工程矩阵理论: 范数和矩阵函数

东南大学. 数学系. 周建华

August 20, 2016

● 范数

- 范数
- ② 矩阵函数

- 范数
- ② 矩阵函数
- ❸ 矩阵函数的应用

设V是数域F上线性空间, ν 是定义在V上的实值函数。如果 ν 满足:

设V是数域F上线性空间, ν 是定义在V上的实值函数。如果 ν 满足:

① 对任意 $\theta \neq \alpha \in V, \nu(\alpha) > 0$

设V是数域F上线性空间, ν 是定义在V上的实值函数。如果 ν 满足:

- ① 对任意 $\theta \neq \alpha \in V, \nu(\alpha) > 0$
- ② 对任意 $\alpha \in V, k \in F, \nu(k\alpha) = |k|\nu(\alpha)$

设V是数域F上线性空间, ν 是定义在V上的实值函数。如果 ν 满足:

- ① 对任意 $\theta \neq \alpha \in V, \nu(\alpha) > 0$
- ② 对任意 $\alpha \in V, k \in F, \ \nu(k\alpha) = |k|\nu(\alpha)$
- **③** 对任意 $\alpha, \beta \in V, \nu(\alpha + \beta) \leq \nu(\alpha) + \nu(\beta)$

设V是数域F上线性空间,u是定义在V上的实值函数。如果u满足:

- ① 对任意 $\theta \neq \alpha \in V, \nu(\alpha) > 0$
- ② 对任意 $\alpha \in V, k \in F, \nu(k\alpha) = |k|\nu(\alpha)$
- **③** 对任意 $\alpha, \beta \in V, \nu(\alpha + \beta) \leq \nu(\alpha) + \nu(\beta)$

则称 ν 是V上的范数.定义了范数的线性空间称为赋范线性空间.

Example

设V是内积空间.V上内积下的长度 $\| \bullet \|$ 是V上的一个范数.

Example

设V是内积空间.V上内积下的长度 $\| \bullet \|$ 是V上的一个范数.

因此,从现在起,在不致于引起混淆的情况下,任意线性空间上 的范数就记为||●||.

对任意
$$X = (x_1, x_2, \cdots, x_n) \in C^n$$
,

对任意
$$X=(x_1,x_2,\cdots,x_n)\in C^n$$
,

① 向量1-范数:
$$||X||_1 = \sum_{i=1}^n |x_i|$$

对任意
$$X = (x_1, x_2, \cdots, x_n) \in \mathbb{C}^n$$
,

- **①** 向量1-范数: $||X||_1 = \sum_{i=1}^n |x_i|$
- ② 向量2-范数: $||X||_2 = \sqrt{\sum_{i=1}^n |x_i|}$

对任意
$$X=(x_1,x_2,\cdots,x_n)\in C^n$$
,

- **①** 向量1-范数: $||X||_1 = \sum_{i=1}^n |x_i|$
- ② 向量2-范数: $||X||_2 = \sqrt{\sum_{i=1}^n |x_i|}$
- **⑤** 向量∞-范数: $||X||_{\infty} = \max_{1 \le i \le n} |x_i|$

 C^n 中更多的范数对任意 $X=(x_1,x_2,\cdots,x_n)\in C^n$,

 C^n 中更多的范数对任意 $X=(x_1,x_2,\cdots,x_n)\in C^n$,

1 $p \ge 1$ 时,有向量p-范数: $||X||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$

 C^n 中更多的范数对任意 $X=(x_1,x_2,\cdots,x_n)\in C^n$,

- **1** $p \ge 1$ 时,有向量p-范数: $||X||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$
- ② 如果 $\| \bullet \|$ 是已知的范数,A是一可逆矩阵,则 $\| X \|_A = \| AX \|$ 也是 C^n 上的一种范数.

线性空间V上的范数

设V是数域F上n维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是V的一组基, $\|\bullet\|$ 是 C^n 上已知的范数,据此可以定义V上的范数:

线性空间 V上的范数

设V是数域F上n维线性空间, $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是V的一组基, $\| \bullet \|$ 是 C^n 上已知的范数,据此可以定义V上的范数:若 $\eta \in V$ 在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的坐标是X,规定

线性空间 V上的范数

设V是数域F上n维线性空间, $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是V的一组基, $\|\bullet\|$ 是 C^n 上已知的范数,据此可以定义V上的范数:若 $\eta\in V$ 在基 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 下的坐标是X,规定

$$\|\eta\| = \|X\|$$

.

向量序列的收敛性

设 $\| \bullet \|$ 是V上的范数, $\{\eta_k\}_{k=1}^{\infty}$ 是V中的一个向量序列, $\eta_0 \in V$.如果

$$\lim_{k \to \infty} \|\eta_k - \eta_0\| = 0$$

向量序列的收敛性

设 $\| \bullet \|$ 是V上的范数, $\{\eta_k\}_{k=1}^{\infty}$ 是V中的一个向量序列, $\eta_0 \in V$.如果

$$\lim_{k \to \infty} \|\eta_k - \eta_0\| = 0$$

则称向量序列 $\{\eta_k\}_{k=1}^{\infty}$ 在范数 $\|\bullet\|$ 下收敛到 η_0 .

向量序列的收敛性

设 $\| \bullet \|$ 是V上的范数, $\{\eta_k\}_{k=1}^{\infty}$ 是V中的一个向量序列, $\eta_0 \in V$.如果

$$\lim_{k \to \infty} \|\eta_k - \eta_0\| = 0$$

则称向量序列 $\{\eta_k\}_{k=1}^{\infty}$ 在范数 $\|\bullet\|$ 下收敛到 η_0 . 记为

$$\lim_{k \to \infty} \eta_k = \eta_0$$

范数的可比较性

Definition

范数的可比较性

Definition

Theorem

有限维赋范线性空间V上任意两个范数都是可比较的.

矩阵 p-范数:

矩阵 p-范数:

$$||A||_{m_1} = \sum_{i,j} |a_{ij}|;$$

矩阵 p-范数:

$$||A||_{m_1} = \sum_{i,j} |a_{ij}|;$$

$$||A||_{m_2} = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} = \left(trA^H A\right)^{1/2} = \left(trAA^H\right)^{1/2}$$

矩阵 p-范数:

$$||A||_{m_1} = \sum_{i,j} |a_{ij}|;$$

$$||A||_{m_2} = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} = \left(trA^H A\right)^{1/2} = \left(trAA^H\right)^{1/2}$$
$$||A||_{m_\infty} = \max_{i,j} \{|a_{ij}|\},$$

矩阵 p-范数:

设矩阵 $A = (a_{ij})_{m \times n}$,则有下列矩阵范数:

$$||A||_{m_1} = \sum_{i,j} |a_{ij}|;$$

$$||A||_{m_2} = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} = \left(trA^H A\right)^{1/2} = \left(trAA^H\right)^{1/2}$$
$$||A||_{m_\infty} = \max_{i,j} \{|a_{ij}|\},$$

 $||A||_{m_2}$ 又记为 $||A||_F$, 称为Frobenius范数,简称F范数.

矩阵 p-范数:

设矩阵 $A = (a_{ij})_{m \times n}$,则有下列矩阵范数:

$$||A||_{m_1} = \sum_{i,j} |a_{ij}|;$$

$$||A||_{m_2} = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} = \left(trA^H A\right)^{1/2} = \left(trAA^H\right)^{1/2}$$
$$||A||_{m_\infty} = \max_{i,j} \{|a_{ij}|\},$$

 $||A||_{m_0}$ 又记为 $||A||_F$,称为Frobenius范数,简称F范数.

F范数是酉不变的:若 U,V是酉矩阵,则 $\|A\|_F = \|UAV\|_F$.

范数的相容性

Definition

设 $\mathbb{C}^{s \times m}, \mathbb{C}^{m \times n}, \mathbb{C}^{s \times n}$ 中定义了范数 $\| ullet \|_a, \| ullet \|_b, \| ullet \|_c,$ 若 对 $\forall A \in \mathbb{C}^{s \times m}, \ B \in \mathbb{C}^{m \times n},$

$$||AB||_c \le ||A||_a ||B||_b$$
,

则称范数 $\|\bullet\|_a$, $\|\bullet\|_b$, $\|\bullet\|_c$ 是相容的.

范数的相容性

Definition

设 $\mathbb{C}^{s \times m}, \mathbb{C}^{m \times n}, \mathbb{C}^{s \times n}$ 中定义了范数 $\| ullet \|_a, \| ullet \|_b, \| ullet \|_c,$ 若 对 $\forall A \in \mathbb{C}^{s \times m}, B \in \mathbb{C}^{m \times n},$

$$||AB||_c \le ||A||_a \, ||B||_b$$
,

则称范数 $\|\bullet\|_a$, $\|\bullet\|_b$, $\|\bullet\|_c$ 是相容的.

Theorem

 $\|\bullet\|_{m_1}, \|\bullet\|_{m_2}$ 是相容的, $\|\bullet\|_{m_{\infty}}$ 是不相容的.

算子范数

设 $\|\bullet\|_{\nu_n}$, $\|\bullet\|_{\nu_m}$ 分别是 \mathbb{C}^n , \mathbb{C}^m 上的范数,定义 $\mathbb{C}^{m\times n}$ 上的实值函数 $\|\bullet\|$:

$$||A|| = \max_{\theta \neq X \in C^n} \frac{||AX||_{\nu_m}}{||X||_{\nu_n}}$$

设 $\|\bullet\|_{\nu_n}, \|\bullet\|_{\nu_m}$ 分别是 $\mathbb{C}^n, \mathbb{C}^m$ 上的范数,定义 $\mathbb{C}^{m\times n}$ 上的实值函数 $\|\bullet\|$:

$$\|A\| = \max_{\theta \neq X \in C^n} \frac{\|AX\|_{\nu_m}}{\|X\|_{\nu_n}}$$

称 ||•|| 是由 ||•||_{ν_n}, ||•||_{ν_m} 诱导的算子范数.

设 $\|\bullet\|_{\nu_n}, \|\bullet\|_{\nu_m}$ 分别是 $\mathbb{C}^n, \mathbb{C}^m$ 上的范数,定义 $\mathbb{C}^{m\times n}$ 上的实值函数 $\|\bullet\|$:

$$\|A\| = \max_{\theta \neq X \in C^n} \frac{\|AX\|_{\nu_m}}{\|X\|_{\nu_n}}$$

称 $\| \bullet \|$ 是由 $\| \bullet \|_{\nu_n}$, $\| \bullet \|_{\nu_m}$ 诱导的算子范数. 问题:

(1), ||A|| 是否有意义?

设 $\|\bullet\|_{\nu_n}, \|\bullet\|_{\nu_m}$ 分别是 $\mathbb{C}^n, \mathbb{C}^m$ 上的范数,定义 $\mathbb{C}^{m\times n}$ 上的实值函数 $\|\bullet\|$:

$$||A|| = \max_{\theta \neq X \in C^n} \frac{||AX||_{\nu_m}}{||X||_{\nu_n}}$$

称 ‖•‖ 是由 ‖•‖ $_{
u_n}$,‖•‖ $_{
u_m}$ 诱导的算子范数. 问题:

- (1), ||A|| 是否有意义?
- (2), ||*A*|| 是否满足范数公理?

设 $\|\bullet\|_{\nu_n}, \|\bullet\|_{\nu_m}$ 分别是 $\mathbb{C}^n, \mathbb{C}^m$ 上的范数,定义 $\mathbb{C}^{m\times n}$ 上的实值函数 $\|\bullet\|$:

$$\|A\| = \max_{\theta \neq X \in C^n} \frac{\|AX\|_{\nu_m}}{\|X\|_{\nu_n}}$$

称 $\| \bullet \|$ 是由 $\| \bullet \|_{\nu_n}$, $\| \bullet \|_{\nu_m}$ 诱导的算子范数. 问题:

- (1), ||A|| 是否有意义?
- (2), ||*A*|| **是否满足范数公理**?

Theorem

算子范数一定是相容的矩阵范数.

 $\|ullet\|_1,\ \|ullet\|_2,\ \|ullet\|_\infty$ 诱导的 A 的算子1-范数,算子2-范数,算子 ∞ -范数,分别记为 $\|A\|_1,\ \|A\|_2,\ \|A\|_\infty$.

 $\|\bullet\|_1,\ \|\bullet\|_2,\ \|\bullet\|_\infty$ 诱导的 A 的算子范数分别被称为 A 的算子1-范数,算子2-范数,算子 ∞ -范数,分别记为 $\|A\|_1,\ \|A\|_2,\ \|A\|_\infty$.

Theorem

设
$$A = (a_{ij})_{s \times n}$$
,则

$$||A||_1 = \max_{1 \le j \le n} \left\{ \sum_{i=1}^s |a_{ij}| \right\}, \quad$$
列模和范数;

 $\|ullet\|_1,\ \|ullet\|_2,\ \|ullet\|_\infty$ 诱导的 A 的算子1-范数,算子2-范数,算子 ∞ -范数,分别记为 $\|A\|_1,\ \|A\|_2,\ \|A\|_\infty$.

Theorem

设
$$A = (a_{ij})_{s \times n}$$
,则

$$\|A\|_1 = \max_{1 \leq j \leq n} \left\{ \sum_{i=1}^s |a_{ij}| \right\}, \quad 列模和范数;$$

$$\|A\|_2 = \sqrt{
ho(A^HA)},$$
 谱范数;

 $\|ullet\|_1,\ \|ullet\|_2,\ \|ullet\|_\infty$ 诱导的 A 的算子1-范数,算子2-范数,算子 ∞ -范数,分别记为 $\|A\|_1,\ \|A\|_2,\ \|A\|_\infty$.

Theorem

设
$$A = (a_{ij})_{s \times n}$$
,则

$$\|A\|_1 = \max_{1 \leq j \leq n} \left\{ \sum_{i=1}^s |a_{ij}|
ight\}, \quad$$
列模和范数;

$$\|A\|_2 = \sqrt{
ho(A^H A)},$$
 谱范数;

$$\|A\|_{\infty} = \max_{1 \leq i \leq s} \left\{ \sum_{j=1}^{n} |a_{ij}| \right\},$$
 行模和范数.

◆ロト ◆昼 ▶ ◆差 ▶ ◆差 ● めのの

Example

设 A 是酉矩阵, 证明: $||A||_2 = 1$.

Example

设 A 是酉矩阵,证明: $||A||_2 = 1$.

Example

若 A 是正规阵,证明: $||A||_2 = \rho(A)$.

Example

设 A 是酉矩阵, 证明: $||A||_2 = 1$.

Example

若 A 是正规阵,证明: $||A||_2 = \rho(A)$.

Example

设
$$\|A\|_F = a$$
, $\|B\|_F = b$, $\|A\|_2 = c$, $\|B\|_2 = d$, $M = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$, 求 $\|M\|_F$ 及 $\|M\|_2$.

4ロト 4個ト 4절ト 4절ト 절 かなべ

矩阵序列的收敛性

Definition

设矩阵序列
$$\left\{A_k
ight\}_{1\leq k\leq +\infty}, A_k=\left(a_{ij}^{(k)}
ight)_{n imes n},$$
 如

设矩阵序列
$$\left\{A_k\right\}_{1\leq k\leq +\infty}, A_k = \left(a_{ij}^{(k)}\right)_{n\times n},$$
 如果 $A=\left(a_{ij}\right)_{n\times n},$ 且 $\forall\,i,j,\lim_{k\to\infty}a_{ij}^{(k)}=a_{ij},$ 则称 $\lim_{k\to\infty}A_k=A.$

矩阵序列的收敛性

Definition

设矩阵序列
$$\left\{A_k\right\}_{1\leq k\leq +\infty}, A_k = \left(a_{ij}^{(k)}\right)_{n\times n},$$
 如果 $A=\left(a_{ij}\right)_{n\times n},$ 且 $\forall\,i,j,\lim_{k\to\infty}a_{ij}^{(k)}=a_{ij},$ 则称 $\lim_{k\to\infty}A_k=A.$

可以证明: 若 ||●|| 是一矩阵范数,则

$$\lim_{k \to \infty} A_k = A \Leftrightarrow \lim_{k \to \infty} ||A_k - A|| = 0.$$

幂序列

对给定的方阵 A,考虑方阵序列 $\{A^k\}$.

幂序列

对给定的方阵 A,考虑方阵序列 $\{A^k\}$.

Theorem

若有相容矩阵范数 $\| \bullet \|$,使得 $\| A \| < 1$,则 $\lim_{k \to \infty} A^k = O$.

幂序列

对给定的方阵 A,考虑方阵序列 $\{A^k\}$.

Theorem

若有相容矩阵范数 $\| ullet \|$,使得 $\| A \| < 1$,则 $\lim_{k \to \infty} A^k = O$.

Theorem

$$\lim_{k \to \infty} A^k = O \Leftrightarrow \rho(A) < 1.$$

Theorem

若 $\|\bullet\|$ 是相容矩阵范数,则 $\rho(A) \leq \|A\|$.

Theorem

若 $\|\bullet\|$ 是相容矩阵范数,则 $\rho(A) \leq \|A\|$.

Theorem

对任意矩阵 $A \in \mathbb{C}^{n \times n}$,若 $\varepsilon > 0$,则一定存在 $\mathbb{C}^{n \times n}$ 上相容矩阵 范数 $\| \bullet \|$,使得 $\| A \| < \rho(A) + \varepsilon$.

矩阵幂级数

设 A 是方阵,对于幂级数

$$\sum_{i=0}^{+\infty} a_i x^i, \quad f_n(x) = \sum_{i=0}^{n} a_i x^i,$$

矩阵幂级数

设 A 是方阵,对于幂级数

$$\sum_{i=0}^{+\infty} a_i x^i, \quad f_n(x) = \sum_{i=0}^{n} a_i x^i,$$

若矩阵序列 $\{f_n(A)\}$ 收敛于矩阵 M,则称矩阵幂级数 $\sum_{i=0}^{+\infty} a_i A^i$ 收敛于 M.

矩阵幂级数

设 A 是方阵,对于幂级数

$$\sum_{i=0}^{+\infty} a_i x^i, \quad f_n(x) = \sum_{i=0}^{n} a_i x^i,$$

若矩阵序列 $\{f_n(A)\}$ 收敛于矩阵 M,则称矩阵幂级数 $\sum\limits_{i=0}^{+\infty}a_iA^i$ 收敛于 M.

Theorem

若幂级数 $\sum_{i=0}^{+\infty} a_i x^i$ 的收敛半径为 r,则

当
$$\rho(A) < r$$
 时,矩阵幂级数 $\sum_{i=0}^{+\infty} a_i A^i$ 收敛;

当 $\rho(A) > r$ 时,矩阵幂级数 $\sum_{i=0}^{+\infty} a_i A^i$ 发散.

矩阵函数

设函数 f(x) 可以展开成幂级数

$$f(x) = \sum_{i=0}^{+\infty} a_i x^i, |x| < R,$$

矩阵函数

设函数 f(x) 可以展开成幂级数

$$f(x) = \sum_{i=0}^{+\infty} a_i x^i, |x| < R,$$

设 $A \in C^{n \times n}$, 且 $\rho(A) < R$, 定义

$$f(A) = \sum_{i=0}^{+\infty} a_i A^i = \lim_{n \to +\infty} \sum_{i=0}^{n} a_i A^i.$$

矩阵函数

设函数 f(x) 可以展开成幂级数

$$f(x) = \sum_{i=0}^{+\infty} a_i x^i, |x| < R,$$

设 $A \in C^{n \times n}$, 且 $\rho(A) < R$, 定义

$$f(A) = \sum_{i=0}^{+\infty} a_i A^i = \lim_{n \to +\infty} \sum_{i=0}^{n} a_i A^i.$$

$$e^x = \sum_{i=0}^{+\infty} \frac{x^i}{i!};$$

$$e^x = \sum_{i=0}^{+\infty} \frac{x^i}{i!};$$

$$\sin x = \sum_{i=0}^{+\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!};$$

$$e^{x} = \sum_{i=0}^{+\infty} \frac{x^{i}}{i!};$$

$$\sin x = \sum_{i=0}^{+\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!};$$

$$\cos x = \sum_{i=0}^{+\infty} (-1)^{i} \frac{x^{2i}}{(2i)!}$$

利用定义计算

Example

设
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
,求 e^A .

利用定义计算

Example

设
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
,求 e^A .

Example

设
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
,求 $\sin A$.

Jordan形矩阵的函数

假设

$$f(x) = \sum_{k=0}^{\infty} a_k x^k = \lim_{n \to \infty} f_n(x)$$

其中
$$f_n(x) = \sum_{k=0}^n a_k x^k$$
.

Jordan形矩阵的函数

假设

$$f(x) = \sum_{k=0}^{\infty} a_k x^k = \lim_{n \to \infty} f_n(x)$$

其中
$$f_n(x) = \sum_{k=0}^n a_k x^k$$
.

$$J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix}$$

$$f_n(J) = \begin{pmatrix} f_n(J_1) & & & \\ & f_n(J_2) & & \\ & & \ddots & \\ & & & f_n(J_s) \end{pmatrix}$$

$$f_n(J) = \begin{pmatrix} f_n(J_1) & & & \\ & f_n(J_2) & & \\ & & \ddots & \\ & & & f_n(J_s) \end{pmatrix}$$

令 $n \to \infty$, 得

$$f(J) = \begin{pmatrix} f(J_1) & & & \\ & f(J_2) & & \\ & & \ddots & \\ & & f(J_s) \end{pmatrix}$$

Jordan块的函数

设
$$n \times n$$
 若当块 $J_0 = \begin{pmatrix} \lambda_0 & 1 & & \\ & \lambda_0 & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_0 \end{pmatrix}$

Jordan块的函数

设
$$n \times n$$
 若当块 $J_0 = \begin{pmatrix} \lambda_0 & \ddots & \\ & \lambda_0 & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_0 \end{pmatrix}$, 则
$$f_k(J_0) = \begin{pmatrix} f_k(\lambda_0) & \frac{f_k'(\lambda_0)}{1!} & \frac{f_k''(\lambda_0)}{2!} & \cdots & \frac{f_k^{(n-2)}(\lambda_0)}{(n-2)!} & \frac{f_k^{(n-1)}(\lambda_0)}{(n-1)!} \\ 0 & f_k(\lambda_0) & \frac{f_k'(\lambda_0)}{1!} & \ddots & \cdots & \frac{f_k^{(n-2)}(\lambda_0)}{(n-2)!} \\ 0 & 0 & f_k(\lambda_0) & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \frac{f_k''(\lambda_0)}{2!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \frac{f_k''(\lambda_0)}{1!} \\ 0 & 0 & 0 & \cdots & \cdots & f_k(\lambda_0) \end{pmatrix}$$

Jordan块的函数

$$f(J_0) = \begin{pmatrix} f(\lambda_0) & \frac{f'(\lambda_0)}{1!} & \frac{f''(\lambda_0)}{2!} & \cdots & \frac{f^{(n-2)}(\lambda_0)}{(n-2)!} & \frac{f^{(n-1)}(\lambda_0)}{(n-1)!} \\ 0 & f(\lambda_0) & \frac{f'(\lambda_0)}{1!} & \ddots & \cdots & \frac{f^{(n-2)}(\lambda_0)}{(n-2)!} \\ 0 & 0 & f(\lambda_0) & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \ddots & \frac{f''(\lambda_0)}{2!} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \frac{f''(\lambda_0)}{1!} \\ 0 & 0 & 0 & \cdots & \cdots & f(\lambda_0) \end{pmatrix}$$

设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
, 求 e^A , $\sin A$, $\sin At$.

利用Jordan标准形计算

Theorem

设矩阵 A 的Jordan标准形是

$$P^{-1}AP = J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix}$$

则

$$f(A) = Pf(J)P^{-1}.$$

已知
$$A = \begin{pmatrix} a & 0 & 2 \\ 0 & a & 3 \\ 0 & 0 & a \end{pmatrix}$$
, 求 $\sin A$, $\sin At$.

已知
$$A = \begin{pmatrix} a & 0 & 2 \\ 0 & a & 3 \\ 0 & 0 & a \end{pmatrix}$$
, 求 $\sin A$, $\sin At$.

可以求得
$$J = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}, P = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

己知 $n \times n$ 矩阵 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 f(A) 的特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$.

己知 $n \times n$ 矩阵 A 的特征值为 $\lambda_1, \lambda_2, \dots, \lambda_n$, 则 f(A) 的特征值为 $f(\lambda_1), f(\lambda_2), \dots, f(\lambda_n)$.

Example

设 $A \in n \times n$ 矩阵, 证明: $\det e^A = e^{trA}$.

待定系数法

设矩阵A的Jordan标准形是

$$P^{-1}AP = J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix}$$

待定系数法

设矩阵A的Jordan标准形是

$$P^{-1}AP = J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix}$$

则:
$$f(A) = Pf(J)P^{-1}$$
,

待定系数法

设矩阵A的Jordan标准形是

$$P^{-1}AP = J = \begin{pmatrix} J_1 & & & \\ & J_2 & & \\ & & \ddots & \\ & & & J_s \end{pmatrix}$$

則:
$$f(A) = Pf(J)P^{-1}$$
,
其中, $f(J) = \begin{pmatrix} f(J_1) & & & \\ & f(J_2) & & \\ & & \ddots & \\ & & f(J_s) \end{pmatrix}$.

若
$$A$$
 的最小多项式为 $m(\lambda) = \prod\limits_{i=1}^s (\lambda - \lambda_i)^{t_i}$,

若
$$A$$
 的最小多项式为 $m(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{t_i}$,则

若
$$A$$
 的最小多项式为 $m(\lambda) = \prod\limits_{i=1}^{s} (\lambda - \lambda_i)^{t_i}$,则

$$f(A) = g(A) \Leftrightarrow$$

若
$$A$$
 的最小多项式为 $m(\lambda) = \prod\limits_{i=1}^s (\lambda - \lambda_i)^{t_i}$,则 $f(A) = g(A) \Leftrightarrow$ 对每个特征值 λ_i ,

若
$$A$$
 的最小多项式为 $m(\lambda) = \prod\limits_{i=1}^{s} (\lambda - \lambda_i)^{t_i}$,则

$$f(A) = g(A) \Leftrightarrow$$
对每个特征值 λ_i ,

$$f(\lambda_i) = g(\lambda_i),$$

若 A 的最小多项式为 $m(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{t_i}$,则

$$f(A) = g(A) \Leftrightarrow$$
对每个特征值 λ_i ,

$$f(\lambda_i) = g(\lambda_i),$$

$$f'(\lambda_i) = g'(\lambda_i),$$

若 A 的最小多项式为 $m(\lambda) = \prod_{i=1}^{s} (\lambda - \lambda_i)^{t_i}$,则

$$f(A) = g(A) \Leftrightarrow$$
对每个特征值 λ_i ,

$$f(\lambda_i) = g(\lambda_i),$$

$$f'(\lambda_i) = g'(\lambda_i),$$

• • • ,

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ からで

若 A 的最小多项式为 $m(\lambda) = \prod\limits_{i=1}^s (\lambda - \lambda_i)^{t_i}$,则

$$f(A) = g(A) \Leftrightarrow$$
 对每个特征值 λ_i ,

$$f(\lambda_i) = g(\lambda_i),$$

$$f'(\lambda_i) = g'(\lambda_i),$$

...,

$$f^{(t_i-1)}(\lambda_i) = g^{(t_i-1)}(\lambda_i).$$

已知
$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$
,求 e^A 及 e^{At} .

已知
$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$
,求 e^A 及 e^{At} .

Example

设
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, 求 $\sin At$.

Theorem

设 $A, B \in C^{n \times n}$, $O \in \mathbb{R}$ $E \times n$ 零矩阵,

Theorem

设 $A,B \in C^{n \times n},\ O$ 是 $n \times n$ 零矩阵,则:

$$e^{O} = I;$$

Theorem

设 $A, B \in C^{n \times n}$, $O \in n \times n$ 零矩阵, 则:

- $e^{O} = I;$
- ② 若AB = BA,则 $e^A e^B = e^B e^A = e^{A+B}$:

Theorem

设 $A, B \in C^{n \times n}$, O 是 $n \times n$ 零矩阵, 则:

- $e^{O} = I;$
- ② 若AB = BA,则 $e^A e^B = e^B e^A = e^{A+B}$;
- $(e^A)^{-1} = e^{-A}$.

假设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
,求 e^A .

假设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
,求 e^A .

Example

假设 A 是Hermite阵, 证明: e^{iA} 是酉矩阵.

假设
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$
,求 e^A .

Example

假设 A 是Hermite阵,证明: e^{iA} 是酉矩阵.

注:并非对任意矩阵 A, B, 均有 $e^{A+B}=e^A\cdot e^B$.

设矩阵 $A(t) = (a_{ij}(t))$, 其中, $a_{ij}(t)$ 是关于 t 的可微函数,

设矩阵 $A(t) = (a_{ij}(t))$, 其中, $a_{ij}(t)$ 是关于 t 的可微函数,

$$\frac{dA(t)}{dt} = \left(\frac{da_{ij}(t)}{dt}\right); \quad \int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right).$$

设矩阵 $A(t) = (a_{ij}(t))$, 其中, $a_{ij}(t)$ 是关于 t 的可微函数,

$$\frac{dA(t)}{dt} = \left(\frac{da_{ij}(t)}{dt}\right); \quad \int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right).$$

$$(1)\frac{d}{dt}(A(t) + B(t)) = \frac{d}{dt}A(t) + \frac{d}{dt}B(t);$$

设矩阵 $A(t) = (a_{ij}(t))$, 其中, $a_{ij}(t)$ 是关于 t 的可微函数,

$$\frac{dA(t)}{dt} = \left(\frac{da_{ij}(t)}{dt}\right); \quad \int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right).$$

$$(1) \frac{d}{dt}(A(t) + B(t)) = \frac{d}{dt}A(t) + \frac{d}{dt}B(t);$$

$$(2) \frac{d}{dt}(A(t)B(t)) = (\frac{d}{dt}A(t))B(t) + A(t)(\frac{d}{dt}B(t));$$

设矩阵 $A(t) = (a_{ij}(t))$, 其中, $a_{ij}(t)$ 是关于 t 的可微函数,

$$\frac{dA(t)}{dt} = \left(\frac{da_{ij}(t)}{dt}\right); \quad \int_a^b A(t)dt = \left(\int_a^b a_{ij}(t)dt\right).$$

$$\begin{split} (1)\,\frac{d}{dt}(A(t)+B(t)) &= \frac{d}{dt}A(t) + \frac{d}{dt}B(t);\\ (2)\,\frac{d}{dt}(A(t)B(t)) &= (\frac{d}{dt}A(t))B(t) + A(t)(\frac{d}{dt}B(t));\\ (3)\,\frac{d}{dt}e^{At} &= Ae^{At} = e^{At}A. \end{split}$$

$$(3) \frac{d}{dt}e^{At} = Ae^{At} = e^{At}A.$$

常系数线性微分方程组

微分方程的初值问题:
$$\begin{cases} \frac{dx(t)}{dt} = ax(t) & \text{有唯一解: } x(t) = be^{at}. \\ x(0) = b \end{cases}$$

常系数线性微分方程组

微分方程的初值问题:
$$\begin{cases} \frac{dx(t)}{dt} = ax(t) \\ x(0) = b \end{cases}$$
 有唯一解: $x(t) = be^{at}$.

设 a_{ij} 均是常数,考虑关于未定函数 $x_1(t), x_2(t), \cdots, x_n(t)$ 的微分方程组:

常系数线性微分方程组

微分方程的初值问题:
$$\begin{cases} \frac{dx(t)}{dt} = ax(t) \\ x(0) = b \end{cases}$$
 有唯一解: $x(t) = be^{at}$.

设 a_{ij} 均是常数,考虑关于未定函数 $x_1(t), x_2(t), \cdots, x_n(t)$ 的微分方程组:

如果记:

如果记:

$$A = (a_{ij})_{n \times n}, X(t) = (x_1(t) x_2(t) \cdots x_n(t))^T,$$

如果记:

$$A = (a_{ij})_{n \times n}, X(t) = \left(x_1(t) x_2(t) \cdots x_n(t)\right)^T,$$
则这个方程组可以写成矩阵方程的形式:

$$\frac{d}{dt}X(t) = AX(t).$$

常系数线性微分方程

Theorem

假设 A, X(t) 如前, X_0 是己知的 n 维列向量,则初值问题

$$\begin{cases} \frac{d}{dt}X(t) = AX(t) \\ X(0) = X_0 \end{cases}$$

有唯一解

$$X(t) = e^{At}X_0.$$