수리경제학

이재석

극한

극한의 성질

국한의 성성 계산

극한 찾기

미분

함수에 따른

미분법

곱의 미분

합성함수의 미분: Chain Rule

수리경제학 미분 - 중간고사 대비 Review

이재석

2025-04-17 (updated:April 16, 2025)

목차

수리경제학

이재석

극한 극한의 성질

극한의 성질고 계산

극한 찾기

미분

함수에 따른

곱의 미분

합성함수의

미분: Chain Rule

- 1 극한
- 2 극한의 성질
- 3 극한의 성질과 계산
- 4 극한 찾기
- 5 미분
- 6 함수에 따른 미분법
- 7 곱의 미분
- 8 합성함수의 미분: Chain Rule

극한

수리경제학

이재석

극한 극한의 성질

극한의 성질괴 계산

극한 찾기

미분

함수에 따른 미부번

곱의 미

합성함수의

마분: Cha Rule

Definition (도함수)

실수(\mathbb{R})의 어떤 함수 f(x)가 정의되는 포인트 a 에서 $n \not\in \mathcal{L}$ 하고, 정의역이 포인트 a 를 포함한다면, a 에서 $n \not\in \mathcal{L}$ 이 \mathcal{L} 은

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{1}$$

미분계수는, 포인트 a 에서 극한값. 올바른 L 값을 구하기 위해서는, 극한의 성질을 이해해야 함.

또한, 당연하게도 미분가능성의 조건은 포인트 a 에서 올바른 극한값의 조건을 만족해야 함.

여러 함수형태에 따른 극한값

수리경제학

이재석

극한

72-102

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

극한값이 존재

 $f(\cdot)$ 는 'smooth'한 곡선. 좌측에서 N으로 접근하거나, 우측에서 접근할 시, 모두 극한값이 L로 수렴.

극한값이 존재

 $f(\cdot)$ 는 'smooth'하지 않는 곡선. 하지만, 좌측에서 N으로 접근하거나, 우측에서 접근할 시, 모두 극한값이 L로 수렴.

여러 함수형태에 따른 극한값

수리경제학

이재석

극한

극한의 성실

국안의 성실. 계산

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

극한값이 존재하지 않음

 $f(\cdot)$ 는 'smooth'하지 않는 곡선. 좌측에서 N으로 접근시 극한값 L_1 , 우측에서 접근할 시 극한값 L_2 . 극한값 L0 존재하지 않음.

극한값이 존재하지 않음

그 교육 그 개의 가 많음 $f(\cdot)$ 는 'smooth'한 곡선. 좌측에서 극한값 $-\infty$, 우측에서 극한값 ∞ . 따라서 L이 존재하지 않음.

함수의 극한: f(x) = ax 의 형태

수리경제학

이재석

극한

극한의 성실

극한의 성질과

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

■
$$\lim_{x\to 2} f(x) = 2$$

 $\lim_{x\to 2} g(x) = 4$
 $\lim_{x\to 2} \frac{h(x)}{h(x)} = 1/2$

$$\lim_{x\to 0} f(x) = 0$$

$$\lim_{x\to 0} g(x) = 0$$

$$\lim_{x\to 0} \frac{h(x)}{h(x)} = 0$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} g(x) = \infty$$

$$\lim_{x \to \infty} \frac{h(x)}{h(x)} = \infty$$

■
$$\lim_{x \to -\infty} f(x) = -\infty$$

 $\lim_{x \to -\infty} g(x) = -\infty$
 $\lim_{x \to -\infty} h(x) = -\infty$

함수의 극한: $f(x) = \frac{a}{x}$ 의 형태

수리경제학

이재석

극한

극한의 성실

극한의 성질: 계산

극한 찾기

722

미분

함수에 따른 미분법

곱의 미분

- $\lim_{x\to 1} f(x) = \frac{1}{2}$ $\lim_{x\to 1} g(x) = 1$ $\lim_{x\to 1} \frac{h(x)}{h(x)} = 2$
- $\lim_{x \to 0^+} f(x) = \infty$ $\lim_{x \to 0^+} g(x) = \infty$ $\lim_{x \to 0^+} \frac{h(x)}{h(x)} = \infty$
- $\lim_{x \to 0^{-}} f(x) = -\infty$ $\lim_{x \to 0^{-}} g(x) = -\infty$ $\lim_{x \to 0^{-}} h(x) = -\infty$
- $\lim_{x \to \infty} f(x) = 0$ $\lim_{x \to \infty} g(x) = 0$ $\lim_{x \to \infty} \frac{h(x)}{h(x)} = 0$
- $\lim_{x \to -\infty} f(x) = 0^{-}$ $\lim_{x \to -\infty} g(x) = 0^{-}$ $\lim_{x \to -\infty} \frac{h(x)}{h(x)} = 0^{-}$

