Inhaltsverzeichnis

1	Einf	ührung	5
	1.1 1.1.1	Mögliche Dienste einer DL L Mögliche weitere Aufgaben einer DL	5 5
	1.2	Digitalisierung von Papierdokumenten	
	1.3 1.3.1 1.3.2	Beispiele einer DL Unterschiede der DL	5 5
	1.3.3	Vorteiler einer DL	
2		senschaftliches Publizieren	
	2.1	Publikationshierarchie in der Informatik	
	2.2	Qualitätssicherung: Peer Review	
	2.3	Typischer Ablauf für Konferenzen	
	2.4	Wichtige Fachgesellschaften	
	2.5	Wichtige Verlage	
	2.6	Probleme des traditionellen Systems	
	2.7	Weiteres Problem: Aktualität	
	2.8	Warum überhaupt Zeitschriften	
	2.9	Wie man gute Journals/Konferenzen erkennt	
	2.10	Digital Object Identifiers	
	2.11	Personen-Identifier	
	2.12	Mögliche Features zur Autordisambiguierung	
	2.13	Bewertung von Publikationen	
	2.14	Bewertung von Journals	
	2.15	Bewertung von Autoren	9
3	Einf	ührung in Information Retrieval	10
	3.1	Retrieval-Szenarien	10
	3.2	Herausforderung an IR-Systeme	10
	3.3	Begriffsbildung	10
	3.4	Percision / Recall	10
4	Boo	lesches Retrieval - Anfragen und einfache Datenstrukturen	11
	4.1	Dokumente	
	4.2	Terme	
	4.3	Informationsbedarf und Ad-hoc-Anfragen	
	4.4	Term-Dokument Inzidenzmatrix	
	4.5	Invertierter Index	

Э	12	lesches Retrieval - Vorverarbeitung von Dokumenten und Indexie	erung
	5.1	Indexierung	12
	5.2	Konstruktion eines invertierten Indexes	12
	5.3	Token und Terme	12
	5.4	Tokenisierung und Normalisierung	13
	5.5	Vorverarbeitung	
	5.5.2	l Normalisierung	13
	5.5.2 5.5.3		
	5.5.4		
6	Воо	lesches Retrieval - Weitere wichtige Retrievaloperatoren	15
	6.1	Phrasenanfragen	
	6.2	Positionsindexe	
	6.3	Proximity-Queries (Nachbarschaftsanfragen)	
	6.4	Rechtschreibkorrektur	
	6.4.	L Korrektur isolierter Terme	16
	6.4.2		
	6.5	Schwachpunkte des Booleschen IR-Modells	16
7	Reti	rievalmodelle - Das Vektorraum-Modell	17
	7.1	Sichten auf ein Dokument	
	7.2	Modelle	
	7.3	Taxonomie von Retrieval-Modellen	
	7.4	Klassisches Retrieval-Modell	18
	7.5	Boolesches Modell	18
	7.6	Vektorraummodell	19
	7.6.2	L Termhäufigkeit	19
	7.6.2	2 Termgewichte	
	7.6.4	· · · · · · · · · · · · · · · · · · ·	_
	7.6.5	5 Absolute Termhäufigkeit	20
	7.6.6 7.6.7	9	
	7.6.8		
	7.6.9	9 tf•idf-Gewichtung	20
	7.6.2		
	7.6.2	L1 Anfragen als Vektoren	21
8	Reti	rievalmodelle - Probabilistische Modelle	21
	8.1	Probability Ranking Principle	21
	8.2	Binary Independece-Model	21
	8.3	Okapi BM25	21
9	Reti	rievalmodelle - Generative Sprachmodelle	22
	9.1	Statistische Sprachmodelle	
	9.2	Sprachmodelle im Information Retrieval (Query-Likelihood-Modell)	
	9.3	Abschließende Bemerkungen zu Sprachmodellen	

10	Retr	rievalmodelle - Algebraische Modelle	23
1	0.1	Idee	23
1	0.2	Vorteile	23
1	0.3	Nachteile	23
11	Reti	rievalmodelle - Kombination mehrere Modelle	23
		luation von IR-Systemen	
		Poolbildung	
		Anfragelogs	
		False Negatives und False Positives	
1	<i>2.4</i> 12.4	Percision und Recall	
	12.4	1.2 Optionen zum Zusammenfassen eines Rankings	25
	12.4 12.4		
	12.4		
1	2.5	Konzentration auf die Top-Dokumente	26
1	2.6	Discounted Cumulative Gain (DCG)	26
1	2.7	Normalisierter DCG	26
1	2.8	BPREF	27
1	2.9	Effizienzmaße	
		luierung von IR-Systemen - Tuning von Parametern	
	3.1	Online-Tests	
1	3.2	Zusammenfassung	28
14	Web	bsuchmaschinen	29
1	4.1	Ansätze für die Informationsfindung	29
1	4.2	Herausforderung an Websuchmaschinen	29
1		Crawler	
	14.3 14.3	3	
	14.3		
1	4.4	Indexer	30
1	4.5	Searcher	30
1	4.6	Google-Crawler	31
1	4.7	Google-Indexer	31
15	Wah	bsuchmaschinen - Ranking mit Pagerank	21
	5.1	Webmodell	
	5.1 5.2	Übergangsmatrix A	
	5.2 5.3	Vereinfachter PageRank	
	5.3 5.4	Rangsenken	
	5.5	Teleport-Operation	
1	5.6	Normaler PageRank	32

15.7	Suche mit PageRank	32
16 We	ebsuchmaschinen - Ranking mit HITS	33
16.1	Adjazenzmatrix	33
16.2	Authorities und Hubs	33
<i>16.3</i> 16	HITS (Hyperlink-Induced Topic Search)	
	Vergleich PageRank – HITS	34
17 Pe	rsonalisierung	35
17.1	Ziel: Auflösen der inhärenten Ambiguität von Suche	35
17.2	Dimensionen von Personalisierter Suche	35
<i>17.3</i> 17.	Einfache Personalisierung: Relevance Feedback	35 35
17.4	Einfacher Einsatz von Feedback: Promoting	36
17.5	Benutzerprofile	36
17.6	Persistente vs. Sitzungsprofile	36
17.7	Personalisierung mit Benutzerprofilen	36
17.8	Probleme beim Reranking: Ähnliche Ergebnisse	36
17.9	Diversifizierungsansatz	36
18 Pe	rsonalisierung - Empfehlungen	37
<i>18.1</i> 18	Drei orthogonale Ansätze	
18.2	Content-Based Filtering	37
18.3	Offline-Evaluation vs. Benutzerexpermimente	37
184	Probleme der Personalisierung	37

1 Einführung

1.1 Mögliche Dienste einer DL

- Suche einer bestimmten Publikation
- Suche nach ähnlichen Publikationen
- Suche nach "guten" Publikationen zu einem Thema

1.1.1 Mögliche weitere Aufgaben einer DL

- Erschließung von Dokumentbeständen
- Digitalisierung bestehender Dokumentbestände
- Langzeitarchivierung von Dokumentbeständen

1.2 Digitalisierung von Papierdokumenten

- Scannen
- Schrifterkennung (OCR)
 - o Buchstabenerkennung: schwierig für "exotische" Schriftarten
 - o Worterkennung: Lexikonbasiert, schwierig für Spezialvokabular

1.3 Beispiele einer DL

- ACM Digital Library
- IEEE Xplore
- DBLP
- Springer Link
- Google Scholar

1.3.1 Unterschiede der DL

- Abdeckung der Publikationen
 - o Fokus auf einen Verlag
 - o Fokus auf "wichtige" Publikationen
 - o Fokus auf online verfügbare
- Zugriffsrechte
- Volltext vs. Verweis zur Online-Publikation
- Mächtigkeit des Suchinterfaces
- Aufbereitung der Metadaten, Mehrwertdienste
 - o Zitate ein- und ausgehend
 - o Bibliometrische Maße

1.3.2 Deutsche Digitale Bibliothek

- Zentrales nationales Zugangsportal für Kultur und Wissenschaft in Deutschland
- Verlinkt die digitalen Angebote der deutschen Kultur- und Wissenschaftseinrichtungen miteinander
- Fördert **Aufbau von Kooperationen** und die Entwicklung und gemeinsame Nutzung von Diensten und neuartigen Werkzeugen

1.3.3 Wissenschaftliche Bibliotheken in DE

- Wissenschaftliche Spezialbibliotheken
- Regionalbibliotheken
- Universitätsbibliotheken

- Hochschulbibliotheken
- Nationalbibliotheken
- Zentrale Fachbibliotheken
- Fachinfromationsdienste

1.4 Vorteiler einer DL

- DL bringt die Bibliothek zum Benutzer.
- Informationen können ausgetauscht werden
- Informationen sind einfacher zu halten, um auf dem neuesten Stand zu bleiben.

