

Vietnam National University of HCMC International University School of Computer Science and Engineering

Session 11 Tree

(Dec, 3th 2014)

Nguyen Van Sinh, Ph.D

nvsinh@hcmiu.edu.vn

- Introduction to Trees
- Applications of Trees
- Tree Traversal
- Spanning Trees

Refer: chapter 10 in the textbook

Def 1: A tree is a connected undirected graph with no simple circuits.

Example 1. Which of the graphs are trees?

Sol: G_1, G_2

Thm 1: Any undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Def 2. A rooted tree is a tree in which one vertex has been designed as the root and every edge is directed away from the root.

Example

Def: *a* is the parent of *b*, *b* is the child of *a*; *c*, *d*, *e* are siblings; *a*, *b*, *d* are ancestors of *f*; *c*, *d*, *e*, *f*, *g* are descendants of *b*; *c*, *e*, *f*, *g* are leaves of the tree (deg=1) *a*, *b*, *d* are internal vertices of the tree (at least one child)

sub-tree with d as its root:

Def 3 A rooted tree is called an m-ary tree if every internal vetex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m=2 is called a binary tree.

Example 3

Binary tree

Each non-leaf node has *up to 2 children*. If every non-leaf node has exactly two nodes, then it becomes a **full binary tree**

Question:

- 1. How many edges does a full binary tree with n nodes have?
- 2. How many edges does a full m-ary tree with n nodes have?

n-1?

Computer File System

This tree is a ternary (3-ary) tree, since each non-leaf node has three children

Trees as models

Properties of Trees

Thm 2. A tree with n vertices has n-1 edges.

Pf. (by induction on n)

 $n=1:K_1$ is the only tree of order 1, $|E(K_1)|=0$. ok!

Assume the result is true for every trees of order n = k.

Let T be a tree of order n = k+1, v be a leaf of T, and w be the parent of v.

Let T' be the tree $T - \{v\}$.

|V(T')| = k, and |E(T')| = k-1 by the induction hypothesis.

$$\Rightarrow |E(T)| = k$$

By induction, the result is true for all trees. (sol for slide 7)

Thm 3: A full m-ary tree with i internal vertices contains n = mi + 1 vertices.

Pf. Every vertex, except the root, is the child of an internal vertex.

Each internal vertex has m children.

 \Rightarrow there are mi + 1 vertices in the tree

Cor. A full m-ary tree with n vertices contains (n-1)/m internal vertices, and hence n-(n-1)/m=((m-1)n+1)/m leaves.

Def: The level of a vertex v in a rooted tree is the length of the unique path from the root to this vertex. The level of the root is defined to be zero. The height of a rooted tree is the maximum of the levels of vertices.

height = 4

Def: A rooted m-ary tree of height h is balanced if all leaves are at levels h or h-1.

Example 11 Which of the rooted trees shown below are balanced?

Thm 5: There are at most m^h leaves in an m-ary tree of height h

Def: A complete m-ary tree is a full m-ary tree, where every leaf is at the same level.

Question: How many vertices and how many leaves does a complete *m*-ary tree of height *h* have?

Sol.

- number of vertices = $1+m+m^2+...+m^h = (m^{h+1}-1)/(m-1)$
- number of leaves = m^h

Binary Search Trees

Goal: Implement a searching algorithm that finds items efficiently when the items are totally ordered.

Binary Search Tree: Binary tree, each child of a vertex is designed as a right or left child, and each vertex v is labeled with a key label(v), which is one of the items.

Note: label(v) > label(w) if w is in the left subtree of v and label(v) < label(w) if w is in the right subtree of v

Example 1 Form a binary search tree for the words *mathematics*, *physics*, *geography*, *zoology*, *meteorology*, *geology*, *psychology*, and *chemistry* (using alphabetical order).

mathematics mathematics mathematics mathematics physics geography physics geography physics zoology zoology > mathematics zoology > physics physics > mathematics geography < mathematics mathematics mathematics mathematics mathematics geography geography geography physics physics physics geology physics geography geology geology zoology zoology zoology meteorology zoology meteorology meteorology chemistry psychology meteorology psychology psychology > mathematics meteorology > mathematics geology < mathematics psychology > physics chemistry < mathematics meteorology < physics geology > geography psychology < zoology chemistry < geography

Algorithm 1: Locating and Adding Items to a Binary Search Tree

```
Procedure insertion(T: binary search tree, x: item)
v := \text{root of } T
{a vertex not present in T has the value null}
while v \neq null and label(v) \neq x
begin
    if x < label(v) then
          if left child of v \neq null then v:=left child of v
           else add new vertex as a left child of v and set v := null
    else
           if right child of v \neq null then v := right child of v
           else add new vertex as a right child of v and set v := null
end
if root of T = null then add a vertex v to the tree and label it with x
else if v is null or label(v) \neq x then label new vertex with x and
                                        let v be this new vertex
\{v = \text{location of } x\}
```


Example 2 Use Algorithm 1 to insert the word *oceanography* into the binary search tree in Example 1.

