Problem Solving with AI Techniques Stochastic Search

Paul Weng

UM-SJTU Joint Institute

VE593, Fall 2018

- Monte Carlo Tree Search
 - Monte Carlo Methods
 - Principle of Monte Carlo Tree Search

- Simulated Annealing
 - Local Search
 - Principle of Simulated Annealing

Monte Carlo Methods

- Monte Carlo method = sampling from a probability distribution
- It allows to estimate an integral (e.g., \mathbb{E} is an integral) e.g., If $\mathbb{E}_p[f(X)] = \int_X f(x)p(x)dx$, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_i f(x_i)=\mathbb{E}_p[f(X)]$$

Monte Carlo Methods

- Monte Carlo method = sampling from a probability distribution
- It allows to estimate an integral (e.g., \mathbb{E} is an integral) e.g., If $\mathbb{E}_p[f(X)] = \int_X f(x)p(x)dx$, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i}f(x_{i})=\mathbb{E}_{p}[f(X)]$$

or

$$\lim_{N\to\infty}\sum_i w_i f(x_i) = \mathbb{E}_p[f(X)]$$

• Useful when p is complicated and $\mathbb{E}_p[f(X)]$ cannot be calculated directly

Rejection Sampling

- How can we generate i.i.d. samples $x_i \sim p(x)$?
- Assumptions:
 - We can sample $x \sim q(x)$ from a simpler distribution q(x) (e.g., uniform), called **proposal distribution**
 - We can numerically evaluate p(x) for specific x (even if we don't have an analytic expression of p(x))
 - There exists M such that $\forall x, p(x) \leq Mq(x)$ (which implies q has a larger or equal support as p)
- Rejection Sampling:
 - Sample a candidate $x \sim q(x)$
 - Accept x with probability $\frac{p(x)}{Mq(x)}$ and reject otherwise
 - Repeat until sample size $= \hat{N}$
- This generates an unweighted sample set to approximate p(x)

Importance Sampling

- Assumptions:
 - We can sample $x \sim q(x)$ from a simpler distribution q(x) (e.g., uniform)
 - We can numerically evaluate p(x) for specific x (even if we don't have an analytic expression of p(x))
- Importance Sampling:
 - Sample a candidate $x_i \sim q(x)$
 - Add the weighted sample (w_i, x_i) where $w_i = \frac{p(x_i)}{q(x_i)}$
 - Repeat N times
- This generates a weighted sample set to approximate p(x)Weights w_i are called importance weights
- Crucial for efficiency: a good choice of proposal distribution q(x)

- Monte Carlo Tree Search
 - Monte Carlo Methods
 - Principle of Monte Carlo Tree Search

- Simulated Annealing
 - Local Search
 - Principle of Simulated Annealing

Monte Carlo Tree Search (MTCS)

- MCTS is very successful on Computer Go and other games
- MCTS is one of the main components in Alphgago
- MCTS is a quite novel technique (\sim 10 years)
- MCTS is rather simple to implement
- MCTS is very general: applicable on any discrete domain

Flat Monte Carlo

• Goal of MCTS: estimate the expected value of action (*Q-function*)

$$Q(s, a) = \mathbb{E}[\Delta \mid s, a]$$

where expectation is taken over future randomized actions (including possible adversary choices and possible stochastic transitions in the environment)

- In search trees, MCTS provides an estimate of f
- Flat Monte Carlo does so by rolling out many random simulations (using a ROLLOUTPOLICY) without growing a tree
- Key difference/advantage of MCTS over flat Monte Carlo: search focuses computational effort on promising actions

Generic MCTS Scheme

from Browne et al.

- 1: start tree $V = \{v_0\}$
- 2: while within computational budget do
- $v_l \leftarrow \mathsf{TREEPolicy}(V)$ chooses a leaf of V3:
- append v_l to V
 - $\Delta \leftarrow \mathsf{ROLLOUTPolicy}(V)$ rolls out a full simulation, with return Δ
- BACKUP (v_l, Δ) updates the values of all parents of v_l
- 7. end while
- 8: return best child of v_0

Generic MCTS Scheme: Remarks

- Like flat MC, MCTS typically computes full roll-outs to a terminal state. A heuristic to estimate the utility of a state is not needed, but can be incorporated.
- The tree grows unbalanced.
- TREEPOLICY decides where the tree is expanded and needs to trade-off exploration vs. exploitation.
- ROLLOUTPOLICY is necessary to simulate a roll-out. It typically is a random policy (at least a randomized policy).

