Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Revisiting Neural Networks for Continual Learning: An Architectural Perspective

Aojun Lu¹, Tao Feng², Hangjie Yuan³, Xiaotian Song¹ and Yanan Sun^{1*}

¹Sichuan University

²Tsinghua University

³Zhejiang University

aojunlu@stu.scu.edu.cn, fengtao.hi@gmail.com, hj.yuan@zju.edu.cn songxt@stu.scu.edu.cn, ysun@scu.edu.cn

https://arxiv.org/pdf/2404.14829

SIN5006 - INTELIGÊNCIA COMPUTACIONAL ENTREGA PARCIAL

NILTON TADASHI ENTA - 12730911 VITOR CAMARGO PINHEIRO - 12693156

Arch Craft | Definição do problema

O Desafio:

- Catastrophic Forgetting na tarefa de Aprendizado Contínuo (CL)
- *CL refere-se ao incremento de novos dados no ciclo de vida de um modelo

A Proposta:

• Um novo método de Neural Architecture Search (NAS), intitulado de **ArchCraft**. Focado em tarefas de CL para preencher a lacuna entre o **design da arquitetura de rede e o CL**.

Arch Craft | Definição do Problema

ArchCraft

Search Space Especializado

Algoritmo

Genético

AlexNet

RestNet

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

Network Components			Performance in Task IL				Performance in Class IL				
Down.	Skip	GAP	R32-LA	R32-AIA	R18-LA	R18-AIA	R32-LA	R32-AIA	R18-LA	R18-AIA	
Strided Conv.	√	√	25.80±1.80	35.06±0.88	38.12±2.85	49.68±0.91	37.92±0.64	55.97±0.85	40.34±0.95	57.79±1.09	
	\checkmark	×	55.52±1.41	60.89±1.83	62.95±3.45	65.41±1.92	22.63±3.36	27.37±11.18	38.85±1.60	50.29±3.01	
	×	\checkmark	25.29±1.48	31.74±0.90	30.33±2.28	41.75±0.89	30.74±2.11	46.99±1.48	38.45±0.66	56.86±0.82	
	×	×	38.30±1.17	45.58±1.76	57.66±1.72	62.13±1.02	27.63±2.79	38.66±6.24	33.99±3.77	45.98±4.53	
	✓	✓	25.91±2.35	35.58±0.78	39.89±1.80	53.15±0.69	38.27±0.88	56.79 ±0.88	40.50 ±0.34	59.53 ±1.26	
Max Pooling	\checkmark	×	57.31 ±1.56	63.35 ±1.65	63.94 ±3.13	68.74 ±3.27	24.91±3.58	22.23±13.19	40.00±0.67	54.11±1.79	
	×	\checkmark	24.54±0.53	32.16±0.87	30.46±2.52	42.24±1.08	30.69±1.27	47.50±1.42	37.34 ± 0.72	56.53±0.83	
	×	×	36.53±0.85	44.72±1.31	60.16±0.88	65.41±0.69	16.67±13.00	25.64±18.06	33.92±3.98	47.83±4.96	
	√	√	24.37±1.72	35.00±0.92	38.47±2.01	53.52±0.67	38.25±0.52	56.67±0.61	39.85±1.52	57.53±1.14	
Avg Pooling	\checkmark	×	56.16±2.93	62.60±1.74	63.92±3.22	68.56±2.78	27.62±5.27	34.69±11.64	37.35±3.96	49.74±4.24	
	×	\checkmark	23.70±1.92	31.50±0.88	30.21±1.27	42.82±0.80	30.33±2.09	46.55±1.24	37.02±0.92	55.99±0.48	
	×	×	35.86±2.09	44.93±2.42	60.68±0.86	65.78±1.29	23.04±11.10	33.05±14.94	34.84±1.67	47.63±1.41	

Initial	Final	Performanc	e in Task IL	Performance in Class IL			
Width	Width	LA	AIA	LA	AIA		
16	64	59.48±2.03	65.65±0.89	35.82±0.55	54.43±0.47		
	256	71.51±0.87	73.89±0.80	36.16±0.52	55.18±0.63		
32	128	68.24±0.72	71.74±0.69	39.44±0.81	57.83±0.72		
	256	74.18±0.94	76.18±0.46	40.02±0.74	58.02±0.87		
48	192	70.96±1.70	74.94±0.80	40.52±0.92	58.93±0.77		
	256	73.12±1.46	76.64±0.63	40.53±0.75	59.08±0.67		
64	256	73.14±1.51	76.61±0.66	40.97±0.56	59.48±0.85		

Table 2: The CL performance on different width configurations.

