Pengolahan Sinyal Dalam Waktu Kontinyu Bab 1. Sinyal Waktu Kontinyu

Elektronika Analog

Analisis dan Sintesis

Dosen:

Dr. Suhartono Tjondronegoro

Isi Kuliah

- Bab O. Pendahuluan.
- Bab 1. Sinyal Waktu Kontinyu.
- Bab 2. Sistem Waktu Kontinyu.
- Bab 3. Deret Fourier.
- Bab 4. Transformasi Fourier.
- Bab 5. Transformasi Laplace.
- Bab 6. Pengantar Filter Analog.
- Bab 7. Pengantar Sistem Umpan Balik Linier.

Bab 1. Sinyal Waktu Kontinyu

- Pendahuluan
- Sinyal dan Klasifikasi Sinyal.
 - Sinyal Waktu Kontinyu dan Sinyal Waktu Diskrit.
 - Sinyal Analog dan Sinyal Digital.
 - Sinyal Riil dan Sinyal Kompleks.
 - Sinyal Deterministik dan Sinyal Acak.
 - Sinyal Genap dan Sinyal Ganjil.
 - Sinyal Periodik dan Tidak Periodik.
- Sinyal Waktu Kontinyu Elementer.
- Sinyal Enerji dan Sinyal Daya.
- Operasi Dasar Terhadap Sinyal.

Pendahuluan

- Konsep dan teori tentang sinyal diperlukan di bidang teknik telekomunikasi.
- Akan diperkenalkan deskripsi matematik dan representasi sinyal.
- Diperkenalkan tentang klasifikasi sinyal.
- Definisi sinyal elementer.

Sinyal

- Sebuah sinyal didefinisikan sebagai sebuah fungsi dari satu variabel bebas atau beberapa variabel bebas yang membawa informasi yang terkait dengan phenomena fisik.
- Bila fungsi tergantung kepada satu peubah (variabel) bebas, sinyal disebut sinyal satu dimensi, contoh sinyal suara.
- Bila fungsi tergantung kepada dua atau lebih peubah (variabel) bebas, sinyal disebut sinyal multidimensi, contoh sebuah gambar adalah sebuah sinyal dua dimensi.

Contoh Sinyal Suara

• Bentuk gelombang sinyal suara: Jalan Ganesha Sepuluh

Bentuk gelombang sinyal suara: Indonesia Raya

Alat Musik

Saxophone

Clarinet

Flute

Contoh bentuk gelombang suara

Flute

Clarinet

Saxophone

Referensi: Signals and Systems,

2nd Edition;

A. D. Poularikas,

S. Seely;

PWS-Kent Publishing

Company, 1991.

Sinyal waktu kontinyu

Contoh:

Simulasi sinyal Dengan Matlab

Klasifikasi Sinyal

- Sinyal waktu kontinyu dan sinyal waktu diskrit.
- Subyek kuliah ini adalah sinyal waktu kontinyu.
- Sinyal genap dan sinyal ganjil.
- Sinyal periodik dan sinyal tidak periodik.
- Sinyal deterministik dan sinyal acak.
- Subyek kuliah ini adalah sinyal deterministik.
- Sinyal energi dan sinyal daya.

Representasi Grafik

- Sinyal waktu kontinyu
- x(t) adalah sinyal waktu kontinyu bila t adalah variabel kontinyu.

Sinyal waktu diskrit

x[n] adalah sinyal waktu diskrit bila n adalah variabel diskrit.

Subyek kuliah ini adalah sinyal waktu kontinyu.

Sinyal waktu kontinyu

- Sinyal x(t) disebut sebuah sinyal waktu kontinyu bila t adalah variabel kontinyu.
- Sinyal waktu kontinyu secara alamiah muncul bila phenomena phisik (akustik, cahaya) mengeluarkan gelombang (waveform), gelombang tersebut diubah menjadi sinyal listrik.

Pengubahan tersebut dilakukan oleh sebuah transducer.

Transducer

- Microphone adalah peralatan yang mengubah variasi tekanan bunyi menjadi variasi tegangan atau arus listrik.
- Microphone "Condenser"

Microphone "Sennheiser"

Yang ada didalam Microphone "Condenser" Oktava 319

Transducer

 Photocell adalah peralatan yang mengubah variasi intensitas cahaya menjadi variasi tegangan atau arus listrik.

 Juga disebut "photodetector," "photoresistor" dan "light dependent resistor" (LDR).

