# POC - Proof of Concept of Transfer Learning in ANN and CNN

```
# Importing some libraries
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.metrics import confusion_matrix, accuracy_score,precision_score
```

## **▼** MNIST DATASET

(60000, 28, 28)

0], 0, 80, 156, 107, 253, 253, 0, 0, 0, 0, 0, 0, 0, 0, 205, 0, 43, 154, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 1, 154, 253, 90, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 139, 253, 0, 0, 190, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 190, 0, 0, 253, 70, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 241, 225, 160, 108, 1, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 81, 240, 253, 253, 119, 25, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 45, 186, 253, 253, 150, 0, 0, 27, 0, 0, 0, 0, 0, 0], 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 93, 252, 253, 187, 0, 0, 0, 0, 0], 0, 0, 0, 0,

|   | 0,   | υ,   | υ,   | υ,   | ر 249 | ۷۵۵, | ر 249 | ر 64 | υ, | υ, | υ, | 0, | υ,   |
|---|------|------|------|------|-------|------|-------|------|----|----|----|----|------|
|   | 0,   | 0]   |      |      |       |      |       |      |    |    |    |    |      |
| [ | 0,   | -    | -    | _    | 0,    | -    | -     | -    | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   | 46,  | 130, | 183, | 253,  | 253, | 207,  | 2,   | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   | 0]   |      |      |       |      |       |      |    |    |    |    |      |
| [ | 0,   | 0,   | 0,   | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 39,  |
|   | 148, | 229, | 253, | 253, | 253,  | 250, | 182,  | 0,   | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   | 0],  |      |      |       |      |       |      |    |    |    |    |      |
| _ | 0,   |      |      |      | 0,    |      |       |      | -  |    |    | -  | 221, |
|   | 253, | 253, |      | 253, | 201,  | 78,  | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   | 0],  |      |      |       |      |       |      |    |    |    |    |      |
| _ |      | 0,   |      |      |       |      |       |      | -  |    |    | -  | 253, |
|   |      | 253, |      | 81,  | 2,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   |      |      |      |       |      |       |      |    |    |    |    |      |
| _ | 0,   | -    | -    |      | 0,    |      |       |      | -  |    |    | -  |      |
|   | -    | 80,  | -    | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
| _ | 0,   | 0]   |      |      |       |      |       |      |    |    |    |    |      |
|   | 0,   |      | -    |      |       |      |       |      |    | -  | -  | -  | 133, |
|   | 11,  |      | 0,   | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
| _ | 0,   |      |      |      |       |      |       |      |    |    |    |    |      |
| [ | -    | 0,   | -    |      | 136,  |      |       |      | -  |    |    | -  |      |
|   | 0,   | 0,   | -    | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
| _ | 0,   | 0]   |      |      |       |      |       |      |    |    |    |    |      |
| L | 0,   | 0,   | -    |      | 0,    |      |       |      | -  |    |    |    |      |
|   | 0,   | 0,   | -    | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
| _ | 0,   | 0],  |      |      |       |      |       |      |    |    |    |    |      |
| [ | -    | 0,   |      | -    | 0,    | -    | 0,    | -    | -  | -  | -  |    | -    |
|   | 0,   | 0,   | -    | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
| _ | 0,   | 0],  |      |      |       |      |       |      |    |    |    |    |      |
| [ | 0,   | 0,   | 0,   | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
|   | 0,   | 0,   | 0,   | 0,   | 0,    | 0,   | 0,    | 0,   | 0, | 0, | 0, | 0, | 0,   |
|   | ρ    | ۵1.  |      |      |       |      | -     | -    | _  | _  | _  | -  | -    |

plt.imshow(img, cmap="gray") # showing image





label = y\_train\_full[0] # output label of the above shown image in y\_train data label

```
# plotting image with each pixel value in it
plt.figure(figsize=(20,20))  # setting plt figure size
sns.heatmap(img, annot=True, cmap="gray")  # using sns.heatmap, we can use img/255 to norma
```

<matplotlib.axes. subplots.AxesSubplot at 0x7f77e2705c90>

print(1e+1, 1e+2, 1e+4, 1.5e+1, 1.5e+2)

10.0 100.0 10000.0 15.0 150.0

```
<u>m</u> - 0 0 0 0 0 0 0 0 0 0 0 0 0 35 <mark>24e+022e+0</mark>25e+021e+02 1 0 0 0 0 0 0 0 0 0 0
```

1.5e+2 # means 1.5 \* (10\*\*2)

150.0

- 1. 0 -> 255 => More computation time, and Search space is large for finding solution.
- 2. 0 -> 1 => Less computation time, and Search space is small for finding solution.

