

Funções Lógicas e Portas Lógicas

- Nesta apresentação será fornecida uma introdução ao sistema matemático de análise de circuitos lógicos, conhecido como Álgebra de Boole
- Serão vistos os blocos básicos e suas equivalências

Histórico

- Em meados do século XIX o matemático inglês George Boole desenvolveu um sistema matemático de análise lógica
- Em meados do século XX, o americano Claude Elwood
 Shannon sugeriu que a Álgebra Booleana poderia ser usada para análise e projeto de circuitos de comutação

George Boole (1815-1864)

Claude Elwood Shannon (1916-2001)

Histórico

- Nos primórdios da eletrônica, todos os problemas eram solucionados por meio de sistemas analógicos
- Com o avanço da tecnologia, os problemas passaram a ser solucionados pela eletrônica digital
- □ Na eletrônica digital, os sistemas (computadores, processadores de dados, sistemas de controle, codificadores, decodificadores, etc) empregam um pequeno grupo de circuitos lógicos básicos, que são conhecidos como portas e, ou, não e flip-flop
- Com a utilização adequadas dessas portas é possível implementar todas as expressões geradas pela álgebra de Boole

Álgebra Booleana

- □ Na álgebra de Boole, há somente dois estados (valores ou símbolos) permitidos
 - Estado 0 (zero)
 - Estado 1 (um)
- Em geral
 - O estado zero representa não, falso, aparelho desligado, ausência de tensão, chave elétrica desligada, etc
 - O estado um representa sim, verdadeiro, aparelho ligado, presença de tensão, chave ligada, etc

Álgebra Booleana

- Assim, na álgebra booleana, se representarmos por 0 uma situação, a situação contrária é representada por 1
- Portanto, em qualquer bloco (porta ou função) lógico somente esses dois estados (0 ou 1) são permitidos em suas entradas e saídas
- Uma variável booleana também só assume um dos dois estados permitidos (0 ou 1)

Álgebra Booleana

- Nesta apresentação trataremos dos seguintes blocos lógicos
 - E (AND)
 - OU (OR)
 - NÃO (NOT)
 - NÃO E (NAND)
 - NÃO OU (NOR)
 - OU EXCLUSIVO (XOR)
- Após, veremos a correspondência entre expressões, circuitos e tabelas verdade
- Por último, veremos a equivalência entre blocos lógicos

- Executa a multiplicação (conjunção) booleana de duas ou mais variáveis binárias
- Por exemplo, assuma a convenção no circuito
 - Chave aberta = 0; Chave fechada = 1
 - Lâmpada apagada = 0; Lâmpada acesa = 1

Situações possíveis:

- □ Se a chave A está aberta (A=0) e a chave B aberta (B=0), não haverá circulação de energia no circuito, logo a lâmpada fica apagada (S=0)
- □ Se a chave A está fechada (A=1) e a chave B aberta (B=0), não haverá circulação de energia no circuito, logo a lâmpada fica apagada (S=0)
- □ Se a chave A está aberta (A=0) e a chave B fechada (B=1), não haverá circulação de energia no circuito, logo a lâmpada fica apagada (S=0)
- □ Se a chave A está fechada (A=1) e a chave B fechada (B=1), haverá circulação de energia no circuito e a lâmpada fica acesa (S=1)
- Observando todas as quatro situações possíveis (interpretações), é possível concluir que a lâmpada fica acesa somente quando as chaves A e B estiverem simultaneamente fechadas (A=1 e B=1)

- Para representar a expressão
 - S = A e B
- Adotaremos a representação
 - S = A.B, onde se lê S = A e B
- Porém, existem notações alternativas
 - S = A & B
 - S = A, B
 - \blacksquare S = A \land B

Tabela Verdade

- □ A tabela verdade é um mapa onde são colocadas todas as possíveis interpretações (situações), com seus respectivos resultados para uma expressão booleana qualquer
- Como visto no exemplo anterior, para 2 variáveis booleanas (A e B), há 4 interpretações possíveis
- Em geral, para N variáveis booleanas de entrada, há 2^N interpretações possíveis

