An Upper Bound on the Partial-Period Correlation of Zadoff-Chu Sequences

Tae-Kyo Lee*, Jin-Ho Chung[†], and Kyeongcheol Yang*

*Department of Electrical Engineering

Pohang University of Science and Technology (POSTECH), Pohang, Gyungbuk 790-784, Korea

Email: {jetlee, kcyang}@postech.ac.kr

[†]School of Electrical and Computer Engineering

Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea

Email: jinho@unist.ac.kr

Abstract—In this paper, we investigate the partial-period correlation of Zadoff-Chu sequences. For a pair of Zadoff-Chu sequences, we define the linear phase-shifting sequences of one of them and analyze their full-period correlation properties with the other one. By linking them to the partial-period correlation of the given pair, we derive an upper bound on the magnitude of the partial-period correlation of Zadoff-Chu sequences.

I. Introduction

Pseudo-random sequences with good correlation properties have many applications to communication systems [1]. In order to improve their performance, it is required to employ a family of pseudo-random sequences with large size and low correlation. There are two types of correlation: fullperiod correlation and partial-period correlation. Full-period correlation has been widely studied so far, but partial-period correlation has not received much attention in spite of its importance in real situations [2]-[5]. In code-division multipleaccess (CDMA) systems, each data symbol is divided into B chips by employing a sequence of period N as a spreading sequence. When N is much larger than B, the actual correlation computed at the receiver is not full-period correlation, but partial-period correlation [2]. In such a case, the absolute values of out-of-phase partial-period correlation are needed to be low. Furthermore, partial-period correlation plays an important role in synchronization problems [4], [6].

In [5] Paterson and Lothian linked the partial-period correlation of sequences to the discrete Fourier transform (DFT) of the so-called window sequence, and derived several bounds on partial-period correlations of well known sequences such as m-sequences, Kasami sequences, and d-form sequences, etc. Their approach is particularly useful in the sense that the partial-period correlation of sequences can be analyzed in terms of full-period correlation.

Zadoff-Chu sequences are one of the best known and most widely used families of polyphase sequences [7], [8], because they have ideal full-period autocorrelation as well as they exist for any period N. In addition, the full-period cross-correlation between two Zadoff-Chu sequences is optimal with respect to the Sarwate bound [9] under some specific

conditions. Recently, Kang *et al.* [10] presented general full-period cross-correlation properties of Zadoff-Chu sequences. However, there have been very few theoretical results on the partial-period correlation of Zadoff-Chu sequences, despite their wide usage in communication systems.

In this paper, we investigate the partial-period correlation of Zadoff-Chu sequences. For a pair of Zadoff-Chu sequences, we first define the linear phase-shifting sequences of one of them and analyze their full-period correlation properties with the other one. We then link them to the partial-period correlation of the given pair by generalizing the approach in [5]. Analyzing linear phase-shifting sequences and the DFT of the window sequence, we derive an upper-bound on the magnitude of the partial-period correlation of Zadoff-Chu sequences.

The outline of the paper is as follows. We give some preliminaries in Section II. In Section III, we review Zadoff-Chu sequences and investigate their properties related to the concepts introduced in Section II. We then present an upper bound on the magnitude of the partial-period correlation of Zadoff-Chu sequences in Section IV. Finally, we give some concluding remarks in Section V.

II. PRELIMINARIES

Throughout the paper, we denote by $\langle x \rangle_y$ the least nonnegative residue of x modulo y for an integer x and a positive integer y, and denote by \mathbb{Z}_n the set of nonnegative residues modulo n for a positive integer n.

Let $\{a(n)\}$ be a complex-valued sequence of period N. The discrete Fourier transform (DFT) sequence $\{\hat{a}(l)\}$ of $\{a(n)\}$ is defined as

$$\hat{a}(l) = \sum_{n=0}^{N-1} a(n)W_N^{nl}, \quad 0 \le l \le N-1$$

where $W_N = \exp(2\pi\sqrt{-1}/N)$. The sequence $\{\hat{a}(l)\}$ is simply called the spectrum of $\{a(n)\}$. Conversely, $\{a(n)\}$ can be obtained from $\{\hat{a}(l)\}$ by the inverse discrete Fourier transform (IDFT) as follows:

$$a(n) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{a}(l) W_N^{-nl}, \quad 0 \le n \le N-1.$$

