

යෙ ඕන්ශදීෂදීශ්ණීස : කැතුවෙලිවෙලිව

ಕೇಂಡಿ - ಶಿಲಂಡಿ ಗ್ಲಹಚಿಕ್ಕೆ

គណិតទំនា

គង្គ សំណុំ ឆិ១ចំនួន

ಕ್ಷು ೮೦೨៦

នៃខ្មុន ៖ មន្ទ្រាវាមន្ទេន ៖ មន្ទ្រាវាមន្ទ្រាវា

សស្ត្រាទារ្យណែនាំ ៖ ខ្យឹយ សុគា

សិត្សាស្រាចទ្រាចដោយគរុសិស្សិតគណិតចិណ្ដ ៖

<u>មឡេកនេសគុំព្យូន័ះ</u>

លេង ទំខ ទេឌី

នលៈអនុអារត្រូតពិសិត្យ សិខ ៦គភាព

សាស្ត្រចារ្យ៖ ផ្យឹយ សុឝា

អាម្តេកថា

យើងខ្ញុំបានគិតខិតខំរៀបរៀងសៀវភៅរបាយការណ៍ស្រាវជ្រាវក្រោមប្រធានបទ **គគ្គ សំសុំ**និ**ខទំនួន** នេះឡើងដោយយោងលើមូលហេតុនៃការបំពេញលក្ខខណ្ឌដើម្បីត្រៀមបញ្ចប់ការសិក្សា
នៅ **ទិន្យាស្ថានខាតិអម់រំ**។ ជាមួយគ្នានេះផងដែរ យើងខ្ញុំបានខិតខំយកអស់កម្លាំងកាយ កម្លាំង
ចិត្តបង្កើតជារបាយការណ៍ស្រាវជ្រាវនេះដើម្បីចូលរួម បកស្រាយបំភ្លឺ ឲ្យងាយយល់ ឆាប់ចេះ ស៊ី
ជម្រៅ បានរហ័សបន្ទាប់ពីបានអាន និងពិចារណាឲ្យបានទូលំទូលាយចំពោះរូបមន្ត និងវិធីសាស្ត្រ
ក្នុងប្រធានបទនេះ។

របាយការណ៍ថ្មីនេះ ត្រូវបានយើងខ្ញុំខិតខំសម្រិតសម្រាំង ស្របតាមការណែនាំរបស់អ្នកគ្រូ **ន្សីយ សុគា** សាស្ត្រាចារ្យនៃ **ទិន្យាស្ថានខាតិអស់** ។ ក្នុងការស្រាវជ្រាវចងក្រងរបាយការណ៍នេះ យើងខ្ញុំបានជួបការលំបាកជាច្រើន ដោយខ្វះខាតបទពិសោធន៍ និងពេលវេលា ប៉ុន្តែទោះបីជាយ៉ាង ណាក៏ដោយ ក៏យើងខ្ញុំមិនរាថយក្នុងការស្រាវជ្រាវនេះឡើយ យើងខ្ញុំបានខិតខំ ធ្វើឲ្យស្នាដៃនៃវិទ្យា សាស្ត្រពិតមួយនេះបានសម្រេចជោគជ័យ និងលេចជារូបរាងឡើង។ យើងខ្ញុំសង្ឃឹមថា វានឹងមាន តម្លៃសម្រាប់មិត្តអ្នកអាន អ្នកសិក្សា ទាំងអស់ដែលត្រូវការវា។

យើងខ្ញុំសូម ខន្តីអភ័យទោសទុកជាមុន ចំពោះកំហុសឆ្គងទាំងប៉ុន្មានដែលកើតមានឡើងក្នុង របាយការណ៍នេះដោយអចេតនា ព្រោះចំណេះដឹង និងបទពិសោធន៍របស់យើងខ្ញុំនៅមានកម្រិត នៅឡើយ។

ជាចុងក្រោយនេះ ក្នុងនាមយើងខ្ញុំជាគរុនិស្សិតនៃវិទ្យាស្ថានជាតិអប់រំ សូមថ្លែងអំណរគុណ យ៉ាងជ្រាលជ្រៅដល់មិត្តអ្នកអាន អ្នកសិក្សាស្រាវជ្រាវទាំងអស់ ដែលបានចំណាយពេលវេលាដ៏ មានតម្លៃក្នុងការអានរបាយការណ៍នេះតាំងពីដើមរហូតដល់ចប់ និងសូមគោរពជូនពរមិត្តអ្នកអាន អ្នកសិក្សាស្រាវជ្រាវទាំងអស់ឲ្យជួបតែសេចក្ដីសុខគ្រប់ពេលវេលា។

> ភ្នំពេញ , ថ្ងៃទី ១៦ ខែ មិថុនា ឆ្នាំ២០១៦ គរុនិស្សិតគណិតក្រុម៥ជំនាន់ទី២១

នេះនេះនេះខេត្តទីខេត

(Acknowledgment)

យើងខ្ញុំទាំងអស់គ្នាជាបុគ្គលិក ជានិស្សិតមកពីខេត្តព្រៃវែង ស្វាយរៀង និង តាកែវ សព្វថ្ងៃ ជាគរុនិស្សិតបរិញ្ញា+១ ជំនាន់ទី២១ ឯកទេសគណិតវិទ្យានៃវិទ្យាស្ថានជាតិអប់រំ ឆ្នាំសិក្សា២០១៥-២០១៦។

សូមថ្ងៃខអំណរដុលាយ៉ា១ទ្រាលទ្រៅចំពោះ

9.អ្នកមានគុណ និងក្រុមគ្រួសារទាំងអស់គ្នាដែលមានទីលំនៅខេត្តព្រៃវែង ស្វាយរៀង និង តាកែវ ។ កូនមិនដែលបំភ្លេច គុណណូបការៈគុណដែលលោកបានផ្ដល់កំណើតព្រមទាំង ចិញ្ចឹមបី បាច់ថែរក្សា តាំងពីតូចដល់ធំ ទំនុកបម្រុងសព្វបែបយ៉ាងរហូតទទួលបានចំណេះដឹងដូចសព្វថ្ងៃ ។ កូនចងចាំជានិច្ចនូវគុណដ៏សែនធ្ងន់មិនអាចកាត់ថ្លៃបានរបស់លោកទាំងពីរ ។

២.ឯកឧត្តមបណ្ឌិត **សៀខ សុខណ្ណា** នាយកវិទ្យាស្ថានជាតិអប់រំដែលបានផ្តល់ឱកាស់ឲ្យ យើងខ្ញុំទាំងអស់គ្នា ប្រឡង និងបានបន្តការសិក្សារហូតដល់ចប់ប្រកបដោយជោគជ័យ ។

៣.លោក-លោកស្រី សាស្ត្រាចារ្យ ទាំងអស់ដែលបានបង្ហាត់បង្រៀនយើងខ្ញុំ នាពេលកន្លង មក សូមលោកជូប តែសំណាងល្អ និងសុខភាពល្អជានិច្ច ។

៤.អ្នកស្រីសាស្ត្រាចារ្យ **ឡឹយ សុគា** ដែលបានបង្ហាត់បង្រៀន និងដឹកនាំធ្វើរបាយការណ៍ ស្រាវជ្រាវលើមុខវិជ្ជាគណិតវិទ្យាផ្នែក **គគ្គ សំឈុំ សិខចំនួន** ដែលបានផ្តល់នូវចំណេះដឹង និងវិធី សាស្ត្រល្អៗ ដល់រូបយើងខ្ញុំ ។

ជាទីបញ្ចប់យើងខ្ញុំសូមប្រសិទ្ធិពរជ័យជូនដល់អ្នកមានគុណ ឯកឧត្តម បណ្ឌិត ថ្នាក់ដឹកនាំ រាជរដ្ឋាភិបាលព្រមទាំងសាស្ត្រាចារ្យទាំងអស់ឲ្យជូបប្រទះតែពុទ្ធពរទាំងបួនប្រការគឺ អាយុ វណ្ណៈ សុខៈពលៈ កុំឃ្លាងឃ្លាតឡើយ ។

សូមអរគុណ !

នាខេន្ទិសស្នានៃ

(Dedication)

ក្នុងនាមជាអ្នកបន្តវេនពីរៀមច្បង និងដោយទទូលបាននូវការបណ្តុះបណ្តាលនូវទ្រឹស្តីនានាពី វិទ្យាស្ថានជាតិអប់រំ នូវចំណេះដឹងជំនាញគណិតវិទ្យាកម្រិតបរិញ្ញា+១ ខ្ញុំបាទសូមឧទ្ទិសស្នាដៃនេះ ថ្វាយ ប្រគេន ជូន ដល់ព្រះវិញ្ញាណក្ខ័ន្ធនៃអតីតព្រះមហាក្សត្រខ្មែរ អតីតព្រះវិញ្ញាណក្ខ័ន្ធនៃព្រះ សង្ឃខ្មែរ វិញ្ញាណក្ខ័ន្ធនៃវីរៈបុរសខ្មែរ បុព្វបុរសខ្មែរគ្រប់ជំនាន់ ដែលមានឧត្តមគតិស្រឡាញ់យុត្តិធម៌ ស្នេហាជាតិ សាសនា ដ៍ពិតៗ និងដល់ជីដូនជីតា សាច់ញ្ញាតិ លោកគ្រូ អ្នកគ្រូ សាស្ត្រាចារ្យ អ្នក មានគុណទាំងឡាយ ដែលបានចែកឋានទៅកាន់បរិលោកហើយ សូមឧ្យលោកទទូលបាននូវសេច ក្តីសុខ រួចចាកទុក្ខពីក្តីលំបាកទាំងឡាយ សមតាមអ្វីដែលលោកបានប្តូរផ្តាច់មិនខ្លាចនឿយហត់ក្នុង ការបង្ហាត់បង្ហាញដល់យើងខ្ញុំរហូតទទូលបាននូវផ្លែផ្កាគូរជាទីមោទនៈនៅពេលនេះ ។

ខ្ញុំសូមឧទ្ទិសស្នាដៃនេះ ឲ្យក្លាយជាឧបករណ៍បម្រើឲ្យសេចក្តីត្រូវការនៃវិសាលភាពពុទ្ធិគ្រប់ ពេលវេលា ព្រមទាំងយុវ័យមួយចំនួនធំដែលសេចក្តីអស់សង្ឃឹមបានដុតបំផ្លាញគោលបំណងនៃការ វៀនសូត្រ ពោលគឺពួកគេត្រូវបង្ខំចិត្តលាសាលារៀន លាវិទ្យាល័យ លាមហាវិទ្យាល័យ ទាំងទឹក ភ្នែករហាមទាំងក្តីសោកស្តាយហួសថ្លែងសំដែងចេញពោលគឺ ប្រកបដោយភាពឈឺចុកចាប់ យ៉ាង អស្វារ្យ សឹងថារកវាចាមកថ្លែងរៀបរាប់ឲ្យចំទៅនឹងទំហំនៃការឈឺចាប់ក្នុងជម្រៅចិត្តមិនបាន ដោយ សារតែសេចក្តីក្រីក្រ ។ សេចក្តីតោកយ៉ាកបែបនេះ ក្លាយទៅជាអនុស្សាវរីយ៍ដ៏គ្រោតគ្រាតពេញមួយ ជីវិត ដែលគប្បីយុវជន យុវតីខ្មែរ ស្វ័យសិក្សាស្វែងរកពុទ្ធិទាំងឡាយមកដាក់ក្នុងខួរក្បាលនៅពេល ណាដែលខ្លួនអាច។

នៅចុងបញ្ចប់នៃពាក្យឧទ្ទិសនេះ ខ្ញុំបាទសូមឧទ្ទិសពាក្យមួយឃ្លាដែលខ្ញុំចូលចិត្តជាងគេក្នុងពេលដែលខ្ញុំបាទកំពុងសិក្សាក្នុងមុខវិជ្ជា គណិតវិទ្យា នេះទុកជាការពិចារណាបន្តទៀតនៃ អ្នកសិក្សាជំ នាន់ក្រោយៗគឺ បញ្ហា និងការចេះឈឺចាប់ អាចជម្រុញឲ្យយើងបំភ្លេចខ្លួនឯងនៅពេលខ្លះ ហើយត ស៊ូក្រាញននៀលសិក្សាបានទៅមុខទៀត ដែលវាទាំងពីរខាងដើមនេះបើកភ្នែកមនុស្សឆ្លាតភាគខ្លះ ឲ្យមើលឃើញពីដំណោះស្រាយទ្រឹស្តីបទនៃជីវិត បន្ទាប់ពីគេមានភ័ព្វសំណាងបានយល់អំពីអ្វីដែល ធ្វើឲ្យគេចេះតស៊ូក្នុងជីវិត។

អំសោះអំសោខ

យើងខ្ញុំជាគរុនិស្សិតនៃវិទ្យាស្ថានជាតិអប់រំ ឯកទេសគណិតវិទ្យាហើយជាអ្នកសរសេររបាយ ការណ៍ស្រាវជ្រាវលើប្រធានបទ **តក្ក សំណុំ និងចំនូន** ដើម្បីបញ្ចប់ការសិក្សា ថ្នាក់បរិញ្ញាបត្រ+១ ដែលបានសិក្សាអស់រយះពេល ១ ឆ្នាំសិក្សាកន្លងមកនេះ។

យើងខ្ញុំសូមធ្វើការអះអាងថា ការសិក្សាស្រាវជ្រាវរបស់យើងខ្ញុំមានភាពពិតទាំងស្រុងទាំងព័ត៌ មានដែលប្រមូលបានមក និងសរសេរអត្ថបទ ហើយរបាយការណ៍នេះយើងខ្ញុំបានយកជូនលោកគ្រូ ណែនាំត្រូតពិនិត្យ គាត់ក៏បានអនុញ្ញាតឲ្យយើងខ្ញុំ សរសេរប្រធានបទ នេះឡើងមក។ យើងខ្ញុំសូម ទទួលខុសត្រូវចំពោះការក្លែងបន្លំ ការលួចចម្លងពីអ្នកដទៃ។ ប្រសិនបើវិទ្យាស្ថានពិនិត្យ ឃើញមាន ករណីណាមួយកើតឡើងខុសពីខ្លឹមសារនៃការអះអាងខាងលើចំពោះរបាយការណ៍ របស់យើងខ្ញុំ នោះយើងខ្ញុំពុំមានលក្ខណៈគ្រប់គ្រាន់ដើម្បីទទួលសញ្ញាបត្រឡើយ ។

មានិទា

ចំណងជើង	ទ <u>ំ</u> ព័រ
អារម្ភកថា	i
សេចក្តីថ្លែងអំណរគុណ	ii
ការឧទ្ទិសស្នាដៃ	iii
អំណះអំណាង	iv
មាតិកា	v
សេចក្តីផ្តើម	
១.លំនាំបញ្ហា	9
២.គោលបំណងនិងសារៈសំខាន់នៃការស្រាវជ្រាវ	9
៣.វត្ថុបំណងនៃការស្រាវជ្រាវ	9
៤.វិធីសាស្ត្រនៃការស្រាវជ្រាវ	9
ជំពូក១ តក្កវិទ្យា	
9.9. សំណើ	
១.២. តម្លៃភាពពិត	ტ
១.៣.ឈ្នាប់តក្កវិទ្យា	ტ
១.៤. ប្រភេទនៃសម្រាយបញ្ជាក់	d
លំហាត់	90
ចម្លើយ	១៣
ជំពូក២ សំណុំ	
១. សំណុំ	២៣
9.9.សញ្ញាណសំណុំ	២៣
១.២. ប្រភេទសំណុំ	២៣
១.៣. របៀបកំណត់សំណុំ	២៤
១.៤. សំណុំសំខាន់ៗ	២៤
១.៥. ទំនាក់ទំនងរវាងសំណុំ	២៤
១.៥.១. សំណុំដែលមានធាតុមិនមែនជាចំនួន	២៥
១.៥.២. សំណុំនៃធាតុនៅក្នុងចន្លោះ	២៥
២. សំណុំសកល សំណុំទទេ	
២ ໑ ຄໍເດຶດຄເຕດເ	Ju ដូ

២.២. សំណុំទទេ	២៥
២.៣. សំណុំស្មើគ្នា	២៦
២.៤. សំណុំរង	២៦
២.៥. ដ្យាក្រាមវិន	២៨
២.៥.១. ដ្យាក្រាមវិន ឬ ដ្យាក្រាមសំណុំ	២៨
ป. ๕. ป. Russell's Paradox	២៩
៣. ប្រមាណវិធីលើសំណុំ	
៣.១. ប្រសព្វនៃពីរ ឬច្រើនសំណុំ	
៣.២. ប្រជុំនៃពីរ ឬ ច្រើនសំណុំ	mo
៣.៣. សំណុំរងបំពេញ	mo
៣.៤. ទំនាក់ទំនងរវាងប្រសព្វ និងប្រជុំ	mo
៣.៥. ភាពទូទៅនៃប្រសព្វ និងប្រជុំ	m9
៣.៦. ចំនួនធាតុនៃសំណុំ	mm
៣.៧. ផលសងរវាងពីរសំណុំ	៣៤
៣.៨. ផលសងឆ្លុះរវាងពីរសំណុំ	៣៤
៣.៩. ឌុយអាលីតេ	៣៥
៣.១០. សំណុំរាប់អស់ គោលការណ៍របាប់	៣៥
៣.១១. ផលគុណនៃសំណុំ	
លំហាត់	៣៨
ចម្លើយ	
ជំពូក៣ ចំនូន	
១. ចំនួនគត់គូ ចំនួនគត់សេស និងលក្ខណ:	
១.១. ចំនូនគត់គ្	៨៨
១.២. ចំនូមគត់សេស	៨៨
១.៣. លក្ខុណ:	ថផ
២. ចំនូនបឋម	૯ ફ
៣. ចំនូនការេ និង គូប	ლ 0
៤.លក្ខណៈនៃស្វ័យគុណ	៥០
៥. គោលការណ៍ប្រព័ន្ធរបាប់	៥៣
៥.១. និយមន័យ	៥៣

៥.២. គោល	៥៣
៥.២.១. និយមន័យ	៥៣
៥.២.២. ការសរសេរមួយចំនួននៅក្នុងប្រព័ន្ធគោល X	៥ ៤
៥.២.៣. ស្វ័យគុណគោល x	ፎ ៤
៥.២.៤. ចំណោទ និង ឧទាហរណ៍	៥ ៤
៥.២.៥. ប្រមាណវិធី	៥៧
៦. ភាពចែកដាច់ក្នុង $\mathbb Z$	៥៧
៦.១. និយមន័យ	៥៧
៦.២. លក្ខណៈចែកដាច់	៥៧
៧. វិធីចែកបែបអ៊ីគ្លីត	៥៩
៧.១. និយមន័យ	៥ ៩
៨. ភាពសមមូល	ხ 0
៨.១. និយមន័យ	ხ 0
៨.២. លក្ខណៈគ្រឹះ	ხ 0
៩. គូចែករួមធំបំផុត និងពហុគុណរួមតូចបំផុត	៦២
៩.១. តូចែករួមធំបំផុត	៦២
៩.២. ពហុគុណរួមតូចបំផុត	៦៣
លំហាត់	៦៤
ចម្លើយ	៦៦
ជំពូក៤ ការអនុវត្ត	
៤.១. លក្ខខណ្ឌនៃភាពចែកដាច់	៧៦
សន្និដ្ឋាន និង អនុសាស្ត្រ	
១. សន្និដ្ឋាន	
២. អនុសាសន៍	៨០

សេចគ្គីស្នើម

ឆ្លងតាមការសិក្សាលើមុខវិជ្ជាគណិតវិទ្យា នៅវិទ្យាស្ថានជាតិអប់រំ ពិសេសមុខវិជ្ជា **តក្ក សំណុំ** និងចំនូន ដែលបានបង្ហាញនូវទ្រឹស្តីមួយចំនូន និងដោយឃើញពីសារៈសំខាន់ របស់វាទើបយើងខ្ញុំ សម្រេចជ្រើសរើសប្រធានបទ **តក្ក សំណុំ និងចំនូន** មកធ្វើការសិក្សាស្រាវជ្រាវ ។

២. គោលចំណទ និទ សារៈសំខាន់នៃអារស្រាទទ្រាទ

ការសិក្សាស្រាវជ្រាវនេះ គឺក្នុងគោលបំណង ផ្ដល់នូវឯកសារជាជំនួយក្នុងការសិក្សាលើ **តក្ក** សំណុំ និងចំនូន ដល់សិស្ស និស្សិត ។

៣. ទង្គុមំណទនៃអារស្រាទទ្រាទ

ដោយមើលឃើញពីសារៈសំខាន់ និងកង្វះខាតឯកសារជាខេមរៈភាសាទើបខ្ញុំបាទសម្រេចជ្រើស រើសប្រធានបទ **តក្ក សំណុំ និងចំនូន** មកធ្វើការសិក្សាស្រាវជ្រាវដោយបង្ហាញនូវចំនុចសំខាន់៤គឺ៖

- ទី១: ស្គាល់ពីតក្កវិទ្យា
- ទី២: ស្គាល់ពីសំណុំ
- ទី៣: ស្គាលពីចំនូន
- ទី៤: ការអនុវត្តភាពចែកដាច់

ម៉្យាងទៀតនៅចុងជំពូក ១ ២ ៣ យើងមានលំហាត់ និងចម្លើយបន្ថែមផងដែរ ។

៤. ទិធីសាស្ត្រនៃភារស្រាទទ្រាទ

ក្នុងការរៀបចំចងក្រងឯកសារនេះឡើងដំបូងយើងខ្ញុំបានស្វះស្វែងប្រមែប្រមូលរកនូវឯកសារ នានា ដែលទាក់ទងទៅនឹងប្រធានបទរួមមាន សៀវភៅពីជគណិតទូទៅ របស់សាកលវិទ្យាល័យ ភូមិន្ទភ្នំពេញ ឯកសារមួយចំនួនពីបណ្ណាល័យ វិទ្យាស្ថានជាតិអប់រំ និងតាមប្រព័ន្ធអ៊ីនធឺណែត ។

បន្ទាប់ពីបានឯកសារហើយ យើងខ្ញុំបានវិភាគផ្ទៀងផ្ទាត់ដើម្បីសម្រេចយកខ្លឹមសារដែល ច្បាស់លាស់ធ្វើជារបាយការណ៍ ។

ចុងក្រោយទើបយើងខ្ញុំសម្រេចសរសេរខ្លឹមសារទាំងនោះធ្វើជារបាយការណ៍ស្រាវជ្រាវទៅ តាមប្លង់នៃរបាយការណ៍ស្រាវជ្រាវរបស់វិទ្យាស្ថានជាតិអប់រំ ។

ខំពុង១

តន្ទទិន្សា

9.9. សំនើ

សំណើគឺជាប្រយោគឬអំណះអំណាងទាំងឡាយណាដែលគេអាចសម្រេចថាពិតឬក៏មិនពិត។ ឧទាហរណ៍៖

ក. "7 ជាចំនួនបឋម" អំណះអំណាងនេះជាសំណើពិតពីព្រោះគេអាចសម្រេចបានថាពិត។

ខ. " x=1 ជាឫសរបស់សមីការ $x^2+1=0$ "

អំណះ អំណាងនេះជាសំណើមិនពិត ពីព្រោះគេអាចសម្រេចបានថាមិនពិត។

គ. " 999999 ជាចំនូនដែលធំជាងគេ" អំណះអំណាងនេះមិនមែនជាសំណើទេពីព្រោះគេមិន អាចសម្រេចបានថាតើវាពិត ឬមិនពិត។

សម្គាល់៖ គេតាងឈ្មោះនៃសំណើដោយអក្សរ p,q,r,s,...

១.២. ឥម្លៃភាពពិន

- បើ p ជាសំណើពិត នោះតម្លៃភាពពិតនៃសំណើ p គឺស្មើនឹង1 គេកំណត់សរសេរ ត.(p) = 1
- បើ p ជាសំណើមិនពិត នោះតម្លៃភាពពិតនៃសំណើ p គឺស្មើនឹង 0 ។ គេកំណត់សរសេរ គ. (p) = 0 ។

១.៣. ឈ្មាមឥត្តទិន្សា

គ. ឈ្មាច់សិច (^)

សំណើ $p \wedge q$ ពិតតែក្នុងករណីដែល សំណើ p និង q ពិតទាំងពីរ។ ចំណាំ៖ $p \wedge q$ អានថា p និង q

តារាងភាពពិតនៃសំណើ p និង q ដែលភ្ជាប់គ្នាដោយឈ្នាប់ និង (\wedge)

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

ឧទាហរណ៍៖ គេមានសំណើពីរ t:24 ជាពហុគុណនៃ 6 និងu:24 ជាចំនួនគត់គូ ។

កំណត់សំណើ $t \wedge u$ និង ត. $(t \wedge u)$ ។

ចម្លើយ:

 $t \wedge u$ "24 ជាពហុគុណនៃ 6 និង ជាចំនូនគត់គ្" ដោយ គ.(p) = 1 ហើយ គ.(q) = 1 នោះ គ. $(p \wedge q) = 1$ ។

\mathbf{s} 'សាំង្គគី (\wedge)

សំណើ $p \vee q$ ជាសំណើមិនពិតតែក្នុងករណីដែល សំណើទាំងពីរមិនពិតដូចគ្នា ។

ចំណាំ៖ $p \lor q$ អានថា $p \lor q$

តារាងភាពពិតនៃសំណើ p និង q ដែលភ្ជាប់គ្នា ដោយឈ្នាប់ ឬ (\lor)

p	q	$p \lor q$
1	1	1
1	0	1
0	1	1
0	0	0

ឧទាហរណ៍៖ គេមានសំណើពីរ ៖

p:37 ជាចំនួនបឋម

ចូរកំណត់សំណើ $p \vee q$ និង ត.($p \vee q$)

ចម្លើយ:

 $p \lor q$: "37 ជាចំនួនបឋម ឬ ចែកដាច់នឹង 5"

ដោយ ត.(p) = 1 ហើយ ត.(q) = 0

នោះ ត. $(p \lor q) = 1$

ង \cdot សេសន្នន្ទន្ទន $(\bar{\ })$ គ $(\bar{\ })$

សំណើ p និងសំណើ $\frac{-}{p}$ មានតម្លៃភាពពិតខុសគ្នា។

តារាងភាពពិត

p	$\frac{-}{p}$
1	0
0	1

ចំណាំ៖ p=p

ឧទាហរណ៍៖គេមានសំណើqៈកុំព្យូទ័រនេះមានអានុភាព ខ្លាំង។ កំណត់សំណើ q = 0 ចម្លើយ:

គេបានសំណើ

_ q : កុំព្យូទ័រនេះមិនមានគុណភាពល្អ

សគ្គណៈ ដឹម័រខេត (De Morgan)

គេមានសំណើពីរ p និង q នោះគេបាន

$$i. \ \overline{p \wedge q} = \overline{p} \vee \overline{q}$$

$$ii. \ \overline{p \vee q} = \overline{p} \wedge \overline{q}$$

សម្រាយបញ្ជាក់:

$$i. \overline{p \wedge q} = \overline{p} \vee \overline{q}$$

តារាងភាពពិត

p	q	$p \wedge q$	$\overline{p \wedge q}$	\overline{p}	\overline{q}	$p \lor q$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

$$ii. \ \overline{p \vee q} = \overline{p} \wedge \overline{q}$$

តារាងភាពពិត

p	q	$p \vee q$	$\overline{p \vee q}$	\overline{p}	\overline{q}	$p \wedge q$
1	1	1	0	0	0	0
1	0	1	0	0	1	0
0	1	1	0	1	0	0
0	0	0	1	1	1	1

ab នេះ ab នេះ

គេសរសេរ $p\Rightarrow q$ អានថា p នាំឲ្យ q ដែល p ជាបុព្វសំណើ q ជាវិបាក សំណើ $p\Rightarrow q$ មិនពិតតែក្នុងករណីដែលសំណើ p ពិត ហើយសំណើ q មិនពិត ក្រៅពីនេះវា ជាសំណើពិត។

តារាងភាពពិត

p	q	$p \Rightarrow q$
1	1	1
1	0	0
0	1	1
0	0	1

សម្គាល់៖

សំណើ $q \Rightarrow p$ ហៅថាសំណើច្រាសនៃសំណើ $p \Rightarrow q$

សំណើ $q \Rightarrow p$ ហៅថាសំណើផ្ទុយពីសម្មតិកម្មនៃសំណើ $p \Rightarrow q$ ។

೯.ಚ್ಚಾಕಿಣಾಣಿ (⇔)

សំណើឈ្នាប់សមមូលពិតតែក្នុងករណីដែលដែលសំណើទាំងពីរមានតម្លៃភាពពិតដូចគ្នា។ ជាទូទៅ $p \Leftrightarrow q = (p \Rightarrow q) \land (q \Rightarrow p)$

តារាងភាពពិត

p	q	$p \Leftrightarrow q$
1	1	1
1	0	0
0	1	0
0	0	1

ទ្រឹស្តីបទ:

(i).
$$(p \lor p) \equiv p$$

$$(iii)$$
. $\neg(\neg p) \equiv p$

$$(v).(p \Leftrightarrow q) \equiv (\neg p \Leftrightarrow \neg q)$$

(vii).
$$(p \land q) \equiv (q \land p)$$

(ix).
$$p \land (q \land r) \equiv (p \land q) \land r$$

$$(xi). p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

សម្រាយបញ្ជាក់:

(i).
$$(p \lor p) \equiv p$$

តារាងភាពពិត

p	$p \lor p$
1	1
0	0

តាមតារាងភាពពិត គេបាន $(p \lor p) \equiv p$ ។

$$(ii).(p \wedge p) \equiv p$$

តារាងភាពពិត

p	$p \wedge p$
1	1
0	0

តាមតារាងតម្លៃភាពពិត គេបាន $(p \wedge p) \equiv p$ ។

$$(iii)$$
. $\neg(\neg p) \equiv p$

តារាងតម្លៃភាព

p	$\neg p$	$\neg(\neg p)$
1	0	1
0	1	0

តាមតារាងភាពពិត គេបាន $(p \wedge p) \equiv p$ ។

$$(iv).(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$

តារាងភាពពិត

p	q	$\neg p$	$\neg q$	$p \Rightarrow q$	$(\neg q \Rightarrow \neg p)$
1	0	0	1	0	0
0	1	1	0	1	1
1	1	0	0	1	1
0	0	1	1	1	1

តាមតារាងភាពពិត គេបាន $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$ ។

$$(iv).(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$

$$(vi).(p \lor q) \equiv (q \lor p)$$

(viii).
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

$$(x).p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

$$(v).(p \Leftrightarrow q) \equiv (\neg p \Leftrightarrow \neg q)$$

តារាងភាពពិត

p	q	$\neg p$	$\neg q$	$p \Leftrightarrow q$	$(\neg p \Leftrightarrow \neg q)$
1	0	0	1	0	0
0	1	1	0	0	0
1	1	0	0	1	1
0	0	1	1	1	1

តាមតារាងភាពពិត គេបាន $(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$ ។

$$(vi).(p \lor q) \equiv (q \lor p)$$

តារាងភាពពិត

p	q	$(p \lor q)$	$(q \lor p)$
1	0	1	1
0	1	1	1
1	1	1	1
0	0	0	0

តាមតារាងភាពពិត គេបាន $(p \lor q) \equiv (q \lor p)$ ។

$$(vii).(p \land q) \equiv (q \land p)$$

តារាងភាពពិត

p	q	$(p \wedge q)$	$(q \wedge p)$
1	0	0	0
0	1	0	0
1	1	1	1
0	0	0	0

តាមតារាងភាពពិត គេបាន $(p \wedge q) \equiv (q \wedge p)$ ។

(viii).
$$p \lor (q \lor r) \equiv (p \lor q) \lor r$$

តារាងភាពពិត

p	q	r	$(q \lor r)$	$(p \lor q)$	$p \lor (q \lor r)$	$(p \lor q) \lor r$
1	0	0	0	1	1	1
0	1	1	1	1	1	1
1	1	1	1	1	1	1
0	0	0	0	0	0	0
1	0	1	1	1	1	1
0	1	0	1	1	1	1
1	1	0	1	1	1	1
0	0	1	1	0	1	1

តាមតារាងភាពពិត គេបាន $p \lor (q \lor r) \equiv (p \lor q) \lor r$ ។

$$(ix). p \land (q \land r) \equiv (p \land q) \land r$$

តារាងភាពពិត

p	q	r	$(q \wedge r)$	$(p \wedge q)$	$p \wedge (q \wedge r)$	$(p \wedge q) \wedge r$
1	0	0	0	0	0	0
0	1	1	1	0	0	0
1	1	1	1	1	1	1
0	0	0	0	0	0	0
1	0	1	0	0	0	0
0	1	0	0	0	0	0
1	1	0	0	1	0	0
0	0	1	0	0	0	0

តាមតារាងភាពពិត គេបាន $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$ ។

$$(x). p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

តារាងភាពពិត

p	q	r	$(q \wedge r)$	$(p \lor q)$	$(p \vee r)$	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1
0	1	0	0	1	0	0	0
1	1	0	0	1	1	1	1
0	0	1	0	0	1	0	0

តាមតារាងភាពពិត គេបាន $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ ។

$$(xi). p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

តារាងភាពពិត

p	q	r	$(q \lor r)$	$(p \wedge q)$	$(p \wedge r)$	$p \land (q \lor r)$	$(p \land q) \lor (p \land r)$
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
0	1	0	1	0	0	0	0
1	1	0	1	1	0	1	1
0	0	1	1	0	0	0	0

តាមតារាងភាពពិត គេបាន $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ ។

១.៤. ទ្រដេននៃសម្រាយមញ្ញាក់

ಕ. ಕುಟಾರಣಮುಕ್ಕಣಾಣಕ್ತು ಭ

សម្រាយបញ្ជាក់ដោយផ្ទាល់គឺជាការស្រាយបញ្ជាក់ត្រង់ៗទៅតាមអ្វីដែលគេចង់បាន។ **ឧទាហរណ៍:** ស្រាយថាបើ x,y ជាចំនូនគត់សេស នោះ x+y ជាចំនូនគត់គូ។ **សម្រាយបញ្ជាក់**

ដោយ x,y ជាចំនួនគត់សេស យើងតាង x=2k+1 , y=2k'+1 ; $k,k'\in\mathbb{Z}$ គេហ្ន

$$x + y = (2k + 1) + (2k + 1)$$

= $2k + 2k + 2$
= $2(k + k + 1)$
= $2m$; $m = k + k + 1$
 $x + y = 2m$ ជាចំនួនគត់គួ 1

របៀបដោះស្រាយ៖

ឧបមាថា គេចង់បង្ហាញថា សំណើ $p \!\Rightarrow\! q$ ពិត

- +<u>ជំហានទី១៖</u> ត្រូវកំណត់សំណើ p,q អោយបានត្រឹមត្រូវ
- +<u>ជំហានទី២៖</u> ត្រូវកំណត់សំណើ $\stackrel{-}{p},\stackrel{-}{q}$
- +<u>ជំហានទី៣៖</u> គេផ្តើមពី q^- បញ្ជាក់រហូត គេបានសំណើ p^- ដែលជាសំណើផ្ទុយច្រាសគឺ មានន័យថាគេបានបង្ហាញ $q^- \Rightarrow p^-$ ពិត។

ដូចនេះ គេបាន $p \Rightarrow q$ ជាសំណើពិត។

គ.សម្រាយមញ្ជាគ់តាមសំណើស្គុយពីគារពិត *បៀបដោះស្រាយ៖*

- +<u>ជំហានទី១៖</u> ត្រូវកំណត់សំណើ p ជាសំណើដែលត្រូវបង្ហាញ
- +<u>ជំហានទី២៖</u> ត្រូវកំណត់សំណើ $\stackrel{-}{p}$
- +<u>ជំហានទី៣</u>៖ ឧបមាថាសំណើ $\frac{-}{p}$ ពិត។ រួចស្រាយបន្តបន្ទាប់រហ្វតដល់បានលទ្ធផលផ្ទុយ ពីទ្រឹស្តីគណិតវិទ្យា។ គេបានសំណើ $\frac{-}{p}$ មិនពិត។

ដូចនេះសំណើ*p* ពិត។

របៀបដោះស្រាយ៖

ជំហានដែលសម្រាយបញ្ជាក់ $p \Leftrightarrow q$

- +<u>ជំហានទី១៖</u> បង្ហាញលក្ខខណ្ឌចាំបាច់ $p \Rightarrow q$
- +<u>ជំហានទី២៖</u> បង្ហាញលក្ខខណ្ឌគ្រប់គ្រាន់ $q \Rightarrow p$ ។

e. សម្រាយមញ្ជារាំតាមឧធាមារណ៍ផ្តុញ្ច

វិធីនេះតម្រូវឲ្យរកឧទាហរណ៍មួយមកបញ្ជាក់ថា សំណើដែលត្រូវបង្ហាញ ជាសំណើមិនពិត។ ឧទាហរណ៍: តើពិតដែរឬទេ ចំពោះគ្រប់ចំនួនគត់វិជ្ជមាន x គេបានចំនួនគត់វិជ្ជមាន y ដែល $y^2=x$

យក x=7 គេបាន $y^2=7$

គេមិនអាចរកចំនួនគត់វិជ្ជមាន y ដែល y² = 7 បានទេ ដូចនេះសំណើខាងលើមិនពិត។

លំខាន់

១. គេមានសំណើប៉ី:

p:សិស្សានុសិស្សដោះស្រាយលំហាត់ដោយលំបាក

q: សិស្សានុសិស្សគិតថាការបង្រៀនរបស់គ្រឹ្ធមានលក្ខណ:ល្អ

r: សិស្សានុសិស្សសប្បាយចិត្តក្នុងការរៀនគណិតវិទ្យា ចូរសរសេរសំណើផ្សំខាងក្រោមដោយប្រើនិមិត្តសញ្ញាគណិតវិទ្យា

- ក. សិស្សានុសិស្សដោះស្រាយលំហាត់ដោយលំបាក និងគិតថាការបង្រៀនរបស់គ្រូមានលក្ខ ណ:មិនល្អ ។
- ខ. សិស្សានុសិស្សសប្បាយចិត្តក្នុងការរៀនគណិតវិទ្យា និងគិតថាការបង្រៀនរបស់គ្រូមាន លក្ខណៈល្អ ។
- គ. សិស្សានុសិស្សដោះស្រាយលំហាត់ដោយលំបាក ឬគិតថាការបង្រៀនរបស់គ្រូមានលក្ខ ណ:មិនល្អ ។
- ឃ. សិស្សានុសិស្សដោះស្រាយលំហាត់ដោយលំបាក ឬគិតថាការបង្រៀនរបស់គ្រូមានលក្ខ ណ:ល្អ ។

២. កំណត់តម្លៃភាពពិតនៃសំណើខាងក្រោម:

- ក. ផែនដីមានទំហំមិនធំជាងព្រះច័ន្ទទេ ។
- ខ. 3+4=7 និងខែមករាមានចំនូន 32 ថ្ងៃ ។
- គ. 3+4=7ឬខែមករាមានចំនួន32ថ្ងៃ ។

យ. និស្សិតមហាវិទ្យាល័យខ្លះជឹកកាហ្វេ និងនិស្សិតមហាវិទ្យាល័យទាំងអស់មានទូរស័ព្ទដៃ។

៣. សង់តារាងភាពពិតនៃសំណើនីមួយៗខាងក្រោម:

$$\tilde{n} \stackrel{-}{p} \vee \stackrel{-}{q}$$
 .

$$\overline{z}$$
. $\overline{p} \vee q$

គ.
$$p \vee (q \wedge \overline{p})$$

៤. ដោយប្រើតារាងភាពពិត ចូរបញ្ជាក់គូសំណើដែលសមមូលគ្នា:

ក
$$p \vee \overline{q}$$
 .និង $\overline{p} \wedge q$

ខ.
$$p \wedge q$$
 និង $\overline{p \vee q}$

គ.
$$q \wedge \left(\stackrel{-}{p} \vee q \right)$$
និង $\stackrel{=}{\stackrel{-}{p} \vee q}$

- ៥. ចូរស្រាយបញ្ហាក់សំណើខាងក្រោមដោយប្រើសំណើផ្ទុយច្រាស"ចំពោះគ្រប់ចំនួនគត់វិជ្ជមានn បើ n^2 ជាចំនួនគត់គូនោះn ក៏ជាចំនួនគត់គូដែរ" ។
- ៦. ចូរស្រាយបញ្ជាក់ថាចំពោះចំនួនគត់ m និង n បើផលគុណ mn ជាចំនួនគត់គូនោះយ៉ាង ហោចណាស់ ក៏មួយក្នុងចំណោម m និង n ជាចំនួនគូដែរ។
- ៧. គេមានចំនូនគត់វិជ្ជមាន a ,b ,c ។ បង្ហាញថាបើ a ,b ,c ជាចំនួនបឋមរវាងគ្នា ហើយផ្ទៀង ផ្ទាត់សមភាព $a^2+b^2=c^2$ ។ ស្រាយបញ្ជាក់ថា មួយក្នុងចំណោម a ,b ជាចំនួនគូ ហើយ មួយ ក្នុងចំណោម a ,b ជាចំនួនសេស។

- - ក. យ៉ាងហោចណាស់មានមួយក្នុងចំនោមa,b គឺជាចំនួនគូ ។
 - ខ. យ៉ាងហោចណាស់មានមួយក្នុងចំនោម a,b និង c គឺជាពហុគុណនៃ $3\,$ ។
- ៩. ស្រាយបញ្ជាក់ថា $\sqrt{2}$ ជាចំនូនអសនិទាន។
- ១០. ក. ចូរស្រាយបញ្ជាក់ថា √6 ជាចំនួនអសនិទាន ។
 - ខ. ចូរស្រាយបញ្ជាក់ថា $1+\sqrt{2}$ ជាចំនួនអសនិទាន ។
 - គ. ចូរស្រាយបញ្ហាក់ថា $\sqrt{2}$ + $\sqrt{3}$ ជាចំនួនអសនិទាន ។
- 99. ដោយប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីសម្មតិកម្ម ច្ងរបង្ហាញថាបើ $x^2-1<0$ នោះ -1< x<1 ។
- ១២. ដោយប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីការពិត:
 - ក. បង្ហាញថា $\sqrt{5}$ ជាចំនួនអសនិទាន ។
 - ខ. បង្ហាញថា \sqrt{p} ជាចំនួនអសនិទាន ចំពោះគ្រប់ចំនួនបឋម p ។
- ១៣. ប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីសម្មតិកម្ម ដើម្បីបង្ហាញករណីខាងក្រោម:
 - ក. គេមានx; y ជាចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន និង xy ជាចំនួនគត់សេស នោះx និង y ក៏ជា ចំនួនគត់សេសដែរ។
 - ខ. គេមានx(x-2) < 0នោះ0 < x < 2 ។
- ១៤. សរសេរសំណើផ្ទុយពីសម្មតិកម្មនៃសំណើខាងក្រោម:
 - ក. បើខ្ញុំសិក្សាគណិតវិទ្យានោះខ្ញុំនឹងប្រឡងជាប់អាហារូបករណ៍ ។
 - ខ. បើx ជាចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន នោះ x^2 ជាចំនួនមិនអវិជ្ជមាន ។
 - គ. បើផែនដីវិលជុំវិញព្រះអាទិត្យ នោះព្រះច័ន្ទនឹងវិលជុំវិញផែនដី ។
- ១៥. ដោយប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីសម្មតិកម្ម ។ ចូរបង្ហាញថាចំពោះគ្រប់ចំនូនគត់ ធម្មជាតិ n បើ $n^2>25$ នោះ n>5 ។
- ១៦. ដោយប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីការពិត ចូរបង្ហាញថា:

$$\tilde{n}.x + \frac{1}{x} > 2$$
 ចំពោះគ្រប់ $x > 1$ ។

ខ. គ្មានចំនួនគត់រ៉ឺឡាទីប p និង q ដែល $\frac{p^2}{q^2}$ = 2 ។

- ១៧. រកឧទាហរណ៍ផ្ទុយនៃអំណះអំណាងខាងក្រោម:
 - ក. ផលគុណនៃចំនូនអសនិទានពីរខុសគ្នា ជាចំនួនអសនិទាន ។
 - 2. បើ $x \ge \sqrt{7}$ នោះ $x \ge 3$ ។
 - គ. $f(n) = n^2 + n + 1$ គឺជាចំនួនគត់រ៉ឺឡាទីបផង និងជាពហុគុណនៃ 3 ផង ចំពោះគ្រប់ចំនួនគត់ រ៉ឺឡាទីបអវិជ្ជមាន n ។
- ១៨. រកឧទាហរណ៍ផ្ទុយនៃអំណះអំណាងខាងក្រោម:
 - ក. $f(x) = x^2 27x + k, k \in \mathbb{Z}, f(x) = 0$ មានឫសប៊ីចំពោះគ្រប់តម្លៃ k ។
 - ខ. f(n) = (n+1)(n+2)(n+3) ប៉ែកដាច់នឹង 12 ចំពោះគ្រប់តម្លៃ n ។

ខម្លើយ

សរសេរសំណើដោយប្រើឈ្នាប់គណិតវិទ្យា 9.

 $p \wedge \overline{q}$

 $2.r \wedge q$

គ. $p \vee q$

កំណត់តម្លៃភាពពិតនៃសំណើ

ក. មិនពិត

ខ. មិនពិត

គ. ពិត

ឃ. មិនពិត

៣. សង់តារាងភាពពិតនៃសំណើ

_	_	
$p \setminus$	\sqrt{q}	

റ	
~	

$$p \lor q$$
 $\overline{n}. p \lor (q \land p)$

p	q	$\frac{-}{p}$	\overline{q}	$p \lor q$
1	0	0	1	1
0	1	1	0	1
1	1	0	0	0
0	0	1	1	1

	_	_	_	
p	q	p	$p \vee q$	$p \vee q$
1	0	0	0	1
0	1	1	1	0
1	1	0	1	0
0	0	1	1	0
		•		

p	q	$\frac{-}{p}$	$q \wedge \overline{p}$	$p \lor (q \land \overline{p})$
1	0	0	0	1
0	1	1	1	1
1	1	0	0	1
0	0	1	0	0

ដោយប្រើតារាងភាពពិត បញ្ជាក់គូសំណើដែលសមមូលគ្នា: ໕.

ក $p \vee \overline{q}$.និង $\overline{p} \wedge q$

p	q	$\frac{-}{p}$	\overline{q}	$p \vee q$	$\overline{p} \wedge q$
1	0	0	1	1	0
0	1	1	0	0	1
1	1	0	0	1	0
0	0	1	1	1	0

តាមតារាងភាពពិត $p \lor q^-$ មិនសមម្ងួលនឹង $p \land q$ ទេ ។

ខ.
$$p \wedge q$$
និង $\overline{p \vee q}$

p	q	$\frac{-}{p}$	\overline{q}	$p \vee q$	$p \wedge q$	$p \vee q$
1	0	0	1	1	0	0
0	1	1	0	0	1	1
1	1	0	0	1	0	0
0	0	1	1	1	0	0

តាមតារាងភាពពិត $\stackrel{-}{p}\wedge q$ សមមូលនឹង $\stackrel{-}{p\vee q}$ ។

គ. $q \wedge \left(\stackrel{-}{p} \vee q \right)$ និង $\stackrel{=}{\stackrel{-}{p} \vee q}$

p	q	$\frac{-}{p}$	\overline{q}	$p \lor q$	$\overline{p \vee q}$	$q \wedge (p \vee q)$
1	0	0	1	0	1	0
0	1	1	0	1	0	1
1	1	0	0	1	0	1
0	0	1	1	1	0	0

តាមតារាងភាពពិត $q \wedge \left(\overline{p} \vee q \right)$ មិនសមមូលនឹង $\overline{\overline{p} \vee q}$ ទេ ។

៥. តាងសំណើ: p:n²ជាចំនួនគូ

 $\frac{-}{p}$: n^2 ជាចំនួនសេស

_ q:n ជាចំនួនសេស

ដើម្បីបង្ហាញថា $p\Rightarrow q$ ពិត គេត្រូវបង្ហាញថា $\stackrel{-}{q}\Rightarrow \stackrel{-}{p}$ ពិត បើ n ជាចំនូនសេសគេតាង n=2k+1 , $k\in\mathbb{Z}$

គេបាន

$$n^2 = (2k+1)^2$$
 $= 4k^2 + 4k + 1$
 $= 2(2k^2 + 2k) + 1$; $k' = 2k^2 + 2k$
 $= 2k' + 1$
 $n^2 = 2k' + 1$ ជាចំនួនគត់សេស

នោះ $q \Rightarrow p$ ពិត

ដូចនេះ សំណើ $\,n\,$ ចំពោះចំនួនគត់វិជ្ជមាន»បើ $\,n^2\,$ ជាចំនួនគូ នោះ $\,n\,$ ជាចំនួនគូ។«

៦. ស្រាយបញ្ជាក់ថាចំពោះចំនួនគត់ m និងn បើmnជាចំនួនគូ នោះយ៉ាងហោចណាស់ក៏មួយ ក្នុងm និងn ជាចំនួនគូដែរ

បើសិនជាពីរចំនួនគត់m និងn ជាចំនួនសេស នោះយើងបាន

$$m = 2s + 1$$
, $n = 2t + 1$; $(s, t \in \mathbb{Z})$

គេបានផលគុណ *mn* គឺ

$$mn = (2s+1)(2t+1)$$

$$= 4st + 2s + 2t + 1$$

$$= 2(2st + s + t) + 1$$

$$= 2x + 1 ; x = 2st + s + t$$

mn = 2x + 1 ជាចំនួនសេស

តាមសម្រាយបញ្ជាក់នេះសំណើខាងលើជាសំណើពិត។

- ៧. បង្ហាញថាបើ a,b និង c ជាចំនួនបឋមរវាងគ្នា ហើយផ្ទៀងផ្ទាត់សមភាព $a^2+b^2=c^2$ ឧបមាថា ចំនួនទាំងពីរ a , b ជាចំនួនសេស ឬ ចំនួនទាំងពីរ a , b ជាចំនួនគ្
 - i) ចំនួនទាំងពីរ a , b ជាចំនួនសេស គេបាន

តាង
$$a=2m-1$$
 , $b=2n-1$; $m,n\in\mathbb{Z}^+$ នោះគេបាន
$$c^2=a^2+b^2$$

$$=\left(2m-1\right)^2+\left(2n-1\right)^2$$

$$=4m^2-4m+1+4n^2-4n+1$$

$$=4m^2+4n^2-4m-4n+2$$

$$=2\left(2m^2-2n^2-2m-2n+1\right)$$
 $c^2=2\left[2\left(m^2+n^2-m-n\right)+1\right]$ ទាន់ខ្លួន នោះ c គឺទាន់ខ្លួ

 $c^2=2\Big[2ig(m^2+n^2-m-nig)+1\Big]$ ជាចំនួនគូ នោះc ក៏ជាចំនួនគូដែរ

បើ
$$c$$
 ជាចំនួនគូ យើងតាង $c=2k$, $k\in\mathbb{Z}$ គេហ្ន $\left(2k\right)^2=2\Big\lceil 2\Big(m^2+n^2-m-n)+1\Big)\Big\rceil$

$$2k^{2} = 2(m^{2} + n^{2} - m - n) + 1$$
 (A)

អង្គខាងឆ្វេងនៃ (A) ជាចំនួនគូ ប៉ុន្តែអង្គខាងស្តាំជាចំនួនសេស នោះមានន័យថា មិនមាន ចំនួនគត់វិជ្ជមានដែលបំពេញលក្ខខណ្ឌ $a^2+b^2=c^2$ ។

ii) ចំនួនទាំងពីរa , b ជាចំនួនគូ យើងអាចយកa=2m , b=2n ; $m,n\in\mathbb{Z}^+$ គេបាន

$$c^{2} = a^{2} + b^{2}$$

$$= (2m)^{2} + (2n)^{2}$$

$$= 4m^{2} + 4n^{2}$$

$$c^{2} = 2 \times 2(m^{2} + n^{2})$$

ហេតុនេះ c^2 ជាចំនួនគត់គូ នោះc ជាក៏ជាចំនួនគត់គូដែរ ចំនួនទាំងអស់ a,b,c ជាចំនួន គត់គូមានន័យថា a,b,c មិនមែនជាចំនួនបឋមរវាងគ្នានោះទេ។

ដូច្នេះ តាមសម្រាយបញ្ជាក់ដោយប្រើសំណើផ្ទុយច្រាស នោះសំណើដើមពិត។

៨. ចូរស្រាយបញ្ជាក់ថា

ក. យ៉ាងហោចណាស់មានមួយក្នុងចំណោម a ,b គឺជាចំនួនគូ ឧបមាថា ពីរចំនួន a ,b ជាចំនួនសេស

យើងតាង a=2m-1 , b=2n-1 ; $m,n\in\mathbb{Z}^+$ នោះគេហ៊ុន

$$c^{2} = a^{2} + b^{2}$$

$$= (2m-1)^{2} + (2n-1)^{2}$$

$$= 4m^{2} - 4m + 1 + 4n^{2} - 4n + 1$$

$$= 4m^{2} + 4n^{2} - 4m - 4n + 2$$

$$= 2(2m^2 - 2n^2 - 2m - 2n + 1)$$

 $c^2=2\left\lceil 2\left(m^2+n^2-m-n\right)+1
ight
ceil$ ជាចំនួនគូ នោះc ក៏ជាចំនួនគូដែរ

បើc ជាចំនួនគួយើងតាង c=2k , $k\in\mathbb{Z}$ គេបាន

$$(2k)^{2} = 2[2(m^{2} + n^{2} - m - n) + 1]$$
$$2k^{2} = 2(m^{2} + n^{2} - m - n) + 1 \qquad (A)$$

អង្គខាងឆ្វេងនៃ (A) ជាចំនួនគូ ប៉ុន្តែអង្គខាងស្តាំជាចំនួនសេស នោះមានន័យថា មិនមាន ចំនួនគត់វិជ្ជមានដែលបំពេញលក្ខខណ្ឌ $a^2+b^2=c^2$ ។ តាមសម្រាយបញ្ជាក់ដោយលើក ឧទាហរណ៍ផ្ទុយ នោះសំណើដើមពិត។

ខ. យ៉ាងហោចណាស់មួយក្នុងចំណោម a ,b និងc គឺជាពហុគុណនៃ3

ឧបមាថា a ,b និង c មិនមែនជាពហុគុណនៃ 3

ឃើងយក $a=3k\pm 1$, $b=3m\pm 1$, $c=3n\pm 1$ $\left(k,m,n\in \mathbb{Z}^+\right)$ គេហ្ន

$$a^2 + b^2 = c^2$$

$$(3k\pm1)^2 + (3m\pm1)^2 = (3n\pm1)^2$$

$$9k^2 \pm 6k + 1 + 9m^2 \pm 6m + 1 = 9n^2 \pm 6n + 1$$

$$3(3k^2 \pm 2k + 3m^2 \pm 2m) + 2 = 3(3n^2 \pm 2n) + 1$$

យើងឃើញថាអង្គខាងឆ្វេងនៃ (A) ជាពហុគុណនៃ (3)+2 ហើយអង្គខាងស្ដាំជាពហុគុណ នៃ (3)+1 នោះមានន័យថាមិនមានចំនួនគត់ណាមួយ ដែលបំពេញលក្ខខណ្ឌ $a^2+b^2=c^2$ ដូចនេះតាមសម្រាយបញ្ជាក់ដោយសំណើផ្ទុយច្រាស នោះសំណើដើមជាសំណើពិត។

៩. ស្រាយបញ្ជាក់ថា $\sqrt{2}$ ជាចំនួនអសនិទាន

តាង p ជាចំនួនអសនិទាន

 $\frac{1}{p}$ ជាចំនួនសនិទាន

ឧបមាថា $\sqrt{2}$ ជាចំនូនសនិទាន គេបាន $\sqrt{2}=rac{a}{b}$ ដែល PGCDig(a,big)=1

គេបាន

$$\sqrt{2} = \frac{a}{b}$$

$$2 = \frac{a^2}{b^2}$$

$$a^2 = 2b^2$$

នោះ a^2 ជាចំនួនគូ នាំឲ្យ a ជាចំនួនគូដែរ តាង a=2k ; $k\in\mathbb{Z}^+$ គេហ្ន

$$2b^2 = a^2$$

$$2b^2 = \left(2k\right)^2$$

$$b^2 = 2k^2$$

នោះ b^2 ជាចំនួនគូ នាំឲ្យ b ក៏ជាចំនួនគូដែរ

ដោយa និង b ជាចំនូនគូ នោះa និង b មានតូចែក្សមដែលផ្ទុយពីលក្ខខណ្ឌ ពីព្រោះa និង b ជាចំនូនបឋមរវាងគ្នា នោះគេបាន $\sqrt{2}$ មិនមែនជាចំនូនសនិទាន

ដូចនេះ √2 ជាចំនួនអសនិទាន។

១០. ក. បង្ហាញថា √6 ជាចំនួនអសនិទាន

ឧបមាថា $\sqrt{6}$ ជាចំនួនសនិទាន ។ តាង $\sqrt{6} = \frac{a}{b}$ ដែលa,b ជាចំនួនបឋមរវាងគ្នា យើងបាន

$$6 = \frac{a^2}{b^2} \Leftrightarrow a^2 = 6b^2 = 2 \times 3b^2$$
 នោះ a ជាចំនួនគូ

តាង a=2k គេបាន $(2k)^2=2\times 3b^2\Rightarrow b^2=\frac{2k^2}{3}$ ដោយ $b\in\mathbb{N}$ នោះ k ជាពហុគុណនៃ 3

តាង
$$k = 3p \Rightarrow b^2 = \frac{2(3p)^2}{3} = 2 \times 3p^2$$
 នោះ b ជាចំនួនគូ

ដោយ a និង b ជាចំនួនគូ នោះ a,b មិនមែនជាចំនួនបឋមរវាងគ្នា ដែលផ្ទុយនឹងលក្ខខណ្ឌ ។ ដូចនេះ $\sqrt{6}$ មិនមែនជាចំនួនសនិទាន ដែលមានន័យថា $\sqrt{6}$ ជាចំនួនអសនិទាន ។

ខ. បង្ហាញថា $1+\sqrt{2}$ ជាចំនួនអសនិទាន

ឧបមាថា $1+\sqrt{2}$ ជាចំនូនសនិទាន ។យើងបាន

$$1 + \sqrt{2} = \frac{a}{b} \Leftrightarrow b + \sqrt{2}b = a$$
$$\Rightarrow a - b = \sqrt{2}b$$
$$\Rightarrow (a - b)^2 = 2b^2$$

នោះa-b ជាចំនួនគូ ។តាង a-b=2k គេបាន

$$(2k)^2 = 2b^2 \Rightarrow b^2 = 2k^2$$
 នោះ b ជាចំនួនគូ

តាងb=2p នាំឲ្យ $a-2p=2k \Rightarrow a=2(k+p)$ នោះa ជាចំនួនគូ ។

ដោយ a និង b ជាចំនូនគូ នោះ a,b មិនមែនជាចំនូនបឋមរវាងគ្នា ដែលផ្ទុយនឹងលក្ខខណ្ឌ ។ ដូចនេះ $1+\sqrt{2}$ មិនមែនជាចំនូនសនិទាន ដែលមានន័យថា $1+\sqrt{2}$ ជាចំនូនអសនិទាន ។ គ. $\sqrt{2}+\sqrt{3}$ បង្ហាញថា ជាចំនូនអសនិទាន

ឧបមាថា $\sqrt{2}$ + $\sqrt{3}$ ជាចំនូនសនិទាន ។យើងបាន

$$\sqrt{2} + \sqrt{3} = \frac{a}{b} \Rightarrow (\sqrt{2} + \sqrt{3})^2 = \frac{a^2}{b^2}$$

$$\Leftrightarrow 5 + 2\sqrt{6} = \frac{a^2}{b^2}$$

$$\Leftrightarrow a^2 - 5b^2 = 2\sqrt{6}b^2$$

$$\Rightarrow (a^2 - 5b^2)^2 = 24b^2 = 2 \times 12b^2 = 3 \times 8b^2$$

នោះ $a^2 - 5b^2$ ជាពហុគុណនៃ 2 និង 3 ដែលមានន័យថា $a^2 - 5b^2$ ជាពហុគុណនៃ 6 ។ តាង $a^2 - 5b^2 = 6k$ គេបាន

$$(6k)^2 = 24b^2 \Leftrightarrow 36k^2 = 24b^2$$
 នោះ b ជាពហុគុណនៃ 3 ។ $\Leftrightarrow 3k^2 = 2b^2$

តាងb = 3p យើងទាញបាន

 $a^2-5(3p)^2=6k\Rightarrow a^2=6k+45p^2=3(2k+15p^2)$ នោះ a ជាពហុគុណនៃ 3 ដែរ ។ ដោយ a និង b ជាពហុគុណនៃ 3 នោះ a,b មិនមែនជាចំនូនបឋមរវាងគ្នា ដែលផ្ទុយនឹងលក្ខ ខណ្ឌ ។

