Theoretical Computerscience - Summary

Tim Schlachter (7039326)

Contents

1	Vords	;	3		
2	Regular Languages		4		
3	Regular Expressions	!	5		
4	Common Proof Techniques				
	.1 Pumping Lemma		6		
	4.1.1 Example		6		
	.2 Myhill Nerode		6		
	4.2.1 Example		6		
5	Jseful Proofs	,	7		
In	v.		9		

1 Words

A word w (also called String) has length l and consists of symbols $\sigma \in \Sigma$. The empty word ε has length 0.

Tim	Sch	lachter	(7039326)

2 Regular Languages

3 Regular Expressions

A regular expression always describes a regular language. If we can build a regular expression E, then $L(E) \in \mathsf{REG}$.

4 Common Proof Techniques

- 4.1 Pumping Lemma
- 4.1.1 Example
- 4.2 Myhill Nerode
- 4.2.1 Example

5 Useful Proofs

A regular expression always describes a regular language. If we can build a regular expression E, then $L(E) \in \mathsf{REG}$.

Index

Common Proof Techniques, 6
Myhill Nerode, 6
Example, 6
Pumping Lemma, 6
Example, 6

Regular Expressions, 5 Regular Languages, 4

Useful Proofs, 7

Words, 3