

BumbleBee – 3D Stereo Camera

Jin-Hyung Kim

Lab seminar

Stereo Vision

General Process & Principle

Tradeoff btw precision and accuracy

Long baseline

- Estimated distance is more precise
- Longer disparity range causes
 - ➤ Heavy computation
 - ➤ High false matching possibility

Short baseline

- Estimated distance is less precise
- Shorter disparity range causes
 - ➤ Light computation
 - ➤ Low false matching possibility

Conventional matching algorithm

- Mask operation
- Cost function
- •Local minima

$$SAD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{I}(x, y) - I_{r}(x - d, y)|$$

$$SSD_{MN}(x, y, d) = \sum_{y=1}^{M} \sum_{x=1}^{N} [I_{i}(x, y) - I_{r}(x - d, y)]^{2}$$

$$MAE_{MN}(x, y, d) = \frac{1}{M \times N} \sum_{y=1}^{M} \sum_{x=1}^{N} |I_{t}(x, y) - I_{r}(x - d, y)|$$

- Energy based
- •Global Priority
- •Belief Propagation, Graph cut...

- Smooth depth connectivity
- Segmentation
- Pattern

$$E(f) = E_{data}(f) + \lambda E_{smooth}(f)$$

BumbleBee (Legacy)

Digital stereo vision camera

Resolution	640 x 480
Sensor	Sony ICX204 Color CCD
Frame rate	30Hz
Baseline	12 cm
Weight	375 g
Interface	IEEE-1394a
Power consumption	2.1 W
Lens	6 mm (43 deg H-FOV)

Accuracy of BumbleBee

IEEE 1394 – Firewire, i.Link

- Apple이 제창한 개인용 컴퓨터 및 디지털 오디오, 디지털 비디오용 시리얼 버스 인터페이스 표준 규격
 - 디지털 인터페이스 표준 : 반복적인 DAC에 발생하는 지속적인 신호의 감쇠를 처리
 - 빠르고 용이한 전환: SCSI와 달리 장치의 설치/제거가 컴퓨터 구동 중에도 용이
 - 편리성 : PnP, 빠른 속도
 - 4.5 m maximum
 - 규격
 - > IEEE-1394a : 100/200/400 Mbps
 - > IEEE-1394b : 800Mbps
 - ➤ IEEE-1394c : 800Mbps

Setup Development environment

What you need

- H/W
 - > Bumblebee camera
 - ➤ IEEE-1394a Interface board / additional power for mobile
 - ➤ IEEE-1394a Cable
- S/W
 - ➤ Digiclops SDK (3.2b09)
 - > Triclops SDK (2.5b05)

