

Durantin Cédric

Soutenance de thèse

<u>Directeur de thèse</u>: Jean-Antoine Désidéri (INRIA)

Co-directeur : Alain Glière (CEA)

MÉTAMODÉLISATION ET OPTIMISATION DE DISPOSITIFS PHOTONIQUES

Devant le jury composé de : 28/05/2018

Régis Orobtchouk Maître de Conférence HDR INSA Rapporteur

Pierre Alain Boucard Professeur Université Paris Sud 11 Rapporteur

Delphine Sinoquet Ingénieur-chercheur IFPEN Examinatrice

Rodolphe Le Riche Directeur de recherche CNRS Examinateur

Travaux effectués au sein du département d'optique et de photonique du CEA LETI

Ecrans

Eclairage

Capteur optique

Photonique sur silicium

Imageur dans le visible

Infrarouge refroidis

SOFRADIR

Bolomètre

Technologie pour écrans

Modélisation numérique : un outil indispensable en conception

physique

physique

numérique

- Moins coûteux/long que le prototypage.
- Synthèse de connaissances liées à des phénomènes physiques.
- Temps de calcul important pour les modèles complexes.

Images: Sources externes

Méthodes numériques spécifiques à mettre en place pour les exploiter.

Métamodélisation Planification d'expérience Analyse de sensibilité

Optimisation Multifidélité Contraintes Variables mixtes

Grande dimension Problème inverse **Fiabilité**

Sorties fonctionnelles Calibration Robustesse Multi-objectif

 Méthodes numériques spécifiques à mettre en place pour les exploiter.

Planification d'expérience Analyse de sensibilité Métamodélisation

Optimisation Multifidélité Contraintes Variables mixtes

Grande dimension Problème inverse Fiabilité

Sorties fonctionnelles Robustesse Multi-objectif Calibration

- Trois cas d'études représentatifs sont utilisés pour identifier les besoins.
 - Microsource infrarouge : optimisée par expertise scientifique.
 - Cellule photoacoustique : deux modélisations disponibles.
 - Coupleur directonnel adiabatique : robustesse pour la fabrication.

CONCEPTS POUR L'OPTIMISATION

Réalisation du système liée à un besoin fonctionnel :

Objectif

Contraintes

Paramètres de conception

Paramètres environnementaux

Plusieurs problèmes d'optimisation :

Classique: $\min f(\mathbf{x})$

 $\min_{x \to 0} f(\mathbf{x}) \text{ sous } g_i(\mathbf{x}) < 0, i = 1, ..., G$ Sous contraintes:

 $\min_{\mathbf{x}} \{ f_1(\mathbf{x}), \dots, f_F(\mathbf{x}) \}$ Multi-objectif:

 $\min \rho(f(\mathbf{x}, \mathbf{z}))$ Robuste:

CAS TEST N°1: MICROSOURCE INFRAROUGE

Source d'un capteur de gaz bas coût :

Modèle de couplage thermoélectrique :

$$P_{joule} = \int_{volume} \rho_E \mathbf{J}^2 d\mathbf{v}$$

$$-k_{T}\Delta\mathbf{T} = P_{joule}$$

9 paramètres de conception:

- Huit géométriques.
- La tension aux bornes de la source.

3 objectifs:

- Température moyenne
- Puissance rayonnée
- Efficacité

1 contrainte :

Température maximale inférieure à 650 °C

CAS TEST N°2: CELLULE PHOTOACOUSTIQUE

Cuve d'un capteur pour la détection de traces de gaz :

Mécanique des fluides : Equations de Navier-Stokes 90 min

> Acoustique: Equation d'Helmholtz 3 min

3 paramètres géométriques

2 objectifs à étudier :

- Signal mesuré
- Fréquence de résonance

CAS TEST N°3: COUPLEUR DIRECTIONNEL ADIABATIQUE

Processus de fabrication :

CAS TEST N°3: COUPLEUR DIRECTIONNEL ADIABATIQUE

Composant optique permettant de réaliser une division de puissance:

Equation d'Helmholtz avec hypothèse SVEA

4 paramètres géométriques

Etude de la robustesse l'écart au taux de couplage :

$$T_c = \left| \frac{P_1(\lambda, x) - 0.5}{P_1(\lambda, x) + P_2(\lambda, x)} \right|$$

RÉSUMÉ

Cas d'application	Microsource infrarouge	Cellule photoacoustique	Coupleur directionnel	
Nombre de paramètres	9	3	4	
Temps de simulation (20 CPU, 2.4 GHz)	9 sec	1h30 / 3 min	5 min	
Nombre d'objectifs	3	2	1	
Nombre de contraintes	1	0	0	
Cadre de l'optimisation	Déterministe	Déterministe	Robuste	
Estimation temps d'optimisation	~ 50 h	~ 4500 h	~ 3500 h	

PLAN

• Microsource infrarouge • Cellule photoacoustique • Coupleur directionnel I. Introduction • Krigeage • RBF II. Métamodèles • Cadre général • Optimisation à un objectif avec ou sans contrainte III. Stratégies adaptatives pour l'optimisation • Microsource optimisée en efficacité • Co-RBF • Méthode EI-MGDA IV. Contributions

PLAN

• Microsource infrarouge • Cellule photoacoustique • Coupleur directionnel I. Introduction • Krigeage • RBF II. Métamodèles • Cadre général • Optimisation à un objectif avec ou sans contrainte III. Stratégies adaptatives pour l'optimisation • Microsource optimisée en efficacité • Co-RBF • Méthode EI-MGDA IV. Contributions

PRINCIPE DE LA MÉTAMODÉLISATION

On considère le modèle numérique comme une boite noire :

La simulation coûteuse en temps de calcul va être remplacée par un modèle de substitution (métamodèle) :

PLAN D'EXPÉRIENCE

- Le but est d'obtenir le plus d'informations sur la simulation à partir d'un faible nombre d'évaluations.
 - Plans de type « space filling » recherchés.

Deux plans à retenir ici :

Source: Pronzato, PECNUM 2015

MÉTAMODÈLE

Cadre de la simulation numérique (expériences répétables).

Choix du krigeage et des fonctions à base radiale (RBF) parmi le grand choix de méthodes possibles.

Multiple Adaptive Regression Splines

Support Vector Regression Radial Basis Functions

Inductive Learning Sparse Grids Kriging

Moving Least Squares Least Interpolating Polynomials

Polynomial Chaos Expansion Artificial Neural Network

Source: https://www.inspire-orientation.org

KRIGEAGE

La relation entrée/sortie est considérée comme la réalisation d'un processus gaussien stationnaire.

$$\mathbf{Z}_{tr} \sim GP(\mathbf{\mu}_{tr}, \mathbf{C}_{tr})$$

$$\mathbf{C}_{tr}(\mathbf{x}, \mathbf{x}') = \sigma_{GP}^2 R_{tr}(\mathbf{x}, \mathbf{x}'), \quad (\mathbf{x}, \mathbf{x}') \in \mathbb{X} \times \mathbb{X}$$

Exemple de la fonction d'autocorrélation gaussienne :

$$R(\mathbf{x}, \mathbf{x}', \mathbf{\theta}) = \exp(-\|\mathbf{x} - \mathbf{x}'\|_{\mathbf{\theta}}^2).$$

KRIGEAGE

Le processus gaussien est conditionné pour interpoler les points d'entrainement :

