Vol. 98, Nos. 3-4

THE PHILIPPINE JOURNAL OF SCIENCE

MANILA BUREAU OF PRINTING 1972

00108

E 840

NATIONAL SCIENCE DEVELOPMENT BOARD

JUAN S. SALCEDO, JR., M.S., M.D., Chairman Dominador O. Reyes, Ll.B., Officer-in-Charge, Office of the Vice-Chairman and Executive Director

MEMBERS OF THE BOARD

PEDRO G. AFABLE, B.S.C.E. CONSTANCIO M. ANCHETA, Ph.D.

E. George T. Marcelo, B.S.B.A., Ph.D. Augusto L. Tenmatay, Ph.D.

Jose R. Velasco, Ph.D.

NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

Jose R. Velasco, Ph.D., Commissioner Flaviano M. Yenko, A.B., B.S., Deputy Commissioner

Agricultural Research Center CLARE R. BALTAZAR, PH.D. Director Industrial Research Center
FELIPE LL. SANTILLAN, B.S.M.E.
Director

Biological Research Center Luz Baens-Arcega, M.S. Director Medical Research Center ROGELIO N. RELOVA, M.D. Director

Food & Nutrition Research Center Test & Standards Laboratories
CONRADO R. PASCUAL, M.D., M.P.H. JOSE P. PLANAS, B.S. CHEM. ENG.
Director Acting Chief

THE PHILIPPINE JOURNAL OF SCIENCE

Published quarterly by the National Institute of Science & Technology (Fórmerly Bureau of Science) P.O. Box 774, Manila, Philippines

EDITOR

CAMREN LL. INTENGAN, PH.D.

ASSOCIATE EDITORS

CLARE R. BALTAZAR, PH.D.; REANA R. F. CRUZ, A. M.; GUILLERMINA MAÑALAG, M.S.

MANAGING EDITOR ANGEL Y. LIRA, B.S.C.

CONTRIBUTING EDITORS

Agriculture
Anacleto B. Coronel, D.V.M.
FAUSTINO T. ORILLO, Ph.D.
Antonio Pizarro, Ph.D.

Anthropology
Alfredo E. Evangelista, M.A.
ROBERT B. FOX, PH.D.
F. LANDA JOCANO, PH.D.
E. ARSENIO MANUEL, M.A.

Botany
DEMETRIO P. MENDOZA, M.S.
JOSE VERA SANTOS, PH.D.
GREGORIO T. VELASQUEZ, PH.D.

Chemistry
Alfredo C. Santos, Ph.D.
Augusto L. Tenmatay, Ph.D.

Nutrition
LEON G. AIEJO, B.S.
JOSEFINA B. JAYME, M.D.
SONIA Y. DE LEON, PH.D.
LUZ U. OÑATE, PH.D.

Geology
ARTURO ALCARAZ, M.S.
CESAR B. IBAÑEZ, M.S.
MATEO H. TUPAZ, PH.D.
ELPIDIO C. VERA, M.S.

Medicine
PAULO C. CAMPOS, M.D.
CONRADO S. DAYRIT, M.D.
ROGELIO N. RELOVA, M.D.
VICTOR VALENZUELA, M.D.

Microbiology
Macario Palo, B.S.A.

Nuclear Science Pedro G. Afable, B.S.C.E. RAMON SAMANIEGO, Ph.D. GETULIO B. VIADO, Ph.D.

Zoology
NELIA P. SALAZAR, M.S.
LEOPOLDO B. UICHANCO, D.Sc.
AGUSTIN F. UMALI, B.S.

THE PHILIPPINE JOURNAL OF SCIENCE

Vol. 98

SEPTEMBER-DECEMBER, 1969

Nos. 3-4

IN MEMORIAM *

POTENCIANO ARAGON Y ROSARIO: (1914-1969)

Dr. Potenciano R. Aragon, Professor of Microbiology and Dean of the Institute of Hygiene, University of the Philippines joined his creator on June 10, 1969, a victim of coronary heart attack.

He was born in Manila on May 19, 1914 and was a product of the public school system, finishing his elementary education at Singalong Elementary School in 1928 and High School at the Arellano in 1932. Then he enrolled at the College of Liberal Arts, University of the Philippines for a 2-year preparatory medicine which he finished in 1935. He then proceeded to take up medicine at the State University and graduated in 1940. Among his classmates were Drs. Arturo Reyes, Gloria Aragon, Jaime Aquino, Angelina Santos, Nelly Herrera, Jesus Nolasco, Mario Oca, Irineo Sunico, Antonio Tan and Florante Bocobo. As a college student he was well behaved, quiet and unassuming and minded his own business.

Shortly after graduation, the Institute of Hygiene of the State University offered him the position of Research Assistant. The following year (1941) he was sent to Johns Hopkins University School of Hygiene and Public Health as a fellow of the Rockefeller Foundation from where he earned the degree of Master of Public Health. After graduation in 1942, he

* By Dr. Benjamin D. Cabrera, dean, Institute of Hygiene, Manila.
067081
201

joined the U.S. Army as First Lieutenant and was sent to undergo further training at U.S. Army Medical Schools such as the Medical Field Service School at Pennsylvania; Chemical Warfare School at Canal Zone, Panama. In a relatively short time he was promoted to the rank of Captain, then to Major.

After the war he returned to the Philippines to give service to his alma mater as Instructor in Hygiene in 1946. He was promoted to Assistant Professor and Acting Head of the Department of Sanitary Bacteriology and Immunology in 1947. From 1950–1960 he was promoted in rank from Assistant Professor to Associate, then to full Professor and Chairman of the Department of Medical Microbiology. In 1968 he was appointed Dean of the Institute of Hygiene, a position he ably held until his very untimely death. He is survived by his wife, Leonor Malay Aragon, who is presently the Dean of the College of Nursing, University of the Philippines.

He was a recipient of several fellowships. In 1955, he was sent to Johns Hopkins University as an exchange professor of the U.P.—Johns Hopkins Program sponsored by the Rockefeller Foundation and WHO. In 1968 he was a recipient of a 3-month travel grant sponsored by the Rockefeller Foundation to visit Schools of Public Health in the United States, Europe and Asia.

Aside from fellowships he was invited to several international meetings and/or congresses. In 1964 he was a delegate to the Fifth Congress of Tropical Medicine and Malaria held at Rio de Janairo. In 1965 he participated in the symposium on cholera held in Hawaii. He has about 24 scientific publications and the most recent just prior to his death was entitled "Serratiosis in a Nursery" published in this issue.

He was a member of the National Research Council of the Philippines, Philippine Medical Association, Philippine Society of Pathologists, Expert Panel on Health Laboratories of the World Health Organization, Philippine Public Health Association, Honor Society of Phi Kappa Phi, Philippine Board of Preventive Medicine and Public Health and many others.

LIST OF SCIENTIFIC CONTRIBUTIONS OF DR. POTENCIANO R. ARAGON

- 1949 A study of caronamide as a penicillin booster. Acta Med. Philip. (3) 5: 45-56.
- 1952 Experience of Filipino children to diphtheria infection. Acta Med. Philip. (1) 10: 359-372.
- 1956 Isolation in the tropics of intestinal pathogens on SS medium without controlled incubation. Am. Jour. Hyg. (3) 64: 281-288.
- 1959 Current status of erythromycin; laboratory and clinical studies on the propionyl erythromycin. Acta Med. Philip. (1) 16 (July-Sept.).
- 1959 Esch. coli serotypes associated with diarrheal conditions in Manila. Journ. Phil. Med. Assoc. (1) 35: 29-24.
- 1959 Cryptoccocus neoformans infection of the brain: laboratory studies. Acta. Med. Philip. 16; 23-28.
- 1959 Studies on Esch. colî scrotypes in animals. Acta Med. Philip. (1) 15; 43-50.
- 1960 Abuse of antibiotics and bacterial resistance. Sci. Rev. (4) 1: 8-9.
- 1960 Bacterial resistance developing from abuse of antibiotics. Phil. Jour. Surg. Spec. (4) 14: 193-196.
- 1960 Clinical and in vitro efficacy of propionyl erythromycin ester. Antib. Med. Clin. Ther. (10) 7: 623-636.
- 1960—Actinomycosis, report of a case. Acta Med. Philip. (1-4) 17: 1961 81-100.
- 1960—The contribution of medical microbiology to the teaching of sur-1961 gery. Acta Med. Philip. (1-4) 17: 53-56.
- 1961 Microbial agents in infectious diarrhea. Jour. Phil. Mcd. Assoc. (7) 37: 514-523.
- 1961 Prevalence, phase types and antibiotics sensitivity of hospitalacquired staphylococci-A one-year study at the Philippine General Hospital. Phil. Jour. Surg. Surg. Spec. (2) 16: 85-94.
- 1961 Propionyl erythromycin ester-laboratory and clinical appraisal. Jour. Phil. Med. Assoc. (5) 37: 315-321.
- 1961 Some aspects of blood transfusion reactions—A study of organism found in 62 bottles of blood. Jour. Phil. Med. Assoc. (5) 37: 315-321.
- 1962 The el tor type vibrio in the recent outbreak of cholcra: Part I; Isolation and identification: Part II; Serological reaction of the cases: Part III; Isolation of the vibrio in food and water. Jour. Phil. Med. Assoc. (12) 36: 983-1002.
- 1963 Agglutinative and antihemolysin titers in serum of cases of el tor cholera infections. Am. Jour. Trop. Med. Hyg. (895) 12: 893-894.

- 1963 Antihemolysin activity of sera of el tor cholera patients.

 Journ. Trop. Med. Hyg. (6) 12: 893-894.
- 1963 Leptospira manilæ, a new species isolated from rat in M Jour. Inf. Dis. (2) 112: 164-166.
- 1963 A new Leptospiral serotype in the pyrogens group, Lepto manilæ 112: 164-166.
- 1964 Serological reactions to el tor type (cholera) vibrio in Proc. 7th Int'l. Cong. Trop. Med. Malaria, Rio de Janeiro, 1 3: 27-45.
- 1965 Studies on leptospirosis: II: Laboratory evidence of huma fection. Acta Med. Philip. (4) 1: 196-198.
- 1965 Isolation of leptospira from rats, dogs and pigs. Philip. Jour 94: 45-54.

DR. POTENCIANO R. ARAGON

REPRODUCTION, LARVAL DEVELOPMENT, AND CULTIVATION OF SUGPO (PENAEUS MONODON FABRICIUS)*

By D. K. Villaluz, Antonio Villaluz, Bienvenido Ladrera,
Madid Sheik, and Alejandro Gonzaga
University Research Center, Mindanao State University, Philippines

THREE PLATES AND FIVE TEXT FIGURES

INTRODUCTION

The present report deals on the reproduction and larval development of sugpo (*Penaeus monodon* Fabricius). The cultivation phase of the project, now in progress, shall be the subject of our next publication.

In the local traditional method of brackish-water fishpond management, sugpo has been considered as only secondary to bangos (*Chanos chanos* Forskål) which of course has been the primary product in such pond. Unlike the bangos fingerlings, which are purposely planted and cultivated with care, generally, sugpo fry enter the fishpond through the main gate only by chance. The average produce per hectare per year is 350 kilograms of bangos and only from 50 to 100 kilograms of sugpo.

Lately, with the introduction of improved techniques in aquaculture, it has been possible to harvest 2,000 kilograms of bangos per hectare per harvest, and in pure culture of sugpo as much as 500 kilograms may be produced. In view of the growing demand of sugpo both in the local and foreign markets, most fishpond owners in the Philippines are now starting to shift to pure sugpo culture. The price per kilogram in the local market is from P6.00 to P10.00, while in Japan (Tokyo Central Market), fresh prawns sell at from 7 to 30 U.S. dollars (\$7.00-\$30.00)1 per kilogram. Japan alone imports around P92 millions worth of shrimps every year. The United States and France may also be considered as potential markets for our sugpo exports.

* Technical Report (July 1, 1969-June 30, 1970). MSU-NSDB Assisted Research Project No. 2.156.

The Philippines has large areas of mangrove swamps, which, in addition to more than 150,000 hectares of brackish-water fishponds, can be developed and/or redesigned for conversion into pure sugpo farms. The climate and general ecological conditions throughout the country is highly favorable, if not most ideal, for prawn culture because this crustacean prefers warm water with high salinity for spawning, larval development and normal growth. In Japan it has been observed that Penaeus japonicus stops feeding when water temperature drops down to 10°C or lower, thereby adversely affecting not only its normal growth but also the development of the prawn industry itself.

In view of all the above-mentioned favorable factors in the cultivation of sugpo in the Philippines, it is envisioned that prawn or sugpo farming will develop into a lucrative industry that would bring in much needed dollars and enhance our economic development. With the establishment of this new industry, continuous supply of sugpo post larvæ or juveniles will be required for stocking purposes to maintain year round harvest not only in maximum quantity but also of competitive quality for local and especially for foreign markets. Nature alone cannot be depended upon to supply all the needed stock of young sugpo for the expected accelerated sugpo-pond development, inspite of the available fishing grounds throughout the country, especially with the ever-increasing problem of water pollution due to poisonous effluents from heavy industries flowing into the same waters where our fishes, including sugpo, live to grow and spawn. Overfishing and the rampant use of dynamite are harmful practices, which adversely affect the lives of fishes in the inland waters. Hence, aquaculturists have to conduct further studies in order to aid nature not only for the purpose of establishing a new industry but also to conserve our sugpo fishery. Results from experiments prove that hatching of eggs under controlled conditions insure much greater survival rate of fry in comparison to the natural conditions.

The artificial culture of sugpo with the help of a hatchery is one of the main objectives of this research. More than 10,000 sugpo fry have been produced from around 1.5-million eggs laid by a mother sugpo in the Mindanao State University

¹ Shigeno, July, 1970.

Marine Research Laboratory. It is expected that as we improve on our hatchery and larval feeding techniques and with the acquisition of much needed additional facilities, we will be able to produce sugpo fry in more substantial quantities.

REVIEW OF LITERATURE

Early workers on prawns in the Philippines concentrated their efforts mainly on the taxonomy and the cultivation of sugpo. Blanco and Arriola (1937) were the first to attempt a systematic study of the prawns belonging to family Penaeidæ. Villaluz and Arriola (1938) made the same study on the other species of the same family known in Philippine waters.

Owing to the important economic role of sugpo in the fishpond industry, several articles about its cultivation had been written. Villadolid and Villaluz (1950) were the first to conduct observations and suggest various improvements regarding the culture of sugpo in the fishpond. Similar works were done by Mane, Villaluz, and Rabanal (1952); Villaluz (1953, 1965); Delmendo and Rabanal (1956); and Cases-Borja and Rabanal (1968) all of which tried to disseminate to fishpond owners improve methods of management necessary for the development of sugpo pond industry.

In Taiwan, Huang (1969) made mention of his observations on the capacity of sugpo fry to stay alive under a very wide range of water salinity, as a means of comparison with that of Penaeus japonicus Bate. Esguerra (1970) in his unpublished report to the Chairman, Development Bank of the Philippines, incorporated the "Feasibility Survey Report on Shrimp Cultivation on the Coast of the Philippines" by Shigeno, who mentioned the fact that sugpo is an entirely different animal compared with Penaeus japonicus. According to him, it is possible that sugpo spawn along the coast of inland waters of the Philippines. Tiews (1958) in his survey of the marine fishery resources reported the absence of gravid female sugpo in the offshore fishing grounds of Manila and San Miguel bays, so he presumed, like Shigeno, that mature sugpo migrate to and lay their eggs along the inland and coastal waters. Our findings tend to prove the truth of the above presumptions as we have collected mature specimens of Stages 4 and 5 (Fig. 1) not only along coastal waters but also inside the fishponds around Panguil and Iligan bays.

MATERIALS AND METHODS

Sugpo samples were gathered from the commercial catches of baklad located along Baroy, Lanao del Norte and Tangub City, Misamis Occidental, both places bordering Panguil Bay. These two places, which are approximately 5 kilometers apart across the bay are considered the major sources of sugpo in the area. In the collection of specimens, great care was taken to make representative samples by taking them at random before the catch were sorted out. From these samples, the following, among others, have been determined: carapace length—total length relationship; length frequency distribution; sex ratio; and ovary naturation.

Regular market surveys were also conducted in different markets around Panguil and Iligan bays in order to gather additional data especially on size measurements and sex ratio. To further augment the data, fishpond owners and caretakers, fishermen, vendors, middlemen, market stall holders and other dealers of sugpo were interviewed regularly.

Aside from the random sampling, live gravid females were collected from different fishing units around the bay and were taken to the MSU Marine Research Laboratory at Naawan, Misamis Oriental. The live specimens were stocked inside aquaria and experimental tanks where their feeding and spawning habits were observed. The periodic moltings of the specimens were recorded to serve as basis for the study of the rate of growth under controlled conditions. Oceanographic records like tidal ranges, water temperatures, salinity, currents, pH, plankton collections, bottom samples, stomach contents and other were also collected in order to determine the ecological requirements of the sugpo.

RESULTS AND DISCUSSIONS

Length-weight relationships. -Several workers considered total length from the tip of rostrum to the tip of the telson as the most appropriate measure of length in prawns. Recent findings [Nomura (1968)], however, tend to show that carapace length, from base of the eye-notch to the posterior middorsal edge of the carapace, is more adaptable than total length. This is so because the rostrum and the tip of the telson are often cut off or easily damaged due to handling. The carapace length, therefore, is adapted in the present

research work as the standard measure of length and the basis for comparison with total length.

Carapace length-total length relationship.—The analysis of biometrical data are shown in Table 1. Data on carapace length were grouped into 3 mm intervals. Regression coefficient of carapace length on total length (Figs. 1 and 2) were based on 510 males and 482 females. In this case, a significant difference between the sexes was found. The equations are:

Males: Y = -10.4458 + 0.29084 XFomales: Y = 9.5 + 0.289 X

where X is the total length and Y is the carapace length both in mm.

Carapace length-total weight relationship.—Regression coefficieint of total weight on carapace length (Figs. 3 and 4) were calculated by least square of the logarithmic transformation using data on 510 males and 482 females, shown in Table 1. In this case, a significant difference was found between sexes. The equations are:

Males: Log W = -2.4344 + 2.592 Log C Females: Log W = -2.77562 + 2.7385 Log C

where W is the total weight and C is the carapace length.

SIZE AND SEX COMPOSITION

Length frequency.—The frequencies for the period from December 1969 to March 1970 are shown in Fig. 5. The frequency groups of males were represented by sharp peaks cwing to their small size range, while those for females were flattened. The shifting of the modal size of female in January may possibly be due to their migration to the spawning area leaving only the immature female prawns and the males. The shifting of the mode from January to March may be considered as their monthly rate of growth. The male mode seems to remain stationary which may mean to suggest that its growth becomes very slow at 36-mm carapace length, the modal size. Further investigations along this line is in progress.

There is a significant size disparity between the two sexes in the 4 months sample, the female attaining a bigger size. This size disparity, however, is common in other penaeids as

Fig. 1. Relationship between carapace length and total length of male sugpo (Penaeus monodon Fabricius) at Panguil Bay.

Fig. 2. Relationship between carapace length and total length of female sugpo (Penaeus monodon Fabricius) at Panguil Bay.

Fig. 3. Relationship between carapace length and total weight of male sugpo ($Penacus\ monodon\ Fabricius$) at Panguil Bay.

Fig. 4. Relationship between carapace length and total weight of female sugpo (Penaeus monodon Fabricius) at Panguil Ray.

Fig. 5. Carapace length distribution of sugpo (Penaeus monodon Fabricius) from December to March 1970 at Panguil Bay.

pointed out by Khandker (1968). From the specimens collected the largest male has a carapace length of 49 mm and the largest female 67 mm. The smallest adult size cannot be considered at this time because the boundary between juvenile stage and adult stage is still to be established.

Sex ratio.—According to Tiews (1958) the sex ratio of the commercial shrimp stocks in Manila Bay is more or less balanced. The present data from Panquil Bay tends to differ

from his findings. In our collection from December 1969 to March 1970 the female dominated the male only in December, while males dominated in all the 3 other months. Sampling is continued to complete the year round monthly sex ratio.

Growth rate.—One basis for making an estimate on the growth of crustaceans is their moltings. The growth of prawns is directly related to the molt cycle, since size increases cannot occur while the animal is still encased in its exoskeleton [Schaefer (1968)]. Preliminary findings show that both the male and female specimens placed in aquaria increase their carapace length by 1 mm every 20 days. Tiews (1958) used the Peterson method and estimated the yearly total length increase of female to be some 7 cm or 70 mm and in the male 3-4 cm or 30-40 mm all in the natural habitat. From these estimates, the prawns seem to grow more slowly in the culture tanks, and faster in the open sea. Sex dimorphism based on Tiews' findings first appear at some 50 mm total length: the present work has not yet established this.

Maturation.—Due to apparent inconsistencies as to the number of maturation stages reported by various workers, the present writers temporarily adopted the five maturation stages set by Rao (1968) for four species of Penaeidæ:

- 1. Immature stage, where the ovaries are thin, translucent, unpigmented and confined to the abdomen;
- 2. Early maturing stage, where the ovary is increasing in size and the anterior and middle lobes are developing;
- 3. Late maturing stage, where the ovary is light green and is visible through exoskeleton and the anterior and middle lobes fully developed,
- 4. The mature stage, where the ovary is dark green and ova larger than in the preceding stage and which is believed to be the last stage of maturity before actual spawning;
- Spent recovering stage, which is distinguished only from the immatu.c stage by the size of the prawn.

Stages 3 and 4 are found only among female specimens with 60-mm carapace length and above. Fig. 2 shows the general appearance of an enlarged mature ovary of sugpo belonging to Stage 4. Kunju (1968) found that the mature and spent Solenocera indica Nataraj have the same size and that in other penaeids spawning follows soon after when once the ovary reaches the mature stage. It is found that the same holds true for *P. monodon*.

Gravid females.—The pregnant or gravid female sugpo are collected from fish corrals popularly known in Panguil Bay as "tower" and from among the hands of gill net fishermen. Prawn fishing is done at night in grounds where the bottom is generally composed of sand and mud, at depths ranging from 3½ fathoms to 26 fathoms.

Unlike the Japanese prawn, the gravid female sugpo does not have the stopper in its thelycum so that it is not easy to determine readily if it has already undergone copulation. Gravid females therefore are selected by examining thoroughly the development of the ovaries through the dorsal epidermal shells. It has been found that females with ovaries which are deep brownish-green in color, thick and well-defined in appearance are apt to lay eggs easily. Under this condition, the spermatophores must have been injected earlier into the body of the females by the males so that the absence of stopper in the thelycum becomes immaterial.

In transporting gravid females from the field to the hatchery, plastic bags measuring 50×96 cm, half filled with sea water and charged with oxygen, are used to contain not more than two specimens. The point is to keep them in healthy condition during transit and our experience shows that even after 12 hours, the gravid females spawn normally.

The spawning tanks.—In the MSU Marine Research Laboratory, spawning tanks of different sizes, shapes and materials are used. There are three marine plywood tanks each measuring $2 \times 1 \times 1$ m with a total holding capacity of 6 m³ of sea water. Another spawning tank is an aquarium measuring $175 \times 54 \times 50$ cm, the front of which is tempered glass 3/16 inch thick.

Sea water is pumped into the tanks during high tide especially when the water is clean and the salinity is high. All the pipes used (for water and for aeration) are poly-vinyl, so with all the valves and other adjustments and accessories. Poly-vinyl is utilized to avoid rust formation which is the result when ordinary G. I. pipes are used. Airstones are used to supply air into the water at the rate of one airstone for every 3 m² of bottom utilized.

Spawning.—There are many biological factors which determine the number of pregnant sugpo to be stocked into the breeding tank. However, in the MSU laboratory, 1 m³ of sea

98, 3 4

water for each spawner is utilized. The gravid females arrive before sunset and are immediately transferred into the tanks with water temperature of not lower than 26°C.

Spawning generally takes place at night, between 8 p.m. and 4 a.m., with water salinity ranging from 29 to 33 ppm and water temperature from 27° to 29° C. On the average, each female prawn spawned $15 \times 10^{\circ}$ fertile eggs. In the case of small and deformed eggs, these were laid in mass and did not become fertilized.

LARVAL DEVELOPMENT

Nauplius.—Sugpo eggs are spherical and isolecithal, with sizes from 0.25 to 0.33 mm in diameter, although majority of them measure 0.27 mm in diameter. Eggs in advanced stage of embryonic development have the appendages prominently developed. The egg membrane is colorless and transparent.

Plate 1, fig. 1 shows the 1st nauplius (N_1) just released from the egg membrane at approximately 12 hours after spawning. The eggs begin to hatch at water temperature ranging from 28° to 29.5°C. The newly hatched nauplii measure from 0.31 to 0.33 mm in body length. Plate 1, figs. 5 and 6 show the 5th nauplius (N_5) that is 0.39 mm in body length and the 6th nauplius (N_6) , 0.41 mm body length, respectively. The 6th stage is characterized by elongated body and also by the bilobed posterior end. In addition, the antennule, antenna and mandible are already very distinct.

The sugpo larvæ remain in the nauplius stage for about 48 to 53 hours, molting 6 times at 28°C water temperature. The nauplii swim in all directions and do not require any outside food as they are provided with yolk inside their bodies to last them through this stage up to the first zoea.

Zoea.—The 1st zoea (Z_1) is shown in Plate 2, fig. 1, with body length of 1.2 mm. The larvæ start to take in food as soon as the yolk in their bodies are consumed. Since the zoea are incapable of hunting for their food, it is necessary to provide them with plenty of planktonic food, especially Skeletonema costatum within easy reach of their mouths.

Plate 2, fig. 3 shows the 2nd zoea (Z_2) with a total length of 1.74 mm, characterized by the stalked eyes and the rostral and supraorbital spines. Plate 2, fig. 4 shows the 3rd zoea (Z_1) with a total length of 2.55 mm, characterized by a dorsal spine on each of its 5 abdominal segments, a pair of lateral spines on the 5th abdominal segment, 2 pairs of dorsolateral and ventro-lateral spines on the 6th abdominal segment, 6th abdominal segment cut off from telson, and appearance of uropods.

The sugpo larvæ in the zoea stage, if healthy, are active and swim in forward movements drawing threadlike faeces behind their bodies. The food of zoea is composed mainly of mixed forms of diatoms, including Skeletonema, Melosira, Thalassiosira, Rhizosolenia, and Nitzschia. After 3 moltings within 6 days at 28°C, the zoea metamorphoses into mysis.

Mysis.—Plate 3, fig. 2 shows the 1st mysis (M₁) about 3.5 mm long, with the 3rd maxillipeds and the 5 pairs of pereiopods developed, the uropods fully developed, and the telson still bilobed. The 2nd mysis (M₂), Plate 3, fig. 1, is 3.98 mm long, with pleopods beginning to grow and the 2 lobes of telson starting to join. The 3rd mysis (M₃), Plate 3, fig. 1, is 4.56 mm long; the chelate ends of pereiopods become visible, its pleopods are fully developed but still nonfunctional, and the 2 lobes of telson almost joined.

The sugpo larvæ in the mysis stage appear as if they are minute shrimps, and they swim in vertical position, standing on their heads. The backward dart is accomplished by bending the abdomen, thus enabling them fast movements from time to time. The food of larvæ in this stage are mixed diatoms, minute zooplanktons composed of trochophore, balanus, veliger, copepods and polychaete larvæ. On the last day of M₃, the rearing tank is stocked with brine shrimp (Bs n) nauplii as food of postlarvæ. The mysis stage lasts 4 days and after the third molt follows the postlarval stage.

Postlarvæ.—The first postlarva (P₁), Plate 3, fig. 6, measures about 5 mm in body length. At this stage, the young sugpo molts every day for the first 4 days and every other day subsequently. The larva remains planktonic until the 5th postlarva (P₅), after which it turns benthic, crawling on the bottom and along the walls of the experimental tanks. Important morphological changes noted are the functioning of the 5 pairs of

pleopods for swimming and the use of the pereiopods for grasping and crawling.

The 8th postlarva (P_8) is 6.9 mm long; postlarva 10 (P_{10}) is 8.8 mm; postlarva 12 (P_{12}) is 10 mm; postlarva 13 (P_{13}) is 11 mm; postlarva 18 (P_{18}) is 15 mm and postlarva 39 (P_{30}) varies in size from 33 to 46 mm body length and from 8 to 12 mm carapace length.

The postlarvæ of sugpo become carnivorous, changing from their omnivorous food habit of the mysis stage. They are given mostly brine shrimp nauplii during the first 4 days of the postlarval stage. Shigeno (1970) observed that *P. japonicus* in its early postlarval stage devours 46-84 brine shrimp nauplii in 24 hours. From the 5th postlarva (P₅) the young sugpo are fed with minced shell meat.

Postlarva 25 (P_{25}) measures about 25 mm in body length At this stage, the postlarvæ are harvested from the rearing tanks and are now ready for stocking in ponds. More than 10,000 P_{25} sugpo fry were produced from the eggs of one mother prawn.

ACKNOWLEDGMENT

Our heartfelt gratitude is due to Rev. Father James McKeough, chairman, Department of Biology, Xavier University, Cagayan de Oro City, for his kind permission to use their microphotography equipment: to the MSU University Research Center and the NSDB for financial assistance which has made this research possible; to the Technical Cooperation Program of the Government of Japan and the Foreign Affairs Department, Republic of the Philippines, for sponsoring the observations on prawn culture in Japan by the senior author; to Congressman Ali Dimaporo for offering the use of some facilities in his fishponds; to the Mindanao Development Authority for its interest in putting up pilot commercial sugpo ponds wherein the results of our research may be utilized; to fishpond owners, shrimps fishermen, shrimp middlemen and vendors whose cooperation in our collection of specimens we highly appreciate; and to all those who in one way or another made possible the completion of this report.

Special mention of our gratitude is due to Director Luz Baens-Arcega and her staff in the Biological Research Center, National Institute of Science and Technology for teaching us the culture of *Chlorella* and for giving us stock of the same.

REFERENCES

- BLANCO, G., and F. ARRIOLA (1937). Five species of Philippine shrimps of the genus Penacus. Philip, Jour. Sci. 62: 219-227.
- CASES-BORJA, P., and H. RABANAL (1968). A review of the culture of sugpo. P. monodon Fabricius in the Philippines. Rome, FAO 2: 111-123.
- Delmendo, M. N., and H. Rabanal (1956). Cultivation of sugpo (Jumbo Tiger Shrimp), P. monodon Fabricius in the Philippines. Proc. 2nd Indo-Pacif. Fish. Coun. (2-3) 6: 424-431.
- ESCUERRA, R. S. (1970). Report on observation trips to Japan and Taiwan on prawn culture. (Unpublished report to Chairman, DRP).
- FUJINAGA, M. (1963). Culture of Kuruma Shrimp (P. japonicus Bate). Curr. Aff. Bull. Indo-Pacif. Fish. Coun. 36: 10-11.
- Guerrero, L. L. (1968). Estudio preliminar sobre las migraciones de postmisis de Penacus vannamei Boone. Rome, FAO 2: 405-413.
- HUANG, TING-LANG et al (1969). Artificial propagation and culture of Penaeus japonicus Batc. Report of Fish Culture Research Supported by Rockefeller Foundation. Chinese American Joint Commission on Rural Reconstruction. Fisheries Series No. 7, Taipei, Taiwan, pp. 66-67.
- KHANDKER, N. A. (1968). Some aspects of the biology of white shrimp P. schmitti Burkenroad in Lake Unare, Venezuela. Rome, FAO 2: 509-512.
- Kow, T. A. (1968). Prawn culture in Singapore. Rome, FAO 2: 87-92.
 KUNJU, M. M. (1968). Some aspects of the hiology of Solenocera indica Nataraj. Rome, FAO 2: 467-485.
- LINDNER, M. J. (1963). Report of the Director of Fishery Research Biological Laboratory. Circ. Fish. Wildl. Serv. Wash. 183: 106.
- LING, S. W. (1969). The general biology and development of Macrobrachium rosenbergii (De Man) FAO Fish. Rep. (57) 3: 589-606.
- LING, S. W. (1969). Methods of rearing and culturing Macrobrachium rosenbergii (De Mann), FAO Fish. Rep. (57) 3: 607-619.
- MANE, A., D. K. VILLALUZ, and H. RABANAL (1952). Cultivation of fish in brackish and estuarine waters in the Philippines. Phil. Fish. Handbook, pp. 132-141.
- MIEXNER, R. (1968). Reproduction of the sand shrimp, Crangon crangon L. Rome, FAO 2: 259-264.
- Morejon, N. C., and I. Dadima (1968). Relaciones entre largos y pesos de camaron capturados on la plataforma Cubana, Rome, FAO 2: 539-548.
- Munro, I. R. (1968). The prawn its habitat and life.. Aust. Fish. News 27: 25-27.

98, 3-4

- Nomura, H., and J. F. Filho (1968). A shrimp exploratory survey in north-eastern and northern Brazil, with some biological observations on Penaeus aztecus Ives, Rome, FAO 2: 219-231.
- ORTIZ, J. A. M. (1968). Frequencia de camaron postlarval (Penaeus Fabricius 1798) relacionada con la temperatura y salinidad en la costa de Ciudad Madera, Tamaulipas, Mexico, Rome, FAO 2: 321-329.
- Palacios, M. O. (1968). Estudio de la biologia del Camaron Cafe, Penacus californicasis Holmes. Rome, FAO 2: 331-355.
- Rao, P. V. (1968). Maturation and spwaning of penaeld prawns of the Southwest coast of India. Rome, FAO 2: 285-301.
- Schaefer, H. J. (1968). The determination of some stages of the moulting cycle of P. duorarum Burkenroad by microscopic examination of the setz of the antopodite of pleopods. Rome, FAO 2: 383-387.
- SHIGENO, K. (1970). Problems on prawn culture in Japan. OTCA, Tokyo, Japan, pp. 1-28.
- TIEWS, K. F. W. (1968). Report to the Government of the Philippines on marine fishery resources. Phil. Jour. Fish. (2) 6: 154-156.
- VILLADOLID, D. V., and D. K. VILLALUZ (1950). The cultivation of sugge, Penaeous monodon Fabricius in the Philippines (paper presented before the second meeting of IPFC at Cronulla, Sydney, NSW, Australia.
- VILLALUZ, D. K., and F. ARRIOLA (1938). Five other known species of Penaeus in the Philippines. Philip. Jour. Sci. 66: 35-41.
- VILLALUZ, D. K. (1953). Fish farming in the Philippines. Manila: Bookman, viii + 336 pp.
- VILLALUZ, D. K. (1965). General information on shrimp (sugpo) cultivation in the Fiblippines, 12 pp. (Mimeographed.)

TABLE 1.—Comparative data showing the relationship among carapace length, total length and total weight, both observed and calculated, of the male and female sugpo (Penacus monodon Fabricius).

Number Size		Fedra	ency	Mean	C. L.	Mean T. I Me		Mean T. W.		Cilculated T. L.		Colcusated T. W.	
- gr ti	PTS	_M	F	M	Ic	M	F	М	F	М	F	M	F
1 23 2			2	291,773	mm : 23 50	nim	771 m	gm	gm	71.275	772775	g in	Qm 11 gcm
2	8 1.7 1 3r 3 33 7 36	7 18 108 210 118	3 17 5× 193 114	27 86 30 39 38 42 86 04	26 66 30 4 33 49 35 02	130 00 140 58 152 94 179 84	116 50 123 00 143 38 148 32 158 29	15 827 20 770 27 1 2 82 665	13 70 14 5 1.86 25 69 31 69	131 697 140 406 110 829 139 833	114 18 135 12 138 30 118 06 157 50	16 7993 20 6865 26 3 04 3. 8405	11 2642 13 4369 13 8414 24 6(/3 3- 7011
7 41 4 8 41 4 11 7 7 7 7 8	42 45 48 51	10 10	59 4× 22 19	41 41 42 48 00	39 05 41 50 41 98 48 04 56 63	170 90 180 61 186 94 200 62	171 35 179 79 185 35 199 8 204 15	89 269 47 494 (2 825 68 590	38 77 45 59 54 36 69 36 76 21	17 905 178 719 189 127 200 955	168 0- 117 85 188 51 119 16 208 06	38 4088 4 5827 1 4284 65 7255	38 t 27 46 3+20 55 2t00 67 6233 77 6664
12	€0 63	 	7 8		53 73 57 00 60 43 63,10 66,00		214 68 228 81		90 76 50 48 120 23 148 84		21× 78 230 10 211,97 251 52		91 4,95 107,091 125,777 142 856

TOTAL: Male, 510; female, 482.

Table 2.—Characteristics of the larval stages of sugpo (Penaeus monodon Fabricius): Nauplius stages.

Stage	Length	1st Antennæ	2nd Antennæ	Mandible	Posterior end	Median cyc and labrum	Rudiment, ry structures
1st Naup.14s (N.)	21t %	Uniramous; 6 setae, 2 long and 1 short at 1 p and 1 long and 2 short at sides	Bramous, signty longer than end up dits, Exopodit, 5 setae- 2 long at tip and 3 long at sides, Endept dits, 3 setae 2 long at tip and 1 sh ut at side	lorger than ex po- dite, 3 lorg termi- hal setio, brid pod te, 3 long ter	Flat end, Spire formula, 1, 1, spines- s, ghtly flexed dersally.	Median eye and lab- ram present	N me
2nd Naup us. (N:	0 33	Unramous, A setue 2 long and 1 short at t p and 1 long and 2 short at sades, setae plu- mose	Biramous, Evopod to 6 setac, 2 long and 1 sb rt at tip are 3 long at sides; Endopod te, 4 se- tic; 2 long and 1 sb rt at tip and 1 sh rt at tip and 1 sh rt at side; long set plamose	Biramous, Expood to Hong turmina, so tay, Endopodite, 3 long terminal se- tae Setae plaraise.	Flat end, so he fer- mula, I + 1, spine surrounded by short I at sharp spinules.	Med an eye and la- orum presert, A pair of it distinct frontai organs at antern r end of body.	Rudin enatry struc- tures at vintra, side below, abrum faintly visible.
3rd Nauplus,	0 36	Uniramous, 5 sotar, 3 long at tip and 2 long at sides, 100g sotae plumose	Bramols, Exopo- dite, 7 setter 8 long at tip and 3 iong at tip and 1 stert at size. En- diporte, 6 setter 3 shert at sizes Long at tip ind 3 shert at sizes Long sette, primose, segmentation of exception and protop of te funt- y v.s bla.	Biramous, Exopo- due 3 long term- nal serie; Endopo- dite 3 tong termina, serie, long setar plum- mise, puter succof protopod te slightly swollen	B furcite, Spine for- mula 3 + 3, long center spines plus miss.	Median cyn and lab- rum pers st, Lab- riam faint, y ap- pe ir below iai rum	Rudiments of 2 pairs of maxiliae and 1st 2 pairs of max al- 1 eds appear Letow rapridio

Table 2.—Characteristics of the larval stages of sugpo (Penaeus monodon Fabricius): Nauplius stages—Continued.

btage	Length	1st Antennæ	2nd Antennæ	Mandible	Posterior end	Medizn eye and Jabrum	Rudimentary structures
4th Naupaus_ (Ne,	0 33	Uniramous; 5 setae: 31 ong at 11p and 2 short at sides; se- tae plumose,	Biramous; Exopodite 7 set.ec; 2 long and 2 short at tip and 3 long at tipe, 6 distinct segments; Endepo- cere, 5 action, 3 long at tip and 2 short at side; pro- topodite, 3 dis- timet segments; long set.ec plum- maso.	Biramous; Exopo- date, 3 long termina setae; Endopodite, 3 long terminal setae; Ex modific and endopodite distructly & pr.d- ed from protopo- date; Ventral side of mropodite swell; Long setae plumess	Bifercate; Spine for- neula 4 + 4, long center spines plu-	Median eye and Jabrum still persist.	Rudiments of 2 pairs of mix.l, it and rol 2 p. irs of max.l peds bir imous
6th Naup.rus_ (Ns)	mm 0.39	Uniramous: 6-7 so- tac: 2 long and 1 short at tip and 3-6 short at sides; 2-2 tiny spinos at sides; Numerous faint articulations of miner end, setae plume 82,		dite; Semispheri-	Bifurcate; Spina for- inul:6 °, 6; long- er apines plumose	Median oyo, lahrum and lahrida stiri pocsist	Rudiments of 2 pairs of maxing and lat 2 pairs of maxin- peds (in gated) Postedor intight of sheaf 1 id aligns with the radiment of 1 at maxilia; Sight concavity of anterior and.

225

pment
Ş
Sugpo

Table 2.—Characteristics of the larval stages of sugpo (Penaeus monodon Fabricius): Nauplius stages—Continued.

6(! Naup! us. (Ne)	0 41	Universetts 6-7 se- tae: 2 ing and 2 short at tip and 2-3 sh rat sades, 2-1 th ny spines at sides, 9-11 sh rt ba s. sigments and 1 org termital seg- mert, long setae plantese	an 12 short at sides, 9 septiments, End pidite 6-7	Biramous, Exopodite and end p ditreach soll Lars 310 g p 'umose trous, as et c, butirs, de, practically emitty, all mistetially melifective for swimming, Rudment of a short, unraneut, and to thee martiale visit, o und under catalle.	Spine formula 7 + 7 Longer spines p. umose	Med an eye, labrum a diacrium s. l pros et, a fa nt mark u mid nos terior margi of a labrum	Radimerts of 2 pairs of mass, e and is. 2 pairs of mas, lipeds much clargard and with the years. Placer with the of a single finding description of the mass of the pair of a single the mass of the m
--------------------	------	---	--	--	--	--	--

		Til	ME		ROULS				
WORK ORDER NOMPER	Specialty Number	STARTED	Stopped Or Finicaed	CTANTIT Produced	Total	CHARGE-	Non- Cuarga-		
		_							
	 	<u> </u> _	_		<u> </u>	<u> </u>			

TABLE 3 .- Characteristics of larval stages of sugpo (Penaeus monodon Fabricius): Zoea stages.

Stage	Longth	Carapace and restrum	1st Antenna	2nd Antonna	Mandible	lat Maxida	2nd Maxilla	1st Maxi(pade	2nd Maxillipedo	Abdomen and telson
1st Z or.	77 22 1.2	Curapace ir- regular ce- tagen in shape; Nau- plute eye still present 6 therax so- mites pres- ent.	3 argmer(a: latermer, t composed of 5 still smaller arg- ments; 3 long setae at tip and 3 long and 3 short at sides.	Protopodite: 3 segments: Exopodite: 7-8 seg- ments 5 segments long setae at Up, 6 long and 1-2 short sates at sides; End podite: 2 segments, 4 long and 1 short sates at t.p, 2 . mg and 2 sa. it sets at sides.	Exopodite and Endopo- dite disap- apear, Mas- ticatory portion ap- years,	Pretopodie: 2, obes or endites at inner side, 7 sathe at 1ste adre 5 seene at second, fix- opodit,; small and sphereal, 4 solm; Endopodite; 3 segments, 3 setwat 14 segment 5 setwat 2nd and 3rd segments	Protopodite:	Protopod, te: 2 segments, 4-0 set to or on 1st seg- ment 12-1st state on 2 id sogment; Expodits: shitt form endopodite, 3 settent ondopodite, to, 4 st out, 7 sidos, endopodite 4 st, mints 5 size at ap of cast sigment 2 a site for each of s dis of 1st 371 seg- ments	at sides; Exopodite: slightly shorter than	Abdominal somitos absent; 2 lobes at teason go parated by semispherca. notch, Spino farmula 7 + 7.

Table 8 .- Characteristics of larval stages of sugpo (Penaeus monodon Fabricus): Zoea stages-Continued.

		 , way				4		
2nd Zcg. 1,74	Leng restrum, slightly curved at list tip; A pair of supracultial spines hearling 2 tiny spines of thoir tips; A pair of compound cyta; Itudiments of 3rd mixinipede and 6 pairs of theracle appendages uppour.	Same as Zi	Samo as Zi	Same as Z ₁	Samo as Z ₁	Same as Zi	Samo as Zi	5 abdominal somitos distinct bound ary betwee 5th somito and teison not discornible; Spira formula; 7 + 7,

TABLE 3 .- Characteristics of larval stages of sugpo (Penaeus monodon Fabricius): Zosa stages-Continued.

Stage	Lergth	Carapace and restrum	Antonna	2nd Antenna	Mandib.o	lat Mazilia	2nd Mazilla	1st Maxill.pede	2nd Max inpede	Abdomen and telson
3rd zcca (Za,	2,55	Small spines at tips of spreaching the spreaching spreaching of 6 p. its of 6	5 smal, heard segments combined internal in a last segment.	Same as 71 -	Mo, ar process	2 nees or erdite pro- trud.	Same as Zt .	Same as Z ₁	- Same as Z ₁	A sm. il mea an dorst spine each from 1st to 5tm al dom nou s. m. c. A pour i first territorial spine at its synter that an about a first and to me and another part of controlaterial spine. Uropod appears blramous; Excapodite sight of 7 setse at top and side of the formula at the sight of the sight of the setse at the and sight of the setse at the the setse

Table 4.—Characteristics of larval stages of sugpo (Penaeus monodon Fabricius): Mysis stages.

Stage	Length	Carapace and restrum	Ist and 2nd Anternæ	Mand, ve	lst and 2rd Max. Iœ	1st, 2nd, 3rd Maxill peds	Peresepods	L'ecbeqa	Abdeminal segments	Telson and ur pec
1st My- s,s (M ₁)	3 5	Supra-orbital spresshink, A par of anter lyter ow the nudde of anterior metals of crespace, A par of hypoth spines appear beland eye and set hare, from anterior margin of catapace, Rostinn sligh ty longer than oye-stalk, with no tooth or dorsals de	Ist Antenna 3 segments, so er: setpe; 1st seg- ment I ang- est, er, ge of Lith Catside bags of Ist seg- ment Cine spine at ventral side of Ist seg- ment 2 w. nefte at dista, end of sra seg- ment, cut- er Lranch about twice as long as itiner, with 6 sim is sec- twatend, 2 simple sec- twatend, 2 nd Antenna Protopodite 2 segments in er depodite and exep- ditt disap-	Number of small teeth arcre.ses. A small per trus on upper mere in a feed-wide	1st Maximit 2nd 10 c of prote pod. 1e pr trudes, 2nd Marina Ex poditi much developed than 1,7 3rd 2ces, 10.0ng p.utm se sette	1st Max in- processing some as in the 200, stag so 2nd Maxair- processing some as in the 2s comment, had be probe to 5 segments, Expodue 5 segments, Expodue 5 sected at the Endopedite 1 3 sected of 1st 4th searments, 15 setted to pof oth segment.	Protopy d to 2 segments Extrapodate Longer than end produc, Excapadate 4 long setze at end, 3 long setze at stars I de de de de de de de de de de de de de de de de de de at long s mple setze at long s mple setze at long	Pleopods app or as to ds at ventral s de of at do- rocu.	Spines on 1st and Indiany ments disappears, A core some opposits on mediant of 6th segment at postero-derivations, spines at a segment about the segment and telesor at middlessor at margin trailing and telesor at middlessor at	He sh of the letter la. cr. lst and 2nd spines, Spines I randa, 8 to get the letter la. cr. lst and 2nd spines, Spines I randa, 8 to get the letter late late late late late late late late

Table 4.—Characteristics of larval stages of sugpo (Penaeus monodon Fabricius): Mysis stages—Continued.

Stage	Length	Carapace and rostrum	lst and 2nd Artennæ	Mand.ble	1st and 2rd Maxæ	1st, 2nd, 3rd Max.l. peds	Perest pods	Picopods	Abdom nal segments	Terson and Gropod
nd 13 s.s M:)	77 W 3 92	Carapace same as n lst Myss. Rostrum septy l. nger than tyest.lk. One tooth appears at derse, side I rostrum	pear, Fxo- podite at- tenad, 10- 14. orgplu- miss set v at tp and sides Ind. ped.(te- shorter than exep dite, rid ve- shape, tip and 3-5 sin p.e set v 1 side 1st Anienna- the in hir lianch at the ena ef the 3rd seg ment sawo ut 2 3 that fifte outer 2rd Anien Da. Small spire.p- per se it the 2rd deg nert of tre prespod te Ex pridite turnin tes with, soleri spire at the outer tip; has 17 18 set u., the t p urd en the sides, Ludepedite	A smell pre- trus en at the upper margin ef the pedun- cle grows longer.	ist Max.lla s: re as lst My.s 2nd Max.lla 16 lary setæ ar und the exopo- d te	1st Max the pede: Same as 1st myss 2nd Maxvil- pede: Same as 1st Mysis 3rd Max the pede Same as 1st Mysis	The erdopodites of each approduce of each approduce, first 3 pairs bring segmented anto 4 and the remaining 2 pairs anto 5	Pic pods a ro safting rore pro- rounced ard e.anga ted,	3rd and 4th stgm rts s.grt.y c n.cd a hump dor- sa.ly.	A Telson. The t.p of r vica is bow same evil as 2nd sp.n Spine formula: 8.8 B Uropod. Fx poc., telso bears 19 21 set at the distar and lateral margan. Endopedite h s 17 19 setw.

0670S1	3rd Mysis (Mi)	4 56	Caravace, same as 2rd mysss. Rostrum; a.most eq.a.to eo.csto.k, ore dorsal tooth.	is 2 3 as 2 segmer is on small cx. podity, ard setae are lacking. Ist An erna, other tys. ble at base, nere branch at end of 3rd segmert longer or as long as the outer branch. Outer branch 2 faint segments; 6 simple setae at tip and 3 on the sides; nere rements, 4 simple setae at tip. 2nd Anternat Exopodite, 21 23 setae, endopodite, 4 faint segments, 2 3 tiny setæ at end	1st Max I.a. I ropodite disappears 2nd Max as: 19-20 long sed at exo- podite	Ist Max di- pene Same as in 2rd Myses 2nd Max li pedr. Endopod te segmente, numcrous sete. 3rd Max in- pene San e as in 2nd Mysis		Elongated. 2 segnmons, 2 dinyse- twatt.ps.	at 5th so	Telson: Pesterior morigin aimost fait. Spine formia. 8 + 8. Uropod Bxepod.te with piummose; 22 24 sets at distail and in teral margin, Endopodite with 20 22 plumose setse.
--------	----------------------	------	---	---	--	---	--	---	-----------	--

Stage	Ler gth	Carapace ar d rostrum	1st and 2nd Antennae	Mandible	1st and 2nd Max.llae	1st, 2 d, 3rd Max l., cds	Pare opods	Picopods	Abd, m hal segmer is	Telsor and uropod
Tet Pest- lerva (f i)	mm 4 84	Carapace same .sib Jrd my sis, Restrun about 4 longer than (ye stalk, with 2 dor sa teeth,	Ist Antenna otolith vis le at hav, a samp ventral sine persus and Astenna same is an 3rd mysis.	Terth st grasp gr.sp i g si&c lessened in nur- ter but sharpened	Ist Max	1st Mex.lippede 2 to.ce 2 to.ce 2 to.ce mar side (f. p. dunce 1st lo.ce suid v. drd 1oto 2 more loves. Excq tite 5. Evant 1 f. Frand f. f. Frand p. die unsegm ning and draft the edition and Miril, pt. 3 state 1 ter 1 ter 1 state 2 f. draft withous ser 1 to frand and pring and and pring and L. and fit Exp and L. and fit Exp and L.	Ist 2nd and 3rd lere, peccs 1 durcle with 2 joints white enjoy pothet with 5 joints 4th and 5th joints with fewishori seta, eich famache- 1. hamp- dietrses should with sharp shert seta, row ing de sely crew a row- ing de s	P.eopods here two I with a 6 long seta	Sin es same	Telser spine formula 8 * Asnal r thist pristit on n due part of tp 1 rapor. F d p die with 22 23 partistic to Expo- dae 2 21 22 plumose a- twe

ILLUSTRATIONS

PLATE 1

(Nauplius stages showing parts in detail.)

- Fig. 1. First nauplius, ventral view.
 - 2. Second nauplius, ventral view (Inset: seta enlarged.)
 - 3. Third nauplius, ventral view.
 - 4. Fourth nauplius, ventral view.
 - 5. Fifth nauplius, ventral view.
 - 6. Sixth nauplius, ventral view.

PLATE 2

(Mysis and postlarva stages showing parts in details,)

- Fig. I. First zoea, dorsal view.
 - 2. Main parts of first zoea.
 - 3. Second zoea, dorsal view.
 - 4. Third zoea, dorsal view.

PLATE 3

(Mysis stages showing parts in details.)

- Fig. 1. The different substages of mysis.
 - 2. First mysis, ventral view.
 - 3. Main parts of first mysis.
 - 4. Main parts of second mysis.
 - 5. Parts of third mysis.
 - 6. First postlarva, ventral view.

PLATE 2.

PLATE 3.

CLINICAL EVALUATION OF NIST-PRODUCED ALLER-GENIC EXTRACTS, I

SKIN TESTING WITH POLLEN EXTRACTS (GRASSES AND WEEDS)

By ELEONORA P. DACANAY and LOURDES M. ARTIAGA National Institute of Science and Technology, Manila

Since 1906, when von Pirquet and Schick (1951) described the allergic reaction and introduced the word "allergy" into medical literature, research along this line has made remarkable progress. This has been true for countries in the western hemisphere, notably in North America and Europe, where extensive investigations concerning the relation of locally existing airborne pollens to prevalent allergic respiratory diseases by skin testing methods have been done. [Vaughan and Black (1954a), Duchaine (1959).] Other countries like Israel, India, and Japan have also made significant contributions in recent years. [Horiguchi and Saito (1964), Kantor et al (1966), Matsumara et al (1969), Shivpuri and Dua (1963).] However, in the Philippines, this has been a much neglected problem and there is hardly any literature available on this subject.

A more intensive study of this particular aspect of allergy should be made in our country for several reasons. Allergic respiratory diseases in the form of rhinitis and asthma occur very frequently here as shown by actual clinic experiences and hospital records. [Castinlo-Ochoa and Agbayani (1968).] However, there are still no specific figures available on the prevalence rate of such diseases in our population. Since airborne pollens constitute an important cause of respiratory allergies, observations should be made on our own local pollens because of the differences in certain vegetation between the countries where most of the studies have been made and ours. Such information is necessary for the formation of a correct etiologic diagnosis in patients afflicted with allergies especially

of the respiratory type, if these individuals are to get the full benefit of specific treatment. Also, with wider and rapid population movement as a result of more modern methods of travel and increasing worldwide emphasis on tourism, knowledge of inhalant allergens prevailing in a given locality becomes highly important from the standpoint of exposure and consequent medical management of the allergic individual who wants to travel or change his place of residence.

Realizing the need for such investigative work, the Allergy Unit of the Medical Research Center, National Institute of Science and Technology, has begun a series of studies with this specific problem in mind. The following work being presented was undertaken with the following objectives: (1) The determination of the indigenous grasses and weeds in Manila and its immediate environs which are important in the causation of prevalent respiratory allergic diseases by skin-testing methods on a larger number of individuals with allergic rhinitis and/or allergic asthma, using NIST-prepared pollen extracts from these plants; (2) the determination of the suitability of these extracts for diagnostic purposes from the standpoint of efficacy, potency, and safety.

MATERIALS AND METHODS

Pollen extracts.—Extracts from the pollens of 17 grass species and 5 species of weeds which were found to be widely distributed and abundant in Manila and its immediate surrounding areas were used as test materials. These consisted of the following:

Grasses (uncultivated): Bermuda grass [Cynodon dactylon (L.) Pers.], yard grass [Eleusine indica (L.) Gaertn.], talahib [Saccharum spontaneum (I.) subsp. indicum Hack.], para grass [Brachiaria mutica (Forssk.) Stapf.], foxtail [Pennisetum polystachyum (L.) Schultz.], Java grass (Polytrias praemorsa Hack.), Guinea grass (Panicum maximum Jacq.), kogon [Imperata cylindrica (I.) Beauv.], carabao grass (Paspalum conjugatum Berg.), crab grass (Digitaria species), batad-batadan [Sorghum halepense (L.) Pers.], alabang-x [Dicanthium aristatum (Poir.) C. E. Hubb.], natal grass [Ryhnchelytrum repens (Willd.) C. E. Hubb.], amorsecos (Andropogon aciculatus Retz.).

Grasses (cultivated): rice (Oryca sativa Linn.), mais (Zea mays Linn.), sugarcane (Saccharum officinarum Linn.).

Weeds: urai (Amaranthus spinosus Linn.), mutha (Cyperus rotundus Linn.), tridax (Tridax procumbens Linn.), makahiya (Mimosa pudica Linn.), sunflower (Tithonia diversifolia A. Gray).

Of the aforementioned anemophilous grasses, Payawal and Laserna (1965) found that the most widely distributed are Bermuda grass, yard grass, and talahib while kogon, para grass, foxtail, carabao grass, Java grass, and Guinea grass are moderately abundant in Manila and its suburban areas.

The concentrated extracts were prepared according to the method described by Laserna and Manalo (1966). Briefly, this was as follows: 4 grams of pollen were macerated with enough Coca's solvent, toluol placed on top, and the mixture stored at room temperature for 3 days. This was then decanted and made up to 100 cc with Coca's solvent, passed through a Berkefeld filter, and sterility tests done to ensure freedom from contaminating microorganisms. The extract was standardized according to protein nitrogen content. Nitrogen was determined in the protein fraction by the micro-Kjeldahl titrimetric method. The concentrate material containing 5,000 PNU/ml was used for the intradermal tests. Evans buffered saline solution 2 was used as diluent for the intradermal test solutions.

Test subjects.—One hundred twenty individuals with allergic rhinitis and/or allergic asthma were used as test subjects. Most of them came from Manila and the nearby suburbs. All were Filipinos except for two Caucasians who had been continuously residing in the Philippines for the last 6 to 10 years. There were 68 males and 52 females with ages ranging from $4 \%_2$ years to 67 $\%_2$ years. Duration of allergic respiratory disease before inclusion into the study ranged from 3 weeks to 51

Alkaline extracting fluid (Coca) [Vaughan and Black (1954b)].

NaCl	5.00	g
NaHCO ₃	2.75	g
Phenol	4.00	СC
Distilled water to make 1000 cc.		

Stock solution No. I

² Buffered saline (Evans) [Vaughan and Black (1954b)].		
NoCl	50. 00	g
KH-PO4	3.63	g
Na ₂ HPO ₁ 12H ₂ O	14.31	g
		_
Distilled water up to 1000 cc		

Carbolic acid, 4 per cent

The extracting fluid is made by mixing 1 part of Solution I, 1 part of Solution II, and 8 parts of distilled water.

years. Average duration of allergic rhinitis was 10 ¹/₁₂ years and asthma was 9 ⁸/₁₂ years. About one-third of the subjects (31.6 per cent) had an associated history of urticaria or other forms of allergic dermatitis; 103 patients (85 per cent) gave a positive family history of allergy.

Diagnosis of allergy was made after a positive clinical history and the presence of past and/or concomittant allergic symptoms and signs supported by results from physical and routine laboratory examinations including routine blood count, urinalysis and feces examination (the latter two when indicated). Blood smears and nasal secretions were also examined for eosinophil content.

Skin test methods.—Direct skin testing was done, using the scratch and the intradermal methods.

Scratch test. After cleansing the flexor surface of the forearm or the back with alcohol, test sites at 1-inch intervals or more were marked with a skin pencil. Scratches from ½ to ¼ inch long were then made directly opposite the marked sites with a sterile skin needle. A drop of concentrate extract was then placed on each site. A control test using the extracting solution was also made at the same time. All these tests were made at 1 sitting. Readings were taken after 20 to 30 minutes following the criteria of Vaughan and Black (1954 c):

Negative—No reaction or as determined by the control site or the general average of nonreacting scratches.

Positive—I + if the wheal is twice that of the control reaction.

2 + larger wheal without pseudopod formation

3 to 4 + reactions with pseudopods which are larger in size and extent.

Intradermal test. After cleansing the flexor surface of the forearm with alcohol, 0.01 to 0.02 ml of the allergenic material was injected intracutaneously from a tuberculin syringe, making a pin-head sized wheal. A vertical row of tests, numbering from 6 to 7 about 2 inches apart were made on each arm. Starting with extracts of each pollen allergen containing 10 PNU/ml of solution, this was followed by a solution containing 100 PNU/ml of the same allergen if the results from the first series of tests were negative.

Readings were made after 5 to 15 minutes following the previously mentioned criteria of Vaughan and Black. The positive reactions were then classified according to the criteria of Cooke, Vander Veer and Bernard [Vaughan and Black (1954d)] into: (1) Very sensitive or strong reaction if positive to a dilution of 10 PNU/cc of solution: (2) Moderately sensitive reaction if positive to a dilution of 100 PNU/cc of solution.

RESULTS

Table I shows the number and percentage of allergic individuals with positive skin reactions to 10 PNU/ml and 100 PNU/ml of each pollen extract tested, *i.e.*, the number of individuals with very strong and moderately strong positive skin tests respectively.

Table 1 .- Results of skin tests (120 patients).

	Scratch test	Intradermal test				
Local and scientific names of NIST** p.dieu extractes	Total no. possitive tests	No. positive test 10 PNU /cc	No. posi- tive tests 100 PNU /cc	Total no. positive tests		
	Per cent			Per cent		
1. Yard gr iss (Element indica (L.) Guerta.) 2. Amorsoco a Intropopa accadatas Rotz.) 3. Ala 1 gx (D.conthiem aristatum (Pout.) C. E. Hubb.) 4. Lr., ** Amarcathus spinosos Lan.) 5. Ciri no grass (Paspalam cotyng dum Bert.) 6. bermuli grass (Paspalam cotyng dum Bert.) 6. bermuli grass (Paspalam cotyng dum Bert.) 7. Crab grass (Binitara sp.) 8. Para grass (Brach'aria ambea (Forsk.) Stapt.) 9. Mutha* (Cyperas rodundus Linn.) 10. Nata grass (Panch'aria ambea (Mild.) C. E. Hubb.) 11. Guine, grass (Pancam maxiania Jacq.) 12. Java grass (Pancam maxiania Jacq.) 13. Java grass (Pancam maxiania Jacq.) 14. Java grass (Pancam maxiania Lack.) 15. Sinflower** (Tithonia diterrifolia A. Gray) 16. K. gon (Imperata cylindrica (L.) Beauv.) 17. Masanya* (Hanora pudica Linn.) 18. Mais Zen mays Lann.) 19. Mais Zen mays Lann.) 20. Rice (Gryza satica Linn.) 21. Foxtan (Fennischun polysiachyum (L.) Schultz.) 21. Sugar cane (Succharum officararum Lann.)	11 (9.2) 3 (2.0) 0 (0) 2 (1.6) 3 (2.5) 1 (0.8) 4 (3.3) 12 (10.0) 0 (0.8) 5 (4.2) 0 (0.8) 1 (0.8) 1 (0.8) 1 (0.8)	36 39 31 11 21 12 12 14 11 10 9 7 11 4 6 10 4	41 42 36 57 38 42 42 42 42 10 10 16 13 13 10	77 (64 2) 72 (60 0) 70 (58 3) 68 (61 7) 67 (57 8) 64 (53 8) 63 (52 5) 58 (48 3) 48 (40 0) 46 (38 3) 41 (31 2) 36 (30 0) 34 (28 3) 29 (24 1) 21 (77) 20 (18 6) 19 (15 8) 17 (14 1) 16 (13 3) 14 (11 7)		

A weed.

^{**} Natonal Institute of Science and Technology, Manila.

More than half of the individuals tested or 52.5 per cent and above were found to react positively to six grasses; namely, yard grass, amorsecos, alabang-x, carabao grass, Bermuda grass and crab grass. Yard grass gave the highest percentage of positive skin tests (642 per cent). Among the weeds, ural was found to be positive in 56.7 per cent of the test subjects. Other common grasses giving + skin test reactions in 34.2 to 48.3 per cent of the patients were Guinea grass, natal grass, and para grass respectively. Mutha, a weed, was found to give + skin tests in 40 per cent. The rest of the grasses and weeds tested; namely, Java grass, batad-batadan, tridax, sunflower, kogon, makahiya, talahib, mais, rice, foxtail, and sugarcane gave + skin tests in less than a third of the tested individuals. Among these, kogon gave + skin tests in 17.5 per cent while talahib gave + skin tests in 15.8 per cent of the test subjects. Sugarcane gave the lowest number of + skin reactions (11.7 per cent) among the allergic individuals tested.

Scratch tests done on all the 120 test subjects gave + results ranging from 0.8 per cent for Guinea grass, sunflower, talahib, mais, rice, and foxtail to 20 per cent with alabang-x. Negative scratch test results were obtained with extracts of crab grass, tridax, and makahiya.

No untoward reactions, local or systemic, were observed in any of the test subjects on scratch and intradermal testing with the pollen extracts studied.

Negative skin tests were obtained on 18 normal individuals with no allergic personal and family history, using the same pollen extract materials.

Other observations: Blood eosinophilia ranging from 5 to 31 per cent was found in 59 out of 110 allergic individuals (53.6 per cent) with no evidence of parasitic infestations. Nasal eosinophilia occurred in 71 out of 95 test subjects (75.6 per cent) whose nasal smears were examined.

DISCUSSION

It is a well-known and proven fact that pollens constitute one of the principal outdoor inhalant allergens which cause allergic respiratory disease. For a particular pollen to be considered allergenic, aside from its being wind-pollinated, buoyant so that it is easily airborne and produced in large quantities with a widely and abundantly distributed plant source, it must also be shown to cause allergic disease [Vaughan and Black (1954e)]. The allergic response is produced by the release of vaso-active substances as a result of an enzyme-mediated reaction which is set off by antigen-antibody interaction [Austen and Humphrey (1963)]. In the atopic person, this increased amount of tissue-bound antibody is known as skinsensitizing antibody or reagin. The skin test is a most convenient immunologic method of showing the presence of specific skin-sensitizing antibodies against allergen. A positive skin reaction, being immunologically specific, is a strong, presumptive evidence of the possible causal allergenic relationship between the symptoms of the afflicted individual and the particular pollen giving the positive test.

In a study of the nitrogen content of extracts from the pollen grains of mais, urai, foxtail millet, Java grass, natal grass, makahiya, and sunflower, Laserna et al (1960) mentioned that positive clinical tests were obtained for the first time from their prepared extracts by Rotor.3 Earlier in 1958, in a preliminary report on the nitrogen content of talahib extract, Laserna et al again stated that the latter extract gave positive skin tests when clinically tested by Sevilla and his co-workers,4 a finding also confirmed by Rotor. However, further details on these clinical observations have remained unpublished. Later in 1966, Vivera made a preliminary report of skin testing results on 34 allergic individuals using NISTprepared pollen extracts from Bermuda grass, yard grass, talahib, foxtail millet, Java grass, batad-batadan, alabang-x amorsecos, natal grass, kogon, mais, rice, sugarcane, mutha, urai, and tridax. He found that most of these extracts gave positive skin tests except that of natal grass, mais, rice, sugarcane and tridax. The most number of positive reactions were obtained with Bermuda grass and urai weed.

The observations obtained in our study, which was done on a larger group of individuals with allergic respiratory disease, help to answer a long-felt need for more precise and substantial information regarding the allergenic relationship of

³ Dr. Arturo B. Rotor, Allergist, formerly associate professor and director, Postgraduate School of Medicine, University of the Philippines; member, American Academy of Allergy.

⁴ Dr. Carlos Sevilla, Ophthalmolog.st-Otolaryngologist, formerly chief, Dept. E.E.N.T., Institute of Medicine, Far Eastern University, Manila.

the more common grass and weed pollens in this particular area to the prevalent allergic respiratory diseases by means of skin testing methods. The number of positive skin test results obtained from the 120 test subjects showed that of the 22 most common grass and weed species in the greater Manila area, the most significant in more than half of these allergic individuals are the yard grass, amorsecos, alabang-x, carabao grass, Bermuda grass, crab grass and the urai weed. Of the three most widely abundant grass species reported, yard grass and Bermuda grass gave positive skin results in more than half of the individuals (64.2 per cent and 58.3 per cent, respectively), with yard grass giving the highest number of positive reactions while talahib was found positive in only 19 patients (15.8 per cent). From this finding, though talahib grows abundantly in the surrounding Manila areas, its pollen does not seem to be as strongly antigenic as the yard and Bermuda grasses. Of the five common weeds tested, urai gave the highest number of positive tests (56.7 per cent) and was the only one found to produce skin-sensitizing antibodies in more than half of the persons studied.

All of the six foregoing mentioned grasses and the urai weed grow very densely in uncultivated and waste areas. Bermuda grass is also extensively grown in many gardens. They have all been found to bloom continuously throughout the year except for amorseco which blooms from June to July (Table 2).

Table 2 also shows that most of the grasses and weeds have their heaviest flowering period from the later part of May through December and early January. However, aero-palynological survey had shown that grass pollen is heaviest in the air from October to early January. The greatest amount of pollen in the air, therefore, does not entirely coincide with the time when the grasses or weeds bloom most profusely on the ground. The main reason for this is due to the influence of heavy rainful which usually occurs from late May to October and November. During the rainy season, the strong rains tend to wash out the pollen grains from the opened flowers. In summer, when there is hardly any rain, the grasses are very dry and are rarely in bloom [Payawal and Laserna (1963)].

It has been noted that many individuals with allergic respiratory disease, particularly the asthmatics as in the patients

TABLE 2 .- Flowering months of the grasses and weeds studied ***

LOCAL AND SCENTIF C YAMES	944	FEB	MAR	APR.	MAY	JJNE	July	AUG	SEPT.	DCT '	NOV,	DEG
YARD E sus ne indica (u.) Gostin	damas -	 						er en er	1.04 - 1 - 1 F 1.5		4 · p* bu u	i jiriye
AMORSECOS Andropogon os cultifus Retz.						20.00	n, name					1
ALABANG-X Dicarih um anslatum (Pair.) C. E. Hubb.							<u></u>					4. 24.14
URA Amerenthus spinosus unt.	714	·					angertiff.	162 - 81 %-	11 - 767 - 117 - 1		o s _e s,	
CARABAC Paspalum conjugatum Berg.	XV						1 1 1 10	g en kalen	eryw -	4.1 394 C.70	igyen akt	1. 5%
BERMUDA Cynarion daety on (L.) Pors.											1410 X -	लेक्ट्रीकर
CRAB Digitaria to.		1	1	1					<u> </u>			ļ
PARA Broch or o multico (Forsek) Stop!.			1			1	l			granti in	i Anna Aire	rt -96
MoTHA Cyperus retundus Lina.						} 	and green	l Aystyckere			<u>.</u>	4 - 4
NATAL Ryachetytrum repens (Wid.) C. E. Nobb	<u>L</u>					_	1	1				- -
G. NEA Pan cum max mum Jacq									* Cree Unite	S. S. W.	d.	٠
JAVA Polytrios prosmorsa Mack		A	t -		1	1	_		;		ا المحالية المحالة	****
BATHO BATADAN Sorghum hotepense (U.) Persa						78 to 3 1 1 1 1 1 1 1	! 	January May	e Benjaran	57 9976	in part to the second	
TR DAX Tr dax procumbens L nn			de la companya de la	10.000	· · · · · · · · · · · · · · · · · · ·		i (Sarana)	ERS NEWS		i in corre	hat broke	20321
SINFLOWER Timoma diversity a A Gray	ţ			•		p	1			en er seur	ejdješa pra	e in rece
KOGON Imperato sy odrico i) Bequiv.		;					i 1 — — —		_		Jack Commen	
MAKAMIYA Mimasa pudica Linn		-		,		ļ		i -	+		<u>.</u>	- - 18
TALAHIB Saccharum spontaneum (L.) subsp. nd.cum Hock	<u> </u>								NES SHAN	elección e	1	,
MAIS Zed mays time		,	,		1	2.00		i		+	-	` 4 ~ -
R CE Oryte solve unn.			## M		}		1				. Kin	
FOXTAIL Pennisetum polyslachyum (L.) Schultz,			1	L	L					İ	gler in the N	~7 ************************************
SUBAR CAME Soccharum off cinerum Linn		<u> </u>				1					ļ	→ —
LEGEND, "A word	BL OGRAPHYL					-4.						

Month of heaven flowering

FIC are goted

Man's area. Ph. ppine Journal of Science 94 296

Payawat, P. & Lazerca, G. (1966) Aero-palynological studies at Manue, 1963. Philippine

Journal of Science 95: 179.

Nert 1, E. D. (9.2) A flore of Manile. Monito Bur, of Printing . p. 192

Romo, 1. (Botonist, Allergy Unit, Med. Res. Center, Not. Inst_Sci., Tech.) Personal communication of

we have studied, have more attacks during the later part of the year, when the climate is colder. Most of the time, this had been attributed to nonspecific factors which had been observed to precipitate asthmatic symptoms; namely, the change in climate and the increased incidence of respiratory infections during this time of the year. However, now that it has been found that there is increased pollen in the air from October to early January, the latter finding will assume greater importance in the evaluation of the cause of the respiratory symptoms in the allergic individual. A complete allergic work-up of a patient with allergic respiratory disease should, therefore, include testing with the pollens known to be prevalent in his area at the time of occurrence of his symptoms. This study has shown that in the greater Manila area, the more important grasses and weeds to be considered in a larger number of people with allergic respiratory disease are yard grass, amorsecos, alabang-x, carabao grass, Bermuda grass, crab grass and urai weed. However, the other grasses and weeds studied have to be taken into further consideration in a smaller number of allergic persons, especially if the time of occurrence of symptoms coincide with the pollination period of the suspected plant, particularly in the case of grasses with more or less well-defined flowering periods like kogon and talahib or whereever there is intense exposure to cultivated grasses like rice. mais, and sugarcane.

Finally, it must be strongly emphasized that the proper interpretation of a positive skin test in relation to the patient's presenting symptoms always needs close correlation with other factors which can only be obtained from the patient's history and physical findings. The importance of a positive skin reaction can be further confirmed clinically by the improvement of the patient's symptoms on avoidance from exposure or after hyposensitization treatment with the particular pollen antigen.

Observations on immunization studies being done on allergic individuals using the same pollen extracts will be the subject of a future report.

SUMMARY AND CONCLUSION

Skin tests done on 120 individuals with allergic respiratory disease using NIST-produced pollen extracts of 22 grass and weed species found to be most commonly abundant and widely distributed in the greater Manila area showed that yard grass.

amorsecos, alabang-x, Bermuda grass, carabao grass, crab grass, and urai weed gave positive skin reactions in more than half of the test subjects. The highest number of positive skin reactions among the grasses was given by yard grass (64.2 per cent) and urai, among the weeds (56.7 per cent). The importance of these findings in the evaluation of the specific etiology of the allergic individual's respiratory symptoms, especially in correlation with the pollination period of the suspected grass or weed and the patient's history and physical findings, was also discussed.

No untoward reactions, local or systemic, were observed in any of the test individuals, from the use of these extracts.

ACKNOWLEDGMENT

The authors wish to express their grateful appreciation to Dr. Rogelio N. Relova, director, Medical Research Center, National Institute of Science and Technology, for his kind encouragement while this study was in progress and to Miss Gloria Laserna and Mrs. Josefina B. Manalo of the Chemical Section, Allergy Unit, Medical Research Center, National Institute of Science and Technology, for the preparation and standardization of the pollen extracts used in this study. Our thanks are also due to Mr. Pacifico Payawal and Miss Irma C. Remo, former botanist and present botanist, respectively, Allergy Unit, Medical Research Center, National Institute of Science and Technology, for valuable botanical information concerning the grasses and weeds studied in this work and to Dr. Arturo B. Rotor for his most helpful advice and suggestions while this paper was in preparation.

REFERENCES

- AUSTEN, K. F., and J. H. HUMPHREY (1963). In vitro studies of the mechanism of anaphylaxis. Adv. Immunol. 3: 1. Cited by Rhyne, M. B. (1969). Skin testing: concepts and realities. Peciat. Clin. N. Amer. 16: 228.
- CASTILLO OCHOA, A., and B. F. AGBAYANI (1968). The seasonal incidence of bronchial asthma: A preliminary report. I. The relationship of asthma consults with pollen counts. Philip. Jour. Int. Med. 6: 165-169.
- Duchaine, J. (1959). Allergy of the Upper Respiratory Tract Pollen International Textbook of Allergy. Edited by Jamar, J. M., Charles C. Thomas, Springfield, Ill., pp. 154-195.

- Horiguchi, S., and Y. Saito (1964). Japanese cedar pollinosis in Mikko, Japan. Jap. Jour. Allergy 13: 74-75.
- KANTOR, S. Z., M. FRANK, D. HOCH-KANTOR, R. BARKAI-GOLAN, D. MARIAN, E. SCHACHNNER, A. KESSLER, and A. DE VRIES (1966). Airborne allergens and clinical response of asthmatics in Arad, Israel. Jour. Allergy 37: 65-74.
- LASERNA, G., J. S. BUENAVENTURA, and J. MARAÑON (1958). Preliminary report on nitrogen content of talahib (Saccharum spontaneum L.) pol.en grain. Jour. Philip. Pharm. Assoc. 45: 127-130.
- LASERNA, G., J. S. BUENAVENTURA, and J. MARAÑON (1960). Nitrogen content of some local air-borne pollen grains in relation to allergy. Philip. Jour. Sci. 89: 173-181.
- LASERNA, G., and J. B. MANALO (1966). Preparation and standardization of allergenic extracts of local airborne pollen grains. Philip. Jour. Sci. 95; 275-280.
- MATSUMURA, T., T. KIMURA, K. TATENO, E. KATO, M. TODOKORO, S. NAKA JIMA, and T. KUROME (1969.) Rice pollen asthma. Jour. Asthma Res. 7: 7-16.
- PAYAWAL, P., and G. LASERNA (1965). Field survey of probable allergenic grasses in the Manula area. Philip. Jour. Sci. 94: 293-309.
- PAYAWAL, P., and G. LASERNA (1966). Aero palynological studies at Manlla, 1963. Philip. Jour. Sci. 95: 171-187.
- SHIVPURI, D. N., and K. L. DUA (1963). Studies in pollen allergy in Delhi area Part IV. Clinical investigations. Indian Jour. Med. Res. 51: 68-74.
- VAUGHAN, W. T., and J. H. BLACK (1954). Practice of Allergy. 3rd ed. St. Louis: The C. V. Mosby Co., pp. 166, 263, 442, 536-655, 661.
- VIVERA, A. B. (1966). Skin-testing with NIST pollen extract. Preliminary report. Ph.I.p. Jour. Sci. 95: 289-294.
- Von Pirquet, C. Frh., and B. Schick (1951). Serum Sickness Translated by B. Schick. Baltimore: The Williams and Wilkins Co., p. vn.

FURTHER STUDIES ON THE ALKALOIDS OF VOACANGA GLOBOSA (BLANCO) MERRILL: ISOLATION AND CHARACTERIZATION OF TABERNÆMONTANINE *

By GLORY C. LLEANDER, ERLINDA H. SALUD, and ELENA C. RIGOR 3

TWO TEXT FIGURES

Previous works on *Voacanga* species have resulted in the isolation and structure determination of several alkaloids. Thomas and Bieman (1968) undertook a detailed investigation of the alkaloids of *Voacanga africana* Stapf, which resulted in the isolation of 19 alkaloids. The isolated alkaloids are enumerated in Table 1.

Table 1. Alkaloids of Voacanga africana Stapf.

Alkaloid	Structure
Voacamine **	1
Decarbomethoxy-voacamine	2
Voacorine **	3
Vobtusine **	4
Reserpine	5a
Pseudo-Yohimbine	5b
Perakine	G
Iboluteine	7
Voacangine Hydroxyindolenine	8
Voacangine **	9
Ibogamine	10
Coronaridine	1 1
Ibogaine	12
Voacristine **	13
Thoxygaine	14
Voacangine lactam	15
Vobasine **	16
3 epiα-yohimbine	
β yohimbine	

Board of Investments, 6805 Ayala Avenue, Makati, Rizal; part time researcher in the NIST.

[&]quot;National Institute of Science and Technology, Herran St., Manila.

National Research Council of the Philippines, Diliman, Quezon City.

* This paper is dedicated to Dr. Alfredo C. Santos on his 70th birthday anniversary, August 15, 1970.

^{**} Previously reported to occur in V. africana.

These alkaloids have been classified [Thomas and Biemann (1968)] into six distinct types of indole alkaloids. Of these are the iboga type exemplified by ibogaine (12). The second type is the 2-acylindole class of alkaloids to which vobasine (16) belong. The dimeric alkaloids might be considered as the third class of alkaloid to which voacamine (1) and voacorine (3) belong. The dimeric structure (4) suggested for vobtusine is not related to any of the skeletal types of alkaloids present in V. africana. And thus, this is considered the fourth type of indole alkaloids. The occurrence of perakine (6) in V. africana accounts for the fifth type of alkaloid that of the ajmaline type. Yohimbine and reserpine (5a), having been isolated from V. africana make up the sixth class of indole alkaloid.

In the Philippines, there are four native species of Voacanga reported in the literature: Voacanga globosa (Blanco) Merr. (1950), V. megacarpa Quis. and Merr. (1928), V. delichocalyx Quis. and Merr. (1928a), and V. latifolia Quis. and Merr. (1928b). Owing to great interest in the members of the family Apocynaceæ and the indole alkaloids, an investigation of the stem bark of V. globosa (Blanco) Merr. which is the most common and available of the Philippine species of Voacanga was initiated. The initial investigation [Lleander (1961)] resulted in the isolation of two crystalline bases which were later [Santos et al (1964)] identified as voacamine and vobtusine. In a subsequent report Santos et al (1964) report the isolation and identification of these two alkaloids from V. megacarpa Merr.

Structure 5a 5b

$$\begin{array}{c} \mathbf{R_2} \\ \mathbf{OCH_3} \\ \mathbf{OH} \end{array}$$

$$\underset{\mathbf{H}}{\operatorname{OCOC}}_{_{6}\mathbf{H}_{9}}^{\mathbf{R}_{3}}(\operatorname{OCH}_{\beta})_{_{4}}$$

 \mathbf{R}

II

Ц

H

H

H, OH

0685

в

e		101
Structure	9:	OCH ₃
do	10:	H
do	11:	Ħ
оĥ	12:	OCH3
do	13:	OCH3
do	14:	OCH ₃
do	15:	OCH3
		3

Quirin and co-workers (1964) have reported on the isolation from the roots of *Voacanga globosa* (Blanco) Merr. of voacangine, voacamine and alkaloid C. It was reported that alkaloid C is almost identical with vobtusine. The UV and IR spectra are practically superimpossable with those of vobtusine except for the presence of a carbonyl absorption at 1790 cm-1 in alkaloid C.

Since preliminary investigations showed that V. globosa contained an appreciable amount of indole alkaloids besides those bases which were reported earlier, it was therefore, of interest to reinvestigate V. globosa. A methanolic extract of the stem bark of V. globosa was placed at our disposal. We are now reporting on the further studies of the alkaloids of V. globosa (Blanco) Merr.

Using a different isolation procedure (Scheme 1) from that used in our previous works, we have successfully isolated another crystalline base. The chloroform extract after aqueous extraction was originally intended to be fractionated by gel permeation chromatography. Due to the unavailability of Sephadex LH-20, the reported procedure was used which led to the isolation of the crystalline base.

The crystalline base melted at 219 221° (uncorrected). Its UV spectrum¹ (in ethanol) gave maximum absorption at 210 m, (ϵ 15,400) and 314 m μ (ϵ 11,000) characteristic of a 2-acylindole moiety. The IR spectrum² (KBr) showed absorption peaks at 3,300 (NH), 1724 (ester) and 1637 cm $^{-1}$ (2-acylindole). The UV and IR spectra of the isolated alkaloid are in close agreement with those reported 3 for tabernæmontanine ($C_{21}H_{12}O_{3}N_{1}$).

In order to elucidate further on the structure of the isolated alkaloid, the nuclear magnetic resonance (NMR) spectrum was recorded. The NMR spectrum showed a three-proton singlet at 2.54 8 which was assigned to a methyl on a nitrogen and another three-proton singlet at 2.61 8 assigned to a methoxyl methyl group. These values are in agreement with those assigned to tabernæmontanine by Cava (1963). Convincing evidence for the close relationship of alkaloid/m.p. 219-221° and

^{1.} Through the courtesy of Dr. R de Leon, United Laboratories, Inc., Mandaluyong, Rizal.

³ Physical Data of Indole and Dihydroindole Alkaloids, Eli I lly.
⁴ Through the courtesy of Dr. T. J. Mabry, University of Texas, Austin, Texas. U.S.A. (Trimethylsilane as internal standard).

SCHEME 1. Isolation procedure.

tabernæmontanine to each other was obtained from the mass spectra of the two alkaloids which showed a common fragmentation pattern including the relative peak intensities. The mass spectrum of the crystalline base m.p. $219-221^{\circ}$ gave molecular ion peak at m/e 354 which corresponds to $C_{21}H_{20}O_3N_2$.

Figures 1 and 2 show the UV, IR, NMR, and mass spectra of tabernæmontanine.

Fig. 1. NMR spectrum of tabernæmontanine (above) and mass spectrum of tabernæmontanine (below).

It is interesting to note that this is the first time that tabernæmontanine has been isolated from *Voacanga*. This fifth alkaloid from *V. globosa* belongs to the 2-acylindele type mentioned earlier.

A careful consideration of the mass spectrum of tabernamontanine [Combes et al (1966)] reveals the identification of several fragments. Proposed fragmentation pattern is shown in Scheme II. The principal fragmentation is initiated, accord-

Scheme II

ing to the scheme indicated by Budzıkiewicz (1963) for vobasine, by rupture of the C_c - C_5 bond. This rupture is then followed by migration of the proton at C_5 to the acyl oxygen and subsequent cleavage of the C_{14} - C_{15} bond, thus, giving rise to ions m/e 172 and m/e 182. Loss of carbomethoxy group from ion m/e 182 yields ion m/e 182. On the other hand, loss of an ethyl chain from ion m/e 182, followed by aromatization leads to ion m/e 152. The presence of ions m/e 158 and m e 196 may be explained by migration of the C_{16} -proton to C_1 and followed by rupture of C_2 - C_{14} bond. Such fragmentation pattern may arise from the well-known β - Cleavage with τ -hydrogen transfer mechanism, since it is a favored fragmentation route of carbonyl with τ -hydrogens.

The presence of ion m/e 322 can only be explained by loss of a molecule of methanol as shown below:

Fragmentation of ion m/e 322 gives m/e 158 and m/e 164 as shown above.

Tabernaemontanine has been in the Cancer Chemotherapy National Service Center program. The screening data; indicates that this compound is inactive in (1) I-1210 lymphoid

⁵ Obtained for us by Dr. J. David Warthen, Jr., Agricultural Research Service, U.S. Dept. of Agriculture Beltsville, Md. from Dr. Harry B. Wood, Jr., National Institutes of Health, Bethesda, Md. U.S.A.

leukemia, (2) Walker carcinosarcoma 256 (subcutaneous), and (3) Human epidermoid carcinoma of the nasopharynx. The first two, LE and WA, are in vivo tumor systems. The third system, 9KB, is an in vitro cell culture.

On the other hand, the mother liquor of tabernaemontanine showed activity against leukemia L-1210 and Erlich ascitetumor cells. Further chemical work on the mother liquor is in progress.

ACKNOWLEDGMENT

The authors are grateful to Dr. Rogelio de Leon of the United Laboratories, Inc. Mandaluyong, Rizal for recording the UV and IR and Dr. Tom J. Mabry of the University of Texas, Austin, Texas, U.S.A. for recording the NMR and mass spectra; to the National Institute of Science and Technology, Manila for the facilities put at our disposal. The senior author wishes to acknowledge the financial assistance from the National Research Council of the Philippines.

REFERENCES

- Brown, W. II. (1950). Useful plants of the Philippines. Bureau of Science, Manila 3: 254.
- BUDZIKIEWICZ, H., C. DJERASSI, F. PULSIAN, F. PERCHERON, and J. POISSON (1963). Bull. Soc. Chim Fr., p. 1899.
- CAVA, M. P., S. K. TALAPATRA, and G. O. DUDEK (1963). Tetrehedron Letters, pp. 53-55.
- Combes, G., I. Fonzes, and F. Wintermitz (1966). Phytochemistry 5: 1065-1073.
- LLEANDER, G. C. (1961). Master's Thesis. University of the Philippines, Diliman, Quezon City.
- QUIRIN, M., F. QUIRIN, and J. LE MEN (1964). The alkaloids of Voacanga africana alcalodies du Voacanga globosa (Blanco) Merr. Ann. Pharm. fr. 22: 361 364.
- Santos, A. C., G. A. Santos, and F. Magno (1964). Voacamine and vobtusine from Voacanga megacarpa Merrill. Philip. Jour. Sci. 93: 597-601.
- Thouas, D. W., and K. Bieman (1968). The alkaloids of Voacanga africana alcaloides du Voacanga globosa (Blanco) Merr. Lloydia 31: 1-8.
- QUISTEIRING, E., and E. MERRILL (1928). New Philippine plants. Philip. Jour. Sci. 37: 194.
- QUISUMBING, E., and E. MERRILL (1928a). New Philippine plants. Philip. Jour. Sci. 37: 192.
- QUISI MBING, E., and E. MERRILL (1928b). New Philippine plants. Philip. Jour. Sci. 37: 193.

Fig. 2. UV spectrum of tabernæmontanine (above) and IR spectrum of tabe.ræmontanine (below).

RECLASSIFICATION OF SOME INDO-AUSTRALIAN AND AFRICAN BRACONINÆ AND ROGADINÆ (BRACONIDÆ, HYMENOPTERA)

By CLARE R. BALTAZAR
National Institute of Science and Technology, Manila

The subject of this paper is the reclassification of 145 braconid species, 51 of which were originally described in the genus Bracon, 83 in Iphiaulax, one or two species in either Spinaria, Myosoma, Exothecus or Exobracon, and three rog adine species of Troporhogas. These species were described mostly by F. Smith and Cameron, and a few by Bingham. Brues, Strand, and Turner. These types could be found in the British Museum (BM) of Natural History in London or in the Hope Department of Entomology in Oxford University Museum, Oxford. Smith did not indicate where his type specimens were deposited. Cameron, on the other hand, stated in his 1899 paper (Mem. Proc. Manch. Lit. Philos. Soc. 43: 1) that the "species recorded in this and the following papers are now in the collection of Mr. G. A. J. Rothney." Most of the Cameron types from the Rothney collection went to Oxford University. There were instances, however, when specimens labelled by Cameron as types for the same species appear both in London and Oxford. In such cases the specimen in the Oxford Museum was chosen as the true type or lectotype.

Subfamily BRACONINAE

In the past many species of Braconinæ were described either in *Bracon* or *Iphiaulax*. Present-day grouping would place these species in different genera in the subfamily Braconinæ.

The first three genera discussed, namely, Bracon, Campyloneurus and Pachybracon have the following characteristics in common: Tergite 1 shorter than or at most as long as its apical width; tergite 2 transverse or 0.4 to 0.5 as long as its apical width; nervulus usually forming a straight line with basal vein, the latter forming a 75° to 80° angle with subcosta; head usually transverse from dorsal view; species mostly small or medium-sized.

Genus BRACON Fabricius

Bracon Fabricius (1804). Systema Piezatorum, p. 102.

Type: Ichneumon minutator Fabricius. Designated by Intl. Comm. Zool. Nomencl. Op. 162, 1945.

Synonyms: Braco Wesmael, Microbracon Ashmead, Habrobracon Johnson, Macrodyctium Ashmead, Tropidobracon Ashmead.

Distribution: Worldwide.

The species listed below have the following characteristics: abscissa 1 of cubitus straight; cubital cell 2 equal to or shorter than cubital cell 3; tergite 3 to 5 usually without a transverse groove apically; recurrent vein antefurcal or interstitial.

BRACON CLANES (Cameron), comb. nov.

Iphianlax clanes Cameron (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 151. Type: Q, Dunbrody, Cape Colony (BM 3c, 378).

BRACON DISTINCTISULCATUS (Strand), comb. nov.

Iphiaulax distinctisulcatus STRAND (1912). Arch. Naturg. Jahrg. 78A (6): 51, 63. Type: Q. Siluas, Sambas, W. Borneo (BM Sc 413).

Six species of Bracon were also examined and believed to belong in the genus Bracon:

Bracon australasions CAMERON (1912). Proc. Linu. Soc. N. S. Wales 37: 193. Type: Q, N. S. Wales (BM 436).

Bracon basalis Smith (1858). J. Proc. Linn. Soc. Zool. 3: 171. Type: 9, Aru (Oxford).

Bracon formus Cameron (1900). Mem. Proc. Manch. Lit. Philos. Soc. 44: 84. Type: 3, Khasia Hills, India (Oxford, tip of abdomen damaged).

Bracon mitidus SMITH (1858). J. Proc. Linn. Soc. Zool. 3: 175. Type: Q, Aru (Oxford).

Bracon pilitarsis CAMERON (1912). Proc. Linn. Soc. N. S. Wales 37: 193. Type: Q, N. S. Wales (BM 435).

Bracon umbratilis CAMERON (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 74. Type: Q, Khasia Hills, India (Oxford).—Doven (1925). Ent. Mitt. 14: 39. (comb. nov.) Campyloneurus.

Genus CAMPYLONEURUS Szepligeti

Campyloneurus Szepligeri (1900). Term. Fuzet. 23: 51.

Type: (Campyloneurus bicolor Szepligeti)=Campyloneurus bicolorimus Viereck. Designated by Viereck (1911).

Distribution: Indo-Australian and African.

This genus may be differentiated from Bracon in having the abscissa 1 of cubitus curved at base, cubital cell 2 as long as cubital cell 3, tergites 3 to 5 each with a transverse groove along its apical margin, and recurrent vein usually interstitial. The species listed below are transferred in the genus Campylonourus.

CAMPYLONEURUS ABDOMINALIS (Smith), comb nov.

Bracon nugripennis SMITH (1858). J. Proc. Linn. Soc. Zool. 3: 175. Type: q, Aru (Oxford).

CAMPYLONIUBUS BRUNNEO-MACULATIS (Cameron), comb. nov.

Iph.aulax brunneo-machlatus CAMERON (1903). J. Str. Brit. Roy. As. Soc. 39: 119. Type: 9. Kuching, Borneo (BM 400).

CAMPYLONLERES CAMPBELLI (Cameron).

Ipl aulax ca npbell. Cameron (1907) Ann. Mag. Nat. Hist. (7)
 19: 175. Type: φ, S.kkim, India (BM 408).—Dover (1925).
 Ent. Mitt. 14: 29. (comb. Lov.) Campylogenias.

CAMPALONEURIS CHILES (Comeron), comb. nov.

Iphraular cilles Cameron (1905). J. Str. Brit. Roy As. Soc. 42: 32. Type: 9, Kuching, Borneo (BM 404).

CAMPYLONFURUS CRASSIPLS (Smith), comb. nov.

Bracon crassipes SMITH (1857). J. Proc. Linn. Soc. Zool. 2: 196. Type: Q, Singapore (Oxford).

CAMPYLONFURUS CRASSITARSIS (Cameron), comb nov

Iptiaulax crassitars's Cameron (1903). J. Str. Brit. Roy As. Soc. 39: 112. Type: Q, Kuching, Borneo (BM 302).

CAMPYLONEURUS DECLARATUS (Cameron), comb. nov.

Bracon declaratus CAMERON (1899). Mem. Proc. Lit. Philos. Soc. 43: 79. Type: 9, Khasia Hills, India (Oxford).

CAMPYLONEURUS EXOLETUS (Smith), comb. nov.

Bracon evoletus Smith (1858). J. Proc. Linn. Soc. Zool. 3: 175. Types: 299, Ara (Oxford, 19 with abdomen missing); Lectotype: 9 with abdomen intact, Aru (Oxford).

CAMPYLONEURUS HARAGAMENSIS (Cameron), comb nov

Iphraular Larayaneus.s Cameron (1905). Spolia Zeyl. 3. 86. Type: Q, Haragam, Ceylon (BM 401).

CAMPALONEURUS HIRPINUS (Cameron), comb. nov.

Iphraulax hirpinus CAMERON (1903). J. Str. Brit. Roy. As. Soc. 39: 115. Type: 9, Kuching, Bolneo (BM 395).

CAMPYLONEURLS KIRBYI (Cameron), comb nov.

Iphraulax hirby: CAMELON (1905). Spolia Zeyl. 3.85. Types: 2 Q Q, Kandy, Ceylon (BM 403); Lectotype: Q, Kandy, Ceylon with data "9-02, Cameron coll. 1909-182." (BM 403).

CAMPYLONELRUS SAITIS (Cameron), comb nov.

Iphianlax saits Cameron (1909). Soc. Ent. 24: 138. Types: 1 3, 19, Kuching, Borneo; Lectotype: 9, Kuching, Borneo (BM 402).

CAMPYLONEURUS SIKKIMENSIS (Cameron), comb. nov.

Iphiaulax sikkimensis Cameron (1907). Ann. Mag. Nat. Hist. (7) 19: 174. Type: Q, Sikkim, India (BM 406).

CAMPYLONEURUS TRIMACULATA (Cameron), comb. nov.

Spinaria trimaculata Cameron (1900). Mem. Proc. Manch. Lit. Philos. Soc. 44: 81. Type: Q, Khasia Hills, India (Oxford).
—WATANABE (1937). Ins. Mats. 11 (3): 115. (listed.)

Genus PACHYBRACON Cameron

Packybracon Cameron (1908). Ent. 41: 295. Type: Pachybracon fortipes Cameron. By monotypy. Distribution: Orienta...

This genus is similar to Camploneurus and Bracon in the oval shape of the gaster, the smooth and shiny thorax and propodeum, and the nervulus forming a straight line with the basal vein, the latter forming a 75° to 80° angle with the subcosta. However, the female of Pachybracon is different from the two genera in that the ovipositor is thickened and the evipositor tip is blunt. The ovipositor is about 1/2 as long as the fore wing.

A female cotype of Pachybracon fortipes was examined in the British Museum and it has the eyes pubescent (no species of Bracon and Campyloncurus from the Philippines has the eyes hairy); the notaulus is deep; no scutellar fovea is present; the hind femur, tibia and tarsus are bristly but less hairy in the tibia and tarsus of middle leg; the basal 12 of wings is brown, the distal 1/2 is opaque white.

PACHYBRACON CARNASIUS (Cameron,, comb nov

Iphuulax carnasus Cameron (1903). J. Str. B.it. Roy. As. Soc. 39: 119. Type: Q, Kuching, Borneo (BM 39J).

Genus MYOSOMA Brulle

Myosoma Brulle (1846). Hist Nat. Ins. Hym. 6: 450. Type: Myosoma hirtipes Brulle. Designated by Vic.eck (1911). Synonyms: Acantl obracoa Kniechbaumer, ? Acanthobracon Szephgeti, ?Trichodoryctes Szepligeti.

Distribution: Indo-Australian and Neotropical.

This genus may be recognized from other genera by the flat and long 1st tergite which is about 3 times as long as its apical width and with a wide membrane laterally. The tergites are all smooth and shiny. Like Bracon, Campyloneurus, and Pachybracon, tergite 2 is transverse, the nervulus forms a straight line with the basal vein, the latter forming a 75° to 80° angle with subcosta.

MYOSOMA FEROX (Smith), comb nov.

Bracon fero.: Smith (1864). J. Linn. Soc. Zool. 8: 66. Type: Q, New Gulnea. Neotype: Q, Makassai, Celebes, with a handwritten label "Bracon ferov Smith" (Oxford).

Genus MACROBRACON Szepligeti

Macrobracon Szeplicett (1902). Term. Fazet. 25: 44.

Type: Macrobracon concolor Szepligeti. Designated by Viereck (1914).

Distribution: Indo-Australian.

The species in this genus have bifid claws; tergites 2 to 4 have a hump on each apical corner and a pimplelike elevation midbasally; ovipositor is short, not longer than 12 the length of the fore wing. These are large species with thickset abdomen.

MACROBRACON TULVOPILOSUS (Cameron).

Iphianlar fulropilosus CAMERON (1905). Spolia Zeyl. 3: 83.

Type: Q, Kandy, Ceylon (BM 336). The Q specimen in Oxfor! Miscum with a handwritten label "Iphianlax fulvopilosus Cameron" from Makassar, Colebes, is not the type -Turner (1918). T ans. Ent. Soc. London, p. 97. (comb. nov.) Macrobracon.

WACROBRACON GRAVIOUS (S.m.fh), comb, nov.

Bracon gravidus Smith (1864). J. Linn. Soc. Zool. 8: 66

Type: Q, New Gulbea. Neotype: Q, Makassar, Celebes, with a handwritten label "Bracon gravidus Smith" (Oxford).

MACROBRACON MIGRIPP WIS (Smith), comb. nov

Bracon ingrepentus Smith (1858). J. Proc. Linn. Soc Zool. 3: 177. Type o, Alu (Oxford).

Genus CHAOHATA Cameron

Clao Ita Caleron (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43, 80. Type: C. ao. Ha lanclleta Cameron. By monotypy.

Syronyms: Odontoscap is Kriechbaumer, Blostomorpho Szepligeti, Placubracon Spenligeti.

Distribution: Lido-Australian.

The genus is easily recognized because the thorax and abdomen are flat and depressed and the pronotum is prolonged Into a neck, the scape is excised basally; in the female the face has usually a protrusion below the antennal sockets.

(HAOILTA AM STRIS (Cameron), comb. 1 ov.

Ill artur anestr's Cameron (1903). J. Str. B.A. Roy. As Soc. 39: 115. Type: 9, Kuching, Bolleo (BM 38).

CHAOLETA HIMALAYINSIS (Comerca), comb. nov.

Bracon Limilayensis Cameron (1899). Mem. Proc. Manch. Lit Soc. 43: 70. Type: Q, Khasia Hills, India (Oxford, Philos. abdomen missing).

CHAOILTA INSULARIS (Cameren), comb. nov.

Platyl racon insulares Cameron (1911). Ploc. Linn. Soc. N. S. Wales 36: 358. Type: 9, Solomon Is. (BM C10). Identification label was madverteatly interchanged with Platibraion nigracips. 067081---5

CHAOILTA NIGRICEPS (Cameron), comb. nov.

Platybracon nigriceps Cameron (1911). Proc. Linn. Soc. N. S. Wales 36: 338. Type: Q, Gin Gin, Queensland (BM 609). Idea (infication label was inadvertently interchanged with Platyb acon insularis.

CHAOULTA VULTUGSUS (Smith), comb. nov.

Bracon vultuosus SMITH (1857). J. Proc. Linn. Soc. Zool. 2: 125. Type: Q, Singapore (Oxford).

Types of "Chaolta" species that were examined and believed to belong in Chaoilta are:

Chaolta fuscipennis Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 120. Type: 9, Kuching, Borneo (BM 598).

—Chaolta ruficeps Cameron (1905), J. Str. Brit. Rev. Sec. 44 101. Type: Buatal, Borneo (BM 595), New synonymy,

Chaolta lutea Cameron (1906). J. Str. Brit. Roy. As. Soc. 44: 102. Type: Q, Kuching, Borneo (BM 594).

Chaolta maculifrons CAMERON (1905). J. Str. Brit. Roy. As Soc 42: 50. Type: Q, Kuching, Bornco (BM 597).

Chaolta sulcata CAMERON (1905). J. Str. Brit. Roy. As. Soc. 42: 50 Type: 9, Kuching, Borneo (BM 596).

Chaolta trituberculata Cameeon (1905). J. Str. Erit. Roy. As. Soc. Type: Q, Kuching, Borneo (BM 414).

Genus ATANYCOLUS Foers'er

Atanycolus Foerster (1862). Verh. naturh. Ver. preuss. Rheinleng. 19: 238. Type: Ichneumon denigrator Linneaeus. By monotypy and original designation.

Synonyms: Coelobracon Thomson, Melanobracon Ashmend, Ata sy colidea Viereck.

Distribution: Worldwide.

The genus has the base of the scape excised as in Chaolite, however, the thorax, propodeum and tergites are not depressed and the notauli are deeply impressed.

ATANYCOLUS EXCERPTA (Turner), comb. nev.

Medinoschiza excerpta Turner (1920). Ann. Mag. Nat. Hist. (9) 5: 92. Type: 9, Tonkin, Indo-China (BM 508).

ATANYCOLUS FUSCIPENNIS (Cameron), comb. nev.

Myosoma fuscipennis Cameron (1902). J. Str. Brit. Roy. A: Soc. 37: 40. Type: Q, Borneo (BM 544).

ATANYCOLUS TEICHIURA (Cameron), comb. nov.

Myosoma trichiura CAMERON (1902). J. Str. Brit. Roy. As. Soc. 37: 39. Type: 9, Sarawak, Borneo (BM 543).

The nine genera that follow have the following characteristics in common: Tergite 1 longer than its apical width, from 1.5 to 3 times as long as apical width; nervulus not forming

a straight line with basal vein, the basal vein slanting or oblique and forming a 45° to 60° angle with subcosta; head usually cubical; species mostly large to medium-sized.

Genus ISCHNOBRACON Baltazar

Ischnobracon Baltazar (1968). Pacific Insects 5: 587.
Type: Ischnobracon bakeri Baltazar. By original designation.
Distribution: Oriental (Borneo, India, Philippines).

The genus is readily recognized by the shiny and impunctate triangular area at the base of tergites 2 to 4; tergite 2 is 1.2 to 1.5 times its apical width; the notauli are deeply impressed and extend to apical margin of mesoscutum; the subgenital plate in the 2 is triangular in side view and does not extend beyond tip of last tergite; the ovipositor sheath is about ½ as long as fore wing. A more detailed description of the genus is given in the publication cited above.

The following species possess the above characteristics and are now transferred in *Ischnobrason*.

ISCHNOBRACON INDISCRETUS (Cameron), comb. nov.

Brucon indiscretus Cameron (1899). Mem. Proc. Mauch. Lit. Philos. Soc. 43: 71. Type: 9, Khasia Hills, India (Oxford).

ISCHNORRACON LABORIOSUS (Smith), comb. nov.

Bracon laboriesus SMITH (1857). J. Proc. Linn. Soc. Zool. 2: 126. Type: 9, Sarawak, Borneo (Oxford).

ISCHNOBRACON V-MACULA (Cameron), comb. nov.

Brucon v-maculu Caurron (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 62. Types: 29, Khasia Hills, India (Oxford and BM 437); Lectotype: 9, Khasia Hills, India (Oxford); Paralectotype: 9, Khasia Hills, India (BM 437).

Bracon orientalle Cameron (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 63. Types: 29, Khasia Hills, India (Oxford and BM 432); Lectotype: 9, Khasia Hills, India (Oxford); Pacalectotype: 9, Khasia Hills, India (BM 432, abdomen missing). New synonymy.

The two females in Oxford, each bearing a handwritten label of Bracon v-macula and orientalis, are so similar to each other and the only difference is the entirely fulvous abdomen and dark streak on the ventral side of hind femur of v-macula, whereas in orientalis tergites 4 to 7 are darkish (but probably due to deterioration) and the hind femur is entirely fulvous

(however, the specimen of orientalis in London has a small ventral dark streak on hind femur).

All the other types of species described by Cameron in 1899 are found in Oxford, hence the preference for the Oxford specimen as lectotype.

Genus GRONAULAX Cameron

Gronaulax Cameron (1910). Sec. Ent. 25 (6): 23.

Type: Gronaulax pilosellus Cameron. By monotypy.

Synonym: Nouraulax Roman.

Distribution: Oriental (Borneo and Philippines).

In this genus the basal triangular area on the second tergite is wrinkled, tergite 2 is 1.2 to 1.5 times its apical width and there are 2 apically convergent lateral carinæ; the 9 subgenital plate is apically elongate and extends beyond the tip of the last tergite; the ovipositor sheath is about 2 times the length of the fore wing; the notauli are usually deeply impressed.

ISCHNOBRACON LABORIOSUS (Smith), comb. nov.

