ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ

ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ

TPAMMIKH AATEBPA (HY-119)

ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ.

ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

ΤΟΥ ΜΑΘΗΜΑΤΟΣ

ΗΡΑΚΛΕΙΟ 2009

DIANYIMATIKOS YNOXOPOS ENOS DIANYSMATINOY XOPOY

Έστω ένας πραγματικός διανυσματικός χώρος V. Ένα μη-κενό υποσύνολο W του V (Sn). WEV με W+Ø) είναι διανυσμα-Τικός υπόχωρος του V αV;

1) (x+y) ∈ W, + x,y ∈ W (Sn). To W Givan Klasto WS

Npos The nposlesson)

Kou

2) (AX) EW, XXEW man & AER (Snl. to W Eivan Klasto us noos tov nolland/sho he nexthatino apilho)

IHMEIOIEII:

1) Για να δείδουμε ότι ένα δύνολο V είναι πραγματιμός δ. χ. πρέπει να δείδουμε ότι 16χύουν και οι 8 ιδιότητες του ορισμού (βλ. παδιό-Τερο μάθημα)

2) Για να δείξουμε ότι ένα δύνολο W είναι διαννιματικός υπόχωρος ενός διανυβματικώ χώρου, αρκά να δείξουμε ότι ισχύουν οι 4 ιδιότη-Τες: α) W C V

B) W + 0

Y) W eivar x2016 to us noos tru noo69EGY

S) W Eiva Klucto Ws noos Tov noll/cho LE neaghativo apilho

MAPATHPHIEII: EGTW EVAS S.X. V, TOTE:

- · Kals Slavuspatinos unoxupos tou V sival karo idios Slavuspatinos xúpos
- · To puserino GTOIXEIO O XVINER GE KÀDE UNOXWPO TOU V
- · Το μονοβύνολο {o} είναι υποχωρος (ονομάζεται τετριμμένος υποχωρος)
 Του V
- · Av W1, W2 Eival unoxwpol Tou V TOTE:
 - a) Win Wz sival enions Moxwpos Tou V
 - B) WI U We YEVING DEN EIVAN UNOXWOODS TOU V

MOPISMA ****

- OI SIAVUGUATIKOI UNOXWPOI TOU S.X. IR EIVON:
- 1) 'Olo To IR2
- 2) KäßE Eußeia nou nepvà and to $\vec{O} = (0,0)$ Snl. KäßE $L = \{(x,y) \in \mathbb{R}^2 \setminus \alpha x + \beta y = 0\}$ Onou Toulàxistov Eva and ta α, β eivay $\neq 0$

Infilmen: Extos and ws Reapplied Estables opo 0, pla Eustia Gov \mathbb{R}^2 proper va Reaptri kan ws nollandaglo exis Slavispatos tou \mathbb{R}^2 $\Pi.X.$ To Givodo $L = \{(X,Y) \in \mathbb{R}^2 \mid (X,Y) = \lambda(2,1), \lambda \in \mathbb{R}^2\}$ Eivan n Eustia 6Th SieùJuven Tou Slavispatos (2,1)

3) O TETPIHIÈVOS UNO XWPOS $\{\vec{o}\}=\{(0,0)\}$

MOPIEMA ***

- OI SIAVUGLIATINOI UNOXWPOI TOU S.X. IR3 EIVOU:
- 1) 'Olo To [R3
- 2) Kä g_{ϵ} Enine so now nepvà and to $\vec{O}=(0,0,0)$ Sn]. Kä g_{ϵ} $E=\left\{(x,y,z)\in \mathbb{R}^3\setminus \alpha x+\beta y+\gamma z=0\right\}$ Onow toulàxistov èva and ta α,β,γ sivou $\neq 0$
- 3) Kà DE EUDEIA MOU NEPVA ANÓ TO $\vec{O} = (0,0,0)$ Snl. Kà DE $L = \{(x,y,z) \in \mathbb{R}^3 \mid \alpha_1 x + \beta_1 y + \beta_2 z = 0 \}$ Onou Toulàxietov Eva anó Ta $\alpha_1, \beta_1 \beta_1$ Eivan $\neq 0$ man Finleov $\neq \lambda \in \mathbb{R}$ Toulàxietov Eva anó Ta $\alpha_1, \beta_2, \beta_2$ Eivan $\neq 0$ man Eninleov $\neq \lambda \in \mathbb{R}$ T. W. $(\alpha_2, \beta_2 \gamma_2) = \lambda (\alpha_{11} \beta_{11} \gamma_1)$ M'àlla lòpia n Topia Suo Enine Suv nou Seu Euphintour mai nepvàre anó To $\vec{o} = (0,0,0)$

Inhawan: Εκτός από ως τομή 2 επιπέδων, μια ευθεία 6τον \mathbb{R}^3 που περνά από το $\tilde{O}=(0,0,0)$ μπορεί να γραφτεί και ως πολλαπλάδιο ως διανύδματος του \mathbb{R}^3 .

 $\Pi.X.$ To 6 Uvolo $L = \{(x,y,z) \in \mathbb{R}^3 \setminus (x,y,z) = \lambda(-1,0,2), \lambda \in \mathbb{R}^3 \}$ Eivan in which for Siever tou Siever for (-1,0,2)

4) O TETPIFFÉVOS UNO XWPOS $\{\vec{O}\}=\{(0,0,0)\}$

MOPISMA (***

- OI Slavuspatinoi uno xwpoi svos onolous innote R" sivar:
- 1) '020 TO R"
- 2) Kälz unepenine 80 nov nepvä and to $\vec{O} = (0,0,...,0)$ δ nl. Kälz $E = \{(X_1, X_2,..., X_n) \in \mathbb{R}^n \mid \alpha_1 X_1 + \alpha_2 X_2 + ... + \alpha_n X_n = 0\}$ Onov touläxistov eva and ta $\alpha_1, \alpha_2,...,\alpha_n$ eiva $\neq 0$
- 3) Onoiasinote topig 2 is nepi6iotepur unepeninedur nou neprodrano to $\vec{o} = (0,0,...,0)$
- 4) O TETPIHIEVOS UNOXUPOS [O]= {(0,0,...,0)}

AIKHIH: $\Delta \epsilon i I \tau \epsilon$ ot 1 to 60 volo $W = \{(x,y,Z) \mid x+2y-Z=0 \neq \epsilon x,y,Z \in \mathbb{R}\}$ Eivan Standfunds unoxwpos tou \mathbb{R}^3

1064

10s Tponos (anlos): To W papietavel to enine So tou \mathbb{R}^3 be estimand X+2y-z=0, to onois prepria and to $\vec{o}=(0,0,0)$ kalapa Eival Stavuepatikės unoxwpos tou \mathbb{R}^3

205 Tponos (48 Bagn Tov opicho):

- d) To W nepiexu 3 ales nparkativier apidine. Apa, WER3
- B) Eva npopavés Siavopa nou avine 6 to W Eival to 0=(0,0,0). Apa W+0
- Y) $\vec{V}_1 = (X_1, y_1, Z_1)$ kay $\vec{V}_2 = (X_2, y_2, Z_2)$ Sio onolasinote Siavishata to W. Tote $X_1 + 2y_1 Z_1 = 0$ kay $X_2 + 2y_2 Z_2 = 0$.

θα δείδουμε ότι και το άθροιβρα Vi + V2 € W.

Exorps: $\vec{V}_1 + \vec{V}_2 = (X_1 + X_2, y_1 + y_2, Z_1 + Z_2)$ To onoid fix va avigues 6To \vec{W} da apénes: $(X_1 + X_2) + 2(y_1 + y_2) - (Z_1 + Z_2) = 0$ To onoid 16 χ 0'4, χ 400:

 $(X_1+X_2)+2(y_1+y_2)-(Z_1+Z_2)=(X_1+2y_1-Z_1)+(X_2+2y_2-Z_2)=0$

Enopievus, $\vec{V}_1 + \vec{V}_2 \in W$, $\forall \vec{V}_1, \vec{V}_2 \in W$ Snl. To W eivou klusto ws noos the noodes

S) 'EGTW V1=(X1, y1, ₹1) € W.

Da Scisoupe oti kan to Kivopero AV, EW, & JER.

Έχουμε: $\vec{A}\vec{V}_1 = \vec{A}(X_1, Y_1, Z_1) = (\vec{A}X_1, \vec{A}Y_1, \vec{A}Z_1)$ το οποίο ανώνα δτο \vec{W} , αφού: $(\vec{A}X_1) + 2(\vec{A}Y_1) - (\vec{A}Z_1) = \vec{A}(X_1 + 2Y_1 - Z_1) = 0$

'Apa, AVIEW, + VIEW KAN Y JER

Snd. To W Eivau Klasto Ws noos Tov nola/spo pe nearfeatino apilho.

Deisahe ot: \\ W ≠ Ø \\ W είναι κλαιτό ως προς των πρόεθεση \\ W >> >> ως προς των πολλ/μό με πραγματικό αριθμό \\ Επομένως, το W είναι διαννεβατικός υπόχωρος του R³

AIKHIH: Na EŠETACTEI dv To GÜVOJO $U = \{(x,y,z) \mid 2x + y + 3z = 6 \text{ pe } X,y,z \in \mathbb{R}\}$ Eivan Stannehatthos unoxwoos tou \mathbb{R}^3

1064

10s Tpinos (andis): To U napietave to enine do tou \mathbb{R}^3 με ε \overline{I} iewen 2x+y+3z=6 το οποίο δεν περνά από το $\overline{O}=(0,0,0)$, αφού $2\cdot 0+0+3\cdot 0=0 \neq 6$. Αρα το εύνολο \overline{U} δεν είναι διανυεματικός υπόχωρος του \overline{R}^3 20s Tpinos (με βάω τον οριεμό): Προφανώς, $\overline{U}\subseteq \overline{R}^3$ και $\overline{U}\neq \emptyset$, αλλά αν παρούμε δύο οποίαδήποτε διανύθματα $\vec{V}_1=(x_1,y_1,Z_1)$ και $\vec{V}_2=(x_2,y_2,Z_2)$ εχουμε: $\vec{V}_1+\vec{V}_2=(x_1+x_2,y_1+y_2,Z_1+Z_2)$ για το οποίο:

 $2(X_1+X_2)+(y_1+y_2)+3(Z_1+Z_2)=(2X_1+y_1+3Z_2)+(2X_2+y_2+3Z_2)=12\neq 6$ $A_{Q} = V_1+V_2 \notin U$ $S_{D} = 0$ Sev sival Kileto we spoe the spoed the specific was given in

SEV Eivai Siavuchatinos unoxmpos Tou IR3

AIKHIH: Na EJETAGTEI du TO GÜVOJO $V = \{(x,y) \mid x^2 + y^2 = 0 \text{ } \mu \in X, y \in \mathbb{R}\}$ Eivai δ iavughatikos unoxupos tou \mathbb{R}^2

NUCY

Fix käle $(x_1y) \in V$ exoupe: $X^2 + y^2 = 0 \iff \{x = 0 \text{ kou } y = 0\}$ Apa, to V sepiexel povo to pubeviko biàvulpa $\vec{\sigma} = (0,0)$, bulabu $V = \{\vec{\sigma}\}$ nou eival o tetpippevos unoxupos tou \mathbb{R}^2

<u>ΓΡΑΜΜΙΚΩΣ ΕΞΑΡΤΗΜΕΝΑ</u> & ΓΡΑΜΜΙΚΩΣ ΑΝΕΞΑΡΤΗΤΑ ΔΙΑΝΥΣΜΑΤΑ

Φ ΓΡΑΜΜΙΚΩΣ ΕΞΑΡΤΗΜΕΝΑ ΔΙΑΝΥΣΜΑΤΑ: Τα διανύσματα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ ενός διανυσματικού χώρου \mathbb{R}^m είναι γραμμικώς εξαρτημένα ανν υπάρχουν συντελεστές $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$ με τουλάχιστον έναν από αυτούς $\neq 0$, τέτοιοι ώστε:

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_k \vec{v}_k = \vec{0}$$

<u>Παρατήρηση (άλλος ορισμός):</u> Τα διανύσματα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ ενός διανυσματικού χώρου \mathbb{R}^m είναι γραμμικώς εξαρτημένα ανν τουλάχιστον ένα από αυτά μπορεί να γραφτεί ως γραμμικός συνδυασμός των υπολοίπων.

