Graphs of Quadratic Functions

UNIT 3.1:

Graphs of $y = ax^2 - bx + c$

Quadratic function

We know that quadratic function is a polynomial function of the form $y = ax^2 - bx + c$. We know that we can plot quadratic graphs when we substitute a particular value of x into the equation to find y. For instance, given the equation $y = -0.5x^2 + 5x + 4$, we can deduce the respective values of y by substituting the value of x into the equation.

UNIT 3.1:

Sketch of Quadratic Function Graphs: $y = \pm(x - h)^2 + k$

Understanding Perfect Square Functions

We can use the method of "completing the square" to find turning point of the quadratic functions.

Let the quadratic function be $f(x) = ax^2 + bx + c$.

$$f(x) = ax^{2} + bx + c$$

$$= x^{2} + \left(\frac{b}{a}\right)x + \frac{c}{a}$$

$$= x^{2} + \left(\frac{b}{a}\right)x + \left(\frac{b}{a}\right)^{2} + \frac{c}{a} - \left(\frac{b}{a}\right)^{2}$$

$$= \left(x + \frac{b}{a}\right)^{2} + k$$

Summary:

The following information can be obtained from a quadratic function in the form $y = \pm (x - p)^2 + q$.

Shape of graph's curve	+ $(x-p)^2$: ∪-shaped - $(x-p)^2$: ∩-shaped
Line of symmetry	x = p
Turning point (lies on the line of symmetry)	(p, q); + $(x-p)^2$: Minimum - $(x-p)^2$: Maximum
Point at which the graph cuts the y-axis	let $x = 0$ to find y
Point at which the graph cuts the <i>x</i> -axis	let y = 0 to find x

UNIT 3.3:

Sketch of Quadratic Function Graphs: $y = \pm(x - h)^2 + k$

The following information can be obtained from a quadratic function in the form $y = \pm(x - a)(x - b)$

Shape of graph's curve	+ $(x-a)(x-b)$: ∪-shaped - $(x-a)(x-b)$: ∩-shaped
Point at which the graph cuts the <i>x</i> -axis	(a, 0), (b, 0)
Point at which the graph cuts the <i>y</i> -axis	(0, $\pm ab$) [sign dependent on sign of x^2 term]
Line of symmetry	$x = \frac{1}{2}(a+b)$
Turning point	x-coordinate: lies on the line of symmetry y -coordinate: substitute value of x -coordinate into function $+(x-a)(x-b)$: Minimum $-(x-a)(x-b)$: Maximum

UNIT 3.4 : Plotting of Quadratic Graphs

Plotting on Graph Paper

You have learnt to solve equations graphically in the previous section. Now we need to know how to plot a graph to estimate the solutions of a given equation. Similar to plotting straight-line graphs, typically plotting a quadratic graph has the following procedure:

- 1. Draw a table of values based on the range of x-values given.
- 2. Using a ruler, draw and label both axes using the scales and indicate the scales at one corner of the graph paper.
- 3. Plot all ordered pairs from your table, marking it with a "X".
- 4. Join the points smoothly. You may use French Curve if necessary.
- 5. Label the equation(s) beside the graph(s) respectively.