考试课程	高等数学甲 2(层次 A)		考试日期	2011年6月 日		成绩	
课程号	A0702173	教师号		任课教师姓名			
考生姓名		学号 (8位)		年级		专业	

题号	_	 _	四	五.	六	七	八	九
得 分			**		× A			

一、选择题(本题共8小题,每小题3分,共24分)

- 1. [3 分] 曲线 $\begin{cases} x^2 2y^2 = 1 \\ z = 0 \end{cases}$ 绕 x 轴旋转一周所得曲面的方程为(

 - (A) $x^2 2y^2 + z^2 = 1$; (B) $x^2 2y^2 2z^2 = 1$;

 - (C) $x^2 2y^2 z^2 = 1$; (D) $x^2 2y^2 + 2z^2 = 1$.
- 2. [3分] 设 $u = 2xy z^2$,则u在(2,-1,1)处的方向导数的最大值为().

- (A) 24; (B) $2\sqrt{2}$; (C) 4; (D) $2\sqrt{6}$.
- 3. [3分] 区域 D 为 $0 \le x \le 1, 0 \le y \le 1$,则积分 $\iint e^x \cdot e^y dxdy$ 的值为 ().
- $(A)(e-1)^2$; (B)e; $(C)(e+1)^2$; (D)e.
- 4. [3分] 设 L 是圆域 $D: x^2 + y^2 \le -2x$ 的正向周界,则 $\int_L x dy y dx$ 等于(
- (A) -2π ; (B) 0; (C) $\frac{3}{2}\pi$; (D) 2π .

- 5. [3分] 级数 $\sum_{n}^{\infty} \frac{1}{n^p}$ 收敛时参数 p 的范围 ()

- (A) p > 1; (B) $0 ; (C) <math>p \ge 1$; (D) -1 .

- 6. [3分]设Σ为柱面 $x^2 + y^2 = 1$ 介于平面z = 0与z = 1之间部分的外侧,则 $\iint y^2 dy dz = 0$

 - (A) $\frac{2}{3}$; (B) $-\frac{2}{3}$;
- (C) 0;
- (D). $-\frac{4}{3}$.

- 7. [3分]下列级数中发散的是(
 - (A) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\ln(n+1)}$; (B) $\sum_{n=1}^{\infty} \frac{n}{3n-1}$;
 - C) $\sum_{n=0}^{\infty} (-1)^{n-1} \frac{1}{3^n}$:
- $(D\sum_{n=1}^{\infty}\frac{\sin na}{n^2}$,其中0 < a < 1.
- 8. [3分] 曲面 $z = y + \ln x \ln z$ 在点(1,1,1)处的法线方程是(
 - (A) $x-1=y-1=\frac{z-1}{1}$;
- (B) $x-1=\frac{y-1}{z-1}=\frac{z-1}{z-2}$;
- (C) $x-1=y-1=\frac{z-1}{-2}$;
- (D) $x = y = \frac{z+3}{2}$.

二、填空题 (每小题 4 分, 本题共 16 分)

- 1. 过点(2,0,-3)且与直线 $\frac{x-1}{2} = \frac{y-1}{-1} = \frac{z-2}{3}$ 垂直的平面方程是
- 2. 设L是从A(1,0)到B(-1,2)的直线段,则 $\int_{L} (x+y)ds = ____$
- 3. $f(x) = \begin{cases} -1, -\pi < x \le 0, \\ 1 + \frac{1}{4}x^2, 0 < x \le \pi, \end{cases}$ 则其以为 2π 周期的傅立叶级数在点 $x = \pi$ 收敛

4. 二次积分 $\int dx \int_{x}^{t+\sqrt{1-x^2}} f(x,y)$ 可交换次序为

三、试解下列各题(本题共2小题,每小题6分,共12分)

1.
$$[6 \text{ 分}] z = \frac{y}{x} \sin(x^2 + y^2)$$
, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

2. [6分] 求 $f(x,y,z) = (x+2y+3z)^2$ 在点(-1,2,0)处的梯度.

四、[本题共2小题,每小题6分,共12分]

1. [6分]
$$z = z(x, y)$$
 由方程 $\frac{x}{z} = \ln \frac{z}{y}$ 所确定,求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial z}{\partial y}$.

2. [6 分] 计算二重积分 $\iint_D \sqrt{x^2 + y^2} dxdy$, 其中 $D \to x^2 + y^2 = 1$ 和 $x^2 + y^2 = x$ 及 x = 0 所围在第一 象限的区域.

五、[本题 7 分] 求幂级数 $\sum_{n=0}^{\infty} (n+1)x^n$ 的收敛域及和函数.

六、[本题 7 分] 计算曲线积分 $\int (5xy - e^x \sin y) dy + e^x \cos y dx$,其中 L 为曲线

 $x = \sqrt{2y - y^2}$, 方向为沿 y 增大的方向.

七、[本题 8 分] 计算曲面积分 $I = \iint_{\Sigma} xyzdxdy$,其中 Σ 为球面 $x^2 + y^2 + z^2 = 1$ 的外

侧在 $x \ge 0$, $y \ge 0$ 的部分.

八、[本题 9 分] 设曲面 $S: \frac{x^2}{2} + y^2 + \frac{z^2}{4} = 1$, 平面 $\pi: 2x + 2y + z + 5 = 0$,

- (1) 试在曲面 S 上求平行于平面π的切平面方程;
- (2) 试求曲面S与平面π之间的最短距离.

九、[本题 5 分]设 f(x) 为区间 [a,b] 上的正值连续函数,且 $\int_{a}^{b} f(x) dx = A$,

试证明: $\int_a^b f(x)e^{f(x)}dx \int_a^b \frac{1}{f(x)}dx \ge (b-a)(b-a+A)$