Distributed Algorithms 2022/2023 (practical exercise)

Leader election

- **1 –** Find the expected value for the random variable $X \sim Geo(p)$.
- **2** Find the variance of the random variable $X \sim Geo(p)$.
- **3 –** Let $p \in [0,1]$ and $n \geq k \geq 1$, $n,k \in \mathbb{N}$. For what value of the argument a function f takes the maximum value?
- a. $f(p) = np(1-p)^{n-1}$
- b. $f(n) = np(1-p)^{n-1}$
- C. $f(k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- **4** Prove that $(1+x)^r \ge 1 + rx$ for $x \ge -1, r \ge 1$.
- **5 -** Prove that $(1+x)^r \le 1 + rx$ for $x \ge -1, r \in (0,1)$.
- **6** Prove that $1 + x < e^x$ for $x \in \mathbb{R}$.
- **7** Prove that $\frac{x}{e^x} < \frac{1.5}{r^2}$ for x > 0.
- **8** Let $f_i(n)=n\frac{1}{2^i}\left(1-\frac{1}{2^i}\right)^{n-1}$. Prove that functions $f_i(2^{i-1})$, $f_{i+1}(2^{i-1})$ are decreasing and function $f_{i-1}(2^i)$ is increasing for $i\geq 2$.
- **9** Present the definition of the Lambert W functions family and draw its real branches.
- **10** Use Lambert W function to analytically <u>determine</u> real solutions to the equation

$$3^x = x^3$$

What is Lambert's W function called in Mathematica?

11 — Have a look at this paper and show that for $x \ge e$

$$\ln x - \ln \ln x < W_0(x) \le \ln x - \frac{1}{2} \ln \ln x$$
.

12 — Completion of the lecture proof. Check that if $K \geq 1, f > 1, u \geq 2$ and

$$3e(K+1)u^{\frac{-1}{2(K+1)}} \ge 1 - \frac{1}{f}$$
 then $K \ge \frac{\ln u}{2W_0(\frac{3e}{2}\frac{f}{f-1}\ln u)} - 1$.

Data stream analysis: approximate counting

13 — For continuous and independent random variables X_1, X_2, \ldots, X_n with the same distribution given by the density function f(x) and the cumulative distribution function F(x) show that k-th order statistic $X_{k:n}$ has a distribution described by the density function

$$f_k(x) = \frac{F^{k-1}(x) \left[1 - F(x)\right]^{n-k} f(x)}{B(k, n - k + 1)},$$

where $B(\alpha, \beta)$ denotes beta function. Hint: see this notes.

14 — For n independent random variables U_1, U_2, \ldots, U_n with the uniform distribution: $U_i \sim \mathcal{U}(0,1)$, show that k-th order statistic has distribution Beta(k,n-k+1) and an expected value equal to k/(n+1).

<u>Hint.</u> In this and in the next exercise use different representations of the beta function: given by the definition and by factorial for arguments that are natural numbers.

15 — Let $U_{k:n}$ denote kth order statistic for n independent uniformly distributed random variables with distribution $\mathcal{U}(0,1)$. Show that for the estimator $\hat{n}_k = \frac{k-1}{U_{k:n}}$ and $k \geq 2$ we have $\mathbb{E}\left(\hat{n}_k\right) = n$ and that for for $k \geq 3$ we have

$$\operatorname{Var}(\hat{n}_k) = \frac{n(n-k+1)}{k-2} .$$

16 — (Markov's inequality) Let X denote the random variable that takes only non-negative values. Then for all a>0

$$\mathbb{P}\left(X \ge a\right) \le \frac{\mathbb{E}\left(X\right)}{a} .$$

17 — (Chebyshev's inequality) Let X denote a random variable with a finite expected value and a finite, non-zero variance. Show that for any a>0 the following inequality holds:

$$\mathbb{P}\left(\left|X - \mathbb{E}\left(X\right)\right| < a\right) > 1 - \frac{\mathbb{V}\mathrm{ar}\left(X\right)}{a^{2}}.$$

Hint: use Markov's inequality.

18 — (Chernoff inequality for sum of Bernoulli trials) Let X_1,\ldots,X_n be independent Bernoulli trials such that $\mathbb{P}(X_i=1)=p_i$. Let $X=\sum_{i=1}^n X_i$ and $\mu=\mathbb{E}(X)$. Show that

a) for any $\delta > 0$

$$\mathbb{P}(X \ge (1+\delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu},$$

b) for any $0 < \rho \le 1$

$$\mathbb{P}\left(X \le (1-\rho)\mu\right) \le \left(\frac{e^{-\rho}}{(1-\rho)^{(1-\rho)}}\right)^{\mu}.$$

Hint: see chapter 4.2. in this book.

19 — Using the notations and the inequalities obtained in the previous task, show that for any $0<\delta<1$

$$\mathbb{P}\left(|X - \mu| \ge \delta\mu\right) \le 2e^{-\mu\delta^2/3} .$$

- **20** Let S_n be the number of heads in n flips of a symmetrical coin. Show that
 - a) using Chebyshev's inequality we have

$$\mathbb{P}\left(\left|S_n - \frac{n}{2}\right| \ge \frac{n}{4}\right) \le \frac{4}{n},$$

b) using Chernoff's inequality from the previous task we have

$$\mathbb{P}\left(\left|S_n - \frac{n}{2}\right| \ge \frac{n}{4}\right) \le 2e^{-n/24}.$$

21 — Consider the following algorithm, from which the idea of the HyperLogLog algorithm is derived.

Probabilistic Counter

1: Initialization: $C \leftarrow 1$

Upon event:

2: **if** random() <= 2^{-C} **then**

 \triangleright random returns a random number in a range [0,1)

3: $C \leftarrow C + 1$

4: end if

In other words, when an event occurs, we toss a coin C times, and if each time we get heads, we increment the C counter by one. Otherwise, we do nothing. Let C_n be the value stored in the counter C after observing n events. Show that $\mathbb{E}\left(2^{C_n}\right)=n+2$ and $\mathbb{V}\!\!\!\text{ar}\left(2^{C_n}\right)=\frac{1}{2}n(n+1)$. Based on C_n , define an unbiased estimator of n and calculate its variance.

Data stream analysis: approximate summation

- **22** Recall the basics of the exponential distribution.
 - a) Recall the formula for density and distribution function. Derive the formula for expected value and variance.
 - b) Suppose you have a generator that returns numbers in the range [0,1) following a uniform distribution. Present a procedure that will transform the returned values into values that follow the exponential distribution with the parameter λ .

Hint: see pages 28 and 29 in this book.

- c) Present and prove the theorem on which the procedure in point b) is based.
- **23** Let S_1, S_2, \ldots, S_n be a sequence of independent exponential random variables and $S_i \sim Exp(\lambda_i)$ for $\lambda_i > 0$. Let $\Lambda = \lambda_1 + \lambda_2 + \ldots + \lambda_n$. Show that the first order statistic $S_{\min} = \min \{S_1, S_2, \ldots, S_n\}$ has an exponential distribution with parameter Λ :

$$S_{\min} \sim Exp(\Lambda)$$
.

24 — Let X and Y be independent random variables with density functions $f_X(x)$ and $f_Y(y)$, respectively. For Z = X + Y show that

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx.$$

How does this task relate to the next task?

Hint: see convolution of probability distributions.

25 — Assume $\Lambda>0, m\in\mathbb{N}_{>0}$ and let $S_{\min}^{(1)}, S_{\min}^{(2)}, \ldots, S_{\min}^{(m)}$ will be independent random variables with the same exponential distribution

$$S_{\min}^{(i)} \sim Exp(\Lambda)$$
.

Show that the variable

$$G_m = \sum_{i=1}^m S_{\min}^{(i)}$$

has gamma distribution defined by density function:

$$g_m(x) = \Lambda \frac{(\Lambda x)^{m-1}}{\Gamma(m)} e^{-\Lambda x}$$
 for $x > 0$.

Hint 1: use the previous exercise and induction.

Hint 2: $\Gamma(m) = (m-1)!$ for $m \in \mathbb{N}_{>0}$.

26 — Using the notations from the exercise 25 show that for $m \geq 2$ and the estimator defined as

$$\bar{\Lambda}_m = \frac{m-1}{\sum_{i=1}^m S_{\min}^{(i)}}$$

we have $\mathbb{E}\left(\bar{\Lambda}_{m}\right)=\Lambda$.

27 — Using the notations from the exercise 25 and 26 show that for $m \geq 3$ the standard error of the $\bar{\Lambda}_m$ estimator depends only on the m parameter and is expressed by the formula:

$$\mathbb{SE}\left(\bar{\Lambda}_m\right) = \frac{1}{\sqrt{m-2}} \ .$$

28 – Suggest an algorithm that can estimate the average value

$$Av = \frac{\lambda_1 + \lambda_2 + \ldots + \lambda_n}{n}$$

for all unique elements of the stream \mathfrak{M} . Determine the bias of the proposed estimator.

Hint: note that for $\lambda_1 = \lambda_2 = \dots \lambda_n = 1$ we have $\mathbb{E}\left(\bar{\Lambda}_m\right) = n$.

Blockchain

29 — Show that for the notations from the task **23** we have:

$$\mathbb{P}\left(S_{min} = S_i\right) = \frac{\lambda_i}{\Lambda} .$$

30 — Let the continuous random variable X take values in the range $[0, \infty)$. We say that the distribution of X is memory-less if the following condition holds:

$$(\forall x_1, x_2 > 0) (\mathbb{P}(X > x_1 + x_2 | X > x_2) = \mathbb{P}(X > x_1))$$
.

Show that the exponential distribution

- a) satisfies this definition,
- b) is the only continuous distribution that satisfies this definition.
- **31** We toss a coin until we obtain r tails. Assume that tails and heads appear with probabilities p and q, respectively. Derive the distribution of the random variable X describing the number of heads obtained. What is the name of this distribution? Derive the formula for the expected value and variance.
- **32** Recall the definitions and basic properties of the Poisson distribution. Show that the Poisson distribution with parameter μ is the limiting distribution for the binomial distribution $Bin(n,p_n)$ if $\lim_{n\to\infty} np_n = \mu > 0$. You may refer to this book.
- **33** (Coupon collector's problem) We have n urns into which we randomly (uniformly) throw balls. Let X be the number of balls thrown until there is at least one ball in each urn. Using the approximation of the number of balls in a given urn by the Poisson distribution, show that for large values of n, we have

$$Pr[X > n \ln n + cn] \approx 1 - e^{-e^{-c}},$$

and then determine the smallest value of c such that for large values of n, the value of X lies in the interval $[n \ln n - cn, n \ln n + cn]$ in 99% of cases. Hint: you may refer to this book.