내 레 이

션

요즘 저희가 사용하는 스마트폰의 얼굴 인식, 유튜브 추천 영상, 자동 번역 서비스 등은 모두 공통적인 기술 기반 위에 있습니다. 바로 '딥러닝'이 핵심이라는 점입니다. 딥러닝은 마치 인간의 뇌처럼 데이터를 보고 스스로 패턴을 학습하는 인공지능 기술입니다. 예전에는 사람이 직접 일일이 규칙을 만들어야 했지만, 이제는 컴퓨터가 스스로 배우고 판단할 수 있는 시대가 되었습니다.이러한 딥러닝 모델을 보다 쉽게 만들고 실험할 수 있도록 도와주는 도구가 바로 'PyTorch'입니다. 앞으로 저희는 DNN, CNN, RNN, DC-GAN이라는 네 가지 테마를 중심으로 딥러닝의 핵심 기술들을 배워보려고 합니다. 각각의 모델이 어떤 상황에서 사용되며 어떤 기능을 갖추고 있는지를 비교하면서, 인공지능의 작동 원리를 보다 깊이 있게 이해하게 될 것입니다.이제 저희의 일상을 변화사 기고 있는 딥러닝의 세계로 함께 들어가보시죠.

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
➤Intro •학습열기	1 4	① 학습내용과 학습목표 는 강의계획서와 일 치해야 하며, 필요시 강의계획서를 수정할
•학습목표	◈ 학습목표	수 있습니다.
● 학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	1. 딥러닝의 개념을 설명할 수 있다.2. PyTorch의 핵심 개념과 장점을 설명할 수 있다.3. 본 과정의 학습 목표와 각 테마별(DNN, CNN, RNN, DC-GAN) 학습 내용을 비교할 수 있다.	 ② 학습목표 ✓ 각 레슨에 맞는 학습목표를 2~3개 작성해 주세요. ③ 학습내용 ✓ 1회차 당 25분 분량이 되도록 2~3개 레슨으로 구성해주세요.
	◈ 학습내용	√ 학습내용과 레슨명은 일치해야 합니다.
≽적용하기	1. 딥러닝 소개 2. PyTorch 소개	용어설명
➤ Outro •문제풀기	3. 본 과정의 4가지 테마(DNN, CNN, RNN, DC-GAN) 소개	
내 레 이 션	3	3

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 1		화면설명
≻Intro					
•학습열기					
•학습목표					
▶학습하기		간지			
1. 딥러닝 소개					
2. PyTorch 소개					
3. 본 과정의 4					
가 테마(DNN, CNN, RNN,			디기니 시계		
DC-GAN) 소			딥러닝 소개		
개					
▶ 적용하기					용어설명
Outro					
≻Outro					
•문제풀기					
. 11					
내 레 이 션					
				4	
셔					
"					4

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
● Intro ●학습열기 ●학습목표 ●학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	• 딥러닝(Deep Learning), 심층신경망(Deep Neural Network) 퍼셉트론(Perceptron)으로 구성된 인공신경망 여러 단계의 심층 학습을 통하여 스스로 학습하는 기술 머신러닝의 여러 분야 중에서 2010년 이후 현재의 인공지능 붐을 주도하고 있는 기술 현재, ChatGPT 등의 생성형 AI 분야 거대언어 모델 LLM(Large Language Model)	와단결정
≻적용하기		용어설명
➤ Outro •문제풀기		
내 레 이 션	6	6

