Qualificació:_____

Instruccions: Feu els exercicis a l'espai que se us proporciona. Feu servir la cara posterior si necessiteu més espai, indiqueu-ho clarament en aquest cas. Heu d'identificar clarament les respostes i mostrar el procés per tal d'aconseguir la màxima puntuació. La puntuació dels exercicis es dona entre parèntesis.

Exercici 1 (2,5 pts)

Un electró entra amb una velocitat de $3,00 \times 10^5$ m s⁻¹ en una regió de l'espai on hi ha un camp magnètic uniforme d'1,20 T perpendicular a la velocitat de l'electró i en sentit perpendicular al paper, tal com indica la figura, i queda confinat en aquesta regió de l'espai.

- a) Dibuixeu i justifiqueu la trajectòria que descriu l'electró dins del camp indicant el sentit de gir i calculeu el valor de la freqüència (en GHz).
- b) Perquè l'electró travessi el camp magnètic x x x x sense desviar-se, cal aplicar un camp elèctric uniforme en aquesta mateixa regió. Dibuixeu el vector camp elèctric que permetria que això fos possible (justifiqueu-ne la direcció i el sentit) i calculeu-ne el mòdul.

Dades: $m_e = 9,11 \times 10^{-31} \text{ kg}$; $Q_e = 1,60 \times 10^{-19} \text{ C}$.

Exercici 2 (2,5 pts)

Un dispositiu llança, al mateix temps, en la mateixa direcció i en sentits oposats, un protó i un electró. És a dir: \vec{v} (protó) = $-v\vec{j}$, \vec{v} (electró) = $+v\vec{j}$.

- 1. Quan aquest dispositiu es col·loca dins un camp magnètic $\vec{B} = +B\vec{i}$:
 - a) Sobre el protó actua una força $\vec{F} = +qvB\vec{k}$ i, sobre l'electró, $\vec{F} = -qvB\vec{k}$.
 - b) Sobre el protó actua una força $\vec{F} = -qvB\vec{k}$ i, sobre l'electró, $\vec{F} = +qvB\vec{k}$.
 - c) Sobre el protó actua una força $\vec{F} = +qvB\vec{k}$ i, sobre l'electró, $\vec{F} = +qvB\vec{k}$.
- 2. Quan el dispositiu es col·loca dins un camp elèctric $\vec{E} = +E\vec{j}$:
 - a) Sobre el protó actua una força $\vec{F} = +qE\vec{j}$ i, sobre l'electró, $\vec{F} = -qE\vec{j}$.
 - b) Sobre el protó actua una força $\vec{F} = -qE\vec{j}$ i, sobre l'electró, $\vec{F} = +qE\vec{j}$.
 - c) Sobre el protó actua una força $\vec{F} = -qE\vec{j}$ i, sobre l'electró, $\vec{F} = -qE\vec{j}$.

NOTA: q representa el valor absolut de la càrrega de l'electró i la del protó.

Exercici 3 (1,25 pts)

La imatge següent representa una cambra d'ionització en què s'observa l'aparició d'un electró i d'un positró que tenen la mateixa energia. El camp magnètic que hi ha a la cambra d'ionització és de $2 \cdot 10^{-4}$ T i està dirigit cap a l'interior del paper.

a) Indiqueu la trajectòria del positró i la de l'electró i justifiqueu la resposta. Si les dues trajectòries tenen un radi equivalent de 5,80 m, determineu la velocitat de les partícules.

Dades:
$$q_{\text{electró}} = -1,602 \cdot 10^{-19} \text{ C};$$
 $q_{\text{positró}} = +1,602 \cdot 10^{-19} \text{ C};$ $m_{\text{electró}} = m_{\text{positró}} = 9,11 \cdot 10^{-31} \text{ kg};$

Exercici 4 (2,5 pts)

Dins d'un camp magnètic constant, un electró descriu un moviment circular i uniforme en un pla horitzontal com el d'aquest paper, amb un sentit de gir com el de les agulles del rellotge.

- 1. El camp magnètic que obliga l'electró a descriure el moviment circular
 - a) depèn de la velocitat de l'electró.
 - b) és perpendicular a aquest paper i de sentit cap enfora.
 - c) és perpendicular a aquest paper i de sentit cap endins.
- Podem considerar que, quan gira, l'electró és un corrent elèctric elemental i, per tant,
 - a) crea un camp magnètic, a l'interior de la seva trajectòria, perpendicular al paper i de sentit cap enfora.
 - b) no crea cap camp magnètic.
 - c) crea un camp magnètic, a l'interior de la seva trajectòria, perpendicular al paper i de sentit cap endins.