

A Machine Learning and Optimization Toolkit for the Swarm

Ilge Akkaya, Shuhei Emoto, Edward A. Lee

University of California, Berkeley

TerraSwarm Tools Telecon
17 November 2014

Sponsored by the TerraSwarm Research Center, one of six centers administered by the STARnet phase of the Focus Center Research Program (FCRP) a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

maintaining the data needed, and coincluding suggestions for reducing	ection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding an OMB control number.	ion of information. Send comment arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 17 NOV 2014 2. F		2. REPORT TYPE		3. DATES COVERED 00-00-2014 to 00-00-2014	
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER			
A Machine Learning and Optimization Toolkit for the Swarm				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, Berkeley, CA,94720				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for public	.ability statement ic release; distributi	ion unlimited			
13. SUPPLEMENTARY NO	TES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	40	REST ONSIDEE I ERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

- 1. Motivation
- 2. Overview of Current ML Toolkit Capabilities
- 3. Case Study: Cooperative Robot Localization and Control
- State Estimation: Particle Filtering
- Path Planning: Information Based Methods for Robot Trajectory Optimization
- Actor-oriented Design for State Space Dynamics and Measurements
- 4. Future Directions & Conclusions

ML technology in programming languages:

MATLAB, Python, Octave, Julia, R ...

And in the form of toolkits:

GMTK, StreamLab, SHOGUN, Weka,...

The state-of-the-art tools traditionally interact with data and present no native way of incorporating system aspects

Goal: to make the ML aspects a native part of the system design by

- Exploiting component-level interactions in the swarm
- Restoring the system level roots of machine learning methodologies by providing the right interfaces between machine learning tools and CPS design aspects.

We present an actor-oriented machine learning toolkit that focuses on

- Applications of ML Algorithms to streaming data
- Enabling ML techniques to be natively integrated into system design
- Context-aware parameterization of a rich set of ML algorithms
- Library of easy-to-use tools for developers who are not ML experts
- Enhancing programmability of swarmlets

Inference for Streaming Data

The Machine Learning Toolkit in Ptolemy II

Machine Learning:

- 1. Hidden Markov Models (HMM)
- 2. Gaussian Mixture Models (GMM)
- Parameter Estimation
- Classification

The Machine Learning Toolkit in Ptolemy II

State Estimation:

Particle Filtering

The Machine Learning Toolkit in Ptolemy II

Optimization:

 CompositeOptimizer: An actororiented gradient-descent solver

Application: Swarmlets for Cooperative Robot Control

Problem Definition: A team of robots, tracking/pursuing a target.

Model: State Space Model of target dynamics

Observations: Robot sensor measurements (generally nonlinear functions of target position + noise)

Tasks:

- Target State Estimation
- Robot Path Planning: Multiple Objectives
 Collision/Obstacle Avoidance, Pursuit, SLAM, Fast Localization, Minimal Uncertainty, ...

Cooperative Robot Control: Challenges

- Cooperation between robots
- Complex measurement/noise models
 - Range Measurements (e.g., RSSI)
 - Bearings Measurement (e.g., Cameras)
- Nonlinear robot dynamics
- Unknown Environment

Cooperative Robot Localization: State Space Models

intruder1

$$heta_t = egin{bmatrix} x_t \\ y_t \end{bmatrix}$$
 Target state (position)

$$x_0 \sim \mathtt{Uniform}([-100, 100])$$

$$y_0 \sim \mathtt{Uniform}([-100, 100])$$

$$\mathbf{z}_t = egin{bmatrix} z_1 \ z_2 \end{bmatrix}$$
 Range Measurements

$$z_{it} = ||r_{it} - \theta_t|| + \omega_t, \ i = 1, 2$$

$$\omega_t \sim \mathcal{N}(0, \sigma^2), \sigma^2 = 5.0$$

$$\theta_{t+1} = \theta_t + \nu_t, \ \, \nu_t \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5.0 & 0.0 \\ 0.0 & 5.0 \end{bmatrix}) \quad \text{Target state dynamics}$$

Measurement model

Algorithm Workflow

- 1. Robots make independent range measurements
- A centralized (or local) cooperative state estimation algorithm estimates target position given measurements
- 3. Robot trajectories are optimized w.r.t. some objective function based on the estimated target position
- 4. Robots move according to the planned path

Target State Estimation

- Given z_t, t=1,...T: noisy measurements of a target state x_t
- Estimate $p(x_T \mid z_{1:T})$: Posterior density of the target state

$$\hat{p}(x_t) = p(x_t|\mathbf{z}_{1:t}) = \sum_{i=1}^{N} w_t^i \delta(x_t - \tilde{x}_t^i)$$

• Particle filtering is a popular Bayesian Filtering technique to solve this problem: Provides a density estimate of x_T as a particle set