La moyenne fournie la prédiction, la variance permet l'estimation d'un intervalle de confiance :

$$\hat{y}(\mathbf{x}) = \mathbb{E}[\mathbf{Z}_{te}|\mathbf{Z}_{tr}] = \mu_0 + \mathbf{\Sigma}_{\mathbf{x}}\mathbf{C}_{tr}^{-1}(\mathbf{Y}_{tr} - \mu_0)$$

$$\hat{\sigma}_{\hat{y}}^2(\mathbf{x}) = \sigma_{GP}^2 \left(1 - \mathbf{\Sigma}_{\mathbf{x}}\mathbf{C}_{tr}^{-1}\mathbf{\Sigma}_{\mathbf{x}}^{\mathrm{T}} + \frac{\left(1 - \mathbf{1}^{\mathrm{T}}\mathbf{C}_{tr}^{-1}\mathbf{\Sigma}_{\mathbf{x}}^{\mathrm{T}}\right)^2}{\mathbf{1}^{\mathrm{T}}\mathbf{C}_{tr}^{-1}\mathbf{1}}\right)$$

KRIGEAGE

Ce qui est caché:

Optimisation de paramètres pour régler au mieux le modèle sur les données.

- Choix de la fonction de corrélation.
- Lenteur numérique en haute dimension (m > 20).

Mais!

Performances de prédiction satisfaisantes dans une majorité des cas.

Décomposition de $\mathcal M$ sur des fonctions radiales :

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{n} \beta_i \varphi_R \left(\mathbf{x} - \mathbf{x}_{tr}^{(i)} \right)$$

Cas φ_R définie positive

Interpolation des données :

$$\mathbf{Y}_{tr} = \mathbf{\Phi}_{tr} \mathbf{\beta}$$
 avec $\mathbf{\Phi}_{tr_{i,i}} = \varphi_R \left(\mathbf{x}_{tr}^{(i)} - \mathbf{x}_{tr}^{(j)} \right)$

Décomposition de $\mathcal M$ sur des fonctions radiales :

$$\hat{y}(\mathbf{x}) = \sum_{i=1}^{n} \beta_i \varphi_R \left(\mathbf{x} - \mathbf{x}_{tr}^{(i)} \right) + Q(\mathbf{x})$$

Cas φ_R conditionnellement définie positive

avec
$$Q(\mathbf{x}) = \sum_{k=1}^{l_0} \alpha_k p_{k-1}(\mathbf{x})$$

Vérification que Φ_{tr} est conditionnellement définie positive :

$$\forall \boldsymbol{\beta} \in \mathbb{R}^{n*}$$
, si $\sum_{i=1}^{n} \beta_i p_j \left(\mathbf{x}_{tr}^{(i)} \right) = 0$ alors $\left| \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_i \beta_j \boldsymbol{\Phi}_{tr_{ij}} \ge 0 \right|$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \beta_i \beta_j \mathbf{\Phi}_{tr_{ij}} \ge 0$$

Interpolation des données :

$$\mathbf{Y}_{tr} = \mathbf{\Phi}_{tr} \mathbf{\beta} + \mathbf{F}_{tr} \mathbf{\alpha}$$
 avec

$$\begin{split} & \boldsymbol{\Phi}_{tr_{ij}} = \varphi_R \left(\mathbf{x}_{tr}^{(i)} - \mathbf{x}_{tr}^{(j)} \right) \\ & \mathbf{F}_{tr} = \left(p_0(\mathbf{X}_{tr}), \dots, p_{l_0 - 1}(\mathbf{X}_{tr}) \right). \end{split}$$

Estimation des paramètres par la résolution du système :

$$\begin{pmatrix} \mathbf{\Phi}_{tr} & \mathbf{F}_{tr} \\ \mathbf{F}_{tr}^{\mathrm{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{\beta} \\ \mathbf{\alpha} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_{tr} \\ \mathbf{0} \end{pmatrix}$$

