МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ" ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ

Кафедра математичних методів захисту інформації

3BIT

3 ВИРОБНИЧОЇ ПРАКТИКИ

Напрям підготовки: 6.040301 «Прикладна математика» Тема: «Розробка автоматизованого тестуючого комплексу, що враховує психологічні особливості студентів»

Виконав студент 4 курсу
групи ФІ-13
Кригін Валерій Михайлович
Науковий керівник:
Доктор фізико-математичних наук, професор
Дороговцев Андрій Анатолійович

 $(ni\partial nuc)$

3MICT

1 Bc	гуп	3
1.1	Обгрунтування та актуальність роботи	3
1.2 N	Мета та завдання	3
2 Oci	новна частина	4
2.1	Георетичні відомості	4
2.1.1	Метод головних компонент	4
2.1.2	Гістограма	7
2.1.3	Поліноміальний розподіл	8
2.1.4	Критерій узгодженості Пірсона χ^2]
2.1.5	χ^2	3
Перел	тік посилань	7

1 ВСТУП

1.1 Обгрунтування та актуальність роботи

Існуючі на даний момент системи тестування недостатньо гнучкі: вони аналізують лише відповіді на запитання, відносячи їх до вірних або невірних, а на цій базі роблять кінцевий висновок щодо знань студента. Стрімкий розвиток комп'ютерної техніки й інформаційних технологій надає можливість визначати ритм складання тесту, а також індивідуальні особливості людини. Дані психологічних досліджень допоможуть правильно трактувати отримані значення, а добре вивчені та перевірені часом математичні методи надають великі можливості для систематизації та обробки результатів вимірювання.

1.2 Мета та завдання

Завдання наступні:

- 1) Вивчити математичні методи та розділи психології, що дозволять розв'язати поставлену задачу, пояснити та обґрунтувати отримані результати
- 2) Ознайомитися з правилами побудови тестових завдань для найбільш ефективної та об'єктивної процедури оцінки знань студентів
- 3) Розробити програмний комплекс тестування й обробки результатів
- 4) Моделювання

За мету поставлено збільшення об'єктивності тестування, а також покращення якості навчання за допомогою порад студентам і викладачам практичних занять.

2 ОСНОВНА ЧАСТИНА

2.1 Теоретичні відомості

2.1.1 Метод головних компонент

Метод головних компонент (Principal component analysis) — метод, що дозволяє зменшити розмірність досліджуваної вибірки з мінімальними втратами інформації.

Маємо m об'єктів, з яких треба зняти по n певних властивостей. На вході в нас є виборки \vec{X}_k , кожна з яких відповідає сукупності властивостей k-го об'єкту

$$\vec{X}_k = \begin{bmatrix} x_k^1 \\ x_k^2 \\ \vdots \\ x_k^n \end{bmatrix}, \qquad k = \overline{1,m}$$

Згрупуємо всі вимірювання в одну матрицю X

$$X = \begin{bmatrix} x_1^1 & x_2^1 & \dots & x_m^1 \\ x_1^2 & x_2^2 & \dots & x_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n & x_2^n & \dots & x_m^n \end{bmatrix}$$

Спочатку нам знадобиться знайти вибіркові середні значення для кожної властивості

$$a_i = \frac{1}{m} \cdot \sum_{k=1}^{m} x_k^i, \qquad i = \overline{1,n}$$

Маємо вектор вибіркових середніх значень

$$\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$

Центруємо отримані дані, що містяться в матриці X, віднявши від кожного стовбця вектор вибіркових середніх \vec{a}

$$\tilde{X} = \begin{bmatrix} \tilde{x}_1^1 & \tilde{x}_2^1 & \dots & \tilde{x}_m^1 \\ \tilde{x}_1^2 & \tilde{x}_2^2 & \dots & \tilde{x}_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{x}_1^n & \tilde{x}_2^n & \dots & \tilde{x}_m^n \end{bmatrix} = \begin{bmatrix} x_1^1 - a_1 & x_2^1 - a_1 & \dots & x_m^1 - a_1 \\ x_1^2 - a_2 & x_2^2 - a_2 & \dots & x_m^2 - a_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^n - a_n & x_2^n - a_n & \dots & x_m^n - a_n \end{bmatrix}$$