Let $\{a(n)\}$ and $\{b(n)\}$ be two complex-valued sequences of period N such that |a(n)|=|b(n)|=1 for all $n\in\mathbb{Z}$. The (full-period) cross-correlation $\theta_{a,b}(\tau)$ between $\{a(n)\}$ and $\{b(n)\}$ is defined as

$$\theta_{a,b}(\tau) = \sum_{n=0}^{N-1} a(n)b^*(n+\tau)$$

for an integer $0 \le \tau \le N-1$, where * denotes the complex conjugation and all the operations among the indices are computed modulo N. In particular, $\theta_{a,b}(\tau)$ is called the (full-period) autocorrelation of $\{a(n)\}$ if a(n)=b(n) for all $n\in\mathbb{Z}$, and is denoted by $\theta_a(\tau)$.

On the other hand, the partial-period correlation is computed over a window with a specific size, instead of the full-period. For an integer $0 \le k < N$ and an integer $0 < B \le N$, the partial-period cross-correlation $R_{a,b}(\tau,k;B)$ between $\{a(n)\}$ and $\{b(n)\}$ is defined as

$$R_{a,b}(\tau, k; B) = \sum_{n=k}^{k+B-1} a(n)b^*(n+\tau)$$
 (1)

where all the operations among the indices are computed modulo N. In particular, $R_{a,b}(\tau,k;B)$ is called the partial-period autocorrelation of $\{a(n)\}$ if a(n)=b(n) for all $n\in\mathbb{Z}$, and is denoted by $R_a(\tau,k;B)$. Note that k represents the initial position, and B denotes the size of the correlation window.

In [5], Paterson and Lothian gave another expression of the partial-period correlation by introducing the so-called window sequence. For two integers k and B, where $0 \le k \le N-1$ and $0 < B \le N$, define the window sequence $\{\lambda_{k,B}(n)\}$ as

$$\lambda_{k,B}(n) = \mathbf{1}_{A(k,B)}(n)$$

where A(k, B) is the subset of \mathbb{Z}_N defined by

$$A(k,B) = \begin{cases} & \{n \mid k \le n \le k+B-1\}, \\ & \text{if } k+B-1 \le N-1 \\ & \{n \mid 0 \le n \le \langle k+B-1 \rangle_N \\ & \text{or } k \le n \le N-1\}, \\ & \text{if } k+B-1 > N-1 \end{cases}$$

and $\mathbf{1}_S(\cdot)$ denotes the indicator function of S defined by

$$\mathbf{1}_{S}(n) = \begin{cases} 1, & \text{if } n \in S \\ 0, & \text{otherwise.} \end{cases}$$

Then, $R_{a,b}(\tau, k; B)$ in (1) can be rewritten as

$$R_{a,b}(\tau, k; B) = \sum_{n=0}^{N-1} \lambda_{k,B}(n) a(n) b^*(n+\tau)$$

$$= \frac{1}{N} \sum_{l=0}^{N-1} \hat{\lambda}_{k,B}(l) \sum_{n=0}^{N-1} a(n) W_N^{-nl} b^*(n+\tau).$$

Note that the inner sum is the full-period cross-correlation between $\{a(n)W_N^{-nl}\}$ and $\{b(n)\}$.

For a clear presentation, we define the lth linear phase-shifting sequence $\{a^l(n)\}$ of a complex-valued sequence of period N, $\{a(n)\}$, as

$$a^{l}(n) \stackrel{\triangle}{=} a(n)W_{N}^{-nl}, \quad 0 \le n \le N-1.$$

Then the partial-period cross-correlation is given by

$$R_{a,b}(\tau, k; B) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{\lambda}_{k,B}(l) \theta_{a^l,b}(\tau).$$

Hence, $R_{a,b}(\tau,k;B)$ can be computed if the spectrum of the window sequence $\{\lambda_{k,B}(n)\}$ and the full-period correlations at displacement τ between the lth linear phase-shift sequence $\{a^l(n)\}$ and $\{b(n)\}$ for $0 \leq l \leq N-1$ are known. In other words, it is characterized only by the full-period cross-correlations $\theta_{a^l,b}(\tau)$ for $0 \leq l \leq N-1$ since $\{\hat{\lambda}_{k,B}(l)\}$ has nothing to do with either $\{a(n)\}$ or $\{b(n)\}$. Note that the full-period correlations $\theta_{a^l,b}(\tau)$ for $0 \leq l \leq N-1$ and $0 \leq \tau \leq N-1$ can be expressed equivalently as the $N \times N$ matrix $\Theta_{a,b}$ defined by

