Let \mathbb{V}_h be a finite element space on a trianglation T_h of the domain $\Omega\subset\mathbb{R}^d$ satisfying

$$\left\|u-\pi_h u\right\|_{L^2(\Omega)} \leq C h^{r+1} |u|_{H^{r+1}(\Omega)}$$

Given $u\in L_2(\Omega)$, let $u_h\in \mathbb{V}_h$ be the $L_2(\Omega)$ projection of u onto \mathbb{V}_h i.e.

$$(u_h, v) = (u, v) \forall v \in \mathbb{V}_h$$

where (\cdot,\cdot) is the scalar product in $L_2(\Omega).$ Prove the error estimate:

$$\left\|u-u_h\right\|_{L_2(\Omega)} \leq \inf_{v \in \mathbb{V}_h} \left\|u-v\right\|_{L_2(\Omega)} \leq C h^{r+1} |u|_{H^{r+1}(\Omega)}$$

and that

$$\left\|u_h\right\|_{L_2(\Omega)} \leq \left\|u\right\|_{L_2(\Omega)}$$

Proof:

Let $v \in \mathbb{V}_h$ be arbitrary, then

$$(u - u_h, v) = 0 \quad \forall v \in \mathbb{V}_h$$

Let $e=u_h-v\in\mathbb{V}_h,$ then $(e,v)=0\ \forall v\in\mathbb{V}_h$

$$\begin{split} \left\| u - u_h \right\|^2 &= (u - u_h, u - u_h) = (u - v + e, u - v + e) \\ &= (u - v, u - v) + (e, e) + 2(u - v, e) \\ &= (u - v, u - v) + (e, e) \\ &= \left\| u - v \right\|^2 + \left\| e \right\|^2 \end{split}$$

Therefore,

$$\|u-u_h\| \leq \inf_{v \in \mathbb{V}_h} \|u-v\|$$

Now, let $v = \pi_h u$, then

$$\inf_{v\in\mathbb{V}_{+}}\|u-v\|\leq\|u-\pi_{h}u\|\leq Ch^{r+1}|u|_{H^{r+1}(\Omega)}$$

Therefore,

$$\|u-u_h\|\leq \inf_{v\in\mathbb{V}_h}\|u-v\|\leq Ch^{r+1}|u|_{H^{r+1}(\Omega)}$$

Now, we prove that $\left\Vert u_{h}\right\Vert _{L_{2}\left(\Omega\right)}\leq\left\Vert u\right\Vert _{L_{2}\left(\Omega\right)}.$

Because $u_h \in \mathbb{V}_h$, $(u - u_h, u) = 0$, then

$$\begin{split} \left\|u_h\right\|^2 - \left\|u\right\|^2 &= (u_h + u, u_h - u) \\ &= (u - u_h, u_h - u) = - \left\|u - u_h\right\|^2 \leq 0 \end{split}$$

Therefore, $\left\Vert u_{h}\right\Vert _{L_{2}\left(\Omega\right)}\leq\left\Vert u\right\Vert _{L_{2}\left(\Omega\right)}$