MLSS 2012: Gaussian Processes for Machine Learning

John P. Cunningham Washington University University of Cambridge

April 18, 2012

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

What is a Gaussian (for machine learning)?

Gaussian Process Basics

Gaussians in words and pictures

-Gaussian Process Basics

Gaussians in words and pictures

Gaussian Process Basics

Gaussians in words and pictures

-Gaussian Process Basics

Gaussians in words and pictures

Gaussian Process Basics

Gaussians in words and pictures

Our representation of a GP distribution:

We can take measurements less rigidly:

We can take measurements less rigidly:

-Gaussian Process Basics

Gaussians in words and pictures

Updating the posterior:

Gaussian Process Basics

Gaussians in words and pictures

Updating the posterior:

Gaussian Process Basics

Gaussians in words and pictures

Updating the posterior:

An intuitive summary

- Univariate Gaussians: distributions over real valued variables
- ▶ Multivariate Gaussians: {pairs, triplets, ... } of real valued vars
- ► Gaussian Processes: functions of (infinite numbers of) real valued variables → regression.

denoising/smoothing

- denoising/smoothing
- prediction/forecasting

- denoising/smoothing
- prediction/forecasting

- denoising/smoothing
- prediction/forecasting
- dangers of parametric models

- denoising/smoothing
- prediction/forecasting
- dangers of parametric models
- dangers of overfitting/underfitting

- denoising/smoothing
- prediction/forecasting
- dangers of parametric models
- dangers of overfitting/underfitting

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Review: multivariate Gaussian

- ▶ $f \in \mathbb{R}^n$ is normally distributed if $p(f) = (2\pi)^{-\frac{n}{2}} |K|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(f-m)^T K^{-1}(f-m)\right\}$
- ▶ for mean vector $m \in \mathbb{R}^n$ and positive semidefinite covariance matrix $K \in \mathbb{R}^{n \times n}$
- ▶ shorthand: $f \sim \mathcal{N}(m, K)$

Definition: Gaussian Process

- Loosely, a multivariate Gaussian of uncountably infinite length... really long vector ≈ function
- ▶ f is a Gaussian process if $f(t) = [f(t_1), ..., f(t_n)]'$ has a multivariate normal distribution for all $t = [t_1, ..., t_n]'$:

$$f(t) \sim \mathcal{N}(m(t), K(t, t))$$

- $(t \in \mathbb{R} \text{ here for familiarity with regression in time, but domain can be } x \in \mathbb{R}^D)$
- ▶ What are m(t), K(t, t)?

Definition: Gaussian Process

Mean function m(t):

- ▶ any function $m: \mathbb{R} \to \mathbb{R}$ (or $m: \mathbb{R}^D \to \mathbb{R}$)
- ▶ very often $m(t) = 0 \ \forall \ t$ (mean subtract your data)

Kernel (covariance) function:

- ▶ any valid Mercer kernel $k : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$
- ▶ Mercer's theorem: every matrix $K(t, t) = \{k(t_i, t_j)\}_{i,j=1...n}$ is a positive semidefinite (covariance) matrix $\forall t$:

$$v^T K(t,t) v = \sum_{i=1}^n \sum_{j=1}^n K_{ij} v_i v_j = \sum_{i=1}^n \sum_{j=1}^n K(t_i,t_j) v_i v_j \ge 0$$

Definition: Gaussian Process

GP is fully defined by:

- ▶ mean function $m(\cdot)$ and kernel (covariance) function $k(\cdot, \cdot)$
- requirement that every finite subset of the domain t has a multivariate normal $f(t) \sim \mathcal{N}(m(t), K(t, t))$

Notes

- that this should exist is not trivial!
- most interesting properties are inherited
- Kernel function...

Example kernel (squared exponential or SE):

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

From kernel to covariance matrix

▶ Choose some *hyperparameters*: $\sigma_f = 7$, $\ell = 100$

$$t = \begin{bmatrix} 0700 \\ 0800 \\ 1029 \end{bmatrix} \qquad K(t,t) = \{k(t_i,t_j)\}_{i,j} = \begin{bmatrix} 49.0 & 29.7 & 00.2 \\ 29.7 & 49.0 & 03.6 \\ 00.2 & 03.6 & 49.0 \end{bmatrix}$$

Example kernel (squared exponential or SE):

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

From kernel to covariance matrix

▶ Choose some *hyperparameters*: $\sigma_f = 7$, $\ell = 500$

$$t = \begin{bmatrix} 0700 \\ 0800 \\ 1029 \end{bmatrix} \qquad K(t,t) = \{k(t_i,t_j)\}_{i,j} = \begin{bmatrix} 49.0 & 48.0 & 39.5 \\ 48.0 & 49.0 & 44.1 \\ 39.5 & 44.1 & 49.0 \end{bmatrix}$$

