

Ensemble Methods

특징

- 각 classfier 완전히 똑같으면 안됨
- classifier 독립적이어야함
- error rate 구하는 법, error rate는 절반 이상이 틀리지 않을때 낮아짐
 - ∘ e < 0.5

constructing a ensemble

- · manipulating the training set
 - bagging, boosting
- · manipulating input features
 - o random forest
- · manipulating algorithms
 - o decision tree, ANN

Voting approaches

- simple majority voting
- · weighted majority voting

Bias and Variance

- High Bias → 유연성 👎, 에러 🤞 → Underfitting
- High Variance → 유연성 좋음, 오버피팅위험 → Overfitting
 - o combining multiple classifiers → reduce the overall variance

Bagging

· Bootstrap aggregating

특징

- 뽑을때 random 하게
- 원본과 같은 n개 뽑아야함(same size)
- 같은 확률분포 사용해야함(same probability)
- replacement 허용 → 뽑힌애들 돌려놔야함
- 뽑힌 애들 별로 round 표수 측정 → 다수결 선택

- High variance 선택해서 variance 줄이는 방향으로, High bias may not improve
- 독립적으로 모델 만들어짐

Boosting

- weight를 줌, 앞에 애들이 틀린거에 weight를 더 많이 줌
- 하나의 모델만(앞의 모델 참고해 모델 생성) → sample 생성시에 배깅 사용가능, 처음에는 equal weigts
- 틀리는 놈에 집중해 두번째 모델 생성
 - Update the weight
 - Incorrect → Increase
 - Correct → Decrease
- 반복반복
- error rate 낮으면 → Importance(alpha) 높아짐
- error rate 높으면 → Importance(alpha) 낮아짐
- 그냥 투표하면 안되고 importance 곱해주고 비교해야함

Random Forests

- · decorrelated decision trees
- Bagging과 같은 기법을 사용함(same size/same probability/replacement)
 - randomly selected
 - but, bagging만 쓰면 안됨
- p개 랜덤하게 봅고, 그 중 best information(maximum gain가지는) 선택
 - o splitting attribute 모두 달라짐
- every leaf가 pure해질때 까지 반복
- majority vote
- Unpruned trees → low bias, high variance
- · independently sampled dataset
- different subset
- 장점
 - ∘ variance높은 tree 여러개 만듦, attribute 여러개 선택
 - strong and decorrelated and not overfitting
 - robust to overfitting
 - o fast and robust even in high-dimensional setting
- Hyper parameter : p

- o small value of p
 - tree간 다양성 커짐, bias 커짐
 - 극소수 → tree각각의 파워 낮아짐
- o large value of p
 - 트리 비슷해짐, 거의 모든 attribute선택, correlation
 - 각각의 tree 파워풀해짐

Random Forests vs Bagging

- 배깅
 - o strong point가 항상 split point로 사용됨 → tree 비슷해짐
 - 。 tree간 상호관계큼
- random forest
 - 。 best split point 찾는것 뿐만 아니라 p개 랜덤 선택 그 중 best 선택 → 상호관계 떨어 짐
 - 。 다양성 보존됨
 - decorrelated

Multiclass Problem

- 기존 binary → binary 여러개 모아서 multi class로 사용가능
- 1. One-Against-Rest
 - a. 각각에 대해 k개 binary classifier 생성
 - b. 가장 confidence, probability 높은애 선택
- 2. One-Against-One
 - a. K(K-1)/2 binary classifer
 - b. k(k-1)/2개 binary classifier 생성 → 모든 페어(중복제외)에 대한
 - c. 가장 나은거 선택 및 판정

