Implementing Molecular Hydrophobicity Potential Measurment for the Analysis of Dynamic Biomolecular Interactions

Peleg Bar Sapir¹ Under supervision of Prof. Maria Andrea Mroginski²

> ¹Freie Universität Berlin ²Techniche Universität Berlin

February 14, 2018

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Potential

Force constants

Distance function

Solvent accesible

Evenly distributed points

Integration

Outline

Introduction

Hydrophobicity and log P

Molecular Hydrophobicity Potential

Potential

General form

Force constants

Distance function

Surface

Solvent accesible surface

Evenly distributed points

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

Gonoral fo

Force constants

Distance function

Surface

Solvent accesible surface

ntegration

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log P

Molecular

Potential

General form

Distance function

Solvent accesible surface Evenly distributed points

venly distributed points

$$\mathsf{MHP}\left(\mathbf{x}'\right) = \sum_{i=1}^{k} \left[f_i \cdot D\left(\mathbf{x} - \mathbf{x}'_i\right) \right]$$

Summing over all atoms

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobi

Potential

General form

istance function

Surface

Evenly distributed points

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobi

Potential

General form

istance function

Surface

Solvent accesible surface Evenly distributed points

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log F

Molecular Ivdrophobicit

Potential

General form

orce constants Distance function

Surface

Solvent accesible surface Evenly distributed points

4 ロ ト 4 周 ト 4 至 ト 4 耳 ・ 9 Q (~)

Force constants

Type	Description	f_i value
	C in:	
3	$\overline{\mathrm{CHR}}_3$	-0.6681
15	$=CH_2$	-0.7866
36	R-CH-X	-0.2405
	H attached to:	
45	$\mathrm{C}_{\mathrm{sp^3}}$, no X attached to next carbon	0.7341
46	$\mathrm{C_{sp^3}, C_{sp^2}}$	0.6301
50	Heteroatom	-0.1036
52	$\mathrm{C}_{\mathrm{sp^3}}$, 1 X attached to next carbon	0.6666
	<u>O in</u> :	
56	Alcohol	-0.3567
58	Ketone	-0.0233
62	0-	-0.7941

Molecular Hydrophobicity Potential

Pelg Bar Sapir

troduction

Hydrophobicity an

olecular ydrophobi

ential

General form
Force constants

rce constants

stance function

Solvent accesible surface

tegration

Audry form

Exponential decay form

$$D\left(x\right) = \frac{1}{1+x}$$

$$D\left(x\right) = e^{-\alpha x}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log P

ydrophobicity otential

otential

orce constants

Distance function

Solvent accesible surface

Solvent accesible surface

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

Molecular Hydrophobicity

Potential

General form Force constant

urface

Solvent accesible surface

Evenly distributed point ntegration

Evenly distributed points

How to distribute N^2 points on a surface of a sphere?

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log

Molecular Hydrophobicity

Potential

General form Force constants

Distance function

Surrace

Evenly distributed points

ntegration

Evenly distributed points

How to distribute N^2 points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log

Molecular Hydrophobicity

Potential

General for

orce constants

Surface

Solvent acc

Evenly distributed points

Integration

Evenly distributed points

How to distribute N^2 points on a surface of a sphere?

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

Hydrophobicity and log

Molecular Hydrophobicity

Potential

Force constants

Surface

Solvent accesible surface

Evenly distributed points

$$\varphi_i = i \cdot \frac{2\pi}{N}$$
$$\theta_j = j \cdot \frac{\pi}{N}$$

Molecular Hydrophobicity Potential

Pelg Bar Sapir

ntroduction

lolecular lydrophobicity

otential

eneral form orce constants

Distance function urface

Solvent accesible surface

Evenly distributed points Integration

How to distribute N^2 points on a surface of a sphere?

 $\varphi_i = i \cdot \frac{2\pi}{N}$ $\theta_j = j \cdot \frac{\pi}{N}$

Points are not evenly distributed How to distribute N^2 points on a surface of a sphere?

- $\varphi_i = i \cdot \frac{2\pi}{N}$ $\theta_j = j \cdot \frac{\pi}{N}$

- Points are not evenly distributed
- Several points overlap at poles

Solution: Vogel's method In 2 dimensions:

▶ Distances:
$$r_i = \sqrt{\frac{i}{N}}$$

Angle:
$$\theta_i = \varphi i$$

(φ is the golden ratio!)

In 3 dimensions (cylindrical coordinates):

▶ Distances:
$$z_i = \left(1 - \frac{1}{N}\right) \left(1 - \frac{2i}{N-1}\right)$$

Angles:

$$\theta_i = \varphi i, \ \rho_i = \sqrt{1 - z_i^2}$$

Integration

Molecular Hydrophobicity Potential

Pelg Bar Sapir

Introduction

Hydrophobicity and log F

/lolecular

Hydrophobicity Potential

Potential

General form Force constants

istance tund

urface

Solvent accesible surface Evenly distributed points

Integration