Designing and Developing a Personalised Recommender System

Thomas Butterfield

dept. Computer Science

Durham University

Durham, United Kingdom

thomas.butterfield@durham.ac.uk

I. INTRODUCTION

A. Domain of application

The domain of this application is a recommender system for bars, using the Yelp dataset. Decide whether I want to define the time-span for the date, depends on if there is too much data from all available time period. I am also taking into accounts Covid-19 data when generating recommendations.

B. Related work review

Some related work

C. Purpose/Aim

The purpose of this application is to give suitable suggestions for a user to go to. Using information about the user such as their location and personal preferences.

II. METHODS

A. Data description

The data I am using is taken from the Yelp dataset, it includes user reviews of different businesses and services in a specific location. These user reviews include ratings, text feedback, and other such information.

B. Data preparation and feature selection

Prepare data The entire Yelp dataset is huge and much of it is not neccessary for my domain of bars. As such I prepared the data by eliminating any data not relevant to my domain. I selected features such as user ratings and a particular user's average rating, since if a user typically rates places they go highly, but rates a particular bar low, this is more significant than a user who always rates places low.

C. Hybrid scheme

Which two algorithms A hybrid scheme is a good way to design a recommender system, since you can get the best of both algorithms if done properly. Meaning better recommendations than either algorithm could achieve individually.

D. Recommendation techniques/algorithms

The first recommender system is collaborative filtering. I am using a weighted mixed combination of these two systems in order to produce the results of my hybrid recommender system.

E. Evaluation methods

How to evaluate

III. IMPLEMENTATION

A. Input interface

The input interface is the command line. The program offers users opportunites to input information about themselves, as well as make choices from a selection of items which the system provides or suggests.

B. Recommendation algorithm

What algorithm

C. Output interface

The output interface is the command line. The system can output recommendations for bars which the user might like, as well as information about how the system works and why certain suggestions were made, at the user's request.

IV. EVALUATION RESULTS

A. Comparison against baseline implementation

Compare vs generic suggestions

B. Comparison against hybrid recommenders in related studies

Read some papers

C. Ethical issues

People's personal data

V. Conclusion

A. Limitations

What can it not do?

B. Further developments

What could I do in the future

REFERENCES

- [1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955.
- [2] J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol.
- Science Markweit, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73.
 I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New New York and York (1997). York: Academic, 1963, pp. 271-350.
- [4] K. Elissa, "Title of paper if known," unpublished.
 [5] R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [6] Y. Yorozu, M. Hirano, K. Oka, and Y. Tagawa, "Electron spectroscopy studies on magneto-optical media and plastic substrate interface," IEEE Transl. J. Magn. Japan, vol. 2, pp. 740–741, August 1987 [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982].
- [7] M. Young, The Technical Writer's Handbook. Mill Valley, CA: University Science, 1989.