Es 1

Let $E(2_{12})$ be the elliptic curve given by the equation $y^2 = x^3 + 7$. Alice and Bob use G(2,7) as generator for a ECDH to obtain a key session k. Alice's sever key is $5 \times 4 = 5$, Bob's secret key is $6 \times 4 = 12$. What of the following is the session key?

The following is the addition table on $E(\mathbb{Z}_{17})$ where ∞ is the neutral element.

			.																
٠	100	(1,5)	(1,12)	(2.7)	(2.10)	(3.0)	(5.8)	(5	9)	(6.6)	(6,11)	(8.3)	(B,14)	(10,2)	(10.15)	(12.1)	(12.16)	(15.4)	115.13
96	90	(1.5)	(1,12)	(2.7)	(2,10)	(3.0)	(5.8)	(5	9)	(6.6)	(6,11)	(8.3)	(8,14)	(10.2)	(10.15)	(12.1)	(12,16)	(15.4)	(15.13)
(1.5)	(1.5)	(2.10)	00	(1.12)	(5.9)	(15,13)	(2.7)	(12	1)	(8,14)	(6,6)	(6,11)	(10,15)	(8.3)	(15.4)	(12.16)	(5,8)	(3,0)	(10,2)
(1.12)	(1.12)		(2,7))	(1.5)	(15.4)	(12 16)	(2)	10)	(6,11)	(8.3)	(10.2)	(6,6)	(15.13)	(8.14)	(5.9)	(121)	(10.15)	(3.0)
(2.7)	(2.7)	(1.12)	(5.8	(12.16)	900	(10.15)	(12,1)	{1,	5)	(8.3)	(10.2)	(15.13)	(6.11)	(3,0)	(6.6)	(2,10)	(5.9)	(8,14)	(15.4)
(2.10)	(2.10)	(5.9)	(1.5)	00	(12.1)	(10,2)	(1.12)	(12.	16)	(10.15)	(8.14)	(6,6)	(15.4)	(6.11)	(3.0)	(5.8)	(2.7)	(15.13)	(8.3)
(3.0)	(3.0)	(15.13)	(15.4)	(10.15)	(10.2)	00	(8.14)	(8)	3)	(12,16)	(12.1)	(5.9)	(5.8)	(2.10)	(2.7)	(6.11)	(6,6)	(1.12)	(1.5)
(5.8)	(5.8)	(2,7)	(12,16)	(12.1)	(1,12)	(8,14)	(5.9)		5	(10,2)	(15.13)	(3,0)	(8,3)	(15.4)	(6,11)	(1.5)	(2,10)	(6,6)	10,15
(5.9)	(5.9)	(12.1)	(2.10)	(1.5)	(12,16)	(8.3)	90	(5.	8)	(25.4)	10.15)	(8.14)	(3.0)	(6,6)	(15.13)	(2,7)	(1,12)	(10.2)	(6.11
(6,6)	(6,6)	(8,14)	(6.11)	(8,3)	(10,15)	(12,16)	(10,2)	(15	4	(1.5)	100	(1,12)	(2,10)	(2.7)	(5.9)	(3,0)	(15,13)	(12.1)	(5.8)
(5.11)	(6,11)	(6.6)	(8,3)	(10,2)	(8.14)	(12.1)	(15.13)	(10.	15)	000	(2.12)	(2.7)	(1.5)	(5.8)	(2,10)	(15.4)	(3,0)	(5.9)	12.16
(E.3)	(8,3)	(6,11)	(10.2)	(15.13)	(6.6)	(5.9)	(3.0)	(8.	14)	(1.12)	(2.7)	(5.8)	ine	(12.16)	(1.5)	(10,15)	(15.4)	(2.10)	(12.1)
(8.14)	(8.14)	(10.15)	(6,6)	(6.11)	(15.4)	(5,8)	(8.3)	/3.	0)	(2,10)	(1.5)	200	(5.9)	(1.12)	(12.1)	(15.13)	(10,2)	(12.16)	(2.7)
(10.2)	(10.2)	(8,3)	(15.13)	(3,0)	(6,11)	(2.10)	(15.4)	(6,	6)	(2,7)	(5.8)	(12.15)	(1.12)	(12.1)	00	(8.14)	(10.15)	(1.5)	(5.9)
10.15	(10,15)	(15.4)	(8.14)	(6.6)	(3.0)	(2.7)	(6.11)	(15.13)		(5.9)	(2.10)	(1.5)	(12.1)	90	12.16	(10.2)	(8.3)	(5.8)	(1.12)
(12.1)	(12.1)	12.10	(5.9)	(2.10)	(5.8)	(6.11)	(1.5)	(2.7)		(3.0)	(15.4)	(10.15)	(15.13)	(8.14)	(10.2)	(1.12)	00	(8.3)	(6.6)
12.19	(12.16	(5.8)	(12.1)	(5.9)	(2.7)	(6.5)	(2.10)	(1.12)		(15.13)	(3.0)	(15.4)	(10,2)	10.15	(8.3)	mo	(1.5)	(5.11)	(8.14
(15.4)	(15.4)	(3.0)	(10.15)	(8.14)	(15.13)	(1.12)	(6,6)	(10.2)		(12.1)	(5.9)	(2.10)	(12.16)	(1.5)	(5.8)	(8.3)	(6,11)	(2.7)	1965
15.13	(15.13)	(10.2)	(3.0)	(15.4)	(8.3)	(1.5)	(10,15)	(6,	11)	(5.8)	(12.16)	(12.1)	(2.7)	(5.9)	(1.12)	(6,6)	(8.14)	90	(2.10)

(10,15)

 $(5.9) \times$

(6,6)

Protocol:

Alice

Chooses SI 5

Chooses SK₈=12

Computes pk · GPK₈ (x) putes $pk_8 = -12 \cdot G$ (x) putes $pk_8 = -12 \cdot G$ (x) putes $pk_8 = -12 \cdot G$ (x) pixes $pk_8 = -12 \cdot G$

Es. 2

Seed 50=2

S₁, S₂... numbers generated by a theor PRNG with a = 5, b= 1 mod 23

- a)6
- b) 14
- c)15
- d) 10 V
- e) 13

Solution:

Sita = asi + bmodn

 $5_1 = as_0 + bmodn = 5.2 + 1 mod 23 = 11$ $s_2 = as_1 + bmodn = 5.11 + 1 = 10$ Es 3
Find

x = 3
404
5

Find $x \in \mathbb{Z}_{401}$ such that $x \cdot 262 = 1 \mod 401$ and $5 \cdot x = 375 \mod 401$

x = 375.5-1 mod 401

401 = 5x80+1 ° 5 = 1x5+6 1

0-80 mod 401 = 321

375.321=120375 = 75m=0401