

Captura de Datos Automatizada con IA

Proyecto Final de Python 2025

Alumnos

Juan Pablo Jouanny Lucas Lamiño

Profesor

Nuria Torres

Objetivo del proyecto

El **objetivo** del programa es extraer información numérica de imágenes que contienen tablas utilizando técnicas de Reconocimiento Óptico de Caracteres (OCR), organizar estos datos en un formato tabular (DataFrame) y realizar análisis visuales mediante gráficos que permitan identificar patrones y comportamientos relevantes en los datos extraídos.

Adicionalmente, busca automatizar el procesamiento de información para generar reportes técnicos con los resultados obtenidos, lo que facilita la interpretación y el uso de la información en diferentes contextos industriales o académicos.

Breve explicación del programa

El programa utiliza OCR para extraer datos numéricos de imágenes de tablas, los organiza en un DataFrame y genera gráficos para analizar patrones y comportamientos. También permite crear reportes técnicos automatizados con los resultados obtenidos.

Explicación de cómo funciona la extracción de datos con OCR

El programa emplea OCR (Reconocimiento Óptico de Caracteres) para identificar y extraer datos numéricos desde imágenes. A continuación, se detalla el proceso:

1. Inicialización del lector OCR

Se utiliza la biblioteca EasyOCR, configurada para soportar los idiomas español e inglés, asegurando una interpretación precisa de los textos en la imagen.

2. Lectura de la imagen

El programa carga la imagen especificada y extrae los textos encontrados. EasyOCR devuelve una lista con los textos reconocidos.

3. Filtrado de datos numéricos

- Cada texto extraído es procesado para eliminar caracteres no deseados, como espacios en blanco.
- Se verifica si el texto puede convertirse a un número válido (reemplazando comas por puntos para valores decimales).
- Solo los valores numéricos son retenidos y organizados en filas, asegurando que tengan un formato compatible con tablas.

4. Validación de consistencia:

Se verifica que el número total de datos numéricos sea múltiplo de las columnas

esperadas en la tabla. Esto garantiza que los datos extraídos puedan organizarse correctamente en filas y columnas.

5. Creación de un DataFrame:

Los datos extraídos se estructuran en un DataFrame de Pandas, asignando nombres significativos a las columnas.

Se convierten todas las columnas a tipos numéricos para facilitar su análisis y procesamiento posterior.

6. Resultado:

Si el proceso es exitoso, el programa retorna un DataFrame con los datos organizados. En caso de errores, muestra mensajes descriptivos, como que el archivo no fue encontrado o que hubo problemas durante la extracción.

Cómo usar el programa paso a paso

1. Preparar la imagen para la extracción

Coloca en la misma carpeta donde está el programa el archivo de imagen caldera_table_50_observations (por ejemplo, caldera_table_50_observations.png). Esta imagen contiene la tabla con los datos que se quieren extraer.

2. Ejecutar el programa

Abre una terminal o consola y navega hasta la carpeta donde está el archivo ocr_a_csv.py. Ejecuta el programa con el siguiente comando: python ocr_a_csv.py

3. Extracción automática de datos

El programa leerá la imagen caldera_table_50_observations y extraerá automáticamente los datos numéricos de la tabla mediante OCR, sin que sea necesario realizar ninguna acción adicional.

4. Generación del archivo CSV con los datos extraídos

Una vez finalizada la extracción, se generará un archivo llamado caldera_datos.csv en la misma carpeta, que contiene la tabla organizada con los datos extraídos de la imagen.

Generación del informe y gráficos de análisis

El programa también generará un informe llamado informe_analisis_caldera.docx que incluye gráficos y análisis visuales de los datos extraídos para facilitar la interpretación.

5. Verificación de resultados

Para revisar los datos, abre el archivo caldera_datos.csv. Para interpretar los resultados y ver las visualizaciones, abre el documento informe_analisis_caldera.docx.

Resultados obtenidos

Luego de ejecutar el programa ocr_a_csv.py sobre la imagen caldera_table_50_observations.png, se generó un archivo CSV llamado caldera_datos.csv

que contiene los datos numéricos extraídos de forma automática. A continuación, se muestra un fragmento de los datos obtenidos:

Presión (bar)	Temperatura (°C)	Caudal (m³/h)	Nivel de Agua (%)	Consumo de Combustible (L/h)	CO (%)	NOx (%)	Horas Operadas
10.5	150.2	120.0	75.0	40.5	0.12	0.03	5
10.7	149.8	118.5	74.5	41.0	0.11	0.04	6
10.4	150.0	119.8	75.2	40.7	0.13	0.03	7

Estos datos permiten realizar análisis posteriores, como la generación de gráficos de evolución temporal de las emisiones y el consumo de combustible, y el análisis de eficiencia en función del caudal, automatizados dentro del mismo programa.