Introduction to the Theory of Computation Homework #3 Brian Gianforcaro

1

- (a) 0*1*
- **(d)** $(0 \cup 1) \cup (0 \cup 1) \cup (0 \cup 1)0$
- (i) $(10)^* \cup (11)^*$
- (1) $(0^2)^* \cup 0^*(11)0^*$
- (m) Ø
- (n) ((0*1*)*(1*0*)*)+

2

$$\epsilon \cup 001(0-1)^* \cup (0-1)^*11$$

3

 $(b^* \cup aaa \cup aa \cup a)b^*aaaab^*(b^* \cup aaa \cup aa \cup a)$

4

(a)

(b)

(c)

5 Proof: By Structural Induction

- $\bullet \ \text{Observe} \ x \epsilon \Sigma^*, L = L(R)$
- \bullet Assume R is over Σ

 $x\epsilon\Sigma^*$

$$L(R) = x$$

6 Proof: By Mathematical Induction

- \bullet Observe $n\epsilon\mathcal{N}, L\subset \Sigma^*$
- $\bullet \ {\tt Suppose} \ |L| = n$

$$L(R) = x$$

$$|L(R)| = 1$$

$$|L(R)| = |L|$$

There fore R exists such that L(R) = L