Параллельное соединение RLC-элементов

Для параллельного соединения RLC-элементов (рис. 1) справедливо уравнение первого закона Кирхгофа. Для комплексных токов: $I = I_R + I_L + I_{c,}$ где $I_{R=U/R:} I_{L=}$ - jU/X_L ; $I_c=jU/X_c$

Ток I_R в сопротивлении R совпадает по фазе с напряжением u, ток I_L в индуктивности L отстает, а ток I_c в емкости C опережает напряжение на $\pi/2$

Рисунок 2.19 Токи в сопротивлении, индуктивности и емкости

(соединенных параллельно) при гармоническом напряжении

Резонанс токов

У параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. $X_L = X_C$. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями $I_L = U \ / \ X_L$ и $I_C = U \ / \ X_C$ будут равны между собой, так $X_L = X_C$.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи.