Electrical Design Parameters of Typical 230kv and 500kv Transmission Lines Terminating into Plant Vogtle The following includes electrical design parameters and EMF calculations for typical 230kv and 500kv transmission lines terminated into Plant Vogtle. In addition, a 1994 IEEE conference paper is included that covers an extensive analysis and measurements of radio noise characteristic of two 500kv lines located near Atlanta, Georgia.

Contents:

Section I - 230kv H-Frame Transmission Line

Structure Sketch EMF Summary

Audible Noise

Radio Noise

Electric Fields

Electrical Coupling to Truck

Magnetic Fields

Results of EPRI's ACDCLINE Program

Graphs of Magnetic and Electric Fields

Section II - 500kv H-Frame Transmission Line

Structure Sketch

EMF Summary

Audible Noise

Radio Noise

Electric Fields

Electrical Coupling to Truck

Magnetic Fields

Results of EPRI's ACDCLINE Program

Graphs of Magnetic and Electric Fields

IEEE Conference Paper

500kv Transmission Line Radio Noise Performance

Section I 230kv H-Frame Transmission Line

Southern Company Services, Project: "230kv_h-frame_emf.pfl" PLS-CADD Version 7.30, 5:01:43 PM Wednesday, July 06, 2005 230KV H-FRAME Single Sub Combuctor Load case displayed: Undeformed Geometry MARTIN CONDUCTOR
3/8"-7 STN SHIELDWIRE 125' Right-of-WAY 20 20 10.79 10.79

EMF Summary - EPRI ACDCLINE

Type Construction:

230 kv Horizontal H-Frame - (NESC Light Zone-No Sun)

Distance From Shieldwire to Conductor Attachment (ft)	19.1
Right-of-Way Width (ft)	125.0

Overage Voltage	5 %
--------------------	-----

		Ruling Spa Final Sa	. ,	1300 ing Span	No. 0f Sub-	Sub-Cond Spacing	Height to Str	H-Dist	from Cer	nterline
Conductor Te	emperature (Deg F)	120	167	212	Cond	(in)	Allaciment	Left	Middle	Right
Shieldwire:	3/8" HS Steel	26.0		***************************************			94.8	-10.8	0.0	10.8
Conductor:	Martin	39.0	42.5	45.7	1		75.7	-20.0	0.0	20.0
Minimum Gro	und Clearance	36.6	33.2	30.0		***************************************				

Conductor Temperature (Deg F)	120	167	212
Ampacity (Amps)	629	1141	1456
Power (mva)	251	455	580

Audible Noise Edge of R/W	(db(A)) @			
	L50 Fair	25.3	25.4	25.5
Condition	L5 Rain	47.1	47.2	47.3
	L50 Bain	36	361	36.2

Radio Noise @ @ Edge of R/W	, ,			
,	Avg Fair Weather	40.5	40.6	40.5
Condition	Avg Foul Weather	62.1	62.2	62.1
	Heavy Rain	70	70	69.9
Wet Conducto	Wet Conductor	58.4	58.5	58.5

Electric Field

Edge of R/W (kv/m)	0.993	1.019	1.03
Maximum (kv/m)	2.022	2.417	2.876
Distance of Maximum Level from Center Line (ft)	STEEDING NOVE AND	30	

Electrical Coupling to Truck

	Height	13.5
Size (ft)	Width	8.5
	Length	65
Short Circu	uit Current (ma)	
Orientation	Perpendicular	1.1 1.24 1.38
Chentation	Parallel	2.5 2.94 3.42

Magnetic Field

Edge of R/W (mg)	31.7	61.76	318.6
Maximum (mg)	98.26	211.48	82.89
Distance of Maximum from		0	
Center Line (ft)		U	

Ampacity Rating Parameters					
Ambient Temp (deg F)	104				
Wind Speed (ft/sec)	2				
Wind Direction	90				
Solar Gain	No				

Results of AC/DCLINE program CORONA (EPRI/HVTRC 7-93) for:

SURFACE GRADIENTS at AVERAGE LINE HEIGHT CORONA LOSS

AUDIBLE NOISE

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/12/2005 Time: 10:46

CASE1 230kv H-Frame - 242kv @120Deg, 36.66' gnd cl, 629A No Sun

************************* BUNDLE INFORMATION ************** VOLTAGE CURRENT BUNDLE COORDINATES BNDL | CIRC | VOLTAGE | ANGLE | Y SAG LOAD ANGLE OF X # | # | (kV) | (DEG) | (A) | (DEG) | COND | (feet) | (feet) | (feet) | ********************** 3 242.0 0. 629. -20.0 0.1 75.7 39.0 4 1 242.0 240. 629. | 240. | 1 | 75.7 .0 39.0 5 1 242.0 120. 629. | 120. | 1 | 20.0 75.7 39.0 С 1 .0 0. 0. 0. 1 -10.8 94.8 26.0 GND 0. 0. 10.8 94.8 26.0 GND ************************

MINIMUM GROUND CLEARANCE = 36.66 feet POWER SYSTEM FREQUENCY 60. $_{
m Hz}$ SOIL RESISTIVITY

ohm meter

*************** SUBCONDUCTOR INFORMATION - REGULAR BUNDLES

***************************************	*****
BNDL CONDUCTOR DIAMETER SPACING DC RESIST AC RESIST	

3 MARTIN 1.420 .000 .0680 .0710	3680 l
4 MADELINI 1 1 400 000 000	3680
5 MARTIN 1.420 .000 .0680 .0710	3680
	5000
2 3/8HS .360 .000 6.5100 6.7500 1.	5000

* MAXIMUM SURFACE GRADIENT (kV/cm) *

BNDL	# Type	ACrms	PEAK(+)	PEAK (-)
3	AC	12.69	17.94	-17.94
4	AC	13.61	19.25	-19.25
5	AC	12.69	17.94	-17.94
1	Ground Wire	1.86	2.63	-2.63
2	Ground Wire	1.86	2.63	-2.63

CORONA LOSS (kW/MILE)

	AVERAGE FAIR				AVERAGE YEAR (**)	
AC LOSS	.0	.0	8.2	16.7	. 4	3.7

(*) Rain intensity .03 in/hour

- (#) Heavy rain (.5 to 1 in/hour) which may occur in a short section of line.
- (**) Accounts for the mix of fair and foul weather.
- (##) Maximum loss for a long line coincidental with maximum load.

BNDL	# Тур	e Summer	L5 Fair RAIN	L50 N RAIN
3	AC	-82.	58 -59.51	-71.38
4	AC	-76.8	87 -55.93	-66.44
5	AC	-82.	58 -59.53	-71.38
1	Ground	Wire ****	** ****	* *****
2	Ground	Wire ****	** ****	* *****

AUDIBLE NOISE

<----> HVTRC CALCULATION METHOD ----->

DIST	TERAL TANCE (meters)	L50 FAIR (dB(A))	L5 RAIN (dB(A))	L50 RAIN (dB(A))	Leq(24) (dB(A))	Ldn (dB(A))
-150.0 -145.0 -140.0 -135.0 -130.0 -125.0 -120.0 -115.0 -110.0 -105.0 -100.0 -95.0 -90.0 -85.0	-45.72 -44.20 -42.67 -41.15 -39.62 -38.10 -36.58 -35.05 -33.53 -32.00 -30.48 -28.96 -27.43 -25.91	21.6 21.8 21.9 22.1 22.3 22.5 22.6 22.8 23.0 23.2 23.4 23.7 23.9 24.1	43.4 43.6 43.7 43.9 44.1 44.3 44.5 44.7 44.9 45.1 45.3 45.5 45.7	(dB(A)) 32.3 32.5 32.6 32.8 33.0 33.2 33.4 33.6 33.7 34.0 34.2 34.4 34.6 34.8	(dB(A)) 50.8 51.0 51.1 51.3 51.5 51.7 51.9 52.1 52.2 52.5 52.7 52.9 53.1 53.3	
-80.0 -75.0 -70.0 -65.0 -60.0	-24.38 -22.86 -21.34 -19.81 -18.29	24.3 24.6 24.8 25.1 25.3	46.2 46.4 46.6 46.9 47.1	35.1 35.3 35.5 35.8 36.0	53.6 53.8 54.0 54.3 54.5	61.0 61.2 61.5 61.7 62.0

-55.0	-16.76	25.6	47.4	36.3	54.8	62.2
-50.0	-15.24	25.8	47.7	36.6	55.1	62.5
-45.0	-13.72	26.1	47.9	36.8	55.3	62.7
-40.0	-12.19	26.3	48.2	37.1	55.5	62.9
-35.0	-10.67	26.6	48.4	37.3	55.8	63.2
-30.0	-9.14	26.8	48.6	37.5	56.0	63.4
-25.0	-7.62	27.0	48.8	37.7	56.1	63.5
-20.0	-6.10	27.2	49.0	37.9	56.3	63.7
-15.0	-4.57	27.3	49.1	38.0	56.4	63.8
-10.0	-3.05	27.5	49.2	38.2	56.5	63.9
-5.0	-1.52	27.5	49.3	38.2	56.6	64.0
.0	.00	27.5	49.3	38.2	56.6	64.0
5.0	1.52	27.5	49.3	38.2	56.6	64.0
10.0	3.05	27.5	49.2	38.2	56.5	63.9
15.0	4.57	27.3	49.1	38.0	56.4	63.8
20.0	6.10	27.2	49.0	37.9	56.3	63.7
25.0	7.62	27.0	48.8	37.7	56.1	63.5
30.0	9.14	26.8	48.6	37.5	56.0	63.4
35.0	10.67	26.6	48.4	37.3	55.8	63.2
40.0	12.19	26.3	48.2	37.1	55.5	62.9
45.0	13.72	26.1	47.9	36.8	55.3	62.7
50.0	15.24	25.8	47.7	36.6	55.1	62.5
55.0	16.76	25.6	47.4	36.3	54.8	62.2
60.0	18.29	25.3	47.1	36.0	54.5	62.0
65.0	19.81	25.1	46.9	35.8	54.3	61.7
70.0	21.34	24.8	46.6	35.5	54.0	61.5
75.0	22.86	24.6	46.4	35.3	53.8	61.2
80.0	24.38	24.3	46.2	35.1	53.6	61.0
85.0	25.91	24.1	45.9	34.8	53.3	60.7
90.0	27.43	23.9	45.7	34.6	53.1	60.5
95.0	28.96	23.7	45.5	34.4	52.9	60.3
100.0	30.48	23.4	45.3	34.2	52.7	60.1
105.0	32.00	23.2	45.1	34.0	52.5	59.9
110.0	33.53	23.0	44.9	33.7	52.2	59.7
115.0	35.05	22.8	44.7	33.6	52.1	59.5
120.0	36.58	22.6	44.5	33.4	51.9	59.3
125.0	38.10	22.5	44.3	33.2	51.7	59.1
130.0	39.62	22.3	44.1	33.0	51.5	58.9
135.0	41.15	22.1	43.9	32.8	51.3	58.7
140.0	42.67	21.9	43.7	32.6	51.1	58.5
145.0	44.20	21.8	43.6	32.5	51.0	58.4
_ 150.0	45.72	21.6	43.4	32.3	50.8	58.2

* * AUDIBLE NOISE * * (other methods) * * * Altitude 1000.0 feet *

		<		THOD	>	<- CRIE		EdF	ENEL	IREQ
LAI	TERAL	FAIR	L5	L50		AVERAGE	L5	L5	L5	L5
DIST	ANCE	WEATHER	RAIN	RAIN	Ldn	FAIR	RAIN	RAIN	RAIN	RAIN
(feet)	(meters)	dB (A)	dB(A)	dB (A)	dB (A)	dB (A)	dB (A)	dB(A)	dB(A)	dB(A)
-150.0	-45.72	10.9	39.4	35.9	.0	.0	.0	38.7	39.9	.0
-145.0	-44.20	11.1	39.6	36.1	.0	.0	.0	38.8	40.1	.0
-140.0	-42.67	11.2	39.7	36.2	.0	.0	.0	39.0	40.2	.0
-135.0	-41.15	11.4	39.9	36.4	.0	.0	.0	39.1	40.3	.0
-130.0	-39.62	11.6	40.1	36.6	.0	.0	.0	39.3	40.5	.0
-125.0	-38.10	11.8	40.3	36.8	.0	.0	.0	39.4	40.7	.0
-120.0	-36.58	11.9	40.4	36.9	.0	.0	.0	39.6	40.8	.0
-115.0	-35.05	12.1	40.6	37.1	.0	. 0	.0	39.7	41.0	.0

