

探索·DISCOVERY

容器时代的到来?

5.3.1.2 容器安全4 谷器安全的要求如下: ◀ 缺陷等): b) c) 中华人民共和国国家标准 e) GB/T XXXXX—XXXXX g) 信息安全技术 工业互联网平台安全要求 及评估规范

将DevOps引入3GPP标准?

DOIS

虚假的架构

- 封闭的设计
- 没考虑面向运维
- 无用的功能
-

真正的架构

- 用Jenkins+Ansible+Python 脚本替代闭源的运维工具软件
- 蓝鲸的大中台+Python脚本插件的方式替代定制化的网管系统
-

DevOps 国际峰会 2019·北京站

第四、现在我们这个网络云部署的通信网元全都是基于虚拟化的,但是未来 5G 引入了很多一些微服务、切片这种概念,那 这种概念能不能够直接用容器化去实现呢?这个暂时目前 还没有一个很好的时间的结论,我们也跟各个厂商都是在摸索 就是看能不能虚拟化部署的,能不能改成容器化部署的,这是我们未来的四个方向。

01。容器、编排和云原生 Container, Orchestration and Cloud Native 02. 云原生之再思考 Security of Cloud Native

03. 应对之策

O4. 展望

容器、编排和云原生

Container, Orchestration and Cloud native

容器: 更轻, 更快, 然而更脆弱...

编排:更快,更弹性

- 编排 (orchestration) ,通常包括容器管理、调度、集群 定义和服务发现等。
- 秒级伸缩
- 容器技术就是轻量级的虚拟化

NSFOCUS

TECHWORLD2019

云原生、无服务、服务网格

- 访问规则???
- 行为模式???
- AD-HOC!!!

云原生之再思考

Rethinking of Cloud native security

Docker生态环境的风险和威胁

局域网攻击

同一主机上的容器之间可以构成局域网,因此针对局域网的ARP欺骗、嗅探、广播风暴等攻击方式将会对多个容器造成安全威胁

拒绝服务攻击

如果不对每个容器的可用CPU、内存等资源进行有效的限制和管理,容器之间就会造成资源使用不均衡等影响,严重时可能导致主机和集群资源耗尽,造成拒绝服务攻击

漏洞利用

Docker与主机共用一个操作系统内核,一旦主机内核存在横向越权或者提权漏洞,尽管Docker使用普通用户执行,一旦容器被入侵,攻击者还是可以利用内核漏洞逃逸到主机,进行恶意行为操作

服务暴露

Docker默认服务端口为2375,开启没有任何加密和访问控制的Docker Remote API服务且暴露在互联网上是非常危险的。2018年7月,我们分析得Docker端口暴露数为337。此外,暴露在互联网上的Kubernetes API服务(6443端口)达 12803个。

暴露的 Kubernetes 服务的 托管服务提供商全球分布图

TTL是容器安全的最大变化

TTL:

46%<1小时
11%<1分钟

对攻防双方 意味着什么?

Source: https://events.static.linuxfound.org/sites/events/files/slides/cc15_mcguire.pdf

硬币的正反面: 没有Sec的DevOps

- 采用敏捷开发的团队一般会提高3-10倍的效率, 软件的质量也有了更加可靠的保证。
- 20世纪四十年代美国马尔科姆·麦克莱恩改造并 提高了**集装箱(Container)**的便利性,推动了 整个运输行业的巨大变革

- 2018年,超过16000个开源软件的漏洞曝光
- 每8次下载开源软件,就有1次包括已 知安全漏洞
- 67%审查的应用包括开源漏洞

69%的机构在评估或践行DevOps,其他31%已经积极实现或扩容DevOps了-Gartner

Docker面临的主要攻击方式

Attack-Opened Node from Inside

应对之策

Countermeasures

云原生新环境的安全对策

- 安全控制左移
- 变化是最大的不变
 - 寻找不变,聚焦持久化
 - 寻找混乱中的秩序: 行为和业务
- 面向业务风险,解决客户真实问题

TECHWORLD2019

安全控制左移

- 最简单的事情意义最大
- 越靠左的安全控制效果最好
 - 代码漏洞
 - 第三方库
 - 用户凭证、密码硬编码
- 可信镜像仓库
- 服务器加固
- 暴露面核查

