练习题

17.设<G, *>是一个偶数阶的群,设<H,* >是<G,*>的一个子群,这里|H|=|G|/2,证明<H,* >是正规子群,

证明: ∀a∈H, aH=H=Ha;

 $\forall a \notin H, aH \cap H = \phi, \exists |aH| = |H|,$

但又|H|=|G|/2,所以aH=G-H。

同理得Ha=G-H,有aH=Ha,

所以H是其正规子群。

18 设<G, *>是一个群,H={a|a∈G∧对所有b∈G,a*b=b*a},证明<H,*>是正规子群。

证明: (1)则 \forall b \in G有a*b=b*a, a⁻¹*a*b*a⁻¹=a⁻¹*b*a*a⁻¹ b*a⁻¹=a⁻¹*b, 故a⁻¹ \in H.

- (2) $\forall a, b \in H, \forall c \in G, 有$
- (a*b) *c =a* (b* c)=a *(c*b)=(a*c)*b=(c*a)*b=c *(a*b) 所以a*b∈H, 因此H是G的子群
- (3) \forall n∈G, \ni m∈H使m*n=n*m∈nH;因此Hn⊆nH,同理n*m=m*n∈Hn;因此nH⊆Hn,所以nH=Hn。因此H是<G,*>的正规子群。

19 证明:如果<**H**,*>和<**K**,*>都是群<**G**,*>的正规子群,那么(**H**∩**K**,*>也是一个正规子群。

证明:首先证明是子群,再证明正规子群。

(1)∀ $x \in H \cap K, x \in H \perp X \in K$,

所以 $x^{-1} \in H$, $x^{-1} \in K$, 即 $x^{-1} \in H \cap K$;

 $\forall x, y \in H \cap K, \notin x^*y \in H \cap K,$

 $(2) \forall a*m \in a(H \cap K)$, 得 $m \in H$, $m \in K$, 而<H, *>和<K, *>

是正规子群,故有a*m∈aH=Ha, a*m∈aK=Ka,

得a*m=h1*a(h1 ∈ H), a*m=k1*a(k1 ∈ K), 群的性质得

h1=k1, 得 $a*m \in (H\cap K)$ a

所以 $a(H\cap K)\subseteq (H\cap K)$ a

同理(HOK)aCa(HOK) 所以为正规子群。

32. 证明:在格中如果a≤b≤c,则a∨b=b∧c,

 $(a \land b) \lor (b \land c) = (a \lor b) \land (a \lor c).$

证明: a∨b=b∧c=b

 $(a \land b) \lor (b \land c) = (a \lor b) \land (a \lor c) = b$


```
58. (3P-31) 设 L_1 = \{0,1\} , L_2 = \{(a_1,a_2) \mid a_1,a_2 \in L_1\} ,证明(L_2,\vee,\wedge) 是格,其中
V, \Lambda定义为:对(a_1, a_2), (b_1, b_2) \in L_2, 有
                       (a_1,a_2) \land (b_1,b_2) = (\min(a_1,b_1),\min(a_2,b_2))
                       (a_1, a_2) \lor (b_1, b_2) = (\max(a_1, b_1), \max(a_2, b_2))
    证明:根据题意,L_2 = \{(0,0),(0,1),(1,0),(1,1)\},由运算 \forall 和 \land 的定义,做如下计算:
                        (0,0) \land (0,1) = (0,0), (0,0) \lor (0,1) = (0,1);
                        (0,0) \land (1,0) = (0,0), (0,0) \lor (1,0) = (1,0);
                        (0,0) \land (1,1) = (0,0), (0,0) \lor (1,1) = (1,1);
                        (0,0) \land (0,0) = (0,0), (0,0) \lor (0,0) = (0,0);
                        (0,1) \land (1,0) = (0,0), (0,1) \lor (1,0) = (1,1);
                        (0,1) \land (1,1) = (0,1), (0,1) \lor (1,1) = (1,1);
                         (0,1) \land (0,1) = (0,1), (0,1) \lor (0,1) = (0,1);
                       (1,0) \land (1,1) = (1,0), (1,0) \lor (1,1) = (1,1);
                       (1,0) \land (1,0) = (1,0), (1,0) \lor (1,0) = (1,0);
                        (1,1) \land (1,1) = (1,1), (1,1) \lor (1,1) = (1,1).
```

相应的哈斯图为

方法2: 也可以根据 定义证明(交换律、 结合律、吸收律)

从上图可以看出 (L_2, \vee, \wedge) 是一个偏序,其中任意两个元素 (a_1, a_2) 和 (b_1, b_2) 界,故 (L_2, \vee, \wedge) 是格.

60. (3P-33)证明: -个格 (L, \land, \lor) 是分配格当且仅当 $a,b,c \in L$,有 $(a \lor b) \land c \le a \lor (b \land c)$

证明:(1) 设(L, \wedge , \vee) 是分配格,由 $a \wedge c \leq a$ 和 $b \wedge c \leq b \wedge c$,可得 $(a \wedge c) \vee (b \wedge c) \leq a \vee (b \wedge c)$

所以有 $(a \lor b) \land c \leq a \lor (b \land c)$.

(2) 反之,若对任意的 $a,b,c \in L$,有 $(a \lor b) \land c \leq a \lor (b \land c)$,则可得 $(a \lor b) \land c = ((b \lor a) \land c) \land c \leq (b \lor (a \land c)) \land c$ $= ((a \land c) \lor b) \land c \leq (a \land c) \lor (b \land c)$

又由 $a \land c \le (a \lor b) \land c$ 和 $b \land c \le (a \lor b) \land c$,可得 $(a \land c) \lor (b \land c) \le (a \lor b) \land c$

于是就有 $(a \lor b) \land c = (a \land c) \lor (b \land c)$.

类似可证或由对偶性得 $(a \land b) \lor c = (a \lor c) \land (b \lor c)$ 也成立. 故 (L, \land, \lor) 是分配格.