Figure 4.4 Representation of a linear regression model as a neural network having a single layer of connections. Each basis function is represented by a node, with the solid node representing the 'bias' basis function  $\phi_0$ . Likewise each output  $y_1, \ldots, y_K$  is represented by a node. The links between the nodes represent the corresponding weight and bias parameters.



## 4.1.7 Multiple outputs

So far, we have considered situations with a single target variable t. In some applications, we may wish to predict K>1 target variables, which we denote collectively by the target vector  $\mathbf{t}=(t_1,\ldots,t_K)^{\mathrm{T}}$ . This could be done by introducing a different set of basis functions for each component of  $\mathbf{t}$ , leading to multiple, independent regression problems. However, a more common approach is to use the same set of basis functions to model all of the components the target vector so that

$$\mathbf{y}(\mathbf{x}, \mathbf{w}) = \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}) \tag{4.28}$$

where  $\mathbf{y}$  is a K-dimensional column vector,  $\mathbf{W}$  is an  $M \times K$  matrix of parameters, and  $\phi(\mathbf{x})$  is an M-dimensional column vector with elements  $\phi_j(\mathbf{x})$  with  $\phi_0(\mathbf{x}) = 1$  as before. Again, this can be represented as a neural network having a single layer of parameters, as shown in Figure 4.4.

Suppose we take the conditional distribution of the target vector to be an isotropic Gaussian of the form

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \sigma^2 \mathbf{I}). \tag{4.29}$$

If we have a set of observations  $\mathbf{t}_1, \dots, \mathbf{t}_N$ , we can combine these into a matrix  $\mathbf{T}$  of size  $N \times K$  such that the nth row is given by  $\mathbf{t}_n^T$ . Similarly, we can combine the input vectors  $\mathbf{x}_1, \dots, \mathbf{x}_N$  into a matrix  $\mathbf{X}$ . The log likelihood function is then given by

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \sigma^2) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_n | \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \sigma^2 \mathbf{I})$$

$$= -\frac{NK}{2} \ln (2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{n=1}^{N} \|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\|^2. \quad (4.30)$$

As before, we can maximize this function with respect to W, giving

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T} \tag{4.31}$$

where we have combined the input feature vectors  $\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_N)$  into a matrix  $\Phi$ . If we examine this result for each target variable  $t_k$ , we have

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k \tag{4.32}$$