2024~2025 学年第一学期二调考试・高二数学 参考答案、提示及评分细则

- 1. C 由题意可知, $\frac{2}{3} = -\frac{a}{h}$, 所以 $\frac{a}{h} = -\frac{2}{3}$. 故选 C.
- 2. B 由题意得 $a_2 = -2a_1$, $a_3 = 4a_1$, 由 $a_2 a_3 = 6$, 得 $-6a_1 = 6$, $a_1 = -1$. 故选 B.
- 3. A 因为 $a/\!\!/b,b\perp c$,所以 $\left\{\frac{x}{1} = \frac{1}{y} = \frac{2}{-2}, \text{解得} \right\}_{y=-1,\text{所以 } x+y+z=-1.}$ 故选 A. z=1.
- 4. B 设 P 点坐标为 (x_0, y_0) ,则有 $\frac{x_0^2}{25} + \frac{y_0^2}{16} = 1$,M(x, y),根据 $\overrightarrow{OM} = \frac{1}{2} \overrightarrow{OP}$,可得 $x_0 = 2x$, $y_0 = 2y$,代入椭圆方程可得: $\frac{4x^2}{25} + \frac{y^2}{4} = 1$. 故选 B.
- 5. D 由题意,得 $\overrightarrow{EF} = \overrightarrow{EA} + \overrightarrow{AF} = \frac{1}{3}\overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{CF} = -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + \frac{1}{2}\overrightarrow{CD} = -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC} + \frac{1}{2}(\overrightarrow{AD} \overrightarrow{AC}) = -\frac{1}{3}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AC}$. 故选 D.
- 6. C 因为 $a_n a_{n-1} = \frac{1}{n^2 + n} = \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$,所以 $a_n = (a_n a_{n-1}) + (a_{n-1} a_{n-2}) + \dots + (a_2 a_1) + a_1 = (\frac{1}{n} \frac{1}{n+1}) + (\frac{1}{n-1} \frac{1}{n}) + \dots + (\frac{1}{2} \frac{1}{3}) + \frac{1}{2} = 1 \frac{1}{n+1} = \frac{n}{n+1}$,所以 $a_{2 \ 024} = \frac{2 \ 024}{2 \ 025}$. 故选 C.
- 7. D 如图,以 DA,DC,DD1 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标 系, B_1 (4,4,4), D_1 (0,0,4),A (4,0,0),C (0,4,0),E (2,4,0), \overline{DB}_1 = (4,4,4), \overline{AD}_1 = (0,4,4), \overline{CD}_1 = (0,4,4), \overline{DB}_1 \overline{AD}_1 = 0, \overline{DB}_1 \overline{CD}_1 = 0,所以 DB_1 上 AD_1 , DB_1 上 AD_1 , DB_1 上 AD_1 , DB_1 上 AD_1 , DB_1 上 AD_1 ,DD1 上 AD_1 ,DD2 上 AD_1 ,DD3 上 AD_1 。 (2,4,4),DD4 上 AD_1 ,DD5 上 AD_1 。 (3),DD6 上 AD_1 ,DD7 上DD8 上DD9 ,DD9 DD9 ,DD9 DD9 D
- 8. A 根据题意,对于给定的 P 点,当直线 l 过圆心 M 时, $\frac{|AB|}{|PA|} = \frac{4}{|PM|-2}$,此时 $\frac{|AB|}{|PA|}$ 有最大值,所以 $\frac{4}{|PM|-2} \ge 2$,所以 $|PM| \le 4$,即 $\sqrt{x_0^2+9} \le 4$,解得 $-\sqrt{7} \le x_0 \le \sqrt{7}$. 故选 A.
- 9. AC 对于 A,由 $a_2 = a_5 = 0$,可得 $a_n = 0$,所以 $a_8 = 0$,A 正确;对于 B,由 $S_n = 8n n^2$,得 $a_8 = S_8 S_7 = -7$,B 错误;对于 C,由 $a_3 = 5$, $a_5 = 3$,得 $\{a_n\}$ 的公差为-1, $a_8 = a_5 3 = 0$,C 正确;对于 D, $S_{16} = \frac{16(a_1 + a_{16})}{2} = 8(a_8 + a_9) = 0$, $a_8 + a_9 = 0$, a_8 的值不确定,D 错误. 故选 AC.
- 8(a_8+a_9)=0, a_8+a_9 =0, a_8 的值不确定,D 错误. 故选 AC.
 10. BD 对于选项 A,由题意可知抛物线 C 的焦点为 F(1,0),准线 l 的方程为 x=-1,所以点 F 到直线 l 的距离是 2,故 A 错误;对于选项 B,由 $\begin{cases} 2x-y-4=0,\\ y^2=4x, \end{cases}$ 得 y^2-2y-8 =0,解得 y=-2 或 y=4,所以| y_P-y_Q |=6,又 PQ与x 轴的交点为 E(2,0),所以|EF|=1,所以△FPQ 的面积为 $\frac{1}{2}$ |EF|•| y_P-y_Q |=3,故 B 正确;对于选项 C,因为 PQ 的中点 G 到直线 l 的距离为 3,所以 $\frac{x_P+x_Q}{2}$ +1=3,即 x_P+x_Q =4,所以|FP|+|FQ|= x_P+x_Q+2 =6,故 C 错误;对于选项 D,设 PQ:x= x_P+x_Q+2 =6,故 C 错误;过 PQ:x= x_P+x_Q+2 0.

