Государственное бюджетное образовательное учреждение высшего образования Московской области «Университет «Дубна» Филиал «Котельники»

Выпускная квалификационная работа бакалавра на тему:

Прогнозирование сбоев в работе станков лазерной резки на основе методов интеллектуального анализа данных

> Студент: Глубоков Д.В., группа ИВТ-41

> > Научный руководитель: д.т.н., Артамонов Ю.Н.

Станок Навигатор КС-12В

Актуальность

Актуальность работы обуславливается отсутствием системы автоматического прогнозирования неисправностей для станков Навигатор.

Кроме этого, в целом существует область прогнозирования неисправностей различных устройств. Данная область также является актуальной и быстроразвивающейся.

Цель

Цель: разработка системы для прогнозирования и обнаружения неисправностей на станках лазерной резки Навигатор КС-12В компании ВНИТЭП

Объект: станок лазерной резки Навигатор КС-12В.

Предмет: система прогнозирования и обнаружения неисправностей для станка.

Задачи

Задачи:

- анализ показателей и их краевых значений, предоставляющих сведения о неисправностях станка Навигатор;
- анализ существующих решений и подходов для прогнозирования неисправностей в устройствах;
- обработка и анализ накопленных данных со станка Навигатор;
- обоснование и выбор методов для прогнозирования и обнаружения неисправностей;
- разработка модели прогнозирования и программного модуля;
- введение разработанного модуля в эксплуатацию.

Существующие решения

Неисправности:

- выход из строя лазерной головы станка;
- выход из строя оси XYZ;
- ошибки операторов.

Существующие подходы к выявлению неисправностей:

- мониторинг ошибок оператором;
- мониторинг на основе показателей системы Omnicube;
- мониторинг программного обеспечения ЧПУ.

Мониторинг показателей и ошибок

Проблема и гипотеза

Проблема: Отсутствие автоматизированной системы прогнозирования и выявления потенциальных неисправностей на станках Навигатор, позволяющая сохранить ресурсы пользователей станка.

Гипотеза: Предполагается, что использование методов интеллектуального анализа данных может помочь в решении обозначенной проблемы.

Анализ подходов

Используемые методы и подходы в задачах прогнозирования и определения неисправностей в различных устройствах:

- анализ временных рядов;
- методы машинного обучения: классификация, регрессия и кластеризация;
- нейронные сети различных архитектур: рекуррентные, сверточные и другие;
- методы теории фильтров и динамических систем: фильтры Калмана, адаптивные фильтры.

Входные и выходные данные

Входные данные:

- температура лазера;
- мощность лазера;
- установленная мощность лазера;
- время в Unix формате (мировое время).

Выходные данные:

• отчет о состоянии станка.

Тестирование на нормальность

laser_power_series Эксцесс (острота пика распределения): 1.5045682121592465 Ассиметрия (искаженность данных): 1.5639472853029839

laser_temp_series Данные не порождены нормальным распределением: stat=460049.0790975577, p-value=0.0

laser_power_series Данные не порождены нормальным распределением: stat=247273.96052036807, p-value=0.0

Свойства параметров температуры и мощности

Тестирование на стационарность

Прогнозирование на основе LSTM

Оптимальные окна

Результаты предсказания

Кластеризация на основе алгоритма k-Shape

$$SBD(\mathbf{x},\mathbf{y}) = 1 - \max \Big(\frac{CC(\mathbf{x},\mathbf{y})}{\sqrt{R_0(\mathbf{x},\mathbf{x}) \cdot R_0(\mathbf{y},\mathbf{y})}} \Big)$$

Архитектура

Внедрение в эксплуатацию

Заключение