GROUPS

Let G be a non-empty set and * be a binary operation defined on it, then the structure (G,*) is said to be a group, if the following axioms are satisfied,

- (i) Closure property : $a * b \in G$, $\forall a, b \in G$
- (ii) Associativity: The operation * is associative on G. i.e.

$$a*(b*c) = (a*b)*c, \forall a,b,c \in G$$

(iii) Existence of identity : There exists an unique element $e \in G$, such that

$$a*e = a = e*a, \ \forall \ a \in G$$

e is called identity of * in G

(iv) Existence of inverse : for each element $a{\in}\ G,$ there exist an unique element $b{\in}\ G$ such that

$$a * b = e = b * a$$

The element b is called inverse of element a with respect to \ast and we write $b=a^{-1}$

Abelian Group

A group (G,*) is said to be abelian or commutative, if

$$a*b=b*a \quad \forall \ a,b\in G$$

Some Examples of Group

The set of all 3×3 matrices with real entries of the form

$$\begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$$

is a group.

This group sometimes called the Heisenberg group after the Nobel prize-winning physicist Werner Heisenberg, is intimately related to the **Heisenberg uncertainity principle** of quantum physics.

Another example

The set of six transformations f_1 , f_2 , f_3 , f_4 , f_5 , f_6 on the set of complex numbers defined by

$$f_1(z) = z$$
, $f_2(z) = \frac{1}{z}$, $f_3(z) = 1 - z$, $f_4(z) = \frac{z}{z - 1}$,

$$f_5(z)=rac{1}{1-z}, \ f_6(z)=rac{z-1}{z}.$$

forms a finite non-abelian group of order six with respect to the composition known as the composition of the two functions or product of two functions.

Order of a Group and Order of an element of a group

Order of a Group

The number of element in a finite group is called the order of a group. It is denoted by o(G).

An infinite group is a group of infinite order.

e.g.,

- 1. Let $G = \{1, -1\}$, then G is an abelian group of order 2 with respect to multiplication.
- 2. The set \mathbb{Z} of integers is an infinite group with respect to the operation of addition but \mathbb{Z} is not a group with respect to multiplication.

Order of an element of a group

Order of an Element of a Group

Let G be a group under multiplication. Let e be the identity element in G. Suppose, a is any element of G, then the least positive integer e, if exist, such that e is said to be order of the element e, which is represented by

$$o(a) = n$$

In case, such a positive integer n does not exist, we say that the element a is of infinite or zero order.

e.g.,

(i) The multiplicative group $G = \{1, -1, i, -i\}$ of fourth roots of unity, have order of its elements

$$(1)^1 = 1 \Rightarrow o(1) = 1$$

$$(-1)^2 = 1 \Rightarrow o(-1) = 2$$
$$(i)^4 = 1 \Rightarrow o(i) = 4$$
$$(-i)^4 = 1 \Rightarrow o(-i) = 4$$

respectively.

(ii) The additive group $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ $1.0 = 0 \implies$ order of zero is one(finite). but $na \neq 0$ for any non zero integers a. $\Rightarrow o(a)$ is infinite.

Modular Arithmetic

Modular Arithmetic imports its concept from division algorithm ($a=qn+r, {\rm where} \ 0 \le r < n$) and is an abstraction of method of counting that we often use.

Modulo system

Let n be a fixed positive integer and a and b are two integers, we define $a \equiv b \pmod{n}$, if $n \mid (a - b)$ and read as, "a is congruent to b mod n".

Addition modulo m and Multiplication modulo p

Let a and b are any two integers and m and p are fixed positive integers, then these are defined by

$$a +_m b = r$$
, $0 \le r < m$, and $a \times_p b = r$ $0 \le r < p$ where r is the least non-negative remainder ,whern $a + b$ and $a.b$ divided by m and p respectively

Examples. (i) The set $\{0, 1, 2, 3, ...(n-1)\}$ of n elements is a finite abelian group under addition modulo n.

Time-keeping on this clock uses arithmetic modulo 12.

- (ii) Fermat's Little theorem : If p is prime, then $a^{p-1} \equiv 1 \pmod{p}$ for 0 < a < p.
- (iii) **Euler's theorem** if a and n are co-prime, then $a^{\phi(n)} \equiv 1 (modn),$

where ϕ is Euler's totient function.

Subgroup

Definition

A non-empty subset H of a group (G,*) is said to be subgroup of G, if (H,*) is itself a group.

e.g., $[\{1,\text{-}1\},\ .]$ is a subgroup of $[\{1,\text{-}1,\text{i},\text{-i}\}\ .]$

Criteria for a Subset to be a Subgroup

A non-empty subset H of a group G is a subgroup of G if and only if

- (i) $a, b \in H \Rightarrow ab \in H$
- (ii) $a \in H \Rightarrow a^{-1} \in H$,

where a^{-1} is the inverse of $a \in G$

Lagrange's Theorem

Statement

The order of each subgroup of a finite group is a divisor of the order of the group.

i.e., Let
$$H$$
 be a subgroup of a finite group G and let

$$o(G) = n$$
 and $o(H) = m$, then

$$m \mid n$$
 (m divides n)

Since, $f: H \rightarrow aH$ and $f: H \rightarrow Ha$ is one-one and onto.

$$\Rightarrow o(H) = o(H) = m$$

Now,
$$G = H \cup Ha \cup Hb \cup Hc \cup ...$$
, where a,b,c,... $\in G$

$$\Rightarrow$$
 $o(G) = o(H) + o(Ha) + o(Hb) + ...$

$$\Rightarrow$$
 $n = m + m + m + m + \dots + \text{upto } p \text{ terms}$ (say)

$$\Rightarrow$$
 $n = mp$

 \Rightarrow Order of the subgroup of a finite group is a divisor of the order of the group.

* The converse of Lagrange's theorem is not true.

e.g.,

12.

Consider the symmetric group P_4 of permutation of degree 4. Then $o(P_4)=4!=24$ Let A_4 be the alternative group of even permutation of degree 4. Then, $o(A_4)=\frac{24}{2}=12$. There exist no subgroup H of A_4 , such that o(H)=6, though 6 is the divisor of