A.
$$x = 2$$
.

B.
$$x = -2$$

C.
$$x = 1$$
.

D.
$$x = 3$$
.

Câu 10. (Mã đề 102 BGD&ĐT NĂM 2018) Cho hàm số $y = ax^3 + bx^2 + cx + d (a,b,c,d \in \mathbb{R})$ có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số này là

A. 3

B. 2

C. 0

- **D.** 1
- **Câu 11.** (Mã đề 104 BGD 2019) Cho hàm số y = f(x) có bảng biến thiên như sau:

Hỏi hàm số nghịch biến trên khoảng nào sau đây?

B.
$$(1; +\infty)$$
.

$$C. (-1;0).$$

- **D.** $(0; +\infty)$
- **Câu 12.** (**Mã đề 101 BGD 2019**) Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số đã cho đạt cực tiểu tại

A.
$$x = -1$$
.

B.
$$x = -3$$
.

C.
$$x = 2$$
.

- **D.** x = 1.
- **Câu 13.** (Mã đề 101 BGD&ĐT NĂM 2018) Cho hàm số $y = ax^3 + bx^2 + cx + d(a,b,c,d \in \mathbb{R})$ có đồ thị như hình vẽ bên. Số điểm cực trị của hàm số đã cho là

D. 1

Câu 14. (ĐỀ THAM KHẢO BGD & ĐT 2018) Cho hàm số y = f(x) có bảng biến thiên như sau

Hàm số đạt cực đại tại điểm

- **A.** x = 1
- **B.** x = 0
- **C.** x = 5
- **D.** x = 2

Câu 15. Cho hàm số y = f(x) xác định, liên tục trên đoạn [-2,2] và có đồ thị là đường cong trong hình vẽ bên. Hàm số f(x) đạt cực đại tại điểm nào dưới đây

- **A.** x = -2.
- **B.** x = -1.
- **C.** x = 1.
- **D.** x = 2

Dạng 2. Tìm cực trị của hàm số khi biết y, y'

(ĐỀ MINH HỌA GBD&ĐT NĂM 2017) Tìm giá trị cực đại $y_{C\S}$ của hàm số $y = x^3 - 3x + 2$. Câu 16.

- **A.** $y_{C8} = -1$
- **B.** $y_{C\S} = 4$
- C. $y_{C\S} = 1$

(MĐ 104 BGD&DT NĂM 2017) Hàm số $y = \frac{2x+3}{x+1}$ có bao nhiều điểm cực trị?

A. 1

B. 3

C. 0

D. 2

Câu 18. Cho hàm số $y = \frac{x^2 + 3}{x + 1}$. Mệnh đề nào dưới đây đúng?

- **A.** Cực tiểu của hàm số bằng −3
- **B.** Cực tiểu của hàm số bằng 1
- C. Cực tiểu của hàm số bằng -6
- **D.** Cưc tiểu của hàm số bằng 2

(ĐỀ THAM KHẢO BGD&ĐT NĂM 2018-2019) Cho hàm số f(x) có đạo hàm $f'(x) = x(x-1)(x+2)^3$, $\forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là

A. 1

B. 3

C. 2

D. 5

<u>C</u> âu 20.	(Mã đề 101 - BGD - 2019) Cho hàm số $f(x)$ có đạo hàm $f'(x) = x(x+2)^2$, $\forall x \in \mathbb{R}$ Số điểm cực					
	trị của hàm số đã cho			·		
	A. 2.	B. 1.	C. 0.	D. 3.		
Câu 21.	(Mã 103 - BGD - 2019) Cho hàm số $f(x)$ có đạo hàm $f'(x) = x(x-1)^2$, $\forall x \in R$. Số điểm cực					
	trị của hàm số đã cho	là				
	A. 2.	B. 0.	C. 1.	D. 3.		
Câu 22.	(Mã đề 104 - BGD -	- 2019) Cho hàm số $f(x)$	(x) có đạo hàm $f'(x) =$	$x(x+1)^2$, $\forall x \in \mathbb{R}$. Số điểm		
	cực trị của hàm số đã	cho là				
	A. 1.	B. 2.	C. 3.	D. 0.		
Câu 23.	(Mã 102 - BGD - 20 cực trị của hàm số đã		f'(x) = f'(x)	$x(x-2)^2$, $\forall x \in \mathbb{R}$. Số điểm		
	A. 0.	B. 3.	C. 2.	D. 1.		
Câu 24.	(THPT LÊ QUÝ	ĐÔN ĐÀ NĂNG NĂ	M 2018-2019) Cho hà	âm số $f(x)$ có đạo hàm		
	$f'(x) = x(1-x)^2(3-x)$	$(x-2)^3 (x-2)^4$ với mọi $x \in$	\mathbb{R} . Điểm cực tiểu của h	àm số đã cho là		
	A. $x = 2$.	B. $x = 3$.	C. x = 0.	D. $x = 1$.		
Câu 25.	(THPT CHUYÊN SƠN LA NĂM 2018-2019 LẦN 01) Cho hàm số $f(x)$ có đạo hàm					
	$f'(x) = x^3(x-1)(x-2), \forall x \in \mathbb{R}$. Số điểm cực trị của hàm số đã cho là					
	A. 1.	B. 3.	C. 5.	D. 2.		
Câu 26.	(ĐỀ 04 VTED	NĂM 2018-2019	P) Hàm số $y =$	f(x) có đạo hàm		
	f'(x) = (x-1)(x-2)	$(x-2019), \forall x \in R$.	Hàm số $y = f(x)$ có tất	cả bao nhiều điểm cực tiểu?		
	A. 1008	B. 1010	C. 1009	D. 1011		
Câu 27.	(SỞ GD&ĐT BẮC GIANG NĂM 2018-2019 LẦN 01) Cho hàm số $F(x)$ là một nguyên hàm					
	của hàm số $f(x) = 20$	$019^{x}(x^{2}-4)(x^{2}-3x+2)$). Khi đó số điểm cực trị	ị của hàm số $F(x)$ là		
	A. 5.	B. 4.	C. 3.	D. 2.		
Câu 28.	Đồ thị hàm số $y = -x^3 + 3x$ có điểm cực tiểu là:					
	A. $(-1;-2)$.	B. (1;0).	C. (1; -2).	D. (-1;0).		
Câu 29.	(THPT YÊN PHONG 1 BẮC NINH NĂM HỌC 2018-2019 LẦN 2) Hàm số $f(x)$ có đạo hàm					
	$f'(x) = x^2(x+1)(x-2)^3$, $\forall x \in \mathbb{R}$. Hỏi $f(x)$ có bao nhiều điểm cực đại?					
	A. 2.	B. 0.	C. 1.	D. 3.		
Câu 30.	(CHUYÊN HÙNG VƯƠNG GIA LAI NĂM 2018-2019 LẦN 01) Điểm cực đại của đồ thị hàm					
	số $y = x^3 - 6x^2 + 9x$ có tổng hoành độ và tung độ bằng					
	A. 5.	B. 1.	C. 3.	D. -1.		

Câu 51.	(CHUYÊN HẠ LONG NĂM 2018-2019 LẦN 02) Tìm m để hàm số $y = x^3 - 2mx^2 + mx + 1$ đạt					
	cực tiểu tại $x = 1$,			
	A. không tồn tại m .	B. $m = \pm 1$.	C. $m = 1$.	D. $m \in \{1; 2\}$.		
Câu 52.	(THPT ĐOÀN THƯỢNG - HẢI DƯƠNG - 2018 2019) Tìm các giá trị thực của tham số m để					
	hàm số $y = \frac{1}{3}x^3 - mx^2 + \frac{1}{3}x^3 - mx^2 + \frac{1}{3}x^3 - \frac{1}$	$-(m^2-4)x+3$ đạt cực c	đại tại $x=3$.			
	A. $m = 1, m = 5$.	B. $m = 5$.	C. $m = 1$.	D. $m = -1$.		
Câu 53.	(PEN I - THÀY LÊ ANH TUÁN - ĐỀ 3 - NĂM 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + mx + 1$ đạt cực tiểu tại $x = 2$.					
	A. $m = 0$.	B. $m > 4$.	C. $0 \le m < 4$.	D. $0 < m \le 4$.		
Câu 54.	(THPT AN LÃO HẢI PHÒNG NĂM 2018-2019 LẦN 02) Có bao nhiêu số thực m để hàm số					
	$y = \frac{1}{3}x^3 - mx^2 + (m^2 - m + 1)x + 1$ đạt cực đại tại $x = 1$.					
	A. 0	B. 2	C. 1	D. 3		
Câu 55.	155. (Mã đề 102 BGD&ĐT NĂM 2018) Có bao nhiều giá trị nguyên của tham số n					
	$y = x^8 + (m-1)x^5 - (m^2)$	$-1)x^4 + 1$ đạt cực tiểu t	ai x = 0?			
	A. 3	B. 2	C. Vô số	D. 1		
Câu 56.	(Mã đề 101 BGD&ĐT NĂM 2018) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-2)x^5 - (m^2-4)x^4 + 1$ đạt cực tiểu tại $x = 0$?					
	A. Vô số	B. 3	C. 5	D. 4		
Câu 57.	(Mã đề 104 BGD&ĐT NĂM 2018) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-3)x^5 - (m^2-9)x^4 + 1$ đạt cực tiểu tại $x = 0$?					
	A. 6	B. Vô số	C. 4	D. 7		
Câu 58.	(MĐ 103 BGD&ĐT NĂM 2017-2018) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-4)x^5 - (m^2-16)x^4 + 1$ đạt cực tiểu tại $x = 0$.					
	A. 8	B. Vô số	C. 7	D. 9		
Câu 59.	(KTNL GIA BÌNH NĂM 2018-2019) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^{12} + (m-5)x^7 + (m^2 - 25)x^6 + 1$ đạt cực đại tại $x = 0$?					
	A. 8	B. 9	C. Vô số	D. 10		
Câu 60.	Tìm tất cả tham số thực m để hàm số $y = (m-1)x^4 - (m^2-2)x^2 + 2019$ đạt cực tiểu tại $x = -1$					
	A. $m = 0$.	B. $m = -2$.	C. $m = 1$.	D. $m = 2$.		
Câu 61.	(CHUYÊN TRẦN PHÚ HẢI PHÒNG NĂM 2018-2019 LẦN 02) Cho hàm số $y = f(x)$ xác					
	định trên tập số thực \mathbb{R} và có đạo hàm $f'(x) = (x - \sin x)(x - m - 3)(x - \sqrt{9 - m^2})^3 \ \forall x \in \mathbb{R}$ (m là					
	tham số). Có bao nhiều giá trị nguyên của m để hàm số $y = f(x)$ đạt cực tiểu tại $x = 0$?					
	A. 6	B. 7	C. 5	D. 4		