$$(1) \quad \Theta_{a,b} = \begin{bmatrix} \theta_{a^0,b}(0) & \theta_{a^0,b}(1) & \cdots & \theta_{a^0,b}(N-1) \\ \theta_{a^1,b}(0) & \theta_{a^1,b}(1) & \cdots & \theta_{a^1,b}(N-1) \\ \vdots & \vdots & \ddots & \vdots \\ \theta_{a^{N-1},b}(0) & \theta_{a^{N-1},b}(1) & \cdots & \theta_{a^{N-1},b}(N-1) \end{bmatrix}.$$
inted

Jenson's inequality [11] is one of the most widely used inequalities in mathematics. It will also be useful for deriving an upper bound on the partial-period correlation in the next section.

Lemma 1 ([11]): If $f(\cdot)$ is a convex function and X is an arbitrary random variable, then

$$E[f(X)] \le f(E[X]) \tag{3}$$

where $E[\cdot]$ is the expectation operator. Moreover, if $f(\cdot)$ is strictly convex, the equality in (3) implies that X is a constant.

III. Properties of $\Theta_{a,b}$ of Zadoff-Chu Sequences

As shown in the previous section, $\Theta_{a,b}$ plays a key role in analyzing the partial-period cross-correlation between $\{a(n)\}$ and $\{b(n)\}$. In this section we will investigate $\Theta_{a,b}$ when both $\{a(n)\}$ and $\{b(n)\}$ are Zadoff-Chu sequences of the same period.

Definition 2 ([12], [13]): For two positive integers N and r such that $\gcd(N,r)=1$ and any integer q, a Zadoff-Chu sequence $\{c_r(n)\}$ of period N is defined as

$$c_r(n) = W_N^{\frac{rn(n+\langle N \rangle_2)}{2} + qn}.$$
 (4)

In the definition of a Zadoff-Chu sequence in (4), q is assumed to be zero, unless otherwise specified. The properties of the full-period correlation of Zadoff-Chu sequences were widely studied in [10].

Theorem 3 ([10]): Let $\{c_r(n)\}$ and $\{c_s(n)\}$ be two Zadoff-Chu sequences of period N. Then the magnitude of the

full-period cross-correlation $\theta_{c_r,c_s}(\tau)$ between $\{c_r(n)\}$ and $\{c_s(n)\}$ is given by

$$|\theta_{c_r,c_s}(\tau)| = \begin{cases} \sqrt{Ng} \delta_K(\tau_2), \\ & \text{if } \langle N \rangle_2 = \langle uv \rangle_2 = 0 \text{ or } \langle N \rangle_2 = 1 \\ \sqrt{Ng} \delta_K(\tau_2 - \frac{g}{2}), \\ & \text{if } \langle N \rangle_2 = 0 \text{ and } \langle uv \rangle_2 = 1, \end{cases}$$

where $g=\gcd(N,r-s),\,u=N/g,\,v=(r-s)/g,\, au_2=\langle au \rangle_g$ and $\delta_K(\cdot)$ denotes the Kronecker delta function defined by

$$\delta_K(x-a) = \begin{cases} 1, & \text{if } x = a \\ 0, & \text{otherwise.} \end{cases}$$

It should be mentioned that the magnitude of each component of the first row of Θ_{c_r,c_s} is given in Theorem 3. As a first step, we will extend Theorem 3 to all the other rows of Θ_{c_r,c_s} .

Lemma 4: Let $\{c_r(n)\}$ and $\{c_s(n)\}$ be two Zadoff-Chu sequences of period N. Then the squared magnitude of the full-period cross-correlation $\theta_{c_r^l,c_s}(\tau)$ between the lth linear phase-shifting sequence of $\{c_r(n)\}$ and $\{c_s(n)\}$ is given by

$$|\theta_{c_r^l,c_s}(\tau)|^2 = \left\{ \begin{array}{l} N \sum_{m=0}^{g-1} W_g^{-m(s\tau_2+l)}, \\ \text{if } \langle N \rangle_2 = \langle uv \rangle_2 = 0 \text{ or } \langle N \rangle_2 = 1 \\ N \sum_{m=0}^{g-1} W_g^{-m(s(\tau_2 - \frac{g}{2}) + l)}, \\ \text{if } \langle N \rangle_2 = 0 \text{ and } \langle uv \rangle_2 = 1, \end{array} \right.$$

where $g=\gcd(N,r-s),\ u=N/g,\ v=(r-s)/g,$ and $\tau_2=\langle \tau \rangle_q.$

The proof of Lemma 4 is omitted here due to the limit of the space. Based on Lemma 4, we get the following theorem.

