

Spintronic/CMOS-Based Thermal Sensors

Abdelrahman G. Qoutb and Eby G. Friedman University of Rochester, NY, USA

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Distributed MTJ-Based Thermal Aware Systems

- On-chip thermal monitoring
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Magnetic Tunnel Junctions (MTJ)

$$TMR = \frac{G_P - G_{AP}}{G_{AP}}$$

TMR: Tunneling magnetoresistance

FM: Ferromagnetic NM: Nonmagnetic

 G_P : Parallel conductance G_{AP} : Antiparallel conductance

Compatibility of MTJ with CMOS Technology

MTJ Parallel and Antiparallel States

- MTJ temperature dependence
 - Device material
 - Physical size
 - Fabrication method
 - Thermal relaxation
 - Annealing
- MTJ parallel resistance R_P
 - Almost independent of temperature
- MTJ antiparallel resistance $R_{AP}(T.V)$
 - Decreases with temperature
 - Changes with applied voltage

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Thermal Sensor Figures of Merit

- Temperature Coefficient of Resistance (TCR)
 - TCR measures relative change of thermal resistor to temperature
 - Higher *TCR*
 - Better thermal sensitivity
- Linearity (R^2)
 - R^2 measures linearity change of thermal resistor to temperature
 - Higher R^2
 - Less need for additional circuitry to predict temperature

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Thermal Behavior of MTJ

- Linear behavior
 - Gradual change in resistance with temperature

Thermal Behavior of CMOS Transistor

Simulations at temperature range (0 to 85)°C

Comparison of Thermal Characteristics of MTJ and CMOS

	MTJ	CMOS				
Symbol						
TCR	$-8 \times 10^{-5} \text{ 1/°C}$	$53 \times 10^{-4} \text{1/°C}$				
R^2	0.99999	0.9992				
$\partial R/\partial T$	-4 ohm/K	600 ohm/K				
	Less sensitive to bias point	Sensitive to biasing point				
Characteristics	Above device layer	Within device layer				
	Almost linear with temperature	Exponential with temperature				
Benefits of merging both	Sensor above deLinear with tempSmall size	•				

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Proposed CMOS/MTJ Thermal Sensors

Hybrid I, MTJ/CMOS Sensor

Simulations at temperature range (0 to 85)°C

Hybrid II, MTJ/CMOS Sensor

• Simulations at temperature range (0 to 85)°C

Conventional CMOS Sensor

Comparison of MTJ Sensor with Conventional CMOS Sensors

		CMOS I	CMOS II	Hybrid I	Hybrid II
Sensitivity	Commercial (0 to 85) °C	0.51	0.51	0.4	1.91
	Industrial (-40 to 100) °C	1.03	1.03	0.64	3.78
mV/K	Automotive (-40 to 125) °C	1.08	1.08	0.77	3.97
	Military (-55 to 125) °C	1.35	1.35	0.81	4.8
	Commercial (0 to 85) °C	0.985	0.985	1.0	0.983
Linoarity	Industrial (-40 to 100) °C	0.953	0.953	0.999	0.96
Linearity	Automotive (-40 to 125) °C	0.941	0.941	0.999	0.947
	Military (-55 to 125) °C	0.919	0.919	0.996	0.936
Power Consumption at 27°C (µW)		40	80	18	11.9
	4 X	8 X	1 X	2 X	

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Distributed MTJ/CMOS Sensor Network

Proposed System for Different Grid Sizes

System size	Energy consumption	Relative path delay to read	System size #		
•	(Ld)	the grid w.r.t 4x4	Transistor	MTJs	
4 x 4	1.32	1 X	90	16	
8 x 8	8.96	2 X	304	64	
16 x 16	65.5	4 X	1,120	256	
32 x 32	499	8 X	4,980	1,024	

_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0
0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0

- Distributed MTJ-based thermal aware systems
- Magnetic tunnel junctions
- Thermal sensor figures of merit
- MTJ vs CMOS transistor as thermal sensor
- Proposed CMOS/MTJ thermal sensors
- Distributed MTJ/CMOS sensor network
- Summary

Summary

- Need for small size, low power distributed thermal monitoring system
- Antiparallel resistance of MTJ strongly sensitive to temperature
- Proposed two MTJ/CMOS sensors
 - Sensitivity of 3.78 mV/K and Linearity of 0.96 over (-40 to 125) °C
- MTJs distributed throughout thermal network
 - Consuming 500 pJ to read 1,024 sensors

Thanks