# segregating validation and training dataset

```
X_{valid}, X_{train} = X_{train}[1][:5000]/255, X_{train}[1][5000:]/255 # why divide by 255 reas y_{valid}, y_{train} = y_{train}[1][:5000], y_{train}[1][:5000:]
```

 $X_{\text{test}} = X_{\text{test}}/255$ 

```
np.unique(y_train) # different types of labels we have array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
```

len(np.unique(y\_train)) # 10 different types of labels we have

10

```
CLASSES = len(np.unique(y_train))
CLASSES
```

10

- 200

#### ANN - Artificial Neural Network Model

```
# Defining ANN Layers
LAYERS = [
   tf.keras.layers.Flatten(input_shape=(28, 28), name="inputLayer"), # 28*28 = 784 total num
   tf.keras.layers.Dense(300, activation="relu", name="hiddenLayer01"), # 300 layers
   tf.keras.layers.Dense(100, activation="relu", name="hiddenLayer02"), # 100 layers
   tf.keras.layers.Dense(CLASSES, activation="softmax", name="outputLayer"), # 10 output lab
]
ANN model clf = tf.keras.models.Sequential(LAYERS) # creating model
ANN model clf.summary()
    Model: "sequential"
     Layer (type)
                               Output Shape
                                                       Param #
    ______
     inputLayer (Flatten)
                               (None, 784)
     hiddenLayer01 (Dense)
                               (None, 300)
                                                       235500
                               (None, 100)
     hiddenLayer02 (Dense)
                                                       30100
     outputLayer (Dense)
                               (None, 10)
                                                       1010
    ______
    Total params: 266,610
    Trainable params: 266,610
    Non-trainable params: 0
# Total trainable parameters at hidden layer01
784*300 + 300 # 784(input) * 300(weights of 300 neuron at hiddenLayer01) + 300 (biases)
    235500
# Total trainable parameters at hidden layer02
300*100 + 100 #300(output Edges from 300 neuron at hiddenLayer01 ) * 100(weights of 100 neur
    30100
# Total trainable parameters at output layer
100 * 10 + 10 # 100(100 neuron at hiddenLayer02 os 100 output edges)*10(neuron at output la
    1010
```

```
# Total Number of parameters in ANN
235500 + 30100 + 1010
 266610
# Compiling model
LOSS FUNCTION = "sparse categorical crossentropy"
OPTIMIZERS = "SGD"
METRICS = ["accuracy"]
ANN model clf.compile(loss=LOSS FUNCTION, optimizer=OPTIMIZERS, metrics=METRICS)
# Training the ANN model
EPOCHS = 30
VALIDATION = (X valid, y valid)
history = ANN model clf.fit(
 X train,
 y_train,
 epochs = EPOCHS,
 batch_size=32,
 validation data = VALIDATION
)
 Epoch 2/30
 Epoch 3/30
 Epoch 4/30
 Epoch 5/30
 Epoch 6/30
 Epoch 7/30
 Epoch 8/30
 Epoch 9/30
 Epoch 10/30
 Epoch 11/30
 1719/1719 [============== - 5s 3ms/step - loss: 0.0955 - accuracy: 0
 Epoch 12/30
 Epoch 13/30
 Epoch 14/30
 Epoch 15/30
```

```
EDOCU 70/20
Epoch 17/30
Epoch 18/30
Epoch 19/30
Epoch 20/30
Epoch 21/30
Epoch 22/30
Epoch 23/30
Epoch 24/30
Epoch 25/30
Epoch 26/30
Epoch 27/30
Epoch 28/30
1719/1719 [=============== ] - 5s 3ms/step - loss: 0.0310 - accuracy: 0
Epoch 29/30
Epoch 30/30
```

pd.DataFrame(history.history)