ដូចនេះ $\sqrt{2} + \sqrt{3}$ មិនមែនជាចំនួនសនិទាន ដែលមានន័យថា $\sqrt{2} + \sqrt{3}$ ជាចំនួនអសនិទាន ។

99. បង្ហាញថាបើ $x^2 - 1 < 0$ នោះ -1 < x < 1

តាង
$$p: x^2-1<0 \Rightarrow \overline{p}: x^2-1\geq 0$$
 និង $q:-1< x<1 \Rightarrow \overline{q}: x\leq -1$ ឬ $x\geq 1$ ស្រាយថា $p\Rightarrow q$ ពិត $\Leftrightarrow \overline{q}\Rightarrow \overline{p}$ ពិត

របៀបទី១:

- បើ $x \le -1$ នោះ $\begin{cases} x+1 \le 0 \\ x-1 \le -2 \end{cases}$ គុណអង្គនឹងអង្គ គេបាន $(x+1)(x-1) \ge 0 \Leftrightarrow x^2-1 \ge 0$ ពិត ករណី $x \le -1$ យើងបាន $q \Rightarrow p$ ពិត (1)
- បើ $x \ge 1$ នោះ $\begin{cases} x-1 \ge 0 \\ x+1 \ge 2 \end{cases}$ គុណអង្គនឹងអង្គ គេបាន $(x+1)(x-1) \ge 0 \Leftrightarrow x^2-1 \ge 0$ ពិត ករណី $x \ge 1$ យើងបាន $q \Rightarrow p$ ពិត (2)

តាម(1) និង(2) គេបាន $q \Rightarrow p$ ពិត ។

វិញក: $p \Rightarrow q$ ពិត។

ដូចនេះ បើ $x^2 - 1 < 0$ នោះ -1 < x < 1 ។

របៀបទី២:

• ប្រើ $x \le -1$ នោះ $x^2 \ge 1 \Longrightarrow x^2 - 1 \ge 0$ ពិត

ករណី $x \le -1$ យើងបាន $q \Rightarrow p$ ពិត (1)

• ប្រើ $x \ge 1$ នោះ $x^2 \ge 1 \Longrightarrow x^2 - 1 \ge 0$ ពិត

ករណី $x \ge 1$ យើងបាន $\overline{q} \Rightarrow \overline{p}$ ពិត (2)

តាម (1) និង (2) គេបាន $\overset{-}{q}$ \Rightarrow $\overset{-}{p}$ ពិត ។

វិញក: $p \Rightarrow q$ ពិត។

ដូចនេះ បើ $x^2 - 1 < 0$ នោះ -1 < x < 1 ។

១២. សម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីការពិត:

ក. បង្ហាញថា $\sqrt{5}$ ជាចំនួនអសនិទាន

ឧបមាថា $\sqrt{5}$ ជាចំនួនសនិទាន ។តាង $\sqrt{5} = \frac{a}{b}$ ដែល a,b ជាចំនួនបឋមរវាងគ្នា យើងបាន

$$5 = \frac{a^2}{b^2} \Leftrightarrow a^2 = 5b^2$$
 នោះ a ជាពហុគុណនៃ 5

តាង a=5k គេបាន $(5k)^2=5b^2\Rightarrow b^2=5k^2$ នោះ b ជាពហុគុណនៃ 5

ដោយaនិងb ជាពហុគុណនៃ5 នោះa,bមិនមែនជាចំនូនបឋមរវាងគ្នា ដែលផ្ទុយនឹងលក្ខ ខណ្ឌ ។

ដូចនេះ $\sqrt{5}$ មិនមែនជាចំនួនសនិទាន ដែលមានន័យថា $\sqrt{5}$ ជាចំនួនអសនិទាន ។

ខ. បង្ហាញថា \sqrt{p} ជាចំនួនអសនិទាន ចំពោះគ្រប់ចំនួនបឋម p

ឧបមាថា \sqrt{p} ជាចំនូនសនិទាន ។តាង $\sqrt{p}=rac{a}{b}$ ដែល a,b ជាចំនូនបឋមរវាងគ្នា ។ គេបាន

$$p = \frac{a^2}{b^2} \Rightarrow a^2 = pb^2$$
 នោះ a ជាពហុគុណនៃ p

តាង a=pk គេបាន $(pk)^2=pb^2\Rightarrow b^2=pk^2$ នោះ b ជាពហុគុណនៃ p

ដោយaនិងb ជាពហុគុណនៃp នោះa,bមិនមែនជាចំនួនបឋមរវាងគ្នា ដែលផ្ទុយនឹងលក្ខ ខណ្ឌ ។

ដូចនេះ \sqrt{p} មិនមែនជាចំនួនសនិទាន ដែលមានន័យថា \sqrt{p} ជាចំនួនអសនិទាន ។

១៣. សម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីសម្មតិកម្ម

ក. បង្ហាញថា គេមានx; y ជាចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន និង xy ជាចំនួនគត់សេស នោះ x និង y ក៏ជាចំនួនគត់សេសដែរ

តាង p:xy ជាចំនួនគត់សេស $\Rightarrow p:xy$ ជាចំនួនគូ

q:x និង y ជាចំនួនគត់សេស $\stackrel{-}{q}:x$ និង y យ៉ាងហោចណាស់មាន1គូ

ស្រាយថា $p \Rightarrow q$ ពិត $\Leftrightarrow q \Rightarrow p$ ពិត

ផ្តើមពីq:xនិង y យ៉ាងហោចណាស់មាន1គ្

- បើx ជាចំនួនគូ តាង $x=2k, k\in\mathbb{N}$ និង $\forall y\in\mathbb{N}$ គេបាន xy=2ky=2(ky) ជាចំនួនគូ ពិត (1)
- បើ y ជាចំនួនគូ តាង $y=2k, k\in\mathbb{N}$ និង $\forall x\in\mathbb{N}$ គេបាន xy=2kx=2(kx) ជាចំនួនគូ ពិត (2)

តាម(1) និង(2) គេបាន $\overline{q} \Rightarrow \overline{p}$ ពិត ។ វិបាក: $p \Rightarrow q$ ពិត ។

ដូចនេះ xy ជាចំនួនគត់សេស នោះ x និង y ក៏ជាចំនួនគត់សេសដែរ គ្រប់ x និង y ជាចំនួន គត់រ៉ីឡាទីបវិជ្ជមាន ។ 2. គេមានx(x-2) < 0នោះ0 < x < 2

តាង
$$p: x(x-2) < 0 \Rightarrow p: x(x-2) \ge 0$$
 និង $q: 0 < x < 2 \Rightarrow q: x \le 0$ ឬ $x \ge 2$ ស្រាយថា $p \Rightarrow q$ ពិត $\Leftrightarrow q \Rightarrow p$ ពិត $\Leftrightarrow q \Rightarrow p$ ពិត

- បើ $x \le 0$ នោះ $\begin{cases} x \le 0 \\ x 2 \le -2 \end{cases}$ គុណអង្គនឹងអង្គ គេបាន $x(x-2) \ge 0$ ពិត ករណី $x \le 0$ យើងបាន $q \Rightarrow p$ ពិត (1)
- បើ $x \ge 2$ នោះ $\begin{cases} x-2 \ge 0 \\ x \ge 0 \end{cases}$ គុណអង្គនឹងអង្គ គេបាន $x(x-2) \ge 0$ ពិត

ករណី $x \ge 2$ យើងបាន $q \Rightarrow p$ ពិត (2)

តាម(1) និង(2) គេបាន $\stackrel{-}{q}$ \Rightarrow $\stackrel{-}{p}$ ពិត ។

វិញក: $p \Rightarrow q$ ពិត។

ដូចនេះ បើ x(x-2) < 0 នោះ 0 < x < 2 ។

- ១៤. សំណើរផ្ទុយពីសម្មតិកម្ម:
 - ក. បើខ្ញុំប្រឡងធ្លាក់អាហារូបករណ៍នោះខ្ញុំមិនសិក្សាគណិតវិទ្យា ។
 - ខ. បើ x^2 ជាចំនួនអវិជ្ជមាននោះ x មិនមែនជាចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន ។
 - គ. បើព្រះច័ន្ទមិនវិលជុំវិញផែនដី នោះផែនដីមិនវិលជុំវិញព្រះអាទិត្យ ។
- ១៥. បង្ហាញថា ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n បើ $n^2 > 25$ នោះ n > 5

តាង
$$p: n^2 > 25 \Rightarrow p: n^2 \le 25$$
 និង $q: n > 5 \Rightarrow q: n \le 5$

ស្រាយថា $p \Rightarrow q$ ពិត $\Leftrightarrow q \Rightarrow p$ ពិត

មាន $q:n \le 5 \Rightarrow n^2 \le 25$ ដោយ $n \in \mathbb{N}$ ។គេហ៊ុន

- \vec{v} \vec{v} $n=1 \Rightarrow n^2=1 < 25$ \vec{v}
- $\vec{\mathfrak{U}} n = 2 \Rightarrow n^2 = 4 < 25$ $\vec{\mathfrak{h}}$ $\vec{\mathfrak{h}}$
- ប៊ើ $n=3 \Rightarrow n^2=9 < 25$ ពិត
- ប៊ើ $n=4 \Longrightarrow n^2=16 < 25$ ពិត
- \vec{v} $n = 5 \Rightarrow n^2 = 25$ \vec{v}

បានន័យថា $q \Rightarrow p$ ពិត យើងទាញបាន $p \Rightarrow q$ ពិត ។

ដូចនេះ ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិn បើ $n^2 > 25$ នោះn > 5 ។

១៦. ដោយប្រើសម្រាយបញ្ជាក់តាមសំណើផ្ទុយពីការពិត បង្ហាញថា:

$$\bar{n}.x + \frac{1}{x} > 2$$
 ចំពោះគ្រប់ $x > 1$

តាង
$$p: x + \frac{1}{x} > 2$$
, $\forall x > 1 \Rightarrow \frac{-}{p}: x + \frac{1}{x} \le 2$, $\forall x > 1$

យើងនឹងបង្ហាញថា p មិនពិត នោះ p ពិត

មាន
$$\overline{p}: x + \frac{1}{x} \le 2$$
 , $\forall x > 1 \Rightarrow \frac{x^2 + 1}{x} \le \frac{2x}{x}$ $\Leftrightarrow x^2 + 1 \le 2x$ $\Leftrightarrow x^2 - 2x + 1 \le 0$ $\Leftrightarrow (x - 1)^2 \le 0$ មិនពិតព្រោះ $(x - 1)^2 \ge 0$, $\forall x > 1$

ដោយ $\frac{1}{p}$ មិនពិត នោះ p ពិត ។

ដូចនេះ $x + \frac{1}{x} > 2$ ចំពោះគ្រប់ x > 1 ។

ខ. គ្មានចំនួនគត់រ៉ឺឡាទីប p និង q ដែល $\frac{p^2}{q^2} = 2$

តាង
$$s$$
 : គ្មាន $p,q \in \mathbb{Z}$ ដែល $\frac{p^2}{q^2} = 2$

ឧបមាថា s:មាន $p,q \in \mathbb{Z}$ ដែល $\frac{p^2}{q^2} = 2$ ។ គេបាន

$$p^2 = 2q^2$$
 (1)

តាង $p = a_1 \times a_2 \times a_3 \times \cdots \times a_n$

$$q = b_1 \times b_2 \times b_3 \times \cdots \times b_m$$

ដែល $a_1,a_2,a_3,\cdots,a_n,b_1,b_2,b_3,\cdots,b_m$ ជាចំនួនបឋម ។

តាម(1) យើងបាន

$$p^2 = 2q^2$$

$$(a_1 \times a_2 \times a_3 \times \cdots \times a_n)^2 = 2(b_1 \times b_2 \times b_3 \times \cdots \times b_m)^2$$

$$(\underbrace{a_1 \times a_2 \times a_3 \times \cdots \times a_n}_{n})(\underbrace{a_1 \times a_2 \times a_3 \times \cdots \times a_n}_{n}) = 2(\underbrace{b_1 \times b_2 \times b_3 \times \cdots \times b_m}_{m})(\underbrace{b_1 \times b_2 \times b_3 \times \cdots \times b_m}_{m})$$

$$(\underbrace{a_1 \times a_2 \times a_3 \times \cdots \times a_n \times a_1 \times a_2 \times a_3 \times \cdots \times a_n}_{2n}) = (\underbrace{2 \times b_1 \times b_2 \times b_3 \times \cdots \times b_m \times b_1 \times b_2 \times b_3 \times \cdots \times b_m}_{2m+1})$$

មិនពិត ព្រោះអង្គទី1មានកត្តាបឋម2n ជាចន្ទនគត់គ្ង និងអង្គទី2 មានកត្តាបឋម2m+1ជាចំន្ទនគត់សេស នាំឲ្យ p ពិត ។

ដូចនេះ គ្មានចំនួនគត់រ៉ឺឡាទីប p និង q ដែល $\frac{p^2}{q^2}$ = 2 ។

១៧. រកឧទាហរណ៍ផ្ទុយនៃអំណះអំណាងខាងក្រោម:

ក. ផលគុណនៃចំនួនអសនិទានពីរខុសគ្នា ជាចំនួនអសនិទាន

ឧទាហរណ៍:យកចំនួនទី១: $\sqrt{2}$ និងចំនួនទី២: $\sqrt{8}$ គេបាន $\sqrt{2} \times \sqrt{8} = \sqrt{16} = 4$ ជាចំនួន សនិទាន ។

ឧទាហរណ៍: បើ $x = \sqrt{8}$ នោះ $x = 2\sqrt{2}$ ដោយ $2\sqrt{2} < 3 \Rightarrow x < 3$ ។

គ. $f(n) = n^2 + n + 1$ គឺជាចំនួនគត់រ៉ឺឡាទីបផង និងជាពហុគុណនៃ 3 ផង ចំពោះគ្រប់ចំនួនគត់ រ៉ឺឡាទីបអវិជ្ជមាន n

ឧទាហរណ៍: បើ n=-1 នោះ $f(-1)=(-1)^2+(-1)+1=1$ ជាចំនួនគត់រ៉ឺឡាទីបតែមិនមែនជាព ហុគុណនៃ 3 ។

១៨. រកឧទាហរណ៍ផ្ទុយនៃអំណះអំណាងខាងក្រោម:

ក. $f(x) = x^2 - 27x + k, k \in \mathbb{Z}, f(x) = 0$ មានឫសបីចំពោះគ្រប់តម្លៃ k

ឧទាហរណ៍: បើ k = 1 នោះ $f(x) = 0 \Leftrightarrow x^2 - 27x + 1 = 0$

មាន $\Delta = (-27)^2 - 4(1) = 725 > 0$ សមីការមានឫសពីរគឺ $x_1 = \frac{27 - \sqrt{725}}{2}$, $x_2 = \frac{27 + \sqrt{725}}{2}$ ។

2. f(n) = (n+1)(n+2)(n+3) ចែកដាច់នឹង12ចំពោះគ្រប់តម្លៃ n

ឧទាហរណ៍: បើ n=0 នោះ f(0)=(0+1)(0+2)(0+3)=6 ចែកមិនដាច់នឹង12 ទេ ។

ಕ್ಷಣಭಾ

နှံအို့ရ

១. សំណុំ

១.១. សញ្ញាណខែសំណុំ

រាល់អង្គធាតុ ឬវត្ថុអ្វីក៏ដោយតែងតែផ្សំពីសមាសធាតុផ្សេងៗគ្នា ទើបអាចបង្កើតបានជាអង្គ ធាតុ ឬ វត្ថុនោះ ឬគេអាចនិយាយថាវត្ថុទាំងអស់ផ្សំពីធាតុមួយ ហើយធាតុមួយតែងតែមាននៅក្នុង វត្ថុនោះ និយាយឲ្យខ្លីគឺមានច្រើនក្នុងមួយ ហើយមានមួយក្នុងច្រើន ។ ឧទាហរណ៍:

១សប្តាហ៍= ៧ថ្ងៃ= {អាទិត្យ, ចន្ទ, អង្គារ, ពុធ, ព្រហស្បតិ៍, សុក្រ, សៅរ៍ } សិស្សមួយថ្នាក់= 45 នាក់={សុខ, តារា, ... } សៀវភៅមួយក្បាល= 500 ទំព័រ={1, 2, 3, ..., 500} ទាំងអស់នេះជាសំណុំ ។

សម្គាល់: 1 ជាធាតុរបស់ A គេសរសេរ $1 \in A$ (\in របស់)

5 មិនមែនជាធាតុរបស់A គេសរសេរ $5 \notin A$ (\notin មិនមែនជារបស់)

ណ្ឌំងំនារ៍នគរម្យ .៧.០

គេបែកចែកសំណុំជាពីរប្រភេទគឺ

ក) សំណុំរាប់អស់ ឬ សំណុំកំណត់: មានធាតុជាចំនួនកំណត់ (រាប់អស់) ។

ឧទាហរណ៍:
$$A = \{1, 2, x, y\}$$

$$B = \{x/|x| < 2\}$$

$$C = \{1, 2, 3, \dots, 100\}$$

$$D = \{(2n+1)/n \in \mathbb{N} \land n \le 10\}$$

$$E = \{(x, y)/x, y \in \mathbb{Z} \land x^2 + y^2 = 25\}$$

$$F = \{\}$$

$$G = \{n/n \in \mathbb{N} \land n^2 + 5 = 0\}$$

$$H = \{x/x \in \mathbb{C}, x^2 + 1 = 0\}$$

ខ) សំណុំរាប់មិនអស់ ឬ សំណុំអនន្ត: មានធាតុជាចំនូនរាប់មិនអស់ ឬ អនន្តធាតុ ។

ឧទាហរណ៍:
$$X = \{2x + 3y = 5/(x, y) \in \mathbb{R} \}$$

$$Z = \{n^2 / n \in \mathbb{N} \land n \ge 10\}$$

$$W = \{u_n = 3n^2 - 1/n \in \mathbb{N} \}$$

$$T = \{(x, y) / x^2 + y^2 \ge 9\}$$

១.៣. មេឡិមគំណត់សំណុំ

គេកំណត់សំណុំតាមពីររបៀប:

ក) ការកំណត់សំណុំតាមការរៀបរាប់ឈ្មោះធាតុ

ឧទាហរណ៍:
$$A = \{1, 2, 3, \dots, 27\}$$

$$B = \{\emptyset, \{1\}, \{\{1\}\}, \{1, 2\}, 1, 2\}$$

$$C = \{\}$$

ខ) កំណត់សំណុំតាមលក្ខណៈរួមនៃធាតុ

$$S = \{x/P(x)\}$$
 ដែល $P(x)$ បំពេញលក្ខខណ្ឌ

ឧទាហរណ៍: $A = \{n/n \in \mathbb{N} \land n \le 27\}$

$$B = \{A/A = P(c), c = 2n, 0 \le n \le 3\}$$

$$C = \left\{ (x, y, z) / x^2 + y^2 + z^2 = 9 \right\}$$

$$D = \left\{ x / (x^2 - 3)(x + 5) = 0 \land x \in \mathbb{R} \right\}$$

១.៤. សំណុំសំខាត់ៗ

$$B = Boolean \ Value = \{true, fales\}$$

$$\mathbb{N} = \{1, 2, 3, \dots \}$$
 = Natural Numbers

$$\mathbb{Z} = \text{Integers} = \{ \dots, -3, -2, -1, 0, 1, 2, 3, \dots \}$$

$$\mathbb{Q} = \left\{ \frac{a}{b} / a, b \in \mathbb{Z}, b \neq 0 \right\}$$
 សំណុំចំនួនសនិទាន (Rational numbers)

$$\mathbb{Q}^c = \{x \mid x \notin \mathbb{Q} \land x \in \mathbb{R}\}$$
 សំណុំចំនួនអសនិទាន (Irrational numbers)

$$\mathbb{R} = (-\infty, +\infty)$$
 សំណុំចំនួនពិត (Real numbers)

$$\mathbb{C} = \left\{ a + ib \, / \, a, \, b \in \mathbb{R}, \, i = \sqrt{-1} \, \right\}$$
 សំណុំចំនួនកុំផ្លិច (Complex numbers)

សម្គាល់:

$$\mathbb{N}^* = \mathbb{N} - \{0\}$$

$$\mathbb{Z}^+ = \mathbb{Z}_{\geq 1} = \mathbb{N}^* = \{1, 2, 3, \dots \}$$

$$\mathbb{R}^+ = \mathbb{R}_{>0} = (0, +\infty)$$

$$\mathbb{Q}^{+} = \left\{ x / x \in \mathbb{R}, \exists p, q \in \mathbb{Z}^{+}, x = \frac{p}{q} \right\} \ \Im$$

១.៥. នំនាក់នំឧទទោទសំណុំ

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

១.៥.១.សំណុំដែលមានធាតុមិនមែនខាចំនួន

សំណុំដែលមានធាតុមិនមែនជាចំនួនវាមានធាតុចំណុច ។

ឧទាហរណ៍: សមីការបន្ទាត់ Ax + By = C គឺជាសំណុំចំណុច $P = \{(x, y)/Ax + By = C\}$

សមីការរង្វង់ $x^2 + y^2 = 3$

សមីការប្លង់ (P): x + y + z = 0

១.៥.២.សំណុំនៃទាគុខៅគួខចន្លោះ

- $[a,b]=\{x/a\leq x\leq b\}$ ហៅថាចន្លោះបិទត្រង់ a និង b
- $[a,b]=\{x/\ a\leq x< b\}$ ហៅថាចន្លោះបិទត្រង់ a និង បើកត្រង់ b
- $(a,b]=\{x/a< x\leq b\}$ ហៅថាចន្លោះបើកត្រង់ a និង បិទត្រង់ b
- $(a,b)=\{x/a< x< b\}$ ហៅថាចន្លោះបើកត្រង់ a និង b

សម្គាល់: តាមឯកសារខ្លះគេសរសេរ $x \in (a,b)$ ជា $x \in]a,b[$ ជំនួសឲ្យចន្លោះបើក ។

២. សំល្មាំសទល សំល្មាំននេ (Universal set, Empty set)

២.១.សំណុំសអាលគឺជាសំណុំដែលមានគ្រប់ធាតុ ដែលគេលើកយកមកសិក្សាទៅតាមប្រធានបទ នីមួយៗ ។ សំណុំសកលអាចមានធាតុច្រើន ឬ តិច ទៅតាមកម្មវត្ថុនៃការលើកឡើង ។ គេតាង សំណុំសកលដោយ *U* បានមកពីពាក្យ *Universal Set* ។

ឧទាហរណ៍: ក្នុងប្លង់ធរណីមាត្រសកល $\,U\,$ ជាសំណុំនៃគ្រប់ចំណុចទាំងអស់នៃប្លង់ ។

គេឲ្យសកល U មួយ និង លក្ខណៈ P មួយ ។ វាអាចនឹងគ្មានធាតុណាមួយនៃ U ដែល បំពេញលក្ខណៈ P ។

ឧទាហរណ៍: $S = \{x/x$ ជាចំនូនគត់វិជ្ជមាន , $x^2 = 3\}$

ក្នុងករណីនេះ គ្មានចំនូនគត់ណាដែលផ្ទៀងផ្ទាត់លក្ខណ:ខាងលើទេបានន័យថា S ជាសំ ណុំទទេ ។

២.២. សំឈុំននេះ គឺជាសំណុំដែលគ្មានធាតុ តាងដោយ ∅ ឬ { } ។ ហើយចំនូនធាតុនៃសំណុំ ស្មើនឹង 0 ។ គេបាន $n(\emptyset) = 0$ ឬ $n(\{\ \}) = 0$ ។

ឧទាហរណ៍: ចូរកំណត់សំណុំសកលចំពោះសំណុំខាងក្រោម:

$$A = \{x / x \in \mathbb{R}, \ x^2 - 25 = 0 \},$$

$$B = \{3x / x \ge 1 \}$$

$$C = \{x / x^2 + 6x + 8 = 0 \},$$

$$D = \{x / \sqrt{x} \ge 5 \land x \in \mathbb{R} \}$$

ដូចនេះ នាំឲ្យសំណុំសកល $U=(-\infty,+\infty)=\mathbb{R}$ ។

ಚ್ಚಾಕ್ಷಿಣಭೋಷೆ .៣.៧

និយមន័យ: សំណុំពីរស្មើគ្នាកាលណាវាមានបញ្ហីឈ្មោះធាតុដូចគ្នា ។

$$A = B \iff \forall x \in A \implies \forall x \in B \land \forall x \in B \implies \forall x \in A$$

ឧទាហរណ៍១: $A = \{n/n^2 - 9 = 0\}, B = \{-3, 3\}$

$$\Rightarrow A = B$$

ឧទាហរណ៍២: $A = \{1, 5, 5, 5, 3, 3, 1\} = \{1, 3, 5\} = \{5, 3, 1\}$

ឧទាហរណ៍៣: រកតម្លៃ x,y ដើម្បីឲ្យសំណុំ A ស្មើនឹងសំណុំ B បើ $A=\{3,4\}$ និង $B=\{3,x,y\}$

២.៤. សំណុំ៖ខ: A ជាសំណុំរងនៃ B ឬ A នៅក្នុង B ឬ A ជាផ្នែកមួយនៃ B ឬ B ផ្ទុក A កាលណាគ្រប់ធាតុ x នៃ A សុទ្ធតែជាធាតុនៃ B ។ គេកំណត់សរសេរ $A \subset B$ ឬ $B \supset A$ ហើយ $Card(A) \leq Card(B)$ ។

គេហ៊្ន $A \subset B \iff \forall x \in A \implies x \in B$

សម្គាល់: បើ Card(A) < Card(B) នោះគេថា A ជាសំណុំរងផ្ទាល់នៃ B ។ បើ Card(A) = Card(B) នោះគេថា A ជាសំណុំរងនៃ B ហើយច្រាសមកវិញ ។ កំណត់ចំណាំ:

- 1) សំណុំមួយអាចជាធាតុនៃសំណុំផ្សេងទៀត ។ **ឧទាហរណ៍:** $\{\{1, 2, 3\}, a, \{a\}, \{b, c\}\}$
 - 2) សំណុំទទេខុសពីសំណុំដែលមានផ្ទុកធាតុជាសំណុំទទេ ($\varnothing \neq \{\varnothing\}$) ។ ដើម្បីរកចំនួនសំណុំរងនៃសំណុំមួយដែលមាន n ធាតុគេប្រើរូបមន្ត 2^n ដែល n ជាចំនួន ធាតុនៃសំណុំ ។

សម្រាយបញ្ជាក់

តាង $A = \left\{a_1\,,\,a_2\,,\,a_3\,,\,.....\,,\,a_n
ight\}$ ដែល n(A) = n សំណុំរងនៃ A ដែលគ្មានធាតុគឺ C_n^0 សំណុំរងនៃ A ដែលមាន 1 ធាតុគឺ C_n^1

.....

