LEIC

Álgebra Linear e Geometria Analítica - 2020/21 - SV

7 - Produto Interno. Ortogonalidade.

- 7.1 Seja $\alpha \in \mathbb{R}$. Mostre que $||\alpha \overrightarrow{u}|| = |\alpha| ||\overrightarrow{u}||$. Conclua que, se \overrightarrow{u} é não nulo, então o vetor $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$ é unitário, isto é, tem norma igual a 1.
- 7.2 Sejam \overrightarrow{u} , \overrightarrow{v} vetores não nulos e linearmente dependentes de \mathbb{R}^n . Prove que o ângulo entre \overrightarrow{u} e \overrightarrow{v} , \triangleleft (\overrightarrow{u} , \overrightarrow{v}), ou é 0 ou é π .
- 7.3 Sejam \overrightarrow{u} , \overrightarrow{v} vetores não nulos e ortogonais de \mathbb{R}^n . Mostre que

$$||\overrightarrow{u} + \overrightarrow{v}||^2 = ||\overrightarrow{u}||^2 + ||\overrightarrow{v}||^2$$
 (Teorema de Pitágoras).

- 7.4 Seja $\mathcal{B}=(\overrightarrow{u}_1,\overrightarrow{u}_2)$ uma base de \mathbb{R}^2 tal que, $\sphericalangle(\overrightarrow{u_1},\overrightarrow{u_2})=\pi/3$ e $||\overrightarrow{u}_1||=||\overrightarrow{u}_2||=\sqrt{2}$. Calcule os valores de $k\in\mathbb{R}$ para os quais os vetores $k\overrightarrow{u}_1-\overrightarrow{u}_2$ e $\overrightarrow{u}_1+2\overrightarrow{u}_2$ são ortogonais.
- 7.5 Considere o vetor $\overrightarrow{u} = (-1, 0, 2, -2)$. Determine os valores de k para os quais $||k\overrightarrow{u}|| = 15$.
- 7.6 Calcule os valores de k para os quais os vetores \overrightarrow{u} e \overrightarrow{v} são ortogonais:
 - (a) $\overrightarrow{u} = (3, -1, -2) e \overrightarrow{v} = (k, 7, 1)$
 - (b) $\overrightarrow{u} = (k, 1, k) e \overrightarrow{v} = (k, 6, -5)$
- 7.7 Em \mathbb{R}^3 , com o produto interno canónico, considere os vetores $\overrightarrow{u}=(2,1,1), \ \overrightarrow{v}=(-1,-1,2)$ e o subespaço $F=\langle \overrightarrow{u},\overrightarrow{v}\rangle$. Determine:
 - (a) A projecção ortogonal de \overrightarrow{v} sobre \overrightarrow{u} , $proj_{\overrightarrow{u}}$ \overrightarrow{v} e a componente de \overrightarrow{v} perpendicular a \overrightarrow{u} , $perp_{\overrightarrow{u}}$ \overrightarrow{v} .
 - (b) O produto externo entre \overrightarrow{u} e \overrightarrow{v} .
 - (c) Uma base ortogonal de F.
 - (d) Uma base ortonormada de F^{\perp} .
 - (e) uma base ortonormada de \mathbb{R}^3 que contenha uma base de F.
- 7.8 Em \mathbb{R}^3 , com o produto interno canónico, considere os vetores $\overrightarrow{u} = (2,2,-1)$ e $\overrightarrow{v} = (3,1,8)$.
 - (a) Mostre que \overrightarrow{u} e \overrightarrow{v} são ortogonais.
 - (b) Determine um vetor $\overrightarrow{w} \in \mathbb{R}^3$ de modo a que $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ forme uma base ortogonal de \mathbb{R}^3 .
- 7.9 Considere a recta $r \equiv \begin{cases} y = 2x \\ z = -x \end{cases}$ e o plano $\alpha \equiv x + 2y z = 0$.
 - (a) Prove que a recta r e o plano α são ortogonais.
 - (b) Determine uma base ortonormada de \mathbb{R}^3 constituída por vetores de r e α .

- 7.10 Em \mathbb{R}^3 , com o produto interno canónico, determine uma base ortonormada de F^{\perp} e uma base ortonormada de \mathbb{R}^3 só formada por vetores de F e de F^{\perp} , sendo:
 - (a) $F = \langle (1, -2, 1), (0, 1, -1) \rangle$
 - (b) $F = \langle (1, -1, 0) \rangle$
 - (c) $F = \langle (1,0,1), (0,1,1), (2,2,4) \rangle$
 - (d) $F = \langle (0,1,-2), (0,-3,6) \rangle$
- 7.11 Utilizando o método de ortogonalização de Gram-Schmidt, obtenha uma base ortonormada de \mathbb{R}^3 (produto interno canónico), a partir dos vetores (1,0,1),(1,0,-2),(0,3,4).
- 7.12 Em \mathbb{R}^4 , com o produto interno canónico, considere o subespaço

$$F = \langle (-1,0,1,1), (1,0,1,2), (0,-2,0,1) \rangle.$$

Verifique que os 3 geradores de *F* são linearmente independentes e obtenha uma base ortonormada de *F* a partir da dada.

- 7.13 Escreva $\overrightarrow{v} = (2,1,3,0)$ como soma de um vetor de $F = \langle (-1,1,0,1), (1,1,1,0) \rangle$ com um vetor de F^{\perp} .
- 7.14 Em \mathbb{R}^4 , com o produto interno canónico, determine uma base ortonormada de F^{\perp} e uma base ortonormada de \mathbb{R}^4 só formada por vetores de F e de F^{\perp} , sendo:
 - (a) $F = \{(x, y, z, w) \in \mathbf{R}^4 : x + y + z + w = 0\}$
 - (b) $F = \{(x, y, z, w) \in \mathbf{R}^4 : x = 0 \land z = 0\}$