ANNO ACCADEMICO 2024/2025

Tecnologie del Linguaggio Naturale

Teoria

Altair's Notes

DIPARTIMENTO DI INFORMATICA

Capitolo 1	Introduzione alle Tecnologie del Linguaggio Naturale_Pagina 5_
1.1	Prologo 5 La Complessità del Linguaggio Naturale — $6 \bullet I$ Livelli di Conoscenza del Linguaggio — $8 \bullet Strutture$ Linguistiche e Ambiguità — $9 \bullet Lo$ Stato dell'Arte — 10
1.2	I Livelli Linguistici 13 Da Frase a Significato — 13 • Il Livello Morfologico e l'Analisi Lessicale — 15 • Il Livello Sintattico — 18 • Il Livello Semantico — 20 • Il Livello Pragmatico e del Discorso — 23
Capitolo 2	SEQUENCE TAGGINGPAGINA 25
2.1	Part of Speech (PoS) Tagging 25

Premessa

Licenza

Questi appunti sono rilasciati sotto licenza Creative Commons Attribuzione 4.0 Internazionale (per maggiori informazioni consultare il link: https://creativecommons.org/version4/).

Formato utilizzato

Box di "Concetto sbagliato":

Concetto sbagliato 0.1: Testo del concetto sbagliato

Testo contente il concetto giusto.

Box di "Corollario":

Corollario 0.0.1 Nome del corollario

Testo del corollario. Per corollario si intende una definizione minore, legata a un'altra definizione.

Box di "Definizione":

Definizione 0.0.1: Nome delle definizione

Testo della definizione.

Box di "Domanda":

Domanda 0.1

Testo della domanda. Le domande sono spesso utilizzate per far riflettere sulle definizioni o sui concetti.

Box di "Esempio":

Esempio 0.0.1 (Nome dell'esempio)

Testo dell'esempio. Gli esempi sono tratti dalle slides del corso.

Box di "Note":

Note:-

Testo della nota. Le note sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive.

Box di "Osservazioni":

Osservazioni 0.0.1

Testo delle osservazioni. Le osservazioni sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive. A differenza delle note le osservazioni sono più specifiche.

Introduzione alle Tecnologie del Linguaggio Naturale

1.1 Prologo

La prima parte del corso sarà incentrata sulla linguistica computazionale generale, in cui ci si soffermerà sugli aspetti più tradizionali e linguistici¹. In questa parte verrà anche trattato il parsing. Nella seconda parte si andranno a studiare la semantica lessicale e le ontologie. Infine, nella terza parte del corso si andrà a studiare NLP statistico e distribuzionale.

Parte prima: keywords

- NLP
- CL
- Lexicon
- Morphology
- Syntax
- semantics
- Conversational Interface
- · Conversational agent
- Dialogue System

- Parsing
- NLG
- MT
- Grammar
- Treebank
- NL ambiguity
- BOT
- LLM

Figure 1.1: Il giorno prima dell'esame bisogna sapere cosa significano tutte queste parole :3

¹Libro di riferimento: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. La prima e la seconda edizione, perché Jurafsky non riesce a finire il draft della terza :(

Le 4 ere della linguistica computazionale:

- 1. 1940 1969: primi tentativi.
- 2. 1970 1992: formalizzazione.
- 3. 1993 2012: apprendimento automatico.
- 4. 2013 2018: deep learning.

Note:-

Tutto cambiò nel 2018, quando NLP fu il primo successo su larga scala di rete neurale autosupervisionata.

Figure 1.2: Il passato delle tecnologie del linguaggio naturale.

1.1.1 La Complessità del Linguaggio Naturale

C'è un legame tra linguaggio umano e intelligenza. Già Turing sosteneva che se si potesse parlare in un certo modo si fosse intelligenti (test di Turing). La differenza tra il linguaggio umano e un linguaggio di programmazione è l'ambiquità: C o Java non sono ambigui.

