Sets

The "Mathsy" Perspective

SETS - MOTIVATION

Study *collections* in an *organized fashion*

Sets – Introduction

Set theory is a very **important** area of **mathematics**.

The set is considered the most fundamental notion in all of mathematics!

The notion of functions is built on top of sets:

A function assigns to each element of one set, exactly one element of another set

Set: Definition

- A set is a collection of objects (called its elements/members) with a key property: membership
 - That is: "is this element a member of this set or not"?
- Hence a set is an <u>unordered</u> collection of (unique) objects.
 - so, no concept of first element, n^{th} element, neighbouring element, etc.
 - repetition does not matter
 - has no impact on whether or not an element is a member of a set
- A set is said to contain its elements.
- The notation $a \in A$ denotes that a is an element of the set A.
 - If a is not a member of A, we write: $a \notin A$

Notations for Describing a Set

Roster notation

• Set-builder notation

Roster Notation

```
\bullet S = \{a, b, c, d\}
```

Order has no effect:

$$S = \{a, b, c, d\} = \{b, c, a, d\}$$

Multiplicity is irrelevant:

$$S = \{a, b, c, d\} = \{a, b, c, b, c, d\}$$

• Ellipses (...) may be used to describe a set without listing all its members, when the pattern can be clearly derived from the context:

$$S = \{a, b, c, d, ..., z\}$$

 $S = \{1, 2, 3, ...\}$

Roster Notation — Limitations

- Using the roster method, try to describe:
 - All pair of natural numbers (x,y) that satisfy the equation x + y = 1000
 - All positive rational number

Either not possible, or very inconvenient...

Set-Builder Notation

• Specify the property/properties that *characterize* its membership:

```
S = \{x \mid x \text{ is a positive integer less than } 100\}

O = \{x \mid x \text{ is an odd positive integer less than } 10\}

P = \{x \in \mathbb{Z}_+ \mid x \text{ is odd and } x < 10\}
```

• A <u>predicate</u> may be used for succinctness

(where a predicate is basically a logical statement that can be True or False, depending on some variable(s).)

$$S = \{x \mid P(x)\}\$$

can be read as "such that"

€ can be read as "belongs to"

P(x) here means P is a predicate that is <u>True</u> for x

- Example: $S = \{x \mid Prime(x)\}$
- Example: Set of positive rational numbers:

$$\mathbb{Q}_+ = \{x \in \mathbb{R} \mid x = p/q, \text{ for some positive integers } p, q\}$$

Some Common Sets

- Natural numbers $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Integers $\mathbb{Z} = \{... -3, -2, -1, 0, 1, 2, 3, ...\}$
- Positive integers $\mathbb{Z}_{+} = \{1, 2, 3, 4, 5, ...\}$
- Rational numbers $\mathbb{Q} = \left\{ \frac{p}{q} \middle| p, q \in \mathbb{Z} \text{ and } q \neq 0 \right\}$
- Real numbers R

Universal Set and Empty Set

Universal Set and Empty Set

- The *universal set U* is the set containing *everything* <u>currently under</u> consideration.
 - Sometimes implicit
 - Sometimes explicitly stated.
 - Depends on context.

• The empty set $\emptyset = \{\}$ is the set with no elements.

"Venn Diagram" is useful for illustrating relationships between sets

Set Equality

Some pre-requisite symbols

∀ For all

 $A \rightarrow B$ If A is true, then B is true

 $A \leftrightarrow B$ A is true **if and only if** B is true

∧ Logical **AND**

V Logical **OR**

Set Equality

Set Equality

Two sets are equal if and only if they have the same elements.

• Therefore if A and B are sets, then A and B are equal if and only if

$$\forall x (x \in A \leftrightarrow x \in B)$$

- We write A = B if A and B are equal sets.
- Examples:

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$
 $\{1,3,7\} \neq \{1,3\}$

Subsets

Subsets — Definition

- The set A is a *subset* of B, denoted by $A \subseteq B$, if and only if: every element of A is also an element of B.
- Formally: $A \subseteq B$ if and only if $\forall x (x \in A \rightarrow x \in B)$
- Note that:
 - \triangleright $\emptyset \subseteq S$ for every set S.
 - \triangleright $S \subseteq S$ for every set S.

Venn diagram

Subsets and Equality

• Two set are equal if and only if they are subsets of each other

$$A = B$$
 if and only if $A \subseteq B \land B \subseteq A$

"Proper" Subset

- We say that A is a proper subset of B, if and only if:
 - $\triangleright A$ is a subset of B, but A is not equal to B:

$$A \subseteq B \land A \neq B$$

- In other words:
 - Every element of A is also an element of B
 - But there are some elements of B that are not in A

Set Cardinality

Set Cardinality

The *cardinality* of a finite set A, denoted by |A|, is the number of *(distinct)* elements of A.

Examples:

- $\bullet |\emptyset| = 0$
- Let S be the set of all letters of the English alphabet. Then |S| = 26
- $\bullet |\{1, 2, 3\}| = 3$
- $|\{\emptyset\}| = 1$
- Set of integers?

