Project 3 - Quick Checkout

Giovanni **Ligato**Alice **Orlandini**Cleto **Pellegrino**

Objectives

Time and Mean Response
Time under a varying
workload.

Key Performance Indices

Mean Waiting Time

Average Queue Size

Mean Service Time

Model

Factors

The percentage of **quick** checkout tills p

The maximum number of items that a customer can have in their cart to access to the quick checkout subsystem K

Parameters

The total number of checkout tills C

Distribution of the **inter-arrival** time of customers $exp(\lambda_T)$

Distribution of the **number of items** in a customer's cart $exp(\lambda_M) \quad lognormal(\mu, \sigma^2)$

Implementation

Top-Level Network - Supermarket

Verification - Consistency **Verification** - Continuity

Expected Behaviour: halving both the inter-arrival time and the mean number of items, then the Mean Waiting Time will halve.

Expected Behaviour: increasing the inter-arrival time, the Total Waiting Time decreases.

Normal Tills

Verification - Degeneracy

Verification - Theoretical Model

Unreachable quick tills E[Nq], K = 0 and p = 0.5

	$\mathbf{Q}[0]$	$\mathbf{Q}[1]$	$\mathbf{Q}[2]$	Q[3]
Mean	0.0	0.0	18.2632	17.7777
Max	0.0	0.0	36.9281	36.3864

Utilization - CI 95%

Queue	Theoretical	Mean	CI - LB	CI - UB	
Queues[0]	0.068452	0.068394	0.067328	0.069459	✓
Queues[1]	0.068452	0.068459	0.066834	0.070084	✓
Queues[2]	0.493988	0.492145	0.485497	0.498793	✓
Queues[3]	0.493988	0.496031	0.486992	0.505071	\checkmark

$$E[N_i] = \rho_i + \frac{\rho_i^2 + \lambda_{T_i}^2 \cdot Var(t_{S_i})}{2 \cdot (1 - \rho_i)}$$

Factors Calibration

Warmup Period

"In 20 out of 25 major U.S. cities, the **mean waiting time** at grocery stores is **under 5 minutes**."

 $E[W] = 5 \text{ m} = 300s \Rightarrow E[T] = 9.3s$

Warmup Time: ~3h (10.000s)

Simulation Time: 16h

Subsampling (Quick Till Waiting Times)

Lag Plot **before** Subsampling **p = 0.1 K = 14 C = 10**

Lag Plot after 30% Subsampling p = 0.1 K = 14 C = 10

Waiting Time behaves as a Lognormal

Waiting Times in a simulation

QQ Plot Mean Waiting Time p = 0.1 K = 14

Cox Method for computing the CIs

Exponential Experiment - Mean Waiting Time

Lognormal Experiment - Mean Waiting Time

Conclusion

The optimal configuration in the **exponential** case is: p = 0.1 K = 14

There is **no optimal configuration** in the **lognormal** case

It is important to evaluate the **distribution of the items** in a customer's cart before introducing quick tills