暨南大学考试试卷

教	<u>2013</u> - <u>2014</u> 学年度第 <u>2</u> 学期		课程类别 必修[选修[/]		
师填	课程名称: <u>复变函数与积分变换</u> 授课教师姓名: <u>王为民</u>	考试方式 开卷[]闭卷[√]			
写	考试时间: <u>2014</u> 年 <u>7</u> 月 <u></u> 日		试卷类别(A、B) [A] 共 <u>6</u> 页		
考生填	学院(校)	_ 专业	班(级)		
写	姓名学号		内招] 外招]		

题	号	_	Ш	四	五	六	七	八	九	+	总	分
得	分											

得分	评阅人	拉交師 (サム小町
		一、填空题(共9小題

- 一、填空题(共9小题,每小题2分,共18分)
- 1. $(\frac{1+\sqrt{3}i}{1-\sqrt{3}i})^{10}$ 的实部是_______,虚部是______,辐角主值是______.
- 2. 区域 $D = \{z : -\pi < \text{Im} z < 0\}$ 在映射 $w = e^{z}$ 下的像为______.
- 3. 级数 \(\sum_{n}^{\sum_{n}} \) 是否收敛? _____; 是否绝对收敛? _____.
- 4. (1+i)¹⁻ⁱ的值为_____。
- 5. 函数 $f(z) = \frac{1}{z-i} e^{\frac{1}{z-1}}$ 在 z = 0处 Taylor 展开式的收敛半径是______.
- 6. |z+i|<|z-i| 所表示的平面区域为______.

得分	评阅人

二、计算题(共3小题,共26分)

1.设 $u = e^{tr} \sin y$,求p的值使u为调和函数,并求出一个解析函数f(z) = u + iv. (10分)

2.
$$f(z) = \oint_{|\xi| = \sqrt{3}} \frac{3\xi^2 + 7\xi + 1}{\xi - z} d\xi$$
, $\Re f'(1+i)$. (6 \(\frac{1}{2}\))

3.将函数 $f(z) = \frac{1}{z-z^2}$ 在每个有限孤立奇点的去心邻域上展开为 Laurent 级数. (10 分)

得分	评阅人

三、区域变换题(共2小题,共16分)

1.求把上半平面映成单位圆的分式线性映射 w = f(z),并且满足 f(i) = 0, f(-1) = 1. (6分)

2.求将角形域 $-\frac{\pi}{4} < \arg z < \frac{\pi}{4}$ 映射为单位圆|w| < 1的保形映照。(10 分)

得分	评阅人

四、积分计算题(共 4 小题,每小题 6 分,共 24 分)

$$1.\oint_{|z|=2}\frac{\sin z}{z}\mathrm{d}z$$

$$2. \oint\limits_{|z|=1} e^{1/z} dz$$

3.
$$\oint_{|z|=3} \frac{e^z}{(z-1)^2} dz$$

$$4.\int_{0}^{2\pi} \frac{1}{2+\sin\theta} d\theta$$

得分	评阅人	五、积分变换题(共 2 小题,共 16 名			
		五、忻刀支挟越(共 2 小越,共 10 刀 <i>)</i> 			
$f(t) = e^{- t } \cos t$ 的傅立叶变换并推证以下积分结果:					

$$\int_0^{+\infty} \frac{\omega^2 + 2}{\omega^4 + 4} \cos \omega t d\omega = \frac{\pi}{2} e^{-|t|\cos t} . \quad (10 \text{ }\%)$$

2.由定义直接计算下面函数的拉普拉斯变换。

$$f(t) = \begin{cases} 3, & 0 \le t < 2, \\ -1, & 2 \le t < 4, (6 \%) \\ 0, & 4 \le t. \end{cases}$$