Machine Learning - 2021Fall - HW5

系級:電機所碩一學號:R10921098姓名:楊仁傑

Kaggle Competetion

1. (1%) 請附上你在kaggle競賽上表現最好的降維以及分群方式,並條列五種不同降維維度的設定對應到的表現 (public / private accuracy),auto-encoder 和 PCA 只要任一維度不一樣即可算是一種組合。

ANS

在使用相同的AE架構·調整訓練的epoch以及PCA的維度(8092 -> n)·可以觀察出訓練300輪時·表現最好的是PCA n=1000·但當訓練變為500輪時·表現最好的反而是PCA n=500。

epoch	ch Loss	
300	2.42	
500	2.30	

PCA	epoch	Public	Private
200	300	0.8396	0.8411
500	300	0.8331	0.8280
1000	300	0.8456	0.8424
200	500	0.8449	0.8462
500	500	0.8311	0.8244
1000	500	0.8422	0.8413

此外·另外嘗試調整learning rate去觀察AE收斂程度跟分類結果的差異性·對照上下兩個表可以得知·當AE的loss下降時·分類效果在固定參數的情況下並沒有比較好·甚至表現比較差。這也就呼應了助教在Kaggle中所提到的"好的autoencoder不代表你會cluster好兩類物品。因為model並不會知道你希望以什麼為依據做clustering。"

epoch	epoch Loss	
300	1.17	
500	1.08	

PCA	epoch	Public	Private
200	300	0.8067	0.8016
500	300	0.7671	0.7691
1000	300	0.8309	0.8253
200	500	0.8140	0.8207
500	500	0.8436	0.8396
1000	500	0.8327	0.8271

Conv2d-1	[-1, 64, 32, 32]	1,792
BatchNorm2d-2	[-1, 64, 32, 32]	128
ReLU-3	[-1, 64, 32, 32]	0
Conv2d-4	[-1, 64, 32, 32]	36,928
BatchNorm2d-5	[-1, 64, 32, 32]	128
ReLU-6	[-1, 64, 32, 32]	0
Conv2d-7	[-1, 128, 32, 32]	73,856
BatchNorm2d-8	[-1, 128, 32, 32]	256
ReLU-9	[-1, 128, 32, 32]	0
Conv2d-10	[-1, 128, 32, 32]	147,584
BatchNorm2d-11	[-1, 128, 32, 32]	256
ReLU-12	[-1, 128, 32, 32]	0
MaxPool2d-13	[-1, 128, 16, 16]	0
Conv2d-14	[-1, 256, 16, 16]	295,168
BatchNorm2d-15	[-1, 256, 16, 16]	512
ReLU-16	[-1, 256, 16, 16]	0
Conv2d-17	[-1, 256, 16, 16]	590,080
BatchNorm2d-18	[-1, 256, 16, 16]	512
ReLU-19	[-1, 256, 16, 16]	0
MaxPool2d-20	[-1, 256, 8, 8]	0
Conv2d-21	[-1, 512, 8, 8]	1,180,160
BatchNorm2d-22	[-1, 512, 8, 8]	1,024
ReLU-23	[-1, 512, 8, 8]	0
Conv2d-24	[-1, 512, 8, 8]	2,359,808
BatchNorm2d-25	[-1, 512, 8, 8]	1,024
ReLU-26	[-1, 512, 8, 8]	0
MaxPool2d-27	[-1, 512, 4, 4]	0
ConvTranspose2d-28	[-1, 128, 8, 8]	1,638,528
ReLU-29	[-1, 128, 8, 8]	0
ConvTranspose2d-30	[-1, 64, 16, 16]	663,616
ReLU-31	[-1, 64, 16, 16]	0
ConvTranspose2d-32	[-1, 3, 32, 32]	55,491
Tanh-33	[-1, 3, 32, 32]	0

2. (1%) 從 kaggle 的 dataset 選出 2 張圖,並貼上原圖以及經過 autoencoder 後 reconstruct 的圖片;請將 visualization.npy 的檔案降維至二維平面並利用給定的 label 將資料上色(前一半為 0;後半為 1)。

ANS:

[reconstruct]

Eigenface

3. (1%) 請畫出所有臉的平均以及 Eigenvalue 最大的前五個 Eigenfaces。

ANS:

4. (1%) 請從數據集中挑出任意五張圖片,並用上題前五大 Eigenfaces 進行 reconstruction,並畫出結果。
ANS:
Math Problem
5. (4%) Refer to math problem
(https://hackmd.io/@g4HRMJCzQL2hzLedRcbVPQ/SyCBoc1qt)
ANS:

2. (a).
$$M = \frac{1}{10} \sum_{n=1}^{10} \chi_n = \begin{bmatrix} 5.4 \\ 8 \\ 4.8 \end{bmatrix}$$

$$Z = \frac{1}{10} Z (\sqrt{\chi} - \overline{\chi}) (\sqrt{\chi} - \overline{\chi})^{T} = \begin{bmatrix} 12.04 & 0.5 & 3.28 \\ 0.5 & 12.2 & 2.9 \\ 3.28 & 7.9 & 8.16 \end{bmatrix}$$

$$\lambda_{1} = 15.29$$
 $M_{1} = \begin{bmatrix} -0.62 \\ -0.59 \end{bmatrix}$
 $\lambda_{2} = 11.63$
 $M_{2} = \begin{bmatrix} -0.68 \\ 0.73 \\ -0.03 \end{bmatrix}$
 $M_{3} = 5.49$
 $M_{1} = \begin{bmatrix} 0.40 \\ 0.34 \\ -0.85 \end{bmatrix}$

