CS411 Database Systems

01: Introduction

Kevin C. Chang

Welcome to CS411

Web site:

https://agora.cs.illinois.edu/display/cs411sp11/

Announcements, syllabus, policies, schedule,

 Please read the class syllabus, policies, and lecture schedule; ask now if you have questions.

CS411

Teaching Staff: The Front-End

• Marina Danilevsky: I2CS, Homework, Tutorials

• Mark Overholt: Newsgroup, Homework, Website

Hanna Zhong: Projects Track 1

• Rui Li: Projects Track 2

Teaching Staff: The Back-End

- Kevin C. Chang
- Research interest:
 - database systems, Web integration and mining
 - current projects: AIM, MetaQuerier, WISDM, ARISE (we are recruiting!)
- Hobbies:
 - ocean diving, mountain climbing
- Brief history
 - Taiwan (BS in EE from National Taiwan University)
 - California (MS in CS, PhD in EE from Stanford)
 - Illinois (associate professor in CS, UIUC)
 - "Data mining": what can you predict? East or west? CS or EE?

The AIM Project: AlMing to the top

Supporting ranking in data retrieval

The MetaQuerier Project Exploring and integrating deep Web

The WISDM Project: Data Aware Search over the Web

Data Aware Search?

CS411

The ARISE Project: Augmented Reality Information Search Engine

Augmented Reality Information Search Engine

You Tell Me --

Why Are You Taking this Course?

- Are you interested more in being
 - An IT Guru at Goldman-Sachs or Boeing.
 - A System Developer at Oracle or Google.

CS411 Goal: Two Perspectives of DBMS

User perspective

- how to use a database system?
- conceptual data modeling, the relational and other data models, database schema design, relational algebra, and the SQL query language.

System perspective

- how to design and implement a database system?
- data representation, indexing, query optimization and processing, transaction processing, concurrency control, and crash recovery

- Prerequisite
 Must have data structure and algorithm background
 - CS 225 or 400 equivalent
- Good programming skill
 - project will require lot of programming
 - need C++, Java, or PHP ... to do a good job at talking with DB
 - you or your project group picks the language

CS411 11

Textbook

Textbook:

Database Systems: The Complete Book, 2/e, by Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer D. Widom

Good references:

- Database Management Systems, by Raghu Ramakrishnan an Johannes Gehrke, McGraw-Hill
- Database System Concepts, by Abraham Silberschatz,
 Henry F. Korth, and S. Sudarshan, McGraw Hill
- Fundamentals of Database Systems, by Ramez Elmasri and Shamkant Navathe, Addison Wesley
- An Introduction to Database Systems, by C. J. Date,
 Addison Wesley

Course Format

- For all students
 - two 75-min lectures / week
 - 5 assignments planned
 - project (significant)
 - a midterm and a final exam
- Graduate students: 4 credits option
 - do an extra project

Lectures

- Lecture slides will be posted shortly before or after the lecture
 - are to complement the lectures
- Lectures are important for guiding your reading of textbook
- Without your participation, a lecture is impossible
 - so please attend lectures regularly

Homework Assignments

- Mostly paper-based, some may involve light programming
- Due by noon of the due date
- Submission by PDF to Compass
- No late homework will be accepted

Tutorials: 7 Sessions

- Homework Tutorial:
 - One for each homework assignment, to teach problem solving.

- Exam Tutorial:
 - One for each exam, to review and practice old exams.
- Scheduled a few days before due. Likely at Tu or Th 5pm.
- Will be recorded.

Project:

- Application Track: Database-Driven Web-based Information System
 - select an database application that needs a database
 - design and build it from start to finish
 - your choice of topic:
 useful, realistic, database-driven, web-based
- System Track: Take an open source DBMS (SQLite) and hack it.
 - strongly encouraged if you already have app experience
- Team work
- Significant amount of programming (we will provide tutorials)
- Will be done in stages
 - you will submit some work at the end of each stage
- Will show a demo at semester end

Project Groups

- Project will be done in group of 3-4 students
 - learn how to work in a group: valuable skills
 - also use project group as study partners
- Try to form groups as soon as possible
 - can start by posting requests on the class newsgroup
- There will be a deadline soon for forming groups
 - if you have not formed groups by then
 - we will help assign you to groups
- Grading:
 - all members receive same grading
 - if someone drops out, the rest pick up the work

Exams

- Midterm and final
- There will be some brief review before each exam
- Check dates and make sure no conflict!
 - generally no makeup exams unless exceptional cases (see policy page)

In-Class Quiz

To encourage attending and participating in class:

- Three brief in class quiz.
- Each tests your participation in class.
- Each accounts for 1.5% of class grading.

Tentative Grading Breakdown

Homework: 15%

Project: 35%

• Midterm: 20%

• Final: 30%

How Do We Work Together?