以 OP | OQ, 故 D 正确. 故选 BD.

11. ABC 连接 BD 交 AC 于点 O, 连结 PO, 由题意, 得 PO | 平面 ABCD, 因 为 AC⊂平面 ABCD, 所以 PO | AC, 因为四边形 ABCD 是正方形, 所以

 $BD \mid AC$,因为 $PO \cap BD = O$,PO, $BD \subset \mathbb{P}$ 平面PBD,所以 $AC \mid \mathbb{P}$ 平面PBD,

因为 *MN*⊂平面 *PBD*, 所以 *AC* | *MN*, 故 A 正确; 以 *OA*, *OB*, *OP* 所在直 线分别为x,y,z 轴建立空间直角坐标系,如图所示,因为 PA=AB=

 $2\sqrt{2}$,所以OA=OB=2,OP=2,所以A(2,0,0),B(0,2,0),C(-2,0,0), $D(0,-2,0), P(0,0,2), M(0,1,1), N(0,-1,1), \text{fill} \overrightarrow{AM} = (-2,1,1),$ \overrightarrow{CN} = (2,-1,1),所以 $|\cos\langle \overrightarrow{AM},\overrightarrow{CN}\rangle| = \frac{|\overrightarrow{AM} \cdot \overrightarrow{CN}|}{|\overrightarrow{AM}||\overrightarrow{CN}|} = \frac{|-4|}{\sqrt{6} \times \sqrt{6}} = \frac{2}{3}$,

所以直线 AM 和 CN 所成角的余弦值是 $\frac{2}{3}$,故 B 正确; \overrightarrow{AN} =

$$(-2,-1,1)$$
, \overrightarrow{AB} = $(-2,2,0)$,与 \overrightarrow{AN} 同向的单位向量为 $\mathbf{u} = \frac{\overrightarrow{AN}}{|AN|} = \left(-\frac{\sqrt{6}}{3}, -\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}\right)$,所以点 B 到直

线 AN 的距离 $d_1 = \sqrt{\overrightarrow{AB}^2 - (\overrightarrow{AB} \cdot u)^2} = \frac{\sqrt{66}}{3}$,故 C 正确;设 m = (x, y, z) 为平面 ACN 的法向量,则

$$\left\langle \frac{\boldsymbol{m} \cdot \overrightarrow{CN} = 0}{\boldsymbol{m} \cdot \overrightarrow{AN} = 0}, \text{即} \left\langle \frac{2x - y + z = 0}{-2x - y + z = 0}, \diamond y = 1, \text{得} \boldsymbol{m} = (0, 1, 1), \text{点 M 到平面 } ACN \text{ 的距离 } d_2 = \left| \overrightarrow{AM} \cdot \frac{\boldsymbol{m}}{\left| \boldsymbol{m} \right|} \right| = \sqrt{2}, \text{故 D 错误. 故选 ABC.}$$

12. $\frac{12}{5}$ 方法一:直线 l 过点 A (4,0)与 B (0,-3),记 O (0,0)到直线 l 的距离为 d ,则在 $\triangle AOB$ 中, $S_{\triangle AOB}=\frac{1}{2}$ •