-110.0	-33.53	12.3	40.8	37.3	.0	.0	. 0	39.9	41.1	.0
-105.0	-32.00	12.5	41.0	37.5	.0	.0	. 0	40.1	41.3	.0
-100.0	-30.48	12.7	41.2	37.7	.0	.0	. 0	40.3	41.5	.0
-95.0	-28.96	12.9	41.4	37.9	.0	.0	. 0	40.5	41.7	.0
-90.0	-27.43	13.2	41.7	38.2	.0	.0	.0	40.7	41.9	.0
-85.0	-25.91	13.4	41.9	38.4	.0	.0	.0	40.9	42.1	.0
-80.0	-24.38	13.6	42.1	38.6	.0	.0	. 0	41.1	42.3	.0
-75.0	-22.86	13.9	42.4	38.9	. 0	.0	. 0	41.3	42.5	.0
-70.0	-21.34	14.1	42.6	39.1	.0	.0	.0	41.5	42.7	.0
-65.0	-19.81	14.4	42.9	39.4	.0	.0	.0	41.7	42.9	.0
-60.0	-18.29	14.6	43.1	39.6	.0	.0	.0	41.9	43.2	.0
-55.0	-16.76	14.9	43.4	39.9	.0	.0	.0	42.2	43.4	.0
-50.0	-15.24	15.2	43.7	40.2	.0	.0	.0	42.4	43.6	.0
-45.0	-13.72	15.4	43.9	40.4	.0	.0	.0	42.6	43.9	.0
-40.0	-12.19	15.7	44.2	40.7	.0	.0	.0	42.9	44.1	.0
-35.0	-10.67	15.9	44.4	40.9	.0	.0	.0	43.1	44.3	.0
-30.0	-9.14	16.2	44.7	41.2	.0	.0	.0	43.3	44.5	.0
-25.0	-7.62	16.4	44.9	41.4	.0	.0	.0	43.5	44.7	.0
-20.0	-6.10	16.5	45.0	41.5	.0	.0	.0	43.6	44.8	.0
-15.0	-4.57	16.7	45.2	41.7	.0	.0	.0	43.7	45.0	.0
-10.0	-3.05	16.8	45.3	41.8	.0	.0	.0	43.8	45.1	.0
-5.0	-1.52	16.9	45.4	41.9	.0	.0	.0	43.9	45.1	.0
.0	.00	16.9	45.4	41.9	.0	.0	.0	43.9	45.1	.0
5.0	1.52	16.9	45.4	41.9	.0	.0	.0	43.9	45.1	.0
10.0	3.05	16.8	45.3	41.8	.0	.0	.0	43.8	45.1	.0
15.0	4.57	16.7	45.2	41.7	.0	.0	.0	43.7	45.0	.0
20.0	6.10	16.5	45.0	41.5	.0	.0	.0	43.6	44.8	.0
25.0	7.62	16.4	44.9	41.4	.0	.0	. 0	43.5	44.7	.0
30.0	9.14	16.2	44.7	41.2	. 0	.0	.0	43.3	44.5	.0
35.0	10.67	15.9	44.4	40.9	.0	.0	.0	43.1	44.3	.0
40.0 45.0	12.19	15.7	44.2	40.7	.0	.0	.0	42.9	44.1	. 0
50.0	13.72	15.4	43.9	40.4	.0	.0	.0	42.6	43.9	.0
55.0	15.24 16.76	15.2	43.7	40.2	.0	.0	.0	42.4	43.6	. 0
60.0	18.29	14.9 14.6	43.4	39.9	.0	.0	.0	42.2	43.4	.0
65.0	19.81	14.4	43.1 42.9	39.6	.0	.0	.0	41.9	43.2	.0
70.0	21.34	14.1	42.5	39.4 39.1	.0	.0	.0	41.7	42.9	.0
75.0	22.86	13.9	42.4	38.9	.0 .0	.0 .0	.0	41.5	42.7	.0
80.0	24.38	13.6	42.1	38.6	.0	.0	.0	41.3	42.5	.0
85.0	25.91	13.4	41.9	38.4	.0	.0	.0	$41.1 \\ 40.9$	42.3 42.1	.0
90.0	27.43	13.2	41.7	38.2	.0	.0	.0	40.9	42.1	.0
95.0	28.96	12.9	41.4	37.9	.0	.0	.0	40.7	41.7	.0
100.0	30.48	12.7	41.2	37.7	.0	.0	.0	40.3	41.5	.0
105.0	32.00	12.5	41.0	37.5	.0	.0	.0	40.1	41.3	.0
110.0	33.53	12.3	40.8	37.3	.0	.0	.0	39.9	41.1	.0
115.0	35.05	12.1	40.6	37.1	.0	.0	.0	39.7	41.0	.0
120.0	36.58	11.9	40.4	36.9	.0	.0	.0	39.6	40.8	.0
125.0	38.10	11.8	40.3	36.8	.0	.0	.0	39.4	40.7	.0
130.0	39.62	11.6	40.1	36.6	.0	.0	.0	39.3	40.5	.0
135.0	41.15	11.4	39.9	36.4	.0	.0	.0	39.1	40.3	.0
140.0	42.67	11.2	39.7	36.2	. 0	.0	.0	39.0	40.2	.0
145.0	44.20	11.1	39.6	36.1	.0	.0	.0	38.8	40.1	.0
150.0	45.72	10.9	39.4	35.9	.0	.0	.0	38.7	39.9	.0

Audible noise prediction methods do not apply to all line geometries, voltages, or weather conditions. If a prediction method does not apply, the appropriate output data column will be zeros.

Results of AC/DCLINE program RADIO (EPRI/HVTRC 7-93) for: _____

RADIO NOISE

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1 Date: 7/12/2005 Time: 10:46

```
MODE NO.
        ATTN (dB/mi)
                   ATTN (neper/ft)
                   _____
                      .1181E-05
  1
         .5415E-01
  2
         .2280E+00
                      .4973E-05
  3
         .2721E+01
                      .5936E-04
          **********
          * MAXIMUM SURFACE GRADIENT (kV/cm) *
          **********
```

BNDL	# Туре	ACrms	PEAK(+)	PEAK(-)
3	AC	12.69	17.94	-17.94
4	AC	13.61	19.25	-19.25
5	AC	12.69	17.94	-17.94
1	Ground Wire	1.86	2.63	-2.63
2	Ground Wire	1.86	2.63	-2.63

* RADIO NOISE *

* GENERATION FUNCTION *

* (dB above luA/sqrt(m)) *

*

	BNDL #	Type	Average Stable Foul	L1 Rain	L50 Rain
					
	3	AC	26.47	34.46	22.58
	4	AC	30.15	37.58	27.07
	5	AC	26.47	34.46	22,58
ı					

Lateral	Average Stable Foul	Heavy Rain	Wet Conductor
Distance	Weather Noise (1,2)	Noise (3)	Noise (3)
(feet) (meters)	(dB)	(dB)	(dB)
-150.0 -45.72	43.7	51.5	40.0
-145.0 -44.20	44.4	52.3	40.7
-140.0 -42.67	45.2	53.0	41.5
-135.0 -41.15	45.9	53.8	42.3
-130.0 -39.62	46.7	54.6	43.1
-125.0 -38.10	47.6	55.4	43.9
-120.0 -36.58	48.5	56.3	44.8
-115.0 -35.05	49.4	57.2	45.7
-110.0 -33.53	50.3	58.2	46.6
-105.0 -32.00	51.3	59.2	47.6
-100.0 -30.48	52.4	60.2	48.7
-95.0 -28.96	53.4	61.3	49.7
-90.0 -27.43	54.6	62.4	50.9
-85.0 -25.91	55.7	63.6	52.0
-80.0 -24.38	56.9	64.8	53.3
-75.0 -22.86	58.2	66. 1	54.5
-70.0 -21.34	59.5	67.3	55.8

-65.0	-19.81	60.8	68.7	57.1
-60.0	-18.29	62.1	70.0	58.4
-55.0	-16.76	63.4	71.3	59.7
-50.0	-15.24	64.6	72.5	60.9
-45.0	-13.72	65.8	73.6	62.1
-40.0	-12.19	66.7	74.6	63.0
-35.0	-10.67	67.3	75.2	63.6
-30.0	-9.14	67.6	75.5	63.8
-25.0	-7.62	67.5	75.5	63.8
-20.0	-6.10	67.4	75.3	63.7
-15.0	-4.57	67.8	75.6	64.3
-10.0	-3.05	68.8	76.4	65.5
-5.0	-1.52	69.8	77.3	66.5
.0	.00	70.2	77.7	66.9
5.0	1.52	69.8	77.3	66.5
10.0	3.05	68.8	76.4	65.5
15.0	4.57	67.8	75.6	64.3
20.0	6.10	67.4	75.3	63.7
25.0	7.62	67.5	75.5	63.8
30.0	9.14	67.6	75.5	63.8
35.0	10.67	67.3	75.2	63.6
40.0	12.19	66.7	74.6	63.0
45.0	13.72	65.8	73.6	62.1
50.0	15.24	64.6	72.5	60.9
55.0	16.76	63.4	71.3	59.7
60.0	18.29	62.1	70.0	58.4
65.0	19.81	60.8	68.7	57.1
70.0	21.34	59.5	67.3	55.8
75.0	22.86	58.2	66.1	54.5
80.0	24.38	56.9	64.8	53.3
85.0	25.91	55.7	63.6	52.0
90.0	27.43	54.6	62.4	50.9
95.0	28.96	53.4	61.3	49.7
100.0	30.48	52.4	60.2	48.7
105.0	32.00	51.3	59.2	47.6
110.0	33.53	50.3	58.2	46.6
115.0	35.05	49.4	57.2	45.7
120.0	36.58	48.5	56.3	44.8
125.0	38.10	47.6	55.4	43.9
130.0	39.62	46.7	54.6	43.1
135.0	41.15	45.9	53.8	42.3
140.0	42.67	45.2	53.0	41.5
145.0	44.20	44.4	52.3	40.7
150.0	45.72	43.7	51.5	40.0

- (1) The "Average Stable Foul Weather" noise is calculated using an empirical expression for the radio noise excitation function that was derived (see REF. [A]) to best fit the long term radio noise measurements of existing lines (in the 345 kV to 765 kV range). This generation function is used also in the program RNOISE, which is applicable to AC transmission lines. If AC lines are not present, the "Average Stable Foul Weather" column contains zeros.
- (2) The "Average Fair Weather" radio noise values can be obtained by subtracting 21.6 dB from the "Average Stable Foul Weather" radio noise data.
- (3) The "Heavy Rain" and the "Wet Conductor" radio noise levels, are defined in the EPRI's Transmission Line Reference Book 345 kV and Above. The equations for the excitation functions for AC conductors are derived from the Reference Book and are applicable for large ranges of surface gradients (from 10 to 25 kV/cm), subconductor diameters (2 to 8 cm) and number of subconductors (1 to 12). The equations for the excitation functions for DC and HYBRID line conductors are derived from the EPRI RP 2472-6. Heavy rain was

defined as rain with intensity of the order of 8 - 12 mm/hr. In the Northeastern climate, the "Heavy Rain" noise is exceeded only 1% of the time during periods of rain. "Wet Conductor" noise corresponds to the condition of the conductor saturated with water drops and with little noise caused by the impingement of rain droplets. Experimental data from which the equations for the "Wet Conductor" noise were derived, indicate that the "Wet Conductor" noise is exceeded 50% of the time during natural rain periods. "Wet Conductor" noise also corresponds to the maximum noise that can be produced during fog.