Sinyal Genap

• Sinyal x(t) disebut sinyal genap

bila
$$x(-t) = x(t)$$
, $\forall t$

Sinyal Genap 2.5 1.5 0.5 -0.5 -1.5 -

Contoh:

$$x(t) = \begin{cases} 1 - |t| & |t| < 1 \\ 0 & |t| \ge 1 \end{cases}$$

• Simetris terhadap t = 0

Sinyal Ganjil

• Sinyal x(t) disebut sinyal ganjil

bila
$$x(-t) = -x(t)$$
, $\forall t$

Contoh:

$$x(t) = \begin{cases} t & |t| < 1\\ 0 & |t| \ge 1 \end{cases}$$

• Anti-simetris terhadap t = 0

Dekomposisi Sinyal = Sinyal Genap + Sinyal Ganjil

- x(t) adalah sinyal sembarang.
- Ingin dilakukan dekomposisi sinyal:

$$x(t) = x_{gn}(t) + x_{gj}(t)$$

Maka:

$$x_{gn}(t) = \frac{1}{2} \{x(t) + x(-t)\}$$
$$x_{gj}(t) = \frac{1}{2} \{x(t) - x(-t)\}$$

Contoh:

- $x(t) = e^{-2t} \cos t$
- $x(-t) = e^{2t}\cos(-t) = e^{2t}\cos t$
- $x_{gn}(t) = \frac{1}{2} [e^{-2t} \cos t + e^{2t} \cos t] = \cosh(2t) \cos t$
- $x_{gj}(t) = \frac{1}{2} [e^{-2t} \cos t e^{2t} \cos t] = -\sinh(2t) \cos t$

Sinyal Riil dan Sinyal Kompleks Waktu Kontinyu

- Sinyal x(t) adalah sinyal riil bila nilainya adalah bilangan riil.
- Sinyal x(t) adalah sinyal kompleks bila nilainya adalah bilangan kompleks.
- Sinyal kompleks: $x(t) = x_1(t) + jx_2(t)$
- dimana $x_1(t)$ adalah bagian riil dari x(t), $x_2(t)$ adalah bagian imajiner-nya, dan $j=\sqrt{-1}$.
- Contoh: $x(t) = \cos(\Omega t) + j\sin(\Omega t)$
- Konjugate dari x(t) adalah $x^*(t) = x_1(t) jx_2(t)$.
- Sinyal kompleks x(t) disebut simetris konjugate bila $x(-t) = x^*(t)$.
- $x(-t) = x_1(-t) + jx_2(-t) = x^*(t) = x_1(t) jx_2(t)$
- Bagian riilnya fungsi genap dan bagian imajinernya fungsi ganjil.

Sinyal Periodik (1)

- Sinyal periodik x(t) adalah sebuah fungsi waktu t yang memenuhi kondisi x(t) = x(t+T) untuk semua t, dimana T adalah konstanta positif.
- Bila kondisi tersebut dipenuhi oleh $T=T_0$, maka hal tersebut juga dipenuhi oleh $T=2T_0$, $3T_0$, $4T_0$,
- Nilai terkecil T yang memenuhi x(t) = x(t+T) disebut perioda dasar sinyal x(t).
- Perioda dasar T mendefinisikan durasi satu siklus penuh sinyal x(t).
- Frekuensi dasar $f = \frac{1}{T}$ dalam hertz (Hz) (1.7)
- Frekuensi sudut $\Omega = 2\pi f = \frac{2\pi}{T}$ dalam radians per detik (1.8)

Sinyal Periodik (2)

- Gelombang $abs(\cos t)$
- x(t) = x(t+T)
- x(t) = abs(cos(t))
- Diselang: $0 \le t \le T$.
- T=4 detik.

•
$$x(t) = x(t+T)$$

- x(t) = segitiga(t)
- Diselang: $0 \le t \le T$.
- T=2 detik.

Sinyal Aperiodik atau Sinyal Nonperiodik

- Sinyal sembarang x(t), tidak ada ada nilai T yang memenuhi kondisi x(t) = x(t+T) untuk semua t, maka x(t) disebut sinyal aperiodik atau sinyal nonperiodik.
- Contoh:

Sinyal Deterministik

- Sinyal deterministik adalah sinyal yang pada setiap saat nilainya dapat ditentukan.
- Sinyal deterministik dapat dimodelkan dengan sebuah fungsi waktu.
- Contoh:

$$\bullet \quad x(t) = x(t+T)$$

$$x(t) = \cos(t)$$

Sinyal Acak (Random Signals)

- Sinyal acak adalah sebuah sinyal yang pada setiap waktu, nilainya mempunyai ketidak-pastian sebelum nilai tersebut ada.
- Sinyal acak dapat dipandang sebagai salah satu anggauta grup sinyal, dimana setiap sinyal dalam grup tersebut mempunyai bentuk gelombang yang berbeda.

