Mając zbiór X rodzinę jego podzbiorów P(X) oznacza się niekiedy przez 2^X . Piękno tego oznaczenia nie zamyka się w obserwacji: $|2^X| = 2^{|X|}$ (przez |X| rozumiemy moc zbioru X). Żeby zobaczyć sensowność tego oznaczenia, trzeba przywołać definicje:

$$Y^X \stackrel{\text{def.}}{=} \{f : X \to Y\}. \tag{1}$$

$$2 \stackrel{\text{def.}}{=} \{0, 1\}. \tag{2}$$

Z powyższych definicji wynika, że

$$2^X = \{0, 1\}^X = \{f : X \to \{0, 1\}\}.$$
(3)

To znaczy, że 2^X jest zbiorem funkcji z X do zbioru $\{0,1\}$, który można rozumieć jako wartości logiczne. Każda z tych funkcji odpowiada innemu podzbiorowi $A \subset X$ przez przyjęcie, że $p \in A \iff f(p) = 1$ oraz $p \notin A \iff f(p) = 0$. Łatwo sprawdzić, że takich funkcji jest dokładnie tyle, ile podzbiorów zbioru X.

Przykład

Niech $X=\{a,b,c\}$. Wszystkie funkcje zawarte w 2^X można wygodnie zapisać w formie tabelki. Ostatnia kolumna identyfikuje funkcję z konkretnym podzbiorem

	a	b	c	podzbiór
f_1	0	0	0	φ
f_2	1	0	0	$\{a\}$
f_3	0	1	0	$\{b\}$
f_4	0	0	1	{c}
f_5	1	1	0	$\{a,b\}$
f_6	1	0	1	$\{a,c\}$
$\overline{f_7}$	0	1	1	$\{b,c\}$
f_8	1	1	1	$\{a,b,c\}$

Tablica 1: funkcje ze zbioru 2^X