Association Analysis

- Frequent itemsets
- · association rules
- Two keys
 - 。 계산비용 엄청남

- 。 열심히 분석해도 의미없을 수 있음
- itemset, transaction
- support count → 카운트한것
- support → 비율, 실생활에서 더 중요 > minsup
 - 。 우연히 발생한 걸수도 있다
 - 。 너무 수치가 적으면 의미 없음
- confidence
 - 。 x 산사람이 모두 y삼 의미 X
 - ∘ X 산사람 몇 %가 Y를 삼
 - 。 원인이 아니다!
- Association Rule
 - \circ X \rightarrow Y: x, y 둘다사고, x 산사람이 y까지 삼
 - o s(X → Y): (XUY)/N 비율로 구함 > minsup
 - o c(X → Y): (XUY)/X → X 산사람중 X&Y같이 삼 > minconf
- Brute-Force approach
 - o every possible rule 너무 많음 → 비용 너무 큼
 - 。 [Diaper, Milk]가 min support 못넘기면 [Diaper] → [Milk]도 min support 못넘김
 - 。 여전히 비용 비쌈
- Improve approach
 - Frequent itemset 찾음
 - 그러면 candidate rule은 모두 min support를 넘김 → minimum confidence 체크해
 야함
 - 。 비용 비쌈

Apriori

- candidate itemset이 너무 많음
 - 。 어떤 itemset이 frequent하면, subset도 frequent 할 것임
 - 。 어떤 집합이 frequent하지 않으면 걔를 포함한 superset도 frequent하지 않음
- finde 1 frequent itemset → 2 frequent itemset → 반복
- candidate procedure
 - complete → 모든 후보가 빠지지않고 나와야
 - o non-rebundant → 중복이 일어나지 않아야
- F(K-1) * F(K-1) Method
 - 。 알파벳 sorting하고

- o 앞에 (k-1)-itemset 겹치는애
- o complete and no duplicate
- 계산비용
 - support threshold 증가 → 비용 감소
 - 감소 → 후보 많아짐 → 비용 증가
 - o number of items 증가 → 비용 증가
 - o number of transactions → 비용 증가
 - o average transaction width → 비용 증가
- maximal frequent itemsets를 찾아야함

FP-Growth Algorithm

- Apriori보다 월등히 빠름
 - o apriori: 후보 만들고 스캔 → 스캔 → 디스크비용 높음
- · radically different approach
 - \circ 메모리에 트리 올려놓음 \rightarrow 훨씬 빨라짐 \rightarrow but, 알고리즘 어려움
 - 。 압축된 데이터
 - small enough to fit into main memory
- step
 - scan count each item
 - o discard infrequent item
 - o sort item
 - o extend fp-tree
- original dataset보다 사이즈 작을수록 좋음
 - ∘ share되는 item 많을수록
 - o Best: same item 많음
 - Worst: none of the transactions → 서로 겹치지 않음
- support 높은 \rightarrow 여러군대 나타남 \rightarrow 겹치는거 많음 \rightarrow common \rightarrow 앞으로 보내야

5

- 앞에 low support item → tree 커짐
- pointer 커넥팅하면 그 아이템 몇번 나왔는지 알 수 있음
- 특징
 - 。 중복된 itemset 존재하지 않음
 - o FP-growth depends on the compaction factor
 - 압축이 덜되면 very bush → 느림
 - 압축이 잘되면 shallow → good

Evaluation of Association Rules

- 흥미롭지 않을 수 있음 ex) {butter} → {bread}
- qualiti 측정해야함 객관적인 measure 바탕으로
- interest factor or the lift!
 - $\circ \quad I(X \rightarrow Y) = (X \rightarrow Y)/(X) \ / \ (Y)/N = C(X \rightarrow Y)/(Y)/N$
 - ∘ $I(X \rightarrow Y) = 1 \rightarrow X$ has no influence on Y
 - ∘ $I(X \rightarrow Y) < 1 \rightarrow X$ discourages Y
 - ∘ $I(X \rightarrow Y) > 1$ → X positively affects Y

Association Analysis → sequential patterns

- temporal information
- event-based data have sequential nature
- ex) <{bread}, {diaper}>
- Sequence
 - o ordered list of elements(엘레멘트의 리스트)
- Element
 - 。 여러개의 event로 구성
- k-sequence
 - ∘ k개의 event(≠ element)로 이루어진 sequence
- subsequence s > sequnce t에 포함
 - t is contained s
- min support 이상인 sequence를 찾아야함
 - o sequential pattern 모두 찾기 → substantially larger
 - {i1, i2} & {i2, i1} → same item
 - \circ <{i1}{i2}> & <{i2}{i1}> → different item → possible sequence infinite
 - 。 Apriori principle 사용가능
 - <{a}{b}> frequent하면 <{a}> & <{b}>도 frequent
 - k-1 sequence 사용
 - apriori-like algorithm
 - k-1개 merging 맨앞 event, 맨뒤 event 제거하고 겹치는 부분 합침
 - <{1}{2}{3}> + <{2}{3}{4}> = <{1}{2}{3}{4}>
 - <{1}{5}{3}> + <{5}{3,4}> = <{1}{5}{3,4}>

