شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته دفاع پروپوزال

محمدعلى خواجهئيان

استاد راهنما: زهرا شاطرزادهیزدی دانشکدهٔ علوم مهندسی / دانشگاه تهران

۲۷ اردیبهشت ۱۴۰۴

• مدلهای انتشار بیماری

• منطق فازی

ضرورت انجام يژوهش

🕥 پرسش های پژوهش

🙆 روش و فنون پژوهش

• بخش تئورى

• بخش پیاده سازی

زمانبدی پیشنهادی

🕜 پیشینه پژوهش

🔬 منابع و مراجع

صفحات بشتمان

- نعریف مسئله
 ۱
 پیشینه پژوهش
 پیشینه پژوهش
 پیشینه پژوهش

 ۱هداف
 روش و فنون پژوهش
 منابع و مراجع
- نجام پژوهش 🚱 زمانبدی پیشنهادی 🐧 صفحات پشتیبان 👣

تعريف مسئله

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

- این مورد فقط در قسمت اول دیده می شود
- این مورد تأکیدی در صفحهٔ دوم دیده میشود • موارد بیشتر

شكل ١: اولين تصوير

- ◄ نمونه از يک ليست دولايه در کناريک تصوير
- در این لیست موارد زیادی می تواند قرار بگیرد

- این مورد فقط در قسمت اول دیده میشود
- این مورد تأکیدی در صفحهٔ دوم دیده می شود

شكل ١: اولين تصوير

- ◄ نمونه از یک لیست دولایه در کنار یک تصویر
- در این لیست موارد زیادی میتواند قرار بگید
 - مثلاً
 -

اهداف

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

زنجيرة ماركوف

زنجيرهٔ ماركوف

- ◄ مدلی برای توصیف توالی رخدادهای احتمالی (فرایند تصادفی^۲)
- ◄ احتمال هر رخداد فقط به وضعیت رخداد قبلی خود وابسته (بدون حافظه")
 - ◄ قابل تعریف در دو حالت: زمان گسسته و زمان پیوسته

۲۷ اردیبهشت ۱۴۰۴

V /YA

¹Markov Chain

²Stochastic process

³Memory less

زنجيرة ماركوف

زنجيرهٔ ماركوف

- ◄ مدلی برای توصیف توالی رخدادهای احتمالی (فرایند تصادفی^۲)
- ◄ احتمال هر رخداد فقط به وضعیت رخداد قبلی خود وابسته (بدون حافظه ")
 - ◄ قابل تعریف در دو حالت: زمان گسسته و زمان پیوسته

جدول ۱: حالتهای معروف برای مدل مارکوف

زمان گسسته	زمان پيوسته	حالتها
زنجيره ماركوف	فرايند ماركوف	وضعيت گسسته
زنجيره ماركوف وضعيت پيوسته	فرايند ماركوف وضعيت پيوسته	وضعيت پيوسته

V /YA

¹Markov Chain

²Stochastic process

³Memory less

صفحات پشتیبان منابع و مراجع پیشینه پژوهش زمانبدی پیشنهادی روش و فنون پژوهش پرسش های پژوهش ضرورت انجام پژوهش **اهداف** تعریف . محموم محمود محمود محمود محمود محمود محمود محمود العداف تعریف .

نظريهٔ ميدان متوسط (*MFT)

- ◄ رفتار مدلهای بزرگ و پیچیدهٔ تصادفی را به کمک یک مدل سادهتر
- تبدیل یک مسئله با تعداد بسیار زیادی از اجزای کوچک که با یکدیگر در ارتباط هستند و رفتار تصادفی دارند
 - به یک مسئله سادهٔ تک ذرهای
 تحلیل رفتار میانگین کل ذرات را مدل میکند
 - ت علین رصار میونین می درات را میان می عدد
 - ◄ تبدیل و تحلیل یک مسئلهٔ بین ذرهای برای تعداد بی شمار ذره به یک روش تک ذرهای

