1. 实验名称及目的

创建多个 PX4 应用实验: 基于 PX4 软件系统中的多进程运行状态, MATLAB 自动代码生成的 PX4 应用名称为: px4_simulink_app, 本实验可将其进行重命名后, 再通过 MAT LAB 自动代码生成新的 PX4 应用, 以此即可实现同时创建多个 PX4 应用。

注:本例程需要升级 RflySim 到 2023 年 7 月 24 日及以上版本进行实验。

2. 实验效果

重命名 px4_simulink_app, 并新增创建 PX4 应用: rfly_simulink_app。

3. 文件目录

序号	文件夹/文件名称		说明
1	icon	FlightGear.png	FlightGear软件图片。
		pixhawk.png	Pixhawk 硬件图片。
		F450.png	F450飞机模型图片。
2	AttitudeConModel.xls		四旋翼姿态控制模型文件。
3	Init_control.m		控制器初始化参数文件。
4	Rc_back.slx		遥控器 CH6 通道控制飞控指示灯显示程序。

4. 运行环境

序号	软件要求	硬件要求	
11, 4	秋日安 本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版及以上版本	Pixhawk 6C 或 Pixh	1
	KIIySIIII 日光频 版次 6 工版本	awk 6C mini [®]	
		遥控器 ³	1
		遥控器接收器	1
		数据线、杜邦线等	若干

①: 推荐配置请见: https://doc.rflysim.com

②: 须保证平台安装时的编译命令为: px4_fmu-v6c_default, 固件版本为: 1.13.3。其他配套飞控请见: http://doc.rflysim.com

③: 本实验演示所使用的遥控器为: 天地飞 ET10、配套接收器为: WFLY RF209S。遥控器相关配置见: ..\e11_RC-Config\Readme.pdf

5. 实验步骤

Step 1:

打开平台安装包文件夹,运行一键安装文件"OnekeyScript.p",在弹出的对话框中,做如下图所示设置,等待 RflySim 安装完成。

Step 2:

在 MATLAB 中打开"Rc_back.slx"文件,如下图所示。

Step 3:

在 Simulink 中,点击编译命令。在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图侧为生成的编译报告。

Step 4:

等待自动代码生成完毕后,在MATLAB的命令行窗口输入如下指令:

```
PX4AppName('rfly_simulink_app')
%或
PX4AppName 'rfly_simulink_app'
等待运行完成后:

>> PX4AppName 'rfly_simulink_app'
Firmware目录中已存在rfly_simulink_app目录。
当前的编译命令为: px4_fmu-v5_default
成功找到px4_fmu-v5_default的cmake文件
重命名完成.
开始重新添加px4_simulink_app模版...
```

打开 "*\PX4PSP\Firmware\src\modules" 文件夹, 分别查看 px4_simulink_app 和 rfly_simulink_app。

Step 5:

运行 Init_control.m,将自动打开"AttitudeConModel.xls"文件,如下图所示。

Step 6:

在 Simulink 中,点击编译命令。在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图侧为生成的编译报告。

Step 7:

打开 "*\PX4PSP\Firmware\src\modules" 文件夹,分别查看 px4_simulink_app 和 rfly_si mulink_app。

Step 7:

等待编译完成后,插入飞控,在MATLAB命令行内运行:

PX4Upload

将固件烧录飞控中。

```
Loaded firmware for board id: 50,0 size: 1913073 bytes (92.67%), wait

Attempting reboot on COM4 with baudrate=57600...

If the board does not respond, unplug and re-plug the USB connector.

Found board id: 50,0 bootloader version: 5 on COM4
sn: 001c002d4256500620323441
chip: 10016451
family: b'STM32F7[6|7]x'
revision: b'Z'
flash: 2064384 bytes
Windowed mode: False

Erase : [=== ] 16.9%
```

Step 8:

上传成功后, 打开 QGroundControl 软件。确认无人机机架及遥控器通设置如下:

Step 9:

遥控器的设置如下图。注:遥控器设置中, CH5 通道需设置为二段式开关, CH6 通道设置为三段式或二段式开关。

Step 10:

通过 CH5 解锁之后,在 RflySim3D 中即可看到飞机正常起飞,同时拨动 CH6 通道可切换飞控上的指示等慢闪或快闪。

6. 参考资料

[1]. 暂无

7. 常见问题

Q1: ****

A1: ****