iglidur® J | Lieferprogramm

Gleitlager mit Bund

Abmessungen nach ISO 3547-1 und Sonderabmessungen

* bei Wanddicke < 1 mm, Fase = 20°

Fase in Abhängigkeit von d1

d1 [mm]: Ø 1-6 Ø 6-12 Ø 12-30 0,5 f [mm]: 0,3 0,8 1,2

Bestellschlüssel

JFM-0304-03

Gesamtlänge b1 Außendurchmesser d2 Innendurchmesser d1 metrisch mit Bund (Form F)

Abmessungen [mm]

Bestellnummer	d1	d1-Toleranz*	d2	d3 d13	b1 h13	b2 -0,14
JFM-0304-03	3,0	+0,014 +0,054	4,5	7,5	3,0	0,75
JFM-0304-045	3,0	+0,014 +0,054	4,5	7,5	4,5	0,75
JFM-0304-05	3,0	+0,014 +0,054	4,5	7,5	5,0	0,75
JFM-0306-10	3,0	+0,020 +0,080	6,0	9,0	10,0	1,5
JFM-0405-03	4,0	+0,020 +0,068	5,5	9,5	3,0	0,75
JFM-0405-06	4,0	+0,020 +0,068	5,5	9,5	6,0	0,75
JFM-0506-05	5,0	+0,020 +0,068	6,0	10,0	5,0	0,5
JFM-0507-03	5,0	+0,020 +0,068	7,0	11,0	3,0	1,0
JFM-0507-05	5,0	+0,020 +0,068	7,0	11,0	5,0	1,0
JFM-0608-04	6,0	+0,020 +0,068	8,0	12,0	4,0	1,0
JFM-0608-06	6,0	+0,020 +0,068	8,0	12,0	6,0	1,0
JFM-0608-08	6,0	+0,020 +0,068	8,0	12,0	8,0	1,0
JFM-0608-10	6,0	+0,020 +0,068	8,0	12,0	10,0	1,0
JFM-0610-10	6,0	+0,030 +0,105	10,0	14,0	10,0	2,0
JFM-0810-038	8,0	+0,025 +0,083	10,0	15,0	3,8	1,0
JFM-0810-05	8,0	+0,025 +0,083	10,0	15,0	5,0	1,0
JFM-0810-06	8,0	+0,025 +0,083	10,0	15,0	6,0	1,0
JFM-0810-07	8,0	+0,025 +0,083	10,0	15,0	7,0	1,0
JFM-0810-08	8,0	+0,025 +0,083	10,0	15,0	8,0	1,0
JFM-0810-10	8,0	+0,025 +0,083	10,0	15,0	10,0	1,0
JFM-0810125-10	8,0	+0,025 +0,083	10,0	12,5	10,0	1,0
JFM-081014-10	8,0	+0,025 +0,083	10,0	14,0	10,0	1,0
JFM-081016-11	8,0	+0,025 +0,083	10,0	16,0	11,0	2,0
JFM-0812-06	8,0	+0,025 +0,083	12,0	16,0	6,0	2,0
JFM-1012-05	10,0	+0,025 +0,083	12,0	18,0	5,0	1,0
JFM-1012-09	10,0	+0,025 +0,083	12,0	18,0	9,0	1,0

^{*} nach dem Einpressen; Messverfahren ► Seite 75

Lieferzeit ab Lager

Preise Online-Preisliste www.igus.de/de/j

Die iglidur® J-Gleitlager zeichnen sich vor allem aus durch niedrigste Reibwerte im Trockenlauf und ihre sehr geringe Stick-Slip-Neigung.

Mechanische Eigenschaften

Mit steigenden Temperaturen nimmt die Druckfestigkeit von iglidur® J-Gleitlagern ab. Abb. 02 verdeutlicht diesen Zusammenhang. Bei der langzeitig zulässigen Anwendungstemperatur von +90 °C beträgt die zulässige Flächenpressung noch 20 MPa. Die maximal empfohlene Flächenpressung stellt einen mechanischen Werkstoffkennwert dar. Rückschlüsse auf die Tribologie können daraus nicht gezogen werden.

Abb. 02: Maximal empfohlene Flächenpressung in Abhängigkeit von der Temperatur (35 MPa bei +20 °C)

Mit einer maximal empfohlenen Flächenpressung von 35 MPa sind iglidur[®] J-Gleitlager nicht für extreme Belastungen geeignet. Aus Abb. 03 geht die elastische Verformung von iglidur[®] J bei radialen Belastungen hervor. Unter der maximal empfohlenen Flächenpressung von 35 MPa beträgt die Verformung weniger als 2,5 %.

