# UCS1502 - MICROPROCESSORS AND INTERFACING

# **DMA Controller - 8257/8237**

S. Angel Deborah Assistant Professor, Dept. of CSE



# **Learning Objective**

- To understand the architecture of 8237/57
- To understand 8237/57 operation



## **Overview**

- Pin diagram of 8237/57
- Architecture
- Control word
- Modes of operation



# **Direct memory access**

- Direct memory access (DMA) is a process in which an external device takes over the control of system bus from the CPU.
- DMA is for high-speed data transfer from/to mass storage peripherals, e.g. harddisk drive, magnetic tape, CD-ROM, and sometimes video controllers.
- The basic idea of DMA is to transfer blocks of data directly between memory and peripherals.
- The data don't go through the microprocessor but the data bus is occupied.

## **Basic process of DMA – Minimum Mode**

- The HOLD and HLDA pins are used to receive and acknowledge the hold request respectively.
- Normally the CPU has full control of the system bus.
- In a DMA operation, the peripheral takes over bus control temporarily.



## **Basic process of DMA – Maximum Mode**

- The RQ/GT1 and RQ/GT0 pins are used to issue DMA request and receive acknowledge signals.
- Sequence of events of a typical DMA process:
  - 1. Peripheral asserts one of the request pins, e.g. RQ/GT1 or RQ/GT0 (RQ/GT0 has higher priority)
  - 2. 8086 completes its current bus cycle and enters into a HOLD state.
  - 3. 8086 grants the right of bus control by asserting a grant signal via the same pin as the request signal.
  - 4. DMA operation starts.
  - 5. Upon completion of the DMA operation, the peripheral asserts the request/grant pin again to relinquish bus control.

#### **DMA** controller

- A DMA controller interfaces with several peripherals that may request DMA.
- The controller decides the priority of simultaneous DMA requests communicates with the peripheral and the CPU, and provides memory addresses for data transfer.
- DMA controller commonly used with 8086 is the 8257/8237 programmable device.
- The 8257/8237 is a 4-channel device.
- Each channel is dedicated to a specific peripheral device and capable of addressing 64 K bytes section of memory.

### 8237 - DMA Controller



#### Block Diagram



## 8237 Registers

- 1. Current word register
- 2. Command register
- 3. Mode register
- 4. Request register
- 5. Mask register
- 6. Status register
- 7. Temporary register
- 8. Current address register



# 8237 Registers

#### 1. Current address register

- One 16-bit register for each channel
- Holds address for the current DMA transfer

#### 2. Current word register

- Keeps the byte count
- Generates terminal count (TC) signal when the count goes from zero to FFFFH

#### 3.Command register

Used to program 8257



# 8237 Registers

#### 4. Mode register

- Each channel can be programmed to
  - Read or write
  - Autoincrement or autodecrement the address
  - Autoinitialize the channel

#### 5. Request register

For software-initiated DMA

#### 6.Mask register

Used to disable a specific channel

#### 7.Status register

#### 8. Temporary register

Used for memory-to-memory transfers



## Types of data transfer

• 8237 supports **four** types of data transfer

#### 1. Single cycle transfer

- Only single transfer takes place
- Useful for slow devices

#### 2. Block transfer mode

 Transfers data until TC is generated or external EOP signal is received

#### 3. Demand transfer mode

- Similar to the block transfer mode
- In addition to TC and EOP, transfer can be terminated by deactivating DREQ signal

#### 4. Cascade mode

Useful to expand the number channels beyond four

# **Command Register**



#### Mode Register



# Mode Register

# Request Register

#### Request Register





#### Mask Register BIT NUMBER 00 Select Channel 0 mask bit Don't Care 01 Select Channel 1 mask bit Select Channel 2 mask bit 10 Select Channel 3 mask bit Clear mask bit Set mask bit BIT NUMBER Clear Channel 0 mask bit Don't Care Set Channel 0 mask bit Write All Ones, Read Clear Channel 1 mask bit Set Channel 1 mask bit Clear Channel 2 mask bit Set Channel 2 mask bit

# Mask Register

Clear Channel 3 mask bit Set Channel 3 mask bit

# Status Register

# Status Register BIT NUMBER Channel 0 has reached TC Channel 1 has reached TC Channel 2 has reached TC Channel 3 has reached TC Channel 0 request Channel 1 request Channel 2 request



Channel 3 request

# Summary

- Pin diagram of 8237/57
- Architecture
- Control word
- Modes of operation



# Check your understanding

• What are the different modes of operation of 8237/57?



# Thank you

