

IBM Software Group

Essentials of Visual Modeling with UML

Module 2: Principles of Visual Modeling

Rational. software

Objectives

- Describe the importance of visual modeling.
- Define the four principles of visual modeling.
- Explain what the Unified Modeling Language (UML) represents.
- Define the type of process that best relates to the UML.

Where Are We?

- ★ What is modeling?
 - Four principles of visual modeling
 - The UML
 - Process and visual modeling

What Is a Model?

◆ A model is a simplification of reality.

Why Model?

- Modeling achieves four aims:
 - Helps you to visualize a system as you want it to be.
 - Permits you to specify the structure or behavior of a system.
 - Gives you a template that guides you in constructing a system.
 - Documents the decisions you have made.
- You build models of complex systems because you cannot comprehend such a system in its entirety.
- You build models to better understand the system you are developing.

The Importance of Modeling

Less Important More Important **Paper Airplane** Fighter Jet

Software Teams Often Do Not Model

- Many software teams build applications approaching the problem like they were building paper airplanes
 - Start coding from project requirements
 - Work longer hours and create more code
 - Lacks any planned architecture
 - Doomed to failure
- Modeling is a common thread to successful projects

Where Are We?

- What is modeling?
- ★ Four principles of visual modeling
 - The UML
 - Process and visual modeling

Four Principles of Modeling

- The model you create influences how the problem is attacked.
- Every model may be expressed at different levels of precision.
- The best models are connected to reality.
- No single model is sufficient.

Principle 1: The Choice of Model Is Important

- The models you create profoundly influence how a problem is attacked and how a solution is shaped.
 - In software, the models you choose greatly affect your world view.
 - Each world view leads to a different kind of system.

Principle 2: Levels of Precision May Differ

- Every model may be expressed at different levels of precision.
 - The best kinds of models let you choose your degree of detail, depending on:
 - Who is viewing the model.
 - Why they need to view it.

View for Customers

Principle 3: The Best Models Are Connected to Reality

- All models simplify reality.
- A good model reflects potentially fatal characteristics.

Principle 4: No Single Model Is Sufficient

- No single model is sufficient. Every non-trivial system is best approached through a small set of nearly independent models.
 - Create models that can be built and studied separately, but are still interrelated.

Where Are We?

- What is modeling?
- Four principles of visual modeling
- ★ The UML
 - Process and visual modeling

What Is the UML?

- The UML is a language for
 - Visualizing
 - Specifying
 - Constructing
 - Documenting

the artifacts of a software-intensive system.

The UML Is a Language for Visualizing

- Communicating conceptual models to others is prone to error unless everyone involved speaks the same language.
- There are things about a software system you can't understand unless you build models.
- An explicit model facilitates communication.

The UML Is a Language for Specifying

 The UML builds models that are precise, unambiguous, and complete.

The UML Is a Language for Constructing

- UML models can be directly connected to a variety of programming languages.
 - Maps to Java, C++, Visual Basic, and so on
 - Tables in a RDBMS or persistent store in an OODBMS
 - Permits forward engineering
 - Permits reverse engineering

The UML Is a Language for Documenting

 The UML addresses documentation of system architecture, requirements, tests, project planning, and release management.

History of the UML

Inputs to the UML

Where Are We?

- What is modeling?
- Four principles of visual modeling
- The UML
- ★ ◆ Process and visual modeling

A Language Is Not Enough to Build a System

What Type of Process Most Benefits the UML?

- The UML is largely process independent. A process fully benefits from the UML when the process is:
 - Use-case driven
 - Architecture-centric
 - Iterative and incremental

A Use-Case Driven Process

- Use cases defined for a system are the basis for the entire development process.
- Benefits of use cases:
 - Concise, simple, and understandable by a wide range of stakeholders.
 - Help synchronize the content of different models.

An Architecture-Centric Process

 A system's architecture is used as a primary artifact for conceptualizing, constructing, managing, and evolving the system under development.

Benefits:

- Intellectual control over a project to manage its complexity and to maintain system integrity.
- Effective basis for large-scale reuse.
- A basis for project management.
- Assistance in component-based development.

An Iterative and Incremental Process

- Critical risks are resolved before making large investments.
- Initial iterations enable early user feedback.
- Testing and integration are continuous.
- Objective milestones focus on the short term.
- Progress is measured by assessing implementations.
- Partial implementations can be deployed.

Iterative Development

- Earliest iterations address greatest risks.
- Each iteration produces an executable release, an additional increment of the system.
- Each iteration includes integration and test.

Review

- What is a model?
- What are the four principles of modeling? Describe each one.
- What is the UML? Describe each of its four benefits.
- What process characteristics best fit the UML? Describe each characteristic.
- What is an iteration?

