See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/23680935

Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[...

ARTICLE in JOURNAL OF MEDICINAL CHEMISTRY · FEBRUARY 2009

Impact Factor: 5.45 · DOI: 10.1021/jm801087e · Source: PubMed

CITATIONS

36

READS

38

8 AUTHORS, INCLUDING:

Adrian Blaser

University of Auckland

12 PUBLICATIONS 239 CITATIONS

SEE PROFILE

Scott Franzblau

University of Illinois at Chicago

359 PUBLICATIONS 8,072 CITATIONS

SEE PROFILE

Zhenkun Ma

79 PUBLICATIONS 1,802 CITATIONS

SEE PROFILE

Medicinal Chemistry

Subscriber access provided by ITHACA COLL

Article

Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6*S*)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5*H*-imidazo[2,1-*b*][1,3]oxazine (PA-824)

Andrew M. Thompson, Adrian Blaser, Robert F. Anderson, Sujata S. Shinde, Scott G. Franzblau, Zhenkun Ma, William A. Denny, and Brian D. Palmer

J. Med. Chem., 2009, 52 (3), 637-645• DOI: 10.1021/jm801087e • Publication Date (Web): 17 December 2008

Downloaded from http://pubs.acs.org on February 11, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Synthesis, Reduction Potentials, and Antitubercular Activity of Ring A/B Analogues of the Bioreductive Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5*H*-imidazo[2,1-*b*][1,3]oxazine (PA-824)

Andrew M. Thompson,[†] Adrian Blaser,[†] Robert F. Anderson,^{†,‡} Sujata S. Shinde,^{†,‡} Scott G. Franzblau,[§] Zhenkun Ma,^{II} William A. Denny,[†] and Brian D. Palmer*,[†]

Auckland Cancer Society Research Centre, School of Medical Sciences and Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, and Global Alliance for TB Drug Development, 40 Wall Street, New York, New York 10005

Received September 1, 2008

The nitroimidazooxazine S-1 (PA-824) is a new class of bioreductive drug for tuberculosis. A series of related bicyclic nitroheterocycles was synthesized, designed to have a wide range of one-electron reduction potentials E(1) (from -570 to -338 mV, compared with -534 mV for S-1). The observed E(1) values closely correlated with the $\sigma_{\rm m}$ values of the heteroatom at the 4/8-position of the adjacent six-membered ring. Although the compounds spanned a range of E(1) values around that of S-1, only the nitroimidazothiazines showed significant antitubercular activity (at a similar level of potency), suggesting that E(1) is not the main driver of efficacy. Furthermore, there was a correlation between activity and the formation of imidazole ring-reduced products at the two-electron level, pointing to the potential importance of this reduction pathway, which is determined by the nature of the substituent at the 2-position of the 4-nitroimidazole ring.

Introduction

Tuberculosis (TB^a) remains a leading infectious cause of death worldwide, but very few new drugs have been approved for TB treatment in the past 35 years, despite recent efforts. ^{1–3} The current drug therapy for TB is long and complex, involving multidrug combinations (usually isoniazid, rifampin, ethambutol, and pyrazinamide for the initial 2 months and rifampin and isoniazid for an additional 4 months). ⁴ The need for such lengthy treatment is largely because the drugs are relatively ineffective against the persistent form of the disease. ⁵ The recent introduction of the nitroimidazooxazine S-1 (PA-824) (Figure 1) to clinical trial by the Global Alliance for TB Drug Development is thus of potential significance, since this compound shows good in vitro and in vivo activity against *Mycobacterium tuberculosis* (*M. tb*) in both its active and persistent forms. ^{4–8}

Global Alliance for TB Drug Development.

$$O_2N$$
 O_2N
 O_2N

Figure 1. Structures of nitroheterocyclic tuberculosis drugs.

The mechanism of action of *S*-1 is thought⁹ to involve reduction of the nitro group, in a process dependent on the bacterial glucose-6-phosphate dehydrogenase (FGD1) and its cofactor F₄₂₀. More recent studies¹⁰ on mutant strains showed that a 151-amino acid (17.37 kDa) protein of unknown function, Rv3547, also appears to be critical for this activation. Equivalent genes are present in *M. bovis* and *M. avium*.

Initial cyclic voltammetry studies¹¹ on S-1 in aqueous solution suggested that it had a one-electron reduction potential [E(1)] broadly similar to that of metronidazole (2), which has an E(1) of -486 mV¹² and undergoes a similar four-electron reduction. However, later voltammetry work in aprotic media indicated that the reduction peak potential of S-1 was about 200 mV more negative than that of 2, with the nitro radical anion being correspondingly 50- to 100-fold less stable.¹³

Many side chain analogues of S-1 have been synthesized, although scarcely any biological assay data were reported on these (particularly against M. tb). ^{9,14,15} Very recently, the synthesis and antitubercular activity of 7-methyl derivatives of S-1 were also described, ¹⁶ but there has been very little study of fundamental chromophore variations that preserve the respective ring sizes of the nitroheterocyclic core. ¹⁵ However, related 6-nitroimidazo[2,1-b]oxazoles have been known for almost 2

^{*} To whom correspondence should be addressed. Phone: +64-9-373-7599, extension 86150. Fax: +64-9-373-7502. E-mail: b.palmer@ auckland.ac.nz.

[†] School of Medical Sciences, The University of Auckland.

^{*} Department of Chemistry, The University of Auckland.

[§] University of Illinois at Chicago.

^a Abbreviations: TB, tuberculosis; M. ib, Mycobacterium tuberculosis; FGD1, F₄₂₀ dependent glucose-6-phosphate dehydrogenase; E(1), one-electron reduction potential; TBDMS, tert-butyldimethylsilyl; THP, tetrahydropyranyl; TBAF, tetra-n-butylammonium fluoride; STIPS, triisopropylsilanethiol; m-CPBA, 3-chloroperbenzoic acid; NOESY, nuclear Overhauser enhancement spectroscopy; BOC, tert-butyl carbamate; NHE, normal hydrogen electrode; MIC, minimum inhibitory concentration; COSY, correlation spectroscopy; HSQC, heteronuclear single quantum coherence; HMBC, heteronuclear multiple bond correlation; HREIMS, high resolution electron impact mass spectrometry; HRFABMS, high resolution fast atom bombardment mass spectrometry; HRESMS, high resolution atmospheric pressure electrospray mass spectrometry; HRCIMS, high resolution chemical ionization mass spectrometry; DMF, N,N-dimethylformamide; THF, tetrahydrofuran; MsOH, methanesulfonic acid; ND, not determined; NP, no discernible peak; DIPEA, N,N-diisopropylethylamine; PPTS, pyridinium p-toluenesulfonate.

Scheme 1^a

Br N Br i R N Br iii N Br iv or
$$xi$$

O2N O2N O2N O2N O2N O2N O2N

23 ii 24 : R=Br 26

OR ix compound 1 of Table 1

V 27: R=H, Y=OTBDMS viii 30: R=THP, X=O 28: R=THP, Y=OH 32: R=THP, Y=Br 33: R=THP, X=S

compounds 7, 8 of Table 1

compounds 9, 10 of Table 1

 a Reagents and conditions: (i) ClCH2OEt, NaH, DMF, 0–20 °C, 4 h; (ii) aqueous Na2SO3, DMF, 20 °C, 29 h; (iii) 5 N HCl, MeOH, 69 °C, 3 h; (iv) TBDMS glycidyl ether, DIPEA, toluene, 70 °C, 18 h; (v) dihydropyran, PPTS, CH2Cl2, 20 °C, 16 h; (vi) 1 M TBAF, THF, 20 °C, 1 h; (vii) NaH, DMF, 20 °C, 3 h; (viii) cat. MsOH, MeOH, 20 °C, 3 h; (ix) 4-F3COBnBr, NaH, DMF, 20 °C, 24 h; (x) 4-BnOBnCl, NaH, DMF, 20 °C, 16–24 h; (xi) BrCH2CH(OTHP)CH2Br, K2CO3, DMF, 80 °C, 18 h; (xii) LiSTIPS, THF, -78 to 20 °C, 18 h, then 1 M TBAF, THF, 20 °C, 1 h; (xiii) 2 N HCl, MeOH, 20 °C, 3 h; (xiv) Davis reagent, CH2Cl2, 20 °C, 4 days; (xv) m-CPBA, CH2Cl2, 20 °C, 72 h.

decades to possess potent antitubercular activity 17 and include a recent clinical candidate, **3** (OPC-67683). 18 Considering the apparent importance of nitro reduction in the activation of S-1 and the variation in nitro reduction potentials and electron affinity that can be effected by changing the electronics of the nitroheterocycle, we report here the synthesis, E(1) values, and preliminary biological evaluation of ring A/B analogues of S-1, together with a brief investigation of the radical reduction chemistry of selected compounds.

Results and Discussion

Compound Synthesis. Both the original synthesis¹⁵ of S-1 and some recently reported synthetic improvements ¹⁹ employed the explosive intermediate 2,4-dinitroimidazole for the initial ring-opening reaction of a glycidyl silyl ether. In the interests of improving safety, an alternative synthesis of racemic 1 was developed from 2-bromo-4-nitroimidazole, based partly on work reported by Goto²⁰ (Scheme 1). 2-Bromo-4(5)-nitroimidazole (26) was prepared as reported²⁰ from 2,5-dibromo-4-nitroimidazole²¹ (23) except that ethoxymethyl was used as the N-protecting group (intermediate 24). Reduction of 24 with sodium sulfite to 25 followed by cleavage of the protecting group with 5 N HCl gave 26 in very good overall yield from 23 (increased from 48%²⁰ to 76%). Reaction of 26 with the TBDMS ether of racemic glycidol gave predominantly the 4-nitroimidazole **27**, together with a trace of its 5-nitro isomer. THP protection of the secondary hydroxyl group in 27 gave the known²⁰ ether **28**, which was treated with excess TBAF at room temperature to give the primary alcohol²⁰ 29. The latter was partly converted into the oxazine 30 during the desilylation reaction, and treatment of the crude product with sodium hydride at room temperature²⁰ completed the cyclization, giving 30 in 55% overall yield from 28. Deprotection of the THP ether followed by reaction of the resulting alcohol 31 with sodium hydride and the appropriate benzyl bromide gave racemic 1.

Scheme 2^a

compounds 11 and 12 of Table 1

^a Reagents and conditions: (i) fuming HNO₃−conc H₂SO₄, 2−55 °C, 1 h; (ii) H₂, 5% Pd−C, KOAc, EtOAc−MeOH, 20 °C, 5 h; (iii) ClCH₂CHO, NaHCO₃, aq MeOH, reflux, 2 h; (iv) H₂, 10% Pd−C, AcOH, 20 °C, 6 h; (v) fuming HNO₃−conc H₂SO₄, 5−20 °C, 2 h; (vi) BBr₃, CH₂Cl₂, 20 °C, 3 h; (vii) Ac₂O, 20 °C, 15 min; (viii) fuming HNO₃−conc H₂SO₄, Ac₂O, −10 to 10 °C, 2 h, then 3 N KOH, MeOH, 20 °C, 15 min; (ix) 4-F₃COBnBr or 4-BnOBnCl, NaH, DMF, 20 °C, 2.5−6 h.

Similar reaction of **31** with 4-benzyloxybenzyl chloride gave the racemic ether **4**.

The sulfur-linked analogues 5-10 were also prepared from 2-bromo-4-nitroimidazole (26) (Scheme 1). Reaction of 26 with excess THP-protected 1,3-dibromo-2-propanol22 at 80 °C gave the dibromide 32 in moderate yield, with little formation of dimeric material or the 5-nitro isomer. Reaction of 32 with the lithium salt of triisopropylsilanethiol (STIPS) gave a product with a mass consistent with substitution of bromide by STIPS, which ¹H NMR spectroscopy indicated was a mixture resulting from displacement of the 2-bromo group or the side chain bromine. Treatment of this crude product with TBAF gave the sulfide 33 in good yield, which was deprotected to the alcohol **34** and then converted into the benzyl ethers **5** and **6** as above. Oxidation of 5 and 6 with Davis' oxaziridine reagent was slow but eventually afforded the sulfoxides 7 and 8. Alternatively, oxidation of 5 and 6 with m-CPBA gave the corresponding sulfones 9 and 10.

The carbon-linked compounds were prepared as shown in Scheme 2. The 2-aminopyridine 37 reacted with chloroacetaldehyde to give imidazopyridine 38 in good yield. Several conditions were studied for hydrogenation of the pyridine ring of 38 to give 39. Reduction in acetic acid using PtO₂ as catalyst led to concomitant hydrogenolysis of the methyl ether group, giving a product that was contaminated with the alcohol analogue. However, changing the catalyst to Pd-C suppressed this, giving the desired product in quantitative yield. Nitration of 39 could be achieved using fuming HNO₃ and concentrated H₂SO₄ at room temperature to give a 29% yield of a 1:1 mixture of the 2- and 3-nitro derivatives (40 and 41, respectively), which could be separated by preparative reversed phase HPLC. A variety of reagents were investigated for demethylation of the mixture, largely without success. However, the precursor imidazole 39 without a nitro group was demethylated rapidly and cleanly with BBr3, giving alcohol 42 in good yield, together with a small amount of the corresponding secondary bromide.

Scheme 3^a

^a Reagents and conditions: (i) dihydropyran, PPTS, CH₂Cl₂, 20 °C, 18 h; (ii) NaH, DMF, 20 °C, 3 h; (iii) cat. MsOH, MeOH, 20 °C, 3 h; (iv) 4-F₃COBnBr, NaH, DMF, 20 °C, 1 h; (v) 1 M LiOMe, MeOH, 20 °C, 20

Scheme 4^a

^a Reagents and conditions: (i) anisole, 160 °C, 60 h; (ii) TBDMS glycidyl ether, DIPEA, toluene, 68 °C, 28 h; (iii) dihydropyran, PPTS, CH₂Cl₂, 20 °C, 1 day; (iv) 1 M TBAF, THF, 20 °C, 13 h; (v) 10% HCl, MeOH, 20 °C, 3 h; (vi) 4-F₃COBnBr or 4-BnOBnCl, NaH, DMF, 0–20 °C, 16–24 h.

In situ acetylation of 42 followed by nitration using acetic anhydride as the solvent and then base hydrolysis of the acetate group gave a \sim 1:1 mixture of the 2- and 3-nitro isomers 44 and 45 in 29% yield. The isomers could be separated with difficulty by chromatography on silica, and assignment of the regiochemistry of the nitro groups was confirmed by 2D NMR experiments, which established a correlation between the imidazole ring proton and the NCH₂ methylene group of 44 in a NOESY spectrum. Reaction of a mixture of 44 and 45 with 4-(trifluoromethoxy)benzyl bromide and sodium hydride, followed by purification of the product using preparative reversed phase HPLC, gave the desired 2-nitro isomer 11 in poor yield, together with a trace of the corresponding 3-nitro isomer. Similar reaction of the alcohol mixture with 4-benzyloxybenzyl chloride and NaH gave the analogous benzyloxybenzyl ether derivative

The (NH) alcohol precursor to imidazopyrimidine 13 has been described previously,15 but in that report the NH was then methylated prior to coupling of the benzyloxybenzyl side chain. To prepare 13, we elected to form the THP ether 47 from known¹⁵ BOC-protected aminoalcohol 46 and to cyclize this to give the fully protected precursor 48 (Scheme 3). Selective removal of the THP group with methanesulfonic acid and alkylation of the resulting alcohol 49 with 4-(trifluoromethoxybenzyl bromide and sodium hydride yielded the BOC-protected imidazopyrimidine 50, which could be deprotected using lithium methoxide. The last two steps (alkylation and BOC deprotection) gave disappointingly low yields but provided 13 in sufficient quantity for characterization and biological testing.

Synthesis of the novel 2-nitropyrazolo[5,1-b][1,3]oxazine scaffold is described in Scheme 4. The preparation of the known²³ 3,5-dinitropyrazole (**53**) by thermal rearrangement of

Scheme 5^a

^a Reagents and conditions: (i) glycidyl-NHBOC, 2,6-lutidine, toluene, 65 °C, 14 h; (ii) TBDMSCl, imidazole, DMF, 20 °C, 46 h; (iii) NaH, DMF, 0-20 °C, 40 min; (iv) 1 M TBAF, THF, 20 °C, 3.5 h; (v) dihydropyran, PPTS, CH₂Cl₂, 20 °C, 6 h; (vi) NaH, DMF, 0-20 °C, 20 min; (vii) PPTS, EtOH, 55 °C, 20 h; (viii) 4-F₃COBnBr or 4-BnOBnI, NaH, DMF, 0-20 °C, 40-60 min; (ix) 1 M LiOMe, MeOH, 54 °C, 15-23 h; (x) 1.25 M HCl, MeOH, 20-42 °C, 1-4 days.

1,3-dinitropyrazole (51) was conveniently achieved in anisole at 160 °C (rather than the higher boiling benzonitrile as described²³) to give 53 without changing the proportion of 3-nitropyrazole (52) obtained as an impurity in the crude product material (10-12%). The latter was removed from 53 by pHdependent extraction, based on the large difference in their pK_a values²⁴ (9.8 for **52** and 3.1 for **53**). The next step of the synthesis required an unprecedented intramolecular nitro displacement reaction on an N-alkylated derivative of 53 (by analogy with the synthesis of 2-nitroimidazo[2,1-b][1,3]oxazines¹⁵ and 6-nitroimidazo[2,1-b]oxazoles^{17,25} from 2,4dinitroimidazole). Thus, base catalyzed condensation of 53 with TBDMS-glycidyl ether gave the alcohol 54 and treatment of the corresponding THP derivative 55 with TBAF at room temperature resulted in spontaneous formation of the desired oxazine scaffold 56 in very high yield (92%). This was then deprotected to give alcohol 57, which was elaborated to the required products (14, 15) by alkylation reactions, as above.

