ICAPS Summer School 2020: Probabilistic Planning (MDPs)

Scott Sanner

Model-based Probabilistic Planning

Mausam

Computer Science and Engineering
Indian Institute of Technology (IIT) Delhi

Planning under Uncertainty

Definition:

Computing sequences of actions to obtain occasional rewards in a known, stochastic environment

Applications

Elevator Control

Concurrent Actions

Elevator: up/down/stay

6 elevators: 3^6 actions

Dynamics:

Random arrivals (e.g., Poisson)

Objective:

- Minimize total wait
- (Requires being proactive about future arrivals)

Constraints:

 People might get annoyed if elevator reverses direction

Two-player Games

Othello / Reversi

- Solved by Logistello!
- Monte Carlo RL (self-play)+ Logistic regression + Search

Backgammon

- Solved by TD-Gammon!
- Temporal Difference (self-play)+ Artificial Neural Net + Search

Go

- Learning + Search
- AlphaGo (MCTS + deep learning) recently the world champion

Multi-player Games: Poker

Multiagent (adversarial)

- Opponent may abruptly change strategy
- Might prefer best outcome for any opponent strategy (e.g, a Nash equilibrium)

Multiple rounds (sequential)

Partially observable!

- Earlier actions may reveal information
- Or they may not (bluff)

DARPA Grand Challenge

Autonomous mobile robotics

 Extremely complex task, requires expertise in vision, sensors, real-time operating systems

Partially observable

e.g., only get noisy sensor readings

Model unknown

e.g., steering response in different terrain

How to model these problems?

Observations, States, & Actions

State

Observations

Observation set O

- Perceptions, e.g.,
 - Distance from car to edge of road
 - My opponent's bet in Poker

States

State set S

- At any point in time, system is in some state
 - Actual distance to edge of road
 - My opponent's hand of cards in Poker

Agent Actions

Action set A

- Actions could be concurrent
- If k actions, $\mathbf{A} = \mathbf{A_1} \times ... \times \mathbf{A_k}$
 - Schedule all deliveries to be made at 10am

Agent Actions

Action set A

- All actions need not be under agent control
 - Other agents, e.g.,
 - Alternating turns: Poker, Othello
 - Concurrent turns: Highway Driving, Soccer
 - Exogenous events due to Nature, e.g.,
 - Random arrival of person waiting for elevator
 - Random failure of equipment
 - If uncontrolled, model as random variables

Observation Function

- How to relate states and observations?
 - Not observable:
 - $-\mathbf{O} = \emptyset$
 - e.g., heaven vs. hell
 - » only get feedback once you meet St. Pete
 - Fully observable:
 - $-\mathbf{S} \leftrightarrow \mathbf{O} \dots$ the case we focus on!
 - e.g., many board games,
 - » Othello, Backgammon, Go
 - Partially observable:
 - all remaining cases
 - e.g., driving a car, Poker, the real world!

Recap

- So far
 - Actions
 - States
 - Observations
- How to map between
 - Previous states, actions, and future states?
 - States and observations?
 - States, actions and rewards?
 - Sequences of rewards and optimization criteria?

Transition Function

- How do actions take us between states?
 - T(s,a,s') encodes P(s'|s,a)
 - Some properties
 - Stationary: T does not change over time
 - Markovian: Only depends on previous state / action
 - If T not Markovian or stationary
 - can sometimes achieve by augmenting state description
 e.g., elevator traffic differs throughout day...
 encode time in state to make T Markovian!

Goals and Rewards

- Goal-oriented rewards
 - Assign any reward value s.t. R(success) > R(fail)
 - Can have negative costs C(a) for action a
- What if multiple (or no) goals?
 - How to specify preferences?
 - R(s,a) assigns utilities to each state s and action a
 - Then maximize expected reward (utility)

But, how to trade off rewards over time?

Optimization: Best Action when s=1?

- Must define objective criterion to optimize!
 - How to trade off immediate vs. future reward?
 - E.g., use discount factor γ (try γ =.9 vs. γ =.1)

Trading Off Sequential Rewards

Sequential-decision making objective

Horizon

- Finite: Only care about h-steps into future
- Infinite: Literally; will act same today as tomorrow

– How to trade off reward over time?

- Expected average cumulative return
- Expected discounted cumulative return
 - Use discount factor γ
 - Reward t time steps in future discounted by γ^{t}

Recap

- Model so far
 - Actions A
 - States S
 - Observation O
 - Transition function T: P(s'|s,a)
 - Observation function Z: P(o'|s,a) POMDPs only
 - Reward function: R(s,a)
 - Optimization criteria
- But are the above
 - Known or unknown?

