Firm Export and Goods Complexity

Sifan Xue Princeton University

April 16, 2024

Motivation

- Level of economic development correlates with what goods one country produce;
 One dimension: Complexity (e.g. aircraft vs. car vs. bicycle);
- Standard trade or growth models do not differentiate goods in this dimension;
 Existing research on complexity focuses on country level analysis;
- Today: Chinese firm level facts on export and complexity, and its evolution.

Measure of Complexity: Hidalgo and Hausmann (2009)

- Extract trade data to infer country and product complexity;
 - A country is complex if it produces many products, especially those that are relatively rare;
 - A product is complex if on average produced by more complex countries;
- A product is rare, because it needs more (latent) ability that fewer countries have;
 - Production M: $M_{cp} = 1$ if country c produces product p (above a given threshold);
 - Endowment C: $C_{ca} = 1$ if country c masters ability a;
 - Technology **P**: P_{pa} = 1 if product p requires ability a;

$$\mathbf{M}_{cp} = \mathbf{C}_{ca} \underbrace{\odot}_{\text{E.g., Leontief}} \mathbf{P}_{pa};$$

Country Complexity Rankings: 2000 - 2021

Source: The Atlas of Economic Complexity (https://atlas.cid.harvard.edu/rankings).

Summary of Results

- Evolution of China's export complexity:
 - Both within- and across-sector reallocation contribute positively;
 - Both within- and across-firm reallocation contribute positively;
 - Exiting firms contribute positively, while entering firms contribute slightly negatively;

Summary of Results

- Evolution of China's export complexity:
 - Both within- and across-sector reallocation contribute positively;
 - Both within- and across-firm reallocation contribute positively;
 - Exiting firms contribute positively, while entering firms contribute slightly negatively;
- Cross-sectional: firm export value \sim complexity:
 - Firm-level export complexity exhibit a U-shape relationship with export value;
 - Firm-sector-level export complexity monotonically decreases with export value;

Summary of Results

- Evolution of China's export complexity:
 - Both within- and across-sector reallocation contribute positively;
 - Both within- and across-firm reallocation contribute positively;
 - Exiting firms contribute positively, while entering firms contribute slightly negatively;
- ullet Cross-sectional: firm export value \sim complexity:
 - Firm-level export complexity exhibit a U-shape relationship with export value;
 - Firm-sector-level export complexity monotonically decreases with export value;
- Export growth \sim complexity:
 - Higher firm-level export complexity correlates with faster export growth;
 - Corresponding firm-sector-level result goes away when controlling for current export value;
 - More complex exporting firms have higher survival rate and greater sector/good expansion.

Literature

- Country and Product Complexity
 Hausmann and Rodrik (2007); Hidalgo and Hausmann (2009); Schetter (2020);
- Export Quality and Scope
 Bernard, Redding, and Schott (2010); Kugler and Verhoogen (2012); Manova and Zhang (2012);
 Khandelwal, Schott, and Wei (2013); Atkin, Khandelwal, and Osman (2017); Verhoogen (2023);
- Trade and Growth
 Krugman (1979); Goldberg, Khandelwal, Pavcnik, and Topalova (2010); Brandt, Van Biesebroeck,
 Wang, and Zhang (2017); Atkin, Costinot, and Fukui (2022); Boehm and Oberfield (2022).

1. Evolution of China's Export Complexity

2. Cross-sectional: Export and Complexity

3. Export Growth and Complexity

Evolution of China's Export Complexity

Data

- Chinese Customs Data: the universe of Chinese trade transactions from 2000-2011;
 - F.o.b. value and quantity of exports and imports in USD by product (HS8d) and trade partner;
 - Firm id linking over years;
 - Drop intermediary trading firms according to Ahn, Khandelwal, Wei (2011);
- Hidalgo and Hausmann (2009): Measure of product (HS4d) complexity from 2000-2011;
 - Normalized by rank for each year (1 = most complex, 0 = least complex);