|    | loss     | accuracy | val_loss | val_accuracy |
|----|----------|----------|----------|--------------|
| 0  | 0.602583 | 0.841127 | 0.306945 | 0.9142       |
| 1  | 0.287045 | 0.918036 | 0.238777 | 0.9328       |
| 2  | 0.235803 | 0.933545 | 0.200872 | 0.9446       |
| 3  | 0.201510 | 0.942655 | 0.175132 | 0.9518       |
| 4  | 0.176078 | 0.949709 | 0.160087 | 0.9584       |
| 5  | 0.155475 | 0.955927 | 0.144078 | 0.9602       |
| 6  | 0.138908 | 0.960218 | 0.137016 | 0.9612       |
| 7  | 0.125565 | 0.964418 | 0.124601 | 0.9652       |
| 8  | 0.113823 | 0.967545 | 0.117422 | 0.9688       |
| 9  | 0.103897 | 0.971055 | 0.109604 | 0.9706       |
| 10 | 0.095522 | 0.973327 | 0.100909 | 0.9720       |
| 11 | 0.088304 | 0.975382 | 0.101532 | 0.9710       |
| 12 | 0.081504 | 0.977236 | 0.098050 | 0.9704       |
| 13 | 0.075611 | 0.979091 | 0.089285 | 0.9750       |
| 14 | 0.070446 | 0.980545 | 0.088075 | 0.9734       |
| 15 | 0.065376 | 0.982255 | 0.083710 | 0.9754       |
| 16 | 0.061048 | 0.983455 | 0.083467 | 0.9754       |
| 17 | 0.057232 | 0.984655 | 0.080478 | 0.9774       |

# plot pd.DataFrame(history.history).plot(figsize=(10,7))

plt.show()

plt.grid(True)

```
0.8
```

# Evaluating the model for accuracy
ANN\_model\_clf.evaluate(X\_test, y\_test)

ANN\_model\_clf.save("mnist\_full.h5")

# Let's test how model is able to predict the output label from the input image data  $X_{new} = X_{test}$  # extracting 3 images data from test data

y\_prob = ANN\_model\_clf.predict(X\_new) # prediction of output label probabilites
y\_prob.round(3) # show probability of each output label

X\_new.shape

(3, 28, 28)

y\_prob.shape

(3, 10)

plt.imshow(X\_new[0], cmap="gray") # image at 0th index o

<matplotlib.image.AxesImage at 0x7f77d0076190>

```
5 -
```

```
Y_pred = np.argmax(y_prob, axis=-1)
Y_pred[0] # Predicted output label
```

7

```
# Testing the model with some actual and prediction
for img_array, pred, actual in zip(X_new, Y_pred, y_test[:3]):
    plt.imshow(img_array, cmap="gray")
    plt.title(f"predicted: {pred}, actual: {actual}")
    plt.axis("off")
    plt.show()
    print("--"*30)
```

predicted: 7, actual: 7



## OBSERVATION: - Model is able to predict the number associated with image

\_\_\_\_\_

```
# Make Prediction of X_test dataset
y_prob = ANN_model_clf.predict(X_test)
y_prob.shape

(10000, 10)

y_pred = np.argmax(y_prob,axis=-1)
y_pred

array([7, 2, 1, ..., 4, 5, 6])
```

# confusion matrix
confusion\_matrix(y\_test,y\_pred)

```
array([[ 968,
                                                          3,
                                                                1],
           0, 1124,
                                        2,
                                              2,
                                                                0],
       2,
                            1,
                                  0,
                2, 1008,
                                              0,
                            5,
                                  2,
                                                                0],
                          993,
                                                    3,
                                                                2],
                0,
                      4,
                                        3,
                                              0,
                                  0,
                               965,
                0,
                      4,
                          1,
                                                                8],
          0,
                                        0,
                                              1,
          2,
                0,
                      0,
                            6,
                                 2, 874,
                                              4,
                                                    1,
                                                         2,
                                                                1],
          6,
                3,
                      0,
                          1,
                                 7,
                                        8, 929,
                                                    0,
                                                                0],
                      9,
                                              0, 999,
          0,
                4,
                           3,
                                 0,
                                        1,
                                                                8],
                                                        950,
          3,
                0,
                      3,
                            6,
                                  3,
                                        3,
                                              2,
                                                    2,
                                                                2],
                2,
                            7,
                                  9,
                                        1,
                                              0,
                                                    2,
                                                          4,
                                                              981]])
                      1,
```

