

《编译原理与技术》 期末复习

计算机科学与技术学院 郑启龙 李 诚 25/12/2018

- 口考试时间1月15日下午(具体时间待定)
- □地点西区3教(具体时间待定)
- □闭卷考试

□第2章 词法分析

- ❖理解并会使用正规式(即正则表达式)
- ❖掌握NFA和DFA, 以及之间的转换
- ❖学会为正规式写NFA和DFA
- ❖DFA的化简

□针对正规集L={含奇数个1的0、1串}

❖给出描述正规集L的正规式(即正则表达式)R

□针对正规集L={含奇数个1的0、1串}

❖给出描述正规集L的正规式(即正则表达式)R

□解答过程:

- ❖可以先写出几个合法的串
 - ▶1,111,11111,可以在相邻的两个1之间或第一个1 之前或最后一个1之后插入任意多的0
 - 》排除0以外,合法的1串都可以看做两部分"1+偶数个1的串"
 - >0*1(10*1|0)*

□构造识别正规式 10 | (0 | 11)0*1的极小化 DFA M。

❖这里一定要注意优先级,不少同学把|的优 先级弄错了。

- □构造识别正规式 10 | (0 | 11)0*1的极小化 DFA M。
- □解答过程
 - ❖如果不熟练,可以先画出NFA
 - ❖然后通过子集构造法将NFA转成DFA
 - ❖最后通过化简得到极小化的DFA

- □构造识别正规式 10 | (0 | 11)0*1的极小化 DFA M。
- □解答过程
 - ❖如果不熟练,可以先画出NFA

□ 子集构造法(subset construction)

- ❖ ε 闭包(ε -closure): 状态s的 ε -闭包是s 经 ε 转换所能到达的状态集合
- ❖ NFA的初始状态的 & 闭包对应于DFA的初始状态
- ♦ 针对每个DFA 状态 NFA状态子集A,求输入每个 a_i 后能到达的NFA状态的 ϵ -闭包并集(ϵ -closure(move(A, a_i))),该集合对应于DFA中的一个已有状态,或者是一个要新加的DFA状态

□ 子集构造法(subset construction)

- **♦** $A = \varepsilon$ closure(₭ $&0) = {0,1,2,3,4,7,13}$
- ❖ 接下来考虑转换函数move,以及输入字母 表{0,1}
- **❖** move(A, 输入0) = {5}
- * $B = \varepsilon$ $closure(move(A, 输入0)) = {5,6,10}$
- * $move(A, 输入1) = \{8,14\}$
- * $C = \varepsilon$ $closure(move(A, 输入1)) = {8, 14}$
- * $move(B, 输入0) = \{11\}$
- *****

□ 子集构造法(subset construction)

- **♦** $A = \varepsilon$ closure(# &0 $) = {0,1,2,3,4,7,13}$
- ❖ 接下来考虑转换函数move,以及输入字母 表{0,1}
- **❖** move(A, 输入0) = {5}
- * $B = \varepsilon$ $closure(move(A, 输入0)) = {5,6,10}$
- * $move(A, 输入1) = \{8,14\}$
- * $C = \varepsilon$ $closure(move(A, 输入1)) = {8, 14}$
- * $move(B, 输入0) = \{11\}$
- *****

□ A和B是可区别的状态

❖ 从A出发,读过单字符b构成的串,到达非 接受状态C, 而从B出发, 读过串b, 到达 接受状态D

□ A和C是不可区别的状态

❖ 无任何串可用来像上面这样区别它们

可区别的状态要 分开对待

1. 按是否是接受状态来区分

1. 按是否是接受状态来区分

2. 继续分解

1. 按是否是接受状态来区分

2. 继续分解

{A, C}, {B}, {D} move({A, C}, a) = {B} move({A, C}, b) = {C}

□最终结果

- □针对正规集L={0和1的个数均为偶数的0-1 串}:
- □(1)先直接给出识别L的极小化DFA M;
- □(2)再给出描述L的正规式R。

- 口正则表达式为:
- $\square(00|11|((01|10)(00|11)*(01|10)))*$

□第3章 语法分析

- ❖掌握文法的定义和书写格式
- ❖掌握First/Follow集合计算、二义性分析
- ❖掌握SLR和LR分析表的构造、移进-归约冲突的分析

- □(1)给出产生可被5整除的二进制串集(含空串)的上下文无关文法G0;
- 口(2)并针对G0,给出First与Follow集合, LL(1)分析表;
- □(3)为G0设计相应的递归下降分析程序。
- □解答过程:
 - ❖首先给出DFA,然后按照下一页ppt的规则来 写文法
 - ❖First和Fellow集合计算
 - ❖递归下降分析程序主要考虑消除左递归和 match,以及错误处理

