PLSC 503 – Spring 2024 Regression Models for Ordinal Outcomes

April 15, 2024

Ordinal Data

Ordinal data are:

- Discrete: $Y \in \{1, 2, ...\}$
- Grouped Continuous Data
- Assessed Ordered Data

In general:

- Some things <u>can</u> be ordered, but shouldn't be
- Some things are ordered in some circumstances but not others
- Orderings can differ across applications

Ordinal vs. Continuous Response Models

"I'd like to get your feelings toward some of our political leaders and other people who are in the news these days. I'll read the name of a person and I'd like you to rate that person using something we call the feeling thermometer. Ratings between 50 and 100 degrees mean that you feel favorably and warm toward the person; ratings between 0 and 50 degrees mean that you don't feel favorably toward the person and that you don't care too much for that person. You would rate the person at the 50 degree mark if you don't feel particularly warm or cold toward the person."

Thermometer Scores for Jeb! (2016)

A Fake-Data Example

$$Y_{i}^{*} = 0 + 1.0X_{i} + u_{i},$$

$$X_{i} \sim U[0, 10]$$

$$u_{i} \sim N(0, 1)$$

$$Y_{1i} = 1 \text{ if } Y_{i}^{*} < 2.5$$

$$= 2 \text{ if } 2.5 \leq Y_{i}^{*} < 5$$

$$= 3 \text{ if } 5 \leq Y_{i}^{*} < 7.5$$

$$= 4 \text{ if } Y_{i}^{*} > 7.5$$

$$Y_{2i} = 1 \text{ if } Y_{i}^{*} < 2$$

$$= 2 \text{ if } 2 \leq Y_{i}^{*} < 8$$

$$= 3 \text{ if } 8 \leq Y_{i}^{*} < 9$$

$$= 4 \text{ if } Y_{i}^{*} > 9$$

World's Best Regression

```
> summary(lm(Ystar~X))
Call:
lm(formula = Ystar ~ X)
Residuals:
  Min 10 Median
                    3Q
                          Max
-3.006 - 0.654 - 0.049 0.643 3.298
Coefficients:
         Estimate Std. Error t value
                                        Pr(>|t|)
(Intercept) -0.0830 0.0609 -1.36
                                              0.17
           Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.988 on 998 degrees of freedom
Multiple R-squared: 0.901, Adjusted R-squared: 0.901
F-statistic: 9.12e+03 on 1 and 998 DF, p-value: <0.0000000000000000
```

Also A Pretty Good Regression

```
> summary(lm(Y1~X))
Call:
lm(formula = Y1 ~ X)
Residuals:
   Min
         10 Median
                     30
                           Max
-1.2889 -0.2439 0.0158 0.2592 1.3968
Coefficients:
        Estimate Std. Error t value
                                      Pr(>|t|)
X
         Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.428 on 998 degrees of freedom
Multiple R-squared: 0.859, Adjusted R-squared: 0.859
F-statistic: 6.09e+03 on 1 and 998 DF, p-value: <0.0000000000000002
```

What That Looks Like

A Not-So-Good Regression

```
> summary(lm(Y2~X))
Call:
lm(formula = Y2 ~ X)
Residuals:
  Min
         10 Median
                     30
                           Max
-1.3115 -0.3205 -0.0405 0.2914 1.4876
Coefficients:
         Estimate Std. Error t value
                                     Pr(>|t|)
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.498 on 998 degrees of freedom
Multiple R-squared: 0.676, Adjusted R-squared: 0.676
F-statistic: 2.09e+03 on 1 and 998 DF, p-value: <0.00000000000000000
```

What That Looks Like

Models for Ordinal Responses

$$Y_{i}^{*} = \mu + u_{i}$$

$$Y_{i} = j \text{ if } \tau_{j-1} \leq Y_{i}^{*} < \tau_{j}, \ j \in \{1, ...J\}$$

$$Y_{i} = 1 \text{ if } -\infty \leq Y_{i}^{*} < \tau_{1}$$

$$= 2 \text{ if } \tau_{1} \leq Y_{i}^{*} < \tau_{2}$$

$$= 3 \text{ if } \tau_{2} \leq Y_{i}^{*} < \tau_{3}$$

$$= 4 \text{ if } \tau_{3} \leq Y_{i}^{*} < \infty$$

Ordinal Response Models: Probabilities

$$Pr(Y_i = j) = Pr(\tau_{j-1} \le Y^* < \tau_j)$$

$$= Pr(\tau_{j-1} \le \mu_i + u_i < \tau_j)$$

$$\mu_i = \mathbf{X}_i \boldsymbol{\beta}$$

$$Pr(Y_i = j | \mathbf{X}, \boldsymbol{\beta}) = Pr(\tau_{j-1} \le Y_i^* < \tau_j | \mathbf{X})$$

