第九章、第十章

- 第十九次课
 - §9.1 引言
 - §9.2 一元线性回归
- 第二十次课
 - §9.2 一元线性回归(续)
 - §9.3 多元线性回归(简介)
 - §10.1 统计决策问题概述

§9.1 引言

- 自变量: x, 因变量: y. 函数关系f(未知): y = f(x).
- 误差: e. 回归关系: y = f(x) + e.
- x = 路程(可设定), y = 耗油量.
 x = 父亲身高(不可设定, 只可测量), y = 儿子身高.
 关心f, 不关心自变量如何变化. 将x 视为参数.
 将y, e 视为随机变量或其取值.
- 正态模型: y = f(x) + e, 其中 $e \sim N(0, \sigma^2)$, σ^2 未知.
- 数据 (x_i, y_i) , $i = 1, \dots, n$. <u>回归模型</u>: $y_i = f(x_i) + e_i$, $i = 1, \dots, n$. x_i 是参数, y_i 是随机变量或其取值(可观测).
- e_i 是随机变量, 但取值未知(不可观测), 因为f 未知.

线性回归: f 为线性函数.

- 一元: f(x) = a + bx. 多元: $f(\vec{x}) = a + b_1x_1 + \dots + b_px_p$. 参数 $a, b; b_1, \dots, b_p$ 未知.
- p 是自变量 \vec{x} 的维数, n 是数据量(样本量).
- 例1.1. y = f(x) + e, 一元. 数据: (x_i, y_i) , $i = 1, \dots, n = 50$. 观察散点图, 确认f 是否线性.

• 建立回归模型: $y_i = a + bx_i + e_i, i = 1, \dots, n$.

例1.3. x = 某小区人口数, y = 冬季用煤量, z = 室温.

- 预测. 回归关系: y = a + bx + e. 数据 $(x_i, y_i), i = 1, \dots, n.$ 小区人口为x,冬季应储备多少煤? 自变量→ 因变量.
- 控制. 回归关系: $z = c + dy + \varepsilon$. 数据 $(y_i, z_i), i = 1, \dots, n.$ 为控制室温为18度,冬季应储备多少煤? 因变量→ 自变量.

§9.2 一元线性回归

 $y = a + bx + e, e \sim N(0, \sigma^2), \sigma^2 + \pi$.

数据: (x_i, y_i) , $i = 1, \dots, n$.

- <u>最小二乘拟合系数</u> 指: 使得 $Q(a,b) = \sum_{i=1}^{n} [y_i (a+bx_i)]^2$ 达到最小的a, b. 记为 \hat{a}, \hat{b} .
- 回归模型: $y_i = a + bx_i + e_i$, $i = 1, \dots, n$. $p_{Y_i}(y_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i (a + bx_i))^2},$ 视 x_i 为已知参数, a, b 为未知待估参数, σ^2 为讨厌参数.
- 似然函数: $L(a,b,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n [y_i (a+bx_i)]^2}$.
- 最大似然估计: L(a, b, σ²) 的最大值点.
 a, b 的最大似然估计使得Q(a, b) 达到最小, 即为â, b̂.

定理2.1.
$$\hat{a} = \bar{y} - \hat{b}\bar{x}$$
, $\hat{b} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = \frac{\ell_{xy}}{\ell_{xx}}$.

- 回顾第八次课, 第三章定理5.3. $a = E\eta bE\xi \Rightarrow$ $\frac{1}{n}Q(a,b) = E(\tilde{\eta} b\tilde{\xi})^2, \ \text{其中}\tilde{\eta} = \eta E\eta, \ \tilde{\xi} = \xi E\xi.$
- 正交分解: $\tilde{\eta} b\tilde{\xi} = (\tilde{\eta} \hat{b}\tilde{\xi}) \oplus (\hat{b} b)\tilde{\xi}$, \hat{b} 满足⊕: 即 $E(\tilde{\eta} \hat{b}\tilde{\xi})\tilde{\xi} = 0$. 故 $\hat{b} = \frac{\text{cov}(\xi, \eta)}{\text{var}(\xi)}$, $\hat{a} = E\eta \hat{b}E\xi$.
- $Q(\hat{a}, \hat{b}) = nE(\tilde{\eta} \hat{b}\tilde{\xi})^2 = nvar(\eta)(1 \rho_{\xi,\eta}^2) = \ell_{yy}(1 r^2).$
- $Q(\hat{a}, \hat{b}) = Q$ 残差平方和, $r^2 = 1 Q/\ell_{yy}$ (2.20). 正交分解 $\ell_{yy} = Q + U$ (引理2.1), U: 回归平方和.

正交分解:

$$\hat{a} = \bar{y} - \hat{b}\bar{x}$$
, $\hat{b} = \frac{\ell_{xy}}{\ell_{xx}}$. 回归直线估计 \hat{f} : $\hat{f}(x) = \hat{a} + \hat{b}x$,

- \hat{f} 过点 (\bar{x},\bar{y}) , 即 $\bar{y}=\hat{f}(\bar{x})$.
- <u>残差</u>平方和: $Q = \sum_{i=1}^{n} (y_i \hat{y}_i)^2$, 其中 $\hat{y}_i = \hat{f}(x_i) = \hat{a} + \hat{b}x_i$. 回归平方和: $U = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$.
- 引理2.1. $\ell_{yy} = \sum_{i=1}^{n} (y_i \bar{y})^2 = U + Q$.
 - 正交分解: $\tilde{\eta} = (\tilde{\eta} \hat{b}\tilde{\xi}) \oplus \hat{b}\tilde{\xi}, \, \eta \to y_i, \, \xi \to x_i.$ $E\tilde{\eta}^2 = E(\tilde{\eta} - \hat{b}\tilde{\xi})^2 + E(\hat{b}\tilde{\xi})^2.$
 - $$\begin{split} \bullet \quad & \tilde{\eta} = \eta E\eta \to y_i \bar{y} \to \ell_{yy}. \\ & \hat{b}\tilde{\xi} \to \hat{b}(x_i \bar{x}) = \hat{f}(x_i) \hat{f}(\bar{x}) = \hat{y_i} \bar{y} \to U, \\ & \tilde{\eta} \hat{b}\tilde{\xi} \to y_i \bar{y} (\hat{y_i} \bar{y}) = y_i \hat{y_i} \to Q. \end{split}$$

无偏估计: $E\hat{b} = b, E\hat{a} = a$

- $\hat{a} = \bar{y} \hat{b}\bar{x}, \ \hat{b} = \frac{\ell_{xy}}{\ell_{xx}} = \frac{1}{\ell_{xx}} \sum_{i=1}^{n} (x_i \bar{x})(y_i \bar{y}).$
- \hat{a} , \hat{b} $\mathbb{E}(y_1, \dots, y_n)$ 的<u>线性</u> 函数.
- $y_i = a + bx_i + e_i, \quad \bar{y} = a + b\bar{x} + \bar{e},$ $y_i \bar{y} = b(x_i \bar{x}) + (e_i \bar{e}).$
- $\hat{a} = \bar{y} \hat{b}\bar{x} = (a + b\bar{x} + \bar{e}) \hat{b}\bar{x} = a + (b \hat{b})\bar{x} + \bar{e}$.
- 无偏: $E\hat{b} = b$, $E\hat{a} = a$.
- **定理2.2.** 假设 x_i , $i = 1, \dots, n$ 不全相等. (关心f, 即, 当x 变化时, y 如何跟着变化). 那么, \hat{a} , \hat{b} 是最优线性无偏估计.

