2. Concentric Spheres.

4. Ellipsoids.

6. $\mathbf{r}(t) = (1+t)(\mathbf{i} - \mathbf{j}) + \mathbf{k}$.

12. $9\cos^2 t \mathbf{i} + 3\sin t \mathbf{j} \pm 3\cos t \mathbf{k}$.

14. $a(1 + \sqrt{2} \sin t) \mathbf{j} + a(1 \pm \sqrt{2} \cos t) \mathbf{k}$.

17. $-4t(1+3t^2)\mathbf{i} - 27t^2\mathbf{j} + 2t(1+12t^2)\mathbf{k}$.

10. (1-t/2)i-tj+tk.

20. $a \mathbf{u}'(at) - (a/t^2) \mathbf{v}'(a/t)$.

22. $\mathbf{u}(t) \cdot \mathbf{u}'(t) \times \mathbf{u}'''(t)$.

Answers and Hints 15.8

Exercise 15.1

1. Parallel planes.

3. Paraboloids of revolution.

5, $\mathbf{r}(t) = (1+t)\mathbf{i} + 2(1+t)\mathbf{j} + (3+2t)\mathbf{k}$.

7. r(t) = t(i + j + k).

9. $(7+t)\mathbf{i} + 2(1+t)\mathbf{j} + t\mathbf{k}$.

11. $2t^2i + tj + tk$.

13. $2 \sin t i + 4j \pm 2 \cos t k$

15. $(5t^2 \cos t + 10t \sin t)\mathbf{i} + (t \cos t + \sin t)\mathbf{j} + (t^3 \cos t + 3t^2 \sin t)\mathbf{k}$. 16. $4\cos 4t + 3t^2$.

18. $(3t^2 - 2e^{2t})\mathbf{i} - [(1-2t) - (2+t)e^t]\mathbf{j} - [te^t + t(2+3t)]\mathbf{k}$. 19. $2t \mathbf{u}(t^2) + 2t^3 \mathbf{u}'(t^2)$.

21. $\mathbf{u}(t) \times \mathbf{u'''}(t) + \mathbf{u'}(t) \times \mathbf{u''}(t)$.

23. x(t) = 2 + t, y(t) = 8(1 + t), z(t) = 12(2 + 3t). $24. \quad x(t) = (1+t)/\sqrt{2}, y(t) = (1-t)/\sqrt{2}, z(t) = (\pi/4) + t.$

25. x(t) = 3 + 4t, y(t) = 3 + t, z(t) = (6 + t)/9.

26. x(t) = 1 + t, y(t) = (1 + t)e, z(t) = 1.

27. 3a/2.

28. $(p\pi/2) + 2 \log (\pi + p) - 2 \log 2, p = \sqrt{4 + \pi^2}$.

29. $2\pi a$, $\mathbf{r}(s) = a \cos(s/a) \mathbf{i} + a \sin(s/a) \mathbf{j}$, $0 \le s \le 2\pi a$.

30. $4 \pi \sqrt{10}$, $\mathbf{r}(s) = \cos(s/\sqrt{10})\mathbf{i} + \sin(s/\sqrt{10})\mathbf{j} + (3s/\sqrt{10})\mathbf{k}$, $-2\pi\sqrt{10} \le s \le 2\pi\sqrt{10}$.

31. $(5\sqrt{5}-1)/3$, $\mathbf{r}(s)=[(s^*)^2/2]\mathbf{i}+[(s^*)^3/3]\mathbf{k}$, $s^*=[(3s+1)^{2/3}-1]^{1/2}$, $0 \le s \le (5\sqrt{5}-1)/3$.

32. $[\sqrt{2} + \log(1 + \sqrt{2})]/2$.

33. Unit tangent vector = $(2i + 3j + 3k)/\sqrt{22}$. The given curve is a straight line. T is independent of t and dT/dt = 0.

34. $\mathbf{v}(t) = (\cos t - \sin t) \mathbf{i} + (\cos t + \sin t) \mathbf{j} + \mathbf{k}$, speed = $\sqrt{3}$, $\mathbf{a}(t) = -[(\sin t + \cos t) \mathbf{i} + (\sin t - \cos t) \mathbf{j}]$

35. $|\mathbf{v}(t)|^2 = c^2 \text{ or } \mathbf{v}(t) \cdot \mathbf{v}(t) = c^2$. Then, $d[\mathbf{v}(t) \cdot \mathbf{v}(t)]/dt = 0$ or $\mathbf{a}(t) \cdot \mathbf{v}(t) = 0$ for all t.

Exercise 15.2

1. -21 i.

3. $\pi(i-j) + k$.

5. $(i+j+k)/\sqrt{3}$.

7. (i + j + k)/2.

2. $i(\pi + \sqrt{2})/2$.

4. (3i-4j+5k)/25.

6. $e^2(5i+9j+k)$.

8. $3\mathbf{i} - (\pi^2/54)(9\sqrt{3} + 4\pi)\mathbf{j} + 2\mathbf{k}$.

9.
$$16(i-j), (i-j)/\sqrt{2}$$
.

11.
$$4(2i-j), (2i-j)/\sqrt{5}$$
.

13.
$$-(2i+j+k), -(2i+j+k)/\sqrt{6}$$

21.
$$-11/\sqrt{5}$$
.

23.
$$-3/\sqrt{6}$$
.

25.
$$2\sqrt{18}$$
.

27.
$$(-i + 2j)/\sqrt{2}$$
, $\sqrt{5/2}$.

29.
$$6(2i - j - 2k)$$
, 18.

31.
$$-(11\mathbf{i} + 7\mathbf{j}), -\sqrt{170}$$
.

33.
$$-2(i-2j+k), -2\sqrt{6}$$
.

33.
$$-2(i-2j+k), -2\sqrt{6}$$
.

35. All points on the line
$$(2 - \sqrt{3})x + (2\sqrt{3} - 1)y = \sqrt{3}$$
.

36.
$$(3i + 4j)/5$$
, $-(3i + 4j)/5$.

38.
$$a = -2$$
, $b = 2$, $c = 1$.

38.
$$a = -2$$
, $b = 2$, $c = 1$.
39. In the direction of maximum rate of decrease, $-(8\mathbf{i} + 8\mathbf{j} - \mathbf{k})$.

40.
$$3x - 3y - 2z = 2$$
.

42.
$$x + 3y + 2 = 0$$
.

44.
$$(xx_0/a^2) + (yy_0/b^2) + (zz_0/c^2) = 1.$$

46.
$$x^2y^2z + c$$
.

48.
$$6x^2 - 5y^3 + z + c$$
.

50.
$$f = k$$
, constant, No.

52.
$$\cos^{-1}(\sqrt{2/3})$$
.

54.
$$x(t) = 2(1 + 6t), y(t) = 1 - 4t, z(t) = 10 - t.$$

55.
$$x(t) = 2(1 + 2t)$$
, $y(t) = 1 + 4t$, $z(t) = -(1 + 8t)$.

3.
$$6(x^2 + y^2 + z^2)^{3/2}$$
, 0.

5.
$$(1-2z)e^{-y}$$
, $[2\mathbf{i}(xy-e^{-y})-\mathbf{j}y^2+\mathbf{k}xe^{-y}]$.

5.
$$(1-2z)e^{-y}$$
, $[2i(xy-e^{-y})-]y^2+kxe^{-y}$.

6.
$$yz + 2x^2 + 2xz - y^2$$
, $-[2yz\mathbf{i} + (z^2 - xy)\mathbf{j} + (xz - 4xy)\mathbf{k}]$.

7.
$$6x$$
, $-[ix + j(2x - y) - 6yk]$.

8.
$$2(x + y + z)$$
, 0.

9.
$$i+j-4zk$$
.

4. 2(x+y+z), 0.

10.
$$(i + j + k) x \cos(x + y + z) + i \sin(x + y + z)$$
.

12.
$$2(i+2j+k), (i+2j+k)/\sqrt{6}$$
.

14.
$$2(2\mathbf{i} - \mathbf{j} - \sqrt{3}\mathbf{k}), (2\mathbf{i} - \mathbf{j} - \sqrt{3}\mathbf{k})/\sqrt{8}.$$

28.
$$2(j+4k), 2\sqrt{17}$$
.

30.
$$13\mathbf{i} + 5\mathbf{j} - 10\mathbf{k}, \sqrt{294}$$

32.
$$-8(\sqrt{\pi/3})(i+j), -8\sqrt{2\pi/3}$$
.

34.
$$-(e/2)(\mathbf{i} + \mathbf{j} + 8\mathbf{k}), -\sqrt{66}(e/2).$$

1)
$$y = \sqrt{3}$$
.
37. 3i - j.

