If p is a seminorm on \mathscr{X} , \mathscr{M} is a linear manifold in \mathscr{X} , and $\bar{p}:\mathscr{X}/\mathscr{M}\mapsto [0,\infty]$ is defined by $\bar{p}(x+\mathscr{M})=\inf\{p(x+y):y\in\mathscr{M}\}$, then \bar{p} is a seminorm on \mathscr{X}/\mathscr{M}

Triangle Inequality: Must show that $\bar{p}(x_1+x_2+M) \leq \bar{p}(x_1+\mathcal{M}) + \bar{p}(x_2+\mathcal{M})$ inf $\{p(x_1+x_2+y): y \in \mathcal{M}\} \leq \inf\{p(x_1+y): y \in \mathcal{M}\} + \inf\{p(x_2+y): y \in \mathcal{M}\}.$

Apply the triangle inequality somehow inside the infimums to expand into a larger expression that is still "less than or equal to" all the way through???

Absolute homogeneity: Must show that $\bar{p}(\alpha x + \mathcal{M}) = |\alpha|\bar{p}(x + \mathcal{M})$ inf $\{p(\alpha x + y) : y \in \mathcal{M}\} = \inf\{p(\alpha x + \alpha y) : y \in \mathcal{M}\} = \inf\{|\alpha|p(x + y) : y \in \mathcal{M}\}$

 $\inf\{p(\alpha x + y) : y \in \mathcal{M}\} = \inf\{p(\alpha x + \alpha y) : y \in \mathcal{M}\} = \inf\{|\alpha|p(x + y) : y \in \mathcal{M}\} = |\alpha|\inf\{p(x + y) : y \in \mathcal{M}\}$

The first equality is justified since both y and αy are in \mathcal{M} , and the second is since p is itself a seminorm.

2 Show that if $\mathscr{M} \leq \mathscr{X}$ and \mathscr{M} is topologically complimented in \mathscr{X} , then \mathscr{M}^{\perp} is topologically complimented in \mathscr{X}^* and that its complement is weak-star and linearly homeomorphic to $\mathscr{X}^*/\mathscr{M}^{\perp}$