Group Meeting - 2

Member: Yong Li, Depeng Liu, Weizhi Feng, Xie Li, Shizhen yu, Zongxin Liu

2021年4月21日

MemSafety: Progress and Problem Encountered

- SMACK: code reading.
 - Problem 1: How SMACK do the region splitting to modify the memory model?
 Paper reading:
 - [1] Making Context-sensitive Points-to Analysis with Heap Cloning Practical For The Real World.
 - DSA, Andersen style analysis, Steensgaard's analysis and shape analysis.
 - Problem 2: How to adapt the assertion of separation logic into the generating and parsing of Boogie IVL.
 Paper reading:
 - [2] A Primer on Separation Logic.
 - [3] Enhancing Symbolic Execution of Heap-based Programs with Separation Logic for Test Input Generation.

Tool investigating:

• Predator, on how they deal with separation assertions.

Case study:

- Find a example program and write assertions in FOL and SL by hand to compare.
- Problem 3: Sorting a document about the whole procedure of SMACK.

MemSafety: Progress and Problem Encourtered

- SMACK: running SV-COMP cases.
 - Problem 1: Specify the detailed result: which property, consistent or not.
 - Problem 2: Report the issue in Github.

BBA: Outline

- Bounded Büchi automata.
- Bounded:
 - Definition of bounded Büchi automata and bounded languages.
 - \bullet Relationship of bounded languages and $\omega\text{-regular}$ languages.
- Plan.

BBA: Bounded Büchi Automaton & Bounded Language

Definition

Given an integer d>0 and a Büchi automaton \mathcal{A} , we call the Büchi automaton with the integer d as a bounded Büchi automaton.

Definition

A run $\rho=q_0q_1...$ is accepting iff there exists an integer $i\geq 0$, the distance between any two consecutive accepting states with index greater than i is at most d. Formally, a run is accepting iff $\exists i\geq 0, \forall j\geq i, \{q_j,q_{j+1},...,q_{j+d-1}\}\cap F\neq\emptyset$, where F is the set of accepting states. Then we call such an accepting run a bounded run. A bounded word w is accepted by (\mathcal{A},d) if there is an accepting bounded run of (\mathcal{A},d) on w. The bounded language recognized by (\mathcal{A},d) , denoted $\mathcal{L}(\mathcal{A},d)$, is the set of bounded words that (\mathcal{A},d) accepts.

BBA: Bounded Languages & ω -regular Languages

- ullet Proved that bounded languages are ω -regular languages.
- ullet Proved that ω -regular languages cannot be expressed by bounded languages.
- \bullet Therefore, bounded languages are the subset of $\omega\text{-regular}$ languages.

BBA: Plan

Thinking about the computation of bounded languages...

- Intersection;
 - Two bounded automata with the same d and different d;
- Complement.