Upper Confidence Tree (UCT)

- UCT uses UCB to realize TREEPOLICY, i.e., to decide where to expand the tree
- BACKUP updates all parents of v_l as $n(v) \leftarrow n(v) + 1$ (count how often it has been tried) $Q(v) \leftarrow Q(v) + \Delta$ (sum of rewards received)
- TREEPOLICY chooses child nodes based on UCB:

$$rg \max rac{Q(v')}{n(v')} + eta \sqrt{rac{2 \ln n(v)}{n(v')}}$$

or chooses v' if n(v') = 0

- Monte Carlo Tree Search
 - Monte Carlo Methods
 - Principle of Monte Carlo Tree Search

- Simulated Annealing
 - Local Search
 - Principle of Simulated Annealing

Iterative Improvement Algorithms

In some problems, path is irrelevant, goal state is the solution

- State space = set of complete configurations find configuration satisfying all constraints, e.g., timetable find optimal configuration, e.g., Travelling Salesperson Problem
- Iterative improvement algorithms: keep a single "current" state, try to improve it
- Constant space complexity

Example: *n*-Queens

- Goal: Place n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Algorithmic principle:
 - Start with *n* queens placed on board
 - Repeatedly, move a queen to reduce number of conflicts

Example: *n*-Queens

- Goal: Place n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal
- Algorithmic principle:
 - Start with *n* queens placed on board
 - Repeatedly, move a queen to reduce number of conflicts
- Can solve n-queens problems almost instantaneously for very large n, e.g., $n=10^6$

Example: Travelling Salesperson Problem

- Goal: Find minimal-cost cycle
- Algorithmic principle:
 - Start with any complete tour
 - Repeatedly, perform pairwise exchanges

Example: Travelling Salesperson Problem

- Goal: Find minimal-cost cycle
- Algorithmic principle:
 - Start with any complete tour
 - Repeatedly, perform pairwise exchanges
- Variants of this approach get within 1% of optimal very quickly with thousands of cities

Hill-climbing (or gradient ascent/descent)

"Like climbing Everest in thick fog with amnesia" (assuming we maximize an utility function)

Hill-climbing (contd.)

Hill-climbling can get stuck, see state space landscape

Hill-climbing (contd.)

Hill-climbling can get stuck, see state space landscape

 Random-restart hill climbing: overcomes local maxima — trivially complete

Hill-climbing (contd.)

Hill-climbling can get stuck, see state space landscape

- Random-restart hill climbing: overcomes local maxima — trivially complete
- Random sideways moves:
 - ⊕ escape from shoulders, ⊖ loop on flat maxima

Paul Weng (UM-SJTU JI) Stochastic Search VE593, Fall 2018 1

- Monte Carlo Tree Search
 - Monte Carlo Methods
 - Principle of Monte Carlo Tree Search

- Simulated Annealing
 - Local Search
 - Principle of Simulated Annealing

Simulated Annealing

 Idea: Escape local maxima by allowing some "bad" moves but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
            schedule, a mapping from time to "temperature"
   local variables: current, a node
                      next, a node
                      T, a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for t \leftarrow 1 to \infty do
         T \leftarrow schedule[t]
        if T = 0 then return current
         next \leftarrow a randomly selected successor of current
         \Delta E \leftarrow \text{VALUE}[next] - \text{VALUE}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing

 At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) \propto e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}\gg 1$ for small T

- Is this necessarily an interesting guarantee?
- Devised by Metropolis et al., 1953, for physical process modelling
- Widely used in VLSI layout, airline scheduling, etc.

Going Further...

- Local beam search: keep k states instead of 1; choose top k of all their successors
- Genetic algorithms: stochastic local beam search + generate successors from pairs of states
- Evolutionary Strategies (e.g., CMA-ES)
- Nature-inspired algorithms (e.g., Particle Swarm Optimization)
- Metaheuristics (e.g., Cross-Entropy Method)