

# **Data Processing**

Tomasz Krawczyk



■ Future Processing

Odwiedź nas: WWW.DPTO.PL









#### Internet Minute

- Google 3.7 Million Search Queries
- Twitter 481.000 Tweets Sent
- 18 Million Text Messages
- 187 Million Emails Sent



Source: https://www.visualcapitalist.com/internet-minute-2018/



# 40 Zetta bytes by 2020 163 Zetta bytes by 2025

- Byte One grain of rice
- Kilobyte Cup of rice
- Megabyte 8 bags of rice
- Gigabyte 3 semi trucks
- Terabyte 2 container ships
- Petabyte Blankets Manhattan
- Exabyte Blankets west coast states
- Zettabyte Fills the Pacific Ocean
- Yottabyte As earth-sized rice ball





#### Value of Data

admin 123456
sa password
sysadmin qwerty
user abc123
me password1
student qwerty123

FILE 1 FILE 2



# Do you know...

Projekt MDM - platforma zarządzania danymi z zaawansowanej infrastruktury pomiarowej

Celem projektu jest opracowanie prototypu aplikacji platformy, która ma umożliwić prowadzenie zaawansowanych analiz dużych zbiorów danych z infrastruktury pomiarowej AMI w oparciu o innowacyjne modele matematyczne i narzędzia wypracowane we współpracy z uczelniami. Projekt zakresem obejmuje zainstalowaną infrastrukturę pomiarową w ramach Projektu AMIplus Smart City Wrocław liczącą obecnie ponad 370 tys. tysięcy inteligentnych liczników.





# History...





# My First Application





# My First Application





#### **Relation Model**





#### SQL

| Bookld | Score |
|--------|-------|
| 1      | * * * |
| 2      | **    |
| 1      | * * * |
| 2      | * * * |

```
1 reference
public int Sum(params int[] scores)
{
    int result = 0;
    for (int i = 0; i < scores.Length; i++)
    {
        result += scores[i];
    }
    return result;
}

0 references
public decimal Average(params int[] scores)
{
    int sum = Sum(scores);
    decimal result = (decimal)sum / scores.Length;
    return result;
}</pre>
```

SELECT AVG(Score) AS AvgScore FROM Scores WHERE BookId = 1



#### SQL

| Bookld | Score |
|--------|-------|
| 1      | * * * |
| 2      | **    |
| 1      | * * * |
| 2      | * * * |

SELECT BookId ,AVG(Score) AS AvgScore FROM Scores GROUP BY BookId ORDER BY AvgScore DESC



## Relational Model -Challenges

#### **Books**

| Id | Title                                         | Release date |  |
|----|-----------------------------------------------|--------------|--|
| 1  | Data Science in the Cloud                     |              |  |
| 2  | Fast Data Processing with Spark, 2nd Edition  |              |  |
| 3  | Building Machine Learning Systems with Python | 2017-04      |  |

| Bookid | Comment |
|--------|---------|
| 1      |         |
| 1      | Ok      |
| 3      | Super   |

| Bookld | Author            |
|--------|-------------------|
| 1      | Stephen F. Elston |
| 2      | Krishna Santar    |
| 3      | Willi Richert     |
| 3      | Luis Coelho Pedro |



#### Document Db



```
{ □
  "Id": "3",
   "Title": "Building Machine Learning Systems with Python",
  "ReleaseDate": "2017-04",
   "Authors": [ =
     "Willi Richert",
      "Luis Coelho Pedro"
   "Comments": [ =
         "Date": "2019-03-31",
         "Text": "Super"
```



# **New Challenges**







## NoSQL –Not only SQL





## Big Data (3V)

Byte One grain of rice

Kilobyte Cup of rice Megabyte 8 bags of rice

Gigabyte 3 semi trucks

**Terabyte 2 container ships** 

Petabyte Blankets Manhattan

**Exabyte** Blankets west coast states

Zettabyte Fills the Pacific Ocean Yottabyte As earth-sized rice ball













**Data Volume** 

**Data Variety** 

**Data Velocity** 

Future Processing



#### Big Data Processing











#### **Big Data Processing**

Compute



Future Processing



Big Data Processing –Data Lakes



I(ngest) S(tore) A(nalyse) S(urface) A(ct)

Make Me More Money





#### Scalable runtime





#### Cloud











#### Cloud -Example









Future Processing



#### Al and Machine Learning





Sebastian Raschka, 2016



#### Summary







SQL - Structured Query Language
R language is a golden child of machine learning
Python is a king of machine learning

Future Processing



#### **About Me**





Tomasz Krawczyk Azure Big Data Architect

https://github.com/cloud4yourdata

https://github.com/cloud4yourdata/CommunityEvents

https://github.com/FP-DataSolutions/AzureBigDataWorkshops



Future Processing



# Q&A



■ Future Processing

Odwiedź nas: WWW.DPTO.PL





# KONTAKT@DPTO.PL

■ Future Processing

Odwiedź nas: WWW.DPTO.PL