STUDENT IDENTIFICATION

University of Idaho

College of Engineering

Matthew	Zel	ler
1 Tuccino YY		101

MATH428

Phone: 208-871-2474

Exam 1

zell1874@yandals.uidaho.edu

||||||||

16991

Engineering Outreach

875 Perimeter Dr MS 1014 Moscow, ID 83844-1014

> Phone: 208-885-6373 Fax: 208-885-6165

outreach@uidaho.edu http://eo.uidaho.edu

EXAMINATION IDENTIFICATION:

Course Number:

Math 428/529/Engr 428 "Numerical Methods"

Instructor:

Lyudmyla Barannyk

Exam number:

1 (11 pages)

After Session: 19

Proctor Certification (initial each below):

_I am not a friend, family member, work subordinate of the student, or UI Student

Student ID was verified before test was released

The exam was completed following all exam instructions:

- Closed book, 1 single sided page notes
- 80 minute time limit
- Calculator allowed. No other electronic equipment (e.g. cell phones, tablets, Google Glass, etc) allowed

General Proctoring Instructions:

- Student should contact you regarding setting up a testing time for each exam during the semester.
- Release exam to the student only for the amount of time allowed. Students should not receive a copy of the exam either before the examination period or after the exam is completed.
- Provide a location to administer timed exams under your direct supervision and observation
- Return completed exam in .pdf format via E-mail (eoexam@uidaho.edu) or fax (208-885-6165) immediately after completion.
- Store original exams securely and retain until grades have been posted for the Summer 2018 semester: August 8

I certify I am the approved proc	tor and have followed all above instructions:
Testing Start Time:	2:00 pm
Testing Completion Time:	3: 20 pm
Date Exam Taken:	7-24-18
Proctor's Signature:	ar
Printed Name:	Ahchata Stanly
OMETER STEP STEP STEP STEP STEP STEP STEP STEP	

STUDENT CERTIFICATION:

Please read and sign the following statement before you begin: I fully understand that I am on my honor to do my own work on this examination. If I violate this confidence, I may receive a letter grade of "F" for this exam or for the course, or be expelled from the program. Further, I certify that I have neither given nor received any aid on this test.

Signed:			
Print Name: MATT	FELLER	Date: 07	124/14
Electron and the contract and the contra	\cap	_	

INSTRUCTOR SIGNATURE: My GRADE: 74/100

To enrich education through diversity, the University of Idaho is an equal opportunity/affirmative action employer.

MATH/PHYS/ENGR 428 and MATH 529/PHYS 528: Midterm Exam

SUMMER 2018

Prof. Lyudmyla Barannyk

Due by Friday, July 6, 2018

NAME: MATT ZELLER

For each problem clearly **BOX** your final answer. If you need additional space, continue your work on the back of the page or extra sheet at the end of the exam. There is a **crib** sheet attached at the end.

Problem	Points Possible	Points Earned
1	50	35
2	10	6
3	15	10
4	25	23
Total	100	74
Bonus/MATH 529/PHYS 528	5 .	

- 1. [50 pts] True or False? (Justify your answer for full credit, if false give a counter example)
 - (a) [5 pts] f(x) is a continuous function on [a,b] satisfying both f(a)>0and f(b) > 0, then f(x) does not have a root in [a, b].

(b) [10 pts] Let $x = (x_1, x_2)^T$ be a vector, then $||x|| = |4x_1 + x_2|$ defines a vector norm.

$$\chi = \begin{bmatrix} \chi \\ \chi z \end{bmatrix}$$

14x,+x2/20 FOR Y X EIR

X1, X2 = 0 -> 4x+x2 = 0

11/11/21 = 1/2/11/21/

1x(4x,+x2) = 1x1/4x,+x21

1(4x,+x2)+(7,+22)/

... /4x,+x2/+/8,+82

 $(\chi_{ii} \chi_2) = (-l_i \psi) \neq 3$

(c) [5 pts] When using Gaussian elimination to compute the solution of $A\mathbf{x} = \mathbf{b}$, partial pivoting is not needed if $\det(\Lambda) \neq 0$.