# Accuracy score using sklearn
accuracy\_score(y\_test,y\_pred)

0.9791

```
# Precision
precision_score(y_test,y_pred,average='weighted')
```

0.9791474880189343

3

y\_train -

| data_points | label |
|-------------|-------|
| 0           | 7     |
| 1           | 3     |

### X\_train

| data_points | data     |
|-------------|----------|
| 0           | (28, 28) |
| 1           | (28, 28) |
| 2           | (28, 28) |
| 3           | (28, 28) |

#### data

| _ | data_points | data     | label |
|---|-------------|----------|-------|
|   | 0           | (28, 28) | 7     |
|   | 1           | (28, 28) | 3     |
|   | 2           | (28, 28) |       |
|   | 3           | (28, 28) |       |

## → Transfer learning in ANN

## New problem statement -

Classify handwritten digits into odd and even

pretrained\_ANN\_model = tf.keras.models.load\_model("mnist\_full.h5") # loading the above saved
pretrained\_ANN\_model.summary()

Model: "sequential"

| Layer (type)         | Output Shape | Param # |
|----------------------|--------------|---------|
| inputLayer (Flatten) | (None, 784)  | 0       |

235500

(None, 300)

hiddenLayer01 (Dense)

```
hiddenLayer02 (Dense)
                                  (None, 100)
                                                            30100
      outputLayer (Dense)
                                  (None, 10)
                                                            1010
     Total params: 266,610
     Trainable params: 266,610
     Non-trainable params: 0
# Checking for Trainable layers
for layer in pretrained ANN model.layers:
    print(f"{layer.name}: {layer.trainable}")
     inputLayer: True
     hiddenLayer01: True
     hiddenLayer02: True
     outputLayer: True
# Setting trainable features of layers
for layer in pretrained ANN model.layers[:-1]: # leave the last layer
    layer.trainable = False
for layer in pretrained ANN model.layers:
    print(f"{layer.name}: {layer.trainable}")
     inputLayer: False
     hiddenLayer01: False
     hiddenLayer02: False
     outputLayer: True
# Extraction of the layers whose Trainable features are disabled now
lower_pretrained_model = pretrained_ANN_model.layers[:-1]
# Creating new ANN model where output layer have two neurons one for odd and other for even
new ANN model = tf.keras.models.Sequential(lower pretrained model)
new_ANN_model.add(
    tf.keras.layers.Dense(2, activation="softmax")
)
new ANN model.summary()
     Model: "sequential_1"
                                  Output Shape
      Layer (type)
                                                            Param #
                                            _____
      inputLayer (Flatten)
                                  (None, 784)
```

```
hiddenLayer01 (Dense)
                                  (None, 300)
                                                             235500
                                  (None, 100)
      hiddenLayer02 (Dense)
                                                             30100
      dense (Dense)
                                   (None, 2)
                                                             202
     Total params: 265,802
     Trainable params: 202
     Non-trainable params: 265,600
# Trainable params at output layer for rest layers this is disabled
100*2 + 2
     202
# function to update labels
def update_even_odd_labels(labels):
    for idx, label in enumerate(labels):
        labels[idx] = np.where(label%2 == 0, 1, 0) # 1 -> even, 0 -> odd
    return labels
ex_1 = np.array([1,2,3,4,5])
ex 1
     array([1, 2, 3, 4, 5])
# showing enurmerate builtin function functionality
for idx, label in enumerate(ex 1):
    # print(idx, label)
    print(ex_1[idx], np.where(label%2 == 0, 1, 0))
     1 0
     2 1
     3 0
     4 1
     5 0
# Updating labels in two classes 0 and 1
y_train_bin, y_test_bin, y_valid_bin = update_even_odd_labels([y_train, y_test, y_valid])
np.unique(y train bin)
     array([0, 1])
new_ANN_model.compile(loss="sparse_categorical_crossentropy",
```

```
optimizer="SGD",
       metrics=["accuracy"]
       )
# Training the model
history = new ANN model.fit(
 X_train, y_train_bin, epochs=10, validation_data = (X_valid, y_valid_bin)
)
  Epoch 1/10
 Epoch 2/10
 Epoch 3/10
 Epoch 4/10
 Epoch 5/10
 Epoch 6/10
 Epoch 7/10
 Epoch 8/10
 Epoch 9/10
 Epoch 10/10
 new_ANN_model.evaluate(X_test, y_test_bin)
 [0.10295837372541428, 0.9639999866485596]
X \text{ new} = X \text{ test[:3]}
y prob = new ANN model.predict(X new)
y prob.round(3) # probabilties output label of images X new
 array([[1. , 0.
    [0.
      , 1.
         1,
    [0.984, 0.016]], dtype=float32)
Y_pred = np.argmax(y_prob, axis=-1)
Y pred
 array([0, 1, 0])
```

```
y_test_bin[:3]
     array([0, 1, 0])
# Testing of model for classification of image in even or odd
for img_array, pred, actual in zip(X_new, Y_pred, y_test_bin[:3]):
    if pred == 1:
        pred = "even"
    else:
        pred = "odd"
    if actual == 1:
        actual = "even"
    else:
        actual = "odd"
    plt.imshow(img_array, cmap="gray")
    plt.title(f"predicted: {pred}, actual: {actual}")
    plt.axis("off")
    plt.show()
    print("--"*30)
```





