Derp

https://github.com/LitschiW/ETIPAVorschlaege

letzte Änderung: 28. Januar 2019

Aufgabenbereich 1: Festkommaarithmetik

a)

Füllen Sie die Tabelle aus:

Dezimalzahl	Vorzeichenbehaftete Binärdarstellung	B-Komplement Darstellung	Hexadecimal Darstellung
42			2A
-8			
	00110000		
	10001101		
		00011010	
		11111111	

(Hinweis: $A_{(16)} = 10_{(10)}, B_{(16)} = 11_{(10)}, C_{(16)} = 12_{(10)}, D_{(16)} = 13_{(10)}, E_{(16)} = 14_{(10)}, F_{(16)} = 15_{(10)}$

1	`
h	١
$\mathbf{\mathcal{O}}$,

Konvertieren Sie $93,625_{(10)}$ jeweils in die Binär- und Hexadezimaldarstellung:

(Hinweis: Ihr Ergebnis sollte mehr als 8 Binärstellen enthalten. Das ist in diesem Fall gewollt, Sie müssen nicht kürzen/runden.)

Konvertieren Sie $13_{(10)}$ in die Binärdarstellung und rechen Sie $93_{(10)}-13_{(10)}$ mittels binärer Subraktion:

Aufgabenbereich 2: Fließkommaarithmetik

Für diesen Aufgabenbereich nutzen wir den IEEE 754 Standard für Minifloats. D.h. wir benutzen eine 8 Bit Darstellung mit einem Vorzeichen-, 3 Manitssen- und 4 Exponentbits.

a)

Wie groß ist der Bias unserer Darstellung?

Was ist der Bias für eine Fließkommzahl mit einem Exponent der Länge 6?

b)

Konvertieren Sie diese Sonderfälle in Fließkommadarstellung:

 $\infty =$

0 =

NaN =

c)

Bestimmen sie die einzelnen Bestandteile der Fließkommazahl 11011100 $_{(2F)}$:

V =

E =

M =

d)
Konvertieren Sie $11011100_{(2F)}$ in eine Dezimalzahl:
e)
Addieren Sie 01011100 $_{(2F)}$ und 01001000 $_{(2F)}$ mittels Fließkommaarithmetik:

f)
Multiplizieren Sie 01011100 $_{(2F)}$ und 00111100 $_{(2F)}$ mittels Fließkommaarithmetik:
$\mathbf{g})$
Stellen sie 1 ₁₀ in Fließkommaschreibweise da:
Stellen sie 1 ₁₀ in r nebkommaschreibweise da.
Zeigen Sie anhand eines Beispiels, dass man durch das kontinuierliche Addieren von 1_{10} auf eine beliebige Fließkommazahl F $(\neq \infty)$ niemals ∞ erreicht.

Aufgabenbereich 3: Logik und CMOS-Komplexgatter

In diesem Bereiche beschäftigen wir uns mit Logik und CMOS Komplexgattern. Es wird erwartet, dass Sie entsprechen Pull-up und Pull-down Netzwerke zeichnen.

a) Logische Funktionen

Füllen sie Folgende Wahrheitstabellen aus:

(Hinweis: $(A \Rightarrow B) \equiv (\overline{A} \lor B)$)

A	В	$A \lor B$
0	0	
0	1	
1	0	
1	1	

A	B	$A \Rightarrow B$
0	0	
0	1	
1	0	
1	1	

A	B	$\overline{A \wedge B}$
0	0	
0	1	
1	0	
1	1	

A	B	$\overline{A \oplus B}$
0	0	
0	1	
1	0	
1	1	

b)

Geben sei folgende Funktionstabelle der Funktion F(A,B,C)=Q:

A	В	С	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Welche Normalform der Funktion wäre kürzer?	
1. kKNF	
2. kDNF	
Geben sie die Funktion in der gewählten Normalform an:	
F(A, B, C) =	
c) Allgemeine Fragen zum Thema CMOS: Wie viele Transistoren benötiget ein OR Komplexgatter?	
Wie viele Transistoren benötiget ein NAND Komplexgatter?	
Was ist der Unterschied zwischen n-Mos- und p-Mos-Transistoren?	

\mathbf{d})
Vereinfachen Sie die Formel $\overline{\left(C\vee(\overline{C}\wedge A)\vee(\overline{\overline{A}\vee B})\right)\wedge\overline{C}}$ möglichst stark:
Zeichnen Sie ein (strukturgleiches) CMOS-Komplexgatter das ihrem Ergebnis entspricht:

e)
Zeichnen Sie folgende Funktion strukturgleich als CMOS-Komplexgatter: $f(x) = \overline{(A \vee B)}$.
Wie viele Transistoren würden Sie benötigen?
Aufgabenbereich 4: Flipflops und Schaltungen

Zeichnen sie einen Halbaddierer auf Gatterebene. Setzen Sie dann 2 Halbaddierer (gekennzeichnent

a)

Volladdierer

als HA) zu einem Volladdierer zusammen:

Füllen Sie die Funktionstabelle für ein Volladdierer aus:

A	В	C_{in}	S	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

b)) D-FlipFl	
h) I)_H'IInH'I	On
\mathbf{v}	, 5-1.1161.1	.vv

Was ist der	Unterschied zw	wischen einem	D-Latch und e	inem D-Flip-F	lop?	

Füllen Sie die Funktionstabelle für ein D-Flip-Flop aus:

C	D_t	D_{t+1}

(Hinweis: ☐ bezeichnet eine sinkende, ☐ eine steigende Flanke)

Zeichnen Sie ein taktgesteuertes D-Latch auf Gatter Ebene. Makieren sie das enthaltene RS-Flipflop:

Deri	n
Der	D

Zeichnen Sie ein taktgesteuertes D-Flip-Flop. Nutzen Sie D-Latches als vorhandene Bauteile:
c) Schieberegister
Zeichnen Sie ein 3-Bit-Links-Schieberegister:
Wofür können Schieberegister eingesetzt werden?

Wo kann man Schieberegister auf einem Mikrocontroller finden?	
Aufgabenbereich 5: Finite State Machines	
a)	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	
Was ist der unterschied zwischen Moore und Mealy Automaten?	

Welche Zeichenfolge(n) erkennt folgender Automat:

(Hinweis: bei einem Zustand S_i/X bezeichnet S_i den Zustand und X die Ausgabe in diesem Zustand.)

- •
- •
- •

c)

Entwerfen sie einen synchronen Modulo 4 Zähler. Der Zähler soll bidirektional zählen können, dafür betrachten wir den Eingang dir. Für dir = 0 soll vorwärts, bei dir = 1 rückwärts gezählt werden.

Zeichen Sie eine Zustandsdiagramm für diesen Automaten:

(Hinweis: Den Clock Eingang müssen sie zunächst nicht beachten.)

Geben Sie die Zustandsübergangstabelle an:

Т	akt i	t	Tal	$\operatorname{st} t + 1$
dir	s_1	s_0	s_1	s_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Geben sie die Zustandsübergangslogik für den Zustand $\boldsymbol{s} = s_1 s_0$ an:

$$s_1 =$$

$$s_0 =$$

Nun fügen wir dem Automaten 4 1-Bit Ausgänge mit dem Namen ZERO, ONE, TWO, THREE hinzu. Sie sollen entsprechend ihrer Namen den Wert 1 annehmen, wenn der Automat den dazugehörigen Zustand erreicht. (z.B. für s=00 ist ZERO=1, der Rest=0)

$$ONE =$$

$$TWO =$$

$$THREE =$$

Sie, dass sie nun auch den Clock Eingang betrachten müssen:

Aufgabenbereich 6: VHDL

$\mathbf{a})$				
Was ist der Unterschied zwischen einer architecture und einem process in VHDL?				
Was ist der Unterschied zwischen einem signal und einem Port in VHDL und wo werden diese definiert?				
Wofür nutzt man component's in VHDL				
Was macht der Befehl rising_edge(clk) in einem process?				

b)

- 3. asynchron aktiv High
- 4. asynchron aktiv Low

Aufgabenbereich 7: Computer Architektur

Aufgabenbereich 7. Computer Architektur					
a)					
a).1					
Was ist der Unterschied zwischen einer Harvard und einer Van-Neumann-Architektur?					
a).2					
Listen sie die Operationen die ein ALU durchführen kann:					
•					
•					
•					
•					

a).3			
Welche	Operation kann die Function	Unit neben den Funktionen der ALU auch	durchführen?
•			
•			
•			
•			

(Hinweis: Sie müssen nicht alle Felder ausfüllen für die korrekte Antwort.)

b) Kontrollpfad

Nennen Sie die einzelnen Schritte einer Befehlsausführung:

1.	
2.	
3.	
4.	
5.	
6.	

$\mathbf{c})$	Datenpfad
Erkl	iren Sie kurz wie der Datenpfad in einem Prozessor aussieht:
$\mathbf{d})$	Befehlsformat
Geb	en Sie ein Befehlsformat für Assembler Befehle an. Beschriften sie die Blöcke mit ihrer Bitgröße:

e)	Flags				
Besch	reiben Sie die Funktion von folgenden Flags:				
C:					
<i>O</i> :					
N:					
Z:					
Wo werden diese Flags erzeugt?					