高等数学 B--微积分 (一) 第三章・导数、微分、边际与弹性

■ 统计与数学学院 ■ 王官杰

2021年3月18日-

第一节 导数的概念

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第一节	导数的概念
1.1	导数的引例
1.2	导数的定义
1.3	导数的几何意义
1.4	函数可导性与连续性的关系
1.5	小结 思考

导数的概念

导数引例: 瞬时速度

- 例 1 物体作变速直线运动。经过的路程 s 是时刻 t 的函数。s=f(t). 求在 t_0 时刻物体的瞬时速度.
 - 从 t_0 到 t_0 + Δt 的平均速度为

$$\frac{\Delta s}{\Delta t} = \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

■ 在 to 时刻的瞬时速度为

$$\lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \lim_{\Delta t \to 0} \frac{f(t_0 + \Delta t) - f(t_0)}{\Delta t}$$

导数引例: 切线斜率

例 2 求曲线 y = f(x) 在点 $M(x_0, y_0)$ 处的切线斜率.

■ 设 N 点在 M 点附近,则割线 MN 的斜率为

$$\frac{\Delta y}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

■ 让 N 点往 M 点跑,则切线 MT 的斜率为

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

导数引例: 切线斜率

第一节	导数的概念
1.1	导数的引例
1.2	导数的定义
1.3	导数的几何意义
1.4	函数可导性与连续性的关系
1.5	小结 思考

导数的定义

导数的定义

定义 设 y = f(x) 在 x_0 的某邻域有定义. 若极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称此极限为 f(x) 在 x_0 处的导数(或微商). 记为 $f'(x_0)$,

$$y'|_{x=x_0}$$
, $\frac{dy}{dx}\Big|_{x=x_0}$, $y = \frac{d}{dx}f(x)\Big|_{x=x_0}$.

注记 导数 $f'(x_0)$ 反映了 f(x) 在点 x_0 处的变化快慢,因此 $f'(x_0)$ 又称为 f(x) 在 x_0 点的变化率.

导数的几种形式

■
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (\$\displant h = \Delta x)

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \ (\diamondsuit \ x = x_0 + h)$$

导数的定义

如果 f(x) 在 x_0 处有导数,则称函数 f(x) 在 x_0 点可导. 否则,称 f(x) 在 x_0 处不可导.

对于点 x_0 , 如果当 $\Delta x \to 0$ 时比值 $\frac{\Delta y}{\Delta x} \to \infty$, 此时函数 y = f(x) 在 x_0 处是不可导的, 但是为了方便, 也往往说函数 y = f(x) 在 x_0 点处的导数为无穷大, 并记作 $f'(x_0) = \infty$.

如果 f(x) 在区间 I 内每一点都可导,则称 f(x) 在区间 I 内可导.

导函数的定义

如果 f(x) 在区间 I 内可导,则每个 $x_0 \in I$ 都有一个导数值 $f'(x_0)$ 与之对应,从而得到一个函数 f'(x):

$$f': x_0 \longmapsto f'(x_0)$$

f'(x) 称为 f(x) 在 I 内的导函数(简称导数),记为 f'(x),或 g',或 $\frac{dy}{dx}$,或 $\frac{d}{dx}$ 化以. 此时有

$$f'(x_0) = f'(x)|_{x=x_0}$$

导函数的几种形式

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} \quad (定义)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \quad (\diamondsuit h = \Delta x)$$

在上式中虽然 x 可以取区间 I 内的任何数值, 但在取极限的过程中, x 是常量, Δx 是变量.

求导数的步骤

1 求增量
$$\Delta y = f(x + \Delta x) - f(x)$$
;

② 算比值
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$
;

3 求极限
$$y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$
.

例 3 求函数 f(x) = C(C) 为常数) 的导数.

解
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{C - C}{h} = 0.$$
 所以

$$(C)'=0.$$

第三章・导数、微分、边际与弹性

例 4 求幂函数 $f(x) = x^n$ 的导数.

解 由条件得

$$(x^{n})' = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h}$$

$$= \lim_{h \to 0} \left[nx^{n-1} + \frac{n(n-1)}{2!} x^{n-2} h + \dots + h^{n-1} \right]$$

$$= nx^{n-1}$$

即 $(x^n)' = nx^{n-1}$.

更一般地,对于任意给定的实数 μ ,

$$(x^{\mu})' = \mu x^{\mu - 1}.$$

⊳

例 5 求函数 $f(x) = \cos x$ 的导数.

解 由条件得

$$(\cos x)' = \lim_{\Delta x \to 0} \frac{\cos(x + \Delta x) - \cos(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{-2\sin\frac{2 + \Delta x}{2}\sin\frac{\Delta x}{2}}{\Delta x}$$

$$= -\lim_{\Delta x \to 0} \sin(x + \frac{\Delta x}{2})\frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}$$

$$= -\sin x$$

$$(\cos x)' = -\sin x$$
, $(\sin x)' = \cos x$.

第三章・导数、微分、边际与弹性

例 6 求函数 $f(x) = a^{x}(a > 0, a \neq 1)$ 的导数.

解 易知

$$(a^{x})' = \lim_{\Delta x \to 0} \frac{a^{x + \Delta x} - a^{x}}{\Delta}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{a^{\Delta x} - 1}{\Delta x}$$

$$= a^{x} \lim_{\Delta x \to 0} \frac{e^{\Delta x \ln a} - 1}{\Delta x}$$

$$= a^{x} \ln a$$

$$(a^{x})' = a^{x} \ln a, (e^{x})' = e^{x}.$$

例 7 求函数 $y = \log_a x(a > 0, a \neq 1)$ 的导数.

解 由条件知

$$(\log_{\alpha} x)' = \lim_{\Delta x \to 0} \frac{\log_{\alpha} (x + \Delta x) - \log_{\alpha} x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\log_{\alpha} (1 + \frac{\Delta x}{x})}{\frac{\Delta x}{x}} \cdot \frac{1}{x}$$

$$= \frac{1}{x} \lim_{\Delta x \to 0} \log_{\alpha} (1 + \frac{\Delta x}{x})^{\frac{x}{\Delta x}}$$

$$= \frac{1}{x} \log_{\alpha} e = \frac{1}{x \ln \alpha}$$

基本导数公式 |

利用导数的定义, 可以得到

(1)
$$(C)' = 0$$

(2) $(x^{\mu})' = \mu x^{\mu - 1}$
(3) $(\cos x)' = -\sin x$,
(4) $(\sin x)' = \cos x$

基本导数公式Ⅱ

利用导数的定义, 可以得到

(5)
$$(a^{x})' = a^{x} \cdot \ln a,$$
 $(e^{x})' = e^{x}$
(6) $(\log_{a} x)' = \frac{1}{x \cdot \ln a},$ $(\ln x)' = \frac{1}{x}.$

分段函数的导数

对于分段函数, 我们有(假定 g(x) 和 h(x) 总可导):

$$f(x) = \begin{cases} g(x), & x \le a \\ h(x), & x > a \end{cases} \Longrightarrow f'(x) = \begin{cases} g'(x), & x < a \\ h'(x), & x > a \end{cases}$$

注记 $f'(\alpha)$ 需要单独研究: 未必有 $f'(\alpha) = g'(\alpha)$.

左导数和右导数

定义 设 f(x) 在 $(x_0 - \delta, x_0]$ 上有定义,若左极限

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

存在,则称它为 f(x) 在 x_0 处的左导数,记为 $f'(x_0)$.

定义 设 f(x) 在 $[x_0,x_0+\delta)$ 上有定义,若右极限

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

存在,则称它为 f(x) 在 x_0 处的右导数,记为 $f'_{\perp}(x_0)$.

导数与左右导数

性质 导数存在 ⇔ 左导数和右导数都存在且相等.

导数:
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

左导数: $f'_-(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$
右导数: $f'_+(x_0) = \lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$

分段函数的导数

性质 假定 g(x) 和 h(x) 总可导,分段函数

$$f(x) = \begin{cases} g(x), & x \le a \\ h(x), & x > a \end{cases}.$$

如果 f(x) 在 x = a 点连续,则有

$$f'_{-}(a) = g'(a), \qquad f'_{+}(a) = h'(a).$$

Þ

分段函数的导数

例 9 判断函数
$$f(x) = \begin{cases} x^3, & x \le 1 \\ x^2, & x > 1 \end{cases}$$
 在点 $x = 1$ 处的连续性与可

第三章・导数、微分、边际与弹性

第一节	导数的概念
1.1	导数的引例
1.2	导数的定义
1.3	导数的几何意义
1.4	函数可导性与连续性的关系
1.5	小结 思考

导数的几何意义

导数的几何意义

函数 f(x) 在 x_0 处的导数 $f'(x_0)$,就是曲线 y = f(x) 在点 (x_0, y_0) 处的切线斜率.

从而点 (x_0, y_0) 处的切线方程为

$$y - y_0 = f'(x_0)(x - x_0)$$

法线方程为

$$y-y_0 = -\frac{1}{f'(x_0)}(x-x_0)$$

导数的几何意义

例 11 求 $f(x) = x^2$ 在点 (1,1) 处的切线方程和法线方程.

练习 求
$$f(x) = \frac{1}{x}$$
 在点 $\left(2, \frac{1}{2}\right)$ 处的切线方程和法线方程.

答案 切线方程为 x + 4y - 4 = 0.

法线方程为 8x - 2y - 15 = 0.

第一节	导数的概念
1.1	导数的引例
1.2	导数的定义
1.3	导数的几何意义
1.4	函数可导性与连续性的关系
1.5	小结 思考

函数可导性与连续性的关系

可导与连续的关系

定理 f(x) 在 x_0 点可导, 则 f(x) 在 x_0 点连续.

证明 设函数 f(x) 在点 x_0 可导,则有 $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$ 存在,故

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(\frac{\Delta y}{\Delta x} \cdot \Delta x \right)$$
$$= \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \lim_{\Delta x \to 0} \Delta x = 0.$$

即 $\lim_{\Delta x_0 \to 0} f(x + \Delta x) = f(x_0)$. 所以函数 f(x) 在点 x_0 连续.

注意: f(x) 在 x_0 点连续 $\implies f(x)$ 在 x_0 点可导.

可导与连续的关系

例 12 f(x) = |x| 在 x = 0 处连续但不可导.

推论 f(x) 在 x_0 点不连续 \Longrightarrow f(x) 在 x_0 点不可导.