Example kernel (squared exponential or SE):

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

From kernel to covariance matrix

▶ Choose some *hyperparameters*: $\sigma_f = 7$, $\ell = 50$

$$t = \begin{bmatrix} 0700 \\ 0800 \\ 1029 \end{bmatrix} \qquad K(t,t) = \{k(t_i,t_j)\}_{i,j} = \begin{bmatrix} 49.0 & 06.6 & 00.0 \\ 06.6 & 49.0 & 00.0 \\ 00.0 & 00.0 & 49.0 \end{bmatrix}$$

Example kernel (squared exponential or SE):

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

From kernel to covariance matrix

▶ Choose some *hyperparameters*: $\sigma_f = 14$, $\ell = 50$

$$t = \begin{bmatrix} 0700 \\ 0800 \\ 1029 \end{bmatrix} \qquad K(t,t) = \{k(t_i,t_j)\}_{i,j} = \begin{bmatrix} 196 & 26.5 & 00.0 \\ 26.5 & 196 & 0.01 \\ 00.0 & 0.01 & 196 \end{bmatrix}$$

Intuitive summary of GP so far

- GP offer distributions over functions (infinite numbers of jointly Gaussian variables)
- For *any* finite subset vector *t*, we have a normal distribution:

$$f(t) \sim \mathcal{N}(0, K(t, t))$$

- where covariance matrix K is calculated by plugging t into kernel $k(\cdot, \cdot)$.
- ▶ New notation: $f \sim \mathcal{GP}(m(\cdot), k(\cdot, \cdot))$ or $f \sim \mathcal{GP}(m, k)$.

Important Gaussian properties (for today's purposes):

- additivity (forming a joint)
- conditioning (inference)
- expectations (posterior and predictive moments)
- marginalisation (marginal likelihood/model selection)
- **.**...

Additivity (joint)

- ▶ prior (or latent) $f \sim \mathcal{N}(m_f, K_{ff})$
- ▶ additive iid noise $n \sim \mathcal{N}(0, \sigma_n^2 I)$
- ▶ let y = f + n, then:

$$p(y, f) = p(y|f)p(f) = \mathcal{N}\left(\begin{bmatrix} f \\ y \end{bmatrix}; \begin{bmatrix} m_f \\ m_y \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy} \\ K_{fy}^T & K_{yy} \end{bmatrix}\right)$$

where (in this case):

$$K_{fy} = E[(f - m_f)(y - m_y)^T] = K_{ff}$$
 $K_{yy} = K_{ff} + \sigma_n^2 I$

▶ latent *f* and noisy observation *y* are jointly Gaussian

Where did the GP go?

- ▶ prior (or latent) $f \sim \mathcal{N}(m_f, K_{ff})$
- ▶ additive iid noise $n \sim \mathcal{N}(0, \sigma_n^2 I)$
- let y = f + n, then:

$$p(y, f) = p(y|f)p(f) = \mathcal{N}\left(\begin{bmatrix} f \\ y \end{bmatrix}; \begin{bmatrix} m_f \\ m_y \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy} \\ K_{fy}^T & K_{yy} \end{bmatrix}\right)$$

▶ If *f* and *y* are indexed by some input points *t*:

$$m_f = egin{bmatrix} m_f(t_1) \ dots \ m_f(t_n) \end{bmatrix} \qquad \qquad \mathcal{K}_{ff} = \{k(t_i, t_j)\}_{i,j=1...n} \qquad \ldots$$

Where did the GP go?

- ▶ prior (or latent) $f \sim \mathcal{GP}(m_f, k_{ff})$
- ▶ additive iid noise $n \sim \mathcal{GP}(0, \sigma_n^2 \delta)$
- ▶ let y = f + n, then:

$$p(y(t), f(t)) = p(y|f)p(f) = \mathcal{N}\left(\begin{bmatrix} f \\ y \end{bmatrix}; \begin{bmatrix} m_f \\ m_y \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy} \\ K_{fy}^T & K_{yy} \end{bmatrix}\right)$$

▶ If *f* and *y* are indexed by some input points *t*:

$$m_f = egin{bmatrix} m_f(t_1) \ dots \ m_f(t_n) \end{bmatrix} \qquad \qquad \mathcal{K}_{ff} = \{k(t_i, t_j)\}_{i,j=1...n} \qquad ...$$

warning: overloaded notation - f can be infinite (GP) or finite (MVN) depending on context.