Theorem 5: Let $\{c_r(n)\}$ and $\{c_s(n)\}$ be two Zadoff-Chu sequences of period N. Let $g = \gcd(N, r - s)$, u = N/g and v = (r - s)/g. When $\langle N \rangle_2 = \langle uv \rangle_2 = 0$ or $\langle N \rangle_2 = 1$,

$$|\theta_{c_r^l,c_s}(\tau)| = \left\{ \begin{array}{ll} \sqrt{Ng} \delta_K(\tau_2), & \text{if } \langle l \rangle_g = 0 \\ \sqrt{Ng} \delta_K(\langle s\tau_2 + l_2 \rangle_q), & \text{otherwise}. \end{array} \right.$$

When $\langle N \rangle_2 = 0$ and $\langle uv \rangle_2 = 1$,

$$|\theta_{c_r^l,c_s}(\tau)| = \left\{ \begin{array}{ll} \sqrt{Ng} \delta_K(\tau_2 - \frac{g}{2}), & \text{if } \left< l \right>_g = 0 \\ \sqrt{Ng} \delta_K(\left< s(\tau_2 - \frac{g}{2}) + l_2 \right>_g), & \text{otherwise}. \end{array} \right.$$

Let $|\mathbf{A}|$ denote the magnitude matrix of an $M \times N$ matrix \mathbf{A} defined by $|A|_{ij} = |A_{ij}|$ for all i and j. It can be easily checked that $|\Theta_{c_r,c_s}|$ has the following properties:

- a) Every entry of $|\Theta_{c_r,c_s}|$ is either \sqrt{Ng} or 0;
- b) Each row of $|\Theta_{c_r,c_s}|$ has exactly u entries taking on \sqrt{Ng} . Moreover, the u entries are at a distance of g from each other;
- c) Each column of $|\Theta_{c_r,c_s}|$ has exactly u entries taking on \sqrt{Ng} . Moreover, the u entries are at a distance of g from each other;
- d) The *i*th row is the cyclic-shifted version (to the left) of the first row by $(si \mod g)$;
- e) The jth column is the cyclic-shifted version (to the top) of the first column by $(s^{-1}j \mod g)$.

Example 6: Let $N=15,\,r=7,$ and s=4 such that $g=3,\,u=5,$ and v=1. Then two Zadoff-Chu sequences $\{c_7(n)\}$ and $\{c_4(n)\}$ are given by

$$\{c_7(n)\} = \{W_{15}^0, W_{15}^7, W_{15}^6, W_{15}^{12}, W_{15}^{10}, W_{15}^0, W_{15}^{12}, W_{15}^1, W$$

The matrix $|\Theta_{c_7,c_4}|$ can be represented as

where \mathbf{A} is the 3×3 matrix given by

$$\mathbf{A} = \begin{bmatrix} \sqrt{45} & 0 & 0 \\ 0 & 0 & \sqrt{45} \\ 0 & \sqrt{45} & 0 \end{bmatrix}.$$

Note that $|\Theta_{c_r,c_s}|$ in Example 6 is a matrix of a special form. In general, $|\Theta_{c_r,c_s}|$ can be represented as

$$|\Theta_{c_r,c_s}| = \mathbf{1}_{u \times u} \otimes \mathbf{A}$$

where \otimes denotes the Kronecker product, $\mathbf{1}_{u \times u}$ is $u \times u$ all-one matrix and \mathbf{A} is the $g \times g$ matrix determined by Theorem 5 without taking modulo g operation.

