CHEMISTRY

SEMESTER ONE EXAMINATION ANSWERS

PART 1

1.	(c)	6.	(b)	11.	(c)	16.	(a)
2.	(a)	7.	(d)	12.	(d)	17.	(c)
3.	(a)	8.	(c)	13.	(c)	18.	(b)
4.	(c)	9.	(b)	14.	(a)	19.	(a)
5.	(d)	10.	(c)	15.	(c)	20.	(b)

PART 2

(a) Equation: $Cr_2O_3(s) + 6H^+(aq) \rightarrow 2Cr^{3+}(aq) + 3H_2O(t)$

Observation: Green solid dissolves to produce a deep green solution.

(b) Equation: $3Ni^{2+}(aq) + 2PO_4^{3-}(aq) \rightarrow Ni_3(PO_4)_2$ (s)

Observation: A bright green solution and a colourless solution produces a green

precipitate.

(c) Equation: $Ca(OH)_{2(s)} + 4NH_{3(aq)} \rightarrow [Cu(NH_{3})_{4}]^{2+}(aq) + 2OH^{-}(aq)$

Observation: Pale blue solid dissolves to produce a deep blue solution.

(d) Equation: $2CrO_4^{2-}(aq) + 2H^+(aq) \rightleftarrows Cr_2O_7^{2-}(aq) + H_2O(\ell)$

Observation: A yellow solution changes to an orange coloured solution

Species	Structural formula (showing all valence electrons)	Sketch and name the shape	
EXAMPLE: Water (H ₂ O)	Н∶О∶Н	Н Н	
		Name of shape Bent	
Arsine (AsH ₃)	H As: H	ASH H Name of shape Pyramidal	
Nitrite ion (NO ₂ -)	[:o: N::o:]	Name of shape Bent or V-Shaped	
Germane (GeH₄)	H H Ge: H H	H Ge.,,,,, H Name of shape Tetrahedral	

. 3.

Substances	Chemical Test	Observations
Solid zinc nitrate	1. Add OH ⁻ or NH ₃ solution.	For zinc nitrate 1. Dissolves to form a colourless solution.
and	OR	2. White precipitate forms which dissolves to form a colourless solution
Solid magnesium nitrate	2. Add water to each then add OH ⁻ or NH ₃ solution gradually until in excess	For magnesium nitrate 1. Does not dissolve.
		2. White precipitate forms which does not dissolve.

5.

Compound	Electrical conductivity	Explanation
HCℓ(aq)	High	Ionisation of HC ℓ to H ⁺ and C ℓ ⁻ is complete HC ℓ (aq) \square H ⁺ (aq) + C ℓ ⁻ (aq) \square H ⁺ = \square [HC ℓ] = 0.100 mol L ⁻¹ High ion concentration, therefore high conductivity
NH ₃ (aq)	Low	Ionisation of NH ₃ to NH ₄ ⁺ and OH ⁻ is very small NH ₃ (aq) + H ₂ O(ℓ) \rightleftarrows NH ₄ ⁺ (aq) + OH ⁻ (aq) [NH ₄ ⁺] = [OH ⁻] <<< [NH ₃] <<< 0.100 mol L ⁻¹ Low ion concentration, therefore low conductivity
NH ₄ C ℓ (aq)	High	Dissociation of NH ₄ C ℓ to NH ₄ ⁺ and C ℓ ⁻ is complete NH ₄ C ℓ (s) \square NH ₄ ⁺ (aq) + C ℓ ⁻ (aq) \square [NH ₄ ⁺] = \square [C ℓ ⁻] = \square [NH ₄ ⁺ C ℓ] = 0.100 mol L ⁻¹ High ion concentration, therefore high conductivity

- 6 (a) To predict changes to the concentration of reactants and products that occur when a change is made to a system in chemical equilibrium.
 - (b) (i) Increased
 - (ii) Increased
 - (iii) unchanged
 - (c) (i) Decreased
 - (ii) Increased
 - (iii) No change
 - (d) 1. Increase the rate of the forward reaction with no immediate increase in the rate of the reverse reaction.
 - 2. As the concentration of the SO_3 increases the rate of the reverse reaction begins to increase.

