Lipid Peroxidation Recovery after an Acute Thermal Challenge in a Marine Intertidal Mussel (Mytilus californianus)

Jeremiah Dallmer, Emma Strand, Chase Dugay, Helena Drolshagen, Lani Gleason, Wes Dowd

Department of Biology, Loyola Marymount University

Introduction

- The California mussel (*Mytilus californianus*) lives in the intertidal zone, a stressful environment ranging from fully terrestrial to fully aquatic conditions.
- Heat stress during low tide can induce the formation of reactive oxygen species (ROS), which can cause lipid peroxidation (LPO) damage in cellular membranes.
- Oxidative stress (accumulation of oxidative damage to cellular molecules) results from an imbalance between ROS production and cellular antioxidant defenses.

2.00000E-4

1.50000E-4

1.00000E-

Treatment

• It is known that an acute thermal challenge to 33 °C causes increased LPO in gill. However, there is no chronic accumulation of LPO after daily exposure to 30 °C for a month ("Heat" in Figure 1).

Figure 1: LPO significantly increases after acute thermal challenge (Jimenez et al. 2016).

Methods (continued)

Figure 2: Animals exposed to a 33 °C heat ramp were sampled at the following time-points: baseline (before heat ramp), top of the ramp, and 1, 4, 12, and 24hr recovery. Animals exposed to 30 °C were sampled at the top, 1hr, and 12hr time-points

• To assess lipid peroxidation, we used a microplate-based version of the Ferrous Oxidation of Xylenol Orange (FOX) assay (Wolff 1994; Jimenez et al. 2016).

Figure 3: Thermal challenge in a neonatal incubator.

Objective

- The present study had two objectives:
 - 1. Determine the time course of recovery for acute exposure to 33 °C.
 - 2. Determine whether 30 °C causes a similar, acute rise in LPO in gill.

Methods

- 37 mussels were common gardened for four months to erase residual effects of environmental factors due to variation in their natural environment.
- The mussels were then divided into thermal challenge groups (30 °C or 33 °C) and then time-point groups (n = 5-6) for each thermal challenge.

Results

Figure 4: Effects of time-point and temperature on lipid peroxidation levels.

Results (continued)

- Box-Cox transformed data from each thermal challenge group were analyzed together using a 2-way ANCOVA and separately with a 1-way ANCOVA, with shell length as a covariate in all cases.
- In no case was LPO found to vary significantly, specifically:
 - LPO did not vary between thermal challenge groups (p = 0.881).
 - LPO did not vary significant at recovery time-points for either the 33 °C (p = 0.573) thermal challenge or the 30 °C (p = 0.714).
 - Length did not significantly affect amount of LPO (p > 0.05).

Conclusions and Future Work

- A thermal challenge to 30 °C did not cause an acute rise in LPO.
- Recovery time could not be measured in the 33 °C thermal challenge group because no acute rise in LPO was observed.
- Our results contradict previous research that showed a thermal challenge to 33 °C to cause an acute rise in LPO.
- Future work would include first repeating these experiments; there are some concerns about the health of our animals that might have affected the data, especially considering that our data disagree with previous results.

Acknowledgements

National Science Foundation Integrative Organismal Systems Grant IOS-1256186

We would like to thank Dr. Wes Dowd and Dr. Lani Gleason for their support and guidance in our project.

Citations

Jimenez, A. G., Alves, S., Dallmer, J., Njoo, E., Roa, S., & Dowd, W. W. (2016). Acclimation to elevated emersion temperature has no effect on susceptibility to acute, heat-induced lipid peroxidation in an intertidal mussel (*Mytilus californianus*). *Marine Biology*, 163(3), 1-10.

Wolff, S. Ferrous Ion Oxidation in Presence of Ferric Ion Indicator Xylenol Orange for Measurement of Hydroperoxides. Methods in Enzymology, 233 (1994), 182-189.