MAT389 Fall 2013, Problem Set 1

1.1 Express the following complex numbers in the form $re^{i\theta}$:

- (i) i^3 ,
- (ii) 1 i, (iii) $\sqrt{2}(1 + i)$, (iv) $\sqrt{3} i$, (v) $2 2\sqrt{3}i$.

1.2 Express the following complex numbers in the form x + iy:

- (i) $e^{\pi i/4}$,
- (ii) $5e^{-\pi i}$, (iii) $2e^{3\pi i/2}$,
- (iv) $e^{4\pi i/3}$,
- (v) $e^{7\pi i/6}$

1.3 Calculate:

(i)
$$\frac{1}{i} + \frac{1}{1+i}$$

- (i) $\frac{1}{i} + \frac{1}{1+i}$, (ii) $\frac{2}{(1-3i)^2}$, (iii) $(1+\sqrt{3}i)^3$, (iv) $(\sqrt{2}e^{\pi i/2} + \sqrt{2}e^{3\pi i/4})^4$

1.4 Show that $Re(iz) = -\operatorname{Im} z$ for every $z \in \mathbb{C}$.

- **1.5** (a) Let $z \in \mathbb{C}$ with $\operatorname{Re} z > 0$. Prove that $\operatorname{Re} z^{-1} > 0$.
 - (b) Let $z \in \mathbb{C}$ with Im z > 0. Prove that $\text{Im } z^{-1} < 0$.

1.6 Prove de Moivre's formula:

$$(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta, \quad \forall n \in \mathbb{Z}$$

- **1.7** Calculate the 3rd roots of $-\sqrt{2} i\sqrt{2}$.
- **1.8** Let $\omega \neq 1$ be an *n*-th root of unity. Prove that

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

1.9 Derive Lagrange's trigonometric identity:

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin[(2n+1)\theta/2]}{2\sin(\theta/2)} \quad \text{if } \sin\frac{\theta}{2} \neq 0$$

 $1.10 \cdot$ Find all complex solutions of the following equations:

(i)
$$1 + z + \dots + z^7 = 0$$
,

(ii)
$$(1-z)^5 = (1+z)^5$$
,

(i)
$$1 + z + \dots + z^7 = 0$$
, (ii) $(1 - z)^5 = (1 + z)^5$, (iii) $1 - z^2 + z^4 - z^6 = 0$.

1.11 Find a necessary and sufficient condition for the triangle inequality, $|z+w| \leq |z| + |w|$, to be an equality. Use this to calculate the maximum of $|z^{10} + a|$ over the unit circle |z| = 1, as well as where that maximum is attained.

- **1.12** The usual order relation > on \mathbb{R} satisfies
 - (a) $x \neq 0$ implies x > 0 or -x > 0, but not both, and
 - (b) x, y > 0 implies x + y > 0 and xy > 0.

Show that there does not exist a relation > on \mathbb{C} satisfying (a) and (b).

[Hint: consider i]

1.13 Let $z, w \in \mathbb{C}$. Prove that

$$|z + iw|^2 + |w + iz|^2 = 2(|z|^2 + |w|^2)$$

- **1.14** Give a one-line proof of the fact that $(1+i)^n + (1-i)^n$ is a real number for every $n \in \mathbb{Q}$.
- **1.15** Prove, both analytically and geometrically, that $|z-1| = |\overline{z}-1|$.
- **1.16** Solve the equation $|e^{i\theta} 1| = 2$ for θ $(-\pi < \theta \le \pi)$ and verify the solution geometrically.
- 1.17 Give a geometric argument to prove that

$$\left| \frac{z}{|z|} - 1 \right| \le |\operatorname{Arg} z|$$

for any $z \in \mathbb{C}$.

1.18 Let $z_1, z_2, z_3 \in \mathbb{C}$ satisfying

$$|z_1 + z_2 + z_3| = 0,$$
 $|z_1| = |z_2| = |z_3| = 1.$

Prove z_1, z_2, z_3 form an equilateral triangle.

1.19 Consider the Möbius transformation

$$z \mapsto T(z) = \frac{az+b}{cz+d}$$

Verify that the inverse is again a Möbius transformation—namely, the one given by

$$z \mapsto T^{-1}(z) = \frac{dz - b}{-cz + a}$$