

All waste management facilities must be enclosed to prevent entry of children, animals and vermin. Waste collection contractors shall have adequate access to these facilities for collection of waste. Signages on the use of the waste management system shall also be displayed in the facility.

Case Study

A commercial building having a built-up area of 3,000 m², proposes to have a separate recyclable waste facility. To determine the minimum space required for the recyclable facility, project team should use the following formula:

$$\frac{R_{n} - R_{1}}{T_{n} - T_{1}} = \frac{R_{2} - R_{1}}{T_{2} - T_{1}}$$

Where,

 R_n = space required for the recyclable facility for the project

 R_1 = minimum space required for the recyclable facility for the preceding threshold level from Table 702.05 (1) based on the BUA

 R_2 = minimum space required for the recyclable facility for the next threshold level from Table 702.05 (1) based on the BUA

T₂ = built-up area of the project

 T_1 = the preceding built-up area threshold level from Table 702.05 (1)

 T_{3} = the next built-up area threshold level from Table 702.05 (1)

For this project having built-up area of 3,000 m² (T_n), the values are as follows:

 $T_1 = 1,000 \text{ m}^2$

 $T_2 = 5,000 \text{ m}^2$

 $R_1 = 8 \text{ m}^2 \text{ i.e. } 0.8\% \text{ of } 1,000 \text{ m}^2$

 $R_2 = 17.5 \text{ m}^2 \text{ i.e. } 0.35\% \text{ of } 5,000 \text{ m}^2$

$$R_n = \frac{(17.5-8)}{(5000-1000)} \times (3000-1000) + 8$$

 $R_n = 12.75 \text{ m}^2$

Hence, recyclable facility of minimum $12.75\ m^2$ is required to be provided for the project (fig. 702.05(2)).

Fig. 702.05(2): Separate Recyclable Waste Facility (Example)