

11th meeting of the BRICS Astronomy Working Group

13 to 17 October 2025

Instituto Nacional de Pesquisas Espaciais (INPE) São José dos Campos, São Paulo, Brasil

Multi-Instrument Study of RR Lyrae: Unveiling the Blazhko Effect and Stellar Parameters

Abdelmajid BENHIDA

First Name:	Abdelmajid
Last Name:	BENHIDA
Institution/Affiliation:	Cadi Ayyad University/Oukaimeden Observatory
Country of Residence:	Morocco
Preferred type of presentation	Poster
Will you attend in person or online?	_
Email	a.benhida@uca.ac.ma

Abstract

We present a comprehensive photometric analysis of the RR Lyrae variable star, leveraging 12 years of observations (2009–2021) from Kepler, TESS, and ground-based observatories (Oukaimeden, GEOS). Through advanced frequency analysis, we robustly detect the Blazhko effect with modulation frequency $f_B=0.02560~d^{-1}$, identifying characteristic amplitude and phase modulations and triplet structures (e.g., $f_0\pm f_B$). Key modulation parameters (R1 = 5.41, Q1 = 0.69) reveal asymmetric pulsation behavior. Using asteroseismology, we derive fundamental stellar parameters for KIC 7198959: mass M = 1.26 M \odot , radius R = 1.30 R \odot , log(g) = 4.31 dex, and T_eff = 5020 K, anchored in autocorrelation-based ν_{max} and $\Delta\nu_{measurements}$. Our results validate the synergy of space- and ground-based data—including contributions from amateur observatories—for probing complex stellar phenomena. The decade-spanning dataset confirms the persistent nature of the Blazhko effect and provides critical constraints for future models of RR Lyrae internal structure.