While Setting Up:

1. Go to https://usegalaxy.org/ and set up account

2. Locate Vander Griend folder on USB drive...

Critical and Quantitative Analyses of Next Generation Sequencing Data

Donald Vander Griend, Ph.D.

Dept. of Surgery, Section of Urology (CCB, DSRB)

Alex Ling (CCB)

Overview

Part 1: Analyses of FASTQ RNAseq Data

Part 2: Data Visualization

Part 3: Utilizing Online Databases

Next Generation Sequencing (NGS) Today...

- Impressive advances in NGS have enabled an immense diversity of novel applications.
- The barrier of the \$1000 genome has recently been broken.
- Important novel tools for **clinical diagnostics** based on NGS are appearing.
- Third-generation technologies may further revolutionize genomics research.
- Significant challenges for NGS remain, in particular data storage and processing.

The Price of Sequencing

The price of sequencing a single genome has dropped from the \$3 billion spent by the original Human Genome Project 13 years ago to as little as \$1,000

Sequencing at UofC

- https://osrf.uchicago.edu/
- https://genomics.uchicago.edu/

2011 High Throughput Sequencing Services Prices

HIGH THROUGHPUT SEQUENCING SERVICES	CHARGE				
Illumina Libraries (standard)	Per library				
DNA-SEQ	\$200				
RNA-SEQ	\$250				
small RNA SEQ	\$250				
Illumina Sequencing Runs (HiSeq)	Per lane				
50 bp Single-end	\$750 (any number of Lanes)				
100 bp Single-end	\$1,100 (8 lanes only)				
50 bp Paired-end	\$1,250 (8 lanes only)				
100 bp Paired-end	\$1,800 (any number of lanes)				
SOLiD Libraries (standard)	Per Library				
DNA-SEQ	\$200				
RNA-SEQ	\$250				
SOLiD Sequencing Runs	Per lane				
50 bp Single-end	\$675				
75 bp Single-end	\$833				
75 bp - 35 bp paired end	\$1,050				

CONTACTS

Pieter W. Faber, PhD

Technical Director Phone: (773)834-8420

Yoav Gilad, PhD Scientific Director

LOCATION

Genomics Facility University of Chicago -Knapp Center for Biomedical Discovery (KCBD) 900 E. 57th Street Room # 1230C Chicago, IL 60637

900 E. 57 Street, Chicago IL 60637

COLUEDUI ED

The Rate of Data Acquisition

Broad Applications of NGS

Broad applications of NGS to drug discovery							
Applications	Pros of NGS	Cons of NGS	Alternatives	Refs			
Mutation detection: personalised medicine	Can sequence large genome regions to identify efficacy markers	Initial setup and running cost for NGS	Large-scale Sanger sequencing technology	[64]			
ChIP-Seq: target identification and/or validation and compound profiling for epigenetics	Enables study of epigenetic targets at the whole-genome level	Many possible algorithms for data analysis and complex data interpretation	ChIP-on-chip assay using microarray-based technology	[44]			
CNV: target identification, personalised medicine, for example, cancer	Uncovers all types of CNV; no a priori assumptions about location of CNVs required	Large and complex rearrangements might not be detected	Comparative genomic hybridisation	[35,65, 66]			
Exome sequencing: target identification and/or drug resistance studies, biomarker discovery	Identify rare variants, using deep sequence coverage	Sequence variation in non-coding regions and introns not detected	Large-scale Sanger sequencing technology	[16]			
RNA-Seq: target identification and/or validation by studying differential gene or miRNA expression between normal and diseased tissue	Detects alternative splicing and low expression transcripts; has large dynamic range	Bias during library preparation can result in over-representation of transcript 3' ends	Microarray-based technology	[11,12, 67]			

The application of next-generation sequencing technologies to drug discovery and development. Woollard PM, Mehta NA, Vamathevan JJ, Van Horn S, Bonde BK, Dow DJ.