• Contoh:

Subyek kuliah ini adalah sinyal deterministik.

Sinyal Elementer Waktu Kontinyu

- Fungsi Step Satuan
- Sinyal Eksponensial.
- Sinyal Sinusoidal.
- Relasi antara sinusoidal dengan sinyal eksponensial kompleks.
- Sinyal Sinusoidal teredam secara eksponensial.
- Fungsi Impuls.
- Fungsi Ramp.
- Fungsi sinc(u).

Fungsi Step Satuan $oldsymbol{u}(oldsymbol{t})$

• Fungsi step satuan u(t), juga dikenal sebagai fungsi satuan "Heaviside", didefinisikan dengan:

$$u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$$

$$u(t - t_0) = \begin{cases} 1, & t > t_0 \\ 0, & t < t_0 \end{cases}$$

contoh: $t_0 = 2$.

Fungsi Step Satuan u(t)

Contoh:

•
$$x(t) = \begin{cases} 0, & -\infty < t < -0.5 \\ A, & -0.5 \le t \le 0.5 \\ 0, & 0.5 < t < \infty \end{cases}$$

• atau $x(t) = Au(t + 0.5) - Au(t - 0.5) = x_2(t) - x_1(t)$

Fungsi Impuls Satuan (1)

• Fungsi impuls satuan $\delta(t)$, juga dikenal sebagai fungsi "Dirac Delta"

•
$$\delta(t) = \begin{cases} 0, & t \neq 0 \\ \infty, & t = 0 \end{cases}$$

•
$$\int_{-\infty}^{\infty} \delta(t) dt = 1$$

•
$$\int_{-\infty}^{\infty} \Phi(t) \delta(t) dt = \Phi(0)$$

- $\delta(t)$ disebut fungsi "Generalized"
- $\Phi(t)$ disebut fungsi "Testing"

•
$$\int_{-\infty}^{\infty} \Phi(t)\delta(t-t_0)dt = \Phi(t_0)$$

Fungsi Impuls Satuan (2)

• Fungsi $\delta(t)$

Fungsi $\delta(t-t_0)$

• Sifat-sifat: $\delta(at) = \frac{1}{|a|} \delta(t)$

$$\delta(-t) = \delta(t)$$

 $x(t)\delta(t) = x(0)\delta(t)$ bila x(t) kontinyu di t = 0.

$$x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$$
 bila $x(t)$ kontinyu di $t=t_0$.

• Setiap sinyal kontinyu x(t) dapat dinyatakan sebagai:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

$\delta(t)$ didefinisikan sebagai limit pulsa yang disempitkan dengan luas =1

$$x_1(t) = \begin{cases} \frac{1}{T}, & -\frac{T}{2} < t < \frac{T}{2}, \\ 0, & nilai \ lain \end{cases}, -\infty < t < \infty \qquad x_2(t) = \frac{1}{2\tau} e^{-\frac{|t|}{\tau}}, -\infty < t < \infty$$

$$\lim_{T\to 0}x_1(t)=\delta(t)$$

Three narrowing rectangular pulses with unit area

(a) Rectangular pulses

$$x_2(t) = \frac{1}{2\tau} e^{-\frac{|t|}{\tau}}, -\infty < t < \infty$$

$$\lim_{\tau \to 0} x_2(t) = \delta(t)$$

Three narrowing two-sided exponential pulses with unit area

(b) Exponential pulses

$\delta(t)$ didefinisikan sebagai limit pulsa yang disempitkan dengan luas =1

$$x_3(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{t^2}{2\sigma^2}}, -\infty < t < \infty$$

$$\lim_{\sigma \to 0} x_3(t) = \delta(t)$$

Three narrowing Gaussian pulses with unit area

$$x_4(t) = \frac{\sin\left(\frac{\pi t}{T}\right)}{\frac{\pi t}{T}}, -\infty < t < \infty$$

$$\lim_{T\to 0} x_4(t) = \delta(t)$$

 $x_1 = \operatorname{sinc}(\pi t/T)$

Turunan Fungsi "Generalized"

