Roll No.					

MCA I (Even Semester) 2015-16

Applied Computational Methods

Time =3 hrs. Max. Marks=40

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from remaining three parts of each question.

- 1. (a) Use Newton-Raphson Method to find a root between 1 and 2 of the equation $x^4-x-13=0$ correct up to 3 decimal places. Also, find the cube root of 25 by same method correct up to 3 decimal places.
 - (b) Use Regula Falsi method to find a root between 1 and 2 of the equation $x^3 5x + 3 = 0$ correct up to four decimal places.
 - (c) Solve by Crout's method:

$$x + 2y + 6z = 22;$$

 $3x + 4y + z = 26;$
 $6x - y - z = 19.$

(d) Solve by Gauss-Seidel method:

$$x + 8y + 2z = 6;$$

 $3x + 2y + 10z = 9;$
 $6x + y + z = 7.$

2. (a) From the following table, find value of f(3.5):

x	3	4	5	6	7
f(x)	3	6.6	15	22	35

and find the missing term from table given below:

x	0	1	2	3	4
y	1	3	9	-	81

(b) Use Lagrange's method to find cubic polynomial from table given below:

x	0	2	3	6
f(x)	659	705	729	804

(c) Find f(x) as a polynomial in x using Newton divided difference formula from following table:

х	5	6	9	11
f(x)	12	13	14	16

Also, find f(10).

- (d) Evaluate $\int_0^2 \frac{dx}{1+x^3}$ by Simpson's one-third rule by taking n=12 and use Simpson's three-eight rule to evaluate $\int_0^{1.2} \frac{e^{-x}}{1+x^2} dx$ by taking h=0.1.
- 3. (a) Solve the differential equation: $\frac{dy}{dx} = x + y$, y(0) = 1 by Picard's method to find value of y(1).

Also, solve: $\frac{dy}{dx} = x + y^2$, y(0) = 0 by Taylor's Series method.

- (b) Solve $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1 by Euler's method to find y(0.1) by taking h = 0.02.
- (c) Solve $\frac{dy}{dx} = xy + y$, y(0) = 1 to find y(0.1) by using Runge-Kutta method of order four.
- (d) Solve the difference equation:

$$y_{n+2} + 6y_{n+1} + 9y_n = 3, y_0 = 0, y_1 = 1.$$

4. (a) Calculate Bowley's coefficient of skewness for table given below:

C.I.	0-10	10-20	20-30	30-40	40-50	50-60	60-70
f	2	5	10	15	10	4	2

(b) Calculate the coefficient γ_2 and find the nature of the following frequency distribution:

x	5	15	25	35
f	1	3	4	2

(c) Find the coefficient of correlation and equations of regression lines from following table:

х	6	2	10	4	8
у	9	11	5	8	7

(d) 10 coins are tossed simultaneously. Find the probability of getting at least 7 heads.

A sample of 50 bulbs were tested to get $\bar{x}=12$ months and $\sigma=3$ months. If the data is normally distributed then find the probability that the bulb has life

- (i) more than 15 months;
- (ii) less than 6 months;
- (iii) in between 9 and 15 months.

Given Area for z = 1 is 0.3413 and for z = 2 area is 0.4772.