Problem H. Simple Design

Time limit 1000 ms **Mem limit** 262144 kB

A positive integer is called k-beautiful, if the digit sum of the decimal representation of this number is divisible by k^{\dagger} . For example, 9272 is 5-beautiful, since the digit sum of 9272 is 9+2+7+2=20.

You are given two integers x and k. Please find the smallest integer $y \geq x$ which is k-beautiful.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains two integers x and k ($1 \le x \le 10^9$, $1 \le k \le 10$).

Output

For each test case, output the smallest integer $y \ge x$ which is k-beautiful.

Examples

Input	Output
6	5
1	17 45
10 8 37 9 777 3	777
777 3 1235 10	1243 19
1 10	

Note

In the first test case, numbers from 1 to 4 consist of a single digit, thus the digit sum is equal to the number itself. None of the integers from 1 to 4 are divisible by 5.

[†] An integer n is divisible by k if there exists an integer m such that $n=k\cdot m$.

In the fourth test case, the digit sum of 777 is 7+7+7=21 which is already divisible by 3.