- Bila g(t) adalah fungsi "Generalized"
- Maka

$$g^{(n)}(t) = \frac{d^n g(t)}{dt^n} = \int_{-\infty}^{\infty} \Phi(t) g^{(n)}(t) dt = (-1)^n \int_{-\infty}^{\infty} \Phi^{(n)}(t) g(t) dt$$
$$\int_{-\infty}^{\infty} \Phi(t) \delta'(t) dt = -\Phi'(0)$$

- $\delta(t)$ adalah turunan dari u(t): $\delta(t) = \frac{d}{dt}u(t)$
- u(t) adalah integral dari $\delta(t)$: $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$

Sinyal Eksponensial Kompleks

- Sinyal eksponensial kompleks $x(t) = e^{j\Omega_0 t}$,
- Dengan rumus Euler: $x(t) = e^{j\Omega t} = \cos \Omega_0 t + j \sin \Omega_0 t$
- x(t) adalah sinyal kompleks, dimana $\cos\Omega_0 t$ adalah bagian riil dan $\sin\Omega_0 t$ adalah bagian imajiner.
- $x(t)=e^{j\Omega_0t}$ adalah sinyal periodik, perioda dasar T_0 , dimana $T_0=\frac{2\pi}{\Omega_0}$ detik
- $x(t)=e^{j\Omega_0t}$ adalah sinyal periodik untuk nilai Ω_0 sembarang, $\Omega_0=\frac{2\pi}{T_0}=2\pi f_0$ adalah frekuensi sudut [radian/detik].
- Sinyal eksponensial kompleks umum:
- Bila $s = \sigma + j\Omega$ adalah bilangan kompleks, definisikan:
- $x(t) = e^{st} = e^{(\sigma + j\Omega t)} = e^{\sigma t}(\cos \Omega t + j\sin \Omega t)$
- $e^{\sigma t} \cos \Omega t$ adalah bagian riil.
- $e^{\sigma t} \sin \Omega t$ adalah bagian imajiner.

Sinyal Eksponensial Kompleks Umum

•
$$x(t) = e^{st} = e^{(\sigma + j\Omega t)} = e^{\sigma t}(\cos \Omega t + j\sin \Omega t)$$

•
$$\Omega = \frac{2\pi}{T} = 2\pi f$$
 radian/detik

•
$$\sigma > 0$$

Sinyal Eksponensial Riil

• Sinyal eksponensial riil $x(t) = Be^{\sigma t}$, dimana B dan σ adalah parameter riil.

• $\sigma < 0$

Sinyal Sinusoidal

- Sinyal waktu kontinyu $x(t) = A\cos(\Omega t + \emptyset)$
- Sinyal sinusoidal adalah sinyal periodik, periodanya $T = \frac{2\pi}{\Omega}$ detik.
- $x(t+T) = A\cos(\Omega(t+T) + \emptyset) = A\cos(\Omega t + \Omega T + \emptyset)$ = $A\cos(\Omega t + 2\pi + \emptyset) = A\cos(\Omega t + \emptyset) = x(t)$
- Contoh: $x(t) = 4\cos(\Omega t + \pi/6)$

Relasi antara sinusoidal dan complex exponential Signals

- Sinyal eksponensial riil $x(t) = Be^{at}$, dimana B dan a adalah parameterparameter riil.
- Sinyal eksponensial kompleks $x(t) = Be^{at}$, dimana $B = Ae^{j\emptyset}$ adalah parameter kompleks dan $a = j\Omega$.

```
Eksponensial kompleks e^{j\emptyset} = \cos\emptyset + j\sin\emptyset
```

Sinyal eksponensial kompleks $x(t) = Ae^{j\emptyset}e^{j\Omega t} = Ae^{j(\Omega t + \emptyset)}$

Bagian riil dari x(t): Re $\{x(t)\}$ = $A\cos(\Omega t + \emptyset)$

Bagian imajiner dari x(t): $Im\{x(t)\} = Asin(\Omega t + \emptyset)$

Sinyal Sinusoidal Teredam Eksponensial

- $x(t) = Ae^{-\alpha t}\sin(\Omega t + \emptyset)$
- Contoh: $x(t) = 60e^{-6t}\sin(\Omega t)$

Fungsi Ramp r(t)

Fungsi ramp didefinisikan dengan persamaan

$$r(t) = \begin{cases} t, & t \ge 0 \\ 0, & t < 0 \end{cases}$$
 atau $r(t) = tu(t)$

Fungsi
$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t}$$

•
$$x(t) = \frac{\sin(\pi t)}{\pi t}$$

Format pensinyalan Binary

Sinyal-Sinyal

Contoh

Sinyal Energy dan Sinyal Power (1)