	$arphi_R(\mathbf{x}-\mathbf{x}')$	Ordre l_0
Linéaire	$\ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}}$	1
Cubique	$(\ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}})^3$	2
Spline en plaque mince	$\ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}}^2 \ln(\ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}})$	2
Multiquadrique	$\sqrt{\sum_{i=1}^{d} \left(\frac{1}{\theta_i^2} + \ x_i - x_i'\ _2^2 \right)}$	1
Inverse multiquadrique	$\left(\sum_{i=1}^{d} \left(\frac{1}{\theta_i^2} + \ x_i - x_i'\ _2^2\right)\right)^{-1/2}$	0
Matérn 3/2	$(1 + \sqrt{3} \ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}}) \times \exp(-\sqrt{3} \ \mathbf{x} - \mathbf{x}'\ _{\boldsymbol{\theta}})$	0
Matérn 5/2	$\left(1+\sqrt{5}\ \mathbf{x}-\mathbf{x}'\ _{\boldsymbol{\theta}}+\frac{5}{3}\ \mathbf{x}-\mathbf{x}'\ _{\boldsymbol{\theta}}^{2}\right)\times\exp\left(-\sqrt{5}\ \mathbf{x}-\mathbf{x}'\ _{\boldsymbol{\theta}}\right)$	0
Gaussienne	$\exp\left(-\ \mathbf{x}-\mathbf{x}'\ _{\boldsymbol{\theta}}^{2}\right)$	0

- Nécessite des hypothèses moins fortes que le krigeage.
 - Mais pas d'intervalle de confiance disponible.

$$P_{\varphi}(\mathbf{x}) = \sqrt{(-1)^{l_0} \times \left(\varphi_R(0) - (\mathbf{u}_{\mathbf{x}}^{\mathrm{T}} \quad \mathbf{F}_{\mathbf{x}}^{\mathrm{T}}) \begin{pmatrix} \mathbf{\Phi}_{tr} & \mathbf{F}_{tr} \\ \mathbf{F}_{tr}^{\mathrm{T}} & 0 \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{u}_{\mathbf{x}} \\ \mathbf{F}_{\mathbf{x}} \end{pmatrix}\right)}$$

SYNTHÈSE SUR LES CAS D'APPLICATION

Krigeage:

PLAN

• Microsource infrarouge • Cellule photoacoustique • Coupleur directionnel I. Introduction • Krigeage • RBF II. Métamodèles • Cadre général • Optimisation à un objectif avec ou sans contrainte III. Stratégies adaptatives pour l'optimisation • Microsource optimisée en efficacité • Co-RBF • Méthode EI-MGDA IV. Contributions

CADRE GÉNÉRAL DES STRATÉGIES ADAPTATIVES

CRITÈRES RETENUS POUR L'OPTIMISATION

Krigeage:

$$EI = (y_{\min} - \hat{y})\Phi\left(\frac{y_{\min} - \hat{y}}{\hat{\sigma}_{\hat{y}}}\right) + \hat{\sigma}\phi\left(\frac{y_{\min} - \hat{y}}{\hat{\sigma}_{\hat{y}}}\right)$$

RBF:

$$GUT(\mathbf{x}) = \left(\frac{P_{\varphi}(\mathbf{x})}{\hat{y}(\mathbf{x}) - f_{\min}^*}\right)^2$$

PLAN

• Microsource infrarouge • Cellule photoacoustique • Coupleur directionnel I. Introduction • Krigeage • RBF II. Métamodèles • Cadre général • Optimisation à un objectif avec ou sans contrainte III. Stratégies adaptatives pour l'optimisation • Microsource optimisée en efficacité • Co-RBF • Méthode EI-MGDA IV. Contributions

RAPPELS SUR LA MICROSOURCE INFRAROUGE

9 paramètres de conception:

- Huit géométriques.
- La tension aux bornes de la source.

