Charles Nguyen -- 011606177

CptS 451 HW5

Question 1: Identifying Functional Dependencies

There are two BCNF tables:

MySales_product

Question 2: BCNF Decomposition

Part 1.

$$R(A,B,C,D,E,F)$$

 $A o BC$ (1)
 $D o AF$ (2)

- decompose R
 - \circ (1) $\{A\}^+ = \{A, B, C\}$
 - A is not a key
 - not in BCNF
 - compute R1(A, B, C)
 - A is the key
 - \circ (2) $\{D\}^+ = \{D, A, B, C, F\}$
 - D is not a key
 - not in BCNF
 - compute R2(A,B,C,D,F)
 - D is the key

B, C, E are not on the LHS, safely ignored.

	A	В	С	D	E	F
Α		В	С			
D	Α					F

Applying reflexivity.

	A	В	С	D	E	F
Α	Α	В	С			
D	Α			D		F

Applying transivity.

	A	В	С	D	E	F
Α	Α	В	С			
D	Α	В	С	D		F

- $\{A\}^+ = \{A, B, C\}$
 - Add E
 - $\{A, E\}^+ = \{A, B, C, E\}$ $\{A, E\}$ is the key.
- $\bullet \ \ \{D\}^+ = \{A,B,C,D,F\}$
 - o Add E
 - $\begin{tabular}{ll} & \{D,E\}^+ = \{A,B,C,D,E,F\} \\ & \{D,E\} \begin{tabular}{ll} & \{D,E\} \end{tabular}$

Part 2.

$$S(A,B,C,D) \ ABC o D \ D o A \ (2)$$

A	В	С	D
			D
Α			
		^	

Applying reflexivity.

	A	В	С	D
Α	Α			
ABC	Α	В	С	D
В		В		
С			С	
D	Α			D

Applying transivity.

	A	В	С	D
A	Α			
ABC	Α	В	C	D
В		В		
С			C	
D	Α	В	С	D
D	A	В	С	D

[•] $\{A,B,C\}^+ = \{A,B,C,D\}$ key, in BCNF

[•] $\{D\}^+ = \{D,A\}$ not in BCNF