

1 **MOVING-LOOP ADVERTISEMENT DEVICE**
2 **WITH SELF STOPPING AND SMOOTHING ELEMENTS**

3 BACKGROUND OF THE INVENTION

4 1. Field of the Invention

5 The present invention relates to a moving-loop advertisement display
6 device, and more particularly to a device that automatically displays and changes
7 pictures for the purpose of demonstrating advertisement information, news
8 announcements etc.

9 2. Description of Related Art

10 With reference to Fig. 13, a conventional two-dimensional (2D) image
11 display device has a rolling screen (80) rotatably surrounding a transmission rod
12 (81) and a driven rod (82). The rolling screen (80) can be printed with several
13 pictures, images or slogans as required by the advertisers. While the
14 transmission rod (81) is activated, the rolling screen (80) is able to move
15 upward/downward based on the rotating direction of the transmission rod (81).
16 The rolling screen (80) is thus able to present different patterns. However, with
17 the rotating of the transmission rod (81), wrinkles may gradually occur on the
18 surface of the rolling screen (80) as shown in the drawing. Finally, the whole
19 rolling screen (80) becomes crumpled and can not maintain in its original
20 smooth state, which results in that the considerable efforts spent by
21 manufacturers and advertising agencies in refining the promotion of the product
22 are impaired. Another problem of the image display device is that the rolling
23 screen (80) always keeps rotating. For an advertisement viewer, all these
24 information or pictures on the rolling screen (80) becomes difficult to read.

1 Therefore, it is desired to provide a novel advertisement device to
2 obviate the aforementioned drawback.

3 SUMMARY OF THE INVENTION

4 The main objective of the present invention is to provide an
5 advertisement device that drives a rolling screen with advertisement, posters,
6 news, images etc provided thereon as the advertisement, wherein the picture
7 changing device of the present invention utilizes a sensor to detect labels formed
8 on the rolling screen thus to stop the screen at proper positions to demonstrate
9 the advertising content.

10 Another objective of the present invention is to provide an
11 advertisement device using a transmission device to prevent the occurrence of
12 wrinkles in the rolling sheet while it is rotating.

13 Other objects, advantages and novel features of the invention will
14 become more apparent from the following detailed description when taken in
15 conjunction with the accompanying drawings.

16 BRIEF DESCRIPTION OF THE DRAWINGS

17 Fig. 1 is a perspective view of a first embodiment of a moving-loop
18 advertisement display device in accordance with the present invention;

19 Fig. 2 is a plan view of the moving-loop advertisement display device of
20 Fig. 1;

21 Fig. 3 is an enlarged perspective view showing an optical sensor of the
22 moving-loop advertisement display of Fig. 1;

23 Fig . 4 is a cross sectional bottom view showing an optical sensor being
24 mounted in a cover of the moving-loop advertisement display of Fig. 1;

1 Fig. 5 is a bottom plan view of the driving roller in the moving-loop
2 advertisement display of the present invention;

3 Fig. 6 is a perspective view of a second embodiment of a moving-loop
4 advertisement display device in accordance with the present invention;

5 Fig. 7 is a plan view of the moving-loop advertisement display device of
6 Fig. 6;

7 Fig. 8 is a plan view of a third embodiment of the moving-loop
8 advertisement display device of the present invention;

9 Fig. 9 is a plan view of a fourth embodiment of the moving-loop
10 advertisement display device of the present invention;

11 Fig. 10 is a perspective view showing the connection of a motor and a
12 roller in accordance with the present invention;

13 Fig. 11 is a lateral side plan view showing the moving-loop
14 advertisement display device of Figs. 1 to 9 of the present invention;

15 Fig. 12 is a lateral side plan view showing a fifth embodiment of an
16 advertisement display device with three rollers; and

17 Fig. 13 is a plan view of a conventional advertisement device.

18 **DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT**

19 With reference to Figs. 1-5, a first embodiment of the moving-loop
20 advertisement device in accordance with the present invention comprises a rod
21 assembly, a driving device and a display screen (30). The rod assembly is
22 composed of a driving roller (10) and a driven roller (20) handed by the display
23 screen (30). A motor (40), as the driving device, connects to one end of the upper
24 rod (10) and is able to be automatically and intermittently actuated at

1 predetermined times. A cover (60) is further mounted on the driving roller (10),
2 where said motor (40) is attached to the inner surface of one end of the cover (60).
3 A position sensor (70), for example an optical sensor in this embodiment, is
4 installed in an opposite end of the inner surface of the cover (60) and controlled
5 by a control box disposed in the cover (60). The optical sensor (70) includes a
6 signal emitting element (701) and a signal receiving element (702) apart from
7 the signal emitting element (701). The edge of the display screen (30) is just
8 positioned between the signal emitting element (701) and the signal receiving
9 element (702) as shown in Fig. 4.

10 The display screen (30) forms a closed loop and simultaneously
11 surrounds the driving roller (10) and the driven roller (20). Preferably, the
12 display screen (30) is fabricated by a curtain or material pervious to light, on
13 which plural advertisement segments represented by pictures, patterns or text are
14 attached or printed. Several labels (31) are formed along one edge of the display
15 screen (30), where these labels (31) may be created by dark ink printed on the
16 display screen (30).

17 When the activated motor (40) drives the driving roller (10) to rotate, the
18 driving roller (10) transmits the display screen (30) to move upward, at the same
19 time the driven roller (20) is driven by the display screen (30). At the time that
20 any label (31) passes through the optical sensor (70), the emitted optical signal is
21 unable to emit through the display screen (30) and obstructed by the label (31)
22 thus generating a signal for pausing the motor (40) with a short term. During the
23 pause period, the display screen (30) could demonstrate a complete
24 advertisement segment.

1 With reference to Figs 6 and 7, a second embodiment of the moving-
2 loop advertisement device in accordance with the present invention is
3 substantially the same as the first one. The second embodiment also comprises a
4 rod assembly, a driving device, a display screen (30). A tension adjustment
5 device is further added in the embodiment.

6 The rod assembly is composed of a driving roller (10) and a driven roller
7 (20). A motor (40), as the driving device, connects to one end of the upper rod
8 (10) and is able to be automatically and intermittently actuated at predetermined
9 times.

10 The tension adjustment device in the present invention can be
11 implemented by either or both of a coil (50) formed on the driven roller (20) and
12 helical ribs (11) formed on the driving roller (10). The coil (50) is twisted around
13 the driven roller (20), where the two ends of the coil (50) tightly abut against two
14 enlarged distal ends (21)(21') of the driven roller (20). It is noted that the coil (50)
15 is formed to have two segments with opposite twisting directions, i.e. clockwise
16 and counter-clockwise directions.

17 The helical ribs (11) are raised from and wound around the surface of the
18 driving roller (10) similar to the thread on a screw but with two portions having
19 opposite winding directions, where the opposite winding directions of the helical
20 ribs (11) are corresponding to the opposite twisting directions of the coil (50)
21 around the driven roller (20).

22 The display screen (30) forms a closed loop and simultaneously
23 surrounds the driving roller (10) and the driven roller (20). Preferably, the
24 display screen (30) is fabricated by a curtain or translucent thin film etc, on

1 which the desired pictures, patterns or text are attached or printed. Along one
2 edge of the display screen (30), several labels are created.

3 When the activated motor (40) drives the driving roller (10) to rotate, the
4 driving roller (10) transmits the display screen (30) to move upward, at the same
5 time the driven roller (20) is driven by the display screen (30). Meanwhile, two
6 outward tension forces with opposite directions (denoted with arrows A and B)
7 occur because of the opposite twisting direction of the coil (50) and the helical
8 ribs (11). The opposite forces will gently tug the screen outwardly and keep the
9 surface of the display screen (30) smooth and prevent the occurrence of wrinkles.
10 Preferably, the driving roller (10) is formed with the helical ribs (11) thereon as
11 shown in Fig. 6. However, even when there is only the coil (50) twisted around
12 the driven roller (20) and the driving roller (10) is plain, the coil (50) is still able
13 to generate opposite tension forces to maintain a smooth rolling motion.

14 With reference to Fig. 8, the structure of the driving roller (10) and the
15 driven roller (20) are modified to become extendable. The driving roller (10) is
16 composed of a hollow central tube (12) with two openings through which a first
17 rod (13) and a second rod (14) respectively insert into the central tube (12). The
18 joint between the two rods (13) and the central tube (12) is through the use of two
19 well known bushings (15)(15'). By rotating either of the bushings (15)(15'), the
20 respective rod (13)(14) is released from the central tube (12) so that the rod
21 (13)(14) can be pulled out from or pushed into the central tube (12). Through the
22 foregoing adjustment, the length of the driving roller (10) can meet the desired
23 specification.

24 The helical ribs (11), with opposite winding directions, are still formed

1 on the surface of the hollow central tube (11). However, it is noted that a first coil
2 (132) and a second coil (142) respectively wind around the first rod (13) and the
3 second rod (14). Further, the twisting direction of the first coil (132) is the same
4 as that of the left half portion of the helical ribs (11) near the first coil (13).
5 Similarly, the right half portion of the helical ribs (11) and the second coil (142)
6 have the same winding direction.

7 The driven roller (20) is substantially the same as the driving roller (10)
8 of Fig. 6, where the modification is that the helical ribs (11) are replaced with the
9 coil (50) winding around the central tube (22). The twisting directions of the left
10 and right half parts of the coil (50) are respectively the same as the first coil (232)
11 and the second coil (242).

12 With reference to Fig. 9, the cover (60) is mounted on the driving roller
13 (10). Since the length of the driving roller (10) is adjustable, the cover (60) is
14 constructed by a center segment (61) and two extendable segments (62)(63) each
15 of which movably extends from one end of center segment (61) and is secured
16 via a fastener (64).

17 With reference to Fig. 10, as mentioned above, the motor (40) is able to
18 connect to the driving roller (10) as shown in Fig. 6 or to the rod (14) as shown in
19 Fig. 8. For whichever embodiment, the end of the roller (10) or rod (14) for
20 connection to the motor (40) is formed as an enlarged end from which several
21 protrusions are provided to insert in holes on the motor (40).

22 The lateral view for each foregoing embodiment is illustrated and
23 schematically presented in Fig. 11. However, with reference to Fig. 12, the single
24 driven roller (20) is replaced with three driven rollers (20a, 20b and 20c)

1 configured to form a triangular arrangement. Two rollers (20b, 20c) placed in
2 parallel are at the lowest position, and the other one (20a) is placed between the
3 driving roller (10) and the two lowest rollers (20b, 20c). The display screen (30)
4 sequentially passes through the driving roller (10), one of the two lowest rollers
5 (20c), the middle roller (20a), the other one of the two lowest rollers (20b) and
6 then back to the driving roller (10). The purpose of such an arrangement is to
7 increase the length of the display screen (30) thus allowing more advertisement
8 information been formed thereon.

9 In conclusion, the present invention utilizes the helical ribs (11) or the
10 coil (50) with opposite winding directions as a spiral transmission means to
11 generate opposite tension forces. The tension forces with opposite directions will
12 keep the surface of the rolling screen (30) in a smooth flat status while the screen
13 is rolling. Such a transmission means may be provided on either of the driving
14 roller (10) or the lower roller (20), or preferably on both.

15 It is to be understood, however, that even though numerous
16 characteristics and advantages of the present invention have been set forth in the
17 foregoing description, together with details of the structure and function of the
18 invention, the disclosure is illustrative only, and changes may be made in detail,
19 especially in matters of shape, size, and arrangement of parts within the
20 principles of the invention to the full extent indicated by the broad general
21 meaning of the terms in which the appended claims are expressed.