Practice questions:

1. Draw out the multiplication table for integers mod 6.

•	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

2. Let p be a prime number and assume $a, b \in \mathbb{Z}$. Prove that if $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Let p be a prime number, $a, b \in \mathbb{Z}$, and assume $p \mid ab$. We proceed with proof by cases.

- If $p \mid a$, then we are done.
- If $p \nmid a$, since p is a prime, it follows that gcd(a, p) = 1. By Bézout's identity, we know there exists $x, y \in \mathbb{Z}$ such that ax + py = 1. Multiplying both sides by b gives abx + bpy = b and by assumption, we know ab = pk for some $k \in \mathbb{Z}$ so p(kx + by) = b. Since $kx + b \in \mathbb{Z}$, it follows that $p \mid b$ as required.

This proves both cases and hence the result follows.

3. Prove that for all $n \in \mathbb{Z}$, n and n+1 are coprime.

Proof. Let $n \in \mathbb{Z}$ and assume $p \mid n$ and $p \mid n+1$ for some $p \in \mathbb{Z}$. Then, n=pk and $n+1=p\ell$ for some $k,\ell \in \mathbb{Z}$. Hence, $1=n+1-n=p(\ell-k)$ so $p \mid 1$. It follows that $p=\pm 1$ so the only natural number that can divide n and n+1 is 1, n and n+1 are coprime as required.

4. Let $m, n \in \mathbb{Z}$, and let r be the remainder of m under division by n. Prove that $\gcd(m, n) = \gcd(n, r)$.

Proof. Let $m, n \in \mathbb{Z}$, and let r be the remainder of m under division by n. We show that m and n have the same set of common divisors as n and r. Suppose $d \mid m$ and $d \mid n$ for some $d \in \mathbb{Z}$. Notice $m \equiv 0 \mod d$ and $n \equiv 0 \mod d$, and since m = nk + r for some $k \in \mathbb{Z}$,

$$0 \equiv m \equiv nk + r \equiv r \mod d$$

So $d \mid r$ and so we have $d \mid m$, $d \mid n$, and $d \mid r$. Now suppose $e \mid n$ and $e \mid r$ for some $e \in \mathbb{Z}$. Then, m = nk + r, so obviously $e \mid m$. It follows that $e \mid m$, $e \mid n$ and $e \mid r$ and thus any common divisor of m and n is also a common divisor of n and r. It follows that m, n and n, r have the same set of common divisors so they must also have the same greatest common divisors. Hence, $\gcd(m, n) = \gcd(n, r)$ as required.

5. Prove that for all odd $a, b, c \in \mathbb{Z}$, there exists no rational solutions to $ax^2 + bx + c = 0$. (Hint: Proof by contradiction under mod 2)

Proof. Let $a, b, c \in \mathbb{Z}$ and assume there exists a rational x such that $ax^2 + bx + c = 0$. Then, $x = \frac{p}{q}$ for some coprime $p, q \in \mathbb{Z}$ where $q \neq 0$. Substituting x for $\frac{p}{q}$ and simplifying the equation gives $ap^2 + bpq + cq^2 = 0$. Consider this equation under mod 2.

- p, q cannot both be even by coprimeness.
- If p is even and q is odd, then

$$ap^2 + bpq + cq^2 \equiv 0 \mod 2$$

 $0 + 0 + 1 \equiv 0 \mod 2$

And this is a contradiction.

• If q is even and p is odd, then

$$ap^2 + bpq + cq^2 \equiv 0 \mod 2$$

 $1 + 0 + 0 \equiv 0 \mod 2$

And this is a contradiction.

• If p, q are both odd,

$$ap^2 + bpq + cq^2 \equiv 0 \mod 2$$

 $1 + 1 + 1 \equiv 0 \mod 2$
 $1 \equiv 0 \mod 2$

And this is a contradiction.

All cases yield contradictions and hence the result follows.

6. Let \mathbb{Z}_p be the set $\{[0], [1], [2], [3], \dots, [p-1]\}$ with the usual modular arithmetic. Prove that if p is prime, then for all $[a] \neq [0] \in \mathbb{Z}_p$, there exists $[a]^{-1}$ such that $[a] \cdot [a]^{-1} = [1]$ (Note that \cdot is multiplication in modular arithmetic; Hint: Bézout's identity)

Proof. Let p be prime $[a] \neq [0] \in \mathbb{Z}_p$. Then, [a] = [m] for some 1 < m < p and since p is prime, gcd(m,p) = 1. By Bézout's identity, we know there exists $x, y \in \mathbb{Z}$ such that mx + py = 1 so mx = 1 - py and $mx \equiv 1 \mod p$. It follows that this x is an x such that $mx \equiv 1 \mod p$ and by the rules of modular arithmetic, we know [a][x] = [m][x] = [mx] = [1] so we have found an $[a]^{-1}$ as required.

- 7. Let \mathbb{Z}_n be the set $\{[0], [1], [2], [3], \ldots, [n-1]\}$ under addition mod n and suppose $M \subseteq \mathbb{Z}_n$ is a non-empty subset such that for all $[a], [b] \in M$, $[a] + [n-b] \in M$ (Note that + denotes addition mod n).
 - (a) Prove that $[0] \in M$.

Proof. Let everything be as stated. Since M is non-empty, we know $[a] \in M$, so $[a] + [n-a] = [a+n-a] = [n] = [0] \in M$ as required.

(b) Prove that for all $[a] \in M$, $[n-a] \in M$.

Proof. Let everything be as stated. From Q7a, we know $[0] \in M$. Let $[a] \in M$. Then, from the definition, $[0] + [n-a] = [n-a] \in M$ and hence the result follows.

(c) Prove that |M| divides n. (Hint: consider equivalence classes under the relation where for all $[a], [b] \in \mathbb{Z}_n$, $[a] \sim [b]$ if and only if $[a] + [n-b] \in M$)

Proof. Let everything be as stated. For all $[c] \notin M$ but $[c] \in \mathbb{Z}_n$, construct a set [c] + M where for all $[x] \in [c] + M$, [x] = [c] + [a] for some $[a] \in M$. Notice by construction, [c] + M has |M| elements and every element in \mathbb{Z}_n lies in some [c] + M. Notice if $[y] \in [c] + M$ and $[y] \in [d] + M$ for some $[c], [d] \in \mathbb{Z}_n$, then $[y] = [c] + [a_0] = [d] + [a_1]$ where $[a_0], [a_1] \in M$ so $[c] = [d] + [a_0] + [a_1] = d + [a_0 + a_1]$ so $[c] \in [d] + M$ and the same argument could be applied backwards, yielding [c] + M = [d] + M. It follows that [c] + M, [d] + M are disjoint or the same for all $[c], [d] \in \mathbb{Z}_n$. Hence, we know that \mathbb{Z}_n is a disjoint union of sets of the form [c] + M, all of which have |M| elements. It follows that the number of elements in \mathbb{Z}_n , which is n, is equal to $\ell |M|$ for some $\ell \in \mathbb{Z}$ so |M| divides n as required. \square

- 8. We will prove Fermat's little theorem, i.e. for all $a, p \in \mathbb{Z}$ such that p is prime and $p \nmid a, a^{p-1} \equiv 1 \mod p$. Let \mathbb{Z}_p be the set $\{[0], [1], [2], [3], \ldots, [p-1]\}$ with the usual modular arithmetic. By Q6, we know every element in the set $\mathbb{Z}_p \setminus \{[0]\}$ is invertible under multiplication.
 - (a) Assume k is the smallest natural number such that $a^k \equiv 1 \mod p$ for some $a \in \mathbb{Z}$ such that $1 \leq a \leq p-1$. Let $S \subseteq \mathbb{Z}_p \setminus \{[0]\}$ be a non-empty subset such that $S = \{[1], [a], [a]^2, \ldots, [a]^{k-1}\}$. Similarly to Q7c, prove that |S| = k divides $|\mathbb{Z}_p \setminus \{[0]\}| = p-1$.

Proof. Let everything be as stated and for all $[c] \in \mathbb{Z}_p \setminus \{[0]\}$, construct a set [c]S where its elements are defined as $[c] \cdot [a]$ for every $[a] \in S$. It follows that [c]S has |S| = k elements. Notice if $[x] \in [c]S$ and $[x] \in [d]S$, $[x] = [c][a_0] = [d][a_1]$ where $[a_0], [a_1] \in S$ so $[c] = [d][a_1][a_0] = [d][a_1 \cdot a_0]$ and thus $[c] \in [d]S$ and the same argument could be applied backwards, yielding [c]M = [d]M. It follows that [c]M, [d]M are disjoint or the same for all $[c], [d] \in \mathbb{Z}_p \setminus \{[0]\}$. It follows that the number of elements in $\mathbb{Z}_p \setminus \{[0]\}$, which is p-1, is equal to m|S| = km for some $m \in \mathbb{Z}$ so $k \mid p-1$ as required.

(b) Hence, prove that $a^{p-1} \equiv 1 \mod p$.

Proof. We know from Q8a that $a^{p-1} = a^{km}$ where k is the smallest natural number such that $a^k \equiv 1 \mod p$ and $m \in \mathbb{Z}$. It follows that $a^{p-1} \equiv a^{km} \equiv 1^m \equiv 1 \mod p$ so $a^{p-1} \equiv 1 \mod p$ as required.