^{2} = (264k)$

logx n is the number of log operations to brig n closen to ≤ 1

(8)
Kniskal's Algorithm
input G(V,Z)
output MST: associace an attribute to each edge
if it's marked, then edge belongs to the MST
Unmaik all edges
Firall veV make set (v)
runmark all edges ! IZI light
put all edges in a min-heap based on the edge o
While H is not empty
e= antra e(u,v) = extract_rout (-/)
$find(u) \neq find(v)$
union (u,v)
2000/0/20

Runny Time 12/6/2/ = .12/ly(y) = O(12/ly/y) Randomized Algorithm.

Orick Sort.

asset S
input: an array of n numbers, S= $\{S_1, S_2, \dots, S_n\}$ output So sorted.

Pick a pivot xThe propertiest of the medium x.

Pick a pivot xUse x to partition S^b into $S_1^c \in X < S_2^c$ Recursively perform quick sort on S_1^c and S_2^c

T(n) = M + T(s,1) + T(s,1) = M + T(k) + T(n-k) for $1 \le k \le L$ 'b k = 1 $T(n) = M + T(n-1) = T(n) = O(n^{L})$ $k = \frac{L}{2}$ $T(n) = 27(\frac{L}{2}) + M = 7$ $T(n) = O(n \log n)$

Randomieel Quick Sert

randomly pick an element x as the pivot use x to partition $S_1 \le x < S_2$ recensely sort S_2 and S_3 the experient running time: $O(n l y^2)$

Propabilitistic experiment.

experiments whose outcome are not deterministic and subject to some intrinsic probability discribution Probability Space.

S' Sample Space: the set of all the cut comes

I. Zvent Set . the collection of events of interest (25)

P: probability function P: # -> [0,1]

 $0 \le P(z) \le 1$

Censider tossiy a 6-sided die

e15= {1,2,3,4,5,6}

It: an event is a subset of the sample space

an event happens if the outcome of a

particular experiment belongs to the event

the event set = 2

P: E-> TO,1]

elementary ovent: each individual outcome as
an event \(\frac{1}{3}\) \(\frac{3}{3}\) \(\frac{15}{3}\) \(\fr

(1)
$$0 \leq P(Z) \leq 1$$
 cortain event

(2)
$$P(\phi) = 0$$
, $P(S) = 1$

Timpossible event

(4) I is closed under union, intersercion, complement

$$P(\{2,4,6\}) = P(\{13\}) + P(\{4\}) + P(\{6\})$$

$$= P(\{1\}) + P(\{4\}) + P(\{6\})$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{4}$$

Define (Joint Probability)

Let E, T be two events, their joint probability of is $P(Z \cap F)$

Défine (Independence)

Two events Z, F are independent if $P(Z(NF) = P(Z) \cdot P(F)$

Example: Considering tossing a fair 6-sided die

 $E = \{2, 4, 6\}$ $F = \{3, 4, 5\}$

are E and F independent?

 $P(Z \cap F) = \frac{1}{2} P(F) = \frac{1}{2} P(F) = \frac{1}{2}$

P(ZNF) + P(Z). P(F)

 $E = \{2, 4, 6\}$ $F = \{3, 4\}$

P(ZNF) = 6 P(Z)= 1 P(B)= 5

(15)

Def (Conditional Probability)

$$P(Z|F) = \frac{P(Z(F))}{P(F)}$$

$$P(7|E) = \frac{34}{2,4,63} = \frac{1}{3}$$

$$=\frac{P(ZNF)}{(P(F))}\frac{1}{2}=\frac{1}{2}$$