正则表达式与CFG的区别

□都能表示语言

□能用正则表达式表示的语言都能用CFG表示

- ❖正则表达式(a|b)*ab
- **❖CFG**文法

$$A_0 \rightarrow a A_0 \mid b A_0 \mid a A_1$$

$$A_1 \rightarrow b A_2$$

$$A_2 \rightarrow \varepsilon$$

□(1)给出产生可被5整除的二进制串集(含空串) 的上下文无关文法G0;

- 口计算FIRST(X), $X \in V_T \cup V_N$
 - $X \in V_{\tau}$, FIRST(X) = $\{X\}$
 - ♦ $X ∈ V_N$ 且 X → ε 则将 ε加入到FIRST(X)
 - $❖X ∈ V_N ⊥ X → Y_1 Y_2 ... Y_k$
 - ▶如果 α ∈ FIRST(Y_i)且ε在FIRST(Y_1), ..., FIRST(Y_{i-1})中,则将 α加入到FIRST(X)
 - →如果ε在FIRST(Y₁), ..., FIRST(Y_k)中,则将ε 加入到FIRST(X)

口计算 $FOLLOW(A), A \in V_N$

- ❖\$加入到FOLLOW(A),当A是开始符号
- ❖如果 $A \rightarrow \alpha B\beta$,则FIRST(β)-{ε}加入到 FOLLOW(β)
- ❖如果 $A \rightarrow \alpha B$ 或 $A \rightarrow \alpha B\beta$ 且ε∈ FIRST(β),则 FOLLOW(A)加入到FOLLOW(B)

□(1)给出产生可被5整除的二进制串集(含空串) 的上下文无关文法G0;

First(S0) =
$$\{0, 1, \mathbf{\varepsilon}\}\$$

First(S1) = First(S2) = First(S3) = First(S4) = $\{0, 1\}$
Follow(S0) = ... = Follow(S4) = $\{\$\}$

$$S_{0} \to 0 S_{0} | 1 S_{1} | \epsilon$$

$$S_{1} \to 0 S_{2} | 1 S_{3}$$

$$S_{2} \to 0 S_{4} | 1 S_{0}$$

$$S_{3} \to 0 S_{1} | 1 S_{2}$$

$$S_{4} \to 0 S_{3} | 1 S_{4}$$

\Box 对文法的每个产生式 $A \rightarrow \alpha$, 执行(1)和(2)

- ♦ (1) 对FIRST(α)的每个终结符 α , 把 $A \rightarrow \alpha$ 加入 $M[A, \alpha]$
- \diamondsuit (2) 如果 ε 在FIRST(α)中,对FOLLOW(A)的每个终结符b (包括 \diamondsuit), 把 $A \to \alpha$ 加入M[A, b]

M中其它没有定义的条目都是error

□(1)给出产生可被5整除的二进制串集(含空串) 的上下文无关文法G0;

First(S0) =
$$\{0, 1, \mathbb{E}\}$$

$$First(S1) = First(S2) = First(S3) = First(S4) = \{0,1\}$$

$$Follow(S0) = \dots = Follow(S4) = \{\$\}$$

$$S_0 \to 0 \ S_0 \ | \ 1 \ S_1 \ | \ \epsilon$$
 $S_1 \to 0 \ S_2 \ | \ 1 \ S_3$
 $S_2 \to 0 \ S_4 \ | \ 1 \ S_0$
 $S_3 \to 0 \ S_1 \ | \ 1 \ S_2$
 $S_4 \to 0 \ S_3 \ | \ 1 \ S_4$

