Practice Exam 3 Solutions

- 1. (a) Give an example of a 2×2 matrix which is NOT positive definite. Justify your answer.
 - (b) Find the 3×3 symmetric matrix A associated with quadratic form defined by

$$\langle A\mathbf{x}, \mathbf{x} \rangle = 3x_1^2 + 2x_1x_2 - x_3^2.$$

Solution: The matrix A is

$$A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $\frac{\partial f}{\partial x_n}(\mathbf{x}) = c$ for all $\mathbf{x} \in \mathbb{R}^n$ and for some constant $c \in \mathbb{R}$. Show that we will not be able to find any extreme points using the second derivative test.

Solution: If $\frac{\partial f}{\partial x_n}(\mathbf{x}) = c$ then the last row of the Hessian matrix is zero since this will be $\nabla(\frac{\partial f}{\partial x_n})$. It is then impossible for $\nabla^2 f$ to be positive definite since, for example, we will always have

$$\langle \nabla^2 f(\mathbf{x}) \mathbf{e}_n, \mathbf{e}_n \rangle = 0.$$

Note also that we would need c = 0 for the second derivative test to work to find extreme points.

- 3. Determine whether the following functions $F: \mathbb{R}^3 \to \mathbb{R}^3$ are linear. When they are linear, find their corresponding matrix.
 - (a) $F(x_1, x_2, x_3) = (x_1, x_1 x_2, x_2 + x_3),$
 - (b) $F(x_1, x_2, x_3) = (x_1, x_2, x_2x_3),$
 - (c) $F(x_1, x_2, x_3) = (x_1, 0, 0),$
 - (d) $F(x_1, x_2, x_3) = (1, 0, 0),$
 - (e) $F(x_1, x_2, x_3) = (3x_1 + 2x_2, x_3, |x_2|),$
 - (f) $F(x_1, x_2, x_3) = (x_1 x_2, x_1 + x_2, x_3)$

Solutions:

(a) F is linear, the corresponding matrix is:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

- (b) F is not linear because of the third component x_2x_3 .
- (c) F is linear, the corresponding matrix is:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

- (d) F is not linear because of the 1st component 1.
- (e) F is not linear because of the 3rd component $|x_2|$.
- (f) F is linear, the corresponding matrix is:

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

1

4. Define $F(x,y) = (e^{xy} + 2x, y^2 + \sin(x-y))$ for $(x,y) \in \mathbb{R}^2$. Find the derivative matrix of the mapping $F: \mathbb{R}^2 \to \mathbb{R}^2$ at the points (0,0) and $(\pi,0)$.

Solutions: We calculate the gradients for the component functions,

$$\nabla F_1(x,y) = (ye^{xy} + 2, xe^{xy}),$$

$$\nabla F_2(x,y) = (\cos(x-y), 2y - \cos(x-y)).$$

It follows that

$$DF(0,0) = \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix}$$

and

$$DF(\pi,0) = \begin{bmatrix} 2 & \pi \\ -1 & 1 \end{bmatrix}.$$

5. Suppose that $F: \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable and that the derivative matrix $DF(\mathbf{x})$ has all entries equal to 0 for all $\mathbf{x} \in \mathbb{R}^2$. Prove that $F: \mathbb{R}^2 \to \mathbb{R}^2$ is constant, i.e. there is some $\mathbf{c} \in \mathbb{R}^2$ such that $F(\mathbf{x}) = \mathbf{c}$.

Solutions: We start by proving that if $f: \mathbb{R}^2 \to \mathbb{R}$ is a continuously differentiable function and $\nabla f(x,y) = (0,0)$ for all $(x,y) \in \mathbb{R}^2$, then f(x,y) = c for some $c \in \mathbb{R}$.

Since $\frac{\partial f}{\partial x}(x,y) = 0$, then we can integrate with respect to x to get that f(x,y) = g(y). That is, f is constant with respect to x. We can also integrate $\frac{\partial f}{\partial y}(x,y) = 0$ to get that f(x,y) = h(x), i.e. f is constant with respect to y. It follows then that f(x,y) must be constant, or f(x,y) = c.

Since $DF(\mathbf{x})$ is the zero matrix, that means each of the component functions F_i of F has the property that $\nabla F_i(x,y) = (0,0,\ldots,0)$. From above, this means that $F_i(x,y) = c_i$ for some $c \in \mathbb{R}$. It follows that $F(x,y) = (c_1,c_2)$.