OBSERVATION:- Model created using Transfer learning technique is able to classify image as odd or even.

precision\_score(y\_test\_bin,y\_pred)

0.9647801302931596

# Precision

OBSERVATION: Accuracy score of the model created using Transfer learning is 0.96

## → Train A CNN model on MNIST data

```
X_train[0].shape
     (28, 28)
X train[0]
                       , 0.44313725, 0.85882353, 0.99607843, 0.94901961,
             0.89019608, 0.45098039, 0.34901961, 0.12156863, 0.
                                           , 0.78431373, 0.99607843,
             0.94509804, 0.16078431, 0.
                       , 0.6627451 , 0.99607843, 0.69019608, 0.24313725,
                                   , 0.18823529, 0.90588235, 0.99607843,
             0.91764706, 0.
             0.
            [0.
                       , 0.07058824, 0.48627451, 0.
                                   , 0.32941176, 0.99607843, 0.99607843,
             0.65098039, 0.
            [0.
                                   , 0.54509804, 0.99607843, 0.93333333,
             0.22352941, 0.
            [0.
             0.
                       , 0.82352941, 0.98039216, 0.99607843, 0.65882353,
            [0.
                         0.94901961, 0.99607843, 0.9372549, 0.22352941,
             0.
            [0.
             0.34901961, 0.98431373, 0.94509804, 0.3372549 , 0.
                                   , 0.
                       , 0.
                                               , 0.
```

0.

, 0.

```
[0.
                       , 0.
                                               , 0.
                                                           , 0.
                                               , 0.
             0.
                                                           , 0.
                       , 0.
                                   , 0.
                                               , 0.
                                                           , 0.01960784,
             0.80784314, 0.96470588, 0.61568627, 0.
                                                           , 0.
                       , 0.
             0.
                                   , 0.
                                               , 0.
             0.
                       , 0.
                                   , 0.
                       , 0.
                                   , 0.
            [0.
                                                           , 0.
                                               , 0.
                       , 0.
                                   , 0.
                                               , 0.
                                                           , 0.
             0.
                       , 0.
                                   , 0.
                                               , 0.
                                                           , 0.01568627,
             0.45882353, 0.27058824, 0.
                                               , 0.
                                                           , 0.
                                               , 0.
                       , 0.
             0.
                                   , 0.
             0.
                       , 0.
                                   , 0.
                       , 0.
                                   , 0.
                                               , 0.
            [0.
                                                           , 0.
                                               , 0.
             0.
                       , 0.
                                   , 0.
                                                           , 0.
                       , 0.
                                   , 0.
                                               , 0.
                                                           , 0.
             0.
                       , 0.
                                   , 0.
                                               , 0.
                                                           , 0.
             0.
np.expand_dims(X_train, -1).shape # showing example of working of np.expand_dims
     (55000, 28, 28, 1)
np.expand_dims(X_train, -2).shape # showing example of working of np.expand_dims
     (55000, 28, 1, 28)
np.expand_dims(X_train, -3).shape # showing example of working of np.expand_dims
     (55000, 1, 28, 28)
np.expand_dims(X_train, 1).shape # showing example of working of np.expand_dims
     (55000, 1, 28, 28)
np.expand_dims(X_train, 3).shape # showing example of working of np.expand_dims
     (55000, 28, 28, 1)
# Adding one more dimension, this dimension signify number of channel of image data
X_train_CNN = np.expand_dims(X_train, -1)
X test CNN = np.expand dims(X test, -1)
X_valid_CNN = np.expand_dims(X_valid, -1)
X_train_CNN.shape
     (55000, 28, 28, 1)
```

