

Test report No.

Page Issued date : 32JE0303-HO-01-R1 : 1 of 27

: October 3, 2012

Revised date FCC ID

: October 22, 2012 : YS34D454C2D5003

RADIO TEST REPORT

Test Report No.: 32JE0303-HO-01-R1

Applicant

Mitsubishi Electric Corporation Inazawa Works

Type of Equipment

Proximity Card Reader module

Model No.

UCR-8303

Test regulation

FCC Part 15 Subpart C: 2012

FCC ID

YS34D454C2D5003

Test Result

Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.
- 6. This report is a revised version of 32JE0303-HO-01. 32JE0303-HO-01 is replaced with this report.

Date of test:

September 8 to October 3, 2012

Representative test engineer:

Matsuyama Satofumi Matsuyama Engineer of WiSE Japan, **UL Verification Service**

Approved by:

Masanori Nishiyama

Manager of WiSE Japan, **UL Verification Service**

NVLAP LAB CODE: 200572-0

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may

refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma

rk1/index.jsp#nvlap

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone

: +81 596 24 8116

Facsimile

: +81 596 24 8124

Page : 2 of 27 **Issued date** : October 3, 2012 Revised date FCC ID

: October 22, 2012 : YS34D454C2D5003

<u>CONTENTS</u> P.	<u>AGE</u>
SECTION 1: Customer information	3
SECTION 2: Equipment under test (E.U.T.)	3
SECTION 3: Test specification, procedures & results	4
SECTION 4: Operation of E.U.T. during testing	7
SECTION 5: Conducted emission	9
SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum Ma	ısk)10
SECTION 7: Other test	11
APPENDIX 1: Data of EMI test	
Conducted emission	12
Fundamental emission and Spectrum Mask	15
Spurious emission	17
Frequency Tolerance	22
APPENDIX 2: Test instruments	23
APPENDIX 3: Photographs of test setup	24
Conducted emission	
Radiated emission	25
Worst Case Position	26

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 3 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

SECTION 1: Customer information

Company Name : Mitsubishi Electric Corporation Inazawa Works

Address : No.1, Hishi-machi, Inazawa-shi, Aichi-ken, 492-8682, Japan

Telephone Number : +81-587-24-5560 Facsimile Number : +81-587-24-5768 Contact Person : Koki Okunishi

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment : Proximity Card Reader module

Model No. : UCR-8303

Serial No. : Refer to Section 4, Clause 4.2

Rating : DC 12V

Receipt Date of Sample : September 5, 2012

Country of Mass-production : Japan

Condition of EUT : Production model

Modification of EUT : No Modification by the test lab

2.2 Product Description

Model No: UCR-8303, referred to as the EUT in this report, is the Proximity Card Reader module.

General Specification

Clock frequency(ies) in the system : 11.0592MHz (Crystal), 27.12MHz (Crystal)

Radio Specification

Radio Type : Transceiver
Frequency of Operation : 13.56MHz
Power Supply (inner) : DC 3.3V, DC 7V
Antenna type : Pattern antenna

Operating Temperature : -10deg.C. to +40deg.C.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 4 of 27

Issued date : October 3, 2012

Revised date : October 22, 2012

FCC ID : YS34D454C2D5003

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C: 2012, final revised on August 13, 2012 and effective

September 12, 2012

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.225: Operation within the band 13.110-14.010MHz

* The revision on August 13, 2012 does not affect the test specification applied to the EUT.

* The EUT will be tested for compliance with FCC Part 15 Subpart B.

3.2 Procedures and results

Test Procedure	Specification	Worst margin	Results	Remarks
ANSI C63.4:2003 7. AC powerline conducted emission measurements	Section 15.207	[QP]19.4dB (27.12012MHz, L, with Card) [AV]9.4dB	Complied	-
<ic>RSS-Gen 7.2.2</ic>	<ic>RSS-Gen 7.2.2</ic>	(27.12012MHz, L, with Card)		
ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.225(a)	55.2dB 13.56000MHz, QP, 0deg., with Card	Complied	Radiated
ANSI C63.4:2003 13. Measurement of intentional radiators	Section 15.225(b)(c)	35.0dB 13.56700MHz, QP, 0deg., with Card	Complied	Radiated
ANSI C63.4:2003 13. Measurement of intentional radiators <ic> -</ic>	Section15.215(c)	See data	Complied	Radiated
ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.9, 4.11</ic>	Section15.209, Section 15.225 (d) <ic>RSS-210 A2.6</ic>	1.3dB 325.666MHz, Horizontal, QP, with Card	Complied	Radiated
ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.7</ic>	Section15.225(e) <ic> RSS-210 A2.6</ic>	See data	Complied	Radiated
	ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic>RSS-Gen 7.2.2 ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.8, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- RSS-Gen 4.9, 4.11 ANSI C63.4:2003</ic></ic></ic></ic></ic></ic></ic></ic>	ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic>RSS-Gen 7.2.2 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.8, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 13. Measurement of intentional radiators <ic>- ANSI C63.4:2003 ANSI C</ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic></ic>	ANSI C63.4:2003 7. AC powerline conducted emission measurements IC>RSS-Gen 7.2.2 ANSI C63.4:2003 13. Measurement of intentional radiators IC>RSS-Gen 4.8, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators IC>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators IC>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators IC>RSS-Gen 4.9, 4.11 ANSI C63.4:2003 13. Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators IC>- ANSI C63.4:2003 IS Measurement of intentional radiators	ANSI C63.4:2003 7. AC powerline conducted emission measurements Complied C7.12012MHz, L, with Card [AV]9.4dB (27.12012MHz, L, with Card) [AV]9.4dB (27.12012MHz, L, with Card) [AV]9.4dB (27.12012MHz, L, with Card) Section 15.225(a) 13.56000MHz, QP, 0deg., with Card QP, 0deg., with Card ANSI C63.4:2003 13. Measurement of intentional radiators C1C>RSS-Gen 4.9, 4.11 C1C>RSS-210 A2.6 ANSI C63.4:2003 13. Measurement of intentional radiators C1C>- C1C> ANSI C63.4:2003 13. Measurement of intentional radiators C1C>- C1C> See data C0mplied C0mpl

