IPS: Assignment 5

Due date: 10am, 07/12/23

Stephen Connor

Starter

These questions should help you to gain confidence with the basics.

Let $X_1, ..., X_{16}$ be an i.i.d. sample from a N(3, 1) distribution, and let $S = X_1 + X_2 + ... + X_{16}$. Express $\mathbb{P}(S < 40)$ in terms of the distribution function Φ of the standard normal distribution.

Answer

We know that $\mathbb{E}[S] = 16\mathbb{E}[X] = 48$, and Var(S) = 16Var(X) = 16 (because the X_i are independent, and hence uncorrelated).

Furthermore, we know that the sum of independent normal distributions has a normal distribution. Thus

$$S \sim N(48, 16)$$
.

[3]

We can normalize to obtain a standard normal random variable by subtracting the mean and dividing by the standard deviation. Thus

$$\mathbb{P}(S < 40) = \mathbb{P}\left(\frac{S - 48}{\sqrt{16}} < \frac{40 - 48}{\sqrt{16}}\right) = \Phi(-2).$$

[2]

S2. You perform 28 independent experiments measuring a random variable X which you know has mean 457 and variance 676. Without using the central limit theorem, give a lower bound on the probability that the average of your measurements is between 433 and 481.

Answer

First we note that

$$\mathbb{E}\left[\bar{X}_{28}\right] = \mathbb{E}\left[X\right] = 457$$

and

$$\operatorname{Var}\left(\bar{X}_{28}\right) = \frac{\operatorname{Var}\left(X\right)}{28} = \frac{676}{28}.$$

Also we rewrite

$$\mathbb{P}\left(433<\bar{X}_{28}<481\right)=\mathbb{P}\left(|\bar{X}_{28}-457|<24\right)=1-\mathbb{P}\left(|\bar{X}_{28}-\mathbb{E}\left[\bar{X}_{28}\right]|\geq24\right).$$

Chebychev's inequality tells us that

$$\mathbb{P}\left(|\bar{X}_{28} - \mathbb{E}\left[\bar{X}_{28}\right]| \geq 24\right) \leq \frac{\mathsf{Var}\left(\bar{X}_{28}\right)}{(24)^2} = \frac{169}{4032}.$$

Combining these two equations gives

$$\mathbb{P}\left(433 < \bar{X}_{28} < 481\right) \ge 1 - \frac{169}{4032} = \frac{3863}{4032} \approx 0.96.$$

S3. Let X_1, \ldots, X_n be an i.i.d. sample from a distribution with mean μ and variance σ^2 . Let \bar{X}_n denote the sample mean, and define

$$Z_n = \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}.$$

Check that $\mathbb{E}[Z_n] = 0$ and $\text{Var}(Z_n) = 1$.

Answer

We know that $\mathbb{E}\left[\bar{X}_n\right]=\mu$ and $\mathrm{Var}\left(\bar{X}_n\right)=\sigma^2/n$. By linearity of expectation we have

$$\mathbb{E}\left[Z_n\right] = \frac{\sqrt{n}\mathbb{E}\left[\bar{X}_n - \mu\right]}{\sigma} = 0.$$

For the variance, we know that for any random variable Y, and constants $a, b \in \mathbb{R}$, $\text{Var}(aY + b) = a^2 \text{Var}(Y)$. Thus

$${\sf Var}\,(Z_n)={\sf Var}\,ig(\sqrt{n}ar{X}_n/\sigma-\sqrt{n}\mu/\sigmaig)=(\sqrt{n}/\sigma)^2{\sf Var}\,ig(ar{X}_nig)=1$$
 .

S4. 🚹 Hand-in

Suppose the random variables X_1, X_2 and X_3 all have the same expectation μ . For what values of a and b is

$$M = -4(X_1 - 1) + 9(X_2 - 1) + a(X_3 - 1) + b$$

an unbiased estimator for μ ?

Answer

M is an unbiased estimator for μ if $\mathbb{E}[M] = \mu$ for any value of μ . [1] We find

$$\mathbb{E}[M] = \mathbb{E}[-4(X_1 - 1) + 9(X_2 - 1) + a(X_3 - 1) + b]$$

$$= -4(\mathbb{E}[X_1] - 1) + 9(\mathbb{E}[X_2] - 1) + a(\mathbb{E}[X_3] - 1) + b$$

$$= -4(\mu - 1) + 9(\mu - 1) + a(\mu - 1) + b$$

$$= (-4 + 9 + a)\mu + (4 - 9 - a + b).$$

[2]

Thus $\mathbb{E}\left[\mu\right]=\mu$ if and only if a=-4 and b=1. [2]

S5. From a dataset $x_1, ..., x_{10}$ it has been calculated that

$$\sum_{i=1}^{10} x_i = 491, \quad \sum_{i=1}^{10} (x_i - \bar{x}_{10})^2 = 41.$$

You model the dataset as a random sample from the normal distribution with mean μ and variance σ^2 .

