L19: Prosodic modification of speech

Time-domain pitch synchronous overlap add (TD-PSOLA)

Linear-prediction PSOLA

Frequency-domain PSOLA

Sinusoidal models

Harmonic + noise models

STRAIGHT

This lecture is based on [Taylor, 2009, ch. 14; Holmes, 2001, ch. 5; Moulines and Charpentier, 1990]

Introduction

Motivation

- As we saw in the previous lecture, concatenative synthesis with fixed inventory requires prosodic modification of the diphones to match specifications from the front end
- Simple modifications of the speech waveform do not produce the desired results
 - We are familiar with speeding up or slowing down recordings, which changes not only the duration but also the pitch
 - Likewise, over- or under-sampling alters duration, but also modifies the spectral envelope: formants become compressed/dilated
- The techniques proposed in this lecture perform prosodic modification of speech with minimum distortions
 - Time-scale modification modifies the duration of the utterance without affecting pitch
 - Pitch-scale modification seeks to modify the pitch of the utterance without affecting its duration

Pitch synchronous overlap add (PSOLA)

Introduction

- PSOLA refers to a family of signal processing techniques that are used to perform time-scale and pitch-scale modification of speech
- These modifications are performed without performing any explicit source/filter separation
- The basis of all PSOLA techniques is
 - Isolate pitch periods in the original signal
 - Perform the required modification
 - Resynthesize the final waveform through an overlap-add operation
- Time-domain TD-PSOLA is the most popular PSOLA technique and also the most popular of all time/pitch-scaling techniques
- Other variants of PSOLA include
 - Linear-prediction LP-PSOLA
 - Fourier-domain FD-PSOLA

Time-domain PSOLA

Requirements

- TD-PSOLA works pith-synchronously, which means there is one analysis window per pitch period
 - A prerequisite for this, therefore, is that we need to be able to identify the epochs in the speech signal
 - For PSOLA, it is vital that epochs are determined with great accuracy
 - Epochs may be the instants of glottal closure or any other instant as long as it lies in the same relative position for every frame
- The signal is the separated with a Hanning window, generally extending two pitch periods (one before, one after)
 - These windowed frames can then be recombined by placing their centers at the original epoch positions and adding the overlapping regions
 - Though the result is not exactly the same, the resulting speech waveform is perceptually indistinguishable from the original one
 - For unvoiced segments, a default window length of 10ms is commonly used

Analysis and reconstruction

(3) Separate frames are created by the Hanning window, each centered at the point of maximum positive excursion

(4) Overlap-add of the separate frames results in a perceptually identical waveform to the original

Merging two segments

Windowed waveforms for individual pitch periods

Synthesized waveform with the segments concatenated

[Holmes, 2001]

Time-scale modification

- Lengthening is achieved by duplicating frames
 - For a given set of frames, certain frames are duplicated, inserted back into the sequence, and then overlap-added
 - The result is a longer speech waveform
 - In general, listeners won't detect the operation, and will only perceive a longer segment of natural speech
- Shortening is achieved by removing frames
 - For a given set of frames, certain frames are removed, and the remaining ones are overlap-added
 - The result is a shorter speech waveform
 - As before, listeners will only perceive a shorter segment of natural speech
- As a rule of thumb, time-scaling by up to a factor of two (twice longer or shorter) can be performed without much noticeable degradation

Time-scaling (lengthening)

[Taylor, 2009]

Pitch-scale modification

- Performed by recombining frames on epochs which are set at different distances apart from the original ones
 - Assume a speech segment with a pitch of 100Hz (10 ms between epochs)
 - As before, we perform pitch-synchronous analysis with a Hanning window
 - If we place the windowed frames 9ms apart and overlap-add, we will obtain a signal with a pitch of 1/0.009 = 111Hz
 - Conversely, if we place the frames 11ms apart, we will obtain a signal with a pitch of 1/0.011 = 91Hz
 - The process of pitch lowering explains why we need an analysis window that is two pitch periods long
 - This ensures that up to a factor of 0.5, when we move the frames we always have some speech to add at the frame edges
- As with time-scaling, pitch-scaling by up to a factor of two can be performed without much noticeable degradation

Pitch-scaling

[Holmes, 2001]

Pitch-scaling (lowering)

[Taylor, 2009]

Epoch manipulation

- A critical step in TD-PSOLA is proper manipulation of epochs
- A sequence of analysis epochs $T^a = \{t_1^a, t_2^a \dots t_M^a\}$ is found by means of an epoch detection algorithm
- From this sequence, the local pitch period can be found as

$$p_m^a = \frac{t_{m+1}^a - t_{m-1}^a}{2}$$

 Given the sequence of analysis epochs and pitch periods, we extract a sequence of analysis frames by windowing

$$x_m^a[n] = w_m[n]x[n]$$

- Next, a set of synthesis epochs $T^S=\{t_1^S,t_2^S\dots t_M^S\}$ is created from the target F0 and timing values provided by the front end
- A mapping function M[i] is then created that specifies which analysis frames should be used with each synthesis epoch

Mapping function M[i] for time-scaling (slowing down)

ANALYSIS TIME AXIS

ANALYSIS TIME AXIS

SYNTHESIS TIME AXIS

SYNTHESIS TIME AXIS

Dashed lines represent time-scale warping function between analysis and synthesis time axes corresponding to the desired time-scaling

Dashed lines represent the resulting pitchmark mapping, in this case duplicating two analysis ST signals out of six.

[Stylianou, 2008, in Benesty et al., (Eds)]

Interactions

- Duration modification can be performed without reference to pitch
 - Assume 5 frames of F0=100Hz speech spanning 40 ms
 - A sequence with the same pitch but longer (shorter) duration can be achieved by adding (removing) synthesis epochs
 - The mapping function M[i] specifies which analysis frame should be used for each synthesis frame
- Pitch modification is more complex as it interacts with duration
 - Consider the same example of 100Hz and spanning 5 frames, or a total of $(5-1)\times 10=40ms$ between t_1^a and t_5^a
 - Imagine we wish to change its pitch to 150 Hz
 - This can be done by creating a set of synthesis epochs 6.6ms apart
 - In doing so, the overall duration becomes $(5-1) \times 6.6 = 26ms$
 - To preserve the original duration, we would then have to duplicate two frames, yielding an overall duration of $(7-1) \times 6.6 = 40ms$

Simultaneous time- and pitch-scaling

[Taylor, 2009]

Performance

- Synthesis quality with TD-PSOLA is extremely high, provided that
 - The speech has been accurately epoch-marked (critical), and
 - Modifications do not exceed a factor of two
- In terms of speed, it would be difficult to conceive an algorithm that would be faster than TD-PSOLA
- However, TD-PSOLA can only be used for time- and pitch-scaling, it does not allow any other form of modification (e.g., spectral)
- In addition, TD-PSOLA does not perform compression, and the entire waveform must be kept in memory
 - This issue is addressed by a variant known as linear-prediction PSOLA

Other issues

- When slowing down unvoiced portions in the range of 2, the regular repetition of unvoiced segments leads to a perceived "tonal" noise
 - This can be addressed by reversing the time axis of consecutive frames
- Similar effects can also occur for voiced fricatives; in this case, though, time reversal does not solve the problem and FD-PSOLA is needed

Linear prediction PSOLA

Approach

- Decompose the speech signal through an LP filter
- Process the residual in a manner similar to TD-PSOLA
- Convolve the time/pitch-scaled residual with the LP filter

Advantages over TD-PSOLA

- Data compression
 - Filter parameters can be compressed (e.g., reflection coefficients)
 - The residual can also be compressed as a pulse train, though at the expense of lower synthesis quality
- Joint modification of pitch and of spectral envelope
- Independent time frames for spectral envelope estimation and for prosodic modification
- Fewer distortions, since LP-PSOLA operates on a spectrally flat residual rather than on the speech signal itself

