Package 'BootPR'

August 31, 2023

Type Package

Title Bootstrap Prediction Intervals and Bias-Corrected Forecasting
Version 1.0
Date 2023-08-31
Author Jae. H. Kim <jaekim8080@gmail.com></jaekim8080@gmail.com>
Maintainer Jae H. Kim <jaekim8080@gmail.com></jaekim8080@gmail.com>
Description Contains functions for bias- Corrected Forecasting and Bootstrap Prediction Intervals for Autoregressive Time Series.
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-31 08:40:05 UTC
R topics documented:
BootPR-package Andrews.Chen ARorder BootAfterBootPI BootBC BootPI IPdata LS.AR Plot.Fore Plot.PI Roy.Fuller ShamanStine.PI Stine.Shaman
Index 14

2 Andrews.Chen

BootPR-package

Bootstrap Prediction Intervals and Bias-Corrected Forecasting

Description

The package provides alternative bias-correction methods for univariate autoregressive model parameters; and generate point forecats and prediction intervals for economic time series.

A future version will include the case of vector AR models.

Details

Package: BootPR
Type: Package
Version: 1.0
Date: 2023-08-31

License: GPL version 2 or newer

Author(s)

Jae H. Kim

Maintainer: Jae H. Kim < J.Kim@latrobe.edu.au>

Andrews.Chen

Andrews-Chen median-unbiased estimation for AR models

Description

This function returns the Andrews-Chen estimates for AR coefficients, residuals, and AR forecasts generated using the Andrews-Chen estimates

Usage

```
Andrews.Chen(x, p, h, type)
```

Arguments

			_	_	
		4:	series	1 -4-	
Y	я	$_{\rm 11me}$	Ceries	aara	Sei

p AR order

h the number of forecast periods

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

ARorder 3

Value

coef Andrews-Chen median-unbiased estimates

ecm. coef the coefficients in the ADF form

resid residuals

forecast point forecasts from Andrews-Chen estimates

Note

The Andrew-Chen estimator may break down when the AR order is very high. I recommend that AR order be kept low

Author(s)

Jae H. Kim

References

Kim, J.H., 2003, Forecasting Autoregressive Time Series with Bias-Corrected Parameter Estimators, International Journal of Forecasting, 19, 493-502.

Andrews, D.W. K. (1993). Exactly median-unbiased estimation of first order autoregressive / unit root models. Econometrica, 61, 139-165.

Andrews, D.W. K., & Chen, H. -Y. (1994). Approximate median unbiased estimation of autoregressive models. Journal of Business & Economic Statistics, 12, 187-204.

Examples

```
data(IPdata)
BootBC(IPdata,p=1,h=10,nboot=200,type="const+trend")
```

ARorder

AR model order selection

Description

AR model selection using AIC, BIC, HQ

Usage

```
ARorder(x, pmax, type)
```

Arguments

x a time series data set pmax the maximum AR order

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

4 BootAfterBootPI

Value

ARorder AR orders selected by AIC, BIC and HQ

Criteria the values of AIC, BIC and HQ

Author(s)

Jae H. Kim

Examples

```
data(IPdata)
ARorder(IPdata,pmax=12,type="const+trend")
```

BootAfterBootPI

Bootstrap-after-Bootstrap Prediction

Description

This function calculates bootstrap-after-bootstrap prediction intervals and bootstrap bias-corrected point forecasts

Usage

```
BootAfterBootPI(x, p, h, nboot, prob, type)
```

Arguments

x a time series data set

p AR order

h the number of forecast periods nboot number of bootstrap iterations

prob a vector of probabilities

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Value

PI prediction intervals

forecast bias-corrected point forecasts

Author(s)

Jae H. Kim

BootBC 5

References

Kim, J.H., 2001, Bootstrap-after-Bootstrap Prediction Intervals for Autoregressive Models, Journal of Business & Economic Statistics 19, 117-128

Kilian, L. (1998). Small sample confidence intervals for impulse response functions. The Review of Economics and Statistics, 80,218-230.

Examples

```
\label{lem:data} data(IPdata) \\ BootAfterBootPI(IPdata,p=1,h=10,nboot=100,prob=c(0.05,0.95),type="const+trend") \\
```

BootBC

Bootstrap bias-corrected estimation and forecasting for AR models

Description

This function returns bias-corrected parameter estimates and forecasts for univariate AR models.

