# Estimating mutual information using sparse regression

Charles Zheng

Stanford University

December 12, 2016

(Joint work with Yuval Benjamini.)

## Mutual information (Shannon 1948)



- $I(X; Y) \in [0, \infty]$ . (0 if  $X \perp Y$ ,  $\infty$  if X = Y and X continuous.)
- Symmetry: I(X; Y) = I(Y; X).
- Data-processing inequality

$$I(X; Y) \ge I(\phi(X); \psi(Y))$$

equality for  $\phi$ ,  $\psi$  bijections

# Applications of I(X; Y)

- Feature selection (Peng et al. 2005, Fleuret 2004, Bennesar et al. 2015)
- Structure learning for graphical models using conditional mutual information I(X; Y|Z) (Vastano and Swinney 1988, Cheng et al. 1997, Bach and Jordan 2002)
- Quantifying information capacity of neurons



Image credits: Quiroga et al. (2009).

# How to estimate I(X; Y)

Suppose we observe pairs  $(X_i, Y_i)_{i=1}^n$  iid from density p(x, y)

• Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

- Simply using plugging in kernel density estimate  $\hat{p}(x, y)$  leads to large bias (Beirlant et al. 2001)
- Jackknifed estimate gives better result (Ivanov and Rozhkova 1981)

$$\hat{I}(X;Y) = \frac{1}{n} \sum_{i=1}^{n} \log \left( \frac{\hat{p}_{-i}(x_i, y_i)}{\hat{p}_{-i}(x_i)\hat{p}_{-i}(y_i)} \right)$$

## Problems in high dimensions

- Density estimation is known to have exponential complexity with respect to dimensionality.
- Many applications with high-dimensional X, Y.
  - Gene expression time series
  - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.
- Other approaches: binning (Bialek et al. 1991, Paninski 2003), confusion matrix of a classifier (Treves 1997, Quiroga et al. 2009).

### Idea: Use sparsity!



- Suppose that  $Y \approx f(X) + \epsilon$ , where f depends sparsely on X.
- Can we exploit the sparsity to obtain an estimate of I(X; Y)?

## Our proposal

Suppose we observe pairs  $(X_i, Y_i)_{i=1}^n$  iid from density p(x, y).

- **1** Estimate a (sparse) regression model for  $\mathbf{E}[y|x]$ .
- 2 Estimate the noise model for Y.
- Stimate the identification risk p using cross-validation.
- Use the identification risk to obtain a lower bound for the mutual information I(X; Y):

$$I(X; Y) \geq f(p)$$

where f is a function that we derive theoretically.

## Multiple-response regression

- Pairs  $(x_i, y_i)_{i=1}^n$ , where X is p-dimensional and Y is q-dimensional.
- Data matrices  $\boldsymbol{X}_{n \times p}$ ,  $\boldsymbol{Y}_{n \times q}$ .
- For each column of Y, fit sparse model  $Y^{(i)} \approx X^T \beta^{(i)} + \epsilon$ , e.g. by using elastic net (Zou 1998),

$$\hat{\beta}^{(i)} = \mathsf{argmin}_{\beta} || \boldsymbol{X}^T \beta^{(i)} - Y^{(i)} ||^2 + \lambda_2 || \beta^{(i)} ||_2^2 + \lambda_1 || \beta^{(i)} ||_1$$

• Or, fit a random forest model for each column of Y (Breiman 2001)

## Regression vs Identification loss

- Independent test set  $(x_i^*, y_i^*)_{i=1}^k$ .
- Use model to predict  $\hat{y}_i^* = (x_i^*)^T \hat{B}$  for i = 1, ..., k.

Two ways to evaluate the predictive accuracy of the regression model:

• Regression (mean squared-error) loss:

$$MSE = \frac{1}{k} \sum_{i=1}^{k} ||y_i^* - \hat{y}_i^*||^2.$$

• Identification loss:

$$IdLoss_k = \frac{1}{k} \sum_{i=1}^{k} (1 - I\{\hat{y}_i^* \text{ is nearest neighbor of } y_i^*\}).$$

### Cross-validated loss

Leave-k-out cross-validation (LkoCV) can be used for both squared-error loss and identification loss.

- Start with a dataset  $(x_i, y_i)_{i=1}^N$ .
- Let n = N k. Consider all  $\binom{N}{k}$  partitions of the dataset into a test set (X, Y) and training set  $(X^*, Y^*)$ .
- For each partition, compute the loss.
- Define the LkoCV loss as the average loss over  $\binom{N}{k}$  partitions.

Computational note. One can subsample to avoid computing all  $\binom{N}{k}$  partitions. In particular, if m=N/k, then one can use m-fold cross-validation which uses m partitions that have disjoint test sets.

#### Identification loss and mutual information

Define the identification risk as the expected identification loss

$$\mathsf{IdRisk}_k = \mathbf{E}[\mathsf{IdLoss}_k]$$

 Define the Bayes risk as the identification risk given the true model parameters. Hence,

$$\mathsf{BayesRisk}_k \leq \mathsf{IdRisk}_k$$
.

• **Theorem.** (Z., Benjamini 2016) There exists a function  $g_k$  such that

$$I(X; Y) \geq g_k(IdRisk_k).$$

Resulting estimator:

$$\hat{I}_{IdLoss}(X;Y) = g_k(IdLoss_k)$$
).

### **Functions**

Illustration of  $C_k = g_k^{-1}$ 



As information increases, the maximal identification risk goes to 0. [note: pictures need to be rotated]

### Section 2

# **Applications**

### Simulation



- Generate data:  $(Y_1, Y_2) = f(X_1, X_2, \epsilon)$  where f is nonlinear.
- n = 1000.
- Compare Nearest-Neighbor estimator (Mnatsakov et al, 2008, implemented in FNN) with our method using Random Forest.
- Add extra noise dimensions  $X_3, X_4, \ldots$

### Simulation Results

True 
$$I(X; Y) = 4.615$$
.

| Extra dim | NN    | RF $k = 10$ | RF $k = 20$ |
|-----------|-------|-------------|-------------|
| 0         | 4.445 | 3.989       | 3.924       |
| 1         | 3.040 | 3.645       | 3.610       |
| 2         | 1.773 | 3.249       | 3.182       |

### Application to gene expression time series

to be contd

### Section 3

# Theory

### Functional formulation

Bayes identification risk BayesRisk<sub>k</sub>[p(x, y)] and mutual information I[p(x, y)] are both functionals of p(x, y).

$$\mathsf{BayesAcc}_k[p(x,y)] = 1 - \frac{1}{k} \int p_X(x_1) \dots p_X(x_k) \max_{i=1}^k p(y|x_i) dx_1 \dots dx_k dy.$$

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

where  $BayesAcc_k = 1 - BayesRisk_k$ .

### Problem formulation

Take  $\iota > 0$ , and fix  $k \in \{2, 3, ...\}$ . Let p(x, y) be a joint density (where (X, Y) could be random vectors of any dimensionality.) Supposing

$$I[p(x,y)] \le \iota,$$

then can we find an upper bound on BayesAcc<sub>k</sub>[p(x, y)]?

### Proof outline

- Reduce problem to optimization over univariate densities.
- Oefine the Lagrangian functional

$$\mathcal{L}[q(x)] = -\mathsf{BayesAcc}_k[q(x)] + \lambda \int_0^1 q(x) dx + \nu \mathsf{I}[q(x)]$$

which maps the univariate density q(x) to a real number.

Ompute the functional derivative of the Lagrangian

$$\nabla \mathcal{L}[q](x) = -t^{k-1} + \lambda + \nu(1 + \log q(x))$$

• Set  $\nabla \mathcal{L}[q](x) = 0$ , yielding

$$q^*(t) = \alpha e^{\beta t^{k-1}}.$$

Oheck that local minimizer is global minimizer.



### Result

**Theorem**. For any  $\iota > 0$ , there exists  $\beta_{\iota} \geq 0$  such that defining

$$q_{eta}(t) = rac{\exp[eta t^{k-1}]}{\int_0^1 \exp[eta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then,

$$\sup_{I(X;Y)=\iota} \mathsf{BayesAcc}_k = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt.$$

### Section 4

### The End

#### Reduced Problem

Rather than show the whole proof, we consider a simplified problem to illustrate the methods.



Actually, the simplified problem is equivalent to the full problem and we get the same answer (but this is non-trivial).