- a) Assume that both μ and σ^2 are unknown. Determine a 95% confidence interval for the mean μ . You can use that $t_{9.0.025} \approx 2.26$.
- b) Now assume that it is known that the variance is $\sigma^2=5$. Give a 95% confidence interval for the mean μ in this case. You can use that $z_{0.025}\approx 1.96$.

Answer

a) Since the variance is unknown, we use the interval

$$\left[\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right]$$

We first calculate $\bar{x}_n = 491/10 = 49.1$ and

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x}_n)^2 = \frac{1}{10-1} 41 = \frac{41}{9}.$$

We're told that $t_{n-1,\alpha/2} = t_{9,0.025} = 2.26$ and

$$\left[\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right] \approx \left[49.1 - 2.26 \frac{\sqrt{41}}{3\sqrt{10}}, 49.1 + 2.26 \frac{\sqrt{41}}{3\sqrt{10}}\right]$$
$$\approx \left[47.57, 50.63\right].$$

b) All the conditions of Theorem 23.2 are satisfied so

$$\left[\bar{x}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right] \approx \left[49.1 - 1.96 \frac{\sqrt{5}}{\sqrt{10}}, 49.1 + 1.96 \frac{\sqrt{5}}{\sqrt{10}}\right]$$
$$\approx \left[47.71, 50.49\right].$$

S6. Lengths of baguettes are assumed to follow a N(μ , σ^2) distribution. Six baguettes were measured, giving the following lengths in cms: 66, 69, 62, 64, 67.

- a) Calculate unbiased estimates for μ and σ^2 .
- b) Calculate a 90% confidence interval for μ .

Answer

- a) An unbiased estimate for μ is $\hat{\mu}=\bar{x}=65cm$. An unbiased estimate for σ^2 is $\hat{\sigma^2}=s_n^2=8$.
- b) A 90% confidence interval is given by

$$\left[\bar{x}_n - t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}, \ \bar{x}_n + t_{n-1,\alpha/2} \frac{s_n}{\sqrt{n}}\right] = \left[65 - t_{5,0.05} \sqrt{8/6}, \ 65 + t_{5,0.05} \sqrt{8/6}\right]$$
$$= \left[65 - 2.02 \sqrt{8/6}, \ 65 + 2.02 \sqrt{8/6}\right]$$
$$= \left[62.67, 67.33\right].$$

Main course

These are important, and cover some of the most substantial parts of the course.

M1. 🚹 Hand-in

If X has expectation μ and standard deviation σ , the ratio $r=|\mu|/\sigma$ is called the *measurement signal-to-noise-ratio* of X. If we define $D=|(X-\mu)/\mu|$ as the *relative deviation* of X from its mean μ , show that, for $\alpha>0$,

$$\mathbb{P}\left(D < \alpha\right) \ge 1 - \frac{1}{r^2 \alpha^2}.$$

Answer

$$\mathbb{P}(D < \alpha) = \mathbb{P}(|(X - \mu)/\mu| < \alpha) = \mathbb{P}(|X - \mu| < \alpha r\sigma).$$

[2]

We now use Chebychev's inequality:

$$\mathbb{P}\left(|X - \mu| < k\sigma\right) \ge 1 - \frac{1}{k^2}$$

with $k = \alpha r$ [2], giving

$$\mathbb{P}\left(|X - \mu| < \alpha r \sigma\right) \ge 1 - \frac{1}{r^2 \alpha^2}.$$

[1]

M2. In the lecture I proved Chebychev's inequality for the case of a continuous random variable. Provide a similar proof for the case of a discrete random variable.

