# 6000 series video stream user data format

Version 1.0 2005/5/12

# MPEG-4 Simple Profile Video Encoder on Equator MAPCA Technical User's Guide

© 2000 ~ 2005 Vivotek Inc. All Right Reserved

Vivotek may make changes to specifications and product descriptions at any time, without notice.

The following is trademarks of Vivotek Inc., and may be used to identify Vivotek products only: Vivotek. Other product and company names contained herein may be trademarks of their respective owners.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Vivotek Inc.

#### **Revision History**

| version | Issue date | author | comment                                   |
|---------|------------|--------|-------------------------------------------|
| 0.9     | 2005/5/11  | Albus  | First draft from internal document by Yun |
| 1.0     | 2005/05/12 | Joe    | Update some fields definitions            |
|         |            |        |                                           |
|         |            |        |                                           |
|         |            |        |                                           |
|         |            |        |                                           |



## **TABLE of CONTENTS**

| OVERVIEW             | 5        |
|----------------------|----------|
|                      |          |
| DATA PACKET          | <i>6</i> |
|                      |          |
| NETWORK TRANSMISSION | (        |

## 1.1 Overview

Vivotek embedded some useful information in the video stream so that the developer can use them for advanced features in their software. The information includes digital input states, digital output states, motion detection, etc. This document describes the media data format used in 4000/5000/6000 series product.

## **Data Packet**

Data Packet contains one or multiple frames of one media stream. For video stream, one Data Packet contains one frame. For audio stream, one Data Packet contains one or multiple frames.

To achieve 32-bits alignment, the size of user data must be multiple of 32-bits. The unit of "User Data Length" is 32-bits. Pad zero bits to achieve 32-bits alignment.

#### The layout of Data Packet:

| Packet Size | Stream Type | Frame  | DI Alert | Reserved | DO flag | Time Modified | Audio DI | Reserved |
|-------------|-------------|--------|----------|----------|---------|---------------|----------|----------|
|             | (FourCC)    | Туре   | flag     |          |         | flag          | flag     |          |
| 32 bits     | 32 bits     | 4 bits | 4 bits   | 8 bits   | 2 bits  | 1 bit         | 1 bit    | 20 bits  |
|             | <b>←</b>    |        |          |          |         | Data          | Packet   | size     |

| Second  | Millisecond | User Data Length | User Data              | Bitstream                                 |
|---------|-------------|------------------|------------------------|-------------------------------------------|
| 32 bits | 16 bits     | 8 bits           | UserDataLength*4 bytes | Packet size – 16 – UserDataLength*4 bytes |
|         |             |                  |                        |                                           |

#### ◆ Field descriptions:

| Packet Size   | 32 bits | The size in bytes of Data Packet                           |
|---------------|---------|------------------------------------------------------------|
| Stream Type   | 32 bits | The unique ID for the codec type (FourCC)                  |
|               |         | Currently support stream types are listed below:           |
|               |         | 1. "MP4V" => MPEG4 simple profile video                    |
|               |         | 2. "JPEG" => Motion JPEG                                   |
|               |         | 3. "H263" => H.263 or MPEG4-SHM video                      |
|               |         | 4. "AAC " => MPEG4 AAC audio                               |
| Frame Type    | 4 bits  | Indicate the type of frame, intra, prediction or           |
|               |         | bi-direction prediction. For audio stream, the field is    |
|               |         | always zero.                                               |
|               |         | 0x0: Intra frame, (for MPEG-4, it means intra frame        |
|               |         | with VO header)                                            |
|               |         | 0x1: Prediction frame (P)                                  |
|               |         | 0x2: Bi-direction prediction frame (B)                     |
| DI alert flag | 4 bits  | Each bit is used to indicate the DI alert triggered by     |
|               |         | user defined (H/L). It will add the flexibility except the |
|               |         | three alert windows to motion detection with extra         |

|                    |         | devices. It supports four digital input sources in the     |
|--------------------|---------|------------------------------------------------------------|
|                    |         | present. The LSB indicates the first digital input source. |
| Reserved           | 8 bits  | This field is reserved and should be set to 0.             |
|                    |         |                                                            |
| DO flag            | 2 bits  | Each bit is to indicate the digital output status. The LSB |
|                    |         | indicates the first digital output.                        |
| Time modified flag | 1 bit   | The time is modified according to timezone. This bit is    |
|                    |         | always 1 in 4000/5000/6000 series. The "Second" field      |
|                    |         | below represents the relative to 0h local time on 1        |
|                    |         | January 1970.                                              |
| Audio DI flag      | 1 bit   | Audio packets take the DI Alert information. This bit is   |
|                    |         | always 1 in 4000/5000/6000 series.                         |
| Reserved           | 20 bits | This field is reserved and should be set to 0.             |
| Second             | 32 bits | The second that the first frame in the Data Packet         |
|                    |         | belongs to. It is relative to 0h UTC on 1 January 1970.    |
| Millisecond        | 16 bits | The millisecond that the first frame in the Data Packet    |
|                    |         | belongs to.                                                |
|                    |         | The range is (0, 999).                                     |
| User Data Length   | 8 bits  | The number of 4-bytes in the User Data field               |
| User Data          | Varies  | The content of user data is stream-dependent. The          |
|                    |         | detail description is in the next section.                 |
| Bitstream          | varies  | The media bitstream. The size of bitstream can             |
|                    |         | calculate from the packet size and header size.            |

#### User Data in video stream

| Motion | Alert | Percent | Axis        | Motion | Alert | Percent | Axis          | No Signal |
|--------|-------|---------|-------------|--------|-------|---------|---------------|-----------|
| Detect | Flag  |         |             | Detect | Flag  |         |               |           |
| W0     |       |         |             | W2     |       |         |               |           |
| 1 bit  | 1 bit | 7 bits  | 4*10 bits   | 1 bit  | 1 bit | 7 bits  | 4*10 bits     | 1 bit     |
| 1      | 0     | 20      | (1,1,10,10) | 1      | 1     | 50      | (50,50,60,55) | 1         |

#### ◆ Field descriptions

| Motion Detect W# | 1 bit | Indicate the on/off of motion detection.                 |
|------------------|-------|----------------------------------------------------------|
|                  |       | 0: disable motion detection                              |
|                  |       | 1: enable motion detection                               |
|                  |       | If the motion detection was enabled, alert flag, percent |
|                  |       | and axis fields follows. If the motion detection was     |
|                  |       | disabled, there are no these three fields.               |
| Alert Flag       | 1 bit | Indicates the movement is over the threshold the user    |

|           |           | defined.                                                          |
|-----------|-----------|-------------------------------------------------------------------|
| Percent   | 7 bits    | The percent of motion detection. It ranges from 0 to              |
|           |           | 100.                                                              |
| Axis      | 4*10 bits | The rectangle of window for motion detection. Each                |
|           |           | element is encoded in 10 bits.                                    |
|           |           | ↑ 1 <sup>st</sup> element (the top-left x-axis): the real x1-axis |
|           |           | plus one (+1). The range is (1, 1023)                             |
|           |           |                                                                   |
|           |           | plus one (+1). The range is (1, 1023)                             |
|           |           | → 3 <sup>rd</sup> element: the width of rectangle                 |
|           |           |                                                                   |
| No Signal | 1 bit     | Indicates the loss of video signal                                |

#### ◆ User Data in audio stream

In the present, there is no security information for audio stream. If the size of bitstream is fixed (mostly for speech), store the total number of access unit and the fixed size of access unit. If the size of bitstream is variable, store the total number of access unit and the size of each access unit in this Data Packet. Make the size of user data is the multiple of 32-bits for alignment. System needs to control the times of calling audio decoder. Calculate the time difference from sampling frequency. If there are multiple selections of sampling frequency and channel number in an audio stream type, the user data contains the sampling frequency and channel number.

| Fixed unit | Sampling freq &      | Reserved | Access unit | Access    | <br>Access | Sampling  | Channel |
|------------|----------------------|----------|-------------|-----------|------------|-----------|---------|
| size flag  | channel number field |          | number (n)  | unit size | unit size  | frequency | number  |
|            | flag                 |          |             | (1)       | (n)        |           |         |
| 1 bit      | 1 bit                | 6 bits   | 8 bits      | 16 bits   | 16 bits    | 24 bits   | 8 bits  |

#### Field descriptions

| Fixed unit size flag | 1 bit   | Indicating the size of access unit is fixed or not |
|----------------------|---------|----------------------------------------------------|
| Sampling freq &      | 1 bit   | Indicating the existence of sampling frequency and |
| channel number       |         | channel number fields                              |
| field flag           |         |                                                    |
| Reserved             | 6 bits  | This field is reserved and should be set to 0.     |
| Access unit number   | 8 bits  | The number of access units in this Data Packet     |
| Access unit size     | 16 bits | The size in bytes of access units                  |
| Sampling Frequency   | 24 bits | The audio sampling frequency                       |
| Channel number       | 8 bits  | The audio output channel configuration             |

### **Network Transmission**

Between server and client, there are two channels for transmission when using HTTP. One is control channel. The other is data channel. When using UDP, there are three channels: two media channels and one control channel.



The server uses the control channel sending information to the client about the machine type, location, audio sampling frequency and channel number and if there is alert event (motion detection) or digital input alert happened, it sends the alert event to client. The control channel uses a reliable channel, HTTP. When data channel uses UDP, if there is any packet loss in client side, it can use control channel to inform server. The server can stop sending P frame and waiting next Intra frame to send. The data channel sends the Data Packet of media.

When using UDP, the packetizer is necessary. If the length of a UDP packet (i.e. the length of Data Packet in this case) is larger than the length of the network packet, the bottom layer will partition it into several network packets; in client side, it returned a UDP packet until all network packets belongs a UDP packet arrived. If there is some network packet lost, the timeout of waiting all network packets belongs a UDP packet arrived is not certain. Therefore, the behavior of receiving UDP packets becomes unpredictable. To prevent this situation, the Data Packet is partitioned into several packets using packetizer. Let the length of each UDP packets be smaller the maximum size of a network packet. In order to restore packet sequence and detect packet loss, additional information is added in front of a UDP packet.

For TCP and HTTP, we don't need the packetizer basically. But if the length of a Data Packet is larger than the size of TCP/HTTP buffer, additional procedure is needed to send a Data Packet (calculate the position of Data Packet sent). Therefore, we use

the packetizer for TCP/HTTP, too.

#### The layout of packet after packetizer:

| Length Sequence number Media type | Packet flag Data Packet |
|-----------------------------------|-------------------------|
|-----------------------------------|-------------------------|

#### ♦ Field descriptions:

| Length          | 16 bits | The size in bytes of a packet, including the size of length |
|-----------------|---------|-------------------------------------------------------------|
| Sequence number | 16 bits | The sequence number increments by one for each packet       |
|                 |         | sent                                                        |
| Media type      | 4 bits  | Indicate the type of media                                  |
|                 |         | 0x1: audio                                                  |
|                 |         | 0x2: video                                                  |
| Packet flag     | 4 bits  | Indicate the situation of Data Packet in this packet        |
|                 |         | 0x0: a whole Data Packet in this packet                     |
|                 |         | 0x1: the first packet of a Data Packet                      |
|                 |         | 0x2: the last packet of a Data Packet                       |
|                 |         | 0x3: the rest packets of a Data Packet                      |

The sequence number of every media stream is independent.