Molecular approaches: TB day

Monday 2 September

MOLECULAR ASSAYS FOR TUBERCULOSIS: increased levels of complexity

INFORMATION Mtb/no Mtb Mtb/no Mtb Mtb/no Mtb all drugs 15 drugs RIF Genotype Genotype **Transmission** 4.4Mb MTB-specific MTB-specific **TARGETS** All 18 drug-targets 1 (4) drug-target(s) drug-targets Cultured **Treated SAMPLE** Raw isolate Specimen specimen **TYPE** *** **MOLECULAR** Simple **ASSAY NAATs tNGS** WGS

Cepheid GeneXpert® System

Nucleic acid amplification tests (NAATs)

The impact of Xpert on TB diagnosis and care

Impact on Patient Isolation Pathway
"Test and Release" or "Test and Treat"

System vs. Assays - semantics

THE SYSTEM: GeneXpert® System

• "The system is designed to purify, concentrate, detect and identify targeted nucleic acid sequences thereby delivering answers directly from unprocessed samples."

THE ASSAY: Xpert <<your favourite assay>>

- Xpert® MTB/RIF
- Xpert® MTB/XDR
- Xpert® Xpress Flu
- Xpert® Xpress Strep A

GeneXpert systems for different throughput needs

GeneXpert Infinity

How does it work?

How does the PCR detection used by Xpert MTB/RIF Ultra work?

- TB or no TB? (That is the question)
 - Targets:
- Xpert MTB/RIF:
 - RIF susceptible or RIF resistant?
 - Target: *rpoB* RNA polymerase
 - Rifampicin resistance determining region 82 bp genomic region in rpoB
 - Wild type and mutant probes

Xpert MTB/XDR

- 10 colour-assay
- Extended drug resistance:
 - INH
 - FQs
 - SLIDs
 - ETH

Xpert assays for TB

Interpreting results

110008945 ITG Antwerpen 12/23/22 11:17:22

Test Report

Patient ID:

Sample ID: CT202201273

Test Type: Specimen

Sample Type:

Assay Information

Assay	Assay Version	Assay Type
Xpert MTB-XDR	1	In Vitro Diagnostic

Test Result: MTB DETECTED;

INH Resistance NOT DETECTED;

FLQ Resistance NOT DETECTED;

AMK Resistance NOT DETECTED;

KAN Resistance NOT DETECTED;

CAP Resistance NOT DETECTED;

ETH Resistance NOT DETECTED

Interpreting results

110008945 ITG Antwerpen 12/23/22 11:18:13

Test Report

Patient ID:

Sample ID: CT202201279

Test Type: Specimen

Sample Type:

Assay Information

Assay	Assay Version	Assay Type
Xpert MTB-XDR	1	In Vitro Diagnostic

Test Result: MTB DETECTED;

INH Resistance NOT DETECTED;

FLQ Resistance DETECTED;

AMK Resistance NOT DETECTED;

KAN Resistance NOT DETECTED;

CAP Resistance NOT DETECTED;

ETH Resistance NOT DETECTED

PRACTICAL

- Work in groups of 2
- Eyeball sample volume
- Add 2x volume sample reagent
- Mix well
- Incubate at RT for 15 min
- Mix again at 10 min mark
- Add 2 ml to cartridge
- Load into machine
- Follow software prompts
- Wait for assay to run
- Interpret results

New assays: testing the limits

New assays: testing the limits

Xpert MTB/XDR:

Determining the limit of FQ heteroresistance detection

Deeplex Myc-TB

Targeted Next-Generation Sequencing

tNGS & WGS

Two NGS approaches for DR-TB control

Focus on genomic regions of interest

Comprehensive analysis of the entire genome

tNGS & WGS

Two NGS approaches for characterisation of DR-TB

Focus on genomic regions of interest

Comprehensive analysis of the entire genome

tNGS & WGS: Head to head

Characteristic	tNGS - Deeplex® Myc-TB WGS	
Input sample	Sputum Culture	
Batching	Min 20	Min 4 (Illumina), Min 1 (ONT)

tNGS & WGS: Head to head

Characteristic	tNGS - Deeplex® Myc-TB WGS		
Input sample	Sputum	Culture	
Batching	Min 20	Min 4 (Illumina), Min 1 (ONT)	
bp investigated	10,000 - 13000 bp	~ 4 million bp	
Drug resistance	12 – 15 drugs fixed	23 drugs flexible	
Limit of variant detection	1-3%	1-3% if 1000x depth	

tNGS & WGS: Head to head

Characteristic	tNGS - Deeplex® Myc-TB WGS		
Input sample	Sputum Culture		
Batching	Min 20	Min 4	
bp investigated	10,000 - 13000 bp ~ 4 million bp		
Drug resistance	12 – 15 drugs fixed	23 drugs flexible	
Limit of variant detection	1-3%	1-3% if 1000x depth	
Phylogenetic Typing	Moderate resolution (SNPs/spoligotyping)	High resolution	
Transmission Inference	nsmission Inference Limited Accurate		

Implications of a culture step

tNGS - Deeplex® Myc-TB

Patient — Sample — Output

Implications of a culture step

• Biosafety and infrastructural needs

A comprehensive approach: Drug resistance

- 13-15 drugs
- 18 targets

A comprehensive approach: Drug resistance

PRACTICAL – Deeplex Myc-TB

Deeplex® Myc-TB workflow

PRACTICAL

Oxford Nanopore Technologies

Whole genome sequencing

Please make an account on Galaxy before Thursday afternoon's session https://usegalaxy.org/

How ONT sequencing works - recap

Overview of ONT sequencing approaches

Investigations

Structural variation

Gene expression

Splice variation

Fusion transcripts

Single cell

SNVs and phasing

Identification

Assembly

Epigenetics

Chromatin

conformation

Techniques

Whole genome

Targeted

Whole transcriptome

Metagenomics

Short fragment mode

ONT solutions for WGS

Application-free, native DNA sequencing and retained base modification			Amplification-based for low DNA amounts or quality
Ligation Sequencing Kit	Rapid Sequencing Kit	Ultra-Long Sequencing Kit	Rapid PCR Barcoding Kit
60 min	10 min	200 min + O/N elution	15 min + PCR
1,000 ng gDNA; 100-200 fmol amplicons or cDNA	200 ng gDNA (<30 kb)	6 M cells	1–5 ng gDNA
Optional	Transposase based	Transposase based	Transposase based
Equal to fragment length	Random distribution, dependent on input fragment length	50–100+ kb N50	~2 kb
•••			
24 plex, 96 plex	24 plex, 96 plex	-	12 plex
Yes	Yes	Yes	-
Optimised for output; retained base modifications; control over read length	Simple and rapid; retained base modifications	Optimised for production of ultra-long reads (N50 ≥50 kb); retained base modifications	Simple and rapid
	Ligation Sequencing Kit 60 min 1,000 ng gDNA; 100–200 fmol amplicons or cDNA Optional Equal to fragment length 24 plex, 96 plex Yes Optimised for output; retained base	Ligation Sequencing Kit Rapid Sequencing Kit 10 min 1,000 ng gDNA; 100–200 fmol amplicons or cDNA Optional Equal to fragment length Random distribution, dependent on input fragment length 24 plex, 96 plex Yes Optimised for output; retained base Simple and rapid; retained base	Ligation Sequencing Kit Rapid Sequencing Kit Ultra-Long Sequencing Kit Equal to final to the following sequencing Kit Ultra-Long Sequencing Kit Ultra-Long Sequencing Kit Equal to final to the following sequencing Kit Ultra-Long Sequencing Kit Equal to final to the final to the following sequencing Kit Equal to final to the final to t

Starting material

Rapid barcoding kit overview

Rapid barcoding kit overview

Library preparation step	Process	Time	Stop option
DNA barcoding	Tagmentation of the DNA using the Rapid Barcoding Kit V14	15 minutes	4°C overnight
Sample pooling and clean-up	Pooling of barcoded libraries and AMPure XP Bead clean-up	25 minutes	4°C overnight
Adapter ligation	Attach the sequencing adapters to the DNA ends	5 minutes	We strongly recommend sequencing your library as soon as it is adapted
Priming and loading the flow cell	Prime the flow cell and load the prepared library for sequencing	5 minutes	

PRACTICAL – stations and sequencing

- 24 samples to be prepared (200 ng gDNA aliquoted)
- 3 library pools: 3 x stations for library preparation
 - Each group to pool their samples 8 samples per pool
 - Each sample = one *Mycobacterium tuberculosis* clinical isolate

- 3 x libraries will be loaded for sequencing training room
 - 3 x Laptops set up with MinKNOW software and MinION sequencers
 - 3 volunteers to load flowcells

PRACTICAL - flowcell check and loading (seminar room)

- Quality control of flow cells flowcell health (done)
 - Check how many active pores:
 - Up to 2048 pores
 - Ideally more than 800 active pores
- Follow in instructions in lab manual: p25 26
 - Prime flowcell
 - Prepare library for loading for loading
 - Load the flow cell and start the sequencing

PRACTICAL – priming and loading the flow cell

Tips and tricks for loading a flow cell

- Removing liquid from the priming port to ensure that there are no bubbles in the sequencing channel
 - Insert the tip of a P1000
 - Slowly turn the dial to remove ±200ul liquid
- Loading the flowcell: work quickly and accurately
 - Loading beads precipitate quickly
 - The order in which to open/close the ports matter
- Reverse pipetting
 - Use RP to add all reagents to the flow cell

Reverse pipetting

