15+19d = 72 Hence d = 3 $S_n = \frac{100}{2} \{(2 \times 15) + (99 \times 3)\}$ = 16350	MI AI MI AI	4	Attempt to find d, from $a + (n-1)d$ or $a + nd$ Obtain $d = 3$ Use correct formula for sum of n terms Obtain 16350
		4	
(i) $46 \times \frac{\pi}{186} = 0.802 \cdot 0.803$	MI		Attempt to convert to radians using π and 180 (or 2π &
360)	AI	2	Obtain 0.802 / 0.803, or better
(ii) $8 \times 0.803 = 6.4 \text{ cm}$	Bi	1	State 6.4, or better
(iii) $-\frac{1}{2} \times 8^2 \times 0.803 = 25.6 \cdot 25.7 \text{ cm}^2$	MI		Attempt area of sector using $\frac{1}{2}x^2\theta$ or $x^2\theta$, with θ in
adians	Al	2	Obtain 25.6 / 25.7, or better
	'''		
(42) -2 -2	 	5	Old in all and are compared to the
3 (i) $\int (4x-5) dx = 2x^2 - 5x + c$	M1 A1	2	Obtain at least one correct term Obtain at least $2x^2 - 5x$
	B1v	-	State or imply μ = their integral from (i)
(ii) $y = 2x^2 - 5x + c$ $7 = 2 \times 3^2 - 5 \times 3 + c \implies c = 4$	MI		Use $(3,7)$ to evaluate c
So equation is $y = 2x^2 - 5x + 4$	A1	3	Correct final equation
		5	
4 (i) area = $\frac{1}{2} \times 5\sqrt{2} \times 8 \times \sin 60^{\circ}$ = $\frac{1}{4} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	В1		State or imply that $\sin 60^\circ = \frac{\sqrt{3}}{2}$ or exact equiv
$= \frac{1}{2} \times 5\sqrt{2} \times 8 \times \frac{\sqrt{3}}{2}$	MI		Use $\frac{1}{2} ac \sin B$
~ 10√6	Al	3	Obtain $10\sqrt{6}$ only, from working in surds
(ii) $AC^2 = (5\sqrt{2})^2 + 8^2 - 2 \times 5\sqrt{2} \times 8 \times \cos 60^2$	MI		Attempt to use the correct cosine formula
10.750	A1 A1	3	Correct unsimplified expression for AC ² Obtain AC = 7.58, or better
AC = 7.58 cm	Ai		Obtain AC + 7.56, of Better
		6	
5 (a) (i) $\log_{\frac{1}{2}} \frac{4x+7}{x}$	BI	1	Correct single logarithm, as final answer, from correct
(ii) $\log_3 \frac{4x+7}{x} = 2$			working only
$\frac{4x\sqrt{2}}{x} = 9$	BI		State or imply $2 = \log_2 9$
4x + 7 = 9x	MI		Attempt to solve equation of form $f(x) = 8$ or 9
x = 1.4	Al	3	Obtain $x = 1.4$, or exact equiv
(b) $\int_{100}^{8} \log_{10} x dx \approx \frac{1}{2} \times 3 \times (\log_{10} 3 + 2 \log_{10} 6 + \log_{10} 9)$	BI		State, or imply, the 3 correct y-values only
³ ≈ 4.48	MI		Attempt to use correct trapezium rule
	A1 A1	4	Obtain correct unsimplified expression Obtain 4 48, or better
		8	

6	.,	$(1+4x)^7 = 1+28x+336x^2+2240x^3$ 28a+1008=1001	B1 M1 A1 A1	4	Obtain 1 - 28x Attempt binomial expansion of at least 1 more term, with each term the product of binomial coeff and power of 4x Obtain 336x ² Obtain 2240x ³ Multiply together two relevant pairs of terms
	()	Hence $a = -14$	A1v A1	3 7	Obtain $28a - 1908 = 1991$ Obtain $a = -\frac{1}{4}$
