5. Operadores ortogonales

A lo largo de esta sección, E y F denotarán e.p.i.'s reales de dimensión finita (salvo se diga lo contrario), $\mathcal{L}(E,F):=\{A:E\to F\;;\; A\text{ es lineal}\}$ y $\mathrm{End}(E):=\mathcal{L}(E,E)$. Los operadores ortogonales sobre E son los automorfismos de E; es decir, son las simetrías de esta estructura. Desde una perspectiva más concreta, los operadores ortogonales son aquellos para los cuales se pueden obtener las matrices más simples, después de los autoadjuntos.

Definición 5.1. Una matriz $\mathbf{a} \in \mathcal{M}(m \times n)$ cuyas n columnas forman un conjunto ortonormal de \mathbb{R}^m se llama **ortogonal**.

Propiedad 5.2. Sean $\mathbf{a} \in \mathcal{M}(m \times n)$ y $\mathbf{b} \in \mathcal{M}(n \times p)$.

- (I) \mathbf{a} es ortogonal sii $\mathbf{a}^{\mathsf{T}}\mathbf{a} = \mathbf{I}$.
- (II) Las filas de **a** forman un conjunto ortonormal de \mathbb{R}^n sii $\mathbf{a}\mathbf{a}^{\top} = \mathbf{I}$.
- (III) ab es ortogonal si a y b lo son.

Demostración. Ejercicio.

Propiedad 5.3. Sea $\mathbf{a} \in \mathcal{M}(n \times n)$.

- (I) \mathbf{a} es ortogonal sii $\mathbf{a}^{-1} = \mathbf{a}^{\top}$.
- (II) **a** es ortogonal sii las filas de **a** forman un conjunto ortonormal.

Demostración. Ejercicio.

Ejemplo $5.4.\dots$

Ejemplo 5.5 (Matrices ortogonales de orden 2). ...

Ejemplo 5.6 (Matriz de paso ortogonal). ...

Propiedad 5.7. Sea $A \in \mathcal{L}(E, F)$. Las siguientes proposiciones son equivalentes:

- (I) $\forall v \in E : |Av| = |v|$.
- (II) $\forall u, v \in E : |Au Av| = |u v|$.
- (III) $\forall u, v \in E : \langle Au, Av \rangle = \langle u, v \rangle.$
- (IV) $A^*A = I$.
- (v) La matriz de A respecto a cualquier par de bases ortonormales de E y F es una matriz ortogonal.

- (VI) La matriz de A respecto a un cierto par de bases ortonormales de E y F es una matriz ortogonal.
- (VII) A transfoma cierta base ortonormal de E en un conjunto ortonormal de F.
- (VIII) A transfoma toda base ortonormal de E en un conjunto ortonormal de F.

Demostración. Ejercicio.

Definición 5.8. Decimos que una transformación lineal $A \in \mathcal{L}(E, F)$ es **ortogonal** cuando cumple una de las proposiciones de la propiedad 5.7.

Propiedad 5.9. Sea $A \in \text{End}(E)$, sea F subespacio de E y sean $u, v \in \mathcal{E}$.

- (I) A es ortogonal sii $A^{-1} = A^*$.
- (II) A es ortogonal sii $AA^* = I$.
- (III) $\sigma(A) \subset \{-1, 1\}.$
- (IV) $Au = u, Av = -v \implies \langle u, v \rangle = 0.$
- (v) A es ortogonal, F es invariante por $A \Rightarrow F^{\perp}$ es invariante por A.
- (VI) A es invertible, F es invariante por $A \Rightarrow F$ es invariante por A^{-1} .

Demostración. Ejercicio.

Propiedad 5.10. Sea $A \in \text{End}(E)$. Dos de las proposiciones de abajo implican la tercera.

- (I) A es una involución.
- (II) A es autoadjunto.
- (III) $A^{-1} = A^*$.

Demostración. Ejercicio.

Ejemplo 5.11. ... \Box

Observación 5.12. Sea $A \in \text{End}(E)$ ortogonal con $\dim(E) = 2$. Tenemos cuatro casos:

- (I) $\sigma(A) = \{1\}.$
- (II) $\sigma(A) = \{-1\}.$
- (III) $\sigma(A) = \{-1, 1\}.$

(IV)
$$\sigma(A) = \{ \}.$$

Teorema 5.13. Sea $A \in \text{End}(E)$ ortogonal. Existe una base ortonormal de E respecto a la cual la matriz de A tiene la forma:

$$\begin{bmatrix} 1 & & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & \\ & & -1 & & & & \\ & & & \cos(\alpha_1) & -\sin(\alpha_1) & & \\ & & & \sin(\alpha_1) & \cos(\alpha_1) & & \\ & & & & \ddots & & \\ & & & & \cos(\alpha_k) & -\sin(\alpha_k) \\ & & & & \sin(\alpha_k) & \cos(\alpha_k) \end{bmatrix}$$

donde los términos no aludidos son iguales a cero.

Demostración. Ejercicio.

Observación 5.14. ... \Box

Corolario 5.15. Si E tiene dimensión impar, todo endomorfismo ortogonal posee un autovector con autovalor asociado -1 o 1.

Ejemplo 5.16 (Operadores ortogonales sobre \mathbb{R}^3). ...

Teorema 5.17. Todo $A \in \text{End}(E)$ puede ser expresado como

$$A = PU \tag{1}$$

donde $P, U \in \text{End}(E)$, U es ortogonal y $P \geq 0$.

Demostración. Ejercicio.

Definición 5.18. La expresión de la ecuación (1) se llama una **descomposición** polar del endomorfismo A.

Observación 5.19. Si un endomorfismo es invertible, su descomposición polar es única. \Box