# PULSE WIDTH MODULATION CONTROL CIRCUITS

#### **General Description**

The MB7500 incorporates on a single chip all the functions required in the construction of a pulse-width-modulation (PWM) control circuit.

The MB7500 consist of 5.0V reference voltage circuit, two error amplifiers, a pulse-steering control flip-flop, an output control circuit, a PWM comparator, a dead time comparator and an oscillator. The precision of voltage reference(Vref) is improved up to±1% with trimming. This provides a better output voltage regulation.

#### **Features**

- Internal Regulator Provides a Stable 4.95V Reference Supply Trimmed to ±1% Accuracy.
- Uncommitted Output TR for 200mA Sink or Source Current.
- Output Control for Push-Pull or Single-Ended Operation.
- Variable Duty Cycle by Dead Time Control (Pin 4) Complete PWM Control Circuit.
- On-Chip Oscillator with Master or Slave Operation.
- Internal Circuit Prohibits Double Pulse at Either Output.

#### **Application**

- SMPS
- Back Light Inverter



CBC Microelectronics http://www.cbcv.net



Figure 1: Package Types of MB7500

# Pin Configuration (DIP-16 / SOP-16)



#### **Order Information**

| Package | Temperature Range | Part Number | Marketing ID | Packing Type  |  |
|---------|-------------------|-------------|--------------|---------------|--|
| SOIC-16 |                   | MB7500M     | MB7500M      | Tube          |  |
| 3010-10 | -20°C∼85°C        | MB7500MTR   | MB7500MTR    | Tape and Reel |  |
| DIP-16  |                   | MB7500P     | MB7500P      | Tube          |  |

# **Function Block Diagram**



#### **Function Table**

| Input to Output Control | Output Function                 |  |  |
|-------------------------|---------------------------------|--|--|
| V <sub>I</sub> =GND     | Single-ended or Parallel Output |  |  |
| $V_I = V_{REF}$         | Normal Push-Pull Operation      |  |  |

## **Absolute Maximum Ratings**

| Parameter                                       | Symbol          | Value                        |    | Unit         |
|-------------------------------------------------|-----------------|------------------------------|----|--------------|
| Supply Voltage                                  | V <sub>CC</sub> | 40                           |    | V            |
| Amplifier Input Voltage                         | $V_{\rm I}$     | -0.3 to V <sub>CC</sub> +0.3 |    | V            |
| Collector Output Voltage                        | Vo              | 40                           |    | V            |
| Collector Output Current                        | $I_{O}$         | 250                          |    | mA           |
| Package Thermal Impedance                       | $	heta_{ m JA}$ | M Package                    | 73 | °C/W         |
| Tuckage Therman Impedance                       |                 | P Package                    | 67 |              |
| Lead Temperature 1.6mm from case for 10 seconds |                 | 260                          |    | $^{\circ}$ C |
| Storage Temperature Range                       | $T_{STG}$       | -65 to 150                   |    | $^{\circ}$ C |
| ESD Rating (Machine Model)                      |                 | 200                          |    | V            |

# **Recommended Operating Conditions**

| Parameter                                  | Symbol            | Min.    | Тур.  | Max.                 | Unit       |
|--------------------------------------------|-------------------|---------|-------|----------------------|------------|
| Power Supply Voltage                       | V <sub>CC</sub>   | 7.0     | 15    | 36                   | V          |
| Collector Output Voltage                   | $V_{C1}, V_{C2}$  |         | 30    | 36                   | V          |
| Collector Output Current (Each Transistor) | $I_{C1}, I_{C2}$  |         |       | 200                  | mA         |
| Amplifier Input Voltage                    | V <sub>IN</sub>   | 0.3     |       | V <sub>CC</sub> -2.0 | V          |
| Current Into FEEDBACK Terminal             | $I_{\mathrm{IB}}$ |         |       | 0.3                  | mA         |
| Reference Output Current                   | $I_{REF}$         |         |       | 10                   | mA         |
| Timing Resistor                            | $R_{T}$           | 1.8     | 30    | 500                  | KQ         |
| Timing Capacitor                           | $C_{T}$           | 0.00047 | 0.001 | 10                   | uF         |
| Oscillator Frequency                       | $f_{OSC}$         | 1.0     | 40    | 200                  | KHz        |
| PWM Input Voltage (Pin3, 4, 13)            |                   | 0.3     |       | 5.3                  | V          |
| Operating Free-Air Temperature             | $T_{A}$           | -40     |       | 85                   | $^{\circ}$ |

