Counting review

Countability

To infinity and beyond

Michael Psenka

Intro question

As many even integers as odd integers?

As many even integers as integers?

Countably infinite sets

Definition. The set S is said to be countable (countably infinite) if there exists a bijective map $f: S \leftrightarrow \mathbb{N}$.

• In this sense, we can say that S and $\mathbb N$ have the same cardinality.

What sets are countable?

The smallest infinity

Theorem. Every infinite subset of a countable set is countable.

• Z is countable.

• $\mathbb{Z} \times \mathbb{Z}$ is countable.

- Corollary. The following sets are countable:
- 1. The rational numbers \mathbb{Q} .

2. The sets $\mathbb{Z}^{\times k} := \mathbb{Z} \times \cdots \times \mathbb{Z}$ (k copies).

Theorem. Any countable union of countable sets is countable.

Another question

• Denote $\mathbb{Z}^{\mathbb{N}}$ as the set of (countably) infinite sequences of integers. Does there exist a bijection between the following:

$$\mathbb{Z}^{\mathbb{N}} \leftrightarrow \bigcup_{k=1}^{\infty} \mathbb{Z}^{\times k}$$
?

The ceiling of countability

• The set $\{0,1\}^N$ is not countable (uncountable).

Uncountable sets

• Corollary. The following sets are uncountable:

1. The real numbers \mathbb{R} .

2. The set of subsets of \mathbb{N} (denoted $\mathcal{P}(\mathbb{N})$).

Uncountable sets

Any nonempty closed interval $[a,b] \subset \mathbb{R}$ is uncountable.

Question: "how to measure size of uncountable sets"?

Measure zero and countability

Measure theory: measuring the size of (almost) arbitrary sets.

The Cantor set

The Cantor set $\bigcap_{k=1}^{\infty} C_k$ is both measure zero and uncountable.