함수의 극한: $f(x) = x^a$ 의 형태

수리경제학

이재석

극한

극한의 성실

극한의 성실과

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

$$\lim_{x \to 2} f(x) = 2$$

$$\lim_{x \to 2} g(x) = 4$$

$$\lim_{x \to 2} \frac{h(x)}{h(x)} = \sqrt{2}$$

$$\lim_{x \to 0} f(x) = DNE$$

$$\lim_{x \to 0} g(x) = 0$$

$$\lim_{x \to 0} h(x) = 0$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to \infty} g(x) = \infty$$

$$\lim_{x \to \infty} \frac{h(x)}{h(x)} = \infty$$

■
$$\lim_{x \to -\infty} f(x) = -\infty$$

 $\lim_{x \to -\infty} g(x) = \infty$
 $\lim_{x \to -\infty} h(x) = DNE$

$$\lim_{x \to 0^+} f(x) = 0$$

$$\lim_{x \to 0^+} g(x) = 0$$

$$\lim_{x \to 0^+} h(x) = 0$$

함수의 극한: $f(x) = a^x$ 의 형태

수리경제학

이재석

극한

극한의 성실

극한의 성질과 계산

극한 찾기

1 .

미분

함수에 따른 미분법

곱의 미분

$$\lim_{x \to 1} f(x) = e$$

$$\lim_{x \to 1} h(x) = 2$$

$$\lim_{x \to 1} \frac{r(x)}{r(x)} = 1/2$$

$$\blacksquare \lim_{x \to \infty} a^{x} = \begin{cases} 0 & \text{if } 0 < a < 1 \\ 1 & \text{if } a = 1 \\ \infty & \text{if } a > 1 \end{cases}$$

$$\blacksquare \lim_{x \to -\infty} a^x = \begin{cases} \infty & \text{if } 0 < a < 1 \\ 1 & \text{if } a = 1 \\ 0 & \text{if } a > 1 \end{cases}$$

극한의 성질

수리경제학

이재석

극한

극한의 성질

극한의 성질고 계산

계산

극한 찾기

리스이 (F) =

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 함수 y = f(x) 에 대해 (단, a 와 b 는 상수),

■ 정리 I

$$y = ax + b$$
 일 때, $\lim_{x \to c} y = ac + b$

■ 정리 II

$$y = f(x) = b$$
 (상수 함수) 일 때, $\lim_{x \to c} y = b$

■ 정리 III

$$y = x$$
 일 때, $\lim_{x \to c} y = c$,

$$y = x^k$$
 일 때, $\lim_{x \to c} y = c^k$

*일반적으로는 "x
ightarrow c" 는 "x=c" 와 같지 않음 (대입시 다른 값).

■ **예시 1:** y = 5x + 7

$$\lim_{x \to 2} y = 5(2) + 7 = 17, \quad \lim_{x \to 0} y = 5(0) + 7 = 7$$

■ 예시 2: $y = x^3$

$$\lim_{x \to 2} y = (2)^3 = 8$$

극한의 성질 (두 함수의 조합)

