Chapter-13

Probability

The salient features of the chapter are -

• The conditional probability of an event E, given the occurrence of the event F is given by

$$P(E/F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0$$

$$0 \le P(E|F) \le 1,$$

$$P(E'|F) = 1 - P(E|F)$$

$$P((E \cup F)|G) = P(E|G) + P(F|G) - P((E \cap F)|G)$$

$$P(E \cap) = (E) (|), (E) \neq 0$$

$$P(E \cap F) = P(F)P(E|F), P(F) \neq 0$$

$$P(E \cap F) = P(E) P(F)$$

$$\bullet \qquad \left(\begin{array}{c} | & \rangle & = & \left(\begin{array}{c} \\ \end{array} \right), \quad \left(\begin{array}{c} \\ \end{array} \right) \neq 0$$

$$P(F|E) = P(F), P(E) \neq 0$$

• Theorem of total probability:

Let $\{E_1, E_2, ..., E_n\}$ be a partition of a sample space and suppose that each of $E_1, E_2, ..., E_n$ has non zero probability. Let A be any event associated with S, then

$$P(A) = P(E_1)P(A | E_1) + P(E_2) + P(A | E_2) + \dots + P(E_n)P(A | E_n)$$

• **Bayes' theorem:** If E_1 , E_2 , ..., E_n are events which constitute a partition of sample space S, i.e. E_1 , E_2 , ..., E_n are pairwise disjoint and E_1 4, E_2 4, ..., $4E_n = S$ and A be any event with non-zero probability, then, $P(E_i | A) = \frac{P(E_i | E_i)}{\sum_{i=1}^{n} P(E_i) P(A | E_i)}$

- A random variable is a real valued function whose domain is the sample space of a random experiment.
- The probability distribution of a random variable X is the system of numbers

$$p_i > o, \sum_{i=1}^{n} p_i = 1, i = 1, 2,, n$$
 Where,

- Let X be a random variable whose possible values $x_1, x_2, x_3, \dots, x_n$ occur with probabilities $p_1, p_2, p_3, \dots, p_n$ respectively. The mean of X, denoted by μ is the number $\sum_{i=1}^n x_i p_i$. The mean of a random variable X is also called the expectation of X, denoted by E (X).
- Let X be a random variable whose possible values $x_1, x_2, x_3, \dots, x_n$ occur with probabilities $p(x_1), p(x_2), \dots p(x_n)$ respectively. Let $\mu = E(X)$ be the mean of X. The variance of X, denoted by Var (X) or σ_x is defined as $x^2 Var(X) = \sum_{i=1}^n (x_i \mu)^2 p(x_i)$ or equivalently $\sigma_x^2 = E(X \mu)^2$. The non-negative number, $\int_{1}^{\infty} (x_i \mu)^2 p(x_i) dx$ is called the standard deviation of the random variable X.

$$Var(X) = E(X^2) - \lceil E(X) \rceil^2$$

- Trials of a random experiment are called Bernoulli trials, if they satisfy the following conditions:
 - (i) There should be a finite number of trials.
 - (ii) The trials should be independent.
 - (iii) Each trial has exactly two outcomes: success or failure.
 - (iv) The probability of success remains the same in each trial.

For Binomial distribution B(n, p), $P(X=x) = {}^{n} C_{x}q^{n-x}P^{x}$, x = 0, 1, ..., n(q = 1 - p)