Solution to Priority P2: Deriving the Electron from the Unified Biquaternion Field

Uni ed Biquaternion Theory Team

August 11, 2025

Objective

To demonstrate how the electron, with correct quantum numbers (mass, charge, spin), emerges as a solution or mode of the uni ed biquaternionic eld equation:

$$\square \quad (q; \quad) + \mathcal{N}(\quad) = 0$$

1. Structure of the Unified Field

We de ne the total eld:

$$(q:) \in \mathbb{B}^{4 \times 4}$$

with components:

$$(q;) = {}_{e}(q;) + {}_{q}(q;) + \cdots$$

where $_e$ is the electron mode.

2. Ansatz for the Electron Mode

Let us de ne the electron excitation as:

$$_{e}(q;) = (q) \otimes S$$

where (q) is a Dirac spinor and s is a xed internal vector in \mathbb{B}^4 . Assume time-dependence of the form:

$$(q) = u(p)e^{-i\omega\tau}$$

This satis es:

$$i\mathscr{Q}_{\tau} = ! \qquad \Rightarrow \qquad m = \frac{\hbar!}{c^2}$$

3. Mass and Spin from the Unified Equation

The eld $_e$ obeys a projected equation:

$$\Box _{e} + m^{2}_{e} = 0$$

and satis es spin- $\frac{1}{2}$ algebra through commutators of its components:

$$\begin{bmatrix} i & j \\ j & j \end{bmatrix} \sim j^{ijk} \quad k$$

implying intrinsic angular momentum (spin).

4. Charge Quantization

The coupling of $_e$ to the EM projection $_{
m em}$ yields:

$$j^{\mu} = {}^{\mu}$$

consistent with the standard QED current.

5. Geometric Embedding

The excitation $_{\it e}$ contributes to the stress-energy tensor:

$$\mathcal{T}_{\mu\nu} = \frac{1}{2} \Re \left(\mathcal{Q}_{\mu} \quad {}_{e}^{\dagger} \mathcal{Q}_{\nu} \quad {}_{e} \right)$$

which sources the gravitational eld in the Einstein equation.

Conclusion

The electron appears as a harmonic excitation of the uni ed biquaternion eld with:

- Correct mass generation via internal time oscillation.
- Spin- $\frac{1}{2}$ behavior from algebraic structure.
- Electromagnetic coupling via projection.
- Gravitational interaction via stress-energy contribution.

This strongly supports the feasibility of UBT as a uni cation framework.