2nd ENES HPC WS, Session 3 European Earth System Models with a focus on model performance

MPI-ESM

Reinhard Budich

MPI für Meteorologie

reinhard.budich@zmaw.de

With help from

Irina Fast (DKRZ), Marco Giorgetta, Helmuth Haak, Johann Jungclaus, Luis Kornblueh, Leonidas Linardakis

MPI-ESM

- MPI-M: An Intro
- Models at MPI-M
- MPI-ESM1
 - Improvements from COSMOS version
 - Configurations
 - Experiments
 - Performance
- Towards MPI-ESM2: ICON
- Summary and Conclusions

Max Planck Institute for Meteorology

ocated in Hamburg, Germany

- Established in 1972
 - Former directors Hinzpeter, Hasselmann, Bengtsson, Brasseur, Grassl
- About 250 People
- Earth system research
 - Atmosphere in the Earth System, Björn Stevens, Mg. Dir.
 - Land in the Earth System, Martin Claussen
 - Ocean in the Earth System , Jochem Marotzke
 - International Max-Planck-Research School on Earth System Modelling
- DKRZ separate entity

Max Planck Institute for Meteorology

ocated in Hamburg, Germany

- Established in 1972
 - Former directors Hinzpeter, Hasselmann, Bengtsson, Brasseur, Grassl
- About 250 People
- Earth system research
 - Atmosphere in the Earth System, Björn Stevens, Mg. Dir.
 - Land in the Earth System, Martin Claussen
 - Ocean in the Earth System , Jochem Marotzke
 - International Max-Planck-Research School on Earth System Modelling
- DKRZ separate entity

Models at MPI-M

 From simple 0-D to comprehensive ESMs

From Bony et.al, 2011, Carbon Dioxide and Climate: Perspectives on a Scientific Assessment

Models at MPI-M

- From simple 0-D to comprehensive ESMs
- AES: DNS, LES, ECHAM, HAMOZZ
- LES: JSBACH, Climber
- OES: MPI-OM, HAMOCC
- MPI-M:
 - -MPI-ESM1
 - -ICON
 - Dynamics, together with DWD
 - "Physics" from departments

Models at MPI-M

- From simple 0-D to comprehensive ESMs
- AES: DNS, LES, ECHAM, HAMOZZ
- · LES: JSBACH, Climber
- OES: MPI-OM HAMOCC
- MPI-M:
 - -MPI-ESM1
 - **JCON**
 - Dynamics, together with DWD
 - "Physics" from departments

Performance

- Scientific
 - –To assemble the right configuration for a given scientific question / project / experiment
 - -... that can be done in an acceptable time frame

Performance

- Scientific
 - –To assemble the right configuration for a given scientific question / project / experiment
 - -... that can be done in an acceptable time frame
- Technical
 - -can be done
 - on IS permanently
 - on those code pieces assembled for the scientific experiment only after the code is delivered
 - -risk of failure!

Max-Planck-Institute Earth-System-Model I

Improvements from COSMOS version

- Advanced/improved treatment of radiative transfer
- Improved representation of surface albedo
- New and improved representation of the aerosol
- Much better representation of the middle atmosphere
- A capacity to simulate at a range of different resolutions depending on the question
- Interactive vegetation dynamics
- Coupled carbon cycle

Configurations of MPI-ESM1				
Name	Resolution	Remarks		
Millenium	T31L19-GR30L40	COSMOS Millenium configuration, NEC		
CR	T31L31-GR30L40	Summer school model		
		Top at 10 hPa; IBM		
LR	T63L47/GR15L40	up to 0.01 hPa (same as L31 to 10 hPa),		
		Stratosphere resolved; IBM		
MR	T63L95/TP04L40	ocean eddy permitting in many regions		
		Strat. better resolved, QBO; IBM		
Р	T63L47/GR15L40	fixed orbit		
		no dyn veg; IBM		
HR	T127/L95/TP04L40	not published		
		too expensive; IBM		
XR	T255L199/TP6ML80	spin-up is a severe problem		
		really expensive; IBM		

Experiments

- Millenium
 - COSMOS → MPI-ESM Millenium Version, LR
- CMIP5
 - MPI-ESM1, LR, MR, HR

Millenium

Millenium

- T31L19 ECHAM JSBACH / MPIOM3°L40 HAMOCC
- Full carbon cycle
- > 15000 yrs with COSMOS configuration
- many more to get a balanced carbon cycle
- 10s of person years
- substantial part of the DKRZ Hurrikan machine