សំណុំរងនៃ A ដែលមាន n ធាតុគឺ C_n^n នាំឲ្យចំនួនសំណុំរងនៃ A ទាំងអស់គឺ៖ $C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = (1+1)^n$ ព្រោះតាមទ្វេធា Newton $(x+1)^n = C_n^0 x^n + C_n^1 x^{n-1} + C_n^2 x^{n-2} + \dots + C_n^n$ យក x=1 នោះ $(1+1)^n = C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$ ពិត ។

ឧទាហរណ៍: ក) រកសំណុំរងនៃ A ដែល $A = \{1, 2, 3\}$

ខ) រកចំនួនរងនៃ A ដែល $A = \{n/n \in \mathbb{N}, n^2 \le 81\}$

ចម្លើយ

ក) សំណុំរងនៃ A ដែលមាន $2^3=8$ សំណុំរងនៃ ព្រោះ n(A)=3 សំណុំទាំងអស់ គឺ \varnothing , $\{1\}$, $\{2\}$, $\{3\}$, $\{1,2\}$, $\{1,3\}$, $\{2,3\}$, $\{1,2,3\}$ ។

2)
$$A = \{n/n \in \mathbb{N}, n^2 \le 81\}$$

= $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 $\Rightarrow n(A) = 9$

ដូចនេះ ចំនួនសំណុំរងនៃ A គឺ $2^9 = 512$ សំណុំគឺ៖

- 1. សំណុំដែលគ្មានធាតុមាន $C_n^0 = 1$ សំណុំ
- 2. សំណុំដែលមាន 1 ធាតុមាន $C_9^1 = 9$ សំណុំ
- 3. សំណុំដែលមាន 2 ធាតុមាន $C_9^2 = 36$ សំណុំ
- 4. សំណុំដែលមាន 3 ធាតុមាន $C_9^3 = 84$ សំណុំ
- 5. សំណុំដែលមាន 4 ធាតុមាន $C_9^4 = 126$ សំណុំ
- 6. សំណុំដែលមាន 5 ធាតុមាន $C_9^5 = 126$ សំណុំ
- 7. សំណុំដែលមាន 6 ធាតុមាន $C_9^6 = 84$ សំណុំ
- 8. សំណុំដែលមាន 7 ធាតុមាន $C_9^7 = 36$ សំណុំ
- 9. សំណុំដែលមាន 8 ធាតុមាន $C_9^8 = 9$ សំណុំ
- 10. សំណុំដែលមាន 9 ធាតុមាន $C_9^9 = 1$ សំណុំ

ស្វ័យសត្យ: សំណុំទទេមានតែមួយគត់ មានន័យថាបើ S និង T ជាពីរសំណុំទទេ នោះគេបាន S=T ។

បើ A មិនមែនជាសំណុំរងនៃ B មានន័យថាវាមាន ធាតុ A ដែលមិនមែនជាធាតុរបស់ B គេសរសេរ $A \subset B$ ។

Ex: គើច្បំ $A = \{1, 2, 3\}$, $B = \{1, 2, 5, 6\}$ និង $C = \{1, 2, 3, 4, 5, 6, 7\}$ គេហ្ន: $A \subset B$ តែ $A \subset C$, $B \subset C$

ទ្រឹស្តីបទ:

- 1) ចំពោះគ្រប់សំណុំ A គេបាន $\varnothing \subset A \subset U$ (ដែល U ជាសំណុំសកល)។
- 2) ចំពោះគ្រប់សំណុំ A គេបាន $A \subset A$
- 3) បើ $A \subset B$ និង $B \subset C$ នោះគេហ្នេ $A \subset C$
- 4) $A = B \Leftrightarrow [(A \subset B) \land (B \subset A)]$ \(\text{1}\)

សម្រាយបញ្ជាក់

1) ចំពោះ \forall សំណុំAគេមាន $\forall x: x \in \varnothing \implies x \in A$ ពិតព្រោះ $\forall x: x \in \varnothing$ ជាសំណើមិនពិត ចំពោះ \forall សំណុំ A គេមាន $\forall x: x \in A \implies x \in U$ (U ជាសំណុំសកល) ដូចនេះ \forall សំណុំ A គេបាន $\varnothing \subset A \subset U$ ។

2) ចំពោះ \forall សំណុំ A គេមាន $\forall x : x \in A \Rightarrow x \in A$ ដូចនេះ ចំពោះ \forall សំណុំ A គេបាន $A \subset A$ ។

3) គេមាន:

$$\begin{vmatrix} \forall x : x \in A \\ A \subset B \end{vmatrix} \Rightarrow x \in B$$

ហើយ $B \subset C \implies x \in C$

ជូចនេះ បើ $A \subset B$ និង $B \subset C$ នោះ $A \subset C$ ។

4)
$$A = B \Leftrightarrow [(A \subset B) \land (B \subset A)]$$

$$A = B \Leftrightarrow \forall x \in A \Rightarrow x \in B \text{ su} \forall x \in B \Rightarrow x \in A$$

$$\Leftrightarrow (A \subset B) \land (B \subset A)$$

សម្គាល់: បើ $A \subset B$ ប៉ុន្តែ $A \neq B$ គេថា A ជាសំណុំ ដេ **Proper** នៃ B (A is a proper subset of B)។ **ឧទាហរណ៍:** គេឲ្យ $A = \{1, 3\}$, $B = \{1, 2, 3\}$ និង $C = \{1, 2, 3\}$ ។

គេបាន A,B សុទ្ធតែជាសំណុំរងនៃ C ហើយ A ជាសំណុំរង Proper នៃ C ចំណែក B មិនមែនជាសំណុំរង Proper នៃ C ទេព្រោះ B=C ។

ចំណាំ: បើ A ជាសំណុំរងនៃ B នោះ $n(A) \le n(B)$ តែបើ $n(A) \le n(B)$ នោះ A អាចជា សំណុំរង នៃ B ឬ A មិនអាចជាសំណុំរងនៃ B ។

ឧទាហរណ៍: បើ $A = \{1, 2, 3\}$ និង $B = \{1, 2, 3, 4\}$

គេហ៊ុន
$$n(A)=3\leq 4=n(B)$$
 $\Rightarrow A\subset B$ ពិត $\$ បើ $A=\left\{1,2,\,5\right\}$ និង $B=\left\{1,\,2,\,3,\,4\right\}$ គេហ៊ុន $n(A)=3\leq 4=n(B)$ តែ $A\not\subset B$ ទេ ។

២.៥. ដ្យាទ្រាមទិន (VENN DIAGRAMS)

២.៥.១.ដ្យាក្រាមវិន ឬ ដ្យាក្រាមសំណុំ គឺជារូបភាពតាងឲ្យសំណុំ ដោយសំណុំចំណុចក្នុងប្លង់ ឬ ជា ដ្យាក្រាមដែលបង្ហាញពីទំនាក់ទនង Logic ដែលអាចកើតមានរវាងការប្រមូលផ្ដុំសំណុំកំណត់ផ្សេ ងៗ ។

ដ្យាក្រាមវិនត្រូវបានបង្កើតឡើងនៅចន្លោះឆ្នាំ 1880 ដោយលោក John Venn។ ដ្យាក្រាម ទាំងនេះត្រូវបានគេប្រើដើម្បីបង្រៀន Element set theory ហើយនឹងប្រើដើម្បីបកស្រាយទំនាក់ ទំនងសាមញ្ញៗ នៃទំនាក់ទនងរវាងសំណុំតាង Probability, Logic, Statistics, Linguistics និង Computer Science ។

- (1) $A \subset B$
- (2) A និង B ជាសំណុំដាច់គ្នា
- (3) A និង B មានធាតុរួម

ස.ස්.ස.Russell's Paradox

តាងសំណុំ S ជាសំណុំនៃធាតុទាំងឡាយដែលមានធាតុមិនមែនជាខ្លួនឯក ។

$$S = \{S \ ' \ S' \notin S'\}$$

ឧទាហរណ៍: ជាងកាត់សក់អាចកាត់សក់ កោរសក់ឲ្យមនុស្សគ្រប់គ្នាបាន ប៉ុន្តែជាងកាត់សក់ខ្លូនឯង មិនអាចកាត់សក់ កោសក់គេឲ្យខ្លួនឯងបានទេ ។

៣. ម្រទាសាទិធីលើសំណុំ

៣.១. ម្រសព្វនៃពីរម្មម្រើនសំណុំ

ជាសំណុំមួយ ដែលមានធាតុជាធាតុរួមគ្នានៃសំណុំទាំងនោះ ។ សំណុំ A ប្រសព្វ B កំនត់សរសេរដោយ: $A\cap B=\{x/x\in A, \land x\in B\}$ ប្រសព្វនៃសំណុំ A និងសំណុំ B ។

ឧទាហរណ៍:

$$A = \{1, 2, 3, 4, 5, 6\}$$

$$B = \{2n / n \ge 1\}$$

$$C = \left\{ n^2 / n \ge 3 \right\}$$

យើងបាន

$$A \cap B = \{2,4,6\}$$
 និង $A \cap C = \emptyset$ ។

ប្រសព្វច្រើនសំណុំ

$$A_1 \cap A_2 \cap A_3 \dots \cap A_n = \{x \mid x \in A_1 \land A_2 \land \dots \land A_n\} = \bigcap_{i=1}^n A_i$$

លក្ខខណ្ឌប្រសព្វ

- 1. $A \cap A = A$
- 2. $A \cap \overline{A} = \emptyset$
- 3. $A \cap \emptyset = \emptyset$
- 4. $A \cap B = B \cap A$
- 5. $A \cap (B \cap C) = (A \cap B) \cap C$
- 6. $[(A \cap B) \subset A] \wedge [(A \cap B) \subset B]$
- 7. $A \cap B = A \Leftrightarrow A \subset B$ 1

ព.២. ទ្រខុំនៃពីរម្មទ្រើនសំណុំ គឺជាសំណុំមួយដែលមានធាតុនៅក្នុងសំណុំទីមួយឬសំណុំបន្ទាប់។ សំណុំ A ប្រជុំសំណុំ B កំនត់សរសេរដោយ $A \cup B = \{x/x \in A \lor x \in B\}$ ប្រជុំនៃសំណុំ A និង សំណុំ B ។

ឧទាហរណ៍:
$$A = \{1,2,3,4,5,6,7\}$$
 $B = \{1,3,5,7\}$ $C = \mathbb{N}$ យើងបាន $A \cup B = \{1,2,3,4,5,6,7\}$ $A \cup C = \{1,2,3,4,...\} = \mathbb{N}$ $B \cup C = \{1,2,3,4,5,6,...\} = \mathbb{N}$

ប្រជុំច្រើនសំណុំ

$$A_1 \cup A_2 \cup ...A_n = \{x \mid x \in A_1 \lor A_2 \lor ... \lor A_n\} = \bigcup_{i=1}^n A_i$$

លក្ខណនៃប្រជុំ

- 1. $A \cup A = A$
- 2. $A \cup \overline{A} = U$
- 3. $A \cup \emptyset = A$
- 4. $A \cup B = B \cup A$
- 5. $(A \cup B) \cup C = A \cup (B \cup C)$
- 6. $A \subset A \cup B \land B \subset A \cup B$
- 7. $A \cup B = B \Leftrightarrow A \subset B$ 1

៣.៣. សំណុំទេខំពេញ

សំណុំរងបំពេញនៃសំណុំណាមួយគឺជាសំណុំដែលមានធាតុមិនមែនជាសំណុំនោះតែធាតុនោះជាធាតុនៃសំណុំសកល។បើជា \overline{A} សំណុំរងបំពេញនៃ A ក្នុU យើងកំណត់សរសរ

$$\overline{A} = \{x \mid x \in U \land x \notin A\} \ \ \underline{\mathfrak{U}} \ \ \overline{A} = \mathbb{C}_{U}A = A'$$

$$\overline{A} = A$$

៣.៤. នំនាគន់នេចទោចរួមសព្វនិច្យម្មខ្ញុំ

- 1. $\overline{A \cap B} = \overline{A} \cup \overline{B}$
- 2. $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- 3. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 4. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ \exists

៣.៥. ភាពនូនៅខែម្រសព្វសិទម្រខ្ំ

និយមន័យទី១

គេឧ្យានជាគ្រួសារនៃសំណុំ។គេបាន៖

$$\bigcap \mathfrak{I} = \{ x / x \in A, x \in \mathfrak{I} \}$$

ច្រាងទៀត

$$\mathfrak{I} = \{A_i \mid i \in I\}$$

គេបានផងដែរ

$$\bigcap \mathfrak{I} = \bigcup_{i \in I} A_i = \{x \mid x \in A_i, i \in I\}$$

និយមន័យទី២

គេឧ្យជា១គ្រួសារនៃសំណុំ។គេបាន $\bigcap \mathfrak{I} = \{x / x \in A, A \in F\}$

ម្យ៉ាងទៀត
$$\mathfrak{I}=\left\{A_{i}\,/\,i\in I\right\}$$
 គេហ្នេជងដែរ
$$\bigcap\mathfrak{I}=\bigcap_{i\in I}A_{i}=\left\{x\,/\,x\in A_{i},\forall\,i\in I\right\}\,\mathfrak{I}$$

ឧទាហរណ៍: គេឌ្យ $\mathfrak{I}=\left\{A_i\ /\ i\in I\right\}=\left\{\left\{1,2,3\right\},\left\{2,3,4\right\}\left\{3,4,5\right\}\right\}$ ។គេបាន៖

1)
$$\left\{ \int \mathfrak{I} = \{1, 2, 3, 4, 5\} \right\}$$

2)
$$\bigcap \mathfrak{I} = \{3\}$$

ឧទាហរណ៍: គេឧ្យ $\mathfrak{I}=\left\{A_{i}\,/\,i\in I\right\}=\left\{A_{i}\,/\,i\in \mathbb{Z}\right\}$ ។គេបាន៖

1.
$$A_2 \cup A_3 \cup A_4 \cup A_5 = \bigcup_{i=2}^5 A_i$$

2.
$$A_7 \cap A_8 \cap A_9 \cap \dots = \bigcap_{i=7}^{\infty} A_i$$

3.
$$A_6 \cap A_8 \cap A_{10} \dots = \bigcap_{i=0}^{\infty} A_{2i+6}$$
 1

ទ្រឹស្តីបទ

គេឧ្យ $\left\{A_{i} \,/\, i \in I\right\}$ ជាគ្រ្ចួសារនៃសំណុំ។ ចំពោះសំណុំ $\,$ ណាមួយគេបាន៖

1.
$$B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$$

$$2. \quad B \cap \bigcup_{i=1}^{n-1} A_i = \bigcup_{i=1}^{n-1} (B \cap A_i)$$

សម្រាយបញ្ជាក់

យើងបង្ហាញថា $B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} \left(B \cap A_i \right) ?$

$$x \in B \cup \bigcap_{i \in I} A_i \Leftrightarrow x \in B \lor x \in \bigcap_{i \in I} A_i$$

$$\Leftrightarrow x \in B \lor (\forall i \in I)(x \in A_i)$$

$$\Leftrightarrow$$
 $(\forall i \in I)(\forall x \in B \lor x \in A)$

$$\Leftrightarrow$$
 $(\forall i \in I)(x \in A \cup B)$

$$\Leftrightarrow x \in \bigcap_{i=1}^{n} B \cup A_i$$

ដ្ឋប្រនេះ
$$B \cup \bigcap_{i \in I} A_i = \bigcap_{i \in I} (B \cup A_i)$$
 ៗ

ទ្រឹស្តីបទ

គេឧ្យ $\left\{A_i \ / i \in I \right\}$ ជាគ្រួសារនៃសំណុំ។គេបាន៖

$$1.\overline{\bigcap_{i\in I} A_i} = \overline{\bigcup_{i\in I} A_i}$$

$$2.\overline{\bigcup_{i\in I} A_i} = \overline{\bigcap_{i\in I} A_i} \quad 1$$

ទ្រឹស្តីបទ

គេឧ្យ $\left\{A_i/i\in I\right\}$ ជាគ្រួសារនៃសំណុំហើយ $I\subseteq J$ ។គេបាន

1.
$$\bigcup_{i \in I} A_i \subseteq \bigcup_{j \in J} A_j$$

2.
$$\bigcap_{i \in I} A_i \subseteq \bigcap_{i \in I} A_i$$
 1

សម្រាយបញ្ជាក់

1. យើងបង្ហាញថា $igcup_{i\in I} A_i \subseteq igcup_{j\in J} A_j$

យើងបាន $x \in \bigcup_{i \in I} A_i \Rightarrow x \in A_j$ ចំពោះ $j \in I$

តែ $I\subseteq J$ នោះ $j\in I\Rightarrow j\in J$

ដូចនេះ $x \in \bigcup_{i \in J} A_i$ មានន័យថា $\bigcup_{i \in I} A_i \subseteq \bigcup_{i \in J} A_j$ ។

និយមន័យទី៣៖

សំណុំ $A_i, i \in I$ ហៅថាគម្របនៃសំណុំ F ដែលជាផ្នែកមួយនៃ E លុះត្រាតែ $F \subset \bigcup_i A_i$ ។

និយមន័យទី៤៖

គេហៅថា(Partitio) បំណែកនៃសំណុំ E គឺជាគម្របដែលធាតុទាំងអស់របស់វាមិនមែន ទទេហើយពីរៗដាច់ពីគ្នាព្រមទាំងប្រជុំរបស់វាស្មើ E មានន័យថា៖

$$\begin{cases} \bigcup_{i \in I} A_i = E \\ \forall i, j \in I, i \notin j \Rightarrow A_i \cap A_j = \emptyset \end{cases}$$

ឧទាហរណ៍: បើ $E = \{1,2,3,4,5\}$ $, E_1 = \{1,2\}$ $, E_2 = \{5\}$ $, E_3 = \{3,4\}$ នោះគេបាន ៖

- គម្រប $\Re=\left\{E_1,E_2,E_3\right\}$ ព្រោះ $E\subseteq\bigcup_{i\in I}E_i,I=\left\{1,2,3\right\}$
- $\bullet \quad \text{ if inf P} = \left\{E_1, E_2, E_3\right\} \text{ iff : } E_1 \neq \varnothing; E_2 \neq \varnothing ; E_3 \neq \varnothing$ $\text{iff if } E_1 \cap E_2 = \varnothing; E_1 \cap E_3 = \varnothing; E_2 \cap E_3 = \varnothing \text{ if } E = \bigcup_{i \in I} E_i \text{ , } I = \left\{1, 2, 3\right\}$

ដូចនេះ $\Re = P$ ។

៣.៦. ចំនួនធាតុនៃសំណុំ

ចំនួនធាតុនៃសំណុ A តាងដោn(A) ឬ#(A) ឬ |A| ឬCard(A) ។

ឧទាហរណ៍: $A = \{a, b, c, d, e\}$ សំណុំ A មានចំនួនធាតុ 5 ។

លក្ខណ:នៃចំនួនធាតុ

- $n(A \cap U) = n(A)$
- $n(A \cap \varnothing) = 0$
- $n(A \cap B) \leq n(A)$
- $n(A \cap \overline{A}) = 0$
- $n(A) = n(U) n(\overline{A})$
- $n(A \cup B) = n(A) + n(B) n(A \cap B)$
- $n(A \cup B) = n(A) + n(B)$, $A \cap B = \emptyset$ ង៉ង៌
- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(A \cap C) n(B \cap C) + n(A \cap B \cap C)$
- $n(A \times B) = n(A) \times n(B)$
- $n\left(\prod_{i=1}^{n} A_{i}\right) = n\left(A_{1}\right) \times n\left(A_{2}\right) \times ... \times n\left(A_{n}\right)$

ឧទាហរណ៍: គ្រួសារមួយមានសមាជិក៤ នាក់ចូលចិត្តសម្លរកកូរ ៣នាក់ចូលចិត្តឆា ២នាក់ទៀត ចូលចិត្តទាំងពីរមុខនេះ ហើយ ២ នាក់ទៀតមិនចូលចិត្តទាំងពីរមុខនេះ។ តើក្នុងគ្រឹ្ទសារនេះមាន

ចម្លើយ:

សមាជិកប៉ុន្មាននាក់ ?

រកសមាជិកគ្រូសារ តាងU ជាសំណុំនៃសមាជិកគ្រូសារ A ជាសំណុំនាក់ចូលចិត្តសម្លូរកកូរ B ជាសំណុំនាក់ចូលចិត្តឆា $A\cap B$ ជាសំណុំនាក់ចូលចិត្តទាំងពីរមុខ គេបាន

$$n(U) = n(A) + n(B) - n(A \cap B) + 2$$
$$= 4 + 3 - 2 + 2 = 5$$

ដូច្នេះ ក្នុងគ្រ_្សារនេះមានសមាជិក*5* នាក់ ។

៣.៧. ដលសខទោខពីរសំណុំ

និយមន័យ: គេឲ្យពីរសំណុំ A និងB ។ ផលសងរវាង A និង B កំណត់សរសេរ A ackslash B គឺ ជាសំណុំនៃធាតុ x ទាំងឡាយ ដែល x ជាធាតុរបស់ A និងx មិនមែនជាធាតុរបស់ B ។

$$A \setminus B = \{x : x \in A \land x \notin B\}$$

$$\forall x : x \in A \setminus B \iff x \in A \land x \notin B$$

លក្ខណ: $A \setminus B = A \cap B$

ស្រាយ:

គេមាន
$$\forall x \in A \setminus B$$
 \iff $x \in A \land x \notin B$ \Leftrightarrow $x \in A \land x \in \overline{B}$ \Leftrightarrow $x \in A \cap \overline{B}$

ឧទាហរណ៍: គេដឹងថា៖
$$n(A)=17, n(B)=24, n(A\cup B)=35$$
 គណនា៖ $n(A\cap B), n(A\setminus B), n(B\setminus A)$

បង្ហើយ

គណនា

•
$$n(A \cup B) = n(A) + n(B) - n(A \cap B) \Rightarrow n(A \cap B) = n(A) + n(B) - n(A \cup B)$$

 $n(A \cup B) = 17 + 24 - 35 = 6$

•
$$n(A \setminus B) = n(A) - n(A \cap B) = 17 - 6 = 11$$

•
$$n(B \setminus A) = n(B) - n(A \cap B) = 24 - 6 = 18$$

៣.៨. និសស១ន្លះទោ១ពីរសំណុំ

និយមន័យ: គេឲ្យពីរសំណុំ A និង B ។ ផលសងឆ្លះរវាង A និង B កំណត់សរសេរ $A\Delta B$ គឺ ជាសំណុំនៃ x ទាំងឡាយណា ដែល x ជាធាតុរបស់ A និង x មិនមែនជាធាតុ របស់ B ឬ x ជាធាតុរបស់ B និង x មិនមែនជាធាតុរបស់ A ។

$$A\Delta B = \left\{ x : (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \right\}$$

$$\forall x : x \in A\Delta B \iff (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$$

លក្ខណ:

i
$$A\Delta B = (A \setminus B) \cup (B \setminus A)$$

ii
$$A\Delta B = (A \cap \overline{B}) \cup (B \cap \overline{A})$$

iii
$$A\Delta B = (A \cup B) \setminus (B \cap A)$$

ស្រាយ:

គេមាន $\forall x : x \in A \Delta B \Leftrightarrow (x \in A \land x \notin B) \lor (x \in B \land x \notin A)$

$$\iff x \in A \setminus B \lor x \in B \setminus A$$

$$\Leftrightarrow x \in (A \setminus B) \cup (B \setminus A)$$

ជួចនេះគេហ៊ុន $A\Delta B = (A \setminus B) \cup (B \setminus A)$ ។

ii គ្រាមាន
$$A \setminus B = (A \cap \overline{B})$$
និង $B \setminus A = (B \cap \overline{A})$ $\Rightarrow A \Delta B = (A \cap \overline{B}) \cup (B \cap \overline{A})$ តាម i គោមាន $A \Delta B = (A \setminus B) \cup (B \setminus A)$

iii េ គេមាន $A\Delta B = (A \cap \overline{B}) \cup (B \cap \overline{A})$

$$= \left[(A \cap \overline{B}) \cup B \right] \cap \left[(A \cap \overline{B}) \cup \overline{A} \right]$$

$$= \left[(A \cup B) \cap (\overline{B} \cup B) \right] \cap \left[(A \cup \overline{A}) \cap (\overline{B} \cup \overline{A}) \right]$$

$$= \left[(A \cup B) \cap U \right] \cap \left[U \cap (\overline{A \cap B}) \right]$$

$$= (A \cup B) \cap (\overline{A \cap B})$$

$$= (A \cup B) \setminus (B \cap A)$$

ជួចនេះ គេហ៊ុន $A\Delta B = (A \cup B) \setminus (B \cap A)$ ។

៣.៩. ឌុយអាលីនេះ (DUALITY)

ឧបមាថា E ជាសមភាពពីជគណិតនៃសំណុំ ។ គេបាន Dual នៃ E កំណត់សរសេរដោយ E^* គឺជាសមភាពដែលបានដោយប្តូររៀងគ្នា \cup , \cap , U និង \varnothing ក្នុង E ដោយ \cap , \cup , \varnothing និង U ។

ឧទាហរណ៍: Dual នៃ $(U \cap A) \cup (B \cap A) = A$ គឺ $(\emptyset \cup A) \cap (B \cup A) = A$ ។

៣.១០. សំលំរាប់អស់, គោលអារស៌រចាប់ (FINITE SET, COUNTING PRINCIPLE)

និយមន័យ: គេថាសំណុំមួយ ជាសំណុំរាប់អស់ (ឬកំណត់) កាលណាសំណុំនេះមាន m ធាតុ ផ្សេងគ្នា ដែលជាចំនូនគត់មិនអវិជ្ជមាន ។ បើមិនដូចនេះ គេថា ជាសំណុំមិនកំណត់ ។

ឧទាហរណ៍: សំណុំទទេជាសំណុំរាប់អស់

សំណុំនៃស្រះខ្មែរជាសំណុំរាប់អស់

សំណុំនៃចំនួនគត់ជ្អៃមានគ្ $A = \{2, 4, 6, ...\}$

បើ A ជាសំណុំរាប់អស់ គេតាង n(A) ជាចំនូនធាតុនៃសំណុំ A ។

Lemma: បើ A និង B ជាពីរសំណុំដាច់គ្នា និង រាប់អស់គេបាន $A \cup B$ ជាសំណុំរាប់អស់ ហើយ $n(A \cup B) = n(A) + n(B)$ ។

ទ្រឹស្តីបទ: បើA និង B ជាពីរសំណុំរាប់អស់ គេបាន $A \cup B$ និង $A \cap B$ ជាសំណុំរាប់អស់ ហើយ $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ ។

ស្រាយ:

គេមាន
$$A \cup B = (A \setminus B) \cup B$$
 និង $(A \setminus B) \cap B = \emptyset$

គេបាន
$$n(A \cup B) = n[(A \setminus B) \cup B] = n(A \setminus B) + n(B)$$
 (1)

គេមាន
$$A = (A \setminus B) \cup (A \cap B)$$
 និង $(A \setminus B) \cap (A \cap B) = \emptyset$

គេបាន
$$n(A) = n[(A \setminus B) \cup (A \cap B)] = n(A \setminus B) + n(A \cap B)$$

$$\Rightarrow n(A \setminus B) = n(A) - n(A \cap B) \tag{2}$$

តាម (1) និង (2) គេហ្ន $n(A \cup B) = n(A) + n(B) - (A \cap B)$ ។

Corollary: បើ A,B និង C ជាបីសំណុំរាប់អស់ គេបាន $A \cup B \cup C$ ជាសំណុំរាប់អស់ ហើយ $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$ គេមាន $n(A \cup B \cup C) = n[(A \cup B) \cup C]$ $= n(A \cup B) + n(C) - n[(A \cup B) \cap C]$ $= [n(A) + n(B) - n(A \cap B)] + n(C) - n[(A \cap C) \cup (B \cap C)]$ $= [n(A) + n(B) - n(A \cap B)] + n(C) - \{n(A \cap C) + n(B \cap C - n[(A \cap C) \cap (B \cap C)]\}$ $= n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(A \cap C) + n(A \cap B \cap C)$

ដូចនេះ $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$ ។ ៣.១១.៩សគុណនៃសំណុំ (PRODUCT OF SET)

យើងបញ្ជូលប្រមាណវិធីមួយដែលពីគណិតវត្ថុពីរa និងb រៀបក្នុងលំដាប់នេះបង្កើតបានគណិត វត្ថុទី៣ ដែលគេសរសេរ (a,b) និង គេហៅថាគូមានលំដាប់ (a,b) ហើយផ្ទៀងផ្ទាត់លក្ខខណ្ឌ:

- បើ $a \neq b$ គេហាន $(a, b) \neq (b, a)$ i
- $(a,b)=(c,d) \Leftrightarrow a=c \text{ and } b=d$
- z ហៅថាគូលុះត្រាតែមាន a និង b ដែល z = (a,b)
 - a ហៅថាចំណោលទី1 $a = pro_1(a, b)$
 - b ហៅថាចំណោលទី 2 $b = pro_2(a, b)$

និយមន័យ: គេឲ្យពីរសំណុំ A និង B គេហៅថាផលគុណ ឬផលគុណដេកាត នៃពីរសំណុំ A និង B កំណត់សរសេរដោយ $A \times B$ គឺជាសំណុំនៃគូមានលំដាប់ (a,b) ទាំងអស់ដែល $a \in A$ និង $b \in B$ ។

តាមនិយមន័យគេបាន: $A \times B = \{(a, b) : a \in A \land b \in B \}$

ឧទាហរណ៍: គេឲ្យ $A = \{1, 2\}$ និង $B = \{a, b, c\}$ នោះ

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

$$A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$$

លក្ខណ:

i.
$$(A \subset X \land B \subset Y) \Rightarrow A \times B \subset X \times Y$$

ii.
$$A \times B = \emptyset \iff A = \emptyset \vee B = \emptyset$$

iii.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

iv.
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

v.
$$(A \neq \emptyset \land A \times B = A \times C) \implies B = C$$

សម្រាយបញ្ជាក់

i. គេមាន
$$\forall (x, y) \in A \times B \iff x \in A \land x \in B$$

$$\Rightarrow x \in X \land y \in Y \Rightarrow A \times B \subset X \times Y \ \ \exists$$

ដោយ
$$A \subset X \land B \subset Y$$

ii. បើ $A \times B = \emptyset$ ស្រាយថា $A = \emptyset \vee B = \emptyset$ ឧបមាថា $A \neq \emptyset \land B \neq \emptyset$ $\Rightarrow \exists x \in A \land \exists x \in B \Rightarrow \exists (x, y) \in A \times B \Rightarrow A \times B \neq \emptyset$ (ផ្ទុយពីសម្មតិកម្ម) \Rightarrow $A = \emptyset \lor B = \emptyset$ ប៉េ $A = \emptyset \lor B = \emptyset$ ស្រាយថា $A \times B = \emptyset$ ឧបមាហ $A \times B \neq \emptyset \Rightarrow \exists (x, y) \in A \times B \Rightarrow \exists x \in A \land \exists x \in B \Rightarrow A \neq \emptyset \land B \neq \emptyset$ $\Rightarrow A \times B = \emptyset$ ជួចនេះ $A \times B = \emptyset \iff A = \emptyset \vee B = \emptyset$ ។ iii. គេមាន $\forall (x, y) \in A \times (B \cup C) \iff x \in A \land y \in B \cup C$ $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$ \Leftrightarrow $(x \in A \land y \in B) \lor (x \in A \land y \in C)$ $\Leftrightarrow (x, y) \in (A \times B) \cup (A \times C)$ ដូចនេះ គេបាន $A \times (B \cup C) = (A \times B) \cup (A \times C)$ ។ iv. គើមាន $\forall (x, y) \in A \times (B \cap C) \iff x \in A \land y \in B \cup C$ $\Leftrightarrow x \in A \land (y \in B \land y \in C)$ \Leftrightarrow $(x \in A \land y \in B) \land (x \in A \land y \in C)$ \Leftrightarrow $(x, y) \in A \times B \land (x, y) \in A \times C$ \Leftrightarrow $(x, y) \in (A \times B) \cap (A \times C)$ ជ្ញីចំនេះ $A \times (B \cap C) = (A \times B) \cap (A \times C)$ ។ គេមាន $\forall y \in B$ ដោយ $A \neq \emptyset \Rightarrow \exists x \in A \Rightarrow (x, y) \in A \times B$ តែ $A \times B = A \times C$ \Rightarrow $(x, y) \in (A \times C) \Leftrightarrow x \in A \land y \in C \Rightarrow y \in C$ គេមាន $\forall y \in C$ ដោយ $A \neq \emptyset \Rightarrow \exists x \in A$ \Rightarrow $(x, y) \in A \times C$ ំពេ $A \times B = A \times C$ \Rightarrow $(x, y) \in A \times B \Leftrightarrow x \in A \land y \in B \Rightarrow y \in B$ $\Rightarrow C \subset B$

ដូចនេះ គេហ៊ុន $A \neq \emptyset \land A \times B = A \times C \implies B = C$ ។

លំខាន់

- 9. គេច្បស់ណុំ $A = \{a,b,c\}$, $B = P(A) \{\varnothing,A\}$ និង $C = \{D \subset A/n(D) = 2 \lor n(D) = 3\}$ ។ គណនា $n(A \cup B \cup C)$ ។
- ២. គេច្ប $n(A \cup B \cup C) = 46, n(A \cup B) = 37, n(B \cup C) = 39, n(A \cup C) = 38$ និង $n(A \cap B \cap C) = 4$ ។គណនា n(A) + n(B) + n(C) ។
- ៣. គេឲ្យ $A = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}\}$ និង $X = \{\{\{\varnothing, \{\varnothing\}\}\}\}\}, Y = \{\varnothing, \{\varnothing\}\}\}$ ។ ចូរពិចារណាសំណើខាងក្រោម:
 - ក) $X \subset P(P(A))$ ដែល P(A) ជាសំណុំរងនៃសំណុំ A
 - 2) $n(P(P(X \cap Y))) = 16$

តើល្បះខាងក្រោមមួយណាត្រឹមត្រវ ?

