

Mid-Term Exam

(reference answers) Prof. Manisha Kulkarni, Prof. G.Srinivasaraghavan

On: March 10, 2023 | Time: 2 Hrs | Max Marks: 30

1 Theory

Q-1: Let p be an odd prime number. Prove using Fermat's Little Theorem that every prime divisor of $2^p - 1$ is greater than p.

Max Marks: 5

Answer: Let $q \leq p$ be an odd prime (trivially 2 cannot be a factor of $2^p - 1$). By FLT we have $2^{q-1} = 1 \mod q$. Note that 2 is co-prime to q. Therefore the multiplicative order k of 2 in Z_q is such that $1 < k \leq (q-1)$. Moreover we know that when $a^i = 1 \mod n$ for some a with multiplicative order l and co-prime to n then l|i. Now if $q|(2^p - 1)$ then $2^p \equiv 1 \mod q$. This implies that k|p which contradicts the fact that p is a prime. What happens to this argument when q > p?

Q-2: Let p be a prime such that p > 10. Find an integer $1 \le N \le 1000$ that satisfies the equation $5^{4p} \equiv N \mod (12p)$.

Max Marks: 5

Answer: Clearly gcd(5, 12p) = 1 for any p > 10 — only prime factors of 12p are 2, 3, p. From Euler's Theorem we have that $5^{\phi(12p)} \equiv 1 \pmod{12p}$. Also $\phi(12p) = 12p(1 - 1/p)(1 - 1/2)(1 - 1/3) = 4p - 4$. Therefore

$$5^{4p-4} \equiv 1 \pmod{12p} \Rightarrow 5^{4p} \equiv 5^4 \pmod{12p} \equiv 625 \pmod{12p}$$

Q-3: It follows from the Chinese Remainder Theorem that there is an isomorphism

$$\phi: \frac{Z}{20Z} \to \frac{Z}{4Z} \times \frac{Z}{5Z}$$

In this case what is $\phi^{-1}(1,3)$?

Max Marks: 5

Answer: ϕ is the Chinese Remainder map and $\phi^{-1}(1,3)$ is the solution to the family of modular equations below:

$$a = 1 \mod 4$$

$$a = 3 \mod 5$$

Note that 4*5=20. Let $n=20, n_1=4, n_2=5, a_1=1, a_2=3$. Then $\left(\frac{n}{n_1}\right)=n_1^*=5$ and therefore $n_1^**1=1 \mod n_1$. So $1=(n_1^*)^{-1} \mod n_1$. Similarly $n_2^*=4$ and $4=(n_2^*)^{-1} \mod n_2$. Therefore by the Chinese Remainder Theorem the solution to the modular equations is

$$\phi^{-1}(1,3) = ((n_1^*)^{-1} \mod n_1) * n_1^* * a_1 + ((n_2^*)^{-1} \mod n_2) * n_2^* * a_2$$

$$= 1 * 5 * 1 + 4 * 4 * 3$$

$$= 53 = 13 \mod 40$$

Q-4: Let p and q be distinct odd primes. Show that $p^{q-1} + q^{p-1} \equiv 1 \mod pq$.

Max Marks: 5

Answer: From Fermat's little theorem

$$p^{q-1} \equiv 1 \mod q \Rightarrow p^q \equiv p \mod pq$$

 $q^{p-1} \equiv 1 \mod p \Rightarrow q^p \equiv q \mod pq$

Adding the above two equations we get

$$p^{q} + q^{p} \equiv (p+q) \mod pq$$

$$(p^{q-1} + q^{p-1})(p+q) - pq(p^{q-2} + q^{p-2}) \equiv (p+q) \mod pq$$

$$(p^{q-1} + q^{p-1})(p+q) \equiv (p+q) \mod pq$$

$$p^{q-1} + q^{p-1} \equiv 1 \mod pq$$

In the last step we have used the fact that gcd(p+q,pq)=1 when p,q are primes.

