Meeting agenda

DS <u>5165</u>:

Name: GatesProject_DL_OC_Fall2019_Practice_Cleaned_AddGaming

Step 1: run iAFM models

Model iAFM: with opportunity as the fixed effect

Formula: glmer(response ~ opportunity0 + (opportunity0|KC) + (opportunity0|individual), data=., family=binomial(), nAGQ = 0))

Model summary model

ds5165	# records	AIC	BIC	Pseudo- R² (fixed effects)	Pseudo- R² (total)	Intercept	coefficient
iAFM	32458	37774.13	37841.23	0.04	0.56	-0.27	0.04

Model params (ranef(model_iafm))

■ model iafm param.xlsx

Model reversed iAFM: iAFM with reverse opportunity as the fixed effect

Formula: glmer(response ~ reverse_opportunity + (reverse_opportunity|KC) + (reverse_opportunity|individual), data=., family=binomial(), nAGQ = 0))

Model summary model

ds5165	# records	AIC	BIC	Pseudo- R² (fixed effects)	Pseudo- R² (total)	Intercept	coefficient
iAFM_rever se	32458	37811.43	37878.53	0.09	0.52	0.1	-0.06

Model params (ranef(model_iafm_reverse))

■ model_iafm_reverse_param.xlsx

Step 1.5: get PredAvgiAFM

Uses all of the parameter estimates (from step 1) and their maximum opportunity on each KC to predict an end of instruction state for each student on each KC. And then averages across KCs to get a single predicted value per student (PredAvgiAFM).

Code

```
[10]:
       # Maximum opportunity on each KC
       predict_data = my_data %>%
             group_by(individual, KC) %>%
             slice(which.max(opportunity0))
[11]:
       # Predict an end of instruction state for each student on each KC
       predict_data$pred_iafm = predict(model_iafm, predict_data,type="response", allow.new.levels=TRUE)
[12]:
       # Average across KCs to get a single predicted value per student
       PredictedScores = predict_data %>%
         group_by(individual) %>%
         summarise(
           PredAvgiAFM = mean(pred_iafm),
[14]:
       # Export the predicted value to a CSV file
       write.csv(PredictedScores, file = "/kaggle/working/predicted.csv")
```

Predicted value dataframe

■ predicted.xlsx

get TotalOpportunity

Sum-up the max opportunity for each student on each KC **Code**

```
# Total opportunity per student
total_opportunity = predict_data %>%
    group_by(individual) %>%
    summarise(
        TotalOpportunity = sum(opportunity),
)
# Export the predicted value to a CSV file
write.csv(total_opportunity, file = "/kaggle/working/total_opportunity.csv")
```

Total Opportunity dataframe

■ total_opportunity.xlsx

Step 2: Do iAFM or reverse iAFM student parameters and prediction better predict the post-test?

```
# Model 1: pretest only
test_scores %>%
  lm(Posttest ~ Pretest, data = .) %>%
  summ()
# Model 2: pretest + PredAvgiAFM
test_scores %>%
  lm(Posttest ~ PredAvgiAFM + Pretest, data = .) %>%
  summ()
# Model 3: pretest + int_iAFM
test_scores %>%
  lm(Posttest ~ int_iAFM + Pretest, data = .) %>%
# Model 4: pretest + int_iAFM_reverse
test_scores %>%
  lm(Posttest ~ int_iAFM_reverse + Pretest, data = .) %>%
  summ()
# Model 5: pretest + int_iAFM + int_iAFM_reverse
test_scores %>%
  lm(Posttest ~ int_iAFM + int_iAFM_reverse + Pretest, data = .) %>%
  summ()
```