RNA-seq

- NGS-based Technology to qualitatively and quantitatively profile the full set of transcripts (i.e., transcriptome), including mRNAs, small RNAs and other non-coding RNAs.
- Transcriptome profiling provides a snapshot of gene expression patterns and regulatory elements
- Although a transcriptome only represents a small fraction of the human genome (<5%), it is very complex, transcripts derived from alternative splicing, gene fusion, antisense transcription and RNA editing largely increase the diversity of the transcriptome

The Basic NGS Process

Sample preparation: the target genome is broken into fragments

Physical sequencing: individual bases in each fragment are identified in order

Reconstruction: bioinformatics software aligns overlapping reads from each fragment, allowing the original genome to be constructed

A Typical RNAseq Experiment

Let's Get Started...

https://usegalaxy.org

Upload Data - 5 Files

Name	Date modified	Type	Size
Galaxy1-[_iGenomes_UCSC_hg19,_chr19	8/4/2015 11:42 AM	GTF File	6,021 KB
Galaxy2-[adrenal_1.fastq].fastqsanger	8/4/2015 11:41 AM	FASTQSANGER File	8,011 KB
Galaxy3-[adrenal_2.fastq].fastqsanger	8/4/2015 11:42 AM	FASTQSANGER File	8,011 KB
Galaxy4-[brain_1.fastq].fastqsanger	8/4/2015 11:41 AM	FASTQSANGER File	6,073 KB
Galaxy5-[brain_2.fastq].fastqsanger	8/4/2015 11:41 AM	FASTQSANGER File	6,073 KB

Download data directly from web or upload files from your disk

Plan B: GenomeSpace Importer

Step 1: Data QC

QC and Trimming off Barcodes

View Raw Fastq Data

Sequence

@M00956:35:00000000-A8P3G:1:1101:16937:1654 1:N:0:2

+

Quality Score

FastQC – Quality Metrics

Summary

- Basic Statistics
- Per base sequence quality
- Per tile sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Winer Content

- * Note Data X Reference
- * Delete "RawData" Files

Per base sequence quality

FastQC Analyses

- Assume a median quality score of below 20 to be unusable (yellow bars).
- Given this criterion, is trimming needed for any of the datasets? If so, which base pairs should be trimmed?

- RNAseq datasets do not pass per sequence GC content and sequence duplication levels. This is expected because FastQC is designed for DNA sequencing data, not RNA sequencing.
- What unique characteristics of RNAseq data will cause these two QC checks to fail?

Adrenal 1

Brain 1

Trim Sequences

Brain 2

Now run FastQC again on the Trimmed Sequence and see what it looks like...

How does "Per base sequence quality" graph look now?

QC of Brain 1 Trimmed

Step 2: Aligning to Reference Genome

Mapping: Aligning Reads to Genes

Aligning Reads to a Reference Genome (Hg19)

NGS: RNA-seq - TopHat

NGS: RNA-seq

<u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use

<u>Tophat</u> Gapped-read mapper for RNA-seg data

StringTie transcript assembly

- Paired vs. UnPaired Seq Runs
- Tophat tool to map RNAseq reads to the hg19 build.
- Because the reads are paired, you'll need to set mean inner distance between pairs; this is the average distance in basepairs between reads.
- Use a mean inner distance of 110 for BodyMap data.
- Is this single-end or paired-end data? Paired end, individual datasets
- Mean Inner Distance between Mate Pairs: 110
- Select a reference genome: Human (Homo sapiens) (b37):hg19
- Leave all defaults same...
- Execute
- Do again on your own for other organ (Adrenal/Brain)

TopHat Output: BAM Format SAM/BAM Format

1	2	3	4	5	6	7	8	9	10	11	12
R001	83	ref	37	30	9M	=	7	-39	CAGCGCAT	CAGCGCAT	TAG

COLUMNS:

I	QNAME	String	Query template NAME
2	FLAG	Int	bitwise FLAG
3	RNAME	String	Reference sequence NAME
4	POS	Int	1-based leftmost mapping POSition
5	MAPQ	Int	MAPping Quality
6	CIGAR	String	CIGAR string
7	RNEXT	String	Ref. name of the mate/next fragment
8	PNEXT	Int	Position of the mate/next fragment
9	TLEN	Int	observed Template LENgth
IO	SEQ	String	fragment SEQuence
II	QUAL	String	ASCII of Phred-scaled base QUALity+33≈

Renaming Files *Keeping Organized*

World's Most Accurate Pie Chart

Visualizing Data

Search: chr19:3,000,000-3,500,000

UCSC Genome Browser

chr19:3,121,510-3,274,076

Right Click, Select "squish" view

Narrow Down - Search for: chr19:3,250,772-3,253,822

UCSC Browser Comparisons

Lots and Lots of Comparisons...

Challenges

chr19:3,250,772-3,253,822

- Compare your reads to the Neandertal Genome.
- What transcription factors bind within this region?
- What SNPs are in this region?
- Can you find qPCR primers to amplify this region?

qPCR Primers

Human (hg19) Whole Transcriptome qPCR Primers (CELF5_uc010xhg.2_1_1_1)

Click here for primer details: 95629

Item: CELF5_uc010xhg.2_1_1_1 Position: chr19:3250995-3273911

Position: <u>chr19:3250995-327391</u> Band: 19p13.3

Genomic Size: 22917 Strand: +

View DNA for this feature (hg19/Human)

View table schema

Go to qPCR Primers track controls

PRIMER PAIR NAME: CELF5_uc010xhg.2_1_1_1

OLIGO	$\overline{}$					seq
						TCACCTACTGTGCCAGGGAT
REVERSE	18	60.557	61.111	3.00	2.00	GCTTTCACTGTCCGCAGG

PAIR ANY COMPL:	PAIR 3' COMPL:	SNP_flag	RNA_edit_flag	number_specific_products	PRODUCT SIZE
4.00	3.00	0	0	1	113

Link to UCSC in-silico PCR

Data Visualization – IGV

https://www.broadinstitute.org/igv/

The 2008 World Submarine Racing Championships

Step 3: Assembling Reads into Full-Length Transcripts

Cufflinks: Read Assembly

NGS: QC and manipulation

NGS: Mapping NGS: RNA-seq

> <u>Cuffdiff</u> find significant changes in transcript expression, splicing, and promoter use

Tophat Gapped-read mapper for RNA-seq data

<u>StringTie</u> transcript assembly and quantification

<u>Cuffcompare</u> compare assembled transcripts to a reference annotation and track Cufflinks transcripts across multiple experiments

<u>Cufflinks</u> transcript assembly and FPKM (RPKM) estimates for RNA-Seq data

- Takes reads from a BAM file and assembles the reads into mRNA transcripts.
- Select your BAM File and Run with Default Settings
 - Tophat Brain
 - Tophat Adrenal
 - "Use Reference Annotation"
- Rename "Assembled Transcripts" to "Cufflinks Brain" or "Cufflinks Adrenal"

Use Reference Annotation Use reference annotation Reference Annotation 1: iGenomes UCSC hg19, chr19 gene annotation Gene annotation dataset in GTF or GFF3 format.

Cufflinks

Inputs and Outputs

Input:

- Alignment files (BAM)
- Indexed reference genome (FASTA)
- Known gene annotations (GTF) Optional

Output:

- Transcript assembly (GTF)
- Transcript abundance estimation (<u>FPKM</u>)

Parameters:

- num-threads
- GTF
- GTF-guide (assemble novel isoforms)
- library-type
- max-intron-length
- min-intron-length
- Many more!

FPKM

FPKM: Fragments Per Kilobase per Million mapped reads (total fragments)

RPKM: Reads Per Kilobase per Million mapped reads (total exons reads)

http://www.broadinstitute.org

Number of fragments normalized by

- √ Transcript length (Kb)
- ✓ Total number of mapped reads (Million)

Cuffmerge

Produces a merged transcripts dataset that includes all transcripts in both datasets. Datasets info are still maintained, but used for differential analyses.

