JF PY1T10 Special Relativity

Lecture 12:

Energy / Momentum Invariant & Lorentz Transformation of Forces

Summary of Lecture 11

Elastic Scattering of Identical Particles:

$$\theta = \cos^{-1}\left(\frac{K_1}{4E_0 + K_1}\right) < 90^{\circ}$$

Compton Effect:

First experimental evidence that light behaved as a particle (photon) Collision between a photon and a nearly-free electron.

$$\lambda_2 - \lambda_1 = \frac{h(1 - \cos \theta)}{m_0 c}$$

Single Particle:

$$p = \gamma m_0 v$$
 , $E = \gamma m_0 c^2$

Related by: $E^2 - c^2p^2 = E_0^2 = m_0^2c^4$

If particle has rest energy E_0 (i.e. total energy E_0 as measured in frame where p=0), the E and p as measured in any other frame can be combined to form an invariant quantity:

$$E^2 - c^2 p^2 = E_0^2$$

Holds for any frame.

$$E^2 - c^2 p^2 = E'^2 - c^2 p'^2 = E_0^2$$

This can also be applied to a <u>collection</u> of particles:

As measured in a given frame:

$$E=$$
 sum of energies of particles = $E_1+E_2+E_3+\cdots$
 $\vec{p}=$ vector sum of momenta = $\vec{p}_1+\vec{p}_2+\vec{p}_3+\cdots$

Then:

$$E^2 - c^2 \vec{p}^2 = E_0^2$$

Where E_0 is the total energy of all particles measured in a frame where $|\vec{p}|=0$

N.B. Particles may not all be at rest in this frame $: E_0 \neq E_{0_1} + E_{0_2} + \cdots$

Consider the production of an anti-proton in a proton-proton collsion:

$$B_1 + B_2 \rightarrow B_1 + B_2 + \overline{B} + B_3$$

Anti-proton (negative charge)

Suppose target proton B_2 is initially at rest in the lab frame. What energy must B_1 have in order for the reaction to occur?

Move to the S' frame – where the sum of all momenta = 0

What energy must B_1 have in order for the reaction to occur?

The minimum energy will result in a situation where all particles are at rest after the collision:

i.e. in
$$S'$$
: $\overrightarrow{P'} = 0$ and $E' = 4m_0c^2$

Using the old way: Conservation of energy

$$2m'_1c^2 = 4m_0c^2$$
$$\Rightarrow m'_1 = 2m_0$$

$$\Rightarrow \frac{m'_1}{m_0} = 2 = \gamma$$

This gives v'. From this we can work out v in S (lab frame) But let us try using the $E^2-c^2\vec{p}^2$ invariant.

$$E^{2} - (cp)^{2} = E'^{2} - (cp)'^{2}$$

$$(m_{1}c^{2} + m_{0}c^{2})^{2} - cp_{1}^{2} = (4m_{0}c^{2})^{2} - 0$$

$$(m_{1}c^{2})^{2} + 2m_{1}m_{2}c^{4} + (m_{0}c^{2})^{2} - cp_{1}^{2} = 16(m_{0}c^{2})^{2}$$

But for the single particle
$$B_1$$
: $(m_1c^2)^2-(cp_1)^2=(m_0c^2)^2$
$$\Rightarrow 2m_1m_2c^2+2(m_0c^2)^2=16(m_0c^2)^2$$

$$2(m_1c^2)(m_0c^2)+2(m_0c^2)^2=16(m_0c^2)^2$$

$$2m_1c^2+2m_0c^2=16\ m_0c^2$$

$$m_1c^2=7m_0c^2$$

$$\Rightarrow E_{min}=m_1c^2=7m_0c^2$$
 Minimum K.E. of $B_1=7m_0c^2-m_0c^2=6m_0c^2$

Minimum K.E. of
$$B_1 = 7m_0c^2 - m_0c^2 = 6m_0c^2$$

For a proton, $m_0c^2 = 0.938 \text{ GeV}$

Therefore, the minimum K.E. is 5.62 GeV

For this reason, the University of California Bevatron was designed to deliver protons of ~ 6 GeV kinetic energy into a fixed target.

The antiproton was discovered there in 1955, resulting in the 1959 Nobel Prize in physics for Segrè and Chamberlain.

Better to have a colliding beam of protons:

1983: Colliding p and \bar{p} at CERN to create W and Z bosons, which carry the weak nuclear force.

2008: Large Hadron Collider (27 km circumference)

Two beams collide with a total kinetic energy of 14,000 GeV. Needs a magnetic field of $\sim 8.3 \text{ T}$

Superconducing magnets must be kept at 1.9 K.

On 4th July 2012: Higg's Boson discovered ($m_0=125~{
m GeV}$)

In *S*:

$$E = mc^2 = \gamma(u)m_0c^2$$

$$\vec{p} = m\vec{u} = \gamma(\vec{u})m_0\vec{u}$$

In *S*':

$$E' = m'c^{2} = \gamma(u')m_{0}c^{2}$$

$$\overrightarrow{p'} = m'\overrightarrow{u'} = \gamma(\overrightarrow{u'})m_{0}\overrightarrow{u'}$$

Can relate E, E', \vec{p} and \vec{p}' by the velocity transformation:

$$u'_{x} = \frac{u_{x} - v}{1 - \frac{vu_{x}}{c^{2}}}, u'_{y} = \frac{\frac{u_{y}}{\gamma}}{1 - \frac{vu_{x}}{c^{2}}}$$

From French pg. 208:

$$p_x' = \gamma(v) \left[p_x - \frac{vE}{c^2} \right], \quad p_y' = p_y, \quad p_z' = p_z$$

Transformation of Forces:

$$\vec{F} = \frac{d\vec{p}}{dt}$$
, $\vec{p} = m\vec{u}$

Viewed in another frame:

$$\overrightarrow{F'} = \frac{d\overrightarrow{p}'}{dt}$$

But
$$p_x'=\gamma\left(p_x-rac{vE}{c^2}
ight)$$
, $p_y'=p_y$, $p_z'=p_z$, $t'=\gamma\left(t-rac{vx}{c^2}
ight)$

$$F_{x}' = \frac{dp_{x}'}{dt'} = \frac{dp_{x}'}{dt} \frac{dt}{dt'}$$

$$F_{x}' = \frac{dp_{x}'}{dt'} = \frac{dp_{x}'}{dt} \frac{dt}{dt'} = \frac{\gamma \left(\frac{dp_{x}}{dt} - \frac{v}{c^{2}} \frac{dE}{dt}\right)}{\gamma \left(1 - \frac{v}{c^{2}} \frac{dx}{dt}\right)} = \frac{F_{x} - \frac{v}{c^{2}} \frac{dE}{dt}}{1 - \frac{vu_{x}}{c^{2}}} \tag{C}$$

In both Newtonian and Relativistic mechanics:

$$\frac{dE}{dt} = \vec{F} . \vec{u}$$

Proof:

$$E^{2} = c^{2}p^{2} + E_{0}^{2} = c^{2}(\vec{p}.\vec{p}) + E_{0}^{2}$$

$$\frac{d}{dt}E^{2} = \frac{d}{dt}c^{2}(\vec{p}.\vec{p}) + \frac{d}{dt}E_{0}^{2}$$

$$2E\frac{dE}{dt} = 2c^{2}\vec{p}.\frac{d\vec{p}}{dt} = 2c^{2}\vec{p}.\vec{F}$$

$$mc^{2}\frac{dE}{dt} = c^{2}\vec{p}.\vec{F}$$

$$\Rightarrow \frac{dE}{dt} = \frac{\vec{p}}{m}.\vec{F} = \vec{u}.\vec{F}$$

Going back to ①:

$$F_x' = \frac{F_x - \frac{v}{c^2} \vec{F} \cdot \vec{u}}{1 - \frac{v u_x}{c^2}}, \qquad F_y' = \frac{F_y}{\gamma \left(1 - \frac{v u_x}{c^2}\right)}, \qquad F_z' = \frac{F_z}{\gamma \left(1 - \frac{v u_x}{c^2}\right)}$$

Note: If \vec{F} depends on position but not on particle velocity, then \vec{F}' depends on position and velocity.

If $|\vec{u}|=0$ (particle at rest in S), then $F_x'=F_x$, $F_y'=\frac{F_y}{\gamma}$, $F_z'=\frac{F_z}{\gamma}$

Kinematics: Hints for Problem Solving

- 1. Conservation of Mass-Energy. The total mass-energy is always conserved. Add up $E = \gamma m_0 c^2$ for all of the particles and it is the same before as after the collision.
- 2. Conservation of Momentum. Momentum is also conserved; but remember, this is $p=\gamma m_0 v$
- 3. Invariance of $E^2 p^2c^2$. Remember that $E^2 p^2c^2$ is the same in all inertial frames, and it applies to the whole system as well as to individual particles.
- **4. In the centre of momentum frame**, the total momentum is zero (by definition).