2021 考研数学一模拟卷

	时间:180 分钟 满分:150 分 命题人:向禹		
_	、选择题:1-10 题,每题 5 分,共 50 分。在每题给出的四个选项中,只有一项是符合是	9月	要
求的。			
1.	设函数 $f(x)$ 在 $(-\infty, +\infty)$ 上单调递增,则下列说法中错误的是	()
	A. 如果函数极限 $\lim_{x\to +\infty} f(x) = A$,则数列极限 $\lim_{n\to \infty} f(n) = A$		
	B. 如果数列极限 $\lim_{n\to\infty} f(n) = A$,则函数极限 $\lim_{x\to +\infty} f(x) = A$		
	C. 如果数列 $x_n \to x_0$ 且 $x_n \neq x_0$,则极限 $\lim_{n \to \infty} f(x_n)$ 存在		
	D. 函数 $f(x)$ 的间断点必然是跳跃间断点		
2.	设函数 $f(x)$ 在 $(-\infty, +\infty)$ 上可导,则下列说法中正确的是	()
	A. 如果 $\lim_{x \to \infty} f(x) = 0$,则 $\lim_{x \to \infty} f'(x) = 0$		
	B. 如果 $\lim_{x \to \infty} f'(x) = 0$,则 $\lim_{x \to \infty} \frac{f(x)}{x} = 0$		
	C. 如果 $\lim_{x \to \infty} f'(x) = 0$,则 $\lim_{x \to \infty} f(x)$ 存在		
	D. 如果 $\lim_{x \to \infty} \frac{f(x)}{x} = 0$,则 $\lim_{x \to \infty} f'(x) = 0$		
3.	设 $\varphi(x,y)$ 在 $(0,0)$ 的邻域内连续且 $\varphi(0,0)=0$,则函数 $f(x,y)=(x + y)\varphi(x,y)$, y)	在
	(0,0) 处	()
	A. 可微 B. 连续但偏导数不存在		
	C. 偏导数连续 D. 偏导数存在但不可微		
4.	设方程 $\ln x = kx$ 只有两个正实根,则 k 的取值范围为	()
	A. $(-\infty, e)$ B. $\left(0, \frac{1}{e}\right)$ C. $\left(\frac{1}{e}, +\infty\right)$ D. $\left(\frac{1}{e}, 1\right)$		
5.	设函数 $f(x, y)$ 连续,则累次积分 $\int_0^1 dx \int_{x-1}^{\sqrt{x-x^2}} f(x, y) dy$ 等于	()
	A. $\int_{-1}^{1} dy \int_{0}^{y+1} f(x, y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} - \sqrt{\frac{1}{4} - y^2}} dx$		
	B. $\int_{-1}^{1} dy \int_{0}^{y+1} f(x, y) dx + \int_{0}^{\frac{1}{2}} dy \int_{0}^{\frac{1}{2} + \sqrt{\frac{1}{4} - y^2}} dx$		
	C. $\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta - \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\cos\theta} f(r\cos\theta, r\sin\theta) r dr$		

D.
$$\int_{-\frac{\pi}{2}}^{0} d\theta \int_{0}^{\frac{1}{\cos\theta + \sin\theta}} f(r\cos\theta, r\sin\theta) r dr + \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$

6. 下列级数中条件收敛的是

A.
$$\sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+1}} \right)$$
 B. $\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$

$$B. \sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}$$

$$C. \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)}$$

D.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \ln(1+n)}$$

7. 设有向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s; \beta_1, \beta_2, \cdots, \beta_t; \gamma$,如果

$$r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s) < r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t), r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t, \boldsymbol{\gamma})$$

则下列说法中错误的是

- A. 向量 γ 不能被 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示,但能被 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示
- B. $r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_s, \boldsymbol{\gamma}) = r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \cdots, \boldsymbol{\beta}_t)$
- C. 如果向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关,则向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 线性无关
- D. 如果向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 能被向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 线性表示,则向量组 $\beta_1, \beta_2, \cdots, \beta_t$ 能被 $\alpha_1, \alpha_2, \cdots, \alpha_s, \gamma$ 线性表示
- 8. 设 $A \in m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$, 则下列说法中错误的是 ()
 - A. 如果对任意 m 维列向量 b, 方程组 Ax = b 有解,则 $m \ge n$
 - B. 如果 r(A) = m,则对任意 m 维列向量 b,方程组 Ax = b 有解
 - C. 对任意 m 维列向量 b, 方程组 $A^{T}Ax = A^{T}b$ 有解
 - D. 如果 r(A) = n,则对任意 n 维列向量 b,方程组 $A^{T}Ax = b$ 有解
- 9. 设随机变量 $X \sim t(n), Y \sim F(1,n), \text{如果 } c > 0$ 使得 $\mathbb{P}(0 < X < c) = \alpha, \text{则 } \mathbb{P}(Y > c^2) =$ ()
 - A. 1α
- $B. \alpha$

- C. $1-2\alpha$
- D. 2α

10. 设
$$X_1, X_2, \dots, X_n$$
 $(n \ge 2)$ 是来自总体 $N(0, \sigma^2)$ 的简单随机样本,令 $\alpha = \sum_{i=1}^n X_i, \beta = \sum_{i=1}^n X_i$

 $\sum X_i^2$,则下列说法中错误的是

A.
$$\frac{\alpha^2}{n\sigma^2}$$
 服从 χ^2 分布

B.
$$\frac{\beta}{\sigma^2}$$
 服从 χ^2 分布

$$C. \frac{\alpha^2}{\beta}$$
 服从 F 分布

D.
$$\frac{(X_1 - X_2)^2}{(X_1 + X_2)^2}$$
 服从 F 分布

二、填空题:11-16题,每题5分,共30分。

- 11. 设函数 f(x) 满足 f(0) = 0, f'(0) = 1,则 $\lim_{x \to 0} \frac{f(1 \cos x)}{1 \sqrt{\cos 2x}} = _____.$
- 12. 极坐标曲线 $r=1+\cos\theta$ 在 $\theta=\frac{\pi}{3}$ 对应的点处的法线方程为______.
- 13. 微分方程 y''' 3y' + 2y = 0 的通解为 y = .
- 14. 设函数 f(x) = x [x],其中 [x] 表示不超过 x 的最大整数,令

$$a_n = \int_{-1}^1 f(x) \cos n\pi x \, dx, \, b_n = \int_{-1}^1 f(x) \sin n\pi x \, dx, \, n = 0, 1, 2, \cdots$$

$$\diamondsuit S(x) = \sum_{n=1}^{\infty} (a_n \cos n\pi x + b_n \sin n\pi x), -\infty < x < +\infty, \text{ } \emptyset S(-5) = \underline{ }.$$

- 15. 已知三元方程 $a(x^2 + y^2 + z^2) + 2(xy + yz + zx) = 1$ 对应的空间曲面为双叶双曲面,则 a 的取值范围是_____.
- 16. 设随机变量 X 和 Y 相互独立, X 服从参数为 1 的指数分布, Y 的分布为 $\mathbb{P}(Y=1)=\frac{1}{4}, \mathbb{P}(Y=2)=\frac{3}{4}, 则$ $\mathbb{P}\big(1 \leq \min\{X,Y\} < 2\big)=$ _____.

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。

- 17. (本题满分 10 分) 设函数 f(x) 在 x = 0 处二阶可导,且 f(0) = f'(0) = 0, f''(0) = 1. 设 曲线 y = f(x) 在点 (x, f(x)) 处的切线在 x 轴上的截距为 u(x),计算极限 $\lim_{x\to 0} \frac{f(u(x))}{f(x)}$.
- 18. (本题满分 10 分) 设平面区域 D_1 由曲线 y = |x|, 直线 x = -1, x = a, y = 0 所围成, 平面区域 D_2 由曲线 y = |x|, 直线 x = a, x = 1, y = 0 所围成, 其中 0 < a < 1.
 - (1) 求 D_1 绕 x 轴旋转所得旋转体的体积 V_1 , D_2 绕直线 x=a 旋转所得旋转体的体积 V_2 .
 - (2) 求 $V_1 + V_2$ 的最小值.
- 19. (本题满分 10 分)设函数 f(x) 二阶可导, f(0) = 1, 且有

$$f'(x) + 3 \int_0^x f'(t) dt + 2x \int_0^1 f(xt) dt + e^{-x} = 0,$$

求 f(x).

20. (本题满分 10 分) 设 Σ 为曲面 $z = \sqrt{x^2 + y^2}$ 介于 z = 0 与 z = 1 之间部分的下侧, f(x) 为连续函数,计算

$$I = \iint_{\Sigma} [-xf(x+y) - 2x] dy dz + [-2y - yf(x+y)] dz dx + [-zf(x+y)] dx dy.$$

21. (本题满分 15 分)已知 1 是三阶实对称矩阵 A 的一个特征值,且

$$A \begin{pmatrix} 1 & 2 \\ 2 & -2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & -4 \\ 0 & 2 \end{pmatrix}.$$

- (1) 求 A 的所有特征值和对应的特征向量.
- (2) 如果 $\beta = (-1, 1, -5)$,求 $A^n \beta$.
- (3) 设向量 $\mathbf{x} = (x_1, x_2, x_3)^{\mathrm{T}}$,求方程 $\mathbf{x}^{\mathrm{T}} A \mathbf{x} = 0$ 的通解.
- 22. (本题满分15分)设总体 X 的概率密度为

$$f(x) = \frac{\lambda^2}{2} |x| e^{-\lambda |x|}, -\infty < x < +\infty$$

其中未知参数 $\lambda > 0$, (X_1, X_2, \dots, X_n) 为来自总体 X 的简单随机样本.

- (1) 求参数 λ 的矩估计量 $\hat{\lambda}_1$.
- (2) 求参数 λ 的最大似然估计量 $\hat{\lambda}_2$.
- (3) 计算 $\mathbb{E}\left(\frac{1}{\hat{\lambda}_1^2}\right)$.