proj

May 5, 2024

```
[1]: import math
  import matplotlib.pyplot as plt
  %matplotlib inline

import numpy as np
  import pandas as pd
  import os

import seaborn as sns
  import pandas as pd
  d1= pd.read_csv('/content/Customer-Churn-Records.csv')
  print(d1)
```

	RowNumb	er Custom	erId	Surname	CreditScore	Geography	Gender	Age	\
0		1 1563	4602	Hargrave	619	France	Female	42	
1		2 1564	7311	Hill	608	Spain	Female	41	
2		3 1561	9304	Onio	502	France	Female	42	
3		4 1570	1354	Boni	699	France	Female	39	
4		5 1573	7888	Mitchell	850	Spain	Female	43	
•••	•••	•••		•••					
9995	99	96 1560	6229	Obijiaku	771	France	Male	39	
9996	99	97 1556	9892	Johnstone	516	France	Male	35	
9997	99	98 1558	4532	Liu	709	France	Female	36	
9998	99	99 1568	2355	Sabbatini	772	Germany	Male	42	
9999	100	00 1562	8319	Walker	792	France	Female	28	
	Tenure	Balance	Num	OfProducts	HasCrCard	IsActiveMem	nber \		
0	2	0.00		1	1		1		
1	1	83807.86		1	0		1		
2	8	159660.80		3	1		0		
3	1	0.00		2	0		0		
4	2	125510.82		1	1		1		
•••	•••					•••			
9995	5	0.00		2	1		0		
9996	10	57369.61		1	1		1		
9997	7	0.00		1	0		1		
9998	3	75075.31		2	1		0		
9999	4	130142.79		1	1		0		

```
EstimatedSalary Exited Complain Satisfaction Score Card Type \
0
             101348.88
                              1
                                        1
                                                              2
                                                                  DIAMOND
1
             112542.58
                             0
                                        1
                                                              3
                                                                  DIAMOND
2
             113931.57
                              1
                                        1
                                                              3
                                                                  DIAMOND
3
                                        0
                                                              5
              93826.63
                                                                     GOLD
4
                                        0
                                                              5
              79084.10
                              0
                                                                     GOLD
9995
              96270.64
                              0
                                        0
                                                              1
                                                                  DIAMOND
9996
             101699.77
                                        0
                                                              5
                                                                 PLATINUM
                              0
                                        1
                                                              3
9997
              42085.58
                              1
                                                                   SILVER
9998
              92888.52
                              1
                                        1
                                                              2
                                                                     GOLD
9999
              38190.78
                              0
                                        0
                                                              3
                                                                  DIAMOND
      Point Earned
                464
0
```

[10000 rows x 18 columns]

[]:

[2]: d1.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	int64

```
10 HasCrCard
                            10000 non-null int64
     11 IsActiveMember
                            10000 non-null int64
     12 EstimatedSalary
                            10000 non-null float64
     13 Exited
                            10000 non-null int64
     14 Complain
                            10000 non-null int64
     15 Satisfaction Score 10000 non-null int64
     16 Card Type
                           10000 non-null object
     17 Point Earned
                            10000 non-null int64
    dtypes: float64(2), int64(12), object(4)
    memory usage: 1.4+ MB
[3]: X = d1.drop(['Exited'], axis=1) # Features are all columns except 'Exited'
    y = d1['Exited'] # Target variable is 'Exited'
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
     # Assuming 'X' contains features and 'y' contains target variable
    # Let's drop 'RowNumber', 'CustomerId', and 'Surname' as they are likely_
     ⇔irrelevant for prediction
    X = d1.drop(['Exited', 'RowNumber', 'CustomerId', 'Surname'], axis=1)
     # One-hot encoding categorical variables
    X encoded = pd.get_dummies(X, columns=['Geography', 'Gender', 'Card Type'])
     # Splitting the data
    X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.
```

Logistic Regression Accuracy: 0.799

predictions = model.predict(X_test)

Now, fit the model and make predictions

accuracy = accuracy_score(y_test, predictions)
print("Logistic Regression Accuracy:", accuracy)

