

Graph Theory Application in Computer Vision"Image Segmentation using Graph Cut"

Agenda

- Image as a Graph
 - Graph-based representation

- Graph Cuts
 - Min-cut/Max-flow Algorithm → Nonlinear optimization problem

- Ford-Fulkerson Algorithm
 - User Interactive example

Image as a Graph

Graph-based representation

- Two main components: Node & Edge
- Formation: $G = \langle V, E \rangle (V:node, E:Edge)$

Mini Project

Image as a Graph

- Graph-based representation
 - Two main components: Node & Edge
 - Formation: $G = \langle V, E \rangle (V:node, E:Edge)$

→ Segmentation can be regarded as a "cut" in a graph

(a) Image with seeds.

(d) Segmentation results.

Background

terminal

Min-cut/Max-flow Algorithm

- Seed is given by user by drawing
- Drawn image provides terminal nodes
 - Source and Sink
 - ♦ Cut the Graphs with a minimum cost

Energy function on a graph

$$E(L) = \sum_{p \in P} D_{P}(L_{P}) + \sum_{(p,q) \in N} V_{p,q}(L_{P}, L_{q})$$

L: Label of each pixel $L = \{L_p | p \in P\}$

D: Data Penalty Function (How the intensity of pixel po is close to the model)

V: Smoothness function (Spatial distance, color similarity)

N: Set of neighbor pixels

- There is no closed form solution → Optimization techniques are required: Min-cut/ Max-flow
- → Energy will be maximized at the ground truth

Non-linear optimization of energy function

- 1) Nodes can be formalized as $V = P \cup \{S, T\}$ P: Pixel Set, S: Source Node (Object), T: Sink node (Background)
- 2) Edges can be formalized as $E = N \cup \{\{p, S\}, \{p, T\}\}$
- 3) Data penalty function can be formalized as $D_p("object") = -\ln Pr(I_P|O)$ and $D_p("background") = -\ln Pr(I_P|B)$
- Smoothness function can be formalized as

$$V_{p,q}(L_p, L_q) = \frac{\exp\left(-\frac{\left(I_p - I_q\right)^2}{2\sigma^2}\right)}{\|p - q\|}$$

 $I_p - I_q$: Difference in Pixel Intensity, $\|p-q\|$: Spatial distance $\frac{1}{\|p-q\|}$: Considering closer pixels as the same set and further pixels as different set

Construct a graph and compute the corresponding weights

Construct a graph and compute the corresponding weights

Ford-Fulkerson Algorithm

- How can we find the min-cut path automatically?
- → Ford-Fulkerson Algorithm
- Apply the concept of "augmenting path" based on the residual graph
- Code Application