2 Wissenschaftliches Publizieren

2.1 Publikationshierarchie in der Informatik

- Workshops: Publikation erster Ideen und Ergebnisse ~6 Seiten, informell
- **Konferenzen**: Publikationen aktueller Forschungsergebnisse ~12 Seiten
- **Zeitschriften**: Erweiterte Fassung von Konferenzbeiträgen ~10-40 Seiten

2.2 Qualitätssicherung: Peer Review

- Fachkompetente **Gutachter** erstellen **Gutachten** über Einreichungen
 - o Auswahl der Gutachter durch Editor, unabhängig von Autoren
 - o Empfehlung zu Annahme, Überarbeitung oder Ablehnung

2.3 Typischer Ablauf für Konferenzen

- 1. Call for Papers durch Organisatoren
- 2. Einreichung von fertigen formatierten Beiträgen durch Autoren
- 3. Begutachtung durch **Wissenschaftler**, gesteuert durch **Organisatoren**
- 4. Zusammenstellung des Tagungsbands durch Organisatoren
- 5. Veröffentlichung
- 6. Zusammenstellung des Programms durch Organisatoren
- 7. Registrierung für Konferenz durch Autoren
- 8. Vortrag etc. bei Konferenz durch Autoren
- Ablauf für Workshops analog, für Zeitschriften bis Schritt 5

2.4 Wichtige Fachgesellschaften

- ACM
- IEEE
- GI (Gesellschaft für Informatik)

2.5 Wichtige Verlage

Springer

- Elsevier
- MIT Press

2.6 Probleme des traditionellen Systems

- Anzahl der wissenschaftlichen Arbeiten wächst exponentiell
- Gründe:
 - o Weltweit mehr Forscher (Afrika, Asien)
 - **o Beurteilung** hängt praktisch immer von Publikationen ab (Beförderung)
 - o Oft zählt Anzahl, nicht Qualität
- **Preissteigerung** bei Abos wissenschaftlicher Zeitschriften liegt erheblich über der Inflationsrate
 - o Größerer Umfang
 - **o** Höherer Seitenpreis
- Etat von Bibliotheken wächst nur sehr langsam
 - o Abos zu kündigen oder
 - **o** Größeren Anteil des Beschaffungsetats für Zeitschriften auszugeben
- Anzahl der publizierten Zeitschriften wächst
- Neue Zeitschriften haben es sehr schwer
- Konsequenzen
 - **o** Sehr teure Zeitschriften
 - Sehr geringe Auflage und Verfügbarkeit
- **Aktuelles Verfahren**: Lizenzverhandlung auf Ebene großer Konsortien von Bibliotheken/Staatsebene

2.7 Weiteres Problem: Aktualität

- · Artikel veröffentlicht, die mehrere Jahre alt sind
 - o Langwieriger Begutachtungsprozess
 - o Veröffentlichungsstau (backlog), begrenzte Seitenzahl
- Elektronische Zeitschriften
 - o Billiger, da kein Druck und keine Lieferung
 - o Keine Begrenzung der Seitenzahl
 - o Aber: Begutachtung bleibt Engpass
- Nachteil elektronischer Zeitungen
 - o Geringere Ansehen (zählen oft nicht als Veröffentlichung)
 - o Archivierung (Stabilität von URLs)
 - **o** Henne-Ei-Problem: Werder Verlage, noch Wissenschaftler wollen Wechsel
 - **o** Hybride Zeitschriften
 - Open Access:
 - **Goldener Weg**: Artikel grundsätzlich frei online zugänglich
 - Grüner Weg: Artikel auf eigener Homepage
 - Grauer Weg: Vorabversionen ohne Peer Review

2.8 Warum überhaupt Zeitschriften

• Langfristige Archivierung wissenschaftlicher Ergebnisse

- **Dokumentation**: Wer war der Entdecker?
- Zeitschriftenveröffentlichungen als primäres Kriterium für die wissenschaftliche Qualifikation

2.9 Wie man gute Journals/Konferenzen erkennt

- Wer hat da schon mal publiziert?
- Wer sitzt im Editorial Board/ im Programmkomitee?
- Gibt es eine bekannte Trägerorganisation (ACM, IEEE, etc?)
- Achtung: Angaben werden oft gefälscht

2.10 Digital Object Identifiers

- Problem: **Stabile Referenzierung** von Online-Objekten, z.B. Publikationen, aber auch Datensätzen, Software, etc.
- Muss unabhängig von Umbaumaßnahmen auf dem Server oder gar Serverumzügen sein
- Lösung: Digital Object Identifier (DOI) als eindeutige URI mit festgelegter Struktur zusammen mit Relokationsdienst (zb. http://doi.org)

2.11 Personen-Identifier

- Eindeutige Identifikation ist auch für Personen nützlich
- **Aktuelle Entwicklung**: Spezielle ID-Dienste für wissenschaftliche Autoren

2.12 Mögliche Features zur Autordisambiguierung

Ähnlichkeiten von zwei (Menge von) Publikationen mit ähnlichen Autornamen kann abhängen von

- Ähnlichkeit der Autornamen
- Ähnlichkeit der Autor-ID
- Ähnlichkeit der Publikationstitel
- Ähnlichkeit der Publikationsorte
- Ähnlichkeit der Publikationszeiten
- Ähnlichkeiten der Co-Autoren

2.13 Bewertung von Publikationen

- Ideales Maß: Wissenschaftlicher Beitrag, Nützlichkeit, Einfluss, ...
- Approximatives Maß: Zitationshäufigkeit
- Aber die Zitierhäufigkeit alleine ist nicht ausreichend
 - o Anzahl Publikationen insgesamt, Alter einer Publikation
 - o Rolle des Zitats: Weiterverwendung vs. Erwähnung vs. Widerlegung vs. Selbstzitat

2.14 Bewertung von Journals

- Journal Impact Factor JIF
 - o Durchschnittliche Anzahl von Publikationen, die Artikel aus den letzten zwei Jahren in diesem Jahr erhalten haben
- Eigenfactor Ranking EF
 - o Ein Journal ist das gut, wenn seine Artikel oft von Artikeln in anderen guten Journalen zitiert werden
- Manuelle Rankings

2.15 Bewertung von Autoren

- Anzahl von Publikationen
- Anzahl von Zitaten
- Hirsch-Index (h-Index)
 - o Größte Zahl h, so dass mindestens h Publikationen des Autors mindestens h mal zitiert wurden
- Hirsch-Index mit Zeitconstraint
 - o Zb. H5: wie Hirsch-Index, aber zeitliche Beschränkung der betrachteten Publikationen (z.B. bei h5 auf die letzten 5 Hare)
- Werte hängen stark von Datenbasis ab
- Hirsch-Index analog für Journals definierbar
- I10-Index: Publikationen, die mindestens 10mal zitiert wurden

3 Einführung in Information Retrieval

Information Retrieval beschäftigt sich mit der Repräsentation, Speicherung und Organisation von Informationen und dem Zugriff auf Informationen.

3.1 Retrieval-Szenarien

- Adhoc-Suche
- Ortsabhängige Suche
- Desktop Suche
- Question Answering
- Bildsuche
- Bildersuche
- Empfehlung
- Recherche

3.2 Herausforderung an IR-Systeme

- Speicherung und effizienter Zugriff auf riesige Datenmenge
- Effiziente und effektive Suche
- Komplexe Suchanfragen (Queries)

3.3 Begriffsbildung

Suche in Dokumentkollektionen kann auf verschiedenen Abstraktionsstufen stattfinden. Vergleiche hierzu die Ebenen der Semiotik:

- **Syntax**: Ein Dokument wird als Folge von Symbolen betrachtet
 - o Zeichenkette in Texten
- **Semantik**: Ein Dokument wird auf der Ebene seiner Bedeutung betrachtet. Semantik hat immer etwas mit Interpretation zu tun
- **Pragmatik**: Ein Dokument wird hinsichtlich seines Verwendungszusammenhangs betrachtet
 - o Enthält ein Dokument eine Lösung meines Problems

3.4 Percision / Recall

- Percision
 - o Erfordert nur die Analyse des Retrieval-Results
 - o Kann vom Endbenutzer eingeschätzt werden
 - o Ist ein subjektives Maß

 Recall $percision = \frac{|retrieved \cap relevant|}{|retrieved|}$
 - o Erfordert die Analyse der gesamten Dokumentenbasis
 - o Ist dem Endbenutzer nicht zugänglich
 - o Ist ein subjektives Maß $recall = i retrieved \cap relevant \vee \frac{i}{i relevant} \vee \frac{i}{i}$

4 Boolesches Retrieval – Anfragen und einfache Datenstrukturen

Das **Boolesche Modell** oder **Boolesche Retrieval-Modell** ist ein Information-Retrieval-Modell der folgenden art:

- Die logische Repräsentation betrachtet die Dokumente als Menge von Wörtern
- Anfrangen werden aus Index-Termen zusammen mit den Booleschen Operatoren AND, OR und NOT gebildet

4.1 Dokumente

- **Dokumente** sind die Einheiten des Datenbestandes bezeichnet, die durch das jeweilige Information Retrieval-System bearbeitet werden
- Dokumente können beispielsweise Bücher, die Kapitel eines Buchs, Notizen, etc. sein
- Die Grundmenge an Dokumenten, für die Information Retrieval durchgeführt wird, wird als **Dokumentkollektion** bezeichnet
- Üblicherweise wird das Symbol **D** verwendet

4.2 Terme

- Als Term oder Index-Term bezeichnet man im Information Retrieval diejenigen Einheiten der Dokumente, die Gegenstand der logischen Repräsentation sind
- Die Terme bilden eine Menge **repräsentativer Stichwörter**. Terme sind meistens Wörter oder Wortkombinationen. Über die Terme kann man einen **Index** als Repräsentation eines oder mehrere Textdokumente aufbauen