2 Algorithms

1: Initialize

7: return m

Q-1: Consider the following algorithm $(len_2(n))$ denotes the size of the binary representation of n, though the actual representation for implementation may not necessarily be binary):

```
k \leftarrow \left\lfloor \frac{\text{len}_2(n)-1}{2} \right\rfloor, \quad m \leftarrow 2^k 2: for i=(k-1) downto 0 do
3: if (m+2^i)^2 \leq n then
4: m \leftarrow m+2^i
5: end if
6: end for
```

(a) Show (using appropriate assertions) that this algorithm correctly computes $\lfloor \sqrt{n} \rfloor$.

Max Marks: 4

(b) Show how this algorithm can be implemented in time $O(len(n)^2)$.

Max Marks: 3

Answer:

1. We show the correctness of the algorithm by employing appropriate invariant assertions. We will in fact prove something more general — that almost the same algorithm works for computing $\lfloor n^{1/e} \rfloor$ for any $e \geq 2$. Setting e = 2 in the version of the algorithm below will prove the correctness of the original algorithm.

```
1: Initialize k \leftarrow \left\lfloor \frac{\text{len}_2(n) - 1}{e} \right\rfloor, \quad m \leftarrow 2^k \rightarrow \text{Assertion 1: } m = 2^k \leq n^{1/e} < 2^{k+1} \Rightarrow \left\lfloor n^{1/e} \right\rfloor \text{ is a } (k+1) \text{-bit number with no leading 0's} i.e., n^{1/e} = 2^k + \delta for some \delta < 2^k 2: for i = (k-1) downto 0 do 3: if (m+2^i)^e \leq n then 4: m \leftarrow m+2^i 5: end if \rightarrow \text{Assertion 2: } m \leq n^{1/e} < (m+2^i) 6: end for 7: return m
```


Proof of Assertion 1:

$$\left\lfloor \frac{\mathrm{len}_2(n) - 1}{e} \right\rfloor \leq \frac{\mathrm{len}_2(n) - 1}{e} \qquad \qquad < \left\lfloor \frac{\mathrm{len}_2(n) - 1}{e} \right\rfloor + 1 \quad \text{(from the definition of } \lfloor . \rfloor)$$

$$k \leq \frac{\mathrm{len}_2(n) - 1}{e} \qquad \qquad < k + 1$$

$$ek \leq (\mathrm{len}_2(n) - 1) \qquad \qquad < e(k + 1)$$

$$2^{ek} \leq 2^{\mathrm{len}_2(n) - 1}; \quad \mathrm{len}_2(n) \qquad \leq e(k + 1)$$

$$m^e = (2^k)^e \leq 2^{\mathrm{len}_2(n) - 1}; \quad 2^{\mathrm{len}_2(n)} \qquad \leq (2^{k+1})^e$$

$$m^e = (2^k)^e \leq 2^{\mathrm{len}_2(n) - 1} \leq n < 2^{\mathrm{len}_2(n)} \qquad \leq (2^{k+1})^e$$

$$m < n^{1/e} \qquad \qquad < 2^{k+1}$$

Note that when i=0 (last iteration) Assertion 2 guarantees that $m \leq n^{1/e} < (m+1)$ which implies from the definition of |. | that $m = |n^{1/e}|$.

Proof of Assertion 2: Let the binary representation of $\lfloor n^{1/e} \rfloor$ be $(1, b_{k-1}, b_{k-2}, ..., b_0)$. So $\lfloor n^{1/e} \rfloor = 2^k + \sum_{i=0}^{k-1} b_i 2^i$. The algorithm starts with $m = 2^k$ as in Assertion 1 and adds 2^i to m if $b_i == 1$, starting from b_{k-1} till b_0 . It is convenient to subscript m with the iteration index i for the proof — let's denote the value of m at Assertion 2 in iteration i as m_i . So the assertion we need to prove is $m_i \leq n^{1/e} < (m_i + 2^i)$. The induction hypothesis implies $m_{i+1} \leq n^{1/e} < (m_{i+1} + 2^{i+1})$. Note that Assertion 1 is in fact the base case with i = k. There are two cases (step 3):

