Olivier Nicole

Déduction

Prouver $(arphi_{f 1}eearphi_{f 2})$

 $\mathsf{Prouver} \ (arphi_{f 1} \wedge arphi_{f 2})$

Le raisonnement p contraposition

Le raisonnement pa 'absurde

reuve par cas

Avec des quantificateurs

Raisonnement

Olivier Nicole oliver.nicole@ens.fr

DI ENS

16 septembre 2019

Frouver $(\varphi_1 \land \varphi_2)$

contraposition

i absurde

Preuve par cas

Avec des quantificateur

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Déduction

Olivier Nicole

Déduction

Déduction

Prouver (φ1 V φ5

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa contraposition

_e raisonnement pai 'absurde

Preuve par car

Avec des quantificateurs

Proposition 1 – Modus ponens

Si φ_1 et $(\varphi_1 \Rightarrow \varphi_2)$ sont des tautologies, alors φ_2 est une tautologie.

16 septembre 2019

Olivier Nicole

Déduction

_ /

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

_e raisonnement pa 'absurde

reuve par cas

Avec des quantificateurs

Déduction

Exemple 1

(« Je pense » \Rightarrow « je suis ») or « je pense » donc « je suis ».

Olivier Nicole

Déduction

Déduction

Proposition 2

- 1. Si $(\varphi_1 \Leftrightarrow \varphi_2)$ et φ_1 sont des tautologies, alors φ_2 est une tautologie;
- 2. Si $(\varphi_1 \Leftrightarrow \varphi_2)$ et φ_2 sont des tautologies, alors φ_1 est une tautologie.

On peut utiliser une équivalence comme des implications dans les deux sens.

Prouver $(\varphi_1 \vee \varphi_2)$

Olivier Nicole

Prouver $(\varphi_1 \vee \varphi_2)$

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement pai l'absurde

Preuve par cas

Avec des quantificateurs

Théorème 1

Pour prouver $(\varphi_1 \vee \varphi_2)$, il suffit de prouver soit φ_1 , soit φ_2 .

Le raisonnement pa

Preuve par cas

Avec des ausp

Avec des quantificateu

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Olivier Nicole

Prouver (101 V 102

Prouver $(\varphi_1 \wedge \varphi_2))$

Le raisonnement par contraposition

_e raisonnement par 'absurde

Preuve par cas

Avec des quantificateur

Prouver $(\varphi_1 \wedge \varphi_2)$

Théorème 2

Si on a prouvé φ_1 et qu'on a prouvé φ_2 , alors on a prouvé $(\varphi_1 \wedge \varphi_2)$.

16 septembre 2019

10 / 27

Ça va sans dire, mais il fallait quand même le dire. . .

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Prouver (103 V 103

Prouver $(\varphi_{\mathbf{1}} \wedge \varphi_{\mathbf{2}})$

Le raisonnement par contraposition

Le raisonnement pa l'absurde

D.....

Avec des quantificateurs

Théorème 3 – Contraposée

La formule $((\varphi_1 \Rightarrow \varphi_2) \Leftrightarrow ((\neg \varphi_2) \Rightarrow (\neg \varphi_1)))$ est une tautologie.

16 septembre 2019

Prouver (104 V 105

 $\mathsf{Prouver}\ (\varphi_{\mathbf{1}} \wedge \varphi_{\mathbf{2}})$

Le raisonnement par contraposition

Le raisonnement pa l'absurde

Avec des quantificateurs

Exemple 2

(« Je pense » \Rightarrow « Je suis ») \Leftrightarrow (« Je ne suis pas » \Rightarrow « Je ne pense pas »)

Olivier Nicole

DOLL ST

Prouver (104 V 105

Prouver (∅1 ∧ ∅2)

Le raisonnement par

Le raisonnement pa

Preuve par c

Avec des quantificateur

Le raisonnement par contraposition

Exemple 3

Nous pouvons montrer que pour tout réel $x \in \mathbb{R}$, si x est plus petit que tous les réels strictement positifs, alors x est inférieur ou égal à 0.

Démonstration.

On va prouver la contraposée :

 $(x > 0 \Rightarrow \text{il existe un réel strictement positif plus petit que } x)$

Soit $x \in \mathbb{R}$. On suppose x strictement positif.

 $\frac{x}{2} > 0$ et $\frac{x}{2} < x$. Donc il existe un réel strictement positif plus petit que x.

Olivier Nicole

Le raisonnement par contraposition

Déduction

Prouver (wa V wa

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par

Le raisonnement pal'absurde

Preuve par c

Avec des quantificateurs

Corollaire 1 - Modus tollens

Si $(\varphi_1\Rightarrow\varphi_2)$ et $(\neg\varphi_2)$ sont des tautologies, alors $(\neg\varphi_1)$ est une tautologie.

Démonstration.

On utilise la contraposée de $(\varphi_1 \Rightarrow \varphi_2)$ qui est équivalent à $((\neg \varphi_2) \Rightarrow (\neg \varphi_1))$ or, comme on a $(\neg \varphi_2)$, on applique le modus ponens pour déduire $(\neg \varphi_1)$.

Olivier Nicole

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificate

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Olivier Nicole

Le raisonnement par l'absurde

Déduction

Prouver (101 V 102

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement par l'absurde

Preuve par ca

Avec des quantificateurs

Théorème 4 – Raisonnement par l'absurde

La formule $(((\neg \varphi) \Rightarrow \bot) \Rightarrow \varphi)$ est une tautologie.