FCC 15.31 (e)

The RF Module has its own regulator.

The RF Module is constantly provided voltage (DC 3.3V, DC 7V) through the regulator regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203/212 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203/212.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page

: 5 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99% Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Conducted emission
(semi-	(<u>+</u> dB)
anechoic	150kHz-30MHz
chamber)	
No.1	3.5dB
No.2	3.6dB
No.3	3.6dB
No.4	3.6dB

Test room		Radiated emission							
(semi-		(3m*)	(<u>+</u> dB)	_	(1m*))(<u>+</u> dB)	$(0.5\text{m}^*)(\pm dB)$		
anechoic chamber)	9kHz -30MHz	30MHz -300MHz	300MHz -1GHz	1GHz -10GHz	10GHz -18GHz	18GHz -26.5GHz	26.5GHz -40GHz		
No.1	4.2dB	5.0dB	5.1dB	4.7dB	5.7dB	4.4dB	4.3dB		
No.2	4.1dB	5.2dB	5.1dB	4.8dB	5.6dB	4.3dB	4.2dB		
No.3	4.5dB	5.0dB	5.2dB	4.8dB	5.6dB	4.5dB	4.2dB		
No.4	4.7dB	5.2dB	5.2dB	4.8dB	5.6dB	5.1dB	4.2dB		

^{*3}m/1m/0.5m = Measurement distance

Frequency counter (<u>+</u>)						
Normal condition	Extreme condition					
7 x 10 ⁻⁶	9 x 10 ⁻⁶					

Conducted emission test

The data listed in this test report has enough margin, more than the site margin.

Radiated emission test (3m)

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 6 of 27

Issued date : October 3, 2012

Revised date : October 22, 2012

FCC ID : YS34D454C2D5003

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Telephone: +81 596 24 8116 Facsimile: +81 596 24 8124

Telephone: 101 370 2		Taesimile: 10137		T =	
	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration	Number	Height (m)	reference ground plane (m) /	rooms
	Number			horizontal conducting plane	
No.1 semi-anechoic	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No.1 Power
chamber					source room
No.2 semi-anechoic	655103	2973C-2	7.5 x 5.8 x 5.2m	4.0 x 4.0m	-
chamber	055105	27736 2	7.5 X 5.6 X 5.2III	4.0 X 4.0III	
No.3 semi-anechoic	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3
chamber	146736	2913C-3	12.0 X 6.3 X 3.9111	0.8 x 3.73III	
chamber					Preparation
N. O. I. II. I			40 60 25	27/4	room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4
chamber					Preparation
					room
No.4 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.5 semi-anechoic	-	-	6.0 x 6.0 x 3.9m	60.60	-
chamber			0.0 x 0.0 x 3.9m	6.0 x 6.0m	
No.6 shielded	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
room					
No.6 measurement	_	_	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	_
room					
No.7 shielded room	_	_	4.7 x 7.5 x 2.7m	4.7 x 7.5m	_
No.8 measurement	-	-	3.1 x 5.0 x 2.7m	N/A	-
room					
No.9 measurement	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
room					
No.10 measurement	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
room					
No.11 measurement	-	-	3.1 x 3.4 x 3.0m	2.4 x 3.4m	-
room					
				1	

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test set up, Data of EMI, and Test instruments

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 7 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

The mode is used: 1. Transmitting (Tx and Rx) with Card mode

2. Transmitting (Tx and Rx) without Card mode

3. Transmitting (Tx and Rx) without Card (Antenna terminated with dummy load) mode

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

Frequency Tolerance:

Temperature : -10deg.C to +40deg.C Step 10deg.C

Voltage : Normal Voltage DC 12.0V

Maximum Voltage DC 13.8V, Minimum Voltage DC 10.2V (DC 12.0V ±15%)

* The RF Module has own regulator.

The RF Module is constantly provided voltage (DC 3.3V, DC 7V) through own regulator regardless of input voltage, so the testing was performed with AC120V only.

