References to figures are given in **bold** type. References to tables are given in *italic* type.

ACF see autocorrelation functions	autocovariance, 164
adaptive lasso, 48, 50, 51	autoregressive conditional
anti-monotone sets, 208	heteroscedasticity (ARCH), 141
AR(1) process	-
Eigen subspace, 70, 91–2	backward simulation (BS), 222-7
KLT kernel derivation, 79–82	BEKK Garch model, 175
orthogonal subspace, 69-71	bias, 267
Karhunen-Loeve transform,	BIC criterion, 50
70-1	bid-ask price, 4
performance matrices, 71	big data finance, 2
power spectral density, 78	Black-Scholes model, 136-7, 203
stochastic signal model, 68	BS method, 203
arbitrage, 3	
ARCH model, 141	capital market line, 12
nonparametric tests, 173-4	causal strength modeling, 42
parametric tests, 172–3	causal strength modeling (CSM), 51-2
Archimedean copula, 181, 182	CDVine, 185
assets, mean-reverting, 23-4	CLIME, 110, 111
autocorrelation functions (ACF),	co-monotone sets, 208
164-5	coherent risk measure, 260
Kendall's tau, 166-7, 169	cointegration-based trading strategies, 23
misspecification testing	collateralized debt obligation (CDO), 279
conditional heteroscedascicity,	conditional sparsity, 102
171-2	conditional value at risk (CVaR), 233,
Ljung-Box, 171	234-42
Spearman's rho, 168–9,	minimization, 240-2, 263
169–71	support vector machines, 247-52

conditional value at risk	Dantzig selector, 111
(CVaR) (continued)	dependence, 185–7
portfolio selection, 241–2	deviation, 270
as risk measure, 263	Dirichlet distribution, 58
robust optimization, 259–61	discrete cosine transform (DCT), 67, 71, 72
under finite scenarios, 236–8	discrete Fourier transform (DFT), 67
under normal distribution, 235	domain description, 245–6
constant relative risk aversion	dynamic programming equation, 155–6
(CRRA), 159	
constant shift insensitivity, 269	efficient frontier, 12
contract asymptotics, 141–2	efficient market hypothesis (EMH), 3
convex relaxation, 16	Eigen decomposition <i>see</i> principal
copula modeling, 1, 179–85	components analysis
Archimedean, 181, 182	EJD algorithm, 215, 219–20
multiple variables, 183–5	error decomposition, 274
parametric, 181–3	error measures, 269
product copula, 181	error projection, 269
software, 185	essential infimum, 268
copula (software), 185	essential supremum, 268
correlation measures, 164–5	estimator's breakdown point, 284–5
copulas, 179–85	ETF see exchange-traded funds
fitting, 180–1	E <i>v</i> -SVC, 248–9
dependence types, 185–6	exchange-traded funds, 42
positive and negative, 185–6	expectation-maximization, 57
tail, 187–8	expected shortfall, 263
Granger causality, 176–8	extreme joint distribution (EJD) algorithm,
Huber-type, 166	215, 219–20
Kendall's tau, 166–7	
misspecification testing	factor analysis, 100, 100-8, 120
ARCH effects, 172–4	covariance matrix estimation
Ljung-Box, 171	asymptotic results, 105–6
multivariate, 176	threshold, 105
multiple variables, 183–5	unknown factors, 104
Spearman's rho, 168–9, 179, 182	factor-pricing model, 121–2
covariance matrix estimation, 100–2	fallout, 286
factor analysis, 100–8	Fama-French model, 107–8
asymptotic results, 105–7	fixed income instruments, 9
example, 107–8	fixed strike price, 136
threshold, 105	fixed transforms, 67
unknown factors, 104–5	Frank copula, 182
pure factor models, 126–7	Frechet-Hoeffding theorem, 215–17
optimal weight matrix, 129–30	Fused-DBN, 62, 63
covariance selection, 109	7, 7, 7, 2
credit default swaps, 279	GARCH model, 141, 172-4
CRSP database, 124–6	BEKK GARCH model, 175
CVar see conditional value at risk	VECH GARCH, 175
See Toller Tulbe William	,, , , , , , , , , , , , , , , , ,

Gauss-Markov theorem, 268	subspace sparsity, 82–4
Gaussian copula, 181	pdf-optimized midtread reader, 84–6
genomic networks, 118–19	see also principal components analysis
GICS, 115–16	Karhunen-Loeve expansion, 76
Global Financial Crisis, 43	Kendall's tau, 166–7, 169, 179, 182
Global Industry Classification Standard	kernel trick, 242
(GICS), 115–16	Kolmogorov backward equation
global minimum variance portfolio, 120–1	(KBE), 172
Granger causality, 46–7, 176–7	T 1 1 2 2 2 15
nonlinear, 177–9	Landweber's iteration, 15
graphical Dantzig selector, 110	lasso regression, 17, 46, 252
Green's function, 143	adaptive, 47, 48, 50, 51
group lasso, 20, 47	group, 47, 48, 57
group OMP, 49, 51–2	SQRT, 112–13
	least absolute deviation (LAD), 53
H-J test, 178	least median of squares (LMS) regression,
high-density region estimation, 245–6	285
high-frequency trading, 9	least-squares methods, 14, 268
hinge loss, 244	ordinary least squares, 103, 251
Huber-type correlations, 166	POET and, 104
Truber-type correlations, 100	regularized, 48
	temporal causal modeling, 48
implied volatility asymptotics, 143-5	least-trimmed-squares (LTS) regression,
implied volatility skew, 136	285
index tracking, 19	leverage effect, 140
inference function for margins (IFM)	Lévy kernel, 150–1
method, 180	linear regression, 283–4
intensity randomization, 196–7	liquidity, 4
intercept, 267	Ljung-Box test, 171
interior point (IP), 53	local volatility models, 139
interior point (IP method), 53	local-stochastic volatility (LSV) models,
inverse projection, 270	140-1, 146-8, 155-7
investment risk, 2	Heston, 148–50, 149
iShares, 53–5	Lévy-type, 150–2
Japan, 43, 55	market incompleteness, 139
jump-diffusion processes, 191–2	market microstructure, 4–5
Jump-diffusion processes, 191–2	market price of risk, 153
	market risk see investment risk
Karhunen-Loeve transform (KLT), 67–8	Markov-switched TCM, 60-4
kernel derivation, 72–9	Markowitz bullet, 12
continuous process with exponential	Markowitz portfolio selection, 1, 3
autocorrelation, 74–6	elastic net strategy, 19
eigenanalysis of discrete AR(1)	as inverse problem, 13–15
process, 76–7	portfolio description, 11–13
fast derivation, 79–82	as regression problem, 13
NASDAQ-100 index, 93-7	sparse, 15–17

Markowitz portfolio selection (continued)	no-short portfolios, 16–17
empirical validation, 17–18	nonnegative space PCA, 83
optimal forecast combination, 20-1	nonnegative sparse PCA, 83
portfolio rebalancing, 18	
portfolio replication, 19	optimal order execution, 9
see also sparse Markowitz portfolios	optimized certainty equivalent (OCE), 264
matrix deflation, 30	option pricing
maximum a posteriori (MAP) modeling, 56,	asymptotic expansions, 141–2
58-9	contract, 142
mean-absolute deviation, 277–8, 279	implied volatility, 143–5
mean-reverting portfolios, 24, 29	model, 142–3
crossing statistics, 28, 31	model coefficient expansions, 146–50
mean-reversion proxies, 25–6	model tractability, 145–6
numerical experiments, 32–9	Oracle property, 48
basket estimators, 33	ordinary least square (OLS), 103, 251
historical data, 32–3	Ornstein–Uhlenbeck (OU) process, 68
Jurek and Yang strategy, 33, 36, 37	orthogonal patching pursuit (OMP), 49,
Sharpe ratio robustness, 36–7	51–2, <i>54</i>
tradeoffs, 38–9, 38	outlier detection, 245–6
transaction costs, 33–4	outher detection, 243–0
optimal baskets, 28–9	
portmanteau criterion, 27–8, 29, 31	panel data models, 127–9
predictability	partial integro-differential equation (PIDE),
multivariate case, 26–7	141
univariate case, 26	Pearson correlation coefficient, 162
semidefinite relaxations, 30–1	penalized matrix decomposition, 83
portmanteau, 31	penalties relative to expectation, 269
predictability, 30–1	pension funds, 9
volatility and sparsity, 24–5	perturbation theory, 142–3
mean-variance efficiency, 122	POET, 104, 120–1
Merton problem, 155–60	Poisson processes, 193–6
mevalonate (MVA) pathway, 118	backward simulation (BS), 222–7
misspecification testing	common shock model, 196 extreme joint distributions, 207–19
ARCH/GARCH, 172–4	approximation, 217–19
Ljung-Box test, 171	Frechet-Hoeffding theorem, 215–17
multivariate, 176	monotone, 208–14
model asymptotics, 142	optimization problem, 207–8
monotone distributions, 208–14, 238–9	intensity randomization, 196–7
mortgage pipeline risk, 286	numerical results, 219–22
MSCI Japan Index, 42	simulation
•	backward, 200–6
NASDAQ-100, 93-7	forward, 197–9
negative dependence, 185–6	model calibration, 206
news analysis, 9	Poisson random vectors, 205
Newton method, 53	Poisson-Wiener process, 222–7
no-arbitrage pricing, 139	portfolio manager, 2
no monage pricing, 13)	Portiono managor, 2

