IBM DATA SCIENCE WITH R CAPSTONE PROJECT

ADJEI ANTHONY JUNIOR

MARCH 2023

OUTLINE

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

EXECUTIVE SUMMARY

- collect data from multiple sources (Download from cloud storage, Web scrapping, and API request GET calls
- Data wrangling with dplyr and stringr
 - Standardize column names for all collected datasets
 - Detect and handle missing values
 - Create indicator (dummy) variables for categorical variables
 - Remove undesired references and numeric values
- Exploratory Data Analysis with SQL(RSQLITE), tidyverse and ggplot2
- Build baseline linear regression models using the tidymodels
- Build a dashboard with R shiny and leaflet

INTRODUCTION

Analyzing how the weather would affect bike-sharing demand in urban areas. To complete this project the following steps were taken:

- collect and process related weather and bike-sharing demand data from various sources,
- perform exploratory data analysis on the data,
- build predictive models to predict bike-sharing demand.
- combine results and connect to a live dashboard

to display an interactive map and associated visualization of the current weather estimated bike demand. Then create an insightful and informative slide and present it

METHODOLOGY

- Perform data collection
- Perform data wrangling
- Perform exploratory data analysis (EDA) using SQL and visualization
- Perform predictive analysis using regression models
 - To build the baseline model
 - To improve the baseline model
- Build an R Shiny dashboard app

DATA COLLECTION

web scraping

- Rvest library is required
- bike sharing systems HTML table extract from a wiki page
- bike-sharing system table converted into a data frame

API request GET calls

- Httr library is required
- make an HTTP request to the current weather API and create empty vector to hold data temporarily
- Get 5-day weather forecasts for a list of cities using the Open Weather API

Download data from cloud storage

- Use the URL address provide
- And download the data frame

WEB SCRAPING CODES

```
url <- "https://en.wikipedia.org/wiki/List of bicycle-sharing systems"</pre>
# Get the root HTML node by calling the `read html()` method with URL
root node<-read html(url)
table<-html node(root node, "table")
 # Convert the bike-sharing system table into a dataframe
  df_bike<-html table(table)</pre>
  Summarize the bike sharing system data frame
  # Summarize the dataframe
  summary(df bike)
                         City
                                            Name
                                                              System
     Country
   Length:549
                                                           Length:549
                     Length:549
                                        Length:549
   Class :character
                     Class :character
                                        Class :character
                                                           Class :character
                     Mode :character
                                        Mode :character
                                                           Mode :character
   Mode :character
                      Launched
                                        Discontinued
                                                            Stations
     Operator
                                        Length:549
                     Length:549
   Length:549
                                                           Length:549
                     Class :character
                                        Class :character
                                                           Class :character
   Class :character
   Mode :character
                     Mode :character
                                        Mode :character
                                                           Mode :character
                     Daily ridership
     Bicycles
   Length:549
                     Length:549
   Class :character
                     Class :character
   Mode :character
                     Mode :character
```

API REQUEST GET CALLS CODES

```
library(httr)
Loading required package: httr
The API base URL to get current weather is https://api.openweathermap.org/data/2.5/weather
# URL for Current Weather API
current_weather_url <- 'https://api.openweathermap.org/data/2.5/weather'
Next, let's create a list to hold URL parameters for current weather API
# need to be replaced by your real API key
your api key <- "your api key"
# Input `q` is the city name
# Input `appid` is your API KEY,
# Input `units` are preferred units such as Metric or Imperial
current_query <- list(q = "Seoul", appid = "2ac1e71c6dde1ef14952e2ef0d1c331d", units="metric")</pre>
   # $weather is also a list with one element, its $main elem
   weather <- c(weather, json result$weather[[1]]$main)</pre>
   # Get Visibility
   visibility <- c(visibility, json result$visibility)
   # Get current temperature
   temp <- c(temp, json result$main$temp)
   # Get min temperature
   temp_min <- c(temp_min, json_result$main$temp_min)</pre>
   # Get max temperature
   temp max <- c(temp max, json result$main$temp max)</pre>
   # Get pressure
   pressure <- c(pressure, json result$main$pressure)</pre>
   # Get humidity
   humidity <- c(humidity, json result$main$humidity)</pre>
   # Get wind speed
   wind speed <- c(wind speed, json result$wind$speed)
```