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

(d) [10 pts] Consider the fixed point iteration scheme $x_{n+1} = x_n + 2\cos(\pi x_n)$, which corresponds to the function $f(x) = -2\cos(\pi x)$. The iterations converge to the point $\alpha = \frac{1}{2}$ for all initial iterates $x_0 \in \mathbb{R}$.

$$= X + 2\cos(\pi x)$$

$$\varphi'(x) = -2\pi \sin(\pi x)$$

$$\chi = 0 \longrightarrow$$

(e) [10 pts] The following data comes from evaluating a finite difference approximation to the derivative of a function $f(x)$ at the point $x = 0$.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lif
The exact value is $f'(0) = 1$. The order of accuracy of this approximation is $O(h)$. Hint: examine the error as h decreases.	20US (
	巧
(b) $P \log h \approx \log(f'(x) - D_{f})$ $P \approx \frac{1}{h} \log(\xi)$	
(f) [10 pts] The value of $10^3 - ((4 \times 10^{-1} + 9 \times 10^{-3}) + 5 \times 10^{-4})$ computed using three-digit, decimal, rounding arithmetic is 1000. FALSE, IF SMALL TERMS ARE OPERATED ON BEFORE LARGE	
TERMS, THE ANSWER MAY	
BE ~ ! I like in MW held to work this out like in MW	
and round after lace arithmetic	

2. [10 pts] The following MATLAB code is intended to perform LU factorization and store the results in the original matrix A (assuming that no pivoting is needed). The code does not yield the correct LU decomposition. Fix it.

k = 1:

For
$$\lambda = 2.3$$

 $\lambda = 2.3$
 $\lambda = 2.3$
 $\lambda = 2.3$
 $\Delta = 2.3$

$$\alpha(2,1) = \frac{\alpha(2,1)}{\alpha(1,1)}$$

REPLACE LINE W/ a(i, i) = a(i, i) = xn*a(k, k

a (212) = a22 + az; a,,

3. [15 pts] Suppose that the bisection method is applied to find a root α of a function f(x) and that after 4 iterations we have $|\alpha - x_4| < 10^{-2}$. How many additional iterations are needed to ensure that the error will be $< 10^{-4}$?

$$|\lambda - + \gamma| \le \left(\frac{1}{2}\right)^{n} |b_{0} - b_{0}|$$
 $\left(\frac{1}{2}\right)^{4} |b_{0} - a_{0}| \sim 10^{2}$

LINEAR CONVERGENCE

$$\frac{-2}{4} \sim \frac{-4}{0} \sim 10^{-16} = 8$$

14 ADDITIONAL ITERATIONS

 $(\frac{1}{2})^{n} |b-a| = (\frac{1}{2})^{n} |b-a| \cdot (\frac{1}{2})^{n-4} < 10^{-7}$

$$\Im\left(\frac{1}{2}\right)^{n-4} < 10^{-2} \Rightarrow 2^{n-4} > 10^{2}$$

6 2⁷=128 7 100

7 n-477 7 11711

(3)
$$\begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \\ 1/2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$
4. [25 pts] Consider the matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 0 \\ 2 & 1 & 2 \end{pmatrix} .$$

(a) [13 pts] Find the *LU*-decomposition of matrix *A* using partial pivoting technique, and state the permutation matrix (or permutation vector) *P*. Check your decomposition.

$$P_{\lambda}A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

$$E, P, A = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3/2 - 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} Av$$

$$E_{2}P_{2}E_{1}PA = \begin{bmatrix} 1 & 0 & 0 & 1 & 7 & 2 & 1 & 2 \\ 0 & 1 & 0 & 1 & 7 & 7 & 2 & 1 \\ 0 & 1 & 0 & 1 & 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 & 1 & 2 \\ 0 & 3/2 & -1 & 1 & 2 & 1 \\ 0 & 3/2 & 0 & 1 & 1 & 2 & 1 \end{bmatrix}$$

$$E_3F_3 \cdots A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3/2 & -1 \\ 0 & 3/2 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 3/2 & -1 \\ 0 & 0 & 1 \end{bmatrix} = y$$

1 | Ax = b PA=LU [] = p rnx=p & nx= & D PAX=P6 L 7 = b V = X (b) [12 pts] Use L, U and P from part (a) to solve Ax = b where b = c $[-1, 2, 1]^T$. Check your answer. 30x= x LU = A $\begin{bmatrix} 2 & 2 & \times \\ 0 & 3/2 & -1 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & \times \\ 2 & \times \end{bmatrix} = \begin{bmatrix} -1 \\ 5/2 \\ -1 \end{bmatrix}$ 0x = 3 Uy = x PA = LU/ $\frac{3}{2} \times_{2} - \times_{3} = 5/2 \rightarrow \times_{2} = (\frac{5}{2} + \times_{3})^{\frac{2}{3}} = (\frac{5}{2} - \frac{2}{2})^{\frac{2}{3}} = 0$ 0 Ly = 16 $\begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ 1/2 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix} \times \begin{pmatrix} -1/2 \\ 2/2 \end{pmatrix} = \begin{bmatrix} 2/2 \\ 2/2 \end{pmatrix} \times \begin{pmatrix} -1/2 \\ 2/2 \end{pmatrix} = \begin{bmatrix} 2/2 \\ 2/2 \end{bmatrix} = \begin{bmatrix} 2/2$ = 3,+ 72= 2 -> 8z= 2- = 2+== 5/2 言か、ナヤマナガ3=1→次3=1-次2-之か、 \(\frac{1}{512} \) = 2 - = M(-1) $\Rightarrow \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 0 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 - 2 \\ 2 \\ 2 - 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$ 6 PAX = 16 Chen Ax = b PAX=b is a different system