The novel 2-nitropyrazolo[1,5-a][1,3]pyrimidine scaffold was prepared in a similar manner (again, by analogy with the synthesis of 2-nitroimidazo[1,2-a]pyrimidines¹⁵ from 2,4-dinitroimidazole). Thus, condensation of 3,5-dinitropyrazole 53 with the epoxide derived from N-BOC allylamine, followed by protection of the resultant alcohol 58 as the TBDMS ether, gave 59 (Scheme 5). Despite extensive attempts at optimization, the best yield of the product 60 from the following base catalyzed ring closure step was only 15% (substantial decomposition occurred). Alternative protection of the alcohol as the THP ether (62) resulted in an improved yield for this ring closure step (a 43% yield of the corresponding THP-protected product 63), and the THP protecting group was then selectively removed in the presence of the N-BOC group using pyridinium p-toluenesulfonate in ethanol to give alcohol 61. To minimize further compound losses due to the potential base lability of the BOC group of 61 (as suggested by low yields in the preceding ring closure reactions), the more reactive 4-benzyloxybenzyl iodide²⁶

^a Reagents and conditions: (i) BrCH₂CH(OTHP)CH₂Br, K₂CO₃, DMF, 85 °C, 22 h; (ii) LiSTIPS, THF, −78 to 20 °C, 19 h, then 1 M TBAF, THF, 20 °C, 4 h; (iii) MeI, NaH, DMF, 0−20 °C, 10 min; (iv) MeI, K₂CO₃, DMF, 20 °C, 49 h; (v) 10% HCl, MeOH, 20 °C, 3 h; (vi) 4-F₃COBnBr or 4-BnOBnCl, NaH, DMF, 0−20 °C, 5−6 h.

was employed in the synthesis of **65**. Selective cleavage of the *N*-BOC group was then investigated. However, treatment of **65** with HCl in methanol (at 20 or 42 °C) resulted in the slow loss of both the 4-benzyloxybenzyl ether side chain and the *N*-BOC group to give alcohol **66**. Therefore, a rare base catalyzed cleavage of the *N*-BOC group was employed for both **65** and analogue **64** (lithium methoxide in methanol at 54 °C) to give the required products (**16**, **17**) in very good yield (73–76%).

An expeditious alternative route to the related N-methyl derivatives (18, 19) was discovered during attempts to synthesize the novel 2-nitropyrazolo[5,1-b][1,3]thiazine scaffold (Scheme 6). Alkylation of 53 with 2-[2-bromo-1-(bromomethyl)ethoxy]tetrahydropyran gave 67 in modest yield, likely due to the reported propensity of this reagent to undergo base-catalyzed elimination.²² Treatment of **67** with the lithium salt of triisopropylsilanethiol, followed by desilylation in situ, gave the 2-nitropyrazolo[1,5-*a*]pyrimidine **68** as the only isolable product. Formation of 68 requires a selective sulfide reduction of the nitro group adjacent to the side chain, followed by intramolecular alkylation, prior to sulfide displacement (the selective reduction of 1-methyl-3,5-dinitropyrazole with sodium hydrosulfide has been reported²⁷). Surprisingly, methylation of **68** using iodomethane with potassium carbonate as the base in dimethylformamide gave methyl carbamate 71 as the sole product (67% yield). This was avoided by the use of sodium hydride, which gave the desired 69 quantitatively. This was then elaborated (via the alcohol 70) to the required products (18, 19) using standard methods.

The three compounds in the triazole series were prepared using the chemistry outlined in Scheme 7. Bromonitrotriazole 72 reacted with racemic TBDMS-protected glycidol under basic conditions to give approximately 1:1 mixture of regioisomers 73 and 74, which were readily separated by chromatography. Their structures were assigned following detailed NMR studies, which established a three-bond correlation between the carbon atom bearing the nitro group in 73 and the side chain methylene proton atoms. The desired isomer (74) was elaborated to racemic alcohol 77 by successive THP protection and desilylation (with ring closure) reactions, and from this the benzyl ethers 20-22 were prepared by standard chemistry. Optical resolution of the racemic (trifluoromethoxy)benzyl ether to give 20 and 21 was achieved by preparative chiral HPLC using a Chiralcel OD column. The absolute configuration of these enantiomers was assigned by comparison of the sign of their optical rotations with those of the enantiomers of 1.

Scheme 7^a

 a Reagents and conditions: (i) TBDMS glycidyl ether, DIPEA, toluene, 70 °C, 24 h; (ii) dihydropyran, PPTS, CH₂Cl₂, 20 °C, 24 h; (iii) 1 M TBAF, THF, 20 °C, 3 h; (iv) 2 N HCl, MeOH, 20 °C, 2 h; (v) 4-F₃COBnBr or 4-BnOBnCl, NaH, DMF, 20 °C, 16–18 h.

One-Electron Reduction Potentials. Nitroheterocycles have been studied as potential antituberculosis agents for many years, but the nitroimidazooxazine S-1 has stood out in recent times for its high in vivo activity and its ability to target both the active and persistent forms of the disease. While selective bioreduction is likely to be the main mechanism for this, and much work is being invested in identification of the enzyme(s) responsible, 9.10 less work has been reported on the radical chemistry of S-1.

Table 1 reports thermodynamic reversible one-electron reduction potentials [*E*(1) vs NHE, in 5 mM phosphate buffer, pH 7.0] for racemic 1 and a series of related novel bicyclic nitroheterocycles. The compound set was designed to span a range of reduction potentials in order to evaluate the effects of this parameter on biological activity. Most of the compounds in Table 1 are racemic, for ease of synthesis, and are compared biologically with racemic 1. While the *S*-enantiomers of nitroimidazooxazines such as 1 are reportedly at least 10-fold more potent than the *R*-enantiomers, the racemates are only 2-fold less active. Since the 4-benzyloxybenzyl ether analogue *S*-4 is known to be up to 9-fold more potent in vitro than *S*-1 itself, the benzyl ether side chains of both 1 and 4 were added to most of the new heterocycles.

As shown in Table 1, we have recently reported²⁸ that the one-electron reduction potential [E(1)] of racemic 1 is -534 ± 7 mV, a value typical of that found for 4-nitroimidazoles²⁹ and distinctly lower than the value $(-486 \text{ mV})^{12}$ for the 5-nitroimidazole metronidazole (2) to which it is often compared. As expected, variation in the 6-substituent had little effect; the E(1) of the 6-OH analogue 31 was -532 ± 6 mV, and that of the corresponding 6-OMe analogue²⁸ was -527 ± 6 mV. This allowed the use with confidence of related more soluble analogues in place of other members of the series (11, 13) which were too insoluble for E(1) values to be determined (see Table 1).

Within the imidazo series, the measured E(1) values of compounds with heteroatoms of varying electronegativity in the 8-position of the adjacent six-membered fused ring (compounds 1, 5, 7, 9, 11, 13) varied by nearly 100 mV. The measured potentials correlated very well with the $\sigma_{\rm m}$ values of the heteroatom (eq 1), whereas the use of $\sigma_{\rm p}$ values gave a much poorer correlation (r=0.761).

$$E(1) \text{ (mV)} = (110 \pm 16)\sigma_{\text{m}} - (547 \pm 10)$$
 (1)
$$n = 6 \text{ r} = 0.958 \text{ s} = 12.5 \text{ F} = 45.1$$

Table 1. Reduction Potentials, in Vitro Inhibitory Activity, and Selectivity of Various Chromophore Analogues of S-1 (All Compounds except 20 and 21 Are Racemic)

						$\mathrm{MIC}^b\ (\mu\mathrm{M})$		
compd	X	Y	Z	R	$E(1)^a \text{ (mV)}$	MABA aerobic	LORA anaerobic	IC_{50}^{c} (μ M), VERO
					Imidazole			
1	O	CH	N	OCF ₃	-534 ± 7^{d}	1.1	4.4	>128
4	O	CH	N	OCH ₂ Ph		0.11	2.7	>128
5	S	CH	N	OCF_3	-534 ± 5	1.1	13	>128
6	S	CH	N	OCH ₂ Ph		1.1	11	>128
7	SO	CH	N	OCF ₃	-476 ± 7	>128 (87)	92	>128
8	SO	CH	N	OCH_2Ph		>128 (23)	>128 (20)	63
9	SO_2	CH	N	OCF ₃	-488 ± 7	>128 (89)	89	>128
10	SO_2	CH	N	OCH ₂ Ph		>128 (61)	>128 (79)	>128
11	CH_2	CH	N	OCF_3	$(-570 \pm 9)^e$	126	>128 (75)	ND
12	CH_2	CH	N	OCH ₂ Ph		>128 (5)	>128 (49)	ND
13	NH	CH	N	OCF_3	$(-568 \pm 6)^f$	>128 (63)	>128 (64)	ND
					Pyrazole			
14	O	N	CH	OCF ₃	-500 ± 9	>128 (89)	>128 (86)	88
15	O	N	CH	OCH ₂ Ph		>128 (38)	>128 (19)	82
16	NH	N	CH	OCF_3	-517 ± 9	>128 (61)	111	ND
17	NH	N	CH	OCH ₂ Ph		>128 (55)	>128 (41)	ND
18	NMe	N	CH	OCF_3	-522 ± 10	>128 (61)	>128 (37)	>128
19	NMe	N	CH	OCH_2Ph		> 128 (58)	>128 (3)	>128
					Triazole			
20	O	N	N	OCF_3^g		>128 (81)	112	>128
21	O	N	N	OCF_3^h	-338 ± 10	>128 (84)	120	>128
22	O	N	N	OCH ₂ Ph	(26)	>128 (18)	>128	

^a E(1): one-electron reduction potentials, determined by pulse radiolysis (see text). ^b MIC: minimum inhibitory concentration, determined under aerobic $(MABA)^{33}$ or anaerobic $(LORA)^{32}$ conditions. Numbers in parentheses are the % inhibition at 128 μ M. Cytotoxicity assay against VERO cells. ND means not determined. ^d Reference 28. ^e E(1) data for 6-OMe analogue (40, Scheme 2). ^f E(1) data for 6-OH analogue (example 11 of ref 15). ^g S enantiomer. ^h R enantiomer.

