

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 201 765 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.05.2002 Bulletin 2002/18(51) Int Cl.⁷: C12Q 1/48, C07K 16/00,
A61P 31/12, A61K 39/395,
A61K 48/00, C12Q 1/68

(21) Application number: 01124604.8

(22) Date of filing: 15.10.2001

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TRDesignated Extension States:
AL LT LV MK RO SI

(30) Priority: 16.10.2000 US 240750 P

(71) Applicant: Axxima Pharmaceuticals
Aktiengesellschaft
82152 Martinsried (DE)

(72) Inventors:

- Schubart, Daniel
79576 Weil am Rhein (DE)
- Habenberger, Peter
81373 Munich (DE)

- Stein-Gerlach, Matthias
81475 Munich (DE)
- Bevec, Dorian
82110 Germerring (DE)

(74) Representative: Leidescher, Thomas et al
Zimmermann & Partner,
Postfach 33 09 20
80069 München (DE)Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Cellular kinases involved in cytomegalovirus infection and their inhibition

(57) The role of certain cellular kinases active during Human Cytomegalovirus infection is disclosed. These cellular kinases are useful to detect HCMV infection,

and can be used to screen for cellular kinase inhibitors. Cellular kinases inhibitors, which effectively downregulate these key cellular components, serve as effective therapeutics against HCMV infection.

Fig. 1

Description

[0001] The present invention is in the fields of molecular biology and virology. The present invention is directed to novel methods for treating Cytomegalovirus using kinase inhibitors.

5

Background of the Invention

[0002] Human Cytomegalovirus (HCMV) is a highly specific β -herpesvirus. Primary infection of healthy children and adults is usually asymptomatic, with a minority of cases developing a mononucleose-like syndrome. In contrast, congenital infection (U.S. 0.2%-2.2% per live birth; approx. 40,000 per year) leads to several neurological defects in 10-15% of infected neonates. Immunocompromised patients represent another host group facing serious disease complications caused by HCMV infection or reactivation of a persistent infection. Up to 40% of the AIDS patients, for example, develop retinitis, pneumonitis, gastroenteritis or disseminated HCMV disease. In addition, allograft recipients (20,000 allograft transplants per year in the U.S.) are often infected (or superinfected) by virus from the transplanted organ.

10

[0003] Clinical symptoms in the posttransplant period include prolonged fever, leukopenia, thrombocytopenia, atypical lymphocytosis, elevated hepatic transaminases and decreased graft survival. In bone marrow transplants, HCMV infection is associated with high mortality rates (80-90% for untreated HCMV pneumonia).

15

[0004] Current approaches to develop therapeutics against Cytomegalovirus (CMV) have focused on antiviral agents *per se*; for example viral polymerase inhibitors. In fact, high mortality rates have been dramatically reduced by new antiviral agents. Current CMV therapeutics possess severe drawbacks, however. For example, Fomivirsen (Vitravene, formerly ISIS 2922) is typically administered by injection directly into the eye every 2 or 4 weeks. Ganciclovir is available for intravenous (Cytovene) or oral administration, and as an implant in the case of retinitis; unfortunately, toxic complications including leukopenia and thrombocytopenia frequently develop. Foscarnet (Foscavir; phosphonoformic acid), another antiviral agent, exhibits considerable renal toxicities and is only available in intravenous form (which is also true for Cidofovir (Vistide), another CMV therapeutic). In addition, CMV replication resumes soon after Ganciclovir and Foscarnet treatment is halted. Finally, Ganciclovir- and Foscarnet-resistant strains of CMV are emerging.

20

[0005] Although treatment of HCMV-induced disease has been improved with these inhibitors of the viral polymerase and preemptive or early antiviral therapy in transplant patients, there is a need in the art for a new class of HCMV therapeutics with better oral bioavailability and reduced toxic effects. This is especially true in the treatment of retinitis in AIDS patients, where CMV infection must be controlled for long periods of time.

25

[0006] Recent research has revealed how cells communicate with each other to coordinate the growth and maintenance of the multitude of tissues within the human body. A key element of this communication network is the transmission of a signal from the exterior of a cell to its nucleus, which results in the activation or suppression of specific genes. This process is called signal transduction.

30

[0007] An integral part of signal transduction is the interaction of cytokines, their receptors, and intracellular signal transduction molecules. Cytokines serve as messengers that bind to receptors on the surface of a target cell. As a result of the binding, the receptors activate a cascade of downstream signaling molecules, thereby transmitting the message from the exterior of the cell to its nucleus. Signal transduction to the nucleus modulates specific gene expression (i.e., transcription and translation), which results in either the upregulation or downregulation of specific proteins that carry out a particular biological function.

35

[0008] Viral infection disrupts normal signal transduction, which leads to cellular malfunctioning resulting in a disease state. Specifically, interference of HCMV with relevant human primary cells is necessary for the virus to create an environment that allows it to grow and replicate, and in turn cause disease in the infected individual. Current research efforts have failed to elucidate all the specific intracellular signal pathways affected by HCMV infection, however. Discovery of the signal transduction pathways and specific intracellular signal transduction molecules affected by CMV infection would represent a tremendous advance in the understanding of the induction and progression of CMV infection processes and provide new avenues for the development of a novel class of effective therapeutics for the treatment of CMV.

40

[0009] Thus, object of the present invention is to provide methods for detecting, preventing and/or treating Cytomegalovirus infection and/or associated diseases, methods for the identification of compounds useful for preventing and/or treating Cytomegalovirus infection and/or associated diseases and for regulating the production of Cytomegaloviruses.

45

[0010] The object of the present invention is solved by the teaching of the independent claims. Further advantageous features, aspects and details of the invention are evident from the dependent claims, the description, and the examples of the present application.

Description of the invention

[0011] The present invention is based upon the finding of a group of cellular kinases that are specifically upregulated as a result of CMV infection. The antiviral therapeutic research approach described herein, focuses on discovering the 5 cellular signal transduction pathways involved in viral infection. Identification of the cellular signal transduction molecules, key to viral infection provides for, among other things, novel diagnostic methods, especially assays, and compositions useful therefor, novel targets for antiviral therapeutics, a novel class of antiviral therapeutics, and new screening assays and materials to discover new antiviral agents.

[0012] This approach led to the development of a novel microarray platform technology, wherein a microarray of 10 more than 1100 signal transduction cDNAs was developed. This unique microarray technology was used to identify RNA expression patterns (e.g., upregulation or downregulation) unique to CMV infected host cells. Differential display techniques were used to pinpoint those signal transduction molecules useful as targets for drug intervention. Effective manipulation of these virally-controlled intracellular signal transduction pathways can alter (slow or stop altogether) the course of viral growth.

[0013] It is now revealed for the first time that the cellular protein kinases RICK (also known as CARDIAK; RIP2), 15 RIP, NIK (also known as HGK; MAP4K4), MKK3 (also known as MEK3), and SRPK-2 are specifically and uniquely upregulated in a cell as a result of CMV infection. These cellular kinases therefore identify novel diagnostic and therapeutic targets for CMV infection.

[0014] Surprisingly, it was found that the following human cellular targets are significantly upregulated compared 20 with uninfected human foreskin fibroblasts cells:

target	upregulation
RICK	3.6 fold
RIP	2.6 fold
NIK	4.0 fold
MKK3	2.5 fold
SRPK-2	2.2 fold

[0015] Based upon the research work reported herein, one aspect of the present invention is directed to a method, 30 preferably a screening assay, for identifying compounds useful for treating and/or preventing Cytomegalovirus infection and/or diseases associated therewith. Specifically, this assay involves contacting a test compound with one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, and detecting a change, normally a decrease, in activity of said cellular kinase. This method was used for the identification of the RICK and RIP inhibitors shown below in Table 1 and Table 2.

[0016] Another aspect of the invention is directed to a diagnostic method for detecting Cytomegalovirus infection 35 and/or associated diseases in an individual or in cells and/or in cell lysates. This assay involves providing a sample from the individual or providing a sample from said cells, respectively, and detecting activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. The term "individual" preferably refers to mammals, especially humans or ruminants.

[0017] Also described in the present invention are monoclonal or polyclonal antibodies which bind to a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0018] A further aspect of the present invention relates to a method for preventing and/or treating Cytomegalovirus 45 infection and/or associated diseases in an individual by administering a pharmaceutically effective amount of an inhibitor to said individual, wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor inhibits at least partially the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0019] As used herein, the term "inhibitor" refers to any compound capable of downregulating, decreasing, reducing, suppressing or inactivating the amount and/or activity of at least one human cellular protein kinase selected from the 50 group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. Generally, said inhibitors, including suicide inhibitors, may be proteins, oligo- and polypeptides, nucleic acids, genes, small chemical molecules, or other chemical moieties. Suitable inhibitors are monoclonal or polyclonal antibodies which bind to at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0020] Based on the surprising results reported herein, one aspect of the present invention is directed to a method 55 for regulating the production of Cytomegalovirus in an individual by administering an individual a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor at least partially

inhibits the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0021] A similar aspect relates to a method for regulating the production of Cytomegalovirus in cells by administering the cells a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor at least partially inhibits the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in the cells.

[0022] Yet another aspect of the invention is directed to a method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in an individual comprising the step of administering the individual a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

[0023] A further aspect relates to a method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in the cells comprising the step of administering the cells a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

[0024] As used herein, the term "regulating expression and/or activity" generally refers to any process that functions to control or modulate the quantity or activity (functionality) of a cellular component. Static regulation maintains expression and/or activity at some given level. Upregulation refers to a relative increase in expression and/or activity. Accordingly downregulation refers to a relative decrease in expression and/or activity. In the present invention, regulation is preferably the downregulation of a cellular component. Downregulation is synonymous with inhibition of a given cellular component's activity.

[0025] Beside inhibitors also activators may be useful for treating Cytomegalovirus infection by increasing the activity of at least one of the cellular protein kinases RICK, RIP, NIK, MKK3, and SRPK-2. Thus, a method for preventing and/or treating Cytomegalovirus infection and/or associated diseases in an individual is disclosed. Said method comprises administering a pharmaceutically effective amount of an activator to an individual, wherein said activator activates at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said activator activates or stimulates at least partially the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0026] Furthermore, a method for regulating the production of Cytomegalovirus either in cells or in an individual is described. Said methods comprise administering an individual or to cells a pharmaceutically effective amount of an activator wherein said activator activates at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said activator at least partially activates or stimulates the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

[0027] As used herein, the term "activator" refers to any chemical compound which is able to upregulate, increase, activate, or stimulate the activity of at least one human cellular protein kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 or which is able to upregulate, increase, activate, or stimulate the expression of at least one of said cellular kinases. Activators comprise proteins, oligo- and polypeptides, nucleic acids, genes, and preferably small chemical molecules, or other chemical moieties.

[0028] Still another aspect of the present invention is directed to either a method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in an individual or for regulating the expression of at least one of said kinases in cells. These methods comprise the step of administering the individual or the cells a pharmaceutically effective amount of an activator wherein said activator activates at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

[0029] Furthermore, oligonucleotides are disclosed which bind to the DNA or RNA encoding a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. Said oligonucleotides can be used as suitable inhibitors within the aforementioned methods.

[0030] Some methods of the present invention identify compounds useful for prophylaxis and/or treatment of Cytomegalovirus infection and/or associated disease by screening a test compound, or a library of test compounds, for its ability to inhibit at least one of the above-mentioned human cellular protein kinases identified herein as characteristically upregulated during HCMV replication. Using this method the compounds A to E have been identified as RICK inhibitors and the compounds F to H have been identified as RIP inhibitors. Thus, the use of these compounds as inhibitors of RICK or RIP is disclosed. Furthermore, these compounds can be used for manufacturing a pharmaceutical composition for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated with Cytomegalovirus infection.

[0031] A variety of assay protocols and detection techniques are well known in the art and easily adapted for this purpose by a skilled practitioner. Such methods include, but are not limited to, high throughput assays (e.g., microarray technology, phage display technology), and *in vitro* and *in vivo* cellular and tissue assays.

[0032] Thus, some embodiments of the present invention may comprise a solid support useful for detecting Cytomegalovirus infection in a cell or an individual. Preferably the solid support comprises immobilized oligonucleotides, wherein the oligonucleotides are capable of detecting activity of one or more cellular kinases selected from the group consisting of: RICK, RIP, NIK, MKK3, and SRPK-2.

5 [0033] Another aspect of the invention includes a solid support useful for screening compounds useful for treating Cytomegalovirus. Preferred embodiments include a solid support comprising one or more immobilized oligonucleotides, wherein the oligonucleotide(s) encode one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. In another preferred embodiment, the solid support comprises one or more immobilized cellular kinases selected from the group consisting of: RICK, RIP, NIK, MKK3, and SRPK-2.

10 [0034] Accordingly, another aspect of the present invention is directed to a novel therapeutic composition useful to treat an individual afflicted with Cytomegalovirus comprising one or more inhibitors capable of inhibiting activity of one or more of the cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. In addition thereto, a novel pharmaceutical composition could comprise at least one inhibitor capable of regulating the production of HCMV by inhibiting the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

15 [0035] Another group of suitable therapeutic compositions useful for prophylaxis and/or treatment of CMV comprises at least one activator which is able to increase the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 or which is capable of increasing the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

20 [0036] Said pharmaceutical compositions may further comprise pharmaceutically acceptable carriers, excipient, diluents, fillers, binders, disintegrants, lubricants, glidants, coloring agents, flavoring agents, opaquing agents, and/or plasticizers.

Detailed description of the invention

25 [0037] Utilizing microarray technology, a unique microarray of more than 1100 signal transduction cDNAs was developed. This array was used to compare signal transduction mRNA expression patterns (e.g., upregulation or down-regulation) in primary human cells before and after infection with HCMV at various timepoints of infection. Interference of the HCMV with the cellular signaling events is reflected in differential gene expression when compared to the uninfected cellular signaling. Results from this novel signal transduction microarray analysis revealed significant upregulation of cellular protein kinases RICK, RIP, NIK, MKK3, and SRPK-2, as unique to CMV infected host cells. These findings were confirmed utilizing conventional Northern and Western blot analyses.

30 [0038] Disclosed herein is the first report describing the role of cellular kinases; RICK, RIP, NIK, MKK3, and SRPK-2 in the signal transduction of CMV viral infection process. As a result of these discoveries, a novel class of compounds, i.e., RICK, RIP, NIK, MKK3, and SRPK-2 inhibitors, are identified as useful for altering the course of CMV infection.

35 [0039] To perform initial tests for compounds that inhibit RICK activity in a cellular assay, RICK was transiently over-expressed in HEK-293 cells, immunoprecipitated and incubated with different concentrations of test compounds before in-vitro kinase assays were performed (Example 10). According to the method for identifying compounds useful for inhibiting the cellular kinase RICK and therefore useful for treating and/or preventing Cytomegalovirus infection and/or diseases associated with Cytomegalovirus infection, a test compound is contacted with the cellular kinase RICK according to the RICK assay protocol disclosed in example 10. The test compound dissolved in DMSO is added to the RICK assay solution at concentrations between 100 nM and 50 µM. Thereafter, radioactively labeled ATP is added and kinase activity of RICK is determined by detecting the autophosphorylation of RICK via radioactivity measurement. The five compounds listed in the following Table 1 were identified using said method. These compounds showed inhibition of RICK kinase activity with an IC₅₀ between about 500 nM and 1 µM and an inhibition of HCMV with an IC₅₀ between about 1 and 8 µM, respectively. The IC₅₀ values of HCMV inhibition were obtained by the use of at least one assay protocol selected from a) virus replication assay, b) plaque assay, c) GFP (Green Fluorescent Protein) infection assay, and d) indirect immunofluorescence analysis as disclosed in example 12. Thus, the five compounds A to E mentioned below and/or pharmaceutically acceptable salts thereof can be used as inhibitors of the cellular protein kinase RICK and as pharmaceutically active compounds for the treatment and/or prophylaxis of HCMV infection. Furthermore, these compounds are suitable for the manufacture of a pharmaceutical composition for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated therewith.

Table 1: Inhibitors of RICK and HCMV

compound	structure	IC_{50} RICK	IC_{50} HCMV
A		1 μ M	6.8 μ M
B		500 nM	1.4 μ M
		1 μ M	6.2 μ M

40

45

50

55

<p>5</p>	<p>500 nM</p>	<p>7.6 μM</p>
<p>10</p> <p>15</p> <p>E</p> <p>20</p>	<p>500 nM</p>	<p>5.7 μM</p>

25 [0040] The compounds A to E have the following names:

Compound A: 6-(2,6-Dichlorophenyl)-8-methyl-2-(3-morpholin-4-yl-propylamino)-8H-pyrido[2,3-d]pyrimidin-7-one;
 Compound B: 8-methyl-6-phenyl-2-(pyridin-4-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one;
 Compound C: 6-(2,6-Dichlorophenyl)-8-methyl-2-[3-(4-methylpiperazin-1-yl)-propylamino]-8H-pyrido[2,3-d]pyrimidin-7-one;
 Compound D: (3-Bromophenyl)-(6,7-diethoxyquinazolin-4-yl)-amine;
 Compound E: (3-Bromophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine.

35 [0041] From the results observed with the compounds shown in Table 1 it is proved that RICK is an important target for the treatment of HCMV and diseases associated with HCMV infection. Inhibitors of the human cellular protein kinase RICK may serve as new pharmaceutical substances for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated with CMV infection.

40 [0042] In addition to the chemical validation of RICK described above, a genetic validation of RICK in HCMV infection was performed. Wildtype and mutated RICK was expressed in HFF cells with a modified Adenovirus as vehicle (Example 9). The expression of both, wildtype and mutated RICK, caused a dramatic reduction in HCMV replication (cf. Fig. 2). Also these data confirm RICK as a valuable therapeutic target in HCMV treatment. As known in the art and as used herein, "RICK" refers to a protein kinase also known as "CARDIAK" and as "RIP2" which is a RIP-like kinase. RICK is essentially characterized as comprising an N-terminal serine-threonine kinase catalytic domain and a C-terminal region containing a caspase-recruitment domain (referred to as "CARD").

45 [0043] To perform initial tests for compounds that inhibit RIP activity in a cellular assay, RIP was transiently overexpressed in HEK-293 cells, immunoprecipitated and incubated with different concentrations of test compounds before in-vitro kinase assays were performed (Example 11). In order to identify compounds suitable for inhibiting the cellular kinase RIP and, thus, suitable for treating and/or preventing Cytomegalovirus infection and/or diseases associated with Cytomegalovirus infection the inventive method according to claim 1 was used. A test compound was contacted with the cellular kinase RIP according to the RIP assay protocol disclosed in example 11. The test compound dissolved in DMSO is added to the RIP assay solution at concentrations between 100 nM and 50 μ M. Radioactively labeled ATP was used as co-substrate of RIP and auto-phosphorylation was detected via measurement of incorporation of radioactivity into the RIP protein. Thereafter, phosphorylation rates with and without test compounds were compared. The three compounds listed in the following Table 2 showed inhibition of RIP kinase activity with an IC₅₀ between about 5 μ M and 10 μ M and an inhibition of HCMV with an IC₅₀ between about 12 μ M and 15 μ M, respectively. The IC₅₀ values of HCMV inhibition were obtained by the use of at least one assay protocol selected from a) virus replication assay, b) plaque assay, c) GFP infection assay, and d) indirect immunofluorescence analysis as disclosed in example 12.

[0044] Thus, the three compounds F to H mentioned below and/or pharmaceutically acceptable salts thereof can be used as inhibitors of the cellular protein kinase RIP and as pharmaceutically active compounds for the treatment and/or prophylaxis of HCMV infection. Furthermore, these compounds are suitable for the manufacture of a pharmaceutical composition for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated therewith.

5

Table 2: Inhibitors of RIP and HCMV

compound	structure	IC ₅₀ RIP	IC ₅₀ HCMV
		5 µM	15 µM
G		10 µM	15 µM
H		5 µM	12 µM

40

[0045] The compounds F to H have the following names:

45

Compound F: 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;
 Compound G: 5-Chloro-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydroindol-2-one;
 Compound H: 4-Quinolin-4-ylmethylenne-4H-isoquinoline-1,3-dione.

50

[0046] From the results observed with the compounds shown in Table 2 it is proved that RIP is an important target for the treatment of HCMV and diseases associated with HCMV infection. Inhibitors of the human cellular protein kinase RIP may serve as new pharmaceutical substances for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated with CMV infection.

55

[0047] In addition to the chemical validation of RIP described above, a genetic validation of RIP in HCMV infection was performed. Wildtype and mutated RIP was expressed in HFF cells with a modified Adenovirus as vehicle (Example 9). The expression of mutated RICK, but not wildtype RIP, caused a dramatic reduction in HCMV replication (cf. Fig. 1). These data also confirm RIP as therapeutic target in HCMV treatment.

