## Particle spectrograph

## Wave operator and propagator



| Quadratic (free) action $S = \sum_{S=0}^{\infty} \int_{\alpha\beta} \int_$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| $2 a_0 \partial_{eta} h_{lpha \chi} \partial^\chi h^{lpha eta} + 3 a_0 \partial_\chi h_{lpha eta} \partial^\chi h^{lpha eta} + $ $4 a_0 h_{eta \chi} \partial^\chi \Gamma^lpha_lpha) [t, x, y, z] d z d y d x d t$ | ints               | Fundamental fields   Multiplicities | $\partial_{\beta}\partial_{\alpha}\mathcal{T}^{\alpha\beta} == 0$ 1 | $\Delta_{0+}^{\#2} == 0 \qquad \qquad  \partial_{\alpha} \Delta^{\alpha \beta}  = 0 \qquad \qquad  1 $ | $\partial_{X}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta X} == \partial_{X}\partial^{X}\partial_{\beta}\mathcal{T}^{\alpha\beta}$ 3 | $2 \Delta_1^{\#6} \alpha + \Delta_1^{\#4} \alpha + 2 \Delta_1^{\#5} \alpha + \Delta_1^{\#3} \alpha == 0 \left  \partial_{\beta} \partial^{\alpha} \Delta^{\beta \chi} \right  = \partial_{\chi} \partial^{\chi} \Delta^{\alpha \beta} $ 3 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                    | Source constraints | SO(3) irreps                        | $T_0^{\#2} == 0$                                                    | $\Delta_{0+}^{#3} + 2 \Delta_{0+}^{#4} + 3 \Delta_{0+}^{#2} == 0$                                      | $\mathcal{T}_{1}^{\#1\alpha} == 0$                                                                                                          | $2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5}$                                                                                                                                                                  |

|                                     |                         | $\Delta_{3}^{#}$     |                           |                           |                           |   |
|-------------------------------------|-------------------------|----------------------|---------------------------|---------------------------|---------------------------|---|
|                                     | $\Delta_{0}^{\#1}$      | 0                    | 0                         | 0                         | 0                         |   |
|                                     | $\mathcal{T}_{0}^{\#2}$ | 0                    | 0                         | 0                         | 0                         |   |
| rs:                                 | $\mathcal{T}_{0}^{\#1}$ | 0                    | 0                         | 0                         | 0                         | , |
| Jenerato                            | $\Delta_{0}^{\#4}$      | 0                    | $-\frac{1}{2\sqrt{2}}a_0$ | $-\frac{1}{2\sqrt{2}a_0}$ | $\frac{1}{2a_0}$          |   |
| Total constraints/gauge generators: | $\Delta_{0}^{\#3}$      | 0                    | $\frac{5}{4 a_0}$         | $-\frac{3}{4 a_0}$        | $-\frac{1}{2\sqrt{2}a_0}$ |   |
|                                     | $\Delta_{0}^{\#2}$      | 0                    | $-\frac{3}{4 a_0}$        | $\frac{5}{4 a_0}$         | $-\frac{1}{2\sqrt{2}a_0}$ |   |
| l cor                               | $\Delta_0^{\#1}$        | $-\frac{2}{a_0}$     | 0                         | 0                         | 0                         |   |
| Tota                                |                         | $\Delta_{0}^{\#1}$ † | $\Delta_{0}^{#2}$ †       | $\Delta_{0}^{#3}$ †       | $\Delta_{0}^{\#4}$ †      |   |

| 0                        | 0                        | 0                        | 0                         | 0                  | $-\frac{2}{a_0}$                    | $\Delta_{2^{-}}^{\#2} \alpha \beta_{j}$ | 0                     | 0                   | 0                   | 0                          | 0                                                 | 4                                                   |
|--------------------------|--------------------------|--------------------------|---------------------------|--------------------|-------------------------------------|-----------------------------------------|-----------------------|---------------------|---------------------|----------------------------|---------------------------------------------------|-----------------------------------------------------|
| 0                        | 0                        | 0                        | 0                         | 0                  | 0                                   | $_{lphaeta\chi}$ $\Delta$               |                       |                     |                     |                            |                                                   |                                                     |
| 0                        | 0                        | 0                        | $\frac{4}{a_0 k^2}$       | 0                  | 0                                   | $\Delta_{2^{-}}^{\#1}_{\alpha_{i}}$     | 0                     | 0                   | 0                   | 0                          | $\frac{4}{a_0}$                                   | 0                                                   |
| $\frac{1}{2\sqrt{2}a_0}$ | $\frac{1}{2\sqrt{2}a_0}$ | $\frac{1}{2a_0}$         | 0                         | 0                  | 0                                   | ${\mathcal T}_{2}^{\#1}_{\alpha\beta}$  | 0                     | 0                   | 0                   | $-\frac{8}{a_0 k^2}$       | 0                                                 | 0                                                   |
| $\frac{5}{4a_0}$         | 440                      | $\frac{1}{2\sqrt{2}a_0}$ | 0                         | 0                  | 0                                   | $\Delta_2^{\#3}$                        | 0                     | 0                   | $\frac{4}{a_0}$     | 0                          | 0                                                 | 0                                                   |
| 1.0                      |                          | - a <sub>0</sub>         |                           |                    |                                     | $\Delta_2^{\#_2^2}\alpha\beta$          | 0                     | $-\frac{2}{a_0}$    | 0                   | 0                          | 0                                                 | O                                                   |
| $-\frac{3}{4a_0}$        | 4 a 0                    | $-\frac{1}{2\sqrt{2}}$   | 0                         | 0                  | 0                                   | $\Delta_{2^{+}\alpha\beta}^{\#1}$       | $\frac{4}{a_0}$       | 0                   | 0                   | 0                          | 0                                                 | 0                                                   |
| 0                        | 0                        | 0                        | 0                         | 0                  | 0                                   | ◁∣                                      | $+^{\alpha\beta}$     | $+^{\alpha\beta}$   | $+^{\alpha\beta}$   | $+^{\alpha\beta}$          | $\beta \chi$                                      | $\beta \chi$                                        |
| $\Delta_{0}^{#2} +$      | $\Delta_{0}^{#3} +$      | $\Delta_{0}^{#4}$ †      | $\mathcal{T}_{0}^{\#1}$ † | $\tau_{0}^{\#2}$ † | $\Delta_{0^{\bar{-}}}^{\#1}\dagger$ |                                         | $\Delta_{2}^{#1} + 0$ | $\Delta_2^{#2} + 6$ | $\Delta_2^{#3} + 0$ | $\mathcal{T}_{2}^{\#1} + $ | $\Delta_{2^{\text{-}}}^{\#1} +^{\alpha\beta\chi}$ | $\Lambda_{\tilde{\alpha}}^{#2} + \alpha \beta \chi$ |

| Γ#1<br>- α0<br>- 2                         | 0                                | 0 0                                     | 0                                | 0                           | 0                                    |                                    |
|--------------------------------------------|----------------------------------|-----------------------------------------|----------------------------------|-----------------------------|--------------------------------------|------------------------------------|
| +<br>0++<br>1+                             | •                                | L + + + + + + + + + + + + + + + + + + + | $h_{0}^{#1} + h_{0}^{#}$         | h#2 +                       | $\Gamma_{0}^{*1}$ $+$                |                                    |
|                                            | $\Gamma_{2}^{\#1}_{\alpha\beta}$ | $\Gamma_{2}^{\#2}$ $\alpha\beta$        | $\Gamma_{2}^{\#3}_{\alpha\beta}$ | $h_{2}^{\#1}_{\alpha\beta}$ | $\Gamma_{2}^{\#1}_{\alpha\beta\chi}$ | $\Gamma_2^{\#2}_{\alpha\beta\chi}$ |
| $\Gamma_{2}^{#1} \dagger^{\alpha\beta}$    | <u>a<sub>0</sub></u><br>4        | 0                                       | 0                                | 0                           | 0                                    | 0                                  |
| $\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$   | 0                                | $-\frac{a_0}{2}$                        | 0                                | 0                           | 0                                    | 0                                  |
| $\Gamma_{2}^{#3} \dagger^{\alpha\beta}$    | 0                                | 0                                       | <u>a<sub>0</sub></u><br>4        | 0                           | 0                                    | 0                                  |
| $h_{2}^{\#1} \dagger^{\alpha\beta}$        | 0                                | 0                                       | 0                                | $-\frac{a_0 k^2}{8}$        | 0                                    | 0                                  |
| $\Gamma_2^{\#1} \dagger^{\alpha\beta\chi}$ | 0                                | 0                                       | 0                                | 0                           | $\frac{a_0}{4}$                      | 0                                  |
| $\Gamma_2^{\#2} \dagger^{\alpha\beta\chi}$ | 0                                | 0                                       | 0                                | 0                           | 0                                    | <u>a<sub>0</sub></u><br>4          |
|                                            |                                  |                                         |                                  |                             |                                      |                                    |

 $\begin{array}{c} a_0 k^2 \\ 4 \\ 0 \\ \end{array}$ 

0

0

0

0

0

## Massive and massless spectra



## **Unitarity conditions**

(Unitarity is demonstrably impossible)