## **Electrical Characteristics**

(V\_CC=20V, f=10KHz,  $T_A \!\!= +25\,^{\circ}\!\!\mathrm{C}$  , unless otherwise specified)

| Parameter                         | Symbol                    | Conditions                                            | Min. | Тур. | Max. | Unit |  |  |
|-----------------------------------|---------------------------|-------------------------------------------------------|------|------|------|------|--|--|
| REFERENCE SECTION                 |                           |                                                       |      |      |      |      |  |  |
| Reference Output Voltage          | V <sub>REF</sub>          | I <sub>REF</sub> =1mA                                 | 4.95 | 5.00 | 5.05 | - V  |  |  |
| for MB7500                        |                           | $I_{REF}$ =1mA, $T_{A}$ =-20 $\sim$ 85°C              | 4.85 | 4.95 | 5.05 |      |  |  |
| Line Regulation                   | $R_{LINE}$                | $V_{CC}$ =7V to 36V                                   |      | 2.0  | 25   | mV   |  |  |
| Load Regulation                   | R <sub>LOAD</sub>         | I <sub>REF</sub> =1mA to 10mA                         |      | 1.0  | 15   | mV   |  |  |
| Short Circuit Output Current      | $I_{SC}$                  | $V_{REF}=0V$                                          | 10   | 35   | 50   | mA   |  |  |
| OSCILLATIOR SECTION               |                           |                                                       |      |      |      |      |  |  |
| Oscillation Frequency             | $f_{ m OSC}$              | $C_T = 0.001 uF, R_T = 30 K$                          |      | 40   |      |      |  |  |
|                                   |                           | $C_T$ =0.001uF, $R_T$ =12K                            | 9.2  | 10   | 10.8 | KHz  |  |  |
|                                   |                           | $C_T$ =0.001uF, $R_T$ =30K<br>$T_A$ =-40 $\sim$ 85°C  | 9.0  |      | 12   |      |  |  |
| Frequency Change with Temperature | △f/△T                     | $C_T$ =0.01uF, $R_T$ =12K<br>$T_A$ =-20 $\sim$ 85°C   |      |      | 1    | %    |  |  |
| DEAD TIME CONTROL SECTION         | DEAD TIME CONTROL SECTION |                                                       |      |      |      |      |  |  |
| Input Bias Current                | $I_{BIAS}$                | $V_{CC}=15V, 0V \le V_4 \ge 5.25V$                    |      | -2.0 | -10  | uA   |  |  |
| Maximum Duty Cycle                | D <sub>(MAX)</sub>        | V <sub>CC</sub> =15V, V4=0V<br>Pin13=V <sub>REF</sub> | 45   |      |      | %    |  |  |
| Input Threshold Voltage           | $V_{ITH}$                 | Zero Duty Cycle                                       |      | 3.0  | 3.3  | V    |  |  |
| ERROR AMP SECTION                 |                           |                                                       |      |      |      |      |  |  |
| Input Offset Voltage              | $V_{IO}$                  | V3=2.5V                                               |      | 2.0  | 10   | mV   |  |  |
| Input Offset Current              | $I_{IO}$                  | V3=2.5V                                               |      | 25   | 250  | nA   |  |  |
| Input Bias Current                | $I_{BIAS}$                | V3=2.5V                                               |      | 0.2  | 1.0  | uA   |  |  |

