

第6节 电磁力

电磁场对电荷的作用力服从洛伦兹力公式 洛伦兹力公式还给出电磁场在空间反演和时间反演的行为 磁场无源,有矢势表示,静电场无旋,有电势表示

1. 电磁力

在电磁场中以速度v运动的电荷q除受到电力外还受到依赖于速度的洛伦兹力,总结为洛伦兹力公式

$$\mathbf{F} = q\mathbf{E}(\mathbf{x}, t) + q\mathbf{v} \times \mathbf{B}(\mathbf{x}, t) \tag{1}$$

- E(x,t)为电荷q所在处的电场强度,B(x,t)为该处的磁感应强度
- ullet 电磁场具有线性叠加性,E和B分别按照三维矢量的平行四边形法则相加.
- (1)式中E和B不含q产生的电磁场
- 速度依赖于惯性参考系,因此把电磁力分解成电力和磁力依赖于参照系. 电场和磁场分别反映分布在空间的电磁场的两个侧面.

体元dV内电荷受到的电磁力 F = f dV,即电磁力密度为

$$f = \rho E + J \times B \tag{2}$$

2. 空间反演

空间反演: $x \rightarrow x' = -x$

基本假设: 在空间反演下, 电荷、质量、和所有电磁规律均不变.

例如电荷,
$$q \rightarrow q' = q$$

电荷密度的变换(主动变换):

图1. 在空间反演下电荷密度的变换

即
$$ho(x)
ightarrow
ho'(x) =
ho(-x)$$
 即 $ho'(x') =
ho(x)$ 第6节 电磁力

空间反演下 $F \rightarrow F' = -F \pi \nu \rightarrow \nu' = -\nu$, 洛伦兹力公式形式不变:

$$F = qE + qv \times B$$
 \longrightarrow $F' = -F = -qE - qv \times B = q'E' + q'v' \times B'$

电流密度
$$J(x,t) \rightarrow J'(x',t) = \rho'(x',t)v' = -\rho(x,t)v = -J(x,t)$$

电场强度
$$E(x,t) \rightarrow E'(x',t) = -E(x,t)$$

磁感应强度
$$B(x,t) \rightarrow B'(x',t) = B(x,t)$$

图2. 空间反演下电磁场的变换

3. 时间反演

时间反演: $t \rightarrow t' = -t$

基本假设: 在时间反演下, 电荷、质量、和所有电磁规律均不变.

时间反演下 $F \rightarrow F' = F \exists v \rightarrow v' = -v$, 洛伦兹力公式形式不变:

$$F = qE + qv \times B$$
 \longrightarrow $F' = F = qE + qv \times B = q'E' + q'v' \times B'$

$$J(x,t) \to J'(x,t') = \rho'(x,t')v' = -\rho(x,t)v = -J(x,t)$$

$$E(x,t) \to E'(x,t') = E(x,t)$$

$$B(x,t) \to B'(x,t') = -B(x,t)$$

图3. 时间反演下电磁场的变换

表1. 空间和时间反演下电磁量的变换方式

	数学属性	三维空间转动	空间反演	时间反演	SI量纲
ρ	三维空间标量	如距离	不变	不变	C/M³=库仑/米³
\boldsymbol{J}	三维空间矢量	如位移矢量	反向	反向	A=安培
E	三维空间矢量	如位移矢量	反向	不变	N/C=伏/米
В	三维空间赝矢量	如位移矢量	不变	反向	N/A/M=特斯拉

若外电场给定,则系统的空间反演对称性被破坏.

若外磁场给定,则系统的时间反演对称性被破坏.

二. 矢势

1. 无磁单极

磁感应强度是无源场 (横场)

$$\nabla \cdot \mathbf{B} = 0 \tag{3}$$

它反映没有发现磁单极子的事实.

每根磁场线带有单位磁通,以**B**为切线方向. 无磁荷使得磁场线连续、不相交、无端点.

2. 矢势

散度为零的三维矢量场可以用矢势的旋度表示(第3节)

$$\mathbf{B} = \nabla \times \mathbf{A} \tag{4}$$

在笛卡尔坐标(第3节),

$$\nabla \times \mathbf{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \mathbf{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \mathbf{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \mathbf{e}_z$$
 (5)

规范变换

$$\mathbf{A}' = \mathbf{A} + \nabla \phi \tag{6}$$

式中/为任意标量场,而其梯度在笛卡尔坐标中为

$$\nabla \phi = \frac{\partial \phi}{\partial x} \mathbf{e}_x + \frac{\partial \phi}{\partial y} \mathbf{e}_y + \frac{\partial \phi}{\partial z} \mathbf{e}_z \tag{7}$$

规范对称性:物理上不能区分A和A',因而矢势A有任意性.

小结

- 洛伦兹力公式与电场强度和磁感应强度
- 时空反演变换下电磁量的变换
- 磁场无源
- 矢势

(第6节 完)