WHAT IS CLAIMED IS:

1. A process for producing the following fluorosulfonyl group-containing compound (5), characterized in that the following compound (3) is fluorinated to form the following compound (4), and then, the compound (4) is subjected to a decomposition reaction:

$$FSO_{2}R^{A}$$

$$R^{D}$$

$$E - R^{E}$$

$$CX^{1}X^{2}X^{3}$$

$$FSO_{2}R^{AF}$$

$$R^{DF}$$

$$CX^{1F}X^{2F}X^{3F}$$

$$R^{EF}$$

$$CX^{1F}X^{2F}X^{3F}$$

$$\begin{array}{c|c}
R^{BF} & R^{CF} \\
FSO_2R^{AF} & O \\
R^{DF} & O \\
CX^{1F}X^{2F}X^{3F}
\end{array}$$
(5)

15

provided that the symbols in the formulae have the following meanings:

At least one selected from R^A to R^E , X^1 to X^3 and E is a hydrogen atom or a group having hydrogen atom(s), and at least one selected from R^{AF} to R^{EF} , X^{1F} to X^{3F} and E^F is a fluorinated group or a fluorine atom;

RA: a bivalent organic group;

 R^{AF} : a group corresponding to R^{A} , i.e. a bivalent organic group having R^{A} fluorinated, or the same bivalent organic group as R^{A} ;

 R^B , R^C , R^D : each independently being a hydrogen atom, a halogen atom or a monovalent organic group;

20 R^{BF}, R^{CF}, R^{DF}: R^{BF}, R^{CF} and R^{DF} are groups which

correspond to R^B, R^C and R^D, respectively; when any one of R^B to R^D is a hydrogen atom, the one of R^{BF} to R^{DF} corresponding to the hydrogen atom is a hydrogen atom or a fluorine atom; when any one of R^B to R^D is a halogen atom, the one of R^{BF} to R^{DF} corresponding to the halogen atom is a halogen atom; when any one of R^B to R^D is a monovalent organic group, the one of R^{BF} to R^{DF} corresponding to the monovalent organic group is a monovalent organic group having the corresponding one of R^B to R^D fluorinated, or the same group as the corresponding one of R^B to R^D;

R^E: a monovalent organic group;

 R^{EF} : a group corresponding to R^{E} , i.e. a monovalent organic group having R^{E} fluorinated, or the same monovalent organic group as R^{E} ;

E: a bivalent connecting group;

15

20

25

E^F: a group corresponding to E, i.e. the same bivalent connecting group as E, or a bivalent connecting group having E fluorinated;

 E^{F1} : a group formed by scission of E^{F} ;

 X^1 , X^2 , X^3 : each independently being a hydrogen atom, a chlorine atom, or a fluorine atom;

 X^{1F} , X^{2F} , X^{3F} : X^{1F} , X^{2F} and X^{3F} correspond to X^1 , X^2 , X^3 , respectively; when any one of X^1 to X^3 is a hydrogen atom, the one of X^{1F} to X^{3F} corresponding to the hydrogen atom, is a hydrogen atom or a fluorine atom; when any one of X^1 to X^3 is a fluorine atom, the one of X^{1F} to X^{3F}

corresponding to the fluorine atom, is a fluorine atom; and when any one of X^1 to X^3 is a chlorine atom, the one of X^{1F} to X^{3F} corresponding to the chlorine atom, is a chlorine atom.

- 5 2. The process according to Claim 1, wherein the fluorination reaction is carried out by the reaction with fluorine in a liquid phase.
 - 3. The process according to Claim 2, wherein the fluorine content of the compound (3) is from 20 to 86 mass%.

10

15

- 4. The process according to Claim 2, wherein the molecular weight of the compound (3) is from 200 to 1,000.
- 5. The process according to Claim 1, wherein R^E is a perfluorinated monovalent organic group, and R^{EF} is the same group as R^E .
- 6. The process according to Claim 1, wherein the fluorination is a reaction whereby the compound (3) is substantially perfluorinated.
- 7. The process according to Claim 1, wherein the

 compound (3) is the following compound (3-1), the

 compound (4) is the following compound (4-1), and the

 compound (5) is the following compound (5-1):

FSO₂R^{AF}

$$R^{D}$$
 CH_2OCOR^{E}
 R^{DF}
 CF_2OCOR^{EF}
 R^{DF}
 CF_3
 $CF_$

provided that the symbols in the formulae have the same meanings as defined above.