Tabela Verdade da Função E (AND)

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

- □ A porta E é um circuito que executa a função E
- A porta E executa a tabela verdade da função E
 - Portanto, a saída será 1 somente se ambas as entradas forem iguais a 1; nos demais casos, a saída será 0
- Representação

Α	В	S=A.B
0	0	0
0	1	0
1	0	0
1	1	1

- É possível estender o conceito de uma porta E para um número qualquer de variáveis de entrada
- Nesse caso, temos uma porta E com N entradas e somente uma saída
- A saída será 1 se e somente se as N entradas forem iguais a 1; nos demais casos, a saída será 0

□ Por exemplo, S=A.B.C.D

A	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

- Executa a soma (disjunção) booleana de duas ou mais variáveis binárias
- Por exemplo, assuma a convenção no circuito
 - Chave aberta = 0; Chave fechada = 1
 - Lâmpada apagada = 0; Lâmpada acesa = 1

- □ Se a chave A está aberta (A=0) e a chave B aberta (B=0), não haverá circulação de energia no circuito, logo a lâmpada fica apagada (S=0)
- □ Se a chave A está fechada (A=1) e a chave B aberta (B=0), haverá circulação de energia no circuito e a lâmpada fica acesa (S=1)
- □ Se a chave A está aberta (A=0) e a chave B fechada (B=1), haverá circulação de energia no circuito e a lâmpada fica acesa (S=1)
- Se a chave A está fechada (A=1) e a chave B fechada (B=1), haverá circulação de energia no circuito e a lâmpada fica acesa (S=1)
- Observando todas as quatro situações possíveis, é possível concluir que a lâmpada fica acesa somente quando a chave A ou a chave B ou ambas estiverem fechadas

- Para representar a expressão
 - S = A ou B
- Adotaremos a representação
 - S = A+B, onde se lê S = A ou B
- Porém, existem notações alternativas
 - S = A | B
 - S = A; B
 - \blacksquare S = A \vee B

Tabela Verdade da Função OU (OR)

- Observe que, no sistema de numeração binário, a soma 1+1=10
- Na álgebra booleana, 1+1=1, já que somente dois valores são permitidos (0 e 1)

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

- A porta OU é um circuito que executa a função OU
- A porta OU executa a tabela verdade da função OU
 - Portanto, a saída será 0 somente se ambas as entradas forem iguais a 0; nos demais casos, a saída será 1
- Representação

<u>A</u>	В	S=A+B
0	0	0
0	1	1
1	0	1
1	1	1

	Α	В	S=A+B
	0	0	0
1	0	1	1
	1	0	1
	1	1	1

	Α	В	S=A+B
	0	0	0
	0	1	1
	1	0	1
,	1	1	1

Α	В	S=A+B
0	0	0
0	1	1
1	0	1
1	1	1

- É possível estender o conceito de uma porta OU para um número qualquer de variáveis de entrada
- Nesse caso, temos uma porta OU com N entradas e somente uma saída
- A saída será 0 se e somente se as N entradas forem iguais a 0; nos demais casos, a saída será 1

□ Por exemplo,S=A+B+C+D

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Função NÃO (NOT)

- Executa o complemento (negação) de uma variável binária
 - Se a variável estiver em 0, o resultado da função é 1
 - Se a variável estiver em 1, o resultado da função é 0
- Essa função também é chamada de inversora

Função NÃO (NOT)

- Usando as mesmas convenções dos circuitos anteriores, tem-se que:
 - Quando a chave A está aberta (A=0), passará corrente pela lâmpada e ela acenderá (S=1)
 - Quando a chave A está fechada (A=1), a lâmpada estará em curto-circuito e não passará corrente por ela, ficando apagada (S=0)

Função NÃO (NOT)

- Para representar a expressão
 - S = **não** A
- Adotaremos a representação
 - $S = \bar{A}$, onde se lê $S = n\tilde{a}o A$
- Notações alternativas
 - S = A'
 - S = ¬ A
 - $S = \tilde{A}$

Tabela verdade da função NÃO (NOT)

Α	Ā
0	1
1	0

Porta Lógica NÃO (NOT)

- A porta lógica NÃO, ou inversor, é o circuito que executa a função NÃO
- O inversor executa a tabela verdade da função NÃO
 - Se a entrada for 0, a saída será 1; se a entrada for 1, a saída será
 0

Porta Lógica NÃO (NOT) A •

Α	S=Ā
0	1
1	0

Α	S=Ā
0	1
1	0

Função NÃO E (NAND)

- Composição da função E com a função NÃO, ou seja, a saída da função E é invertida

Tabe	ela ve	rdade
------	--------	-------

Α	В	S=A.B
0	0	1
0	1	1
1	0	1
1	1	0

Porta NÃO E (NAND)

- □ A porta NÃO E (NE) é o bloco lógico que executa a função NÃO E, ou seja, sua tabela verdade
- Representação

Porta NÃO E (NAND)

- Como a porta E, a porta
 NÃO E pode ter duas ou mais entradas
- Nesse caso, temos uma porta NÃO E com N entradas e somente uma saída
- A saída será 0 se e somente se as N entradas forem iguais a 1; nos demais casos, a saída será 1

Função NÃO OU (NOR)

- Composição da função OU com a função NÃO, ou seja, a saída da função OU é invertida
- $S = (\overline{A+B}) = \overline{A+B}$ = (A+B)' $= \neg(A+B)$

Tabe	ela ve	rdade
------	--------	-------

Α	В	S=A+B
0	0	1
0	1	0
1	0	0
1	1	0

Porta NÃO OU (NOR)

- A porta NÃO OU (NOU) é o bloco lógico que executa a função NÃO OU, ou seja, sua tabela verdade
- Representação

Porta NÃO OU (NOR)

- Como a porta OU, a porta
 NÃO OU pode ter duas ou mais entradas
- Nesse caso, temos uma porta NÃO OU com N entradas e somente uma saída
- A saída será 1 se e somente se as N entradas forem iguais a 0; nos demais casos, a saída será 0

Função OU Exclusivo (XOR)

- □ A função OUExclusivo fornece
 - 1 na saída quando as entradas forem diferentes entre si e
 - 0 caso contrário

$$\Box$$
 S = A \oplus B
= $\bar{A}.B + A.\bar{B}$

Tabela verdade

Α	В	S=A⊕B
0	0	0
0	1	1
1	0	1
1	1	0

Porta OU Exclusivo (XOR) como Bloco Básico

Simbologia adotada

Outros símbolos utilizados

Porta OU Exclusivo (XOR) como Circuito Combinacional

Resumo dos Blocos Lógicos Básicos

Nome	Símbolo Gráfico	Função Algébrica	Tabela Verdade
E (AND)	A S=A.B	S=A.B S=AB	A B S=A.B 0 0 0 0 1 0 1 0 0 1 1 1
OU (OR)	A S=A+B	S=A+B	A B S=A+B 0 0 0 0 1 1 1 0 1 1 1 1
NÃO (NOT) Inversor	A S=Ā	S=Ā S=A' S=	A S=Ā 0 1 1 0
NE (NAND)	A S=A.B	S= <u>A.B</u> S=(A.B)' S= ¬(A.B)	A B S=A.B 0 0 1 0 1 1 1 0 1 1 1 0
NOU (NOR)	$A \longrightarrow S = \overline{A + B}$	S= A+B S=(A+B)' S= ⊣(A+B)	A B S=A+B 0 0 1 0 1 0 1 0 1 0 1 1 0
XOR	$A \longrightarrow S = A \oplus B$	S=A⊕B	A B S=A⊕B 0 0 0 0 1 1 1 0 1 1 1 0

Correspondência entre expressões, circuitos e tabelas verdade

- Todo circuito lógico executa uma expressão booleana
- Um circuito, por mais complexo que seja, é composto pela interligação dos blocos lógicos básicos
- Veremos, a seguir, como obter as expressões booleanas geradas por um circuito lógico

□ Seja o circuito:

- □ Vamos dividi-lo em duas partes (1) e (2)
 - No circuito (1), a saída S₁ contém o produto
 A.B, já que o bloco é uma porta E
 - Portanto, $S_1 = A.B$

- No circuito (2), note que a saída S₁ é utilizada como uma das entradas da porta OU
- A outra entrada da porta OU corresponde à variável C, o que nos leva à:

$$S = S_1 + C$$

- Para obter a expressão final em relação às entradas A, B e C basta substituir a expressão S₁ na expressão de S, ou seja:
 - (1) $S_1 = A.B$
 - (2) S = S₁ + C
 - Obtém-se $S = S_1 + C = (A.B) + C$

- □ Portanto, a expressão que o circuito executa é:
 - S = (A.B) + C = A.B + C

Exercício

Escreva a expressão booleana executada pelo circuito

Solução

Exercício

Determinar a expressão booleana característica do circuito

Solução

- Até o momento, vimos como obter uma expressão característica a partir de um circuito
- Também é possível obter um circuito lógico, dada uma expressão booleana
- Nesse caso, como na aritmética elementar, parênteses têm maior prioridade, seguidos pela multiplicação (função E) e, por último, pela soma (função OU)

- Seja a expressão
 - S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 - S = (A+B) . C . (B+D)

- Seja a expressão
 - S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 - $S = (A+B) \cdot C \cdot (B+D)$
- Dentro do primeiro parêntese temos a soma booleana S₁=(A+B), portanto o circuito que executa esse parêntese será uma porta OU
- Dentro do segundo parêntese temos a soma booleana S₂=(B+D). Novamente, o circuito que executa esse parêntese será uma porta OU

- Seja a expressão
 - S = (A+B).C.(B+D)
- Vamos separar as subfórmulas da expressão, ou seja:
 - S = (A+B) . C . (B+D)
- Dentro do primeiro parêntese temos a soma booleana S₁=(A+B), portanto o circuito que executa esse parêntese será uma porta OU
- Dentro do segundo parêntese temos a soma booleana S₂=(B+D). Novamente, o circuito que executa esse parêntese será uma porta OU
- Portanto, temos:
 - $S = S_1 . C . S_2$
- Agora temos uma multiplicação booleana e o circuito que a executa é uma porta E

□ O circuito completo é:

Exercício

- Desenhe o circuito lógico que executa a seguinte expressão booleana
 - S = (A.B.C) + (A+B).C

Solução

- É importante lembrar que as entradas que representam a mesma variável estão interligadas
- Contudo o desenho sem interligações facilita a interpretação do circuito ____

Exercício

 Desenhe o circuito lógico cuja expressão característica é

$$\blacksquare$$
 S = $(\overline{A.B} + \overline{C.D})$ '

Solução

Expressões ou Circuitos representados por Tabelas Verdade

- Uma forma de estudar uma função booleana consiste em utilizar sua tabela verdade
- Como visto anteriormente, há uma equivalência entre o circuito lógico e sua expressão característica
 - Podemos obter um circuito a partir de sua expressão
 - Podemos obter expressões a partir dos circuitos
- Uma tabela verdade representa o comportamento tanto do circuito como de sua expressão característica

Como obter a Tabela Verdade a partir de uma Expressão

- Colocar todas as possibilidades (interpretações)
 para as variáveis de entrada
 - Lembrar que para *N* variáveis, há 2^N possibilidades
- Adicionar colunas para cada subfórmula da expressão
 - Preencher cada coluna com seus resultados
- Adicionar uma coluna para o resultado final
 - Preencher essa coluna com o resultado final

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um

Α	В	С	D
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1
			0
			1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um

Α	В	С	D
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1
		0	0
		0	1
		1	0
		1	1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um
 - Variação 4 zeros, 4 um

Α	В	С	D
	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1
	0	0	0
	0	0	1
	0	1	0
	0	1	1
	1	0	0
	1	0	1
	1	1	0
	1	1	1

- Considere a expressão
 - S = A.B.C + A.D + A.B.D
- Como há 4 variáveis de entrada (A, B, C, D), há 2⁴=16 interpretações
 - Variação 1 zero, 1 um
 - Variação 2 zeros, 2 um
 - Variação 4 zeros, 4 um
 - Variação 8 zeros, 8 um

Α	В	С	D
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0	1			
1	1	1	1	1			

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	0			
0	1	0	1	0			
0	1	1	0	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	0	1	0			
1	0	1	0	0			
1	0	1	1	0			
1	1	0	0	0			
1	1	0	1	0			
1	1	1	0	1			
1	1	1	1	1			

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0			
0	0	0	1	0			
0	0	1	0	0			
0	0	1	1	0			
0	1	0	0	0			
0	1	0	1	0			
0	1	1	0	0			
0	1	1	1	0			
1	0	0	0	0			
1	0	0	1	0	1		
1	0	1	0	0			
1	0	1	1	0	1		
1	1	0	0	0			
1	1	0	1	0	1		
1	1	1	0	1			
1	1	1	1	1	1		

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0		
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	0	0		
0	1	0	0	0	0		
0	1	0	1	0	0		
0	1	1	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	0	1	0	1		
1	0	1	0	0	0		
1	0	1	1	0	1		
1	1	0	0	0	0		
1	1	0	1	0	1		
1	1	1	0	1	0		
1	1	1	1	1	1		

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0		
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	0	0		
0	1	0	0	0	0		
0	1	0	1	0	0		
0	1	1	0	0	0		
0	1	1	1	0	0		
1	0	0	0	0	0		
1	0	0	1	0	1		
1	0	1	0	0	0		
1	0	1	1	0	1		
1	1	0	0	0	0		
1	1	0	1	0	1	1	
1	1	1	0	1	0		
1	1	1	1	1	1	1	

- \square S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	1	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	0	0	0	0	
0	1	0	1	0	0	0	
0	1	1	0	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	
1	0	1	0	0	0	0	
1	0	1	1	0	1	0	
1	1	0	0	0	0	0	
1	1	0	1	0	1	1	
1	1	1	0	1	0	0	
1	1	1	1	1	1	1	

- \Box S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado
- Por último, preencher a coluna do resultado final

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0	0	
0	0	0	1	0	0	0	
0	0	1	0	0	0	0	
0	0	1	1	0	0	0	
0	1	0	0	0	0	0	
0	1	0	1	0	0	0	
0	1	1	0	0	0	0	
0	1	1	1	0	0	0	
1	0	0	0	0	0	0	
1	0	0	1	0	1	0	1
1	0	1	0	0	0	0	
1	0	1	1	0	1	0	1
1	1	0	0	0	0	0	
1	1	0	1	0	1	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	1	1	1

- \Box S = A.B.C + A.D + A.B.D
- A seguir, adicionar uma coluna para cada subfórmula de S, além de uma coluna para o resultado final S
 - A.B.C
 - A.D
 - A.B.D
- Preencher cada coluna com seu respectivo resultado
- Por último, preencher a coluna do resultado final

Α	В	С	D	A.B.C	A.D	A.B.D	S
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	1
1	0	1	0	0	0	0	0
1	0	1	1	0	1	0	1
1	1	0	0	0	0	0	0
1	1	0	1	0	1	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	1	1	1

- Encontre a tabela verdade da expressão
 - S = Ā+B+A.B.C'

- Encontre a tabela verdade da expressão
 - S = Ā+B+A.B.C'

Α	В	С	Ā	C'	A.B.C'	S
0	0	0	1	1		
0	0	1	1	0		
0	1	0	1	1		
0	1	1	1	0		
1	0	0	0	1		
1	0	1	0	0		
1	1	0	0	1		
1	1	1	0	0		

Encontre a tabela verdade da expressão

Α	В	С	Ā	C'	A.B.C'	S
0	0	0	1	1	0	1
0	0	1	1	0	0	1
0	1	0	1	1	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	1	0	0	0	0
1	1	0	0	1	1	1
1	1	1	0	0	0	1

