

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

LESSON 12 CAUSALITY AND STABILITY SURVEY IN Z DOMAIN

PhD. Nguyen Hong Quang

Assoc. Prof. Trinh Van Loan

PhD. Doan Phong Tung

Computer Engineering Department

□ CONTENT

- 1. Investigate the causality of the system on the Z domain.
- 2. Examine the stability of the system on the Z domain.
- 3. Schur-Cohn Stability Criterion
- 4. Investigate the stable causality of the second order recursion system

□ Lesson Objectives

After completing this lesson, you will be able to understand the following topics:

- Methods to investigate the causality and stability of the system on the Z domain.
- Investigate the stable causality of the second order recursion system

1. Characteristics of the transfer function H(Z)

Transfer function H(Z):

$$h(n) \xrightarrow{ZT} H(Z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}$$
 với $R_{h-} < |z| < R_{h+}$

$$R_{\mathrm{h-}} = \lim_{n \to \infty} |\mathrm{h}(n)|^{1/n}$$

$$R_{h+} = \frac{1}{\lim_{n \to \infty} |h(-n)|^{1/n}}$$

2. Causality

• $h(n) = 0, \forall n < 0$

$$R_{h+} = \frac{1}{\lim_{n \to \infty} |h(-n)|^{1/n}}$$

- $\bullet \implies R_{h+} = +\infty$
- The system is causal \Leftrightarrow the region of convergence of H(Z) lies outside the circle $R_{\rm h-}$

3. Stability

• $S = \sum_{n=-\infty}^{\infty} |h(n)| < \infty$

$$H(z) = \sum_{n = -\infty}^{\infty} h(n)z^{-n} \Rightarrow |H(z)| = \left| \sum_{n = -\infty}^{\infty} h(n)z^{-n} \right| \le \sum_{n = -\infty}^{\infty} |h(n)z^{-n}|$$
$$\Rightarrow |H(z)| \le \sum_{n = -\infty}^{\infty} |h(n)| \cdot |z|^{-n}$$

- So for the points z satisfying |z|=1 then $|H(z)| \le \sum_{n=-\infty}^{\infty} |h(n)| < \infty$
- The system is stable \Leftrightarrow the unit circle lies in the region of convergence of the transfer function H(Z) of the system

System satisfying causality, stable

- Causality: $R_{h+} = +\infty$
- Stability: $R_{h-} < 1 < R_{h+}$
- Causal and stable system: $R_{h-} < 1$ và $R_{h+} = \infty$
- Causal and stable system

 the poles of H(Z) lie within the unit circle.

4. Investigate the stability of the causal LTI system by the poles

- Differential Equation : $y(n) + a_1 \cdot y(n-1) + \cdots + a_N \cdot y(n-N) = x(n)$
- Algorithm:
 - Step 1: Find the transfer function H(z)

$$H(z) = 1/(1 + a_1.z^{-1} + \dots + a_N.z^{-N}) = z^N/(z^N + a_1.z^{N-1} + \dots + a_N)$$

Step 2: Find the poles Z_{pk}

Solve the equation :
$$z^N + a_1 z^{N-1} + \cdots + a_N = 0$$

- Step 3: Compare the poles with the unit circle
 - > If all the poles are inside the unit circle, then the system is stable
 - If there is a pole on or outside the unit circle, the system is unstable

Disadvantages

- ullet For large order systems there will be many poles Z_{pk}
- Determining Z_{pk} will have great complexity
- Problem:
 - $H(z) = 1/(1 + a_1.z^{-1} + \dots + a_N.z^{-N})$
 - Need to check if the poles (the roots of the denominator) are inside the unit circle?
- A method that doesn't need to be solved directly
 - Investigate the function \rightarrow standard stability Jury, Schur-Cohn, ...
 - Survey on function $A(z) = 1 + a_1 \cdot z^{-1} + \dots + a_N \cdot z^{-N}$

5. Schur-Cohn Stability Criterion

$$A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}$$

$$A_m(z) = \sum_{k=0}^{m} a_m(k) z^{-k} \text{ v\'oi } a_m(0) = 1$$

$$B_m(z) = z^{-m} A_m(z^{-1})$$
$$= \sum_{k=0}^m a_m(m-k) z^{-k}$$

• The coefficients of $B_m(z)$ are the same as those of $A_m(z)$, but in reverse order

Schur-Cohn Stability Criterion

$$A(z) = 1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_N z^{-N}$$

- Step 1. $A_N(z) = A(z)$ $K_N = a_N(N)$
- Step 2 (iteration step). Calculate lower degree polynomials $A_m(z)$, m = N, N-1, N-2, ..., 1:

$$A_{m-1}(z) = \frac{A_m(z) - K_m B_m(z)}{1 - K_m^2}$$
 với $K_m = a_m(m)$

• Step 3. Polynomial A(z) has poles in the unit circle if and only if: The coefficients K_m satisfy the condition $|K_m| < 1 \ \forall \ m = 1, 2, ..., N$.

