$12a_{0433} \ (K12a_{0433})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^{41} + u^{40} + \dots + b + 1, \ u^{42} - u^{41} + \dots + 2a - 2, \ u^{43} - 3u^{42} + \dots + 2u - 2 \rangle \\ I_2^u &= \langle -83u^{30}a + 64u^{30} + \dots - 12a - 29, \ -2u^{30}a + u^{30} + \dots - 2a + 2, \ u^{31} + u^{30} + \dots - 2u^2 - 1 \rangle \\ I_3^u &= \langle b + 1, \ u^3 - 2u^2 + 2a + u, \ u^4 + u^2 + 2 \rangle \\ I_4^u &= \langle b - 1, \ a + u - 1, \ u^4 + 1 \rangle \\ I_5^u &= \langle b + 1, \ a - u - 1, \ u^2 + 1 \rangle \end{split}$$

 $I_1^v = \langle a, b-1, v+1 \rangle$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 116 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -u^{41} + u^{40} + \dots + b + 1, \ u^{42} - u^{41} + \dots + 2a - 2, \ u^{43} - 3u^{42} + \dots + 2u - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{42} + \frac{1}{2}u^{41} + \dots + u + 1 \\ u^{41} - u^{40} + \dots + 3u^{2} - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{5}{2}u^{42} + \frac{9}{2}u^{41} + \dots + u^{2} + 4u \\ -u^{42} + 2u^{41} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{7}{2}u^{42} + \frac{13}{2}u^{41} + \dots + 6u - 1 \\ -u^{42} + 2u^{41} + \dots + 2u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{10} + u^{8} + 2u^{6} + u^{4} + u^{2} + 1 \\ u^{12} + 2u^{10} + 4u^{8} + 4u^{6} + 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -\frac{5}{2}u^{42} + \frac{9}{2}u^{41} + \dots + 4u - 1 \\ -u^{42} + 2u^{41} + \dots + 3u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{5} + u \\ u^{7} + u^{5} + 2u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{15} + 2u^{13} + 4u^{11} + 4u^{9} + 4u^{7} + 4u^{5} + 2u^{3} + 2u \\ u^{17} + 3u^{15} + 7u^{13} + 10u^{11} + 11u^{9} + 10u^{7} + 6u^{5} + 4u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-16u^{42} + 34u^{41} + \cdots + 22u 20$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{43} + 17u^{42} + \dots + 16u + 1$
c_2, c_5, c_6 c_{12}	$u^{43} + u^{42} + \dots - 8u^2 + 1$
c_3, c_9	$u^{43} + 3u^{42} + \dots + 2u + 2$
c_4, c_7	$u^{43} - 15u^{42} + \dots - 2154u + 158$
c_8, c_{10}	$u^{43} - 15u^{42} + \dots + 12u + 4$

Crossings	Riley Polynomials at each crossing
c_1, c_{11}	$y^{43} + 31y^{42} + \dots + 36y - 1$
c_2, c_5, c_6 c_{12}	$y^{43} - 17y^{42} + \dots + 16y - 1$
c_3, c_9	$y^{43} + 15y^{42} + \dots + 12y - 4$
c_4, c_7	$y^{43} + 27y^{42} + \dots + 268172y - 24964$
c_8, c_{10}	$y^{43} + 27y^{42} + \dots + 784y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.810305 + 0.610083I		
a = -0.872253 - 1.072020I	-0.67916 + 11.73210I	-10.65839 - 6.76823I
b = -1.165720 + 0.639728I		
u = 0.810305 - 0.610083I		
a = -0.872253 + 1.072020I	-0.67916 - 11.73210I	-10.65839 + 6.76823I
b = -1.165720 - 0.639728I		
u = -0.169320 + 0.970646I		
a = 1.076800 + 0.490969I	1.81117 - 1.96121I	-3.54414 + 2.58212I
b = -0.864916 - 0.541410I		
u = -0.169320 - 0.970646I		
a = 1.076800 - 0.490969I	1.81117 + 1.96121I	-3.54414 - 2.58212I
b = -0.864916 + 0.541410I		
u = -0.404499 + 0.937684I		
a = -0.09752 - 2.06018I	0.64091 + 7.57935I	-5.71587 - 9.06778I
b = -1.003290 + 0.619413I		