OBSERVATION:- The above you can see 5500 is number of image data, 28\*28 is height and width, 1 is channel

X\_train\_CNN[0] # first image data

```
[0.
               ],
 [0.
               ],
 [0.
               ],
 [0.
               ],
 [0.
 [0.
               ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
               ],
 [0.
 [0.01568627],
 [0.45882353],
 [0.27058824],
 [0.
 [0.
               ],
 [0.
 [0.
 [0.
 [0.
               ],
               ],
 [0.
 [0.
 [0.
               ],
 [0.
 [0.
               ]],
[[0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
 [0.
               ],
 [0.
               ],
 [0.
               ],
```

```
L٧.
                         ر [
             [0.
                         ],
             [0.
                         ],
             [0.
             [0.
                         ],
             [0.
                         ],
             [0.
                         ],
             [0.
             [0.
                         1,
X train CNN[0].shape # first image data shape
     (28, 28, 1)
# Creating Layers for the CNN Model
input_shape = (28, 28, 1) # (row, col, channels)
CLASSES = 10
LAYERS = [
    tf.keras.Input(shape=input shape),
    tf.keras.layers.Conv2D(32, kernel_size=(3,3), activation="relu"),
    tf.keras.layers.MaxPooling2D(pool_size=(2,2)),
    tf.keras.layers.Conv2D(64, kernel_size=(3,3), activation="relu"),
    tf.keras.layers.MaxPooling2D(pool_size=(2,2)),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(CLASSES, activation="softmax")
]
# Creating CNN model
CNN_model = tf.keras.Sequential(
    LAYERS
)
```

#### CNN\_model.summary()

Model: "sequential\_3"

| Layer (type)                               | Output Shape       | Param # |
|--------------------------------------------|--------------------|---------|
| conv2d_2 (Conv2D)                          | (None, 26, 26, 32) | 320     |
| <pre>max_pooling2d_2 (MaxPooling 2D)</pre> | (None, 13, 13, 32) | 0       |
| conv2d_3 (Conv2D)                          | (None, 11, 11, 64) | 18496   |
| <pre>max_pooling2d_3 (MaxPooling 2D)</pre> | (None, 5, 5, 64)   | 0       |
| <pre>flatten_1 (Flatten)</pre>             | (None, 1600)       | 0       |
| dense_2 (Dense)                            | (None, 10)         | 16010   |

\_\_\_\_\_

Total params: 34,826 Trainable params: 34,826 Non-trainable params: 0

\_\_\_\_\_

1600

$$(3*3*1 + 1) * 32 # convo 1 params$$

320

(28 - 3) 
$$//$$
 1 + 1 # After filter new image height or width

26

$$(26 - 2) // 2 + 1 \# After max-pooling$$

13

$$(3*3*32 + 1) * 64 # convo 2 params$$

18496

16010

#### CNN\_model.summary()

Model: "sequential\_3"

| Layer (type)                               | Output Shape       | Param # |
|--------------------------------------------|--------------------|---------|
| conv2d_2 (Conv2D)                          | (None, 26, 26, 32) | 320     |
| <pre>max_pooling2d_2 (MaxPooling 2D)</pre> | (None, 13, 13, 32) | 0       |
| conv2d_3 (Conv2D)                          | (None, 11, 11, 64) | 18496   |
| <pre>max_pooling2d_3 (MaxPooling 2D)</pre> | (None, 5, 5, 64)   | 0       |
| flatten_1 (Flatten)                        | (None, 1600)       | 0       |
| dense_2 (Dense)                            | (None, 10)         | 16010   |