- ១.កនិងខត្រូវទាំងពីរ ២.កត្រូវនិងខខុស ៣.ខត្រូវនិងកខុស ៤.ខុសទាំងពីរ
- ថែ. គេឲ្យ A,B,C ជាសំណុំដែល $A \cup B = \begin{bmatrix} -1,8 \end{bmatrix}, B C = (3,8]$ and $A B = \begin{bmatrix} -1,1 \end{bmatrix}$ ប្រសិនបើ $B \cap C = \begin{bmatrix} a,b \end{bmatrix}$ ។គណនាb-a ។
- ៥. គេឲ្យសំណើខាងក្រោម:
 - ក) ប៉េ $A = \{x \mid x \in R \land 2x^4 + x^2 x 2 = 0\}$ និង $\{\{1\}\} \in P(P(A))$
 - ខ) បើ $B = \{0, \{0\}\}$ ហើយ n(P(B) B) = 2

តើល្បះខាងក្រោមមួយណាត្រឹមត្រវ ?

- ១.កនិងខត្រូវ ២.កប៉ុណ្ណោះត្រូវ ៣.ខប៉ុណ្ណោះត្រូវ៤.កនិងខខុស
- ៦. គេឲ្យA,B,C ជាសំណុំដែល $A \cap B \subset B \cap C$ ។ បើ $n(A) = 25, n(C) = 23, n(B \cap C) = 7,$ $n(A \cap C) = 10, n(A \cup B \cup C) = 49$ ។គណនា n(B) ។
- ៧. គេឲ្យសំណុំសកល $U = \{1,2,3,4,5\}$ ហើយ A,B,C ជាសំណុំដែលមានទំនាក់ទំនង n(A) = n(B) = n(C) = 3 និង $n(A \cap B) = n(B \cap C) = n(A \cap C) = 2$ ។ ប្រសិនបើ $A \cup B \cup C = U$ តើល្បះខាងក្រោមមួយណាខុស ?
 - 9. $n(A \cup B) = 4$ U. $n(A \cup (B \cap C)) = 3$ M. $n(A \cap (B \cup C)) = 2$ C. $n(A \cap B \cap C) = 1$
- ៨. នៅក្នុងសំណុំ R, E, F, G, H ជាសំណុំដែលកំណត់ដូចខាងក្រោម:

$$E = \{x \in R / x + 5 > 0\}, F = \{x \in R / x - 2 > 0\}$$

$$G = \{x \in R / x + 5 < 0\}, H = \{x \in R / x - 2 < 0\}$$

ចូររកសំណុំ $A = \{x \in R / (x+5)(x-2) > 0\}$ ដោយស្គាល់ E, F, G និង H ។

- ៩. A, B, C ជាសំណុំមិនទទេ គេពិនិត្យលក្ខខណ្ឌពីរ
 - $\mathfrak{I}. A \cap B = A \cap C \qquad \qquad \mathfrak{V}. A \cup B = A \cup C$
 - ក) តើលក្ខខណ្ឌទី១អាចអោយគេសន្និដ្ឋានបានថា B=C ឬ ទេ ?
 - ខ) តើលក្ខខណ្ឌទី២អាចអោយគេសន្និដ្ឋានបានថា B=Cឬ ទេ ?

- ១០. $E = \{a,b\}$ និង $F = \{1,2\}$ 1. រកសំណុំ $E \times F$ 2. រកសំណុំ P(E,F)
- 99. បើ $A = \{\emptyset, 0, 1, \{0\}, \{0, 1\}\}$ ហើយ P(A) គឺជាសំណុំរងនៃ A គើសំណុំ P(A) A មានចំនួនធាតុស្មើប៉ុន្មាន ?
- ១២. $_{\text{vf}}A = \{1,2,3,4,...\}$ ហើយ $B = \{\{1,2\},\{3,4,5\},6,7,8,...\}$ គើ $(A-B) \cup (B-A)$ មានចំនួនធាតុស្មើប៉ុន្មាន ?
- ១៣. បើ $A = \{1,2,3,...,9\}$ ហើយ $S = \{B \mid B \subset A, (1 \in B, 9 \in B)\}$ តើចំនួនធាតុរបស់ S ស្នើប៉ុន្មាន ?
- ១៥. គេកំណត់ A,B ដោយ n(A)=a,n(B)=b បើ $n\left[\left(A-B\right)\cup\left(B-A\right)\right]=7$ ហើយ $n(A\times B)=40$ $n\left(\left\{C/C\subseteq A\cup B,n(C\right)\le 2\right\}\right)=?$
- ១៥. បើ $A = \{\varnothing, 0, 1, \{0, 1\}\}$ ហើយ $B = \{\varnothing, \{\varnothing\}, \{0, \{0, 1\}\}, \{0, \{1\}\}\}\}$ ហើយសំណុំ P(A) B មានចំនួនធាតុស្មើប៉ុន្មាន ?
- ១៦. គេអោយ $A = \{0, \pm 1, \pm 2, ..., \pm 20\}$ ហើយ $B = \{x \in A \mid \sqrt{x} \mid \text{ ជាចំនួនគត់}\}$ តើចំនួនធាតុរបស់ $\{C \subset B \mid 0 \in C, 1 \notin C\}$ ស្មើប៉ុន្មាន ?
- ១៧. គេអោយ A,B,C ជាសំណុំដែល n(A-B)=42, n(A-C)=7, n(C-A)=18 ហើយ n(C-B)=35 គើចំនួនធាតុរបស់ $n((B\cap C)-A)$ ស្មើប៉ុន្មាន ?
- ១៨. គេអោយU ហើយជាសំណុំចំនូនគត់ចាប់ពី 100 ដល់ 1000 ហើយគេអោយ $A_i = \{x \in U \ / \ T_{f q}$ ងល័ក្ខខណ្ឌ i រាប់ចេញពីផ្នែកខាងឆ្វេងចំផុតរបស់ x ដែលមាន តម្លៃស្មើi នៅពេលដែល i=1,2,3 តើចំនូនធាតុរបស់សំណុំ $A_i \cup A_2 \cup A_3$ ស្មើប៉ុន្មាន ?

ಣಣ್ಣಿಟ

9. គណនា
$$n(A \cup B \cup C)$$
ដោយ $A = \{a,b,c\}$
ឃើងបាន $P(A) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, A\}$ ហើយ $B = P(A) - \{\varnothing, A\}$
 $B = \{\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}\}\}$ និង $C = \{D \subset A/n(D) = 2, n(D) = 3\}$
 $C = \{\{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$
នាំឲ្យ $A \cup B \cup C = \{a,b,c,\{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$
 $n(A \cup B \cup C) = 10$
២. គណនា $n(A) + n(B) + n(C)$
ដោយ $n(A \cup B) = n(A) + n(B) - n(A \cap B)$
 $37 = n(A) + n(B) - n(A \cap B)$
(1)
ហើយ $n(B \cup C) = n(B) + n(C) - n(B \cap C)$
 $39 = n(B) + n(C) - n(B \cap C)$
(2)
និង $n(A \cup C) = n(A) + n(C) - n(A \cap C)$
 $38 = n(A) + n(C) - n(A \cap C)$
(3)
យក (1) +(2)+ (3)គេបាន 114 = 2n(A) + 2n(B) + 2n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C)
 $n(A \cap B) + n(B \cap C) + n(A \cap C) = 2n(A) + 2n(B) + 2n(C) - 114$
in $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$
 $46 = n(A) + n(B) + n(C) - (2n(A) - 2n(B) - 2n(C) - 114) + 4$
⇒ $n(A) + n(B) + n(C) = 114 + 4 - 46 = 72$ T

m. Limus $A = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}\} \Rightarrow n(X) = 1$
 $Y = \{\varnothing, \{\varnothing\}\}\} \Rightarrow n(Y) = 2$
Uticus n) jätejät tipn: Ø sa {\varnothing} then nis så nin A T

$$\{\emptyset, \{\emptyset\}\} \subset A$$

$$\{\emptyset, \{\emptyset\}\} \in P(A)$$

$$\{\{\emptyset, \{\emptyset\}\}\}\} \subset P(A)$$

$$\{\{\emptyset, \{\emptyset\}\}\}\} \in P(P(A))$$

$$\{\{\{\emptyset, \{\emptyset\}\}\}\}\} \subset P(P(A))$$

$$X \subset P(P(A))$$

2. ខ្ស ព្រោះ $X \cap Y = \emptyset \Rightarrow n(P(X \cap Y)) = 1$ ហើយ $n(P(P(X \cap Y))) = 2$

ថ. គណនា
$$b-a$$

$$A \cup B = [-1, 8]$$

$$B - C = (3,8]$$

$$A-B=[-1,1)$$

$$B \cap C = ?$$

$$B = (A \cup B) - (A - B)$$

$$= [-1, 8] - [-1, 1)$$

$$=[1,8]$$

$$B \cap C = B - (B - C)$$

$$= [1,8] - (3,8]$$
$$= [1,3]$$

$$B \cap C = [a,b]$$

គេហ្នេន
$$a=1,b=3 \Rightarrow b-a=2$$
 ។

៥. ក) ត្រវព្រោះ

$$\big\{\big\{1\big\}\big\} \in P(P(A))$$

$$\{\{1\}\}\subset P(A)$$

$$\{1\} \in P(A)$$

$$\{1\} \subset A$$

$$1 \in A$$

តាមសមីការ $2x^4 + x^2 - x - 2 = 0$ ហើយ A ជាសំណុំចម្លើយ

បើ
$$x = 1: 2(1^4) + 2 - 1 - 2 = 0$$

$$x=1 \Longrightarrow 1 \in A$$

$$\operatorname{sn:}\left\{\left\{1\right\}\right\} \in P(P(A))$$

$$B = \{0, \{0\}\}$$

$$P(B) = \{\emptyset, \{0\}, \{\{0\}\}, \{0, \{0\}\}\}\}$$

$$P(B) - B = \{\emptyset, \{\{0\}\}, \{0, \{0\}\}\}\}$$

$$n(P(B) - B) = 3$$

$$n(A \cup B \cup C) = 49$$

$$15 + (10 - x) + x + y + 7 - x + 6 + x = 49$$

$$38 + y = 49 \Rightarrow y = 11$$

$$n(B) = x + (7 - x) + y + 11 = 18$$

ដូចនេះ *n(B)* = 18 ។

В

U

ដោយ $U = \{1, 2, 3, 4, 5\} \Rightarrow n(U) = 5$ ๗.

ហើយ $n(A \cap B) = n(B \cap C) = n(A \cap C) = 2$

 $\text{tin } n(A \cap B \cap C) = x$

តាមដ្យាក្រាមវិន យើងបាន

ដោយ n(A) = n(B) = n(C) = 3

យើងពិភាក្សាតម្លៃ x តាមករណីនីមួយៗខាងក្រោម

ករណីទី១: បើx = 0នោះ $n(A) \ge 4$ មិនផ្ទៀងផ្ទាត់

C

ដូចនេះ ករណីនេះមិនអាចមានព្រោះ $n(A \cup B \cup C) = n(U) = 5$ ។

ករណីទី៣:បើx=2 តាមលក្ខខណ្ឌដែលអោយn(A)=n(B)=n(C)=3

0

ហើយ $A \cup B \cup C = U$

A

2-x

តាមករណីនេះផ្ទៀងផ្ទាត់ចម្លើយតាមដ្យាក្រាមវិន

ករណីទី៤: បើ x > 2 មិនអាចមានព្រោះ 2 – x ជាចំនួនអវិជ្ជាមាន

តាមដ្យាក្រាមក្នុងករណីទី៣យើងបានលទ្ធផលដូចតទៅនេះ

- 1. $n(A \cup B) = 4$
- 2. $n(A \cup (B \cap C)) = 3$
- 3. $n(A \cap (B \cup C)) = 2$
- 4. $n(A \cap B \cap C) = 2$

ដូចនេះ ចម្លើយដែលខុសគឺលេខ៤ ។

ផ. រក្ខសំណុំ $A = \{x \in R / (x+5)(x-2) > 0\}$ ដោយស្គាល់ E, F, G និង H

$$E = \{x \in R \mid x+5 > 0\}$$
 $G = \{x \in R \mid x+5 < 0\}$

$$F = \{x \in R / x - 2 > 0\}$$
 $H = \{x \in R / x - 2 < 0\}$

$$A = \{x \in R / (x+5)(x-2) > 0\} = (E \cap F) \cup (G \cap H) \Rightarrow A = (E \cap F) \cup (G \cap H)$$

 ϵ . $A \cap B = A \cap C \Rightarrow B = C$?

លក្ខខណ្ឌ: $A \cap B = A \cap C$ មិននាំឲ្យB = C ទេជាទូទៅ

Ex:
$$A = \{a,b,c,d,e,f\}$$

$$B = \{a, d, e, g, h, i\}$$

$$C = \{a, d, e, k, 1\}$$

$$\Rightarrow A \cap B = \{a, d, e\}$$
, $A \cap C = \{a, d, e\}$

ជួចនេះ $A \cap B = A \cap C$ តែ $B \neq C$ ។

លក្ខខណ្គ:
$$A \cup B = A \cup C \Rightarrow B = C$$
?

លក្ខខណ្ឌ $A \cup B = A \cup C$ មិននាំឲ្យB = C ទេជាទូទៅ

$$A = \{a, b, c, d, e, f\}$$

$$B = \{a, d, e, g, h, i\}$$

$$C = \{a, g, h, i\}$$

យើងបាន $A \cup B = A \cup C = \{a,b,c,d,e,f,g,h,i\}$ តែ $B \neq C$ ។

90. 1). រកសំណុំ $E \times F$

$$E = \{a,b\}$$
 , $F = \{1,2\} \Rightarrow E \times F = \{(a,1);(a,2);(b,1);(b,2)\}$ \(\frac{1}{2}\)

2). រកសំណុំ $P(E \times F)$

$$P(E \times F) = \begin{cases} \{\emptyset\}; \{(a,1)\}; \{(a,2)\}; \{(b,1)\}; \{(b,2)\} \\ ; \{(a,1);(a,2)\}; \{(a,1);(b,1)\}; \{(a,2);(b,1)\} \\ ; \{(a,1);(b,2)\}; \{(a,2);(b,2)\}; \{(a,1);(b,1);(a,2)\} \\ ; \{(a,1);(a,2);(b,2)\}; \{(a,1);(b,1);(b,2)\}; \{(a,2);(b,1);(b,2)\} \\ ; \{(a,1);(a,2);(b,1);(b,2)\} \end{cases}$$

១១. គេមាន $A = \{\emptyset, 0, 1, \{0\}, \{0, 1\}\}$

អ្វីដែលយើងត្រូវរកគឺចំន្ទួនធាតុរបស់P(A)-A ដើម្បីអោយយើងឃើញរូបភាពច្បាស់លាស់

នោះចំនួនធាតុដែលយើងចង់រក $=n(P(A))-n(P(A)\cap A)$

 $f(n): n(A) = 5 f(n): n(P(A)) = 2^5 \dots (1)$

តទៅយើងត្រូវពិចារណាថាចំនូនធាតុនីមួយៗនៅក្នុងសំណុំ A មានតូណាខ្លះនៅក្នុង P(A) តាមលំដាប់ដូចតទៅនេះ

តាមលក្ខខណ្ឌ $X \subset A$ ហើយ $X \in P(A)$

ចំន្ទនធាតុក្នុងA	មូលហេតុ	ផល
Ø	$\varnothing \subset A$	$\emptyset \in P(A)$
0	$0 \not\subset A$	$0 \notin P(A)$
1	$1 \not\subset A$	$1 \notin P(A)$
{0}	$\{0\} \subset A$	$\{0\} \in P(A)$
{0,1}	$\{0,1\}\subset A$	$\{0,1\} \in P(A)$

សរុបមកចំនួនធាតុដែលនៅទាំងក្នុងសំណុំAនិងP(A) មានទាំងអស់3តួ....(2)

តាម(1)និង(2)ចំនូនធាតុដែលត្រូវ = $2^5 - 3 = 29$ តូ ។

១២. តាម
$$A = \{1, 2, 3, 4, ...\}$$
 និង $B = \{\{1, 2\}, \{3, 4, 5\}, 6, 7, 8, ...\}$

យើងគួរតែសរសេរចំនួនធាតុនៃសំណុំ A ឲ្យច្រើនជាងនេះដើម្បីឲ្យបានឃើញកាន់តែច្បាស់

$$A = \{1, 2, 3, 4, 5, 6, 7, 8, ...\}$$

$$\Rightarrow A - B = \{1, 2, 3, 4, 5\}$$
 ISI: $B - A = \{\{1, 2\}, \{3, 4, 5\}\}$

ដូចនេះ $(A-B) \cup (\mathbf{B}-\mathbf{A}) = \{1,2,3,4,5,\{1,2\},\{3,4,5\}\}$ នេះបញ្ជាក់ថា $(A-B) \cup (B-A)$ មានចំនួន ធាតុ 7 តូ ។

១៣. ដោយ $A = \{1, 2, 3, 4, ..., 9\}$

$$S = \{B / B \subset A \$$
និង $(1 \in B \$ ប្ $9 \in B)\}$

យើងត្រូវការរកចំនូនធាតុរបស់សំណុំSនោះគឺត្រូវរកចំនួនធាតុសំណុំBបំពេញតាមលក្ខខណ្ឌ ដែលឲ្យតែការពិចារណាលើលក្ខខណ្ឌ $1 \in B$ រឺ $9 \in B$

ត្រូវចំណាយពេលគិតដល់3ករណីដែលយើងចំណាយពេលអស់ច្រើន $(1 \in B \text{ តែ} 9 \notin B, 1 \notin B \text{ តែ} 9 \in B, 1 \notin B)$ តែ $(1 \in B \text{ តែ} 9 \notin B, 1 \notin B \text{ តែ} 9 \in B)$ ដូចនោះយើងគួរគិតវិធីដែលងាយជាងគឺចំនួនសំណុំរងរបស់សំណុំ A ទាំងអស់ដកចេញចំនួនសំណុំរងនៃសំណុំ A ដែលមិនមាន1និង9ជាចំនួនធាតុ ។ វិធីរកដោយចំនួននៃ A មាន9តូ

- ១. ចំនួនសំណុំរងនៃ A ទាំងអស់មាន 2⁹ សំណុំ
- ២. រកសំណុំរងនៃ A ដែលមិនមាន រនិង9ជាធាតុ ដូចនេះសំណុំរងដែលលើកឡើងជាសំណុំរងរបស់ $\{2,3,4,...,8\}$ ចំនួនសំណុំរងទាំងអស់នេះ មាន 2^7 ជារួមមកសំណុំ B និងមានធាតុទាំងអស់ $2^9 - 2^7 = 384$ ។

១៤. បើយកn(A) = a, n(B) = b ហើយ $n(A \times B) = 40$

នោះ
$$ab = 40$$
(1)

បើយក
$$n[(A-B)\cup(B-A)]=7$$

ពិភាក្សាក្នុង4ករណីនៃសមីការ(1)

ការណីទី1:
$$(0+x)(7+x)=40$$

ករណីទី2:
$$(1+x)(6+x)=40$$

ករណីទី3:
$$(2+x)(5+x)=40$$

ការណ៍ទី4:
$$(3+x)(4+x) = 40$$

ក្នុង 4 ករណីគេឃើញមានតែ 3 ករណីទេដែលមានចំនូនពិត $\,x\,$ គឺធ្វើឲ្យ $\,x=3\,$ សមីការពិត

សរុបចំនួនធាតុនៃសំណុំ $A \cup B$ នឹងមានតម្លៃស្មើរ០នោះសំណុំចំនួនធាតុនៃ $A \cup B$ ដោយ មានចំនួនធាតុក្នុងរងខាងលើ ≤ 2 នឹងមានចំនួនធាតុ $\delta = 1$ ស្មី៨លប្ចករបស់ចំនួនសំណុំរងដែលមានធាតុ $\delta = 1$ នេះគឺ

$$C_{10,0} + C_{10,1} + C_{10,2} = 1 + 10 + 45 = 56$$

ដូចនេះ $n(\{C/C \subseteq A \cup B \text{ ហើយ } n(C) \le 2\})$ មានតម្លៃស្មើ56 ។

១៥. ដើម្បីឲ្យឃើញពីអ្វីត្រូវរកឲ្យអ្នកសិក្សាគូសរូបជំនួយ

វិធីរក (1) រកចំនូនធាតុនៃP(A)

- (2) រកចំនួនធាតុនៃ $P(A) \cap B$
- (3) រកចំនួនធាតុនៃ P(A)-B បានមកពី (1)-(2)

តាម
$$A = \{\emptyset, 0, 1, \{0, 1\}\}$$

យើងបាន A មានចំនូនធាតុ 4

ដូចនេះP(A)នឹងមានចំនួនធាតុ $2^4 = 16$ ។

1 0 1 .	ه اما م	5 6) .
តទៅរកចំននធាតនៅកង $P(A)$ \cap	R R R R R R R R R R	l៣០គណនាខាត់ត	(A)qខ្សាតការារាជដ
MINIMITON PAINT MI (11)	\boldsymbol{D} imigration of $\boldsymbol{\nu}$		

ធាតុក្នុងB	ហេតុ	ផល	
Ø	$\varnothing \subset A$	$\emptyset \in P(A)$	
{∅}	$\{\varnothing\}\subset A$	$\{\varnothing\} \in P(A)$	
$\{0,\{0,1\}\}$	$\big\{0,\big\{0,1\big\}\big\} \subset A$	$\{0,\{0,1\}\}\in P(A)$	
$\{0,\{1\}\}$	$\{0,\{1\}\} \not\subset A$	$\left\{0,\left\{1\right\}\right\} \not\in P(A)$	

សរុបធាតុដែលនៅក្នុង B នឹងនៅក្នុងP(A)មាន 3 ធាតុគឺ $\varnothing, \{\varnothing\}, \{0, \{0, 1\}\}$ នោះចំនួនធាតុនៃ $P(A) \cap B$ មាន 3 ធាតុ......(2)

ដូចនេះ តាម(1)និង(2)យើងបានP(A)-B មាន16-3=13ធាតុ ។

១៦. តាម $A = \{0, \pm 1, \pm 2, \pm 3, ..., \pm 20\}$

$$B = \{x \in A\sqrt{|x|}$$
 ចំនួនធម្មជាតិ}

សឲ្យឃើញថាធាតុដែលនៅក្នុងB ជាធាតុដែលនៅក្នុងAហើយធ្វើឲ្យ $\sqrt{|x|}$ ជាចំនូនធម្មជាតិ យើងបាន

$$\sqrt{|0|} = 0, \sqrt{|1|} = 1, \sqrt{|4|} = 2, \sqrt{|9|} = 3, \sqrt{|16|} = 4, \sqrt{|-1|} = 1, \sqrt{|-4|} = 2,$$

 $\sqrt{|-9|} = 3, \sqrt{|-16|} = 4$

នោះគឺ $B = \{0,1,-1,4,-4,9,-9,16,-16\}$

ត្រូវរកCដែល $C \subset B$ ហើយ $0 \in C$ តែ $1 \notin C$

ដូចនោះលក្ខណៈសំណុំCដែលអាចកើតមានគឺ

$$C = \{0\}$$
 មាន $C_{7,0}$ សំណុំ

$$C = \{0, -\}$$
 មាន $C_{7,1}$ សំណុំ

$$C = \{0, -, -\}$$
 មាន $C_{7,2}$ សំណុំ

$$C = \left\{0,-,-,-\right\}$$
 មាន $C_{7,3}$ សំណុំ

$$C = \{0, -, -, -, -\}$$
 មាន $C_{7.4}$ សំណុំ

$$C = \{0, -, -, -, -, -\}$$
 មាន $C_{7,5}$ សំណុំ

$$C = \{0, -, -, -, -, -, -\}$$
 មាន $C_{7.6}$ សំណុំ

$$C = \{0, -, -, -, -, -, -\}$$
 មាន $C_{7,7}$ សំណុំ

ដូចនេះ ចំនួនធាតុមានទាំងអស់ $C_{7,0}+C_{7,1}+C_{7,2}+C_{7,3}+C_{7,4}+C_{7,5}+C_{7,6}+C_{7,7}=2^7=128$ សំណុំ ។

```
១៧. តាមលក្ខខណ្ឌដែលឲ្យនិងសំណុំដ្យាក្រាមនោះ
      \lim n(A-B) = 42 \Rightarrow a+b = 42...(1)
             n(C-A) = 18 \Rightarrow e+d = 18...(3)
             n(C-B) = 35 \Rightarrow b+d = 35...(4)
             n(B \cap C) = ? \Rightarrow e = ?
                 (1)-(2) \Rightarrow b-c=35....(5)
                 (4) -(5) \Rightarrow c + d = 0
      យើងបានc=0 នឹងd=0
      យកd=0ជំនួស(3) យើងបានe=18 ។
\mathfrak{I} U = \{100, 101, 102, \dots, 1000\}
      ដោយ A_i = \{x \in U \mid តាមលក្ខខណ្ណi រាប់ពីឆ្វេងបំផុតរបស់ x ដែលមានតម្លៃស្នើi
      យើងបានA_1 = \{100, 101, 102, \dots, 199\} \cup \{1000\}
           A_2 = \{120, 121, 122, \dots, 129\}
                  220, 221, 222, ..., 229
                  920,921,922,...,929}
           A_3 = \{103, 113, 123, \dots, 193\}
                  203, 213, 223, ..., 293
                  903,913,923,...,993}
      យើងបានn(A_1) = 101
             n(A_2) = 90
             n(A_3) = 90
      តាម A_1 \cap A_2 = \{120, 121, 122, \dots 129\}
      យើងបាន n(A_1 \cap A_2) = 10
      តាម A_1 \cap A_3 = \{103, 113, 123, \dots, 193\}
      យើងបាន n(A_1 \cap A_3) = 10
      តាម A_2 \cap A_3 = \{123, 223, 323, \dots, 923\}
      យើងបាន n(A_2 \cap A_3) = 9
      តាម A_1 \cap A_2 \cap A_3 = \{123\}
      យើងបាន n(A_1 \cap A_2 \cap A_3) = 1
ដូចនេះ n(A_1 \cap A_2 \cap A_3) = 101 + 90 + 90 - 10 - 10 - 9 + 1 = 253
                                                                          ៗ
```


១. ចំនួនឝឝឝ ចំនួនឝឝសេស និ១លគ្គណ:

១.១. ចំនួនគត់គូ

- *ចំនួនគត់គ្ ឬ ចំនួនគ្ងូ* ជាចំនួនដែលមានរាង 2k ដែល k ជាចំនួនគត់រ៉ឺឡាទីប ។
- *ចំនួនគួ* ជាចំនួនដែលចែកដាច់នឹង 2 ។

ឧទាហរណ៍: ចំនួន \cdots ,-6,-4,-2,0,2,4,6,8,10,12,14, \cdots ជាចំនួនគូ ។

១.២. ចំនួនគត់សេស

- $\emph{\emph{o}}$ $\emph{\emph{o}}$ $\emph{\emph{s}}$ $\emph{\emph{s}}$ $\emph{\emph{s}}$ $\emph{\emph{e}}$ $\emph{\emph{o}}$ \emph
- *ចំនួនគ្* ជាចំនួនដែលចែកមិនដាច់នឹង 2 ។

ឧទាហរណ៍: ចំនួន \cdots ,-5,-3,-1,1,3,5,7,9,11,13,15, \cdots ជាចំនួនគត់សេស ។

១.៣. លទ្ធនោះ

- 1) ផលបូករវាងពីរចំនួនគត់សេស ជាចំនួនគត់គួ ។
- 2) ផលបូករវាងពីរចំនួនគត់គូ ជាចំនួនគត់គូ ។
- 3) ផលបូករវាងចំនួនគត់គូ និងចំនួនគត់សេស ជាចំនួនគត់សេស ។
- 4) ផលគុណរវាងពីរចំនួនគត់សេស ជាចំនួនគត់សេស ។
- 5) ផលគុណរវាងពីរចំនូនគត់ ជាចំនួនគត់គូលុះត្រាតែមានចំនួនគត់មួយយ៉ាងតិចជាចំនួន គត់គូ ។

សម្រាយបញ្ជាត់:

1) ផលបូករវាងពីរចំនួនគត់សេស ជាចំនួនគត់គូ

តាង
$$a=2k_1+1, b=2k_2+1, k_1, k_2\in\mathbb{Z}, (k_1\neq k_2)$$
 គេបាន $a+b=(2k_1+1)+(2k_2+1)$
$$=2(k_1+k_2+1)$$

$$=2k, (k=k_1+k_2+1)\in\mathbb{Z}$$
 ជាចំនួនគត់គួ ។

2) ផលបូករវាងពីរចំនួនគត់គូ ជាចំនួនគត់គូ

តាង
$$a=2k_1,b=2k_2$$
 , $k_1,k_2\in\mathbb{Z}$, $(k_1\neq k_2)$ គេហ្ន $a+b=2k_1+2k_2$
$$=2(k_1+k_2) \quad =2k, (k=k_1+k_2)\in\mathbb{Z}$$
 ជាចំនួនគត់គូ ។

3) ផលបូករវាងចំនួនគត់គូ និងចំនួនគត់សេស ជាចំនួនគត់សេស

តាង
$$a=2k_1,b=2k_2+1,k_1,k_2\in\mathbb{Z}$$
 គេហ្ន $a+b=2k_1+(2k_2+1)$
$$=2(k_1+k_2)+1$$

$$=2k+1,(k=k_1+k_2)\in\mathbb{Z}$$
 ជាចំនួនគត់សេស ។

4) ផលគុណរវាងពីរចំនួនគត់សេស ជាចំនួនគត់សេស

តាង
$$a=2k_1+1, b=2k_2+1, k_1, k_2\in\mathbb{Z}$$
 គេហ្ន $a\times b=(2k_1+1)(2k_2+1)$
$$=2(2k_1k_2+k_1+k_2)+1$$

$$=2k+1, (k=2k_1k_2+k_1+k_2)\in\mathbb{Z}$$
 ជាចំនួនគត់សេស ។

5) ផលគុណរវាងពីរចំនូនគត់ជា ចំនួនគត់គូលុះត្រាតែមានចំនូនគត់មួយយ៉ាងតិចជាចំនួន គត់គូ

យើងនឹងបង្ហាញតាមពីរករណីដូចខាងក្រោម:

$$ightarrow$$
 ការណ៍ទី១: តាង $a=2k_1,b=2k_2+1,k_1,k_2\in\mathbb{Z}$ គេហ្ន $a\times b=2k_1(2k_2+1)$
$$=2(2k_1k_2+k_1)$$

$$=2k,(k=2k_1k_2+k_1)\in\mathbb{Z}$$
 ជាចំនួនគត់គួ ។

ightarrow ការណ៍ទី២: តាង $a=2k_1,b=2k_2\,,k_1,k_2\in\mathbb{Z}$ គេហ្ន $a\times b=(2k_1)(2k_2)$ $=2(2k_1k_2)$ $=2k,(k=2k_1k_2)\in\mathbb{Z}$ ជាចំនួនគត់គួ ។

ක. සුජ්යයෙක්

និយមន័យ: ចំនួនគត់ធម្មជាតិ n ជាចំនួនបឋមលុះត្រាតែ n>1 ហើយ n មានតូចែកតែពីរគត់គឺ 1 នឹង n ខ្លួនឯង ។ ករណីផ្សេងពីនេះ គេហៅថាចំនួនមិនបឋម(ចំនួនពហុគុណ) ។

ឧទាហរណ៍: • 2,3,5,7,11,13,17,19,...ជាចំនូនបឋម
• 4,6,8,10,12,14,16,18,...ជាចំនួនមិនបឋម ។

ចំណាំ:

- 1 មិនមែនជាចំនួនបឋម ហើយក៏មិនមែនជាចំនួនមិនបឋមដែរ ។
- 🕨 2 ជាចំនួនបឋមគូតែមួយគត់ ហើយ 2 និង 3 ជាចំនួនគត់តគ្នា ដែលបឋមទាំងពីរ ។

៣. ខំនួន ភាព និខ ដូម

- ចំនួនការេ ជាចំនួនដែលមានរាង $k^2, k \in \mathbb{Z}$ ។
- ចំនួនគូប ជាចំនួនដែលមានរាង $k^3, k \in \mathbb{Z}$ ។

ឧទាហរណ៍: - 121ជាចំនួនការេ ព្រោះ $121 = (-11)^2$ ឬ $121 = 11^2$ ។

- 125 ជាចំនួនគូប ព្រោះ125 = 5³ ។

ចំណាំ:

- ចំនួនការមោន 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324, 361,400,441,484,529,576,625,...ជាចំនួនការរ ឬចំនួនការរុប្រាកដ។
- ចំនួនគូបមាន···,-125,-64,-27,-1,0,1,27,64,125,216,343,512,729,1000,1331, 1728,2197,2744,3375,···ជាចំនួនគូប ។

៤. លង្គនោះនៃស្វ័យគុណ

បើa និងb ជាចំនួនវិជ្ជមាន ដែល $a \neq 1, b \neq 1$ និង $m, n \in \mathbb{R}$ គេបាន

$$1) \ a^m \times a^n = a^{m+n}$$

2)
$$\frac{a^m}{a^n} = a^{m-n}$$

$$3) (a^m)^n = a^{m \times n}$$

4)
$$(a \times b)^n = a^n \times b^n$$

$$5) \ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

6)
$$a^0 = 1$$

7)
$$\frac{1}{a^{-n}} = a^n$$

8)
$$a^{-n} = \frac{1}{a^n}$$

9)
$$\sqrt{a} = a^{\frac{1}{2}}$$

10)
$$\sqrt[n]{a^m} = a^{\frac{m}{n}}, n \ge 2$$

11)
$$\sqrt[n]{a} = a^{\frac{1}{n}}, n \ge 2$$

12)
$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}}, n \ge 2$$

13)
$$\sqrt[n]{a \times b} = \sqrt[n]{a} \times \sqrt[n]{b}, n \ge 2$$

14)
$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[m \times n]{a}, m \ge 2, n \ge 2$$

15)
$$\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}, n \ge 2, k > 0$$

$$16) \ \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, n \ge 2$$

ស្សសាធាន ដំ

1)
$$a^m \times a^n = a^{m+n}$$

គេមាន

$$a^{m} \times a^{n} = (\underbrace{a \times a \times \dots \times a}_{m}) \times (\underbrace{a \times a \times \dots \times a}_{n}) = (\underbrace{a \times a \times \dots \times a}_{m+n} \times a \times a \times \dots \times a) = a^{m+n}$$

2)
$$\frac{a^{m}}{a^{n}} = a^{m-n}$$

គេមាន

$$\frac{a^{m}}{a^{n}} = \underbrace{\frac{\cancel{a} \times \cancel{a} \times \dots \times a}{\cancel{m}}}_{\cancel{a} \times \cancel{a} \times \dots \times a} = \underbrace{a \times a \times \dots \times a}_{m-n} = a^{m-n} \quad \gamma$$

3) $(a^m)^n = a^{m \times n}$

គេមាន

$$(a^m)^n = (\underbrace{a^m \times a^m \times \dots \times a^m}_n) = a^{\frac{m+m+\dots+m}{n}} = a^{m \times n}$$
 1

4)
$$(a \times b)^n = a^n \times b^n$$

គេមាន

$$(a \times b)^n = \underbrace{(a \times b)(a \times b) \cdots (a \times b)}_n = \underbrace{(a \times a \times \cdots \times a)}_n \underbrace{(b \times b \times \cdots \times b)}_n = a^n \times b^n \quad \gamma$$

$$5) \ \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

គេមាន

$$\left(\frac{a}{b}\right)^{n} = \underbrace{\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)\cdots\left(\frac{a}{b}\right)}_{n} = \underbrace{\underbrace{\frac{a \times a \times \cdots \times a}{b \times b \times \cdots \times b}}_{n}}_{n} = \underbrace{\frac{a^{n}}{b^{n}}}_{n} \quad \gamma$$

6)
$$a^0 = 1$$

គេមាន

$$\frac{a^n}{a^n} = 1$$
 និង $\frac{a^n}{a^n} = a^{n-n} = a^0$ នាំឲ្យ $a^0 = 1$ ។

7) $\frac{1}{a^{-n}} = a^n$

គេមាន

$$\frac{1}{a^{-n}} = \frac{a^0}{a^{-n}} = a^{0-(-n)} = a^n \quad \Im$$

8)
$$a^{-n} = \frac{1}{a^n}$$

គេមាន

$$a^{-n} = \frac{a^{-n} \times a^n}{a^n} = \frac{a^{-n+n}}{a^n} = \frac{a^0}{a^n} = \frac{1}{a^n}$$
 1

9)
$$\sqrt{a} = a^{\frac{1}{2}}$$

គេមាន

 $\sqrt{a}\times\sqrt{a}=(\sqrt{a})^2=a=a^{\frac{1}{2}}\times a^{\frac{1}{2}}\Leftrightarrow \sqrt{a}\times\sqrt{a}=a^{\frac{1}{2}}\times a^{\frac{1}{2}} \quad \text{ ជ្ចឹមកត្តានឹងកត្តានៃអង្គទាំងពីរ របស់សមភាព នាំឲ្យ <math>\sqrt{a}=a^{\frac{1}{2}}$ ។

$$10) \sqrt[n]{a^m} = a^{\frac{m}{n}}, n \ge 2$$

គេមាន

សមភាពនាំឲ្យ $\sqrt[n]{a^m} = a^{\frac{m}{n}}$ ។

11)
$$\sqrt[n]{a} = a^{\frac{1}{n}}, n \ge 2$$

តាមលក្ខណ:ទី(10) បើm=1នាំឲ្យ $\sqrt[n]{a^m}=a^{\frac{m}{n}}$ ទៅជា $\sqrt[n]{a}=a^{\frac{1}{n}}$ ។

12)
$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}}, n \ge 2$$

គេមាន

$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}}$$
 តាមលក្ខណៈ(8) និង $\frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}}$ តាមលក្ខណៈ(10) នាំឲ្យ $a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{a^m}}$ ។

13)
$$\sqrt[n]{a \times b} = \sqrt[n]{a} \times \sqrt[n]{b}, n \ge 2$$

គេមាន

$$\sqrt[n]{a \times b} = (a \times b)^{\frac{1}{n}} = a^{\frac{1}{n}} \times b^{\frac{1}{n}} = \sqrt[n]{a} \times \sqrt[n]{b}$$
 តាមលក្ខណ:(4),(11) នាំឲ្យ $\sqrt[n]{a \times b} = \sqrt[n]{a} \times \sqrt[n]{b}$ ។ 14) $\sqrt[n]{\sqrt[n]{a}} = \sqrt[n \times \sqrt[n]{a}, m \ge 2, n \ge 2$

គេមាន

$$\sqrt[n]{\sqrt[m]{a}} = \left(\sqrt[m]{a}\right)^{\frac{1}{n}} = \left(a^{\frac{1}{m}}\right)^{\frac{1}{n}} = a^{\frac{1}{m} \cdot \frac{1}{n}} = a^{\frac{1}{mm}} = \sqrt[mn]{a}$$
 តាមលក្ខណៈ(3),(11) នាំឲ្យ $\sqrt[n]{\sqrt[m]{a}} = \sqrt[mn]{a}$ ។

15)
$$\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}, n \ge 2, k > 0$$

គេមាន

$$\sqrt[nk]{a^{mk}} = a^{rac{mk}{nk}} = a^{rac{m}{n}} = \sqrt[n]{a^m}$$
 ទាំម្បា $\sqrt[nk]{a^{mk}} = \sqrt[n]{a^m}$ ។

16)
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}, n \ge 2$$

គេមាន

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{\frac{1}{b^{\frac{1}{n}}}} = \left(\frac{a}{b}\right)^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ sign} \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \text{ sign}$$

ឧទាហរណ៍: សម្រួលកន្សោម
$$\frac{\sqrt[3]{a^4} + \sqrt[3]{a^2b^2} + \sqrt[3]{b^4}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}}$$

គេមាន

$$\begin{split} \frac{\sqrt[3]{a^4} + \sqrt[3]{a^2b^2} + \sqrt[3]{b^4}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}} &= \frac{(\sqrt[3]{a^2})^2 + 2\sqrt[3]{a^2b^2} + (\sqrt[3]{b^2})^2 - \sqrt[3]{a^2b^2}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}} \\ &= \frac{(\sqrt[3]{a^2} + \sqrt[3]{b^2})^2 - (\sqrt[3]{ab})^2}{(\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2})} \\ &= \frac{(\sqrt[3]{a^2} + \sqrt[3]{b^2})^2 - \sqrt[3]{ab})(\sqrt[3]{a^2} + \sqrt[3]{b^2} + \sqrt[3]{ab})}{(\sqrt[3]{a^2} + \sqrt[3]{b^2} + \sqrt[3]{ab})} \\ &= (\sqrt[3]{a^2} + \sqrt[3]{b^2} - \sqrt[3]{ab}) \end{split}$$

ដូច្នេះ
$$\frac{\sqrt[3]{a^4} + \sqrt[3]{a^2b^2} + \sqrt[3]{b^4}}{\sqrt[3]{a^2} + \sqrt[3]{ab} + \sqrt[3]{b^2}} = (\sqrt[3]{a^2} + \sqrt[3]{b^2} - \sqrt[3]{ab})$$
 ។

៥. គោលភារស៍នៃទ្រព័ន្ធរបាច់

&.9. බ්පාන්ජා(Definition)

ប្រព័ន្ធរបាប់ ជាសំណុំនៃការសន្មតទាំងអស់ដែលសម្រាប់សរសេរចំនួនគត់ ។ គេនឹងសិក្សា អំពីតារាងចំនួនគត់ធម្មជាតិ ដោយចំនួនរាប់អស់នៃសញ្ញា ដែលហៅថា *លេខ* ។

៥. ක.කෙහ (Base)

ස්. ක. නිසා සන්ජා (Definition)

គោល នៃប្រព័ន្ធរបាប់ជាចំនូនលេខដែលប្រើក្នុងប្រព័ន្ធនោះ ។ ក្នុងប្រព័ន្ធរបាប់គោលx ដែល x ជាចំនូនគត់ធំជាង 1 គេប្រើ x លេខ គឺ $0,1,2,3,4,\cdots,x-1$ ។

សម្គាល់: គេតាងចំនួនគត់ធម្មជាតិដែលតូចជាងគោលដោយលេខតែមួយគត់ ។

- *ប្រព័ន្ធរបាប់គោលពីរ:* ប្រើលេខ 0 និង 1 ដែលតាងឲ្យចំនួន ស្ងន្យ និង មួយ ។
- *ប្រព័ន្ធរបាប់គោលដប់:* ប្រើលេខ 0,1,2,3,4,5,6,7,8,9 ដែលតាងឲ្យចំនួន សូន្យ មួយ ពីរ បី បូន ប្រាំ ប្រាំមួយ ប្រាំពីរ ប្រាំបី ប្រាំបូន ។
- *ប្រព័ន្ធរបាប់គោលដប់ពីរ:* ប្រើលេខ 0,1,2,3,4,5,6,7,8,9,*A,B* ដែលតាងឲ្យចំនួន ស្ងន្យ មួយ ពីរ បី បួន ប្រាំ ប្រាំមួយ ប្រាំពីរ ប្រាំបី ប្រាំបួន ដប់ ដប់មួយ ។

៥.២.២. គារសរសេរមួយចំនួននៅគួចប្រព័ន្ធគោល X

អក្ថិភាព.ក្នុងប្រព័ន្ធរបាប់គោលx គេប្រើលេខ $0,1,2,3,4,\cdots,x-1$ ដែល $0<1<2<\cdots< x-1$ ។ គេឲ្យ N ជាចំនូនគត់ធម្មជាតិ ៖

- បើ N < x នោះ N តាងលេខមួយក្នុងបណ្តាលេខខាងលើ ។
- បើ $N \geq x$ គេចែក N និង x គេបាន $\begin{cases} N = xq_1 + r_0 \\ 0 \leq r_0 < x \end{cases}$ និង $q_1 \geq 1$
- បើ $q_1 \! < \! x$ នោះ q_1 តាងឲ្យចំនូនមួយក្នុងបណ្ដាចំនូនខាងលើ ហើយសន្មតសរសេរ N ដោយ $N = \overline{q_1 r_0}$

- បើ $q_1 \geq x$ គេប៊ែក q_1 និង x គេហ៊ុន $\left\{ egin{align*} q_1 = xq_2 + r_1 \\ 0 \leq r_1 < x \end{array}
 ight.$ និង $q_2 \geq 1$
- បើ $q_2 \! < \! x$ នោះ q_2 តាងឲ្យចំនួនមួយក្នុងបណ្ដាចំនួនខាងលើ ហើយសន្មតសរសេរ N ដោយ $N = \overline{q_1 r_1 r_0}$
- បើ $q_2 {\geq} x$ គេធ្វើរបៀបនេះដដែលៗ គេបាន

$$\begin{array}{c} \cdot N = xq_1 + r_0 \quad , \quad 0 \leq r_0 < x \quad , \quad q_1 \geq x \\ q_1 = xq_2 + r_1 \quad , \quad 0 \leq r_1 < x \quad , \quad q_2 \geq x \\ q_2 = xq_3 + r_2 \quad , \quad 0 \leq r_2 < x \quad , \quad q_3 \geq x \\ \end{array}$$

$$\begin{array}{c} N = xq_1 + r_0 \quad , \quad 0 \leq r_0 < x \quad , \quad q_1 \geq x \\ xq_1 = x^2q_2 + xr_1 \quad , \quad 0 \leq r_1 < x \quad , \quad q_2 \geq x \\ x^2q_2 = x^3q_3 + x^2r_2 \quad , \quad 0 \leq r_2 < x \quad , \quad q_3 \geq x \\ \end{array}$$

$$\begin{array}{c} x^{-1}q_{n-1} = x^nq_n + x^{n-1}r_{n-1}, 0 \leq r_{n-1} < x, 1 \leq q_{n-1} < x \\ N = q_n x^n + r_{n-1} x^{n-1} + \cdots + r_2 x^2 + r_1 x + r_0 \end{array}$$
 if $N = q_n x^n + r_{n-1} x^{n-1} + \cdots + r_2 x^2 + r_1 x + r_0$ if $N = q_n r_{n-1} r_{n-2} \cdots r_2 r_1 r_0$

សម្គាល់: បើគ្មានការច្រឡំនឹងវិធីគុណ គេអាចសរសេរ N ដោយ $N=q_n r_{n-1} r_{n-2} \cdots r_2 r_1 r_0$ ។ **ឧទាហរណ៍១:** ក្នុងប្រព័ន្ធគោល 10 ចំនួន $2135=2\times 10^3+1\times 10^2+3\times 10+5$ ។ **ឧទាហរណ៍២:** ក្នុងប្រព័ន្ធគោល 2 ចំនួន

$$1101001 = 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2 + 1$$
 1

ಜಿ.២.៣.ស្វ័យគុណគោលx :

គេមាន
$$x^1 = 1 \times x + 0 = \overline{10}$$

 $x^2 = 1 \times x^2 + 0 \times x + 0 = \overline{100}$
 $x^3 = 1 \times x^3 + 0 \times x^2 + 0 \times x + 0 = \overline{1000}$

ជាទូទៅ: $x^n = 1 \times x^n + 0 \times x^{n-1} + 0 \times x^{n-2} + \dots + 0 \times x + 0 = 1 \underbrace{00 \dots 0}_{n}$ ។

សម្គាល់: គេសរសេរ $(N)_x$ តាងឲ្យចំនូន N ដែលសរសេរក្នុងប្រព័ន្ធគោល x ហើយ x សរសេរ ក្នុងប្រព័ន្ធគោល10 ។ ក្នុងប្រព័ន្ធគោល10គេអាចមិនបាច់សរសេរគោលក៏បាន ។

i. សរសេរមួយចំនួនពីប្រព័ន្ធគោល $oldsymbol{x}$ ទៅជាចំនួននៃប្រព័ន្ធគោល $oldsymbol{10}$:

ឧទាហរណ៍១: សរសេរក្នុងប្រព័ន្ធគោល
$$10$$
 នូវចំនួន $N=(25107)_8$ ក្នុងប្រព័ន្ធគោល 10 គេបាន $N=2\times 8^4+5\times 8^3+1\times 8^2+0\times 8+7=10823$ ។ **ឧទាហរណ៍២:** សរសេរក្នុងប្រព័ន្ធគោល 10 នូវចំនួន $N=(2E3D0A)_{16}$ ក្នុងប្រព័ន្ធគោល 10 គេបាន $N=2\times 16^5+E\times 16^4+3\times 16^3+D\times 16^2+0\times 16+A$ $N=2\times 16^5+14\times 16^4+3\times 16^3+13\times 16^2+0\times 16+10=3030282$ ។

សរសេរមួយចំនួនពីប្រព័ន្ធគោល10 ទៅជាចំនួននៃប្រព័ន្ធគោលx:

ឧទាហរណ៍១: សរសេរក្នុងប្រព័ន្ធគោល 2 នូវចំនូន N=25

គេមាន
$$25 \mid 2$$
 $1 \mid 12 \mid 2$
 $0 \mid 6 \mid 2$
 $0 \mid 3 \mid 2$
 $1 \mid 1$
កង្ហប់ព័ន្ធគោល2 គេបាន $N = 0$

ក្នុងប្រព័ន្ធគោល2គេបាន $\stackrel{'}{N}$ = $(11001)_2$ ។

ឧទាហរណ៍២: សរសេរក្នុងប្រព័ន្ធគោល8នូវចំនួន N=2748

គេមាន

គោល10	ត្ចូចែក	សំណល់	
2748 343 42 5 0	8 8 8 8	4 7 2 5	

ក្នុងប្រព័ន្ធគោល8គេបាន $N = (5274)_8$ ។

iii. សរសេរមួយចំនួនពីប្រព័ន្ធគោលx ទៅជាចំនួននៃប្រព័ន្ធគោល x^{\prime} :

គេត្រូវសរសេរចំនួនក្នុងប្រព័ន្ធគោលx ទៅជាចំនួនក្នុងនៃប្រព័ន្ធគោល $10\,$ សិន រួចទើបបន្តសរ សេរចំនួននេះក្នុងប្រព័ន្ធ x' ។

ឧទាហរណ៍១: សរសេរក្នុងប្រព័ន្ធគោល 2 នូវចំនូន $N=(37)_8$

ក្នុងប្រព័ន្ធគោល10គេបាន $N=3\times 8+7=31$

គេមាន

ក្នុងប្រព័ន្ធគោល 2 គេបាន $N = (11111)_2$ ។

ឧទាហរណ៍២: សរសេរក្នុងប្រព័ន្ធគោល $8\,$ នូវចំនួន $N=(ABC)_{16}$

ក្នុងប្រព័ន្ធគោល10គេបាន $N=A \times 16^2 + B \times 16 + C = 10 \times 16^2 + 11 \times 16 + 12 = 2748$

ក្នុងប្រព័ន្ធគោល8គេបាន $\stackrel{\cdot}{N}=(5274)_8$ ។

iv. វិធីងាយដើម្បីបំលែងចំនួនពីប្រព័ន្ធគោល២ទៅជាប្រព័ន្ធគោល៨

ដោយ $8=2^3$ គេអាចប្រើតារាងខាងក្រោមដើម្បីបំលែងពីចំនូនក្នុងប្រព័ន្ធគោល 2 ទៅជាចំនូន ក្នុងប្រព័ន្ធគោល8:

គោល2 (Binary Number)	គោល8 (Octal Number)		
000	0		
001	1		
010	2		
011	3		
100	4		
101	5		
110	6		
111	7		

ជំហានទី១: ចែកបណ្ដុំលេខរបស់ Binary Number ជាក្រុមដែលមានបីលេខ ពីស្ដាំទៅឆ្វេង ។

ជំហានទី២: ប្រើការបំបែកតាមតារាងខាងលើ ។

ឧទាហរណ៍: សរសេវក្នុងប្រព័ន្ធគោល8ន្ធវចំន្ទន $N = (110011111010)_2$

គេចែក N ជាក្រុមដែលមាន 3 លេខ $110\,011\,111\,010$

គេហ្ន $N = (6372)_8$ ។

v. វិធីងាយដើម្បីបំលែងចំនួនពីប្រព័ន្ធរបាប់គោល៨ទៅជាប្រព័ន្ធរបាប់គោល២

ដោយ $8=2^3$ គេអាចប្រើតារាខាងលើដើម្បីបំលែងពីចំនូនក្នុងប្រព័ន្ធគោល8 ទៅជាចំនូនក្នុង ប្រព័ន្ធគោល2 ។

ឧទាហរណ៍: សរសេរក្នុងប្រព័ន្ធគោល 2 នូវចំនូន $N=(5321)_8$

គេបំលែងលេខនៃ N ជាក្រុមដែលមាន 3 លេខក្នុងប្រព័ន្ធគោល២: $5\ 3\ 2\ 1$

101 011 010 001

គេហ្ន $S N = (101011010001)_2$ ។

vi. វិធីងាយដើម្បីបំលែងចំនួនពីប្រព័ន្ធរបាប់គោល២ទៅប្រព័ន្ធរបាប់គោល១៦

ដោយ16=2 គេអាចប្រើតារាងខាងក្រោមដើម្បីបំលែងពីចំនូនក្នុងប្រព័ន្ធគោល2 ទៅជា ចំនួនក្នុងប្រព័ន្ធគោល16

គោល២	គោល១៦	គោល២	គោល១៦
(BinaryNumber)	Number) (HexadecimalNumber) (BinaryNumber)		(Hexadecimal Number)
0000	0	1000	8
0001	1	1001	9
0010	2	1010	A
0011	3	1011	В
0100	4	1100	С
0101	5	1101	D
0110	6	1110	Е
0111	7	1111	F

ជំហានទី១: ចែកបណ្ដុំលេខរបស់ Binary Number ជាក្រុមដែលមានបូនលេខ ពីស្ដាំទៅឆ្វេង ។

ជំហានទី២: ប្រើការបំលែងតាមតារាងខាងលើ ។

ឧទាហរណ៍: សរសេរក្នុងប្រព័ន្ធគោល16នូវចំនូន $N=(11001111101011)_2$ គេចែក N ជាក្រុមដែលមាន 4 លេខ: $11\,0011\,1110\,1011$ គេបាន $N=(33EB)_{16}$ ។

vii. វិធីងាយដើម្បីបំលែងចំនួនពីប្រព័ន្ធរបាប់គោល១៦ទៅប្រព័ន្ធរបាប់គោល២

ដោយ16=2⁴ គេអាចប្រើតារាងខាងលើដើម្បីបំលែងពីចំនូនក្នុងប្រព័ន្ធគោល16ទៅជាចំនូន ក្នុងប្រព័ន្ធគោល2 ។

ឧទាហរណ៍: សរសេរក្នុងប្រព័ន្ធគោល 2 នូវចំនួន $N=(5AE9)_{16}$ គេបំលែងលេខនៃ N ជាក្រុមដែលមាន 4 លេខក្នុងប្រព័ន្ធគោល២: 5 A E 9 គេបាន $N=(101101011101001)_2$ ។

සීළිශාඥපු-ෳී.ඪ්.ෳී

ចំពោះគ្រប់ប្រព័ន្ធគោលx គេធ្វើប្រមាណវិធីដូចក្នុងប្រព័ន្ធគោល10ដែរ ដោយប្រើតារាងនៃ ប្រមាណវិធីបូកនិងប្រមាណវិធីគុណក្នុងគោលx នេះ ។

ឧទាហរណ៍: ក្នុងប្រព័ន្ធគោល 5 គេធ្វើប្រមាណវិធីដោយផ្អែកលើតារាងដោយប្រើតារាងនៃប្រមាណ វិធីបូក និងប្រមាណវិធីគុណដូចខាងក្រោម:

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	10
2	2	3	4	10	11
3	3	4	10	11	12
4	4	10	11	12	13

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	11	13
3	0	3	11	14	22
4	0	4	13	22	31

${f b}$. នាពុខែគល់ខុំគូខ ${\Bbb Z}$

៦.១. බ්යා සහ (Definition):

គេឲ្យពីរចំនួនគត់ a និង b , $b \neq 0$ ។ គេថា a ចែកដាច់នឹង b មាននិមិត្តសញ្ញា a
div b ហុះ ត្រាតែមានចំនួនគត់ k ដែល a = bk នោះគេថា a ជាពហុគុណនៃ b ឬ គេថា b ជាតូចែកនៃ a ឬ b ចែកដាច់ a ។

គេកំណត់សរសេរ $b \mid a$ អានថា b ចែកដាច់ a ។

ಶಿ.ಅ. ಜಕ್ಷಣು:ಪಣ್ಣಣ ಡಿ.ರೆ

តាង a,b និង c ជាចំនួនគត់រ៉ឺឡាទីប ។គេមានលក្ខណៈគ្រឹះដូចខាងក្រោម៖

- 1) $a \mid a \mid \gamma$
- 2) បើ b|a និង a|c នោះ b|c ។
- 3) បើ $b \mid a$ និង $a \neq 0$ នោះ $|a| \ge |b|$ ។
- 4) បើ $b \mid a$ និង $b \mid c$ នោះ $b \mid a\alpha + c\beta$ គ្រប់ចំនួនគត់រ៉ឺឡាទីប α, β ។
- 5) បើ b|a និង $b|a\pm c$ នោះ b|c ។
- 6) បើ $b \mid a$ និង $a \mid b$ នោះ |a| = |b| ។

- 7) បើ $b \mid a$ និង $a \neq 0$ នោះ $\frac{a}{b} \mid a$ ។
- 8) បើ $c \neq 0, b \mid a$ លុះត្រាតែ $bc \mid ac$ ។

សម្រាយបញ្ជាត់:

- 1) $a \mid a$ $\forall a \in \mathbb{Z} : a \mid a \text{ sim: } \forall a \in \mathbb{Z}, \exists k = 1 \in \mathbb{Z} : a = ka \Leftrightarrow a \mid a \text{ } \exists$

ដូច្នេះ b|a និង a|c នោះ b|c ។

3) បើ $b \mid a$ និង $a \neq 0$ នោះ $|a| \geq |b|$ បើ $b \mid a$ នាំឲ្យយើងមាន $k \in \mathbb{Z}$ ដែល a = bk ហើយដោយសារតែ $a \neq 0$ នោះ $|k| \geq 1$ នាំឲ្យ $|a| = |bk| = |b| \cdot |k| \geq |b|$ ។

ជ្លូ ច្នេះ $b \mid a$ និង $a \neq 0$ នោះ $|a| \geq |b|$ ។

4) បើ $b \mid a$ និង $b \mid c$ នោះ $b \mid a\alpha + c\beta$ គ្រប់ចំនួនគត់រឺឡាទីប α, β បើ $b \mid a$ និង $a \mid c$ នាំឲ្យយើងមាន $k_1, k_2 \in \mathbb{Z}$ ដែល $a = bk_1$ និង $c = bk_2, \forall \alpha, \beta \in \mathbb{Z}$ គេហាន $a\alpha + c\beta = bk_1\alpha + bk_2\beta$

$$=b(\alpha k_1 + \beta k_2)$$

ដូច្នេះ $b \mid a$ និង $b \mid c$ នោះ $b \mid a\alpha + c\beta$ គ្រប់ចំនួនគត់រ៉ឺឡាទីប α, β ។

5) បើ b|a និង $b|a\pm c$ នោះ b|c បើ b|a និង $b|a\pm c$ នាំឲ្យយើងមាន $k_1,k_2\in\mathbb{Z}$ ដែល $a=bk_1$ និង $a\pm c=bk_2$ គេហាន $a\pm c=bk_2\Rightarrow \pm c=bk_2-a$

$$=bk_2-bk_1$$
$$=b(k_2-k_1)$$

ជូច្នេះ b | a និង $b | a \pm c$ នោះ b | c ។

6) បើ $b \mid a$ និង $a \mid b$ នោះ |a| = |b| បើ $b \mid a$ នោះ $|a| \ge |b|$ និង $a \mid b$ នោះ $|b| \ge |a| \Rightarrow |a| \ge |b| \ge |a| \Rightarrow |a| = |b|$ ។ ដូច្នេះ $b \mid a$ និង $a \mid b$ នោះ |a| = |b| ។

7) បើ $b \mid a$ និង $a \neq 0$ នោះ $\frac{a}{b} \mid a$ បើ $b \mid a$ នាំឲ្យយើងមាន $k \in \mathbb{Z}$ និង $k \neq 0$ ដែល $a = bk \Rightarrow \frac{a}{b} = k$ ហើយ $k \mid a \Rightarrow \frac{a}{b} \mid a$ ។ ដូច្នេះ $b \mid a$ និង $a \neq 0$ នោះ $\frac{a}{b} \mid a$ ។

8) ចំពោះ $c \neq 0, b \mid a$ លុះត្រាតែ $bc \mid ac$ ដោយ $c \neq 0, a \neq 0 \Rightarrow ac \neq 0$ បើ $b \mid a$ នាំឲ្យយើងមាន $k \in \mathbb{Z}, k \neq 0$ ដែល $a = bk \Leftrightarrow ac = bck \Rightarrow ac \mid bc$ ។ បើ $bc \mid ac$ នាំឲ្យយើងមាន $k' \in \mathbb{Z}, K' \neq 0$ ដែល $ac = k'bc \Rightarrow a = k'b$ នាំឲ្យ $b \mid a$ ។ ដូច្នេះ ចំពោះ $c \neq 0, b \mid a$ លុះត្រាតែ $ac \mid bc$ ។

