Feuille d'exercices de révision : extraits d'examens et partiels

S Exercice 1.

Résoudre dans $\mathbb R$ l'équation suivante :

$$\sin\left(4x - \frac{2\pi}{3}\right) = \frac{1}{2}.$$

S Exercice 2.

Soient $u := 1 + i \in \mathbb{C}$ et $v := -1 + i\sqrt{3} \in \mathbb{C}$.

- 1) Déterminer l'écriture exponentielle de u et v.
- 2) Déterminer l'écriture algébrique et l'écriture exponentielle de $\frac{u}{v}$.
- 3) En déduire les valeurs de $\cos\left(-\frac{5\pi}{12}\right)$ et $\sin\left(-\frac{5\pi}{12}\right)$.

S Exercice 3.

1) Résoudre, par la méthode de Gauss, le système

$$\begin{cases} 2x_1 + x_2 + x_3 = 1 \\ x_1 + 2x_2 + x_3 = 2 \\ x_1 + x_2 + 2x_3 = 3 \end{cases}$$

2) Soit $n \geq 2$. On considère le problème suivant : trouver $x := (x_1, \dots, x_n) \in \mathbb{R}^n$ tel que

$$\forall i \in [1; n], \quad x_i + \sum_{k=1}^n x_k = i.$$

- a) Pour n=3, montrer que x vérifie le système donné à la question précédente.
- **b)** Pour $n \geq 2$ fixé, déterminer x_i pour tout $i \in [1; n]$.

(*Indication*: déterminer d'abord $\sum_{i=1}^{n} x_i$).

S Exercice 4.

Montrer que les ensembles ci-dessous sont des sous-espaces vectoriels de \mathbb{R}^3 , puis en déterminer une base et la dimension.

$$F_1 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 - 4x_3 = 0\}$$
 et $F_2 := \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 - x_2 + 2x_3 = 0\}$.

Exercice 5.

Résoudre dans $\mathbb C$ l'équation

$$z^2 + (3i - 4)z + 1 - 7i = 0.$$

Exercice 6.

Soient A, L et U les trois matrices de $\mathcal{M}_4(\mathbb{R})$ définies par

$$A \coloneqq \begin{pmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 4 & 3 \\ 1 & 4 & -4 & 0 \\ 1 & 3 & 0 & 0 \end{pmatrix}, \quad L \coloneqq \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & -1 & 1 \end{pmatrix} \quad \text{et} \quad U \coloneqq \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & -1 & 2 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- 1) Vérifier que A = LU.
- 2) Déterminer det(L) et det(U), puis en déduire det(A).
- 3) Justifier que A, L et U sont inversibles.
- 4) Vérifier (sans calculer L^{-1}) que L^{-1} est donnée par

$$L^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ -5 & 2 & 1 & 0 \\ -8 & 3 & 1 & 1 \end{pmatrix}$$

et calculer U^{-1} .

5) En déduire A^{-1} .

Exercice 7.

Soient $A \in \mathcal{M}_3(\mathbb{R})$ et $B \in \mathcal{M}_{23}(\mathbb{C})$ définies par

$$A := \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad \text{et} \quad B := \begin{pmatrix} 2 & 3 - i & 2 \\ 2 & 1 & 0 \end{pmatrix}.$$

- 1) Montrer que A est inversible et calculer A^{-1} .
- 2) Calculer B^* .
- 3) En déduire $A^{-1}B^*$.

Exercice 8.

Soit $f: \mathbb{R}^4 \to \mathbb{R}^4$ définie par

$$\forall x := (x_1, x_2, x_3, x_4) \in \mathbb{R}^4, \quad f(x) := \begin{pmatrix} 2x_1 - x_2 + x_3 - x_4 \\ x_1 + x_2 + 2x_3 + x_4 \\ x_1 + 2x_2 + 3x_3 + 2x_4 \\ x_2 + x_3 + x_4 \end{pmatrix}$$

- 1) Montrer que f est une application linéaire.
- 2) Déterminer une base de Ker(f).

Exercice 9.

Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$\forall x := (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) := (3x_1 - 2x_2 + 2x_3, x_1 - x_2 + 2x_3, 2x_1 - 2x_2 + 3x_3).$$

2

On pose

$$u_1 := (1, 1, 0), \quad u_2 := (0, 1, 1) \quad \text{et} \quad u_3 := (1, 1, 1).$$

- 1) Montrer que f est une application linéaire.
- 2) Déterminer la matrice A de f dans la base canonique de \mathbb{R}^3 .
- **3)** Montrer que la famille $\mathcal{B} := (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 .
- 4) En utilisant la formule de changement de base, déterminer la matrice D de f dans la base \mathcal{B} .
- 5) Calculer det(D) et en déduire (sans calcul) det(A).

Exercice 10.

Soit $A \in \mathcal{M}_3(\mathbb{R})$ définie par

$$A \coloneqq \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$

On définit $P \in \mathbb{R}[X]$ par : $P(X) := \det(A - XI_3)$. Autrement dit,

$$P(X) = \begin{vmatrix} 1 - X & 2 & 2 \\ 2 & 1 - X & 2 \\ 2 & 2 & 1 - X \end{vmatrix}$$

- 1) Calculer P(X) et donner sa décomposition en facteurs premiers dans \mathbb{R} .
- 2) En déduire les polynômes divisent P.
- 3) Vérifier que P(A) = 0.
- 4) Déterminer le polynôme de degré minimal P_1 tel que P_1 divise P et $P_1(A)=0$.
- 5) Soit $n \in \mathbb{N}$. Déterminer le reste de la division euclidienne de X^n par P_1 .
- **6)** En déduire A^n pour tout $n \in \mathbb{N}$.