## Specifying and Verifying Systems in TLA<sup>+</sup>

#### Stephan Merz

http://www.loria.fr/~merz/

INRIA Nancy & LORIA Nancy, France





ICTAC School on Software Engineering Natal, Brazil, August 2010

### Leslie Lamport

http://www.lamport.org/



#### PhD 1972 (Brandeis University), Mathematics

- Mitre Corporation, 1962–65
- Marlboro College, 1965–69
- Massachusets Computer Associates, 1970–77
- SRI International, 1977–85
- Digital Equipment Corporation/Compaq, 1985–2001
- Microsoft Research, since 2001

#### Pioneer of distributed algorithms

- Natl. Academy of Engineering, PODC Influential Paper Award, ACM SIGOPS Hall of Fame, LICS Award, IEEE John v. Neumann medal, ...
- honorary doctorates (Rennes, Kiel, Lausanne, Lugano, Nancy)

# TLA<sup>+</sup> specification language

http://tlaplus.net



- formal language for describing and reasoning about distributed and concurrent systems
- based on mathematical logic and set theory plus linear time temporal logic TLA
- book: Addison-Wesley, 2003 (free download for personal use)
- supported by tool set (TLA<sup>+</sup> toolbox)

# TLA<sup>+</sup> specification language

http://tlaplus.net



- formal language for describing and reasoning about distributed and concurrent systems
- based on mathematical logic and set theory plus linear time temporal logic TLA
- book: Addison-Wesley, 2003 (free download for personal use)
- supported by tool set (TLA<sup>+</sup> toolbox)

#### Some other publications

- Y. Yu, P. Manolios, L. Lamport: Model checking TLA<sup>+</sup> Specifications. CHARME 1999, pp. 54-66, LNCS 1703.
- S. Merz: *The Specification Language* TLA<sup>+</sup>. In: Logics of Specification Languages (D. Bjørner, M. Henson, eds.), Springer 2008, pp. 401-451.
- K. Chaudhuri, D. Doligez, L. Lamport, S. Merz: Verifying Safety Properties with the TLA+ Proof System. IJCAR 2010, pp. 142-148, LNCS 6173

#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition

### Why formal specifications?

- describe, analyze, and reason about systems
  - algorithms, protocols, embedded systems, . . .
- at different levels of abstraction
  - requirements, high-level design, component design, code
- verify models throughout development
  - gradually introduce design decisions, detect errors early
- focus on different aspects of system under development
  - functional correctness, performance, resource usage, security, ...
- use different analysis and verification techniques
  - ▶ simulation, model checking, static analysis, theorem proving, ...

# Classes of formal specification languages

- intended for different kinds of systems and properties
  - sequential algorithms
  - interactive, reactive, distributed systems
  - real-time and hybrid systems
  - security-sensitive protocols and systems
- based on different formal foundations
  - ▶ logics: first-order, higher-order, temporal, ...
  - automata: transition systems, timed, hybrid automata, ...
  - abstract machines:  $\lambda$ -calculus, rewriting, process calculi, ...
- based on different specification styles
  - property-oriented: list desired correctness properties
  - model-based: describe abstract realization of intended system
- TLA<sup>+</sup>: reactive systems, temporal logic, model-based

# Simple TLA<sup>+</sup> specification: the hour clock

```
MODULE HourClock

EXTENDS Naturals

VARIABLE hr

HCini \stackrel{\triangle}{=} hr \in 0..23

HCnxt \stackrel{\triangle}{=} hr' = \text{IF } hr = 23 \text{ THEN } 0 \text{ ELSE } hr + 1

HCsafe \stackrel{\triangle}{=} HCini \land \Box [HCnxt]_{hr}

THEOREM HCsafe \Rightarrow \Box HCini
```

#### *HourClock* module: some observations

- Structure of the module
  - list of declarations, definitions, and assertions
  - ► *hr* a state variable
  - ► *HCini* a state predicate
  - ► *HCnxt* a transition predicate (an action)
  - ► *HCsafe* a temporal formula
- Formula *HCsafe* holds of a behavior if
  - ▶ initial state satisfies *HCini*
  - every transition satisfies HCnxt or leaves hr unchanged
  - clock may stop ticking, but may not fail in any other way
- Module asserts a theorem
  - any run of the hour clock always satisfies HCini
  - ▶ theorem can be verified using TLC, the TLA<sup>+</sup> model checker

## Non-stopping hour clock

- Formulas  $Init \wedge \Box [Next]_v$  describe a state machine
  - initial state of system
  - allowed state transitions, including "stuttering"
- Fairness conditions rule out infinite stuttering
  - ► fairness: action must occur if it is possible "often enough"
  - an hour clock that never stops is specified by

$$HC \stackrel{\triangle}{=} HCsafe \wedge WF_{hr}(HCnxt)$$

- ► TLC verifies the theorem  $HC \Rightarrow \forall k \in 0..23 : \Box \diamondsuit (hr = k)$
- Standard form of TLA<sup>+</sup> specifications:  $Init \wedge \Box [Next]_v \wedge L$ 
  - Init system's initial condition
  - Next system's next-state relation (usually a disjunction)
  - L fairness conditions (for disjuncts of *Next*)



#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
  - Transition systems and their runs
  - Properties of runs
- System Specification in TLA<sup>+</sup>
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition

### Transformational vs. reactive systems

- Transformational systems (sequential algorithms)
  - compute result from initially given input
  - semantics: relation between states before and after computation
  - partial correctness + termination
  - computational models: Turing machines,  $\lambda$ -calculus, ...
- Reactive systems (operating systems, controllers, ...)
  - repeated interaction between environment and system
  - semantics: (possibly) infinite sequences of states
  - safety properties: something bad never happens
  - liveness properties: something good happens eventually
  - computational models: transition systems



#### Outline

- Motivation and introductory example
- Transition systems and their properties
  - Transition systems and their runs
  - Properties of runs
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition

### Transition systems

#### Definition

A transition system  $T = (Q, I, \delta)$  is given by

- a (finite or infinite) set *Q* of states,
- a set  $I \subseteq Q$  of initial states,
- a total transition relation  $\delta \subseteq Q \times Q$ .

An execution of  $\mathcal{T}$  is an infinite sequence  $\rho = q_0 q_1 q_2 \dots$  where  $(q_i, q_{i+1}) \in \delta$  holds for all  $i \in \mathbb{N}$ .

A run of  $\mathcal{T}$  is an execution that starts in an initial state of  $\mathcal{T}$ .

A state  $q \in Q$  is reachable if it appears in some run of T.

- similar to non-deterministic finite automaton; no final states
- totality of  $\delta$  for technical convenience: restrict to infinite runs
- easy to ensure if  $\delta$  is reflexive: stuttering closure
- deadlocks must be modeled explicitly

13 / 142

## Variation: labeled transition systems

- Distinguish several kinds of transitions
  - transitions of system and environment
  - transitions of different processes
  - ▶ time elapse vs. system move

#### Definition

In a labeled transition system  $T = (A, Q, I, \delta)$ :

- *A* is a set of labels (actions),
- $\delta = (\delta_A)_{A \in \mathcal{A}}$  is a family of relations  $\delta_A \subseteq Q \times Q$  indexed by  $\mathcal{A}$ .

Action *A* is enabled at state *q* if  $(q, q') \in \delta_A$  for some q'. Action *A* is taken at position *i* in run  $\rho = q_0 q_1 q_2 \dots$  if  $(q_i, q_{i+1}) \in \delta_A$ .

#### Remarks

- at every state, some action should be enabled
- actions will be used later for defining fairness properties

### Example



- $q_0$  and  $q_4$  are initial states
- $q_5$  is unreachable
- A and B are enabled at  $q_0$
- A is not enabled at  $q_1$

### Exercises: transition system representations

• A "stopwatch" program:

```
\begin{array}{l} \mathbf{var}\ x,y: \mathbf{integer} = 0,0;\\ \mathbf{cobegin}\\ \alpha: \mathbf{while}\ y = 0\ \ \mathbf{do}\ \beta: x := x+1\ \ \mathbf{end} \quad \| \quad \gamma: y := 1\\ \mathbf{coend} \end{array}
```

Describe informally the runs of the transition system.

A toy railway:



Model the behavior of the trains and the signals as a transition system.

### Fairness conditions (informally)

- Transition systems are non-deterministic
  - choice between transitions of different processes
  - non-deterministic choice resulting from abstraction in the model
     e.g.: abstraction of concrete train positions by sections
  - non-determinism generates "unfair" executions
     e.g.: never execute action γ of stopwatch program
  - rule out such executions by global constraints
- Fairness conditions exclude unfair executions
  - action should be eventually taken if often enough enabled
  - weak fairness: continuously enabled
  - strong fairness: infinitely often enabled
- Note: fairness does not restrict local non-determinism

# Fairness conditions (formally)

#### Definition (weak and strong fairness)

Let  $\rho = q_0q_1q_2...$  be an execution of a labeled transition system and A be an action.

- $\rho$  is weakly fair w.r.t. A if for all  $m \in \mathbb{N}$ , if A is enabled at all states  $q_n$  for  $n \ge m$  then A is taken at some position  $n \ge m$ .
- ②  $\rho$  is strongly fair w.r.t. A if for all  $m \in \mathbb{N}$ , if A is enabled at infinitely many states  $q_n$  for  $n \ge m$  then A is taken at some position  $n \ge m$ .
- Fairness conditions rule out executions
  - ▶  $\rho$  is not weakly fair w.r.t. A if there exists some  $m \in \mathbb{N}$  such that A is forever enabled from position m onward but never taken
  - ho is not strongly fair w.r.t. *A* if *A* is infinitely often enabled but taken only finitely often



# Fairness: examples and exercises

- Are the following runs fair w.r.t. *A* and *B*?
  - $\rho_1 = q_0 q_1 q_0 q_1 \dots$
  - $\rho_2 = q_0 q_2 q_3 q_2 q_3 \dots$
  - $\rho_2 = q_4 q_2 q_4 q_2 \dots$



#### Exercises

- $\rho$  is weakly fair w.r.t. A iff either A is taken infinitely often in  $\rho$  or A is infinitely often disabled.
- $\rho$  is strongly fair w.r.t. A iff either A is taken infinitely often in  $\rho$  or A is only finitely often enabled.
- ▶ If  $\rho$  is strongly fair w.r.t. A then  $\rho$  is weakly fair w.r.t. A.
- ▶ If  $\rho$  is (strongly/weakly) fair w.r.t. *A* then so is any suffix of  $\rho$ .

#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
  - Transition systems and their runs
  - Properties of runs
- System Specification in TLA<sup>+</sup>
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition

### Properties of transition systems

- Properties evaluated over runs
  - two trains are never simultaneously in section onbridge
  - no train waits forever at the signal
  - if both trains wait at signal then each will enter the bridge at most once before the other
- Properties related to the transition structure
  - some initial state is reachable from all states
  - ▶ actions *A* and *B* are in conflict, resp. are independent
  - two processes can cooperate to starve a third process
- Here: consider first class of properties
  - define properties as sets of runs
  - system correctness:  $Runs(\mathcal{T}) \subseteq \Phi$



## Safety and liveness properties (informally)

- Safety properties: "something bad never happens"
  - trains are never simultaneously on the bridge
  - data arrives at receiver in FIFO order
- Liveness properties: "something good happens eventually"
  - train waiting at signal will eventually enter onbridge
  - every data item sent will eventually be received
  - process A executes infinitely often
- Two fundamental classes of properties of runs
  - generalization of partial correctness and termination
  - the following property is neither (pure) safety nor (pure) liveness:

the train remains at the signal until it enters **onbridge**, which will happen eventually



### Formal definitions (Alpern & Schneider 1985)

#### Definition

- Φ is a safety property if for every infinite state sequence σ: σ ∈ Φ iff for all  $n ∈ \mathbb{N}$  there is τ s.t. σ[..n] ∘ τ ∈ Φ.
- $\sigma$  violates a safety property if there exists a finite prefix  $\sigma[..n]$  that cannot be extended to an infinite sequence satisfying  $\Phi$
- "bad things" are observable after some finite time

#### Definition

Φ is a liveness property if for every finite state sequence  $\rho$  there exists  $\tau$  s.t.  $\rho \circ \tau \in \Phi$ .

