Übungen 1 - 05.10.2022

Thema Grundlagen und Crashkurse

Aufgabe:

Bestimmen Sie die Ableitungsfunktion von

a)
$$f(x) = \cos(e^{x^2})$$
 in the inner $f'(x) = -\sin(e^{x^2}) \cdot e^{x^2} \cdot 2x$ Wellen right

b) $f(x) = \frac{\sin x}{\cos x}$

$$f'(x) = \frac{\sin x}{\cos x}$$

$$f'(x) = \frac{\sin x}{\cos x}$$

$$f'(x) = \frac{\cos x}{\cos x} \cdot \frac{\sin x \cdot (-\sin x)}{\sin x \cdot (-\sin x)}$$

C) $f(x) = \frac{\cos x}{\cos x} \cdot \frac{\sin x \cdot (-\sin x)}{\sin x \cdot (-\sin x)}$

$$f'(x) = \frac{\cos x}{\cos x} \cdot \frac{\sin x}{\cos x} \cdot \frac{\sin x}{\cos x} \cdot \frac{\sin x}{\cos x}$$

$$f'(x) = \frac{(\cos x)^2}{(\cos x)^2} \cdot \frac{(\cos x)^2}{(\cos x)^2} \cdot \frac{(\cos x)^2}{(\cos x)^2}$$

C) $f(x) = \frac{(\cos x)^2}{(\cos x)^2} \cdot \frac{(\cos x)^2}{(\cos x)^2} \cdot \frac{(\cos x)^2}{(\cos x)^2}$

$$f'(x) = \frac{(\cos x)^2}{(\cos x)^2} \cdot \frac{(\cos x)^2$$

Aufgabe 2: Differentialrechnung-graphisches Ableiten

Skizzieren Sie für die dargestellte Funktion die Funktion der 1. Ableitung!

Aufgabe 2: Differentialrechnung-graphisches Ableiten a) Skizzieren Sie für die dargestellte Funktion die Funktion der 1.Ableitung!

Aufgabe 4: Differentialrechnung-Tangentenberechnung

$$f(x) = \cos x$$

im Punkt $x = \frac{\pi}{2}$

$$\begin{aligned}
\varrho'(x) &= -\sin x \\
\varrho'(x) &= \left(-\sin \frac{\pi}{2}\right) \left(x - \frac{\pi}{2}\right) + \cos \frac{\pi}{2} \\
&= \left(-A\right) \left(x - \frac{\pi}{2}\right) + 0 \\
&= -\left(x - \frac{\pi}{2}\right)
\end{aligned}$$

b) Linearisieren Sie die Funktion

$$f(x) = e^x$$

im Punkt x=0

im Punkt x=1

$$x_{e=0}$$
: $f_{e}(x) = e^{\circ}(x-0) + e^{\circ}$
= $1/(x) + 1/(x)$
= $x + 1/(x)$

$$x_0 = A : f_E(x) = e^A(x-A) + e^A$$

$$= e \cdot x - e + e$$

$$= e \cdot x$$

Aufgabe 5: Integralrechnung

Berechnen Sie die nachfolgenden Integrale

Berechnen Sie die nachfolgenden Integrale

$$\int_{\text{Liky, fill.}} e^{\frac{1}{2}x} - A \, dx = \frac{e^{\frac{1}{2}x}}{\frac{1}{2}} - x + C = 2 \cdot e^{\frac{1}{2}x} - x + C \cdot CeiR$$
iww.likeadur

Aundania

b)
$$\int_{-2}^{2} e^{\frac{4}{2}x} - \Lambda dx = \left[\overline{2} \cdot e^{\frac{4}{2}x} - x\right]_{-2}^{2} = \left(2 \cdot e^{\frac{4}{2} \cdot 2} - 2\right) - \left(2 \cdot e^{\frac{1}{2}(-2)} - (-2)\right)$$

Sometime without $= 2 \cdot e - 2 - 2 \cdot e^{-4} - 2$
Siele a) $= 2 \cdot e - 2 \cdot \frac{1}{e} - 4 = 0.7$

$$c) \int_{-2}^{2} |e^{\frac{1}{2}x} - \Lambda| dx = |\int_{-2}^{0} e^{\frac{1}{2}x} - \Lambda dx| + |\int_{0}^{2} e^{\frac{1}{2}x} - \Lambda| dx|$$

$$= |\left[2 \cdot e^{\frac{1}{2}x} - x\right]_{-2}^{0}| + |\left[2 \cdot e^{\frac{1}{2}x} - x\right]_{0}^{2}|$$

$$= |\left(2 \cdot e^{0} - 0\right) - \left(2 \cdot e^{\frac{1}{2}(-2)} - (-2)\right)| + |\left(2 \cdot e^{\frac{1}{2}(-2)} - 2\right) - \left(2 \cdot e^{\frac{1}{2}(-2)} - 2\right)|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot \frac{1}{6} - 2\right| + |2 \cdot e^{-2} - 2|$$

$$= |\left(2 - 2 \cdot$$

Frage 4	Auf wie viele Nullen endet das Produkt der Zahlen 1 bis 100?	
Unvollständig		
Erreichbare Punkte: 1,00	Wählen Sie eine Antwort:	
	\circ	20
Frage markieren	\circ	2
Frage bearbeiten	\circ	100
	\circ	24
	\circ	15
	\circ	10
	Pr	üfen

Frage:

Auf wie viele Nullen endet das Produkt der Zahlen 1 bis 100?

