Soc Lab - Lab3

311510216 廖智緯

一、Block Diagram

\equiv \cdot Describe operation

1. 接收 Data-in 和 tap parameters:

Data length 是使用一個 register 暫存起來,以便後面確認需要輸出幾筆資料使用;而 Xin 和 coefficient 是各別使用一個 Bram11 來儲存,而 coefficient 的 Bram 內的值是固定的,而根據不同時間點將裡面存的值哪拿出來做乘法,另外的 Xin 內的 Bram 值是不固定的,會根據目前輸出到哪裡,就會將 Bram 內最舊的值覆蓋掉,更新成新的 Xin。而 tap parameter 是使用 AXI-Lite 跟 testbench 拿值,另外的 Data-in(Xin) 則是使用 AXI-Stream 來接收。再使用 Data Transfer Handshake 將值儲存在 Bram 內。

2. 存取 shiftram 和 tapRam 來去做計算:

我使用了兩個 Bram,一個是儲存 Xin shiftreg 的值(Bram_xin),另一個是儲存 coefficient 的值(Bram_coef),我會各別有一個 pointer 來去指向現在需要存取哪一個 address 的 data,我有三個 pointer(ptr_s、initial_ptr_s、ptr_c),ptr_c 是指向目前需要將哪一個 coefficient 值拿出來做計算,順序是[10 9 8 ... 2 1 0];ptr_s 是指向目前需要將哪一個 xin 值拿出來做計算,順序可能會改變,第一次的話是[0 1 2 ... 8 9 10],第

二次的順序就會變成[1 2 3 ... 9 10 0],以此類推;initial_ptr_s 是指向最一開始 ptr_s 指向的 address,可以幫助我判斷是否已經計算完成。由於前 10 次計算不需要做滿 11 次乘法和加法,因此不會有遞迴的問題,initial_ptr_s 的值保值在 0,ptr_s 的值會是[0]、[0 1]、[0 1 2]......[0 1 2 9], initial_ptr_s 會再輸出一個後就再加 1,紀錄每次計算 ptr_s 的初始值位置,而 ptr_c 的值會是[0]、[1 0]、[2 1 0]、[3 2 1 0].....[9 8 7.....1 0],在之後的計算。

3. ap_start、ap_done、ap_idle 如何控制:
ap_start 是在當 awaddr=0x00 的時候且 wdata=1 的時候 high,且只亮一個 cycle 的時間,其餘時間都是 low。
ap_done 是在最後一個 output 輸出後的下個 cycle on,其餘都是 low。
ap_idle 在 reset 後會維持在 high,當 ap_strat high 的時候,他會變為 low,當最後在 ap_done high 的時候,又再變回 high。

4.

三、Resource usage

+	+	+		
Site Type	Used	Fixed	Prohibited	Available Util%
+				
Slice LUTs*	419	0	0	53200 0.79
LUT as Logic	291	0	0	53200 0.55
LUT as Memory	128	0	0	17400 0.74
LUT as Distributed RAM	128	0		1 1
LUT as Shift Register	0	0		1 1
Slice Registers	151	0	0	106400 0.14
Register as Flip Flop	119	0	0	106400 0.11
Register as Latch	32	0	0	106400 0.03
F7 Muxes	0	0	0	26600 0.00
F8 Muxes	0	0	0	13300 0.00
+	+	+		

1. FF

我使用了數個 FF 來儲存我運算的 data

2. LUT

這次這個 Lab 我沒有使用到 Look up table。

3. BRAM

我使用了 2 個 BRAM,一個是 BRAM_coef,一個是 BRAM_xin。 BRAM_coef 是儲存 coefficient 的值。

BRAM_xin 是儲存 xin 的值,在前 10 次計算會依序放進 BRAM 內,在後面的計算,每一次計算結束就會將最舊的值更新成最新的。

4. 55

四、Timing report

Setup		Hold		Pulse Width	
Worst Negative Slack (WNS):	0.175 ns	Worst Hold Slack (WHS):	0.116 ns	Worst Pulse Width Slack (WPWS):	5.250 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	818	Total Number of Endpoints:	818	Total Number of Endpoints:	248
All user specified timing cons	traints are	met.			