3 objectifs:

- Température moyenne
- Puissance rayonnée
- Efficacité

$$r_1 + e_1 + 10^{-6} \le r_2$$

 $r_2 + e_2 + 10^{-6} \le r_3$
 $r_3 + e_3 + 10^{-6} \le 125 \times 10^{-6}$

contrainte :

Température maximale inférieure à 650 °C

OPTIMISATION DE LA MICROSOURCE INFRAROUGE

	Température moyenne (°C)	Puissance rayonnée (W)	Puissance électrique consommée (W)	Efficacité (%)
Puissance rayonnée optimisée	645.1	4.6 ^e -4	2.6e-3	17.57
Température moyenne optimisée	645.1	4.6 ^e -4	2.5 ^e -3	18.09
Efficacité Optimisée (1 piste)	625	4.2 ^e -4	1.3 ^e -3	31.56

RAPPELS SUR LA CELLULE PHOTOACOUSTIQUE

3 paramètres géométriques

2 objectifs à étudier :

- Signal mesuré
- Fréquence de résonance

Deux modèles numériques disponibles

MÉTAMODÉLISATION MULTIFIDÉLITÉ (CELLULE PA)

Point de départ :

	Sorties	Krigeage		RBF	
Kreuzer	Signal	0.0050±0.0012	Gauss	0.0055±0.0018	Gauss
	Fréquence	0.0023±0.0006	Gauss	0.0029±0.0012	Gauss
FLNS	Signal	0.1425±0.0754	Mat 52	0.1222±0.0603	Inv multi
	Fréquence	0.0351±0.0086	Gauss	0.0241±0.0077	Cub

MÉTAMODÉLISATION MULTIFIDÉLITÉ

- Le but du métamodèle multifidélité est d'utiliser l'information venant des deux modèles.
 - Evofusion (Forrester.)
 - Approche par modèle autorégressif la plus répandue.
 - Hypothèse de corrélation croisée (Zimmermann).
 - Multifidélité avec le gradient fournis par la simulation

Détails sur le modèle autorégressif :

$$Z_{HF}(\mathbf{x}) = \rho_{LF} \times Z_{LF}(\mathbf{x}) + Z_D(\mathbf{x})$$

On a appliqué le modèle autorégressif pour les RBF : co-RBF

CELLULE PHOTOACOUSTIQUE

Extrait des résultats de comparaison entre co-krigeage et co-RBF :

Signal

Fréquence de résonance

CELLULE PHOTOACOUSTIQUE

Extrait des résultats de comparaison entre co-krigeage et co-RBF :

CELLULE PHOTOACOUSTIQUE

- Optimisation à partir de 5 points HF et 100 points LF :
 - 16 appels au modèle HF autorisés.

DOE initial	Valeur du minimum (Pa)		Localisation du minimum		
	co-krigeage	co-RBF	co-krigeage	co-RBF	
1	-1.88	-1.91	$[0.02, 4.18e^{-4}, 0.0179]$	$[0.02, 5.00e^{-4}, 0.0177]$	
2	-1.87	-1.90	$[0.02, 5.00e^{-4}, 0.0159]$	$[0.02, 4.97e^{-4}, 0.0173]$	
3	-1.91	-1.90	$[0.02,4.86e^{-4},0.0188]$	$[0.02, 4.73e^{-4}, 0.0200]$	
4	-1.90	-1.88	$[0.02, 4.54e^{-4}, 0.0200]$	$[0.02, 5.00e^{-4}, 0.0200]$	
5	-1.87	-1.91	$[0.02, 4.58e^{-4}, 0.0200]$	$[0.02, 4.46e^{-4}, 0.0200]$	

RAPPELS SUR LE COUPLEUR DIRECTIONNEL

4 paramètres géométriques

Etude de la robustesse l'écart au taux de couplage :

$$T_c = \left| \frac{P_1(\lambda, x) - 0.5}{P_1(\lambda, x) + P_2(\lambda, x)} \right|$$

Concevoir des composants robustes en longueur d'onde est une heuristique pour assurer la robustesse en fabrication

> J. Lu and J. Vučković, "Nanophotonic computational design," Optics Express, vol. 21, no. 11, p. 13351, Jun. 2013.