Aggregate Export Value and Complexity: 2000 - 2011

Notes: Complexity = $\sum_{i \in F_t} \Big(x_{it} c_{it} / \sum_{i \in F_t} x_{it} \Big).$

Distribution

Complexity Change: Within- and Across-Sector Decomposition

- HS2d sector: indexed by s; HS4d product: indexed by p;
- Aggregate export complexity:

$$C = \sum_s \sum_p \frac{x_{sp}c_p}{\sum_s \sum_p x_{sp}},$$

where x_{sp} is aggregate export value of $p \in s$, and c_p is the complexity measure of p;

Change of aggregate complexity:

$$C_{t+1} - C_{t} = \underbrace{\sum_{s} w_{s,t} \left(\bar{c}_{s,t+1} - \bar{c}_{s,t} \right)}_{\text{Within-Sector}} + \underbrace{\sum_{s} \left(w_{s,t+1} - w_{s,t} \right) \bar{c}_{s,t}}_{\text{Across-Sector}} + \text{Interaction Term},$$

where w_s is value share of sector s, and \bar{c}_s is value-weighted average complexity of sector s.

Within- and Across-Sector Decomposition

Complexity Change: Surviving, Entering, Exiting Decomposition

- Individual firm: indexed by i; Group: indexed by G = S, E, X;
- Let $s_{G,t} = \sum_{i \in G} s_{i,t}$, and $\bar{c}_{G,t} = \sum_{i \in G} \frac{s_{i,t}\bar{c}_{i,t}}{s_{G,t}}$, where \bar{c}_i is firm i's average export complexity;
- Decomposition according to Melitz and Polanec (2015):

$$C_{t+1} - C_{t} = \underbrace{\left(\bar{c}_{S,t+1} - \bar{c}_{S,t}\right)}_{Surviving} + \underbrace{s_{E,t+1}\left(\bar{c}_{E,t+1} - \bar{c}_{S,t+1}\right)}_{Entering \; Firms} + \underbrace{s_{X,t}\left(\bar{c}_{S,t} - \bar{c}_{X,t}\right)}_{Exiting},$$

where "Surviving" can be further decomposed into within-firm, across-firm, and interaction.

Surviving, Entering, Exiting Decomposition

Cross-sectional: Export and Complexity

Export Value and Complexity

• Are larger firms on average exporting more or less complex goods?

$$c_i \sim \beta \log(x_i);$$

• Firm-sector level correlation:

$$c_{is} \sim \beta \log(x_{is}) + \alpha_{s};$$

Firm Level

Firm-Sector Level

Larger Firms Export in More Sectors

Size of circle is weighted average of number of HS2d sectors for each year-group; The min is 1.11, max is 81, median is 3.02, mean is 7.10

Export Growth and Complexity

Export Growth and Complexity

ullet Are firms producing more complex goods today growing faster? For $h=1,\ldots,10$,

$$\log\left(\frac{\mathsf{x}_{\mathsf{i},\mathsf{t}+\mathsf{h}}}{\mathsf{x}_{\mathsf{i},\mathsf{t}}}\right) \sim \beta \mathsf{c}_{\mathsf{i},\mathsf{t}} + \alpha_{\mathsf{t}};$$

- Control for current export value: $log(x_{i,t})$;
- Within HS2d sector: $log\left(\frac{x_{is,t+h}}{x_{is,t}}\right)$.

Firm Growth Rate: Control for Current Export Value

Firm Growth Rate: Control for Current Export Value

Survival Rate

ullet Are more complex firm more likely to survive exporting? For $h=1,\dots,10$,