Novos **indivíduos (descendentes)** são criados em um algoritmo evolutivo.

Seleção dos pais:

- Dois indivíduos (soluções) são escolhidos aleatoriamente da população atual.
- O que tiver melhor desempenho (fitness) é escolhido para ser o "pai".

Mutação:

• O pai é copiado para criar um descendente.

Em seguida, uma parte do código desse descendente é alterada aleatoriamente (mutação).

Algoritmo Genético:

old_code \leftarrow [largura, profundidade, pooling[2, 4, 6, 6, 6], double[0, 0, 6, 6, 6]]

WHILE parâmetros < 1 milhão AND tentativas < 101:</p>
old_code ← mutação ¼ de probabilidade
largura ← largura * (ou "/") random == mod(4) e mínimo 8
profundidade ← profundidade * (ou "/") random

Executa 20 iterações de 5 mutações consecutivas

pooling, double ← ajuste proporcional

ArchCraft | Medidas de Acurácia para o CL

Parâmetros de Treino:

SGD: Stochastic Gradient Descent

SGD (learning rate: 0.01,

momentum: 0.9,

weight decay: 0.0002,

maximize: False,

differentiable: False)

Parâmetros de Treino:

Acurácia Incremental Média (AIA):

Média das acurácias por classe

Catastrophic Forgetting:

Média da diferença entre o máximo valor

PSEUDOCODIGO

DEFINE VARIÁVEIS LOCAIS

```
incremento <- 50
individuo_id <- 0
code <- [profundidade, largura, pool[1, ..., 5], double[1, ..., 5]]
chosen_network <- 'arch_craft'</pre>
```

Algoritmo TrainModel:

```
grad_clip <- 10
epoch <- 2
learning_rate <- 0.01
```

Carrega os dados CIFAR-100 divididos em tarefas incrementais

Se rede == 'arch_craft': importa e instancia arquitetura Net personalizada

Se rede == 'alexnet': importa e instancia versão AlexNet

Mostra o número total de parâmetros do modelo

Inicializa o treinamento com otimizador SGD (Gradiente Descendente Estocástico)

Imprime a função de perda e o otimizador

Inicializa matrizes para armazenar acurácias, perdas, e medidas por tarefa

for tarefa in classes:

Treina o modelo

Salva os resultados

for conjunto in range(tarefas já processadas):

Testa a conjunto

Salva os resultados

Calcula a acurácia média após a tarefa

Calcula forgetting <- sum(acurácia máxima - t[x])/ len(t)

Imprime matriz de acurácia

Calcula e imprime métrica média ap (AIA)

Calcula e imprime acurácia

Retorna a acurácia final

Arch Craft | Resultados

Por que a quantidade de parâmetros é importante?

- Capacidade de Representação (Expressividade)
 - Mais parâmetros → maior capacidade de modelar funções complexas.
 - o Permite que a rede aprenda padrões detalhados e relações não lineares.
- Risco de Overfitting
- Capacidade de Generalização
 - o Modelos com parâmetros suficientes, mas não excessivos.
- Custo Computacional e Memória
 - Mais parâmetros → mais memória e tempo de computação, tanto para treino quanto para inferência.
- Escalabilidade e Eficiência
 - Modelos com muitos parâmetros podem ser difíceis de treinar ou ajustar com dados contínuos (aprendizado online)

Arch Craft | Resultados

Equilíbrio entre Plasticidade e Estabilidade

Um dos principais desafios em aprendizado contínuo é equilibrar plasticidade com estabilidade:

• <u>Plasticidade demais:</u> o modelo aprende novas tarefas, mas esquece as antigas (catastrophic forgetting).

Estabilidade demais: o modelo preserva o que já sabe, mas não aprende bem novas informações (underfitting nas novas tarefas).

Network	#P (M)	Method	I100-inc5	I100-inc10
AlexNet	6.71	SGD	35.36	33.38
AlexAC-A	6.28↓6%	SGD	52.02	45.86

Table 4: The last accuracy on Imagenet-100 (I100) in Task IL.

Arch Craft | Referências

LU, Aojun; FENG, Tao; YUAN, Hangjie; SONG, Xiaotian; SUN, Yanan. Revisiting neural networks for continual learning: an architectural perspective. arXiv:2404.14829, 2024. Disponível em: https://arxiv.org/abs/2404.14829. Acesso em: 30 abr. 2025.

