Overview

We ran five experiments. See the appendix and the accompanying Jupyter notebook for reproducibility.

1. Develop using GPT3.5 zeroshot

We developed our first model using gpt3-5-zeroshot.jsonl, loading it with db-in and named it hmwk_1_zeroshot. We opted to use --training patience=800 to reduce the early stopping criteria to improve the time to train. For this initial model, we did not have a dedicated hold out dataset, and used Prodigy's automatic partitioning of 20% the hmwk_1_zeroshot as the evaluation dataset. The model attained 32% F1 score.

2. Create 200 unlabeled for evaluation dataset

For the 2nd experiment, we need dedicated hold-out evaluation dataset. We used a previously annotated .jsonl file and loaded it with db-in and naming it hmwk_1_eval. We then retrain on hmwk-1-zeroshot and eval on hmwk-1-eval. The model attained 36% F1 score. We also ran a train-curve, which provided evidence that more annotated data would likely improve the model's performance.

3. Train with Workshop Data with model in loop

For the next two experiments, we'll explore: quantity vs. quality. In experiment 3, we'll use all of the workshop data without correcting it (i.e., quantity). We loaded the data with db-in, named it hmwk-1-workshop, and merged it with the GPT3.5 Zero Shot as hmwk_1_train_exp3. We kept hmwk_1_eval as the eval dataset. The model attained 52% F1 score; therefore adding the workshop dataset adds +16% F1 score.

4. Run model-as-annotator on Workshop data to correct a sample

In experiment 4, we'll focus on quality, correcting ~200 workshop annotations. We'll use review so we can view both the model-predicted and workshop annotations. You could use ner.manual (original annotations) or ner.correct model predicted alternatively. Merging the corrected annotations with the GPT3.5 Zero Shot, yielded the hmwk_1_train_exp4. We'll keep using hmwk_1_eval as the evaluation dataset. The model attained 38% F1 score. This indicates that while the full workshop dataset may have errors, it provides net gain in performance (quantity over quality).

5. Use word vectors (transfer learning) to improve model performance

For experiment 5, we'll explore whether adding word embeddings improves model performance (see Prodigy docs). We used experiment 3 training dataset (best performance) and use hmwk_1_eval as the eval dataset. The model attained 59% F1 score, which is the best performing model/experiment. However, this model is much larger (600MB vs 6MB); therefore, in prod, we may still want to go with model 3.

Appendix Experiment Performances

#	Training Dataset	Training (n)	Evaluation	Base Model	F1	P	R.	Size
		()						
1	GPT3.5	400	20% of	None	0.32	0.44	0.24	6 MB
			training					
2	GPT3.5	500	Hold out eval	None	0.36	0.41	0.31	$6~\mathrm{MB}$
3	GPT3.5 +	1577	Hold out eval	None	0.52	0.56	0.48	$6~\mathrm{MB}$
	Workshop							
4	GPT3.5 +	699	Hold out eval	None	0.38	0.44	0.34	$6~\mathrm{MB}$
	Corrected							
5	GPT3.5 +	1577	Hold out eval	en core web	01.59	0.58	0.59	600
Ŭ	Workshop		22024 040 0741	<u> </u>		0.00	0.00	MB
	Workshop							MID

Saving Models (wheel)

To export each model, we used spacy package, saving it as a Python package to a models folder. This saves the model as wheel which compressed the model.

To install any of the models, you can the use pip install like

```
$ python -m pip install models/en_ner_reddit_cooking-5.0.0.tar.gz
Processing ./models/en_ner_reddit_cooking-5.0.0.tar.gz
   Preparing metadata (setup.py) ... done
...
Successfully built en_ner_reddit_cooking
Installing collected packages: en-ner-reddit-cooking
Successfully installed en-ner-reddit-cooking-5.0.0
```

You can then run the model like:

```
import spacy
nlp = spacy.load("en_ner_reddit_cooking")
doc = nlp("Make a dressing with mayo, plain yogurt, curry powder, mustard powder, mustard,
doc.ents
# (mayo, plain yogurt, curry powder, mustard powder, mustard, ground coriander)
```