Answer

First we find a lower bound for the variance of X. Let's write $\mathbb{E}[X] = \mu$.

$$\begin{aligned} \operatorname{Var}(X) &= \mathbb{E}\left[(X-\mu)^2)\right] = \sum_{x \in X(\Omega)} (x-\mu)^2 p_X(x) \\ &\geq \sum_{\substack{x \in X(\Omega) \\ |x-\mu| \geq a}} (x-\mu)^2 p_X(x) \\ &\geq \sum_{\substack{x \in X(\Omega) \\ |x-\mu| \geq a}} a^2 p_X(x) = a^2 P(|X-\mu| \geq a). \end{aligned}$$

Then we divide both sides of the inequality by a^2 to get

$$\mathbb{P}\left(\left|X - \mathbb{E}\left[X\right]\right| \geq a\right) \leq \frac{1}{a^2} \mathsf{Var}\left(X\right).$$

M3. A Hand-in

Let $Y_1, Y_2, ...$ be an i.i.d. sequence of random variables, each with a Uniform(-2, 2) distribution. Define a new sequence of random variables $X_1, X_2, ...$ by

$$X_n = \frac{1}{n} \sum_{i=1}^n Y_i^2.$$

For what value of $a \in \mathbb{R}$ is it true that $\mathbb{P}\left(\lim_{n\to\infty}X_n=a\right)=1$?

Answer

The random variable X_n is just the sample mean of the random variables Y_1^2, \dots, Y_n^2 . These are i.i.d. and clearly have finite mean and variance (since Y_i^2 can only take values in the finite set [0,4]).

The (strong) law of large numbers says that, with probability one, X_n will converge to $\mathbb{E}[Y^2]$.

Finally, we calculate

$$\mathbb{E}[Y^2] = \int_{-2}^2 y^2 \frac{1}{4} dy = 4/3,$$

and so the required answer is a=4/3. [2]

M4. Let X be the number of 1s and Y be the number of 2s that occur in n rolls of a fair die. Use indicator random variables to compute Cov(X,Y) and $\rho(X,Y)$. Hint: this is just like the smarties example covered in lectures.

Answer

We introduce the indicator random variables

$$X_i = \begin{cases} 1 & \text{roll } i \text{ lands on 1} \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad Y_i = \begin{cases} 1 & \text{roll } i \text{ lands on 2} \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$X = \sum_{i=1}^n X_i \text{ and } Y = \sum_{i=1}^n Y_i.$$

We observe that $\mathbb{P}(X_i=1)=\mathbb{P}(Y_i=1)=1/6$ and $\mathbb{P}(X_iY_j=1)=1/36$ if $i\neq j$ and $\mathbb{P}(X_iY_i=1)=0$. Thus $\mathbb{E}[X_i]=\mathbb{E}[Y_i]=1/6$ and $\mathbb{E}[X_iY_j]=1/36$ if $i\neq j$ and $\mathbb{E}[X_iY_i]=0$. We calculate the covariances:

$$\operatorname{Cov}\left(X_{i},Y_{j}\right)=\mathbb{E}\left[X_{i}Y_{j}\right]-\mathbb{E}\left[X_{i}\right]\mathbb{E}\left[Y_{j}\right]=\begin{cases} \frac{1}{36}-\frac{1}{6}\cdot\frac{1}{6}=0 & \text{if } i\neq j\\ -\frac{1}{6}\cdot\frac{1}{6}=\frac{-1}{36} & \text{if } i=j. \end{cases}$$

Now, as we've seen with the smarties example in lectures,

$$Cov(X, Y) = Cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} Y_{j}\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} Cov(X_{i}, Y_{j})$$

$$= \sum_{i=1}^{n} Cov(X_{i}, Y_{i}) = \sum_{i=1}^{n} \frac{-1}{36} = -\frac{n}{36}.$$

To calculate the variance of X we observe that for independent random variables X_1 and X_2 the covariance vanishes and hence we have $\text{Var}(X_1+X_2)=\text{Var}(X_1)+\text{Var}(X_2)$. This then extends to the sum of an arbitrary number of independent random variables and hence

$$Var(X) = Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} \frac{5}{36} = \frac{5n}{36}.$$

By the same calculation Var(Y) has the same value. (We could also have used the fact that X and Y each have a Bin(n, 1/6) distribution.) Thus

$$\rho(X,Y) = \frac{{\rm Cov}\,(X,Y)}{\sqrt{{\rm Var}\,(X)\,{\rm Var}\,(Y)}} = \frac{-n/36}{5n/36} = -\frac{1}{5}.$$

It makes sense that the correlation coefficient should be negative, because if in n dice rolls I get an unusually high number of 1s, then the chance of getting many 2s is smaller (because all those 1s are definitely not 2s).