Arch Craft | Referências

LU, Aojun; FENG, Tao; YUAN, Hangjie; SONG, Xiaotian; SUN, Yanan. Revisiting neural networks for continual learning: an architectural perspective. arXiv:2404.14829, 2024. Disponível em: https://arxiv.org/abs/2404.14829. Acesso em: 30 abr. 2025.

Base de Dados:

• CIFAR100 (100 classes)

Representação do CL:

- Incremento em lotes de mesmo tamanho
- As novas classes são treinadas com ⅓ das épocas do treino inicial

Search Space:

- AlexNet
- RestNet

Algoritmo Genético:

- Mutações estocásticas nos parâmetros selecionados da arquitetura
- Mantém a complexidade em até 1 milhão de parâmetros

Medidas de Avaliação:

- Acurácia Incremental Média (AIA)
- Catastrophic Forgetting

Arch Craft | Resultados Iniciais

ANEXOS

ArchCraft | Métodos (Visão Geral)

ArchCraft é um novo método de Neural Architecture Search (NAS).

Focado em Aprendizado Contínuo (CL) para preencher a lacuna entre o **design da arquitetura de rede e o CL.**

I. <u>Search Space</u>: Espaço de busca personalizado obtido a partir de **busca empírica** [1].

II. <u>Friendly Search Strategy</u>: Uma estratégia baseada em algoritmos genéticos para explorar o Search Space [2].

[1] O ArchCraft ele é projetado com base em **observações empíricas sobre seus componentes arquitetônicos**.

O experimento consistiu com uma ResNet. Partindo de configurações consideradas ótimas para essas tarefas (Incremental Learning (IL)): Max Pooling, Skip connection e Global Avg. Pooling

[2] **Inicialização:** Uma população de arquiteturas é gerada aleatoriamente

Avaliação da performance: durante as iterações evolutivas os indivíduos são avaliados por <u>Acurácia Incremental Média</u> (<u>AIA)</u>.

Geração de novos indivíduos: novas arquiteturas são geradas a partir de dois indivíduos, escolhidos aleatoriamente, chamados de filho. O filho é resultado da mutação dessas duas arquiteturas.

Nova população: É gerada a partir dos filhos com melhor aptidão.

Anexos | Resultados

Anexos | Resultados

Method	Matanada	#P (M)	C100-inc5		C100-inc10		I100-inc5		I100-inc10		Max Improvement	
	Network		LA	AIA	LA	AIA	LA	AIA	LA	AIA	LA	AIA
Replay	ResNet-32 ResAC-B	0.46 0.44(↓ 4%)	39.10 40.45	58.17 59.67	40.02 42.79	58.21 59.99	-	-	-	-	+2.77	+1.78
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	40.04 42.99	58.80 62.52	43.23 46.62	60.42 63.36	36.30 36.78	57.30 57.40	41.00 42.44	59.21 60.07	+3.39	+3.72
iCaRL	ResNet-32 ResAC-B	0.46 0.44↓ 4%	46.67 47.94	63.47 64.17	48.80 50.11	64.18 64.42	-	-	-	-	+1.31	+0.70
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	47.32 52.6	64.13 68.71	52.77 55.52	66.04 69.62	44.10 45.12	62.36 63.98	50.98 52.46	67.11 68.42	+5.28	+4.58
WA	ResNet-32 ResAC-B	0.46 0.44↓ 4%	46.95 51.31	62.93 66.39	53.35 54.89	66.61 67.73	-	-	-	-	+4.36	+3.46
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	45.11 53.23	62.06 69.19	56.59 59.79	68.89 71.40	46.06 49.94	62.96 67.20	55.04 58.86	68.60 71.56	+8.12	+7.13
Foster	ResNet-32 ResAC-B	0.46 0.44↓ 4%	47.78 53.50	62.36 67.34	54.36 58.17	67.14 69.44	-	-	-	-	+5.72	+4.98
	ResNet-18 ResAC-A	11.17 8.63↓ 23%	49.03 57.22	61.97 69.99	55.98 61.44	68.38 72.54	53.26 54.32	65.20 66.41	60.58 61.94	69.36 71.16	+8.19	+8.02

Table 5: The CL performance of ArchCraft in Class IL. '#P' represents the number of parameters of the network used.