4.3 Informationsbedarf und Ad-hoc-Anfragen

- Standardaufgabe eines Information Retrieval
- Gesucht: Dokumente aus der Dokumentkollektion, die für eine Anfrage "relevant" im Hinblick auf den jeweiligen Informationsbedarf sind. Relevanz durch denjenigen definiert, der Anfrage gestellt hat
- Algorithmen zur Anfragebeantwortung sollen effizient (d.h. schnell ihre Ergebnisse liefern) und effektiv (d.h. möglichst genau die Menge der "relevanten" Dokumenten auffinden) sein
- Informationsbedarf
 - o Sachverhalt, über den ein Nutzer etwas in Erfahrung bringen möchte
 - o Nicht exakt definiert

4.4 Term-Dokument Inzidenzmatrix

- Die **Termin-Dokument Inzidenzmatrix** *M* enthält eine Zeile für jeden betrachteten Term *t* und eine Spalte für jedes im Grundbestand vorkommende Dokument *d*
- Tritt *t* in dem Dokument *d* auf, so enthält das Matrixelement *(t,d)* eine 1, sonst eine 0

$$M(t,d)$$

$$\begin{cases}
1, falls \ t \in d \ vorkommt \\
0 \ sonst
\end{cases}$$

- Die Inzidenzmatrix erlaubt verschiedene Sichtweisen:
 - o Jede Zeile (*t*, •) stellt einen Vektor dar, der angibt, in welchen Dokumenten der Term *t* vorkommt
 - o Jede Spalte (•,d) bildet einen Vektor, der angibt, welche Terme in dem Dokument d auftreten

4.5 Invertierter Index

Ein **invertierter Index** oder **invertierte Datei** für eine Dokumentenkollektion *D* besteht aus einem **Vokabular** (Dictionary) und den **Positionen** (Postings)

- Das **Vokabular** enthählt alle Index-Terme zu *D*
- Die Position-Tabelle enthält zu jedem Term aus dem Vokabular alle Dokument-IDs
- Die Positionsliste eines Terms heißt auch invertierte Liste des Terms

Einfache konjunktive Boolesche Anfrage

• Durchschnitt von p1 n p2 repräsentiert die Treffermenge

Disjunktive Boolesche Anfrage

• Vereinigung von p1 ∪ p2 repräsentiert die Treffermenge

Negierte Boolesche Anfrage

• Entferne aus p1 alle Einträge, die auch in p2 enthalten sind

5 Boolesches Retrieval – Vorverarbeitung von Dokumenten und Indexierung

5.1 Indexierung

Die klassischen Dokumentmodelle abstrahieren ein Dokument auf eine Menge von sogenannten **Indextermen** oder **Deskriptoren**

- Idealerweise sollten Indexterme so gewählt sein, dass sie
 - o Den Inhalt der einzelnen Dokumente adäquat repräsentieren
 - o Eine möglichst klare **Abgrenzung** der einzelnen Dokumente gewährleisten
 - o Die Verknüpfung von **thematisch ähnlichen** Dokumenten ermöglicht
- Der Prozess der Auswahl von Indextermen heißt Indexierung

5.2 Konstruktion eines invertierten Indexes

- 1. Identifikation und Aufsammeln der zu indizierenden Dokumente
- 2. Repräsentation jedes Dokument als Listen von **Tokens** (Tokenizing)
- 3. Optionale Normalisierung der Tokenliste durch **linguistische Vorverarbeitung**; Resultat: **Index-Terme**
- 4. Aufbau des invertierten Index aus Vokabular und Positionslisten

5.3 Token und Terme

• Ein **Token** ist die Instanz einer begrenzten Zeichenreihe, die in dem gegebenen Dokument auftritt und zu einer für die Weiterverarbeitung semantisch sinnvollen Einheit gruppiert ist

- o Ein Token kann in einem Dokument mehrfach auftreten
- Ein **Typ** ist die Klasse aller Token, die dieselbe Zeichenreihe enthalten
- Ein **Term** ist ein (ggf. "normalisierter") Typ, der in das Vokabular aufgenommen werden kann.
- Die Normalisierung kann z.B. hinsichtlich Groß-/Kleinschreibung, Morphologie, Rechtschreibung erfolgen

5.4 Tokenisierung und Normalisierung

- Problembereiche
 - o Satzzeichen
 - .,;:?!'": üblicherweise ignoriert
 - o Binde- bzw. Trennstriche
 - o Trennung am Zeilenende
- Chinesischer Text
 - o **Fehlende Leerzeichen**, damit Tokenisierung sehr schwierig
 - o **Ambiguität** von Symbolen, Bedeutung und Segmentierung hängt vom Kontext ab
- Japanischer Text
 - o Vier Arten von Schriftzeichen
 - o Es werden keine Leerzeichen verwendet
- Arabischer Text
 - o Hauptleserichtung von rechts nach links
 - o Zahlen jedoch umgekehrt

5.5 Vorverarbeitung

- Nicht alle Wörter, die in einem Dokument auftreten, haben die gleiche Signifikanz
- Meistens wird daher ein Dokument einer Vorverarbeitung unterzogen, um die tatsächlich zu verwendenden Index-Terme zu ermitteln.
 - o Normalisierung
 - o Reduktion auf Wortstämme und Lemmatisierung
 - o Thesaurusbildung
 - o Elimination von Stoppwörtern

5.5.1 Normalisierung

- In der Regel möchte man auch bei gewissen **Abweichungen** zwischen den Dokumenttermen und den Anfragetermen gültige Anfrageergebnisse erzielen
- **Normalisierung** ist der Prozess **der Kanonisierung von Token**, damit irrelevante Abweichungen nicht ins Gewicht fallen.
- **Terme** sind also die "Normalformen" von Token
- Gängiges Normalisierungsverfahren besteht in der Bildung von Äquivalenzklassen von Token
- **Ziffern, Zahlen, Daten** müssen ebenfalls segmentiert und in ein Standardformat gebracht werden
- Umlaute und Sonderzeichen

- Schreibfehler
- Case-Folding
 - o Der Übergang zur Kleinschreibung
 - o Eigennamen weiterhin in Großschrift
 - o Anfragen oft ohne Differenzierung von Groß- und Kleinschreibung

5.5.2 Reduktion auf Grundformen

Durch die Reduktion von Wörtern auf eine **Grundform** oder auf einen **Wortstamm** können Äquivalenzklassen gebildet werden. Dadurch lässt sich die **Größe von Indexen** und die **Komplexität von Anfragen** stark reduzieren

Lemmatisierung

- Als Lemmatisierung wird die Reduktion von Wörtern auf ihre Grundform nach linguistisch gültigen Regeln bezeichnet
- Lemmatisierung beachtet die Regeln der **Flexion** (Beugung) und **Derivation** (Wortableitung) und berücksichtigen die dadurch hervorgerufenen Wortvarianten

Stemming

- Als **Stemming** wird eine heuristische Methode zur Reduktion von Wörtern auf einen **Wortstamm** bezeichnet.
- Durch Stemming werden Wortende abgeschnitten, um zu Äquivalenzklassen mit gleicher oder ähnlicher Bedeutung zu gelangen
- Im Gegensatz zu Lemmatisierung wird Stemming von Linguisten nicht als gültiges Verfahren akzeptiert
- N-gram-Stemmer
 - o Bei Übereinstimmung hinreichend vieler n-Gramme gelten zwei Wörter als morphologisch ähnlich
 - o Ähnlichkeitsmaß wird mit Hilfe der Bi-Gramme ermittelt
 - o Aufbau einer Ähnlichkeitsmatrix
 - o Clusterbildung
- Stemming mit Successor Variety
- Stemming mit "affix removal"
- Porter-Algorithmus
 - o Reduktion erfolgt in fünf sequentiellen Phasen

Bewertung von Lemmatisierung und Stemming

- Lemmatisierung führt höchstens zu **sehr kleinen Vorteilen** beim Retrieval
- Stemming erhöht die Ausbeute, aber verschlechtert in der Regel die Präzision

5.5.3 Thesauri

Ein **Thesaurus** (oder **Wortnetz**) beschreibt Äquivalenzklassen (**Synsets**) von Wörtern bzw. Phrasen (Sequenzen von Wörtern) gleicher Bedeutung, sogenannter **Synonyme**. Er verzeichnet in der Regel auch **Homonyme** und **Polyseme**, d.h. Wörter, die verschiedene Bedeutungen haben können (z.B. Bank)

5.5.4 Stoppwörter

Ein **Stoppwort für eine Dokumentenmenge** *D* ist ein Wort, das als nicht signifikant für das Retrieval von Dokumenten aus *D* angesehen wird. **Stoppwortliste** ist abhängig von der Anfrage.

