PUNE INSTITUTE OF COMPUTER TECHNOLOGY

DHANKAWADI, PUNE -43

SCHEDULE OF LAB ASSIGNMENTS

ACADEMIC YEAR: 2019-2020

Department: Computer Engineering. Date: 03/06/2019

Class: B.E Semester: VII

Subject: Laboratory Practice I (410246) Examination scheme:

TW-50, PR-50

410241:: High Performance Computing Select any four assignments individually and any one mini-project with group of 2-3 students. **Problem Statement** Sr.No. Assign Last date No. for performa nce HPC1 a) Implement Parallel Reduction using Min, Max, Sum and 29/06/19 Average operations. b) Write a CUDA program that, given an N-element vector, find-• The maximum element in the vector • The minimum element in the vector • The arithmetic mean of the vector • The standard deviation of the values in the vector Test for input N and generate a randomized vector V of length N (N should be large). The program should generate output as the two computed maximum values as well as the time taken to find

		each value.	
2	HPC2		27/07/19
		Vector and Matrix Operations-	
		Design parallel algorithm to	
		1. Add two large vectors	
		2. Multiply Vector and Matrix	
		3. Multiply two N \times N arrays using n^2 processors	
3	HPC3		24/8/19
		Parallel Sorting Algorithms-	
		For Bubble Sort and Merger Sort, based on existing sequential	
		algorithms, design and implement parallel algorithm utilizing all	
		resources available.	
4	HPC4/		28/09/19
	HPC5	Parallel Search Algorithm-	
		Design and implement parallel algorithm utilizing all resources	
		available. for	
		☐ Binary Search for Sorted Array	
		☐ Depth-First Search (tree or an undirected graph) OR	
		☐ Breadth-First Search (tree or an undirected graph) OR	
		☐ Best-First Search that (traversal of graph to reach a target in	
		the shortest possible path)	
5			
		Parallel Implementation of the K Nearest Neighbors Classifier	
		HPC Sample Mini Projects	
6		Compression Module (Image /Video)	05/10/19

		Large amount of bandwidth is required for transmission or	
		storage of images. This has driven the research area of image	
		compression to develop parallel algorithms that compress images.	
		OR	
		For video: RGB To YUV Transform concurrently on many core	
		GPU	
7			
		Generic Compression	
		Run length encoding concurrently on many core GPU	
8		Encoding	-
		Huffman encoding concurrently on many core GPU	
		Intelligence & Robotics ssignments individually and any one mini-project with group of	
2-3 stud	ents.		
1	AIR1/		15/06/19
1	AIR1/ AIR2/	Implement Tic-Tac-Toe using A* algorithm	15/06/19
1		Implement Tic-Tac-Toe using A* algorithm	15/06/19
2	AIR2/	Implement Tic-Tac-Toe using A* algorithm	15/06/19
	AIR2/ AIR3/	Implement Tic-Tac-Toe using A* algorithm Implement 3 missionaries and 3 cannibals problem depicting	15/06/19
	AIR2/ AIR3/		15/06/19
	AIR2/ AIR3/	Implement 3 missionaries and 3 cannibals problem depicting	15/06/19
	AIR2/ AIR3/	Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm.	15/06/19
2	AIR2/ AIR3/	Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm. Solve 8-puzzle problem using A* algorithm. Assume any initial	15/06/19
3	AIR2/ AIR3/	Implement 3 missionaries and 3 cannibals problem depicting appropriate graph. Use A* algorithm. Solve 8-puzzle problem using A* algorithm. Assume any initial configuration and define goal configuration clearly.	15/06/19

		B W	В	W	В	W				
		Final Con	figurati	on						
		В	В		В	W	W	W		i i
		Constraint cost 1 and				left or right 1	or 2 position	s with		
	AIR4/								13/7/19	
4	AIR5/		-			_	robot; use th			
	AIR6/ AIR10	-	-		•	•	y the robot. F ver the other			
	THICIO						sis with all the			
		revealed.								
5			ıl Diagn	osis of	10 dise	ving Expert S ases based on ed on charact	adequate syn	mptoms		
		lucitiny	ying one	15 01 111	iuia vasi	ed on charact	Cristics			
6		Implemen	_	_	runing g	raphically wi	th proper exa	umple		
10		Use Heuri		arch Teo	chnique	s to Impleme	nt Hill-Climb	oing		
7	AIR7/					,		_	10/08/19	=
	AIR9	Develop e	elementa	ary cha	tbot for	suggesting ir	ivestment as	per the		

		customers need.	
9		Implement goal stack planning for the following configurations from the blocks world, B A C D A Goal	
11	AIR11		07/09/19
	/AIR1	Use Heuristic Search Techniques to Implement Best first search	
	2/AIR	(Best-Solution but not always optimal) and A* algorithm (Always	
	13	gives optimal solution).	
12		Constraint Satisfaction Problem: Implement crypt-arithmetic problem or n-queens or graph coloring problem (Branch and Bound and Backtracking)	
13		Implement syntax analysis for the assertive English statements. The stages to be executed are, Sentence segmentation Word tokenization Part-of-speech/morpho syntactic tagging Syntactic parsing (Use any of the parser like Stanford)	

AIR N	Iini Projec	·t	05/10/19
	3:: Data Ai		
11021			
Select	any four a	ssignments individually and any one mini-project with group of	
2-3 stu	idents.		
	DA1		08/06/19
1		Download the Iris flower dataset or any other dataset into a	
		DataFrame. (eg https://archive.ics.uci.edu/ml/datasets/Iris) Use	
		Python/R and Perform following –	
		☐ How many features are there and what are their types (e.g.,	
		numeric, nominal)?	
		☐ Compute and display summary statistics for each feature	
		available in the dataset. (eg. minimum value, maximum value,	
		mean, range, standard deviation, variance and percentiles	
		☐ Data Visualization-Create a histogram for each feature in the	
		dataset to illustrate the feature distributions. Plot each histogram.	
		☐ Create a boxplot for each feature in the dataset. All of the	
		boxplots should be combined into a single plot. Compare	
		distributions and identify outliers.	
	DA2		06/07/19
2		Download Pima Indians Diabetes dataset. Use Naive Bayes"	
		Algorithm for classification	
		☐ Load the data from CSV file and split it into training and test	
		datasets.	
		□ summarize the properties in the training dataset so that we can	
		calculate probabilities and make predictions.	
		☐ Classify samples from a test dataset and a summarized training	
		dataset.	

	DA3/	Write a Hadoop program that counts the number of occurrences	03/08/19
3	DA5	of each word in a text file.	
5			-
		Use Movies Dataset. Write the map and reduce methods to	
		determine the average ratings of movies. The input consists of a	
		series of lines, each containing a movie number, user number,	
		rating, and a timestamp: The map should emit movie number and	
		list of rating, and reduce should return for each movie number a	
		list of average rating.	
4			31/08/19
		Write a program that interacts with the weather database. Find the	
		day and the station with the maximum snowfall in 2013	
6	DA4/		
	DA6/	Trip History Analysis: Use trip history dataset that is from a bike	
	DA7/	sharing service in the United States. The data is provided quarter-	
	DA8/	wise from 2010 (Q4) onwards. Each file has 7 columns. Predict	
	DA9	the class of user. Sample Test data set available here	
		https://www.capitalbikeshare.com/trip-history-data	
7			-
		Bigmart Sales Analysis: For data comprising of transaction	
		records of a sales store. The data has 8523 rows of 12 variables.	
		Predict the sales of a store. Sample Test data set available here	
		https://datahack.analyticsvidhya.com/contest/practice-problem-	
		big-mart-sales-iii/	
8			1
		Twitter Data Analysis: Use Twitter data for sentiment analysis.	
		The dataset is 3MB in size and has 31,962 tweets. Identify the	
		tweets which are hate tweets and which are not. Sample Test	
		data set available here	
L	1	I	

	https://datahack.analyticsvidhya.com/contest	/practice-problem-
	twitter-sentiment-analysis/	
9		
	Time Series Analysis: Use time series and fo	recast traffic on a
	mode of transportation. Sample Test data set	available here
	https://datahack.analyticsvidhya.com/contest	/practice-problem-
	time-series-2/	
	Data Analytics Mini Project	05/10/19

Subject Coordinator (Hemlata P. Channe)

Head, Dept. of Computer Engg. (Dr. R. B. Ingle)