Fourier-domain PSOLA

FD-PSOLA also operates in three stages

Analysis

- A complex ST spectrum is computed at the analysis pitch marks
- A ST spectral envelope is estimated, via LP analysis, homomorphic analysis or peak-picking algorithms (SEEVOC)
- A flattened version of the ST-spectrum is derived by dividing the ST complex spectrum by the spectral envelope

Frequency modification

- Flattened spectrum is modified so the spacing between pitch harmonics is equal to the desired pitch
- This can be done using either (i) spectral compression-expansion, or (ii) harmonic elimination-repetition (see Moulines & Charpentier, 1990)

Synthesis

- Multiply flattened spectrum and spectral envelope
- Obtain synthesis ST signal by inverse DFT

Pitch-scaling with FD-PSOLA

[Felps and Gutierrez-Osuna, 2009]

Performance

- FD-PSOLA solves a major limitation of TD-PSOLA: its inability to perform spectral modification
- These modifications may be used for several purposes
 - Smoothing spectral envelopes across diphones in concatenative synthesis
 - Changing voice characteristics (e.g., vocal tract length)
 - Morphing across voices
- However, FD-PSOLA is very computationally intensive and has high memory requirements for storage

Sinusoidal models

Introduction

 As we saw in earlier lectures, the Fourier series can be used to generate any periodic signal from a sum of sinusoids

$$x(t) = \sum_{l=1}^{L} A_l \cos(\omega_0 l + \phi_l)$$

- A family of techniques known as sinusoidal models use this as their basic building block to perform speech modification
 - This is achieved by finding the sinusoidal components $\{A_l, \omega_0, \phi_l\}$, and then altering them to meet the prosodic targets
- In theory, we could perform Fourier analysis to find model parameters
 - For several reasons, however, it is advantageous to use a different procedure that is more geared towards synthesis
- If the goal is to perform pitch-scaling, it is also advantageous to do the analysis in a pitch-synchronous fashion
 - The accuracy of pitch marks, however, does not have to be as high as for PSOLA

Finding sinusoidal parameters

- Components $\{A_l, \omega_0, \phi_l\}$ are found so as to minimize the error E

$$E = \sum_{n} w(n)^{2} \left(s(n) - \hat{s}(n) \right)^{2} =$$

$$\sum_{n} w(n)^{2} \left(s(n) - \sum_{l=1}^{L} A_{l} \cos(\omega_{0} l + \phi_{l}) \right)$$

- which requires a complex linear regression; see Quatieri (2002)
- Why use this analysis equation rather than Fourier analysis?
 - First, the window function w(n) concentrates accuracy in the center
 - Second, this analysis can be performed on relatively short frames
- Given these parameters, a ST-waveform can be reconstructed using the synthesis equation $x(t) = \sum_{l=1}^{L} A_l \cos(\omega_0 l + \phi_l)$
 - An entire waveform can then be reconstructed by overlapping ST segments just as with TD-PSOLA

Modification

- Modification is performed by separating harmonics and spectral envelope, but without explicit source/filter modeling
- This can be done in a number of ways, such as by peak-picking in the spectrum to determine the spectral envelope
- Once the envelope has been found, the harmonics can be moved in the frequency domain and new amplitudes found from the envelope
- Finally, the synthesis equation can be used to generate waveforms

Sinewave modeling results

http://www.ee.columbia.edu/~dpwe/e6820/lectures/L05-speechmodels.pdf

Harmonic + noise models

Motivation

- Sinusoidal modeling works quite well for perfectly periodic signals, but performance degrades in practice since speech is rarely periodic
- In addition, very little periodic source information is generally found at high frequencies, where the signal is significantly noisier
 - This non-periodicity comes from several sources, including breath passing through the glottis and turbulences in the vocal tract

Overview

To address this issue, a stochastic component can be included

$$\hat{s}(t) = \hat{s}(t)_p + \hat{s}(t)_r = \sum_{l=1}^{L} A_l \cos(\omega_0 l + \phi_l) + s(t)_r$$

