NEURAL NETWORKS AND NEBBIOLO

ARTIFICIAL INTELLIGENCE FOR WINE

SHENGLI HU

SHENGLIH@AI-FOR-WINE.COM

Find more interactive visualizations, demos, other topics, technical details, and more at https://ai-for-wine.com.

Table of Contents

1	Intr	oduction	5		
	1.1	Objectives of This Book	7		
	1.2	The Structure of This Book	7		
	1.3	A Preview of Chapters	8		
	1.4	Background Information	13		
2	Deductive Tasting				
	2.1	Summarization	24		
	2.2	Decision Tree	37		
	2.3	Multi-task Learning	49		
3	Theory Knowledge				
	3.1	Knowledge Graph	76		
	3.2	Question Answering	91		
4	Wine Pairing				
	4.1	Metric Learning	120		
		4.1.1 Loss Functions	121		
		4.1.2 Sample Selection Strategies	124		
		4.1.3 Training Regimes	126		
	4.2	Multi-modal Learning	127		
	4.3	Recommender Systems	135		
5	Car	tography	147		
	5.1	Image-to-image Translation	157		
	5.2	Neural Style Transfer	160		
	5.3	Font and Text Effects Style Transfer	161		
	5.4	Cartographic Style Transfer	163		
	5.5	Scene Text Detection and Recognition	163		
6	Wor	eld of Wine	167		
	6.1	Image Retrieval	182		

	6.2	Active Learning	197	
	6.3	Image Geolocalization	207	
	6.4	Fine-grained Image Classification	219	
	6.5	Object Discovery	230	
7	Grape Varieties 2			
	7.1	Few-shot Learning	247	
		7.1.1 Data Augmentation	248	
		7.1.2 Meta Learning	255	
	7.2	Zero-shot Learning	261	
	7.3	Generalized Zero-shot Learning	274	
	7.4	Contextual Embeddings and Language Models $. $	282	
	7.5	Fine-grained Visual Categorization	289	
8	Craf	t Cocktails	294	
	8.1	Recipe Generation	302	
9	Wine	e Lists	310	
	9.1	Automatic Evaluation	316	
	9.2	Playlist Generation	321	
10	Terr	ior	327	
	10.1	Causal Inference	340	
		10.1.1 Potential Outcomes Framework	340	
		10.1.2 Structural Causal Models Framework	341	
	10.2	Instrumental Variable	342	
	10.3	Matching	343	
	10.4	Regression Discontinuity	345	
	10.5	Natural Field Experiments	347	
	10.6	Causal-driven Representation Learning	348	
11	Trus	et and Ethics	349	
	11.1	Deception Detection	355	
	11.2	Information Concealment Detection	362	

12	Win	e Auction	367
	12.1	Auction Theory	374
	12.2	Auction Learning	382
	12.3	Behavioral Auction	387
	12.4	Fraud and Misinformation Detection	398
13	From Vine To Wine		
	13.1	AI for Viticulture	408
	13.2	AI for Climate and Sustainability	417
	13.3	AI for Crisis Management	424
	13.4	AI for Distribution and Logistics	426
14	Wine Investing		
	14.1	Determinants of Fine Wine Prices	441
	14.2	Portfolio Management	446
		14.2.1 Diversification effects	453
		14.2.2 Frontier investments	454
	14.3	Deep Learning for Portfolio Management	455
	14.4	Natural Language Processing for Finance	461
15	Refe	rences	463

About the Author

Shengli Hu is an AI research scientist in New York City. Her research experience and interests lie in intersdisciplinary research bridging social sciences, computational linguistics, computer vision, and speech. She has published in top conferences and journals in natural language processing, computer vision, speech, and applied statistics including Association of Computational Linguistics (ACL), Empirical Methods in Natural Language Processing (EMNLP), Computer Vision and Pattern Recognition (CVPR), European Conference on Computer Vision (ECCV), International Conference on Computer Vision (ICCV), Inter-Speech, and Annals of Applied Statistics (AoAS). Her research works have been featured in spotlight talks, and nominated for Best Paper Award. She received her PhD from Cornell University in 2019.

She is also a wine professional with credentials including Certified Sommelier by The Court of Master Sommelier, Diploma in Wine with Merit by Wine & Spirits Education Trust, Certified Specialist of Wine by The Society of Wine Educators, and Certified Specialist of Spirits by The Society of Wine Educators. She is currently studying for the Master of Wine diploma by the Institute of Master of Wine.