$$= Pr(\tau_{j-1} \le \mathbf{X}_i \boldsymbol{\beta} + u_i < \tau_j)$$

$$= Pr(\tau_{j-1} - \mathbf{X}_i \boldsymbol{\beta} \le u_i < \tau_j - \mathbf{X}_i \boldsymbol{\beta})$$

$$= \int_{-\infty}^{\tau_j - \mathbf{X}_i \boldsymbol{\beta}} f(u_i) du - \int_{-\infty}^{\tau_{j-1} - \mathbf{X}_i \boldsymbol{\beta}} f(u_i) du$$

$$= F(\tau_j - \mathbf{X}_i \boldsymbol{\beta}) - F(\tau_{j-1} - \mathbf{X}_i \boldsymbol{\beta})$$

So for $Y \in \{1, 2, 3\}$:

$$Pr(Y_i = 1) = F(\tau_1 - \mathbf{X}_i \beta) - 0$$

$$Pr(Y_i = 2) = F(\tau_2 - \mathbf{X}_i \beta) - F(\tau_1 - \mathbf{X}_i \beta)$$

$$Pr(Y_i = 3) = 1 - F(\tau_2 - \mathbf{X}_i \beta)$$

Possibilities: logit...

$$F(x) = \Lambda(x) = \frac{\exp(x)}{1 + \exp(x)}$$

...probit...

$$F(x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) du$$

... etc.

What That Looks Like

Define:

$$\delta_{ij} = 1 \text{ if } Y_i = j$$

$$= 0 \text{ otherwise.}$$

Likelihood:

$$L(Y|\mathbf{X},oldsymbol{eta}, au) = \prod_{i=1}^{N}\prod_{j=1}^{J}[F(au_{j}-\mathbf{X}_{i}oldsymbol{eta})-F(au_{j-1}-\mathbf{X}_{i}oldsymbol{eta})]^{\delta_{ij}}$$

Log-Likelihood, probit:

$$\ln L(Y|\mathbf{X},\boldsymbol{\beta},\tau) = \sum_{i=1}^{N} \sum_{i=1}^{J} \delta_{ij} \ln[\Phi(\tau_{j} - \mathbf{X}_{i}\boldsymbol{\beta}) - \Phi(\tau_{j-1} - \mathbf{X}_{i}\boldsymbol{\beta})]$$

Log-Likelihood, logit:

$$\ln L(Y|\mathbf{X},\boldsymbol{\beta},\tau) = \sum_{i=1}^{N} \sum_{j=1}^{J} \delta_{ij} \ln[\Lambda(\tau_{j} - \mathbf{X}_{i}\boldsymbol{\beta}) - \Lambda(\tau_{j-1} - \mathbf{X}_{i}\boldsymbol{\beta})]$$

The Intuition

Identification

Requires:

- (Usual) Assumption about $\sigma_{Y^*}^2$
- Identifying β_0 vs. the τ s...
- Must either omit β_0 or drop one of the J-1 τ s
- In practice: Stata & R omit β_0

Parallel Regressions

These models impose:

$$\frac{\partial \Pr(Y_i \ge j)}{\partial X} = \frac{\partial \Pr(Y_i \ge j')}{\partial X} \ \forall \ j \ne j'$$

(aka "proportional odds" ...)

Parallel Regressions Envisioned

Relaxing Parallel Regressions

$$\frac{\partial \Pr(Y_i \ge j)}{\partial X} \ne \frac{\partial \Pr(Y_i \ge j')}{\partial X} \ \forall \ j \ne j'$$

Nonparallel Regressions Envisioned

Estimation (in R)

Models can be fit using:

- polr (in MASS)
- clm (in ordinal)
- ologit/oprobit (in Zelig; calls polr)
- vglm (in VGAM)

Interpretation, etc.:

- modelsummary / modelplot
- marginaleffects
- Various tools in the easystats suite of packages

Yet Another SCOTUS Example!

