2 Fundamental Concepts of Machine Learning: Introduction

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch)
- 2.1 Definition
- 2.2 Data Structure
- 2.3 Types of Learning
- 2.4 Machine Learning Tasks
- 2.5 Linear Regression
- 2.8.1 Gradient Descent
- 2.8.1 Stochastic Gradient Descent
- 2.8 Optimization Techniques
- 2.6 Overfitting versus Underfitting
- 2.7 Regularization

2.1 Definition

"a computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks T, as measured by P, improves with experience E"

Machine Learning, Mitchell 1997

Most machine learning algorithms are composed of

- Dataset
- Parametrized model
- Cost function
- Optimization procedure

2.2 Data Structure

Specific dataset (sometimes called design matrix)

Examples

- Can be different images, where its features are its pixel values, n = channels \times pixels
- Can be different houses, where its features are ist properties such as area, number of rooms, age Notation
- Design matrix X
- Design vector of a single example i (1 sample/example) $x_i = [x_{i1}, x_{i2}, ..., x_{in}]^T$

2.3 Types of Learning

$$X =$$

$$x_{21}$$
 x_{22} \vdots \vdots

feature 1 feature 2 \cdots feature n

$$\begin{array}{ccc}
x_{1n} \\
\dots \\
x_{2n} \\
\vdots
\end{array}$$

Supervised learning

- Algorithm learns from a labeled dataset. Each sample X_i has an accompanying target y_i
- Example: A model learns to distinguish between dogs and cats via annotated images

Unsupervised learning

- Algorithm finds a structure or pattern in the data. This is typically in the form of a probability distribution
- Example: Anomaly detection, i.e., the identification of irregularities in otherwise regular patterns. For example in the detection of tumors in medical imaging

example m

Semi-supervised learning

- Combination of supervised and unsupervised learning, i.e., the data is partly labeled to improve the unsupervised learning.
- Example: The learning of the tumor identification is improved by using some labeled data.

Reinforcement learning

- Interaction between an algorithm and an environment, improving the algorithm to maximize an expected average reward. Common in game-like environments
- Example: The stock market, where more actions with higher rewards are learned

2.4 Machine Learning Tasks

Regression

- Prediction of a numerical value via a (<u>real-valued</u>) mapping between input and output
- Example: Prediction of house prices from criteria like area, number of rooms, age

Classification

- Prediction of a discrete category via a mapping between input and a (discrete) category
- Example: Classification of images in cats and dogs

regarded as discrete regression.

Classification can be

2.4 Machine Learning Tasks

Clustering

- Discovers similarities between data and creates discrete clusters (unsupervised)
- Example: Identification of similar customer groups

Generative modeling

- Generate new data points that resemble a given dataset (without simply reproducing given data points)
- Example: Generate new rim designs given a set of rims

Generative modeling

Machine Learning Algorithms

Machine Learning in Additive Manufacturing: State-of-the-Art and Perspectives, Wang et al. 2020

Classifications	Algorithms	Tasks	
Supervised	Decision trees	Classification	
	Random forest	Classficiation, regression	
covered in Chapter 7	Support vector machines	Classification, regression	
	K-nearest neighbours	Classification	
	Bayesian network	Classification	
	Gaussian process	Regression	
	Multi-gene genetic programming	Regression	
	Hidden semi-Markov model	Classification	
	Multi-layer perceptron	Classification, regression	
covered in Chapter 3	Convolutional neural network	Classification	
	Recurrent neural network	Time series prediction (reg	ression)
Adaptive network-based fuzzy		erence system Regression	
covered in Chapter 8	Transformers	Regression, classification, g	generative modeling
Unsupervised	Self-organizing map	Clustering	
	Deep belief network	Classification	
covered in Chapter 7	K-means clustering	Clustering	
	Reduced order modeling (POD)	Dimensionality reduction	
	Autoencoder	Generative modeling, dime	ensionality reduction
covered in Chapter 8	Generative adversarial networks	Generative modeling, (class	sification)
	Diffusion model	Generative modeling	
Semi-supervised	Gaussian mixture model	Clustering	

2.5 Linear Regression – Prediction

$$\hat{y} = \mathbf{w} \cdot \mathbf{x} + b = \sum_{j=1}^{n} w_j x_j + b$$

- Target: \hat{y}
- Ground truth: \tilde{y} (associated with \tilde{x})
- Example vector: \boldsymbol{x}
- Weight vector: w
- Bias: *b*

2.5 Linear Regression – Performance Measurement

Prediction in *n*d for sample *i*:

$$\hat{\mathbf{y}}_i = \mathbf{w} \cdot \mathbf{x}_i + b = \sum_{j=1}^n w_j x_{ij} + b$$

i is an example/sample and j is a feature

each feature has an associated weight, which is shared across all samples

Remember the design matrix

$$X = \begin{cases} \text{example 1} & \text{feature 2} & \cdots & \text{feature } n \\ \text{example 1} & x_{11} & x_{12} & \cdots & x_{1n} \\ \text{example 2} & x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \text{example } m & x_{m1} & x_{m2} & \cdots & x_{mn} \end{cases}$$

Where each example vector is defined as $x_i = (x_{i1}, x_{i2}, ..., x_{in})^T$

2.5 Linear Regression – Performance Measurement

Prediction in semi-vector notation for sample *i*

$$\hat{y}_i = \boldsymbol{w} \cdot \widetilde{\boldsymbol{x}}_i + b$$

Squared error for a single sample i (with **ground truth** \tilde{y}_i)

$$(\tilde{y}_i - \hat{y}_i)^2$$

Mean squared error (MSE) for a dataset X with m samples (including the design vectors x_i of each sample i)

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - \hat{y}_i)^2 = \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - (\mathbf{w} \cdot \tilde{\mathbf{x}}_i + b))^2$$

Cost function

$$C(\mathbf{w}, b) = \mathcal{L} + \cdots$$

Optimization problem

$$\min_{\boldsymbol{w},b} C(\boldsymbol{w},b) = \min_{\boldsymbol{w},b} \frac{1}{m} \sum_{i=1}^{m} (\widetilde{y}_i - (\boldsymbol{w} \cdot \widetilde{\boldsymbol{x}}_i + b))^2$$
In machine learning optimization is referred to as **learning**

In machine learning optimization is referred to as **learning** when the model is applied to previously unseen problems (i.e., datapoints). This stands in contrast to structural optimization in which one specific design is obtained through optimization.