$$\mathbb{1}_{\left\{\mathbf{x}_{\mathsf{i},\mathsf{t}+\mathsf{h}}>\mathbf{0}\right\}} \sim \beta c_{\mathsf{i},\mathsf{t}} + \gamma \log \left(\mathbf{x}_{\mathsf{i},\mathsf{t}}\right) + \alpha_{\mathsf{t}};$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	0.0503**	0.0837**	0.112**	0.133**	0.149**	0.167**	0.176**	0.181**	0.178**	0.174*
	(0.00274)	(0.00347)	(0.00402)	(0.00585)	(0.00737)	(0.00779)	(0.00902)	(0.00466)	(0.00414)	(0.00352)
Log(Export)	0.0486**	0.0552**	0.0569**	0.0560**	0.0542**	0.0516**	0.0489**	0.0465**	0.0433**	0.0402**
	(0.00166)	(0.00128)	(0.00108)	(0.000699)	(0.000807)	(0.000866)	(0.00109)	(0.000246)	(0.000467)	(0.000624)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	.096	.084	.077	.07	.064	.06	.056	.053	.05	.048
Dep. Var. Mean	.85	.75	.67	.6	.54	.5	.44	.4	.35	.31
Observations	1139378	985451	842904	707901	573063	448800	352765	260277	181521	114951

Number of Exporting Sectors

ullet Are more complex firm increasing number of exporting sectors more? For $h=1,\dots,10$,

$$\mathsf{Sector}\ \#_{\mathsf{i},\mathsf{t}+\mathsf{h}} - \mathsf{Sector}\ \#_{\mathsf{i},\mathsf{t}} \sim \beta \mathsf{c}_{\mathsf{i},\mathsf{t}} + \gamma \log \bigl(\mathsf{x}_{\mathsf{i},\mathsf{t}}\bigr) + \alpha_{\mathsf{t}};$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	0.205**	0.374**	0.539**	0.723**	0.905**	1.074**	1.219**	1.313**	1.388*	1.489*
	(0.0357)	(0.0380)	(0.0395)	(0.0447)	(0.0532)	(0.0602)	(0.0587)	(0.0943)	(0.141)	(0.108)
Log(Export)	-0.0808**	-0.0906**	-0.0978**	-0.106**	-0.107**	-0.113**	-0.118**	-0.122**	-0.120**	-0.107*
	(0.00517)	(0.00667)	(0.00635)	(0.00381)	(0.00330)	(0.00451)	(0.00387)	(0.00403)	(0.00495)	(0.00390)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	.005	.006	.008	.01	.012	.014	.015	.016	.016	.015
Dep. Var. Mean	.07	.12	.16	.2	.25	.31	.38	.45	.54	.63
Observations	966325	734572	561345	422030	310476	224600	156517	104072	63632	35089

Take-aways & Future Plans

Take-aways:

- More complex exporting firm-sectors are smaller, but they grow faster;
- The growth seems to come from expanding across sectors and goods;

Future Plans:

- What goods are introduced?
- How are complexity related to quality and productivity?
- Other countries and better data?
- Causality?
- The role of the demand side, other countries, GE?
- Microfoundation for the measure? Framework?

Appendix

$c_{is} \sim \beta \log(x_{is}) + \alpha_s + \alpha_i$

Numer of Sectors and Export Value

Complexity and Numer of Sectors

Firm Future Export Level

Survival Rate at Firm-Sector Level

• Similar results hold at the firm-sector level with HS2d FE:

$$\mathbb{1}_{\left\{\mathbf{x}_{\mathsf{is},\mathsf{t}+\mathsf{h}}>\mathbf{0}\right\}} \sim \beta c_{\mathsf{is},\mathsf{t}} + \gamma \log \left(\mathbf{x}_{\mathsf{is},\mathsf{t}}\right) + \alpha_{\mathsf{s}} + \alpha_{\mathsf{t}};$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	0.0405**	0.0565**	0.0648**	0.0713**	0.0726**	0.0715**	0.0723**	0.0653**	0.0586**	0.0489
	(0.00311)	(0.00344)	(0.00423)	(0.00566)	(0.00673)	(0.00731)	(0.00879)	(0.00677)	(0.00432)	(0.0102)
Log(Export)	0.0624**	0.0618**	0.0587**	0.0547**	0.0507**	0.0468**	0.0425**	0.0386**	0.0347**	0.0313**
	(0.00138)	(0.00109)	(0.000822)	(0.000934)	(0.000773)	(0.00108)	(0.00136)	(0.000408)	(0.000615)	(0.000467)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
HS2d FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	.151	.133	.119	.106	.095	.084	.073	.064	.056	.05
Dep. Var. Mean	67	.55	.47	.4	.36	.33	.29	.26	.23	.2
	.67	.55	.47	.~	.50	.55	.23	.20	.20	

Survival Rate at Firm-Sector Level

• Yet the opposite is true with firm FE:

$$\mathbb{1}_{\left\{\mathbf{x}_{\mathsf{is},\mathsf{t+h}}>\mathbf{0}\right\}} \sim \beta \mathbf{c}_{\mathsf{is},\mathsf{t}} + \gamma \log \left(\mathbf{x}_{\mathsf{is},\mathsf{t}}\right) + \alpha_{\mathsf{s}} + \alpha_{\mathsf{t}} + \alpha_{\mathsf{i}};$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	-0.00663**	-0.0105**	-0.0131**	-0.0126**	-0.0130**	-0.0159**	-0.0136**	-0.0108*	-0.00801	-0.0125
	(0.00180)	(0.00167)	(0.00200)	(0.00240)	(0.00206)	(0.00116)	(0.00186)	(0.00229)	(0.00358)	(0.00954)
_og(Export)	0.0626**	0.0568 * *	0.0511**	0.0456**	0.0412**	0.0376**	0.0333**	0.0298**	0.0264**	0.0237*
	(0.00129)	(0.00113)	(0.00134)	(0.000974)	(0.00100)	(0.00152)	(0.00136)	(0.000873)	(0.000663)	(0.000471)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
HS2d FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Firm FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	.144	.127	.113	.101	.091	.082	.074	.066	.06	.056
Dep. Var. Mean	.67	.55	.47	.4	.36	.33	.29	.26	.23	.2
Observations	3340931	2875736	2458193	2065440	1653230	1273437	988046	710587	482795	293647

Number of Exporting Sectors Growth

• Number of exporting sector growth rate:

$$\frac{\mathsf{Sector}\ \#_{\mathsf{i},\mathsf{t}+\mathsf{h}} - \mathsf{Sector}\ \#_{\mathsf{i},\mathsf{t}}}{\mathsf{Sector}\ \#_{\mathsf{i},\mathsf{t}}} \sim \beta \mathsf{c}_{\mathsf{i},\mathsf{t}} + \gamma \log \big(\mathsf{x}_{\mathsf{i},\mathsf{t}}\big) + \alpha_{\mathsf{t}};$$

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0.0749**	0.149**	0.232**	0.315**	0.400**	0.491**	0.578**	0.647**	0.701**	0.778*
(0.0106)	(0.0136)	(0.0149)	(0.0195)	(0.0238)	(0.0250)	(0.0178)	(0.0353)	(0.0579)	(0.0505)
-0.0390**	-0.0479**	-0.0522**	-0.0566**	-0.0568**	-0.0583**	-0.0605**	-0.0621**	-0.0603**	-0.0550**
(0.00222)	(0.00187)	(0.00210)	(0.00190)	(0.00152)	(0.00292)	(0.00219)	(0.00135)	(0.00302)	(0.000752)
✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
.01	.012	.013	.015	.017	.019	.02	.02	.019	.019
.17	.25	.3	.35	.39	.44	.5	.55	.61	.67
966325	734572	561345	422030	310476	224600	156517	104072	63632	35089
	0.0749** (0.0106) -0.0390** (0.00222) .01 .17	0.0749** 0.149** (0.0106) (0.0136) -0.0390** -0.0479** (0.00222) (0.00187) ✓ ✓ .01 .012 .17 .25	0.0749** 0.149** 0.232** (0.0106) (0.0136) (0.0149) -0.0390** -0.0479** -0.0522** (0.00222) (0.00187) (0.00210) V V V .01 .012 .013 .17 .25 .3	0.0749** 0.149** 0.232** 0.315** (0.0106) (0.0136) (0.0149) (0.0195) -0.0390** -0.0479** -0.0522** -0.0566** (0.00222) (0.00187) (0.00210) (0.00190) \$\$ \$\$ \$\$ \$\$.01 .012 .013 .015 .17 .25 .3 .35	0.0749** 0.149** 0.232** 0.315** 0.400** (0.0106) (0.0136) (0.0149) (0.0195) (0.0238) -0.0390** -0.0479** -0.0522** -0.0566** -0.0566** (0.00222) (0.00187) (0.00210) (0.00190) (0.00152) V V V V V .01 .012 .013 .015 .017 .17 .25 .3 .35 .39	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0749** 0.149** 0.232** 0.315** 0.400** 0.491** 0.578** (0.0106) (0.0136) (0.0149) (0.0195) (0.0238) (0.0250) (0.0178) -0.0390** -0.0479** -0.0522** -0.0566** -0.0568** -0.0583** -0.0605** (0.00222) (0.00187) (0.00210) (0.00190) (0.00152) (0.00292) (0.00219) -0.01 .012 .013 .015 .017 .019 .02 .17 .25 .3 .35 .39 .44 .5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Number of Exporting Goods

• Number of exporting goods:

Goods
$$\#_{i,t+h}$$
 – Goods $\#_{i,t} \sim \beta c_{i,t} + \gamma \log(x_{i,t}) + \alpha_t$;

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	1.833	4.665**	7.260**	9.677**	12.19**	12.82**	17.37**	19.31**	21.29**	24.17*
	(1.284)	(1.365)	(1.570)	(1.854)	(2.018)	(1.879)	(0.323)	(1.048)	(1.025)	(1.486)
Log(Export)	-0.693	-0.227	-0.167	-0.0338	0.276	-0.600	2.167**	2.474**	2.715*	2.740
	(1.135)	(1.220)	(1.446)	(1.784)	(2.127)	(2.372)	(0.361)	(0.199)	(0.326)	(0.550)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	0	0	0	.001	.001	.001	.002	.002	.002	.002
Dep. Var. Mean	2.08	3.65	4.54	5.66	6.92	6.09	11.98	13.76	15.74	17.99
Observations	966325	734572	561345	422030	310476	224600	156517	104072	63632	35089

Number of Exporting Goods Growth

• Number of exporting goods growth rate:

$$\frac{\mathsf{Goods}\ \#_{\mathsf{i},\mathsf{t}+\mathsf{h}} - \mathsf{Goods}\ \#_{\mathsf{i},\mathsf{t}}}{\mathsf{Goods}\ \#_{\mathsf{i},\mathsf{t}}} \sim \beta \mathsf{c}_{\mathsf{i},\mathsf{t}} + \gamma \log \big(\mathsf{x}_{\mathsf{i},\mathsf{t}}\big) + \alpha_{\mathsf{t}};$$

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Complexity	-0.0900	0.103	0.422**	0.655**	0.831**	0.953**	1.391**	1.748**	2.182**	2.891+
	(0.114)	(0.102)	(0.101)	(0.135)	(0.158)	(0.144)	(0.0843)	(0.0758)	(0.0872)	(0.371)
Log(Export)	-0.290**	-0.424**	-0.509**	-0.614**	-0.680**	-0.699**	-0.793**	-0.901**	-1.020**	-1.165*
	(0.0213)	(0.0177)	(0.0209)	(0.0458)	(0.0580)	(0.0485)	(0.0498)	(0.0374)	(0.0819)	(0.0698)
Year FE	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Within R ²	.003	.002	.019	.025	.013	.017	.017	.02	.016	.017
Dep. Var. Mean	.64	.95	1.19	1.47	1.72	1.75	2.23	2.56	2.92	3.39
Observations	966325	734572	561345	422030	310476	224600	156517	104072	63632	35089