#### Reduced Problem



- p(x, y) on unit square with uniform marginals.
- The conditional distributions p(x|y) are just "shifted" copies of a common density, q(x), on [0,1]

$$p(x|y) = q(x - y + I\{x < y\})$$

• Furthermore, q(x) is increasing in x.

## Simplified formulae

The information and average Bayes error can be written in terms of q(x).

$$I[p(x,y)] = \int_0^1 q(x) \log q(x) dx$$

$$\mathsf{BayesAcc}_k[p(x,y)] = \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

## Simplified formulae

Overload the notation and "redefine" information and average Bayes error as functionals of q(x).

$$I[q(x)] \stackrel{\text{def}}{=} \int_0^1 q(x) \log q(x) dx$$

$$\mathsf{BayesAcc}_k[q(x)] \stackrel{\text{def}}{=} \frac{1}{k} \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

## Optimization problem

We now pose the question: how do we find q(x) which maximizes BayesAcc $_k[q(x)]$  subject to  $I[q(x)] \le \iota$ ?

- Domain of the optimization: Recall that q(x) satisfies  $q(x) \ge 0$ ,  $\int_0^1 q(x) dx = 1$ , and is increasing in x. Let  $\mathcal Q$  denote the space of functions on  $[0,1] \to [0,\infty)$  which are increasing in x.
- Constraints: We have two remaining constraints,  $I[q(x)] \le \iota$  and  $\int_0^1 q(x) dx = 1$ .

Hence the problem is

 $\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{BayesAcc}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$ 

## Optimization problem

$$\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{BayesAcc}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$$

- Does a solution exist? Yes, because the space of measures with density q(x) satisfying  $I[q(x)] \le \iota$  is tight, and both the constraints and objective are continuous wrt to the topology of weak convergence.
- Given a solution  $q^*(x)$  exists, there exist Lagrange multipliers  $\lambda \in \mathbb{R}$  and  $\nu > 0$  such that  $q^*$  minimizes

$$egin{aligned} \mathcal{L}[q(x)] &= -\mathsf{BayesAcc}_k[q(x)] + \lambda \int_0^1 q(x) dx + 
u \mathsf{I}[q(x)] \ &= \int_0^1 (-t^{k-1} + \lambda + 
u \log q(x)) q(x) dx. \end{aligned}$$

### Functional derivatives

- Taylor explansions are a useful trick for computing functional derivatives
- ullet We can compute the functional derivative of  $\mathcal{L}[q(x)]$  by writing

$$\begin{split} \mathcal{L}[q(x) + \epsilon \xi(x)] \\ &= \int_0^1 (-t^{k-1} + \lambda + \nu \log(q(x) + \epsilon \xi(x)))(q(x) + \epsilon \xi(x)) dx. \\ &\approx \int (q(x) + \epsilon \xi(x))(-t^{k-1} + \lambda + \nu \{\log q(x) + \frac{\epsilon \xi(x)}{q(x)}\}) dx \\ &\approx \mathcal{L}[q(x)] + \int_0^1 (-t^{k-1} + \lambda + \nu (1 + \log q(x)) \epsilon \xi(x) dx. \end{split}$$

Hence

$$\nabla \mathcal{L}[q](x) = -t^{k-1} + \lambda + \nu(1 + \log q(x))$$

## Variational magic!

Suppose we set the functional derivative to 0,

$$0 = \nabla \mathcal{L}[q](t) = -t^{k-1} + \lambda + \nu + \nu \log q(t).$$

Then we conclude that the optimal  $q^*(t)$  takes the form

$$q^*(t) = \alpha e^{\beta t^{k-1}}$$

for some  $\alpha > 0$ ,  $\beta > 0$ .

From the constraint  $\int q(t)dt = 1$ , we get

$$q_{eta}(t) = rac{e^{eta t^{k-1}}}{\int e^{eta t^{k-1}} dt}.$$

### Result

**Theorem**. For any  $\iota > 0$ , there exists  $\beta_{\iota} \geq 0$  such that defining

$$q_{\beta}(t) = \frac{\exp[\beta t^{k-1}]}{\int_0^1 \exp[\beta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then,

$$\sup_{I(X;Y)=\iota} \mathsf{BayesAcc}_k = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt.$$