M5. Assume that in Example 17.1 from the lectures (measuring a ball rolling down an inclined plane), we choose to stop the ball always after one time unit, so that

$$X_i = \frac{1}{2}a(1 + U_i)^2 + V_i,$$

where the independent errors are normally distributed with $U_i \sim N(0, \sigma_U^2)$, $V_i \sim N(0, \sigma_V^2)$. Assume the variances of the errors are known. Calculate the bias of the estimator $A = 2\bar{X}_n$ for the acceleration parameter a. Propose an unbiased estimator for a.

Answer

For the bias we calculate

$$\mathbb{E}[A] = \mathbb{E}[2\bar{X}_n] = 2\mathbb{E}[\bar{X}_n] = 2\mathbb{E}[X_i].$$

So we need the expectation of X_i :

$$\begin{split} \mathbb{E}\left[X_i\right] &= \mathbb{E}\left[\frac{1}{2}a(1+U_i)^2 + V_i\right] = \frac{1}{2}a\mathbb{E}\left[(1+U_i)^2\right] + \mathbb{E}\left[V_i\right] \\ &= \frac{1}{2}a\left(\operatorname{Var}\left(1+U_i\right) + \mathbb{E}\left[1+U_i\right]^2\right) = \frac{1}{2}a\left(\operatorname{Var}\left(U_i\right) + 1^2\right) \\ &= \frac{1}{2}a\left(\sigma_U^2 + 1\right). \end{split}$$

This gives

$$\mathbb{E}[A] = 2\mathbb{E}[X_i] = a(\sigma_U^2 + 1) \neq a.$$

So this estimator is not unbiased. Taking the average is going to consistently overestimate the value of a.

Luckily we can fix this by rescaling the estimator. The estimator

$$\tilde{A} = \frac{1}{\sigma_U^2 + 1} A = \frac{2}{\sigma_U^2 + 1} \bar{X}_n$$

is unbiased.

M6. Consider the following dataset of lifetimes of ball bearings in hours:

Suppose that we are interested in estimating the minimum lifetime of this type of ball bearing. The dataset is modelled as a realization of a random sample X_1, \ldots, X_n . Each random variable X_i is represented as $X_i = \delta + Y_i$, where Y_i has an $\text{Exp}(\lambda)$ distribution and $\delta > 0$ is an unknown parameter

that is supposed to model the minimum lifetime. The objective is to construct an unbiased estimator for δ . It is known that

$$\mathbb{E}[M_n] = \delta + \frac{1}{n\lambda}$$
 and $\mathbb{E}[\bar{X}_n] = \delta + \frac{1}{\lambda}$,

where $M_n = \min(X_1, \dots, X_n)$ and $\bar{X}_n = (X_1 + \dots + X_n)/n$.

a) Check whether

$$T = \frac{n}{n-1} \left(\bar{X}_n - M_n \right)$$

is an unbiased estimator for $1/\lambda$.

- b) Construct an unbiased estimator D for δ .
- c) Use the dataset to compute an estimate for the minimum lifetime δ .

Answer

a) By linearity of expectation

$$\mathbb{E}[T] = \frac{n}{n-1} \left(\mathbb{E}\left[\bar{X}_n\right] - \mathbb{E}\left[M_n\right] \right)$$
$$= \frac{n}{n-1} \left(\left(\delta + \frac{1}{\lambda}\right) - \left(\delta + \frac{1}{n\lambda}\right) \right)$$
$$= \frac{n}{n-1} \frac{n-1}{n\lambda} = \frac{1}{\lambda}.$$

This shows that T is an unbiased estimator for $1/\lambda$.

b) We will look for a linear combination of \bar{X}_n and M_n of which the expectation is δ . From the expressions for $\mathbb{E}\left[\bar{X}_n\right]$ and $\mathbb{E}\left[M_n\right]$ we see that we can eliminate λ by subtracting $\mathbb{E}\left[\bar{X}_n\right]$ from $n\mathbb{E}\left[M_n\right]$. Therefore, first consider $nM_n-\bar{X}_n$, which has expectation

$$\mathbb{E}\left[nM_n - \bar{X}_n\right] = n\mathbb{E}\left[M_n\right] - \mathbb{E}\left[\bar{X}_n\right] = n\left(\delta + \frac{1}{n\lambda}\right) - \left(\delta + \frac{1}{\lambda}\right) = (n-1)\delta.$$

