Terceiro Relatório de Lab de Eletrônica 3

Bruno França Henrique da Silva

10 de março de 2024

Sumário

1	Intr	odução
2	Aná	ilise preliminar
	2.1	A_f
	2.2	β
	2.3	$A \ldots \ldots$
	2.4	$R_i \in R_o$
	2.5	$R_{if} \in R_{of}$
	2.6	Frequências de corte
3	Med	dições em laboratório
	3.1	Tabela de componentes
	3.2	Medidas sob diferentes condições
		3.2.1 $A_f \in F_c$
		3.2.2 $A_f \in F_c$ alterando $R_c \in R_L$
4		ilise dos resultados
	4.1 4.2	Ganhos e Frequências de Corte

5 Conclusões

1 Introdução

Este relatório explora o comportamento de um circuito com um transistor TBJ NPN e realimentação. O objetivo do circuito é manter o ganho relativamente fixo para grandes mudanças nos resistores do mesmo, tornando-o resistente a degradações de componentes enquanto mantém sua função intacta.

Todos arquivos utilizados para criar este relatório, e o relatório em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/7thSemester/Eletronica2/

2 Análise preliminar

Na análise preliminar, utiliza-se LTSPICE em adição à análise de circuitos e parâmetros h para encontrar analiticamente os valores de A, A_f , β , R_i , R_{if} , R_o e R_{of} .

Figura 1: Circuito em análise.

2.1 A_f

Monta-se o circuito no LTSpice e faz-se que $A_f = \frac{V_o}{V_i}$. O que nos dá $A_f \approx 4.06$.

Figura 2: Circuito no LTSpice.

Figura 3: Ganho do circuito no LTSpice.

2.2 β

Faz-se cálculo do parâmetro h_{12} para encontrar o β da seguinte maneira:

$$\beta = h_{12} = \frac{V_1}{V_2} | I_1 = 0$$

$$\beta = \frac{R_1 i_2}{(R_1 + R_2) i_2} = \frac{10}{110} = 0.091$$
(1)

Figura 4: Circuito de realimentação.

2.3 *A*

Tem-se a seguinte relação entre Ae o A_f e β previamente calculados:

$$A_f = \frac{A}{1 + A\beta}$$

$$A = \frac{A_f}{1 - A_f \beta} \approx 6.435$$
(2)

2.4 R_i e R_o

Primeiro precisa-se calcular os valores de R_{11} e R_{22} . E analisando o circuito como um quadripolo tem-se:

$$R_{11} = R_{Ef} / / R_f \approx 9.09\Omega$$

$$R_{22} = R_{Ef} + R_f = \approx 110\Omega$$
(3)

Com estes em mãos, pode-se adicionar o R_{11} em série na entrada e o R_{22} em paralelo na saída. Acha-se valores de I_c pelo LTSPice, e hFE no site: https://www.digikey.com/en/products/detail/microchip-technology/2N2222AUB/4377384?utm_source=findchips&utm_medium=aggregator&utm_campaign=buynow

$$I_c \approx 1.35mA$$

$$gm = \frac{I_c}{V_t} \approx 0.054S$$

$$hFE = 100$$

$$R_{\pi} = \frac{hFE}{gm} \approx 1851.85\Omega$$

$$R_i = R_1//R_2//(R_{11} + R_{\pi}) \approx 1172.7\Omega$$

$$R_o = R_C//R_L//R_{22} = 100\Omega$$
(4)

2.5 R_{if} e R_{of}

Com os valores das resistências de entrada e de saída em mãos, pode-se achar R_{if} e R_{of} :

$$R_{if} = R_i(1 + A\beta) = 1858.75\Omega$$

 $R_{of} = \frac{R_o}{1 + A\beta} = 63.09\Omega$ (5)

2.6 Frequências de corte

Analisando o gráfico de Bode no LTSpice, identificam-se informações cruciais para compreender o comportamento do sistema em diferentes frequências.

Figura 5: Obtendo a F_c do grafico de Bode no LTSpice.

Figura 6: Obtendo a ${\cal F}_h$ do grafico de Bode no LTSpice.

