

CUT FINITE ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION

Supervised by André Massing

Isak Hammer

May 4, 2023

Introducing Myself

- ▶ Isak Hammer, 27 year old, Lofoten
- Graduate student in Industrial Mathematics
- Research Focus: Numerical methods for Partial Differential Equations (PDEs).

Importance and Motivation of the Cahn Hilliard Equation

- Thermodynamically modelling of a two-component liquid separation¹.
- Modelling of so-called lipid rafts in biological membrane dynamics².

Droplet dynamics, i.e., coalescence, breakup and movement by coupling with Navier-Stokes ³.

¹John W Cahn and John E Hilliard. "Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid". In: *The Journal of chemical physics* 31.3 (1959), pp. 688–699

²Vladimir Yushutin et al. "A computational study of lateral phase separation in biological membranes". In: *International journal for numerical methods in biomedical engineering* 35.3 (2019), e3181

³Patrick Zimmermann, Andrew Mawbey, and Tim Zeiner. "Calculation of droplet coalescence in binary liquid–liquid systems: An incompressible Cahn–Hilliard/Navier–Stokes approach using the non-random two-liquid model". In: *Journal of Chemical & Engineering Data* 65.3 (2019), pp. 1083–1094

The Cahn Hilliard Equation

The general Cahn Hilliard Equation has the form $u(x,t): \Omega \times [0,T] \mapsto [-1,1]$ s.t.

$$u_t + \Delta \left(\varepsilon \Delta u - \frac{1}{\varepsilon} f(u) \right) = 0 \quad \text{in } \Omega$$

$$\partial_n u = \partial_n \Delta u = 0 \quad \text{on } \Gamma$$

$$u = u_0 \quad \text{on } \Omega$$

where f(s) = F'(s) and $F(s) = \frac{1}{4} \left(s^2 - 1\right)^2$ and $\Omega \subset \mathbf{R}^d, d = 2, 3$, is a bounded domain.

Challenges

- **1.** Highly nonlinear and stiff. Often practical applications require $\varepsilon \ll 1$.
- **2.** 4th order system.

Why Finite Element Method (FEM)

- 1. Robust mathematical framework
- 2. Can easily handle complex geometries
- 3. High flexibility of basis functions
- **4. Other:** Supports adaptive refinements, easily adaptable to multi-physics problems ++ .

The Biharmonic Problem (on a polygon)

Let $\Omega \approx \Omega_h = \mathcal{T}_h$ be a bounded polygonal domain with boundary Γ . Let the biharmonic problem have the form s.t. $u: \Omega \mapsto \mathbb{R}$,

$$\Delta^2 u + \alpha u = f(x) \quad \text{in } \Omega,$$

$$\partial_n u = 0 \quad \text{on } \Gamma, \tag{1}$$

 $\partial_n \Delta u = 0$ on Γ .

Here is $\Delta^2 = \Delta\left(\Delta\right)$ the biharmonic operator.

Figure: Illustration of the mesh Ω_h , the boundary Γ and the normal vector n.

C^0 Interior Penalty Method (CIP) for the Biharmonic Problem

The proposed numerical scheme is to find an $w \in V_h$.t.

$$a_h(w,v) = l_h(v) = (f,v)_{\Omega}, \quad \forall v \in V_h.$$

where

$$a_{h}(w,v) = (\alpha w, v)_{\Omega} + (\Delta w, \Delta v)_{\Omega} + (\{\!\{\Delta w\}\!\}, [\partial_{n} v])_{\mathcal{F}_{h}} + (\{\!\{\Delta v\}\!\}, [\partial_{n} w])_{\mathcal{F}_{h}} + \frac{\gamma}{h} ([\partial_{n} w], [\partial_{n} v])_{\mathcal{F}_{h}}$$

Which is inspired from Brenner2012 1

¹Susanne Brenner. *CO Interior Penalty Methods*. Springer International Publishing, 2012. URL: https://link.springer.com/content/pdf/10.1007/978-3-642-23914-4_2.pdf

Cut Finite Element Method (CutFEM)

Unfitted mesh vs fitted mesh

CutFEM is a numerical method for solving partial differential equations (PDEs) using an unfitted mesh.

Background Mesh

Active Mesh

Interior Mesh and Cut Cells

A recent and promising numerical technique for PDEs, has gained significant momentum in the past decade ¹².

- Complex domains and moving domains efficiently.
- Utilizing so-called ghost penalties to ensure well-posedness.

¹Erik Burman et al. "CutFEM: discretizing geometry and partial differential equations". In: *International Journal for Numerical Methods in Engineering* 104.7 (2015), pp. 472–501

²Ceren Gürkan and André Massing. "A stabilized cut discontinuous Galerkin framework for elliptic boundary value and interface problems". In: *Computer Methods in Applied Mechanics and Engineering* 348 (2019), pp. 466–499

Cut C^0 **Interior Penalty Method (CutCIP)**

The discretized numerical problem is to solve $w \in V_h$ such that

$$A(w,v) = a_h(w,v) + g_h(w,v) = l_h(v), \quad \forall v \in V_h.$$

Where the additional bilinear term $g_h(w,v):V_h\times V_h\to\mathbb{R}$ is the so-called **ghost penalty**, which does the numerical regularization to ensure stability on cut cells.