[0048] As known in the art and as used herein, "NIK" (Nck-Interacting Kinase; also known as "HGK" or "MAP4K4") refers to an NF-κappaB inducing serine/threonine kinase that interacts with the SH3 domains of Nck (an adaptor protein composed of one SH2 and three SH3 domains, known as a common target for a variety of cell surface receptors). NIK is most homologous to the Sterile 20 (Ste20) family of protein kinases, particularly GCK and MSST1 in that they bind

neither Cdc42 nor Rac and contain an N-terminal kinase domain with a putative C-terminal regulatory domain. NIK is reported to promote neurite process formation and mediated anti-apoptotic signaling. NIK expression leads to IKK activation and induced nuclear translocation of NF-kappaB. NIK activates MEK1 phosphorylation and induces the Erk1/Erk2 MAPK pathway. NIK has been shown to be a MEK1-dependent activator of the MAPK pathway (Foehr et al., 2000. *J. Biol. Chem.* 275, 34021-34024). Overexpression of NIK has been reported to specifically activate the stress-activated protein kinase (SAPK) pathway; possibly upstream of MEKK1, a dominant-negative MEK kinase 1 capable of blocking NIK activation of SAPK (Su et al., 1997. *EMBO* 16(6):1279-90).

[0049] As known in the art and as used herein, "MKK3" (MAP kinase kinase 3; also known as "MEK3") refers to a protein kinase known to function in TNF-induced cytokine expression, and specifically phosphorylate and activate p38 MAP kinase (Blank et al., 1996. *J. Biol. Chem.* 271:5361-5368; Raingeaud et al., 1996. *Mol. Cell. Biol.* 16(3):1247-55). MKK3 gene disruption has been shown to cause a selective defect in the response of fibroblasts to the proinflammatory cytokine tumor necrosis factor, including reduced p38 MAP kinase activation and cytokine expression; suggesting that the MKK3 protein kinase is a critical component of a tumor necrosis factor-stimulated signaling pathway that causes increased expression of inflammatory cytokines (Wysk et al., 1999. *PNAS USA* 96(7):3763-8).

[0050] As known in the art and as used herein, "SRPK-2"(SR-protein-specific kinase 2) refers to a kinase known to phosphorylate SF2/ASF and believed to regulate the disassembly of the SR family of splicing factors in a tissue-specific manner (e.g., in testis, lung, and brain; Kuroyanagi et al., 1998. *Biochem. Biophys. Res. Commun.* 242(2):357-64). SRPK-2 is believed to function in spliceosome assembly and in mediating the trafficking of splicing factors (Wang et al., 1998. *J. Cell. Biol.* 140(4):737-50; Wang et al., 1999. *Genomics* 57(2):310-5).

[0051] In one embodiment, the present invention is directed to a method for treating CMV infection by administering a pharmaceutically effective amount of an inhibitor of one or more of the cellular kinases; RICK, RIP, NIK, MKK3, and/or SRPK-2.

[0052] As used herein, a cellular kinase "inhibitor" refers to any compound capable of downregulating, decreasing, suppressing or otherwise regulating the amount and/or activity of a cellular kinase. Inhibition of these cellular kinases can be achieved by any of a variety of mechanisms known in the art, including, but not limited to binding directly to the cellular kinase polypeptide (e.g., a RICK-inhibitor compound binding complex, or substrate mimetic), denaturing or otherwise inactivating the cellular kinase, or inhibiting the expression of the gene (e.g., transcription to mRNA, translation to a nascent polypeptide, and/or final polypeptide modifications to a mature protein), which encodes the cellular kinase. Generally, cellular kinase inhibitors may be proteins, polypeptides, nucleic acids, small molecules, or other chemical moieties.

[0053] Yet another aspect of the present invention is directed to pharmaceutical compositions useful for the prophylaxis and/or treatment of an individual afflicted with Cytomegalovirus infection and/or associated diseases. Said pharmaceutical composition comprises at least one pharmaceutically active compound capable of regulating at least partially the activity or the expression of one human cellular protein kinase selected from the group comprising RICK, RIP, NIK, MKK3, and SRPK-2 and/or capable of regulating the replication of CMV.

[0054] As used herein the term "regulating" refers either to the ability of an inhibitor to downregulate, decrease, reduce, suppress, inactivate, or inhibit at least partially the activity of an enzyme, or the expression of an enzyme and the virus replication or to the ability of an activator to upregulate, increase, stimulate, or activate at least partially the activity of an enzyme or the expression of an enzyme.

[0055] Suitable examples for inhibitors which are the pharmaceutically active components within the therapeutic compositions are the compounds A to H mentioned in Table 1 and 2. The compounds 6-(2,6-Dichlorophenyl)-8-methyl-2-(3-morpholin-4-yl-propylamino)-8H-pyrido[2,3-d]pyrimidin-7-one; 8-methyl-6-phenyl-2-(pyridin-4-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one; 6-(2,6-Dichlorophenyl)-8-methyl-2-[3-(4-methylpiperazin-1-yl)-propylamino]-8H-pyrido[2,3-d]pyrimidin-7-one; (3-Bromophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine; (3-Bromophenyl)-(6,7-diethoxyquinaldin-4-yl)-amine; 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one; 5-Cloro-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydroindol-2-one; 4-Quinolin-4-ylmethylene-4H-isoquinoline-1,3-dione and/or pharmaceutically acceptable salts of these compounds are useful for prophylaxis and/or treatment of Cytomegalovirus infection and/or diseases associated with Cytomegalovirus infection.

[0056] CMV therapeutics may be administered to cells from an individual *in vitro*, or may involve *in vivo* administration to the individual. Routes of administration of pharmaceutical preparations to an individual may include inhalation, oral and parenteral, including dermal, intradermal, intragastral, intracutaneal, intravasal, intravenous, intramuscular, intraperitoneal, intranasal, intravaginal, intrabuccal, percutan, rectal, subcutaneous, sublingual, topical or transdermal application, but are not limited the these ways of administration. For instance, the preferred preparations are in administratable form which is suitable for oral application. These administratable forms, for example, include pills, tablets, film tablets, coated tablets, capsules, powders and deposits. Administration to an individual may be in a single dose or in repeated administrations, and may be in any of a variety of physiologically acceptable salt forms, and/or with an acceptable pharmaceutical carrier, binder, lubricant, excipient, diluents and/or adjuvant. Pharmaceutically acceptable salt forms and standard pharmaceutical formulation techniques are well known to persons skilled in the art (see, for

example, Remington's Pharmaceutical Sciences, Mack Publishing Co.).

[0057] As used herein, a "pharmaceutically effective amount" of a cellular kinase inhibitor is an amount effective to achieve the desired physiological result, either in cells treated *in vitro* or in a subject treated *in vivo*. Specifically, a pharmaceutically effective amount is an amount sufficient to inhibit, for some period of time, one or more of the clinically defined pathological processes associated with the viral infection. The effective amount may vary depending on the specific kinase inhibitor selected, and is also dependent on a variety of factors and conditions related to the subject to be treated and the severity of the infection. For example, if the inhibitor is to be administered *in vivo*, factors such as the age, weight and health of the patient as well as dose response curves and toxicity data obtained in preclinical animal work would be among those considered. If the inhibitor is to be contacted with the cells *in vitro*, one would also design a variety of pre-clinical *in vitro* studies to assess such parameters as uptake, half-life, dose, toxicity, etc. The determination of a pharmaceutically effective amount for a given agent is well within the ability of those skilled in the art.

[0058] As a result of the discovery of the upregulation of certain cellular kinases as part of the infection process of CMV, a novel diagnostic assay useful for the detecting CMV infection of an individual (or cell) is identified. The diagnostic assay of the present invention involves providing a sample from an individual or providing cells and/or cell lysates, and detecting activity in the sample of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2. In one embodiment, deviations in the expression levels of one or more of the identified cellular kinases in a test sample compared to a known normal expression levels (e.g., determined from a sample from a healthy individual) will be diagnostic of CMV.

[0059] It is apparent to a practitioner in the art that a sample useful for detecting CMV infection, whether of a subject individual or an isolated cell, refers to any cellular extract (including whole cells) from a tissue or body fluid (in the case of an individual) or cellular lysate (in the case of an isolated cell), which contains cellular components representative of cellular activity of one or more of the above-mentioned cellular kinases.

[0060] It is also apparent to a person of ordinary skill in the art that detection includes any method known in the art useful to indicate the presence, absence, or amount of a detection target. Such methods may include, but are not limited to, any molecular or cellular techniques, used singularly or in combination, including, but not limited to: hybridization and/or binding techniques, including blotting techniques and immunoassays; labeling techniques (chemiluminescent, colorimetric, fluorescent, radioisotopic); spectroscopic techniques; separations technology, including precipitations, electrophoresis, chromatography, centrifugation, ultrafiltration, cell sorting; and enzymatic manipulations (e.g., digestion).

[0061] Because the present disclosure teaches for the first time the upregulation of a group of cellular kinases specifically involved in the viral infection of CMV, the present invention is also directed to an assay useful for detecting novel compounds useful for treating CMV infection.

[0062] Assays of the present invention identify compounds useful for treating CMV operate by screening a test compound, or library of test compounds, for its ability to inhibit any one or more of the group of cellular kinases identified herein as characteristically upregulated during CMV growth and replication inside a cell. A variety of assay protocols and detection techniques are well known in the art and easily adapted for this purpose by a skilled practitioner. Such assays include, but are not limited to, high throughput assays (e.g., microarray technology, phage display technology), and *in vitro* and *in vivo* cellular and tissue assays.

[0063] In a related aspect, it is also an object of the present invention, in view of the discovery of cellular kinases specifically involved in CMV growth in a cell, to provide an assay component specially useful for detecting CMV in an individual (or a cell). Preferably the assay component comprises oligonucleotides capable of detecting activity of one or more of the cellular kinases RICK, RIP, NIK, MKK3, and SRPK-2 in a sample (e.g., by hybridization to mRNA from the sample), immobilized on a solid support. Most preferably the solid support would contain oligonucleotides of sufficient quality and quantity to detect all of the above-mentioned cellular kinases (e.g., a nucleic acid microarray).

[0064] Similarly, it is part of the object of the invention to provide an assay component specially useful for screening compounds useful for treating CMV. One preferred assay component comprises oligonucleotides that encode one or more of the cellular kinases RICK, RIP, NIK, MKK3, and SRPK-2, immobilized on a solid support. In another embodiment, the assay component comprises peptide fragments of one or more of the above-identified cellular kinases immobilized on a solid support. Once again the most preferred solid support embodiment would contain polymers of sufficient quality and quantity to detect all of the above-mentioned cellular kinases (e.g., a nucleic acid or a peptide microarray). A variety of assay supports and construction of the same are well known in the art and easily adapted for this purpose by a skilled practitioner (see, for example: Marshall, 1999. "Do-it-yourself gene watching" *Science* 286: 444-447 (including insets); and Service, 2000. "Protein arrays step out of DNA's shadow" *Science* 289:1673).

[0065] It is preferred that mRNA is assayed as an indication of expression. Methods for assaying for mRNA include, but are not limited to, Northern blots, slot blots, dot blots, and hybridization to an ordered array of oligonucleotides. Nucleic acid probes useful for assay of a sample are preferably of sufficient length to specifically hybridize only to appropriate, complementary transcripts. Typically the oligonucleotide probes will be at least 10, 12, 14, 16, 18, 20 or 25 nucleotides in length. In some cases longer probes of at least 30, 40, or 50 nucleotides will be desirable.

[0066] The cDNA oligonucleotides immobilized on said membrane filter which are used for detecting the up- or down-regulation of the above-mentioned human cellular protein kinases by hybridization to the radioactively labeled cDNA probes have the nucleotide sequences listed in table 3.

5

Table 3:

Nucleotide sequences of cDNA-arrays	
Human cellular kinase	Sequence of immobilized DNA on arrays (in relation to the respective Acc No)
RICK	914 bp - 2501 bp (AF027706)
RIP	1421 bp - 2617 bp (U50062)
NIK	231 bp - 3077 bp (Y10256)
MKK3	341 bp - 2030 bp (NM_002756)
SRPK-2	1238 bp - 2790 bp (U88666)

10

15

[0067] The nucleoside sequences of the genes coding for the human cellular protein kinases RICK, RIP, NIK, MKK3, and SRPK-2 listed in Table 3 together with the amino acid sequences of said enzymes can be obtained from NCBI (National Library of Medicine: PubMed; Web address: www.ncbi.nlm.nih.gov/entrez). Sequence protocols of the five cellular protein kinases are attached to this application as a part of the description.

20

[0068] The polypeptide product of gene expression may be assayed to determine the amount of expression as well. Methods for assaying for a protein include, but are not limited to, Western blot, immunoprecipitation, radioimmunoassay and peptide immobilization in an ordered array. It is understood, however, that any method for specifically and quantitatively measuring a specific protein or mRNA product can be used.

25

30

35

[0069] A variety of supports upon which nucleic acids or peptides can be immobilized are known in the art, for example filters, or polyvinyl chloride dishes. Any solid surface to which oligonucleotides or peptides can be bound, either directly or indirectly, either covalently or non-covalently, can be used. A preferred solid support is a microarray membrane filter or a "biochip". These contain particular polymer probes in predetermined locations on the array. Each predetermined location may contain more than one molecule of the probe, but each molecule within the predetermined location has an identical sequence.

[0070] The present invention incorporates by reference in their entirety techniques well known in the field of molecular biology. These techniques include, but are not limited to, techniques described in the following publications:

Ausubel, F.M. et al. eds., Short Protocols In Molecular Biology (4th Ed. 1999) John Wiley & Sons, NY. (ISBN 0-471-32938-X).

Old, R.W. & S.B. Primrose, Principles of Gene Manipulation: An Introduction To Genetic Engineering (3d Ed. 1985) Blackwell Scientific Publications, Boston. Studies in Microbiology; V.2:409 pp. (ISBN 0-632-01318-4).

Miller, J.H. & M.P. Calos eds., Gene Transfer Vectors For Mammalian Cells (1987) Cold Spring Harbor Laboratory Press, NY. 169 pp. (ISBN 0-87969-198-0).

Mayer, R.J. & J.H. Walker eds., Immunochemical Methods In Cell and Molecular Biology (1987) Academic Press, London. 325 pp. (ISBN 0-12480-855-7).

Sambrook, J. et al. eds., Molecular Cloning: A Laboratory Manual (2d Ed. 1989) Cold Spring Harbor Laboratory Press, NY. Vols. 1-3. (ISBN 0-87969-309-6).

Winnacker, E.L. From Genes To Clones: Introduction To Gene Technology (1987) VCH Publishers, NY (translated by Horst Ibelgaufts). 634 pp. (ISBN 0-89573-614-4).

40

45

[0071] The present invention further incorporates by reference in their entirety techniques well known in the field of microarray construction and analysis. These techniques include, but are not limited to, techniques described in the following patents and patent applications describing arrays of biopolymers and methods for their fabrication: U.S. Pat. Nos. 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,445,934; 5,472,672; 5,527,681; 5,529,756; 5,545,531; 5,554,501; 5,556,752; 5,561,071; 5,599,895; 5,624,711; 5,639,603; 5,658,734; 5,807,522; 6,087,102; WO 93/17126; WO 95/11995; WO 95/35505; EP 742 287; and EP 799 897. Techniques also include, but are not limited to, techniques described in the following patents and patent application describing methods of using arrays in various applications: U.S. Pat. Nos. 5,143,854; 5,288,644; 5,324,633; 5,432,049; 5,470,710; 5,492,806; 5,503,980; 5,510,270; 5,525,464; 5,547,839; 5,580,732; 5,661,028; 5,994,076; 6,033,860; 6,040,138; 6,040,140; WO 95/21265; WO 96/31622; WO 97/10365; WO 97/27317; EP 373 203; and EP 785 280.

[0072] It is readily apparent to those skilled in the art that other suitable modifications and adaptations of the com-

positions and methods of the invention described herein are obvious and may be made without departing from the scope of the invention or the embodiments disclosed herein. Having now described the present invention in detail, the same will be more clearly understood by reference to the following examples, which are included for purposes of illustration only and are not intended to be limiting of the invention.

5

Examples

Materials and Methods

10 EXAMPLE 1:

Signal Transduction cDNA Microarray Construction

[0073] To study the cellular pathology associated HCMV, a unique microarray of more than 1100 signal transduction cDNAs was created.

[0074] In order to manufacture cDNA-arrays on membranes, the following strategy was employed: cDNAs encoding parts of or full length proteins of interest (referred to as "target cDNAs") were cloned into the plasmid BLUESCRIPT II KS⁺ (Stratagene, USA). Large scale purifications of these plasmids were performed according to standard techniques, and 200µl aliquots (1µg/µl plasmid concentration) were transferred into appropriate 96 well plates. The plates were then sealed with sealing tape, incubated for 10 minutes at 95°C, and chilled on ice for 5 minutes. 10µl of 0.6N NaOH were added, and the mix was then stored for 20 minutes at room temperature. Following the incubation at room temperature, 10µl 2.5M Tris-HCl (Tris-(hydroxymethyl)-aminomethane-hydrochloride) pH7.1 and 20µl 40x SSC (6M Sodium chloride - 0.6M tri-Sodium citrate buffer) was added.

[0075] Target cDNAs were spotted onto Nylon or Nitrocellulose membranes using a BIOGRID (BioRobotics, UK) equipped with a 0.7mm pintoil. 200-350ng of plasmid-encoding target cDNAs were transferred onto the membranes and crosslinked to the membranes using ultraviolet light ($1.2 \times 10^5 \mu\text{J}/\text{cm}^2$) treatment. The arrays were stored for use in subsequent experiments (described below) at room temperature.

30 EXAMPLE 2:

HCMV Infection

[0076] To examine the effects of HCMV infection on cellular signal transduction activity, HCMV-infected cells were generated for comparison to control (i.e., uninfected) cells.

[0077] Primary human foreskin fibroblasts (HFF) were grown close to confluence in MEM medium (Minimum Essential Medium, Life Technologies) supplemented with 20% fetal calf serum at 37°C and 5% CO₂ to obtain $\sim 6 \times 10^6$ cells per tissue culture flask. Virus adsorption to the cells was performed with the HCMV strain AD169 at different (0.2, 1, and 3) multiplicities of infection (MOI) for 90 minutes in a volume of 5ml at 37°C. The viral inoculum was removed, and cells were cultured in 50ml of MEM medium supplemented with 20% fetal calf serum and 150µg/ml cycloheximide at 37°C and 5%CO₂ for 7, 24, 48, or 72 hours, respectively.

40 EXAMPLE 3:

Isolation and Purification of Poly A⁺ RNA

[0078] In order to perform differential expression analysis using the cDNA microarray described in Example 1, RNA extraction and purification on the HCMV-infected and uninfected cells was performed using techniques known in the art.

[0079] Briefly, after incubation (for the respective time-intervals) of infected and control cells, cells were washed twice with phosphate buffered saline (PBS) and then trypsinized. Cells were removed from the culture dish by resuspension with PBS. Cells were then sedimented, and directly lysed by repetitive pipetting in 1ml of Tri reagent (Molecular Research Centre, Inc., USA) per 1×10^6 cells.

[0080] Cell lysates were stored at room temperature for 5 minutes, and then centrifuged (12,000xg) for 15 minutes at 4°C. The supernatant was mixed with 0.1ml of 1-bromo-3-chloropropane per 1ml of Tri reagent and shaken vigorously. The resultant suspension was stored for 5 minutes at room temperature, and then centrifuged (12,000xg) for 15 minutes at 4°C.

[0081] Following centrifugation, the colorless upper phase was transferred into new tubes, mixed with 5µl of poly-acryl-carrier (Molecular Research Centre, Inc., USA), and vigorously shaken with 0.5ml of isopropanol per 1ml of Tri reagent. The samples were stored at room temperature for 5 minutes and then centrifuged (12,000xg) for 8 minutes

at 4°C. The supernatant was removed and the RNA pellet washed twice with 1ml of 75% ethanol. The pellet was dried and resuspended in RNase-free buffer at a concentration of 1 μ g RNA per 1 μ l buffer.

[0082] Purification of poly A⁺ RNA from total RNA was performed using the OLIGOTEX system (Qiagen, Germany) following manufacturer's instructions. In brief, 100-200 μ g of total RNA was brought up to 250 μ l with RNase-free water, and 250 μ l of buffer OBB (20mM Tris/HCl pH7.5, 1M NaCl, 2mM EDTA, 0.2% SDS) and 15 μ l of OLIGOTEX suspension was added. The samples were incubated for 3 minutes at 70°C, and placed at room temperature for 10 minutes. The samples were centrifuged for 2 minutes (12,000xg), and the supernatant removed. The remaining pellet was resuspended in 400 μ l buffer OW2 (10mM Tris/HCl pH7.5, 150mM NaCl, 1mM EDTA). The suspension was transferred to a spin column (supplied with the system) and centrifuged at 12000xg for 1 minute at room temperature. The spin column was transferred to a new tube and 400 μ l of buffer OW2 was applied on the column. The spin column was centrifuged (12,000xg) for 1 minute at room temperature. The spin column was transferred to a new tube and the RNA eluted from the column by the addition of 50 μ l buffer OEB (5mM Tris/HCl pH7.5) (at 70°C) to the column, resuspension of the Oligotex-resin, and centrifugation (12,000xg) for 1 minute at room temperature.