- Perhatikan tegangan v(t) diterminal sebuah resistor R, tegangan tersebut menghasilkan arus i(t).
- Power sesaat yang didisipasikan diresistor ini adalah

$$p(t) = \frac{v^2(t)}{R} \text{ atau } p(t) = Ri^2(t)$$

Didefinisikan power di resistor 1-ohm:

$$p(t) = v^2(t) = i^2(t) = x^2(t)$$

• Berdasarkan konvensi ini, kita definisikan total energy sinyal waktu kontinyu x(t) sebagai:

$$E = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t)dt = \int_{-\infty}^{\infty} x^2(t)dt$$

Energy Signals and Power Signals (2)

Kita definisikan power rata-rata diwaktu atau power rata-rata sebagai

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t) dt$$

• Power rata-rata sebuah sinyal periodik x(t) dengan perioda fundamental T dinyatakan oleh persamaan:

$$P = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^2(t)dt$$

- Sebuah sinyal disebut sebagai **sinyal energy** jika dan hanya jika total energy: $0 < E < \infty$
- Sebuah sinyal disebut sebagai sinyal power jika dan hanya power rata-rata: $0 < P < \infty$

Klasifikasi sinyal berdasarkan durasi

- Sinyal Kausal
- Sinyal Anti Kausal

- Sinyal Sisi Kanan
- Sinyal Sisi Kiri

Dasar-Dasar Operasi terhadap Sinyal

- Operasi terhadap variabel tidak bebas.
 - Penskalaan amplitudo.
 - Penjumlahan.
 - Perkalian.
 - Differensiasi.
 - Integrasi.
- Operasi terhadap variabel bebas.
 - Penskalaan waktu.
 - Refleksi.
 - Pergeseran waktu.

Operasi terhadap Variabel Tidak Bebas (1)

• Penskalaan Amplitudo: y(t) = cx(t)

Operasi terhadap Variabel Tidak Bebas (2)

• Penjumlahan: $y(t) = x_1(t) + x_2(t)$

Operasi terhadap Variabel Tidak Bebas (3)

Perkalian: $y(t) = x_1(t)x_2(t)$

Waktu (t)

Sinyal cos(2pi*t)*sin(2pi*t)

Waktu (t)

-1.5

Contoh Perkalian Amplituda Sinyal (1)

Perkalian dua sinyal genap

Contoh Perkalian Amplituda Sinyal (2)

Perkalian dua sinyal ganjil

Operasi terhadap Variabel Tidak Bebas (4)

• Differensiasi: $y(t) = \frac{d}{dt}x(t)$

$$x(t)$$
 \xrightarrow{d} $y(t)$

Differensiator CR

Differensiator RL

•
$$v_2(t) = -RC\frac{d}{dt}v_1(t)$$

$$v_2(t) = -\frac{L}{R}\frac{d}{dt}v_1(t)$$

Operasi terhadap Variabel Tidak Bebas (5)

• Integrasi: $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$

$$x(t)$$
 \int $y(t)$

Integrator RC

Integrator LR

•
$$v_2(t) = -\frac{1}{RC} \int_{-\infty}^t v_1(\tau) d\tau$$

$$v_1(t) = -\frac{R}{L} \int_{-\infty}^t v_1(\tau) \, d\tau$$

Operasi terhadap variabel bebas (1)

- Pengskalaan Waktu: y(t) = x(at)
 - Bila a > 1, sinyal y(t) adalah versi kompresi dari x(t).
 - Bila 0 < a < 1, sinyal y(t) adalah versi ekspansi dari x(t). Sinyal asli

Operasi terhadap variabel bebas (2)

• Refleksi: y(t) = x(-t)

- Sinyal genap: x(-t) = x(t)
- Sinyal ganjil: x(-t) = -x(t)

Operasi terhadap variabel bebas (3)

- Pergeseran Waktu: $y(t) = x(t t_0)$
 - Bila $t_0 > 0$, sinyal y(t) diperoleh dengan menggeser x(t) kearah kanan.
 - Bila $t_0 < 0$, sinyal x(t) digeser kekiri.
- Contoh:

Aturan untuk Pergeseran Waktu dan Penskalaan Waktu (1)

- Bila y(t) = x(at b)
 - Memenuhi kondisi-kondisi y(0) = x(-b) dan $y(\frac{b}{a}) = x(0)$
 - Dipakai untuk pemeriksaan terhadap y(t) sebagai fungsi x(t).
- Operasi pergeseran waktu dan operasi pengskalaan waktu harus dilakukan dengan urutan yang benar.
- Pertama, operasi pergeseran waktu dilakukan terhadap x(t):

$$v(t) = x(t-b).$$

• Berikutnya, operasi pengskalaan waktu dilakukan terhadap v(t):

$$y(t) = v(at) = x(at - b).$$

Aturan untuk Pergeseran Waktu dan Penskalaan Waktu (2)

- Contoh: x(t) = u(t+1) u(t-1)Tentukan y(t) = x(2t+3)
- Solusi: kita mempunyai a=2 and b=-3.

1:
$$v(t) = x(t+3)$$
 dan 2: $y(t) = v(2t) = x(2t+3)$.

Aturan untuk Pergeseran Waktu dan Penskalaan Waktu (3)

- Bila aturan dibalik: v(t) = x(2t) dan
- $y(t) = v(t+3) = x(2(t+3)) = x(2t+6) \neq x(2t+3)$.

Derau (Noise)

- Sebutan derau(noise) dipakai untuk menyatakan sinyal-sinyal yang tidak diinginkan, yang akan mengganggu bekerjanya suatu sistem.
- Didalam sebuah sistem komunikasi, terdapat banyak sumber derau yang dapat mempengaruhi cara kerja sistem.
- Kategori derau :
 - Sumber derau dari luar sistem: derau atmospheric, derau galactic, dan derau buatan manusia.
 - Sumber derau dari dalam sistem: derau yang muncul akibat fluktuasi arus atau tegangan di rangkaian listrik (electrical circuits). Derau ini disebut derau listrik (electrical noise).
- Derau Termal (Thermal noise).

Thermal Noise

- Satu bentuk derau listrik (electrical noise) adalah derau termal (thermal noise), muncul dari pergerakan acak (random motion) elektron-elektron didalam sebuah konduktor.
- Bila v(t) menyatakan tegangan derau termal yang diukur diterminal sebuah resistor.
- Nilai rata-rata (dalam waktu): $\bar{v} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} v(t) dt$.

2T adalah selang waktu saat nilai v(t) diamati.

$$\bar{v} \to 0$$
 as $T \to \infty$.

• Nilai rata-rata kuadrat (dalam waktu): $\overline{v^2} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} v^2(t) dt$.

$$\overline{v^2} = 4kT_{abs}RB \text{ volts}^2 \text{ as } T \to \infty.$$

k adalah konstanta Boltzmann $\approx 1.3 \times 10^{-23}$ joule per derajat kelvin,

 T_{abs} adalah temperatur absolut dalam derajat kelvin,

R adalah nilai tahanan dalam ohms, B adalah bandwith dalam hertz.

Model sebuah resistor berderau (noisy resistor)

Rangkaian ekivalen Thevenin:

Rangkaian ekivalen Norton:

Contoh bentuk gelombang (waveform) dari electrical noise yang dihasilkan oleh sebuah thermionic diode dengan heated cathode

• Nilai rata-rata (dalam waktu): $\bar{v} \approx 0$

UTS Sem 2 2013/2014 (1)

Soal no 1.

Sinyal $g_1(t)$

Tuliskan sinyal $g_1(t)$ sebagai fungsi g(t).

UTS Sem 2 2013/2014 (2)

Soal no 1.

Jawab:

 $g_1(t) = g(at - b)$, nilai a dan b harus ditentukan.

Dengan hubungan: $g_1(0) = g(-b) \operatorname{dan} g_1\left(\frac{b}{a}\right) = g(0)$

Lebar sinyal g(t) adalah 2, sedangkan lebar sinyal $g_1(t)$ adalah 4, maka a=0.5.

Titik tengah sinyal g(t) di t=0, sedangkan titik tengah sinyal $g_1(t)$ di t=2, maka nilai b harus dipilih untuk memenuhi persamaan at - b = 0, dimana a = 0.5 dan t = 2, sehingga $0.5(2) - b = 0 \rightarrow b = 1$.

Harap Membaca

- 1. Signals and Systems, 2nd edition; A. D. Poularikas, S. Seely; PWS-Kent Publishing Company, 1991.
- Signals and Systems, 2nd edition; Simon Haykin, Barry Van Veen; John Wiley & Sons, Inc. 2004. Chapter 1.
- 3. Signals and Systems, 2nd edition; Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab; Prentice-Hall, 1997.
- 4. Signals and Systems; Hwei P. Hsu; McGraw-Hill, 1995.

- Bab 1. Sinyal Waktu Kontinyu.
- Selesai.