Contacting the Staff ---

Office Hours

- The best way for asking questions and clarifications
- Will have office hours every day
- See course Web for schedule

Communications

- Website: "Announcements" page
- Newsgroup: class.cs411
 - vitally important!
 - make sure to check it regularly for questions/clarifications
 - announcements will appear here and the course Web
- If you have a question/problem
 - 1. talk to people in your group first
 - 2. post your question on newsgroup
 - 3. email TA
 - 4. go to office hours to talk to TA or instructor

Newsgroup: class.cs411

- Designed for you and your peer
 - to communicate and help one another
 - please do not post solutions/admin-requests

__

- TAs will monitor and try their best to help with your questions
- There can be many questions
 - may not be able to answer all of them timely manner
 - not good for more complex questions
 - hence should come to office hours or email TA

Data Management Evolution

Jim Gray: Evolution of Data Management.

IEEE Computer 29(10): 38-46 (1996):

- Manual processing: -- 1900
- Mechanical punched-cards: 1900-1955
- Stored-program computer-- sequential record processing: 1955-1970
- Online navigational network DBs: 1965-1980
 - many applications still run today!
- Relational DB: 1980-1995
- Post-relational and the Internet: 1995-

Database Management System (DBMS)?

 System for providing EFFICIENT, CONVENIENT, and SAFE MULTI-USER storage of and access to MASSIVE amounts of PERSISTENT data

DBMS Examples

 Most familiar use: many Web sites rely heavily on DBMS's

– Examples?

And many non-Web examples

Example: Banking system

- Data = information on accounts, customers, balances, current interest rates, transaction histories, etc.
- MASSIVE: many gigabytes at a minimum for big banks, more if keep history of all transactions, even more if keep images of checks -> Far too big for memory
- PERSISTENT: data outlives programs that operate on it

MULTI-USER Access

- MULTI-USER: many people/programs accessing same database, or even same data, simultaneously -> Need careful controls
- Alex @ ATM1: withdraw \$100 from account #002

```
get balance from database;
if balance >= 100 then balance := balance - 100;
dispense cash;
put new balance into database;
```

Bob @ ATM2: withdraw \$50 from account #002
 get balance from database;
 if balance >= 50 then balance := balance - 50;
 dispense cash;
 put new balance into database;

MULTI-USER: What Can Go Wrong?

• Initial balance = 200. Final balance = ??

Why Direct Implementation Won't Work

- Storing data: file system is limited
 - size limit by disk or address space
 - when system crashes we may loose data
 - Password/file-based authorization insufficient
- Query/update:
 - need to write a new C++/Java program for every new query
 - need to worry about performance

- Concurrency: limited protection
 - need to worry about interfering with other users
 - need to offer different views to different users (e.g. registrar, students, professors)
- Schema change:
 - entails changing file formats
 - need to rewrite virtually all applications
- That's why the notion of DBMS was motivated!

DBMS: More Requirements

• SAFE:

- from system failures
- from malicious users

CONVENIENT:

- simple commands to debit account, get balance, write statement, transfer funds, etc. ->
- also unpredicted queries should be easy

• EFFICIENT:

- don't search all files in order to get balance of one account, get all accounts with low balances, get large transactions, etc.
- massive data! -> DBMS's carefully tuned for performance

DBMS: A Software System

- Buy, install, set up for particular application
- Available for PC's, workstations, mainframes, supercomputers
- Major vendors:
 - Oracle
 - IBM (DB2)
 - Microsoft (SQL Server, Access)
 - Sybase
 - ➤all are "relational" (or "object-relational") DBMS

DBMS Architecture

Storage

data, metadata, indexes, log, etc

Data Structuring: Model, Schema, Data

• Data model:

- conceptual structuring of data stored in database
- ex: data is set of records, each with student-ID, name, address, courses, photo
- ex: data is graph where nodes represent cities, edges represent airline routes

Schema versus data

- schema: describes how data is to be structured, defined at setup time, rarely changes (also called "metadata")
- data is actual "instance" of database, changes rapidly
- vs. types and variables in programming languages
- Data definition language (DDL)
 - commands for setting up schema of database

Data Manipulation Language (DML)

- Commands to manipulate data in database:
 - RETRIEVE, INSERT, DELETE, MODIFY
- Also called "query language"

People

- DBMS user: queries/modifies data
- DBMS application designer
 - set up schema, loads data, ...

- DBMS administrator
 - user management, performance tuning, ...
- DBMS implementer: builds systems

First ½ Topics: User Perspective

- Entity-Relationship Model
- Relational Model
- Relational Database Design
- Relational Algebra
- SQL and DBMS Functionalities:
 - SQL Programming
 - Queries and Updates
 - Indexes and Views
 - Constraints and Triggers

Second ½ Topics: System Perspective

- Storage and Representation
- Indexing
- Query Execution and Optimization
- Transaction Management

Project Tutorial Lectures

 Anatomy of a large scale database-driven web-based info system.

Web programming.

DB programming.

Special Topics: 2-3 Lectures

Databases in the Real World

Advanced Database Research

Please nominate topics you like to hear about!

How to Get the Most out of CS411?

- Read and think before class
 - welcome to ask questions before class!
- Study and discuss with your peers
 - discuss readings to enhance understanding
 - discuss assignments but write your own solution!
- Use lectures to guide your study
 - use it as a roadmap for what's important
 - lectures are starting points— they do not cover everything you should read

Questions?

Any questions? Please come talk to me.