- liveness properties do not constrain finite prefixes
- the "good thing" may still occur later

## Safety/liveness: examples and exercises

- The set of runs of a transition system is a safety property.
- Weak or strong fairness conditions are liveness properties.
- **③** If all  $\Phi_i$  ( $i \in I$ ) are safety properties then  $\bigcap_{i \in I} \Phi_i$  is a safety property.
- **1** If  $\Phi$  is a liveness property and  $\Phi \subseteq \Psi$  then  $\Psi$  is a liveness property.
- The trivial property containing all state sequences is the only property that is both a safety and a liveness property.
- **3** Given property  $\Phi$ , its safety closure  $\mathcal{C}(\Phi) = \{ \sigma : \text{for all } n \in \mathbb{N} \text{ there is } \tau \text{ s.t. } \sigma[..n] \circ \tau \in \Phi \}$  is the smallest safety property containing  $\Phi$ .
- **②** For any property  $\Phi$  there exist a safety property  $S_{\Phi}$  and a liveness property  $L_{\Phi}$  such that  $\Phi = S_{\Phi} \cap L_{\Phi}$ .



#### Machine closure

- Specifications: transition system plus liveness properties
  - liveness properties can impose additional constraints on transitions
  - ightharpoonup example: liveness property that requires infinitely many visits of  $s_0$



#### Definition

Let *S* be a safety property and *L* be any property. The pair (S, L) is machine closed if  $C(S \cap L) = S$ .

- ▶ Idea: *L* constrains infinite, but not finite runs satisfying *S*
- ▶ Show: if (S, L) is machine closed and  $\Phi$  is a safety property then  $S \cap L \subseteq \Phi$  iff  $S \subseteq \Phi$
- Theorem: specifications given by a transition system and a countable number of fairness condition are machine closed

#### Summary

- Transition systems: semantic basis for reactive systems
  - transition relation describes possible steps
  - fairness conditions: global constraints on non-deterministic choices

- Properties of runs: sets of state sequences
  - "linear-time" correctness properties, ignore branching properties
  - dichotomy of safety and liveness properties

#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA<sup>+</sup>
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



# The Specification Language TLA<sup>+</sup>

- Temporal Logic of Actions (TLA)
  - ▶ linear-time temporal logic
  - formulas represent systems and properties
  - stuttering invariance: basis for refinement and composition
- Zermelo-Fränkel set theory: classical mathematics
  - specification of data structures in set theory
  - high levels of abstraction and expressiveness
  - explicit definitions of data and operations (e.g., communication)
- Module language
  - structuring of specifications: composition and hiding
  - standard library of common structures, user extensible



### Temporal logics in computer science

- Originally: temporal relations in natural language
  - Yesterday she said that she'd come tomorrow, so she should come today.
  - A. Prior: Past, present, and future. Oxford University Press, 1967
- 1977: express properties of reactive systems
  - ▶ A. Pnueli: *The temporal logic of programs.* FOCS'77
- 1981: automatic verification of finite-state systems
  - ► E.M. Clarke, E.A. Emerson: *Synthesis of synchronization skeletons for branching time temporal logic*. Logics of Programs, 1981
  - ▶ J.P. Queille, J. Sifakis: *Specification and verification of concurrent systems in Cesar*. Intl. Symp. Programming, LNCS 137

System satisfies property formalized as

Transition system is model of temporal formula

#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA<sup>+</sup>
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



#### Anatomy of TLA

- Variables and constants
  - ▶ (state) variables *v*, *hr*, *queue* represent system state
  - $\triangleright$  constants x, k, nProcs represent system parameters
- Action formulas: predicates over (pairs of) states
  - represent initial condition, invariants, system transitions

```
hr \in 0..23

hr' = \text{IF } hr = 23 \text{ THEN } 0 \text{ ELSE } hr + 1

\exists p \in 1..nProcs : Request(p)
```

- Temporal formulas: predicates over state sequences
  - represent system specifications or properties

```
Init \land \Box[Next]_{vars} \land WF_{vars}(Exit_1 \lor Exit_2)
\forall p \in 1..nProcs : request[p] \leadsto grant[p]
```



## Syntax of action formulas

- First-order formulas (over given signature) containing
  - constants  $x, y, k, \ldots \in \mathcal{X}$
  - state variables  $v, w, \ldots \in \mathcal{V}$
  - primed state variables  $v', w', \ldots \in \mathcal{V}'$

#### Examples

- v = 0,  $v > 0 \land v' = v 1$ ,  $\exists k : v w' < x + 3 * k$
- free and bound variables, substitution: as in first-order logic
- State and transition formulas
  - ► terms: transition functions
  - formulas: transition predicates
  - formulas without free primed flexible variables: state formulas
  - ▶ formulas without flexible variables: constant formulas

#### Semantics of action formulas

- ullet First-order interpretation  ${\mathcal I}$  for underlying signature
  - provides a non-empty universe  $|\mathcal{I}|$  of values
  - ▶ interprets function and predicate symbols: 0, +, <, ∈, ...
- Interpretations of constants and variables
  - ▶ valuations of state variables: states  $s: \mathcal{V} \to |\mathcal{I}|$
  - valuation of constants  $\xi: \mathcal{X} \to |\mathcal{I}|$
- Interpretation of action formulas  $[A]_{s,t}^{\xi} \in \{tt, ff\}$ 
  - standard inductive definition
  - ▶ *s*, *t* interpret unprimed and primed flexible variables
  - $\xi$  interprets rigid variables
- Interpretation of state formulas does not depend on second state

### Notations for action formulas (1)

- "Priming" of state formulas *e* 
  - e' action formula obtained by replacing every variable v by v'
  - rename bound variables as necessary to avoid confusion

$$\begin{array}{ccc} (v+1)' & \equiv & v'+1 \\ (\exists k: v=k+w)' & \equiv & \exists k: v'=k+w' \\ (\exists v': v=v'+w)' & \equiv & \exists vp: v'=vp+w' \end{array}$$

- UNCHANGED  $e \stackrel{\triangle}{=} e' = e$
- Bracketed action formulas

Note: 
$$\langle A \rangle_e \equiv \neg [\neg A]_e \qquad \neg \langle A \rangle_e \equiv [\neg A]_e$$
  
 $[A]_e \equiv \neg \langle \neg A \rangle_e \qquad \neg [A]_e \equiv \langle \neg A \rangle_e$ 



### Notations for action formulas (2)

#### Enabledness of actions

- ► ENABLED  $A \stackrel{\triangle}{=} \exists v'_1, \dots, v'_n : A$   $(v'_1, \dots, v'_n \text{ all free primed state variables in } A)$
- ► [ENABLED A] $_{s}^{\xi}$  = tt iff  $[A]_{s,t}^{\xi}$  = tt for some state t
- will be used to define fairness conditions in TLA
- Sequential composition of actions (atomic)
  - $A \cdot B \equiv \exists v_1'', \dots, v_n'' : A[v_1''/v_1', \dots, v_n''/v_n'] \land B[v_1''/v_1, \dots, v_n''/v_n]$  ( $v_1, \dots, v_n$  all free state variables in A or B)
  - $[A \cdot B]_{s,t}^{\xi} = \text{tt iff } [A]_{s,u}^{\xi} = \text{tt and } [B]_{u,t}^{\xi} = \text{tt for some state } u$
  - ▶ sequential composition of *A* and *B* as single atomic action



### Temporal formulas of TLA (to be completed)

- interpreted over  $\omega$ -sequence  $\sigma = s_0 s_1 \dots$  of states and valuation  $\xi$ 
  - $\sigma, \xi \models F$  if F holds over  $(\sigma, \xi)$
  - write  $\sigma[n..]$  for suffix  $s_n s_{n+1} ...$
- Inductive definition of temporal formulas

state formulas 
$$\sigma, \xi \models P \text{ iff } \llbracket P \rrbracket_{s_0}^{\xi} = \text{tt}$$
  
Boolean combinations  $\sigma, \xi \models F \land G \text{ iff } \sigma, \xi \models F \text{ and } \sigma, \xi \models G, \text{ etc.}$   
first-order quantifiers  $\sigma, \xi \models \exists x : F \text{ iff } \sigma, \zeta \models F \text{ for some } \zeta \sim_x \xi$   
always  $\sigma, \xi \models \Box F \text{ iff } \sigma[n..], \xi \models F \text{ for all } n \in \mathbb{N}$   
always square  $A \text{ sub } e$   $\sigma, \xi \models \Box[A]_e \text{ iff } \llbracket[A]_e\rrbracket_{s_n,s_{n+1}}^{\xi} = \text{tt for all } n \in \mathbb{N}$ 

- ▶ Note:  $[A]_e$  and  $\Box A$  are not temporal formulas (for action A)
- if  $\xi$  is unimportant, just write  $\sigma \models F$



## Notations for temporal formulas

• "eventually" operator

$$\Diamond F \stackrel{\triangle}{=} \neg \Box \neg F$$

- ▶ semantics:  $\sigma \models \Diamond F$  iff  $\sigma[n..] \models F$  for some  $n \in \mathbb{N}$
- "eventually angle A sub e"  $\Diamond \langle A \rangle_e \stackrel{\triangle}{=} \neg \Box [\neg A]_e$ 
  - some future state transition satisfies  $\langle A \rangle_e$
  - ▶ again,  $\langle A \rangle_e$  and  $\Diamond A$  are not temporal formulas
- "leadsto" operator

$$F \rightsquigarrow G \equiv \Box(F \Rightarrow \Diamond G)$$

• every occurrence of *F* is followed by some occurrence of *G* 

## Example: semantics of temporal formulas

Which of the following formulas hold in this behavior?

$$\Box \neg (x = 0 \land y = 0)$$

$$\bullet \ \Box[x=0\Rightarrow y'=0]_{x,y}$$

$$\diamond (x = 7 \land y = 0)$$

$$\bullet \Diamond \Box (x = 0 \Rightarrow y \neq 0)$$

• 
$$\Diamond \Box [FALSE]_y$$



### Infinitely often and eventually always

- $\Box \Diamond F$  asserts that F holds infinitely often
  - $\sigma \models \Box \Diamond F$  iff for all  $m \in \mathbb{N}$  there is  $n \geq m$  such that  $\sigma[n..] \models F$
  - ▶ similarly:  $\Box \Diamond \langle A \rangle_e$  asserts that  $\langle A \rangle_e$  occurs infinitely often
- $\Diamond \Box F$  asserts that *F* continues to hold from some time on
  - equivalently, F is false only finitely often
  - ▶ similarly:  $\Diamond \Box [A]_e$  asserts that eventually only  $[A]_e$  actions occur
- Equivalences

$$\neg \Box \Diamond F \equiv \Diamond \Box \neg F \qquad \qquad \Diamond \Box \Diamond F \equiv \Box \Diamond F$$

$$\neg \Diamond \Box F \equiv \Box \Diamond \neg F \qquad \qquad \Box \Diamond \Box F \equiv \Diamond \Box F$$



### Fairness of actions in TLA

- Weak fairness
  - action will be taken eventually if it is continuously enabled

$$\operatorname{WF}_e(A) \stackrel{\triangle}{=} \Box (\Box \operatorname{Enabled} \langle A \rangle_e \Rightarrow \Diamond \langle A \rangle_e)$$

- Strong fairness
  - action will be taken eventually if it is infinitely often enabled

$$\operatorname{SF}_e(A) \stackrel{\triangle}{=} \Box(\Box \Diamond \operatorname{Enabled} \langle A \rangle_e \Rightarrow \Diamond \langle A \rangle_e)$$

• Equivalent conditions

$$WF_{e}(A) \equiv \Diamond \Box ENABLED \langle A \rangle_{e} \Rightarrow \Box \Diamond \langle A \rangle_{e}$$

$$WF_{e}(A) \equiv \Box \Diamond \neg ENABLED \langle A \rangle_{e} \vee \Box \Diamond \langle A \rangle_{e}$$

$$SF_{e}(A) \equiv \Box \Diamond ENABLED \langle A \rangle_{e} \Rightarrow \Box \Diamond \langle A \rangle_{e}$$

$$SF_{e}(A) \equiv \Diamond \Box \neg ENABLED \langle A \rangle_{e} \vee \Box \Diamond \langle A \rangle_{e}$$