例 13 判断 $f(x) = \begin{cases} x^3, & x \le -1 \\ x^2, & x > -1 \end{cases}$, 在点 x = -1 处的连续性与可导性.

无穷导数

设函数 f(x) 在点 x_0 连续,但

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \infty$$

称函数 f(x) 在点 x_0 有无穷导数 (不可导).

例如, f(x) = ³√x

$$f(x) = \sqrt[3]{x-1}$$

在 x = 1 处不可导.

连续但左右导数不存在

函数 f(x) 在连续点的左右导数都不存在 (指摆动不定),则 x_0 点不可导.

例如, $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 x = 0 处不可导.

可导与连续的关系

若 $f'(x_0) = \infty$, 且在点 x_0 的两个单侧导数符号相反,则称点 x_0 为函数 f(x) 的尖点 (不可导点).

第一节	导数的概念
1.1	导数的引例
1.2	导数的定义
1.3	导数的几何意义
1.4	函数可导性与连续性的关系
1.5	小结 思考

小结 思考

小结

- 1 导数的实质: 增量比的极限, 即瞬时变化率;
- $f'(x_0) = a \Leftrightarrow f'_{-}(x_0) = f'_{+}(x_0) = a$
- 3 导数的几何意义: 切线的斜率;
- 4 可导的函数一定连续,但连续的函数不一定可导;
- 5 求导数最基本的方法:由定义求导数.

6 判断可导性 { 不连续,一定不可导. 直接用定义; 连续 { 看左右导数是否存在且相等

思考题

思考 函数 f(x) 在某点 x_0 处的导数 $f'(x_0)$ 与导函数 f'(x) 有什么区别与联系?

解 由导数的定义知, $f'(x_0)$ 是一个具体的数值,f'(x)是由于 f(x)在某区间 I 上每一点都可导而定义在 I 上的一个新函数,即 $\forall x \in I$,有唯一值 f'(x) 与之对应,所以两者的区别是:一个是数值,另一个是函数。两者的联系是:在某点 x_0 处的导数 $f'(x_0)$ 即是导函数 f'(x) 在 x_0 处的函数值。

第一节 导数的概念

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第二节	求导法则和基本初等函数求导公式
2.1	函数的和、差、积、商的求导法则
2.2	反函数的导数
2.3	复合函数的导数
2.4	基本求导法则与求导公式
2.5	小结 思考

定理 如果函数 u(x), v(x) 在点 x 处可导, 则它们的和、差、积、商 (除分母不为零外) 在点 x 处也可导, 并且

- 1 $[u(x) \pm v(x)]' = u'(x) \pm v'(x)$.
- $[u(x) \cdot v(x)]' = u'(x)v(x) + u(x)v'(x).$

$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)}, \ (v(x) \neq 0).$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和。

39/188

证明 设
$$f(x) = \frac{u(x)}{v(x)}$$
. $(v(x) \neq 0)$, 则
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h}$$

$$= \lim_{h \to 0} \frac{u(x+h)v(x) - u(x)v(x+h)}{v(x+h)v(x)h}$$

$$= \lim_{h \to 0} \frac{[u(x+h) - u(x)]v(x) - u(x)[v(x+h) - v(x)]}{v(x+h)v(x)h}$$

$$= \lim_{h \to 0} \frac{\frac{u(x+h) - u(x)}{v(x+h)v(x)}}{v(x+h)v(x)}$$

$$= \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}$$

所以 f(x) 在 x 处可导.

三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和

推论

2 [Cf(x)]' = Cf'(x), C 为常数.

3

$$\left[\prod_{i=1}^{n} f_i(x)\right]' = f'_1(x)f_2(x)\cdots f_n(x)$$

$$+\cdots + f_1(x)f_2(x)\cdots f'_n(x)$$

$$= \sum_{i=1}^{n} \prod_{k=1}^{n} f'_i(x)f_k(x)$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和

例 1 求
$$y = x^3 - 2x^2 + \sin x$$
 的导数.

$$\mathbf{H} \quad y' = 3x^2 - 4x + \cos x$$

例 2 求 $y = \sin 2x \cdot \ln x$ 的导数.

<u>第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的</u>和

差、积、商的求导法则 42/188

例 3 求 $y = \tan x$ 的导数.

由条件可得

$$y' = (\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x}$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x$$

即 $(\tan x)' = \sec^2 x$.

同理可得 $(\cot x)' = -\csc^2 x$.

差、积、商的求导法则

例 4 求 $y = \sec x$ 的导数.

解 由条件知

$$y' = (\sec x)' = \left(\frac{1}{\cos x}\right)'$$
$$= \frac{-(\cos x)'}{\cos^2 x} = \frac{\sin x}{\cos^2 x} = \sec x \tan x$$

同理可得 $(\csc x)' = -\csc x \cot x$.

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和・

例 5 求 $y = \sinh x$ 的导数.

解 由条件

$$y' = (\sinh x)' = \left[\frac{1}{2}(e^x - e^{-x})\right]' = \frac{1}{2}(e^x + e^{-x}) = \cosh x$$

同理可得
$$(\cosh x)' = \sinh x$$
, $(\tanh x)' = \frac{1}{\cosh^2 x}$.

第三草・导数、微分、边际与弾性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和。

例6 设
$$f(x) = \begin{cases} x, & x < 0 \\ \ln(1+x), & x \ge 0 \end{cases}$$
,求 $f'(x)$

解 当x < 0时,

$$f'(x)=1,$$

当x>0时

$$f'(x) = \lim_{h \to 0} \frac{\ln(1+x+h) - \ln(1+x)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{h}{1+x}\right)$$
$$= \frac{1}{1+x}.$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和

当 x = 0 时,

$$f'_{-}(0) = \lim_{h \to 0^{-}} \frac{(0+h) - \ln(1+0)}{h} = 1,$$

$$f'_{+}(0) = \lim_{h \to 0^{+}} \frac{\ln[1 + (0+h)] - \ln(1+0)}{h} = 1,$$

所以 f'(0) = 1. 综上, 我们有

$$f'(x) = \begin{cases} 1, & x \le 0; \\ \frac{1}{1+x}, & x > 0. \end{cases}$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和

练习 求下列函数的导数.

(1)
$$f(x) = x^5 - 4x^4 + x^2 + 3x + e$$

(2)
$$f(x) = (x+2)(3x^3+2x)$$

答案 (1)
$$f'(x) = 5x^4 - 16x^3 + 2x + 3$$
;

(2)
$$f'(x) = 12x^3 + 18x^2 + 4x + 4$$
.

基本导数公式 Ⅲ

利用商的导数运算公式,可以得到:

(7)
$$(\tan x)' = \sec^2 x$$
(8)
$$(\cot x)' = -\csc^2 x$$
(9)
$$(\sec x)' = \sec x \cdot \tan x$$
(10)
$$(\csc x)' = -\csc x \cdot \cot x$$
其中,
$$\sec x = \frac{1}{\cos x}, \csc x = \frac{1}{\sin x}.$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 函数的和

第二节	求导法则和基本初等函数求导公式
2.1	函数的和、差、积、商的求导法则
2.2	反函数的导数
2.3	复合函数的导数
2.4	基本求导法则与求导公式
2.5	小结 思考

反函数的导数

定理 如果函数 $x = \varphi(y)$ 在某区间 I_y 内单调、可导且 $\varphi'(y) \neq 0$. 则它的反函数 y = f(x) 在对应区间 I_x 内也可导,且有

$$f'(x) = \frac{1}{\varphi'(y)}$$

注记 上式也可以写成
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$
.

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 反函数的导

反函数的导数

证明 任取 $x \in I_x$, 给 x 以增量 $\Delta x (\Delta x \neq 0, x + \Delta x \in I_x)$. 由 y = f(x) 的单调性可知 $\Delta y \neq 0$, 于是有

$$\frac{\Delta y}{\Delta x} = \frac{1}{\frac{\Delta x}{\Delta y}},$$

由 f(x) 连续, 得 $\Delta y \rightarrow 0$ ($\Delta x \rightarrow 0$), 又知 $\varphi'(y) \neq 0$, 故

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta y}{\Delta x}} = \frac{1}{\varphi'(y)}$$

即

$$f'(x) = \frac{1}{\varphi'(y)}.$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 反函数的导

基本导数公式 V

$$(11) \qquad (\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

$$(12) \qquad (\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

(13)
$$(\arctan x)' = \frac{1}{1+x^2}$$
(14)
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

(14)
$$(\operatorname{arccot} x)' = -\frac{1}{1+x^2}$$

反函数的异

第二节	求导法则和基本初等函数求导公式
2.1	函数的和、差、积、商的求导法则
2.2	反函数的导数
2.3	复合函数的导数
2.4	基本求导法则与求导公式
2.5	小结 思考

例 7
$$[f(g(x))]' \stackrel{\times}{=} f'[g(x)]$$
 一般不成立.比如 $(\sin 2x)' \neq \cos 2x$.

实际上, 我们有

$$(\sin 2x)' = (2\sin x \cos x)' = 2(\sin x \cos x)'$$

$$= 2[(\sin x)' \cdot \cos x + \sin x \cdot (\cos x)']$$

$$= 2[\cos x \cdot \cos x + \sin x \cdot (-\sin x)]$$

$$= 2[\cos^2 x - \sin^2 x]$$

$$= 2\cos 2x$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 复合函数的

定理 1 设 y = f(u), u = g(x), 则它们的复合函数 y = f[g(x)]的导数公式为:

$$y_x' = y_u' \cdot u_x'$$

或者

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x}.$$

或者

$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 复合函数的

证明 由
$$y = f(u)$$
 在点 u_0 可导,得 $\lim_{\Delta u \to 0} \frac{\Delta y}{\Delta u} = f'(u_0)$. 故
$$\frac{\Delta y}{\Delta u} = f'(u_0) + \alpha \quad \left(\lim_{\Delta u \to 0} \alpha = 0\right)$$

所以 $\Delta y = f'(u_0)\Delta u + \alpha \Delta u$. 因此

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \left[f'(u_0) \frac{\Delta u}{\Delta x} + \alpha \frac{\Delta u}{\Delta x} \right]$$

$$= f'(u_0) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \lim_{\Delta x \to 0} \alpha \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}$$

$$= f'(u_0) \varphi'(x_0)$$

<u>第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 复合函数的</u>

例8 求复合函数的导数:

(1)
$$y = (1 + 2x)^6$$

(2)
$$y = e^{3x^2+1}$$

(3)
$$y = \ln(\sin x)$$

(4)
$$y = \sqrt{x^2 + 1}$$

练习1 求复合函数的导数:

(1)
$$y = e^{2x^2 - 6x}$$

(2)
$$y = \sqrt{2x^2 - 4x + 1}$$

$$(3) \quad y = \frac{\sin 3x}{x^2}$$

三重复合函数的导数

注记1 设 y = f(u), u = g(v), v = h(x). 则复合函数 y = f(g(h(x))) 的导数公式为:

$$y_x' = y_u' \cdot u_v' \cdot v_x'$$

或者

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}v} \cdot \frac{\mathrm{d}v}{\mathrm{d}x}.$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 复合函数的

三重复合函数的导数

例 9 求三重复合函数的导数:

(1)
$$y = e^{\sqrt{-2x+1}}$$

(2)
$$y = \ln(\cos(3x + 1))$$

第三章・导数、微分、边际与弹性

导数

三重复合函数的导数

练习2 求三重复合函数的导数:

(1)
$$y = e^{\sqrt{x^2-1}}$$

(2)
$$y = \tan^2(3x^2 + 1)$$

第三章・导数、微分、边际与弹性

导数

第二节	求导法则和基本初等函数求导公式
2.1	函数的和、差、积、商的求导法则
2.2	反函数的导数
2.3	复合函数的导数
2.4	基本求导法则与求导公式
2.5	小结 思考

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 基本求导法

常数和基本初等函数的导数公式

$$(C)' = 0 (x^{\mu})' = \mu x^{\mu - 1}$$

$$(\sin x)' = \cos x (\cos x)' = -\sin x$$

$$(\tan x)' = \sec^2 x (\cot x)' = -\csc^2 x$$

$$(\sec x)' = \sec x \tan x (\csc x)' = -\csc x \cot x$$

$$(a^x)' = a^x \ln a (e^x)' = e^x$$

$$(\log_a x)' = \frac{1}{x \ln a} (\ln x)' = \frac{1}{x}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} (\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

$$(\operatorname{arccos} x)' = \frac{1}{1 + x^2} (\operatorname{arccot} x)' = -\frac{1}{1 + x^2}$$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 基本求导法

设
$$u = u(x), v = v(x)$$
 可导,则
$$(1) (u \pm v)' = u' \pm v'$$

$$(2) (Cu)' = Cu' (C是常数)$$

$$(3) (uv)' = u'v + uv'$$

$$(4) \left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} (v \neq 0)$$

<u>第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 基本求导法</u>

反函数的求导法则

设函数 x = f(y) 在某区间 I_y 内单调、可导且 $f'(y) \neq 0$,那么它的 反函数 $y = f^{-1}(x)$ 在对应区间 $I_x = f(I_y)$ 内也可导,且有 $f'(x) = \frac{1}{\varphi'(y)}.$

第三章・导数、微分、边际与弹性 ▷ 求导法则和基本初等函数求导公式 ▷ 基本求导法

复合函数的求导法则

设 y = f(u), 而 $u = \varphi(x)$ 则复合函数 $y = f[\varphi(x)]$ 的导数为

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

或

$$y'(x) = f'(u) \cdot \varphi'(x).$$

- 1. 利用上述公式及法则, 初等函数求导问题可完全解决.
- 2. 注意: 初等函数的导数仍为初等函数.

第二节	求导法则和基本初等函数求导公式
2.1	函数的和、差、积、商的求导法则
2.2	反函数的导数
2.3	复合函数的导数
2.4	基本求导法则与求导公式
2.5	小结 思考

求导法则和基本初等函数求导公式

小结

注意:

- $1 [u(x) \cdot v(x)]' \neq u'(x) \cdot v'(x);$
- 3 分段函数求导时,分界点导数用左右导数求;
- 4 反函数的求导法则 (注意成立条件);
- 5 复合函数的求导法则(注意函数的复合过程,合理分解正确使用链导法).

已能求导的函数:可分解成基本初等函数,或常数与基本初等函数的和、差、积、商.

思考题

选择 若 f(u) 在 u_0 不可导, u = g(x) 在 x_0 可导, 且 $u_0 =$ $g(x_0)$, 则 f[g(x)] 在 x_0 处((1) 必可导 (2) 必不可导 (3) 不一定可导

思考题

解 正确地选择是(3)

- (1) 反例: f(u) = |u| 在 u = 0 处不可导, 取 $u = g(x) = \sin x$ 在 x = 0 处可导, $f[g(x)] = |\sin x|$ 在 x = 0 处不可导.
- (2) 反例: 取 $u = g(x) = x^4$ 在 x = 0 处可导, $f[g(x)] = |x^4| = x^4$ 在 x = 0 处可导, (2)×

思考题

思考 求曲线 $y = 2x - x^3$ 上与 x 轴平行的切线方程.

解 易知 $y' = 2 - 3x^2$, 令 y' = 0 得

$$x_1 = \sqrt{\frac{2}{3}}, \ x_2 = -sqrt\frac{2}{3}$$

故切点为

$$(\sqrt{\frac{2}{3}}, \frac{4\sqrt{6}}{9}), (-\sqrt{\frac{2}{3}}, -\frac{4\sqrt{6}}{9})$$

所求切线方程为 $y = \frac{4\sqrt{6}}{9}$ 和 $y = -\frac{4\sqrt{6}}{9}$

第一节 导数的概念

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第三节	高阶导数
3.1	高阶导数的定义
3.2	高阶导数的求法
3.3	小结 思考

 \triangleright

高阶导数的定义

高阶导数的定义

问题 (变速直线运动的加速度.) 设 s = f(t), 则瞬时速度为 v(t) = f'(t). 因为加速度 α 是速度 ν 对时间 t 的变化率, 因 此

$$a(t) = v'(t) = [f'(t)]'$$

定义 如果函数 f(x) 的导数 f'(x) 在点 x 处可导, 即

$$(f'(x))' = \lim_{\Delta x \to 0} \frac{f'(x + \Delta x) - f'(x)}{\Delta x}$$

存在,则称 (f'(x))' 为函数 f(x) 在点 x 处的二阶导数,记作

$$f''(x),y'',\frac{d^2y}{dx^2} \stackrel{d}{\otimes} \frac{d^2f(x)}{dx^2}.$$

高阶导数的定义

类似地,我们可以定义:

- 二阶导数的导数称为三阶导数, f'''(x), y''', $\frac{d^3y}{dx^3}$.
- 三阶导数的导数称为四阶导数, $f^{(4)}(x), y^{(4)}, \frac{d^4y}{dx^4}$.
- 一般地, 函数 f(x) 的 n-1 阶导数的导数称为函数 f(x) 的 n 阶导数. 记作

$$f^{(n)}(x), y^{(n)}, \frac{d^n y}{dx^n} \stackrel{\text{def}}{=} \frac{d^n f(x)}{dx^n}$$

二阶和二阶以上的导数统称为高阶导数. 相应地, f(x) 称为零阶导数; f'(x) 称为一阶导数.

⊳

第三节	高阶导数
3.1	高阶导数的定义
3.2	高阶导数的求法
3.3	小结 思考

高阶导数

 \triangleright

高阶导数的求法

高阶导数的求法主要有

- 1 直接法:由高阶导数的定义逐步求高阶导数.
- 2 间接法:利用已知的高阶导数公式,通过四则运算,变量代换等方法,求出 *n* 阶导数.

例 1 设 $y = \arctan x$, 求 f''(0), f'''(0).

解 易知

$$y' = \frac{1}{1+x^2}, \ y'' = \left(\frac{1}{1+x^2}\right)' = \frac{-2x}{\left(1+x^2\right)^2},$$
$$y'' = \left(\frac{-2x}{\left(1+x^2\right)^2}\right)' = \frac{2\left(3x^2-1\right)}{\left(1+x^2\right)^3}.$$

因此

$$f''(0) = \frac{-2x}{(1+x^2)^2} \bigg|_{x=0} = 0; f'''(0) = \frac{2(3x^2-1)}{(1+x^2)^3} \bigg|_{x=0} = -2.$$

例 2 设
$$y = x^{\alpha} (\alpha \in R)$$
, 求 $y^{(n)}$.

$$y'' = \alpha x^{\alpha - 1}$$

$$y'' = (\alpha x^{\alpha - 1})' = \alpha(\alpha - 1)x^{\alpha - 2}$$

$$y''' = (\alpha(\alpha - 1)x^{\alpha - 2})' = \alpha(\alpha - 1)(\alpha - 2)x^{\alpha - 3}$$

$$\dots$$

$$y^{(n)} = \alpha(\alpha - 1) \dots (\alpha - n + 1)x^{\alpha - n} \quad (n \ge 1)$$

若 α 为自然数 n, 则

$$y^{(n)} = (x^n)^{(n)} = n!, \quad y^{(n+1)} = (n!)' = 0$$

求 n 阶导数时, 求出 1-3 或 4 阶后, 不要急于合并, 分析结果的规律性, 写出 n 阶导数.(可用数学归纳法证明)

例 3 设
$$y = \ln(1+x)$$
, 求 $y^{(n)}$.

$$\begin{aligned}
\mathbf{m} & y' = \frac{1}{1+x}, \quad y'' = -\frac{1}{(1+x)^2} \\
y''' &= \frac{2!}{(1+x)^3}, \quad y^{(4)} = -\frac{3!}{(1+x)^4} \\
&\cdots \\
y^{(n)} &= (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}, \quad (n \ge 1, 0! = 1)
\end{aligned}$$

例 4 设
$$y = \sin x$$
, 求 $y^{(n)}$.

解
$$y' = \cos x = \sin(x + \frac{\pi}{2}),$$

 $y'' = \cos(x + \frac{\pi}{2}) = \sin(x + \frac{\pi}{2} + \frac{\pi}{2}) = \sin(x + 2 \cdot \frac{\pi}{2}),$
 $y''' = \cos(x + 2 \cdot \frac{\pi}{2}) = \sin(x + 3 \cdot \frac{\pi}{2}),$
......
 $(\sin x)^{(n)} = \sin(x + n \cdot \frac{\pi}{2}).$
同理可得 $(\cos x)^{(n)} = \cos(x + n \cdot \frac{\pi}{2})$

例 5 设
$$y = e^{ax} \sin bx (a, b)$$
 为常数), 求 $y^{(n)}$.