7	(i)	(a) •	BI BI	2	Correct shape of $k\cos c$ graph (90, 0), (270, 0) and (0, 2) stated or implied
		(b) $\cos x = 0.4$ $x = 66.4^{\circ}, 294^{\circ}$	MI AI AIV	3	Divide by 2, and attempt to solve for x Correct answer of 66.4° 1.16 rads Second correct answer only, in degrees, following their x
	(ii)	$\tan x = 2$ $x = 63.4^{\circ}, -117^{\circ}$	M1 A1 A1√	3	Use of $\tan x = \frac{\sin x}{\cos x}$ (or square and use $\sin^2 x + \cos^2 x \equiv 1$) Correct answer of 63.4° 1.56 rads Second correct answer only. In degrees, following their x
			-	8	
8	(i)	-8 - 36 - 14 + 33 × -25	M1 A1	2	Substitute $x = -2$, or attempt complete division by $(x + 2)$ Obtain -25 , as final answer
	(ii)	27 - 81 ÷ 21 ÷ 33 - 0 A.G.	Bi	1	Confirm f(3) = 0, or equiv using division
	(iii)	x = 3 $f(x) = (x - 3)(x^2 - 6x - 11)$	B1 M1 A1 A1		State $x = 3$ as a root at any point Attempt complete division by $(x = 3)$ or equiv Obtain $x^2 = 6x = k$ Obtain completely correct quotient
		$x = \frac{6 \pm \sqrt{36 + 44}}{2}$	MI		Attempt use of quadratic formula, or equiv, to find roots
		$\frac{2}{2 \times 3 \pm 2\sqrt{5}}$ or $3 \pm \sqrt{20}$	Al	6	Obtain 3 ± 2√5 or 3 ± √20
				9	
9	(i)	$u_{+} = 1.5 \times 1.02^{4}$	MI		Use $1.5r^4$, or find u_2 , u_4 , u_4
		• 1.624 tonnes A.G.	A1	2	Obtain 1.624 or better
	(ii)	$\frac{1.5(1.02^{\times} - 1)}{1.02 - 1} \le 39$	M1		Use correct formula for S_N
		$(1.02^{N} + 1) : (39 \times 0.02 \times 1.5)$ $(1.02^{N} + 1) \le 0.52$	A1 M1		Correct unsimplified expressions for S_N Link S_N to 39 and attempt to rearrange
		$(1.02^{\circ} - 1) \le 0.52$ Hence $1.02^{\circ} \ge 1.52$	Al	4	Obtain given inequality convincingly, with no sign errors
	(iii)	$\log 1.02^{N} \le \log 1.52$ $N \log 1.02 \ge \log 1.52$ $N \le 21.144$. $N \ge 21 \text{ trips}$	MI AI MI AI	4	Introduce logarithms on both sides and use $\log a^h + b \log$ Obtain $N \log 1.02 + \log 1.52$ (ignore linking sign) Attempt to solve for N Obtain $N = 21$ only
			1	10	

10	(i)	$0 = 1 - \frac{3}{\sqrt{9}}$	В1	1	Verification of (9, 0), with at least one step shown
	(ii)	$\int_{0}^{x} 1 - 3x^{-\frac{1}{2}} dx = \left[x - 6\sqrt{x}\right]_{0}^{x}$	MI		Attempt integration – increase in power for at least 1 term
		$= (a - 6\sqrt{a}) - (9 - 6\sqrt{9})$ $= a - 6\sqrt{a} + 9$	A1 A1 M1 A1		For second term of form kx^9 For correct integral Attempt $F(a) - F(9)$ Obtain $a - 6\sqrt{a} + 9$
		$a \cdot 6\sqrt{a} + 9 = 4$ $a \cdot 6\sqrt{a} + 8 = 0$ $\sqrt{a} \cdot \sqrt[3]{a} \cdot \sqrt[3]{a} \cdot 8 = 0$	MI MI		Equate expression for area to 4 Attempt to solve 'disguised' quadratic
		$\sqrt{a} = 1, \sqrt{a} = 5$ $a = 1, a = 25$ but $a > 9$, so $a = 25$	A1 A1	ģ	Obtain at least $\sqrt{a} = 5$ Obtain $a = 25$ only
				10	