Dang 4. Tìm m để hàm số có n cực trị

Câu 62.	(ĐỀ THAM KHẢO BGD&ĐT NĂM 2017) Tìm tất cả các giá trị thực của tham số m để hàm số
	$y = (m-1)x^4 - 2(m-3)x^2 + 1$ không có cực đại?

A. $1 < m \le 3$

B. $m \le 1$

C. $m \ge 1$

D. $1 \le m \le 3$

(MĐ 104 BGD&DT NĂM 2017) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số Câu 63. $y = x^3 - 3mx^2 + 4m^3$ có hai điểm cực trị A và B sao cho tam giác OAB có diện tích bằng 4 với O là gốc toa đô.

A. $m \neq 0$

B. $m = -\frac{1}{4/2}$; $m = \frac{1}{4/2}$

C. m = -1; m = 1

D. m = 1

(THPT HÙNG VƯƠNG BÌNH PHƯỚC NĂM 2018-2019 LẦN 01) Tìm tất cả các giá trị của tham số m để hàm số $y = -\frac{x^3}{3} + mx^2 - 2mx + 1$ có hai điểm cực trị.

A. 0 < m < 2.

B. m > 2

C, m > 0.

 $\mathbf{D.} \begin{bmatrix} m > 2 \\ m < 0 \end{bmatrix}.$

(THPT BA ĐÌNH NĂM 2018-2019 LẦN 02) Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + 2mx + m$ có cực đại và cực tiểu?

A. $m < \frac{3}{2}$.

B. $m < -\frac{3}{2}$. **C.** $m \le \frac{3}{2}$. **D.** $m > \frac{3}{2}$.

(THPT CHUYÊN BẮC GIANG NAM 2018-2019 LẦN 01) Tập hợp các giá trị của m để hàm Câu 66. số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x + 1$ có hai cực trị là:

A. $(-\infty; -1] \cup [2; +\infty)$ **B.** $(-\infty; -1) \cup (2; +\infty)$ **C.** (-1; 2)

D. [-1;2]

Câu 67. (THPT QUỲNH LƯU 3 NGHỆ AN NĂM 2018-2019) Cho hàm số $y = mx^4 - x^2 + 1$. Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực trị là

 $\mathbf{A}. (0; +\infty).$

B. $(-\infty; 0]$.

 \mathbf{C} , $[0;+\infty)$.

D. $(-\infty;0)$.

(THPT - YÊN ĐỊNH THANH HÓA 2018 2019- LẦN 2) Cho hàm số $y = mx^4 + (2m+1)x^2 + 1$. Câu 68. Tìm tất cả các giá trị thực của tham số m để hàm số có đúng một điểm cực tiểu.

A. Không tồn tại m.

B. $m \ge 0$.

C. $m \ge -\frac{1}{2}$. D. $-\frac{1}{2} \le m \le 0$.

(CUM LIÊN TRƯỜNG HẢI PHÒNG NĂM 2018-2019) Tìm số các giá trị nguyên của tham số m để hàm số $y = x^4 + 2(m^2 - m - 6)x^2 + m - 1$ có ba điểm cực trị.

A. 6.

B. 5

C. 4.

D. 3.

(THCS - THPT NGUYỄN KHUYẾN NĂM 2018-2019 LẦN 01) Hàm số Câu 70. $y = mx^4 + (m-1)x^2 + 1 - 2m$ có một điểm cực trị khi

B. $m \le 0 \lor m \ge 1$.

C. m = 0.

D. $m < 0 \lor m > 1$.