

数学规划模型

内容

- 1 奶制品的生产与销售
- <u>2 自来水输送与货机装运</u>
- 3 汽车生产与原油采购
- 4 接力队选拔和选课策略
- <u>5 饮料厂的生产与检修</u>
- 6 钢管和易拉罐下料

数学规划模型

实际问题中 的优化模型

$$Min($$
或 $Max)$ $z = f(x), x = (x_1, \dots x_n)^T$
 $s.t.$ $g_i(x) \le 0, i = 1, 2, \dots m$

x~决策变量

f(x)~目标函数

 $g_i(x) \leq 0$ ~约束条件

多元函数 条件极值 决策变量个数n和 约束条件个数m较大

最优解在可行域 的边界上取得 数学规划

线性规划 非线性规划 整数规划

重点在模型的建立和结果的分析

1 奶制品的生产与销售

企业生产计划

空间层次

工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;

车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划。

时间层次

若短时间内外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则应制订多阶段生产计划。

本节课题

例1 加工奶制品的生产计划

每 50桶牛奶 时间480小时 至多加工100公斤 A_1

天:

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- A₁的获利增加到 30元/公斤,应否改变生产计划?

每天 50桶牛奶 时间480小时 至多加工100公斤 A_1

决策变量

 x_1 桶牛奶生产 A_1 x_2 桶牛奶生产 A_2

目标函数

获利 $24 \times 3x_1$ 获利 $16 \times 4x_2$

每天获利 $Max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_{1} + x_{2} \leq 50$$

$$12x_{1} + 8x_{2} \leq 480$$

$$3x_{1} \leq 100$$

$$x_{1}, x_{2} \geq 0$$

线性 规划 模型 (LP)

模型分析与假设

比例性

 x_i 对目标函数的"贡献"与 x_i 取值成正比

 x_i 对约束条件的"贡献"与 x_i 取值成正比

可加性

 x_i 对目标函数的"贡献"与 x_i 取值无关

 x_i 对约束条件的"贡献"与 x_j 取值无关

连续性

 x_i 取值连续

线性规划模型

A₁,A₂每公斤的获利是与各 自产量无关的常数

每桶牛奶加工出A₁,A₂的数量和时间是与各自产量无关的常数

 A_1,A_2 每公斤的获利是与相 互产量无关的常数

每桶牛奶加工出A₁,A₂的数量和时间是与相互产量无关的常数

加工A₁,A₂的牛奶桶数是实数

模型求解

图解法

约束条件

$$x_1 + x_2 \le 50$$
 $\Rightarrow l_1 : x_1 + x_2 = 50$
 $12x_1 + 8x_2 \le 480$ $\Rightarrow l_2 : 12x_1 + 8x_2 = 480$

$$3x_1 \le 100$$

$$l_3:3x_1=100$$

$$x_1, x_2 \ge 0$$

$$l_4: x_1 = 0, l_5: x_2 = 0$$

目标 函数

$$Max z = 72x_1 + 64x_2$$

$$z=c$$
 (常数)~等值线

目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线

最优解一定在凸多边 形的某个顶点取得。

模型求解

软件实现

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

DO RANGE
(SENSITIVITY)
ANALYSIS? No

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 48.000000
- 3) 0.000000 2.000000
- 4) 40.000000 0.000000

NO. ITERATIONS= 2

20桶牛奶生产 A_1 , 30桶生产 A_2 , 利润3360元。

结果解释

max 72x1+64x2

st

- 2) x1+x2<50
- 3) 12x1+8x2<480
- 4) 3x1<100

end

三种资源

原料无剩余

时间无剩余

加工能力剩余40

OBJECTIVE FUNCTION VALUE

1) 3360.000

VARIABLE VALUE REDUCED COST

X1 20.000000 0.000000

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000 48.000000

3) 0.000000 2.000000

4) 40.000000 0.000000

NO. ITERATIONS= 2

"资源"剩余为零的约束为紧约束(有效约束)

OBJECTIVE FUNCTION VALUE

1) 3360.000

结果解释

VARIABLI	E VALUE	REDUCED COST	最优解下"资源"增加1
X 1	20.000000	0.000000	单位时"效益"的增量

X2 30.000000 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

影子价格

2)	0.000000	48.000000	原料增加1单位,利润增长48
------------	----------	-----------	----------------

3) **0.000000 2.000000**

时间增加1单位,利润增长2

4) 40.000000 0.000000

加工能力增长不影响利润

NO. ITERATIONS= 2

• 35元可买到1桶牛奶,要买吗? 35 < 48,应该买!

• 聘用临时工人付出的工资最多每小时几元? 2元!

DO RANGE(SENSITIVITY) ANALYSIS? Yes

es 最优解不变时目标函

数系数允许变化范围

RANGES IN WHICH THE BASIS IS UNCHANGED:

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

(约束条件不变)

COEF INCREASE DECREASE

X1 72.000000 24.000000 8.000000

 x_1 系数范围(64,96)

X2 64.000000 8.000000 16.000000

x,系数范围(48,72)

RIGHTHAND SIDE RANGES

ROW CURRENT ALLOWABLE ALLOWABLE INCREASE DECREASE RHS 50,000000 10.000000 6.666667 3 480.000000 53.333332 80.000000 4 100.000000 **INFINITY** 40.000000

 x_1 系数由 $24 \times 3=72$ 增加为 $30 \times 3=90$, 在允许范围内

• A₁获利增加到 30元/千克,应否改变生产计划

不变!

<mark>结果解释</mark> 影子价格有意义时约束右端的允许变化范围

RANGES IN WHICH THE BASIS IS UNCHANGED:

(目标函数不变)

OBJ COEFFICIENT RANGES

VARIABLE CURRENT ALLOWABLE ALLOWABLE

	COEF	INCREASE	DECREASE	
X1	72.000000	24.000000	8.000000	
X2	64.000000	8.000000	16.000000	
	RIGHTH	AND SIDE RANG	GES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
2	50.000000	10.000000	6.666667	原料最多增加10
3	480.000000	53.333332	80.000000	时间最多增加53
4	100.000000	INFINITY	40.000000	

• 35元可买到1桶牛奶,每天最多买多少?

最多买10桶!

制订生产计划,使每天净利润最大

• 30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投资150元,可赚回多少?

至多100公斤A₁

• B₁, B₂的获利经常有10%的波动,对计划有无影响?

决策 变量

目标函数

约束 条件 出售 x_1 千克 A_1, x_2 千克 A_2 , X_3 千克 B_1, x_4 千克 B_2 x_5 千克 A_1 加工 B_1 , x_6 千克 A_2 加工 B_2

利润 $Max z = 24x_1 + 16x_2 + 44x_3 + 32x_4 - 3x_5 - 3x_6$

原料 $\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$

劳动 $4(x_1 + x_5) + 2(x_2 + x_6)$ 时间 +2x + 2x < 480

 $+2x_5 + 2x_6 \le 480$

附加约束

加工能力

非负约束

 $x_1 + x_5 \le 100$

 $x_3 = 0.8x_5$

 $x_4 = 0.75x_6$

 $x_1, \cdots x_6 \ge 0$

模型求解

软件实现 LINDO 6.1

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

3)
$$4(x_1 + x_5) + 2(x_2 + x_6)$$

$$+2x_5 + 2x_6 \le 480$$

3)
$$4x_1 + 2x_2 + 6x_5 + 4x_6 \le 480$$

DO RANGE (SENSITIVITY) ANALYSIS? No

OBJECTIVE FUNCTION VALUE

1) 3460.800

VARIABLE VALUE REDUCED COST

X 1	0.000000	1.680000

ROW SLACK OR SURPLUS DUAL PRICES

OBJECTIVE FUNCTION VALUE

1) 3460.800

<mark>V</mark> ARIABLE VALUE RI	EDUCED COST
---------------------------------	-------------

X1 0.000000 1.680000

X2 168.000000 0.000000

X3 19.200001 0.000000

X4 0.000000 0.000000

X5 24.000000 0.000000

X6 0.000000 1.520000

ROW SLACK OR SURPLUS DUAL PRICES

- 2) 0.000000 3.160000
- 3) 0.000000 3.260000
- 4) 76.000000 0.000000
- 5) 0.000000 44.000000
- 6) 0.000000 32.000000

NO. ITERATIONS= 2

每天销售168 千克A₂ 和19.2 千克B₁, 利润3460.8(元)

8桶牛奶加工成 A_1 , 42桶牛奶加工成 A_2 , 牛奶加工成 A_2 , 将得到的24千克 A_1 全部加工成 B_1

除加工能力外均 为紧约束

30元可增加1桶牛奶,3元可增加1小时时间,应不投资2.11投资150元。可赚回多少2

应否投资?现投资150元,可赚回多少?

OBJECTIVE FUNCTION VALUE

1)	3460.800

VARIABLE VALUE REDUCED COST

ROW SLACK OR SURPLUS DUAL PRICES

结果解释

$$2)\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

增加1桶牛奶使利润增 长3.16×12=37.92

增加1小时时间使利润增长3.26

投资150元增加5桶牛奶,可赚回189.6元。(大于增加时间的利润增长)

结果解释

B_1,B_2 的获利有10%的波动,对计划有无影响

RANGES IN WHICH THE BASIS IS UNCHANGED

DO RANGE
(SENSITIVITY)
ANALYSIS? Yes

波动对计划有影响

OBJ COEFFICIENT RANGES

INCREASE

1.520000

DECREASE

INFINITY

VARIABLE CURRENT ALLOWABLE ALLOWABLE

B ₁ 获利下降10%,超出X3系数允许范围	X1 X2	24.000000 16.000000	1.680000 8.150000	INFINITY 2.100000
B ₂ 获利上升10%,超	X3	44.000000	19.750002	3.166667
出X4 系数允许范围	X4	32.000000	2.026667	INFINITY
	X5	-3.000000	15.800000	2.533334

COFF

生产计划应重新制订:如将 x_3 的系数改为39.6 计算,会发现结果有很大变化。

-3.000000

X6

2 自来水输送与货机装运

运输问题

生产、生活物资从若干供应点运送到一些需求点, 怎样安排输送方案使运费最小,或利润最大;

各种类型的货物装箱,由于受体积、重量等限制,如何搭配装载,使获利最高,或装箱数量最少。

例1 自来水输送

小区基本用水量(千吨)小区额外用水量(千吨)

收入:900元/千吨

支出 引水管理费

其他费用:450元/千吨

元/千吨	甲	Z	丙	T
\mathbf{A}	160	130	220	170
В	140	130	190	150
C	190	200	230	/

- 应如何分配水库供水量,公司才能获利最多?
- 若水库供水量都提高一倍,公司利润可增加到多少?

总供水量:160 <总需求量:120+180=300

收入:900元/千吨 总收入900×160=144,000(元)

支出 引水管理费

其他费用:450元/千吨 其他支出450×160=72,000(元)

确定送水方案使利润最大

使引水管理费最小

模型建立

确定3个水库向4个小区的供水量

决策变量

水库i 向j 区的日供水量为 x_{ij} ($x_{34}=0$)

Min
$$Z = 160x_{11} + 130x_{12} + 220x_{13} + 170x_{14}$$

运数
$$+140x_{21}+130x_{22}+190x_{23}+150x_{24}+190x_{31}+200x_{32}+230x_{33}$$

供应 限制

$$x_{11} + x_{12} + x_{13} + x_{14} = 50$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 60$$

$$x_{31} + x_{32} + x_{33} = 50$$

需求 限制

$$30 \le x_{11} + x_{21} + x_{31} \le 80$$

$$70 \le x_{12} + x_{22} + x_{32} \le 140$$

$$10 \le x_{13} + x_{23} + x_{33} \le 30$$

$$10 \le x_{14} + x_{24} \le 50$$

线性 规划 模型 (LP)

模型求解

引水管理费 24400(元)

利润=总收入-其它费用 - 引水管理费 =144000-72000-24400 =47600(元)

OBJECTIVE FUNCTION VALUE

1) 24400.00

VARIABLE VALUE REDUCED COST

30.000000	0.000000	X11
0.000000	50.000000	X12
50.000000	0.000000	X13
20.000000	0.000000	X14
10.000000	0.000000	X21
0.000000	50.000000	X22
20.000000	0.000000	X23
0.000000	10.000000	X24
0.000000	40.000000	X31
10.000000	0.000000	X32
0.000000	10.000000	X33

<mark>问题讨论</mark> 每个水库最大供水量都提高一倍

总供水量(320) > 总需求量(300) 确定送水方案使利润最大

利润 = 收入(900) -其它费用(450) -引水管理费

利润(元/千吨)	甲	Z	丙	丁
A	290	320	230	280
В	310	320	260	300
C	260	250	220	/

目	标
逐	数

$$Max \quad Z = 290x_{11} + 320x_{12} + 230x_{13} + 280x_{14}$$

$$+310x_{21} + 320x_{22} + 260x_{23} + 300x_{24} + 260x_{31} + 250x_{32} + 220x_{33}$$

供应 限制

A:
$$x_{11} + x_{12} + x_{13} + x_{14} = 50$$
 \Box $x_{11} + x_{12} + x_{13} + x_{14} \le 100$

B, C 类似处理 需求约束可以不变

求解

总利润 88700 (元)

这类问题一般称为 "运输问题" (Transportation Problem)

OBJECTIVE FUNCTION VALUE

1) 88700.00

VARIAB	LE VALUE	REDUCED COST
X11	0.000000	20.000000
X12	100.000000	0.000000
X13	0.000000	40.000000
X14	0.000000	20.000000
X21	30.000000	0.000000
X22	40.000000	0.000000
X23	0.000000	10.000000
X24	50.000000	0.000000
X31	50.000000	0.000000
X32	0.000000	20.000000
X33	30.000000	0.000000

例2 货机装运 三个货舱最大载重(吨),最大容积(米等

飞机平衡

前仓:

10;6800

中仓:

16;8700

后仓:

8;5300

三个货舱中实际载重必须与其最大载重成比例

	重量 (吨)	空间(米³/ 吨)	利润 (元/ 吨)
货物1	18	480	3100
货物2	15	650	3800
货物3	23	580	3500
货物4	12	390	2850

如何装运, 使本次飞行 获利最大?

模型假设

每种货物可以分割到任意小;

每种货物可以在一个或多个货舱中任意分布;

多种货物可以混装,并保证不留空隙;

模型建立

决策 变量 x_{ij} --第i 种货物装入第j 个货舱的重量(吨)

变量 i=1,2,3,4, j=1,2,3 (分别代表前、中、后仓)

货机装运

模型建立

8:

5300

16:

8700

x_{ii} --第i种货物装入第j个货舱的重量

目标 函数 (利润)

$$Max Z = 3100(x_{11} + x_{12} + x_{13}) + 3800(x_{21} + x_{22} + x_{23})$$

+ $3500(x_{31} + x_{32} + x_{33}) + 2850(x_{41} + x_{42} + x_{43})$

10;

6800

货舱 重量

$$x_{11} + x_{21} + x_{31} + x_{41} \le 10$$

$$x_{12} + x_{22} + x_{32} + x_{42} \le 160$$

$$x_{13} + x_{23} + x_{33} + x_{43} \le 8$$

约束 条件

$$480x_{11} + 650x_{21} + 580x_{31} + 390x_{41} \le 6800$$

$$480x_{12} + 650x_{22} + 580x_{32} + 390x_{42} \le 8700$$

$$480x_{13} + 650x_{23} + 580x_{33} + 390x_{43} \le 5300$$

货机装运

模型建立

约束

条件

x_{ii} --第i 种货物装入第j 个货舱的重量

10;

6800

16:

8700

平衡 要求

$$\frac{x_{11} + x_{21} + x_{31} + x_{41}}{10}$$

$$=\frac{x_{12} + x_{22} + x_{32} + x_{42}}{16}$$

$$=\frac{x_{13} + x_{23} + x_{33} + x_{43}}{8}$$

货物 供应

$$x_{11} + x_{12} + x_{13} \le 18$$

$$x_{21} + x_{22} + x_{23} \le 15$$

$$x_{31} + x_{32} + x_{33} \le 23$$

$$x_{41} + x_{42} + x_{43} \le 12$$

8; 5300

货机装运

模型求解

OBJECTIVE	FUNCTION	VALUE
------------------	----------	--------------

1) 121515.8

VARIABLE VALU	E REDUCED COST	货物3:	中仓13,	后仓3;
---------------	----------------	------	-------	------

X11	0.000000	400.000000	1
X12	0.000000	57.894737	J
X13	0.000000	400.000000	

X21 10.000000 0.000000

X22 0.000000 239.473679

X23 5.000000 0.000000

X31 0.000000 0.000000

X32 12.947369 0.000000

X33 3.000000 0.000000

X41 0.000000 650.000000

X42 3.052632 0.000000

X43 0.000000 650.000000

货物2:前仓10,后仓5;

货物4: 中仓3。

最大利润约121516元

货物~供应点货舱~需求点

运输

问题

平衡要求

运输问题的扩展

3 汽车厂生产计划

模型建立

设每月生产小、中、大型 汽车的数量分别为 x_1, x_2, x_3

	小型	中型	大型	现有量
钢材	1.5	3	5	600
时间	280	250	400	60000
利润	2	3	4	

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

s.t. $1.5x_1 + 3x_2 + 5x_3 \le 600$

$$280x_1 + 250x_2 + 400x_3 \le 60000$$

$$x_1, x_2, x_3 \ge 0$$

线性 规划 模型 (LP)

结果为小数 怎么办?

OBJECTIVE FUNCTION VALUE

1) 632.2581

VARIABLE VALUE REDUCED COST

X1 64.516129

X2 167.741928 0.000000

X3 0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2) 0.000000

0.731183

0.000000

0.946237

0.000000

0.003226

- 2)试探:如取 x_1 =65, x_2 =167; x_1 =64, x_2 =168等,计算函数值z,通过比较可能得到更优的解。
 - 但必须检验它们是否满足约束条件。为什么?
- 3) 模型中增加条件: x_1, x_2, x_3 均为整数,重新求解。

模型求解

整数规划(Integer Programming, 简记IP)

gin x3

$Max z = 2x_1 + 3x_2 + 4x_3$

$$s. t. \quad 1.5x_1 + 3x_2 + 5x_3 \le 600$$

$$280x_1 + 250x_2 + 400x_3 \le 60000$$

 x_1, x_2, x_3 为非负整数

IP 结果输出

OBJECTIVE FUNCTION VALUE

1) 632.0000

VARIABLE VALUE REDUCED COST

X1 64.000000 -2.000000

X2 168.000000 -3.000000

X3 0.000000 -4.000000

IP可用LINDO直接求解

max 2x1+3x2+4x3 st 1.5x1+3x2+5x3<600 280x1+250x2+400x3<60000 end gin 3

"gin 3"表示"前3个变量为整数",等价于: gin x1 gin x2

IP 的最优解 $x_1=64$, $x_2=168$, $x_3=0$, 最优值z=632

汽车厂生产计划

• 若生产某类汽车,则至少生产80辆,求生产计划。

$$Max z = 2x_1 + 3x_2 + 4x_3$$

$$s. t. \quad 1.5x_1 + 3x_2 + 5x_3 \le 600$$

$$280x_1 + 250x_2 + 400x_3 \le 60000$$

$$x_1, x_2, x_3 = 0$$
 或 ≥80

方法1:分解为8个LP子模型

其中3个子模型应去掉,然后逐一求解,比较目标函数值, 再加上整数约束,得最优解:

$$x_1 = 0, x_2 = 0, x_3 \ge 80$$

$$x_1 = 0, x_2 \ge 80, x_3 = 0$$

$$x_1 = 0, x_2 \ge 80, x_3 \ge 80 \times$$

$$x_1 \ge 80, x_2 = 0, x_3 = 0$$

$$x_1 \ge 80, x_2 \ge 80, x_3 = 0$$

$$x_1 \ge 80, x_2 = 0, x_3 \ge 80$$

$$x_1 \ge 80, x_2 \ge 80, x_3 \ge 80 \times$$

$$x_1, x_2, x_3 = 0$$

 $x_1=80$, $x_2=150$, $x_3=0$, 最优值z=610

• 若生产某类汽车,则至少生产80辆,求生产计划。

方法2:引入0-1变量,化为整数规划

$$x_2 = 0$$
 $\Rightarrow \ge 80$ $\Rightarrow x_2 \le My_2, x_2 \ge 80y_2, y_2 \in \{0,1\}$

 $y_2 \in \{0,1\}$ 数,可取1000

M为大的正

最优解同前

LINDO中对0-

1变量的限定:

int y1

int y2

int y3

OBJECTIVE FUNCTION VALUE

1) 610.0000

VARIABLE VALUE REDUCED COST

X1 80.000000 -2.000000 X2 150.000000 -3.000000

V2 0.000000 4.000000

X3 0.000000 -4.000000

Y1 1.000000 0.000000

Y2 1.000000 0.000000

Y3 0.000000 0.000000

• 若生产某类汽车,则至少生产80辆,求生产计划

方法3:化为非线性规划

$$x_1 = 0$$
 或 ≥ 80 口 $x_1(x_1 - 80) \geq 0$ $x_2 = 0$ 或 ≥ 80 口 $x_2(x_2 - 80) \geq 0$ $x_3 = 0$ 或 ≥ 80 口 $x_3(x_3 - 80) \geq 0$

非线性规划 (Non-Linear Programming,简记NLP)

NLP虽然可用现成的数学软件求解(如LINGO, MATLAB),但是其结果常依赖于初值的选择。

实践表明,本例仅当初值非常接近上面方法算出的最优解时,才能得到正确的结果。

例2 原油采购与加工

市场上可买到不超过1500吨的原油A:

- 购买量不超过500吨时的单价为10000元/吨;
- · 购买量超过500吨但不超过1000吨时,超过500吨的部分8000元/吨;
- 购买量超过1000吨时,超过1000吨的部分6000元/吨。

应如何安排原油的采购和加工?

问题 分析

• 利润:销售汽油的收入 - 购买原油A的支

• 难点:原油A的购价与购买量的关系较复杂

决策 变量 原油A的购买量,原油A,B生产汽油甲,乙的数量

目标函数

利润(千元)

c(x) ~ 购买原油A的支出

Max
$$z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - c(x)$$

c(x)如何表述?

目标函数

- x≤ 500吨单价为10千元/吨;
- 500吨 $\leq x \leq 1000$ 吨,超过500吨的8千元/吨;
- •1000吨≤x≤1500吨,超过1000吨的6千元/吨。

$$c(x) = \begin{cases} 10 x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

约束 条件

原油供应

$$x_{11} + x_{12} \le 500 + x$$
$$x_{21} + x_{22} \le 1000$$
$$x \le 1500$$

约束 条件

 $x_{12} + x_{22}$

汽油含原油A 的比例限制

甲(A≥50%)

- \triangleright 目标函数中c(x)不是线性函数,是非线性规划;
- \triangleright 对于用分段函数定义的c(x) , 一般的非线性规划软 件也难以输入和求解:
- 想办法将模型化简,用现成的软件求解。

模型求解

方法1

$$x = x_1 + x_2 + x_3$$
, $c(x) = 10x_1 + 8x_2 + 6x_3$

目标 函数

$$Max z = 4.8(x_{11} + x_{21}) + 5.6(x_{12} + x_{22}) - (10x_1 + 8x_2 + 6x_3)$$

· 500吨≤ x≤ 1000吨,超过500吨的8千元/吨

增加约束 🔍

只有当以10千元/吨的价格购买 $x_1=500$ (吨)时,才能以

8千元/吨的价格购买
$$x_2$$
 \Box $(x_1 - 500)x_2 = 0$

$$(x_2 - 500)x_3 = 0$$
 $0 \le x_1, x_2, x_3 \le 500$

非线性规划模型,可以用LINGO求解

```
Model:
Max = 4.8 \times x11 + 4.8 \times x21 + 5.6 \times x12
+5.6*x22 - 10*x1 - 8*x2 - 6*x3;
x11+x12 < x + 500;
x21+x22 < 1000;
x11 - x21 > 0;
2*x12 - 3*x22 > 0;
x=x1+x2+x3;
(x1 - 500) * x2=0;
(x2 - 500) * x3=0;
x1 < 500;
x2 < 500;
x3 < 500;
x > 0;
x11 > 0;
x12 > 0;
x21 > 0;
x22 > 0;
x1 > 0;
x^2 > 0;
x3 > 0;
end
```

方法1:LINGO求解

Objective value: 4800.000 Variable Value **Reduced Cost** X11 500,0000 0.0000000E+00X21 500,0000 0.0000000E+00X12 0.0000000E+00 0.0000000E+00X22 0.0000000E+00 0.0000000E+000.1021405E-13 10.00000 0.0000000E+008.000000 X3 0.0000000E+00 6.000000 0.0000000E+00 0.0000000E+00

用库存的500吨原油A、500吨原油B 生产汽油甲,不购买新的原油A, 利润为4,800千元。

LINGO得到的是局部最优解,还能得到更好的解吗?

$y_1, y_2, y_3=1$ ~以价格10, 8, 6(千元/吨)采购A

x_1, x_2, x_3 ~以价格10, 8, 6(千元/吨)采购A的吨数

加 约 束

$$500y_2 \le x_1 \le 500y_1$$
$$x_3 \le 500y_3$$

$$500y_2 \le x_1 \le 500y_1$$
 $500y_3 \le x_2 \le 500y_2$ $y = 0 \to x = 0$ $x_3 \le 500y_3$ $y_1, y_2, y_3 = 0$ 或1 $y = 0 \to x = 0$

0-1线性规划模型,可 用LINDO求解

购买1000吨原油A,与 库存的500吨原油A和 1000吨原油B一起,生 产汽油乙,利润为5,000 千元。

优于方法1的结果

OBJECTI	VE FUNCTION	VALUE
1)	5000.000	
VARIAB	SLE VALUE	REDUCED
COST		
Y 1	1.000000	0.000000
Y2	1.000000	2200.000000
Y3	1.000000	1200.000000
X11	0.000000	0.800000
X21	0.000000	0.800000
X12	1500.000000	0.000000
X22	1000.000000	0.000000
X 1	500.000000	0.000000
X2	500.000000	0.000000
X3	0.000000	0.400000
\mathbf{X}	1000.000000	0.000000

方法3

直接处理处理分段线性函数c(x)

$$c(x) = \begin{cases} 10x & (0 \le x \le 500) \\ 8x + 1000 & (500 \le x \le 1000) \\ 6x + 3000 & (1000 \le x \le 1500) \end{cases}$$

$$b_1 \le x \le b_2$$
, $x = z_1 b_1 + z_2 b_2$, $z_1 + z_2 = 1$, $z_1, z_2 \ge 0$, $c(x) = z_1 c(b_1) + z_2 c(b_2)$.

$$b_2 \le x \le b_3$$
, $x = z_2 b_2 + z_3 b_3$, $z_2 + z_3 = 1$, $z_2, z_3 \ge 0$, $c(x) = z_2 c(b_2) + z_3 c(b_3)$.

$$b_3 \le x \le b_4$$
, $x = z_3 b_3 + z_4 b_4$, $z_3 + z_4 = 1$, $z_3, z_4 \ge 0$, $c(x) = z_3 c(b_3) + z_4 c(b_4)$.

方法3

对于
$$k=1,2,3$$

$$\begin{aligned} b_k &\leq x \leq b_{k+1} , x = z_k b_k + z_{k+1} b_{k+1} \\ z_k + z_{k+1} &= 1 , z_k, z_{k+1} \geq 0, \\ c(x) &= z_k c(b_k) + z_{k+1} c(b_{k+1}). \end{aligned}$$

$$b_k \le x \le b_{k+1} \rightarrow y_k = 1$$
,否则, $y_k = 0$

IP模型,LINDO求解,得到的结果与方法2相同.

处理分段线性函数,方法3更具一般性

4 接力队选拔和选课策略

分派问题

若干项任务分给一些候选人来完成,每人的专长不同,完成每项任务取得的效益或需要的资源就不同,如何分派任务使获得的总效益最大,或付出的总资源最少。

若干种策略供选择,不同的策略得到的收益或付出的成本不同,各个策略之间有相互制约关系,如何在满足一定条件下作出决择,使得收益最大或成本最小。

例1 混合泳接力队的选拔

5名候选人的百米成绩

	Ħ	7.	丙	T	戊
14H >>				J	
蝶泳	1'06''8	57"2	1'18"	1'10''	1'07"4
仰泳	1'15"6	1'06''	1'07"8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

如何选拔队员组成4×100米混合泳接力队?

丁的蛙泳成绩退步到1'15"2;戊的自由泳成绩进步到57"5,组成接力队的方案是否应该调整?

穷举法:组成接力队的方案共有5!=120种。

\mathbf{O} -1规划模型 $c_{ij}(\mathfrak{P})$ -队员i 第j 种泳姿的百米成绩

		I			AG UNIVE
c_{ij}	<i>i</i> =1	i=2	i=3	i=4	i=5
<i>j</i> =1	66.8	57.2	78	70	67.4
j=2	75.6	66	67.8	74.2	71
<i>j</i> =3	87	66.4	84.6	69.6	83.8
<i>j</i> =4	58.6	53	59.4	57.2	62.4

若选择队员i参加泳姿j 的比赛,记 $x_{ij}=1$,否则记 $x_{ij}=0$

目标 函数

Min
$$Z = \sum_{j=1}^{4} \sum_{i=1}^{5} c_{ij} x_{ij}$$

约束 条件 每人最多入选泳姿之一

每种泳姿有且只有1人

$$\sum_{i=1}^{4} x_{ij} \le 1, \ i = 1, \dots 5$$

$$\sum_{i=1}^{5} x_{ij} = 1, \quad j = 1, \dots 4$$

模型求解

输入LINDO求解


```
MIN 66.8x11+75.6x12+87x13+58.6x14
+...
+67.4x51+71 x52+83.8x53+62.4x54
SUBJECT TO
x11+x12+x13+x14 <=1
...
x41+x42+x43+x44 <=1
x11+x21+x31+x41+x51 =1
...
x14+x24+x34+x44+x54 =1
END
INT 20
```

最优解: $x_{14} = x_{21} = x_{32} = x_{43} = 1$, 其它变量为0;

成绩为253.2(秒)=4'13"2

甲~ 自由泳、乙~ 蝶泳、 丙~ 仰泳、丁~ 蛙泳.

	甲	Z	丙	丁	戊
蝶泳	1'06''8	57"2	1'18"	1'10''	1'07"4
仰泳	1'15"6	1'06"	1'07''8	1'14"2	1'11"
蛙泳	1'27"	1'06''4	1'24''6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

讨论

丁蛙泳 c_{43} =69.6 \rightarrow 75.2 ,戊自由泳 c_{54} =62.4 \rightarrow 57.5 ,方案是否调整? 敏感性分析?

IP规划一般没有与LP规划相类似的理论,LINDO输出的敏感性分析结果通常是没有意义的。

 c_{43}, c_{54} 的新数据重新输入模型,用LINDO求解

最优解: $x_{21} = x_{32} = x_{43} = x_{51} = 1$, 成绩为4'17''7

乙~蝶泳、丙~仰泳、丁~蛙泳、戊~自由泳

原 甲~自由泳、乙~蝶泳、 方 丙~仰泳、丁~蛙泳.

指派(Assignment)问题:每项任务有且只有一人承担, 每人只能承担一项,效益不同,怎样分派使总效益最大.

例2 选课策略

				Wi 89 169
课号	课名	学分	所属类别	先修课要求
1	微积分	5	数学	
2	线性代数	4	数学	
3	最优化方法	4	数学;运筹学	微积分;线性代数
4	数据结构	3	数学;计算机	计算机编程
5	应用统计	4	数学;运筹学	微积分;线性代数
6	计算机模拟	3	计算机;运筹学	计算机编程
7	计算机编程	2	计算机	
8	预测理论	2	运筹学	应用统计
9	数学实验	3	运筹学;计算机	微积分;线性代数

要求至少选两门数学课、三门运筹学课和两门计算机课

为了选修课程门数最少,应学习哪些课程?

选修课程最少,且学分尽量多,应学习哪些课程?

0-1规划模型

课号	课名	所属类别
1	微积分	数学
2	线性代数	数学
3	最优化方法	数学;运筹学
4	数据结构	数学;计算机
5	应用统计	数学;运筹学
6	计算机模拟	计算机;运筹学
7	计算机编程	计算机
8	预测理论	运筹学
9	数学实验	运筹学;计算机

 $x_i=1$ ~选修课号i 的课程($x_i=0$ ~不选)

目标函数

选修课程总数最少

$$Min \quad Z = \sum_{i=1}^{9} x_i$$

$x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$

$$x_3 + x_5 + x_6 + x_8 + x_9 \ge 3$$

$$x_4 + x_6 + x_7 + x_9 \ge 2$$

约束条件

最少2门数学课, 3门运筹学课, 2门计算机课。

0-1规划模型

课号	课名	先修课要求
*_1	微积分	
* 2	线性代数	
* 3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
* 6	计算机模拟	计算机编程
* 7	计算机编程	
8	预测理论	应用统计
* 9	数学实验	微积分;线性代数

模型求解(LINDO)

最优解: $x_1 = x_2 = x_3 = x_6 = x_7 = x_9$

=1, 其它为0;6门课程,总学分21

约束条件

先修课程要求

$$x_3 = 1$$
必有 $x_1 = x_2 = 1$

$$x_3 \le x_1, x_3 \le x_2$$

$$2x_3 - x_1 - x_2 \le 0$$

$$x_4 \le x_7 \ \square \ x_4 - x_7 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$x_6 - x_7 \le 0$$

$$x_8 - x_5 \le 0$$

$$2x_9 - x_1 - x_2 \le 0$$

讨论:选修课程最少,学分尽量多,应学习哪些课程?

学分最多

两目标(多目标)规划

 $Min\{Z, -W\}$

多目标优化的处理方法:化成单目标优化。

以课程最少为目标,不管学分多少。

最优解如上,6门课程,总学分21。

以学分最多为目标,不管课程多少。

最优解显然是选修所 有9门课程。

多目标规划

• 在课程最少的前提下 以学分最多为目标。

课号	课名	学分
* 1 *	微积分	5
* 2 *	线性代数	4
* 3 *	最优化方法	4
4	数据结构	3
5 *	应用统计	4
* 6	计算机模拟	3
* 7 *	计算机编程	2
8	预测理论	2
* 9 *	数学实验	3

增加约束
$$\sum_{i=1}^{9} x_i = 6$$
,

以学分最多为目标求解。

最优解: $x_1 = x_2 = x_3 = x_5$ $= x_7 = x_9 = 1$, 其它为0; 总 学分由21增至22~

注意:最优解不唯一!

可将 $x_0 = 1$ 易为 $x_6 = 1$

LINDO无法告诉优化 问题的解是否唯一。

多目标规划

对学分数和课程数加权形成一个目标,如三七开。

Min	Y =	$\lambda_1 Z$ -	$-\lambda_2 W =$	= 0.7Z -	-0.3W
)		

课号	课名	学分
1 *	微积分	5
2 *	线性代数	4
3 *	最优化方法	4
4 *	数据结构	3
5 *	应用统计	4
6 *	计算机模拟	3
7 *	计算机编程	2
8	预测理论	2
9 *	数学实验	3

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

最优解: $x_1 = x_2 = x_3 = x_4$

$$= x_5 = x_6 = x_7 = x_9 = 1$$
,

其它为0;总学分28。

多目标规划

讨论与思考

Min
$$Y = \lambda_1 Z - \lambda_2 W$$
 $\lambda_1 + \lambda_2 = 1$, $0 \le \lambda_1, \lambda_2 \le 1$

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

 $\lambda_1 < 2/3$

最优解与 $\lambda_1=0$, $\lambda_2=1$ 的结果相同——学分最多

$$\lambda_1 > 3/4$$

最优解与 $\lambda_1=1$, $\lambda_2=0$ 的结果相同——课程最少

5 饮料厂的生产与检修

• 企业生产计划

单阶段生产计划

外部需求和内部 资源随时间变化

多阶段生产计划

• 生产批量问题

考虑与产量无关的固定费用

给优化模型求解带来新的困难

问题分析

周次	需求	能力	成本
	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5
合计	100	135	

- 除第4周外每周的生产 能力超过每周的需求;
- 生产成本逐周上升;
- •前几周应多生产一些。

模型假设

- 饮料厂在第1周开始时没有库存;
- 从费用最小考虑,第4周末不能有库存;
- 周末有库存时需支出一周的存贮费;
- 每周末的库存量等于下周初的库存量。

模型建立

周次	需求	能力	成本
	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

决策变量

 $x_{1} \sim x_{4}$: 第1~4周的生产量

 $y_1 \sim y_3$: 第1~3周末库存量

存贮费:0.2 (千元/周•千箱)

目标 函数

约束 条件

Min $z = 5.0x_1 + 5.1x_2 + 5.4x_3 + 5.5x_4 + 0.2(y_1 + y_2 + y_3)$

产量、库存与需求平衡

$$x_1 - y_1 = 15$$

$$x_2 + y_1 - y_2 = 25$$

$$x_3 + y_2 - y_3 = 35$$

$$x_4 + y_3 = 25$$

能力限制

$$x_1 \le 30, x_2 \le 40$$

$$x_3 \le 45, x_4 \le 20$$

非负限制

$$x_1, x_2, x_3, x_4, y_1, y_2, y_3 \ge 0$$

LINDO求解

最优解: $x_1 \sim x_4 : 15, 40, 25, 20$;

 $y_1 \sim y_3 : 0$, 15, 5.

周次	需求	产量	库存	能力	成本
1	15	15	0	30	5.0
2	25	40	15	40	5.1
3	35	25	5	45	5.4
4	25	20	0	20	5.5

4周生产计划的总费用为528(千元)

检修计划

• 在4周内安排一次设备检修,占用当周15千箱生产能力,能使 检修后每周增产5千箱,检修应排在哪一周?

周次	需求	能力	成本
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5.5

检修安排在任一周均可

0-1变量 w_t : w_t =1~ 检修安排 在第t周(t=1,2,3,4)

约束条件

产量、库存 与需求平衡 条件不变 能力限制

$$x_1 \le 30 \quad \Box \quad x_1 + 15w_1 \le 30$$

$$x_2 \le 40 \quad \Box \quad x_2 + 15w_2 \le 40 + 5w_1$$

$$x_3 \le 45 \quad \Box \quad x_3 + 15w_3 \le 45 + 5w_2 + 5w_1$$

$$x_4 \le 20 \quad \forall \quad x_4 + 15w_4 \le 20 + 5w_1 + 5w_2 + 5w_3$$

检修计划

目标函数不变

0-1变量 w_t : $w_t=1$ ~ 检修 安排在第t周(t=1,2,3,4)

增加约束条件:检修1次

$$w_1 + w_2 + w_3 + w_4 = 1$$

LINDO求解

最优解: $w_1=1, w_2, w_3, w_4=0$;

 $x_1 \sim x_4 : 15, 45, 15, 25$;

 $y_1 \sim y_3 : 0, 20, 0$.

总费用由528千元降为527千元

检修所导致的生产能力提高的作用, 需要更长的时间才能得到充分体现。

例2 饮料的生产批量问题

饮料厂使用同一条生产线轮流生产多种饮料。若某周开工生产某种饮料,需支出生产准备费8千元。

某种饮料4周的需求量、生产能力和成本

周次	需求量(千箱)	生产能力(千箱)	成本(千元/千箱)
1	15	30	5.0
2	25	40	5.1
3	35	45	5.4
4	25	20	5. 5
合计	100	135	

存贮费:每周每千箱饮料 0.2千元。

• 安排生产计划,满足每周的需求,使4周总费用最小。

生产批量问题的一般提法

 c_t ~时段t生产费用(元/件);

 $h_t \sim \text{时段}t(\mathbf{x})$ 库存费(元/件);

 $S_t \sim$ 时段t生产准备费(元);

 d_t ~时段t 市场需求(件);

 M_t ~时段t 生产能力(件)。

假设初始库存为0

制订生产计划,满 足需求,并使T个时 段的总费用最小。

决策变量

 $x_t \sim$ 时段t生产量; $y_t \sim$ 时段 $t(\mathbf{x})$ 库存量; $w_t=1$ ~时段t 开工生产 $(w_t=0 \sim TT)$ 。

目标 min
$$z = \sum_{t=1}^{T} (s_t w_t + c_t x_t + h_t y_t)$$

约束

$$y_{t-1} + x_t - y_t = d_t$$

$$w_t = \begin{cases} 1, & x_t > 0, \\ 0, & x_t = 0, \end{cases} \quad x_t \le M_t$$

$$y_0 = y_T = 0, \quad x_t, y_t \ge 0$$

生产批量问题的一般提法

$$\min z = \sum_{t=1}^{T} (s_t w_t + c_t x_t + h_t y_t)$$

$$s.t. \ y_{t-1} + x_t - y_t = d_t$$

$$w_{t} = \begin{cases} 1, & x_{t} > 0, \\ 0, & x_{t} = 0, \end{cases} \quad x_{t} \leq M_{t} \quad | \quad x_{t} - M_{t} w_{t} \leq 0$$

$$y_0 = y_T = 0, \ x_t, y_t \ge 0$$

 $t = 1, 2, \dots T$

混合0-1规划模型

将所给参数代入模型,用LINDO求解

最优解: $x_1 \sim x_4$:15,40,45,0;总费用:554.0(千元)

6 钢管和易拉罐下料

原料下料问题

生产中通过切割、剪裁、冲压等手段,将原材料加工成所需大小

按照工艺要求,确定下料方案,使所用材料最省,或利润最大

例1 钢管下料

原料钢管:每根19米

4米50根

6米20根

8米15根

问题1. 如何下料最节省? 节省的标准是什么?

问题2. 客户增加需求: ———— <u>5米</u>

5米10根

由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种。如何下料最节省?

钢管下料

切割模式

按照客户需要在一根原料钢管上安排切割的一种组合。

合理切割模式的余料应小于客户需要钢管的最小尺寸

合理切割模式

_			— 10 Mu 17 17 1	(20, 18,91,05)
模式	4米钢管根数	6米钢管根数	8米钢管根数	余料(米)
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3

为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省?

两种标准

- 1. 原料钢管剩余总余量最小
- 2. 所用原料钢管总根数最少

决策 变量

x_i ~按第i 种模式切割的原料钢管根数(i=1,2,...7)

目标1(总余量) $Min Z_1 = 3x_1 + x_2 + 3x_3 + 3x_4 + x_5 + x_6 + 3x_7$

模式	4米 根数	6米 根数	8米 根数	余 料
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3
需求	50	20	15	

约束 满足需求

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

整数约束: x_i 为整数

最优解: $x_2=12, x_5=15,$

其余为0;

最优值:27。

按模式2切割12根,按模式5切割15根,余料27米

目标2(总根数) $Min Z_2 = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

约束条 件不变

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

 x_i 为整数

最优解: $x_2=15$,

 $x_5=5, x_7=5,$

其余为0;

最优值:25。

按模式2切割15根,按模式5切割5根,按模式7切割5根, 按模式7切割5根, 共25根,余料35米

与目标1的结果"共切割27根,余料27米"相比

虽余料增加8米,但减少了2根

当余料没有用处时,通常以总根数最少为目标

增加一种需求:5米10根;切割模式不超过3种。

现有4种需求:4米50根,5米10根,6米20根,8米15根,用枚举法确定合理切割模式,过于复杂。

对大规模问题,用模型的约束条件界定合理模式

决策变量

 x_i ~按第i 种模式切割的原料钢管根数(i=1,2,3)

 $r_{1i}, r_{2i}, r_{3i}, r_{4i}$ ~ 第i 种切割模式下,每根原料钢管生产4米、5米、6米和8米长的钢管的数量

目标函数(总根数)

Min
$$x_1 + x_2 + x_3$$

约束 条件

满足需求

$$r_{11}x_1 + r_{12}x_2 + r_{13}x_3 \ge 50$$

$$r_{21}x_1 + r_{22}x_2 + r_{23}x_3 \ge 10$$

$$r_{31}x_1 + r_{32}x_2 + r_{33}x_3 \ge 20$$

$$r_{41}x_1 + r_{42}x_2 + r_{43}x_3 \ge 15$$

模式合理:每根 余料不超过3米

$$16 \le 4r_{11} + 5r_{21} + 6r_{31} + 8r_{41} \le 19$$

$$16 \le 4r_{12} + 5r_{22} + 6r_{32} + 8r_{42} \le 19$$

$$16 \le 4r_{13} + 5r_{23} + 6r_{33} + 8r_{43} \le 19$$

整数约束: $x_i, r_{1i}, r_{2i}, r_{3i}, r_{4i}$ (i=1,2,3)为整数

整数非线性规划模型

增加约束,缩小可行域,便于水解

需求:4米50根,5米10

根,6米20根,8米15根

原料钢管总根数下界:

每根原料钢管长19米

$$\left[\frac{4 \times 50 + 5 \times 10 + 6 \times 20 + 8 \times 15}{19}\right] = 26$$

特殊生产计划:对每根原料钢管

模式1:切割成4根4米钢管,需13根;

模式2:切割成1根5米和2根6米钢管,需10根;

模式3:切割成2根8米钢管,需8根。

原料钢管总根数上界:13+10+8=31

$$26 \le x_1 + x_2 + x_3 \le 31$$
 模式排列顺序可任定 $x_1 \ge x_2 \ge x_3$

LINGO求解整数非线性规划模型

共10根:

Local optimal	solution found at
iteration:	12211

iteratio	on: 122	11
Obje	ctive value:	28.00000
Variab	ole Value	Reduced Cost
X1	10.00000	0.000000
X2	10.00000	2.000000
X3	8.000000	1.000000
R11	3.000000	0.000000
R12	2.000000	0.000000
R13	0.000000	0.000000
R21	0.000000	0.000000
R22	1.000000	0.000000
R23	0.000000	0.000000
R31	1.000000	0.000000
R32	1.000000	0.000000
R33	0.000000	0.000000
R41	0.000000	0.000000
R42	0.000000	0.000000
R43	2.000000	0.000000

模式1:每根原料钢管切割成3 根4米和1根6米钢管,共10根; 模式2:每根原料钢管切割成2

根4米、1根5米和1根6米钢管,

模式3:每根原料钢管切割成2 根8米钢管,共8根。

原料钢管总根数为28根。

例2易拉罐下料

板材规格1: 正方形,边长

24cm,5万张。

板材规格2:

长方形, 32×28cm, 2万张。

模式1:1.5秒 模式2:2秒 模式3:1秒

罐身高10cm, 上盖、下底直 径均5cm。

模式4:3秒

每周工作40小时,每只易拉罐利润0.10元,原料余料损失0.001元/cm²(不能装配的罐身、盖、底也是余料)如何安排每周生产?

问题分析

计算各种模式下的余料损失

模式1:

正方形 边长24cm

上、下底直径d=5cm,罐身高h=10cm。

模式1 余料损失 $24^2-10\times\pi d^2/4 - \pi dh=222.6$ cm²

	罐身个数	底、盖 个数	余料损失 (cm ²)	冲压时间 (秒)
模式1	1	10	222.6	1.5
模式2	2	4	183.3	2
模式3	0	16	261.8	1
模式4	4	5	169.5	3

问题分析

目标:易拉罐利润扣除原料余料损失后的净利润最大

注意:不能装配的罐身、上下底也是余料

约束:每周工作时间不超过40小时;

原料数量:规格1(模式1~3)5万张,

规格2(模式4)2万张;

罐身和底、盖的配套组装。

模型建立

 x_i ~按照第i 种模式的生产张数(i=1,2,3,4);

决策 变量 $y_1 \sim -$ 周生产的易拉罐个数;

 $y_2 \sim$ 不配套的罐身个数;

y₃~不配套的底、盖个数。

模型建立

 $y_1 \sim 易拉罐个数; y_2 \sim 不配套的罐身 y_3 \sim 不配套的底、盖。$

	• 0		
产量	余料	时间	
	ノノハヤゴ	HJILI	
x_1	222.6	1.5	
x_2	183.3	2	
x_3	261.8	1	
x_4	169.5	3	

每只易拉罐利润0.10元, 余料损失0.001元/cm² 罐身面积*ndh*=157.1 cm² 底盖面积*nd*²/4=19.6 cm²

目标

$$Max = 0.1y_1 - 0.001(222.6x_1 + 183.3x_2 + 261.8x_3 + 169.5x_4 + 157.1y_2 + 19.6y_3)$$

约束条件

时间约束

 $1.5x_1 + 2x_2 + x_3 + 3x_4 \le 144000$ (40小时)

原料约束

 $x_1 + x_2 + x_3 \le 50000, \quad x_4 \le 20000$

约束 条件

 y_1 ~易拉罐个数; y_2 ~不配套的罐 y_3 ~不配套的底、盖。

37 =	罐身	底、盖
	WE /	/L/V
x_1	1	10
x_2	2	4
x_3	0	16
x_4	4	5

配套约束

$$y_2 = x_1 + 2x_2 + 4x_4 - y_1$$

$$y_3 = 10x_1 + 4x_2 + 16x_3 + 5x_4 - 2y_1$$

$$y_1 = \min\{x_1 + 2x_2 + 4x_4, (10x_1 + 4x_2 + 16x_3 + 5x_4)/2\}$$

$$\langle y_1 \leq x_1 + 2x_2 + 4x_4, \quad y_1 \leq (10x_1 + 4x_2 + 16x_3 + 5x_4)/2 \rangle$$

虽然 x_i 和 y_1 , y_2 , y_3 应是整数,但是因生产量很大,可以把它们看成实数,从而用线性规划模型处理。

模型求解

LINDO发出警告信息:"数据之间的数量级差别太大,建议进行预处理,缩小数据之间的差别"

将所有决策变量扩大10000倍(x_i ~万张, y_i ~万件)

OBJECTIVE FUNCTION VALUE

1) 0.4298337

VARIABLE VALUE REDUCED COST

16.025000 **Y1** 0.000000 $\mathbf{X}\mathbf{1}$ 0.000000 0.000050 X24.012500 0.000000 X30.375000 0.000000 2.000000 X40.000000**Y2** 0.000000 0.223331 **Y3** 0.000000 0.036484 模式2生产40125张, 模式3生产3750张, 模式4生产20000张, 共产易拉罐160250个 (罐身和底、盖无剩余), 净利润为4298元

• 确定下料模式

• 构造优化模型

一维问题(如钢管下料)

规格不太多,可枚举下料模式,建立整数线性规划模型,否则要构造整数非线性规划模型,求解困难,可用缩小可行域的方法进行化简,但要保证最优解的存在。

二维问题(如易拉罐下料)

具体问题具体分析(比较复杂)

