

纳米光子学

Nanophotonics

第10讲: 等离子体集成光路

兰长勇

光电科学与工程学院

补充

▶ LSP共振物理图像

- 电子云在光场作用下做集体振荡
- 正负电荷中心偏离产生回复力*F*

$$m\frac{\mathrm{d}^2z}{\mathrm{d}t^2} - F = -qE$$

光场: $E = E_0 e^{-i\omega t}$

回复力:F = -az

$$rac{{
m d}^2 z}{{
m d}t^2} + \omega_0^2 z \! = \! -rac{q}{m} E_0 e^{-{
m i}\omega t}, \; \omega_0 \! = \! \sqrt{rac{a}{m}}$$

$$z = rac{q/m}{\omega^2 - \omega_0^2} E_0 e^{-\mathrm{i}\omega t}$$

 ω_0 : LSP共振频率

采用此图像便于理解,但是系数 a,q 无法获得。

补充

等离子体光学

- 金属光学与体积等离激元
- ▶ 表面等离子体激元
- ▶ 表面等离子体激元的激发与表征
- ▶ 局域表面等离子体
- ▶ 等离子体集成光路

	Volume plasmons	SPPs	LSPs (nanosphere)
原理图	+ + +	k +V-V+	
模式性质	金属体内的电 荷的集体振荡	金属表面的 传播模式	不传播 束缚模式
波的性质	纵向	横向&纵向	_
特征频率	$\omega_p = \sqrt{\frac{Ne^2}{\varepsilon_0 m}}$	$\omega_{sp} = \frac{\omega_p}{\sqrt{1 + \varepsilon_d}}$	$\omega_{lsp} = \frac{\omega_p}{\sqrt{1 + 2\varepsilon_d}}$
与光的相互作	用 不相互作用 (non-EM wave)	与光子耦合 产生谐振	谐振消光 (散射+吸收)

本讲内容

- ▶ 为什么研究等离子体集成光路?
- 等离子体集成光路
 - ▶ SPP源/发射器
 - ▶ SPP波导
 - SPP的导向
 - SPP的调制
 - ▶ SPP的放大
 - ▶ SPP的探测

等离子体光路的基本组件

- ▶ 等离子体集成光路的展望
- Stefan Alexander Maier, Plasmonics—fundamentals and applications; Chapter 7
- D. K. Gramotnev, et al. "Plasmonics beyond the diffraction limit", Nature Photonics, 2010
- V.J. Sorger, et al. "Toward integrated plasmonic circuits", MRS bulletin, 2012

1. 为什么要研究等离子体集成光路?

2015年 莫尔定律问世50周年

摩尔定律:单位面积上的晶体管数量每18-24个月增加一倍

3 nm process nodes [edit]

	Samsung ^{[4][54]}		TSMC ^{[2][54]}	Intel ^[7]	
Process name	3GAE	3GAP	N3	N3E	3
Transistor type	MBCFET	MBCFET	FinFET	FinFET	FinFET
Transistor density (MTr/mm ²)	202.85	Unknown	314.73	Unknown	Unknown
SRAM bit-cell size (µm²)	Unknown	Unknown	Unknown	Unknown	Unknown
Transistor gate pitch (nm)	Fransistor gate pitch (nm) 40		Unknown 45		Unknown
Interconnect pitch (nm)	32	Unknown	22	Unknown	Unknown
Release status	2022 risk production ^[4] 2022 production ^[44] 2022 shipping ^[55]	2023 production ^[4]	2021 risk production 2022 H2 volume production ^[2] 2023 H1 shipping for revenue ^[56]	2023 production ^[2]	2023 risk production ^[7] 2024 production ^[57]

硅基微电子发展极限

集成度~1010

单线程性能

时钟频率,<10GHz限制

典型功率

逻辑核心数

互联瓶颈

随着IC集成度的增加,排序 做的更加紧凑,导致寄生电 容大幅度增加,从而导致信 号传输延迟大大增加。信号 延迟限制了计算速度的提升!

