Maximal Margin Classifier: The Math

The maximal margin classifier solves a constrained optimization problem:

$$\max_{\beta_0,\beta_1,\ldots,\beta_p} M$$

subject to:

$$\|\beta\| = 1$$

 $y_i(\beta_0 + \beta^T x_i) \ge M, \quad \forall i = 1,..., n$

ensured each observation is on the correct side of the hyperplane and at least a distance M from the hyperplane, i.e., M is the margin of the hyperplane

distance between x_i and line where

$$\|\beta\| = \sqrt{\sum_{j=1}^{p} \beta_j^2}$$
 is the Euclidean norm of β

Maximal Margin Classifier: The Math

The maximal margin classifier solves a constrained optimization problem:

maximize the minimum distance between hyperplane and point

subject to:
$$y_i(\beta_0 + \beta^T x_i) \ge 1$$
, $\forall i = 1, ..., n$

distance between x_i and line where

$$|\beta|| = \sqrt{\sum_{j=1}^{p} \beta_{j}^{2}} \text{ is the Euclidean norm of } \beta$$

$$\begin{cases} y_i(\beta_0 + \beta^T x_i) \\ ||\beta|| \end{cases}$$

