Análise e Implementação de Estruturas de Dados Avançadas para Deteção de Interferência em Antenas

Rodrigo Henrique Silva Pinheiro

16 Maio 2025

Resumo

Este trabalho apresenta uma solução computacional para o problema de deteção de interferências em redes de antenas, utilizando estruturas de dados avançadas. O estudo aborda a modelagem do problema através de listas ligadas e grafos, implementadas em linguagem C, com o objetivo de identificar localizações com efeitos nefastos causados por ressonância entre antenas. A abordagem metodológica incluiu revisão de literatura sobre estruturas de dados, análise comparativa de soluções existentes e desenvolvimento de algoritmos eficientes. Os resultados demonstram a eficácia da solução proposta em diferentes cenários de teste, contribuindo com uma abordagem inovadora para a otimização de redes de telecomunicações. O trabalho destaca-se pela integração de conceitos teóricos com aplicação prática, seguindo rigorosos padrões de documentação e validação.

Conteúdo

1	Intr	odução	4
	1.1	Motivação	4
	1.2	Enquadramento	
	1.3	Objetivos	4
	1.4	Metodologia	
	1.5	Estrutura do Documento	5
2	Est	ado da Arte	6
	2.1	Conceitos Fundamentais	6
	2.2	Soluções Existentes	6
3	Tra	oalho Desenvolvido	7
	3.1	Análise e Especificação	7
		3.1.1 Requisitos	7
		3.1.2 Arquitetura	
	3.2	Implementação	8
		3.2.1 Fase 1 - Listas Ligadas	8
		3.2.2 Fase 2 - Grafos	8
4	Cor	clusão	10
\mathbf{A}	Ma	nual de Utilização	12
В	Cóc	igo Fonte	13

Lista de Figuras

3.1	Arquitetura	do sistema																							8
-----	-------------	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Lista de Tabelas

2.1 Comparação de soluções existentes 6	2.1	Comparação	de soluções	existentes																	6
---	-----	------------	-------------	------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Introdução

1.1 Motivação

O presente capítulo introduz o contexto e objetivos do trabalho desenvolvido. Uma das grandes motivacoes foi o aprendizado de listas ligadas e grafos, aplicando em pratica neste projeto, que obriga a manipular estas estruturas de forma efiente. Tendo assim um dos principios principais como encapsulamento, eficiencia e organizacao de codigo.

1.2 Enquadramento

Este trabalho enquadra-se no âmbito da unidade curricular de Estruturas de Dados Avançadas do curso de Licenciatura em Engenharia de Sistemas e Informática do IPCA. A solução desenvolvida diferencia-se de abordagens convencionais pela aplicação sistemática de estruturas de dados dinâmicas e algoritmos de grafos.

1.3 Objetivos

Os principais objetivos definidos foram:

- Desenvolver um modelo computacional para representação de redes de antenas
- Implementar algoritmos eficientes para deteção de interferências
- Validar a solução em diferentes cenários de teste

1.4 Metodologia

Adotou-se uma metodologia de desenvolvimento iterativo, com as seguintes fases:

- 1. Revisão de literatura e estudo de soluções existentes
- 2. Modelação do problema e especificação de requisitos
- 3. Implementação e testes
- 4. Validação e documentação

1.5 Estrutura do Documento

Este documento está organizado em cinco capítulos principais. O Capítulo 2 apresenta o estado da arte. O Capítulo 3 detalha a análise e especificação da solução. Por fim, o Capítulo 4 apresenta as conclusões.

Estado da Arte

2.1 Conceitos Fundamentais

Este capítulo explora os fundamentos teóricos e soluções existentes relevantes para o problema em estudo.

As estruturas de dados dinâmicas, particularmente listas ligadas e grafos, têm sido amplamente utilizadas em problemas de representação espacial [?]. A teoria de grafos aplicada a redes de telecomunicações tem demonstrado eficácia em problemas de otimização e deteção de interferências [?].

2.2 Soluções Existentes

A Tabela 2.1 compara abordagens existentes para problemas similares:

Tabela 2.1: Comparação de soluções existentes

Solução	Estrutura de Dados
Sistema A	Matriz estática
Sistema B	Grafos

A análise revelou que nenhuma das soluções existentes aborda especificamente o problema de deteção de efeitos nefastos entre antenas com a mesma frequencia.

Trabalho Desenvolvido

3.1 Análise e Especificação

3.1.1 Requisitos

Foram identificados os seguintes requisitos principais:

- Representação dinâmica da rede de antenas
- Deteção eficiente de localizações com interferência
- Armazenamento persistente dos dados
- Interface de visualização dos resultados

3.2 Implementação

3.2.1 Fase 1 - Listas Ligadas

Implementou-se uma lista ligada para armazenamento das antenas, com operações de:

- Inserção e remoção de elementos
- Cálculo de localizações com efeito nefasto
- Exportação de resultados

3.2.2 Fase 2 - Grafos

A segunda fase implementou um grafo para representação das relações entre antenas, com algoritmos de:

- Busca em profundidade e largura
- Identificação de caminhos
- Deteção de intersecções

Conclusão

O desenvolvimento deste projeto permitiu aplicar conceitos fundamentais de Estruturas de Dados e Algoritmos, como listas ligadas, grafos, buscas em profundidade (DFS) e largura (BFS), além de manipulação de ficheiros. O sistema implementado possibilita a gestão eficiente de antenas, cálculo de efeitos nefastos, identificação de interseções entre frequências e persistência dos dados em ficheiros binários.

Durante a implementação, foram enfrentados desafios relacionados à manipulação de ponteiros, gestão de memória dinâmica e integração entre diferentes módulos do projeto. A validação das funcionalidades foi realizada através de testes com diferentes conjuntos de dados, garantindo a robustez e a correta execução das operações propostas. Para alem dos desafios encontrados na resolucao pratica deste projeto, tambem o tempo fora um obstaculo pois foi um projeto exigente.

O projeto está devidamente documentado, facilitando a compreensão e manutenção do código. Recomenda-se, para trabalhos futuros, a implementação de uma interface gráfica e a otimização dos algoritmos de busca para grandes volumes de dados.

- Modelação eficiente do problema usando estruturas de dados avançadas
- Implementação de algoritmos otimizados para deteção de ressonância
- Documentação abrangente seguindo padrões académicos

Bibliografia

- [1] OpenAI. (2023). ChatGPT: Optimizing Language Models for Dialogue. Disponível em: https://openai.com/blog/chatgpt.
- [2] Mittelbach, F. e Goossens, M. (2004). The LaTeX Companion. 2ª ed. Addison-Wesley.
- [3] DeepSeek. (2024). DeepSeek Chat: Advanced AI Language Model. Disponível em: https://www.deepseek.com.

Apêndice A

Manual de Utilização

Compilar e Executar o Programa

- Para compilar o Programa use o comando: Make
- Para Executar o Programa use o comando: Make run
- Para limpar os executaveis use: make clean
- Menu:

Sera Aberto um Menu e tera de escolher uma opcao de 1 a 11, escolhendo a opcao desejada