STATS 244 HOMEWORK 4

Question 1

Let $Z \sim N(0,1)$, a stand normal distribution and let $X \sim N(\mu\sigma^2)$. Let $\Phi(z)$ be the cdf of Z. Suppose $X \sim N(-4,16)$; find.

It helps to know that

$$P(X < x) = \Phi\left(\frac{x - \mu}{\sigma}\right).$$

1. P(X > 2).

$$P(X > 2) = 1 - P(X < 2)$$
 = $1 - \Phi\left(\frac{2 - (-4)}{\sqrt{16}}\right)$
= 1 - .9332
= .0688

2.
$$P(0 < X < 4)$$

$$P(0 < X < 4) = P(X < 4) - P(X < 0)$$

$$= \Phi\left(\frac{4 - (-4)}{4}\right) - \Phi\left(\frac{0 - (-4)}{4}\right)$$

$$= .1539$$

3.
$$P(|X+3| \ge 3)$$

$$P(|X+3| \ge 3) = P(X \ge 0) + P(X \le -6)$$
$$= 1 - \Phi\left(\frac{4}{4}\right) + \Phi\left(\frac{-2}{4}\right)$$
$$= .1587 + .3085$$
$$= .4672$$

4.
$$P(X \le 0 \text{ or } X \ge 3)$$

$$P(X \le 0 \text{ or } X \ge 3) = P(X \le 0) + P(X \ge 3)$$

= $\Phi\left(\frac{4}{4}\right) + 1 - \Phi\left(\frac{7}{4}\right)$
= $.8413 + .0003$
= $.8416$

Question 2

Based on student A's performace during the first two weeks of a course, the professor has approximately a normal $N(70,8^2)$ prior distribution about the student's true ability, on a scale of o to 100. Consider the midterm examination as an error-prone measure of the student's true ability, where if the true ability is x, the examination score can be modeled as approximately normally distributed, $N(x,6^2)$. The student scores 90 on the midterm.

1. What are the posterior expectaion and the probability that the student's true ability is above 85?

WE HAVE the following information.

$$f(\theta) \sim N(70, 8^2)$$

and

$$f(x \mid \theta) \sim N(x, 6^2)$$

Using Bayes, $f(\theta \mid X) \propto f(x \mid \theta) f(\theta)$ the posterior distribution is

$$(\theta \mid X) = \frac{1}{\sqrt{2\pi}B} e^{\frac{(\theta - A)^2}{2B^2}}$$

Where

$$A = \frac{6^2(70) + 8^2(90)}{6^2 + 8^2}$$

and

$$B^2 = \frac{6^2 * 8^2}{6^2 + 8^2}$$

Which give us a N(82.8, 23.4) posterier distribution and means posterior of expectation of the student's true ability it 82.8. Using the the method from question 1, there is a .4625 probability that the students true ability is above 85.

2. Above 90?

.3792

Question 3

A "psychic" uses a five-card deck of cards to demenonstrate ESP, and claims to be able to guess a card correctly with probability .5. A single experiment consists of making five guesses, reshuffling the deck after each guess. The experiment is treid and the "pyschic" guesses correctly 3 times out of give. Assuming the only two possibilities are "ESP" and "ordinary guessing", how how must the a priori ability be that "psychic" has ESP is at alteast .7?

Bayes thereom is

$$P(\theta \mid X) = \frac{P(X \mid \theta)P(\theta)}{\sum_{i=1}^{2} P(X \mid \theta_{i})P(\theta_{i})}.$$

Where we can think of $P(\theta_1) = P(\theta)$ and $P(\theta_2) = 1 - P(\theta)$

Plugging in the observed data along with guessing probabilities provided.

$$P(X = 3 \mid \theta) = {5 \choose 3} (.5)^3 (.5)^2 = .3125$$

and

$$P(X = 3 \mid \theta_2) = {5 \choose 3} (.2)^3 (.8)^2 = .0512.$$

We can plug these values into Bayes and solve for $P(\theta \mid X) \leq .7$. Ie

$$.7 \le \frac{.3125P(\theta)}{.3125P(\theta) + .0512(1 - P(\theta))}$$

Which gives $P(\theta) \ge .276$

Question 4

Suppose $\hat{\theta}_1$ and $\hat{\theta}_2$ are uncorrelated and both are unbiased estimators of θ , and that $Var(\hat{\theta}_1) = 2Var(\hat{\theta}_2)$.

1. Show that for any constant c, the weighted average $\hat{\theta}_3 = c\hat{\theta}_1 + (1 - c)\hat{\theta}_2$ is an unbiased estimator of θ .

$$E(\hat{\theta}_3) = cE(\hat{\theta}_1) + (1 - c)E(\hat{\theta}_2)$$
$$= c\theta + (1 - c)\theta$$
$$= \theta$$

Hence $B(\hat{\theta}_3) = 0$.

2. Find c for which $\hat{\theta}_3$ has the smallest MSE.

The MSE of $\hat{\theta}_3$ is

$$c^2 \text{Var}(\hat{\theta}_1) + (1-c)^2 \text{Var}(\hat{\theta}_2)$$

We can find the value, *c*, that minimizes MSE by evaulating.

$$\begin{split} MSE(\hat{\theta}_3) &= c^2 \text{Var}(\hat{\theta}_1) + (1-c)^2 \text{Var}(\hat{\theta}_2) \\ &= c^2 2 \text{Var}(\hat{\theta}_2) + (1-c)^2 \text{Var}(\hat{\theta}_2) \\ &= \text{Var}(\hat{\theta}_2)(3c^2 - 2c + 1) \end{split}$$

Setting the above equal to 0 results in $c=\frac{1}{3}$. Furthermore, the second derivative of the MSE is positive so we can confirm that c minimizes.

3. Are there any values of c, $0 \le c \le 1$ for which $\hat{\theta}_3$ is better (in the sense of MSE) than both $\hat{\theta}_1$ and $\hat{\theta}_2$

We are given that $Var(\hat{\theta}_2)$ is less than $Var(\hat{\theta}_1)$. Since the bias as zero, the MSE is just the variance of each estimator.

MSE
$$\hat{\theta}_3 = c^2 \text{Var}(\hat{\theta}_1) + (1-c)^2 \text{Var}(\hat{\theta}_2)$$

= $c^2 2 \text{Var}(\hat{\theta}_2) + (1-c)^2 \text{Var}(\hat{\theta}_2)$
=