수리경제학 이재석

극한의 성질

극한의 성질과 계산

극한 찿기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 두 개의 함수 $y_1 = f(x)$, $y_2 = g(x)$ 가 x 에 대해 주어지고, 다음과 같은 유한한 실수의 극한값을 가질 때:

$$\lim_{x \to c} y_1 = L_1, \quad \lim_{x \to c} y_2 = L_2$$

■ 정리 IV (합/차의 극한)

$$\lim_{x\to c}(y_1\pm y_2)=L_1\pm L_2$$

■ 정리 V (곱의 극한)

$$\lim_{x\to c}(y_1\cdot y_2)=L_1\cdot L_2$$

■ **정리 VI (나눗셈의 극한)** 단, *L*₂ ≠ 0 이어야 함

$$\lim_{x \to c} \frac{y_1}{y_2} = \frac{L_1}{L_2}$$

다항식 함수의 극한

수리경제학 이재석

국한 국한의 성질

극한의 성질과 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 주어진 극한의 성질을 활용하면, 모든 다항식 함수의 극한을 쉽게 구할 수 있습니다. 일반적인 다항식 함수:

$$y = f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$$

 $x \rightarrow c$ 일 때, 각 항의 극한은 다음과 같습니다:

$$\lim_{x \to c} a_0 = a_0$$
, $\lim_{x \to c} a_1 x = a_1 c$, $\lim_{x \to c} a_2 x^2 = a_2 c^2$, ...

따라서 전체 다항식의 극한은 다음과 같이 계산됩니다:

$$\lim_{x \to c} f(x) = a_0 + a_1 c + a_2 c^2 + \dots + a_n c^n$$

예제 1: 다항식 함수의 극한

수리경제학

이재석

극한

극한의 성질과

국한의 성질교 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 함수 $y = f(x) = x^2 - 9x + 7$ 의 극한을 구하시오:

- (a) $\lim_{x\to 0} f(x)$
- (b) $\lim_{x\to 3} f(x)$
- (c) $\lim_{x\to -1} f(x)$

예제 1: 다항식 함수의 극한

수리경제학

이재석

7 2 4 7

극한의 성질과

국안의 성질과 계산

극한 찾기

미분

항수에 따른

미분법

곱의 미분

함수
$$y = f(x) = x^2 - 9x + 7$$
 의 극한을 구하시오:

(a)
$$\lim_{x\to 0} f(x) = 0^2 - 9(0) + 7 = 7$$

(b)
$$\lim_{x\to 3} f(x) = 3^2 - 9(3) + 7 = 9 - 27 + 7 = -11$$

(c)
$$\lim_{x\to -1} f(x) = (-1)^2 - 9(-1) + 7 = 1 + 9 + 7 = 17$$

예제 2: 곱 형태의 극한

수리경제학

이재석

극한

극한의 성질과

국단의 경찰과 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 함수 y = f(x) = (x + 2)(x - 3) 의 극한을 구하시오:

- (a) $\lim_{x\to -1} f(x)$
- (b) $\lim_{x\to 0} f(x)$
- (c) $\lim_{x\to 5} f(x)$

예제 2: 곱 형태의 극한

수리경제학

이재석

그런이 서로

극한의 성질과

계산 극한 찾기

72 2/1

미분

함수에 따른 미분법

곱의 미분

함수
$$y = f(x) = (x + 2)(x - 3)$$
 의 극한을 구하시오:

(a)
$$\lim_{x\to -1} f(x) = (-1+2)(-1-3) = (1)(-4) = -4$$

(b)
$$\lim_{x\to 0} f(x) = (0+2)(0-3) = (2)(-3) = -6$$

(c)
$$\lim_{x\to 5} f(x) = (5+2)(5-3) = (7)(2) = 14$$

예제 3: 분수 함수의 극한

수리경제학

이재석

7 = 101 4171

극한의 성질과

국한의 성실고 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 함수 $y = f(x) = \frac{3x+5}{x+2}$ 의 극한을 구하시오:

- (a) $\lim_{x\to 0} f(x)$
- (b) $\lim_{x\to 5} f(x)$
- (c) $\lim_{x\to -1} f(x)$

예제 3: 분수 함수의 극한

수리경제학

이재석

그룹[이 서지

72-102

극한의 성질과 계산

극한 찾기

미분

함수에 따른

미분법

곱의 미문

합성함수의 미분: Chain Rule 함수 $y = f(x) = \frac{3x+5}{x+2}$ 의 극한을 구하시오:

(a)
$$\lim_{x\to 0} f(x) = \frac{3(0)+5}{0+2} = \frac{5}{2}$$

(b)
$$\lim_{x\to 5} f(x) = \frac{3(5)+5}{5+2} = \frac{20}{7}$$

(c)
$$\lim_{x\to -1} f(x) = \frac{3(-1)+5}{-1+2} = \frac{-3+5}{1} = 2$$

극한 형태에서 값 찾기

수리경제학

이재석

구한의 성질

극한의 성질과 계산

극한 찾기

...

