Property Preserving Network Embedding

Instruction

Chaozhuo Li

lichaozhuo@buaa.edu.cn Beihang University

 $13 \ {\rm September} \ 2016$

Contents

Introd	uction	1
1	Files	1
2	Model Training	1
3	Key Notes	2

Introduction

1 Files

Here we submit three folds: modeltrain ,citeseer and classification. In modeltrain folder, the training code of $PPNE_{ineq}$ and $PPNE_{num}$ are presented. In citeseer folder, we show the input of the above two models of citeseer datasets. In classification folder, we show the classification tool used in this paper and the representation vectors learned by various embedding results of citeseer datasets. This ensures the experimental results in the paper can be re-implemented. Here is the table of the submitted files and their descriptions:

Table 1: File Description

	•	
File	Directory	Description
PPNEinqTrain.c	modeltrain	Training code of PPNE _{ineq} model
PPNEnumTrain.c	modeltrain	Training code of PPNE _{num} model
citeseer.walks.txt	citeseer	Node sequences generated by random walk
train.citeseer.inequationconstraints.txt	citeseer	inequation constraints for PPNE _{ineq} model
train.citeseer.numeric.constraints.txt	citeseer	numeric constraints for PPNE _{num} model
valid.citeseer.inequation.constraints.txt	citeseer	validation constraints for PPNE _{ineq} model
classification.py	classification	SVM model implemented using sklearn
embedding.citeseer.deepwalk.txt	classification	embedding results of DeepWalk
embedding.citeseer.inequation.constraints.txt	classification	embedding results of PPNE _{ineq} model
embedding.citeseer.LINE.txt	classification	embedding results of LINE
embedding.citeseer.naivecombination.txt	classification	embedding results of Naive Combination
		Method
embedding.citeseer.numeric.constraints.txt	classification	embedding results of PPNE _{num} Method
embedding.citeseer.propertyfeatures.txt	classification	embedding results of Property Features
		Method
embedding.citeseer.TADW.txt	classification	embedding results of TADW Method
group.txt	classification	the categories of citeseer data

2 Model Training

In the corresponding paper we propose two types of TPNE model. For each model we submit a training file using C. There is little difference in the parameter update process

between these two training files. The input parameters of these two models are mostly same. Here we introduce the input parameters used in this work:

Table 2: Parameters Description

Parameter	Description		
layer1_size	Train Setting embedding size		
window	Train Setting window size		
sample	Train Setting sample value		
negative	Train Setting negative sampling number		
num_threads	Running Threads		
iter	Iteration Times		
PPNE_inequation_file	constraints training file. For inequation		
	model, it contains lines as: $\{A, B, A, D\}$,		
	refers to $sim(A, B) > sim(A, D)$.		
	For numeric model, it contains lines		
	as: $\{A, B, Score\}$, refers to $sim(A, B) =$		
	Score		
PPNE_inequation_fileCV	constraints valid file, only used in inequation		
	model		
PPNE_add_time	PPNE Add Time		
PPNE_weight_decay	PPNE Weight Decay		
PPNE_inter_coeff	PPNE Inter Coeff		
PPNE_hinge_margin	PPNE Norm Hinge Margin		
train_file	node sequences file, each line is a node se-		
	quence		
output_file	Final embedding saved file, similar to word2vec format		

3 Key Notes

- This code can be easily compiled and running in the Windows 8 and Visual Studio 2013.
- Math Kernel Library can significantly reduce the training time, for example, the training process in citeseer dataset will be reduce to three minutes.
- We are rewriting the code with python and we want to make it a public python package can be downloaded with pip.
- Other datasets and experimental results will be published later in the website of the first author (double blind) due to the file uploaded limitation of github (25M).