Exercise 1

a)

Sequence: {cloudy, rainy, sunny, sunny}

$$0.25 \cdot 0.3 \cdot 0.1 \cdot 0.6 = 0.0045$$

b)

Sequence: {sunny, snowy, sunny, rainy}

$$0.25 \cdot 0.0 \cdot 0.0 \cdot 0.1 = 0.0$$

Exercise 2

a)

b)

The Markov chain from a) is irreducible. Every state intercommunicates with every other state.

Exercise 3

Given transition state matrix:

$$\begin{array}{cccccc}
A & B & C & D \\
A & 1 & 0 & 0 & 0 \\
B & 0.9 & 0 & 0.1 & 0 \\
C & 0 & 0.9 & 0 & 0.1 \\
D & 0 & 0 & 0 & 1
\end{array}$$

a)

b)

Since we start in state B, our initial distribution is given by

$$\pi^{(0)} = (0, 1, 0, 0).$$

The probability of being in state A after 8 transitions is

$$\pi^{(0)} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.9 & 0 & 0.1 & 0 \\ 0 & 0.9 & 0 & 0.1 \\ 0 & 0.9 & 0 & 0.1 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{8}$$

$$= (0, 1, 0, 0) \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.988946 & 0.00006561 & 0 & 0.0109883 \\ 0.890051 & 0 & 0.00006561 & 0.0109883 \\ 0 & 0 & 0 & 1 \end{pmatrix} = (0.988946, 0.00006561, 0, 0.0109883).$$

Therefore the probability is 0.988946.

c)

Since we start in state C, the initial distribution is given by

$$\pi^{(0)} = (0, 0, 1, 0).$$

From the matrix

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.9 & 0 & 0.1 & 0 \\ 0 & 0.9 & 0 & 0.1 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{6} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0.98829 & 0.000729 & 0 & 0.010981 \\ 0.889461 & 0 & 0.000729 & 0.10981 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

we can see that the probability of ending in state D after 6 transitions is 0.10.981

Exercise 4

Given sequence of observations: $O = \{coffee, coffee, lemonade\}.$

Probability matrix:

Р	CF	WP
CF	0.7	0.3
WP	0.5	0.5

Emitting probabilities:

В	coffee	water	lemonade
CF	0.6	0.1	0.3
WP	0.1	0.7	0.2

a) Forward algorithm

state \time	$t_0(\text{coffee})$	$t_1(\text{coffee})$	$t_2(lemonade)$	t_3
$\alpha_t(CF)$	1	$1 \cdot 0.7 \cdot 0.6 = 0.42$	$0.42 \cdot 0.7 \cdot 0.6$	$0.1854 \cdot 0.7 \cdot 0.3$
			$+0.18 \cdot 0.5 \cdot 0.1$	$+0.0846 \cdot 0.5 \cdot 0.2$
			=0.1854	= 0.04739
$\alpha_t(WP)$	0	$1 \cdot 0.3 \cdot 0.6 = 0.18$	$0.42 \cdot 0.3 \cdot 0.6$	$0.1854 \cdot 0.3 \cdot 0.3 +$
			$+0.18 \cdot 0.5 \cdot 0.1$	$0.0846 \cdot 0.5 \cdot 0.2$
			= 0.0846	= 0.02515
P[cof,cof,lem]	1	0.6	0.27	0.07254

b) Backward algorithm

state \time	$t_0(\text{coffee})$	$t_1(\text{coffee})$	$t_2(lemonade)$	t_3
$\alpha_t(CF)$	$0.162 \cdot 0.7 \cdot 0.6$	$0.3 \cdot 0.7 \cdot 0.6$	$1.0 \cdot 0.7 \cdot 0.3$	1.0
	$+0.025 \cdot 0.3 \cdot 0.6$	$+0.2 \cdot 0.3 \cdot 0.6$	$+1.0 \cdot 0.3 \cdot 0.3$	
	=0.07254	=0.162	= 0.3	
$\alpha_t(WP)$	$0.162 \cdot 0.5 \cdot 0.1$	$0.3 \cdot 0.5 \cdot 0.1$	$1.0\cdot0.5\cdot0.2$	1.0
	$+0.025 \cdot 0.5 \cdot 0.1$	$+0.2 \cdot 0.5 \cdot 0.1$	$+1.0 \cdot 0.5 \cdot 0.2$	
	=0.00935	=0.025	= 0.2	
P[cof,cof,lem]	0.07254			

c)

state \time	$t_0(\text{coffee})$	$t_1(\text{coffee})$	$t_2(lemonade)$	t_3
$\delta_t(\mathrm{CF})$	1	0.42	$Max[CF: 0.42 \cdot 0.7 \cdot 0.6 =$	$Max[CF : 0.1764 \cdot 0.7 \cdot$
			0.1764; WP : 0.18 · 0.5 ·	0.3 = 0.03704; WP :
			0.1 = 0.009] = 0.1764	$0.0756 \cdot 0.5 \cdot 0.2 =$
			-	0.00756] = 0.03704
$\delta_t(\mathrm{WP})$	0	0.18	$Max[CF: 0.42 \cdot 0.3 \cdot 0.6 =$	$Max[CF : 0.1764 \cdot 0.3 \cdot$
			$0.0756; WP : 0.18 \cdot 0.5 \cdot$	0.3 = 0.01588; WP :
			0.1 = 0.009] = 0.0756	$0.0756 \cdot 0.5 \cdot 0.2 =$
			-	[0.00756] = 0.01588
$\psi_t(\mathrm{CF})$		CF	CF	CF
$\psi_t(WP)$		CF	CF	CF
x_t	CF	CF	CF	

For the given observations $O = \{coffee, coffee, lemonade\}$, the most probable sequence of states is therefore $\{CF, CF, CF\}$.