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
	(clock axis_clk rise edge)		
	(CLOCK AXES_CER 1 ESE EUGE,	0.000	0.000 r	
		0.000	0.000 r	
	net (fo=0)	0.000	0.000	axis clk
	1160 (10-0)	0.000		axis_clk IBUF inst/I
	IBUF (Prop ibuf I 0)	0.972	0.972 r	
	net (fo=1, unplaced)	0.800	1.771	axis_clk_IBUF
	nec (10=1, unpeaced)	0.000		axis_clk_IBUF_BUFG_inst/I
	BUFG (Prop_bufg_I_0)	0.101	1.872 r	
	net (fo=247, unplaced)	0.584	2.456	xin/axis_clk_IBUF_BUFG
	FDRE	0.501		xin/r_A_reg_rep_bsel[2]/C
	FDRE (Prop_fdre_C_Q)	0.478	2.934 r	
	net (fo=32, unplaced)	1.036	3.970	xin/RAM_reg_0_15_16_16/DPRA0
	RAMD32 (Prop ramd32 RADR0	0)	'	xin/RAM_reg_0_15_16_16/DP/RADR0
	TOTIOSE (FTOP_TalledSE_KADRO	0.295	4.265 r	xin/RAM_reg_0_15_16_16/DP/0
	net (fo=3, unplaced)	0.800	5.065	data_Do_IBUF[16]
	net (10-3, unptaced)	0.000		multr_0/A[16]
	DSP48E1 (Prop dsp48e1 A[16	6] PCOUT[4		
		4.036		multr 0/PCOUT[47]
	net (fo=1, unplaced)	0.055	9.156	multr0_n_107
				multr1/PCIN[47]
	DSP48E1 (Prop_dsp48e1_PCII)	
		1.518		multr1/P[0]
	net (fo=2, unplaced)	0.800	11.474	multr 1 n 106
				result[19]_i_10/I0
	LUT2 (Prop_lut2_I0_0)	0.124	11.598 r	
	net (fo=1, unplaced)	0.000	11.598	result[19]_i_10_n_1
	0.000	005033	r	result_reg[19]_i_7/S[1]
	CARRY4 (Prop_carry4_S[1]_0		40 404	
	not (for a supplement)	0.533	12.131 r	result_reg[19]_i_7/C0[3]
	net (fo=1, unplaced)	0.009	12.140	result_reg[19]_i_7_n_1
	CARRY4 (Prop_carry4_CI_CO	[3])		result_reg[23]_i_7/CI
	CARRETT (FTOP_Call y4_CI_CO	0.117	12.257 r	result_reg[23]_i_7/C0[3]
	net (fo=1, unplaced)	0.000	12.257	result_reg[23]_i_7_n_1
	nos (10=1, unpeaced)	0.000		result_reg[27]_i_7/CI
	CARRY4 (Prop carry4 CI 0[31)		
	1	0.331	12.588 r	result_reg[27]_i_7/0[3]
	net (fo=1, unplaced)	0.618	13.206	multr_3[27]
				result[27]_i_3/I1
	LUT2 (Prop_lut2_I1_0)	0.307	13.513 r	result[27]_i_3/0
	net (fo=1, unplaced)	0.000	13.513	result[27]_i_3_n_1
			r	result_reg[27]_i_2/S[3]
	CARRY4 (Prop_carry4_S[3]_0		40.000	
	not (fo 4 yearland)	0.376	13.889 r	
	net (fo=1, unplaced)	0.000	13.889	result_reg[27]_i_2_n_1
	CARRY4 (Prop_carry4_CI_0[311	-	result_reg[31]_i_3/CI
	CARRITY (PTOP_Call 34_CI_O[.	0.331	14.220 r	result_reg[31]_i_3/0[3]
	net (fo=1, unplaced)	0.618	14.838	result0[31]
	man (10-1) and caoba)	0.010		result[31]_i_1/I1
	LUT2 (Prop lut2 I1 0)	0.307	15.145 r	
	net (fo=1, unplaced)	0.000	15.145	result[31]_i_1_n_1
	FDCE		r	

```
(clock axis_clk rise edge)
                                                                       13.000
                                                                                                13.000 r
13.000 r
13.000
                                                                                                                       axis_clk (IN)
axis_clk
axis_clk IBUF_inst/I
axis_clk_IBUF_inst/0
axis_clk_IBUF
axis_clk_IBUF_BUFG_inst/I
axis_clk_IBUF_BUFG_inst/O
axis_clk_IBUF_BUFG
result_reg[31]/C
                                                                         0.000
net (fo=0)
IBUF (Prop_ibuf_I_0)
net (fo=1, unplaced)
                                                                        0.838
0.760
BUFG (Prop_bufg_I_0)
net (fo=247, unplaced)
FDCE
clock pessimism
clock uncertainty
FDCE (Setup_fdce_C_D)
                                                                        0.091
0.439
                                                                                                14.689 r
15.128
                                                                                                15.311
15.276
15.320
                                                                         0.184
                                                                       -0.035
0.044
                                                                                                                         result_reg[31]
                                                                                             15.320
-15.145
required time arrival time
slack
```

Simulation Waveform

1. FSM

```
FSM
parameter idle
                 = 4'd0;
parameter input_coef = 4'd1;
parameter write_coef = 4'd2;
parameter output_coef = 4'd3;
parameter read coef = 4'd4;
                 = 4'd5;
parameter calculate
parameter calculate_full = 4'd6;
parameter out_state = 4'd7;
parameter check = 4'd8;
always@(posedge axis_clk or negedge axis_rst_n) begin
   if(!axis_rst_n)
     cs <= idle;
      cs <= ns;
end
always@(*) begin
  case(cs)
      idle: //0
      begin
      ns = input_coef;
      end
      input_coef: // 1
       if(awvalid && awready)
         ns = write_coef;
         ns = input_coef;
```

```
input_coef: // 1
begin
  if(awvalid && awready)
    ns = write_coef;
  else
    ns = input_coef;
end
write_coef :
begin
  if(wready && wvalid)
    if(count == 11)
        ns = output_coef;
    else
        ns = input coef;
 else
    ns = write_coef;
end
output_coef: // 1
begin
 if(arvalid && arready)
    ns = read_coef;
  else
    ns = output_coef;
end
```

2. Data-in stream-in

Data-in:

Stream-in

3. Data-out stream-out

Data-out:

Stream-out:

4. Bram access control

Bram-coef:

Bram-coef 寫入值:

Bram-coef 讀出值:

Bram-xin:

Bram-xin 寫入值:

Bram-xin 讀出值:

