Algorithm 6.6. Betweenness centrality batch.

Var	Type	Description
S	$\mathbb{B}^{N\times p \times N}$	the search, keeps track of the depth at
		which each vertex is seen for each starting
		vertex
P	$\mathbb{Z}^{ p imes N}$	the number of shortest paths to each ver-
		tex from each starting vertex
\mathbf{F}	$\mathbb{Z}^{ p imes N}$	the fringe, the number of shortest paths
		to vertices at the current depth from each
		starting vertex
\mathbf{W}	$\mathbb{R}^{ p imes N}$	the weights for the BC updates for each
		starting vertex
\mathbf{B}	$\mathbb{R}^{ p imes N}$	the BC score for each vertex for each
		starting vertex
\mathbf{U}	$\mathbb{R}^{ p imes N}$	the BC update for each vertex for each
		starting vertex
\mathbf{r}	$\mathbb{Z}^{ p }$	the current root values, or starting ver-
		tices for which to compute BC updates
d	\mathbb{Z}	the current depth being examined

```
b = \text{BetweennessCentrality}(G = A : \mathbb{B}^{N \times N}, P)
        \mathbf{b} = 0
  1
  2
        for r \in P
  3
                   do
                         d = 0
  4
                         8 = 0
  5
                         \mathbf{P} = \mathbf{I}(r,:)
  6
  7
                         \mathbf{F} = \mathbf{A}(r,:)
  8
                          while \mathbf{F} \neq 0
  9
                                  do
                                         d = d + 1
10
                                         \mathbf{P}=\mathbf{P}+\mathbf{F}
11
12
                                         S(d,:,:) = \mathbf{F}
13
                                         \mathbf{F} = \mathbf{F}\mathbf{A} \times \neg \mathbf{P}
                          while d \geq 2
14
15
                                  do
16
                                         \mathbf{W} = \mathbf{S}(d,:,:) \times (1 + \mathbf{U}) \div \mathbf{P}
17
                                         \mathbf{W} = (\mathbf{A}\mathbf{W}')'
                                         \mathbf{W} = \mathbf{W} \times \mathbf{S}(d-1,:,:) \times \mathbf{P}
18
19
                                         \mathbf{U} = \mathbf{U} + \mathbf{W}
                                         d = d - 1
20
21
                         \mathbf{b} = \mathbf{b} + (+, \mathbf{U})
```