Start reading Chapter 4 of Rosenlicht. Problems:

- 1 Let $\{s_n\}$ be a bounded sequence of real numbers. Prove that $\limsup |s_n| = 0$ if and only if $\{s_n\}$ converges to 0.
- 2 Suppose $\{z_n\}$, $\{w_n\}$ are two convergent sequences of complex numbers (the corresponding metric is d(z, w) = |z w|). Prove that if $z_n \to L$ and $w_n \to M$ then $z_n w_n \to LM$.

Hint: the fact that convergent sequences are bounded may be useful.

3 Let $||\cdot||$ be a norm on \mathbb{R}^n and d(v,w) := ||v-w|| the corresponding metric. Prove that if the sequences $\{v_n\}$, $\{w_n\}$ in \mathbb{R}^n converge (with respect to d) then their sum $\{v_n + w_n\}$ converges as well and that

$$\lim(v_n + w_n) = \lim v_n + \lim w_n.$$

4 Denote the set of all bounded sequences in \mathbb{R} by ℓ^{∞} . Then for any sequence $\{a_n\} \in \ell^{\infty}$

$$||\{a_n\}||_{\infty} := \sup\{a_n \mid n \in \mathbb{N}\}$$

is a well-defined nonnegative real number. Prove that the function $||\cdot||_{\infty}: \ell^{\infty} \to [0, \infty)$ is a norm. That is, prove that

- (1) $||\{a_n\}||_{\infty} = 0$ if and only if $\{a_n\}$ is the zero sequence.
- (2) $||\{ca_n\}||_{\infty} = |c| ||\{a_n\}||_{\infty}$ for all real numbers c and all sequences $\{a_n\} \in \ell^{\infty}$.
- (3) $||\{a_n\} + \{b_n\}||_{\infty} \le ||\{a_n\}||_{\infty} + ||\{b_n\}||_{\infty} \text{ for all sequences } \{a_n\}, \{b_n\} \in \ell^{\infty}.$
- **5** Let $\{s_n\}$, $\{t_n\}$ be two bounded sequences of real numbers.
- (a) Prove that their sum $\{s_n + t_n\}$ is also bounded and that

$$\limsup (s_n + t_n) \le \limsup s_n + \limsup t_n$$
.

- (b) Give an example of sequences $\{s_n\}$, $\{t_n\}$ with $\limsup (s_n + t_n) < \limsup s_n + \limsup t_n$.
- **6** Let (X, \mathcal{T}) be a topological space, $K_1, K_2 \subset X$ two compact subsets. Prove that their union $K_1 \cup K_2$ is also compact.
- 7 A topological space (X, \mathcal{T}) is Hausdorff if for any two points $x, y \in X$ with $x \neq y$ there are open sets U, V with $x \in U, y \in V$ and $V \cap U = \emptyset$. Prove that if the topology \mathcal{T} comes from/ is defined by a metric d then (X, \mathcal{T}) is Hausdorff.

Hint: open balls are open sets.

The following problem will not be graded.

8 Prove that a compact set in a *Hausdorff* topological space is closed. Give an example to show that the condition of being Hausdorff is necessary (hint: it was briefly discussed in class, but not in so many words).