Knowledge of Environment

Model-known:

- Know observation, transition, & reward functions
- Called: Planning (under uncertainty)
 - Planning generally assumed to be goal-oriented
 - Decision-theoretic if maximizing expected utility

Model-free:

- ≥1 unknown: observation, transition, & reward functions
- Called: Reinforcement learning
 - Have to interact with environment to obtain samples

Model-based: approximate model in model-free case

Permits hybrid planning and learning —

Saves expensive interaction!

Finally a Formal Model

- Define the previous model
 - $-MDP: \langle S, A, T, R \rangle$
 - $-POMDP: \langle S, A, O, Z, T, R \rangle$
 - Whether known / unknown
- Characterize the solutions
 - And efficiently find them!

Model-based Solutions to MDPs

MDPs $\langle S,A,T,R \rangle$

Note: fully observable

a=change (P=1.0) a=stay (P=0.1)

- **S** = {1,2}; **A** = {stay, change}
- Reward
 - R(s=1,a=stay) = 2
 - **–** ...
- Transitions
 - $T(s=1,a=stay,s'=1) = P(s'=1 \mid s=1, a=stay) = .9$
 - **—** ...

How to act in an MDP?

Define policy

 $\pi: S \to A$

What's the best Policy?

- Must define reward criterion to optimize!
 - Discount factor γ important (γ =1.0 vs. γ =0.1)

Between Value and Policy Iteration

Value iteration

- Each iteration seen as doing 1-step of policy evaluation for current greedy policy
- Bootstrap with value estimate of previous policy

Policy iteration

- Each iteration is full evaluation of V_{π} for current policy π
- Then do greedy policy update

Modified policy iteration

- Like policy iteration, but $V_{\pi i}$ need only be closer to V* than $V_{\pi i-1}$
 - Fixed number of steps of successive approximation for $V_{\pi i}$ suffices when bootstrapped with $V_{\pi i-1}$
- Typically faster than VI & PI in practice

Canonical Example: Grid World

- The agent lives in a grid
- Walls block the agent's path
- The agent's actions do not always go as planned:
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- Big rewards come at the end

Solving MDPs

- In an MDP, we want an optimal policy π^* : $S \times 0:H \rightarrow A$
 - A policy π gives an action for each state for each time

- An optimal policy maximizes expected sum of rewards
- Contrast: In deterministic, want an optimal plan, or sequence of actions, from start to a goal

Outline

Optimal Control

```
= given an MDP (S, A, T, R, \gamma, H) find the optimal policy \pi^*
```

- Exact Methods:
 - Value Iteration
 - Policy Iteration

Value Iteration

- Algorithm:
 - Start with $V_0^*(s) = 0$ for all s.
 - For i=1, ..., HGiven V_i^* , calculate for all states $s \in S$:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + V_i^*(s') \right]$$

- This is called a value update or Bellman update/back-up
- $V_i^*(s)$ = the expected sum of rewards accumulated when starting from state s and acting optimally for a horizon of i steps

Value Iteration

```
values = {each state : 0}
loop ITERATIONS times:
    previous = copy of values
    for all states:
        EVs = \{each legal action : 0\}
        for all legal actions:
            for each possible next state:
                EVs[action] += prob * previous[next state]
        values[state] = reward(state) + discount * max(EVs)
```


Value Iteration in Gridworld

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Value Iteration in Gridworld

noise = 0.2, γ =0.9, two terminal states with R = +1 and -1

Exercise 1: Effect of discount, noise

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

(1)
$$\gamma$$
 = 0.1, noise = 0.5

(2)
$$\gamma$$
 = 0.99, noise = 0

(3)
$$\gamma$$
 = 0.99, noise = 0.5

(4)
$$\gamma = 0.1$$
, noise = 0

0.00 >	0.00 >	0.01	0.01 >	0.10
0.00		0.10	0.10 >	1.00
0.00		1.00		10.00
0.00 >	0.01 >	0.10	0.10>	1.00
-10.00	10.00	-10.00	-10.00	10.00

(a) Prefer close exit (+1), risking the cliff (-10) --- γ = 0.1, noise = 0

0.00 >	0.00 >	0.00	0.00	0.03
0.00		0.05	0.03 >	0.51
0.00		1.00		10.00
<u> </u>	^	^	^	_
0.00	0.00	0.05	0.01	0.51
10.00	10.00	10.00	10.00	10.00

(b) Prefer close exit (+1), avoiding the cliff (-10) -- γ = 0.1, noise = 0.5

9.41 >	9.51 >	9.61	9.70	9.80
9.32		9.70 →	9.80 >	9.90
9.41		1.00		10.00
9.51 >	9.61 >	9.70>	9.80)	9.90
10.00	-10.00	-10.00	-10.00	10.00

