Sprawozdanie Drzewo

Mateusz Król 226400

June 16, 2017

1 Wstęp oraz krótki opis programu

Celem obecnych zajęć było zapoznanie się nową struktura danych; drzewem binarnym. Do badań wykorzystano drzewo czerwono-czarne, ponieważ opercje dodawania, czy uwuwania elementów powinny być mniej czasochłonne niż w przypadku drzew AVL. Oczekiwana złożoność obliczeniowa drzewa czerwono-czarnego powinna wynosić O(logn).

W Programie drzewa wypełniano losowymi wartościami jako ostatni element dodawono liczbę równą wielkości drzewa. później mierzono czas potrzebny na zapis elementów oraz czas potrzebny na znalezienie ostatnio dodanego elementu.

W związku z tym, że przeszukiwanie nawet bardzo rozbudowanych drzew zajmowało niewiele czasu zdecydowano się na dokonanie aż 100 pomiarów przy zadnym rozmiarze drzewa.

2 Uśrednione czasy dla 100 pomiarów

ile	osc elementow	zapis [ms]	odczyt[ms]
10)	0.0012	0.29
10	00	0.0014	0.74
10	000	0.0016	0.83
10	0000	0.0017	0.91
10	00000	0.0019	1,101
10	000000	0.0026	1.123
10	0000000	0.0032	2.12
10	00000000	0.0042	2.90

Table 1: Zestawienie czasów zapisu i odczytu drzea czerwono-czarnego

3 Wnioski

Jak możemy zauważyć z tabeli powyżej i z wykresów poniżej (skala log-log) zarówno zapis do drzewa jak i odczyt z drzewa czerwono czarnego okazały sie reprezentować tę samą złożonośc obliczeniową: O(logn), co pokrywa się z danami zawartymi w literaturze.

Ciężko wykonuje sie pomiary dla takich struktur, ponieważ mierzone czasy są bardzo krótkie i najmniejsze zaburzenia mogą zaburzyć pomiariary, dletego zdecydowano się na 100 powtórzeń.

Figure 1: Zzsesatienie czasów przeszukiwanie struktur danych