함수에 따른

미분법

곱의 미분

- lim [€] = 1 (같은 상수의 나눗셈)
- lim [€]/_∞ = 0
 (큰 분모 → 값이 작아짐)
- $\lim \frac{c}{0+} = +\infty$ (작은 양수로 나누면 발산)
- $\lim_{\infty} \frac{0}{0} = 0$ (0이 아무리 큰 수로 나눠져도 0)
- lim % = +∞ (큰 수를 작은 수로 나누면 발산)

- lim ∞: <mark>불확정형</mark> (함수 전개 필요, 예: 다항식의 차수 비교)
- lim 응: <mark>불확정형</mark> (인수분해, 유리화, L'Hôpital 등 필요)
- ※ 불확정형은 직접 계산이나 정리가 필요합니다.

기본 극한 예시

수리경제학

이재석

극한

극한의 성실

극한의 성질³ 계산

극한 찾기

미분

함수에 따른

미분법

곱의 미분

$$\blacksquare \lim_{x \to \infty} \frac{5}{x} = 0$$

$$\blacksquare \lim_{x\to 0^+} \frac{1}{x} = \infty$$

$$\blacksquare \ \lim_{x\to\infty} \tfrac{x}{x^2} = 0$$

$$\blacksquare \ \lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 3} = 1$$

∞/∞ 형태

수리경제학

이재석

그런이 서그

724 62

극한의 성질과 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 형태: $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \frac{\infty}{\infty}$ 는 불확정형

전개 방법: 최고차항 비교, 인수 정리 또는 L'Hôpital 적용

예시:

$$\lim_{x\to\infty}\frac{3x^2+2x}{5x^2-x}=\frac{3}{5}$$

→ 최고차항으로 나누기

$$\lim_{x \to \infty} \frac{e^x}{x^3} = \infty$$

→ 지수가 다항보다 빠르게 성장

0/0 형태

수리경제학

이재석

극한

계산

극한 찾기

미분

함수에 따른

합성함수의

형태: $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{0}{0}$ 는 불확정형

해결 방법:

- 인수분해, 유리화, 공통 인자 소거
- 혹은 L'Hôpital Rule 적용

예시:

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = 4$$

$$\lim_{x \to 2} \frac{\sin x}{x} = 1$$

도함수는는 불확정형 0/0

수리경제학

이재석

극한 극한의 성질

극한의 성질과 계산

극한 찿기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

Definition (도함수)

실수(\mathbb{R})의 어떤 함수 f(x)가 정의되는 포인트 a 에서 n분가능(differentiable) 하고, 정의역이 포인트 a 를 포함한다면, a 에서 n분계수(순간변화율) <math>L 은

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{2}$$

도함수는 0/0의 불확정형태를 가지고 있음. 도함수의 정의를 의용해서 미분계수를 구할때는 인수분해, 유리화, 통 인자 소거 혹은 L'Hôpital Rule 을 적용하여야 함. 이처럼 극한은 미분의 근본을 구성하며, 극한의 성질을 이해하는것이 미분을 이해하는데 중요함. 다시한번 강조하지만, 미분가능성의 조건은 포인트 a 에서 올바른 극한값의 조건을 만족해야 함.

미분의 정의와 의미

수리경제학

이재석

극한 극한의 성질

극한의 성질과 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

Definition (도함수)

실수(\mathbb{R})의 어떤 함수 f(x)가 정의되는 포인트 a 에서 $n \not\in \mathcal{L}$ 이 하고, 정의역이 포인트 a 를 포함한다면, a 에서 $n \not\in \mathcal{L}$ 이 \mathcal{L} 은

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{3}$$

- 미분하다: 함수 f(x) 의 도함수에 x_0 를 대입하여, 미분계수 L의 값을 찾는다
- 어떤 함수 f(x)를 미분하다
 - = f(x) 의 미분계수를 구하다
 - $= f'(x \mid x = x_0) = f'(x)$ 를 구하다
 - = f(x) 의 도함수를 구하다 $= \frac{dy}{dx}$