[0083] Any genomic DNA contamination of the RNA preparations was eliminated by enzymatic digestion using DNase I. 6 μ l of 10x DNase buffer (Promega, USA) and 4 μ l of RQ-DNase (Promega, USA) were added to 50 μ l of the RNA-buffer solution, and the reaction mixture was incubated for 15 minutes at 37°C. Stop-buffer (6 μ l; Promega, USA) was then added, the mixture brought to 200 μ l final volume with TE buffer (10mM Tris/HCl, 1mM EDTA), and Phenol/Chloroform extractions were performed twice. The RNA-containing phase was transferred to new reaction tubes and RNA was precipitated using 5M NaCl (final concentration of 0.2M), 1 μ l poly-acryl-carrier (Molecular Research Centre, Inc., USA) and 500 μ l of 100% ethanol. The solution was centrifuged for 10 minutes at 4°C, the RNA pellet washed with 1ml of 80% ethanol, dried, and resuspended in 30 μ l TE buffer. Poly A⁺ RNA suspension samples were stored at -70°C for use in subsequent experiments.

EXAMPLE 4:

Preparation of Radioactively Labeled cDNA Probes from RNA

[0084] To prepare test and control samples for microarray analysis, RNA samples isolated and purified from HCMV-infected and control cells (prepared as described in Example 3) were used to generate radioactively labeled cDNA probe. Many techniques to generate labeled cDNA constructs from cellular RNA extracts are known in the art and applicable to the present invention. Two of those protocols were used in this example to generate radiolabeled cDNA from RNA samples: the first technique involved reverse transcribing cDNA from the RNA sample in the presence of radioactively labelled dATP; the second technique involved first strand cDNA synthesis from the RNA sample, followed by random priming with radioactively labelled dATP.

[0085] For reverse transcription of cDNA from the RNA sample in the presence of radioactively labelled dATP, 1 μ g of primer TXN (5'-TTT TTT TTT TTT TXN-3'; SEQ ID NO:1; with T = dTTP; N = dATP, dCTP, dGTP or dTTP; X = dATP, dCTP or dGTP) and total RNA (1 to 15 μ g) or poly A⁺ RNA (20 to 500 ng) were combined in 12 μ l bidistilled DEPC-treated H₂O (DEPC: diethylpyrocarbonate) and shaken for 5-15 minutes at 60°C. The mixture was then incubated at 4°C for 2-10 minutes, and centrifuged (10,000xg) for 30 seconds.

[0086] After centrifugation, 7 μ l of a labelling mix (100 μ Ci γ [³³P]-ATP (Amersham, UK); vacuum dried and resuspended in 4 μ l first strand buffer (Life Technologies, USA); 2 μ l 0.1M DTT (dithiothreitol); and 1 μ l labelling solution – 4mM dCTP, dGTP, dTTP each and 80 μ M dATP final concentration) was added to the RNA solution. 1 μ l SUPERSCRIPT II reverse transcriptase (Life Technologies, USA) was added and the reaction incubated for 10 minutes at room temperature and then for 60 minutes at 38°C. Following the reaction incubation, 5 μ l 0.5M EDTA (ethylene diamine tetraacetate) and 25 μ l 0.6M NaOH was added to the reaction mixture and shaken vigorously for 30 minutes at 68°C.

[0087] Unincorporated nucleotides were removed from the labelling reaction using PROBEQUANT G-50 columns (Amersham, UK). The column (with bottom closure and lid removed) was shaken vigorously and centrifuged (735xg) for 1 minute in an appropriate reaction tube. The column was placed into a new reaction tube, the probe was applied onto the center of the column material and the column was centrifuged (735xg) for 2 minutes. The flow-through was transferred into new reaction tubes and bidistilled H₂O added to 100 μ l final volume. 5M NaCl, 1 μ l poly-acryl-carrier (Molecular Research Centre, Inc., USA) and 250 μ l ethanol was added, and the probe precipitated by centrifugation (12,000xg) for 15 minutes. The supernatant was discarded and the pellet dried for subsequent use.

[0088] For the alternate labelling technique (random priming with radioactively labelled dATP after first strand cDNA synthesis), the following procedure was followed: 1 μ g primer TXN (see above) was added to 20-500ng of poly A⁺ RNA in 12 μ l final volume, incubated for 5 minutes at 60°C, followed by an addition incubation for 2-10 minutes on ice. The mix was centrifuged (12,000xg) for 30 seconds, and 4 μ l of first strand buffer (Life Technologies, USA), 2 μ l 0.1M DTT, 1 μ l 10mM dNTP and 1 μ l SUPERSCRIPT II reverse transcriptase (Life Technologies, USA) was added. The reaction was incubated for 10 minutes at room temperature, followed by an additional incubation for 60 minutes at 38°C. Fol-

lowing the reaction incubation, 5 μ l 0.5M EDTA and 25 μ l 0.6M NaOH was added to the reaction mixture and shaken vigorously for 30 minutes at 68°C.

[0089] Unincorporated nucleotides were removed as described above; however, the final pellet was resuspended in 30 μ l bidistilled H₂O.

[0090] 15 μ l of the resuspended cDNA solution was transferred to new reaction tubes, incubated for 5 minutes at 95°C, chilled on ice for 5 minutes, and centrifuged for 30 seconds. Following manufacturer's instructions accompanying the Random Primers DNA Labelling system (Life technologies, USA), 15 μ l buffers mixture, 2 μ l of each dCTP, dGTP and dTTP (provided with the system) were added to the cDNA. 5 μ l γ^{33} P]-ATP (Amersham, UK) was added and the mixture adjusted to 49 μ l final volume with bidistilled H₂O. The reaction was started by addition of 1 μ l Klenow enzyme (supplied with the system), and incubated for 60 minutes at 25°C 5 μ l. Stop solution (provided with the system) was added and unincorporated nucleotides were removed by column purification as described above.

EXAMPLE 5:

Hybridization of Labeled cDNA Probe to cDNA Array

[0091] To screen HCMV-infected cells compared to uninfected cells for differential activation of cellular signal transduction, labeled cDNA probes (generated according to Example 4) were exposed to a signal transduction cDNA microarray (generated as described in Example 1) following hybridization techniques known in the art.

[0092] Sample pellets from Example 4 were resuspended in 10 μ l C₀T DNA (1 μ g/ μ l, Roche Diagnostics, Germany), 10 μ l yeast tRNA (1 μ g/ μ l Sigma, USA) and 10 μ l poly A (1 μ g/ μ l, Roche Diagnostics, Germany). Herring sperm DNA (to a final concentration of 100 μ g/ml), 5 μ l 10% SDS (Sodiumdodecylsulfate), and 25 μ l 20x SSPE was added, and adjusted 100 μ l final volume with bidistilled H₂O. The mix was incubated for 5 minutes at 95°C, centrifuged (10,000xg) for 30 seconds, and vigorously shaken for 60 minutes at 68°C. A 1 μ l aliquot of the probe was used to measure the incorporation of radioactive dATP with a scintillation counter. Probes with at least a total of 20 \times 10⁶ cpm were used for the screen assay.

[0093] Arrays were prehybridized in hybridization solution for at least 30 minutes in a roller bottle oven at 42°C. Following prehybridization, radiolabelled probe was added to the hybridization solution and hybridization was continued for 20-40 hours.

[0094] Following hybridization, the probe was discarded and the array subjected to a series of washes. Initially the arrays were washed twice in wash solution A (2xSSC) in the roller oven at room temperature. Wash solution A was then replaced with wash solution B (2x SSC, 0.5% SDS), preheated to 60°C, and arrays were washed twice for 30 minutes at 60°C. Wash solution B was then replaced with wash solution C (0.5x SSC, 0.5% SDS), preheated to 60°C, and arrays were washed twice for 30 minutes at 60°C.

[0095] The moist arrays were wrapped in airtight bags and exposed for 8-72 hours on erased phosphoimager screens (Fujifilm, Japan).

EXAMPLE 6:

Signal Transduction cDNA Array Analysis

[0096] To demonstrate differential activation of cellular signal transduction in HCMV-infected cells compared to uninfected cells, hybridized cDNA arrays from infected and uninfected samples were analyzed.

[0097] Exposed phosphoimager screens (from Example 5) were scanned with a resolution of 100 μ and 16bits per pixel using a BAS-1800 (Fujifilm, Japan). The data were imported into the computer program, ARRAYVISION (Imaging Research, Canada), and analyzed according the computer program's specification. Hybridization signal strength is indicative of the quantity of RNA molecules present in the probe. Differentially expressed genes were identified according to the ratio of signal strength after normalization to the overall intensity of the arrays.

[0098] Signal transduction cDNA microarray analysis of radiolabelled cDNA-probes from HCMV-infected (strain AD169) versus non-infected primary human foreskin fibroblasts to cDNA-arrays revealed significant upregulation of the cellular kinase cDNAs:

- RICK (2-fold at 3 hours post infection; 3.6-fold at 7 hours post infection);
- RIP (2.6-fold at 3 hour post infection; 2.2-fold at 24 hour post infection);
- NIK (4-fold at 7 hour post infection);
- MKK3 (2-fold at 3 hour post infection; 2.5-fold at 7 hour post infection); and
- SRPK-2 (2.2-fold at 7 hour post infection)

compared to uninfected human foreskin fibroblasts cells.

EXAMPLE 7:

5 **Northern Blot Analysis**

[0099] To confirm the results of the microarray analysis of Example 6, northern blot analysis was performed according to techniques well known in the art.

[0100] HCMV-infected and uninfected cells (from Example 2) cells were pelleted and the total RNA was prepared as follows: Following centrifugation and removal of the supernatant, cells were lysed in 1ml of Trizol reagent (ready-to-use-reagent from Gibco-BRL) per 1.5 10⁶ cells. The Tri reagent/cell lysate was transferred to an eppendorff tube and centrifuged (13,000rpm) for 15 minutes at 4°C. The supernatant was transferred to a new eppendorff tube and 0.1ml of BCP (1-bromo-3-chloropropane) for each ml of Tri reagent was added. Samples were vortexed for 15 seconds, incubated for 5 min at room temperature, and then centrifuged (13,000rpm) for 15 minutes at 4°C. The upper aqueous phase was transferred to a new eppendorff tube, 0.5 ml isopropanol was added for each ml of Tri reagent (Molecular Research Center, Inc., USA), vortexed, and incubated for additional 8 min at room temperature, and centrifuged (13,000rpm) for 10 min at 4°C. The supernatant was aspirated, and the precipitated RNA was washed twice with ice-cold 75% ethanol and air-dried. The RNA pellet was resuspended in 50µl Tris-HCl pH 7.5.

[0101] The quantity of the RNA for each sample was determined by UV-spectroscopy, and the quality was determined via gel electrophoresis on a formaldehyde-containing 1.2% agarose gel.

[0102] RNA samples of 10µg each were size-fractionated by 1.2% formaldehyde agarose gel electrophoresis and transferred to synthetic membrane filters (Hybond N, Amersham) with 20XSSC (1 X SSC is 150 mM NaCl, 15 mM C₆H₅Na₃O₇ x 2H₂O, pH 7.0) overnight. RNA was immobilized to the filter using UV-light for crosslinking (120 mJ/cm² for 25 seconds).

[0103] Membrane filters were firstly prehybridized for 4 hours at 65°C in a prehybridization solution containing 5 X SSC, 10 X Denhardt's solution (1 X Denhardt's solution is 0.02% bovine serum albumine, 0.02% polyvinyl pyrrolidone, 0.02% ficoll), 20mM sodium phosphate, pH 7.0, 7% SDS, 100µg/ml sonicated salmon sperm DNA, and 100µg/ml. Hybridization was performed at 65°C in the prehybridization buffer containing 10% dextran sulphate, plus added radiolabelled probe for 16 hours.

[0104] Membrane filters were hybridized to oligonucleotide probes specific for a particular cellular kinase identified in Example 6. Probes sequences included the following:

35 **Table 4:**

Cellular Kinase	cDNA Probe Sequence	SEQ ID NO:
NIK	5' - GTC CTG GAG GGC TCT TTT TGA TGA AAC C – 3'	2
RIP	5' - GTG CTC AAT GCA GTT GGG CCC CTT GTA CAC-3'	3
RICK	5' - GTC GAG CAG CGG AGT GTG GAT GTG CAG – 3'	4

[0105] The oligonucleotides were radiolabelled at their 3' ends with (alpha-32P) deoxyadenosine 5'- triphosphate (³²P- α -dATP) (Amersham) employing the Terminal Transferase kit (Roche) following manufacturer's instructions.

[0106] Unincorporated ³²P- α -dATP nucleotides were removed similar to the protocol described in Example 4: After vortexing the PROBEQUANT Sephadex G-50 (Amersham, UK) column (with bottom closure and lid removed), the column was placed in a 2 ml tube and centrifuged for 1 minute at 735xg. The column was placed in a new 1.5ml eppendorff tube (without a cap), and the radioactive probe was pipetted carefully on the center of the preformed resin. Centrifugation (735xg) for 2 minutes effectively removed the unincorporated ³²P- α -dATP nucleotides.

[0107] Hybridized filters were washed once in 5% SDS, 3 X SSC, 10 X Denhardt's solution, 20mM sodium phosphate, pH 7.0 for 30 min at 65°C. A second wash step followed in 1 X SSC, 1% SDS at 65°C for 30 min.

[0108] Filters were exposed at -80°C to Kodak XAR-5 films using intensifying screens.

[0109] Northern blot analysis confirmed upregulation of cellular kinase mRNA: RICK, RIP, and NIK in HCMV-infected cells compared to uninfected cells, consistent with results obtained from microarray analysis.

EXAMPLE 8:

Western Blot Analysis

5 [0110] To further confirm the results of the microarray analysis of Example 6 and northern blot analysis of Example 7, western blot analysis was performed according to techniques well known in the art.

[0111] HCMV-infected and uninfected cells (from Example 2) were pelleted and polypeptide extracts prepared as follows: Infected and uninfected cell samples (from various time intervals) were lysed with 420 µl of lysis buffer (20mM Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethansulfonic acid]) pH7.5, 150 mM NaCl, 1% TRITON X-100 (t-octylphenoxypolyethoxyethanol), 10% glycerol, 1mM PMSF (phenylmethylsulfonyl fluoride), 10µg/ml Aprotinin, 1mM orthovanadat) on ice. Lysed cells were cleared from debris by centrifugation (15 minutes, 13000 rpm, 4°C), dissolved in 1x Laemmli buffer, denatured for 5 minutes at 100°C and submitted to SDS-PAGE (gradient gel 7% - 12%).

10 [0112] Gels were blotted onto nitrocellulose filters (Amersham, UK) for 3 hours (0.8mA/cm²). Detection of expression of the identified host cell kinases was performed using the following target specific antibodies: OPA1-01023 polyclonal rabbit anti-RICK antibody (Dianova); H-207 polyclonal rabbit anti-RIP antibody (Santa Cruz Biotechnology); I-20 polyclonal rabbit anti-MKK3 antibody (Santa Cruz Biotechnology); S80620 murine anti-SRK2 antibody (Transduction Laboratories); anti-NIK rabbit serum (generated by SIGMA Genosys Biotechnologies using the NIK-peptide 5'-CNPT-NTRPQSDTPEIRKYKKRFN-3', SEQ ID NO:5, for immunization). All antibodies were used according to the manufacturer's instructions. Detections were performed with the ECL Kit (Amersham, UK).

15 [0113] Western blot analysis confirmed the transcriptional upregulation of infected host cell kinase mRNAs resulted in increased expression of the respective proteins:

A single ~60kDa band representing RICK was upregulated between 7-24 hours post HCMV infection;
 A single ~74kDa band representing RIP was upregulated between 7-72 hours post HCMV infection;
 25 A single ~135kDa band representing NIK was upregulated between 24-72 hours post HCMV infection;
 A single ~35kDa band representing MKK3 was upregulated between 7-72 hours post HCMV infection; and
 A single ~115kDa band representing SRPK2 was upregulated between 24-72 hours post HCMV infection.

EXAMPLE 9:

Genetic Validation

30 [0114] HFF cells were infected with Adenovirus expressing various kinase constructs at different particles per cell ratios (p/c). The adenovirus used here were all E1, E3 defective derivatives of adenovirus type 5 (reviewed in Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol. 81:2573-604). Briefly, the cDNA of interest was cloned into a transfer plasmid bearing the CMV IE promoter enhancer (IE: immediate early) and the rabbit beta-globin intron/polyadenylation signal. This expression cassette was inserted into a bacterial plasmid borne-adenovirus genome using recombination in bacteria (Chartier C., E. Degryse, M. Gantzer, A. Dieterle, A. Pavirani, and M. Mehtali. 1996. Efficient generation of recombinant adenovirus vectors by homologous recombination in *Escherichia coli*. J. Virol. 70: 4805-4810.). Virus was amplified in HEK 293 cells and purified from cell lysates using CsCl density gradient centrifugation as described (Cotten, M., Baker A., Birnstiel M.L., Zatloukal, K., Wagner, E. (1996) Adenovirus polylysine DNA conjugates. in Current Protocols in Human Genetics, Eds. N. C. Dracopoli, J. L. Haines, B.R. Korf, D.T. Moir, C.C. Morton, C.E. Seidman, J.G. Seidman, D.R. Smith; John Wiley and Sons, Inc. New York. pp. 12.3.1-12.3.33.). The control viruses AdJ5 was previously described (Glotzer J.B., Saltik M., Chiocca S., Michou A.I., Moseley P. and Cotten M. (2000) Activation of heat-shock response by an adenovirus is essential for virus replication. Nature 407:207-11).

35 [0115] Two days after plating HFF cells, cultures were infected with CMV strain Ad169-GFP. Replication of CMV was estimated after one week (7 dpi) utilizing the GFP-signal expressed as GFP counts.

[0116] Fig. 1 shows the reduction rates in HCMV replication of HFF cells pre-infected with Adeno virus containing the RIP wildtype sequence (AdRIPwt; 1 - 4) and a RIP inactive mutant (AdRIPkr; 5 - 8).

40 [0117] No HCMV-infection resulted in hardly any signal (mock, 13), while infection with HCMV yielded in about 13.000 GFP counts (AD169-GFP; 14). Pre-infection with increasing amounts of control Adeno virus (AdliteJ5) caused a slight reduction in HCMV replication (9 - 12). There was a clear difference, when HFF cells were pre-infected with Adeno virus containing the RIP wildtype sequence (AdRIPwt; 1 - 4) and a RIP inactive mutant (AdRIPkr; 5 - 8). The lysine (K) at amino acid position 45 is mutated to an arginine (R), which renders the kinase inactive. This mutation was introduced into the human RIP cDNA utilizing the QuikChange™ Site-directed Mutagenesis Kit (Stratagene, CA, USA) according to the instructions of the manufacturer. Expression of the mutated RIP kinase efficiently blocked HCMV replication (5 - 8), while the wildtype sequence was less potent in doing so (1 - 4).

45 [0118] Fig. 2 shows the reduction rates in HCMV replication of HFF cells pre-infected with Adeno virus containing

the RICK wildtype sequence (AdRICKwt) and two RICK inactive mutants (AdRICKkr and AdRICKdn). In one construct (AdRICKkr), the lysine (K) at position 47 is mutated to an arginine (R). In the other construct (AdRICKdn), the aspartate at position 146 is mutated to an asparagine. Both changes in sequence render the kinase inactive. The mutations were introduced into the human RICK cDNA utilizing the QuikChange™ Site-directed Mutagenesis Kit (Stratagene, CA, USA) according to the instructions of the manufacturer.

[0119] Similar experiments as described for RIP (Example 9, Fig. 1) were also performed with RICK. No HCMV-infection resulted in hardly any signal (Mock + Mock), while infection with HCMV yielded in about 7.000 GFP counts (Mock + AD169-GFP). Pre-infection with increasing amounts of control Adeno virus (AdliteJ5, from 111 to 3000 particles per cell) caused a slight reduction in HCMV replication. There was a clear difference, when HFF cells were pre-infected with Adeno virus containing the RICK wildtype sequence (AdRICKwt and two RICK inactive mutants (AdRICKkr and AdRICKdn). All three RICK constructs efficiently reduced HCMV-replication.