IV. UPPER BOUND ON THE PARTIAL-PERIOD CORRELATION OF ZADOFF-CHU SEQUENCES

Based on the results obtained in the previous section, we will give an upper bound on the partial-period correlation of Zadoff-Chu sequences in this section. Consider two Zadoff-Chu sequences $\{c_r(n)\}$ and $\{c_s(n)\}$ of period N and let $\hat{\pmb{\lambda}}_{k,B}$ be the vector of length N given by $\hat{\pmb{\lambda}}_{k,B}=(\hat{\lambda}_{k,B}(0),\hat{\lambda}_{k,B}(1),\cdots,\hat{\lambda}_{k,B}(N-1)).$ Throughout the section, we assume that $g=\gcd(N,r-s),\ u=N/g$ and v=(r-s)/g. Then the partial-period cross-correlation $R_{c_r,c_s}(\tau,k;B)$ is equal to the inner product between $\hat{\pmb{\lambda}}_{k,B}$ and the τ th column of Θ_{c_r,c_s} scaled by $\frac{1}{N}$, that is,

$$R_{c_r,c_s}(\tau,k;B) = \frac{1}{N} \sum_{l=0}^{N-1} \hat{\lambda}_{k,B}(l) \theta_{c_r^l,c_s}(\tau).$$

Hence,

$$\begin{aligned} &|R_{c_r,c_s}(\tau,k;B)|\\ &=\frac{1}{N}\left|\sum_{l=0}^{N-1}\hat{\lambda}_{k,B}(l)\theta_{c_r^l,c_s}(\tau)\right| \end{aligned}$$

$$\leq \frac{1}{N} \sum_{l=0}^{N-1} |\hat{\lambda}_{k,B}(l)| |\theta_{c_r^l,c_s}(\tau)|
= \frac{1}{N} \sum_{l=0}^{N-1} |\hat{\lambda}_{0,B}(l)| |\theta_{c_r^l,c_s}(\tau)|
= \begin{cases}
\sqrt{\frac{1}{u}} \sum_{m=0}^{u-1} |\hat{\lambda}_{0,B}(\langle -s\tau_2 \rangle_g + mg)|, \\
& \text{if } \langle N \rangle_2 = \langle uv \rangle_2 = 0 \text{ or } \langle N \rangle_2 = 1 \\
\sqrt{\frac{1}{u}} \sum_{m=0}^{u-1} |\hat{\lambda}_{0,B}(\langle -s(\tau_2 - \frac{g}{2}) \rangle_g + mg)|, \\
& \text{if } \langle N \rangle_2 = 0 \text{ and } \langle uv \rangle_2 = 1
\end{cases} (5)$$

where $\tau_2 = \langle \tau \rangle_g$, the second equality comes from the fact that the magnitude of the spectrum is invariant under the cyclic-shift in the time domain, and the third equality comes from the structure of $|\Theta_{c_r,c_s}|$. By the definition of the window sequence $\{\lambda_{k,B}(n)\}$, we get

$$|\hat{\lambda}_{0,B}(l)| = \left| \sum_{n=0}^{N-1} \lambda_{0,B}(n) W_N^{nl} \right|$$

$$= \left| \sum_{n=0}^{B-1} W_N^{nl} \right|$$

$$= \frac{\left| \sin \left(\frac{\pi}{N} Bl \right) \right|}{\sin \left(\frac{\pi}{N} l \right)}$$

for $0 \le l \le N - 1$ and $0 < B \le N$.

Lemma 7 ([14]): $|\hat{\lambda}_{0,B}(l)|$ has the following properties:

- a) If B = 1, then $|\hat{\lambda}_{0,1}(l)| = 1$ for all l;
- b) If B = N 1, then $|\hat{\lambda}_{0,1}(0)| = N 1$ and $|\hat{\lambda}_{0,1}(l)| = 1$ for 1 < l < N 1;
- c) If B=N, then $|\hat{\lambda}_{0,1}(0)|=N$ and $|\hat{\lambda}_{0,1}(l)|=0$ for $1\leq l\leq N-1$;
- d) If l = 0, then $|\hat{\lambda}_{0,B}(0)| = B$ for all B;
- e) $|\hat{\lambda}_{0,B}(l)| = 0$ if and only if $l \neq 0$ and N|Bl;
- f) $|\hat{\lambda}_{0,B}(l)| = 1$ if and only if N|(B+1)l or N|(B-1)l;
- g) $|\hat{\lambda}_{0,B}(l)| = |\hat{\lambda}_{0,B}(N-l)|$ for all l and B; and
- h) $|\hat{\lambda}_{0,B}(l)| = |\hat{\lambda}_{0,N-B}(l)|$ for $1 \le l \le N-1$ and $1 \le B \le N-1$.

