计算机网络第4次作业

学号: 姓名: 班级:

1. 阐述 IP 协议的作用,说明 IP 报文首部结构中各字段的作用。

答:

作用:主要是在相互连接的网络之间传递 IP 数据包,主要功能有两个方面:① 寻址与路由、②分段与重组。

- 一共 16 位,作用:
- ① 0-3, 4 位,表示 IP 协议版本,通常为 0100 (v4),若为 0110 则表示 v6 版;
- ② 4-7: 4 位,表示 IP 包首部地址长度,最短 20 字节,最长 60 字节;
- ③ 8-15:8位,区分服务,以前称为服务类型,从未使用过。
- 2. IP 地址有什么作用?什么是保留地址?指出 A、B、C 三类地址各有哪些保留地址?

答:

作用: 主机或路由器在网络中的长度为 32 位的唯一标识,即 IP 地址唯一。保留地址: 也被称为私有地址,各独立网络可以重复使用的 IP 地址,即网络边界路由器(通常即使网关)不会向目标地址为这些保留地址的主机转发 IP 分组。也就是说,保留地址不会穿越内部网络。

A 类保留地址: 10.0.0.0;

B 类保留地址: 172.16.0.0~172.31.0.0

C 类保留地址: 192.168.0.0~192.168.255.0。

3. 某公司有一个 C 类地址: 192.16.12.0,请根据如下要求进行网络规划。 要求: 划分 7 个子网,且每个子网可容纳 11 台主机。

解:

 2^2 < 7 < 2^4 => 4 位作为子网地址 => 可提供 14 个子网地址 8-4=4=>4 位作为主机地址

 $2^4 > 11 + 2 \Rightarrow 满足 11 台主机的要求$

子网掩码: 240 (11110000B = 240)

子网地址可在 128、136、144、152、、232 共 14 个子网地址中选择 7 个。

4. 已知 IP 地址: 192.168.23.35/21,请说明其所属网络前缀,并给出该网络前缀所在 CID 地址块的范围。

解:

192.168.23.35 的二进制表示: 11000000101010000001011100100011

/21 说明前 21 位是 net-id: 11000000101010000001

host-id: 011100100011

地址范围: 192.168.16.0~192.168.23.255

5. 阐述 ICMP 协议的作用及其报文结构。

答:作用:在IP包无法传输时提供报告,主要有:①通告网络错误;②通告网络拥塞;③协助解决故障;⑤通告超时。

一共 32 位, 结构:

0~7:8位,表示类型:

8~15: 8 位, 代码;

16~31: 16位,校验和。

6. 在 Windows 中,实用 tracert 可以实现路由追踪目的。请说明 tracert 程序 获得路由的原理,以及 tracert 是如何知道发出的探测报文到达目的主机 的。

答:

原理:从 TTL=1 开始, tracert 不断从源 IP 向目标 IP 发出类型为 8 代码为 0 的 ICMP 查询报文,并逐次增加 TTL 值。

tracert 根据不同 TTL 值时各路由器返回的"TTL=0"(类型为 11 代码为 0)的 差错报文,即可知道经过了哪些路由器。

如何知道探测报文到达目的主机:

tracert 程序在具体实现时,是令其向目的主机发送一个 ICMP 回显请求(Echo request)消息,并重复递增 IP 头部 TTL 字段的值。刚开始的时候 TTL 等于 1,这样当该数据报抵达途中的第一个路由器时,TTL 的值就被减为 0,导致发生超时错误,因此该路由器生成一份 ICMP 超时差错报文返回给源主机。随后,主机将数据报的 TTL 值递增 1,以便 IP 报文能传递到下一个路由器,下一个路由器将会生成 ICMP 超时差错报文返回给源主机。不断重复这个过程,直到数据报到达最终的目的主机,此时目的主机将返回 ICMP 回显应答(Echo replay)消息。这样,源主机只需对返回的每一份 ICMP 报文进行解析处理,就可以掌握数据报从源主机到达目的主机途中所经过的路由信息。

7. IP 地址与 MAC 地址有什么区别?

答:

IP 地址: 是网络层上针对连接在这个网络中主机、路由器或其他设备的在全世界范围内的一个唯一吧 32 位标识符, IP 地址常被称为逻辑地址。

MAC 地址: 为了能够在数据链路层的协议中描述源/目的节点,需要在数据链路层设计相应的节点标识符,即数据链路层地址。在以太网中又被称为 MAC 地址,一共 48 位, MAC 地址也被称为物理地址、硬件地址或机器地址。

8. 阐述 ARP 协议的作用及其报文结构。

答:

作用:将 IP 地址转换位 MAC 地址(物理地址、硬件地址或机器地址)。 结构:

0~15: 硬件类型, 其中 0~7: 硬件地址长度, 8~15: 协议长度 16~31: 协议类型 (操作类型)。

硬件类型:表示硬件地址的类型,值为1表示以太网地址

协议类型:表示要映射的协议地址类型。它的值为 0x0800 表示 IP 地址类型 硬件地址长度和协议地址长度以字节为单位,对于以太网上的 IP 地址的 ARP 请求或应答来说,他们的值分别为 6 和 4;

操作类型 (op):1 表示 ARP 请求, 2 表示 ARP 应答

发送端 MAC 地址: 发送方设备的硬件地址;

发送端 IP 地址: 发送方设备的 IP 地址;

目标 MAC 地址:接收方设备的硬件地址。

目标 IP 地址:接收方设备的 IP 地址。

9. 禁用主机的 ARP 协议后,最直观的现象是什么?为什么?

答:

现象: 主机无法与其他主机进行通信。

原因: ARP 协议是将 IP 协议转换为 MAC 协议,关闭 ARP 协议后主机无法根据 IP 地址寻找对应的 MAC 地址,也就不能将数据发送到正确的目的主机上,无法完成通信。

10. 免费 ARP 有什么作用?

答:

- ① 告诉整个广播域,本地的 IP 与对应 MAC 地址;
- ② 查看在整个广播域中是否有与本地 IP 重复的 IP, 有则提示"IP 冲突"。