100! = 123.4.5.6.7.8.9.10.11-15.20... 100

- a) 2
- b) 10
- c) 15
- d) 20
- e) 24
- f) 100

Hinweis:

Zähle die Anzahl der 5, die als Primfaktoren in den einzelnen Faktoren von 1 bis 100 auftauchen!

Lösung:

Jede 5 ergibt mit einem Primfaktor 2 eine 10 und damit eine Null.

Primfaktoren 5 stecken in 5, 10, 15, 20, 25 2mal, 30, 35 40, 45, 50 2mal, 55, 60, 65, 70, 75 2mal, 80,85, 90,95, 100 2mal und damit ist 24 die korrekte Lösung

Frage 7: Auf wie viele Nullen endet das Produkt der Zahlen 1 bis 100?

a) 2
b) 10
c) 15
d) 20
e)
$$24$$
f) 100

5796 ... 0000000000

24,5"s Pruifalboren

Sufagabse 1: Unglichungen

Einte Seik relie Seik als Funktion als Funktion

a) Bostimmen Sie die Löstingsmengt!

5x2 < 4x+1 5x2-4x-1 <0

in Linewfortoren zologen 5(x²-4x-\$)50

$$5(x^{2}-\frac{4}{5}x-\frac{1}{5})\leq0$$

$$X_{112}=+\frac{2}{5}+\frac{1}{25}+\frac{1}{5}$$

$$=+\frac{2}{5}\pm\frac{3}{5}$$

$$=+\frac{2}{5}\pm\frac{3}{5}$$

$$=+\frac{2}{5}\pm\frac{3}{5}$$

$$X_{1}=1, X_{2}=-\frac{1}{5}$$

=> 5(x-1)(x+1)40

Foll- \Rightarrow A $(x-1) \leq 0$ A $(x+\frac{1}{5}) \geqslant 0$ under $(x+\frac{1}{5}) \geqslant 0$ Solvinday $(x+\frac{1}{5}) \geqslant 0$

L1 = [- 1/3]

(2) $(x-1) > 0 \land (x+\frac{1}{5}) \leq 0$ $x > 1 \land x \leq -\frac{1}{5}$ $L_2 = \emptyset$ LOSLEZMENZE L= L, ULz =[-4,1]

Aufgabe 2

$$\frac{1}{X-\Lambda} \left(\frac{1}{X+2} \right) \cdot (X-\Lambda)$$

$$1 \left(\frac{(X-\Lambda)}{X+2} \right), \text{ Venu } (X-\Lambda) > 0$$

$$1 \left(\frac{(X-\Lambda)}{X+2} \right), \text{ Venu } (X-\Lambda) < 0$$

$$1 \left(\frac{(X-\Lambda)}{X+2} \right), \text{ Venu } (X-\Lambda) < 0$$

Erweiterte Aufgabenstellungen mit Beträgen

$$f(x) = \left| \left| x - 2 \right| - 2 \right| + 1 \leqslant 2$$

Grafische

Rechneische Lösung

$$||x-2|-2|+1 \le 2$$

Rechneische Lösung

$$||x-2|-2| \le 1$$

$$\Rightarrow -1 \le |x-2|-2 \le 1$$

$$\Rightarrow 1 \le |x-2|-2 \le 1$$

$$\Rightarrow 1 \le |x-2| \le 3$$

$$(1 \le |x-2|) \land (|x-2| \le 3)$$

$$(1 \le |x-2|) \land (-3 \le |x-2| \le 3)$$

$$(3 \le |x|) \lor (1 > x) \land (-1 \le |x| < 5)$$

[=[-1,1]0[35]

Aufgabe:

Vereinfachen Sie folgenden Ausdruck:

$$y = \sqrt{\binom{n}{n-1} \cdot \frac{(n^2 + 2n + 1)(n+1)}{(n^3 - n)(n-1)}}$$

$$\boxed{1} \quad y = \frac{n+1}{n-1} \cdot \sqrt{\frac{1}{n-1}}$$

$$\bigvee \boxed{2} \quad y = \frac{n+1}{n-1}$$

$$3 \quad y = \frac{n+1}{n-1} \cdot \sqrt{\frac{n+1}{n-1}}$$

http://elearning-material.htw-berlin.de/KM2/test.xhtml#binomische formeln

Lösung:
$$y = \frac{(N^2 + 2N + 4)(N + 4)}{(N^3 - N)(N - 4)}$$

$$= \frac{N!}{(N - (N - A)!)(N - A)!} \cdot \frac{(N + A)^2(N + A)}{(N^2 - A)(N - A)}$$

$$= \frac{N!}{(N - A)!} \cdot \frac{(N + A)^2(N + A)}{(N + A)^2(N - A)}$$

$$= \frac{(N + A)!}{(N - A)!} \cdot \frac{(N + A)^2}{(N - A)^2}$$

$$= \frac{(N + A)!}{(N - A)^2}$$

$$= \frac{(N + A)!}{(N - A)^2}$$