Overfitting: -	This not generalisable for fact date.
- Pre foruning (while create or	
	particular value tean no more chitty
	O NO 9 champles cherthing no more effecting - yes 3 Hajourity: Yes - no 3
- Post Pruning a)	Troming set [20] Validation set [20]
b) TS conforte entire tree	Canny order Pary Canny order Pary Work None No No No No No No No No No N

C) Pick each mode vi BD manner, Hunder check if I forume this node will it improve my performance y accuracy

Sunny ortest lang

Yes, No? Yes

Son gind me No

a>b and a>c : original me
(no pruning)

Volubolins.

bya and byc: You cra and cyb: No

CART

G Classification & Regression Tree.

Day	Outlook	Temp.	Humidity	Windy	Hours Played
Di	Rainy	Hot	High	False	25
D2	Rainy	Hot	High	True	
D3	Overoast	Hot	High	Falce	7 46 /
D4	Sunny	Mild	High	Falce	7 45 /
D5	Sunny	Cool	Normal	Falce	J 52 \
D6	Sunny	Cool	Normal	True	23 > Outlet is continuous
07	Overoast	Cool	Normal	True	43
D8	Rainy	Mild	High	False	35
09	Rainy	Cool	Normal	Falce	23 43 35 38 Regressin
D10	Sunny	Mild	Normal	Falce	☐ 46 \
וום	Rainy	Mild	Normal	True] 48 \
012	Overoast	Mild	High	True	52
D13	Overoast	Hot	Normal	Falce	
014	Sunny	Mild	High	True	30
·	utrý.			•	11-20 11-0 11 11+0
r	by Howa	o Played		n : 10	4

<u>Day</u>	Hours	Played
	25	,
02	30	
03	46	
D4	45	
D5	52	
06	23	
D7	43	
DS	35	
D9	38	
D10	46	
DII	48	
DI2	52	
013	44	
014	30	

14

 $\overline{\alpha} = 39.8$

Standard Deviation =
$$\frac{\Sigma(z-\overline{z})^2}{\pi} = \frac{8S}{9.32}$$

Coefficient of variation =
$$CV = \frac{3}{\pi}$$
 # 100
Stopping (mditim = 237.

Pruning: - ht of tree -> no. of examples -> CV

Outlook - Sunny

DY DS DIO DIO DIO DIO

Temp	Humidity	Windy	Hours Played
Mild	High	FALSE	45
Cool	Normal	FALSE	52
Cool	Normal	TRUE	23
Mild	Normal	FALSE	46
Mild	High	TRUE	30
			S = 10.87
			AVG = 39.2
			CV = 28%

		Hours Played (StDev)	Count
Tomo	Cool	14.50	2
Temp	Mild	7.32	3

SDR = 10.87-((2/5)*14.5 + (3/5)*7.32) = 0.678

		Hours Played (StDev)	Count
Manual dite.	High	7.50	2
Humidity	Normal	12.50	3

SDR = 10.87-((2/5)*7.5 + (3/5)*12.5) = 0.370

		Hours Played (StDev)	Count
Miles de la	False	3.09	3
Windy	True	3.50	2

SDR = 10.87-((3/5)*3.09 + (2/5)*3.5) 7.62

Reference: https://saedsayad.com/decision_tree_reg.htm https://www.youtube.com/watch?v=1i_V-2spSKs https://www.youtube.com/watch?v=cxz53CU0y_4

Outlook - Rainy

Hours Played Humidity Windy DI High FALSE 25 Hot Hot High TRUE 02 29 Mild High FALSE 35 Normal FALSE 38 09 Cool TRUE Mild Normal 48 911 S = 7.78AVG = 35.2 CV = 22%

		Hours Played (StDev)	Count
	Cool	0	1
Temp	Hot	2.5	2
	Mild	6.5	2

SDR = 7.78 - ((1/5)*0+(2/5)*2.5 + (2/5)*6.5) 4.18

,		Hours Played (StDev)	Count
Hamilalita.	High	4.1	3
Humidity	Normal	5.0	2

SDR = 7.78 - ((3/5)*4.1 + (2/5)*5.0) = 3.32

:		Hours Played (StDev)	Count
MC-d.	False	5.6	3
Windy	True	9.0	2

SDR = 7.78 - ((3/5)*5.6 + (2/5)*9.0) = 0.82

DT Regressim - features discrete values features have continuous values.

When the continuous values of the continuous values.

١	Nouv	Т	marks		
		x	Y		
	<u> </u>	1	1		
ادا ع.		2	1.2		
3		3	1.4		
		4	1.1		
	0 0 0 0 0 0	5	1		
	•	6	5.5		
1 † Cons	•	7	6.1		
صا	•	8	6.7		
	0 0 0 0 0 0 0 0	9	6.4		
	•	10	6		
	•	11	6		
	•	12	3		
	0 0 0 0 0 0 0 0	13	3.2		
الر ۱		14	3.1		
• •		15	3		

					Jarance_
Х	Υ	A	(y-y)2	$\Sigma (y-\overline{y})^2$	$\Sigma(y-\overline{y})^2/n$
1	1		7.005		
2	1.2		5.987		
3	1.4		5.048		
4	1.1		6.486		
5	1		7.005		
6	5.5	3.647	3.435	70·299	(4.686) before
7	6.1		6.019	10-11	4.686 byfore splitting
8	6.7		9.323		Splitting
9	6.4		7.581		. ,
10	6		5.538		
11	6		5.538		
12	3		0.418		
13	3.2		0.2		
14	3.1		0.299		
15	3		0.418		

error: 4.686					
marts<= 5.5					
5	10				
mse	mse				
0.0224	2.306				

			ı			
	Х	Υ	y	(y-\forall)2	$\Sigma (y-\overline{y})^2$	$\Sigma(y-\overline{y})^2/n$
	1	1		0.0196		·
	2	1.2		0.0036		
	3	1.4	1.14	0.0676	0.112	0.0224
	4	1.1		0.0016		
.5	5	1		0.0196		
	6	5.5		0.36		
	7	6.1		1.44		
	8	6.7		3-24		
	9	6.4	y ·9	2.25	23.06	2.306
	10	6		1.21	29.00	2.300
	11	6		1.21		
	12	3		3.61		
	13	3.2		2.89		
	14	3.1		3.24		
	15	3		3.61		
		•		I		

References:

https://www.youtube.com/watch?v=_wZ1Lo7bhGg

https://www.youtube.com/watch?v=sLXtCwxg5kl

https://medium.com/analytics-vidhya/regression-trees-decision-tree-for-regression-machine-

learning-e4d7525d8047

11 12.5 13.5 14.5 16

