Algorytmy Optymalizacji Dyskretnej

Lista 2 - Programowanie Liniowe i Całkowitoliczbowe

Karol Janic

kwiecień 2023

1 Zadanie 1

Minimalizacja kosztu zakupu i dostawy paliwa dla lotnisk.

1.1 Opis Modelu

- Definicje Zmiennych Decyzyjnych:
 - $-x_{i,j}$ ilość paliwa w galonach zakupionego przez i-te lotnisko w j-tej firmie, gdzie $i \in \{1,...,n\}$, $j \in \{1,...,m\}$, n liczba rozpatrywanych lotnisk, m liczba rozpatrywanych firm dostarczających paliwo
- Ograniczenia:
 - określenie zapotrzebowania lotnisk: $\sum_{j=1}^{m} x_{i,j} \geqslant a_i$, gdzie a_i to zapotrzebowanie i-tego lotniska
 - określenie możliwości firmy: $\sum_{i=1}^n x_{i,j} \leq b_j$, gdzie b_j to możliwości dostarczania paliwa przez j-tą firmę
- Funkcja Do Minimalizacji: $f_{min} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} k_{i,j}$, gdzie $k_{i,j}$ to koszt zakupu 1 galonu paliwa i jego dostawy z firmy j do lotniska i

1.2 Opis Egzemplarza

- Liczba lotnisk i firm dostarczających paliwo: n = 4, m = 3
- Zapotrzebowania (gal):

nr. lotniska	1	2	3	4
zapotrzebowanie	110000	220000	30000	440000

• Możliwości dostaw(gal):

nr. firmy	1	2	3
maks. dostawa	275000	550000	60000

• Koszty(\$/qal):

	lotnisko 1	lotnisko 2	lotnisko 3	lotnisko 4
firma 1	10	10	9	11
firma 2	7	11	12	13
firma 3	8	14	4	9

1.3 Wyniki i Wnioski

- Łączny koszt zakupów paliwa: 8525000\$
- Plan zakupów paliwa(gal):

	lotnisko 1	lotnisko 2	lotnisko 3	lotnisko 4
firma 1	0.0	165000.0	0.0	110000.0
firma 2	110000.0	55000.0	0.0	0.0
firma 3	0.0	0.0	330000.0	330000.0

- Można zauważyć, że w miarę możliwości lotniska pobierają paliwo od firm, które kosztuje ich najmniej aż do wyczerpania zapasów firm
- Wszystkie firmy dostarczają paliwo lotniskom
- Firmy o numerach 1 i 3 wyczerpują całe swoje zapasy paliwa

2 Zadanie 2

Znajdowanie najkrótszej ścieżki pomiędzy miastami z ograniczeniem czasowym.

2.1 Opis Modelu

- Definicje Zmiennych Decyzyjnych
 - zmienna indykatorawa przejazd pomiędzy danymi miastami: $x_{i,j}$, gdzie $i, j \in \{1, ..., n\}$ a n jest liczbą rozważanych miast
- Ograniczenia
 - pomiędzy miastami możemy przejechać lub nie: $x_{i,j} \in \{0,1\}$
 - warunek miasta początkowego: $\sum_{i=1}^n x_{p,i} \sum_{i=1}^n x_{i,p} = 1$, gdzie p jest indeksem miasta początkowego
 - warunek miasta końcowego: $\sum_{i=1}^n x_{p,i} \sum_{i=1}^n x_{i,p} = -1$, gdzie k jest indeksem miasta końcowego
 - warunek ciągłości trasy: $\sum_{i=1}^n x_{m,i} \sum_{i=1}^n x_{i,m} = 0$, gdzie m jest miastem ani nie początkowym ani nie końcowym
 - maksymalny czas jazdy: $\sum_{i=1}^n \sum_{j=1}^n x_{i,j} t_{i,j} \leq T$, gdzie $t_{i,j}$ oznacza czas przejazdu pomiędzy miastami i oraz j a T jest górną granicą czasu przejazdu
- Funkcja Do Minimalizacji
 - $f_{min} = \sum_{i=1}^n \sum_{j=1}^n x_{i,j} d_{i,j}$, gdzie $d_{i,j}$ to odległość drogowa pomiędzy miastami i oraz j

2.2 Opis Egzemplarza

 $\bullet\,$ liczba miast: n=10

• połączenie pomiędzy miastami

d[km]	Warszawa	Kraków	Łódź	Wrocław	Poznań	Gdańsk	Gdymia	Szczecin	Toruń	Bydgoszcz
Warszawa	x	X	136	348	312	340	X	566	259	308
			102	232	211	224		346	168	198
Kraków	290	X	434	268	459	X	X	648	446	495
	217		277	206	312			344	300	340
Łódź	140	280	x	214	211	340	362	x	183	x
	104	226		145	168	207	226		124	
Wrocław	355	273	222	X	182	X	509	417	358	X
	229	189	147		134		314	259	231	
Poznań	311	458	218	185	X	311	332	X	X	139
	199	300	150	134		194	212			92
Gdańsk	348	X	337	482	311	X	20	x	170	167
	240		207	319	205		30		112	113
Gdynia	383	X	x	509	336	36	X	358	194	191
	264			313	220	30		272	128	129
Szczecin	x	647	269	394	265	370	355	X	X	259
		387	159	253	177	266	263			225
Toruń	262	X	X	392	189	168	194	314	X	46
	170			249	146	109	123	246		50
Bydgoszcz	310	X	164	313	132	167	X	259	46	X
	205		114	212	104	112		228	53	

• Miasto początkowe: Gdynia

• Miasto końcowe: Kraków

• Ograniczenia czasowe: 440 min, 450 min

2.3 Wyniki i Wnioski

• Wynik dla ograniczenia czasowego: 440 min:

Długość trasy: 653 kmCzas przejazdu: 436 min

– Trasa: Gdynia – Gdańsk – Łódź – Kraków

• Wynik dla ograniczenia czasowego: 450 min:

Długość trasy: 635 kmCzas przejazdu: 442 min

– Trasa: Gdynia – Bydgoszcz – Łódź – Kraków

- Usunięcie ograniczeń na całkowitoliczbowość (w zamian dodanie ograniczenia: $x_{i,j} \ge 0$) generuje niepoprawne rozwiązanie: zmienne $x_{i,j}$ przyjmują wartości niecałkowice. W zamian czas podróży jest równy jemu dolnemu ograniczeniu
- Usunięcie ograniczeń na całkowitoliczbowość (w zamian dodanie ograniczenia: $x_{i,j} \ge 0$) oraz ograniczeń na czas podróży generuje poprawny wynik toższamy z wynikiem gdy ograniczeniem jest 450 minut

3 Zadanie 3

Minimalizacja liczby radiowozów w pewnym mieście.

3.1 Opis Modelu

- Definicje Zmiennych Decyzyjnych:
 - $-\ k$ łączna liczba radiowozów w mieście
 - $-x_{i,j}$ liczba radiowozów w i-tej dzielnicy i na j-tej zmianie, gdzie $i \in \{1,...,n\}, j \in \{1,...,m\},$ n liczba rozpatrywanych dzielnic, m liczba rozpatrywanych zmian
- Ograniczenia:
 - określenie minimalnej i maksymalnej liczby radiowozów w danej dzielnicy i na danej zmianie: $c_{i,j}^{min} \leq x_{i,j} \leq c_{i,j}^{max}$, gdzie $c_{i,j}^{min}$ i $c_{i,j}^{max}$ to odpowiednio minimalna i maksymalna liczba radiowozów w *i*-tej dzielnicy i na *j*-tej zmianie
 - określenie minimalnej liczby radiowozów w danej dzielnicy: $\sum_{j=1}^{m} x_{i,j} \ge a_i$, gdzie a_i to minimalne obłożenie w i-tej dzielnicy
 - określenie minimalnej liczby radiowozów na danej zmianie: $\sum_{i=1}^{n} x_{i,j} \ge b_i$, gdzie b_j to minimalne obłożenie na j-tej zmianie
 - ograniczenie liczby radiowozów na zmianie: $\sum_{i=1}^n x_{i,j} \leqslant k$
- Funkcja Do Minimalizacji: $f_{min} = k$

3.2 Opis Egzemplarza

- Liczba dzielnic i zmian: n = 3, m = 3
- Minimalna liczba radiowozów:

nr. zmiany	1	2	3
obsada	10	20	18

Minimalna liczba radiowozów:

nr. dzielnicy	1	2	3
obsada	10	14	13

• Ograniczenia na radiowozy:

min/max	zmiana 1	zmiana 2	zmiana 3
dzielnica 1	2/3	4/7	3/5
dzielnica 2	3/5	6/7	5/10
dzielnica 3	5/8	7/12	6/10

3.3 Wyniki i Wnioski

• Łączna liczba radiowozów: 20

• Rozdział radiowozów:

	zmiana 1	zmiana 2	zmiana 3
dzielnica 1	3	4	5
dzielnica 2	3	7	7
dzielnica 3	8	9	6

4 Zadanie 4

Plan monitoringu terenu z kontenerami zawierającymi cenny ładunek.