미분의 기하학(Geometry)적 접근 y = x

수리경제한

이재석

극한 극한의 성질과

계산 극한 찾기

미분

함수에 따른

합성함수의

- 미분은 함수의 기울기를 나타내며, 기하학적으로는 접선의 기울기와 관련된
- 함수의 그래프에서 특정 점에서의 접선의 기울기를 구하는 것이 미분의 본질
- 미분계수는 함수의 순간 변화율을 나타내며, 이는 접선의 기울기와 동일함

미분의 접근법: 기하학(Geometry) $f(x) = x^2$

수리경제학

이재석

극한

727 82

계산

극한 찾기

미분

함수에 따른

곱의 미분

합성함수의 미분: Chain Rule ■ 미분=함수의 기울기=접선의 기울기 미분은 접선의 기울기 ¡=¿ 접선의 기울기는 미분 미분계수는 함수의 순간 변화율= 접선의 기울기

미분의 접근법: 기하학(Geometry) $f(x) = x^2$

수리경제학

이재석

국안

국인의 경절

계산

극한 찿기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule ■ 평균변화율: 구간 [*a*, *b*]에서 함수의 평균적 변화율 (delta y / delta x)

$$\frac{f(b)-f(a)}{b-a}$$

■ 순간변화율: 특정 지점 *x* = *a*에서의 변화율 (미분계수) (dy / dx)

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

함수에 따른 미분법: 공식

수리경제학

이재석

극한

국안의 성실

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule ■ Polynomial: $\frac{\mathbf{d}}{\mathbf{d}x}x^n = n \cdot x^{n-1}$

함수에 따른 미분법: Polynomial

수리경제학

이재석

국한의 성질

극한의 성² 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

Definition (도함수)

$$L = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

$$f(x) = ax$$
, 도함수: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
도함수에 대입. 예를 들어, $f(x+h) = a(x+h)$
 $\to f'(x) = \lim_{h \to 0} \frac{a(x+h) - ax}{h}$
 \lim 계산 $\to = \lim_{h \to 0} \frac{ax + ah - ax}{h} = \lim_{h \to 0} \frac{ah}{h} = \lim_{h \to 0} a = a$

함수에 따른 미분법: Polynomial

수리경제학

이재석

<u> </u> - 안

극한의 성실

극한의 성질

극한 찾기

-11-1

항수에 따른

미분법

곱의 미분

$$f(x) = ax^2$$
, 도함수: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
도함수에 대입 $\to f'(x) = \lim_{h \to 0} \frac{a(x+h)^2 - ax^2}{h}$
 $= \lim_{h \to 0} \frac{ax^2 + 2axh + ah^2 - ax^2}{h}$
 $= \lim_{h \to 0} \frac{2axh + ah^2}{h} = \lim_{h \to 0} 2ax + \lim_{h \to 0} ah = 2ax + a \cdot 0 = 2ax$
 $\therefore f'(x) = 2ax$
 $f'(x \mid x = 1) = 2a \cdot 1$, $f'(x \mid x = 2) = 4a$

함수에 따른 미분법: Polynomial

수리경제학

이재석

그인

극한의 성실

국인의 경 계사

극한 찾기

미브

함수에 따른 미분법

곱의 미분

$$f(x) = \frac{1}{x} = x^{-1}, \quad$$
도함수: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
도함수에 대입 $\to f'(x) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$
 $= \lim_{h \to 0} \frac{\frac{x - (x+h)}{x(x+h)}}{h} = \lim_{h \to 0} \frac{\frac{-h}{x(x+h)}}{h} = \lim_{h \to 0} \frac{-h}{hx(x+h)}$
 $= \lim_{h \to 0} \frac{-1}{x(x+h)} = \lim_{h \to 0} \frac{-1}{x^2 + hx} = \frac{-1}{x^2}$
 $\therefore f'(x) = -\frac{1}{x^2} = -1x^{-2}$
 $f'(x \mid x = 1) = -1, \quad f'(x \mid x = 2) = -\frac{1}{4}$

함수에 따른 미분법: Polynomial 예제

수리경제학

이재석

극한

국인의 성절

계산

극한 찿기

미분

함수에 따른 미분법

곱의 미문

$$f(x) = a \cdot x^3$$
$$f'(x)' =$$

$$g(x) = \cdot x^{(-4)}$$
$$\frac{\mathbf{d}}{\mathbf{d}x} f(x) =$$

$$f(x) = 2 \cdot x^{2} + x$$

$$= f'(x) =$$

$$f(x) = a \cdot x^{10} + b \cdot x^5 + c \cdot x^2 + d$$

$$f'(x) = f'(x) = f'(x$$

곱의 미분 요약

수리경제학

이재석

<u> </u> - 안

극한의 성실

국안의 성실 계산

극한 찾기

. _ _ .

