Happy 12th Birthday Arduino!

Saturday, April 2 at Robot Garden, **11AM to 3PM**

Robot Garden

day.arduino.cc

The Maker-verse

Electricity × Magnetism

servos

motors

The Maker-verse plus a Village

computer

Electricity × Magnetism

Review

- Ohm's Law V = I x R
- Power P = I x V
- Electromagnetics underpins our world and this course
- Introduction of Magnetic field
- The Homopolar Motor
 - Magnetic Field Picture
 - Current Picture

Wire loop:

N ~ 10 loops

 $R = 7.5 \text{ mm} = 7.5 \times 10^{-3} \text{ m}$

M ~ 0.5 gram

I ~ 4 Amps

What is the field generated by this loop?

We need the Biot-Savart Law to find out:

$$B = \frac{\mu_0}{4\pi} \frac{I_1 dl_1 \times \hat{r}}{r^2}$$

$$B \sim \frac{\mu_0}{4\pi} \frac{I_1 2\pi R}{R^2} = \frac{\mu_0 I_1}{2R}$$
 This turns out to be the exact answer

$$\sim \mu_0 (4 \text{ A})/(2 \times 7.5 \text{ mm}) \sim 270 \mu_0$$

So how big is μ_0 ?

Recall that μ_0 is the coupling constant for the magnetic force:

$$F_B = \frac{\mu_0}{4\pi} \frac{I_1 dl_1 \bullet I_2 dl_2}{r^2}$$

So how big is μ_0 ?

Recall that μ_0 is the coupling constant for the magnetic force (also called the permeability of free space):

$$F_B = \frac{\mu_0}{4\pi} \frac{I_1 dl_1 \bullet I_2 dl_2}{r^2}$$

$$\mu_0 = 4\pi \times 10^{-7} \,\mathrm{T}\,\mathrm{m}/\mathrm{A}$$

That's a small number!

What is the field generated by this loop?

We need the Biot-Savart Law to find out:

$$B = \frac{\mu_0}{4\pi} \frac{I_1 dl_1 \times \hat{r}}{r^2}$$

$$B \sim \frac{\mu_0}{4\pi} \frac{I_1 2\pi R}{R^2} = \frac{\mu_0 I_1}{2R}$$
 This turns out to be the exact answer

B ~
$$\mu_0$$
 (4 A)/(2 × 7.5 mm) ~ 270 μ_0 ~ 3 × 10⁻⁵ T = 0.3 Gauss

What can we do about this?

B ~ 3×10^{-5} T = 0.3 Gauss similar to that of the Earth

This is much smaller than the 0.3 T from our magnet. One trick we can play is wind the current around the loop N times, multiplying the field by N. If N=10:

$$B \sim 3 G = 3 \times 10^{-4} T$$

Magnetic moment of the wire loop:

$$\mu_{\rm m}$$
 = N I A
~ 10 * (4 A) * (π (7.5e-3 m)²)
~ 7 × 10⁻³ A m²

Max Torque $\tau_{mx} = \mu_m \times B$ ~ 7 × 10⁻⁵ N m

But no torque over remainder of rotation, so average torque: $\tau \sim \tau_{mx} / 10 \sim 10^{-5} \text{ N m}$

Similar to the torque on the homopolar motor

Max Torque $\tau_{mx} = \mu_m \times B$ ~ 7 × 10⁻⁵ N m

But no torque over remainder of rotation, so average torque:

 $\tau \sim \tau_{mx} / 10 \sim 7 \times 10^{-6} \text{ N m}$

Similar to the torque on the homopolar motor

0.5 m of 26 gauge copper wire has a mass:

$$M \sim 0.5 \times 10^{-3} \, kg$$

and a moment of inertia:

$$I = \frac{1}{2}MR^2 \sim 1.5 \times 10^{-8}$$

This wire ring is much lighter than the magnet in the homopolar motor

Newton's force law for rotation:

$$T = Iω'$$
So
 $ω' = τ/I \approx 500 \text{ s}^{-2}$

$$f' = ω'/2π ≈ 75 s^{-2}$$

= 75 Hz / s

This is a large acceleration due to the small mass of the wire.

The Current Picture

Back EMF

The motion of the coil through the magnets B field (w/o a battery) induces a current in the wire...

...a so-called Back
Electromotive Force ...
or voltage ... drives
this current.

Our coil pulled a large current (4 Amps) to produce a small field (3 Gauss, similar to the Earth's). Luckily it was light (0.5 gram).

How can we do anything useful with magnetic fields with such a small permeability of free space?

$$\mu_0 = 4\pi \times 10^{-7} \,\text{T m / A}$$

Relative permeability of materials

Material	μ / μ ₀ (relative permeability)
Iron	200,000
Nickel or Carbon Steel	100
Wood	1.00000043
Air	1.0
Copper	0.999994
Superconductors	0

Ferromagnetic

Paramagnetic

Diamagnetic

Ferromagnetism is the key that unlocks subatomic magnetism (spin) to the macro-world

Summary

- Simple Wire Motor
 - Magnetic Field Picture
 - Current Picture
- Permeability (magnetic force constant) is small!
- Magnetic permeability of matter:
 - Diamagnetism
 - Paramagnetism
 - Ferromagnetism (a miracle!)

Units

Distance – meters (m) Mass – kilograms (kg) Time – seconds (s)

Charge – Coulomb (C)
Current – Amp (A)
Resistance – Ohm (Ω)
Magnetic Field – Tesla (T)

f – femto (10⁻¹⁵) p – pico (10⁻¹²) n – nano (10⁻⁹) μ – micro (10⁻⁶) m – milli (10⁻³)

k – kilo (10³) M – mega (10⁶) G – giga (10⁹) T – tera (10¹²) P – peta (10¹⁵)