과정명 PyTorch로 배우는 머신러닝 알고리즘 회차명 1 ▶Intro • 딥러닝이란?	화면설명
▶Intro • 딥러닝이란?	
•학습열기 딥러닝의 정의	
•학습목표 머신러닝의 하위 분야로, 인공신경망을 기반으로 함	
▶ 학습하기 여러 층으로 연결된 신경망을 통해 데이터의 특징을 자동으로 학습함	
1. 딥러닝 소개 집러닝이 중요한 이유	
2. PyTorch 소개 3. 본 _{과정의 4} 이미지, 음성, 자연어 처리 등에서 최고 성능 달성	
가 테마(DNN, CNN, RNN, The CNN, RNN, The Third The CNN, The CNN, RNN, The CNN, The CNN	
DC-GAN) 소 주요 발전 사례	
2012년 알렉스넷(AlexNet)으로 이미지 인식 혁신	
2016년 알파고(AlphaGo)가 바둑 세계 챔피언을 이김	
▶적용하기 2022년 이후 다양한 LLM 서비스 등장(ChatGPT, Gemini, Claude 등)	용어설명
≻Outro	
•문제풀기	
LH	
레 이	
[전]	7

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro	• 인공신경망 기본 구조	
•학습열기	신경망의 구성	
•학습목표	입력층(input layer), 은닉층(hidden layer), 출력층(output layer)으로 구성됨	
▶학습하기	각 퍼셉트론(또는 뉴런, 노드)은 가중합과 활성화 함수를 사용함	
1. 딥러닝 소개	가중치(weights)와 편향(bias)	
2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	가중치는 입력에 대한 중요도를 조절 편향은 임계값을 조절하여 출력 이동 입력과 출력이 단순히 선형적 직선 관계가 아니라, 복잡한 곡선 관계 를 만들 수 있도록 해주는 성질 복잡한 패턴을 학습할 수 있도록 도와줌	
≽적용하기	입력 값 x_1 가중치 w_1	용어설명
≻Outro	활성화 함수	
•문제풀기	입력 값 x_2 가중치 w_2 $\sigma = \sum_{i=1}^n w_i x_i + b$ $f(\sigma)$ 출력 값	t y
	강환수 외 3인 공저, AI시대의 컴퓨터 개론, 인피니티북스, 2022, 244쪽	100
내 레 이 션	편향 b	8

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	1	화면설명
≻Intro	• 순전파 (Forward Propagation)			
•학습열기	데이터 흐름 이해			
•학습목표	입력값이 계층을 따라 이동하며 계	산됨		
▶학습하기	각 층에서 선형변환 + 활성화 적용	용됨		
1. 딥러닝 소개	행렬 연산의 활용			
2. PyTorch 소개 3. 본 과정의 4	다수의 뉴런 연산을 빠르게 수행 기	가능		
가 테마(DNN, CNN, RNN,	학습 속도와 효율을 높여줌			
DC-GAN) 소 개	출력 계산 방식			
	분류 문제는 확률 출력(Softmax)			
	회귀 문제는 연속값 출력			
▶적용하기				용어설명
≻Outro				
•문제풀기				
내				,
레 이			10	
션				1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1		화면설명
≻Intro	• 손실 함수 (Loss Function)		
•학습열기	손실 함수의 역할		
•학습목표	예측값과 실제값의 오차를 측정		
▶학습하기	학습 방향을 결정하는 지표		
1. 딥러닝 소개	자주 쓰이는 손실 함수		
2. PyTorch 소개 3. 본 과정의 4	MSE(Mean Square Error): 회귀 문제에 적합		
가 테마(DNN, CNN, RNN,	Cross-Entropy: 분류 문제에 적합		
DC-GAN) 소 개	손실 최소화의 중요성		
	손실이 낮을수록 예측 정확도 향상		
	최적화 과정의 목표		
≻적용하기			용어설명
≻Outro			
•문제풀기			
내			
레 이		11	
션			1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro	• 역전파 (Backpropagation)	
•학습열기	역전파의 개념	
•학습목표	손실 함수에 대한 가중치의 미분을 계산	
▶학습하기	체인룰(연쇄 법칙, 합성 함수 미분 법칙)을 이용하여 각 층의 기울기 전달	
1. 딥러닝 소개	가중치 업데이트	
2. PyTorch 소개 3. 본 과정의 4	옵티마이저(optimizer)가 기울기를 이용해 가중치 조정	
가 테마(DNN, CNN, RNN,	학습이 진행되는 핵심 메커니즘	
DC-GAN) 소 개	경사 하강법(Gradient Descent)	
	가장 널리 쓰이는 최적화 기법	
	손실이 최소가 되는 방향으로 가중치 조정	
▶적용하기		용어설명
≻Outro		
•문제풀기		
내		
레 이	12	
션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1		화면설명
≻Intro	• 활성화 함수 종류		
•학습열기	ReLU 함수	ReLU 함수	
•학습목표	음수는 0, 양수는 그대로 반환	8 6	
▶학습하기	은닉층에서 가장 많이 사용됨	4 2 3	
1. 딥러닝 소개	시그모이드와 쌍곡선(하이퍼볼릭) 탄젠트 함수	∑ 0 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	
2. PyTorch 소개 3. 본 과정의 4	시그모이드(Sigmoid): 확률 표현에 적합	-6	
가 테마(DNN, CNN, RNN,	하이퍼볼릭 탄젠트 함수 tanh: 중심이 0으로 안정적	-8 -6 -4 -2 0 2 4 6 8	
DC-GAN) 소 개	사용 시기 구분	시그모이드(Sigmoid) 함수	
	은닉층:	1.2 1.0	
	ReLU(Rectified Linear Unit)	0.8	
▶적용하기	출력층:	30.6 D00.4 S0.2	용어설명
≻Outro	Sigmod(이진 분류)	0.0	
•문제풀기	Softmax(다중 분류)	-0.2 0 2 4 6 8	
	강환수 외 3인 공저, AI시대의 컴퓨터 개론, 인피니티북스, 2022, 244쪽	I A'	

