Flat slab design

Flexure design

Column strip and middle strip

$$column \ strip = min(0.5 \ l_x, 0.5 l_y)$$

 $middle \ strip_x = l_x - column \ strip$
 $middle \ strip_y = l_y - column \ strip$

Effective span

$$span_{,eff} = l_y - 2(column size/2) + (Slab thickness/2)$$

where:

 l_y is a span length in y direction. (It is assumed $l_y > l_x$)

Figure 1 Column and middle strip

Design load

$$Design\ load = Live\ load * SF, q_k + Dead\ load * SF, g_k$$

where:

SF,qk and SF,gk are safety factors for live load and dead load respectively

Moment

Sagging moment (In panel)- Positive moments

$$M_{ED,S} = [SF_{,gk} * g_k * 0.09 + SF_{,qk} * q_k * 0.100] l_x * span_{,eff}^2$$

where:

 g_k and q_k are dead load and live load respectively.

Span,eff is effective span

The coefficient 0.09 is 'Moment gk' from the EC concise table

(50% of the sagging moment is taken in to the column and middle strips)

Column strip : $M_{ED,+v} = 0.5 * M_{ED,S} / column strip$

Middle strip : $M_{ED,+ve} = 0.5 * M_{ED,S} / column strip$

Hogging moment (Along support)- Negative moments

$$M_{ED,H} = Design load * 0.106 * l_x * span_{,eff}^{2}$$

where:

The coefficient 0.106 is 'Moment q_k ' from the EC concise table.

(70% taken in column strip and 30% in middle strip)

Column strip : $M_{ED,-v} = 0.70 * M_{ED,H} / column strip$

Middle strip : $M_{ED,-v} = 0.30 * M_{ED,H} / column strip$

(Flexure analysis for $M_{ED,+ve}$ and $M_{ED,-ve}$ at the column and middle strip) Determine K and K'

$$K = \frac{M_{ED}}{bd^2 f_{ck}}$$

where:

M_{ED} is design moment per length

d is effective depth, d= h - cover - Øtie - Ø/2

b is width of the section (b = 1 m)

f_{ck} is characteristic compressive strength of the concrete

$$K' = 0.6 \delta - 0.18 \delta^2 - 0.21$$

(δ =1.0 means no redistribution and δ = 0.8 means 20% moment redistribution).

If $K \le K$ ', no compression steel needed. If $K \ge K$ ', compression reinforcement required – not recommended for typical slabs.

Lever arm (z)

$$z = \frac{d}{2} \left(1 + \sqrt{1 - 3.53K} \right) \le 0.95d$$

where:

d is effective depth of the concrete

Area of tensile reinforcement (A_s)

$$A_{s} = \frac{M_{ED}}{f_{vd}z}$$

where:

M_{ED} is design moment per length

z is lever arm

 f_{yd} is deign yield strength of steel = f_{yk} / $^{v}_{s}$

where:

 f_{yk} is characteristic yield strength of steel v_s is material safety factor

Spacing (s)

$$s = b * \frac{a_s}{A_s} \le 2 * D$$

where:

as is area of a single reinforcement bar

As is area of tensile reinforcement per length

D is the slab thickness

b is width of the section, (b = 1 m)

Minimum reinforcement requirements

$$A_{s,min} \ge \frac{0.26 f_{ctm} b_t d}{f_{yk}} \ge 0.0013 b_t d$$
, where f_{ck} ≥ 25

where:

f_{ctm} is tensile strength of the concrete

fyk is characteristic yield strength of steel

bt is breadth of the tension zone

d is effective depth of the concrete

Maximum reinforcement requirement

$$A_{s,max} \leq 0.04A_c$$

where:

Ac is area of concrete

Number of reinforcement bars

$$n = \frac{A_s}{a_s}$$

where:

as is an area of a single reinforcement bar

Check minimum spacing between bars

$$Spacing > \emptyset_{bar} > 20 > A_{gg} + 5 (mm)$$

Coefficient	Location				
	Outer support	Near middle of end span	At 1st interior support	At middle of interior spans	At interior supports
Moment g_k and q_k	25% spana	_	0.094	-	0.075
Moment g _k	-	0.090	_	0.066	_
Moment q _k	_	0.100	_	0.086	_
Shear	0.45	_	0.63:0.55	_	0.50:0.50

Figure 2 EuroCode 2 concise table

Punching shear design

Factor β (refer to figure 7 or Expressions (6.38) to (6.46)of the Eurocode)

Corner column : β is 1.5

Edge column : β is 1.4

Internal column : β is 1.15

Design shear stress (at face of column)

$$v_{ED,max} = \frac{\beta V_{ED}}{u_1 d}$$

where:

V_{ED} applied load in the slab

u₁ is control perimeter around the loaded area

d_x and d_y are the effective depths in orthogonal direction,

$$d = (d_x + d_y)/2$$

Determine $v_{Rd,max}$ (refer to table 3:concise table for respective concrete grade)

$$v_{RD,max} = 0.5 v f_{cd}$$

where:

 f_{cd} is design compressive strength, f_{ck}/v_c

$$v = 0.6 (1 - f_{ck}/250) \alpha_{cc}$$

where:

fck is characteristic compressive strength of the concrete

$$\alpha_{\rm cc} = 1.0$$

If $v_{ED,max} \le v_{Rd,max}$, proceed to the next step - otherwise redesign the section. (Increase the compressive strength of the slab)

Concrete punching shear capacity (without shear reinforcement) ($v_{Rd,c}$)

$$v_{RD,c} = C_{Rd,c} k (100 \rho f_{ck})^{\frac{1}{3}} b_w d \ge V_{min}$$

$$V_{min} = 0.035 k^{1.5} f_{ck}^{0.5}$$

$$\rho_x = \frac{A_{s,1}}{l * d_1} \rho_y = \frac{A_{s,2}}{b * d_2}$$

$$\rho = (\rho_x * \rho_y)^{\frac{1}{2}} \le 0.02$$

where:

 $C_{RD,c}$ is coefficient derived from test (0.18/1.5);

 b_w is width of the section, (b = 1 m)

d is effective depth, $d = (d_1 + d_2)/2$

k is size factor, $k = 1 + \sqrt{200/d} \le 2.0$

d is effective depth, $d = (d_x + d_y)/2$

 ρ is steel ratio and $\rho_x,\,\rho_y$ are steel ratio along x and y direction

fck is characteristic compressive strength in MPa;

If $v_{ED,max} \le v_{Rd,c}$, punching shear reinforcement not required.

If $v_{ED,max} \ge v_{Rd,c}$, determine the punching shear reinforcement per perimeter.

Punching shear reinforcement

$$A_{sw} = (v_{ED} - 0.75v_{RD,c})s_r u_1/(1.5f_{ywd,ef})$$

where:

v_{ED} is design shear stress

v_{Rd,c} is concrete shear capacity

s_r is radial spacing of shear reinforcement

u₁ is control perimeter around the loaded area

$$f_{ywd,ef} = 250 + 0.25 d \le f_{ywd}$$

fywd is design yield strength of shear reinforcement

Length of the outer perimeter where shear reinforcement not required

$$u_{out,ef} = \beta v_{ED}/(v_{RD,c}*d)$$

where:

 β is punching shear factor for column position (1.15, 1.4, 1.5)

v_{ED} is design shear stress

v_{Rd,c} is concrete shear capacity

d is effective depth, $d = (d_x + d_y)/2$

Figure 7 Recommended standard values for $\boldsymbol{\beta}$

Table 3. Values for $v_{Rd,max}$

f_{ck}	$V_{Rd,max}$		
20	3.31		
25	4.05		
28	4.48		
30	4.75		
32	5.02		
35	5.42		
40	6.05		
45	6.64		
50	7.20		