

Филиал «Котельники» государственного бюджетного образовательного учреждения высшего образования Московской области «Университет «Дубна»

Артамонов Ю.Н.

Методические указания

по выполнению курсовой работы по дисциплине «Программирование на языке высокого уровня»

Для бакалавров по направлению «Информатика и вычислительная техника»

____ОГЛАВЛЕНИЕ

1	Тре	вования по оформлению курсовой работы	4
2	Раз	работка численных алгоритмов	8
	2.1	Суммирование рядов и вычисление элементарных функций	8
	2.2	Приближенные методы нахождения корней уравнения	13
3	Раз	работка игровой программы	20
Лı	итер	атура	25
A	Обр	разец титульного листа	26
В	Прі	имеры блок-схем	28

Введение

Методическое пособие предназначено для выполнения курсовой работы бакалаврами по направлению "Информатика и вычислительная техника". Курсовая работа включает в себя две части:

- 1. разработка численных алгоритмов;
- 2. разработка игровых программ.

Задания первой части курсовой работы базируются на знаниях, полученных студентами по смежным дисциплинам: «Математический анализ», «Линейная алгебра». Реализация соответствующих алгоритмов на языке программирования С позволяет глубже понять суть подходов к решению задач, дополняет полученные теоретические сведения практическими навыками по принципу: «Чтобы полностью понять решение задачи, следует научить решать ее компьютер».

Вторая часть курсовой работы связана с реализацией некоторой игровой программы и стимулирует у студента творческий подход к реализации задания.

глава 1__

ТРЕБОВАНИЯ ПО ОФОРМЛЕНИЮ КУРСОВОЙ РАБОТЫ

Пояснительная записка к курсовой работе выполняется в текстовом редакторы MS Word: формат A4, отступ слева 3 см., отступ справа 1 см., отступы сверху и снизу 2 см.; гарнитура шрифта Times New Roman; кегль 12 пунктов; интервал 1.5.

Структура пояснительной записки

Пояснительная записка проекта (работы) должна содержать:

- 1. Титульный лист
- 2. Содержание
- 3. Основную часть в соответствии с заданием
- 4. Заключение (содержит краткие выводы по результатам выполненной работы и рекомендации по её использованию)
- 5. Список использованных источников

6. Приложения

Титульный лист оформляется в соответствии с приложением ${\sf A}$.

Содержание оформляется, используя стандартные средства формирования оглавления в MS Word.

Основная часть оформляется в соответствии с вариантом и состоит из двух частей: 1. Разработка численных алгоритмов, 2. Разработка игровой программы. При этом первая часть разбивается на два раздела: 1.1 Суммирование рядов и вычисление элементарных функций, 1.2 Приближенные методы нахождения корней уравнения.

Все формулы, графики, таблицы следует нумеровать по частям и разделам. Например, (1.1.1) - первая формула из первой части первого раздела; Таблица 2.1 - первая таблица из второго раздела; Рисунок 1.2.3 - третий рисунок первой части второго раздела. Все рисунки и таблицы должны иметь название. Например, Таблица 1.1.2 - Результаты расчета программы.

При описании разработки программ первой части в пояснительной записке необходимо следовать плану:

- 1. Пояснение математической задачи с выделением пунктов: 1. Дано; 2. Найти, 3. Решение.
- 2. Описание входных данных для задачи: тип входных данных, ограничения, обработка ошибочного ввода, тестовые наборы входных данных.
- 3. Описание выходных данных для задачи: тип выходных данных, верификация выходных данных с использованием wolfram (http://www.wolframalpha.com/).
- 4. Блок-схема реализуемого алгоритма (примеры составления блок-схем приведены в приложении В).
- 5. Листинг программы на языке С. Обратите внимание! Каждая строчка кода первой части должна иметь

комментарий, поясняющий, что выполняется в строке. Длинные комментарии можно оформлять с помощью окружения /* текст комментария */.

- 6. Расчетные таблицы соответствия входных и выходных данных
- 7. Выводы по результатам тестирования программного приложения на расчетных примерах.

При описании разработки программы второй части в пояснительной записке необходимо следовать плану:

- 1. Формулировка задачи с выделением требований и ограничений (минимальное описание это текст исходной задачи в соответствии с вариантом).
- 2. Декомпозиция задачи на подзадачи с выделением необходимых и подлежащих дальнейшей реализации функций (подпрограмм)
- 3. Описание взаимодействия подпрограмм при работе основной программы в виде блок-схемы.
- 4. Влок-схемы всех ключевых подпрограмм с листингом их программного кода. В программный код, по аналогии с первой частью, целесообразно включать комментарии (чем больше содержательных комментариев, тем лучше).
- Примеры работы программы: скриншоты результатов работы.
- 6. Выводы по результатам тестирования программного приложения на расчетных примерах.

Код всей игровой программы следует поместить в приложение.

При разработке программ, целесообразно использовать не менее 10 литературных источников. В пояснительной записке

следует указывать ссылки на литературные источники. Литературные источники указываются в квадратных скобках. Например, [1]. Разрешается указывать сразу несколько источников: [1, 4, 7], [2-4, 6]. Соответственно в разделе «Список использованных источников» необходимо указать библиографические ссылки, которые следует оформлять по ГОСТ 7.1-2003 (по аналогии с библиографическими ссылками данного методического пособия).

глава 2 _______ РАЗРАБОТКА ЧИСЛЕННЫХ АЛГОРИТМОВ

2.1 Суммирование рядов и вычисление элементарных функций

Задания

1. Для функции $\operatorname{tg}(x)$ имеет место представление в виде цепной дроби:

$$tg(x) = \frac{1}{\frac{1}{x} - \frac{1}{\frac{3}{x} - \frac{1}{\frac{5}{x} - \frac{1}{\frac{7}{x} - \frac{1}{x}}}}$$

Реализуйте функцию, вычисляющую $\operatorname{tg}(x)$ по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько членов дроби надо взять для получения результата с заданной точностью при различных значениях x). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов дроби.

2. Известно два представления числа e в виде ряда и бесконечной дроби:

$$e = 2 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots$$

$$e = 1 + \frac{1}{1 - \frac{1}{2 + \frac{1}{3 - \frac{1}{4 + \frac{1}{5 - \dots}}}}}$$

Сравните скорости сходимости с помощью ряда и дроби. Полученные результаты расчета оформите в виде таблицы в пояснительной записке: точность, количество членов ряда, количество членов дроби.

3. Известно три представления числа π :

$$\pi = 4 \cdot \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots\right)$$

$$\pi = 3 + 4 \cdot \left(\frac{1}{2 \cdot 3 \cdot 4} - \frac{1}{4 \cdot 5 \cdot 6} + \frac{1}{6 \cdot 7 \cdot 8} - \dots\right)$$

$$\pi = \sqrt{6 \cdot \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots\right)}$$

Сравните скорость сходимости каждого представления. Полученные результаты расчета оформите в виде таблицы в пояснительной записке: точность, количество членов ряда.

4. Известно следующее представление:

$$\prod_{k=1}^{\infty} \left(1 + \frac{(-1)^k}{2k+1} \right) = \frac{\sqrt{2}}{2}$$

Определите, сколько потребуется сомножителей потребуется взять, чтобы равенство выполнялось до шестой значащей цифры. Полученные результаты расчета оформите в виде таблицы в пояснительной записке: точность, количество членов ряда.

5. Известно следующее представление:

$$rac{\pi^2}{8} - rac{\pi}{4}|x| = rac{\cos(3x)}{3^2} + rac{\cos(5x)}{5^2} + \ldots + rac{\cos((2n+1)x)}{(2n+1)^2} + \ldots, \ |x| < 1$$

Реализуйте вычисление по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько слагаемых надо взять для получения результата с заданной точностью при различных значениях х). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов ряда.

6. Известно следующее представление:

$$rac{1}{4}\left(x^2 - rac{\pi^2}{3}
ight) = -\cos(x) + rac{\cos(2x)}{2^2} - \ldots + (-1)^n rac{\cos(nx)}{n^2},$$
 $rac{\pi}{5} \le x \le \pi$

Реализуйте вычисление по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько слагаемых надо взять для получения результата с заданной точностью при различных значениях х). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов ряда.

7. Известно следующее представление:

$$\frac{1}{4}\ln\left(\frac{1+x}{1-x}\right) + \frac{1}{2}\arctan(x) = x + \frac{x^5}{5} + \ldots + \frac{x^{4n+1}}{4n+1} + \ldots,$$
 $-1 < x < 1$

Реализуйте вычисление по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько слагаемых надо взять для получения результата с заданной точностью при различных значениях х). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов ряда.