Cut C^0 Interior Penalty Method

My master's thesis is dedicated to demonstrating that the relevant properties remain valid for CutCIP formulation still holds.

Well-posedness

The discrete bilinear form a_h is wellposed on V_h if this holds;

(Coercivity)
$$A(v,v) \gtrsim ||v||_A^2 \quad \forall v \in V_h$$

(Boundedness) $A(v,w) \lesssim ||v||_A ||w||_{a_h} \quad \forall v, w \in V_h$

Cut C^0 **Interior Penalty Method Results**

Manufactured solution

In the experiments will we only consider polynomial order k=2. We consider the manufactured solution:

$$u_{ex}(\mathbf{x}) = (x_1^2 + x_2^2 - 1)^2 \cos(2\pi x_1) \cos(2\pi x_2)$$

where $\mathbf{x}=(x_1,x_2)$ and $\Omega=\{(x_1,x_2):x_1^2+x_2^2\leq 1\}$. This manufactured solution can be used to test the accuracy of numerical methods for solving the above differential equation.

Cut C^0 Interior penalty method (CutCIP) Results

\overline{n}	$ e _{L^{2}}$	EOC	$ e _{H^1}$	EOC	$ e _{a_h,*}$	EOC	Cond number	ndofs
4	2.4E+00		3.3E+00		6.2E+01		8.7E+04	8.1E+01
8	3.6E-01	2.72	1.1E+00	1.60	3.9E+01	0.68	5.1E+05	2.4E+02
16	2.2E-02	4.06	2.5E-01	2.12	1.4E+01	1.51	3.7E+06	8.3E+02
32	5.6E-03	1.97	6.0E-02	2.04	3.6E+00	1.93	2.8E+07	3.0E+03
64	1.4E-03	2.00	1.5E-02	2.02	9.2E-01	1.96	2.1E+08	1.1E+04
128	3.5E-04	2.00	3.7E-03	2.01	2.4E-01	1.94	1.7E+09	4.3E+04

Cut C^0 Interior penalty method (CutCIP) Results

Figure: The plot presents the L^2 and H^1 error norms and the error in the energy norm ($||e||_{a_h,*}$).

The Cahn Hilliard Equation

Recall

The problem has the form $u(x,t): \Omega \times [0,T] \mapsto [-1,1]$ s.t.

$$u_t + \Delta \left(\varepsilon \Delta u - \frac{1}{\varepsilon} f(u) \right) = 0 \quad \text{in } \Omega$$

$$\partial_n u = \partial_n \Delta u = 0 \quad \text{on } \Gamma$$

$$u = u_0 \quad \text{on } \Omega$$

where f(u) is a nonlinear function.

Plan forward

- **1.** We have now a tool to solve the $\Delta(\Delta u)$ operator
- Will utilize the time-iteration scheme to solve non-linearity

The CutCIP Cahn-Hilliard Formulation

Drawing upon the concepts delineated in Feng¹, the most efficient approach to address the nonlinear term is by employing an implicit-explicit (IMEX) scheme.

IMEX method on the CutCIP formulation

Let $u_h^m \in V_h$ for the timesteps $m = 0, 1, \dots, M$. Let $u_h^0 = u_0$ be the initial timestep, then is.

$$(\overline{\partial}_t u_h^m, v_h) + \varepsilon A(u_h^m, v_h) + \frac{1}{\varepsilon} c_h(u_h^{m-1}, v_h) = 0 \quad \forall v_h \in V_h^m.$$

Here is $c_h(.,.)$ an the nonlinear terms handled in a implicit fashion. The $\overline{\partial}_t$ operator is simply a finite difference scheme in time-dimension.

¹Xiaobing Feng and Ohannes Karakashian. "Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition". In: *Mathematics of computation* 76.259 (2007), pp. 1093–1117

Implemented using the Gridap FEM framework written in Julia ¹.

Simulation parameters

- Physical domain Ω is a 4 discs of radius R=1 with distance d=0.999, i.e. they are touching!
- ▶ Inital data is $u_0 = random(-1,1)$ in physical domain Ω.

¹Santiago Badia and Francesc Verdugo. "Gridap: An extensible finite element toolbox in julia". In: *Journal of Open Source Software* 5.52 (2020), p. 2520

Figure: Iteration 0

Figure: Iteration 1

Figure: Iteration 10

Figure: Iteration 50

Figure: Iteration 200

Figure: Iteration 1000

Further work

- 1. Adaptive time steps.
- 2. Further numerical validation.
- **3.** Extend the method to handle moving domains.

Questions?

