EE4704 Image Processing and Analysis

Semester 1, 2020/21

Tutorial Set D

1. Consider a continuous image function f(x,y) with PDF p(r), $0 \le r \le 1$. The exponential function

$$T_{\gamma}(r) = r^{\gamma}, \quad \gamma > 0$$

may be used as a transformation function for image enhancement. Sketch

$$s = T_{\gamma}(r)$$

for $0 < \gamma < 1$, $\gamma = 1$, and $\gamma > 1$. Describe, in general, the effect on overall brightness of applying $T_{\gamma}(r)$ to an image. Obtain the discrete version of T_{γ} that can be applied to an image with gray levels $0, 1, 2, \dots, 255$.

2. A contrast enhancement method is described by the equation below, which relates the output gray levels, s_k , to the input gray levels, r_k :

$$s_k = C(r_k - \mu) + \mu, \qquad k = 0, 1, \dots, L - 1$$

In this equation, L is the number of gray levels, μ is the mean value of the imput image, and C is a parameter that can be adjusted to obtain the desire amount of contrast. Explain how this algorithm works. Choose an appropriate value of C for the image with the following gray-level distribution:

Gray level:	0	1	2	3	4	5	6	7	8	9	10
Number of pixels:	0	0	200	300	500	1000	1300	1300	1800	0	0

C is chosen such that contrast is maximised without clipping at gray levels 0 or 10.

3. Obtain the transformation function T(r) that can be applied to the histogram $p_r(r)$ to obtain $p_s(s)$.

4. Consider the normalised histogram of a 21-level image:

$$p_r(r_k) = \begin{cases} 0.15 & 0.2 \le r_k \le 0.35 \\ 0.1 & 0.4 \le r_k \le 0.55 \\ 0 & \text{elsewhere} \end{cases}$$

where $r_k = 0, 0.05, 0.1, 0.15, \dots, 1$. Obtain the transformation function that equalises the image and plot the resulting histogram.

5. Consider a Gaussian lowpass filter

$$H(u,v) = e^{-\omega^2/2\sigma^2}$$

(where $\omega^2 = u^2 + v^2$) that is used to filter an $N \times N$ image with discrete Fourier transform F(u, v). What is the effect of repeatedly filtering this image with H(u, v)?

- 6. In the image below, f(x, y), the object pixels have gray level 1, background pixels gray level 0.
 - (a) Using the Sobel operator, obtain the gradient vector for all the pixels in the image. Calculate the gradient magnitude to 1 decimal place.
 - (b) Applying the Laplacian operator to f(x,y) to give $g_L(x,y)$. For each row in g_L , do a hoizontal scan and indicate the zero crossing point along the scan line. Repeat for each column (vertical scan line). The zero crossing can be estimated to sub-pixel resolution.

7. Given the continuous image function

$$f(x,y) = \exp(-ax^2 - by^2)$$

2

Obtain an expression for the gradient vector at (x, y).