5. İÇ ÇARPIM UZAYLARI

Bölüm Hedefi

Bu bölümde;

- İç çarpım kavramını,
- İç çarpımın özelliklerini,
- Bir vektörün uzunluğunu,
- İki vektörün arasındaki açıyı,
- İki vektörün ortogonal olmasını,
- Bir kümenin ortogonal ve ortonormal olmasını,
- Sonlu boyutlu bir vektör uzayının Gram-Schmidt yöntemi ile daima bir ortonormal tabanının bulunabileceğini,

öğrenmiş olacaksınız.

Bu bölümde iç çarpım uzayları ile ilgili temel bilgiler verilecektir.

5.1. İç Çarpım Uzayları

Tanım. V herhangi bir reel vektör uzayı olsun. $x, y \in V$ için $\langle x, y \rangle$ ile gösterilen ve aşağıdaki koşulları sağlayan $\langle x, y \rangle : V \times V \to R, (x, y) \to \langle x, y \rangle$ reel sayısını karşılık getiren fonksiyonuna V üzerinde bir İç Çarpım V ye de iç çarpım uzayı denir. Bu iç çarpım uzayı $(V, \langle x, y \rangle)$ ile gösterilir.

- i. Her $x, y \in V$ için $\langle x, y \rangle = \langle y, x \rangle$
- ii. Her $x, y, z \in V$ için $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- iii. Her $x, y \in V$ ve $c \in R$ için $\langle cx, y \rangle = \langle x, cy \rangle = c \langle x, y \rangle$
- iv. Her $x \in V$ icin $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

Not. Bu tanımda ii. Ve iii. numaralı aksiyomlar birlikte

Her $x, y, z \in V$ için ve her $\alpha, \beta \in R$ için $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, y \rangle + \beta \langle y, z \rangle$ şeklinde de gösterilebilir.

Örnek. $x, y \in \mathbb{R}^n$ için, $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n)$ vektörlerinin iç çarpımı

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$
 şeklinde tanımlıdır.

şimdi bunu gösterelim.

i. Her
$$x, y \in \mathbb{R}^n$$
 için $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = y_1 x_1 + y_2 x_2 + \dots + y_n x_n = \langle y, x \rangle$

ii. Her
$$x, y, z \in V$$
 için $\langle x + y, z \rangle = (x_1 + y_1)z_1 + (x_2 + y_2)z_2 + \dots + (x_n + y_n)z_n$

$$= x_1 z_1 + y_1 z_1 + x_2 z_2 + y_2 z_2 + \dots + x_n z_n + y_n z_n$$

$$= (x_1 z_1 + x_2 z_2 + \dots + x_n z_n) + (y_1 z_1 + y_2 z_2 + \dots + y_n z_n)$$

$$= \langle x, z \rangle + \langle y, z \rangle$$

iii. Her
$$x, y \in V$$
 ve $c \in R$ için $\langle cx, y \rangle = \langle x, cy \rangle = c \langle x, y \rangle$
 $\langle cx, y \rangle = c.x_1y_1 + c.x_2y_2 + \dots + c.x_ny_n = c.(x_1y_1 + x_2y_2 + \dots + x_ny_n) = c \langle x, y \rangle$
 $\langle x, cy \rangle = x_1.c.y_1 + x_2.c.y_2 + \dots + x_n.c.y_n = c.(x_1y_1 + x_2y_2 + \dots + x_ny_n) = c \langle x, y \rangle$
iv. Her $x \in V$ için $\langle x, x \rangle \ge 0$; $\langle x, x \rangle = 0 \Leftrightarrow x = 0$
Her $x \in V$ için $\langle x, x \rangle = x_1^2 + x_2^2 + \dots + x_n^2 \ge 0$ dir.
 $\langle x, x \rangle = x_1^2 + x_2^2 + \dots + x_n^2 = 0$ ise $x_1 = x_2 = \dots = x_n = 0$ ise $x = 0$ dir.

Böylece R^n için iç çarpımın olduğunu göstermiş olduk.

Örnek. R^3 te tanımlanan x = (2,1,-1), y = (1,3,2) vektörlerinin iç çarpımını bulunuz.

Çözüm.

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

= 2.1+1.3+(-1).2 = 3

Örnek. $x, y \in \mathbb{R}^2$ için $\langle x, y \rangle = x_1 y_1 + 2 x_2 y_2$ şeklinde tanımlanan fonksiyonun bir iç çarpım fonksiyonu olduğunu gösteriniz.

Çözüm.

- i. Her $x, y \in V$ için $\langle x, y \rangle = \langle y, x \rangle$ olduğu tanımdan çok kolay olarak görülmektedir.
- ii. Her $x, y, z \in V$ için $\langle x + y, z \rangle = (x_1 + y_1) z_1 + 2(x_2 + y_2) z_2$

$$= x_1 z_1 + 2x_2 z_2 + y_1 z_1 + 2y_2 z_2$$

$$= \langle x, z \rangle + \langle y, z \rangle$$
128

iii. Her $x, y \in V$ ve $c \in R$ için

$$\langle cx, y \rangle = \langle x, cy \rangle = c.x_1y_1 + c.2x_2y_2 = c.(x_1y_1 + 2x_2y_2) = c\langle x, y \rangle$$

iv. Her $x \in V$ için

$$\langle x, x \rangle = x_1 x_1 + 2x_2 x_2 = x_1^2 + 2x_2^2 \ge 0$$
$$\langle x, x \rangle = 0 \Leftrightarrow x_1^2 + 2x_2^2 = 0 \Leftrightarrow x_1 = x_2 = 0 \Leftrightarrow x = 0$$

Örnek. $P_n(R)$ derecesi n veya n den daha küçük olan polinomların oluşturduğu vektör uzayı olsun. $p(x), q(x) \in P_n(R)$ için

 $\langle p(x), q(x) \rangle = \int_{0}^{1} p(x)q(x)dx$ biçiminde tanımlanan fonksiyonun bir iç çarpım fonksiyonu olduğunu gösteriniz.

Çözüm.

i. Her $p(x), q(x) \in P_n(R)$ için $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx = \langle q(x), p(x) \rangle$ olduğu aşikardır.

ii. Her
$$p(x), q(x), r(x) \in P_n(R)$$
 için

$$\left\langle \left(p(x) + q(x) \right), r(x) \right\rangle = \int_{0}^{1} \left(p(x) + q(x) \right) r(x) dx$$

$$= \int_{0}^{1} p(x) r(x) dx + \int_{0}^{1} q(x) r(x) dx$$

$$= \left\langle p(x), r(x) \right\rangle + \left\langle q(x), r(x) \right\rangle$$

iii. Her
$$p(x), q(x) \in P_n(R)$$
 ve $c \in R$ için

$$\langle c.p(x),q(x)\rangle = \langle p(x),c.q(x)\rangle = c.\int_{0}^{1} p(x)q(x)dx = c.\langle p(x),q(x)\rangle$$

iv. Her
$$p(x) \in P_n(R)$$
 için $\langle p(x), p(x) \rangle = \int_0^1 p(x) p(x) dx = \int_0^1 p^2(x) dx \ge 0$

$$\langle p(x), p(x) \rangle = \int_{0}^{1} p(x) p(x) dx = 0$$
 ise ancak ve ancak $p(x) = 0$ dir.

Örnek. $P_2(R)$ de $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$ şeklinde tanımlanan iç çarpım fonksiyonu için $p(x) = x^2 - x + 1$, q(x) = x + 1 vektörlerinin iç çarpımlarını hesaplayınız.

Çözüm.

$$\langle p(x), q(x) \rangle = \int_{0}^{1} p(x)q(x)dx = \int_{0}^{1} (x^{2} - x + 1)(x + 1)dx$$
$$= \int_{0}^{1} (x^{3} + 1)dx = \left[\frac{x^{4}}{4} + x\right]_{0}^{1} = \frac{5}{4}$$

Örnek. $M_{n\times n}$ vektör uzayı $n\times n$ tipindeki matrislerin üzerinde tanımlanan standart toplam ve skaler ile çarpma işlemlerine göre R reel sayılar kümesi üzerinde bir vektör uzayıdır. $M_{n\times n}$ vektör uzayındaki $A,B\in M_{n\times n}$, $A=\left(a_{ij}\right)_{m\times n}$, $B=\left(b_{ij}\right)_{m\times n}$ olmak üzere $\langle A,B\rangle=\sum_{i=1}^n\left(\sum_{j=1}^n a_{ij}b_{ij}\right)$ biçiminde tanımlanan fonksiyon bir iç çarpım fonksiyonudur gösteriniz.

Çözüm.

i. Her
$$A, B \in M_{n \times n}$$
 için $\langle A, B \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{ij} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} b_{ij} a_{ij} \right) = \langle B, A \rangle$

ii. Her $A, B, C \in M_{n \times n}$ için

$$\langle A+B,C\rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(a_{ij} + b_{ij}\right) c_{ij}\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(a_{ij} c_{ij} + b_{ij} c_{ij}\right)\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} c_{ij} + \sum_{j=1}^{n} b_{ij} c_{ij}\right)$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} c_{ij}\right) + \sum_{i=1}^{n} \left(\sum_{j=1}^{n} b_{ij} c_{ij}\right)$$

$$= \langle A,B\rangle + \langle A,C\rangle$$

iii. Her $A, B \in M_{n \times n}$ ve $c \in R$ için

$$\langle c.A, B \rangle = \langle A, c.B \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} c.a_{ij}b_{ij} \right) = c.\sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}b_{ij} \right) = c.\langle A, B \rangle$$
130

iv. Her $A \in M_{n \times n}$ için

$$\langle A, A \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} a_{ij} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}^{2} \right) \ge 0 \text{ dir ve}$$

$$\langle A, A \rangle = 0 \Leftrightarrow \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} a_{ij} \right) = 0 \Leftrightarrow \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij}^{2} \right) \Leftrightarrow a_{ij} = 0 \Leftrightarrow A = 0$$