How Cufflinks/Cuffmerge Works...

Cuffmerge will merge sequences if they overlap, and agree on splicing, and are in the same orientation.

Differential transcripts are not merged.

Cuffdiff

Isolate List of Differentially-Expressed Genes

Cuffdiff find significant changes in transcript expression, splicing, and promoter use (Galaxy Tool Version 2.2.1.2)

Transcripts

95: Cuffmerge on data 1, data 92, and data 82: merged transcripts

A transcript GFF3 or GTF file produced by cufflinks, cuffcompare, or other source.

Cuffdiff Outputs

- Cuffdiff calculates the FPKM of each transcript, primary transcript, and gene in each sample.
- Primary transcript and gene FPKMs are computed by summing the FPKMs of transcripts in each primary transcript group or gene group.

There are multiple FPKM file types:

- Isoforms
- Genes
- CDS (coding sequence)
- TSS (transcription start sites)
- Promoter

Cuffdiff: Output Styles

Transcript FPKM Tracking

Transcript differential expression testing

7	8	9	10	11	12	13	14
status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significant
NOTEST	0	0	0	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	34.4514	0	-inf	0	1	1	no
NOTEST	0	0	0	0	1	1	no
NOTEST	0.0797287	0	-inf	0	1	1	no
NOTEST	0	0	0	0	1	1	no

OK; NOTEST (not enough alignments); LOWDATA; HIDATA; FAIL Why so many marked "NOTEST"?

Coverage Affects Expression Estimation....

ENCODE saturation analysis

- 214 million 2x100bp PE reads
- H1 human embryonic stem cells
- 80% of the genes with <u>FPKM≥10</u> are detected by ~36 million mapped reads per sample
- Genes with <u>FPKM<10</u>: ~80 million mapped reads per sample

Trapnell et al. Nature Protocol 2012

Sims et al., 2014 Nature Reviews

Discussion Points:

- Always consider low-abundance transcripts and rare events, such as splice variants. Can you ever over-sequence?
- What other information can you use to cross-check the accuracy of your data and gene detection?

Let's Get this Data into Excel...

These are standard tab-separated values; default input settings usually work into any spreadsheet-style program.

Understand Your Data...

Log2(Fold_Change): The (base 2) log of the fold change y/x

Test_stat: The value of the test statistic used to compute significance of the observed

change in FPKM

P_value: The uncorrected p-value of the test statistic

Q_value: The FDR-adjusted p-value of the test statistic

Q1: How many genes are significantly changed?

Q2: Why so few?

Q3: Why are there duplicate genes listed?

Data Obtained, now back to the Lab to Validate!

Create a Workflow

To use, share, and publish

Many Options for Analyses Tools...

Class	Category	Package	Notes	Uses	Input
Read mapping		_			
Unspliced aligners ⁸	Seed methods	Short-read mapping package (SHRiMP) ⁴¹	Smith-Waterman extension	Aligning reads to a reference transcriptome	Reads and reference transcriptome
		Stampy ¹⁹	Probabilistic model		
	Burrows-Wheeler	Bowtie ⁴³			
	transform methods	BWA ⁴⁴	Incorporates quality scores		
Spliced aligners	Exon-first methods	MapSplice ⁵²	Works with multiple unspliced	Aligning reads to a	Reads and reference genome
		SpliceMap ⁵⁰	aligners	reference genome. Allows	
		TopHat ⁵¹	Uses Bowtie alignments	for the identification of	
	Seed-extend methods	GSNAP ⁵³	Can use SNP databases	novel splice junctions	
		QPALMA ⁵⁴	Smith-Waterman for large gaps		
Transcriptome re	econstruction				
Genome-guided	Exon identification	G.Mor.Se	Assembles exons	Identifying novel transcripts	Alignments to
reconstruction	Genome-guided	Scripture ²⁸	Reports all isoforms	using a known reference	reference genome
	assembly	Cufflinks ²⁹	Reports a minimal set of isoforms	genome	
Genome-	Genome-independent	Velvet ⁶¹	Reports all isoforms	Identifying novel genes and transcript isoforms without	Reads
independent	assembly	TransABySS ³⁶			
reconstruction				a known reference genome	
Expression quan					
Expression quantification	Gene quantification	Alexa-seq ⁴⁷	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ²⁰	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ⁸²	Quantifies using unique reads		
	Isoform quantification	Cufflinks ²⁹	Maximum likelihood estimation of	Quantifying transcript	Read alignments to
		MISO ³³	relative isoform expression	isoform expression levels	isoforms
		RNA-seq by expectation maximization (RSEM) ⁶⁹			
Differential			Uses isoform levels in analysis	Identifying differentially	Read alignments
Differential expression		maximization (RSEM) ⁶⁹	Uses isoform levels in analysis Uses a normal distribution	expressed genes or	and transcript
		maximization (RSEM) ⁶⁹ Cuffdiff ²⁹			
		maximization (RSEM) ⁶⁹ Cuffdiff ²⁹ DegSeq ⁷⁹		expressed genes or	and transcript
		maximization (RSEM) ⁶⁹ Cuffdiff ²⁹ DegSeq ⁷⁹ EdgeR ⁷⁷ Differential Expression analysis of count data		expressed genes or	and transcript
		maximization (RSEM) ⁶⁹ Cuffdiff ²⁹ DegSeq ⁷⁹ EdgeR ⁷⁷ Differential Expression		expressed genes or	and transcript

Finding Publically Available Data

Federal-Funded Studies Must Make Datasets Publically Available

Gene Expression Omnibus (GEO)

http://www.ncbi.nlm.nih.gov/geo/ Both sequencing and array data

Sequence Read Archive (SRA)

http://www.ncbi.nlm.nih.gov/sra/ Sequencing data

European Nucleotide Archive (ENA)

http://www.ebi.ac.uk/ena Sequencing data

UCSC Genome Browser

http://genome.ucsc.edu/
Can import directly into Galaxy

Other Big Sequencing Projects

- ENCODE: Encyclopedia of DNA Elements. The ENCODE
 Consortium is an international collaboration of research
 groups funded by the National Human Genome Research
 Institute (NHGRI).
- Illumina Body Map
- 1000 Genomes
- TCGA: The Cancer Genome Atlas
- Cancer Cell Line Encyclopedia (CCLE)
- cMAP: The Connectivity Map (or CMap) is a catalog of geneexpression data collected from human cells treated with chemical compounds and genetic reagents.

cMAP Drug Targets

http://www.broadinstitute.org/cmap

total instances: 6100 , signature: HDACi (Glaser), export: Excel

search:

by name		by name and cell lin	ne by	ATC	code			
rank		cmap name	mean	n	enrichment	P	specificity	% non-null
1	voring	0.865	12	0.973	0.00000	0.0201	100	
2	tricho	trichostatin A		182	0.895	0.00000	0.0095	97
3	geldar	namycin	0.484	15	0.705	0.00000	0.0163	100
4	fluphe	nazine	0.388	18	0.629	0.00000	0.0155	88
5	trifluo	perazine	0.392	16	0.625	0.00000	0.0625	87
6	thiorid	lazine	0.440	20	0.599	0.00000	0.1278	85
7	tanes	oimycin	0.431	62	0.574	0.00000	0.0259	87
8	sirolin	nus	0.337	44	0.491	0.00000	0.0542	77
9	LY-29	4002	0.324	61	0.486	0.00000	0.0738	68
10	valpro	ic acid	0.304	57	0.359	0.00000	0.0263	61
11	CP-69	0334-01	0.507	8	0.735	0.00002	0.0121	87
12	rifabu	tin	0.735	3	0.971	0.00004	0.0052	100
13	57078	85	0.549	4	0.913	0.00004	0.0000	100
14	pioglit	azone	-0.337	11	-0.646	0.00004	0.0061	72
15	6-bro	moindirubin-3'-oxime	-0.532	7	-0.770	0.00008	0.0047	85
16	withaf	erin A	0.542	4	0.896	0.00010	0.0632	100
17	wortm	nannin	0.382	18	0.501	0.00010	0.1355	77
18	iverm	ectin	0.461	5	0.858	0.00012	0.0215	100
19	prochl	orperazine	0.362	16	0.524	0.00014	0.1262	68
20	suloct	0.553	4	0.888	0.00016	0.0182	100	
<<	< 1 2 3	45> >>						