• Stoppwörter-Elimination wir heute nicht mehr von Web-Suchmaschinen verwendet

6 Boolesches Retrieval – Weitere wichtige Retrievaloperatoren

6.1 Phrasenanfragen

- Ein Auftreten einer Phrase in einem Dokument ist eine Sequenz von Einzelwörtern
- Wortpaarindexe indexieren jedes aufeinanderfolgende Paar von Termen in einem Dokument als Phrase
 - o Warum werden Wortpaarindexe selten verwendet?
 - Falsch-positive Ergebnisse, die eine Filterung der Ergebnisse erforderlich machen
 - Index kann sehr groß werden, da das Vokabular sehr groß werden kann

6.2 Positionsindexe

Ein **Positionsindex** besteht wie ein invertierter Index aus einem Vokabular und einer Positionsliste. Er speichert dabei zusätzlich für jeden Term **t** aus dem Vokabular seine **Position** für jedes Dokument, in dem er auftritt, in der Form

 $(t, DFreq): < DocId_1, TFreq_1: < pos_{11}, ..., POS_{1n_1} \gg \dot{\iota}$

Dabei sind

- **DFreq**: Die **Dokumentenhäufigkeit,** d.h. die Anzahl der Dokumente, in denen **t** vorkommt
- **DocID**_i: Der Identifikatior des i-ten Dokuments, in dem **t** vorkommt
- **TFreq**_i: Die Anzahl der Positionen, an denen **t** in Dokument Docld auftritt
- **Pos**_{i1}, ..., **pos**_{ini}: Die Position in aufsteigender Reihenfolge, an denen **t** in Dokument DocID auftritt

6.3 Proximity-Queries (Nachbarschaftsanfragen)

- **Proximity-Queries** oder **Nachbarschaftsanfragen** stellen eine verallgemeinerte Form der Phrase Queries dar.
- Textstellen, in denen die angegebenen Einzelwörter einen bestimmten **Maximalabstand nicht überschreiten**.
- Reihenfolgen der Einzelwörter kann beachtet werden

6.4 Rechtschreibkorrektur

- Es gibt zwei mögliche Ansätze für die Rechtschreibkorrektur
 - o Korrektur von **Dokumenten** vor der Indizierung
 - o Korrektur von **Anfragen**
- Methodische Ansätze der Rechtschreibkorrektur

o Korrektur isolierter Terme

- Jeder einzelne Anfrageterm wird separat behandelt
- Diese Methode kann keine fehlerhafte Anfrage, die aus korrekten Termen besteht, erkennen

o Kontext-sensitive Korrektur

Es wird die gesamte Anfrage behandelt

 Es findet in der Regel keine grammatikalische Prüfung statt

6.4.1 Korrektur isolierter Terme

• **Gewichtete Edit-Distanz**

o Man kann die Edit-Distanz verfeinern, indem man das Gewicht einer Grundoperation in Abhängigkeit von den behandelten Zeichen definiert

• Spelling Corrector von Peter Norvig

o Das Verfahren berechnet die Wahrscheinlichkeit P(c|w), das Term c gemeint ist, wenn Term w geschrieben wurde, mit dem Satz von Bayes

6.4.2 Kontext-sensitive Rechtschreibkorrektur

• Hit-basierte Rechtschreibkorrektur

- o Einfaches und nicht sehr effizientes Verfahren
- o **Einzelnen Anfrageterme** werden durch Terme mit geringer Edit-Distanz ersetzt

Wahrscheinlichkeit einer Wortsequenz

o Sequenz werden in ihre Bigramme (auf Wortebene) zerlegt

• Spelling Correction mit Wortsequenzen

- o Hit-basierte Methode kombiniert mit der höchsten geschätzten Wahrscheinlichkeit
- o Annehmen, dass nur ein Fehler pro Anfrage auftritt

Phonetische Korrektur

- Neben der eigentlichen Rechtschreibkorrektur spielt auch die phonetische Korrektur, d.h. die Korrektur von Fehlern, die aufgrund des gleichen Klangs zweier Schreibweisen entstehen, eine Rolle
- o Korrekturalgortihmen: **SOUNDEX-Algorithmen**
 - Erster Buchstabe bleibt unverändert und wird als Großbuchstabe übernommen
 - Ersetze alle Vorkommen der folgenden Buchstaben mit 0 (Null) A,E,I,O,U,H,W,Y
 - Ersetze die übrigen Buchstaben nachfolgendem Schema (aus bestimmten Buchstaben werden bestimmte Zahlen)
 - Ersetze alle Paare von gleichen aufeinerfolgenden Ziffern
 - Lösche alle Nullen aus dem Ergebnis
 - Gib die ersten vier Stellen des Ergebnisses zurück, ggf. nach Auffüllen mit Nullen; das Ergebnis hat dann die Form Großbuchstabe Ziffer Ziffer

6.5 Schwachpunkte des Booleschen IR-Modells

Wesentliche Schwachpunkte des elementaren Booleschen IR Modells sind:

Boolesche Anfragen werden schnell recht komplex

•	Die Retrieval-Strategie also kein Ranking zu	basiert	auf einer	binären	Entscheidung,	lässt

7 Retrievalmodelle – Das Vektorraum-Modell

7.1 Sichten auf ein Dokument

Die Automatisierung von Retrieval-Aufgaben erfordert die **Modellierung** und **Repräsentation** von Dokumenten auf einem Rechner. Dabei lassen sich drei orthogonale Sichten auf den Inhalt unterscheiden

- 1. **Layout-Schicht**: Darstellung eines Dokuments auf einem zweidimensionalen Medium
- 2. **Strukturelle bzw. logische Sicht**: Definiert den Aufbau bzw. die logische Struktur eines Dokuments
- 3. **Semantische Sicht:** Betrifft die Aussage eines Dokuments und ermöglicht dessen Interpretation

7.2 Modelle

Definition: (Dokumentmodell, Retrieval-Modell, Retrieval-Funktion)

Sei D eine Menge von Dokumenten und Q eine Menge von Anfragen. Ein **Dokument-Modell** für D,Q ist ein Tupel **(D,Q,p_R)**, dessen Elemente wie folgt definiert sind:

- **D** ist die Menge der Repräsentationen der Dokumente $d \in D$. In $d \in D$ können Layout-logische und semantische Sicht codiert sein.
- Q ist die Menge der formalisierten Anfragen
- **R** ist ein Retrieval-Modell und formalisiert ein Prinzip, ein Paradigma oder eine linguistische Theorie.
- Auf der Grundlage von R ist die Retrieval-Funktion p_R(q,d) definiert. Sie quantifiziert die Systemrelevanz zwischen einer formalisierten Anfrage q ∈ Q und einer Dokumentrepräsentation d∈D: p_R: Q x D → R
- Die von p_R berechneten Werte heißen Retrieval-Werte (Retrieval Status Value, RSV) oder auch Scores

7.3 Taxonomie von Retrieval-Modellen

Digital Libraries - Zusammenfassui	ng	
		6 11 100

7.4 Klassisches Retrieval-Modell

Die **klassischen Retrieval-Modelle** abstrahieren ein Dokument $d \in D$ zu einer unstrukturierten Menge von Indextermen, die sich quasi unmittelbar und automatisch aus d gewinnen lassen

Die Dokumentenrepräsentation \mathbf{d} eines Dokumentes d besteht aus gewichteten Indextermen, die aus d stammen

Unterscheidung der klassischen Retrieval-Modelle:

- 1. Art und Weise, wie sich Gewichte wi für die Indexterme ti berechnen
- 2. Art und Weise, wie formalisierte Anfragen q konstruierbar sind
- 3. Art und Weise, wie sich die Retrieval-Funktion $p_R(q,d)$ berechnet
- 4. Art und Weise, wie die Menge relevanter Dokumente R(q) konstruiert wird

7.5 Boolesches Modell

Dokumentenrepräsentationen D:

- Typischerweise bilden normalisierte Terme eines Korpus die Menge der lOndexterme T = {t1,...tm}.
- Die Repräsentation **d** eines Dokumentes d ist eine Abbildung von T nach $\{0,1\}$, wobei $\mathbf{d}(w) = 1$ bzw. $\mathbf{d}(w) = 0$ als "Term in d vorhanden" bzw. "nicht vorhanden" interpretiert wird

Formalisierte Anfragemenge Q:

 Eine formalisierte Anfrage q€Q entspricht einer logischen Formel über dem Alphabet Σ=T, in der die Junktoren ∧, ∨, ¬ und Klammern verwendet werden können

Retrieval-Funktion p_R :

- Die Dokumentenrepräsentation **d** eines Dokumentes d induziert eine Interpretation I_d für **q**; man setzt $p_R(q,d) = I_d(q)$
- Gilt p_R(q,d) = 1, wird das Dokument d Element der Antwortmenge R(q)

Vorteile:

- Mächtigkeit: Prinzipiell kann mit einer Booleschen Anfrage jede beliebige Teilmenge von Dokumenten aus einer Kollektion selektiert werden
- Einfache und genaue Implementierbarkeit

Nachteile:

- die Größe der Antwortmenge ist schwierig zu kontrollieren
- keine Möglichkeit zur Gewichtung von Fragetermen
- schlechte Retrieval-Qualität

7.6 Vektorraummodell

Dokumentenrepräsentationen D:

- Typischerweise bilden die normalisierten Terme, ggf. nach Entfernung der Stoppwörter, eines Korpus die Menge der Indexterme T = {t1,...,tm}.
- Der Wertebereich der Termgewichte ist R (reele Zahlen)
- für die Gewichtsberechnung existieren verschiedene Konzepte

Formalisierte Anfragenmenge Q:

• Eine formale Ānfrage q€Q hat den gleichen Aufbau wie eine Dokumentenrepräsentation d€D

Retrieval-Funktion p_R :

- Dokumentrepräsentationen und formalisierte Fragen werden als Punkte eines orthonormalen Vektorraums interpretiert, der durch die Terme aufgespannt wird
- Wichtige Ansätze zur Berechnung von **p**_R sind das **Cosinus-Ähnlichkeitsmaß** und die euklidische Distanz.

7.6.1 Termhäufigkeit

Die Anzahl des Auftretens eines Terms in einem Dokument

7.6.2 Termgewichte

- **Erinnerung:** Die Term-Dokumenten-Inzidensmatrix des Booleschen Retrieval-Modells enthält für jeden Term t und jedes Dokument d einen Eintrag **m(t,d)**. Sein Wert ist 1, falls t in d auftritt und 0 sonst
- **Gewicht w(t,d)**, dass im Zusammenhang mit der Anzahl der Auftreten des Terms in dem jeweiligen Dokument steht
- ullet Term Frequency oder Term-Häufigkeit bezeichnet das Gewichtungsschema, in dem direkt die Anzahl $tf_{t,d}$ der Auftreten des Terms t in Dokument d als Gewicht verwendet wird
- Tf_{t,d} = Term-Häufigkeit

7.6.3 Term-Dokument Häufigkeitsmatrix

Eine **Term-Dokument-Häufigkeitsmatrix M** enthält eine Zeile für jeden Term t€V aus dem Vokabular V und eine Spalte für jedes in der Dokumentkollektion D vorkommende Dokument d€D. Tritt t in dem Dokument d an k Stellen auf, so enthält das Matrixelement m(t,d) den Wert k, sonst eine 0:

$$m(t,d) = \begin{cases} k \text{ falls } t \in d \text{ an } k \text{ Stellen vor kommt} \\ 0 \text{ sonst} \end{cases}$$

In diesem Modell wird also jedes Dokument d durch einen Vektor ($w_{1,d}$, ..., $W_{|V|,d}$) mit **Termgewichten** repräsentiert, dessen i-te Komponente die Häufigkeit $tf_{t,d}$ des Terms t_i in dem Dokument d angibt

7.6.4 Bag-of-Words-Modell

Wortordnung innerhalb eines Dokumentes wird nicht berücksichtigt

7.6.5 Absolute Termhäufigkeit

Die Absolute Anzahl von Auftreten eines Terms t in dem Dokument d ist als Maß nicht geeignet

- Logarithmische Häufigkeitsmaße
- Dämpfungsfunktion (Ergebnis zwischen 0 und 1)

7.6.6 Dokumentenhäufigkeit

Sei D eine Dokumentenkollektion. Sei t ein Term des Vokabulars. Dann bezeichnet die **Dokumenthäufigkeit df** $_{t}$ die Anzahl der Dokumente d \in D, in denen t auftritt

- Hohe Dokumenthäufigkeit dft bedeutet geringe Signifikanz oder Trennschärfe von t
- **Geringe Dokumenthäufigkeit** dft bedeutet **hohe Signifikanz** (Trennschärfe) von t

7.6.7 Inverse Dokumenthäufigkeit

Sei D eine Dokumentkollektion, die N = |D| Dokumente enthält. Für einen Term t des Vokabulars ist die **inverse Dokumenthäufigkeit idf**_t von t in der Kollektion D definiert durch

$$idf_t := \log \frac{N}{df_t}$$

Bemerkung:

- Hohe inverse Dokumenthäufigkeit idft bedeutet hohe Trennschärfe von t
- Geringe inverse Dokumenthäufigkeit idf_t bedeutet geringe Trennschärfe von t
- Der Einfluss der Dokumenthäufigkeit wird durch das logarithmische Maß gedämpft

7.6.8 Kollektionshäufigkeit

Kollektionshäufigkeit eines Terms t: Anzahl des Auftretens von t in der gesamten Dokumentkollektion

→ **Dokumenthäufigkeit** erweist sich jedoch als das besser geeignete Maß

7.6.9 tf • idf-Gewichtung

$$w_{t,d} = t f_{t,d} \cdot \log \frac{N}{d f_t}$$

Falls t in d vorkommt, ist das Termgewicht w_{t,d} also

- **am höchsten**, wenn t häufig in d, aber insgesamt in einer geringen Zahl von Dokumenten der Kollektion auftritt
- **geringer,** wenn t seltener in d oder insgesamt in einer größeren Zahl von Dokumenten der Kollektion auftritt
- am geringsten, wenn t in praktisch allen Dokumenten auftritt

7.6.10 Dokumentvektoren

• Wenn man die tf•idf-Gewichtung anwendet, wird jedes Dokument d durch ein Vektor repräsentiert.

- Für Terme t€V des Vokabulars V, die nicht in d vorkommen, hat das entsprechende Gewicht den Wert 0
- Zusammen bilden die Dokumente eine |V|-dimensionalen reelen Vektorraum
- Die Terme t€V des Vokabulars bilden die Dimensionen des Vektorraums
- Der Vektorraum der Dokumente ist im Allgemeinen von sehr hoher Dimension

7.6.11 Anfragen als Vektoren

- Anfragen werden im Vektorraummodell als Freiformanfragen aufgefasst, die nur durch eine Menge von Termen des Vokabulars spezifiziert werden
- Gewichte orientieren sich dabei nur an der Häufigkeit der Terme in der Anfrage (ohne idf-Komponente)
- Der Score eines Dokuments d für die Anfrage q wird als **Cosinus-**Ähnlichkeit sim(d,q) der entsprechenden Vektoren berechnet
- Unterstützt Freitextanfragen
 - o Anfrage als Menge von Termen ohne Verknüpfung
- Bei Web-Suchmaschinen werden Anfrageterme oft als konjunktive Anfrage aufgefasst

8 Retrievalmodelle – Probabilistische Modelle

• Die grundlegende Idee ist es, Dokumente nach absteigender Relevanzwahrscheinlichkeit zu ordnen

8.1 Probability Ranking Principle

- Sei d ein Dokument aus der Kollektion. Die binäre Zufallsvariable R beschreibe die Relevanz eines Dokuments: R = 1 bedeutet also relevant, R = 0 bedeutet nicht relevant
- Dokumente werden in absteigender
 Relevanzwahrscheinlichkeit zurückgegeben
- In der Praxis wird nach dem Verhältnis zwischen den Wahrscheinlichkeiten für Relevanz und Nichtrelevanz sortiert
- Mit korrekt geschätzten Wahrscheinlichkeiten ist diese Ergebnisreihenfolge **optimal bezüglich der Ergebnisgüte**

8.2 Binary Independece-Model

8.3 Okapi BM25

9 Retrievalmodelle - Generative Sprachmodelle

9.1 Statistische Sprachmodelle

- Modelliert die in einer Sprache auftretenden Sätze **statistisch**
- Es erlaubt die **Wahrscheinlichkeit** zu bestimmen, mit der einen vorgegebene Wortfolge vorkommt
- Wird mit vielen Beispielsätzen gelernt
- Verwendet keine Grammatikregeln
- Konzept aus der kontext-sensitiven Rechtschreibkorrektur
- Solche komplexen Abhängigkeiten kann man praktisch nicht bestimmen, wir verwenden daher vereinfachte Approximationen
- Die am häufigsten eingesetzten Sprachmodelle verwender Unigramme und Bigramme
 - o Man schätzt die jeweiligen Wahrscheinlichkeiten auf Basis der Vorkommen der Wörter (bzw. der Wortpaare bei Bigramm-Modellen) in einer großen Menge von Dokumenten, die charakteristisch für die jeweilige Sprache sind
 - o Unigramm-Sprachmodell
 - Wird die Wahrscheinlichkeit einer Wortsequenz auf die Wahrscheinlichkeit der einzelnen Wörter zurückgeführt
 - Dieses Modell berücksichtigt die Reihenfolge der Wörter nicht, es betrachtet als nur die Wortsequenzen als Bagof-Words

o Bigramm-Sprachmodell

- Konditioniert dagegen die Teilwahrscheinlichkeiten mit dem vorhergehenden Wort
- Wird für die Fehlerkorrektur verwendet

9.2 Sprachmodelle im Information Retrieval (Query-Likelihood-Modell)

- Im Information Retrieval müssen Relevanzwahrscheinlichkeiten P(R = 1 | q,d) schätzen
- Anfrage q die "Eingabe" der Schätzung => P(d|q)
- P(q) ist für eine feste Anfrage konstant, spielt also keine Rolle für das Ranking
- P(d) könnte verwendet werden, um "guten" Dokumenten eine höhere Wahrscheinlichkeit zu geben
- Glättung von Sprachmodellen
 - o Bisher konjunktive Semantik, jedoch zu strikt
 - o **Glättungs-** oder **Smoothing-Methoden**, um auch im Fall fehlender Terme eine gewisse Wahrscheinlichkeit berücksichtigen zu können
 - o Verwendung eines Hintergrund-Sprachmodells

9.3 Abschließende Bemerkungen zu Sprachmodellen

 Während bei tf•idf und BM25 ein in der Kollektion seltener Term wichtiger als ein häufiger, ist es in Sprachmodellen umgekehrt: Im

- Hintergrundmodell haben in der Kollektion **häufige Terme** eine höhere Wahrscheinlichkeit als seltene Terme
- Sprachmodelle erzielen in den meisten Benchmarks **bessere Ergebnisse** als andere Modelle, z.B. BM 25

10 Retrievalmodelle - Algebraische Modelle

10.1 Idee

Transformation der **hochdimensionalen Dokumentvektoren** in einen **niedrigdimensionalen Raum** bei möglichst genauer Erhaltung der Information

10.2 Vorteile

- Automatische Entdeckung verborgener Konzepte
- Syntaktische Erkennung von **Synonymen**
- Semantische Erweiterung von Anfragen aufgrund syntaktischer Analyse und nicht durch Relevanz-Feedback oder die Bemühung von Thesauri