- Montar a tabela verdade da expressão
 - S = A.B.C + A.B'.C + A'.B'.C + A'.B'.C'

- Montar a tabela verdade da expressão
 - S = A.B.C + A.B'.C + A'.B'.C + A'.B'.C'

Α	В	С	Α'	B'	C'	A.B.C	A.B'.C	A'.B'.C	A'.B'.C'	S
0	0	0	1	1	1					
0	0	1	1	1	0					
0	1	0	1	0	1					
0	1	1	1	0	0					
1	0	0	0	1	1					
1	0	1	0	1	0					
1	1	0	0	0	1					
1	1	1	0	0	0					

Montar a tabela verdade da expressão

Α	В	С	Α'	B'	C'	A.B.C	A.B'.C	A'.B'.C	A'.B'.C'	S
0	0	0	1	1	1	0	0	0	1	1
0	0	1	1	1	0	0	0	1	0	1
0	1	0	1	0	1	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0
1	0	0	0	1	1	0	0	0	0	0
1	0	1	0	1	0	0	1	0	0	1
1	1	0	0	0	1	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	1

Equivalência de Expressões Booleanas por Tabela Verdade

- Sejam S1 e S2 duas expressões booleanas
- S1 e S2 são equivalentes se e somente se para todas as interpretações possíveis (linhas) na tabela verdade ocorre S1=S2
- Se S1≠S2 em pelo menos uma interpretação, então S1 e S2 não são equivalentes

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A
 - S2 = A.(A+B)

Α	В	A+B	S1	S2
0	0			
0	1			
1	0			
1	1			

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A
 - S2 = A.(A+B)
- Como S1=S2 em todas as interpretações possíveis na tabela verdade, as expressões são equivalentes
 - A.(A+B) = A
- Como veremos mais adiante, esta é uma propriedade, conhecida como absorção

Α	В	A+B	S1	S2
0	0	0	0	0
0	1	1	0	0
1	0	1	1	1
1	1	1	1	1

 Verifique, usando tabela verdade, se as expressões S1, S2, S3 são equivalentes entre si

$$S2 = A.(1 + B)$$

Α	В	1+B	A.B	S1	S2	S3
0	0					
0	1					
1	0					
1	1					

 Verifique, usando tabela verdade, se as expressões S1, S2, S3 são equivalentes entre si

$$S2 = A.(1 + B)$$

 Como S1=S2=S3 em todas as interpretações possíveis na tabela verdade, as expressões são equivalentes

•
$$A + A.B = A.(1+B) = A$$

 Como veremos mais adiante, esta é uma propriedade, conhecida como absorção

		1+B		S1	S2	S3
0	0	1	0	0	0	0
0	1	1	0	0	0 0 1	0
1	0	1	0			
1	1	1 1 1	1	1	1	1

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A.(B + C)
 - S2 = A.B + A.C

Α	В	С	B+C	A.B	A.C	S1	S2
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A.(B + C)
 - S2 = A.B + A.C
- Como S1=S2 em todas as interpretações possíveis na tabela verdade, as expressões são equivalentes
 - A.(B + C) = A.B + A.C
- Como veremos mais adiante, esta é a propriedade distributiva da multiplicação booleana

Α	В	С	B+C	A.B	A.C	S1	S2
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A+(B.C)
 - S2 = (A+B) . (A+C)

	Α	В	С	B.C	A+B	A+C	S1	S2
_	0	0	0					
	0	0	1					
	0	1	0					
	0	1	1					
	1	0	0					
	1	0	1					
	1	1	0					
	1	1	1					

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = A+(B.C)
 - S2 = (A+B) . (A+C)
- Como S1=S2 em todas as interpretações possíveis na tabela verdade, as expressões são equivalentes
 - $A+(B.C) = (A+B) \cdot (A+C)$
- Como veremos mais adiante, esta é a propriedade distributiva da adição booleana