# Example: "stopwatch" program in TLA+

```
MODULE Stopwatch -
EXTENDS Naturals
VARIABLES pc_1, pc_2, x, y
          \stackrel{\triangle}{=} pc_1 = "alpha" \land pc_2 = "gamma" \land x = 0 \land y = 0
Init
         \stackrel{\triangle}{=} \wedge pc_1 = "alpha"
                                                                                                var x, y: integer = 0, 0;
                  \wedge pc'_1 = \text{IF } y = 0 \text{ THEN "beta" ELSE "stop"}
                                                                                                cobegin
                  \land UNCHANGED \langle pc_2, x, y \rangle
                                                                                                       \alpha : while y = 0 do
          \stackrel{\triangle}{=} \wedge pc_1 = \text{"beta"} \wedge pc_1' = \text{"alpha"}
                                                                                                               \beta: x := x + 1
В
                                                                                                            end
                  \wedge x' = x + 1 \wedge \text{UNCHANGED} \langle pc_2, y \rangle
          \stackrel{\triangle}{=} \wedge pc_2 = "gamma" \wedge pc_2' = "stop"
G
                                                                                                       \gamma: y:=1
                  \wedge y' = 1 \wedge \text{UNCHANGED} \langle pc_1, x \rangle
                                                                                                coend
          \stackrel{\triangle}{=} \langle pc_1, pc_2, x, y \rangle
vars
          \stackrel{\triangle}{=} Init \wedge \Box [A \vee B \vee G]_{vars} \wedge WF_{vars}(A \vee B) \wedge WF_{vars}(G)
Spec
```

- explicit encoding of control structure
- process structure not obvious from TLA<sup>+</sup> representation

# Aside: PlusCal (Lamport, 2006)

```
-- algorithm Peterson {
variables req = [id \in Node \mapsto FALSE],
         t.urn = 0
process (Proc ∈ Node) {
 ncs: while (TRUE) {
         skip;
 rq: req[self] := TRUE; turn := other(self);
 try: await (turn = self V ¬lock[other(self)]);
 cs: skip;
 lv: req[self] := FALSE
} } }
```

- High-level language for multi-process algorithms
  - atomicity indicated through labels
  - algorithm embedded in TLA<sup>+</sup> module
- Translation to TLA<sup>+</sup>: simulation and model checking

### Stuttering invariance

- Action formulas must be "protected" in TLA:  $\Box[A]_t$ ,  $\Diamond\langle A\rangle_t$ 
  - ▶ finite repetition of identical states (up to *t*) preserves truth
  - this observation extends to all TLA formulas
- Stuttering equivalence ( $\approx$ )
  - $\begin{array}{c} \flat \left(s_0 s_1 \ldots\right) \stackrel{\triangle}{=} & \text{if } \forall k \in \mathbb{N} : s_k = s_0 \\ & \text{ THEN } s_0 s_1 \ldots \\ & \text{ ELSE } & \text{ LET } m = \min\{k \in \mathbb{N} : s_k \neq s_0\} \\ & \text{ IN } & s_0 \circ \flat \left(s_m s_{m+1} \ldots\right) \end{array}$
  - $\bullet$   $\sigma \approx \tau$  iff  $\sharp \sigma = \sharp \tau$

### Stuttering invariance

- Action formulas must be "protected" in TLA:  $\Box[A]_t$ ,  $\Diamond\langle A\rangle_t$ 
  - ▶ finite repetition of identical states (up to *t*) preserves truth
  - ▶ this observation extends to all TLA formulas
- Stuttering equivalence ( $\approx$ )
  - $\begin{array}{c} \ \, \flat(s_0s_1\ldots) \stackrel{\triangle}{=} \ \, \text{If} \,\, \forall k \in \mathbb{N} : s_k = s_0 \\ \quad \quad \text{THEN} \,\, s_0s_1\ldots \\ \quad \quad \text{ELSE} \quad \text{LET} \,\, m = \min\{k \in \mathbb{N} : s_k \neq s_0\} \\ \quad \quad \text{IN} \quad s_0 \circ \flat(s_ms_{m+1}\ldots) \end{array}$
  - $\sigma \approx \tau$  iff  $\sharp \sigma = \sharp \tau$

### Theorem (stuttering invariance)

For any temporal formula F and behaviors  $\sigma \approx \tau$ :

$$\sigma, \xi \models F \quad iff \quad \tau, \xi \models F$$

• Fundamental for refinement and composition



### Example: hour-minute clock

• Extension of hour clock by a minute hand

```
— MODULE HourMinuteClock ——
EXTENDS Naturals, HourClock
VARIABLE min
HMCini \stackrel{\triangle}{=} HCini \land min \in 0...59
Min \stackrel{\triangle}{=} min' = IF min = 59 THEN 0 ELSE min + 1
Hr \stackrel{\triangle}{=}
                    (min = 59 \land HCnxt) \lor (min < 59 \land hr' = hr)
HMCnxt \stackrel{\triangle}{=} Min \wedge Hr
HMC \qquad \stackrel{\triangle}{=} \quad HMCini \wedge \Box [HMCnxt]_{\langle hr, min \rangle} \wedge WF_{\langle hr, min \rangle} (HMCnxt)
THEOREM HMC \Rightarrow HC
```

- stuttering invariance is essential for refinement as implication
- no formal difference between specifications and properties

### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA<sup>+</sup>
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



## Logical language underlying TLA<sup>+</sup>

- Specification language TLA<sup>+</sup>: based on ZF set theory
  - standard logical basis for formalizing mathematics
  - high levels of abstraction and expressiveness
     e.g., Riemann integral in 15 lines of TLA<sup>+</sup>
  - set-theoretical language, no types

```
5 = \{\} or 17 \land "abc" are well-formed formulas but (of course!) we don't know if they are true
```

- Formally: logical basis
  - ▶ binary predicate symbol ∈
  - choice operator (binder) CHOOSE x : P
- Hilbert's choice operator
  - ightharpoonup CHOOSE x:P denotes an arbitrary value satisfying P
  - or an arbitrary, fixed value if no such value exists

#### Set-theoretic constructions

Characteristic axioms of Hilbert's choice

```
(\exists x: P(x)) \equiv P(\mathsf{CHOOSE}\ x: P(x)) [choice] (\forall x: P \equiv Q) \Rightarrow (\mathsf{CHOOSE}\ x: P) = (\mathsf{CHOOSE}\ x: Q) [determinacy]
```

- Examples: set-theoretical constructions and theorems
  - generalized union

UNION 
$$S \stackrel{\triangle}{=} \text{CHOOSE } M : \forall x : x \in M \equiv \exists T \in S : x \in T$$

- ▶ no set contains all elements (CHOOSE  $x : x \notin S$ )  $\notin S$
- ► Russell's paradoxical set is not well-defined (CHOOSE  $S: \forall x : x \in S \equiv x \notin x$ ) = (CHOOSE x : ff)
- Exercises: define the following constructions
  - ▶ subset relation  $S \subseteq T$
  - set intersection  $S \cap T$
  - ▶ powerset SUBSET *S* : set containing all subsets of *S*
  - set comprehensions  $\{x \in S : P(x)\}$  and  $\{e(x) : x \in S\}$

#### Choice vs. non-determinism

Two formulas for specifying resource allocation

```
Alloc_{nd} \stackrel{\triangle}{=} \qquad \qquad Alloc_{ch} \stackrel{\triangle}{=} \qquad \\ \land owner = NoProcess \qquad \qquad \land owner = NoProcess \qquad \\ \land waiting \neq \{\} \qquad \qquad \land waiting \neq \{\} \qquad \\ \land owner' \in waiting \qquad \qquad \land owner' = CHO \\ \land waiting' = waiting \setminus \{owner'\} \qquad \land waiting' = waiting' =
```

```
Alloc_{ch} \stackrel{\triangle}{=}
\land owner = NoProcess
\land waiting \neq \{\}
\land owner' = CHOOSE p : p \in waiting
\land waiting' = waiting \setminus \{owner'\}
```

- enabledness: resource is free, some process is waiting
- effect: assign the resource to some waiting process
- *Alloc*<sub>nd</sub> produces *Card*(*waiting*) successor states
- *Alloc<sub>ch</sub>* produces single successor state for some fixed process

CHOOSE operator is deterministic: "arbitrary, but fixed element"

#### Functions in TLA<sup>+</sup>

• TLA<sup>+</sup> introduces functions as primitive values

```
[S \to T] \qquad \text{set of functions with domain } S \text{ and codomain } T \mathsf{DOMAIN}\,f \qquad \mathsf{domain of function}\,f f[e] \qquad \mathsf{application of function}\,f \text{ to argument } e [x \in S \mapsto e] \qquad \mathsf{function with domain } S \text{ mapping } x \text{ to } e [f \text{ EXCEPT }![t] = e] \qquad \mathsf{function override: like } f, \text{ but argument } t \text{ maps to } e [f \text{ EXCEPT }![t] = @ + e] = [f \text{ EXCEPT }![t] = f[t] + e]
```

Characteristic property of functional values

$$f = [x \in \text{DOMAIN} f \mapsto f[x]]$$

- Note
  - ▶ value f[x] unspecified if  $x \notin DOMAIN f$
  - ▶ notations extend to several arguments:  $[x \in S, y \in T \mapsto x + y]$



#### Recursive functions

Recursive functions can be defined using choice

$$\mathit{fact} \ \stackrel{\triangle}{=} \ \mathsf{CHOOSE} \, f : f = [n \in \mathit{Nat} \mapsto \mathsf{IF} \, n = 0 \, \mathsf{THEN} \, 1 \, \mathsf{ELSE} \, n \, *f[n-1]]$$

Abbreviated notation

$$fact[n \in Nat] \stackrel{\triangle}{=} \text{ if } n = 0 \text{ THEN 1 ELSE } n * fact[n-1]$$

- Potential pitfalls
  - existence of such a function should be justified
  - no implicit commitment to least fixed point semantics

### Numbers in TLA<sup>+</sup> (1)

Natural numbers defined using choice from Peano axioms

```
\begin{aligned} \textit{PeanoAxioms}(N, Z, Sc) & \stackrel{\triangle}{=} \\ & \land Z \in N \\ & \land Sc \in [N \to N] \\ & \land \forall n \in N : (n \neq Z) \equiv (\exists m \in N : n = Sc[m]) \\ & \land \forall S \in \text{SUBSET } N : Z \in S \land (\forall n \in S : Sc[n] \in S) \Rightarrow S = N \\ \textit{Succ} & \stackrel{\triangle}{=} & \text{CHOOSE } Sc : \exists N, Z : \textit{PeanoAxioms}(N, Z, Sc) \\ \textit{Nat} & \stackrel{\triangle}{=} & \text{DOMAIN } \textit{Succ} \\ \textit{Zero} & \stackrel{\triangle}{=} & \text{CHOOSE } Z : \textit{PeanoAxioms}(Nat, Z, Succ) \end{aligned}
```

existence of such values can be justified from set theory

### Numbers in TLA<sup>+</sup> (2)

Arithmetic operations defined recursively (simplified)

```
\begin{array}{cccc} pred(x) & \stackrel{\triangle}{=} & \text{CHOOSE } y: x = Succ[y] \\ plus[x \in Nat, y \in Nat] & \stackrel{\triangle}{=} & \text{IF } y = 0 \text{ THEN } x \text{ ELSE } Succ[plus[x, pred(y)]] \\ x + y & \stackrel{\triangle}{=} & plus[x, y] \\ x \leq y & \stackrel{\triangle}{=} & \exists z: y = x + z \end{array}
```

Numbers and intervals

```
0 \stackrel{\triangle}{=} Zero, \ 1 \stackrel{\triangle}{=} Succ[0], \ 2 \stackrel{\triangle}{=} Succ[1], \ \dots
i...j \stackrel{\triangle}{=} \{n \in Nat : i \leq n \land n \leq j\}
```

- Integer and real numbers
  - defined similarly as supersets of Nat
  - ▶ arithmetic operations agree:  $3.5 + 2.5 \in Nat$

# Tuples and sequences

• Tuples and sequences are represented as functions

$$\langle e_1,\ldots,e_n \rangle \stackrel{\triangle}{=} [i \in 1..n \mapsto \text{if } i=1 \text{ Then } e_1 \ldots \text{ else } e_n]$$

Standard operators involving sequences

```
Seq(S) \qquad \stackrel{\triangle}{=} \quad \text{UNION } \{[1..n \rightarrow S] : n \in Nat\}
Len(s) \qquad \stackrel{\triangle}{=} \quad \text{CHOOSE } n \in Nat : \text{DOMAIN } s = 1..n
Head(s) \qquad \stackrel{\triangle}{=} \quad s[1]
Tail(s) \qquad \stackrel{\triangle}{=} \quad [i \in 1..(Len(s) - 1) \mapsto s[i + 1]]
s \circ t \qquad \stackrel{\triangle}{=} \quad [i \in 1..(Len(s) + Len(t)) \mapsto
\text{IF } i \leq Len(s) \text{ THEN } s[i] \text{ ELSE } t[i - Len(s)]]
Append(s,e) \qquad \stackrel{\triangle}{=} \quad s \circ \langle e \rangle
```

• Question: What are  $Head(\langle \rangle)$  and  $Tail(\langle \rangle)$ ?