Обчислюємо вибіркову коваріаційну матрицю властивостей. Вибіркову коваріацію i та j властивості рахуємо за формулою

$$\sigma_i^j = \frac{1}{m} \cdot \sum_{k=1}^m \tilde{x}_k^i \cdot \tilde{x}_k^j = \frac{1}{m} \cdot \sum_{k=1}^m \left[\left(x_k^i - a_i \right) \cdot \left(x_k^j - a_j \right) \right], \qquad i, j = \overline{1, n}$$

Маємо вибіркову коваріаційну матрицю

$$K = \begin{bmatrix} \sigma_1^1 & \sigma_2^1 & \dots & \sigma_n^1 \\ \sigma_1^2 & \sigma_2^2 & \dots & \sigma_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_1^n & \sigma_2^n & \dots & \sigma_n^n \end{bmatrix}$$

Щоб отримувати лише потрібну інформацію, ми хочемо знайти таке ортогональне лінійне перетворення L вхідної матриці \tilde{X} , щоб отримати матрицю

 $Y=L\cdot \tilde{X}$, яка має діагональну вибіркову ковариаційну матрицю K' з незростаючими зверху вниз значеннями. Діагональна вибіркова коваріаційна матриця гарантує той факт, що отримані значення Y будуть некорельованими. Рангування значень діагональних елементів матриці K' за величиною дасть більш наглядне представлення про будову досліджуваних об'єктів, адже діагональні елементи — вибіркові дисперсії; а чим більше дисперсія, тим більше відповідна властивість змінюється від об'єкту до об'єкту і тим більше корисної інформації вона нам надає.

Вибіркова коваріаційна матриця K' для $Y = L \cdot \tilde{X}$ має вигляд

$$K' = L \cdot K \cdot L^* = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

З лінійної алгебри відомо, що матриця L складається з координат власних векторів матриці K, а елементи λ_k — її власні числа, які існують і є невід'ємними через невід'ємну означеність матриці K. Вважаємо що числа $\lambda_1,\ldots,\lambda_n$ впорядковані від більшого до меншого для зручності подальших дій. Позначимо власний вектор матриці K, що відповідає власному числу λ_k , як \vec{l}_k . Тоді

$$\vec{l}_k = \left[l_k^1, l_k^2, \dots, l_k^n \right], \qquad k = \overline{1,n}$$

Матриця L має вигляд

$$L = \begin{bmatrix} l_1^1 & l_1^2 & \dots & l_1^n \\ l_2^1 & l_2^2 & \dots & l_2^n \\ \vdots & \vdots & \ddots & \vdots \\ l_n^1 & l_n^2 & \dots & l_n^n \end{bmatrix}$$

Треба зменшити розмірність простору досліджуваних параметрів системи з n до p < n, але при цьому втратити якомога менше відомостей про досліджувані об'єкти. Введемо міру інформації, що залишається при зменшенні кількості компонент, що розглядаються

$$I = \frac{\lambda_1 + \dots + \lambda_p}{\lambda_1 + \dots + \lambda_n}$$

Будемо вважати, що діємо продуктивно, тому починаємо обирати з перших компонент, адже саме вони є найбільш інформативними. Також бачимо, що інформативність змінюється в межах від 0 (нічого не дізнаємось) до 1 (зберегли усю інформацію).

Надалі буде розглядатися матриця головних компонент Y

$$Y = \begin{bmatrix} y_1^1 & y_2^1 & \dots & y_m^1 \\ y_1^2 & y_2^2 & \dots & y_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ y_1^p & y_2^p & \dots & y_m^p \end{bmatrix}$$

2.1.2 Гістограма

Для подальшого аналізу потрібно здобути щільність розподілу головних компонент. Оскільки маємо справу з вибіркою і вибірковими характеристиками, потрібно побудувати гістограму, адже це і є вибіркова характеристика, що відповідає щільності.

Побудуємо j-й стовбець гістограми для виборки з k-ї строки матриці Y

$$h_j^k = \frac{1}{m} \cdot \sum_{i=1}^m \mathbb{1}(y_i^k \in I_j^k), \qquad j = \overline{1, N}, \qquad k = \overline{1, p}$$

де I^k — набір напівінтервалів, що розбиває відрізок $\left[\min_{i=\overline{1,m}}y_i^k;\max_{i=\overline{1,m}}y_i^k\right]$ на N

рівних частин. Для вибору N можна скористатися досить відомою формулою Стьорджеса (Sturges' formula) [1]

$$N = \lfloor \log_2 m \rfloor + 1$$

Маємо матрицю гістограм

$$H = \begin{bmatrix} h_1^1 & h_2^1 & \dots & h_N^1 \\ h_1^2 & h_2^2 & \dots & h_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ h_1^p & h_2^p & \dots & h_N^p \end{bmatrix}$$

і напівінтервалів, що відповідають кожному стовбчику кожної гістограми

$$I = \begin{bmatrix} I_1^1 & I_2^1 & \dots & I_N^1 \\ I_1^2 & I_2^2 & \dots & I_N^2 \\ \vdots & \vdots & \ddots & \vdots \\ I_1^p & I_2^p & \dots & I_N^p \end{bmatrix}$$

2.1.3 Поліноміальний розподіл

Введемо матрицю частот ν

$$\nu = m \cdot H$$

Кожна компонента — кількість елементів вибірки, що потрапили у відповідний напівінтервал

$$u_j^k = \sum_{i=1}^m \mathbb{1}\left(y_i^k \in I_j^k\right), \qquad j = \overline{1, N}, \qquad k = \overline{1, p}$$

Розглянемо вектор

$$\nu^k = \left[\nu_1^k, \dots, \nu_N^k\right], \qquad k = \overline{1,p} \tag{2.1}$$

Маємо серію з m незалежних експериментів, кожен з яких може закінчитися одним з N результатів E_1^k, \ldots, E_N^k , що взаємно виключаються

$$\mathbb{P}\left(E_i^k \cap E_j^k\right) = 0, \qquad i \neq j, \qquad k = \overline{1,p}$$

Якщо випадкові величини y_i^k мають заздалегіть відомий розподіл, який однаковий в межах однієї строки Y^k , маємо ймовірності кожного результату експерименту

$$\rho_i^k = \mathbb{P}\left(E_i^k\right) = \mathbb{P}\left(y_1^k \in I_i^k\right) = \dots = \mathbb{P}\left(y_m^k \in I_i^k\right), \qquad j = \overline{1,N}, \qquad k = \overline{1,p}$$

Ймовірність того, що вектор ν^k буде дорівнювати вектору $X=[x_1,\ldots,x_N],$ рахується за формулою

$$f_{multi}^{k}\left(X\right) = \mathbb{P}\left(\nu^{k} = X\right) = m! \cdot \prod_{j=1}^{N} \frac{\left(\rho_{j}^{k}\right)^{x_{j}}}{x_{j}!}, \qquad \sum_{j=1}^{N} x_{j} = m$$

Математичне сподівання і дисперсія кожного елементу співпадає з математичним сподіванням і дисперсією біноміального розподілу з відповідними характеристиками, адже випадкові величини ν_j^k не залежать одна від одної

$$\operatorname{M} \nu_j^k = N \cdot \rho_j^k, \qquad \operatorname{D} \nu_j^k = N \cdot \rho_j^k \cdot \left(1 - \rho_j^k\right), \qquad j = \overline{1, N}, \qquad k = \overline{1, p}$$

Коваріація двох різних елементів вектора ν^k рахується за формулою [2]

$$\operatorname{cov}(\nu_i^k, \nu_j^k) = -N \cdot \rho_i^k \cdot \rho_j^k, \qquad i \neq j$$

Введемо дельта-функцію

$$\delta_{i,j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Отримаємо загальну формулу для коваріації

$$\operatorname{cov}(\nu_i^k, \nu_j^k) = N \cdot \rho_i^k \cdot (\delta_{i,j} - \rho_j^k)$$

Отже, коваріаційна матриця A^k вектора ν^k виглядає наступним чином

$$A^{k} = \left| \cos(\nu_{i}^{k}, \nu_{j}^{k}) \right|_{i,j=1}^{N} = N \cdot \begin{bmatrix} \rho_{1}^{k} \cdot (1 - \rho_{1}^{k}) & -\rho_{1}^{k} \cdot \rho_{2}^{k} & \cdots & -\rho_{1}^{k} \cdot \rho_{N}^{k} \\ -\rho_{2}^{k} \cdot \rho_{1}^{k} & \rho_{2}^{k} \cdot (1 - \rho_{2}^{k}) & \cdots & -\rho_{2}^{k} \cdot \rho_{N}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{N}^{k} \cdot \rho_{1}^{k} & -\rho_{N}^{k} \cdot \rho_{2}^{k} & \cdots & \rho_{N}^{k} \cdot (1 - \rho_{N}^{k}) \end{bmatrix}$$

Додамо всі її строки до першої

$$A^{k} = N \cdot \begin{bmatrix} \rho_{1}^{k} \cdot \left(1 - \sum_{j}^{N} \rho_{j}^{k}\right) & \rho_{2}^{k} \cdot \left(1 - \sum_{j}^{N} \rho_{j}^{k}\right) & \cdots & \rho_{N}^{k} \cdot \left(1 - \sum_{j}^{N} \rho_{j}^{k}\right) \\ -\rho_{2}^{k} \cdot \rho_{1}^{k} & \rho_{2}^{k} \cdot \left(1 - \rho_{2}^{k}\right) & \cdots & -\rho_{2}^{k} \cdot \rho_{N}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{N}^{k} \cdot \rho_{1}^{k} & -\rho_{N}^{k} \cdot \rho_{2}^{k} & \cdots & \rho_{N}^{k} \cdot \left(1 - \rho_{N}^{k}\right) \end{bmatrix}$$

Пам'ятаємо те, що сума ймовірностей дорівнює одиниці

$$\sum_{j=1}^{N} \rho_j^k = 1$$

Отже

$$A^{k} = N \cdot \begin{bmatrix} 0 & 0 & \cdots & 0 \\ -\rho_{2}^{k} \cdot \rho_{1}^{k} & \rho_{2}^{k} \cdot (1 - \rho_{2}^{k}) & \cdots & -\rho_{2}^{k} \cdot \rho_{N}^{k} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{N}^{k} \cdot \rho_{1}^{k} & -\rho_{N}^{k} \cdot \rho_{2}^{k} & \cdots & \rho_{N}^{k} \cdot (1 - \rho_{N}^{k}) \end{bmatrix}$$

Отже, матриця A ϵ виродженою і ма ϵ ранг N-1 [3].

Лагранжем було показано, що функція ймовірності поліноміального розподілу, помножена на $\sqrt{m^{N-1}}$, прямує до щільності ймовірності нормального вектора, що має N-1 компонент, де константа $\sqrt{2 \cdot \pi}$ з'являється завдяки застосуванню формули Стірлінга [4]

$$m^{\frac{N-1}{2}} \cdot f_{multi}^{k}(X) \xrightarrow[m \to \infty]{} f_{norm}^{k}\left(H^{k}\right) = \frac{\exp\left\{-\frac{1}{2} \cdot \sum_{j=1}^{N} \frac{m \cdot \left(\rho_{j}^{k} - h_{j}^{k}\right)^{2}}{h_{j}^{k}}\right\}}{\sqrt{\left(2 \cdot \pi\right)^{N-1} \cdot h_{1}^{k} \cdot \cdot \cdot h_{N}^{k}}}$$
(2.2)

2.1.4 Критерій узгодженості Пірсона χ^2

Гістограма може використовуватися не тільки для графічної інтерпретації отриманих даних, але й для віднесення вибірки до якогось відомого розподілу. Відповідь на питання "Чи дійсно вибірка y_1^k, \ldots, y_p^k має розподіл F^k ?" може надати критерій узгодженості Пірсона.

Знову розглянемо вектор (2.1)

$$\nu^k = \left[\nu_1^k, \dots, \nu_N^k\right], \qquad k = \overline{1,p}$$

Пам'ятаємо, що функція ймовірності цього вектора прямує до функції ймовірності нормального (N-1)-вимірного вектора. Розглянемо квадратичну форму, що знаходиться в експоненті (2.2)

$$R^{k} = \sum_{j=1}^{N} \frac{\left(m \cdot \rho_{j}^{k} - \nu_{j}^{k}\right)^{2}}{\nu_{j}^{k}} = m \cdot \sum_{j=1}^{N} \frac{\left(\rho_{j}^{k} - h_{j}^{k}\right)^{2}}{h_{j}^{k}}$$
(2.3)

Спираючись на результати, отримані Лагранжем, Пірсон показав, що квадратична форма має розподіл χ^2 з N-1 ступенями вільності [5] [6].

З таблиці для функції розподілу χ^2_{N-1} обираємо рівень значущості α і шукаємо відповідне до кількості ступенів вільності r_{α} . Рівень значущості — ймовірність помилки першого роду, тобто ймовірність того, що буде відкинуто вірну

гіпотезу

$$\mathbb{P}\left(\chi_{N-1}^2 \ge r_\alpha\right) = \alpha$$

Якщо $R^k \leq r_{\alpha}$, то гіпотеза про те, що вибірка Y^k дійсно має розподіл F^k , не відхиляється.

Без втрати загальності розглянемо той випадок, коли ймовірність ρ_i^k відгадана невірно. Повернемося до формули (2.3)

$$R^k = \sum_{j=1}^N \frac{\left(m \cdot \rho_j^k - \nu_j^k\right)^2}{\nu_j^k}$$

Всі члени суми є невід'ємними. Якщо хоча б один елемент буде завеликим, то великою буде вся сума. Маємо випадкову величину η

$$\eta = \nu_i^k - m \cdot \rho_i^k = \sum_{j=1}^m (\xi_j - \rho_i^k), \qquad \mathbb{1}(y_j^k \in I_i^k) = \xi_j$$

Якщо ρ_i^k вгадано невірно, то воно не дорівнює математичному очікуванню індикатора. Додамо та віднімемо справжнє математичне очікування

$$\eta = \sum_{j=1}^{m} (\xi_j - M \xi_1 + M \xi_1 - \rho_i^k) = \sum_{j=1}^{m} (\xi_j - M \xi_1) + \sum_{j=1}^{m} (M \xi_1 - \rho_i^k)$$

Останній доданок ϵ просто різницею, помноженою на m

$$\eta = \sum_{j=1}^{m} (\xi_j - M \xi_1) + m \cdot (M \xi_1 - \rho_i^k)$$

Поділимо на \sqrt{m} , щоб скористатися центральною граничною теоремою

$$\frac{\eta}{\sqrt{m}} = \frac{1}{\sqrt{m}} \cdot \sum_{j=1}^{m} (\xi_j - M \xi_1) + \frac{1}{\sqrt{m}} \cdot m \cdot (M \xi_1 - \rho_i^k)$$

Перший доданок має розподіл $N\left(0,\sigma^2\right)$, де σ^2 — дисперсія випадкової величини ξ_1 для достатньо великих m. Отже, вся сума зростає пропорційно \sqrt{m}

$$\frac{\eta}{\sqrt{m}} = \frac{1}{\sqrt{m}} \cdot \sum_{j=1}^{m} (\xi_j - M \xi_1) + \sqrt{m} \cdot (M \xi_1 - \rho_i^k) \sim \sqrt{m} \cdot (M \xi_1 - \rho_i^k)$$

Тобто, якщо гіпотеза невірна, то R^k буде зростати пропорційно до величини \sqrt{m} , що є достатньо великою швидкістю.

Чим більше рівень значущості, тим менше значення r_{α} , а отже і проміжок, в який дозволяється потрапити значенню R^k . В цьому випадку зростає ймовірність відхилити вірну гіпотезу щодо розподілу, але при цьому є більше впевненості в правильності результату. Зазвичай α обирають рівним $0.1,\ 0.05,\ 0.01.$

2.1.5
$$\chi^2$$

Розглянемо вектор

$$\eta^k = \left[rac{
u_1^k - m \cdot
ho_1^k}{\sqrt{m \cdot
ho_1^k}}, \dots, rac{
u_N^k - m \cdot
ho_N^k}{\sqrt{m \cdot
ho_N^k}}
ight]$$

Та розпишемо його характеристичну функцію

$$\varphi_{\eta^k}(\lambda) = M e^{i \cdot \lambda \cdot \eta^k}, \quad \lambda \in \mathbb{R}^N$$

Для зручності перепозначимо індикатор

$$\mathfrak{I}_{i,j}^k = \mathbb{1}\{y_i^k \in I_j^k\}$$

Подивимось, чому дорівнює скалярний добуток в експоненті

$$\begin{split} \left(\lambda, \eta^k\right) &= \sum_{j=1}^N \lambda_j \cdot \frac{\nu_j^k - m \cdot \rho_j^k}{\sqrt{m \cdot \rho_j^k}} = \sum_{j=1}^N \frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \sum_{i=1}^m \left(\mathfrak{I}_{i,j}^k - \rho_j^k\right) = \\ &= \sum_{j=1}^N \sum_{i=1}^m \frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \left(\mathfrak{I}_{i,j}^k - \rho_j^k\right) = \sum_{i=1}^m \sum_{j=1}^N \lambda_j \cdot \frac{\mathfrak{I}_{i,j}^k - \rho_j^k}{\sqrt{m \cdot \rho_j^k}} \end{split}$$

