Σχεδίαση Συστημάτων Αυτόματου Ελέγχου

LAB1: PID Έλεγχος Μιχαλίτσης Αλκιβιάδης Παναγιώτης

03118868 Ακαδημαϊκό έτος: 2021 – 2022

Μέρος 1

$$Gp(s) = 4500k/s(s + 361,2)$$

$$Gc(s) = Kp + Kd*s$$

$$Gcp(s) = G(s)*Gp(s)/(1+Gc(s)*Gp(s)) = 4500(Kp*Kd*s)/(s^2 + s(361.2 + 4500kKd) + 4500kKd)$$

Υπολογισμός σφαλμάτων:

Velocity Error:

$$Kv = \lim_{s \to 0} s *G(s) = \lim_{s \to 0} s(Kp + Kds)(4500k/s(s = 361,2)) = Kp*(4500k/361.2)$$

$$ess = 1/Kv \le 0.00044 \rightarrow Kp*k > 181 (1)$$

Έστω σύστημα: $ω_n^2/(s^2 + 2Jω_n s + ω_n^2)$

Max Overshoot = $5\% \rightarrow$

$$e^{-\pi J/(\text{sqrt}(1-J^2))} <= 0.05 \rightarrow \pi J/(\text{sqrt}(1-J^2)) <= -3 \rightarrow J/\text{sqrt}(1-J^2) >= 0.96 \rightarrow J^2 >= 0.92(1-J^2) \rightarrow J^2 >= 0.478 \rightarrow |J| >= 0.692 (2)$$

Max Settling Time = Ts = 0.005s, Offset = $2\% \rightarrow$

$$T_S = 4/J\omega_n \rightarrow \omega_n >= 1156 (3)$$

Χαρακτηριστικό Πολυώνυμο Συστήματος:

$$s^2 + (361,2 + 4500k*Kd)*s + 4500k*Kp = 0$$

όπου:

$$4500k*Kp = \omega_n^2 \rightarrow Kp*k >= 297 (4)$$

Και

$$(361,2 + 4500k*Kd) = 2J\omega_n \rightarrow Kd*k >= 0.2753 (5)$$

Έστω $\kappa = 1$

Με βάση τα παραπάνω δεδομένα αρχίζω και υλοποιώ την προσομοίωση στο Simulink και προκύπτουν τα παρακάτω αποτελέσματα:

Αρχίζω σχεδιάζοντας το σύστημα με τα απαραίτητα blocks.

Χωρίς να ορίσω τις μεταβλητές του συστήματος προκύπτει η εξής έξοδος της Ramp Function:

Στην συνέχεια παραμετροποιώ το σύστημα με βάση την εκφώνηση.

Έπειτα περνάω τις τιμές για τα Κρ, Κd που υπολογίσαμε παραπάνω και εκτελώ το σύστημα.

Controller Parameters

	Tuned	Block	
P	74.8181	298.5	
I	n/a	n/a	
D	0.10696	0.275	
N	8004.5865	8005	
N	0004.5005	0005	
	ĺ		,

Performance and Robustness

	Tuned	Block	
Rise time	0.00234 seconds	0.000802 seconds	
Settling time	0.00862 seconds	0.00403 seconds	
Overshoot	6.96 %	15 %	
Peak	1.07	1.15	
Gain margin	Inf dB @ Inf rad/s	Inf dB @ Inf rad/s	
Phase margin	69.7 deg @ 643 rad/s	60.5 deg @ 1.57e+03 rad/s	
Closed-loop stability	Stable	Stable	*

Παρατηρείται ότι η βέλτιστες τιμές που ορίζει ο PID Tuner είναι πολύ κοντά στις τιμές που υπολογίστηκαν παραπάνω οπότε στην συνέχεια αναπτύσσω τους άλλους ελεγκτές με την χρήση του PID Tuner.

Μέρος 2

Στο μέρος 2 παραμετροποιώ το σύστημα του μέρους 1, αλλάζοντας την είσοδο της μορφής Ramp Function με είσοδο παραβολικής μορφής και όπως ζητείται στην εκφώνηση.

Έπειτα αλλάζω το είδος του ελεγκτή από PD σε PI και βάζοντας κάποιες δοκιμαστικές τιμές Kp, KI τρέχω το PID Tuner με σκοπό την εύρεση των κατάλληλων τιμών.

Προκύπτει ότι οι καλύτερες τιμές είναι:

Για το Κρ κοντά στο 12 και για το ΚΙ κοντά στο 16.

Αποτέλεσμα PID Tuner.

Μέρος 3

Στο μέρος 3 παραμετροποιώ το σύστημα του μέρους 1, αλλάζοντας την transfer function όπως ζητείται στην εκφώνηση.

Έπειτα αλλάζω το είδος του ελεγκτή από PD σε PID και βάζοντας κάποιες δοκιμαστικές τιμές Kp, KI, Kd τρέχω το PID Tuner με σκοπό την εύρεση των κατάλληλων τιμών.

Προκύπτει ότι οι καλύτερες τιμές είναι:

Για το Kp κοντά στο 0.45, για το KI κοντά στο 6 και για το Kd κοντά στο 0.0015.

Αποτέλεσμα PID Tuner