This means that

$$D = \frac{nM_n - \bar{X}_n}{n - 1}$$

has expectation δ : $\mathbb{E}\left[D\right] = \mathbb{E}\left[nM_n - \bar{X}_n\right]/(n-1) = \delta$, so that D is an unbiased estimator for δ .

c) When we evaluate \bar{X}_n and M_n on the dataset with n=20 values, we find

$$\bar{x}_n = 8563.5, \quad m_n = 2398.$$

Substituting these values into the estimator determined in part b) gives the following estimate for δ :

$$\frac{nm_n - \bar{x}_n}{n-1} = \frac{20 \cdot 2398 - 8563.5}{19} = 2073.5.$$

M7. Let X_1,\ldots,X_n be an i.i.d. sample from the normal distribution with mean μ and variance σ^2 .

a) Give a $100(1-\alpha)\%$ confidence interval estimator for μ in the case where σ^2 is known. Hence or otherwise, find a 95% confidence interval for μ in the case where $\sigma^2=9$ and a random sample of size 16 has been taken with values x_1,\ldots,x_{16} and it has been found that

$$\sum_{i=1}^{16} x_i = 50, \quad \sum_{i=1}^{16} (x_i - \bar{x}_{16})^2 = 115.$$

7

b) It is proposed that, from a second independent random sample of size 16 a 99% confidence interval for μ be constructed and that, from a third independent random sample of size 32, a 98% confidence interval for μ be constructed. State the probability that *neither* of these two confidence intervals will contain μ .

Answer

a) The confidence interval estimator is

$$\left[\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right].$$

With $\sigma=3$, n=16, $\bar{x}_n=50/16$ and $z_{0.025}=1.96$ substituted into the above expression we get the confidence interval [1.655, 4.595].

b) The event that the second sample leads to a confidence interval that does not contain μ and the event that the third sample leads to a confidence interval that does not contain μ are independent because the samples are independent. Thus the probability that both samples lead to a confidence interval that does not contain μ is equal to the product of the individual probabilities, $0.01 \cdot 0.02 = 0.0002$.

M8. Recall that we say that T_m has a t-distribution with m>1 degrees of freedom, and write $T_m\sim t(m)$, if it has density function given by

$$f(x) = k_m \left(1 + \frac{x^2}{m} \right)^{-\frac{m+1}{2}}, \quad x \in \mathbb{R},$$

where k_m is a constant that ensures that the density integrates to 1. If $T_m \sim t(m)$, show that $\mathbb{E}[T_m] = 0$.

Hint: you shouldn't need to explicitly calculate any integrals here!

Answer

We note that f(x) is an even function: f(-x) = f(x). Thus

$$\mathbb{E}\left[T_{m}\right] = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{0} x f(x) dx + \int_{0}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} (-x) f(-x) dx + \int_{0}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} (-x) f(x) dx + \int_{0}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} ((-x) + x) f(x) dx$$

$$= 0.$$

Dessert

Still hungry for more? Try these if you want to push yourself further.

D1. Let M_n be the maximum of n independent Uniform(0,1) random variables. Show that for any

fixed $\varepsilon > 0$,

$$\lim_{n\to\infty} \mathbb{P}\left(|M_n-1|>\varepsilon\right)=0.$$

Answer

Let X_1, \ldots, X_n denote the n independent Uniform(0,1) random variables. M_n can only take values in the set (0,1), so the event $\{|M_n-1|>\varepsilon\}=\{M_n<1-\varepsilon\}$. Now note that for any $x\in(0,1)$, $\{M_n< x\}$ occurs if and only if $\{X_i< x\}$ for all of the n uniform random variables. Since the X_i are independent, we get

$$\mathbb{P}(M_n < 1 - \varepsilon) = \mathbb{P}(X < 1 - \varepsilon)^n = (1 - \varepsilon)^n,$$

where in the last line we have used the distribution function for a Uniform(0,1) distribution to calculate $\mathbb{P}(X < 1 - \varepsilon)$. This tends to 0 as $n \to \infty$, as required.