u = -0.404499 - 0.937684I		
a = -0.09752 + 2.06018I	0.64091 - 7.57935I	-5.71587 + 9.06778I
b = -1.003290 - 0.619413I		
u = -0.740546 + 0.734320I		
a = 0.953869 + 0.031628I	-3.38498 - 0.54186I	-9.64597 + 2.59436I
b = 0.638692 + 0.127245I		
u = -0.740546 - 0.734320I		
a = 0.953869 - 0.031628I	-3.38498 + 0.54186I	-9.64597 - 2.59436I
b = 0.638692 - 0.127245I		
u = 0.767460 + 0.565351I		
a = 0.203752 + 0.596820I	3.23658 + 0.48012I	-5.52727 + 1.98665I
b = -0.551586 - 0.826342I		
u = 0.767460 - 0.565351I		
a = 0.203752 - 0.596820I	3.23658 - 0.48012I	-5.52727 - 1.98665I
b = -0.551586 + 0.826342I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.781599 + 0.706193I		
a = 1.015530 + 0.059356I	-4.27279 - 2.51600I	-12.07773 + 5.71847I
b = 0.943303 + 0.436662I		
u = 0.781599 - 0.706193I		
a = 1.015530 - 0.059356I	-4.27279 + 2.51600I	-12.07773 - 5.71847I
b = 0.943303 - 0.436662I		
u = 0.634409 + 0.863030I		
a = 0.482681 - 0.289079I	-0.87271 - 2.47607I	-4.48573 + 2.92592I
b = -0.073637 + 0.560874I		
u = 0.634409 - 0.863030I		
a = 0.482681 + 0.289079I	-0.87271 + 2.47607I	-4.48573 - 2.92592I
b = -0.073637 - 0.560874I		
u = -0.730178 + 0.509618I		
a = 0.210279 + 0.671513I	3.58914 - 2.18174I	-5.59185 + 2.68261I
b = -0.659249 - 0.796369I		
u = -0.730178 - 0.509618I		
a = 0.210279 - 0.671513I	3.58914 + 2.18174I	-5.59185 - 2.68261I
b = -0.659249 + 0.796369I		
u = 0.064317 + 0.887781I		
a = 0.245081 + 0.904782I	1.82719 - 1.38027I	-1.41434 + 5.67019I
b = -0.514108 - 0.340137I		
u = 0.064317 - 0.887781I		
a = 0.245081 - 0.904782I	1.82719 + 1.38027I	-1.41434 - 5.67019I
b = -0.514108 + 0.340137I		
u = -0.019617 + 1.114870I		
a = -1.21478 - 1.96630I	8.98390 - 0.70392I	0.62643 + 2.07043I
b = 0.614989 + 0.851882I		
u = -0.019617 - 1.114870I		
a = -1.21478 + 1.96630I	8.98390 + 0.70392I	0.62643 - 2.07043I
b = 0.614989 - 0.851882I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.070568 + 1.113790I		
a = -0.93313 + 2.40704I	5.52719 + 10.86160I	-3.74256 - 7.47837I
b = 1.150350 - 0.663782I		
u = -0.070568 - 1.113790I		
a = -0.93313 - 2.40704I	5.52719 - 10.86160I	-3.74256 + 7.47837I
b = 1.150350 + 0.663782I		
u = 0.769424 + 0.820046I		
a = 1.203010 - 0.319741I	-6.01940 + 4.69142I	-13.7584 - 4.2985I
b = 1.082070 - 0.520953I		
u = 0.769424 - 0.820046I		
a = 1.203010 + 0.319741I	-6.01940 - 4.69142I	-13.7584 + 4.2985I
b = 1.082070 + 0.520953I		
u = 0.747584 + 0.908886I		
a = -1.77260 + 1.30694I	-5.74879 - 10.41320I	-13.1188 + 9.7708I
b = -1.099080 - 0.534938I		
u = 0.747584 - 0.908886I		
a = -1.77260 - 1.30694I	-5.74879 + 10.41320I	-13.1188 - 9.7708I
b = -1.099080 + 0.534938I		
u = -0.587598 + 1.034130I		
a = -0.976042 - 0.394281I	2.34669 - 4.11995I	-6.41118 + 2.08920I
b = 1.109900 + 0.674647I		
u = -0.587598 - 1.034130I		
a = -0.976042 + 0.394281I	2.34669 + 4.11995I	-6.41118 - 2.08920I
b = 1.109900 - 0.674647I		
u = -0.697004 + 0.966572I		
a = -0.886537 - 0.919821I	-2.67878 + 6.02819I	-8.00000 - 8.68993I
b = -0.663489 + 0.163610I		
u = -0.697004 - 0.966572I		
a = -0.886537 + 0.919821I	-2.67878 - 6.02819I	-8.00000 + 8.68993I
b = -0.663489 - 0.163610I		
		l .