Бачимо суму m незалежних однаково розподілених випадкових величин. Введемо позначення

$$\mathfrak{I}_j^k = \mathbb{1}\big\{y_1^k \in I_j^k\big\}$$

А також позначимо новий випадковий вектор

$$\zeta^k = \left[\frac{\Im_1^k - \rho_1^k}{\sqrt{m \cdot \rho_1^k}}, \dots \frac{\Im_N^k - \rho_N^k}{\sqrt{m \cdot \rho_N^k}} \right]$$

Тоді скалярний добуток прийме вигляд

$$(\lambda, \eta^k) = \sum_{i=1}^m \sum_{j=1}^N \lambda_j \cdot \zeta_j^k = \sum_{i=1}^m \lambda \cdot \zeta^k = m \cdot \lambda \cdot \zeta^k = m \cdot (\lambda, \zeta^k)$$

Отже, тепер характеристичну функцію буде значно легше рахувати: вона згортається в добуток більш простих характеристичних функцій

$$\varphi_{\eta^k}(\lambda) = M e^{i \cdot \lambda \cdot \eta^k} = M e^{m \cdot i \cdot \lambda \cdot \zeta^k} = \left(M e^{i \cdot \lambda \cdot \zeta^k} \right)^m$$
 (2.4)

Розглянемо характеристичну функцію випадкового вектора ζ^k

$$\varphi_{\zeta^k}(\lambda) = M\left[\exp\left\{i \cdot \sum_{j=1}^N \lambda_j \cdot \zeta_j^k\right\}\right]$$
(2.5)

Легко побачити, що

$$(\lambda, \zeta^k) = \sum_{j=1}^N \lambda_j \cdot \zeta_j^k = \sum_{j=1}^N \lambda_j \cdot \frac{\mathfrak{I}_j^k - \rho_j^k}{\sqrt{m \cdot \rho_j^k}} = \sum_{j=1}^N \left(\frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} \cdot \mathfrak{I}_j^k - \frac{\sqrt{\rho_j^k} \cdot \lambda_j}{\sqrt{m}} \right) =$$

$$= \sum_{j=1}^N \mathfrak{I}_j^k \cdot \left(\frac{\lambda_j}{\sqrt{m \cdot \rho_j^k}} - \sum_{l=1}^N \frac{\sqrt{\rho_l^k} \cdot \lambda_l}{\sqrt{m}} \right)$$

Тобто, характеристична функція (2.5) приймає вигляд

$$\varphi_{\zeta^{k}}(\lambda) = \mathbf{M}\left[\sum_{j=1}^{N} \mathfrak{I}_{j}^{k} \cdot \exp\left\{\frac{i}{\sqrt{m}} \left(\frac{\lambda_{j}}{\sqrt{\rho_{j}^{k}}} - \sum_{l=1}^{N} \sqrt{\rho_{l}^{k}} \cdot \lambda_{l}\right)\right\}\right]$$

Перепозначимо вираз в круглих дужках

$$\mathfrak{z}^k = rac{\lambda_j}{\sqrt{
ho_j^k}} - \sum_{l=1}^N \sqrt{
ho_l^k} \cdot \lambda_l$$

Математичне очікування індикатора — ймовірність події, яку він перевіряє. Отже

$$\varphi_{\zeta^{k}}\left(\lambda\right) = \sum_{j=1}^{N} \rho_{j}^{k} \cdot \exp\left\{\frac{i \cdot \mathfrak{z}^{k}}{\sqrt{m}}\right\}$$

Якщо розмір вибірки m буде зростати, то характеристична функція η^k (2.4) буде поводитись наступним чином

$$\lim_{m \to \infty} \varphi_{\eta^k} (\lambda) = \lim_{m \to \infty} \left(1 + \varphi_{\eta^k} (\lambda) - 1 \right) =$$

$$= \lim_{m \to \infty} \left(1 + \sum_{k=1}^N p_k \cdot \left[\exp\left\{ \frac{i \cdot \mathfrak{z}^k}{\sqrt{m}} \right\} - 1 \right] \cdot \frac{m}{m} \right)^m =$$

$$= \lim_{m \to \infty} \exp\left\{ m \cdot \sum_{k=1}^N p_k \cdot \left[\exp\left\{ \frac{i \cdot \mathfrak{z}^k}{\sqrt{m}} \right\} - 1 \right] \right\}$$

