EDS Maths

Devoir Surveillé 3

Chapitre 3

7 Conditions d'évaluation

Calculatrice: autorisée. Durée: 45min

Compétences évaluées :

- ☐ Utiliser un ou plusieurs registres pour définir une suite.
- ☐ Proposer et modéliser une situation avec des suites.
- □ Déterminer une relation pour une suite définie par un motif géométrique.
- □ Calculer les termes d'une suite définie explicitement ou par récurrence.

Exercice 1 Nuage de points

(5 points)

On considère la suite (u_n) représentée par les nombres A_0, A_1, \ldots et la suite (v_n) représentée par les nombres B_0, B_1, \ldots dans le repère ci-contre.

Pour chaque question, entourer la bonne réponse. Aucune justification n'est attendue.

A / La quatrième terme de la suite (u_n) vaut environ	3	4	40	120
B / Si on considère que la suite (v_n) suit une évolution logique, quel terme de la suite (v_n) pourrait être nul :	le 0^e	le 7 ^e	le 4^e	le 8 ^e
C / Pour quelle valeur de n , $u_n = v_n$?	Aucun	4	5	environ $4,2$
${f D}/$ La suite (v_n) semble être	Croissante	Constante	Monotone	Strictement décrois- sante
$\mathbf{E}/\ (v_n)$ est la suite définie, pour tout entier naturel n par :	$v_n = 350 - 50n$	$v_n = 350n - 50$	$v_0 = 350 \text{ et} \ v_{n+1} = v_n - n$	$v_0 = 350 \text{ et} \ v_{n+1} = v_n - 50$

Exercice 2 Modes de génération

(2 points)

- 1. Donner un exemple de suite définie explicitement.
- 2. Donner un exemple de suite définie par récurrence.

Exercice 3 Variations

(5 points)

On considère la suite (u_n) définie par : $u_n = \frac{3^n}{4}$ pour tout $n \in \mathbb{N}$.

- 1. Déterminer les 3 premier terme de la suite.
- 2. Conjecturer le sens de variation de cette suite.
- 3. Démontrer le résultat de la question précédente.

Exercice 4 Noisettes

(3 points)

Un matin, Mathéo décide de poser un récipient dans son jardin contenant 200g de noisettes. Chaque après-midi, un écureuil vient manger la moitié du récipient, puis Mathéo remet 80g de noisettes le soir. On note u_n la quantité, en grammes, de noisettes dans le récipient le n^e jour au matin.

- 1. Déterminer u_1, u_2, u_3 et u_4 .
- 2. Exprimer u_{n+1} en fonction de u_n .

Exercice 5 Allumettes

(5 points)

On considère les constructions suivantes :

On note (u_n) la suite numérique définie sur \mathbb{N}^* où u_n représente le nombre d'allumettes nécessaire à la construction de la n-ime étape.

1. Déterminer une relation de récurrence entre un terme de la suite (u_n) et de son prédécesseur.

Expliquer soigneusement votre démarche et n'hésitez pas à l'illustrer.

Indication: Vous pouvez demander un "coup de pouce" pour vous aider à cette question. Il vous enlèvera 1pt sur le total du DS.

2. A l'aide de la calculatrice, déterminer combien d'allumettes seront nécessaires pour réaliser la 10^{me} étape.