8. Известно следующее представление:

$$(1+2x^2)e^{x^2}=1+3x^2+\ldots+rac{2n+1}{n!}x^{2n}+\ldots$$

Реализуйте вычисление по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько слагаемых надо взять для получения результата с заданной точностью при различных значениях х). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов ряда.

9. Известно следующее замечательное соотношение, установленное С.Рамануджаном:

$$\sqrt{\frac{e \cdot \pi}{2}} = 1 + \frac{1}{1 \cdot 3} + \frac{1}{1 \cdot 3 \cdot 5} + \frac{1}{1 \cdot 3 \cdot 5 \cdot 7} + \dots + \frac{1}{1 + \frac{1}{1 + \frac{2}{1 + \frac{3}{1 + \frac{4}{1 + \dots}}}}}$$

Вычислить, сколько членов ряда и цепной дроби нужно взять, чтобы достичь заданной точности. Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество членов ряда, количество членов дроби.

10. Известно представление $\cos(x)$ в виде произведения:

$$\cos(x) = \left(1 - rac{4x^2}{\pi^2}
ight) \left(1 - rac{4x^2}{9\pi^2}
ight) \ldots \left(1 - rac{4x^2}{(2n-1)^2\pi^2}
ight)$$

Реализуйте функцию, вычисляющую $\cos(x)$ по этому представлению, и проверьте насколько быстро сходится процесс вычислений (т.е. сколько множителей надо взять для получения результата с заданной точностью при различных значениях x). Полученные результаты расчета оформите в виде таблицы в пояснительной записке: значение x, точность, количество множителей.

Распределение заданий по вариантам

Номер варианта:	1	2	3	4	5	6	7	8	9	10	11
Номер задания:	5	9	1	2	7	8	7	3	4	6	1

Номер варианта:	12	13	14	15	16	17	18	19	20
Номер задания:	2	3	4	5	6	7	8	9	10

Номер варианта:	21	22	23	24	25	26	27	28	29
Номер задания:	9	3	4	5	1	7	8	2	10

2.2 Приближенные методы нахождения корней уравнения

Ниже рассматриваются численные методы решения уравнений вида f(x)=0.

Метод деления отрезка пополам (номер метода 1). Предположим, что на отрезке [a,b] в точке $x_0 \in [a,b]$ график функции f(x) пересекает ось абсцисс, то есть имеет место соотношение $f(x_0)=0$ (см. рисунок 2.1). Идея метода состоит в том, чтобы последовательно сдвигать левую или правую границу отрезка [a,b] в точку $c=\frac{a+b}{2}$ в зависимости от знаков функции f(x) на концах отрезка. Например, для представленного рисунка 2.1: если f(c)<0, то сдвигаем левую границу, то есть получаем новый отрезок [c,b], если f(c)>0, то сдвигаем правую границу, то есть получаем отрезок [a,c]. В итоге будет сохраняться условие $x_0\in [c,b]$ или $x_0\in [a,c]$. Процесс следует завершить, когда получится отрезок длины меньше заданной ε . Следует учесть,

что в реальном вычислительном процессе при малой величине ε может оказаться, что при вычислении по формуле $c=\frac{a+b}{2}$ точное значение c округлится до ближайшего a или b. В результате процедура вычисления корня зациклится.

Рис. 2.1: Метод деления отрезка пополам

Программа должна предусматривать возможность подобной ситуации, а также анализировать некорректные входные данные (f(a) и f(b) имеют один знак).

Memod касательных (номер метода 2). Идея метода продемонстрирована на рисунке 2.2. Произвольно выбирается некоторая точка x_n и проводится касательная к функции f(x) в этой точке. Пусть касательная пересечет ось абсцисс в точке x_{n+1} , тогда проводится касательная к функции f(x) уже в точке x_{n+1} . Данный процесс продолжают до достижения заданной точности.

Чтобы найти касательную, используется понятие производной. Известно, что производная в точке x_n равна тангенсу угла наклона касательной к функции f(x) в этой точке. Тогда из ри-

сунка 2.2 имееем:

$$f'(x_n)=rac{f(x_n)-0}{x_n-x_{n+1}}\Rightarrow x_{n+1}=x_n-rac{f'(x_n)}{f(x_n)}$$

Рис. 2.2: Метод касательных

В качестве предварительного критерия окончания вычислений можно взять неравенство $|x_n-x_{n+1}|<\varepsilon$. Однако, данное неравенство не гарантирует требуемой точности приближения x_{n+1} . Поэтому при выполнении указанного неравенства следует сделать дополнительную проверку знаков функции f(x) на краях отрезка $[x_{n+1}-\varepsilon,x_{n+1}+\varepsilon]$. Если эта проверка даст одинаковые знаки на концах отрезка, то следует продолжить вычисление приближений, взяв меньшее ε . Если точность не достигается за значительное число итераций (например, 200), то вычисления целесообразно прервать и вернуть признак ошибки (например, -1).