5

10

8. The process according to Claim 7, wherein the compound (3-1) is a reaction product of the following compound (A1-1) and the following compound (A2-1), a reaction product of the following compound (B1-1) and the following compound (B2-1), or a reaction product obtained by reacting the following compound (C1-1) with acetone to form the following compound (C1-2) and reacting the compound (C1-2) and the following compound (B2-1):

FSO₂R^A

$$R^{B}$$
 R^{C}
 $CH_{2}OH$
 $R^{E}COF$
 $A2-1$
 $A1-1$
 R^{B}
 R^{C}
 $A1-1$
 R^{B}
 R^{C}
 $CH_{3}CCH_{2}OCOR^{E}$
 R^{C}
 R^{D}
 R^{C}
 R^{D}
 R^{C}
 R^{D}
 R^{C}
 R^{D}
 R^{C}
 R^{C}

(C1-1)

provided that the symbols in the formulae have the same meanings as defined above.

(C1-2)

- 9. The process according to Claim 8, wherein the compound (3-1) is a compound obtained by reacting the compound (C1-1) with acetone to obtain a reaction product containing the compound (C1-2) and acetone, and using the reaction product as it contains the acetone, for the reaction with the compound (B2-1).
- 10 10. A process for producing the following compound (7-1), characterized in that the following compound (5-1) is thermally decomposed:

$$R^{DF}$$
 R^{DF}
 R

$$\begin{array}{cccc}
R^{BF} & R^{CF} \\
FSO_2R^{AF} & O \\
R^{DF} & O \\
\hline
CF_2 & (7-1)
\end{array}$$

provided that the symbols in the formulae have the same meanings as defined above.

11. A process for producing a fluorosulfonyl groupcontaining polymer, characterized by polymerizing at
least one member of the following compound (7-1), or at
least one member of the following compound (7-1) and at
least one member of a polymerizable monomer which is
copolymerizable with the compound (7-1):

$$\begin{array}{cccc}
R^{BF} & R^{CF} \\
FSO_2 R^{AF} & O \\
R^{DF} & O \\
\hline
CF_2 & (7-1)
\end{array}$$

10

5

12. A fluorosulfonyl group-containing polymer, comprising monomer units having polymerized at least one member of the following compound (7-1), or monomer units having polymerized at least one member of the following compound

(7-1) and monomer units having polymerized at least one member of a polymerizable monomer which is copolymerizable with the compound (7-1):

15

- 5 13. The fluorosulfonyl group-containing polymer according to Claim 12, which has a molecular weight of from 5×10^3 to 5×10^6 and contains from 0.1 to 99.9 mol% of the monomer units having polymerized at least one member of a polymerizable monomer which is copolymerizable with the compound (7-1).
 - 14. A process for producing a sulfonate or sulfonic group-containing polymer, characterized in that fluorosulfonyl groups of the fluorosulfonyl group-containing polymer produced by the process of Claim 11, are subjected to alkali hydrolysis, or to such alkali hydrolysis, followed by acid treatment.
- 15. A fluorosulfonic group-containing polymer comprising monomer units represented by the following formula, or such monomer units and monomer units of another monomer which is copolymerizable with such monomer units:

$$CF_2$$
 O
 O
 O
 R^{AF}
 R^{DF}
 R^{BF}
 R^{CF}

wherein M is a hydrogen atom or a counter ion.

16. The fluorosulfonic group-containing polymer according to Claim 15, which has a molecular weight of from 5×10^3 to 5×10^6 and contains from 0.1 to 99.9 mol% of the monomer units of another copolymerizable monomer.

17. A compound represented by the following formula (7-1A):

$$FSO_2 \xrightarrow{R^{AF10}} F$$

$$CF_2$$

$$(7-1A)$$

wherein R^{AF10} is a C_{1-20} perfluoroalkylene group or a C_{1-20} perfluoro(etheric oxygen atom-containing alkylene) group. 18. Any one of the compounds represented by the following formulae, wherein M^2 is an alkali metal ion:

$$FSO_2 \xrightarrow{F_2} C$$

$$F_2 \xrightarrow{C} O$$

$$F_3 \xrightarrow{C} F_2$$

$$C \xrightarrow{C} C$$

$$FSO_2 \xrightarrow{F_2} C$$

$$F_2 \xrightarrow{C} C$$

$$F_2 \xrightarrow{C} C$$

$$F_3 C$$

$$(5-10)$$

$$FSO_2 \xrightarrow{F_2} C \xrightarrow{C} C \xrightarrow{C} CF_2 CF_2 COOM^2$$

$$F_2C \xrightarrow{F_2} COOM^2$$