Setup Development environment

Visual Studio

SL Image System Laboratory

How to use SDK

Include

```
#include <digiclops.h>
#include <triclops.h>
```

Work Flow

Image System Laboratory

L Image System Laboratory

Initialization

```
( digiclopsCreateContext( &m_digiclopsContext ) );
( digiclopsInitialize( m_digiclopsContext, 0 ));
( digiclopsGetTriclopsContextFromCamera( m_digiclopsContext, &m_triclopsContext ) );
( digiclopsGetCameraInfoEx( m_digiclopsContext, &m_info ) );
( digiclopsSetImageTypes( m_digiclopsContext, STEREO_IMAGE ) );|
( digiclopsSetImageResolution( m_digiclopsContext, DIGICLOPS_FULL ) );
( digiclopsSetFrameRate( m_digiclopsContext, DIGICLOPS_FRAMERATE_100 ) );
( digiclopsStart( m_digiclopsContext ) );
( triclopsSetResolutionAndPrepare(m_triclopsContext.h.w.
    imageHeight().imageWidth()) );
( triclopsSetImageBuffer(m_triclopsContext.m_leftImage.
    Trilmg_RECTIFIED.TriCam_LEFT) );
( triclopsSetImageBuffer(m_triclopsContext,m_rightImage,
    Trilmg_RECTIFIED.TriCam_RIGHT) );
( triclopsSetImageBuffer(m_triclopsContext,left,
    Trilmg_RECTIFIED.TriCam_LEFT) );
( triclopsSetImageBuffer(m_triclopsContext, right,
    Trilmg_RECTIFIED.TriCam_RIGHT) );
triclopsGetFocalLength(m_triclopsContext, &fc);
triclopsGetImageCenter(m_triclopsContext, &cv, &cx);
triclopsSetDisparity(m_triclopsContext, 30, 80);
triclopsSetUniquenessValidationMapping(m_triclopsContext, 0);
triclopsSetUniquenessValidation(m_triclopsContext, 1);
triclopsSetTextureValidationMapping(m_triclopsContext, 0);
triclopsSetTextureValidation(m_triclopsContext, 1);
triclopsSetBackForthValidation(m_triclopsContext, 1);
triclopsSetBackForthValidationMapping(m_triclopsContext, 0);
triclopsSetSurfaceValidationMapping(m_triclopsContext, 0);
triclopsSetSurfaceValidation(m_triclopsContext, 1);
triclopsSetSubpixelValidationMapping(m_triclopsContext, 0);
```

digiclopsGrabImage(m_digiclopsContext)

BumbleBee Capture Download World User Camera (Grab)

```
TriclopsInput inputStereo,inputLeft,inputRight;
TriclopsPackedColorImage outputLeft,outputRight;
( digiclopsExtractTriclopsInput(m_digiclopsContext,STEREO_IMAGE,&inputStereo ) );
if(m_hasColor) {
    ( digiclopsExtractTriclopsInput(m_digiclopsContext,LEFT_IMAGE,&inputLeft ) );
    ( digiclopsExtractTriclopsInput(m_digiclopsContext,RIGHT_IMAGE,&inputRight ) );
( triclopsRectify(m_triclopsContext,&inputStereo) );
if(m_hasColor) {
    ( triclopsRectifyPackedColorImage(m_triclopsContext,TriCam_LEFT,
        &inputLeft,&outputLeft) );
    ( triclopsRectifyPackedColorImage(m_triclopsContext,TriCam_RIGHT,
        &inputRight.&outputRight) );
triclopsPreprocess(m_triclopsContext, &inputStereo);
triclopsStereo(m_triclopsContext);
triclopsGetImage(m_triclopsContext, TriImg_DISPARITY, TriCam_REFERENCE, &m_depthImage);
```

Set Buffer

```
byTE *

( triclopsSetPackedColorImageBuffer(m_triclopsContext,
    TriCam_LEFT,(TriclopsPackedColorPixel*)m_leftColorImage) );
( triclopsSetPackedColorImageBuffer(m_triclopsContext,
    TriCam_RIGHT,(TriclopsPackedColorPixel*)m_rightColorImage) );

tmp_Dptr[i][j] = (BYTE)(depthImage.data[i*depthImage.rowinc + j]);
    TriclopsImage
```

SL Image System Laboratory

Bumblebee process

Stage 1: Rectification

After the images are transmitted to the PC over the IEEE-1394 bus, they are corrected and aligned to remove lens distortion.

Stage 2: Laplacian of Gaussian

The Laplacian of Gaussian filter is applied to create edge images that are not biased by image brightness.

Stage 3: Correlation Stereo

For each pixel in the right image, a corresponding pixel in the left image is obtained via correlation using the Sum of Absolute Differences criteria.

Disparity Validation – Init.

SL Image System Laborator

Disparity Validation - Edge

nage System Laboratory

Disparity Validation - Uniqueness

Image System Laboratory

Disparity Validation - Texture

Disparity Validation - Surface

ratory

Disparity Validation – Back-forth

SL Image System Laborat

L Image System Laboratory

Final Output

Image System Laboratory

Start from...

Image System Laboratory

After validation

