一、预习报告(10分)

1. 实验综述 (5分)

(1) 惠更斯电桥测量电阻的原理

如上图, R_1 , R_2 , R_x , R_S 组成"桥臂",检流计 G 组成"桥路"。当通过 G 的电流 $I_G=0$ 时,B、D 两点电位相等,电桥达到平衡,此时有 $I_x=I_1$, $I_S=I_2$

由
$$U_{AB}=U_{AD}$$
,有 $I_1R_1=I_2R_2$

由
$$U_{BC}=U_{DC}$$
,有 $I_xR_x=I_SR_S$

两式相除,得

$$\frac{R_1}{R_x} = \frac{R_2}{R_S}$$

即

$$R_x = \frac{R_1}{R_2} R_S$$

上式即为电桥的平衡条件

(2) 直接测量与交换法

直接测量法需测量 R_1,R_2 和 R_S 的值,再通过 $R_x=rac{R_1}{R_2}R_S$ 计算

相对不确定度为

$$rac{\Delta R_x}{R_x} = \sqrt{(rac{\Delta R_1}{R_1})^2 + (rac{\Delta R_2}{R_2})^2 + (rac{\Delta R_S}{R_S})^2}$$

在第一次测量的基础上,我们可以交换 R_x 和 R_S 的位置,调整 R_S 至 R_S' 使得电桥再次平衡交换前, $R_x=\frac{R_1}{R_2}R_S$;交换后, $R_x=\frac{R_2}{R_1}R_S'$

两式相乘可得

$$R_x = \sqrt{R_S R_S'}$$

相对不确定度为

$$rac{\Delta R_x}{R_x} = rac{1}{2} \sqrt{(rac{\Delta R_S}{R_S})^2 + (rac{\Delta R_S'}{R_S'})^2} pprox rac{\Delta R_S}{R_S}$$

实验采用0.1级十进位转盘电阻箱,其仪器允差引入的不确定度为

$$\frac{\Delta R_S}{R_S} = \pm (a + b \frac{m}{R_S})\% = \pm (0.001 + 0.002 \frac{m}{R_S})$$

相比直接测量法,交换法消除了 R_1 , R_2 带来的误差

(3) 电桥灵敏度

当 I_G 较小时,检流计没有发生偏转,我们仍会认为电桥平衡,此时待测电阻 $R_x=rac{R_1}{R_2}(R_S+\Delta R_S)$,此时会由于电桥不够灵敏引入误差 $(rac{R_1}{R_2}\Delta R_S)$

为了定量确定电桥灵敏度, 定义它为

$$S = rac{\Delta d}{\Delta R_S/R_S}$$

其中, ΔR_S 为电阻箱 R_S 改变量, Δd 为检流计偏转格数

由于人眼察觉的界限约为0.2小格,可求得:

$$S = rac{0.2}{\Delta R_S/R_S} \longrightarrow rac{\Delta R_S}{R_S} = rac{0.2}{S}$$

(4) 计算 R_x 不确定度

仪器允差引入不确定度 $\frac{\Delta R_S}{R_S} = \pm \left(0.001 + 0.002 \frac{m}{R_S}\right)$

电桥灵敏度引入不确定度 $\frac{\Delta R_S}{R_S} = \frac{0.2}{S}$

$$E = rac{\Delta R_x}{R_x} = \sqrt{(rac{\Delta R_S}{R_S})^2 + (rac{\Delta R_S}{R_S})^2} = \sqrt{(0.001 + 0.002 rac{m}{R_S})^2 + (rac{0.2}{S})^2}$$
 $\Delta R_x = E * ar{R}_x$
 $R_x = ar{R}_x \pm \Delta R_x$

2. 实验重点 (3分)

- (1) 自组电桥测未知电阻
- 利用检流计、电阻箱 (R_1, R_2) : 四旋钮; R_S : 六旋钮) 、待测电阻及电源等组装电桥
- 选取适当比率臂,利用交换法测量待测电阻,确保测量结果有4位有效数字
- 测算自组电桥的灵敏度
- (2) 用 QJ-23 型盒式惠斯登电桥测电阻离散度
- 打开盒式惠斯登电桥开关,选择工作电压,将指针调零
- 依次测量待测电阻盘上的8个等值电阻,选取适当的倍臂,确保有效数字达4位
- 计算这批电阻的离散值

3. 实验难点 (2分)

- (1) 掌握惠斯登电桥的原理和特点,使用自组电桥测量未知电阻
- (2) 使用盒式惠斯登电桥测量电阻
- (3) 对测量结果进行误差分析

二、原始数据 (20分)

次数	1 0 1-	1				7222.			
1			RsIs	Ad/格	And in case of the last of the	od'格			
- '	100	200	6950	1519	343	\$19			
2	800	800	894.9	\$10	694.8	\$ 13	-		679.6
3	1000	1000	222,Z 694,A	多12	超三子	* 11			6
4	1500	1500	594.7	A 9	222.2 695.1	89	-		
7	2000	2000	222.2	35	A CONTRACTOR OF THE PARTY OF TH		_		630,8
6	2000	3000		24	694.9 172.3 694.8	46			×
Rx = 选取电极	· 是教度	x - 50 de x - 50 de	694.93 4.8 JL (b) / R 5 oRs/Rs	s'= 694 = 3 -8 :	3.5 × 104	格	6Rs = 0,1 N		
aRx=	F.P.								