- 자기랑 자기 조합 가능
- element안 event sorting 해야함, element를 sorting하면 안됨!
- o merging procedure is complete → 하나도 빼놓지 않고 frequent한 애들 후보로둠
- \circ non rebundant \rightarrow 조합을 만드는 애 딱한가지 방법만 존재함
- 앞 조합이 infrequent하면 superset도 infrequent

Cluster

- purpose
 - understanding
 - utility
 - summarization
 - compression
 - Efficeintly finding nearest neighbors
- Goal
 - similar to one another → maximize similarity within a group
 - o different from the objects in other gorups → maximize difference between groups
- · Classification vs Clustering
 - Classficiation → supervised classficiation
 - Clustering → unsupervised classification
- Segmentation, Partitioning vs Clustering
- Clustering Types
 - Partitional clustering
 - non-overlapping(겹치지 않는 하나의 클러스터)
 - Hierarchcial clustering
 - 중복허용 → 계층적으로
 - Exclusive clustering
 - single cluster로 칼같이 나눔
 - Overlapping(or non-exclusive) clustering
 - 중복 허용
 - Fuzzy clustering
 - 모든 클러스터에 속할 확률 다 찍어줌
 - Complete clustering
 - 데이터 빼놓지 않고 모두 집어 넣음

- Partial clustering
 - 필요없는건 날려버림
 - BIRCH, CURE 등 알고리즘
- Prototype-based
 - prototype(centroid)기준으로 거리가까운애 모음
 - ex) k-means
- Density-based
 - 밀집된 공간 → 클러스터
- Graph-based
 - 약한 부분 cutting 가능

K-means

- · prototype-based, partitional clustering
- step
 - 。 아무데나 k점 찍음
 - 。 데이터 모음
 - 。 centroid 업데이트
 - 。 데이터 모음
 - 。 중심점 업데이트
 - 반복 → 멈출때까지
- always converges → 계속 돌리면 언젠가 centroid 확정됨
 - 。 장) 안정적
 - 。 단) 중심 잘못잡으면 local minimum(≠ global minimum) 수렴
- Centroid 측정 방법(a proximity measure and an objective function)
 - Euclidean distance
 - objective function → minimize SSE(squared error)
 - centroid = mean
 - Cosine similarity
 - objective function → maximize the cohesion
 - centroid = mean
 - Manhattan distance
 - objective function → minimize dist(c,x) 제곱존재x
 - centroid = median
- 초기값 위치만으로 좋을지 나쁠지 알 수 없음
 - 。 제일 좋은 결과 → SSE 최소화

8

- 랜덤하게 여러번 돌려도 결과 나쁠 수 있음
- 초기값 정하는 방법
 - ∘ Pre-clustering(사전 클러스터링)
 - take sample of points
 - 샘플 너무 많이뽑으면 → 시간 오래걸림
 - K < sample size
 - hierarchical clustering
 - Selecting the fathest point(가장 먼점 선택)
 - outlier 피해야함
 - 먼점 찾기위한 cost 줄여야함
 - K-means ++
 - farthest point 잡는 기법
 - d(x)^2 거리의 제곱에 비례하는 probability 사용
- K-means 단점
 - different size 구분하지 못함
 - 。 different desity 구분하지 못함
 - o non-shperical shape → 구형이 아닌 형태의 클러스터링 못함(원형에 적합)
 - o outlier에 취약
- 장점
 - simple & wide variety of data types
 - multiple runs

Agglomerative Hierarchical Clustering

- hierarchical clustering(prototype-based or graph-based)
- Agglomerative vs Divisive
 - 。 agglomerative → 가장 가까운 점 뭉쳐나감
 - o divisive → 먼점 끼리 뭉쳐감
- Dendrogram
 - relationship
 - o order 보여줌
- Defining Proximity(linkage function)
 - MIN (single link or single linkage)
 - closest two points
 - non-elliptical(원형이 아닌) shape에 효과적