내 레 이 션

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 1		화면설명
≻Intro					
•학습열기					
•학습목표					
▷ 학습하기 1. 딥러닝 소개		간지			
2. PyTorch 소개					
3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개			PyTorch 소개		
▶적용하기					용어설명
≻Outro					
•문제풀기					
내 레 이 션				15	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro	• PyTorch 라이브러리	
•학습열기	PyTorch는 GPU(Graphics Processing Units)와 CPU(Central Processing Units)를 사용하여	
•학습목표	딥러닝을 위해 최적화된 텐서(Tensor) 라이브러리	
▶학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	주요 특징 계산 그래프(Computational Graph)로 연산 Pythonic한 인터페이스, 강력한 디버깅과 학습 유연성 제공 NumPy처럼 직관적인 텐서 연산 및 GPU 가속 기능 제공	
▶적용하기	X X	용어설명
≻Outro	Variable x	
•문제풀기		
	https://www.i2tutorials.com/how-do-you-build-computational-graph-in-tensorflow/	
내 레 이 션	17	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
400		작단 = 6
≻Intro	• PyTorch 활용 분야	
•학습열기	학계 연구, 프로토타입 제작, 프로덕션 환경까지 폭넓게 사용	
•학습목표	점차 산업계로 확산되며 TensorFlow와 양대 산맥을 이루는 딥러닝 생태계로 성장	
▶학습하기	직관적 코드 스타일과 디버깅 용이성 덕분	
1. 딥러닝 소개	프로토타이핑에 강하고,	
2. PyTorch 소개 3. 본 과정의 4	특히, 자연어 처리(NLP), 컴퓨터 비전, 생성형 AI 분야에서 활발히 활용	
가 테마(DNN, CNN, RNN,	단순한 프레임워크를 넘어	
DC-GAN) 소 개	거대언어모델(LLM), 강화학습, 모듈형 모델 등의 기반 기술로 자리매김 중	
	PyTorch 생태계를 이해하는 것은 필수적인 기초 소양	
≻ 적용하기		용어설명
≻Outro		
•문제풀기		
내		
레 이	18	
션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회치	명 1		화면설명
≻Intro	• PyTorch 2.0			
•학습열기	PyTorch 2.0은 2023년 3월, 정식 출시되며 성	능 최적화를 본격 도입		
•학습목표	컴파일 기반 최적화로 성능과 배포 안정	성까지 강화		
▶학습하기	정적 계산 그래프의 도입			
1. 딥러닝 소개	핵심은 torch.compile()이라는 컴파일러	기반 API		
2. PyTorch 소개 3. 본 과정의 4	기존 모델 코드에 단 한 줄만 추가			
가 테마(DNN, CNN, RNN,	모델을 정적으로 분석			
DC-GAN) 소 개	최적화된 중간 표현(IR: interr	nediate representation)으로 변환		
/ II	이 과정을 통해 학습 속도는	•		
▶ 적용하기				용어설명
≻Outro				
•문제풀기				
내				
레			19	
이 년				
				1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro		
•학습열기		
•학습목표		
> 학습하기 1. 딥러닝 소개 2. PyTorch 소개	간지	
3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	본 과정의 4가지 테마(DNN, CNN, RNN, DC-GAN) 소개	
		용어설명
▶적용하기		5 M = 0
≻Outro		
•문제풀기		
내 레 이 션	20	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro	Deep Neural Network(DNN)	