光互联取代电互联

- ▶ 光互联的优点:
 - 大数字容量和带宽、快速信号处理

光互联取代电互联

Time of Commercial Deployment (Copper Displacement)

1980's 1990's 2000's >2010 ~2015 ~2020 WAN, MAN LAN --- System --- Board Module Chip

Outside the box			The second second		It is the box		
10-20	Long-Haul, Metro	Local Area Networks	Rack-to-Rack	Card-to- Card	On-Card	On-Module	On-Chip
Distance	Multi – 100's km's	10 m – 2 km	<10 m intra- <100 m inter-	<1 m	0.1 – 0.3 m	0.5 -10 cm	< 20 mm
# of lines	single	tens	100's	100- 1k's	1000,s	10,000's	100K-10M
Cost (\$/Gb/s)	1000	100	10	1	0.1	0.01	0.0001
Power (mW/Gb/s)	500	50	10	5	1	0.5	0.05
Density (Gb/s/mm²)	10 ⁻³	10-2	1	10	100	1000	10,000
Technologies	Internet Protocol, SONET, ATM	LAN/SAN Standard (Ethernet, InfiniBand Fibre Channel)	Design-specifi , buses, SAN st (InfiniBa	andards	Design-specific. Some standards (PCI/PCI-X/3 GIO)		IC design- specific
Optics or Copper	Optics ubiquitous since 80's or early '90s	Optics common esince late 90's: Fiber standards in Enet, IB FC			Optics possible cost-effective vs. copper in 2010- 2015	Standard components beyond 2012	Integrated optics beyond 2015

片上光互联 (On-chip Optical Interconnect)

传统的电子学器件与光学器件

电子学器件

集成电路

CPU: ~GHz, Gbit /秒 ~32 nm 散热大

光子学器件

光纤通信和光计算

光纤: ~100Tbit/秒 ~10 μm 基本无散热

片上光互联优势

Signal

• 光开光器件响应时间最快达 到10-15s, 即飞秒(fs)量级

• 利用多重波长和并行互联及 处理可实现光互联。

• 由于光可以进行并行处理, 可进行高速大容量信号处理

介质光纤 VS 金属纳米线

- 传导模式强烈渗透到周围介质,并最 终成为平面波
- 模式尺寸减小到 λ_0 ,再增加到无穷大
- 不可能亚波长局域

- 约束增加,传播常数增大,传播速度减小
- 模式大小可以减小到几nm
- 亚波长局域是可能的,可以实现纳 米级光传输

光子学和电子学的融合需要纳米光子学

等离子体集成光路

关键:如何实现各个功能单元,即单个器件

本讲内容

- 为什么研究等离子体集成光路?
- 等离子体集成光路
 - ▶ SPP源/发射器
 - ▶ SPP波导
 - ▶ SPP的导向
 - SPP的调制
 - ▶ SPP的放大
 - ▶ SPP的探测

等离子体光路的基本组件

▶ 等离子体集成光路的展望

Stefan Alexander Maier, Plasmonics—fundamentals and applications; Chapter 7 D. K. Gramotnev, et al. "Plasmonics beyond the diffraction limit", Nature Photonics, 2010 V.J. Sorger, et al. "Toward integrated plasmonic circuits", MRS bulletin, 2012

SPP源/发射器—回顾激发方式小结

SPP源/发射器—定向SPP发射

光栅 + 狭缝

两侧传输

单侧传输

• 定向发生SPP

光学显微镜成像

 $x(\mu m)$

近场光学显微镜成像

SPP聚焦

SPP源/发射器—定向SPP发射

• SPP聚焦并导入SPP波导

改变激发光入射角度可以将SPP聚焦在不同的波导上

SPP源/发射器—发射与整形

SPP源/发射器—电注入

电注入: 有机等离子体发光二极管

SPP源/发射器—电注入

电注入:激光二极管到等离子体波导——端面耦合

耦合效率: 理论~60%, 实验~36%

Kim et al, Opt. Express **18**,10609(2010)

SPP波导

- 典型的SPP波导的约束和损耗之间的折衷
- 举例:
- 1. 绝缘体/金属/绝缘体 (IMI) 异质结构红外范 围的SPP(长程SPP: LRSPP)
 - 侧向约束: 很弱(广泛)
 - 传播长度:几厘米(低损耗)
- 2. 金属纳米线波导或金属纳米粒子波导
 - 侧向约束: 低于衍射极限
 - 传播长度: 小于微米(高损耗)
- 3. 金属/绝缘体/金属 (MIM) 异质结构, 特别是V型槽SPP波导
 - 约束性好
 - 可接受的传播长度

SPP波导

Wavelength (nm)	Au Index			SPP propagation length (µm)	LR-SPP propagation length (µm)
850	0.196+ i 5.590	Sapphire Index	1,75	7,5	122
		Glass index	1,50	7,6	220
1310	0.411+i 8.347	Sapphire Index	1,74	24,7	502
		Glass index	1,50	25,1	902
1550	0.559+i 9.810	Sapphire Index	1,73	40,0	811
		Glass index	1,50	40,6	1169

- The reference system is a 25 nm thick Au film.
- 损耗是由材料性质和几何形状决定,可以由增益介质补偿
- · 约束主要利用局部调整SPP色散来控制,通过适当的表面调制

SPP波导

常用缩写

(1) 长程表面等离极化激元: Long-range surface plasmon-polariton (LRSPP)

i m

- (2) 绝缘体-金属-绝缘体表面等离极化激元: Insulator-metal-insulator (IMI) SPP —— 对应 LRSPP
- (3) 介质负载表面等离极化激元: Dielectric-loaded surface plasmon-polariton (DLSPP)

(4) 沟道表面等离极化激元: Channel surface plasmon-polariton (CPP)

(5) 金属-绝缘体-金属波导: Metal-insulator-metal (MIM) waveguide

(6) 混合型SPP波导: Hybrid SPP waveguide

不同SPP波导的特性

- LRSPP: 光斑大 (~10μm), 传输距离长 (~mm), 弯曲损 耗大 (r~10mm)
- **DLSPP**: 束缚好,光斑小(~1μm),传输距离短(~40μm), 弯曲损耗小(r~5μm)
- **CPP**: 束缚好,光斑小(~1.1um),传输距离短(~100μm), 弯曲损耗小(r~5μm)
- MIM: 束缚很好,光斑小($<<\lambda$),传输距离短(\sim 10 μ m), 弯曲损耗很小($r\rightarrow$ 0)
- Hybird SPP: 束缚好,光斑小($\lambda^2/400$ to $\lambda^2/40$),传输距离长($\sim 100 \mu m$),弯曲损耗小($r \sim 5 \mu m$)

SPP波导—金属条状波导

短程SPP模式: SRSPP mode 金属条很厚

z (µm)

长程SPP模式: LRSPP mode 金属条很薄

优点:

低传播损耗(几个dB/cm) 缺点:

束缚能力小(很大的模区域)

SPP波导—金属条状(Strip)波导实验研究

金属条状SPP波导:金属厚度非常小时, β 虚部趋向零,表明有非常小的损耗和较长传播 距离,称为LRSPP

SPP波导—金属条状波导—SPP传播长度

通常入射波长越长SPP传播长度越长

SPP波导—楔型(Wedge)

金属条的变异——楔形波导

Moreno et al. *Phys. Rev. Lett.*, 100, 023901 (2008) Boltasseva et al. *Opt. Express*, 15, 5252 (2006) Pile et al., *Appl. Phys. Lett.*, 87, 061106 (2005)

更强的场约束+合理的SPP传播长度

SPP波导—V型槽(V-gloove)

In Out 5 µm $\alpha \exp(i\theta)$ b C $\lambda = 1,525 \text{ nm}$

环形谐振器

Novikov et al., PRB **66**, 035403(2002) Pile et al., OL **29**,1069(2004)

Bozhevolnyi et al., PRL **95**, 046802(2005) Bozhevolnyi et al., Nature **440**, 508(2006)

SPP波导—楔型(Wedge) vs V型槽(V-groove)

通讯频率(~1300-1550 nm): 楔型波导优于V型槽波导,强约束,相对低损耗,远距离(几百微米)

光频: V型槽优于楔型波导

Gramotnev and Bozhevolnyi, Nature Photon. 4, 83 (2010)

SPP波导—狭缝(Slot)

SPP波导—混合波导(DLSPPW&Hybrid)

• 结合两种波导的优点:

损耗低的介质波导+强约束金属波导

• 介质负载波导

混合波导

DLSPPW: dielectric-loaded SPP waveguides

SPP波导—混合波导(Hybrid&DLSPPW)

- 减少损耗
 - →到cm尺度传播
- 强的侧向场约束
 - →高密度光路
- 场主要定位在介质中
 - →介质可以掺杂改变折射率
 - →**主动**调制,非线性效应,等

Krasavin and Zayats, PRB **78**,045425(2008) Holmgaard and Bozhevolnyi, PRB **75**,245405(2007) Grandidier et al., APL **96**,063105(2010) Chu et al., APL **96**,221103(2010)

SPP波导—金属纳米线

使用靠近银纳米线放置的量子点生成SPP

纳米线端面反射形成驻波

Weeber et al. Phys. Rev. B **60**, 9061 (2000) Dickson et al. J. Phys. Chem. B **104**, 6095 (2000) Ditlbacher et al. Phys. Rev. Lett. **95**, 257403 (2005) Gunn et al. Nano. Lett, **6**, 2804 (2006) Gramotnev and Bozhevolnyi, Nature Photon. **4**, 83 (2010).

SPP波导—等离子体聚焦

利用锥形金属棒/条带实现等离子体的聚焦

Verhagen, et al., *Nano Lett.*, 7, 334 (2007) Verhagen & Kuipers, *OE*, 16, 45 (2008)

SPP波导—等离子体聚焦

各种SPP聚焦方案

Ropers et al., Nano Lett. 7, 2784 (2007).

SPP波导—链状波导

- 弧形排布金属球将SPP聚焦于圆心
- 金属球链构成SPP波导

40

Nomura et al., APL 86, 181108 (2005) Maier et al., Adv. Mater. 13, 1501 (2001) Maier and Atwater, JAP 98, 011101 (2005)

SPP导向—弯曲导向

• 弯曲角度增加,损耗增大

• 弯曲对应V形槽而言损耗小

Plasmon routing 41

SPP导向—布拉格反射

布拉格光栅反射实现高效 率的SPP传播方向改变

Reflectivity=65% Bend loss<2dB for 90° bends

Weeber et al., APL **87**, 221101 (2005) González et al., PRB **73**, 155416 (2006)

SPP导向—分束器

• 反射率取决于布拉格光栅的行数

- Y形分束器中间电存在辐射泄漏损耗
- 张开角度越大,损耗越大

Plasmon spliter 43

SPP导向—波分复用

$$k_{m,x} = k_{\text{inc},x} + mK$$

λ=784 nm和730nm

Drezet et al., Nano Lett. 7, 1697 (2007)

- 二维光栅,两个方向周期不同,对应倒格矢不同
- 不同波长满足的衍射条件不同,实现对复色光的解离

SPP导向—环形振荡滤波

- ・ 介 质 负 载 SPP波导

APL, *94*, 051111 (2009)

SPP导向—耦合器

Krasavin and Zayats, PRB 78, 045425 (2008)

主动调制SPP—概念

"当主动调制表面等离子体激元(SPP)信号的有效技术被确认时, 我们就可以像谈论"光子"一样来谈论说"等离子体"了。"

— Krasavin and Zheludev, APL **84**,1416(2004)

主动调制等离子体:一种瞬间开关或调节光频SPP信号传播的技术。

- · 外界刺激,改变输出端 SPP的信号强度
- 实现信号上载到SPP
 - 实现信号操控或者运算

47

SPP的主动调制—方法

SPP的主动调制—开关

IMI波导 改变LiNbO₃的折射率, 实现对SPP的调控 LiNbO₃ +z → Δn LiNbO₃ +z → +An Al SiO₂ Si

(b)

电光调制器

Berini et al. APL, 90, 061108 (2007)

电极上施加电压,在金属条带上产生 焦耳热,改变其下介质折射率,进而 改变传播常数,使相位改变

Nikolasjen et al., APL, 85, 5833 (2004)

SPP的主动调制—光调制

全光调制器:调制的是辐射光

- Ag膜上存在一个狭缝和沟槽, 二者平行
- 沟槽与狭缝间Ag膜上铺满一层CdSe量子点
- 信号光在沟槽处激发SPP, 传播到狭缝处 与狭缝处信号光干涉
- 没有泵补光,SPP不被量子点吸收
- 泵补光在狭缝处激发SPP, SPP被量子点吸收, 电子跃迁到高能级; 高能级之上存在带内跃迁, 可以吸收红外光SPP, 改变狭缝处的干涉效果, 出射信号改变

泵补光功率(514.5 nm)

信号光为TE模式不激发 SPP, 泵补光对其无影响

SPP的主动调制—电场调制

- 信号光从上方狭缝入射,在中间激发SPP
- SPP在狭缝狭缝处转变为辐射光输出
- 原理: 栅电场改变Si中载流子浓度,从而改变其折射率,进而改变SPP的传播特性
- 中间层光传输存在两种模式:光子模式和等 离子体模式
- 光子模式对Si的折射率敏感,施加偏压后迅 速衰减
- 等离子体模式对Si折射率改变不敏感
- 零偏压下,两种模式干涉导致输出光弱
- 偏压下,光子模式被抑制,没有干涉,输出光强

λ=1.55μm	E mode profile	Mode Index	Loss (dB/µm)
Off state	Ag SiO2	3.641	0.207
(V=0) depletion	Si	0.375	2.37
On state	Ag /SiO ₂	3.649	0.228
(V>0.7V) accumulation	Ag Si	0.033	28.14

(red:photonic mode, blue: plasmonic mode)

Dionne et al., Nano Lett. 9, 897 (2009)

SPP的主动调制——放大器

DLSPPW掺杂增益介质

- 原理:受激辐射光放大——同激光类似
- 介质中含有PbS量子点
- 在DLSPPW中激发SPP($\lambda_0 = 1525 \text{ nm}$)
- 用532 nm的泵补光照射DLSPPW, PbS量子点 发生跃迁
- SPP诱导量子点发光(受激辐射)

随泵补强度的增加, 出现激射

出现激射需要一定的长度

SPP的探测—通过有机二极管检测

SPP传播到等离子体二极管,产生

电荷载体像直流电一样可以被检测

- 物镜将入射光聚焦在金属膜表面
- 金属膜样品在水平方向做扫描运动
- 每扫描一个点记录一下光电二极管中的电流,构成位置-电流一一对应关系
- 在狭缝A、B处可以激发SPP,有光电流
- 存在BS孔洞处,阻碍SPP传播,所以被 BS阻挡的狭缝B无光电流

SPP的探测—通过纳米线场效应晶体管检测

Ag纳米线传导的SPPs在Ag-Ge交界处强烈耦合进Ge纳米线,并被转换为电子空穴对,有电流通过Ge纳米线晶体管而被检测到。

Falk et al, Nature Phys. **5**, 475(2009)

SPP的探测—通过纳米缝MSM光探测器检测

被纳米缝激发的SPP,在MIM波导的传播,并通过(金属-半导体-金属)MSM光探测器检测

Neutens et al., Nature Photon. 3, 283(2009)

Distance from detection slit (μm)

MSM探测器位于 x = 0 处, 激发光沿x方向做扫描

等离子体光路展望

主板上利用基于金LRSPP波导的 聚合物实现芯片间光互连

10 Gbps的数据传输

等离子体光路展望

小结

- 等离子体光路:未来信息技术的潜在解决方案(等离子体互联)
- SPP波导、反射镜、分束器、波分复用器和解波分复用器、 耦合器、滤波器、SPP源和发射器、开光和调制器、放大器、探测器,、、、、