៧. ទិឆីខែតមែមអ៊ីគ្លីគ

බ. ව. බ්ජාන්ජ්ර (Definition)

ឧទាហរណ៍: - ចំនូន 65×22<1473<65×23 គេឃើញថា 1473=65×22+43 នេះមានន័យថា ការចែក 1473 និង 65 ឲ្យផលចែក 22 និង សំណល់ 43 ។

- ចំនូន $65 \times (-23) < -1473 < 65(-22)$ គេឃើញថា $-1473 = 65 \times (-23) + 22$ នេះ មានន័យថា ការចែក -1473 និង 65 ឲ្យផលចែក -23 និង សំណល់ 22 ។ វិធី ចែករបៀបនេះ ហៅថា *វិធីចែកបែបអឺគ្គីត* ។

និយមន័យ: ធ្វើវិធីចែកបែបអឺគ្លីតនៃចំនូនគត់រ៉ឺឡាទីប a និងចំនូនគត់ធម្មជាតិ b គឺកំណត់ ចំនូនគត់រ៉ឺឡាទីប q និងចំនូនគត់ធម្មជាតិ r ដែល a=bq+r ដោយ $0 \le r < b$ ។ a ហៅថា តំណាំងចែក b ហៅថា តូចែក q ហៅថា ផលចែក និង r ហៅថាសំណល់។

សម្គាល់:

- បើ r=0 នោះ a ជាពហុគុណនៃb ឬ b ចែកដាច់ a ហើយ q ជាផលចែកប្រាកដនៃ a និង b ។ \mathbf{a} ទាហរណ៍: រកផលចែក q និងសំណល់ r ក្នុងវិធីចែកបែបអឺគ្លីតនៃ a និង b ដូចខាងក្រោម:

$$\hat{n}$$
) $a = 569, b = 7$

2)
$$a = -671, b = 6$$

ចម្លើយ:

- កា) ដោយ $569 = 7 \times 81 + 2$ នាំឲ្យ q = 81 និង r = 2
- ខ) ដោយ $-671 = 6 \times (-111) + 5$ នាំឲ្យ q = -81 និង r = 5 ។

ទ្រឹស្តីបទ: បើ a ជាចំនួនគត់រ៉ឺឡាទីប និង b ជាចំនួនគត់ធម្មជាតិ នោះមានចំនួនគត់រ៉ឺឡាទីប q តែមួយគត់ និងចំនួនគត់ធម្មជាតិ r តែមួយគត់ដែល a=bq+r ដោយ $0 \le r < b$ ។

សម្រាយបញ្ជាក់:

បង្ហាញអត្ថិភាពនៃqនិង r

- បើa ជាពហុគុណនៃb ក្នុង $\mathbb Z$ នោះគេបាន a=bq+0, r=0
- បើa មិនមែនជាពហុគុណនៃb ក្នុង $\mathbb Z$ នោះមានពហុគុណនៃb ដែលតូចជាងa និងពហុគុណផ្សេងទៀតនៃb ដែលធំជាងa ។

បើbq និង b(q+1) ដែលតូចជាង និង ធំជាងa នោះគេបាន bq < a < b(q+1) ឬ0 < a - bq < b

តាង r = a - bq គេហ្ន a = bq + rដែល $0 \le r < b$ ។

ullet បង្ហាញពីភាពមានតែមួយគត់នៃ q និង r

បង្ហាញថាមានq,r តែមួយគត់ ដែល $a = bq + r, 0 \le r < b$

ឧបមាថាមានq,r និង $q',r',(q \neq q',r \neq r')$ ដែល $a = bq + r,(0 \leq r < b)$ និង

$$a = bq' + r', (0 \le r' < b)$$

ឧបមាថា r < r'

យើងមានa=bq+r នាំឲ្យr=a-bq និងa=bq'+r' នាំឲ្យr'=a-bq'នោះគេបាន

$$r'-r=b(q-q')$$
 1

ដោយ r'>r គេបាន r'-r>0 ជាពហុគុណនៃb ដែលជាករណីមិនអាចមានព្រោះ $0 \le r < r' < b$ ។ **ឧទាហរណ៍:** ចូររកផលចែក និងសំណល់នៃវិធីចែកបែបអឺគ្លីតរវាង -122 នឹង 19 ។

$$y -122 = -19 \times 6 - 8$$

$$=-6\times19-19+11$$

$$=-7 \times 19 + 11$$

ដូច្នេះ -122 ចែកនឹង 19 បានផលចែក -7 និង សំណល់ 11 ។

៨. នាពសមម្ពស (Modular Arithmetic)

ය්.9. බ්ජාෂන්ජා(Definition)

គេយក a,b និង r ជាចំន្ទូនគត់ដែល $b\neq 0$ ។ គេកំណត់សរសេរ $a\equiv r\pmod b$ អានថា a សមមូល r តាម b មានន័យថា $b\mid a-r$ (b ចែកដាច់ a-r ឬ មានន័យម្យ៉ាងទៀតថា a និង r មានសំណល់ដូចគ្នាពេលចែកជាមួយ b ។

សម្គាល់:

- បើa-r ចែកមិនដាច់នឹង b នោះគេកំណត់សរសេរ $a \not\equiv r \pmod{b}$
- បើ $a \equiv r \pmod{b}$ កាលណា rជាសំណល់នៃវិធីចែករវាង a និង b ។

ຂອາບາເດັ່າ: ຕ. 25 ≡ 3 (mod 11) ຖຸກາ: 25 = 11×2+3

2.
$$17 \equiv 2 \pmod{19}$$
 if $m: 17 = 19 \times 1 - 2$ 1

ಚಿತ್ರ:ಚಾಕ್ಷಚಾ ಚಿ.ಶಿ

- i. $a \equiv a \pmod{b}$
- ii. $a \equiv r \pmod{b}$ Ŝħ $r \equiv s \pmod{b}$ ISI: $a \equiv s \pmod{b}$
- iii. $a \equiv r \pmod{b}$ is: $r \equiv a \pmod{b}$
- iv. ប្រើ $a \equiv r \pmod{b}$ នោះគ្រប់ចំនួនគត់ λ គេបាន $\lambda a \equiv \lambda r \pmod{b}$
- vi. បើ $b \neq 0$ គេបាន $a \equiv r \pmod{b} \Leftrightarrow a$ និង r មានសំណល់ស្មើគ្នាក្នុងវិធីចែកបែបអឺគ្លីតនឹង b
- vii. បើ $a \equiv r \pmod{b}$ នោះគ្រប់ចំនួនគត់ $k \ge 1$ គេបាន $a^k \equiv r^k \pmod{b}$

viii. ប៊ើ $a_1 \equiv r_1 \pmod{b}$ និង $a_2 \equiv r_2 \pmod{b}$ នោះ $a_1 + a_2 \equiv r_1 + r_2 \pmod{b}$

ix. ប៊ើ $a_1 \equiv r_1 \pmod{b}$ និង $a_2 \equiv r_2 \pmod{b}$ នោះ $a_1 - a_2 \equiv r_1 - r_2 \pmod{b}$ ។

សម្រាយមញ្ជាង:

- ii. $a \equiv r \pmod{b}$ និង $r \equiv s \pmod{b}$ នោះ $a \equiv s \pmod{b}$
 ចំពោះ $a \equiv r \pmod{b}, \exists k \in \mathbb{Z}$ ដែល $a = bk_1 + r$ និង $r \equiv s \pmod{b}, \exists k_2 \in \mathbb{Z}$ ដែល

$$r = bk_2 + s$$
 ។ គេបាន

$$=b(k_1+k_2)+s$$

 $a = bk_1 + bk_2 + s$

$$a = bk + s$$
, $k = (k_1 + k_2) \in \mathbb{Z}$

$$\Rightarrow a \equiv s \pmod{b}$$
 1

iii. $a \equiv r \pmod{b}$ Isi: $r \equiv a \pmod{b}$

ចំពោះ $a \equiv r \pmod{b}, \exists k \in \mathbb{Z}$ ដែល $a = bk + r \Rightarrow r = -bk + a$

យ័ក
$$k'=-k \Leftrightarrow r=bk'+a \Rightarrow r \equiv a \pmod{b}$$
 ។

iv. បើ $a \equiv r \pmod{b}$ នោះគ្រប់ចំនួនគត់ λ គេបាន

ចំពោះ $a\equiv r\pmod{b}, \exists k\in\mathbb{Z}$ ដែល a=bk+r គុណអង្គទាំងពីរនឹង $\lambda\in\mathbb{Z}$ គេបាន

$$\lambda a = \lambda (bk + r) \Leftrightarrow \lambda a = b\lambda k + \lambda r$$
 where $k' = \lambda k \in \mathbb{Z}$

$$\Rightarrow \lambda a = bk' + \lambda r \Rightarrow \lambda a \equiv \lambda r \pmod{b}$$
 1

v. េប៊ី $a_1 \equiv r_1 \pmod{b}$ និង $a_2 \equiv r_2 \pmod{b}$ នោះ $a_1 a_2 \equiv r_1 r_2 \pmod{b}$

ចំពោះ $a_1\equiv r_1\pmod b$, $\exists k_1\in\mathbb{Z}\colon a_1=bk_1+r_1$ និង $a_2\equiv r_2\pmod b$, $\exists k_2\in\mathbb{Z}$ ដែល

$$a_2 = bk_2 + r_2$$

$$\Rightarrow a_1 a_2 = (bk_1 + r_1)(bk_2 + r_2)$$

$$=b^2k_1k_2+bk_1r_2+bk_2r_1+r_1r_2$$

$$=b(bk_1k_2+k_1r_2+k_2r_1)+r_1r_2$$
 to \hat{n} $k=(bk_1k_2+k_1r_2+k_2r_1)\in\mathbb{Z}$

vi. បើ $b \neq 0$ គេបាន $a \equiv r \pmod b \Leftrightarrow a$ និង r មានសំណល់ស្មើគ្នានៅក្នុងវិធីចែកបែបអឺ គ្លីតនឹង b ចំពោះ $a \equiv r \pmod b$, $\exists k_1 \in \mathbb{Z} : a = bk_1 + r$ ។ យើងធ្វើវិធីចែកបែបអឺគ្លីតរវាង r និង b គេបាន $r = bk_2 + s$ ដោយ $0 \leq s < b$ ដែល $k_2 \in \mathbb{Z}$ ។ យើងបាន

$$a = bk_1 + bk_2 + s$$

$$a = b(k_1 + k_2) + s$$

$$=bk+s$$
, $k=(k_1+k_2)\in\mathbb{Z}$

 $\Rightarrow a$ និង rមានសំណល់ស្មើគ្នា sក្នុងវិធីចែកបែបអឺគ្លីតនឹង b (1)

បើ a និង r មានសំណល់ស្មើគ្នា s ក្នុងវិធីចែកបែបអឺគ្លីតនឹង b នោះ $a \equiv r \pmod{b}$

ឧបមាឋា
$$\begin{cases} a=bk_1+s \\ r=bk_2+s \end{cases} \Rightarrow a-r=b\left(k_1-k_2\right) \text{ whith } k=\left(k_1+k_2\right) \in \mathbb{Z} \Rightarrow a-r=bk$$

$$\Rightarrow a = bk + r \Rightarrow a \equiv r \pmod{b}$$
 (2)

តាម (1) និង (2) ពិត ។

vii. បើ $a \equiv r \pmod{b}$ នោះគ្រប់ចំនួនគត់ $n \ge 1$ គេបាន $a^n \equiv r^n \pmod{b}$

ចំពោះ $a \equiv r \pmod{b}$, $\exists k' \in \mathbb{Z} : a = bk' + r$ ។ យើងព្ទាន

$$a^{n} = (bk'+r)^{n}$$

$$a^{n} = b^{n}k'^{n} + C_{n}^{1}b^{n-1}k'^{n-1}r + C_{n}^{2}b^{n-2}k'^{n-2}r^{2} + \dots + C_{n}^{n-1}bk'r^{n-1} + r^{n}$$

$$= b(b^{n-1}k'^{n} + C_{n}^{1}b^{n-2}k'^{n-1}r + C_{n}^{2}b^{n-3}k'^{n-2}r^{2} + \dots + C_{n}^{n-1}k'r^{n-1}) + r^{n}$$

$$\text{Wiff} \quad k = (b^{n-1}k'^{n} + C_{n}^{1}b^{n-2}k'^{n-1}r + C_{n}^{2}b^{n-3}k'^{n-2}r^{2} + \dots + C_{n}^{n-1}k'r^{n-1}) \in \mathbb{Z}$$

$$\Rightarrow a^{n} = bk + r^{n} \Rightarrow a^{n} \equiv r^{n} \pmod{b} \text{ I}$$

$$\Rightarrow a_1 + a_2 = (bk_1 + r_1) + (bk_2 + r_2)$$

$$= b(k_1 + k_2) + (r_1 + r_2) \text{ tim } k = (k_1 + k_2) \in \mathbb{Z}$$

$$\Rightarrow a_1 + a_2 = bk + (r_1 + r_2) \Rightarrow a_1 + a_2 \equiv r_1 + r_2 \pmod{b}$$
 \tag{mod}b

ix. ប្រើ $a_1 \equiv r_1 \pmod{b}$ និង $a_2 \equiv r_2 \pmod{b}$ នោះ $a_1 - a_2 \equiv r_1 - r_2 \pmod{b}$ ចំពោះ $a_1 \equiv r_1 \pmod{b}$, $\exists k_1 \in \mathbb{Z} : a_1 = bk_1 + r_1$ និង $a_2 \equiv r_2 \pmod{b}$, $\exists k_2 \in \mathbb{Z}$ ដែល

$$a_2 = bk_2 + r_2$$
 ចំពោះ $a_1 \equiv r_1 \pmod{b}$, $\exists k_1 \in \mathbb{Z} \colon a_1 = bk_1 + r_1$ និង $a_2 \equiv r_2 \pmod{b}$, $\exists k_2 \in \mathbb{Z}$ ដែល $a_2 = bk_2 + r_2$

6.9. តូខែតុរួមនំមំផុត

ឧទាហរណ៍: គណនាតូចែក្សមនៃ12និង18 ។

តូចែករបស់12មាន {2,3,4,6,12} និងតូចែករបស់18មាន {2,3,6,9,18} ។ ដូចនេះ 12និង18 មានតូចែករួម {2,3,6} ។ ក្នុងចំណោមតូចែករួមទាំងនេះ តូចែករួមដែលធំជាងគេគឺ6។ យើង និយាយថា តូចែករួមរវាង12និង18 ស្មើ6 ។ និយមន័យ: បើ $a,b\in\mathbb{Z}$ មិនស្ងន្យទាំងពីរព្រមគ្នា នោះចំនួនគត់ធំបំផុត ដែលចែកa,b ដាច់ ទាំងពីរហៅថា *គូចែក្សមធំបំផុត*របស់a និងb ។គេតាងដោយ (a,b) ឬ PGCD(a,b) ឬ GCD(a,b) ។ **លក្ខណ:**

- i. ប្រើ $d \mid a$ និង $d \mid b$ នោះ $d \mid PGCD(a,b)$
- ii. បើ PGCD(a,b)=1 នោះគេថា a និង b ជាចំនួនបឋមរវាងគ្នា

សម្គាល់: PGCD គឺជាផលគុណកត្តាបឋមរួមដែលមាននិទស្សន្ត៍តូចជាងគេ ។

ឧទាហរណ៍: គណនា PGCD នៃ 30 និង 45

យើងមាន

$$\frac{30 = 2^{0} \times 3^{2} \times 5^{1}}{45 = 2^{1} \times 3^{1} \times 5^{1}} \Rightarrow PGCD(30, 45) = 2^{0} \times 3^{1} \times 5^{1} = 15$$

៩.២. ពេល្ធគុណ្យមគូខចំផុត

ឧទាហរណ៍: គណនាពហុគុណរួមនៃ 2 និង 3

យើងមាន

ពហុគុណនៃ 2 មាន 2,4,6,8,10,12,14,16,18,20,...

ពហុគុណនៃ 8 មាន 3,6,9,12,15,18,21,24,27,...

គេបាន ពហុគុណរួមនៃ 2 និង 3 មាន 6,12,18,···មានច្រើនរាប់មិនអស់ ។ តែពហុគុណរួម ដែលតូចជាងគេគឺ 6 ។

ដូចនេះ ពហុគុណរួមតូចបំផុតនៃ 2 និង 3 ស្មើ 6 ។

និយមន័យ: បើ $a,b\in\mathbb{Z}$ មិនស្វន្យទាំងពីរព្រមគ្នានោះចំនូនគត់វិជ្ជមានតូចបំផុតដែលជាពហុគុណវូមតូចបំផុត នៃa និងb ។ គេតាងដោយ[a,b] ឬ PPCM(a,b) ឬLCM(a,b) ។

លក្ខណ: បើ $a \mid c$ និង $b \mid c$ នោះ $PPCM(a,b) \mid c$ ។

សម្គាល់: PPCM គឺជាផលគុណកត្តាបឋមរួម និងមិនរួមដែលមាននិទស្សន្ត៍ធំជាងគេ ។ ឧទាហរណ៍: គណនាពហុគុណរួមតូចបំផុតនៃ 90 និង 100

យើងមាន

$$\frac{90 = 2^{1} \times 3^{2} \times 5^{1}}{100 = 2^{2} \times 3^{0} \times 5^{2}} \Rightarrow PPCM(90,100) = 2^{2} \times 3^{2} \times 5^{2} = 900$$

ដូចនេះ *PPCM* (90,100) = 900 ។

លំខាន់

- 9. ចូរបង្ហាញថា 7^{2n} -1 ចែកដាច់នឹង 8 ចំពោះគ្រប់ $n \in \mathbb{N}$ ។
- ២. ក) បង្ហាញថា $2^n 9^n$ និង $11^n 4^n$ ចែកដាច់នឹង 7 ចំពោះគ្រប់ $n \in \mathbb{N}$ ។
 - ខ) ទាញបញ្ជាក់ថា $2009 \times 11^n 2010 \times 9^n 2009 \times 4^n + 2010 \times 2^n$ ចែកដាច់នឹង7 ។
- ៣. គេឲ្យ $A=n^4+n^2+1$ ដែលn ជាចំនួនគត់រ៉ឺឡាទីបវិជ្ជមាន ។
 - ក) តើ A អាចជាចំនួនបឋមឫទេ ?
 - ខ) សរសេរ A ជាផលគុណនៃពីរកត្តាដឺក្រេទី 2 នៃ n ។
 - គ) ចូរបង្ហាញថាកត្តាដឺក្រេទី 2 ទាំងពីរនៃ *A* មានតូចែករួមតែមួយគត់គឺ1 ។
- ៤. គេមាន(a,b)=1 ។ចូរបង្ហាញថា $(a^k,b^k)=1$ ចំពោះគ្រប់ $k\in\mathbb{N}$ ។
- ៥. គេឲ្យ $a,b,m\in\mathbb{N}$ និង(a,b)=d ។ចូរគណនា (a^m,b^m) ជាអនុគមន៍នៃd និងm ។
- ៦. ចូរបង្ហាញថា (n,2n+1)=1 ចំពោះគ្រប់ $n\in\mathbb{N}$ ។
- ៧. ចូរបង្ហាញថា $(a,b) = (a,a^2+b) = (a+b,3a+2b)$ ។
- ៨. គេឲ្យសមីការ5x+3y=1នៅក្នុង $\mathbb Z$ ។
 - ក) រកគ្ (x_0,y_0) មួយដែលជាគូចម្លើយនៃសមីការ ។
 - 2) រកគ្រប់គួ $(x,y) \in \mathbb{Z}^2$ ដែលជាចម្លើយនៃសមីការ ។
- ៩. រិក $x, y, z \in \mathbb{Z}$ ដែល 315x + 189y + 357z = 21 ។
- ១០. ចូរបង្ហាញថាចំនួនការេមានរាង4k ឬ4k+1 ។
- 99. ចូរបង្ហាញថា គ្មានចំនួនគត់នៅក្នុងស្វ៊ីត11,111,1111,…ជាចំនួនការេទេ ។
- ១២. ចូរបង្ហាញថា ក្នុងប្រព័ន្ធរបាប់ទាំងអស់ 4.41 សុទ្ធតែជាចំនួនការេនៃចំនួនសនិទាន ។
- ១៣. ចូរបង្ហាញថា បើn សេសនោះ $x^n + y^n$ ចែកដាច់នឹង (x+y) ។
- ១៤. ចូរបង្ហាញថា 1001ចែកដាច់ $1^{1993} + 2^{1993} + 3^{1993} + \cdots + 1000^{1993}$ ។
- ១៥. ចូរបង្ហាញថាចំពោះចំនួនគត់ធម្មជាតិnមួយគេមានចំនួនគត់ធម្មជាតិxមួយទៀត ដែលតូនីមួយៗរបស់ស្វីត $x+1,x^x+1,x^{x^x}+1,\cdots$ ចែកដាច់នឹងn ៗ
- ១៦. គណនាគ្រប់ចំនួនគត់វិជ្ជមានnដែលn+1ចែកដាច់ n^2+1 ។
- ១៧. បើ7 ចែកដាច់3x+2 ។ចូរបង្ហាញថា 7 ចែកដាច់ $15x^2-11x-14$ ។
- ១៨. ចូរបង្ហាញថា ចំពោះគ្រប់ចំនួនគត់*n*
 - ក) $n^3 n$ ចែកដាច់នឹង3 ។
 - 2) $n^5 n$ ប៉ែកដាច់នឹង5 ។
 - គ) n^7-n ប៉ែកដាច់នឹង7 ។
- ១៩. តាងrជាសំណល់នៃវិធីចែក1059,1417,2312 នឹងd>1 ។គណនាd-r ។
- ២០. គណនាសំណល់ពេលចែក $9\times99\times999\times\cdots\times\underbrace{99\cdots9}_{\infty}$ នឹង1000 ។
- ២១. ចូរបង្ហាញថា បើ 2^n-1 ជាចំនួនបឋមនោះnក៏ជាចំនួនបឋមដែរ ។

២២. ចូរកំណត់គ្រប់ចំនួនបឋមដែលមានរាង n^3-1 ចំពោះចំនួនគត់n>1 ។

២៣. ច្ចុរកំណត់គ្រប់ចំនួន $n \ge 1$ ដែល $n^4 + 4^n$ ជាចំនួនបឋម ។

២៤. ចូរបង្ហាញថាចំពោះ x=1, x=2, x=3 ប្រភាគ $\frac{36x+25}{20x}$ ជាប្រភាគសម្រួលមិនបាន ។

២៥. រកចំនូនគត់ធម្មជាតិn ដែលនាំឲ្យប្រភាគ $rac{n^2+n+6}{n+1}$ ក្លាយទៅជាចំនួនគត់វិជ្ជមាន ។

ខម្លើយ

9. បង្ហាញថា $7^{2n} - 1$ ចែកដាច់នឹង 8

របៀបទី១:

យើងមាន

$$7^{2^n} - 1 = (7^2)^n - 1 = 49^n - 1, \forall n \in \mathbb{N}$$

តាមរូបមន្ត $a^n - 1 = (a - 1)(a^{n-1} + a^{n-2} + \dots + 1)$
គេហ៊ុន $49^n - 1 = (49 - 1)(49^{n-1} + 49^{n-2} + \dots + 1)$

$$49^n - 1 = 48k$$
 ដែល $k = 49^{n-1} + 49^{n-2} + \dots + 1$

ដោយ 48k ចែកដាច់នឹង8បុ8|48k

ដូចនេះ $7^{2n}-1$ ចែកដាច់នឹង $8, \forall n \in \mathbb{N}$ ។

របៀបទី២:

ចំពោះ n=1 គេបាន $7^2-1=49-1=48=8\times 6$ (ចែកដាច់នឹង 8)ពិត ឧបមាឋាវាពិតរហូតដល់ n=k គេបាន $7^{2k}-1$ ចែកដាច់នឹង 8 បានន័យថាមាន $q\in\mathbb{N}$ ដែល

$$7^{2k} - 1 = 8a$$

យើងនឹងបង្ហាញថា វាពិតរហូតដល់n=k+1 គេបាន

$$7^{2(k+1)} - 1 = 7^{2k+2} - 1 = 7^2 7^{2k} - 1 = 49 \times 7^{2k} - 1 = 48 \times 7^{2k} + 7^{2k} - 1$$
 $7^{2(k+1)} - 1 = 8 \times 6 \times 7^{2k} + 8q$ ព្រោះ $7^{2k} - 1 = 8q$
 $7^{2(k+1)} - 1 = 8(6 \times 7^{2k} + q)$ នេះបញ្ជាក់ថា $7^{2(k+1)} - 1$ ចែកដាច់នឹង 8

ដេចនេះ $7^{2n}-1$ ចែកដាច់នឹង $8, \forall n \in \mathbb{N}$ ។

២. ក) បង្ហាញថា $2^n - 9^n$ និង $11^n - 4^n$ ចែកដាច់នឹង7 ចំពោះគ្រប់ $n \in \mathbb{N}$

• $\ddot{\mathbf{g}}$ im: $2^n - 9^n$

តាមរូបមន្ត
$$a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+b^{n-1})$$
 គេហ្ន $2^n-9^n=(2-9)(2^{n-1}+2^{n-2}9+2^{n-3}9^2+\cdots+9^{n-1})$
$$=-7\times q, q=(2^{n-1}+2^{n-2}9+2^{n-3}9^2+\cdots+9^{n-1})$$

$$2^n - 9^n = -7q$$

• $\ddot{\mathfrak{v}}$ \mathfrak{m} : $11^n - 4^n$

យើងបាន

$$11^n - 4^n = (11 - 4)(11^{n-1} + 11^{n-2}4 + 11^{n-3}4^2 + \dots + 4^{n-1})$$

= $7 \times q$ ដែល $q' = 11^{n-1} + 11^{n-2}4 + 11^{n-3}4^2 + \dots + 4^{n-1}$

$$11^n - 4^n = 7 \times q' \tag{2}$$

តាម(1) និង(2) នាំឲ្យ 2ⁿ – 9ⁿ និង11ⁿ – 4ⁿ ចែកដាច់នឹង7 ។

ដូចនេះ $2^n - 9^n$ និង $11^n - 4^n$ ចែកដាច់នឹង 7 ចំពោះគ្រប់ $n \in \mathbb{N}$ ។

ខ) ទាញបញ្ជាក់ថា $2009 \times 11^n - 2010 \times 9^n - 2009 \times 4^n + 2010 \times 2^n$ ចែកដាច់នឹង 7

របៀបទី១:យើងមាន

$$2009 \times 11^{n} - 2010 \times 9^{n} - 2009 \times 4^{n} + 2010 \times 2^{n}$$

$$= (2010 \times 2^{n} - 2010 \times 9^{n}) + (2009 \times 11^{n} - 2009 \times 4^{n})$$

$$= 2010(2^{n} - 9^{n}) + 2009(11^{n} - 4^{n})$$

ដោយ
$$2^n - 9^n$$
 ចែកដាច់នឹង 7 នោះ $2010(2^n - 9^n)$ ចែកដាច់នឹង 7 (i)

$$11^n - 4^n$$
 ចែកដាច់នឹង 7 នោះ $2009(11^n - 4^n)$ ចែកដាច់នឹង 7 (ii)

តាម(i) និង(ii): $2009 \times 11^n - 2010 \times 9^n - 2009 \times 4^n + 2010 \times 2^n$ ចែកដាច់នឹង 7 ដូចនេះ $2^n - 9^n$ និង $11^n - 4^n$ ចែកដាច់នឹង 7 ចំពោះគ្រប់ $n \in \mathbb{N}$ ។

របៀបទី២: យើងមាន

$$7|(2^n - 9^n) \Rightarrow 7|2010(2^n - 9^n)$$
 និង $7|(11^n - 4^n) \Rightarrow 7|2009(11^n - 4^n)$ គេទាញបាន $7|(2010 \times 2^n - 2010 \times 9^n + 2009 \times 11^n - 2009 \times 4^n)$

$$7 \mid (2009 \times 11^{n} - 2010 \times 9^{n} - 2009 \times 4^{n} + 2010 \times 2^{n})$$

ដូចនេះ $2^n - 9^n$ និង $11^n - 4^n$ ចែកដាច់នឹង 7 ចំពោះគ្រប់ $n \in \mathbb{N}$ ។

៣. ក) តើ A អាចជាចំនួនបឋមដែរ ឬទេ ?

យើងមាន

$$A = n^4 + n^2 + 1$$

ចំពោះ $n = 1$ នោះ $A = 1^4 + 1^2 + 1 = 3$ ជាចំនួនបឋម
ដូចនេះ A អាចជាចំនួនបឋម ។

ខ) សរសេរ A ជាផលគុណនៃពីរកត្តាដឺក្រេទី 2 នៃ n យើងមាន

$$A = n^{4} + n^{2} + 1$$

$$= n^{4} - n^{3} + n^{2} + n^{3} - n^{2} + n + n^{2} - n + 1$$

$$= (n^{4} - n^{3} + n^{2}) + (n^{3} - n^{2} + n) + (n^{2} - n + 1)$$

$$= n^{2}(n^{2} - n + 1) + n(n^{2} - n + 1) + (n^{2} - n + 1)$$

$$A = (n^{2} - n + 1)(n^{2} + n + 1)$$

ដូចនេះ
$$A = (n^2 - n + 1)(n^2 + n + 1)$$
 ។

គ) បង្ហាញថាកត្តាទាំងពីរនៃ A មានតូចែក្យូមតែមួយគត់គឺ1 យើងមាន

$$A = (n^2 - n + 1)(n^2 + n + 1)$$
 តាង d ជាតួ ចែករួម នៃ $(n^2 - n + 1)(n^2 + n + 1)$ គេហ្ន

$$\frac{d \mid (n^2 + n + 1)}{d \mid (n^2 - n + 1)} \Longrightarrow d \mid ((n^2 + n + 1) - (n^2 - n + 1))$$

$$d \mid (\cancel{n}^2 + n + \cancel{1} - \cancel{n}^2 + n - \cancel{1}) \Rightarrow d \mid 2n$$

ដោយ $n^2 + n + 1 = n(n+1) + 1$ ជាចំនួនគត់សេស តែ 2n ជាចំនួនគូ

ម្យ៉ាងទៀត:

- $d \mid (n^2 + n + 1)$ តែ $(n^2 + n + 1)$ ជាចំនួនសេស នាំឲ្យ $d \neq 2$
- $d \mid 2n$ តែ $d \neq 2$ នាំឲ្យ $d \mid n$ នោះ $d \mid n^2$

ដោយ $d \mid n^2$ និង $d \mid n$ នាំឲ្យ $d \mid (n^2 + n)$

គេបាន
$$d \mid (\mathcal{M}^2 + \mathcal{M} + 1 - \mathcal{M}^2 - \mathcal{M}) = 1 \Rightarrow d = 1$$
 ។

ដូចនេះ កត្តា (n^2-n+1) និង (n^2+n+1) មានតូចែកតែមួយគត់គឺ1 ។

ថ. បង្ហាញថា $(a^k,b^k)=1$ ចំពោះគ្រប់ $k\in\mathbb{N}$

យើងមាន

$$(a,b) = 1 \Longrightarrow (a^k,b) = 1, \forall k \in \mathbb{N}$$

គេបាន
$$(b^k, a) = 1 \Longrightarrow (a^k, b^k) = 1, \forall k \in \mathbb{N}$$

ដូចនេះ
$$(a,b) = 1$$
 នាំឲ្យ $(a^k,b^k) = 1$ ។

៥. គណនា (a^m,b^m) ជាអនុគមន៍dនិងm

យើងមាន

$$(a,b)=d$$
 គេបាន $a=dq$ និង $b=dk$ ដែល $(q,k)=1$

នាំឲ្យ
$$a^m = d^m q^m$$
 និង $b^m = d^m k^m$

តែ
$$(q,k)=1 \Rightarrow (q^m,k^m)=1$$

គេទាញជាន
$$(a^m,b^m) = (d^mq^m,d^mk^m) = d^m(q^m,k^m) = d^m$$

ដូចនេះ
$$(a^m,b^m)=d^m$$
 ។

៦. បង្ហាញថា (n,2n+1)=1 ចំពោះគ្រប់ $n \in \mathbb{N}$

តាងd ជាតូចែក្សូមនៃn និង2n+1

គេបាន
$$d \mid n$$
 និង $d \mid 2n+1$

ដោយ
$$d \mid n \Rightarrow d \mid 2n$$
 និង $d \mid (2n+1)$ នាំឲ្យ $d \mid (2n+1-2n)=1$

ដូចនេះ
$$(n,2n+1)=1$$
 ។

៧. បង្ហាញថា $(a,b) = (a,a^2+b) = (a+b,3a+2b)$

តាង
$$\alpha = (a,b)$$
 និង $\beta = (a,a^2+b)$

គេហាន $\alpha \mid a$ និង $\alpha \mid b$ ដោយ $\alpha \mid a \Rightarrow \alpha \mid a^2$ ហើយ $\alpha \mid b \Rightarrow \alpha \mid (a^2 + b)$

នាំឲ្យ
$$\alpha \mid \beta$$
 (1) ព្រោះ $\beta \mid a, \beta \mid (a^2 + b)$

ម្ប៉ាងទៀត
$$\beta \mid a$$
 និង $\beta \mid (a^2 + b)$

ដោយ
$$\beta | a \Rightarrow \beta | a^2$$

គេបាន

$$\frac{\beta |(a^2 + b)}{\beta |a^2} \right\} \Rightarrow \beta |(a^2 + b - a^2) = b$$

$$\lim \frac{\beta |a|}{\beta |b|} \Rightarrow \beta |\alpha$$
 (2)

តាម(1) និង(2) គេបាន $\alpha = \beta$ មានន័យថា $(a,b) = (a,a^2+b)$ ។

យើងនិងបង្ហាញបន្តថា (a,b) = (a+b,3a+2b)

តាង
$$\delta = (a+b, 3a+2b)$$

ឃើងមាន $\alpha = (a,b) \Rightarrow \alpha \mid a$ និង $\alpha \mid b \Rightarrow \alpha \mid (a+b)$

គេបាន $lpha | \delta$

 $|\delta|$ (3)

ម្យ៉ាងទៀត

- $\delta | (a+b) \Rightarrow \delta | 2(a+b) \Leftrightarrow \delta | (2a+2b)$ $\hat{\mathbb{S}}$ $\hat{\mathbb{S}}$ $\hat{\mathbb{S}}$ $\delta | (3a+2b)$ $\hat{\mathbb{S}}$ $\hat{\mathbb{S}}$
- $\delta | (a+b) \Rightarrow \delta | 3(a+b) \Leftrightarrow \delta | (3a+3b) \Rightarrow \delta | (3a+3b-3a-2b) = b$ គេហ៊ុន $\delta | a$ និង $\delta | b$ នោះ $\delta | \alpha$ (4)

តាម (3) និង (4) គេបាន $\alpha=\delta$ មានន័យថា (a,b)=(a+b,3a+2b)

សរុបមក $\alpha = \beta = \delta$ មានន័យថា $(a,b) = (a,a^2+b) = (a+b,3a+2b)$ ។

ដូចនេះ
$$(a,b) = (a,a^2+b) = (a+b,3a+2b)$$
 ។

៨. ក) រកគ្ (x_0, y_0) ដែលជាគូចម្លើយ:

យើងមាន

$$5x + 3y = 1$$
យព $x = 2, y = -3$ គេបាន

$$5\times2+3(-3)=1\Leftrightarrow 1=1$$
 ពិត

ដូចនេះ $(x_0 = 2, y_0 = -3)$ ជាចម្លើយមួយនៃសមីការ ។

- **បញ្ជាក់:**ចំពោះសមីការទម្រង់បែបនេះឲ្យចម្លើយយ៉ាងណាឲ្យតែផ្ទៀងផ្ទាត់ ។
 - ខ) រកចម្លើយទូទៅនៃសមីការ

យើងមាន

$$5x + 3y = 1$$

$$5 \times 2 + 3(-3) = 1$$

$$5(x-2) + 3(y+3) = 0$$

$$5(x-2) = -3(y+3)$$

$$5(x-2) = 3(-y-3)$$

តាមសមភាពនោះគេទាញបាន

$$\begin{array}{c} 5 \mid 3(-y-3) \\ (3,5) = 1 \end{array} \} \Rightarrow 5 \mid (-y-3)$$

គេបាន
$$-y-3=5k \Rightarrow y=-5k-3, k \in \mathbb{Z}$$

ម្យ៉ាងទៀត
$$3|5(x-2) \Rightarrow 3|(x-2) \Rightarrow x-2=3k \Rightarrow x=3k+2, k \in \mathbb{Z}$$
 ។

ដូចនេះ ចម្លើយទូទៅគឺ $(x=3k+2,y=-5k-3),k\in\mathbb{Z}$ ។

៩. $i \hat{n} x, y, z$

យើងមាន

$$315x + 189y + 357z = 21$$

$$15x + 9y + 17z = 1$$
 (ចែកអង្គទាំងពីរនឹង 21)

$$9y + 17z = 1 - 15x$$

តាង
$$x = t, t \in \mathbb{Z}$$
 គេបាន $9y + 17z = 1 - 15t$ (1)

ចំពោះ
$$y = 2 + 4t \Rightarrow z = -1 - 3t$$

គេបាន

$$9(2+4t)+17(-1-3t) = 1-15t$$
$$18+36t-17-51t = 1-15t$$

$$1 - 15t = 1 - 15t \tag{2}$$

ឃុំ (1) - (2): គេបាន

$$9(y-2-4t)+17(z+1+3t)=0$$

$$9(y-2-4t) = -17(z+1+3t)$$

$$9(-y+2+4t) = 17(-z-1-3t)$$

គេទាញបាន

$$9 \left| 17(z+1+3t) \right|$$

$$(9,17) = 1$$

$$\Rightarrow z+1+3t = 9k \Rightarrow z = 9k-3t-1, k \in \mathbb{Z}$$

និង
$$17 \mid 9(-y+2+4t) \Rightarrow -y+2+4t = 17r \Rightarrow y = -17r+4t+2, r \in \mathbb{Z}$$

ដូចនេះ
$$x = t, y = -17r + 4t + 2, z = 9k - 3t - 1, (t, k, r) \in \mathbb{Z}^3$$
 ។

90. បង្ហាញថា ចំនូនការេមានរាង 4k ឬ 4k+1

ចំនួនគត់ទាំងអស់អាចមានរាងមួយក្នុងចំនោម 2n និង 2n+1 ។ដោយលើកវាជាការយើង ទាញបាន

$$(2n)^2 = 4n^2 = 4k, k = n^2$$

$$(2n+1)^2 = 4n^2 + 4n + 1 = 4(n^2 + n) + 1 = 4k + 1, k = n^2 + n$$

ដូចនេះ ចំនួនការមោនរាង 4k ឬ 4k+1 ។

99. បង្ហាញថា គ្មានចំនូនគត់នៅក្នុងស្ទីត11,111,1111,...ជាចំនូនការេទេ ការេនៃចំនួនគត់មួយមានរាង 4k ឬ 4k +1 ៗគ្រប់ចំនួនតូទាំងអស់នៅក្នុងស្ទីតនេះមានរាង

$$4k-1$$

គេបាន
 $11=4\times 3-1$
 $111=4\times 28-1$
 $1111=4\times 278-1$

ដូចនេះ វាមិនអាចជាការេនៃចំនួនគត់ណាមួយទេ ។

១២. បង្ហាញថា ក្នុងប្រព័ន្ធរបាប់ទាំងអស់ 4.41 សុទ្ធតែជាការេនៃចំនូនសនិទាន យើងមាន 4.41 នៅក្នុងគោល r កំណត់ដោយ

$$4.41 = 4 + \frac{4}{r} + \frac{1}{r^2} = (2 + \frac{1}{r})^2$$

ដូចនេះ ក្នុងប្រព័ន្ធរបាប់ទាំងអស់ 4.41 សុទ្ធតែជាការេនៃចំនូនសនិទាន ។

១៣. បង្ហាញថា បើn សេស នោះ $x^n + y^n$ ចែកដាច់នឹង x + y

ឃើងមាន
$$x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1})$$
 (I)

ជំនួស y ដោយ (-y) ទៅក្នុង (1) ហើយដោយដឹងថា $(-y)^n = -y^n$ ព្រោះ n ជាចំនួនសេស ។ គេបាន

$$x^{n} - (-y)^{n} = (x - (-y))(x^{n-1} + x^{n-2}(-y) + x^{n-3}(-y)^{2} + \dots + x(-y)^{n-2} + (-y)^{n-1})$$

$$x^{n} + y^{n} = (x + y)(x^{n-1} - x^{n-2}y + x^{n-3}y^{2} - \dots - xy^{n-2} + y^{n-1})$$

$$\Rightarrow (x + y) | (x^{n} + y^{n})$$

ដូចនេះ បើn សេស នោះ $x^n + y^n$ ចែកដាច់នឹង x + y ។

១៤. បង្ហាញថា 1001ចែកដាច់ $1^{1993} + 2^{1993} + 3^{1993} + \cdots + 1000^{1993}$ យើងមាន

$$\begin{split} 1^{1993} + 1000^{1993} &= (1 + 1000)(1 - 1000 + 1000^2 - \dots - 1000^{1992}) \\ &= 1001(1 - 1000 + 1000^2 - \dots - 1000^{1992}) \\ 2^{1993} + 999^{1993} &= (2 + 999)(2^{1992} - 2^{1991}999^1 + 2^{1990}999^2 - \dots - 2^{1}999^{1991} + 999^{1992}) \\ &= 1001(2^{1992} - 2^{1991}999^1 + 2^{1990}999^2 - \dots - 2^{1}999^{1991} + 999^{1992}) \end{split}$$

$$3^{1993} + 998^{1993} = (3 + 998)(3^{1992} - 3^{1991}998^{1} + 3^{1990}998^{2} - \dots - 3^{1}998^{1991} + 998^{1992})$$

$$= 1001(3^{1992} - 3^{1991}998^{1} + 3^{1990}998^{2} - \dots - 3^{1}998^{1991} + 998^{1992})$$

$$500^{1993} + 501^{1993} = (500 + 501)(500^{1992} - 500^{1991}501^1 + \dots - 500^1501^{1991} + 501^{1992})$$

 $= 1001(500^{1992} - 500^{1991}501^{1} + \dots - 500^{1}501^{1991} + 501^{1992})$

ប្វកអង្គនឹងអង្គ គេបាន

```
1^{1993} + 2^{1993} + 3^{1993} + \dots + 1000^{1993} = 1001(1 - 1000 + 1000^2 - \dots - 1000^{1992} + \dots + 500^{1992}
                                              -500^{1991}501^{1} + \dots -500^{1}501^{1991} + 501^{1992}
                                              =1001k
      ដែល k = (1-1000+1000^2-\cdots-1000^{1992}+\cdots+500^{1992}-500^{1991}501^1+\cdots+501^{1992})
      នាំំទ្ធា1001 \mid 1^{1993} + 2^{1993} + 3^{1993} + \dots + 1000^{1993} ។
ដូចនេះ 1001 ចែកដាច់1^{1993} + 2^{1993} + 3^{1993} + \dots + 1000^{1993} ។
១៥. យើងយកx=2n-1នោះxជាចំនួនសេស
      គេបាន x+1=2n ចែកដាច់នឹងn ។ យើងបាន
           x^{x}+1=(x+1)(x^{x-1}-x^{x-2}+x^{x-3}-\cdots+1) ៃពេក់នឹង n
           x^{x^x} + 1 = (x+1)(x^{x^x-1} - x^{x^x-2} + x^{x^x-3} - \dots + 1)ៃកដាច់នឹង n
ដូចនេះ សំណើពិត ។
១៦. គណនាចំនួនគត់n
      យើងមាន
           n^2 + 1 = n^2 - 1 + 2 = (n-1)(n+1) + 2
      ដោយ n+1 \mid (n^2+1) \Rightarrow n+1 \mid 2 \Rightarrow n+1 = 1ឬ n+1=2 ។
      គេហ្នn=0បុn=1 តែ n\in\mathbb{N} \Rightarrow n=1
ដូចនេះ n=1 ។
១៧. បង្ហាញថា 7 ចែកដាច់15x^2 - 11x - 14
      យើងមាន
           15x^2 - 11x - 14 = (3x + 2)(5x - 7)
      ដោយ 7 | (3x+2) \Rightarrow 7 | (3x+2)(5x-2) \Leftrightarrow 7 | 15x^2 - 11x - 14
ជូចនេះ 7 ចែកដាច់15x² –11x –14 ។
១៨. បង្ហាញថា ចំពោះគ្រប់ចំនួនគត់ n គេបាន
      n^2 - n ចែកដាច់នឹង3
      យើងមាន n^2-n=(n-1)n(n+1) ជាបីចំនួនគត់តគ្នា។ហេតុនេះ ត្រូវតែមានកត្តាណាមួយ
      ព្រៃកដាច់នឹង3 ។
      ជួចនេះ n^2-n ចែកដាច់នឹង3 ។
      2) n^5 - n ប៊ែកដាច់នឹង5
      តាង p = n^5 - n = (n-1)n(n+1)(n^2+1)
      ប៉ើ n = 5k \implies p = (n-1)(5k)(n+1)(n^2+1):5
      ប៊ី n = 5k + 1 \Rightarrow p = (5k)n(n+1)(n^2+1):5
      ប៊ើ n = 5k + 2 \Rightarrow p = (n-1)n(n+1)((5k+2)^2 + 1)
```

គុណអង្គនិងអង្គ គេបាន

$$\underbrace{999 \times 9999 \times \dots \times 99...9}_{999-3+1} \equiv (-1)^{997} \pmod{1000}$$

$$\equiv -1 \pmod{1000}$$

$$\Rightarrow 9 \times 99 \times 999 \times 9999 \times \dots \times 99...9 \equiv 9 \times 99 \times (-1) \pmod{1000}$$

$$\equiv -891 \pmod{1000}$$

$$\equiv 109 \pmod{1000}$$

ដូចនេះ សំណល់ដែលចង់បានគឺ109 ។

២១. បង្ហាញថា បើ 2^n-1 ជាចំនួនបឋមនោះn ក៏ជាចំនួនបឋមដែរ

សន្មត់ថាn ជាចំនួនពហុគុណ ហើយd ជាតូចែករបស់n ខុសពីមួយ។យើងបាន

$$n = dk$$
 និង $2^n - 1 = 2^{dk} - 1$

គេហ្ន $2^{dk} - 1 = (2^d)^k - 1$

$$2^{dk} - 1 = (2^{d} - 1)((2^{d})^{k-1} + (2^{d})^{k-2} + \dots + 1)$$
$$= (2^{d} - 1)((2^{d(k-1)} + 2^{d(k-2)} + \dots + 1)$$

ដោយ $2^d - 1 \neq 1$ នោះ $2^n - 1$ ជាចំនួនពហុគុណ ។

ហេតុនេះបើ 2^n-1 ជាចំនួនបឋម $\Rightarrow n$ ជាចំនួនបឋម ។

ដូចនេះបើ 2^n-1 ជាចំនួនបឋមនោះnក៏ជាចំនួនបឋមដែរ ។

 \bullet សម្គាល់: \bullet បើ n ជាចំនូនបឋម $\Rightarrow 2^n-1$ ជាចំនូនបឋមឬជាចំនូនមិនបឋម ។ \bullet បើ 2^n-1 ជាចំនូនបឋម $\Rightarrow n$ ជាចំនូនបឋម ។

២២. យើងមាន $n^3-1=(n-1)(n^2+n+1)$ ជាចំនួនបឋម ។ដោយ n^2+n+1 ធំជាងមួយជានិច្ចនោះ ដើម្បីឲ្យ n^3-1 ជាចំនួនបឋម លុះត្រាតែ $n-1=1 \Rightarrow n=2$ ។ ក្នុងករណី n=2 យើងមាន $n^3-1=7$ ជាចំនួនបឋម ។

ដូចនេះ n=2 ។

២៣. កំណត់គ្រប់ចំនួនគត់ $n \ge 1$ ដែល $n^4 + 4^n$ ជាចំនួនបឋម

បើ n^4+4^n ជាចំនួនបឋមនោះវាត្រូវតែជាចំនួនសេស ហើយនាំឲ្យn សេស ។

ចំពោះn=1 យើងមាន $n^4+4^n=5$ ជាចំនួនបឋម ។

ករណី n≥3 គេបាន

$$n^{4} + 4^{n} = n^{4} + 2n^{2}2^{n} + 2^{2n} - 2n^{2}2^{n}$$

$$= (n^{2} + 2^{n})^{2} - (n2^{\frac{n+1}{2}})^{2}$$

$$= (n^{2} + 2^{n} - n2^{\frac{n+1}{2}})(n^{2} + 2^{n} + n2^{\frac{n+1}{2}})$$

យើងឃើញថា $n \ge 3$ ជាចំនួនសេស នោះ $n^4 + 4^n$ អាចបំបែកជាផលគុណនៃចំនួនគត់ពីរដែល ធំជាង1 ។ហេតុនេះ វាមិនអាចជាចំនួនបឋមទេ ។

ដូចនេះ *n*=1 ។

២៤. យើងមាន ប្រភាគ
$$\frac{36x+25}{30x}$$
 ចំពោះ $x=1\Rightarrow \frac{36x+25}{30x}=\frac{36\times 1+25}{30\times 1}=\frac{61}{30}$ ជាប្រភាគសម្រលមិនបាន ចំពោះ $x=2\Rightarrow \frac{36x+25}{30x}=\frac{36\times 2+25}{30\times 2}=\frac{97}{60}$ ជាប្រភាគសម្រលមិនបាន ចំពោះ $x=3\Rightarrow \frac{36x+25}{30x}=\frac{36\times 3+25}{30\times 3}=\frac{133}{90}$ ជាប្រភាគសម្រលមិនបាន ព្រោះ $61,97,133$ ជាចំនួនបឋម ។

ដូចនេះ ចំពោះ x=1, x=2, x=3 ប្រភាគ $\frac{36x+25}{30x}$ ជាប្រភាគសម្រួលមិនបាន ។ ២៥. កេចំនួនគត់ធម្មជាតិ n

ឃើងមាន
$$\frac{n^2+n+6}{n+1}=n+\frac{6}{n+1}$$
 ជាចំនួនគត់វិជ្ជមាន កាលណា $n+1$ $|6\Rightarrow 6=(n+1)k$ នាំឲ្យ $n+1=\frac{6}{k}, k=1,2,3,6$

បើ
$$k=1 \Rightarrow n+1=6 \Rightarrow n=5$$

បើ
$$k = 2 \Rightarrow n+1 = 3 \Rightarrow n = 2$$

បើ
$$k = 3 \Longrightarrow n + 1 = 2 \Longrightarrow n = 1$$

បើ
$$k=6 \Longrightarrow n+1=1 \Longrightarrow n=0$$
មិនយក

ដូចនេះ
$$n = \{1, 2, 5\}$$
 ។

ខំពុង៤ អាអេទុខដ្ឋ

ដើម្បីឲ្យមានភាពងាយស្រួលនៅក្នុងការចែកលេខ ឬ បំបែកមួយចំនូនជាផលគុណកត្តា យើងអាចប្រើលក្ខណ:ចែកដាច់ខ្លះៗ ដូចខាងក្រោម ។

១. លគ្គខណ្ឌនៃភាពខែគងាច់

- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 បើ $a_n + a_{n-1} + \cdots + a_1 + a_0$:3 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 លើ $\overline{a_1 a_0}$:4 ។

- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ៃ បើ $\overline{a_2 a_1 a_0}$:ែំ ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:10 เชื $a_0 = 0$ ป
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ំ12 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ំ3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ំ4 ៗ
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:13 เชื $\overline{a_n a_{n-1} \cdots a_1} + 4a_0$:13 ป
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:14 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ15 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ5 ៗ
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:16 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 បានផលចែកq ហើយ q:4 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:18 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:20 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:21 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:22 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:11។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:23 เชื $\overline{a_n a_{n-1} \cdots a_1} + 7a_0$:23 ป
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:24 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:8 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 26 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 13 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ27 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ3 បានផលចែកq ហើយ qៈ9។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:28 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:29 เชื $\overline{a_n a_{n-1} \cdots a_1} + 3a_0$:29 ป

វិទ្យាស្ថានជាតិអប់រំ តក្ក សំណុំ ចំនួន

- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:30 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:10 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:31 เชื $\overline{a_n a_{n-1} \cdots a_1} 3a_0$:31 ป
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ32 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ4 បានផលចែកq ហើយ q:8។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:33 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:11 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:34 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:17 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:35 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:36 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 ។
- $\overline{a_{\scriptscriptstyle n}a_{\scriptscriptstyle n-1}\cdots a_{\scriptscriptstyle 1}a_{\scriptscriptstyle 0}}$:38 បើ $\overline{a_{\scriptscriptstyle n}a_{\scriptscriptstyle n-1}\cdots a_{\scriptscriptstyle 1}a_{\scriptscriptstyle 0}}$:2 និង $\overline{a_{\scriptscriptstyle n}a_{\scriptscriptstyle n-1}\cdots a_{\scriptscriptstyle 1}a_{\scriptscriptstyle 0}}$:19 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ39 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ13 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:40 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:8 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:41 \vec{v} $\overline{a_n a_{n-1} \cdots a_1} 4a_0$:41 \vec{v}
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:42 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:6 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0} : 43 \text{ ff } \overline{a_n a_{n-1} \cdots a_1} + 13 a_0 : 43 \text{ T}$
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:44 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:11។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:45 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:46 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:23 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:47 เช็ $\overline{a_n a_{n-1} \cdots a_1} 14 a_0$:47 า
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:48 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:16 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:49 เชื $\overline{a_n a_{n-1} \cdots a_1}$ + $5a_0$:49 า
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:50 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:25 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:51 បើ $\overline{a_n a_{n-1} \cdots a_1} 5a_0$:51ឬ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:17 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:52 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:13 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:53 เชื $\overline{a_n a_{n-1} \cdots a_1}$ +16 a_0 :53 ป
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:54 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:47 ៗ
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:55 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:11 ។
- $oldsymbol{a}_n a_{n-1} \cdots a_1 a_0$:57 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:19 ៗ
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:58 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:29 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:59 $\vec{v} = \overline{a_n a_{n-1} \cdots a_1} + 6a_0$:59 1
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:60 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:12 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:61 បើ $\overline{a_n a_{n-1} \cdots a_1} 6a_0$:61 ។

- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:62 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:31 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:63 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ64 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ ៈ8 បានផលថែកq ហើយ q:8។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:65 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:13 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ66 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ6 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ11 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:68 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:17 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:69 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:23 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ70 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ7 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ10 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:71 $\vec{a_n} a_{n-1} \cdots a_1 7a_0$:71 $\vec{a_n} a_{n-1} \cdots a_1 = 7a_0$
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:72 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:8 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:73 เชื $\overline{a_n a_{n-1} \cdots a_1} + 22 a_0$:73 ป
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:75 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:25 ។
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$:77 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:7 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:11 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ78 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ39 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:79 $\overline{a_n a_{n-1} \cdots a_1} + 8a_0$:79 1
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ80 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ16 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ82 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ41។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:83 เชื $\overline{a_n a_{n-1} \cdots a_1} + 25 a_0$:83 ป
- ullet $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 84 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$ \vdots 21 ។
- $\overline{a_na_{n-1}\cdots a_1a_0}$:ំ85 បើ $\overline{a_na_{n-1}\cdots a_1a_0}$:ំ5 និង $\overline{a_na_{n-1}\cdots a_1a_0}$:ំ17 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ86 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ43 ៗ
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ87 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ29 ។
- $oldsymbol{\overline{a_na_{n-1}\cdots a_1a_0}}$:ំ88 បើ $\overline{a_na_{n-1}\cdots a_1a_0}$:ំ8 និង $\overline{a_na_{n-1}\cdots a_1a_0}$:ំ11។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:89 เชื $\overline{a_n a_{n-1} \cdots a_1} + 9a_0$:89 า
- $oldsymbol{a}_n a_{n-1} \cdots a_1 a_0$:90 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:9 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:10 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ91 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ7 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ13 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ92 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ4 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ23 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ93 លើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ31 ។

- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ94 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ47 ៗ
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ95 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ5 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ19 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ96 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ3 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ32 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:97 បើ $\overline{a_n a_{n-1} \cdots a_1} 29 a_0$:97 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:98 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:2 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:49 ។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ99 បើ $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ9 និង $\overline{a_n a_{n-1} \cdots a_1 a_0}$:ំ11។
- $\overline{a_n a_{n-1} \cdots a_1 a_0}$:100 បើ $\overline{a_1 a_0}$:100 ។

សភ្ជិដ្ឋាន និច អនុសាសន៍

១. សត្តិដ្ឋាន

ឆ្លងតាមរយៈការសិក្សាស្រាវជ្រាវ និងដោះស្រាយខាងលើយើងឃើញថាមុខវិជ្ជា **តក្ក សំណុំ** និងចំនួន ជាវិធីសាស្ត្រមួយដែលធ្វើឲ្យអ្នកគណិតវិទ្យាមានភាពងាយស្រួលនៅក្នុងការវិភាគទៅលើ តម្លៃភាពពិតនៃសំណើ ប្រភេទសម្រាយបញ្ជាក់ ទំនាក់ទំនងរវាងសំណុំ លក្ខណៈចែកដាច់នឹងមួយ ចំនួនគត់ និងការបំបែកមួយចំនួនជាផលគុណនៃកគ្គាបឋម ជាដើម។

ទោះបីជាការស្រាវជ្រាវនិងចងក្រងរបស់យើងខ្ញុំ ពុំទាន់សម្រេចទៅតាមវត្ថុបំណងដ៍ល្អប្រពៃ នៃការរីកចម្រើនរបស់មុខវិជ្ជាវិទ្យាសាស្ត្រពិតក៏ដោយ ប៉ុន្តែទោះបីជាយ៉ាងណាក៏យើងខ្ញុំសង្ឃឹមថា របាយការណ៍ស្រាវជ្រាវរបស់យើងខ្ញុំនឹងបានចូលរួមចំណែកដល់ការស្រាវជ្រាវរបស់អ្នកសិក្សា ស្រាវជ្រាវជំនាន់ក្រោយ ដើម្បិធ្វើការស្រាវជ្រាវបន្តទៀតផងដែរ ។

ហេតុនេះ **តក្ក សំណុំ និងចំនូន** គឺជាវិធីសាស្ត្រពិសេសមួយនៅក្នុងការកំណត់លក្ខណៈសំណើ សំណុំ និងចំនួន ជាពិសេសភាពចែកដាច់នឹងចំនួនគត់ ដែលត្រូវបានគេយកទៅអនុវត្តន៍ក្នុងការ គណនាប្រមាណវិធីចែក ការបំបែកមួយចំនួនជាផលគុណកត្តាបឋម និងប្រើប្រាស់ជាប្រុក្រាមនៅ ក្នុងម៉ាស៊ីនអេឡិចត្រូនិចជាដើម ។

ದ್ ಚಬೆಳುಳಳು

ទន្ទឹមនឹងមានភាពងាយស្រួលនៅក្នុងការអនុវត្តភាពចែកដាច់នឹងមួយចំនួន ក៏របាយការណ៍ នេះមិនទាន់បានផ្ដល់នូវលក្ខណៈងាយស្រួលនៅឡើយទេ ព្រោះការស្រាវជ្រាវរិះរកលក្ខណៈចែក ដាច់នឹងចំនួនណាមួយ ពេលខ្លះមានលក្ខណៈស្មុគស្មាញ ។ កង្វះឯកសារ ជាឧបសគ្គមួយក្នុងការ ស្រាវជ្រាវ ឯកសារភាគច្រើនដែលយើងខ្ញុំបានយកមកប្រើប្រាស់ជាឯកសារបរទេស នេះជាហេតុធ្វើ ឲ្យការសរសេរមិនទាន់មានភាពទូលំទូលាយនៅឡើយ ។

ឯಣಕಾಚಾಣ

- 1) គណិតវិទ្យាកំរិតខ្ពស់ថ្នាក់ទី១២: គ្រឹះស្ថានបោះពុម្ព និងចែកផ្សាយ បោះពុម្ពលើកទី១ ឆ្នាំ២០១០ ។
- 2) ពីជគណិតទូទៅ:ឈីម ម៉េង ឆ្នាំ ២០១០ ។
- 3) ទ្រឹស្តីចំនួនៈ លឹម ផល្គុន និង សែន ពិសិដ្ឋ ឆ្នាំ ២០១១ ។
- 4) Google: www.savory.de/maths1.htm (accessed 14 December 2015, at 10:19pm).
- 5) Google: $\underline{arxiv.org/pdf/math/0001012} \ (accessed\ 13\ March\ 2016,\ at\ 1:36pm)\ \ .$