HANDOUT # 3

One Way - Completely Randomized Design

- 1. The Research Design
- 2. Randomization Procedures
- 3. Cell Means Model
- 4. Parameter Estimation (LSE) and Sums of Squares
- 5. Hypotheses Testing
- 6. Analysis of Variance (AOV) Table
- 7. Determining the Necessary Number of Replications
- 8. SAS Code for AOV
- 9. Matrix Form of Cell Means Model
- 10. Effects Model

The Research Design for CRD with 1-Way Treatment Structure

The description of an experiment consists of three components:

1. The Method of Randomization

The method by which the EU's are assigned to the Treatments

In a Completely Randomized Design (CRD), the n experimental units are considered to have no identifiable differences relative to the response. Thus, there is no restrictions on the randomization. The n_i EU's assigned to Treatment # i are n_i randomly selected EU's from the totality of n EU's.

2. The Treatment Structure

How the treatments are constructed

In a one-way treatment structure, the treatments are t distinct methods of performing a process or t distinct populations:

- (a) t populations (t suppliers of raw materials)
- (b) t methods of performing a process (t different ways to teach elementary students how to read)
- (c) t procedures for treating an illness (t drugs or t surgical techniques or t dose levels of the same drug)

3. The Measurement Process

The method by which the response is recorded on the EU after the EU has been randomly to a treatment

- (a) Single measurement on each of the experimental units
- (b) Repeated measurements on experimental unit over time (Longitudinal Measurements): EU (patient or lab animal) is randomly assigned one of 6 possible dose levels (treatment) of a drug . The amount of drug in the blood stream is measured every hour over the next 2 days. A total of 48 measurements per EU.
- (c) Repeated measurements at various locations on experimental unit (Spatial Measurements): Studying three electroplating processes (3 treatments). Six specimens of metal (EU), all uniform in size and thickness, are randomly assigned to each of the 3 electroplating processes (treatments). After electroplating, the thickness of each specimen was measured at three specified locations on the specimen.
- (d) Sub sampling of experimental unit: Turfgrass specialist investigates four root growth stimulators (treatments). Eight similar plots of turfgrass on a golf course are randomly assigned to each of the four stimulators. After a period of time, twenty equally sized cores were randomly selected from the 32 plots and analyzed for root weight.

Randomization Procedure

In a CRD with t treatments and n_i EU's per treatment, the procedure for assignment of EU's to treatments can be conducted as follows:

Case I: For Randomized Treatments in a Designed Experiment

Suppose we have t treatments: A_1, \dots, A_n and n EU's

The $n = n_1 + n_2 + \cdots + n_t$ EU's are considered homogenous relative to characteristics which may affect the response after the treatments have been applied.

- 1. Assign the numbers 1 to n to the experimental units
- 2. Obtain a random permutation of the numbers 1 to n

R code: y < - sample(n,replace=F)

3. Assign the first n_1 EU's in the list to Treatment A_1 , the next n_2 EU's in the list to Treatment A_2 , ..., the last n_t EU's to treatment A_t .

Example: Suppose n = 20, t = 3, $n_1 = 7$, $n_2 = 5$, $n_3 = 8$:

- 1. $EU_1, EU_2, EU_3, EU_4, EU_5, EU_6, EU_7, EU_8, EU_9, EU_{10},$ $EU_{11}, EU_{12}, EU_{13}, EU_{14}, EU_{15}, EU_{16}, EU_{17}, EU_{18}, EU_{19}, EU_{20}$
- 2. Using the R code: sample(20,replace=F) yields

<u>1 15 18 5 4 17 19</u> <u>3 13 10 9 14</u> <u>8 12 20 11 16 6 7 2</u>

3. $A_1: EU_1, EU_{15}, EU_{18}, EU_5, EU_4, EU_{17}, EU_{19}$

 $A_2: EU_3, EU_{13}, EU_{10}, EU_9, EU_{14}$

 $A_3: EU_8, EU_{12}, EU_{20}, EU_{11}, EU_{16}, EU_6, EU_7, EU_2$

Case II: For Comparative Observational Study

Suppose we have t existing populations that we want to compare. For example,

- 1. five manufacturers of fire alarm devices
- 2. six producers of a raw material in the manufacturer of paint
- 3. five types of landscapes in which birds may migrate.

The procedure is to take a simple randomly sample of n_i items (EU's) from Population i. That is, select the units such that every unit in the population has an equal chance of being selected. Then make observations or measurements on the $n = n_1 + \cdots + n_t$ selected items.

Example: Suppose we have 3 manufacturers of fire alarms and we want to compare the reliability of their devices. We want to randomly select 35 devices from the warehouses of each manufacture and assess the reliability of the devices. From the 10,000 fire alarms in the warehouse of Manufacturer 1 randomly select 35 fire alarms.

- 1. Assign the numbers 1 to 10000 to the fire alarms.
- 2. Randomly generate 35 numbers between 1 and 10000.
- 3. Repeat the above for the other two Manufacturers.

SAS code:

```
data randdata;
m=10000;
do i = 1 to m;
random = i;
output;end;drop i;
proc surveyselect data=randdata method = srs n=35 reps = 1 out = sample;
run;
proc print data = sample; var random; run;
```

Output from SAS:

Obs	random	Obs	random	Obs	random	Obs	random
1	392	11	3472	21	6206	31	8966
2	408	12	3511	22	6451	32	9404
3	418	13	3701	23	6764	33	9654
4	615	14	3810	24	7941	34	9753
5	735	15	4083	25	8240	35	9926
6	1102	16	4985	26	8315		
7	1186	17	5061	27	8502		
8	1578	18	5211	28	8677		
9	2197	19	5543	29	8753		
10	3457	20	5883	30	8866		

Cell Means Model

The goals of the CRD are

- 1. To compare the response distributions for the t treatments
- 2. To estimate and place confidence intervals on the parameters for the response distributions for the t treatments: μ_i and σ
- 3. To estimate and place confidence intervals on the effects of the t treatments:

$$\mu_i - \mu_k$$
 for all $i \neq k = 1, \ldots, t$

To accomplish these goals, we set up the following model:

Let y_{ij} be the response from the jth EU observed from treatment i

The Sources of variation in the data, y_{ij} , are

- Between Treatment Differences as measured by differences in the treatment means, μ_i Comparing relative sizes of $\mu_1, \mu_2, \dots, \mu_t$
- Within Treatment Differences as measured by the Random variation about the treatment means, modeled by \mathbf{e}_{ij}

Variation in responses from EU's receiving the same treatments, size of σ_e

Model: $y_{ij} = \mu_i + e_{ij}$ for $i = 1, ..., t; j = i, ..., n_i$ where

- 1. μ_i is the mean response for the *i*th treatment
- 2. e_{ij} 's are iid random variables with standard deviation σ_e
- 3. We will develop tests and C.I.'s for the case where e_{ij} 's have a normal distribution. Alternative approaches will be discussed where the normality condition is not imposed.

A major goal is to test the hypotheses:

$$H_o: \mu_1 = \mu_2 = \dots = \mu_t = \mu$$
 versus $H_1: \mu_i \neq \mu_k$ for at least one pair i, k

We thus have two models depending on which of H_o or H_1 is true:

Under H_o : $y_{ij} = \mu + e_{ij}$ called the **Reduced Model**

Under H_1 : $y_{ij} = \mu_i + e_{ij}$ called the **Full Model**

We can display the difference in the two models when t = 4 using the following graphic from Design of Experiments, by R.O. Kuehl:

$$H_o: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu$$
 versus $H_1: \mu_i \neq \mu_k$ for at least one pair (μ_i, μ_k)

We will obtain estimators of the model parameters μ , μ_i , and σ_e for both models. A test of hypotheses for H_o and H_1 will then be developed. A regression and matrix formulation of these models will also be formulated for the two models.

Parameter Estimation (LSE) and Sums of Squares

Least Squares Estimation of Model Parameters (LSE) for the Full Model:

In the full model, $y_{ij} = \mu_i + e_{ij}$ we have that the residuals are

$$e_{ij} = y_{ij} - \mu_i$$

To obtain the LSE, we select the estimators of μ_i , $\hat{\mu}_i$ which minimizes the objective function, the sum of squares of the sample residuals:

$$Q(\mu_1, \mu_2, \dots, \mu_t) = \sum_{i=1}^t \sum_{j=1}^{n_i} [e_{ij}]^2 = \sum_{i=1}^t \sum_{j=1}^{n_i} [y_{ij} - \mu_i]^2$$

The minimum value of this sum of squares is denoted as the sum of squares error from the full model (SSE_{Full}) :

$$SSE_{Full} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} \hat{e}_{ij}^2 = \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \hat{\mu}_i]^2,$$

where $\hat{e}_{ij} = y_{ij} - \hat{\mu}_i$ are called the *sample residuals* of the fitted model. The population residuals, e_{ij} 's, describe the distribution of the observed responses y_{ij} about the population (treatment) means μ_i .

The LSE's are obtained by a direct application of calculus to the quantity $Q(\mu_1, \ldots, \mu_t) = \sum_{i=1}^t \sum_{j=1}^{n_i} [y_{ij} - \mu_i]^2$,

Take the partial derivative of $Q(\mu_1, \ldots, \mu_t)$ wrt μ_i , set equal to 0, and solve for $\hat{\mu}_i$:

$$\frac{\partial Q(\mu_1, \dots, \mu_t)}{\partial \mu_i} = \frac{\partial}{\partial \mu_i} \sum_{i=1}^{n_i} [y_{ij} - \mu_i]^2 = -2 \sum_{i=1}^{n_i} [y_{ij} - \mu_i]$$

$$\frac{\partial Q(\mu_1, \dots, \mu_t)}{\partial \mu_i} = 0 \Rightarrow -2 \sum_{j=1}^{n_i} [y_{ij} - \hat{\mu}_i] = 0$$

$$\sum_{j=1}^{n_i} y_{ij} - \sum_{j=1}^{n_i} \hat{\mu}_i = 0$$

$$y_{i.} - n_i \hat{\mu}_i = 0$$

$$\hat{\mu}_i = \frac{1}{n_i} y_{i.} = \bar{y}_{i.}$$

Least Squares Estimation of Model Parameters (LSE) for the Reduced Model:

In the reduced model, $\mu_1 = \mu_2 = \cdots = \mu_t = \mu$, hence the model simplifies to $y_{ij} = \mu + e_{ij}$ with corresponding residuals

$$e_{ij} = y_{ij} - \mu$$

To obtain the LSE, we select the estimator of μ , $\hat{\mu}$ which minimizes sum of squares residuals from the reduced

$$Q(\mu) = \sum_{i=1}^{t} \sum_{j=1}^{n_i} [e_{ij}]^2 = \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \mu]^2$$

The minimum value of this sum of squares is denoted as the sum of squares error from the reduced model (SSE_{Red}) :

$$SSE_{Red} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} \hat{e}_{ij}^2 = \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \hat{\mu}]^2,$$

Take the partial derivative of $Q(\mu)$ wrt μ , set equal to 0, and solve for $\hat{\mu}$:

$$\frac{\partial Q(\mu)}{\partial \mu} = \frac{\partial}{\partial \mu} \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \mu]^2 = -2 \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \mu]$$

$$\frac{\partial Q(\mu)}{\partial \mu} = 0 \Rightarrow -2 \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \hat{\mu}] = 0$$

$$\sum_{i=1}^{t} \sum_{j=1}^{n_i} y_{ij} - \sum_{i=1}^{t} \sum_{j=1}^{n_i} \hat{\mu} = 0$$

$$y_{..} - \hat{\mu} \sum_{i=1}^{t} n_i = 0$$

$$y_{..} - \hat{\mu} n = 0$$

$$\hat{\mu} = \frac{1}{n} y_{..} = \bar{y}_{..}$$

Estimation of σ_e for both models

Let σ_i^2 be the variance of the responses from the *ith* distribution. We have imposed the restriction that $\sigma_1 = \sigma_2 = \cdots = \sigma_t = \sigma_e$.

An estimator of σ_i^2 is given by

$$\hat{\sigma}_i^2 = \frac{1}{n_i - 1} \sum_{i=1}^{n_i} [y_{ij} - \bar{y}_{i.}]^2 \quad i = 1, 2, \dots, t$$

These estimators are obtained separately from each of the t population distributions.

From results in STAT 641, we know that

$$E[\hat{\sigma}_i^2] = \sigma_i^2 = \sigma_e^2$$
 for $i = 1, \dots, t$

Therefore, an estimator of σ_e^2 which is unbiased under both the full and reduced model is obtained by pooling the t estimators of σ_e^2 . The t estimators $\hat{\sigma}_i^2$ are all estimators of σ_e^2 . Therefore, create a weighted average of the t estimators:

$$\hat{\sigma}_e^2 = \frac{\sum_{i=1}^t (n_i - 1)\hat{\sigma}_i^2}{\sum_{i=1}^t (n_i - 1)} = \frac{\sum_{i=1}^t \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}{n - t} = \hat{\sigma}_{pooled}^2$$

 $\hat{\sigma}_e^2$ is a pooled measure of the dispersion of the observations about the population mean μ_i in each of the t populations.

