REMINDERS:

- . WEBASSIGN 2 DUE THURS 09102
- · QUIZ 1 -> CANVAS FRI 09103
- PRECALC MODULES 7 DUE FRI 09/13

LAST TIME:

AVERAGE POC

"SLOPE OF SECANT LINE"

CAN COMPUTE > f(b) - f(a)

b - a

"SLOPE OF TANGENT LINE"

Day 2- Section 2.2- Limits

Limits. You can think of the notation $\lim f(x)$ as shorthand for: "What number (if any) does f(x)approach as x gets really close to a, without actually being equal to a?" This number is called the limit of f(x) as x approaches a. a and L are numbers

More precisely, saying $\lim_{x\to a} f(x) = L$ means that we can make the values of f(x) as close as we like to L by making x sufficiently close to (but not equal to) a.

1. In each of the following examples, what is $\lim_{x \to a} f(x)$? What is f(0)?

f (0) undefined

(a+b)(a-b)

2. How about trying to compute limits algebraically: Compute $\lim_{x\to 3}$

$$f(x) = \frac{x^{2} - q}{x - 3}$$

$$f(3) = \frac{3^{2} - q}{3 - 3} = \frac{0}{0}$$

$$\lim_{x \to 3} \frac{x^{2} - q}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{(x - 3)}$$

$$= \lim_{x \to 3} x + 3 = 6$$

If a is a number, x can get really close to a from two sides, the left and the right. So, we also look at one-sided limits:

- The limit of f(x) as x approaches a from the *left*, **lim** f(x), is the number that f(x) approaches as x gets really close to a, while remaining slightly less than a.
- The <u>limit of f(x) as x approaches a from the *right*, $\lim_{x\to a^+} f(x)$, is the number that f(x) approaches</u> as x gets really close to a, while remaining slightly greater than a.

3. Sketch an example of a function f for which $\lim_{w\to 2^-} f(w) = 1$ and $\lim_{w\to 2^+} f(w) = 3$. Can you sketch an example where in addition to the two limits above, you also have that $\lim_{x \to \infty} f(x)$ exists?

(a) $\lim_{x \to 0^+} \frac{1}{x} = + \infty$

(b) $\lim_{x \to 0^-} \frac{1}{x} = - \infty$

(c) $\lim_{x\to 0} \frac{1}{x}$ **D.N.E!**

- $\lim_{x\to 0^+} f(x) = \begin{cases} \begin{cases} Since | \neq | \\ Since | \neq | \end{cases} \end{cases}$ $\lim_{x\to 0^+} f(x) = -1$ $\lim_{x\to 0^+} f(x) = -1$
 - (d) $\lim_{x \to \infty} \frac{1}{x} = 0$
 - (e) $\lim_{x \to -\infty} \frac{1}{x} < \mathcal{O}$

- lim f(x) D.N.E! (if and only if)

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L.$$

- (i) Right and left limit exist
- (ii) They are equal

- 5. Sketch the graph of $f(x) = \frac{1}{x}$, and use it to find the following limits.

- TAKEAWAYS:
- oo is not a number!
- When we say $\lim_{x\to 0^+} \frac{1}{x} = \infty$, we really mean $\lim_{x\to 0^+} \frac{1}{x}$ D.N.E, but we can see our outputs are increasing without bound as x->ot.

2

When we say $\lim_{x \to \infty} \frac{1}{x} = 0$ (> END BEHAVIOUR 6. The graphs of f and g are given below.

From (a),(b)

Evaluate each of the following quantities.

lim
$$g(x)$$
 does (a) $\lim_{x\to 2} g(x) = 2$
 $x\to 2$
not care about $g(2)$!

(b)
$$g(2) =$$

(c)
$$\lim_{x \to 2} \frac{f(x)}{g(x)} \rightarrow 2 = \boxed{2}$$

More Practice

- 1. Find each limit. (It will help to sketch the relevant functions.)
 - (a) $\lim_{x \to 0} \frac{1}{x^2}$

(c) $\lim_{x \to \infty} \sqrt{x}$

(e) $\lim_{x \to \infty} \sin x$

(b) $\lim_{x \to \infty} \frac{1}{x^2}$

(d) $\lim_{x \to -\infty} 3^x$

(f) $\lim_{x \to 1^-} \arcsin x$

2. The graph of a function g is given below.

Evaluate the following, or explain why they do not exist.

(a) $\lim_{x \to 0} g(x)$

(g) $\lim_{x \to 2^+} g(x)$

(l) g(-3)

(b) $\lim_{x \to 1^+} g(x)$

(h) $\lim_{x\to 2} g(x)$

(m) $\lim_{x \to -1} g(x)$

(c) $\lim_{x \to 1^-} g(x)$

(i) g(2)

(n) g(-1)

(d) $\lim_{x \to 1} g(x)$

 $(j) \lim_{x \to -4^+} g(x)$

(o) $\lim_{x \to 4} g(x)$

(e) g(1)

(k) $\lim_{x \to -3} g(x)$

(p) g(4)

(f) $\lim_{x \to 2^-} g(x)$