< Lecture 5>

Formally,
Given NFA $N = (Q, \Sigma, \delta, g_0, F)$ and
input string w, \underline{M} accepts $w = y, y_2 \cdots y_m$ where $y: \in \Sigma: U3E_3^2$, if there is a
sequence of states r_0, r_1, \cdots, r_m that belong to Q s.t

- 1. ro = 80
- 2. Pi+1 & o(ri, yi+1) for i=0, --, m-1
- 3. rm EF.

M: 0,1

Apply formal definition of "Maccepts w"

W: 101

Apply formal definition of "Maccepts w"

 $M: \xrightarrow{0, 1} \xrightarrow{0, 1} \xrightarrow{0, 1} \xrightarrow{0, 1} \xrightarrow{0, 1} \xrightarrow{0}$

w: 010110

 ω

- o NFA and DFA have the same expressive power.
- Any DFA is trivially a NFA.
 (ωλγ?)
- o Any NFA can be turn to an equivalent DFA

(We say that two machines are equivalent if they recognize the same languages

b, bb. babba