 $|OA| \cdot |OB| = \frac{1}{2} |AB| \cdot d, \text{ if } |OA| = 4, |OB| = 3, |AB| = 5, \text{ if } |AB| = \frac{12}{5}.$ 方法二:直线 l 的方程改写为 3x-4y-12=0,由点到直线的距离公式,原点到直线 l 的距离为

$$\frac{|3\times 0 - 4\times 0 - 12|}{\sqrt{3^2 + (-4)^2}} = \frac{12}{5}.$$

设 C 的半焦距为 c ,则 F(c,0) ,渐近线方程为 $y=\pm\frac{b}{a}x$,故点 F 到渐近线的距离为 $\frac{\left|\frac{bc}{a}\right|}{\sqrt{\frac{b^2}{a}+1}}=b$,所以

$$|OP| = a$$
,所以 $S_{\triangle OPF} = \frac{1}{2}ab = \frac{\sqrt{2}}{4}ac$,所以 $2b = \sqrt{2}c$,所以 $4(c^2 - a^2) = 2c^2$,所以 $\frac{c^2}{a^2} = 2$,所以 $e = \sqrt{2}$.

14.973 当 n=1 时, $a_1=S_1=2a_1-2$,解得 $a_1=2$;当 $n \ge 2$ 时,由 $S_n=2a_n-2$,得 $S_{n-1}=2a_{n-1}-2$,两式相减,得 $a_n = 2a_n - 2a_{n-1}$,即 $a_n = 2a_{n-1}$,所以 $\frac{a_n}{a_n} = 2$,数列 $\{a_n\}$ 是首项为 2,公比为 2 的等比数列,因此 $a_n = 2^n$, $b_n = 2^n$ $\log_2 a_n = n$,即 a_n 是数列 $\{b_n\}$ 中的第 2^n 项,因为 $a_6 = 2^6 = 64$, $a_5 = 2^5 = 32$,所以数列 $\{c_n\}$ 的前 40 项是由数列 $\{b_n\}$ 的前 45 项去掉数列 $\{a_n\}$ 的前 5 项后构成的,所以数列 $\{c_n\}$ 的前 40 项和为 $\{b_1+b_2+\cdots+b_{45}\}$

$$(a_1 + a_2 + a_3 + a_4 + a_5) = \frac{1+45}{2} \times 45 - \frac{2(1-2^5)}{1-2} = 973.$$

15. 解:(1)因为 $a_n = 2n-1$, $a_{n+1} - a_n = 2n+1-(2n-1)=2$, 所以数列 $\{a_n\}$ 是等差数列, …………

数列
$$\left\{\left(\frac{1}{2}\right)^n\right\}$$
与数列 $\left\{2^n\right\}$ 分别是公比为 $\frac{1}{2}$,2 的等比数列, 9 分 所以 $S_n = \frac{\frac{1}{2}\left(1-\frac{1}{2^n}\right)}{1-\frac{1}{2}} - \frac{2(1-2^n)}{1-2} = 1 - \frac{1}{2^n} + 2(1-2^n) = 3 - \frac{1}{2^n} - 2^{n+1}$. 13 分