解 由条件知

$$y' = ae^{ax} \sin bx + be^{ax} \cos bx$$

$$= e^{ax} (a \sin bx + b \cos bx)$$

$$= a^{ax} \cdot \sqrt{a^2 + b^2} \sin(bx + \varphi) \left(\varphi = \arctan \frac{b}{a} \right)$$

$$y'' = \sqrt{a^2 + b^2} \cdot \left[ae^{ax} \sin(bx + \varphi) + be^{ax} \cos(bx + \varphi) \right]$$

$$= \sqrt{a^2 + b^2} \cdot e^{ax} \cdot \sqrt{a^2 + b^2} \sin(bx + 2\varphi)$$

$$y^{(n)} = (a^2 + b^2)^{\frac{n}{2}} \cdot e^{ax} \sin(bx + n\varphi) \quad \left(\varphi = \arctan \frac{b}{a} \right)$$

高阶导数的运算法则

设函数 u 和 v 具有 n 阶导数,则

1
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)};$$

$$(Cu)^{(n)} = Cu^{(n)}$$

3
$$(u \cdot v)^{(n)} = u^{(n)}v + nu^{(n-1)}v' + \frac{n(n-1)}{2!}u^{(n-2)}v''$$

 $+ \frac{n(n-1)\cdots(n-k+1)}{k!}u^{(n-k)}v^{(k)}$
 $+ \cdots + uv^{(n)}$
 $= \sum_{l=0}^{n} C_{n}^{k}u^{(n-k)}v^{(k)}$ 莱布尼茨公式

⊳

莱布尼茨公式

例 6 设
$$y = x^2 e^{2x}$$
, 求 $y^{(20)}$.

解 设
$$u = e^{2x}$$
, $v = x^2$, 则由莱布尼兹公式知
$$y^{(20)} = (e^{2x})^{(20)} \cdot x^2 + 20(e^{2x})^{(19)} \cdot (x^2)'$$

$$+ \frac{20(20-1)}{2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0$$

$$= 2^{20}e^{2x} \cdot x^2 + 20 \cdot 2^{19}e^{2x} \cdot 2x$$

$$+ \frac{20 \cdot 19}{2!} 2^{18}e^{2x} \cdot 2$$

$$= 2^{20}e^{2x}(x^2 + 20x + 95)$$

⊳

常用高阶导数公式

(1)
$$(a^x)^{(n)} = a^x \cdot \ln^n a(a > 0)$$
 $(e^x)^{(n)} = e^x$

(2)
$$(\sin kx)^{(n)} = k^n \sin\left(kx + n \cdot \frac{\pi}{2}\right)$$

(3)
$$(\cos kx)^{(n)} = k^n \cos \left(kx + n \cdot \frac{\pi}{2}\right)$$

(4)
$$(x^{\alpha})^{(n)} = \alpha(\alpha - 1) \cdots (\alpha - n + 1) x^{\alpha - n}$$

(5)
$$(\ln x)^{(n)} = (-1)^{n-1} \frac{(n-1)!}{x^n} \quad \left(\frac{1}{x}\right)^{(n)} = (-1)^n \frac{n!}{x^{n+1}}$$

间接法

例7 设
$$y = \frac{1}{x^2-1}$$
, 求 $y^{(5)}$.

解

由

$$y = \frac{1}{x^2 - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$$

得

$$y^{(5)} = \frac{1}{2} \left[\frac{-5!}{(x-1)^6} - \frac{-5!}{(x+1)^6} \right]$$
$$= 60 \left[\frac{1}{(x+1)^6} - \frac{1}{(x-1)^6} \right]$$

间接法

例8 设
$$y = \sin^6 x + \cos^6 x$$
, 求 $y^{(n)}$.

解 由条件可得

$$y = (\sin^2 x)^3 + (\cos^2 x)^3$$

$$= (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x)$$

$$= (\sin^2 x + \cos^2 x)^2 - 3\sin^2 x \cos^2 x$$

$$= 1 - \frac{3}{4}\sin^2 2x = 1 - \frac{3}{4} \cdot \frac{1 - \cos 4x}{2}$$

$$= \frac{5}{8} + \frac{3}{8}\cos 4x$$

于是
$$y^{(n)} = \frac{3}{8} \cdot 4^n \cdot \cos\left(4x + n \cdot \frac{\pi}{2}\right)$$
.

第三节	高阶导数
3.1	高阶导数的定义
3.2	高阶导数的求法
3.3	小结 思考

 \triangleright

小结 思考

小结

- 高阶导数的定义及物理意义
- 高阶导数的运算法则 (莱布尼兹公式);
- 高阶导数的求法
 - 直接法
 - 间接法

思考题

思考 设 g'(x) 连续,且 $f(x) = (x-a)^2 g(x)$,求 f''(a).

解 由 g(x) 可导,可得

$$f'(x) = 2(x - a)g(x) + (x - a)^2 g'(x).$$

又 g''(x) 不一定存在, 故 f''(a) 需用定义求.

$$f''(a) = \lim_{x \to a} \frac{f'(x) - f'(a)}{x - a}$$
$$= \lim_{x \to a} \frac{f'(x)}{x - a} = \lim_{x \to a} [2g(x) + (x - a)g'(x)] = 2g(a)$$

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第六节 边际与弹性

第四节	隐函数及由参数方程所确定的函数的导数
4.1	隐函数的导数
4.2	由参数方程所确定的函数的导数
4.3	小结 思考

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

显函数与隐函数

- 显函数: 由 y = f(x) 直接确定的函数关系.
- 隐函数: 由 F(x,y) = 0 所确定的函数 y = y(x) 称为隐函数.

$$F(x,y) = 0 \Rightarrow y = f(x)$$
 隐函数的显化

问题 隐函数不易显化或不能显化如何求导?

解法 将 y 看成 x 的函数,方程两边同时对 x 求导.

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

隐函数求导

例 1 求由方程 $xy - e^x + e^y = 0$ 所确定的隐函数 y 的导数 $\frac{dy}{dx}, \frac{dy}{dx}\Big|_{x=0}$

解 方程两边对 x 求导,

$$y + x \frac{\mathrm{d}y}{\mathrm{d}x} - e^x + e^y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

解得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{e}^x - y}{x + \mathrm{e}^y},$$

故

$$\frac{dy}{dx}\Big|_{x=0} = \frac{e^x - y}{x + e^y}\Big|_{y=0} = 1.$$

第三章·导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

例 2 设曲线 C 的方程为 $x^3 + y^3 = 3xy$, 求过 C 上点 $\left(\frac{3}{2}, \frac{3}{2}\right)$ 的 切线方程, 并证明曲线 C 在该点的法线通过原点.

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

隐函数求导

\mathbf{m} 方程两边对 \mathbf{x} 求导得

$$3x^2 + 3y^2y' = 3y + 3xy'$$

故

$$y'|_{\left(\frac{3}{2},\frac{3}{2}\right)} = \frac{y-x^2}{y^2-x}\Big|_{\left(\frac{3}{2},\frac{3}{2}\right)} = -1$$

所求切线方程为

$$y - \frac{3}{2} = -\left(x - \frac{3}{2}\right),$$

即 x+y-3=0. 法线方程为 $y-\frac{3}{2}=x-\frac{3}{2}$. 即 y=x,显然通过原点.

章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

例 3 设 $x^4 - xy + y^4 = 1$, 求 y'' 在点 (0,1) 处的值.

解 方程两边对 x 求导得

$$4x^3 - y - xy' + 4y^3y' = 0 (1)$$

代入 x = 0, y = 1 得 $y'|_{(0,1)} = \frac{1}{4}$. 将方程 (1) 两边再对 x 求导得

$$12x^2 - 2y' - xy'' + 12y^2(y')^2 + 4y^3y'' = 0$$

代入
$$x = 0, y = 1, y'|_{(0,1)} = \frac{1}{4}$$
 得

$$y''|_{(0,1)} = -\frac{1}{16}.$$

<u>第三章·导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函</u>

隐函数求导

练习1 求由方程确定的隐函数的导数 y_x' :

(1)
$$e^y + e^x - 3x + 4y^2 = 0$$
;

(2)
$$x^3y + 2x^2y^2 + 4 = 0$$
.

第三章・导数、微分、边际与弹性

对数求导法*

对于多个函数相乘除或者幂指数函数 $(u(x))^{v(x)}$ 的情形,可以 先在方程两边取对数,然后利用隐函数的求导方法求出导数.

例 4 设
$$y = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x}$$
, 求 y'

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

数的导数 100/188

对数求导法

解 等式两边取对数得

$$\ln y = \ln(x+1) + \frac{1}{3}\ln(x-1) - 2\ln(x+4) - x$$

上式两边对 x 求导得

$$\frac{y'}{y} = \frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1,$$

因此

$$y' = \frac{(x+1)\sqrt[3]{x-1}}{(x+4)^2 e^x} \left[\frac{1}{x+1} + \frac{1}{3(x-1)} - \frac{2}{x+4} - 1 \right].$$

<u>第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函</u>

数的导数

对数求导法

例 5 设 $y = x^{\sin x}(x > 0)$, 求 y'.

解 从而等式两边取对数得 $\ln y = \sin x \cdot \ln x$. 上式两边对 x 求导得

$$\frac{1}{y}y' = \cos x \cdot \ln x + \sin x \cdot \frac{1}{x}$$

从而

$$y' = y \left(\cos x \cdot \ln x + \sin x \cdot \frac{1}{x} \right)$$
$$= x^{\sin x} \left(\cos x \cdot \ln x + \frac{\sin x}{x} \right)$$

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

对数求导法

一般地, 对于函数
$$f(x) = u(x)^{v(x)}$$
 ($u(x) > 0$), 因为 $\ln f(x) = v(x) \cdot \ln u(x)$.

并且

$$\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} \cdot \frac{d}{dx} f(x)$$

所以

$$f'(x) = f(x) \cdot \frac{d}{dx} \ln f(x)$$

从而

$$f'(x) = u(x)^{v(x)} \left[v'(x) \cdot \ln u(x) + \frac{v(x)u'(x)}{u(x)} \right].$$

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 隐函

第四节	隐函数及由参数方程所确定的函数的导数
4.1	隐函数的导数
4.2	由参数方程所确定的函数的导数
4.3	小结 思考

若参数方程 $\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$ 确定 y = x 间的函数关系,称此为由参数方程所确定的函数.