This suggests that good control over the reduction potential of the imidazo compounds can be achieved by the selection of this heteroatom.

The pyrazole derivatives (compounds 14–19) showed the same trend but with a lesser degree of dependence of E(1) values on the adjacent heteroatom, with a range of only 22 mV (there were insufficient examples for statistical analysis). Finally, the triazole compounds (20–22) had much higher E(1) values, as expected³⁰ for this chromophore.

Radical Reduction Chemistry. The stepwise reduction of 1, by its reaction with radiolytically produced CO₂ radicals, has revealed that the imidazole ring is reduced before the nitro group.²⁸ This order is atypical for nitroimidazoles, where reduction of the nitro group commonly precedes ring reduction. The initial product formed upon reduction of 1 under mildly acidic conditions (pH 4) has been shown by MS and NMR analyses to be consistent with the formation of a dihydroimidazole, leading to a -NCH2CHNO2- system, which would result from the two-electron reduction of the C2-C3 bond of the imidazole ring.²⁸ Products obtained radiolytically under mildly acidic conditions at the two-electron reduced level may well represent the products formed upon a hydride ion transfer from the essential deazaflavin cofactor of F₄₂₀-dependent glucose-6-phosphate dehydrogenase present in the bacterium. The same methodology was used here to test for formation of the [M + 2] increased mass (dihydro) product in a subgroup of compounds, spanning a range of E(1) values, in the imidazole class (5, 9, 40), as well as examples of both a pyrazole (14) and a triazole (21) (see Table 2). Only the thiazine derivative,

Table 2. Formation of Products after Reduction of Compounds to the Two-Electron Reduced Level by the CO₂*- Radical at pH 4.0 in Aqueous Solution

compd	X	parent	ion mass of parent (g mol ⁻¹)	product(s)	ion mass of product(s) ^a (g mol ⁻¹)
		355 349	360.6 376.6	262 275	362.6 ^b 378.7 (362.6) (360.6)
9 (A,Y = CH, Z = N) 40 (B)	SO ₂	284 313	408.8 198.4	$\frac{250}{320^c}$	408.8 394.7 198.5 (200.5)
14 (A,Y = N, $Z = CH$)	О	267	360.7	NP^d	(360.7) 346.7 344.6
21 (A,Y = N, $Z = N$)	Ο	283	361.6	NP^d	361.6 347.6

^a Data in parentheses are for minor products. ^b Data from ref 28. ^c Product absorbs less than parent compound at this wavelength. d NP: no discernible peak in the UV-visible region.

5, formed such a product similar to that observed for 1 (although a very minor amount of a [M + 2] increased mass product was also seen for the alkyl derivative 40, a more soluble analogue of **11**).

Biological Activity. The compounds 1 and 4-22 were evaluated for their ability to inhibit M. tb in two assays (Table 1). The compounds were evaluated for activity (minimum inhibitory concentrations, MICs) against replicating M. tb in an 8 day microplate-based assay using Alamar blue reagent (added on day 7) for determination of growth (MABA).³¹ The lowest drug concentration effecting an inhibition of >90% was considered the MIC. Screening for the activity of the compounds against bacteria in the nonreplicating state that models clinical persistence used an 11 day high-throughput, luminescence-based low-oxygen-recovery assay (LORA), where M. tb containing a plasmid with an acetamidase promoter driving a bacterial luciferase gene was first adapted to low oxygen conditions by extended culture.³² Mammalian cytotoxicity was also assessed³³ against VERO cells (CCL-81, American Type Culture Collection) in a 72 h exposure, using a tetrazolium dye assay.

Compared to the racemic imidazooxazine 1, the corresponding imidazothiazine analogue 5 showed the same or slightly (3-fold) reduced potencies in the MABA and LORA assays, respectively. However, unlike the imidazooxazine series (4 versus 1), the switch to a benzyloxybenzyl ether side chain did not significantly enhance the potencies of imidazothiazine 6 over those of analogue 5. Oxidation of the sulfur atom in 5 and 6 (compounds 7-10) markedly reduced activity, with the best analogues (7 and 9) showing a > 100-fold potency loss in the MABA assay and a 7-fold potency loss in the LORA assay, compared to 5. The imidazopyridine 11 displayed similarly weak activity (MABA MIC of 126 μ M, 115-fold less than 1), but again, the benzyloxybenzyl ether analogue (12) was even less active, as was the imidazopyrimidine 13. Replacement of the imidazole ring of 1 by pyrazole (compound 14) or triazole (compound 20) also led to compounds with marginal activity (MICs close to 128 μ M), although 14 was weakly cytotoxic. None of the pyrazolopyrimidine analogues 16–19 were significantly better than pyrazolooxazine 14, despite having reduction potentials closer to that of S-1. Finally, two simple nitroimidazooxazine derivatives (compound 31 and its methyl ether derivative²⁸) which lacked the lipophilic benzyl ether side chains of 1 and 4 were also tested in both MIC assays and found to be at least 90-fold less active than racemic 1 (MICs greater than 100 μ M; data not shown in Table 1). This demonstrates the importance of both the nitroheterocyclic core and the lipophilic side chain in the activities of compounds 1, 4, 5, and 6.

Conclusions

This work provides new synthetic routes to a series of chromophore analogues (imidazoles, pyrazoles, and triazoles with varying heteroatoms in the 4/8-position of the adjacent fused ring) of the nitroimidazooxazine tuberculosis drug S-1. These compounds span a wide range of one-electron reduction potentials E(1), from -570 to -338 mV, compared with -534mV for S-1, which are closely correlated with the $\sigma_{\rm m}$ values of the adjacent heteroatom. Although many of the different nitroheterocyclic compounds have E(1) values close to that of S-1, only the nitroimidazothiazines showed significant in vitro antitubercular activity (at a similar level of potency to the nitroimidazooxazines). This suggests that their absolute E(1)values are not the major determinant of their activity, which may instead depend on their fit to the reducing enzyme and/or the nature of the reactive species formed and its subsequent reactions. The results are consistent with the nitroimidazooxazine chromophore having particular utility in tuberculosis chemotherapy, with specific substitution at the 2-position of the 4-nitroimidazole ring being a major determinant of activity. Furthermore, the present study points to a possible correlation between the formation of a dihydroimidazole ring-reduced product at the two-electron level and activity. This scenario is in line with the known involvement of a deazaflavin cofactor, a two-electron biological reductant, in the activation of *S*-1. While the lipophilic side chains of *S*-1 and its analogues may well be a determinant for the fit of these compounds to the reducing enzyme, the anomalous reduction of the imidazo ring may also be an important factor in their activity against the *M. tb* bacterium.

Experimental Section

Analyses were carried out in the Microchemical Laboratory, University of Otago, Dunedin, New Zealand. Melting points were determined on an Electrothermal 2300 melting point apparatus. NMR spectra were obtained on a Bruker Avance 400 spectrometer at 400 MHz for ¹H and 100 MHz for ¹³C spectra and are referenced to Me₄Si. Chemical shifts and coupling constants are recorded in units of ppm and Hz, respectively. Assignments were verified using COSY, HSQC, HMBC, and NOESY two-dimensional experiments, as required. High resolution electron impact (HREIMS) and fast atom bombardment (HRFABMS) mass spectra were determined on a VG-70SE mass spectrometer using an ionizing potential of 70 eV, at nominal resolutions of 3000, 5000, or 10 000 as appropriate. High resolution atmospheric pressure electrospray (HRESMS) and chemical ionization (HRCIMS) mass spectra were measured for methanol solutions on a ThermoFinnigan Quantum TSQ triple quadrupole mass spectrometer, operating in enhanced resolution mode; values are the average of five independent determinations. Thin-layer chromatography was carried out on aluminum-backed silica gel plates (Merck 60 F₂₅₄) with visualization of components by UV light (254 nm) or exposure to I₂. Column chromatography was carried out on silica gel (Merck 230-400 mesh). Preparative reversed phase HPLC and preparative chiral HPLC were carried out using a Gilson Unipoint system (322-H pump, 156 UV/visible detector) and a 250 mm × 21 mm Synergi-Max 4 μ m C12 column or a 250 mm \times 20 mm Chiralcel OD 10 μ m column, respectively.