2.5 Linear Regression – Data Split

Data is split into

- Training set (\sim 80%)
 - to train the model (i.e., find the correct weights and bias)
- Validation set ($\sim 10\%$)
 - to validate the training (i.e., evaluate if training is successful, e.g., to detect/avoid **overfitting**)
 - to find the correct (machine learning algorithm) hyperparameters
- Testing set ($\sim 10\%$)
 - to test/assess the validity of the final model (i.e., weights, bias, and hyperparameters)
 - At this point nothing is allowed to be changed (otherwise testing set becomes validation set)
 - In AI double-blinded challenges are common (test set is released only after handing model to jury)

2.5 Linear Regression – Data Split

Example

• Fitting of datapoints with a polynomial where the hyperparameter is the polynomial degree p

- The validation set shows that p = 8 leads to the lowest validation error for the trained model
- The test set shows that some overfitting happened during hyperparameter tuning (this information is not available during/for model development)
- The best model would rely on p = 3

2.5 Linear Regression – Optimization

$$\min_{\boldsymbol{w},b} C(\boldsymbol{w},b) = \min_{\boldsymbol{w},b} \frac{1}{m} \sum_{i=1}^{m} (\tilde{y}_i - (\boldsymbol{w} \cdot \tilde{\boldsymbol{x}}_i + b))^2$$

Note that X requires a column of ones for the bias b

For a more concise notation let us denote all learnable parameters in a vector $\mathbf{\Theta} = (\mathbf{w}, b)^T$

All predictions \hat{y}_i are collected in

This allows to write the model function $\hat{y}_i = \mathbf{w}^T \tilde{\mathbf{x}}_i + b$ as $\hat{\mathbf{y}} = \mathbf{X}\mathbf{0}$ yielding the minimization the vector $\hat{\mathbf{y}}$.

$$\min_{\mathbf{\Theta}} C(\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta}) (\widetilde{\mathbf{y}} - \mathbf{X}\mathbf{\Theta}) = \min_{\mathbf{\Theta}} (\widetilde{\mathbf{y}}^T \widetilde{\mathbf{y}} - 2\widetilde{\mathbf{y}}^T \mathbf{X}\mathbf{\Theta} + (\mathbf{X}\mathbf{\Theta})^T \mathbf{X}\mathbf{\Theta})$$

The minimization is solved by setting the first derivative of C with respect to Θ to zero (using $r = \tilde{y} - X\Theta$)

$$\frac{1}{2} \frac{\partial \mathbf{r}(\mathbf{\Theta})^2}{\partial \mathbf{\Theta}} = \frac{1}{2} (-2\mathbf{X}^T \widetilde{\mathbf{y}} + 2\mathbf{X}^T \mathbf{X} \mathbf{\Theta}) = -\mathbf{X}^T \widetilde{\mathbf{y}} + \mathbf{X}^T \mathbf{X} \mathbf{\Theta} = 0$$

$$\mathbf{X}^T \mathbf{X} \mathbf{\Theta} = \mathbf{X}^T \widetilde{\mathbf{y}}$$

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widetilde{\mathbf{y}}$$

Such a closed form solution is only possible if \hat{y} (or rather $\partial C/\partial \Theta$) is **linear** with respect to Θ

2.5 Linear Regression – Example

$$\widehat{\mathbf{y}} = \mathbf{X}\mathbf{\Theta}$$

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widetilde{\mathbf{y}}$$

Given the following values, solve the linear regression

$$x = (1,2,3), \widetilde{y} = (1,2,2)$$

Example matrix (including column of ones for bias)

$$\boldsymbol{X} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{pmatrix}, \boldsymbol{X}^T = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

$$X^T X = \begin{pmatrix} 14 & 6 \\ 6 & 3 \end{pmatrix}, (X^T X)^{-1} = \begin{pmatrix} 0.5 & -1 \\ -1 & 2.333 \end{pmatrix}$$

Optimal weight and bias

$$\mathbf{\Theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \widetilde{\mathbf{y}} = (0.5, 0.667)^T$$

$$w = 0.5, b = \frac{2}{3}$$

Contents

- 1 Computational Mechanics Meets Artificial Intelligence (& Introduction to PyTorch)
- 2.1 Definition
- 2.2 Data Structure
- 2.3 Types of Learning
- 2.4 Machine Learning Tasks
- 2.5 Linear Regression
- 2.8.1 Gradient Descent
- 2.8.1 Stochastic Gradient Descent
- 2.8 Optimization Techniques
- 2.6 Overfitting versus Underfitting
- 2.7 Regularization

2 Fundamental Concepts of Machine Learning: Introduction

Leon Herrmann

Stefan Kollmannsberger

Chair of Data Engineering in Construction

Bauhaus-Universität Weimar

Deep Learning in Computational Mechanics – an introductory course,

Herrmann et al. 2025

