北京师范大学 2024-2025 学年第一学期高等代数 I 期末考试题 (A 卷)

课程名称:	高等代数 I		任课老师姓名:		
卷面总分:	分	考试时长:_	120 分钟	考试类别:_	闭卷
院 (系): _		专业:		年级:	
姓 名:	4	_ 学 号:			

一. (18 分) 求下列线性方程组的一个特解 % 和导出组的一个基础解系, 并用它们表出线性方程组的全部解

$$\begin{cases} x_1 + 2x_2 + x_3 - x_4 + x_5 = -1 \\ x_1 - 2x_2 + x_3 - x_4 - x_5 = 3 \\ x_1 + 3x_2 + 5x_3 - x_4 = 1 \end{cases}$$

- 二. (18 分) 设 $A \in M_{m \times n}(F)$, r(A) = m, $B \in M_{m \times s}(F)$, 证明
 - (1) 存在 $n \times s$ 矩阵 X 使得 AX = B;
 - (2) 满足 AX = B 的矩阵 X 是唯一的当且仅当 n = m.
- 三. (17 分) 设 W 是 F 上向量空间 V 的子空间, 并且有 V 的 $s \ge 1$ 维子空间 $W_1 = \langle \alpha_1, \alpha_2, ..., \alpha_s \rangle$,使 $/=W \oplus W_1$. 对于任意 $r_1, ..., r_s \in W$,令 $\beta_i = \alpha_i + r_i, i = 1, ..., s, W_2 = \langle \beta_1, \beta_2, ..., \beta_s \rangle$.证明

$$V = W \oplus W_2$$

0 1

四. (17 分) 记
$$n$$
 阶矩阵 $J_n(0) =$. . . $A = \begin{pmatrix} J_r(0) & & \\ & J_s(0) \end{pmatrix}, \ r \leq s.$

设 V = F[x] 是 F 上向量空间. 证明

 $(1)F_A[x] = \{f(x) \in V | f(A) = 0\}$ 是 V 的子空间、并求出 $F_A[x]$ 中一个次数最低的首 1 系数多项式 $m_A(x)$,使得

$$F_A[x] = m_A(x)F[x]$$

(2) 令 $F[A] = \{f(A)|f(x) \in F[x]\}$,则 F[A] 是向量空间 $U = M_n(F)$ 的一个子空间,并且

$$F[A] \cong F^s$$
.

- 五. (15 分) 设正整数 $n_1, n_2, ..., n_s$ 两两互素, $\alpha_1, \alpha_2, ..., \alpha_s$ 分别是 $n_1, n_2, ..., n_s$ 次本原单位根. 令 $n = n_1 n_2 ... n_s$, $\alpha = \alpha_1 \alpha_2 ... \alpha_s$. 证明
 - (1) α 是 n 次单位根, 并且若 α 是 d 次本原单位根, 则有 $\alpha_i^d=1, i=1,...,s$.
 - (2) α 是 n 次本原单位根.

六. (15 分) 设 $p(x)=x^6+p^2,$ 其中 p 为素数. 令 $\alpha=i\cdot\sqrt[3]{p},$ $i=\sqrt{-1}.$

- (1) 若 $f(x) \in \mathbb{Q}[x]$, f(x)|p(x), 且 $deg(f(x)) \leq 3$, 证明 $f(\alpha) \neq 0$;
- (2) 求出 α 在 $\mathbb{Q}[x]$ 中的极小多项式和包含 α 的最小数域.