\_\_\_\_\_\_

```
Total params: 34,826
  Trainable params: 34,826
  Non-trainable params: 0
LOSS FUNCTION = "sparse categorical crossentropy"
OPTIMIZERS = "SGD"
METRICS = ["accuracy"]
CNN model.compile(loss=LOSS FUNCTION, optimizer=OPTIMIZERS, metrics=METRICS)
# Training CNN Model
CNN model.fit(X train, y train, epochs=10, validation data = (X valid, y valid))
  Epoch 1/10
  Epoch 2/10
  Epoch 3/10
  Epoch 4/10
  Epoch 5/10
  Epoch 6/10
  Epoch 7/10
  Epoch 8/10
  Epoch 9/10
  Epoch 10/10
  <keras.callbacks.History at 0x7f7718c18790>
# Extracting 3 images for testing purpose
X \text{ new} = X \text{ test[:3]}
y prob = CNN model.predict(X new)
y prob.round(3)
        , 0.
  array([[0.
                  , 0.
           , 0.
               , 0.
                     , 0. , 0.
                            , 1.
      0.
        , 0.001, 0.999, 0.
     [0.
                  , 0.
                     , 0.
      0.
     [0.
        , 0.999, 0.
               , 0.
                  , 0.
                     , 0.
      0.
        ]], dtype=float32)
```

```
Y_pred = np.argmax(y_prob, axis=-1)
Y_pred  # prediction

array([7, 2, 1])

# comparing actual and prediction
for img_array, pred, actual in zip(X_new, Y_pred, y_test[:3]):
    plt.imshow(img_array, cmap="gray")
    plt.title(f"predicted: {pred}, actual: {actual}")
    plt.axis("off")
    plt.show()
    print("--"*30)
```

```
predicted: 7, actual: 7
```

CNN\_model.save("CNN\_model.h5")

# Makeing prediction on whole test dataset
y\_prob = CNN\_model.predict(X\_test)
y\_prob.shape

(10000, 10)

y\_pred = np.argmax(y\_prob,axis=-1)
y\_pred

array([7, 2, 1, ..., 4, 5, 6])

# confusion matrix
confusion\_matrix(y\_test,y\_pred)

# Accuracy score using sklearn
accuracy\_score(y\_test,y\_pred)

0.9843

# Accuracy score using sklearn
accuracy\_score(y\_test,y\_pred)

0.9843

OBSERVATION: CNN Model have accuracy score 0.98 which better than ANN

## **▼ Transfer Learning in CNN**

## New problem statement -

Classify handwritten digits into odd and even

```
CNN_pretrained_model = tf.keras.models.load_model('CNN_model.h5')
```

CNN\_pretrained\_model.summary()

Model: "sequential\_3"

| Layer (type)                               | Output Shape       | Param # |
|--------------------------------------------|--------------------|---------|
| conv2d_2 (Conv2D)                          | (None, 26, 26, 32) | 320     |
| <pre>max_pooling2d_2 (MaxPooling 2D)</pre> | (None, 13, 13, 32) | 0       |
| conv2d_3 (Conv2D)                          | (None, 11, 11, 64) | 18496   |
| <pre>max_pooling2d_3 (MaxPooling 2D)</pre> | (None, 5, 5, 64)   | 0       |
| flatten_1 (Flatten)                        | (None, 1600)       | 0       |
| dense_2 (Dense)                            | (None, 10)         | 16010   |
|                                            |                    |         |

