

# SÍLABO PLANEAMIENTO Y REDUCCIÓN DE RIESGOS DE DESASTRES

ÁREA CURRICULAR: TECNOLOGÍA DE LA CONSTRUCCIÓN

CICLO: IX / X Arquitectura SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 091075E1030

II. CRÉDITOS : 03

III. REQUISITO : 150 Créditos aprobados

IV. CONDICIÓN DEL CURSO : Electivo

#### V. SUMILLA

La asignatura tiene como propósitos incorporar en la planificación urbana la gestión del riesgo de desastres (mapas de peligro, vulnerabilidad y riesgo), desarrollando planes de uso del suelo ante la eventualidad de desastres asignando sectores con peligro bajo y medio para uso urbano; y, discutir acerca de la concepción estructural de edificaciones para hacerlas sismorresistentes.

Se desea formar capacidades en los alumnos para la comprensión de los fenómenos naturales, sus efectos en nuestras ciudades y su análisis e incorporación en la planificación urbana; y para la concepción estructural de edificaciones sismorresitentes.

La asignatura comprende las siguientes unidades de aprendizaje: I. Reducción de desastres desde la planificación urbana. II. Ingeniería sísmica.

#### **VI. FUENTES DE CONSULTA:**

# **Bibliográficas**

- Arnold, Christopher y R. Reitheman, (1987) Configuración y Diseño Sísmico de Edificios.
- Kuroiwa, Julio y Pando Edgardo. (2010). Alto a los Desastres!
- Kuroiwa, Julio. (2002). Reducción de Desastres, Viviendo en Armonía con la Naturaleza.
- Kuroiwa, Julio y Joel Salas. (2008). *Manual para el desarrollo de Ciudades Sostenibles,* enfocado en la seguridad física. Editor PNUD. www.pnud.org.pe: publicaciones
- Kuroiwa, J.; Torrealva, D. Ángel San Bartolomé y Carlos Zavala.(2008). Manual para el Desarrollo de viviendas sismorresistentes, considerando la influencia del emplazamiento: características del suelo, geología y topografía. Editor PNUD. www

#### VII. UNIDADES DE APRENDIZAJE

## UNIDAD I: REDUCCIÓN DE DESASTRES DESDE LA PLANIFICACIÓN URBANA

#### **OBJETIVO DE APRENDIZAJE:**

 Formar a los alumnos en los diversos aspectos teóricos y prácticos relacionados con la reducción, mitigación y prevención del riesgo de desastres. Que los alumnos apliquen mapas de peligros en un Plan de Uso de Suelos para la densificación y expansión de ciudades y centros poblados.

#### PRIMERA SEMANA:

Concepto de desarrollo sostenible. Conceptos de planificación y ordenamiento territorial.

#### **SEGUNDA SEMANA**

Conceptos de gestión del riesgo y su relación con la planificación territorial.

#### **TERCERA SEMANA**

Metodología de estudios de prevención de desastres.

#### **CUARTA SEMANA**

Análisis de vulnerabilidad. Estimación de escenarios de riesgo.

#### **QUINTA SEMANA**

Formulación de mapas de peligros considerando todos los fenómenos naturales que puedan afectar a las ciudades y sus zonas de expansión.

#### **SEXTA SEMANA**

Mapas de peligros temáticos. Criticas a trabajo práctico Nº 1.

#### **SÉPTIMA SEMANA**

Plan de usos de suelo ante desastres y medidas de mitigación.

#### **OCTAVA SEMANA**

Examen Parcial.

#### **UNIDAD II: INGENIERÍA SÍSMICA**

#### **OBJETIVO DE APRENDIZAJE:**

 Discutir acerca de la concepción estructural y predimensionamiento de los elementos resistentes de los tipos de edificaciones más comunes en nuestro medio: a) sistemas portantes de albañilería, y b) sistema de pórticos y placas de concreto armado.

#### **NOVENA SEMANA**

Peligros naturales de origen geológico: Sismos. Teoría de generación de sismos, escalas de las intensidades y magnitudes.

#### **DÉCIMA SEMANA**

Ingeniería sísmica. Vulnerabilidad de edificaciones. Riesgo sísmico.

#### **UNDÉCIMA SEMANA**

Casuística: terremotos de Ancash 1970, Pisco 2007, Sichuan 2008, Haití y Chile 2010

#### **DUODÉCIMA SEMANA**

Escenario sísmico regional posible gran terremoto con epicentro cerca de Lima

# **DECIMOTERCERA SEMANA**

Comportamiento sísmico de edificaciones de adobe, quincha, albañilería y concreto reforzado.

## **DECIMOCUARTA SEMANA**

Densidad de muros tanto en albañilería simple como en confinada.

# **DECIMOQUINTA SEMANA**

Defectos estructurales frecuentes en estructuras de concreto armado. Criticas a trabajo práctico Nº 2 (Densidad de muros). Reparación y reforzamiento de edificaciones dañadas por sismos.

#### **DECIMOSEXTA SEMANA**

Examen Final.

#### **DECIMOSÉPTIMA SEMANA**

Entrega de promedios finales y acta del curso.

#### VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Gestión de Riesgo de Desastres: 100%

#### IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

#### X. MEDIOS Y MATERIALES

**Equipos:** Ecran, proyector de multimedia, mesas de dibujo, computadora.

Materiales: Libros de consulta, información digital proporcionada por los profesores, papel mantequilla, lápices de color.

#### XI. EVALUACIÓN

La evaluación de los alumnos, inherente al proceso de enseñanza-aprendizaje, es integral, continua y permanente. Se tomará en cuenta, no sólo los conocimientos adquiridos sino también su capacidad creativa y propositiva. La calificación final se calculará de acuerdo a la siguiente fórmula:

# PF= (PE+EP+EF) / 3

Donde:

**PF** = Promedio final

**EP** = Examen parcial

**EF** = Examen final

PE = Promedio de evaluaciones

PE= (P1+P2+P3) / 3

P1= Práctica 1 o trabajo 1

P2= Práctica 2 o trabajo 2

P3= Práctica 3 o trabajo 3

#### XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Civil, se establece en la tabla siguiente:

| (a) | habilidad para aplicar conocimientos de matemática, ciencia e ingeniería                                                                 |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| (b) | habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos                                      |  |  |
| (c) | habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas                                        |  |  |
| (d) | habilidad para trabajar adecuadamente en un equipo multidisciplinario                                                                    |  |  |
| (e) | habilidad para identificar, formular y resolver problemas de ingeniería                                                                  |  |  |
| (f) | comprensión de lo que es la responsabilidad ética y profesional                                                                          |  |  |
| (g) | habilidad para comunicarse con efectividad                                                                                               |  |  |
| (h) | una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global |  |  |
| (i) | reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida                                  |  |  |

| (j) | conocimiento de los principales temas contemporáneos                                                     |   |
|-----|----------------------------------------------------------------------------------------------------------|---|
| (k) | habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería | K |

# XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

| Teoría | Práctica | Laboratorio |
|--------|----------|-------------|
| 3      | 0        | 0           |

b) Sesiones por semana: Una sesión.

c) **Duración**: 3 horas académicas

# XIV. DOCENTE DEL CURSO

Ing. José Meza Cuadra.

# XV. FECHA

La Molina, marzo de 2017.