19

Decision Trees

A rooted tree in which each internal vertex corresponds to a decision, with a subtree at these vertices for each possible outcome of the decision, is called a decision tree.

Example 3 Suppose there are seven coins, all with the same weight, and a counterfeit coin that weights less than the others. How many weighings are necessary using a balance scale to determine which of the eight coins is the counterfeit one? Give an algorithm for finding this counterfeit coin.

Sol. \Rightarrow 3-ary tree Need 8 leaves \Rightarrow Cor 1: Log₃8 = 2

Example 4 A decision tree that orders the elements of the list a, b, c.

Prefix Codes

Problem: Using bit strings to encode the letter of the English alphabet

- \Rightarrow each letter needs a bit string of length 5 ($2^4 < 26 < 2^5$)
- ⇒ Is it possible to find a coding scheme of these letter such that when data are coded, fewer bits are used?
- ⇒ Encode letters using varying numbers of bits.
- ⇒ Some methods must be used to determine where the bits for each character start and end.
- ⇒ Prefix codes: Codes with the property that the bit string for a letter never occurs as the first part of the bit string for another letter.

Example: (not prefix code)

e:0, a:1, t:01

The string 0101 could correspond to eat?, tea?, eaea?, or tt?.

Example: (prefix code)

e:0, a:10, t:11

The string 10110 is the encoding of ate.

A prefix code can be represented using a binary tree.

character: the label of the leaf edge label: left child \rightarrow 0, right child \rightarrow 1

The bit string used to encode a character is the sequence of labels of the edges in the unique path from the root to the leaf that has this character as its label.

Example:

decode

 \Rightarrow sane

Huffman Coding (data compression)

Main idea: Input the frequencies of symbols in a string and output a prefix code that encodes the string using the fewest possible bits, among all possible binary prefix codes for these symbols.

Algorithm 2 (Huffman Coding)

Procedure Huffman(C: symbols a_i with frequencies w_i , i = 1, ..., n)

F := forest of n rooted trees, each consisting of the single vertex a_i and assigned weighted w_i

while F is not a tree

begin

Replace the rooted trees T and T' of least weights from F with $w(T) \ge w(T')$ with a tree having a new root that has T as its left subtree and T' as its right subtree. Label the new edge to T with 0 and the new edge to T' with 1.

Assign w(T)+w(T') as the weight of the new tree.

end

Example 5 Use Huffman coding to encode the following symbols with the frequencies listed: A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35. What is the average number of bits used to encode a character?

Sol:

The average number of bits is:

$$= 3 \times 0.08 + 3 \times 0.10 + 3 \times 0.12 + 3 \times 0.15 + 2 \times 0.20 + 2 \times 0.35$$

$$= 2.45$$

Tree Traversal

We need procedures for visiting each vertex of an ordered rooted tree to access data.

Universal Address Systems

Label vertices:

1.root \rightarrow 0, its k children \rightarrow 1, 2, ..., k (from left to right)

2.For each vertex v at level n with label A, its r children $\rightarrow A.1, A.2, ..., A.<math>r$ (from left to right).

We can totally order the vertices using the lexicographic ordering of their labels in the universal address system.

$$x_1.x_2....x_n < y_1.y_2....y_m$$

if there is an i , $0 \le i \le n$, with $x_1 = y_1$, $x_2 = y_2$, ..., $x_{i-1} = y_{i-1}$, and $x_i < y_i$; or if $n < m$ and $x_i = y_i$ for $i = 1, 2, ..., n$.

UNIVERS LINE LINE AND THE MAN TO THE MAN TO

Tree Traversal

Example 1

The lexicographic ordering is:

0 < 1 < 1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2 < 3.1.2.3 < 3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

Tree Traversal

Traversal Algorithms

Preorder traversal: Root → Left → Right

Example 2. In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown below?

Tree Traversal

Algorithm 1 (Preorder Traversal)

```
Procedure preorder(T: ordered rooted tree)
r := root of T
list r
for each child c of r from left to right
begin
    T(c) := subtree with c as its root
    preorder(T(c))
end
```


Tree Traversal

Inorder traversal: Left \rightarrow Root \rightarrow Right

Example 3. In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown below?

Algorithm 2 (Inorder Traversal)

```
Procedure inorder(T: ordered rooted tree)
r := \text{root of } T
If r is a leaf then list r
else
begin
    l := first child of r from left to right
    T(l) := subtree with l as its root
    inorder(T(l))
    list r
    for each child c of r except for l from left to right
         T(c) := subtree with c as its root
         inorder(T(c))
end
```


Postorder traversal: Left → Right → Root

Example 4. In which order does a preorder traversal visit the vertices in the ordered rooted tree T shown below?

Algorithm 3 (Postorder Traversal)

```
Procedure postorder(T: ordered rooted tree)
r := root of T
for each child c of r from left to right
begin
          T(c) := subtree with c as its root
          postorder(T(c))
end
list r
```


Preorder: curve

Inorder: curve internal list

Postorder: curve

Preorder:

a, b, d, h, e, i, j, c, f, g, k

Inorder:

h, d, b, i, e, j, a, f, c, k, g

Postorder:

h, d, i, j, e, b, f, k, g, c, a

Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound propositions, combinations of sets, and arithmetic expressions using ordered rooted trees.

Example 1: Find the ordered rooted tree for: $((x+y)^{\uparrow}2)+((x-4)/3)$.

Sol.

leaf:
variable
internal vertex:
operation on
its left and right
subtrees

42

The following binary trees represent the expressions:

(x+y)/(x+3), (x+(y/x))+3, x+(y/(x+3)).

All their inorder traversals lead to $x+y/x+3 \Rightarrow$ ambiguous

⇒ need parentheses

Infix form: An expression obtained when we traverse its rooted tree with <u>inorder</u>.

Prefix form: ... by <u>preorder</u>. (also named Polish notation)

Postfix form: ... by postorder. (reverse Polish notation)

Example 6 What is the prefix form for $((x+y)^{\uparrow}2)+((x-4)/3)$?

Sol.

Example 8 What is the postfix form of the expression $((x+y)^{\uparrow}2)+((x-4)/3)$?

Sol.
$$x y + 2 \uparrow x 4 - 3 / +$$

Note. An expression in prefix form or postfix form is unambiguous, so no parentheses are needed.

Example 7 What is the value of the prefix expression +-*235/1234?

Sol.

Value of expression: 3

Example 9 What is the value of the postfix expression $723*-4\uparrow 93/+?$

Sol.

9/3=3

Value of expression: 4

 $1^4 = 1$

Example 10 Find the ordered rooted tree representing the compound proposition $(\neg(p \land q)) \leftrightarrow (\neg p \lor \neg q)$. Then use this rooted tree to find the prefix, postfix, and infix forms of this expression.

Sol.

prefix: $\leftrightarrow \neg \land p \ q \lor \neg p \neg q$ postfix: $p \ q \land \neg p \neg q \neg \lor \leftrightarrow$

infix: $(\neg(p \land q)) \leftrightarrow ((\neg p) \lor (\neg q))$

THERNATION ALL UNIVERSITY

Spanning Trees

Recall (session 10): Let G be a simple graph. A spanning tree of G is a subgraph of G that is a tree containing every vertex of G.

Example 1 Find a spanning tree of *G*.

Sol.

Remove an edge from any circuit. (repeat until no circuit exists)

Four spanning trees of *G*:

Thm 1: A simple graph is connected if and only if it has a spanning tree

Depth-First Search (DFS)

Example 3 Use depth-first search to find a spanning tree for the graph.

Sol. (arbitrarily start with the vertex *f*)

The edges selected by DFS of a graph are called tree edges. All other edges of the graph must connect a vertex to an ancestor or descendant of this vertex in the tree. These edges are called back edges.

Example 4

The tree edges (red) and back edges (black)

Algorithm 1 (Depth-First Search)

```
Procedure DFS(G: connected graph with vertices v_1, v_2, ..., v_n)
T := tree consisting only of the vertex v_1
visit(v_1)
procedure visit(v: vertex of G)
for each vertex w adjacent to v and not yet in T
begin
    add vertex w and edge \{v, w\} to T
    visit(w)
end
```


Breadth-First Search (BFS)

Example 5 Use breadth-first search to find a spanning tree for the graph.

Sol. (arbitrarily start with the vertex e)

Algorithm 2 (Breadth-First Search)

```
Procedure BFS(G: connected graph with vertices v_1, v_2, ..., v_n)
T := tree consisting only of vertex v_1
L := \text{empty list}
put v_1 in the list L of unprocessed vertices
while L is not empty
begin
    remove the first vertex v from L
    for each neighbor w of v
       if w is not in L and not in T then
       begin
           add w to the end of the list L
           add w and edge \{v, w\} to T
       end
end
```


Homework

- **10.1**: 2,4,6,8,10,22,28,32 in pages 694,694.
- **10.2**: 2,6 in page 708; 20,22in page 709.
- **10.3**: 2,4,6,8,12,14,18 in pages 722, 723.
- **10.4**: 2,4,6,8,10 in pages 734, 735.

Deadline: Dec, 10th 2014

REVIEW FOR FINAL EXAMINATION

- Date: see announcement from OAA
- Time: 120 mins or more
- Form: writing, analysis, answer the questions and program.
- Content: all sessions, BUT focus on sessions 2, 4, 7, 8, 9, 10, 11.
- Questions?