Список задач для зачета и экзамена по математическому анализу.

I курс. Базовый поток.

І. Операции над множествами. Метод математической индукции. Бином Ньютона.

- **1.** Даны множества $A = \{-1, 2, 3\}$ и $B = \{1, 2, 3\}$. Найти множества $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$,
- **2.** Пользуясь методом математической индукции, доказать неравенство $3^n > 1 + 2n$ при $n \ge 2$.
- **3.** Вычислить $\frac{101!}{99!}$.
- **4.** Упростить выражение $\frac{(n+1)!}{(n-1)!}$
- **5.** Сократить дробь $\frac{n!}{k!}$, k < n.
- **6.** Упростить выражение: $\frac{C_{n-2}^1}{C^3}$.
- 7. Найти коэффициент при x^{-3} в выражении: $\left(x^2 \frac{1}{x}\right)^{12}$.

II. Комплексные числа.

- **1.** Вычислить $\frac{2-i}{3+2i}$
- **2.** Вычислить в алгебраической форме $\sqrt{3-4i}$.
- **3.** Представить комплексные числа $z_1=-1+i, z_2=-1-i\sqrt{3}, z_3=1-2i$ в тригонометрической форме так, чтобы значение аргумента лежало в интервале $(-\pi, \pi]$.
- **4.** Вычислить $\left(\frac{-1-i\sqrt{3}}{-1+i}\right)^{12}$.
- **5.** Вычислить $\sqrt[4]{-1 i\sqrt{3}}$.
- **6.** Разложить на множители подином $x^4 + 1$.
- **7.** Вычислить $\sin i$.
- **8.** Вычислить $Ln(1 i\sqrt{3})$

III. Пределы.

- 1. Выписать первые 4 члена последовательности, если ее общий член задан следующей формулой: $x_n = \frac{1}{n}$.
- 2. Выписать первые 4 члена последовательности, если ее общий член задан следующей формулой: $y_n = \sum_{k=1}^n (-2)^k$.
- 3. Выписать первые 4 члена последовательности, если ее общий член задан следующей формулой: $z_n = 3$.
- **4.** Сформулировать определение понятия "предел последовательности a_n равен плюс бесконечности" ($\lim a_n = +\infty$).
- **5.** Сформулировать определение понятия "предел последовательности a_n равен минус бесконечности" ($\lim a_n = -\infty$).
- **6.** Вычислить $\lim \left(\sqrt{n+1} \sqrt{n}\right)$.
- 7. Доказать, что последовательность $\{a_n\}_{n\in\mathbb{N}}$, общий член которой задан формулой $a_n=$ $(1-\frac{1}{2})(1-\frac{1}{2^2})\dots(1-\frac{1}{2^n})$, сходится.
- 8. Сформулировать определение предела $\lim_{x\to a-0} f(x) = -\infty$.
- 9. Сформулировать определение предела $\lim_{x\to-\infty} f(x) = \infty$.
- **10.** Сформулировать определение предела $\lim_{x\to\infty} f(x) = 0$.
- **11.** Вычислить предел $\lim_{x\to 0} \frac{x^2+3x-4}{x^2-2x+1}$.
- **12.** Вычислить предел $\lim_{x\to 1} \frac{x^2+3x-4}{x^2-2x+1}$

- 13. Вычислить предел $\lim_{x\to\infty} \frac{3x^2+3x-4}{x^2-2x+1}$.
 14. Вычислить предел $\lim_{x\to0} \frac{\sin 5x}{x}$.
 15. Вычислить предел $\lim_{x\to\infty} \left(\frac{x+3}{x+1}\right)^{x+2}$.
- **16.** Вычислить предел $\lim_{x\to 1} \frac{\ln x}{x-1}$.
- **17.** Исследовать функцию $f(x) = \frac{1}{x}$ на непрерывность.
- 18. Исследовать функцию $f(x) = \arctan \frac{1}{x}$ на непрерывность.

- **19.** Какие из следующих утверждений являются верными: 1) $x^2 = O(x)$ при $x \to 0$, 2) x = 0 $O(x^2)$ при $x \to 0$. Почему?
- **20.** Какие из следующих утверждений являются верными: 1) $x^2 = O(x)$ при $x \to \infty$, 2) $x = O(x^2)$ при $x \to \infty$? Почему?
- **21.** Какие из следующих утверждений являются верными: 1) $x^2 = o(x)$ при $x \to 0, 2$) $x = o(x^2)$ при $x \to 0$. Почему?
- **22.** Какие из следующих утверждений являются верными: 1) $x^2 = o(x)$ при $x \to \infty$, 2) $x = o(x^2)$ при $x \to \infty$. Почему?
- **23.** При каком значении параметра α верно, что $\sqrt{x^3-1}+x=O^*(x^\alpha)$ при $x\to +\infty$?
- **24.** При каком значении параметра α верно, что $\sin x \sqrt{x} = O^*(x^{\alpha})$ при $x \to 0$?

IV. Производная.

- **1.** Вычислить производную функции $f(x) = \sqrt{x^2 4}$.
- **2.** Вычислить производную функции $f(x) = \sqrt[3]{x} \operatorname{arctg} x$.
- **3.** Вычислить производную функции $f(x) = \sin^2 x + \sin x^2$.
- **4.** Вычислить производную функции $f(x) = \frac{\sin x}{\sqrt{x}}$.
- **5.** Вычислить производную функции $\frac{dy}{dx}$, заданной параметрически: $y=\sin t,\ x=\cos t.$ **6.** Вычислить производную функции $\frac{dy}{dx}$, заданной неявно: $x^2+y^2=4.$
- 7. Вычислить производную десятого порядка функции $f(x) = x^2 \sin x$.
- 8. Написать уравнение касательной к кубической параболе $y=x^3$ в точке с абсциссой $x_0=2$.
- 9. Найти угол между кривыми $y=x^3$ и $y=\frac{1}{x^2}$. 10. Найти экстремумы функции $f(x)=x^3-3x+2$ и указать промежутки возрастания и убывания.
- 11. Для функции $f(x) = 2x^3 3x^2 2$ найти промежутки выпуклости и точки перегиба.
- **12.** Найти асимптоты графика функции $f(x) = \frac{3-x^2}{x+2}$. **13.** Найти асимптоты графика функции $f(x) = \frac{x+2}{x+2}$.
- **14.** Найти асимптоты графика функции $f(x) = x \operatorname{arctg} x$.
- **15.** Разложить функцию $f(x) = \arcsin x$ по формуле Тейлора в окрестности точки $x_0 = \frac{1}{2}$ до члена порядка $(x-1/2)^2$.
- **16.** Используя формулу Тейлора, вычислить $\lim_{x\to 0} \frac{e^x-1-x}{1-\cos x}$.

V. Неопределенный интеграл.

- **1.** Вычислить интеграл $\int \frac{dx}{2x-3}$.
- **2.** Вычислить интеграл $\int xe^{-3x}dx$.
- **3.** Вычислить интеграл $\int \ln x dx$.
- **4.** Вычислить интеграл $\int \frac{dx}{x+2}$.
- **5.** Вычислить интеграл $\int xe^{-x^2}dx$.
- **6.** Вычислить интеграл $\int \frac{x^2 dx}{\sqrt{1-x^6}}$ **7.** Вычислить интеграл $\int \frac{e^x dx}{e^x-1}$.
- 8. Вычислить интеграл $\int \frac{dx}{x \ln^2 x}$