

Приготовьтесь к осложнениям. Доктор Хаус.

Хаос и дискретные модели

В данной задаче вам придется применять как навыки аналитических вычислений, так и навыки численного моделирования. Но это не так страшно, как может показаться на первый взгляд.

Среда программирования для задачи

Для того, чтобы вам не пришлось ничего программировать, мы подготовили тетрадку в среде Google Colab. Можно использовать без смс, но с регистрацией.

Проходите по ссылке на тетрадку (на всякий случай, вот она еще раз), заходите в свой гуглаккаунт, нажимаете на выполнение кода в любой ячейки (это такая кнопка плей), вам сообщают радостную новость о том, что данный код написал некий Елисеев Максим, вы соглашаетесь с этим и тетрадка готова к использованию.

Подробно про то, как пользоваться тетрадкой рассказано в данном видео (тем самым Максимом Елисеевым). Если Когда у вас останутся появятся вопросы о том, как пользоваться данной тетрадью, то вы можете их задать в личные сообщения вот этому человеку. Не стесняйтесь, он готов и заряжен отвечать 25 (двадцать пять) на 7.

Замечание. Большая часть тетради это обучение, которое пропускать не надо, и задание 10-11 классов, которое вы можете пропустить (в крайнем случае нет). Основная работа будет в разделе «Дискретная модель» и «Путь Точки».

Замечание. Вы можете использовать любую другую среду для решения данной задачи, но мы не гарантируем, что другие численные методы сойдутся к правильному решению. И есть риск, что мы не сможем вам с этим никак помочь.

Дискретные модели

Во многих задачах бывает удобно переходить к дискретному времени и наблюдать за динамикой изменения некоторой величины. Например, мы можем обозначить x_n популяцию некоторого биологического вида в момент времени t_n (к примеру, в год с номером n). Тогда уравнение, описывающее динамику изменения популяции в самом простом случае, может иметь вид

$$x_{n+1} = \lambda x_n,$$

где $\lambda={\rm const}>0$ — коэффициент, который определяет условия жизни данного вида. Ясно, что если $\lambda>1$, то популяция будет неограниченно расти, если $\lambda=1$, то ее значение будет из года в год постоянным, если $\lambda<1$, то популяция вымрет. В этой части задачи мы будем анализировать схожие модели.

Правую часть уравнения мы будем обозначать $f(x_n)$. Если некоторое значение x^* удовлетворяет условию $f(x^*) = x^*$, то такой x^* мы будем называть положением равновесия.

Если мы два раза подействуем нашей «функцией», т. е. запишем выражение вида f(f(x)), то такое преобразование мы будем называть квадратичным и будем обозначать как $f^2(x)$. При действии нашей функцией n раз мы будем использовать обозначение $f^n(x)$. Ясно, что степень в данном случае не равносильна понятию степени из алгебры.

Путь точки. Линейный случай.

Рассмотрите в тетради клетку «Путь Точки». В ней задана «функция»

$$f(x) = \lambda \cdot \min \left[(1 - x), x \right], \quad x_{n+1} = f(x_n)$$

где $\lambda = \text{const} > 0$. Во всех пунктах этой части задачи мы будем рассматривать только значения $x \in [0,1]$.

- 1. (0.5 балла) В каких пределах может изменяться параметр λ , чтобы x_n при любом n принадлежал отрезку от [0,1]?
- 2. (0 баллов) Изобразите f(x).
- 3. (0.5 балла) Качественно изобразите $f^2(x)$ и $f^4(x)$ при значениях параметра $\lambda \neq 0$.
- 4. $(0.5\ балла)$ Найдите зависимость числа положений равновесия от параметра λ у системы, задаваемой «функцией» f(x). Для тех значений λ , где число положений равновесия наибольшее, найдите зависимость положений равновесия $x^*(\lambda)$.
- 5. $(0,3\ балла)$ Найдите зависимость числа положений равновесия от параметра λ у системы, задаваемой «функцией» $f^2(x)$. Для любого параметра λ , где число положений равновесия максимально, разработайте графический метод отыскания этих положений равновесия.
- 6. $(0,7 \, \text{баллов})$ Чему равно максимальное конечное число положений равновесия у системы, задаваемой «функцией» $f^n(x)$?
- 7. $(1,3\,$ балла) Для «функции» f(x) и $\lambda=1.5\,$ получите последовательность x_n , если $x_0=0,6,\,x_0=0,4\,$ и $x_0=0,139.$ Результат представьте в виде графика, на котором будут изображены f(x), а также $g(x)=x\,$ или в виде первых сорока значений последовательности x(n). Объясните полученный результат.
- 8. (1,7 баллов) Для «функции» $f^2(x)$ и $\lambda = 1.5$ получите последовательность x_n , если $x_0 = 0,6, x_0 = 0,61$. Результат представьте в виде графика, на котором будут изображены f(x), а также g(x) = x или в виде первых сорока значений последовательности x(n). Объясните результат.

Попробуйте найти (или изобразить) зависимости для других начальных значений.

9. (1 балл) Откройте клетку тетради в разделе «Дискретная модель. Линейный случай». Она умеет строить зависимость значений точек, отвечающих положениям равновесия для функции $f^n(x)$ от параметра λ . Постройте данный график. Какие особенности данного графика вы можете выделить? Перечислите все свойства, которые сможете найти.

Путь Точки. Квадратичный случай.

Модифицируя код в клетке «Путь Точки», проанализируйте следующую «функцию»

$$f(x) = \lambda x (1 - x),$$

где $\lambda = \text{const} > 0$.

Примечание. Эта «функция» встречается в самых разных разделах науки. От диффузии до экономики.

Во всех пунктах этой части задачи мы будем рассматривать только значения $x \in [0,1]$.

- 10. (0.5 балла) В каких пределах может изменяться параметр λ , чтобы x_n при любом n принадлежал отрезку от [0,1]?
- 11. $(0.5\ балла)$ Изобразите f(x). Найдите, при каких λ число положений равновесий наибольшее. Как зависят данные положения равновесия от λ
- 12. (0.5 балла) Изобразите $f^2(x)$ при любом значении параметра $\lambda \neq 0$.
- 13. (0.5 балла) Для «функции» f(x) и $\lambda = 2$ и получите последовательность x_n , если $x_0 = 0.5$, $x_0 = 0.4$ и $x_0 = 0.33$. Результат представьте в виде графика, на котором будут изображены f(x), а также g(x) = x или в виде первых сорока значений последовательности x(n). Объясните полученный результат.
- 14. (0.5 балла) Для «функции» $f^2(x)$ и $\lambda=2$ получите последовательность x_n , если $x_0=0.1, x_0=0.16$. Результат представьте в виде графика, на котором будут изображены f(x), а также g(x)=x или в виде первых сорока значений последовательности x(n). Объясните результат.

Попробуйте найти (или изобразить) зависимости для других начальных значений x.

15. (1 балл) Откройте клетку тетради в разделе «Дискретная модель. Квадратичный случай». Она умеет строить зависимость значений точек, отвечающих положениям равновесия для функции f(x) от параметра λ . Задайте максимальное значение λ и постройте данный график. Какие особенности данного графика вы можете выделить? Перечислите все свойства, которые сможете найти.

Первая подсказка — $16.05.2022 \ 14:00 \ (MCK)$

Вторая подсказка — $18.05.2022 \ 14:00 \ (MCK)$

Окончание пятого тура $-20.05.2022\ 22:00\ (MCK)$