Usage

```
BootBC(x, p, h, nboot, type)
```

Arguments

x a time series data set

p AR order

h the number of forecast period nboot number of bootstrap iterations

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Value

coef Bootstrap bias-corrected parameter estimates

resid residuals

forecast point forecasts from bootstrap bias-corrected parameter estimates

Author(s)

Jae H. Kim

References

Kim, J.H., 2003, Forecasting Autoregressive Time Series with Bias-Corrected Parameter Estimators, International Journal of Forecasting, 19, 493-502.

Kilian, L. (1998a). Small sample confidence intervals for impulse response functions. The Review of Economics and Statistics, 80,218-230.

6 BootPI

Examples

```
data(IPdata)
BootBC(IPdata,p=1,h=10,nboot=100,type="const+trend")
```

BootPI

Bootstrap prediction intevals and point forecasts with no biascorrection

Description

This function returns bootstrap forecasts and prediction intervals with no bias-correction

Usage

```
BootPI(x, p, h, nboot, prob, type)
```

Arguments

x a time series data set

p AR order

h the number of forecast periods nboot number of bootstrap iterations

prob a vector of probabilities

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Value

PI prediction intervals

forecast bias-corrected point forecasts

Author(s)

Jae H. Kim

References

Thombs, L. A., & Schucany, W. R. (1990). Bootstrap prediction intervals for autoregression. Journal of the American Statistical Association, 85, 486-492.

```
data(IPdata)
BootPI(IPdata,p=1,h=10,nboot=100,prob=c(0.05,0.95),type="const+trend")
```

IPdata 7

IPdata

US industrial production data

Description

From Extended Nelson-Plosser data set, annua1, 1860-1988

Usage

```
data(IPdata)
```

References

Andrews, D.W. K., & Chen, H. -Y. (1994). Approximate median-unbiased estimation of autoregressive models. Journal of Business & Economic Statistics, 12, 187-204.

Examples

```
data(IPdata)
```

LS.AR

OLS parameter estimates and forecasts, no bias-correction

Description

The function returns parameter estimates and forecasts from OLS estimation for AR models

Usage

```
LS.AR(x, p, h, type, prob)
```

Arguments

р

Χ	a time series data set
р	AR order

h the number of forecast period

prob a vector of probabilities

"const" for the AR model with intercept only, "const+trend" for the AR model type

with intercept and trend

Plot.Fore

Value

coef OLS parameter estimates

resid OLS residuals

forecast point forecasts from OLS parameter estimates

PI Prediction Intervals based on OLS parameter estimates based on normal approx-

imation

Author(s)

Jae H. Kim

Examples

```
data(IPdata)
LS.AR(IPdata,p=6,h=10,type="const+trend", prob=c(0.05,0.95))
```

Plot.Fore

Plotting point forecasts

Description

The function returns plots the point forecasts

Usage

```
Plot.Fore(x, fore, start, end, frequency)
```

Arguments

x a time series data set
fore point forecasts
start starting date
end ending date
frequency data frequency

Details

```
frequency=1 for annual data, 4 for quarterly data, 12 for monthly data
start=c(1980,4) indicates April 1980 if frequency=12
end = c(2000,1) indicates 1st quarter of 2000 if frequency = 4
```

Value

plot

Plot.PI 9

Author(s)

Jae H. Kim

Examples

```
data(IPdata)
BootF <- BootBC(IPdata,p=1,h=10,nboot=100,type="const+trend")
Plot.Fore(IPdata,BootF$forecast,start=1860,end=1988,frequency=1)</pre>
```

Plot.PI

Plotting prediction intervals and point forecasts

Description

The function returns plots the point forecasts and prediction intervals

Usage

```
Plot.PI(x, fore, Interval, start, end, frequency)
```

Arguments

x a time series data set
fore point forecasts
Interval Prediction Intervals
start starting date
end ending date
frequency data frequency

Details

```
frequency=1 for annual data, 4 for quarterly data, 12 for monthly data start=c(1980,4) indicates April 1980 if frequency=12 end = c(2000,1) indicates 1st quarter of 2000 if frequency = 4
```

Value

plot

Author(s)

Jae H. Kim

```
data(IPdata)
PI <- ShamanStine.PI(IPdata,p=1,h=10,nboot=100,prob=c(0.025,0.05,0.95,0.975),type="const+trend",0)
Plot.PI(IPdata,PI$forecast,PI$PI,start=1860,end=1988,frequency=1)</pre>
```

10 Roy.Fuller

Roy-Fuller median-unbiased estimation

Description

This function returns parameter estimates and forecasts based on Roy-Fuller medin-unbiased estimator for AR models

Usage

```
Roy.Fuller(x, p, h, type)
```

Arguments

x a time series data set

p AR order

h the number of forecast period

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Value

coef Roy-Fuller parameter estimates

resid residuals

forecast point forecasts from Roy-Fuller parameter estimates

Author(s)

Jae H. Kim

References

Kim, J.H., 2003, Forecasting Autoregressive Time Series with Bias-Corrected Parameter Estimators, International Journal of Forecasting, 19, 493-502.

Roy, A., & Fuller, W. A. (2001). Estimation for autoregressive time series with a root near one. Journal of Business & Economic Statistics, 19(4), 482-493.

```
data(IPdata)
Roy.Fuller(IPdata,p=6,h=10,type="const+trend")
```

ShamanStine.PI 11

Shaman	Stir	۵۵ ا	ÞТ
SHallian	O L I I	ıe.	ГΙ

Bootstrap prediction interval using Shaman and Stine bias formula

Description

The function returns bias-corrected forecasts and bootstrap prediction intervals using Shaman and Stine bias formula for univariate AR models

Usage

```
ShamanStine.PI(x, p, h, nboot, prob, type, pmax)
```

Arguments

p AR order

h the number of forecast periods nboot number of bootstrap iterations prob a vector of probability values

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

pmax for exogenous lag order algorithm, pmax = 0, for endogenous lag order algo-

rithm, pmax is an integer greater than 0

Value

PI prediction intervals

forecast bias-corrected point forecasts

Author(s)

Jae H. Kim

References

Kim, J.H., 2004, Bootstrap Prediction Intervals for Autoregression using Asymptotically Mean-Unbiased Parameter Estimators, International Journal of Forecasting, 20, 85-97.

Kim, J.H., 2003, Forecasting Autoregressive Time Series with Bias-Corrected Parameter Estimators, International Journal of Forecasting, 19, 493-502.

Shaman, P., & Stine, R. A. (1988). The bias of autoregressive coefficient estimators. Journal of the American Statistical Association, 83, 842-848.

Stine, R. A., & Shaman, P. (1989). A fixed point characterization for bias of autoregressive estimators. The Annals of Statistics, 17, 1275-1284.

Kilian, L. (1998a). Small sample confidence intervals for impulse response functions. The Review of Economics and Statistics, 80,218-230.

12 Stine.Shaman

Examples

```
\label{lem:data} $$ \text{ShamanStine.PI(IPdata,p=1,h=10,nboot=100,prob=c(0.05,0.95),type="const+trend",pmax=0)} $$
```

Stine.Shaman

bias-corrected estimation based on Shaman-Stine formula

Description

The function returns parameter estimates and bias-corrected forecasts using Shaman and Stine bias formula for univariate AR models

Usage

```
Stine.Shaman(x, p, h, type)
```

Arguments

x a time series data set

p AR order

h the number of forecast period

type "const" for the AR model with intercept only, "const+trend" for the AR model

with intercept and trend

Value

coef Bias-corrected parameter estimates using Shama-Stine formula

resid residuals

forecast point forecasts from bias-corrected parameter estimates

Author(s)

Jae H. Kim

References

Kim, J.H., 2003, Forecasting Autoregressive Time Series with Bias-Corrected Parameter Estimators, International Journal of Forecasting, 19, 493-502.

Shaman, P., & Stine, R. A. (1988). The bias of autoregressive coefficient estimators. Journal of the American Statistical Association, 83, 842-848.

Stine, R. A., & Shaman, P. (1989). A fixed point characterization for bias of autoregressive estimators. The Annals of Statistics, 17, 1275-1284.

Kilian, L. (1998a). Small sample confidence intervals for impulse response functions. The Review of Economics and Statistics, 80,218-230.

Stine.Shaman 13

```
data(IPdata)
Stine.Shaman(IPdata,p=6,h=10,type="const+trend")
```

Index

```
*ts
    Andrews.Chen, 2
    ARorder, 3
    BootAfterBootPI, 4
    BootBC, 5
    BootPI, 6
    BootPR-package, 2
    IPdata, 7
    LS.AR, 7
    Plot.Fore, 8
    Plot.PI, 9
    Roy.Fuller, 10
    ShamanStine.PI, 11
    Stine.Shaman, 12
Andrews.Chen, 2
ARorder, 3
BootAfterBootPI, 4
BootBC, 5
BootPI, 6
BootPR (BootPR-package), 2
BootPR-package, 2
IPdata, 7
LS.AR, 7
Plot.Fore, 8
Plot.PI, 9
{\sf Roy.Fuller},\, \textcolor{red}{10}
ShamanStine.PI, 11
Stine.Shaman, 12
```