

научная сессия
НИЯУ МИФИ-2015

АННОТАЦИИ ДОКЛАДОВ

Том 2

- НАУКА О ЖИЗНИ (ВЫСОКОТЕХНОЛОГИЧЕСКАЯ МЕДИЦИНА)
- НАНОСТРУКТУРНАЯ ЭЛЕКТРОНИКА
- ПЛАЗМЕННЫЕ, ЛАЗЕРНЫЕ ИССЛЕДОВАНИЯ И ТЕХНОЛОГИИ
- ПРИКЛАДНАЯ МАТЕМАТИКА И ТЕОРЕТИЧЕСКАЯ ФИЗИКА

Москва

НАУЧНАЯ СЕССИЯ НИЯУ МИФИ-2015

АННОТАЦИИ ДОКЛАДОВ

Tom 2

НАУКА О ЖИЗНИ (ВЫСОКОТЕХНОЛОГИЧЕСКАЯ МЕДИЦИНА)

НАНОСТРУКТУРНАЯ ЭЛЕКТРОНИКА

ПЛАЗМЕННЫЕ, ЛАЗЕРНЫЕ ИССЛЕДОВАНИЯ И ТЕХНОЛОГИИ

> ПРИКЛАДНАЯ МАТЕМАТИКА И ТЕОРЕТИЧЕСКАЯ ФИЗИКА

> > Москва

ПОСЕНИЦКИИ Е.А., ВЕСЕЛОВ С.Н., ВОЛК В.И.,	
КАЩЕЕВ В.А., ПОДЫМОВА Т.В.	
Оптимизация процесса кристаллизационного выделения	
целевых продуктов переработки	
облученного ядерного топлива (ОЯТ)	253
ГОЛЬДИЧ А.С.	
Плазмостатическая модель ловушки «пояс	
с проницаемой для магнитного поля оболочкой»	254
Численно-аналитическое моделирование	
адиабатических волноводных мод	
плавнонерегулярного многослойного	
интегрально-оптического волновода	254
латышев а.в., Рискина а.	257
Точное решение второй задачи Стокса о генерировании волн	
в разреженном ферми-газе колеблющейся поверхностью	255
КУРИЛОВ А.Д., ЛАТЫШЕВ А.В.	433
Теория ортогональности собственных функций	
характеристических уравнений как метод решения	
граничных задач для модельных кинетических уравнений	255
БОРОГ В.В., ИВАНОВ И.О., КРЯНЕВ А.В., ТИМАШЕВ С.Ф.	233
Применение метода фликкер-шумовой спектроскопии	
для идентификации скрытых сигналов в космических лучах	256
КРЯНЕВ А.В., БАЛАШОВ Р.Б., СЛИВА Д.Е.	
Математическая модель оптимального распределения ресурсов	
на основе нечетких множеств	
ЕФЕРИНА Е.Г., КУЛЯБОВ Д.С., КОРОЛЬКОВА А.В., ВЕЛИЕВА Т.Р.	
Применение квантово-полевых методов	
для исследования одношаговых процессов	257
КРЯНЕВ А.В., БЕЛЯКОВА Т.Л.	
К выбору оптимальных стратегий в матричных играх	257
КРЯНЕВ А.В., ПИНЕГИН А.А., КЛИМАНОВ С.Г., РЫЖОВ А.А.	
Выявление перепуток ТВС по распределению энерговыделения	
в активной зоне ядерного реактора	258
ЕГОРОВ А.А.	
Потери направляемых и вытекающих мод	
в нерегулярных стационарных и нестационарных	
оптических волноводах как нелинейных	
динамических диссипативных системах	258
КУЛЯБОВ Д.С.	
Парадокс сверхсветового движения в СТО	259
-	

Е.Г. ЕФЕРИНА, Д.С. КУЛЯБОВ, А.В. КОРОЛЬКОВА, Т.Р. ВЕЛИЕВА

Российский университет дружбы народов, Москва

ПРИМЕНЕНИЕ КВАНТОВО-ПОЛЕВЫХ МЕТОДОВ ДЛЯ ИССЛЕДОВАНИЯ ОДНОШАГОВЫХ ПРОЦЕССОВ

При построении стохастических моделей одношаговых процессов на основе основного кинетического уравнения проблематично выбрать метод его решения. Можно разложить в ряд Тейлора и получить решения из уравнения Фоккера-Планка.

Поскольку одношаговые процессы естественным образом записываются через операторы рождения и уничтожения, а через подобные операторы записываются соотношения квантовой теории поля. То есть, можно формально применить аппарат квантовой теории поля с его развитым формализмом для получения конкретных решений исследуемой стохастической модели. А именно, основное кинетическое уравнение можно формально представить в виде уравнения Шрёдингера. Конкретные решения получить методом диаграмм Фейнмана.

А.В. КРЯНЕВ, Т.Л. БЕЛЯКОВА

Национальный исследовательский ядерный университет «МИФИ»

К ВЫБОРУ ОПТИМАЛЬНЫХ СТРАТЕГИЙ В МАТРИЧНЫХ ИГРАХ

В настоящем докладе проведено сравнение различных схем выбора оптимальных стратегий в матричных играх с нулевой и ненулевой суммами. Введено новое понятие равновесного решения для антагонистической игры и дана связь равновесного решения с решением в чистых стратегиях. Введено новое понятие равновесного решения для игр с ненулевой суммой и дана связь этого типа равновесного решения с равновесным решением по Нэшу. Рассматривается класс кооперативных игр, для которых имеет смысл задача максимизации суммы выигрыша игроков. Проведены сравнения численных значений выигрышей для равновесных состояний в антагонистических играх и для игр с ненулевой суммой, а также для решений Нэша и для варианта максимизации суммы выигрыша.