54 / 142

#### **Exercises**

- Define an operator IsSorted(s) such that for any sequence s of numbers, IsSorted(s) is true iff s is sorted.
- **②** Define a function  $sort \in [Seq(Real) \rightarrow Seq(Real)]$  such that sort[s] is a sorted sequence containing the same elements as s.
- Give a recursive definition of the *mergesort* function. Does *sort* = *mergesort* hold for your definitions? Why (why not)?
- **1** Define operators IsFiniteSet(S) and card(S) such that IsFiniteSet(S) holds iff S is a finite set and that card(S) denotes the cardinality of S if S is finite.

## Strings and records

- String representations
  - strings are sequences of characters
  - standard operations on sequences apply to strings: "th" ∘ "is" = "this"
- Records: functions whose domain is a finite set of strings

| short notation                               | instead of                                                       |
|----------------------------------------------|------------------------------------------------------------------|
| account.bal                                  | account["bal"]                                                   |
| [ $account EXCEPT !.bal = @ + sum$ ]         | [ $account EXCEPT !["bal"] = @ + sum$ ]                          |
| $[num \mapsto 1234567, bal \mapsto -321.45]$ | $[\mathit{fld} \in \{ \text{"num"}, \text{"bal"} \} \mapsto$     |
|                                              | if $fld =$ "num" then 1234567                                    |
|                                              | ELSE $-321.45$ ]                                                 |
| [x:S,y:T]                                    | $[\mathit{fld} \in \{ \text{``x''}, \text{``y''} \} \rightarrow$ |
|                                              | If $fld = "x"$ then $S$ else $T$ ]                               |

### Outline

- Motivation and introductory example
- Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA+
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



#### TLA<sup>+</sup> modules: basic ideas

- A TLA<sup>+</sup> module essentially contains a sequence of
  - declarations of constant and variable parameters
  - definitions of operators (and functions)
  - assertions of assumptions and theorems
- Module hierarchy helps structuring specifications
  - scoping of parameter and operator names
  - module extension: import all parameters and definitions
  - module instantiation: import definitions, must provide parameters
  - local modules: hide auxiliary definitions
- Meaning of modules
  - accumulate assumptions: hypotheses for theorems
  - operators: replace defined symbols by definition body



## Principle of unique names

- Identifiers active in a scope cannot be reused
  - redeclaration or redefinition is illegal
  - active identifiers must not be used as bound variables

```
EXTENDS Naturals
CONSTANTS x, y

m + n \stackrel{\triangle}{=} \dots \qquad (* + \text{defined in module } Naturals *)
Foo(y, z) \stackrel{\triangle}{=} \exists x : \dots \qquad (* x \text{ and } y \text{ active in current scope } *)
Nat \stackrel{\triangle}{=} \text{LET } y \stackrel{\triangle}{=} \dots \text{IN } \dots \text{ (* clashes of } Nat \text{ and } y *)
```

- Import of same module via different paths is allowed
- Definitions can be protected from export: LOCAL keyword

#### Module extension

```
EXTENDS Bar, Baz
CONSTANTS Data, Compare(_)
...
```

- Module Foo exports
  - symbols declared or defined in module Foo
  - ▶ (non-local) symbols exported by modules *Bar*, *Baz*
- Within module Foo
  - ▶ may use, but not redefine or redeclare symbols exported by Bar, Baz
- Equivalent to textual inclusion of modules Bar, Baz

# Module instantiation: import with renaming

Use of operators defined in instantiated module

```
InChan!Send(d) resp. Chan(in)!Send(d)
```

- Special cases
  - identity renaming can be omitted in instantiation
  - instance name can be omitted if only one copy needed
  - LOCAL instantiation is possible
- Operators defined in instantiating module
  - non-local instances are exported for use within later modules
  - > symbols declared or defined in module Channel are not exported

### Outline

- Motivation and introductory example
- Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA<sup>+</sup>
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



## Formally describe a FIFO queue

Basic system component



- ▶ input elements over input "wire" i
- output over "wire" o, in same order
- simplifying assumption: subsequent elements are different
- also assume unbounded queue capacity
- Explore possible specification styles in TLA<sup>+</sup>
  - specify transition system: represent state components
  - encode synchronization and communication



## First attempt: lossy queue

```
- MODULE LossyQueue
EXTENDS Sequences
VARIABLES i,q,o
LOInit \stackrel{\triangle}{=} q = \langle \rangle \land i = o
LQEnq \stackrel{\triangle}{=} q' = Append(q, i') \land o' = o
LQDeq \stackrel{\triangle}{=} q \neq \langle \rangle \land o' = Head(q) \land q' = Tail(q) \land i' = i
LQLive \stackrel{\triangle}{=} WF_{a,o}(SQDeq)
LOSpec \stackrel{\triangle}{=} LQInit \land \Box [LQEnq \lor LQDeq]_{q,o} \land LQLive
```

- *i* and *o* represent interface, *q* is internal buffer
- interleaving: enqueue and dequeue cannot happen at once
- fairness for dequeue: every element should eventually be output

## First attempt: lossy queue

```
EXTENDS Sequences
VARIABLES i,q,o

LQInit \triangleq q = \langle \rangle \wedge i = o
LQEnq \triangleq q' = Append(q,i') \wedge o' = o
LQDeq \triangleq q \neq \langle \rangle \wedge o' = Head(q) \wedge q' = Tail(q) \wedge i' = i
LQLive \triangleq WF_{q,o}(SQDeq)
LQSpec \triangleq LQInit \wedge \Box [LQEnq \vee LQDeq]_{q,o} \wedge LQLive
```

- *i* and *o* represent interface, *q* is internal buffer
- interleaving: enqueue and dequeue cannot happen at once
- fairness for dequeue: every element should eventually be output
- buffer can enqueue same input several times, or not at all

# Synchronous communication, interleaving

EXTENDS Sequences
VARIABLES 
$$i,q,o$$

$$SQInit \triangleq q = \langle \rangle \land i = o$$

$$SQEnq \triangleq i' \neq i \land q' = Append(q,i') \land o' = o$$

$$SQDeq \triangleq q \neq \langle \rangle \land o' = Head(q) \land q' = Tail(q) \land i' = i$$

$$SQLive \triangleq WF_{i,q,o}(SQDeq)$$

$$SQSpec \triangleq SQInit \land \Box[SQEnq \lor SQDeq]_{i,q,o} \land SQLive$$

- change of input wire triggers enqueue: *i* appears in index
- interleaving style and fairness as before
- standard specification style in TLA<sup>+</sup>
- every run of SQSpec also satisfies LQSpec

# Asynchronous communication, interleaving

```
MODULE AsyncQueue -
EXTENDS Sequences
VARIABLES i,q,o,sig
AQInit \stackrel{\triangle}{=} q = \langle \rangle \land i = o \land sig = 0
AQEnv \stackrel{\triangle}{=} sig = 0 \land sig' = 1 \land UNCHANGED \langle q, o \rangle
AQEnq \stackrel{\triangle}{=} sig = 1 \land sig' = 0 \land q' = Append(q, i') \land UNCHANGED \langle i, o \rangle
AQDeq \stackrel{\triangle}{=} q \neq \langle \rangle \land o' = Head(q) \land q' = Tail(q) \land UNCHANGED \langle i, sig \rangle
AQLive \stackrel{\triangle}{=} WF_{i,q,o,sig}(AQEnq) \wedge WF_{i,q,o,sig}(AQDeq)
AQSpec \stackrel{\triangle}{=} AQInit \land \Box [AQEnv \lor AQEnq \lor AQDeq]_{i,q,o,sig} \land AQLive
```

- decouple sender input and acceptance of input by the queue
- explicit "handshake protocol" for enqueueing values
- fairness condition on AQEnq ensures system reaction
- every run of *AQSpec* also satisfies *LQSpec*



# Synchronous communication, non-interleaving

```
MODULE SyncNIQueue -
EXTENDS Sequences
VARIABLES i,q,o
SNOInit \stackrel{\triangle}{=} q = \langle \rangle \land i = o
d(v) \stackrel{\triangle}{=} \text{IF } v' = v \text{ THEN } \langle \rangle \text{ ELSE } \langle v' \rangle
SNOEng \stackrel{\triangle}{=} i' \neq i \land g \circ d(i) = d(o) \circ g'
SNQDeq \stackrel{\triangle}{=} q \neq \langle \rangle \land o' = Head(q) \land q \circ d(i) = d(o) \circ q'
SNQLive \stackrel{\triangle}{=} WF_{q,o}(SNQDeq)
SNQSpec \stackrel{\triangle}{=} \land SNQInit \land \Box [SNQEnq]_i \land \Box [SNQDeq]_o
                        \land \Box [SNQEng \lor SNQDeg]_q \land SNQLive
```

- $\bullet$  enqueue and dequeue may happen simultaneously if q non-empty
- separate next-state relation per (group of) variable(s)
- every run of *SQSpec* also satisfies *SNQSpec*

67 / 142

### Outline

- Motivation and introductory example
- Transition systems and their properties
- System Specification in TLA+
  - Temporal Logic of Actions
  - Set theory: specifying data structures in TLA<sup>+</sup>
  - The module language of TLA<sup>+</sup>
  - Specification styles: modeling a queue
  - Case study: a resource allocator (part 1)
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition



## Informal requirements

- A set of clients compete for a (fixed, finite) set of resources.
- Whenever a client holds no resources and has no outstanding requests, he can request a set of resources.
- The allocator may allocate a set of available resources to a client that requested them, possibly without completely satisfying the client's request.
- Clients may return resources they hold at any time.
- A client that received all resources he requested must eventually return them (not necessarily at once).

#### Objectives:

- Clients have exclusive access to resources they hold.
- Every request is eventually satisfied.