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.693381 + 0.387489I		
a = -0.79741 - 1.27275I	0.58526 + 8.92556I	-9.86563 - 7.36810I
b = -1.120710 + 0.646264I		
u = -0.693381 - 0.387489I		
a = -0.79741 + 1.27275I	0.58526 - 8.92556I	-9.86563 + 7.36810I
b = -1.120710 - 0.646264I		
u = 0.710991 + 0.990924I		
a = -0.093051 + 1.044480I	-3.40970 - 3.12696I	-10.17371 + 0.I
b = -0.922866 + 0.415678I		
u = 0.710991 - 0.990924I		
a = -0.093051 - 1.044480I	-3.40970 + 3.12696I	-10.17371 + 0.I
b = -0.922866 - 0.415678I		
u = -0.635885 + 1.042150I		
a = 0.39218 + 2.01011I	5.11017 + 7.38861I	-3.39621 - 7.50854I
b = 0.683334 - 0.830391I		
u = -0.635885 - 1.042150I		
a = 0.39218 - 2.01011I	5.11017 - 7.38861I	-3.39621 + 7.50854I
b = 0.683334 + 0.830391I		
u = 0.663748 + 1.042840I		
a = -1.50776 + 0.41692I	4.63845 - 5.90595I	-3.49620 + 2.84362I
b = 0.546956 - 0.859893I		
u = 0.663748 - 1.042840I	4 000 45 . 5 005057	0.40000 0.040007
a = -1.50776 - 0.41692I	4.63845 + 5.90595I	-3.49620 - 2.84362I
b = 0.546956 + 0.859893I		
u = 0.692059 + 1.043830I	0.0005 15.0505	0.00000 . 11.055445
a = 1.02365 - 2.73608I	0.6235 - 17.3797I	-8.00000 + 11.25544I
b = 1.174490 + 0.646634I		
u = 0.692059 - 1.043830I	0.6005 15.05051	0.00000 11.055447
a = 1.02365 + 2.73608I	0.6235 + 17.3797I	-8.00000 - 11.25544I
b = 1.174490 - 0.646634I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.580815 + 0.131701I		
a = 0.893430 + 0.128520I	-1.61575 - 4.22948I	-11.92293 + 4.59304I
b = 0.976159 + 0.538801I		
u = -0.580815 - 0.131701I		
a = 0.893430 - 0.128520I	-1.61575 + 4.22948I	-11.92293 - 4.59304I
b = 0.976159 - 0.538801I		
u = 0.375038		
a = 0.901679	-0.737041	-13.3130
b = 0.436822		

II.