(b)
$$W = \begin{bmatrix} -0.02 & -0.59 & -0.62 \\ -0.68 & 0.73 & -0.03 \\ 0.4 & 0.34 & -0.85 \end{bmatrix}$$

$$Z_1 = \begin{bmatrix} -3.36 \\ 0.71 \\ 1.48 \end{bmatrix}$$
 $Z_2 = \begin{bmatrix} -4.78 \\ 3.03 \\ -0.04 \end{bmatrix}$ $Z_3 = \begin{bmatrix} -13.61 \\ 0.53 \\ 2.42 \end{bmatrix}$

$$Z_{4} = \begin{bmatrix} -5.04 \\ -5.06 \\ 1.16 \end{bmatrix}$$

$$Z_{5} = \begin{bmatrix} -12.39 \\ 0.84 \\ -5.02 \end{bmatrix}$$

$$Z_{6} = \begin{bmatrix} -9.19 \\ -1.84 \\ -3.3 \end{bmatrix}$$

$$Z_{10} = \begin{bmatrix} -10.30 \\ 1.11 \end{bmatrix}$$

$$Z_{7} = \begin{bmatrix} -14.96 \\ -1.95 \end{bmatrix}$$

$$Z_{8} = \begin{bmatrix} -9.00 \\ -1.95 \end{bmatrix}$$

$$Z_{7} = \begin{bmatrix} -12.87 \\ -1.95 \end{bmatrix}$$

(C)
$$3D \rightarrow 2D$$

$$\frac{1}{10} \sum_{k=1}^{10} (1 - \hat{y}_{k})^{2} = 60.64$$

3. (a). $^{\circ}$: $(AAT)^{\dagger} = (AT)^{\dagger}A^{\dagger} = AAT$, $(ATA)^{\dagger} = A(AT)^{\dagger} = ATA$ $\therefore AAT$ and ATA are both symmetric

②. $\forall X \in \mathbb{R}^{m}$, $X \neq 0$, $\forall J \in \mathbb{R}^{n}$, $J \neq 0$. $\chi^{T}(AA^{T}) \chi = (A^{T}\chi)^{T}A^{T}\chi = ||A^{T}\chi||^{2} \geq 0$. $\chi^{T}(A^{T}A) \chi = (A\chi^{T}) A \chi = ||A\chi||^{2} \geq 0$.

i ATA and AAT are both postice semi-definite.

多今月為AAT的其中一組eigenvalue,分表の サビERM、(AAT)U=3U

 \Rightarrow $(A^TA)(A^TU) = A^T((AA^T)U)) = A^T(\Delta U) = A(A^TU)$

ヨ 分局為 (ATA)的 espenualue, ATU 為其 espenuector 令 本 為 AAT的其中一組 espenualue 2040 同理 HUERM, (ATA)U = AU

 \Rightarrow $(AA^T)(AU) = A((A^TA)U) = A(\Delta U) = \Delta(AU)$

シム同為(AAT) sheigenvalue, AU 為其 eigenvector in AAT and ATA 有相同 eigenvalue。

(b) "Z is symmetric and positive definite. =) Z can be diagolize as $\Sigma = U \cap U \cap V \cap V \in \mathbb{R}^{m \times m}$ is orthorormal $\Lambda \in \mathbb{R}^{m \times m}$ is diagonal $\Lambda = \operatorname{diag}\left(\frac{6i}{n}, \frac{6z}{n}, \frac{6m^2}{n}\right)$ for $\int_{0}^{\infty} \int_{0}^{\infty} \int$ $\exists Z = U(\frac{1}{N}DD^{T})U^{T} \text{ where } D \in \mathbb{R}^{MM}. D = \begin{pmatrix} 6/62 & 0 & 0 & 0 \\ 0 & 1/6 & 0 & 0 \end{pmatrix}$ = NUDVIVDIUI $=\frac{1}{N}\left(UDV^{T}\right)\left(UDV^{T}\right)^{T}$ $=\frac{1}{N} \chi \cdot \chi^{T} (\text{Let } \chi = UDV^{T} = (\hat{\chi}_{1} \dots \hat{\chi}_{N}))$ $=\frac{1}{N}\sum_{n=1}^{N}\widehat{\chi}_{n}\widehat{\chi}_{n}^{T}$ = + = (M-M) (Mx-M) (let Mx = (x+m) There always exists V such that $\frac{1}{N}\sum_{k=0}^{N}\widehat{\chi}_{k}=0$. , since= $\frac{1}{N}\sum_{k=1}^{N}\widehat{\chi}_{k}=0 \iff \chi\left(\frac{1}{k}\right)=0 \iff UDU^{T}\left(\frac{1}{k}\right)=0$ ⟨⇒ V^T(½) ← Null (UD) Since dim (Null(MD)) = Nullity (UD) = n - Rank(UD) = n-m>0 $(\frac{1}{7})^T V = 1 E (=$ SO, (Y1/2 111/Yn) satisfies 1/2 // = 1/2 (M+11)+11

Since \bar{z} and $\bar{\varphi}\bar{\varphi}^{\dagger}$ are symmetric, exist orthogonal matrix. Let $\bar{\varphi} = \underline{U}_1, \underline{U}_2, \underline{U}_K$ is a orthogonal vector set in R^m . $(\bar{\varphi}\bar{\varphi})(\underline{U}_{\bar{z}}) = \bar{\varphi}(\bar{\varphi}^{\dagger}\underline{U}_{\bar{z}}) = \bar{\varphi}\cdot \underline{C}_{\bar{x}} = \underline{U}_{\bar{x}} = \underline{I}\cdot\underline{U}_{\bar{x}}$ ergenalue = 0 $\underline{U}_{\bar{x}}$ is eigenvector of $\underline{\varphi}\bar{\varphi}^{\dagger}\underline{x}$