REFERENCES:

[A] R.G. Olsen, S.D. Schennum and V.L. Chartier, "Comparison of Several Methods for Calculating Power Line Electromagnetic Interference Levels and Calibration with Long Term Data", EPRI report, Project RP-2025, 1991.

Results of AC/DCLINE program EFION (EPRI/HVTRC 7-93) for:

SURFACE GRADIENTS at ACTUAL LINE HEIGHT ELECTRIC FIELD & IONS WITHOUT SHIELDING OBJECTS SENSATION LEVELS

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/12/2005 Time: 10:46

********** * MAXIMUM SURFACE GRADIENT (kV/cm) *

BNDL	# Type	ACrms	PEAK(+)	PEAK(-)
3	AC	12.76	18.05	-18.05
4	AC	13.61	19.24	-19.24
5	AC	12.76	18.05	-18.05
1	Ground Wire	1.44	2.04	-2.04
2	Ground Wire	1.44	2.04	-2.04

AC ELECTRIC FIELD PROFILE at 3.28 feet above ground * longitudinal distance: 650.00 feet *

LATERAL DISTANCE (feet) (meters)	MAXIMUM FIELD (kV/m)	MINOR/MAJOR ELLIPSE AXES (ratio)	VERTICAL (kV/m)	HORIZONTAL (kV/m)	SPACE POTENTIAL (kV)
-150.0 -45.72 -145.0 -44.20 -140.0 -42.67 -135.0 -41.15 -130.0 -39.62 -125.0 -38.10 -120.0 -36.58 -115.0 -35.05 -110.0 -33.53	.102 .112 .123 .136 .151 .169 .189 .212	.002 .002 .002 .001 .001 .001 .001	.101 .112 .123 .136 .151 .168 .188 .211	.006 .007 .008 .009 .011 .012 .014	.102 .112 .123 .136 .151 .169 .189 .212

_	-105.0	-32.00	.270	.001	.269	.022	.270
	-100.0	-30.48	.307	.000	.306	.026	.307
	-95.0	-28.96	.350	.000	.349	.031	.350
	-90.0	-27.43	.402	.000	.400	.037	.401
	-85.0	-25.91	.463	.000	.461	.044	.462
	-80.0	-24.38	.536	.000	.533	.052	.535
	-75.0	-22.86	.622	.000	.619	.062	.622
	-70.0	-21.34	.726	.000	.722	.074	.725
	-65.0	-19.81	.849	.001	.844	.087	.847
	-60.0	-18.29	.993	.002	.988	.102	.991
	-55.0	-16.76	1.160	.003	1.154	.116	1.157
	-50.0	-15.24	1.348	.005	1.342	.128	1.344
	-45.0	-13.72	1.550	.008	1.544	.133	1.543
	-40.0	-12.19	1.749	.014	1.745	.125	1.740
	-35.0	-10.67	1.920	.022	1.917	.100	1.907
	-30.0	-9.14	2.022	.034	2.022	.076	2.005
	-25.0	-7.62	2.016	.053	2.015	.119	1.993
	-20.0	-6.10	1.876	.084	1.871	.211	1.848
	-15.0	-4.57	1.612	.134	1.598	.302	1.577
	-10.0	-3.05	1.276	.218	1.255	.362	1.237
	-5.0	-1.52	.961	.361	.945	.389	.925
	.0	.00	.811	.494	.811	.395	.788
	5.0	1.52	.961	.361	.945	.389	.925
	10.0	3.05	1.276	.218	1.255	.362	1.237
	15.0	4.57	1.612	.134	1.598	.302	1.577
	20.0 25.0	6.10 7.62	1.876	.084	1.871	.211	1.848
	30.0	9.14	2.016 2.022	.053 .034	2.015	.119	1.993
	35.0	10.67	1.920	.022	2.022	.076	2.005
	40.0	12.19	1.749	.014	1.917 1.745	.100 .125	1.907
	45.0	13.72	1.550	.008	1.544	.133	$1.740 \\ 1.543$
	50.0	15.24	1.348	.005	1.342	.128	1.343
	55.0	16.76	1.160	.003	1.154	.116	1.157
	60.0	18.29	.993	.002	.988	.102	.991
	65.0	19.81	.849	.001	.844	.087	.847
	70.0	21.34	.726	.000	.722	.074	.725
	75.0	22.86	.622	.000	.619	.062	.622
	80.0	24.38	.536	.000	.533	.052	.535
	85.0	25.91	.463	.000	.461	.044	.462
	90.0	27.43	.402	.000	.400	.037	.401
	95.0	28.96	.350	.000	.349	.031	.350
	100.0	30.48	.307	.000	.306	.026	.307
	105.0	32.00	.270	.001	.269	.022	.270
	110.0	33.53	.239	.001	.238	.019	.238
	115.0	35.05	.212	.001	.211	.016	.212
	120.0	36.58	.189	.001	.188	.014	.189
	125.0 130.0	38.10	.169	.001	.168	.012	.169
	135.0	39.62 41.15	.151 .136	.001	.151	.011	.151
	140.0	42.67	.136	.001 .002	.136	.009	.136
	145.0	44.20	.123	.002	.123	.008	.123
	150.0	45.72	.102	.002	.112 .101	.007	.112
]		4 3.74	.104	.002	. 101	.006	.102
•	****	******	*****	*****	*****		

* SENSATION LEVEL PROFILES *

* (based on 95% summer fair weather values) *

* ******************************

LATERAL DISTANCE

-145.0 -140.0 -135.0 -135.0 -120.0 -120.0 -115.0 -100.0	-44.20 -42.67 -41.15 -39.62 -38.10 -36.58 -35.53 -32.00 -30.48 -27.43 -25.91 -24.38 -27.43 -21.34 -19.81 -16.70 -15.24 -13.72 -10.67 -3.05 -1.50 -1.5		.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
145.0 150.0	$44.20 \\ 45.72$.0 .0	.0 .0	.0

Results of AC/DCLINE program COUPLE (EPRI/HVTRC 7-93) for:

```
Date: 7/12/2005 Time: 10:46
DATE: 7/12/2005 TIME: 10:46
          ****************
                     ELECTRICAL COUPLING TO OBJECTS
                INCLUDING EFFECTS OF 1 SHIELDING OBJECTS
                            OBJECT TYPE = 2
                        LONG BOX (LONG VEHICLE)
          ******************
EQUIVALENT COUPLED OBJECT AREA = 3773.93 ft**2
CALCULATED CAPACITANCE TO GROUND = 100000. pF
CALCULATED RESISTANCE TO GROUND = .02 kohms
(1% RESISTANCE VALUE MEASURED FOR VEHICLES WITH THE SAME CAPACITANCE,
IN DIFFERENT WEATHER CONDITIONS AND ON DIFFERENT PAVEMENTS - NORTHEAST USA)
LATERAL AND LONGITUDINAL DISTANCE TO OBJECT CENTER = 30.00 650.00 feet
AC SHORT CIRCUIT CURRENT =
                             1.10 mA
THEORETICAL MAXIMUM AC VOLTAGE TO GROUND =
                                            29. V
               1% AC VOLTAGE TO GROUND =
                                            16. V
               50% AC VOLTAGE TO GROUND =
DATE: 7/12/2005 TIME: 10:46
          *****************
                     ELECTRICAL COUPLING TO OBJECTS
               INCLUDING EFFECTS OF 1 SHIELDING OBJECTS
                            OBJECT TYPE = 2
                        LONG BOX (LONG VEHICLE)
          *****************
EQUIVALENT COUPLED OBJECT AREA = 3773.93 ft**2
CALCULATED CAPACITANCE TO GROUND = 100000. pF
CALCULATED RESISTANCE TO GROUND = .02 kohms
(1% RESISTANCE VALUE MEASURED FOR VEHICLES WITH THE SAME CAPACITANCE,
IN DIFFERENT WEATHER CONDITIONS AND ON DIFFERENT PAVEMENTS - NORTHEAST USA)
LATERAL AND LONGITUDINAL DISTANCE TO OBJECT CENTER = 30.00 650.00 feet
                                                              11
AC SHORT CIRCUIT CURRENT =
                             2.50 mA
THEORETICAL MAXIMUM AC VOLTAGE TO GROUND =
                                           66. V
              1% AC VOLTAGE TO GROUND =
                                            37. V
               50% AC VOLTAGE TO GROUND =
DATE: 7/12/2005 TIME: 10:46
                         LATERAL PROFILE
                  IN PRESENCE OF SHIELDING OBJECTS
                longitudinal distance: 650.00 feet
```

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

	TERAL TANCE	AC FIELD
(feet)	(meters)	(kV/m)
-100.0	-30.48	.3055
-95.0	-28.96	.3487
-90.0	-27.43	.3997
-85.0	-25.91	.4603
-80.0	-24.38	.5324
-75.0 -70.0	-22.86 -21.34	.6185
-65.0	-21.34	.7210 .8429
-60.0	-18.29	.9864
-55.0	-16.76	1.1530
-50.0	-15.24	1.3413
-45.0	-13.72	1.5446
-40.0 -35.0	-12.19	1.7476
-30.0	-10.67 -9.14	1.9230 2.0308
-25.0	~7.62	2.0273
-20.0	-6.10	1.8835
-15.0	-4.57	1.6093
-10.0	-3.05	1.2651
-5.0 .0	-1.52 .00	.9562
5.0	1.52	.8231 .9551
10.0	3.05	1.2635
15.0	4.57	1.6076
20.0	6.10	1.8818
25.0	7.62	2.0256
30.0 35.0	9.14 10.67	2.0291 1.9213
40.0	12.19	1.7460
45.0	13.72	1.5429
50.0	15.24	1.3396
55.0	16.76	1.1514
60.0 65.0	18.29	.9848
70.0	19.81 21.34	.8412 .7194
75.0	22.86	.6169
80.0	24.38	.5308
85.0	25.91	.4587
90.0 95.0	27.43 28.96	.3982
100.0	30.48	.3472 .3041
-		

Results of AC/DCLINE program MAGFLD (EPRI/HVTRC 7-93) for:

MAGNETIC FIELD CALCULATIONS

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/12/2005 Time: 10:46

AC CURRENTS IN EACH BUNDLE:

---- AC CURRENTS (Amperes) ---- BUNDLE POSITION

 ${\tt BNDL}$

#	REAL	IMAGINARY	TOTAL	X-COORD	Y-COORD
3	629.00	.00	629.00	-20.00	75.67
4	-314.50	-544.73	629.00	.00	75.67
5	-314.50	544.73	629.00	20.00	75.67
1	-3.28	-1.03	3.44	-10.79	94.75
2	1.42	3.58	3.85	10.79	94.75

