

Altruism?

Scores for a standardized test that students in Poland are required to pass before moving on in school

See if you can guess the minimum score to pass the test.

2.1. Poziom podstawowy

Wykres 1. Rozkład wyników na poziomie podstawowym

Independent Discrete Variables

 Two discrete random variables X and Y are called <u>independent</u> if:

$$p(x, y) = p_X(x)p_Y(y)$$
 for all x, y

- Intuitively: knowing the value of X tells us nothing about the distribution of Y (and vice versa)
 - If two variables are <u>not</u> independent, they are called <u>dependent</u>
- Similar conceptually to independent events, but we are dealing with multiple <u>variables</u>
 - Keep your events and variables distinct (and clear)!

Independent Continuous Variables

 Two continuous random variables X and Y are called <u>independent</u> if:

$$P(X \le a, Y \le b) = P(X \le a) P(Y \le b)$$
 for any a, b

Equivalently:

$$F_{X,Y}(a,b) = F_X(a)F_Y(b)$$
 for all a,b
 $f_{X,Y}(a,b) = f_X(a)f_Y(b)$ for all a,b

More generally, joint density factors separately:

$$f_{X,Y}(x,y) = h(x)g(y)$$
 where $-\infty < x, y < \infty$

Independence is Symmetric

- If random variables X and Y independent, then
 - X independent of Y, and Y independent of X
- Duh!? Duh, indeed...
 - Let X₁, X₂, ... be a sequence of independent and identically distributed (I.I.D.) continuous random vars
 - Say $X_n > X_i$ for all i = 1,..., n 1 (i.e. $X_n = \max(X_1, ..., X_n)$)
 - Call X_n a "record value"
 - Let event A_i indicate X_i is "record value"
 - $_{\circ}$ Is A_{n+1} independent of A_n ?
 - $_{\circ}$ Is A_n independent of A_{n+1} ?
 - Easier to answer: Yes!
 - $_{\circ}$ By symmetry, $P(A_n) = 1/n$ and $P(A_{n+1}) = 1/(n+1)$
 - \circ P(A_n A_{n+1}) = (1/n)(1/(n+1)) = P(A_n)P(A_{n+1})

Choosing a Random Subset

Original Set (size *n*)

Subset (size *k*)

Choosing a Random Subset

- From set of n elements, choose a subset of size k such that all $\binom{n}{k}$ possibilities are <u>equally</u> likely

 Only have <u>random()</u>, which simulates X ~ Uni(0, 1)
- Brute force:
 - Generate (an ordering of) all subsets of size k
 - Randomly pick one (divide (0, 1) into ⁿ_k intervals)
 Expensive with regard to time and space

 - Bad times!

(Happily) Choosing a Random Subset

Good times:

```
int indicator(double p) {
         if (random() < p) return 1; else return 0;</pre>
      }
      subset rSubset(k, set of size n) {
         subset size = 0;
         I[1] = indicator((double)k/n);
         for (i = 1; i < n; i++) {
             subset size += I[i];
             I[i+1] = indicator((k - subset size)/(n - i));
         return (subset containing element[i] iff I[i] == 1);
P(I[1] = 1) = \frac{k}{n} and P(I[i+1] = 1 | I[1],...,I[i]) = \frac{k - \sum_{j=1}^{l} I[j]}{n-i} where 1 < i < n
```

Random Subsets the Happy Way

- Proof (Induction on (k + n)): (i.e., why this algorithm works)
 - Base Case: k = 1, n = 1, Set $S = \{a\}$, rsubset returns $\{a\}$ with $p=1/\binom{1}{1}$
 - Inductive Hypoth. (IH): for $k + x \le c$, Given set S, |S| = x and $k \le x$, rsubset returns any subset S' of S, where |S'| = k, with $p = 1/\binom{x}{k}$
 - Inductive Case 1: (where $k + n \le c + 1$) |S| = n (= x + 1), I[1] = 1
 - $_{\circ}\;$ Elem 1 in subset, choose k 1 elems from remaining n 1
 - o By IH: rsubset returns subset S' of size k 1 with p = $1/\binom{n-1}{k-1}$ o P(I[1] = 1, subset S') = $\frac{k}{n} \cdot 1/\binom{n-1}{k-1} = 1/\binom{n}{k}$
 - Inductive Case 2: (where $k + n \le c + 1$) |S| = n (= x + 1), I[1]
 - Elem 1 not in subset, choose k elems from remaining n 1
 - _ο By IH: rsubset returns subset S' of size k with $p = 1/\binom{n-1}{k}$
 - o P(I[1] = 0, subset S') = $\left(1 \frac{k}{n}\right) \cdot 1 / {n-1 \choose k} = \left(\frac{n-k}{n}\right) \cdot 1 / {n-1 \choose k} = 1 / {n \choose k}$

Choosing a Random Subset

Original Set (size *n*)

Subset (size *k*)

Case 1

Original Set (size *n*)

Subset (size *k*)

Case 1

Original Set (size *n-1*)

By induction we know that all subsamples of size k-1 from n-1 are equally likely

$$P(\text{subset}) = \frac{k}{n} \cdot 1 / {\binom{n-1}{k-1}} = 1 / {\binom{n}{k}}$$

Choosing a Random Subset

Original Set (size *n*)

Subset (size *k*)

Case 2

Original Set (size *n-1*)

Subset (size *k*)

By induction we know that all subsamples of size k from n-1 are equally likely

$$P(\text{subset}) = \left(1 - \frac{k}{n}\right) \cdot 1 / {\binom{n-1}{k}} = \left(\frac{n-k}{n}\right) \cdot 1 / {\binom{n-1}{k}} = 1 / {\binom{n}{k}}$$

All combinations are in either case. Each combination in the cases are equally likely

End Review

What happens when you add random variables?

Sum of Independent Binomials

- Let X and Y be independent random variables
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
- Intuition:
 - X has n₁ trials and Y has n₂ trials
 - Each trial has same "success" probability p
 - Define Z to be $n_1 + n_2$ trials, each with success prob. p
 - $Z \sim Bin(n_1 + n_2, p)$, and also Z = X + Y
- More generally: $X_i \sim Bin(n_i, p)$ for $1 \le i \le N$

$$\left(\sum_{i=1}^{N} X_i\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_i, p\right)$$

Sum of Independent Poissons

- Let X and Y be independent random variables
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
- Proof: (just for reference)
 - Rewrite (X + Y = n) as (X = k, Y = n k) where $0 \le k \le n$

$$P(X+Y=n) = \sum_{k=0}^{n} P(X=k, Y=n-k) = \sum_{k=0}^{n} P(X=k)P(Y=n-k)$$

$$=\sum_{k=0}^{n}e^{-\lambda_{1}}\frac{\lambda_{1}^{k}}{k!}e^{-\lambda_{2}}\frac{\lambda_{2}^{n-k}}{(n-k)!}=e^{-(\lambda_{1}+\lambda_{2})}\sum_{k=0}^{n}\frac{\lambda_{1}^{k}\lambda_{2}^{n-k}}{k!(n-k)!}=\frac{e^{-(\lambda_{1}+\lambda_{2})}}{n!}\sum_{k=0}^{n}\frac{n!}{k!(n-k)!}\lambda_{1}^{k}\lambda_{2}^{n-k}$$

- Noting Binomial theorem: $(\lambda_1 + \lambda_2)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \lambda_1^k \lambda_2^{n-k}$ $P(X+Y=n) = \frac{e^{-(\lambda_1+\lambda_2)}}{n!} (\lambda_1 + \lambda_2)^n$ so, $X+Y=n \sim \text{Poi}(\lambda_1 + \lambda_2)$

Reference: Sum of Independent RVs

- Let X and Y be independent Binomial RVs
 - $X \sim Bin(n_1, p)$ and $Y \sim Bin(n_2, p)$
 - $X + Y \sim Bin(n_1 + n_2, p)$
 - More generally, let $X_i \sim Bin(n_i, p)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_i\right) \sim \operatorname{Bin}\left(\sum_{i=1}^{N} n_i, p\right)$$

- Let X and Y be independent Poisson RVs
 - $X \sim Poi(\lambda_1)$ and $Y \sim Poi(\lambda_2)$
 - $X + Y \sim Poi(\lambda_1 + \lambda_2)$
 - More generally, let $X_i \sim Poi(\lambda_i)$ for $1 \le i \le N$, then

$$\left(\sum_{i=1}^{N} X_{i}\right) \sim \operatorname{Poi}\left(\sum_{i=1}^{N} \lambda_{i}\right)$$

If only it were always that simple

Convolution of Probability Distributions

We talked about sum of Binomial and Poisson...who's missing from this party?

Uniform.

Summation: not just for the 1%

Dance, Dance Convolution

- Let X and Y be independent random variables
 - Cumulative Distribution Function (CDF) of X + Y:

$$F_{X+Y}(a) = P(X+Y \le a)$$

$$= \iint_{x+y \le a} f_X(x) f_Y(y) dx dy = \int_{y=-\infty}^{\infty} \int_{x=-\infty}^{a-y} f_X(x) dx f_Y(y) dy$$

$$= \int_{y=-\infty}^{\infty} F_X(a-y) f_Y(y) dy$$
PDF of Y

- F_{X+Y} is called **convolution** of F_X and F_Y
- Probability Density Function (PDF) of X + Y, analogous:

$$f_{X+Y}(a) = \int_{y=-\infty}^{\infty} f_X(a-y) f_Y(y) dy$$

• In discrete case, replace $\int_{y=-\infty}$ with \sum_{y} , and f(y) with p(y)

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$

For both X and Y

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$

• What is PDF of X + Y?
$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 0.5:

$$f_{X+Y}(0.5) = \int_{y=?}^{y=?} f_X(0.5 - y) dy \qquad f_{X+Y}(a)$$

$$= \int_0^{0.5} f_X(0.5 - y) dy$$

$$= \int_0^{0.5} 1 dy$$

$$= 0.5$$

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$

• What is PDF of X + Y?
$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 1.5:

$$f_{X+Y}(1.5) = \int_{y=?}^{y=?} f_X(1.5-y)dy \qquad f_{X+Y}(a)$$

$$= \int_{0.5}^{1} f_X(1.5-y)dy$$

$$= \int_{0.5}^{1} 1dy$$

$$= 0.5$$

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$

• What is PDF of X + Y?
$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$

When a = 1:

Then
$$a = 1$$
:
$$f_{X+Y}(1) = \int_{y=?}^{y=?} f_X(1-y) dy$$

$$= \int_0^1 f_X(1-y) dy$$

$$= \int_0^1 1 dy$$

$$= 1$$

- Let X and Y be independent random variables
 - $X \sim \text{Uni}(0, 1)$ and $Y \sim \text{Uni}(0, 1) \rightarrow f(x) = 1$ for $0 \le x \le 1$

■ What is PDF of X + Y?
$$f_{X+Y}(a) = \int_{y=0}^{1} f_X(a-y) f_Y(y) dy = \int_{y=0}^{1} f_X(a-y) dy$$
■ When $0 \le a \le 1$ and $0 \le y \le a$, $0 \le a-y \le 1 \rightarrow f_X(a-y) = 1$

$$f_{X+Y}(a) = \int_{y=0}^{a} dy = a$$

• When $1 \le a \le 2$ and $a-1 \le y \le 1$, $0 \le a-y \le 1 \to f_X(a-y) = 1$

$$f_{X+Y}(a) = \int_{y=a-1}^{1} dy = 2-a \qquad f_{X+Y}(a)$$
• Combining: $f_{X+Y}(a) = \begin{cases} a & 0 \le a \le 1 \\ 2-a & 1 < a \le 2 \\ 0 & \text{otherwise} \end{cases}$

Sum of Independent Normals

- Let X and Y be independent random variables
 - $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$
 - $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

• Generally, have n independent random variables $X_i \sim N(\mu_i, \sigma_i^2)$ for i = 1, 2, ..., n:

$$\left(\sum_{i=1}^{n} X_{i}\right) \sim N\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)$$

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - Question: Probability of more than 40 infections?