4.2 Configuration and peripherals

^{*} Cabling and setup were taken into consideration and test data was taken under worse case conditions.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 8 of 27
Issued date : Octobe
Revised date : Octobe

FCC ID

: October 3, 2012 : October 22, 2012 : YS34D454C2D5003

Description of EUT and support equipment

No.	Item	Model number	Serial number	Manufacturer	Remark
A	Proximity Card	UCR-8303	CS47 *1)	Mitsubishi Electric	EUT
	Reader module		CS42 *2)	Corporation Inazawa Works	
В	Card Reader	UCR-8303-P	-	Mitsubishi Electric	-
				Corporation Inazawa Works	
C	Power supply	-	-	Mitsubishi Electric	-
				Corporation Inazawa Works	
D	Card	-	-	Mitsubishi Electric	-
				Corporation Inazawa Works	

List of cables used

No.	Name	Length (m)	Shie	Remark	
			Cable	Connector	
1	DC Cable	0.15	Unshielded	Unshielded	*a)
2	Signal Cable	0.3	Unshielded	Unshielded	-
3	Signal Cable	0.3	Unshielded	Unshielded	-
4	AC Cable	1.2	Unshielded	Unshielded	-

<Notes for Ferrite cores>

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}a) 1 Ferrite Core, Model No. GRFC-7 (Manufacturer: KGS), 6.5cm from Item A, 3 turns.

^{*}This is Removal Ferrite Core that is included in finished goods.

^{*1)} Used for all tests except for 13.56MHz of Conducted emission test without Card (Antenna was terminated with dummy load)

^{*2)} Used for 13.56MHz of Conducted emission test without Card (Antenna was terminated with dummy load)

 Page
 : 9 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

SECTION 5: Conducted emission

5.1 Operating environment

Test place : No.2 semi anechoic chamber

Temperature : See data Humidity : See data

5.2 Test configuration

EUT was placed on a urethane platform of nominal size, 1.0m by 1.5m, raised 0.8m above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT and its peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80cm from LISN/AMN and excess AC cable was bundled in center. I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30cm to 40cm long and were hanged at a 40cm height to the ground plane. Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN/ an AMN to the input power source. All unused 50ohm connectors of the LISN/ AMN were resistively terminated in 50ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT on a horizontal conducting plane 4.0 x 4.0m and a vertical conducting plane 2.0 x 2.0m in a semi Anechoic Chamber. Photographs of the set up are shown in Appendix 3.

5.3 Test conditions

Frequency range : 0.15MHz-30MHz

EUT position : Table top EUT operation mode : See Clause 4.1

5.4 Test procedure

The AC Mains Terminal Continuous disturbance Voltage had been measured with the EUT in the semi Anechoic Chamber. The EUT was connected to a Line Impedance Stabilization Network (LISN)/ Artificial Mains Network (AMN). An overview sweep with peak detection has been performed.

The measurements had been performed with a quasi-peak detector and if required, with an average detector. The conducted emission measurements were made with the following detector function of the test receiver.

Detector Type : QP and AV IF Bandwidth : 9kHz

5.5 Test result

Summary of the test results: Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 10 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

SECTION 6: Radiated emission (Fundamental, Spurious Emission and Spectrum Mask)

Test Procedure

EUT was placed on a urethane platform of nominal size, 1.0m by 1.5m, raised 0.8m above the conducting ground plane.

The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

The height of the measuring antenna varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical (angle of loop antenna: 0deg., 45deg., 90deg., and 135 deg.) and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	Below 30MHz	30MHz to 300MHz	300MHz to 1GHz
Antenna Type	Loop	Biconical	Logperiodic

Frequency	From 9kHz to 90kHz and From 110kHz to 150kHz	From 90kHz to 110kHz	From 150kHz to 490kHz	From 490kHz to 30MHz	From 30MHz to 1GHz
Instrument used			Test Receiver		
Detector	PK/AV	QP	PK/AV	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz

The worst distance in use between EUT and card was confirmed and the test was performed by following condition.

Below 30MHz: 4cm Above 30MHz: 0cm

* FCC Part 15 Section 15.31 (f)(2) / IC RSS-Gen 4.11 (9kHz-30MHz)

9kHz - 490kHz [Limit at 3m] = [Limit at 300m] - $40 \log \left(\frac{3}{300} \right)$

 $490\text{kHz} - 30\text{MHz}[\text{Limit at 3m}] = [\text{Limit at 30m}] - 40\log\left(\frac{3}{30}\right)$

Measurement range : 0.09M-1GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The test was made on EUT in the normal use position.

 Page
 : 11 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

SECTION 7: Other test

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20dB Bandwidth	100kHz	1kHz	3kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 to 3% of Span	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
Frequency Tolerance Frequency counter							
*1) The measurem	ent was performed with Peal	detector. Ma	x Hold since the	e duty cycle was not	100%		

Test data : APPENDIX
Test result : Pass

Figure 1: Direction of the Loop Antenna

.....

Top View (Horizontal)

Antenna was not rotated.

.....

Top View (Vertical)

Front side: 0 deg.

Forward direction: clockwise

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 12 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

APPENDIX 1: Data of EMI test

Conducted emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date : 2012/09/09

Report No. : 32JE0303-H0-01

Temp./Humi. : 24deg. C / 67% RH
Engineer : Satofumi Matsuyama

Mode / Remarks : Transmitting(Tx and Rx) with Card mode

LIMIT : FCC15.207 QP FCC15.207 AV

F	Reading	Level	Corr.	Resu	ılts	Lin	nit	Mar	gin		
Frequency	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
5. 94530	3. 2	-0.3	13. 9	17. 1	13. 6	60.0	50. 0	42.9		N	
7. 99173	4. 1	-0.4	14. 1	18. 2	13. 7	60.0	50.0	41.8	36. 3	N	
11. 71808	6. 3	3.0	14. 6	20. 9	17. 6	60.0	50.0		32. 4	N	
14. 91293	3. 4	-1.2	14. 8	18. 2	13.6	60.0	50.0	41.8		N	
15. 44624	4. 1	0.1	14. 8	18. 9	14. 9	60.0	50.0	41.1	35. 1	N	
27. 12000	24. 5	24. 5	15. 5	40. 0	40.0	60.0	50.0	20.0		N	
5. 94022	5. 1	2. 4	13. 9	19. 0	16.3	60.0	50.0	41.0	33. 7	L	
7. 98993	4. 2	-0.4	14. 1	18. 3	13. 7	60.0	50.0	41.7	36. 3	L	
11. 71767	6. 3	3.0	14. 6	20. 9	17. 6	60.0	50.0	39. 1	32. 4	L	
14. 91093		-1.2	14. 8	18. 0	13.6	60.0	50.0	42.0	36. 4		
15. 44378	4. 3	-0.1	14. 8	19. 1	14. 7	60.0	50.0	40.9	35. 3	L	
27. 12012	25. 1	25. 1	15. 5	40. 6	40. 6	60.0	50.0	19.4	9.4	L	

CHART: WITH FACTOR, Peak hold data. CALCULATION: RESULT=READING+C. F (LISN LOSS+ATT LOSS +CABLE LOSS) Except for the above table: adequate margin data below the limits.

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 13 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Conducted emission

DATA OF CONDUCTED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.2 Semi Anechoic Chamber Date : 2012/09/09

Report No. : 32JE0303-H0-01 Temp./Humi. Engineer : 24deg. C / 67% RH : Satofumi Matsuyama

 $\label{eq:mode_mode_for_mode} \mbox{Mode / Remarks} \ : \ \mbox{Transmitting(Tx and Rx)} \ \ \mbox{without Card mode}$

Trequency	Comment
5.94176 3.5 0.0 13.9 17.4 13.9 60.0 50.0 42.6 36.1 N 8.51966 3.0 -1.1 14.1 17.1 13.0 60.0 50.0 42.9 37.0 N 10.11495 5.5 2.1 14.4 19.9 16.5 60.0 50.0 40.1 33.5 N 11.71368 6.4 2.9 14.6 21.0 17.5 60.0 50.0 39.0 32.5 N 15.4035 4.7 0.4 14.8 19.5 15.2 60.0 50.0 40.5 34.8 N 27.12000 20.1 13.4 15.5 35.6 28.9 60.0 50.0 24.4 21.1 N 5.94223 5.2 2.4 13.9 19.1 16.3 60.0 50.0 40.9 33.7 L	
8.51966 3.0 -1.1 14.1 17.1 13.0 60.0 50.0 42.9 37.0 N 10.11495 5.5 2.1 14.4 19.9 16.5 60.0 50.0 42.9 37.0 N 11.71368 6.4 2.9 14.6 21.0 17.5 60.0 50.0 39.0 32.5 N 15.44035 4.7 0.4 14.8 19.5 15.2 60.0 50.0 40.5 34.8 N 27.12000 20.1 13.4 15.5 35.6 28.9 60.0 50.0 24.4 21.1 N 5.94223 5.2 2.4 13.9 19.1 16.3 60.0 50.0 40.9 33.7 L	
10.11495 5.5 2.1 14.4 19.9 16.5 60.0 50.0 40.1 33.5 N 11.71368 6.4 2.9 14.6 21.0 17.5 60.0 50.0 39.0 32.5 N 15.44035 4.7 0.4 14.8 19.5 15.2 60.0 50.0 39.0 32.5 N 27.12000 20.1 13.4 15.5 35.6 28.9 60.0 50.0 24.4 21.1 N 5.94223 5.2 2.4 13.9 19.1 16.3 60.0 50.0 40.9 33.7 L	
11. 71368 6. 4 2. 9 14. 6 21. 0 17. 5 60. 0 50. 0 39. 0 32. 5 N 15. 44035 4. 7 0. 4 14. 8 19. 5 15. 2 60. 0 50. 0 40. 5 34. 8 N 27. 12000 20. 1 13. 4 15. 5 35. 6 28. 9 60. 0 50. 0 24. 4 21. 1 N 5. 94223 5. 2 2. 4 13. 9 19. 1 16. 3 60. 0 50. 0 40. 9 33. 7 L	
15. 44035 4.7 0.4 14.8 19.5 15.2 60.0 50.0 40.5 34.8 N 27. 12000 20.1 13.4 15.5 35.6 28.9 60.0 50.0 24.4 21.1 N 5. 94223 5.2 2.4 13.9 19.1 16.3 60.0 50.0 40.9 33.7 L	
27. 12000 20. 1 13. 4 15. 5 35. 6 28. 9 60. 0 50. 0 24. 4 21. 1 N 5. 94223 5. 2 2. 4 13. 9 19. 1 16. 3 60. 0 50. 0 40. 9 33. 7 L	
5. 94223 5. 2 2. 4 13. 9 19. 1 16. 3 60. 0 50. 0 40. 9 33. 7 L	
0.54077 0.0 4.0 44.4 47.0 40.0 50.0 50.0 40.0 07.4 4	
8.51677 2.9 -1.2 14.1 17.0 12.9 60.0 50.0 43.0 37.1 L	
10.11150 5.6 2.4 14.4 20.0 16.8 60.0 50.0 40.0 33.2 L	
11. 71248 6. 1 2. 7 14. 6 20. 7 17. 3 60. 0 50. 0 39. 3 32. 7 L	
15. 43985 4. 5 0. 1 14. 8 19. 3 14. 9 60. 0 50. 0 40. 7 35. 1 L	
27. 12000 20. 6 13. 9 15. 5 36. 1 29. 4 60. 0 50. 0 23. 9 20. 6 L	