10.3 Nachteile

- Die Wirkungsweise von LSI ist nicht vollständig verstanden; eine theoretische fundierte Brücke zur Linguistik ist nur ansatzweise vorhanden
- LSI entfaltet die volle Wirkung nur in einer **geschlossenen Retrieval-Situation**: die Kollektion ist bekannt, gegeben und ändert sich nur wenig
- Die Singulärwertzerlegung ist **rechenaufwendig**, O(n^3)

11 Retrievalmodelle - Kombination mehrere Modelle

- Kombination von Relevanzsignalen verschiedener Art zu einem **Gesamtscore**
- Übliche Klassen von Relevanzsignalen (oder Features) sind
 - o **Dynamische Signale**, die von der Anfrage und vom Dokument abhängen
 - o Statische Signale, die nur vom Dokument abhängen
 - o Anfrageeigenschaften,
- Orthogonal und teilweise ergänzend kann man die Features auch nach ihrer Quelle gruppieren
 - o **Inhaltssignale**, die den Inhalt eines einzelnen Dokuments betrachten
 - o **Struktursignale**, die die Verlinkung von Seiten im Web ausnutzen
 - o **Verhaltens- und Benutzersignale**, die das Clickverhalten von Benutzern berücksichtigen
- Die einzelnen Signale aus einer Menge F werden zu einem **gewichteten Gesamtscore** kombiniert

12 Evaluation von IR-Systemen

Evaluation ist der Schlüssel, um

- **Effektive** (Finden wir die richtigen Dokumente?)
- **Effiziente** (Machen wir es schnell / mit hohem Durchsatz)

Evaluations-Korpora

- Testkollektionen, die aus **Dokumenten, Anfragen** und **Relevanzbewertungen** bestehen
 - o CACM
 - o AP
 - o GOV2

12.1 Poolbildung

• Erzeugt eine große Anzahl von Relevanzbewertungen für jede Anfrage, jedoch **immer noch unvollständig**

12.2 Anfragelogs

- Werden für das **Tunen und Evaluieren** von Suchmaschinen eingesetzt
- Inhalte der Anfragelogs
 - o Benutzeridentifikator
 - **o** Anfrageterm
 - o Liste der Ergebnis-URLs, und ob sie angekleikt wurden
 - o Zeitstempel
- Klicks sind keine Relevanzbewertungen
 - o Verfälscht durch Faktoren wie den Rang in der Ergebnisliste
- Man kann Klickdaten verwenden, um Präferenzen zwischen Paaren von Dokumenten vorherzusagen
- Klickdaten können auch **aggregiert** werden, um "Noise" (Klicks, die nicht zu relevanten Dokumenten führen) zu entfernen

12.3 False Negatives und False Positives

<u> </u>				
	Relevant	Nicht Relevant		
Gefunden	True Positives	False Positives		
Nicht gefunden	False Negatives	True Negatives		

- True Positives (tp) = Gefundene relevante Dokumente
- False Positives (fp) = Gefundene irrelevante Dokumente
- True Negatives (tn) = Nicht gefundene irrelevante Dokumente
- False Nefatives (fn) = Nicht gefundene relevante Dokumente

12.4 Percision und Recall

Die **Präzision** oder **Percision P** gibt an, wie groß der Anteil der korrekten Treffer an der gesamten Menge der gefundenen Dokumente ist.

$$P := \frac{tp}{tp + fp} = \frac{Anzahl\ relevanter\ gefundener\ Dokumente}{Anzahl\ gefundener\ Dokumente}$$

Die **Ausbeute** oder der **Recall R** gibt an, wie groß der Anteil der korrekten Treffer an der Menge der relevanten Dokumente ist

$$R := \frac{tp}{tp + fn} = \frac{Anzahl\ relevanter\ gefundener\ Dokumente}{Anzahl\ relevanter\ Dokumente}$$

• Recall-Orientierung

- o Wenn es wichtig ist, in jedem Fall alle relevanten Dokumente zu finden
- o Beispiel: Patent-Recherche

• Precision-Orientierung

- Wenn die Wahrscheinlichkeit, dass ein positives Ergebnis auch korrekt ist, wichtig ist
- o Beispiel: Alert
- Fast immer stehen die Ziele Recall und Precision im Konflikt!

12.4.1 F-Maß

- Harmonisches Mittel von Recall und Precision
 - o hebt die Bedeutung kleinerer Werte hervor
 - o während **arithmetische Mittel** mehr von Außreißern, die gewöhnlich **groß** sind, beeinflusst werden

12.4.2 Optionen zum Zusammenfassen eines Rankings

- 1. Berechnung von Recall und Precision an festgelegten Rang-Positionen
- 2. Precision wird an **Standard-Recall-Punkten** von 0,0 bis 1,0 im Abnstand von 0,1 berechnet
- Bilden von Durchschnittswerten über die Percision-Werte der Rangpositionen, an denen ein relevantes Dokument abgerufen wurde

12.4.3 Benutzermodell für AP

• AP evaluiert gleichzeitig verschiedene Retrievaltasks (recall-oriented und precision-oriented Tasks) und ist daher nicht ideal

12.4.4 Durchschnittsbildung

- Percision: für eine Anfrage an einem Recall-Punkt
- Average Percision (AP): Mittelwertbildung über die Recall Punkte einer Anfrage
- Mean Average Precision (MAP)
 - o Mittelwertbildung über mehrere Anfragen
 - o Fasst **Rankings für mehrere Anfragen** zusammen, indem ein Durchschnitt über die mittleren AP-Werte gebildet wird
 - o Sehr verbreitetes Maß in Forschungsliteratur
 - o Benötigt viele Relevanzbewertungen in der Textkollektion
- GMAP
 - o Höheres Gewicht auf Anfragen mit geringer AP

12.4.5 Interpolation

Wichtig?

12.5 Konzentration auf die Top-Dokumente

- Benutzer tendieren dazu, nur den obersten Teil der Ergebnisliste anzusehen, um relevante Dokumente zu finden
- -> Recall kein angemessenes Maß
- Stattdessen sollte gemessen werden, wie gut die Suchmaschine relevante Dokumente in Top-Rängen einstuft
- Percision in Rang R(P@R)
 - o Einfach zu berechnen, einfache Mittelwertbildung, einfach zu verstehen
- **Reziproker Rang** (für Anfragen, bei denen es um ein relevantes Dokument geht)

12.6 Discounted Cumulative Gain (DCG)

Verbreitetes Maß, um Websuche und verwandte Aufgaben zu evaluieren

- **Hochrelevante Dokumente** sind nützlicher als nur marginal relevante Dokumente
- Je höher der Rang eines relevanten Dokuments, desto weniger nützlich ist es für den Nutzer, da es mit geringerer Wahrscheinlichkeit betrachtet wird
- Verwendet **gestufte Relevanz** als Maß für die Nützlichkeit oder den Gewinn, der durch Betrachtung eines Dokuments erreicht wird
- Der **Gewinn** wird beginnend mit den bestplatzierten Ergebnissen akkumuliert und kann bei **höheren Rängen reduziert** werden

12.7 Normalisierter DCG

- Der Mittelwert über DCG-Werte wird über eine Menge von Anfragen in spezifischen Rängen gebildet
- DCG-Werte werden oft normalisiert, indem die DCG-Werte in jedem Rang mit den DCG-Werten für perfektes Ranking verglichen werden

12.8 BPREF

- Besonders wichtig für Anfragen mit unvollständigen Relevanzbewertungen
- Für eine Anfrage mit **R relevanten Dokumenten** werden nur die ersten **R als nicht relevant erkannten Dokumente** betrachtet
- N ist die Zahl der als nicht relevant erkannten Dokumente
- *d_r* ist ein relevantes Dokument
- N_{dr} ist die Anzahl der ersten R nichtrelevanten Dokumente, die vom System höher eingestuft wurden als d_r

12.9 Effizienzmaße

Maß	Beschreibung		
Verstrichene Indexierungszeit	Misst den Zeitverbrauch für die		
(elapsed index time)	Erstellung eines Index auf einem		
	bestimmten System		
Prozessorzeit für Indexierung	Misst die vom Prozessor für die		
(indexing processor time)	Indexierung benötigte Zeit in		
	Sekunden. Diese Zeit entspricht		
	der verstrichenen Indexierungszeit,		
	jedoch werden I/O- Wartezeiten		
	und Zeitgewinne durch parallel Verarbeitung nicht beachtet.		
Anfragendurchsatz (query	Anzahl der pro Sekunde		
throughput)	verarbeiteten Anfragen		
Anfragelatenzzeit (query latency)	Die Zeit in Millisekunden, die der		
/ timageraterizzere (query rateriey)	Nutzer nach Abschicken der		
	Anfrage auf eine Antwort		
	durchschnittlich wartet		
	(arithmetisches Mittel, besser		
	Median)		
Temporärer Speicherplatz für	Speicherplatz, der während der		
Indexierung	Indexerstellung benötigt wird		
(indexing temporary space)			
Indexgröße (index size)	Speicherplatz, den der fertige		
	Index benötigt		

13Evaluierung von IR-Systemen – Tuning von Parametern

- Optimieren der Parameterwerte
 - o Beste Leistung für verschiedenen Datentypen und Anfragetypen zu erzielen
- Finden der Parameterwerte
 - o Viele Techniken für optimale Parameterwerte eingesetzt

13.1 Online-Tests

Vorteil

- o Echte Nutzer,
- o weniger voreingenommen,
- o großen Menge an Testdaten
- Nachteil
 - o Daten mit Noise behaftet
 - o Kann die User Experience verschlechtern