$$I_2^u = \langle -83u^{30}a + 64u^{30} + \cdots - 12a - 29, -2u^{30}a + u^{30} + \cdots - 2a + 2, u^{31} + u^{30} + \cdots - 2u^2 - 1 \rangle$$

$$\begin{aligned} a_3 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 &= \begin{pmatrix} 1 \\ u^2 \end{pmatrix} \\ a_6 &= \begin{pmatrix} 1.66000au^{30} - 1.28000u^{30} + \dots + 0.240000a + 0.580000 \end{pmatrix} \\ a_2 &= \begin{pmatrix} -1.28000au^{30} + 1.74000u^{30} + \dots + 0.580000a - 0.140000 \\ -1.52000au^{30} + 1.66000u^{30} + \dots - 0.780000a - 0.760000 \end{pmatrix} \\ a_1 &= \begin{pmatrix} -2.80000au^{30} + 3.40000u^{30} + \dots - 0.200000a - 0.900000 \\ -1.52000au^{30} + 1.66000u^{30} + \dots - 0.780000a - 0.760000 \end{pmatrix} \\ a_5 &= \begin{pmatrix} u^{10} + u^8 + 2u^6 + u^4 + u^2 + 1 \\ u^{12} + 2u^{10} + 4u^8 + 4u^6 + 3u^4 + 2u^2 \end{pmatrix} \\ a_9 &= \begin{pmatrix} u \\ u^3 + u \end{pmatrix} \\ a_{11} &= \begin{pmatrix} u^3 \\ u^5 + u^3 + u \end{pmatrix} \\ a_{12} &= \begin{pmatrix} u^5 + u \\ u^7 + u^5 + 2u^3 + u \end{pmatrix} \\ a_8 &= \begin{pmatrix} u^5 + u \\ u^7 + u^5 + 2u^3 + u \end{pmatrix} \\ a_7 &= \begin{pmatrix} u^{15} + 2u^{13} + 4u^{11} + 4u^9 + 4u^7 + 4u^5 + 2u^3 + 2u \\ u^{17} + 3u^{15} + 7u^{13} + 10u^{11} + 11u^9 + 10u^7 + 6u^5 + 4u^3 + u \end{pmatrix} \end{aligned}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$\begin{array}{l} = 4u^{30} + 20u^{28} - 4u^{27} + 68u^{26} - 20u^{25} + 160u^{24} - 64u^{23} + 300u^{22} - 144u^{21} + 460u^{20} - \\ 252u^{19} + 592u^{18} - 364u^{17} + 660u^{16} - 436u^{15} + 628u^{14} - 452u^{13} + 528u^{12} - 396u^{11} + \\ 380u^{10} - 296u^9 + 236u^8 - 188u^7 + 128u^6 - 92u^5 + 52u^4 - 40u^3 + 20u^2 - 12u - 6 \end{array}$$

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$u^{62} + 33u^{61} + \dots + 2505u + 256$
$c_2, c_5, c_6 \ c_{12}$	$u^{62} + u^{61} + \dots + 19u + 16$
c_3, c_9	$(u^{31} - u^{30} + \dots + 2u^2 + 1)^2$
c_4, c_7	$(u^{31} + 5u^{30} + \dots + 40u + 7)^2$
c_8, c_{10}	$(u^{31} - 11u^{30} + \dots - 4u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$y^{62} - 9y^{61} + \dots + 636463y + 65536$
c_2, c_5, c_6 c_{12}	$y^{62} - 33y^{61} + \dots - 2505y + 256$
c_3, c_9	$(y^{31} + 11y^{30} + \dots - 4y - 1)^2$
c_4, c_7	$(y^{31} + 23y^{30} + \dots - 640y - 49)^2$
c_{8}, c_{10}	$(y^{31} + 19y^{30} + \dots - 8y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.794006 + 0.593785I		
a = -0.575606 + 1.111050I	1.70250 - 6.04082I	-7.64635 + 3.16093I
b = -1.060010 - 0.663363I		
u = -0.794006 + 0.593785I		
a = 0.268388 - 0.355056I	1.70250 - 6.04082I	-7.64635 + 3.16093I
b = -0.378076 + 0.912441I		
u = -0.794006 - 0.593785I		
a = -0.575606 - 1.111050I	1.70250 + 6.04082I	-7.64635 - 3.16093I
b = -1.060010 + 0.663363I		
u = -0.794006 - 0.593785I		
a = 0.268388 + 0.355056I	1.70250 + 6.04082I	-7.64635 - 3.16093I
b = -0.378076 - 0.912441I		
u = 0.752643 + 0.616875I		
a = 1.049010 - 0.024204I	-4.01963 + 2.73446I	-11.76690 - 3.38925I
b = 1.292420 + 0.176912I		
u = 0.752643 + 0.616875I		
a = -0.19620 - 1.79030I	-4.01963 + 2.73446I	-11.76690 - 3.38925I
b = -0.948917 + 0.478047I		
u = 0.752643 - 0.616875I		
a = 1.049010 + 0.024204I	-4.01963 - 2.73446I	-11.76690 + 3.38925I
b = 1.292420 - 0.176912I		
u = 0.752643 - 0.616875I		
a = -0.19620 + 1.79030I	-4.01963 - 2.73446I	-11.76690 + 3.38925I
b = -0.948917 - 0.478047I		
u = 0.307711 + 0.890519I		
a = 0.991470 - 0.636002I	1.93424 - 2.56488I	-2.83547 + 4.43258I
b = -0.548491 + 0.670065I		
u = 0.307711 + 0.890519I		
a = 0.06449 + 1.90945I	1.93424 - 2.56488I	-2.83547 + 4.43258I
b = -0.810066 - 0.589243I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.307711 - 0.890519I		
a = 0.991470 + 0.636002I	1.93424 + 2.56488I	-2.83547 - 4.43258I
b = -0.548491 - 0.670065I		
u = 0.307711 - 0.890519I		
a = 0.06449 - 1.90945I	1.93424 + 2.56488I	-2.83547 - 4.43258I
b = -0.810066 + 0.589243I		
u = -0.028596 + 1.074730I		
a = 1.254810 + 0.086042I	1.60703 + 1.99617I	-4.10076 - 3.62729I
b = -1.300190 - 0.121437I		
u = -0.028596 + 1.074730I		
a = -1.60467 + 2.59295I	1.60703 + 1.99617I	-4.10076 - 3.62729I
b = 0.865196 - 0.489813I		
u = -0.028596 - 1.074730I		
a = 1.254810 - 0.086042I	1.60703 - 1.99617I	-4.10076 + 3.62729I
b = -1.300190 + 0.121437I		
u = -0.028596 - 1.074730I		
a = -1.60467 - 2.59295I	1.60703 - 1.99617I	-4.10076 + 3.62729I
b = 0.865196 + 0.489813I		
u = -0.730031 + 0.790482I		
a = 1.124130 + 0.092019I	-3.79282 - 0.40298I	-11.07070 + 0.52831I
b = 0.982872 + 0.347185I		
u = -0.730031 + 0.790482I		
a = 0.801595 - 0.042941I	-3.79282 - 0.40298I	-11.07070 + 0.52831I
b = 0.213919 - 0.536430I		
u = -0.730031 - 0.790482I		
a = 1.124130 - 0.092019I	-3.79282 + 0.40298I	-11.07070 - 0.52831I
b = 0.982872 - 0.347185I		
u = -0.730031 - 0.790482I		
a = 0.801595 + 0.042941I	-3.79282 + 0.40298I	-11.07070 - 0.52831I
b = 0.213919 + 0.536430I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.709633 + 0.857826I		
a = 1.50924 + 0.06570I	-7.28578 - 2.71284I	-15.8994 + 3.4466I
b = 1.162280 - 0.314153I		
u = 0.709633 + 0.857826I		
a = -1.89841 + 2.00937I	-7.28578 - 2.71284I	-15.8994 + 3.4466I
b = -1.134280 - 0.338014I		
u = 0.709633 - 0.857826I		
a = 1.50924 - 0.06570I	-7.28578 + 2.71284I	-15.8994 - 3.4466I
b = 1.162280 + 0.314153I		
u = 0.709633 - 0.857826I		
a = -1.89841 - 2.00937I	-7.28578 + 2.71284I	-15.8994 - 3.4466I
b = -1.134280 + 0.338014I		
u = 0.048600 + 1.113390I		
a = -1.10147 + 1.83797I	7.71400 - 5.04935I	-0.87471 + 3.42516I
b = 0.429611 - 0.922254I		
u = 0.048600 + 1.113390I		
a = -1.08873 - 2.37779I	7.71400 - 5.04935I	-0.87471 + 3.42516I
b = 1.032690 + 0.699331I		
u = 0.048600 - 1.113390I		
a = -1.10147 - 1.83797I	7.71400 + 5.04935I	-0.87471 - 3.42516I
b = 0.429611 + 0.922254I		
u = 0.048600 - 1.113390I		
a = -1.08873 + 2.37779I	7.71400 + 5.04935I	-0.87471 - 3.42516I
b = 1.032690 - 0.699331I		
u = -0.630136 + 0.611565I		
a = 0.979082 + 0.056700I	-3.29780 + 0.92992I	-9.59628 - 3.68841I
b = 1.231410 + 0.064735I		
u = -0.630136 + 0.611565I		
a = 0.90502 - 1.81588I	-3.29780 + 0.92992I	-9.59628 - 3.68841I
b = -0.766634 + 0.363749I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.630136 - 0.611565I		
a = 0.979082 - 0.056700I	-3.29780 - 0.92992I	-9.59628 + 3.68841I
b = 1.231410 - 0.064735I		
u = -0.630136 - 0.611565I		
a = 0.90502 + 1.81588I	-3.29780 - 0.92992I	-9.59628 + 3.68841I
b = -0.766634 - 0.363749I		
u = -0.711244 + 0.915096I		
a = 0.223384 - 0.239937I	-3.41810 + 5.89464I	-10.05487 - 6.44091I
b = -0.229078 - 0.626885I		
u = -0.711244 + 0.915096I		
a = -1.45569 - 1.48316I	-3.41810 + 5.89464I	-10.05487 - 6.44091I
b = -1.009990 + 0.409220I		
u = -0.711244 - 0.915096I		
a = 0.223384 + 0.239937I	-3.41810 - 5.89464I	-10.05487 + 6.44091I
b = -0.229078 + 0.626885I		
u = -0.711244 - 0.915096I		
a = -1.45569 + 1.48316I	-3.41810 - 5.89464I	-10.05487 + 6.44091I
b = -1.009990 - 0.409220I		
u = 0.696118 + 0.446614I		
a = -0.429932 + 1.245830I	2.60250 - 3.33239I	-6.76330 + 3.21859I
b = -0.983943 - 0.673017I		
u = 0.696118 + 0.446614I		
a = 0.375203 - 0.425155I	2.60250 - 3.33239I	-6.76330 + 3.21859I
b = -0.451734 + 0.862793I		
u = 0.696118 - 0.446614I		
a = -0.429932 - 1.245830I	2.60250 + 3.33239I	-6.76330 - 3.21859I
b = -0.983943 + 0.673017I		
u = 0.696118 - 0.446614I		
a = 0.375203 + 0.425155I	2.60250 + 3.33239I	-6.76330 - 3.21859I
b = -0.451734 - 0.862793I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.642253 + 1.006370I		
a = -0.28971 - 1.62874I	-2.14842 + 4.14236I	-7.79961 - 2.04013I
b = -1.280510 + 0.056589I		
u = -0.642253 + 1.006370I		
a = -1.61379 - 0.81510I	-2.14842 + 4.14236I	-7.79961 - 2.04013I
b = 0.751258 + 0.461288I		
u = -0.642253 - 1.006370I		
a = -0.28971 + 1.62874I	-2.14842 - 4.14236I	-7.79961 + 2.04013I
b = -1.280510 - 0.056589I		
u = -0.642253 - 1.006370I		
a = -1.61379 + 0.81510I	-2.14842 - 4.14236I	-7.79961 + 2.04013I
b = 0.751258 - 0.461288I		
u = 0.611328 + 1.036450I		
a = -1.171880 + 0.475269I	4.22211 - 1.64856I	-3.98491 + 2.12263I
b = 0.974751 - 0.714129I		
u = 0.611328 + 1.036450I		
a = 0.40901 - 1.68159I	4.22211 - 1.64856I	-3.98491 + 2.12263I
b = 0.489978 + 0.891236I		
u = 0.611328 - 1.036450I		
a = -1.171880 - 0.475269I	4.22211 + 1.64856I	-3.98491 - 2.12263I
b = 0.974751 + 0.714129I		
u = 0.611328 - 1.036450I		
a = 0.40901 + 1.68159I	4.22211 + 1.64856I	-3.98491 - 2.12263I
b = 0.489978 - 0.891236I		
u = 0.673649 + 1.023570I		
a = -0.12488 + 1.47943I	-2.81425 - 8.17190I	-9.55732 + 8.00325I
b = -1.314250 + 0.172694I		
u = 0.673649 + 1.023570I		
a = 0.29874 - 3.07399I	-2.81425 - 8.17190I	-9.55732 + 8.00325I
b = 0.942920 + 0.509265I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.673649 - 1.023570I		
a = -0.12488 - 1.47943I	-2.81425 + 8.17190I	-9.55732 - 8.00325I
b = -1.314250 - 0.172694I		
u = 0.673649 - 1.023570I		
a = 0.29874 + 3.07399I	-2.81425 + 8.17190I	-9.55732 - 8.00325I
b = 0.942920 - 0.509265I		
u = -0.680810 + 1.043630I		
a = -1.54320 - 0.40737I	3.04348 + 11.60290I	-5.65053 - 7.70694I
b = 0.377634 + 0.934666I		
u = -0.680810 + 1.043630I		
a = 0.80613 + 2.68508I	3.04348 + 11.60290I	-5.65053 - 7.70694I
b = 1.073030 - 0.677122I		
u = -0.680810 - 1.043630I		
a = -1.54320 + 0.40737I	3.04348 - 11.60290I	-5.65053 + 7.70694I
b = 0.377634 - 0.934666I		
u = -0.680810 - 1.043630I		
a = 0.80613 - 2.68508I	3.04348 - 11.60290I	-5.65053 + 7.70694I
b = 1.073030 + 0.677122I		
u = -0.330533 + 0.488116I		
a = 1.010390 + 0.142244I	-3.18273 + 1.02630I	-10.18992 - 6.41690I
b = 1.168370 + 0.123140I		
u = -0.330533 + 0.488116I		
a = 0.66597 - 3.17396I	-3.18273 + 1.02630I	-10.18992 - 6.41690I
b = -0.903345 + 0.276517I		
u = -0.330533 - 0.488116I		
a = 1.010390 - 0.142244I	-3.18273 - 1.02630I	-10.18992 + 6.41690I
b = 1.168370 - 0.123140I		
u = -0.330533 - 0.488116I		
a = 0.66597 + 3.17396I	-3.18273 - 1.02630I	-10.18992 + 6.41690I
b = -0.903345 - 0.276517I		

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.495857		
a =	0.858117 + 0.046148I	-0.537061	-10.4180
b =	0.631170 + 0.441733I		
u =	0.495857		
a =	0.858117 - 0.046148I	-0.537061	-10.4180
b =	0.631170 - 0.441733I		

III.
$$I_3^u = \langle b+1, u^3 - 2u^2 + 2a + u, u^4 + u^2 + 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u + 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{3} + u^{2} - \frac{1}{2}u \\ -u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} - u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} - u \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^2 12$

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{11} \\ c_{12}$	$(u-1)^4$
c_{2}, c_{6}	$(u+1)^4$
c_3, c_4, c_7 c_9	$u^4 + u^2 + 2$
c ₈	$(u^2+u+2)^2$
c_{10}	$(u^2 - u + 2)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2 + y + 2)^2$
c_8, c_{10}	$(y^2 + 3y + 4)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.676097 + 0.978318I		
a = -0.021927 + 0.631100I	-4.11234 - 5.33349I	-14.0000 + 5.2915I
b = -1.00000		
u = 0.676097 - 0.978318I		
a = -0.021927 - 0.631100I	-4.11234 + 5.33349I	-14.0000 - 5.2915I
b = -1.00000		
u = -0.676097 + 0.978318I		
a = -0.97807 - 2.01465I	-4.11234 + 5.33349I	-14.0000 - 5.2915I
b = -1.00000		
u = -0.676097 - 0.978318I		
a = -0.97807 + 2.01465I	-4.11234 - 5.33349I	-14.0000 + 5.2915I
b = -1.00000		

IV.
$$I_4^u = \langle b - 1, \ a + u - 1, \ u^4 + 1 \rangle$$

a) Arc colorings
$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u+1 \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u-1 \\ -1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{3} \\ u^{3} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{3} + u - 1 \\ u^{3} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u^{3} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} \\ u^{3} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	$(u-1)^4$
c_3, c_4, c_7 c_9	$u^4 + 1$
c_5, c_{12}	$(u+1)^4$
c_8, c_{10}	$(u^2+1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_{11}, c_{12}	$(y-1)^4$
c_3, c_4, c_7 c_9	$(y^2+1)^2$
c_8,c_{10}	$(y+1)^4$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.707107 + 0.707107I		
a = 0.292893 - 0.707107I	-4.93480	-16.0000
b = 1.00000		
u = 0.707107 - 0.707107I		
a = 0.292893 + 0.707107I	-4.93480	-16.0000
b = 1.00000		
u = -0.707107 + 0.707107I		
a = 1.70711 - 0.70711I	-4.93480	-16.0000
b = 1.00000		
u = -0.707107 - 0.707107I		
a = 1.70711 + 0.70711I	-4.93480	-16.0000
b = 1.00000		

V.
$$I_5^u = \langle b+1, \ a-u-1, \ u^2+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u+1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+2 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u+2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u+1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2u \\ -u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u \\ -u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -8

Crossings	u-Polynomials at each crossing
$c_1, c_5, c_{10} \\ c_{11}, c_{12}$	$(u-1)^2$
c_2, c_6, c_8	$(u+1)^2$
c_3, c_4, c_7 c_9	$u^2 + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6, c_8, c_{10} c_{11}, c_{12}	$(y-1)^2$
c_3, c_4, c_7 c_9	$(y+1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.000000I		
a = 1.00000 + 1.00000I	0	-8.00000
b = -1.00000		
u = -1.000000I		
a = 1.00000 - 1.00000I	0	-8.00000
b = -1.00000		

VI.
$$I_1^v = \langle a,\ b-1,\ v+1
angle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6 c_{11}	u-1
c_3, c_4, c_7 c_8, c_9, c_{10}	u
c_5, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_5 \\ c_6, c_{11}, c_{12}$	y-1
c_3, c_4, c_7 c_8, c_9, c_{10}	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	-3.28987	-12.0000
b = 1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1,c_{11}	$((u-1)^{11})(u^{43} + 17u^{42} + \dots + 16u + 1)$ $\cdot (u^{62} + 33u^{61} + \dots + 2505u + 256)$
c_2, c_6	$((u-1)^5)(u+1)^6(u^{43}+u^{42}+\cdots-8u^2+1)(u^{62}+u^{61}+\cdots+19u+16)$
c_3, c_9	$u(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{31}-u^{30}+\cdots+2u^{2}+1)^{2}$ $\cdot (u^{43}+3u^{42}+\cdots+2u+2)$
c_4, c_7	$u(u^{2}+1)(u^{4}+1)(u^{4}+u^{2}+2)(u^{31}+5u^{30}+\cdots+40u+7)^{2}$ $\cdot (u^{43}-15u^{42}+\cdots-2154u+158)$
c_5,c_{12}	$((u-1)^6)(u+1)^5(u^{43}+u^{42}+\cdots-8u^2+1)(u^{62}+u^{61}+\cdots+19u+16)$
c_8	$u(u+1)^{2}(u^{2}+1)^{2}(u^{2}+u+2)^{2}(u^{31}-11u^{30}+\cdots-4u+1)^{2}$ $\cdot (u^{43}-15u^{42}+\cdots+12u+4)$
c_{10}	$u(u-1)^{2}(u^{2}+1)^{2}(u^{2}-u+2)^{2}(u^{31}-11u^{30}+\cdots-4u+1)^{2}$ $\cdot (u^{43}-15u^{42}+\cdots+12u+4)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_{11}	$((y-1)^{11})(y^{43} + 31y^{42} + \dots + 36y - 1)$ $\cdot (y^{62} - 9y^{61} + \dots + 636463y + 65536)$
c_2, c_5, c_6 c_{12}	$((y-1)^{11})(y^{43} - 17y^{42} + \dots + 16y - 1)$ $\cdot (y^{62} - 33y^{61} + \dots - 2505y + 256)$
c_{3}, c_{9}	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}(y^{31}+11y^{30}+\cdots-4y-1)^{2}$ $\cdot (y^{43}+15y^{42}+\cdots+12y-4)$
c_4, c_7	$y(y+1)^{2}(y^{2}+1)^{2}(y^{2}+y+2)^{2}(y^{31}+23y^{30}+\cdots-640y-49)^{2}$ $\cdot (y^{43}+27y^{42}+\cdots+268172y-24964)$
c_8,c_{10}	$y(y-1)^{2}(y+1)^{4}(y^{2}+3y+4)^{2}(y^{31}+19y^{30}+\cdots-8y-1)^{2}$ $\cdot (y^{43}+27y^{42}+\cdots+784y-16)$