非终 结符	输入符号			
	0	1	\$	
S0	$S_0 \rightarrow 0 S_0$	$S_0 \rightarrow I S_1$	$S_0 \rightarrow \varepsilon$	
S1	$S_1 \rightarrow 0 S_2$	$S_1 \rightarrow I S_3$		
S2	$S_2 \rightarrow 0 S_4$	$S_2 \rightarrow I S_0$		
S3	$S_3 \rightarrow 0 S_1$	$S_3 \rightarrow 1 S_2$		
S4	$S_4 \rightarrow 0 S_3$	$S_4 \rightarrow 1 S_4$		


```
void type( ) {
 if ( (lookahead == integer) || (lookahead == char) ||
                                  (lookahead == num) )
      simple();
 else if ( lookahead == '\uparrow' ) { match('\uparrow'); match(id);}
 else if (lookahead == array) {
      match(array); match('['); simple();
      match(']'); match(of); type();
                        type \rightarrow simple \uparrow id
 else error();
                                array [simple] of type
```

例题4结果略

文法 G1 和 G2 中有一个是二义性文法,另一个是非二义性文法。

文法 G1, S为开始符号。
S → a B S | b A S
S → ε
A → a | b A A
B → b | a B B

文法 G2, S为开始符号。 S → a B | b A S → ε A → a S | b A A B → b S | a B B

- (1)针对其中的二义性文法,用串 aababb 证明其二义性;
- (2)针对其中的非二义性文法,给出读过活前缀 aBaaBB 经过的所有 LR(0)项目集簇。

□输入串为aababb

❖推导1:

S=>a B=>a a B B =>a a b S B=> a a b B=> a a b aBB => aababSB=> aababB=> aababb

❖推导2:

S=>a B=>a a B B =>a a b S B=> aabaBB=> aababSB =>aababB=> aababb

□存在两个最左推导,因此G2二义

构造识别活前缀的DFA

2. 构造LR(0)项目集规范族

 $I_{0}:$ $E' \rightarrow \cdot E$ $E \rightarrow \cdot E + T$ $E \rightarrow \cdot T$ $T \rightarrow \cdot T * F$ $T \rightarrow \cdot F$ $F \rightarrow \cdot (E)$ $F \rightarrow \cdot id$

求项目集的闭包closure(I) 闭包函数closure(I) 1、I的每个项目均加入closure(I) 2、如果A \rightarrow a B β 在 closure(I)中, 且B \rightarrow y是产生式,那么如果项 目B \rightarrow y还不在closure(I)中的话, 那么把它加入。

		SLR	LALR	LR(1)
初始状态		$[S' \rightarrow S]$	$[S' \rightarrow S, \$]$	$[S' \rightarrow S, \$]$
项目集		LR(0) CLOSURE(I)	合并LR(1)项目集 族的同心项目集	LR(1), CLOSURE(I) 搜索符考虑FISRT(βa)
动作	移进	$[A \rightarrow \alpha a\beta] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$	与LR(1) 一致	$[A \rightarrow \alpha a\beta, b] \in I_i$ $GOTO(I_i, a) = I_j$ $ACTION[i, a] = sj$
	归约	$[A \rightarrow \alpha] \in I_{i}, A \neq S'$ $a \in \text{FOLLOW}(A)$ ACTION[i, a] = rj	与LR(1) 一致	$[A \rightarrow \alpha; a] \in I_i$ $A \neq S$ ' $ACTION[i, a] = rj$
	接受	$[S' \rightarrow S \cdot] \in I_i$ ACTION[i, \$] = acc	与LR(1) 一致	$[S \hookrightarrow S ; \$] \in I_i$ ACTION[$i, \$$] = acc
	出错	空白条目	与LR(1) 一致	空白条目
GOTO		$\begin{aligned} & \mathbf{GOTO}(I_i, A) = I_j \\ & \mathbf{GOTO}[i, A] = j \end{aligned}$	与LR(1) 一致	$\begin{aligned} \mathbf{GOTO}(I_i, A) &= I_j \\ \mathbf{GOTO}[i, A] &= j \end{aligned}$
状态	太9星1	少(几百)	与SLR一样	多(几千)。3/89

李诚 @ 编译原理与技术 Fall 2018

可以只考虑aBaaBB经过的区域

李诚 @ 编译原理与技术 Fall 2018

- ❖(1)给出LR(1)项目集簇
- ❖(2)G3是否为SLR(1)文法?
- ❖(3)G3是否为LALR(1)文法?
- ❖(4)G3是否为LR(1)文法?

