Statistical Analysis of Networks

Introduction to Stochastic Actor-Based Models

- Victim/Offender overlap: a curious phenomenon
 - * Why do victimization and offending tend to co-occur?

CRIMINOLOGY

VIOLENT OFFENDING AND VICTIMIZATION IN ADOLESCENCE: SOCIAL NETWORK MECHANISMS AND HOMOPHILY*

JILLIAN J. TURANOVIC¹ and JACOB T.N. YOUNG²

¹College of Criminology and Criminal Justice, Florida State University

- ²School of Criminology and Criminal Justice, Arizona State University
- * As a network question:
 - * Why is there homophily for victimization? Offending?
 - * What do the authors say?

CRIMINOLOGY

VIOLENT OFFENDING AND VICTIMIZATION IN ADOLESCENCE: SOCIAL NETWORK MECHANISMS AND HOMOPHILY*

JILLIAN J. TURANOVIC¹ and JACOB T.N. YOUNG²

¹College of Criminology and Criminal Justice, Florida State University

²School of Criminology and Criminal Justice, Arizona State University

- * Interpersonal relational decision making shapes these outcomes.
 - * But, this can occur through different mechanisms.

Figure 1. Mechanisms of Violent Offending Homophily

a Violence homophily through preference for similarity:

b Violence homophily through avoidance:

c Violence homophily through influence:

NOTE: "Ego" refers to the focal individual; "alter" refers to potential friends.

Figure 2. Mechanisms of Violent Victimization Homophily

Victimization homophily through preference for similarity:

b Victimization homophily through avoidance:

C Victimization homophily through influence:

NOTE: "Ego" refers to the focal individual; "alter" refers to potential friends.

* What are the findings?

* What are the findings?

- * How did the authors go about coming to these conclusions?
 - Stochastic Actor-Based Models!

Statistical Analysis of Networks

Introduction to Stochastic Actor-Based Models

Learning Goals

- * By the end of this lecture, you should be able to answer these questions:
 - * What is the difference between Exponential Random Graph Models (ERGMS) and Stochastic Actor-Based Models (SABMs)?
 - * What is the logic of *micro-steps* and the simulation of networks using the **rate** function?
 - * What is the logic of *preferences* and the simulation of networks using the **objective** function?

Introduction

- * With ERGMs, we asked: "what are the network configurations that generated this network?"
 - * We reviewed models that are "edge-based" in the sense that the probability of an edge is dependent (or not) on other edges in the network.
 - * Remember dyadic-dependence?

Introduction

- * ERGMs are for a single cross-section of a network.***
 - * But, what if we have a panel of networks?

What do we mean by "network dynamics"?

How did those changes happen?

t + 1

Both are different sequences.

We want to model these dynamics as micro steps

What is a "micro-step"?

- Uniquely identify actors
 - * Actors control and decide about the tie variable
 - * (Note the difference from an ERGM):
 - * "actor-based" vs. "edge-based"

In the first micro-step, the yellow node makes a decision.

Specifically, add a tie.

In the second microstep, the yellow node makes a decision.

Specifically, reciprocate a tie.

But, there are different sequences of decisions that occur by which we would reach the second network.

In the first micro-step, the yellow node makes a decision.

Specifically, reciprocate a tie.

In the second microstep, the yellow node makes a decision.

Specifically, add a tie.

Why 'actor-based'?

- * Actors make decisions which drive change in the network (i.e. actor-driven or agent-based model).
 - * ERGMs are *edge*-based models in that we parameterize the configurations of edges that characterize the network.

Why 'actor-based'?

- * The SABM has 2 sub-models (called functions):
 - * When can actor *i* make a decision? (rate)
 - * Which decision does actor *i* make? (**objective**)

Simulating Network Evolution

- * The SABM logic goes like this:
 - * Start with a network at to and run an algorithm to t1.
 - * For all actors, a waiting time is sampled according to the rate function.
 - * Take the actor with the shortest waiting time and allow the actor to set a *micro step*.

- * The **rate** function determines how many decisions actors make.
- * The **objective** function expresses how likely it is for an actor to change his/her network in a particular way.
 - * Represents the short-term *objectives* of the actor (hence the name).
 - * "defined on the set of possible states of the network, as perceived from the point of view of the focal actor" (Snijders et al. 2010).

What can i do?

- * The SABM simulates networks and compares them to the observed network.
 - * Basically, optimizing a random utility function.
 - * Take an actor, evaluate what he/she can do, determine which is most likely.

- * The estimated model then yields estimates about actors' preferences
 - * Positive effects that are large and significantly different from zero indicate a preference over available alternatives for that particular configuration.
 - * The opposite for **negative** effects that are large and significantly different from zero.

- * As with ERGMs, network configurations operationalize the process in which we are interested.
 - * Thus, we can test hypotheses regarding actor-based mechanisms.
 - * Again, the difference is about what actors "want to do" or "prefer" (which is different from ERGMs).

unpopular others

t+1

Effect (RSiena term)

Preference

t+1

Effect (RSiena term)

Preference

Effect (RSiena term)

Preference

for being friend of the friend's friends

Effect (RSiena term)

Preference

Transitive
Triplets
(transTrip)

for being friend of the friend's friends

t+1

Effect (RSiena term)

Preference

Effect (RSiena term)

Preference

for being friend of popular alters

Effect (RSiena term)

Popularity (inPop)

Preference

for being friend of popular alters

t+1

Effect (RSiena term)

<u>Preference</u>

Effect (RSiena term)

<u>Preference</u>

for ties to similar alters

CRIMINOLOGY

VIOLENT OFFENDING AND VICTIMIZATION IN ADOLESCENCE: SOCIAL NETWORK MECHANISMS AND HOMOPHILY*

JILLIAN J. TURANOVIC¹ and JACOB T.N. YOUNG²

¹College of Criminology and Criminal Justice, Florida State University

²School of Criminology and Criminal Justice, Arizona State University

* What are the findings?

Similarity for ties to (sameX or simX) similar alters

Behavior Alter (AltX)

alter's covariate effect on preference

Learning Goals

- * By the end of this lecture, you should be able to answer these questions:
 - * What is the difference between Exponential Random Graph Models (ERGMS) and Stochastic Actor-Based Models (SABMs)?
 - * What is the logic of *micro-steps* and the simulation of networks using the **rate** function?
 - * What is the logic of *preferences* and the simulation of networks using the **objective** function?

Questions?