- Introducing the particle filter:
 - Sequential Monte Carlo methods as a general family
 - A Bayesian filter that performs maximumlikelihood state estimation for state-space models with
 - nonlinear dynamics and non-Gaussian noise, in the general case
 - A stochastic (and often better performing) alternative of the Kalman filter (which is only optimal for the linear Gaussian case)

Particle Filter: Operation

- Establish a prior belief of the state, represented as a set of particles
- Each particle is a candidate "state", which is the intruder position in this particular application

Particle Filter: Operation

• Make a measurement

Particle Filter: Assigning Weights

Assign weights to each particle according to how well it explains the measurement (subject to a measurement model and noise specification)

Particle Filter: Assigning Weights

The particle weights (under Gaussian noise) would look like the following:

Particle Filter: Resampling

The resulting set of particles would look like:

Particle Filter: Propagation

Propagate resulting particles according to dynamics model

Particle Filtering with Range Sensors

Two-Observer Particle Filter


```
\theta_t = \begin{bmatrix} x_t \\ y_t \end{bmatrix}
x_0 \sim \text{Uniform}([-100, 100])
y_0 \sim \text{Uniform}([-100, 100])
\mathbf{z}_t = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}
z_{it} = \|r_{it} - \theta_t\| + \omega_t, \ i = 1, 2
\omega_t \sim \mathcal{N}(0, \sigma^2), \sigma^2 = 5.0
\theta_{t+1} = \theta_t + \nu_t, \ \nu_t \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 5.0 & 0.0 \\ 0.0 & 5.0 \end{bmatrix})
```


- One candidate metric to be used for online trajectory optimization: Information based methods: Mutual Information
 - A particle set is a good probabilistic measure of the uncertainty in a state variable
 - Size of particle set can be used to tune approximation bounds
- Optimization Goal: Maximize Mutual Information between measurements and particle set:
 - Locate intruder as precisely as possible, with fewest steps
- Can equivalently be formulated as: Minimize uncertainty in estimated intruder location

An Actor-oriented Optimizer

Consider the general constrained optimization problem of the form:

subject to
$$\mathbf{g}(\mathbf{x}, \mathcal{Q}) \geq 0$$

Currently supports: COBYLA, a gradient-descent constrained optimization solver

Cost Functions for Path Planning: Mutual Information

Optimization Goal: Maximize Mutual Information between future measurements and predicted particle set:

 Locate intruder as precisely as possible, with fewest steps
 This can equivalently be formulated as:
 Minimizing the uncertainty in estimated intruder location. One-step optimal trajectories:

CompositeOptimizer

$$\mathbf{u_t}^* = \underset{\mathbf{u_t}}{\operatorname{arg\,max}} \ I(z_{t+1}, x_{t+1})$$

s.t $||u_t^{(i)}|| \le V_{max}, \ i = 1, 2, ..., M$

Figure : The system-level optimization problem for the WSN example

Cooperative Target Localization: Models

Demo: MI Maximization

Demo: Direct Pursuit

Demo: Hybrid Approach - 1 Follower

Bridging Actor-Oriented Modeling and ML Algorithms

- Goal: ML Algorithms that are aware of the system models
- Methodology: Implement measurement models and system dynamics as decorator actors in the system model
 - Easy to share, consistent models of underlying system models
 - Scalable and unambiguous ML algorithm design for non-experts

Shared State Space Models for Model Predictive Control

Measurement Models and Dynamics as Decorators

Measurement Models and Dynamics as Decorators

Target Localization: Adding a new Sensor

Demo: Prediction

ML and Optimization: Swarmlets

Presented an actor-oriented machine learning toolkit that is designed for

- ML and Optimization applications on streaming data
- Enhancing programmability of swarmlets
- Actor libraries for common state-space dynamics and sensor models

- Enhancing ML capabilities:
 - Discrete Optimization Solvers
 - (Mixed) Integer Programming
 - Tool Integration: e.g., GMTK
- Developing Swarmlets: Providing Services to TerraSwarm Application Developers
 - More case studies
 - Anomaly detection
 - Multi-sensor fusion

Demos: Available in Ptolemy II

Optimization and Machine Learning

Control Improvisation

Jazz Improvisation

http://chess.eecs.berkeley.edu/ptexternal/

Optimization

- Constrained Simple Linear Regression
- Simple Function Minimization

Particle Filter

- Multi Robot Intruder Tracking
- Online Robot Trajectory Optimization
- Online Robot Trajectory Optimization Distributed Computation
- Open-Loop Target Localization Single Robot
- Open-Loop Target Localization Two Robots
- Multi-Observer Particle Filtering
- Particle Filter Range

Probabilistic Models

- Channel Fault Model
- Communication Anomaly Detection Using HMM Estimation
- Gaussian Mixture Model
- Gaussian Mixture Model Parameter Estimation
- Hidden Markov Model
- Hidden Markov Model Analysis
- Discrete-Time Markov Chain

Questions? Comments?