

Introdução à Criptografia

Dênio Mariz, Dr. denio@ifpb.edu.br

Março, 2019

of. Dênio Mariz. IFPB

Segurança da Informação: Objetivos e Requisitos

- → Integridade
 - Manutenção do estado da informação, comprovando que não foi modificada enquanto armazenada ou em trânsito
- Confidencialidade
 - Garantia de que apenas pessoas autorizadas tenham acesso a informação
- Autenticação
 - Confirmação da identidade de uma pessoa ou dispositivo
 - Autenticação de mensagem: quando a parte receptora pode verificar a origem da mensagem
- Não repúdio (irrefutabilidade)
 - O autor de uma informação não pode contestar com êxito sua autoria ou validade.
- Disponibilidade
 - Garantia que a informação estará disponível quando necessária
 - Muito relacionado com infraestrutura

Criptografia

- Criptografia, Criptologia
 - A prática e estudo de técnicas para comunicação segura (confidencial) na presença terceiros
- → Etimologia
 - Do grego kryptós (escondido, secreto) e graphein (escrita)

rof. Dênio Mariz. IFPB

Sistemas Criptográficos

- Criptografia Simétrica: UMA chave compartilhada
 - Existe simetria: a chave é a mesma para cifrar e decifrar
 - A chave é compartilhada com ambos os lados da comunicação
- Criptografia Assimétrica: DUAS chaves
 - Chave pública = compartilhada
 - Chave privada = nunca compartilhada
 - Se uma cifra, a outra decifra (qualquer ordem)

- →Em ambos os tipos
 - A chave é o segredo, não o algoritmo! (Kerckhoffs's principle)

Terminologia

→ Quem envia? Alice

→ Quem recebe? Bob

→ Um terceiro no meio: Maria

→ Um terceiro confiável: Ted (trusted)

→ Funções

Cifrar e DecifrarOU

Encriptar e DecriptarOU

Criptografar e Decriptografar

Mensagem Original: TEXTO PLANO (plain text/clear text)

→ Mensagem resultante: TEXTO CIFRADO (cipher text)

- → Notação usada:
 - X Texto Plano
 - Y Texto Cifrado
 - E Função para cifragem (encryption)
 - D Função para decifragem (decryption)
 - K Chave
- \rightarrow Assim: Y = E(K,X) e X = D(K,Y)

Sistema Criptográfico Simétrico

Obs: O texto cifrado Y não contém informações sobre a chave K

Técnica 1: Substituição Monoalfabética 1/2

- → Uma letra é substituída por outra
- Cifrador de Julius Caesar
 - Chave é um inteiro
 - Cada letra é somada com a chave

→ Exemplo: chave=3

PlainText: IMPETUM GERMANIAE MERIDIONALIS

CipherText: LPSHWXP JHUPDQLDH PHULGLRQDOLV

Técnica 1: Substituição Monoalfabética

- → Forma geral do Algoritmo de Julius Caesar
 - Considerando a=1, b=2, ..., z=26
 - Para cada letra X, substitua pela letra cifrada Y
 - Cifrar: $Y=E(X)=(X-1+K) \mod 26 + 1$
 - Decifrar: X=D(Y)=(Y-K-1) mod 26 + 1

→ Questão: com quantas tentativas se quebra o algoritmo de Caesar ?

Técnica 1: Substituição Monoalfabética 2/2

- → Cifrador de Vigenère
 - A chave é um texto
 - Chave é combinada com texto plano
- → Exemplo:
 - Chave = "DECEPTIVE"
 - Texto Plano: "WE ARE DISCOVERED SAVE YOURSELF"
 - Algoritmo: (vide tabela adiante)

Plaintext: WEAREDISCOVEREDSAVEYOURSELF

Key: DECEPTIVEDECEPTIVE

Ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

Texto Plano

Chave

b

C

d

e

g

G Р 0 Q X D Ε G Q R b Ν M О Ε R Q S W Н M Ν O В В d F G Н R S D Ε K G Н O R W D Ε M Q g h S Н Ν Q R W Ε F K В O S В G Н Ν G Р В Н Q G S W Н M Ν Q В D M В G N O D K Р R S В Ε G Ν O Н K S W Ε Н K M n R E G Ν M 0 R D G Н M Ν 0 S R G Q В Н M Ν O Р R G Р Н M O Q В D Ν S В Ε G Ν 0 Р Q R R S S

m

n

0

р

q

S

u

V

Plaintext: WEAREDISCOVEREDSAVEYOURSELF

Key: DECEPTIVEDECEPTIVE

Ciphertext: ZICVTWQNGRZGVTWAVZHCQYGLMGJ

U V V W W X

W

X

Z

XY

Prof. Dênio Mariz, IFPB

→ Considere o texto em Inglês cifrado abaixo

UZ QSO VUOHXMOPV UGATERGPO EVSG ZWSZOPF PESXUDBM ETS XAIZVU HZHDMZSH ZOWS FPAP PDTS TRRE VPQUZWYMX UZUHSXEPYEPOPDZ SZ UFP OMBZ WPFU PZ HMDJUD

→e a frequência de ocorrência das letras

P 13, 33	H 5, 83	F 3, 33	B 1, 67	C 0, 00
Z 11, 67	D 5, 00	W 3, 33	G 1, 67	K 0, 00
S 8, 33	E 5, 00	Q 2, 50	Y 1, 67	L 0, 00
U 8, 33	V 4, 17	T 2, 50	I 0, 83	N 0, 00
O 7, 50	X 4, 17	A 1, 67	J 0, 83	R 0, 00
M 6 67	•	•	•	•

- Substituição monoalfabética pode ser criptoanalisada por métodos estatísticos
- → Estatisticamente pode-se inferir um parâmetro ē populacional a partir de ê amostral...
- → Traduzindo...
 - Sabendo-se a frequência relativa das letras de uma língua, pode-se deduzir que substituições foram feitas, sem necessariamente saber a tabela de permutação

→ Considere também a frequência das letras de textos em Inglês (amostral ~ populacional)

→ O texto abaixo

UZ QSO VUOHXMOPV UGATERGPO EVSG ZWSZOPF PESXUDBM ETS XAIZVU HZHDMZSH ZOWS FPAP PDTS TRRE VPQUZWYMX UZUHSXEPYEPOPDZ SZ UFP OMBZ WPFU PZ HMDJUD

→ foi decifrado como

It was disclosed yesterday that several informal but direct contacts have been made with political representatives of the viet cong in moscow

of Dânio Mariz IFPR

Técnica 2: Transposição

INSTITUTO FEDERAL DE
EDUCAÇÃO CIÊNCIA E
TECNOLOGIA
PARAÍBA

- → Cada caractere permanece inalterado, mas troca de posição
- → Exemplo:
 - Chave: 426315 (bloco de 6 caracteres)
 - Posição 1 vai para 4, posição 2 vai para 2, posição 3 vai para 6 ...

Plaintext: WE ARE DISCOVERED SAVE YOURSELF****

Key: 426315426315426315426315426315

Ciphertext: REAWE CDS OIDEEV R AESYVEUSOLR***F**

Técnicas de Criptografia Clássicas

- → Máquina dos Três Rotores
- → Composta por:
 - Conjunto de três cilindros independentes
 - Cada cilindro tem 26 entradas e 26 saídas
 - Ao associar uma entrada a uma letra temos um cifrador monoalfabético
 - Múltiplos cilindros implica em polialfabético

rof. Dênio Mariz. IFPB

Enigma Cipher Machine

- Máquina de criptografia com "rotores" foi inventada pelo engenheiro alemão Arthur Scherbius em 1918 para cifrar mensagens na área de finanças.
- Adotada e melhorada pelo exército alemão. Usada durante a WWII com o nome de "Enigma".
- Usa substituição + transposição (difusão).
- Criptografia simétrica.
- Quebrada pelos aliados em 1940.

Enigma Cipher Machine

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA

A "quebra" da Enigma Cipher Machine

- Durante a guerra (1938-1945) aliados decifraram 50 mil mensagens
- →2 mil mensagens eram interceptadas por dia (total de 5 milhões no período)
- → Eficiência de 1% na quebra das mensagens cifradas

Marian Rejewski, matemático polonês que "criptoanalisou" a Enigma em 1932

Alan Turing, matemático inglês que automatizou a quebra da Enigma

The Imitation Game (original title)

12 | 1h 54min | Biography, Drama, Thriller | 5 February 2015 (Brazil)

IMDbPro

During World War II, the English mathematical genius Alan Turing tries to crack the German Enigma code with help from fellow mathematicians.

Director: Morten Tyldum

Writers: Graham Moore, Andrew Hodges (book)

Stars: Benedict Cumberbatch, Keira Knightley, Matthew Goode | See full cast & crew »

Referências

- >en.wikipedia.org/wiki/TypeX
- en.wikipedia.org/wiki/SIGABA
- en.wikipedia.org/wiki/History_of_cryptography
- Cryptography FAQ, www.x5.net/faqs/crypto/
- Center for Cryptologic History (National Security Agency, USA), http://www.nsa.gov/cch