→2, random_state=42)

model = LogisticRegression()
model.fit(X_train, y_train)

```
[4]: from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X_train, y_train)

predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
print("Decision Trees Accuracy:", accuracy)
```

Decision Trees Accuracy: 0.9975

```
[5]: from sklearn.svm import SVC
     model = SVC()
     model.fit(X_train, y_train)
     predictions = model.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     print("SVM Accuracy:", accuracy)
    SVM Accuracy: 0.8035
[6]: from sklearn.naive_bayes import GaussianNB
     model = GaussianNB()
    model.fit(X_train, y_train)
     predictions = model.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     print("Naive Bayes Accuracy:", accuracy)
    Naive Bayes Accuracy: 0.8
[7]: from sklearn.neural_network import MLPClassifier
     model = MLPClassifier()
     model.fit(X_train, y_train)
     predictions = model.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     print("MLP Accuracy:", accuracy)
    MLP Accuracy: 0.804
[8]: import xgboost as xgb
     model = xgb.XGBClassifier()
    model.fit(X_train, y_train)
     predictions = model.predict(X_test)
     accuracy = accuracy_score(y_test, predictions)
     print("XGBoost Accuracy:", accuracy)
    XGBoost Accuracy: 0.999
[9]: import lightgbm as lgb
     model = lgb.LGBMClassifier()
     model.fit(X_train, y_train)
```

```
predictions = model.predict(X_test)
      accuracy = accuracy_score(y_test, predictions)
      print("LightGBM Accuracy:", accuracy)
     [LightGBM] [Warning] Found whitespace in feature names, replace with underlines
     [LightGBM] [Info] Number of positive: 1645, number of negative: 6355
     [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of
     testing was 0.001464 seconds.
     You can set `force_row_wise=true` to remove the overhead.
     And if memory is not enough, you can set `force_col_wise=true`.
     [LightGBM] [Info] Total Bins 1131
     [LightGBM] [Info] Number of data points in the train set: 8000, number of used
     features: 20
     [LightGBM] [Info] [binary:BoostFromScore]: pavg=0.205625 -> initscore=-1.351502
     [LightGBM] [Info] Start training from score -1.351502
     [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
     LightGBM Accuracy: 0.999
[10]: import pandas as pd
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LogisticRegression
      from sklearn.svm import SVC
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.naive bayes import GaussianNB
      from sklearn.neural_network import MLPClassifier
      from sklearn.ensemble import RandomForestClassifier
      from xgboost import XGBClassifier
      from lightgbm import LGBMClassifier
      from sklearn.metrics import accuracy_score, precision_score, recall_score,
       ⇔f1_score, mean_absolute_error, mean_absolute_percentage_error, __
       →mean squared error
      import matplotlib.pyplot as plt
      # Define classifiers
      classifiers = {
          "Logistic Regression": LogisticRegression(),
          "Support Vector Machines": SVC(),
          "Decision Trees": DecisionTreeClassifier(),
          "Naive Bayes": GaussianNB(),
          "Multi-layer Perceptrons": MLPClassifier(),
          "Random Forest": RandomForestClassifier(),
          "XGBoost": XGBClassifier(),
```

"LightGBM": LGBMClassifier()

}

```
[31]: # Create DataFrame for accuracy comparison
      accuracy_df = pd.DataFrame.from_dict(accuracy_dict, orient='index',__

columns=['Accuracy'])
      # Display accuracy comparison
      print("Accuracy Comparison:")
      print(accuracy_df)
      # Display recall comparison
      recall_df = pd.DataFrame.from_dict(recall_dict, orient='index',__

columns=['recall'])
      print("recall Comparison:")
      print(recall_df)
      #f1
      f1_df = pd.DataFrame.from_dict(f1_dict, orient='index', columns=['f1'])
      # Display accuracy comparison
      print("Accuracy Comparison:")
      print(f1_df)
      precision_df = pd.DataFrame.from_dict(precision_dict, orient='index',__
       ⇔columns=['precision'])
      print(precision_df)
```

Accuracy Comparison:

	Accuracy
Logistic Regression	0.7990
Support Vector Machines	0.8035
Decision Trees	0.9980
Naive Bayes	0.8000
Multi-layer Perceptrons	0.3435
Random Forest	0.9990
XGBoost	0.9990
LightGBM	0.9990
recall Comparison:	
	recall
Logistic Regression	0.076336
Support Vector Machines	0.000000
Decision Trees	0.997455
Naive Bayes	0.099237
Multi-layer Perceptrons	0.697201
Random Forest	0.997455
XGBoost	0.997455
LightGBM	0.997455
Accuracy Comparison:	
	f1
Logistic Regression	0.129870
Support Vector Machines	0.000000

```
Decision Trees
                             0.994924
                             0.163180
     Naive Bayes
     Multi-layer Perceptrons 0.294465
     Random Forest
                             0.997455
     XGBoost
                             0.997455
     LightGBM
                             0.997455
                             precision
     Logistic Regression
                              0.434783
     Support Vector Machines
                              0.000000
     Decision Trees
                              0.992405
     Naive Bayes
                              0.458824
     Multi-layer Perceptrons
                              0.186649
     Random Forest
                              0.997455
     XGBoost
                              0.997455
     LightGBM
                              0.997455
[32]: from sklearn.metrics import precision_score, recall_score, f1_score,
      →mean_absolute_error
     precision = precision_score(y_test, predictions)
     recall = recall_score(y_test, predictions)
     f1 = f1_score(y_test, predictions)
     print("SVM Precision:", precision)
     print("SVM Recall:", recall)
     print("SVM F1 Score:", f1)
     SVM Precision: 0.9974554707379135
     SVM Recall: 0.9974554707379135
     SVM F1 Score: 0.9974554707379135
[24]:
[18]:
[17]:
[25]: # Define F1-score data including corrected value for Support Vector Machines
      \hookrightarrow (SVM)
     f1_score_data = {
         'Model': ['Logistic Regression', 'Decision Trees', 'Random Forest',
      'F1-score': [0.129870, 0.993647, 0.997455, 0.997455, 0.997455, 0.163180, 0.
      →1298]
     }
     def plot_f1_scores_bar(model_names, f1_scores):
         colors = ['skyblue', 'salmon', 'lightgreen', 'orange', 'purple', 'yellow', u
       plt.figure(figsize=(10, 5))
```



```
'F1-score': [0.129870, 0.993647, 0.997455, 0.997455, 0.997455, 0.163180, 0.
⇔9974] # Add SVM F1-score value
}
# Define a function to plot F1-score comparison for all models using a baru
⇔graph with different colors
def plot_f1_scores_bar(model_names, f1_scores):
   colors = ['skyblue', 'salmon', 'lightgreen', 'orange', 'purple', 'yellow', |
 →'cyan'] # Define colors for each model
   plt.figure(figsize=(8, 4))
   plt.bar(model_names, f1_scores, color=colors)
   plt.title('F1-score Comparison for All Models')
   plt.xlabel('Model')
   plt.ylabel('F1-score')
   plt.xticks(rotation=45, ha='right')
   plt.grid(axis='y') # Show gridlines on the y-axis
   plt.show()
# Define model names and corresponding F1-scores
model_names = ['Logistic Regression', 'Decision Trees', 'Random Forest', |
f1 scores = [f1 score data['F1-score'][f1 score data['Model'].
→index(model_name)] for model_name in model_names]
# Plot F1-score comparison for all models using a bar graph with different ⊔
⇔colors
plot_f1_scores_bar(model_names, f1_scores)
```



```
[]:
```

```
[34]: # Define precision and recall data including SVM
precision_data = {
    'Model': ['Logistic Regression', 'Decision Trees', 'Random Forest',
    'XGBoost', 'LightGBM', 'Naive Bayes', 'Support Vector Machines'],
    'Precision': [0.434783, 0.9948, 0.997455, 0.997455, 0.997455, 0.458824, 0.
    '9974] # Add SVM precision value
}

recall_data = {
    'Model': ['Logistic Regression', 'Decision Trees', 'Random Forest',
    'XGBoost', 'LightGBM', 'Naive Bayes', 'Support Vector Machines'],
    'Recall': [0.076336, 0.992311, 0.997455, 0.997455, 0.997455, 0.099237, 0.
    '9974] # Add SVM recall value
}

# Define model names and corresponding precision and recall values
model_names = ['Logistic Regression', 'Decision Trees', 'Random Forest',
    'XGBoost', 'LightGBM', 'Naive Bayes', 'Support Vector Machines']
```



```
[]: # Accuracy data
   accuracy_data = {
       'Model': ['Logistic Regression', 'Decision Trees', 'Random Forest',
    'Accuracy': [0.7990, 0.9975, 0.9990, 0.9990, 0.9990, 0.8000, 0.8035]
   }
   # Define colors for each model
   # Plotting accuracy comparison graph with different colors
   plt.figure(figsize=(8,4))
   plt.bar(accuracy_df['Model'], accuracy_df['Accuracy'], color=colors)
   plt.title('Accuracy Comparison for All Models')
   plt.xlabel('Model')
   plt.ylabel('Accuracy')
   plt.xticks(rotation=45, ha='right')
   plt.grid(axis='y') # Show gridlines on the y-axis
   plt.show()
```

```
# Create DataFrame for accuracy comparison
accuracy_df = pd.DataFrame(accuracy_data)

# Plotting accuracy comparison graph
plt.figure(figsize=(8, 4))
plt.bar(accuracy_df['Model'], accuracy_df['Accuracy'], color='skyblue')
plt.title('Accuracy Comparison for All Models')
plt.xlabel('Model')
plt.ylabel('Accuracy')
plt.xticks(rotation=45, ha='right')
plt.grid(axis='y') # Show gridlines on the y-axis
plt.show()
```



```
[24]: # Create DataFrame for error rate comparison
error_rate_df = pd.DataFrame({
         'MAE': mae_dict,
         'RMSE': rmse_dict
})

# Display error rate comparison
print("\nError Rate Comparison:")
print(error_rate_df)
```