## A first solution in $TLA^+$ (1/4)

```
MODULE Simple Allocator
EXTENDS FiniteSet
CONSTANTS Clients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES
    unsat,
                (* unsat[c] denotes the outstanding requests of client c *)
    alloc
                (* alloc[c] denotes the resources allocated to client c *)
TypeInvariant \stackrel{\triangle}{=}
   \land unsat \in [Clients \rightarrow SUBSET Resources]
   \land alloc \in [Clients \rightarrow SUBSET Resources]
              (* set of resources free for allocation *)
  Resources \ (UNION \{alloc[c] : c \in Clients\})
```

# A first solution in $TLA^+$ (2/4)

```
(* initially, no resources have been requested or allocated *)
   \land unsat = [Clients \rightarrow {}]
   \land alloc = [Clients \rightarrow \{\}]
(* Client c requests set S of resources, provided it has no outstanding requests and no a
Request(c,S) \stackrel{\triangle}{=}
   \land unsat[c] = \{\} \land alloc[c] = \{\}
   \land S \neq \{\} \land unsat' = [unsat \ EXCEPT \ ![c] = S]
   ∧ UNCHANGED alloc
```

(\* Allocation of a set of available resources to a client that requested them. \*)  $Allocate(c.S) \stackrel{\triangle}{=}$ 

$$\land S \neq \{\} \land S \subseteq available \cap unsat[c]$$

$$\land alloc' = [alloc \ EXCEPT \ ![c] = @ \cup S]$$

$$\land unsat' = [unsat \ EXCEPT \ ![c] = @ \setminus S]$$

Init  $\stackrel{\triangle}{=}$ 

# A first solution in TLA<sup>+</sup> (3/4)

```
Return(c,S) \stackrel{\triangle}{=}  (* Client c returns a set of resources that it holds. *)
    \land S \neq \{\} \land S \subseteq alloc[c]
    \land alloc' = [alloc \ EXCEPT \ ![c] = @ \setminus S]
    ∧ UNCHANGED unsat
Next \stackrel{\triangle}{=}  (* The next-state relation. *)
   \exists c \in Clients, S \in SUBSET Resources :
          Request(c, S) \lor Allocate(c, S) \lor Return(c, S)
vars \stackrel{\triangle}{=} \langle unsat, alloc \rangle
Simple Allocator \stackrel{\triangle}{=}  (* The complete high-level specification. *)
    \wedge Init \wedge \Box [Next]<sub>vars</sub>
    \land \forall c \in Clients : WF_{vars}(Return(c, alloc[c]))
    \land \forall c \in Clients : SF_{vars}(\exists S \in SUBSET Resources : Allocate(c, S))
```

72 / 142

# A first solution in $TLA^+$ (4/4)

```
(* Definition of system properties *)
                           \stackrel{\triangle}{=} \forall c_1, c_2 \in Clients : c_1 \neq c_2 \Rightarrow alloc[c_1] \cap alloc[c_2] = \{\}
ResourceMutex
ClientsWillObtain \stackrel{\triangle}{=} \forall c \in Clients. r \in Resources:
                                                   (r \in unsat[c]) \leadsto (r \in alloc[c])
                           \stackrel{\triangle}{=} \forall c \in Clients : unsat[c] = \{\} \sim alloc[c] = \{\}
ClientsWillReturn
InfOftenHappy \stackrel{\triangle}{=} \forall c \in Clients : \Box \Diamond (unsat[c] = \{\})
THEOREM SimpleAllocator \Rightarrow \BoxResourceMutex
THEOREM SimpleAllocator \Rightarrow ClientsWillObtain
THEOREM SimpleAllocator \Rightarrow ClientsWillReturn
THEOREM SimpleAllocator \Rightarrow InfOftenHappy
```

We will later see how these theorems can be verified in TLA<sup>+</sup>

### Summary

- specification language based on TLA and set theory
- TLA: stuttering invariant fragment of LTL
- specifications and properties represented as formulas
- TLA<sup>+</sup>: untyped ZF for specifying data structures
- module structure for hierarchical specifications
- system specification: explicit encoding of transition system
- TLA<sup>+</sup> supports different specification styles

### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
  - Model checking finite instances
  - Deductive system verification
- 5 Structuring models: refinement and (de)composition

#### Verification and validation

- Validation: are we building the right system?
  - compare formal model against informal user requirements
  - techniques: animation, prototyping, testing, reviews
- Verification: are we building the system right?
  - use formal techniques to establish properties of a model
  - compare two formal models at different levels of abstraction
  - techniques: theorem proving, model and equivalence checking
- In the following: focus on verification



# Verification by model checking and theorem proving

- Algorithmic verification state space exploration  $\mathcal{T} \models \Phi$ 
  - ightharpoonup effectively construct state graph of transition system  $\mathcal T$
  - use semantic definitions to evaluate property over T
  - effective mechanization for certain properties over finite transition systems (and for some classes of infinite ones)
  - ▶ TLC: model checker for finite TLA<sup>+</sup> models
- Deductive verification theorem proving

 $\mathcal{T} \vdash \Phi$ 

- define logic for expressing system properties
- establish proof rules for relating system and properties
- implement proof system within a theorem prover
- ► TLAPS: interactive proof support for TLA+



### Outline

- Motivation and introductory example
- Transition systems and their properties
- System Specification in TLA+
- Werification of TLA<sup>+</sup> models
  - Model checking finite instances
  - Deductive system verification
- 5 Structuring models: refinement and (de)composition

#### **Invariants**

#### Definition

A state formula J is an invariant of a transition system  $\mathcal{T} = (Q, I, \delta)$  if  $[\![J]\!]_q = \mathsf{tt}$  holds for every reachable state q.

- Invariants: fundamental correctness properties
  - exclusive access of processes to resources
  - non-corruption of messages
  - in-order delivery of messages
- Special case: inductive invariants
  - ▶ *J* is an inductive invariant if  $[\![J]\!]_q = \mathsf{tt}$  for every  $q \in I$  and if for all  $(q,q') \in \delta$ , if  $[\![J]\!]_q = \mathsf{tt}$  then  $[\![J]\!]_{q'} = \mathsf{tt}$
  - ▶ Note: second condition required even for unreachable *q*
  - inductive invariants: basis of deductive system verification
  - ▶ some methods (such as B or Z) document inductive invariants

# Invariant checking

- Idea of the algorithm
  - enumerate reachable states of T (finite state!)
  - verify that all reachable states satisfy J
- Pseudo-code

```
boolean verifyInvariant(TransSystem ts, Predicate inv) {
 Set visited = new Set();
 Set todo = ts.getInitials();
 while (!todo.isEmpty()) {
   State s = todo.removeSomeElement()
   if (!visited.contains(s)) {
     if (!s.satisfies(inv))
       return false;
     visited.add(s);
     todo.addAll(ts.getSuccessors(s));
 return true;
```

# Invariant checking: implementation

- Depth-first search: stack todo
  - stack contains counter-example in case invariant does not hold
  - counter-examples may be unnecessarily long
- Breadth-first search: queue todo
  - ensures counter-examples of minimal length
  - counter-example generation needs additional back-pointers
- Problem: large state spaces (beyond 10<sup>6</sup>–10<sup>7</sup> states)
  - use disk to store set visited

  - reduce number of states or transitions to explore



# Beyond invariant checking

- Basic idea extends to more complicated properties
  - beyond mere reachability (of state violating invariant)
  - apply graph algorithms to determine validity of properties
- Example: "process *A* will eventually acquire resource"
  - enumerate strongly connected components of state graph (Tarjan)
  - check if in all states of SCC, process A tries to acquire resource without ever holding it
  - complexity linear in size of state graph
  - ▶ alternative: "double reachability" search (Courcoubetis et al. 1992)
- On-the-fly model checking
  - properties of runs represented by finite automata over  $\omega$ -words:  $\mathcal A$  accepts state sequences that violate property
  - general graph algorithms for solving language emptiness of  $\mathcal{T} \times \mathcal{A}$
  - ▶ many implementations, e.g. Spin: http://spinroot.com

## Model checking using TLC

- Define finite instance for model checking
  - instantiate system parameters to fixed values

```
N = 5, Clients = {c1, c2, c3}, ...
```

► indicate formula defining system specification SPECIFICATION SimpleAllocator

indicate properties to verify

INVARIANTS TypeInvariant, ResourceMutex TEMPORAL ClientsWillObtain, InfOftenHappy

easiest done by creating a "model" in the TLA+ toolbox

## Model checking using TLC

- Define finite instance for model checking
  - instantiate system parameters to fixed values

```
N = 5, Clients = {c1, c2, c3}, ...
```

indicate formula defining system specification

```
SPECIFICATION SimpleAllocator
```

indicate properties to verify

```
INVARIANTS TypeInvariant, ResourceMutex TEMPORAL ClientsWillObtain, InfOftenHappy
```

- easiest done by creating a "model" in the TLA+ toolbox
- Some limitations of TLC (see Lamport's book for details)
  - ▶ all values must be finite (integers, finite sets, arrays, ...)
  - ▶ specifications must be in standard form  $Init \land \Box [Next]_v \land L$
  - primed state variables must be "assigned to" at first occurrence

$$x' = [x \text{ EXCEPT }![3] = @+1]$$

$$x[3]' = x[3] + 1$$

$$1 \le v' \land v' \le nProcs$$

$$1 \le v' \land v' \le nProcs$$



### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- Werification of TLA<sup>+</sup> models
  - Model checking finite instances
  - Deductive system verification
- 5 Structuring models: refinement and (de)composition

## Principle of deductive verification

• System and properties represented as TLA formulas

```
system described by Spec has property Prop

iff

formula Prop holds of every run of Spec

iff

implication Spec \Rightarrow Prop is valid
```

- System verification reduces to TLA provability
- No restriction to finite-state specifications
- Now: verification rules for standard correctness properties



## Proving invariants

- Invariant: formula  $\Box I$  for state predicate I
  - characterize the set of reachable states of a system
  - basis for proving further correctness properties
  - deductive verification relies on inductive invariants

• Basic proof rule: (INV1) 
$$\frac{I \wedge Next \Rightarrow I' \quad I \wedge v' = v \Rightarrow I'}{I \wedge \Box [Next]_v \Rightarrow \Box I}$$

- every transition (stuttering or not) preserves I
- ▶ thus, if *I* holds initially, it will hold forever
- Reduce temporal conclusion to non-temporal hypotheses



### Invariant for the hour clock

MODULE HourClock

EXTENDS Naturals

VARIABLE 
$$hr$$

HCini  $\stackrel{\triangle}{=} hr \in 0..23$ 

HCnxt  $\stackrel{\triangle}{=} hr' = \text{IF } hr = 23 \text{ THEN } 0 \text{ ELSE } hr + 1$ 

HC  $\stackrel{\triangle}{=} HCini \land \Box [HCnxt]_{hr} \land WF_{hr}(HCnxt)$ 

- Prove  $HC \Rightarrow \Box HCini$ 
  - ▶ using (INV1) and the definition of *HC* we must prove

$$hr \in 0..23 \land HCnxt \Rightarrow hr' \in 0..23$$
  
 $hr \in 0..23 \land hr' = hr \Rightarrow hr' \in 0..23$ 

both implications are clearly valid



## Finding inductive invariants

- Rule (INV1) can be used to prove inductive invariants
  - ▶ in general, need to strengthen proposed invariant
  - use derived proof rule

(INV) 
$$\frac{\mathit{Init} \Rightarrow J \qquad J \land (\mathit{Next} \lor v' = v) \Rightarrow J' \qquad J \Rightarrow I}{\mathit{Init} \land \Box[\mathit{Next}]_v \Rightarrow \Box I}$$

▶ *J* : inductive invariant that implies *I* 

#### Inductive invariants

- finding inductive invariants is often difficult
- once found, proving them is easy (in principle)
- inductive invariants contain algorithmic idea: document them!
- there are systematic techniques for strengthening invariants



## Example: strengthen invariant

```
EXTENDS Sequences
VARIABLES i,q,o

SQInit \stackrel{\triangle}{=} q = \langle \rangle \wedge i = o
SQEnq \stackrel{\triangle}{=} i' \neq i \wedge q' = Append(q,i') \wedge o' = o
SQDeq \stackrel{\triangle}{=} q \neq \langle \rangle \wedge o' = Head(q) \wedge q' = Tail(q) \wedge i' = i
SQLive \stackrel{\triangle}{=} WF_{i,q,o}(SQDeq)
SQSpec \stackrel{\triangle}{=} SQInit \wedge \Box[SQEnq \vee SQDeq]_{i,q,o} \wedge SQLive
```

- Elements are enqueued only if input changes
- Therefore any two consecutive queue elements are different
- Exercise: formally prove

$$SQSpec \Rightarrow \Box(\forall i \in (1..Len(q) - 1) : q[i] \neq q[i + 1])$$

### Excursion: weakest preconditions (1)

• For an action A and a state predicate P define

$$\mathbf{wp}(P,A) \stackrel{\triangle}{=} \forall v_1', \dots, v_n' : A \Rightarrow P' \quad (\equiv \neg \mathsf{ENABLED} (A \land \neg P'))$$
 where  $v_1', \dots, v_n'$  are all free primed variables in  $A$  or  $P'$ 

- $\mathbf{wp}(P, A)$ : weakest precondition of P w.r.t. A
  - ▶ true in those states all of whose *A*-successors satisfy *P*
- Examples

$$\mathbf{wp}(x = 5, x' = x + 1) \equiv \forall x' : x' = x + 1 \Rightarrow x' = 5$$

$$\equiv x = 4$$

$$\mathbf{wp}(y \in S, S' = S \cup T \land y' = y) \equiv \forall y', S' : S' = S \cup T \land y' = y \Rightarrow y' \in S'$$

$$\equiv y \in S \cup T$$

$$\mathbf{wp}(x > 0, x' = 0) \equiv \forall x' : x' = 0 \Rightarrow x' > 0$$

$$\equiv \text{ff}$$

## Excursion: weakest preconditions (2)

• Rule (INV) can be rewritten as follows

$$\frac{Init \Rightarrow J \quad J \Rightarrow \mathbf{wp}(J, Next \lor v' = v) \quad J \Rightarrow I}{Init \land \Box [Next]_v \Rightarrow \Box I}$$

