

Convolution Neural Networks

with

Daniel L. Silver, Ph.D.

Andy McIntyre, Ph.D.

June 24, 2022

[Slides based on originals by Yann LeCun]

Convolution Neural Networks

- Fundamentally CNNs take advantage of knowledge that we have about the problem's input space
- We know that pixels in an image that are adjacent to each other are related similar color and brightness
- We can use this background knowledge as a source of inductive bias to help develop better NN models

Receptive Fields

- The **receptive field** of an individual sensory neuron is the particular region of the sensory space (e.g. the retina) in which a stimulus will trigger the firing of that neuron.
 - It is a feature detector (image line orientation, sound frequency)
- How do we design "proper" receptive fields for the input neurons?
- Consider a task with image inputs
 - Receptive fields should provide expressive features from the raw input
 - How would you design the receptive fields for this problem?

Solution 1

A fully connected layer and network:

- Example:
 - 100x100 images
 - 1000 units in 1st hidden layer
- Problems:
 - 10^7 edges!
 - Local spatial correlations lost!
 - Variable sized inputs.

Solution 2

A locally connected layer:

- Example:
 - 100x100 images
 - 1000 units in the input
 - Filter size: 10x10
- Local correlations preserved!
- Problems:
 - 10^5 edges
 - This parameterization is good when input image is registered (e.g., face recognition).
 - Variable sized inputs, again.

Variation of Objects In Images

- Fixed objects can vary in terms of:
 - □ Translation (location)
 - Rotation
 - Scale
- Handwritten digits can vary due to nuances of pen stroke

Better Solution - Convolution

A solution:

- ☐ **Filters** to capture different patterns in the input space.
 - Share parameters across different locations or rotations
 - Convolutions with learned filters
- ☐ Filters will be **learned** during training.
- ☐ The issue of variable-sized inputs will be resolved with a **pooling** layer.

So what is a convolution?

Convolution Operator

- Convolution in two dimension:
 - □ Takes two functions and produces another function
 - □ 2D: Take one matrix and slide it over the other matrix
 - \square Example: Sharpen kernel: 0 1 0

Try other kernels: http://setosa.io/ev/image-kernels/

Convolution Operator

Convolution Operator

- Convolution in two dimension:
 - ☐ The same idea: flip one matrix and slide it on the other matrix

Convolutional Layer

- The convolution of the input (vector/matrix) with weights (vector/matrix) results in a response vector/matrix.
- We can have multiple (weight-based) filters in each convolutional layer, each producing an output feature map
- If it is an intermediate layer, it can have multiple inputs

Pooling Layer

- How to handle variable sized inputs?
 - □ A layer which reduces inputs of different size, to a fixed size.
 - □ Pooling (also called subsampling)

Slide Credit: Marc'Aurelio Ranzato

Pooling Layer

- How to handle variable sized inputs?
 - □ A layer which reduces inputs of different size, to a fixed size.
 - □ Pooling (also called subsampling)
 - Different variations
 - Max pooling

$$h_i[n] = \max_{i \in N(n)} \tilde{h}[i]$$

Average pooling

$$h_i[n] = \frac{1}{n} \sum_{i \in N(n)} \tilde{h}[i]$$

L2-pooling

$$h_i[n] = \frac{1}{n} \sqrt{\sum_{i \in N(n)} \tilde{h}^2[i]}$$

etc

One stage structure:

Whole system:

an example Netli

Anetample System:

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Advances in CNNs

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

GoogLeNet

[Source: Fei-Fei Li, Ranjay Krisna, Danfei Xu / Stanford]

[Source: Fei-Fei Li, Ranjay Krisna, Danfei Xu / Stanford]

Practical Tips

- Before large scale experiments, test on a small subset of the data and check the error should go to zero.
 - Overfitting on small training
- Visualize features (feature maps need to be uncorrelated) and have high variance
- Bad training: many hidden units ignore the input and/or exhibit strong correlations.

Figure Credit: Marc'Aurelio Ranzato

Dropout typically useful

Figure 1: Dropout Neural Net Model. **Left**: A standard neural net with 2 hidden layers. **Right**: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

TUTORIAL 4

Develop and train a CNN network using Keras and Tensorflow (keras_mnist_cnn_val.ipynb)

References

- Demo: https://www.cs.cmu.edu/~aharley/vis/conv/
- Further Reading:
 - https://ujjwalkarn.me/2016/08/11/intuitive-explanationconvnets/
 - https://adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks-Part-2/