MAGNETIC FIELD PROFILE at 3.28 feet above ground

* longitudinal distance: 650.00 feet *

		<	AC I	MAGNETIC I	FIELD	>
LAI	TERAL	MAJOR	MINOR/	VERTICAL	HORIZONT	AL RMS
DIST	TANCE	AXIS	MAJOR	COMP	COMP	RESULTANT
	(meters)	(mG)	(RATIO)	(mG)	(mG)	(mG)
-150.0	-45.72	6.04	.013	5.44	2.63	6.04
-145.0	-44.20	6.45	.014	5.77	2.90	6.45
-140.0	-42.67	6.91	.016	6.12	3.21	6.91
-135.0	-41.15	7.42	.017	6.51	3.56	7.42
-130.0	-39.62	7.98	.019	6.92	3.97	7.98
-125.0	-38.10	8.60	.020	7.38	4.43	8.60
-120.0	-36.58	9.30	.022	7.86	4.97	9.31
-115.0	-35.05	10.09	.024	8.39	5.60	10.09
-110.0	-33.53	10.98	.027	8.97	6.34	10.98
-105.0	-32.00	11.98	.029	9.58	7.20	11.98
-100.0	-30.48	13.12	.032	10.23	8.22	13.13
-95.0	-28.96	14.42	.035	10.92	9.43	14.43
-90.0	-27.43	15.92	.039	11.64	10.88	15.93
-85.0	-25.91	17.65	.044	12.37	12.61	17.66
-80.0	-24.38	19.64	.049	13.07	14.70	19.67
-75.0	-22.86	21.97	.054	13.70	17.21	22.00
-70.0	-21.34	24.69	.061	14.19	20.26	24.73
-65.0	-19.81	27.87	.069	14.40	23.94	27.94
-60.0	-18.29	31.60	.078	14.16	28.36	31.70
-55.0	-16.76	35.97	.089	13.22	33.61	36.12
-50.0	-15.24	41.06	.102	11.31	39.70	41.28
-45.0	-13.72	46.92	.118	8.46	46.48	47.25
-40.0	-12.19	53.52	.136	7.30	53.52	54.02
-35.0	-10.67	60.72	.158	13.62	59.95	61.48
-30.0	-9.14	68.20	.184	25.63	64.43	69.34
-25.0	-7.62	75.43	.213	40.89	65.40	77.13
-20.0	-6.10	81.84	.246	57.29	61.81	84.28
-15.0	-4.57	86.91	.279	72.34	53.94	90.24
-10.0	-3.05	90.39	.310	83.85	43.89	94.65
-5.0	-1.52	92.35	.333	90.75	35.18	97.33
.0	.00	92.99	.341	92.99	31.74	98.26
5.0	1.52	92.44	.333	90.74	35.48	97.43
10.0	3.05	90.57	.311	83.83	44.35	94.84
15.0	4.57	87.16	.280	72.31	54.46	90.52
20.0	6.10	82.16	.247	57.24	62.33	84.63
25.0	7.62	75.81	.214	40.82	65.92	77.53
30.0	9.14	68.61	.185	25.56	64.92	69.78
35.0	10.67	61.16	.160	13.60	60.43	61.94
40.0	12.19	53.97	.138	7,46	53.97	54.49
45.0	13.72	47.37	.120	8.73	46.91	47.71
50.0	15.24	41.51	.105	11.59	40.10	41.74
			•			

55.0	16.76	36.41	.092	13.50	33.98	36.57
60.0	18.29	32.03	.081	14.44	28.71	32.14
65.0	19.81	28.29	.072	14.68	24.26	28.36
70.0	21.34	25.09	.064	14.47	20.56	25.14
75.0	22.86	22.36	.057	13.98	17.50	22.40
80.0	24.38	20.02	.052	13.35	14.96	20.05
85.0	25.91	18.01	.047	12.64	12.86	18.03
90.0	27.43	16.27	.043	11.91	11.11	16.28
95.0	28.96	14.76	.039	11.19	9.65	14.77
100.0	30.48	13.45	.036	10.49	8.42	13.45
105.0	32.00	12.29	.033	9.83	7.39	12.30
110.0	33.53	11.28	.030	9.22	6.51	11.28
115.0	35.05	10.38	.028	8.64	5.77	10.39
120.0	36.58	9.59	.026	8.10	5.13	9.59
125.0	38.10	8.88	.024	7.61	4.58	8.88
130.0	39.62	8.24	.023	7.15	4.10	8.25
135.0	41.15	7.67	.021	6.73	3.69	7.68
140.0	42.67	7.16	.020	6.34	3.33	7.16
145.0	44.20	6.70	.019	5.98	3.02	6.70
150.0	45.72	6.28	.018	5.65	2.74	6.28

Section II 500kv Transmission Line

Southern Company Services, Project: "500a1-1_80_20" Tower Version 7.30, 9:56:22 PM Thursday, June 09, 2005 Load case displayed: Undeformed Geometry

500KV Rigid BAZE BLUEJON CONSUCTOR 3-Sub cond por phase

EMF Summary - EPRI ACDCLINE

Type Construction:

500 kv Horizontal Rigid Base - (NESC Light Zone-No Sun)

Distance From Shieldwire to Conductor Attachment (ft)	28.3
Right-of-Way Width (ft)	150.0

	erage Itage	5 %
--	----------------	-----

		Ruling Sp Final Sa	an (ft) gs in Ruli	1300 ng Span	No. 0f Sub-	Sub-Cond Spacing	Height to Str	H-Dist	from Cer	nterline
Conductor Te	mperature (Deg F)	120	167	212	Cond	(in)	Allacinnent	Left	Middle	Right
Shieldwire:	3/8" HS Steel	26.0					116.3	-22.5		22.5
Conductor:	Bluejay	43.0	46.5	49.7	3	18	88.0	-28.5	0.0	28.5
Minimum Gro	und Clearance	45.0	41.5	38.3						

Conductor Temperature (Deg F)	120	167	212
Ampacity (Amps)	1650	2991	4368
Power (mva)	1429	2590	3783

Audible Noise Edge of R/W	(db(A)) @	
	L50 Fair	38.3 38.4 38.7
Condition	L5 Rain	53.4 53.5 53.8
	L50 Rain	49.6 49.7 50

Ampacity Rating Parameters			
Ambient Temp (deg F)	104		
Wind Speed (ft/sec)	2		
Wind Direction	90		
Solar Gain	No		

Radio Noise @ @ Edge of R/W				
	Avg Fair Weather	54.8	55	55.1
Condition	Avg Foul Weather	76.4	76.6	76.7
	Heavy Rain	80.7	80.8	80.9
	Wet Conductor	73.6	73.7	73.8

Electric Field

Edge of R/W (kv/m)	2.828	2.908	2.961
Maximum (kv/m)	5.498	6.331	7.248
Distance of Maximum from		ΩE	
Center Line (ft)		ಾ	

Electrical Coupling to Truck

	Height		13.5				
Size (ft)	Width	8.5					
	Length	65					
	iit Current (ma)						
Orientation	Perpendicular Parallel	3.82	4.26	4.71			
Offeritation	Parallel	6.72	7.77	8.93			

Magnetic Field

Edge of R/W (mg)			
Maximum (mg)	220.69	455.17	752.47
Distance of Maximum from			
Center Line (ft)		U	

Results of AC/DCLINE program CORONA (EPRI/HVTRC 7-93) for:

SURFACE GRADIENTS at AVERAGE LINE HEIGHT CORONA LOSS
AUDIBLE NOISE

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/11/2005 Time: 13:47

CASE1 500kv RB Horz - 525kv @120Deg-45' gnd cl-1650A-No Sun-LT

****	***************************													
*	BUNDLE INFORMATION *													
****	******************													
ļ		VOLT?	AGE	CURRI	ENT	#	BUNDLE	COORDINA	ATES					
BNDL	CIRC	VOLTAGE	ANGLE	LOAD	ANGLE	OF	х	Y	SAG	PH				
#	#	(kV)	(DEG)	(A)	(DEG)	COND	(feet)	(feet)	(feet)					
****	* * * * * * *	*****	*****	******	*****	****	*****	*****	*****	*****				
3	1	525.0	0.	1650.	0.	3	-28.5	88.0	43.0	A				
4	1	525.0	240.	1650.	240.	3	.0	88.0	43.0	В				
5	1	525.0	120.	1650.	120.	3	28.5	88.0	43.0	c				
1	1	.0	0.	0.	0.	1	-22.5	116.3	26.0	GND				
2	1	.0	0.	0.	0.	1	22.5	116.3	26.0	GND				

MINIMUM GROUND CLEARANCE = 45.00 feet POWER SYSTEM FREQUENCY = 60. Hz

SOIL RESISTIVITY = 100. ohm meter

SUBCONDUCTOR INFORMATION - REGULAR BUNDLES

					· · · · · · · · · · · · · · · · · · ·	*********
BNDL	CONDUCTOR	DIAMETER	SPACING	DC RESIST	AC RESIST	AC REACT
#	NAME	(inch)	(inch)	(ohm/mile)	(ohm/mile)	(ohm/mile)
*****	*****	· *****	*****	*****	******	*********
1 -	1					
3	BLUEJAY	1.260	18.000	.0830	.0860	.3860
4	BLUEJAY	1.260	18.000	.0830	.0860	.3860
i	I	!		.0050	.0000	.3000
5	BLUEJAY	1.260	18.000	.0830	.0860	.3860
1 1	3/8HS	1 200	i 000	6 5100		
į +	12/0112	.360	.000	6.5100	6.7500	1.5000
2	3/8HS	.360	.000	6.5100	6.7500	1.5000
*****	******		(l bada da		2.3000

* MAXIMUM SURFACE GRADIENT (kV/cm) *

*

BNDL	# Type	ACrms	PEAK(+)	PEAK (-)
3	AC	16.45	23.26	-23.26
4	AC	18.07	25.55	-25.55
5	AC	16.45	23.26	-23.26
1	Ground Wire	6.66	9.42	-9.42
2	Ground Wire	6.66	9.42	-9.42

CORONA LOSS (kW/MILE)

	AVERAGE FAIR				AVERAGE YEAR(**)	
AC LOSS	.0	.0	85.5	173.6	4.3	38.2

(*) Rain intensity .03 in/hour

- (#) Heavy rain (.5 to 1 in/hour) which may occur in a short section of line.
- (**) Accounts for the mix of fair and foul weather.
- (##) Maximum loss for a long line coincidental with maximum load.

BNDL	# Type	Summer Fair	L5 RAIN	L50 RAIN
3	AC	-68.65	-52.28	-56.85
4	AC	-62.82	-48.66	-51.79
5	AC	-68.65	-52.28	-56.85
1	Ground Wire	****	*****	*****
2	Ground Wire	****	****	*****

<----- HVTRC CALCULATION METHOD ----->

<i>Ŧ</i>))
2//
2.8
3.1
3.3
3.6 3.8
1.0 1.1
1.3
1.7 1.9
5.1
5.6
5.0
- 223333411155555

-55.0	-16.76	39.2	54.2	50.5	49.1	56.4
-50.0	-15.24	39.4	54.4	50.7	49.3	56.6
-45.0	-13.72	39.6	54.6	50.9	49.5	56.8
-40.0	-12.19	39.8	54.8	51.1	49.7	57.0
-35.0	-10.67	39.9	55.0	51.2	49.8	57.1
-30.0	-9.14	40.1	55.1	51.4	50.0	57.3
-25.0	-7.62	40.2	55.3	51.5	50.1	57.4
-20.0	-6.10	40.4	55.4	51.7	50.2	57.5
-15.0	-4.57	40.5	55.5	51.8	50.3	57.6
-10.0	-3.05	40.5	55.5	51.8	50.4	57.7
-5.0	-1.52	40.6	55.6	51.9	50.4	57.7
.0	.00	40.6	55.6	51.9	50.4	57.7
5.0	1.52	40.6	55.6	51.9	50.4	57.7
10.0	3.05	40.5	55.5	51.8	50.4	57.7
15.0	4.57	40.5	55.5	51.8	50.3	57.6
20.0	6.10	40.4	55.4	51.7	50.2	57.5
25.0	7.62	40.2	55.3	51.5	50.1	57.4
30.0	9.14	40.1	55.1	51.4	50.0	57.3
35.0	10.67	39.9	55.0	51.2	49.8	57.1
40.0	12.19	39.8	54.8	51.1	49.7	57.0
45.0	13.72	39.6	54.6	50.9	49.5	56.8
50.0	15.24	39.4	54.4	50.7	49.3	56.6
55.0	16.76	39.2	54.2	50.5	49.1	56.4
60.0	18.29	38.9	54.0	50.3	48.9	56.2
65.0	19.81	38.7	53.8	50.1	48.7	56.0
70.0	21.34	38.5	53.6	49.8	48.5	55.8
75.0	22.86	38.3	53.4	49.6	48.3	55.6
80.0	24.38	38.1	53.2	49.4	48.0	55.4
85.0	25.91	37.9	53.0	49.2	47.8	55.1
90.0	27.43	37.7	52.8	49.0	47.6	54.9
95.0	28.96	37.5	52.6	48.8	47.4	54.7
100.0	30.48	37.3	52.4	48.6	47.2	54.5
105.0	32.00	37.1	52.2	48.4	47.0	54.3
110.0	33.53	36.9	52.0	48.2	46.8	54.1
115.0 120.0	35.05	36.7	51.8	48.0	46.7	54.0
120.0	36.58 38.10	36.5 36.4	51.6	47.8	46.5	53.8
130.0	39.62	36.4	51.4	47.7	46.3	53.6
135.0	41.15	36.0	51.2	47.5	46.1	53.4
140.0	42.67	35.8	51.1 50.9	47.3 47.2	46.0	53.3
145.0	44.20	35.7	50.7	47.2	45.8	53.1
150.0	45.72	35.5	50.6	47.0	45.6 45.5	52.9
]	10.74	JJ.J	20.0	40.0	¥3.5	52.8

* AUDIBLE NOISE *

* (other methods) *

* Altitude 1000.0 feet *

		<	BPA ME	THOD	>	<- CRIE	PI>	EdF	\mathtt{ENEL}	IREQ
LAI	ERAL	FAIR	L5	L50		AVERAGE	L5	L5	L5	L 5
DIST	ANCE	WEATHER	RAIN	RAIN	Ldn	FAIR	RAIN	RAIN	RAIN	RAIN
(feet)	(meters)	dB(A)	dB(A)	dB (A)	dB(A)	dB(A)	dB(A)	dB(A)	, dB (A)	dB(A)
-150.0	-45.72	22.2	50.7	47.2	.0	.0	.0	53.4	53.1	50.8
-145.0	-44.20	22.4	50.9	47.4	.0	.0	.0	53.5	53.3	50.9
-140.0	-42.67	22.5	51.0	47.5	.0	.0	.0	53.6	53.4	51.1
-135.0	-41.15	22.7	51.2	47.7	.0	.0	.0	53.8	53.5	51.2
-130.0	-39.62	22.9	51.4	47.9	.0	.0	.0	53.9	53.7	51.4
-125.0	-38.10	23.0	51.5	48.0	.0	.0	.0	54.1	53.8	51.6
-120.0	-36.58	23.2	51.7	48.2	.0	.0	.0	54.2	54.0	51.7
-115.0	-35.05	23.4	51.9	48.4	.0	.0	.0	54.4	54.1	51.9

-110.0	-33.53	23.6	52.1	48.6	.0	.0	.0	54.5	54.3	52.1
-105.0	-32.00	23.7	52.2	48.7	.0	.0	.0	54.7	54.5	52.3
-100.0	-30.48	23.9	52.4	48.9	. 0	.0	.0	54.9	54.6	52.5
-95.0	-28.96	24.1	52.6	49.1	.0	.0	.0	55.0	54.8	52.7
-90.0	-27.43	24.3	52.8	49.3	. 0	. 0	.0	55.2	55.0	52.9
-85.0	-25.91	24.5	53.0	49.5	.0	.0	.0	55.4	55.2	53.1
-80.0	-24.38	24.7	53.2	49.7	.0	.0	.0	55.6	55.3	53.3
-75.0	-22.86	25.0	53.5	50.0	.0	.0	.0	55.8	55.5	53.5
-70.0	-21.34	25.2	53.7	50.2	.0	.0	.0	56.0	55.7	
-65.0	-19.81	25.4	53.9	50.4						53.7
-60.0	-18.29	25.4		50.4	.0	.0	.0	56.2	55.9	53.9
-55.0			54.1		.0	.0	.0	56.3	56.1	54.1
	-16.76	25.8	54.3	50.8	.0	. 0	.0	56.5	56.3	54.3
-50.0	-15.24	26.0	54.5	51.0	.0	.0	.0	56.7	56.5	54.6
-45.0	-13.72	26.2	54.7	51.2	. 0	. 0	.0	56.9	56.6	54.8
-40.0	-12.19	26.4	54.9	51.4	.0	. 0	.0	57.0	56.8	54.9
-35.0	-10.67	26.6	55.1	51.6	.0	.0	.0	57.2	57.0	55.1
-30.0	-9.14	26.8	55.3	51.8	.0	.0	.0	57.3	57.1	55.3
-25.0	-7.62	26.9	55.4	51.9	. 0	.0	.0	57.5	57.2	55.4
-20.0	-6.10	27.0	55.5	52.0	. 0	.0	.0	57.6	57.3	55.5
-15.0	-4.57	27.1	55.6	52.1	.0	.0	.0	57.6	57.4	55.6
-10.0	-3.05	27.2	55.7	52.2	.0	.0	.0	57.7	57.5	55.7
-5.0	-1.52	27.3	55.8	52.3	. 0	.0	.0	57.7	57.5	55.7
.0	.00	27.3	55.8	52.3	. 0	.0	.0	57.7	57.5	55.7
5.0	1.52	27.3	55.8	52.3	. 0	.0	.0	57.7	57.5	55.7
10.0	3.05	27.2	55.7	52.2	.0	.0	.0	57.7	57.5	55.7
15.0	4.57	27.1	55.6	52.1	.0	.0	.0	57.6	57.4	55.6
20.0	6.10	27.0	55.5	52.0	.0	.0	.0	57.6	57.3	
25.0	7.62	26.9	55.4	51.9	.0	.0				55.5
30.0	9.14	26.8	55.3	51.8			.0	57.5	57.2	55.4
35.0	10.67	26.6	55.1	51.6	.0	.0	.0	57.3	57.1	55.3
40.0	12.19	26.4			.0	.0	.0	57.2	57.0	55.1
45.0			54.9	51.4	.0	.0	.0	57.0	56.8	54.9
	13.72	26.2	54.7	51.2	.0	.0	.0	56.9	56.6	54.8
50.0	15.24	26.0	54.5	51.0	.0	. 0	. 0	56.7	56.5	54.6
55.0	16.76	25.8	54.3	50.8	. 0	. 0	.0	56.5	56.3	54.3
60.0	18.29	25.6	54.1	50.6	.0	.0	.0	56.3	56.1	54.1
65.0	19.81	25.4	53.9	50.4	.0	. 0	.0	56.2	55.9	53.9
70.0	21.34	25.2	53.7	50.2	.0	.0	.0	56.0	55.7	53.7
75.0	22.86	25.0	53.5	50.0	.0	.0	.0	55.8	55.5	53.5
80.0	24.38	24.7	53.2	49.7	.0	.0	.0	55.6	55.3	53.3
85.0	25.91	24.5	53.0	49.5	.0	.0	.0	55.4	55.2	53.1
90.0	27.43	24.3	52.8	49.3	.0	.0	.0	55.2	55.0	52.9
95.0	28.96	24.1	52.6	49.1	.0	.0	.0	55.0	54.8	52.7
100.0	30.48	23.9	52.4	48.9	.0	.0	.0	54.9	54.6	52.5
105.0	32.00	23.7	52.2	48.7	.0	.0	.0	54.7	54.5	52.3
110.0	33.53	23.6	52.1	48.6	.0	.0	.0	54.5	54.3	52.1
115.0	35.05	23.4	51.9	48.4	.0	.0	.0	54.4	54.1	51.9
120.0	36.58	23.2	51.7	48.2	.0	.0	.0	54.2	54.0	51.7
125.0	38.10	23.0	51.5	48.0	.0	.0	.0	54.2	53.8	51.7
130.0	39.62	22.9	51.4	47.9	.0	.0				
135.0	41.15	22.7	51.4				.0	53.9	53.7	51.4
140.0	42.67	22.5		47.7	.0	.0	.0	53.8	53.5	51.2
140.0 145.0			51.0	47.5	.0	. 0	.0	53.6	53.4	51.1
	44.20	22.4	50.9	47.4	.0	.0	.0	53.5	53.3	50.9
150.0	45.72	22.2	50.7	47.2	. 0	.0	.0	53.4	53.1	50.8

Audible noise prediction methods do not apply to all line geometries, voltages, or weather conditions. If a prediction method does not apply, the appropriate output data column will be zeros.

Results of AC/DCLINE program RADIO (EPRI/HVTRC 7-93) for:

RADIO NOISE

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1 Date: 7/11/2005 Time: 13:47

```
MODE NO. ATTN(dB/mi) ATTN(neper/ft)
                      ______
         -----
   1
                     .8790E-06
.7594E-05
.6943E-04
         .4029E-01
.3481E+00
   2
          .3183E+01
            **********
            * MAXIMUM SURFACE GRADIENT (kV/cm) *
            **********
  BNDL #
         Type
                 ACrms PEAK(+) PEAK(-)
                 -----
    3 AC 16.45 23.26 -23.26
4 AC 18.07 25.55 -25.55
5 AC 16.45 23.26 -23.26
1 Ground Wire 6.66 9.42 -9.42
     2 Ground Wire 6.66
                         9.42
                                -9.42
********
                RADIO NOISE
             GENERATION FUNCTION *
           * (dB above 1uA/sqrt(m)) *
           *********
  BNDL #
        Type Average Stable Foul L1 Rain
                                              L50 Rain
  _____
             -----
                                  -----
                                              -----
       AC
     3
                37.93
                                    42.94
                                                35.21
     4
         AC
                    42.83
                                    46.11
                                                39.80
     5
         AC
                    37.93
                                    42.94
                                                35.21
********
              RADIO NOISE PROFILES
               at 500.00 kHz
              ANSI, loop antenna * ALTITUDE 1000.0 ft *
             ALTITUDE 1000.0 ft
           *********
  Distance
   Lateral
             Average Stable Foul Heavy Rain Wet Conductor
             Weather Noise (1,2) Noise (3) Noise (3)
(feet) (meters)
             (dB)
                                 (dB)
                                             (dB)
      -----
             -----
                               -----
                                          -------
      -45.72
-150.0
                61.8
                                  66.1
                                             58.9
      -44.20
                   62.6
-145.0
                                  66.9
                                             59.7
     -42.67
                    63.4
-140.0
                                  67.7
      -41.15
                  64.2
65.1
66.0
-135.0
                                  68.6
-130.0 -39.62
                                  69.4
      -38.10
-125.0
                                  70.3
      -36.58
                   66.9
-120.0
                                  71.2
      -35.05
                   67.9
-115.0
                                  72.2
      -33.53
                   68.9
-110.0
                                  73.2
                 69.9
71.0
72.0
73.1
      -32.00
-105.0
                                  74.2
                   71.0
      -30.48
-100.0
     -30.40
-28.96
-27.43
-25.91
-24.38
-22.86
-21.34
                                  75.2
-95.0
                    72.0
                                             69.2
                                  76.3
-90.0
                    73.1
                                  77.4
                                              70.3
-85.0
                    74.2
                                  78.5
                                              71.4
-80.0
                    75.3
                                  79.6
                                              72.5
```

76.4

77.5

80.7

81.7

73.6

74.6

-75.0

-70.0

-65.0	-19.81	78.5	82.7	75.6
-60.0	-18.29	79.3	83.6	
-55.0	-16.76	80.0		76.5
-50.0	-15.24	80.5	84.3	77.2
-45.0	-13.72	80.7	84.8	77.7
-40.0	-12.19		85.1	77.9
		80.5	85.0	77.6
-35.0	-10.67	79.8	84.5	77.0
-30.0	-9.14	79.0	83.8	76.2
-25.0	-7.62	79.1	83.7	76.3
-20.0	-6.10	80.7	84.8	77.8
-15.0	-4.57	82.8	86.6	79.9
-10.0	-3.05	84.7	88.3	81.7
-5.0	-1.52	85.8	89.3	82.8
.0	.00	86.2	89.7	83.2
5.0	1.52	85.8	89.3	82.8
10.0	3.05	84.7	88.3	81.7
15.0	4.57	82.8	86.6	79.9
20.0	6.10	80.7	84.8	77.8
25.0	7.62	79.1	83.7	76.3
30.0	9.14	79.0	83.8	76.2
35.0	10.67	79.8	84.5	77.0
40.0	12.19	80.5	85.0	77.6
45.0	13.72	80.7	85.1	77.8
50.0	15.24	80.5	84.8	77.7
55.0	16.76	80.0	84.3	77.2
60.0	18.29	79.3	83.6	76.5
65.0	19.81	78.5	82.7	75.6
70.0	21.34	77.5	81.7	74.6
75.0	22.86	76.4	80.7	73.6
80.0	24.38	75.3	79.6	72.5
85.0	25.91	74.2	78.5	71.4
90.0	27.43	73.1	77.4	70.3
95.0	28.96	72.0	76.3	69.2
100.0	30.48	71.0	75.2	68.1
105.0	32.00	69.9	74.2	67.1
110.0	33.53	68.9	73.2	66.0
115.0	35.05	67.9	72.2	65.1
120.0	36.58	66.9	71.2	64.1
125.0	38.10	66.0	70.3	63.2
130.0	39.62	65.1	69.4	
135.0	41.15	64.2	68.6	62.3
140.0	42.67	63.4	67.7	61.4
145.0	44.20	62.6	66.9	60.5
150.0	45.72	61.8		59.7
	4 3.14	01.0	66.1	58.9

- (1) The "Average Stable Foul Weather" noise is calculated using an empirical expression for the radio noise excitation function that was derived (see REF. [A]) to best fit the long term radio noise measurements of existing lines (in the 345 kV to 765 kV range). This generation function is used also in the program RNOISE, which is applicable to AC transmission lines. If AC lines are not present, the "Average Stable Foul Weather" column contains zeros.
- (2) The "Average Fair Weather" radio noise values can be obtained by subtracting 21.6 dB from the "Average Stable Foul Weather" radio noise data.
- (3) The "Heavy Rain" and the "Wet Conductor" radio noise levels, are defined in the EPRI's Transmission Line Reference Book 345 kV and Above. The equations for the excitation functions for AC conductors are derived from the Reference Book and are applicable for large ranges of surface gradients (from 10 to 25 kV/cm), subconductor diameters (2 to 8 cm) and number of subconductors (1 to 12). The equations for the excitation functions for DC and HYBRID line conductors are derived from the EPRI RP 2472-6. Heavy rain was

defined as rain with intensity of the order of 8 - 12 mm/hr. In the Northeastern climate, the "Heavy Rain" noise is exceeded only 1% of the time during periods of rain. "Wet Conductor" noise corresponds to the condition of the conductor saturated with water drops and with little noise caused by the impingement of rain droplets. Experimental data from which the equations for the "Wet Conductor" noise were derived, indicate that the "Wet Conductor" noise is exceeded 50% of the time during natural rain periods. "Wet Conductor" noise also corresponds to the maximum noise that can be produced during fog.

REFERENCES:

[A] R.G. Olsen, S.D. Schennum and V.L. Chartier, "Comparison of Several Methods for Calculating Power Line Electromagnetic Interference Levels and Calibration with Long Term Data", EPRI report, Project RP-2025, 1991.

Results of AC/DCLINE program EFION (EPRI/HVTRC 7-93) for:

SURFACE GRADIENTS at ACTUAL LINE HEIGHT ELECTRIC FIELD & IONS WITHOUT SHIELDING OBJECTS SENSATION LEVELS

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/11/2005 Time: 13:47

BNDL # Type ACrms PEAK(+) PEAK(-)

3 AC 16.59 23.46 -23.46
4 AC 18.08 25.56 -25.56
5 AC 16.59 23.46 -23.46
1 Ground Wire 5.28 7.46 -7.46
2 Ground Wire 5.28 7.46 -7.46

	TERAL TANCE (meters)	MAXIMUM FIELD (kV/m)	MINOR/MAJOR ELLIPSE AXES (ratio)	VERTICAL (kV/m)	HORIZONTAL (kV/m)	SPACE POTENTIAL (kV)
-150.0	-45.72	.517	.000	.516	.031	.517
-145.0	-44.20	.568	.000	.567	.036	.568
-140.0	-42.67	.626	.000	.624	.040	.625
-135.0	-41.15	.691	.000	.690	.046	.691
-130.0	-39.62	.766	.000	.764	.052	.765
-125.0	-38.10	.850	.000	.848	.059	.850
-120.0	-36.58	.948	.000	.945	.068	.947
-115.0	-35.05	1.059	.000	1.056	.078	1.058
-110.0	-33.53	1.187	.000	1.184	.090	1.186

-105.0	-32.00	1.335	.001	1.331	.104	1 22/
-100.0	-30.48	1.505	.000	1.501	.120	1.334
-95.0	-28.96	1.702	.000	1.697	.138	1.504
-90.0	-27.43	1.929	.000	1.923		1.700
-85.0	-25.91	2.190	.000		.159	1.927
-80.0	-24.38	2.489	.000	2.182	.183	2.187
-75.0	-22.86			2.480	.208	2.485
-70.0	-21.34	2.828	.001	2.818	.235	2.823
-65.0	-19.81	3.207	.002	3.197	.261	3.201
-60.0	-18.29	3.623	.004	3.612	.282	3.615
		4.064	.006	4.054	.293	4.053
-55.0	-16.76	4.510	.009	4.501	.288	4.496
-50.0 -45.0	-15.24	4.927	.013	4.921	.259	4.908
	-13.72	5.268	.019	5.265	.209	5.244
-40.0	-12.19	5.477	.028	5.476	.172	5.446
-35.0	-10.67	5.498	.041	5.497	.234	5.461
-30.0	-9.14	5.297	.060	5.293	.380	5.254
-25.0	-7.62	4.880	.087	4.868	.543	4.831
-20.0	-6.10	4.303	.125	4.283	.679	4.252
-15.0	-4.57	3.675	.176	3.652	.764	3.624
-10.0	-3.05	3.124	.234	3.108	.794	3.077
-5.0	-1.52	2.762	.280	2.757	.791	2.718
.0	.00	2.639	.844	2.639	.784	2.595
5.0	1.52	2.762	.280	2.757	.791	2.718
10.0	3.05	3.124	.234	3.108	.794	3.077
15.0	4.57	3.675	.176	3.652	.764	3.624
20.0	6.10	4.303	.125	4.283	.679	4.252
25.0	7.62	4.880	.087	4.868	.543	4.831
30.0	9.14	5.297	.060	5.293	.380	5.254
35.0	10.67	5.498	.041	5.497	.234	5.461
40.0	12.19	5.477	.028	5.476	.172	5.446
45.0	13.72	5.268	.019	5.265	.209	5.244
50.0	15.24	4.927	.013	4.921	.259	4.908
55.0	16.76	4.510	.009	4.501	.288	4.496
60.0	18.29	4.064	.006	4.054	.293	4.053
65.0	19.81	3.623	.004	3.612	.282	3.615
70.0	21.34	3.207	.002	3.197	.261	3.201
75.0	22.86	2.828	.001	2.818	.235	2.823
80.0	24.38	2.489	.000	2.480	.208	2.485
85.0	25.91	2.190	.000	2.182	.183	2.187
90.0	27.43	1.929	.000	1.923	.159	1.927
95.0	28.96	1.702	.000	1.697	.138	1.700
100.0	30.48	1.505	.000	1.501	.120	1.504
105.0	32.00	1.335	.001	1.331	.104	1.334
110.0	33.53	1.187	.000	1.184	.090	1.186
115.0	35.05	1.059	.000	1.056	.078	1.058
120.0	36.58	.948	.000	.945	.068	.947
125.0	38.10	.850	.000	.848	.059	.850
130.0	39.62	.766	.000	.764	.052	.765
135.0	41.15	.691	.000	.690	.046	.691
140.0	42.67	.626	.000	.624	.040	.625
145.0	44.20	.568	.000	.567	.036	.568
150.0	45.72	.517	.000	.516	.031	.517
*****	******	******	*****	++++++		

* (based on 95% summer fair weather values) *

LATERAL DISTANCE

-145.0 -140.0 -135.0 -130.0 -125.0 -120.0 -115.0 -110.0 -105.0 -90.0 -95.0 -90.0 -85.0 -70.0 -65.0 -60.0 -55.0 -50.0 -40.0 -35.0 -30.0 -25.0 -10.0 -15.0 -10.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -5.0 -	-44.20 -42.67 -41.15 -39.62 -38.10 -36.58 -35.05 -33.53 -32.00 -30.48 -28.96 -27.43 -25.91 -24.38 -22.86 -21.34 -19.81 -18.29 -16.76 -15.24 -13.72 -12.19 -10.67 -9.14 -7.62 -6.10 -4.57 -3.05 -1.52 .00 1.52	.0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.1 .1 .1 .2 .2 .2 .3 .4 .6 8 1.0 2.3 2.7 3.4 3.4 3.3 2.5 2.0 1.6 2.5 2.0 1.6 1.2 1.2	.1 .1 .1 .1 .1 .2 .2 .3 .4 .5 .6 .8 .9 .1 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6
25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 115.0 120.0 125.0 130.0 145.0 145.0	7.62 9.14 10.67 12.19 13.72 15.24 16.76 18.29 19.81 21.34 22.86 24.38 25.91 27.43 28.96 30.48 32.00 33.53 35.05 36.58 38.10 39.62 41.15 42.67 44.20 45.72	.2 .2 .2 .2 .2 .2 .2 .2 .1 .1 .1 .1 .1 .0 .0 .0	2.9 3.3 3.4 3.4 3.2 3.0 2.7 2.3 2.0 1.6 1.3 1.0 .8 .6 .4 .3 .2 .2 .1 .1 .1 .1	1.9 2.3 2.5 2.4 2.3 1.9 1.6 1.2 .9 .8 .6 .5 .4 .3 .2 .2 .1 .1 .1 .1

Results of AC/DCLINE program COUPLE (EPRI/HVTRC 7-93) for:

```
Date: 7/11/2005 Time: 13:47
DATE: 7/11/2005 TIME: 13:47
          ******************************
                     ELECTRICAL COUPLING TO OBJECTS
                INCLUDING EFFECTS OF 1 SHIELDING OBJECTS
                            OBJECT TYPE = 2
                        LONG BOX (LONG VEHICLE)
          *******************
EQUIVALENT COUPLED OBJECT AREA = 3773.93 ft**2
CALCULATED CAPACITANCE TO GROUND = 100000. pF
CALCULATED RESISTANCE TO GROUND = .02 kohms
(1% RESISTANCE VALUE MEASURED FOR VEHICLES WITH THE SAME CAPACITANCE,
IN DIFFERENT WEATHER CONDITIONS AND ON DIFFERENT PAVEMENTS - NORTHEAST USA)
LATERAL AND LONGITUDINAL DISTANCE TO OBJECT CENTER = 35.00 650.00 feet
AC SHORT CIRCUIT CURRENT = 3.82 mA
THEORETICAL MAXIMUM AC VOLTAGE TO GROUND =
                                           101. V
               1% AC VOLTAGE TO GROUND =
                                            57. V
               50% AC VOLTAGE TO GROUND =
                                             8. V
DATE: 7/11/2005 TIME: 13:47
          **********************************
                    ELECTRICAL COUPLING TO OBJECTS
              INCLUDING EFFECTS OF 1 SHIELDING OBJECTS
                            OBJECT TYPE = 2
                        LONG BOX (LONG VEHICLE)
          ************************
EQUIVALENT COUPLED OBJECT AREA = 3773.93 ft**2
CALCULATED CAPACITANCE TO GROUND = 100000. pF
CALCULATED RESISTANCE TO GROUND = .02 kohms
(1% RESISTANCE VALUE MEASURED FOR VEHICLES WITH THE SAME CAPACITANCE,
IN DIFFERENT WEATHER CONDITIONS AND ON DIFFERENT PAVEMENTS - NORTHEAST USA)
LATERAL AND LONGITUDINAL DISTANCE TO OBJECT CENTER = 35.00 650.00 feet
AC SHORT CIRCUIT CURRENT = 6.72 mA
THEORETICAL MAXIMUM AC VOLTAGE TO GROUND =
                                           178. V
               1% AC VOLTAGE TO GROUND =
                                           100. V
               50% AC VOLTAGE TO GROUND =
                                            15. V
DATE: 7/11/2005 TIME: 13:47
              **********
                         LATERAL PROFILE
                  IN PRESENCE OF SHIELDING OBJECTS
                longitudinal distance: 650.00 feet
```

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

	TERAL TANCE	AC FIELD
	(meters)	(kV/m)
-100.0	-30.48	1.5001
-95.0	-28.96	1.6958
-90.0	-27.43	1.9215
-85.0	-25.91	2.1812
-80.0	-24.38	2.4787
-75.0	-22.86	2.8167
-70.0	-21.34	3.1955
-65.0	-19.81	
		3.6117
-60.0	-18.29	4.0550
-55.0	-16.76	4.5049
-50.0	-15.24	4.9282
-45.0	-13.72	5.2770
-40.0	-12.19	5.4930
-35.0	-10.67	5.5181
-30.0	-9.14	5.3151
-25.0	-7.62	4.8890
-20.0	-6.10	4.3023
-15.0	-4.57	3.6696
-10.0	-3.05	3.1274
-5.0	-1.52	2.7799
.0	.00	2.6632
5.0	1.52	2.7767
10.0	3.05	3.1216
15.0	4.57	3.6625
20.0	6.10	4.2946
25.0	7.62	4.8812
30.0	9.14	5.3073
35.0	10.67	5.5104
40.0	12.19	5.4852
45.0	13.72	5.2694
50.0	15.24	4.9205
55.0	16.76	4.4973
60.0	18.29	4.0474
65.0	19.81	3.6042
70.0	21.34	3.1881
75.0	22.86	
80.0	24.38	2.8093 2.4715
85.0	24.36 25.91	
90.0	27.43	2.1741
95.0		1.9144
	28.96	1.6889
100.0	30.48	1.4933

Results of AC/DCLINE program MAGFLD (EPRI/HVTRC 7-93) for: ______

MAGNETIC FIELD CALCULATIONS

Configuration file name: C:\TLW30\ACDCLINE\DATA\ACCASE1

Date: 7/11/2005 Time: 13:47

AC CURRENTS IN EACH BUNDLE:

---- AC CURRENTS (Amperes) ---- BUNDLE POSITION

 \mathtt{BNDL}

#	REAL	IMAGINARY	TOTAL	X-COORD	Y-COORD
3	1650.00	.00	1650.00	-28.50	88.00
4	-825.00	-1428.94	1650.00	.00	88.00
5	-825.00	1428.94	1650.00	28.50	88.00
1	-10.25	-5.80	11.77	-22.50	116.30
2	6.75	10.49	12.47	22.50	116.30
П					

* MAGNETIC FIELD PROFILE
* at 3.28 feet above ground
*
* longitudinal distance: 650.00 feet
*

		<	AC N	MAGNETIC H	FIELD	>
LAI	TERAL	MAJOR		VERTICAL		
DISTANCE		AXIS	MAJOR	COMP	COMP	RESULTANT
(feet)	(meters)	(mG)	(RATIO)	(mG)	(mG)	(mG)
-150.0	-45.72	22.53	.024	18.99	12.15	22.54
-145.0	-44.20	24.04	.026	20.00	13.36	24.05
-140.0	-42.67	25.71	.028	21.07	14.74	25.72
-135.0	-41.15	27.54	.030	22.20	16.31	27.55
-130.0	-39.62	29.57	.033	23.40	18.10	29.58
-125.0	-38.10	31.82	.035	24.65	20.15	31.84
-120.0	-36.58	34.33	.038	25.96	22.50	34.35
-115.0	-35.05	37.12	.042	27.29	25.21	37.15
-110.0	-33.53	40.25	.046	28.65	28.34	40.29
-105.0	-32.00	43.77	.050	29.98	31.96	43.82
-100.0	-30.48	47.72	.054	31.24	36.17	47.80
-95.0	-28.96	52.19	.060	32.37	41.06	52.28
-90.0	-27.43	57.24	.066	33.24	46.75	57.36
-85.0	-25.91	62.96	.072	33.72	53.36	63.13
-80.0	-24.38	69.45	.080	33.61	61.02	69.67
-75.0	-22.86	76.79	.088	32.64	69.83	77.09
-70.0	-21.34	85.08	.098	30.51	79.86	85.49
-65.0	-19.81	94.40	.110	26.91	91.07	94.96
-60.0	-18.29	104.77	.122	21.93	103.25	105.56
-55.0	-16.76	116.17	.137	17.60	115.93	117.26
-50.0	-15.24	128.44	.154	20.97	128.25	129.96
-45.0	-13.72	141.28	.174	35.47	138.94	143.39
-40.0	-12.19	154.23	.196	57.27	146.35	157.16
-35.0	-10.67	166.68	.221	83.61	148.82	170.70
-30.0	-9.14	177.97	.249	112.03	145.18	183.38
-25.0	-7.62	187.50	.278	139.79	135.43	194.63
-20.0	-6.10	194.91	.309	164.16	121.15	204.03
-15.0	-4.57	200.14	.339	183.20	105.37	211.34
-10.0	-3.05	203.41	.365	196.15	91.69	216.52
-5.0	-1.52	205.12	.383	203.38	82.88	219.62
.0	.00	205.68	.389	205.68	80.00	220.69
5.0	1.52	205.25	.383	203.45	83.11	219.77
10.0	3.05	203.65	.365	196.27	92.12	216.81
15.0	4.57	200.49	.340	183.36	105.94	211.76
20.0	6.10	195.37	.310	164.34	121.80	204.56
25.0	7.62	188.04	.280	139.98	136.13	195.26
30.0	9.14	178.57	.250	112.22	145.91	184.07
35.0	10.67	167.33	.223	83.80	149.56	171.44
40.0	12.19	154.91	.198	57.49	147.09	157.93
45.0	13.72	141.98	.177	35.76	139.67	144.18
50.0	15.24	129.15	.158	21.42	128.98	130.74

55.0	16.76	116.88	.141	18.15	116.63	118.04
60.0	18.29	105.48	.126	22.41	103.93	106.32
65.0	19.81	95.09	.114	27.33	91.73	95.71
70.0	21.34	85.76	.103	30.90	80.49	86.22
75.0	22.86	77.45	.093	33.02	70.43	77.79
80.0	24.38	70.09	.085	33.99	61.59	70.35
85.0	25.91	63.59	.078	34.10	53.90	63.78
90.0	27.43	57.85	.071	33.62	47.26	58.00
95.0	28.96	52.78	.066	32.74	41.54	52.90
100.0	30.48	48.30	.061	31.62	36.63	48.39
105.0	32.00	44.33	.056	30.36	32.39	44.40
110.0	33.53	40.79	.052	29.02		
				29.02	28.75	40.85
115.0	35.05	37.65	.049	27.67	25.60	37.69
120.0	36.58	34.84	.046	26.33	22.87	34.87
125.0	38.10	32.32	.043	25.02	20.50	32.34
130.0	39.62	30.05	.040	23.76	18.43	30.07
135.0	41.15	28.01	.038	22.56	16.63	28.03
140.0	42.67	26.16	.036	21.42	15.04	26.18
145.0	44.20	24.49	.034	20.35	13.65	24.50
150.0	45.72	22.96	.032	19.33	12.42	22.98

A CONTRACTOR OF THE CONTRACTOR

500 KV TRANSMISSION LINE RADIO NOISE PERFORMANCE

K. W. Priest

General Electric Company Philadelphia, Pennsylvania

D. R. Williamson

Georgia Power Company Atlanta, Georgia

ABSTRACT.

The extensive analyses of the radio noise characteristics of two 500kV lines near Atlanta Georgia are presented. Comprehensive analytical work and an extensive series of field measurements at twenty field locations are reported. Field measurements were conducted before, during, and after construction. Unique measurements of shielding effects are included. Selected night and loop antenna measurements were recorded, also. The results have been compared and interpreted for application in the design of future 500kV lines.

INTRODUCTION

The prediction of the radio noise produced by EHV transmission lines has been discussed for many years 1.2.3.4.5. The Atlanta #1 and Norcross lines were considered to be excellent candidates for extensive pre and post construction radio noise field measurements. Twenty areas along these lines were chosen as relatively accessible measurement locations. The original study objectives may be listed as follows:

- 1. Verify prior calculations of noise levels by comparing them with field measurements using the normal prediction method and using rain cage test results from Project UHV. 4.
- Extend RN calculations to long term statistical predictions based on weather data from Atlanta, Georgia.
- Present signal-to-noise (S/N) ratios for both calculated and measured RN levels.
- 4. Compare signal strength measurements to Radio Station predictions.
- Compute and describe statistically the Quality of Radio Reception near the rights-of-way.

This paper summarizes the results of a complete analysis as highlighted by the flow chart shown in Figure 1.

CONFERENCE PAPER

C 74 451-1. A paper recommended by the IEEE Transmission & Distribution Committee of the IEEE Power Engineering Society for presentation at the IEEE PES Summer Meeting & Energy Resources Conf., Anaheim, Cal., July 14-19, 1974. Manuscript submitted February 4, 1974; made available for printing May 16, 1974.

Price: Members \$1.50 Normembers \$2.00 At Meeting: \$1.00 All Rights Reserved by IEEE

Fig. 1 500-kV line noise study program.

This program was divided into three basic areas: analytical work, the effect of weather, and the field measurements. Each of these topics is discussed in separate sections followed by the coordination of results.

Shown in Figure 2 is a sketch of the tower configuration used for the Atlanta #1 and Norcross 500kV lines of the Georgia Power Co. A triangular bundle of three 1.259" diameter (bluejay) conductors are considered. The radio noise profiles are computed using the techniques described in Reference 5. The base case profiles are based on the assumptions listed in Table I.

Fig. 2. 500 kV tower configuration.

Table I. BASE CASE CONDITIONS

Variables	Value
Voltage Surface Factor Frequency Ground Resistivity Relative Humidity Relative Air Density Wind Speed Precipitation	5 50kV 0.7 1000k Hz 62.7 Ohmeters 50 Percent 1.0 per unit 0 km/hr (None (Fair Weather) (Heavy Rain (Foul Weather)

The effect of variation in the above variables is discussed in Reference 7. The results are presented in Figure 3.

Fig. 3. Predicted radio noise profile for fair and foul weather.

These results are compared to the field measurements in the coordination of results.

EFFECT OF WEATHER

Hourly weather data from Atlanta, Georgia was obtained and processed in order to determine the expected statistical variations due to changing weather patterns. For each hour over a ten (10) year period, the correction to the base case was computed based on the correction factors in Reference 7. These corrections may be displayed in a histogram as shown in Figure 4.

RADIO INTERFERENCE ADDER-DB
Fig. 4. Frequency of radio noise adders due to
atmospheric variations in Atlanta, Georgia.

This data may be added to the foul weather base case corrected for non weather variables to produce a histogram of expected radio noise generation. Seasonal variations have not been included. They would be expected to add a variation of ± 6dB to the fair weather portion of the histogram. In foul weather the effect of droplets on the conduction tends to overwhelm the seasonal variations. 4.

FIELD MEASUREMENTS

Measurements on both transmission lines (Atlanta #1 and Norcross 500kV lines) have been made in wet and dry weather, day and night during four phases of their history.

Phase I	Pre-Construction
Phase II	Post-Construction Pre-Energization
Phase III	Post-Energization
Phase IV	After Aging

The radio noise data described were collected using the Stoddart Model NM 20B radio noise meter. Both rod and loop antena measurements have been made. The measurement locations along the line are indicated on the map in Figure 5. At each location, measurements are taken directly under the outside phase conductors. Also, appropriate spatial profiles have been measured and the measurement locations are noted. Careful attention has been given to selection of each measurement location, calibration of the instruments, the background noise level. The measurement techniques used are consistent with the guidelines described in Reference (8). During the measurement periods, the line was energized from between 495 kV to 525 kV. All measurements, unless otherwise noted, have been corrected to 500 kV using the correction technique presented in Reference 7.

Fig. 5. Measurement locations.

by the pictures in Figure 6 and Figure 7. These pictures were taken from measurement location number 6 on the Norcross line looking east and west. Over ten thousand readings have been made during the four measurement phases at the 20 locations. Several hundred of these measurements have been made under foul weather.

Fig. 6. Norcross line - position #6 - looking east.

Phase I - Pre-Construction

During September and November radio station signal strengths and background noise measurements were made. Typical results are shown in Tables II and III for the signal strengths and background noise respectively. Tables II and III give the measurements in decibels above 1 microvolt per meter. The measurement locations may be obtained from Figure 5. Table IV gives the results of some night measurements and Table V gives

Fig. 7. Norcross line - position #6 - looking west.