Iphianlax leptogaster Cameron (1995). J. Str. Brit. Roy. As. Soc. 42: 47. Type: 3, Kuching, Borneo (BM 387).

Iphianlax octoforcains Cameron (1997). J. Str. Brit. Roy. As. Soc. 48: 4. Type: 3, Kuching, Borneo (BM 396). New synonymy.

The six genera that follow have the 2nd tergite as long as or shorter than its apical width (excepting & & of Eugrobiacon). All have the ovipositor long with the exception of Hybogaster. Three genera, namely, Eugrobiacon, Buthyandax and Hybogaster have no triangular area on the 2nd tergite and the scape is short, ranging from 1 to 1.5 times as long as its diameter. In contrast to the last three genera discussed in this paper, namely, Cratobiacon, Sigalphogaster and Iphiaulax, there is a midbasal triangular area on the 2nd tergite; the scape is long, from 2 to 4 times as long as its diameter except in Iphiaulax where the scape is 1 to 1.5 times as long as its diameter.

Genus EUUROBRACON Ashmead

Eutrobracon ASHMEAD (1900). Proc. U. S. Natl. Mus. 23: 45.

Type: (Bracon penetrator Smith) = Eutrobracon yokohamac (Dalla Torre). By monotypy.

Synonyms: Delmira Cameron, Exobracon Szepligeti, Lissobracon Cameron.

Distribution: Palearctic (Japan, Korea) and Indo-Australian; ? African.

In this genus the recurrent vein is strongly antefurcal, its distance from intercubitus 1 is $\frac{1}{2}$ or equal to the length of

abscissa 1 of radius; the nervulus is postfurcal. The face is wide. The 1st tergite has a deep median groove on the basal $\frac{1}{3}$. The ovipositor sheath is about 1.5 times as long as the fore wing or longer.

IT UROBRACON CEPHALOTES (Smith), comb. nov.

Bracon cephalotes Smith (1857). J. Proc. Linn. Soc. Zool. 2: 123.

Type: Q, Sarawak, Borneo (Oxford).

Delmira triplagiata CAMERON (1900). Mem. Proc. Manch. Lit. Philos. Soc. 44: 88. Type: Q, Khasia Hills, India (Oxford). New synonymy.

ELL ROBEACON QUADRICEPS (Smith).

Bracon quadriceps SMITH (1860) (Nec 1857). J. Proc. Linn. Soc. Zool. 4: 141. Types: Q Q, Batchian, Weigen, ?Eldos; Lectotype: Q, with a handwritten label "Bachian" and "Bracon quaddriceps Sm." (Oxford).—Szepliceti (1904). Gen. Insect. fasc. 22a: 47. (comb. nov., syn.) Exobracon.—Roman (1913). Arkiv. Zool. 3 (15): 45. (comb. nov.) Euurobracon.

Bracon impossibilis Dalla Torre (1898). Cat. Hym. 4: 273.

Type: 9, Batchian.

Genus BATHYAULAX Szepligeti

Bathyanlax Szepligeti (1906). Ann. Mus. Nat. Hung. 4: 550, 559.
Type: Bathyanlax cyanogaster Szepligeti. Designated by Vicreck, 1914.

Distribution: Africa, Asia.

The female is readily recognized by the long ovipositor that has an augerlike tip, with three or four constrictions at apex. The 1st tergite has no midlongitudinal groove basally; the 2nd tergite has no median triangular area near base; the 3rd tergite has a triangular area marked off on its basal corner. The recurrent vein is interstitial or slightly anterfurcal; the nervulus is postfurcal.

CATHYAULAX PLUMOSUS (Kirby).

Bracon plumosus Kirby (1896). Ann. Mag. Nat. Hist. (6) 18: 262.

Type: Q, Ogove, Africa (BM 431).—Turner (1917). Ann. Mus.

Nat. Hist. (8) 20: 242. (comb. nov.) Bathyanlax.

GATHYAULAX STANLEYI (Cameron), comb. nov.

Iphiaulax stanleyi Cameron (1912). Ann. Soc. Ent. Relg. 56: 368.

Type: Q. Leopoldville, Belgian Congo (Congo Mus.). The Q

specimen in the British Museum which was labelled as this species
and given a type No. 374 bears no locality label.

BATHYAULAX STRENUUS (Cameron), comb. nov.

Iphiaulax strenuts Cameron (1909). Arch. Mat. Naturv. Krist. 30 (10): 6, 14. Type: Q, Delagoa Bay (Berlin Mus.). The Q specimen in the British Museum which was labelled as this species

and given a type No. 375 bears the same type locality label CAMERON (1904). Rec. Albany Mus. Grahamstown S. Africa 1: 115. (comb. nov.) Iphiaular.

Bracon bicolor Brulle (1846). Hist. Nat. Ins. Hym. 4: 112. Type: ϕ , Africa.—Bries (1924). Ann. S. Afr. Mus. 19. 61. (syn.) Iphiaulax.

Three species of *Iphiaulax* described by Cameron from male specimens, namely, *iubrinervis*, *spilonotus* and *whitei*, seem to belong in *Bathyaulax* but because of insufficient knowledge about the characteristics of the male of *Bathzaulax*, they are retained in *Iphiaulax*.

Genus HYBCGASTER Szepligeti

Hybogaster Szeplicetti (1906). Ann. Mus. Nat. Hung. 4: Coi. Type: Hybogaster gibberosus Szepliceti. By monotypy. Distribut.on: Indo-Australian.

The female of this genus has the ovipositor short, thickened and curved downwards; the length of ovipositor does not exceed the length of entire abdominal tergites. The nervulus is interstitial and the recurrent vein is interstitial or slightly antefurcal. The 3rd tergite has a triangular area marked off on its basal corner.

It differs from *Iphiaulax* in that the 2nd tergite has no triangular area midbasally and its ovipositor is short.

HYBOGASTER ACRAGAS (Campion), comb. nov.

Iphiaulax acrages Cameron (1903). J. Sti. Brit. Roy. As. Soc. 37: 33. Type: Q, Boineo (BM 046).

HYBOGASTLE HAUND MWCNSIS (Cameron), comb nov.

Iphiaulax haundrau c.. sis Cameron (1907). Ann. Mag. Net. Hist. (7) 19: 171. Type: Q, Haundraw Valley, Tenasserim, India (BM 339).

HYBOGASTER JEJUNUS (Cameron), comb. nov.

Bracon jejunus CAMERON (1899). Mem. Proc Manch. Lit. Philos. Soc. 43: 78. Type: Q, Khasla Hills, India (Oxfo.d).

HYBOGASTER MALAYANUS (Cameron), comb. nov.

Iphiaular malayanus CAMERON (1901). Proc. Zool Soc. London 2: 43. Type: 9, Singora, Malay Peninsula (BM 319).

H1806 ASTER XANTHOPSIS (Cameron), comb. nov.

Iphaniar ranthopsis Cameron (1905). Spoha Zeyl, 3:82. Type: Q, Etephant Pass, Ceylon.—Dover (1925). Eat. Mitt. 14: 40. (syn). Iphianiax spilocephalus Cameron (1907). J. Nat. Hist. Soc Bombay 17: 584. Types: 3, Q, Deesa, India; Lectotype: 2, Deesa. India (BM 353).

HYBO'-ASTER VARIPALPIS (Cameron), comb nov.

I.M.ia.dax rampalpis CAMERON (1996). Ann. S. Afr. Mus. 5: 48. Type: "3"=9, Transvaal, Cape Co.ony (BM 350).—KNIGHT (1930). East Afr. J. 5: 65.—Crown (1962). Ent. Soc. South Afr. J. 25; 369.

MYBOGASTER VARIPENNIS (Cameron), comb. nov.

Iphianlaz varipennis Camenon (1903). J. Str. Brit. Roy. As. Soc. 39; 110. Type: 2, Matang, Borneo (BM 361).

Genus CRATCERACON Cameron

Cratobracon CAMERON (1901). Proc. Zool. Soc. London 1: 226.
Type: Cratobracon ruficeps Cameron. By monotypy.
Distribution: Indo-Australian.

Cratobracon is similar to Sigalphogastia in that the 2nd tergite has a pair of carinæ that converge apically and the segment bears a small tooth on each apical corner. It differs from Sigalphogastra, however, in having a long scape, length about 3 to 4 times its diameter, and the presence of a raised central area and a midlongitudinal carina on the 1st tergite.

The type of the genus, Cratobracon ruficeps Cameron (BM Type No. 156) has the apical margin of the clypeus turned upward, the notauli are deep and 2nd tergite has a midlong-itudinal carina in addition to the two oblique carinæ; tergites 1 to 4 are wrinkled and longitudinally striate, the rest are impunctate.

CRATOBRACON JACULATUS (Smith), comb. nov.

Bracon jaculatus Smith (1860). J. Proc. Linn. Soc. Zool. (Suppl.) 4: 141. Type: Q. Batchian. Neotype: Q. Makassar, Celebes, with a handwritten label "Bracon jaculatus Sm." (Oxford).

CRATOBRACON RETICULATUS (Cameron), comb. nev.

Iphiaulum reticulatus CAMERON (1905). J. Str. Brit. Roy. As. Soc. 42: 39. Type: 3, Mt. Matang, Borneo (BM 376).

Genus SIGALPHOGASTRA Cameron

Sigalphogastra Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 124.

Type: Sigalphogastra ashmeadi Cameron. By monotypy.

Distribution: African and Indo-Australian.

It differs from Cratobracon in that the scape is shorter, length only about 2 times its diameter. There is no midlongitudinal carina on the 1st tergite.

5. GALPHOGASTRA ATTHOPICA (Cameron), comb. nov.

Iphiaulax aethiopicus Cameron (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 153. Type: Q, Dunbrody, Cape Colony (BM 377).

ţ

Iphiaulax melanosoma (Brulle), teste Brues (1926). Proc. Amer. Acad. Arts Sci. 61 (8): 221.

Merinotus striatus Szepligeti, teste Brues (1921). Ann. S. Afr. Mus. 19: 61.

SIGALPHOGASTRA CAPENSIS (Comeron), comb. nov.

Iphiaulax capensis Cameron (1994). Rec. Albany Mus. Grahamstown S. Afr. 1: 149. Type: Q. Dunbrody, Cape Colony (BM 379).

—Fahringer (1926). Opusc. Brac. 1 (2-3): 167. (comb. nov.)

Merinotus.

SIGALPHOGASTRA COMBUSTUS (Smith), comb. nov.

Bracon combustus Smith (1860). J. Proc. Linn. Soc. Zool. (Suppl.) 4: 65. Type: Q, Makassar, Celebes (Oxford). Szepligeti (1901). Termes. Fuzetek. 24: 367. (comb. nov.) Iphiaulux.—Szepligeti (1906). Ann. Mus. Natl. Hung. 4: 555. (comb. nov.) Merinotus.

SIGALPHOGASTRA ERNESTI (Cameron).

Iphiaudax cruesti Cameron (1905). Spolia Zeyl. 3: 84.

Type: Q, Peradeniya, Ceylon (BM 390).—Dover (1925). Ent. M.tt. 14: 39. (comb. nov.) Sigalphogastra.

SIGALPHOGASTRA FOVEATUS (Smith), comb. nov.

Bracon foveatus Smith (1857). J. Proc. Linn. Soc. Zool. 2: 126.
Types: Q Q, Borneo and Malacca; Lectotype: Q, Singapore (Oxford).

SIGALPHOGASTRA GRZENI (Cameron).

Iphiaulax greeni Cameron (1905). Spolia Zeyl. 3: 83.

Types: 2 9 9, Peradeniya, Ceylon (London); Lectotype: 9, Peradeniya, Ceylon (BM 388).—Dover (1925). Ent. Mitt. 14; 3, (comb. nov.) Sigalphogastra.

SIGALPHOGASTRA HAVILANDI (Cameron), comb. nov.

Iphiaulax havilandi Cameron (1906). Ann. S. Afr. Mus. 5: 42 Type: Q, Natal, Cape Colony (S. African Lius.). The Q specimentagged as BM Type No. 405 is not the type. It bears a locality label "Cape" and a handwritten label "Iphiaulax havilandi Cam."

SIGALPHOGASTRA KUCHINGENSIS (Cemeron), comb. nov.

Iphiaulax kuchingensis Cameron (1903). J. Str. Brit. Roy. As Soc. 39: 104. Type: Q, Kuching, Borneo (BM 382).

SIGALPHOGASTRA ORNATICORNIS (Cameron), comb. nov.

Iphiaulax ornaticornis Cameron (1905). J. Str. Brit. Roy As Soc. 42: 48. Type: Q, Kuching, Borneo (BM 378).

SIGALPHOGASTRA PALLIDIFRONS (Smith), comb. nov.

Bracon pallidifrons Smith (1858). J. Proc. Linn. Scc. Zool, 3: 176. Type: Q, Aru. Neotype: Q, Makassar, Celebes, with a hand-written label "Bracon pallifrons Sm." (Oxford).

SIGALPHOGASTRA PATROUS (Cameron), comb. nov.

Iphiaulax patrous Cameron (1903). J. Str. Rey. As. Soc. 39: 106 Type: Q, Borneo (EM 323).

SIGALPHOGASTEA RUBERLINEATUS (Cameron), comb. nov.

Iphiaulax rubrilineatus Cameron (1904). Rec. Albany Mus. Graham town S. Afr. 1: 151. Type: Q. Dunbrody, Cape Colony (BM 380).

51G ALPHOGASTRA RUGIFRONS (Smith), comb. nov.

Bracon rugifrons SMITH (1857). J. Proc. Linn. Soc. Zool. 2: 125.
Type: Q, Sarawak, Borneo (Oxford).

SIG M PHOGASTRA SADVATES (Cameron), comb. nov.

Iphiaulax sadyates CAMERON (1903). J. Str. Brit. Roy. As. Soc. 39: 108. Type: 7, Santubong, Borneo (BM 372).

SIG ALPHOG ASTRA SHELFORDI (Cameron), comb. nov.

Iphiaulax shelfordi CAMERON (1903). J. Str. Brit. Roy. As. Soc. 39: 103. Type: Q, Kuching, Borneo (BM 384).

SIGALPHOGASTRA SORANUS (Cameron), comb. nov.

Iphiaulax soranus CAMERON (1905). J. Str. Brit. Roy. As. Soc. 42: 26. Type: 9, Matang, Borneo (BM 371).

SIGALPHOGASTRA SYLEUS (Cameron), comb. nov.

Iphiaulax syleus Cameron (1903). J. Str. Brit. Roy. As. Sec. 39: 198.
Type: Q, Kuching, Borneo (BM 386).

SIGALPHOGASTRA 12-FASCIATES (Cameron), comb. nov.

Iphiaulax 12-fasciatus CAMERON (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 154. Type: Q. Dunbrody, Cape Colony (BM 381).

Genus IPHIAULAX Foerster

Iphiaulax FOERSTER (1862). Naturh. Ver. Rheinlande Verh. 19: 234.
Type: Bracon impostor Scopoli. By monotypy and original designation.

Synonyms: Ipobracon Dalla Torre, Digonogaster Viereck, Monogonogastra Viereck, Iphiaulax Fahringer.

Distribution: Worldwide.

The species included in this genus have a midbasal triangular area on the second tergite, but no carinæ that converge apically. The scape is short, about 1.0 to 1.5 times as long as its diameter. The following species originally described in *Bracon* are now transferred in *Iphiaulax*.

IPHIAULAN BELLICOSUS (Smith).

Bracon bellicosus SMITH (1860). J. Proc. Linn. Soc. Zool. 4: 65.

Type: Q, Makassar, Celebes (Oxford).—Szepliceti (1901).

Termes. Fuzetek. 24: 367. (comb. nov.) Iphiaulax.—Szepliceti (1906). Ann. Mus. Nat. Hung. 4: 564. (comb. nov.) Ipobracon.

IPHIAULAX DECEPTOR (Smith), comb. nov.

Bracon deceptor SMITH (1860). J. Proc. Linn. Soc. Zool. 4: 65.

Type: "9" = 3, Makassar, Celebes (Oxford).

IPHIAI LAX DEESAE (Smith), comb. nov.

Bracon Decsae Cameron (1902). J. Bombay Nat. Hist. Soc. 14: 433.

Types: 3, Q Deesa, India (London); Lectotype: Q, Deesa, India, bearing a handwritten label "Bracon decsaensis Cam." (BM 434).—Dover (1925). Ent. Mitt. 14: 39. (comb. nov.) Glyptomorpha.—AYYAR (1928). Mem. Dept. Agri. India Ent. Ser. 10 (3): 35. (comb. nov.) Stenobracon.

IPHIAULAX BODONAEUS (Cameron), comb. nov.

Bracon dodonaeus Cameron (1399). Mem. Proc. Manch. Lit. Philos Soc. 43: 75. Type: 2, Khasia Hills, India (Oxford).

IPHIAULAX FLORALIS (Smith), comb. nov.

Bracon floralis Smith (1857). J. Proc. Linn. Soc. Zool. 2: 12. Type: Q, Sarawak, Borneo (Oxford).

IPHIAULAX INSINUATOR (Smath), comb nov.

Bracon insinuator SMITH (1858). J. Proc. Linn. Soc. Zool. 3; 24. Type: Q, Makassar, Celebes (Oxford).

IPHIAULAX KHASIANUS (Cameron), comb nov

Bracon khasianus Cameron (1899). Mem. Proc. Manch. Lit. Philes. Soc. 43: 72. Type: Q, Khasia Hills, India (Oxford).

IPHIAULAX LEPCHA (Cameron)

Bracon lepcha CAMERON (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 66. Type: 9, Khasia Hills, India (Oxford).—Dover (1925). Ent. Mitt 14: 40. (comb. nov., syn.) Iphiaulax.

Iphiaulax bhotonensis Cameron (1907). Entomologist 40: 4. Type: Q, Buxa, Bhotan (BM 412).

Iphiaulax lineaticarinatus CAMERON (1907). Ann. Mag. Nat. Hist. (7) 19: 173. Type: "ô" = Q, Sikkim, India (BM 409).

IPHIAULAX OBSCURILINEATUS (Cameron), comb. 20v.

Bracon obscuritineatus Cameron (1911). J. Roy. Agri. Com. Soc. Brit. Guiana 1: 308. Type & British Guiana (Br. Guiana Mus.). A & labelled this species bearing a locality label "British Guyanan" and tagged as BM Type No. 429 in London is not the type.

PHIAULAX OCCULTATOR (Smith , comb. nov

Bracon occultator SMITH (1803). J. Proc. Linu. Soc. Zool. 7: 11. Type: Q, Mysol. Neotype: Q, Makassar, Celebes, with a handwritten label "Bracon occultator Sm." (Oxford).

IPHIAULAX PAUPERATUS (Came, on), comb. nov.

Bracon pauperatus Cameron (1900). Mem. Proc. Manch. Lit. Philos. Soc. 44: 83. Type: 9, Khasia Hills, India (Oxford).

IPHIAULAX PENETRATOR (Smith), comb nev

Bracon penetrator SMITH (1863). J. Proc. Lina. Soc. Zeol. 7: 11. Types: 6, Makassa.; 29, Ceram and Mysol (Oxford); Lectotype: 9, Ceram (Oxford), Paralectotypes: 6. Makassar; 9, Mysol (Oxford).

IPHIAULAX PERPLEXUS (Smita), comb. net.

Bracon perplexus Smith (1857). J. Proc. Linn. Soc. Zool. 2: 121. Type: Q, Sarawak, Boineo (Oxford).

IPHIAULAX PHAEDO (Cameron), comb nor

Bracon phaedo Cameron (1899). Mem. Proc. Manch. I it. Philes. Soc. 43: 68. Type: 3. Khasia Hills, India (Onford).

PHIAULAX QUADRICEPS (Smeth), comb nov.

Bracon quadriceps Smith (1857). J. Proc. Linn. Soc. Zool. 2: 122. Type: Q. Sarawak, Boinco (Oxford). IPHIATUAX RUFUS (Cameron), comb. nov

Explracor infra Cameron (1912). Ann. Soc. Ent. Belg. 56: 371. Type: Q. Dima, Belgian Congo (Congo Museum). There is a Q labelled as this species and targed as BM Type No. 551, but it has no type locality label.

IPHIAULAX SEDITIOSUS (Cameron), comb nov

Bracon seditions Cameron (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 76. Type: 9, Khasia Hills, India (Oxford).

HIHIAULAX SIMLAENSIS (Cameron), comb. nov.

Bracon's mlacusis Cameron (1899). Mem. Proc. Manch. Lit. Philos. Soc. 43: 65. Types: 29, Simla, India (Oxford and BM 368); Lectotype: 9, Simla, India (Oxford); Paralec otype: 9, Simla, India (BM 363).

MINALLAN STEPICIONES (Comeron), comb nov.

Bracon suspiciosus Cameron (1897). J. Proc. Linn. Soc. Zool. 2: 123. Type: 9, Sarawak, Borneo (Oxford).

IPHIAULAN TRISIGNATUS (Kirky)

Bracon trisignatus Kirby (1884). Ann. Mag. Nat. Hist. (5) 13: 404.

Type: Q, Pasauanco, nr. Zamboanga, Philippines (BM 437).—
Balt Zar (1966). Pacific Ins. Monogr. 3, 39 (comb. nov.) Iphiaulax.

IFHIAULAN VAGATIS (Smith), comb nov

Bracon ragatis SMITH (1857). J. Proc. Linn. Soc. Zool. 2: 124.
Type: Q. Malacca (Oxford).

The following species originally described in *Iphiaulax* were also examined and believed to belong in *Iphiaulax*. Future studies might remove some of them to other genera especially some hard-to-place males.

Iphiaulax annulatars Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 114. Type: 9, Kuching, Borneo (BM 394).

Inlandar ast.ochus Cameeon (1902). J. Str. Brit. Roy. As. Soc. 37: 34. Type: 9. Sarawak, Borneo (BM 348).

Iphiaulax basimacula Cameron (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 150. Type: Q. Dunbrody, Cape Colony (BM 355).

According to Brues, 1924 (Ann. S. Afr. Mus. 24: 61), basimacula is a junior synonym of Iphiaulax nataliensis SZEPLIGETI (1901).

Iphianlax buceplains Brues (1926). Proc. Amer. Acad. Art. Sci. 61: 212. Type: 9, Natal (BM 362).

Iphiaulax burmaensis Cameron (1907). Ann. Mag. Nat. Hist. (7) 19: 172. Type: Q, Shwegyin, Lower Burma (BM 337).

Ipl. aular caressus Cameron (1902). J. Str. Brit. Roy. As. Soc. 37: 22 Type: (sex?), Matang, Boineo (BM 347, tip of abdomen damaged).

1.1. aular cocci comaculatus CAMERON (1906). Ann. S. Afr. Mus. 5: 46. Type: 9, Hex River, Cape Colony (S. African Mus.). The 9 in the British Mascum from this locality and labelled as this spec es is not the type.

According to Turner (1917) Ann. Mag. Nat. Hist. (8) 20: 213, coocincomaculatus Cameron is a junior synonym of Iphiaulax plurimacula (Brulle), 1846.

Iphiaulax decorns Cameron (1906). Ann. S. Afr. Mus. 5: .0. Types: 3, 2, Hex River, Cape Colony (S. African Mus.), Lectotype: 2, Hex River, Cape Colony (S. African Mus.).

There is a Q tagged as BM type No. 342 in the British Museum from "Cape" and labelled as this species, but it is not the type. Iphianian dolens Cameron (1911). J. Roy. Agri. Comm. Soc. Brd. Guiana 1: 309. Type: 6, British Guiana (Brit. Guiana Mas.). There is a & tagged as BM Type No. 331 in the Br tish Museum from this type locality and labelled as this species, but it is not the type.

Iphiaulax domdamiensis Cameron (1907). Ann. Mag. Nat. Hist. (7) 10: 170. Type: 9, Tenasserim, India (BM 338).

Iphiaulaz elizens Cameron (1905). Entomologist 38: 107.

Types: 31 9, Deesa, India (BM 352); Lectotype: 9, Deesa, India (BM 352).

Iphianlax crythroura Cameron (1905). Spolia Zeyl. 3: 85.
Types 2 g, Kandy, Ceylon; Lectotype: g, Kandy, Ceylon (BM 389).

Iphianlax fletcherl CAMERON (1908). Trans. Linn. Soc. London 12; 81. Type: 9, Red Sea (BM 367). The identification label on the specimen is "Iphianlax gardeneri Cam."

Iphianlax haluesus Campron (1903). J. Str. Brit. Roy. As. Soc. 39: 112. Type: 9, Kuching, Borneo (BM 360).

Iphiaulax hookeri Cameron (1907). Ann. Mag. Nat. Hist. (7) 19: 175. Type: 9, Sikkum, India (BM 407).—Dovin (1925). Ent. Mitt. 14: 39. (comb. nov.) Atanneolus.

Iphianlax immsi Cameron (1913). Indian For. Records (1912) 4: 107. Type: 3, Kaluwala nr. Dehra Dun (BM 351).

Iphianlax lacrtius Cameron (1903). J. Str. Brit. Roy. As. Soc. 39; 116. Type: Q, Kuching, Borneo (BM 411).

Iphianlax leptopterus Cameron (1905). J. Str. Brit. Roy. As. Soc. 42: 24. Types: 3,9, Borneo; Lectotype: 9, Borneo (BM 410).

Iphiaulax levissimus Cameron (1905). Ann. S. Afr. Mus. 5: 44.

Types: 9 9, Hex River, Cape Colony (S. African Mus. & Cameron Coll.); Lectotype: 9, Hex River, Cape Colony (S. African Mus.);

Paralectotype: 9, Hex River, Cape Colony (BM 334).

According to Roman, 1912 (Zool. Bidrag, Uppsala 1: 277), levissimus Cameron is a junior synonym of Ipobracon rubiginator (Thunberg).

Iphiaulax marcolis Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 107. Type: 3, Lingga, Borneo (BM 357, abdomen missing). Iphiaulax matangensis Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 113. Type: 9, Matang, Borneo (BM 393).

Iphiaulax microphthulmus Brues (1926). Proc. Amer. Acad. Arts Sci. 61: 227. Type Q, Butembe, Uganda (BM 364). Iphianiax odontoscapus Cameron (1905). Rec. Albany Mus., Grahamstown 1: 154. Type: Q, Dunbrody, Cape Colony (BM 356).

Iphiaulax ornaticollis Cameron (1905). Trans. S. A. Phil. 15, pt. 4: 205. Type: Q. Cape Colony, Dunbrody (BM 335).

Iphiaulax permutans Turner (1917). Ann. Mag. Nat. Hist. (8) 20: 243. Type: 9, Mylanje, Nyasaland (BM 365).

Iphraulax portius Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 11. Type: Q, Kuching, Borneo (BM 359).

Iphraulux robustus Cameron (1905). Ann. S. Afr. Mus. 5: 57. Type: Q, Durban, Natal, Africa (S. African Mus.). There is a Q tagged as BM Type No. 333 in the British Museum from this type locality and labelled as this species, but it is not the type. Szepliceti (1906). Ann. Mus. Nat. Hung., p. 582. (comb. nov.) Goniobracon.

According to Schulz, 1911 (Zool. Annal. 4: 71) and Brues, 1924 (Ann. S. Afr. Mus. 19: 61), robustus Cameron is a junior synonym of Iphiaulax martini (Gribodo).

Iphiaulae rotundinerris Cameron (1911). J. Roy. Agri. Comm. Soc. B. G. 1: 311. Type: 6, British Guiana (Br. Guiana Mus.). A specimen in the British Museum tagged as Type No. 332 and bearing the locality label of "Br. Guyana" is not the type.

Iphiaulax rubrinervis Cameron (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 152. Type: "o " = 15, Dunbrody, Cape Colony (BM 345).

Iphiaulax rufithorax BINGHAM (1909). Tr. Zool. Soc. London 19: 179. Type: "ô" - ♀, Ruwenzori (BM 391).

According to Roman, 1910 (Ent. Tijds., p. 114), rufithorax Bingham is a junior synonym of Bathyaulax cyanoguster Szepligeti, 1901.

Iphiaulax sadongensis Cameron (1906). J. Str. Roy. As. Soc. Sing-46: 105. Type: Q, Borneo. Neotype: Q, Sumatra (BM 369).

Iphiaulax spilonotus CAMERON (1904) 1905. Rec. Albany Mus. Grahamstown S. Afr. 1: 165. Type: 6. Brak Kloof, S. Africa (BM 344).

Iphiaulax stramineus Cameron (1907). Ann. Mag. Nat. Hist. (7)
 19: 172. Type: 0, Haundraw Valley, Tenasserim, India (BM 340).
 —DOVER (1925). Ent. Mitt. 14: 40. (syn.) — Campyloneurus trichionotus Cameron.

Iphiaulax tenusserimiensis CAMERON (1907). Ann. Mag. Nat. Hist. (7) 19: 176. Type: Q, Tenasserim (BM 370). The identification label on the specimen is "Bracon tenasserimensis Cam."

IPHIAULAX TURNERI Baltazar, nom. nov.

Iphiaulax transiens Turner (1918). Trans. Ent. Soc. London, p. 95. 3 · 2 · Type: 9, Queensland, Australia (BM 366). Name preoccupied by Szepligeti (1904). Ann. Mus. Nat. Hung., p. 173.

Iphiaulax trichiosoma Cameron (1903). J. Str. Brit. Roy. As. Soc. 39: 118. Type: "9" = 3, Kuching, Borneo (BM 398).

Iphiaulax varicoll's Cameron (1909). Arch. Mat. Natury. 30 (10); 6, 7. Types: , 6, Cape Colony (Berlin Mus.); 9, Kaplan I (BM 354). Lectotype: 9, Kapland (BM 354).

Iphiaulax wallacsi CAMITON (1903). J. Str. Bit. Roy. As. Soc. 39: 108. Type: 9, Kuching, Borneo (BM 358).

Iphiaulax whitei CAMERON (1904). Rec. Albany Mus. Grahamstown S. Afr. 1: 165. Types: 3, 9, Brak Kloof Farm, S. Africa; Lectotype: 3, Cape Colony (BM 343).

There are five specimens in the British Museum that bear type labels but there is no proof that the handwritten names on them have ever been published:

Barthasis ruficeps Cameron. This is a Sigalphogastra. Specimen: Q, Sarawak, Eorneo, tagged as EM 509.

Bracon tricolor Smith. This is an Iphiaulan.

Specimen: Q, Sarawak (Oxford).

Euryphrymmus ruficollis Cameron. This is a Bracon.

Specimen: Q, tagged as BM 214.

Iphiaulae rampalicuses Brues. This is an Iphiaular.

Specimen: Q, Rampala, tagged as BM Type No. 263. Lissobracon nitidus Cameron. This is a Eumobracon.

Specimen: Q, Borneo, tagged as BM 552 (abdomen missing). It agrees with the color description of Lissobracon forticerous Cameron, the type of Lissobracon. The type specimen of L.

forticornis Cameron has not been located.

Subfamily ROGADINAE

PSEUDOGYRONEURON SFILONOTUS (Cameron), comb. pov.

Troporhogas spilonotus CAMERON (1905). Spolia Zcyl. 3: 93. Type: Q, Peradeniya, Ceylon (BM 222).

MEGARHOGAS MACULIPENNIS (Cameron), comb. nov.

Troporhogas maculiponnis Camenon (1905). Spolla Zeyl. 3: 94. Type: 9, Kandy, Ceylon (BM 224).

ROGAS LATERALIS (Cameron), comb. nov.

Troporhogas lateralis Cameron (1905). Spelin Zeyl. 3; 95. Type: 9, Peradeniya, Ceylon (BM 227).

There are two specimens that are considered as rogadines and are tagged with British Museum Type Numbers; the manuscript names on them have never been validated by Cameron.

Euryphrymnus marginicollis Cameron. This is a Rhaconotus. Specimens: 18, 9, Borneo, tagged as BM Type No. 212. Onocophanes ruficaudis Cameron. This is a Rhaconotus. Specimen: 9, Borneo, tagged as BM Type No. 212.

ACKNOWLEDGMENT

The author is grateful to Mr. C. F. W. Muesebeck and Miss Luella M. Walkley, of the U. S. National Museum, Washington, D. C., for correcting the manuscript, to Dr. J. F. Perkins of the British Museum of Natural History, Dr. M. W. de V. Graham and Prof. G. C. Varley of the Oxford University Museum who, in 1958 and 1966, provided working space and facilities and gave the author permission to study the types in their care; and to Dr. A J. Hesse, in charge of insect collections in the South African Museum (Natural History), Cape Town, South Africa, who kindly checked for the author the presence of type specimens of five Iphiaulax species in the African Museum.

EFFECTS OF GAMMA RADIATION ON PEANUTS, ONIONS, AND GINGER

By Olympia N. González, Leogarda B. Dimaunahan, Leonarda M. Pilac, and Victoria Q. Alabastro

National Institute of Science and Technology, Manila

DWE TLATE

Food irradiation has reached a stage wherein the potential application of ionizing energy to preserve food is presently possible. This method has shown great promise in the preservation of perishable foods such as fresh and dried foods through the destruction of microorganisms, sprout inhibition, delay of ripening, and killing or sterilization of insects that generally infest dried foods including cereal grains.

In the Philippines, the climatic conditions, food handling and storage practices are such that most foodstuffs like tubers and root bulbs develop sprouts and/or allow mold growth, while dried food products such as grains, oilseeds, beans and dried fruits are attacked by insects, mites, fungi and other spoilage agents. This situation has created heavy losses in our local food supply. Food irradiation presents possibilities of minimizing such losses.

Among the important root crops produced locally are onions, ginger, and peanuts. These crops particularly onions are seasonal. Farmers have to dispose them off at very low cost during glut seasons since they easily undergo spoliage. Serious losses occur from sprouting and rotting which generally set in within a month at ambient temperature storage.

Prestorage irradiation of onions has been demonstrated to be an efficient means for controlling sprouting over a period of months [Brownell et al (1954), Dallyn and Sawyer (1955 and 1957), Hori et al (1964), Kahan and Temken (1968), and Sawyer and Dallyn (1965)]. Gamma irradiation could be a useful means of inhibiting sprouting and/or spoilage in the local varieties of onions. A review of available literature showed no reports on postirradiation studies made on local ginger and onions.

The potential use of irradiation to solve sprouting and rotting problems in potatoes was recognized several years ago. Early

researchers along this field were reported in Canada, the United States, and U.S.S.R., and lately in Norway, France, Poland, Japan, and Israel [Errington and MacQueen (1961), Gardner and MacQueen (1965)]. To date, the United States, Canada, and Israel have cleared irradiated potatoes for human consumption.

This study aims to determine the effects of gamma radiation on local varieties of onions, ginger, and peanuts and to develop methods for extending the storage life of these food crops. Such methods could be the basis for pilot plant work and eventually for commercial adoption.

MATERIALS AND METHODS

Peanuts.—A preliminary study on the effect of gamma radiation on shelled peanuts was conducted. Results of this preliminary investigation established the irradiation doses that were utilized in the subsequent trials that involved the effect of ambient temperature storage on the quality of the irradiated samples.

For the preliminary trials, shelled peanuts free from unsound kernels were packed in multiwall paper bags and representative batches were gamma-irradiated with the Cobalt 60 facility of the Philippine Atomic Research Center using the following doses of 0, 50, 75, 100, 125, 150, 175, and 200 Kr. The samples were analyzed for moisture, free fatty acid, thiobarbituric acid values (test for rancidity), total plate count (TPC), and mold and yeast counts. Toasted samples were evaluated for organoleptic properties using the Hedonic Rating Scale [Pilgrim and Peryam (1958)].

Based on the results obtained from the preliminary trials, the doses utilized for storage studies of the shelled peanuts packed in multiwall paper bags were 0, 50, 100, and 150 Kr. The Cobalt 60 facility of the Atoms in Action Exhibits sponsored by the U.S. Atomic Energy Commission (AEC) in cooperation with the National Science Development Board was used in the irradiation of the samples in February 1969. The experimental products were stored at room temperature (27–30°C) for a period of 10 months.

Composite samples were tested initially for organoleptic properties and analyzed for moisture, free fatty acid, aflatoxin, TPC and mold and yeast counts. The stored samples were

tested for these same properties monthly for the first 8 months of storage and on the 10th month of storage.

The following methods were used in the analyses of the experimental samples; moisture and free fatty acid (expressed as oleic acid)—The Association of Official Agricultural Chemist (1965); rancidity—thiobarbituric acid (TBA) method of Tappel et al (1957); Aflatoxin—method of Pons Jr. et al (1965); and total plate count (TPC) and mold and yeast counts—APHA method.¹

Sensory evaluation made during storage of the irradiated and unirradiated samples were carried out by a panel of six selected members. A score sheet on preference tests of food samples prepared by the Technical Committee of the Food and Nutrition Research Center (FNRC) and approved by the Office of the Statistical Coordination and Standards, National Economic Council was used. It consists of descriptive terms with corresponding numerical scores; desirable—10, 9; acceptable—8, 7; neutral (neither like nor dislike)—6, 5; objectionable—4, 3; and unacceptable—2, 1. Analysis of variance was used in the statistical evaluation of the results of the organoleptic tests to determine the effect of storage period on the quality of the product.

Onions.—Selected mature bulbs of two onion varieties (red creole and white variety) were divided into lots of about 2 kg. each, packed in coarse-woven sinamay bags and exposed to the gamma irradiation facility of the U.S.A.E.C. Atoms in Action Exhibit in February 1969. The following radiation doses were used: 0, 5, 10, and 15 Kr. The samples were placed in uncovered carton boxes and stored in an improvised shed to simulate storage practices in the rural areas. Composite samples were evaluated initially as is for organoleptic properties using the FNRC preference score sheet. Sensory evaluation of the samples was done monthly up to the time when almost all of the samples appeared rotten and/or sprouted.

Ginger.—Mature rhizomes of ginger (Hawaiian variety) were divided into lots of 2 kg each packed in the same way as onions and exposed to the gamma irradiation facility of the U.S.A.E.C. Atoms in Action Exhibit. Radiation doses ¹Recommended methods for the microbiological examination of foods. Publication Office of APHA, Inc., 1790, Broadway, New York.

² Coarsely woven cloth material from abaca fibers.

received by representative lots were 0, 4, 8, and 12 Kr. Storage conditions and examinations made on the experimental products were the same as those described for onions.

RESULTS AND DISCUSSION

Results of analysis made on the preliminary trials with peanuts are given in Table 1. The moisture values of the experimental samples did not differ much from one another. Negative results were obtained for TBA test indicating that irradiation at the dose levels used did not cause immediate auto-oxidation of the fat content of the sample. Fat oxidation due to irradiation has been reported to proceed generally via a free radical mechanism with removal of a hydrogen from a methylene group to a double bond of the fatty acid chain [Ingold (1962)]. The direct formation of free radicals in the alkyl chain of the fatty acid plays a great part in the formation of volatile compounds that can cause characteristic off-flavors in irradiated foods rich in fats and proteins [Forss et al (1966)]. At the dose levels used no off-flavors were observed in the irradiated peanuts. Free fatty acid values showed very slight changes up to 150 Kr. However, with higher doses of 175 and 200 Kr. free fatty acid content increased to about 5 to 6 times that obtained for the irradiated samples.

The mean acceptability scores for texture, flavor and appearance received by the experimental samples are also given in Table 1. Values indicate that all samples were within the range of acceptable products although they could not be classified as highly acceptable. Higher mean scores for all the qualities tested were, however, obtained for peanut samples irradiated at 50, 75, and 150 Kr. Irradiation at the dose levels used did not affect markedly the organoleptic properties of the peanuts.

Results of microbiological tests showed decrease in TPC and mold and yeasts counts as irradiation dose was increased. At 75 Kr and above, mold and yeasts counts were negative. TPC was 50 colonies per gram for samples irradiated at 150 and 200 Kr.

Based on the results obtained in the preliminary tests, irradiation doses used in the subsequent storage trials were 0, 50, 100, and 150 Kr. Moisture and free fatty acid values increased

TABLE 1.—Effect of gamma-irradiation on some of the physical, chemical and microbiological properties of irradiated peanuts.

Radiation		TRA	Free	трс	Yeasts and moid	Accep	Acceptability a (mean)	
dose Kr	Moisture	ОД	fitty	col gm	counts	Гуе эррегі	Paleta bil ty	Textur
	Per cent		Per cent					!
0	4 58	0	0.53	550	600	# 83 5 67	6 17 5 83	6
25	4 28	0	0 20	550 570	200	7.00	7 00	7
75	4 02	0	0 99	100	0	7.00 5 ×3	7 17 5 67	6 5
100	4 02	0	0.77	100	0	5 ×3	6 17	Ĝ
125	4 14 4	ŏ	0.81	50	0	6 83	7 33	7.
175	4 19 4 03	0	9 31 2 36	50	-	6 60 5 83	6.33	6.

(-) not determined due to unavoidable circumstances

**Hedomic rating scale 9, like extremely, 8, like very much, 7, like moderately, 6, like slightly; 5, noither like nor dislike, 4, dislike, slightly, 3, dislike moderately; 2, dislike very much, 1, dislike extremely.

slightly during storage (Table 2). A decrease in TPC and mold and yeast counts was observed as the irradiation dose increased (Table 3). For the 1st and 2nd months of storage, TPC and mold and yeasts counts for most samples were comparatively lower than their initial counts. However, on the 3rd month up to the 10th months an increase in count was observed for samples with positive initial counts. Irradiation at 100 and 150 Kr prevented mold and yeast growth. Mold and yeast counts were negative for samples irradiated at dose levels even up to the end of the experimental period.

TABLE 2.—Moisture and free fatty acid contents of experimental peanut samples during storage at room temperature for a period of 10 months.

	Storage period (month)									
Test and arradiation dose	0	1_	2	3	4	- 5	· .	7	8	10_
M easter paper cout) 0 lkr 50 Kr 100 kr 150 kr 150 kr 150 kr 150 kr	4 43 4 54 4 45 4 65	4 68 4 67 4 36 4 69	4 11 4 47 4 20 4 35	5 02 4 95 1.88 4 76	5 3 E 82 5 70 4.76	6 25 6.95 7.04 7 34	6.10 6 07 5 50 5 ×4	6 47 6 30 6 49 6 53	F 74 5 55 5 54 5 45	6 00 6 03 5 69 5 79
Free fatty acid sper cent 0 Kr - 10 Kr - 100 Kr - 100 Kr -	0 12 1 15 0 15 0 18	0 23 0 24 0 38 0 22	0 2 3 0 36 0 46 0 33	0 32 0 46 0 41 0.33	0 35 0 50 0 31 0 33	0 37 0 38 0 31 0 32	0 30 0 38 0 46 0 38	0 36 0 33 0 36 0 41	0 30 0 3.1 0 33 0 46	0 30 0 53 0 4 0 70

Table 3.—Results of aflatoxin and microliological tests made on the experimental peanut samples during storage at room temperature for a period of 10 months.

Microb ologica, tests	Storage period (mont 18)										
and dose treatments	0	1	2	3	4		6	7	8 1	10	
lotel p ale count (C lot es gm) 0 Kr 50 Kr 100 Kr 100 Kr Mold and yeast coent (Coortes gm	240 160 0 50	10.5 40 10 10	90 40 20 10	200 200 200 10)	250 200 206 100	200 150 2 0 25)	100 100 100 100	400 2 40 110 150	150 250 250 250 250	300 150 100	
0 Kr 50 Kr 150 Kr 150 Kr	50 10 0 0	20 0 0 0	30 10 0 0	150 10 0 0	10 0 10 0	100 10 0 0	100 10 0 0	100 10 0 0	100 10 (100 16 0	
0 Kr					9 9 7.7 (-,	6.5	races	4 7	8 5 6 5 (~)	(- (- (-)	

⁽⁻⁾ Negative, p.p b., parts per billion,

Aflatoxin tests for all samples gave negative results up to the 3rd month (Table 4). However, on the 4th month and up to the end of the experimental period, unirradiated samples gave positive results. The 50 Kr samples were positive for aflatoxin on their 4th, 5th, 6th, and 8th months. It is apparent that aflatoxin-producing organisms in the unirradiated sample may have survived the 50 Kr dose irradiation treatment and became active on the 4th month with the subsequent production of small amounts of the toxin. These samples can, however, be considered only slightly contaminated. Their aflatoxin content is still within the limits allowable in food products which was designated by the American and Canadian Food and Drug Administration as 30 ppb [Campbell ((1967)]. In a way, irradiation at dose levels of 100 and 150 Kr controlled aflatoxin contamination during the 10 months experimental period. It should be noted that the peanuts used in this study were of the best quality, freshly harvested and dried to a moisture content of about 4.5 per cent before irradiation. These conditions plus proper packaging to eliminate as much as possible exposure to contaminants contributed to the good keeping quality of the experimental products.

Table 4.—Mean acceptability scores of experimental peanut samples stored at room temperature for 10 months.

Qualities rested	Storage period (months)									
dose treatments	0	1	2	3	4	5	6	7	8	10
Ene-on-eal a hr 50 Kr 100 Kr 150 Kr	8,67 8 83 8 83 8,67	7.50 7.33 7.33 7.33	7,33 7,16 7,00 7,33	7.17 7.17 6.50 6.17	7,00 6,33 6,17 6 83	7,33 6,67 7,00 7,17	5,83 6,50 7,00 6,83	7.17 6.33 6.17 5.67	6 00 6 33 6 33 6 00	6 8 6 6 7 0 7 0
Pe 416 2 y OKr	8,67 8,33 8,33 8,17	7.00 7.00 7.33 7.00	7 33 7 00 7 16 7 00	7,00 7,17 7,00 6,17	5 83 6.67 5.33 6.17	7, 17 6,67 6,33 6,83	5,83 6,00 6,50 5 67	6.33 6.33 6.33 5.50	6,50 6,50 6,50 5,83	5, 83 5, 83 6, 67 6, 50
0 kr 50 k- 100 kc- 150 Kr	8,67 8,33 7,83 7,67	5,30 5,50 6,67 6,50	7,16 6,83 7,16 6,83	6.83 7.53 7.17 6.33	6,00 6,67 5,67 6,83	6,33 5,33 5,00 6,09	a 17 6.33 6 50 6.00	6.67 6.17 6.17 6.00	6,17 6 67 6,35 6,17	6 17 6 0 6 23 6 33

The mean acceptability scores received by the various samples during the 10 months storage period are given in Table 5. Initial evaluation of the toasted peanuts, showed that irradiation at the levels used did not affect significantly the texture, palatability and eye-appeal of the peanut. A decrease in acceptability scores was, however, noted on all samples during storage. Analysis of variance of the acceptability scores showed that significant differences between storage periods occurred within samples.

Results on postirradiation studies made on ginger and onions showed that irradiation markedly improved the keeping quality of these crops in terms of sprout inhibition and control of rot decay. The gamma rays from the Co 60 facility, which are similar in nature to x-rays, easily penetrate the root bulbs, and the instantaneous interaction of the gamma rays with the very sensitive germination cells comprises the antisprouting action, i.e. the germination cells are unable to divide following exposure to suitable doses of radiation [Errington and MacQueen (1961)].

Sprouting was already evident in some of the unirradiated samples after one month storage and the number of sprouted onion bulbs and ginger roots increased during storage. Figures 1, 2, and 3 illustrate the inhibiting effect of irradiation on the sprouting of onions and ginger. The pictures were taken on samples stored for 4 months. Irradiated samples did not show incidence of sprouting even up to the 6th month of storage.

Rotting was observed on both irradiated and unirradiated onion samples on the 3rd month but was considerably more in the unirradiated controls. Rot decay has always been associated with microbiological attack. Radiation through its fungicidal properties has been demonstrated to enhance storage life of some perishable food [Clarke (1968)]. The greatest potential advantage of gamma radiation as a fungicidal treatment is penetration of tissues, making a therapeutic treatment of the infected host possible [Sommer and Maxie (1966)]. The pathogen growing within the host tissue is inactivated or its growth delayed sufficiently to permit increased time for marketing or reduce losses during marketing periods. Both pathogen and host are subjected to the damaging events associated with irradiation.

Unirradiated samples of the white onion variety had to be discarded after the 3rd month as they were no longer acceptable. Sprouting and rot decay were very much evident in these samples. Rotting was characterized by the exudation of a watery odoriferous material from the neck of the onion, blackening, and softening of its internal portion. The red creole variety of onions was observed to have better keeping qualities and was more resistant to rot than the white variety.

Ginger samples, whether irradiated or unirradiated showed marked shrivelling during storage. The cut surfaces in some parts of the tubers may have contributed much to this undesirable effect brought about by the rapid evaporation of moisture in these cut areas.

Table 5 shows results of sensory tests made on onion and ginger samples before and during storage. Irradiation at the dose level used did not affect the acceptability of these crops as shown by their initial acceptability scores. No significant difference in acceptability was noted between the samples tested. However, analyses of variance on acceptability scores indicated a significant difference within samples stored at different periods. The unirradiated ginger and onions (red creole variety) stored for 5 months and ginger samples irradiated at 10 Kr and 15 Kr doses stored for 6 months had low

Table 5.—Mean acceptability scores of experimental ginger and onion samples during shed storage.

1	Storage period (months)									
Trials	0	1	2	3	4	5	8			
Greger 0 Kr 5 Kr 10 Kr	7,50 6,33 7,82 6,33	6 17 6 17 7.50 6.33	7 33 5.83 5 33 4.67	5.17 7.50 6.17 7.50	C.67 7.00 7.33 5.00	4,33 6.17 7,50 6,83	7,50 4 00 4 00			
On.ors (whete) 0 Kr 4 Kr 8 Kr 12 Kr	6.50 7.50 6.50 8.00	8,00 7,53 7,00 7,50	7.67 8.17 7.50 6.83	6.17 6.83 7.17	6. 17 8. 17 6.83	6.83 8,50 6,57	8 00 7 67 7 67			
Orions (red) 0 Kr	7.50 6,33 6.83 7.50	7,83 7,83 7,17 7,50	6,67 8,00 5,50 4,83	7,33 6,17 6,67 6,67	7.17 6.50 7.17 6.83	3.30 7.67 6.00 5.20	7,50 7,00 5,50			

acceptability scores. It is apparent that 4 Kr and 5 Kr irradiation dose treatment for onions and ginger, respectively, are sufficient to prevent sprouting. It is also possible that lower dose treatments may have inhibiting effect on sprouting. It is important to determine the optimum effective dose, because if the process is to be used on an industrial scale, the cost of treatment will depend much on the dose needed.

SUMMARY

Preliminary trials conducted on shelled dried peanuts showed that irradiation doses of 50 to 200 Kr did not affect the acceptability and TBA values of the peanuts. Microbial counts decreased as irradiation dose increased. Postirradiation studies indicate that aflatoxin contamination was controlled at dose levels of 100 and 150 Kr during the 10 months storage period. Acceptability scores for all samples decreased while free fatty acid and moisture values increased slightly during storage for 10 months at room temperature.

Postirradiation studies made on onions (red creole and white variety) and ginger (Hawaiian variety) showed that irradiation doses of 4 to 15 Kr inhibit sprouting in these crops. However, rot decay was not fully controlled although incidence was less for the irradiated samples. It is indicated that irradiation dose treatment of 4 Kr and 5 Kr for local varieties

of onions and ginger respectively, is sufficient to prevent sprouting. However, the effects of lower dose treatment of sprout inhibition needs further investigation. It is important to determine the optimum effective dose, since the economics of the process depends very much on the dose treatment.

ACKNOWLEDGMENT

The authors are grateful to the International Atomic Energy Agency for financial assistance; to Miss Lourdes A. Salamat, Miss Rosario H. Tanchuco, and Mrs. Milagros Gopez for their technical assistance in the analysis of the experimental samples; to Mr. Servando Garma for the statistical evaluation of data; and to the senior members of the Food Research Laboratory and the Technical Committee of the FNRC for their valuable comments and suggestions in the preparation of the manuscript.

HITCHENCES

- Association of Official Agricultural Chemists, Official and Tentative Methods of Analysis (1965). (10th ed.) Washington D.C., 957 pp.
- Brownell, L. E., L. C. Anderson, H. J. Gomberg, L. L. Kamps, J. J. Martin, J. V. Nehemias, and H. A. Wolfe (1954). Irradiation utilization of gross fission products. Michigan University Eng. Research Institute, Progress Report 7, p. 64.
- CAMPBELL, T. C. (1967). Present day knowledge on aflatoxin. Phil. Jour. Nutr. (4) 20: 193-201.
- CLARRE, I. D. (1968). Effects of ionizing radiation on the storage properties of fruits. Panel Proceeding Series. Preservation of Fruit and Vegetables by Radiation. STI/PUB 149. IAEA, Vienna.
- Dallyn, S. L., and R. L. Sawyer (1955). Extending the storage life of onion by gamma irradiation. Nucleonics (4) 13: 390-397.
- DALLYN, S. L., and R. L. SAWYER (1957). Effect of gamma and fast electron irradiation on storage quality of onions. Proc. Amer. Soc. Hort. Sci. 73: 390-397.
- ERRINGTON, R. F., and K. F. MACQUEEN (1961). Gamma irradiation of potatoes to inhibit sprouting. Gamma irradiation in Canada 2: 56-68.
- Forss, D. A., P. Angelini, M. L. Bazinet, and C. Merritt, Jr. (1966). Volatile compounds produced by copper-catalyzed oxidation of butter-fat. Jour. Amer. Oil. Chem. Soc. (2) 44: 141-143.
- GARDNER, D. S., and K. F. MACQUEEN (1965). The effect of gamma rays on storage life and chipping qualities of Ontario-grown Kenneec potatoes. Gamma Irradiation in Canada 4: 121-126.

- HORI, S., T. KAWASAKI, and S. KITCH (1964). Gamma irradiation of omen bulbs to inhibit sprouting. II. Browning phenomenon in buds of irradiated onions and a method of early detection for inhibition of sprouting. Ann. Rep. Centre, Osaka Prefecture 5: 90-92.
- INGOLD, K. U. (1962). "Metal Catalyses" Chap. 5 in Symposium on Foods, Lipids and Their Oxidation. W. H. Schultz, E. A. Day and R. O. Sinnhuber, Eds. Avi Publishing Co., Inc. Westport, Conn.
- KAHAN, R. S., and N. TEMKEN-GORODEISKI (1968). Storage tests and sprouting control on up-to-date variety potatoes and on an experimental onion variety (Beit Alpha). Proceedings of a Panel on Preservation of Fruit and Vegetables by Radiation Held in Vienna, Aug. 1-5, 1966, IAEA, pp. 29-37.
- PILGRIM, F. J., and D. R. PERYAM (1958). Sensory testing method. QM. Food and Container Institute Dept. Chicago, Ill.
- Pons, Jr., W. A., and L. A. Goldblatt. Determination of aflatoxin in cottonseed products. Jour. Amer. Oil Chem. Soc. (6) 41: 471 475.
- SAWYER, R. L., and S. L. DALLYN (1956). Vaporized chemical inhibitors and irradiation, two new methods of sprout control for tubers and bulb crops. Proc. Amer. Soc. Hort. Sci. 67: 514-520.
- Sommer, N. F., and E. C. Maxie (1966). Recent research on the irradiation of fruits and vegetables. Proceeding Series on Food Irradiation, STI/PUB/127, IAEA, Vienna.
- TAPPEL, A. L., F. W. KNAPP, and K. URS (1957). Oxidative fat rancidity in food products. II. Walnuts and other nut meats. Food Res. (3) 22: 287-295.

ILLUSTRATIONS

PLATE 1

- Fig. 1. Effect of gamma-radiation on sprouting of onions (white variety) after 4 months in shed storage.
 - 2. Effect of gamma-radiation on sprouting of onions (red variety) after 4 months in shed storage.
 - 3. Effect on gamma-radiation on sprouting of ginger after 4 months in shed storage.

291

1

2

3

ON THE TAXONOMY OF RANDIA LONGIFLORA SENSU HOOK, F. (NON LAMK.) (RUBIACEÆ)

By C. R. Babu and B. Pramanik Central National Herbarium, Howrah-3.

TWO TEXT FIGURES

Hooker f. [Fl. Brit. Ind. 3 (1880) 111] reduced Griffithia siamensis Miq.[—Randia siamensis (Miq.) Craib; Webera siamensis (Miq.) Kurz] and Stylocoryne bispinosa Griff. [—Randia bispinosa (Griff.) Craib; Webera bispinosa (Griff.) Kurz] to the synonymy of Randia longiflora Lamk. [—Posoqueria longiflora Roxb.; Webera longiflora (Lamk.) Kurz], along with a few other synonyms, viz. Randia scandens (Bl.) DC.; Griffithia curvata Kurz; Webera scandens Roxb.; Tocoyena scandens Bl., etc. This view has been adopted by subsequent authors dealing with this group of plants [vide, Ridley, Fl. Malay Penin. 2 (1923) 73; Kanjilal et al, Fl. Ass. 3 (1939) 58; Parkinson, For. Fl. Andam. Isl. (1923) 190], until Craib (Fl. Siam. Enum. 2 (1932) 99, 103, 111) reinstated R. siamensis (Miq.) Craib, R. bispinosa (Griff.) Craib and R. longiflora Lamk. as distinct taxa.

A critical study of the material of *R. longiflora* Lamk. and *R. siamensis* (Miq.) Craib available at the herbarium of CAL and careful analysis of the original descriptions of *R. longiflora* Lamk., *R. bispinosa* (Griff.) Craib and *R. siamensis* (Miq.) Craib, do show constant distinguishing characters which justify in maintaining them as distinct taxa. These three species, no doubt, are closely related and indeed confused in the herbaria, but can be distinguished in the following way:

- RANDIA LONGIFLORA Lamk, Encycl. 3 (1789) 26 et Tab. Encycl. Meth.
 (1792) t. 156. f. 3; DC. Prodr. 4 (1830) 386; Hook. f. in Fl. Brit.
 Ind. 3 (1880) 111, pro parte (excl. syn. Griffithia siamensis Miq.),
 Randia siamensis (Miq.) Craib, Webera siamensis (Miq.) Kurz,

Stylocoryne bispinosa Griff., Randia bispinosa (Griff.) Craib et Webera bispinosa (Griff.) Kurz; Ridley, Fl. Malay. Penin. 2 (1923) 73; Parkinson, For. Fl. Andam. Isl. (1923) 190; Craib, Fl. Siam. Enum. 2 (1932) 103.—Tocoyena scandens Bl. Bidjr. (1827) 980.—Randia scandens (Bl.) DC. Prodr. 4 (1830) 387.—Webera scandens Roxb. Fl. Ind. ed. carey 1 (1832) 698.—Posoqueria longiflora Roxb. Fl. Ind. 1 (1832) 718.—Griffithia curvata Kurz in Trim. Journ. Bot. (1875) 326.—Webera longiflora (Lamk.) Kurz, For. Fl. Brit. Burn. 2 (1877) 48.

Fig. 1. Randia longiflora Lamk.: A, flower; B, corolla opened out; C, anther; D, gynoecium.

Distribution: India, East Pakistan, Burma, Malaysia and Siam; in India: ascending up to 660 m altitude in eastern Himalayas and Andaman and Nicobar Islands.

RANDIA SIAMENSIS (Miq.) Craib in Kew Bull. (1911) 390 et Fl. Siam. Enum. 2 (1932) 111.—Griffithia siamensis Miq. Fl. Ind. Bat. 2 (1856) 158 et Ann. Mus. Bot. Lugd. Bat. 4 (1869) 130.—Randia longiflora sensu Hook. f. in Fl. Brit. Ind. 3 (1880) 111, pro parte (quoad. ref. Griffithia siamensis Miq. et Webera siamensis (Miq.) Kurz).—Webera siamensis (Miq.) Kurz, For. Fl. Brit. Burm. 2 (1877) 48.

Distribution: Burma and Siam.

The shorter corolla-tube, shorter calyx-limb and shorter style readily distinguish this from R. longiflora. Although the length of corolla-tube, calyx-limb and style is very variable in the latter species, no intermediates could be traced out.

Fig. 2. Randia sianensis (Miq.) Craib: A, habit; B, flower-bud; C, calyx opened out; D, corolla opened out, E, gynoecium.

3. RANDIA BISPINOSA (G11ff.) C1aib, Fl. Siam. Enum. 2 (1932) 99. Stylocoryna bispinosa Griff. Not. 4 (1854) 260.-Webera bispinosa (Griff.) Kulz, For. Fl. Brit. Burm. 2 (1877) 49. Randia longiflora sensu Hook. f. in Fl. Brit. Ind. 3 (1880) 111, pro parte (quoad. ref. Stylocoryne bispinosa Griff. et Webera bispinosa (Griff.) Kurz).

Type: Burma, Griffith 869 (K), not seen.

Distribution. Burma and Siam.

Apparently allied to *R. siamensis* (Miq.) Craib, but is recognizable by ferrugineous appressed-hairy inflorescences and outer surface of calyx.

Grateful thanks are due to Dr. M. P. Nayar, keeper, Central National Herbarium, Howrah-3, for going through the manuscript.

067081 ---- 7

STUDIES ON PHILIPPINE LICHENS, II THIN-LAYER CHROMATOGRAPHIC STUDY OF THE CONSTITUENTS OF SOME LICHEN SPECIES

By Patrocinio Sevilla Santos National Institute of Science and Technology, Manila

and

* ARACELE M. MONDRAGON'
National Research Council of the Philippines, Diliman, Quezon City
ONE PLATE

Lichens received much attention because of the antibiotic activities exhibited by some lichen thalli and their extracts. This activity is due to several constituents, particularly d-usnic acid present especially in the *Usnea*, *Evernia*, and *Parmelia* species [Hale (1961)]. More than 80 other compounds which belong to the depsides, depsidones, dibenzofuranes and lactone-carboxylic acids have been isolated from lichens. The qualitative and quantitative differences in the constituents of lichens may be used to characterize many of them and are sometimes of taxonomic value [Hale (1961)].

Before 1936 lichen acids were detected only by macrochemical means which generally took much time. From 1936 to 1940 Asahina published many articles on the investigation of lichens dealing with simplified microchemical crystal tests for most of the common lichen acids [Hale (1961)]. Color, crystal, and fluorescence tests were used.

For the identification of lichen acids, especially those which present difficulties with the crystal tests, the use of partition chromatography was recently introduced. In 1956, Wachmeister published the identification of lichen acids by paper chromatography. Monji (1953), Ramaut (1953), and Hess (1958) obtained good results in the microdetection and separation of lichen substances by means of paper chromatographic method.

The first to employ thin-layer chromatography for the investigation of lichen constituents were Stahl and Schorn (1961). They used silica gel G-layers which was prepared with 0.5 N

oxalic acid instead of water. More recently, Bachmann (1963) used thin-layer chromatography for the separation and identification of the lichen constituents of the B-orcinol group.

This paper is a report on a survey of the constituents of some of the lichens in the Philippines. It presents the use of thin-layer chromatography in the separation and identification of lichen constituents by comparison with authentic compounds.

EXPERIMENTAL

Apparatus and reagents.—Thin layers are prepared by spreading silica gel G slurried with water (1:2.5) on glass plates and activated for 30 minutes at 110°.

The spreader was made from solid cylindrical stainless steel, 165 mm dia, and 150 mm long. The well is 49 mm deep and has a groove that is 95 mm long and 250 microns thick. (Plate 1.)

Plates were cut from 3 mm thick glass in varying sizes: 30×150 mm; 35×150 mm; 70×150 mm; 30×135 mm; 35×135 mm and 70×135 mm and chamfered at the Optics Section, SID.¹ The aligning tray 10×85 cm was made from 6 mm thick glass and mounted on a wooden board held in place by screwed aluminum edging. The spreader and plate holder were fabricated at the FMS.²

Chromatographic jars used are glass jars with fitted cover (dia. 87 mm, ht. 140 mm). They were lined with filter paper and filled with developing solvent to a height of 1.5 cm. Suitable capillary pipettes were used for spotting.

Seven solvent systems were used for developing the chromatograms: A Benzene/chloroform, 1:1 [Stahl (1965)], B Benzene/dioxane/glacial acetic acid, 90:25:4 [Bachmann (1963)], C n-Butanol/ethanol/water, 4:1:5 [Wachtmeister (1956)], D Butanol/acetone/water, 5:1:2 [Hale (1961)], E Butanol saturated with ammonia (using organic phase [Hale (1961)] F Hexane/diethyl ether/formic acid, 5:4:1 [Culberson and Kristinsson (1970)], and G Toluene/glacial acetic acid, 85:15 [Culberson and Kristinsson (1970)].

Materials.—The following lichens were the object of this study: Usnea elmeri Herre, U. flexilis Stirt, U. hossei Vain, U. intercalaris Kremp, U. squarrosa Vain, Physcia albicans

¹ Scientific Instrumentation Division, NIST.

² Fine Mechanics Section, SID, NIST.

(Pers.) Thoms., Parmelia cetrata Ach., P. zollingeri (Hepp.), Crocynia membranacea (Dicks) Zahlbr., Ramalina farinacea (L.) Ach., and Stereocaulon sp.

Procedure.-Five grams each of the five Usneas were cut into fine pieces. They were extracted in a Soxhlet with sulfuric ether for 15 hours, and methanol for 50 hours. The Usnea extracts were concentrated to a volume of about 10 ml by distilling the solvents on a water bath. Small amounts of the other lichens were also extracted with ether and likewise concentrated to a small volume before they were applied. With the use of capillary tube they were spotted four times on silica gel G plates at a distance of 10 mm apart and 20 mm from the bottom of the glass plate. The plates were air-dried after each application and placed in the jars previously equilibrated with the developing solvents. After allowing the solvent to travel to a distance of about 120 mm. the plates were removed and air-dried. The spots were detected by placing the plates in a jar saturated with iodine vapors or by spraying with anisaldehyde in 50-ml glacial acetic acid plus 1 ml concentrated sulfuric acid [Stahl (1965)].

Authentic samples of lichen acids were chromatographed on thin layers using solvent B to determine their Rf values.

The ether extracts of the lichens under study were run using the seven solvent systems mentioned as a preliminary experiment. The spots did not separate very well in Solvents A, C, D, and E but showed good separation with B. F, and G. Thus all the extracts were developed with the three latter solvent systems. Since slight alteration of conditions affect the results, the identification of the spots was made by running authentic samples alongside the extracts on the same plate.

RESULTS

Table 1 gives the Rf values of some lichen substances.

Table 2 shows the result of the TLC of the lichens. Although the authentic lichen compounds were run along-side the lichen extracts the Rf values obtained were not included in the table because the two Rf values were identical.

Discussion.—It may be noted that usnic acid and salazinic acid were found common to the five Usnea species. In a previous work, Santos (1965) also found these two acids in U. montagnei. Stictic acid was detected in U. flexilis, U.

³ Kindly furnished by Dr. T. R. Seshadri and Dr. D. H. R. Barton.

Table 1 .- Rf values of authentic samples of some licher, constituents.

		Color	reaction
Lichon coratituents	Rfvdus x 100°	Iodina v.,> rs	Amsuldchyde
Athnor, a B. reate acid Chlordranor, a Lecanor, a acid Salazinic acid stictic acid Uaric acid, Zeocor	70 79 85 40 61 16 70 79 81 83 13-18 23 30 67-78 66-65	ye low bitte ye llow ye low ye low (herek des).	or.ngo brange youthworunge brange red sollow

Table 2 .- Rf values for thin-layer chromatography of lichen substances.

Extracta	Rf vaju	s x 100 in system	Corresponding Johen substances	
	13	F	G	
Ushea elmeri Horro	13	11	8	Samz Frenord
	30	17	16	Stotie werd
	67	62	57	ust energi
	36	22	20	undertified
U. fiezelle Stret	8	5	0	Protocetrare 1c, d*
	16	11	5	submile acid
	25	79	11	shetic acid
	71	62	57	usele acid
C. houset Yuin	11	11	6	sh azinic acid
	40.51	48,68	29,50	bachatic acid
	67	62	57	Ushto acid
U. intercalaris Kremp.	6	5	0	protocotrar c acid*
	14	12	6	salaxima acid
	70	69	57	usale acid
U. squarrosa Vaja	7 15 30 36,56 72 10 23 48	5 12 ns 48,68 62 ns ns	0 25,40 57 ns ns	protocotrific noid* silabilit noid statis word barbitic noid unic noid unidentified unidentified unidentified
P. achicans (Pers) Thorrs.	56	51	43	zearln
	75	50	64	Atranorin
	17	ns	1 g	Unido Hified
Parmelia ectrata Ach.	32	48	24	le anorie seid
	76	ns	ns	atranorin
P. collingeri Hepp.	70 75 7	62 67 nu 22	60 65 9 46	usnic acid atranors, uridentified unident fied
Crocynia membranucen (Dicks) Zahlus	64 71	51 60	45 60	Ze. Tin
Kamulina farinzeen (L.)	64 68 83 43 43	61 64 65 45	50 5 5 31	homosuk Laic neid 10 10 11 1 d 10 1 1 1 od u 1d 11 1 1 1 U 10 1 1 1 1
Stereocentin sp	79	ns	75	atranorin
	49	ns	52	ut . leutif ed
	68	ns	68	undentif ed

B. Lenzene/dioxane/glacial acetic acid, 90.25.4

P, hexane/cthyl ether/formic acid, 5:4:1

G, toluene/glacial acetic acid, 85:15

^{*} No authentic sample.

ns, no spot

elmeri, and *U. squarrosa*. The presence of stictic acid was also reported in some Indian Usneas; namely, *U. japonica* [Seshadri and Subramanian (1949)], *U. orientalis* [Dhar (1959)] and *U. florida* [Rangaswami and Rao (1955)].

The color that the various spots developed with iodine vapors and anisaldehyde reagent are very interesting and worthy of mention. It was observed that upon exposure of the silica gel G plates to iodine vapors for a longer period, small black dots appeared on the zeorin spots. This was seen in *C. membranacea* and *P. albicans*. Lecanoric acid, identified in *P. cetrata* developed a yellow core with purple trailing giving an effect of purplish yellow.

Atranorin was detected in a number of species such as *P. albicans*, *P. cetrata*, *Stereocaulon* sp., and *P. zollingeri*. Although the range of hRf value 70-79 of atranorin is very close to that of usnic acid 67-73 in solvent B, they gave different color reaction, which easily differentiates them. Usnic acid becomes yellow on exposure to iodine vapors and atranorin turns pink while with anisaldehyde reagent the former turns red violet, while the latter yellow orange (Table 1).

The extracts of *U. squarrosa*, *U. flexilis*, *U. intercalaris*, and *R. farinacea* gave several spots in solvent B, one of which traveled very slowly and gave a characteristic bluegreen color on exposure to iodine vapors. The Rf values ranged from 0.06 to 0.08. Comparison with the data of Santesson (1965) narrowed the identity to either fumarprotocetraric acid (0.08–0.09) and protocetraric acid (0.08–0.09). However, the TLC was repeated using Solvent D and the Rf value obtained was 0.43 (Santesson 0.43–0.45). The color of the spot in iodine vapors was also bluegreen. Thus the identification of protocetraric acid was made by comparing with Santesson's data and not with an authentic sample. Stictic acid and salazinic acid turned blue on exposure to iodine vapors.

SUMMARY

A total of 11 species of lichens endemic in the Philippines was studied. The constituents of these species were compared with authentic samples by thin-layer chromatography using three solvent systems. In this way salazinic acid, stictic acid, usnic acid, barbatic acid, protocetraric acid, zeorin, atranorin. lecanorin acid and homosekikaic acid were detected in the lichens studied.

ACKNOWLEDGMENT

The authors wish to express their thanks to Dr. Mason Hale and Dr. Peter James for the identification of the lichens used, to Dr. T. R. Seshadri and Dr. D. H. R. Barton for samples of lichen acids, to the National Institute of Science and Technology, Manila for the use of its facilities and to the National Research Council of the Philippines for financial assistance.

REFERENCES

- BACHMANN, O. (1963). Thin-layer chromatographic separation of the b-orcinol group. Oesterr. Bot. Z. (1) 110: 103-7. Thru CA 60: 135-4b.
- Culberson, C. F., and H. Kristinsson (1970). A standardized method for the identification of lichen products. Jou. Chrom. 46: 85-93.
- DHAR, M. L., S NEELAKANTAN, S. RAMANUJAM, and T. R. SESHADRI. (1959) Chemical investigation of Indian lichens. Part XXII. Jour. Sci. Ind. Res. (India). 18B: 11-13.
- HALE, M. E., Jr. (1961). Lichen Handbook. Washington, D.C.: Smithsonian Institution, x + 178 pp.
- HESS, D (1958). Chromatography on paper of the constituents of lichers. Planta 52: 65-76. Thru CA 52: 18673d.
- Monji, M. (1953). Paper chromatography of lichen substances. I. Phar. Bull. (2) 1: 170-6.
- RAMAUT, J. L. (1961). Separation of Lichen acids by paper chromatography. Bull. Soc. Roy. Bot. Belg. (1 2) 93; 27 49. Thru CA 60 11023g.
- RANGASWAMI, S., and V. Subba RAO (1955). Chemical components of Usnez florida. Indian Jour. Pharm. 17: 70.
- SANTESSON, J. (1965). Studies on the chemistry of lichens. 24.
 Thin layer chromatography of aldehydic anomatic lichen substances.
 Acta Chem. Scand. 19: 2254 2255.
- SANTOS, P. (1965). Thesis M. S. Pharmaceutical Chemistry. University of the Philippines.
- SESHADRI, T. R., and S. S. SUBRAMANIAN (1949). Chemical investigation of Indian lichens. Part IX. Some lichens on Sandal trees—Parmelia tinctorum and Usnea japonica. Proc. Ind. Acad. Sci. 30A: 62-66.
- STAHL, E. ed. (1965). Thin-layer Chromatography. Berlin: Springer-Verlag, xv + 553 pp.
- STAHL, E., and P. J. SCHORN (1961). Z. Physiol. Chem. 325: 263. Thru Progress in Phytochemistry. Vol. 1. Interscience Publishers, London (1968).
- WACHTMEISTER, C. A. (1956). Identification of lichen acids by paper chromatography. Bot. Not. 109: 313-324. Thru CA 53; 7330-7331.

BLATE I AGGINGMED FOR THINLAVER INFOMATOGRAPHY LOLATE & MELITRY: E ALIGNING THAY: A PLATE HOLDER & CHMOMATOGRAPHY JAN: S-SPREADER.

STUDIES ON LIGNIN DECOMPOSITION BY SOME LITTER FUNGI

: By S. C. Agrawal
Department of Botany, University of Saugar, Saugor (M. P.) India

ONE TEXT FIGURE

INTRODUCTION

The soil is being annually supplied with considerable quantities of lignin. Among the major constituents of the cell walls, the most resistant to biological decomposition is, undoubtedly, lignin. It is superseded in relative quantity only by cellulose and hemicelluloses. The decomposition of this substance, however, is of fundamental importance, because in forests a huge amount of lignin is continually deposited upon the soil as wood waste. Our knowledge of the organisms that attack lignin, their decomposition and the environmental variables governing its loss is still very incomplete.

Cochrane (1958) and Falck (1923-1930) were the first to point out that basidiomycetes probably play an important part in the breakdown of this substance in forest litter. At a stage when there is extensive microbial development, there is a fairly rapid loss of both cellulose and lignin. This is accompanied by considerable activity on the part of the soil fauna, which often completely destroy the mesophyll tissues of the leaves, leaving only the vascular strands, the cuticular tissue and the toughened margins of the leaves. With the intense animal activity, the amount of black faecal material increases.

Our knowledge of the lignin decomposition is derived almost entirely from a study of the decomposition of wood or sawdust and the fungal species which have been examined in detail are commonly those associated with woody substrates [Gottlieb and Pelczer (1951) and Kremers (1959)].

Here the aim was to isolate the lignicolous fungi and to determine their capacity to utilize different ligninlike substances. The gradual change which takes place during the decomposition of ligninlike substances has also been discussed.

Since lignin is known for its inert behaviour the study of

STUDIES ON LIGNIN DECOMPOSITION BY SOME LITTER FUNGI

: By S. C. Agrawal Department of Botany, University of Sangar, Sangor (M. P.) India

ONE TEXT FIGURE

INTRODUCTION

The soil is being annually supplied with considerable quantities of lignin. Among the major constituents of the cell walls, the most resistant to biological decomposition is, undoubtedly, lignin. It is superseded in relative quantity only by cellulose and hemicelluloses. The decomposition of this substance, however, is of fundamental importance, because in forests a huge amount of lignin is continually deposited upon the soil as wood waste. Our knowledge of the organisms that attack lignin, their decomposition and the environmental variables governing its loss is still very incomplete.

Cochrane (1958) and Falck (1923-1930) were the first to point out that basidiomycetes probably play an important part in the breakdown of this substance in forest litter. At a stage when there is extensive microbial development, there is a fairly rapid loss of both cellulose and lignin. This is accompanied by considerable activity on the part of the soil fauna, which often completely destroy the mesophyli tissues of the leaves, leaving only the vascular strands, the cuticular tissue and the toughened margins of the leaves. With the intense animal activity, the amount of black faecal material increases.

Our knowledge of the lignin decomposition is derived almost entirely from a study of the decomposition of wood or sawdust and the fungal species which have been examined in detail are commonly those associated with woody substrates [Gottlieb and Pelczer (1951) and Kremers (1959)].

Here the aim was to isolate the lignicolous fungi and to determine their capacity to utilize different ligninlike substances. The gradual change which takes place during the decomposition of ligninlike substances has also been discussed.

Since lignin is known for its inert behaviour the study of

its decomposition present a special problem [Henderson (1960)], such as (1) difficulties arising from the chemical complexity of the lignin molecule; (2) difficulties in assaying for this substance; and (3) the isolation of purified lignin fractions, suitable for use as a microbiological substrate. In view of these difficulties the present work was based on some substitutes of lignin such as ferulic acid, vanillin and p-hydroxybenzaldehyde, which are believed to be related structurally to the lignin molecules [Brauns (1939), Creighton et al (1944), Henderson (1960), and Siegel (1956)].

MATERIALS AND METHODS

Sampling of the soil-litter.—Forest soil-litter samples from the 9" depth were collected after the rainy season. The samples were brought to the laboratory in new polythene bags and were stored in a refrigerator till the following day, when dilutions were made.

Isolation of lignin decomposing fungi.—Waksman's (1916) dilution plate technique was used in the process of isolation. The medium used for the isolation was Waksman agar with few modifications as mentioned below:

- a. Replacement of poptone by (NII₁)₂ SO₁ to decrease the growth rate of rapidly growing fungi.
- b. Addition of tannic acid at a concentration of 0.1 per cent (w/v).

The second modification was based on the work of Bavendamm (1928) and Davidson et al (1938). They showed that wood rotting fungi or the lignin decreasing fungi can be detected by their reaction with tannic acid which they oxidize to a brown product. Tannic acid is somewhat toxic and inhibits the growth of most of the bacteria. Different dilutions (1:100, 1:1000 and 1:10000) of the soil-litter samples were made and streaked on the plates. The streaked Petri dishes were incubated for 8 to 10 days at 28°C. The dishes were examined after 8 days.

A total of 25 species (Table 1) was isolated out of which only 16 showed the brown color reaction around the colony. Only 10 species were selected for detailed study.

These were Rhizopus nigricans, Chaetomium globosum, Aspergillus niger, Penicillium verruculosum, Paccilomyces varnoti, Memnoniella echinata, Trichoderma viride, Alternaria tenuis, Fusarium oxysporum, and Rhizoctonia sp.

Table 1.—List of lignin-decomposing fungi isolated from soil-litter and their ability to oxidize tannic acid.

1 hhrapus nigricars 2 Abst in boditi 3. Chet in time flobosum 4. disprigue in inger 5 A fle ins. 6 A usins. 7. A ordiverous 8 Pener in in vertucalosum 9. P. fornodissum 9. P. fornodissum 9. P. toucolosyees varioti 2. Give lamin concludius 3. Meanon on technadis 4. Stachybory, alro 5. The time biserod. 6 There is a veride. 6 The is a biserod. 7 There is a veride. 8 Aleen in the biserod. 9 Aleen in the biserod. 9 Aleen in the biserod. 9 The same the s	Organism	Species showing brown product
2 Abes in balist 3. Chet in van fishbosum 4. As pergu, is inger 5. A other cous 8. Paner time vertuculosum 9. P. foneriusum 9. P. foneriusum 12. Glan langues varioti 2. Glan langues varioti 2. Glan langues varioti 3. Heaton, on technalu 4. Mathyboty, alvo 5. In el na baseron 6. The q e a variot 6. Altern ran levels 7. Altern ran levels 7. Heaner has por em gramineum 7. Heaner has por em gramineum 8. Heaner has por em gramineum 9. Prosarium otyspaum 1. I long, ho 2. Torala etc. 3. Humow has por em gramineum 4. I torala etc. 5. Heaner has pos son em gramineum 6. Torala etc. 7. Torala etc. 8. Torala etc. 8. Torala etc. 8. Torala etc. 9. Torala et	hh.copus nagricus	*
3. Cheel-way of floorium 4. As pergus a suger 5. A connection of the suspension of t	Abst is boditi	
4. As perplu, as viger 5. A other caus 6. A usins. 7. A other caus 8. Practions 9. P. functions 9. P. functions 10. P. mercans 11. Proceeding a vicility 2. film languages varieti 2. film languages varieti 3. Heavier, afrectionale 4. Machylouty, afrectionale 5. It it was bisseria. 6. There is a strate. 7. It is no bisseria. 8. Altern run levils. 9. Heavier has function 9. It is not have a strate. 9. It is	Cheet was an alchange	
o A flems 6 A usins 7, A ophreous 8 Pance in a vermenlosum 9. P. functionam 9. P. functionam 9. P. functionam 9. Proceedings 10. Procedus 12. Gilan lawrence concluture 13. Meanon: en techinata 14. Machylorey, alro 15. In el su bissirán 16. The el el astrole 16. The el el astrole 16. Alternian el	As perous, as reger	*
6 A usins 7, A ophrcous 8 Panci ium vertuculosum 9, P. forundusum 0 P minicans 1, Pacelomyces varioti 2, Glin learum concluturus 3 Mentan en echitatio. 4 Stachybary, atro 5 The lear bissirati. 6 The en a virial. 7 The en a virial. 8 Altern ran leavis. 9 Helmin hispirian gramineum 9 In sariam oxys parum 1 In long, his 2 Torala tile 1 8 Altern oxys parum 1 In long, his 2 Torala tile 1 8 Altern oxys parum 1 In long, his 2 Torala tile 1 8 Altern oxys parum 1 In long, his 2 Torala tile 1 8 Altern oxys parum	A fleps	
Prince then verticalsum Prince then verticalsum Price on verticalsum Price of the theory of the vertical that verticals verticals the vertical that verticals verti		
2. P. forterlashm. P. mercans Precedongues varioti 2. Gila learum concludens. 3. Memor eri echinata. 4. Machyberg, arv 5. It et me biscoti. Tree er a viriata. 4. Alem ria fensis. 4. Herony his pari in granineum 4. Herony his pari in granineum 5. It soriata chi t 6. It confident 8. Alem ria fensis. 1. Herony his pari in granineum 1. It long ofte 2. It ordig the t 3. Itan over sp.	A orarcceus	
2. P. forterlashm. P. mercans Precedongues varioti 2. Gila learum concludens. 3. Memor eri echinata. 4. Machyberg, arv 5. It et me biscoti. Tree er a viriata. 4. Alem ria fensis. 4. Herony his pari in granineum 4. Herony his pari in granineum 5. It soriata chi t 6. It confident 8. Alem ria fensis. 1. Herony his pari in granineum 1. It long ofte 2. It ordig the t 3. Itan over sp.	Perace men verruculosum	
Pressonages varioti 2. Gita leman constitutus. 3. Hemon est echianta. 4. Stachyborgs stro 5. The leman constitution. The leman constitution. The leman constitution. ** ** ** ** ** ** ** ** **		*
Pacedomyces varioli Pacedomyces varioli Patedomyces varioli Patedomyces Memno extechiada Stathyloty, atro The a restate The a restate A large varionate A large varionate I heave hisperim graniveum I heave hisperim graniveum I hong jus Large varion experim ** 2 lorals ata ** ** ** ** ** ** ** ** ** **	P nercons	
2. Gita long an concludents. 3. Mention 6.1 techinals. 4. Machybrity, atro. 5. The tens base of the concept. 4. (** to are constate.** 5. Altern ran long is. 6. Altern ran long is. 7. Heavier his parain grantineum. 7. In saviam oxis pourum. 8. 1. Folia, you. 8. 2. Torologith. 8. 2. Torologith. 8. 3. The control of the tension of the concept. 8. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	Precedomines varioti	
* Menthon et a cehinala. * Stachyburgs stru * The ten buserda. * The en a street. * (rev are canete. * Aleren rea lements. * Heaver his partient grantineum	f. f. lan. languam cancludura	
The lens bisecoli. The area constant The area constant Alternation bis partial gramineum	Mentago e. t echinata.	T .
The leve beserved. I ve are constent Alterners, levels. Alterners, levels. A levels be sportent grantineum I longe for p **	Starhubatra stro	
* (re- are caneta. * Altern ra densis. * Heavis hespirium gramineum * * hesarium oxyspirium * 1 f. long. the *_ * 2 lorala die t *_ * * Heavis hespirium * * Altern oxes, sp *		
* Alternational lenais, 1 Helping hisperant gramineum * hisperant oxyspurum 1 I long. file = * United the t * This was spp	Tree is a serrede	
Hermes his partial granificum * ** ** ** ** ** ** ** ** ** * * * *	(rp. gr. canete.	1
J Fusarium dayspurum	Altern ru ten is.	-
J Fusarium dayspurum	Hermin his juri in gramineum	-
2 I on to the second		
2 Torala att t** 3 Rhanonom, Sp**		
3 R42,00000 Sp.	2 Torale die t	
, 3	3 Itheropeople, Sp.	1 7
1 Myctal Signer	1 Mycas serie	1 7

^{*} oxidize tannic acid. -, did not oxidize tannic acid.

Utilization of ligninlike substances by 10 selected fungal species:

Method.—The medium used here was Czapek's mineral salt with some modifications. Sucrose and ferrous sulphate (FeSO₄, $7H_2O$) were omitted, the latter because of its reaction with the phenolic compounds to form colored products. Broth medium, to which phenolic compounds were added, was used for noting the extent of growth of various fungi. The quantity of growth was measured in terms of mycelial weight produced.

The phenolic compounds, p-hydroxybenzaldehyde and vanillin were added at the rate of 0.01 per cent (w/v) and ferulic acid at 0.005 per cent (w/v).

Fifteen ml of the broth medium was taken in 150 ml flasks and sterilized by autoclaving for 15 minutes at 15 lbs pressure. A series of control flasks was also run in which no carbon source was added. A total of 40 flasks was taken for the 10 organisms. The flasks were inoculated with 6 mm diameter inoculum disk taken from the growing margins of potato dextrose agar culture. The flasks were incubated for 21 days at 28°C.

RESULTS

After 21 days the mycelial mat of each flask was filtered through oven dry, weighed filter papers (Whatman No. 1). After washing with distilled water oven dry weight was determined. The net value of mycelia was calculated by subtracting the weight of the filter paper. Results are shown in Table 2 and Fig. 1.

Table 2.—Oven dry weight of mycelium (in mg) at 28°C after 21 days incubation in different phenolic, lignini.ke substances.

Organ.sm	p-Hydroxy waz i'dehyde 01 pe wert Way	Ferulie ac q 0.00 , per cont (w. v.	Varin 0 0'p r cont , w/v/	Contr 1
1 Rhivopus nigricans	55 86 98 70 48 69 73 73 78	12 45 88 85 107 38 82	70 86 52 78 12 62 62 88 6	16 11 12 22 12 18 18 26 20

Fig. 1. Utilization of ligninlike substances in terms of mycelial growth.

In this experiment phenolic compounds constituted the sole source of carbon and were added in the medium in such low concentrations that none of the fungal species produced much 98. 3-4

growth. From results presented in Table 2 it is clear that although the growth was very little it always exceeded that of the control flask of the same fungal species. The fungi which obtained their maximum growth in ferulic acid were C. globosum, P. verruculosum, P. varioti, M. echinata, T. viride and Rhizoctonia sp. Only four fungal species viz., R. nigricans, A. niger, A. tenuis, and F. oxysporum showed best growth on p-hydroxybenzaldehyde. None of the fungi showed their maximum growth on vanillin but most of the species utilized it almost to an equal extent. In the whole experiment T. viride favors its maximum growth on ferulic acid followed by A. niger and C. globosum. P. verruculosum showed somewhat greater growth in the control, when compared with other species. Minimum mycelial weight in the control flask was recorded for F. oxysporum.

The mycelial weight of the organisms in the control series was much less due to the total absence of any carbohydrate source. A glance at the table shows that the majority of fungal species utilize ferulic acid to the maximum as shown by their mycelial weights.

Evidence for utilization of ligninlike substances as a source of carbon:

In the previous experiment the mycelial development was taken as an index of utilization of the phenolic compounds by different fungi. In the present experiment the substrate utilization was measured by Chromatographic methods which revealed the total utilization of a substrate when their presence was not detected by the chromatograms run from the culture filtrates after varying intervals of time.

Method.—Twenty ml broth of the basal medium was taken in a 150 ml conical flask. Two flasks for each fungal species and for each phenolic compound were prepared. A total of 60 flasks was autoclaved at 15 lbs pressure for 15 minutes. After autoclaving, the three phenolic compounds were added in the same quantity and by the same way as mentioned in previous experiment.

Each flask was inoculated with three disks (6 mm diam) cut from the growing margin of the fungi cultured on potato dextrose agar. The flasks were incubated at 28°C for 14 and 21 days. The culture filtrate of one set of flasks was analysed after 2 weeks and the rest of the flasks after 3 weeks.

The resulting fungal growth in the flask was removed by filtration and the filtrate acidified. The culture filtrate of each organism was then extracted three times with 10 ml ether. The ether was evaporated and a few drops of absolute ethanol were added to the residue to dissolve it. Phenolic compounds were detected by ascending thin-layer chromatography. The solvent used here was of the following composition [Davidson et al (1938)]: Benzene + Methanol + Acetic acid (45:8:4).

When the solvent rose to a height of about 10 cm, the plates were removed from the tank and dried.

The following three spraying reagents were used to trace the presence or absence of phenolic compounds in the culture filtrate initially spotted on the plates:

- 1. Anisaldehyde, Sulfuric acid reagent: A mixture of 5.0 ml anisaldehyde in 50.0 ml glacial acetic acid with 1.0 ml reagent group le solfuric and was sprayed on to the chromatogram and heated at 100 to 110°C for 5 to 10 minutes.
- 2. Potassium permanganate: 0.1 N potassium permanganate in sodium carbonate solution.
- 3. Antimony pentachlolide: Two parts by volume of antimoly pentachloride were mixed with eight parts by volume of carbon tetrachloride. After spraying the plates were exposed to a temperature of 120°C for a few minutes.

Out of these, antimony pentachloride was found to be the best for developing chromatograms.

During decomposition vanillin and ferulic acid are known to be converted into vanillic acid. Spots of vanillic acid were detected on the chromatograms of the culture filtrates, where vanillin and ferulic acid decomposed into vanillic acid; but in some cases vanillin and ferulic acid appeared as such indicating no decomposition. No intermediate product of p-hydroxybenzaldehyde is known until now and it does not appear on chromatograms indicating rapid utilization.

RESULTS

Table 3 shows that some of the fungi like A. niger, P. verruculosum, M. echinata, and A. tenuis left no initially added phenolic compound and showed the spots of the metabolized product (vanillic acid). This indicates the utilization of ferulic acid and vanillin after 14 days, same was the case with p-hydroxybenzaldehyde. F. oxysporum did not utilize

TABLE 3 — Analysis of culture filtrate after growth of various fungi for 14 and 21 days at 28°C on mineral salt medium + phenolic compounds.

			Pheno.	ic comp	own d ad	ided as e	arbon	eource		
Organism			(0.	Ferth		ا د۱	(0	Van 0,01 per	idi ent w	/v)
	ceni		Forum	carl 2	tann,	li- ac i	Van	ıln	an Lie	K 1d
	1.1	21	14	21	14	21	14	21	14	21
								-		<u> </u>
1 Rhampas ve vicers	1	•	+	÷		-	+	+		
2 (n ct . n la sanna. 3 Asperge las 1 ener	-+		-	-	† +		•	1	+	+
4 Processes critica		-	=	-	+	+	=	<u> </u>	†	+
: Precionyers were 1	-	-		-	+	-	+			-
6. Mean na archina-		_			+	1"	•		+	+
7 trickmeres in e-	+	-	-	_	÷	۳ [۳	•		t
S. All that each he are	_		T	+	+	+ 1	-	_	+	+
J 1602 W . 20. 4 5}		-			τ̈́	+	+			i

¹⁴ and 21 Days of incubation,

98. 3-4

ferulic acid even after 21 days of incubation. T. viride, F. oxysporum and Rhizoctonia sp. did not show any change in the initially added vanillin after 14 days but after the period of 21 days the presence of vanillic acid was recorded, indicating an ability to utilize vanillin at a slow rate, same was the case with C. globosum and T. viride in p-hydroxybenzaldehyde. R. nigricans was exceptional. It did not metabolize ferulic acid and vanillin even after 21 days. On the whole p-hydroxybenzaldehyde was found to be the most susceptible in comparison to the rest of the two phenolic compounds and it was decomposed completely within 14 days by all the fungal species except for a few species viz., R. nigricans, T. viride and C. globosum which metabolized it completely only after 21 days of incubation.

DISCUSSION AND CONCLUSIONS

The data show that there exists a wide variety of fungi which can decompose p-hydroxybenzaldehyde, ferulic acid, and vanillin. Fungi studied here were only those which could be isolated by dilution plate technique, but large number of basidiomycetes and ascomycetes which have not been included here also play an important role in the decomposition of lignin.

^{+,} Present

Here the method of isolation of lignin fungi was based on the ability of the fungi to oxidize tannic acid [McKay (1959)] and out of a total of 25 isolates only 16 fungal species were found capable of oxidizing tannic acid. To confirm further their ability, only 10 selected species were grown on the three substitutes of lignin. The data show that most of these fungi utilize p-hydroxybenzaldehyde and ferulic acid easily (shown in terms of mycelial growth). In the entire experiment, maximum growth by *T. viride* was shown on ferulic acid followed by *A. niger* on p-hydroxybenzaldehyde and *C. globosum* again on ferulic acid.

Some gungal species like R. nigricans, P. varioti, and F. oxysporum which showed their reaction with tannic acid did not show much response in the utilization of phenolic compounds. Hence these forms cannot be regarded as lignin decomposers in this respect. On the other hand A. niger, C. globosum, P. verruculosum, M. echinata, and A. tenuis utilized all the three phenolic compounds in the experiment and this property was also confirmed by their conversion of phenolic compounds in broth medium.

As tannic acid oxidation depends on the formation of quinone [Creighton et al (1944), Gottlieb and Pelczer (1951)] and the breakdown of the aromatic ring, this suggests the action of some enzyme system for accomplishing the process.

Davidson et al (1938) also reported a number of fungi which oxidize tannic acid but were weak lignin decomposers. This type of fungi which were isolated on the basis of their oxidation of tannic acid were actually not good utilizers of the resultant components. It is quite likely that these fungi which are not able to utilize the substratum alone may be depending upon the synergistic action of other organisms for the utilization of the products in natural conditions where the microorganisms are known to live in balance with each other.

ACKNOWLEDGMENT

The author is thankful to Prof. S. B. Saksena, head, Department of Botany, University of Saugar, Sagar, M.P., India, for raluable suggestions and for providing the necessary laboratory facilities; and to the Ministry of Education, Gov't. of India for financial assistance.

REFERENCES

- * BAVENDAMN, W. (1928). Uber das Vorkommen und den Nachweis von Oxydasen bei holzzerstorender. Pilzen. Z. Pflkrankh. 38: 257 76.
- Brauns, F. E. (1939). Native lignin I. Its isolation and methylation. Jour. Amer. Chem. Soc. 61; 2120-27.
- COCHRANE, V. W. (1958). Physiology of Fungi, New York: John Wiley and Sons, Inc., pp. 41-96.
- CREIGHTON, R. H. J., R. D. GIBBS. and H. HIBBERT (1944). Lignin and related compounds LXXVI. Alkaline nitrobenzene oxidation of maize stalks. Isolation of p-hydroxybenzaldehyde. Jour. Amer. Chem. Soc. 66: 37-38.
- DAVIDSON, R. W., W. A. CAMPBELL, and D. J. BLAISDELL (1938). Differentiation of wood-decaying fungi by their reaction on gallic or tannic acid medium. Jour. Agric. Res. 57: 683-95.
- * FALCK, R. (1923). Mykol. Unters. U. Ber. 2; 38-72.
- * FALCE, R. (1930). Frostarchiv. 6: 366-77.
- GOTTLIEB, S., and M. J. PELCZER, JR. (1951) Microbiological aspects of lignin degradation. Bacteriol. Rev. 15: 55-76.
- HENDERSON, M. E. K. (1960). Studies on the physiology of lignin decomposition by soil fungi. In the ecology of soil fungi. Edited by D. Parkinson and J. S. Waid, pp. 286-296.
- KREMERS, R. E. (1959). The lignins. Ann. Rev. Plant Physiol. 10: 185-196.
- McKay, H. H. (1959). Cultural basis for maintaining Polyporus cinnabarinus and Polyporous sanguineus as two distinct species. Mycologia 51: 465-473.
- SILGEL, S. M. (1956). The chemistry and physiology of lignin formation. Quart. Rev. Biol. 31: 1-18.
- STAIL, E. (1965). Thin-layer chromatography, a kaboratory hand book. New York, London. Academic Press, 553 pp.
- WARSMAN, S. A. (1916). Soil fungi and their activities. Soil Sci. 2: 103-156.

^{*} Not seen in original.

SHORT COMMUNICATION

MODIFIED LOFTON-MERRITT STAIN FOR DIFFER-ENTIATING UNBLEACHED SULFITE AND SULFATE FIBERS

By L. C. Alba and M. S. Salceda National Institute of Science and Technology, Manila

Very early in the history of fiber technology, attempts were made to secure differential staining of various types of fibers by the use of different dyes or combination of dyes. Thus far, however, the results have not been very successful.

Lofton and Merritt [Snell and Biffen (1944)] reported a method for differentiating and estimating unbleached sulfite and sulfate pulps in paper and this method is being used up to the present time. The stain used consists of one part of a 2-per cent aqueous solution of Malachite green and two parts of 1-per cent aqueous solution of basic fuchsine or magenta. The two solutions are kept separately in tightly stoppered bottles and mixed together just before use.

In using the Lofton-Merritt stain, the compound stain is added to the fibers on the slide and allowed to remain 2 minutes. At the end of this period, the excess stain is removed by means of hard filter paper. Then, 3 to 4 drops of 0.1-per cent HCl solution (1 cc conc. HCl diluted to 1 liter of water) are added and left for about 30 seconds. The acid is then removed with a blotter and a few drops of distilled water added. A cover glass is then placed on top of the fibers and the slide gently placed between two pieces of blotting paper to remove any excess water.

The Lofton-Merritt stain, even when properly made and used, sometimes does not give the desired results. In testing the stain, too intense color reaction of either one of the dyes used often confuses the differentiation. Furthermore, due to the variation in the quality of the dyes, it is possible that the proportions of the two solutions as here recommended may not give the best results; hence, it is necessary to do verification tests on authentic samples, altering the proportions of the solutions until the fibers are stained the proper color. A

thorough investigation was therefore made in the Paper Laboratory of the Tests and Standards Laboratories of the NIST, and the resulting modified Lofton-Merritt stain gave a more definite differentiation of unbleached sulfite and sulfate. Equal amounts of the dyes were used in the preparation and an organic acid was added in making up the dye solutions. Different concentrations of the acid were tried but the solutions that gave the best color contrast at the acidity given in the formulas are:

Solution A:

Basic fuchsine	0.25	g
Acetic acid	15.00	mľ
Water up to	100.00	ml
Solution B:		
Malachite green	0.25	g
Acetic acid	15.00	ınl
Water up to	100.00	ml

Each solution is made separately, then mixed in equal proportion as needed.

Procedure.—Disintegrate the paper and filter off loading, etc. through a small 300-mcsh filter. Press a small amount of the fibers between two fingers to expel excess water. Place the sample on a spot plate and add a few drops of the newly mixed solutions A and B to the fibers. Allow the stain to remain for 2 minutes while teasing apart the fibers. This teasing is necessary to allow the stain to act evenly on all the fibers. After 2 minutes, the fibers are washed several times with distilled water to remove excess stain. The fibers are then spread thinly on the slide, and a cover glass placed over them for examination under the microscope.

Unbleached sulfite fibers produce a reddish violet color while unbleached sulfate are blue in color.

BIBLIOGRAPHY

Anonymous (1949). Federal Specification, Fiber Indentification and Quantitative Determination, Method 300, U Up-31b. U.S. Government Printing Office, Washington, D.C.

Brassington, J. W., D. Hunter, R. O. Harper, W. D. Sommer Vill, J. O. Ross, E. Sutermeister, N. Clark, E. F. Doty. H. U. Skinner,

98, 3-4

- H. E. STAFFORD, and J. N. STEPHENSON (1925). The Manufacture of Pulp and Paper. New York: McGraw-Hill Book Co., Inc., Sec. 5: 53.
- CASEY, J. P. (1961). Chemistry and Chemical Technology. New York: Interscience Publishers. Inc. Second Ed. 3: 1492-1493.
- GRIFFIN, R. C. (1955). Technical Methods of Analysis. New York: McGraw-Hill Book Co., Inc. Second E l., pp. 448-449.
- SNELL, F. W., and F. M. BIFFEN (1944). Commercial Methods of Analysis. New York: McGraw-Hill Book Co., Inc., 632 pp.
- STEPHENSON, J. N. (1953). Pulp and Paper Manufacture. New York: McGraw-Hill Book Co., Inc 3 900-901.

SHORT COMMUNICATION

STORAGE LIFE OF FREEZE-DRIED NIST* ALLERGENIC EXTRACTS

by Josefina B. Manalo and Gloria Laserna National Institute of Science and Technology, Manula

The preparation of lyophilized or freeze-dried local allergenic extracts is one significant development in the

pharmaceutical field.

Studies previously conducted by Laserna et al (1960), on the production of local allergenic extracts of reliable nature have emphasized the need for having these extracts freezedried. However, when these extracts were held in the freezedried state and stored for prolonged periods at refrigerated conditions, the rate at which they lost activity was quite detectable. The problem therefore, of preserving them for future use without reducing their activity has come into focus.

No detailed investigation, so far, has been done on the storage life of local freeze-dried allergenic extracts. This study, therefore, is a preliminary investigation intending to put the authors' data to use as reference for further study.

MATERIALS AND METHOD

Freeze-dried extracts used in this study were those prepared by the investigators in 1965. The prepared aqueous extract was filtered through aseptic filters and the mixture was immediately distributed into vials in 5-ml volumes, followed by freeze-drying in a Stokes' freeze-drier. The vials were sealed off in vacuo and the activity of the extract was investigated; labeled, then stored at a refrigerated temperature of about 35°F. These allergenic extracts were restandardized to determine their actual protein nitrogen content. The methods adopted in the present investigation are described in detail and reported in previous articles by Laserna and Manalo (1966).

^{*} National Institute of Science and Technology, Manila.

The protein was precipitated from the reconstituted extract by the methods of Cooke (1947), and the total amount of protein precipitated was estimated by analysis for nitrogen by a micro-Kjeldahl (titrimetric) method of Sobel *et al* (1944). The experimental work was done in duplicate.

Results obtained were further analyzed using the "t" test [Snedecor (1946)] at 5-per cent level of significance, to determine the extent of degradation of the freeze-dried allergenic extracts.

RESULTS AND DISCUSSION

Table I shows the protein nitrogen content before and after storage of freeze-dried allergenic extracts from house dust and 17 local plants, and the loss of allergenic activity after 5 years at 35°F. The values shown are the average of two trials for the method used. The fireeze-dried extract samples studied represent those causing allergy.

Table 1.—Loss of protein a troge, content in the freeze-dried local allergenic extracts after 5 years storage at refrigerated temperature (35°F).

	Programming afterior	i cont e t
Rermada grass II groom lectylon L.) Pers] Craba grass In spa am sp. Crab grass In spa am sp. Lova grass I Polyarias preconsis Nas alors 1. K. g. m. (Imperata coloriduca n., B. al. 1. M. m. Zou negs In 1.) Miss Zou negs In 1. Miss I for in In 1. Miss Zou negs	1965 1976 mg c mg	Stringe ng nc

Although considerable efforts have been centered on the step by step preparation of the allergenic extracts to obtain good quality freeze-dried samples and on the use of the most suitable equipment needed for the study, nevertheless, it is to be noted that the allergens showed a definite reduction of their protein nitrogen content as the period of storage

was prolonged. The decrease in the protein nitrogen content of the refrigerated allergens was not necessarily uniform, but varied with the specific allergenic extract preparation.

As shown in Table 1, the results indicate a decrease in protein nitrogen content of from 0.050 to 0.014 mg per cc, indicating a loss of from 8 to 50 per cent. This loss may be due to various adverse changes taking place in the freezedried extracts, such as protein denaturation or deterioration, which as yet, could not be established definitely. However, Cooke (1947) stated that "... while aging did not affect the total nitrogen of an extract it did influence greatly the fractions involved, the protein nitrogen and the nonprotein nitrogen, the former being converted gradually into the latter, and that as this occurred a corresponding loss in activity was evident..."

Table 2 shows the "t" test values for the comparison of the protein nitrogen content of the extracts before and after storage. The value of "t" obtained was more than the "t"

Table 2. -T test values for the comparison of the protein nitrogen content of the freeze dried extracts before and after storage.

Contonia sy viv	
Loca and sejentific names	T test values*
Bermada grass (Chroden dactylon (L., Perg.) Carabao grass. Paspalum sp.) Dust. house, Poxt. i, n. al. ((Pennastam hoter les polystachyon) (L.) Schaltz. Poxt. i, n. al. ((Pennastam hoter les polystachyon) (L.) Schaltz. Nogon. Impirita equirdirea (L.) Beauv.) Mas (Rea mays. L. m. Mas (Rea mays. L. m. Mexican sunfat, wer. (Tithonia diversifolia A. Gray) Mexican sunfat, were diversified in the set of the set	7 0 1.4** 7.0 5.0 5.0 3.0 5.0 7.0 7.0 7.0 7.0 7.0 3.0 4.0 3.0

^{*} Group cam; arison method.
** Not significant at 5 per cent level.
*** Infinity.

value of 2.92 at 5-per cent level of significance. Hence, it may be said that, except for carabao grass, these allergenic extracts exhibited a significant variation in their protein nitrogen content, as evident in the results shown in Table 2, thereby showing the extent of reduction in protein nitrogen of the

freeze-dried extracts stored for 5 years at constant low temperature (35°F). Considering the lapse of time of 5-year storage of the extracts in the present study, it will not be surprising to note that the values obtained are much lower as compared with those obtained from the same extracts in 1965.

Since appreciable losses in protein nitrogen content were noted after 5 years, Cooke's observation, therefore, could be taken as a contributory factor in the decrease in protein nitrogen content of the locally prepared freeze-dried allergenic extracts but not conclusive to assess that the corresponding loss in activity would render the extracts ineffective, until other conditions or factors shall have been considered and confirmed.

It should be pointed out further, that although the decrease showed marked differences in protein nitrogen content, it did not render the extracts ineffective, as it was still acceptable to the allergist doing clinical studies on the restandardized extracts. From the restandardized extracts dilution could still be made for test and treatment.

However, in a field where a change in activity of an extract is of particular importance to the allergists engaged in the treatment of allergic diseases, it is suggested that further detailed investigations or studies be made with particular emphasis on the factors which affect to a large degree the activity or strength of the extracts, in order to effect stability after prolonged storage. This is deemed necessary if the clinical use of the knowledge obtained in this study is intended to have local allergenic extracts available and potentially stable for human use at the appropriate time when it is most needed.

SUMMARY

Restandardization of freeze-dried NIST allergenic extracts from house dust and 17 local plants after 5-year storage at refrigerated temperature (35°F), was undertaken. Statistical analysis of the data obtained to evaluate further the extent of reduction in the protein nitrogen content of the

¹ Eleonora P. Dacanay, clinical allergist, Allergy Research Unit, Medical Research Center, National Institute of Science and Technology, Manila. extracts, was also made, and the results are reported. The results indicate that all the protein nitrogen present during storage show losses of from 8 to 50 per cent and the significance of this was discussed. However, results of the study also tend to show that the protein nitrogen values obtained although much lower as compared with those obtained from the same extracts in 1965, were still acceptable, inasmuch as the strength of the extracts used by the allergist in her treatment was based on the recent protein nitrogen values obtained.

ACKNOWLEDGMENT

The authors are grateful to Mrs. Guillermina C. Mañalac, Asst. Director of the Industrial Research Center, National Institute of Sicence and Technology for her helpful suggestions and to the Techno-Economic Staff also, of the National Institute of Science and Technology, for their technical assistance.

REFERENCES

- COOKE, R. A. (1947). Allergy in Theory and Practice. Philadelphia and I ondon: W. B. Saunders Co., 572 pp.
- LASERNA, G., J. S. BLENAVENTURA, and J. MARAÑON (1960). N.trogen content of some local air-bonne pollen grains in relation to allergy. Philip. Jour. Sci. 89: 173-181.
- LASERNA. G., and J. B. MANALO (1966). Preparation and standardization of allergenic extracts of local, an borne pollen grains Philip Jour. Sci. 95: 275-280.
- LASERNA, G., and J. B. MANAIO (1966). Nitrogen-content determination of local air-borne pollen grains. Philip. Jour. Sci. 95: 281-288.
- SNEDECOR, GEORGE W. (1946) Statistical methods. Iowa State College Press. Fourth Edition, pp. 75-88.
- SOBEL, A. E., M. A. MAYER, and S. P. GOTTFRIED (1944). A convenient titrimetric ultra-micro method for the estimation of urea and Kjeldahl nitrogen. Jour. Bio. Chem. 156: 355-363.

SHORT COMMUNICATION

PLANTS INJURED BY AIR POLLUTANTS

By P. S. Subido, P. A. Santamaria, E. N. Alqueza, and A. C. Pizarro

Bureau of Plant Industry, Manila

ONE PLATE

INTRODUCTION

The establishment and expansion of fertilizer and other industrial factories in this country have inevitably created specific agricultural problems including the detrimental effects on the health of the population of the affected areas. Dust from cement factories have been a constant source of complaints among farmers and residents of the area. Similarly other factories have not only inflicted serious injury to plants but also caused destruction to animal fauna. Because of the irreparable injury to plants and its possible deleterious effect to human beings, measures to remedy the abnormality have attracted the attention of the National Air and Water Pollution Commission.

The case at the Lamao Experiment Station, Lamao, Bataan where a certain fertilizer factory is located is the first of its kind reported in the country. A wide range of crops including fruit trees were defoliated. Shedding of burned leaves started on the side of the trees facing the direction of the wind. The distance of the factory from the orchard where the observations were made was from 10 meters to 4 kilometers away. Depending on the susceptibility of the trees, defoliation may be either partial or entire as shown in Plate 1, figs. 1 3. Recovery of the affected trees took a long time and most of the trees failed to produce flowers. Newly developed leaves were scorched before they could mature. Isolation and other tests for pathogenicity and insects failed to yield positive relations with the abnormalities observed.

SYMPTOMS OF INJURY TO CROP PLANTS

The typical symptoms and condition of the plants affected by corrosive sulfur dioxide and hydrogen flouride gases exhibited shrivelled, injured and burned leaves. Branches and twigs were covered with grayish deposits of fertilizer dusts and other particulates and plants affected varied from the succulent vegetables to the hardy fruit trees. (Plate 1, fig. 2.)

Injury to the different plants ranged from mere discoloration to scorching of the leaves. The margin of santol leaves after a series of exposures to fallouts first turned pale, then colorless and finally brown. The periphery of the leaves showed the first signs of burning with a tendency to cup-up. The cupped leaves accumulated emitted particulates, dusts and other gases. The presence of little moisture in combination with the particulates and dusts hastened the bleaching and scorching of the leaves while the midvein and leaf lamina near the base remained green. The bleached portion of the leaf was observed to be very brittle. All the burned leaves fell until the tree was completely defoliated resembling dead trees as shown in Plate 1, fig. 3. Continuous exposure of the trees eventually resulted in the death of the twigs and smaller branches.

The effect on sweet potato was even more devastating. This crop was considered to be the most sensitive among the plants found in the station. The leaves turned brown and water-soaked after a day exposure followed by a total collapse. On the average, a field of sweet potato was completely destroyed in 3 days in an air-polluted environment. This plant may then be considered a good bio-indicator for the presence of atmospheric pollutants.

Affected mangoes and santol trees flowered in an unusual fashion. Instead of the flowers arising from the growing points or terminal buds they sprouted anywhere from the branches or from the trunk itself. Cashew, a hardy plant suitable to the area, failed to flower as a result of its exposure to the polluted air. On the other hand, caimito and chico and the ornamental crotons were the least affected.

Leaves of affected rice plants exhibited blotchy areas of irregular shapes and sizes. These bleached patches coalesced till the whole leaf was covered. Plants so affected became stunted in growth. Production of tillers was suppressed. Corn was slightly more sensitive than rice, with leaves getting scorched at a faster rate. In coconuts, the most obvious symptoms were burning of the leaves which usually started

from the tips and margins. These scorched areas were at first small with regular outlines, later assuming a dark discoloration. The young leaves turned dark.

Affected rice leaves showed the injury of fertilizer dust and gases like sulfur dioxide and hydrofluoric acid emitted from the factory located nearby.

The extent of spread of the injury corresponds to a well defined area following the wind direction. The magnitude of destruction was less near the source of pollution and becoming more intense further away. All the plants within the circumscribed area of a mile and a half from the factory were affected in various degrees (Table 1). This type of spread corresponds to the dispersal of pollutants as shown by Smith (1968).

From field observations and laboratory examinations of affected plants, we have come to the conclusion that atmospheric pollutants from the fertilizer factory was responsible for the injuries of the different crops reported in this paper. It is an established fact that air pollutions in the form of sulfur dioxide and hydrogen flouride are toxic to a number of plants.

The absence of chemotherapeutants to be applied to counteract the effect of these oxidants indeed pose a serious problem. Ways and means should be worked but to minimize, if not entirely eliminate, the emission of toxic gases from different sources. The elimination of atmospheric pollutants has been shown to be feasible in other countries.

BIBLIOGRAPHY

DUCCER, W. M., JR., and J. TING (1968). The effect of peroxyacetyl nitrate on plants, photoreductive reaction and susceptibility of bean plants to pan. Phytopathology 58: 1102-1107.

HEGGESTAD, H. E. (1968). Diseases of crops and ornamental plants incited by air pollutants. Phytopathology 58: 1089-1097.

HEPLING, G. H. (1938). Diseases of forest and tree crops caused by air pollutants. Phytopathology 58: 1098-1101.

SMITH, M. E. (1968). The influence of atmospheric dispersion on the exposure of plants to air-borne pollutants. Phytopathology 58: 1085-1088.

Wood, F. A. (1968). Source of plant-pathogenic air pollutants. Phytopathology 58: 1075-1084...

067081 ---- 9

Table 1.—Reactions of plants to air pollutants emitted from fertilizer factories. The basis of the degree of susceptibility on the affected plants is based on the burning of the leaves.

Very severe	Severe	Moderate	Neglîgrble
Sweet pe tato (I pamoea baiatas Lam.) Coconcut (Cocas meet era L.) Cashen (Anceardaum occidentole) Mirgo (Mangileta indica L.) Pechay Brassica chinensia L.) Satt I Sendoricum koetjape (Burm. f.) Merr.)	Acacus (Samanca saman Merr.) African oil palm (Elacis guinecesis Jacq.) Avocado (Persia americana Mill.) Bamboo (Bambnea spinosa Roxb.) Camachile (Pitherolobium dulce Rexb.) Camiss (Azerrhoa bilimbi L.) Cassava (Manihoi esculenta Crantz.) Cora (Zea meys L.) Duhat (Engenia ennimi (L.) Druce) Grapes (Vitis spp.) Nangka (Artocarpus integra Merr.) Onion (Allium erpa L.) Papaya (Carica papaya L.) Yard long, sitao (Vigna sesguipedalis Fruwirth) Tamarind (Tamerindus inaica L.)	Banana (Musa sapientum Kuntz) Citrus (Citrus spp.) Cvpress (Cupressus spp.) Engplant (Scianum melangena L.) Guava (Psidum guajara L.) Kapok (Ceiba pentandra (L.) Gaerin.) Okra (Melmoschus esculentus Moench) Pili (Canarium osalum Engl.) Rice (Organ satura L.) Tiess (Lucuma nervosa A. DC.) Canistet (Ponteria campechiana Bochni)	Agoho (Casuarina equistifolia L.) Black pepper (Peper mgrum L.) Caimito (Chrysophyllum camto L.) Cheo (Lehras zapeta L.) Croton (San Fruesco) (Coliacum of ricgalum Blume). Papua (Polyscias frueticosu Harms

ILLUSTRATIONS

PLATE 1

- Fig. 1. A partially defoliated cashow plant with dried flowers and dying twigs as a result of its continuous exposure to air pollution.
 - 2. A cluster of mango trees showing the effect of air pollution. The tree at the center is still completely defoliated while those on both sides are recovering.
 - 3. The effects of air pollution on an apparently unaffected chico tree on the left while the santol tree is completely defoliated and on its dying stage. The corn plants in the foreground are wilting and dying.

327

PLATE 1.

INDEX

[New names and new combinations are printed in italies-1

Abelmoschus esculentus Moen., 326. Absidia butleri, 305. Acacia, 326. Achapthes jemseyensis var. undulata Skv., 71. Acanthacere, 163. Acanthobracon Kriech., 262. Acer. 183.

saceharum, 174. sp., 174.

Achanthes yeniseyensia Skv., 70.

Achras zapota L., 326.

Actinocyclus chrenbergii Ralfs. var. sparsa (Greg.) Hust., 59, 63.

Adhatoda cydoniæ folia Nees, 163.

Adjantum spp., 166, 167.

Acrides quinquevulnerum Lindl, 156.

African oil palm, 326. Agaricales, 172.

Agoho, 326.

AGRAWAL, S. C. Studies on lignin decomposition by some litter fungs, 303

Ailanthus, 183.

Alabang x, 13, 14, 236, 239, 243

Alba, L. C., and M. S. SALCLDA. Modified Lofton-Merritt stain for d.fferentiating unbleached sulfite and sulfate fibers, 313.

ALABASTRO, VICTORIA, Q., see Gonzalez DIMAUNAHAN, PILAC, and ALABASTRO

Alcaligenes faecalis, 117.

ALCARAZ, AURORA P., see ORTALIZA, DEL ROSAMO, CAEDO, and ALCARAZ.

ALIWALAS, ASUNCION R., VIOLETA P ARIDA, and FLORECILLA C. BOR-LAZA. Coconut oil fatty acid esters by alcoholysis, 27,

ALIWALAS, ASUNCION R., ANTONIA L. GONZALES, TERESITA R. CLAUDIO, and RAMON BENET. A study of the wet and dry methods of extracting oil from coconut meat, 139,

Allium Cepa L., 326.

Alnus incana, 174. sp., 174.

Alocasia app., 167.

Alphonsea arborea (Bico.) Merr., 176 ALQUEZA, E. N., ses Subido, Santamaria, ALQUEZA, and PIZARRO.

Alternaria tenuis, 304-310.

Amaranthus spinosus Linn., 13, 236, 239, 243, 318, 319.

American bumblebees, 160. Amorsecos, 13, 236, 239, 243.

Amphora dalaica, 59.

dalaica Skv. var. cornata Skv., 85

dalaica var. gracilis Skv., 86. jenuseyensis Skv., 59, 85.

Rother Sky., 85.

mongol.ca Qest, var. maculata Skv., 59, 85

ovalis Kütz., 85.

ovalis Kütz, var. libyca Ehr., 85.

ovalis Kütz. var. pediculus, 85.

Amphileura pellucida Kūtz., 71.

Anacardium occidentale, 326. Anaptychia hypolenca Wain., 2.

leucomezena Wain, var. angustifolia, 2.

speciosa, 2.

Anatto, 124

Andropogon aciculatus Retz., 13, 236, 239, 243.

An. soptera aurea Foxw., 184.

Anomoconers kolbei Sky., 59, 74,

Anthoriam andreanum Lindt, 156.

crystallinum Lindl, et Andr., 158. hortu.anum Birds., 158.

pedatoradiatum Schott., 158.

Araceæ, 158

Arachnis flos-wris (L.) Reich, 156.

Araucaria execks R. Br., 162, 188, 190.

ARIDA, VIOLETA P., see Aliwalas, Arida, anl Bortaga.

Artocarpus integra Merr., 326.

Aspergillus flavus, 305.

n ger, 304-310.

orhraceus, 305.

ustus, 305.

Atanycol.dea Vier., 264.

Atanycolus Foerst., 264.

excerpta (Tur.) Balt., 264.

fuscipennis (Cam.) Balt., 264.

Averrhoa b limbi L., 326. Avocado, 326,

BABU, C. R., and B. PRAMANIK. On the taxonomy of Randia longiflora sensu Hook, f. (non Lam.) (Rubiacese), 293.

Bacillus sabtilis, 1, 6, 7, 117.

Bagtikan, 190.

Baklad, 208

BALTAZAR, CLARE R. Reclassification of some Indo-Australian and African Braconine and Rogadine (Braconide, Hymenoptera), 259.

Bamboo, 826.

Bambusa sp.nosa Roxb., 826.

Banana, 326.

Barthasis ruficeps Cam., 276.

Band omyectes, 169.

Batad-batacan, 12-14, 236, 239, 243.

Bathyaulax Szepl., 266, 267.

cyanogaster Szepl, 267, 275.

plumosus (Kirh.), 267.

stamogs (Cam.) Balt., 267.

strenuus (Cam.) Balt., 267.

```
Bermula grass, 12, 13, 236, 239, 213, 318, 319,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                     C
  BERNARDO ZOSIMA P., see Sevilla
                                                                                                                                                                                                                                                                                                                  Cal there,
CALRELA, BENJAMIN D. In Memorian
Pet neuro Alegan V Reseate, 11th
1960), 201.
Cactace e., 159
CALDO, MA MINDA, see Officiala, 1.1
Resales, Caller, and Area V
                                                      SANTOS and BERNA 6.0.
    BENET, RAMON, see Atimalas, Gonzales,
                                                          CLAUDIO, and BENET.
    Betula perprefera, 174.
                             ropa ifolia, 171
     Bignon, acce., 164.
                                                                                                                                                                                                                                                                                                                     Chesalpin (a che, ma (Lorr So., C. C. m. d., .)
C. m. d., .)
C. l. as ministaena (Bors) C., ..., 73
sehma and (G. an.) Cl. v. ... gense
ensis Sky, 73
s. licula (Ehr) C., 72.
sil cula (Ehr) C., 72.
sil cula (Ehr) C., 72.
Gran, E8
s. as a Err) Cl. v. s. direct Sk. ...
S. co. la Ehr) Cl. v. s. direct Sk. ...
G. an. 72
    B.xs orellana Lann., 124.
     Back 1. ss, 160
                         pepper, 326
     Blastomorpha Szepl, 263.
     BORLAZA, FLORECILLA G., sec Aliwa-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             en en s
                                          LAS, ALIDA, and BOUNZA.
Brach, 1.a. matica (Lorest) Stof, 15
2.9, 2..., 18, 313.
Braco Wesm., 200.
Braco Wesm., 200.
Braco Rubr, 2..., 260.
abdomm ans (15m.), 261.
austrausicus Cam., 260.
betheosus Sm., 200.
betheosus Sm., 21.
bico.or Brul, 268.
cephatotas (Sm., Balt., 267
clanes (Lam., Balt., 267
clanes (Lam., Balt., 267
clanes (Lam., Balt., 260.
combustus Sm., 2.0
crassipes Sm., 2.0
crassipes Sm., 2.1
decaje (Lam., 271.
decaje (Lam., 271.
decaje (Lam., 271.
decaje (Lam., 271.
decaje (Lam., 272.
foromeus Cam., 273.
foromeus Cam., 274.
foromeus Cam., 274.
foromeus Sm., 273
himalajensis Cam., 265
miossilatis Lo.r., 257
miostor Scop., 272
neulatus Sm., 269
pejunus Cam., 268.
khas anus Cam., 268.
khas anus Cam., 269.
pejunus Cam., 268.
khas anus Cam., 272
orentalis Cam., 268.
pall difrons Sm., 270
patheratus Cam., 272
orentalis Cam., 272
orentalis Cam., 272
penetratis Cam., 272
penetratis Cam., 272
placos Cam., 272
placos Cam., 272
placos Cam., 272
placos Cam., 272
resaess Cam., 271
run, frons Sm., 273
suspiciosus Cam., 273
suspiciosus Cam., 273
tenasserim onsis Cam., 260
v-macula Cam., 262
v-macula Cam., 262
     Bougainzinea speetabil's Willd,
                                                                                                                                                                                                                        16 !
    Brach, r.a mutica (Toesst) Stef, 10, 25, 209, 217, 518, 313.
Braco Wesm., 200.
                                                                                                                                                                                                                                                                                                              G an 72
Cumach to 28
Camps 3 (
Camps 3 (
Camps 1 (
Camp 
                                                                                                                                                                                                                                                                                                                    Canistel, 336
CANLAS, Z. M., see Canox, Pamintuan-
Romes, Garranali Rosan, etc.
                                                                                                                                                                                                                                                                                                                                                             CANLAS.
                                                                                                                                                                                                                                                                                                                     CANOY, C. S., R. PAMINTUAN-LOBLES, A. GABERTAN DEL ROSARIO, and Z. M. CANLAS. Some am no acids and respiratory organic acids in co-count leaves, 17.
                                                                                                                                                                                                                                                                                                                    Cappar dacew, 164
Carabno grass, 13, 14, 236, 230, 243, 318,
                                                                                                                                                                                                                                                                                                                    3.0
Car ca papaya L. 326
Carya sp. 171.
Cashew, 326
Casaya, 326
Castanen, dend th, 174.
Casaarina, 186
equisitocha L., 336
                                                                                                                                                                                                                                                                                                                    Cattleya, 157.
Ge ba pent indra (L.) Gaertn, 376
Celt s, 183
                                                                                                                                                                                                                                                                                                                    Ceratones arcus Ehr, 58, 65,
arcus Ehr var. amphioxys (Rebent)
Hust., 65
                                                                                                                                                                                                                                                                                                                    Ceratestome, a paradoxa, 1, 117
                         tricolor Sm., 276
tr.signatus Kirb., 273
umbratibs Cam., 260.
v-macula Cam., 265,
vultuosus Sm., 264.
                                                                                                                                                                                                                                                                                                                  Chartonium globosim, 304 307, 300, 310
Chanis chanos Fork, 208,
Chao lta Cam., 263,
amestris (Cam.) Balt., 263
himalayensis (Cam.) Balt., 263,
 Braconing, 257
                                                                                                                                                                                                                                                                                                                 hundlayensis (Cam.) Balt., 263, 
inset at C.m., 263, 
interest (Cam.) Balt., 264, 
voltassis (Sm.) Balt., 264, 
voltassis (Cam.) 264, 
v
Brassica chinens s L., 124, 226
Bremus bagu oriensis (Cocker)
ganensis (Hed.), 160
                                                                                                                                                                                                                           vaj
Bromel aceae, 179.
Brown-rot fung, 169 170
Brazilian tower, 163 161,
Bumbieber sp. 160.
                                                                                                                                                                                                                                                                                                                                            ruficeps Cam. 264.
```

sulenta Com., 264 tritumiculata Cam., 264. Chico, 33r CHICO, ISTRULLITA G. see Florentino, Citto, Josen, Yunut, David, Es-cuenta and Jimentz. Chinese litchi, 162, Chlorda, 218 Chaysonbylium cainite L., 826. Citrus, 326, spp., 326. CLAUDIO, TERESITA R., see Atiwatas, Gonzales, Claudio, and Benef. Cleome spinosa Jacq., 164. Coccone.s rediculus Ehr. var. jenisepensis Shv., 69. pediculus Ehr. var. mongelica Skv., 59, placentula (Ehr.) Hust., 70. placentula (Ehr.) Hust. var cuglypta (Ehr.) Cl., 70. placontula (Ehr.) Hust, var. intermedia (Herib, et Perag.) Cl., 70. placentula (Ehr.) Hust. var. lineata (Ehr.) Ch. 70. Coconut, 326. Cocos nucifera L., 192, 326. Codincum variegatum Blm., 326. Coelobracon Thom., 264. Compyloneurus, 259. Corn, 326. Corylus sp., 174. Coscinodiscus oculus iridis Ehr. var. borealis (Buil.) Gl., 59, 62. Crab grass, 13, 14, 236, 239, 343, 318, 819. Cratobracon Cam., 266, 269. jaculatus (Sm.) Balt., 268. reticulatos (Com.) Balt., 289. ruficups Cam., 289. Crocynla membranacea (Dicks) Zahlbr., 299, 301. Croton, 326. Cupressus spp., 326, Curvularia lunata, 305 Cyclotella jarniji Sav., 62.
minuta (Sav.) Antip., 62.
minuta, 55.
ocellata Pant., 62.
ocellata Pant., var janiscycnesis Sav., 62.
pseudostriata Sav., var. janiscycnesis Sav., 63.
85. 61. pseudostriata Skv, var. jenisejenie Skv., 59, 61.

Cymatopicura eli.ptica (Breb.) W. Sm. var. n.bernica (W. Sm.) Hust., 101.
elliptica (Breb.) W. Sm. var. nobilis (Hantz.) Hust., 101.
kolbes Skv., 101.
solea (Breb.) W. Sm., 100.
solea (Breb.) W. Sm., 100.
solea (Breb.) W. Sm. var. apiculata (W. Sm.) Ruifs, 100.
solea (Breb.) W. Sm. var. apiculata (W. Sm.) Ruifs fo. curta Skv., 100.
Grun, 101.
solea (Breb.) W. Sm., var. regula (Ehr.)
Grun, 101.
solea (Breb.) W. Sm., var. vuigaris
Nest., 100.
Cymtella affinis Kitz., 87.
alp na Grun, 86.
ampheeph. ta Naeg. var. joniseuchsis
Skv., 86.
australica A S. var. hankensis Skv, 89.
c.stuh (Hemp.) Grun, 86.
cist. totdes Skv, 86.
cistlo.des Skv var. angulata Skv, 13.
87. 59, 61.

Cymbelia Continued obeina Continues chrenbergii Kutz, 89 hebt hea (Greg.) Grun, var. jeniseyensis Skv., 87. Skv. 87.
helvetica Kütz., 88
hetoropleura Ehr, var. minor Ci., 89.
hata Grun. 86
leptoceros (Ebr.) Grun. 88.
perpusila Ci. var. ohlusata Skv., 86.
prostruta (Brk.) Ci., 88.
psedatumida Skv., 59. 88.
psedatumida Skv., 59. 88.
sumata Greg., 89.
sublata Greg., 89.
sublata Skv., 59. 86.
sublata Var. gracitis Skv., 86.
tumida (Breb.) Van Heurek, 88.
turaida (Greg.) Cl. var. jeniseyensis Skv., 87.
ventricosa Kütz., 87.
ventricosa Kütz., 87.
ventricosa Kütz., var. jeniseyensis Skv., 87. Cymbidium finlaysonianum Lindl., 156. Cynodon daetylon (L.) Pers. 13, 235, 239, 243, 318, 810. Cyperus rotundus Linn., 13, 236 239, 248, DACANAY, ELEONORA, and LOURDES M. ARTIAGA. Clinical evaluation of NIST-produced allergenia extracts, I. Skin testing with pollen extracts (grasses and weeds), 235. Daedalea Pors., 174, 182, elegans Spr., 182, flavida Lev., 182, 183, Dagang, 184. Dandellon, 159. DAVID, ANTOLIN C., see Florentino. CHICO, JOVEN, GUNUL, DAVID, ES-GURRRA, and JIMENEZ. Delmira Cam., 266. triplagiata Cam., 287, Dendroblum spp., 156. tauriaum Lindl., 163. pintoma elongutum Ag., 64.
dongntum (Lyngb.) Ag., var. tonue
(Ag.) Van Heurck., 64.
hlemnie (Lyngb.) Heib., 64.
hlemnie (Lyngb.) Hib. var. mesodon
(Ehr.) Grun, 64.
vulgare Bor. var. producta Grun., 65. Diennthium aristatum (Polr.) C. E. Hubb. 13, 238, 239, 243. Didymosphenia gennata, 58, 50, 89. Digitaria sp., 286, 239, 243, 318, 819, spp., 13. Digonogaster Vier., 271. DIMAUNAHAN, LEOGARDA B., see Gon-zalez, Dimaunahan, Pilac, and ALABASTRO. Diospyrus sp., 183, 184. D.plonois ovalis (Hil.) Ol. vnr. jeniseyensis Skv., 73. parma Cl. va. jeniseyensis Skv., 59, 73. Domphonema subsalınum Wisl, et Poret, var. lancetula Shu, 91. Dracontomelon dao (Bleo.) Merr. and Rol., mangiferum, 174

Drynaria spars.soria (Desr.) Moore, 155. Duhat, 3%. Dust (house), 236, 239, 243, 318, 319.

G

 \mathbf{E}

Foxtail millet, 13, 14, 236, 239, 248, 318, 319

Frustuna chombodes (Dhr) de Ton. 71

valgar's Thw. 71
valgar's Thw va asiatica Sav., 71
vulgar's Thw var gensehersis Skv., 71,
vulgar's Thw var, lanceolata Skv., 7.

(Rabenh r Grun., 65 pinnata Ehr., 65 harresson, W. Sm., 65

Frax nus sp., 174.

Fus roum for gepus, 305 momiliforme, 117, oxysporum, 304-310,

Fragilaria capucina Desm var, mesolenta

GABERTAN-DEL ROSARIO, A., see CANOY Eggplant, 326. PAMINTI AN-ROBLES, GABIRIAN DEL RE-Elne's guinensis Jaco 326 Eleusine indica (L.) G ertn., 13, 23f, 239, 243, 318, 319 SAPIO, and CAYLAS. Ginger, 279, 281, 287 Glockadum conglut ns, 30a. Ep.dendrum si p , 165 167. Epithemas sares Katz, 79, 93 targala (Ehr.) Katz var. granulata (Ehr.) Grun, 23 zeltra (Ehr.) Kutz. var. saxonica (Kutz.) Grun, 93 Gomi honema acuminatum Ehr. 92 acum natum Ehr. var. brepissoni (Ku z.) C , 92. acum natum Ehr var coronatum (Dhi) W. Sm 92, constrictum Fhr. 91, constrictum Ehr var capitatum (Ehr) Escher cha col, 117. ESGUERRA CRISTINA R., sec FLORENTI-NO, CHICO, JCVEN, YUNUL, DAVID, Es-GUERRA, and JIMENEZ. Ce., 91. intricatum Kütz var minor Sk., 5), 60 intricatum Kütz var, pumilim Grun, 30 yin siyensis Sk., 79, 90 quadripunctatum (Oestr.) Wisl., 50, 92 73. Eugen a 191 cumin. (L.) Druce 326. Cumin. (L.) Bruce 526.

Eunotia arcus Ehr., 69.
clevei Grun., 58, 50, 69.
lunaris (Ehr.) Grun., 58
pcet.nalis (Kütr.) Reterin. var jeniseminsis Sav 68
pcet.nalis (Kütz.) Rabenh. var. (Kütz.)
Rarenl. fo. impussa (Ehr.) Hust.,
68. jua fr.; unefatum var nudum, 50, parvulum (Kutz) Grun, 3, schantungens s Sky v.c., jenise jens s, 50, schantungensis Sky var jemsenens s, 19. pracuita Ehr. 69 sclengensis Skv var. genisehensis Skv. Fuphorbia pulcherrima Wi d., 165. subsa num Wisl et Poret var. genisc-nens s Sky, 91 su., saleum, 9 European red clover, 159 Euryphrymnus margin.ce.lis Cam, 276 ruficol..s Cam 276. sa salsum, tergest.num, 59
tergestinum (Grup) Fr Hist var.
schuntangersis Skv. 90
tentricus m Greg, 92
ventricus m Greg fo. sabcamtatu a Skv. EUSEBIO, MARIO A Phil.ppine fungi associated with decays of wood pro-cucts, 169. Enurobricon Ashm., 266, cephalotes (Sm.) Balt., 267, quadricons Sm., 267 yokohamae (Torr.), 266 92. Goniobracon 27° GON7AGA ALEJANDRO, see VILLALUZ, Evernia sp., 297. Exobracon Szepl, 259, 266 rufus Cam, 273. VILLALLY, LADPERA, SHEIK, and GOA-GONZALFS, ANTONIA L., see Alwalas, Exothecus, 259. GONZALES, CLAUDIO, and BENET. GONZALEZ, OLYMPIA N , LEOGARDA B DIMAUNAHAN, LEONARDA M. Fagaceae, 179. PILAC, and VICTORIA Q ALA-Fagus, 192. BASTRO. Effects of gomma radia-FLORENTINO, RODOLFO F, ESTRELLItion of peanuts, onions, and ginger, TA G CHICO, JOSE C. JOVEN, CONCHITA R. YUMUL, ANTOLIN Grammatophyllum scriptum (I.) Blm., 163. Gromaulax piloseilus Cam., 266. Gronaulax Cam., 266. tentogaster (Cam.) Balt., 266. C. DAVID, CRISTINA R ESGUER-RA, and JOSE JIMENEZ A study of gamma globum metabolism among normal and malnourished P.L.pinos. 37 Grapes, 326. Fomes (Fries) Fries, 174, 180. lamaensis (Merr) Sacc. & Trott., 180-Griffithia curvata Kurz, 293, 294, simaensis Miq., 293, 294, Guava, 326. Guinea grass, 13. Ly dus Kalebbr) Sacc., 180-182.

Kalber, 50 71, kolber, Skr., var. genisevensis Skv., 72, kolber Skv., var. obtusa Skv., 72

Gyrosigma attendatum (Kütz) Ralenh var asiatien Sav., 55, 72.

Halrotracon John., 260

Hartzikia amikovys (Fhr.) Grun, 94.
omphoxys (Ehr.) Grun var jemseyr vsis Skv., 59, 95.
amphoxys (Fhr.) Grun var vivax
(Hantz.) Grun, 95.
crassa Pant var jemsenonsis Skv., 59,
95.

elongata (Hantz.) Grun, var. jenisegen-513 Sky., 95, Irrgata (Rop.) Grun. var. jeniseyensis Shv., 59, 95. HARDER-SOLIVEN, ANITA, SEC MANALAC and HARDER-SOLIVEN. Helminthosporium grammeum, 305. Huro Floridana (L. Sueur), 160. Hybogaster Szepl., 266, 268. acragas (Cam.) Balt., 268. gibberosus Szepl., 268. hundrawensis (Cam.) Balt jejunus (Cam.) Balt., 268. Balt., 263. nalayanus (Cam.) Balt., 268. varipennis (Cam.) Balt., 269. zanthopsis (Cam.) Balt., 258.

Hymenochaete 173.

Icheneumon denigrator Linn., 264. minutator Fabr., 269. Imperata cylindrica (L.) Beauv., 13, 236, 239, 243, 318, 319. Instala bijuga (Colebr.) O. Ktze., 183, Iphiaulax Forest., 259, 266, 271. aeragas Cam, 268. aethiopicus Cam., 269, amestris Cam., 263, annulitarsis Cam., 27 273. astiochus Cam., 273. basimacula Cam., 273. bellicasus (Sm.), 271. bhotanensis Cam., 272. bellicasus (Sm.), 271.
bbotanerusis Cam., 272.
brunneo-maculatus Cam., 261.
bucephalus Brues, 273.
burnaensis Cam., 273.
cambelli Cem., 261.
capensis Cam., 270.
carnasus Cam., 262.
ceressus Cam., 273.
cillis Cam., 261.
clanes Gam., 261.
clanes Gam., 261.
coccineomaculatus Cam., 273, 274.
crassitarsis Cam., 261.
deceptor (Sm.) Balt., 271.
deceorus Cam., 274.
deceae (Cam.) Balt., 271.
distinctusileatus Stra., 260.
dodonaens (Cam.) Balt., 272.
dolens, 274.
domdemiensis Cam., 274.
elizeus Cam., 274.
elizeus Cam., 274.
erresti Cam., 276.
erythroura Cam., 274. ernesti Cam., 270.
erythroura Cam., 274.
fletcheri Cam., 274.
fletcheri Cam., 274.
floralis (Sm.) Balt., 272.
fulvopilosus Cam., 263.
greeni Cam., 270.
halaesus Cam., 271.
harazamensis Cam., 261.
haudravensis (Cam.) Balt., 268.
havilandi Cam., 270.
hirpinus Cam., 274.
immsi Cam., 274.
immsi Cam., 274.
imsinuator (Sm.) Balt., 272.
kirbyi Cam., 261.
kuchingensis Cam., 270.
laertins Cam., 273. kuchingensis Cam., 27 laertius Cam., 274. Iepcha Cam., 272. Ieptogaster Cam., 266. Ieptogaster Cam., 266. Iepeaticarinatus Cam., malayanus Cam., 268. marcotis Cam., 274.

272.

Iph.aulax Continued

Iph.aulax Continued

machni (Grib.), 275.
mitangensis Cam., 274.
metanosonia (Brul.) 270.
macrophtalmus Bru., 274.
natal ensis Szept., 273.
obscurilmeatus (Cam.) Balt., 272.
octofoveatus Cam., 286.
outhoscaj us Cam., 275.
ornaticol is Cam., 276.
partous Cam., 270.
patrous Cam., 270.
patrous Cam., 270.
patrous Cam., 270.
pauperatus (Cam.) Balt., 272.
penetrator (Sm.) Balt., 272.
penetrator (Sm.) Balt., 272.
perplexus (Sm.) Balt., 272.
perplexus (Sm.) Balt., 272.
phaeda (Cam.) Balt., 272.
phaeda (Cam.) Balt., 272.
phaeda (Cam.) Balt., 272.
rampelicuses Bru., 276.
ret culatus Cam., 276.
ret culatus Cam., 276.
rotina nervis Cam., 275.
rubiri ervis Cam., 275.
rubiri ervis Cam., 275.
sadvates Cam., 275.
sadvates Cam., 275.
sadvates Cam., 271.
sa tis Cam., 261.
similansis (Cam.) Balt., 273.
socanus Cam., 261.
similansis (Cam.) Balt., 273.
soranus Cam., 261.
similansis (Cam.) Balt., 273.
soranus Cam., 263.
spionotus Cam., 265.
strameus Cam., 267.
strameus Cam., 267.
strameus Cam., 275.
transens Tur., 275.
transens Tur. martini (Grib.), 275.

J

Jade vine, 163, 164. Jana grass, 13.

Jimenet, Jose, see Florentino, Chico,
Joven, Yumur, David, Esquera,
and Jimenet. JOSON, LYDIA M., sce Sevilla-Santos and Joson. JOVEN, JOSE C., see Florentino, Cuico, Joven, Yumul, Davin, Esguerra, Joven, Yumu and Jimenez. Juglans, 183. Juniperus, 179, 193.