13.2 Zusammenfassung

- Es gibt kein Maß, das für jede beliebige Applikation korrekt ist
 - o Das gewählte Maß muss angemessen für die Aufgabe sein
 - o Verwendung von Kombinationen
- Analyse der Ergebnisse individueller Anfragen
- Wichtig: Nutzerstandpunkt
- Analyse einzelner Anfragen oft wichtiger als Durchschnittsbetrachtung
 - o Effektivität bei leichten/schweren Anfragen
- Kleine Unterschiede in Kennzahlen haben oft keinen Zusammenhang zum **Nutzerempfinden**

14 Websuchmaschinen

14.1 Ansätze für die Informationsfindung

- Verlinkung thematisch ähnlicher Seiten
 - o Vorteil: Verlinkte Seiten sind oft sehr hilfreich
 - o Nachteil: Einschränkung auf verlinkte Seiten
 - o Beispiel: Wikipedia
 - o In digitalen Bibliotheken: Zitate in Veröffentlichungen
- Bildung thematischer Indexe
 - o Vorteil: Großes Verzeichnis von ähnlichen Seiten
 - o Nachteil: Für die thematische Einstufung und Ordnung von Webseiten sind Experten erforderlich
 - o Beispiel: Yahoo, DMOZ
 - o **In digitalen Bibliotheken**: Metadatenkataloge, Konferenzverzeichnisse
- Suchmaschinen
 - o Vorteil: Automatisierte Erfassung sehr vieler Webseiten
 - o Nachteil: Herausforderungen des Information Retrieval
 - o Beispiel: Google, Bing
 - o In digitalen Bibliotheken: Volltextsuche

Lokale Marktführer

- China: Baidu
 - o Rückzug von Google
 - o Chinesische Sprache
- Russland: Yandex
 - o Erkennung von Flexionen (Wortbeugungen) in der Russischen Sprache

Archie - die erste "Suchmaschine"

• Werkzeug zur Indizierung von FTP Archiven

14.2 Herausforderung an Websuchmaschinen

Größte Herausforderung für Information Retrieval im World Wide Web:

- Sehr großer Datenbestand
- Sehr dynamischer Datenbestand
- Unterscheidung wichtiger und belangloser Webseiten
- Aussortierung **bösartiger** Webseiten
- Verarbeitung unterschiedlichster Themengebiete (z.B. Schlagworte, Kartendienste, Aktienkurse)
- Kontextualisierung (z.B. Geolokalisierung)
- Personalisierung

14.3 Crawler

Ein **Crawler** scannt das WWW nach Veränderungen ab. Seine Aufgabe ist es, **neue**, **modifizierte** und **gelöschte Webseiten** zu identifizieren. Seine Informationen gibt er an den Indexer weiter

14.3.1 Anforderungen an Crawler

- Robustheit gegen Spidertraps
 - o Syntaxfehler in Webseiten
 - o Fehlerhafter Aufbau von Webseiten
 - o Dynamische Applikationen
- Höflichkeit gegenüber Webservern
 - o Implizite serverseitige Regeln für Crawler, z.B. Anfragehäufigkeit ("politeness")
 - o Explizite serverseitige Regeln für Craweler, z.B. "robots.txt", rel="nofollow" für HTML-Links und das Metatag robots
 - o "Web Etiquette"

14.3.2 Empfehlungen für Crawler

- Verteiltheit
- Skalierbarkeit, Effizienz
- Webseiten mit guter Qualität bevorzugen
- Aktualität der indizierten Webseiten gewährleisten
- Erweiterbarkeit

14.3.3 Aktualisieren von Webseiten

Es ist also besser, nur die Seite zu aktualisieren, die sich selten ändert, da wir mit einer Aktualisierung pro Tag die Dynamik von p1 nicht nachvollziehen können

• Wichtigkeit für Optimierung mit einbeziehen

14.4 Indexer

Indexer-Modul

- Nimmt die Informationen von Crawlern entgegen
- Baut daraus Indexe

Anforderungen an den Indexer:

- Verschiedene Dokumentformate
- Sprachliche Vorverarbeitung von Tokens
- Kompressionsmechanismen
- Verschiedene Indextypen (z.B. BM25-Indexe, Positionsindexe..)

14.5 Searcher

- Nimmt Suchanfragen von Benutzern entgegen
- Wertet diese anhand der vorhandenen Indexstrukturen aus
- Führt die Relevanzschätzung zur Bewertung der Ergebnisse bzgl. Der Suchanfrage durch

Anforderungen an den Searcher:

- Kommunikation mit Anwender
- Unterstützung des Anwenders bei Anfrageformulierungen
- Enge Zusammenarbeit mit dem Indexer: Verwendung der erstellten Indexe
- Relevanzschätzung, d.h. Ranking, von Dokumenten bzgl. Anfrage

14.6 Google-Crawler

- Durchsucht täglich Milliarden Webseiten
- Die Updatehäufigkeit einer Webseite hängt von ihrer Relevanz (d.h. PageRank) ab
- Kann mittlerweile Flash-Animationen crawlen
- Laut Google keine kommerzielle Beeinflussung

14.7 Google-Indexer

- Linkindex
 - o Webgraph aus Knoten und Kanten
 - o Speichert insbesondere Nachbarschaftsinformationen
- Textindex
 - o Invertierter Index
 - o Lexikon
 - o Identifizierung gesuchter Webseiten
- Relevanzindexe

Die Indexierung unterstützt eine Vielzahl von Dateitypen

15 Websuchmaschinen - Ranking mit Pagerank

Ranking - Problem:

- Sehr unterschiedliche Dokumente und Inhalte
- Verlinkung von Webseiten bringt Zusatzinformation

Verlinkung im Web

- Früher manuell
- Heute oftmals automatisch
- Viele Verlinkungen, hohe Qualität -> Erfolg von Google damals

15.1 Webmodell

- Der **Webspace W** ist ein gerichteter Graph
- Die Knoten V repräsentieren Webseiten im Webspace
- Die Kanten E entsprechen der Verlinkung zwischen den Webseiten
- Out-Nachbarn
 - o Menge aller Knoten (Webseiten), die durch eine Kante erreichbar sind
- In-Nachbarn
 - o Menge aller Knoten (Webseiten, die eine Kante zu v besitzen

Prinzip des Rankings: Seiten, auf denen der Random Surfer häufig ist, sind "wichtig"

15.2 Übergangsmatrix A

Die **Übergangsmatrix A** ist eine quadratische Matrix zur Darstellung der Verlinkung des Webspaces

- Zufallsgetriebener Surfer
 - o Der u-te Spalentverktor enthält die **diskrete Wahrscheinlichkeitsverteilung** über alle ausgehenden Kanten des Knotens u

o Der v-te Zeilenvektor benennt die möglichen **Quellen für Aufrufe von v** (Einträge > 0)

15.3 Vereinfachter PageRank

- Der Surfer s wählt **zufällig und gleichverteilt** eine der vorhandenen Webseiten als **Startknoten**
- Anschließend wählt s in jedem Schritt **zufällig** eine der **aktuell erreichbaren Webseiten** aus.
- Die Auswahl einer Webseite wird **gleichverteilt** über alle aktuell erreichbaren Webseiten getroffen
- Sei s ein Surfer, der sich im Webspace W entlang der Links bewegt
- Der PageRank PR(v) einer Webseite v entspricht dem Grenzwert der Auftrittswahrscheinlichkeit von v nach unendlich vielen Bewegungen von s

15.4 Rangsenken

- Stellen einen **Verbund von Webseiten** dar, die nur aufeinander verlinken, aber **keine Links nach außerhalb** besitzen
- Zur Modellierung erlaubt man dem Surfer in jedem Schritt mit Wahrscheinlichkeit a eine **Teleport-Operation** auszuführen, die ihn zu jeder beliebigen Webseite bringen kann

15.5 Teleport-Operation

- Erlaubt es dem Surfer s, jede beliebige Webseite direkt anzuspringen (Wahrscheinlichkeit *a*)
- Wahrscheinlichkeit 1-a folgt der Surfer weiter einer Zufallsbewegung
- *a* = Dämpfungsfaktor

15.6 Normaler PageRank

- Sei W ein Webspace und G = (V,E) der zugeordnete gerichtete Graph
- Dann kann der **PageRank-Vektor PR** über alle Webseiten approximiert werden mit einem **Grundrang**

15.7 Suche mit PageRank

- Ansatz 1: PageRank für Sortierung
 - o Suche alle zur Suchanfrage passenden Webseiten anhand eines IR-Verfahrens
 - o Ordne die Webseiten in absteigender Reihenfolge entsprechend ihres PageRanks
 - o Einfach zu implementieren
 - o Die Sortierung der Webseiten erfolgt aufgrund ihrer Wichtigkeit im Webspace unabhängig von deren geschätzter Relevanz für die Suchanfrage
- Ansatz 2: PageRank für Relevanzbestimmung
 - o Kombiniere PageRank mit einem IR-Verfahren zur Relevanzschätzung von Webseiten
 - o Ordne die Webseiten in absteigender Reihenfolge entsprechend ihrer Relevanz

- Erfordert eine komplexe Kombination von PageRank und IR-Scoring
- o Die Sortierung im Webspace und unter Berücksichtigung von deren Relevanz für die Suchanfrage