例 6 参数方程
$$\begin{cases} x = 2t, \\ y = t^2, \end{cases}$$
 消去参数 t 可得
$$y = t^2 = \left(\frac{x}{2}\right)^2 = \frac{x^2}{4}.$$

第三章・导数、微分、边际与弹性 👂 隐函数及由参数方程所确定的函数的导数 👂 由参

显然, $y' = \frac{1}{2}x$

问题 消参困难或无法消参如何求导?

在方程
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
 设函数 $x = \varphi(t)$ 具有单调连续的反函数 $t = \varphi^{-1}(x)$. 则

$$y=\psi\left[\varphi^{-1}(x)\right]$$

再设函数 $x = \varphi(t), y = \psi(t)$ 都可导, 且 $\varphi(t) \neq 0$, 由复合函数及 反函数的求导法则得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{1}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\psi'(t)}{\varphi'(t)}$$

即
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

<u>等三章・导数、微分、边际与弹性</u> ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 由参

若函数
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} = \text{所可导, 则}$$

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \cdot \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{\psi'(t)}{\varphi'(t)}\right) \frac{dt}{dx}$$

$$= \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\varphi'^2(t)} \cdot \frac{1}{\varphi'(t)}$$

即

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\psi''(t)\varphi'(t) - \psi'(t)\varphi''(t)}{\left[\varphi'(t)\right]^3}$$

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 由参

例 7 求摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 在 $t = \frac{\pi}{2}$ 处的切线方程.

解 由条件可得

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{a\sin t}{a - a\cos t} = \frac{\sin t}{1 - \cos t},$$

于是

$$\frac{dy}{dx}\Big|_{t=\frac{\pi}{2}} = \frac{\sin\frac{\pi}{2}}{1-\cos\frac{\pi}{2}} = 1.$$

当
$$t = \frac{\pi}{2}$$
 时, $x = a(\frac{\pi}{2} - 1)$, $y = a$, 故所求切线方程为

$$y - a = x - a\left(\frac{\pi}{2} - 1\right)$$
, $\mathbb{P} y = x + a\left(2 - \frac{\pi}{2}\right)$

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 由参

由参数方程所确定的函数的导数

例 8 求由方程
$$\begin{cases} x = a \cos^3 t \\ y = a \sin^3 t \end{cases}$$
 表示的函数的二阶导数.

解 由条件可得

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3a\sin^2 t \cos t}{3a\cos^2 t(-\sin t)} = -\tan t,$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{(-\tan t)'}{(a\cos^3 t)'} = \frac{-\sec^2 t}{-3a\cos^2 t \sin t}$$

$$= \frac{\sec^4 t}{3a\sin t}$$

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 由参

第四节	隐函数及由参数方程所确定的函数的导数
4.1	隐函数的导数
4.2	由参数方程所确定的函数的导数
4.3	小结 思考

第三章・导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 小结

小结

- 隐函数求导法则: 直接对方程两边求导;
- 对数求导法: 对方程两边取对数, 按隐函数的求导法则求导;
- 参数方程求导: 实质上是利用复合函数求导法则;

思考 111/188

思考

思考 设
$$\begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases}$$
, 由 $y'_x = \frac{\psi'(t)}{\varphi'(t)}$ $(\varphi'(t) \neq 0)$ 可知 $y''_x = \frac{\psi''(t)}{\varphi''(t)}$, 对吗?

解 不对.

$$y_x'' = \frac{d}{dx} (y_x') = \frac{dy_x'}{dt} \cdot \frac{dt}{dx} = \left(\frac{\psi'(t)}{\varphi'(t)}\right)_t' \cdot \frac{1}{\varphi'(t)}$$

第三章·导数、微分、边际与弹性 ▷ 隐函数及由参数方程所确定的函数的导数 ▷ 小结

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第六节 边际与弹性

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

微分的定义

函数的改变量

例 1 一块正方形金属薄片受热后,其边长由 x_0 增加到 $x_0 + \Delta x$. 求此薄片面积的改变量 Δy .

解 正方形面积为 $y = f(x) = x^2$. 则面积改变量为

$$\Delta y = (x_0 + \Delta x)^2 - x_0^2 = 2x_0 \Delta x + (\Delta x)^2.$$

比如, 当 $x_0 = 1$, $\Delta x = 0.1$ 时,

$$\Delta y = 2 \cdot 1 \cdot 0.1 + 0.1^2 = 0.2 + 0.01.$$

注记 若 Δx 很小,则 $2x_0\Delta x$ 远比 $(\Delta x)^2$ 大. 因此

微分的定义

定义 1 对于自变量在点 x_0 处的改变量 Δx ,如果函数 y = f(x) 的相应改变量 Δy 可以表示为

$$\Delta y = A\Delta x + o(\Delta x) \qquad (\Delta x \to 0)$$

其中 A 与 Δx 无关,则称 y = f(x) 在点 x_0 处可微,并称 $A\Delta x$ 为 函数 y = f(x) 在点 x_0 处 (相应于自变量增量 Δx) 的微分,记为 $dy|_{x=x_0} \text{ 或 } df(x_0),$

即

$$dy|_{x=x_0} = A\Delta x.$$

⊳

注记 微分 dy 叫做函数增量 Δy 的线性主部.

微分的定义

由定义知:

- (1) dy 是自变量的改变量 Δx 的线性函数;
- (2) $\Delta y dy = o(\Delta x)$ 是比 Δx 高阶无穷小;
- (3) 当 A ≠ 0 时, 有

$$\frac{\Delta y}{dy} = 1 + \frac{o(\Delta x)}{A \cdot \Delta x} \to 1 \quad (\Delta x \to 0),$$

即 dy 与 Δy 是等价无穷小;

- (4) A 是与 Δx 无关的常数, 但与 f(x) 和 x_0 有关;
- (5) 当 |Δx| 很小时, Δy ≈ dy (线性主部).

可微的条件

定理 y = f(x) 在点 x_0 处可微 $\iff y = f(x)$ 在点 x_0 处可导, 且 $A = f'(x_0)$.

证明 (1)必要性: 由 f(x) 在点 x_0 可微可得

$$\Delta y = A \cdot \Delta x + o(\Delta x),$$

所以

$$\frac{\Delta y}{\Delta x} = A + \frac{o(\Delta x)}{\Delta x}.$$

于是

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = A + \lim_{\Delta x \to 0} \frac{o(\Delta x)}{\Delta x} = A$$

⊳

即函数 f(x) 在点 x_0 可导, 且 $A = f'(x_0)$.

可微的条件

续 (2) 充分性:因为函数 f(x) 在点 x_0 可导,因此

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = f'(x_0) \Longrightarrow \frac{\Delta y}{\Delta x} = f'(x_0) + \alpha$$

其中 $\alpha \rightarrow 0$ ($\Delta x \rightarrow 0$), 从而

$$\Delta y = f'(x_0) \cdot \Delta x + \alpha \cdot (\Delta x) = f'(x_0) \cdot \Delta x + o(\Delta x).$$

由可微的定义可知函数 f(x) 在点 x_0 可微,且 $A = f'(x_0)$.

函数 y = f(x) 在任意点 x 的微分,称为函数的微分,记作 dy 或 df(x), 即 d $y = f'(x)\Delta x$.

导数与微分的区别

1. 函数 f(x) 在点 x_0 处的导数是一个定数 $f'(x_0)$, 而微分 $dy = f'(x_0)(x-x_0)$ 是 $x-x_0$ 的线性函数, 它的定义域是 R. 注意到 $\lim_{x\to x_0} dy = \lim_{x\to x_0} f'(x_0)(x-x_0) = 0,$

因此, dy 是当 $x \rightarrow x_0$ 时的无穷小.

2. 从几何意义上来看, $f'(x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处切线的斜率, 而微分 $dy = f'(x_0)$ $(x - x_0)$ 是曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程在点 x_0 的纵坐标增量.

微分的计算

例 2 求 $y = x^2$ 当 x = 2, $\Delta x = 0.01$ 时的微分.

$$\mathbf{g} = (x^2)' \Delta x = 2x \Delta x$$
,所以

$$dy \Big|_{\substack{x=2\\ \Delta x = 0.01}} = 2 \times 2 \times 0.01 = 0.04.$$

通常把自变量 x 的增量 Δx 称为自变量的微分记作 dx, 即 $dx = \Delta x$. 于是我们有

$$dy = f'(x)dx \Longrightarrow \frac{dy}{dx} = f'(x)$$

即函数的微分 dy 与自变量的微分 dx 之商等于该函数的导数. 导数也叫"微商".

微分的计算

练习1 求微分: (1)
$$y = xe^x$$
; (2) $y = \sin(3x + 2)$.

$$\mathbb{H}$$
 (1) $dy = y'_y dx = (xe^x)'_y dx = (x+1)e^x dx$.

(2)
$$dy = y'_x dx = (\sin(3x+2))'_x dx$$
.
= $3\cos(3x+2) dx$

⊳

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

函数的微分

⊳

微分的几何意义

当 Δx 很小时,切线纵坐标对应的增量 dy 可以近似替代曲线纵坐标对应的增量 Δy .

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

第三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

基本初等函数的微分公式与微分运算法则

由 dy = f'(x)dx 可知,要计算函数的微分,只需计算函数的导数,乘以自变量的微分.

1. 基本初等函数的微分公式

$$d(C) = 0 d(x^{\mu}) = \mu x^{\mu - 1} dx$$

$$d(\sin x) = \cos x dx d(\cos x) = -\sin x dx$$

$$d(\tan x) = \sec^2 x dx d(\cot x) = -\csc^2 x dx$$

$$d(\sec x) = \sec x \tan x dx d(\csc x) = -\csc x \cot x dx$$

第三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

基本初等函数的微分公式

$$d(a^{x}) = a^{x} \ln a dx \qquad d(e^{x}) = e^{x} dx$$

$$d(\log_{a} x) = \frac{1}{x \ln a} dx \qquad d(\ln x) = \frac{1}{x} dx$$

$$d(\arcsin x) = \frac{1}{\sqrt{1 - x^{2}}} dx \qquad d(\arccos x) = -\frac{1}{\sqrt{1 - x^{2}}} dx$$

$$d(\arctan x) = \frac{1}{1 + x^{2}} dx \qquad d(\operatorname{arccot} x) = -\frac{1}{1 + x^{2}} dx$$

微分运算法则

2. 函数和、差、积、商的微分法则

$$d(u \pm v) = du \pm dv \qquad d(Cu) = Cdu$$

$$d(uv) = vdu + udv \qquad d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

第三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

微分的形式不变性

- 若 y = f(u), 则有 dy = f'(u) du;
- 若 y = f(u), u = g(x), 则仍有 dy = f'(u) du.