\_\_\_\_\_\_

Total params: 34,826 Trainable params: 34,826 Non-trainable params: 0

\_\_\_\_\_

```
# Checking Traininable parameter of CNN
for layer in CNN_pretrained_model.layers:
    print(f"{layer.name}: {layer.trainable}")

    conv2d_2: True
    max_pooling2d_2: True
    conv2d_3: True
    max_pooling2d_3: True
    flatten_1: True
    dense_2: True

for layer in CNN_pretrained_model.layers[:-1]: # leave the last layer
    layer.trainable = False # disabling trainable params
```

```
for layer in CNN_pretrained_model.layers:
    print(f"{layer.name}: {layer.trainable}")
     conv2d_2: False
     max pooling2d 2: False
     conv2d_3: False
     max pooling2d 3: False
     flatten 1: False
     dense_2: True
# Extracting CNN leaving output layer
lower CNN pretrained model = CNN pretrained model.layers[:-1]
lower CNN pretrained model
     [<keras.layers.convolutional.Conv2D at 0x7f7718898490>,
      <keras.layers.pooling.MaxPooling2D at 0x7f7718870490>,
      <keras.layers.convolutional.Conv2D at 0x7f7718bb9910>,
      <keras.layers.pooling.MaxPooling2D at 0x7f771889dbd0>,
      <keras.layers.core.flatten.Flatten at 0x7f771889df50>]
# Creating new CNN Model using Extracted layers hence doing Transfer learning
new CNN model = tf.keras.models.Sequential(lower CNN pretrained model)
new CNN model.add(
    tf.keras.layers.Dense(2, activation="softmax")
)
#updating labels
def update even odd labels(labels):
    for idx, label in enumerate(labels):
        labels[idx] = np.where(label%2 == 0, 1, 0) # 1 -> even, 0 -> odd
    return labels
y train bin, y test bin, y valid bin = update even odd labels([y train, y test, y valid])
# Expanding dimension
X train CNN = np.expand dims(X train, -1)
X_test_CNN = np.expand_dims(X_test, -1)
X valid CNN = np.expand dims(X valid, -1)
X_train_CNN.shape
     (55000, 28, 28, 1)
```

new CNN model.summary()

Model: "sequential\_4"

| Output Shape       | Param #                                                                                    |
|--------------------|--------------------------------------------------------------------------------------------|
| (None, 26, 26, 32) | 320                                                                                        |
| (None, 13, 13, 32) | 0                                                                                          |
| (None, 11, 11, 64) | 18496                                                                                      |
| (None, 5, 5, 64)   | 0                                                                                          |
| (None, 1600)       | 0                                                                                          |
| (None, 2)          | 3202                                                                                       |
|                    | (None, 26, 26, 32)  (None, 13, 13, 32)  (None, 11, 11, 64)  (None, 5, 5, 64)  (None, 1600) |

Total params: 22,018 Trainable params: 3,202 Non-trainable params: 18,816

```
Epoch 1/10
 Epoch 2/10
 Epoch 3/10
 Epoch 4/10
 Epoch 5/10
 Epoch 6/10
 Epoch 7/10
 Epoch 8/10
 Epoch 9/10
 Epoch 10/10
 new_CNN_model.evaluate(X_test_CNN, y_test_bin)
 [0.05336078628897667, 0.98089998960495]
X \text{ new} = X \text{ test } CNN[:3]
X new = X new.reshape((3,28,28)) # reshaping for prediction as model take 3 dimension image
X new.shape
 (3, 28, 28)
y prob = new CNN model.predict(X new)
y prob.round(3)
 array([[1.
      , 0.
      , 1.
         ٦,
    [0.993, 0.007]], dtype=float32)
Y pred = np.argmax(y prob, axis=-1)
Y pred
 array([0, 1, 0])
```

```
y_test_bin[:3]
     array([0, 1, 0])
# comparing actual and prediction of 3 images from test dataset
for img_array, pred, actual in zip(X_new, Y_pred, y_test_bin[:3]):
    if pred == 1:
        pred = "even"
        pred = "odd"
    if actual == 1:
        actual = "even"
    else:
        actual = "odd"
    plt.imshow(img_array, cmap="gray")
    plt.title(f"predicted: {pred}, actual: {actual}")
    plt.axis("off")
    plt.show()
    print("--"*30)
```





OBSERVATION:- Model created using Transfer learning is able to classify image which numbers as even or odd.

```
#Making Prediction on whole dataset
y_prob = new_CNN_model.predict(X_test)
y_prob.shape
    (10000, 2)
y_pred = np.argmax(y_prob,axis=-1)
y_pred
    array([0, 1, 0, ..., 1, 0, 1])
         # confusion matrix
confusion_matrix(y_test_bin,y_pred)
    array([[4943, 131],
           [ 60, 4866]])
# Accuracy score using sklearn
accuracy_score(y_test_bin,y_pred)
    0.9809
# Precision
precision_score(y_test_bin,y_pred,average='weighted')
    0.9810009827683538
```

OBSERVATION:- Transfer Learning can be done in ANN and CNN both.

Colab paid products - Cancel contracts here

✓ 0s completed at 7:00 PM

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.

×