- How can we control the height of a binary search tree?
 - should still maintain the search invariant
 - additional invariants required.
- What if the root of every subtree is the median of the elements in that subtree?
 - Difficult to maintain as median can change due to insertion/deletion.

- Attempt 1: Would it suffice if we say that the root has both a left and a right subtree of equal height?
- Still, the depth of the tree is not O(log n).
- In the above tree, irrespective of values at the nodes, the root has left and right subtrees of equal height.

- Our condition is too simple. Need more strict invariants.
- Consider the following modification.
- Attempt 2: For every node, its left and right subtrees should be of the same height.
- The condition ensures good balance, but
- The above condition may force us to keep the median as the root of every subtree.
 - Fairly difficult to maintain.

- A small relaxation to Condition 2 works suprisingly well.
- The relaxed condition, Condition 3, is stated below.
- Height Invariant: For every node in the tree, its left and the right subtrees can have heights that differ by at most 1.

Example Height Balanced Trees

Not a Height Balanced Tree

The AVL Tree

- A binary tree satisfying the
 - search invariant, and
 - the height invariant

is called an AVL tree.

- Named after its inventors, Adelson–Velskii and Landis.
- Throughout, let us define the height of an empty tree to be -1.

Operations on an AVL Tree

- An insertion/removal can violate the height invariant.
- We'll show how to maintain the invariant after an insert/remove.

- Proceed as insertion into a search tree.
 - At least satisfies the search invariant.
- It may violate the height invariant as follows.

- Proceed as insertion into a search tree.
 - At least satisfies the search invariant.
- It may violate the height invariant as follows.

 After inserting as in a binary search tree, notice that all the nodes in the path along the insert may now violate the height invariant.

- How to restore balance?
- Notice that node 7 was in height balance before the insert, but now lost balance.
- Let us try to fix balance at that node.
- Node 7 has a left subtree of height 2 and a right subtree of height 0.
- If node 6 were the root of that subtree, then that subtree will have a left and right subtree of height 1 each.

- Making that change at node 7, would also fix the height violations in all other places too.
- Suggests that fixing the height violation at one node can be of great help.
- Holds true in general.
- So, need to formalize this notion.

- What is the deepest node that may violate the height invariant?
 - The leaf/deficient node at which an insert happens?
 - Or, the parent of such a node?
 - Or some node higher up?
- Why?

- Let node t be the deepest node that violates the height condition.
- Such a violation can occur due to the following reasons:
 - An insertion into the left subtree of the left child of t.
 - An insertion into the right subtree of the left child of t.
 - An insertion into the left subtree of the right child of t, and
 - An insertion into the right subtree of the right child of t.

- Notice that cases 1 and 4 are symmetric.
- Similarly, cases 2 and 3 are symmetric.
- So, let us treat cases 1 and 2.

- Recall the earlier fix at node 7.
- We call that operation a single rotation.
 - In a single rotation, we consider a node x, its parent p, and its grandparent g.
 - Let x be a left child of p, and p a left child of g.
 - After rotation, we make p the root of the subtree.
 - To satisfy the search invariant, g should now be the right child of p and x the left child of p.

- Recall the earlier fix at node 7.
- We call that operation a single rotation.
 - In a single rotation, we consider a node x, its parent p, and its grandparent g.
 - Let x be a left child of p, and p a left child of g.
 - After rotation, we make p the root of the subtree.
 - To satisfy the search invariant, g should now be the right child of p and x the left child of p.

Single Rotation Example

Practice Problem

Insert the following values in that order into an initially empty AVL Tree.

12, 17, 22, 9, 5, 31, 36

Single Rotation – Generalization

Single Rotation – Generalization

Single Rotation – Example

Single Rotation

- Why does it help?
- If K2 is out of balance after the insert, the height difference between Z and K1 is 2.
 - Why can't it be more than 2?
- Now, the height of Z increases by 1 after the rotate
- Also, the height of X and Y decrease by 1.
- So, the subtree at K1 now has the same height as K2 had before the insert.

Case 2 of the Insert

Single rotation may not help here.

Case 2 of Insert

- Why single rotation did not help?
- Height of Y increased, resulting in increase of height of K2.
- After rotate also, height of Y is same as earlier.
- So, does not help fix the height imbalance.

Case 2 of Insert

- Need more fixes.
- Idea: Y should reduce height by 1.
- We hence introduce double rotation.
- Would be helpful to view as follows.

Double Rotation

- Any of X, Y1, Y2, and Z can be empty.
- After the rotation, one of Y1 and Y2 are two levels deeper than Z.
- Though we cannot say which is deeper among Y1 and Y2, it turns out that fortunately, it does not matter.
- The resulting tree satisfies search invariant also.
 - Hence the placement of Y1, Y2, etc.

Double Rotation Example

Practice Problem

 Insert the following numbers into an initially empty AVL tree in that order.

34, 55, 72, 23, 49, 44, 29, 39, 27

Remove Operation in an AVL Tree

- A similar approach can be designed.
- Reading exercise.

AVL Tree

- What is the height of an AVL tree?
- The maximum height can be derived as follows.
- Let H(n) be the maximum height of an AVL tree.
- At any node, its left and right subtrees can differ in height by at most 1.
- To deduce H(n), use the following observation.
- Let S(h) be the minimum number of nodes in an AVL tree of height h. Then,

$$S(h) = S(h-1) + S(h-2) + 1.$$

Quick Practice

What is S(4)? Draw such an AVL Tree.

Solve the recurrence relation for S(n).

 How does this relate to the maximum height of an AVL tree?

More on Search Trees

- AVL trees do have a O(log n) height in all situations.
- So, each operation takes O(log n) time in the worst case.
- So, better solution than hash tables. Finally!
- Further optimizations as follows.