Memod секущих (номер метода 3). Данный метод можно назвать модификацией от метода касательных (вместо производной берутся ее приближения в виде конечных разностей).

Идея метода продемонстрирована на рисунке 2.3. Вначале выбираются два начальных приближения x_n и x_{n-1} , находятся значения функции f(x) в этих точках. Затем через две точки с координатами $(x_{n-1},f(x_{n-1}))$ и $(x_n,f(x_n))$ проводится прямая, которая пересечёт ось абсцисс в точке x_{n+1} . Тогда точка x_{n+1} становится следующим приближением $f(x_{n+1}) \approx 0$.

Рис. 2.3: Метод секущих

Из рисунка 2.3 имеем:

$$\frac{f(x_n) - 0}{x_n - x_{n+1}} = \frac{0 - f(x_{n-1})}{x_{n+1} - x_{n-1}}$$

Тогда после преобразований получаем:

$$x_{n+1} = rac{f(x_n) \cdot x_{n-1} - f(x_{n-1}) \cdot x_n}{f(x_n) - f(x_{n-1})}$$

Обычно данную формулу преобразуют следующим образом:

$$x_{n+1} = rac{x_n \cdot f(x_n) - x_n \cdot f(x_n) + f(x_n) \cdot x_{n-1} - f(x_{n-1}) \cdot x_n}{f(x_n) - f(x_{n-1})}$$

Окончательно имеем:

$$x_{n+1} = x_n - f(x_n) \cdot rac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Задания

- 1. Проведите тестирование методов деления пополам, касательных и секущих в соответствии с вариантом на примере решения уравнений:
 - $1. \sin(cx) d = 0$
 - 2. $e^{cx} d = 0$
 - 3. $\log_2(cx) d = 0$
 - 4. $x^3 + cx^2 + d = 0$
 - 5. $x^4 + cx^3 dx = 0$
 - 6. $x^5 + cx^2 d = 0$

при разных значениях параметров c,d. Сравните число итераций этих методов при одном и том же значении точности. Придумайте три своих уравнения и используйте реализованные методы для нахождения их корней. Для оценки корректности получаемых решений целесообразно использовать онлайн калькулятор от Wolfram, доступный по ссылке http://www.wolframalpha.com/

Например, на рисунке 2.4 представлен график, соответствующий решению уравнения $e^x-x^2=0$ (в пояснительную записку требуется добавить скриншот таких графиков, а также точное (если оно возможно) и приближенное решения уравнения в этом калькуляторе).

Рис. 2.4: Пример расчета в калькуляторе wolfram

Распределение заданий по вариантам

Номера методов:

Номера уравнений:

Номер варианта:	1	2	3	4	5	6
Номера методов:	1,3	2,3	1,2	2,3	2,3	1,2
Номера уравнений:	1,4,5	1,5,6	2,4,5	1,2,3	1,2,6	3,4,6
Номер варианта:	7	8	9	10	11	12
Номера методов:	1,3	2,3	1,2	2,3	2,3	1,2
Номера уравнений:	2,3,4	1,2,3	3,4,5	4,5,6	1,5,6	1,2,6
Номер варианта:	13	14	15	16	17	18
Номера методов:	1,3	2,3	1,2	2,3	2,3	1,2
Номера уравнений:	1,4,6	2,5,6	3,5,6	1,3,5	2,4,6	1,3,5
Номер варианта:	19	20	21	22	23	24
Номера методов:	1,3	2,3	1,2	2,3	2,3	1,2
Номера уравнений:	1,5,6	2,3,5	1,4,5	2,3,6	2,4,5	2,4,5
Номер варианта:	25	26	27	28	29	30

1,3

2,3,6

2,3

1,3,6

1,2

2,4,6

2,3

1,2,6

2,3

3,4,5

1,2

1,4,6

глава 3 __

| -РАЗРАБОТКА ИГРОВОЙ ПРОГРАММЫ

Задания

1. Игра в кости: играющий называет любое число в диапазоне от 2 до 12 и ставку, которую он делает в этот ход. Программа с помощью датчика случайных чисел дважды выбирает числа от 1 до 6 («бросает кубик», на гранях которого цифры от 1 до 6). Если сумма выпавших цифр меньше 7 и играющий задумал число меньшее 7, он выигрывает сделанную ставку. Если сумма выпавших цифр больше 7 и играющий задумал число большее 7, он также выигрывает сделанную ставку. Если играющий угадал сумму цифр, он получает в четыре раза больше очков, чем сделанная ставка. Ставка проиграна, если не имеет место ни одна из описанных ситуаций. В начальный момент у играющего 100 очков. Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, 1. вместо человека играет другая программа, 2.