In der Praxis verwenden Suchmaschinen eine Variante des 2. Ansatzes

16 Websuchmaschinen - Ranking mit HITS

16.1 Adjazenzmatrix

Die **Adjazenzmatrix A** für einen gerichteten Graph G = (V,E) ist eine (VxV)-Matrix

16.2 Authorities und Hubs

- Die Webseiten V können zwei verschiedenen Typen angehören
 - o Hubs (H) und Authorities (A)
- Die Zugehörigkeit ist graduell und nicht zwangsweise exklusiv
- Eine Authority ist eine Webseite, auf die viele Hubs verlinken
 - o A(v) = Authority-Score
- Ein **Hub** ist eine Webseite, die Links auf viele Authorities enthält
 - o H(u) = Hub-Score
- Hubs sind gewissermaßen populäre Linksammlungen
- Jede Webseite ist zu einem gewissen Grad gleichzeitig Hub und Authority
 - o Normalisierung der Zugehörigkeitsgrade

16.3 HITS (Hyperlink-Induced Topic Search)

• Approximieren des Authority-Scores a und Hub-Scores h

16.3.1 Suche mit HITS

Vorgehen bei der Beantwortung von Suchanfragen mit HITS-Ranking

- 1. Bestimme anhand der Suchanfrage die **Wurzelmenge** aller Webseiten (Alle Webseiten, die den Suchbegriff enthalten)
- 2. Bestimme anhand der Wurzelmenge die **Basismenge** aller Webseiten. Diese enthält die Wurzelmenge und sämtliche Webseiten, welche zu dieser verlinkt sind
- 3. Berechne Hub- und Authority-Scores der Webseiten in der Basismenge
- 4. Gib die Webseiten in **absteigender Reihenfolge** entsprechend ihren **Authority-Scores** aus
- Eine Webseite mit **gutem Authority-Score** könnte unter Umständen den Text der Suchanfrage gar nicht enthalten
- Falls eine Webseite mit **guten Hub-Score** den Suchtext enthält, sind häufig auch die **Authorities** gut, zu welchen die Webseiten einen Link besitzt
- Falls eine Webseite einen **guten Authority-Score** hat, sind häufig auch die **Hubs** gut, welche einen Link auf diese Webseite besitzen

16.4 Vergleich PageRank - HITS

16.4.1 PageRank

- Sehr große Matrix
- Hoher initialer Berechnungsaufwand
- Beantwortet Anfragen online sehr schnell
- Konvergenzgeschwindigkeit justierbar
- Weniger anfällig für Link-Spamming
- Berechnet nur Authorities

16.4.2 Hits

- Kleine Matrizen
- Kann Semantik von Anfragen berücksichtigen
- Schwierig in Echtzeit
- Anfällig für Link-Spamming
- Mindestens gleiche Ergebnisqualität wie PageRank
- Tightly-Knit-Community-Effekt (TKC-Effekt)
 - o **HITS** bevorzugen dicht vernetzte Gruppen
 - o Bewerten kleine vollständige bipartite Graphen sehr hoch
 - o Problematische Folgen:
 - Kleine Gruppen können TKC-Effekt für Manipulationen nutzen
 - Topic-Drift: Anfrageergebnisse verschieben sich zu themenfremde dichtere Communities
 - Polarisierte Communities verlinken sich nicht

17 Personalisierung

17.1 Ziel: Auflösen der inhärenten Ambiguität von Suche

- Passendes Suchziel finden (Java)
- Suchergebnisse können vom aktuellen Kontext abhängen (der nicht konstant ist und sich mit der Zeit verändert)

17.2 Dimensionen von Personalisierter Suche

- Verschiedene Arten des Benutzerkontextes:
 - o Global: Hintergrund des Benutzers, Langzeitprofil
 - o Sitzung: Menge der Anfragen mit ähnlichen Bedürfnissen
 - o **Anfrage:** verwende letzte Anfrage und folgende Aktionen/Clicks
- Jeweils
 - o Nur für Suchen
 - o Für alle Browseraktionen
 - o Für (andere/alle) Aktionen
- Kontext kann an verschiedenen Stellen gesammelt und genutzt werden
 - o Dienstanbieter vs. Webserver vs. Lokaler Rechner
- Kontext kann auf verschiedene Weise genutzt werden:
 - o Modifiziere Anfrage
 - o Verändere Rankig der Ergebnisse ("reranking")

17.3 Einfache Personalisierung: Relevance Feedback

- Sammle Feedback des Benutzer für Anfrageergebnisse
 - o Explizites Feedback (Knopf im Interface)
 - o Implizites Feedback (Klicks des Benutzers)
- Generiere verbesserte Anfrage
 - o Füge neue Terme hinzu
 - o Lösche existierende Terme
 - o Ändere Gewicht von Termen

17.3.1 Implizites Feedback durch Clicks

- Geclickte Ergebnisse sind relevant für die Anfrage
 - o Außer der Benutzer hat die Seite sofort wieder verlassen
- Nicht geclickte Ergebnisse erlauben keine Aussage
 - o Benutzer könnte sie sofort als nichtrelevant erkannt haben
 - o Benutzer könnte das Ergebnis bereits kennen
 - **o** Benutzer könnte das Ergebnis überhaupt nicht angesehen haben
- Verbessertes impliziertes Feedback
 - o Wie lange bleibt ein Benutzer auf einer Seite
 - o Wohin scrollt er, welche Bereiche sieht er wie lange an
 - o Mausbewegungen, z.B. über Textstellen
 - o Mausklicks
 - o Geklickte Links

o => Erlaubt eine bessere Schätzung der Relevanz

17.4 Einfacher Einsatz von Feedback: Promoting

Idee: Verschiebe Ergebnisse mit **positivem Feedback** nach oben

- Lokal für jeden Benutzer einzeln:
 - o Speichere Feedback für jeden Benutzer (z.B. Clicks auf Ergebnisse)
 - Verschiebe Ergebnisse mit Feedback nach oben, wenn Anfrage wiederkommt
 - o Nutz Gewohnheit der Benutzer
- Global für alle Benutzer:
 - o Sammle Feedback für häufige Anfragen
 - o Verschiebe Ergebnisse mit Feedback der "meisten" Benutzer nach oben
 - o Funktioniert nicht gut für Anfragen mit unklarer Bedeutung
- => Ansatz basiert ausschließlich auf Reranking, Anfrage bleibt unverändert

17.5 Benutzerprofile

Ziel: Konstruiere eine **Zusammenfassung der Interessen** eines Benutzers

- Aus den bisherigen Anfragen
- Aus den bisher zugegriffenen Seiten
- Aus den Dokumenten, den Mails, etc.

17.6 Persistente vs. Sitzungsprofile

- Langzweitinteressen des Benutzers können sich von seinen Interessen in der aktuellen Sitzung unterscheiden
- => Verwaltet zwei Profile
 - o Sitzungsprofil
 - Betrachte nur die Seiten, auf die in der aktuellen Sitzung zugegriffen wurden
 - Sitzungsgrenze durch Zeit oder inhaltliche Kohärenz

o Persistentes Langzeit-Profil

- Betrachte alle Seiten, auf die der Benutzer jemals zugegriffen hat
- Geringeres Gewicht für alte Seiten
- o Profil ist Mischung von Sitzungsprofil und Langzeitprofil

17.7 Personalisierung mit Benutzerprofilen

Reranking der Suchergebnisse basierend auf Übereinstimmung mit dem Profil

- Berechne vollständige Ergebnismenge R für die Anfrage
- Berechne für jedes Ergebnis p seine Ähnlichkeit mit dem Profilvektor (z.B. Cosinus-Ähnlichkeit)
- Sortiere Ergebnisse nach absteigender Ähnlichkeit

17.8 Probleme beim Reranking: Ähnliche Ergebnisse

Reranking kann nicht funktionieren, wenn alle Ergebnisse ähnlich sind (und nicht relevant für die Anfrage)

17.9 Diversifizierungsansatz

18 Personalisierung – Empfehlungen

Input - Output

18.1 Drei orthogonale Ansätze

- Coolaboratives Filtering ("nächste Nachbarn")
 - o Benutzer A mag Item X .. Benutzer B ähnlich => Benutzer B könnte X mögen
- Content-based Filtering
 - o Benutzer A mag Item X => Item X ähnlich zu Item Y
- Statischer Ansatz
 - o Viele Leute kaufen x

18.1.1 Kollaboratives Filtern

- Aktionen der Benutzer sind hochgradig dynamisch
 - o Schwierig, Ähnlichkeiten vorauszuberechnen und zu aktualisieren
- Eine Empfehlung benötigt O(n+m) Zeit
- Empfehlungen müssen in Echtzeit berechnet werden

18.2 Content-Based Filtering

- Beziehungen zwischen Items ist viel weniger dynamisch als die Beziehung zwischen Benutzern
- Ähnlichkeit ähnlich wie Benutzerähnlichkeit

18.3 Offline-Evaluation vs. Benutzerexpermimente

- **Offline-Evaluation: Vergleiche** die vorhergesagte Bewertung mit der tatsächlichen Bewertung durch den Benutzer
- Live-Experiment mit Benutzer: Frage den Benutzer nach der Meinung oder beobachte Verhalten

18.4 Probleme der Personalisierung

- Ansatz fokussiert auf Maximierung der kurzfristigen Benutzerzufriedenheit
- Teil der möglichen Ergebnisse wird ausgeblendet, weil das System sie für **nicht relevant für die Benutzer** hält
- Problematik der "Filter-Bubble"