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 14 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Conducted emission

DATA OF CONDUCTED EMISSION TEST

Head Office EMC Lab. No.2 Semi Anechoic Chamber Date: 2012/09/09

Report No. : 32JE0303-H0-01 Temp./Humi. Engineer : 24deg. C / 67% RH : Satofumi Matsuyama

Mode / Remarks : Transmitting (Tx and Rx) without Card (Antenna terminated with dummy load) mode

FCC15. 207 QP FCC15. 207 AV

Frequency	Reading	Level	Corr.	Resi		Lin			gin		
	QP	AV	Factor	QP	AV	QP	AV	QP	AV	Phase	Comment
[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
13. 56000	23. 3	23. 1	14. 8	38. 1	37. 9	60.0	50.0	21.9	12. 1	N	
13.56000	23. 2	23.0	14. 8	38. 0	37.8	60.0	50.0	22.0	12. 2	L	

*The test result is rounded off to one or two decimal places, so some differences might be observed.

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

Page : 15 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Fundamental emission and Spectrum Mask

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date: 2012/09/09

Report No. : 32JE0303-H0-01 Temp./ Humi. Engineer : 24deg. C / 67% RH : Satofumi Matsuyama

 $\label{eq:mode_mode_mode} \textbf{Mode} \ / \ \textbf{Remarks} \ : \ \textbf{Transmitting} \ (\textbf{Tx} \ \ \textbf{and} \ \ \textbf{Rx}) \ \ \textbf{with} \ \ \textbf{Card} \ \ \textbf{mode}, \ \ \textbf{Worst-axis} \ (\textbf{Z-axis})$

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
[MHz]	[dBuV]	DLI	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	Oommeric
13. 06266		QP	19. 2	7. 0	32. 1	27. 0	69. 5			Α	0	
13. 34936	46. 4	QP	19.0	7. 0	32. 1	40.3	80.5	40. 2		Α	0	
13. 48160	46.8	QP	19.0	7. 0	32. 1	40.7	90.4	49. 7	0	Α	0	
13. 55300	58.8	QP	18. 9	7. 1	32. 1	52.7	90.4	37. 7	0	Α	0	
13. 56000	63.3	QP	18. 9	7. 1	32. 1	57. 2	123.9	66. 7	0	Α	0	Loop:Hor
13. 56000	74.8	QP	18. 9	7. 1	32. 1	68.7	123.9	55. 2	0	Α	0	Worst
13. 56000	72.8	QP	18. 9	7. 1	32. 1	66.7	123.9	57. 2	45	В	334	
13. 56000	70.6	QP	18. 9	7. 1	32. 1	64.5	123.9	59. 4	90	С	281	
13. 56000	72.8	QP	18. 9	7. 1	32. 1	66.7	123.9	57. 2	135	Α	219	
13. 56700	61.5	QP	18. 9	7. 1	32. 1	55.4	90.4	35. 0	0	Α	0	
13. 63686	46.5	QP	18. 9	7. 1	32. 1	40.4	90.4	50.0	0	Α	0	
13. 77510	45.0	QP	18. 9	7. 1	32. 1	38.9	80.5	41. 6	0	Α	0	
14. 11842	32. 2	QP	18. 8	7. 1	32. 1	26.0	69.5	43. 5	0	Α	0	
l i			l									
			1	1						l		
										l		
				1						l		
				1								
				i								

UL Japan, Inc.

Head Office EMC Lab.

 $4383\text{-}326 \; Asama\text{-}cho, Ise\text{-}shi, Mie\text{-}ken \; 516\text{-}0021 \; JAPAN$

: +81 596 24 8116 Telephone Facsimile : +81 596 24 8124

 Page
 : 16 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

Fundamental emission and Spectrum Mask

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No.2 Semi Anechoic Chamber Date: 2012/09/09

Report No. : 32JE0303-H0-01
Temp. / Humi. : 24deg. C / 67% RH
Engineer : Satofumi Matsuyama

 $\label{eq:mode_mode_relation} \textbf{Mode} \ / \ \textbf{Remarks} \ : \ \textbf{Transmitting} \ (\textbf{Tx} \ \ \textbf{and} \ \ \textbf{Rx}) \ \ \textbf{without} \ \ \textbf{Card} \ \ \textbf{mode},$

Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
13. 05881	30.7	QP	19. 2	7. 0	32. 1	24. 8	69. 5	44. 7	0	Α	0	
13. 34804	39. 1	QP	19.0	7. 0	32. 1	33.0	80.5	47. 5	0	Α	0	
13. 48012	41.1	QP	19.0	7. 0	32. 1	35.0	90.4	55. 4	0	Α	0	
13. 55300			18. 9	7. 1	32. 1	52. 1	90.4	38. 3	0	Α	0	
13. 56000		QP	18. 9	7. 1	32. 1	56.7	123. 9	67. 2	0	Α	14	Loop:Hor
13. 56000			18. 9	7. 1	32. 1	67.9		56. 0	0	Α	0	Worst
13. 56000		QP	18. 9	7. 1	32. 1	65.7	123. 9	58. 2	45	В	333	
13. 56000		QP	18. 9	7. 1	32. 1	63.4		60. 5	90	C	302	
13. 56000		QP	18. 9	7. 1	32. 1	65.8	123. 9	58. 1	135	Α	14	
13. 56700		QP	18. 9	7. 1	32. 1	54. 5	90.4	35. 9	0	A	0	
13. 63529			18. 9	7. 1	32. 1	34. 1	90.4	56. 3	0	Α	0	
13. 77284		QP	18. 9	7. 1	32. 1	32.7	80. 5	47. 8	0	Α	0	
14. 19663	29. 9	QP	18. 8	7. 1	32. 1	23.7	69. 5	45. 8	0	Α	0	
										l		

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 17 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Spurious emission

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date: 2012/09/09

Report No. : 32JE0303-H0-01 Temp./ Humi. Engineer : 24deg. C / 67% RH : Satofumi Matsuyama

 $\textbf{Mode} \ / \ \textbf{Remarks} \ \vdots \ \textbf{Transmitting} \ (\textbf{Tx} \ \textbf{and} \ \textbf{Rx}) \ \ \textbf{with} \ \ \textbf{Card} \ \ \textbf{mode}, \ \ \textbf{Worst-axis} \ (\textbf{Z-axis})$

LIMIT : FCC15.225 3m, 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.225 3m, 9-90kHz:AV, 110-490kHz:AV, other:QP

	Freq.	Reading	DET	Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	Comment
L	[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
	27. 12000			18. 9	7. 5	32. 0		69.5			Α	0	
	27. 12000	40.0	QP	18. 9	7. 5	32. 0	34. 4	69.5	35. 1	45	В	156	
	27. 12000	40.0	QP	18. 9	7. 5	32. 0	34.4	69.5	35. 1	90	C	108	
	27. 12000	38. 2	QP	18. 9	7. 5	32. 0	32.6	69.5	36. 9	135	Α	59	
					1								
]								
					-								
					j								
L													

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 18 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Spurious emission

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date: 2012/09/09

Report No. : 32JE0303-H0-01 Temp./ Humi. Engineer : 24deg. C / 67% RH : Satofumi Matsuyama

 $\label{eq:mode_mode_mode} \textbf{Mode} \ / \ \textbf{Remarks} \ \vdots \ \textbf{Transmitting} \ (\textbf{Tx} \ \ \textbf{and} \ \ \textbf{Rx}) \ \ \textbf{without} \ \ \textbf{Card} \ \ \textbf{mode}, \ \ \textbf{Worst-axis} \ (\textbf{Z-axis})$

LIMIT : FCC15.225 3m, 9-90kHz:PK, 110-490kHz:PK, other:QP FCC15.225 3m, 9-90kHz:AV, 110-490kHz:AV, other:QP

Freq.	Reading		Ant. Fac	Loss	Gain	Result	Limit	Margin	Antenna		Table	
		DET]		Comment
[MHz]	[dBuV]		[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[deg]		[deg]	
27. 12000		QP	18. 9				69.5			Α	172	
27. 12000		QP	18. 9				69.5			В	144	
27. 12000	41.3	QP	18. 9	7. 5	32. 0	35.7	69.5	33. 8	90	C	107	
27. 12000	40. 1	QP	18. 9	7. 5	32. 0	34.5	69.5	35. 0	135	Α	53	
			i i							l	i i	
										l		
										\bot		

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 19 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

Spurious emission

DATA OF RADIATED EMISSION TEST

ILD LIVII SO I UN I ESI
UL Japan, Inc. Head Office EMC Lab.

No. 4 Semi Anechoic Chamber

Date : 2012/10/02

Report No. : 32JE0303-H0-01

Temp./Humi. : 23deg. C / 54% RH
Engineer : Tomotaka Sasagawa

 $\label{eq:mode_mode} \mbox{Mode} \ / \ \mbox{Remarks} \ : \ \mbox{Transmitting}(\mbox{Tx} \ \mbox{and} \ \mbox{Rx}) \ \mbox{with} \ \mbox{Card} \ \mbox{mode}$

