Link Analysis: PageRank Tutorial

Lin Guosheng
School of Computer Science and Engineering
Nanyang Technological University

- Q1. Given the graph below, calculate the page rank score for each node using the following two methods:
 - 1) directly solving the flow equations;
 - 2) using the power iterative method for 2 iterations.

Answer:

Step 1: generate edge weights

Define the edge weights as $\frac{1}{d_i}$ d: out-degree (the number of out-links)

We can go through the node one by one to generate the edge weights.

Example:

The out-links of node 1 is (1,3), (1,4) and (1,2)

For node 1, there are 3 out-links, so d=3.

The weight for each out-link of node1 is 1/3.

Construct transition matrix M:

$$\mathbf{M} = egin{bmatrix} \mathsf{Node1} & \mathsf{Node2} & \mathsf{Node3} & \mathsf{Node4} \ 0 & 0 & 1 & rac{1}{2} \ rac{1}{3} & 0 & 0 & 0 \ rac{1}{3} & rac{1}{2} & 0 & rac{1}{2} \ rac{1}{3} & rac{1}{2} & 0 & 0 \ \end{bmatrix}$$

Construct the transition matrix column by column Each column corresponds to the out-link weights

Solution 1: solve flow equations

Solve flow equations for the PageRank scores: r

Flow equations (matrix expression):

$$\mathbf{r} = \mathbf{M} \cdot \mathbf{r}$$
 $\sum_i r_i = 1$

Flow equations:

$$egin{align} r_1 &= 1 imes r_3 + rac{1}{2} imes r_4; \ r_2 &= rac{1}{3} imes r_1; \ r_3 &= rac{1}{3} imes r_1 + rac{1}{2} imes r_2 + rac{1}{2} imes r_4; \ r_4 &= rac{1}{3} imes r_1 + rac{1}{2} imes r_2; \ r_1 + r_2 + r_3 + r_4 &= 1 \ \end{array}$$

$$\mathbf{r} = [r_1, \; r_2, \; r_3, \; r_4]^{\! op}$$

$$\mathbf{M} = egin{bmatrix} 0 & 0 & 1 & rac{1}{2} \ rac{1}{3} & 0 & 0 & 0 \ rac{1}{3} & rac{1}{2} & 0 & rac{1}{2} \ rac{1}{3} & rac{1}{2} & 0 & 0 \end{bmatrix}$$

Solutions for scores r:

- How to solve linear equations?
 - The simple method: repeatedly eliminate variables.
 - Other materials:
 - Refer to the linear algebra course SC1004/ CE1104/CZ1104
 - https://en.wikipedia.org/wiki/System of linear equations

Variable elimination

EQ1
$$r_1=1 imes r_3+rac{1}{2} imes r_4;$$
EQ2 $r_2=rac{1}{3} imes r_1;$
EQ3 $r_3=rac{1}{3} imes r_1+rac{1}{2} imes r_2+rac{1}{2} imes r_4;$
EQ4 $r_4=rac{1}{3} imes r_1+rac{1}{2} imes r_2;$
EQ5 $r_1+r_2+r_3+r_4=1$

Variable elimination: Here we aim to use r1 to express other variables

Substitute EQ2 into EQ4 (eliminate r2): r4= 1/3 * r1 + (1/2) * (1/3) * r1 -> r4= 3/6 *r1 = 1/2 * r1 (EQ6)

Substitute EQ6 into EQ1 (eliminate r4): r1= r3 + (1/2) * (1/2) * r1 -> r3= 3/4 * r1 (EQ7)

With EQ2, EQ6, EQ7 (eliminate r2,r4,r3), We update EQ5: r1 + 1/3 * r1 + 3/4 * r1 + 1/2 * r1 = 1 -> (1 + 4/12 + 9/12 + 6/12) * r1 = 1 -> 31/12 * r1 = 1 -> r1 = 12/31

Solution 2: Power iteration

- Power iteration method
 - 1. assign initial values to rank scores: r_i= 1/N;
 - N is the total number of nodes
 - 2. repeat the following util converge:

Calculate the page rank:

$$r^{(t+1)} = M \cdot r^{(t)}$$

Or equivalently for each node:
$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Converge criteria: $(\sum_{i} |r_{i}^{t+1} - r_{i}^{t}| < \epsilon)$

Solution 2: Power iteration

$$\mathbf{r} = [r_1, \; r_2, \; r_3, \; r_4]^{\! op}$$

$$\mathbf{M} = egin{bmatrix} 0 & 0 & 1 & rac{1}{2} \ rac{1}{3} & 0 & 0 & 0 \ rac{1}{3} & rac{1}{2} & 0 & rac{1}{2} \ rac{1}{3} & rac{1}{2} & 0 & 0 \end{bmatrix}$$

$$r^{(t+1)} = M \cdot r^{(t)}$$

Iter 0: initialization:

$$\mathbf{r}^{(0)} = \begin{pmatrix} 0.25 \\ 0.25 \\ 0.25 \\ 0.25 \end{pmatrix}$$

Iter 1:
$$\mathbf{r}^{(1)} = \mathbf{M} \cdot \mathbf{r}^{(0)} = \begin{pmatrix} 0.37 \\ 0.08 \\ 0.33 \\ 0.20 \end{pmatrix}$$

Solution 2: Power iteration

$$\mathbf{r} = [r_1, \; r_2, \; r_3, \; r_4]^{\! op}$$

$$\mathbf{M} = \begin{bmatrix} 0 & 0 & 1 & \frac{1}{2} \\ \frac{1}{3} & 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} & 0 & 0 \end{bmatrix}$$
 lter 2:
$$\mathbf{r}^{(2)} = \mathbf{M} \cdot \mathbf{r}^{(1)} = \begin{pmatrix} \mathbf{0.43} \\ \mathbf{0.12} \\ \mathbf{0.27} \\ \mathbf{0.16} \end{pmatrix}$$

$$\mathbf{r^{(2)}} = \mathbf{M} \cdot \mathbf{r^{(1)}} = egin{bmatrix} \mathbf{0.12} \\ \mathbf{0.27} \\ \mathbf{0.16} \end{pmatrix}$$

$$r^{(t+1)} = M \cdot r^{(t)}$$

The question only requests to run 2 iterations. For demonstration, here we show more iterations:

$$\mathbf{r^{(3)}} = \mathbf{M} \cdot \mathbf{r^{(2)}} = \left(egin{array}{c} 0.35 \\ 0.14 \\ 0.29 \\ 0.20 \end{array}
ight)$$

The question only requests to run 2 iterations. For demonstration, here we show more iterations:

Iter 4:
$$\begin{pmatrix} 0.39 \\ 0.11 \\ 0.29 \\ 0.19 \end{pmatrix}$$
 Iter 5: $\begin{pmatrix} 0.39 \\ 0.13 \\ 0.28 \\ 0.19 \end{pmatrix}$ Iter 6: $\begin{pmatrix} 0.38 \\ 0.13 \\ 0.29 \\ 0.19 \end{pmatrix}$
Iter 7: $\begin{pmatrix} 0.38 \\ 0.12 \\ 0.29 \\ 0.19 \end{pmatrix}$ Iter 8: $\begin{pmatrix} 0.38 \\ 0.12 \\ 0.29 \\ 0.19 \end{pmatrix}$

(converged, no significant changes)

Recap of Page Rank

- PageRank: Assign a rank score (importance score) to each node in the directed graph.
 - For a node j in the directed graph, we define page rank score r_i as follows (flow equations):

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

One node score = weighted sum of the neighbour node scores from in-links

the edge weights: $\frac{1}{d_i}$

We also require: $\sum_{i} r_{i} = 1$ (The sum of all rank scores equals 1):

$$r_y = r_y/2 + r_a/2$$

Flow equation:

flow-out value = flow-in value

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 d_i ... out-degree of node i

Another example:

1/2

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

1. Directly solve linear equations

Solution 1: Directly solve the linear equations

"Flow" equations:

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

Adding this equation:

$$\sum_i r_i = 1$$

(The sum of all rank scores equals 1):

We can solve these 4 linear equations to get the solutions: $r_v = 0.4$; $r_a = 0.4$; $r_m = 0.2$

Use transition matrix

Each column in M indicates out-links

	r _y	r _a	r _m
r _y	1/2	1/2	0
ra	1/2	0	1
r _m	0	1/2	0

Transition matrix M

Rank vector r: a column vector of all rank scores

 $r = M \cdot r$

	$\mathbf{r}_{\mathbf{y}}$	r _a	r _m
r _y	1/2	1/2	0
ra	1/2	0	1
r _m	0	1/2	0

$$\begin{array}{c} \mathbf{r_y} = \mathbf{r_y/2} + \mathbf{r_a/2} \\ \mathbf{r_a} = \mathbf{r_y/2} + \mathbf{r_m} \\ \mathbf{r_m} = \mathbf{r_a/2} \end{array} \qquad \begin{array}{c} \text{Matrix expression} \\ \begin{array}{c} \mathbf{r_y} \\ \mathbf{r_a} \\ \mathbf{r_m} \end{array} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \\ \end{array} \begin{bmatrix} \mathbf{r_y} \\ \mathbf{r_a} \\ \mathbf{r_m} \end{bmatrix}$$

2. Power iteration method

- Power iteration method
 - 1. assign initial values to rank scores: r_i= 1/N;
 - N is the total number of nodes
 - 2. repeat the following util converge:

Calculate the page rank:

$$r^{(t+1)} = M \cdot r^{(t)}$$

Or equivalently for each node:
$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

Converge criteria: $(\sum_{i} |r_{i}^{t+1} - r_{i}^{t}| < \epsilon)$

	y	a	m
y	1/2	1/2	0
a	1/2	0	1
m	0	1/2	0

$$r_y = r_y/2 + r_a/2$$

 $r_a = r_y/2 + r_m$
 $r_m = r_a/2$

Power Iteration:

• Set
$$r_i \leftarrow 1/N$$

• 1:
$$r'_j \leftarrow \sum_{i \rightarrow j} \frac{r_i}{d_i}$$

■ **2**: If
$$|r - r'| > \varepsilon$$
:

$$r \leftarrow r'$$

3: go to **1**

Example:

$$\begin{pmatrix} r_y \\ r_a \\ r_m \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \\ 1/6 \end{pmatrix} \begin{pmatrix} 5/12 \\ 5/12 \\ 1/3 \\ 1/6 \end{pmatrix} \begin{pmatrix} 9/24 \\ 11/24 \\ 11/24 \\ 1/6 \end{pmatrix} \dots \begin{pmatrix} 6/15 \\ 6/15 \\ 3/15 \end{pmatrix}$$

Initial value: 1/N (N=3)

iter1

iter2

iter3

Converged

- Q2. A graph is given below.
 - a) calculate the page rank score for each node using the power iteration method for 3 iterations.
 - b) identify one spider trap group if there are any.

Solution (a):

Transition matrix M

О	0.5	0	0
О	0	0	0
0.5	0.5	1	0
0.5	0	0	1

$$r^{(t+1)} = M \cdot r^{(t)}$$

Transition matrix M

0	0.5	0	0
О	0	0	0
0.5	0.5	1	0
0.5	0	О	1

Initial iteration

0.125
0
0.5
0.375

Iteration 1

Iteration 2

Iteration 3

b) identify one spider trap group if there are any.

Solution (b):

Spider trap groups:

1.{C}

2. {D}

3. {A, C, D}

4. {C, D}

(You only need to specify one group for this question)

2. The spider trap problem:

A spider trap group: for the nodes in the group, all out-links are within the group

After entering the spider-trap group, the web user cannot go out of the group by navigating through the links

Another spider trap group example: (for the nodes in the group, all out-links are within the group)

the group forms a spider trap problem

After entering the spider-trap group, the web user cannot go out of the group by navigating through the links