

Lecture 7: Multiple Linear Regression

Pilsung Kang
School of Industrial Management Engineering
Korea University

AGENDA

01 Multiple Linear Regression
02 Evaluating Regression Models
03 R Exercise

• Regression Example: Predict the selling price of Toyota Corolla

Dependent variable (target)

Independent variables (attributes, features)

Variable	Description		
Price	Offer Price in EUROs		
Age_08_04	Age in months as in August 2004		
KM	Accumulated Kilometers on odometer		
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)		
HP	Horse Power		
Met_Color	Metallic Color? (Yes=1, No=0)		
Automatic	Automatic ((Yes=1, No=0)		
CC	Cylinder Volume in cubic centimeters		
Doors	Number of doors		
Quarterly_Tax	Quarterly road tax in EUROs		
Weight	Weight in Kilograms		

Goal

✓ Fit a linear relationship between a quantitative dependent variable Y and a set of predictors $X_1, X_2, ..., X_p$.

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \cdots + \beta_d x_d + \epsilon$$
 unexplained

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 \cdots + \hat{\beta_d} x_d$$

coefficients

• Explanatory vs. Predictive

Explanatory Regression

- Explain relationship between predictors (explanatory variables) and target.
- Familiar use of regression in data analysis.
- Model Goal: Fit the data well and understand the contribution of explanatory variables to the model.
- "goodness-of-fit": R², residual analysis, p-values.

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

Predictive Regression

- Predict target values in other data where we have predictor values, but not target values.
- Classic data mining context
- Model Goal: Optimize predictive accuracy
- Train model on training data
- Assess performance on validation (hold-out) data
- Explaining role of predictors is not primary purpose (but useful)

$$Y = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \varepsilon$$

• Type of Regression

• Linear Regression

✓ Assume that the relationship between the input variable and the target variable is always linear.

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_d} x_d$$

• Which line is optimal?

- Estimating the coefficients
 - ✓ Ordinary least square (OLS): Minimize the squared difference between the actual target value and the estimated value by the regression model

- Estimating the coefficients
 - √ Ordinary least square (OLS)
 - \blacksquare Actual target: $y=eta_0+eta_1x_1+eta_2x_2\cdots+eta_dx_d+\epsilon$
 - ullet Predicted target: $\hat{y}=\hat{eta_0}+\hat{eta_1}x_1+\hat{eta_2}x_2\cdots+\hat{eta_d}x_d$
 - Goal: minimize the difference between the actual and predicted target.

$$\min \frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$= \frac{1}{2}(y_i - \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} \cdots + \hat{\beta}_d x_{id})^2$$

- Estimating the coefficients
 - √ Ordinary least square (OLS)

• Ordinary least square: Matrix solution

$$\mathbf{X}: n \times (d+1) \ matrix, \ \mathbf{y}: n \times 1 \ vector$$

$$\hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector$$

For intercept

• Ordinary least square: Matrix solution

$$\begin{split} \mathbf{X}: & \ n \times (d+1) \ matrix, \ \mathbf{y}: \ n \times 1 \ vector \\ & \ \hat{\boldsymbol{\beta}}: (d+1) \times 1 \ vector \\ & \ \min E(\mathbf{X}) = \frac{1}{2} \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big)^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big) \\ & \ \Rightarrow \frac{\partial E(\mathbf{X})}{\partial \hat{\boldsymbol{\beta}}} = -\mathbf{X}^T \Big(\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \Big) = 0 \\ & \ \Rightarrow \mathbf{X}^T \mathbf{y} + \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0 \\ & \ \hat{\boldsymbol{\beta}} = \Big(\mathbf{X}^T \mathbf{X} \Big)^{-1} \mathbf{X}^T \mathbf{y} \longrightarrow \text{Unique and explicit solution exists!} \end{split}$$

Ordinary least square: Matrix solution

Closed form solution for the regression coefficient

- Ordinary least square
 - \checkmark Finds the best estimates β when the following conditions are satisfied:
 - The noise ε follows a normal distribution.
 - The linear relationship is correct.
 - The cases are independent of each other.
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (<u>homoskedasticity</u>).

Sum-of-Squares Decomposition

• Goodness-of-fit: (Adjusted) R²

$$R^{2} = 1 - \frac{\sum_{j=1}^{n} \hat{\varepsilon}_{j}^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}} = \frac{\sum_{j=1}^{n} (\hat{y}_{j} - \bar{y})^{2}}{\sum_{j=1}^{n} (y_{j} - \bar{y})^{2}}$$

- \checkmark Gives the proportion of the total variation in the y_i 's explained by the predictor variables
- $\checkmark 0 \le R^2 \le I$
- \checkmark R² = I \rightarrow The fitted equation passes through all the data points
- \checkmark R² = 0 → There is <u>no linear relationship</u> between the predictor variables and the target variable

- Goodness-of-fit: (Adjusted) R²
 - √ Graphical interpretation

- Goodness-of-fit: (Adjusted) R²
 - ✓ The proportionate reduction of total variation associated with the use of the predictor variable Z.

$$R^2 = 1 - \frac{SSE}{SST} = \frac{SSR}{SST} \qquad 0 \le R^2 \le 1$$

- Goodness-of-fit: (Adjusted) R²
 - √ Adjusted R²

$$R_{adj}^{2} = 1 - \left[\frac{n-1}{n-(p+1)}\right] \frac{SSE}{SST} \le 1 - \frac{SSE}{SST} = R^{2}$$

- \checkmark R² increases monotonically when a (possibly not significant) new variable is added
- ✓ Adjusted R² fix this problem
- \checkmark If an insignificant variable is added, the adjusted R² does not increase

Model Fit

- ✓ It is imperative to examine the adequacy of the model <u>before</u> the estimated function becomes a permanent part of the decision making apparatus.
- ✓ For general diagnostic purpose, residuals should be plotted as follows:
- 1. Plot the residuals $\hat{\varepsilon}_j$ against the predicted values $\hat{y}_j = \hat{\beta}_0 + \hat{\beta}_1 z_{j1} + \cdots + \hat{\beta}_r z_{jr}$. Departures from the assumptions of the model are typically indicated by two types of phenomena:
- **2.** Plot the residuals $\hat{\varepsilon}_j$ against a predictor variable, such as z_1 , or products of predictor variables, such as z_1^2 or z_1z_2 . A systematic pattern in these plots suggests the need for more terms in the model. This situation is illustrated in Figure 7.2(c).
- 3. Q-Q plots and histograms. Do the errors appear to be normally distributed? To answer this question, the residuals $\hat{\varepsilon}_j$ or $\hat{\varepsilon}_j^*$ can be examined using the techniques discussed in Section 4.6. The Q-Q plots, histograms, and dot diagrams help to detect the presence of unusual observations or severe departures from normality that may require special attention in the analysis. If n is large, minor departures from normality will not greatly affect inferences about β .

• Residual plots

Model checking

$$y = 2x + \varepsilon$$
, $\varepsilon \sim Gamma(2,1)$

Regression model

• Example: predict the selling price of Toyota corolla

V					/					
Y										
Price	Age_08_04	KM	Fuel_Type	HP	Met_Color	Automatic	СС	Doors	Quarterly_Tax	Weight
13500	23	46986	Diesel	90	1	0	2000	3	210	1165
13750	23	72937	Diesel	90	1	0	2000	3	210	1165
13950	24	41711	Diesel	90	1	0	2000	3	210	1165
14950	26	48000	Diesel	90	0	0	2000	3	210	1165
13750	30	38500	Diesel	90	0	0	2000	3	210	1170
12950	32	61000	Diesel	90	0	0	2000	3	210	1170
16900	27	94612	Diesel	90	1	0	2000	3	210	1245
18600	30	75889	Diesel	90	1	0	2000	3	210	1245
21500	27	19700	Petrol	192	0	0	1800	3	100	1185
12950	23	71138	Diesel	69	0	0	1900	3	185	1105
20950	25	31461	Petrol	192	0	0	1800	3	100	1185
19950	22	43610	Petrol	192	0	0	1800	3	100	1185
19600	25	32189	Petrol	192	0	0	1800	3	100	1185
21500	31	23000	Petrol	192	1	0	1800	3	100	1185
22500	32	34131	Petrol	192	1	0	1800	3	100	1185
22000	28	18739	Petrol	192	0	0	1800	3	100	1185
22750	30	34000	Petrol	192	1	0	1800	3	100	1185
17950	24	21716	Petrol	110	1	0	1600	3	85	1105
16750	24	25563	Petrol	110	0	0	1600	3	19	1065

Data preprocessing

✓ Create dummy variables for fuel types

	Fuel_type = Disel	Fuel_type = Petrol	Fuel_type = CNG
Diesel	1	0	0
Petrol	0	1	0
CNG	0	0	1

Data partitioning

√ 60% training data / 40% validation data

Id	Model	Price	Age_08_04	Mfg_Month	Mfg_Year	KM	Fuel_Type_Di	Fuel_Type_Pe
10	Model	1 1100	Agc_00_04	mig_month	mig_rear	TXIII	esel	trol
1	RRA 2/3-Doors	13500	23	10	2002	46986	1	0
4	RRA 2/3-Doors	14950	26	7	2002	48000	1	0
5	SOL 2/3-Doors	13750	30	3	2002	38500	1	0
6	SOL 2/3-Doors	12950	32	1	2002	61000	1	0
9	/VT I 2/3-Doors	21500	27	6	2002	19700	0	1
10	RRA 2/3-Doors	12950	23	10	2002	71138	1	0
12	BNS 2/3-Doors	19950	22	11	2002	43610	0	1
17	ORT 2/3-Doors	22750	30	3	2002	34000	0	1

Fitted linear regression model

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.997833 <mark>3</mark>	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
сс	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.089908 <mark>6</mark>	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.4044657 <mark>9</mark>	0	214696000
•		•		

β

Significance Probability

- Interpret the result
 - √ Regression coefficient
 - Beta value for the corresponding predictor variable
 - The amount of change when the predictor variable increases by I
 - If it is positive/negative, then the predictor variable and the target variable are positively/negatively correlated

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

Interpret the result

- ✓ p-value
 - Indicate whether the regression coefficient is statistically significant or not
 - A predictor variable is important for modeling when its p-value is close to 0
 - Can be used to select significant variables (e.g., use the variables with p-value less than 0.05)

Input variables	Coefficient	Std. Error	p-value	SS
Constant term	-3608.418457	1458.620728	0.0137	97276410000
Age_08_04	-123.8319168	3.367589	0	8033339000
KM	-0.017482	0.00175105	0	251574500
Fuel_Type_Diesel	210.9862518	474.9978333	0.6571036	6212673
Fuel_Type_Petrol	2522.066895	463.6594238	0.00000008	4594.9375
HP	20.71352959	4.67398977	0.00001152	330138600
Met_Color	-50.48505402	97.85591125	0.60614568	596053.75
Automatic	178.1519013	212.0528565	0.40124047	19223190
СС	0.01385481	0.09319961	0.88188446	1272449
Doors	20.02487946	51.0899086	0.69526076	39265060
Quarterly_Tax	16.7742424	2.09381151	0	160667200
Weight	15.41666317	1.40446579	0	214696000

AGENDA

01	Multiple Linear Regression
02	Evaluating Regression Models
03	R Exercise

• Example: predict a baby's weight (kg) based on his/her age

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Average error

√ Indicate whether the predictions are on average over- or under-predicted.

Age	Actual Weight(y)	Predicted Weight(y')
ı	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

Average error =
$$\frac{1}{n} \sum_{i=1}^{n} (y - y')$$
$$= 0.342$$

- Mean absolute error (MAE)
 - √ Gives the magnitude of the average error

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y - y'|$$

= 0.829

- Mean absolute percentage error (MAPE)
 - √ Gives a percentage score of how predictions deviate (on average) from the actual values.

Age	Actual Weight(y)	Predicted Weight(y')
I	5.6	6.0
2	6.9	6.4
3	10.4	10.9
4	13.7	12.4
5	17.4	15.6
6	20.7	21.5
7	23.5	23.0

$$MAPE = 100\% \times \frac{1}{n} \sum_{i=1}^{n} \frac{|y - y'|}{|y|}$$
= 6.43%

- (Root) Mean squared error ((R)MSE)
 - ✓ Standard error of estimate
 - ✓ Same units as the variable predicted

Age	Actual Weight(y)	Predicted Weight(y')	
I	5.6	6.0	
2	6.9	6.4	
3	10.4	10.9	
4	13.7	12.4	
5	17.4	15.6	
6	20.7	21.5	
7	23.5	23.0	

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}$$

$$= 0.926$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y - y')^{2}}$$

$$= 0.962$$

AGENDA

Multiple Linear Regression
Evaluating Regression Models
R Exercise

R Exercise I

• Data Set:Toyota Corolla Selling Price

Variable	Description	Variable	Description
		Guarantee_Period	Guarantee period in months
		ABS	Anti-Lock Brake System (Yes=1, No=0)
Price	Offer Price in EUROs	Airbag_1	Driver_Airbag (Yes=1, No=0)
Age_08_04	Age in months as in August 2004	Airbag_2	Passenger Airbag (Yes=1, No=0)
Mfg_Month	Manufacturing month (1-12)	Airco	Airconditioning (Yes=1, No=0)
Mfg_Year	Manufacturing Year	Automatic_airco	Automatic Airconditioning (Yes=1, No=0)
KM	Accumulated Kilometers on odometer	Boardcomputer	Boardcomputer (Yes=1, No=0)
Fuel_Type	Fuel Type (Petrol, Diesel, CNG)	CD_Player	CD Player (Yes=1, No=0)
HP	Horse Power	Central_Lock	Central Lock (Yes=1, No=0)
Met_Color	Metallic Color? (Yes=1, No=0)	Powered_Windows	Powered Windows (Yes=1, No=0)
Automatic	Automatic ((Yes=1, No=0)	Power_Steering	Power Steering (Yes=1, No=0)
CC	Cylinder Volume in cubic centimeters	Radio	Radio (Yes=1, No=0)
Doors	Number of doors	Mistlamps	Mistlamps (Yes=1, No=0)
Cylinders	Number of cylinders	Sport_Model	Sport Model (Yes=1, No=0)
Gears	Number of gear positions	Backseat_Divider	Backseat Divider (Yes=1, No=0)
Quarterly_Tax	Quarterly road tax in EUROs	Metallic_Rim	Metallic Rim (Yes=1, No=0)
Weight	Weight in Kilograms	Radio_cassette	Radio Cassette (Yes=1, No=0)
Mfr_Guarantee	Within Manufacturer's Guarantee period (Yes=1, No=0)	Parking_Assistant	Parking assistance system (Yes=1, No=0)
BOVAG_Guarantee	BOVAG (Dutch dealer network) Guarantee (Yes=1, No=0)	Tow_Bar	Tow Bar (Yes=1, No=0)

• Define the performance evaluation function

```
# Performance evaluation function for regression
perf_eval_reg <- function(tgt_y, pre_y){</pre>
    # RMSE
    rmse <- sqrt(mean((tgt y - pre y)^2))</pre>
    # MAF
    mae <- mean(abs(tgt y - pre y))</pre>
    # MAPE
    mape <- 100*mean(abs((tgt_y - pre_y)/tgt_y))</pre>
    return(c(rmse, mae, mape))
}
# Initialize a performance summary table
perf mat <- matrix(0, nrow = 2, ncol = 3)</pre>
rownames(perf_mat) <- c("Toyota Corolla", "Boston Housing")</pre>
colnames(perf mat) <- c("RMSE", "MAE", "MAPE")</pre>
perf mat
```

- ✓ perf_eval_reg() function
 - Arguments: target values & predicted values
 - Outputs: RMSE, MAE, MAPE

Load the data

```
# Dataset 1: Toyota Corolla
corolla <- read.csv("ToyotaCorolla.csv")

# Indices for the activated input variables
nCar <- nrow(corolla)
nVar <- ncol(corolla)

id_idx <- c(1,2)
category_idx <- 8</pre>
```

- ✓ read.csv(): a function that can read a csv file
- √ nrow() & ncol(): return the number of rows/columns in the dataframe
- √ id_idx: id-related variables, irrelevant variable for analysis, will be removed.
- √ category_idx: catorical variable, will be transformed by I-of-C coding.

Data preprocessing: I-of-C coding

KM	HP	Met_Color
46986	90	1
72937	90	1
41711	90	1
48000	90	0
38500	90	0
61000	90	0
94612	90	1
75889	90	1
19700	192	0
71138	69	0
31461	192	0
43610	192	0
32189	192	0
23000	192	1

- √ Transform one categorical variable to C binary variables
 - C is the number of categories

I-of-C Coding process

```
# Transform a categorical variable into a set of binary variables
dummy_p <- rep(0,nCar)
dummy_d <- rep(0,nCar)
dummy_c <- rep(0,nCar)

p_idx <- which(corolla$Fuel_Type == "Petrol")
d_idx <- which(corolla$Fuel_Type == "Diesel")
c_idx <- which(corolla$Fuel_Type == "CNG")

dummy_p[p_idx] <- 1
dummy_d[d_idx] <- 1
dummy_c[c_idx] <- 1</pre>
```

- √ dummy_p(c/d): initialize a zero vector with length nCar
- ✓ p_idx: Store the row index with Fuel_Type == "Petrol" (do the same job for d_idx and c_idx)
- ✓ dummy_p[p_idx] <- I:replace 0 by I for the rows in the p_idx

Combine the dataset and split the data

```
Fuel <- data.frame(dummy_p, dummy_d, dummy_c)
names(Fuel) <- c("Petrol", "Diesel", "CNG")

# Prepare the data for MLR
corolla_mlr_data <- cbind(corolla[,-c(id_idx, category_idx)], Fuel)

# Split the data into the training/validation sets
set.seed(12345)
corolla_trn_idx <- sample(1:nCar, round(0.7*nCar))
corolla_trn_data <- corolla_mlr_data[corolla_trn_idx,]
corolla_val_data <- corolla_mlr_data[-corolla_trn_idx,]</pre>
```

- ✓ Create a new data frame "Fuel" by combining three dummy variables
- ✓ Combine the dataset with the original corolla dataset and Fuel dataset (use cbind()
 function)
- ✓ Split the data: 70% for training and 30% for validation

Training the model

```
# Train the MLR
mlr_corolla <- lm(Price ~ ., data = corolla_trn_data)
mlr_corolla
summary(mlr_corolla)
plot(mlr_corolla)</pre>
```

- √ Im(): linear regression
 - Price ~ : Formula
 - The left side of ~ is the target variable
 - The right side of ~ are the predictor variables (. means all variables except the target variable)
 - data = corolla_trn_data: data used to estimate the regression coefficients
- √ Summary(): print the result of the regression model
- ✓ plot(): draw four plots for the regression model

> summary(full model)

- Interpret the results
 - ✓ Estimate: estimated regression coefficients
 - ✓ Std.Error: standard error of the estimated coefficients
 - ✓ t value: t-statistic for the hypothesis test
 - √ Pr(>|t|): p-value for the regression coefficient, the smaller the p-value, the more significant the variable
 - √ Adjusted R-squared
 - ✓ NA: variable is removed because of multicollinearity problem

```
Call:
lm(formula = Price ~ ., data = trn data)
Residuals:
   Min
             1Q Median
                                    Max
-8569.6 -637.3
                 -42.9
                         650.5 5720.8
Coefficients: (3 not defined because of singularities)
                   Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 -752.65641 1775.96778 -0.424 0.671805
Age 08 04
                 -118.43999
                               4.29358 -27.585 < 2e-16 ***
Mfg Month
                  -95.78658
                             11.11831 -8.615
                                              < 2e-16
Mfg Year
                                   NA
                                            NA
                               0.00136 -12.702 < 2e-16 ***
KM
                   -0.01727
HP
                   20.46048
                               3.59449
                                        5.692 1.66e-08 ***
Met Color
                  -64.93066
                             81.74804 -0.794 0.427228
Automatic
                  338.02084 156.47529
                                        2.160 0.031000 *
                               0.07958
CC
                   -0.10770
                                        -1.353 0.176246
                   10.46213
                             43,60079
                                         0.240 0.810418
Doors
Cylinders
                         NA
                                   NΑ
                                            NA
                                                    NΑ
Gears
                  183.36459 196.28703
                                        0.934 0.350451
Tow Bar
                 -217.67837
                              85.11397 -2.557 0.010694 *
Petrol
                 2280.57458 387.15749
                                         5.891 5.30e-09 ***
Diesel
                 1004.02078 377.75296
                                         2.658 0.007993 **
CNG
                                                    NΑ
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 1128 on 971 degrees of freedom
                               Adjusted R-squared: 0.9014
Multiple R-squared: 0.9046,
```

F-statistic: 279.1 on 33 and 971 DF, p-value: < 2.2e-16

- Interpret the result
 - √ Figure 1: used to check the following assumption
 - The variability in Y values for a given set of predictors is the same regardless of the values of the predictors (https://example.com/homoskedasticity)

- Interpret the result
 - ✓ Figure 2: used to check the following assumption
 - The noise ε follows a normal distribution

Interpret the result

```
# Plot the result
plot(corolla_trn_data$Price, fitted(mlr_corolla), xlim = c(4000,35000),
    ylim = c(4000,35000))
abline(0,1,lty=3)
```

✓ Plot the relationship between the actual target values (x-axis) and the predicted

values (y-axis)

Normality check for the residuals

- √ hist(): draw a histogram
- ✓ curve(): draw a curve for a certain probability density function
- ✓ skewness: 0 if the dataset follows a normal distribution
- ✓ kurtosis: 3 if the dataset follows a normal distribution

```
> skewness(corolla_resid)
[1] -0.1355675
> kurtosis(corolla_resid)
[1] 8.630819
```

• Histogram & Normal Density Curve

Prediction performance of the regression model

```
# Performance Measure
mlr_corolla_haty <- predict(mlr_corolla, newdata = corolla_val_data)
perf_mat[1,] <- perf_eval_reg(corolla_val_data$Price, mlr_corolla_haty)
perf_mat</pre>
```

• Boston Housing Price

✓ Predict the median price of houses in a unit district

Variable	Description
CRIM	per capita crime rate by town.
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	proportion of non-retail business acres per town.
NOX	nitrogen oxides concentration (parts per 10 million).
RM	average number of rooms per dwelling.
AGE	proportion of owner-occupied units built prior to 1940.
DIS	weighted mean of distances to five Boston employment centres.
TAX	full-value property-tax rate per \\$10,000.
PTRATIO	pupil-teacher ratio by town.
Black	1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town.
LSTAT	lower status of the population (percent).
MEDV	median value of owner-occupied homes in \\$1000s.

Load the dataset and preprocess the data

```
# Dataset 2: Boston Housing
boston_housing <- read.csv("BostonHousing.csv")
nHome <- nrow(boston_housing)
nVar <- ncol(boston_housing)

# Split the data into the training/validation sets
boston_trn_idx <- sample(1:nHome, round(0.7*nHome))
boston_trn_data <- boston_housing[boston_trn_idx,]
boston_val_data <- boston_housing[-boston_trn_idx,]</pre>
```

- ✓ Unlike "corolla" dataset, all variables are numerical variables
- √ No special data preprocessing is requred

Training the model and plot the results

```
# Train the MLR
mlr_boston <- lm(MEDV ~ ., data = boston_trn_data)
mlr_boston

summary(mlr_boston)
plot(mlr_boston)

# Plot the result
plot(boston_trn_data$MEDV, fitted(mlr_boston), xlim = c(-5,50), ylim = c(-5,50))
abline(0,1,lty=3)</pre>
```

- Fitted model
 - √ Adjusted R²: 0.7347 (smaller than that of corolla model)
 - ✓ All variables except INDUS, AGE, and TAX are statistically significant (alpha = 0.05)

```
> summary(mlr_boston)
Call:
lm(formula = MEDV ~ ., data = boston_trn_data)
Residuals:
     Min
                   Median
              10
                                3Q
                                        Max
-13.7098 -2.6401 -0.5686
                            1.3348 27.3746
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                   4.839 1.98e-06 ***
(Intercept) 2.779e+01 5.744e+00
           -7.268e-02 3.435e-02
                                  -2.115
CRIM
                                           0.0351 *
            3.485e-02 1.710e-02
                                  2.038
ΖN
                                           0.0423 *
           -8.059e-03 6.755e-02
INDUS
                                  -0.119
                                           0.9051
           -1.218e+01 4.643e+00 -2.623
                                           0.0091 **
NOX
            4.287e+00 4.920e-01
                                   8.714
                                          < 2e-16 ***
RM
            -2.460e-02 1.492e-02
                                  -1.649
AGE
                                           0.1000
           -1.573e+00 2.456e-01
                                  -6.404 5.00e-10 ***
DIS
            7.515e-04 2.755e-03
                                  0.273
                                           0.7852
TAX
           -8.879e-01 1.495e-01
                                  -5.941 6.98e-09 ***
PTRATIO
            1.237e-02 3.067e-03
                                  4.034 6.78e-05 ***
В
LSTAT
            -4.910e-01 6.139e-02
                                 -7.999 1.97e-14 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.658 on 342 degrees of freedom
Multiple R-squared: 0.743,
                              Adjusted R-squared: 0.7347
F-statistic: 89.89 on 11 and 342 DF, p-value: < 2.2e-16
```

Residual plot and normal QQ plot

✓ Residuals might not follow a normal distribution

Normality check for the residuals

```
> skewness(boston_resid)
[1] 1.656679
> kurtosis(boston_resid)
[1] 8.669806
```

• Normality check for the residuals

• Prediction performance of the regression model

```
# Performance Measure
mlr_boston_haty <- predict(mlr_boston, newdata = boston_val_data)
perf_mat[2,] <- perf_eval_reg(boston_val_data$MEDV, mlr_boston_haty)
perf_mat</pre>
```

```
> perf_mat

RMSE MAE MAPE

Toyota Corolla 1085.124496 814.059765 8.007297

Boston Housing 5.476226 3.834064 19.276196
```

