# Tópicos em Sistemas Embarcados

Eletrônica para Computação Prof. José Paulo G. de Oliveira

# Sistemas Embarcados



# Tiva C Launchpad



Kit de desenvolvimento com microcontrolador

# Definições

- Embedded
- Sistemas computacionais embutidos em um produto maior
- Hardware com "pouca" capacidade de processamento
  - Celulares, calculadores, tocadores de mp3
- Função específica\*
- Sistemas reativos
- Sistemas de Tempo Real

## Sistemas Reativos



# Comparação

#### Sistemas Embarcados

- Poucas aplicações
- Não programável pelo usuário final
- Requisitos de execução fixos
- Critérios:
  - Custo
  - Consumo de energia
  - Previsibilidade(tempo de execução)

# Sistema de Propósito Geral

- Ampla classe de aplicações
- Programável pelo usuário final
- Mais rápido é melhor
- Critérios :
  - Custo
  - Consumo de energia
  - Velocidade média de execução



# Tempo Real



# Tempo real

- Comportamento temporal previsível
  - Tempo de resposta conhecido no melhor caso e pior caso de operação
- Soft real-time systems
  - perda de prazo implica degradação do serviço prestado (gravação de CD)
- Hard real-time systems
  - perda de prazo pode causar grandes prejuízos econômicos ou ambientais (usina nuclear, caldeiras industriais)

#### Atividades de Desenvolvimento



## Temas Relacionados





## Tipos de Aplicações



## Tipos de Aplicações

#### Logistics



#### Maintenance



#### **Factory Automation**



#### **Natural Hazards**

#### **Building Automation**



#### **Health Care**



## Exemplo – Sistema Automobilístico



### Exemplo – IoT



"A Internet das Coisas será Omnipresente!"

#### Características

#### Seguros

#### Confiabilidade

 Probabilidade do Sistema funcionar corretamente, desde que seja garantido seu funcionamento em t=0

#### Disponibilidade

Probabilidade do Sistema atender às requisições a todo instante

#### Segurança

 Não causa dano (Safety) OU Assegura que a comunicação seja realizada de forma autêntica e confidencial (Security)

#### Características

- Devem ser eficientes:
  - Energia
  - Tamanho de código
  - Desempenho
  - Peso
  - Custo
- Dedicado a alguma aplicação
- Interface de usuário Dedicada.

#### Características

- Tempo real:
  - Soft
  - Hard
- Reativo
  - Sensores
  - Atuadores
- Sistemas Híbridos
  - Analógicos
  - Digitais

#### **Tendências**

#### Tamanho de código aumentando

- Código médio: 16-64KB em 1992, 64K-512KB em 1996,
   ??? MB em 2016.
- Migração do assembly para Alto nível (C, C++, Java!!)

#### Reuso de HW e SW

- processadores (micro-controladores, DSPs)
- componentes de SW (drivers)

#### Complexidade e Integração crescentes

- RF, DSP, interfaces de rede
- Procesadores de 32 bits, Procesadores de E/S

# Multiprocessor systems-on-a-chip (MPSoCs)



#### **Exynos 4412 MPSOC**

- Núcleo ARM Cortex-A9
- 32 nm
- 4 núcleos



# Multiprocessor systems-on-a-chip (MPSoCs)



#### **Métricas**

- Gerais:
  - desempenho: MIPS, leituras/seg, etc.
  - energia: Watts
  - custo: \$
    - Custo de projeto, produção
  - tamanho: bytes, # componentes, espaço físico
  - Flexibilidade, *Time-to-prototype*, *time-to-market*
  - Manutenção, exatidão, segurança
- MIPS, Watts e Custo estão relacionados
  - Dependente da tecnologia
  - Mais MIPS com menos Watts
    - Busque as fontes de maior consumo no seu projeto
    - Use gerenciamento de energia e nível de tensão escalável

#### MIPS vs. Watts



**Performance** 

# Projeto de Sistemas Embarcados - HW

### Ciclo de Projeto





### **HW-SW Co-design**



#### Fases do projeto Testes x Custos



# Questões Práticas - HW

#### Equipamentos eletrônicos de laboratório

- Multímetro
- Osciloscópio
- Gerador de sinais
- Ferramentas manuais

#### Prototipação

- Construção de PCIs
- Soldagem
- Ferramentas manuais





#### Prototipação

Prototipadora





# Montagem rápida





## Wire Wrap









## PCI – Placa de Circuito Impresso











## PCI – Placa de Circuito Impresso

#### Largura da trilha versus Corrente

| Mils | mm   | Amps |
|------|------|------|
| 8    | 0.2  | 0.5  |
| 12   | 0.3  | 0.75 |
| 20   | 0.5  | 1.25 |
| 50   | 1.25 | 2.5  |
| 100  | 2.5  | 4    |
| 200  | 5    | 7    |
| 325  | 8.12 | 10   |

<sup>\*</sup>Mils – milésimo de polegada

#### PCI - SMD x PTH



## **PCI** – Roteamento

Roteamento de trilhas ao redor de ilha (pad)









## **PCI – Roteamento**

## Roteamento de trilhas paralelas

Evita diferença de percurso



## PCI - Multicamada

## Uso de Vias





## PCI - Multicamada



# PCI – Exemplo

## Esquemático



# PCI – Exemplo

Componentes



**PCI PTH** 



**PCI SMD** 



PTH – Pin Through Hole



SMD - Surface Mount Device

SMT – Surface Mount Technology





**PTH** 



# Interfaces

# Comunicação



# **UART - Universal asynchronous Rx/Tx**



# **UART - Universal asynchronous Rx/Tx**



# **UART - Universal asynchronous Rx/Tx**



## **UART - RS 232**





## **UART - RS 232**



## **UART - RS 232**



## **RS 232 – Shake Hands**

| Signal | Function               | 25-pin | 9-pin | Direction       |
|--------|------------------------|--------|-------|-----------------|
| Tx     | Transmitted Data       | 2      | 3     | From DTE to DCE |
| Rx     | Received Data          | 3      | 2     | To DTE from DCE |
| RTS    | Request To Send        | 4      | 7     | From DTE to DCE |
| CTS    | Clear To Send          | 5      | 8     | To DTE from DCE |
| DTR    | Data Terminal Ready    | 20     | 4     | From DTE to DCE |
| DSR    | Data Set Ready         | 6      | 6     | To DTE from DCE |
| DCD    | Data Carrier Detect    | 8      | 1     | To DTE from DCE |
| RI     | Ring Indicator         | 22     | 9     | To DTE from DCE |
| FG     | Frame Ground (chassis) | 1      | -     | Common          |
| SG     | Signal Ground          | 7      | 5     | Common          |

## **Interface RS 232**



## **Interface RS 232**



# **Conversor USB-Serial**



# Chave eletromecânica

#### Relé



# Comunicação Serial

## **Outras possibilidades:**

- RS 422
- RS 485
- IrDA
- |2C
- USB

## Rede RS 485



## IrDA – Infrared Data Association





## IrDA - PPM

#### **Pulse Position Modulation**



## Quadro – 4 Mbps



## **USB**

#### **Universal Serial Bus**



http://www.usb.org/

## **Universal Serial Bus**

## **Versões**

| Nome    | Lançamento | Velocidade                                     |
|---------|------------|------------------------------------------------|
| USB 0.8 | 1994       |                                                |
| USB 0.9 | 1995       |                                                |
| USB 1.0 | 1996       | Low Speed (1.5 Mbit/s), Full Speed (12 Mbit/s) |
| USB 1.1 | 1998       |                                                |
| USB 2.0 | 2000       | High Speed (480 Mbit/s)                        |
| USB 3.0 | 2008       | SuperSpeed (5 Gbit/s)                          |
| USB 3.1 | 2013       | SuperSpeed+ (10 Gbit/s) [20]                   |

# **USB**

## Conexão



# Interface Analógica

# Interface Analógica

## **ADC – Analog to Digital Converter**



# Interface Analógica

## **ADC – Analog to Digital Converter**



## Tipos de ADC

- Flash ADC
- Rampa
- Aproximações sucessivas
- Delta-Sigma ADC
- Etc.

## Tipos de ADC

- Flash ADC
- Rampa
- Aproximações sucessivas
- Delta-Sigma ADC
- Etc.

## Parâmetros:

- Velocidade
- Precisão
  - SNR relação sinal ruído

## Ex.: 1-bit ADC

## Comparador





#### Ex.: Flash ADC



#### **Ex.:** Σ-Δ **ADC**



- Lentos
- Maior precisão

#### **Ex.:** ∑-∆ **ADC**



Entrada analógica nula



#### **Ex.:** ∑-∆ **ADC**



Entrada analógica negativa



### Conexão com ADC



### Ex.: Sensor de temperatura

#### **AD 22100**







### Ex.: Sensor de temperatura

$$V_{OUT} = (V_S / 5) \times [1.375 + (0.0225 \times T_A)]$$

$$T_A = (((V_{OUT} \times 5) / V_S) - 1.375) / 0.0225$$



## Ex.: Sensor óptico





### Ex.: Sensor óptico

#### **Amplificação**



#### Ex.: Acelerômetro





### Ex.: Acelerômetro

**3D** 



#### Ex.: Acelerômetro ADXL 150



$$V_{OUT} = V_S/2$$
 - (sensitivity \*  $V_S/5$  \* acceleration) ~38

## Ex.: Sensor de pressão





## Ex.: Sensor de pressão





# **PWM**



## **Pulse Width Modulation**

Pulse Width Modulation (PWM) is a method of digitally encoding analog signal levels. High-resolution digital counters are used to generate a square wave of a given frequency, and the duty cycle of that square wave is modulated to encode the analog signal.

Typical applications for PWM are switching power supplies, motor control, servo positioning and lighting control.





## **Pulse Width Modulation**



#### Série de Fourier

$$f(x) = rac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n cos rac{n\pi x}{L} + b_n sin rac{n\pi x}{L} 
ight)$$

#### Nível DC

$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

## **Pulse Width Modulation**

**Duty Cycle** 



## **PWM - 555**



## **Ex.: Controle de Motor DC**

#### **Ponte H**



## **Ex.: Controle de Motor DC**

#### **Ponte H**



## Motor – Leitura de velocidade





# Motor – Leitura de velocidade



## Motor – Leitura de velocidade



#### Sentido da rotação:

