Lecture 4. Dynamic programming.

Algorithms and Data Structures
Ivan Solomatin
MIPT 2020

Outline

- Basic principles of DP.
 - Example: Fibonacci numbers
 - Example: Paid stairs
 - Principles of DP
 - Example: Turtle
- Longest Increasing Subsequence (LIS)
 - Problem statement
 - $O(N^2)$ algorithm
 - O(N log N) algorithm

Basic principles of DP.

- Example: Fibonacci numbers
- Example: Paid stairs
- Principles of DP
- Example: Turtle

Statement

$$F_0 = 0, F_1 = 1$$

 $F_i = F_{i-1} + F_{i-2}$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...

Problem Fibonacci numbers:

Given N, find $F_N \mod 10^9 = ?$

Not to deal with huge numbers, let's calculate $F_N \mod 10^9$ instead of F_N .

Naïve solution: $O(2^N)$


```
O(2^N)
```

N = 16 : 0.0005 sec

N = 32 : 0.67 sec

N = 42 : 90 sec

N = 44 : 237 sec

Memoization (top-down): O(N)

$$N = 1000 : 0.0005 \text{ sec}$$

 $O(N)$ $N = 2000 : 0.001 \text{ sec}$
 $N = 3000 : 0.0025 \text{ sec}$

Tabulation (bottom-up): O(N)

N = 10000 : 0.002 sec

O(N)

N = 100000 : 0.024 sec

N = 200000 : 0.048 sec

N = 300000 : 0.073 sec

Basic principles of DP.

- Example: Fibonacci numbers
- Example: Paid stairs
- Principles of DP
- Example: Turtle

Statement

Problem paid stairs:

Given stairs with N steps. To use i-th step you need to pay s[i] coins.

From i-th step you can move to i+1-th, or to i+2-th (skip one step)

$$i \to \begin{bmatrix} i+1\\ i+2 \end{bmatrix}$$

Initially you stay before 0-th step. You need to get to (N-1)-th step and minimize number of spent coins.

Naïve solution

```
def stairs_rec(s):
    if len(s) <= 2:
        return s[-1]
    d1 = s[0] + stairs_rec(s[1:])
    d2 = s[1] + stairs_rec(s[2:])
    return min(d1, d2)</pre>
```

$$O(2^{N})$$

$$i \to \begin{bmatrix} i+1\\i+2 \end{bmatrix}$$

$$d(N-1) = \begin{bmatrix} d(N-2) + s[N-1] \\ d(N-3) + s[N-1] \end{bmatrix}$$

$$d(i) = \min(d(i-1), d(i-2)) + s[i]$$

$$d(0) = s[0], \qquad d(1) = s[1]$$

$$d[0] = s[0],$$
 $d[1] = s[1]$

$$d[i] = \min \begin{pmatrix} d[i-1], \\ d[i-2] \end{pmatrix} + s[i]$$

$$d[N-1]$$
 – desired answer

Implementation

```
def solve_stairs(s):
    N = len(s)
    d = [None] * N
    d[0] = s[0]
    d[1] = s[1]
    for i in range(2, N):
        d[i] = min(d[i - 1], d[i - 2]) + s[i]
    return d[N - 1]
```

O(N)

Basic principles of DP.

- Example: Fibonacci numbers
- Example: Paid stairs
- Principles of DP
- Example: Turtle

Subproblems and optimal structure

$$F(N-1) \to F(N)$$

$$F(N-2) \to F(N)$$

Subproblems and optimal structure

1. Overlapping subproblems

Our problem should have overlapping subproblems such that solution of subproblem may be used as subsolution of an initial problem (may be constructed using subsolution).

2. Optimal substructure:

A problem is said to have **optimal substructure** if an optimal solution can be constructed from optimal solutions of its subproblems.

This usually can be proven by contradiction. If solution F(N) is constructed using subproblem solution F(K) (as a subsolution), F(K) must also be optimal.

Let's prove that for paid stairs example

Optimal structure in paid stairs example

In paid stairs example: Let's suppose that we construct optimal solution $F_1(N)$ from solution $F_1(N-1)$. Also, let's suppose that there's better solution $F_2(N-1) < F_1(N-1)$, so $F_1(N-1)$ is not optimal. But this means, we can replace path to N-1-th step with $F_2(N-1)$ and obtain solution $F_2(N)$ which is better than $F_1(N)$: $F_2(N) < F_1(N)$. This means, initial solution $F_1(N)$ was not optimal. Contradiction.

So, this means, if we use solution of subproblem A to construct optimal solution B for it's superproblem, solution A must also be an optimal solution.

