Epidemics

Introduction to Network Science Carlos Castillo Topic 13

Sources

- Barabási (2016): Network Science Ch. 10
- Easley and Kleinberg (2010): Networks, Crowds, and Markets Ch 21.

Examples: human epidemics

- Influenza, measles, STDs
- The "Black Death" [next slide]
- Smallpox and other diseases brought by Europeans to America since early 1500s

Population Collapse in Mexico

The "Black Death" (Bubonic plague) 1300s

Killed 30%-60% of the total population of Europe

1346 | 1347 | 1348 | 1349 | 1350 | 1351 | 1352 | 1353

SARS Outbreak (2003)

- February 21st: Chinese doctor who have been several treating "atypical pneumonia" cases check-ins into hotel in Hong Kong
 - Hospitalized on Feb 22nd
 - Died on March 4th
- March 1st: "Ms. E. M." returns to Singapore after visiting Hong Kong
 - Graph depicts 144 out of the first 206
 SARS patients in Singapore
 - Ms. E. M. lived, various of her family members died

Diffusion of ideas vs diseases

- Adopting a new idea, behavior, fashion, product, taste, may also spread from person to person: "social contagion"
- There is a certain agency of the receiver
- In diffusion of diseases, we assume there is no agency: each contagion is random

Simple model: branching process

Modeling epidemics

- There are many factors:
 - Contagiousness
 - Length of infectious period,
 - Severity
 - ...
- Structure of contacts in a population

Simple model: branching process

- Each person interacts with other k people
- Each interaction ends in infection with probability β

(a) The contact network for a branching process

(b) With high contagion probability, the infection spreads widely

Example: k=3

(c) With low contagion probability, the infection is likely to die out quickly

Transmission rate or "Basic reproductive number" R

- Each person interacts with other *k* people
- Each interaction ends in infection with probability $oldsymbol{eta}$

- What is the expected number of cases caused by a single individual, R_0 ?
- What do you think happens if $R_0 < 1$?
- What do you think happens if $R_0 > 1$?

Disease	Transmission	R_0
Measles	Airborne	12-18
Pertussis	Airborne droplet	12-17
Diptheria	Saliva	6-7
Smallpox	Social contact	5-7
Polio	Fecal-oral route	5-7
Rubella	Airborne droplet	5-7
Mumps	Airborne droplet	4-7
HIV/AIDS	Sexual contact	2-5
SARS	Airborne droplet	2-5
Influenza (1918 strain)	Airborne droplet	2-3

Changing $R_0 = \beta k$

- Sanitary practices (reduce β)
- Quarantine (reduces k)

The SI model

The SI model

SUSCEPTIBLE (HEALTHY)

INFECTED (SICK)

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - It will stay sick forever

Notation

- Number of susceptible S(t)
 - Fraction of susceptible s(t) = S(t) / N
- Number of infected I(t)
 - Fraction of infected i(t) = I(t) / N
- s(t) + i(t) = 1

How many susceptible neighbors a node has?

$$\langle k \rangle \frac{S(t)}{N} = \langle k \rangle s(t)$$

How many new infections are produced?

(for every infected, iterate through its susceptible neighbors, infect with probability β)

Prove that $i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$

$$\frac{di(t)}{dt} = i(t) \langle k \rangle (1 - i(t)) \beta$$

Use
$$\frac{1}{x \cdot (1-x)} = \frac{1}{x} + \frac{1}{1-x}$$
 and integrate from $t = 0$ to t Denote by $i_0 = i(t = 0)$

 $\int \frac{1}{x} dx = \log x + C \qquad \int \frac{1}{1-x} dx = -\log(1-x) + C$

Behavior in the limit $t \to \infty$

• What is the limit of $i(t)=\frac{i_0e^{\beta\langle k\rangle t}}{1-i_0+i_0e^{\beta\langle k\rangle t}}$ when $t\to\infty$?

