Altrium Machine Learning Bootcamp - Assignment 1 REPORT

Dasun Theekshana

1. Dataset

Heart Disease Data Set – UCI Machine Learning Repository

No. of Records – 302

No. of variables – 14

• Used the processed Cleveland Dataset

2. Exploratory Data Analysis

- Used Matplotlib, seaborn and Plotly libraries
- Categorical Data Distributions visualized by barcharts
- Numerical Data Distributions visualized by barcharts and box & whisker plots.
- Feature-target relationships of categorical variables visualized by barcharts.
- Feature-target relationships of categorical variables visualized by barcharts box & whisker plots.

3. Feature Selections

- Correlations of variables were analysed using a heatmap
- Correlations of feature variables with target variables was analyzed using bar chart
 - o *Thalassemia* had a strong positive correlation with the target variable.
 - o *max_heart_rate_achieved* had a strong negative correlation with the target variable.

- o *cholesterol, fasting_blood_sugar & resting_blood_pressure* had the weakest correlations with target variable
- Variable Inflation factor (VIF) test was carried out to determine the multicollinearity of variables. All variables had VIF scores of <5 therefore no significant multicollinearities existed in feature variables. As a result univariate feature selection methods were considered.
- ANOVA feature selection was carried out with selectKBest algorithm to select the 10 best features
 - o *cholesterol, fasting_blood_sugar & resting_blood_pressure* were eliminated during feature selection.
- Ultimately, *cholesterol*, *fasting_blood_sugar* & *resting_blood_pressure* were eliminated from feature variable set.

4. Model Training

- The data was split with a 70:30 split between train and test sets.
- StandardScaler was used for data normalization.
- The data was trained using the Logistic Regression Algorithm.
- Logistic regression is a statistical model used to predict binary outcomes or perform binary classification tasks. Since the target variable expresses whether a person has heart disease or not, logistic regression can be employed in this particular use case.
- Hyperparameter tuning was performed using the Grid search Cross validation technique to find the best estimators.
- The performance of the model is as follows.

Training set score: 0.8309 Test set score: 0.8876

	precision	recall	f1-score	support
(0.87	0.94	0.90	49
1	0.92	0.82	0.87	40
accuracy	<i>'</i>		0.89	89
macro ava	0.89	0.88	0.89	89
weighted av	0.89	0.89	0.89	89