—	YTÜ Fizik Bölümü 2015-2016 Yaz Okulu FIZ1001 Fizik-1 VİZE-I		Sınav Tarihi:30 Temmuz 2016			Sınav Süresi: 90 dk.	
CD.			1.5	2.5	3.5	4.5	TOPLAM
Adı Soyadı							1
Öğrenci N	lumarası						
Bölümü							
Grup No	Sınav Yeri	Öğrencinin İmzası	YÖK'ün 2547 sayılı Kanunun Öğrenci Disiplin Yönetmeliğinin 9. Maddesi olan "Sınavlarda kopya yapmak ve yaptırmak veya buna teşebbüs etmek" fiili işleyenler bir veya iki yarıyıl uzaklaştırma cezası alırlar.				
Öğretim Üyesinin Adı Soyadı			Hesap makinası kullanılmayacaktır. Problemlerle ilgili herhangi bir soru sormayınız. Herhangi bir açıklama kesinlikle yapılmayacaktır. Çözümlerinizi okunaklı ve size ayrılan alanlarda yapınız.				

PROBLEM 1:

(i) Aşağıdaki işlemleri şekildeki iki vektörü kullanarak yapınız.

a)
$$\vec{a} - \vec{b} = ?$$
 $\vec{Q} = 3 (\cos 60^{\circ} 1 + \sin 60^{\circ}) \vec{f}$
 $\sin 30 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 30^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} \vec{f}$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1 + \sin 60^{\circ} 1$
 $\sin 60 = \cos 60^{\circ} 1 + \cos 60^{\circ} 1$

$$\vec{\alpha} - \vec{b} = \frac{3 - 2\sqrt{3}}{2} \hat{i} + \frac{3\sqrt{3} + 1}{2} \hat{j} (m)$$

b)
$$\vec{a} \cdot \vec{b} = ?$$

$$\vec{a} \cdot \vec{b} = \frac{3\sqrt{3}}{2} - \frac{3\sqrt{3}}{2} = 0$$

10

c)
$$\vec{a} \times \vec{b} = ?$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{3}{2} & 3\sqrt{3} \frac{3}{2} & 0 \\ \sqrt{3} & -1 & 0 \end{vmatrix} = \hat{k} \left(-\frac{3}{2} - \frac{9}{2} \right)$$

(ii) Bir araba trafik ışığında durmuştur. Sonra, araba düz bir yol boyunca ilerlemektedir. Trafik ışığına olan uzaklık ise $x(t) = bt^2 - ct^3$ şeklinde değişmektedir. Burada, $b = 2.40m/s^2$ ve $c = 0.120m/cm^3$ 'dir.

a) t=0 ve t=10s süreleri arasındaki arabanın ortalama hızını hesaplayınız.

$$\overline{V} = \frac{\Delta \times}{\Delta \pm} = \frac{\times (+=10) - \times (+=0)}{10 - 0}$$
 (3)

$$= \frac{240 - 120}{10} = 12 m/s (2)$$

b) t = 5s 'de arabanın anlık hızını hesaplayınız.

$$V = \frac{dx}{dt} = 2bt - 3ct^2$$
 3
 $V(t=5) = 24 - 9 = 15 \text{ m/s}$ 2

c) Araba başlangıçtaki durgun halden ne kadar süre sonra tekrar durur?

$$V = 0 = 2bt - 3ct^2$$
 3
 $t = \frac{2b}{3c} = \frac{40}{3} s$ 2

PROBLEM 2: Bir cisim v_0 başlangıç hızı ve 60^o açı ile , $\sqrt{3}H$ 'lik mesafede bulunan H yüksekliğindeki bir duvara doğru fırlatılmaktadır.

a) Cismin izlediği yörüngenin hızının zamanın fonksiyonu olarak x- ve y-bileşenleri nedir? Cevabınızı v_0 ve g cinsinden ifade ediniz.

$$V_{x} = V_{0x} = const$$

$$V_{x} = V_{0} cos 60 = \frac{V_{0}}{2}$$

$$V_{y} = V_{0y} - gt$$

$$V_{y} = V_{0} sin 60^{\circ} - gt$$

$$V_{y} = \frac{\sqrt{3}}{2} V_{0} - gt$$

$$V_{y} = \frac{\sqrt{3}}{2} V_{0} - gt$$

$$\sqrt{3}$$

b) Yörüngenin x- ve y-koordinatları zamanın fonksiyonu olarak nedir? Cevabınızı v_0 ve $\,g$ cinsinden ifade ediniz.

(1)
$$X = V_{0x}t = \frac{V_{0}t}{2}t$$
 (3)
(2) $y = V_{0y}t - \frac{1}{2}gt^{2}$
 $= \frac{\sqrt{3}}{2}V_{0}t - \frac{1}{2}gt^{2}$ (3)

c) Sizin göreviniz cismi duvarı aşacak şekilde başlangıç hızı ile atmaktır. Bunu gerçekleştirecek olan minimum hızı belirleyiniz. Cevabınızı H ve g cinsinden ifade ediniz.

(1)
$$\sqrt{3}H = \frac{V_0}{2}t_c$$

 $t_c = \frac{2\sqrt{3}H}{V_0}$

(2)
$$y = \frac{\sqrt{3}}{2} V_0 t_c - \frac{1}{2} g t_c^2 > H$$
 (3)
 $= \frac{\sqrt{3}}{2} V_0 \frac{2\sqrt{3}'H}{V_0} - \frac{1}{2} g \left(\frac{2\sqrt{3}'H}{V_0}\right)^2$
 $V_0 > \sqrt{3}gH$ (5)

PROBLEM 3: Kütlesi m_1 olan bir blok, kütlesi m_2 olan ikinci bir üzerinde durmaktadır. İki blok ise yataya göre θ açısı olan bir eğik düzlem üzerinde durmaktadır. Eğik düzlem ve m2kütlesi arasındaki yüzey sıfırdan farklı μ_k kinetik sürtünme katsayısına sahiptir. İki blok arasındaki yüzey ise sürtünmesizdir.

a) İki kütle için serbest-cisim diyagramını çiziniz. Her iki diyagrama koordinat sistemi eklemeyi unutmayınız.

b) Koordinat sisteminize göre her bir cisim için Newton'un ikinci denklemini yazınız.

(4)
$$\Sigma F_y = n_2 - n_1 - m_2 g \cos \theta = 0$$
 ①

c) Daha aşağıda bulunan m₂ kütleli bloğun ivmesini bilinen nicelikler θ , μ_k , m_1 , m_2 ve g cinsinden bulunuz.

(4)
$$n_2 = n_1 + m_2 g \cos \theta$$

(6)
$$a_2 = \frac{m_2 \sin \theta - \mu_k (m_1 + m_2) \cos \theta}{m_1} g$$
 3

d) m_2 Bloğunun kaymasını önlemek için m_1 kütlesinin minimum değeri ne olmalıdır?

$$m_2 \sin \theta = \mu_k (m_1 + m_2) \cos \theta$$

$$m_1 = \frac{m_2 (sin\theta - \mu_k \cos \theta)}{\mu_k \cos \theta}$$

PROBLEM 4: (i) Bir motosiklet dikey bir düzlem üzerindeki dairesel bir yolda, düzgün olmayan bir dairesel hareket yapmaktadır. Dikey eksende en üst ve en alt noktalardaki yüzeyin normal (tepki) kuvvetlerini bulunuz.

A:
$$\int_{mg}^{n_{A}} 0$$

 $n_{A} - mg = \frac{mV_{A}^{2}}{C}$ 2
 $n_{A} = 10 + 5^{2} = 25N$ 2

$$n_B + mg\cos \theta = \frac{m V_B^2}{\Gamma}$$
 (2)
 $n_R = 3^2 - 8 = 1 N$ (2)

(ii) Aşağıdaki sistem durgun halden başlamaktadır. d=1m lik bir yer değiştirmeden sonra cisimler üzerine etki eden her bir kuvvetin yaptığı işi bulunuz. (Yalnız ip ve makaralar kütlesiz ve sürtünmesizdir.)

Burada , m=10kg, F=300N, $\theta=37^o$, $\mu_k=0.5$, $g=10m/s^2$, $\cos 37^o=0.8$ ve $\sin 37^o=0.6$, olarak

(2)
$$W_T = W_0 = 0$$

b) Cisimlerin d=1 m deki hızlarını bulunuz.

$$\sum W = \Delta K = K_f - K_f^{-1} \bigcirc \bigcirc$$

$$\sum W = \frac{1}{2} m v_f^2 \bigcirc$$

$$80 = \frac{1}{2} 10 v_f^2 \bigcirc$$

$$V_f = 4 m/s \bigcirc$$