Notation

The notation follows that of Volume 1, with the following exceptions.

• The coefficient of x^n in the power series F(x) is now denoted $[x^n]F(x)$. This notation is generalized in an obvious way to such situations as

$$[x^m y^n] \sum_{i,j} a_{ij} x^i y^j = a_{mn}$$

$$\left[\frac{x^n}{n!}\right]\sum_i a_i \frac{x^i}{i!} = a_n.$$

• The number of inversions, number of descents, and major index of a permutation (or more generally of a sequence) w are denoted inv(w), des(w), and maj(w), respectively, rather than i(w), d(w), and $\iota(w)$. Sometimes, especially when we are regarding the symmetric group \mathfrak{S}_n as a Coxeter group, we write $\ell(w)$ instead of inv(w).

The following notation is used for various rings and fields of generating functions. Here K denotes a field, which is always the field of coefficients of the series below. All Laurent series and fractional Laurent series are understood to have only finitely many terms with negative exponents.

K[x]	ring of polynomials in x
K(x)	field of rational functions in x (the quotient field of $K[x]$)
K[[x]]	ring of formal (power) series in x
K((x))	field of Laurent series in x (the quotient field of $K[[x]]$)
$K_{\rm alg}[[x]]$	ring of algebraic power series in x over $K(x)$
$K_{\rm alg}((x))$	field of algebraic Laurent series in x over $K(x)$
$K^{\text{fra}}[[x]]$	ring of fractional power series in x

xii Notation

$K^{\operatorname{fra}}((x))$ $K\langle X\rangle$	field of fractional Laurent series in x (the quotient field of $K^{fra}[[x]]$) ring of noncommutative polynomials in the alphabet (set of variables)
	X
$K_{\mathrm{rat}}\langle\!\langle X \rangle\!\rangle$	ring of rational (= recognizable) noncommutative series in the alphabet X
$K\langle\!\langle X \rangle\!\rangle$	ring of formal (noncommutative) series in the alphabet X
$K_{\operatorname{alg}}\langle\!\langle X angle\! angle$	ring of (noncommutative) algebraic series in the alphabet X