- 容器相关中危及以上的漏洞占85%
- · 2个CVSS评分10分的超危漏洞

聚焦持久化: 仓库、镜像

- □ Docker Hub中超过30%的官方镜像包含高危漏洞,接近70%的镜像有着高危或中危漏洞。
 - 漏洞镜像主要集中在应用程序的镜像中;
- □ 2018年6月,安全厂商发现17个受到感染的 Docker容器镜像,镜像中包含了可用于挖掘加密货币的程序,更危险的是,这些镜像的下载 次数已经高达500万次
- □ 开源的镜像扫描和漏洞库不能真正管理镜像漏洞生命周期

镜像	STARS	PULLS	HIGH	MEDIUM	LOW
nginx	8.1K	10M+	3	14	8
ubuntu	7.3K	10M+	0	6	14
mysql	5.8K	10M+	4	7	5
node	5.2K	10M+	68	193	71
redis	4.9K	10M+	6	11	9
postgre	4.7K	10M+	15	32	12
S					
mongo	4.2K	10M+	6	11	9
centos	4.1K	10M+	0	0	0
jenkins	3.4K	10M+	11	25	21
alpine	3.3K	10M+	0	0	0

Docker Hub的官方镜像安全性分析

经过进程名学习,除了第一个BSA的容器外,其他容器进程数量少且很稳定,可以通过学习基线策略:给每一个container画一条进程基线,进行检测异常。

行为-寻找混乱中的秩序

- 行为基线给容器异常检测带来了一种新思路
- 当某一个Container出现新进程行为,偏离自身基线;但这个行为在并没有偏离一类Container 的总体基线,那么它很可能是正常行为,反之则可能为恶意攻击

容器进程相似度分析

Container 进程相似度图

容器异常行为检测

	msg	event_type	process	user	cpu	process_len	container_name
0	原进程出现了新用户	01-02	bash	abc	0	4	k8s_data-dispatcher_data-dispatcher- deployment
12	新进程启动,进程名长度过长 异常	02-04	/usr/bin/python_abc	root	0	10	k8s_action-dispatcher_action-dispatcher- deploy
7	原进程出现了新路径	01-03	/abc/bin/sh	root	0	2	k8s_zookeeper_zookeeper- 1_default_9998eacf-85d
11	原进程CPU偏高	01-01	/pause	root	100	5	k8s_POD_data-dispatcher-deployment- 84d9f7f59d

容器网络安全: 同样重要

容器网络全景图

OPENSHIFT_436034_0317

Kubernetes网络架构

flannel网络架构

"传统"的东西向防护(OVS和NSF服务链)

OVS IOEngine:

插件: docker-ovs-plgin 下流表: x>y:actions: output=IPS Container input=IPS Container,x>y:output=IDS

Container input=IDS Container, x>y:output=y

服务链	64B	512 B	1518 B
ovs	800Mb ps	3180M bps	5600Mbps
NSF	2770M bps	9460 Mbps	9500 Mbps

NSF IOEngine:

插件: docker-nsf-plugin IOEngine收到x->y的数据包后,通过内核 转递给IPS container和IDS container

新形态: 容器环境东西向防护 (特权容器)

新业务: API安全 (Sidecar)

- · API认证授权
- API调用频次
- 恶意攻击 (注入、拖库)
- 调用链画像
- • •

展望

About the Future

展望: CDR——Container Detection and Response

- AI是规模化同时,保证检测实时 性的使能技术
- 自动化安全处置是容器环境中快速响应、恢复的必要的能力

自动化处置的Playbook

世界没有那么简单,容器安全不是虚拟化安全!

世界没有那么复杂,简单的事情往往越重要...

天下武功, 唯快不破

探索·DISCOVERY