Il linguaggio umano:

- *Discretezza* (esistenza di elementi):
 - Api: Ritmo, orientamento, durata.
 - Esseri umani: Fonemi, morfemi, parole.

• Ricorsività:

- Scimpanze: Gesti atomici.
- Uomo: Gianni vede Pietro, Maria vuole che Gianni veda Pietro, Paolo crede che Maria voglia che Gianni veda Pietro.

• Dipendenza dalla struttura:

— Non "una parola dietro l'altra" ma c'è una struttura: La ragazza parte, I ragazzi di cui mi ha parlato la ragazza partono.

• Località:

- Gianni lo ha guardato.
- Gianni ha detto che Pietro lo ha guardato.

Intelligenza e linguaggio nel il test di Turing:

- Possono le macchine pensare?
- Se riesco a parlare come un essere umano allora penso.
- Gioco dell'imitazione: un giudice deve capire se quello che ha davanti è un uomo oppure un computer.

Note:- Ci sono una serie di obiezioni a questo test: teologia, matematica, coscienza, etc.

Figure 1.3: Il gioco dell'imitazione.

Nel 1966, Weizenbaum crea Eliza. Una macchina in grado di "comprendere" e ingannare gli esseri umani.

Note:-

Il punto debole del test di Turing e di Eliza è il giudice: se è coinvolto emotivamente potrebbe far passare un computer per un essere umano a .

 a Blade runner moment

Definizione 1.1.1: Winograd Schema

Evoluzione del Turing test: un test a scelta multipla che utilizza domande con una specifica struttura. In questi test gli esseri umani sono molto bravi a rispondere, i computer no.

Note:-

Rimuove il giudizio, quindi tecnicamente più accurato.

Corollario 1.1.1 Captcha

Un test di Turing inverso per capire se l'interloquitore è umano. Non c'è linguaggio, ma riconoscimento cognitivo.

Corollario 1.1.2 Voight-Kampff Test

Test in Blade runner basato sulle emozioni, evoluzione del test di Turing.

1.1.2 I Livelli di Conoscenza del Linguaggio

HAL 9000, in "2001: Odissea nello spazio" mostra un esempio di comunicazione.

Domanda 1.1

Come fa HAL a rispondere?

- Riconoscimento vocale.
- Comprensione del linguaggio naturale.
- Generazione del linguaggio naturale.
- Sintesi vocale.
- Recupero ed estrazione di informazioni.
- Inferenza.

Livelli della conoscenza:

- 1. Il suono: HAL deve essere in grado di analizzare e produrre dei segnali audio che contengono le parole: foni e fonemi.
- 2. Le parole: HAL deve essere in grado di riconoscere le singole parole.
- 3. Raggruppare le parole: HAL deve essere in grado di distinguere la struttura della frase.
- 4. Significato: HAL deve conoscere il significato delle singole parole e deve essere in grado di comporre questi significati per trovare il significato complessivo della frase.
- 5. Contesto e scopi: HAL deve avere delle conoscenze del mondo che gli permettono usare il linguaggio in maniera contestuale: *I'm afraid, I can't* invece di *I won't*.
- 6. Conversazione: HAL deve avere deve essere in grado di conversare, dando delle risposte e facendo delle domande pertinenti al discorso.

A ogni livello corrisponde una parte del linguaggio:

- 1. Fonetica e Fonologia: lo studio del suono della lingua.
- 2. Morfologia: lo studio delle parti significative delle parole.
- 3. Sintassi: lo studio sulla struttura e sulle relazioni tra le parole.
- 4. Semantica: lo studio del significato.
- 5. Pragmatica: lo studio di come il linguaggio è usato per compiere goal. Il passivo serve per mettere in luce/enfatizzare alcune parti della frase.
- 6. Discorso: lo studio delle unità linguistiche rispetto alla singola dichiarazione.

Note:- 🛉

Jurafsky è un chad nerd.

1.1.3 Strutture Linguistiche e Ambiguità

Analizzando i vari livelli si trovano diverse strutture linguistiche.

Definizione 1.1.2: Struttura Linguistica

Una struttura è un insieme su cui è definita una relazione:

- Relazione fonetico-fonologica sull'insieme dei foni-fonemi.
- Relazione morfologica sull'insieme dei morfemi.
- Relazione sintattica sull'insieme delle parole.
- Relazione semantica sull'insieme dei significati delle parole.
- Relazione pragmatica sull'insieme dei significati delle parole e sul contesto.
- Relazione "discorsale" sull'insieme delle frasi.

Note:-

Ci sono relazioni tra i componenti della frase. Inoltre le relazioni cambiano a seconda della lingua.

Esempio 1.1.1 (Struttura Sintattica)

Definizione 1.1.3: Ambiguità

Il linguaggio naturale presenta frasi che possono essere interpretate in modi differenti.

Esempio 1.1.2 (Ambiguità)

"I made her duck"

- Ho cucinato una papera per lei.
- Ho cucinato una papera che apparteneva a lei.
- Ho creato una papera con la stampante 3D e gliel'ho data a lei.
- Ho fatto abbassare la sua testa.
- In Harry Potter^a: Ho trasformato lei in una papera.

 $[^]a$ Rowling merda.

Osservazioni 1.1.1

- Le parole "duck" e "her" sono morfologicamente ambigue nella loro parte del discorso. "Duck" può essere un verbo o un nome, "her" può essere un pronome dativo o possessivo.
- Il verbo "make" è sintetticamente ambiguo: può essere transitivo o intransitivo.
- Inoltre "make" è anche semanticamente ambiguo: può significare creare o cucinare.
- In una frase parlata c'è un altro livello per cui "her" può essere udito come "eye" e "make" come "maid".

Note:-

Essere ambigui permette di essere brevi e coincisi.

Altre proprietà notevoli del linguaggio:

- Linguaggio non standard, evolve nel tempo.
 - Scialla bros → chill → è easy.

- Segmentazione.
 - Il treno Torino San Remo.
- Locuzioni, spesso l'interpretazione non è composizionale.
 - Pollica verde.
- Neologismi.
 - Twettare²
- Conoscenza del mondo.
 - Lucia e Carola erano sorelle.
 - Lucia e Carola erano madri.
- Meta-linguaggio.
 - La prima cosa bella ha avuto un grandissimo successo.

1.1.4 Lo Stato dell'Arte

- 1976: In Canada un sistema riesce a stampare due bollettini meteo in due lingue diverse.
- BabelFish, di Yahoo, era un sistema "a regole" di trascrizione automatica, basato su Systran.
- 2011: IBM costruisce un supercomputer per battere un essere umano a Jeopardy, Watson.
- Tecnologie vocali: Speech Recognition, TextToSpeech, HTML5 Speech API (pagine web vocali).

 $^{^2 \}mathrm{Musk}$ merda.

Note:-

Dopo sette milioni e mezzo di anni Pensiero Profondo fornisce la risposta: "42" a.

 $^a {\rm Guida}$ Galattica per gli Autostoppisti.

Figure 1.4: LLM. Tratto da "Hands-On Large Language Models", uscito nel Dicembre del 2024.

Note:-

Well, Deepseek è open source e funziona meglio di ChatGPT (a patto che non chiedi cosa sia successo a piazza Tienanment nel 1989).

Figure 1.5: Shifting di paradigma dovuto al Machine Learning.

Definizione 1.1.4: AI Generativa

Modello di linguaggio di reti neurali multi-task basate sui transformer addestrati su una grande quantità di dati utilizzando self training e feedback umano.

- Modello di Linguaggio: Text prediction \rightarrow T9.
- Multi-task: Google Translator, Siri.

Domanda 1.2

Come fare un LLM (M. Lapata)?

- 1. Collezionare una grande quantità di dati.
- 2. Chiedere al LLM di predirre la nuova parola in una frase.
- 3. Ripetere il tutto.

Figure 1.6: Auto addestramento di una rete neurale.

Domanda 1.3

Come usare un LLM?

