Deep Computer Vision Using Convolutional Neural Networks

Although IBM's Deep Blue supercomputer beat the chess world champion Garry Kasparov back in 1996, it wasn't until fairly recently that computers were able to reliably perform seemingly trivial tasks such as detecting a puppy in a picture or recognizing spoken words. Why are these tasks so effortless to us humans? The answer lies in the fact that perception largely takes place outside the realm of our consciousness, within specialized visual, auditory, and other sensory modules in our brains. By the time sensory information reaches our consciousness, it is already adorned with high-level features; for example, when you look at a picture of a cute puppy, you cannot choose *not* to see the puppy, *not* to notice its cuteness. Nor can you explain *how* you recognize a cute puppy; it's just obvious to you. Thus, we cannot trust our subjective experience: perception is not trivial at all, and to understand it we must look at how our sensory modules work.

Convolutional neural networks (CNNs) emerged from the study of the brain's visual cortex, and they have been used in computer image recognition since the 1980s. Over the last 10 years, thanks to the increase in computational power, the amount of available training data, and the tricks presented in Chapter 11 for training deep nets, CNNs have managed to achieve superhuman performance on some complex visual tasks. They power image search services, self-driving cars, automatic video classification systems, and more. Moreover, CNNs are not restricted to visual perception: they are also successful at many other tasks, such as voice recognition and natural language processing. However, we will focus on visual applications for now.

In this chapter we will explore where CNNs came from, what their building blocks look like, and how to implement them using Keras. Then we will discuss some of the best CNN architectures, as well as other visual tasks, including object detection (classifying multiple objects in an image and placing bounding boxes around them) and semantic segmentation (classifying each pixel according to the class of the object it belongs to).

The Architecture of the Visual Cortex

David H. Hubel and Torsten Wiesel performed a series of experiments on cats in 1958¹ and 1959² (and a few years later on monkeys³), giving crucial insights into the structure of the visual cortex (the authors received the Nobel Prize in Physiology or Medicine in 1981 for their work). In particular, they showed that many neurons in the visual cortex have a small *local receptive field*, meaning they react only to visual stimuli located in a limited region of the visual field (see Figure 14-1, in which the local receptive fields of five neurons are represented by dashed circles). The receptive fields of different neurons may overlap, and together they tile the whole visual field.

Figure 14-1. Biological neurons in the visual cortex respond to specific patterns in small regions of the visual field called receptive fields; as the visual signal makes its way through consecutive brain modules, neurons respond to more complex patterns in larger receptive fields

¹ David H. Hubel, "Single Unit Activity in Striate Cortex of Unrestrained Cats", *The Journal of Physiology* 147 (1959): 226–238.

² David H. Hubel and Torsten N. Wiesel, "Receptive Fields of Single Neurons in the Cat's Striate Cortex", The Journal of Physiology 148 (1959): 574–591.

³ David H. Hubel and Torsten N. Wiesel, "Receptive Fields and Functional Architecture of Monkey Striate Cortex", *The Journal of Physiology* 195 (1968): 215–243.

Moreover, the authors showed that some neurons react only to images of horizontal lines, while others react only to lines with different orientations (two neurons may have the same receptive field but react to different line orientations). They also noticed that some neurons have larger receptive fields, and they react to more complex patterns that are combinations of the lower-level patterns. These observations led to the idea that the higher-level neurons are based on the outputs of neighboring lower-level neurons (in Figure 14-1, notice that each neuron is connected only to nearby neurons from the previous layer). This powerful architecture is able to detect all sorts of complex patterns in any area of the visual field.

These studies of the visual cortex inspired the neocognitron,⁴ introduced in 1980, which gradually evolved into what we now call convolutional neural networks. An important milestone was a 1998 paper⁵ by Yann LeCun et al. that introduced the famous *LeNet-5* architecture, which became widely used by banks to recognize handwritten digits on checks. This architecture has some building blocks that you already know, such as fully connected layers and sigmoid activation functions, but it also introduces two new building blocks: *convolutional layers* and *pooling layers*. Let's look at them now.

Why not simply use a deep neural network with fully connected layers for image recognition tasks? Unfortunately, although this works fine for small images (e.g., MNIST), it breaks down for larger images because of the huge number of parameters it requires. For example, a 100×100 –pixel image has 10,000 pixels, and if the first layer has just 1,000 neurons (which already severely restricts the amount of information transmitted to the next layer), this means a total of 10 million connections. And that's just the first layer. CNNs solve this problem using partially connected layers and weight sharing.

Convolutional Layers

The most important building block of a CNN is the *convolutional layer*.⁶ neurons in the first convolutional layer are not connected to every single pixel in the input image (like they were in the layers discussed in previous chapters), but only to pixels in their

⁴ Kunihiko Fukushima, "Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position", *Biological Cybernetics* 36 (1980): 193–202.

⁵ Yann LeCun et al., "Gradient-Based Learning Applied to Document Recognition", *Proceedings of the IEEE* 86, no. 11 (1998): 2278–2324.

⁶ A convolution is a mathematical operation that slides one function over another and measures the integral of their pointwise multiplication. It has deep connections with the Fourier transform and the Laplace transform and is heavily used in signal processing. Convolutional layers actually use cross-correlations, which are very similar to convolutions (see https://homl.info/76 for more details).

receptive fields (see Figure 14-2). In turn, each neuron in the second convolutional layer is connected only to neurons located within a small rectangle in the first layer. This architecture allows the network to concentrate on small low-level features in the first hidden layer, then assemble them into larger higher-level features in the next hidden layer, and so on. This hierarchical structure is common in real-world images, which is one of the reasons why CNNs work so well for image recognition.

Figure 14-2. CNN layers with rectangular local receptive fields

All the multilayer neural networks we've looked at so far had layers composed of a long line of neurons, and we had to flatten input images to 1D before feeding them to the neural network. In a CNN each layer is represented in 2D, which makes it easier to match neurons with their corresponding inputs.

A neuron located in row i, column j of a given layer is connected to the outputs of the neurons in the previous layer located in rows i to $i + f_h - 1$, columns j to $j + f_w - 1$, where f_h and f_w are the height and width of the receptive field (see Figure 14-3). In order for a layer to have the same height and width as the previous layer, it is common to add zeros around the inputs, as shown in the diagram. This is called *zero padding*.

It is also possible to connect a large input layer to a much smaller layer by spacing out the receptive fields, as shown in Figure 14-4. This dramatically reduces the model's computational complexity. The horizontal or vertical step size from one receptive field to the next is called the *stride*. In the diagram, a 5×7 input layer (plus zero padding) is connected to a 3×4 layer, using 3×3 receptive fields and a stride of 2 (in this example the stride is the same in both directions, but it does not have to be so). A neuron located in row i, column j in the upper layer is connected to the outputs of the

neurons in the previous layer located in rows $i \times s_h$ to $i \times s_h + f_h - 1$, columns $j \times s_w$ to $j \times s_w + f_w - 1$, where s_h and s_w are the vertical and horizontal strides.

Figure 14-3. Connections between layers and zero padding

Figure 14-4. Reducing dimensionality using a stride of 2

Filters

A neuron's weights can be represented as a small image the size of the receptive field. For example, Figure 14-5 shows two possible sets of weights, called *filters* (or *convolution kernels*, or just *kernels*). The first one is represented as a black square with a vertical white line in the middle (it's a 7×7 matrix full of 0s except for the central column, which is full of 1s); neurons using these weights will ignore everything in their receptive field except for the central vertical line (since all inputs will be multiplied by 0, except for the ones in the central vertical line). The second filter is a black square with a horizontal white line in the middle. Neurons using these weights will ignore everything in their receptive field except for the central horizontal line.

Figure 14-5. Applying two different filters to get two feature maps

Now if all neurons in a layer use the same vertical line filter (and the same bias term), and you feed the network the input image shown in Figure 14-5 (the bottom image), the layer will output the top-left image. Notice that the vertical white lines get enhanced while the rest gets blurred. Similarly, the upper-right image is what you get if all neurons use the same horizontal line filter; notice that the horizontal white lines get enhanced while the rest is blurred out. Thus, a layer full of neurons using the same filter outputs a *feature map*, which highlights the areas in an image that activate the filter the most. But don't worry, you won't have to define the filters manually: instead, during training the convolutional layer will automatically learn the most useful filters for its task, and the layers above will learn to combine them into more complex patterns.

Stacking Multiple Feature Maps

Up to now, for simplicity, I have represented the output of each convolutional layer as a 2D layer, but in reality a convolutional layer has multiple filters (you decide how many) and outputs one feature map per filter, so it is more accurately represented in 3D (see Figure 14-6). It has one neuron per pixel in each feature map, and all neurons within a given feature map share the same parameters (i.e., the same kernel and bias term). Neurons in different feature maps use different parameters. A neuron's receptive field is the same as described earlier, but it extends across all the feature maps of the previous layer. In short, a convolutional layer simultaneously applies multiple trainable filters to its inputs, making it capable of detecting multiple features anywhere in its inputs.

Figure 14-6. Two convolutional layers with multiple filters each (kernels), processing a color image with three color channels; each convolutional layer outputs one feature map per filter

The fact that all neurons in a feature map share the same parameters dramatically reduces the number of parameters in the model. Once the CNN has learned to recognize a pattern in one location, it can recognize it in any other location. In contrast, once a fully connected neural network has learned to recognize a pattern in one location, it can only recognize it in that particular location.

Input images are also composed of multiple sublayers: one per *color channel*. As mentioned in Chapter 9, there are typically three: red, green, and blue (RGB). Grayscale images have just one channel, but some images may have many more—for example, satellite images that capture extra light frequencies (such as infrared).

Specifically, a neuron located in row i, column j of the feature map k in a given convolutional layer l is connected to the outputs of the neurons in the previous layer l-1, located in rows $i \times s_h$ to $i \times s_h + f_h - 1$ and columns $j \times s_w$ to $j \times s_w + f_w - 1$, across all feature maps (in layer l-1). Note that, within a layer, all neurons located in the same row i and column j but in different feature maps are connected to the outputs of the exact same neurons in the previous layer.

Equation 14-1 summarizes the preceding explanations in one big mathematical equation: it shows how to compute the output of a given neuron in a convolutional layer. It is a bit ugly due to all the different indices, but all it does is calculate the weighted sum of all the inputs, plus the bias term.

Equation 14-1. Computing the output of a neuron in a convolutional layer

$$z_{i,j,k} = b_k + \sum_{u=0}^{f_h-1} \sum_{v=0}^{f_{w}-1} \sum_{k'=0}^{f_{m'}-1} x_{i',j',k'} \times w_{u,v,k',k} \quad \text{with } \begin{cases} i' = i \times s_h + u \\ j' = j \times s_w + v \end{cases}$$

In this equation:

- $z_{i,j,k}$ is the output of the neuron located in row i, column j in feature map k of the convolutional layer (layer l).
- As explained earlier, s_h and s_w are the vertical and horizontal strides, f_h and f_w are the height and width of the receptive field, and $f_{n'}$ is the number of feature maps in the previous layer (layer l-1).
- $x_{i',j',k'}$ is the output of the neuron located in layer l-1, row i', column j', feature map k' (or channel k' if the previous layer is the input layer).
- b_k is the bias term for feature map k (in layer l). You can think of it as a knob that tweaks the overall brightness of the feature map k.

• $w_{u,v,k',k}$ is the connection weight between any neuron in feature map k of the layer l and its input located at row u, column v (relative to the neuron's receptive field), and feature map k'.

Let's see how to create and use a convolutional layer using Keras.

Implementing Convolutional Layers with Keras

First, let's load and preprocess a couple of sample images, using Scikit-Learn's load_sample_image() function and Keras's CenterCrop and Rescaling layers (all of which were introduced in Chapter 13):

```
from sklearn.datasets import load_sample_images
import tensorflow as tf
images = load_sample_images()["images"]
images = tf.keras.layers.CenterCrop(height=70, width=120)(images)
images = tf.keras.layers.Rescaling(scale=1 / 255)(images)
```

Let's look at the shape of the images tensor:

```
>>> images.shape
TensorShape([2, 70, 120, 3])
```

Yikes, it's a 4D tensor; we haven't seen this before! What do all these dimensions mean? Well, there are two sample images, which explains the first dimension. Then each image is 70×120 , since that's the size we specified when creating the Center Crop layer (the original images were 427×640). This explains the second and third dimensions. And lastly, each pixel holds one value per color channel, and there are three of them—red, green, and blue—which explains the last dimension.

Now let's create a 2D convolutional layer and feed it these images to see what comes out. For this, Keras provides a Convolution2D layer, alias Conv2D. Under the hood, this layer relies on TensorFlow's tf.nn.conv2d() operation. Let's create a convolutional layer with 32 filters, each of size 7×7 (using kernel_size=7, which is equivalent to using kernel_size=(7, 7)), and apply this layer to our small batch of two images:

```
conv_layer = tf.keras.layers.Conv2D(filters=32, kernel_size=7)
fmaps = conv_layer(images)
```


When we talk about a 2D convolutional layer, "2D" refers to the number of spatial dimensions (height and width), but as you can see, the layer takes 4D inputs: as we saw, the two additional dimensions are the batch size (first dimension) and the channels (last dimension).

Now let's look at the output's shape:

```
>>> fmaps.shape
TensorShape([2, 64, 114, 32])
```

The output shape is similar to the input shape, with two main differences. First, there are 32 channels instead of 3. This is because we set filters=32, so we get 32 output feature maps: instead of the intensity of red, green, and blue at each location, we now have the intensity of each feature at each location. Second, the height and width have both shrunk by 6 pixels. This is due to the fact that the Conv2D layer does not use any zero-padding by default, which means that we lose a few pixels on the sides of the output feature maps, depending on the size of the filters. In this case, since the kernel size is 7, we lose 6 pixels horizontally and 6 pixels vertically (i.e., 3 pixels on each side).

The default option is surprisingly named padding="valid", which actually means no zero-padding at all! This name comes from the fact that in this case every neuron's receptive field lies strictly within *valid* positions inside the input (it does not go out of bounds). It's not a Keras naming quirk: everyone uses this odd nomenclature.

If instead we set padding="same", then the inputs are padded with enough zeros on all sides to ensure that the output feature maps end up with the *same* size as the inputs (hence the name of this option):

These two padding options are illustrated in Figure 14-7. For simplicity, only the horizontal dimension is shown here, but of course the same logic applies to the vertical dimension as well.

If the stride is greater than 1 (in any direction), then the output size will not be equal to the input size, even if padding="same". For example, if you set strides=2 (or equivalently strides=(2, 2)), then the output feature maps will be 35×60 : halved both vertically and horizontally. Figure 14-8 shows what happens when strides=2, with both padding options.

Figure 14-7. The two padding options, when strides=1

Figure 14-8. With strides greater than 1, the output is much smaller even when using "same" padding (and "valid" padding may ignore some inputs)

If you are curious, this is how the output size is computed:

- With padding="valid", if the width of the input is i_h , then the output width is equal to $(i_h f_h + s_h) / s_h$, rounded down. Recall that f_h is the kernel width, and s_h is the horizontal stride. Any remainder in the division corresponds to ignored columns on the right side of the input image. The same logic can be used to compute the output height, and any ignored rows at the bottom of the image.
- With padding="same", the output width is equal to i_h / s_h , rounded up. To make this possible, the appropriate number of zero columns are padded to the left and right of the input image (an equal number if possible, or just one more on the right side). Assuming the output width is o_w , then the number of padded zero columns is $(o_w 1) \times s_h + f_h i_h$. Again, the same logic can be used to compute the output height and the number of padded rows.

Now let's look at the layer's weights (which were noted $w_{u,v,k',k}$ and b_k in Equation 14-1). Just like a Dense layer, a Conv2D layer holds all the layer's weights, including the kernels and biases. The kernels are initialized randomly, while the biases are initialized to zero. These weights are accessible as TF variables via the weights attribute, or as NumPy arrays via the get_weights() method:

```
>>> kernels, biases = conv_layer.get_weights()
>>> kernels.shape
(7, 7, 3, 32)
>>> biases.shape
(32,)
```

The kernels array is 4D, and its shape is [kernel_height, kernel_width, input_channels, output_channels]. The biases array is 1D, with shape [output_channels]. The number of output channels is equal to the number of output feature maps, which is also equal to the number of filters.

Most importantly, note that the height and width of the input images do not appear in the kernel's shape: this is because all the neurons in the output feature maps share the same weights, as explained earlier. This means that you can feed images of any size to this layer, as long as they are at least as large as the kernels, and if they have the right number of channels (three in this case).

Lastly, you will generally want to specify an activation function (such as ReLU) when creating a Conv2D layer, and also specify the corresponding kernel initializer (such as He initialization). This is for the same reason as for Dense layers: a convolutional layer performs a linear operation, so if you stacked multiple convolutional layers without any activation functions they would all be equivalent to a single convolutional layer, and they wouldn't be able to learn anything really complex.

As you can see, convolutional layers have quite a few hyperparameters: filters, kernel_size, padding, strides, activation, kernel_initializer, etc. As always, you can use cross-validation to find the right hyperparameter values, but this is very time-consuming. We will discuss common CNN architectures later in this chapter, to give you some idea of which hyperparameter values work best in practice.

Memory Requirements

Another challenge with CNNs is that the convolutional layers require a huge amount of RAM. This is especially true during training, because the reverse pass of backpropagation requires all the intermediate values computed during the forward pass.

For example, consider a convolutional layer with 200 5 \times 5 filters, with stride 1 and "same" padding. If the input is a 150 \times 100 RGB image (three channels), then the number of parameters is $(5 \times 5 \times 3 + 1) \times 200 = 15,200$ (the + 1 corresponds to

the bias terms), which is fairly small compared to a fully connected layer. However, each of the 200 feature maps contains 150 × 100 neurons, and each of these neurons needs to compute a weighted sum of its $5 \times 5 \times 3 = 75$ inputs: that's a total of 225 million float multiplications. Not as bad as a fully connected layer, but still quite computationally intensive. Moreover, if the feature maps are represented using 32-bit floats, then the convolutional layer's output will occupy $200 \times 150 \times 100 \times 32 = 96$ million bits (12 MB) of RAM.8 And that's just for one instance—if a training batch contains 100 instances, then this layer will use up 1.2 GB of RAM!

During inference (i.e., when making a prediction for a new instance) the RAM occupied by one layer can be released as soon as the next layer has been computed, so you only need as much RAM as required by two consecutive layers. But during training everything computed during the forward pass needs to be preserved for the reverse pass, so the amount of RAM needed is (at least) the total amount of RAM required by all layers.

If training crashes because of an out-of-memory error, you can try reducing the mini-batch size. Alternatively, you can try reducing dimensionality using a stride, removing a few layers, using 16-bit floats instead of 32-bit floats, or distributing the CNN across multiple devices (you will see how to do this in Chapter 19).

Now let's look at the second common building block of CNNs: the *pooling layer*.

Pooling Layers

Once you understand how convolutional layers work, the pooling layers are quite easy to grasp. Their goal is to subsample (i.e., shrink) the input image in order to reduce the computational load, the memory usage, and the number of parameters (thereby limiting the risk of overfitting).

Just like in convolutional layers, each neuron in a pooling layer is connected to the outputs of a limited number of neurons in the previous layer, located within a small rectangular receptive field. You must define its size, the stride, and the padding type, just like before. However, a pooling neuron has no weights; all it does is aggregate the inputs using an aggregation function such as the max or mean. Figure 14-9 shows a max pooling layer, which is the most common type of pooling layer. In this example,

⁷ To produce the same size outputs, a fully connected layer would need $200 \times 150 \times 100$ neurons, each connected to all $150 \times 100 \times 3$ inputs. It would have $200 \times 150 \times 100 \times (150 \times 100 \times 3 + 1) \approx 135$ billion parameters!

⁸ In the international system of units (SI), 1 MB = $1,000 \text{ KB} = 1,000 \times 1,000 \text{ bytes} = 1,000 \times 1,000 \times 8 \text{ bits}$. And 1 MiB = 1,024 kiB = 1,024 × 1,024 bytes. So 12 MB \approx 11.44 MiB.

we use a 2×2 *pooling kernel*,⁹ with a stride of 2 and no padding. Only the max input value in each receptive field makes it to the next layer, while the other inputs are dropped. For example, in the lower-left receptive field in Figure 14-9, the input values are 1, 5, 3, 2, so only the max value, 5, is propagated to the next layer. Because of the stride of 2, the output image has half the height and half the width of the input image (rounded down since we use no padding).

Figure 14-9. Max pooling layer $(2 \times 2 \text{ pooling kernel, stride } 2, \text{ no padding})$

A pooling layer typically works on every input channel independently, so the output depth (i.e., the number of channels) is the same as the input depth.

Other than reducing computations, memory usage, and the number of parameters, a max pooling layer also introduces some level of *invariance* to small translations, as shown in Figure 14-10. Here we assume that the bright pixels have a lower value than dark pixels, and we consider three images (A, B, C) going through a max pooling layer with a 2 × 2 kernel and stride 2. Images B and C are the same as image A, but shifted by one and two pixels to the right. As you can see, the outputs of the max pooling layer for images A and B are identical. This is what translation invariance means. For image C, the output is different: it is shifted one pixel to the right (but there is still 50% invariance). By inserting a max pooling layer every few layers in a CNN, it is possible to get some level of translation invariance at a larger scale. Moreover, max pooling offers a small amount of rotational invariance and a slight scale invariance. Such invariance (even if it is limited) can be useful in cases where the prediction should not depend on these details, such as in classification tasks.

⁹ Other kernels we've discussed so far had weights, but pooling kernels do not: they are just stateless sliding windows.

However, max pooling has some downsides too. It's obviously very destructive: even with a tiny 2×2 kernel and a stride of 2, the output will be two times smaller in both directions (so its area will be four times smaller), simply dropping 75% of the input values. And in some applications, invariance is not desirable. Take semantic segmentation (the task of classifying each pixel in an image according to the object that pixel belongs to, which we'll explore later in this chapter): obviously, if the input image is translated by one pixel to the right, the output should also be translated by one pixel to the right. The goal in this case is *equivariance*, not invariance: a small change to the inputs should lead to a corresponding small change in the output.

Figure 14-10. Invariance to small translations

Implementing Pooling Layers with Keras

The following code creates a MaxPooling2D layer, alias MaxPool2D, using a 2×2 kernel. The strides default to the kernel size, so this layer uses a stride of 2 (horizontally and vertically). By default, it uses "valid" padding (i.e., no padding at all):

```
max_pool = tf.keras.layers.MaxPool2D(pool_size=2)
```

To create an average pooling layer, just use AveragePooling2D, alias AvgPool2D, instead of MaxPool2D. As you might expect, it works exactly like a max pooling layer, except it computes the mean rather than the max. Average pooling layers used to be very popular, but people mostly use max pooling layers now, as they generally perform better. This may seem surprising, since computing the mean generally loses less information than computing the max. But on the other hand, max pooling preserves only the strongest features, getting rid of all the meaningless ones, so the

next layers get a cleaner signal to work with. Moreover, max pooling offers stronger translation invariance than average pooling, and it requires slightly less compute.

Note that max pooling and average pooling can be performed along the depth dimension instead of the spatial dimensions, although it's not as common. This can allow the CNN to learn to be invariant to various features. For example, it could learn multiple filters, each detecting a different rotation of the same pattern (such as handwritten digits; see Figure 14-11), and the depthwise max pooling layer would ensure that the output is the same regardless of the rotation. The CNN could similarly learn to be invariant to anything: thickness, brightness, skew, color, and so on.

Figure 14-11. Depthwise max pooling can help the CNN learn to be invariant (to rotation in this case)

Keras does not include a depthwise max pooling layer, but it's not too difficult to implement a custom layer for that:

```
class DepthPool(tf.keras.layers.Layer):
    def __init__(self, pool_size=2, **kwargs):
        super().__init__(**kwargs)
        self.pool_size = pool_size

    def call(self, inputs):
        shape = tf.shape(inputs) # shape[-1] is the number of channels
        groups = shape[-1] // self.pool_size # number of channel groups
        new_shape = tf.concat([shape[:-1], [groups, self.pool_size]], axis=0)
        return tf.reduce_max(tf.reshape(inputs, new_shape), axis=-1)
```

This layer reshapes its inputs to split the channels into groups of the desired size (pool size), then it uses tf.reduce max() to compute the max of each group. This implementation assumes that the stride is equal to the pool size, which is generally what you want. Alternatively, you could use TensorFlow's tf.nn.max_pool() operation, and wrap in a Lambda layer to use it inside a Keras model, but sadly this op does not implement depthwise pooling for the GPU, only for the CPU.

One last type of pooling layer that you will often see in modern architectures is the global average pooling layer. It works very differently: all it does is compute the mean of each entire feature map (it's like an average pooling layer using a pooling kernel with the same spatial dimensions as the inputs). This means that it just outputs a single number per feature map and per instance. Although this is of course extremely destructive (most of the information in the feature map is lost), it can be useful just before the output layer, as you will see later in this chapter. To create such a layer, simply use the GlobalAveragePooling2D class, alias GlobalAvgPool2D:

```
global avg pool = tf.keras.layers.GlobalAvgPool2D()
```

It's equivalent to the following Lambda layer, which computes the mean over the spatial dimensions (height and width):

```
global avg pool = tf.keras.layers.Lambda(
    lambda X: tf.reduce_mean(X, axis=[1, 2]))
```

For example, if we apply this layer to the input images, we get the mean intensity of red, green, and blue for each image:

```
>>> global_avg_pool(images)
<tf.Tensor: shape=(2, 3), dtype=float32, numpy=
array([[0.64338624, 0.5971759 , 0.5824972 ],
       [0.76306933, 0.26011038, 0.10849128]], dtype=float32)>
```

Now you know all the building blocks to create convolutional neural networks. Let's see how to assemble them.

CNN Architectures

Typical CNN architectures stack a few convolutional layers (each one generally followed by a ReLU layer), then a pooling layer, then another few convolutional layers (+ReLU), then another pooling layer, and so on. The image gets smaller and smaller as it progresses through the network, but it also typically gets deeper and deeper (i.e., with more feature maps), thanks to the convolutional layers (see Figure 14-12). At the top of the stack, a regular feedforward neural network is added, composed of a few fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g., a softmax layer that outputs estimated class probabilities).

Figure 14-12. Typical CNN architecture

A common mistake is to use convolution kernels that are too large. For example, instead of using a convolutional layer with a 5×5 kernel, stack two layers with 3×3 kernels: it will use fewer parameters and require fewer computations, and it will usually perform better. One exception is for the first convolutional layer: it can typically have a large kernel (e.g., 5×5), usually with a stride of 2 or more. This will reduce the spatial dimension of the image without losing too much information, and since the input image only has three channels in general, it will not be too costly.

Here is how you can implement a basic CNN to tackle the Fashion MNIST dataset (introduced in Chapter 10):

```
from functools import partial
DefaultConv2D = partial(tf.keras.layers.Conv2D, kernel_size=3, padding="same",
                        activation="relu", kernel initializer="he normal")
model = tf.keras.Sequential([
    DefaultConv2D(filters=64, kernel_size=7, input_shape=[28, 28, 1]),
    tf.keras.layers.MaxPool2D(),
    DefaultConv2D(filters=128),
    DefaultConv2D(filters=128),
    tf.keras.layers.MaxPool2D(),
    DefaultConv2D(filters=256),
    DefaultConv2D(filters=256),
    tf.keras.layers.MaxPool2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=128, activation="relu",
                          kernel initializer="he normal"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(units=64, activation="relu",
                          kernel_initializer="he_normal"),
    tf.keras.layers.Dropout(0.5),
    tf.keras.layers.Dense(units=10, activation="softmax")
1)
```

Let's go through this code:

- We use the functools.partial() function (introduced in Chapter 11) to define DefaultConv2D, which acts just like Conv2D but with different default arguments: a small kernel size of 3, "same" padding, the ReLU activation function, and its corresponding He initializer.
- Next, we create the Sequential model. Its first layer is a DefaultConv2D with 64 fairly large filters (7×7) . It uses the default stride of 1 because the input images are not very large. It also sets input shape=[28, 28, 1], because the images are 28 × 28 pixels, with a single color channel (i.e., grayscale). When you load the Fashion MNIST dataset, make sure each image has this shape: you may need to use np.reshape() or np.expanddims() to add the channels dimension. Alternatively, you could use a Reshape layer as the first layer in the model.
- We then add a max pooling layer that uses the default pool size of 2, so it divides each spatial dimension by a factor of 2.
- Then we repeat the same structure twice: two convolutional layers followed by a max pooling layer. For larger images, we could repeat this structure several more times. The number of repetitions is a hyperparameter you can tune.
- Note that the number of filters doubles as we climb up the CNN toward the output layer (it is initially 64, then 128, then 256): it makes sense for it to grow, since the number of low-level features is often fairly low (e.g., small circles, horizontal lines), but there are many different ways to combine them into higherlevel features. It is a common practice to double the number of filters after each pooling layer: since a pooling layer divides each spatial dimension by a factor of 2, we can afford to double the number of feature maps in the next layer without fear of exploding the number of parameters, memory usage, or computational load.
- Next is the fully connected network, composed of two hidden dense layers and a dense output layer. Since it's a classification task with 10 classes, the output layer has 10 units, and it uses the softmax activation function. Note that we must flatten the inputs just before the first dense layer, since it expects a 1D array of features for each instance. We also add two dropout layers, with a dropout rate of 50% each, to reduce overfitting.

If you compile this model using the "sparse categorical crossentropy" loss and you fit the model to the Fashion MNIST training set, it should reach over 92% accuracy on the test set. It's not state of the art, but it is pretty good, and clearly much better than what we achieved with dense networks in Chapter 10.

Over the years, variants of this fundamental architecture have been developed, leading to amazing advances in the field. A good measure of this progress is the error rate in competitions such as the ILSVRC ImageNet challenge. In this competition, the top-five error rate for image classification—that is, the number of test images for which the system's top five predictions did *not* include the correct answer—fell from over 26% to less than 2.3% in just six years. The images are fairly large (e.g., 256 pixels high) and there are 1,000 classes, some of which are really subtle (try distinguishing 120 dog breeds). Looking at the evolution of the winning entries is a good way to understand how CNNs work, and how research in deep learning progresses.

We will first look at the classical LeNet-5 architecture (1998), then several winners of the ILSVRC challenge: AlexNet (2012), GoogLeNet (2014), ResNet (2015), and SENet (2017). Along the way, we will also look at a few more architectures, including Xception, ResNeXt, DenseNet, MobileNet, CSPNet, and EfficientNet.

LeNet-5

The LeNet-5 architecture¹⁰ is perhaps the most widely known CNN architecture. As mentioned earlier, it was created by Yann LeCun in 1998 and has been widely used for handwritten digit recognition (MNIST). It is composed of the layers shown in Table 14-1.

Table 1	4-1	I o Not-5	architecture
---------	-----	-----------	--------------

Layer	Туре	Maps	Size	Kernel size	Stride	Activation
0ut	Fully connected	-	10	-	-	RBF
F6	Fully connected	-	84	-	-	tanh
C 5	Convolution	120	1×1	5×5	1	tanh
S4	Avg pooling	16	5×5	2×2	2	tanh
C3	Convolution	16	10×10	5×5	1	tanh
S2	Avg pooling	6	14×14	2×2	2	tanh
C 1	Convolution	6	28×28	5×5	1	tanh
In	Input	1	32×32	_	-	_

As you can see, this looks pretty similar to our Fashion MNIST model: a stack of convolutional layers and pooling layers, followed by a dense network. Perhaps the main difference with more modern classification CNNs is the activation functions: today, we would use ReLU instead of tanh and softmax instead of RBF. There were

¹⁰ Yann LeCun et al., "Gradient-Based Learning Applied to Document Recognition", *Proceedings of the IEEE* 86, no. 11 (1998): 2278–2324.