

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Отчет

Лабораторная работа № 3

По курсу «Технологии машинного обучения» «Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей»

ИСПОЛНИТЕЛЬ:

Группа ИУ5Ц-83Б Соловьева А.М.

ПРЕПОДАВАТЕЛЬ:

Гапанюк Ю.Е.

Цель лабораторной работы: изучение способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 3. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 4. Произведите подбор гиперпараметра К с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации.
- 5. Сравните метрики качества исходной и оптимальной моделей.

Лабораторная работа №3

Подготовка обучающей и тестовой выборки, кроссвалидация и подбор гиперпараметров на примере метода ближайших соседей.

Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train test split разделите выборку на обучающую и тестовую.
- 3. Обучите модель ближайших соседей для произвольно заданного гиперпараметра К. Оцените качество модели с помощью подходящих для задачи метрик.
- 4. Произведите подбор гиперпараметра K с использованием GridSearchCV и/или RandomizedSearchCV и кросс-валидации, оцените качество оптимальной модели. Желательно использование нескольких стратегий кросс-валидации.
- 5. Сравните метрики качества исходной и оптимальной моделей.

In [1]:

```
import sys
sys.path
import pandas as pd
import numpy as np
np.seterr(divide='ignore', invalid='ignore')
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.simplefilter(action="ignore", category=FutureWarning)
```

In [2]:

```
df = pd.read_csv('world_population.csv')
```

Основные характеристики датасета

In [3]:

```
# Выведем первые 5 строк из выбранного датасета.
df.head()
```

Out[3]:

	Rank	CCA3	Country/Territory	Capital	Continent	2022 Population	2020 Population	2015 Population	Ρ
0	36	AFG	Afghanistan	Kabul	Asia	41128771	38972230	33753499	
1	138	ALB	Albania	Tirana	Europe	2842321	2866849	2882481	
2	34	DZA	Algeria	Algiers	Africa	44903225	43451666	39543154	
3	213	ASM	American Samoa	Pago Pago	Oceania	44273	46189	51368	
4	203	AND	Andorra	Andorra la Vella	Europe	79824	77700	71746	
4								l	•

In [4]:

```
total_count = df.shape[0]
print('Bcero строк: {}'.format(total_count))
total_count = df.shape[1]
print('Всего колонок: {}'.format(total_count))
```

Всего строк: 234 Всего колонок: 17

In [5]:

```
# Выведем список колонок с типами данных.
df.dtypes
```

Out[5]:

Rank int64 CCA3 object Country/Territory object Capital object Continent object 2022 Population int64 2020 Population int64 int64 2015 Population 2010 Population int64 2000 Population int64 1990 Population int64 1980 Population int64 1970 Population int64 Area (km²) int64 Density (per km²) float64 Growth Rate float64 World Population Percentage float64 dtype: object

Проверка на пустые значения в датасете

In [6]:

```
for col_empty in df.columns:
    empty_count = df[df[col_empty].isnull()].shape[0]
    print('{} - {}'.format(col_empty, empty_count))
```

```
Rank - 0
CCA3 - 0
Country/Territory - 0
Capital - 0
Continent - 0
2022 Population - 0
2020 Population - 0
2015 Population - 0
2010 Population - 0
2000 Population - 0
1990 Population - 0
1980 Population - 0
1970 Population - 0
Area (km^2) - 0
Density (per km<sup>2</sup>) - 0
Growth Rate - 0
World Population Percentage - 0
```

In [7]:

```
# Проверка на пропущенные данные df.isnull().sum()
```

Out[7]:

Rank	0		
CCA3			
Country/Territory			
Capital			
Continent			
2022 Population	0		
2020 Population	0		
2015 Population	0		
2010 Population	0		
2000 Population	0		
1990 Population	0		
1980 Population	0		
1970 Population	0		
Area (km²)	0		
Density (per km²)			
Growth Rate			
World Population Percentage 0 dtype: int64			
- -			

Диаграмма рассеяния

In [10]:

```
plt.scatter(df['2022 Population'],df['2020 Population'])
```

Out[10]:

<matplotlib.collections.PathCollection at 0x17b45edf040>

In [11]:

```
plt.scatter(df['2022 Population'],df['2015 Population'])
```

Out[11]:

<matplotlib.collections.PathCollection at 0x17b466e61d0>

In [12]:

```
X = df[['2020 Population', '2015 Population']]
Y = df['2022 Population']
```

In [13]:

```
# Выведем по оси абсцисс.
Х
```

Out[13]:

	2020 Population	2015 Population
0	38972230	33753499
1	2866849	2882481
2	43451666	39543154
3	46189	51368
4	77700	71746
229	11655	12182
230	556048	491824
231	32284046	28516545
232	18927715	16248230
233	15669666	14154937

234 rows × 2 columns

In [14]:

```
# Выведем по оси ординат.
Y
```

Out[14]:

0	41128771
1	2842321
2	44903225
3	44273
4	79824
	• • •
229	 11572
229 230	 11572 575986
230	575986

Name: 2022 Population, Length: 234, dtype: int64

Разделение выборки на обучающую и тестовую

In [15]:

```
from sklearn.model_selection import train_test_split
```

```
In [16]:
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2)
```

In [17]:

```
# Вернет 80% от общего размера данных len(X_train)
```

Out[17]:

187

In [18]:

```
len(X_test)
```

Out[18]:

47

In [19]:

X_train

Out[19]:

	2020 Population	2015 Population
63	117190911	102471895
228	96648685	92191398
127	370391	383515
168	5702174	5064386
182	35997107	32749848
164	38428366	38553146
70	301920	291787
45	5123105	4895242
88	10121763	9294505
147	6755895	6298598

187 rows × 2 columns

In [20]:

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.2, random_state=10)
```

In [21]:

X_train

Out[21]:

142	12315	11185
154	5379839	5190356
1	2866849	2882481
2	43451666	39543154
61	1329444	1314657
64	3747	3408
15	1477469	1362142
228	96648685	92191398
125	515357	456579
9	2805608	2878595

187 rows × 2 columns

In [22]:

```
# Используем нашу модель линейной регресии
from sklearn.linear_model import LinearRegression
clf = LinearRegression()
```

In [23]:

```
# Обучим нашу модель clf.fit(X_train,Y_train)
```

Out[23]:

LinearRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [24]:

```
clf.predict(X_test)
```

Out[24]:

```
array([2.67584650e+06, 1.41955496e+05, 1.73167846e+07, 3.73306870e+07, 3.98481314e+05, 9.37076269e+04, 1.12060338e+07, 2.25562519e+07, 6.92104771e+04, 3.67852427e+05, 2.18059424e+08, 2.72532496e+07, 7.13662758e+07, 7.20587662e+04, 5.30485005e+06, 3.41971951e+05, 1.32520130e+06, 6.29740369e+06, 1.15911986e+07, 7.37238105e+05, 2.15231466e+06, 2.17365410e+05, 1.73887010e+06, 1.81245673e+07, 6.58509601e+05, 4.70694541e+07, 6.41934879e+07, 1.22641554e+07, 5.45551387e+06, 8.63469854e+06, 1.16353204e+07, 2.37695752e+07, 3.85903898e+07, 9.88362991e+07, 1.28760964e+06, 4.92590489e+04, 1.15538212e+08, 1.23048836e+08, 2.13611722e+07, 1.23182214e+08, 6.64545566e+06, 4.70622756e+06, 4.46112366e+05, 2.63110708e+05, 3.56989765e+07, 2.12949370e+06, 4.18415921e+05])
```

In [25]:

Y_test

Out[25]:

Name: 2022 Population, dtype: int64

In [26]:

```
# Означает, что точность составляет 99% clf.score(X_test,Y_test)
```

Out[26]:

0.9999633273400184

In [27]:

from sklearn.preprocessing import MinMaxScaler, StandardScaler

In [28]:

```
scaler = MinMaxScaler().fit(X_train)
X_train = pd.DataFrame(scaler.transform(X_train), columns=X_train.columns)
X_test = pd.DataFrame(scaler.transform(X_test), columns=X_train.columns)
X_train.describe()
```

Out[28]:

2020 Population 2015 Population

count	187.000000	187.000000
mean	0.025031	0.024345
std	0.105401	0.103739
min	0.000000	0.000000
25%	0.000297	0.000294
50%	0.003775	0.003633
75%	0.013621	0.013126
max	1.000000	1.000000

Обучение KNN с произвольным k

In [29]:

from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.neighbors import KNeighborsRegressor

In [30]:

```
def print_metrics(Y_test, Y_pred):
    print(f"R^2: {r2_score(Y_test, Y_pred)}")
    print(f"MSE: {mean_squared_error(Y_test, Y_pred)}")
    print(f"MAE: {mean_absolute_error(Y_test, Y_pred)}")
```

In [31]:

```
def print_cv_result(cv_model, X_test, Y_test):
    print(f'Оптимизация метрики {cv_model.scoring}: {cv_model.best_score_}')
    print(f'Лучший параметр: {cv_model.best_params_}')
    print('Метрики на тестовом наборе')
    print_metrics(Y_test, cv_model.predict(X_test))
    print()
```

In [32]:

```
base_k = 7
base_knn = KNeighborsRegressor(n_neighbors=base_k)
base_knn.fit(X_train, Y_train)
Y_pred_base = base_knn.predict(X_test)
print(f'Test metrics for KNN with k={base_k}\n')
print_metrics(Y_test, Y_pred_base)
```

Test metrics for KNN with k=7

R^2: 0.9775593132072161 MSE: 42984187842339.65 MAE: 2427398.1762917927

Кросс-валидация

In [33]:

from sklearn.model_selection import GridSearchCV, RandomizedSearchCV

MAE: 1217833.6170212766

```
metrics = ['r2', 'neg_mean_squared_error', 'neg_mean_absolute_error']
cv_values = [5, 10]
for cv in cv values:
    print(f'Результаты кросс-валидации при cv={cv}\n')
    for metric in metrics:
        params = {'n_neighbors': range(1, 30)}
        knn_cv = GridSearchCV(KNeighborsRegressor(), params, cv=cv, scoring=metric, n_jd
        knn_cv.fit(X_train, Y_train)
        print_cv_result(knn_cv, X_test, Y_test)
Результаты кросс-валидации при cv=5
Оптимизация метрики r2: 0.9906506734328223
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
MAE: 1217833.6170212766
Оптимизация метрики neg_mean_squared_error: -50386986573844.67
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
MAE: 1217833.6170212766
Оптимизация метрики neg_mean_absolute_error: -2164595.715647226
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
MAE: 1217833.6170212766
Результаты кросс-валидации при cv=10
Оптимизация метрики r2: 0.9822247986476296
Лучший параметр: {'n neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
MAE: 1217833.6170212766
Оптимизация метрики neg mean squared error: -51410300165699.664
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
MAE: 1217833.6170212766
Оптимизация метрики neg_mean_absolute_error: -2181273.5023391815
Лучший параметр: {'n_neighbors': 1}
Метрики на тестовом наборе
R^2: 0.9960340462145656
MSE: 7596616986872.681
```

```
In [35]:
```

```
best_k = 4
Y_pred_best = KNeighborsRegressor(n_neighbors=best_k).fit(X_train, Y_train).predict(X_text_state)
```

Сравнение исходной и оптимальной модели

```
In [36]:
```

```
print('Basic model\n')
print_metrics(Y_test, Y_pred_base)
print('_____')
print('\nOptimal model\n')
print_metrics(Y_test, Y_pred_best)
```

Basic model

R^2: 0.9775593132072161 MSE: 42984187842339.65 MAE: 2427398.1762917927

Optimal model

R^2: 0.9859450055984543 MSE: 26921748209299.1 MAE: 1937184.25

Визуализация оптимальной модели

In [37]:

```
res = pd.DataFrame({'Y_test': Y_test, 'Y_pred_best': Y_pred_best}).sort_values(by='Y_test)
res.head()
```

Out[37]:

	Y_test	Y_pred_best
173	10967	10353.50
176	31791	34937.50
180	33660	34937.50
78	56466	52553.75
210	106858	105159.00

```
In [ ]:
```