8.2 Sector calculations

- 1. Do Now: Convert each set of units. One inch $=\frac{1}{12}$ foot or one foot =12 inches.
 - (a) How many feet are 30 inches?
 - (b) How many inches are 8.25 feet?

- 2. Do Now: The shaded sector of the unit circle is one tenth of the whole circle, as shown.
 - (a) Write down the circumference in terms of π . $(C = 2\pi r)$

(c) Find $m \angle AOB$ in radians.

3. Convert equivalent angle measures between radians and degrees ($2\pi=360^{\circ}, \pi=180^{\circ}$). Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

(a)
$$72^{\circ} = ?$$
 radians

$$d=r\times\frac{180}{\pi}$$

(b)
$$\frac{\pi}{9} = ?$$
 degrees

4. Groupwork: Each member picks a different color and Greek letter. Hand write yours in the upper left quadrant.

Display screen and copy/paste each team member's name and letter into a different quadrant.

Your letter:	Member name & letter:
Member name & letter:	Member name & letter:

Example Greek letters are π , θ , α , Δ , β , σ , Σ

Group order: longest last name to shortest $\,$

5. Lesson: The length of the arc of a unit circle is a measure of the central angle called radians. The circumference of the full circle is $2\pi = 360^{\circ}$.

Mark each angle with its radian measure.

(a) One half of a circle 180°

(b) One sixth of the circle 60°

(c) One eighth of the circle 45°

(d) Two thirds of a circle 180°

6. Lesson: Algebra view of radians to degrees using the formula $2\pi=360^\circ$ or $\pi=180^\circ$. Apply the appropriate formula.

$$r = d \times \frac{\pi}{180}$$

(a) $60^{\circ} = ?$ radians

(b) $30^{\circ} = ? \text{ radians}$

$$d=r\times\frac{180}{\pi}$$

(c)
$$\frac{\pi}{4} = ?$$
 degrees

(d)
$$\frac{\pi}{8} = ?$$
 degrees

- 7. Right $\triangle ABC$ is drawn in standard position with vertex A on the origin and right $\angle C$ on the x-axis, as shown.
 - (a) Find the length of the hypotenuse AB using the Pythagorean Theorem $a^2 + b^2 = c^2$. (leave as a radical)
- B(5, 8)6 5 3 2 2

1

(b) Find the slope of the line segment \overline{AB} as a decimal.