- Following heuristic can help finding inductive invariants
  - **1** start with invariant to prove: J := I
  - ② try proving  $J \wedge A \Rightarrow J'$  for each disjunct A of  $[Next]_v$  if this proof fails, set  $J := J \wedge \mathbf{wp}(J, A)$
  - repeat step 2 until
    - **★** either all proofs succeed and  $Init \Rightarrow J$  holds:
      - $\Rightarrow$  *J* is an inductive invariant
    - ★ or *J* is not implied by *Init*:
      - $\Rightarrow$  *I* is not an invariant
- Heuristic need not terminate: generalize candidate invariant

### Liveness 1: use fairness conditions

- Fairness conditions ensure that actions occur eventually
- Following rule derives liveness from weak fairness

$$(WF1) \frac{P \wedge [Next]_v \Rightarrow P' \vee Q'}{P \wedge \langle Next \wedge A \rangle_v \Rightarrow Q'}$$

$$\frac{P \Rightarrow \text{ENABLED } \langle A \rangle_v}{\Box [Next]_v \wedge WF_v(A) \Rightarrow (P \leadsto Q)}$$

• hypotheses of (WF1) are again non-temporal

## Examples

Fairness of HCnxt ensures that clock keeps ticking

$$HC \Rightarrow \forall k \in 0..23 : hr = k \rightarrow hr = (k+1)\%24$$

by (WF1) and predicate logic it suffices to show

$$k \in 0..23 \land hr = k \land [HCnxt]_{hr} \Rightarrow hr' = k \lor hr' = (k+1)\%24$$
  
 $k \in 0..23 \land hr = k \land \langle HCnxt \rangle_{hr} \Rightarrow hr' = (k+1)\%24$   
 $k \in 0..23 \land hr = k \Rightarrow \text{ENABLED } \langle HCnxt \rangle_{hr}$ 

▶ these formulas are again valid

• Exercise: show that elements advance in queue

$$SQSpec \Rightarrow \forall k \in 1..Len(q) : \forall x : q[k] = x \leadsto (o = x \lor q[k-1] = x)$$



## Correctness of rule (WF1)

#### Assumptions

- **②** To prove that  $\sigma \models P \leadsto Q$  assume that  $[\![P]\!]_{s_n} = \text{tt for some } n \in \mathbb{N}$
- **3** Assume also that  $[\![Q]\!]_{s_m} = \text{ff for all } m \geq n$

#### Show: contradiction

- ①  $[\![P]\!]_{S_m} = \text{tt for all } m \ge n$  [induction on  $m \ge n$  using A1, A2, and hypothesis  $P \land [Next]_v \Rightarrow P' \lor Q'$ ]
- ② [ENABLED  $\langle A \rangle_v$ ] $_{S_m} = \text{tt for all } m \geq n$ [from (1) and hypothesis  $P \Rightarrow \text{ENABLED } \langle A \rangle_v$ ]
- $[ [\langle A \rangle_v] ]_{S_m,S_{m+1}} = \text{tt for some } m \ge n$  [from (2) and A1: WF<sub>v</sub>(A)]
- ①  $[Q]_{s_{m+1}} = \text{tt for some } m \ge n$ [from (3), (1), A1, and hypothesis  $P \land \langle Next \land A \rangle_v \Rightarrow Q'$ ]
- **5** Q.E.D. (contradiction with A3)



# Liveness from strong fairness

- For (WF1), the action  $\langle A \rangle_v$  must remain enabled forever
  - strong fairness only requires "infinitely often enabled"
  - appropriate proof rule

$$(SF1) \begin{array}{c} P \wedge [Next]_v \Rightarrow P' \vee Q' \\ P \wedge \langle Next \wedge A \rangle_v \Rightarrow Q' \\ \square P \wedge \square [Next]_v \wedge \square F \Rightarrow \Diamond \text{ENABLED } \langle A \rangle_v \\ \square [Next]_v \wedge SF_v(A) \wedge \square F \Rightarrow (P \leadsto Q) \end{array}$$

#### Observations

- first two hypotheses are as in (WF1)
- ▶ third hypothesis is a temporal formula: *F* can be a conjunction of
  - fairness conditions: WF<sub>v</sub>(B) ≡  $\square$ WF<sub>v</sub>(B), SF<sub>v</sub>(B) ≡  $\square$ SF<sub>v</sub>(B)
  - auxiliary "leadsto" formulas, invariants, ...



# Complex liveness properties

- Rules (WF1) and (SF1) prove elementary liveness properties
  - clock eventually displays next hour
  - elements in queue will advance by one position
- How can we prove more complex properties?
  - ► clock will eventually display 12 o'clock  $HC \Rightarrow \Box \diamondsuit (hr = 12)$
  - enqueued values will eventually be output

$$SQSpec \Rightarrow ((\exists k \in 1..Len(q) : q[k] = x) \rightsquigarrow o = x)$$

- Informal argument: repeat elementary liveness property
  - every tick of the clock brings us closer to noon
  - every output action moves the element closer to the output channel

#### Well-founded relations

#### Definition

A binary relation  $\prec \subseteq D \times D$  is well-founded if there is no infinite descending chain  $d_0 \succ d_1 \succ d_2 \succ \dots$  of elements  $d_i \in D$ .

#### Observations

- well-founded relations are irreflexive and asymmetric
- every non-empty subset of D contains a minimal element

#### Examples

- < is well-founded over N (also over ordinal numbers)</li>
- lexicographic ordering on sequences over bounded size
- ▶ lexicographic ordering on  $Seq({a,b})$  is not well-founded:

$$b \succ ab \succ aab \succ aaab \succ \dots$$



#### Liveness from well-founded relations

Additional proof rule

$$(\text{WFO}) \quad \frac{(D, \prec) \text{ well-founded}}{F \land d \in D \Rightarrow \big(H(d) \leadsto G \lor (\exists e \in D : e \prec d \land H(e))\big)} \\ F \Rightarrow \big((\exists d \in D : H(d)) \leadsto G\big) \\ (d \text{ does not occur in } G)$$

- Observations
  - must prove another "leadsto" property, typically based on fairness
  - first premise should be verified by reasoning about data
- Exercise: prove the correctness of rule (WFO)



# Example

Prove 
$$HC \Rightarrow ((\exists d \in 0..23 : hr = d) \rightsquigarrow hr = 12)$$

• Define the well-founded relation  $\prec$  on 0..23 by

$$dist(d) \stackrel{\triangle}{=} \text{ If } d \leq 12 \text{ THEN } 12 - d \text{ ELSE } 36 - d \quad \text{(* distance from } 12 \text{*)} \\ d \prec e \stackrel{\triangle}{=} dist(d) < dist(e)$$

Applying (WFO) we have to prove

$$HC \land d \in 0..23 \Rightarrow (hr = d \leadsto (hr = 12 \lor \exists e \in 0..23 : e \prec d \land hr = e))$$

This follows from the formula

$$HC \Rightarrow \forall k \in (0..23) : hr = k \rightsquigarrow hr = (k+1) \mod 24$$
 shown earlier, using the definition of  $\prec$ 

# Combining properties: simple temporal logic

### Application of verification rules is supported by the laws of

- first-order logic,
- theories formalizing the data (in particular, set theory),
- and laws of temporal logic such as

(STL1) 
$$\frac{F}{\Box F}$$
 (STL2)  $\Box F \Rightarrow F$   
(STL3)  $\Box \Box F \equiv \Box F$  (STL4)  $\Box (F \Rightarrow G) \Rightarrow (\Box F \Rightarrow \Box G)$   
(STL5)  $\Box (F \land G) \equiv (\Box F \land \Box G)$  (STL6)  $\Diamond \Box (F \land G) \equiv \Diamond \Box F \land \Diamond \Box G$ 

(TLA1) 
$$\frac{P \wedge t' = t \Rightarrow P'}{\Box P \equiv P \wedge \Box [P \Rightarrow P']_t} \qquad \text{(TLA2)} \quad \frac{I \wedge I' \wedge [A]_t \Rightarrow [B]_u}{\Box I \wedge \Box [A]_t \Rightarrow \Box [B]_u}$$

Validity of propositional temporal logic is mechanically decidable

# Proof support: the TLA<sup>+</sup> proof system

- Assist user in writing proofs
  - hierarchical, declarative proof language
  - skeleton of invariant proof

```
THEOREM Spec \Rightarrow \Box Inv

\langle 1 \rangle 1. Init \Rightarrow Inv

\langle 1 \rangle 2. ASSUME Inv, Next

PROVE Inv'

\langle 1 \rangle 3. QED

BY \langle 1 \rangle 1, \langle 1 \rangle 2, INV1 DEF Spec
```

- proofs of steps  $\langle 1 \rangle 1$  and  $\langle 1 \rangle 2$  to be filled in
- Verification of leaf proofs by theorem provers
- Philosophy: decompose proof steps until they become "trivial"
- First release: http://msr-inria.inria.fr/~doligez/tlaps/

#### Architecture of the TLAPS



### Summary

- model checking: push-button verification of finite instances
- deductive approach: reduce system verification to logical validity
- proof rules for invariants and for liveness properties
- TLA: quickly reduce to non-temporal verification conditions
- machine assistance: theorem proving through the TLAPS

### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition
  - Refinement of specifications
  - Hiding (encapsulation) of internal state
  - Composition and decomposition

## Modeling "in the large"

- So far: specifications at single level of abstraction
- This chapter:
  - compare models at different levels of abstraction: refinement
  - hiding (encapsulation) of internal state
  - composition from and decomposition into system component
- These concepts are represented in TLA+ by logical connectives

#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition
  - Refinement of specifications
  - Hiding (encapsulation) of internal state
  - Composition and decomposition

## Reminder: refining the hour clock

```
MODULE HourMinuteClock –

EXTENDS Naturals, HourClock
VARIABLE min
HMCini \stackrel{\triangle}{=} HCini \land min \in 0...59
Min \stackrel{\triangle}{=} min' = IF min = 59 THEN 0 ELSE min + 1
Hr \stackrel{\triangle}{=} IF min = 59 THEN HCnxt ELSE hr' = hr
HMCnxt \stackrel{\triangle}{=} Min \wedge Hr
HMC \stackrel{\triangle}{=} HMCini \wedge \Box [HMCnxt]_{\langle hr, min \rangle} \wedge WF_{\langle hr, min \rangle} (HMCnxt)
THEOREM HMC \Rightarrow HC
```

- Every run of HMC also satisfies the hour-clock specification
- Stuttering invariance essential for allowing minute ticks

#### Proving the implication $HMC \Rightarrow HC$

- Initial condition  $HMCini \Rightarrow HCini$ 
  - obvious from definition of HMCini
- Next-state relation  $HMC \Rightarrow \Box [HCnxt]_{hr}$ 
  - easy by definition of *HMCnxt*, formally supported by rule (TLA2)
- Fairness condition  $HMC \Rightarrow WF_{hr}(HCnxt)$ 
  - unfold definition of  $WF_{hr}(HCnxt)$  or use derived proof rule

$$(WF2) \begin{array}{c} \langle N \wedge P \wedge A \rangle_v \Rightarrow \langle B \rangle_w \\ P \wedge \text{Enabled } \langle B \rangle_w \Rightarrow \text{Enabled } \langle A \rangle_v \\ \square[N \wedge [\neg B]_w]_v \wedge WF_v(A) \wedge \square F \wedge \Diamond \square \text{Enabled } \langle B \rangle_w \Rightarrow \Diamond \square P \\ \square[N]_v \wedge WF_v(A) \wedge \square F \Rightarrow WF_w(B) \end{array}$$

• Exercise: verify the refinement using TLC



## Refinement as implication (trace inclusion)

- Refinement may add state variables ("implementation detail")
- High-level actions implemented by several low-level steps
  - actions except last one do not affect high-level state
  - final action corresponds to high-level effect



#### Refinement as implication (trace inclusion)

- Refinement may add state variables ("implementation detail")
- High-level actions implemented by several low-level steps
  - actions except last one do not affect high-level state
  - final action corresponds to high-level effect



- Stuttering invariance is crucial for refinement as implication
  - must also preserve high-level fairness conditions
  - implementation inherits all high-level properties
- Implementation may reduce non-determinism
  - branching structure of high-level model need not be preserved

#### Resource allocator revisited

- Consider the following scenario
  - clients  $c_1$  and  $c_2$  request resources  $r_1$  and  $r_2$
  - ▶ allocator gives  $r_1$  to  $c_1$  and  $r_2$  to  $c_2$
- Is the system deadlocked?

