Задача А. Разреженные таблицы

 Имя входного файла:
 sparse.in

 Имя выходного файла:
 sparse.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Дан массив из n чисел. Требуется написать программу, которая будет отвечать на запросы следующего вида: найти минимум на отрезке между u и v включительно.

Формат входных данных

В первой строке входного файла даны три натуральных числа n, m ($1 \le n \le 10^5$, $1 \le m \le 10^7$) и a_1 ($0 \le a_1 < 16714589$) — количество элементов в массиве, количество запросов и первый элемент массива соответственно. Вторая строка содержит два натуральных числа u_1 и v_1 ($1 \le u_1, v_1 \le n$) — первый запрос.

Элементы a_2, a_3, \ldots, a_n задаются следующей формулой:

$$a_{i+1} = (23 \cdot a_i + 21563) \mod 16714589.$$

Например, при n = 10, $a_1 = 12345$ получается следующий массив: a = (12345, 305498, 7048017, 11694653, 1565158, 2591019, 9471233, 570265, 13137658, 1325095).

Запросы генерируются следующим образом:

$$u_{i+1} = ((17 \cdot u_i + 751 + ans_i + 2i) \bmod n) + 1,$$

$$v_{i+1} = ((13 \cdot v_i + 593 + ans_i + 5i) \bmod n) + 1,$$

где ans_i — ответ на запрос номер i.

Обратите внимание, что u_i может быть больше, чем v_i .

Формат выходных данных

В выходной файл выведите u_m , v_m и ans_m (последний запрос и ответ на него).

Примеры

•	· · · · · · · · · · · · · · · · · · ·	
	sparse.in	sparse.out
	10 8 12345	5 3 1565158
	3 9	

Задача B. Range Variation Query

Имя входного файла: rvq.in
Имя выходного файла: rvq.out
Ограничение по времени: 0.5 секунда
Ограничение по памяти: 64 мегабайта

В начальный момент времени последовательность a_n задана следующей формулой: $a_n=n^2 \mod 12345+n^3 \mod 23456$.

Требуется много раз отвечать на запросы следующего вида:

- найти разность между максимальным и минимальным значениями среди элементов $a_i, a_{i+1}, \ldots, a_i$;
- присвоить элементу a_i значение j.

Формат входных данных

Первая строка входного файла содержит натуральное число k — количество запросов ($1 \le k \le 100\,000$). Следующие k строк содержат запросы, по одному на строке. Запрос номер i описывается двумя целыми числами x_i, y_i .

Если $x_i > 0$, то требуется найти разность между максимальным и минимальным значениями среди элементов a_{x_i}, \ldots, a_{y_i} . При этом $1 \le x_i \le y_i \le 100\,000$.

Если $x_i < 0$, то требуется присвоить элементу $a_{|x_i|}$ значение y_i . В этом случае $-100\,000 \leqslant \leqslant x_i \leqslant -1$ и $|y_i| \leqslant 100\,000$.

Формат выходных данных

Для каждого запроса первого типа в выходной файл требуется вывести одну строку, содержащую разность между максимальным и минимальным значениями на соответствующем отрезке.

Примеры

rvq.in	rvq.out
7	34
1 3	68
2 4	250
-2 -100	234
1 5	1
8 9	
-3 -101	
2 3	

Задача С. Четвертый этаж

 Имя входного файла:
 floor4.in

 Имя выходного файла:
 floor4.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 64 мегабайта

Знаете ли вы, почему четвертый этаж заперт и там не останавливается лифт? Потому что на самом деле четвертый, запертый, этаж, где не останавливается лифт, содержит бесконечное количество комнат, пронумерованных натуральными числами. На этот этаж регулярно приезжают дети, каждый из которых заранее выбрал, в какую комнату он хочет заселиться. Если выбранная комната оказывается свободна, то ребенок занимает ее, в противном случае он занимает первую свободную комнату с большим номером.

Кроме того, некоторые дети уезжают в середине смены. Сразу после отъезда ребенка его комната становится доступна для заселения следующего.

Промоделируйте работу преподавателей, ответственных за четвертый этаж и научитесь быстро сообщать приезжающим детям, какую комнату им следует занимать.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество прибытий и отъездов, происходящих в течение смены $(1 \le n \le 100\,000)$.

Следующие n строк содержат информацию об ЛКШатах. Число a>0 обозначает, что приехал школьник, желающий занять комнату номер a ($1\leqslant a\leqslant 100\,000$). Число a<0 обозначает, что из комнаты номер |a| уехал школьник. (Гарантируется, что эта комната не была пуста).

Формат выходных данных

Для каждого приезжающего школьника выведите одно натуральное число — номер комнаты, в которую он поселится.

Примеры

floor4.in	floor4.out
6	5
5	6
5	7
5	6
-6	8
5	
5	

Задача D. Дерево отрезков с операцией на отрезке

Имя входного файла: segment-tree.in Имя выходного файла: segment-tree.out

Ограничение по времени: 0.5 секунд Ограничение по памяти: 64 мегабайта

Реализуйте эффективную структуру данных для хранения элементов и увеличения нескольких подряд идущих элементов на одно и то же число.

Формат входных данных

В первой строке вводится одно натуральное число $N~(1\leqslant N\leqslant 100\,000)$ — количество чисел в массиве.

Во второй строке вводятся N чисел от 0 до $100\,000$ — элементы массива.

В третьей строке вводится одно натуральное число $M~(1\leqslant M\leqslant 30\,000)$ — количество запросов.

Каждая из следующих М строк представляет собой описание запроса. Сначала вводится одна буква, кодирующая вид запроса (g — получить текущее значение элемента по его номеру, а — увеличить все элементы на отрезке).

Следом за д вводится одно число — номер элемента.

Следом за а вводится три числа — левый и правый концы отрезка и число add, на которое нужно увеличить все элементы данного отрезка массива $(1 \leqslant add \leqslant 100\,000)$.

Формат выходных данных

Выведите в одну строку через пробел ответы на каждый запрос д.

Примеры

segment-tree.in	segment-tree.out
5	4
2 4 3 5 2	2
5	14
g 2	5
g 5	
a 1 3 10	
g 2	
g 4	

Задача Е. Мега-инверсии

 Имя входного файла:
 mega. in

 Имя выходного файла:
 mega. out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

<u>Инверсией</u> в перестановке p_1, p_2, \ldots, p_N называется пара (i,j) такая, что i < j и $p_i > p_j$. Назовём мега-инверсией в перестановке p_1, p_2, \ldots, p_N тройку (i,j,k) такую, что i < j < k и $p_i > p_j > p_k$. Напишите алгоритм для быстрого подсчёта количества мега-инверсий в перестановке.

Формат входных данных

Первая строка входного файла содержит целое число N ($1 \le N \le 100\,000$). Следующие N чисел описывают перестановку: p_1, p_2, \ldots, p_N ($1 \le p_i \le N$), все p_i попарно различны. Числа разделяются переводами строк.

Формат выходных данных

Единственная строка выходного файла должна содержать одно число, равное количеству мега-инверсий в перестановке p_1, p_2, \ldots, p_N .

Примеры

mega.in	mega.out
4	4
4	
3	
2	
1	