In the Claims

Applicant has submitted a new complete claim set indicating marked up claims with insertions and deletions indicated by underlining and strikeouts, respectively.

Please cancel claims 1-4, 11, and 13 without prejudice or disclaimer.

1-4. (Canceled)

- 5. (Original) An isolated P-glycoprotein polypeptide or fragment thereof which comprises at least one amino acid of a cynomologous P-glycoprotein selected from the group consisting of amino acids 12, 24, 30, 74, 78, 86, 89, 90, 91, 92, 95, 97, 99, 102, 103, 104, 185, 324, 363, 518, 635, 650, 656, 659, 677, 730, 738, 742, 745, 761, 765, 835, 851, 921, 967, 1003, 1027, 1038, 1048, 1103, 1128, 1168 and 1277 of SEQ ID NO:2 and amino acids 93, 94 and 95 of SEQ ID NO:4, wherein the P-glycoprotein is identical to a human P-glycoprotein except for the at least one amino acid of a cynomologous P-glycoprotein.
- 6. (Original) The isolated P-glycoprotein polypeptide or fragment thereof of claim 5, wherein the human P-glycoprotein is selected from the group of SEQ ID NO:5 and SEQ ID NO:6.
- 7. (Original) An isolated P-glycoprotein polypeptide or fragment thereof which comprises at least one amino acid of a cynomologous P-glycoprotein selected from the group consisting of amino acids 3, 6, 8, 10, 13, 17, 19, 20, 21, 26, 30, 36, 38, 48, 52, 56, 64, 74, 78, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 110, 113, 145, 190, 197, 210, 231, 319, 324, 327, 345, 363, 395, 451, 455, 456, 468, 473, 494, 518, 530, 631, 641, 642, 648, 650, 655, 656, 664, 665, 672, 673, 674, 675, 683, 687, 689, 691, 692, 694, 701, 705, 715, 729, 730, 734, 742, 743, 745, 754, 757, 765, 835, 912, 918, 921, 940, 941, 944, 966, 967, 968, 970, 972, 981, 1008, 1015, 1023, 1024, 1048, 1093, 1096, 1103, 1128, 1142, 1146, 1147, 1156, 1160, 1163, 1166, 1250 and 1271 of SEQ ID NO:2 and amino acids 93 and 94 of SEQ ID NO:4, wherein the P-glycoprotein is identical to a dog P-glycoprotein except for the at least one amino acid of a cynomologous P-glycoprotein.

- 8. (Original) The isolated P-glycoprotein polypeptide or fragment thereof of claim 7, wherein the dog P-glycoprotein is selected from the group of SEQ ID NO:7 and SEQ ID NO:8.
- 9. (Currently amended) The isolated P-glycoprotein polypeptide or fragment thereof of claim 5 or 7, wherein the amino acid sequence of the polypeptide or fragment thereof is an amino acid sequence selected from the group consisting of SEQ ID NO:2, fragments of SEQ ID NO:2, SEQ ID NO:4 and fragments of SEQ ID NO:4.
- 10. (Currently amended) An isolated nucleic acid molecule which encodes the isolated P-glycoprotein polypeptide or fragment thereof of any of claims 5-9.
- 11. (Canceled)
- 12. (Original) An expression vector comprising the isolated nucleic acid molecule of claim 10 operably linked to a promoter.
- 13. (Canceled)
- 14. (Original) A host cell transformed or transfected with the expression vector of claim12.
- 15. (Original) An agent which selectively binds the isolated polypeptide of claim 5.
- 16. (Original) The method of claim 15, wherein the agent does not bind a human or dog P-glycoprotein.
- 17. (Original) The agent of claim 15, wherein the agent is a polypeptide.

- 18. (Original) The agent of claim 17, wherein the polypeptide is selected from the group consisting of monoclonal antibodies, polyclonal antibodies, Fab antibody fragments, $F(ab)_2$ antibody fragments and antibody fragments including a CDR3 region.
- 19. (Currently amended) An agent which selectively binds the isolated nucleic acid molecule of claim 1-or claim 10.
- 20. (Original) The agent of claim 19, wherein the agent is an antisense nucleic acid which selectively binds to the isolated nucleic acid molecule.
- 21. (Original) A method for predicting the bioavailability of a compound, comprising measuring the transmembrane transport of a test compound by a first P-glycoprotein, comparing the transmembrane transport of the test compound by the first P-glycoprotein and a second P-glycoprotein to predict the bioavailability of the test compound, wherein the relative amount or rate of transport by the first P-glycoprotein and the second P-glycoprotein is predictive of bioavailability of the test compound.
- 22. (Original) The method of claim 21, wherein the first P-glycoprotein is selected from the group consisting of dog P-glycoproteins and primate P-glycoproteins.
- 23. (Currently amended) The method of claim 21, wherein the first P-glycoprotein is the polypeptide of claims 5 or 7
- an isolated P-glycoprotein polypeptide or fragment thereof which comprises at least one amino acid of a cynomologous P-glycoprotein selected from the group consisting of amino acids 12, 24, 30, 74, 78, 86, 89, 90, 91, 92, 95, 97, 99, 102, 103, 104, 185, 324, 363, 518, 635, 650, 656, 659, 677, 730, 738, 742, 745, 761, 765, 835, 851, 921, 967, 1003, 1027, 1038, 1048, 1103, 1128, 1168 and 1277 of SEQ ID NO:2 and amino acids 93, 94 and 95 of SEQ ID NO:4, wherein the P-glycoprotein is identical to a human P-glycoprotein except for the at least one amino acid of a cynomologous P-glycoprotein, or

- (b) an isolated P-glycoprotein polypeptide or fragment thereof which comprises at least one amino acid of a cynomologous P-glycoprotein selected from the group consisting of amino acids 3, 6, 8, 10, 13, 17, 19, 20, 21, 26, 30, 36, 38, 48, 52, 56, 64, 74, 78, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 110, 113, 145, 190, 197, 210, 231, 319, 324, 327, 345, 363, 395, 451, 455, 456, 468, 473, 494, 518, 530, 631, 641, 642, 648, 650, 655, 656, 664, 665, 672, 673, 674, 675, 683, 687, 689, 691, 692, 694, 701, 705, 715, 729, 730, 734, 742, 743, 745, 754, 757, 765, 835, 912, 918, 921, 940, 941, 944, 966, 967, 968, 970, 972, 981, 1008, 1015, 1023, 1024, 1048, 1093, 1096, 1103, 1128, 1142, 1146, 1147, 1156, 1160, 1163, 1166, 1250 and 1271 of SEQ ID NO:2 and amino acids 93 and 94 of SEQ ID NO:4, wherein the P-glycoprotein is identical to a dog P-glycoprotein except for the at least one amino acid of a cynomologous P-glycoprotein.
- 24. (Original) The method of claim 21, wherein the second P-glycoprotein is a human P-glycoprotein.
- 25. (Original) A method for inhibiting P-glycoprotein transporter activity in a mammalian cell comprising

contacting the mammalian cell with an amount of the agent of claim 19 effective to inhibit P-glycoprotein transporter activity in the mammalian cell.

- 26. (Original) A method for increasing bioavailability of a drug in a subject comprising administering to a subject in need of such treatment the agent of claim 19 in an amount effective to increasing bioavailability of a drug.
- 27. (Original) The method of claim 26, wherein the inhibitor is administered prior to administering the drug.
- 28. (Original) The method of claim 26, wherein the inhibitor is administered concurrently with the drug.

(Currently amended) A method for increasing P-glycoprotein transporter activity in a 29. cell comprising

contacting the cell with a molecule selected from the group consisting of the nucleic acid molecule of claim 1 and the nucleic acid molecule of claim 10, in an amount effective to increase P-glycoprotein transporter activity in the cell.

(Currently amended) A method for identifying lead compounds for a pharmacological 30. agent useful in the treatment of disease associated with P-glycoprotein transporter activity comprising

providing a cell or other membrane-encapsulated space comprising a P-glycoprotein as claimed in claim 5 or claim 7;

contacting the cell or other membrane-encapsulated space with a candidate pharmacological agent under conditions which, in the absence of the candidate pharmacological agent, cause a first amount of P-glycoprotein transporter activity;

determining a second amount of P-glycoprotein transporter activity as a measure of the effect of the pharmacological agent on the P-glycoprotein transporter activity, wherein a second amount of P-glycoprotein transporter activity which is less than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which reduces P-glycoprotein transporter activity and wherein a second amount of P-glycoprotein transporter activity which is greater than the first amount indicates that the candidate pharmacological agent is a lead compound for a pharmacological agent which increases P-glycoprotein transporter activity.

- 31. (Original) The method of claim 30, further comprising the step of loading the cell or other membrane-encapsulated space with a detectable compound, wherein the compound is detected as a measure of the P-glycoprotein transporter activity.
- 32. (Currently amended) A method for identifying compounds which selectively bind a P-glycoprotein comprising,

contacting the P-glycoprotein claimed in claim 5 or claim 7 with a compound,

determining the binding of the compound to the P-glycoprotein.

- (Original) The method of claim 32 further comprising determining the effect of the 33. compound on the P-glycoprotein transporter activity of the P-glycoprotein.
- (Original) The method of claim 32 further comprising determining the effect of the 34. compound on the ATPase activity of the P-glycoprotein.
- (Currently amended) A method for determining ATPase activity of a P-glycoprotein 35. comprising

contacting the host cell of claim 12 or 14, or a membrane fraction thereof, with a test drug, and

measuring ATPase activity of the P-glycoprotein.

- (Original) The method of claim 35, wherein the step of measuring ATPase activity is 36. performed at least twice at different times.
- (Currently amended) A method for determining transmembrane transport of a 37. compound by a P-glycoprotein, comprising

contacting the host cell of claim 12 or 14, or a membrane fraction thereof, with a test drug, and

measuring transport of the test drug under sink conditions in at least one direction of transport selected from the group consisting of the apical to basolateral direction and the basolateral to apical direction.

(Original) The method of claim 37, wherein the step of measuring transport of the test 38. drug is performed at least twice at different times.