CS 161: Computer Security

Lecture 2

September 3, 2015

Where we are

- How did NSA break SSL?
- Basic number theory
- RSA
- Digital certificates
- Shamir secret sharing
- Rabin signatures
- Secure hashing
- Elliptic curve cryptography
- Pseudo-random number generation
- SSL protocol

Review: RSA

From last lecture

- o n = pq (p, q large primes)
- Suppose $ed \equiv 1 \pmod{(p-1)(q-1)}$
- Then $m^{ed} \equiv m \pmod{n}$
- Encryption key: e; Decryption key: d
- Encryption: $E(m) \leftarrow m^e \pmod{n}$
- o Decryption: $D(c) \leftarrow c^d \pmod{n}$
- So $D(E(m)) \equiv m^{ed} \equiv m \pmod{n}$
- ullet Beauty: we can disclose only one of e, d
- Asymmetric (public-key) cryptography

Review: RSA and factoring

- If we can factor large numbers, we can break RSA
- Why?
- Because we can solve n = pq and then $ed \equiv 1 \pmod{(p-1)(q-1)}$

- If we can break RSA, can we factor?
- Unknown!!!!

Review: RSA and factoring

Factoring algorithm → RSA cryptanalysis algorithm

but

RSA cryptanalysis algorithm \rightarrow ???

Review: Digital signatures

- Remember $m^{ed} \equiv m \pmod{n}$
- Before we published e, n and kept d secret

Suppose we publish d, n and keep e secret

- To sign m we send $\langle m, E(m) \rangle$
- Verifier receives $\langle m, c \rangle$
- To verify signature, check $m \stackrel{?}{=} D(c)$

Digital certificates

Name: Alice Verification key: $\langle d,n \rangle$ Expiration date: Dec 31, 2020

- Certificate is signed by Certificate Authority
 - Symantec (Verisign/Thawte/Geotrust): 38%
 - Comodo SSL: 29%
 - GoDaddy: 13%
 - GlobalSign: 10%
 - everyone else (combined): 10%

RSA exponents are always odd

- Recall: *p*, *q* large primes (and thus odd numbers)
- Recall: $ed \equiv 1 \pmod{(p-1)(q-1)}$
- So (p-1)(q-1) will be even
- Thus ed is odd, and that means both e & d are odd
- Shortly, we find out what happens when we use an even exponent ... (Rabin signatures)

Today's lecture

- Homomorphism
- Shamir secret sharing
- Secure computation
- Chinese remainder theorem
- Rabin signatures

Homomorphism

- Homomorphism is a mathematical property
 - Preserves operation under a function
 - o Example: let $f(x) = x \mod n$
 - The f is homomorphic under addition & multiplication
 - o $f(x+y) = f(x) + f(y) \pmod{n}$
 - o $f(xy) = f(x)f(y) \pmod{n}$

RSA is homomorphic

- RSA is homomorphic under multiplication
- $E(m) \leftarrow m^e \pmod{n}$
- Then $E(m)E(m') \mod n = E(mm' \mod n)$
- This is actually a huge problem for RSA
- Has potential to allow forged messages or signatures
- To solve this, we usually add padding

Secret sharing

- Suppose we want to share a secret
 - Share among n users
 - Allow a quorum q of users to recover a secret
- Example
 - Corporate bank account
 - Requires three out of six corporate officers to access
- Shamir secret sharing allows to realize this
- But leaks no further information

Shamir secret sharing

Key idea:

- o Make a random curve of degree q 1: f(x)
- o Distribute n points on curve: f(1), f(2) ..., f(n)
- o q points determine the curve
- $_{0}$ q-1 points do <u>not</u> determine the curve
- o Secret is f(0)
- o If we do it mod m, then q-1 points give no info
- o f(0) can be any integer mod m

Shamir secret sharing

$$f(x) = a_{q-1}x^{q-1} + \dots + a_1x + a_0 \pmod{m}$$

Shares: f(1), f(2), ..., f(n)

q points \rightarrow we can solve for $a_{q-1},...,a_1$, a_0

$$f(0) = a_0 =$$
secret

Finding the secret

- This reduces to solving linear equations
- High School algebra techniques (but modulo n)
- Example (q = 3):

$$f(1) = a_2 + a_1 + a_0 \pmod{m}$$

$$f(2) = 4a_2 + 2a_1 + a_0 \pmod{m}$$

$$f(3) = 9a_2 + 3a_1 + a_0 \pmod{m}$$

$$f(4) = 16a_2 + 4a_1 + a_0 \pmod{m}$$

$$f(5) = 25a_2 + 5a_1 + a_0 \pmod{m}$$

Shamir is (sort-of) homomorphic

We can add together secret shares

$$f(x) = a_{q-1}x^{q-1} + \dots + a_1x + a_0 \pmod{m}$$

$$g(x) = b_{q-1}x^{q-1} + \dots + b_1x + b_0 \pmod{m}$$

$$h(x) = c_{q-1}x^{q-1} + \dots + c_1x + c_0 \pmod{m}$$

We can define

$$SUM(x) = (a_{q-1} + b_{q-1} + c_{q-1})x^{q-1} + \dots + (a_1 + b_1 + c_1)x + (a_0 + b_0 + c_0) \pmod{m}$$

$$SUM(0) = a_0 + b_0 + c_0 \pmod{m}$$
(sum of secrets)

Homomorphic (secret) addition

• Want to add secret values $a_0 + b_0 + c_0$

Make three sets of secret shares

- Give agent i: f(i), g(i), h(i)
- Agent i computes:

$$SUM(i) = f(i) + g(i) + h(i)$$

• Recover SUM(0)

Secure multi-party computation

- Using a variety of techniques, we can extend to all functions (not just addition)
- This is a super-hot area of security today
- Example: Prof. Raluca Popa (joining Berkeley next year) is working on making database search secure

Database secure computation

 If we encrypt entries on database, how do we search and change them

 If we decrypt and re-encrypt database, superexpensive

 Need some very advanced techniques to perform computation while encrypted

Chinese remainder theorem (CRT)

 Radically different way of representing integers modulo n

- If $n = n_1 n_2 \dots n_k$ and all n_i are relatively prime
- We can represent x mod n two different ways

```
x \mod n
\langle x \mod n_1, x \mod n_2, ..., x \mod n_k \rangle
```

CRT is homomorphic (addition)!

```
(x + y) \bmod n =
\langle x \bmod n_1, x \bmod n_2, ..., x \bmod n_k \rangle
+
\langle y \bmod n_1, y \bmod n_2, ..., y \bmod n_k \rangle
=
\langle (x + y) \bmod n_1, (x + y) \bmod n_2, ..., (x + y) \bmod n_k \rangle
```

CRT is homomorphic (multiplication)!

```
(xy) \mod n =
\langle x \mod n_1, x \mod n_2, ..., x \mod n_k \rangle
*
\langle y \mod n_1, y \mod n_2, ..., y \mod n_k \rangle
=
\langle (xy) \mod n_1, (xy) \mod n_2, ..., (xy) \mod n_k \rangle
```

Reading on CRT

 See reading (on Piazza for) algorithm to convert from CRT form to modular form

http://www.cut-the-knot.org/blue/chinese.shtml

CRT with two primes

- We are especially interested in n = pq
 - Where p & q are large primes

CRT 15 = 3 * 5

```
0 \mod 15 = \langle 0 \mod 3, 0 \mod 5 \rangle
1 \mod 15 = \langle 1 \mod 3, 1 \mod 5 \rangle
2 \mod 15 = \langle 2 \mod 3, 2 \mod 5 \rangle
3 \mod 15 = \langle 0 \mod 3, 3 \mod 5 \rangle
4 \mod 15 = \langle 1 \mod 3, 4 \mod 5 \rangle
5 \mod 15 = \langle 2 \mod 3, 0 \mod 5 \rangle
6 \mod 15 = \langle 0 \mod 3, 1 \mod 5 \rangle
7 \mod 15 = \langle 1 \mod 3, 2 \mod 5 \rangle
8 \mod 15 = (2 \mod 3, 3 \mod 5)
```

Squares

- Let's think about squares: x^2
- Some integers are squares {1, 4, 9, 16, 25, ...}
- Some integers are not squares {2, 3, 5, 6, , ...}
- Non-zero integer squares: two square roots

o
$$\sqrt{4} = \{2, -2\}$$

$$\sqrt{9} = \{3, -3\}$$

Squares modulo prime p

- Let p be an odd prime
- Some integers mod p are squares (quadratic residues) and some are not
 - o $1^2 = 1 \pmod{5}$
 - $_0$ $2^2 = 4 \pmod{5}$
 - $_{0}$ $3^{2} = 4 \pmod{5}$
 - $_0$ $4^2 = 1 \pmod{5}$
 - o $\sqrt{1} = \{1, -1\} = \{1, 4\} \pmod{5}$
 - $\sqrt{4} = \{2, -2\} = \{2, 3\} \pmod{5}$

Squares modulo pq

- Let p, q be an odd primes
- Some integers mod pq are squares (quadratic residues) and some are not

```
1^2 = 1 \pmod{15}; 2^2 = 4 \pmod{15}; 4^2 = 1 \pmod{15}; 7^2 = 4 \pmod{15}; 8^2 = 4 \pmod{15}; 11^2 = 1 \pmod{15}; 13^2 = 4 \pmod{15}; 14^2 = 1 \pmod{15}
```

o
$$\sqrt{1} = \{1, -1, 4, -4\} = \{1, 4, 11, 14\} \pmod{15}$$

o
$$\sqrt{4} = \{2, -2, 7, -7\} = \{2, 7, 8, 13\} \pmod{15}$$

What is going on here?

Need to see CRT view to understand

$$\sqrt{x^2}$$
 (mod pq)
$$\langle x \mod p, x \mod q \rangle$$

$$\langle x \mod p, -x \mod q \rangle$$

$$\langle -x \mod p, x \mod q \rangle$$

$$\langle -x \mod p, x \mod q \rangle$$

$$\langle -x \mod p, -x \mod q \rangle$$

Square-rooting → **factoring**

$$\sqrt{x^2} \pmod{pq}$$

$$\langle x \mod p, x \mod q \rangle$$

 $\langle x \mod p, -x \mod q \rangle$
 $\langle -x \mod p, x \mod q \rangle$
 $\langle -x \mod p, -x \mod q \rangle$

If we have two random square roots $x_1 \& x_2$ then sometimes $gcd(x_1 + x_2, pq) = p$ or q

Square-rooting → **factoring**

If we have two random square roots $x_1 \& x_2$ then sometimes $gcd(x_1 + x_2, pq) = p$ or q

$$\langle x \bmod p, x \bmod q \rangle + \langle x \bmod p, -x \bmod q \rangle =$$

 $\langle (x + x) \bmod p, (x - x) \bmod q \rangle =$
 $\langle 2x \bmod p, 0 \bmod q \rangle$

which is a multiple of q

Rabin signatures

- To compute a Rabin signature
 - Adjust message so that it is a square
- Compute square root modulo pq
- Anyone can verify signature (just square)
- But if we can take square roots, we can factor

Next lecture

- How to test if a number is a square mod pq
- How to take square roots mod pq

and then – crypto-hashing