# Electrical Characteristics (Cont'd) (V\_{CC}=20V, f=10KHz, $T_{\rm A} = +25\,^{\circ}\!\!\rm C$ , unless otherwise specified)

| Common Mode Input Voltage                       | $V_{CM}$               | 7V≤V <sub>CC</sub> ≤36V                      | -0.3 |     | $V_{CC}$ | V       |  |
|-------------------------------------------------|------------------------|----------------------------------------------|------|-----|----------|---------|--|
| Open-Loop Voltage Gain                          | $G_{VO}$               | 0.5V≤V3≤3.5V                                 | 70   | 95  |          | dB      |  |
| Unit-Gain Bandwidth                             | BW                     |                                              |      | 650 |          | KH<br>z |  |
| Common-Mode Rejection Ratio                     | CMRR                   |                                              | 65   | 80  |          | dB      |  |
| Output Sink Current (Feedback)                  | $I_{SINK}$             | V <sub>ID</sub> =-15mV to -5V,<br>V3=0.7V    | 0.3  | 0.7 |          | mA      |  |
| Output Source Current (Feedback)                | I <sub>SOURCE</sub>    | $V_{ID}$ =15mV to 5V,<br>V3=3.5V             | -2   |     |          | mA      |  |
| PWM                                             | PWM COMPARATOR SECTION |                                              |      |     |          |         |  |
| Input Threshold Voltage                         | $V_{\mathrm{ITH}}$     | Zero Duty Cycle                              |      | 4   | 4.5      | V       |  |
| Input Sink Current                              | I <sub>SINK</sub>      | V3=0.7V                                      | 0.3  | 0.7 |          | mA      |  |
| OUTPUT SECTION                                  |                        |                                              |      |     |          |         |  |
| Output Saturation Voltage<br>Common Emitter     | V <sub>CE(SA</sub>     | V <sub>E</sub> =0V, I <sub>C</sub> =200mA    |      | 1.1 | 1.3      | 17      |  |
| Output Saturation Voltage<br>Emitter Follower   | V <sub>CC(SA</sub>     | V <sub>CC</sub> =15V, I <sub>E</sub> =-200mA |      | 1.5 | 2.5      | V       |  |
| Collector Off-State Current                     | I <sub>C(OFF)</sub>    | $V_{CC}=36V, V_{CE}=36V$                     |      | 2   | 100      | 4       |  |
| Emitter Off-State Current                       | I <sub>E(OFF)</sub>    | $V_{CC} = V_C = 40V, V_E = 0V$               |      |     | -100     | uA      |  |
| TOTAL DEVICE                                    |                        |                                              |      |     |          |         |  |
| Supply Current                                  | ICC                    | Pin6=V <sub>REF</sub> , V <sub>CC</sub> =15V |      | 6   | 10       | mA      |  |
| OUTPUT SWITCHING CHARACTERISTIC                 |                        |                                              |      |     |          |         |  |
| Rise Time<br>(Common Emitter, Emitter Follower) | $t_R$                  | •                                            |      | 100 | 200      | ns      |  |
| Fall Time<br>(Common Emitter, Emitter Follower) | t <sub>F</sub>         |                                              |      | 25  | 100      | ns      |  |

## **Parameter Measurement information**



**Figure 2 Operational Test Circuit and Waveforms** 



**Figure 3 Error Amplifier Characteristics** 



Note A:  $C_L$  includes probe and jig capacitance.

**Figure 4 Common-Emitter Configuration** 



Note A: C<sub>L</sub> includes probe and jig capacitance.

Figure 5 Emitter-Follower Configuration

# **Typical Performance Characteristics**



Figure 6 Oscillator Frequency vs. RT and



Figure 7 Error Amplifier Small-Signal Voltage Gain vs. Frequency

# **Typical Applications**



Figure 8 Pulse Width Modulated Step-Down Converter

#### **Mechanical Dimensions**

SOIC-16 Unit: mm(inch)



## **Mechanical Dimensions (Continued)**

## DIP-16 Unit: mm(inch)



#### **IMPORTANT NOTICE**

CBC Microelectronics Co;LTD reserves the right to make changes without further notice to any products or specifications herein. CBC Microelectronics Co;LTD does not assume any responsibility for use of any its products for any particular purpose, nor does CBC Microelectronics Co;LTD assume any liability arising out of the application or use of any its products or circuits. CBC Microelectronics Co;LTD does not convey any license under its patent rights or other rights nor the rights of others.