Маємо експоненту з дуже малим показником. Пам'ятаємо, що

$$e^{\alpha} - 1 \approx \alpha + \frac{\alpha^2}{2}, \qquad \alpha \ll 1$$

Перший ступінь приближення зникає

$$\sum_{j=1}^{N} \rho_j^k \cdot \frac{i \cdot \mathfrak{z}^k}{\sqrt{m}} = \sum_{j=1}^{N} \rho_j^k \cdot \frac{i}{\sqrt{m}} \cdot \left(\frac{\lambda_j}{\sqrt{\rho_j^k}} - \sum_{l=1}^{N} \sqrt{\rho_l^k} \cdot \lambda_l\right) =$$

$$= \frac{i}{\sqrt{m}} \cdot \left(\sum_{j=1}^{N} \sqrt{\rho_j^k} \cdot \lambda_j - \sum_{l=1}^{N} \sqrt{\rho_l^k} \cdot \lambda_l\right) = 0$$

Отже, маємо справу лише з другим

$$\sum_{j=1}^{N} \rho_j^k \cdot \left(\frac{i \cdot \mathfrak{z}^k}{\sqrt{m}}\right)^2 = -\sum_{j=1}^{N} \frac{\rho_j^k}{m} \cdot \left(\frac{\lambda_j}{\sqrt{\rho_j^k}} - \sum_{l=1}^{N} \sqrt{\rho_l^k} \cdot \lambda_l\right)^2 =$$

$$= -\frac{1}{m} \cdot \left[\sum_{j=1}^{N} \lambda_j - \left(\sum_{l=1}^{N} \sqrt{\rho_l^k} \cdot \lambda_l\right)^2\right]$$

Перепишемо характеристичну функцію вектора η^k

$$\lim_{m \to \infty} \varphi_{\eta^k} (\lambda) = \lim_{m \to \infty} \exp \left\{ -\frac{m}{m \cdot 2} \cdot \left[\sum_{j=1}^N \lambda_j - \left(\sum_{l=1}^N \sqrt{\rho_l^k} \cdot \lambda_l \right)^2 \right] \right\} =$$

$$= \exp \left\{ -\frac{1}{2} \cdot \left[\sum_{j=1}^N \lambda_j - \left(\sum_{l=1}^N \sqrt{\rho_l^k} \cdot \lambda_l \right)^2 \right] \right\} = e^{-\frac{1}{2} \cdot \left(A^k \lambda, \lambda \right)}$$

Згадуємо символ Кронекера

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Та бачимо, що маємо характеристичну функцію, що відповідає гаусовському вектору з нульовим вектором математичного сподівання і коваріаційною матрицею A^k

$$A^{k} = \left\| \delta_{ij} - \sqrt{\rho_{i}^{k}} \cdot \sqrt{\rho_{j}^{k}} \right\|_{i=1}^{n}$$

ПЕРЕЛІК ПОСИЛАНЬ

- 1. *Sturges, Herbert A.* The Choice of a Class Interval / Herbert A. Sturges // *j-J-AM-STAT-ASSOC.* 1926. March. Vol. 21, no. 153. Pp. 65–66.
- 2. *Mukhopadhyay, N.* Probability and Statistical Inference / N. Mukhopadhyay. Statistics: A Series of Textbooks and Monographs. Taylor & Francis, 2000.
- 3. *Kendall, M.G.* Теория распределений / M.G. Kendall, A.F. Stuart. Наука, 1966.
- 4. Œuvres de Lagrange: Mémoires extraits des recueils de l'Académie de Turin. (Suite.) Mémoires extraits des recueils de l'Academie royale des sciences et belles-lettres de Berlin / J.L. Lagrange, J.A. Serret, G. Darboux et al. Œuvres de Lagrange.
 Gauthier-Villars, 1868.
- 5. *Pearson, Karl.* On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling / Karl Pearson // *Philosophical Magazine Series 5.* 1900. Vol. 50, no. 302. Pp. 157–175.
- Hald, A. A History of Parametric Statistical Inference from Bernoulli to Fisher, 1713-1935 / A. Hald. Sources and Studies in the History of Mathematics and Physical Sciences. — Springer New York, 2010.