Set Cardinality

The *cardinality* of a finite set A, denoted by |A|, is the number of *(distinct)* elements of A.

Examples:

- $\bullet |\emptyset| = 0$
- Let S be the set of all letters of the English alphabet. Then |S| = 26
- $\bullet |\{1, 2, 3\}| = 3$
- $|\{\emptyset\}| = 1$
- The set of integers is infinite! (∞)
 - The "cardinality" of infinite sets is a somewhat trickier topic.
 - Not all "infinities" are equal!

Power Sets

Power Sets

The power set of a given set A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.

• Example: If $S = \{a, b, c\}$ then

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

• If a set has n elements, then the cardinality (i.e. size) of the power set is 2^n . That is,

$$\triangleright |A| = n \rightarrow |\mathcal{P}(A)| = 2^n$$

Cardinality of Power Sets

- Let $S = \{a, b, c\}$. Each *subset* of S can be represented as a **bit string** of length |S| = 3, where each component is:
 - -1 if corresponding element is a member of S
 - −0 if not a member

- Therefore, the size of $\mathcal{P}(S)$ is 2^n :
 - the number of bit strings of length n (we will see at a later unit exactly why...)

a	b	C	
0	0	0	Ø
0	0	1	{c}
0	1	0	{b}
0	1	1	{b,c}
1	0	0	{a}
1	0	1	<u>{a,c}</u>
1	1	0	{a,b}
1	1	1	{a,b,c}

Cartesian Product

René Descartes (1596-1650)

Cartesian Product: Two Sets

The <u>Cartesian product</u> of two sets A and B, denoted by $A \times B$, is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$.

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Example:

$$A = \{a,b\}$$
 $B = \{1,2,3\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

6 = 2.3

Can be generalized to any number of sets...

Cartesian Product Example: Cluedo!

lf

S = set of all suspects W = set of all weapons L = set of all locations

Then the cartesian product

$$S \times W \times L$$

will describe exactly all possible "murder scenarios", i.e., all possible "configurations" of the game.

Set Operations

Boolean Algebra!

- Set theory can be interpreted as an instance of an algebraic system called a *Boolean Algebra*.
 - We will look at another Boolean algebra later called "propositional calculus"

 The operators in set theory are analogous to the corresponding Boolean operators we have already seen

- Recall the definition of universal set U
 - All sets are assumed to be subsets of U

George Boole (1815–1864)

Union

• **Definition**: The *union* of the sets A and B, denoted by $A \cup B$, is the set:

$$\{x|x\in A\vee x\in B\}$$

Analogous to the logical OR

• **Example**: What is $\{1, 2, 3\} \cup \{3, 4, 5\}$?

Answer: {1, 2, 3, 4, 5}

 $A \cup B$

Intersection

• **Definition**: The *intersection* of sets A and B, denoted by $A \cap B$, is

$$\{x|x\in A\land x\in B\}$$

Analogous to the logical AND

Note: if the intersection A ∩ B is empty, then sets A and B are said to be disjoint.

• Example: What is {1, 2, 3} ∩ {3, 4, 5} ?
Answer: {3}

• **Example:** What is {1, 2, 3} ∩ {4, 5, 6}? Answer: Ø

Multiple sets

Notation for unions and intersections over sets A_1, A_2, \dots, A_n

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

Complement

Definition: the *complement* of A (with respect to a given universal set U), denoted by \overline{A} (or A^c) is the set:

$$\bar{A} = \{ x \in U \mid x \notin A \}$$

Analogous to the logical NOT

Example: If U is the positive integers less than 100, what is the complement

of $\{x \mid x > 70\}$?

> hegation: x≤70

Answer: $\{1, 2, ..., 70\}$

Venn Diagram for Complement

Difference

Definition: The *difference* of A from B, denoted by A - B (or $A \setminus B$), is the set containing the all elements of A that are *not* in B.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \overline{B}$$

• A-B is also called the complement of B with respect to A

Set Identities & Equivalences

Identity laws

$$A \cup \emptyset = A$$

$$A \cap U = A$$

Domination laws

$$A \cup U = U$$

$$A \cap \emptyset = \emptyset$$

Idempotent laws

$$A \cup A = A$$

$$A \cap A = A$$

• Double Complement law

$$\overline{(\overline{A})} = A$$

Set Identities & Equivalences

Commutative laws

Associative laws

Distributive laws

$$A \cup B = B \cup A \qquad A \cap B = B \cap A$$

$$A \cup B \cup C \qquad A \cup B \cup C$$

$$A \cap (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$x \cdot (y + z) \qquad x \cdot y + x \cdot z$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Set Identities & Equivalences

• De Morgan's laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Absorption laws Smore generally: if ASB then:

Complement laws

$$A \cup (A \cap B) = A$$
$$A \cup B = B$$

$$A \cup \overline{A} = U$$

$$A \cap (A \cup B) = A$$
$$A \cap B = A$$

$$A \cap \overline{A} = \emptyset$$

Complement conversion to difference

$$A \cap \bar{B} = A - B.$$