2,5-Dibromo-1-(ethoxymethyl)-4-nitro-1*H*-imidazole(24)(Scheme 1). A solution of 2,5-dibromo-4-nitro-1*H*-imidazole²¹ (23) (26.49) g, 97.8 mmol) in dry DMF (130 mL) under N_2 at 0 $^{\circ}\text{C}$ was treated with 60% NaH (4.83 g, 121 mmol), then quickly degassed and resealed under N2. After the mixture was stirred for 10 min at 0 °C, chloromethyl ethyl ether (10.0 mL, 117 mmol) was added dropwise, and the mixture was stirred at room temperature for 4 h. The resulting solution was poured into aqueous NaHCO₃ (1 L) and extracted with EtOAc (3 \times 500 mL). The extracts were washed with brine (400 mL) and evaporated to dryness. The residue was triturated in CH₂Cl₂ (100 mL) and slowly diluted with petroleum ether (400 mL) to precipitate crude 24 (26.77 g, 83%) as a cream solid, which was used directly. Evaporation of the mother liquors to dryness and chromatography of the residue on silica gel, eluting with CH₂Cl₂/petroleum ether (1:2 and 2:3), followed by crystallization gave additional pure 24 (2.63 g, 8%) as a creamy white solid: mp (CH₂Cl₂/light petroleum) 98-100 °C; ¹H NMR (CDCl₃) δ 5.48 (s, 2 H), 3.64 (q, J = 7.0 Hz, 2 H), 1.25 (t, J = 7.0 Hz, 3 H). Anal. (C₆H₇Br₂N₃O₃) C, H, N.

2-Bromo-1-(ethoxymethyl)-4-nitro-1*H***-imidazole (25).** A solution of **24** (28.27 g, 85.9 mmol) in DMF (166 mL) was treated with a solution of Na₂SO₃ (22.8 g, 181 mmol) in water (83 mL), and then the mixture was stirred at room temperature for 18 h. Further Na₂SO₃ (6.36 g, 50.5 mmol) was added, and then the mixture was stirred at room temperature for 11 h. The resulting mixture was poured into ice/aqueous NaHCO₃ (800 mL) and extracted with EtOAc (4 × 600 mL). The extracts were washed with brine (600 mL) and evaporated to dryness to give **25** (18.94 g, 88%) as a pale-yellow solid: mp (CH₂Cl₂/pentane) 62–63 °C; ¹H NMR (CDCl₃) δ 7.91 (s, 1 H), 5.37 (s, 2 H), 3.59 (q, J = 7.0 Hz, 2 H), 1.25 (t, J = 7.0 Hz, 3 H). Anal. (C₆H₈BrN₃O₃) C, H, N.

2-Bromo-4-nitro-1*H***-imidazole** (**26**). A suspension of **25** (18.36 g, 73.4 mmol) in MeOH (16.5 mL) and 5 N HCl (100 mL) was stirred at 69 °C for 3 h, then cooled and stored at -20 °C for 3 h. The solid was collected by filtration, washed with petroleum ether, and dried at 50 °C under vacuum to give **26** (10.92 g, 77%) as a cream solid: mp (MeOH/H₂O) 238–240 °C (lit.³⁴ mp 238–239 °C); ¹H NMR [(CD₃)₂SO] δ 14.10 (br s, 1 H), 8.41 (s, 1 H). Evaporation of the filtrate to dryness and chromatography of the residue on silica gel, eluting with CH₂Cl₂, then 5% MeOH/CH₂Cl₂, gave a further 2.55 g (18%) of **26**.

 $1\hbox{-}(2\hbox{-Bromo-}4\hbox{-nitro-}1H\hbox{-imidazol-}1\hbox{-yl})\hbox{-}3\hbox{-}\{[\textit{tert}\hbox{-butyl}(dimeth-superstands)]\}$ yl)silyl]oxy}-2-propanol (27). A mixture of 26 (2.00 g, 0.010 mol), tert-butyl(dimethyl)(2-oxiranylmethoxy)silane (2.15 g, 0.011 mol, 1.1 equiv), and N,N-diisopropylethylamine (0.91 mL, 5.21 mmol, 0.50 equiv) in toluene (60 mL) was warmed at 70 °C for 18 h. The solution was concentrated to dryness and the residue triturated with petroleum ether to leave the crude product as an oily solid. This material was adsorbed onto silica and chromatographed. Elution with EtOAc/petroleum ether (1:3) gave foreruns, and then further elution with EtOAc/petroleum ether (1:1) gave 27 (2.66 g, 67%): mp (EtOAc/petroleum ether) 101 °C; ¹H NMR [(CD₃)₂SO] δ 8.44 (s, 1 H), 5.31 (d, J = 5.4 Hz, 1 H, exchanged with D_2O), 4.18 (dd, J = 13.9, 3.4 Hz, 1 H), 3.96 (dd, J = 13.9, 8.7 Hz, 1 H), 3.89–3.80 (m, 1 H), 3.64 (dd, J = 10.5, 4.7 Hz, 1 H), 3.50 (dd, J = 10.5, 6.7Hz, 1 H), 0.88 (s, 9 H), 0.06 (s, 6 H); HRCIMS calcd for $C_{12}H_{23}BrN_3O_4Si \ m/z \ (M + H^+) \ 382.0621, \ 380.0641; \ found$ 382.0619, 380.0637.

2-Bromo-1-[3-{[*tert***-butyl(dimethyl)silyl]oxy}-2-(tetrahydro-2***H***-pyran-2-yloxy)propyl]-4-nitro-1***H***-imidazole (28).** A solution of **27** (2.65 g, 6.97 mmol), 3,4-dihydro-2*H*-pyran (6.50 mL, 0.07 mol, 10.0 equiv), and pyridinium p-toluenesulfonate (1.78 g, 1.0 equiv) in CH₂Cl₂ (50 mL) was stirred at room temperature for 16 h. After being washed with water and saturated aqueous NaHCO₃, the solution was dried and concentrated to give **28**²⁰ (3.18 g, 98%) as a yellow oil, a mixture of diastereomers. This material was not characterized further and was used directly in the next step.

2-Nitro-6-(tetrahydro-2H-pyran-2-yloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (30). Tetra-n-butylammonium fluoride (19.3 mL of a 1 M solution in THF, 0.019 mol, 3.0 equiv) was added under N_2 to a solution of **28** (3.00 g, 6.45 mmol) in THF (60 mL), and the solution was stirred at room temperature for 1 h. After dilution with EtOAc, the solution was washed with brine, saturated aqueous NaHCO3, and water. After the mixture was dried, the extract was evaporated onto silica and chromatographed. Elution with EtOAc/petroleum ether (1:4) gave silicon-containing residues, and then further elution with EtOAc gave a mixture of 2920 and 30^{20} as a glassy solid (1.68 g). This product was dissolved in dry DMF (15 mL), NaH (0.13 g, 5.41 mmol) was added, and the mixture was stirred at room temperature for 3 h. Brine was added and the mixture was extracted into EtOAc, washed well with brine, and evaporated to give 30²⁰ (0.95 g, 55%) as a viscous oil, a mixture of diastereomers (lit. 15 for S-30, mp 138-139 °C, and for R-30, mp 145–146 °C); ¹H NMR [(CD₃)₂SO] δ 8.06, 8.00 (2s, 1 H total, diastereomers), 4.89, 4.84 (2m, 1 H total), 4.60-4.15 (m, 5 H), 3.79, 3.68, 3.47 (3m, 2 H total), 1.65–1.37 (m, 6 H).

2-Nitro-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]oxazin-6-ol (31). Methanesulfonic acid (5 drops) was added to a solution of 30** (0.95 g, 0.014 mol) in MeOH (60 mL), and the solution was stirred at room temperature for 3 h and then concentrated to a small volume under reduced pressure. The residue was treated with excess saturated aqueous NaHCO₃ solution and extracted into EtOAc (6 times). The combined extracts were evaporated to give (racemic) alcohol **31** (0.65 g, ~100%) as a cream solid. A portion was crystallized from EtOAc/petroleum ether to give an off-white powder: mp 206–209 °C (lit. ¹⁵ for *S*-**31**, mp 220 °C dec, and for *R*-**31**, mp 208 °C dec); ¹H NMR [(CD₃)₂SO] δ 8.05 (s, 1 H), 5.65 (br s, 1 H, exchanged with D₂O), 4.41 (dd, J = 11.3, 1.2 Hz, 1 H), 4.31 (ddd, J = 11.3, 2.6, 2.6 Hz, 1 H), 4.29–4.24 (br, 1 H), 4.19 (dd, J = 12.9, 3.3 Hz, 1 H), 3.96 (ddd, J = 12.9, 2.6, 2.6 Hz, 1 H); ¹³C NMR δ 147.05, 142.02, 117.90, 70.64, 58.94, 49.12; HREIMS

calcd for $C_6H_7N_3O_4$ m/z (M⁺) 185.0437, found 185.0434. Anal. ($C_6H_7N_3O_4$) H, N. C: calcd, 38.92; found, C, 39.38.