(c) Prefer distant exit (+1), risking the cliff (-10) -- γ = 0.99, noise = 0

8.67 >	8.93 →	9.11 >	9.30 >	9.42
8.49		9.09	9.42 >	9.68 •
8.33		1.00		10.00
•	^	•	^	^
7.13	5.04	3.15	5.68	8.45
10.00	10.00	-10.00	-10.00	10.00

(d) Prefer distant exit (+1), avoid the cliff (-10) -- γ = 0.99, noise = 0.5

Value Iteration Convergence

Theorem. Value iteration converges. At convergence, we have found the optimal value function V* for the discounted infinite horizon problem, which satisfies the Bellman equations

$$\forall S \in S: \quad V^*(s) = \max_{A} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

- Now we know how to act for infinite horizon with discounted rewards!
 - Run value iteration till convergence.
 - This produces V*, which in turn tells us how to act, namely following:

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 Note: the infinite horizon optimal policy is stationary, i.e., the optimal action at a state s is the same action at all times. (Efficient to store!)

Convergence and Contractions

- Define the max-norm: $||U|| = \max_s |U(s)|$
- Theorem: For any two approximations U and V

$$||U_{i+1} - V_{i+1}|| \le \gamma ||U_i - V_i||$$

- I.e. any distinct approximations must get closer to each other, so, in particular, any approximation must get closer to the true U and value iteration converges to a unique, stable, optimal solution
- Theorem:

$$||V_{i+1} - V_i|| < \epsilon$$
, $\Rightarrow ||V_{i+1} - V^*|| < 2\epsilon\gamma/(1-\gamma)$

 I.e. once the change in our approximation is small, it must also be close to correct

Policy Evaluation

Recall value iteration iterates:

$$V_{i+1}^*(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

Policy evaluation:

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

At convergence:

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Policy Iteration

- Alternative approach:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using onestep look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges

- This is policy iteration
 - It's still optimal!
 - Can converge faster under some conditions

Policy Evaluation Revisited

Idea 1: modify Bellman updates

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

Idea 2: it's just a linear system, solve with Matlab (or whatever),

variables: $V^{\pi}(s)$, constants: T, R

$$\forall s \ V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Advanced (PO)MDP Modeling with RDDL

What is RDDL?

- Relational Dynamic Influence Diagram Language
 - Relational[DBN + Influence Diagram]
 - Everything is a fluent!
 - states
 - observations
 - actions
 - Conditional distributions are probabilistic programs

Wildfire Domain

- Contributed by Zhenyu Yu (School of Economics and Management, Tongji University)
 - Karafyllidis, I., & Thanailakis, A. (1997). A model for predicting forest fire spreading using gridular automata. Ecological Modelling, 99(1), 87-97.

Wildfire in RDDL

```
cpfs {
     burning'(?x, ?y) =
            if ( put-out(?x, ?y) )
                  then false
            else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y))
                  then Bernoulli (1.0 / (1.0 + \exp[4.5 - (sum {?x2: x pos, ?y2: y pos})]
                                          (NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2))))))
            else
                  burning(?x, ?y); // State persists
     out-of-fuel'(?x, ?y) = out-of-fuel(?x, ?y) | burning(?x,?y);
};
reward =
     [sum {?x: x pos, ?y: y pos} [ COST CUTOUT*cut-out(?x, ?y) ]]
   + [sum {?x: x pos, ?y: y pos} [ COST PUTOUT*put-out(?x, ?y) ]]
   + [sum {?x: x pos, ?y: y pos} [ COST NONTARGET BURN*[ burning(?x, ?y) ^ ~TARGET(?x, ?y) ]]]
  + [sum {?x: x pos, ?y: y pos}
          [ COST TARGET BURN*[ (burning(?x, ?y) | out-of-fuel(?x, ?y)) ^ TARGET(?x, ?y) ]]];
```

Facilitating Model Development by Writing Simulators:

Relational Dynamic Influence Diagram Language (RDDL)

set(x1, y3)

RDDLSim Software

Open source & online at

http://code.google.com/p/rddlsim/

RDDL Software Overview

- BNF grammar and parser
- Simulator
- Automatic compilation / translations
 - LISP-like format (easier to parse)
 - SPUDD & Symbolic Perseus (boolean subset)
 - Ground PPDDL (boolean subset)
- Client / Server
 - Java and C/C++ sample clients
 - Evaluation scripts for log files
- Visualization
 - DBN Visualization
 - Domain Visualization see how your planner is doing

Initial Use of RDDL

Have run two major competitions at ICAPS

- Translations to draw in different communities
 - UAI Factored MDP / POMDP community
 - ICAPS PPDDL community
 - 11 competitors in 2011, 6 competitors in 2014
- Competitions drive research progress!
 - Historically, ICAPS focused on deterministic replanning
 - With RDDL + new domains, MCTS dominates
 (namely PROST system by Thomas Keller et al)