• Why didn't we see the problem when running TLC?

#### Resource allocator revisited

- Consider the following scenario
  - clients  $c_1$  and  $c_2$  request resources  $r_1$  and  $r_2$
  - ▶ allocator gives  $r_1$  to  $c_1$  and  $r_2$  to  $c_2$
- Is the system deadlocked?
  - No:  $c_1$  may return the resource  $r_1$ , unblocking the system
- Why didn't we see the problem when running TLC?
  - ▶ in fact,  $c_1$  must eventually return  $r_1$  due to the fairness condition  $\forall c \in Clients : WF_{vars}(Return(c, alloc[c]))$
  - therefore, all required liveness properties hold in the model

#### Resource allocator revisited

- Consider the following scenario
  - clients  $c_1$  and  $c_2$  request resources  $r_1$  and  $r_2$
  - ▶ allocator gives  $r_1$  to  $c_1$  and  $r_2$  to  $c_2$
- Is the system deadlocked?
  - No:  $c_1$  may return the resource  $r_1$ , unblocking the system
- Why didn't we see the problem when running TLC?
  - ▶ in fact,  $c_1$  must eventually return  $r_1$  due to the fairness condition  $\forall c \in Clients : WF_{vars}(Return(c, alloc[c]))$
  - therefore, all required liveness properties hold in the model
- The specification *SimpleAllocator* is wrong!



# Weakening the fairness condition

- Intended fairness requirement (cf. informal description)
  - clients must eventually return all resources it holds after having received all resources it requested
  - ▶ this can be expressed in TLA<sup>+</sup> as

```
\forall c \in Clients : WF_{vars}(unsat[c] = \{\} \land Return(c, alloc[c]))
```

- With this weaker condition the liveness properties no longer hold
  - TLC reports the expected counter-example

## Weakening the fairness condition

- Intended fairness requirement (cf. informal description)
  - clients must eventually return all resources it holds after having received all resources it requested
  - ▶ this can be expressed in TLA<sup>+</sup> as

```
\forall c \in Clients : WF_{vars}(unsat[c] = \{\} \land Return(c, alloc[c]))
```

- With this weaker condition the liveness properties no longer hold
  - ► TLC reports the expected counter-example
- Lessons learnt
  - specifying fairness can be tricky
  - verification is not a panacea: specifications need to be validated
- How can we correct the specification?



#### Resource allocator: second solution

- Idea: allocator maintains a schedule of clients to satisfy
  - ensure that all requests can be satisfied, even in the worst case
- Principle of operation
  - allocate resource r to client c only if c appears in the schedule and no client c' that is scheduled before c requests r
  - upon receiving a new request from client c, put c into a pool of clients awaiting scheduling
  - eventually append clients from the pool to the schedule (in arbitrary order: can be refined later)
- In the following: formulation in TLA<sup>+</sup>



## Scheduling allocator in TLA<sup>+</sup> (1/5)

```
MODULE Scheduling Allocator -
EXTENDS FiniteSets, Sequences, Naturals
CONSTANTS Clients, Resources
ASSUME IsFiniteSet(Resources)
VARIABLES
unsat,
            (* unsat[c] denotes the outstanding requests of client c *)
alloc,
            (* alloc[c] denotes the resources allocated to client c *)
pool,
            (* clients with unsatisfied requests that have not been scheduled *)
sched
            (* schedule (sequence of clients) *)
TypeInvariant \stackrel{\triangle}{=}
   \land unsat \in [Clients \rightarrow SUBSET Resources]
   \land alloc \in [Clients \rightarrow SUBSET Resources]
   \land pool \in SUBSET Clients
   \land sched \in Seq(Clients)
```

# Scheduling allocator in TLA<sup>+</sup> (2/5)

```
PermSeqs(S) \stackrel{\triangle}{=}  (* Permutation sequences of finite set S. *)
LET perms[ss \in SUBSET S] \stackrel{\triangle}{=}
         IF ss = \{\} THEN \langle\rangle
          ELSE LET ps \stackrel{\triangle}{=} [x \in ss \mapsto \{Append(sq, x) : sq \in perms[ss \setminus \{x\}]\}]
                  IN UNION \{ps[x]: x \in ss\}
IN perms[S]
Drop(seq,i) \stackrel{\triangle}{=}  (* remove element at position i from sequence seq *)
   SubSeq(seq, 1, i - 1) \circ SubSeq(seq, i + 1, Len(seq))
available \stackrel{\triangle}{=} (* set of resources free for allocation *)
   Resources \ (UNION \{alloc[c] : c \in Clients\})
```

## Scheduling allocator in TLA<sup>+</sup> (3/5)

```
Init \stackrel{\triangle}{=}
    \land unsat = [Clients \rightarrow {}] \land alloc = [Clients \rightarrow {}]
    \land pool = \{\} \land sched = \langle \rangle
Request(c,S) \stackrel{\triangle}{=}  (* Client c requests set S of resources. *)
    \land unsat[c] = \{\} \land alloc[c] = \{\}
    \land S \neq \{\} \land unsat' = [unsat \ EXCEPT \ ![c] = S]
    \land pool' = pool \cup \{c\}
    ∧ UNCHANGED ⟨alloc, sched⟩
Return(c,S) \stackrel{\triangle}{=}  (* Client c returns a set of resources that it holds. *)
    \land S \neq \{\} \land S \subseteq alloc[c]
    \land alloc' = [alloc \ EXCEPT \ ![c] = @ \setminus S]
    ∧ UNCHANGED ⟨unsat, pool, sched⟩
```

# Scheduling allocator in TLA<sup>+</sup> (4/5)

```
Schedule \stackrel{\triangle}{=} (* Extend allocator schedule by the processes from the pool. *)
   \land pool \neq \{\}
    \land \exists sq \in PermSeqs(pool) : sched' = sched \circ sq
   \land pool' = \{\}
    ∧ UNCHANGED ⟨unsat, alloc⟩
Allocate(c,S) \stackrel{\triangle}{=} (* Allocate set S of available resources to client c. *)
\land S \neq \{\} \land S \subseteq available \cap unsat[c]
\land \exists i \in 1..Len(sched):
       \land sched[i] = c
       \land \forall j \in 1..i-1 : unsat[sched[j]] \cap S = \{\}
       \land sched' = IF S = unsat[c] THEN Drop(sched, i) ELSE sched
\wedge \ alloc' = [alloc \ EXCEPT \ ![c] = @ \cup S]
 \land unsat' = [unsat EXCEPT ![c] = @ \ S]
 ∧ UNCHANGED pool
```

# Scheduling allocator in TLA<sup>+</sup> (5/5)

```
Next \stackrel{\triangle}{=}  (* The next-state relation. *)
 \vee \exists c \in Clients, S \in SUBSET Resources :
           Reguest(c, S) \lor Allocate(c, S) \lor Return(c, S)
 V Schedule
vars \stackrel{\triangle}{=} \langle unsat, alloc, pool, sched \rangle
SchedulingAllocator \stackrel{\triangle}{=}
    \wedge Init \wedge \Box [Next]_{vars}
    \land \forall c \in Clients : WF_{vars}(unsat[c] = \{\} \land Return(c, alloc[c]))
    \land \forall c \in Clients : WF_{vars}(\exists S \in SUBSET Resources : Allocate(c, S))
    \wedge WF<sub>vars</sub>(Schedule)
```

## Verifying the scheduling allocator

- Scheduling allocator satisfies all correctness requirements
- Crucial invariant
  - full request of any scheduled client can be satisfied from the resources that will be available after all previously scheduled clients released all resources they held or requested

```
 \forall i \in 1..Len(sched) : unsat[sched[i]] \subseteq \\ available \\ \cup UNION \{unsat[sched[j]] \cup alloc[sched[j]] : j \in 1..i - 1\} \\ \cup UNION \{alloc[c] : c \in Clients\}
```

## Verifying the scheduling allocator

- Scheduling allocator satisfies all correctness requirements
- Crucial invariant
  - full request of any scheduled client can be satisfied from the resources that will be available after all previously scheduled clients released all resources they held or requested

```
 \forall i \in 1..Len(sched) : unsat[sched[i]] \subseteq \\ available \\ \cup UNION \{unsat[sched[j]] \cup alloc[sched[j]] : j \in 1..i - 1\} \\ \cup UNION \{alloc[c] : c \in Clients\}
```

- Successful verification using TLC (for small instances)
- Do you believe that the model is now correct?



## Scheduling allocator as a refinement

• In fact, Scheduling Allocator refines Simple Allocator

- the weaker fairness conditions of the scheduling allocator suffice thanks to scheduling
- the allocator does no longer require the cooperation of the clients for ensuring that they will eventually receive all resources
- Correctness properties are inherited by *SchedulingAllocator*



#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- 4 Verification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition
  - Refinement of specifications
  - Hiding (encapsulation) of internal state
  - Composition and decomposition

# Reminder: specification of a FIFO component



- The internal queue *q* is an "implementation detail"
  - it should not be part of the interface
  - ► FIFO component should function as if there were a queue
  - ▶ do not expose implementation detail, especially for refinement



## Hiding in TLA<sup>+</sup>

TLA uses existential quantification to represent hiding

```
VARIABLES i,o
Queue(q) \stackrel{\triangle}{=} INSTANCE SyncQueue
FIFO \stackrel{\triangle}{=} \exists q : Queue(q)!SQSpec
```

- ▶ module *FIFO* contains the "external" specification of the queue
- separate interface and implementation

## Hiding in TLA<sup>+</sup>

TLA uses existential quantification to represent hiding

```
VARIABLES i,o
Queue(q) \stackrel{\triangle}{=} INSTANCE SyncQueue
FIFO \stackrel{\triangle}{=} \exists q : Queue(q)!SQSpec
```

- ▶ module FIFO contains the "external" specification of the queue
- separate interface and implementation
- Extend syntax of TLA formulas
  - ▶ if *F* is a formula and v a state variable then  $\exists v : F$  is a formula
  - ▶ intuitive meaning:  $\sigma \models \exists v : F \text{ if } \tau \models F \text{ for some } \tau \text{ that differs } from \sigma \text{ only in the valuations of } v$

#### Naive semantics of quantification

• First attempt at defining semantics

$$\sigma, \xi \models \exists v : F \text{ iff } \tau, \xi \models F \text{ for some } \tau \text{ s.t. } \tau_n =_v \sigma_n \text{ for all } n \in \mathbb{N}$$

#### Naive semantics of quantification

First attempt at defining semantics

$$\sigma, \xi \models \exists v : F \text{ iff } \tau, \xi \models F \text{ for some } \tau \text{ s.t. } \tau_n =_v \sigma_n \text{ for all } n \in \mathbb{N}$$

• Consider  $F \stackrel{\triangle}{=} v = 0 \land \Box [v = 1]_w$ 

- ► *F* essentially asserts that *v* has changed value before *w* changes
- clearly,  $\tau \models F$ , and therefore  $\sigma \models \exists v : F$
- ▶ however,  $\exists v : F$  would not hold of  $\sigma$  with second state removed
- Violation of stuttering invariance



## Formal semantics of quantification

• Solution: define semantics with stuttering invariance "built in"

$$\sigma, \xi \models \exists v : F$$
 iff there exist  $\rho \approx \sigma$  and  $\tau =_v \rho$  s.t.  $\tau, \xi \models F$ 

- lacktriangle both  $\sigma$  and its variant satisfy  $\exists v: v=0 \land \Box [v=1]_w$
- in fact, this formula is valid

## Formal semantics of quantification

• Solution: define semantics with stuttering invariance "built in"

$$\sigma, \xi \models \exists v : F$$
 iff there exist  $\rho \approx \sigma$  and  $\tau =_v \rho$  s.t.  $\tau, \xi \models F$ 

- lacktriangle both  $\sigma$  and its variant satisfy  $\exists v: v=0 \land \Box [v=1]_w$
- in fact, this formula is valid
- Clock example: have  $HC \Rightarrow \exists min : HMC$ 
  - implementation of hour clock may contain hidden minute hand
- Verification: standard proof rules are sound

$$(\exists -I)$$
  $F(t) \Rightarrow \exists v : F(v)$  (t state function: "refinement mapping")

$$(\exists -E) \quad \frac{F \Rightarrow G}{(\exists v : F) \Rightarrow G} \quad (v \text{ not free in } G)$$

- for completeness, need more introduction rules
- ► TLC does not support ∃: provide explicit refinement mapping



#### Outline

- Motivation and introductory example
- 2 Transition systems and their properties
- System Specification in TLA+
- Werification of TLA<sup>+</sup> models
- 5 Structuring models: refinement and (de)composition
  - Refinement of specifications
  - Hiding (encapsulation) of internal state
  - Composition and decomposition

## Parallel composition of components



- Assume: components A and B modeled by ASpec and BSpec
  - ▶ interface represented by the shared variables *a*2*b* and *b*2*a*
  - both specifications accommodate changes due to other component
  - assume: internal variables hidden (or renamed to be disjoint)

## Parallel composition of components



- Assume: components A and B modeled by *ASpec* and *BSpec* 
  - ▶ interface represented by the shared variables *a*2*b* and *b*2*a*
  - both specifications accommodate changes due to other component
  - assume: internal variables hidden (or renamed to be disjoint)
- System containing both components must satisfy  $ASpec \land BSpec$ 
  - stuttering invariance is again important here
- System model may require additional constraints
  - typical example: interleaving assumption



## Example: composition of two FIFO channels



#### Example: composition of two FIFO channels



- LongFIFO allows for simultaneous enqueueing and dequeueing
  - Single!FIFO does not, due to interleaving assumption
  - assert interleaving when composing



#### Interleaving composition

Interleaving composition: add a "synchronizer"

THEOREM 
$$LongFIFO \land \Box[i' = i \lor o' = o]_{i,o} \Rightarrow Spec!FIFO$$
 where  $LongFIFO \equiv \land \exists q : SyncQueue(i,q,m)!SQSpec \land \exists q : SyncQueue(m,q,o)!SQSpec$   $Spec!FIFO \equiv \exists q : SyncQueue(i,q,o)!SQSpec$ 

#### Interleaving composition

Interleaving composition: add a "synchronizer"

THEOREM 
$$LongFIFO \land \Box[i' = i \lor o' = o]_{i,o} \Rightarrow Spec!FIFO$$
 where  $LongFIFO \equiv \land \exists q : SyncQueue(i,q,m)!SQSpec \land \exists q : SyncQueue(m,q,o)!SQSpec$   $Spec!FIFO \equiv \exists q : SyncQueue(i,q,o)!SQSpec$ 

- Proof (outline)
  - using rules  $(\exists -E)$  and  $(\exists -I)$  it is enough to prove

$$\land$$
 SyncQueue $(i,q_2,m)$ !SQSpec  $\land$  SyncQueue $(m,q_1,o)$ !SQSpec  $\land \Box [i'=i \lor o'=o]_{i,o}$   $\Rightarrow$  SyncQueue $(i,t,o)$ !SQSpec

for some state function t. Choose  $t \stackrel{\triangle}{=} q_1 \circ q_2$ .

• Exercise: formally carry out this proof



#### Decomposition of system specification

- Obtain component specifications from high-level system model
  - more in line with refinement approach to system development
  - technically often simpler than composing independent components
- Partition system state & identify component responsibilities
  - assume that no variable can be written by two different components
  - variables can be read by any number of components
  - generalization possible, but technically more involved
- Example: development of a producer-consumer system

## High-level specification



- First abstraction: only specify the buffer
  - ignore nature of products and how they are produced/consumed
  - do not specify communication between buffer and environment
- Assume FIFO buffer of fixed capacity

## High-level specification in TLA<sup>+</sup>

```
MODULE AbstractPC
EXTENDS Sequences
CONSTANTS Product, None, buffCap
VARIABLES buffer, in, out
Init \stackrel{\triangle}{=} buffer = \langle \rangle \wedge in = None \wedge out = None
Get \stackrel{\triangle}{=} \wedge Len(buffer) < buffCap
            \wedge buffer' = Append(buffer, in)
            ∧ UNCHANGED ⟨in, out⟩
Put \stackrel{\triangle}{=} \wedge Len(buffer) > 0
            \wedge out' = Head(buffer) \wedge buffer' = Tail(buffer)
             △ UNCHANGED in
vars \stackrel{\triangle}{=} \langle in, buffer, out \rangle
Spec \stackrel{\triangle}{=} Init \wedge \Box [Get \vee Put]_{vars} \wedge WF_{vars}(Put)
THEOREM Spec \Rightarrow \Box(\Diamond \langle Get \rangle_{vars} \Rightarrow \Diamond \langle Put \rangle_{vars})
```

## Refinement: introducing communication



- Explicitly model communication between components
  - assume asynchronous communication for distributed system
- Synchronize sender and receiver over channel
  - signal availability of new value and successful reception
  - in particular, block producer when the buffer is full
  - avoid variables written by two different components

## Channel specification in TLA+

Generic channel specification with "split bit" handshake

- channel content represented by *ch*, control bits *tmt* and *rcv*
- channel empty (i.e., value may be sent) when tmt = rcv
- channel full (i.e., value may be received) when  $tmt \neq rcv$

```
CONSTANTS Value, NoValue

VARIABLES ch, tmt, rcv

Init \triangleq ch = NoValue \wedge tmt = FALSE \wedge rcv = FALSE

Snd(v) \triangleq tmt = rcv \wedge ch' = v \wedge tmt' = \neg tmt \wedge rcv' = rcv

Rcv \triangleq tmt \neq rcv \wedge rcv' = \neg rcv \wedge UNCHANGED \langle ch, tmt \rangle

Next \triangleq (\exists v \in Value : Snd(v)) \vee Rcv

vars \triangleq \langle ch, tmt, rcv \rangle

Chan \triangleq Init \wedge \Box [Next]_{vars}
```

# Refined specification of producer/consumer (1/2)

```
    MODULE RefinedPC

EXTENDS Sequences
CONSTANTS Product, None, buffCap
VARIABLES buffer, in, itmt, ircv, out, otmt, orcv
InChan \stackrel{\triangle}{=} INSTANCE Channel WITH
                 Value \leftarrow Product, NoValue \leftarrow None, ch \leftarrow in, tmt \leftarrow itmt, rcv \leftarrow ircv
OutChan \stackrel{\triangle}{=} INSTANCE Channel WITH
                  Value \leftarrow Product, NoValue \leftarrow None, ch \leftarrow out, tmt \leftarrow otmt, rcv \leftarrow orcv
                \stackrel{\triangle}{=} buffer = \langle \rangle \wedge InChan!Init \wedge OutChan!Init
Init
Produce(v) \stackrel{\triangle}{=} InChan!Snd(v) \land UNCHANGED \langle buffer, OutChan!vars \rangle
                \stackrel{\triangle}{=} \wedge Len(buffer) < buffCap
Get
                     \land InChan!Rcv \land buffer' = Append(buffer, in)
                     ∧ UNCHANGED OutChan!vars
                \stackrel{\triangle}{=} \wedge Len(buffer) > 0
Put
                     \land OutChan!Snd(Head(buffer)) \land buffer' = Tail(buffer)
                     ∧ UNCHANGED InChan!vars
                \stackrel{\triangle}{=} OutChan!Rcv \land UNCHANGED \langle buffer, InChan!vars\rangle
Consume
```

## Refined specification of producer/consumer (2/2)

```
Next \triangleq (\exists v \in Product : Produce(v)) \lor Get \lor Put \lor Consume
vars \triangleq \langle buffer, InChan!vars, OutChan!vars \rangle
Fairness \triangleq WF_{vars}(Get) \land WF_{vars}(Put) \land WF_{vars}(Consume)
Spec \triangleq Init \land \Box [Next]_{vars} \land Fairness
LOCAL INSTANCE AbstractPC
THEOREM Spec \Rightarrow AbstractPC!Spec
```

#### Proof of refinement theorem

- safety part quite obvious
- ▶ in particular, new actions do not modify variable *buffer*
- ► fairness condition on new *Consume* action necessary for implementing high-level fairness constraint on *Put*
- TLC can again verify refinement for small instances



### Decomposition: partition variables and actions

- Decompose system into three components
  - identify variables accessed by each component
  - assign responsibilities for performing actions to components

|          | Producer | Buffer                  | Consumer  |
|----------|----------|-------------------------|-----------|
| writes   | in, itmt | ircv, buffer, out, otmt | orcv      |
| reads    | ircv     | in, itmt, orcv          | out, otmt |
| performs | Produce  | Get, Put                | Consume   |

- Derive component specifications from this decomposition
  - no variable written by two different components
  - unique assignment of actions to components



## Producer and Consumer components in TLA<sup>+</sup>

```
CONSTANTS Product, None

VARIABLES in, itmt, ircv

PInit \stackrel{\triangle}{=} in = None \wedge itmt = FALSE

Produce(v) \stackrel{\triangle}{=} \wedge itmt = ircv

\wedge in' = v \wedge itmt' = \negitmt \wedge ircv' = ircv

Producer \stackrel{\triangle}{=} PInit \wedge \square [\exists v \in Product : Produce(v)]\langle in,itmt \rangle
```

```
VARIABLES orcv, out, otmt

CInit \triangleq orcv = FALSE

Consume \triangleq \land otmt \neq orcv
 \land orcv' = \neg orcv \land \text{UNCHANGED } \langle out, otmt \rangle
Consumer \triangleq CInit \land \Box [Consume] _{orcv} \land \text{WF}_{orcv} (Consume)
```

## Buffer component in TLA+

```
——— MODULE Buffer -
EXTENDS Sequences
CONSTANTS Product, None, buffCap
VARIABLES in, itmt, ircv, buffer, out, otmt, orcv
BInit \stackrel{\triangle}{=} ircv = FALSE \land buffer = \langle \rangle \land out = None \land otmt = FALSE
Get \stackrel{\triangle}{=} \land Len(buffer) < buffCap \land itmt \neq ircv
              \land buffer' = Append(buffer, in) \land ircv' = \negircv
              ∧ UNCHANGED ⟨in, itmt, out, otmt, orcv⟩
Put \stackrel{\triangle}{=} \wedge Len(buffer) > 0 \wedge otmt = orcv
              \land out' = Head(buffer) \land otmt' = \negotmt \land buffer' = Tail(buffer)
              ∧ UNCHANGED ⟨in, itmt, ircv, orcv⟩
bvars \stackrel{\triangle}{=} \langle ircv, buffer, out, otmt \rangle
Buffer \stackrel{\triangle}{=} BInit \wedge \Box [Get \vee Put]_{byars} \wedge WF_{byars}(Get) \wedge WF_{byars}(Put)
```

### Summary: decomposition

— MODULE Refinement -

EXTENDS Producer, Consumer, Buffer LOCAL INSTANCE RefinedPC THEOREM Producer  $\land$  Buffer  $\land$  Consumer  $\Rightarrow$  RefinedPC!Spec

- Overall approach to decompose system specification
  - partition system variables according to who modifies them
  - identify actions performed by each component
  - declare all variables read or written in component specifications
  - only written variables appear in subscripts (next-state, fairness)
  - add UNCHANGED clauses for read-only variables
- What if no suitable variable partitioning can be found?
  - try to split (auxiliary) variables to separate responsibilities
  - allow for shared actions in different system models



### Summary: structuring models

- Refinement: successively add implementation detail
  - represented in TLA as (validity of) implication
  - stuttering invariance allows for additional low-level steps
- Hiding of internal state components: exhibit system interface
  - represented in TLA by existential quantification over state variables
  - non-standard definition ensures stuttering invariance
  - standard proof rules remain sound: refinement mappings
- Composing and decomposing specifications
  - composition represented as conjunction of specifications
  - stuttering invariance allows for local component steps
  - decomposition derives components from system specification

Thank you!