$12a_{0097} (K12a_{0097})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.27877 \times 10^{118} u^{70} - 1.71790 \times 10^{119} u^{69} + \dots + 6.29616 \times 10^{119} b - 2.88028 \times 10^{119}, \\ &- 1.11155 \times 10^{119} u^{70} + 7.86535 \times 10^{119} u^{69} + \dots + 4.40732 \times 10^{120} a + 1.25108 \times 10^{121}, \\ &u^{71} - 8u^{70} + \dots - 336u + 49 \rangle \\ I_2^u &= \langle b, \ u^2 + a + 2, \ u^3 + 2u - 1 \rangle \\ I_3^u &= \langle b, \ -u^3 - u^2 + a - 2u - 2, \ u^4 + u^3 + 2u^2 + 2u + 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 78 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 2.28 \times 10^{118} u^{70} - 1.72 \times 10^{119} u^{69} + \cdots + 6.30 \times 10^{119} b - 2.88 \times 10^{119}, \ -1.11 \times 10^{119} u^{70} + 7.87 \times 10^{119} u^{69} + \cdots + 4.41 \times 10^{120} a + 1.25 \times 10^{121}, \ u^{71} - 8u^{70} + \cdots - 336u + 49 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.0252206u^{70} - 0.178461u^{69} + \dots + 12.8042u - 2.83865 \\ -0.0361930u^{70} + 0.272848u^{69} + \dots - 10.0915u + 0.457467 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.0109724u^{70} + 0.0943870u^{69} + \dots + 2.71273u - 2.38119 \\ -0.0361930u^{70} + 0.272848u^{69} + \dots - 10.0915u + 0.457467 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0289170u^{70} + 0.232103u^{69} + \dots + 11.9842u - 0.213372 \\ -0.00325428u^{70} + 0.0204184u^{69} + \dots + 4.10649u - 1.07519 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0327771u^{70} - 0.219346u^{69} + \dots + 20.2771u - 2.78303 \\ -0.00325428u^{70} + 0.0204184u^{69} + \dots + 4.10649u - 1.07519 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0327771u^{70} - 0.219346u^{69} + \dots + 14.5291u - 1.66013 \\ 0.0428700u^{70} - 0.321456u^{69} + \dots + 8.23006u - 1.60608 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0348688u^{70} - 0.279866u^{69} + \dots + 12.9847u - 2.05681 \\ 0.0348688u^{70} - 0.279866u^{69} + \dots + 1.94984u + 0.536966 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.0410166u^{70} - 0.324779u^{69} + \dots + 25.3736u - 3.63534 \\ -0.0478328u^{70} + 0.393772u^{69} + \dots - 12.0234u + 1.27819 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0549660u^{70} + 0.494164u^{69} + \cdots 79.5880u + 1.61216$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{71} + 30u^{70} + \dots + 63u + 1$
c_2, c_4	$u^{71} - 8u^{70} + \dots - u + 1$
c_3, c_7	$u^{71} + u^{70} + \dots + 320u + 128$
c_5	$u^{71} - 2u^{70} + \dots - 784u + 4360$
c_6, c_{10}, c_{11}	$u^{71} + 2u^{70} + \dots + 4u + 1$
c_8, c_9, c_{12}	$u^{71} - 8u^{70} + \dots - 336u + 49$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{71} + 30y^{70} + \dots + 3271y - 1$
c_2, c_4	$y^{71} - 30y^{70} + \dots + 63y - 1$
c_3, c_7	$y^{71} + 45y^{70} + \dots - 233472y - 16384$
c_5	$y^{71} + 36y^{70} + \dots - 370918384y - 19009600$
c_6, c_{10}, c_{11}	$y^{71} + 68y^{70} + \dots + 12y - 1$
c_8, c_9, c_{12}	$y^{71} + 80y^{70} + \dots - 77420y - 2401$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.965089 + 0.222646I		
a = -0.463055 + 0.146640I	2.17116 - 4.96264I	0
b = -0.383523 - 1.048760I		
u = 0.965089 - 0.222646I		
a = -0.463055 - 0.146640I	2.17116 + 4.96264I	0
b = -0.383523 + 1.048760I		
u = 0.555630 + 0.843517I		
a = -0.179841 - 0.287942I	3.18386 - 5.21037I	0
b = -0.921031 + 0.373991I		
u = 0.555630 - 0.843517I		
a = -0.179841 + 0.287942I	3.18386 + 5.21037I	0
b = -0.921031 - 0.373991I		
u = -0.497939 + 0.886784I		
a = -0.460887 - 0.886344I	2.29580 + 2.43328I	0
b = -0.213854 + 1.051720I		
u = -0.497939 - 0.886784I		
a = -0.460887 + 0.886344I	2.29580 - 2.43328I	0
b = -0.213854 - 1.051720I		
u = 0.901281 + 0.483012I		
a = 0.174621 - 0.074659I	2.82109 - 0.79303I	0
b = -0.183485 + 0.929838I		
u = 0.901281 - 0.483012I		
a = 0.174621 + 0.074659I	2.82109 + 0.79303I	0
b = -0.183485 - 0.929838I		
u = -0.737991 + 0.797805I		
a = 0.817472 + 0.829674I	0.78928 + 7.49831I	0
b = 0.496722 - 1.174470I		
u = -0.737991 - 0.797805I		
a = 0.817472 - 0.829674I	0.78928 - 7.49831I	0
b = 0.496722 + 1.174470I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.898468 + 0.151332I		
a = 0.0921622 + 0.0914888I	-1.11803 - 2.10911I	0
b = 0.274475 + 1.005400I		
u = -0.898468 - 0.151332I		
a = 0.0921622 - 0.0914888I	-1.11803 + 2.10911I	0
b = 0.274475 - 1.005400I		
u = 0.519063 + 0.701175I		
a = -0.45976 + 2.32557I	2.27830 - 2.99192I	0
b = -0.267550 - 0.775200I		
u = 0.519063 - 0.701175I		
a = -0.45976 - 2.32557I	2.27830 + 2.99192I	0
b = -0.267550 + 0.775200I		
u = 0.542453 + 1.060010I		
a = 0.312954 - 1.139310I	7.64845 - 5.36975I	0
b = 0.336812 + 1.112900I		
u = 0.542453 - 1.060010I		
a = 0.312954 + 1.139310I	7.64845 + 5.36975I	0
b = 0.336812 - 1.112900I		
u = -0.170069 + 1.204310I		
a = -0.021614 - 0.362936I	2.50967 + 1.94105I	0
b = -0.002806 + 0.626003I		
u = -0.170069 - 1.204310I		
a = -0.021614 + 0.362936I	2.50967 - 1.94105I	0
b = -0.002806 - 0.626003I		
u = 0.345350 + 0.682566I		
a = 1.018120 - 0.634027I	3.18971 + 0.88617I	-5.37424 - 3.34259I
b = 0.044806 + 1.135950I		
u = 0.345350 - 0.682566I		
a = 1.018120 + 0.634027I	3.18971 - 0.88617I	-5.37424 + 3.34259I
b = 0.044806 - 1.135950I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.478584 + 0.568662I	,	-
a = 0.568000 - 0.216623I	-1.82493 + 2.59268I	-15.3769 - 7.2742I
b = 0.803895 + 0.353915I		
u = -0.478584 - 0.568662I		
a = 0.568000 + 0.216623I	-1.82493 - 2.59268I	-15.3769 + 7.2742I
b = 0.803895 - 0.353915I		
u = 0.738278 + 1.040830I		
a = -0.667814 + 1.062280I	5.84593 - 10.65120I	0
b = -0.552812 - 1.199040I		
u = 0.738278 - 1.040830I		
a = -0.667814 - 1.062280I	5.84593 + 10.65120I	0
b = -0.552812 + 1.199040I		
u = 0.551600 + 0.463905I		
a = -1.304920 + 0.339654I	2.25258 - 4.24592I	-7.24520 + 3.14949I
b = -0.394465 - 1.185760I		
u = 0.551600 - 0.463905I		
a = -1.304920 - 0.339654I	2.25258 + 4.24592I	-7.24520 - 3.14949I
b = -0.394465 + 1.185760I		
u = 0.700493 + 0.073725I		
a = -0.99238 - 1.19225I	0.487722 - 1.022320I	-13.68239 - 0.22891I
b = -0.604080 + 0.530248I		
u = 0.700493 - 0.073725I		
a = -0.99238 + 1.19225I	0.487722 + 1.022320I	-13.68239 + 0.22891I
b = -0.604080 - 0.530248I		
u = -0.016841 + 0.702643I		
a = -1.54871 - 1.43918I	9.32963 - 2.62843I	-1.88831 + 2.84842I
b = -0.040877 + 1.295280I		
u = -0.016841 - 0.702643I		
a = -1.54871 + 1.43918I	9.32963 + 2.62843I	-1.88831 - 2.84842I
b = -0.040877 - 1.295280I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.332568 + 0.605833I		
a = -0.301092 + 0.636346I	4.21028 - 1.36691I	-5.92252 + 0.19732I
b = 0.862872 - 0.007307I		
u = 0.332568 - 0.605833I		
a = -0.301092 - 0.636346I	4.21028 + 1.36691I	-5.92252 - 0.19732I
b = 0.862872 + 0.007307I		
u = 0.558598 + 0.272901I		
a = -0.299568 - 0.501299I	3.36702 - 1.57403I	-6.09432 + 4.24770I
b = 0.440934 + 0.406344I		
u = 0.558598 - 0.272901I		
a = -0.299568 + 0.501299I	3.36702 + 1.57403I	-6.09432 - 4.24770I
b = 0.440934 - 0.406344I		
u = -0.435436 + 0.347884I		
a = 1.09728 + 2.39333I	-2.50844 + 0.67754I	-14.4694 - 9.3694I
b = 0.316131 - 0.580635I		
u = -0.435436 - 0.347884I		
a = 1.09728 - 2.39333I	-2.50844 - 0.67754I	-14.4694 + 9.3694I
b = 0.316131 + 0.580635I		
u = 0.27752 + 1.42324I		
a = 0.031422 - 0.333514I	8.54375 - 5.00674I	0
b = -0.015427 + 0.624053I		
u = 0.27752 - 1.42324I		
a = 0.031422 + 0.333514I	8.54375 + 5.00674I	0
b = -0.015427 - 0.624053I		
u = -0.097939 + 0.485793I		
a = 2.58622 + 1.57725I	8.54074 + 3.06263I	-3.03957 - 2.89556I
b = 0.361070 - 1.308120I		
u = -0.097939 - 0.485793I		
a = 2.58622 - 1.57725I	8.54074 - 3.06263I	-3.03957 + 2.89556I
b = 0.361070 + 1.308120I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.06886 + 1.50531I		
a = 0.01135 + 2.28493I	3.67289 + 2.17680I	0
b = 0.024006 - 1.065750I		
u = -0.06886 - 1.50531I		
a = 0.01135 - 2.28493I	3.67289 - 2.17680I	0
b = 0.024006 + 1.065750I		
u = 0.00316 + 1.51912I		
a = 0.444013 - 0.011181I	5.33599 - 0.33795I	0
b = -1.166440 + 0.191892I		
u = 0.00316 - 1.51912I		
a = 0.444013 + 0.011181I	5.33599 + 0.33795I	0
b = -1.166440 - 0.191892I		
u = -0.12329 + 1.54920I		
a = -0.430159 - 0.078037I	5.25008 + 4.73327I	0
b = 1.170270 + 0.230752I		
u = -0.12329 - 1.54920I		
a = -0.430159 + 0.078037I	5.25008 - 4.73327I	0
b = 1.170270 - 0.230752I		
u = 0.15624 + 1.55244I		
a = -0.48688 + 1.73940I	9.10594 - 6.74702I	0
b = -0.61601 - 1.36943I		
u = 0.15624 - 1.55244I		
a = -0.48688 - 1.73940I	9.10594 + 6.74702I	0
b = -0.61601 + 1.36943I		
u = -0.04061 + 1.56679I		
a = 0.47782 + 1.82859I	15.6993 + 3.6198I	0
b = 0.61104 - 1.39480I		
u = -0.04061 - 1.56679I		
a = 0.47782 - 1.82859I	15.6993 - 3.6198I	0
b = 0.61104 + 1.39480I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.08851 + 1.58806I		
a = -0.499554 + 0.013294I	11.75780 - 2.86927I	0
b = 1.192900 + 0.167411I		
u = 0.08851 - 1.58806I		
a = -0.499554 - 0.013294I	11.75780 + 2.86927I	0
b = 1.192900 - 0.167411I		
u = 0.07767 + 1.59080I		
a = 0.31543 - 1.81519I	10.92660 - 0.53406I	0
b = 0.36546 + 1.43425I		
u = 0.07767 - 1.59080I		
a = 0.31543 + 1.81519I	10.92660 + 0.53406I	0
b = 0.36546 - 1.43425I		
u = 0.14393 + 1.59724I		
a = -0.01779 + 2.26870I	10.02040 - 5.42403I	0
b = -0.048367 - 1.098220I		
u = 0.14393 - 1.59724I		
a = -0.01779 - 2.26870I	10.02040 + 5.42403I	0
b = -0.048367 + 1.098220I		
u = 0.00999 + 1.62086I		
a = -0.32346 - 1.87968I	17.4703 - 2.6861I	0
b = -0.35353 + 1.46380I		
u = 0.00999 - 1.62086I		
a = -0.32346 + 1.87968I	17.4703 + 2.6861I	0
b = -0.35353 - 1.46380I		
u = -0.15869 + 1.63585I		
a = -0.25913 - 1.78272I	10.77460 + 5.03788I	0
b = -0.39647 + 1.42419I		
u = -0.15869 - 1.63585I		
a = -0.25913 + 1.78272I	10.77460 - 5.03788I	0
b = -0.39647 - 1.42419I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.23701 + 1.62979I		
a = 0.42275 + 1.68597I	8.8506 + 11.2317I	0
b = 0.63809 - 1.35812I		
u = -0.23701 - 1.62979I		
a = 0.42275 - 1.68597I	8.8506 - 11.2317I	0
b = 0.63809 + 1.35812I		
u = 0.17330 + 1.64014I		
a = 0.465694 - 0.121420I	11.58050 - 8.05691I	0
b = -1.196240 + 0.249549I		
u = 0.17330 - 1.64014I		
a = 0.465694 + 0.121420I	11.58050 + 8.05691I	0
b = -1.196240 - 0.249549I		
u = -0.313436		
a = 0.420211	-0.621610	-15.9200
b = -0.362858		
u = 0.050078 + 0.277688I		
a = -0.89153 + 1.57529I	-0.930568 - 0.261352I	-10.83012 - 1.62800I
b = -0.664853 + 0.126557I		
u = 0.050078 - 0.277688I		
a = -0.89153 - 1.57529I	-0.930568 + 0.261352I	-10.83012 + 1.62800I
b = -0.664853 - 0.126557I		
u = 0.18363 + 1.71053I		
a = 0.20893 - 1.79674I	17.1323 - 8.4610I	0
b = 0.42095 + 1.43650I		
u = 0.18363 - 1.71053I		
a = 0.20893 + 1.79674I	17.1323 + 8.4610I	0
b = 0.42095 - 1.43650I		
u = 0.24399 + 1.71973I		
a = -0.36048 + 1.69027I	15.1368 - 14.7023I	0
b = -0.65719 - 1.36333I		

Cusp shape	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Solutions to I_1^u
		u = 0.24399 - 1.71973I
0	15.1368 + 14.7023I	a = -0.36048 - 1.69027I
		b = -0.65719 + 1.36333I

II.