Bonus problem/Additional problem for MATH 529/PHYS 528 students

[5 pts] If B is an approximation of the matrix A^{-1} and AB = I + E, show that the relative error in B is bounded by ||E||.

$$\gamma = 1$$

$$\alpha(2,1) = \alpha(2,1) + \frac{\alpha(2,1)}{\alpha(1,1)} \alpha(1,1)$$

$$\gamma = 2$$

$$\alpha(2,2) + \dots$$

19'(x)/C1 - CONV. $f(x+h) = f(x) + f'(x)h + f'(x)h^{2} + ... + f(n) h^{2} + f(n+1)!$ Error ~ C.h D. f(x) = f(x+h)-f(x-h) f(x) = 0, f(x) + 0(h) & C.h 0-f(x) = f(x)-f(x-h) f(x) ~ f(x+1) -f(x) = D+f(x) 8'(d)=0, 8'(d)=0→Q 1 0, f(x) + O(h) D. S(x) + ()(h2) = $P_{\Lambda}(x) + \frac{f(n+1)(x)}{(n+1)!} h^{n+1}$ = P,(x) + R,(x)

Number Systems

Base B

$$x = \pm (.a_1 a_2 a_3 \dots a_i \dots)_{\beta} \beta^a, \ 1 \le a_i < \beta$$

Chopping

$$\widetilde{x} = \pm (.a_1 a_2 a_3 \dots a_i)_{\beta} \beta^c$$

Rounding

$$\widetilde{x} = \begin{cases} \pm (.a_1 \dots a_i)_{\beta} \beta^e, & a_{i+1} < \frac{\beta}{2} \\ \pm [(.a_1 \dots a_i)_{\beta} \beta^e + (.0 \dots 1)_{\beta} \beta^e], & a_{i+1} \ge \frac{\beta}{2} \end{cases}$$

Error

Error:

$$e(\tilde{x}) = |x - \tilde{x}|$$

Relative Error:

$$re(\tilde{x}) = \left| \frac{x - \tilde{x}}{x} \right|$$

Linear Systems, Ax = b

THM: Given a matrix A, the following are equivalent

- 1. The Equation Ax = b has a unique solution
- 2. A is invertible.
- 3. $\det(A) \neq 0$
- 4. Ax = 0 has a unique solution, x = 0
- 5. The columns of A are linearly independent
- 6. The eignevalues, λ , of A are non-zero.

Gaussian Elimination: A = LUGaussian Elimination with pivoting: PA = LU

Properties of Vector Norms:

$$||x|| \ge 0, \ ||x|| = 0 \Rightarrow x = 0$$

$$||\lambda x|| = |\lambda| ||x||, \quad \lambda \text{ scalar}$$

$$||x + y|| \le ||x|| + ||y||$$

Vector Norms:

$$l_{\infty}: \|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$$

$$l_1: ||x||_1 = \sum_{i=1}^n |x_i|$$

$$l_2: ||x||_2 = \left(\sum_{i=1}^n x_i^2\right)^{\frac{1}{2}}$$

Matrix Norm:

$$||A|| = \max_{||u|| \neq 0} \{||Au||/||u|| : u \in \mathbf{R}^n\}$$

Properties of Matrix Norms:

$$||A|| \ge 0, \ ||A|| = 0 \Leftrightarrow A = 0$$

$$||\lambda\Lambda|| = |\lambda| \cdot ||A||$$

$$||A + B|| \le ||A|| + ||B||$$

$$\|Ax\| \leq \|A\| \ \|x\|$$

$$\|AB\| \leq \|A\| \ \|B\|$$

Examples of Matrix Norms:

$$l_{\infty}$$
 Matrix Norm: $||A||_{\infty} = \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{i,j}|$

$$l_1$$
 Matrix Norm: $||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{i,j}|$

$$l_2$$
 Matrix Norm: $||A||_2 = \sqrt{\rho(A^*A)}$

Stability

Condition Number: $\kappa(A) = \|A^{-1}\| \|A\|$ Residual: $r = b - A\tilde{x}$

THM:

$$\frac{1}{\kappa(A)}\frac{\|r\|}{\|b\|} \leq \frac{\|e\|}{\|x\|} \leq \kappa(A)\frac{\|r\|}{\|b\|}$$

Root Finding Methods

Newton's Methods: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Secant Methods:
$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Error Bound for Bisection Method:

$$|\alpha - x_n| \le \left(\frac{1}{2}\right)^n |b_0 - a_0|$$