6-{[4-(Trifluoromethoxy)benzyl]oxy}-2-nitro-6,7-dihydro-5*H***imidazo[2,1-***b*][**1,3]oxazine** (**1**). NaH (21 mg of a 60% dispersion in mineral oil, 0.52 mmol) was added at room temperature to a solution of **31** (87.2 mg, 0.47 mmol) and 4-trifluoromethoxybenzyl bromide (83 μ L, 0.52 mmol) in dry DMF (3 mL), and the mixture was stirred at room temperature for 24 h. After dilution with brine and extraction with EtOAc, the organic solution was evaporated and chromatographed on silica. Elution with EtOAc/petroleum ether (1:1) gave foreruns, then elution with EtOAc gave the product, which was triturated with Et₂O (with addition of petroleum ether when crystallization began) to give (racemic) 1 (0.11 g, 68%) as a white powder: mp 121-123 °C (lit. 15 for S-1, mp 149-150 °C); ¹H NMR [(CD₃)₂SO] δ 8.02 (s, 1 H), 7.44 (d, J = 8.7 Hz, 2 H), 7.34 (d, J = 8.7 Hz, 2 H), 4.70 (d, J = 12.2 Hz, 1 H), 4.69-4.63(m, 1 H), 4.66 (d, J = 12.2 Hz, 1 H), 4.47 (d, J = 11.9 Hz, 1 H),4.31-4.21 (m, 3 H). Anal. (C₁₄H₁₂F₃N₃O₅) C, H, N.

6-{[4-(Benzyloxy)benzyl]oxy}-2-nitro-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]oxazine (4). NaH (33 mg, 0.84 mmol) was added in one portion to a solution of 31** (0.10 g, 0.56 mmol) and 4-benzyloxybenzyl chloride (0.19 g, 0.84 mmol) in dry DMF (4 mL), and the mixture was stirred at room temperature for 16 h. Water was added. The mixture was extracted with EtOAc, and the extract was washed well with brine, then evaporated to give an oil that was chromatographed on silica. Elution with EtOAc/petroleum ether (1:5) gave foreruns, and then elution with EtOAc gave **4** (56 mg, 30%), which crystallized from CH₂Cl₂/petroleum ether as pale-yellow cubes: mp 158–160 °C; ¹H NMR [(CD₃)₂SO] δ 8.00 (s, 1 H), 7.44–7.29 (m, 5 H), 7.24 (d, J = 8.7 Hz, 2 H), 6.98 (d, J = 8.7 Hz, 2 H), 5.09 (s, 2 H), 4.64–4.60 (m, 1 H), 4.58 (d, J = 11.5 Hz, 1 H), 4.53 (d, J = 11.5 Hz, 1 H), 4.45 (d, J = 11.9 Hz, 1 H), 4.22–4.16 (m, 3 H). Anal. (C₂₀H₁₉N₃O₅) C, H, N.

2-Bromo-1-[3-bromo-2-(tetrahydro-2H-pyran-2-yloxy)propyl] 4-nitro-1H-imidazole (32) (Scheme 1). A mixture of **26** (3.32 g, 0.017 mol), 2-[2-bromo-1-(bromomethyl)ethoxy]tetrahydro-2*H*-pyran²² (7.76 g, 0.024 mol), and K_2CO_3 (3.58 g, 0.024 mol) in dry DMF (50 mL) was stirred at 80 °C for 18 h. After dilution with brine, the mixture was extracted with EtOAc and the extract was evaporated and chromatographed on silica. Elution with EtOAc/petroleum ether (1:9) gave foreruns, and then elution with EtOAc/petroleum ether (3:7) gave **32** (2.22 g, 31%) as a viscous oil, a mixture of diastereomers: ¹H NMR (CDCl₃) δ 8.00, 7.90 (2s, 1 H), 4.70–3.30 (m, 8 H), 1.80–1.38 (m, 6 H); HRFABMS calcd for $C_{11}H_{14}Br_2N_3O_4$ m/z (M – H⁺) 411.9508, found 411.9504.

2-Nitro-6-(tetrahydro-2*H*-pyran-2-yloxy)-6,7-dihydro-5*H*-imid**azo[2,1-b][1,3]thiazine** (33). *n*-Butyllithium (2.13 mL of a 2.5 M solution in hexanes, 5.34 mmol) was added dropwise under N₂ to a stirred solution of triispropylsilanethiol (1.14 mL, 5.34 mmol) in dry THF (50 mL) at 5 °C. After 5 min, the resulting solution was added dropwise to a solution of 32 (2.22 g, 5.34 mmol) in dry THF (50 mL) which had been cooled to -78 °C under N₂. After 5 min, the cooling bath was removed and the solution was allowed to warm to room temperature, when stirring was continued for 18 h. The solution was diluted with water and extracted with EtOAc and the extract was dried and evaporated to give an orange oil (2.97 g). This was immediately dissolved in THF (60 mL). Tetra-n-butylammonium fluoride (17.0 mL of a 1 M solution in THF, 0.017 mol) was added, and the solution was stirred at room temperature for 1 h. Brine was added, the mixture was extracted into EtOAc, and the extract was washed with saturated aqueous NaHCO₃ and evaporated to give an oil, which was chromatographed on silica. Elution with EtOAc/petroleum ether (1:1) gave foreruns, and then elution with EtOAc/petroleum ether (3:1) gave an oily solid, which was triturated with MeOH to give 33 (1.09 g, 71%) as a yellow solid, a mixture of diastereomers: mp 129–131 °C; ¹H NMR (CDCl₃) δ 7.68, 7.67 (2s, 1 H), 4.85-4.80 (m, 1 H), 4.54-4.43 (m, 1 H), 4.27-4.05 (m, 2 H), 3.96–3.89 (m, 0.5 H), 3.80–3.73 (m, 0.5 H), 3.61–3.51 (m, 1H), 3.45–3.39 (m, 0.5 H), 3.36–3.30 (m, 0.5 H), 3.26 (d, J = 4.9 Hz, 1 H), 1.83-1.40 (m, 6 H). Anal. $(C_{11}H_{15}N_3O_4S \cdot {}^{1}/_{4}H_2O)$ C, H, N.

2-Nitro-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]thiazin-6-ol (34). HCl (2 N, 20 mL) was added to a solution of 33** (1.09 g, 3.82 mmol) in MeOH (200 mL), and the solution was stirred at room temperature for 3 h. Water was added, the MeOH was removed under reduced pressure, and the residue was extracted into EtOAc (5 times). The combined extracts were dried and concentrated to dryness and the residue was triturated with Et₂O to give **34** (0.56 g, 73%) as a yellow powder: mp 240–242 °C; ¹H NMR [(CD₃)₂SO] δ 8.37 (s, 1 H), 5.71 (d, J = 3.9 Hz, 1 H), 4.42–4.36 (m, 1 H), 4.16 (dd, J = 13.3, 3.0 Hz, 1 H), 4.05 (dd, J = 13.3, 1.2 Hz, 1 H), 3.38 (dd, J = 12.6, 2.0 Hz, 1 H), 3.17 (ddd, J = 12.6, 6.3, 1.3 Hz, 1 H). Anal. (C₆H₇N₃O₃S) C, H, N, S.

2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]thiazine (5).** NaH (0.13 g of a 60% dispersion in mineral oil, 2.95 mmol) was added in one portion to a solution of **34** (0.54 g, 2.68 mmol) and 4-(trifluoromethoxy)benzyl bromide (0.58 mL, 2.95 mmol) in dry DMF (15 mL), and the mixture was stirred at room temperature for 24 h. Brine was added, the mixture was extracted into EtOAc, and the extract was dried and evaporated to give an oil, which was chromatographed on silica. Elution with EtOAc/petroleum ether (1:9) gave foreruns, and then elution with EtOAc/petroleum ether (7:3) gave **5** (0.76 g, 75%) as a light-yellow powder: mp 68–70 °C; ¹H NMR (CDCl₃) δ 7.65 (s, 1 H), 7.36 (d, J = 8.6 Hz, 2 H), 7.21 (d, J = 8.6 Hz, 2 H), 4.76 (d, J = 11.8 Hz, 1 H), 4.59 (d, J = 11.8 Hz, 1 H), 4.31–4.26 (m, 1 H), 4.21–4.11 (m, 2 H), 3.38–3.29 (m, 2 H). Anal. ($C_{14}H_{12}F_3N_3O_4S^{*1}/_{3}$ -EtOAc) C, H, N, S.

6-{[4-(Benzyloxy)benzyl]oxy}-2-nitro-6,7-dihydro-5*H***-imidazo[2,1-b][1,3]thiazine (6).** Similar reaction of **34** with NaH and 4-(benzyloxy)benzyl chloride in DMF as described above for the preparation of **5** gave **6** (55%) as tan cubes: mp (CH₂Cl₂/petroleum ether) 139–140 °C; ¹H NMR (CDCl₃) δ 7.59 (s, 1 H), 7.44–7.30 (m, 5 H), 7.25 (d, J = 9.9 Hz, 2 H), 6.96 (d, J = 9.9 Hz, 2 H), 5.07 (s, 2 H), 4.68 (d, J = 11.6 Hz, 1 H), 4.52 (d, J = 11.6 Hz, 1 H), 4.25–4.19 (m, 1 H), 4.12–4.02 (m, 2 H), 3.29–3.20 (m, 2 H). Anal. (C₂₀H₁₉N₃O₄S·¹/₄H₂O) C, H, N, S.

2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5*H***-imidazo[2,1-***b*][1,3]thiazine **8-Oxide** (7). A solution of 3-phenyl-2-(phenylsulfonyl)-1,2-oxaziridine (0.18 g, 0.68 mmol) in CH₂Cl₂ (5 mL) was added to a solution of **5** (0.25 g, 0.68 mmol) in CH₂Cl₂ (20 mL), and stirring was continued at room temperature for 4 days. The reaction product was adsorbed directly onto silica by concentration and chromatographed on silica. Elution with EtOAc/petroleum ether (1:1) gave foreruns, and then elution with EtOAc gave **7** (0.17 g, 65%) as a sticky gum: 1 H NMR (CDCl₃) δ 7.83 (s, 1 H), 7.37 (d, J = 8.6 Hz, 2 H), 7.24 (d, J = 8.6 Hz, 2 H), 4.86–4.79 (m, 1 H), 4.75 (d, J = 11.8 Hz, 1 H), 4.65 (d, J = 11.8 Hz, 1 H), 4.16 (dd, J = 13.3, 8.5 Hz, 1 H), 3.65 (dd, J = 13.9, 2.1 Hz, 1 H), 3.29 (dd, J = 13.9, 9.8 Hz, 1 H). Anal. (C₁₄H₁₂F₃N₃O₅S) C, H, N, S.

6-{[4-(Benzyloxy)benzyl]oxy}-2-nitro-6,7-dihydro-5*H***-imidazo[2,1-b][1,3]thiazine 8-Oxide (8).** Similar oxidation of **6** with 3-phenyl-2-(phenylsulfonyl)-1,2-oxaziridine in CH₂Cl₂ as described above for the preparation of **7** gave **8** (38%) as a white solid: mp (CH₂Cl₂/petroleum ether) 178–180 °C; ¹H NMR [(CD₃)₂SO] δ 8.57 (s, 1 H), 7.45–7.30 (m, 5 H), 7.25 (d, J = 8.6 Hz, 2 H), 6.99 (d, J = 8.6 Hz, 2 H), 5.09 (s, 2 H), 4.66–4.54 (m, 4 H), 4.23 (dd, J = 13.0, 6.5 Hz, 1 H), 3.94 (dd, J = 13.4, 8.6 Hz, 1 H), 3.63 (dd, J = 13.4, 1.5 Hz, 1 H). Anal. (C₂₀H₁₉N₃O₅S) C, H, N, S.

2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]thiazine 8,8-Dioxide (9).** A solution of **5** (0.34 g, 0.91 mmol) and 3-chloroperbenzoic acid (0.78 g of 50% purity, 2.25 mmol) in CH₂Cl₂ (40 mL) was stirred at room temperature for 72 h. After dilution with CH₂Cl₂, the solution was washed sequentially with aqueous solutions of Na₂SO₃ and NaHCO₃ and evaporated to give an oil, which was chromatographed on silica. Elution with EtOAc/petroleum ether (3:1) gave **9** (0.27 g, 73%) as a white powder: mp (CH₂Cl₂/petroleum ether) 161 °C; ¹H NMR [(CD₃)₂SO] δ 8.60 (s, 1 H), 7.44 (d, J = 8.6 Hz, 2 H), 7.33 (d, J = 8.6 Hz, 2 H), 4.78 (d, J = 11.7 Hz, 1 H), 4.66–4.61 (m, 1 H), 4.61 (d, J = 11.7 Hz, 1 H), 4.58–4.50 (m, 2 H), 4.43 (dd, J =

14.4, 6.4 Hz, 1 H), 4.16 (dd, J = 14.4, 1.9 Hz, 1 H). Anal. ($C_{14}H_{12}F_3N_3O_6S$) C, H, N, S.

6-{[4-(Benzyloxy)benzyl]oxy}-2-nitro-6,7-dihydro-5*H***-imidazo[2,1-***b***][1,3]thiazine 8,8-Dioxide (10). Similar oxidation of 6 with 3-chloroperbenzoic acid as described above for the preparation of 9 gave 10 (64%) as a white powder: mp (CH₂Cl₂/petroleum ether) 172–175 °C; ¹H NMR [(CD₃)₂SO] \delta 8.58 (s, 1 H), 7.44–7.29 (m, 5 H), 7.25–7.22 (d, J = 8.6 Hz, 2 H), 6.98 (d, J = 8.6 Hz, 2 H), 5.08 (s, 2 H), 4.66 (d, J = 11.1 Hz, 1 H), 4.58–4.44 (m, 4 H), 4.38 (dd, J = 14.2, 6.5 Hz, 1 H), 4.13 (dd, J = 14.2, 1.9 Hz, 1 H). Anal. (C₂₀H₁₉N₃O₆S) C, H, N, S.**

Radical Chemistry. Steady-state radiolysis of the compounds in aqueous solution was performed using a ⁶⁰Co γ-source delivering a dose rate of 7.5 Gy min⁻¹. The methods of solution preparation, observation of the stepwise reduction of the compounds to products, and the determination of their molecular masses have been described.²⁸ Pulse radiolysis studies were carried out at room temperature (22 \pm 2 °C) using The University of Auckland's linear accelerator and radical detection facility. 35 One electron reduction of the compounds (C) was selectively carried out by either (i) scavenging the e_{aq}^{-} , produced upon the pulse radiolysis of solvent water (2.5 Gy in 200 ns) with 4 MeV electrons while at the same time scavenging the oxidizing radicals with 2-methylpropan-2-ol (0.2 M) to form an inert radical or (ii) saturating solutions containing sodium formate (50 mM) and sodium phosphate (5 mM, adjusted to pH 4 with perchloric acid) with N₂O gas to convert the e_{aq} species into 'OH radicals, which in turn are scavenged (along with the H-atoms) to produce the reducing CO2 • radicals at a concentration of 0.66 μ mol Gy¹⁻.³⁶

$$\begin{aligned} \text{H}_2\text{O} &\leadsto \text{e}_{\text{aq}}^- + \text{^*OH} + \text{H}^{\bullet} + \text{H}_2 + \text{H}_2\text{O}_2 + \text{H}_3\text{O}^+ \\ & \text{e}_{\text{aq}}^- + \text{C} \rightarrow \text{C}^{\bullet -} \end{aligned}$$

$$^{\bullet}\text{OH}(\text{H}^{\bullet}) + (\text{CH}_3)_3\text{COH} \rightarrow ^{\bullet}\text{CH}_2(\text{CH}_3)_2\text{COH} + \text{H}_2\text{O}(\text{H}_2) \\ & \text{e}_{\text{aq}}^- + \text{N}_2\text{O} \rightarrow ^{\bullet}\text{OH} + \text{OH}^- + \text{N}_2 \end{aligned}$$

$$^{\bullet}\text{OH}(\text{H}^{\bullet}) + \text{HCOO}^- \rightarrow \text{CO}_2^{\bullet -} + \text{H}_2\text{O}(\text{H}_2) \\ & \text{CO}_2^{\bullet -} + \text{C} \rightarrow \text{C}^{\bullet -} + \text{CO}_2 \end{aligned}$$

The one-electron reduction potentials of the compounds, $E(C/C^{\bullet-})$ vs NHE, were determined at pH 7.0 (5 mM phosphate buffer) by establishing redox equilibria between three mixtures of the one-electron reduced compounds and the reference viologen compounds; tetraquat $[E(TeQ^{2+}/TeQ^{+\bullet}) = -635 \pm 5 \text{ mV}]^{37}$ or methylviologen $[E(MV^{2+}/MV^{+\bullet}) = -447 \pm 7 \text{ mV}]^{.38}$

$$MV^{+\bullet}/TeQ^{+\bullet} + C \stackrel{K_c}{\Longrightarrow} MV^{2+}/TeQ^{2+} + C^{\bullet-}$$

The ΔE values were calculated using the Nernst equation from the equilibrium constants, $K_{\rm e}$ (established within 50 μ s), as described in the literature.²⁹

Biology. MABA and LORA Tuberculosis Assays. These were carried out according to the published protocols. ^{32,33}

Cytotoxicity Assay. Cytotoxicity was assessed³³ against VERO cells (CCL-81, American Type Culture Collection) by exposing monolayers in 96-well plates to 3-fold dilutions of test compounds for 72 h. Cell viability was measured using the CellTiter96 aqueous nonradioactive cell proliferation assay (Promega Corp, Madison, WI), which determines the extent of reduction of a tetrazolium dye by measuring the absorbance of the product at 490 nm. Untreated cells and cells lysed with sodium dodecyl sulfate were used to determine 0% and 100% inhibition, respectively.

Acknowledgment. The authors thank the Global Alliance for Tuberculosis Drug Development for financial support through a collaborative research agreement. R.F.A. and S.S.S. are supported by the Health Research Council of New Zealand.

