PHẦN NĂM: CÁC BÀI TẬP HỒN HỢP

Bài tập 10. Một hỗn hợp của hai chất lỏng không trộn lẫn được cung cấp cho một bình chứa. Chất lỏng nặng hơn α lắng xuống đáy của bình, chất lỏng nhẹ hơn β tạo thành một lớp bên trên.

Mặt tiếp xúc (giữa α và β và giữa β với không khí) được chỉ rõ bởi các phao nổi và vị trí của chúng được thay đổi bằng cách hiệu chỉnh hai dòng F_{α} và F_{β} . Biết rằng,

$$F_{\alpha} = K_{\alpha} h_{\alpha} \text{ và } F_{\beta} = K_{\beta} (h_{\alpha} + h_{\beta})$$

Dòng cung cấp tổng cộng là F_0 . Tỉ số khối lượng (phân lượng) của chất lỏng α trong dòng cung cấp là x_{α} . Các khối lượng riêng ρ_{α} và ρ_{β} là hằng số. Viết các phương trình cho phép mô tả sự thay đổi chiều cao h_{α} và h_{β} của hệ.

Bài tập 11. Một chất lỏng khối lượng riêng ρ không đổi được bơm vào một thùng chứa dạng nón chiều cao H (do đó, có thể tích tổng cộng là $H\pi R^2/3$) với lưu lượng thể tích F_0 . Giả sử rằng lưu lượng thể tích ra F ở đáy thùng là tỉ lệ với căn bậc hai của chiều cao h=h(t) của chất lỏng đang chiếm chổ trong thùng, $F=K\sqrt{h}$.

Viết phương trình cho phép mô tả sự thay đổi chiều cao h=h(t) mực chất lỏng của hệ? Hoàn chỉnh mô hình động học này để phương trình có thể giải được?