1. Задание 1

Рассматривается опцион Look-Back call с функцией выплат $\zeta = (X_T - \wedge_{t=0}^T X_t)_+ = (X_T - M_T)_+,$ где $M_t = \wedge_{s=0}^t X_s$. Рассмотрим процесс (X_t, M_t) . Можно ограничиться рассмотрением функций цены, зависящих только от (X_t, M_t) : $V_t^*() = v_t(X_t, M_t)$.

Будем рассматривать мультипликативную модель динамики цены рискового актива:

$$X_{t+1} = X_t \xi_t, \quad \xi_t \in [a, b], \quad t = 0 \dots T.$$

Тогда $\Delta X_t = X_t - X_{t-1} = X_{t-1}(\xi_{t-1} - 1) \in [A, B]$. $\mathbb{E}\xi_t = 1$. Предполагаем отсутствие арбитражной возможности, что равносильно $0 \in [A, b] \Leftrightarrow a < 1 < b$.

Уравнение Беллмана будет иметь вид

$$V_{t-1}^* = \max_{\sigma(Q) \in [a,b], \int uQ(du) = 1} \int V_t^*(\underline{X_{t-1}}, X_{t-1}u)Q(dx)$$

Подынтегральная функция выпукла, следовательно, мера, на которой достигается максимум, сосредоточена в двух точках: $Q = \pi_t \delta_a + (1 - \pi_t) \delta_b$.

Из свойства мартингальности меры Q получим: $1=\mathbb{E}uQ(du)=a\pi_t+b(1-\pi_t)=1,$ откуда $\pi=\frac{b-1}{b-a}$ — постоянно.

Выпишем рекуррентное уравнение для функции Беллмана

$$v_{t-1}(X_{t-1}, M_{t-1}) = \pi v_t(aX_{t-1}, M_{t-1} \wedge aX_{t-1}) + (1 - \pi)v_t(bX_{t-1}, M_{t-1} \wedge bX_{t-1}).$$

Отсюда, используя то, что для рассматриваемого опциона $V_T = X_T - M_T$, можно получить цену опциона V_0^* .

Для некоторых значений параметров была представлена графически зависимость $V_0^*(a,b).$

Рис. 1. Зависимость $V_0(a,b)$, T=15, $X_0=0.5$.

Оптимальную стратегию хеджирования можно вычислять на каждом шаге как $H_t^* = \frac{\Delta V_t^*}{\Delta X_t}$, где ΔX_t — любая стратегия. Из уравнения Беллмана:

$$H_t^* = \frac{v_t(aX_{t-1}, M_{t-1} \wedge aX_{t-1}) - v_t(bX_{t-1}, M_{t-1} \wedge bX_{t-1})}{b - a}.$$

Рис. 2. Моделирование V_t , T = 15, $X_0 = 0.5$, a = 0.92, b = 1.1.

Рис. 3. Соответствующие H_t^* , T=15, $X_0=0.5$, a=0.92, b=1.1.

В таблице приведены некоторые результаты сравнения стоимости портфеля в конечный момент и функции выплат.

V_T	0.0374	0.0369	0.0356	0.0471	0.0432
ζ	0.0293	0.0188	0.0118	0.0273	0

2. Задание 3

Рассматривается опцион call азиатского типа с функцией выплат $\zeta = (X_T - M_T)_+,$ где $M_t = \frac{1}{t+1} \sum_{s=0}^t X_s$ — среднее значение цены актива за период.

Аналогично рассматриваем мультипликативную модель, выпишем уравнение Беллмана. $V_{t-1}^* = \max_{\sigma(Q) \in [a,b], \int uQ(du) = 1} \int V_t^*(\underline{X_{t-1}}, X_{t-1}u)Q(dx)$

Подынтегральная функция линейна по ξ и, следовательно, выпукла. Действительно, $\zeta = X_T - M_T = X_{T-1}\xi_{t-1} - \frac{T}{T+1}M_{T-1} - \frac{1}{T+1}X_{T-1}\xi_{T-1}$. Далее можно показать по индукции. Значит, максимум будет также достигаться на стратегии, сосредоточенной в двух точках: $Q = \pi_t \delta_a + (1-\pi_t)\delta_b$.

Таким образом, можно выписать рекуррентное уравнение Беллмана. Удобно вместо переменной M_t рассматривать просто сумму $S_t = \sum_{s=0}^t X_s$. Очевидно, $M_t = \frac{1}{t+1} S_t$.

$$v_{t-1}(X_{t-1}, S_{t-1}) = \pi v_t(aX_{t-1}, S_{t-1} + aX_{t-1}) + (1 - \pi)v_t(bX_{t-1}, S_{t-1} + bX_{t-1}).$$

Отсюда, используя то, что для рассматриваемого опциона $V_T = X_T - M_T$, можно получить цену опциона V_0^* .

Для некоторых значений параметров была представлена графически зависимость $V_0^*(a,b).$

Рис. 4. Для азиатского опциона call зависимость $V_0(a,b),\,T=15,\,X_0=0.5.$

Оптимальную стратегию хеджирования можно вычислять на каждом шаге как $H_t^* = \frac{\Delta V_t^*}{\Delta X_t},$ где ΔX_t — любая стратегия. Из уравнения Беллмана:

$$H_t^* = \frac{v_t(aX_{t-1}, S_{t-1} + aX_{t-1}) - v_t(bX_{t-1}, S_{t-1} + bX_{t-1})}{b - a}.$$

Рис. 5. Моделирование V_t , T=15, $X_0=0.5$, a=0.92, b=1.1.

Рис. 6. Соответствующие $H_t^*,\, T=15,\, X_0=0.5,\, a=0.92,\, b=1.1.$

В таблице приведены некоторые результаты сравнения стоимости портфеля в конечный момент и функции выплат.

V_T	0.0454	0.0200	0.0254	0.0779	0.0156
ζ	0	0.0138	0.0193	0	0.0085