$$I_2^u = \langle b, u^2 + a + 2, u^3 + 2u - 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} - 2 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - 2 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - 2 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{2} - u + 1 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + u \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 3u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
c_4	$(u+1)^3$
<i>C</i> ₅	$u^3 - 3u^2 + 5u - 2$
c_6, c_8, c_9	$u^3 + 2u - 1$
c_{10}, c_{11}, c_{12}	$u^3 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
c_5	$y^3 + y^2 + 13y - 4$
$c_6, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^3 + 4y^2 + 4y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.22670 + 1.46771I		
a = 0.102785 + 0.665457I	7.79580 + 5.13794I	-11.21712 - 3.73768I
b = 0		
u = -0.22670 - 1.46771I		
a = 0.102785 - 0.665457I	7.79580 - 5.13794I	-11.21712 + 3.73768I
b = 0		
u = 0.453398		
a = -2.20557	-2.43213	-15.5660
b = 0		

III.
$$I_3^u = \langle b, -u^3 - u^2 + a - 2u - 2, u^4 + u^3 + 2u^2 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ 0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} + u^{2} + 2u + 2 \\ -u^{3} - 2u - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{3} + 2u + 1 \\ u^{3} + u^{2} + u + 2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-2u^3 + 2u^2 u 12$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^4$
c_3, c_7	u^4
<i>C</i> ₄	$(u+1)^4$
<i>C</i> ₅	$(u^2+u+1)^2$
c_6, c_8, c_9	$u^4 + u^3 + 2u^2 + 2u + 1$
c_{10}, c_{11}, c_{12}	$u^4 - u^3 + 2u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^4$
c_3, c_7	y^4
c_5	$(y^2+y+1)^2$
$c_6, c_8, c_9 \\ c_{10}, c_{11}, c_{12}$	$y^4 + 3y^3 + 2y^2 + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.621744 + 0.440597I		
a = 1.070700 + 0.758745I	1.64493 + 2.02988I	-11.23686 - 2.38721I
b = 0		
u = -0.621744 - 0.440597I		
a = 1.070700 - 0.758745I	1.64493 - 2.02988I	-11.23686 + 2.38721I
b = 0		
u = 0.121744 + 1.306620I		
a = -0.070696 + 0.758745I	1.64493 - 2.02988I	-14.2631 + 3.6750I
b = 0		
u = 0.121744 - 1.306620I		
a = -0.070696 - 0.758745I	1.64493 + 2.02988I	-14.2631 - 3.6750I
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^7)(u^{71} + 30u^{70} + \dots + 63u + 1)$
c_2	$((u-1)^7)(u^{71}-8u^{70}+\cdots-u+1)$
c_3, c_7	$u^7(u^{71} + u^{70} + \dots + 320u + 128)$
c_4	$((u+1)^7)(u^{71}-8u^{70}+\cdots-u+1)$
<i>C</i> ₅	$((u^{2}+u+1)^{2})(u^{3}-3u^{2}+5u-2)(u^{71}-2u^{70}+\cdots-784u+4360)$
<i>C</i> ₆	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{71} + 2u^{70} + \dots + 4u + 1)$
c_8, c_9	$(u^3 + 2u - 1)(u^4 + u^3 + 2u^2 + 2u + 1)(u^{71} - 8u^{70} + \dots - 336u + 49u^{70})$
c_{10}, c_{11}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{71} + 2u^{70} + \dots + 4u + 1)$
c_{12}	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)(u^{71} - 8u^{70} + \dots - 336u + 49u^{70} + \dots + 300u^{70} + \dots + 300u^$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^7)(y^{71} + 30y^{70} + \dots + 3271y - 1)$
c_2, c_4	$((y-1)^7)(y^{71}-30y^{70}+\cdots+63y-1)$
c_3, c_7	$y^{7}(y^{71} + 45y^{70} + \dots - 233472y - 16384)$
c_5	$(y^2 + y + 1)^2(y^3 + y^2 + 13y - 4)$ $\cdot (y^{71} + 36y^{70} + \dots - 370918384y - 19009600)$
c_6, c_{10}, c_{11}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)(y^{71} + 68y^{70} + \dots + 12y - 1)$
c_8, c_9, c_{12}	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$ $\cdot (y^{71} + 80y^{70} + \dots - 77420y - 2401)$