В

Kampte tops, 124, 127, 129, 130 K, $_{124}$, $_{124}$, 127, 129, 130 K, $_{124}$, $_{3}$, $_{3}$

L

LADRERA, BIENVENIDO, see VILLALE,
LABRERA, SHERK and GONZAGA.
LABRIUM IOMEST.CUM COT, 166
LANSERNA, GLORIA, see MANALO AND LASERNA.
LAGERNA See also MANALO, LAYAWAL and LASERNA.
LAUTACEAR, 173
Lecanori sortuna, 2
thodes, 2.
Legomanise, 15), 163
Lentinis, 177
sajoi-caju, 178.
Lenzites Fires, 274, 178
saronaria, 180
striata (Sw.) Fres, 178, 180
striata (Sw.) Fres, 178, 180
striata (Sw.) Fres, 178, 171.
try Ca, 180
Hissobra un Cam. 266
fortecin's Cam. 276.
In thous Cam. 176.
Litchi chinensis Sond, 162
LILLANDLR GLORY C. Alfaloo C. Santos, Erinla II Saiur, and Diena C.
RIGON Tumer inhibitors, I. Alkio dia constituents of Uvaria rufa Blume, 151.
LLEANDER, GLORY C., ERLINDA H
SALUD, and ELENA C. RIGOR
Further studies on the alkalous of Voar, nga glolosa (Blunce) Merri.
Isolation an characterization of talernamontanine, 247
Lucuma nelvosa ADC, 326
Lucuma nelvosa ADC, 326
Lucuma nelvosa ADC, 326
Lucuma nelvosa ADC, 326

M

Macadam. tern fola F., 162
Macroliacon Szepl, 263.
concolor Szep. 263
fuvopilosus (C.m.), 263
yrat aus Sm.) B.lt. 263
mornous (Sm.) B.lt. 263
Mornolyctum Ashm., 200
M. grodyctum Ashm., 200
M. grodyctum Ashm., 200
M. grodyctum Ashm., 200
M. grodyctum Ashm., 210
M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyctum Ashm., 261
M. grodyc

Melos.ra, 218,
d stans (Ehr.) Kutz var hr, ta (Ehr.)
Beth fo serat O. M. H., 58, 61
granulata (Lhr.) Rife, 58, 61
granulata (Lhr.) Rife, 58, 61
granulata (Lhr.) Rife, 58, 61
granulata (Lhr.) Kütz, 61,
granulata (Lhr.) Kütz, 61,
granus C.A. Ag., 58, 60
Memorala echinata, 304-310.
Men stanas C.A. Ag., 58, 60
Memorala echinata, 304-310.
Men stanas echinata, 304-310.
Men stanas echinata, 304-310.
Meriotas strictus Szept, 270
Merila ech., 173,
Mexican sunflower, 318, 310.
Meroureon Ashin 200
Microprecus baggines var. aureus, 1, 5-7,
117
Micropte, is salmodes, 160
Minost Lada and D. 16, 130, 213-318, 113
MONDRAGON, ARACELI M., see Sivila-Santos and Mondracon
Manoron mastra Vier, 271
Moringa oleifera Limin, 121,
Morus alba L., 164
Musa ellis Beo.) Tecl., 1,0
paralistica L., 17)
eta w. J. 162,
santentum L., 1-1, 326,
tantis Nec, 1.
Musaccae, 1-8
Mutha, 13-256, 239, 242
Micobactelium tubelculosis, 11, 117, 120,
Micoma Bru, 2,9, 202,
feroz (Sm.) Balt, 262,
hrt pes Bru, 262,
trichara Gam., 201

N

Nangsa, '26
Natal R. 88 13 11
Navicula amori o a Cl., '7
aquaedactic ar f lame, Say, 76
area associated area for carta Say, 75
costulata Grun Thr van jenesemas Soy, 25
costulata Grun Thr van jenesemas Soy, 25
costulata Grun Thr van jenesemas Soy, 25
costulata Grun Thr van jenesemas (Lib) Cl., 74
at cephala (Ehr.) W Sri, 79
at aviana Kr., 77
fluv a jenesem Sly, 79,
hungated Grun Vir capit to Lhe)
Grun 7
inflata Donk, 76,
jonesema Say, 77,
menisculas, 59
mon seuls Schum var men cu(Schum) Hust, 77,
peregrina (Ehr.) Kütz var allov na
Sky, 78,
peregrina (Ehr.) Kütz var jenese cu-s
Sky, 78,
p. centula (Ehr.) Grun, 70
pl centula (Ehr.) Grun, 70
pl centula (Fhr.) Grun, 70
pl centula (Fhr.) Grun, fo, rostrota
A. May, 79
pseudogric to S. 50
pseudogric las Sky var capitata Sky, 77
pseudosochemfeldit Sky, 78,
pupula Kutz, 27,

radiosa Kutz., 78. papula Kutz var rectanifularis (Greg.) Grun., 75. radiosa Kutz. var jenise chisis Skv., 78. renhardi Grun., 78. renhardi Grun. var. yeniseyensis Grun., thynchocephala Kütz, var, jemiseyens s
Sev, 76,
sood hais Kras, var jemisehensis Skv., 75,
sub-bahahara Sev, 52, 77
vendala Kuz
jemise ensis Skv., 77.
Nedium affine "Ehr.) Ci var, amphirhynchus (Ehr.) Ci var amphigomphus
(Ehr.) Van Heur, 78.
Neuruu ax Rom, 260.
Nitzehla, 218
amphisa Grun, 59, 77,
angustata (W. Sm.) Grun, 96,
angustata (W. Sm.) Grun, 96,
angustata (W. Sm.) Grun, 96,
ba kalussis, 59
borger Skv., 98,
bromensis Hust var jemisehensis Skv.,
96, thynchocephala Kütz, var, jemisegens s dent mata Grun, °6, denticulata Grun, °6, denticulata Grun v r hial na Sav, 97 d saprita (Kutz) Grun, 97 histata Sav, var, parallelestriata Sav, 50, 95 70, 95

100. seyens's Skv., 19, 99.

100. seyens's Skv., 19, 97.

100. seyens's Skv., 19, 97.

100. seyens's Skv., 19

100. seyens's Skv., 190

100. seyen subinearis Hust var jen segende Sav, 97
es hyalca Skv. 98.
subtitetea Skv. 98
thermous Kutz v.r minor Hilse 96.
calelinae Skv. 97
z. bel næ var lat er Skv. 59, 98
Norfolk Island nine, 162.
Nvotag naceae, 164
Nvssa, 183, 192

Odont scapus K. Rech., 263.
Okra, 326.
On on, 326.
On on, 327.
On cons. 273., 287
Onoconbattes reficaults Cam., 276
Orchylaceae. 158. 159
ORTALIZA, ILUMINADA C., ISABEL F
DEL ROSARIO, MA. MINDA CAEDO,
and AURORA P ALCARAZ. The
a alwalte of cirotene an some
Philip vegetables 123
Oryza satva L. nn., 236, 230, 403, 318-319,
326
Ovali laceae. 158 Oxali haceae, 158 Oxali haceae, 158 Oxalis hedvan, odes HBK r.lia, 168, mart ana Zuce, 158, 1epens Thumb, 158

Pachybraconn Cam, 259, 262.
carnasus (Cam) 262.
fort pes Cam, 262.
Pacellomyces vertot, 304-307, 309-310
PAMINTUAN ROBLES R. see Canoy,
PAMINTUAN-ROBLES, GAMERIAN-BEL ROSARIO, and CANAS,
Panicum maximum Jaeq., 13, 236, 239, 213
Panus, 177.

Para grass, 13, 236, 233, 243, 318, 319 Farashorea pheati Br., 190 Parmehn cetrati Ach., 293, 301, leucotylsa, 2. leucotylisa, 2.
queccina, 5.
sp. 297
zo linger. (Hepp), 2.3, 301.
Paime, as, 1.
Papaya, 326
P. p.a. 326
Pasia...m conjugatum Berg, 13, 236, 239, 243. sp, 318, 319.

PAYAWAL, PACIFICO C, see Manalo,
Panawal and Lass na PANAWAL AND LASE NA
Pennats, 273
Pechay, 326
Pennatus Laponicus Bit, 206, 207
monodon Fair, 6.
Pennatus Laponicus Bit, 208, 238, 238, 238, 31
Pennatus Laponicus Bit, 526 Persia americana Mill, 526. sp. 174. Petsay, 121, 127, Phae phiel a Cooke 179, 173, 195 strigosa-zonata Schw) Cooke, 173 Phalaenopsis annibil s (L.) Bim., 166, 177 equestris (Schauer) Reich, 167, leudeemann and, Reich, 167, soh, enama Reich, 157, 1.3, stuartiona Reich, 157 variancifloza, 1.7 Philipus lam. ns s, 181
Philota, 173.
Physica albeans Pers) Thoms 1 2, 5 7, 299, 301, coes c, 2 endocece.nra, 2, leucomel s 12. Schaer, 1 prita (Sw.) Nvl. ... 2, 5 7 setosa, 1 PH AC. LEONARDA M., see GONZALEZ, Dimay ahan, Plac, and Alabastro Distance Alland, Place and Alaeastro
Ple 326
Proces, 170
Proces, 170
Proces, 170
Proces, 170
Process and Process a P to 326 subagantea Skv. 81 - usalars (Grun) Cl. 8 virkus (Nitz) Ehr var Mey., 83. liminata A. vir s (N.iz) Ehr var ebptica Meist., §3 vii) s (Nitz) Ehr var, gracilis Skv.,

viridis (Nitz.) Ehr var jenis jonsis Skv., viridis (Nitz.) Ehr. var minuta Skv., virilis (Nitz) Ehr vai, minutissima virilis (Nitz.) Ehr. var zogang Skv., o9, 8¢ Pinus insularis Engl, 180, 184, 189. Piper n grum L., 3-6. Pitheco obium culce Roxb., 326 PIZALRO, A C, see Sillino, Santamaria, Alqi eza jong Pizalilo Platarus, 192
Platyracon Szepl, 263
insurars Cam, 263, 264
insurars Cam, 263, 264
Pleurotus (Frice) Quel, 172-174, 177,
sujor-caju , l'éres.) Sing, 177 sajor-caju (Fr.es.) S.ng., 177

Pe locarpacus, 179

Po nsett.a, 169

Po,pe diaces, 175, 173, 174, 195, 205, 201

Polyorneet, 172, 173, 174, 195, 205, 201

ab etinas, 3, 3, con., crims, 192

flavus Jungh., 191, 194, 201

maximus Mint Oven, 191, 123, 201

priminenus, 193

ru dus Berk., 199, 191

sanguncus L., 186, 191, 192, 201

versitl's (Leik) R.m., 191-193

Polyscas fracticosa Harm., 326, 213, 348, 319. 319. Populus, 174, 183.
spp 174

Por.a Pers, 174, 175
med ala-panis (Jacq) Bres, 175.
units, 176
vincta (Berk) Cooke, 17., 176 Posoqueria longiflora Royb. 203, 204.
Poster a camicchiani Backim 326
PRAMANIK, B., see Babu and Pravanik.
Poteace c. 162, 190.
Prunus sp. 174
Pseudogyronearon spinonotas (Cam.) Balt. Pagitam gungaya L., 174, 326 Quercus, 183, 192, 193

opp , 171.

Radulum, 173. Ramalinas, 1

R

293 29.

Ramidnas, 1 Runda bish nosa (Griff) Crab, 293-29 Rinda bish nosa (Li) Ach, 299, 301. Randa longiflera Lamk 293-295 sean lena (B.) DG, 243, 994 samens s (Miq.) Crab, 293-295.

Rhyncheytrum repens (W.lld) C.E. Hubb, .3, 236, 239, 318, 319.

Rhynchostylis retusa (L.) Bim., 156 Ricc, 236 239, 242, 318, 319, RIGOR, ELENA C., sce LLIANDER, SALUP, and RIGOR. an 1 kigos,

Rocella introdut, 2

Rogaulia, 276

Rogas laterals (Cam.) Bilt., 276

Rojalod a git a (Ehr.) O. Mull. var. mongolien Ocstr. 91

paralela (Grim.) O. Mull. fo jeniseyeniss Skv., 5,

pseudogit a Skv., 94,

Rosseem. 179 Rosaceæ, 179

ROSARIO, ISABEL P DEL, see OTTALIZA, DEL ROSARIO, CALDO, and ALCAKAZ Saccharum off c narum Linn, 236, 239, 243.

3.8, 319.

spontaneum (L.) subsp. ind cum Hack., 13, 236, 239, 243, 318, 3.9.

Saccharomyces ecres.s... 117, 5.1.a. sp., 174, 183
Salmor ella ga lin, rum, 117

SALUD, ERLINDA H., see Lleander, Salt., on Res.

Samanaa s.m.n Merr, 326, 5. San loricum Koct. apc (Rurm f.) Merr, 326, 5. San loricum Koct. apc (Rurm f.) Merr, 326, 5. San Lange see, 326

SANTAMARIA, P. A., see Stamo, Santamaria, Alettea, and Pizalio S. ntol, 326 MARIA, ALCIEZA, and PIZALIO S. ntol. 326 SANTOS, ALFREDO C see Lieander, San-ros, Salid and Ricor Sapinla-ee, 16' Sarcochdus pandus (Blm.) Reich 156 Se crotum rolfs, 158 SEVILLA SANTOS, PATROCINIO and ARACELI M MONDRAGON St. Lea on Ph prine Lehens, II Thin la er chromatograph c stady of the const tuents of some lichen species, 227. SEVILLA SANTOS PATROCINIO and LY-DIA M JOSON Studies on Phl-ippine lebens I Chemical consti-tuents of Physica albecans and Phys-era pieta, 1. era pieta, I.

SEVILIA SANTOS, PATROGINIO, and
ZOSIN'A P BERNARDO A study
of the antibet c act vities of Ph.lipp.ne st.eptemycetes, 115 SHEIR MADID, SEC VILLAUZ, VILLAUZ, LAIRE A. SHEIN, and GONZAGA Shoren stylosu Foxy, 110 ga so (Lico Blm 171, 17 negrosens s Foxy 179, 181 Sineguelas, 5,

Sineguclas, 5.

Sigalphogastra Cam, 266, 26, 276
acthropica (Cam) Brit, 269,
ashmeali Cim 269,
capers & (Cam) Balt, 270
conditions (Cam) Balt, 270
given (Cim) Balt, 270
given (Cim) Balt, 270
tovertas (Sim) Bilt, 270
havional (Cam) Bilt, 270
havional (Cam) Bilt, 270,
huckingeness (Cam) Bilt, 270,
conaticorin (Cam) Bilt, 270,
conaticorin (Cam) Bilt, 270,
ritirly ratios (Cam) Bilt, 270,
ritirly ratios (Cam) Bilt, 270,
ritirly ratios (Cam) Bilt, 270,
sedicals (Cim) Bilt, 271,
sedicals (Cam) Bilt, 271,
sedicals (Cam) Bilt, 271,
seleus (Cam) Bilt, 271,
spilus (Cam) Bilt, 272,
Spilus (Cam) Bilt, 273,
Spilus (Cam) Bilt, 274,
Spilus (Cam) Bilt, 275,
Spilus (Cam) Bilt, 276,
Spilu S palphogastra, 276. Sitao, \$2f. Ske etonema, 218 costatum, 217.

SKVORTZOW, B. W. Diatoms from Yemser Envolved M. B. W. Diatoms from Yemsel Lover and its tributeres, in the part of Siteria, western Asia, 7.

Solan in inclongent L., 326.

Sorgnum halepense (L.) Pers., 13, 236, 239, 243 Spathoglottis, 156 Spiler flower, 164. Spinaria, 2-9 trimaculata Cam, 261. Spondia purpurea, 505 Stachy, otrys aftr, 30; Staphylococus aurcus, 7. Statuone's ance's Fibr, 73 phoenicenteron Ehr fo brev.s (Dipr) Hust 74 phoenicenteron Ehr. fo. gracilis (Dipp.) H. st. 74
phoen centeron Ehr var signata Me.st.
9, 74. Stephanna Jopon,ca (Thuml) Miers, 163 Stephanod scus astaem (Ehr) Gran, 53, (6) astr.ca (Ehr) Gran var minutula (Kütz) Grun 63 astraca (Lhr) Grun, var simplex Skv., 5, 63 duli 18 Prica) Hust var jemisemensis 5. 63 dulias F Sec. 63 Stereogaulon sp., 299, 301 Stereum, 173. Scrittain noone Rev., 158, 163 regina Banks, 158, 159, 163 Stret tomyces, 11, 117 120. Strombos.a philippinensis, 174 Strombos.a macrobotrys A. Gr., 1 Sty occryne Lispinosa Griff, 203-295 SUBIDO P S. P A SANTAMARIA, I N. A QUI ZA, and A C PIZAR-RO Pants in ared by air pola-tants 223, Sugarcane, 236, 239, 213, 318, 319
Sunflower, 236, 239, 243
Surriella angustata Kutz, 10
angustata Kutz, 10 annula Skv., 101
beseriata Breb. var filvons (Ehr.) Hust, 103
beseriata Beb. var constricts Gran. biser, da B eb. var constricta Grun. 105.
copton: Brel., 104.
clicans Ebr. var penisepensis Skv. 103
penispensis Skv., 107
mer ris var. helvetica (Brun.) Meist fo gabra S. 104.
linear s. W. S. n. var penisepensis Skv.,
p. 107
linearis W. Sm. fo. obtusa Skv. et Mey.
50, 109
linearis W. Sm. var spinosa Skv., 50, 109 ovata K. dz., 10°, ovata Kütz var grumena (Breb.) Van Heurek, 10° ovata K. dz., var grumena (Breb.) Van Heurek, 10° robusta Ebr var pinnata (W. Sm.) Hust. 10° robusta Ebr var sp.end.da (Ebr.) van Heurek, 103° turga la W. Sm. var heora. ta Skv., 104° turga la W. Sm. var hoslana Skv., 104° turga da W. Sm. var ponse ens Skv., 104° turga da W. Sm. var gonse ens Skv., 104° turgala W. Sm. var marginatula Skv., 104° turgala W. Sm. var marginatula Skv. turgida W. Sm. var marginatula Skv., 101 turoula W Sm var sufelliptica Sky. 101 Sweet potaco, 326 Symptoplenea so ea (Brob.) W Sm. var. jen scyensis Sav 100 Sym c la reend danceolata Sw 86 S myhorema luzonicum (Bleo.) F. Vill., 163.

Syncden deus Kütz., 66. gordard., 59 gordard., iBreb.) Hist, van jentseyensis gon't in (Bred) in section, section (Sky 66 gon't in (Brel) Hist, var, mongotica (Sk) Sk, 66 rap is K dz, var flage anodes Grun. rumi ens Kutz var meneghin ana Grun , tabulata (Ag) Kutz var nenegninana Grun, (b. tabulata (Ag) Kutz var. jewisenensis Skr., 59, 67 ulna (Nitz.) Ehr var acutissima Skr., ulna (Nitz.) Ehr var acutissima Skr., ulna N tz) Fhr ver nequents (Kütz) Hust, 68.
und (Nitz) Ehr. vor constricte Ocstr p. 67 ul i (Nitz) Fhr var ganca Kütz. ulna (N.tz., Ehr. var jemseyensis Skv., una ver mongol ca Skv., 66. ulna (Nita) Ehr. var. oxyrbynchus (Kütz., van Heur fo. communa Skv., ulna (Nitz) Ehr. vor spathulifera ang (Nitz) Ehr var subacquans Skv., vaucher.w (Kutz. .ar jemseyens s Ski,

1

Tabe as a fenestrate (Lyng Kutz, 61 floren is a cleata) Kutz, 61 Talahd. .2 14, 236, 23) 240 243, 318, 319, Tangurd 326 T. maindus in hen L., 320 R. maindes in hen L., 326 T. mban, 160 T randam offenae Web, 177 Tarret v savit (Via) Merr, 188. Twolum 179, 233 That a us ra, 218 Thelephoraceu 172, 173 Third va Loskola, 305 Thiss; 326 Tith n a Greenfold A. Grav. 236, 233, 243, 318, 319 To went statens I., \$ 25. Torula d., 30 'ar mets F ics 175, 181 Table 1 (1988 17) 181 | 183 | 184 | 185 | Trebaytam flavam 17 Trebaderma v. d. 301 307, 309 Trebaderma v. d. 301 307, 309 Trebaderma v. d. 262, Trebaderma v. d. Szerl 262, Trebaderma v. d. Szerl 262, Trebas, 236 230 213 318 312, procum w.ns. L.nn., 237, 230 213 318 Te folium pratinse L. 159 Topido eacon Ashm. 200 Topido eacon Ashm. 200 Topidoges, 2.0 Inicial's Cam. 276 micul plante Ca. 276 spilor tus Cam. 270 T ampot creener, 161

CICHANCO, LIOPOLDO B. Response of some plant and a unit special stress on the appeal enginerment, 155

Ulmus, 183, 194. Urai, 12, 13, 236, 239, 243, 318, 319. Usnea elmeri, 301.
flexilis Str. 298, 299, 301.
flexilis Str. 298, 299, 301.
flexilis 301.
kosse Vain, 298.
intere bers Kremp, 298, 301.
japonica, 301. phontagnel, 299. orientalis, 301. sp., 297, 299. squarrosa Vain, 298, 301. Uvaria zufa Blm., 151-153.

Vanda Agnes Joaquim, 165, 167, caerulea, 156.
Umma Van Devent., 156.
Luzona Lond., 156.
Luzona Loh., 156.
manila, 166.
Nelly Morl., 156, 157, rotschildram, 156.
santleriana Reach., 155–157.

Verbenacere, 163.

VILLALUZ, D. K., ANTONIO VILLALUZ, BIENVENIDO LADRERA, MADID SHEIK, and ALEJANDRO GONZA-GA. Reproduction, furval develop-ment, and cultivation of surpo (Pena-cus mondon Fabricus), 205.

VILLALUZ, ANTONIO, sce VILI, ALUZ, LADPERA, SHEIK, and GONZAGA.

Vîgna sesquepedalis Fruw, 326,

Vitis spp., 326.

Voncanga africana Stapf., 247, 248 dehchocalyx Quis, and Merr., 248, shobosa (Bleo.) Merr., 258, 251, 253 hatifolia Quis, and Merr., 248 megacarpa Quis, and Merr., 248, sp., 247.

Webern bispinosa (Griff.) Kurz, 203-295, longiflora (Lamk l. Kurz, 293, 294, scandens Roxb., 293, 294 slamensus (Mi4.) Kurz., 293, 294,

White mulberry, 164, rot-fungi, 169, 170.

Y

Yakal, 176. Yard grass, 13, 236, 239, 243, 318, 319, Yard long, 326.

YUMUL, CONCHITA R., see Florentine, CHICO, JOYEN, YOMEL, DAVID, ESCOLL-RA, and JIMENEZ.

Zen mays Linn., 236, 239, 243, 318, 319, 32₀, Zisaphus ap., 174.

THE PHILIPPINE JOURNAL OF SCIENCE

Volume 98

JANUARY TO DECEMBER, 1969 WITH 29 PLATES AND 17 TEXT FIGURES

HAMILA BUREAU OF PRINTING 1972

NATIONAL SCIENCE DEVELOPMENT BOARD

JUAN S. SALCEDO, JR., M.S., M.D., Chairman DOMINADOR O. REYES, Ll.B., Officer-in-Charge, Office of the Vice-Chairman and Executive Director

MEMBERS OF THE BOARD

Pedro G. Afable, B.S.C.E. Constancio M. Ancheta, Ph.D.

E. GEORGE T. MARCELO, B.S.B.A. , PH.D. AUGUSTO L. TENMATAY, PH.D. JOSE R. VELASCO, PH.D.

NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY

JOSE R. VELASCO, PH.D., Commissioner FLAVIANO M. YENKO, A.B., B.S., Deputy Commissioner

Agricultural Research Center CLARE R. BALTAZAR, PH.D. Director

Biological Research Center Luz Baens-Arcega, M.S. Director

Food & Nutrition Research Center CONRADO R. PASCUAL, M.D., M.P.H. Director Idustrial Reseasch. Center Felipe I.I., Santillan, B.S.M.E. Director

Medical Research Center ROGELIO N. RELOVA, M.D. Director

Test & Standards Laboratories Jose P. Planas, B.S. Chem. Eng. Acting Chief

THE PHILIPPINE JOURNAL OF SCIENCE

Published quarterly by the National Institute of Science & Technology (Formerly Bureau of Science) P.O. Box 774, Manila, Philippines

CARMEN LL. INTENGAN, PH.D.

ASSOCIATE EDITORS
CLARE R. BALTAZAR, PH.D.; ILFANA R. F. CRUZ, A. M.; GUILLERMINA
MAÑALAC, M.S.

MANAGING EDITOR ANGEL Y. LIRA, B.S.C.

CONTRIBUTING EDITORS

Anacieto B. Coronel, D.V.M. FAUSTINO T. ORILLO, PH.D. ANTONIO PIZARRO, PH.D.

Anthropology
Alfredo E. Evangelista, M.A.
ROBERT B. FOX, PH.D.
F. LANDA JOCANO, PH.D.
E. ARSENIO MANUEL, M.A.

Botany
DEMETRIO P. MENDOZA, M.S.
JOSE VERA SANTOS, PH.D.
GREGORIO T. VELASQLEZ, PH.D.

Chemistry
ALPREDO C. SANTOS, PH.D.
AUGUSTO L. TENMATAY, PH.D.

Nutrition
LEON G. ALEJO, B.S.
JOSEFINA B. JAYME, M D.
SONIA Y. DE LEON, Ph.D.

Geology
ARTURO ALCARAZ, M.S.
CESAR B. IBAÑEZ, M.S.
MATEO H. TUPAZ, PU.D.
ELPIDIO C. VERAL, M.S.

Medicine
PAULO C. CAMPOS, M.D.
CONRADO S. DAYRIT, M.D.
ROGELJO N. RELOVA, M.D.
VICTOR VALENZUELA, M.D.
Microbiology

MACARIO PALO, B.S.A.

Nuclear Sciences
Pedro G. Afable, B S.C.E.
RAMON SAMANIEGO, Ph.D.
GETULIO B. VIADO, Ph.D.

Zoology NELIA P. SALAZAR, M.S. LEOPOLDO B. UICHANCO, D.SC AGISTIN F. UMALI, B.S.

CONTENTS

No. 1, March 1969

[1550/H JUly 14, 15[1]	
SEVILLA-SANTOS, PATROCINIO, and LYDIA M. JOSON. Studies on Philippine lichens, I. Chemical constituents of Physica albicans	Page
and Physcia pieta	1
Pollen production of some allergenic plants in Manila area	11
ALIWALAS, ASUNCION P., VIOLETA P. ARIDA, and FLORECILLA C. BOR- LAZA. Coconut oil fatty acid esters by alcoholysis	27
FLORENTINO, RODOLFO F., ESTRELLITA G. CHICO, JOSE C. JOVEN, CONCHITA R. YUMUL, ANTOLIN C. DAVID, CRISTINA R. ESGUERRA, and JOSE JIMENEZ. A study of gamma globulin metabolism among normal and malnourished Filipinos	47 49
SKVORTZOW, B. V. Diatoms from Yenisei River and its tributaries, middle part of Siberia, western Asia Twenty-two plates.	57
No. 2, June 1969	9-
[Issued March 23, 1969]	
MAÑALAC, GUILLERMINA C., and ANITA HARDER-SOLIVEN. Keeping	115 123
properties of edible coconut oil: Correlation of organoleptic assessment with accelerated tests	133
ALIWALAS, ASUNCION R., ANTONIA L. GONZALES, TERESITA R. CLAUBIO, and RAMON BENET. A study of the wet and dry methods of extracting oil from coconut meat	139
One plate and two text figures.	100
LLEANDER, GLORY C., ALFREDO C. SANTOS, ERLINDA H. SALUD, and ELENA C. RIGOR. Tumor inhibitors, I. Alkaloidal constituents	
of Uvaria rufa Blume One text figure.	151

	Page
UICHANCO, LEOPOLDO B. Response of some plant and animal species physical stress in the tropical environment	155
Eusebio, Mario A. Philippine fungi associated with decays of wood	169
products	199
BOOK REVIEW	155
Nes. 3-4, September-December 1969	
[Issued May 15, 1972]	
CABRERA, BENJAMIN D. In memoriam. Potenciano Aragon y Rosa- rio: (1914-1969)	201
VILLALUZ, D. K., ANTONIO VILLALUZ, BIENVENIDO LADRERA, MADID SHEIK, and ALEJANDRO GONZAGA. Reproduction, larval development, and cultivation of sugpo (Penaeus monodon Fabricius) Three plates and five text figures.	205
DACANAY, ELEONORA P., and LOURDES M. ARTIAGA. Clinical evalua- tion of NIST-produced allergenic extracts, I. Skin testing with pollen extracts (grasses and weeds)	235
LLEANDER, GLORY C., ERLINDA H. SALUD, and ELENA C. RIGOR. Further studies on the alkaloids of Voacanga globosa (Blanco) Merrill: Isolation and characterization of tabernæmontanine	247
BALTAZAR, CLARE R. Reclassification of some Indo-Australian and African Braconinæ and Rogadinæ (Braconinæ, Hymenoptera)	259
GONZALEZ, OLYMPIA N., LEOGARDA B. DIMAUNAHAN, LEONARDA M. PILAC, and VICTORIA Q. ALABASTRO. Effects of gamma radiation on peanuts, onions, and ginger	279
BABU, C. R., and B. PRAMANIK. On the taxonomy of Randia longi- flora sensu Hook. f. (non Lamk.) Rubiaceæ	293
SEVILLA-SANTOS, PATROCINIO, and ARACELI M. MONDRAGON. Studies on Philippine lichens, II. Thin-layer chromatographic study of the ct. stituents of some lichen species	297
AGRAWAL, S. C. Studies on lignin decomposition by some litter fungi	303
ALBA, L. C., and M. S. SALCEDA. Short communication. Modified Lofton-Merritt stain for differentiating unbleached sulfite and sulfate fibers	313
Manalo, Josefina B., and Gloria Laserna. Short communication. Storage life of freeze-dried NIST allergenic extracts	
Subido, P. S., P. A. Santamaria, E. N. Alqueza, and A. C. Pizarro. Short communication. Plants injured by air pollutant	32
One plate.	

PUBLICATIONS AVAILABLE

- A REVISION OF THE INDO-MALAYAN FRESH-WATER FISH GENUS RASBORA. By Martin B. Brittan. Institute of Science and Technology Monograph 3 (1953) new series. Paper, 224 pages with 3 plates and 52 text figures. Price, \$2.50, United States currency.
- SECURING AQUATIC PRODUCTS IN SIATON MUNICIPALITY, NEGROS ORIENTAL PROVINCE, PHILIPPINES. By Donn V. Hart. Institute of Science and Technology Monograph 4 (1956) new series. Paper, 84 pages with 22 text figures and eight plates. Price,

\$1.25. United States currency.

AN ECOLOGICAL STUDY OF THE KOUPREY, NOVIBUS SAUVELI (URBAIN). By Charles H. Wharton, Institute of Science and Technology Monograph 5 (1957) new series. Paper, 111 pages with 11 plates and 16 text figures. Price, \$1.25, United States currency.

FERN FLORA OF THE PHILIPPINES. By Edwin B. Copeland. Institute of Science and Technology Monograph 6, Vols. 1-3 (1958-1960) new series. Vol. 1, 191 p., Paper, Price, \$1.25; Vol. 2, 193-376 p., Paper. Price, \$1.75; Vol. 3, 377-577 p., Paper, Price \$1.75, United States currency.

THE PHILIPPINE PIMPLINI, POEMENIINI, RHYSSINI, AND XORI-DINI. By Clare R. Baltazar. National Institute of Science and Technology Monograph 7 (1961) new series. Paper, 120 pages with

four plates. Price, \$1.50, United States currency.

PACIFIC PLANT AREAS. Edited by C.G.G.J. Van Steenis. National Institute of Science and Technology Monograph 8, Vol. 1 (1963) new series. Paper, 246 pages with 26 maps. Price, \$3.00, United States currency.

INDEX TO THE PHILIPPINE JOURNAL OF SCIENCE, VOL. 59 (1936) TO VOL. 79 (1959). By Angel Y. Lira. National Institute of Science and Technology Monograph 9 (1963) new series. Paper,

325 pages. Price, \$3.00, United States currency.

THE ARCHAELOGY OF CENTRAL PHILIPPINES. By Wilhelm G. Solheim, II. National Institute of Science and Technology Monograph 10 (1964) new series. Paper, 235 pages with 29 text figures

and 50 plates. Price, \$3.00, United States currency.

SHIFTING CULTIVATION AND PLOW AGRICULTURE IN TWO PAGAN GADDANG SETTLEMENTS. By Ben J. Wallace. National Institute of Science and Technology Monograph 11 (1970) new series. Paper, 117 pages with 14 text figures and five plates. Price, \$1.50, United States currency.

NOTE TO CONTRIBUTORS

Manuscripts intended for publication in the Philippine Journal of Science should be sent to the Editor, Philippine Journal of Science, National Institute of Science and Technology, Manila, Philippines.

The Journal will not be responsible for the loss of unsolicited manuscript, but those received will be acknowledged and considered promptly by the Board of Editors or other competent critics. Authors will be notified of the decision reached as soon as possible.

Manuscripts on biology must be accompanied by abstract for publica-

tion in the biological abstracts.

(Continued on next page.)

CONTENTS

Pa To
CABRERA, BENJAMIN D. In memorium: Potenciano Aragon y Rosa-
rio: (1914–1969)
VILLALUZ, D.K., ANTONIO VILLALUZ, BIENVENIDO LADRERA, MADID
SHEIK, and ALEJANDRO GONZAGA. Reproduction, larval develop-
ment, and cultivation of sugpo (Penaeus monodon Fabricius) 2
DAGANAY, ELEONORA P., and LOURDES M. ARTIAGA. Clinical evalua-
tion of NIST-produced allergenic entracts, I. Skin testing with
pollen extracts (grasses and weeds)2
LLEANDER, GLORY C., ERLINDA H. SALCD, and ELENA C. RIGOR.
Further studies on the alkaloids of Voacanga globosa (Blanco)
Merrill: Isolation and characterization of tabernaemontanine 2
BALTAZAR, CLARE R. Reclassification of some Indo-Australian and
African Braconinæ and Rogadina (Eraconidae, Hymenoptera) 23
GONZALEZ, OLYMPIA, N., LEOGARDA B. DIMAUNAHAN, LEONARDA M.
PHAC, and VICTORIA Q. ALABASTRO. Effects of gamma radia-
tion on peanuts, onions, and ginger
BABU, C. R., and B. PRAMANIK. On the taxonomy of Randia longi-
flora sensu Hook. f. (non Lamk.) (Rubiaceæ) 29
SEVILLA-SANTOS, PATROCINIO, and ARACELI M. MONDRAGON. Studies .
on Philippine lichens, H. Thin-Jayer chromatographic study of
the constituents of some licken species2
AGRAWAL, S. C. Studies on lignin decomposition by some litter
fungi
ALBA, L. C., and M. S. SALCEDA. Short communication. Modified
Lofton-Merritt stain for differentiating unbleached sulfite and
sulfate fibers
MANALO, JOSEFINA B., and GLORIA LASERNA. Short communication.
Storage life of freeze-dried NIST allergenic extracts
SUBIDO, P. S., P. A. SANTAMARIA, E. N. ALQUEZA, and A. C. PIZARRO.
Short communication. Plants injured by air pollutants 32

NOTE TO CONTRIBUTORS-Continued

Manuscripts submitted should be typed on one side of white bond paper, $8\%" \times 11"$, and double-spaced throughout. One original copy and one carbon copy of manuscripts should be submitted.

Illustration should accompany manuscripts on separate sheets. Photographs should be sent unmounted, with serial number written on back to correspond with list of captions.

Fifty separates of each paper published in the Journal are furnished free to an author (in case of more than one author, this number is to be divided equally). Additional copies may be had at the author's expense if ordered at the time manuscript is submitted for publication.

The Philippine Journal of Science is published quarterly, the subscription rates per year being: Philippines, U.S. \$5.00; Foreign, U.S. \$8.00, including postage. Single issues are U.S. \$1.25 in the Philippines and U.S. \$2.00 in foreign countries.

Subscriptions to the Journal should be sent to the Business Manager, Philippine Journal of Science, National Institute of Science and Technology, Manila, Philippines.

Publications sent in exchange for the Journal should be addressed to the Division of Documentation, National Institute of Science and Technology, Manila, Philippines.