The estimator $\hat{\sigma}_e^2$ is an unbiased estimator for σ_e^2 :

$$E[\hat{\sigma}_e^2] = \frac{\sum_{i=1}^t (n_i - 1) E[\hat{\sigma}_i^2]}{\sum_{i=1}^t (n_i - 1)} = \frac{\sum_{i=1}^t (n_i - 1) \sigma_e^2}{n - t} = \frac{\sigma_e^2 \sum_{i=1}^t (n_i - 1)}{n - t} = \sigma_e^2$$

Note:

• If we impose the condition that the y_{ij} s are distributed independent $N(\mu_i, \sigma_e^2)$, then we have that

 $(n-t)\hat{\sigma}_e^2/\sigma_e^2$ has a Chi-square distribution with df= n-t

• $\hat{\sigma}_e$ is a **biased** estimator of σ_e , in fact,

$$E[\hat{\sigma}_e] = \left[\sqrt{\frac{2}{n-t}} \frac{\Gamma\left(\frac{n-t+1}{2}\right)}{\Gamma\left(\frac{n-t}{2}\right)} \right] \sigma$$

Sums of Squares

In developing a test statistic for testing

$$H_o: \mu_1 = \mu_2 = \cdots = \mu_t = \mu$$
 versus $H_1: \mu_i \neq \mu_k$ for some $i \neq k$

we will use the ideas of Analysis of Variance (AOV). Although we are testing hypotheses about differences in means, μ_i , we will examine the variation in the y_{ij} 's and create a partition of the total variation in the y_{ij} 's about the overall mean $\bar{y}_{...}$ into two components.

$$SS_{TOT} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

The **first component** is the amount of variation in the treatment sample means which we obtain by comparing the change in the residual sum of squares from the full model, $y_{ij} = \mu_i + e_{ij}$, to the reduced model, $y_{ij} = \mu_i + e_{ij}$, that is, the sum of squares due to differences in the treatment means:

$$SS_{TRT} = SSE_{RED} - SSE_{FULL}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu})^2 - \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu}_i)^2$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 - \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} [(y_{ij}^2 - 2y_{ij}\bar{y}_{..} + \bar{y}_{..}^2) - (y_{ij}^2 - 2y_{ij}\bar{y}_{i.} + \bar{y}_{i.}^2)]$$

$$= \sum_{i=1}^{t} [-2\bar{y}_{..} \sum_{j=1}^{n_i} y_{ij} + n_i \bar{y}_{..}^2 + 2\bar{y}_{i.} \sum_{j=1}^{n_i} y_{ij} - n_i \bar{y}_{i.}^2]$$

$$= \sum_{i=1}^{t} [-2\bar{y}_{..} n_i \bar{y}_{i.} + n_i \bar{y}_{..}^2 + 2n_i \bar{y}_{i.}^2 - n_i \bar{y}_{i.}^2]$$

$$= \sum_{i=1}^{t} n_i [\bar{y}_{i.}^2 - 2\bar{y}_{i.}\bar{y}_{..} + \bar{y}_{..}^2]$$

$$= \sum_{i=1}^{t} n_i (\bar{y}_{i.} - \bar{y}_{..})^2$$

 SS_{TRT} measures the amount of variation in the y_{ij} "explained" by the size of differences in

Treatment means: $\mu_1, \mu_2, \dots, \mu_t$

_

The **second component** in SS_{TOT} is the amount of variation within the t populations:

$$SSE = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 = SSE_{FULL}$$

SSE measures the amount of variation in y_{ij} "within" each of the t population. It is just the numerator of our estimator of σ_e^2 .

The two sum of squares form the Fundamental Partition of the total sum of squares:

$$SS_{TOT} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.} + \bar{y}_{i.} - \bar{y}_{..})^2$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 + \sum_{i=1}^{t} \sum_{j=1}^{n_i} (\bar{y}_{i.} - \bar{y}_{..})^2 + 2 \sum_{i=1}^{t} (\bar{y}_{i.} - \bar{y}_{..}) \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 + \sum_{i=1}^{t} n_i (\bar{y}_{i.} - \bar{y}_{..})^2 + 0$$

$$= SSE + SS_{TRT}$$

Remarks:

- 1. SS_{TRT} is often referred to as
 - (a) Sum of Squares Model in regression analysis
 - (b) Sum of Squares Between or Sum of Squares Due to Treatments in Analysis of Variance (AOV)
- 2. In regression analysis, SS_{TRT} measures the amount of variation in the data, y_{ij} s "explained by the model"
- 3. In AOV, SS_{TRT} evaluates the amount of difference in $\mu_1, \mu_2, \dots, \mu_t$: $(\mu_i \mu)$, where $\mu = \frac{1}{t} \sum_{i=1}^t \mu_i$, because $(\mu_i \mu)$ is estimated by $(\bar{y}_{i.} \bar{y}_{..})$

4. SSE is referred to as Sum of Squares Residuals or Sum of Squares Within or Sum of Squares Error. It measures the size of the variation within each of the t populations, σ_i s, because we are working in the situation that $\sigma_1 = \sigma_2 = \cdots = \sigma_t = \sigma_e$.

Thus, SSE is just the pooled measure of the t measures of variation, $\hat{\sigma}_i$ s:

$$SSE = \sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$
$$= \sum_{i=1}^{t} (n_i - 1)\hat{\sigma}_i^2, \text{ where}$$

$$\hat{\sigma}_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2$$

are the individual estimators of σ_e^2 obtained from each of the t samples.

Degrees of Freedom

The sums of squares have another component referred to as Degrees of Freedom (df). The value of df for a given sum of squares is thought as the number of independent components in the sum. We will consider df for the following four sum of squares:

1. Uncorrected Sum of Squares: $\sum_{i=1}^t \sum_{i=1}^{n_i} y_{ij}^2$

Because the y_{ij} 's have no restrictions

- $df_{UTOT} = n$
- 2. Corrected Total Sum of Squares: $\sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} \bar{y}_{..})^2$

There is a restriction on the terms, that is, $\sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..}) = 0$.

This implies that
$$(y_{tn_t} - \bar{y}_{..}) = -\sum_{i=1}^{t-1} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..}) - \sum_{j=1}^{n_t-1} (y_{tj} - \bar{y}_{..})$$

Hence, there are only (n-1) independent terms in the sum.

- $df_{TOT} = n 1$
- 3. Sum of Squares Error: $\sum_{i=1}^{t} \sum_{j=1}^{n_i} (y_{ij} \bar{y}_{i.})^2$

There are t restriction on the terms, that is, for each i = 1, ..., t: $\sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.}) = 0$.

We observe that $(y_{i,n_i} - \bar{y}_{i.}) = -\sum_{j=1}^{n_i-1} (y_{ij} - \bar{y}_{i.})$. Thus, there are only

 $\sum_{i=1}^{t} (n_i - 1) = \sum_{i=1}^{t} n_i - \sum_{i=1}^{t} 1 = n - t \text{ independent terms in the sum.}$

- $df_E = n t$
- 4. Sum of Squares Treatment: $\sum_{i=1}^{t} n_i (\bar{y}_{i.} \bar{y}_{..})^2$

There is a restriction on the terms since

$$\sum_{i=1}^{t} n_i (\bar{y}_{i.} - \bar{y}_{..}) = \sum_{i=1}^{t} n_i \bar{y}_{i.} - \sum_{i=1}^{t} n_i \bar{y}_{..} = \sum_{i=1}^{t} \sum_{j=1}^{n_i} y_{ij} - \bar{y}_{..} \sum_{i=1}^{t} n_i = n\bar{y}_{..} - n\bar{y}_{..} = 0.$$

Hence,
$$n_t(\bar{y}_{t.} - \bar{y}_{..}) = -\sum_{i=1}^{t-1} n_i(\bar{y}_{i.} - \bar{y}_{..})$$
.

Thus, there are only (t-1) independent terms in the sum.

 $\bullet df_{TRT} = t - 1$

ullet An alternative approach for determining $df_{TRT}=t-1$ is obtained using the fact that

$$SS_{TRT} = SSE_{RED} - SSE_{FULL}$$
 and noting that

$$SSE_{RED} = SS_{TOT}$$
 with

$$df_{TOT} = n - 1$$
 and

$$SSE_{FULL} = SSE$$

with
$$df_E = n - t$$
.

Thus,

$$df_{TRT} = (n-1) - (n-t) = t-1$$

Expected Values of the Model Mean Squares

The **Mean Squares** for the terms in the Fundamental Decomposition of the sum of squares total are obtained by dividing the SS's by their corresponding df's. The MS's are in some sense the *average* sum of squares for the two components:

- 1. Mean Square Treatment: $MS_{TRT} = SS_{TRT}/df_{TRT} = \frac{SS_{TRT}}{t-1}$
- 2. Mean Square Error: $MSE = SSE/df_E = \frac{SSE}{n-t}$

Next we compute the expected value of the Mean Squares

$$y_{ij} = \mu_i + e_{ij} \Rightarrow \bar{y}_{i.} = \mu_i + \bar{e}_{i.} \text{ and } \bar{y}_{..} = \bar{\mu}_{.} + \bar{e}_{..} \text{ with } \bar{\mu}_{.} = \frac{1}{n} \sum_{i=1}^{t} n_i \mu_i$$

Recall the following from STAT 610 or 630:

1.
$$E[X^2] = Var(X) + (E[X])^2 \implies E[X^2] = Var(X)$$
 when $E[X] = 0$

2. $Var[cX] = c^2 Var(X)$, when c is a constant

3.
$$E[e_{ij}] = 0 \Rightarrow E[e_{i.}] = E\left[\sum_{j=1}^{n_i} e_{ij}\right] = \sum_{i=1}^{n_i} E[e_{ij}] = 0$$

and similarly $E[e_{..}] = E\left[\sum_{i=1}^{t} \sum_{j=1}^{n_i} e_{ij}\right] = 0$

Using the fact that the e_{ij} 's are independent we have

4.
$$E[e_{ij}] = 0 \implies E[e_{ij}^2] = Var(e_{ij}) = \sigma_e^2 \implies$$

$$E[\bar{e}_{i.}^2] = Var(\bar{e}_{i.}) = Var(\frac{1}{n_i} \sum_{i=1}^{n_i} e_{ij}) = \frac{1}{n_i^2} \sum_{i=1}^{n_i} Var(e_{ij}) = \frac{1}{n_i^2} \sum_{i=1}^{n_i} \sigma_e^2 = \frac{1}{n_i^2} n_i \sigma_e^2 = \frac{\sigma_e^2}{n_i}$$
Similarly, we have

$$E[\bar{e}_{..}^{2}] = Var(\bar{e}_{..}) = Var\left(\frac{1}{n}\sum_{i=1}^{t}\sum_{j=1}^{n_{i}}e_{ij}\right) = \frac{1}{n^{2}}\sum_{i=1}^{t}\sum_{j=1}^{n_{i}}Var(e_{ij})$$

$$= \frac{1}{n^{2}}\sum_{i=1}^{t}\sum_{j=1}^{n_{i}}\sigma_{e}^{2}$$

$$= \frac{1}{n^{2}}\sigma_{e}^{2}\sum_{i=1}^{t}n_{i}$$

$$= \frac{\sigma_{e}^{2}}{n}$$

We will now use the above to obtain the expected mean squares.

Expected Mean Square Error:

$$SSE = \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} [y_{ij} - \bar{y}_{i.}]^{2}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} [(\mu_{i} + e_{ij}) - (\mu_{i} + \bar{e}_{i.})]^{2}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} [e_{ij} - \bar{e}_{i.}]^{2}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} [e_{ij}^{2} - 2e_{ij}\bar{e}_{i.} + \bar{e}_{i.}^{2}]$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} e_{ij}^{2} - 2\sum_{i=1}^{t} \bar{e}_{i.} \sum_{j=1}^{n_{i}} e_{ij} + \sum_{i=1}^{t} \bar{e}_{i.}^{2} \sum_{j=1}^{n_{i}} 1$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} e_{ij}^{2} - 2\sum_{i=1}^{t} \bar{e}_{i.} n_{i} \bar{e}_{i.} + \sum_{i=1}^{t} \bar{e}_{i.}^{2} n_{i}$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_{i}} e_{ij}^{2} - \sum_{i=1}^{t} n_{i} \bar{e}_{i.}^{2}$$

$$E[SSE] = \sum_{i=1}^{t} \sum_{j=1}^{n_i} E[e_{ij}^2] - \sum_{i=1}^{t} n_i E[\bar{e}_{i.}^2]$$

$$= \sum_{i=1}^{t} \sum_{j=1}^{n_i} \sigma_e^2 - \sum_{i=1}^{t} n_i \frac{\sigma_e^2}{n_i}$$

$$= n\sigma_e^2 - t\sigma_e^2$$

$$= \sigma_e^2 (n - t)$$

$$E[MSE] = \frac{1}{(n-t)}E[SSE] = \sigma_e^2$$

This result holds under both H_o and H_1 .

Expected Mean Square Treatment:

From the model: $y_{ij} = \mu_i + e_{ij}$ implies $\bar{y}_{i.} = \mu_i + \bar{e}_{i.}$ and $\bar{y}_{..} = \mu_{.} + \bar{e}_{..}$. Thus, we have

$$SS_{TRT} = \sum_{i=1}^{t} n_{i}(\bar{y}_{i.} - \bar{y}_{..})^{2}$$

$$= \sum_{i=1}^{t} n_{i}[(\mu_{i} - \bar{\mu}_{.}) + (\bar{e}_{i.} - \bar{e}_{..})]^{2}$$

$$= \sum_{i=1}^{t} n_{i}(\mu_{i} - \bar{\mu}_{.})^{2} + \sum_{i=1}^{t} n_{i}(\bar{e}_{i.} - \bar{e}_{..})^{2} + 2\sum_{i=1}^{t} n_{i}(\mu_{i} - \bar{\mu}_{.})(\bar{e}_{i.} - \bar{e}_{..})$$

We also note that $\bar{e}_{..} = \frac{1}{n} \sum_{i=1}^{t} \sum_{j=1}^{n_i} e_{ij} = \frac{1}{n} \sum_{i=1}^{t} n_i \bar{e}_{i.} \implies n\bar{e}_{..} = \sum_{i=1}^{t} n_i \bar{e}_{i.} \Rightarrow \sum_{i=1}^{t} n_i (\bar{e}_{i.} - \bar{e}_{..})^2 = \sum_{i=1}^{t} n_i \bar{e}_{i.}^2 - n\bar{e}_{..}^2$

It then follows that

$$E[SS_{TRT}] = \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2} + E\left[\sum_{i=1}^{t} n_{i} (\bar{e}_{i.} - \bar{e}_{..})^{2}\right] + 2E\left[\sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.}) (\bar{e}_{i.} - \bar{e}_{..})\right]$$

$$= \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2} + E\left[\sum_{i=1}^{t} n_{i} \bar{e}_{i.}^{2} - n\bar{e}_{..}^{2}\right] + 2E\left[\sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.}) (\bar{e}_{i.} - \bar{e}_{..})\right]$$

$$= \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2} + \sum_{i=1}^{t} n_{i} E[\bar{e}_{i.}^{2}] - nE[\bar{e}_{..}^{2}] + 2\left[\sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.}) (E(\bar{e}_{i.}) - E(\bar{e}_{..}))\right]$$

$$= \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2} + \left(\sum_{i=1}^{t} n_{i} \frac{\sigma_{e}^{2}}{n_{i}}\right) - n\frac{\sigma_{e}^{2}}{n} + 2(0)$$

$$= \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2} + (t - 1)\sigma_{e}^{2}$$

$$E[MS_{TRT}] = \frac{1}{(t-1)} E[SS_{TRT}] = \sigma_e^2 + \theta_{TRT}$$
 where $\theta_{TRT} = \frac{1}{t-1} \sum_{i=1}^t n_i (\mu_i - \bar{\mu}_i)^2$

Note that under H_o : $\mu_i = \mu = \bar{\mu}$, which yields

$$\theta_{TRT} = \frac{1}{t-1} \sum_{i=1}^{t} n_i (\mu_i - \bar{\mu}_i)^2 = 0$$

We have thus shown that

$$E_{H_o}[MS_{TRT}] = \sigma_e^2$$
 and $E_{H_1}[MS_{TRT}] = \sigma_e^2 + \theta_{TRT}$

where $\theta_{TRT} \geq 0$.

Thus,

$$E_{H_1}[MS_{TRT}] \ge E_{H_0}[MS_{TRT}] = E[MSE]$$

Therefore, if MS_{TRT} and MSE are nearly the same in size we would tend to believe that H_o is true.

However, if MS_{TRT} is much larger than MSE then we would tend to believe that H_1 is true.

With the above motivation our test statistic for testing

$$H_o: \mu_1 = \mu_2 = \dots = \mu_t = \mu$$
 versus $H_1: \mu_i \neq \mu_k$ for at least one pair (i, k) is $F = \frac{MS_{TRT}}{MSE}$

We will reject H_o in favor of H_1 when F is large.

We must next determine the sampling distribution of F under both null and alternative hypotheses in order to set critical values, compute p-values, compute power curves, and determine an appropriate number of replications.

In STAT 630 or STAT 611, it will be shown that this ratio is essentially the Likelihood Ratio test statistic for this situation.

All the previous results concerning LSE, partition of sums of squares, expectation of sums of squares, and using the F-ratio only required that the e_{ij} 's were iid with mean 0 and finite variance σ_e^2 .

The LSE of μ_i 's, $\hat{\mu}_i = \bar{y}_i$, are Best Linear Unbiased Estimators (BLUE). The author on page 47 in the class textbook states "If the experimental errors are independent with a mean of zero and have homogeneous variances, the LSE are unbiased with minimum variance (UMVUE). This is not true. The LSE are UMVUE only if the e_{ij} 's are iid with a normal distribution.

We will now impose the condition that e_{ij} 's have a $N(0, \sigma_e^2)$ distribution. We will verify at a later point in this handout the following distributional results:

- 1. SSE/σ_e^2 has a chi-square distribution with df = n t
- 2. SS_{TRT}/σ_e^2 has a non-central Chi-square distribution with df = t 1 and non-centrality parameter

$$\lambda = \frac{\sum_{i=1}^{t} n_i (\mu_i - \bar{\mu}_.)^2}{\sigma_e^2} = \frac{(t-1)\theta_{TRT}}{\sigma_e^2}$$

When $H_o: \mu_1 = \mu_2 = \cdots = \mu_t = \mu$, is true, we have $\lambda = 0$ and SS_{TRT}/σ_e^2 has a central chi-square distribution.

3. In many linear model books, the non-centrality parameter is given with a 2 in the denominator:

$$\lambda^* = \frac{\sum_{i=1}^t n_i (\mu_i - \bar{\mu}_{\cdot})^2}{2\sigma_e^2}$$

To be consistent with our textbook and the software packages SAS and R, we will use the expression without 2 in the denominator.

- 4. Note that the df associated with MSE and MS_{TRT} are the same as the df for the corresponding chi-square distribution.
- 5. $\lambda = 0$ if and only if $H_o: \mu_1 = \mu_2 = \cdots = \mu_t = \mu$ is true.
- 6. SSE and SS_{TRT} are independently distributed
- 7. Under H_o : $F = \frac{MS_{TRT}}{MSE}$ has a central F-distribution with df = t 1; n t
- 8. Under H_1 : $F = \frac{MS_{TRT}}{MSE}$ has a noncentral F-distribution with df = t 1; n t and noncentrality parameter $\lambda^* = \frac{\sum_{i=1}^t n_i (\mu_i \bar{\mu}_i)^2}{\sigma_e^2} = \frac{(t-1)\theta_{TRT}}{\sigma_e^2}$ with $\bar{\mu}_i = \frac{1}{n} \sum_{i=1}^t n_i \mu_i$.
- 9. Once we prove that SSE/σ_e^2 and SS_{TRT}/σ_e^2 have chisquare distributions, the expectations of MSE and MS_{TRT} can be obtained by noting that if G has a chisquare distribution with df = k and noncentrality parameter λ then

$$E[G] = k + \lambda$$

$$Var[G] = 2k + 4\lambda$$

Note: A non-central F distribution can defined as follows:

- 1. If X_1, \dots, X_{ν_1} are independent $N(\mu_i, \sigma_i^2)$ r.v.'s, then $D = \sum_{1}^{\nu_1} X_i^2 / \sigma_i^2$, has a non-central chi-square distribution with $df = \nu_1$ and noncentrality parameter (ncp) $\lambda = \sum_{1}^{\nu_1} \frac{\mu_i^2}{\sigma_i^2}$
- 2. Let W have a central chi-square distribution with $df = \nu_2$
- 3. If D and W are independent with distributions given in (1.) and (2.), then F = D/W has a non-central F distribution with $df = \nu_1, \nu_2$ and $ncp = \lambda$.
- 4. If $\lambda = 0$, i.e., $\mu_i = 0$ for $i = 1, 2, ..., \nu_1$, then
- D has a central chi-square distribution and hence
- F has a central F distribution

We can now set up the rejection region and compute the power function for a test of

$$H_o: \mu_1 = \mu_2 = \cdots = \mu_t = \mu$$
 versus $H_1: \mu_i \neq \mu_k$ for at least one pair i, k

Test Statistic:

$$F = \frac{(SSE_{Red} - SSE_{Full})/(df_{Red} - df_{Full})}{MSE_{Full}} = \frac{MS_{TRT}}{MSE}$$

The test statistic is measuring the average reduction in the sum of squares residuals obtained by including terms in the model which allow a difference in the treatment means relative to a model in which the means are constrained to be equal, that is, $y_{ij} = \mu_i + e_{ij}$ vs $y_{ij} = \mu + e_{ij}$

Decision Rule: Reject H_o in favor of H_1 if $F \geq F_{\alpha,\nu_1,\nu_2}$, where $\nu_1 = t-1$ and $\nu_2 = n-t$.

We compute the p-value for the test statistic as

$$p - value = P[F_{\nu_1, \nu_2} \ge F] = 1 - G(F)$$

where F_{ν_1,ν_2} is a random variable with an F-distribution, $df = \nu_1, \nu_2$, F is the value of the test statistic computed from the observed data, and $G(\cdot)$ is the cdf of an F-distribution with $df = \nu_1, \nu_2$, where $\nu_1 = t - 1, \nu_2 = n - t$. To compute the p-value, there are tables in the back of the textbook, or

use the R function: $1 - pf(F, \nu_1, \nu_2)$ or the SAS function: $1 - PROBF(F, \nu_1, \nu_2)$.

The above results are all summarized in an AOV table:

Source of Variation	df	Sum of Squares	Mean Square	F	p-value
Treatment Error Total	t-1 n-t n-1	$SS_{TRT} \ SSE \ SS_{TOT}$	$\frac{SS_{TRT}}{t-1}$ $\frac{SSE}{n-t}$	$\frac{MS_{TRT}}{MSE}$	1-G(F)

In the special case where t=2, the F test is equivalent to the pooled t test:

$$t = \frac{\bar{y}_{1.} - \bar{y}_{2.}}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Verify that $t^2 = F$ and that the rejection region:

$$|t| \geq t_{\alpha/2,n-t}$$
 is equivalent to $F \geq F_{\alpha,1,n-t}$

CRD AOV - EXAMPLE

The following example is modified from *Design of Experiments* by Kuehl, will be used to illustrate the SAS code and output needed to obtain the AOV for a CRD with a 1-way treatment structure.

The shelf life of stored meats is the time a prepackaged cut remains salable, safe, and nutritious. Standard packaging in ambient air atmosphere has a shelf life of about 48 hours after which the meat quality begins to deteriorate from microbial contamination, color degradation, and shrinkage. Vacuum packaging is effective in suppressing microbial growth; however, other quality losses remain a problem.

Recent studies suggested controlled gas atmospheres as possible alternatives to existing packagings. Two atmospheres which promise to combine the capability for suppressing microbial development while maintaining other meat qualities were (1) pure carbon dioxide (CO_2), and (2) mixtures of carbon monoxide (CO_2), oxygen (O_2), and nitrogen (N).

Based on this new information the investigator hypothesized that some form of controlled gas atmosphere would provide a more effective packaging environment for meat storage. The researcher decides to study the effectiveness of four packaging environments:

Method I: Ambient air in a commercial plastic wrap

Method II: A vacuum

Method III: Mixture of gases - 1% CO, 40% O₂, and 59% N

Method IV: 100% CO₂

A complete randomized design was used for the experiment. Three, four or five beef steaks of approximately the same size (75g) were randomly assigned to each of the packaging conditions. The randomization method is demonstrated in the following table. Each steak was packaged separately in its assigned conditions. The number of psychrotrophic bacteria found on the meat after nine days of storage at $4^{\circ}C$ in a standard meat storage facility was recorded for each of the twelve packages. The response variable is the log of the bacteria concentration on the meat: $\log(\text{count/cm}^2)$.

Steak	Treatment	Obser.	Log(count/cm ²)	y_{ij}	Model value
1	ΜI	1	7.66	y_{11}	$\frac{\mu_1 + e_{11}}{\mu_1 + e_{11}}$
12	M I	2	6.98	y_{12}	$\mu_1 + e_{12}$
7	M I	3	7.80	y_{13}	$\mu_1 + e_{13}$
13	M II	1	5.26	y_{21}	$\mu_2 + e_{21}$
5	M II	2	5.44	y_{22}	$\mu_2 + e_{22}$
3	M II	3	5.80	y_{23}	$\mu_2 + e_{23}$
10	M III	1	7.41	y_{31}	$\mu_3 + e_{31}$
9	M III	2	7.33	y_{32}	$\mu_3 + e_{32}$
2	M III	3	7.04	y_{33}	$\mu_3 + e_{33}$
15	M III	4	7.59	y_{34}	$\mu_3 + e_{34}$
8	M IV	1	3.51	y_{41}	$\mu_4 + e_{41}$
4	M IV	2	2.91	y_{42}	$\mu_4 + e_{42}$
11	M IV	3	3.66	y_{43}	$\mu_4 + e_{43}$
6	M IV	4	2.87	y_{44}	$\mu_4 + e_{44}$
14	M IV	5	3.04	y_{45}	$\mu_4 + e_{45}$

SAS Program: storage.SAS

```
ods html; ods graphics on;
option ls=75 ps=50 nocenter nodate;
title 'Storage of meat by four methods';
data old;
array Y Y1-Y5;
input T $ Y1-Y5;
do over Y;
TCOUNT=Y;
output; end; drop Y1-Y5;
cards;
COMM 7.66 6.98 7.80 .
VAC 5.26 5.44 5.80 .
MIXED 7.41 7.33 7.04 7.59 .
CO2 3.51 2.91 3.66 2.87 3.04
proc boxplot;
plot TCOUNT*T;
RUN;
proc glimmix data=old order=data;
class T;
model TCOUNT=T/solutions;
lsmeans T/plot = meanplot cl ;
proc glm data=old order=data;
class T;
model TCOUNT=T/solutions;
lsmeans T/stderr cl ;
means T/HOVTEST=bf;
output out=ASSUMP R=RESID P=PRED;
proc univariate def=5 plot normal; var RESID;
run;
ods graphics off; ods html close;
```


Storage of meat by four methods $% \left\{ 1,2,...,n\right\}$

The GLM Procedure

Class Level Information

Class Levels Values

T 4 CO2 COMM MIXED VAC

Dependent Variable: TCOUNT

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	51.62044500	17.20681500	155.17	<.0001
Error	11	1.21975500	0.11088682		
O T 7	4.4	FO 04000000			

Corrected Total 14 52.84020000

R-Square Coeff Var Root MSE TCOUNT Mean 0.976916 5.925209 0.332997 5.620000

Parameter		Estimate		Standard Error	t Value	Pr > t
Intercept		3.198000000	В	0.14892066	21.47	<.0001
T	COMM	4.282000000	В	0.24318642	17.61	<.0001
T	VAC	2.302000000	В	0.24318642	9.47	<.0001
T	MIXED	4.144500000	В	0.22338099	18.55	<.0001
T	C02	0.00000000	В			

Level of		TCO	JNT
T	N	Mean	Std Dev
C02	5	3.19800000	0.36272579
COMM	3	7.48000000	0.43863424
MIXED	4	7.34250000	0.22911060
VAC	3	5.50000000	0.27495454

Least Squares Means

	TCOUNT	Standard		
T	LSMEAN	Error	95% Confide	nce Limits
COMM	7.480000	.1923	7.056848	7.903152
VAC	5.500000	.1923	5.076848	5.923152
MIXED	7.342500	.1665	6.976040	7.708960
C02	3.198000	.1489	2.870228	3.525772

Brown and Forsythe's Test for Homogeneity of TCOUNT Variance $$\operatorname{ANOVA}$$ of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
T	3	0.0454	0.0151	0.26	0.8552
Error	11	0.6486	0.0590		

The UNIVARIATE Procedure

Variable: RESID

Moments

N	15	Sum Weights	15
IV	10	Dum weights	13
Mean	0	Sum Observations	0
Std Deviation	0.29517005	Variance	0.08712536
Skewness	-0.0634278	Kurtosis	-1.2832322
Uncorrected SS	1.219755	Corrected SS	1.219755
Coeff Variation		Std Error Mean	0.07621258

Basic Statistical Measures

Location Variability

Mean	0.00000	Std Deviation	0.29517
Median	-0.01250	Variance	0.08713
Mode		Range	0.96200
		Interquartile Range	0.58800

Tests for Location: Mu0=0

Test	-Sta	tistic-	p Value		
Student's t	t	0	Pr > t	1.0000	
Sign	M	-0.5	Pr >= M	1.0000	
Signed Rank	S	1	Pr >= S	0.9780	

Tests for Normality

Test	Sta	tistic	p Value	
Shapiro-Wilk	W	0.946881	Pr < W	0.4767
Kolmogorov-Smirnov	D	0.132458	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.053968	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.348094	Pr > A-Sq	>0.2500

Variable: RESID

Stem	Leaf	#	Boxplot
4	6	1	
2	5012	4	++
0	78	2	+
-0	661	3	**
-2	3094	4	++
-4	0	1	1
	+		

Multiply Stem.Leaf by 10**-1

R Code - AOV and LSMEAN with C.I.

```
install.packages("lsmeans")
install.packages("ggplot2")
library(lsmeans)
library(ggplot2)
# specify the treatments as a "stacked" data set
treatment = as.factor(c(rep("COMM", 3), rep("VAC", 3), rep("MIXED", 4), rep("CO2", 5)))
# specify the counts as a "stacked" data set
counts = c(7.66, 6.98, 7.80, 5.26, 5.44, 5.80, 7.41, 7.33, 7.04, 7.59, 3.51, 2.91, 3.66, 2.87, 3.04)
# create a data frame of the treatments and counts
data = data.frame(T=treatment, TCOUNT=counts)
# produce a linear model of the counts as a function of treatment
model = lm(TCOUNT ~ T, data=data)
summary(model)
# produce the AOV table
A = aov(model)
summary(A)
\# produce plot of 1smeans with 95% C.I. on Population Means
lsmeans(model, "T")
T.LSmeans = lsmeans(model, "T")
df.TLSmeans = as.data.frame(summary(T.LSmeans))
limits = aes(ymax = lsmean-qt(p=0.05/2,df=df)*SE, ymin = lsmean+qt(p=0.05/2,df=df)*SE)
qplot(data=df.TLSmeans, x=T, y=lsmean) + geom_errorbar(limits)
```

Inferences About Model Parameters

After conducting the F-test, it is necessary to measure the size of the differences in the treatment means and to place confidence intervals on the various model parameters.

- 1. Estimation of σ_e^2 :
 - (a) Point Estimator: $\hat{\sigma}_e^2 = MSE$
 - (b) Confidence Interval: A $100(1-\alpha)\%$ confidence interval for σ_e is given by

$$\left(\sqrt{\frac{(n-t)\hat{\sigma}_e^2}{\chi_{\alpha/2,n-t}^2}},\sqrt{\frac{(n-t)\hat{\sigma}_e^2}{\chi_{1-\alpha/2,n-t}^2}}\right),$$

where $\chi^2_{\alpha/2,n-t}$ and $\chi^2_{1-\alpha/2,n-t}$ are the upper $\alpha/2$ and $(1-\alpha/2$ percentiles from a chisquared distribution with df=n-t.

- 2. Estimation of μ_i :
 - (a) Point Estimator: $\hat{\mu}_i = \bar{y}_i$ with $\widehat{SE}(\hat{\mu}_i) = \sqrt{Var(\hat{\mu}_i)} = \frac{\hat{\sigma}_e}{\sqrt{n_i}}$
 - $\hat{\mu}_i$ is BLUE in general and MLE & UMVUE if we assume e_{ij} are iid $N(0, \sigma_e^2)$
 - (b) Confidence Interval: A $100(1-\alpha)\%$ confidence interval for μ_i is given by

$$\hat{\mu}_i \pm t_{\alpha/2,n-t} \widehat{SE}(\hat{\mu}_i) = \bar{y}_{i.} \pm t_{\alpha/2,n-t} \frac{\hat{\sigma}_e}{\sqrt{n_i}},$$

where $t_{\alpha/2,n-t}$ is the upper $\alpha/2$ percentile from a t-distribution with df = n - t.

- 3. Estimation of treatment effects: $\mu_i \mu_k$:
 - (a) Point Estimator: $\hat{\mu}_i \hat{\mu}_k = \bar{y}_{i.} \bar{y}_{k.}$ with $\widehat{SE}(\hat{\mu}_i \hat{\mu}_k) = \sqrt{\frac{\hat{\sigma}_e^2}{n_i} + \frac{\hat{\sigma}_e^2}{n_k}}$
 - (b) Confidence Interval: A $100(1-\alpha)\%$ confidence interval for $\mu_i \mu_k$ is given by

$$\hat{\mu}_i - \hat{\mu}_k \pm t_{\alpha/2, n-t} \ \widehat{SE}(\hat{\mu}_i - \hat{\mu}_k) = \bar{y}_{i.} - \bar{y}_{k.} \pm t_{\alpha/2, n-t} \hat{\sigma}_e \sqrt{\frac{1}{n_i} + \frac{1}{n_k}},$$

where $t_{\alpha/2,n-t}$ is the upper $\alpha/2$ percentile from a t-distribution with df = n - t.

One problem with the confidence intervals for $\mu_i - \mu_k$ is that we have a large number of such intervals. In fact, there are $\binom{t}{2} = \frac{t(t-1)}{2}$ such intervals. We will develop in Handout 4 simultaneous confidence intervals for $\mu_i - \mu_k$ such that the level of confidence is $100(1-\alpha)\%$ for all such intervals not just for the individual intervals.

We will now demonstrate these methods using the meat storage example:

1. Estimation of σ_e^2 :

(a) Point Estimator:
$$\hat{\sigma}_e^2 = MSE = 0.11089 \implies \hat{\sigma}_e = \sqrt{0.11089} = 0.333$$

(b) Confidence Interval: A 95% confidence interval for σ_e is given by

$$\left(\sqrt{\frac{(n-t)\hat{\sigma}_e^2}{\chi_{\alpha/2,n-t}^2}}, \sqrt{\frac{(n-t)\hat{\sigma}_e^2}{\chi_{1-\alpha/2,n-t}^2}}\right) = \left(\sqrt{\frac{(15-4)(.11089)}{21.920}}, \sqrt{\frac{(15-4)(.11089)}{3.816}}\right) = (.236, .565)$$

2. Estimation of μ_i , Point Estimators and 95% Confidence Intervals for μ_i :

$$\hat{\mu}_i = \bar{y}_{i.}$$
 and 95% C.I. is $\bar{y}_{i.} \pm t_{\alpha/2,n-t} \frac{\hat{\sigma}_e}{\sqrt{n_i}}$

$$t_{.025,11} = 2.201$$
 $\hat{\sigma}_e = \sqrt{.11089} = .333$

	TREATMENT			
	CO2	COMM	MIXED	VAC
n_i	5	3	4	3
$\hat{\mu}_i$	3.198	7.480	7.3425	5.50
$t_{11,.025} \frac{\hat{\sigma}_e}{\sqrt{n_i}}$.328	.423	.366	.423
95% C.I.	$3.198 \pm .328$	$7.480 \pm .423$	$7.3425 \pm .366$	$5.50 \pm .423$
	(2.87, 3.53)	(7.06, 7.90)	(6.98, 7.71)	(5.08, 5.92)

3. Is there a significant difference in the 4 Treatment means?

From the AOV table we have F = 155.17 with

$$p-value = P[F_{3,11} \ge 155.17] = 1 - pf(155.17, 3, 11) = 2.78 \times 10^{-9}.$$

Thus, there is significant evidence of a difference in the four treatment means. The next step would be to determine what type of difference exists in the means. Handout 4 will deal with this subject.

Power Calculations and Sample Size Determination

In order to assess whether the AOV F-test has sufficient ability to detect specified regions in the alternative hypothesis and to determine the appropriate number of replications we need to determine the power function for the AOV F-test.

We have stated that $F = \frac{MS_{TRT}}{MSE}$ has a noncentral F-distribution with df = t - 1, n - t and noncentrality parameter

$$\lambda = \frac{\sum_{i=1}^{t} n_i (\mu_i - \bar{\mu}_{\cdot})^2}{\sigma_e^2}$$

Thus, the power function is given by

$$\begin{split} \gamma(\lambda) &= P[\text{reject } H_o \text{ for a specified value of } \lambda] \\ &= P[F \geq F_{\alpha,t-1,n-t}] \\ &= 1 - G_{\lambda}(F_{\alpha,t-1,n-t}) \\ &= 1 - pf(qf(1-\alpha,t-1,n-t),t-1,n-t,\lambda) \end{split}$$

In order to make this calculation we need to specify the following values

- 1. α
- 2. n_i 's
- 3. values of μ_1, \ldots, μ_t in H_1 in order to calculate λ
- 4. σ_e (obtain estimate from previous studies or pilot study)

Once these values have been specified, we can use SAS or R to compute the power.

Note: The probability of Type II errors at specified values of λ is given by

$$\beta(\lambda) = P[\text{Type II Error for specified value of } \lambda] = 1 - \gamma(\lambda)$$

Example

Suppose
$$t = 4$$
, $\alpha = .05$ $n_1 = n_2 = n_3 = n_4 = 3$, $\sigma_e^2 = 0.116$, $F_{.05,3,8} = 4.0666$

Compute the power of the F-test when $\mu_1 = 6.5$, $\mu_2 = 6$, $\mu_3 = 6$, $\mu_4 = 5.5$

That is, what is the probability that the F-test will reject H_o

if
$$\mu_1 = 6.5$$
, $\mu_2 = 6$, $\mu_3 = 6$, $\mu_4 = 5.5$?

$$\bar{\mu}_{\cdot} = \frac{1}{n} \sum_{i=1}^{t} n_i \mu_i = \frac{1}{12} 3(6.5 + 6 + 6 + 5.5) = 6$$

$$\lambda = \frac{\sum_{i=1}^{t} n_i (\mu_i - \bar{\mu}_i)^2}{\sigma_e^2} = \frac{3[(6.5 - 6)^2 + (6 - 6)^2 + (6 - 6)^2 + (5.5 - 6)^2]}{.116} = 12.93$$

$$\gamma(12.93) = P[F \ge 4.0666] = 1 - G_{12.93}(4.0666) = .65066$$

where $G_{12.93}(4.0666)$ is the cdf of a non-central F-distribution with $df_1 = 3$, $df_2 = 8$ and $\lambda = 12.93$ The above calculation was obtained from R using the function:

$$1 - pf(F, \nu_1, \nu_2, \lambda) = 1 - pf(4.0666, 3, 8, 12.93) = .65066$$

Thus, there is approximately a 65% chance that an $\alpha = .05$ F-test with df = 3, 8 will reject H_o and determine that there is a difference in the μ_i 's if the populations have

$$\mu_1 = 6.5$$
, $\mu_2 = 6$, $\mu_3 = 6$, $\mu_4 = 5.5$ or any other configuration of $(\mu_1, \mu_2, \mu_3, \mu_4)$ such that $\lambda = 12.93$

The probability that test will fail to reject H_o at $\mu_1 = 6.5$, $\mu_2 = 6$, $\mu_3 = 6$, $\mu_4 = 5.5$ or any other configuration of $(\mu_1, \mu_2, \mu_3, \mu_4)$ such that $\lambda = 12.93$ is

$$P[\text{Type II Error if } \lambda = 12.93] = 1 - .65 = .35$$

The book has tables for obtaining power (see pages 604-613). In this table, the author uses the parameter $\Phi = \sqrt{\lambda/t}$.

The appropriate graph for this calculation is given on the next page.

$$\Phi = \sqrt{\lambda/t} = \sqrt{12.93/4} = 1.80$$
 with $\nu_1 = t - 1 = 3, \nu_2 = n - t = 12 - 4 = 8$ and $\alpha = .05$.

From the graph, power is approximately 0.65.

F test power curves for fixed effects model analysis of variance from "Design of Experiment" by R.O. Ruch Table IX

There are infinitely many choices of $(\mu_1, \mu_2, \mu_3, \mu_4)$ that will produce $\lambda = 12.93$ or $\Phi = 1.80$. Therefore, in many situations, the power is computed just as a function of specified values of λ or Φ :

For example, suppose t = 4, n = 24, $\alpha = .05$, then compute the power of the F test for specified values of λ :

$$\nu_1 = 4 - 1 = 3$$
 $\nu_2 = 24 - 4 = 20$ $F_{.05,3,20} = 3.098$ $\Phi = \sqrt{\lambda/4}$

In SAS and R we use λ not Φ .

Using the following SAS code we obtain the following values for the power function:

```
(SAS Program: powerf_specL.sas)
*SAS Program to Compute Power Curve for F-Test with t=4,
    alpha=.05, df1=3, df2=20, and
    for specified values of L=noncentrality parameter;
Data;
Input L @@;
t=4;
n=24;
df1=t-1;
df2=n-t;
alpha=.05;
Power=1-PROBF(finv(1-alpha,df1,df2),df1,df2,L);
phi=sqrt(L/4);
Cards;
0.2
      .4 .6 .8 1 1.5 2 2.5 3 3.5 4 4.5 5 6 8 10 12 14 16 19.36
23.04 27.04 31.36 35 40 45
run;
proc print;
var L Power phi;
run;
```

OUTPUT:

OBS	L	POWER	PHI
1	0.00	0.05000	0.00000
2	0.20	0.05992	0.22361
3	0.40	0.07025	0.31623
4	0.60	0.08098	0.38730
5	0.80	0.09208	0.44721
6	1.00	0.10352	0.50000
7	1.50	0.13346	0.61237
8	2.00	0.16501	0.70711
9	2.50	0.19780	0.79057
10	3.00	0.23148	0.86603
11	3.50	0.26574	0.93541
12	4.00	0.30028	1.00000
13	4.50	0.33485	1.06066
14	5.00	0.36921	1.11803
15	6.00	0.43648	1.22474
16	8.00	0.56110	1.41421
17	10.00	0.66775	1.58114
18	12.00	0.75459	1.73205
19	14.00	0.82256	1.87083
20	16.00	0.87409	2.00000
21	19.36	0.93179	2.20000
22	23.04	0.96667	2.40000
23	27.04	0.98536	2.60000
24	31.36	0.99423	2.80000
25	35.00	0.99745	2.95804
26	40.00	0.99920	3.16228
27	45.00	0.99976	3.35410

The following R code will yield the same data plus a plot of the power function:

```
(R Code : powerf.R)
t=4
r=7
n=t*(r-1)
alpha=.05
df1=t-1
df2=n-t
L=seq(0,45,.05)
phi = sqrt(L/t)
P=1-pf(qf(1-alpha,df1,df2),df1,df2,L)
output=cbind(L,P,phi)
postscript("u:/meth2/jpgfiles/powerf2.ps",width=6,horizontal=T)
plot(x,p,type="1",main="POWER OF F-TEST VS Noncentrality Parameter",
           xlab="Noncentrality Parameter",
           ylab="POWER OF F-TEST",lab=c(20,20,7),ylim=c(0,1))
graphics.off()
```

POWER OF F-TEST VS Noncentrality Parameter

How Many Replications?

Approach #1A: Specify in Terms of Precision of Estimation of μ_i (σ known)

Determine the minimum n_i such that our estimator $\hat{\mu}_i$ is within δ units of μ_i with $100(1-\alpha)\%$ confidence:

$$P\left[\left|\hat{\mu}_{i} - \mu_{i}\right| \leq \delta\right] = 1 - \alpha \Rightarrow P\left[\left|\frac{\bar{X}_{i.} - \mu_{i}}{\sigma_{e}/\sqrt{n_{i}}}\right| \leq \frac{\delta}{\sigma_{e}/\sqrt{n_{i}}}\right] = P\left[\left|Z\right| \leq \frac{\sqrt{n_{i}}\delta}{\sigma_{e}}\right] = 1 - \alpha \Rightarrow \frac{\sqrt{n_{i}}\delta}{\sigma_{e}} = Z_{\alpha/2} \Rightarrow n_{i} = \frac{\sigma_{e}^{2}Z_{\alpha/2}^{2}}{\delta^{2}}$$

Approach #1B: Specify in Terms of Precision of Estimation of μ_i (σ unknown)

In most cases it is necessary to replace σ_e with an estimator and then use an iterative procedure to find n_i involving the non-central t distribution. Use R-programs and Tables from STAT 641.

For reasonably large values of n_i , using the normal distribution in place of the interactive t-distribution process will yield approximately the same results.

Approach #2: Specify in Terms of Precision of Estimation of $\mu_i - \mu_k$

Determine the minimum n_i such that our estimator $(\hat{\mu}_i - \hat{\mu}_k)$ is within δ units of $(\mu_i - \mu_k)$ with $100(1-\alpha)\%$ confidence: (assume $n_i = r$ for all i)

$$P\left[\left|(\hat{\mu}_{i} - \hat{\mu}_{k}) - (\mu_{i} - \mu_{k})\right| \leq \delta\right] = 1 - \alpha \Rightarrow$$

$$P\left[\left|\frac{(\bar{Y}_{i.} - \bar{Y}_{k.}) - (\mu_{i} - \mu_{k})}{\sigma_{e}\sqrt{\frac{1}{r} + \frac{1}{r}}}\right| \leq \frac{\delta}{\sigma_{e}\sqrt{\frac{1}{r} + \frac{1}{r}}}\right] = P\left[\left|Z\right| \leq \frac{\delta}{\sigma_{e}\sqrt{\frac{1}{r} + \frac{1}{r}}}\right] = 1 - \alpha \Rightarrow$$

$$\frac{\delta}{\sigma_{e}\sqrt{\frac{1}{r} + \frac{1}{r}}} = Z_{\alpha/2} \Rightarrow r = \frac{2\sigma_{e}^{2}Z_{\alpha/2}^{2}}{\delta^{2}}$$

In most cases it is necessary to replace σ_e with an estimator and then use an iterative procedure to find r involving the non-central t distribution.

For unequal sample sizes we have:

When $n_i \neq n_k$ but $n_i = r$ and $n_k = mr$, we have that

$$\frac{\delta}{\sigma_e \sqrt{\frac{1}{r} + \frac{1}{mr}}} = Z_{\alpha/2} \Rightarrow r = \frac{\frac{m+1}{m} \sigma_e^2 Z_{\alpha/2}^2}{\delta^2}$$

Approach #3: Specify in Terms of Power

Find the minimum value of $r = n_1 = n_2 = \cdots = n_t$ such that for specified values of $\mu_1, \mu_2, \ldots, \mu_t$ and σ_e the power of a level α F test is greater than or equal to γ_o .

From given information, compute

$$\lambda_r^{(3)} = \frac{r \sum_{i=1}^t (\mu_i - \bar{\mu}_.)^2}{\sigma_e^2}$$

Iteratively for specified values of r compute the power $\gamma(\lambda_r^{(3)})$ and obtain the smallest value of r such that $\gamma(\lambda_r^{(3)}) \geq \gamma_o$. In the case of equal sample sizes,

$$\nu_1 = t - 1, \quad \nu_2 = t(r - 1)$$

Thus, both the non-centrality parameter, $\lambda_r^{(3)}$ and the critical value of the F-test, $F_{\alpha,t-1,t(r-1)}$ depend on r in your iterations.

The problem is to find the minimum r such that

$$\gamma(\lambda_r^{(3)}) = 1 - G_{\lambda_r^{(3)}}(F_{\alpha,t-1,t(r-1)}) \ge \gamma_o$$

Approach #4: Specify in Terms of Power with constraints on μ_i

In most cases the researcher will not be able to provide particular values for μ_i . However, they will be able to specify that they want a level α test with probability of at least γ_o of rejecting H_o whenever all effects satisfy

$$|\mu_i - \bar{\mu}_{\cdot}| > D$$

.

In this case, assuming σ_e is known or we have a good guess at its value, we can determine the minimum value of r to satisfy the specification.

$$|\mu_i - \bar{\mu}| > D$$
 for all $i \Rightarrow$

$$\lambda_r^{(4)} = \frac{r \sum_{i=1}^t (\mu_i - \bar{\mu}_.)^2}{\sigma_s^2} > \frac{rtD^2}{\sigma_s^2}$$

The problem then becomes to find the minimum r such that

$$\gamma(\lambda_r^{(4)}) = 1 - G_{\lambda^{(4)}}(F_{\alpha,t-1,t(r-1)}) \ge \gamma_o$$

This approach is very restrictive because it forces all values of μ_i to be different from $\bar{\mu}$. Approach # 5, on the next page is a less restrictive approach to finding the necessary sample size but Approach 5 produces a larger value of r.

- Note that $|\mu_j \mu_k| > D$ for all choices of (j, k) does not in general imply $\sum_{i=1}^{t} (\mu_i \bar{\mu}_i)^2 > tD^2$ but the following does hold.
- $|\mu_j \mu_k| > D$ for all choices of (j, k) implies that $\sum_{i=1}^t (\mu_i \bar{\mu}_i)^2 > (t-1)D^2$ for t = 3, 4
- $|\mu_j \mu_k| > D$ for all choices of (j, k) implies that $\sum_{i=1}^t (\mu_i \bar{\mu}_i)^2 > tD^2$ for t > 5

Distribution of the Non-Central F

The non-central F distribution with dfs ν_1 , ν_2 and non-centrality parameter λ has pdf

$$g_{\lambda}(x) = \frac{C(x)}{B(\nu_1/2, \nu_2/2)} e^{-\lambda/2} \nu_1^{\nu_1/2} \nu_2^{\nu_2/2} (\nu_2 + \nu_1 x)^{-(\nu_1 + \nu_2)/2} x^{(\nu_1 - 2)/2}$$

where $B(\nu_1/2, \nu_2/2)$ is the beta function and

$$C(x) = 1 + \sum_{j=1}^{\infty} \left(\frac{(\nu_1 \lambda x)/2}{\nu_2 + \nu_1 x} \right)^j \frac{(\nu_1 + \nu_2)(\nu_1 + \nu_2 + 2)(\nu_1 + \nu_2 + 2j - 2)}{j! \ \nu_1(\nu_1 + 2) \cdots (\nu_1 + \nu_2 + 2j - 2)}$$

The cdf is then given by

$$G_{\lambda}(x) = \int_{0}^{x} g_{\lambda}(y) dy$$

Just by examining the function it is somewhat difficult to determine the relationship between $G_{\lambda}(x)$ and λ . However, after considering numerous combinations values of ν_1 , ν_2 , λ , it was always true that for a fixed values of x as λ increases $G_{\lambda}(x)$ decreases. See plot below as an illustration for $\nu_1 = 3$, $\nu_2 = 56$, $\lambda = .5$, 2, 5.

Non-central F Distribution Functions with df = 3, 56

Approach #5: Specify in Terms of Power with constraints on μ_i

A less restrictive constraint on the μ_i 's is to specify that they want a level α test with probability of at least γ_o of rejecting H_o whenever at least one pair of treatment means differs by at least D.

That is, there exist at least one pair of means (μ_j, μ_k) such that $|\mu_j - \mu_k| \ge D$.

In this case, assuming σ_e is known or we have a good guess at its value, we can determine the minimum value of r to satisfy the specification. One approach is to determine the smallest possible value of λ to satisfy this constraint.

The minimum value of λ would be achieved when exactly one pair (μ_j, μ_k) satisfies $(\mu_j - \mu_k) = D$ and with the remaining $t - 2 \mu_i$'s all equal to $\frac{1}{2}(\mu_j + \mu_k)$.

This would result in

$$\bar{\mu}_{\cdot} = \frac{1}{n} \sum_{i=1}^{t} n_{i} \mu_{i} = \frac{r}{tr} [\mu_{j} + \mu_{k} + \frac{(t-2)}{2} (\mu_{j} + \mu_{k})] = \frac{2(\mu_{j} + \mu_{k}) + (t-2)(\mu_{j} + \mu_{k})}{2t} = \frac{1}{2} (\mu_{j} + \mu_{k}) \Rightarrow \frac{1}{2} (\mu_{j} + \mu_{k}) = \frac{1}{2} (\mu_{j} + \mu_{k}) + \frac{(t-2)}{2} (\mu_{j} + \mu_{k}) = \frac{1}{2} (\mu_{j} +$$

$$\lambda_r^{(5)} = \frac{r \sum_{i=1}^t (\mu_i - \bar{\mu}_i)^2}{\sigma_e^2} = \frac{r[(t-2)0 + 2(\mu_j - \frac{1}{2}(\mu_j + \mu_k))^2]}{\sigma_e^2} \ge \frac{rD^2}{2\sigma_e^2}$$

The problem then becomes to find the minimum r such that

$$\gamma(\lambda_r^{(5)}) = 1 - G_{\lambda_r^{(5)}}(F_{\alpha,t-1,t(r-1)}) \ge \gamma_o$$

Note that

$$\lambda_r^{(4)} = \frac{rtD^2}{\sigma_e^2} > \frac{rD^2}{2\sigma_e^2} = \lambda_r^{(5)}$$

Also, for a fixed value of r the power increases as $\lambda_r^{(*)}$ increases, therefore we will obtain a larger value for r in Approach 5 than in Approach 4.

Also, in Approach 4, we are requiring all t treatment effects to be at least D whereas in Approach 5 only one of more effects needs to exceed D.

Approach 5 in most cases is the more reasonable approach. Although, there may be cases in which the researcher will require the specification given in Approach 4.

Both approaches allow us to compute the sample size for specified parameters in the situation where the researcher can not completely specify the values of the population means, μ_i 's in the alternative.

Approach 3: SAScode: repsizeApproach3.sas

The following example using SAS code will illustate Approaches 3 with the following specifications: Determine the sample size, r, such that the power of an $\alpha = .05$ test is at least .90 when $\mu_1 = 6.5$, $\mu_2 = 6$, $\mu_3 = 6$, $\mu_4 = 5.5$. The researcher specifies:

```
t = 4, \quad r_1 = \dots = r_4 = r, \quad \alpha = .05, \quad \mu_1 = 6.5, \quad \mu_2 = 6, \quad \mu_3 = 6, \quad \mu_4 = 5.5, \quad \sigma_e^2 = .116, \quad \gamma_o \ge .90
```

```
Data;
Input r @@;
t=4;
alpha=.05;
s2=.116;
u1=6.5;
u2=6;
u3=6;
u4=5.5;
mean_u=(u1+u2+u3+u4)/t;
L=r*((u1-mean_u)**2 + (u2-mean_u)**2 + (u3-mean_u)**2 + (u4-mean_u)**2)/s2;
n1=t-1;
n2=t*(r-1);
Fcr=finv(1-alpha,n1,n2);
P=1-PROBF(Fcr,n1,n2,L);
Cards;
2 3 4 5 6 7 8 9 10
run;
proc print;
var r n1 n2 Fcr L P;
Run;
```

SAS Output:

0bs	r	n1	n2	Fcr	L	P
1	2	3	4	6.59138	8.6207	0.31843
2	3	3	8	4.06618	12.9310	0.65075
3	4	3	12	3.49029	17.2414	0.85194
4	5	3	16	3.23887	21.5517	0.94477
5	6	3	20	3.09839	25.8621	0.98127
6	7	3	24	3.00879	30.1724	0.99410
7	8	3	28	2.94669	34.4828	0.99825
8	9	3	32	2.90112	38.7931	0.99951
9	10	3	36	2.86627	43.1034	0.99987

APPROACH 4 - SAScode: repsizeApproach4.sas

SAS Program to compute sample size when the specification is that ALL EFFECTS ARE GREATER THAN D. Find the smallest r such that the power of an alpha=.05 test at λ_r exceeds .90 when $|\mu_j - \mu_k| \geq .5$ for all choices of (j, k). To solve the problem, it is necessary for the researcher to provide

```
t = Number of Treatments = 4
D = \text{size of effect to be detected} = .5
S = an estimate of the experimental standard deviation(sigma) = .34
\alpha = \text{Maximum probability of Type I error} = .05
\gamma_o = \text{Minimum acceptable power at D} = .90
data;
input
       r @@;
         alpha=.05
t=4;
            u2=t*(r-1);
u1=t-1;
S=.34;
D=.5;
L=r*t*D**2/(S**2);
phi=sqrt(L/t);
C=finv(1-alpha,u1,u2);
p=1-probf(C,u1,u2,L);
cards;
3 4 5 6 7 8 9 10
run;
proc print; var D t r u2 L phi p;
run;
OUTPUT FROM APPROACH 4:
OBS
         D
                            U2
                                       L
                                                                Ρ
                Τ
                       R
                                                  PHI
                                                             0.56414
 1
        0.5
                4
                       2
                              4
                                    17.3010
                                                2.07973
 2
        0.5
                4
                              8
                                   25.9516
                                                2.54713
                                                             0.92625
                       3
 3
        0.5
                4
                       4
                             12
                                   34.6021
                                                2.94118
                                                             0.99213
 4
        0.5
                4
                       5
                             16
                                   43.2526
                                                3.28834
                                                             0.99936
 5
        0.5
                4
                       6
                             20
                                   51.9031
                                                3.60219
                                                             0.99996
 6
        0.5
                4
                       7
                             24
                                   60.5536
                                                3.89081
                                                             1.00000
 7
        0.5
                4
                             28
                                   69.2042
                                                4.15945
                                                             1.00000
                       8
 8
        0.5
                4
                       9
                             32
                                   77.8547
                                                4.41176
                                                             1.00000
 9
        0.5
                4
                      10
                             36
                                   86.5052
                                                4.65041
                                                             1.00000
```

```
Program used to compute sample size
when the specification is that
AT LEAST ONE PAIR OF TREATMENT MEANS ARE AT LEAST D UNITS APART.
It is necessary to provide
t = Number of Treatments = 4
D = size of effect to be detected = .5
S = an estimate of the experimental standard deviation(sigma) = .34
Alpha = .05; Desired Power = .90
data;
input r @@;
t=4; alpha=.05;
u1=t-1; u2=t*(r-1);
S=.34; D=.5;
L=r*D**2/(2*(S**2));
phi=sqrt(L/t);
c=finv(1-alpha,u1,u2);
p=1-probf(c,u1,u2,L);
cards;
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
proc print; var t r u2 L phi p;
run;
_____
OUTPUT FROM APPROACH 5:
                     R U2 L PHI P
2 4 2.1626 0.73529 0.11233
3 8 3.2439 0.90055 0.19718
OBS
            T R U2
          4
   1
   2
           4 3 8

      4
      4
      12
      4.3253
      1.03986
      0.28833

      4
      5
      16
      5.4066
      1.16260
      0.38004

      4
      6
      20
      6.4879
      1.27357
      0.46829

      4
      7
      24
      7.5692
      1.37561
      0.55032

      4
      8
      28
      8.6505
      1.47059
      0.62450

      4
      9
      32
      9.7318
      1.55979
      0.69003

      4
      10
      36
      10.8131
      1.64417
      0.74681

          4
   3
   4
   5
   6
   7
   8
   9

      10
      30
      10.0131
      1.04417
      0.74501

      11
      40
      11.8945
      1.72442
      0.79518

      12
      44
      12.9758
      1.80110
      0.83577

      13
      48
      14.0571
      1.87464
      0.86940

      14
      52
      15.1384
      1.94541
      0.89693

      15
      56
      16.2197
      2.01369
      0.91923

      16
      60
      17.3010
      2.07973
      0.93712

  10
          4 11
  11
          4
 12
           4
 13
          4 14
 14 4 15
  15 4 16
```

We can use Approaches 4 and 5 to compute the power of the F-test when the researcher is unable to supply specific values for the μ_i 's. The graph given below illustrates the difference in the power curve under the specifications given in Approach 4 and 5:

```
(Rcode: powerf.R)
t=4
r=3
s = .34
df=t*(r-1)
D = seq(0,1.0,.025)
L1 = (D^2)*r*t/s^2
P1 = 1-pf(qf(.95,t-1,df),t-1,df,L1)
L2 = (D^2)*3/(2*0.11585)
P2 = 1-pf(qf(.95,t-1,df),t-1,df,L2)
postscript("u:\meth2\handouts\powerf.ps",height=8,horizontal=F)
P<-cbind(P1,P2)
matplot(D,P,type="1",main="POWER OF F-TEST \n
                     MIN EFFECT SIZE FOR ALL/AT LEAST ONE",
           xlab="MINIMUM EFFECT SIZE (D)", ylab="POWER OF F-TEST", ylim=c(0,1),
           lab=c(20,20,7),col="black",lwd=2,
 cex=.5)
legend(.005,.955,lty=c(1,2),legend=
c("MIN EFFECT FOR ALL", "MIN EFFECT AT LEAST ONE"), cex=.4)
graphics.off()
```

The following graph illustrates the power curve under the two types of specifications:

POWER OF F-TEST

Matrix Form of Cell Means and Effects Models

Background information on matrices is available:

PowerPoint

 $\verb|http://dist.stat.tamu.edu/flash/Matrix%20Algebra/matrix_algebra_review.ppt| \\$

Video

http://dist.stat.tamu.edu/flash/Matrix%20Algebra/matrix_algebra_review/matrix_algebra_review.html

Cell Means Model: $y_{ij} = \mu_i + e_{ij}$; $i = 1, \dots, t$; $j = 1, \dots, n_i$ $n = \sum_{i=1}^t n_i$

Model in matrix form: $\mathbf{Y} = X\boldsymbol{\beta} + \mathbf{e}$,

where **Y** is the n x 1 data vector, **X** is the n x t design matrix, β is the t x 1 vector of parameters, and **e** is the n x 1 vector of errors.

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ Y_{22} \\ \vdots \\ Y_{2n_2} \\ \vdots \\ Y_{t1} \\ Y_{t2} \\ \vdots \\ Y_{tn_t} \end{bmatrix}_{\mathbf{n} \times 1} \mathbf{X} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{\mathbf{n} \times \mathbf{t}} \mathbf{\beta} = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_t \end{bmatrix}_{\mathbf{t} \times \mathbf{1}} \mathbf{e} = \begin{bmatrix} e_{11} \\ e_{12} \\ \vdots \\ e_{1n_1} \\ e_{21} \\ e_{22} \\ \vdots \\ e_{tn_t} \\ e_{t1} \\ e_{t2} \\ \vdots \\ e_{tn_t} \end{bmatrix}_{\mathbf{n} \times \mathbf{1}}$$

For example,

$$Y_{12} = \mu_1 + e_{12} = (1, 0, 0, \dots, 0) \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_t \end{bmatrix} + e_{12}$$

The design matrix can also be written as:

$$\mathbf{X} = Diag[\mathbf{J}_{n_1}, \mathbf{J}_{n_2}, \cdots, \mathbf{J}_{n_t}];$$
 where \mathbf{J}_{n_i} is a column vector of n_i 1's

The parameters in the matrix model are $\beta_i = \mu_i$, the treatment means.

Regression Model:

The design matrix can also be obtained by considering t "explanatory variables" $(\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_t)$, as is done in regression models, with \mathbf{X}_i given by

$$X_{ij} = \begin{cases} 1 & \text{if } jth \text{ EU receives Trt} \# i \\ 0 & \text{otherwise} \end{cases} \quad \text{for } j = 1, \dots, n; \quad i = 1, \dots, t$$

Regression model: $y_j = \beta_1 X_{1j} + \beta_2 X_{2j} + \cdots + \beta_t X_{tj} + e_j$, where $\beta_i = \mu_i$.

Note that there is no intercept term so the design matrix to obtain the equivalence of the above model is given by

Regression Model in matrix form:
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$$
, with $\mathbf{X} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}_{\mathbf{n} \times \mathbf{t}}$

The rank of $(\mathbf{X}'\mathbf{X})$ is t because the rank of \mathbf{X} is t. Thus, $(\mathbf{X}'\mathbf{X})^{-1}$ exists.

The least squares estimators of the model parameters are obtained from the equation:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\mathbf{X}'\mathbf{Y}\right) = \begin{bmatrix} n_1 & 0 & \cdots & 0 \\ 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & n_t \end{bmatrix}^{-1} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_t \end{bmatrix}$$

$$= \begin{bmatrix} 1/n_1 & 0 & \cdots & 0 \\ 0 & 1/n_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1/n_t \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_t \end{bmatrix}$$

$$= \begin{bmatrix} \bar{y}_1 \\ \bar{y}_2 \\ \vdots \\ \bar{y}_t \end{bmatrix} = \begin{bmatrix} \hat{\mu}_1 \\ \hat{\mu}_2 \\ \vdots \\ \hat{\mu}_t \end{bmatrix}$$

Thus, the LSE of the regression coefficients are identical to our AOV estimators of the cell means:

$$\hat{\beta}_i = \hat{\mu}_i$$

Effects Model: The default model in most software packages

$$y_{ij} = \mu + \tau_i + e_{ij}; \quad i = 1, \dots, t; \quad j = 1, \dots, n_i$$

Model in matrix form: $\mathbf{Y} = X\boldsymbol{\beta} + \mathbf{e}$

where **Y** is the data vector, **X** is the design matrix, β is the vector of parameters, and **e** is the vector of errors.

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ Y_{22} \\ \vdots \\ Y_{2n_2} \\ \vdots \\ Y_{t1} \\ Y_{t2} \\ \vdots \\ Y_{tn_t} \end{bmatrix}_{\mathbf{n} \times \mathbf{1}}; \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \end{bmatrix}_{\mathbf{n} \times (\mathbf{t}+1)} \mathbf{x} \mathbf{1}$$

$$\mathbf{\beta} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \vdots \\ \tau_t \end{bmatrix}_{(\mathbf{t}+1) \times 1} \mathbf{y} \mathbf{1}$$

$$\mathbf{\beta} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \vdots \\ \tau_t \end{bmatrix}_{(\mathbf{t}+1) \times 1} \mathbf{y} \mathbf{1}$$

For example,

$$Y_{22} = \mu + \tau_2 + e_{22} = (1, 0, 1, \dots, 0) \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \vdots \\ \tau_t \end{bmatrix} + e_{22}$$

In this model, there are t+1 parameters: $(\mu, \tau_1, \dots, \tau_t)$, referred to as

- \bullet μ the overall mean
- (τ_1, \ldots, τ_t) treatment effects.

The effects model yields the following relationship between the treatment means and the model parameters:

$$\mu_i = E[Y_{ij}] = \mu + \tau_i$$

Thus, the effects model is using t+1 parameters, $\mu, \tau_1, \ldots, \tau_t$ to model the t treatment means $\mu_1, \mu_2, \ldots, \mu_t$.

This results in an overparametrized model (t + 1) parameters for only t treatment means) which produces the following problem. When we attempt to obtain the least squares of the model parameters, the design matrix is not of full column rank.

In fact, from examining the design matrix

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} n & n_1 & n_2 & \cdots & n_t \\ n_1 & n_1 & 0 & \cdots & 0 \\ n_2 & 0 & n_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n_{t-1} & 0 & \cdots & n_{t-1} & 0 \\ n_t & 0 & \cdots & 0 & n_t \end{bmatrix}_{(t+1) \times (t+1)}$$

it can be seen that the sum of columns 2 through t+1 equals column 1. Therefore, the rank of $(\mathbf{X}'\mathbf{X})$ is t < t+1 because Columns 2 through t+1 are linearly independent.

Thus, $(\mathbf{X}'\mathbf{X})^{-1}$ does not exist and the parameters are non-estimable.

In order to obtain the least squares estimators of the parameters, restrictions must be placed on the parameters. There are two such restrictions that are widely used, however, there are potentially many other feasible restrictions. This results in problems in the interpretation of the parameters in the effects model:

$$\mu_i = \mu + \tau_i$$
 implies the "ith treatment effect" is given by $\tau_i = \mu_i - \mu$.

The sample estimates of τ_i are interpreted as the difference between the *i*th treatment mean and the overall treatment mean. However, there are constraints on the τ_i 's which are not consistent with this interpretation.

Restriction 1: Set $\tau_t = 0$

With this restriction, there are now t parameters, $(\mu, \tau_1, \dots, \tau_{t-1})$.

The restriction requires a reparametrization of the model:

$$y_{ij} = \mu_i + e_{ij} = \mu + \tau_i + e_{ij};$$
 for $i = 1, ..., t - 1; j = i, ..., n_j;$ and with $\tau_t = 0$ we have $y_{tj} = \mu_t + e_{ij} = \mu + e_{tj}$ for $j = i, ..., n_t$

The identification of the treatment means has

$$\mu_i = \mu + \tau_i$$
 for $i = 1, \dots, t - 1$ and $\mu_t = \mu \implies$

$$\mu = \mu_t; \quad \tau_i = \mu_i - \mu = \mu_i - \mu_t \quad \text{for} \quad i = 1, \dots, t - 1$$

The treatment effects, τ_i 's are now the differences between the i th treatment mean and the t th treatment mean under this restriction.

The restrictions result in a new formulation of the matrix model:

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{21} \\ Y_{2n_2} \\ \vdots \\ Y_{tn_t} \end{bmatrix}_{\mathbf{n} \times \mathbf{1}} \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix}_{\mathbf{n} \times \mathbf{t}} \mathbf{r} \mathbf{t}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \vdots \\ \tau_{t-1} \end{bmatrix}_{\mathbf{t} \times \mathbf{1}} \mathbf{e} = \begin{bmatrix} e_{11} \\ e_{12} \\ \vdots \\ e_{1n_1} \\ e_{21} \\ e_{2n_2} \\ \vdots \\ e_{tn_t} \end{bmatrix}_{\mathbf{n} \times \mathbf{1}}$$

$$Y_{ij} = \mu + \tau_i + e_{ij}$$
 for $i = 1, 2, \dots, t - 1$; $j = i, 2, \dots, n_i \Rightarrow \mu_i = \mu + \tau_i$ for $i < t$
 $Y_{tj} = \mu + e_{ij}$ for $j = 1, 2, \dots, n_t \Rightarrow \mu_t = \mu$

The design matrix is now of full column rank. The least squares estimators of the model parameters are obtained from the equation:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\mathbf{X}'\mathbf{Y}\right) = \begin{bmatrix} n & n_{1} & n_{2} & \cdots & n_{t-1} \\ n_{1} & n_{1} & 0 & \cdots & 0 \\ n_{2} & 0 & n_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ n_{t-1} & 0 & \cdots & 0 & n_{t-1} \end{bmatrix}^{-1} \begin{bmatrix} y_{..} \\ y_{1.} \\ y_{2.} \\ \vdots \\ y_{t-1.} \end{bmatrix}$$

$$= \begin{bmatrix} \bar{y}_{t} \\ \bar{y}_{1.} - \bar{y}_{t} \\ \bar{y}_{2.} - \bar{y}_{t} \\ \vdots \\ \bar{y}_{t-1.} - \bar{y}_{t} \end{bmatrix} = \begin{bmatrix} \hat{\mu} \\ \hat{\tau}_{1} \\ \hat{\tau}_{2} \\ \vdots \\ \hat{\tau}_{t-1} \end{bmatrix}$$

The estimated variances of $\hat{\boldsymbol{\beta}}$ and $\ell'\hat{\boldsymbol{\beta}}$ are given by

$$Var(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 \left(\mathbf{X}' \mathbf{X} \right)^{-1}; \qquad Var(\ell' \hat{\boldsymbol{\beta}}) = \hat{\sigma}^2 \ell' \left(\mathbf{X}' \mathbf{X} \right)^{-1} \ell$$

EXAMPLE An experiment consists of 4 treatments with number of reps given by

$$n_1 = 3, \ n_2 = 2, \ n_3 = 4, \ n_4 = 2$$

The matrix formulation of the effects model has $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ with

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{21} \\ Y_{22} \\ Y_{31} \\ Y_{32} \\ Y_{33} \\ Y_{34} \\ Y_{41} \\ Y_{41} \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_o \\ \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \tau_3 \end{bmatrix} \mathbf{e} = \begin{bmatrix} e_{11} \\ e_{12} \\ e_{21} \\ e_{22} \\ e_{31} \\ e_{32} \\ e_{33} \\ e_{34} \\ e_{41} \\ e_{41} \end{bmatrix}$$

Express the estimator of μ_2 , $\mu_1 - \mu_4$, and $\mu_1 - \mu_2$ in terms of the $\hat{\beta}_i$'s

•
$$\mu_2 = \mu + \tau_2 = \beta_o + \beta_2 = \ell' \beta \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\mu}_2 = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 1, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0] \implies \hat{\beta} = \ell' \hat{\beta} \text{ with } \ell' = [1, 0, 0, 0]$$

$$Var(\hat{\mu}_2) = \hat{\sigma}^2 \ell' \left(\mathbf{X}' \mathbf{X} \right)^{-1} \ell = \hat{\sigma}^2 [1, 0, 1, 0] \begin{bmatrix} 11 & 3 & 2 & 4 \\ 3 & 3 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 4 & 0 & 0 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \hat{\sigma}^{2}[1,0,1,0] \begin{bmatrix} .5 & -.5 & -.5 & -.5 \\ -.5 & .833 & .5 & .5 \\ -.5 & .5 & 1 & .5 \\ -.5 & .5 & .5 & .75 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \hat{\sigma}^2(.5) = \hat{\sigma}^2/2 = \hat{\sigma}^2/n_2$$

•
$$\mu_1 - \mu_4 = \mu + \tau_1 - \mu = \beta_1 = \ell' \beta$$
 with $\ell' = [0, 1, 0, 0] \implies \hat{\mu}_1 - \hat{\mu}_4 = \ell' \hat{\beta}$ with

$$Var(\hat{\mu}_1 - \hat{\mu}_4) = \hat{\sigma}^2 \ell' \left(\mathbf{X}' \mathbf{X} \right)^{-1} \ell = \hat{\sigma}^2 [0, 1, 0, 0] \begin{bmatrix} .5 & -.5 & -.5 & -.5 \\ -.5 & .833 & .5 & .5 \\ -.5 & .5 & 1 & .5 \\ -.5 & .5 & .5 & .75 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$= \hat{\sigma}^2(.833) = \hat{\sigma}^2(5/6) = \hat{\sigma}^2\left(\frac{1}{n_1} + \frac{1}{n_4}\right)$$

•
$$\mu_1 - \mu_2 = \mu + \tau_1 - \mu - \tau_2 = \beta_1 - \beta_2 = \ell' \beta$$
 with $\ell' = [0, 1, -1, 0] \Rightarrow \hat{\mu}_1 - \hat{\mu}_2 = \ell' \hat{\beta}$ with

$$Var(\hat{\mu}_{1} - \hat{\mu}_{2}) = \hat{\sigma}^{2} \ell' \left(\mathbf{X}' \mathbf{X} \right)^{-1} \ell = \hat{\sigma}^{2} [0, 1, -1, 0] \begin{bmatrix} .5 & -.5 & -.5 & -.5 \\ -.5 & .833 & .5 & .5 \\ -.5 & .5 & 1 & .5 \\ -.5 & .5 & .5 & .75 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$$
$$= \hat{\sigma}^{2} (.833) = \hat{\sigma}^{2} (5/6) = \hat{\sigma}^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}} \right)$$

Restriction 2: Set $\sum_{i=1}^{t} n_i \tau_i = 0$

With this restriction, there are now t parameters, $(\mu, \tau_1, \dots, \tau_{t-1})$ because

$$\sum_{i=1}^{t} n_i \tau_i = 0 \quad \Rightarrow \quad \tau_t = \frac{-1}{n_t} \sum_{i=1}^{t-1} n_i \tau_i.$$

The restriction requires a reparameterization of the model:

$$y_{ij} = \mu_i + e_{ij} = \mu + \tau_i + e_{ij}$$
; for $i = 1, \dots, t - 1; j = i, \dots, n_j$; and

$$y_{tj} = \mu_t + e_{tj} = \mu + \tau_t + e_{tj} = \mu - \frac{1}{n_t} \sum_{i=1}^{t-1} n_i \tau_i + e_{tj}$$
 for $j = i, \dots, n_t$

The identification of the treatment means has

$$\mu_i = \mu + \tau_i$$
 for $i = 1, \dots, t - 1$ and $\mu_t = \mu - \frac{1}{n_t} \sum_{i=1}^{t-1} n_i \tau_i$.

$$\sum_{i=1}^{t} n_i \mu_i = n\mu + \sum_{i=1}^{t-1} n_i \tau_i - \sum_{i=1}^{t-1} n_i \tau_i \quad \Rightarrow \quad \mu = \frac{1}{n} \sum_{i=1}^{t} n_i \mu_i \quad \Rightarrow \quad \tau_i = \mu_i - \mu.$$

Under this restriction, the treatment effects, τ_i 's are now the differences between the *i*th treatment mean and the weighted average of the treatment means. The population parameter μ now depends on the sample sizes which is somewhat a limitation for this restriction.

The restrictions result in a new formulation of the matrix model:

$$\mathbf{Y} = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{1n_1} \\ Y_{22} \\ \vdots \\ Y_{2n_2} \\ \vdots \\ Y_{t1} \\ Y_{t2} \\ \vdots \\ Y_{tn_t} \end{bmatrix}_{\mathbf{N} \times \mathbf{X}} = \begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 1 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ 1 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & 1 \\ 1 & \frac{-n_1}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_2}{n_t} & \cdots & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac{-n_{t-1}}{n_t} & \frac{-n_{t-1}}{n_t} & \frac{-n_{t-1}}{n_t} \\ 1 & \frac{-n_{t-1}}{n_t} & \frac$$

The design matrix is now of full column rank. The least squares estimators of the model parameters are obtained from the equation:

$$\hat{\boldsymbol{\beta}} = \left(\mathbf{X}'\mathbf{X}\right)^{-1} \left(\mathbf{X}'\mathbf{Y}\right)$$

$$= \begin{bmatrix} n & 0 & 0 & \cdots & 0 \\ 0 & n_1(1+\frac{n_1}{n_t}) & n_1n_2/n_t & \cdots & n_1n_{t-1}/n_t \\ 0 & n_1n_2/n_t & n_2(1+\frac{n_2}{n_t}) & \cdots & n_2n_{t-1}/n_t \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & n_1n_{t-1}/n_t & n_2n_{t-1}/n_t & n_2n_{t-1}/n_t & n_{t-1}(1+\frac{n_{t-1}}{n_t}) \end{bmatrix}^{-1} \begin{bmatrix} y_{\cdot \cdot} \\ y_{1\cdot} - n_1y_{t\cdot} \\ y_{2\cdot} - n_2y_{t\cdot} \\ \vdots \\ y_{t-1\cdot} - n_{t-1}y_{t\cdot} \end{bmatrix}$$

$$= \begin{bmatrix} \bar{y}_{..} \\ \bar{y}_{1.} - \bar{y}_{..} \\ \bar{y}_{2.} - \bar{y}_{..} \\ \vdots \\ \bar{y}_{t-1.} - \bar{y}_{..} \end{bmatrix} = \begin{bmatrix} \hat{\mu} \\ \hat{\tau}_{1} \\ \hat{\tau}_{2} \\ \vdots \\ \hat{\tau}_{t-1} \end{bmatrix}$$

Comments:

- 1. Under both Restriction 1, $\tau_t = 0$ and Restriction 2, $\sum_{i=1}^t n_i \tau_i = 0$, we obtain the LSE of μ_i by substituting in the LSE of μ and τ_i .
- 2. Restriction 2 is no longer widely used, although you will still find this restriction in a number of textbooks. This restriction involves defining a population parameter $\mu = 1/n \sum_{i=1}^{t} n_i \mu_i$ which is a function of the sample sizes. Thus, it is difficult to interpret the meaning of the effect parameters, $\tau_i = \mu_i \mu$ because the values of τ_i 's would vary across experiments depending on the values of the sample sizes even when the treatment means did not change.
- 3. When the experiments are balanced $(n_1 = n_2 = \cdots = n_t)$, the problem with the definition of μ does not occur. Under a balanced experiment, $\mu = \frac{1}{n} \sum_{i=1}^t n_i \mu_i = \frac{1}{t} \sum_{i=1}^t \mu_i$, which would not depend on the sample sizes, n_1, \ldots, n_t .
- 4. Restriction 1 does not have the definitional problem that was observed in Restriction 2. Also, most statistical software packages use Restriction 1. We will use Restriction 1 throughout this course.
- 5. When using various software packages to obtain the LSE of the τ_i 's (effects), make sure to check which restriction has been imposed on the τ_i 's so that the correct interpretation can be made about the estimates.

6. In the effects model, the LSE of μ , τ_1 , τ_2 , ..., τ_t are not uniquely determined because their solution to the normal equations will depend on which restriction is imposed on the parameters. This can be seen in the output from SAS:

The GLM Procedure

Class		Levels	Value	es		
T		4	COMM	VAC	MIXED	C02
	-	Observations Observations			20 15	

Dependent Variable: TCOUNT

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	3	51.62044500	17.20681500	155.17	<.0001
Error	11	1.21975500	0.11088682		
Corrected Total	14	52.84020000			

Parame	ter	Estimate	Standard Error	t Value	Pr > t
Interc	ept	3.198000000 B	0.14892066	21.47	<.0001
T	COMM	4.282000000 B	0.24318642	17.61	<.0001
T	VAC	2.302000000 B	0.24318642	9.47	<.0001
T	MIXED	4.144500000 B	0.22338099	18.55	<.0001
Т	C02	0.000000000 B			

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

Least Squ	ares Means		
	TCOUNT	Standard	
T	LSMEAN	Error	Pr > t
COMM	7.48000000	0.19225575	<.0001
VAC	5.50000000	0.19225575	<.0001
MIXED	7.34250000	0.16649836	<.0001
C02	3.19800000	0.14892066	<.0001
Overall	5 62000000		

Derivation of Distribution of AOV F-Statistic

The following theorems will be stated without proof. (See STAT 612 or STAT 616 for proofs or one of the following textbooks.)

- 1. Methods and Applications of Linear Models, by Ronald Hocking.
- 2. Linear Models for Unbalanced Data, by Shayle Searle.
- 3. Theory and Applications of Linear Models, by Frank Graybill.

Theorem 1 Let $\mathbf{Y}' = [y_1, y_2, \dots, y_p]$ be distributed as a p-dimensional normal random vector, $N_p(\boldsymbol{\mu}, \mathbf{V})$, where $\boldsymbol{\mu}' = [\mu_1, \mu_2, \dots, \mu_p]$, with $\mu_i = E[y_i]$ and \mathbf{V} is a p x p variance-covariance matrix, that is, $\mathbf{V} = (\sigma_{ij})$ with $\sigma_{ij} = \text{Cov}(y_i, y_j)$, $\sigma_{ii} = \text{Var}(y_i)$. Let \mathbf{A} be a p x p matrix. If \mathbf{AV} is an idempotent matrix, that is, $\mathbf{AVAV} = \mathbf{AV}$, then the quadratic form $\mathbf{Y'AY}$ has a noncentral chisquare distribution with $df = r = \text{rank}(\mathbf{A})$ and noncentrality parameter, $\lambda = \boldsymbol{\mu'} \mathbf{A} \boldsymbol{\mu}$. It then follows that $E[\mathbf{Y'AY}] = r + \lambda$ and $Var[\mathbf{Y'AY}] = 2r + 4\lambda$.

Theorem 2 Let **Y** be distributed $N_p(\boldsymbol{\mu}, \mathbf{V})$ and denote the two quadratic forms $W_1 = \mathbf{Y}' \mathbf{A} \mathbf{Y}$ and $W_2 = \mathbf{Y}' \mathbf{B} \mathbf{Y}$. If $\mathbf{A} \mathbf{V} \mathbf{B} = \mathbf{0}$, then W_1 and W_2 are independent.

We will now use Theorems 1 and 2 to obtain results concerning the distribution of the AOV F-test.

Model: $y_{ij} = \mu_i + e_{ij}$ for i = 1, ..., t; $j = i, ..., n_i$; and $n = \sum_{i=1}^t n_i$, where e_{ij} 's are iid $N(0, \sigma_e^2)$. Let **Y** be the data vector,

$$\mathbf{Y}' = \begin{bmatrix} Y_{11}, & Y_{12}, & \cdots, & Y_{1n_1}, & Y_{21}, & Y_{22}, & \cdots, & Y_{2n_2}, & \cdots, & Y_{t1}, & Y_{t2}, & \cdots, & Y_{tn_t} \end{bmatrix}_{\mathbf{n} \ \mathbf{X} \ \mathbf{1}}$$

It is observed that **Y** is distributed $N_n(\boldsymbol{\mu}, \mathbf{V})$ with $\mathbf{V} = \sigma_e^2 \mathbf{I}_n$, where \mathbf{I}_n is a n-dimensional identity matrix.

Notation Let

- 1. \mathbf{J}_m be a m x 1 vector of all 1's
- 2. $\mathbf{K}_m = \mathbf{J}_m \mathbf{J}_m'$, a m x m matrix of all 1's
- 3. $\bar{\mathbf{K}_m} = \frac{1}{m}\mathbf{K}_m$, a m x m matrix with all values equal to $\frac{1}{m}$
- 4. **D** be a n x n matrix with the t matrices $\bar{\mathbf{K}}_{n_1}, \bar{\mathbf{K}}_{n_2}, \dots, \bar{\mathbf{K}}_{n_t}$ on its diagonal and 0's in all other cells.

Express SS_{TRT} and SSE as Quadratic Forms

$$SS_{TRT} = \sum_{i=1}^{t} n_i [\bar{y}_{i.} - \bar{y}_{..}]^2 = \mathbf{Y}' \mathbf{A}_1 \mathbf{Y}$$
, with $\mathbf{A}_1 = \mathbf{D} - \mathbf{K}_n$

$$SSE = \sum_{i=1}^{t} \sum_{j=1}^{n_i} [y_{ij} - \bar{y}_{i.}]^2 = \mathbf{Y}' \mathbf{A}_2 \mathbf{Y}$$
, with $\mathbf{A}_2 = \mathbf{I}_n - \mathbf{D}$

To obtain the sampling distribution of SS_{TRT} and SSE, we need to verify the following results: Result 1. $\mathbf{A}_1\mathbf{I}_n$ is idempotent:

$$\begin{aligned} \left(\mathbf{A}_{1}\mathbf{I}_{n}\right)\left(\mathbf{A}_{1}\mathbf{I}_{n}\right) &= &\left(\mathbf{D}-\bar{\mathbf{K}_{n}}\right)\mathbf{I}_{n}\left(\mathbf{D}-\bar{\mathbf{K}_{n}}\right)\mathbf{I}_{n} \\ &= &\mathbf{D}\mathbf{D}-\mathbf{D}\bar{\mathbf{K}_{n}}-\bar{\mathbf{K}_{n}}\mathbf{D}+\bar{\mathbf{K}_{n}}\bar{\mathbf{K}_{n}} \\ &= &\mathbf{D}-\bar{\mathbf{K}_{n}}-\bar{\mathbf{K}_{n}}+\bar{\mathbf{K}_{n}}=\mathbf{D}-\bar{\mathbf{K}_{n}}=\mathbf{A}_{1}\mathbf{I}_{n} \end{aligned}$$

Result 2. $\mathbf{A}_2\mathbf{I}_n$ is idempotent:

$$(\mathbf{A}_2\mathbf{I}_n) (\mathbf{A}_2\mathbf{I}_n) = (\mathbf{I}_n - \mathbf{D}) \mathbf{I}_n (\mathbf{I}_n - \mathbf{D}) \mathbf{I}_n$$

= $\mathbf{I}_n - \mathbf{D} - \mathbf{D} + \mathbf{D}\mathbf{D} = \mathbf{I}_n - \mathbf{D} = \mathbf{A}_2\mathbf{I}_n$

Result 3.
$$Rank(\mathbf{A}_1) = rank(\mathbf{D} - \bar{\mathbf{K}_n}) = t - 1$$

Result 4. Let $\mu' = (\mu_1 \mathbf{J}'_{n_1}, \mu_2 \mathbf{J}'_{n_2}, \cdots, \mu_t \mathbf{J}'_{n_t})$, then

$$\mu' \mathbf{A}_{1} \mu = \mu' \left(\mathbf{D} - \mathbf{K}_{n} \right) \mu$$

$$= \mu' \mathbf{D} \mu - \mu' \mathbf{K}_{n} \mu$$

$$= \sum_{i=1}^{t} n_{i} \mu_{i}^{2} - n \left(\frac{1}{n} \sum_{i=1}^{t} n_{i} \mu_{i} \right)^{2} = \sum_{i=1}^{t} n_{i} (\mu_{i} - \bar{\mu}_{.})^{2}$$

Result 5.

$$\boldsymbol{\mu}' \mathbf{A}_{2} \boldsymbol{\mu} = \boldsymbol{\mu}' (\mathbf{I}_{n} - \mathbf{D}) \boldsymbol{\mu}$$

$$= \boldsymbol{\mu}' \boldsymbol{\mu} - \boldsymbol{\mu}' \mathbf{D} \boldsymbol{\mu}$$

$$= \sum_{i=1}^{t} n_{i} \mu_{i}^{2} - \sum_{i=1}^{t} n_{i} \mu_{i}^{2} = 0$$

Result 6. $Rank(\mathbf{A}_2) = rank(\mathbf{I}_n - \mathbf{D}) = n - t$

Result 7.

$$\mathbf{A}_{2}\mathbf{I}_{n}\mathbf{A}_{1} = (\mathbf{I}_{n} - \mathbf{D})\mathbf{I}_{n}(\mathbf{D} - \mathbf{K}_{n})$$

$$= \mathbf{D} - \mathbf{K}_{n} - \mathbf{D}\mathbf{D} + \mathbf{D}\mathbf{K}_{n}$$

$$= \mathbf{D} - \mathbf{K}_{n} - \mathbf{D} + \mathbf{K}_{n} = 0$$

Using Results 1-5 and the two theorems, the following distributional results are obtained:

D1. $\frac{1}{\sigma_e^2}SS_{TRT} = \mathbf{Y}'\left(\frac{1}{\sigma_e^2}\mathbf{A}_1\right)\mathbf{Y}$ has a noncentral chisquare distribution with df = t - 1 and noncentrality paramter given by: let $\mu' = \left(\mu_1 \mathbf{J}'_{n_1}, \mu_2 \mathbf{J}'_{n_2}, \cdots, \mu_t \mathbf{J}'_{n_t}\right)$, then

$$\lambda = \boldsymbol{\mu}' \left(\frac{1}{\sigma_e^2} \mathbf{A}_1 \right) \boldsymbol{\mu} = \frac{1}{\sigma_e^2} \boldsymbol{\mu}' \left(\mathbf{D} - \bar{\mathbf{K}}_n \right) \boldsymbol{\mu} = \frac{1}{\sigma_e^2} \sum_{i=1}^t n_i (\mu_i - \bar{\mu}_i)^2$$

- Justification: **Y** is distributed $N_n(\boldsymbol{\mu}, \sigma_e^2 \mathbf{I}_n)$.
 - $\left(\frac{1}{\sigma_e^2}\mathbf{A}_1\right)V = \left(\frac{1}{\sigma_e^2}\mathbf{A}_1\right)(\sigma_e^2\mathbf{I}_n) = \mathbf{A}_1\mathbf{I}_n$. Result 1 shows that $\mathbf{A}_1\mathbf{I}_n$ is idempotent.

Thus, Theorem 1 along with Results 3 and 4 yield the stated distributional result.

- **D2.** $\frac{1}{\sigma_e^2}SSE = \mathbf{Y}'\left(\frac{1}{\sigma_e^2}\mathbf{A}_2\right)\mathbf{Y}$ has a central chisquare distribution with df = n t
 - Justification: Y is distributed $N_n(\boldsymbol{\mu}, \sigma_e^2 \mathbf{I}_n)$.

$$\left(\frac{1}{\sigma_e^2}\mathbf{A}_2\right)V = \left(\frac{1}{\sigma_e^2}\mathbf{A}_2\right)(\sigma_e^2\mathbf{I}_n) = \mathbf{A}_2\mathbf{I}_n$$
. Result 2 shows that $\mathbf{A}_2\mathbf{I}_n$ is idempotent.

Thus, Theorem 1 along with Results 5 and 6 yield the stated distributional result.

- **D3.** SSE and SS_{TRT} are independent
 - Justification: $SS_{TRT} = \mathbf{Y}' \mathbf{A}_1 \mathbf{Y}$ and $SSE = \mathbf{Y}' \mathbf{A}_2 \mathbf{Y}$

$$\mathbf{A}_2 \mathbf{V} \mathbf{A}_1 = \mathbf{A}_2 \sigma_e^2 \mathbf{I}_n \mathbf{A}_1 = \sigma_e^2 \mathbf{A}_2 \mathbf{A}_1 = \mathbf{0}$$

The independence follows Theorem 2 and Result 7.

D4. $F = \frac{MS_{TRT}}{MSE}$ has a noncentral F-distribution with df = t - 1, n - t and noncentrality parameter

$$\lambda = \frac{1}{\sigma_e^2} \sum_{i=1}^t n_i (\mu_i - \bar{\mu}_.)^2$$

• Justification: Follows from D1-D3 after noting that

$$F = \frac{\frac{1}{\sigma_e^2} SS_{TRT}/(t-1)}{\frac{1}{\sigma_e^2} SSE/(n-t)}$$

D5. Under $H_o: \mu_1 = \cdots = \mu_t$, F has a central F-distribution

- Justification: Follows from D1-D3.
- **D6.** Let **H** be a k x t matrix with rank(**H**) = $k \le t$, define the Hypotheses:

$$H_o: \mathbf{H}\boldsymbol{\mu} = \mathbf{0} \text{ versus } H_1: \mathbf{H}\boldsymbol{\mu} \neq \mathbf{0},$$

Let $\hat{\boldsymbol{\mu}}' = (\bar{y}_{1.}, \dots, \bar{y}_{t.})$. The test statistic

$$F = \frac{\left(\mathbf{H}\hat{\boldsymbol{\mu}}\right)' \left(\mathbf{H} \left(\mathbf{X}'\mathbf{X}\right)^{-1} \mathbf{H}'\right)^{-1} \left(\mathbf{H}\hat{\boldsymbol{\mu}}\right) / k}{MSE}$$

has, under H_o , an F-distribution with $df = k, df_E$.

• Justification: $\mathbf{H}\hat{\boldsymbol{\mu}}$ is distributed $N_k(\mathbf{H}\boldsymbol{\mu},\mathbf{H}V\mathbf{H}')$, where $V = \sigma_e^2 Diag(\frac{1}{n_1},\ldots,\frac{1}{n_t})$. The result then follows using arguments similar to those used to obtain D1-D3.