Spam Email Classification Report

KNN Binary Classification

KNN Binary predicts the target value for a new instance by averaging the values of its K nearest neighbors in the training set.

About implementing the KNN binary classifier model, I set the k-values from 1 to 20 to compare. After that, I go through all k-values of the KNN model and check for the 5-Fold Cross-Validation accuracy of each value, then store them in knn result. Then I have this result:

Figure 1

KNN 5-Fold Cross-Validation:

- The graph shows that all K values have a cross-validation (CV) accuracy above 0.99 prove that the dataset is straightforward for KNN to classify.
- My best cross validation accuracy is 0.9980 when K = 6.
- With small K (K = 1), which usually risks overfitting, it performs well in KNN (0.9977 accuracy score).
- With optimal K (K = 4 to 8), all of them perform pretty well around 0.9974 to 0.9980.
- With larger K (K >= 9), it decreases in accuracy, indicating potential underfitting due to excessive smoothing.
 - \Rightarrow Best choice is K = 6 with a cross validation accuracy of 0.9980.

Logistic regression

Figure 2

Logistic Regression varying C with 5-Fold Cross-Validation:

- At very low (C = 1), the model is heavily regularized, yielding a relatively low CV accuracy (93.39%), which suggests **underfitting** due to high bias.
- When C is range from 0.001 to 10, the CV accuracy steadily improves, reaching 0.9846 at C=10. We can see that reducing regularization allows the model to better capture the underlying patterns in the data.
- At high C (C = 100), the accuracy slightly drops to 0.9843, which shows that reducing regularization doesn't improve performance and start to risk overfitting, though the change is minimal.

Linear Support Vector Machine

Linear Support Vector varying in C with 5-Fold Cross Validation:

- At very low (C = 0.001), the model is overly constrained (high regularization), leading to a low CV accuracy 0.9629. This indicates underfitting.
- At C range from 0.01 to 10, the model rises higher with only drop at 1 to 10, which shows that the model reduced regularization helping it capture underlying data structure better.
- At C = 100, it performs the most accuracy at 0.9864, which indicates that the model benefits from minimal regularization, which allows a more flexible decision boundary.
- => The best choice for this Linear SVM is C=100.

Comparing testing accuracy

- As you can see, KNN achieves the best accuracy on this test set. Linear SVM ranks second, followed by Logistic Regression. In my opinion, KNN with k=6 is the best choice with the highest accuracy on tests with the highest accuracy on 5-fold Validation.