QUALITY OVER QUANTITY A STOCK-FLOW CONSISTENT ANALYSIS OF SOCIO-ECONOMIC IMPACTS IN CONSUMPTION PATTERN TRANSITIONS

ISEE 2025 - RS 4.1.1: Social-ecological provisioning systems

Kilian Rouge, Franck Lecocq, Julien Lefèvre

Centre International de Recherche en Environnement et Développement (CIRED) Paris, France

June 25. 2025

CONTEXT

Research question

To what extent can promoting quality-oriented consumption foster sufficiency and what socio-economic changes might emerge during this transition?

FNVIRONMENTAL IMPACT

Better quality goods have a different overall environmental impact

WORK CONDITIONS

Quality pays better, ...

SERVICE INTENSITY

Quality is more service than material or eneray intensive

REPAIR

Quality aoods easier to repair or more repaired

MACRO FFFFCTS HINGE ON HOW WE UNDERSTAND

QUALITY

PREMIUM

LONGEVITY

Goods are replaced

less often

Goods are more expensive. producers make more margin,

LABOUR INTENSITY

Goods more labour intensive to produce

EXTRA SHORT LITERATURE REVIEW

- Quantity → Quality transition literature mainly focuses on the microeconomics of the production side (Cooper, 2016; Niessen & Bocken, 2021)
- Monserand (2022) investigates the impact of planned obsolescence on inequalities in an SFC model
- Aghion et al. (2025) analyses a *quantity* \rightarrow *quality* transition in an orthodox growth model where quality is service intensity

PRESENTATION OF THE MODEL

Key assumptions

· Households replace depreciated equipment $\delta_E = \delta_S E_h + \delta_S \delta E_L$ by an exogenous share σ_h of high-quality goods

PRESENTATION OF THE MODEL

lepreciated equipment $\sigma_{
m h}$ of

PRESENTATION OF THE MODEL

Key assumptions

- Households replace depreciated equipment $\delta_{\rm F} = \delta_{\rm s} E_{\rm h} + \delta_{\rm s} \delta E_{\rm l}$ by an exogenous share $\sigma_{\rm h}$ of high-quality goods
- Budget composed of parts of residual income and savings is allocated to disposable goods: $B(t) = \alpha_{YD}(YD_t - C_{e_t}) + \alpha_H H_{t-1}$
- · Prices, labour intensity, wages and government expenses are exogenous
- Depreciation is exogenous. Thus the transition to higher quality goods always entails the same direct sufficiency effect
- Workforce is constituted to match demand

SCENARIOS

Differentiation	$\begin{array}{c} \textbf{Longevity} \\ \delta > \textbf{1} \end{array}$	Labour intensity $A_h > A_l$	Wages $W_h > W_l$	Working hours $h_h < h_l$	Mark-up $\phi_{h} > \phi_{l}$
Baseline	\checkmark				
Scenario 1	\checkmark	\checkmark			
Scenario 2	\checkmark		\checkmark		
Scenario 3	\checkmark			\checkmark	
Scenario 4	\checkmark				\checkmark

TRANSMISSION CHANNELS

▶ Causal loop diagram of key dynamics following a change in longevity of goods - Baseline

BASELINE - LONGEVITY

Shock on σ_H at t=10

Key results

- Equipment good consumption decreases
- Employment decreases short-term
- Public balance equilibrates at initial state through savings balancing loop
- · The decrease in equipment consumption is offset by a rebound effect in disposable consumption

Kilian Rouge

S1 - LABOUR INTENSITY

- Rebound effect decreases
- Short-term employment increase

S2 - WAGES

- Income increases
- Rebound effect decreases
- · Thus employment decreases

KEY RESULTS

► Comparison of key variables to baseline

Differentiation Scenario	Labour intensity S1	Wages S2	Working hours S3	Mark-up S4
Rebound effect	▼	▼	▼	>
Short-term employment	A	▼	A	>
Long-term employment	>	▼	A	•
GDP	>	A	▼	A

The size of the rebound effect is smaller when quality additionally implies higher wages or labour intensity

KEY RESULTS

► Comparison of key variables to baseline

Differentiation Scenario	Labour intensity S1	Wages S2	Working hours S3	Mark-up S4
Rebound effect	▼	▼	▼	>
Short-term employment	A	▼	A	•
Long-term employment	>	▼	A	•
GDP	>	A	▼	A

Long-term employment dynamics are only impacted when quality goods differ in wages, profit or hours worked

KFY RESULTS

► Comparison of key variables to baseline

Differentiation Scenario	Labour intensity S1	Wages S2	Working hours S3	Mark-up S4
Rebound effect	▼	▼	▼	•
Short-term employment	A	▼	A	•
Long-term employment	>	▼	A	•
GDP	>	A	▼	A

High differences between wages in high and low quality exacerbate inequalities: more gross product is split among fewer people.

NEXT STEPS

Model evolutions

- Add heterogeneity (employment, qualifications, profit repartition)
- Add structural change (labour market, labour productivity, investment)
- Endogenise quality switch

Policy implications

- 1. What policies to foster the quality transition?
- 2. What policies to mitigate potential adverse effects?

considering

- Sector-specific representation of quality
- Comprise between environmental and socio-economic effectiveness

REFERENCES

- Aghion, P., ... Zilibotti, F. (2025). A theory of endogenous degrowth and environmental sustainability.
- Cooper, T. (Ed.). (2016). Longer lasting products: Alternatives to the throwaway society. Routledge.
- Monserand, A. (2022). Buying into inequality: A macroeconomic analysis linking accelerated obsolescence, interpersonal inequality, and potential for degrowth. European Journal of Economics and Economic Policies Intervention, 19(1), 119–137.
- Niessen, L., & Bocken, N. M. (2021). How can businesses drive sufficiency? The business for sufficiency framework. Sustainable Production and Consumption, 28, 1090–1103.

QUALITY104

Balance sheet and transaction-flow matrix

Assets/Liabilities	Households	Production	Government	Σ
High-quality goods (E_h)	$+E_h$			$+E_h$
Low-quality goods (<i>E_l</i>) Money (<i>H</i>)	$+E_l$ $+H_h$		-Ha	$+E_l$

Transactions	Households	Production	Government	Σ
Consumption high-quality	$-C_h$	$+C_h$		0
Consumption low-quality	$-c_{l}$	$+c_I$		0
Consumption of disposable goods	$-c_d$	$+C_d$		0
Government spending		+G	-G	0
Wages	+WB	-WB		0
Unemployment benefits	+U		-U	0
Profits	+P	-P		0
Taxes	$-\theta_{WC}WB$	$-\theta_{FC}WB$	+co	0
ΔH	$+\Delta H_h$	0	$-\Delta H_g$	0

Key equations

Consumption

•
$$\delta_E = \delta_s \cdot E_h(-1) + \delta_s \cdot \delta \cdot E_l(-1)$$

•
$$c_l = (1 - \sigma_h) \cdot \delta_E$$

•
$$c_h = \sigma_h \cdot \delta_E$$

•
$$C_d = \alpha_{YD} \cdot (YD - C_e) + \alpha_H \cdot H_h(-1)$$

Employment

•
$$N^{(e)} = \frac{A_h c_h}{h_h} + \frac{A_l c_l}{h_l} + \frac{A_d (c_d + g)}{h_d}$$

QUALITY104 EQUATIONS

$$(1) \quad UC_l = A_l \cdot W_l$$

(2)
$$UC_h = A_h \cdot W_h$$

(3)
$$UC_d = A_d \cdot W_d$$

(4)
$$p_h = (1 + \phi_h) \cdot UC_h$$

(5)
$$p_l = (1 + \phi_l) \cdot UC_l$$

(6)
$$p_d = (1 + \phi_d) \cdot UC_d$$

(7)
$$c_l = (1 - \sigma_h) \cdot \delta_E$$

(8)
$$c_h = \sigma_h \cdot \delta_E$$

(9)
$$c_e = c_l + c_h$$

(10)
$$c_d = \frac{B}{a}$$

(11)
$$\delta_E = \delta_S \cdot E_h(-1) + \delta_S \cdot \delta \cdot E_l(-1)$$

(12)
$$N^{(e)} = \frac{A_h c_h}{h_h} + \frac{A_l c_l}{h_l} + \frac{A_d (c_d + g)}{h_d}$$

(13)
$$N^{(u)} = N - N^{(e)}$$

(14)
$$\nu = \frac{N^{(u)}}{N}$$

(15)
$$WB = W_h \cdot c_h \cdot A_h + W_l \cdot c_l \cdot A_l + W_d \cdot (c_d + g) \cdot A_d$$

(16)
$$U = W_d \cdot h_d \cdot \xi \cdot N^{(u)}$$

(17)
$$YD = WB \cdot (1 - \theta_{WC}) + U + P$$

(18)
$$B = \alpha_{YD} \cdot (YD - C_{\rho}) + \alpha_{H} \cdot H_{h}(-1)$$

(19)
$$C_h = p_h \cdot c_h$$

$$(20) \quad C_1 = p_1 \cdot c_1$$

$$(21) \quad C_{\rho} = C_{h} + C_{l}$$

(22)
$$C_d = c_d \cdot p_d$$

$$22) \quad C_d = C_d \cdot P_0$$

(23)
$$C = C_e + C_d$$

(24)
$$Y = C_h + C_l + C_d + G$$

$$25) \quad g = \frac{G}{p_d}$$

(26)
$$CO = (\theta_{WC} + \theta_{EC}) \cdot WB$$

(27)
$$P = Y - WB \cdot (1 + \theta_{EC})$$

(28)
$$H_h = H_h(-1) + YD - C$$

(29)
$$H_g = H_g(-1) - CO + U + G$$

(30)
$$E_h = (1 - \delta_s) \cdot E_h(-1) + c_h$$

$$\Sigma_h = (1 - \delta s) \cdot \Sigma_h (-1) + \varepsilon_h$$

(31)
$$E_l = (1 - \delta_S \cdot \delta) \cdot E_l(-1) + c_l$$

(32)
$$E_t = E_h + E_l$$

S3 - Hours worked

Key results

- · Rebound effect decreases
- Employment increases

S4 - PROFIT

Key results

 The increase in prices is offset by the increase in profits redistributed to households

KEY RESULTS SUMMARY

- 1. The size of the rebound effect is smaller when quality additionally implies higher wages or labour intensity
- 2. Long-term employment dynamics are only impacted when quality goods differ in wages, profit or hours worked.
- 3. High differences between wages in high and low quality exacerbate inequalities: more gross product is split among fewer people.

Kilian Rouge, Franck Lecocq, Julien Lefèvre

