Termoquímica

Lei de Hess

a) Tendo en conta a lei de Hess, calcula a entalpía en condicións estándar da seguinte reacción, indicando se a reacción é exotérmica ou endotérmica: $C_2H_4(g) + H_2O(I) \rightarrow C_2H_5OH(I)$

b) Calcula a cantidade de enerxía, en forma de calor, que é absorbida ou cedida na obtención de 75 g de etanol segundo a reacción anterior, a partir das cantidades adecuadas de eteno e auga.

Datos: $\Delta H^{\circ}(\text{combusti\'on})C_2H_4(g) = -1411 \text{ kJ·mol}^{-1}$; $\Delta H^{\circ}(\text{combusti\'on})C_2H_5OH(I) = -764 \text{ kJ·mol}^{-1}$

(P.A.U. xuño 16)

Rta.: a) $\Delta H = -647 \text{ kJ/mol}$; b) $Q = 1.05 \cdot 10^3 \text{ kJ}$.

Datos Cifras significativas: 3

 $C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(l)$ $\Delta H_{c1}(C_2H_4) = -1411 \text{ kJ/mol}$ $C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$ $\Delta H_{c2}^{\circ}(C_2H_5OH) = -764 \text{ kJ/mol}$

Masa de etanol $m = 75.0 \text{ g C}_2\text{H}_5\text{OH}$

Masa molar do etanol $M(C_2H_5OH) = 46.1 \text{ g/mol}$

Incógnitas

Entalpía da reacción: $C_2H_4(g) + H_2O(l) \rightarrow C_2H_5OH(l)$ ΔH Enerxía na obtención de 75 g de etanol Q

Outros símbolos

Cantidade de substancia (número de moles) n

Ecuacións

Lei de Hess $\Delta H^{\circ} = \Delta H^{\circ}(\text{prod.}) - \Delta H^{\circ}(\text{react.})$

Solución:

a) Como a entalpía é unha función de estado, é independente do camiño.

A ecuación da reacción pódese obter por combinación lineal das ecuacións de combustión:

$$C_2H_4(g) + 3 O_2(g) \rightarrow 2 CO_2(g) + 2 H_2O(l)$$
 $\Delta H_{c1}^{\circ} = -1411 \text{ kJ/mol}$ $C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(l)$ $\Delta H_{c2}^{\circ} = -764 \text{ kJ/mol}$

Déixase a primeira ecuación como está, multiplícase a segunda por -1 e súmanse:

$$\begin{array}{lll} C_2H_4(g) + 3 \ O_2(g) = 2 \ CO_2(g) + 2 \ H_2O(l) & \Delta H_{c1}^{\circ} = & -1411 \ kJ \\ 2 \ CO_2(g) + 3 \ H_2O(l) = C_2H_5OH(l) + 3 \ O_2(g) & -\Delta H_{c2}^{\circ} = & 764 \ kJ \\ \hline C_2H_4(g) + H_2O(l) = C_2H_5OH(l) & \Delta H = & -647 \ kJ \\ \end{array}$$

A reacción é exotérmica, desprende enerxía.

b) Calcúlase a enerxía producida ao obter 75 g de C₂H₅OH:

$$Q=75.0 \text{ g C}_2\text{H}_5\text{OH} \frac{1 \text{ mol } \text{C}_2\text{H}_5\text{OH}}{46.1 \text{ g C}_2\text{H}_5\text{OH}} \frac{647 \text{ kJ}}{1 \text{ mol } \text{C}_6\text{H}_6} = 1,05 \cdot 10^3 \text{ kJ} = 1,05 \text{ MJ}$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla « 🌣 » (maiúsculas) mentres fai clic na cela:

Lei de Hess

do capítulo:

Termoquímica Hess Lei de Hess

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

Pode deixar en branco algún dos valores das entalpías de combustión e a folla de cálculo mostrará, nalgúns casos, o valor atopado nunha pequena táboa de datos que copiou de <u>CRC Handbook of Chemistry and Physics</u>, 97th Edition, 2016. Nese caso, aparecerá o símbolo «a» á súa dereita.

