

A Large-Scale Neutral Comparison Study of Survival Models

Burk, L.^{1,2,3,4} Zobolas, J.⁵ Bischl, B.^{2,4} Bender, A.^{2,4} Wright, M. N.^{1,3} Lang, M.⁶ Sonabend, R.^{7,8}

¹Leibniz Institute for Prevention Research and Epidemiology – BIPS

²LMU Munich ³University of Bremen

⁴Munich Center for Machine Learning (MCML)

⁵University of Oslo ⁶ TU Dortmund

⁷OSPO Now ⁸Imperial College, London

Biometric Colloquium — March 1st, 2024

1

• There are many survival learners ("models") to choose from

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

- There are many survival learners ("models") to choose from
- Advantages and Disadvantages often unclear, specific to setting
- Various comparisons exist in literature
- Limited scope (learners, tasks, evaluation measures)
- Focus on individual / new method \Rightarrow no neutral comparison
- No (or limited) quantitative comparison

⇒ Needs comprehensive comparison!

Quick Summary

- **32** tasks
- 18 learners
- 2 tuning measures
- 9 evaluation measures

Quick Summary

- **32** tasks
- 18 learners
- 2 tuning measures
- 9 evaluation measures
- Large-scale ⇒ Generalizability
- Neutral \Rightarrow Fair comparison

Quick Summary

2

- 32 tasks
- 18 learners
- 2 tuning measures
- 9 evaluation measures
- Large-scale ⇒ Generalizability
- Neutral \Rightarrow Fair comparison

 \Rightarrow The largest survival benchmark to date as far as we know

Scope

3

The "Standard Setting":

- \bullet Single-event outcome: $\delta_i \in \{0,1\}$
- Low-dimensional: $2 \le p < n$
- No time-varying covariates
- Right-censoring only
- At least 100 observed events

Tasks

4

32 tasks collected from R packages on CRAN

	Minimum	q25%	Median	q75%	Maximum
N	137	446	820	2378	52410
р	2	4	5	7	25
Observed Events	101	194	323	699	5616
Cens. %	6	32	48	74	95

)

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen

¹Lang et al. (2019)

5

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen

• Classical: Cox, penalized, parametric

¹Lang et al. (2019)

5

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen

• Classical: Cox, penalized, parametric

• Trees: Individual and ensembles thereof

¹Lang et al. (2019)

)

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen

• Classical: Cox, penalized, parametric

• Trees: Individual and ensembles thereof

• Boosting: Gradient- and likelihood-based

¹Lang et al. (2019)

)

18 learners implemented in R and available via the mlr3 ¹ framework

• Baseline: Kaplan-Meier & Nelson-Aalen

• Classical: Cox, penalized, parametric

• Trees: Individual and ensembles thereof

• Boosting: Gradient- and likelihood-based

• Other: Akritas, SVM

¹Lang et al. (2019)

List of Learners (Baseline, Classical)

Abbreviation Name Package Kaplan-Meier ΚM survival Nelson-Aalen survival NΑ Cox Regression survival CPH Penalized Cox Regression (L1, L2) GI M glmnet Penalized Cox Regression (L1, L2) penalized Pen Parametric (AFT) survival Par Flexible Parametric Splines flexsurv Flex Akritas survivalmodels ΑK Survival SVM survivalsvm SSVM

List of Learners (Trees, Boosting)

Abbreviation Package Name **Decison Tree RRT** rpart Random Survival Forest RESRC randomForestSRC Random Survival Forest RAN ranger Conditional Inference Forest partvkit CIF Oblique RSF **ORSE** aorsf Model-Based Boosting MBO mboost Likelihood-Based Boosting CoxB CoxBoost Gradient Boosting (Cox objective) **XGBCox** xgboost Gradient Boosting (AFT objective) **XGBAFT** xgboost

8

• Tuning spaces discussed with learner authors

- Tuning spaces discussed with learner authors
- Resampling: Nested cross-validation (5-fold outer, 3-fold inner)

- Tuning spaces discussed with learner authors
- Resampling: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random Search

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random Search
- Budget: Tuning stopped if either is reached

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random Search
- Budget: Tuning stopped if either is reached
 - 1. Number of evaluations: $n_{\rm evals} = n_{\rm parameters} \times 50$

- Tuning spaces discussed with learner authors
- **Resampling**: Nested cross-validation (5-fold outer, 3-fold inner)
- Strategy: Random Search
- Budget: Tuning stopped if either is reached
 - 1. Number of evaluations: $n_{\rm evals} = n_{\rm parameters} \times 50$
 - 2. Tuning time of 150 hours $(6\frac{1}{4})$ days)

• Main Results:

- Main Results:
 - Friedman rank sum tests

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures
 - Harrell's C (Discrimination)

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures
 - Harrell's C (Discrimination)
 - Right-Censored Log Loss (Scoring Rule)

- Main Results:
 - Friedman rank sum tests
 - Critical difference plots² based on Bonferroni-Dunn tests
- 3 types of metrics: Discrimination, Calibration, Scoring Rules
- Tuned on 2 different measures
 - Harrell's C (Discrimination)
 - Right-Censored Log Loss (Scoring Rule)
- Evaluation spans all 3 types

Boxplot (Harrel's C, higher is better)

Boxplot (IBS, lower is better)

Boxplot (IBS, truncated)

Tuned on Right-Censored Log Loss

Critical Difference: Bonferroni-Dunn (Harrell's C)

Critical Difference: Bonferroni-Dunn (IBS/RCLL)

15

• Experimental design is not perfect, but it was possible to conduct

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC ³

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC ³
 - Sequential runtime: pprox 18 years

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC³
 - Sequential runtime: \approx 18 years
 - Effective runtime: 32 days (\approx 200x decrease)

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC³
 - Sequential runtime: \approx 18 years
 - Effective runtime: 32 days (\approx 200x decrease)
- Results still need processing, checking, ...

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC³
 - Sequential runtime: \approx 18 years
 - Effective runtime: 32 days (\approx 200x decrease)
- Results still need processing, checking, ...
- **Preliminary conclusion**: Cox regression hard to beat since 1972!

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

- Experimental design is not perfect, but it was possible to conduct
- Only computationally feasible due to resources of ARCC³
 - Sequential runtime: \approx 18 years
 - Effective runtime: 32 days (\approx 200x decrease)
- Results still need processing, checking, ...
- **Preliminary conclusion**: Cox regression hard to beat since 1972!
- ullet The "standard setting" pprox the "do you need ML?"-setting

³Advanced Research Computing Center, Beartooth Computing Environment, University of Wyoming.

Thank you for your attention!

www.leibniz-bips.de/en

Contact Lukas Burk Leibniz Institute for Prevention Research and Epidemiology – BIPS Achterstraße 30 D-28359 Bremen burk@leibniz-bips.de

References I

- Demšar, Janez (2006). "Statistical comparisons of classifiers over multiple data sets". In: Journal of Machine learning research 7.1, pp. 1–30.
- Lang, Michel et al. (2019). "mlr3: A modern object-oriented machine learning framework in R". In: Journal of Open Source Software 4.44, p. 1903. DOI: 10.21105/joss.01903.