COL100: Introduction to Computer Science

6.2: Big O notation

Motivation

An algorithm that takes n! time is much worse than one that takes n^3 time... or even $10^6 n^3$ time.

We want a way to express the complexity of algorithms...

- 1. for very large problems
 - Will it take seconds? days? years?
- 2. while ignoring irrelevant factors and extra terms
 - 1000 n^3 and n^3 + 1000 are both "similar" to n^3 and "better" than 2^n

Big O notation

Given two functions $f, g : \mathbb{N} \to \mathbb{N}$, we say

f(n) has order of growth O(g(n))

or,
$$f(n) = O(g(n))$$

should have been $O(g(n))\cdots$ $f(n) \in O(g(n))\cdots$

if there exist constants C, n_0 such that $f(n) \leq Cg(n)$ for all $n \geq n_0$.

In other words, I can scale up g(n) so that it is eventually always bigger than f(n).

• This describes the asymptotic rate of growth of f(n), i.e. as $n \to \infty$.

f(n) = O(g(n)) if there exist constants C, n_0 such that $f(n) \le Cg(n)$ for all $n \ge n_0$.

f(n) = O(g(n)) if there exist constants C, n_0 such that $f(n) \le Cg(n)$ for all $n \ge n_0$.

Examples:

$$an + b = O(n)$$
 for all a, b .
 $n = O(n^2),$
 $n = O(2^n),$
 $n \neq O(\log n),$
 $n \neq O(1).$

- Big O only gives an upper bound on the asymptotic growth of a function.
- What would it mean for an algorithm to have O(1) time complexity?

Examples

- power(x, n) has time complexity n = O(n) and space complexity n + 1 = O(n).
- fastPower(x, n) has time complexity $2\lceil \log_2 n \rceil + c = O(\log n)$.
- Naive determinant computation has time complexity O((n + 1)!).
- Gaussian elimination has time complexity $\leq n^3 + 2n^2 = O(n^3)$.

Properties of big O

- If f(n) = O(g(n)) then af(n) = O(g(n)) for any constant a > 0.
- If f(n) = O(g(n)) and g(n) = O(h(n)) then f(n) = O(h(n)).
- If f(n) = O(h(n)) and g(n) = O(k(n)) then
 - f(n) + g(n) = O(h(n) + k(n)),
 - f(n) g(n) = O(h(n) k(n)).

For any polynomial of degree d with leading coefficient $a_d > 0$,

$$a_d n^d + \cdots + a_1 n + a_0 = O(n^d)$$
.

For any exponential with a > 1,

$$a^n \neq O(n^d),$$

 $n^d = O(a^n)$

Why big O notation?

Big O is quite a crude analysis, but:

• That makes it easier to do! Ignore constants, lower-order terms

$$cn^3 + O(n^2) = O(n^3)$$

Why big O notation?

Big O is quite a crude analysis, but:

- That makes it easier to do! Ignore constants, lower-order terms
- It gives a good idea of how an algorithm scales for large n
 - If $T(n) = O(n^2)$, doubling n will at most quadruple number of steps
 - If $T(n) = O(2^n)$, increasing n by just 2 could quadruple number of steps!

Why big O notation?

Big O is quite a crude analysis, but:

- That makes it easier to do! Ignore constants, lower-order terms
- It gives a good idea of how an algorithm scales for large n
- It makes it easy to compare algorithms for large n
 - If $T_1(n) = O(T_2(n))$ but $T_2(n) \neq O(T_1(n))$, algorithm 1 will always be faster than algorithm 2 on large enough input even if run on a slower machine!

Afterwards

- Read Sections 3.6.4 and 3.7 of the notes.
- Complete the proofs for the time and space complexity of fib(n).
- Evaluate the time and space complexity of isPrime(n) as defined in the previous lecture, assuming that computing mod takes O(1) time. Design an algorithm for isPrime(n) that has $O(\sqrt{n})$ time complexity.