En français : si $(\neg \varphi)$ mène à une contradiction, alors $(\neg \varphi)$ est faux (donc φ est vrai).

16 septembre 2019

Olivier Nicole

Le raisonnement par l'absurde

Le raisonnement par l'absurde

Exemple 4

Montrer que $\sqrt{2}$ n'est pas un nombre rationnel.

Démonstration.

Par l'absurde, on prouve $\varphi := \sqrt{2} \notin \mathbb{O}$.

On va prouver que $(\neg \varphi)$ (c'est à dire $\sqrt{2} \in \mathbb{Q}$) implique une contradiction, c'est à dire $(\varphi \Rightarrow \bot)$. Or on sait que $(((\neg \varphi) \Rightarrow \bot) \Rightarrow \varphi)$, donc φ (modus ponens).

Olivier Nicole

duction

Prouver $(arphi_{f 1}eearphi_{f 2}$

e raisonnement pa

contraposition

Preuve par cas

recive par ca

Avec des quantificates

Déduction

Prouver $(\varphi_1 \vee \varphi_2)$

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement par contraposition

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Olivier Nicole

Preuve par cas

Preuve par cas

Théorème 5

La formule $((\varphi_1 \vee \varphi_2) \wedge (\varphi_1 \Rightarrow \varphi) \wedge (\varphi_2 \Rightarrow \varphi) \Rightarrow \varphi)$ est une tautologie.

Olivier Nicole

Preuve par cas

Preuve par cas

Exemple 5

Démontrer que pour tout entier naturel n, l'entier $n \cdot (n+1)$ est divisible par

Raisonnement

Démonstration.

On veut prouver $\varphi := n \cdot (n+1)$ est pair.

Olivier Nicole

.

Prouver (104 V 105

Prouver (Ø1 A Ø2)

Le raisonnement p

Le raisonnement par

Preuve par cas

Avec des quantificateurs

Preuve par cas

Exemple 6

Démontrer que pour tout entier naturel n, l'entier $n \cdot (n+1)$ est divisible par 2.

Démonstration.

On veut prouver $\varphi := n \cdot (n+1)$ est pair.

Les deux cas : $\varphi_1 := n$ est pair ; $\varphi_2 := n$ est impair

- φ_1 On suppose n pair, donc n est divisible par 2, $n \cdot (n+1)$ est divisible par 2.
- φ_2 On suppose n impair, donc n+1 est divisible par 2, $n \cdot (n+1)$ est divisible par 2.

De plus, $(\varphi_1 \vee \varphi_2)$ est vrai, donc φ est vrai.

Raisonnement Olivier Nicole

Avec des quantificateurs

Avec des quantificateurs

Olivier Nicole (DI ENS) Raisonnement

16 septembre 2019

Olivier Nicole

Avec des quantificateurs

Déduction

Prouver (101 V 10

Prouver $(\varphi_1 \wedge \varphi_2)$

_e raisonnement pa

Le raisonnement par l'absurde

Drauwa par car

Avec des quantificateurs

Axiome 1 – Généralisation ou abstraction

Si nous pouvons prouver la propriété P(t) pour $t \in E$ arbitraire (ie sans utiliser de propriété spécifique de t), alors nous pouvons en déduire la propriété $\forall x \in E, P(x)$.

Olivier Nicole

Avec des quantificateurs

Déduction

Prouver (() V ()

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement par l'absurde

Preuve par car

Avec des quantificateurs

Axiome 2 - Concrétisation

Si nous pouvons prouver une propriété $\forall x \in E, P(x)$, alors nous pouvons prouver P(x) pour n'importe quel élément $x \in E$ de l'ensemble E.

Olivier Nicole

Avec des quantificateurs

Déduction

Prouver (() V ()

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement pa l'absurde

Preuve par car

Avec des quantificateurs

Axiome 3 - Témoin

Si nous pouvons prouver la propriété P(e) pour un élément $e \in E$ en particulier, alors nous pouvons en déduire la propriété $\exists x \in E : P(x)$.

Olivier Nicole

Avec des quantificateurs

Avec des quantificateurs

Exemple 7

Montrons que le double de tout réel positif ou nul, est un réel positif ou nul.

26 / 27

16 septembre 2019 Raisonnement

Olivier Nicole

Déduction

Prouver (104 V 105

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement pa

Preuve par car

Avec des quantificateurs

Avec des quantificateurs

Exemple 8

Montrons que le double de tout réel positif ou nul, est un réel positif ou nul. Soit $x \in \mathbb{R}^+$, nous avons :

$$0 \leqslant x$$
 et

$$0 \leqslant x$$

D'où:

$$0 + 0 \le x + x$$

Puis:

$$0 \le 2 \cdot x$$

Ainsi, $\forall x \in \mathbb{R}^+, 2 \cdot x \in \mathbb{R}^+$.

Olivier Nicole

Avec des quantificateurs

Déduction

Prouver (101 V 10

Prouver $(\varphi_1 \wedge \varphi_2)$

Le raisonnement pa

Le raisonnement par l'absurde

Preuve par cas

Avec des quantificateurs

Un exemple de preuve erronée :

Exemple 9

Montrons que le prédécesseur de tout entier naturel est un entier naturel. Le prédecesseur de l'entier naturel 1 est 0. Or 0 est un entier naturel donc $\forall n \in \mathbb{N}, (n-1) \in \mathbb{N}$. Ce raisonnement est bien entendu erroné. Nous avons en réalité montré que :

$$\exists n \in \mathbb{N} : (n-1) \in \mathbb{N}$$