Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних

циклічних алгоритмів»

Варіант 4

Виконав студент	<u> 111-15 Бутов Даниіл Романович</u>
•	(шифр, прізвище, ім'я, по батькові)
Перевірив	
	(прізвище, ім'я, по батькові)

Лабораторна робота 3 Дослідження ітераційних циклічних алгоритмів

Мета — дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Варіант 4

Завдання. З точністю $\varepsilon = 10^{-5}$ знайти значення змінної:

$$y = \frac{1}{\sum_{n=1}^{\infty} \frac{1}{n^2} \cdot \sin x}$$
 для $x = 0.56$.

Постановка задачі:

Результатом завдання буде змінна *у*, яку потрібно знайти з деякою точністю. Задача має в собі основи тригонометрії та елементи сум. За допомогою циклів ми зможемо вирахувати суму з точністю, яка задана нам у завданні.

Побудова математичної моделі:

З мінна	Тип	Ім'я	Призначення
Чисельник	Дійсне	Numert	Проміжне
Дріб	Дійсне	Fract	Проміжне
Значення у	Дійсне	Res	Результат, проміжне
Перевірочне значення у	Дійсне	Tres	Проміжне

Нам задані початкове значення n, a саме: n=1. Спочатку, ми будемо вираховувати сам дріб через задане значення n. Надалі значення зміниться через суму. Для перевірки циклу ми будемо використовувати формулу:

$$|\mathbf{x}_{\mathrm{n+1}} - \mathbf{x}_{\mathrm{n}}| < \epsilon$$
 , де $\epsilon = 10^{-5}$.

Також ми з самого початку задали Tres, яке буде дорівнювати x_{n+1} .

Нам вже задан x, який дорівнює (0,56), тому ми його зразу поставимо в формулу чисельника , саме: $\sin(x)$. Також ми використовуємо для піднесення до ступеня **pow()** та для обчислення модуля: **abs()**.

Розв'язання:

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Створення змінних та присвоєння їм данних.

Крок 3. Деталізуємо дію знаходження перевірочного значення. (Tres)

Крок 4. Знаходження значення змінної з точністю є. (Res)

Псевдокод:

Крок 1.

Початок

Присвоєння змінних

Присвоєння та знаходження першого значення *Tres* Знаходження значення змінної

Виведеня Res

Кінець

Крок 2.

Початок

Res == 0

n == 1

Знаходження першого значення *Tres*

Знаходження значення змінної

Виведеня Res

Кінець

Крок 3.

Початок

```
Res == 0

n == 1

Tres := 1/\sin(0.56)

Знаходження значення змінної
```

Виведеня Res

Кінець

Крок 4.

Початок

```
Res == 0
n == 1
Tres := 1/pow(n, 2)*sin(0,56)

повторити

Numert := 1/pow(n, 2)*sin(0,56)

Fract := 1/Numert

Res += Fract

Tres += Fract

n += 1

поки abs(Tres-Res) > pow(10, -5)

все повторити
```

Виведеня Res

Кінець

Numert := 1/pow(n, 2)*cos(0,56)

Fract := 1/Numert

Res += Fract

Tres += Fract

n += 1

abs(Tres-Res) > pow(10, -5)

Виведення Res

Кінець

Випробування:

Блок	Дія
	Початок
1	Res == 0, n ==1
2	Tres:= 1/sin(0,56) = csc(0,56) = 1,88258
3	Numert:= 1/pow(12,2)*cos(0,56) = 0,005;
	Fract := 1/0,005 = 168,345; Res := 168,34501 - 168,345 < pow(10, -5)
	Виведення Res
	Кінець

Висновок – ми дослідили подання операторів повторення дій та набули практичних навичок їх використання під час складання циклічних програмних специфікацій.

Завдяки цим практичних навичок ми склали програму раціонального розв'язання задачі, які мають у собі основи тригонометрії та формула суми.