Sanity check: Should we use the Binomial Sum-of-RVs shortcut?

- A. YES!
- B. NO!
- C. Other/none/more

Virus Infections

- Say you are working with the WHO to plan a response to a the initial conditions of a virus:
 - Two exposed groups
 - P1: 50 people, each independently infected with p = 0.1
 - P2: 100 people, each independently infected with p = 0.4
 - A = # infected in P1 A ~ Bin(50, 0.1) \approx X ~ N(5, 4.5)
 - B = # infected in P2 B ~ Bin(100, 0.4) \approx Y ~ N(40, 24)
 - What is P(≥ 40 people infected)?
 - $P(A + B \ge 40) \approx P(X + Y \ge 39.5)$
 - $X + Y = W \sim N(5 + 40 = 45, 4.5 + 24 = 28.5)$

$$P(W \ge 39.5) = P\left(\frac{W - 45}{\sqrt{28.5}} > \frac{39.5 - 45}{\sqrt{28.5}}\right) = 1 - \Phi(-1.03) \approx 0.8485$$

End sum of independent vars

Conditionals with multiple variables

Discrete Conditional Distribution

Recall that for events E and F:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$
 where $P(F) > 0$

Discrete Conditional Distributions

Recall that for events E and F:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$
 where $P(F) > 0$

- Now, have X and Y as discrete random variables
 - Conditional PMF of X given Y (where $p_Y(y) > 0$):

$$P_{X|Y}(x \mid y) = P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x, y)}{p_{Y}(y)}$$

• Conditional CDF of X given Y (where $p_Y(y) > 0$):

$$F_{X|Y}(a \mid y) = P(X \le a \mid Y = y) = \frac{P(X \le a, Y = y)}{P(Y = y)}$$
$$= \frac{\sum_{x \le a} p_{X,Y}(x, y)}{p_{Y}(y)} = \sum_{x \le a} p_{X|Y}(x \mid y)$$

Probability Table

	Single	In a relationship	It's complicated	Marginal Year
Freshman	0.06	0.04	0.03	0.13
Sophomore	0.21	0.16	0.02	0.39
Junior	0.13	0.06	0.02	0.21
Senior	0.04	0.07	0.01	0.12
5+	0.04	0.09	0.03	0.15
Marginal Status	0.47	0.43	0.10	1.00

Marginal Status Probability

Marginal Year Probability

Relationship Status

Operating System Loyalty

- Consider person buying 2 computers (over time)
 - X = 1st computer bought is a PC (1 if it is, 0 if it is not)
 - Y = 2nd computer bought is a PC (1 if it is, 0 if it is not)
 - Joint probability mass function (PMF):
 - What is P(Y = 0 | X = 0)?

$$P(Y = 0 \mid X = 0) = \frac{p_{X,Y}(0,0)}{p_X(0)} = \frac{0.2}{0.3} = \frac{2}{3}$$

• What is P(Y = 1 | X = 0)?

$$P(Y=1 | X=0) = \frac{p_{X,Y}(0,1)}{p_X(0)} = \frac{0.1}{0.3} = \frac{1}{3}$$

• What is P(X = 0 | Y = 1)?

$$P(X = 0 | Y = 1) = \frac{p_{X,Y}(0,1)}{p_Y(1)} = \frac{0.1}{0.5} = \frac{1}{5}$$

X	0	1	$p_{Y}(y)$
0	0.2	0.3	0.5
1	0.1	0.4	0.5
$p_X(x)$	0.3	0.7	1.0

And It Applies to Books Too

P(Buy Book Y | Bought Book X)

Web Server Requests Redux

- Requests received at web server in a day
 - X = # requests from humans/day $X \sim Poi(\lambda_1)$
 - Y = # requests from bots/day Y ~ $Poi(\lambda_2)$
 - X and Y are independent \rightarrow X + Y ~ Poi(λ_1 + λ_2)
 - What is P(X = k | X + Y = n)?