统计量计算:

- 最基本统计量: l_{xx}, l_{yy}, l_{xy}
- 其他统计量通过基本统计量计算得到:

$$\hat{b} = l_{xy}/l_{xx},$$

$$\hat{a} = \bar{y} - \hat{b}\bar{x},$$

$$U = \hat{b}l_{xy},$$

$$Q = l_{yy} - U,$$

$$r^2 = U/l_{yy} = 1 - Q/l_{yy}.$$

残差平方和. $Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$. 则 $\frac{1}{\sigma^2}Q \sim \chi^2(n-2)$.

•
$$\hat{b} = b + \frac{1}{\ell_{xx}} \sum_{i} \underline{(x_i - \bar{x})(e_i - \bar{e})} = b + \frac{1}{\ell_{xx}} \sum_{i} (x_i - \bar{x})e_i,$$

 $\hat{a} = a + (b - \hat{b})\bar{x} + \bar{e}.$

•
$$\hat{y}_i - y_i = (\hat{a} + \hat{b}x_i) - (a + bx_i + e_i) = (b - \hat{b})\bar{x} + \bar{e} + (\hat{b} - b)x_i - e_i$$

... = $(\hat{b} - b)(x_i - \bar{x}) - (e_i - \bar{e})$.
 $(...)^2 = (\hat{b} - b)^2(x_i - \bar{x})^2 + (e_i - \bar{e})^2 - 2(\hat{b} - b)(x_i - \bar{x})(e_i - \bar{e})$.

•
$$Q = (\hat{b} - b)^2 \ell_{xx} + \sum_i (e_i - \bar{e})^2 - 2(\hat{b} - b) \underline{\ell_{xx}}(\hat{b} - b),$$

 $Q = \sum_i (e_i - \bar{e})^2 - \ell_{xx}(\hat{b} - b)^2.$

•
$$\sum_{i} (e_i - \bar{e})^2 = \sum_{i} e_i^2 - \left[\sum_{i} \frac{1}{\sqrt{n}} e_i\right]^2 = \sum_{i} e_i^2 - \left[\sum_{i} a_{1i} e_i\right]^2$$
.

•
$$\ell_{xx}(\hat{b}-b)^2 = (\sum_i \frac{x_i - \bar{x}}{\sqrt{\ell_{xx}}} e_i)^2 = (\sum_i a_{2i} e_i)^2$$
.

•
$$\sum_{i} a_{1i}^{2} = \sum_{i} a_{2i}^{2} = 1$$
, $\sum_{i} a_{1i} a_{2i} = 0$. 补行得正交矩阵 A . $(Z_{1}, \dots, Z_{n})^{T} = A(e_{1}, \dots, e_{n})^{T} \stackrel{d}{=} (e_{1}, \dots, e_{n})^{T}$.

$$Q = \underline{\sum_{i} Z_{i}^{2}} - Z_{1}^{2} - Z_{2}^{2} = \underline{\sum_{i=3}^{n} Z_{i}^{2}}.$$

回归平方和: $U = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$.

- $\hat{y}_i = \hat{f}(x_i), \ \bar{y} = \hat{f}(\bar{x}). \ \hat{y}_i \bar{y} = \hat{b}(x_i \bar{x}).$ $\hat{b} = b + \frac{1}{\ell_{xx}} \sum_i (x_i - \bar{x}) e_i.$
- $U = \hat{b}^2 \ell_{xx} = \left[\sqrt{\ell_{xx}} b + \sum_{i=1}^n a_{2i} e_i \right]^2 = (\sqrt{\ell_{xx}} b + Z_2)^2$.

- 若 $Z \sim N(0,1)$, 则 $P(|Z+c| \leq l) \leq P(|Z| \leq l)$. $U_b := (\sqrt{\ell_{xx}}b + Z_2)^2, \quad U_0 := Z_2^2$ $P(U_b \leq l^2) \leq P(U_0 \leq l^2) \text{ vs } U_b \leq l^2 \Rightarrow U_0 \leq l^2, \ \forall l.$ 在某种意义下, $U_0 \leq U_b$.