例3
$$[\sin x]' = \cos x$$
, 但是 $[\sin 2x]' \neq \cos 2x$.
d($\sin x$) = $\cos x \, dx \Longrightarrow d(\sin 2x) = \cos 2x \, d(2x)$.

第二章・导数、微分、辺际与理性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

求微分举例

例 4 设
$$y = \ln(x + e^{x^2})$$
, 求 d y .

$$\text{if } y' = \frac{1 + 2xe^{x^2}}{x + e^{x^2}}, \quad \therefore dy = \frac{1 + 2xe^{x^2}}{x + e^{x^2}} dx$$

例 5 设 $y = e^{1-3x} \cos x$, 求 dy.

解 易知
$$dy = \cos x \cdot d(e^{1-3x}) + e^{1-3x} \cdot d(\cos x)$$
. 因为
$$(e^{1-3x})' = -3e^{1-3x}, (\cos x)' = -\sin x$$

所以

$$dy = \cos x \cdot (-3e^{1-3x}) dx + e^{1-3x} \cdot (-\sin x) dx$$
$$= -e^{1-3x} (3\cos x + \sin x) dx$$

9三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

算法则 130/188

求微分举例

例 6 设
$$y = \sin(2x + 1)$$
, 求 dy.

$$\mathbf{\widehat{y}} = \sin u, u = 2x + 1.$$

$$\therefore dy = \cos u \, du = \cos(2x+1) \, d(2x+1)$$
$$= \cos(2x+1) \cdot 2 \, dx = 2\cos(2x+1) \, dx$$

例 7 设
$$y = e^{-ax} \sin bx$$
, 求 d y .

$$dy = e^{-ax} \cdot \cos bx \, d(bx) + \sin bx \cdot e^{-ax} \, d(-ax)$$

$$\mathbf{g} = e^{-ax} \cdot \cos bx \cdot b \, dx + \sin bx \cdot e^{-ax} \cdot (-a) \, dx$$
$$= e^{-ax} (b \cos bx - a \sin bx) \, dx$$

<u>第三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运</u>

求微分举例

例8 在下列等式左端的括号中填入适当的函数, 使等式成立.

(1) d() =
$$\cos \omega t dt$$
 (2) d($\sin x^2$) = () d(\sqrt{x})

解 (1) 因为 $d(\sin \omega t) = \omega \cos \omega t dt$, 所以

$$\cos \omega t \, dt = \frac{1}{\omega} \, d(\sin \omega t) = d\left(\frac{1}{\omega} \sin \omega t\right)$$

从而 $d\left(\frac{1}{\omega}\sin\omega t + C\right) = \cos\omega t dt$

$$(2) :: \frac{d(\sin x^2)}{d(\sqrt{x})} = \frac{2x \cos x^2 dx}{\frac{1}{2\sqrt{x}} dx} = 4x\sqrt{x} \cos x^2$$

$$\therefore d(\sin x^2) = (4x\sqrt{x}\cos x^2)d(\sqrt{x})$$

第三章・导数、微分、边际与弹性 ▷ 函数的微分 ▷ 基本初等函数的微分公式与微分运

算法则 132/188

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. 求 f(x) 在点 $x = x_0$ 附近的近似值

由
$$\Delta y = f(x_0 + \Delta x) - f(x_0) \approx f'(x_0) \cdot \Delta x$$
 得:

$$f(x_0 + \Delta x) \approx f(x_0) + f'(x_0) \cdot \Delta x.$$

2. 求 f(x) 在点 x = 0 附近的近似值

例 9 计算 cos60°30′的近似值.

解 设
$$f(x) = \cos x$$
, 则 $f'(x) = -\sin x$, $(x 为弧度)$.
 $\cos 60^{\circ}30' = \cos\left(\frac{\pi}{3} + \frac{\pi}{360}\right) \approx \cos\frac{\pi}{3} - \sin\frac{\pi}{3} \cdot \frac{\pi}{360}$
 $= \frac{1}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\pi}{360} \approx 0.4924$

例 10 半径 10 厘米的金属圆片加热后, 半径伸长了 0.05 厘米, 问面积增大了多少?

解 设
$$A = \pi r^2, r = 10$$
 厘米, $\Delta r = 0.05$ 厘米. 则
$$\Delta A \approx dA = 2\pi r \cdot \Delta r = 2\pi \times 10 \times 0.05 = \pi (\mathbb{E} \mathbb{E}^2).$$

函数的微分

常用近似公式

当 |x| 很小时, 有

(1)
$$\sqrt[n]{1+x} \approx 1 + \frac{1}{n}x$$
;

- (2) sin x ≈ x (x 为弧度);
- (3) $tan x \approx x (x 为弧度);$
- (4) $e^x \approx 1 + x$
- (5) $ln(1+x) \approx x$

函数的微分

例 11 计算下列各数的近似值.

- $(1) \sqrt[3]{998.5}$
- (2) $e^{-0.03}$

(2)
$$e^{-0.03} \approx 1 - 0.03 = 0.97$$
.

第五节	函数的微分
5.1	微分的定义
5.2	微分的几何意义
5.3	基本初等函数的微分公式与微分运算法则
5.4	微分在近似计算中的应用
5.5	小结 思考题

函数的微分

⊳

小结

微分学所要解决的两类问题:

函数的变化率问题 ⇒ 导数的概念 函数的增量问题 ⇒ 微分的概念

求导数与微分的方法, 叫做微分法. 研究微分法与导数理论及其应用的科学, 叫做微分学.

导数与微分的联系:可导 ⇔ 可微.

小结

若 y = f(x) 在点 x_0 处的导数 $f'(x_0) \neq 0$, 且 $|\Delta x|$ 很小时,

$$\Delta y|_{x=x_0} \approx dy|_{x=x_0} = f'(x_0) \cdot \Delta x.$$

1. f(x) 在点 $x = x_0$ 附近的近似值为:

$$f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0).$$

2.f(x) 在点 x = 0 附近的近似值为:

$$f(x) \approx f(0) + f'(0) \cdot x$$

思考题

思考 某家有一机械挂钟, 钟摆的周期为 1 秒, 在冬季, 摆长缩短 了 0.01 厘米. 这只钟每天大约快多少?

(单摆的周期公式为: $T = 2\pi \sqrt{\frac{l}{q}}$ (l 为摆长, 单位: cm, g 取 980 cm/s^2 .)

解 由
$$T = 2\pi \sqrt{\frac{l}{g}}$$
, 可得 $\frac{dT}{dl} = \frac{\pi}{\sqrt{gl}}$. 当 $|\Delta l| << l$ 时, $\Delta T \approx dT = \frac{\pi}{\sqrt{gl}} \Delta l$.

解(续) 据题设,摆的周期是 1 秒,由此可知摆的原长为 $\frac{g}{(2\pi)^2}$ (cm). 现摆长的改变量 $\Delta l = -0.01$ cm,于是周期的改变量为 π

$$\Delta T \approx dT = \frac{\pi}{\sqrt{g \cdot \frac{g}{(2\pi)^2}}} \times (-0.01)$$
$$= \frac{2\pi^2}{g} \times (-0.01) \approx -0.0002(s)$$

也就是说,由于摆长缩短了 0.01cm,钟摆的周期便相应缩短了大约 0.0002 秒,即每秒约快 0.0002 秒,从而每天约快 0.0002 × $24 \times 60 \times 60 = 17.289(s)$.

第二节 求导法则和基本初等函数求导公式

第三节 高阶导数

第四节 隐函数及由参数方程所确定的函数的导数

第五节 函数的微分

第六节 边际与弹性

第六节	边际与弹性
6.1	边际的概念
6.2	经济学中常见的边际函数
6.3	弹性的概念
6.4	经济学中常见的弹性函数
6.5	小结 思考

边际与弹性

边际的概念

定义 设函数 y = f(x) 在 x 处可导,则称导数 f'(x) 为 f(x) 的 边际函数. f'(x) 在 x_0 处的值 $f'(x_0)$ 为边际函数值.

当 $x = x_0$ 时, x 改变一个单位, y 改变 $f'(x_0)$ 个单位.

例 1 设函数 $y = 2x^2$, 试求 y 在 x = 5 时的边际函数值.

解 因为 y' = 4x, 所以 $y'|_{x=5} = 20$.

该值表明: 当 x = 5 时, x 改变 1 个单位 (增加或减少 1 个单位), y 改变 20 个单位 (增加或减少 20 个单位).

第六节	边际与弹性
6.1	边际的概念
6.2	经济学中常见的边际函数
6.3	弹性的概念
6.4	经济学中常见的弹性函数
6.5	小结 思考

⊳

经济学中常见的边际函数

经济学中常见的边际函数

- 1 边际成本
- 2 边际收益
- 3 边际利润

边际与弹性

边际成本

1 边际成本: 总成本函数 C(Q) 的导数, 记为 MC(Q) = C'(Q).

边际成本的含义:假定已经生产了 Q 件产品,再生产一件产品所增加的成本.

注记 当边际成本小于平均成本 $\frac{C(Q)}{Q}$ 时,应增加产量,反之,应减小产量。

边际成本

例 2 设某产品生产 O 单位的总成本为

$$C(Q) = 1100 + \frac{Q^2}{1200}$$

求:

- (1) 生产 900 个单位的总成本和平均成本:
- (2) 生产 900 个单位到 1000 个单位时的总成本的平均变化率:
- (3) 生产 900 个单位的边际成本,并解释其给济意义,
- 解 (1) 生产 900 个单位时的总成本为

$$C(Q)|_{Q=900} = 1100 + \frac{900^2}{1200} = 1775$$

边际成本

解(续) 平均成本为

$$\overline{C}(Q)\Big|_{Q=900} = \frac{1775}{900} = 1.99.$$

(2) 生产 900 个单位到 1000 个单位时总成本的平均变化率为

$$\frac{\Delta C(Q)}{\Delta Q} = \frac{C(1000) - C(900)}{1000 - 900} = \frac{1993 - 1775}{100} = 1.58.$$

(3) 边际成本函数

$$C'(Q) = \frac{2Q}{1200} = \frac{Q}{600},$$

当 Q = 900 时的边际成本为 $C'(Q)|_{Q=900} = 1.5$.

边际收益

2 边际收益: 总收益函数 R(Q) 的导数, 记为 MR(Q) = R'(Q).

假定已经销售了 Q 件产品,再销售一个件产品所增加的总收益.

注记 若价格 P 为 Q 的函数,则

$$R(Q) = P(Q)Q \Longrightarrow R'(Q) = P(Q) + QP'(Q).$$

边际与弹性

边际收益

例 3 设某产品的需求函数为 $P = 20 - \frac{Q}{5}$, 其中 P 为价格,Q 为销售量,求销售量为 15 个单位时的总收益,平均收益与边际收益. 并求销售量从 15 个单位增加到 20 个单位时收益的平均变化率.

解 总收益为

$$R = QP(Q) = 20Q - \frac{Q^2}{5}.$$

销售 15 个单位时总收益为

$$R|_{Q=15} = \left(20Q - \frac{Q^2}{5}\right)\Big|_{Q=15} = 255.$$

边际收益

解(续) 平均收益为

$$R \mid_{Q=15} = \frac{R(Q)}{Q} \mid_{Q=15} = \frac{255}{15} = 17.$$

边际收益为

$$R(Q)|_{Q-15} = \left(20 - \frac{2}{5}Q\right)\Big|_{Q=15} = 14.$$

当销售量从 15 个单位增加到 20 个单位时收益的平均变化率为

$$\frac{\Delta R}{\Delta Q} = \frac{R(20) - R(15)}{20 - 15} = \frac{320 - 255}{5} = 13.$$

边际利润

3 边际利润: 总利润函数 *L(Q)* 的导数.

若已生产了 Q 件产品, 再生产一件产品增加的总利润.

注记
$$L(Q) = R(Q) - C(Q) \Longrightarrow L'(Q) = R'(Q) - C'(Q)$$
.

$$R'(Q)$$

$$\begin{cases} > C'(Q) \\ = C'(Q) \end{cases}$$
 时, $L'(Q)$
$$\begin{cases} > 0 \\ = 0 \\ < 0 \end{cases}$$

边际收益大于边际成本时,边际利润增加;反之,边际利润减小,

边际利润

例 4 某工厂对其产品的销售情况进行大量统计后分析后,得出总利润 L(Q) (元) 与每月产量 Q (吨) 的关系为 $L = L(Q) = 250Q - 5Q^2$, 试确定每月生产 20 吨,25 吨,35 吨的边际利润,并做出经济解释.

解 边际利润为
$$L'(Q) = 250 - 10Q$$
, 则

$$L'(Q)|_{Q=20} = L'(20) = 50,$$

 $L'(Q)|_{Q=25} = L'(25) = 0,$
 $L'(Q)|_{Q=35} = L'(35) = -100.$

上述结果表明当生产量为每月 20 吨时,再增加一吨,利润将增加 50 元,当产量为每月 25 吨时,再增加一吨,利润不变;当产量为 35 吨时,再增加一吨,利润将减少 100. 此处说明,对厂家来说,并非生产的产品越多,利润越高.

第六节	边际与弹性
6.1	边际的概念
6.2	经济学中常见的边际函数
6.3	弹性的概念
6.4	经济学中常见的弹性函数
6.5	小结 思考

弹性的概念

例 5 函数 $y = x^2$, 当 x 从 8 到 10 时, 相应的 y 从 64 增加到 100, 即自变量 x 的绝对增量 $\Delta x = 2$, 函数 y 绝对增量 $\Delta y = 36$ 又

$$\frac{\Delta x}{x} = \frac{2}{8} = 25\%, \quad \frac{\Delta y}{y} = \frac{36}{64} = 56.25$$

即当 x = 8 增加到 x = 1 时, x 增加了 25% 时, y 也相应的增加了 56.25%. 这里 $\frac{\Delta x}{x}$, $\frac{\Delta y}{y}$ 为自变量和函数的相对改变量(或相对增量).

在本例中, 再引入以下公式

$$\frac{\Delta y}{y} / \frac{\Delta x}{x} = \frac{56.25\%}{25\%} = 2.25.$$

该式表示在开区间 (8,10) 内, 从 x=8 时起, x 每增加 1%, 则相 应的 y 便平均改变 2.25%, 这里称之为 x = 8 增加到 x = 10 时, 函数 $V = X^2$ 的平均相对变化率.

干是又有以下定义.

定义 设函数 y = f(x) 在点 x_0 处可导,且 $x_0 \neq 0$,称函数的相 对改变量

$$\frac{\Delta y}{y_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{f(x_0)}$$

与自变量的相对改变量 $\frac{\Delta x}{x_0}$ 之比 $\frac{\Delta y/y_0}{\Delta x/x_0}$ 为函数从 x_0 到 x_0 + Δx 两点间的平均相对变化率,或称为 x_0 与 x_0 + Δx 两点间的弹性或弧弹性.

点弹性

当
$$\Delta x \to 0$$
 时,若 $\frac{\Delta y/y_0}{\Delta x/x_0}$ 的极限存在,则该极限称为函数 $y = f(x)$ 在 $x = x_0$ 处的相对变化率,也就是相对导数,或称为函数 $y = f(x)$ 在 $x = x_0$ 处的点弹性.记作 $\frac{Ey}{Ex}\Big|_{x=x_0}$ 或 $\frac{E}{Ex}f(x_0)$ 即
$$\frac{Ey}{Ex}\Big|_{x=x_0} = \lim_{\Delta x \to 0} \frac{\Delta y/y_0}{\Delta x/x_0} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \frac{x_0}{y_0}$$

$$= f'(x_0) \cdot \frac{x_0}{f(x_0)}$$

>

点弹性

当 x_0 为定值时, $\frac{Ey}{Fx}$ 为定值,且当 $|\Delta x|$ 很小时,

$$\left. \frac{Ey}{Ex} \right|_{x=x_0} \approx \frac{\Delta y}{y_0} / \frac{\Delta x}{x_0}$$
 (= 弧弹性).

定义 (弹性函数的定义) 一般地, 若函数 y = f(x) 在区间内 (α, b) 可导,且 $f(x) \neq 0$,则称

$$\frac{Ey}{Ex} = \lim_{\Delta x \to 0} \frac{\Delta y/y}{\Delta x/x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} \cdot \frac{x}{y} = y' \cdot \frac{x}{y}$$

为函数 y = f(x) 在区间 (α, b) 内的点弹性函数,简称弹性函数.

函数的弹性 (点弹性或弧弹性)与量纲无关,函数 f(x) 在点 x 处的 弹性 $\frac{E}{Ex}f(x)$ 反映了 x 的变化幅度 $\frac{\Delta x}{x}$ 对 f(x) 变化幅度 $\frac{\Delta y}{y}$ 的大 小影响, 也就是 f(x) 对 x 变化反应的强烈程度或灵敏度. 由弹性 的定义可知:

$$\frac{Ey}{Ex} = y' \cdot \frac{x}{y} = \frac{y'}{\frac{y}{x}} = \left(\frac{$$
边际函数}{平均函数}\right)

这样, 弹性在经济学上又可理解为边际函数与平均函数之比,

例 6 求函数 $y = x^{\alpha}(\alpha)$ 为常数) 的弹性函数.

解 直接计算得到所求的弹性函数为

$$\frac{Ex}{Ey} = \frac{y}{x}y' = \frac{x}{x^{\alpha}}(x^{\alpha})' = \frac{x}{x^{\alpha}}\alpha x^{\alpha - 1} = \alpha$$

由此例知,幂函数的弹性函数为常数,因此称为不变弹性函数.

函数弹性的图解方法

边际函数 y = f(x) 的几何意义为 所示曲线上各点的切线斜率,即

$$\tan(\pi - \theta_m) = -\tan\theta_m.$$
又平均函数为 $\frac{f(x)}{x} = \tan\theta_\alpha$

因而
$$\frac{Ey}{Ex} = -\frac{\tan \theta_m}{\tan \theta_\alpha}$$
. 若考虑弹性的绝对值,则 $\left| \frac{Ey}{Ex} \right| = \frac{\tan \theta_m}{\tan \theta_\alpha}$. 如果我们知道了一条函数 $y = f(x)$ 所示的曲线,则在曲线上任一点 A 处对应的弹性,通过 A 作曲线 AB 的切线和线段 OA ,就可得夹角 θ_m 和 θ_α ,进而就可得 $\left| \frac{Ey}{Ex} \right|$.

第六节	边际与弹性
6.1	边际的概念
6.2	经济学中常见的边际函数
6.3	弹性的概念
6.4	经济学中常见的弹性函数
6.5	小结 思考

⊳

经济学中常见的弹性函数

当弹性定义中的 y 被定义为需求量时就是需求弹性. 所谓需求的 价格弹性是指当价格变化一定的百分比以后引起的需求量的反应程 度. 设需求函数 $Q_d = Q(P)$ 可导,则需求的价格弹性可用公式表示 为

$$E_d = \frac{EQ}{EP} = \lim_{\Delta P \to 0} \frac{\Delta Q}{\Delta P} \cdot \frac{P}{Q} = \frac{dQ}{dP} \cdot \frac{P}{Q}$$

而 $\frac{\Delta Q}{Q} / \frac{\Delta P}{P}$ 称为该商品在 $P = P + \Delta P$ 两点间的需求价格弹性或弧 弹性.

边际与弹性

例 7 某需求曲线为: Q = -100P + 3000 , 求当 P = 20 时的弹性.

解
$$\frac{dQ}{dP} = -100$$
 当 $P = 20$ 时, $Q = 1000$ 所以
$$E_d = -100 \times \frac{20}{1000} = -2.$$

边际与弹性

一般来说,需求函数是价格的单调减函数,故需求函数的弧弹性为负值,从而当 $\Delta x \rightarrow 0$ 时,其极限值 E_d 总是小于或等于零,并且实际中一般取负值. 有时为讨论方便,将其取绝对值,也称之为需求的价格弹性,并记为 η , 即

$$\eta = \eta(P) = |E_d| = -\frac{P}{Q} \cdot \frac{dQ}{dP}$$

$$\eta = \eta(P) = |E_d| = -\frac{P}{Q} \cdot \frac{dQ}{dP}$$

- 1 若 $\eta = |E_d| = 1$,此吋商品需求量变动的百分比与价格变动的百分比相等,称为单位弹性或单一弹性.
- 2 若 $\eta = |E_d| < 1$ 即,此时商品需求量变动的百分比低于价格变动的百分比,价格的变动对需求量的影响不大,称为缺之弹性或低弹性.
- 3 若 $\eta = |E_d| > 1$,此时商品需求量的变动的百分比高于价格变动的百分比,价格的变动对需求量的影响较大,称之为富于弹性或高弹性.

- 例 8 设某产品的需求函数为 $Q = 100 2P.0 \le P \le 50$. 其中 P 为价格, O 为需求量.
- (1) 当 P = 10 ,且价格上涨 1% 时,需求量 Q 是增加还是减少, 变化百分之几?
- (2) 讨论商品价格变化时,需求量变化的情况.

解 (1) 由条件知

$$\eta(P) = -\frac{P}{Q} \cdot \frac{dQ}{dP} = -\frac{P}{100 - 2P} \cdot (-2) = \frac{P}{50 - P},$$

故 n(10) = 0.25. 由于 P 和 Q 是按相反方向变化的, 在 P = 10, 且价格上涨 1% 时,需求量 O 减少 n% = 0.25% (注意: 价格上 涨 1%,需求量减少 η % ,因此不能误认为减少 0.25 = 25%).

解(续)

- 1 当 0 < η < 1, 即 0 < $\frac{P}{50-P}$ < 1 时, 即 0 < P < 25 时, 价格上涨 (下降) 1% 时,需求量减少 (增加) η %,小于价格上涨 (下降)的百分比 (因 η < 1);
- ② 当 η = 1, 即 $\frac{P}{50-P} = 1$, 得 P = 25, 这表明当 P = 25 时, 需求量的变动与价格变动按相同的百分比进行;
- 3 当 $\eta > 1$, 即 $\frac{P}{50-P} > 1$ 时,得 P > 25, 于是当 25 < P < 50 且价格 P 上涨 (下降) 1% 时,需求量减少(增加) η %,大于价格上涨(下降)的百分比(因 $\eta > 1$).

需求弹性与总收益(市场销售总额)的关系

在市场经济中,商品经营者关心的是提价 ($\Delta P > 0$) 或降价 ($\Delta P < 0$ 0) 对总收益的影响. 利用需求弹性的概念, 可以分析价格变动是如 何影响销售收益的.

总收益 R 是商品价格 P 与销售量 Q 的乘积, 即

$$R = P \cdot Q = PQ(P)$$

边际总收益

$$R' = PQ'(P) + Q(P) = Q(P) \left[1 + Q'(P) \cdot \frac{P}{Q(P)} \right]$$
$$= Q(P) \left[1 - |E_d| \right] = Q(P)(1 - \eta)$$

- 1 若 η < 1 ,表示需求变动的幅度小于价格变动的幅度. 此时 R' > 0,即边际收益大于 0,价格上涨,总收益增加;价格下跌,总收益减少. 商品的价格和厂商的销售收入呈同方向变动.
- 2 若 $\eta > 1$,表示需求变动的幅度大小于价格变动的枯度. 此时 R' < 0,即价格上涨,总收益减少;价格下跌,总收益增加. 商品的价格和厂商的销售收入呈反方向变动.
- 3 若 $\eta = 1$,表示需求变动的幅度等于价格变动的幅度.降低价格或提高价格对厂商销售收益都没有影响.

综上所述,总收益的变化受需求弹性的制约,随商品需求弹性的变化而变化.

定义 供给弹性,通常指的是供给的价格弹性. 设供给函数 $Q_s = Q(P)$ 可导,则供给弹性

$$E_S = \frac{\mathrm{d}Q}{\mathrm{d}P} \times \frac{P}{Q}$$

式中 E_s 为供给的价格弹性.

边际与弹性

例 9 设某产品的供给函数为 $O = 2e^{P}$. 求供给的价格弹性函数及 当 P=1 时的供给的价格弹性.

供给的价格弹性函数为

$$E_s(P) = \frac{P}{2e^P} (2e^P)' = \frac{P}{2e^P} 2e^P = P,$$

由此有当 P=1 时

$$E_s(P)=1.$$

这表明当 P=1 时价格如果上涨 1%. 供给量也相应增加 1%.

例 10 某商品的供给函数 O = 2 + 3P 求供给弹性函数及当 P = 3时供给弹性.

解
$$\frac{dQ}{dP} = 3$$
, 故

$$E_S = \frac{dQ}{dP} \times \frac{P}{Q} = \frac{3P}{2+3P}$$

当P = 3 时.

$$E_s = \frac{3 \times 3}{2 + 3 \times 3} = \frac{9}{11}$$

例 11 观察下列供纳函数: (a) P = 3Q, (b) P = -2 + 5Q; (c) P = 3 + 4O 试判断其供给弹性 E_c 大于,等于或小于 1.

$$\frac{ER}{EP} = \frac{dR}{dP} \times \frac{P}{R}, \quad \frac{ER}{EQ} = \frac{dR}{dQ} \times \frac{Q}{R}$$

:中:

ER - 收益的价格弹性;

 $\frac{ER}{EQ}$ – 收益的销售弹性.

边际与弹性

- 例 12 设 $P \times Q \times R$ 分别为商品价格,销售量,销售总收益,
- (1) 试分别找出收益的价格弹性 $\frac{ER}{EP}$, 收益的销售弹性 $\frac{ER}{EP}$ 与需求的 价格弹性 η 的关系.
- (2) 试分别解出关于价格 P 的边际收益 $\frac{dR}{dP}$, 关于需求 Q 的边际收 益 $\frac{dR}{dO}$ 与需求价格弹性 η 的关系.

边际与弹性

解 (1) 设
$$Q = f(P)$$
, $R = PQ$, 故
$$\frac{ER}{EP} = \frac{E(PQ)}{EP} = \frac{P}{PQ} \cdot \frac{d(PQ)}{dP} = \frac{1}{Q} \left(Q + P \frac{dQ}{dP} \right)$$

$$= 1 + \frac{P}{Q} \cdot \frac{dQ}{dP} = 1 - \left(-\frac{P}{Q} \cdot \frac{dQ}{dP} \right) = 1 - \eta,$$

$$\frac{ER}{EQ} = \frac{E(PQ)}{EQ} = \frac{Q}{PQ} \cdot \frac{d(PQ)}{dQ} = \frac{1}{P} \cdot \frac{d(PQ)}{dQ}$$

$$= \frac{1}{P} \left(P + Q \frac{dP}{dQ} \right) = 1 - \left(\frac{1}{-\frac{P}{Q} \cdot \frac{dQ}{dQ}} \right) = 1 - \frac{1}{\eta}.$$

解 (2)由(1)知
$$\frac{ER}{EP} = 1 - \eta$$
,故
$$\frac{ER}{EP} = \frac{P}{R} \cdot \frac{dR}{dP} = \frac{P}{PO} \cdot \frac{dR}{dP} = 1 - \eta,$$

得

$$\frac{\mathrm{d}R}{\mathrm{d}P} = Q(1-\eta) = f(P)(1-\eta).$$

又由 (1)
$$\frac{ER}{EQ} = 1 - \frac{1}{\eta}$$
, 故

$$\frac{ER}{EQ} = \frac{Q}{R} \cdot \frac{dR}{dQ} = \frac{Q}{PQ} \cdot \frac{dR}{dQ} = 1 - \frac{1}{\eta},$$
$$\frac{dR}{dQ} = P\left(1 - \frac{1}{\eta}\right).$$

例 13 假设某产品的需求函数 $P = 100\sqrt{X}$, 其中 X 为产量 (假定等于需求量), P 为价格, 求收益的价格弹性.

解

第六节	边际与弹性
6.1	边际的概念
6.2	经济学中常见的边际函数
6.3	弹性的概念
6.4	经济学中常见的弹性函数
6.5	小结 思考

⊳

小结 思考

小结

- 边际的基本概念 边际函数的计算
 - 1 边际成本
 - 2 边际收益
 - 3 边际利润
 - 4 边际需求
- 弹性的基本概念 弹性函数的计算
 - 1 需求弹性
 - 2 供给弹性
 - 3 收益弹性

思考题

思考 设某产品的需求函数为 Q = Q(P), 收益函数为 R = PQ, Q(P) 为单调减少函数. 如果当价格 P_0 时产量为 Q_0 , 边际收益 $\frac{dR}{dQ}\Big|_{Q=Q_0} = \alpha > 0$, 收益对价格的边际效应为 $\frac{dR}{dP}\Big|_{P=P_0} = c < 0$, 需求对价格的 弹性 p = b > 1. 求 P_0 与 Q_0

思考题

解 按照需求对价格的弹性定义,分别将 $\frac{dR}{dQ}$, $\frac{dR}{dP}$ 表示为

$$\eta = -\frac{P}{Q} \cdot \frac{\mathrm{d}Q}{\mathrm{d}P}$$

的函数得到

$$\frac{dR}{dQ} = \frac{d}{dQ}(PQ) = P + Q\frac{dP}{dQ} = P - \left[\frac{P}{-\frac{P}{Q} \cdot \frac{dQ}{dP}}\right]$$
$$= P\left(1 - \frac{1}{\eta}\right) = P\left(1 - \frac{1}{b}\right),$$
$$\frac{dR}{dQ}\Big|_{Q=Q_0} = P\left(1 - \frac{1}{b}\right)\Big|_{Q=Q_0} = p_0\left(1 - \frac{1}{b}\right) = a.$$

思考题

解 (续) 故
$$P_0 = \frac{ab}{b-1}$$
, 又
$$\frac{dR}{dP} = Q + P \frac{dQ}{dP} = Q - \frac{P}{Q} \cdot \frac{dQ}{dP} (-Q) = Q(1-\eta)$$

$$= Q(1-b),$$

$$\frac{dR}{dP} \Big|_{P=P_0} = Q(1-b)|_{p=p_0} = Q_0(1-b) = c.$$
故 $Q_0 = \frac{c}{1-b}$.

第三章・导数、微分、边际与弹性

边际与弹性

小结 思考