- **D2.** (A more general law of large numbers, see Exercise 13.12 in the textbook). Let $X_1, X_2, ...$ be a sequence of independent random variables with $\mathbb{E}\left[X_i\right] = \mu_i$ and $\text{Var}\left(X_i\right) = \sigma_i^2$ for i=1,2,... Let $\bar{X}_n = (X_1 + \cdots + X_n)/n$. Suppose that there exists an $M \in \mathbb{R}$ such that $0 < \sigma_i^2 \le M$ for all i, and let a be an arbitrary positive number.
 - a) Apply Chebychev's inequality to show that

$$\mathbb{P}\left(\left|\bar{X}_n - \frac{1}{n}\sum_{i=1}^n \mu_i\right| > a\right) \leq \frac{\mathsf{Var}\left(X_1\right) + \dots + \mathsf{Var}\left(X_n\right)}{n^2 a^2}.$$

b) Conclude from a) that

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\bar{X}_n - \frac{1}{n}\sum_{i=1}^n \mu_i\right| > a\right) = 0.$$

c) Check that the weak law of large numbers is a special case of this result.

Answer

a) First we calculate the expectation and variance of \bar{X}_n :

$$\begin{split} \mathbb{E}\left[\bar{X}_n\right] &= \mathbb{E}\left[(X_1+\cdots X_n)/n\right] \\ &= (\mathbb{E}\left[X_1\right]+\cdots+\mathbb{E}\left[X_n\right])/n \text{ by linearity of expectation} \\ &= (\mu_1+\cdots+\mu_n)/n = \frac{1}{n}\sum_{i=1}^n \mu_i, \\ \operatorname{Var}\left(\bar{X}_n\right) &= \operatorname{Var}\left((X_1+\cdots+X_n)/n\right) \\ &= \operatorname{Var}\left(X_1/n\right)+\cdots+\operatorname{Var}\left(X_n/n\right) \text{ using independence of the } X_i \\ &= \frac{\operatorname{Var}\left(X_1\right)+\cdots+\operatorname{Var}\left(X_n\right)}{n^2}. \end{split}$$

$$\begin{split} \mathbb{P}\left(\left|\bar{X}_{n}-\frac{1}{n}\sum_{i=1}^{n}\mu_{i}\right|>a\right) &= \mathbb{P}\left(\left|\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right]\right|>a\right) \\ &\leq \mathbb{P}\left(\left|\bar{X}_{n}-\mathbb{E}\left[\bar{X}_{n}\right]\right|\geq a\right) \\ &\leq \frac{1}{a^{2}}\mathsf{Var}\left(\bar{X}_{n}\right) \text{ by Chebychev} \\ &= \frac{\mathsf{Var}\left(X_{1}\right)+\dots+\mathsf{Var}\left(X_{n}\right)}{n^{2}a^{2}}. \end{split}$$

b) On the right-hand side of the inequality from part a) we can use that ${\rm Var}\,(X_i)=\sigma_i^2\leq M$ for all i and hence

$$\frac{\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)}{n^{2}a^{2}}\leq\frac{nM}{n^{2}a^{2}}=\frac{M}{na^{2}}.$$

We now take the limit $n \to \infty$ on both sides of the inequality

$$\mathbb{P}\left(\left|\bar{X}_n - \frac{1}{n}\sum_{i=1}^n \mu_i\right| > a\right) \le \frac{M}{na^2}$$

and use that $\lim_{n \to \infty} M/(na^2) = 0$ to obtain

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\bar{X}_n - \frac{1}{n}\sum_{i=1}^n \mu_i\right| > a\right) \le 0.$$

But we also know that probabilities are always non-negative, and the limit of a sequence of non-negative numbers is also non-negative, so the limit must be zero.

c) The law of large numbers has the same assumptions as the statement in this question, with the additional requirement that all the X_i are identically distributed so that in particular they all have the same expectation $\mu_i = \mu$. Thus the average of all the μ_i is also μ and the statement from part b) becomes

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\bar{X}_n - \mu\right| > a\right) = 0$$

for any a > 0. This is the statement of the weak law of large numbers.

Challenge question

Suppose that X_1, \ldots, X_n are muutually independent random variables, each distributed as $\operatorname{Exp}(\lambda)$. (That is, all events of the kind $\{X_1 \leq x_1\}, \ldots, \{X_n \leq x_n\}$ are mutually independent.) Let $Y_n = \max\{X_1, \ldots, X_n\}$, and $Y_n = \min\{X_1, \ldots, X_n\}$.

- a) Show that $Y_n \sim \text{Exp}(\lambda n)$.
- b) What is the distribution function of V_n ?
- c) Show that, for all s > 0,

$$\lim_{n\to\infty} \mathbb{P}\left(V_n - (\log n)/\lambda \le s\right) = \exp(-e^{-\lambda s}).$$