

WALCHAND COLLEGE OF ENGINEERING, SANGLI.

(An Autonomous Institute)

First Year B.Tech. (All Branches)

MID SEMESTER EXAMINATION SEMESTER-1 OCTOBER-2019 ENGINEERING MATHEMATICS 1 (4MAI01)

MSE

Exam Seat Number:

Day, Date and Time: Wednesday, 23/10/2019

03.30pm to 05.00pm

Max Marks:

30

IMP: Verify that you have received question paper with correct course, code, branch etc.

Instructions: i) All questions are compulsory. Writing question number is compulsory. The answers may not be assessed if question number is not written. Assume suitable data wherever necessary.

- ii) Figures to the right of question text indicate full marks.
- iii) Mobile phones and programmable calculators are strictly prohibited.
- iv) Except Exam Seat Number writing anything on question paper is not allowed

Text on the r	Exchange/Sharing of stationery, calculator etc. no ight of marks indicates course outcomes (only for faculty use	t allowed	- Per	is not anowed.			
	Verify Cayley Hamilton theorem for the matrix				Marks		
	and the matrix	$A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	2	-2 0	6	COI	
	and hence find A ⁻¹	10	-2	1]			
O1 B)	Evaluate				4	con	

QI B)	Evalua	te	1/			4	COL
100		li-m ($a^x + b^x + c^x \setminus {}^{7x}$		200		
	- 14	x→0 \	$\frac{a^x + b^x + c^x}{3}\right)^{1/x}$				
			The case of the				

Q2 A)	Test for consistency and if possible solve by matrix method		CO2
	x + y - 2z + w + 3t - 1 = 0, $2x - y + 2z + 2w + 6t = 2$, $3x + 2y - 4z - 3w - 9t = 3$		
Q2 B)	Verify Taylors theorem for $f(x) = x^3 - 3x^2 + 2x$ in $\left[0, \frac{1}{2}\right]$	4	COI
	with Lagranges remainder unto 2 terms		

	With Eagranges remainder apre 2 terms.		
Q2 C)	Find the eigenvalues of A ⁴ where $A = \begin{bmatrix} 8 & -4 \\ 2 & 2 \end{bmatrix}$	2	CO2

Q3 B) Find the continued product of all values of
$$(i)^{2/3}$$

Q3 C) Simplify
$$\left(\frac{\cos\theta + i\sin\theta}{\sin\theta + i\cos\theta}\right)^4$$

CO₂