Correção da prova: 181032p2 / user: 287677 [voltar]

Voltar ao índice

Nota da prova: 7

Na coluna resposta está a resposta do aluno.

num	texto	resposta	nota
q1	Considere a equação diferencial $u_t=sin(t+1)$ com condição inicial $u(13)=13$. Aproxime $u(17)$ usando $h=0.4$ e o método de Euler.	-0.7300153421562121103250	0
q10	Considere o intervalo [-1, 1] e a regra de integração no formato $w_1f(-0.74) + w_2f(0.14) + w_3f(0.84)$. Encontre o valor de w_1 que permite a melhor regra possível.	0.6486382815496741782724	1
q2	Seja $u_t = f(t, u)$ com a função $f(t, u) = exp(-u) - 1/t$. Utilizando a condição inicial com u(0.1)=12 aproxime a solução u em $t = 3$ (com 6 dígitos significativos utilizando qualquer método numérico).		
q3	Encontre o coeficiente c_2 do método de passo múltiplo $u_{n+1}=u_n+h[c_1f_{n+1}+c_2f_{n-1}+c_3f_{n-2}]$	0.58333333	1
q4	Utilize o método de Simpson para aproximar a integral no intervalo $[0,1]$ da função $cos(x+1/8)$. Utilize exatamente 3 intervalos (3 nós em cada intervalo).	0.7775962	1
q5	Considere os pontos com coordenadas $x=1:0.1:5$ e $y=sin(x)+0.2*sin(25*x)$. Encontre a reta $R(x)$ que melhor se ajusta aos pontos e calcule $R(2.5)$.	0.3774167	1
q6	Interpole os pontos dados por $x=[1,2,3,4]$ e $y=[6,7,10,11]$ em 2.9 utilizando somente 2 pontos.	9.7	1
q7	Considere o conjunto de pontos com coordenadas $x = 10:15$ e $y = 1283 + 3cos(x)$. Interpole esses pontos em 12.34 (com 8 dígitos significativos).	1285.912438718081	1
q8	Aproxime com 7 dígitos significativos a integral $A=\int_{12}^{13}10\cos(x+12)+10dx$ utilizando qualquer quadratura.	17.732266119	1
q9	Considere um conjunto de 51 pontos igualmente espaçados no intervalo $[-2,3]$ com coordenadas $y=exp(x)+sin(20*x)+20$. Encontre a parábola no formato $p(x)=a+b*x^2$ que melhor se ajusta a esses pontos e calcule $p(2)$.		