AN AUTOMATED TRACKING SYSTEM FOR Y-MAZE BEHAVIORAL TEST USING

KINECT DEPTH IMAGING

ZHEYUAN WANG*, KEVIN MURNANE†, AND MAYSAM GHOVANLOO*

*GT-Bionics Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

†Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, Atlanta, GA, USA

E-mail: mgh@gatech.edu http://www.gtbionics.org/

I. Introduction

- ☐ We have developed an image processing system for automated tracking and behavior analysis of the popular Y-maze test on freely behaving rodents, using depth imaging, provided by a Microsoft Kinect® 2D/3D imager.
- ☐ The system tracks the animal position and Y-maze arm entry sequence for calculating spontaneous alternation and other widely accepted measures for analyzing the working memory and ambulatory activity.

II. System Overview

Fig. 1. Block diagram of the proposed system for Y-maze behavioral test.

Fig. 2. In vivo experiment setup.

Automated Y-Maze Segmentation

Fig. 3. Flowchart of the image processing algorithm used for segmenting the maze from the reference image (without animal subject).

- 1. The maze shape is identified by an automated segmentation algorithm.
- 2. Exploiting the geometric features of the Y-maze, a contour-based method is used to divide the maze shape into four parts, three arms and a center piece.

Fig. 4. Extraction results

Table I. Jaccard Index Between Algorithm and Manually Segmented Results

	Whole Maze	Single Arm	Center Part
Averaged Jaccard Index	0.950	0.940	0.746

Position and Arm Tracking

- 3. To obtain the rat body contour, an extraction algorithm based on background subtraction is used.
- 4. Using the rat mask along with the arm extraction results, algorithm 1 decides the rat is in which arm.

Algorithm 1 Algorithm for determining rat's arm location **Input:** rat mask I_{rat} , maze parts I_A, I_B, I_C previous location p_{pre} **Output:** rat's arm location p 1: Found = False2: Calculate rat area S_{rat} from I_{rat} , 3: **for** i = A to C **do** Calculate overlap area S_i between I_A and I_{rat} **if** $(S_i > 0.99 * S_{rat})$ **then** Found = True8: end if 9: end for 10: **if** ($Found \neq True$) **then** 11: **if** $((p_{pre} \neq center) \text{ AND } (S_i > 0.01 * S_{rat}))$ **then** $p = p_{pre}$ 13: **else** 14: p = center15: **end if** 16: **end if** 17: **return** p

III. Experimental Results

- ☐ Functionality of the system was verified *in vivo* with 7 adult, male, Sprague-Dawley rats.
- ☐ For all 7 rats, comparisons between the arm entry sequence generated by the system and by human annotations showed 100% agreement, with less than 0.1 s error in time stamps of "enter/leave" actions.
- □ Behavioral Results
 - Spontaneous Alternation:

Alternation% = Total Number of Entries-2

- > Time Distribution
- Distance Traveled

Fig. 5. Spontaneous alternation results Table II Tracking results of each session

Rat	Time Distribution among maze parts				Total	Distance
No.	Arm A	Arm B	Arm C	Center	Time (s)	(m)
#1	46.7%	23.1%	24.5%	5.7%	621.0	48.13
#2	41.0%	20.0%	35.2%	3.8%	611.9	69.43
#3	47.5%	33.4%	18.3%	0.8%	615.1	53.67
#4	28.7%	27.5%	38.9%	5.0%	608.0	84.12
#5	29.8%	39.0%	28.4%	2.8%	719.8	71.81
#6	26.8%	33.8%	32.8%	6.7%	663.0	83.76
#7	37.4%	32.8%	28.4%	1.4%	543.6	61.81

IV. Conclusion

- ☐ The use of depth image eliminates the need of high color contrast between animal subject and the maze, enables consistent output regardless of lighting condition.
- ☐ Future work includes extending the tracking to T-maze and radial-maze, and using the algorithm in scientific and preclinical research experiments.