The January 2018 TAPS Survey asked \approx 1000 respondents "(D)o you approve or disapprove of the way the following are doing their jobs? – The U.S. Supreme Court." Choices were:

```
1 = "Strongly Disapprove" (N = 97)
```

2 = "Somewhat Disapprove" (N = 276)

3 = "Somewhat Approve" (N = 581)

4 = "Strongly Approve" (N = 80)

The data:

> describe(SCdf,skew=FALSE)

	vars	n	mean	sd	median	min	max	range	se
ID	1	1034	1062311.76	114597.13	1007385	989877	1358330	368453	3563.80
SCOTUSApproval	2	1034	2.62	0.76	3	1	4	3	0.02
TrumpApproval	3	1034	2.08	1.21	1	1	4	3	0.04
KnowChiefJustice	4	1034	0.79	0.41	1	0	1	1	0.01
Democrat	5	1034	0.36	0.48	0	0	1	1	0.01
GOP	6	1034	0.33	0.47	0	0	1	1	0.01
Female	7	1034	0.46	0.50	0	0	1	1	0.02
White	8	1034	0.86	0.34	1	0	1	1	0.01
Black	9	1034	0.07	0.26	0	0	1	1	0.01
Education	10	1034	11.45	1.79	12	3	15	12	0.06
Age	11	1034	57.93	15.20	60	18	113	95	0.47

Ordered Logit (using polr)

```
> library(MASS)
> SC.logit<-polr(as.factor(SCOTUSApproval)~KnowChiefJustice+Democrat+
                 GOP+Female+White+Black+Education+Age,data=SCdf)
> summary(SC.logit)
Call:
polr(formula = as.factor(SCOTUSApproval) ~ KnowChiefJustice +
   Democrat + GOP + Female + White + Black + Education + Age.
   data = SCdf)
Coefficients:
                  Value Std. Error t value
KnowChief.Justice 0.31692
                           0.15645
                                    2.026
Democrat
                0.08771 0.15149 0.579
GOP
                0.49492 0.15311 3.233
Female
                0.01301 0.12421 0.105
White
               -0.07584 0.23822 -0.318
Black
               -0.07732 0.32412 -0.239
Education
               0.08349 0.03564 2.343
                          0.00409 2.266
Age
                0.00928
Intercepts:
   Value Std. Error t value
1|2 -0.443 0.515 -0.861
2|3 1,291 0,513
                   2.516
314 4.408 0.533
                 8,265
```

Residual Deviance: 2233.96

AIC: 2255.96

Ordered Logit (using clm)

```
> library(ordinal)
> SC.logit2<-clm(as.factor(SCOTUSApproval)~KnowChiefJustice+Democrat+
                 GOP+Female+White+Black+Education+Age,data=SCdf)
> summary(SC.logit2)
formula: as.factor(SCOTUSApproval) ~ KnowChiefJustice + Democrat + GOP + Female + White + Black + Education + Age
data.
        SCdf
 link threshold nobs logLik AIC
                                    niter max.grad cond.H
logit flexible 1034 -1116.98 2255.96 6(0) 5.02e-08 8.3e+05
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
                           0.15645
                                     2.03 0.0428 *
KnowChiefJustice 0.31692
                0.08771
                           0.15149
                                     0.58 0.5626
Democrat
GOP
                                     3.23 0.0012 **
                0.49492
                           0.15311
Female
               0.01301
                           0.12421
                                     0.10 0.9165
White
               -0.07584 0.23822
                                   -0.32 0.7502
Black
               -0.07732
                           0.32412 -0.24 0.8115
               0.08349
                           0.03564
                                     2.34 0.0192 *
Education
                0.00928
                           0.00409
                                     2.27 0.0234 *
Age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Threshold coefficients:
    Estimate Std. Error z value
112 -0.443
                0.515
                        -0.86
2|3 1.291
                0.513
                         2.52
    4.408
                0.533
314
                         8.27
```

Ordered Probit

```
> SC.probit<-polr(as.factor(SCOTUSApproval)~KnowChiefJustice+Democrat+
                   GOP+Female+White+Black+Education+Age,data=SCdf,
                   method="probit")
> summary(SC.probit)
Call:
polr(formula = as.factor(SCOTUSApproval) ~ KnowChiefJustice +
   Democrat + GOP + Female + White + Black + Education + Age,
   data = SCdf, method = "probit")
Coefficients:
                   Value Std. Error t value
KnowChiefJustice 0.181021 0.09035 2.00349
Democrat
                 0.070178 0.08561 0.81970
GNP
                0.249899 0.08681 2.87880
Female
                0.000309 0.07045 0.00438
White
               -0.029160 0.13700 -0.21285
Black
              -0.039993 0.18195 -0.21980
Education
                0.050138 0.02007 2.49763
                0.005261
                           0.00234 2.25112
Age
Intercepts:
   Value Std. Error t value
1|2 -0.245 0.291 -0.841
2|3 0.739 0.291
                 2.539
314 2.546 0.299
                   8.528
Residual Deviance: 2236.45
```

AIC: 2258.45

Logit / Probit Comparison

Ordered Reg	ression Resul	ts
	Logit	Probit
$\hat{\tau}_1$	-0.443	-0.245
	(0.515)	(0.291)
$\hat{ au}_2$	1.291*	0.739*
	(0.513)	(0.291)
$\hat{ au}_3$	4.408*	2.546*
	(0.533)	(0.299)
Know Chief Justice	0.317*	0.181*
	(0.156)	(0.090)
Democrat	0.088	0.070
	(0.151)	(0.086)
GOP	0.495*	0.250*
	(0.153)	(0.087)
Female	0.013	0.000
	(0.124)	(0.070)
White	-0.076	-0.029
	(0.238)	(0.137)
Black	-0.077	-0.040
	(0.324)	(0.182)
Education	0.083*	0.050*
	(0.036)	(0.020)
Age	0.009*	0.005*
	(0.004)	(0.002)
Num.Obs.	1034	1034
AIC	2256.0	2258.4
BIC	2310.3	2312.8
RMSE	2.50	2.50

Interpretation: Marginal Effects

The marginal effects are:

$$\frac{\partial \Pr(Y=j)}{\partial X_k} = \frac{\partial F(\hat{\tau}_{j-1} - \bar{\mathbf{X}}\hat{\beta})}{\partial X_k} - \frac{\partial F(\hat{\tau}_j - \bar{\mathbf{X}}\hat{\beta})}{\partial X_k}$$
$$= \hat{\beta}_k [f(\hat{\tau}_{j-1} - \bar{\mathbf{X}}\hat{\beta}) - f(\hat{\tau}_j - \bar{\mathbf{X}}\hat{\beta})]$$

So:

•
$$\operatorname{sign}\left(\frac{\partial \Pr(Y=1)}{\partial X_k}\right) = -\operatorname{sign}(\hat{\beta}_k)$$

•
$$\operatorname{sign}\left(\frac{\partial \Pr(Y=J)}{\partial X_k}\right) = \operatorname{sign}(\hat{\beta}_k)$$

ullet $rac{\partial \Pr(Y=\ell)}{\partial X_k}, \; \ell \in \{2,3,...J-1\}$ are non-monotonic

Marginal Effects, Illustrated

Interpretation: Odds Ratios

For a δ -unit change in X_k :

$$OR_{X_k} = \frac{\frac{\Pr(Y > j | \mathbf{X}, X_k + \delta)}{\Pr(Y \le j | \mathbf{X}, X_k + \delta)}}{\frac{\Pr(Y > j | \mathbf{X}, X_k)}{\Pr(Y \le j | \mathbf{X}, X_k)}}$$

$$= \exp(\delta \hat{\beta}_k)$$

Calculating Odds Ratios

```
> olreg.or <- function(model) {
    coeffs <- coef(summary(SC.logit))</pre>
+
   lci <- exp(coeffs[ ,1] - 1.96 * coeffs[ ,2])</pre>
   or <- exp(coeffs[ ,1])
+
    uci \leftarrow \exp(\operatorname{coeffs}[,1] + 1.96 * \operatorname{coeffs}[,2])
+
    lreg.or <- cbind(lci, or, uci)</pre>
+
    lreg.or
+ }
> olreg.or(SC.logit)
                     lci
                             or uci
KnowChiefJustice 1.010 1.373 1.87
Democrat
                  0.811 1.092 1.47
GOP
                  1.215 1.640
                                  2.21
Female
                  0.794 1.013 1.29
White
                  0.581 0.927 1.48
Black
                  0.490 0.926 1.75
Education
                  1.014 1.087 1.17
                  1.001 1.009 1.02
Age
1|2
                  0.234 0.642 1.76
213
                  1.330 3.635
                                  9.94
3|4
                 28.875 82.135 233.63
```