 $(m_{i+1}+2^i)^e \leq n$: In this case $m_i = m_{i+1}+2^i$ (step 4). Therefore trivially $m_i \leq n^{1/e}$ (the case condition). Also $m_i + 2^i = m_{i+1} + 2^i + 2^i = m_{i+1} + 2^{i+1} > n^{1/e}$ (induction). $(m_{i+1} + 2^i)^e > n$: Here $m_i = m_{i+1}$. Therefore $n^{1/e} < m_{i+1} + 2^i = m_i + 2^i$ (the case condition) and $m_i = m_{i+1} \le n^{1/e}$ (induction).

2. The following is the implementation version of the algorithm — this is only for e=2. Here the variables are subscripted with the iteration - for example m_i refers to the value of m at the end of iteration i. Steps 4,6 clearly take constant time. The only step with

```
1: Initialize
```

$$k \leftarrow \left| \frac{\mathtt{len}_2(n) - 1}{2} \right|, \quad m_k \leftarrow 2^k$$

```
2: for i = (k-1) downto 0 do
       if (m_i + 2^{(j-1)})^2 \le n then
3:
                                                         \triangleright Taking i+1 as j; (i+1) is the previous iteration
          m_{(i-1)} \leftarrow m_i + 2^{(j-1)}
4:
5:
       else
6:
           m_{(j-1)} = m_j
       end if
7:
8: end for
9: return m
```

non-trivial complexity in every iteration is step 3, to compute $(m_j + 2^{j-1})^2$. From previous iteration we would have $m_j = m_{(j+1)} + 2^j$ and we would have already computed $m_j^2 =$ $(m_{(j+1)} + 2^j)^2$. The idea is to remember the value of m_j^2 from the earlier iteration and exploit the fact that $(m_j + 2^{(j-1)})^2 = m_j^2 + 2^j m + 2^{2(j-1)}$ where for m_j^2 on the RHS we

simply recall the value of m_j^2 stored from the previous iteration. The second term on the RHS can be implemented in time $O(\operatorname{len}(n))$ using bit-shifts (it is a multiplication by a power of 2). All additions are $O(\operatorname{len}(n))$. The number of iterations that the loop in steps 2–8 will execute is also $O(\operatorname{len}(n))$. The total running time is therefore $O((\operatorname{len}(n))^2)$.

Q-2: Show that if $m = m_1.m_2...m_k$, a product of k integers $m_i, k \geq 2$, then m can be computed using $O\left((\log m)^2\right)$ bit operations, independently of k.

Max Marks: 3

Answer: We prove this by induction on k. It is of course trivially true for k = 1. Suppose k = 2. Time to compute $m = m_1 m_2$ is $O((\log m_1)(\log m_2)) = O((\log m)^2)$. For any other k > 2, as the induction hypothesis, assume that the assertion holds for $1, \ldots, (k-1)$. For $k = m_1 m_2 \ldots m_k = M_{1l} M_{l+1,k}$ where M_{ij} for $i \leq j$ represents the product $m_i m_{i+1} \ldots m_j$. From the induction hypothesis, time to compute M_{1l} recursively is $O((\log M_{il})^2)$ and for $M_{l+1,k}$ it is $O((\log M_{l+1,k})^2)$. Time to compute m is therefore

$$O\left((\log M_{il})(\log M_{l+1,k}) + (\log M_{il})^2 + (\log M_{l+1,k})^2\right) = O\left((\log M_{il} + \log M_{l+1,k})^2\right)$$

$$= O\left((\log (M_{il}.M_{l+1,k}))^2\right)$$

$$= O\left((\log m)^2\right)$$

5