Dimension theory in commutative algebra

Dimension

1 Artinian Rings and Length of Modules

Definition 1. Let A be a ring and M an A module. A simple module filtration of M is a filtration

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_n = 0$$

such that M_i/M_{i-1} is a simple module, i.e. it has no submodule except 0 and itself. If M has a simple module filtration as above, we define the length of M as n and say that M has finite length.

The following proposition guarantees the length is well-defined.

Proposition 2. Suppose M has a simple module filtration $M = M_{0,0} \supseteq M_{1,0} \supseteq \cdots \supseteq M_{n,0} = 0$. Then for any other filtration $M = M_{0,0} \supset M_{0,1} \supset \cdots \supset M_{0,m} = 0$ with m > n, there exist k < m such that $M_{0,k} = M_{0,k+1}$.

Proof. We claim that there are at least $0 \le k_1 < \cdots < k_{m-n} < m$ satisfies that $M_{0,k_i} = M_{0,k_i+1}$. Let $M_{i,j} := M_{i,0} \cap M_{0,j}$. Inductively on n, we can assume that there exist k_1, \cdots, k_{n-m+1} such that $M_{1,k} = M_{1,k+1}$. Consider the sequence

$$M_{0,0}/M_{1,0} \supset (M_{0,1}+M_{1,0})/M_{1,0} \supset \cdots \supset (M_{0,m}+M_{1,0})/M_{1,0} = 0$$

in $M_{0,0}/M_{1,0}$. Since $M_{0,0}/M_{1,0}$ is simple, there is at most one k_i with $M_{0,k_i}+M_{1,0}\neq M_{0,k_i+1}+M_{1,0}$. And note that if $M_{0,k_i}+M_{1,0}=M_{0,k_i+1}+M_{1,0}$ and $M_{0,k_i}\cap M_{1,0}=M_{0,k_i}\cap M_{1,0}$, then $M_{0,k_i}=M_{0,k_i+1}$ by the Five Lemma. \square

Example 3. Let A be a ring and $\mathfrak{m} \in \mathrm{mSpec}\,A$. Then A/\mathfrak{m} is a simple module.

Proposition 4. Let A be a ring and M an A-module. Then M is of finite length iff it satisfies both a.c.c and d.c.c.

Proof. Note that if M has either a strictly ascending chain or a strictly descending chain, M is of infinite length. Conversely, d.c.c guarantee M has a simple submodule and a.c.c guarantee the sequence terminates.

Proposition 5. The length l(-) is an additive function for modules of finite length. That is, if we have an exact sequence $0 \to M_1 \to M_2 \to M_3 \to 0$ with M_i of finite length, then $l(M_2) = l(M_1) + l(M_3)$.

Proof. The simple module filtrations of M_1 and M_3 will give a simple module filtration of M_2 .

Proposition 6. Let (A, \mathfrak{m}) be a local ring. Then A is artinian iff $\mathfrak{m}^n = 0$ for some $n \geq 0$.

Proof. Suppose A is artinian. Then the sequence $\mathfrak{m} \supset \mathfrak{m}^2 \supset \mathfrak{m}^3 \supset \cdots$ will stable. It follows that $\mathfrak{m}^n = \mathfrak{m}^{n+1}$ for some n. By the Nakayama's Lemma ??, $\mathfrak{m}^n = 0$. Conversely, we have

$$\mathfrak{m}\subset\mathfrak{N}\subset\bigcap_{\text{minimal prime ideal}}\mathfrak{p},$$

whence \mathfrak{m} is minimal.

Proposition 7. Let A be a ring. Then A is artinian iff A is of finite length.

Proof. First we show that A has only finite maximal ideal. Otherwise, consider the set $\{\mathfrak{m}_1 \cap \mathfrak{m}_2 \cap \cdots \cap \mathfrak{m}_k\}$. It has a minimal element $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ and for any maximal ideal \mathfrak{m} , $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n \subset \mathfrak{m}$. It follows that $\mathfrak{m} = \mathfrak{m}_i$ for some i. Let $\mathfrak{M} = \mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_n$ be the Jacobi radical of A. Consider the sequence $\mathfrak{M} \supset \mathfrak{M}^2 \supset \cdots$ and by Nakayama's Lemma, we have $\mathfrak{M}^k = 0$ for some k. Consider the filtration

$$A \supset \mathfrak{m}_1 \supset \cdots \supset \mathfrak{m}_1^k \supset \mathfrak{m}_1^k \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1^k \cdots \mathfrak{m}_n^k = (0).$$

We have $\mathfrak{m}_1^k \cdots \mathfrak{m}_i^j/\mathfrak{m}_1^k \cdots \mathfrak{m}_i^{j+1}$ is an A/\mathfrak{m}_i -vector space. It is artinian and then of finite length. Hence A is of finite length.

Date: June 15, 2025, Author: Tianle Yang, My Website

2

Proposition 8. Let A be a ring. Then A is artinian iff A is noetherian and of dimension 0. For definition of dimension, see ??.

Proof. Suppose A is artinian. Then A is noetherian by Proposition 7. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then A/\mathfrak{p} is an artinian integral domain. If there is $a \in A/\mathfrak{p}$ is not invertible, consider $(a) \supset (a^2) \supset \cdots$, we see a = 0. Hence \mathfrak{p} is maximal and dim A = 0.

Suppose that A is noetherian and of dimension 0. Then every maximal ideal is minimal. In particular, A has only finite maximal ideal $\mathfrak{p}_1, \dots, \mathfrak{p}_n$. Let \mathfrak{q}_i be the \mathfrak{p}_i -component of (0). Then we have $A \hookrightarrow \bigoplus_i A/\mathfrak{q}_i$. We just need to show that A/\mathfrak{q}_i is of finite length as A-module. If $\mathfrak{q}_i \subset \mathfrak{p}_j$, take radical we get $\mathfrak{p}_i \subset \mathfrak{q}_j$ and hence i = j. So A/\mathfrak{q}_i is a local ring with maximal ideal $\mathfrak{p}_i A/\mathfrak{q}_i$. Then every element in $\mathfrak{p}_i A/\mathfrak{q}_i$ is nilpotent. Since \mathfrak{p}_i is finitely generated, $(\mathfrak{p}_i A/\mathfrak{q}_i)^k = 0$ for some k. Then A/\mathfrak{q}_i is artinian and then of finite length as A/\mathfrak{q}_i -module. Then the conclusion follows