TCGA: The Cancer Genome Atlas

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp

Home	Download Data	Tools	About the Data	Publication Guidelines	
Home					

TCGA Data Portal Overview

The Cancer Genome Atlas (TCGA) Data Portal provides a platform for researchers to search, download, and analyze data sets generated by TCGA. It contains clinical information, genomic characterization data, and high level sequence analysis of the tumor genomes.

Please note some data on the TCGA Data Portal are in controlled-access. Please visit the Access Tiers page for more information.

The TCGA Data Portal does not host lower levels of sequence data. NCl's Cancer Genomics Hub (CGHub) & is the new secure repository for storing, cataloging, and accessing BAM files and metadata for sequencing data.

Download Data >

Choose from four ways to

Choose from four ways to download data

Let's Play

http://www.cbioportal.org/index.do

Query	Download Data	
Select Ca	ancer Study:	
Search	· No studies selected.	
→ □	Biliary Tract (3)	•
- ↓	Cholangiocarcinoma (3)	
	Intrahepatic Cholangiocarcin (Johns Hopkins University, Nature Genetics 2013)	
	Cholangiocarcinoma (National Cancer Centre of Singapore, Nature Genetics 2013) Cholangiocarcinoma (National University of Singapore, Nature Genetics 2012)	
↓ □	Bladder Urinary Tract (5)	
- ↓	Bladder Urothelial Carcinoma (5)	
	── □ Bladder Urothelial Carcinoma (BGI, Nature Genetics 2013)	
	Bladder Cancer (MSKCC, JCO 2013)	•
Select Da	ata Type Priority: Mutation and CNA Only Mutation Only CNA	
Enter Ger	ene Set: Advanced: Onco Query Language (OQL)	
User-defir	ined List	
Enter H	HUGO Gene Symbols or Gene Aliases	

cBioPortal: Outputs

- Are genes mutated in cancer cancers?
- What about changes in expression?
- What pathways are they connected to?
- Do changes in expression impact patient survival?
- What other proteins are co-expressed with our gene set?
- Are changes mutually exclusive?

One Stop Bioinformatics Shopping...

https://gsui.genomespace.org/

Overview

Part 1: Analyses of FASTQ RNAseq Data

Part 2: Data Visualization

Part 3: Utilizing Online Databases

Wrap Up...

- Good experimental design and quality of samples are still critical.
 - Garbage in, Garbage out.
 - RNA quality
- Consult with a statistician b/4 diving in. Biological replicates vs. technical replicates vs. read depth.
- UChicago Center for Research Informatics
 - http://cri.uchicago.edu/
- Before doing the sequencing yourself, search to see if someone else has already done it.
- Good way to generate hypothesis, still require validation in lab.

Acknowledgements

- UChicago CRI faculty and staff
- Alex Ling, CCB
- MBL Staff
- Vicky Prince, Stephanie Palmer, and Stefano Allesina

Contact me:

prostate@uchicago.edu

GenomeSpace

- 1. GenomeSpace Import
- 2. Public Folder
- 3. Carcinoman
- 4. MBL Files

Get Data

<u>Upload File</u> from your computer

UCSC Main table browser

UCSC Archaea table browser

EBI SRA ENA SRA

BioMart Central server

GrameneMart Central server

Flymine server

modENCODE fly server

modENCODE modMine server

MouseMine server

Ratmine server

YeastMine server

modENCODE worm server

<u>WormBase</u> server

ZebrafishMine server

EuPathDB server

GenomeSpace import from file browser

5 files selected

Send to Galaxy