• Hint: similar to $f(t) = \frac{e^{\iota}}{1 + e^t}$

Infected as a function of time (SI)

$$i(t) = \frac{i_0 e^{\beta \langle k \rangle t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle t}}$$

Characteristic time (to infect $1/e \approx 36\%$ of people):

$$\dot{\beta} = \frac{1}{\beta \langle k \rangle}$$

The SIS model

The SIS model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
 - After some time, it recovers ... but it becomes susceptible again

Infection dynamics

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - i(t)) - \mu i(t)$$

• μ is the recovery rate, i.e., the probability of becoming susceptible again in an unit of time

$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

C is a constant that depends on i₀

Behavior in the limit $t \to \infty$

• What is the limit of $i(t)=\left(1-\frac{\mu}{\beta\left\langle k\right\rangle}\right)\frac{Ce^{(\beta\left\langle k\right\rangle -\mu)t}}{1+Ce^{(\beta\left\langle k\right\rangle -\mu)t}}$ when $t\to\infty$?

• Hint: similar to $f(t) = \alpha \frac{e^t}{1 + e^t}$

Infected as a function of time (SIS)

$$i(t) = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

This is in the case $\,\mu < \beta \, \langle k \rangle \,$

What happens if $\mu > \beta \langle k \rangle$?

• Remember: $\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1-i(t)) - \mu i(t)$

The SIR model

The SIR model

- Susceptible:
 - The node can catch the disease
- Infected:
 - The node has the disease and can spread it
- Removed:
 - The node no longer has the disease, and cannot catch it or propagate it again (could be dead, could be immune)

Infection dynamics in SIR

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$

$$\frac{dr(t)}{dt} = \mu i(t)$$

$$\frac{ds(t)}{dt} = -\frac{di(t)}{dt} - \frac{dr(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$$

No closed form solution

Infection dynamics (SIR)

$$\frac{di(t)}{dt} = \beta \langle k \rangle i(t)(1 - r(t) - i(t)) - \mu i(t)$$

$$\frac{dr(t)}{dt} = \mu i(t)$$

$$\frac{ds(t)}{dt} = -\beta \langle k \rangle i(t)(1 - r(t) - i(t))$$

Comparison of i(t)

Exponential Regime: Number of infected individ- uals grows exponentially	$i = \frac{i_0 e^{\beta(k)t}}{1 - i_0 + i_0 e^{\beta(k)t}}$	$i = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$	No closed solution
Final Regime: Saturation at t→=∞	$i(\infty) = 1$	$i(\infty) = 1 - \frac{\mu}{\beta \langle k \rangle}$	$i(\infty) = 0$
Epidemic Threshold: Disease does not	No threshold	$R_0 = 1$	$R_0 = 1$

SIS

SIR

SI

always spread

SI and SIS on a graph

SI dynamics on a graph

 Degree block approximation: all nodes with the same degree are jointly analyzed

$$i_k(t) = \frac{I_k(t)}{N_k}$$
$$i(t) = \sum_k i_k(t)p_k$$

SI dynamics on a graph

 Degree block approximation: all nodes with the same degree are jointly analyzed

$$\frac{di_k(t)}{dt} = \Theta_k k(1 - i_k(t))\beta$$

Similar to simple SI model, except:

 Θ_k is the fraction of infected neighbors of a susceptible node of degree k

Compare with simple SI model:

$$\frac{di(t)}{dt} = i(t) \langle k \rangle (1 - i(t)) \beta$$

SI model on a graph: infected as a function of time

$$i_k(t) \approx i_0 \left(1 + k \frac{\langle k \rangle - 1}{\langle k^2 \rangle - \langle k \rangle} \left(e^{t/\tau^{SI}} - 1 \right) \right)$$

What can you say about $i_k(t)$?

$$au^{SI} = rac{\langle k \rangle}{eta \left(\langle k^2 \rangle - \langle k \rangle
ight)}$$
 Characteristic time, i.e., the time to infect $1/e \simeq 36\%$ of nodes

Higher degree nodes are more likely to become infected

$$i_k(t) = i_0 \left(1 + \frac{k \left(\langle k \rangle - 1 \right)}{\langle k^2 \rangle - \langle k \rangle} \left(e^{t/\tau^{SI}} - 1 \right) \right)$$

Characteristic time

(time to infect $1/e \simeq 36\%$ of nodes)

$$\tau^{SI} = \frac{\langle k \rangle}{\beta \left(\langle k^2 \rangle - \langle k \rangle \right)}$$