- Sintonizzazione a grana fine.
- Prompting.

Si può usare un LLM per:

- Search Engine.
- Writer/Code assistant.

→ Note:-

Noam Chomsky odia questi sistemi. Secondo lui servono per evitare l'apprendimento.

DeepSeek:

- Apprendimento rinforzato automatico (senza essere umani).
- Meno costoso \rightarrow politicamente importante.

Il problema fondamentale: Convertire una frase o un testo in una forma che permetta l'applicazione di meccanismi di ragionamento automatico.

1.2 I Livelli Linguistici

1.2.1 Da Frase a Significato

Problema: Convertire una frase o un testo in una forma che permetta l'applicazione di meccanismi di ragionamento automatico.

Figure 1.7: Passaggio da frase a significato.

Note:-

Però la situazione non è così semplice. Bisogna capire come funzionano i moduli e come comunicano

Nella linguistica computazionale c'è una divisione tra regole e statistica:

- Rules-driven.
- Data-driven.

Note:-

Steedman sostiene che i due aspetti dovrebberò convivere tra loro (2008). Evitare il regionamento tribale.

Domanda 1.4

Quando finisce una frase?

Definizione 1.2.1: Sentence splitting

Task in cui si deve capire quando una frase finisce.

- "!", "?" \rightarrow Okay, pongono fine alla frase.
- ".":
 - Fine frase.
 - Abbreviazione (Doc., Mx.).
 - Numeri (0.2).

Domanda 1.5

Quindi come si costruisce un classificatore binario che decida EoS (End of String) o not EoS?

- Si possono scrivere regole a mano:
 - Espressioni regolari.
 - Tokenizer (FA) e regole.
- Addestrare un sistema di machine learning.

Figure 1.8: Albero di decisione.

Features più complesse:

- Caso di parole con ".".
- Caso di parole dopo ".".
- Features numeriche:
 - Lunghezza di parole con ".".
 - Probabilità che una parola con "." avvenga alla fine della frase.
 - Probabilità che una parola dopo "." avvenga all'inizio di una frase.

Domanda 1.6

Cos'è davvero un albero di decisione?

- Una serie di IF-THEN-ELSE incapsulati.
- Due possibilità per costruirlo:
 - By-hand: solo in contesti semplici.
 - *Machine learning*: su un training corpus.
- Il punto cruciale è la scelta delle features.

Osservazioni 1.2.1

- In questo corso ci concentreremo sullo studio delle feature linguistiche.
- In alcuni casi l'approccio by-hand verrà privilegiato poiché è didatticamente più chiaro/semplice e poiché è più semplice verificarne la fondatezza cognitiva mediante introspezione.

Domanda 1.7

Nei sistemi end-to-end cosa sono le feature linguistiche?

Definizione 1.2.2: Features Linguistiche Neurali

L'architettura neurale, ovvero il numero e il tipo di connessioni, codifica in maniera *implicita* le features linguistiche.

Note:-

La ricerca, in questo caso, si focalizza su quale scelta architetturale è più adatta alla modellazione implicita del fenomeno linguistico e alla creazione del corpus di training.

1.2.2 Il Livello Morfologico e l'Analisi Lessicale

Il lessico è fondato sul concetto di parola.

Domanda 1.8

Che cos'è una parola?

- Intuitivamente è una sequenza di caratteri delimitata da spazi o punteggiatura.
- \bullet Sequenze di più parole, Es. passammela = passa a me essa.
- Le parole hanno un significato unitario (semantica lessicale), ma volte sequenze di parole hanno un significato unitario. Es. di corsa, by the way.
- In altre lingue il problema è più grave.
 - In tedesco: Lebenversicherungsgesellschaftangestellter = impiegato di una società di assicurazione sulla vita.
 - In inglese: Wouldn't? = Would not.

Presenza di suffissi:

- CAPITANO (forma non declinabile).
- CAPITAN + O (nome o aggettivo o forma del verbo capitanare).
- CAPIT + ANO (forma del verbo capitanare).

Note:-

Non c'è una forma giusta a priori, ma c'è una forma giusta in base al contesto.

Definizione 1.2.3: Forme Composte

Generalmente una parola contenuto più una (o più) parole funzione.

Figure 1.9: Analizzatore morfologico.

Esempio 1.2.1 (Forme composte)

STAMPAMELO:

- STAMP è una radice verbale.
- A è un suffisso verbale.
- ME e LO sono forme pronominali a .

Definizione 1.2.4: Forme Multiple

Le diversi componenti sono nel dizionario ma la semantica non è composizionale.

Esempio 1.2.2 (Forme multiple)

- Più o meno: puntatore tra le parole per recuperare la giusta semantica.
- Prendere un abbaglio: rimandare all'interprete semantico.

Definizione 1.2.5: Lemmatizzazione

Trasformare un lemma in forma normale.

Note:-

La forma normale non è stabile nel tempo.

^aPer triggerare gli Alt-Right.

Definizione 1.2.6: Stemming

Estrarre la forma radice (detta tema) da una parola.

Definizione 1.2.7: Paradigmatico

Si cambia una parte della parola con una equivalente si ha una frase morfologicamente corretta.

Definizione 1.2.8: Sintagmatico

I rapporti che intercorrono tra gli elementi che si succedono nella frasei rapporti che intercorrono tra gli elementi che si succedono nella frase.

Nome:

- Persone, oggetti, luoghi.
- Proprietà sintagmatiche:
 - Comparire dopo gli articoli.
 - Avere un possessivo.
 - Avere un singolare o un plurale.
- Comuni, propri, di massa, contabili.

Verbo:

- Eventi, azioni, processi.
- Molte forme morfologiche.
 - Tempo.
 - Modo.
 - Numero.
- Tante categorie (ausiliari, modali, copula, etc.).

Aggettivi:

• Proprietà.

Avverbi:

• Modificano qualcosa, spesso verbi, ma anche altri avverbi o intere frasi.

Note:-

Nomi, verbi, aggettivi e avverbi sono *di contenuto*, che puntano a oggetti reali.

Definizione 1.2.9: Classi Aperte

Classi che aumentano o scompaiono nel tempo costantemente (nomi, verbi, aggettivi, avverbi).

Definizione 1.2.10: Classi Chiuse

Classi che aumentano o scompaiono con tempi lunghissimi.

Note:-

Un esempio di classi chiuse sono i pronomi: una volta, in inglese, la seconda persona singolare era "thou", attualmente "you" ha assunto sia il ruolo di seconda persona singolare che plurale.

Figure 1.10: Parti aperte e parti chiuse.

Google Unviversal PoS: 12 PoS: NOUN (nouns), VERB (verbs), ADJ (adjectives), ADV (adverbs), PRON (pronouns), DET (determiners and particles), ADP (prepositions and postpositions), NUM (numerals), CONJ (conjunctions), PRT (particles), '.' (punctuation marks) and X (a catch-all, e.g. abbreviations and foreign words).

1.2.3 Il Livello Sintattico

Figure 1.11: Parsing sintattico.

Note:-

Le due alternative derivano da prospettive diverse:

- Quella a sinistra è la struttura sintagmatica (o a costituenti).
- Quella a destra è la struttura a dipendenze (scuola di praga).

Entrambe le alternative sono equivalenti.

Definizione 1.2.11: Costituenza

La struttura della frase organizza le parole in costituenti annidati.

Domanda 1.9

Come si fa a sapere cos'è un costituente?

- Distribuzione: un costituente si comporta come un'unità che compare in differenti parti della frase.
- Sostituzione: test per verificare un costituent

Note:-

La cosa interessante è automatizzare il processo della costruzione di alberi.

Osservazioni 1.2.2

- NP: la parola più importante sintatticamente è un nome.
- VP: la parola più importante sintatticamente è un verbo.
- PP-LOC: la parola più importante sintatticamente è una preposizione.
 - VP -> ... VB* ...
 - NP -> ... NN* ...
 - ADJP -> ... JJ* ...
 - ADVP -> ... RB* ...
 - SBAR(Q) -> S|SINV|SQ -> ... NP VP ...
 - · Plus minor phrase types:
 - QP (quantifier phrase in NP), CONJP (multi word constructions: as well as), INTJ (interjections), etc.

Figure 1.12: Parti della sintassi.

Note:-

I costituenti si comportano come un'unità:

- Esperimento di Fodor-Bever.
- Esperimento di Bock-Loebell.

Definizione 1.2.12: Context Free Grammar

I CFG mettono in relazione i simboli non terminali e i constituenti (Chomsky).

Definizione 1.2.13: X-barra

La teoria X-barra sostiene che se si costruisce un albero a costituenti con una determinata proprietà l'oggetto sarà presente internamente e il soggetto sarà presente esternamente.

Figure 1.13: X-barra.

Definizione 1.2.14: Dipendenza

Relazione tra due parole:

- *Head*: parola dominante.
- *Dipendenza*:parola dominata.

Note:-

La testa seleziona le sue dipendenze e determina le loro proprietà.

Corollario 1.2.1 Argomenti

Modificano in maniera sostanziale un evento (obbligatori).

Corollario 1.2.2 Modificatori

Modificano parzialmente un evento (facoltativi).

1.2.4 Il Livello Semantico

Esistono 2 approcci alla semantica lessicale:

- Classico.
- Distribuzionale (anni '60):
 - Statistico.
 - Neurale.

Definizione 1.2.15: Semantica Lessicale Classica

Le connessioni sono legate al significato dei vari lessemi. La struttura interna dei lessemi è legata al significato.

Corollario 1.2.3 Lessema

Una coppia forma-significato, elemento del lessico.

Note:-

Il problema è che sono possibili definizioni ricorsive "infinite".

Relazioni tra lessemi:

- Omonimia: 2 lessemi con la stessa forma ortografica hanno due sensi diversi.
 - A bank can hold the investments.
 - We can go on the right bank of the river.
- Polisemia: lo stesso lessema ha due sensi diversi:
 - A bank can hold the investments.
 - He got the blood from the bank.
- Sinonimia: due lessemi con forma diversa hanno lo stesso senso (sostituibilità).
 - How big is that plane?
 - How large is that plane?
- Iponimia: due lessemi di cui uno denota una sottoclasse dell'altro:
 - Automobile è un iponimo di veicolo.
 - Veicolo è un iperonimo di automobile.

Esempio 1.2.3 (Iponimia)

- $\bullet\,$ Quella è un automobile \to quello è un veicolo.
- (?) Quello è un veicolo \rightarrow quella è un automobile.

Corollario 1.2.4 Syn-set

Insieme di relazioni tra lessemi, usato per costruire le mappe in worldnet.

Definizione 1.2.16: Semantica Distribuzionale (vettoriale)

Il significato di una parola è collegato alla distribuzione delle parole attorno a sé.

Esempio 1.2.4 (Semantica Distribuzionale)

- A bottle of tesquino is on the table.
- Everybody likes tesguino.
- Tesguino makes you drunk.

Si può inferire che testguino sia un super alcolico.

I vettori:

- Lunghi (lunghezza 20.000-50.000).
- Sparsi (molti elementi sono zero).

I lean vectors:

- Piccoli (lunghezza 200-1000).
- Densi (molti elementi sono non-zero).
- Vettori più corti sono più facili da usare come feautures nel ML.

	aardvark	 computer	data	pinch	result	sugar	
apricot	0	 0	0	1	0	1	
pineapple	0	 0	0	1	0	1	
digital	0	 2	1	0	1	0	
information	0	 1	6	0	4	0	

Figure 1.14: Si può andare a determinare la "vicinanza" di parole con la semantica vettoriale.

Osservazioni 1.2.3

- Con l'avvento delle reti neurali si ha un miglioramento.
- vector('king') vector('man') + vector('woman') = vector('queen').
- vector('Paris') vector('France') + vector('Italy') = vector('Rome').

Definizione 1.2.17: Parole Contestualizzate

Costruire un vettore per ogni parola, condizionandolo al suo contesto. La rappresentazione per ogni token è una funzione dell'intera sequenza di input.

Figure 1.15: Contestualizzazione.

Corollario 1.2.5 Semantica Composizionale

La semantica di un sintagma è funzione della semantica dei sintagmi componenti; non dipende da altri

sintagmi esterni al sintagma stesso.

Note:-

Conoscendo il significato di X, Y, e +, possiamo comporre il significato "X+Y".

Reasoning:

- Deduzione: conseguenza logica.
- Induzione: basata su molti casi, si assume una regola generale.
- Abduzione: regionamento per indizi.

Definizione 1.2.18: Metasemantica

L'insieme di semantica composizionale e semantica lessicale distribuzionale. Serve per dare senso a parole sconosciute.

1.2.5 Il Livello Pragmatico e del Discorso

Definizione 1.2.19: Pragmatica

L'interpretazione di "io" (sottinteso) e "oggi" dipende da chi enuncia la frase e quando, rispettivamente.

Note:-

Il vero significato deve essere integrato da oggetti metalinguistici.

Corollario 1.2.6 Anafora

Sintagmi che si riferiscono a oggetti precedentemente menzionati.

Esempio 1.2.5 (Anafora)

- "La torta era sul tavolo. Giorgio la divorò".
- "In giardino c'erano il cane e il gatto che giocavano con un pezzo di stoffa. Il felino lacero' la stoffa".
- "Dopo essersi fidanzati, Giorgio e Maria trovarono un prete e si sposarono. Per la luna di miele, essi andarono ai Caraibi".

Le *strutture dati* dei livelli:

- Livello morfologico e l'analisi lessicale: Lista.
- Livello sintattico: Alberi.
- Livello Semantico:
 - Semantica lessicale: Insiemi, Vettori.
 - Semantica formale: Logica, Alberi/Grafi.
- Livello paradigmatico e del discorso: Frame, Ontologie.

Sequence Tagging

2.1 Part of Speech (PoS) Tagging

Definizione 2.1.1: PoS Tagging

Domanda 2.1

Perché studiare PoS?

- Text-to-Speech: la pronuncia di alcune parole cambia in base alla loro parte nel discorso.
- Scrivere regexps: per cercare le frasi principali.
- Input per un parser completo.
- MT (Machine Translation): riordinare aggettivi e nomi nelle traduzioni.
- Si potrebbe volere distinguere tra aggettivi o altre parti del discorso.
- Si potrebbe voler studiare cambiamenti linguistici come la ceazione di nuove parole o shifting del significato.

Figure 17.3 The task of part-of-speech tagging: mapping from input words $x_1, x_2, ..., x_n$ to output POS tags $y_1, y_2, ..., y_n$.

Figure 2.1: Part of Speech Tagging.

Domanda 2.2

Quanto è difficile il PoS Tagging?

- 85% delle parole non sono ambigue.
- 15% delle parole sono ambigue e molto frequenti (il 60% delle parole che si ascoltano sono ambigue).

Domanda 2.3

Quanti tag sono corretti?

- \bullet Attualmente 97%.
- \bullet Una baseline del 92% è possibile con il metodo più banalie:
 - Si dà un tag a ogni parola con il suo significato più frequente.
 - Si dà un tag nome alle parole sconosciute.

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
ass	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
ū	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open Class	VERB	words for actions and processes	draw, provide, go
ō	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
DO:		spacial, temporal, or other relation	
Dio	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
≥	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
Closed Class Words	DET	Determiner: marks noun phrase properties	a, an, the, this
D .	NUM	Numeral	one, two, first, second
seq	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
18	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
E	PUNCT	Punctuation	; , ()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Nivre et al. 2016

Figure 2.2: Tagset.