$$P(X = k \mid X + Y = n) = \frac{P(X = k, Y = n - k)}{P(X + Y = n)} = \frac{P(X = k)P(Y = n - k)}{P(X + Y = n)}$$

$$= \frac{e^{-\lambda_1} \lambda_1^k}{k!} \cdot \frac{e^{-\lambda_2} \lambda_2^{n-k}}{(n - k)!} \cdot \frac{n!}{e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^n} = \frac{n!}{k! (n - k)!} \cdot \frac{\lambda_1^k \lambda_2^{n-k}}{(\lambda_1 + \lambda_2)^n}$$

$$= \binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2}\right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2}\right)^{n-k}$$

$$(X \mid X + Y = n) \sim Bin\left(n, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$$

Continuous Conditional Distributions

- Let X and Y be continuous random variables
 - Conditional PDF of X given Y (where $f_Y(y) > 0$):

$$f_{X|Y}(x | y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

$$f_{Y}(x | y) dx = \frac{f_{X,Y}(x,y) dx dy}{f_{Y}(y) dy}$$

$$f_{X|Y}(x \mid y) dx = \frac{f_{X,Y}(x,y) dx dy}{f_{Y}(y) dy}$$

$$\approx \frac{P(x \le X \le x + dx, y \le Y \le y + dy)}{P(y \le Y \le y + dy)} = P(x \le X \le x + dx \mid y \le Y \le y + dy)$$

• Conditional CDF of X given Y (where $f_Y(y) > 0$):

$$F_{X|Y}(a \mid y) = P(X \le a \mid Y = y) = \int_{\infty} f_{X|Y}(x \mid y) dx$$

• Note: Even though P(Y = a) = 0, can condition on Y = a

∘ Really considering:
$$P(a - \frac{\varepsilon}{2} \le Y \le a + \frac{\varepsilon}{2}) = \int_{a-\varepsilon/2} f_Y(y) dy \approx \varepsilon f(a)$$

Let's Do an Example

X and Y are continuous RVs with PDF:

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & \text{where } 0 < x,y < 1\\ 0 & \text{otherwise} \end{cases}$$

• Compute conditional density: $f_{X|Y}(x|y)$

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_{X,Y}(x,y)}{\int_0^1 f_{X,Y}(x,y) dx}$$

$$= \frac{\frac{12}{5}x(2-x-y)}{\int_0^{12} x(2-x-y) dx} = \frac{x(2-x-y)}{\int_0^{12} x(2-x-y) dx} = \frac{x(2-x-y)}{\left[x^2 - \frac{x^3}{3} - \frac{x^2y}{2}\right]_0^1}$$

$$= \frac{x(2-x-y)}{\frac{2}{3} - \frac{y}{2}} = \frac{6x(2-x-y)}{4-3y}$$

Independence and Conditioning

If X and Y are independent discrete RVs:

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{P(X = x)P(Y = y)}{P(Y = y)} = P(X = x)$$

$$p_{X|Y}(x \mid y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{p_X(x)p_Y(y)}{p_Y(y)} = p_X(x)$$

Analogously, for independent continuous RVs:

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)} = \frac{f_X(x)f_Y(y)}{f_Y(y)} = f_X(x)$$

Conditional Independence Revisited

 n discrete random variables X₁, X₂, ..., X_n are called conditionally independent given Y if:

$$P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n \mid Y = y) = \prod_{i=1}^n P(X_i = x_i \mid Y = y)$$
 for all $x_1, x_2, ..., x_n, y$

Analogously, for continuous random variables:

$$P(X_1 \le a_1, X_2 \le a_2, ..., X_n \le a_n \mid Y = y) = \prod_{i=1}^n P(X_i \le a_i \mid Y = y)$$
 for all $a_1, a_2, ..., a_n, y$

Note: can turn products into sums using logs:

$$\ln \prod_{i=1}^{n} P(X_i = x_i \mid Y = y) = \sum_{i=1}^{n} \ln P(X_i = x_i \mid Y = y) = K$$

$$\prod_{i=1}^{n} P(X_i = x_i \mid Y = y) = e^K$$