As respostas aparecen en RESULTADOS:

- 2. Considera que a gasolina está composta principalmente por octano (C_8H_{18}) e que no bioetanol o composto principal é o etanol (CH_3CH_2OH). Cos seguintes datos: $\Delta H_f^{\circ}(CO_2(g)) = -393,5$ kJ/mol; $\Delta H_f^{\circ}(H_2O(I)) = -285,8$ kJ/mol; $\Delta H_c^{\circ}(C_8H_{18}(I)) = -5445,3$ kJ/mol; $\Delta H_c^{\circ}(CH_3CH_2OH(I)) = -1369,0$ kJ/mol; densidade a 298 K do etanol $\rho_e = 0,79$ g/cm³ e do octano $\rho_o = 0,70$ g/cm³.
 - a) Escribe a ecuación da reacción de combustión do etanol e calcula entalpía estándar de formación do etanol a 25 °C.
 - b) Cantos litros de bioetanol necesítanse para producir a mesma enerxía que produce 1 dm³ de gasolina?

(P.A.U. set. 14)

Rta.: a) $\Delta H_f^{\circ}(C_2H_6O) = -275.4 \text{ kJ/mol}$; b) $V = 1.43 \text{ dm}^3 \text{ CH}_3\text{CH}_2\text{OH}$.

Datos

$$\begin{split} &C(grafito) + O_2(g) \longrightarrow CO_2(g) \\ &H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l) \\ &C_8H_{18}(l) + 25/2 \ O_2(g) \longrightarrow 8 \ CO_2(g) + 9 \ H_2O(g) \\ &CH_3CH_2OH(l) + 3 \ O_2(g) \longrightarrow 2 \ CO_2(g) + 3 \ H_2O(l) \\ &Densidade \ do \ etanol \ C_8H_{18} \\ &Densidade \ do \ octano \ C_8H_{18} \end{split}$$

Volume de gasolina

Temperatura

Masa molar: Octano

Cifras significativas: 3

$$\Delta H_{\rm f}^{\circ}({\rm CO}_2) = -393,5 \text{ kJ/mol}$$

$$\Delta H_{\rm f}^{\circ}({\rm H}_2{\rm O}) = -285,8 \text{ kJ/mol}$$

$$\Delta H_{\rm c}^{\circ}({\rm C}_8{\rm H}_{18}) = -5445,3 \text{ kJ/mol}$$

$$\Delta H_{\rm c}^{\circ}({\rm C}_2{\rm H}_6{\rm O}) = -1369,0 \text{ kJ/mol}$$

$$\rho_{\rm e} = 0,790 \text{ g/cm}^3$$

$$\rho_{\rm o} = 0,700 \text{ g/cm}^3$$

$$V_{\rm o} = 1,00 \text{ dm}^3$$

$$T = 25 \text{ °C} = 298 \text{ K}$$

$$M({\rm C}_8{\rm H}_{18}) = 114 \text{ g/mol}$$

Datos Cifras significativas: 3

Etanol $M(C_2H_6O) = 46.1 \text{ g/mol}$

Incógnitas

Entalpía de formación do etanol $\Delta H_f^{\circ}(C_2H_6O)$

Volume de bioetanol que libera a mesma enerxía que 1 dm 3 de gasolina V

Outros símbolos

Cantidade de substancia (número de moles) n

Ecuacións

Lei de Hess $\Delta H^{\circ} = \Delta H^{\circ}(\text{prod.}) - \Delta H^{\circ}(\text{react.})$

Solución:

a) Escríbese a ecuación de combustión do etanol e axústase:

$$CH_3CH_2OH(1) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(1)$$
 ΔH_c°

A entalpía de formación dos elementos en estado normal é nula, por definición.

Como a entalpía é unha función de estado, é independente do camiño. Aplícase a lei de Hess:

$$\Delta H_{c}^{\circ}(C_{2}H_{6}O) = 2 \Delta H_{f}^{\circ}(CO_{2}) + 3 \Delta H_{f}^{\circ}(H_{2}O) - (\Delta H_{f}^{\circ}(C_{8}H_{18}) + \Delta H_{f}^{\circ}(O_{2}))$$

$$-1369,0 \text{ [kJ]} = (2 \text{ [mol CO}_2] (-393,5 \text{ [kJ/mol CO}_2] + 3 \text{ [mol H}_2\text{O}] (-285,8 \text{ [kJ/mol H}_2\text{O}])) \\ - (1 \text{ [mol C}_2\text{H}_6\text{O}] \cdot \Delta H_f^{\circ}(\text{C}_2\text{H}_6\text{O}) + 3 \text{ [mol O}_2] \cdot 0)$$

Despéxase a entalpía de formación do etanol:

$$\Delta H_f^{\circ}(C_2H_6O(l)) = -787,0 - 857,4 + 1369,0 = -275,4 \text{ kJ/mol}$$

b) Calcúlase a cantidade de gasolina que hai en 1 litro:

$$n(C_8H_{18})=1,00 \text{ dm}^3 \text{ gasolina } \frac{10^3 \text{ cm}^3}{1 \text{ dm}^3} \frac{0,700 \text{ g gasolina}}{1 \text{ cm}^3 \text{ gasolina}} \frac{1 \text{ mol } C_8H_{18}}{114 \text{ g gasolina}}=6,13 \text{ mol } C_8H_{18}$$

Calcúlase a enerxía producida ao queimarse:

$$Q=6,13 \text{ mol } C_8H_{18} \frac{5445,3 \text{ kJ}}{1 \text{ mol } C_8H_{18}} = 3,34 \cdot 10^4 \text{ kJ}$$

Calcúlase a cantidade de bioetanol que produciría esa enerxía:

$$n(C_2H_5OH)=3.34\cdot10^4 \text{ kJ } \frac{1 \text{ mol } C_2H_5OH}{1369.0 \text{ kJ}}=24.4 \text{ mol } C_2H_5OH$$

Calcúlase a masa de bioetanol:

$$m(C_2H_5OH) = 24.4 \text{ mol } C_2H_5OH \frac{46.1 \text{ g } C_2H_5OH}{1 \text{ mol } C_2H_5OH} = 1.12 \cdot 10^3 \text{ g } C_2H_5OH$$

Calcúlase o volume que ocuparía, empregando dato da densidade:

$$V(C_2H_5OH)=1,12\cdot10^3 \text{ g } C_2H_5OH \frac{1 \text{ cm}^3 C_2H_5OH}{0,790 \text{ g } C_2H_5OH}=1,43\cdot10^3 \text{ cm}^3=1,43 \text{ dm}^3 C_2H_5OH$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «◆» (maiúsculas) mentres fai clic na cela:

Lei de Hess

do capítulo:

Termoquímica Hess Lei de Hess

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

Pode deixar en branco algún dos valores das entalpías de formación e a folla de cálculo mostrará, nalgúns casos, o valor atopado nunha pequena táboa de datos que copiou de <u>CRC Handbook of Chemistry and Physics</u>, 97th Edition, 2016. Nese caso, aparecerá o símbolo «a» á súa dereita.

Note que **ten que poñer** o símbolo «?» baixo a fórmula « C_2H_5OH » e **escribir o valor da entalpía** de combustión (-1369) á dereita de « ΔH reac. =».

A resposta ao apartado a) aparece en RESULTADOS:

Para facer os cálculos do apartado b) haberá que escribir no apartado: OUTROS CÁLCULOS, as fórmulas para calcular os pasos intermedios:

{Moles gasolina}: $n(C_8H_{18}) = m(C_8H_{18}) / Mmol(C_8H_{18}) = V(C_8H_{18}) \cdot \rho(C_8H_{18}) / Mmol(C_8H_{18}) = 1000 \text{ [cm}^3] \cdot 0.7 \text{ [g/cm}^3] / MASAMOL("C8H18")$

{Calor gasolina} = $Q(C_8H_{18}) = n(C_8H_{18}) \cdot \Delta H_c^{\circ}(C_8H_{18}) = \{\text{Moles gasolina}\} \cdot 5445,3 \text{ [kJ/mol]} \}$ {Moles bioetanol} = $n(C_2H_5OH) = Q(C_8H_{18}) / \{\Delta H \text{ reac. } (C_2H_5OH)\} = \{\text{Calor gasolina}\} / 1369$

 $\{V(\text{cm}^3) \text{ bioetanol}\} = V(\text{C}_2\text{H}_5\text{OH}) = m(\text{C}_2\text{H}_5\text{OH}) / \rho(\text{C}_2\text{H}_5\text{OH}) = n(\text{C}_2\text{H}_5\text{OH}) \cdot \text{Mmol}(\text{C}_2\text{H}_5\text{OH}) / \rho(\text{C}_2\text{H}_5\text{OH}) = \text{Moles bioetanol}\} \cdot \text{MASAMOL}(\text{G2}) / 0.79 \text{ [g/cm}^3]$

[wholes blockation] with the two blocks of the control of the cont									
OUTROS CÁLCULOS									
Etiq.	: Moles gasolina		Calor gasolina		Moles bioetanol		V(cm³) bioetanol		
Fórm	=1000*0,7/MASA- MOL("C8H18")		=G25*5445,3		=I25/1369		=K25*MASA- MOL(G2)/0,79		
E verá os resultados:									
	6,128	:	33 368		24,37		1421		

• Enerxías de enlace

1. a) A partir dos datos da táboa, calcula a entalpía estándar de combustión do metano.

Enlace		C – H	O – H	O = O	C = O
Entalpía de enlace en condicións estándar (k	l/mol)	413	482	498	715

b) Calcula o volume de dióxido de carbono medido a 25 $^{\circ}$ C e 1 atm (101,3 kPa) que se xerará na combustión completa de 100 g de metano.

Dato: $R = 0.082 \text{ atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

(P.A.U. set. 15)

Rta.: a) $\Delta H_c(CH_4) = -710 \text{ kJ/mol}$; b) $V = 153 \text{ dm}^3$.

Datos	Cifras significativas: 3		
Entalpía de enlace: C – H	$\Delta H(\text{C-H}) = 413 \text{ kJ/mol}$		
O – H	$\Delta H(\text{O-H}) = 482 \text{ kJ/mol}$		
O = O	$\Delta H(O=O) = 498 \text{ kJ/mol}$		
C = O	$\Delta H(C=O) = 715 \text{ kJ/mol}$		
Presión	$p = 101,3 \text{ kPa} = 1,013 \cdot 10^5 \text{ Pa}$		
Temperatura	$T = 25 ^{\circ}\text{C} = 298 \text{K}$		
Masa de metano	$m(CH_4) = 100 \text{ g CH}_4$		
Masa molar do metano	$M(CH_4) = 16.0 \text{ g/mol}$		
Constante dos gases ideais	$R = 8.31 \mathrm{J} \cdot \mathrm{K}^{-1} \cdot \mathrm{mol}^{-1}$		
Incógnitas			
Entalpía estándar de combustión do metano	$\Delta H_{ m c}^{\circ}({ m CH_4})$		
Volume de dióxido de carbono	V		
Outros símbolos			
Cantidade de substancia	n		

Ecuacións

Lei de Hess $\Delta H^{\circ} = \Delta H^{\circ}(\text{prod.}) - \Delta H^{\circ}(\text{react.})$ $p \cdot V = n \cdot R \cdot T$ Ecuación de estado dos gases ideais

Solución:

a) Escríbese a ecuación de combustión do metano axústase:

$$CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$
 ΔH_c°

Pódese imaxinar un hipotético camiño de rotura e formación de enlaces:

$$\begin{array}{c} H \\ H-\overset{\mid}{C}-H \\ H \end{array} \longrightarrow C+4H \ \Delta H_1=4 \cdot \Delta H (C-H)$$

$$\begin{array}{c} C + 4H \ \Delta H_1=4 \cdot \Delta H (C-H) \\ H \end{array}$$

$$\begin{array}{c} 2O=O \ \longrightarrow 4O \ \Delta H_2=2 \cdot \Delta H (O=O) \\ C+2O \ \longrightarrow O=C=O \ \Delta H_3=-2 \cdot \Delta H (C=O) \\ 4H+2O \ \longrightarrow 2H-O-H \ \Delta H_4=-4 \cdot \Delta H (O-H) \end{array}$$

Como a entalpía é unha función de estado, é independente do camiño.

A entalpía de combustión do metano pode expresarse como combinación lineal das ecuacións de rotura e formación de enlaces:

$$\begin{split} \Delta H_c(\text{CH}_4) &= 4 \cdot \Delta H(\text{C-H}) + 2 \cdot \Delta H(\text{O=O}) - 2 \cdot \Delta H(\text{C=O}) - 4 \cdot \Delta H(\text{O-H}) = \\ 4 \cdot 413 \text{ [kJ/mol]} + 2 \cdot 498 \text{ [kJ/mol]} - 2 \cdot 715 \text{ [kJ/mol]} - 4 \cdot 482 \text{ [kJ/mol]} \\ \Delta H_c^\circ(\text{CH}_4) &= -710 \text{ kJ/mol} \end{split}$$

b) Calcúlase a cantidade de metano que hai en 100 g:

$$n(CH_4)=100 \text{ g CH}_4 \cdot \frac{1 \text{ mol CH}_4}{16.0 \text{ g CH}_4}=6,25 \text{ mol CH}_4$$

Calcúlase a cantidade de CO₂ a partir da ecuación de combustión axustada:

$$n(CO_2) = n(CH_4) = 6.13 \text{ mol } CO_2$$

Calcúlase o volume que ocupará a 25 °C e 1 atm, coa ecuación de estado dos gases ideais, supoñendo comportamento ideal do CO₂:

$$V = \frac{n \cdot R \cdot T}{p} = \frac{6.25 \text{ mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 298 \text{ K}}{101.3 \cdot 10^3 \text{ Pa}} = 0.153 \text{ m}^3 = 153 \text{ dm}^3$$

Calorimetría

1. Explica detalladamente como se pode determinar no laboratorio a calor de disolución de KOH(s) en auga. Efectúa o cálculo (á presión e temperatura de laboratorio) supoñendo unha masa de hidróxido de potasio de 4,5 g que se disolven en 450 cm³ nun calorímetro que ten un equivalente en auga de 15 g. O incremento da temperatura é de 2,5 °C.

Datos: Calor específica da auga: $4,18 \text{ J/(g} \cdot \text{°C})$ e densidade da auga: 1 g/cm^3 .

(P.A.U. set. 05)

Rta.: $\Delta H_d^{\circ}(KOH) = -61 \text{ kJ/mol}.$

Solución:

Procedemento:

Nunha probeta de 500 cm³, mídense 450 cm³ de auga e vértense nun calorímetro. Déixanse pasar uns minutos e mídese a temperatura cun termómetro.

Pésase un vidro de reloxo nunha balanza e bótase KOH cunha vareta ata que a súa masa aumente 4,5 g. Rapidamente (para evitar a hidratación e carbonatación do KOH) bótase o hidróxido de potasio no calorímetro e axítase cunha vareta, comprobando a temperatura. Anótase o valor máximo e réstase do valor inicial da temperatura da auga.

Cálculos: (Suporei que os datos teñen polo menos dúas cifras significativas).

masa de auga =
$$450 \text{ dm}^3 \cdot 1,0 \text{ g/cm}^3 = 450 \text{ g auga}$$

Ao ser o calorímetro un sistema illado, o proceso é adiabático, non se intercambia calor coa contorna.

Q(cedida na disolución) + Q_d (gañada pola disolución) + Q_c (gañada polo calorímetro) = 0

A calor gañada pola disolución é aproximadamente igual á calor gañada pola auga.

$$Q_d = m(\text{auga}) \cdot c_e(\text{auga}) \cdot \Delta t = 450 \text{ g} \cdot 4.18 \text{ J/(g} \cdot \text{°C}) \cdot 2.5 \text{ °C} = 4.7 \cdot 10^3 \text{ J}$$

A calor gañada polo calorímetro calcúlase de forma análoga, usando o equivalente en auga do calorímetro.

$$Q_{c} = m(\text{equivalente en auga}) \cdot c_{e}(\text{auga}) \cdot \Delta t = 15 \text{ g} \cdot 4,18 \text{ J/(g} \cdot \text{°C}) \cdot 2,5 \text{ °C} = 1,6 \cdot 10^{2} \text{ J}$$

$$Q(\text{cedida na disolución}) = -(4,7 \cdot 10^{3} + 1,6 \cdot 10^{2}) \text{ J} = -4,9 \cdot 10^{3} \text{ J}$$

$$\Delta H_{d}^{\circ} = \frac{-4,9 \cdot 10^{3} \text{ J}}{4,5 \text{ g} \text{ KOH}} \frac{1 \text{ kJ}}{10^{3} \text{ J}} \frac{56 \text{ g} \text{ KOH}}{1 \text{ mol KOH}} = -61 \text{ kJ/mol KOH}$$

A maior parte das respostas pode calcularse coa folla de cálculo Quimica (gal)

Cando estea no índice, manteña pulsada a tecla «◆» (maiúsculas) mentres fai clic na cela:

Calorimetría

do capítulo:

Termoquímica Calorim Calorimetría

Escriba as fórmulas químicas nas celas brancas con bordo verde, os datos nas celas brancas con bordo azul, e prema nas celas de cor salmón para elixir entre as opcións que se presentan.

DATOS						
	Soluto		КОН			
КОН	Masa	<i>m</i> =	4,5	g		
H_2O	Volume	V =	450	cm ³		
Equivalente en auga			15	g		
Incremento de temperatura			2,5	${\mathbb C}$		
Disolución	Densidade	ρ =		g/cm³		
	Calor específica	$c_e =$	4,18	$J \cdot g^{-1} \cdot {}^{\circ}C^{-1}$		

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López.

Procurouse seguir as <u>recomendacións</u> do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 12/03/24

Sumario

TERMOQUÍMICA	1
Lei de Hess	1
Enerxías de enlace	
Calorimetría	