Random network

$$\langle k^2 \rangle = \langle k \rangle \left(\langle k \rangle + 1 \right) \Rightarrow$$

• Scale-free network with $\gamma \geq 3$

$$\langle k \rangle, \langle k^2 \rangle$$
 are finite \Rightarrow

• Scale-free network with $\gamma < 3$

$$\langle k^2 \rangle \xrightarrow[N \to \infty]{} \infty \Rightarrow$$

Characteristic time (time to infect 1/e ~ 36% of nodes)

$$\tau^{SI} = \frac{\langle k \rangle}{\beta \left(\langle k^2 \rangle - \langle k \rangle \right)}$$

Random network

$$\langle k^2 \rangle = \langle k \rangle (\langle k \rangle + 1) \Rightarrow \tau_{ER}^{SI} = \frac{1}{\beta \langle k \rangle}$$

• Scale-free network with $y \ge 3$

$$\langle k \rangle, \langle k^2 \rangle$$
 are finite $\Rightarrow \tau_{BA}^{SI}$ is finite

• Scale-free network with $\gamma < 3$

$$\langle k^2 \rangle \xrightarrow[N \to \infty]{} \infty \Rightarrow \lim_{N \to \infty} \tau_{BA}^{SI} = 0$$

Vanishing characteristic time

$$\tau^{SI} = \frac{\langle k \rangle}{\beta \left(\langle k^2 \rangle - \langle k \rangle \right)}$$

• If $\lim_{N \to \infty} \frac{\langle k \rangle}{\langle k^2 \rangle} = 0$ the characteristic time goes to 0

• Networks with skewed degree distributions allow infections with the same β to spread faster

SIS dynamics on a graph

Similar to SI dynamics but allowing recovery

$$\frac{di_k(t)}{dt} = k(1 - i_k(t))\Theta_k\beta - \mu i_k(t) \qquad \tau^{SIS} = \frac{\langle k \rangle}{\beta \langle k^2 \rangle - \mu \langle k \rangle}$$

If people recover quickly, $\tau < 0$ and the infection dies out ... unless $\langle k^2 \rangle \to \infty$

Epidemic threshold

- A key quantity is the spreading rate $\lambda = \frac{\beta}{\mu}$
- The critical spreading rate λ_c called the epidemic threshold, is such that $\tau>0$
- Spreading rate larger than epidemic threshold:
 - infection becomes endemic
- Spreading rate smaller than epidemic threshold:
 - Infection dies out

Epidemic threshold

- A key quantity is the spreading rate $\lambda = \frac{\beta}{\mu}$
- The critical spreading rate λ_c called the epidemic threshold, is such that $\tau>0$

Compute the epidemic threshold for an ER graph where $\langle k^2 \rangle = \langle k \rangle \, (\langle k \rangle + 1)$

$$\tau^{SIS} = \frac{\langle k \rangle}{\beta \langle k^2 \rangle - \mu \langle k \rangle}$$

Epidemic threshold in a scale-free network

$$\tau^{SIS} = \frac{\langle k \rangle}{\beta \, \langle k^2 \rangle - \mu \, \langle k \rangle} > 0 \Rightarrow \frac{\beta}{\mu} > \frac{\langle k \rangle}{\langle k^2 \rangle} = \lambda_c \quad \text{Epidemic threshold in BA graph}$$

• In a scale-free network with $\gamma < 3$

$$\langle k^2 \rangle \xrightarrow[N \to \infty]{} \infty \Rightarrow \lim_{N \to \infty} \tau^{SIS} = 0$$

Infected (in the limit) as a function of the epidemic threshold

Two key results for SI and SIS models on a BA graph

In a large scale-free network with $\gamma < 3$

- An infection may reach everybody in a very short time: $\tau=0$
- An infection may become endemic even if it is not very contagious and even if people recover fast: $\lambda_c=0$

Summary

Things to remember

- SI, SIS, SIR models
- Which are the states in each process and which are the possible transitions
- Equations for number of nodes in each state
- Regimes under different parameters
- Practice executing by hand and write code if it helps you remember better each process