شکل ۲: تبدیل مسئله بسیار ذرهای به تک ذرهای برای تحلیل رفتار کل ذرات در کنار هم به کمک نظریهٔ میدان متوسط

مدل اوليهٔ مستعد_بيمار_ايمن (SIR)

شكل ٣: مدل ماركوف انتشار سماري SIR

- ◄ مدل SIR در سال ۱۹۲۷ میلادی، توسط آقای ک ماک^۵ و آقای مککندریک^۶
 - S(t) سالم (در معرض ابتلا) در قالب I(t) مىتلأ در قالب \bullet
- R(t) در قالب (یا ایمن) در قالب $\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I$ (1) $\frac{dR}{dt} = \gamma I$

Kermack O. W. McKendrick G. A.

9 / 7 1

مدلهای معروف دیگر

- SIS: بازگشت به حالت مستعد پس از بیماری
- ▼ SIRS: بازگشت به دورهٔ مستعد پس از یک دورهٔ مشخص
- SEIS: وجود یک دورهٔ نهان و بدون علامت پس از ابتلا و قبل از بروز عفونت
 - MSIR: در نظر گرفتن وضعیت مصونیت کودکان در مقابل بیماری
 - ▼ SAIS: در نظر گرفتن وضعیت آگاه برای کاهش نرخ ابتلا
 - SIRC

 ✓

 اقل

 المحبت ناقل

 المحبت

 المح
 - الایک SIRV: با وضعیت هوشیاری^

⁷Carrier

⁸Vigilant ۲۷ اردیبهشت ۱۴۰۴

مدلهای معروف دیگر

- SIS: بازگشت به حالت مستعد پس از بیماری
- ▼ SIRS: بازگشت به دورهٔ مستعد پس از یک دورهٔ مشخص
- ▼ SEIS: وجود یک دورهٔ نهان و بدون علامت پس از ابتلا و قبل از بروز عفونت
 - ▼ MSIR: در نظر گرفتن وضعیت مصونیت کودکان در مقابل بیماری
 - ◄ SAIS: در نظر گرفتن وضعیت آگاه برای کاهش نرخ ابتلا
 - ▼ SIRC: با وضعیت ناقل
 - ^ SIRV: با وضعیت هوشیاری

مدل مستعد_آگاه_بیمار_مستعد (SAIS)

شكل ۵: مدل ماركوف انتشار بيماري SAIS

- کاهش نرخ ابتلا از β به β_a برای افراد آگاه و مراقب
- κ تغییر وضعیت به حالت آگاه و مراقب با نرخ

شکل ۴: تغییرات گذرا برای مدل SAIS

سفحات پشتیبان منابع و مراجع پیشینه پژوهش زمانیدی پیشنهادی روش و فنون پژوهش پرسش های پژوهش ضرورت انجام پژوهش **اهداف** تعریف محمدہ محمدہ برورت محمدہ محمدہ

<u>منطق فازی - ۱</u>

- ◄ روشي براي مدل کردن ارتباط بين ورودي و خروجي
 - ▼ تعریف مجموعهٔ فازی^۹
- ◄ اعضای مجموعهٔ فازی شامل متغیرهای زبانی هستند که مقادیر آنها از مقادیر زبانی ۱۰ انتخاب میشود.
 - ◄ تعریف مقدار حدودی بین تا ۱ برای ورودی و خروجیها (درجهٔ عضویت^{۱۱})

شكل ۶: تابع عضويت فازى براى دماى محيط

⁹Fuzzy Set

¹⁰Linguistic values

¹¹Membership grade

روش عملكرد منطق فازي

- ۱۰ تبدیل ورودیهای عددی به متغیرهای زبانی ۱۲ (غیر دقیق و حسی) یا فازی سازی و بر اساس تابع عضویت فازی
- استنتاج فازی مطابق با قواعد فازی تعریف شده (بر اساس توصیف زبانی اگر \rightarrow آنگاه) کا استنتاج فازی مطابق با قواعد فازی تعریف شده (بر اساس توصیف زبانی اگر
 - 😙 تبدیل خروجی فازی به یک متغیر عددی (فازی گشایی)
 - بر اساس **تابع عضویت فازی**
 - به کمک روشهای تجمیع سازی نتایج

۲۷ اردیبهشت ۱۴۰۴

ضرورت انجام پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

کارهای پیشین

دسته بندی کارهای پیشین در زمینهٔ شبکههای اجتماعی و انتشار بیماری یا ویروس:

- ۱ انتشار بیماری
- ساختار عمومی انتشار بیماری
- 😙 تأثیر گذاری اجتماعی و نفوذ فکری
 - 😯 تغییرات آگاهی و رفتار اجتماعی
 - 🙆 گراف پویا و تغییرات یال و گره
 - 🥱 تعادل و پایداری گراف
 - ٧ كنترل شبكه و تغيير سياست
 - \Lambda پیش بینی انتشار بیماری
 - ٩ انتشار ويروس و بد افزار رايانهاي

کارهای پیشین

دسته بندی کارهای پیشین در زمینهٔ شبکههای اجتماعی و انتشار بیماری یا ویروس:

- 🕦 انتشار بیماری
- ساختار عمومی انتشار بیماری
- 😙 تأثیر گذاری اجتماعی و نفوذ فکری
 - 😙 تغییرات آگاهی و رفتار اجتماعی
 - گراف پویا و تغییرات یال و گره
 - 🛭 تعادل و پایداری گراف
 - - پیش بینی انتشار بیماری
 - ۹ انتشار ویروس و بد افزار رایانهای

- ◄ بررسي مدل آشكار و نهان بر ميزان شيوع جامعه [١]
- ◄ بررسی مدل SEIR برای بیماری کووید_۱۹ با توجه به ارتباطهای بین شهری و بین کشوری در اروپا
 [۲،۳]
 - ◄ بررسي نويز (خطا در اطلاعات ورودي) و تأثير آن بر نتيجهُ تحليل مدل SIS [۴]
 - ◄ در نظر گرفتن واکسیناسیون در مدل SIS [۵]
 - ◄ تطبيق اطلاعات بيماري كوويد_١٩ در كشور فرانسه بر روى مدل SEIR [۶]

ساختار عمومي انتشار بيماري

- ▼ ساختار عمومی انتشار بیماری برای مدلهای رایج (مثل SIS, SAIS)[۷]
 - ◄ بررسی ساختارهای متداول بیماری بر روی شبکههای چند لایه [۸]

تأثیر گذاری اجتماعی و نفوذ فکری

- ◄ تحليل انتشار شايعه در شبكههاي اجتماعي برخط با در نظر گرفتن مدل نظريهُ بازي [٩]
- ◄ ارائهٔ یک مدل شبیه سازی برای بررسی شرایط و نتیجه رسیدن به اجماع در یک شبکهٔ برخط با دو گروه فکری مخالف با در نظر گرفتن کیفیت ارتباطها [۱۱،۱۱]
 - ◄ بررسي تأثير اخبار انتشار بيماري كوويد ـ ١٩ در شبكه هاي اجتماعي برخط [١٧]

مفحات پشتنیان منابع و مراجع پیشنیه پژوهش زمانبدی پیشنهادی روش و فنون پژوهش پرمش های پژوهش **ضرورت انجام پژوهش** اهداف تعری^ن ۱۳۵۸ م

تغییرات آگاهی و رفتار اجتماعی

- ◄ بررسی مدل بیماری ۱۳SEIV برای یک شبکه و تأثیر هوشیاری افراد بر تعداد ارتباطهای فعال با دیگران
 و زمان رسیدن به حالت پایدار بدون بیماری [۱۳، ۱۳]
 - ◄ تأثیر آگاهی و میزان شیوع بیماری در ارتباط بین افراد در یک شبکهٔ دو لایه (یک لایه ثابت و یک لایهٔ متغیر)[۱۵]

¹³Susceptible-Exposed-Infected-Vigilant

پرسش های پژوهش

مفحات پشتیبان منابع و مراجع پیشنیه پژوهش زمانبدی پیشنهادی روش و فنون پژوهش **پرسش های پژوهش** ضرورت انجام پژوهش اهداف تعریف ه ممممم مممم

فرايند كلي حل مسئله

شبيەسازى:

- 🕦 تصادفی (محاسبهٔ وضعیت و شرایط جدید هر گره و به روز کردن همه گرهها در یک لحظه)
- 🕜 آماری (محاسبهٔ امید ریاضی و میانگین وضعیت و شرایط انتقال برای کل شبکه در مدل مارکوف)

مدلسازى:

- 🕦 تعریف متغیرهای فازی و توابع عضویت (فضای پیوسته)
- 🕥 تعریف جدول قواعد فازی (ارتباط بین ورودی و خروجیهای مسئله)
 - 😙 تعریف روابط ریاضی تجمیع سازی برای هر گره
 - 😙 تعریف مدل مارکوف معادل
 - تعریف روابط آماری و کلی (مبتنی بر نظریهٔ میدان متوسط)
 - 🤣 تعریف الگوی بیماری
 - سبيهسازى

۲۷ اردیبهشت ۱۴۰۴

سفحات پشتیبان منابع و مراجع پیشینه پژوهش زمانیدی پیشنهادی روش و فنون پژوهش **پرسش های پژوهش** ضرورت انجام پژوهش اهداف تعریف ه مممم مممم مممم مممم مممم

فرايند كلي حل مسئله

شبيەسازى:

- 🕥 تصادفی (محاسبهٔ وضعیت و شرایط جدید هر گره و به روز کردن همه گرهها در یک لحظه)
- ۲ آماری (محاسبهٔ امید ریاضی و میانگین وضعیت و شرایط انتقال برای کل شبکه در مدل مارکوف) مدلسازی:
 - 🕦 تعریف متغیرهای فازی و توابع عضویت (فضای پیوسته)
 - 🕥 تعریف جدول قواعد فازی (ارتباط بین ورودی و خروجیهای مسئله)
 - 😙 تعریف روابط ریاضی تجمیع سازی برای هر گره
 - 😙 تعریف مدل مارکوف معادل
 - ۵ تعریف روابط آماری و کلی (مبتنی بر نظریهٔ میدان متوسط)
 - 🕑 تعریف الگوی بیماری
 - سبيهسازى 🗸

روش و فنون پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

قسمت ع

زمانبدی پیشنهادی

پیشینه پژوهش

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

منابع و مراجع

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

- Chen, Yi-Cheng, Lu, Ping-En, Chang, Cheng-Shang, and Liu, Tzu-Hsuan.
 A time-dependent sir model for covid-19 with undetectable infected persons.
 IEEE Transactions on Network Science and Engineering, 7(4):3279-3294, 2020.
- [2] Wang, Wei, Liu, Quan-Hui, Liang, Junhao, Hu, Yanqing, and Zhou, Tao. Coevolution spreading in complex networks. *Physics Reports*, 820:1–51, 2019.
- [3] Estrada, Ernesto.Covid-19 and sars-cov-2. modeling the present, looking at the future.Physics Reports, 2020.
- [4] Vizuete, Renato, Frasca, Paolo, and Garin, Federica. Graphon-based sensitivity analysis of sis epidemics. IEEE Control Systems Letters, 4(3):542–547, 2020.
- [5] Khanjanianpak, Mozhgan, Azimi-Tafreshi, Nahid, and Castellano, Claudio. Competition between vaccination and disease spreading. *Physical Review E*, 101(6):062306, 2020.
- [6] Efimov, Denis and Ushirobira, Rosane.
 On interval prediction of covid-19 development in france based on a seir epidemic model.
 in 2020 59th IEEE Conference on Decision and Control (CDC), pp. 3883–3888. IEEE, 2020.

- [7] Moon, Sifat Afroj, Sahneh, Faryad Darabi, and Scoglio, Caterina. Group-based general epidemic modeling for spreading processes on networks: Groupgem. *IEEE Transactions on Network Science and Engineering*, pp. 1–1, 2020.
- Abhishek, Vishal and Srivastava, Vaibhav.
 Sis epidemic model under mobility on multi-layer networks.
 in 2020 American Control Conference (ACC), pp. 3743-3748. IEEE, 2020.
- [9] Huang, D. W., Yang, L. X., Li, P., Yang, X., and Tang, Y. Y.
 Developing cost-effective rumor-refuting strategy through game-theoretic approach. *IEEE Systems Journal*, pp. 1–12, 2020.
- [10] Bolzern, P., Colaneri, P., and De Nicolao, G.
 Opinion dynamics in social networks: The effect of centralized interaction tuning on emerging behaviors.
 IEEE Transactions on Computational Social Systems, 7(2):362-372, 2020.
- [11] Nettasinghe, Buddhika, Krishnamurthy, Vikram, and Lerman, Kristina.
 Diffusion in social networks: Effects of monophilic contagion, friendship paradox, and reactive networks.
 IEEE Transactions on Network Science and Engineering, 7(3):1121–1132, 2019.
- [12] Cinelli, Matteo, Quattrociocchi, Walter, Galeazzi, Alessandro, Valensise, Carlo Michele, Brugnoli, Emanuele, Schmidt, Ana Lucia, Zola, Paola, Zollo, Fabiana, and Scala, Antonio. The covid-19 social media infodemic. Scientific Reports, 10(1):1–10, 2020.

17/07

- [13] Li, Zhixun, Hong, Jie, Kim, Jonghyuk, and Yu, Changbin. Control design and analysis of an epidemic seiv model upon adaptive network. in 2019 18th European Control Conference (ECC), pp. 2492–2497. IEEE, 2019.
- [14] Bhowmick, Sourav and Panja, Surajit. Influence of opinion dynamics to inhibit epidemic spreading over multiplex network. IEEE Control Systems Letters, 5(4):1327-1332, 2020.
- [15] Sahneh, F. D., Vajdi, A., Melander, J., and Scoglio, C. M. Contact adaption during epidemics: A multilayer network formulation approach. IEEE Transactions on Network Science and Engineering, 6(1):16–30, 2019.

صفحات پشتيبان

شکستن پروتکلهای رمزنگاری با استفاده از حملات کوانتومی متغیر پیشرفته

اثبات رياضي

قضیه (Pythagoras)

اثبات ریاضی

اثبات.
$$\omega + \phi = \epsilon$$

اثبات ریاضی

اثبات.
$$\omega + \phi = \epsilon$$

نتيجه

$$x + y = y + x$$

نتیاج شبیهسازی آماری

(آ) یادگیری=۵۰.۰ و فراموشی=۵.۰

شكل ٧: نتيجهٔ اجراي شبيهسازي آماري در دو حالت

۱ Algorithm الگوريتم اجراي برنامهٔ شبيهسازي براي حالت اميد رياضي

ورودی: زمان t_{max} به عنوان زمان لازم برای انجام شبیه سازی، ورودی: توزیع درجهٔ گراف برای شبیهسازی،

خروجي: ماتريس تغييرات گراف از لحظهٔ • تا درست

۱: برای t از ۰ تا t_{max} انجام بده

محاسبه نرخ انتقال بيماري

محاسبهٔ نرخ یادگیری فراموشی :٣

محاسبهٔ وضعیت جدید مدل مارکوف بیماری و آگاهی

٥: يايان حلقهٔ براي

۶: **بازگردان** ماتریس تغییرات زمانی

۲۷ اردیبهشت ۱۴۰۴

YA /YA