•학습열기	기본 개념	
•학습목표	입력층, 은닉층, 출력층으로 구성된 인공신경망 기반의 모델	
▶학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	각 노드는 전 층 노드들과 완전 연결되어 정보 전달이미지, 텍스트, 수치 데이터 등 다양한 입력에 사용 가능특징 선형회귀, 로지스틱 회귀를 포함한 복잡한 패턴 학습 가능활성화 함수와 다층 구조로 비선형 문제 해결과적합 방지를 위한 드롭아웃(dropout), 정규화 기법 사용	
≻ 적용하기		용어설명
➤Outro •문제풀기		
내 레 이 션	21	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
과성명 ▶Intro •학습열기 •학습목표 ▶학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소 개	PyTorch로 배우는 머신러닝 알고리즘 회차명 1 • Convolutional Neural Network(CNN) 기본 개념 합성곱(convolution)과 풀링(pooling) 연산을 통해 특징 추출에 최적화된 구조 이미지, 영상 처리에 특화된 신경망 모델 특징 필터(filter)를 사용한 공간적 특징 감지 계층적으로 고수준 특징 학습 가능 연산량이 적고 학습 효율이 높음	<u>와면설명</u>
➤ 적용하기 ➤ Outro •문제풀기		용어설명
내 레 이 션	22	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 호	미차명	1	화면설명
≻Intro	 Recurrent Neural Network(RNN) 			
•학습열기	기본 개념			
•학습목표	순차적 데이터를 처리하는 데 적합한	한 구조		
> 학습하기 1. 딥러닝 소개	자연어 처리, 시계열 예측에 사용됨 특징			
2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, DC-GAN) 소	시간 흐름에 따라 상태 전이로 정보 : 순방향 계산 뿐만 아니라, 역전파를 ! 기울기 소실 문제(Vanishing Gradien	통해 시점		
개 ▶ 적용하기 ▶Outro •문제풀기	딥러닝에서 네트워크 깊이가 깊어 전파 과정에서 기울기가 점점 작이 제대로 이루어지지 않는 현상	질수록	역	용어설명
내 레 이 션			23	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
 ▶Intro •학습열기 •학습목표 ▶학습하기 1. 딥러닝 소개 2. PyTorch 소개 3. 본 과정의 4 가 테마(DNN, CNN, RNN, 	• DC-GAN(Deep Convolutional GAN) 기본 개념 GAN(Generative Adversarial Network) 구조를 CNN으로 확장하여 이미지 생성에 특화된모델 생성자(Generator)와 판별자(Discriminator) 간 경쟁 구조로 학습무작위 벡터로부터 사실적인 이미지 생성 가능특징	지다들장
DC-GAN) 소 개 ▶ 적용하기	CNN 기반으로 공간 정보를 보존하며 이미지 생성 예술, 패션, 의료 영상 등 다양한 생성 분야에서 활용	용어설명
➤ Outro •문제풀기		
내 레 이 션	24	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 1	화면설명
≻Intro	 네 가지 테마 비교 및 활용 	
•학습열기	주요 활용 분야와 수업 데이터셋	
•학습목표	DNN: 일반 분류/회귀 문제, 간단 의료 데이터	
▶학습하기	Heart Disease Dataset 분석	
1. 딥러닝 소개	CNN: 이미지 분류, 객체 인식, 의료 영상	
2. PyTorch 소개 3. 본 과정의 4	CIFAR-10 Dataset 분석	
가 테마(DNN, CNN, RNN,	RNN: 시계열 분석, 텍스트 분석, 번역, 음성 인식	
DC-GAN) 소 개	영화평 Dataset 분석	
	DC-GAN: 이미지 생성, 데이터 증강, 창작 예술	
	손글씨 이미지 생성 	COLUMN
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레	25	
이 년	25	
		2

