Avenon 1

\mathcal{B}	i) = EDOUMY OT TO OLOWARDWARD OHO -00 0TO 00 MIOS STIDITUS
	i) $= \frac{1}{2} \text{ spoulse}$ on to olowlingwhom and $-\infty$ or ∞ pious stigiting or vapthons verse 0, other $\int_{-T}^{T} x_{n}(\varepsilon) d\varepsilon = 0$
)	
)	$\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt = \lim_{T\to\infty} \frac{1}{2T} \cdot 0 = 0$
	T-700
)	
)	ii) = EDOUMS OTI MA KUR ARTON AVARTHON KOYUSI:
	ii) = $\epsilon \rho o \nu \mu \epsilon$ or $\epsilon \rho \sigma \rho \rho \sigma \rho \rho$
)	
)	lim = 5 - Xag+ (E)dt = lim = 27 25 = (x(t)+x(-E))dt =
	1-76
))	lim 27 S x (E) + X (+) = lim 27 S x (+) dt + S x (-t) dt =
	(-700
	lim ZT ST X(E) + ST X(E) dE = Sim ZT ST X(E) dE + ST X(E) dE
) }	1700
) .	lim of S_T x(t) dt = Mx
))	T->00
	$ i i \times_{\pi_{20}}(0) = 6 \frac{1}{2} (\times 0) - \times (-0) = \frac{1}{2} (\times 0) - \times (0) = \frac{1}{2} \cdot 0 = 0$
))———	
)	$x apt(0) = \frac{1}{2} (x (0) + x (0)) = \frac{1}{2} (2x (0)) = x (0)$
)	
) }	

	A STATE OF THE PARTY OF THE PAR
	Aownon 2
7	a) Englos everysias
	$\int_{-\infty}^{+\infty} x^{2}(t) dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} x^{2}(t) dt = \int_{-\frac{1}{2}}^{\frac{1}{2}} x^{2} dt = 4 \int_{-\frac{1}{2}}^{\frac{1}{2}} = 4$
	B) Etislen Ervou Tpizmvikos madjos milavotota Ervai
	$x(t) = \cos(2\pi t - \frac{\pi}{2}) + \sin(10\pi t + \frac{\pi}{3}) = \cos(2\pi t - \frac{\pi}{2}) + \cos(10\pi t + \frac{\pi}{3} + \frac{\pi}{2})$ Also the General Separation : $P_x = \sum \frac{A_1^2}{2} = \frac{1^2}{2} + \frac{1^2}{2} = \frac{2}{2} = 1$
	Ervoil only lorges
-	$P_{X} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) ^{2} dt = \lim_{T \to \infty} \frac{1}{2T} \left(\int_{-T}^{T} x(t) ^{2} dt + \int_{0}^{t} x(t) ^{2} dt + \int_{0}^{t} x(t) ^{2} dt \right)$ $= \lim_{T \to \infty} \frac{1}{2T} \left(\int_{-T}^{T} x(t) ^{2} dt + \int_{0}^{t} x(t) ^{2} dt + \int_{0}^{t} x(t) ^{2} dt \right)$
	$= \lim_{T \to \infty} \frac{1}{2T} \left(\int_{-T}^{T} \frac{1^{2}dt}{t} + \int_{0}^{T} \frac{1^{2}dt}{t} \right)$ $= \lim_{T \to \infty} \frac{1}{2T} \left(\int_{-T}^{T} \frac{1^{2}dt}{t} + \int_{0}^{T} \frac{1^{2}dt}{t} \right)$ $= \lim_{T \to \infty} \frac{1}{2T} \left(\int_{-T}^{T} \frac{1^{2}dt}{t} + \int_{0}^{T} \frac{1^{2}dt}{t} \right)$
	T->00 2T - CIM 1 - T - I

$$\frac{1}{2} \int_{-\infty}^{\infty} \cos(2\pi t) \, \delta(t-t) \, dt = \cos(2\pi t) \Big|_{t=1} = \cos(2\pi t) \Big|_{t=1} = \cos(2\pi t) \Big|_{t=0} = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} \sin((t-t)\pi) \, \delta(t-2) \, dt = \sin((t-t)\pi) \Big|_{t=2} = \sin((t-t)\pi) = \sin(\pi) = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} \sin(\pi t) \, \delta(t-6) \, dt = \sin(\pi t) \Big|_{t=6} = \sin(6\pi) = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} \sin(\pi t) \, \delta(t-6) \, dt = \sin(\pi t) \Big|_{t=6} = \sin(6\pi) = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, \delta(t-42) \, dt = 0$$

$$\frac{1}{2} \int_{-\infty}^{\infty} (t-42) \, d$$

The The

TO

110

TIP

10

Avenon 6 a) Opozevera: x(t) -> Y(t) = 3x (3t+3) ax(t) -> y'(t) = 3ax (3++3) = a. 3x(3++3) = ax(t) EIVOI OHOJENES AGPOIOTHROTHO: X(Ct)-> 4(Ct)=3xx(3++3) X2(t)=> x(t)=3x2(3++3) X1(t)+X2(t) -> y'(t)=3(x1(3+13)+x2(3+13))=3x1(3+13)+3x2(3+13) Y1 + Y2 Elvar abporon 40 ADO ELVOIT OHOJEVES X.A.: xft)->y(t)=3x(8+13) E10000s: X(t-to)-> y'(t)=3x(3(t-to)+3)=3x(3t-3+0+3) E3080s: y(t-t)=3x(3(t-t0)+3)=3x(3+-3t0+3) KIVAI XPOVIKA AKETABINTO Euora On: |x(t) | & Bx => 13x(3++3) | < Bx => 3 |x(3++3) | < Bx 1x(3++3) 1< 3 ervar Everaln. ETTENSY TO OVOTHYO aTOTELES MELOVTILES THES THIS ELOSSON (3x+3) Sou Elvoir altrate von Elvar vai Suvantro

B) Opogenera: X(t)-> Y(t)=7x(t)+6 GIX(t)-> y'(t)=701X(t)+6 # a(7(*)+6) DEN ELVOIT OHOGENES, OTTOTE OURS SPANNING E3080s: y(t-to) => 7x(t-to)+6 Ervar X.A. Euoralia: x(t)-> y(t)=7x(t)+6 (x(t) 1 < Bx => 17x(t)+6 | < Bx => 17x(t) | <-6 OTOTE TO OVOTULUS ELVOIT EVOTO BY Μπορουμε επισης να διακρινουμε στι το ονστημο δεν οιποτελει μελοντίκες τιμες οποτε ειναι αιπιατο και ETTER OF SEV OPPORTER WAS TROOK FOUNDES THES, ENOI SUVATILED 6 8) Opopusia: $\chi(t) \rightarrow \gamma(t) = e^{t \times (t)}$ $q \times (t) \rightarrow \gamma(t) = e^{t \times (t)} \neq q e^{t \times (t)}$ DEN ELVOI OHOZENES, OTTOTE OUTE SPANNICO X. A. E10000s $x(t-t_0) \rightarrow y^{M}(t) = e^{tax(t-t_0)}$ E3000s $x(t-t_0) = e^{(t-t_0)x(t-t_0)}$ TOTAL CALLANTIN Arv Elvon X.A. Eurafria: Ettergn n onvalemon Ervas Josafi Offin SEV ENVOIT GRAFFERN, OTTOTE SEVENDA ELIOTA DI EIVOI ETTIONS EMPAVES ON SEV XPEIASETON MEDOVINES 4 MEONZOUGENS TIGES OTTOTZ ELVAL EUGTABA VOIL ACTIVO