Biology

Paolo Bettelini

Contents

1		Sistemi																									
	1.1	Sistemi viventi																									
		1.1.1	Αυ	top	oiesi																						
		1.1.2	Di	ssipa	azior	ne																					
		1.1.3	Co	gniz	zione	9																					
		omolecole Carboidrati																									
	2.1	Carbo	oidra	ti .																							
	2.2	Protei																									
	2.3	Lipidi																									
		2.3.1	Tr	iglic	erid	е																					
		2.3.2	Fo	sfoli	pide																						
		2.3.3	$\operatorname{St}_{}$	eroic	li .																						
	2.4	Acidi																									

1 Sistemi

Definition Sistema

Un sistema (vivente e non-vivente) è composto di parti differenti, specializzate e interdipendenti.

- 1. Organizzazione della relazione fra le parti
- 2. Struttura fisica, chimica etc.
- 3. Processo di riproduzione

Definition Emergenza Sistemica

Una emergenza sistemica è lo scopo che le diverse parti riescono ad raggiungere ed eseguire.

Definition Molecola organica

Una molecola organica contiene il carbonio (tranne CO_2).

1.1 Sistemi viventi

Definition ATP

ATP è un composto organico che provvede energia alle cellule per le loro funzioni.

I seguenti processi sono eseguiti da tutti gli organismi viventi.

Nutrizione: Tutti gli organismi viventi si nutrono con del "cibo", ossia materia. In generale, gli esseri viventi necessitano di C, O, H, N, S e P. L'unico nutrimento della pianta è CO_2 (materia inorganica), mentre i nutrimenti degli animali sono materia organica.

Definition Autotrofo

Un organismo *autotrofo* può svolgere la propria funzione di nutrizione, elaborando alimenti inorganici mediante assunzione d'energia dal mondo inorganico.

Definition Eterotrofo

Un organismo eterotrofo si nutre di sostanze organiche prodotte dagli organismi autotrofi.

Respirazione:

Tutti gli organismi viventi respirano

$$C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O$$

In assenza di ossigeno (si usa la materia organica per produrre energia), e alcuni organismi fermentano. Nel caso degli umani i muscoli respirano, se non c'è O fermentano e producono acido lattico che deve successivamente essere smaltito.

Le piante respirano mediante la fotosintesi

$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$

Si riproduce e ha un ciclo vitale

Evolve

È sensibile (sa rispondere all'ambiente)

Mantiene stabili le sue condizioni interne

Definition Biotico

Con biotico si intende tutto ciò che è vivente o era vivente.

Definition Abiotico

Con abiotico si intende tutto ciò che non è vivente e non lo è mai stato.

Definition Detrito

Con detrito si intende il resto di ogni organismo vivente che è morto.

Il sistema vivente presenta le medesima ma caratteristiche del sistema non-vivente, ma possiede anche le seguenti componenti.

Definition Componente

Insieme di materia, concreta e tangibile

Example Components

Acqua, suolo, sali minerali, ossigeno.

Definition Fattore

Derive dalla presenza di componenti, produce un determinato effetto o risultato e si può misurare.

Example Fattore

- Decomposizione (fattore biotico).
- Predazione, catena alimentare (fattore biotico).
- Vento (fattore abiotico).
- Luce solare (fattore abiotico).
- Luce della lucciola (fattore biotico).

Un fattore rappresenta tutto ciò che si può misurare e che non è una componente.

1.1.1 Autopoiesi

Definition Autopoiesi

La capacità di ripararsi, modificarsi e riprodursi da solo, internamente ed in maniera autonoma.

I sistemi viventi sono organizzativamente chiusi, per cui hanno un confine.

Example Sistema autopoietico - ciclo

TODO: mettere foto

Example Sistema autopoietico - cellula

TODO: mettere foto

1.1.2 Dissipazione

Definition Dissipazione

La necessità di consumare energia, materia ed informazioni dall'esterno.

I sistemi viventi sono metabolicamente aperti, per cui hanno degli scambi con l'esterno e rinnovano il proprio materiale.

1.1.3 Cognizione

Definition Cognizione

L'attiva conoscenza dell'ambiente, esterno ed interno, da parte del sistema.

2 Biomolecole

Definition Biomolecola

Le biomolecole sono le molecole dei processi biologici degli essere viventi.

Tutte le biomolecole contengono C, O e H. Ci sono delle eccezioni, per esempio, gli idrocarburi contengono solamente C e O.

Le biomolecole sono di 4 tipi:

- Lipidi (grasso)
- Acidi nucleici (DNA e RNA)
- Carboidrati
- Proteine

Le macromolecole sono composte da *monomeri* e *polimeri*. Nel corpo umano i polimeri sono creati dalle cellule mediante alle istruzioni nel DNA. Le biomolecole fanno dei polimeri.

Definition Isomero

Gli *isomeri* sono delle molecole distinte con il medesimo numero di atomi, ma con una struttura diversa. Diversi isomeri potrebbero avere proprietà diverse.

Costruzione di polimeri Tutti i monomeri posseggono, da una parte un gruppo di idrogeno H, e dall'altra un gruppo OH. Due monomeri si uniscono mediante una reazione chimica chiamata condensazione o disidratazione, la quale consiste nell'unire un'estremità H con una OH mediante un legame. La condensazione libera una molecola d'acqua come scarto.

Disintegrazione di polimeri Per separare un legame fra due monomeri, viene utilizzata la reazione chimica di idrolisi o idratazione. Questa reazione necessita di una molecola di H_2O .

2.1 Carboidrati

Definition Carboidrato

I carboidrati sono dei tipi di biomolecole composti da carbonio, idrogeno e ossigeno $(CH_2O)_n$.

I monomeri di carboidrati si chiamano monosaccaridi. I polimeri di carboidrati si chiamano polisaccaridi (disaccaridi, trisaccaridi)

Definition Maltosio

Il maltosio è composto da due molecole di glucosio $(C_{12}H_{22}O_{11})$.

Per unire 2 molecole di glucosio è necessario perderne una di H_2O . Per cui il maltosio è dato da $C_{12}H_{22}O_{11}$.

Definition Saccarosio

Il saccarosio è composto da un glucosio e un fruttosio $(C_{12}H_{22}O_{11})$.

Definition Lattosio

Il lattosio è composto da un glucosio e un galattosio $(C_{12}H_{22}O_{11})$.

I monosaccaridi sono glucosio, fruttosio, galattosio (isomeri).

Definition Amido

L'amido è un polisaccaride che viene prodotto dalle piante. Esso è composto da una catena di glucosi arrotolati ad elica.

L'amilasi è l'enzima che rompe l'amido. Esso fa parte della famiglia degli idrolasi, ossia tutti gli enzimi che eseguono l'idrolisi.

Definition Glicogeno

Il glicogeno è un polisaccaride che viene prodotto dagli animali. Esso è composto da diverse diramazioni di catene di glucosio.

Amido e glicogeno occupano meno spazio dei monomeri da soli, per cui sono ottimali per immagazzinare il glucosio.

Gli esseri umani immagazzinano il glucosio in eccesso nei muscoli e nel fegato, dove ci sono degli enzimi che sono in grado di creare questi polimeri di glucosio.

Definition Cellulosa

La cellulosa è un polisaccaride di glucosio prodotto dalle piante. Esso è composto un insieme di fibre lineari.

La cellulosa serve per dare rigidità al tessuto delle piante.

I polisaccaridi sono amido, glicogeno e cellulosa.

2.2 Proteine

I monomero di proteine si chiamano amminoacidi.

Ci sono 20 possibili amminoacidi diversi.

Definition Catena Polipeptidica

Una catena polipeptidica è una catena di amminoacidi.

Definition Proteina

Le proteine sono delle biomolecole costruite da una o più catene polipeptidiche.

Le proteine si distinguono in 7 classi per funzione

- 1. Strutturali: es. unghie (cheratina).
- 2. Contrattili: costituiscono il muscolo.
- 3. Di riserva: costituiscono una riserva di amminoacidi (specialmente per l'embrione).
- 4. Di difesa: costituiscono gli anticorpi, neutralizzano gli agenti patogeni.
- 5. Di trasporto: trasportano l'ossigeno all'interno del sistema circolatorio.
- 6. Regolatrici: costituiscono alcuni ormoni.
- 7. Enzimi: costituiscono gli enzimi.

2.3 Lipidi

Definition Lipido

I *lipidi* sono un insieme di molecole idrofobe.

I lipidi non sono strutturati con monomeri e polimeri.

I lipidi vengono categorizzati nelle seguenti classi:

2.3.1 Trigliceride

Definition Trigliceride

Il trigliceride è una riserva energeticsa della cellula (comunemente grasso).

Il monogliceride è composto da un glicerolo, attaccato (per condensazione) ad un acido grasso. Il trigliceride è attaccato a 3 catene di acido grasso.

Le catene di acidi grassi possono essere dritti (saturi) oppure piegate (insaturi). Alle catene insature mancano alcuni doppi legami.

2.3.2 Fosfolipide

Definition Fosfolipide

Il fosfolipide sono composti da una testa idrofila e da una code idrofoba.

Le catarriteristiche idrofobe e idrofile permettono ai fosfolipidi di disporsi in maniera ordinata, con la testa verso l'acqua e la coda rivolta verso l'esterno.

2.3.3 Steroidi

Definition Steroide

Lo steroide è una molecola con una struttura di 4 anelli.

Alcuni esempi sono il colesterolo, testosterone ed estrogeno.

2.4 Acidi nucleici

I monomeri degli aicid nucleici si chiamano nucleotidi.

Definition Acido nucleico

 $\mathrm{L}{}'acido~nucleico$ è composto da un gruppo fosfato, zucchero e base azotata.

Definition DNA

Il DNA è composto da due filamenti di nucleotidi.

I nucleotidi del DNA sono 4 (A, C, G, T).