TARTE	TT	STONAL	STRENGTH	MEASUREMENTS
IABLE	11.	SIGNAL	2 IVERGIII	LIEVO OKTUTULE

2	ک	ATLANTA #1 LOCATION 10			NORCROSS LOCATION 2			NORCROSS LOCATION 6			NORCROSS LOCATION 9						
STATION	FREQUENCY	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV
WDAK WGGA WPLO WTRP WRNG WSB WQXE WGST	540 550 590 620 680 750 790 920	52 59 87 58 76 88 79 78	55 63 86 61 84 .95 80 78	50 * 78 55 87 89 81 65	57 63 88 62 85 87 76 70	47 58 67 50 67 76 68 62	* 58 63 53 74 74 66 59	* 59 * 69 75 59	52 * 61 * 71 72 67 64	56 63 70 49 81 92 78 74	53 64 78 49 80 88 70 76	54 * 78 56 80 89 73 71	* 61 79 * 69 82 64 61	48 70 99 * 94 110 94 90	55 71 99 51 104 111 93 90	49 * 96 50 97 102 84 75	* 68 100 * 100 110 84 88
WIIN WGUN WBIE WGKA WFOM	970 1010 1080 1190 1230	68) 80 72 66 60	76 80 63 61 56	72) 77 * 63 *	74 76 73 68 55	65 70 65 55 60	64 67 76 49 60	56 59 * 56 *	63 58 * 58 *	74 75 123 66 92	72 72 121 59 95	69 71 * 69	60 63 117 60 89	80 97 83 68 69	81 97 65 70 67	75 89 * 59 *	80 96 86 62 52
WTSH WHIE WGAA WAOK WYZE WYNX WACX	1260 1320 1340 1380 1480 1550 1600	84 63 73 80 76 70 65	* 57 67 73 71 64 54	78 * 71 62 74 * *	73 53 66 70 69 64 55	59 50 67 57 52 68 59	58 * 68 54 48 69 60	53 * 55 * 51 *	58 * 53 * 66 60	70 50 60 74 68 98 70	70 * 60 70 58 93 71	70 * 65 71 67 *	60 * 50 71 53 92 66	69 51 71 71 73 78 55	69 51 57 74 * 56 54	59 * 63 58 69 *	52 59 68 * 70 53

*Note: 1. Measurements in dB above 1 uvolt/meter Quasi Peak

- 2. Locations from Figure 5
- 3. Several Measurements Not Made.

TABLE	* * 1	MOTER	MEASUREMENTS

₹		ATLANTA #1 LOCATION 10			NORCROSS LOCATION 2			NORCROSS LOCATION 6			NORCROSS LOCATION 9					
FREQUENCY	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV	PHASE I	PHASE II	PHASE III	PHASE IV
170 500 640 720 1140 1620 2200 4000 8300 15000 32000	* 21 20 19 19 16 17 15 8 12	* 23 22 17 * 18 * 6 9 8	68 * 62 63 60 * * * 20	65 53 * 50 48 44 33 27 17 14	* 20 20 19 15 17 17 12 8 7	* 28 29 * 25 * 21 13 7 8 8	68 * 57 55 53 ** * 29 *	54 51 * 47 * 41 37 27 17 14 9	* 20 22 20 21 19 10 15 8 11 4	* 21 24 * 29 * 17 17 * 14 7	53 * 52 47 44 * * * *	57 50 * * 40 35 29 25 16 16	* 32 32 37 25 31 20 19 17 9	* 41 34 * 32 * 24 15 12 8 11	64 * 47 44 42 * * * * * * 2	64 54 * 48 39 41 38 31 16

*Note: 1. Measurements in dB above lavolt/meter Quasi Peak
2. Locations from Figure 5
3. Several Measurements Not Made.

TABLE IV. LOOP ANTENNA MEASUREMENTS											
STATION	FREQUENCY	LOCAT		ATLANT LOCAT MAX	A #1	LOCAT MAX	ION 10				
WDAK WTRP WRNG WSB WQXI WGST WIIN WGUN WGKA WTJH WGAA WAOK WYZE	590 - 620 680 750 790 920 970 1010 1190 1260 1340 1380	56 41 58 67 55 55 64 49 53 49	36 30 35 46 36 35 39 40 27 31 39 31	59 45 60 63 61 57 63 44 57 49	35 34 32 33 37 38 42 35 37 44 47 *	72 47 65 80 72 70 66 7 4 57 77 63 69	34 32 38 62 48 44 38 35 53 39 36 46				

	WYZE	Li	480	l mea	5	30	*	丄	*	70	46
		*(Severo	ıl mea	sure	ment	s no	t mo	ide.		
г				-		₁ 80 -				Т	
ŀ			/	\rightarrow							J 1
L					_	75				7	50 kHz
Γ			7			1					
1	- 1					_					90kHz
ŀ					-:	5 70-	-+-	~			-
						1	.	>	K	1	1 1
						2 66					
П		/				흼					080kHz
-1	- 1/	'				Signal STRENGTH (dB obove 14 V/m) 20 20 20 20 20 20 20 20 20 20 20 20 20					
ł	- /			-		글60-					=
	/1				l	9					380 kHz
ı						필드.					
	X				ĺ	5	/1				
١	/			١.	ŀ	ਤ .	/			1	1 [
ŀ	}		 			⑤ 59∕				+	1
			1 /	/	$\triangleright_{\leftarrow}$	9/	1			۱.,	E0 1115
			-/		<u> </u>	45	-1	·	L	11	50 kHz
Ī						43		/_			1

Fig. 8. Post-construction signal strength profile.

100 50 0 50 100 LATERAL DISTANCE FROM CENTER OF RIGHT OF WAY-FEET

150

200

TABLE V. NIGHT SIGNAL STRENGTHS										
STATION	FREQUENCY	ATLANTA LOCATION _ 10	NORCROSS LOCATION 6	NORCROSS LOCATION 9						
WSN WMAQ ** WSB WFAA WCBS WKYZ WWVA * *	650 670 700 750 820 880 1100 1170	88 80 79 93 84 79 76 65	71 74 80 86 78 80 75 64	* 74 112 78 79 69 54						

*Several measurements not made.
**From Cincinati, Ohio

Fig. 9. Post-construction signal strength profile.

Fig. 10. Post energization noise and signal profile.

the minimum and maximum loop antenna recordings. Due to the large volume of data taken, only typical data is presented. The conclusions are based on all the data, and the data presented is intended to show typical trends.

Phase II - Post-Construction Pre-Energization

The radio station signal strengths and background noise measurements were repeated for comparison and typical results are shown in Tables II and III, respectively. These signal strength measurements (Table II) averaged 3.7 db less. This change could be explained by a general shielding effect or a seasonal variation. Phase I measurements were made in the fall and Phase II in the Spring. Some individual changes were significant, and profiles were then taken. Typical lateral and longitudinal profiles are shown in Figures 8 and 9, respectively. These show in more detail the distortion produced by coupling to the line and reradiation. The profiles taken at midspan were generally not symmetrical, however, the major effects tend to be localized within the right-of-way.

Phase III - Post Energization

Again signal strengths were measured and the typical results are shown in Table II. The noise measurements were made in generally fair weather. However, several sets of readings were taken during rain. Noise and signal profiles were taken to estimate actual signal-to-noise ratios. Figure 10 shows a typical result.

Phase IV - After Aging

After the conductors have been permitted to age for about a year, measurements were re-made. The signal strengths are recorded in Table II and the noise measurements in Table III.

COORDINATION OF RESULTS

Since extensive data was taken, one of the most difficult tasks is to interpret general results without becoming hopelessly involved with a sea of numbers. It is with this philosphy in mind that the following summaries are presented.

Fig. 11. Line noise measurements.

Fig. 12 Signal strength measurements.

Radio Station Signal Strengths

Several local radio stations provided data for their predicted signal strengths in the Atlanta area. A typical comparison to the field measurements is shown in Figure 11. Generally, the field measurements were consistent with the predicted signal levels. Table II indicates the typical fluctuations for the different field measurement periods.

Noise Comparisons

Table III presents noise measurements for all four phases of field measurements through a wide frequency range. An excellent example of the data is available in the history of measurements at location 6 of the Norcross line. Figure 12 shows pre-construction, after energizing, during rain and after aging measurements. The dramatic effect

Fig. 13. Measurements compared to prediction.

Fig. 14. Measurements compared to prediction.

Fig. 15. Measurements compared to prediction.

Fig. 16. Measurements compared to prediction.

Fig. 17. Measurements compared to prediction.

after aging measurements. The dramatic effect of rain is clearly noted. An average increase of over 20dB is evident throughout the entire frequency spectrum.

Noise Profiles

One of the criteria for modern radio noise programs is to predict field measurements. During the Phase III field program, an excellent opportunity for measuring noise profiles was provided. In addition, several profiles were taken under foul weather conditions. The computed profiles shown earlier in Figure 3 must be modified before direct comparisons can be made. First the weather corrections were added to develop a statistical prediction. Then corrections for line voltage and frequency were applied.

Seasonal effects have not been included but an additional variation of ±6db might be expected.

Figures 13, 14, 15 and 16 present profile comparisons for four different measurement locations in fair weather. Agreement is excellent. Figures 17 and 18 show two foul weather profiles taken at Norcross location 5. Agreement in this case is good.

Fig. 18. Measurements compared to prediction.

CONCLUSIONS

The significant conclusions may be summarized as follows:

- Radio station predicted field strengths agree well with measurements.
- 2. Noise predictions, including the statistical weather effects, 5 agree well with field measurements.
- Fair weather conditions prevail some 91% of the time.
- Shielding effects of transmission line may produce substantial variations in the signal pattern. However, these variations do not have a significant effect outside the rightof-way.
- Aging has tended to reduce the line noise levels, but the effect has been minor.

This data has been applied to help select a right-of-way width. The intent is to minimize the effect on the public. That is, to acquire the smallest right-of-way width possible without introducing objectionable radio interference. After extensive considerations, it was concluded that a width greater than 150 feet would restrict public uses unnecessarily and there would not be objectionable interference at this distance.

REFERENCES

- G. E. Adams, "An analysis of the radiointerference characteristics of bundled conductors,", AIEE TRANS. (PAS), Pt. III, Vol. 75, pp. 1569 - 1584, February 1956.
- (2) IEEE Committee Report, "Transmission system radio & influence," IEEE TRANS., PAS 31 TP 65 65
- (3) J. J. Clade, C. H. Gary, M. R. Moreau, "Usage and checking of the theoretical relations between fields, currents and excitation functions in radio frequencies in the case of short test lines," IEEE TRANS. 69TP 64-PWR Winter Power Meeting, January 1969.
- (4) G. W. Juette, L. E. Zaffanella, "Radio noise, audible noise and corona loss of EHV and UHV transmission lines under rain: predetermination based on cage tests," IEEE TRANS. (PAS) Vol. 89, No. 6, pp. 1168 - 1178, July/August 1970.
- (5) K. W. Priest, G. K. Carter and G. W. Juette, "Calculation of the radio interference statistics of transmission lines," IEEE TRANS. PAS, Vol. 91, No. 1, pp. 92 - 98 January/February 1972.
- (6) J. G. Anderson, L. O. Barthold, "METIFOR a statistical method for insulation design of EHV transmission lines," IEEE TRANS. PAS Vol. 83, pp. 271 - 280, March 1964.
- (7) J. G. Anderson, M. Baretsky, J. J. LaForest, D. D. MacCarthy, F. A. Fisher, E. F. Magnusson, K. O. Tangen, EHV Transmission Line Reference Book New York: Edison Electric Institute, 1968.
- (8) Institute of Electrical and Electronic Engineers (IEEE), 345 East 47th Street, New York, N.Y. 10017. "IEEE Trial Use Standard Procedures for the Measurement of Radio Noise from Overhead Power Lines," Std. 430-1972.

ACKNOWLEDGEMENT

The authors are indebted to Dave Milone of the General Electric Company and Noel Lilly of the Georgia Power Company for their efforts in making the field measurements.