- Modell develpoment, tuning, spinup
- Experiments at DKRZ:
- Post-Processing
- Quality checks
- "CMOR" formats and variables
- Input for Regionalisation
- Transfer of CMOR data into ESGF
- Publication with DOIs

- Modell develpoment, tuning, spinup
- Experiments at DKRZ:
- Post-Processing
- Quality checks

MPI-ESM-LR	259 simulations	7751 yrs
MPI-ESM-P	10 simulations	3028 yrs
MPI-ESM-MR	72 simulations	2803 yrs

- "CMOR" formats and variables
- Input for Regionalisation
- Transfer of CMOR data into ESGF
- Publication with DOIs

- Modell develpoment, tuning, spinup
- Experiments at DKRZ:
- Post-Processing
- Quality checks

MPI-ESM-LR	259 simulations	7751 yrs
MPI-ESM-P	10 simulations	3028 yrs
MPI-ESM-MR	72 simulations	2803 yrs

- "CMOR" formats and variables
- Input for Regionalisation
- Transfer of CMOR data into ESGF
- Publication with DOIs

~18 mth of 1/4 of DKRZ IBM P6 10s of person years

Performance Metrics

- Discussion in (IS)ENES (HPCTF)
- Forecast [yrs/mths/d] / day (on a given platform)
 - -Detailed specification of
 - model (aka system complexity)
 - machine/environment (compilers!)
 - -,,CIM"?
- Degrees of freedom need to be added
 - -gird points, timespteps, number of variables

Performance

- Blizzard@DKRZ
 - -IBM p575 Power 6 cluster
 - -Peak performance: 158 TeraFlop/s
 - -264 IBM Power6 nodes
 - -16 dual core 4.7 GHz CPUs per node (8448 cores)
 - -20 TB of main memory and 7 PB of disk space
 - –Infiniband network: 7.6 TB/s (aggregated)

Performance [FCyrs/day]

NEC SX9 | IBM P6

Mill.	~30			on NEC, T31L19/OM3°L40
Model	FCyrs / d	# nodes DKRZ blizzard	"normed efficiency"	Remark
LR	18,4	4	1	4 nodes, 4*64=256 MPI-tasks (16x12 (echam6) + 9x7 (mpiom) + 1(oasis3)) => 4700 s/yr => 18.4 FCyrs/d; MCT. I/O
MR	10,7	10	3,51	10 nodes, 10*64=640 MPI-tasks (16x16 (echam6) + 23*16 (mpiom) + 16(oasis3)) => 8100 s/yr => 10.7
HR	~ 5	30	23,44	Way too expensive!
XR	0,85	63	74,11	63 nodes, 2001 MPI-tasks (with decomposition 32x24 (echam6) + 38*32 (mpiom) +17(oasis3)) => 102000

*Was ~ 15 for CMIP5

A Word on I/O

See presentation by Luis Kornblueh during workshop

Towards MPI-ESM2: ICON

- See presentation ICON by Günther Zängl, DWD
- Trick for us the implementation of "our" physics
 - –Technically
 - Don't spoil the code
 - -readability
 - -reliability
 - -performance
 - -ease of use
 - -Scientifically
 - Reproduce results for the same cases

ICON Performance

- Experiment Setup
 - non-hydrostatic APE
- Grid resolution: 35km
- Vertical levels: 96
- Dynamics step: 60 secs
- Physics step: 300 secs
- Radiation step: 1800 secs
- No I/O except basic diagnostics
- Machine:
 - IBM P6,
 - 1 mpi process per core,
 - 2 threads (SMT mode)

P6 Cores	FCyrs/day	"normed efficiency"
2240	2,24	1
4322	5,38	0,803345725
7680	6,52	1,17791411

Performance

- Overall performance of coupled models looks flat:
 - -10s of FCyrs/day as a constant?
- Models improve in scientific performance
- Optimization in terms of technical performance is often eaten up by better scientific performance
- You can only optimize against single routines, and their interplay
 - Stable code helps
 - Isolate critical portions
 - If profile of modules is flat, rethink!

Summary and Conclusions

- Improving performance is a very expensive business
 - -Needs to involve many layers of expertise
 - Physics/Components
 - Numerics
 - SysAdmin

- Special problem MPI-M: We need to tame two models at the same time
 - -MPIESM1 still major scientific workhorse
 - -Major development work needs to go into MPIESM2

Be aware:

Computing struggles to keep up with computers