For a simple presentation, we define the function $f_{s,g,B}(\tau_2)$ for $0 \le \tau_2 \le g-1$ as

$$f_{s,g,B}(\tau_2) = \sum_{m=0}^{u-1} |\hat{\lambda}_{0,B}(\langle -s\tilde{\tau}_2 \rangle_g + mg)|,$$

where

$$\tilde{\tau}_2 = \left\{ \begin{array}{ll} \tau_2, & \text{if } \langle N \rangle_2 = \langle uv \rangle_2 = 0 \text{ or } \langle N \rangle_2 = 1 \\ \tau_2 - \frac{g}{2}, & \text{if } \langle N \rangle_2 = 0 \text{ and } \langle uv \rangle_2 = 1. \end{array} \right.$$

Then, the bound in (5) can be simply represented as

$$|R_{c_r,c_s}(\tau,k;B)| \le \frac{1}{\sqrt{u}} f_{s,g,B}(\tau_2).$$

The properties of $f_{s,g,B}(au_2)$ are given in the following lemma.

Lemma 8: Assuming the above notation, the function $f_{s,q,B}(\tau_2)$ has the following properties:

a) If
$$B = 1$$
, then $f_{s,q,1}(\tau_2) = u$;

b) If B = N - 1, then

$$f_{s,g,N-1}(\tau_2) = \begin{cases} N+u-2, & \text{if } \tilde{\tau}_2 = 0\\ u, & \text{if } \tilde{\tau}_2 \neq 0; \end{cases}$$

c) If B = N, then

$$f_{s,g,N}(\tau_2) = \begin{cases} N, & \text{if } \tilde{\tau}_2 = 0\\ 0, & \text{if } \tilde{\tau}_2 \neq 0; \end{cases}$$

d) If N is even and B = N/2, then

$$f_{s,g,N/2}(\tau_2) = \left\{ \begin{array}{ll} B, & \text{for} & \tilde{\tau}_2 = 0 \\ 0, & \text{for} & \tilde{\tau}_2 \neq 0 \text{ and } \langle \tilde{\tau}_2 \rangle_2 = 0; \end{array} \right.$$

e) If $2 \le B \le N - 2$ with (N, B) = 1, then

$$f_{s,g,B}(\tau_2) = \left\{ \begin{array}{l} B+1+2\sum_{m=1}^{(u-2)/2}|\hat{\lambda}_{0,B}(mg)|,\\ \text{for } \tilde{\tau}_2 = 0 \text{ and } \langle u \rangle_2 = 0\\ B+2\sum_{m=1}^{(u-1)/2}|\hat{\lambda}_{0,B}(mg)|,\\ \text{for } \tilde{\tau}_2 = 0 \text{ and } \langle u \rangle_2 = 1; \end{array} \right.$$

f) If $2 \le B \le N - 2$ with $(N, B) \ne 1$, then

$$f_{s,g,B}(\tau_2) = \left\{ \begin{array}{l} B, \\ \text{if} \quad \tilde{\tau}_2 = 0 \text{ and } \langle Bg \rangle_N = 0 \\ B+1+2\sum_{m=1}^{(u-2)/2} |\hat{\lambda}_{0,B}(mg)|, \\ \text{if} \quad \tilde{\tau}_2 = 0, \langle Bg \rangle_N \neq 0 \text{ and } \langle u \rangle_2 = 0 \\ B+2\sum_{m=1}^{(u-1)/2} |\hat{\lambda}_{0,B}(mg)|, \\ \text{if} \quad \tilde{\tau}_2 = 0, \langle Bg \rangle_N \neq 0 \text{ and } \langle u \rangle_2 = 1. \end{array} \right.$$

Sarwate [15] derived an upper bound on $\sum_{l=0}^{N-1} |\hat{\lambda}_{0,B}(l)|$ by using Jensen's inequality. Following a similar approach to Sarwate's, it is possible to derive an upper bound on $|R_{c_r,c_s}(\tau,k;B)|$ in the following theorem.