Get wind direction

```
81]: # Get forecast data for a given city List
     get_weather_forecaset_by_cities <- function(city_names){</pre>
         df <- data.frame()</pre>
         for (city_name in city_names){
             # Forecast API URL
             forecast_url <- 'https://api.openweathermap.org/data/2.5/forecast'
             # Create query parameters
             forecast_query <- list(q = city_name, appid = "2acle71c6dde1ef14952e2ef0d1c331d", units="metric")
             # Make HTTP GET call for the given city
              responsek-GET(forecast_url,query= forecast_query )
             # Note that the 5-day forecast JSON result is a List of Lists. You can print the reponse to check the results
             json_list<-content(response,as="parsed" )</pre>
             results <- json_list$list
             # Loop the json result
             for(result in results) {
                 city <- c(city,city_name)
                  weather<- c(weather, result$weather[[1]]$main)
                    visibility<- c(visibility, result$visibility)
                    temp1<-c(temp,result$main$temp)
                    tem_min1 <- c(temp_min,result$main$temp_min)
                    tem_max1 <- c(temp_max,result$main$temp_max)</pre>
                    pressure1<- c(pressure, result$main$pressure)
                    humidity1<- c(humidity,result$main$humidity)
                    wind_speed1<- c(wind_speed,result$main$wind$speed)
                    wind deg1<- c(wind deg,result$main$wind$deg)
                     forecast datetime1<-c(forecast datetime, result$dt txt)
                     season1<-c(season, result$main$season)
                  # Add the R Lists into a data frame
                                       weather_data_frame<-data.frame(city=city,
                                                   weather=weather,
                                                   visibility=visibility,
                                                   temp=temp,
                                                   temp_min=temp_min,
                                                   temp_max=temp_max,
                                                   pressure=pressure,
                                                   humidity=humidity,
                                                   wind_speed=wind_speed,
                                                   wind_deg=wind_deg,
```

DOWNLOADING DATA FROM CLOUD STORAGE CODES

```
# Download several datasets

# Download some general city information such as name and locations
url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwor
# download the file
download.file(url, destfile = "raw_worldcities.csv")

# Download a specific hourly Seoul bike sharing demand dataset
url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwor
# download the file
download.file(url, destfile = "raw_seoul_bike_sharing.csv")

▼ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓
```

DATA WRANGLING

Standardize column names for all collected datasets

Change columns names to upper case and replace space with underscore

- Extract the numeric value using regular expressions
- Remove undesired reference links using regular expressions
- Detect and handle missing values
- Create indicator (dummy) variables for categorical variables
- Normalize data

```
for (dataset_name in dataset_list){
    # Read dataset
    dataset <- read_csv(dataset_name)</pre>
    # Standardized its columns:
    # Convert all column names to uppercase
    names(dataset)<-toupper(names(dataset))</pre>
    # Replace any white space separators by underscores, using the str replace all function
      names(dataset) <- str_replace_all(names(dataset), " ", "_")</pre>
    # Save the dataset
    write.csv(dataset, dataset name, row.names=FALSE)
# remove reference link
remove ref <- function(strings) {
ref pattern <- "\\[[A-z0-9]+\\]"
   # Replace all matched substrings with a white space using str replace all()
  strings<-str replace all(strings,ref pattern," ")
   # Trim the reslt if you want
    strings <- str squish(strings)
   # return(result)
   return(strings)
```

EXPLORATORY DATA ANALYSIS WITH SQL

Exploratory data analysis done using SQL gave insights into the Soul city data set to find:

- The total records of the dataset
- The number of records with non-zero rent bike counts
- The types of seasons in the city
- The start and end date
- The average temperature of the city
- The type of season with the highest and the lowest rent bike count

Exploratory Data Analysis with Data Visualization

Scatter plot of Rent Bike Number vs Date

Number of Bikes Rented vs Date:: scatter plot Number of Bikes Rented vs Temperature:: scatter plot Number of Bikes Rented vs Hour:: boxplot Total daily Rainfall over the year

PREDICTIVE ANALYSIS

- Data set was split into training and testing data with the training taking 75% of the total dataset.
- A linear regression model was built with weather variables in the dataset with the number of bike rent variables as the target
- Another model linear regression model was built using all the variable numbers of bike rent
- The two models were used to predict data using the test data
- R-squared root mean squared error were determine to compare both models

BUILD A R SHINY DASHBOARD

- Leaflet was used to create maps of selected cities
- A dropdown menu for city selection was provided for interaction

RESULTS

• Exploratory data analysis results

Predictive analysis results

• A dashboard demo in screenshots

EXPLORATORY DATA ANALYSIS WITH SQL

Exploratory data analysis done using SQL gave insights into the Soul city data set

- There were 8465 in the Seoul bike-sharing dataset
- Out of the 8465 there were 8113 records with non-zero rented bike count
- The soul city has winter, spring, summer, and Autumn seasons
- The first and last data of the soul city record is from 31st Dec 2017 and 1st Jan 2018 respectively
- 19th may 2018 had more rent bike count than any other day
- Average temperature of the soul city is 12.7723
- On average the summer season had more rent bike count and winter had the lowest count

EDA with Visualization

Number of Bikes Rented vs Temperature

Number of Bikes Rented vs Hour

PREDICTIVE ANALYSIS

DASHBOARD

Opt 08

Dally (5hrs Interval)

Det 09

Gei 18

Dei 02

£ 1000 -

420

Get 06

CONCLUSION

- factors like humidity, season, and temperature have more influence on bike rentals than others.
- bike rentals took place the most in summer and autumn with winter following up behind.

