Topology II

Dozent

Mitschrift

Version git: (None) kompiliert: 11. April 2022 10:19

Contents

A Projective modules

3

A Projective modules

fix this

Definition 1. Let R be a ring. An R-module P is projective if one of the following equivalent conditions holds:

- (i) The functor $\operatorname{Hom}_R(P, -)$ is exact.
- (ii) For every surjection $\mu: M \twoheadrightarrow N$ and every morphism $p: P \to N$ lifts to a morphism $\hat{p}: P \to M$:

(iii) Every short exact sequence

$$0 \to L \xrightarrow{\lambda} M \xrightarrow{\mu} \xrightarrow{P} 0$$

splits.

(iv) P is a direct summand of a free module, that is, there exists a module K and a free module F, such that $F\cong P\oplus K$.

Lemma 2. Let P_1 and P_2 be projective modules. Then, the following hold:

- 1) $P_1 \oplus P_2$ and $P_1 \otimes_R P_2$ are projective modules.
- 2) Every direct summand of P_1 is projective.
- 3) For every R-module M, there exists a projective resolution

$$\dots \to P_3 \to P_2 \to P_1 \to P_0 \to M \to 0$$

Lemma 3. Let P be finitely generated R-module. Then P is projective if and only if P is a direct summand of R^n for some $n \in \mathbb{N}$.

Lemma 4. Let P be an R-module. Then, the following hold:

- 1) Let P be free. Then P is projective.
- 2) Let P be projective. Then P is flat.
- 3) Let P be flat. If R is noetherian and P is finitely generated, then P is projective.

Definition 5. A chain complex C_{\bullet} is called **projective** if all C_n are projective modules.