SARATH M

Machine Learning Engineer

@ sarathm00@gmail.com
SarathM1

J +91 9496354518

Saranya House, North Paravoor P.O, 683513

Kerala, India

EXPERIENCE

Specialist

Tata Elxsi

July 2016 - Ongoing

▼ Technopark, Trivandrum

Embedded System Engineer

Unisync Technologies

a Jan 2015 - July 2016

Vyttila, Ernakulam

MOST PROUD OF

P

My Professional Acheievment

Awarded the highest rating "Outstanding" in three consecutive appraisal cycles in Tata Elxsi

T

My Academic Achievement

Final year academic project "Hexapod" was selected for the finals in State level competition

%

Martial Arts

Black Belt holder in Shito-Ryu style of Karate

EDUCATION

Course in Embedded Systems

Vector India Institute, Bangalore, Karnataka

= 2014

B.Tech (ECE)

Govt. College of Engineering Cherthala, Cochin University Of Science and Technology, Kerala

2010 - 2014

INTERESTS

MY LIFE PHILOSOPHY

"Quality is not an act; it is a habit."

STRENGTHS

Team Player

Passionate Programmer

Fast Learner

Hard-working

Eye for detail

SKILLS

• Machine Learning Frameworks

Tensorflow Scikit-learn NLTK

Visualisation & Data Processing

Pandas Numpy Flask Bokeh Plotly Grafana Twitter Bootstrap PyQt4, Qt Designer

Distributed Systems

ROS Paho MQTT Redis Apache Kafka

Test Automation & Cl

Jenkins

Robot Framework

Devops

Docker Ansible

LANGUAGES

English Malayalam Hindi

PROJECTS

ADAS features for Autonomous Vehicle project

The objective of the project is to develop an L2 Autonomous Car

- Development of Object detection system using Convolutional Neural Networks
 - Faster-RCNN, Yolo V2, Single Shot Detectors
- Development of Drivable Area using Image Segmentation
 - SegNet, Mask R-CNN
- Design and devlopment of Distributed System using Robotic Operating System (ROS)
- Testing and deployment of the ML model in NVidia Jetson TX1 platform
- · Object detection in 3D Point cloud data using PointNet

Lidargen

The objective of the project was to create a tool that would simulate the actual output from a LIDAR sensor. The tool takes three dimensional CAD objects as input and generates corresponding pointcloud.

- The User is given the freedom to place and orient the multiple meshes
- Used in the optimised placement of multiple Lidars to reduce blind spot
- To mathematical model the behavior of Lidar and simulate the same using Ray Casting.
- A UI capable of 3D visualization was created using Qt and ROS RViz

Intelligent Battery Management System

The objective of the project is to estimate State of Health (SOH) and State of Charge (SOC) of a Lithium Ion battery using Machine Learning

- Implemented Neural Network Regression model as a benchmark
- Implemented LSTM models to improve upon the bencharm results
- Supported in development of 'Digital Twin' of a cell with ML models mimicing the electrochemical characteristics
- Developed a POC on Anomaly detection algorithm to demonstrate online-learning capabilities of the framework
- Create a Data dashboard for monitoring sensor data in real-time using Flask and Bokeh

UAV Based Driver View Enhancement

- To develop a proof of concept, using a Drone to enhance the view of the Driver and cover blind spots for a larger area around the vehicle
- Designing a State Machine to control the Drone, Create a web application as a User interface using Python as a backend

Automated Testing and CI Framework

A Test automation framework was developed with the following key features

- Enables rapid and Automated testing
- The framework supports both SIL and HIL testing
- Continuous Integration using Jenkins, Ansible and Robot framework
- Centralized Logging using Fluentd, Elasticsearch and Kibana
- Containerization using Docker