Diabetic Retinopathy Prediction using Convolutional Neural Networks

Rajib Das Bhagat (CS17M034)

Guide: Prof. Balaraman Ravindran

IIT Madras

What is DR?

 Diabetic Retinopathy can be termed as any damage caused to the retina of an eye due to abnormal blood flow.

Fig. 1: Normal Eye

Fig. 2: Abnormal Eye

Abnormalities stages in DR:

Fig. 3: DR abnormalities (related abnormalities are circled)

Literature Survey:

Table 1: Literature Survey

<u>No.</u>	Published Paper	<u>Year</u>	Classification Type	<u>Techniques</u> <u>Used</u>	<u>Accuracy</u>
1	Automatic detection of diabetic retinopathy using an artificial neural network: A screening Tool. [Authors: G G Gardner, D Keating, T H Williamson, A T Elliott]	1996	Binary	Neural Network	88.4%
2	Automated identification of diabetic retinopathy stages using digital fundus images. [Authors: Nayak J, Bhat PS, Acharya R, Lim CM, Kagathi M]	2008	Three-class	Neural Network	93.0%
3	Application of higher order spectra for the identification of diabetes retinopathy stages. [Authors: Acharya UR, Chua CK, Ng EY, Yu W, Chee C]	2008	Five-class	SVM	82.0%
4	Computer-based detection of diabetes retinopathy stages using digital fundus images. [Authors: Acharya UR, Lim CM, Ng EY, Chee C, Tamura T]	2009	Five-class	SVM	85.9%
5	Multiclass SVM-based automated diagnosis of diabetic retinopathy. [Authors: P. Adarsh, D. Jeyakumari]	2013	Five-class	SVM	96.0%

Problem Statement:

"The aim of this study is to explore how we can automate the process of correctly classifying and predicting an eye image as abnormal or normal".

Methodology:

Steps for building CNN:

Fig. 4: Network Architecture

Table 2: Hyper-parameters & other settings

No.	Attributes Used	Values	
1	training_batch	32	
2	test_batch	32	
3	learning_rate	0.0001	
4	epochs	50	
5	drop_out	0.5	
6	class_mode	category	
7	input_size	512 x 512	
8	kernel_size	3 x 3	
9	pool_size	3 x 3	
10	strides	2 x 2	
11	padding	same	
12	color_mode	Grayscale	

Table 3: CNN architecture

Layer (type)	N architecture	Param #
conv2d_1 (Conv2D)	(None, 32, 512, 512)	320
leaky_re_lu_2 (LeakyReLU)	(None, 32, 512, 512)	0
batch_normalization_1 (BatchNormalization)	(None, 32, 512, 512)	2048
max_pooling2d_1 (MaxPooling2)	(None, 32, 256, 256)	0
conv2d_2 (Conv2D)	(None, 32, 256, 256)	9248
leaky_re_lu_3 (LeakyReLU)	(None, 32, 256, 256)	0
batch_normalization_2 (BatchNormalization)	(None, 32, 256, 256)	1024
max_pooling2d_2 (MaxPooling2)	(None, 32, 128, 128)	0
conv2d_3 (Conv2D)	(None, 64, 128, 128)	18496
leaky_re_lu_4 (LeakyReLU)	(None, 64, 128, 128)	0
batch_normalization_3 (BatchNormalization)	(None, 64, 128, 128)	512
max_pooling2d_3 (MaxPooling2)	(None, 64, 64, 64)	0
conv2d_4 (Conv2D)	(None, 64, 64, 64)	36928
leaky_re_lu_5 (LeakyReLU)	(None, 64, 64, 64)	О
batch_normalization_4 (BatchNormalization)	(None, 64, 64, 64)	256
max_pooling2d_4 (MaxPooling2)	(None, 64, 32, 32)	0
conv2d_5 (Conv2D)	(None, 128, 32, 32)	73856
leaky_re_lu_6 (LeakyReLU)	(None, 128, 32, 32)	0
batch_normalization_5 (BatchNormalization)	(None, 128, 32, 32)	128
max_pooling2d_5 (MaxPooling2)	(None, 128, 16, 16)	0
conv2d_6 (Conv2D)	(None, 128, 16, 16)	147584
leaky_re_lu_7 (LeakyReLU)	(None, 128, 16, 16)	0
batch_normalization_6 (BatchNormalization)	(None, 128, 16, 16)	64
max_pooling2d_6 (MaxPooling2)	(None, 128, 8, 8)	0
conv2d_7 (Conv2D)	(None, 256, 8, 8)	295168
leaky_re_lu_8 (LeakyReLU)	(None, 256, 8, 8)	0
conv2d_8 (Conv2D)	(None, 256, 8, 8)	590080
leaky_re_lu_9 (LeakyReLU)	(None, 256, 8, 8)	0
batch_normalization_7 (BatchNormalization)	(None, 256, 8, 8)	32
max_pooling2d_7 (MaxPooling2)	(None, 256, 4, 4)	0
conv2d_9 (Conv2D)	(None, 512, 4, 4)	1180160
leaky_re_lu_10 (LeakyReLU)	(None, 512, 4, 4)	0
conv2d_10 (Conv2D)	(None, 512, 4, 4)	2359808
leaky_re_lu_11 (LeakyReLU)	(None, 512, 4, 4)	0
batch_normalization_8 (BatchNormalization)	(None, 512, 2, 4)	16
max_pooling2d_8 (MaxPooling2)	(None, 512, 2, 2)	0
dropout_1 (Dropout)	(None, 512, 2, 2)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_1 (Dense)	(None, 1024)	2098176
leaky_re_lu_12 (LeakyReLU)	(None, 1024)	0
dropout_2 (Dropout)	(None, 1024)	0
dense_2 (Dense)	(None, 1024)	1049600
leaky_re_lu_13 (LeakyReLU)	(None, 1024)	0
dense_3 (Dense)	(None, 2)	2050
Total params: 7,865,554		

