Sviluppi Teorici e Applicativi delle Metriche Entropiche di Rohlin

Dawid Crivelli

26 Aprile 2012

Distanze Entropiche

Sommario

1 Distanze Entropiche

Proteine dell'influenza H3N2

- proteine come stringhe
- approccio black box
- sequenze lunghe 566
- alfabeto di 24 lettere
- solo 10% mutazioni
- antigenic drift

Sequenze a confronto:

PGNDNSMATLCLGHHAVPNGTLVKTITNDQIEVTNATELVQSSSTGRICDSPHQILDGENCTLIDALLGDPHCDGFQ
PGNDNSTATLCLGHHAVPNGTLVKTITNDQIEVTNATELVQSSSTDRICDSPHQILDGENCTLIDALLGDPHCDGFQ
PGNDNSTATLCLGHHAVPNGTIVKTITNDQIEVTNATELVQSSSTGGICDSPHQILDGENCTLIDALLGDPQCDGFQ
PGNDNSTATLCLGHHAVPNGTIVKTITNDQIEVTNATELVQSSSTGGICDSPHQILDGENCTLIDALLGDPQCDGFQ
PGNDNSTATLCLGHHAVPNGTLVKTITNDQIEVTNATELVQSSSTDRICDSPHQILDGGNCTLIDALLGDPHCDGFQ
PGNDNSTATLCLGHHAVPNGTLVKTITNDQIEVTNATELVQSSSTGGICDSPHQILDGENCTLIDALLGDPQCDGFQ
PGNDNSTATLCLGHHAVPNGTLVKTITNDQIEVTNATELVQSSSTGRICDSPHQILDGENCTLIDALLGDPHCDGFQ

Hamming è poco adatto

```
\label{eq:a=ghhavpngtlvktittgricgdphcdgfqnkew} $$B=\{GHHAVPNGTIVKTITTGEICGDPQCDGFQNKKW\}$
```

$$d_H(A, B) = \# differenze$$

Hamming è poco <u>adatto</u>

```
 \begin{array}{ll} \texttt{A=\{GHHAVPNGTLVKTITTGRICGDPHCDGFQNKEW}\} & \quad d_H(A,B) = \# \text{differenze} \\ \texttt{B=\{GHHAVPNGTIVKTITTGEICGDPQCDGFQNKKW}\} & \quad d_H(A,B) = 4 \end{array}
```

Hamming è poco adatto

A={GHHAVPNGTLVKTITTGRICGDPHCDGFQNKEW} B={GHHAVPNGTIVKTITTGEICGDPQCDGFQNKKW}

Antigenic drift

 $d_H \propto t$

Distanza di Rohlin

Distanza non tra configurazioni, ma tra partizioni

Requisiti:

- uno spazio di probabilità: $(\mathbf{M}, \sigma, \mu)$
- un criterio per partizionare (relazione di equivalenza)
- usiamo **M** discreto, μ è banale

Applicabile a molte strutture diverse:

```
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
DALLGDPQCDGFQNKKWD
```


Complessità di una partizione

Partizione \iff scomposizione in **atomi** disgiunti di *misura* $\mu(A_k)$

Rappresentazione associando ad ogni sito un'etichetta (atomo):

$$\mathrm{A} = \{\underbrace{(1,2,3,4)}_{A_1},\underbrace{(5,6)}_{A_2},\underbrace{(7,8,9)}_{A_3},\underbrace{(10,11,12,13)}_{A_4}\}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 4 & 4 & 4 \end{bmatrix}$$

Entropia di Shannon: misura della complessità di una partizione

$$H(A) = \sum_{k}^{n} \mu(A_k) \log (\mu(A_k))$$

 $H=log(n) \text{ (max)} \Leftrightarrow partizione con n atomi equivalenti$ $<math>H=0 \text{ (min)} \Leftrightarrow partizione banale } \nu$

Partizionamento

un partizione è una relazione di equivalenza, $i \sim j \Longleftrightarrow i, j \in A_k$

relazione locale(tra vicini) => partizione globale => colorazione di grafi, algoritmo Hoshen-Kopelman $\mathcal{O}(N \log(N))$

Partizionamento

un partizione è una relazione di equivalenza, $i \sim j \Longleftrightarrow i, j \in A_k$

relazione locale(tra vicini) => partizione globale => colorazione di grafi, algoritmo Hoshen-Kopelman $\mathcal{O}(N\log(N))$

Prodotti tra partizioni

Partizione prodotto $\gamma = \alpha \vee \beta$

- proprietà associativa
- ullet elemento neutro u
- ogni partizione è scrivibile come prodotto
- idempotente

$$\alpha \vee \alpha = \alpha$$

 l'entropia del prodotto è sempre maggiore

$$H(\alpha \vee \beta) > H(\alpha), \ \forall \beta$$

1	1	3	1		1	1	1	1	
2	1	3	1	\ _V	2	2	3	1	_
2	1	1	1	•	2	З	3	3	
2	2	2	1		2	2	3	1	

(1,1)	(1,1)	(3,1)	(1,1)
(2,2)	(1,2)	(3,3)	(1,1)
(2,2)	(1,3)	(1,3)	(1,3)
(2,2)	(2,2)	(2,3)	(1,1)

Distanza di Rohlin

Distanza tra partizioni, tramite l'entropia del prodotto:

$$d_R(\alpha, \beta) = 2 H(\alpha \vee \beta) - H(\alpha) - H(\beta)$$

Partizioni simili hanno piccola distanza:

Cosa fare per partizioni molto diverse e frammentate?

Intersezione tra partizioni

Definiamo $\sigma = \alpha \wedge \beta$, la partizione **comune**

Distanze Entropiche

Riduzione e amplificazione della distanza

Distanze Entropiche

Definizione topologica della distanza