Theorem 9: Let $\{c_r(n)\}$ and $\{c_s(n)\}$ be two Zadoff-Chu sequences of period N. Then

$$|R_{c_r,c_s}(\tau,k;B)| \leq$$

$$\begin{cases} 1, & \text{if } B=1\\ \sqrt{Ng}, & \text{if } B=N\\ \csc\left(\frac{\pi}{N}\right)\sin\left(\frac{\pi}{N}B\right), & \text{if } 2\leq B\leq N-1 \text{ and } u=1\\ \max\{\frac{1}{\sqrt{u}}\left(B+1+\frac{2u}{\pi}\ln\frac{4u}{\pi}\right),\\ \frac{1}{\sqrt{u}}\left(\sec\left(\frac{\pi}{2u}\right)+2\left(\csc\left(\frac{\pi}{N}\right)+\frac{u}{\pi}\ln\left(\frac{4u}{\pi}\right)\right)\right)\},\\ & \text{if } 2\leq B\leq N-1 \text{ and } u\neq 1. \end{cases}$$

Proof. We prove only the case that $\langle N \rangle_2 = \langle uv \rangle_2 = 0$ or $\langle N \rangle_2 = 1$, since the other cases can be similarly proved. Clearly, $|R_{c_r,c_s}(\tau,k;1)| = 1$. Also, we get $|R_{c_r,c_s}(\tau,k;N)| = \sqrt{Ng}$ by Theorem 3. Now, we will focus on the case that $2 \leq B \leq N-1$. Our problem can be divided into four cases:

Case 1) $\tilde{\tau}_2 \neq 0$ and $\langle u \rangle_2 = 0$:

$$\sum_{m=0}^{u-1} \left| \hat{\lambda}_{0,B}(\langle -s\tilde{\tau}_{2}\rangle_{g} + mg) \right|$$

$$\leq \sum_{m=0}^{u-1} \left| \frac{1}{\sin\left(\frac{\pi}{N}(\langle -s\tilde{\tau}_{2}\rangle_{g} + mg)\right)} \right|$$

$$= \sum_{m=0}^{u-1} \csc\left(\frac{\pi}{N}(\langle -s\tilde{\tau}_{2}\rangle_{g} + mg)\right)$$

$$< \left(\csc\left(\frac{\pi}{N}\right) + \sum_{m=1}^{u/2-1} \csc\left(\frac{\pi}{N}mg\right) \right)$$

$$+ \left(\csc\left(\frac{\pi}{N}(N-1)\right) + \sum_{m=u/2+1}^{u-1} \csc\left(\frac{\pi}{N}mg\right) \right)$$

$$= 2 \left(\csc\left(\frac{\pi}{N}\right) + \sum_{m=1}^{u/2-1} \csc\left(\frac{\pi}{N}mg\right) \right)$$

$$= 2 \left(\csc\left(\frac{\pi}{N}\right) + \sum_{m=1}^{u/2-1} \csc\left(\frac{\pi}{N}mg\right) \right)$$

$$(6)$$

where the second inequality and the second equality come from the convexity and symmetry of the cosecant function, respectively. Define $\frac{u}{2}-1$ random variables X_m , $1 \le m \le$ $\frac{u}{2}-1$, whose probability density functions are given by

$$f_{X_m}(x) = \begin{cases} 1, & m - \frac{1}{2} \le x \le m + \frac{1}{2} \\ 0, & \text{otherwise.} \end{cases}$$

Then $E\left[\frac{\pi}{N}X_mg\right] = \frac{\pi}{N}mg$, which leads to $\csc\left(\frac{\pi}{N}gm\right) \le$ $E[\csc(\frac{\pi}{N}X_mg)]$ by Jenson's inequality. After some manipulation, we have

$$\sum_{m=1}^{u/2-1} \csc\left(\frac{\pi}{N} m g\right) \leq \frac{u}{\pi} \ln\left(\frac{4u}{\pi}\right). \tag{7}$$

By combining (6) and (7), we get

$$\sum_{m=0}^{u-1} |\hat{\lambda}_{0,B}(\langle -s\tilde{\tau}_2 \rangle_g + mg)| < 2\left(\csc\left(\frac{\pi}{N}\right) + \frac{u}{\pi}\ln\left(\frac{4u}{\pi}\right)\right).$$

Case 2) $\tilde{\tau}_2 \neq 0$ and $\langle u \rangle_2 = 1$: In a similar way, we have

$$\begin{split} \sum_{m=0}^{u-1} |\hat{\lambda}_{0,B}(\langle -s\tilde{\tau}_2 \rangle_g + mg)| &< \sec\left(\frac{\pi}{2u}\right) \\ &+ 2\left(\csc\left(\frac{\pi}{N}\right) + \frac{u}{\pi}\ln\left(\frac{4u}{\pi}\right)\right), \end{split}$$

where $u \neq 1$.

Case 3) $\tilde{\tau}_2 = 0$ and $\langle u \rangle_2 = 0$: Similarly, we get

$$\sum_{m=1}^{(u-2)/2} |\hat{\lambda}_{0,B}(mg)| \leq \frac{u}{\pi} \ln \left(\frac{4u}{\pi}\right).$$

Case 4) $\tilde{\tau}_2 = 0$ and $\langle u \rangle_2 = 1$: Similarly, we have

$$\sum_{m=1}^{(u-1)/2} |\hat{\lambda}_{0,B}(mg)| \leq \frac{u}{\pi} \ln \left(\frac{4u}{\pi}\right).$$

Combining the results of the above four cases, we get an upper bound when $r \neq s$, i.e., $u \neq 1$. To complete the proof, we need to show that

$$|R_{c_r}(\tau, k; B)| \le \csc\left(\frac{\pi}{N}\right) \sin\left(\frac{\pi}{N}B\right),$$

but we omit its proof due to the limit of the space.

V. CONCLUSION

We investigated the partial-period correlation of Zadoff-Chu sequences by introducing linear phase-shifting sequences and linking the full-period correlation with the partial-period correlation. As a generalization of the approach in [5], our method can be applied to the partial-period correlation between any pair of sequences $\{a(n)\}$ and $\{b(n)\}$ as long as the full-period correlation properties between the lth linear phase-shifting sequence $\{a^l(n)\}\$ and $\{b(n)\}\$, which are represented as an $N \times N$ matrix $\Theta_{a,b}$, are available. Analysis of $\Theta_{a,b}$ for two Zadoff-Chu sequences $\{a(n)\}\$ and $\{b(n)\}\$ led us to an upper bound on their partial-period cross-correlation, which has not yet been known.

ACKNOWLEDGMENT

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2011-0017396).

REFERENCES

- [1] T. Helleseth and P. V. Kumar, "Sequences with low correlation," in Handbook of Coding Theory, V. Pless and W. Huffman, Eds. Amsterdam, The Netherlands: North-Holland, ch. 21, pp. 1765-1853, 1998.
- [2] M. B. Pursley, "Performance analysis for phase-coded spread-spectrum multiple-access communication-Part I: System analysis," IEEE Trans. Commun, vol. 25, no. 8, pp. 795-799, May 1977.
- M. B. Pursley, D. V. Sarwate, and T. U. Basar, "Partial correlation effects in direct-sequence spread-spectrum multiple-access communications systems," IEEE Trans. Commun., vol. 32, no. 5, pp. 567-573, May 1984.
- R. C. Dixon, Spread Spectrum Systems with Commercial Applications, 3rd ed., New York, Wiley-Interscience, 1994.
- K. G. Paterson and P. J. G. Lothian, "Bounds on partial correlations of sequences," IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 1164-1175, May
- [6] H. Fukumasa, R. Kohno, and H. Imai, "Pseudo-noise sequences for tracking and data relay satellite and related systems," Commun., vol. E74-B, no. 5, pp. 1137-1144, May 1991.
- [7] P. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, Taunton, UK (1996).
- [8] T. S. Rappaport, Wireless Communications: Principles & Practice, Prentice Hall, New Jersey, 1996.
- D. V. Sarwate, "Bounds on correlation and autocorrelation of sequences," IEEE Trans. Inf. Theory, vol. 25, no. 6, pp. 720-724, Nov. 1979
- [10] J. W. Kang, Y. Whang, B. H. Ko, and K. S. Kim, "Generlaized crosscorrelation properties of Chu sequences," IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 438-444, Jan. 2012.
- [11] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., 1991.
- [12] D. C. Chu, "Polyphase codes with good periodic correlation properties," IEEE Trans. Inf. Theory, vol. 18, pp. 531-532, July 1972.
 [13] R. L. Frank, "Comments on polyphase codes with good correlation
- properties," IEEE Trans. Inf. Theory, vol. 19, pp. 244, Mar. 1973.
- [14] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed., Prentice Hall, NJ, 2009.
- [15] D. V. Sarwate, "An upper bound on the aperiodic autocorrelation function for a maximal-length sequence," IEEE Trans. Inf. Theory, vol. 30, pp. 685-687, July 1984.