- where the noise component $s(t)_r$ is assumed to be Gaussian noise
- A number of models based on this principle have been proposed
 - Multiband excitation (MBE) (Griffin and Lim, 1988)
 - Harmonic + noise models (HNM) (Stylianou, 1998)
- Here we focus on HNM, as it was developed specifically for TTS

Harmonic + noise model (HNM)

- HNM follows the same principle of harmonic/stochastic models
- The main difference is it also considers the temporal patterns of noise
 - As an example, the noise component in stops evolves rapidly, so a model with uniform noise across the frame will miss important details
- The noise part in HNM is modeled as

$$s(t)_r = e(t)[h(t,\tau) \otimes b(t)]$$

- where b(t) is white Gaussian noise
- $h(t,\tau)$ is a spectral filter applied to the noise (generally all-pole), and
- e(t) is a function that gives filtered noise the correct temporal pattern

Analysis steps

- First, classify frames as V/UV
 - Estimate the pitch in order to perform pitch-synchronous (PS) analysis
 - With HNM, however, there is no need for accurate epoch detection; the location of pitch periods suffices since phases are adjusted later on
 - Using the estimated pitch, fit a harmonic model to each PS frame
 - From the residual error, classify the frame as V/UV
 - Approach: UV frames will have higher residual error than V frames
- For V frames, determine the highest harmonic frequency
 - Approach: move through the frequency range and determine how well a synthetic model fits the real waveform
- Estimate model parameters
 - Refine pitch estimate using only the part of the signal below the cutoff
 - Find amplitudes and phases by minimizing the error E
 - Find components h(t) and e(t) of the noise term

And finally, adjust phases

- Since the pitch synchronous analysis was done without reference to a fixed epoch, frames will not necessarily align
- To adjust the phase, a time domain technique is used to shift the relative positions of waveforms within their frames

Synthesis steps

- As in PSOLA, determine synthesis frames and mapping M[i]
- To perform time-scaling, proceed as with PSOLA
- To perform pitch-scaling
 - Adjust the harmonics on each frame
 - Generate noise component by passing WGN b(t) through the filter h(t)
 - For V frames, high-pass-filter the noise above the cutoff to remove its low-frequency components
 - Modulate the noise in the time domain to ensure synchrony with the harmonic component
 - This step is essential so a single sound (rather than two) is perceived
 - Finally, synthesize ST frame by a conventional overlap-add method

STRAIGHT

Overview

- STRAIGHT is a high-quality vocoder that decomposes the speech signal into three terms
 - A smooth spectrogram, free from periodicities in time and frequency
 - An F0 contour, and
 - A time-frequency periodicity map, which captures the spectral shape of the noise and also its temporal envelope

During analysis

- F0 is accurately estimated using a fixed-point algorithm
- This F0 estimate is used to smooth out periodicity in the ST spectrum using an F0-adaptive filter and a surface reconstruction method
- The result is a smooth spectrogram that captures vocal-tract <u>and</u> glottal filters, but is free from F0 influences

During synthesis

- Pulses or noise with a flat spectrum are generated in accordance with voicing information and F0
- Sounds are resynthesized from the smoothed spectrum and the pulse/noise component using an inverse FFT with an OLA technique
- Notes
 - STRAIGHT does not extract phase information, instead uses a minimumphase assumption for the spectral envelope and applies all-pass filters in order to reduce buzz timbre

Conventional vs. STRAIGHT spectrogram

[Hawahara, 2002]

Performance

- Prosodic modification with STRAIGHT is very simple
 - Time-scale modification reduces to duplicating/removing ST slices from the STRAIGHT spectrogram and aperiodicity
 - Pitch-scale modification reduces to modifying the F0 contour
 - Following these modifications, the STRAIGHT synthesis method can be invoked to synthesize the waveform
- The three terms in STRAIGHT can be manipulated independently, which provides maximum flexibility
- STRAIGHT allows extreme prosodic modifications (up to 600%) while maintaining the naturalness of the synthesized speech
- On the downside, STRAIGHT is computationally intensive