RÉSULTATS APRÈS FABRICATION

Mesures effectuées sur un dispositif obtenu avec une méthode moins évoluée:

Choix du pire scénario

$$EI = (r_{\mathcal{K}} - \hat{y}_{\text{max}})\Phi\left(\frac{r_{\mathcal{K}} - \hat{y}_{\text{max}}}{\hat{\sigma}}\right) + \hat{\sigma}\phi\left(\frac{r_{\mathcal{K}} - \hat{y}_{\text{max}}}{\hat{\sigma}}\right)$$

S. ur Rehman, M. Langelaar, and F. van Keulen, "Efficient Kriging-based robust optimization of unconstrained problems," Journal of Computational Science, vol. 5, no. 6, pp. 872-881, Nov. 2014.

Echec de l'optimisation, erreur de prédiction trop importante :

Choix envisagés pour garantir la réussite de l'optimisation robuste :

Discrétisation du paramètres de longueur d'onde

 $\lambda = \{1260; 1310; 1360\}$ nm

Métamodélisation pour variables mixtes

Formulation multi-objectif du problème du pire scénario

- Discrétisation de la longueur d'onde
 - Utilisation d'une méthode multi-objectif pour résoudre le problème du pire scénario.

- Un objectif correspond au taux de couplage pour une longueur d'onde.
- La métamodélisation pour variables mixtes n'a pas apporté de résultats satisfaisant.

 \mathbf{y}_{ref} \mathcal{M}_{2} dominée $H_{\chi_{tr}}$

Stratégie MOEGO:

- Proposition d'utiliser l'El et son gradient à la place du critère EHVI
 - Intérêt lorsque le nombre d'objectifs est supérieur à 4.

- Obtention de la direction commune de minimisation des objectifs, méthode locale.
 - Hypothèse de convexité locale des fonctions objectifs.

$$\overline{U} = \left\{ oldsymbol{u} \epsilon \mathbb{R}^n$$
 , $oldsymbol{u} = \sum_i lpha_i
abla f_i$, $\sum_i lpha_i = 1
ight\}$

Existence et unicité de l'élément de plus petite norme (son opposé est la direction de descente):

$$\exists! \, \boldsymbol{\omega} = \arg\min_{\boldsymbol{u} \in \overline{U}} \|\boldsymbol{u}\| \qquad \qquad \langle \nabla f_i, \boldsymbol{\omega} \rangle = \nabla f_i \boldsymbol{A} \boldsymbol{\omega} = \nabla f_i \boldsymbol{d} \ge \|\boldsymbol{\omega}\|^2 \ge 0$$

- Comparaison des résultats selon la méthode utilisée :
 - 10 expériences à partir de 200 points + 150 évaluations du modèle.

PLAN

• Microsource infrarouge • Cellule photoacoustique I. Identification des • Coupleur directionnel cas représentatifs • Krigeage • RBF II. Métamodèles • Cadre général • Optimisation à un objectif avec ou sans contrainte III. Stratégies adaptatives pour l'optimisation • Microsource optimisée en efficacité • Co-RBF • Méthode EI-MGDA IV. Contributions

CONCLUSION

- Analyse des problématiques d'optimisation sur 3 cas.
 - Proposition d'une version multifidélité des RBF.

Démarche d'optimisation robuste des composants photoniques.

 Développement d'une boîte à outils permettant de reproduire les résultats obtenus.

PERSPECTIVES

Court terme :

- Utilisation d'un modèle plus haute fidélité pour le coupleur directionnel (FDTD).
- Augmentation du nombre de longueurs prise en compte pour vérifier l'intérêt de la procédure El MGDA sur un grand nombre d'objectifs

Moyen terme :

- Critère d'optimisation pour la co-RBF sélectionnant le niveau du modèle à évaluer.
- Amélioration du calcul de mesure de robustesse sur les problèmes liés à la photonique par calcul analytique à partir du krigeage.
- Utilisation des polynômes de chaos pour la propagation des incertitudes.

Long terme :

Intégration des résultats expérimentaux par calibration bayésienne.

Leti, technology research institute Commissariat à l'énergie atomique et aux énergies alternatives Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France www.leti-cea.com