WEB SCRAPING CODES

```
url <- "https://en.wikipedia.org/wiki/List of bicycle-sharing systems"</pre>
# Get the root HTML node by calling the `read html()` method with URL
root node<-read html(url)
table<-html node(root node, "table")
 # Convert the bike-sharing system table into a dataframe
  df_bike<-html table(table)</pre>
  Summarize the bike sharing system data frame
  # Summarize the dataframe
  summary(df bike)
                         City
                                            Name
                                                              System
     Country
   Length:549
                                                           Length:549
                     Length:549
                                        Length:549
   Class :character
                     Class :character
                                        Class :character
                                                           Class :character
                     Mode :character
                                        Mode :character
                                                           Mode :character
   Mode :character
                      Launched
                                        Discontinued
                                                            Stations
     Operator
                                        Length:549
                     Length:549
   Length:549
                                                           Length:549
                     Class :character
                                        Class :character
                                                           Class :character
   Class :character
   Mode :character
                     Mode :character
                                        Mode :character
                                                           Mode :character
                     Daily ridership
     Bicycles
   Length:549
                     Length:549
   Class :character
                     Class :character
   Mode :character
                     Mode :character
```

API REQUEST GET CALLS CODES

```
library(httr)
Loading required package: httr
The API base URL to get current weather is https://api.openweathermap.org/data/2.5/weather
# URL for Current Weather API
current_weather_url <- 'https://api.openweathermap.org/data/2.5/weather'
Next, let's create a list to hold URL parameters for current weather API
# need to be replaced by your real API key
your api key <- "your api key"
# Input `q` is the city name
# Input `appid` is your API KEY,
# Input `units` are preferred units such as Metric or Imperial
current_query <- list(q = "Seoul", appid = "2ac1e71c6dde1ef14952e2ef0d1c331d", units="metric")</pre>
   # $weather is also a list with one element, its $main elem
   weather <- c(weather, json result$weather[[1]]$main)</pre>
   # Get Visibility
   visibility <- c(visibility, json result$visibility)
   # Get current temperature
   temp <- c(temp, json result$main$temp)
   # Get min temperature
   temp_min <- c(temp_min, json_result$main$temp_min)</pre>
   # Get max temperature
   temp max <- c(temp max, json result$main$temp max)</pre>
   # Get pressure
   pressure <- c(pressure, json result$main$pressure)</pre>
   # Get humidity
   humidity <- c(humidity, json result$main$humidity)</pre>
   # Get wind speed
   wind speed <- c(wind speed, json result$wind$speed)
```

Get wind direction

```
81]: # Get forecast data for a given city List
     get_weather_forecaset_by_cities <- function(city_names){</pre>
         df <- data.frame()</pre>
         for (city_name in city_names){
             # Forecast API URL
             forecast_url <- 'https://api.openweathermap.org/data/2.5/forecast'
             # Create query parameters
             forecast_query <- list(q = city_name, appid = "2acle71c6dde1ef14952e2ef0d1c331d", units="metric")
             # Make HTTP GET call for the given city
              responsek-GET(forecast_url,query= forecast_query )
             # Note that the 5-day forecast JSON result is a List of Lists. You can print the reponse to check the results
             json_list<-content(response,as="parsed" )</pre>
             results <- json_list$list
             # Loop the json result
             for(result in results) {
                 city <- c(city,city_name)
                  weather<- c(weather, result$weather[[1]]$main)
                    visibility<- c(visibility, result$visibility)
                    temp1<-c(temp,result$main$temp)
                    tem_min1 <- c(temp_min,result$main$temp_min)
                    tem_max1 <- c(temp_max,result$main$temp_max)</pre>
                    pressure1<- c(pressure, result$main$pressure)
                    humidity1<- c(humidity,result$main$humidity)
                    wind_speed1<- c(wind_speed,result$main$wind$speed)
                    wind deg1<- c(wind deg,result$main$wind$deg)
                     forecast datetime1<-c(forecast datetime, result$dt txt)
                     season1<-c(season, result$main$season)
                  # Add the R Lists into a data frame
                                       weather_data_frame<-data.frame(city=city,
                                                   weather=weather,
                                                   visibility=visibility,
                                                   temp=temp,
                                                   temp_min=temp_min,
                                                   temp_max=temp_max,
                                                   pressure=pressure,
                                                   humidity=humidity,
                                                   wind_speed=wind_speed,
                                                   wind_deg=wind_deg,
```

DOWNLOADING DATA FROM CLOUD STORAGE CODES

```
# Download several datasets

# Download some general city information such as name and locations
url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwor
# download the file
download.file(url, destfile = "raw_worldcities.csv")

# Download a specific hourly Seoul bike sharing demand dataset
url <- "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-RP0321EN-SkillsNetwor
# download the file
download.file(url, destfile = "raw_seoul_bike_sharing.csv")

▼ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ □ ↑ ↓ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓ □ ↑ ↓
```


