

Variational Gaussian Process

Dustin Tran^{†‡}, Rajesh Ranganath^{*}, David Blei[‡]

†Harvard University, ‡Columbia University, *Princeton University

Summary

- Deep generative models provide complex representations of data.
- Variational inference methods require a rich family of approximating distributions.
- We develop a powerful variational model—the variational Gaussian process (VGP).
- We prove a universal approximation theorem: the VGP can capture any continuous posterior distribution.
- We derive an efficient black box algorithm.

Variational Models

- We want to compute the posterior $p(\mathbf{z}|\mathbf{x})$, for latent variables $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_d)$ and data \mathbf{x} .
- Variational inference seeks to minimize $KL(q(\mathbf{z}; \lambda) || p(\mathbf{z} | \mathbf{x}))$ for a family $q(\mathbf{z}; \lambda)$.
- Equivalent to maximizing evidence lower bound (ELBO)

$$\mathcal{L} = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\lambda})}[\log p(\mathbf{x} \mid \mathbf{z})] - \text{KL}(q(\mathbf{z};\boldsymbol{\lambda})||p(\mathbf{z})).$$

- Interpret the family as a *variational model* for posterior latent variables **z** [3].
- Hierarchical variational models: prior $q(\lambda; \theta)$ and likelihood $\prod_i q(\mathbf{z}_i \mid \lambda_i)$,

$$q(\mathbf{z}; \boldsymbol{\theta}) = \int \left[\prod_{i} q(\mathbf{z}_{i} \mid \boldsymbol{\lambda}_{i}) \right] q(\boldsymbol{\lambda}; \boldsymbol{\theta}) d\boldsymbol{\lambda}.$$

• Their expressiveness is determined by the complexity of the prior $q(\lambda)$.

Gaussian Processes

- Consider a data set of m source-target pairs $\mathscr{D} = \{(\mathbf{s}_n, \mathbf{t}_n)\}_{n=1}^m$, with source $\mathbf{s}_n \in \mathbb{R}^c$ paired with a target $\mathbf{t}_n \in \mathbb{R}^d$.
- We aim to learn a function over all source-target pairs, $\mathbf{t}_n = f(\mathbf{s}_n)$, where $f : \mathbb{R}^c \to \mathbb{R}^d$ is unknown.
- Let $f = (f_1, ..., f_d)$, where each $f_i : \mathbb{R}^c \to \mathbb{R}$. Gaussian process (GP) regression estimates f by placing a prior

$$p(f) = \prod_{i=1}^{d} \mathscr{GP}(f_i; \mathbf{0}, \mathbf{K}_{ss}),$$

• Given data \mathcal{D} , the conditional distribution of the GP is

$$p(f \mid \mathcal{D}) = \prod_{i=1}^{d} \mathscr{GP}(f_i; \mathbf{K}_{\xi s} \mathbf{K}_{ss}^{-1} \mathbf{t}_i, \mathbf{K}_{\xi \xi} - \mathbf{K}_{\xi s} \mathbf{K}_{ss}^{-1} \mathbf{K}_{\xi s}^{\top}).$$

Variational Gaussian Process

Let $\mathcal{D} = \{(\mathbf{s}_n, \mathbf{t}_n)\}_{n=1}^m$ be *variational data*, comprising inputoutputs which are parameters. Let $\boldsymbol{\theta}$ be kernel parameters.

The variational Gaussian process (VGP) specifies the following generative process:

- Draw latent input $\xi \in \mathbb{R}^c$: $\xi \sim \mathcal{N}(0, \mathbf{I})$.
- Draw non-linear mapping $f: \mathbb{R}^c \to \mathbb{R}^d$ conditioned on $\mathscr{D}: f \sim \prod_{i=1}^d \mathscr{GP}(\mathbf{0}, \mathbf{K}_{\xi\xi}) | \mathscr{D}.$
- Draw approximate posterior samples $\mathbf{z} \in \operatorname{supp}(p)$: $\mathbf{z} = (\mathbf{z}_1, \dots, \mathbf{z}_d) \sim \prod_{i=1}^d q(f_i(\xi))$.

Figure 1: Variational Gaussian process (VGP).

Figure 2: Class of generative models the VGP can learn.

The density of the VGP is

$$q_{\text{VGP}}(\mathbf{z}; \boldsymbol{\theta}, \mathcal{D}) =$$

$$\iint \left[\prod_{i=1}^{d} q(\mathbf{z}_{i} | f_{i}(\boldsymbol{\xi})) \right] \left[\prod_{i=1}^{d} \mathscr{GP}(f_{i}; \mathbf{0}, \mathbf{K}_{\boldsymbol{\xi}\boldsymbol{\xi}}) | \mathcal{D} \right] \mathcal{N}(\boldsymbol{\xi}; \mathbf{0}, \mathbf{I}) df d\boldsymbol{\xi},$$

- The VGP forms an *infinite* ensemble of mean-field distributions, with "weights" specified by a Bayesian nonparametric prior on mean-field parameters.
- The variational data anchors the random non-linear mappings at certain input-ouput pairs.
- **Special cases of the VGP**. The discrete mixture of mean-field distributions [2] is a form of VGP without a kernel; factor analysis in the variational space is a form of VGP without variational data.

Universal Approximation Theorem

Theorem. For any posterior distribution $p(\mathbf{z} | \mathbf{x})$ with a finite number of latent variables and continuous inverse CDF, there exist a set of parameters $(\boldsymbol{\theta}, \mathcal{D})$ such that

$$\mathrm{KL}(q(\mathbf{z};\boldsymbol{\theta},\mathcal{D}) \| p(\mathbf{z} | \mathbf{x})) = 0.$$

Any posterior distribution with strictly positive density can be represented by a VGP.

Variational Lower Bound

The ELBO is analytically intractable due to $\log q_{\text{VGP}}(\mathbf{z})$. We present a new variational lower bound:

$$\widetilde{\mathscr{L}} = \mathbb{E}_{q_{\text{VGP}}}[\log p(\mathbf{x} \mid \mathbf{z})] - \mathbb{E}_{q_{\text{VGP}}} \left[\text{KL} \left(q(\mathbf{z} | f(\boldsymbol{\xi})) \middle\| p(\mathbf{z}) \right) + \text{KL} \left(q(\boldsymbol{\xi}, f) \middle\| r(\boldsymbol{\xi}, f \mid \mathbf{z}) \right) \right].$$

Auto-encoder interpretation: maximize the expected negative reconstruction error, regularized by expected divergences. It is a nested VAE bound.

Auto-Encoding Variational Models

We specify inference networks to parameterize both the variational and auxiliary models:

$$\mathbf{x}_n \mapsto q(\mathbf{z}_n | \mathbf{x}_n; \boldsymbol{\theta}_n), \qquad \mathbf{x}_n, \mathbf{z}_n \mapsto r(\boldsymbol{\xi}_n, f_n | \mathbf{x}_n, \mathbf{z}_n; \boldsymbol{\phi}_n),$$

where q has local variational parameters given by the variational data \mathcal{D}_n , and r is specified as a fully factorized Gaussian.

Black Box Stochastic Optimization

We aim to maximize $\widetilde{\mathscr{L}}$ over variational parameters $\pmb{\theta}$ and auxiliary parameters $\pmb{\phi}$.

Analytic KL terms.

- KL $(q(\xi,f)||r(\xi,f|\mathbf{z}))$: This is analytic as we've specified both distributions to be jointly Gaussian.
- KL $\left(q(\mathbf{z}|f(\xi)) \middle| p(\mathbf{z})\right)$: This is standard in VAEs—it is analytic for deep generative models such as the deep latent Gaussian model [4] and DRAW [1].

Reparameterization.

- Latent inputs $\xi \sim \mathcal{N}(0, I)$.
- Apply location-scale transform $\mathbf{f}(\boldsymbol{\xi};\boldsymbol{\theta}) = \mathbf{L}\boldsymbol{\xi} + \mathbf{K}_{\boldsymbol{\xi}s}\mathbf{K}_{ss}^{-1}\mathbf{t}_{i}$. This acts as an evaluation $f(\boldsymbol{\xi})$ with random f from the GP.
- Suppose the mean-field $q(\mathbf{z}|f(\xi))$ is also reparameterizable: let $\epsilon \sim w$ such that $\mathbf{z}(\epsilon;\mathbf{f}) \sim q(\mathbf{z}|f(\xi))$.

The reparameterized variational lower bound is

$$\begin{split} \widetilde{\mathcal{L}}(\boldsymbol{\theta}, \boldsymbol{\phi}) &= \mathbb{E}_{\mathcal{N}(\boldsymbol{\xi})} \Big[\mathbb{E}_{w(\boldsymbol{\epsilon})} \Big[\log p(\mathbf{x} \mid \mathbf{z}(\boldsymbol{\epsilon}; \mathbf{f}(\boldsymbol{\xi}; \boldsymbol{\theta}))) \Big] \Big] \\ &- \mathbb{E}_{\mathcal{N}(\boldsymbol{\xi})} \Big[\mathbb{E}_{w(\boldsymbol{\epsilon})} \Big[KL(q(\mathbf{z} \mid \mathbf{f}(\boldsymbol{\xi}; \boldsymbol{\theta})) || p(\mathbf{z})) \\ &+ KL(q(\boldsymbol{\xi}, f; \boldsymbol{\theta}) || r(\boldsymbol{\xi}, f \mid \mathbf{z}(\boldsymbol{\epsilon}; \mathbf{f}(\boldsymbol{\xi}; \boldsymbol{\theta})); \boldsymbol{\phi})) \Big] \Big]. \end{split}$$

Gradients backpropagate inside the expectations. Stochastic gradients exhibit low variance due to analytic KL terms and reparameterization.

Experiments

We compare the VGP for inferring the deep latent Gaussian model [4] and DRAW [1]. We report predictive likelihood on held-out data.

Binarized MNIST

Model	$-\log p(\mathbf{x})$	\leq
DLGM + VAE		86.76
DLGM + HVI (8 leapfrog steps)	85.51	88.30
DLGM + NF (k = 80)		85.10
EoNADE-5 2hl (128 orderings)	84.68	
DBN 2hl	84.55	
DARN 1hl	84.13	
Convolutional VAE + HVI	81.94	83.49
DLGM $2hl + IWAE (k = 50)$		82.90
DRAW		80.97
DLGM 1hl + VGP (this paper)		83.64
DLGM 2hl + VGP (this paper)		81.90
DRAW + VGP (this paper)		80.11

The VGP achieves the highest known results using DRAW, and the highest among non-structure exploiting models using the DLGM.

Sketch

Model	Epochs	$\leq -\log p(\mathbf{x})$
DRAW	100	526.8
	200	479.1
	300	464.5
DRAW + VGP	100	475.9
	200	430.0
	300	425.4

The VGP (top) learns texture and sharpness, able to sketch more complex shapes than the standard DRAW (bottom).

References

- [1] Gregor, K., Danihelka, I., Graves, A., Rezende, D. J., and Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. In *International Conference on Machine Learning*.
- 2] Lawrence, N. (2000). *Variational Inference in Probabilistic Models*. PhD thesis.
- Ranganath, R., Tran, D., and Blei, D. M. (2015). Hierarchical variational models. *arXiv preprint arXiv:1511.02386*.
- [4] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep generative models. In *International Conference on Machine Learning*.