9

■ noise, outlier에 취약함

- MAX(complete link or complete linkage)
 - farthest two points
 - 너무 먼점 묶이지 않음
 - 원형 추구, 적당한 규모 유지하려함
 - noise, outlier에 어느정도 유지함
- Group average(average link or average linkage)
 - average → max 에 가까움
 - globular clusters
- Ward's method
 - 두 클러스터 결합시 반드시 SSE 증가 → 이 증가양을 감소시킴 → "WARD"
 - ∘ K-means 클러스터링과 동일한 objective function
 - effective method for noisy data
 - similar to the group average
 - centroid 구할 수 있는 경우에만 사용가능
 - ex) {1,2,3} (ok) {가,나,다} (x)
- centroid method → inversion이 일어날 수 있음
 - 뒤로 갈수록 먼애들끼리 결합해야하는데 짧은애랑 결합함
- key issue
 - 。 초기값 중요하지 않음
 - 。 이론적 근거 부족 → 객관적 global objective function 부족
 - locaaly
 - 복잡한 최적화 피해야함
 - 。 컴퓨터 비용 비쌈
 - o singleton, small cluster알아서 merge하지 않음
 - outlier 자동적 추출가능
 - 객관적 기준은 없음 → 사람이 판단해야

DBSCAN

- density-based, partial clustering
- 사람의 생각 = a region of high density = a cluster
- Center-based approach
 - 。 자기자신 포함해 반경(EPS) 안 점 세기
- problems
 - 。 반경이 너무 크면 → 모든 점이 비슷한 큰 스코어
 - \circ 반경이 너무 작으면 \rightarrow 점 별로 없음, 밀도 낮음

- · classfication of points
 - o core points
 - 내 주변 밀도가 높고, 클러스터 내부
 - MinPts 넘고, EPS 안에 있어야함
 - Border points
 - 코어포인트 아님
 - 가까운 거리 안에 코어포인트 존재
 - Noise points
 - 코어포인트 x, 보더포인트 x
 - 클러스터링에 포함하지 않음
 - minpts 못넘음
- 기법
 - 。 core 모아서 클러스터 만듦
 - o border point 연결
 - o noise 버림
- k-dist
 - k-dist가 작으면 k-dist < eps
 - 클러스터 내 포함
 - core points
 - ∘ k-dist가 크면 k-dist > eps
 - 클러스터 밖
 - noise points, border points
 - 。 k가 너무 작으면
 - noise나 outlier도 클러스터에 포함
 - 。 k가 너무 크면
 - small cluster도 noise에 포함
 - DBSCAN 알고리즘은 K=4 사용
- DBSCAN은 구역별로 density 달라지면 구별 힘듦
- 장점
 - 。 노이즈에 강함
 - 다양한/임의의 모양 잘찾음
 - 。 k-means에서 발견하지 못했던 다양한 클러스터 찾을 수 잇음
- 단점
 - 。 밀도가 구역마다 달라지면 문제 생김

- 고차원 데이터에 문제 있음 → 모든 클러스터링 기법에 대한 문제이기도
- 각 점마다 밀도 계산 → 컴퓨터 비용 많이 소요

Anomaly Detection

- outlier
- · unusual, inconsistent
- 사용하는 곳
 - 사기감지, 침입감지, 지구환경, 건강상태, 비행기안전 등
- anomaly vs classification
 - anlomaly
 - unsupervised
 - anormalouls(y=1) → very small
 - nomral(y=0) → very large
 - o classification
 - superviesd
 - large number of positive and negative instances
- anamaly approach
 - descriptie task
 - predictive task
- · anomaly detection method
 - o model-based
 - model-free
 - ∘ global : 전체로 보면 anomaly 아닐 수 있음
 - local
- 4 types of anomaly detection approaches
 - statistical approaches
 - parametric method / non-parameteric method로 나뉨
 - parametirc method
 - gaussian 분포 → mean, std 존재
 - 모수 찾으면 됨 directly
 - 효율적
 - e(입실론)보다 작으면 이상치 판정
 - multivariate gaussian distributial
 - 。 다차원 분포 존재함