文法G3, s为开始符号。

 $s \rightarrow A$

 $A \rightarrow b B$

 $B \rightarrow c C$

 $B \rightarrow c C \epsilon$

 $C \rightarrow d A$

 $A \rightarrow a$

$[A \rightarrow \alpha B \beta, a]$

□LR(1) 17个状态

向前看搜索符集合=FIRST(βa)

- ❖(1)给出LR(1)项目集簇
- ❖(2)G3是否为SLR(1)文法?
 - ▶不是,在LR(0)中考虑17

文法G3,s为开始符号。

 $s \rightarrow A$

 $A \rightarrow b B$

 $B \rightarrow c C$

 $B \rightarrow c C e$

 $C \rightarrow d A$

- ❖(1)给出LR(1)项目集簇
- ❖(2)G3是否为SLR(1)文法?
- ❖(4)G3是否为LR(1)文法?
 - ▶不是,在LR(1)状态转换图中 考虑I15
 - ▶有移进-归约冲突

文法G3, s为开始符号。

 $s \rightarrow A$

 $A \rightarrow b B$

 $B \rightarrow c C$

 $B \rightarrow c C e$

 $C \rightarrow d A$

 $A \rightarrow a$

- ❖(3)G3是否为LALR(1)文法?
 - 一不是,
 - ▶因为LR(1)有移进-归约冲突
 - ▶LALR(1)会保留这样的冲突

文法G3, S为开始符号。

 $s \rightarrow A$

 $A \rightarrow b B$

 $B \rightarrow c C$

 $B \rightarrow c C e$

 $C \rightarrow d A$

 $A \rightarrow a$

□第4章 语法制导翻译

- ❖掌握语法制导翻译方案
- ❖掌握简单的综合属性和继承属性计算
- ❖掌握继承属性的自下而上计算模拟

□4.12(b) 文法如下:

$$S \rightarrow (L) \mid a$$

$$L \rightarrow L, S \mid S$$

(1)写一个翻译方案,它打印出每个a在句子中是第几个字符。例如,当句子是(a,(a,a),(a)))时,打印的结果是2, 5, 8, 10, 14。

(4)写出自下而上分析的栈操作代码

口语义规则和产生式相联系的两种方式

- ❖语法制导定义
 - 》将文法符号和某些属性相关联,并通过语义规则 来描述如何计算属性的值,没有描述这些规则的 计算时机
- ❖语法制导的翻译方案
 - 》在产生式的右部的适当位置,插入相应的语义动作,按照分析的进程,执行遇到的语义动作,从 而明确了语法分析过程中属性的计算时机。

□a自身的信息无法确定a在序列中的位置,因此 必须要借助继承属性。

□方法一:

- ❖继承属性 in:该文法符号推出的字符序列的前面已 经有多少字符
- ❖综合属性 out:该文法符号推出的字符序列的最后一个字符在序列中是第几个字符

```
S' \rightarrow \{ S.in = 0; \} S

S \rightarrow \{ L.in = S.in + 1; \} (L) \{ S.out = L.out + 1; \}

S \rightarrow a \{ S.out = S.in + 1; print (S.out); \}

L \rightarrow \{ L1.in = L.in; \} L1, \{ S.in = L1.out + 1; \} S

\{ L.out = S.out; \}

L \rightarrow \{ S.in = L.in; \} S \{ L.out = S.out; \}
```


□a自身的信息无法确定a在序列中的位置, 因此必须要借助继承属性。

□方法二:

- ❖继承属性 in:该文法符号推出的字符序列的 前面已经有多少字符
- ❖综合属性 total:该文法符号推出的字符序列 所包含的字符总数

```
S' \rightarrow \{ S.in = 0; \} S

S \rightarrow \{ L.in = S.in +1; \} (L) \{ S.total = L.total + 2; \}

S \rightarrow a \{ S.total = 1; print (S.in + 1); \}

L \rightarrow \{ L1.in = L.in; \} L1, \{ S.in = L1.in + L1.total + 1; \} S

\{ L.total = L1.total + S.total + 1; \}

L \rightarrow \{ S.in = L.in; \} S \{ L.total = S.total; \}
```


•引入标记非终极符M,N,R,P

产生式	语义规则	栈操作代码
$S' \rightarrow MS$	S.in = M.out	Stack[top - 1] = Stack[top]
$M \rightarrow \varepsilon$	M.out = 0	Stack[top + 1] = 0
$S \rightarrow (NL)$	N.in = S.in + 1, L.in = N.out; S.out = L.out + 1;	Stack[top - 3] = Stack[top - 1] + 1
$N \rightarrow \varepsilon$	N.out = N.in	Stack[top + 1] = Stack[top - 1] + 1
$S \rightarrow a$	S.out = S.in + 1; print (S.out);	Stack[top] = Stack[top - 1] + 1
L → SRT	S.in = L.in; R.in = S.in; T.in = R.out, L.out = T.out;	Stack[top - 2] = Stack[top]
$R \to \varepsilon$	R.out = R.in	Stack[top + 1] = Stack[top - 1]
$T \rightarrow ,SPT_1$	S.in = T.in + 1; P.in = S.in; T_1 .in = P.out; T_1 .out = S.out;	Stack[top - 3] = Stack[top]
$P \rightarrow \varepsilon$	P.out = P.in	Stack[top + 1] = Stack[top]
$T \rightarrow \varepsilon$	T.out = T.in	Stack[top] = Stack[top - 1]

□第5章 类型检查

❖掌握类型表达式书写

>指针、数组、结构体、函数等

□5.5 假如有下列C的声明:

```
typedef struct{
     int a, b;
 } CELL, *PCELL;
 CELL foo[100];
 PCELL bar(x, y) int x; CELL y; {}
 为变量foo和函数bar的类型写出类型表达
式。
```


CELL foo[100];

array(Range ?, TypeOfElement ?)

array(0..99, TypeOfElement ?)

array(0..99, CELL)

 $array(0..99, record((int a) \times (int b)))$

 $array(0..99, record((a \times integer) \times (b \times integer)))$

```
□ 5.5 假如有下列C的声明:

typedef struct{

   int a, b;

} CELL, *PCELL;

CELL foo[100];

PCELL bar(x, y) int x; CELL y; {}

为变量foo和函数bar的类型写出类型表达式。
```


PCELL bar(x, y) int x; CELL y; {}

```
□ 5.5 假如有下列C的声明:

typedef struct{
    int a, b;
} CELL, *PCELL;

CELL foo[100];

PCELL bar(x, y) int x; CELL y; {}

为变量foo和函数bar的类型写出类型表达式。
```

TypeOfParameters? -> TypeOfReturnValue?

```
(int ×CELL) -> PCELL
```

(integer ×record((a × integer) ×(b × integer))) -> PCELL

□第6章 运行时

- ❖掌握活动记录
- ❖掌握存储栈式分配
 - ▶结合C语言例子
 - · 掌握C源程序, 汇编代码, 活动记录三者内在联系
 - ▶结合PLO的例子
 - <u>针对PLO运行时环境设定和相关"伪"指令含义,做扩展设计,详见:</u>

http://staff.ustc.edu.cn/~qlzheng/compiler/ex_on_PLO.pdf


```
void func( int a , int b )
{
    int c , d;
    c = a;
    d = b;
}
```


画出运行栈及活动记录

```
.file "ar.c"
    .text
.globl func
    .type func,@function
func:
    pushl %ebp
    movl %esp, %ebp
    subl $8, %esp
    movl 8(%ebp), %eax
    movl %eax, -4(%ebp)
    movl 12(%ebp), %eax
    movl %eax, -8(%ebp)
    leave
    ret
```



```
void func( int a , int b )
{
    int c , d;
    c = a;
    d = b;
}
```



```
.file
    "ar.c"
    .text
.globl func
    .type func,@function
func:
    pushl %ebp //老基地址压栈
    movl %esp, %ebp //基地址指针=栈顶指针
    subl $8, %esp
    movl 8(%ebp), %eax
    movl %eax, -4(%ebp)
    movl 12(%ebp), %eax
    movl %eax, -8(%ebp)
    leave
    ret
```



```
void func( int a , int b )
{
    int c , d;
    c = a;
    d = b;
}
```



```
"ar.c"
.file
    .text
.globl func
         func,@function
    .type
func:
    pushl %ebp //老基地址压栈
    movl %esp, %ebp //基地址指针=栈顶指针
         $8, %esp //分配c,d局部变量空间
    subl
    movl 8(%ebp), %eax //将a值放进寄存器
    movl %eax, -4(%ebp) //将a值赋给c
    movl 12(%ebp), %eax
         %eax, -8(%ebp)
    movl
    leave
    ret
```



```
void func( int a , int b )
   int c, d;
   c = a:
   d = b;
esp
                        ebp-8
         局部变量d
                        ebp-4
         局部变量c
                         ebp
          old ebp
         返回地址
                         ebp+8
          参数 a
                         ebp+12
          参数 b
```

```
"ar.c"
.file
    .text
.globl func
         func,@function
    .tvpe
func:
    pushl %ebp //老基地址压栈
    movl %esp, %ebp //基地址指针=栈顶指针
         $8, %esp //分配c,d局部变量空间
    subl
         8(%ebp), %eax //将a值放进寄存器
    movl
    movl %eax, -4(%ebp) //将a值赋给c
         12(%ebp), %eax //将b值放进寄存器
    movl
         %eax, -8(%ebp) //将b值赋给d
    movl
    leave
    ret
```


- □http://staff.ustc.edu.cn/~qlzheng/compiler/
 - ❖补全汇编代码等习题
- □针对PL0运行时环境设定和相关"伪"指令 含义,做扩展设计,详见:
 - http://staff.ustc.edu.cn/~qlzheng/compiler/ex_on_ PLO.pdf

- □第7章 中间代码生成
- □第8章 代码生成
 - ❖掌握三地址码的格式
 - ❖掌握基本块、流图、循环
 - 一给定三地址码,如何划分基本块、画出流图、找出循环、计算回边等

例题10: A[i,j]:=B[i,j] *** 中国神学技术 University of Science and Technology

□数组A: A[1..10, 1..20] of integer;

数组B: B[1..10, 1..20] of integer;

w:4 (integer)

□TAC如下:

为高级语言程序写三地址码

(1)
$$t_1 := i * 20$$

(2)
$$t_1 := t_1 + j$$

(3)
$$t_2 := A - 84 // 84 == ((1*20)+1)*4$$

例题10: A[i,j]:=B[i,j] 🧐

TAC如下 (续):

(5)
$$t_4 := i * 20$$

(6)
$$t_4 := t_4 + j$$

(7)
$$t_5 := B - 84$$

(8)
$$t_6 := t_4 * 4$$

(9)
$$t_7 := t_5[t_6]$$

//以上计算B[i,j]的

右值

TAC如下(续):

$$(10) t_8 := t_7 * k$$

//以上整个右值表达

//式计算完毕

(11)
$$t_2[t_3] := t_8$$

// 完成数组元素的赋值

翻译以下语句序列:

要掌握标号回填技术

```
if ( a < b or c < d and e < f ) then
  while ( a > c ) do c := c + 1
else d := d + 1;
e := e + d;
```



```
一、翻译 E₁:(a<b or c<d and e<f)
(100) if a<b goto 106
(101) goto 102  //用102回填(101)
(102) if c<d goto 104 //用104回填(102)
(103) goto 111
(104) if e<f goto 106
(105) goto 111
truelist: { 100, 104 } falselist: { 103, 105 }
```



```
二、翻译 S<sub>2</sub>: while E<sub>2</sub> do S<sub>1</sub>
(106) if a>c goto 108 //用108回填(106)
(107) goto 112
(108) c := c + 1 // S_1 \rightarrow A_1 S_1.nextlist={}
(109)goto 106 // 转至循环入口(106)
S<sub>2</sub>.nextlist: { 107 } //转至循环外部
(110) goto 112 // 由N→ε生成
(111) d := d + 1 // S_3 \rightarrow A_2 S_3.nextlist={}
```


