If $K = \{0, 1\}$, since the only nonzero scalar is 1, it is immediate that $g(y) = \overrightarrow{f}(y)$, and we are done. Otherwise, for $\nu \neq 0, 1$, we get $\lambda(y) = \mu$ for all $y \in \overrightarrow{G}$. Then equation

$$\lambda(y)w + \lambda(y)\overrightarrow{f}(y) = \mu w + g(y)$$

yields $g = \mu \overrightarrow{f}$ on G, and since g vanishes on $\operatorname{Ker} \overrightarrow{f}$ we get $g = \mu \overrightarrow{f}$ on \overrightarrow{E} and the restriction of $\widetilde{f} = \mathbf{P}(g)$ to $\mathbf{P}(\overrightarrow{E})$ is equal to $\mathbf{P}(\overrightarrow{f})$. But now, by Proposition 25.6 and since \widehat{F}_H is isomorphic to F, the linear map \widehat{f} is completely determined by

$$\widehat{f}(u + \lambda a) = \lambda f(a) + \overrightarrow{f}(u) = \lambda w + \overrightarrow{f}(u),$$

and g is completely determined by

$$g(u + \lambda a) = \lambda g(a) + g(u) = \lambda \mu w + \mu \overrightarrow{f}(u).$$

Thus, we have $g = \mu \hat{f}$.

Otherwise, if $\dim(\overrightarrow{G}) \geq 2$, then for any two distinct basis vectors u and v in B,

$$\lambda(u)w + \lambda(u)\overrightarrow{f}(u) = \mu w + g(u),$$

$$\lambda(v)w + \lambda(v)\overrightarrow{f}(v) = \mu w + g(v),$$

and

$$\lambda(u+v)w + \lambda(u+v)\overrightarrow{f}(u+v) = \mu w + g(u+v),$$

and by linearity, we get

$$(\lambda(u+v)-\lambda(u)-\lambda(v)+\mu)w+(\lambda(u+v)-\lambda(u))\overrightarrow{f}(u)+(\lambda(u+v)-\lambda(v))\overrightarrow{f}(v)=0.$$

Since $F = Kw \oplus H$, $\overrightarrow{f} : \overrightarrow{E} \to H$, and $\overrightarrow{f}(u)$ and $\overrightarrow{f}(v)$ are linearly independent (because \overrightarrow{f} in injective on \overrightarrow{G}), we must have

$$\lambda(u+v) = \lambda(u) = \lambda(v) = \mu,$$

which implies that $g = \mu \overrightarrow{f}$ on \overrightarrow{E} , and the restriction of $\widetilde{f} = \mathbf{P}(g)$ to $\mathbf{P}(\overrightarrow{E})$ is equal to $\mathbf{P}(\overrightarrow{f})$. As in the previous case, g is completely determined by

$$g(u + \lambda a) = \lambda g(a) + g(u) = \lambda \mu w + \mu \overrightarrow{f}(u).$$

Again, we have $g = \mu \widehat{f}$, and thus \widetilde{f} is unique.