Odds Ratios via modelsummary

> modelsummary(list("Odds Ratios"=SC.logit),output="latex",stars=c("*"=0.05),exponentiate=TRUE)

Table of Odds Ratios

	Odds Ratios
$\hat{\tau}_1$	0.642
	(0.331)
$\hat{\tau}_2$	3.635*
	(1.865)
$\hat{\tau}_3$	82.135*
	(43.807)
KnowChiefJustice	1.373*
	(0.215)
Democrat	1.092
	(0.165)
GOP	1.640*
	(0.251)
Female	1.013
	(0.126)
White	0.927
	(0.221)
Black	0.926
	(0.300)
Education	1.087*
	(0.039)
Age	1.009*
	(0.004)
Num.Obs.	1034
AIC	2256.0
BIC	2310.3
RMSE	2.50
* - < 0.0F	

^{*} p < 0.05

Odds Ratios: Explication

What do those things mean?

- KnowChiefJustice:
 - \cdot OR = exp(0.317) = 1.37
 - · "The odds of a respondent rating the Court "Somewhat Disapprove" or better (versus "Strongly Disapprove") are about 37 percent higher for individuals who can correctly identify the Chief Justice than for those who cannot."
 - · "The odds of respondents rating the Court "Somewhat Approve" or better (versus "Somewhat Disapprove" or "Strongly Disapprove") are also about 37 percent higher for individuals who can correctly identify the Chief Justice than for those who cannot."

• Age:

- $\cdot \text{ OR} = \exp(0.009) = 1.01$
- "A one-year increase in a respondent's age raises the odds of them rating the Court in a higher set of categories (versus all lower ones) by about one percent."
- · "A ten-year increase in a respondent's age yields an odds ratio of $\exp(10\times0.009)=\exp(0.09)=1.09$, corresponding to an expected 9 percent increase in their approval rating of the Court."

Predicted Probabilities: Basics

Predicted probabilities (at \bar{X}):

$$\Pr(\widehat{Y_i = j} | \mathbf{X}) = F(\hat{\tau}_j - \bar{\mathbf{X}}_i \hat{\beta}) - F(\hat{\tau}_{j-1} - \bar{\mathbf{X}}_i \hat{\beta})$$

Variable means/medians:

- KnowChiefJustice = 1, Democrat = 0, GOP = 0, Female = 0, White = 1, Black = 0, Education = 11.4, Age = 57.9.
- Yields:

$$\sum_{k=1}^{K} \bar{\mathbf{X}}_{k} \hat{\beta}_{k} = (0.32 \times 1) + (0.09 \times 0) + (0.49 \times 0) + (0.01 \times 0) -$$

$$(0.08 \times 1) - (0.08 \times 0) + (0.08 \times 11.4) + (0.01 \times 57.9)$$

$$= 0.32 - 0.08 + 091 + 0.58$$

$$= 1.73.$$

Predicted Probabilities: "By Hand"

$$\begin{array}{lcl} \Pr(Y=1) & = & \Lambda(-0.44-1.73)-0 \\ \\ & = & \frac{\exp(-2.17)}{1+\exp(-2.17)} \\ \\ & = & \textbf{0.10}. \end{array}$$

$$\begin{array}{lll} \text{Pr}(Y=2) & = & \Lambda(1.29-1.73) - \Lambda(-0.44-1.73) \\ \\ & = & \Lambda(-0.44) - \Lambda(-2.17) \\ \\ & = & 0.39-0.10 \\ \\ & = & \textbf{0.29}. \end{array}$$

$$\begin{array}{lll} \mathsf{Pr}(Y=3) & = & \Lambda(4.41-1.73) - \Lambda(1.29-1.73) \\ \\ & = & \Lambda(2.68) - \Lambda(-0.44) \\ \\ & = & 0.94-0.39 \\ \\ & = & \textbf{0.55}. \end{array}$$

$$Pr(Y = 4) = 1 - \Lambda(4.41 - 1.73)$$

$$= 1 - \Lambda(2.68)$$

$$= 1 - 0.94$$

$$= 0.06.$$

Changes in Predicted Probabilities

Changing KnowChiefJustice=0 $o \sum_{k=1}^K \bar{\mathbf{X}}_k \hat{eta}_k = 1.41$

•
$$Pr(Y = 1) = \Lambda(-0.44 - 1.41) - 0 = 0.14$$
.

•
$$Pr(Y = 2) = \Lambda(1.29 - 1.41) - \Lambda(-0.44 - 1.41) = 0.47 - 0.14 = 0.33$$
.

•
$$Pr(Y = 3) = \Lambda(4.41 - 1.41) - \Lambda(1.29 - 1.41) = 0.95 - 0.47 = 0.48$$
.

• Pr(Y = 4) = 1 - 0.95 = 0.05.

Changes	in	Probability	,

Outcome	Change in Probability
ΔPr(Strongly Disapprove)	0.04
ΔPr(Somewhat Disapprove)	0.04
ΔPr(Somewhat Approve)	-0.07
ΔPr(Strongly Approve)	-0.01

Predicted Probability Plots

General idea: Plot predicted probabilities of each categorical outcome across different values of **X**...

- Can be category-specific or "cumulative"
- In-sample in \$fitted.values
- Both polr and clm classes support predict, confint, etc.

Plot by Outcome

(How'd He Do That?)

```
> Sim<-data.frame(KnowChiefJustice=median(SCdf$KnowChiefJustice),
                  Democrat=median(SCdf$Democrat),
                  GOP=median(SCdf$GOP),
                  Female=median(SCdf$Female).
                  White=median(SCdf$White),
                  Black=median(SCdf$Black).
                  Education=mean(SCdf$Education).
                  Age=seq(18,100,1))
 SC.hat<-predict(SC.logit,Sim,type='probs')</pre>
>
> plot(c(min(Sim$Age),max(Sim$Age)),c(0,0.7),type='n',
       xlab="Age", ylab="Predicted Probability")
> lines(min(Sim$Age):max(Sim$Age),SC.hat[,1],lty=1,lwd=3)
> lines(min(Sim$Age):max(Sim$Age),SC.hat[,2],lty=2,lwd=3)
> lines(min(Sim$Age):max(Sim$Age),SC.hat[,3],lty=3,lwd=3)
> lines(min(Sim$Age):max(Sim$Age),SC.hat[,4],lty=4,lwd=3)
> legend("topleft",bty="n",lwd=3,lty=c(1:4),
         legend=c("Pr(Strongly Disapprove)",
                  "Pr(Somewhat Disapprove)".
                  "Pr(Somewhat Approve)",
                  "Pr(Strongly Approve)"))
```

Similar, using marginal effects

```
p<-plot_predictions(SC.logit,condition=c("Age","group"),type="probs",vcov=TRUE) +
theme_classic() +
ylab("Predicted Probabilities")</pre>
```


Stronger Effects: Trump Approval

```
> SCdf$Trump<-factor(SCdf$TrumpApproval,labels=c("Strongly Disapprove",
                    "Somewhat Disapprove". "Somewhat Approve". "Strongly Approve"))
> DT.logit<-polr(Trump~Democrat+GOP+Female+
                White+Black+Education+Age.data=SCdf)
> summary(DT.logit)
Call:
polr(formula = Trump ~ Democrat + GOP + Female + White + Black +
   Education + Age, data = SCdf)
Coefficients:
           Value Std. Error t value
Democrat -2.0627
                   0.20001 -10.31
GOP
        1.9099
                   0.15789 12.10
Female -0.2995 0.13569 -2.21
White -0.3221 0.27158 -1.19
Black -0.6658 0.42985 -1.55
Education -0.2161
                   0.03795 -5.69
          0.0137
                   0.00445 3.08
Age
Intercepts:
                                     Value
                                             Std. Error t value
Strongly Disapprove|Somewhat Disapprove
                                      -2.217
                                               0.573
                                                        -3.868
Somewhat Disapprove|Somewhat Approve
                                      -1.402
                                               0.571
                                                        -2.454
Somewhat Approve|Strongly Approve
                                       0.016
                                               0.572
                                                         0.029
Residual Deviance: 1934.80
AIC: 1954.80
```

Predicted Probabilities

Variants / Extensions (also for PLSC 504...)

- Generalized models (relax parallel regressions; Brant (1990))
- Heteroscedastic models
- Varying τ s (Maddala, Terza, Sanders)
- Models for "balanced" scales (Jones & Sobel)
- Compound Ordered Hierarchical Probit ("chopit") (Wand & King)
- "Zero-Inflated" Ordered Models (Hill, Bagozzi, Moore & Mukherjee)
- Latent class/mixture models (Winkelmann, etc.)