- 三、分析完Sa
- □用106回填(100)和(104); 用111回填(103) 和(105)
- $\square S_4$.nextlist: { 107, 110 }
- 四、分析完L₁
- $\Box L_1$.nextlist: { 107, 110 }
- 五、分析S₅

(112) e := e + d // $S_5 \rightarrow A_3 S_5$.nextlist={}

- 六、分析完L₂
- □用112回填(107)和(110)
- $\square L_2$.nextlist: {}

□9.15 a.计算支配关系

$$D(1) = \{1\}$$

$$D(2) = \{1,2\}$$

$$D(3) = \{1,2,3\}$$

$$D(4) = \{1,2,3,4\}$$

$$D(5) = \{1,2,5\}$$

$$D(6) = \{1,2,5,6\}$$

- □9.15 b.找出一种深度优先排序
- \square {1,2,5,6,3,4}
- **□**Or
- \square {1,2,3,4,5,6}

□9.15 c.对 (b) 的结果, 标明前进边,后撤边和交叉边

□前进边: 1->2; 2->5;2-

>3;5->6;3->4

□后撤边: 4->3; 5->2

□交叉边: 3->5

- □9.15 d.该图是否可归约
- □后撤边: 4->3; 5->2
- □判断他们是不是回边
- □显然是
- □所以可以归约

- □9.15 e.计算该流图 的深度
- □深度为1
- □深度优先生成树, 看无环路径上有几条 后撤边

□9.15 f.找出该图的自 然循环

□针对回边:

4->3: {3,4}

 \Box 5->2: {2,3,4,5}

□9.1 a. 识别该流图的 循环

□针对回边:

4->3: {3,4}

 \Box 5->2: {2,3,4,5}

□第9章 独立于机器的优化

- ❖掌握数据流分析的基本概念
- ❖掌握一些数据流分析的方法
 ▶如计算到达定值等

□9.3 a.为到达-定值分析,计算每个块的gen,kill,IN和OUT集合

- $\Box GEN[B1] = \{d1,d2\}$
- \square KILL[B1] = {d8,d10,d11}
- \Box GEN[B2] = {d3,d4}
- \square KILL[B2] = {d5,d6}
- \square GEN[B3] = {d5}
- \square KILL[B3] = {d4,d6}
- $\Box GEN[B4] = \{d6,d7\}$
- \square KILL[B4] = {d4,d5,d9}
- \square GEN[B5] = {d8, d9}
- \square KILL[B5] = {d2,d11,d7}
- \square GEN[B6] = {d10,d11}
- \square KILL[B6] = {d1,d2,d8}

块	初始	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø				
В3	Ø				
B4	Ø				
B5	Ø				
В6	Ø				

块	初始	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} \cup (\emptyset - {d8,d10,d11})$ = ${d1,d2}$		
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}		
В3	Ø				
B4	Ø				
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6})$ = ${d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d 4}	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}		
B4	Ø				
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}		
В3	Ø	{d1,d2,d3,d 4}	${d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø				
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø	{d1,d2}	${d3,d4} + ({d1,d2} - {d5,d6})$ = ${d1,d2,d3,d4}$		
В3	Ø	{d1,d2,d3,d 4}	${d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø				

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}		
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}		
В3	Ø	{d1,d2,d3,d 4}	${d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

Jelin	OUT[p]	INIDI 4	OUT[D] 4	INITED 2	OUT[D] 2
块	OOI[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	$\{d1,d2\} \cup (\emptyset - \{d8,d10,d11\})$ = $\{d1,d2\}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	
В3	Ø	{d1,d2,d3,d 4}	${d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}$		
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
В6	Ø	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11}		

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	${d3,d4} + ({d1,d2,d3,d4,d5,d8,d9} - {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}$
В3	Ø	{d1,d2,d3,d 4}	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8 ,d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}		
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
B6	Ø 2019/	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11} 李诚 @ 编译原	5理与技术 Fall 2018	83/89

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	${d1,d2} \cup (\emptyset - {d8,d10,d11})$ = ${d1,d2}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d 4}	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8 ,d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}		
B6	2019/-	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11} 李诚 @ 编译原	理与技术 Fall 2018	84/89

