VP160 Recitation Class 1 Week 3

Zixiang Lin

University of Michigan - Shanghai Jiao Tong University Joint Institute

May 29, 2024

Fundamental Concepts

000000

Fundamental Concepts

Before We Start

How to learn VP160 (Physics) well

- Good Mathematical Foundation
- Clear Physical Concepts
- General Physical Principles

Before We Start

What's in RC

■ Concepts/Principles + Exercises

"Understand. Don't memorize. Learn principles, not formulas."

— Richard Feynman

Units

•00000

Fundamental Concepts

Unit Prefix

■ k(unit prefix)m(unit)

p	n	μ	m	С	k	М	G
Pico	Nano	Micro	Milli	Centi	Kilo	Mega	Giga
10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10 ³	10^{6}	10 ⁹

SI System of Units

Quantity	Basic Unit	Basic Unit Symbol	
LENGTH	metre	m	
MASS	kilogram	kg	
TIME	second	S	
TEMPERATURE	kelvin	К	
QUANTITY OF MATTER	mole	mol	
ELECTRIC CURRENT	ampere	Α	
LUMINOUS INTENSITY	candela	cd	

³From https://www.learnalberta.ca/content/memg/division03/International%20System%20of%20Units/index.html.

MY HOBBY: ABUSING DIMENSIONAL ANALYSIS

Scalar and Vector

Definition of Scalars

Scalars are quantities that only have magnitude.

Definition of Vectors

Vectors are quantities that have both magnitude and direction.

Cross Product

Fundamental Concepts

000000

Right Hand Rule

^aSepitropova, Right-hand rule for cross product. In Wikipedia.

Einstein Summation Convention (Optional | OH)

$$\vec{c} = \vec{a} \times \vec{b} = a_i b_j \varepsilon_{ijk} e_k$$

Common Coordinate Systems

Cartesian Coordinate System

 \blacksquare (x,y) | (x,y,z)

Polar | Cylindrical Coordinate System

 \blacksquare $(r,\theta) \mid (\rho,\theta,z)$

Spherical Coordinate System

 $\blacksquare (\rho, \theta, \phi)$

Fundamental Concepts

000000

From https://mathinsight.org/spherical_coordinates.

Natural Coordinate System

Definition

Fundamental Concepts

00000

- \blacksquare $(\hat{n_{\tau}}, \hat{n_{n}}, \hat{n_{b}})$
- $\vec{v} = v \hat{n_{\tau}}$
- $\vec{a} = \dot{v} \hat{n_{\tau}} + \frac{v^2}{2} \hat{n_n}$

Radius of Curvature

$$\rho = \frac{(1 + y^{'2})^{3/2}}{|y''|}(Cartesian) \mid \frac{(r^2 + r^{'2})^{3/2}}{|r^2 + 2r'^2 - rr''|}(Polar)$$

Exercise 1

Fundamental Concepts

The trajectory of a particle is a logarithmic spiral $r = be^{k\varphi}$, where b and k are both positive constants and $\dot{r} = c$ (c is a positive constant). When t = 0, it is located at r = b and $\varphi = 0$. Find the velocity and acceleration of the particle and how the radius of curvature changes with time.

A small disc is placed on an inclined plane forming an angle α with the horizontal and is imparted an initial velocity v_0 . Find how the velocity of the disc depends on the angle θ if the friction coefficient is μ .

Exercise OOO

$$Hint: \int \csc x dx = -\ln|\csc x + \cot x| + C$$

Exercise 3

Find the envelope of the projectile trajectories.

UM-SJTU JI

$$r = be^{k\varphi} = b + ct, \dot{r} = kbe^{k\varphi}\dot{\varphi} = c, \ddot{r} = 0$$

$$\dot{\varphi} = \frac{c}{kb}e^{-k\varphi}, \ddot{\varphi} = -\frac{c}{kb^2}e^{-2k\varphi}, \varphi = \frac{1}{k}\ln\left(1 + \frac{c}{b}t\right)$$
(2)

$$v = \sqrt{\dot{r}^2 + (r\dot{\varphi})^2} = \frac{c}{k}\sqrt{1 + k^2}$$
 (3)

$$a = \sqrt{(\ddot{r} - r\dot{\varphi}^2)^2 + (r\ddot{\varphi} + 2\dot{r}\dot{\varphi})^2} = \frac{c^2\sqrt{1 + k^2}}{k^2(h + ct)}$$
(4)

Since $\vec{a} \perp \vec{v}$

$$a_n = a = \frac{c^2 \sqrt{1 + k^2}}{k^2 (b + ct)} \tag{5}$$

$$\rho = \frac{v^2}{a_0} = \sqrt{1 + k^2} (b + ct) \tag{6}$$

Or using the formula

$$\rho = \frac{(r^2 + r'^2)^{3/2}}{|r^2 + 2r'^2 - rr''|} = \sqrt{1 + k^2}(b + ct)$$
 (7)

Appendix

Solution 2

$$\hat{n_{ au}}$$
 : \dot{v}

$$\hat{n_{\tau}}$$
: $\dot{v} = g(\sin \alpha \cos \theta - \mu \cos \alpha)$
 $\hat{n_n}$: $v\dot{\theta} = -g \sin \alpha \sin \theta$

$$v = \frac{v_0}{1 + \cos \theta} \left(\frac{\sin \theta}{1 + \cos \theta}\right)^{\mu \cot \alpha - 1}$$

$$\alpha \sin \theta$$

When
$$\mu = \tan \alpha$$

$$v_f = \lim_{n \to 0} v = \frac{v_0}{2}$$

$$\frac{v_0}{2}$$
 (11)

When
$$\mu > \tan \alpha$$

$$v_f = \lim_{\theta \to 0} v = 0$$

When
$$\mu < \tan \alpha$$

$$v_f = \lim_{\theta \to 0} v \to \infty$$

(13)

$$\begin{cases} x = v \cos \theta t \\ y = v \sin \theta t - \frac{g}{2}t^2 \end{cases} \Rightarrow y = x \tan \theta - \frac{gx^2}{2v^2} \sec^2 \theta$$
 (14)

$$\frac{\partial y}{\partial \theta} = \frac{gx^2}{v^2} \sec^2 \theta \left(\frac{v^2}{gx} - \tan \theta \right) = 0 \Rightarrow \tan \theta = \frac{v^2}{gx}$$
 (15)

Or

$$\frac{gx^2}{2v^2}\tan^2\theta - x\tan\theta + \frac{gx^2}{2v^2} + y = 0, \Delta = x^2 - 4\frac{gx^2}{2v^2}(\frac{gx^2}{2v^2} + y) = 0$$
 (16)

$$y = -\frac{g}{2v^2}x^2 + \frac{v^2}{2g} \tag{17}$$

Appendix

Thanks for listening!

References

Fundamental Concepts

Zijie Qu. Lecture notes. 2024.

Zeyi Ren. Recitation class slides. 2021.

Jin Wu. Recitation class slides. 2023.

Einstein Notation

Fundamental Concepts

Kronecker Delta

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

Levi-Civita

$$\varepsilon_{ijk} = \begin{cases} +1 & (i,j,k) = (1,2,3) \mid (2,3,1) \mid (3,1,2) [\textit{even permutation}] \\ -1 & (i,j,k) = (3,2,1) \mid (1,3,2) \mid (2,1,3) [\textit{odd permutation}] \\ 0 & i=j \mid j=k \mid k=i \end{cases}$$

Basic Formulas

$$\delta_{ij}a_j=a_i$$
 $arepsilon_{lij}arepsilon_{lmn}=\delta_{im}\delta_{jn}-\delta_{in}\delta_{jm}$ $ec{A}=e_ia_i, ec{A}\cdotec{B}=a_ib_i, ec{A} imesec{B}=a_ib_iarepsilon_i$