16. 解:(1)设 $\{a_n\}$ 的公差为d,因为 $a_3-a_1=2d>0$,所以d>0, ……………

	因为 $a_1+a_3=10$, a_1 , a_2-1 , a_3 成等比数列,	
,	所以 $\left\{ \begin{array}{l} 2a_1 + 2d = 10, \\ (a_1 + d - 1)^2 = a_1(a_1 + 2d), \end{array} \right.$	3分
1	$(a_1 + a_1) = a_1(a_1 + 2a_2),$ 解得 $\begin{cases} a_1 = 8, \\ d = -3 \end{cases}$ (含去)或 $\begin{cases} a_1 = 2, \\ d = 3. \end{cases}$	5分
	所以 $a_n = a_1 + (n-1)d = 2 + (n-1) \times 3 = 3n-1$	
	(2)由(1)得 $a_n = 3n - 1$,所以 $b_n = \frac{3n - 1}{3^n}$,	
	所以 $T_n = \frac{2}{3} + \frac{5}{3^2} + \frac{8}{3^3} + \dots + \frac{3n-4}{3^{n-1}} + \frac{3n-1}{3^n}$,①	
-	$\frac{1}{3}T_{n} = \frac{2}{3^{2}} + \frac{5}{3^{3}} + \frac{8}{3^{4}} + \dots + \frac{3n-4}{3^{n}} + \frac{3n-1}{3^{n+1}}, \bigcirc$	9分
(①一②得 $\frac{2}{3}$ $T_n = \frac{2}{3} + \left(\frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^{n-1}}\right) - \frac{3n-1}{3^{n+1}}$	
	$=\frac{2}{3}+\frac{1}{2}\left(1-\frac{1}{3^{n-1}}\right)-\frac{3n-1}{3^{n+1}}=\frac{7}{6}-\frac{6n+7}{2\cdot 3^{n+1}},$	13 分
,	所以 $T_n = \frac{7}{4} - \frac{6n+7}{4 \cdot 3^n}$.	15 分
17.	解:(1)设 $P(x_0, y_0)$,因为 $PF_1 \perp F_1 F_2$,所以 $x_0 = -c$, $ y_0 = \frac{b^2}{a}$,	1分
	因为 $\triangle PF_1F_2$ 的周长为 $4+2\sqrt{3}$,面积为 $\frac{1}{2}c$,	
,	所以 $2a+2c=4+2\sqrt{3}$, $\frac{1}{2}\times 2c$ • $\frac{b^2}{a}=\frac{1}{2}c$,	3分
	即 $a+c=2+\sqrt{3}$, $a=2b^2$, 又 $a^2=b^2+c^2$,	4分
	所以 $a=2,b=1,c=\sqrt{3}$,	
,	所以 C 的方程为 $\frac{x^2}{4}+y^2=1$	6分
	(2)由(1)知 $F_2(\sqrt{3},0)$,因为 C 的长轴长为 4 ,故 l 的斜率不为 0 ,	
-	设 l 的方程为 $x=my+\sqrt{3}$, $A(x_1,y_1)$, $B(x_2,y_2)$,	8分
	$x=my+\sqrt{3}$	
	与 C 的方程联立,得 $\left\{ egin{aligned} x=my+\sqrt{3}\ x=my+\sqrt{3}\ x=my+\sqrt{3} \end{aligned} ight.$	
	消去 x 并整理,得(m^2+4) $y^2+2\sqrt{3}my-1=0$,	
,	所以 $y_1 + y_2 = -\frac{2\sqrt{3}m}{m^2 + 4}$, $y_1 y_2 = -\frac{1}{m^2 + 4}$.	11分
-	$ X AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{1 + m^2} \sqrt{(y_1 + y_2)^2 - 4y_1y_2}$	
	$=\sqrt{1+m^2}\sqrt{\left(-\frac{2\sqrt{3}m}{m^2+4}\right)^2+\frac{4}{m^2+4}}=\frac{4(1+m^2)}{m^2+4}=2,$	13 分
1	解得 $m=\pm\sqrt{2}$,故 l 的方程为 $x=\pm\sqrt{2}y+\sqrt{3}$,即 $x\pm\sqrt{2}y-\sqrt{3}=0$	15 分
	(1)证明:连接 AC , A_1C , 因为四边形 $ABCD$ 与四边形 A_1BCD_1 均为菱形, 且 $\angle ABC = A_1BC = 60^\circ$,	
	$\triangle ABC$ 与 $\triangle A_1BC$ 均为等边三角形, … 取 BC 的中点 O ,连接 AO , A_1O ,则 $AO \bot BC$,	
	设 $AB=2$,则 $AO=A_1O=\sqrt{3}$,	2 91
	在 $\triangle ABA_1$ 中,由 $\cos \angle A_1AB = \frac{\sqrt{6}}{4}$ 及余弦定理,得 $2^2 = AA_1^2 + 2^2 - 2 \times 2 \times AA_1 \times \frac{\sqrt{6}}{4}$,	
	即 $AA_1^2 - \sqrt{6}AA_1 = 0$,所以 $AA_1 = \sqrt{6}(AA_1 = 0$ 舍去).	
	所以 $AO^2 + A_1O^2 = AA_1^2$,所以 $AO \perp A_1O$,	
	因为 $BC \cap A_1 O = O$, BC , $A_1 O \subseteq $ 平面 $A_1 BCD_1$, 所以 $AO \subseteq $ 平面 $A_1 BCD_1$,	6分74
-	又 ACC_平田 ABCD,所以平田 ABCD_ 干田 A₁BCD₁	
	「□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	シォ1D

