Microsoft Research Microsoft Azure

## Direct Universal Access: Making Data Center Resources Available to FPGA

Ran Shu<sup>1</sup>, Peng Cheng<sup>1</sup>, Guo Chen<sup>2</sup>, Zhiyuan Guo<sup>1, 3</sup>, Lei Qu<sup>1</sup>, Yongqiang Xiong<sup>1</sup>, Derek Chiou<sup>4</sup>, Thomas Moscibroda<sup>4</sup>

Microsoft Research<sup>1</sup>, Hunan University<sup>2</sup>, Beihang University<sup>3</sup>, Microsoft Azure<sup>4</sup>



### FPGA Deployment in Data Centers

- Wide deployment
  - Major cloud service providers
    - Microsoft, Amazon, Facebook, Alibaba, Tencent, Baidu, IBM, etc.
- Accelerated applications
  - Computation
    - Web search ranking
    - Deep neural networks
    - Big data analytics
  - Networking
    - Network processing
  - Database/Storage
    - SQL
    - Key-value store





Image from D. Firestone et al., NSDI 2018

Image from A. Caulfield et al., Micro 2016

### Resource Access Requirements

- Heterogeneous resources
  - CPU
  - Memory
  - Other FPGAs
  - GPU
  - SSD



Image from A. Putnam et al., ISCA 2014 <sup>3</sup>



#### FPGA Board in Data Center



Image from https://www.cnet.com/news/micro soft-project-brainwave-speeds-ai-with-fpga-chips-on-azure-build-conference/

#### **Current FPGA Communication Architecture**



**Application Layer** 

**Transport Layer** 

Data Link Layer

Physical Layer

#### Current FPGA Communication Architecture





Image from L. Zhang et al., CCR 2014

**Problem #1** – Programming Interface



### **Problem #2** – Accessibility



## **Problem #3** – Multiplexing



## **Problem #3** – Multiplexing



## **Problem #3** – Multiplexing



## **Problem #4** – Security



## **Problem #4** – Security



## **Existing Problems**

- Complex programming interface
- Separate naming space
- No general multiplexing
- Security issue

#### **Direct Universal Access**



# **DUA is an "IP layer"**An abstract overlay network

Leverage all existing h/w stacks Hierarchical addressing & routing



#### DUA is an "IP layer" **Efficient Routing** Direct resource access by FPGA, totally bypass CPU DMA access access **CPU** DDR PCle Gen3 PCle Gens PCle Gen3 Intra-server networking fabric





## DUA is an "IP layer"

**Efficient Routing** 

Compatible BSD-socket Interface

**Unified Multiplexing** 

#### Security

Protect against both inside and outside attacks

## System Architecture



## System Architecture



#### **DUA Control Plane**

- Challenge: large-scale resource and routing info dissemination
  - Limited h/w resource
- DUA solution
  - Hierarchical addressing
  - Hierarchical routing
  - Leverage existing infrastructure
- Fully distributed and lightweight
  - Need no global synchronization

| UID<br>(serverID:deviceID) | Address /port     | Resource description      |  |
|----------------------------|-------------------|---------------------------|--|
| 192.168.0.2:1              | 0x0000001CFFFF000 | 1st block of host DRAM    |  |
| 192.168.0.2:1              | 0x00000019FFF000  | 2nd block of host DRAM    |  |
| 192.168.0.2:2              | 0x8000000         | 1st block of FPGA onboard |  |
| 192.168.0.2:3              | 8000              | 1st application on FPGA   |  |
| 192.168.0.2:3              | 8001              | 2nd application on FPGA   |  |

#### Resource table

| Src Resource (UID)     | Dst Resource (UID) / Stack             |  |
|------------------------|----------------------------------------|--|
| FPGA 1 (192.168.0.2:1) | FPGA 2 (192.168.0.2:2) / FPGA Connect  |  |
|                        | Host DRAM (192.168.0.2:3) / DMA        |  |
|                        | Onboard DRAM (192.168.0.2:4) / DDR     |  |
| FPGA 2 (192.168.0.2:2) | FPGA 1 (192.168.0.2:1) / FPGA Connect  |  |
|                        | Host DRAM (192.168.0.2:3) / DMA        |  |
|                        | Resources on other servers (*:*) / LTL |  |

#### Interconnection table

#### **DUA Data Plane**

- Overlay
  - Unified interface
  - Routing
- Stacks
  - Leverage all the existing (or adopt future) stacks
- Underlay
  - Efficient multiplexing
  - Security



## DUA Data Plane – Overlay

- Efficient & extensible design
  - Switch fabric
    - High capacity cross-bar switch
  - Connector
    - All cached routing tables
  - Translator
    - Protocol translation
- High performance data path
  - Line-rate
  - Near zero-delay



## Evaluation – efficiency



Extreme low latency (< 50 ns/fwd)

Round Trip Time through FPGA Connect and DUA for 4 times, LTL twice



## Evaluation – Logic Overhead

| Component |                                     |              | ALMs  |       |
|-----------|-------------------------------------|--------------|-------|-------|
| S         | Switch fabric                       | 2 ports      | 1272  | 0.74% |
|           |                                     | 4 ports      | 3227  | 1.88% |
|           |                                     | 8 ports      | 9366  | 5.45% |
| DUA       | Co                                  | 3011         | 1.75% |       |
| overlay   |                                     | FPGA Connect |       | 0.08% |
|           | Stack translator                    | LTL          | 255.4 | 0.15% |
|           |                                     | DMA          | 115.7 | 0.07% |
|           |                                     | DDR          | 190.3 | 0.11% |
| DUA       | Stacks: FPGA Connect, LTL, DMA, DDR |              | 431.7 | 0.25% |
| underlay  | PHY interfaces: PCIe, DDR, QSFP     |              |       |       |

| Component          |              | ALMs    |       |
|--------------------|--------------|---------|-------|
| Stack -            | FPGA Connect | 620.8   | 0.36% |
|                    | LTL          | 6395.4  | 3.72% |
|                    | DMA          | 1347.7  | 0.78% |
|                    | DDR          | 73.4    | 0.04% |
| PHY – interfaces – | PCIe         | 3890.1  | 2.26% |
|                    | QSFP         | 12726.7 | 7.40% |
|                    | DDR          | 7369.2  | 4.28% |

#### **DUA Overlay**

• 2 Ports: **4.24**%

• 4 Ports: **9.29**%

• 8 Ports: **19.86**%

#### **DUA Underlay**

4 Stacks and 3 PHY

Interfaces: 0.25%

## Evaluation – Deep Crossing



|              | D1    | D2    | D3    | D4    | All   |
|--------------|-------|-------|-------|-------|-------|
| Parall = 32  | 7.27  | 6.58  | 13.30 | 12.96 | 40.12 |
| Parall = 64  | 4.17  | 3.48  | 7.22  | 7.09  | 21.95 |
| Reduction(%) | 42.67 | 47.10 | 45.75 | 45.33 | 45.28 |

Single FPGA Board: Parall = 32, 2 FPGA Board: Parall = 64

#### 45.28% Latency Reduction

## Evaluation – Regex Matching





- Up to 10<sup>5</sup>~10<sup>7</sup> higher than CPU, Up to 10<sup>5</sup> lower than CPU
- Up to 3 times throughput and up to 55% latency reduction compared to using CPU to move data between FPGAs

#### Conclusion

- Current FPGA communication architecture
  - No universal access
- DUA: build the "IP" layer for FPGA in data center
  - Leverage existing data center network
  - Efficient routing
  - Compatible BSD socket interface
  - Unified multiplexing
  - Security
- Open source soon

# Thank you! Questions?