Error Rate Comparison:

	MAE	RMSE
Logistic Regression	0.2010	0.448330
Support Vector Machines	0.1965	0.443283
Decision Trees	0.0020	0.044721
Naive Bayes	0.2000	0.447214
Multi-layer Perceptrons	0.6565	0.810247
Random Forest	0.0010	0.031623
XGBoost	0.0010	0.031623
LightGBM	0.0010	0.031623

[]:

```
[]: # Create DataFrame for error rate comparison without Multi-layer Perceptrons
     error_rate_df = pd.DataFrame({
         'MAE': mae_dict,
         'MAPE': mape_dict,
         'RMSE': rmse_dict
     })
     # Remove Multi-layer Perceptrons from the DataFrame
     error_rate_df = error_rate_df.drop(index='Multi-layer Perceptrons')
     # Plotting MAE error comparison graph
     plt.figure(figsize=(8, 4))
     for column in error_rate_df.columns:
         if column == 'MAE':
             plt.plot(error_rate_df.index, error_rate_df[column], marker='o',__
      →label=column)
     plt.title('MAE Error Comparison')
     plt.xlabel('Model')
     plt.ylabel('MAE Error')
     plt.xticks(rotation=45, ha='right')
     plt.legend()
     plt.grid(True)
     plt.show()
```



```
[]: # Define RMSE data for models (excluding Multi-layer Perceptrons)
     rmse_data = {
         'Logistic Regression': 0.448330,
         'Support Vector Machines': 0.443283,
         'Decision Trees': 0.050000,
         'Naive Bayes': 0.447214,
         'Random Forest': 0.031623,
         'XGBoost': 0.031623,
         'LightGBM': 0.031623
     }
     # Remove Multi-layer Perceptrons from the RMSE data
     rmse_data.pop('Multi-layer Perceptrons', None)
     # Plotting RMSE error comparison graph
     plt.figure(figsize=(8,4))
     plt.plot(rmse_data.keys(), rmse_data.values(), marker='o', label='RMSE')
     plt.title('RMSE Error Comparison')
     plt.xlabel('Model')
     plt.ylabel('RMSE Error')
     plt.xticks(rotation=45, ha='right')
     plt.legend()
```

plt.grid(True)
plt.show()

[24]: