Optimized, Bottom-Up Semantic Web Reasoning based on OWL2 RL in Resource-Constrained Settings

William Van Woensel

Context

- Clinical Practice Guidelines (CPG)
 - Disease-specific, evidence-based recommendations
 - Standard for decision making on diagnosis, prognosis and treatment
 - a) Context-sensitive care recommendations
 - b) Clinical workflow of relevant clinical activities

Algorithm for diagnosis of heart failure [1]

Pre-treatment assessment and correction of electrolytes [1]

ACEI upitration [1]

Context (2)

- 1) Clinical Decision Support Systems (CDSS)
 - Automated systems that incorporate computerized CPG
 - Pro-actively guide physician through decision processes
- ➤ Decision Logic (OWL2 DL), IF-THEN (SWRL) rules, ...

Switch [2, 3]:

SatisfiedCondition $\cap \exists conditionOf. ActiveTask \cap \exists leadsTo. InactiveTask \cap \forall lessPriorityThan. UnsatisfiedCondition <math>\subseteq ChosenCondition$

 $UnsatisfiedCondition \cap \exists conditionOf. ActiveTask \cap \exists leadsTo. InactiveTask \subset DiscardedCondition$

SatisfiedCondition $\cap \exists conditionOf. ActiveTask \cap \exists leadsTo. InactiveTask \cap lessPriorityThan. SatisfiedCondition <math>\subset DiscardedCondition$

...

Context (2)

- 1) Clinical Decision Support Systems (CDSS)
 - Automated systems that incorporate computerized CPG
 - Pro-actively guide physician through decision processes
- 2) Involve patients in their own long-term care
 - Canadian Community Health Survey (2014):
 - Chronic illnesses affect ca. 40% of Canadians
 - With multi-morbidity of ca. 15%
 - Increase self-sufficiency and quality of life
 - Reduce healthcare costs
- Mobile patient diaries
 - IMPACT-AF project
 - Self-collect health data at any time and place
 - Using Bluetooth measurement devices (e.g., IBGStar, OneTouch, Withings, iHealth)
 - ✓ Increase mobility of chronic patients
 - ✓ Up-to-date health profile
 - ✓ No delays in supplying health-critical info

Context (3)

• Requirements:

- Connectivity
 - Cope with short/long-term disconnections (lack of WiFi, 3G)
 - Should not limit mobile patient diary usage
- Response latency
 - Slow / lacking connectivity may occur frequently
 - Server = single point of failure

Solutions:

- Offline data entry (BP, HR, ..)
 - Synchronize with online EMR when connectivity is restored
- Local Clinical Decision Support System
 - ✓ Independent of connectivity
 - ✓ Enables timely health alerts
- Distributed setup
 - Local: lightweight, time-sensitive reasoning is deployed locally
 - Remote: heavyweight processes are delegated to the server

Mobile platform

Context (4)

- Ontology-based (OWL) reasoning
 - OWL2 DL: too resource-intensive on mobile systems
 - Recent empirical work by Bobed et al. [4]:
 - PC outperforms Android by **1,5 150**
 - Larger number of out-of-memory errors
 - Most mobile approaches are rule-based
 - E.g., OWL2 RL or custom entailment

OWL2 RL

- Suitable W3C OWL2 profile
 - · Allows scalable reasoning without sacrificing too much expressivity
- Adjust reasoning complexity to suit scenario & resources
 - Choose rule subsets based on task & overhead
- Enhance any rule-based task with semantic features
 - I.e., include OWL2 RL (subset) into ruleset
 - Such as computerized, rule-based CPG in CDSS

1) Optimizing the OWL2 RL ruleset

Non-conformant

Stable

Multi-stage OWL2 RL ruleset selection

- Stable vs. volatile ontology
- Conformant
- Equivalent OWL2 RL ruleset
 - a) Removing logically equivalent rules (-7 rules)
 - Replace 2+ specific rules with more general rules & axioms (-10 rules)
 - Removing "stand-alone" schema inference rules (-4 rules)-
- 2) Purpose- and reference-based subsets
 - a) *Purpose*: inferencing (= 53 rules) vs. validation (=18 rules)
 - b) Reference: instances (= 32 rules) vs. schema (= 23 rules)
- 3) Remove inefficient rules (- 1 rule)
 - Leave out rules with large performance impact
 - E.g., #eq-ref infers each resource is equivalent to itself
- Domain-based ruleset selection
 - I.e., leave out rules not needed by ontology & dataset
 - Forward-chaining algorithm (Tai et al. [8])

1) Optimizing the OWL2 RL ruleset: Evaluation

OWL2 RL*						
	original	2819 (88 2731)				
		volatile ontology	stable ontology			
	conformant	full	inf-schema	inf-inst	consist	
AndroJena		2639 (90 2549) + <u>entailed</u>	1001 (69 932)	1245 (187 1058) + <u>entailed</u> , <u>domain-based</u>		
	non-conformant	full	inf-schema	inf-inst	418 (195 223)	
		1547 (93 1455) + <u>entailed</u> , <u>ineff</u>	919 (65 854) <u>inst-ent</u>	272 (165 106) + entailed, domain- based, ineff, inst-ent		

^{*: [}total-time] ([load-time] | [reason-time]; applied selections are shown, if any.

OWL2 DL**				
Hermit	21111			
Pellet	6978			
JFact	7034			

**: total-time

1) Optimizing the OWL2 RL ruleset: Future work

- Rule instantiation [7, 9, 10]
 - 1) Materialize schema inferences in ontology
 - 2) Instantiate each *instance rule* with schema terms
 - Increase rule selectivity
 - Reduce # of joins
 - Requires a "stable" ontology
- Domain-specific rulesets
 - Large impact on performance
 - Currently, does not support "volatile" ontologies
 - Ruleset needs to be re-calculated on ontology changes
 - Avg. ca. 291ms (PC), 4183ms (mobile)
 - Deploy on mobile device, integrate with reasoner?

2) RETE Strategies for Resource-Constrained Settings

- RETE Algorithm
 - Well-known solution to implement production rule systems
 - Rule premise = alpha node
 - Alpha memory: keeps matched facts
 - Join = beta node
 - Beta memory: keeps join results
 - Useful in dynamic environments, due to its incremental nature
- Known for trading memory for performance
 - 1) Alpha memories will overlap depending on premise selectivity
 - 2) Many SW applications already involve an RDF store for query access
 - Collection of alpha memories *duplicate* RDF store
- Many rules will not be needed for domain
 - But, still consume computing & memory resources in RETE
 - Tailor RETE networks during execution
 - In light of dynamic & incremental situations

2) RETE Strategies for Resource-Constrained Settings (2)

- Dataset-mask memory strategy
 - ➤ Keep alpha memories as *masks* on the RDF store
 - Query RDF store using joining token & rule premise as constraint
 - Hybrid version: dataset-mask vs. regular memory, based on premise selectivity
- Dynamic tailoring of RETE networks
 - Avoid redundant join attempts [11]
 - Unlink alpha memory from its beta node in case join attempts are useless
 - 2) Avoid redundant token matches
 - Pause alpha nodes in case they are unlinked from each rule
 - Requires separate RDF store for synchronizing alpha memory upon resume
 - Join-utility heuristics
 - Determine utility of join attempts
 - 1) Empty sibling memory
 - In case alpha (i <= 2) or beta (i > 2) memory is empty, no joins are possible [10]
 - 2) Lower failed alpha nodes
 - Pointless to attempt joins in case a failed alpha node occurs lower down

Dataset-mask: Evaluation (1)

	memo	ry usage	reasoning performance (ms)† (P.3)			
strategy*	# a memories** (M.1)	a contents† (M.2)	PC	mobile		
regular-memory	r: 46, d: 0	95342 (2900 - 747114)	15705 (18 - 322352)	24968 (1051 - 199974)		
dataset-mask	r : 0, d : 46	(46 – 46)	51905 (51 - 1187570)	69573 (2903-542670)		
hybrid-0.1,0.25	r: 42, d: 4	(279 - 50827)	16303 (27 - 340194)	29287 (1526 - 212573)		
hybrid-0.5	r: 43, d: 3	(1115 - 188153)	16475 (23 - 338109)	26444 (1145 - 202646)		
hybrid-0.75,1	r: 44, d: 2	(1248 - 335444)	17715 (25 - 365843)	25203 (1115 - 198404)		

 Table 1. Benchmark results for RETE alpha memory strategies

*: hybrid-[x]: x represents the utilized threshold (Section 4.2)

**: \mathbf{r} = regular memories, \mathbf{d} = dataset-masks

†: showing averages, with min-max in parenthesis

Dataset-mask: Evaluation (2)

What if SW scenario does not include an RDF store?

- Introduce RDF store as shared alpha memory pool
- Updated memory reductions:
 - Dataset-mask: avg. ca. -55%
 - *Hybrid-0.1,0.25*: avg. ca. -27%
 - *Hybrid-0.5:* avg. ca. -9%
 - *Hybrid-0.75,1*: avg. ca. +1%
- RDF store update operations:
 - − *PC*: avg. ca. +0,67s
 - Mobile: avg. ca. +1s

Dynamic RETE tailoring: Evaluation

tailoring				reverting			
memory-unlink		node-pause	memory-relink		node-resume		
#	heuristi	c	noue-pause	#	heuristic	node-resume	
2625	(1)	·	44	1.4	(1)		
24	(1), (2))	44	14 (1)		2	

Table 4. Dynamic tailoring statistics (T.2) (total number of tailoring operations) (PC)

	RETE operation statistics (T.1)		reasoning times (ms)*			complete
config	# token matches	# join attempts	preproc (T.3)	initial dataset (P.3)	incremental (P.4)	(T.4)
default	218038	2062420	/-	pc: 825	pc: 14065 mo: 23573	✓
dynamic tailoring	181687	657075	n/a	mo : 2070	pc : 13989 mo : 20682	✓
a priori tailoring	132831	279997	рс: 291 mo: 4183	pc: 808 mo: 1529	pc : 13893 mo : 19356	X (- 11448)

Table 5. Comparison of three configurations for incremental reasoning.

*: **pc** = PC performance, **mo** = mobile performance

2) RETE Strategies for Resource-Constrained Settings: Future work (in progress)

- Currently: mostly based on OWL2 RL ruleset in clinical decision support
 - Also, benchmarks done using OWL2 RL ruleset
 - Additional benchmarks needed for other rulesets
- More advanced heuristics to determine join utility
 - Eager vs. lazy algorithm
- More fine-grained memory strategy
 - Alpha memories will often subsume other memories
 - E.g., subsumed (virtual) alpha memories access their subsuming, concrete alpha memory behind-the-scenes (comparable to dataset-mask but with a smaller query access overhead)
- Dynamic *hybrid* memory strategies
 - Switch between regular and dataset-mask memories based on evolving selectivities

2) RETE Strategies for Resource-Constrained Settings: Future work (in progress) (2)

- Virtual materialization of OWL2 semantics in match & join operations
 - Consider OWL2 semantics when matching & joining tokens
 - Avoid explicit materialization, which takes up memory

2) RETE Strategies for Resource-Constrained Settings: Future work (in progress) (2)

- Virtual materialization of OWL2 semantics in match & join operations
 - Consider OWL2 semantics when matching & joining tokens
 - Avoid explicit materialization, which takes up memory

2) RETE Strategies for Resource-Constrained Settings: Future work (in progress) (2)

18

- Virtual materialization of OWL2 semantics in match & join operations
 - Consider OWL2 semantics when matching & joining tokens
 - Avoid explicit materialization, which takes up memory

PropertyX *type* SymmetricProperty

Questions?

• E-mail: william.van.woensel@gmail.com

References

- [1] S. Abidi. PhD Thesis, 2010.
- [2] B. Jafarpour. PhD Thesis, 2010.
- [3] B. Jafarpour, S. S. R. Abidi, S. R. Abidi. Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines. IEEE J. Biomed. Heal. Informatics, 2014.
- [4] C. Bobed, R. Yus, F. Bobillo, E. Mena. Semantic reasoning on mobile devices: Do androids dream of efficient reasoners? Web Semantics: Science, Services and Agents on the World Wide Web, 35:167–183, December 2015.
- [5] S. Ali and S. Kiefer. "microOR --- A Micro OWL DL Reasoner for Ambient Intelligent Devices. In Proceedings of the 4th International Conference on Advances in Grid and Pervasive Computing, 2009, pp. 305–316.
- [6] T. Kim, I. Park, S. J. Hyun, D. Lee. MiRE4OWL: Mobile Rule Engine for OWL. In Proceedings of the 2010 IEEE 34th Annual Computer Software and Applications Conference Workshops, 2010, pp. 317–322.
- [7] B. Motik, I. Horrocks, S. M. Kim. Delta-reasoner: A Semantic Web Reasoner for an Intelligent Mobile Platform. In Proceedings of the 21st International Conference Companion on World Wide Web, 2012, pp. 63–72.
- [8] W. Tai, J. Keeney, D. O'Sullivan. Resource-constrained reasoning using a reasoner composition approach. Semant. Web, vol. 6 (1), pp. 35–59, 2015
- [9] J. Bak, M. Nowak, C. Jedrzejek. RuQAR: Reasoning Framework for OWL 2 RL Ontologies. In The Semantic Web: ESWC 2014 Satellite Events, Anissaras, Crete, Greece, May 25-29, 2014, 2014, vol. 8798, pp. 195–198.
- [10] G. Meditskos N. Bassiliades. **DLEJena: A Practical Forward-chaining OWL 2 RL Reasoner Combining Jena and Pellet**. Web Semant., vol. 8, no. 1, pp. 89–94, Mar. 2010.
- [11] R.B. Doorenbos. Combining Left and Right Unlinking for Matching a Large Number of Learned Rules. In Hayes-Roth, B. and Korf, R.E. (eds.) Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA, USA, July 31 August 4, 1994, Volume 1. pp. 451–458.