Exámen de Laboratorio de Algoritmos y Estructuras de Datos II

El TAD position representa una celda en una matriz cuadrada de dimensión N.

position_initial(6) => Posición inicial en una matriz de 6x6, igual a la celda (0, 0)

 $position_left(p) => Mueve$ la posición p una columna hacia la izquierda $position_right(p) => Mueve$ la posición p una columna hacia la derecha $position_up(p) => Mueve$ la posición p una fila hacia arriba $position_down(p) => Mueve$ la posición p una fila hacia abajo (incrementa el número de fila) $position_absolute(row, col, dim) => Crea una posición nueva a partir de números naturales.$

La posición $\mathbf{q} = (3, 1)$ del tablero anterior se puede construir de la siguiente manera:

```
q = position_down ( position_down ( position_down ( position_right ( position_initial (6) ) ) )
```

<u>Todos los movimientos son circulares</u>, por ejemplo, en una matriz 6x6, position_right((1, 5)) = (1, 0) ya que no es posible moverse hacia la derecha.

 $position_board(p) => Construye$ una matriz con el valor 0 en todas las celdas, excepto por la celda correspondiente a la posición p que tiene valor 1. Por ejemplo, position_board(q) devuelve la matriz:

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	0	0	0	0
2	0	0	0	0	0	0
3	0	1	0	0	0	0
4	0	0	0	0	0	0
5	0	0	0	0	0	0

 $position_movements(p) => Devuelve una lista de <u>movimientos</u> necesarios para alcanzar la posición <math>p$ a partir de la posición inicial (0,0). La lista contiene una secuencia de movimientos de columnas (hacia la derecha) seguida de una secuencia de movimientos de fila (hacia abajo).

 $position_movements(q) = [R, D, D, D]$ $position_movements(position_initial(6)) = []$

Ejercicio 1:

En el archivo *positions.c* implementar todas las funciones anteriores utilizando punteros a estructuras. Ningún otro archivo debe modificarse.

Ejercicio 2:

En el archivo *positions.c* se define una función adicional position_movements_length(p). Dicha función retorna la cantidad de movimientos que son necesarios para mover de la posición (0,0) a la posición deseada p. Implemente esa función.

position_movements_length($position_initial(6)$) = 0 position_movements_length(q) = 4

Ejercicio 3:

En el archivo *main.c* implementar una función *main* que utilice todas las funciones anteriores mostrando al menos un ejemplo. Debe mostrar en pantalla la matriz generada por *position_board* y la lista generada por *position_movements*. *La presencia de memory leaks o invalid reads restará puntos*.