Address Elements Extraction

Shopee Code League 2021 Data Science Round

Problem Statement

- Extract Point of Interest (POI) and Street from Indonesian address text
- Enable accurate geocoding for delivery optimisation, improving Shopee customer experience
- Most addresses are unstructured, incomplete, and can even be misspelled
- 300,000 training set + 50,000 test set

Raw address	POI	Street
cipinang besar selatan <u>lintas ibadah</u> , <u>cipi jaya 1a</u> no 3 rw 7 13410 jatinegara	lintas ibadah	cipinang jaya 1a
<u>puri kemb timur</u>	<none></none>	puri kembang timur

Named Entity Recognition (NER) Training Pipeline

- 1. Split sentences into <u>individual words</u>
- 2. <u>Align</u> the POI and Street with the input words
- 3. Label each word with a tag for prediction
- 4. Fine-tune a pretrained language model on a <u>multi-class single-label</u> prediction on each word
- Use the predicted labels to construct the POI and Street names, fixing <u>incomplete</u> or <u>misspelled</u> words if necessary

Split Sentence + Aligning POI/Street

- Simple text cleaning and word splitting using RegEx
- Simple linear substring matching algorithm to find the POI/Street positions inside the raw address:
 - Use **prefix match** (with minimum prefix length) for each word instead of exact match to account for **incomplete** or **misspelled** words
 - Sometimes fail to align if there are no matches (i.e misspelled at prefix) or too many matches (i.e POI/Street names too short), but only ~1000 rows

Raw address	law stat, hayam wuruk, sumerta kelod denpasar timur		
POI	lawson station		
Street	hayam wuruk		

IOBES + {SHORT} Tagging Scheme

- I: inside
- O: outside
- B: beginning
- E: ending
- S: single
- SHORT: need fixing

R	aw address	law stat, hayam wuruk, sumerta kelod denpasar timur
Р	OI	lawson station
St	treet	hayam wuruk
In	dividual words	['law', 'stat,', 'hayam', 'wuruk,', 'sumerta', 'kelod', 'denpasar', 'timur']
In	idividual tags	['B-POI-SHORT', 'E-POI-SHORT', 'B-STR', 'E-STR', 'O', 'O', 'O', 'O']

SHORT Word Reconstruction Dictionary

- Record all words with tags **SHORT** into a one-to-one dictionary
- Use this dictionary to fix words with tags **SHORT** during validation and testing
- Not an "ideal" approach
 - Some SHORT words might not appear in the dictionary
 - o Some **SHORT** words might have multiple mappings, so pick one with the **highest frequency**
- But simple and surprisingly effective enough!

```
▼"tat": { 6 items
   "tatang": int 2
   "tattoo" : int 4
   "tata's": int 1
   "tatiek" : int 1
  "tatath" : int 1
  "tateli": int 1
▼"neg": { 2 items
   "negeri": int 947
   "negara": int 96
▼"kemb": { 4 items
   "kembang" : int 46
   "kembaren": int 1
  "kembano" : int 1
   "kembung": int 1
```

Data Augmentation

- Swap POI/Street phrases within a sentence, or across sentences randomly
- Increase training data size ~2x

Model Training

- Fine-tuning suitable pretrained transformer language models on downstream task:
 - IndoBERT (Indonesian)
 - XLM (multilingual)
- Standard pipeline:
 - Adam optimizer
 - Cross Entropy Loss
 - 5 epochs is enough for model convergence
- Techniques for stable and efficient training:
 - Cyclic learning rate scheduler with warmup
 - Mixed Precision Training

Average logits from multiple models for ensembling, ~0.02 accuracy increase xlm-mlm-xnli15-1024.pkl - 0.68060 xlm-roberta-base.pkl - 0.68733 indobert-large-p1.pkl - 0.68633 indobert-base-p1.pkl - 0.68123

Ensemble - 0.69873

Result

- Final accuracy: ~70%
- Ranked **1st** out of 1034 teams

The private leaderboard is calculated with approximately 70% of the test data.

Public Private

his competition has completed. This leaderboard reflects the final standings.									
#	Δ	Team	Members	Score	Entries	Last	Solution		
1	^ 1	[Student] VoidAndTwoTSTs		0.70151	38	4y	B		
2	+ 1	[Student] ThreeCups	(a) (b)	0.70037	18	4y			
3	- 1	[Open] Avengers		0.69877	32	4y			

https://www.kaggle.com/competitions/scl-2021-ds/leaderboard

Reflections

- Experimenting with data processing and augmentation led to the highest accuracy improvement
- This was done in 2021, so there should be much better state-of-the-art pretrained models now
- Maybe can even consider fine-tuning a Large Language Model (LLM) and model the problem as a text generation task instead of classification task

Potential point for improvements:

- More data augmentation can be considered such as using synonyms, or restructuring the sentences
- The fixing pipeline can use another language model that takes into account the the address before fixing