3 Medições em laboratório

No laboratório, montamos o circuito para realizar medições e analisar suas respostas a diversas frequências de sinal de entrada. Essa abordagem abrangente fornece informações práticas sobre o comportamento, estabilidade e desempenho do circuito em diferentes cenários operacionais, permitindo uma comparação posterior com as previsões teóricas.

Figura 7: Circuito montado em laboratório.

3.1 Tabela de componentes

R1	9779	Vin	20mV
R2	4603	Vout	88.3mV
Re	2182		
Rc	2211	Ve	3.22V
RL	2193	Vb	3.82V
Ref	9.95	Vc	8.76V
Rf	98.72		
		Fh	10.4MHz
Cin	9.791uF	FI	71Hz
Cout	104.6uF		
Ce	10.489uF		
Cf	106.7uF		
Rc_metade	977	Vin	19.4mV
RL_metade	995	Vout	72.2mV
Rc_Dobro	3233	Vin	19.4mV
RL_Dobro	3236	Vout	92.1mV

Figura 8: Valores dos componentes medidos em laboratório.

3.2 Medidas sob diferentes condições

Infelizmente, não encontramos as imagens do osciloscópio para as medidas feitas em laboratório no momento de confecção do relatório. Porém, os dados obtidos foram preservados e estão disponíveis abaixo.

3.2.1 $A_f \in F_c$

Mede-se as amplitudes máximas do sinal de entrada e do sinal de saída e divide-se uma pelo outra. Assim:

$$A_{f} = \frac{V_{out}}{V_{in}} = \frac{88.3mV}{20mV} = 4.415$$

$$F_{L} = 71Hz$$

$$F_{H} = 10.3MHz$$
(6)

Nota-se que a frequência de corte alta não é confiável devido à precisão dos instrumentos utilizados. Em frequências muito altas, a capacitância do osciloscópio e da protoboard afetam significativamente o comportamento do circuito.

3.2.2 A_f e F_c alterando R_c e R_L

Nesta medição, reduzem-se na metade os valores de R_C e R_L e averigua-se o ganho do circuito

$$A_{f-50} = \frac{V_{out}}{V_{in}} = \frac{72.2mV}{19.4mV} = 3.72 \tag{7}$$

Agora dobra-se os valores de R_C e R_L e averigua-se o ganho do circuito

$$A_{f+50} = \frac{V_{out}}{V_{in}} = \frac{92.1mV}{19.4mV} = 4.75 \tag{8}$$

4 Análise dos resultados

Na análise, busca-se a comparação entre os valores simulados e práticos, identificando convergências e discrepâncias. Isso proporciona insights valiosos para ajustar modelos teóricos e aprimorar técnicas experimentais, contribuindo para o desenvolvimento mais preciso do estudo.

4.1 Ganhos e Frequências de Corte

-	Teórico	Real
F_L	75.7Hz	71Hz
F_H	95.26MHz	10.3MHz
A_f	4.06	4.415
A_{f-50}	3.64	3.72
A_{f+50}	4.16	4.75

Os valores obtidos foram próximos dos esperados, com exceção da frequência de corte alta, devido à precisão dos instrumentos e ao efeito de altas frequências nos componentes.

Interessante notar que uma variação brusca de 50% em R_C e R_L apenas acarreta em uma variação de dez por cento para aumentos e vinte por cento para reduções nos valores dos resistores.

4.2 Parametros do Circuito

Os valores obtidos foram próximos. As discrepâncias se devem às diferenças nos valores dos componentes utilizados na simulação e na montagem do circuito real.

-	Teórico	Real
A	6.435	7.41
β	0.09	0.09
R_i	1172.7Ω	1108.13
R_o	100Ω	98.9Ω
R_{if}	1858.75Ω	1860
R_{of}	63Ω	58.92Ω

5 Conclusões

Chegamos à conclusão de que o experimento foi conduzido com êxito, apresentando resultados que se aproximaram das expectativas inicialmente estabelecidas. A análise do circuito proporcionou uma compreensão mais aprofundada do comportamento de transistores em circuitos de realimentação.

Foi possível realizar a montagem do projeto e empreender uma análise específica da tolerância de erros em componentes do circuito. Já que observamos, na pós-análise, que o ganho do sistema é resistente a variações dos componentes R_C e R_L . Isso permite a construção de circuitos resistentes à degradação ao longo do tempo e à variação na qualidade dos componentes.