3. As the concentration of reactants decreases the rate of the forward reaction decreases.

PART 3

1. (a)
$$HC\ell_{(aq)} + Ag^{+}_{(aq)} \ \Box H^{+}_{(aq)} + AgC\ell_{(s)}$$
 [M(AgC ℓ = 143.35 g mol⁻¹]
$$n(AgC\ell) = \frac{m}{M} = \frac{2.32}{143.35} = 0.01618 \text{ mol}$$
 N(HC ℓ) = $n(AgC\ell) = 0.01618 \text{ mol}$ V(HC ℓ) = $\frac{nRT}{P} = \frac{0.01618 \times 8.315 \times 298}{98.0} = 0.4092 \text{ L} = 409 \text{ mL}$

(b)
$$n(Ag^+)_{initial} = n(AgNO_3) = cV = 0.200 \times 0.250 = 0.0500 \text{ mol}$$
 $n(Ag^+)_{ppt} = n(AgC\ell) = 0.01618 \text{ mol}$ $n(Ag^+)_{left} = n(Ag^+)_{initial} - n(Ag^+)_{ppt} = 0.0500 - 0.01618 = 0.03382 \text{ mol}$ $[Ag^+] = \frac{n}{V} = \frac{0.03382}{0.250} = 0.135 \text{ mol } L^{-1}$

2.
$$CuCO_3(aq) + 2H^+(aq) \quad \Box Cu^{2+}(aq) + CO_2(s) + H_2O(\ell)$$

And $H^+(aq) + OH^-(aq) \quad \Box H_2O(\ell)$
 $n(H^+)_{initial} = 2n(H_2SO_4) = 2cV = 2 \times 1.250 \times 0.0250 = 0.0625 \text{ mol}$
 $n(H^+)_{left} = n(OH^-) = n(NaOH) = cV = 0.250 \times 0.0176 = 4.40 \times 10^{-3} \text{ mol}$
 $n(H^+)_{used} = n(H^+)_{initial} - n(H^+)_{left} = 0.0625 - 4.40 \times 10^{-3} \text{ mol}$
 $n(Cu) = n(CuCO_3) = \frac{1}{2}n(H^+)_{used} = \frac{1}{2} \times 0.0581 = 0.02905 \text{ mol}$
 $n(Cu)_{in \, 5.00 \, g} = nM = 0.02905 \times 63.55 = 1.846 \, g$
 $m(Cu)_{in \, 1 \, tonne} = \frac{1.846 \times 1.00 \times 10^6}{5.00} = 369225.5 \, g = 3.69 \times 10^5 \, g = 369 \, kg$ [1 tonne =1.00 ×10⁶ g]

3.
$$n(N_2) = \frac{PV}{RT} = \frac{300 \times 101.3 \times 1160}{8.315 \times 773} = 5484.63 \text{ mol}$$
$$n(H_2) = \frac{PV}{RT} = \frac{300 \times 101.3 \times 2850}{8.315 \times 773} = 13475.16 \text{ mol}$$

$$n(H_2)_{required to use all nitrogen} = 3n(N_2) = 3 \times 5484.63 = 16453.89 mol$$

There is only 13475.16 mol of hydrogen so H₂ is the limiting reagent.

From the equations:

$$n(HNO_3) = \frac{1}{2} n(H_2) = \frac{1}{2} 13475.16 = 8983.44 \text{ mol}$$

 $[M(HNO_3) = 63.018 \text{ g mol}^{-1}]$
 $m(HNO_3) = nM = 8983.44 \times 63.018 = 566118 \text{ g} = 5.66 \times 10^5 \text{ g} = 566 \text{ kg}$

For answers to Part 4 please see the Extended <u>Answer Question Answers</u>