Α	В	С	B.C	A+B	A+C	S1	S2
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

 Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes

• S1 =
$$(\bar{A}.\bar{B})$$

Α	В	A'	B'	A.B	S1	S2
0	0					
0	1					
1	0					
1	1					

- Verifique, usando tabela verdade, se as expressões S1 e S2 são equivalentes
 - S1 = $(\bar{A}.\bar{B})$
 - S2 = (A.B)'
- Como S1≠S2 em pelo menos uma interpretação (de fato, em 2 das 4 possíveis) na tabela verdade, as expressões não são equivalentes
- Portanto,
 - (Ā.Ē) ≠ (A.B)'

Α	В	A'	B'	A.B	S1	S2
0	0	1	1	0	1	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	0	0	1	0	0

Resumo de Algumas Propriedades provadas por Tabelas Verdade

Absorção

- A + (A.B) = A
- A. (A+B) = A

Distributiva

- A.(B+C) = A.B + A.C
- A+(B.C) = (A+B) . (A+C)

Obtendo a Tabela Verdade a partir de um Circuito

- De forma análoga, é possível estudar o comportamento de um circuito por meio da sua tabela verdade
- Dado um circuito, é necessário extrair sua expressão característica; a partir dela é possível montar a tabela verdade correspondente

□ A partir do circuito:

■ A partir do circuito:

Extraímos sua expressão característica

- A partir da expressão
 - \blacksquare S = (A+B) . $\overline{(B.C)}$
- Obtém-se a tabela verdade, como anteriormente explicado

Α	В	С	A+B	B.C	(B.C)'	S
0	0	0	0	0	1	0
0	0	1	0	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	0	0
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	1	0	1	1
1	1	1	1	1	0	0

Equivalência de Blocos Lógicos

- Qualquer bloco lógico básico pode ser obtido utilizando outro bloco qualquer e inversores
- Inversores podem ser obtidos a partir de portas NAND e NOR
- Veremos a seguir essas equivalências entre determinados blocos
- □ Tais equivalências podem ser provadas pela tabelas verdades correspondentes da seguinte forma
 - Seja S1 a expressão característica do primeiro bloco B1
 - Seja S2 a expressão característica do segundo bloco B2
 - Se para todas as interpretações possíveis de B1 e B2, sempre ocorrer que S1=S2, então B1 é equivalente a B2

Inversor a partir de porta NAND

Inversor a partir de porta NOR

Inversor

 Ao interligar as entradas de uma porta NOR, obtém-se um inversor

Α	В	S
0	0	1
1	1	0

Porta NOU a partir de porta E e inversores

- □ Porta E e inversores
 □ Porta NOU

Α	В	Ā	Ē	S
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Α	В	S=A+B
0	0	1
0	1	0
1	0	0
1	1	0

Equivalência de Blocos Lógicos

De maneira similar, a equivalência entre os blocos mostrados a seguir pode ser verificada

Blocos Lógicos Equivalentes

□ Prove, usando tabela verdade, que os seguintes blocos lógicos são equivalentes

A •	
В	─ S1=A+B

● S2=(Ā.Ē)

٨	D	Ā	Ē Ā.Ē	S1=	S2=		
Α	В	A	Ь	A.D	A+B	Ā.Ē	
0	0	1	1	1	0	0	
0	1	1	0	0	1	1	
1	0	0	1	0	1	1	
1	1	0	0	0	1	1	

Copyright© Apresentação 2012 por José Augusto Baranauskas Universidade de São Paulo

Professores são convidados a utilizarem esta apresentação da maneira que lhes for conveniente, desde que esta nota de *copyright* permaneça intacta.

Slides baseados em:

□Idoeta, I.V. & Capuano, F.G.; Elementos de Eletrônica Digital, 12ª. edição, Érica, 1987.

□E. Mendelson; Álgebra booleana e circuitos de chaveamento, McGraw-Hill, 1977.