Dutorch 큰 베 ㅇ ㄴ 머시리니 아그리즈 │ 히치며 │ 1	화면설명
	여 실제 적용력을 높
모델의 주요 특징과 적용 사례를 정리하고, 동일한 문제(예: 이미지 생성 또는 시계열	<mark>일 수 있는 문제, 혹</mark> 은 주제를 작성해 주
예측)에 대해 어떤 모델을 선택할지 판단한 후 그 이유를 설명하세요.	세요.
1. 해결하고 싶은 문제 정의: 노이즈가 심하게 섞인 이미지(특히 얼굴 이미지)에서 원래의 선명한 얼굴을 복원하는 문제를 해결하고 싶다. 이는 보안 카메라 영상 복원, 역사적 사진 복원, 미디어 콘텐츠 보정 등의 분야에서 매우 유용하게 활용될 수 있다.	② ex. 사례 제시 후 전 문가 의견, 실습과제, 응용 예시 시뮬레이 션 등
 선택한 딥러닝 기법 및 이유: 이 문제는 이미지 생성 또는 이미지 복원이 핵심이기 때문에, 단순한 분류나 예측 기반 모델(DNN, RNN)보다는 생성 능력을 갖춘 모델이 필요하다.따라 	③ 저작권 침해가 되지 않도록 내용을 구성 해 주세요.
서 'DC-GAN(Deep Convolutional Generative Adversarial Network)'을 선택했다.DC-GAN은 전불루션 계층을 활용한 GAN으로, 특히 사람 얼굴과 같은 고해상도 이미지 생성을 잘수행하며, 적은 수의 학습 샘플에서도 비교적 효과적인 결과를 낼 수 있다.	④ 출처가 있을 경우 반 드시 작성해 주세요.
	용어설명
	0 120
26	
	 해결하고 싶은 문제 정의: 노이즈가 심하게 섞인 이미지(특히 얼굴 이미지)에서 원래의 선명한 얼굴을 복원하는 문제를 해결하고 싶다. 이는 보안 카메라 영상 복원, 역사적 사진 복원, 미디어 콘텐츠 보정 등의 분야에서 매우 유용하게 활용될 수 있다. 선택한 딥러닝 기법 및 이유: 이 문제는 이미지 생성 또는 이미지 복원이 핵심이기 때문에, 단순한 분류나 예측 기반 모델(DNN, RNN)보다는 생성 능력을 갖춘 모델이 필요하다.따라서 'DC-GAN(Deep Convolutional Generative Adversarial Network)'을 선택했다.DC-GAN은 컨볼루션 계층을 활용한 GAN으로, 특히 사람 얼굴과 같은 고해상도 이미지 생성을 잘수행하며, 적은 수의 학습 샘플에서도 비교적 효과적인 결과를 낼 수 있다.