DAY 2 (T - Ratios)

In last section, we have discussed about T ratios and their relationship with sides of right angled triangle. In this section, we shall discuss examples on that.

1. Fill in the blanks:

i)
$$\tan \theta = \frac{\sin \theta}{\dots}$$

i)
$$\tan \theta = \frac{\sin \theta}{\dots}$$
 ii) $\csc \theta = \frac{1}{\dots}$ iii) $\cot \theta = \frac{1}{\dots}$

iii) cot
$$\theta = \frac{1}{}$$

Sol:- i)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

ii) cosec
$$\theta = \frac{1}{\sin \theta}$$

iii)
$$\cot \theta = \frac{1}{\tan \theta}$$

2. If $\sin A = \frac{3}{5}$, then find other T- ratios of A.

Sol:- Given
$$\sin A = \frac{3}{5} = \frac{\text{Perpendicular}}{\text{Hypotenuse}}$$

$$\therefore$$
 Perpendicular(P) = 3 and Hypotenuse(H) = 5

Here Due to T ratios, actually Perpendicular(P) = 3x and Hypotenuse(H) = 5xBut in answer, again we have to find T - Ratios in which x will be cancelled, so for the convenience of students x can be neglected

By Pythagoras Theorem, we have

$$H^2 = P^2 + B^2$$

$$\Rightarrow$$
 5² = 3² + B²

$$\Rightarrow$$
 5 × 5 = 3 × 3 + B

$$\Rightarrow$$
 25 = 9 + B²

$$H^{2} = P^{2} + B^{2} \qquad \Rightarrow 5^{2} = 3^{2} + B$$

$$\Rightarrow 5 \times 5 = 3 \times 3 + B^{2} \qquad \Rightarrow 25 = 9 + B^{2}$$

$$\Rightarrow B^{2} = 25 - 9 = 16 = 4^{2} \qquad \Rightarrow \mathbf{B} = \mathbf{4}$$

$$\Rightarrow$$
 B = **4**

Now
$$\cos A = \frac{B}{H} = \frac{4}{5}$$
 $\sec A = \frac{1}{\cos A} = \frac{5}{4}$ $\cot A = \frac{P}{B} = \frac{3}{4}$ $\cot A = \frac{1}{\tan A} = \frac{4}{3}$

$$\sec A = \frac{1}{\cos A} = \frac{5}{4}$$

$$\tan A = \frac{P}{B} = \frac{3}{4}$$

$$\cot A = \frac{1}{\tan A} = \frac{4}{3}$$

$$\csc A = \frac{1}{\sin A} = \frac{5}{3}$$

3. If n $\theta = \frac{5}{12}$, then find other T- ratios of θ .

Sol:- Given
$$\tan \theta = \frac{5}{12} = \frac{Perpendicular}{Base}$$

$$\therefore$$
 Perpendicular(P) = 5 and Base(B) = 12

By Pythagoras Theorem, we have

$$H^2 = P^2 + B^2$$

$$\Rightarrow H^2 = 5^2 + 12^2$$

$$H^2 = P^2 + B^2$$
 \Rightarrow $H^2 = 5^2 + 12^2$
 \Rightarrow $H^2 = 5 \times 5 + 12 \times 12$ \Rightarrow $H^2 = 25 + 144 =$

$$\Rightarrow$$
 H² = 25 + 144 =

$$169 = 13^2$$

$$\Rightarrow$$
 H = 13

Now
$$\sin \theta = \frac{P}{H} = \frac{5}{13} \qquad \cos \theta = \frac{1}{\sin \theta} = \frac{13}{5}$$
$$\cos \theta = \frac{B}{H} = \frac{12}{13} \qquad \sec \theta = \frac{1}{\cos \theta} = \frac{13}{12}$$
$$\cot \theta = \frac{1}{\tan \theta} = \frac{12}{5}$$

$$\csc \theta = \frac{1}{\sin \theta} = \frac{13}{5}$$

$$\sec \theta = \frac{1}{\cos \theta} = \frac{13}{12}$$

4. If $\cot A = 8$, then find other T-Ratios of A.

Sol:- Given
$$15 \cot A = 8$$

$$\Rightarrow$$
 cot A = $\frac{8}{15} = \frac{\text{Base}}{\text{Perpendicular}}$

$$\therefore$$
 Base(B) = 8 and Perpendicular(P) = 15

By Pythagoras Theorem, we have

$$H^2 = P^2 + B^2$$

$$\Rightarrow H^2 = 15^2 + 8^2$$

$$\Rightarrow$$
 H² = 15 × 15 + 8 × 8

$$\Rightarrow H^2 = 15 \times 15 + 8 \times 8 \qquad \Rightarrow H^2 = 225 + 64 = 289 = 17^2$$

$$\Rightarrow$$
 H = 17

Now
$$\sin A = \frac{P}{H} = \frac{15}{17}$$
 $\csc A = \frac{1}{\sin A} = \frac{17}{15}$

$$\operatorname{cosec} A = \frac{1}{\sin A} = \frac{17}{15}$$

$$\cos A = \frac{B}{H} = \frac{8}{17}$$

$$\cos A = \frac{B}{H} = \frac{8}{17}$$
 $\sec A = \frac{1}{\cos A} = \frac{17}{8}$ e-become-educated

$$\tan A = \frac{P}{B} = \frac{15}{8}$$

5. In
$$\triangle ABC$$
, $\angle B = 90^{\circ}$, $AB = 24$ cm and $BC = 7$ cm then find sin A and cos A.

Sol:- In $\triangle ABC$, $\angle B = 90^{\circ}$

$$\therefore AC^2 = AB^2 + BC^2$$

$$= 24^2 + 7^2 = 24 \times 24 + 7 \times 7 = 576 + 49 = 625 = 25^2$$

$$\Rightarrow$$
 AC = 25 cm

Now sin A =
$$\frac{BC}{AC} = \frac{7}{25}$$
 and cos A = $\frac{AB}{AC} = \frac{24}{25}$

EXERCISE

1. Fill in the blanks:

i)
$$\cot \theta = \frac{\cos \theta}{\dots}$$

ii)
$$\sec \theta = \frac{1}{\dots}$$

iii)
$$\tan \theta = \frac{1}{\dots}$$

2. If $\cos A = \frac{12}{13}$, then find other T- ratios of A.

3. If $\tan \theta = \frac{4}{3}$, then find other T- ratios of θ .

4. If 7 tan A = 24, then find other T- ratios of A.

5. If $\sec A = \frac{13}{5}$, then find $\sin A$ and $\tan A$.

6. If $\sin A = \frac{7}{25}$, then find $\cos A$ and $\cot A$.

come-become-educated