Supporting Information Available: Additional experimental procedures and characterizations for compounds 11–22; combustion analytical data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Tomioka, H. Current status of some antituberculosis drugs and the development of new antituberculous agents with special reference to their in vitro and in vivo antimicrobial activities. *Curr. Pharm. Des.* 2006, 12, 4047–4070.
- (2) Bhowruth, V.; Dover, L. G.; Besra, G. S. Tuberculosis chemotherapy: recent developments and future perspectives. *Prog. Med. Chem.* 2007, 45, 169–203.
- (3) Laurenzi, M.; Ginsberg, A.; Spigelman, M. Challenges associated with current and future TB treatment. *Infect. Disord.—Drug Targets* 2007, 7, 105–119
- (4) Lenaerts, A. J.; Gruppo, V.; Marietta, K. S.; Johnson, C. M.; Driscoll, D. K.; Tompkins, N. M.; Rose, J. D.; Reynolds, R. C.; Orme, I. M. Preclinical testing of the nitroimidazopyran PA-824 for activity against *Mycobacterium tuberculosis* in a series of in vitro and in vivo models. *Antimicrob. Agents Chemother.* 2005, 49, 2294–2301.
- (5) Nuermberger, E.; Rosenthal, I.; Tyagi, S.; Williams, K. N.; Almeida, D.; Peloquin, C. A.; Bishai, W. R.; Grosset, J. H. Combination chemotherapy with the nitroimidazopyran PA-824 and first-line drugs in a murine model of tuberculosis. *Antimicrob. Agents Chemother.* 2006, 50, 2621–2625.
- (6) Tyagi, S.; Nuermberger, E.; Yoshimatsu, T.; Williams, K.; Rosenthal, I.; Lounis, N.; Bishai, W.; Grosset, J. Bacteriocidal activity of the nitroimidazopyran PA-824 in a murine model of tuberculosis. *Antimicrob. Agents Chemother.* 2005, 49, 2289–2293.
- (7) Hu, Y.; Coates, A. R. M.; Mitchison, D. A. Comparison of the sterilising activities of the nitroimidazopyran PA-824 and moxifloxacin against persisting *Mycobacterium tuberculosis*. *Int. J. Tuberc. Lung Dis.* 2008, 12, 69–73.
- (8) Nuermberger, E.; Tyagi, S.; Tasneen, R.; Williams, K. N.; Almeida, D.; Rosenthal, I.; Grosset, J. H. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis. *Antimicrob. Agents Chemother.* 2008, 52, 1522–1524.
- (9) Stover, C. K.; Warrener, P.; VanDevanter, D. R.; Sherman, D. R.; Arain, T. M.; Langhorne, M. H.; Anderson, S. W.; Towell, J. A.; Yuan, Y.; McMurray, D. N.; Krelswirth, B. N.; Barry, C. E.; Baker, W. R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. *Nature* 2000, 405, 962–966.
- (10) Manjunatha, U. H.; Boshoff, H.; Dowd, C. S.; Zhang, L.; Albert, T. J.; Norton, J. E.; Daniels, L.; Dick, T.; Pang, S. S.; Barry, C. E. Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in *Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A.* 2006, 103, 431–436.
- (11) Yanez, C.; Bollo, S.; Nunez-Vergara, L. J.; Squella, J. A. Voltammetric determination of nitroimidazopyran drug candidate for the treatment of tuberculosis. *Anal. Lett.* 2001, 34, 2335–2348.
- (12) Wardman, P.; Clarke, E. D. One-electron reduction potentials of substituted nitroimidazoles measured by pulse radiolysis. J. Chem. Soc., Faraday Trans. 1 1976, 72, 1377–1390.
- (13) Bollo, S.; Nunez-Vergara, L. J.; Squella, J. A. Cyclic voltammetric determination of free radical species from nitroimidazopyran: a new antituberculosis agent. J. Electroanal. Chem. 2004, 562, 9–14.
- (14) Barry, C. E.; Boshoff, H. I. M.; Dowd, C. S. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. *Curr. Pharm. Des.* 2004, 10, 3239–3262.
- (15) Baker, W. R.; Shaopei, C.; Keeler, E. L. Nitro-[2,1-b]imidazopyran Compounds and Antibacterial Uses Thereof. U.S. Patent 6,087,358, 2000.
- (16) Li, X.; Manjunatha, U. H.; Goodwin, M. B.; Knox, J. E.; Lipinski, C. A.; Keller, T. H.; Barry, C. E.; Dowd, C. S. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b)[1,3]oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett. 2008, 18, 2256–2262.
- (17) Nagarajan, K.; Shankar, R. G.; Rajappa, S.; Shenoy, S. J.; Costa-Pereira, R. Nitroimidazoles. XXI. 2,3-Dihydro-6-nitroimidazo[2,1-b]oxazoles with antitubercular activity. Eur. J. Med. Chem. 1989, 24, 631–633.

- (18) Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. *PLoS Med.* 2006, 3, 2131– 2134.
- (19) Orita, A.; Miwa, K.; Uehara, G.; Otera, J. Integration of solventless reaction in a multi-step process: application to an efficient synthesis of PA-824. Adv. Synth. Catal. 2007, 349, 2136–2134.
- (20) Goto, F.; Takemura, N.; Otani, T.; Hasegawa, T.; Tsubouchi, H.; Utsumi, N.; Fujita, S.; Kuroda, H.; Shitsuta, T.; Sasaki, H. EP 1553088 A1, 2005.
- (21) Koehler, F. Reaction of thiophenols with 2,5-dibromo-4-nitroimidazole. *J. Prakt. Chem.* **1963**, *21*, 50–52.
- (22) Horning, D. E.; Kavadias, G.; Muchowski, J. M. Tetrahydropyranyl protecting group. II. 3-Bromo-2-(tetrahydropyran)-2-yloxy)-propene, a masked acetonyl bromide. *Can. J. Chem.* 1970, 48, 975–982.
- (23) Janssen, J. W. A. M.; Koeners, H. J.; Kruse, C. G.; Habraken, C. L. Pyrazoles. XII. The preparation of 3(5)-nitropyrazoles by thermal rearrangement of *N*-nitropyrazoles. *J. Org. Chem.* **1973**, *38*, 1777–1877
- (24) Janssen, J. W. A. M.; Kruse, C. G.; Koeners, H. J.; Habraken, C. L. Pyrazoles. XIII. Ionisation constants and UV spectra of mono- and dinitropyrazoles (1,2). J. Heterocycl. Chem. 1973, 10, 1055–1058.
- (25) Sehgal, R. K.; Webb, M. W.; Agrawal, K. C. Potential radiosensitizing agents. 2. Synthesis and biological activity of derivatives of dinitroimidazole with oxiranes. J. Med. Chem. 1981, 24, 601–604.
- (26) Cativiela, C.; Serrano, J. L.; Zurbano, M. M. Synthesis of 3-substituted pentane-2,4-diones: valuable intermediates for liquid crystals. *J. Org. Chem.* 1995, 60, 3074–3083.
- (27) Perevalov, V. P.; Baryshnenkova, L. I.; Manaev, Yu. A.; Bezborodov, B. V.; Klapchuk, E. V. Reductive behavior of nitro- and dinitro-1-methylpyrazoles. *Chem. Heterocycl. Compd. (Engl. Transl.)* 1990, 26, 955.
- (28) Anderson, R. F.; Shinde, S. S.; Maroz, A.; Boyd, M.; Palmer, B. D.; Denny, W. A. Intermediates in the reduction of the antituberculosis drug PA-824, (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine, in aqueous solution. Org. Biomol. Chem. 2008, 6, 1973–1980.
- (29) Wardman, P. Reduction potentials of one-electron couples involving free radicals in aqueous solution. J. Phys. Chem. Ref. Data 1989, 18, 1637–1755.
- (30) Jenkins, T. C.; Stratford, I. J.; Stephens, M. A. 3-Nitro-1,2,4-triazoles as hypoxia-selective agents. *Anti-Cancer Drug Des.* **1989**, *4*, 145–160
- (31) Collins, L. A.; Franzblau, S. G. Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009.
- (32) Cho, S. H.; Warit, S.; Wan, B.; Hwang, C. H.; Pauli, G. F.; Franzblau, S, G. Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating *Mycobacterium tuberculosis*. Antimicrob. Agents Chemother. 2007, 51, 1380–1385.
- (33) Falzari, K.; Zhu, Z.; Pan, D.; Liu, H.; Hongmanee, P.; Franzblau, S. G. In vitro and in vivo activities of macrolide derivatives against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2005, 49, 1447–1454.
- (34) Sharnin, G. P.; Fassakhov, R. Kh.; Eneikina, T. A. Research on five-membered heterocycles. II. Halonitroimidazoles. *Chem. Heterocycl. Compd. (Engl. Transl.)* 1977, 13, 1332–1334.
- (35) Anderson, R. F.; Denny, W. A.; Li, W.; Packer, J. E.; Tercel, M.; Wilson, W. R. Pulse radiolysis studies on the fragmentation of arylmethyl quaternary nitrogen mustards by one-electron reduction in aqueous solution. J. Phys. Chem. A 1997, 101, 9704–9709.
- (36) Mulazzani, Q. G.; Venturi, M.; Hoffman, M. Z.; Rodgers, M. A. J. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. *J. Phys. Chem.* 1986, 90, 5347–5352.
- (37) Anderson, R. F. Electron transfer and equilibria between pyridinyl radicals and FAD. Ber. Bunsen-Ges. Phys. Chem. 1976, 80, 969–972.
- (38) Stekhan, E.; Kuwana, T. Spectroelectrochemical study of mediators. 1. Bipyridylium salts and their electron transfer to cytochrome C. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 253–259.

JM801087E