Dataset:

Source: https://kaggle.com/c/diabetic retinopathy detection/data

Table 5: Testing dataset

Table 4: Training dataset

Cat.	DR TYPE	COUNT		Cat.	DR TYPE	COUNT
0	Normal	25810	Normal 4000 Train:3600 Test:400 Abnormal 4000 Train:3600 Test:400	0	Normal	39533
1	Mild DR	2443		1	Mild DR	3762
2	Moderate DR	5292		2	Moderate DR	7861
3	Severe DR	873		3	Severe DR	1214
4	Proliferative DR	708		4	Proliferative DR	1206
	Total	35126			Total	53576

Pre-processing:

Noise
Corrupted image
Blurred image
Poorly focused
Lighting variation

Fig. 5: Preprocessed image

Fig. 4: Example of noisy image

Remedy
Cropping
Resizing 512 x 512
Normalization (GaussianBlur)

Augmentation:

- Done when batches are formed.
- Randomly rescaled by ±10%.
- Randomly rotated 0-90 degree.
- Random horizontal and vertical flip.
- Performed on training data only (except rescaling).

Experiment 1:

Fig 8: Confusion Matrix

Table 6: Classification Report

Experiment 2:

Table 7: Classification Report

Experiment 3:

rig 14. Comusion Matrix

Table 8: Classification Report

Future Work:

- add more training images
- use adversarialization process
- more complex architecture such as VGGNet, ResNet,
 Inception, Xception and other architectures
- five-class classification

References:

- [1] G. G. Gardner, D. Keating, T. H. Williamson, A. T. Elliott.. Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. *British Journal Ophthalmology* 1996;**80**(11):940-944.
- [2] Markku Kuivalainen. Retinal Image Analysis Using Machine Vision. *Thesis report Lappeenranta Univ of Tech, Dept of IT* 2005.
- [3] Nayak J, Bhat PS, Acharya R, Lim CM, Kagathi M.. Automated identification of diabetic retinopathy stages using digital fundus images. J Med Sys 2008;32(2):107-115.
- [4] Acharya UR, Chua CK, Ng EY, Yu W, Chee C.. Application of higher order spectra for the identification of diabetes retinopathy stages. *J Med Sys* 2008;**32**(6):481-488.
- [5] Acharya UR, Lim CM, Ng EY, Chee C, Tamura T.. Computer-based detection of diabetes retinopathy stages using digital fundus images. *P I Mech Eng H* 2009; **223**(5): 545-553.
- [6] P.Adarsh, D.Jeyakumari.. Multiclass SVM-based automated diagnosis of diabetic retinopathy. In: *Communications and Signal Processing (ICCSP)*, 2013 *International Conference on.* IEEE; 2013,p. 206-210.
- [7] Ben Graham. Kaggle Diabetic Retinopathy Detection competition report. 2015.
- [8] Harry Pratt, Frans Coenen, Deborah M Broadbent, Simon P Harding, Yalin Zheng.. Convolutional Neural Network for Diabetic Retinopathy. *Procedia Computer Science* 90 2016:200-205.
- [9] Linda Roach. Artificial Intelligence, The Next Step in Diagnostics. In: *EyeNet* November 2017.
- [10] Pascanu, Razvan et al. Understanding the exploding gradient problem. In: CoRR 2012.
- [11] Wikipedia. https://en.wikipedia.org/wiki/Diabetic retinopathy

Thank You

Special thanks

Karthik Thiagarajan [Ms Scholar]
Saurabh Desai [Project Associate, RBCDSAI LAB]