Απόδειξη

{γραμμικώς εξαρτημένα} ανν $\{\exists \text{ τουλάχιστον ένα } \lambda_i \neq 0 \text{ τ.ω.} \}$

$$\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_i \vec{v}_i + \dots + \lambda_k \vec{v}_k = \vec{0} \} \iff \vec{v}_i = -\frac{\lambda_1}{\lambda_i} \vec{v}_1 - \frac{\lambda_2}{\lambda_i} \vec{v}_2 - \dots - \frac{\lambda_k}{\lambda_i} \vec{v}_k$$

(δηλ. το \vec{v}_i γράφεται ως γραμμικός συνδυασμός των υπολοίπων).

* ΓΡΑΜΜΙΚΩΣ ΑΝΕΞΑΡΤΗΤΑ ΔΙΑΝΥΣΜΑΤΑ: Τα διανύσματα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ ενός διανυσματικού χώρου \mathbb{R}^m είναι γραμμικώς ανεξάρτητα ανν δεν είναι γραμμικώς εξαρτημένα. Δηλαδή,

ανν η σχέση: $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k = \vec{0}$ ισχύει <u>μόνο</u> για $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$.

Δηλ. δεν υπάρχει ούτε ένα $\lambda_i \neq 0$ τ.ω. $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k = \vec{0}$

Παρατήρηση: Η σχέση $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k = \vec{0}$ γράφεται ισοδύναμα ως:

$$\underbrace{ \begin{bmatrix} \vec{v}_1 \ | \ \vec{v}_2 \ | \cdots \ | \ \vec{v}_k \end{bmatrix} }_{\text{pinakas me sthles twn}} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_k \end{bmatrix} = \vec{0}$$

το οποίο είναι ένα ομογενές σύστημα της μορφής $A\vec{x}=\vec{0}$. Άρα, για να εξετάσουμε αν τα διανύσματα $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k$ είναι γραμμικώς εξαρτημένα ή γραμμικώς ανεξάρτητα, σχηματίζουμε τον πίνακα $A=\begin{bmatrix}\vec{v}_1 \mid \vec{v}_2 \mid \cdots \mid \vec{v}_k\end{bmatrix}$ και εξετάζουμε αν το σύστημα $A\vec{x}=\vec{0}$ έχει μοναδική λύση τη $\vec{x}=\vec{0}$ ή έχει άπειρες λύσεις. Συγκεκριμένα:

- α) Αν r(A) = k τότε τα διανύσματα είναι γραμμικώς ανεξάρτητα (το σύστημα $A\vec{x} = \vec{0}$ έχει μοναδική λύση τη $\vec{x} = \vec{0}$)
- β) Αν r(A) < k τότε τα διανύσματα είναι γραμμικώς εξαρτημένα (το σύστημα $A\vec{x} = \vec{0}$ έχει άπειρες λύσεις)

<u>Παράδειγμα:</u> Εξετάστε αν τα παρακάτω διανύσματα του \mathbb{R}^4 είναι γραμμικώς ανεξάρτητα ή όχι.

$$\vec{v}_1 = (1, -2, 0, 1), \quad \vec{v}_2 = (-2, 0, 3, -1), \quad \vec{v}_3 = (-1, -2, 3, 0)$$

Λύση

$$\lambda_1\vec{v}_1 + \lambda_2\vec{v}_2 + \lambda_3\vec{v}_3 = \vec{0} \iff \lambda_1\begin{bmatrix} 1\\ -2\\ 0\\ 1 \end{bmatrix} + \lambda_2\begin{bmatrix} -2\\ 0\\ 3\\ -1 \end{bmatrix} + \lambda_3\begin{bmatrix} -1\\ -2\\ 3\\ 0 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ -2\lambda_1 - 2\lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ 3\lambda_2 + 3\lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix} \iff \begin{bmatrix} \lambda_1 - 2\lambda_2 - \lambda_3\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ \lambda_1 - \lambda_2 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ \lambda_1 - \lambda_2 \end{bmatrix} =$$

$$\Leftrightarrow \begin{bmatrix} 1 & -2 & -1 \\ -2 & 0 & -2 \\ 0 & 3 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & -1 \\ -2 & 0 & -2 \\ 0 & 3 & 3 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{2} \stackrel{(-1)}{\longleftarrow} \longrightarrow \begin{bmatrix} 1 & -2 & -1 \\ 0 & -4 & -4 \\ 0 & 3 & 3 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{3/4} \xrightarrow{1/4} \longrightarrow \begin{bmatrix} 1 & -2 & -1 \\ 0 & -4 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = U$$

 $r(A) = \{ \pi \lambda \dot{\eta} \theta \text{ος μη-μηδενικών γραμμών του } U \} = 2 \;, \; \delta \eta \lambda. \quad r(A) < k = 3 \quad \text{και επομένως, το σύστημα} \quad A \vec{x} = \vec{0} \quad \text{έχει άπειρες λύσεις, δηλ. υπάρχει } (\lambda_1, \lambda_2, \lambda_3) \neq (0, 0, 0) \quad \text{τ.ω.} \\ \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 = \vec{0} \;. \; \text{Επομένως, τα} \; \vec{v}_1, \vec{v}_2, \vec{v}_3 \; \text{είναι γραμμικώς εξαρτημένα.}$

Σημείωση: Στο τελευταίο παράδειγμα, ξεκινήσαμε τη διαδικασία από τη σχέση $\lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 = \vec{0}$, για λόγους κατανόησης. Μπορούσαμε να ξεκινήσουμε φτιάχνοντας κατευθείαν τον πίνακα A με στήλες τις συνιστώσες των διανυσμάτων $\vec{v}_1, \vec{v}_2, \vec{v}_3$.

Δσκηση: Εξετάστε αν τα παρακάτω διανύσματα του \mathbb{R}^4 είναι γραμμικώς ανεξάρτητα ή όχι.

$$\vec{v}_1 = (1,7,6,3), \quad \vec{v}_2 = (2,-1,5,4), \quad \vec{v}_3 = (-3,-3,0,-1), \quad \vec{v}_4 = (0,4,2,1)$$

<u>Λύση</u>

Ο πίνακας με στήλες τις συνιστώσες των διανυσμάτων $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ γράφεται ως:

$$A = \begin{bmatrix} 1 & 2 & -3 & 0 \\ 7 & -1 & -3 & 4 \\ 6 & 5 & 0 & 2 \\ 3 & 4 & -1 & 1 \end{bmatrix}$$

Μπορούμε, να βρούμε την r(A) υπολογίζοντας πρώτα τον U, όπως κάναμε στο προηγούμενο παράδειγμα. Εναλλακτικά, επειδή ο A είναι τετραγωνικός μπορούμε να υπολογίσουμε την ορίζουσα του. Έχουμε (κάνετε αν θέλετε μόνοι σας τον υπολογισμό): $\det A = -56, \, \delta \eta \lambda \alpha \delta \dot{\eta} \, \det A \neq 0 \, \, \text{και άρα το ομογενές σύστημα} \, A \vec{x} = \vec{0} \, \, \text{έχει μοναδική λύση}$ τη $\vec{x} = \vec{0}$. Άρα, τα $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ είναι γραμμικώς ανεξάρτητα.

ΣΗΜΑΝΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ

1) Κάθε διάνυσμα $\vec{v}_1 \neq \vec{0}$ μόνο του, είναι γραμμικώς ανεξάρτητο, γιατί η σχέση $\lambda_1 \vec{v}_1 = \vec{0}$ ισχύει μόνο εάν $\lambda_1 = 0$.

π.χ. η σχέση
$$\lambda_1\begin{bmatrix}1\\-2\\0\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\\0\end{bmatrix}$$
 ισχύει μόνο για $\lambda_1=0$.

- 2) Αντίθετα, το μηδενικό διάνυσμα $\vec{0}$ μόνο του, είναι γραμμικώς εξαρτημένο, γιατί η σχέση $\lambda_1 \vec{0} = \vec{0}$ ισχύει και για $\lambda_1 \neq 0$.
- **3)** Επίσης, αν ένα από τα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ είναι το $\vec{0}$ τότε είναι γραμμικώς εξαρτημένα. π.χ. έστω $\vec{v}_1, \vec{0}, ..., \vec{v}_k$, τότε σίγουρα ισχύει: $0\vec{v}_1 + 1\vec{0} + \cdots + 0\vec{v}_k = \vec{0}$, δηλαδή $\lambda_2 = 1 \neq 0$
- 4) Αν $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ είναι γραμμικώς εξαρτημένα τότε και τα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k, \vec{v}_{k+1}, ..., \vec{v}_\rho$ είναι γραμμικώς εξαρτημένα. (Δηλαδή, αν σε ένα πλήθος γραμμικώς εξαρτημένων διανυσμάτων βάλουμε και άλλα διανύσματα, τότε όλα μαζί είναι και πάλι γραμμικώς εξαρτημένα).
- 5) Αν από ένα πλήθος γραμμικώς ανεξάρτητων διανυσμάτων βγάλουμε κάποια αυτά τότε όσα μένουν είναι και πάλι γραμμικώς ανεξάρτητα.

π.χ. αν θεωρήσουμε τα διανύσματα:

$$\vec{v}_1 = (1,7,6,3), \quad \vec{v}_2 = (2,-1,5,4), \quad \vec{v}_3 = (-3,-3,0,-1), \quad \vec{v}_4 = (0,4,2,1)$$

που όπως είδαμε στην παραπάνω άσκηση είναι γραμμικώς ανεξάρτητα, τότε:

τα $\vec{v}_1, \vec{v}_2, \vec{v}_3$ είναι γραμμικώς ανεξάρτητα.

τα $\vec{v}_1, \vec{v}_2, \vec{v}_4$ είναι γραμμικώς ανεξάρτητα.

τα $\vec{v}_1, \vec{v}_3, \vec{v}_4$ είναι γραμμικώς ανεξάρτητα.

τα $\vec{v}_2, \vec{v}_3, \vec{v}_4$ είναι γραμμικώς ανεξάρτητα.

τα \vec{v}_1, \vec{v}_2 είναι γραμμικώς ανεξάρτητα.

τα \vec{v}_1, \vec{v}_3 είναι γραμμικώς ανεξάρτητα, κ.λ.π.

6) Αν k>m τότε τα διανύσματα $\vec{v}_1,\vec{v}_2,...,\vec{v}_k\in\mathbb{R}^m$ είναι σίγουρα γραμμικώς εξαρτημένα.

Αυτό μπορεί να εξηγηθεί ως εξής: ο πίνακας $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_k \end{bmatrix}$ είναι $m \times k$, άρα $r(A) \leq \min(m,k) = m < k$, και άρα το ομογενές σύστημα $A\vec{x} = \vec{0}$ έχει άπειρες λύσεις. Έτσι:

- 3ή περισσότερα διανύσματα του \mathbb{R}^2 είναι πάντα γραμμικώς εξαρτημένα
- 4 ή περισσότερα διανύσματα του \mathbb{R}^3 είναι πάντα γραμμικώς εξαρτημένα
- 5 ή περισσότερα διανύσματα του \mathbb{R}^4 είναι πάντα γραμμικώς εξαρτημένα κ.λ.π.
- 7) Δυο διανύσματα $\vec{v}_1, \vec{v}_2 \in \mathbb{R}^m$ είναι γραμμικώς εξαρτημένα, ανν $\exists \lambda \in \mathbb{R}$ τ.ω. $\vec{v}_2 = \lambda \vec{v}_1$. π.χ. τα $\vec{v}_1 = (-2,1,0,-3)$, $\vec{v}_2 = (-4,2,0,-6)$, είναι γραμμικώς εξαρτημένα, γιατί $\vec{v}_2 = 2\vec{v}_1$ αντίθετα, τα $\vec{v}_1 = (-2,1,0,-3)$, $\vec{v}_2 = (-4,3,0,-6)$ είναι γραμμικώς ανεξάρτητα, γιατί $\not\exists \lambda \in \mathbb{R}$ τ.ω. $\vec{v}_2 = \lambda \vec{v}_1$.

<u>ΓΡΑΜΜΙΚΗ ΕΞΑΡΤΗΣΗ & ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΣΤΟΝ</u> \mathbb{R}^2

Αν φανταστούμε τα διανύσματα του \mathbb{R}^2 ως «βελάκια» με αρχή το (0,0) και τέλος τη θέση (x,y) των συνιστωσών του, τότε από την παραπάνω παρατήρηση 7, προκύπτει ότι δύο διανύσματα στον \mathbb{R}^2 είναι γραμμικώς εξαρτημένα ανν είναι συνευθειακά

π.χ.
$$\vec{v}_1 = (-2,1)$$
 και $\vec{v}_2 = (4,-2)$, όπου $\vec{v}_2 = -2\vec{v}_1$

Επομένως, 2 μη-συνευθειακά διανύσματα του \mathbb{R}^2 είναι γραμμικώς ανεξάρτητα. π.χ. αν $\vec{v}_1=(-2,1)$ και $\vec{v}_2=(4,1)$, τότε $\not\equiv \lambda \in \mathbb{R}$ τ.ω. $\vec{v}_2=\lambda \vec{v}_1$.

Επίσης, στην παρατήρηση 6, είδαμε ότι 3 ή περισσότερα διανύσματα του \mathbb{R}^2 είναι πάντα γραμμικώς εξαρτημένα.

Για παράδειγμα, για 3 οποιαδήποτε διανύσματα $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^2$, τουλάχιστον ένα από αυτά γράφεται ως γραμμικός συνδυασμός των άλλων δυο $(\pi.\chi.\ \vec{v}_3 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2)$ και άρα τα $\vec{v}_1, \vec{v}_2, \vec{v}_3$ είναι γραμμικώς εξαρτημένα.

Δσκηση: Έστω $\vec{v}_1 = (-2,1)$, $\vec{v}_2 = (4,1)$, $\vec{v}_3 = \left(2,\frac{3}{2}\right)$. Βρείτε $\lambda_1,\lambda_2 \in \mathbb{R}$ τέτοια ώστε $\vec{v}_3 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2$. Κατόπιν, δείξτε το σχηματικά χρησιμοποιώντας τον κανόνα του παραλληλογράμμου.

Λύση

$$\vec{v}_3 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 \iff \begin{bmatrix} 2 \\ 3/2 \end{bmatrix} = \lambda_1 \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 4 \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 \\ 3/2 \end{bmatrix} = \begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

δηλ. θέλουμε να λύσουμε το σύστημα: $\begin{bmatrix} -2 & 4 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3/2 \end{bmatrix}$. Έχουμε:

$$\begin{bmatrix} A \mid \vec{b} \end{bmatrix} = \begin{bmatrix} -2 & 4 \mid & 2 \\ 1 & 1 \mid & 3/2 \end{bmatrix} \xrightarrow{1/2} \longrightarrow \begin{bmatrix} -2 & 4 \mid & 2 \\ 0 & 3 \mid & 5/2 \end{bmatrix}$$

Ανάδρομη αντικατάσταση:

$$2^{\eta}$$
 εξίσωση: $3\lambda_2 = \frac{5}{2} \Rightarrow \lambda_2 = \frac{5}{6}$

$$1^{\eta}$$
 εξίσωση: $-2\lambda_1 + 4\lambda_2 = 2 \implies -2\lambda_1 + 4\frac{5}{6} = 2 \implies \lambda_1 = \frac{2}{3}$

Επομένως:
$$\vec{v}_3 = \frac{2}{3}\vec{v}_1 + \frac{5}{6}\vec{v}_2$$

<u>ΓΡΑΜΜΙΚΗ ΕΞΑΡΤΗΣΗ & ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΣΤΟΝ</u> \mathbb{R}^3

Αν φανταστούμε τα διανύσματα του \mathbb{R}^3 ως «βελάκια» με αρχή το (0,0,0) και τέλος τη θέση (x,y,z) των συνιστωσών του, τότε από την παραπάνω παρατήρηση 7, προκύπτει ότι δύο διανύσματα στον \mathbb{R}^3 είναι γραμμικώς εξαρτημένα ανν είναι συνευθειακά

π.χ.
$$\vec{v}_1 = (-1,3,-5)$$
 και $\vec{v}_2 = (3,-9,15)$, όπου $\vec{v}_2 = -3\vec{v}_1$ δηλαδή και τα δύο βρίσκονται στην ίδια ευθεία που περνά από το $\vec{0} = (0,0,0)$

Επομένως, δύο μη-συνευθειακά διανύσματα του \mathbb{R}^3 είναι γραμμικώς ανεξάρτητα. π.χ. αν $\vec{v}_1=(-1,3,-5)$ και $\vec{v}_2=(3,6,15)$, τότε $\not\exists \lambda \in \mathbb{R}$ τ.ω. $\vec{v}_2=\lambda \vec{v}_1$.

Σημείωση: Τρία διανύσματα στον \mathbb{R}^3 είναι γραμμικώς εξαρτημένα ανν είναι συνεπίπεδα. Δηλαδή, ανήκουν στο ίδιο επίπεδο που περνά από το $\vec{0} = (0,0,0)$.

Επίσης, στην παρατήρηση 6, είδαμε ότι 4 ή περισσότερα διανύσματα του \mathbb{R}^3 είναι πάντα γραμμικώς εξαρτημένα.

Για παράδειγμα, για 4 οποιαδήποτε διανύσματα $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in \mathbb{R}^3$, τουλάχιστον ένα από αυτά γράφεται ως γραμμικός συνδυασμός των άλλων τριών (π.χ. $\vec{v}_4 = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3$) και άρα τα $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ είναι γραμμικώς εξαρτημένα.

<u>Θεώρημα:</u> Έστω τα διανύσματα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ ενός διανυσματικού χώρου \mathbb{R}^m . Το σύνολο των γραμμικών συνδυασμών τους, δηλαδή το σύνολο:

$$V = \left\{ \vec{v} \in \mathbb{R}^m \ \text{t.o.} \ \vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \dots + \lambda_{\kappa} \vec{v}_k \ \text{ for } \lambda_1, \lambda_2, \dots, \lambda_{\kappa} \in \mathbb{R} \right\}$$

είναι διανυσματικός υπόχωρος του \mathbb{R}^m .

ΟΡΙΣΜΟΣ: Έστω V ένας διανυσματικός υπόχωρος του \mathbb{R}^m . Λέμε ότι τα διανύσματα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ του \mathbb{R}^m <u>παράγουν</u> τον V αν:

1) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in V$

και

2) $\forall \vec{v} \in V$, $\exists \lambda_1, \lambda_2, ..., \lambda_\kappa \in \mathbb{R}$, τ.ω. $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_\kappa \vec{v}_k$ (δηλ. κάθε διάνυσμα του V μπορεί να γραφτεί ως γραμμικός συνδυασμός των $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$)

Συμβολισμός: $V = \langle \vec{v}_1, \vec{v}_2, ..., \vec{v}_k \rangle$ σημαίνει ότι τα $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ παράγουν το V

ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ ΔΙΑΝΥΣΜΑΤΙΚΟΥ ΧΩΡΟΥ

ΟΡΙΣΜΟΣ: Βάση ενός διανυσματικού χώρου V είναι ένα σύνολο γραμμικώς ανεξάρτητων διανυσμάτων που παράγουν το V.

Με άλλα λόγια, το σύνολο $\mathbb{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ είναι βάση του V αν:

1) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in V$

και

2) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ είναι γραμμικώς ανεξάρτητα

και

3) $\forall \vec{v} \in V$, $\exists \lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, τ.ω. $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_k \vec{v}_k$ (δηλ. κάθε διάνυσμα του V μπορεί να γραφτεί ως γραμμικός συνδυασμός των $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$)

Σημ.: Σ' αυτή την περίπτωση, η k-άδα $(\lambda_1, \lambda_2, ..., \lambda_k)$ είναι μοναδική για κάθε διάνυσμα $\vec{v} \in V$, και τα $\lambda_1, \lambda_2, ..., \lambda_k$ ονομάζονται συνιστώσες του \vec{v} ως προς τη βάση $\mathbb B$.

<u>Παράδειγμα:</u> Δείξτε ότι το σύνολο $\mathbb{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ όπου $\vec{e}_1 = (1,0,0)$, $\vec{e}_2 = (0,1,0)$, $\vec{e}_3 = (0,0,1)$ είναι βάση του \mathbb{R}^3 . Ποιες είναι οι συνιστώσες του διανύσματος $\vec{v} = (1,-2,5)$ ως προς τη βάση \mathbb{B} .

Λύση

- 1) Καθένα από τα $\vec{e}_1, \vec{e}_2, \vec{e}_3$ είναι 3άδα πραγματικών αριθμών. Άρα: $\vec{e}_1, \vec{e}_2, \vec{e}_3 \in \mathbb{R}^3$
- 2) Ο πίνακας με τις συνιστώσες των $\vec{e}_1, \vec{e}_2, \vec{e}_3$ είναι:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

που έχει $\det A=1$, δηλαδή $\det A\neq 0$ και άρα το ομογενές σύστημα $A\vec{x}=\vec{0}$ έχει μοναδική λύση τη $\vec{x}=\vec{0}$. Άρα, τα $\vec{e}_1,\vec{e}_2,\vec{e}_3$ είναι γραμμικώς ανεξάρτητα.

3) Κάθε $\vec{v} = (x, y, z) \in \mathbb{R}^3$ γράφεται ως:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ y \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ z \end{bmatrix} = x \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + y \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\delta \eta \lambda \alpha \delta \dot{\eta} : \vec{v} = x \vec{e}_1 + y \vec{e}_2 + z \vec{e}_3$$

Έτσι, το διάνυσμα $\vec{v}=(1,-2,5)$ γράφεται ως $\vec{v}=1\vec{e}_1-2\vec{e}_2+5\vec{e}_3$ και άρα, οι συνιστώσες του \vec{v} ως προς τη βάση $\mathbb{B} = \left\{ \vec{e}_1, \vec{e}_2, \vec{e}_3 \right\}$ είναι οι 1,–2,5

Σημείωση: Όταν μας ενδιαφέρει η σειρά των διανυσμάτων σε μια βάση τότε αυτή ονομάζεται διατεταγμένη βάση. Έτσι στο τελευταίο παράδειγμα, οι συνιστώσες του \vec{v} ως προς τη διατεταγμένη βάση $\mathbb{B}=\{\vec{e}_1,\vec{e}_2,\vec{e}_3\}$ είναι οι 1,-2,5, ενώ οι συνιστώσες του \vec{v} ως προς τη διατεταγμένη βάση $\mathbb{B} = \{\vec{e}_2, \vec{e}_1, \vec{e}_3\}$ είναι οι -2,1,5

Δσκηση: Το σύνολο $\mathbb{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ με $\vec{v}_1 = (0,1,2)$, $\vec{v}_2 = (2,2,6)$, $\vec{v}_3 = (-1,-2,-8)$ είναι μια διατεταγμένη βάση του \mathbb{R}^3 . Βρείτε τις συνιστώσες του διανύσματος $\vec{v}=(1,-2,5)$ ως προς τη \mathbb{B} .

 $\frac{\Delta \dot{\mathbf{v}} \mathbf{v}}{\mathbf{v}}$ Ψάχνουμε τη μοναδική 3άδα $(\lambda_1, \lambda_2, \lambda_3)$ τ.ω. $\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3$. Έχουμε:

$$\vec{v} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \lambda_3 \vec{v}_3 \iff \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = \lambda_1 \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 2 \\ 6 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ -2 \\ -8 \end{bmatrix} \iff \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 2 & -2 \\ 2 & 6 & -8 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{bmatrix}$$

δηλαδή, έχουμε να λύσουμε το σύστημα $\begin{bmatrix} 0 & 2 & -1 \\ 1 & 2 & -2 \\ 2 & 6 & -8 \end{bmatrix} \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{vmatrix} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}.$

Απαλοιφή Gauss:

$$\begin{bmatrix} A | \vec{b} \end{bmatrix} = \begin{bmatrix} 0 & 2 & -1 & | & 1 \\ 1 & 2 & -2 & | & -2 \\ 2 & 6 & -8 & | & 5 \end{bmatrix} \xrightarrow{\text{evallyay}} \longrightarrow \begin{bmatrix} 1 & 2 & -2 & | & -2 \\ 0 & 2 & -1 & | & 1 \\ 2 & 6 & -8 & | & 5 \end{bmatrix} \xrightarrow{(-2)} \longrightarrow \begin{bmatrix} 1 & 2 & -2 & | & -2 \\ 0 & 2 & -1 & | & 1 \\ 0 & 0 & -3 & | & 8 \end{bmatrix} = \begin{bmatrix} U | \vec{d} \end{bmatrix}$$

Ανάδρομη αντικατάσταση:

$$3^{\eta}$$
 εξίσωση: $-3\lambda_3 = 8 \implies \lambda_3 = -\frac{8}{3}$

$$2^{\eta}$$
 εξίσωση: $2\lambda_2 - \lambda_3 = 1 \implies 2\lambda_2 + \frac{8}{3} = 1 \implies \lambda_2 = -\frac{5}{6}$

$$1^{\eta} \ \text{exiswsh} : \ \lambda_1 + 2\lambda_2 - 2\lambda_3 = -2 \ \Rightarrow \ \lambda_1 + 2\bigg(-\frac{5}{6}\bigg) - 2\bigg(-\frac{8}{3}\bigg) = -2 \ \Rightarrow \ \lambda_1 = -\frac{17}{3}$$

Άρα, $\vec{v} = -\frac{17}{3}\vec{v}_1 - \frac{5}{6}\vec{v}_2 - \frac{8}{3}\vec{v}_3$, και συνεπώς οι συνιστώσες του $\vec{v} = (1, -2, 5)$ ως προς τη διατεταγμένη βάση $\mathbb{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ είναι $-\frac{17}{3}, -\frac{5}{6}, -\frac{8}{3}$

Παρατήρηση: Κάθε διανυσματικός χώρος έχει **άπειρες** βάσεις. Δηλαδή, υπάρχουν άπειρα σύνολα γραμμικώς ανεξάρτητων διανυσμάτων που παράγουν το V.

(Εξαίρεση αποτελεί ο τετριμμένος υπόχωρος $\{\vec{0}\}$ που το πλήθος των βάσεων του είναι 0)

<u>Πρόταση:</u> Καθεμιά από τις άπειρες βάσεις ενός διανυσματικού χώρου V έχει το **ίδιο** πλήθος διανυσμάτων.

ΟΡΙΣΜΟΣ: Διάσταση ενός διανυσματικού χώρου V είναι το πλήθος διανυσμάτων κάθε βάσης του V και συμβολίζεται με $\dim(V)$.

$\mathbf{\Sigma}$ ημείωση: $\dim(V) = [$ μέγιστο πλήθος γραμμικώς ανεξάρτητων διανυσμάτων του V]

π.χ. σε ένα διανυσματικό χώρο με $\dim(V)=3$, μπορούμε να βρούμε:

1 γραμμικώς ανεξάρτητο διάνυσμα (που είναι κάθε μη-μηδενικό του διάνυσμα μόνο του) 2άδες με γραμμικώς ανεξάρτητα διανύσματα

3άδες με γραμμικώς ανεξάρτητα διανύσματα

ενώ δεν υπάρχει: 4άδα ή 5άδα ή 6άδα κ.λ.π. με γραμμικώς ανεξάρτητα διανύσματα

<u>Παρατήρηση:</u> $\dim(\mathbb{R}^m) = m$

 Δ ηλαδή: dim(\mathbb{R}^2) = 2, dim(\mathbb{R}^3) = 3, dim(\mathbb{R}^4) = 4, κ.λ.π.

Παρατήρηση: Αν ο διανυσματικός χώρος V παριστάνει μια ευθεία του \mathbb{R}^2 που περνά από το (0,0) ή μια ευθεία του \mathbb{R}^3 που περνά από το (0,0,0), τότε: $\dim(V)=1$

π.χ. ο χώρος
$$L = \left\{ (x,y) \in \mathbb{R}^2 \setminus 2x - y = 0 \right\}$$
 έχει $\dim(L) = 1$ ενώ ο $W = \left\{ (x,y,z) \in \mathbb{R}^3 \setminus 2x - y + z = 0 & x + 2y - z = 0 \right\}$ έχει $\dim(W) = 1$

<u>Παρατήρηση:</u> Αν ο διανυσματικός χώρος V παριστάνει ένα επίπεδο του \mathbb{R}^3 που περνά από το (0,0,0), τότε: $\dim(V)=2$

π.χ. ο χώρος
$$E = \{(x, y, z) \in \mathbb{R}^3 \setminus 2x - y + z = 0\}$$
 έχει $\dim(E) = 2$

<u>Παρατήρηση:</u> Γενικά, ο χώρος $V = \left\{ (x_1, x_2, ..., x_n) \in \mathbb{R}^n \setminus \alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n = 0 \right\}$ (όπου τουλάχιστον ένα από τα $\alpha_1, \alpha_2, ..., \alpha_n$ είναι $\neq 0$) έχει $\dim(V) = n - 1$ π.χ. ο χώρος $W = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \setminus 2x_1 + x_2 - 5x_3 + 3x_4 = 0 \right\}$ έχει $\dim(W) = 3$

Παρατήρηση: Ο τετριμμένος υπόχωρος $W = \{\vec{0}\}$ οποιουδήποτε \mathbb{R}^n αποτελείται μόνο από το γραμμικώς εξαρτημένο διάνυσμα $\vec{0}$. Άρα, $\dim W = 0$

Παρατήρηση: Αν $\dim(V) = k$, τότε οποιοδήποτε σύνολο k γραμμικώς ανεξάρτητων διανυσμάτων του V είναι βάση του. $\pi.\chi$.

- -- οποιοδήποτε σύνολο 2 γραμμικώς ανεξάρτητων διανυσμάτων του \mathbb{R}^2 (δηλ. 2 μησυνευθειακών διανυσμάτων του \mathbb{R}^2) είναι βάση του.
- -- οποιοδήποτε σύνολο 3 γραμμικώς ανεξάρτητων διανυσμάτων του \mathbb{R}^3 (δηλ. 3 μησυνεπίπεδων διανυσμάτων του \mathbb{R}^3) είναι βάση του.
- -- οποιοδήποτε σύνολο 4 γραμμικώς ανεξάρτητων διανυσμάτων του \mathbb{R}^4 είναι βάση του.
- -- οποιοδήποτε σύνολο 5 γραμμικώς ανεξάρτητων διανυσμάτων του \mathbb{R}^5 είναι βάση του. κ.λ.π.

Επίσης,

- -- οποιοδήποτε μη-μηδενικό διάνυσμα μιας ευθείας του \mathbb{R}^2 που περνά από το (0,0) ή μιας ευθείας του \mathbb{R}^3 που περνά από το (0,0,0), είναι βάση της.
- -- οποιοδήποτε σύνολο 2 γραμμικώς ανεξάρτητων διανυσμάτων ενός επιπέδου του \mathbb{R}^3 που περνά από το (0,0,0) είναι βάση του.

Συμπέρασμα: Αν για ένα διανυσματικό χώρο V ξέρουμε ότι $\dim(V) = k$, τότε για να δείξουμε ότι ένα σύνολο $\mathbb{B} = \left\{ \vec{v}_1, \vec{v}_2, ..., \vec{v}_k \right\}$ (που έχει k διανύσματα) είναι βάση του V, αρκεί να δείξουμε ότι:

1) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k \in V$

Kai

2) $\vec{v}_1, \vec{v}_2, ..., \vec{v}_k$ είναι γραμμικώς ανεξάρτητα

Σημείωση: Έστω W είναι υπόχωρος του V, τότε:

- α) $\dim W \leq \dim V$
- β) αν $\dim W = \dim V$, τότε W = V

π.χ. Έστω W είναι υπόχωρος του $V = \mathbb{R}^3$ και τότε:

- 1) $W = \mathbb{R}^3 \iff \dim W = 3$
- 2) αν W επίπεδο που περνά από το $\vec{0} = (0,0,0)$ τότε $\dim W = 2 < \dim V$
- 3) αν W ευθεία που περνά από το $\vec{0} = (0,0,0)$ τότε $\dim W = 1 < \dim V$
- 4) αν $W = {\vec{0}}$ τότε $\dim W = 0 < \dim V$

$oxdot{\Theta}$ εώρημα: Οι στήλες κάθε αντιστρέψιμου n imes n πίνακα A , αποτελούν βάση του \mathbb{R}^n

Παράδειγμα: Δείξτε ότι το σύνολο $\mathbb{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ με $\vec{v}_1 = (0,1,2)$, $\vec{v}_2 = (2,2,6)$, $\vec{v}_3 = (-1,-4,-8)$ είναι βάση του \mathbb{R}^3 .

Λύση

Έχουμε:
$$A = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 2 & -4 \\ 2 & 6 & -8 \end{bmatrix}$$
 και άρα:

$$\det A = -\begin{vmatrix} 2 & -1 \\ 6 & -8 \end{vmatrix} + 2\begin{vmatrix} 2 & -1 \\ 2 & -4 \end{vmatrix} = -(-16+6) + 2(-8+2) = -2$$

δηλ. $\det A \neq 0$ και άρα το $\mathbb{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ είναι βάση του \mathbb{R}^3

ΟΡΙΣΜΟΣ: Κανονική βάση ενός διανυσματικού χώρου \mathbb{R}^n είναι η βάση που έχει ως διανύσματα τις στήλες του I_n .

π.χ. η κανονική βάση του \mathbb{R}^2 είναι η $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

η κανονική βάση του \mathbb{R}^3 είναι η $\left\{\!\!\begin{bmatrix}1\\0\\0\end{bmatrix}\!,\!\begin{bmatrix}0\\1\\0\end{bmatrix}\!,\!\begin{bmatrix}0\\0\\1\end{bmatrix}\!\!\right\}$

η κανονική βάση του \mathbb{R}^4 είναι η $\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}$

 $\kappa.\lambda.\pi.$

Δσκηση: Έστω ο διανυσματικός υπόχωρος $V = \{(x, y, z) \in \mathbb{R}^3 \setminus x - 2y + z = 0\}$ του \mathbb{R}^3 .

- α) Τι παριστάνει γεωμετρικά;
- β) Βρείτε μια βάση και τη διάσταση του.
- γ) Ελέγξτε αν το διάνυσμα $\vec{b} = (-1,1,3)$ ανήκει στον V. Αν ναι, τότε βρείτε τις συνιστώσες του ως προς τη βάση που βρήκατε στο προηγούμενο ερώτημα.

Λύση

- α) ο V παριστάνει ένα επίπεδο που περνά από το $\vec{0} = (0,0,0)$.
- β) για κάθε διάνυσμα $\vec{v}=(x,y,z)\in V$ τα x,y,z ικανοποιούν την εξίσωση: $x-2y+z=0 \iff x=2y-z$

δηλ. τα διανύσματα $\vec{v} \in V$ είναι της μορφής: $\vec{v} = \begin{bmatrix} 2y - z \\ y \\ z \end{bmatrix}$, με $y, z \in \mathbb{R}$.

δηλ.
$$\vec{v} = y \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + z \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mu \varepsilon \ y, z \in \mathbb{R}$ (*)

δηλ. κάθε διάνυσμα του V μπορεί να γραφτεί ως γραμμικός συνδυασμός των διανυσμάτων $\vec{v}_1 = \begin{bmatrix} 2\\1\\0 \end{bmatrix}$ και $\vec{v}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$, τα οποία επιπλέον ανήκουν στον V αφού

ικανοποιούν την εξίσωση x-2y+z=0

Άρα, $V = \langle \vec{v}_1, \vec{v}_2 \rangle$ (δηλ. ο V παράγεται από τα \vec{v}_1, \vec{v}_2)

Ελέγχουμε αν τα \vec{v}_1, \vec{v}_2 είναι και γραμμικώς ανεξάρτητα. Έχουμε:

$$A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \xrightarrow{(-1/2)} \longrightarrow \begin{bmatrix} 2 & -1 \\ 0 & 1/2 \\ 0 & 1 \end{bmatrix} \xrightarrow{-2} \longrightarrow \begin{bmatrix} 2 & -1 \\ 0 & 1/2 \\ 0 & 0 \end{bmatrix} = U$$

Άρα, r(A) = 2 δηλαδή r(A) = n και άρα τα \vec{v}_1, \vec{v}_2 είναι γραμμικώς ανεξάρτητα. Επομένως, έγουμε δείξει ότι:

- 1) $\vec{v}_1, \vec{v}_2 \in V$, kai
- 2) τα \vec{v}_1, \vec{v}_2 είναι γραμμικώς ανεξάρτητα, και
- 3) κάθε διάνυσμα του V μπορεί να γραφτεί ως γραμμικός συνδυασμός των \vec{v}_1, \vec{v}_2 Επομένως, το σύνολο $\{\vec{v}_1, \vec{v}_2\}$ είναι μια βάση του V .

Άρα, κάθε βάση του V έχει 2 διανύσματα. Άρα, $\dim(V) = 2$

Σημείωση: Η εξίσωση x-2y+z=0 μπορεί να θεωρηθεί ως ομογενές σύστημα 1×3 με πίνακα $A=\begin{bmatrix} 1 & -2 & 1 \end{bmatrix}=U$ και άρα βασική μεταβλητή τη x και ελεύθερες τις y,z. Η γενική λύση του $A\vec{x}=\vec{0}$ είναι η (*). Γενικά, σε μια τέτοια λύση τα μη-μηδενικά διανύσματα που πολλαπλασιάζονται με τις ελεύθερες μεταβλητές είναι πάντα βάση του V (δεν χρειάζεται να το δείχνουμε όπως κάναμε πιο πάνω για λόγους κατανόησης).

γ) Το $\vec{b} = (-1,1,3)$ ανήκει στον V γιατί $-1-2\cdot 1+3=0$, δηλαδή οι συνιστώσες του ικανοποιούν την εξίσωση x-2y+z=0.

Επειδή λοιπόν $\vec{b} \in V$ και $\{\vec{v}_1,\vec{v}_2\}$ μια βάση του V, αυτό συνεπάγεται ότι υπάρχει μοναδική 2άδα (λ_1,λ_2) τ.ω. $\vec{b}=\lambda_1\vec{v}_1+\lambda_2\vec{v}_2$. Έχουμε:

$$\vec{b} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 \iff \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \lambda_1 \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$$

δηλαδή, έχουμε να λύσουμε το σύστημα $\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}.$

Επειδή, έχουμε ήδη κάνει τη διαδικασία $A \underset{\alpha\pi\alpha\lambda\circ\iota\phi\acute{e}\varsigma}{\to} U$, δεν χρειάζεται να κάνουμε όλη τη διαδικασία απαλοιφής Gauss $\left[A \middle| \vec{b} \right] \underset{\alpha\pi\alpha\lambda\circ\iota\phi\acute{e}\varsigma}{\to} \left[U \middle| \vec{d} \right]$. Αρκεί να εφαρμόσουμε στο \vec{b} τα ίδια στάδια απαλοιφής που εφαρμόσαμε στη διαδικασία $A \underset{\alpha\pi\alpha\lambda\circ\iota\phi\acute{e}\varsigma}{\to} U$. Έχουμε:

$$\vec{b} = \begin{bmatrix} -1\\1\\3 \end{bmatrix} \xrightarrow{(-1/2)} \longrightarrow \begin{bmatrix} -1\\3/2\\3 \end{bmatrix} \xrightarrow{-2} \longrightarrow \begin{bmatrix} -1\\3/2\\0 \end{bmatrix} = \vec{d}$$

Apa:
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2 & -1 \\ 0 & 1/2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3/2 \\ 0 \end{bmatrix}$$

Ανάδρομη αντικατάσταση:

 3^{η} εξίσωση: $0\lambda_1 + 0\lambda_2 = 0$, που ισχύει $\forall (\lambda_1, \lambda_2) \in \mathbb{R}^2$

 2^{η} εξίσωση: $\frac{1}{2}\lambda_2 = \frac{3}{2} \implies \lambda_2 = 3$

 1^{η} εξίσωση: $2\lambda_1 - \lambda_2 = -1 \implies 2\lambda_1 - 3 = -1 \implies \lambda_1 = 1$

Άρα, $\vec{b}=\vec{v}_1+3\vec{v}_2$, και συνεπώς οι συνιστώσες του $\vec{b}=(-1,1,3)$ ως προς τη διατεταγμένη βάση $\left\{\vec{v}_1,\vec{v}_2\right\}$ είναι 1,3 .

<u>Παρατήρηση:</u> επειδή $\dim(\mathbb{R}^3) = 3$, το $\vec{b} = (-1,1,3)$ ως διάνυσμα του \mathbb{R}^3 που είναι, θα έχει 3 συνιστώσες ως προς μια βάση του \mathbb{R}^3 . Για παράδειγμα, οι συνιστώσες του ως προς την κανονική βάση του \mathbb{R}^3 είναι -1,1,3. Όμως, το \vec{b} ανήκει και στο επίπεδο $V = \left\{ (x,y,z) \in \mathbb{R}^3 \setminus x - 2y + z = 0 \right\}$ του \mathbb{R}^3 και επειδή $\dim(V) = 2$, το \vec{b} θα έχει 2 συνιστώσες ως προς μια βάση του V.

<u>Θεώρημα:</u> Έστω V είναι ένας πραγματικός διανυσματικός χώρος και $\{\vec{v}_1,\vec{v}_2,...,\vec{v}_k\}$ μια βάση του V. Έστω $\vec{u} \in V$ με $\vec{u} = \mu_1 \vec{v}_1 + ... + \mu_i \vec{v}_i + ... + \mu_k \vec{v}_k$ όπου $\mu_i \neq 0$. Τότε και το σύνολο $\{\vec{v}_1,...,\vec{v}_{i-1},\vec{u},\vec{v}_{i+1},...,\vec{v}_k\}$ είναι βάση του V.

Παράδειγμα: Στην παραπάνω άσκηση βρήκαμε ότι μια βάση του διανυσματικού χώρου $V = \left\{ (x,y,z) \in \mathbb{R}^3 \ \backslash \ x - 2y + z = 0 \right\} \text{ είναι } \eta \ \left\{ \vec{v}_1, \vec{v}_2 \right\}, \text{ με } \vec{v}_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} \text{ και } \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}.$

Μια άλλη βάση του V μπορούμε να βρούμε αν αντικαταστήσουμε το \vec{v}_1 με ένα διάνυσμα \vec{u} της μορφής: $\vec{u} = \mu_1 \vec{v}_1 + \mu_2 \vec{v}_2$, όπου $\mu_1 \neq 0$,

π.χ.
$$\vec{u} = 2\vec{v}_1 - 3\vec{v}_2 = 2\begin{bmatrix} 2\\1\\0 \end{bmatrix} - 3\begin{bmatrix} -1\\0\\1 \end{bmatrix} = \begin{bmatrix} 7\\2\\-3 \end{bmatrix}$$
 και άρα, μια άλλη βάση του V είναι η $\{\vec{u}, \vec{v}_2\}$

Επίσης, μια άλλη βάση παίρνουμε αν αντικαταστήσουμε το \vec{v}_2 με ένα διάνυσμα \vec{w} της μορφής: $\vec{u}=\mu_1\vec{v}_1+\mu_2\vec{v}_2$, όπου $\mu_2\neq 0$.

π.χ.
$$\vec{w} = \vec{v}_1 + \vec{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 και άρα, μια άλλη βάση του V είναι η $\{\vec{v}_1, \vec{w}\}$.

 \mathbf{M} ' αυτόν τον τρόπο, εφόσον γνωρίζουμε ήδη μια βάση του V, μπορούμε να βρούμε άπειρες άλλες βάσεις του.

Δσκηση: Έστω ο διανυσματικοί υπόχωροι $V = \{(x, y, z) \in \mathbb{R}^3 \setminus x - 2y + z = 0\}$ και $W = \{(x, y, z) \in \mathbb{R}^3 \setminus x - y = 0\}$ του \mathbb{R}^3 .

- α) Γράψτε το σύνολο $V \cap W$. Είναι διανυσματικός υπόχωρος του \mathbb{R}^3 και γιατί;
- β) Βρείτε μια βάση και τη διάσταση του $V \cap W$
- γ) Τι παριστάνει γεωμετρικά το $V \cap W$;

Λύση

a)
$$V \cap W = \{(x, y, z) \in \mathbb{R}^3 \setminus x - 2y + z = 0 \& x - y = 0\}.$$

Η τομή δύο υπόχωρων ενός διανυσματικού χώρου είναι επίσης διανυσματικός υπόχωρος του ίδιου χώρου. Οι V και W είναι υπόχωροι του \mathbb{R}^3 , άρα και η τομή $V \cap W$ είναι υπόχωρος του \mathbb{R}^3 .

β) για κάθε διάνυσμα $\vec{v} = (x, y, z) \in V \cap W$ τα x, y, z ικανοποιούν το σύστημα:

Έχουμε:

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow[+){(-1)} \longrightarrow \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} = U$$

Όμως,
$$A\vec{x} = \vec{0} \iff U\vec{x} = \vec{0} \iff \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

βασικές μεταβλητές: x, y ελεύθερη μεταβλητή: z

Ανάδρομη αντικατάσταση:

 2^{η} εξίσωση: $y-z=0 \implies y=z$

 1^{η} εξίσωση: $x-2y+z=0 \implies x-2z+z=0 \implies x=z$

δηλ. τα διανύσματα $\vec{v} \in V \cap W$ είναι της μορφής: $\vec{v} = \begin{bmatrix} z \\ z \\ z \end{bmatrix}$, με $z \in \mathbb{R}$.

δηλ.
$$\vec{v} = z \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, με $z \in \mathbb{R}$

Επομένως, μια βάση του $V \cap W$ είναι το μονοσύνολο $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$.

Άρα, κάθε βάση του $V \cap W$ έχει 1 διάνυσμα. Άρα, $\dim(V \cap W) = 1$

γ) Όλα τα διανύσματα του $V \cap W$ γράφονται ως $\vec{v} = z \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ με $z \in \mathbb{R}$. Άρα, το $V \cap W$ παριστάνει την ευθεία του διανύσματος (1,1,1) του \mathbb{R}^3 [δηλ. την ευθεία που διέρχεται από το σημείο (0,0,0) και το σημείο (1,1,1)]

ΠΡΟΤΑΣΗ 1: Σε κάθε κλιμακωτό πίνακα U, οι μη-μηδενικές γραμμές είναι γραμμικώς ανεξάρτητα διανύσματα.

$$\boldsymbol{\pi.\chi.} \text{ an } U = \begin{bmatrix} 0 & 3 & 1 & 4 & 7 & 6 \\ 0 & 0 & 2 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \text{ the tand dianoscapata } \vec{r_1} = \begin{bmatrix} 0 \\ 3 \\ 1 \\ 4 \\ 7 \\ 6 \end{bmatrix}, \quad \vec{r_2} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 1 \\ 4 \\ 5 \end{bmatrix}, \quad \vec{r_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 3 \end{bmatrix}$$

είναι γραμμικώς ανεξάρτητα.

του δεν χρειάζεται να τον κάνουμε κλιμακωτό. Αρκεί να παρατηρήσουμε ότι

 $A^T = \begin{bmatrix} 0 & 3 & 1 & 4 & 7 & 6 \\ 0 & 0 & 2 & 1 & 4 & 5 \\ 0 & 0 & 0 & 2 & 3 \end{bmatrix}$ που είναι κλιμακωτός με 3 μη-μηδενικές γραμμές. Άρα,

 $r\left(A^T\right)=3$. Όμως, για κάθε πίνακα A , ισχύει $r\left(A^T\right)=r(A)$. Επομένως, r(A)=3 (όσες δηλαδή και οι στήλες του) και συνεπώς τα $\vec{r}_1, \vec{r}_2, \vec{r}_3$ είναι γραμμικώς ανεξάρτητα.

ΠΡΟΤΑΣΗ 2: Σε κάθε κλιμακωτό πίνακα U, οι στήλες που περιέχουν οδηγούς είναι γραμμικώς ανεξάρτητα διανύσματα

π.χ. αν
$$U = \begin{bmatrix} 0 & \boxed{3} & 1 & 4 & 7 & 6 \\ 0 & 0 & \boxed{2} & 1 & 4 & 5 \\ 0 & 0 & 0 & \boxed{2} & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
, τότε τα διανύσματα $\vec{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 7 \\ 4 \\ 2 \\ 0 \end{bmatrix}$ είναι

γραμμικώς ανεξάρτητα.

κλιμακωτή μορφή και έχει οδηγούς σε κάθε στήλη. Άρα, r(A) = 3 (όσες δηλαδή και οι στήλες του) και συνεπώς τα $\vec{v}_1, \vec{v}_2, \vec{v}_3$ είναι γραμμικώς ανεξάρτητα.

ΧΩΡΟΣ ΣΤΗΛΩΝ ενός ΠΙΝΑΚΑ

Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Οι n στήλες του A είναι διανύσματα του \mathbb{R}^m . Αυτά παράγουν έναν διανυσματικό υπόχωρο του \mathbb{R}^m που ονομάζεται χώρος στηλών του A, και συμβολίζεται ως $\mathcal{R}(A)$.

Δηλ. αν $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ οι στήλες του A, τότε $\mathcal{R}(A) = \langle \vec{v}_1, \vec{v}_2, ..., \vec{v}_n \rangle$

Δηλ. ο $\mathcal{R}(A)$ περιέχει όλα τα διανύσματα $\vec{b} \in \mathbb{R}^m$ που γράφονται ως γραμμικοί συνδυασμοί των $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$.

π.χ. αν
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$$
 τότε $\mathcal{R}(A) = \left\langle \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix}, \begin{bmatrix} 3 \\ 9 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix} \right\rangle$

<u>Παρατήρηση:</u> Για να ανήκει ένα διάνυσμα \vec{b} στον $\mathcal{R}(A)$, πρέπει να υπάρχουν $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}$ τ.ω. $\vec{b} = \lambda_1 \vec{v}_1 + \lambda_2 \vec{v}_2 + \cdots + \lambda_n \vec{v}_n$ το οποίο είναι ισοδύναμο με:

$$\vec{b} = \underbrace{\begin{bmatrix} \vec{v}_1 \mid \vec{v}_2 \mid \cdots \mid \vec{v}_n \end{bmatrix}}_{\substack{\pi \text{ inakas me sthaes two dianosity} \\ \delta \text{ instance}}} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \iff \vec{b} = A \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix} \iff A\vec{x} = \vec{b}$$

 Δ ηλαδή, $\vec{b} \in \mathcal{R}(A)$ ανν {το σύστημα $A\vec{x} = \vec{b}$ έχει λύση (μοναδική ή άπειρες)}

Λύση

Για να ανήκει το διάνυσμα $\vec{b}=(-1,0,4)$ στον $\mathcal{R}(A)$, πρέπει να υπάρχουν $\lambda_1,\lambda_2,\lambda_3,\lambda_4\in\mathbb{R}$

$$\tau.\omega. \quad \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} = \lambda_1 \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 6 \\ -3 \end{bmatrix} + \lambda_3 \begin{bmatrix} 3 \\ 9 \\ 3 \end{bmatrix} + \lambda_4 \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix} \quad \Leftrightarrow \quad \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}$$

Δηλαδή, πρέπει το σύστημα $A\vec{x} = \vec{b}$ να έχει λύση (μοναδική ή άπειρες). Έχουμε:

$$\begin{bmatrix} A \mid \vec{b} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 3 & 2 & | & -1 \\ 2 & 6 & 9 & 5 & | & 0 \\ -1 & -3 & 3 & 0 & | & 4 \end{bmatrix} \xrightarrow{(-2)} \xrightarrow{1} \left(\begin{array}{c} -1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 6 & 2 & | & 3 \end{array} \right) \xrightarrow{(-2)} \xrightarrow{(-2)} \left(\begin{array}{c} -1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & | & -1 \end{array} \right) = \begin{bmatrix} U \mid \vec{d} \end{bmatrix}$$

όπου $A\vec{x} = \vec{b} \Leftrightarrow U\vec{x} = \vec{d}$. Η 3^{η} εξίσωση δίνει 0 = -1 και άρα το σύστημα $A\vec{x} = \vec{b}$ δεν έχει καμία λύση. Επομένως, το \vec{b} δεν ανήκει στον $\mathcal{R}(A)$.

<u>Παρατήρηση:</u> Αν r(A) = m (δηλ. ο U δεν έχει καμία μηδενική γραμμή) τότε έχουμε δει ότι το σύστημα $A\vec{x} = \vec{b}$ έχει λύση (μοναδική αν m = n ή άπειρες αν m < n) για κάθε $\vec{b} \in \mathbb{R}^m$. Δηλαδή, σ' αυτήν την περίπτωση: $\mathcal{R}(A) \equiv \mathbb{R}^m$

ΠΑΡΑΤΗΡΗΣΕΙΣ

- Για ένα κλιμακωτό πίνακα U οι στήλες που περιέχουν οδηγούς αποτελούν **μια βάση** του $\mathcal{R}(U)$. Άρα: $\dim \mathcal{R}(U) = r(U)$
- An $A \xrightarrow[\alpha\pi\alpha\lambda0i\phi\acute{\epsilon}\varsigma]{} U$ tóte:

ξένα υποσύνολο των στηλών του A είναι γραμμικώς ανεξάρτητα διανύσματα ανν ξοι αντίστοιχες στήλες του U είναι γραμμικώς ανεξάρτητα διανύσματα X

- Σ υμπέρασμα: Αν $A \to_{\alpha\pi\alpha\lambda\circ\iota\phi\acute{e}\varsigma} U$ τότε οι στήλες του A που αντιστοιχούν στις στήλες του U που έχουν τους οδηγούς αποτελούν μια βάση του $\mathcal{R}(A)$. Άρα: $\dim \mathcal{R}(A) = r(A)$
- Γενικά, $\mathcal{R}(A) \neq \mathcal{R}(U)$

Παράδειγμα: Δείξτε ότι $\mathcal{R}(A) \neq \mathcal{R}(U)$, για τον πίνακα $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$

Λύση

Είδαμε παραπάνω ότι $U = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Άρα: {μια βάση του $\mathcal{R}(U)$ } = { 1^{η} & 3^{η} στήλη του U} = $\left\{\begin{bmatrix} 1\\0\\0\end{bmatrix},\begin{bmatrix} 3\\3\\0\end{bmatrix}\right\}$

Επομένως, ο $\mathcal{R}(U)$ περιέχει διανύσματα της μορφής:

$$\vec{v} = \lambda_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} \, \text{dhl. the morphis: } \vec{v} = \begin{bmatrix} \lambda_1 + 3\lambda_2 \\ 3\lambda_2 \\ 0 \end{bmatrix}.$$

Όμως, π.χ. η 3^{η} στήλη του A, δηλαδή η $\begin{bmatrix} 3\\9\\3 \end{bmatrix}$ δεν μπορεί να γραφτεί σ' αυτή τη μορφή.

Άρα,
$$\begin{bmatrix} 3\\9\\3 \end{bmatrix} \notin \mathcal{R}(U)$$
 και επομένως $\mathcal{R}(A) \neq \mathcal{R}(U)$.

Ασκηση: Βρείτε τη διάσταση και μια βάση του διανυσματικού χώρου V που παράγεται από τα διανύσματα $\vec{v}_1 = (1,-2,4), \quad \vec{v}_2 = (3,0,-1), \quad \vec{v}_3 = (0,6,-13), \quad \vec{v}_4 = (1,4,-9)$. Τι παριστάνει ο V γεωμετρικά;

Λύση

Σημείωση: $V = \langle \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \rangle$ και V υπόχωρος του \mathbb{R}^3

Σχηματίζουμε τον πίνακα A με στήλες τα $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$. Δηλαδή: $A = \begin{vmatrix} 1 & 3 & 0 & 1 \\ -2 & 0 & 6 & 4 \\ 4 & -1 & -13 & -9 \end{vmatrix}$.

Aρα: V ≡ R(A)

Έπειτα, βρίσκουμε τον αντίστοιχο κλιμακωτό πίνακα:

$$A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ -2 & 0 & 6 & 4 \\ 4 & -1 & -13 & -9 \end{bmatrix} \xrightarrow[(+)]{2} \xrightarrow[(+)]{2} \longrightarrow \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 6 & 6 & 6 \\ 0 & -13 & -13 & -13 \end{bmatrix} \xrightarrow[(+)]{(13/6)} \longrightarrow \begin{bmatrix} 1 & 3 & 0 & 1 \\ 0 & 6 & 6 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U$$

Επομένως, έχουμε r(A) = 2 (= πλήθος μη-μηδενικών γραμμών του U)

Aρα, dim $\mathcal{R}(A) = 2 \implies \dim V = 2$

{μια βάση του V } = {μια βάση του $\mathcal{R}(A)$ } = $\{\vec{v}_1,\vec{v}_2\}$ (δηλ. οι στήλες του A που αντιστοιχούν στις στήλες του U που έχουν τους οδηγούς)

Γεωμετρικά, ο V παριστάνει το επίπεδο του \mathbb{R}^3 που ορίζεται από τα σημεία $\vec{0}, \vec{v}_1$ και \vec{v}_2 , δηλαδή από τα σημεία: (0,0,0), (1,-2,4) και (3,0,-1).

Αν θέλουμε να βρούμε μια εξίσωση αυτού του επιπέδου, εργαζόμαστε ως εξής:

Κάθε επίπεδο του \mathbb{R}^3 που περνά από το (0,0,0) έχει εξίσωση της μορφής: $\alpha x + \beta y + \gamma z = 0$ με τουλάχιστον ένα από τα α, β, γ να είναι $\neq 0$. Επειδή, περνά και από τα (1,-2,4) και (3,0,-1) θα πρέπει:

$$\begin{vmatrix} \alpha \cdot 1 + \beta \cdot (-2) + \gamma \cdot 4 = 0 \\ \alpha \cdot 3 + \beta \cdot 0 + \gamma \cdot (-1) = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} \alpha - 2\beta + 4\gamma = 0 \\ 3\alpha - \gamma = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{vmatrix} \begin{vmatrix} \alpha \\ \beta \\ \gamma \end{vmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Όμως,

$$\begin{bmatrix} 1 & -2 & 4 \\ 3 & 0 & -1 \end{bmatrix} \overset{(-3)}{\longleftarrow}_{(+)} \longrightarrow \begin{bmatrix} 1 & -2 & 4 \\ 0 & 6 & -13 \end{bmatrix}$$

Βασικές μεταβλητές: α, β Ελεύθερη μεταβλητή: γ Ανάδρομη αντικατάσταση:

$$2^{\eta}$$
 εξίσωση: $6\beta - 13\gamma = 0 \implies \beta = \frac{13}{6}\gamma$

$$1^{\eta}$$
 εξίσωση: $\alpha - 2\beta + 4\gamma = 0 \implies \alpha - 2\frac{13}{6}\gamma + 4\gamma = 0 \implies \alpha = \frac{1}{3}\gamma$

Άρα, το ζητούμενο επίπεδο έχει εξίσωση:

$$\gamma \left(\frac{1}{3}x + \frac{13}{6}y + z\right) = 0 \implies \frac{1}{3}x + \frac{13}{6}y + z = 0 \implies 2x + 13y + 6z = 0$$

δηλαδή,
$$V = \{(x, y, z) \in \mathbb{R}^3 \setminus 2x + 13y + 6z = 0\}$$

ΧΩΡΟΣ ΓΡΑΜΜΩΝ ενός ΠΙΝΑΚΑ

Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Οι m γραμμές του A είναι διανύσματα του \mathbb{R}^n . Αυτά παράγουν έναν διανυσματικό υπόχωρο του \mathbb{R}^n που ονομάζεται χώρος γραμμών του A. Συμβολίζεται ως $\mathcal{R}(A^T)$, γιατί συμπίπτει με το χώρο στηλών του A^T

π.χ. αν
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$$
 τότε $\mathcal{R}(A^T) = \left\langle \begin{bmatrix} 1 \\ 3 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 9 \\ 5 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 3 \\ 0 \end{bmatrix} \right\rangle$

δηλ. ο $\mathcal{R}(A^T)$ περιέχει όλα τα διανύσματα $\vec{b} \in \mathbb{R}^4$ που μπορούν να γραφτούν ως

γραμμικοί συνδυασμοί των
$$\begin{bmatrix} 1 \\ 3 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 9 \\ 5 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 3 \\ 0 \end{bmatrix}, \, \delta\eta\lambda. \, \omega\varsigma \, \vec{b} = \lambda_1 \begin{bmatrix} 1 \\ 3 \\ 3 \\ 2 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 6 \\ 9 \\ 5 \end{bmatrix} + \lambda_3 \begin{bmatrix} -1 \\ -3 \\ 3 \\ 0 \end{bmatrix}$$

<u>Παρατήρηση:</u> Είδαμε παραπάνω ότι $\vec{b} \in \mathcal{R}(A)$ ανν {το σύστημα $A\vec{x} = \vec{b}$ έχει λύση (μοναδική ή άπειρες)}.

Συμπέρασμα: $\vec{b} \in \mathcal{R}(A^T)$ ανν {το σύστημα $A^T \vec{x} = \vec{b}$ έχει λύση (μοναδική ή άπειρες)}

ΠΑΡΑΤΗΡΗΣΕΙΣ

- Για ένα κλιμακωτό πίνακα U, οι μη-μηδενικές γραμμές αποτελούν **μια βάση του** $\mathcal{R}(U^T)$. Άρα: $\dim \mathcal{R}(U^T) = r(U)$
- An $A \xrightarrow[\alpha\pi\alpha\lambda\alpha\alpha\alpha]{} U$ tote: $\mathcal{R}(A^T) \equiv \mathcal{R}(U^T)$

(δηλαδή σε αντίθεση με τους χώρους στηλών των A και U που γενικά διαφέρουν, οι χώροι γραμμών τους ταυτίζονται)

• Συμπέρασμα: Αν $A \to U$ τότε οι μη-μηδενικές γραμμές του U αποτελούν μια

βάση του $\mathcal{R}(A^T)$. Άρα: $\dim \mathcal{R}(A^T) = r(A)$

π.χ. Έστω
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$$
. Είδαμε παραπάνω ότι $U = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Άρα: $\dim \mathcal{R}(A^T) = 2$ (=πλήθος μη-μηδενικών γραμμών του U)

και
$$\{$$
μια βάση του $\mathcal{R}(A^T)\}=\{$ οι μη-μηδενικές γραμμές του $U_{-}\}=\left\{\begin{bmatrix}1\\3\\3\\2\end{bmatrix},\begin{bmatrix}0\\0\\3\\1\end{bmatrix}\right\}$

ΜΗΔΕΝΟΧΩΡΟΣ ενός ΠΙΝΑΚΑ

Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Το σύνολο λύσεων του ομογενούς συστήματος $A\vec{x} = \vec{0}$ είναι διανυσματικός υπόχωρος του \mathbb{R}^n που συμβολίζεται ως $\mathcal{N}(A)$ και ονομάζεται μηδενόχωρος του A.

Απόδειξη: προφανώς $\mathcal{N}(A) \neq \emptyset$, αφού μια λύση του $A\vec{x} = \vec{0}$ είναι η $\vec{x} = \vec{0} \in \mathbb{R}^n$. Επίσης, $\mathcal{N}(A) \subseteq \mathbb{R}^n$ αφού τα διανύσματα \vec{x} που ικανοποιούν το σύστημα $A\vec{x} = \vec{0}$ ανήκουν στον \mathbb{R}^n .

Επιπλέον, έστω \vec{x}_1 και \vec{x}_2 δύο οποιεσδήποτε λύσεις του $A\vec{x}=\vec{0}$. Δηλαδή, $\vec{x}_1,\vec{x}_2\in\mathcal{N}(A)$. Τότε: $A(\vec{x}_1+\vec{x}_2)=A\vec{x}_1+A\vec{x}_2=\vec{0}+\vec{0}=\vec{0}$. Άρα, και $(\vec{x}_1+\vec{x}_2)\in\mathcal{N}(A)$. Δηλαδή το $\mathcal{N}(A)$ είναι κλειστό ως προς την πρόσθεση.

Επίσης, $A(\lambda \vec{x}_1) = \lambda (A\vec{x}_1) = \lambda \vec{0} = \vec{0}$. Άρα, και $(\lambda \vec{x}_1) \in \mathcal{N}(A)$, $\forall \vec{x}_1 \in \mathcal{N}(A)$ & $\forall \lambda \in \mathbb{R}$. Δη λαδή το $\mathcal{N}(A)$ είναι και κλειστό ως προς τον πολλαπλασιασμό με πραγματικό αριθμό. Συνεπώς, το $\mathcal{N}(A)$ είναι διανυσματικός υπόχωρος του \mathbb{R}^n

ΠΑΡΑΤΗΡΗΣΕΙΣ

- Αν $A \xrightarrow[\alpha\pi\alpha\lambda \circ \phi \acute{\epsilon}\varsigma]{U}$ τότε ξέρουμε ότι $A\vec{x} = \vec{0} \iff U\vec{x} = \vec{0}$. Επομένως: $\mathcal{N}(A) \equiv \mathcal{N}(U)$
- $\dim \mathcal{N}(A) = n r(A) = (\pi \lambda \dot{\eta} \theta \circ \zeta \tau \omega v \epsilon \lambda \epsilon \dot{v} \theta \epsilon \rho \omega v \mu \epsilon \tau \alpha \beta \lambda \eta \tau \dot{\omega} v)$
- Αν r(A) = n (δηλ. οδηγοί σε κάθε στήλη του U, δηλ. καμία ελεύθερη μεταβλητή) τότε το σύστημα $A\vec{x} = \vec{0}$ έχει μοναδική λύση τη $\vec{x} = \vec{0}$. Άρα: $\mathcal{N}(A) = \left\{\vec{0}\right\}$ (δηλ, ο τετριμμένος υπόχωρος του \mathbb{R}^n) και dim $\mathcal{N}(A) = 0$

 Σ ' αυτήν την περίπτωση ο $\mathcal{N}(A)$ δεν έχει καμία βάση

Aσκηση: Βρείτε τη διάσταση και μια βάση του μηδενόχωρου του πίνακα $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}$.

Είδαμε παραπάνω ότι
$$U = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

$$A$$
ρ α : dim $\mathcal{N}(A)$ = n − $r(A)$ \Rightarrow dim $\mathcal{N}(A)$ = 4 − 2 \Rightarrow dim $\mathcal{N}(A)$ = 2

Για να βρούμε μια βάση του $\mathcal{N}(A)$ πρέπει να λύσουμε το σύστημα $A\vec{x}=\vec{0}$, το οποίο έχει

τις ίδιες λύσεις με το
$$U\vec{x} = \vec{0} \iff \begin{bmatrix} 1 & 3 & 3 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Βασικές μεταβλητές: x,z

Ελεύθερες μεταβλητές: y, w

Ανάδρομη αντικατάσταση:

 3^{η} εξίσωση: ικανοποιείται $\forall (x, y, z, w) \in \mathbb{R}^4$

$$2^{\eta}$$
 εξίσωση: $3z + w = 0 \implies z = -\frac{1}{3}w$

$$1^{\eta}$$
 εξίσωση: $x + 3y + 3z + 2w = 0 \implies x + 3y + 3\left(-\frac{1}{3}w\right) + 2w = 0 \implies x = -3y - w$

Αρα, ο $\mathcal{N}(A)$ έχει διανύσματα της μορφής: $\vec{x} = \begin{bmatrix} -3y - w \\ y \\ -\frac{1}{3}w \\ w \end{bmatrix}$, δηλαδή της μορφής:

$$\vec{x} = \begin{bmatrix} -3y - w \\ y \\ -\frac{1}{3}w \\ w \end{bmatrix} = y \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + w \begin{bmatrix} -1 \\ 0 \\ -1/3 \\ 1 \end{bmatrix}, \quad \mu\varepsilon \quad y, w \in \mathbb{R}$$

Επομένως, μια βάση του
$$\mathcal{N}(A)$$
 είναι η $\begin{bmatrix} -3\\1\\0\\0\end{bmatrix}$, $\begin{bmatrix} -1\\0\\-1/3\\1\end{bmatrix}$.

Παρατήρηση: Το σύνολο λύσεων ενός μη-ομογενούς συστήματος $A\vec{x} = \vec{b}$ δεν είναι διανυσματικός χώρος, αφού αν \vec{x}_1 και \vec{x}_2 δύο οποιεσδήποτε λύσεις του, τότε: $A(\vec{x}_1 + \vec{x}_2) = A\vec{x}_1 + A\vec{x}_2 = \vec{b} + \vec{b} = 2\vec{b} \neq \vec{b}$, δηλ. το $(\vec{x}_1 + \vec{x}_2)$ δεν είναι λύση του $A\vec{x} = \vec{b}$. Αρα, το σύνολο λύσεων της $A\vec{x} = \vec{b}$ δεν είναι κλειστό ως προς την πρόσθεση. Άρα, δεν είναι διανυσματικός χώρος.

ΟΡΙΣΜΟΣ: Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Ο μηδενόχωρος του A^T , δηλαδή ο $\mathcal{N}(A^T)$ ονομάζεται αριστερός μηδενόχωρος του A.

Παρατήρηση: από τη σχέση $\dim \mathcal{N}(A) = n - r(A)$ προκύπτει ότι $\dim \mathcal{N}(A^T) = m - r(A)$ [μιας και ο A^T έχει m στήλες και επιπλέον $r(A^T) = r(A)$]

Ασκηση: Βρείτε τη διάσταση και μια βάση του αριστερού μηδενόχωρου του πίνακα $A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 5 \\ -1 & -3 & 3 & 0 \end{bmatrix}.$ Τι παριστάνει γεωμετρικά αυτός ο χώρος;

Λύση

Από την προηγούμενη άσκηση, ξέρουμε ότι r(A)=2. Άρα, για τη διάσταση του $\mathcal{N}(A^T)$ έχουμε: $\dim \mathcal{N}(A^T)=m-r(A) \Rightarrow \dim \mathcal{N}(A^T)=3-2 \Rightarrow \dim \mathcal{N}(A^T)=1$

Για να βρούμε μια βάση του $\mathcal{N}(A^T)$ πρέπει να λύσουμε το σύστημα $A^T\vec{x}=\vec{0}$. Έχουμε:

$$A^{T} = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 6 & -3 \\ 3 & 9 & 3 \\ 2 & 5 & 0 \end{bmatrix} \xrightarrow{(-3)} \xrightarrow{(-3)} \xrightarrow{(-2)} \longrightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 0 & 0 \\ 0 & 3 & 6 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{\text{evally}} \longrightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{(-3)} \longrightarrow \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = U'$$

όπου χρησιμοποιήσαμε το συμβολισμό U' για να ξεχωρίζουμε τον κλιμακωτό που μας δίνει ο A^T , από τον κλιμακωτό U που μας δίνει ο A .

$$A^{T}\vec{x} = \vec{0} \iff U'\vec{x} = \vec{0} \iff \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Βασικές μεταβλητές: x, y

Ελεύθερη μεταβλητή: z

Ανάδρομη αντικατάσταση:

 4^{η} & 3^{η} εξίσωση: ικανοποιούνται $\forall (x, y, z) \in \mathbb{R}^3$

 2^{η} εξίσωση: $y + 2z = 0 \implies y = -2z$

 1^{η} εξίσωση: $x + 2y - z = 0 \implies x + 2(-2z) - z = 0 \implies x = 5z$

Άρα, ο $\mathcal{N}(A^T)$ έχει διανύσματα της μορφής: $\vec{x} = \begin{bmatrix} 5z \\ -2z \\ z \end{bmatrix}$, δηλαδή της μορφής:

$$\vec{x} = z \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \text{με} \quad z \in \mathbb{R} \,. \quad \text{Επομένως, μια βάση του } \mathcal{N}(A^T) \text{ είναι } \eta \, \left\{ \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} \right\}.$$

Ο $\mathcal{N}(A^T)$ παριστάνει την <u>ευθεία</u> του \mathbb{R}^3 που ορίζεται από τα σημεία (0,0,0) και (5,-2,1).

ΣΥΝΟΠΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ:

Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Για να βρούμε τις διαστάσεις και βάσεις των $\mathcal{R}(A), \mathcal{R}(A^T), \mathcal{N}(A)$ και $\mathcal{N}(A^T)$ εργαζόμαστε ως εξής:

- 1) $A \xrightarrow[\alpha\pi\alpha\lambda\circi\phi\acute{\epsilon}\varsigma]{} U$
- **2)** $r(A) = (\pi \lambda \dot{\eta} \theta \circ \zeta \mu \eta \mu \eta \delta \varepsilon v \iota \kappa \dot{\omega} v \gamma \rho \alpha \mu \mu \dot{\omega} v \tau \circ u U)$
- 3) Υπολογίζουμε τις διαστάσεις των $\mathcal{R}(A)$, $\mathcal{R}(A^T)$, $\mathcal{N}(A)$ και $\mathcal{N}(A^T)$ από τις σχέσεις: $\dim \mathcal{R}(A) = r(A)$, $\dim \mathcal{R}(A^T) = r(A)$, $\dim \mathcal{N}(A) = n r(A)$, $\dim \mathcal{N}(A^T) = m r(A)$
- 4) $\{ \mu \iota \alpha \ \beta \acute{\alpha} \sigma \eta \ \tau \circ \upsilon \ \mathcal{R}(A) \} = \{ \circ \iota \ \sigma \tau \acute{\eta} \lambda \epsilon \varsigma \ \tau \circ \upsilon \ A \ \pi \circ \upsilon \ \alpha \upsilon \tau \iota \sigma \tau \circ \iota \varsigma \circ \tau \acute{\eta} \lambda \epsilon \varsigma \ \tau \circ \upsilon \ U \ \pi \circ \upsilon \epsilon \varsigma \circ \upsilon \varsigma \circ \delta \eta \varsigma \circ \varsigma \}$
- 5) $\{μια βάση του <math>\mathcal{R}(A^T)\} = \{οι μη-μηδενικές γραμμές του <math>U\}$
- 6) Αν dim $\mathcal{N}(A) = 0$, τότε $\mathcal{N}(A) = \left\{\vec{0}\right\}$ και άρα ο $\mathcal{N}(A)$ δεν έχει βάση. Αν dim $\mathcal{N}(A) > 0$, τότε λύνουμε το σύστημα $U\vec{x} = \vec{0}$ ως προς τις βασικές μεταβλητές (εκείνες δηλαδή τις μεταβλητές που αντιστοιχούν στις στήλες του U που έχουν τους οδηγούς) σε συνάρτηση με τις ελεύθερες μεταβλητές. Η γενική λύση γράφεται ως γραμμικός συνδυασμός «κάποιων» διανυσμάτων του \mathbb{R}^n έχοντας ως συντελεστές τις ελεύθερες μεταβλητές. Αυτά τα «κάποια» διανύσματα αποτελούν όλα μαζί μια βάση του $\mathcal{N}(A)$.
- 7) Αν $\dim \mathcal{N}(A^T) = 0$, τότε $\mathcal{N}(A^T) = \left\{\vec{0}\right\}$ και άρα ο $\mathcal{N}(A^T)$ δεν έχει βάση. Αν $\dim \mathcal{N}(A^T) > 0$, τότε $A^T \underset{\alpha\pi\alpha\lambda \circ \circ \phi \in \mathcal{N}}{\to} U'$ και κατόπιν, λύνουμε το σύστημα $U'\vec{x} = \vec{0}$ ως προς τις βασικές μεταβλητές (εκείνες δηλαδή τις μεταβλητές που αντιστοιχούν στις στήλες του U' που έχουν τους οδηγούς) σε συνάρτηση με τις ελεύθερες μεταβλητές. Η γενική λύση γράφεται ως γραμμικός συνδυασμός «κάποιων» διανυσμάτων του \mathbb{R}^m έχοντας ως συντελεστές τις ελεύθερες μεταβλητές. Αυτά τα «κάποια» διανύσματα αποτελούν όλα μαζί μια βάση του $\mathcal{N}(A^T)$.

Παρατήρηση: Οποιοδήποτε διανυσματικό χώρο μπορούμε να τον γράψουμε ως το χώρο στηλών $\mathcal{R}(A)$ ή ως μηδενόχωρο $\mathcal{N}(A)$ κάποιου πίνακα A. Συγκεκριμένα:

- Αν ξέρουμε ότι ένας χώρος V έχει ως βάση ή τουλάχιστον παράγεται από τα διανύσματα $\langle \vec{v}_1, \vec{v}_2, ..., \vec{v}_k \rangle$ τότε θέτουμε $A = [\pi \text{inakag} \text{ me στήλες τα } \vec{v}_1, \vec{v}_2, ..., \vec{v}_k]$ και άρα, $V \equiv \mathcal{R}(A)$.
- Αν ξέρουμε ότι τα διανύσματα $(x_1,x_2,...,x_n)$ του V ικανοποιούν μια ή περισσότερες εξισώσεις της μορφής $\alpha_1x_1+\alpha_2x_2+\cdots+\alpha_nx_n=0$, τότε θέτουμε $A=[\pi$ ίνακας με στήλες τους συντελεστές κάθε μεταβλητής σ' αυτές τις εξισώσεις] και άρα, $V\equiv \mathcal{N}(A)$.

π.χ. αν
$$V = \langle \vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \rangle$$
 με $\vec{v}_1 = (1, -2, 4)$, $\vec{v}_2 = (3, 0, -1)$, $\vec{v}_3 = (0, 6, -13)$, $\vec{v}_4 = (1, 4, -9)$, τότε $V \equiv \mathcal{R}(A)$, όπου $A = \begin{bmatrix} 1 & 3 & 0 & 1 \\ -2 & 0 & 6 & 4 \\ 4 & -1 & -13 & -9 \end{bmatrix}$ ο πίνακας με στήλες τα $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$.

π.χ. αν
$$V = \left\{ (x,y,z) \in \mathbb{R}^3 \setminus 2x - y + 6z = 0 \right\}$$
 τότε ο V αποτελείται από τις λύσεις (x,y,z) της εξίσωσης $2x - y + 6z = 0$ η οποία ισοδύναμα γράφεται ως
$$\begin{bmatrix} 2 & -1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}.$$
 Δηλαδή, $V \equiv \mathcal{N}(A)$ όπου $A = \begin{bmatrix} 2 & -1 & 6 \end{bmatrix}$

π.χ. αν
$$V = \left\{ (x,y,z) \in \mathbb{R}^3 \setminus x = 2y = -z \right\}$$
 τότε ο V αποτελείται από τις λύσεις του συστήματος $\begin{cases} x = 2y \\ x = -z \end{cases} \Leftrightarrow \begin{cases} x - 2y = 0 \\ x + z = 0 \end{cases} \Leftrightarrow \begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Δηλαδή, $V = \mathcal{N}(A)$ όπου $A = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

ΠΡΟΤΑΣΗ 1: Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Οι χώροι $\mathcal{R}(A)$ και $\mathcal{N}(A^T)$ είναι συμπληρωματικοί ο ένας στον άλλο στον \mathbb{R}^m . Δηλαδή, ικανοποιούν και τις 3 επόμενες ιδιότητες:

- $\mathcal{R}(A) \subseteq \mathbb{R}^m$ & $\mathcal{N}(A^T) \subseteq \mathbb{R}^m$
- $\dim \mathcal{R}(A) + \dim \mathcal{N}(A^T) = \dim \mathbb{R}^m$
- $\mathcal{R}(A) \cap \mathcal{N}(A^T) = \{\vec{0}\}$

ΠΡΟΤΑΣΗ 2: Έστω ένας πίνακας $A \in \mathbb{R}^{m \times n}$. Οι χώροι $\mathcal{R}(A^T)$ και $\mathcal{N}(A)$ είναι συμπληρωματικοί ο ένας στον άλλο στον \mathbb{R}^n . Δηλαδή, ικανοποιούν και τις 3 επόμενες ιδιότητες:

- $\mathcal{R}(A^T) \subset \mathbb{R}^n$ & $\mathcal{N}(A) \subset \mathbb{R}^n$
- $\dim \mathcal{R}(A^T) + \dim \mathcal{N}(A) = \dim \mathbb{R}^n$
- $\mathcal{R}(A^T) \cap \mathcal{N}(A) = \{\vec{0}\}\$

Πόρισμα: $\mathcal{R}(A) \equiv \mathbb{R}^m$ ανν dim $\mathcal{N}(A^T) = 0$ [δηλ. r(A) = m]

Δσκηση (παλαιότερο θέμα): Έστω οι πραγματικοί διανυσματικοί υπόχωροι $V = \{(x, y, z) \in \mathbb{R}^3 \setminus x + 2y = 0\}$ και $W = \{(x, y, z) \in \mathbb{R}^3 \setminus x - y + z = 0\}$ του \mathbb{R}^3 .

- α) Τι παριστάνουν γεωμετρικά οι χώροι V και W και ποια η διάσταση του καθενός;
- β) Βρείτε μια βάση και τη διάσταση του υποχώρου $V \cap W$. Τι παριστάνει αυτός ο χώρος γεωμετρικά;
- γ) Βρείτε μια βάση του υποχώρου του \mathbb{R}^3 που είναι συμπληρωματικός του $V \cap W$.

- α) Και οι δυο χώροι περιέχουν 3άδες (x,y,z) πραγματικών αριθμών που ικανοποιούν μια εξίσωση της μορφής $\alpha x + \beta y + \gamma z = 0$. Άρα, καθένας από τους χώρους V και W παριστάνει ένα επίπεδο που περνά από το $\vec{0} = (0,0,0)$. Επομένως, $\dim V = 2$ και $\dim W = 2$
- β) $V \cap W = \{(x, y, z) \in \mathbb{R}^3 \setminus x + 2y = 0 \& x y + z = 0\}$ δηλαδή ο $V \cap W$ αποτελείται από τις λύσεις του συστήματος:

$$x + 2y = 0 \\ x - y + z = 0$$
 \Leftrightarrow
$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

δηλαδή, ο $V \cap W \equiv \mathcal{N}(A)$, όπου $A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix}$

Έχουμε:

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \xrightarrow{(-1)} \longrightarrow \begin{bmatrix} 1 & 2 & 0 \\ 0 & -3 & 1 \end{bmatrix} = U$$

Όμως, $A\vec{x} = \vec{0} \iff U\vec{x} = \vec{0}$

Βασικές μεταβλητές: x, y

Ελεύθερη μεταβλητή: z

Ανάδρομη αντικατάσταση:

$$2^{\eta}$$
 εξίσωση: $-3y + z = 0 \implies y = \frac{1}{3}z$

$$1^{\eta}$$
 εξίσωση: $x + 2y = 0 \implies x + 2\frac{1}{3}z = 0 \implies x = -\frac{2}{3}z$

Άρα, ο $V \cap W$ έχει διανύσματα της μορφής: $\vec{x} = \begin{bmatrix} -\frac{2}{3}z \\ \frac{1}{3}z \\ z \end{bmatrix}$, δηλαδή της μορφής:

$$\vec{x} = z \begin{bmatrix} -2/3 \\ 1/3 \\ 1 \end{bmatrix}, \quad \mu \varepsilon \quad z \in \mathbb{R}$$

Επομένως, μια βάση του $V \cap W$ είναι το μονοσύνολο $\begin{bmatrix} -2/3\\1/3\\1 \end{bmatrix}$.

Επειδή η βάση έχει 1 διάνυσμα, συμπεραίνουμε ότι $\dim(V \cap W) = 1$

Ο $V \cap W$ παριστάνει την ευθεία του \mathbb{R}^3 που ορίζεται από τα σημεία (0,0,0) και (-2/3,1/3,1). Δηλαδή, τα επίπεδα V και W τέμνονται σε αυτήν την ευθεία.

γ) Επειδή $V \cap W \equiv \mathcal{N}(A)$, συμπεραίνουμε ότι ο συμπληρωματικός στον $V \cap W$ είναι ο χώρος γραμμών του A, δηλαδή ο $\mathcal{R}(A^T)$. Μια βάση του $\mathcal{R}(A^T)$ είναι οι μημηδενικές γραμμές του U, δηλαδή

{μια βάση του
$$\mathcal{R}(A^T)$$
}= $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\-3\\1 \end{bmatrix}$