三、结果与分析 (60分)

1. 数据处理与结果 (30分)

(1) 自组电桥测未知电阻

次数	R_1/Ω	R_2/Ω	R_S/Ω	$\Delta d/$ 格	R_S'/Ω	$\Delta d'/$ 格
1	500	500	222.2	19	222.1	19
2	800	800	222.2	10	222.2	13
3	1000	1000	222.2	12	222.2	11
4	1500	1500	222.2	9	222.2	9
5	2000	2000	222.2	5	222.1	6
6	3000	3000	222.2	4	222.2	5

待测电阻阻值:

$$ar{R}_S=222.2\Omega$$
 , $ar{R}_S'=222.2\Omega$ $ar{R}_x=\sqrt{ar{R}_Sar{R}_S'}=222.2\Omega$

电桥灵敏度:

选取 $R_S=222.2\Omega$, $\Delta d=19$ 格, $\Delta R_S=0.1\Omega$

$$S = rac{\Delta d}{\Delta R_S/R_S} = 4.2 imes 10^4 ext{K}$$

不确定度:

$$E = rac{\Delta R_x}{ar{R}_x} = \sqrt{(0.001 + rac{0.002m}{ar{R}_S})^2 + (rac{0.2}{S})^2} = 0.10\%$$
 $\Delta R_x = E \cdot ar{R}_x = 0.22\Omega$

故 R_x 的最终测量结果:

$$R_x = (222.20 \pm 0.22) \Omega$$

(2) 用 QJ-23 型盒式惠斯登电桥测电阻离散度

待测电阻 R_i	R_1	R_2	R_3	R_4	R_5	R_6	R_7	R_8
测得电阻/Ω	694.5	682.8	686.8	679.6	682.3	680.8	686.8	677.4

均值:
$$\bar{R}=rac{1}{8}\sum_{i=1}^{8}R_{i}=683.9\Omega$$

2. 误差分析 (20分)

- 1. 检流计很难准确调零,且有时按下"电计"按钮再松开后原本已调零的检流计又发生小幅偏转。这会影响 R_S 的测量结果。
- 2. 电阻箱 Rs 的最小分度值为 0.1Ω ,但是在测量中, $R_S=R_0$ 时检流汁左偏, $R_S=R_0+0.1\Omega$ 时检流计右偏,均未确切达到零偏。这表示 R_S 电阻箱的精度限值了测量结果的精确性。
- 3. 用 QJ-23 型盒式惠斯登电桥测电阻时,由于盒中内置的检流计精度较低,调节 $\pm 3 \times 0.1\Omega$ 都很难观察到偏转,因此很难确定哪个阻值时确切零偏。这会引入一定误差。

3. 实验探讨 (10分)

本次实验通过自组电桥和盒式电桥分别测量了未知电阻。操作中,通过调节电阻箱使检流计指零达到电桥平衡,从而计算阻值。误差分析表明,电桥灵敏度等因素会引入较大误差。实验加深了对电桥原理和误差来源的理解。

四、思考题 (10分)

- 1. 为什么用惠斯登电桥测量电阻比伏安法测量的准确度高? 用电桥法测电阻产生误差的主要原因是什么?
 - 。 伏安法测电阻是根据 $R=\frac{U}{I}$,但由于由本,和电流表的内阻,会引起较大误差;而电桥法不会引入检流计内阻带来的误差;其误差仅来自 R_1 、 R_2 、 R_S 的误差,同时,又可用交换法消除 R_1 、 R_2 带来的误差,因此准确度较高。
- 2. 为了提高电桥测量灵敏度,应采取那些措施?为什么?
 - 。 首先,可以更改电桥比率臂 $\frac{R_1}{R_2}$,例如用最大阻值为 9999Ω 的电阻箱来测几百欧的电阻,如 果 $\frac{R_1}{R_2}=1$ 则只有3位有效数字,而如果 $\frac{R_1}{R_2}=0.1$ 则有4位有效数字。
 - 其次,可以选用灵敏度更高的检流计和最小分度值更小的电阻箱。
- 3. 用电桥测电阻时, 若线路接通后检流计指针总是往一个方向偏转或总不偏转, 试分析是什么原因?
 - 总是往一个方向偏转:可能是挡位或电桥比率臂不合理,导致偏转过大,或电路连接有误,出现短路或断路。
 - 总不偏转:可能是电路连接有误,如出现断路或检流计被短路;也可能是电源未接通或仪器故障。
- 4. 惠斯登电桥比率臂选取的原则是什么? 为什么要这样选取?
 - 保证电阻箱在不超过最大阻值的前提下尽可能多地使用其位数,从而提高结果的有效位数。也 应使比率臂为 10的整数次幂,这样可以避免复杂计算导致的舍入。
- 5. 如何使用自组电桥测量电表内阻?根据电桥平衡的特点,可否将桥路中的检流计去掉,换成用电表判别电桥的平衡?
 - 可以将待测电阻换成待测电表,原理与前实验相同,但应根据所测电表量程进行估算,选取合适的电源电压和电阻值,以防电表超出量程。
 - 如果去掉检流计,仅通过电表示数也可判断电桥平衡。只要接通开关S前后,电表的示数未发生改变,说明B、D等势,电桥平衡。但相应的,由于电表精度不高,因此误差可能较大。