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

곱의 미분법(= 나눗셈의 미분법)

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

곱의 미분

수리경제학

이재석

국안

701 82

극한의 성질³ 계산

극한 찾기

70 3/

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule 함수 f(x), g(x) 에 대해 h(x) = f(x)g(x) 라 하자

$$h'(x) = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

두 항의 차를 직접 다루기 어렵기 때문에, 더하고 빼기

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$
[f(x+h) - f(x)]

$$= \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} \cdot g(x+h) + f(x) \cdot \frac{g(x+h) - g(x)}{h} \right]$$

극한은 각각 따로 가능하므로:

$$= \left(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\right) \cdot \left(\lim_{h \to 0} g(x+h)\right) + f(x) \cdot \left(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h}\right)$$
$$= f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

곱의 미분: 함수의 형태에 따라.

수리경제학

이재석

극한

국인의 경찰

계산

극한 찾기

미正

함수에 따른 미분법

곱의 미분

$$f(x) = a \cdot x, \quad g(x) = c \cdot x^3$$

 $(f(x) \cdot g(x))' =$

$$f(x) = x^2, \quad g(x) = x^{-4}$$

 $\frac{\mathbf{d}}{\mathbf{d}x}(f(x) \cdot g(x)) =$

$$f(x) = x^2$$
, $g(x) = 2 \cdot x^2 + x$
 $(f(x) \cdot g(x))' =$

$$f(x) = x^{2} + x$$

$$g(x) = a \cdot x^{10} + b \cdot x^{5} + c \cdot x^{2} + d$$

$$(f(x) \cdot g(x))' =$$

합성함수의 미분: Chain Rule

수리경제학

이재석

극한

국만의 성실

극한의 성질과 계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

합성함수의 미분: Chain Rule

Chain Rule

$$(f\circ g)'=f'(g)\cdot g'$$

합성함수의 미분: Chain Rule

수리경제한

이재석

계산

극한 찾기

함수에 따른

합성함수
$$h(x) = f(g(x))$$
 에 대해 도함수를 정의로 구함 $h'(x) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$
$$= \lim_{h \to 0} \left[\frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \cdot \frac{g(x+h) - g(x)}{h} \right]$$
 앞부분은 마치 $\frac{\Delta f(g(x))}{\Delta g(x)}$ 인데 $\Delta \to 0$ 이면 미분의 정의 극한을 각각 분리하면:
$$= \left(\lim_{u \to g(x)} \frac{f(u) - f(g(x))}{u - g(x)} \right) \cdot \left(\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \right)$$

$$= f'(g(x)) \cdot g'(x)$$

$$\therefore \boxed{(f \circ g)'(x) = f'(g(x)) \cdot g'(x)}$$

합성함수의 미분: 함수의 형태에 따라.

수리경제학

이재석

극한

국만의 성실

계산

극한 찾기

미분

함수에 따른 미분법

곱의 미분

$$f(x) = a \cdot x$$
, $g(x) = c \cdot x^3$
 $(f \circ g)' =$

$$f(x) = x^2, \quad g(x) = x^{-4}$$

 $\frac{\mathbf{d}}{\mathbf{d}x}(f \circ g) =$

$$f(x) = x^2$$
, $g(x) = 2 \cdot x^2 + x$
 $(f \circ g)' =$

$$f(x) = x^2 + x$$

 $g(x) = a \cdot x^{10} + b \cdot x^5 + c \cdot x^2 + d$
 $(f \circ g)' =$

수리경제학

이재석

극한의 성질

극한

극한의 성질과 계산 극한 찾기

미분

함수에 따른 미분법

곱의 미분