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DEI	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	TOTAL.	[dBuV/m]	[dB]	Oommorre
40. 800	34. 2	QP	14. 5	-24. 7	24. 0	182		Hori.	40.0	16.0	
40. 800	46.5	QP	14.5	-24. 7	36. 3	150	100	Vert.	40. 0	3.7	
244. 199	43.5	QP	17. 1	-22. 8	37. 8	122	100	Hori.	46. 0	8. 2	
244. 199	42.3	QP	17. 1	-22. 8	36. 6	290	100	Vert.	46. 0	9.4	
271. 199	45.6	QP	18.5	-22. 6	41.5	119	100	Hori.	46. 0	4.5	
271. 199	43.9	QP	18.5	-22. 6	39. 8	247	100	Vert.	46. 0	6.2	
298. 650	46.5	QP	20. 1	-22. 4	44. 2	116	100	Hori.	46. 0	1.8	
298. 650	38. 2	QP	20. 1	-22. 4	35. 9	308	100	Vert.	46. 0	10.1	
311.667	48.7	QP	16. 2	-22. 3	42. 6	327	100	Hori.	46. 0	3.4	
311.667	44. 9	QP	16. 2	-22. 3	38. 8	196	100	Vert.	46. 0	7. 2	
325. 666	50.4	QP	16.5	-22. 2	44. 7	327	100	Hori.	46. 0		
325. 666	40. 2	QP	16.5	-22. 2	34. 5	196	100	Vert.	46. 0	11.5	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-200MHz:BICONICAL, 200MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Page : 20 of 27 **Issued date** : October 3, 2012 Revised date : October 22, 2012 FCC ID : YS34D454C2D5003

Spurious emission

DATA OF RADIATED EMISSION TEST

UL Japan, Inc. Head Office EMC Lab. No. 4 Semi Anechoic Chamber Date: 2012/10/02

Report No. : 32JE0303-H0-01 Temp./Humi. Engineer : 23deg. C / 54% RH : Tomotaka Sasagawa

Mode / Remarks : Transmitting(Tx and Rx) without Card mode

<< QP DATA >>

[dBuV/m]

LIMIT : FCC15,209 3m, below 1GHz:QP, above 1GHz:PK Except for the data below : adequate margin data below the limits.

700 1000 Frequency[MHz]

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin	Comment
[MHz]	[dBuV]	DET	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	rolal.	[dBuV/m]	[dB]	Comment
40. 452	34. 5	QP	14. 6	-24. 7	24. 4		100	Hori.	40. 0		
40. 443	45. 6	QP	14. 6	-24. 7	35. 5	156	100		40.0		
244. 321	44. 2	QP	17. 1	-22. 8					46. 0		
244. 213	43.0	QP	17. 1	-22. 8	37. 3	298	100	Vert.	46. 0	8.7	
271. 381	45.9	QP	18.5	-22. 6	41.8	122	100	Hori.	46. 0	4. 2	
271. 514	44. 1	QP	18.5	-22. 6	40.0	256	100	Vert.	46. 0	6.0	
298. 321	45. 6	QP	20. 1	-22. 4	43. 3	76	100	Hori.	46. 0	2.7	
298. 993	38.7	QP	20. 1	-22. 4	36. 4	311	100	Vert.	46. 0	9.6	
311. 320	47. 9	QP	16. 2	-22. 3	41.8	325	100	Hori.	46. 0		
311. 321	45. 1	QP	16. 2	-22. 3	39. 0	201	100	Vert.	46. 0	7.0	
325. 421	48. 9		16.5	-22. 2	43. 2		100		46. 0		
325. 451	40.8	QP	16.5	-22. 2	35. 1	234	100	Vert.	46. 0	10.9	

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-200MHz:BICONICAL, 200MHz-1000MHz:LOGPERIODIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 21 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

20dB Bandwidth and 99% Occupied Band Width

Test place Head Office EMC Lab. No.2 Semi Anechoic Chamber

Report No. 32JE0303-HO-01
Date 09/09/2012
Temperature/ Humidity 24 deg. C / 67% RH
Engineer Satofumi Matsuyama

Mode Transmitting(Tx and Rx) with Card mode

FREQ	20dB Bandwidth	99% Occupied Bandwidth
[MHz]	[kHz]	[kHz]
13.56	2.91	2.84

Transmit Freq Error 172.944 Hz x dB Bandwidth 2.908 kHz

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Page
 : 22 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

Frequency Tolerance

Test place Head Office EMC Lab. No.6 measurement room

Report No. 32JE0303-HO-01
Date 09/10/2012
Temperature/ Humidity 22 deg.C/ 54% RH
Engineer Hiroshi Kukita