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	$\{d1,d2\} \cup (\emptyset - \{d8,d10,d11\})$ = $\{d1,d2\}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	${d3,d4} + ({d1,d2,d3,d4,d5,d8,d9} - {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}$
В3	Ø	{d1,d2,d3,d 4}	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8 ,d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	{d8, d9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
B6	Ø 2019/-	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11} 空诚 @ 编译原	理与技术 Fall 2018	85/89

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	$\{d1,d2\} \cup (\emptyset - \{d8,d10,d11\})$ = $\{d1,d2\}$	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	{d3,d4} + ({d1,d2,d3,d4,d5,d8,d9}- {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}
В3	Ø	{d1,d2,d3,d 4}	{d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8 ,d9}	{d5} + ({d1,d2,d3,d4,d6,d7,d8,d9} - {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d 5}	{d6,d7} + ({d1,d2,d3,d5} - {d4,d5,d9}) = {d1,d2,d3,d6,d7}	{d1,d2,d3,d5,d7,d8,d9}	{d6,d7} + {d1,d2,d3,d5,d7,d8,d9} - {d4,d5,d9}) = {d1,d2,d3,d6,d7,d8}
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	{d8, d9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
B6	2019/-	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11} 李诚 @ 编译原	{d1,d3,d4,d5,d6,d8,d9} 理与技术 Fall 2018	{d10,d11} + ({d1,d3,d4,d5,d6,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d6,d9,d10,d11}

块	OUT[B]	IN[B]_1	OUT[B]_1	IN[B]_2	OUT[B]_2
B1	Ø	Ø	{d1,d2} U (Ø - {d8,d10,d11}) = {d1,d2}	Ø	{d1,d2}
B2	Ø	{d1,d2}	{d3,d4} + ({d1,d2} - {d5,d6}) = {d1,d2,d3,d4}	{d1,d2} U {d1,d3,d4,d5,d8,d9} = {d1,d2,d3,d4,d5,d8,d9}	${d3,d4} + ({d1,d2,d3,d4,d5,d8,d9} - {d5,d6}) = {d1,d2,d3,d4,d6,d8,d9}$
В3	Ø	{d1,d2,d3,d 4}	${d5} + ({d1,d2,d3,d4} - {d4,d6}) = {d1,d2,d3,d5}$	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d6,d7} = {d1,d2,d3,d4,d6,d7,d8	- {d4,d6}) = {d1,d2,d3,d5,d7,d8,d9}
B4	Ø	{d1,d2,d3,d 5}	继续迭代直到out没 由于时间关系,有可 免责	能计算有误,做一	7) . (41 42 42 45 46 40)
B5	Ø	{d1,d2,d3,d 4} U {d1,d2,d3,d 5} = {d1,d2,d3,d 4,d5}	{d8, d9} + ({d1,d2,d3,d4,d5} -{d2,d11,d7}) = {d1,d3,d4,d5,d8,d9}	{d1,d2,d3,d4,d6,d8,d9} U {d1,d2,d3,d5,d7,d8,d9} ={d1,d2,d3,d4,d5,d6,d 7,d8,d9}	{d8, d9} + ({d1,d2,d3,d4,d5,d6,d7,d8,d9}- {d2,d11,d7}) = {d1,d3,d4,d5,d6,d8,d9}
B6	Ø 2019/-	{d1,d3,d4,d 5,d8,d9}	{d10,d11} + ({d1,d3,d4,d5,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d9,d10,d11} 李诚 @ 编译原	{d1,d3,d4,d5,d6,d8,d9} 理与技术 Fall 2018	{d10,d11} + ({d1,d3,d4,d5,d6,d8,d9} - {d1,d2,d8}) = {d3,d4,d5,d6,d9,d10,d11}

- 口平时的ppt
- □考题参考:
 - staff.ustc.edu.cn/~chengli7/courses/compiler18/ materials/final_exam_references.doc
- □部分郑启龙老师额外增加的习题:
 - http://staff.ustc.edu.cn/~qlzheng/compiler/
- □有问题可以询问同学,如果还有解决不了的,请发送邮件到:
 - compiler-principle-2018-ustc@googlegroups.com

《编译原理与技术》 期末复习

预祝大家考出好成绩!