EXAMPLE 10:

RICK-Kinase Assay

[0120] To obtain active RICK kinase the human RICK-cDNA was fused with a DNA sequence coding for the HA-tag and cloned into the eucaryotic expression vector pcDNA3 (Invitrogen). This construct was transfected into human embryonic kidney cells (HEK 293) via the calcium-phosphate co-precipitation method. One day after transfection medium was replaced by fetal calf serum-free medium and two days after transfection cells were washed with PBS and harvested and lysed in RIPA-buffer (150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% Na-desoxycholate, 0.1 % SDS, 10 mM Tris-HCl pH 7.5). The RICK-HA fusion protein was immunoprecipitated from 250 µl cleared lysate (i.e. lysate of one well of a six-well plate) utilizing an anti-HA antibody from Roche Pharmaceuticals and Protein A sepharose. After addition of 500 µl of HNTG-buffer (50 mM HEPES pH 7.5, 150 mM NaCl, 1 mM EDTA, 10% glycerine, 0.1% Triton X-100) the sample was rotated for 3 hrs at 4°C. After washing the immunoprecipitate twice with 0.5 ml HNTG-buffer and twice with 0.5 ml assay-buffer (25 mM Tris-HCl pH 7.5, 3 mM MgCl₂, 0.5 mM MnCl₂, 0.5 mM DTT and 50 mM NaCl), the kinase reaction was performed directly on the beads in 40 µl assay buffer containing 2.5 µCi γ[³²P]-ATP and various concentrations (between 100 nM and 50 µM) of compounds of Table 1. After 30 min at 30°C, the reaction was stopped by addition of 40 µl 3X Laemmli-buffer (16% glycerol, 1.01M β-mercaptoethanol, 5% SDS, 200mM Tris/HCl pH 6.8, 8% bromphenolblue). Phosphorylation products were analyzed by SDS-PAGE and autoradiography (x-ray film and phosphor imager).

EXAMPLE 11:

RIP-Kinase Assay

[0121] To obtain active RIP kinase the human RIP-cDNA was fused with a DNA sequence coding for the HA-tag and cloned into the eucaryotic expression vector pcDNA3 (Invitrogen). This construct was transfected into human embryonic kidney cells (HEK 293) via the calcium-phosphate DNA co-precipitation method. Two days after transfection cells were washed with PBS and harvested and lysed in lysis-buffer (150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 20 mM Tris-HCl pH 7.5 and freshly added: 30 mM NaF, 10 µg/ml Aprotinin, 10 µg/ml Leupeptine, 2 mM Na-pyrophosphate). The RIP-HA fusion protein was immunoprecipitated from 250 µl cleared lysate (i.e. lysate of one well of a six-well plate) utilizing an anti-HA antibody from Roche Pharmaceuticals and Protein A sepharose. The sample was rotated for 3 hrs at 4°C. The immunoprecipitates were washed twice with 0.75 ml lysis-buffer, twice with 0.75 ml high salt-buffer (1 M NaCl, 1 mM EDTA, 1% Triton X-100, 20 mM Tris-HCl pH 7.5 and freshly added: 30 mM NaF, 10 µg/ml Aprotinin, 10 µg/ml Leupeptine, 2 mM Na-pyrophosphate), twice with 0.75 ml lysis-buffer and twice 0.75 ml with kinase assay buffer (10 mM MgCl₂, 10 mM MnCl₂, 10 mM benzamidine, 0.5 mM EDTA). The kinase reaction was performed directly on the beads in 40 µl kinase assay buffer containing 2.5 µCi γ[³²P]-ATP and various concentrations (between 100 nM and 50 µM) of compounds of Table 2. After 30 min at 30°C, the reaction was stopped by addition of 40 µl 2X Laemmli-buffer. Phosphorylation products were analyzed by SDS-PAGE and autoradiography (x-ray film and phosphor imager).

EXAMPLE 12:

Virus Replication Assay

Cell culture and virus

[0122] Primary human foreskin fibroblasts (HFF) were cultivated in MEM containing 5% (v/v) fetal calf serum. Infec-

tion analysis was restricted to cell passage numbers below twenty. Human cytomegalovirus strain AD169 (ATCC) was grown in HFF cells and quantitated for infectivity by the plaque reduction assay. Aliquots were stored at -80°C.

Construction of recombinant cytomegalovirus

[0123] For construction of a recombination vector, two linker sequences were inserted into the pBlueScribe vector pBS+ (Stratagene): the first contained restriction sites for NheI, SphI, PstI and BglII followed by a loxP sequence (ATAACCTCGTATAGCATACATTATACGAAGTTAT) and was introduced into PstI/XbaI sites of the vector; the second contained another loxP sequence followed by restriction sites HpaI, ClaI and PmeI and was introduced into BamHI/Asp718 sites. A gene cassette comprising of a "humanized" version of the ORF coding for GFP (gfp-h) under the control of the HCMV enhancer/promoter and the Ptk/PY441 enhancer-driven neoR selection marker was excised from plasmid pUF5 (Zolotukhin et al., 1996, J. Virol. 70, 4646-4654) and inserted into the recombination vector via BglII sites.

[0124] At the 5' and 3'-positions of this loxP-flanked gene cassette, two HCMV sequences with homology to the gene region containing the open reading frames US9 and US10 were inserted. For this, viral sequences were amplified from template pCM49 (Fleckenstein et al., 1982, Gene 18, 39-46) via PCR in a 35-cycle program (denaturation 45 sec at 95°C, annealing 45 sec at 55°C and elongation 2 min at 72°C) by the use of Vent DNA polymerase (New England Biolabs). A US10-specific sequence of 1983 bp in length was generated using primers US10[200900]SphI (GCT-CACTAGTGGCCTAGCCTGGCTCATGGCC) and US10[198918]PacI (GTCCTTAATTAAAGACGTGGTTGGTCAC-CGAA) and inserted at the vector 5' cloning position via SphI/PacI restriction sites (see bold-print). A US9-specific sequence of 2010 bp was generated using primers US9-3'PmeI (CTCGGTTAAACGACGTGAGGCGCTCCGTCACC) and US-5' ClaI (TTGCATCGATACGGTGAGATACCACGATG) inserted at the vector 3' cloning position via PmeI/ClaI restriction sites.

[0125] The resulting construct pHM673 was linearized by the use of restriction enzyme NheI and transfected into HEF cells via the electroporation method using a Gene Pulser (Bio-rad; 280 V, 960 µF, 400 Ω). After 24 h of cultivation, cells were used for infection with 1 PFU/ml of HCMV strain AD169. Selection with 200 µg/ml G418 was started 24 h post infection. Following 3 weeks of passage in the presence of G418, GFP fluorescence could be detected in most of the infected cells. Plaque assays were performed with infectious culture supernatant on HFF cells and single virus plaques were grown by transfer to fresh HFF cells cultured in 48-well plates. DNA was isolated from cells of 32 fluorescence-positive wells and confirmed for the presence of recombinant virus by PCR. For this, primers US9[198789] (TGACGCGAGTATTACGTGTC) and US10[199100] (CTCCTCCTGATATGCGGTT) were used resulting in an amplification product of 312 bp for wild-type AD169 virus and approximately 3.5 kb for recombinant virus.

Plaque assay

[0126] HFF cells were cultivated in 12-well plates to 90-100% confluence and used for infection with dilutions of virus-positive cell culture supernatants. Virus inoculation was performed for 90 min at 37°C under occasional shaking before virus was removed and the cell layers were rinsed with PBS. Overlays of MEM 5% (v/v) fetal calf serum and 0.3% (w/v) agarose were added to each well and all samples were incubated at 37°C in a 5% CO₂ atmosphere for approximately 12 days. Finally, overlays were removed and the formation of foci was visualized by staining with 1 % crystal violet in 20% ethanol for 1 min. After repeated rinsing with PBS, plates were air-dried at room temperature and plaque numbers were counted with a light microscope. For the recombinant AD169-GFP virus, quantification of plaque assays could also be performed without crystal violet staining by a direct counting of the amount of green fluorescent plaques using fluorescence microscopy.

Antiviral compounds

[0127] The reference compounds used for antiviral studies, ganciclovir (GCV, Cymeven), foscarnet sodium (FOS, Foscavir) and cidofovir (CDV, Vistide) were purchased from Syntex Arzneimittel (Aachen, Germany), Sigma-Aldrich (Germany) and Pharmacia & Upjohn S.A. (Luxembourg), respectively. Stocks were prepared in aqueous solution and stored at -20°C. The test compounds were dissolved in DMSO and aliquots were stored at -20°C.

GFP infection assay

[0128] HFF cells were cultivated in 12-well plates to 90-100% confluence and used for infection with 0,5xTCID₅₀ of AD169-GFP virus. Virus inoculation was performed for 90 min at 37°C with occasional shaking before virus was removed and the cell layers were rinsed with PBS. Infected cell layers were incubated with 2 ml of MEM containing 5% (v/v) fetal calf serum and optionally of the respective test substances or DMSO as control. Infected cells were incubated at 37°C in a 5% CO₂ atmosphere for 7 days and harvested by trypsinization and centrifugation. 200 µl of lysis buffer (25

5 mM Tris pH 7.8, 2 mM DTT, 2 mM trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid, 1% Triton X-100, 10% glycerol) was added to each cell pellet and lysis was achieved by incubation for 10 min at 37°C followed by a 30-min incubation at room temperature on a shaker. Lysates were centrifuged for 5 min at 15,000 rpm in an Eppendorf centrifuge to remove cell debris. Supernatants were transferred to an opaque 96-well plate for automated measuring of GFP signals in a Victor 1420 Multilabel Counter (Wallac). GFP units were converted to percent inhibition values relative to DMSO controls (set at 100% GFP expression).

Indirect immunofluorescence analysis

10 [0129] Cells were either grown on Lab-Tek Permanox slides (Nunc) or harvested from 6-well plates, spotted onto glass slides with marked rings (Medco) and fixed by a 15-min treatment with 3% formaldehyde in PBS followed by permeabilization for 15 min in 0.1% Triton X-100 in PBS at room temperature. Blocking was achieved by incubation with Cohn Fraction II/III of human gamma-globulin (Sigma; 2 mg/ml) for 30 min at 37°C. The IE1/IE2-specific primary antibody MA810 (Chemicon International, Inc. CA, USA; dilution 1:10,000) was incubated for 90 min, the secondary antibody (tetramethyl rhodamine [TRITC]-coupled anti-mouse antibody, Dianova, dilution 1:100) for 45 min at 37°C before analysis by fluorescence microscopy. In addition to indirect TRITC staining of IE1/IE2 proteins, GFP signals could be detected directly via the fluorescence isothiocyanate (FITC) channel. Nuclear counterstaining was carried out using Vectashield mounting medium including DAPI (Vector Laboratories, Burlingame, CA).

20

25

30

35

40

45

50

55

SEQUENCE LISTING

5 <110> Axxima Pharmaceuticals AG
 10 <120> CELLULAR KINASES INVOLVED IN CYTOMEGALOVIRUS INFECTION
 AND THEIR INHIBITION

15 <130> PA012EP

20 <140>
 <141>

25 <160> 2

30 <170> PatentIn Ver. 2.1

35 <210> 1
 <211> 2501
 <212> DNA
 <213> Homo sapiens

40 <220>
 <221> CDS
 <222> (225)..(1847)

45 <400> 1
 ggcaccagtc tctagaaaag aagttagctc tggttcgag aaggcagcggc tggcggtggc 60
 catccgggga atgggcgccc tcgtgaccta gtgttgcggg gcaaaaaggg tcttgccggc 120
 ctcgcgtcgta cagggcgta tctggcgcc tgagcgcgca gtgggagcct tgggagccgc 180
 50 cgcagcaggg ggcacaccccg gaaccggcct gagcgcggcgg gacc atg aac ggg gag 236
 Met Asn Gly Glu
 1

55 gcc atc tgc agc gcc ctg ccc acc att ccc tac cac aaa ctc gcc gac 284
 Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr His Lys Leu Ala Asp
 5 10 15 20

60 ctg cgc tac ctg agc cgc ggc gcc tct ggc act gtg tcg tcc gcc cgc 332
 Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly Thr Val Ser Ser Ala Arg
 25 30 35

65 cac gca gac tgg cgc gtc cag gtg gcc gtg aag cac ctg cac atc cac 380
 His Ala Asp Trp Arg Val Gln Val Ala Val Lys His Leu His Ile His
 40 45 50

70 act ccg ctg ctc gac agt gaa aga aag gat gtc tta aga gaa gct gaa 428
 Thr Pro Leu Leu Asp Ser Glu Arg Lys Asp Val Leu Arg Glu Ala Glu
 55 60 65

75 att tta cac aaa gct aga ttt agt tac att ctt cca att ttg gga att 476
 Ile Leu His Lys Ala Arg Phe Ser Tyr Ile Leu Pro Ile Leu Gly Ile
 70 75 80

80 tgc aat gag cct gaa ttt ttg gga ata gtt act gaa tac atg cca aat 524
 Cys Asn Glu Pro Glu Phe Leu Gly Ile Val Thr Glu Tyr Met Pro Asn
 85 90 95 100

85 gga tca tta aat gaa ctc cta cat agg aaa act gaa tat cct gat gtt 572
 Gly Ser Leu Asn Glu Leu Leu His Arg Lys Thr Glu Tyr Pro Asp Val
 105 110 115

EP 1 201 765 A2

5	gct tgg cca ttg aga ttt cgc atc ctg cat gaa att gcc ctt ggt gta Ala Trp Pro Leu Arg Phe Arg Ile Leu His Glu Ile Ala Leu Gly Val 120 125 130	620
10	aat tac ctg cac aat atg act cct cct tta ctt cat cat gac ttg aag Asn Tyr Leu His Asn Met Thr Pro Pro Leu Leu His His Asp Leu Lys 135 140 145	668
15	act cag aat atc tta ttg gac aat gaa ttt cat gtt aag att gca gat Thr Gln Asn Ile Leu Leu Asp Asn Glu Phe His Val Lys Ile Ala Asp 150 155 160	716
20	ttt ggt tta tca aag tgg cgc atg atg tcc ctc tca cag tca cga agt Phe Gly Leu Ser Lys Trp Arg Met Met Ser Leu Ser Gln Ser Arg Ser 165 170 175 180	764
25	agc aaa tct gca cca gaa gga ggg aca att atc tat atg cca cct gaa Ser Lys Ser Ala Pro Glu Gly Gly Thr Ile Ile Tyr Met Pro Pro Glu 185 190 195	812
30	aac tat gaa cct gga caa aaa tca agg gcc agt atc aag cac gat ata Asn Tyr Glu Pro Gly Gln Lys Ser Arg Ala Ser Ile Lys His Asp Ile 200 205 210	860
35	tat agc tat gca gtt atc aca tgg gaa gtg tta tcc aga aaa cag cct Tyr Ser Tyr Ala Val Ile Thr Trp Glu Val Leu Ser Arg Lys Gln Pro 215 220 225	908
40	ttt gaa gat gtc acc aat cct ttg cag ata atg tat agt gtg tca caa Phe Glu Asp Val Thr Asn Pro Leu Gln Ile Met Tyr Ser Val Ser Gln 230 235 240	956
45	gga cat cga cct gtt att aat gaa gaa agt ttg cca tat gat ata cct Gly His Arg Pro Val Ile Asn Glu Glu Ser Leu Pro Tyr Asp Ile Pro 245 250 255 260	1004
50	cac cga gca cgt atg atc tct cta ata gaa agt gga tgg gca caa aat His Arg Ala Arg Met Ile Ser Leu Ile Glu Ser Gly Trp Ala Gln Asn 265 270 275	1052
55	cca gat gaa aga cca tct ttc tta aaa tgt tta ata gaa ctt gaa cca Pro Asp Glu Arg Pro Ser Phe Leu Lys Cys Leu Ile Glu Leu Glu Pro 280 285 290	1100
60	gtt ttg aga aca ttt gaa gag ata act ttt ctt gaa gct gtt att cag Val Leu Arg Thr Phe Glu Glu Ile Thr Phe Leu Glu Ala Val Ile Gln 295 300 305	1148
65	cta aag aaa aca aag tta cag agt gtt tca agt gcc att cac cta tgt Leu Lys Lys Thr Lys Leu Gln Ser Val Ser Ser Ala Ile His Leu Cys 310 315 320	1196
70	gac aag aag aaa atg gaa tta tct ctg aac ata cct gta aat cat ggt Asp Lys Lys Lys Met Glu Leu Ser Leu Asn Ile Pro Val Asn His Gly 325 330 335 340	1244
75	cca caa gag gaa tca tgt gga tcc tct cag ctc cat gaa aat agt ggt Pro Gln Glu Glu Ser Cys Gly Ser Ser Gln Leu His Glu Asn Ser Gly 345 350 355	1292
80	tct cct gaa act tca agg tcc ctg cca gct cct caa gac aat gat ttt Ser Pro Glu Thr Ser Arg Ser Leu Pro Ala Pro Gln Asp Asn Asp Phe 360 365 370	1340

EP 1 201 765 A2

	tta tct aga aaa gct caa gac tgt tat ttt atg aag ctg cat cac tgt	1388
5	Leu Ser Arg Lys Ala Gln Asp Cys Tyr Phe Met Lys Leu His His Cys	
	375 380 385	
	cct gga aat cac agt tgg gat agc acc att tct ggt tct caa agg gct	1436
	Pro Gly Asn His Ser Trp Asp Ser Thr Ile Ser Gly Ser Gln Arg Ala	
	390 395 400	
10	gca ttc tgt gat cac aag acc act cca tgc tct tca gca ata ata aat	1484
	Ala Phe Cys Asp His Lys Thr Thr Pro Cys Ser Ser Ala Ile Ile Asn	
	405 410 415 420	
15	cca ctc tca act gca gga aac tca gaa cgt ctg cag cct ggt ata gcc	1532
	Pro Leu Ser Thr Ala Gly Asn Ser Glu Arg Leu Gln Pro Gly Ile Ala	
	425 430 435	
	cag cag tgg atc cag agc aaa agg gaa gac att gtg aac caa atg aca	1580
	Gln Gln Trp Ile Gln Ser Lys Arg Glu Asp Ile Val Asn Gln Met Thr	
	440 445 450	
20	gaa gcc tgc ctt aac cag tcg cta gat gcc ctt ctg tcc agg gac ttg	1628
	Glu Ala Cys Leu Asn Gln Ser Leu Asp Ala Leu Leu Ser Arg Asp Leu	
	455 460 465	
25	atc atg aaa gag gac tat gaa ctt gtt agt acc aag cct aca agg acc	1676
	Ile Met Lys Glu Asp Tyr Glu Leu Val Ser Thr Lys Pro Thr Arg Thr	
	470 475 480	
	tca aaa gtc aga caa tta cta gac act act gac atc caa gga gaa gaa	1724
	Ser Lys Val Arg Gln Leu Leu Asp Thr Thr Asp Ile Gln Gly Glu Glu	
	485 490 495 500	
30	ttt gcc aaa gtt ata gta caa aaa ttg aaa gat aac aaa caa atg ggt	1772
	Phe Ala Lys Val Ile Val Gln Lys Leu Lys Asp Asn Lys Gln Met Gly	
	505 510 515	
35	ctt cag cct tac ccg gaa ata ctt gtg gtt tct aga tca cca tct tta	1820
	Leu Gln Pro Tyr Pro Glu Ile Leu Val Val Ser Arg Ser Pro Ser Leu	
	520 525 530	
	aat tta ctt caa aat aaa agc atg taa gtgactgttt ttcaagaaga	1867
	Asn Leu Leu Gln Asn Lys Ser Met	
	535 540	
40	aatgtgtttc ataaaaaggat atttatatct ctgttgcttt gactttttt atataaaaatc	1927
	cgtgagtatt aaagctttat tgaaggttct ttgggtaaat attagtctcc ctccatgaca	1987
	ctgcagtatt ttttttaatt aatacaagta aaaagttgaa ttgggttcaa tttgtcatat	2047
	agttcaattt ttatgtctct ttgttaaca gaaaccactt ttaaaggata gtaattattc	2107
	ttgtttataa cagtgcctta aggtatgtat tatttctgat ggaagccatt ttcacattca	2167
	tgttcttcat ggattatgg ttacttgtct aagatgcaat ttgattttat gaagtatata	2227
45	ccctttaccc accagagaca gtacagaatc cctgcctaa aatcccaggc ttaattgccc	2287
	tacaaaagggt tattaattta aaactccatt attaggatta catttaaag ttttatttat	2347
	gaattccctt taaaaaatgat atttcaaagg taaaacaata caatataaaag aaaaaaaataa	2407
50	atatattaat accggcttcc tgccccatt tttaacctca gccttcccta ctgtcaccaa	2467