Example

$$H(z) = \frac{1}{1 - \frac{7}{4}z^{-1} - \frac{1}{2}z^{-2}}$$

- Step 1: $A_2(z) = 1 \frac{7}{4}z^{-1} \frac{1}{2}z^{-2} \implies K_2 = -\frac{1}{2}$
- Step 2 (iteration step):

$$\Rightarrow B_2(z) = -\frac{1}{2} - \frac{7}{4}z^{-1} + z^{-2}$$

$$\Rightarrow A_1(z) = \frac{A_2(z) - K_2B_2(z)}{1 - K_2^2} = 1 - \frac{7}{2}z^{-1}$$

$$\Rightarrow K_1 = -\frac{7}{2} \Rightarrow Unstable \ system$$

Programming Algorithms

• Initialization step:

$$a_N(k) = a_k$$
 $k = 1, 2, ..., N$ $K_N = a_N(N)$

• Repeat step with m = N, N - 1, ..., 1:

$$K_m = a_m(m)$$
 $a_{m-1}(0) = 1$

$$a_{m-1}(k) = \frac{a_m(k) - K_m b_m(k)}{1 - K_m^2}$$
 $k = 1, 2, ..., m - 1$

$$b_m(k) = a_m(m - k)$$
 $k = 0,1,...,m$

6. Investigation of the stability of the 2-order IIR system

• The second order system has the differential equation:

$$y(n) + a_1 \cdot y(n-2) + a_2 \cdot y(n-2) = x(n)$$

Transfer function H(z):

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{z^2}{z^2 + a_1 z + a_2}$$

• Solve the equation: $z^2 + a_1 \cdot z + a_2 = 0$

$$\Delta = a_1^2 - 4a_2 \ge 0$$

• Two real roots: $z_{1,2} = -a_1/2 \pm \operatorname{sqrt}(\Delta)/2$

$$\Delta = a_1^2 - 4a_2 < 0$$

• Two complex solutions: $z_{1,2} = -a_1/2 \pm j. \operatorname{sqrt}(-\Delta)/2$

Schur-Cohn Stability Criterion

- Set $A_2(z) = 1 + a_1 \cdot z^{-1} + a_2 \cdot z^{-2} \implies K_2 = a_2$
- $B_2(z) = z^{-2} + a_1 \cdot z^{-1} + a_2$
- $A_1(z) = [A_2(z) K_2.B_2(z)]/(1 K_2^2)$
- $A_1(z) = 1 + a_1 \cdot \frac{z^{-1}}{1 + a_2} \implies K_1 = \frac{a_1}{1 + a_2}$
- The system is stable if and only if $|K_1| < 1$ và $|K_2| < 1$

$$-1 < a_2 < 1$$

$$-1 < \frac{a_1}{1+a_2} < 1 \Leftrightarrow \begin{vmatrix} a_1 < 1 + a_2 \\ a_1 > -1 - a_2 \end{vmatrix}$$

Geometry representation of the 2 order IIR system

- 2-order IIR system
- Fully deterministic via (a₁, a₂)
- Represented by a point on the plane (a_1, a_2)

Geometric representation of the stability conditions of the 2-

order IIR system

$$\begin{vmatrix} a_1 < 1 + a_2 \\ a_1 > -1 - a_2 \end{vmatrix} \implies a_2 > a_1 - 1 \\ \implies a_2 > -a_1 - 1$$

$$-1 < a_2 < 1$$

Real poles and imaginary poles on the stable triangle of a 2-order

IIR system

4. Summary

- The causality and stability of a system can be investigated through its transfer function and convergence domain.
- The Schur-Cohn criterion allows to investigate the stability through the coefficients of the differential equation.
- The quadratic regression system is stable with the system representation points lying in the stability triangle on the plane A1-A2.

Exercise 1

• Examine the stability of the following causal systems:

a.
$$y(n) - 3.y(n-1) + 2.y(n-2) = 4.x(n) + 5.x(n-1)$$

b.
$$y(n) - 3.y(n-1) + 2.y(n-2) = x(n)$$

c.
$$y(n) - 5/8 \cdot y(n-1) + 1/8 \cdot y(n-2) = x(n)$$

d.
$$y(n) - 4 \cdot y(n-1) + 5 \cdot y(n-2) = x(n)$$

Exercise 2

• Examine the stability of the following causal systems:

a.
$$y(n) - 0.02 y(n-1) - 0.1 y(n-2) - 0.03 y(n-3) - 0.25 y(n-4) = 0.5 x(n) + 0.3 x(n-1)$$

b. y(n) - 0.15 y(n-3) - 0.3 y(n-4) - 0.2 y(n-5) - 0.01 y(n-6) = 0.1 x(n) + 0.2 x(n-1)

Next lesson. Lesson

13

1-sided Z TRANSFORM

References:

- Nguyễn Quốc Trung (2008), Xử lý tín hiệu và lọc số, Tập 1, Nhà xuất bản Khoa học và Kỹ thuật, Chương 1 Tín hiệu và hệ thống rời rạc.
- J.G. Proakis, D.G. Manolakis (2007), Digital Signal Processing, Principles, Algorithms, and Applications, 4th Ed, Prentice Hall, Chapter 1 Introduction.

Wish you all good study!