Flächenpressung, Seite 63

Abb. 03: Verformung unter Belastung und Temperaturen

Zulässige Gleitgeschwindigkeiten

Die niedrigen Reibwerte und die sehr geringe Stick-Slip-Neigung von iglidur® J-Gleitlagern sind besonders wichtig bei sehr niedrigen Geschwindigkeiten. iglidur® J kann aber auch für hohe Geschwindigkeiten von über 1 m/s eingesetzt werden. In beiden Fällen ist die Haftreibung sehr gering, und Stick-Slip bleibt fast völlig aus.

Die in Tabelle 02 angegebenen Maximalwerte können nur bei geringsten Druckbelastungen erreicht werden. Die angegebenen Werte zeigen die Geschwindigkeit, bei der reibungsbedingt die Temperatur bis an den höchsten zulässigen Wert ansteigt.

► Gleitgeschwindigkeit, Seite 65

m/s	rotierend	oszillierend	linear
dauerhaft	1,5	1,1	8
kurzzeitig	3	2,1	10

Tabelle 02: Maximale Gleitgeschwindigkeit

Temperaturen

Einsetzbar sind iglidur® J-Gleitlager zwischen –50°C und +90°C; die kurzzeitige zulässige Höchsttemperatur beträgt +120°C. Oberhalb von +80°C steigt der Verschleiß extrem an.

► Anwendungstemperaturen, Seite 66

iglidur® J	Anwendungstemperatur
untere	−50 °C
obere, langzeitig	+90 °C
obere, kurzzeitig	+120 °C
zus. axial zu sichern ab	+60 °C

Tabelle 03: Temperaturgrenzen

Reibung und Verschleiß

Wie die Verschleißfestigkeit ändert sich mit der Belastung auch der Reibungsbeiwert µ, kurz Reibwert genannt. Die Abb. 04 und 05 zeigen die Reibwerte bei unterschiedlichen Belastungen und Geschwindigkeiten. Das Niveau des Reibwertes ist bei iglidur® J für alle Belastungen und Geschwindigkeiten sehr gut.

- ► Reibwerte und Oberflächen, Seite 68
- Verschleißfestigkeit, Seite 69

Abb. 04: Reibwerte in Abhängigkeit von der Gleitgeschwindigkeit, p = 0,75 MPa

Abb. 05: Reibwerte in Abhängigkeit von der Belastung, v = 0.01 m/s

Wellenwerkstoffe

Reibung und Verschleiß sind auch im hohen Maße vom Gegenlaufpartner abhängig. Zu glatte Wellen erhöhen sowohl den Reibwert als auch den Verschleiß der Lager. Am besten ist eine geschliffene Oberfläche mit einer Mittenrauigkeit Ra = 0.1 bis $0.3 \mu m$ geeignet (Abb. 06). Die Abb. 07 bis 09 zeigen einen Auszug der Ergebnisse von Tests mit unterschiedlichen Wellenwerkstoffen, die mit Gleitlagern aus iglidur® J durchgeführt worden sind.

Werden iglidur® J-Gleitlager für rotierende Anwendungen eingesetzt, eignen sich bei geringen Belastungen unter 2 MPa zahlreiche Wellenwerkstoffe, wobei die hartverchromte Welle die geringsten Verschleißwerte ergibt. Im Vergleich zu den meisten anderen iglidur®-Werkstoffen ist der Verschleiß bei den geringen Belastungen mit allen untersuchten Wellenwerkstoffen sehr gering.

Auch bei steigenden Belastungen im Bereich bis 5 MPa ist die Verschleißfestigkeit von iglidur® J-Gleitlagern hervorragend.

Im Schwenkbetrieb mit Cf53 und St37 liegt der Verschleiß von iglidur® J-Lagern geringfügig höher als bei Rotation. Falls der von Ihnen vorgesehene Wellenwerkstoff in den hier vorgestellten Versuchsergebnissen nicht enthalten ist, sprechen Sie uns bitte an.

Wellenwerkstoffe, Seite 71

Abb. 06: Reibwerte in Abhängigkeit von der Wellenoberfläche (Welle Cf53)

Abb. 07: Verschleiß, rotierende Anwendung mit unterschiedlichen Wellenwerkstoffen, p = 1 MPa, v = 0.3 m/s

Abb. 08 Verschleiß mit verschiedenen Wellenwerkstoffen im Rotationsbetrieb in Abhängigkeit von der Belastung

Abb. 09: Verschleiß bei rotierenden und oszillierenden Anwendungen mit verschiedenen Wellenwerkstoffen, p = 2 MPa

iglidur® J	trocken	Fett	ÖI	Wasser
Reibwerte µ	0,06–0,18	0,09	0,04	0,04

Tabelle 04: Reibwerte gegen Stahl (Ra = 1 µm, 50 HRC)

Weitere Eigenschaften

Chemikalienbeständigkeit

iglidur[®] J-Gleitlager sind beständig gegen verdünnte Laugen und sehr schwache Säuren sowie gegen Kraftstoffe und alle Arten von Schmierstoffen. Die geringe Feuchtigkeitsaufnahme erlaubt auch den Einsatz in nasser oder feuchter Umgebung. Gegen gebräuchliche Reinigungsmittel in der Lebensmittelindustrie sind Gleitlager aus iglidur[®] J beständig.

Chemikalientabelle, Seite 1258

Medium	Beständigkeit bei +20°C
Alkohole	+
Kohlenwasserstoffe	+
Fette, Öle, nicht additiviert	+
Kraftstoffe	+
verdünnte Säuren	0 bis –
starke Säuren	_
verdünnte Basen	+
starke Basen	+ bis 0

+ beständig 0 bedingt beständig – unbeständig Alle Angaben bei Raumtemperatur [+20 °C] Tabelle 05: Chemikalienbeständigkeit

Radioaktive Strahlen

Gleitlager aus iglidur® J sind strahlenbeständig bis zu einer Strahlungsintensität von $3 \cdot 10^2$ Gy.

UV-Beständigkeit

iglidur[®] J-Gleitlager verfärben sich unter dem Einfluss von UV-Strahlen. Härte, Druckfestigkeit und die Verschleißfestigkeit des Materials verschlechtern sich jedoch nicht.

Vakuum

Bei Einsatz im Vakuum gast der eventuell vorhandene Feuchtegehalt aus. Deshalb sind nur trockene Lager aus iglidur[®] J für Vakuum geeignet.

Elektrische Eigenschaften

iglidur® J-Gleitlager sind elektrisch isolierend. spezifischer Durchgangswiderstand $> 10^{13} \Omega cm$ Oberflächenwiderstand $> 10^{12} \Omega$

Feuchtigkeitsaufnahme

Die Feuchtigkeitsaufnahme von iglidur® J-Gleitlagern beträgt im Normalklima etwa 0,3 %. Die Sättigungsgrenze im Wasser liegt bei 1,3 %. Diese Werte sind so gering, dass eine Berücksichtigung des Quellens durch Feuchtigkeitsaufnahme nur in extremen Fällen nötig ist.

Maximale Feuchtigkeitsaufnahme				
bei +23°C/50% r.F.	0,3 Gew%			
max. Wasseraufnahme	1,3 Gew%			

Tabelle 06: Feuchtigkeitsaufnahme

Abb. 10: Einfluss der Feuchtigkeitsaufnahme

Einbautoleranzen

iglidur® J-Gleitlager sind Standardlager für Wellen mit h-Toleranz (empfohlen mindestens h9).

Die Lager sind ausgelegt für das Einpressen in eine H7-tolerierte Aufnahme.

Nach dem Einbau in eine Aufnahme mit Nennmaß stellt sich der Innendurchmesser der Lage im Standardfall mit E10-Toleranz selbstständig ein. Bei bestimmten Abmessungen weicht die Toleranz in Abhängigkeit von der Wandstärke hiervon ab (siehe Lieferprogramm).

Prüfverfahren, Seite 75

Durchmesser		Welle h9	iglidur® J	Gehäuse H7	
d1 [mm]		[mm]	E10 [mm]	[mm]	
	bis	3	0-0,025	+0,014 +0,054	0 +0,010
>	3 bis	6	0-0,030	+0,020 +0,068	0 +0,012
>	6 bis	10	0-0,036	+0,025 +0,083	0 +0,015
>	10 bis	18	0-0,043	+0,032 +0,102	0 +0,018
>	18 bis	30	0-0,052	+0,040 +0,124	0 +0,021
>	30 bis	50	0-0,062	+0,050 +0,150	0 +0,025
>	50 bis	80	0-0,074	+0,060 +0,180	0 +0,030
>	80 bis	120	0-0,087	+0,072 +0,212	0 +0,035
>	120 bis	180	0-0,100	+0,085 +0,245	0 +0,040

Tabelle 07: Wichtige Toleranzen nach ISO 3547-1 nach dem Einpressen