caacccaagct aaataaaagtc aacagcctga tgtg

2501

5 <210> 2
 <211> 540
 <212> PRT
 <213> Homo sapiens

10 <400> 2
 Met Asn Gly Glu Ala Ile Cys Ser Ala Leu Pro Thr Ile Pro Tyr His
 1 5 10 15
 Lys Leu Ala Asp Leu Arg Tyr Leu Ser Arg Gly Ala Ser Gly Thr Val
 20 25 30
 Ser Ser Ala Arg His Ala Asp Trp Arg Val Gln Val Ala Val Lys His
 35 40 45
 Leu His Ile His Thr Pro Leu Leu Asp Ser Glu Arg Lys Asp Val Leu
 50 55 60
 Arg Glu Ala Glu Ile Leu His Lys Ala Arg Phe Ser Tyr Ile Leu Pro
 65 70 75 80
 Ile Leu Gly Ile Cys Asn Glu Pro Glu Phe Leu Gly Ile Val Thr Glu
 85 90 95
 Tyr Met Pro Asn Gly Ser Leu Asn Glu Leu Leu His Arg Lys Thr Glu
 100 105 110
 Tyr Pro Asp Val Ala Trp Pro Leu Arg Phe Arg Ile Leu His Glu Ile
 115 120 125
 Ala Leu Gly Val Asn Tyr Leu His Asn Met Thr Pro Pro Leu Leu His
 130 135 140
 His Asp Leu Lys Thr Gln Asn Ile Leu Leu Asp Asn Glu Phe His Val
 145 150 155 160
 Lys Ile Ala Asp Phe Gly Leu Ser Lys Trp Arg Met Met Ser Leu Ser
 165 170 175
 Gln Ser Arg Ser Ser Lys Ser Ala Pro Glu Gly Gly Thr Ile Ile Tyr
 180 185 190
 Met Pro Pro Glu Asn Tyr Glu Pro Gly Gln Lys Ser Arg Ala Ser Ile
 195 200 205
 Lys His Asp Ile Tyr Ser Tyr Ala Val Ile Thr Trp Glu Val Leu Ser
 210 215 220
 Arg Lys Gln Pro Phe Glu Asp Val Thr Asn Pro Leu Gln Ile Met Tyr
 225 230 235 240
 Ser Val Ser Gln Gly His Arg Pro Val Ile Asn Glu Glu Ser Leu Pro
 245 250 255
 Tyr Asp Ile Pro His Arg Ala Arg Met Ile Ser Leu Ile Glu Ser Gly
 260 265 270
 Trp Ala Gln Asn Pro Asp Glu Arg Pro Ser Phe Leu Lys Cys Leu Ile
 275 280 285
 Glu Leu Glu Pro Val Leu Arg Thr Phe Glu Glu Ile Thr Phe Leu Glu
 290 295 300
 Ala Val Ile Gln Leu Lys Lys Thr Lys Leu Gln Ser Val Ser Ser Ala
 305 310 315 320
 Ile His Leu Cys Asp Lys Lys Lys Met Glu Leu Ser Leu Asn Ile Pro
 325 330 335
 Val Asn His Gly Pro Gln Glu Glu Ser Cys Gly Ser Ser Gln Leu His
 340 345 350
 Glu Asn Ser Gly Ser Pro Glu Thr Ser Arg Ser Leu Pro Ala Pro Gln
 355 360 365
 Asp Asn Asp Phe Leu Ser Arg Lys Ala Gln Asp Cys Tyr Phe Met Lys
 370 375 380
 Leu His His Cys Pro Gly Asn His Ser Trp Asp Ser Thr Ile Ser Gly
 385 390 395 400
 Ser Gln Arg Ala Ala Phe Cys Asp His Lys Thr Thr Pro Cys Ser Ser
 405 410 415
 Ala Ile Ile Asn Pro Leu Ser Thr Ala Gly Asn Ser Glu Arg Leu Gln
 420 425 430
 Pro Gly Ile Ala Gln Gln Trp Ile Gln Ser Lys Arg Glu Asp Ile Val

EP 1 201 765 A2

435 440 445
 Asn Gln Met Thr Glu Ala Cys Leu Asn Gln Ser Leu Asp Ala Leu Leu
 450 455 460
 Ser Arg Asp Leu Ile Met Lys Glu Asp Tyr Glu Leu Val Ser Thr Lys
 465 470 475 480
 Pro Thr Arg Thr Ser Lys Val Arg Gln Leu Leu Asp Thr Thr Asp Ile
 485 490 495
 Gln Gly Glu Glu Phe Ala Lys Val Ile Val Gln Lys Leu Lys Asp Asn
 500 505 510
 Lys Gln Met Gly Leu Gln Pro Tyr Pro Glu Ile Leu Val Val Ser Arg
 515 520 525
 Ser Pro Ser Leu Asn Leu Leu Gln Asn Lys Ser Met
 530 535 540

15

SEQUENCE LISTING

<110> Axxima Pharmaceuticals AG

20

<120> CELLULAR KINASES INVOLVED IN CYTOMEGALOVIRUS INFECTION
AND THEIR INHIBITION

<130> U50062

25

<140>

<141>

<160> 2

<170> PatentIn Ver. 2.1

30

<210> 1

<211> 2617

<212> DNA

<213> Homo sapiens

35

<220>

<221> CDS

<222> (1)..(2016)

40

<400> 1

atg caa cca gac atg tcc ttg aat gtc att aag atg aaa tcc agt gac	48
Met Gln Pro Asp Met Ser Leu Asn Val Ile Lys Met Lys Ser Ser Asp	
1 5 10 15	

45

tgc ctg gag agt gca gaa ctg gac agc gga ggc ttt ggg aag gtg tct	96
Phe Leu Glu Ser Ala Glu Leu Asp Ser Gly Gly Phe Gly Lys Val Ser	
20 25 30	

50

ctg tgt ttc cac aga acc cag gga ctc atg atc atg aaa aca gtg tac	144
Leu Cys Phe His Arg Thr Gln Gly Leu Met Ile Met Lys Thr Val Tyr	
35 40 45	

55

aag ggg ccc aac tgc att gag cac aac gag gcc ctc ttg gag gag gcg	192
Lys Gly Pro Asn Cys Ile Glu His Asn Glu Ala Leu Leu Glu Glu Ala	
50 55 60	

55

aag atg atg aac aga ctg aga cac agc cgg gtg gtg aag ctc ctg ggc	240
Lys Met Met Asn Arg Leu Arg His Ser Arg Val Val Lys Leu Leu Gly	
65 70 75 80	

gtc atc ata gag gaa ggg aag tac tcc ctg gtg atg gag tac atg gag	288
Val Ile Ile Glu Glu Gly Lys Tyr Ser Leu Val Met Glu Tyr Met Glu	
85 90 95	

EP 1 201 765 A2

	aag ggc aac ctg atg cac gtg ctg aaa gcc gag atg agt act ccg ctt Lys Gly Asn Leu Met His Val Leu Lys Ala Glu Met Ser Thr Pro Leu 100 105 110	336
5	tct gta aaa gga agg ata att ttg gaa atc att gaa gga atg tgc tac Ser Val Lys Gly Arg Ile Ile Leu Glu Ile Ile Glu Gly Met Cys Tyr 115 120 125	384
10	tta cat gga aaa ggc gtg ata cac aag gac ctg aag cct gaa aat atc Leu His Gly Lys Gly Val Ile His Lys Asp Leu Lys Pro Glu Asn Ile 130 135 140	432
15	ctt gtt gat aat gac ttc cac att aag atc gca gac ctc ggc ctt gcc Leu Val Asp Asn Asp Phe His Ile Lys Ile Ala Asp Leu Gly Leu Ala 145 150 155 160	480
	tcc ttt aag atg tgg agc aaa ctg aat aat gaa gag cac aat gag ctg Ser Phe Lys Met Trp Ser Lys Leu Asn Asn Glu Glu His Asn Glu Leu 165 170 175	528
20	agg gaa gtg gac ggc acc gct aag aat ggc ggc acc ctc tac tac Arg Glu Val Asp Gly Thr Ala Lys Lys Asn Gly Gly Thr Leu Tyr Tyr 180 185 190	576
25	atg gcg ccc gag cac ctg aat gac gtc aac gca aag ccc aca gag aag Met Ala Pro Glu His Leu Asn Asp Val Asn Ala Lys Pro Thr Glu Lys 195 200 205	624
	tcg gat gtg tac agc ttt gct gta gta ctc tgg gcg ata ttt gca aat Ser Asp Val Tyr Ser Phe Ala Val Val Leu Trp Ala Ile Phe Ala Asn 210 215 220	672
30	aag gag cca tat gaa aat gct atc tgt gag cag cag ttg ata atg tgc Lys Glu Pro Tyr Glu Asn Ala Ile Cys Glu Gln Gln Leu Ile Met Cys 225 230 235 240	720
35	ata aaa tct ggg aac agg cca gat gtg gat gac atc act gag tac tgc Ile Lys Ser Gly Asn Arg Pro Asp Val Asp Asp Ile Thr Glu Tyr Cys 245 250 255	768
	cca aga gaa att atc agt ctc atg aag ctc tgc tgg gaa gcg aat ccg Pro Arg Glu Ile Ile Ser Leu Met Lys Leu Cys Trp Glu Ala Asn Pro 260 265 270	816
40	gaa gct cgg ccg aca ttt cct ggc att gaa gaa aaa ttt agg cct ttt Glu Ala Arg Pro Thr Phe Pro Gly Ile Glu Glu Lys Phe Arg Pro Phe 275 280 285	864
45	tat tta agt caa tta gaa gaa agt gta gaa gag gac gtg aag agt tta Tyr Leu Ser Gln Leu Glu Ser Val Glu Glu Asp Val Lys Ser Leu 290 295 300	912
	aag aaa gag tat tca aac gaa aat gca gtt gtg aag aga atg cag tct Lys Lys Glu Tyr Ser Asn Glu Asn Ala Val Val Lys Arg Met Gln Ser 305 310 315 320	960
50	ctt caa ctt gat tgt gtg gca gta cct tca agc cgg tca aat tca gcc Leu Gln Leu Asp Cys Val Ala Val Pro Ser Ser Arg Ser Asn Ser Ala 325 330 335	1008
55	aca gaa cag cct ggt tca ctg cac agt tcc cag gga ctt ggg atg ggt Thr Glu Gln Pro Gly Ser Leu His Ser Ser Gln Gly Leu Gly Met Gly 340 345 350	1056

EP 1 201 765 A2

	cct gtg gag gag tcc tgg ttt gct cct tcc ctg gag cac cca caa gaa Pro Val Glu Glu Ser Trp Phe Ala Pro Ser Leu Glu His Pro Gln Glu 355 360 365	1104
5	gag aat gag ccc agc ctg cag agt aaa ctc caa gac gaa gcc aac tac Glu Asn Glu Pro Ser Leu Gln Ser Lys Leu Gln Asp Glu Ala Asn Tyr 370 375 380	1152
10	cat ctt tat ggc agc cgc atg gac agg cag acg aaa cag cag ccc aga His Leu Tyr Gly Ser Arg Met Asp Arg Gln Thr Lys Gln Gln Pro Arg 385 390 395 400	1200
15	cag aat gtg gct tac aac aga gag gag gaa agg aga cgc agg gtc tcc Gln Asn Val Ala Tyr Asn Arg Glu Glu Arg Arg Arg Arg Val Ser 405 410 415	1248
20	cat gac cct ttt gca cag caa aga cct tac gag aat ttt cag aat aca His Asp Pro Phe Ala Gln Gln Arg Pro Tyr Glu Asn Phe Gln Asn Thr 420 425 430	1296
25	gag gga aaa ggc act gtt tat tcc agt gca gcc agt cat ggt aat gca Glu Gly Lys Gly Thr Val Tyr Ser Ser Ala Ala Ser His Gly Asn Ala 435 440 445	1344
30	gtg cac cag ccc tca ggg ctc acc agc caa cct caa gta ctg tat cag Val His Gln Pro Ser Gly Leu Thr Ser Gln Pro Gln Val Leu Tyr Gln 450 455 460	1392
35	aac aat gga tta tat agc tca cat ggc ttt gga aca aga cca ctg gat Asn Asn Gly Leu Tyr Ser Ser His Gly Phe Gly Thr Arg Pro Leu Asp 465 470 475 480	1440
40	cca gga aca gca ggt ccc aga gtt tgg tac agg cca att cca agt cat Pro Gly Thr Ala Gly Pro Arg Val Trp Tyr Arg Pro Ile Pro Ser His 485 490 495	1488
45	atg cct agt ctg cat aat atc cca gtg cct gag acc aac tat cta gga Met Pro Ser Leu His Asn Ile Pro Val Pro Glu Thr Asn Tyr Leu Gly 500 505 510	1536
50	aat aca ccc acc atg cca ttc agc tcc ttg cca cca aca gat gaa tct Asn Thr Pro Thr Met Pro Phe Ser Ser Leu Pro Pro Thr Asp Glu Ser 515 520 525	1584
55	ata aaa tat acc ata tac aat agt act ggc att cag att gga gcc tac Ile Lys Tyr Thr Ile Tyr Asn Ser Thr Gly Ile Gln Ile Gly Ala Tyr 530 535 540	1632
60	aat tat atg gag att ggt ggg acg agt tca tca cta cta gac agc aca Asn Tyr Met Glu Ile Gly Gly Thr Ser Ser Ser Leu Leu Asp Ser Thr 545 550 555 560	1680
65	aat acg aac ttc aaa gaa gag cca gct gct aag tac caa gct atc ttt Asn Thr Asn Phe Lys Glu Glu Pro Ala Ala Lys Tyr Gln Ala Ile Phe 565 570 575	1728
70	gat aat acc act agt ctg acg gat aaa cac ctg gac cca atc agg gaa Asp Asn Thr Thr Ser Leu Thr Asp Lys His Leu Asp Pro Ile Arg Glu 580 585 590	1776
75	aat ctg gga aag cac tgg aaa aac tgt gcc cgt aaa ctg ggc ttc aca Asn Leu Gly Lys His Trp Lys Asn Cys Ala Arg Lys Leu Gly Phe Thr 595 600 605	1824

EP 1 201 765 A2

	cag tct cag att gat gaa att gac cat gac tat gag cga gat gga ctg Gln Ser Gln Ile Asp Glu Ile Asp His Asp Tyr Glu Arg Asp Gly Leu 610 615 620	1872
5	aaa gaa aag gtt tac cag atg ctc caa aag tgg gtg atg agg gaa ggc Lys Glu Lys Val Tyr Gln Met Leu Gln Lys Trp Val Met Arg Glu Gly 625 630 635 640	1920
10	ata aag gga gcc acg gtg ggg aag ctg gcc cag gcg ctc cac cag tgt Ile Lys Gly Ala Thr Val Gly Lys Leu Ala Gln Ala Leu His Gln Cys 645 650 655	1968
15	tcc agg atc gac ctt ctg agc agc ttg att tac gtc agc cag aac taa Ser Arg Ile Asp Leu Leu Ser Ser Leu Ile Tyr Val Ser Gln Asn 660 665 670	2016
20	ccctggatgg gctacggcag ctgaagtgga cgcctcaatt agcggataac cccagaaaat 2076 tggctgcctc agagcattca gaattctgtc ctcactgata ggggttctgt gtctgcagaa 2136 attnngtttc ctgtacttca tagctggaga atggggaaag aaatctgcag caaagggtc 2196	
25	tcactctgtt gccaggctgg tctcaaactt ctggactcaa gtgatccctcc cgccctcgccc 2256 ttccaaagtg ctgggatatac aggcaactgag ccactgcgcc cagtcaacaa tccgntctga 2316 ggaaagcgtta agcaggaaga cctcttaatg gcatacgacc aataaaaaaaa tgactccttag 2376	
30	tttgttttg aaagggagag aagagatgtc tgaggaaggt catgttcttt cagcttatgg 2436 catttcttag agttngttg aagcaagaag aaaaactcag agaatataaa atcaactttn 2496 aaaattgtgt gctctttct tcacgttaggc tcctgttaaa aacaaagtgc agtcagatcc 2556	
	taagccctgt tcagagactt cgcggatcac agctcagct caccgcacca tcacaggatc 2616	
	c 2617	
35	<210> 2 <211> 671 <212> PRT <213> Homo sapiens	
40	<400> 2 Met Gln Pro Asp Met Ser Leu Asn Val Ile Lys Met Lys Ser Ser Asp 1 5 10 15 Phe Leu Glu Ser Ala Glu Leu Asp Ser Gly Gly Phe Gly Lys Val Ser 20 25 30 Leu Cys Phe His Arg Thr Gln Gly Leu Met Ile Met Lys Thr Val Tyr 35 40 45 Lys Gly Pro Asn Cys Ile Glu His Asn Glu Ala Leu Leu Glu Ala 50 55 60 Lys Met Met Asn Arg Leu Arg His Ser Arg Val Val Lys Leu Leu Gly 65 70 75 80 Val Ile Ile Glu Glu Gly Lys Tyr Ser Leu Val Met Glu Tyr Met Glu 85 90 95 Lys Gly Asn Leu Met His Val Leu Lys Ala Glu Met Ser Thr Pro Leu 100 105 110 Ser Val Lys Gly Arg Ile Ile Leu Glu Ile Ile Glu Gly Met Cys Tyr 115 120 125 Leu His Gly Lys Gly Val Ile His Lys Asp Leu Lys Pro Glu Asn Ile 130 135 140 Leu Val Asp Asn Asp Phe His Ile Lys Ile Ala Asp Leu Gly Leu Ala 145 150 155 160	
45		
50		
55		

	Ser Phe Lys Met Trp Ser Lys Leu Asn Asn Glu Glu His Asn Glu Leu
5	165 170 175
	Arg Glu Val Asp Gly Thr Ala Lys Lys Asn Gly Gly Thr Leu Tyr Tyr
	180 185 190
	Met Ala Pro Glu His Leu Asn Asp Val Asn Ala Lys Pro Thr Glu Lys
	195 200 205
	Ser Asp Val Tyr Ser Phe Ala Val Val Leu Trp Ala Ile Phe Ala Asn
	210 215 220
10	Lys Glu Pro Tyr Glu Asn Ala Ile Cys Glu Gln Gln Leu Ile Met Cys
	225 230 235 240
	Ile Lys Ser Gly Asn Arg Pro Asp Val Asp Asp Ile Thr Glu Tyr Cys
	245 250 255
	Pro Arg Glu Ile Ile Ser Leu Met Lys Leu Cys Trp Glu Ala Asn Pro
	260 265 270
15	Glu Ala Arg Pro Thr Phe Pro Gly Ile Glu Glu Lys Phe Arg Pro Phe
	275 280 285
	Tyr Leu Ser Gln Leu Glu Glu Ser Val Glu Glu Asp Val Lys Ser Leu
	290 295 300
	Lys Lys Glu Tyr Ser Asn Glu Asn Ala Val Val Lys Arg Met Gln Ser
	305 310 315 320
20	Leu Gln Leu Asp Cys Val Ala Val Pro Ser Ser Arg Ser Asn Ser Ala
	325 330 335
	Thr Glu Gln Pro Gly Ser Leu His Ser Ser Gln Gly Leu Gly Met Gly
	340 345 350
	Pro Val Glu Glu Ser Trp Phe Ala Pro Ser Leu Glu His Pro Gln Glu
	355 360 365
25	Glu Asn Glu Pro Ser Leu Gln Ser Lys Leu Gln Asp Glu Ala Asn Tyr
	370 375 380
	His Leu Tyr Gly Ser Arg Met Asp Arg Gln Thr Lys Gln Gln Pro Arg
	385 390 395 400
	Gln Asn Val Ala Tyr Asn Arg Glu Glu Arg Arg Arg Arg Val Ser
	405 410 415
30	His Asp Pro Phe Ala Gln Gln Arg Pro Tyr Glu Asn Phe Gln Asn Thr
	420 425 430
	Glu Gly Lys Gly Thr Val Tyr Ser Ser Ala Ala Ser His Gly Asn Ala
	435 440 445
	Val His Gln Pro Ser Gly Leu Thr Ser Gln Pro Gln Val Leu Tyr Gln
	450 455 460
35	Asn Asn Gly Leu Tyr Ser Ser His Gly Phe Gly Thr Arg Pro Leu Asp
	465 470 475 480
	Pro Gly Thr Ala Gly Pro Arg Val Trp Tyr Arg Pro Ile Pro Ser His
	485 490 495
	Met Pro Ser Leu His Asn Ile Pro Val Pro Glu Thr Asn Tyr Leu Gly
	500 505 510
40	Asn Thr Pro Thr Met Pro Phe Ser Ser Leu Pro Pro Thr Asp Glu Ser
	515 520 525
	Ile Lys Tyr Thr Ile Tyr Asn Ser Thr Gly Ile Gln Ile Gly Ala Tyr
	530 535 540
	Asn Tyr Met Glu Ile Gly Gly Thr Ser Ser Ser Leu Leu Asp Ser Thr
	545 550 555 560
45	Asn Thr Asn Phe Lys Glu Glu Pro Ala Ala Lys Tyr Gln Ala Ile Phe
	565 570 575
	Asp Asn Thr Thr Ser Leu Thr Asp Lys His Leu Asp Pro Ile Arg Glu
	580 585 590
	Asn Leu Gly Lys His Trp Lys Asn Cys Ala Arg Lys Leu Gly Phe Thr
	595 600 605
50	Gln Ser Gln Ile Asp Glu Ile Asp His Asp Tyr Glu Arg Asp Gly Leu
	610 615 620
	Lys Glu Lys Val Tyr Gln Met Leu Gln Lys Trp Val Met Arg Glu Gly
	625 630 635 640
	Ile Lys Gly Ala Thr Val Gly Lys Leu Ala Gln Ala Leu His Gln Cys
	645 650 655
55	Ser Arg Ile Asp Leu Leu Ser Ser Leu Ile Tyr Val Ser Gln Asn
	660 665 670

SEQUENCE LISTING

5 <110> Axxima Pharmaceuticals AG

10 <120> CELLULAR KINASES INVOLVED IN CYTOMEGALOVIRUS INFECTION
AND THEIR INHIBITION

15 <130> Y10256

20 <140>

25 <141>

30 <160> 2

35 <170> PatentIn Ver. 2.1

40 <210> 1

45 <211> 4596

50 <212> DNA

55 <213> Homo sapiens

60 <220>

65 <221> CDS

70 <222> (233)..(3076)

75 <400> 1

80 aagcggggga ctgtgccgtg tggAACGTGT agctgtttag aggtggactc tgttaccatt 60

85 gaggatgttt ggaggatgag tatgtgtggc agaggcacac ataaaacaggc agagaccctt 120

90 tgcccccgtcc ttctcccccc aacccaaggc tgacctgtgt tctcccaggt ctgggattct 180

95 aagtgacctg ctctgtgttt ggtctctctc aggatgagca caagcctggg ag atg gca 238

100 Met Ala
1

105 gtg atg gaa atg gcc tgc cca ggt gcc cct ggc tca gca gtg ggg cag 286

110 Val Met Glu Met Ala Cys Pro Gly Ala Pro Gly Ser Ala Val Gly Gln
5 10 15

115 cag aag gaa ctc ccc aag cca aag gag aag acg ccg cca ctg ggg aag 334

120 Gln Lys Glu Leu Pro Lys Pro Lys Glu Lys Thr Pro Pro Leu Gly Lys
20 25 30

125 aaa cag agc tcc gtc tac aag ctt gag gcc gtg gag aag acg cct gtg 382

130 Lys Gln Ser Ser Val Tyr Lys Leu Glu Ala Val Glu Lys Ser Pro Val
35 40 45 50

135 ttc tgc gga aag tgg gag atc ctg aat gac gtg att acc aag ggc aca 430

140 Phe Cys Gly Lys Trp Glu Ile Leu Asn Asp Val Ile Thr Lys Gly Thr
55 60 65

145 gcc aag gaa ggc tcc gag gca ggg cca gct gcc atc tct atc atc gcc 478

150 Ala Lys Glu Gly Ser Glu Ala Gly Pro Ala Ala Ile Ser Ile Ile Ala
70 75 80

155 cag gct gag tgt gag aat agc caa gag ttc agc ccc acc ttt tca gaa 526

160 Gln Ala Glu Cys Glu Asn Ser Gln Glu Phe Ser Pro Thr Phe Ser Glu
85 90 95

165 cgc att ttc atc gct ggg tcc aaa cag tac agc cag tcc gag agt ctt 574

170 Arg Ile Phe Ile Ala Gly Ser Lys Gln Tyr Ser Gln Ser Glu Ser Leu
100 105 110

EP 1 201 765 A2

5	gat cag atc ccc aac aat gtg gcc cat gct aca gag ggc aaa atg gcc Asp Gln Ile Pro Asn Asn Val Ala His Ala Thr Glu Gly Lys Met Ala 115 120 125 130	622
	cgt gtg tgt tgg aag gga aag cgt cgc agc aaa gcc cgaa aag aaa cgg Arg Val Cys Trp Lys Gly Lys Arg Arg Ser Lys Ala Arg Lys Lys Arg 135 140 145	670
10	aag aag aag agc tca aag tcc ctg gct cat gca gga gtg gcc ttg gcc Lys Lys Lys Ser Ser Lys Ser Leu Ala His Ala Gly Val Ala Leu Ala 150 155 160	718
15	aaa ccc ctc ccc agg acc cct gag cag gag agc tgc acc atc cca gtg Lys Pro Leu Pro Arg Thr Pro Glu Gln Glu Ser Cys Thr Ile Pro Val 165 170 175	766
	cag gag gat gag tct cca ctc ggc gcc cca tat gtt aga aac acc ccc Gln Glu Asp Glu Ser Pro Leu Gly Ala Pro Tyr Val Arg Asn Thr Pro 180 185 190	814
20	cag ttc acc aag cct ctg aag gaa cca ggc ctt ggg caa ctc tgt ttt Gln Phe Thr Lys Pro Leu Lys Glu Pro Gly Leu Gly Gln Leu Cys Phe 195 200 205 210	862
25	aag cag ctt ggc gag ggc cta cgg ccg gct ctg cct cga tca gaa ctc Lys Gln Leu Gly Glu Gly Leu Arg Pro Ala Leu Pro Arg Ser Glu Leu 215 220 225	910
	cac aaa ctg atc agc ccc ttg caa tgt ctg aac cac gtg tgg aaa ctg His Lys Leu Ile Ser Pro Leu Gln Cys Leu Asn His Val Trp Lys Leu 230 235 240	958
30	cac cac ccc cag gac gga ggc ccc ctg ccc ctg ccc acg cac ccc ttc His His Pro Gln Asp Gly Pro Leu Pro Leu Pro Thr His Pro Phe 245 250 255	1006
35	ccc tat agc aga ctg cct cat ccc ttc cca ttc cac cct ctc cag ccc Pro Tyr Ser Arg Leu Pro His Pro Phe Pro Phe His Pro Leu Gln Pro 260 265 270	1054
	tgg aaa cct cac cct ctg gag tcc ttc ctg ggc aaa ctg gcc tgt gta Trp Lys Pro His Pro Leu Glu Ser Phe Leu Gly Lys Leu Ala Cys Val 275 280 285 290	1102
40	gac agc cag aaa ccc ttg cct gac cca cac ctg agc aaa ctg gcc tgt Asp Ser Gln Lys Pro Leu Pro Asp Pro His Leu Ser Lys Leu Ala Cys 295 300 305	1150
45	gta gac agt cca aag ccc ctg cct ggc cca cac ctg gag ccc agc tgc Val Asp Ser Pro Lys Pro Leu Pro Gly Pro His Leu Glu Pro Ser Cys 310 315 320	1198
	ctg tct cgt ggt gcc cat gag aag ttt tct gtg gag gaa tac cta gtg Leu Ser Arg Gly Ala His Glu Lys Phe Ser Val Glu Glu Tyr Leu Val 325 330 335	1246
50	cat gct ctg caa ggc agc gtg agc tca agc cag gcc cac agc ctg acc His Ala Leu Gln Gly Ser Val Ser Ser Ser Gln Ala His Ser Leu Thr 340 345 350	1294
55	agc ctg gcc aag acc tgg gca gca cgg ggc tcc aga tcc cgg gag ccc Ser Leu Ala Lys Thr Trp Ala Ala Arg Gly Ser Arg Ser Arg Glu Pro 355 360 365 370	1342

EP 1 201 765 A2

5	agc ccc aaa act gag gac aac gag ggt gtc ctg ctc act gag aaa ctc Ser Pro Lys Thr Glu Asp Asn Glu Gly Val Leu Leu Thr Glu Lys Leu 375 380 385	1390
10	aag cca gtg gat tat gag tac cga gaa gaa gtc cac tgg gcc acg cac Lys Pro Val Asp Tyr Glu Tyr Arg Glu Glu Val His Trp Ala Thr His 390 395 400	1438
15	cag ctc cgc ctg ggc aga ggc tcc ttc gga gag gtg cac agg atg gag Gln Leu Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg Met Glu 405 410 415	1486
20	gac aag cag act ggc ttc cag tgc gct gtc aaa aag gtg cgg ctg gaa Asp Lys Gln Thr Gly Phe Gln Cys Ala Val Lys Lys Val Arg Leu Glu 420 425 430	1534
25	gta ttt cgg gca gag gag ctg atg gca tgt gca gga ttg acc tca ccc Val Phe Arg Ala Glu Glu Leu Met Ala Cys Ala Gly Leu Thr Ser Pro 435 440 445 450	1582
30	aga att gtc cct ttg tat gga gct gtg aga gaa ggg cct tgg gtc aac Arg Ile Val Pro Leu Tyr Gly Ala Val Arg Glu Gly Pro Trp Val Asn 455 460 465	1630
35	atc ttc atg gag ctg ctg gaa ggt ggc tcc ctg ggc cag ctg gtc aag Ile Phe Met Glu Leu Leu Glu Gly Ser Leu Gly Gln Leu Val Lys 470 475 480	1678
40	gag cag ggc tgt ctc cca gag gac cgg gcc ctg tac tac ctg ggc cag Glu Gln Gly Cys Leu Pro Glu Asp Arg Ala Leu Tyr Tyr Leu Gly Gln 485 490 495	1726
45	gcc ctg gag ggt ctg gaa tac ctc cac tca cga agg att ctg cat ggg Ala Leu Glu Gly Leu Glu Tyr Leu His Ser Arg Arg Ile Leu His Gly 500 505 510	1774
50	gac gtc aaa gct gac aac gtc ctg tcc agc gat ggg agc cac gca Asp Val Lys Ala Asp Asn Val Leu Leu Ser Ser Asp Gly Ser His Ala 515 520 525 530	1822
55	gcc ctc tgt gac ttt ggc cat gct gtg tgt ctt caa cct gat ggc ctg Ala Leu Cys Asp Phe Gly His Ala Val Cys Leu Gln Pro Asp Gly Leu 535 540 545	1870
60	gga aag tcc ttg ctc aca ggg gac tac atc cct ggc aca gag acc cac Gly Lys Ser Leu Leu Thr Gly Asp Tyr Ile Pro Gly Thr Glu Thr His 550 555 560	1918
65	atg gct ccg gag gtc gtg ctg ggc agg agc tgc gac gcc aag gtc gat Met Ala Pro Glu Val Val Leu Gly Arg Ser Cys Asp Ala Lys Val Asp 565 570 575	1966
70	gtc tgg agc agc tgc tgt atg atg ctg cac atg ctc aac ggc tgc cac Val Trp Ser Ser Cys Cys Met Met Leu His Met Leu Asn Gly Cys His 580 585 590	2014
75	ccc tgg act cag ttc ttc cga ggg ccg ctc tgc ctc aag att gcc agc Pro Trp Thr Gln Phe Phe Arg Gly Pro Leu Cys Leu Lys Ile Ala Ser 595 600 605 610	2062
80	gag cct ccg cct gtc agg gag atc cca ccc tcc tgc gcc cct ctc aca Glu Pro Pro Pro Val Arg Glu Ile Pro Pro Ser Cys Ala Pro Leu Thr 615 620 625	2110

EP 1 201 765 A2

5	gcc cag gcc atc caa gag ggg ctg agg aaa gag ccc atc cac cgc gtg Ala Gln Ala Ile Gln Glu Gly Leu Arg Lys Glu Pro Ile His Arg Val 630 635 640	2158
10	tct gca gcg gag ctg gga ggg aag gtg aac cgg gca cta cag caa gtg Ser Ala Ala Glu Leu Gly Gly Lys Val Asn Arg Ala Leu Gln Gln Val 645 650 655	2206
15	gga ggt ctg aag agc cct tgg agg gga gaa tat aaa gaa cca aga cat Gly Gly Leu Lys Ser Pro Trp Arg Gly Glu Tyr Lys Glu Pro Arg His 660 665 670	2254
20	cca ccg cca aat caa gcc aat tac cac cag acc ctc cat gcc cag ccg Pro Pro Pro Asn Gln Ala Asn Tyr His Gln Thr Leu His Ala Gln Pro 675 680 685 690	2302
25	aga gag ctt tcg cca agg gcc cca ggg ccc cgg cca gct gag gag aca Arg Glu Leu Ser Pro Arg Ala Pro Gly Pro Arg Pro Ala Glu Glu Thr 695 700 705	2350
30	aca ggc aga gcc cct aag ctc cag cct ctc cca cca gag ccc cca Thr Gly Arg Ala Pro Lys Leu Gln Pro Pro Leu Pro Pro Glu Pro Pro 710 715 720	2398
35	gag cca aac aag tct ccc ttg act ttg agc aag gag gag tct ggg Glu Pro Asn Lys Ser Pro Pro Leu Thr Leu Ser Lys Glu Glu Ser Gly 725 730 735	2446
40	atg tgg gaa ccc tta cct ctg tcc tcc ctg gag cca gcc cct gcc aga Met Trp Glu Pro Leu Pro Leu Ser Ser Leu Glu Pro Ala Pro Ala Arg 740 745 750	2494
45	aac ccc agc tca cca gag cgg aaa gca acc gtc ccg gag cag gaa ctg Asn Pro Ser Ser Pro Glu Arg Lys Ala Thr Val Pro Glu Gln Glu Leu 755 760 765 770	2542
50	cag cag ctg gaa ata gaa tta ttc ctc aac agc ctg tcc cag cca ttt Gln Gln Leu Glu Ile Glu Leu Phe Leu Asn Ser Leu Ser Gln Pro Phe 775 780 785	2590
55	tct ctg gag gag cag gag caa att ctc tcg tgc ctc agc atc gac agc Ser Leu Glu Gln Ile Leu Ser Cys Leu Ser Ile Asp Ser 790 795 800	2638
	ctc tcc ctg tcg gat gac agt gag aag aac cca tca aag gcc tct caa Leu Ser Leu Ser Asp Asp Ser Glu Lys Asn Pro Ser Lys Ala Ser Gln 805 810 815	2686
	agc tcg cgg gac acc ctg agc tca ggc gta cac tcc tgg agc agc cag Ser Ser Arg Asp Thr Leu Ser Ser Gly Val His Ser Trp Ser Ser Gln 820 825 830	2734
	gcc gag gct cga agc tcc agc tgg aac atg gtg ctg gcc cgg ggg cgg Ala Glu Ala Arg Ser Ser Trp Asn Met Val Leu Ala Arg Gly Arg 835 840 845 850	2782
	ccc acc gac acc cca agc tat ttc aat ggt gtg aaa gtc caa ata cag Pro Thr Asp Thr Pro Ser Tyr Phe Asn Gly Val Lys Val Gln Ile Gln 855 860 865	2830
	tct ctt aat ggt gaa cac ctg cac atc cgg gag ttc cac cgg gtc aaa Ser Leu Asn Gly Glu His Leu His Ile Arg Glu Phe His Arg Val Lys 870 875 880	2878

5	gtg gga gac atc gcc act ggc atc agc agc cag atc cca gct gca gcc Val Gly Asp Ile Ala Thr Gly Ile Ser Ser Gln Ile Pro Ala Ala Ala 885 890 895	2926
10	ttc agc ttg gtc acc aaa gac ggg cag cct gtt cgcc tac gac atg gag Phe Ser Leu Val Thr Lys Asp Gly Gln Pro Val Arg Tyr Asp Met Glu 900 905 910	2974
15	gtg cca gac tcg ggc atc gac ctg cag tgc aca ctg gcc cct gat ggc Val Pro Asp Ser Gly Ile Asp Leu Gln Cys Thr Leu Ala Pro Asp Gly 915 920 925 930	3022
20	agc ttc gcc tgg agc tgg agg gtc aag cat ggc cag ctg gag aac agg Ser Phe Ala Trp Ser Trp Arg Val Lys His Gly Gln Leu Glu Asn Arg 935 940 945	3070
25	ccc taa ccctgccctc caccggccgc tccacactgc cgaaaaaggcag ccttcctgct Pro	3126
30	cgggtgcacga tgctgccctg aaaacacagg ctcagccgtt cccaggggat tgccagcccc ccggctcaca gtgggaaccca gggcctcgca gcagcaaggt gggggcaagc agaatgcctc ccaggatttc acacctgagc cctgccccac cctgctgaaa aaacatccgc cacgtgaaga gacagaagga ggatggcagg agttacctgg ggaaacaaaa cagggatctt tttctgcccc tgctccagtc gagttggcct gacccgcttg gatcagtgac catttgggg cagacagggg agagcagtt ccagcctggg tcagaagggg tggcgagcc cttcgcccc tcaccctcca ggctgtgtg agagtgtcaa gtgtgttaagg gggccctcta aaccccttgc ctggcctcac tcagcaggtt tgcccgcccc taggttaagg gggccctcta aaccccttgc ctggcctcac ctggccagct caccctttt ggggttaggg gaaaagaatg cctgaccctg ggaaggctcc ctggtagaat acaccacact tttcaggttg ttgcaacaca ggtcctgagt tgacctctgg ttcagccaag gaccaaagaa ggtgtgttaag tgaagtgggtt ctcagtcggcc agacatgtgc ccctttgtg ctggctacca ctcttcctca gaggcaggcccc cttcaggccc 3846 40	3186 3246 3306 3366 3426 3486 3546 3606 3666 3726 3786 3846 3906 3966 4026 4086 4146 4206 4266 4326 4386 4446
45	agcaactgccc cagactcgct ggcactcaigt tccctcatct gtaaagggtga agggtgatgc aggatatgcc tgacagggAAC agtctgtgg tggacatgat cagtgtcaag gaaaggcagca gagagagacg tccggcgeccc cagccccact atcagtgtcc agcgtgctgg ttccccagag cacagctcag catcacactg acactcaccc tgccctgccc ctggccagag ggtactgccc acggcacttt gcactctgat gacctcaaag cactttcatg gctgccctct ggcaggccag ggcaggccag tgacactgta ggagcatagc aagccaggag atggggtgaa gggacacagt 50	4206 4266 4326 4386 4446
55	tttggatgtt ccacatgcat gtgactccctc aaacctcttc cagatttctc taagaatagc accccttcc ccattgcccc agcttagctt cttctccag gggagctact caggactcac gtacgattaa atcagctgtg aatcgtcagg ggggtctgc tagcctcaac ctccctgggc aggggacgcc gagactccgt gggagaagct cattcccaca tcttgccaaag acagcctttg	

tccagctgtc cacattgagt cagactgctc ccggggagag agccccggcc cccagcacat 4506
 5 aaagaactgc agccttggta ctgcagagtc tgggtttaga agaactcttt gtaagcaata 4566
 aagtttgggg tgatgacaaa tgttaaaaaa 4596

10 <210> 2
 <211> 947
 <212> PRT
 <213> Homo sapiens

15 <400> 2
 Met Ala Val Met Glu Met Ala Cys Pro Gly Ala Pro Gly Ser Ala Val
 1 5 10 15
 Gly Gln Gln Lys Glu Leu Pro Lys Pro Lys Glu Lys Thr Pro Pro Leu
 20 25 30
 Gly Lys Lys Gln Ser Ser Val Tyr Lys Leu Glu Ala Val Glu Lys Ser
 35 40 45
 Pro Val Phe Cys Gly Lys Trp Glu Ile Leu Asn Asp Val Ile Thr Lys
 50 55 60
 Gly Thr Ala Lys Glu Gly Ser Glu Ala Gly Pro Ala Ala Ile Ser Ile
 65 70 75 80
 Ile Ala Gln Ala Glu Cys Glu Asn Ser Gln Glu Phe Ser Pro Thr Phe
 85 90 95
 Ser Glu Arg Ile Phe Ile Ala Gly Ser Lys Gln Tyr Ser Gln Ser Glu
 100 105 110
 Ser Leu Asp Gln Ile Pro Asn Asn Val Ala His Ala Thr Glu Gly Lys
 115 120 125
 Met Ala Arg Val Cys Trp Lys Gly Lys Arg Arg Ser Lys Ala Arg Lys
 130 135 140
 Lys Arg Lys Lys Ser Ser Lys Ser Leu Ala His Ala Gly Val Ala
 145 150 155 160
 Leu Ala Lys Pro Leu Pro Arg Thr Pro Glu Gln Glu Ser Cys Thr Ile
 165 170 175
 Pro Val Gln Glu Asp Glu Ser Pro Leu Gly Ala Pro Tyr Val Arg Asn
 180 185 190
 Thr Pro Gln Phe Thr Lys Pro Leu Lys Glu Pro Gly Leu Gly Gln Leu
 195 200 205
 Cys Phe Lys Gln Leu Gly Glu Gly Leu Arg Pro Ala Leu Pro Arg Ser
 210 215 220
 Glu Leu His Lys Leu Ile Ser Pro Leu Gln Cys Leu Asn His Val Trp
 225 230 235 240
 Lys Leu His His Pro Gln Asp Gly Gly Pro Leu Pro Leu Pro Thr His
 245 250 255
 Pro Phe Pro Tyr Ser Arg Leu Pro His Pro Phe Pro Phe His Pro Leu
 260 265 270
 Gln Pro Trp Lys Pro His Pro Leu Glu Ser Phe Leu Gly Lys Leu Ala
 275 280 285
 Cys Val Asp Ser Gln Lys Pro Leu Pro Asp Pro His Leu Ser Lys Leu
 290 295 300
 Ala Cys Val Asp Ser Pro Lys Pro Leu Pro Gly Pro His Leu Glu Pro
 305 310 315 320
 Ser Cys Leu Ser Arg Gly Ala His Glu Lys Phe Ser Val Glu Glu Tyr
 325 330 335
 Leu Val His Ala Leu Gln Gly Ser Val Ser Ser Ser Gln Ala His Ser
 340 345 350
 Leu Thr Ser Leu Ala Lys Thr Trp Ala Ala Arg Gly Ser Arg Ser Arg
 355 360 365
 Glu Pro Ser Pro Lys Thr Glu Asp Asn Glu Gly Val Leu Leu Thr Glu
 370 375 380
 Lys Leu Lys Pro Val Asp Tyr Glu Tyr Arg Glu Glu Val His Trp Ala
 385 390 395 400
 Thr His Gln Leu Arg Leu Gly Arg Gly Ser Phe Gly Glu Val His Arg