Summary of models

Model	# student s	F-statistic	R-squared	Adjusted R-squared	р	AIC	BIC	log-likelihood
1: pretest	129	71.18	0.36	0.35	0.00	-97.6802212 647543	-89.1007840 516693	51.84011 (df=3)
2: pretest + PredAvgiAFM	129	49.19	0.44	0.43	0.00	-112.7155188 04335	-101.276269 186888	60.35776 (df=4)
3: pretest + int_iAFM	129	84.03	0.57	0.56	0.00	-147.600241 987266	-136.160992 369819	77.80012 (df=4)
4: pretest + int_iAFM_revers e	129	75.66	0.55	0.54	0.00	-140.043071 08267	-128.603821 465223	74.02154 (df=4)
5: pretest + int_iAFM + int_iAFM_revers e	129	55.73	0.57	0.56	0.00	-145.806850 497986	-131.507788 476178	77.90343 (df=5)

Model	AIC	BIC	log-likelihood
1: pretest	-97.6802212	-89.1007840	51.84011
	647543	516693	(df=3)
2: pretest +	-112.7155188	-101.276269	60.35776
PredAvgiAFM	04335	186888	(df=4)
3: pretest + int_iAFM	-147.600241	-136.160992	77.80012
	987266	369819	(df=4)
4: pretest + int_iAFM_revers e	-140.043071	-128.603821	74.02154
	08267	465223	(df=4)
5: pretest + int_iAFM + int_iAFM_revers e	-145.806850 497986	-131.507788 476178	77.90343 (df=5)

Model Statistics

Model 1: pretest only

MODEL INFO: Observations: 129

Dependent Variable: Posttest Type: OLS linear regression

MODEL FIT:

F(1,127) = 71.18, p = 0.00

 $R^2 = 0.36$ Adj. $R^2 = 0.35$

Standard errors: OLS

Est. S.E. t val. p
-----(Intercept) 0.26 0.03 8.60 0.00
Pretest 0.65 0.08 8.44 0.00

-----el

Model 2: pretest + PredAvgiAFM

MODEL INFO:

Observations: 129

Dependent Variable: Posttest Type: OLS linear regression

MODEL FIT:

F(2,126) = 49.19, p = 0.00

 $R^2 = 0.44$ Adj. $R^2 = 0.43$

Standard errors: OLS

Est. S.E. t val. p

(Intercept) 0.09 0.05 1.86 0.07 PredAvgiAFM 0.41 0.10 4.22 0.00

Pretest 0.46 0.09 5.34 0.00

Model 3: pretest + int iAFM

MODEL FIT:

F(2,126) = 84.03, p = 0.00

 $R^2 = 0.57$

Adj. $R^2 = 0.56$

Standard errors: OLS

_

Est. S.E. t val. p

(Intercept) 0.40 0.03 13.12 0.00 int_iAFM 0.12 0.01 7.90 0.00 Pretest 0.25 0.08 3.08 0.00

MODEL INFO:

Observations: 129

Dependent Variable: Posttest Type: OLS linear regression

Model 4: pretest + int iAFM reverse

MODEL FIT:

F(2,126) = 75.66, p = 0.00

 $R^2 = 0.55$

Adj. $R^2 = 0.54$

Standard errors: OLS

Est. S.E. t val. p

....

(Intercept) 0.39 0.03 12.46 0.00 int iAFM reverse 0.12 0.02 7.19 0.00

Pretest 0.28 0.08 3.34 0.00

Model 5: pretest + int_iAFM + int_iAFM_reverse

MODEL FIT:

F(3,125) = 55.73, p = 0.00

 $R^2 = 0.57$

Adj. $R^2 = 0.56$

Standard errors: OLS

Est. S.E. t val. p

(Intercept) 0.40 0.03 13.04 0.00 int_iAFM 0.10 0.04 2.78 0.01

Pretest 0.24 0.08 2.99 0.00

Pairwise ANOVA Tests

Model 1: pretest only v.s. Model 2: pretest + PredAvgiAFM

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	127	3.381139	NA	NA	NA
2	126	2.962863	1	0.4182759	2.46964e-05

Model 1: pretest only v.s. Model 3: pretest + int_iAFM

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	127	3.381139	NA	NA	NA
2	126	2.260830	1	1.120309	2.751333e-15

Model 1: pretest only v.s. Model 4: pretest + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	127	3.381139	NA	NA	NA
2	126	2.397232	1	0.9839074	6.417744e-13

Model 1: pretest only v.s. Model 5: pretest + int_iAFM + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	127	3.381139	NA	NA	NA
2	125	2.257212	2	1.123927	3.051798e-14

Model 2: pretest + PredAvgiAFM v.s. Model 3: pretest + int_iAFM

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	126	2.962863	NA	NA	NA
2	126	2.260830	0	0.7020335	NA

Model 2: pretest + PredAvgiAFM v.s. Model 4: pretest + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	126	2.962863	NA	NA	NA
2	126	2.397232	0	0.5656315	NA

Model 2: pretest + PredAvgiAFM v.s. Model 5: pretest + int_iAFM + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	126	2.962863	NA	NA	NA
2	125	2.257212	1	0.7056516	4.072877e-10

Model 3: pretest + int_iAFM v.s. Model 4: pretest + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Ch i)
1	126	2.260830	NA	NA	NA
2	126	2.397232	0	-0.1364019	NA

Model 3: pretest + int_iAFM v.s. Model 5: pretest + int_iAFM + int_iAFM_reverse

		Res.Df	Res.Df RSS Df		Sum of Sq	Pr(>Chi)
ſ	1	126	2.260830	NA	NA	NA
	2	125	2.257212	1	0.003618084	0.6544284

Model 4: pretest + int_iAFM_reverse v.s. Model 5: pretest + int_iAFM + int_iAFM_reverse

	Res.Df	RSS	Df	Sum of Sq	Pr(>Chi)
1	126	2.397232	NA	NA	NA
2	125	2.257212	1	0.14002	0.00535926

Correlation Matrix

	Pretest	Posttest	TotalOpportunity	int_iAFM	int_iAFM_reverse	PredAvgiAFM
Pretest	1.0000000	0.5993182	0.24872107	0.62535623	0.62235234	0.53417269
Posttest	0.5993182	1.0000000	0.05715290	0.73436133	0.71099652	0.55816121
TotalOpportunity	0.2487211	0.0571529	1.00000000	-0.01257679	0.08021127	0.08569131
int_iAFM	0.6253562	0.7343613	-0.01257679	1.00000000	0.94752788	0.81418203
int_iAFM_reverse	0.6223523	0.7109965	0.08021127	0.94752788	1.00000000	0.82673920
PredAvgiAFM	0.5341727	0.5581612	0.08569131	0.81418203	0.82673920	1.00000000

Correlation Chart

Alternative - 1 parameter fit

1. Create a table with both pre and post in separate rows for each student

Student	Test-Time	Test-Sco	e Process-Model-Prediction1	Process-Model-Prediction2
S1	Pre	.4	prob(-1.1) [intercept_iAFM]	prob(-1.1) [intercept_iAFM]
S1	Post	.6	<pre>prob(.4) [intercept_iAFM_reverse]</pre>	prob(.34) [max-Opp-iAFM??]
S2				

Insert a link to the resulting cvs table:

https://drive.google.com/file/d/11GUuKK5f3DzxHrlnLmFGknuOvv4KBC t/view?usp=drive link

2. Run analyses

a. Two parameter version:

Model1: Test-Score ~ Process-Model-Prediction1 [+ Intercept] Im(TestScore ~ ProcessModelPrediction1, data = .)

MODEL INFO:

Observations: 258

Dependent Variable: TestScore Type: OLS linear regression

MODEL FIT:

F(1,256) = 212.07, p = 0.00

 $R^2 = 0.45$

Adj. $R^2 = 0.45$

Standard errors: OLS

	Est.	S.E.	t val.	р
(Intercept) ProcessModelPrediction1			-0.15 14.56	

Model2: Test-Score ~ Process-Model-Prediction2 [+ Intercept]

b. One parameter version:

Model3: Test-Score ~ 1* Process-Model-Prediction1 [+ Intercept] Model4: Test-Score ~ 1* Process-Model-Prediction2 [+ Intercept]

Model	# student s	F-statistic	R-squared	Adjusted R-squared	р	AIC	BIC	log-likelihood
1	129	212.07	0.45	0.45	0.00	-282.640448 455066	-271.981569 700301.	144.3202 (df=3)
2	129	145.04	0.36	0.36	0.00	-242.764374 115557	-232.105495 360792	124.3822 (df=3)
3	129	NA	0.36	NA	NA	-244.845176	-237.739257	124.4226

						738824	568981	(df=2)
4	129	NA	0.24	NA	NA	-198.729029 494008	-191.6231103 24164	101.3645 (df=2)

Interpretation

Which is better using reverse_opportunity or avg_max_opportunity? Reverse_opportunity (Process-Model-Prediction1) is "probably better" avg_max_opportunity (Process-Model-Prediction2)

- Higher R2 and lower AIC and BIC

3. Re-run Analysis With Log-Odds

Model1: LogOdds(Test-Score) ~ Process-Model-Prediction1 [+ Intercept]

Model2: LogOdds(Test-Score) ~ Process-Model-Prediction2 [+ Intercept]

Model3: LogOdds(Test-Score) ~ 1* Process-Model-Prediction1 [+ Intercept]

Model4: LogOdds(Test-Score) ~ 1* Process-Model-Prediction2 [+ Intercept]

Model	# student s	F-statistic	R-squared	Adjusted R-squared	р	AIC	BIC	log-likelihood
1	129	77.50	0.23	0.23	0.00	852.9557672 99429	863.6146460 54194	-423.4779 (df=3)
2	129	56.38	0.18	0.18	0.00	869.8359023 29846	880.4947810 84611	-431.918 (df=3)
3	129	NA	0.195	NA	NA	863.0969448 14295	870.2028639 84138	-429.5485 (df=2)
4	129	NA	0.165	NA	NA	872.4197283 99524	879.5256475 69367	-434.2099 (df=2)

Scatter Plots of TestScore vs Prediction

Does adding total opportunity better predict the post-test?

```
# Model 1.2: pretest + TotalOpportunity
test_scores %>%
  lm(Posttest ~ TotalOpportunity + Pretest, data = .) %>%
  summ()

# Model 2.2: pretest + PredAvgiAFM + TotalOpportunity
test_scores %>%
  lm(Posttest ~ TotalOpportunity + PredAvgiAFM + Pretest, data = .) %>%
  summ()

# Model 3.2: pretest + int_iAFM + TotalOpportunity
test_scores %>%
  lm(Posttest ~ TotalOpportunity + int_iAFM + Pretest, data = .) %>%
  summ()

# Model 4.2: pretest + int_iAFM_reverse + TotalOpportunity
test_scores %>%
  lm(Posttest ~ TotalOpportunity + int_iAFM_reverse + Pretest, data = .) %>%
  summ()
```

Model	# students	F-statistic	R-squared	Adjusted R-squared	р
pretest + totalopp	129	36.71	0.37	0.36	0.00
pretest + PredAvgiAFM+ totalopp	129	33.36	0.44	0.43	0.00
pretest + int_iAFM+ totalopp	129	55.59	0.57	0.56	0.00
pretest + int_iAFM_reverse+ totalopp	129	50.60	0.55	0.54	0.00

Compared to results of models without total opportunity, the R-squared are basically the same, but the F-statistic is significantly lower. "TotalOpportunity" does not significantly improve the model's ability to predict Posttest scores when controlling for the other predictors.

Log-likelihood AIC BIC

Identify and analyze "overachievers"

Background: int_iAFM and int_iAFM_reverse are highly correlated: students with good initial scores will
have better final scores

Definition of overachievers and underachievers

draw y = x

- Analysis:
 - Key variables between among different achiever status
 - Overachievers have lower initial knowledge: more room to improve int_iAFM

Overachievers have similar knowledge in the end as normal students
 int_iAFM_reverse

■ Total opportunity: doing more problems makes a student an overachiever Measure of learning: post - pre

```
Int_reverse - int
```

preiAfm(max_opp) - avg(preiAfm(0) | KC)

pred_initial = predict(model_iafm,initial_data,type="response",allow.new.levels=TRUE)
pred_iafm = predict(model_iafm,ds_predict,type="response",allow.new.levels=TRUE)

Relationship between Total Opportunity and Learning Gain

Relationship between Total Opportunity and Learning Gain

TotalOpportunity

■ Maybe we could identify the potential underachiever at the beginning of the semester according to the pretest score

Post test score

Categorical: mosaic plot

Gender Mosaic Plot

Ethnicity Mosaic Plot

Other datasets

Datasets that have "pretest" "posttest" in problem hierarchy or problem name: datasets

Datasets in Gates Project (project id 527)

ıset	dataset_name	pretest	posttest	others
3	GatesProject_CentralCatholic_Spring2019	yes	yes	
4	GatesProjectTest	yes	yes	
0	GatesProject_CentralCatholic_Spring2019 (Cleaned)	yes	yes	
2	GatesProject_CentralCatholic_Spring2019 (Cleaned) Less Advanced (LA) Students	yes	yes	
3	GatesProject_CentralCatholic_Spring2019 (Cleaned) More Advanced (MA) Students	yes	yes	
3	GatesProject_DL_CC_Fall2019	yes	yes	
1	GatesProject_OC_Fall2019	yes	yes	
1	GatesProject_WM_Spring2020	yes	yes	
8	GatesProject_NKA_Spring2020	yes	yes	
1	GatesProject_SV_Spring2020	yes	no	
0	GatesProject_LB_Spring2020	yes	no	
9	GatesSpring20VersionPublic	no	no	
1	GatesProject_DL_CC_OC_Fall2019_Practice_Cleaned	no	no	
4	GatesProject_WM_NKA_Spring2020_Practice_Cleaned	no	no	
5	GatesProject_DL_OC_Fall2019_Practice_Cleaned	no	no	
4	MC Pilot Testing	no	no	
5	GatesProject_CityCharter_Summer2020	no	no	
5	GatesProject_DL_OC_Fall2019_Practice_Cleaned_WithRefinedKCM	no	no	
7	GatesProject_BV_Spring2021	yes	no	
4	GatesProject_DL_Fall2021	yes	yes	

9	GatesProject_CC_Fall2021	yes	yes	
5	GatesProject_DL_OC_Fall2019_Practice_Cleaned_AddGaming	yes	yes	extracted from transactions
3	GatesProject_MA_Spring2022	yes	yes	mid-test, school test
)	GatesProject_BV_Spring2022	yes	yes	mid-test
7	Mathtutor Problem Set 6.01 (Demo)	no	no	
1	GatesProject_BV_Spring2022_Practice_Cleaned_AddGaming	no	no	
7	GatesProject_NKA_Fall2022	yes	yes	mid-test

Summary by school and semesters

ar semester	school	prestest	posttest
ring 2019	СС	yes	yes
I 2019	DL	yes	yes
I 2019	СС	yes	yes
I 2019	ос	yes	yes
ring 2020	WM	yes	yes
ring 2020	NKA	yes	yes
ring 2020	SV	yes	no
ring 2020	LB	yes	no
ring 2021	BV	yes	no
I 2021	DL	yes	yes
I 2021	СС	yes	yes
ring 2022	MA	yes	yes
ring 2022	BV	yes	yes
I 2022	NKA	yes	yes

DS <u>613</u>

Name: Bernachi

DS 3093

Name:GatesProject_DL_CC_Fall2019

Goal: separate pretest and posttest data from transaction data; compute student pretest and post test scores

Results: https://drive.google.com/file/d/134lvv-EN6PBUcSHfi6-LVgDUw1L3rifl/view?usp=sharing

DS 3151

Name: GatesProject_OC_Fall2019

Goal: separate pretest and posttest data from transaction data; compute student pretest and post test scores

Results: https://drive.google.com/file/d/1eFAe5GOZA5eVeXKAPETFeVbBj1xuLuJ0/view?usp=sharing