4.1 Opis Modelu

- Definicje Zmiennych Decyzyjnych
 - $-x_{i,j}$ zmienna indykatorowa kamerę na danym polu placu gdzie $i \in \{0, ..., n-1\}, j \in \{0, ..., m-1\},$ a $n \times m$ oznacza rozmiar placu(liczbę kolumn i wierszy)
- Ograniczenia
 - kamera może być lub nie być zainstalowana na danym polu: $x_{i,j} \in \{0,1\}$
 - kamera nie może znajdować się na polu na którym znajduje się kontener: $x_{i,j} = 0$, jeśli na polu w kolumnie i oraz wierszu j znajduje się kontener
 - każdy kontener musi być w zasięgu conajmniej jednej kamery: $\sum_{i=\max\{px-k,0\}}^{\min\{px+k,n-1\}} x_{i,py} + \sum_{j=\max\{py-k,0\}}^{\min\{py+k,m-1\}} x_{px,j} \geqslant 1, \text{ gdzie } (px,py) \text{ to pozycja kontenera a } k \text{ to zasięg kamery(liczba pól, które obserwuje na prawo, lewo, w górę i dół od siebie)}$
- Funkcja Do Minimalizacji

$$-\sum_{i=0}^{n-1}\sum_{j=0}^{m-1}x_{i,j}$$

4.2 Opis Egzemplarza

- Rozmiar planszy: n = 5, m = 5
- Zasięg kamer: k = 1 / k = 2
- Rozmieszczenie kontenerów:

K		K		K
K				
	K		K	
	K	K	K	
K	K			K

4.3 Wyniki i Wnioski

• k = 1:

Minimalna liczba kamer: 7

K	x	K	x	K
K	X			
	K	X	K	
X	K	K	K	X
K	K	X		K

• k = 2:

Minimalna liczba kamer: 4

\mathbf{K}		K	x	K
K				
X	K		K	
X	K	K	K	
K	K		X	K

5 Zadanie 5

Planowanie produkcji w fabryce.

5.1 Opis Modelu

- Definicje Zmiennych Decyzyjnych
 - ilość produkowanych produktów w kilogramach: p_i , dla $i \in \{1, ..., n\}$, gdzie n to liczba produkowanych produktów
- Ograniczenia
 - ilość produktów jest nieujemna; dla $i = 1, ..., n: p_i \ge 0$
 - ograniczenie produkcji danego produktu; dla $i=1,...,n: p_i \leqslant m_i, \quad \text{gdzie } m_i$ to popyt na produkt
 - ograniczenie czasu działania maszyn; dla $j=1,...,m:\sum_{i=1}^n p_i c_{i,j}\leqslant C_j$, gdzie m to liczba maszyn w fabryce, $c_{i,j}$ to potrzebny czas maszyny j na wyprodukowanie 1 kilograma produktu i w minutach, a C_j to maksymalny czas działania maszyny j w minutach
- Funkcja Do Maksymalizacji
 - $f_{max} = \sum_{i=1}^{n} p_i z_i \sum_{i=1}^{n} p_i k_i \sum_{j=1}^{m} l_j \sum_{i=1}^{n} p_i c_{i,j}$, gdzie z_i to zysk na 1 kilogramie produktu i, k_i to koszt produkcji 1 kilograma produktu i a l_j to koszt działania maszyny j przez 1 minutę

5.2 Opis Egzemplarza

- Liczba produktów i maszyn: n = 4, m = 3
- Popyt:

nr. produktu	1	2	3	4
popyt [kg]	400	100	150	500
koszt [\$/kg]	4	1	1	1
zysk [\$/kg]	9	7	6	5

• Specyfikacja maszyn:

nr. maszyny	1	2	3
maks. czas pracy [min]	3600	3600	3600
koszt pracy [\$/godz.]	2	2	3

• Czas pracy maszyny dla danego produktu[min/kg]:

	maszyna 1	maszyna 2	maszyna 3
produkt 1	5	10	6
produkt 2	3	6	4
produkt 3	4	5	3
produkt 4	4	2	1

5.3 Wyniki i Wnioski

• Zysk: 3632.5\$

• Plan produkcji:

nr. produktu	1	2	3	4
ilość [kg]	125.0	100	150	500

 Można zauważyć, że ilość produkowanych produktów jest maksymalna(równa popytowi) dla tych typów produktów, gdzie przechód za kilogram jest największy