Mode Tx Mod off without Card

Te	est	Test	Measured	Freq	Result	Limit	Margin
Cond	lition	Timing	freq	error		(+/- 0.01%)	
deg.C	Volts		[MHz]	[MHz]	[ppm]	[+/- ppm]	[ppm]
		Power on	13.56023030	0.00023030	16.98	100.00	83.02
	10.2V	on 2min.	13.56023460	0.00023460	17.30	100.00	82.70
	10.2 V	on 5min.	13.56023890	0.00023890	17.62	100.00	82.38
		on 10min.	13.56024030	0.00024030	17.72	100.00	82.28
		Power on	13.56025300	0.00025300	18.66	100.00	81.34
20.4a a C	12V	on 2min.	13.56023750	0.00023750	17.51	100.00	82.49
20deg.C	12 V	on 5min.	13.56022890	0.00022890	16.88	100.00	83.12
		on 10min.	13.56021560	0.00021560	15.90	100.00	84.10
		Power on	13.56023780	0.00023780	17.54	100.00	82.46
	13.8V	on 2min.	13.56024340	0.00024340	17.95	100.00	82.05
	13.8 V	on 5min.	13.56024490	0.00024490	18.06	100.00	81.94
		on 10min.	13.56025150	0.00025150	18.55	100.00	81.45
		Power on	13.56023530	0.00023530	17.35	100.00	82.65
40.1 C		on 2min.	13.56023210	0.00023210	17.12	100.00	82.88
40deg.C.		on 5min.	13.56023630	0.00023630	17.43	100.00	82.57
		on 10min.	13.56023810	0.00023810	17.56	100.00	82.44
	1	Power on	13.56035230	0.00035230	25.98	100.00	74.02
20.1 C		on 2min.	13.56022470	0.00022470	16.57	100.00	83.43
30deg.C.		on 5min.	13.56021850	0.00021850	16.11	100.00	83.89
		on 10min.	13.56021230	0.00021230	15.66	100.00	84.34
	1	Power on	13.56025400	0.00025400	18.73	100.00	81.27
204~~ C		on 2min.	13.56023180	0.00023180	17.09	100.00	82.91
20deg.C.		on 5min.	13.56021989	0.00021989	16.22	100.00	83.78
	12V	on 10min.	13.56021430	0.00021430	15.80	100.00	84.20
	120	Power on	13.56026800	0.00026800	19.76	100.00	80.24
10deg.C.		on 2min.	13.56026830	0.00026830	19.79	100.00	80.21
Todeg.C.		on 5min.	13.56026760	0.00026760	19.73	100.00	80.27
		on 10min.	13.56026850	0.00026850	19.80	100.00	80.20
		Power on	13.56026830	0.00026830	19.79	100.00	80.21
0deg.C.		on 2min.	13.56026840	0.00026840	19.79	100.00	80.21
odeg.C.		on 5min.	13.56026820	0.00026820	19.78	100.00	80.22
		on 10min.	13.56026830	0.00026830	19.79	100.00	80.21
		Power on	13.56023510	0.00023510	17.34	100.00	82.66
-10deg.C.		on 2min.	13.56026100	0.00026100	19.25	100.00	80.75
-10deg.C.		on 5min.	13.56026040	0.00026040	19.20	100.00	80.80
	12.50	on 10min.	13.56026110	0.00026110	19.26	100.00	80.74

Limit: 13.56 13.56 MHz +/-0.01 % (+/- 100ppm) = +/- 0.001356 MHz

UL Japan, Inc. Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The tests at 50deg.C. and -20deg.C. were not applied since the specification of operating temperature of EUT was -10deg.C. to 40deg.C. and the EUT was only used in this temperature range.

 Page
 : 23 of 27

 Issued date
 : October 3, 2012

 Revised date
 : October 22, 2012

 FCC ID
 : YS34D454C2D5003

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic	TDK	Semi Anechoic	DA-06902	RE/CE	2012/06/29 * 12
	Chamber(NSA)		Chamber 3m			
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE/CE	2012/02/06 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE/CE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE/CE	-
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE/CE	2012/04/03 * 12
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA91032008	RE	2011/10/23 * 12
MLA-02	Logperiodic Antenna	Schwarzbeck	USLP9143	201	RE	2011/10/23 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2012/02/16 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2011/11/02 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2011/09/26 * 12 *1)
MCH-04	Temperature and Humidity Chamber	Tabai Espec	PL-2KP	14015723	FT	2012/08/01 * 12
MOS-14	Thermo-Hygrometer	Custom	CTH-201	-	FT	2012/02/06 * 12
MBM-10	Barometer	Sunoh	SBR121	832	FT	2010/12/13 * 36
MFC-01	Microwave Counter	Advantest	R5373	120100309	FT	2012/08/16 * 12
MLS-06	LISN(AMN)	Schwarzbeck	NSLK8127	8127363	CE	2012/02/06 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D- 2W(1m)	-	CE	2012/02/16 * 12
MAT-65	Attenuator(13dB)	JFW Industries, Inc.	50FP-013H2 N	-	CE	2012/01/28 * 12
MAEC-04	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	RE	2012/02/29 * 12
MOS-15	Thermo-Hygrometer	Custom	CTH-180	-	RE	2012/02/06 * 12
MJM-07	Measure	PROMART	SEN1955	-	RE	=
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-05	Spectrum Analyzer	Advantest	R3273	160400285	RE	2011/11/23 * 12
MTR-07	Test Receiver	Rohde & Schwarz	ESCI	100635	RE	2012/04/05 * 12
MBA-05	Biconical Antenna	Schwarzbeck	BBA9106	1302	RE	2011/11/16 * 12
MLA-08	Logperiodic Antenna	Schwarzbeck	UKLP9140-A	N/A	RE	2011/11/16 * 12
MCC-50	Coaxial Cable	UL Japan	-	-	RE	2012/06/01 * 12
AT-38	Attenuator	Anritsu	MP721B	6200961025	RE	2011/12/08 * 12
MPA-14	Pre Amplifier	SONOMA INSTRUMENT	310	260833	RE	2012/03/05 * 12

^{*1)} This test equipment was used for the tests before the expiration date of the calibration.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item: RE: Radiated Emission

CE: Conducted Emission FT: Frequency Tolerance

UL Japan, Inc.

Head Office EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN