The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Test 1 2023/24 Semester 2

Question 1.

(60 marks) Let $f(x) = x (x + 4)^3, -\infty < x < \infty$

- (a) Find the intervals on which the function is increasing or decreasing, also find the relative (i.e. local) extrema.
- (b) Find the intervals on which the function concaves up or concaves down and identify the inflection points.
- (c) Find the intercepts and asymptotes (if any) of the graph y = f(x) and sketch the graph.

My work:

(a) $f'(x) = x \cdot 3 (x+4)^2 + (x+4)^3 = 4 (x+1) (x+4)^2 = 0 \iff x = -1, -4 \text{ (double)}$ The critical points of f are x = -1, -4

x	$(-\infty, -4)$	-4	(-4, -1)	-1	$(-1, +\infty)$
f'	_	0	_	0	+
\overline{f}	`	0	`	-27	>

The interval where f is increasing is: $[-1, +\infty)$

The interval where f is decreasing is: $(-\infty, -1]$

f attains a local minimum at x = -1 and f(-1) = -27

f has no local maximum.

(b)
$$f''(x) = 4(x+4)^2 + 4(x+1) \cdot 2(x+4) = (12x+24)(x+4) = 0 \iff x = -2, -4$$

<u>x</u>	$(-\infty, -4)$	-4	(-4, -2)	-2	$(-2, +\infty)$
f"	+	0		0	+
\overline{f}	convex	0	concave	-16	convex

The intervals where f is concave up are: $(-\infty, -4], [-2, +\infty)$

The interval where f is concave down is: [-4, -2]

The inflection points of f are x = -4, -2 at which change of convexity occurs.

(c) y-intercept: f(0) = 0; x-intercepts: $f(x) = x (x + 4)^3 = 0 \iff x = 0, -4$ (triple) There are no vertical, horizontal and inclined asymptotes.

Remark:								
		<i>x</i> <	-4	< <i>x</i> <	-2	< <i>x</i> <	-1	< <i>x</i>
	f	<i>\</i>	0	>	-16	<i>\</i>	-27	1
	f'	_	0	_		_	0	+
j	f''	+	_	_	0	+	+	+

Question 2.

(20 marks) You are asked to design a cylindrical container with total surface area of 10π m² including the top, the base and the side. Find the largest possible volume of the container. Justify your answer.

My work:

Surface area of the container =
$$2\pi r^2 + 2\pi rh = 10\pi \implies r^2 + rh = 5 \implies h = \frac{5}{r} - r$$

Volume of the container =
$$\pi r^2 h = \pi r^2 \left(\frac{5}{r} - r\right) = \pi r \left(5 - r^2\right) =: V(r)$$
 on $r \in (0, \sqrt{5})$

$$V'(r) = \pi (5 - r^2) + \pi r (-2r) = \pi (5 - 3r^2) = 0 \iff r = \sqrt{\frac{5}{3}}$$

r	$(0,\sqrt{\frac{5}{3}})$	$\sqrt{\frac{5}{3}}$	$(\sqrt{\frac{5}{3}}, \sqrt{5})$
<i>V</i> (<i>r</i>)	7	max	`
<i>V</i> ′(<i>r</i>)	+	0	_

The least possible value of the container = $V(\sqrt{\frac{5}{3}}) = \frac{10}{3} \sqrt{\frac{5}{3}} \pi \approx 13.5193 \text{ m}^3$

Question 3.

(20 marks) Apply the Mean Value Theorem to prove that for all $1 \le a < b$, $\ln(b^2 + 1) - \ln(a^2 + 1) < b - a$

My work:

Let $f(u) = \ln(u^2 + 1)$, which is continuous on [a, b] and differentiable in (a, b), and

$$f'(u) = \frac{2u}{u^2 + 1}$$
, $f''(u) = \frac{(u^2 + 1) 2 - 2u (2u)}{(u^2 + 1)^2} = \frac{2 (1 - u) (1 + u)}{(u^2 + 1)^2} < 0$ for all $u > 1$, which

implies f' is strictly decreasing in $(1, +\infty)$, i.e. $f'(u) < \lim_{u \to 1^+} f'(u) = 1$ for all u > 1.

By Mean-Value Theorem, $\exists \ \xi \in (a, b)$ such that

$$f(b) - f(a) = f'(\xi) (b - a) < b - a \text{ since } \xi > a > 1.$$

Alternative Solution Skip blue part, and write:

Note that
$$\xi^2 + 1 - 2\xi = (\xi - 1)^2 > 0$$
 (since $\xi > a \ge 1 \Rightarrow \xi \ne 1$), i.e. $f'(\xi) = \frac{2\xi}{\xi^2 + 1} < 1$.

This implies that $\ln (b^2 + 1) - \ln (a^2 + 1) < b - a$ for all $1 \le a < b$.