	405	410	415
5	Met Glu Asp Lys Gln Thr Gly Phe Gln Cys Ala Val Lys Lys Val Arg		
	420	425	430
	Leu Glu Val Phe Arg Ala Glu Glu Leu Met Ala Cys Ala Gly Leu Thr		
	435	440	445
	Ser Pro Arg Ile Val Pro Leu Tyr Gly Ala Val Arg Glu Gly Pro Trp		
	450	455	460
10	Val Asn Ile Phe Met Glu Leu Leu Glu Gly Ser Leu Gly Gln Leu		
	465	470	475
	Val Lys Glu Gln Gly Cys Leu Pro Glu Asp Arg Ala Leu Tyr Tyr Leu		
	485	490	495
	Gly Gln Ala Leu Glu Gly Leu Glu Tyr Leu His Ser Arg Arg Ile Leu		
	500	505	510
15	His Gly Asp Val Lys Ala Asp Asn Val Leu Leu Ser Ser Asp Gly Ser		
	515	520	525
	His Ala Ala Leu Cys Asp Phe Gly His Ala Val Cys Leu Gln Pro Asp		
	530	535	540
	Gly Leu Gly Lys Ser Leu Leu Thr Gly Asp Tyr Ile Pro Gly Thr Glu		
	545	550	555
20	Thr His Met Ala Pro Glu Val Val Leu Gly Arg Ser Cys Asp Ala Lys		
	565	570	575
	Val Asp Val Trp Ser Ser Cys Cys Met Met Leu His Met Leu Asn Gly		
	580	585	590
	Cys His Pro Trp Thr Gln Phe Phe Arg Gly Pro Leu Cys Leu Lys Ile		
	595	600	605
25	Ala Ser Glu Pro Pro Pro Val Arg Glu Ile Pro Pro Ser Cys Ala Pro		
	610	615	620
	Leu Thr Ala Gln Ala Ile Gln Glu Gly Leu Arg Lys Glu Pro Ile His		
	625	630	635
	Arg Val Ser Ala Ala Glu Leu Gly Gly Lys Val Asn Arg Ala Leu Gln		
	645	650	655
30	Gln Val Gly Gly Leu Lys Ser Pro Trp Arg Gly Glu Tyr Lys Glu Pro		
	660	665	670
	Arg His Pro Pro Pro Asn Gln Ala Asn Tyr His Gln Thr Leu His Ala		
	675	680	685
	Gln Pro Arg Glu Leu Ser Pro Arg Ala Pro Gly Pro Arg Pro Ala Glu		
	690	695	700
35	Glu Thr Thr Gly Arg Ala Pro Lys Leu Gln Pro Pro Leu Pro Pro Glu		
	705	710	715
	Pro Pro Glu Pro Asn Lys Ser Pro Pro Leu Thr Leu Ser Lys Glu Glu		
	725	730	735
	Ser Gly Met Trp Glu Pro Leu Pro Leu Ser Ser Leu Glu Pro Ala Pro		
	740	745	750
40	Ala Arg Asn Pro Ser Ser Pro Glu Arg Lys Ala Thr Val Pro Glu Gln		
	755	760	765
	Glu Leu Gln Gln Leu Glu Ile Glu Leu Phe Leu Asn Ser Leu Ser Gln		
	770	775	780
	Pro Phe Ser Leu Glu Glu Gln Ile Leu Ser Cys Leu Ser Ile		
	785	790	795
45	Asp Ser Leu Ser Leu Ser Asp Asp Ser Glu Lys Asn Pro Ser Lys Ala		
	805	810	815
	Ser Gln Ser Ser Arg Asp Thr Leu Ser Ser Gly Val His Ser Trp Ser		
	820	825	830
	Ser Gln Ala Glu Ala Arg Ser Ser Trp Asn Met Val Leu Ala Arg		
	835	840	845
50	Gly Arg Pro Thr Asp Thr Pro Ser Tyr Phe Asn Gly Val Lys Val Gln		
	850	855	860
	Ile Gln Ser Leu Asn Gly Glu His Leu His Ile Arg Glu Phe His Arg		
	865	870	875
	Val Lys Val Gly Asp Ile Ala Thr Gly Ile Ser Ser Gln Ile Pro Ala		
	885	890	895
55	Ala Ala Phe Ser Leu Val Thr Lys Asp Gly Gln Pro Val Arg Tyr Asp		
	900	905	910
	Met Glu Val Pro Asp Ser Gly Ile Asp Leu Gln Cys Thr Leu Ala Pro		

915 920 925
 Asp Gly Ser Phe Ala Trp Ser Trp Arg Val Lys His Gly Gln Leu Glu
 930 935 940
 Asn Arg Pro
 945

10 SEQUENCE LISTING

<110> Axxima Pharmaceuticals AG
 <120> CELLULAR KINASES INVOLVED IN CYTOMEGALOVIRUS INFECTION
 AND THEIR INHIBITION

15 <130> NM002756

<140>
 <141>

20 <160> 2

<170> PatentIn Ver. 2.1

<210> 1

<211> 2030

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (338)..(1294)

30 <400> 1
 tggctggcaa tggccttgct gacctcgagc cgggcccacg tggggacctt tggagcacag 60
 cctacgatcc tggtgcaagg ccgggtggatg cagaggccag tccatataacc acccaggcct 120
 35 gcgaggagcg tggtccccac ccatccagcc catatgtgca agtgccttgc acagagaggc 180
 tggtcataatc catggtgacc atttatggc cacaacaggt ccccatctgc gcagtgaacc 240
 ctgtgctgag cacattgcag acgtgatctt gcttcgtcct gcagcactgt gcggggcagg 300
 40 aaaatccaag aggaagaagg atctacggat atcctgc atg tcc aag cca ccc gca 355
 Met Ser Lys Pro Pro Ala
 1 5

45 ccc aac ccc aca ccc ccc cggtt gac tcc tgg acc ttc atc acc 403
 Pro Asn Pro Thr Pro Pro Arg Asn Leu Asp Ser Arg Thr Phe Ile Thr
 10 15 20

att gga gac aga aac ttt gag gtg gag gct gat gac ttg gtg acc atc 451
 Ile Gly Asp Arg Asn Phe Val Glu Ala Asp Asp Leu Val Thr Ile
 25 30 35

50 tca gaa ctg ggc cgt gga gcc tat ggg gtg gta gag aag gtg cggtt cac 499
 Ser Glu Leu Gly Arg Gly Ala Tyr Gly Val Val Glu Lys Val Arg His
 40 45 50

55 gcc cag agc ggc acc atc atg gcc gtg aag cggtt atc cggtt gcc acc gtg 547
 Ala Gln Ser Gly Thr Ile Met Ala Val Lys Arg Ile Arg Ala Thr Val
 55 60 65 70

EP 1 201 765 A2

	aac tca cag gag cag aag cgg ctg ctc atg gac ctg gac atc aac atg Asn Ser Gln Glu Gln Lys Arg Leu Leu Met Asp Leu Asp Ile Asn Met 75 80 85	595
5	cgc acg gtc gac tgt ttc tac act gtc acc ttc tac ggg gca cta ttc Arg Thr Val Asp Cys Phe Tyr Thr Val Thr Phe Tyr Gly Ala Leu Phe 90 95 100	643
10	aga gag gga gac gtg tgg atc tgc atg gag ctc atg gac aca tcc ttg Arg Glu Gly Asp Val Trp Ile Cys Met Glu Leu Met Asp Thr Ser Leu 105 110 115	691
15	gac aag ttc tac cgg aag gtg ctg gat aaa aac atg aca att cca gag Asp Lys Phe Tyr Arg Lys Val Leu Asp Lys Asn Met Thr Ile Pro Glu 120 125 130	739
20	gac atc ctt ggg gag att gct gtg tct atc gtg cgg gcc ctg gag cat Asp Ile Leu Gly Glu Ile Ala Val Ser Ile Val Arg Ala Leu Glu His 135 140 145 150	787
25	ctg cac agc aag ctg tcg gtg atc cac aga gat gtg aag ccc tcc aat Leu His Ser Lys Leu Ser Val Ile His Arg Asp Val Lys Pro Ser Asn 155 160 165	835
30	gtc ctt atc aac aag gag ggc cat gtg aag atg tgt gac ttt ggc atc Val Leu Ile Asn Lys Glu Gly His Val Lys Met Cys Asp Phe Gly Ile 170 175 180	883
35	agt ggc tac ttg gtg gac tct gtg gcc aag acg atg gat gcc ggc tgc Ser Gly Tyr Leu Val Asp Ser Val Ala Lys Thr Met Asp Ala Gly Cys 185 190 195	931
40	aag ccc tac atg gcc cct gag agg atc aac cca gag ctg aac cag aag Lys Pro Tyr Met Ala Pro Glu Arg Ile Asn Pro Glu Leu Asn Gln Lys 200 205 210	979
45	ggc tac aat gtc aag tcc gac gtc tgg agc ctg ggc atc acc atg att Gly Tyr Asn Val Lys Ser Asp Val Trp Ser Leu Gly Ile Thr Met Ile 215 220 225 230	1027
50	gag atg gcc atc ctg cgg ttc cct tac gag tcc tgg ggg acc ccc ttc Glu Met Ala Ile Leu Arg Phe Pro Tyr Glu Ser Trp Gly Thr Pro Phe 235 240 245	1075
55	cag cag ctg aag cag gtg gtg gag gag ccg tcc ccc cag ctc cca gcc Gln Gln Leu Gln Val Val Glu Glu Pro Ser Pro Gln Leu Pro Ala 250 255 260	1123
	gac cgt ttc tcc ccc gag ttt gtg gac ttc act gct cag tgc ctg agg Asp Arg Phe Ser Pro Glu Phe Val Asp Phe Thr Ala Gln Cys Leu Arg 265 270 275	1171
	aag aac ccc gca gag cgt atg agc tac ctg gag ctg atg gag cac ccc Lys Asn Pro Ala Glu Arg Met Ser Tyr Leu Glu Leu Met Glu His Pro 280 285 290	1219
	ttc ttc acc ttg cac aaa acc aag aag acg gac att gct gcc ttc gtg Phe Phe Thr Leu His Lys Thr Lys Thr Asp Ile Ala Ala Phe Val 295 300 305 310	1267
	aag aag atc ctg gga gaa gac tca tag gggctgggcc tcggaccaca Lys Lys Ile Leu Gly Glu Asp Ser 315	1314

ctccggccct ccagagcccc acagcccat ctgcggggc agtgctcacc cacaccataa 1374
 5 gctactgcca tcctggcca gggcatctgg gaggaaccga gggggctgct cccacctggc 1434
 tctgtggcga gccatttgc ccaagtgcca aagaagcaga ccattgggc tcccagccag 1494
 10 gcccattgtcg gccccaccag tgcctctccc tgctgctcct aggaccctgct tccagctgct 1554
 gagatcctgg actgaggggg cctggatgcc ccctgtggat gctgctgccc ctgcacagca 1614
 ggctgccagt gcctgggtgg atgggccacc gccttgccca gcctggatgc catccaagtt 1674
 gtatattttt ttaatctctc gactgaatgg actttgcaca ctggccca gggtgccac 1734
 15 acctctatcc cggttttgtt gcggggtaca caagagggga tgagttgtgt gaataccca 1794
 agactcccat gagggagatg ccatgagccg cccaaaggcct tcccctggca ctggcaaaca 1854
 gggcctctgc ggagcacact ggctcaccca gtcctggccg ccaccgttat cggtgtcatt 1914
 20 cacctttcgt gttttttta atttacctc tgttgatttt ttctttgct ttatgggaaa 1974
 ggcttgaaaa tcttgcattgg tttggagctg atcgcttctc ccccaaaaaa tagggg 2030

<210> 2
 25 <211> 318
 <212> PRT
 <213> Homo sapiens

<400> 2
 Met Ser Lys Pro Pro Ala Pro Asn Pro Thr Pro Pro Arg Asn Leu Asp
 30 1 5 10 15
 Ser Arg Thr Phe Ile Thr Ile Gly Asp Arg Asn Phe Glu Val Glu Ala
 20 25 30
 Asp Asp Leu Val Thr Ile Ser Glu Leu Gly Arg Gly Ala Tyr Gly Val
 35 40 45
 Val Glu Lys Val Arg His Ala Gln Ser Gly Thr Ile Met Ala Val Lys
 50 55 60
 Arg Ile Arg Ala Thr Val Asn Ser Gln Glu Gln Lys Arg Leu Leu Met
 65 70 75 80
 Asp Leu Asp Ile Asn Met Arg Thr Val Asp Cys Phe Tyr Thr Val Thr
 85 90 95
 40 Phe Tyr Gly Ala Leu Phe Arg Glu Gly Asp Val Trp Ile Cys Met Glu
 100 105 110
 Leu Met Asp Thr Ser Leu Asp Lys Phe Tyr Arg Lys Val Leu Asp Lys
 115 120 125
 Asn Met Thr Ile Pro Glu Asp Ile Leu Gly Glu Ile Ala Val Ser Ile
 130 135 140
 Val Arg Ala Leu Glu His Leu His Ser Lys Leu Ser Val Ile His Arg
 145 150 155 160
 Asp Val Lys Pro Ser Asn Val Leu Ile Asn Lys Glu Gly His Val Lys
 165 170 175
 Met Cys Asp Phe Gly Ile Ser Gly Tyr Leu Val Asp Ser Val Ala Lys
 180 185 190
 Thr Met Asp Ala Gly Cys Lys Pro Tyr Met Ala Pro Glu Arg Ile Asn
 195 200 205
 50 Pro Glu Leu Asn Gln Lys Gly Tyr Asn Val Lys Ser Asp Val Trp Ser
 210 215 220
 Leu Gly Ile Thr Met Ile Glu Met Ala Ile Leu Arg Phe Pro Tyr Glu
 225 230 235 240
 Ser Trp Gly Thr Pro Phe Gln Gln Leu Lys Gln Val Val Glu Glu Pro
 245 250 255
 Ser Pro Gln Leu Pro Ala Asp Arg Phe Ser Pro Glu Phe Val Asp Phe

5	260	265	270
	Thr Ala Gln Cys Leu Arg Lys Asn Pro Ala Glu Arg Met Ser Tyr Leu		
	275	280	285
	Glu Leu Met Glu His Pro Phe Phe Thr Leu His Lys Thr Lys Lys Thr		
	290	295	300
	Asp Ile Ala Ala Phe Val Lys Lys Ile Leu Gly Glu Asp Ser		
	305	310	315

10 SEQUENCE LISTING

<110> Axxima Pharmaceuticals AG
<120> CELLULAR KINASES INVOLVED IN CYTOMEGALOVIRUS INFECTION
AND THEIR INHIBITION

ε130 ε 11 88666

<140>
<141>

20 160 3

<170> PatentIn Ver 2.1

25 <210> 1
<211> 3745
<212> DNA
<213> Homo

<220>
<221> CDS
<222> (188)..(2248)

```
<400> 1
gaattccggca cgaggccatt gaatcccagt cctaacagaa gtactgcgaa tcttgtggcc 60
tcattctgaa caaaaaggat tagagaagaa aaatctcttg atataaggct tgaaagcaag 120
ggcaggcaat cttgggtgtg aatatttct gatTTTCCA gaaatcaagc agaAGATTGA 180
gctgctg atg tca gtt aac tct gag aag tcg tcc tct tca gaa agg ccg 220
      Met Ser Val Asn Ser Glu Lys Ser Ser Ser Glu Arg Pro
      1           5           10
```

40 gag cct caa cag aaa gct cct tta gtt cct cct cct cct cca ccg cca cca 277
 Glu Pro Gln Gln Lys Ala Pro Leu Val Pro Pro Pro Pro Pro Pro Pro Pro
 15 20 25 30

45 cca cca cca ccg cca cct ttg cca gac ccc aca ccc ccg gag cca gag 325
 Pro Pro Pro Pro Pro Pro Leu Pro Asp Pro Thr Pro Pro Glu Pro Glu
 35 40 45

gag gag atc ctg gga tca gat gat gag gag caa gag gac cct gcg gac 373
 Glu Glu Ile Leu Gly Ser Asp Asp Glu Glu Gln Glu Asp Pro Ala Asp
 50 55 60

50 tac tgc aaa ggt gga tat cat cca gtg aaa att gga gac ctc ttc aat 421
 Tyr Cys Lys Gly Gly Tyr His Pro Val Lys Ile Gly Asp Leu Phe Asn
 65 70 75

55 ggc cgg tat cat gtt att aga aag ctt gga tgg ggg cac ttc tct act 469
 Gly Arg Tyr His Val Ile Arg Lys Leu Gly Trp Gly His Phe Ser Thr
 80 85 90

EP 1 201 765 A2

5	gtc tgg ctg tgc tgg gat atg cag ggg aaa aga ttt gtt gca atg aaa Val Trp Leu Cys Trp Asp Met Gln Gly Lys Arg Phe Val Ala Met Lys 95 100 105 110	517
10	gtt gta aaa agt gcc cag cat tat acg gag aca gcc ttg gat gaa ata Val Val Lys Ser Ala Gln His Tyr Thr Glu Thr Ala Leu Asp Glu Ile 115 120 125	565
15	aaa ttg ctc aaa tgt gtt cga gaa agt gat ccc agt gac cca aac aaa Lys Leu Leu Lys Cys Val Arg Glu Ser Asp Pro Ser Asp Pro Asn Lys 130 135 140	613
20	gac atg gtg gtc cag ctc att gac gac ttc aag att tca ggc atg aat Asp Met Val Val Gln Leu Ile Asp Asp Phe Lys Ile Ser Gly Met Asn 145 150 155	661
25	ggg ata cat gtc tgc atg gtc ttc gaa gta ctt ggc cac cat ctc ctc Gly Ile His Val Cys Met Val Phe Glu Val Leu Gly His His Leu Leu 160 165 170	709
30	aag tgg atc atc aaa tcc aac tat caa ggc ctc cca gta cgt tgt gtg Lys Trp Ile Ile Lys Ser Asn Tyr Gln Gly Leu Pro Val Arg Cys Val 175 180 185 190	757
35	aag agt atc att cga cag gtc ctt caa ggg tta gat tac tta cac agt Lys Ser Ile Ile Arg Gln Val Leu Gln Gly Leu Asp Tyr Leu His Ser 195 200 205	805
40	aag tgc aag atc att cat act gac ata aag ccg gaa aat atc ttg atg Lys Cys Lys Ile His Thr Asp Ile Lys Pro Glu Asn Ile Leu Met 210 215 220	853
45	tgt gtg gat gat gca tat gtg aga aga atg gca gct gag cct gag tgg Cys Val Asp Asp Ala Tyr Val Arg Arg Met Ala Ala Glu Pro Glu Trp 225 230 235	901
50	cag aaa gca ggt gct cct cct tca ggg tct gca gtg agt acg gct Gln Lys Ala Gly Ala Pro Pro Ser Gly Ser Ala Val Ser Thr Ala 240 245 250	949
55	cca cag cag aaa cct ata gga aaa ata tct aaa aac aaa aag aaa aaa Pro Gln Gln Lys Pro Ile Gly Lys Ile Ser Lys Asn Lys Lys Lys 255 260 265 270	997
60	ctg aaa aag aaa cag aag agg cag gct gag tta ttg gag aag cgc ctg Leu Lys Lys Gln Lys Arg Gln Ala Glu Leu Leu Glu Lys Arg Leu 275 280 285	1045
65	cag gag ata gaa gaa ttg gag cga gaa gct gaa agg aaa ata ata gaa Gln Glu Ile Glu Glu Leu Glu Arg Glu Ala Glu Arg Lys Ile Ile Glu 290 295 300	1093
70	gaa aac atc acc tca gct gca cct tcc aat gac cag gat ggc gaa tac Glu Asn Ile Thr Ser Ala Ala Pro Ser Asn Asp Gln Asp Gly Glu Tyr 305 310 315	1141
75	tgc cca gag gtg aaa cta aaa aca aca gga tta gag gag gcg gct gag Cys Pro Glu Val Lys Leu Lys Thr Thr Gly Leu Glu Ala Ala Glu 320 325 330	1189
80	gca gag act gca aag gac aat ggt gaa gct gag gac cag gaa gag aaa Ala Glu Thr Ala Lys Asp Asn Gly Glu Ala Glu Asp Gln Glu Glu Lys 335 340 345 350	1237

5	gaa gat gct gag aaa gaa aac att gaa aaa gat gaa gat gat gta gat Glu Asp Ala Glu Lys Glu Asn Ile Glu Lys Asp Glu Asp Asp Val Asp 355 360 365	1285
10	cag gaa ctt gcg aac ata gac cct acg tgg ata gaa tca cct aaa acc Gln Glu Leu Ala Asn Ile Asp Pro Thr Trp Ile Glu Ser Pro Lys Thr 370 375 380	1333
15	aat ggc cat att gag aat ggc cca ttc tca ctg gag cag caa ctg gac Asn Gly His Ile Glu Asn Gly Pro Phe Ser Leu Glu Gln Gln Leu Asp 385 390 395	1381
20	gat gaa gat gat gat gaa gaa gac tgc cca aat cct gag gaa tat aat Asp Glu Asp Asp Asp Glu Glu Asp Cys Pro Asn Pro Glu Glu Tyr Asn 400 405 410	1429
25	ctt gat gag cca aat gca gaa agt gat tac aca tat agc agc tcc tat Leu Asp Glu Pro Asn Ala Glu Ser Asp Tyr Thr Tyr Ser Ser Tyr 415 420 425 430	1477
30	gaa caa ttc aat ggt gaa ttg cca aat gga cga cat aaa att ccc gag Glu Gln Phe Asn Gly Glu Leu Pro Asn Gly Arg His Lys Ile Pro Glu 435 440 445	1525
35	tca cag ttc cca gag ttt tcc acc tcg ttg ttc tct gga tcc tta gaa Ser Gln Phe Pro Glu Phe Ser Thr Ser Leu Phe Ser Gly Ser Leu Glu 450 455 460	1573
40	cct gtg gcc tgc ggc tct gtg ctt tct gag gga tca cca ctt act gag Pro Val Ala Cys Gly Ser Val Leu Ser Glu Gly Ser Pro Leu Thr Glu 465 470 475	1621
45	caa gag gag agc agt cca tcc cat gac aga agc aga acg gtt tca gcc Gln Glu Glu Ser Ser Pro Ser His Asp Arg Ser Arg Thr Val Ser Ala 480 485 490	1669
50	tcc agt act ggg gat ttg cca aaa gca aaa acc cgg gca gct gac ttg Ser Ser Thr Gly Asp Leu Pro Lys Ala Lys Thr Arg Ala Ala Asp Leu 495 500 505 510	1717
55	ttg gtg aat ccc ctg gat ccg cgg aat cga gat aaa att aga gta aaa Leu Val Asn Pro Leu Asp Pro Arg Asn Arg Asp Lys Ile Arg Val Lys 515 520 525	1765
60	att gct gac ctg gga aat gct tgt tgg gtg cat aaa cac ttc acg gaa Ile Ala Asp Leu Gly Asn Ala Cys Trp Val His Lys His Phe Thr Glu 530 535 540	1813
65	gac atc cag acg cgt cag tac cgc tcc ata gag gtt tta ata gga gcg Asp Ile Gln Thr Arg Gln Tyr Arg Ser Ile Glu Val Leu Ile Gly Ala 545 550 555	1861
70	ggg tac agc acc cct gcg gac atc tgg agc acg gcg tgt atg gca ttt Gly Tyr Ser Thr Pro Ala Asp Ile Trp Ser Thr Ala Cys Met Ala Phe 560 565 570	1909
75	gag ctg gca acg gga gat tat ttg ttt gaa cca cat tct ggg gaa gac Glu Leu Ala Thr Gly Asp Tyr Leu Phe Glu Pro His Ser Gly Glu Asp 575 580 585 590	1957
80	tat tcc aga gac gaa gac cac ata gcc cac atc ata gag ctg cta ggc Tyr Ser Arg Asp Glu Asp His Ile Ala His Ile Ile Glu Leu Leu Gly 595 600 605	2005

5	agt att cca agg cac ttt gct cta tct gga aaa tat tct cg ^g gaa tt ^c Ser Ile Pro Arg His Phe Ala Leu Ser Gly Lys Tyr Ser Arg Glu Phe 610 615 620	2053
10	t ^t c aat cgc aga gga gaa ctg cga cac atc acc aag ctg aag cc ^c tgg Phe Asn Arg Arg Gly Glu Leu Arg His Ile Thr Lys Leu Lys Pro Trp 625 630 635	2101
15	agc ctc ttt gat gta ctt gtg gaa aag tat ggc tgg cc ^c cat gaa gat Ser Leu Phe Asp Val Leu Val Glu Lys Tyr Gly Trp Pro His Glu Asp 640 645 650	2149
20	gct gca cag ttt aca gat ttc ctg atc cc ^g atg tta gaa atg gtt cca Ala Ala Gln Phe Thr Asp Phe Leu Ile Pro Met Leu Glu Met Val Pro 655 660 665 670	2197
25	gaa aaa cga gcc tca gct ggc gaa tgt cg ^g cat cct tgg tt ^g aat tct Glu Lys Arg Ala Ser Ala Gly Glu Cys Arg His Pro Trp Leu Asn Ser 675 680 685	2245
30	tag caaaattctac caatattgca ttctgagcta gcaa ^a tgtt ^c ccagtacatt	2298
35	ggaccta ^a ac ggtgactctc attcttt ^a ac aggattacaa gtgagctggc ttcatcctca 2358 gac ^c tttatt ttgctttgag gtactgttgt ttgacat ^t ttt gctttt ^t tg cactgtgatc 2418 ctggggagg gtagtctttt gtcttcagct aagttagttt ctgaccattt tcttctggaa 2478 acaataacat gtctcta ^a gc attgtttctt gtgttgtgtg acattcaa ^a t gtcattttt 2538 tgaatgaaaa atacttccc cttt ^t gtgtt tggcagg ^t ttt tgtaactatt tatgaagaaa 2598 tat ^t tttagct gagtactata taatttacaa tcttaagaaa ttatcaagtt ggaaccaaga 2658 aatagcaagg aaatgtacaa ttttatcttc tggcaaagg ^g acatcatcc t ^t gtattatag 2718 tgtatgtaaa tgcaccctgt aaatgttact ttccattaaa tatggggagg ^g ggactcaa ^a t 2778 ttcagaaaag ctaccaagtc ttgagtgc ^t t t ^t tgacctat gttgc ^t atgta gcggacttta 2838 actgctccaa ggagttgtgc aaactttca ttccataaca gtctttcac attggatttt 2898 aaacaagg ^t gctctgggtt ataagatgc ^t ttt attctctata tggcacttta aaggaagaaa 2958 agatatgttt ctcat ^t tctaa aatatgcatt ataatttagc agtccccattt gtgattttgc 3018 atattttaa aagtactttt aaagaagagc aatttccctt taaaaatgtg atggctcagt 3078 accatgtcat gttgcctctt ctggcgctg taagtta ^a gc tctacataga tt ^t aaattt ^t gga 3138 gaaacgtgtt aattgtgtgg aatgaaaaaaaa tacatatatt tttggaaaag catgatcatg 3198 cttgc ^t t ^t g ^t aca ^t aggta tggtatatac aatttgc ^t agt gcagtggca gaatacttct 3258 cacagctcaa agataaac ^t gt gatcacattt ^c attccatagg tagcttacg t ^t gtggctaca 3318 acaaaatttta ctat ^t ttttt cattgtctttt ccatgaaac ^t g aagttgagaa aatgattttc 3378 cctttgcagg ttgcacacag ttttgttat gcatttc ^t ttt aaaattaattt gtagactcca 3438 ggatacaaaac catagtaggc aatacaattt aga ^t atgtaat atatagaggt atattagcct 3498	

ctttagaagt cagtggattg aatgtctttt tatttaaat ttacattca ttaaggtgcc 3558
 5 tcgttttga ctttgtccat taacatttat ccatatgcct ttgcaataac tagattgtga 3618
 aaagctaaca agtgttgtaa caataatcca ttgttgagg tgcttgagt tgtcttaaaa 3678
 attaaagtgt ttgggtttt tttttccag aaaaaaaaaa aaaaaaaaaa 3738
 10 ttcctgc 3745

<210> 2
 <211> 686
 <212> PRT
 15 <213> Homo sapiens

<400> 2
 Met Ser Val Asn Ser Glu Lys Ser Ser Ser Glu Arg Pro Glu Pro
 1 5 10 15
 Gln Gln Lys Ala Pro Leu Val Pro Pro Pro Pro Pro Pro Pro Pro
 20 25 30
 Pro Pro Pro Leu Pro Asp Pro Thr Pro Pro Glu Pro Glu Glu Glu
 35 40 45
 Ile Leu Gly Ser Asp Asp Glu Glu Gln Glu Asp Pro Ala Asp Tyr Cys
 50 55 60
 Lys Gly Gly Tyr His Pro Val Lys Ile Gly Asp Leu Phe Asn Gly Arg
 65 70 75 80
 Tyr His Val Ile Arg Lys Leu Gly Trp Gly His Phe Ser Thr Val Trp
 85 90 95
 Leu Cys Trp Asp Met Gln Gly Lys Arg Phe Val Ala Met Lys Val Val
 100 105 110
 Lys Ser Ala Gln His Tyr Thr Glu Thr Ala Leu Asp Glu Ile Lys Leu
 115 120 125
 Leu Lys Cys Val Arg Glu Ser Asp Pro Ser Asp Pro Asn Lys Asp Met
 130 135 140
 Val Val Gln Leu Ile Asp Asp Phe Lys Ile Ser Gly Met Asn Gly Ile
 145 150 155 160
 His Val Cys Met Val Phe Glu Val Leu Gly His His Leu Leu Lys Trp
 165 170 175
 Ile Ile Lys Ser Asn Tyr Gln Gly Leu Pro Val Arg Cys Val Lys Ser
 180 185 190
 Ile Ile Arg Gln Val Leu Gln Gly Leu Asp Tyr Leu His Ser Lys Cys
 195 200 205
 Lys Ile Ile His Thr Asp Ile Lys Pro Glu Asn Ile Leu Met Cys Val
 210 215 220
 Asp Asp Ala Tyr Val Arg Arg Met Ala Ala Glu Pro Glu Trp Gln Lys
 225 230 235 240
 Ala Gly Ala Pro Pro Ser Gly Ser Ala Val Ser Thr Ala Pro Gln
 245 250 255
 Gln Lys Pro Ile Gly Lys Ile Ser Lys Asn Lys Lys Lys Leu Lys
 260 265 270
 Lys Lys Gln Lys Arg Gln Ala Glu Leu Leu Glu Lys Arg Leu Gln Glu
 275 280 285
 Ile Glu Glu Leu Glu Arg Glu Ala Glu Arg Lys Ile Ile Glu Glu Asn
 290 295 300
 Ile Thr Ser Ala Ala Pro Ser Asn Asp Gln Asp Gly Glu Tyr Cys Pro
 305 310 315 320
 Glu Val Lys Leu Lys Thr Thr Gly Leu Glu Ala Ala Glu Ala Glu
 325 330 335
 Thr Ala Lys Asp Asn Gly Glu Ala Glu Asp Gln Glu Glu Lys Glu Asp
 340 345 350
 Ala Glu Lys Glu Asn Ile Glu Lys Asp Glu Asp Asp Val Asp Gln Glu
 355 360 365
 Leu Ala Asn Ile Asp Pro Thr Trp Ile Glu Ser Pro Lys Thr Asn Gly

	370	375	380
5	His Ile Glu Asn Gly Pro Phe Ser Leu Glu Gln Gln Leu Asp Asp Glu		
	385	390	395
	Asp Asp Asp Glu Glu Asp Cys Pro Asn Pro Glu Glu Tyr Asn Leu Asp		400
	405	410	415
	Glu Pro Asn Ala Glu Ser Asp Tyr Thr Tyr Ser Ser Ser Tyr Glu Gln		
	420	425	430
10	Phe Asn Gly Glu Leu Pro Asn Gly Arg His Lys Ile Pro Glu Ser Gln		
	435	440	445
	Phe Pro Glu Phe Ser Thr Ser Leu Phe Ser Gly Ser Leu Glu Pro Val		
	450	455	460
	Ala Cys Gly Ser Val Leu Ser Glu Gly Ser Pro Leu Thr Glu Gln Glu		
15	465	470	475
	Glu Ser Ser Pro Ser His Asp Arg Ser Arg Thr Val Ser Ala Ser Ser		
	485	490	495
	Thr Gly Asp Leu Pro Lys Ala Lys Thr Arg Ala Ala Asp Leu Leu Val		
	500	505	510
20	Asn Pro Leu Asp Pro Arg Asn Arg Asp Lys Ile Arg Val Lys Ile Ala		
	515	520	525
	Asp Leu Gly Asn Ala Cys Trp Val His Lys His Phe Thr Glu Asp Ile		
	530	535	540
	Gln Thr Arg Gln Tyr Arg Ser Ile Glu Val Leu Ile Gly Ala Gly Tyr		
	545	550	555
25	Ser Thr Pro Ala Asp Ile Trp Ser Thr Ala Cys Met Ala Phe Glu Leu		
	565	570	575
	Ala Thr Gly Asp Tyr Leu Phe Glu Pro His Ser Gly Glu Asp Tyr Ser		
	580	585	590
	Arg Asp Glu Asp His Ile Ala His Ile Ile Glu Leu Leu Gly Ser Ile		
30	595	600	605
	Pro Arg His Phe Ala Leu Ser Gly Lys Tyr Ser Arg Glu Phe Phe Asn		
	610	615	620
	Arg Arg Gly Glu Leu Arg His Ile Thr Lys Leu Lys Pro Trp Ser Leu		
	625	630	635
	Phe Asp Val Leu Val Glu Lys Tyr Gly Trp Pro His Glu Asp Ala Ala		
	645	650	655
35	Gln Phe Thr Asp Phe Leu Ile Pro Met Leu Glu Met Val Pro Glu Lys		
	660	665	670
	Arg Ala Ser Ala Gly Glu Cys Arg His Pro Trp Leu Asn Ser		
	675	680	685

40

Claims

1. Method for identifying compounds useful for treating and/or preventing Cytomegalovirus infection and/or associated diseases comprising:
 - a) contacting a test compound with one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2; and
 - b) detecting a change in activity of said cellular kinase.
2. Method for detecting Cytomegalovirus infection and/or associated diseases in an individual comprising:
 - a) providing a sample from said individual; and
 - b) detecting activity, in said sample, of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.
3. Method for detecting Cytomegalovirus infection and/or associated diseases in cells and/or cell lysates comprising:

a) providing a sample from said cells; and
b) detecting activity, in said sample, of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

5 4. A monoclonal or polyclonal antibody that binds to a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

10 5. Method for preventing and/or treating Cytomegalovirus infection and/or associated diseases in an individual by administering a pharmaceutically effective amount of an inhibitor to said individual, wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor inhibits at least partially the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

15 6. Method for regulating the production of Cytomegalovirus in an individual by administering an individual a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor at least partially inhibits the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

20 7. Method for regulating the production of Cytomegalovirus in cells by administering the cells a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said inhibitor at least partially inhibits the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in the cells.

25 8. Method according to claim 5, 6, or 7 wherein the inhibitor is a monoclonal or polyclonal antibody which binds to a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

30 9. Method for preventing and/or treating Cytomegalovirus infection and/or associated diseases in an individual by administering a pharmaceutically effective amount of an activator to said individual, wherein said activator activates at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said activator activates or stimulates at least partially the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

35 10. Method for regulating the production of Cytomegalovirus in an individual by administering an individual a pharmaceutically effective amount of an activator wherein said activator activates at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said activator at least partially activates or stimulates the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

40 11. Method for regulating the production of Cytomegalovirus in cells by administering the cells a pharmaceutically effective amount of an activator wherein said activator activates at least partially the activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2, or wherein said activator at least partially activates or stimulates the production of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in the cells.

45 12. Oligonucleotide that binds to the DNA or RNA encoding a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

50 13. Method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in an individual comprising the step of administering the individual a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

55 14. Method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in cells comprising the step of administering the cells a pharmaceutically effective amount of an inhibitor wherein said inhibitor inhibits at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

15. Method according to claim 5, 6, 7, 13, or 14 wherein the inhibitor is a oligonucleotide which binds to the DNA and/or RNA encoding a cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

5 16. Method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in an individual comprising the step of administering the individual a pharmaceutically effective amount of an activator wherein said activator activates at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

10 17. Method for regulating the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 in cells comprising the step of administering the cells a pharmaceutically effective amount of an activator wherein said activator activates at least partially the transcription of DNA or the translation of RNA encoding one of said cellular kinases.

15 18. A solid support useful for detecting Cytomegalovirus infection of an individual comprising one or more immobilized oligonucleotides, wherein said oligonucleotide(s) is (are) capable of detecting activity of one or more cellular kinases selected from the group consisting of: RICK, RIP, NIK, MKK3, and SRPK-2.

20 19. A solid support useful for detecting Cytomegalovirus infection of cells comprising one or more immobilized oligonucleotides, wherein said oligonucleotide(s) is (are) capable of detecting activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

25 20. A solid support useful for screening compounds useful for treating and/or preventing Cytomegalovirus infection comprising one or more immobilized oligonucleotides, wherein said oligonucleotide(s) encode one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

25 21. A solid support useful for screening compounds useful for treating and/or preventing Cytomegalovirus infection comprising one or more immobilized cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

30 22. Composition useful to treat an individual afflicted with Cytomegalovirus and/or associated diseases comprising one or more inhibitors capable of inhibiting activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 or capable of decreasing the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

35 23. Composition useful to treat an individual afflicted with Cytomegalovirus and/or associated diseases comprising one or more activators capable of increasing activity of one or more cellular kinases selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2 or capable of increasing the expression of at least one cellular kinase selected from the group consisting of RICK, RIP, NIK, MKK3, and SRPK-2.

40 24. Composition useful to treat an individual afflicted with Cytomegalovirus comprising at least one compound selected from the group consisting of

45 6-(2,6-Dichlorophenyl)-8-methyl-2-(3-morpholin-4-yl-propylamino)-8H-pyrido[2,3-d]pyrimidin-7-one;
 8-methyl-6-phenyl-2-(pyridin-4-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one;
 6-(2,6-Dichlorophenyl)-8-methyl-2-[3-(4-methylpiperazin-1-yl)-propylamino]-8H-pyrido[2,3-d]pyrimidin-7-one;
 (3-Bromophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
 (3-Bromophenyl)-(6,7-diethoxyquinazolin-4-yl)-amine;
 2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;
 5-Cloro-3-(1H-pyrrol-2-ylmethylene)-1,3-dihydroindol-2-one;
 4-Quinolin-4-ylmethylene-4H-isoquinoline-1,3-dione

50 and/or pharmaceutically acceptable salts of these compounds.

55 25. Composition according to any one of claims 17 - 19 further comprising pharmaceutically acceptable carriers, excipient, and/or diluents.

26. Use of the compounds selected from the group comprising:

6-(2,6-Dichlorophenyl)-8-methyl-2-(3-morpholin-4-yl-propylamino)-8H-pyrido[2,3-d]pyrimidin-7-one;
8-methyl-6-phenyl-2-(pyridin-4-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one;
6-(2,6-Dichlorophenyl)-8-methyl-2-[3-(4-methylpiperazin-1-yl)-propylamino]-8H-pyrido[2,3-d]pyrimidin-7-one;
5
(3-Bromophenyl)-(6,7-dimethoxyquinazolin-4-yl)-amine;
(3-Bromophenyl)-(6,7-diethoxyquinazolin-4-yl)-amine and

pharmaceutically acceptable salts of these compounds as an inhibitor of the cellular kinase RICK.

10 27. Use of the compounds selected from the group comprising:

2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one;
5-Cloro-3-(1 H-pyrrol-2-ylmethylene)-1,3-dihydroindol-2-one;
15 4-Quinolin-4-ylmethylene-4H-isoquinoline-1,3-dione; and

pharmaceutically acceptable salts of these compounds as an inhibitor of the cellular kinase RIP.

20 28. Use of a compound according to claim 26 or 27 for the manufacture of a pharmaceutical composition for prophylaxis
and/or treatment of Cytomegalovirus infection and/or diseases associated therewith.

25

30

35

40

45

50

55

Figures

Fig. 1

Fig. 2