- 。 평균벡터와 공분산 사용
- 。 마찬가지로 e보다 작으면 이상치 판정
- 대용량 데이터 행렬 역수 계산시간 엄청남 → 비효율적일수도
- normal 안따르면 → 전처리로 normal로 바꿔줘야함
- non-parametric method
 - build a histogram
 - 새로운 instance를 bin에 넣어서 이상치인지 판정함
 - 칸 두께 너무 좁으면 이상치로 판정될 확률 높음
 - 칸 넓으면 이상치로 판정되지 않음
- 장점
 - 이론적 근거 good
 - 표준 통계학 기법 사용가능
 - 효과적
- 단점
 - 문제 있는 모델이 선택될수도
 - 다차원에 대한 분포 많지 않음
- proximity-based approaches
 - model-free
 - distance-based outlier detection
 - x is normal
 - low value of dist(x,k)
 - x is anomalus
 - high value of dist(x,k)
 - 대체안 → 덜 치우친다
 - average distance
 - median distance
 - density-based outlier detection
 - n : number of instances
 - v(d): the volume of the neighborhood
 - d is too small
 - 。 죄다 anomaly로 판정
 - d is too large
 - anomalus도 noraml로 판정됨
 - x is normal

- high value of density(x,k)
- x is anomalus
 - low value of density(x,k)
- density-based와 distance-based 서로 역수관계에 있다
 - k번째 멀리 있다 → 주변 밀도 낮다
 - k번째 가까움 → 주변 밀도 높다
- relative density-based anomaly score
 - 주변애들이랑 같이보면 anomaly아닐수도 anomaly일수도 있음
 - relative density = 내주변 k개 애들의 평균 density/k / 내주변 density
 - relative density가 높으면 anomalous
- 장점
 - 어떤 분포이든 상관없음 → 거리, 밀도 기반이기 때문에
 - proximity measure 잘 정해야함
 - 직관적이고 이해하기 쉬움
- 약점
 - 계산 비용 큼
 - 거리 measure 어떤 거 선택?
 - parameter(d, k) 정하기 어려움
- clustering-based approaches
 - anomaly type
 - not fit the clustering well
 - small cluster
 - small in size
 - distant from normal clusters(중앙점과 멀수록 anomaly)
 - method
 - · absolute distance
 - · relative distance
 - 。 각각 거리 다구함
 - o average or mean 구함
 - 。 나와의 거리 비교
 - 나와 centroid 거리 / 평균및 중앙값 거리 → 높을수록 anomaly score 높음
 - outlier에 민감함
 - 해결) k-means --

- o cnetorid 밀어넣고 → 재조정 → 거리계산 → 너무 멀면 제거
- potential outlier로 취급해서 다시 밀어넣고 재조정가능

■ 문제

- the number of cluster 몇개로 할것인가?
 - o 전략1) different number of cluster로 여러번 반복
 - o large number of small cluster → k 크게 잡고, cluster 작게
 - cohesive
 - 작은 소규모 outlier도 정상 취급 받을 수도 있음

■ 장점

- · unsupervised setting
- normal 따로 모아서 학습할 필요 없음
- 단점
 - 클러스터 개수 몇개?
 - outlier 의 존재여부
- reconstruction-based approaches
 - 차원 낮춰서 패턴 찾아냄
 - 고차원 → 저차원
 - 저차원 → 고차원 —> reconstruction error 발생
 - k < p-demensional
 - p차원 데이터를 → pca 사용해 k차원으로 압축
 - 다시 원래 p차원으로 돌려 놓음 → reconstruction error 발생
 - reconstruction error
 - 。 작으면 원래 데이터와 비슷
 - 。 크면 원래 데이터와 멂
 - pca 한계
 - o nonlinear 패턴 찾지 못함
 - autoencoder
 - o multi-layer neural network
 - hidden representations
 - unsupervised setting
 - encoding(차원줄이고), decoding(차원늘림)
 - decoding 단계에서 차이가 크면 anomaly
 - o backpropagation 알고리즘 사용하면 됨
 - 원본데이터가 잘 복구되어야함

• 장점

- ∘ normal데이터만 가지고 모델링 가능 → unsupervised
- 분포 따질 필요 없음
- 。 차원 감소 기법
- 。 관련 없는 속성은 알아서 무시해줌
- 。 autoencodef 사용해 comlex and nonlinear 패턴 찾아낼 수 있음