казино копит проигранные ставки и т.п.).

- 2. Игра в морской бой: на поле 10х10 клеток программа размещает флот кораблей: 1 корабль ряд из 4 клеток («четырёхпалубный»; линкор); 2 корабля ряд из 3 клеток («трёхпалубные»; крейсера); 3 корабля ряд из 2 клеток («двухпалубные»; эсминцы); 4 корабля 1 клетка («однопалубные»; торпедные катера). При размещении корабли не могут касаться друг друга сторонами и углами. Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, играют два человека, играют две программы и т.п.).
- 3. Программа календарь-ежедневник: на заданную дату в заданное время реализовать возможность запланировать событие. Реализовать функции создания, редактирования, удаления событий. Предложите и реализуйте не менее трех вариантов расширения функциональности этой программы (можно ориентироваться на функциональность ежедневника OutLook и аналогичных мененжеров).
- 4. Игра жизнь: имеется поле, поделенное на клетки. Каждая клетка на этой поверхности может находиться в двух состояниях «живая» или «мёртвая». Распределение живых клеток в начале игры называется первым поколением. Каждое следующее поколение (шаг) рассчитывается на основе предыдущего по таким правилам: пустая («мёртвая») клетка с Nx живыми клетками-соседями оживает; если у «живой» клетки есть не менее (Nx-1) живых соседей, то эта клетка продолжает жить, если «живых» соседей меньше (Nx-1) или больше (Nx+1), то клетка «умирает» (от «одиночества» или от «перенаселённости»). Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, игрок сам устанавливает правила взаимодействия клеток, расставля-

- ет «живые» клетки первого поколения, конфигурации генерируются случайно и т.п.)
- 5. Устный счет: используя арифметические операции умножения, сложения, вычитания, деления, возведения в степень, программа случайно генерирует арифметическое выражение, используя в случае необходимости скобки, вычисляет его значение и предлагает человеку на время также выполнить вычисление. Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, регулируется длина выражения, используемые арифметические операции, предусматривается система бонусов, если игрок угадывает решение и т.п.)
- 6. Игра сапёр: на поле 10х10 программа случайно размещает фиксированное количество мин. Требуется разминировать поле. Игроку разрешается открывать любую клетку, или помечать ее признаком заминировано. После каждой открытой клетки программа сообщает для каждой смежной с ней клетки сколько смежных с ней мин. Если игрок открыл клетку с миной, он проиграл. Если он обезвредил все мины, он выиграл. Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, игрок сам выбирает размерность поля, количество мин, количество раз ошибиться и т.п.)
- 7. Игра пятнашки: в клетках поля 4х4 размещаются фишки от 1 до 15, одна клетка остается пустой. В пустую клетку можно перемещать любую и соседних с ней клеток. Реализовать перемещение фишек, визуализацию поля. Требуется вернуть искомую нумерацию. Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, программа сама тасует фишки, сама пытается собрать требуемую конфигурацию и т.п.)
- 8. Игра лабиринт: играющий перемещается в двухмерном пространстве по помещениям здания, план которого играюще-

му неизвестен. Начиная с произвольного помещения, путешественник должен найти выход из здания. Каждое помещение может иметь четыре двери: север, восток, юг, запад и соединяться с другими помещениями. План здания необходимо сгенерировать случайно. Порядок следования помещений в списке должен быть произвольным. Находясь в N-ом помещении, игрок может получить подсказку о правильном направлении движения, если верно выполнит тестовое задание по теме «Программирование на языке высокого уровня». Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, автоматическое или ручное прохождение роботом лабиринта, несколько выходов и т.п.)

9. Программа моделирование компьютера: имеется специальный регистр - аккумулятор, в который помещается результат арифметических операций, различных операций сравнения. Имеется оперативная память из 100 ячеек, куда можно записать любое целое число. Программа состоит из команд, каждая команда - это четырехзначное число. Первые две цифры это код команды, которую нужно выполнить: 10 - вводится слово с терминала в указанное место памяти; 11 - выводится слово на терминал из указанного адреса памяти; 20 - в аккумулятор помещается слово из указанного адреса памяти; 21 - в память помещается слово из аккумулятора; 30 - сложение слова аккумулятора и слова из указанного места в памяти (результат остается в аккумуляторе); 31 - вычитание слова аккумулятора и слова из указанного места в памяти (результат остается в аккумуляторе); 32 - деление слова аккумулятора на слово из указанного места памяти; 40 - переход по указанному адресу памяти; 41 - переход по указанному адресу памяти, если в аккумуляторе находится отрицательное число; 42 - переход по указанному адресу памяти, если в аккумуляторе находится нуль; 43 - останов, выполняется при завершении

программой своей работы. Реализовать ввод и выполнение программы. Предложите и реализуйте не менее трех вариантов расширения функциональности этой программы (например, можно расширить набор команд, пытаться программой писать программы самой себе, составить несколько полезных программ т.п.)

10. Крестики-нолики: в любую пустую клетку на поле 3х3 программа может ставить нолик, человек - крестик. Выигрывает тот, кто первым составит горизонтальный, вертикальный или диагональный ряд своих символов (крестиков или ноликов). Предложите и реализуйте не менее трех вариантов расширения функциональности этой игры (например, меняется размер поля, программа следует какой-то стратегии в игре, программы играют друг с другом и т.п.)

Распределение заданий по вариантам

Номер варианта:	1	2	3	4	5	6	7	8	9	10	11
Номер задания:	1	2	3	4	5	6	7	8	9	10	1

Номер варианта:	12	13	14	15	16	17	18	19	20
Номер задания:	2	3	4	5	6	7	8	9	10

Номер варианта:	21	22	23	24	25	26	27	28	29
Номер задания:	9	3	4	5	1	7	8	2	10

ЛИТЕРАТУРА

- [1] *Юркин А.* Задачник по программированию. СПб.: Питер, 2002. 192 с.
- [2] Эпштейн М.С. Практикум по программированию на языке С. М.: Издательский центр «Академия», 2007. 128 с.
- [3] Валединский В.Д., Корнев А.А. Методы программирования в примерах и задачах. М.: Изд-во ЦПИ при механикоматематическом ф-те МГУ, 2000. 152 с.

приложение А____ ___овразец титульного листа Филиал «Котельники» государственного бюджетного образовательного учреждения высшего образования Московской области «Университет «Дубна»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА по курсовой работе по дисциплине «Программирование на языке высокого уровня»

ВАРИАНТ №1

Выполнил:
студент группы ИВТ-11 Иванов И.И.
Проверил:
доцент, к.т.н. Артамонов Ю.Н.

Котельники - 2018

приложение В_____примеры влок-схем

Требуется написать программу приближенного вычисления суммы ряда с точностью ε :

$$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Рис. В.1: Влок-схема алгоритма приближенного вычисления суммы ряда

Листинг программного кода, соответствующего блок-схеме

```
#include <stdio.h>
#include <math.h>
main()
{
  float x, epsilon;
  printf("x="); scanf("%f", &x);
  printf("epsilon="); scanf("%f", &epsilon);
  float Y=1,S;
  S = Y;
  int i=0;
  while (fabs(Y) >= epsilon)
    {
      i++;
      Y = Y*x/i;
      S = S+Y;
    }
  printf("S=%f\n", S);
  return 0;
```

Дан числовой массив A, требуется найти индексы максимального и минимального элементов массива (в данной блок-схеме принята нумерация элементов массива с единицы)

Рис. В.2: Блок-схема алгоритма поиска индексов максимального и минимального элементов массива

Листинг программного кода, соответствующего блок-схеме

```
#include <stdio.h>
main()
{
    int A[10] = {5,8,3,2,1,0,9,8,7,5};
    int Imax = 0, Imin = 0, i;
    for (i = 1; i < 10; i++)
        {
        if (A[Imax] < A[i]) Imax = i;
          if (A[Imin] > A[i]) Imin = i;
        }
    printf("Imax = _%d\n", Imax);
    printf("A[Imax] = _%d\n", A[Imax]);
    printf("A[Imin] = _%d\n", A[Imin]);
    printf("A[Imin] = _%d\n", A[Imin]);
    return 0;
}
```