Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Отчёт
по лабораторной работе № 1
«Формирование последовательности случайных чисел с заданным законом
распределения»

Выполнили Сякачёв П.В. ст. гр. 950502

Проверила: Герман Ю.О.

Цель работы:

Изучить основные способы создания последовательностей случайных чисел с заданными законами распределения вероятности.

Краткие теоретические сведения:

Случайные и псевдослучайные числа – числа, последовательность которых обладает появления теми или иными статистическими закономерностями. Различают случайные числа, генерируемые каким-либо стохастическим устройством, и псевдослучайные числа, генерация осуществляется с помощью арифметических алгоритмов.

Генераторы случайных чисел (ГСЧ) по способу получения чисел:

- физические;
 - о монета;
 - о игральная кость;
- табличные;
- алгоритмические (псевдослучайные);
 - метод серединных квадратов (см. рис. 1);
 - о метод перемешивания (см. рис. 2);
 - о метод серединных произведений (см. рис. 3);
 - о линейный конгруэнтный метод (алгоритм Лемера).

Рисунок 1 – Генерация чисел методом серединных квадратов

Рисунок 2 – Генерация чисел методом перемешивания

Рисунок 3 – Генерация чисел методом серединных произведений

Самый простой метод генерации случайных чисел — алгоритм Лемера. Выраженный в символьном виде алгоритм Лемера представляет собой следующее выражение: $X(i) = a * X(i-1) \mod m$

От качества работы ГСЧ зависит качество работы всей системы и точность результатов. Поэтому случайная последовательность, порождаемая ГСЧ, должна удовлетворять целому ряду критериев.

Осуществляемые проверки бывают двух типов:

- проверки на равномерность распределения (критерий «хи-квадрат»);
- проверки на статистическую независимость (проверка на частоту появления цифры в последовательности).

Качество формируемой последовательности по критерию хи-квадрат в рамках данной лабораторной работы заключается в проверке факта, что «хи-квадрат» табличный, вычисленный в Excel, больше «хи-квадрата» расчётного, полученный по формуле, записанный в коде программы ниже.

Ход работы:

```
namespace Lemer
    public class Lehmer
        private const int a = 11817;
        private const int m = 36471;
        public int Next()
            int z1 = ((a * Program.ri) % m);
            return z1;
    }
    public class Method
        private const double first = 4598754, second = 8653147;
        public static void Run()
            double[] random = new double[20];
            random[0] = first;
            random[1] = second;
            for (int i = 0, j = 0; i < 20; i++)
            {
                double temp = random[j] * random[j + 1];
                string nextrand = temp.ToString();
                int poz = (nextrand.Length / 4) % 4 == 3 ? nextrand.Length / 4 + 1 :
nextrand.Length / 4;
                int len = (nextrand.Length / 4) % 4 == 1 || (nextrand.Length / 4) %
4 == 2 ?
                    nextrand.Length / 2 + 1 : nextrand.Length / 2;
                nextrand = nextrand.Substring(poz, len);
                random[i] = Convert.ToDouble(nextrand);
                if (i > 1) j++;
            for (int i = 0; i < random.Length; i++)</pre>
                Console.WriteLine("" + random[i]);
        }
    class Program
        public static int ri = 7;
        static void Main(string[] args)
            int e = 20;
            int[] counts = new int[e];
            int iter_count = 10000;
            int actual_part = iter_count / e;
            Lehmer lehmer = new();
            for (int i = 0; i < iter_count; ++i)</pre>
                ri = lehmer.Next();
                int z1 = ri % e;
                counts[z1]++;
            for (int i = 0; i < e; ++i)</pre>
```

Результат выполнения программы:

Частотное распределение при е = 20	Частотное распределение при е = 70
512	139 144
496	140 140
504	144 144
	147 148
500	134 138
497	137 147 145 150
508	144 140
508	144 151
516	138 144
495	150 144
	138 156
489	137 149
488	145 144
498	133 135 143 137
487	237
499	143 138 143 143
	136 140
499	140 144
487	146 154
506	143 145
509	150 137
488	139 151 145 152
514	100
	140
X = 0,1659999999999998	150
	122 142
	141
	139
	143
	132
	143 141 151 141
	X = 0,18953722334004028

Задание 2:

Результат выполнения программы для генерации 20 чисел методом серединных произведений

Вывод:

В ходе выполнения лабораторной работы №1 были изучены основные способы создания последовательностей случайных чисел, а также реализована программа для генерации последовательности случайных чисел.