This means that this problem has optimal substructure and can be solved using DP.

Basic steps for DP based solution

1. Split your problem to subproblems and parametrize these subproblems.

E.g.: Solutions for parametrized subtasks: d(i). Solution for your task may be obtained from this function: d(N).

2. **Define basis of DP**: solutions for small subproblems which can't be splited deeper, e.g.:

$$d(0) = x_0, \qquad d(1) = x_1$$

3. Prove that problem has optimal substructure and define how we can construct solution from solutions of subproblems (Inductive step), e.g.:

$$d(i) = F(d(i-1), d(i-2), \dots d(0))$$

4. **Implement algorithm**: Define what values we need to get solution of initial problem. Calculate desired values of d using top-down or bottom-up approach. (Using data structure (list, dict) for storing solutions within whole parametric space of subproblems).

Basic steps for DP based solution

So, in case of paid stairs:

1. Subproblems:

d[i] – minimum cost we need to get to i-th step.

2. Basis:

$$d[0] = s[0],$$
 $d[1] = s[1]$

3. Inductive step:

$$d[i] = \min(d[i-1], d[i-2]) + s[i]$$

4. Answer for initial problem:

$$d[N-1]$$

$$d[0] = s[0]$$

$$d[1] = s[1]$$

$$for i in range(2, N):$$

$$d[i] = min(d[i-1], d[i-2]) + s[i]$$

$$return d[N-1]$$

Basic DP problems

- Example: Fibonacci numbers
- Example: Paid stairs
- Principles of DP
- Example: Turtle

Example: turtle

Statement

Problem turtle. Turtle stands in the left top corner of a rectangular field $N \times M$. Each cell of field contains given amount of food: f(i,j). Turtle can move to adjacent cell only down or right. Find maximum total amount of food turtle can get on a path from left top corner of a field to the bottom right corner.

Naïve solution:

Check all possible paths.

$$C_{N+M-2}^{N-1} = \frac{(N+M-2)!}{(N-1)!(M-1)!}$$

Too long.

$$> 10^{10}$$
 paths for $N = M = 20$

Example: turtle

Solution

T	U			<u> </u>	
0	3	5	10	4	
1	1	1	6	2	
2	1	8	5	8	
3	1	8	3	2	
d	0	1	2	3	
0	3	8	18	22	
1	4	9	24	26	
2	5	17	29	37	
3	6	25	32	39	

1. Subproblems:

d[i,j] – maximum amount of food turtle can get on path from (0, 0) to (i, j)

2. Basis:

$$d[0,0] = f[0,0]$$

$$d[0,j] = d[0,j-1] + f[0,j]$$

$$d[i,0] = d[i-1,0] + f[i,0]$$

3. Inductive step:

$$d[i,j] = \max(d[i-1,j], d[i,j-1]) + f[i,j]$$

4. Answer for initial problem:

$$d[N-1, M-1]$$

Complexity: O(NM)

Longest Increasing Subsequence (LIS)

- Problem statement
- $O(N^2)$ algorithm
- O(N log N) algorithm

LIS: Problem statement.

Statement

Problem: Longest Increasing Subsequence (LIS).

Given sequence of *N* elements:

$$x_0, x_1, \dots, x_{N-1}$$

Subsequence is a sequence that can be obtained from initial one by removing elements:

$$x_{i_0}, x_{i_1}, \dots, x_{i_{K-1}}$$
: $0 \le i_0 < i_1 < \dots < i_{K-1} < N$

Increasing subsequence is a subsequence that satisfies inequality of sorted array (strict ascending order):

$$x_{i_0} < x_{i_1} < \dots < x_{i_{K-1}}$$

Task is to find increasing subsequence of maximum length: $K \rightarrow max$.

LIS: Problem statement.

Example

	0	1	2	3	4	5	6	7
x:	3	5	10	1	6	8	9	8
·								
K = 3	3	5	10					
·								
K = 2				1			9	
		I						
K = 4	3	5			6			8
<i>K</i> = 5	3	5			6	8	9	

Longest Increasing Subsequence (LIS)

- Problem statement
- $O(N^2)$ algorithm
- O(N log N) algorithm

Idea

Let's use DP:

1. Subproblems:

d[i] – length of LIS which ends in x[i].

2. Basis:

$$d[0] = 1$$

Idea

Idea

Let's use DP:

- 1. Subproblems:
 - d[i] length of LIS which ends in x[i].
- 2. Basis:

$$d[0] = 1$$

3. Inductive step:

$$d[i] = \begin{cases} d[j] + 1, where j = \underset{0 \le j < i}{\operatorname{argmax}} d[j], if \exists j \\ x[j] < x[i] \end{cases}$$

$$1, \quad otherwise$$

4. Answer for initial problem:

$$\max_{i:0 \le i < N} d[i]$$

Example

Implementation

```
def lis_n2(x):
    N = len(x)
    d = [0] * N
    d[0] = 1
    for i in range(1, N):
        # don't need to find j
        # need just to calculate max d:
        \max d = 0
        for j in range(i):
            if x[j] < x[i] and d[j] > max_d:
                \max d = d[j]
        d[i] = \max d + 1
    return max(d)
```

 $O(N^2)$

Longest Increasing Subsequence (LIS)

- Problem statement
- $O(N^2)$ algorithm
- O(N log N) algorithm

Idea

1. Subproblems: d[l][i] – minimum last value of increasing subsequence among all increasing subsequences of length l for first i elements of x.

Set of all increasing subsequences of length l on $x_0, x_1, ..., x_{i-1}$:

$$J_{i,l} = \{(j_0, j_1, \dots j_{l-1}) \colon 0 \le j_0 < j_1 \dots < j_{l-1} < i,; \ x_{j_0} < x_{j_1} < \dots < x_{j_{l-1}} \}.$$

$$x_{j_{l-1}} \to \min$$

$$d[l][i] = \begin{cases} \min_{J_{i,l}} x_{j_{l-1}}, & \text{if } J_{i,l} \neq \emptyset \\ \infty, & \text{if } J_{i,l} = \emptyset \end{cases}$$

2. Basis:

$$d[0][0] = -\infty,$$
 $d[1:][0] = \infty$

 χ : $-\infty$ $-\infty$ $-\infty$ $-\infty$ $-\infty$ $-\infty$ $-\infty$ l = 1l = 2l = 3l = 4l = 5

Idea

1. Subproblems: d[l][i] – minimum last value of increasing subsequence among all increasing subsequences of length l for first i elements of x. Set of all increasing subsequences of length l on $x_0, x_1, ..., x_{i-1}$:

$$\begin{split} J_{i,l} = \{ (\mathbf{j}_0, \mathbf{j}_1, \dots \mathbf{j}_{l-1}) \colon \ 0 \leq j_0 < j_1 \dots < j_{l-1} < i,; \ \ x_{j_0} < x_{j_1} < \dots < x_{j_{l-1}} \}. \\ x_{j_{l-1}} \to \min \end{split}$$

$$d[l][i] = \begin{cases} \min_{J_{i,l}} x_{j_{l-1}}, & \text{if } J_{i,l} \neq \emptyset \\ \infty, & \text{if } J_{i,l} = \emptyset \end{cases}$$

2. Basis:

$$d[0][0] = -\infty,$$
 $d[1:][0] = \infty$

3. Inductive step:

 (l^*-1) — length of longest subsequence which can be extended by x[i]:

$$l^* = \min\{l: d[l][i-1] \ge x[i]\}$$

$$d[l][i] = \begin{cases} d[l][i-1], & \text{if } l \ne l^*, \\ x[i], & \text{if } l = l^* \end{cases}$$

4. Answer for initial problem:

$$\max_{d[l][N]<\infty}l$$

Example

Remarks

$$d[l][i] = \begin{cases} d[l][i-1], & if \ l \neq l^* + 1, \\ x[i], & if \ l = l^* + 1 \end{cases}$$

d[l][i] differs from d[l][i-1] only in l^* . Also, on i-th step we need only results for i-1-th step. So, we can use 1D array d[l] and update it iteratively so that on i-th step d[l] is indeed d[l][i].

$$l^* = \max\{l: d[l][i-1] < x[i]\}$$

Let's notice that d[l] is always monotonous, because new value x[i] is inserted after all values < x[i]. So, we can use binary search to find l^* .

Implementation (pseudocode)

```
def lis(x):
     N \leftarrow len(x)
     # value that is > than each value in x:
     \mathsf{d} \leftarrow \lceil \infty \rceil * (\mathsf{N} + 1)
     # value that is < than each value in x:
     d[0] \leftarrow -\infty
     for i in range(N):
           # use binary search (bisect)
           # to find l^* here:
           l^* \leftarrow \min\{l: d\lceil l\rceil \geq x\lceil i\rceil\}
           d[l^*] \leftarrow x[i]
                                                   O(N \log N)
      return \max\{l: d[l] < \infty\}
```

Conclusion

Thank you for watching!