Topics in Macroeconomics

Endogenous grid-point method (EGM)

Richard Foltyn

University of Glasgow

Motivation

Solving HH problems is often slow – Why?

- Consider standard infinite-horizon consumption-savings problem with states (a, y):
 - a Beginning-of-period assets
 - y Risky labour income following first-order Markov chain
- At each point (a_i, y_j) we maximise the objective

$$f(a') = u(x_{ij} - a') + \beta E \left[V(a', y') \middle| y_j\right]$$

where x_{ij} is the cash at hand.

- Any numerical maximiser will call $f(\bullet)$ repeatedly to
 - Determine the objective's value at some candidate point
 - Determine the derivative at some candidate point
 - 3 Numerically differentiate the objective function
- This quickly adds up to numerous calls, which can be computationally expensive, depending on how difficult it is to compute expectations, etc.

Endogenous grid-point method

- The insight behind EGM (due to Carroll, 2006): Compute expectation only once!
- How can we do that if we don't know the optimal solution?
 - **E**xogenously impose the optimal solution (in the above case: a')
 - Determine implied beginning-of-period assets *a*
 - This gives rise to endogenous grid of beginning-of-period asset levels!

Endogenous grid-point method

Advantages

- Considerably faster than any other known method in this class of models
- No need for a maximiser or root-finder
- Works very well with *linear* interpolation, no need for splines, etc.

Disadvantages

- Does not always work
- Does not scale well to multiple continuous state or control variables (see Druedahl and Jørgensen (2017) for one attempted solution)
- Tricky (but possible) to combine with discrete choices, e.g. due to extensive-margin labour supply, fixed costs (see Iskhakov et al. (2017), Fella (2014))

Example: HH problem with risky labour

Consider infinite-horizon consumption-savings problem

$$\begin{split} V(a,y) = \max_{c,a'} \left\{ u(c) + \beta \mathbf{E} \left[\left. V(a',y') \right| y \right. \right] \right\} \\ \text{s.t.} \quad c + a' = (1+r)a + y \\ c \geq 0, \ a' \geq 0 \end{split}$$

where

- y Labour income process on state space \mathcal{G}_y with transition probability $\Pr\left(y'=y_j\mid y=y_i\right)=\pi_{ij}$
- Preferences are CRRA:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$

Illustration of "standard" approach

Figure 1: Mapping from exogenous assets to consumption and savings.

Illustration of EGM approach

Figure 2: Mapping from exogenous savings to consumption and assets.

Deriving the Euler equation

• Combining the FOCs for c and a' yields the Euler equation

$$u'(c) = \beta \mathbf{E} \left[\left. \frac{\partial V(a', y')}{\partial a'} \right| y \right]$$
 (1)

■ For this problem, the envelope condition (see (5)) is

$$\frac{\partial V(a,y)}{\partial a} = (1+r)u'(C(a,y)) \tag{2}$$

where C(a, y) is the consumption policy function.

■ Combine (1) and (2) to get the more "familiar" variant of the Euler equation:

$$u'(c) = \beta(1+r)\mathbf{E}\left[u'(C(a',y'))\middle|y\right]$$

Using the Euler equation

- Assume we know or have guessed C(a', y')
- We can exogenously fix a' and use $u'(c) = c^{-\gamma}$ to get an equation in a single unknown, c:

$$c = \left(\beta(1+r)\mathbb{E}\left[C(a',y')^{-\gamma} \mid y\right]\right)^{-\frac{1}{\gamma}} \tag{3}$$

■ From the BC, we can recover the implied beginning-of-period asset level *a*:

$$a = \frac{1}{1+r} \left[c + a' - y \right] \tag{4}$$

Solution to household problem

- To summarise, we found
 - $c = C^*(a', y)$ Optimal consumption as a function of a' $a = A^*(a', y)$ Beginning-of-period assets as a function of a'
- Each a'_i gives us a tuple (a_i, c_i) :
 - Use $(a_i, c_i)_{i=1}^{N_{a'}}$ to interpolate consumption policy onto exogenous beginning-of-period asset grid, c = C(a, y)
 - Use $(a_i, a_i')_{i=1}^{N_{a'}}$ to interpolate savings policy onto exogenous beginning-of-period asset grid, a' = A(a, y)
- Important: using the Euler eq. implies that HH is at interior solution!
 - Implication: $\underline{a} = A^*(0, y)$ for a' = 0 is the highest asset level for which household does *not* save anything.
 - HH consumes everything for lower asset levels:

$$C(a, y) = (1 + r)a + y \quad \forall a \le a$$

Solution algorithm (infinite horizon)

- 1 Fix exogenous savings grid $a' \in \mathcal{G}_{a'} = \left(a'_1, \dots, a'_{N_{a'}}\right)$
- **2** Fix initial guess for consumption policy, $C_1(a, y)$. Usually the guess is to consume all resources.
- In iteration *n*, proceed as follows:
 - 1 For each point (a'_i, y_j) , compute the expectation

$$m'_{ij} = \mathbb{E}\left[C_{n-1}(a'_i, y')^{-\gamma} \mid y_j \right]$$

2 Invert the Euler eq. as in (3) to get consumption today:

$$c_{ij} = \left[\beta(1+r)m'_{ij}\right]^{-\frac{1}{\gamma}}$$

3 Use the budget constraint as in (4) to find beginning-of-period assets:

$$a_{ij} = \frac{1}{1+r} \left[c_{ij} + a_i' - y_j \right]$$

- Use the points (a_{ij}, c_{ij}) to get the updated consumption policy $C_n(\bullet, y_j)$ for each j. Set $C_n(a, y_j) = (1 + r)a + y_j$ for all $a \le \underline{a}_j$
- **4** Terminate iteration when C_{n-1} and C_n are close.

Solution algorithm (finite horizon)

- **T** Fix exogenous savings grid $a' \in \mathcal{G}_{a'} = \left(a'_1, \dots, a'_{N_{a'}}\right)$
- Compute consumption policy in terminal period T: this is usually $C_T(a, y) = (1 + r)a + y$, unless there is a bequest motive.
- **3** For each period t = T 1, T 2, ..., 1, proceed as follows:
 - 1 For each point (a'_i, y_j) , compute the expectation

$$m'_{ij} = \mathbf{E} \left[C_{t+1}(a'_i, y')^{-\gamma} \mid y_j \right]$$

2 Inver the Euler eq. as in (3) to get consumption today:

$$c_{ij} = \left[\beta(1+r)m'_{ij}\right]^{-\frac{1}{\gamma}}$$

Use the budget constraint as in (4) to find beginning-of-period assets:

$$a_{ij} = \frac{1}{1+r} \left[c_{ij} + a_i' - y_j \right]$$

4 Use the points (a_{ij}, c_{ij}) to get consumption policy $C_t(\bullet, y_j)$ for each j. Set $C_t(a, y_j) = (1 + r)a + y_j$ for all $a \le \underline{a}_j$

Parametrisation for problem with risky labour

EGM with linear interpolation

Assume labour process follows AR(1),

$$y_{t+1} = \rho y_t + \varepsilon_{t+1}$$
 $\varepsilon_{t+1} \stackrel{\text{iid}}{\sim} \mathcal{N}\left(0, \sigma^2\right)$

which we discretise as a Markov chain using the Rouwenhorst (1995) or Tauchen (1986) methods.

■ The next slides show solutions for the following parametrisation:

	Description	Value
β σ r	Discount factor Coef. of relative risk aversion Interest rate	0.96 2 0.04
ρ σ N_y	Autocorrelation of AR(1) process Conditional std. dev. of AR(1) process Number of states for Markov chain	0.95 0.20 3

Table 1: Parameters for HH problem with risky labour income

Policy functions

EGM with linear interpolation

Solution for different income levels: low, middle, high

Figure 3: Solution with approx. 100 points on savings grid.

Functions of exogenous savings grid

EGM with linear interpolation

Solution for different income levels: low, middle, high

Figure 4: Solution with approx. 100 points on savings grid.

Relative run times

Run times for solving the above problem with $N_a=N_{a^\prime}=$ 1000 and $N_y=$ 3:

Method	Time (seconds)	Rel. time
VFI – grid search VFI – linear interpolation	12.8 170.6	1.00 13.32
EGM	0.4	0.03

When plain EGM fails

- Whenever we cannot determine where we "came from" (e.g. models with default)
- Discrete choices introduce jumps in policy functions:

Figure 5: Jumps due to discrete choice variables.

Main take-aways

Use EGM whenever you can!

- With only one continuous state, no discrete choices:
 - Straightforward application of plain EGM, potentially with minor extensions
 - Also includes models with portfolio choice, intensive-margin labour supply
- With additional discrete choice variables:
 - Probably works, but more tedious (e.g. Iskhakov et al. (2017))
 - Still considerably faster than VFI
- With multiple continuous state variables:
 - Probably not worth the effort

Envelope condition

■ Consider the following value function, where a^* are optimal savings $a^* = A(a, y)$:

$$V(a,y) = u\left((1+r)a + y - a^{\star}\right) + \beta \mathbf{E} \left[\left.V(a^{\star},y)\right|y\right]$$

We used the BC to substitute for $c^* = (1 + r)a + y - a^*$

■ Take derivatives w.r.t. *a*:

$$\frac{\partial V(a,y)}{\partial a} = u' \left((1+r)a + y - a^{\star} \right) \left[(1+r) - \frac{\partial a^{\star}}{\partial a} \right] + \beta \mathbf{E} \left[\frac{\partial V(a^{\star},y)}{\partial a^{\star}} \frac{\partial a^{\star}}{\partial a} \right] y$$

$$= u' \left(c^{\star} \right) (1+r) + \frac{\partial a^{\star}}{\partial a} \left\{ -u' \left(c^{\star} \right) + \beta \mathbf{E} \left[\frac{\partial V(a^{\star},y)}{\partial a^{\star}} \right] y \right]$$

$$= 0$$

$$= 0$$

$$(5)$$

■ The FOC implies that the second term on the r.h.s. is zero!

References I

- Carroll, Christopher D. (2006). "The method of endogenous gridpoints for solving dynamic stochastic optimization problems". In: Economics Letters 91.3, pp. 312–320.
- Druedahl, Jeppe and Thomas Høgholm Jørgensen (2017). "A general endogenous grid method for multi-dimensional models with non-convexities and constraints". In: Journal of Economic Dynamics and Control 74, pp. 87–107.
- Fella, Giulio (2014). "A generalized endogenous grid method for non-smooth and non-concave problems". In: Review of Economic Dynamics 17.2, pp. 329–344.
- Iskhakov, Fedor et al. (2017). "The endogenous grid method for discrete-continuous dynamic choice models with (or without) taste shocks". In: Quantitative Economics 8.2, pp. 317–365.
- Rouwenhorst, Geert K. (1995). "Asset Pricing Implications of Equilibrium Business Cycle Models". In:

 Frontiers of Business Cycle Research. Ed. by Thomas F. Cooley. Vol. 10. Princeton University
 Press. Chap. 10. pp. 294–330.
- Tauchen, George (1986). "Finite state markov-chain approximations to univariate and vector autoregressions". In: Economics Letters 20.2, pp. 177–181.