41.
$$2x + 6y + z = 26$$
.

43.
$$x-2\sqrt{3}y+z=(6-\pi\sqrt{3})/6$$
.

45.
$$(xx_0/a^2) - (yy_0/b^2) + (zz_0/c^2) = 1.$$

2. x + y + z, -(iy + jz + kx).

47.
$$\sqrt{x^2 + y^2 + z^2} + c$$
.

49.
$$e^{xyz} + c$$
.

51.
$$\cos^{-1}(\sqrt{21/101})$$
.

53.
$$\cos^{-1}(8/(3\sqrt{21}))$$
.

16.
$$f(\operatorname{div} \mathbf{r}) + \nabla f \cdot \mathbf{r} = 5f$$

12.
$$16(y^3z^2\mathbf{i} + 3xy^3z^3\mathbf{j} + 2xy^3z\mathbf{i})$$
.

23.
$$\Sigma \mathbf{i} \left[-\frac{3y}{r^5} (a_1 y - a_2 x) - \frac{3z}{r^5} (a_1 z - a_3 x) + \frac{2a_1}{r^3} \right]$$

$$= \Sigma \mathbf{i} \left[-\frac{3}{r^5} \{ a_1 (x^2 + y^2 + z^2) - x (a_1 x + a_2 y + a_3 z) \} + \frac{2a_1}{r^3} \right]$$

$$= \Sigma \mathbf{i} \left[-\frac{3}{r^3} a_1 + \frac{3x}{r^5} (a_1 x + a_2 y + a_3 z) + \frac{2a_1}{r^3} \right]$$
24.
$$\Sigma \mathbf{i} \left[a_1 \frac{\partial v_2}{\partial v} - a_2 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_1}{\partial v} - a_3 \frac{\partial v_2}{\partial v} - a_3 \frac{\partial v_2}{$$

24.
$$\Sigma \mathbf{i} \left[a_1 \frac{\partial v_2}{\partial y} - a_2 \frac{\partial v_1}{\partial y} - a_3 \frac{\partial v_1}{\partial z} + a_1 \frac{\partial v_3}{\partial z} \right] = \frac{3}{r^5} (\mathbf{a} \cdot \mathbf{r}) \mathbf{r} - \frac{1}{r^3} \mathbf{a}$$

$$= \Sigma \mathbf{i} \left[a_1 \left(\frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z} \right) - \left(a_1 \frac{\partial v_1}{\partial x} + a_2 \frac{\partial v_1}{\partial y} + a_3 \frac{\partial v_1}{\partial z} \right) \right] = (\nabla \cdot \mathbf{v}) \mathbf{a} - (\mathbf{a} \cdot \nabla) \mathbf{v}$$
26.
$$x(y^2 + y) - (x^3/3) + c.$$

26.
$$x(y^2 + y) - (x^3/3) + c$$
.

27.
$$x^3y^2z^4 + c$$
.

28.
$$e^{xy} + 2e^x + c$$
.

29.
$$(1/2) \sin (x^2 + y^2 + z^2) + c$$
.

30.
$$a = 2$$
, $b = c$, c arbitrary.

38.
$$\nabla \times (\nabla \times \mathbf{E}) = \nabla \times \left(-\frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} \right) = -\frac{1}{c} \frac{\partial}{\partial t} (\nabla \times \mathbf{H}) = -\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla^2 \mathbf{E}. \text{ Therefore, } \frac{\partial^2 \mathbf{E}}{\partial t^2} = c^2 \nabla^2 \mathbf{E}. \text{ Similarly for } \mathbf{H}.$$

Exercise 15.4

5.
$$10(3\pi + 5)$$
.

13.
$$(2e^8 + 3e^2 + 19)/3$$
.

19.
$$4(4-3\pi)/9$$
, $16/9$, $\pi/2$.

4.
$$\frac{3}{4} \left[8\sqrt{65} + \log (8 + \sqrt{65}) \right] + \frac{1}{6} \left[(65)^{3/2} - 1 \right].$$

6.
$$[3\sqrt{37} + (1/2)\log(6 + \sqrt{37})] + [(37)^{3/2} - 1]/12$$

16.
$$-9\sqrt{2}/4$$
, $9(4-\sqrt{2})/4$.

18.
$$-(8+3\pi)/4$$
, $(9+3\pi)/2$.

30.
$$-[\pi - 3 \log \sqrt{3}]/3$$
.