portfolio optimization, 3	pulse code modulation (PCM), 71
1=N puzzle, 13	pure factor model, 130
Markowitz, 11–12	
portfolio rebalancing, 18–19	Q-TCM, 52
portfolio risk estimation, 119–21	quadratic penalty, 14
positive dependence, 185–6	quantile regression, 251
positive homogeneity, 239	quantile TCM, 52–5, 54–5
power enhancement test, 123–4	quasi-Monte Carlo (QMC) algorithms, 203
precision matrix estimation, 109–10	
applications, 115–17	reduced convex hulls, 257, 258
column-wise, 110–11	regressant, 267
portfolio risk assessment, 119–26	regression analysis, 267–8
TIGER, 112–14	CVar-based, 251–3
application, 115–17	error decomposition, 273–4
computation, 114	error and deviation measures, 268–71
genomic network application, 118–19	lasso see lasso regression
theoretical properties, 114–15	least-squares, regularized, 48
tuning-insensitive procedures, 111–12	least-squares methods, 275–7
price inefficiency, 3	linear regression, 283–4
principal components analysis (PCA), 34	
principal orthogonal complement, 104	median regression, 277–81
principal orthogonal complement	ordinary least squares, 251
1 1	quantile regression, 281–3
thresholding (POET) estimator, 104	risk envelopes and identifiers, 271–3
principal components analysis (PCA),	robust, 284–6
36–7, 67, 126	support vector regression, 246–7
discrete autoregressive (AR(1)) model,	regressors, 267
68-70	return on investment (ROI), 2–3
fast kernel derivation, 79–82	ridge regression, 251
Eigen subspace, 70–1, 91–2	risk acceptable linear regression, 284
Eigen subspace sparsity, 82–3	risk envelopes, 271–3
KLT kernel	risk inference, 121
continuous process with exponential	risk preferences, 268
autocorrelation, 74	risk quadrangle, 264
eigenanalysis of a discrete AR(1)	risk-neutrality, 139
process, 76–9	risk-normalized return, 2–3
orthogonal subspace, 69–72	robust optimization, distributional, 259–61
Eigen subspace, 70–2	robust regression, 284–6
performance metrics, 71	
pure factor models, 126–7	SCoTLASS, 83
sparse methods, 83–4	SDP see semidefinite programs
AR(1), 89–91	SDP relaxations for sparse PCA (DSPCA),
Eigen subspace quantization, 86	83
Eigenvector pdf, 87–9	securities, 4, 11, 135
pdf-optimized midtread quantizer,	securities markets, 4
84-6	semidefinite programs, 30
performance, 91–3	relaxation tightness, 31–2

Sharpe ratio, $2-3$, $36-7$	v-SVM, 247
transaction costs and, 38-9	geometric interpretation, 257–9
Sherman-Morrison-Woodbury formula, 103	support vector regression (SVR), 246-7
shift operator, 145	Survey of Professional Forecasters (SPF),
shortselling, 3	21
signal-to-quantization-noise ratio (SQNR),	Switzerland, 43
85	
Sklar's theorem, 179-80	tail dependence, 187–8
soft convex hulls, 257	tail VaR, 263
soft thresholding, 84	temporal causal modeling (TCM),
sparse KLT, 89–91	42, 44 –5
sparse Markowitz portfolios, 15–17	algorithmi overview, 47
empirical validation, 17–18	Bayesian group lasso, 57–8
portfolio rebalancing, 18–19	extensions
sparse modeling, 5–6	causal strength modeling, 51–2
sparse PCA via regularized SVD	quantile TCM, 52–5
(sPCA-rSVD), 83	Granger causality and, 46–7
sparse vector autoregressive (VAR) models,	grouped method, 47–9
42	greedy, 49
Spearman's rho, 168-9, 169-70, 179, 182	regularized least-squares, 48
SQRT-lasso, 112–13	Markov switching model, 56–7
stationary sequences, 165	stock return analysis, 62–3
statistical approximation theory, 268	synthetic experiments, 60–2
statistical arbitrage, 3	maximum a posteriori (MAP) modeling,
stochastic volatility, 1, 135	58-9
Black-Scholes model, 136–7	quantile TCM, 54–5
dynamic programmic equation, 155-7	regime change identification, 55–63
implied volatility, 137	algorithm, 58-60
local volatility models, 139–40	synthetic experiments, 49–50, 60–2
Merton problem, 155–60	data generation, 49-50, 60-1
separation of timescales approach,	TIGER, 112–14
152-3	computation, 114
stochastic volatility models, 140	Tikhonov regularization, 14
local (LSV), 140-1	time series, 165
with jumps, 141	Tobin two-fund separation theorem, 12
volatility modeling, 137–41	transcendental equations, 73-4
volatility of volatility, 152	transform coding, 71
stock exchanges, 4	translation invariance, 239
stock return analysis, 62–3, 64	truncated singular value decomposition
Strong Law of Large Numbers, 192, 212	(TSVD), 15
support vector machines (SVM), 233–4,	tuning-insensitivity, 113
263	TV-DBN, 61, 62
classification, 242–3	two-tailed [alpha]-value-at-risk (VaR)
C-support, 243–4	deviation, 286
duality, 256–9	
soft-margin, 244–5	unbiased linear regression, 283-4

v-property, 253–5 v-SVM, 257–8 v-SVR, 247, 251–2 value function, 156 value-at-risk, 234 Vapnik–Chervonenkis theory, 243 VECH GARDCH model, 175 vector autoregression (VAR), 25, 49–50, 61, 174 multivariate volatility, 175–6 temporal causal modeling, 57–8, 61–2 VineCopula, 185 volatility, 38–9 volatility of volatility modeling, 152

Wald test, 122–3 weighted principal components (WPC), 127, 130–1

Yahoo! Finance, 115-17

zero crossing rate, 28