LEAVES CLASSIFICATION PROJECT EDUPARK

COMPUTER VISION

Rui Oliveira (68779) & Tomás Rodrigues (68129)

Teachers António Neves and Paulo Dias Group 9

11 January 2017

CONTENTS

- 1. Main Goals
- 2. Technologies
- 3. Segmentation and processing
- **4.** Extracted Features
- **5.** Classifier
- **6.** Training Data

- 7. Testing Data
- 8. Results
- 9. Demo
- 10. Conclusions
- **11.** Future work

MAIN GOALS

- Receiving a picture of a leaf predict its species name
- Test multiple features to compare performance and have a perception of what the best features to work with
- Train our own dataset with a classifier

Base de dados com características

weiro deti departamento de telecomunicaçõe

TECHNOLOGIES

eiro deti departamento de el

SEGMENTATION AND PROCESSING (1)

- Necessary procedure to minimize noise
- Objective: to obtain leaf contour
- Example input: two leaves

weiro deti departamento de e

SEGMENTATION AND PROCESSING (II)

- Necessary procedure to minimize noise
- Objective: to obtain leaf contour
- Example input: two leaves
- Convert to grayscale

SEGMENTATION AND PROCESSING (III)

- Apply threshold
- Inverted binary
- With some noise...

SEGMENTATION AND PROCESSING (VI)

- Apply morphological transformations
- Closing
- Structuring element: kernel
- Allows to remove noise

aveiro de deti departamento de elerr

SEGMENTATION AND PROCESSING (V)

- Find and draw contours
- findContours()
- drawContours()

le de aveiro deti departamento de elet telecomunicações e i

SEGMENTATION AND PROCESSING (VI)

EXTRACTED FEATURE NUMBER OF CORNERS

- cv2.goodFeaturesToTrack()
- Used variation of the Harris Corner Detection algorithm
- Determines strong corners on an image.

EXTRACTED FEATURE RATIO OF LENGTH AND WIDTH

Only width and height are not useful!

$$AspectRatio = \frac{Width}{Height}$$

EXTRACTED FEATURE RATIO OF PERIMETER AND AREA

Only areas and perimeters are not useful!

$$rpa = \frac{perimetro}{area}$$

rpa: razão entre perímetro e área

EXTRACTED FEATURE RATIO OF AREA

 Ratio between area of leaf and the area of outside the leaf's contourn;

$$ra = \frac{area1}{area2}$$

ra: razão entre áreas

EXTRACTED FEATURE SOLIDITY

 Ratio between the contour area and the convex area formed by the union of the points forming a polygon

$$Solidity = \frac{ContourArea}{convexHullArea}$$

EXTRACTED FEATURE MOMENTS

- Help us to calculate some characteristics of the image such as, mass center or orientation of the image.
- cv2.moments(image)


```
② ○ ○ ana@chicky: ~/Dropbox/Code

File Edit View Terminal Help

* Contour[26] - Area (M 00) = 263.00 - Area OpenCV: 263.00 - Length: 174.97

* Contour[27] - Area (M 00) = 252.00 - Area OpenCV: 252.00 - Length: 169.80

* Contour[29] - Area (M 00) = 242.00 - Area OpenCV: 242.00 - Length: 62.63

* Contour[29] - Area (M 00) = 230.00 - Area OpenCV: 230.00 - Length: 60.28

* Contour[30] - Area (M 00) = 382.00 - Area OpenCV: 382.00 - Length: 73.94

* Contour[31] - Area (M 00) = 364.00 - Area OpenCV: 364.00 - Length: 71.60

* Contour[32] - Area (M 00) = 374.50 - Area OpenCV: 374.50 - Length: 75.36

* Contour[33] - Area (M 00) = 374.50 - Area OpenCV: 374.50 - Length: 73.01
```

EXTRACTED FEATURE SUMMARY

- Number of Corners
- Ratio of length and height
- Ratio of Perimeter and area
- Ratio of area
- Solidity
- Moments

CLASSIFIER SUPPORT VECTOR MACHINE (SVM)

 Supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis.

veiro deti departamento de telecomunicações

TRAINING DATA (I)

- ≈ 160 leaf images (binary images)
- 10 species
- Output: CSV file with the extracted features

Id, label, feature1, feature2...

Ficheiro CSV

e aveiro deti departamento de ele

TRAINING DATA (II)

- python training_Leaves.py or python training_Leaves.py nmExtracts all the characteristics except the moments
- python training_Leaves.py all Extracts all the features

1	id	label	number_corners	length_width_ratio	perimeter_area_ratio	ratio_of_areas	solidity	mu02	mu03
2	1	Acer_platanoides	22	1.60103626943	0.403494207766	55.1340138108	0.523424099838	53324969550.7	6.64652797279e+12
3	2	Acer_platanoides	53	1.63001240182	0.411419491143	86.1167319742	0.447832445344	611007314359.0	3.1631336848e+14
4	3	Acer_platanoides	27	1.28092783505	0.409558004209	54.570756469	0.522850288505	47910792572.0	1.00351232489e+12
5	4	Acer_platanoides	29	1.61773255814	0.402451920492	54.8989299733	0.496183423517	45808535982.0	6.13111977024e+12
б	5	Acer_platanoides	33	1.63769690386	0.405251007552	72,3952341824	0.556717157664	208447567256.0	2.56630831266e+13

aveiro deti departamento de e

TESTING DATA (I)

- python test_Leaves.py
 All the features except the moments are used in classification
- python test_Leaves.py all
 All the characteristics are used in the classification

s aveiro deti departamento de e telecomunicações.

TESTING DATA (II)

- Test image in folder Test_Leaves
- Extract the characteristics of testing images
- Send those and training data's characteristics to the SVM
- Predict the plant's specie

© baumportal.de

RESULTS

- Interface with
 - input images (at left)
 - predicted specie image (at right)
- In terminal we have the name of the predicted specie and of the input image (e.g Ginkgo_biloba2.jpg)

DEMO

CONCLUSIONS

- Previsions are **not** always correct.
- SVM predict with higher accuracy testing the features without moments.
- Input images used in training are always predicted correctly.

FUTURE WORK

- Use deep learning and/or neural networks to increase accuracy.
- Increment/Improve the vector of features.
- Increase the training data set, maybe with colored images too.
- Improve the predictions for images in a more realistic context, maybe with leaf tracking first and then all the pré-processing

MOBILE APPLICATION FOR LEAVES RECOGNITION

QUESTIONS?