Conditioning (inference)

▶ If *f* and *y* are jointly Gaussian:

$$\begin{bmatrix} f \\ y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m_f \\ m_y \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy} \\ K_{fy}^T & K_{yy} \end{bmatrix} \right)$$

► Then:

$$f|y \sim \mathcal{N}\left(K_{\text{fy}}K_{yy}^{-1}(y-m_y) + m_f \right. , \ K_{\text{ff}} - K_{\text{fy}}K_{yy}^{-1}K_{\text{fy}}^T\right)$$

inference of latent given data is simple linear algebra.

$$p(f|y) = \frac{p(y|f)p(f)}{p(y)}$$

Expectation (posterior and predictive moments)

Conditioning on data gave us:

$$f|y \sim \mathcal{N}\left(K_{fy}K_{yy}^{-1}(y-m_y) + m_f \ , \ K_{ff} - K_{fy}K_{yy}^{-1}K_{fy}^T\right)$$

- ▶ then $E[f|y] = K_{fy}K_{yy}^{-1}(y m_y) + m_f$ (MAP, posterior mean, ...)
- Predict data observations y*:

$$\begin{bmatrix} y \\ y^* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m_y \\ m_{y^*} \end{bmatrix}, \begin{bmatrix} K_{yy} & K_{y^*y} \\ K_{y^*y}^T & K_{y^*y^*} \end{bmatrix} \right)$$

no different:

$$y^*|y \sim \mathcal{N}\left(K_{y^*y} K_{yy}^{-1} \big(y - m_y \big) + m_{y^*} \right. , \ K_{y^*y^*} - K_{y^*y} K_{yy}^{-1} K_{y^*y}^T \right)$$

Marginalisation (marginal likelihood and model selection)

Again, if:

$$\begin{bmatrix} f \\ y \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m_f \\ m_y \end{bmatrix}, \begin{bmatrix} K_{ff} & K_{fy} \\ K_{fy}^T & K_{yy} \end{bmatrix} \right)$$

we can marginalize out the latent:

$$p(y) = \int p(y|f)p(f)df \qquad \leftrightarrow \qquad y \sim \mathcal{N}(m_y, K_{yy})$$

- marginal likelihood of the data (or log(p(y)) data log-likelihood)
- ▶ In GP context, actually $p(y|\theta) = p(y|\sigma_f, \sigma_n, \ell)$. This can be the basis of model selection.

Complaint

- ▶ I'm bored. All we are doing is messing around with Gaussians.
- ► Correct! (sorry)
- ► This is the whole point.
- ▶ We can do some remarkable things...

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Our example model

- ▶ $f \sim \mathcal{GP}(0, k_{ff})$, where $k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i t_j)^2\right\}$
- $y|f \sim \mathcal{GP}(f, k_{nn})$, where $k_{nn}(t_i, t_j) = \sigma_n^2 \delta(t_i t_j)$
- $ightharpoonup y \sim \mathcal{GP}(0, k_{yy})$, where $k_{yy}(t_i, t_j) = k_{ff}(t_i, t_j) + k_{nn}(t_i, t_j)$
- We choose $\sigma_f = 10$, $\ell = 50$, $\sigma_n = 1$
- ▶ The prior on *f*:

Our example model

- $f \sim \mathcal{GP}(0, k_{ff})$, where $k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i t_j)^2\right\}$
- $y|f \sim \mathcal{GP}(f, k_{nn})$, where $k_{nn}(t_i, t_j) = \sigma_n^2 \delta(t_i t_j)$
- ▶ $y \sim \mathcal{GP}(0, k_{yy})$, where $k_{yy}(t_i, t_j) = k_{ff}(t_i, t_j) + k_{nn}(t_i, t_j)$
- lacksquare We choose $\sigma_f=10$, $\ell=50$, $\sigma_n=1$
- A draw from f:

Drawing from the prior

These steps should be clear:

- ▶ Take n (many, but finite!) points $t_i \in [0, 500]$
- ▶ Evaluate $K_{ff} = \{k_{ff}(t_i, t_i)\}$
- ▶ Draw from $f \sim \mathcal{N}(0, K_{ff})$
- (f = chol(K)' * randn(n, 1))

Draw a few more

▶ four draws from *f*:

Impact of hyperparameters

$$ightharpoonup \sigma_f = 10$$
 , $\ell = 50$

Impact of hyperparameters

$$ightharpoonup \sigma_f = 4$$
 , $\ell = 50$

Impact of hyperparameters

$$ightharpoonup \sigma_f = 4$$
 , $\ell = 10$

Multidimensional input

- ▶ just make each input $x \in \mathbb{R}^D$ (here D = 2, e.g. lat and long)
- ► $f \sim \mathcal{GP}(0, k_{ff})$, where $k_{ff}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \sigma_f^2 \exp\left\{-\sum_d \frac{1}{2\ell^2} (\mathbf{x}_d^{(i)} \mathbf{x}_d^{(j)})^2\right\}$

 (multidimensional GP in action: Cunningham, Rasmussen, Ghahramani (2012) AISTATS)

Same model; we will now gather data y_i .

- $f \sim \mathcal{GP}(0, k_{\text{ff}})$, where $k_{\text{ff}}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i t_j)^2\right\}$
- ▶ $y|f \sim \mathcal{GP}(f, k_{nn})$, where $k_{nn}(t_i, t_j) = \sigma_n^2 \delta(t_i t_j)$
- $ightharpoonup y \sim \mathcal{GP}(0, k_{yy})$, where $k_{yy}(t_i, t_j) = k_{ff}(t_i, t_j) + k_{nn}(t_i, t_j)$
- lacksquare We choose $\sigma_f=$ 10 , $\ell=$ 50 , $\sigma_n=$ 1

▶ the GP prior *p*(*f*)

▶ Observe a single point at t = 204:

$$y(204) \sim \mathcal{N}(0, k_{yy}(204, 204)) = \mathcal{N}(0, \sigma_f^2 + \sigma_n^2)$$

Use conditioning to update the posterior:

$$f|y(204) \sim \mathcal{N}\left(K_{fy}K_{yy}^{-1}(y(204) - m_y) \right) \; , \; \; K_{ff} - K_{fy}K_{yy}^{-1}K_{fy}^T\right)$$

Use conditioning to update the posterior:

$$f|y(204) \sim \mathcal{N}\left(K_{fy}K_{yy}^{-1}(y(204) - m_y) \right) \; , \; \; K_{ff} - K_{fy}K_{yy}^{-1}K_{fy}^T\right)$$

... and the predictive distribution:

$$y^*|y(204) \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y(204)-m_y) \right. , \ K_{y^*y^*}-K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

▶ More observations (data vector *y*):

$$y^*|y(\begin{bmatrix} 204 \\ 90 \end{bmatrix}) \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}\left(y(\begin{bmatrix} 204 \\ 90 \end{bmatrix}) - m_y\right), K_{y^*y^*} - K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

More observations (data vector y):

$$y^*|y(\begin{bmatrix} 204 \\ 90 \end{bmatrix}) \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}\left(y(\begin{bmatrix} 204 \\ 90 \end{bmatrix}) - m_y\right), K_{y^*y^*} - K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

▶ More observations (data vector *y*):

$$y^*|y \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y-m_y) \ , \ K_{y^*y^*}-K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

▶ More observations (data vector *y*):

$$y^*|y \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y-m_y) \ , \ K_{y^*y^*}-K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

Nonparametric Regression

▶ GP let the data speak for itself... but all the data must speak.

$$y^*|y \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y-m_y) \ , \ K_{y^*y^*}-K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

"nonparametric models have an infinite number of parameters"

Nonparametric Regression

▶ GP let the data speak for itself... but all the data must speak.

$$y^*|y \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y-m_y) \right. , \ K_{y^*y^*} - K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

- "nonparametric models have an infinite number of parameters"
- "nonparametric models have a finite but unbounded number of parameters that grows with data"

Almost through the basics...

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Model Selection / Hyperparameter Learning

▶
$$f \sim \mathcal{GP}(0, k_{\rm ff})$$
, where $k_{\rm ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$ $\ell = 50$: just right $\ell = 15$: overfitting $\ell = 250$: underfitting

Model Selection (1): Marginal Likelihood

not obvious why this should not over (or under) fit, but it's in the math...

$$\log(p(y|\sigma_f, \sigma_n, \ell)) = -\frac{1}{2}y^T K_{yy}^{-1} y - \frac{1}{2}\log|K_{yy}| - \frac{n}{2}\log(2\pi)$$

- "Occam's Razor" implemented via regularization/Bayesian model selection
- Details to be fleshed out in practical...

Model Selection (2): Cross Validation

Can also consider predictive distribution for some held out data:

$$PL(\sigma_f, \sigma_n, \ell) = \log(p(y_{\text{test}}|y_{\text{train}}, \sigma_f, \sigma_n, \ell))$$

- Again a Gaussian.
- Again can take derivatives and tune model hyperparameters.
- Details to be fleshed out in practical...

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

More details

▶ GP basics: Appdx A, Ch 1

► Regression: Ch 2

► Kernels: Ch 4

Model Selection: Ch 5

$$f \sim \mathcal{GP}(0, k_{ff}), \; ext{ where } \; k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-rac{1}{2\ell^2}(t_i - t_j)^2
ight\}$$
 $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \frac{\sigma_f^2}{\sigma_f^2} \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$
 $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$

- ▶ Option 1: hyperparameters → model selection.
- •
- •

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

$$y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$$

- ▶ Option 1: hyperparameters → model selection.
- ▶ Option 2: functional form of k_{ff} → kernel choices.
- .
- •

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

$$y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$$

- ▶ Option 1: hyperparameters → model selection.
- ▶ Option 2: functional form of k_{ff} → kernel choices.
- Option 3: the GP?

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$
 $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$

- ▶ Option 1: hyperparameters → model selection.
- ▶ Option 2: functional form of k_{ff} → kernel choices.
- Option 3: the GP?
- ▶ Option 4: the data distribution → likelihood choices.

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

$$y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$$

- ▶ Option 1: hyperparameters → model selection.
- ▶ Option 2: functional form of k_{ff} → kernel choices.
- Option 3: the GP?
- ▶ Option 4: the data distribution → likelihood choices.

What the kernel is doing (SE)

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

Rational Quadratic

$$k(t_i, t_j) = \sigma_f^2 \left(1 + \frac{1}{2\alpha\ell^2} (t_i - t_j)^2 \right)^{-\alpha}$$

$$\propto \sigma_f^2 \int z^{\alpha - 1} \exp\left(-\frac{\alpha z}{\beta} \right) \exp\left(-\frac{z(t_i - t_j)^2}{2} \right) dz$$

Periodic

$$k(t_i, t_j) = \sigma_f^2 \exp\left\{-rac{2}{\ell^2} \sin^2\left(rac{\pi}{
ho}|t_i - t_j|
ight)
ight\}$$

From Stationary to Nonstationary Kernels

$$k(t_i, t_i) = k(t_i - t_i) = k(\tau)$$

•
$$k(t_i, t_j) = \sigma_t^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$

Wiener Process

- $k(t_i, t_j) = \min(t_i, t_j)$
- ▶ Still a GP

Wiener Process

- $k(t_i, t_j) = \min(t_i, t_j)$
- Draws from a nonstationary GP

Linear Regression...

- f(t) = wt with $w \sim \mathcal{N}(0, 1)$
- $k(t_i, t_j) = E[f(t_i)f(t_j)] = t_i t_j$

Build your own kernel (1): Operations

▶ Linear: $k(t_i, t_i) = \alpha k_1(t_i, t_i) + \beta k_2(t_i, t_i)$ (for $\alpha, \beta \ge 0$)

or
$$k\left(x^{(i)},x^{(j)}\right)=k_{a}\left(x_{1}^{(i)},x_{1}^{(j)}\right)+k_{b}\left(x_{2}^{(i)},x_{2}^{(j)}\right)$$

- ▶ Products: $k(t_i, t_j) = k_1(t_i, t_j)k_2(t_i, t_j)$
- ▶ Integration: $z(t) = \int g(u, t)f(u)du$ \leftrightarrow

$$k_z(t_i,t_j) = \int \int g(u,t_1)k_f(t_i,t_j)g(v,t_j)dudv$$

- ▶ Differentiation: $z(t) = \frac{\partial}{\partial t} f(t)$ \leftrightarrow $k_z(t_i, t_j) = \frac{\partial^2}{\partial t_i \partial t_j} k_f(t_i, t_j)$
- ▶ Warping: $z(t) = f(h(t)) \leftrightarrow k_z(t_i, t_i) = k_f(h(t_i), h(t_i))$

Preserves joint Gaussianity (mostly)!

▶ Linear: $k(t_i, t_j) = \alpha k_1(t_i, t_j) + \beta k_2(t_i, t_j)$

or
$$k\left(x^{(i)},x^{(j)}\right)=k_{a}\left(x_{1}^{(i)},x_{1}^{(j)}\right)+k_{b}\left(x_{2}^{(i)},x_{2}^{(j)}\right)$$

- ▶ Products: $k(t_i, t_j) = k_1(t_i, t_j)k_2(t_i, t_j)$
- ▶ Integration: $z(t) = \int g(u, t)f(u)du$ \leftrightarrow

$$k_z(t_i,t_j) = \int \int g(u,t_1)k_f(t_i,t_j)g(v,t_j)dudv$$

- ▶ Differentiation: $z(t) = \frac{\partial}{\partial t} f(t)$ \leftrightarrow $k_z(t_i, t_j) = \frac{\partial^2}{\partial t_i \partial t_j} k_f(t_i, t_j)$
- ▶ Warping: $z(t) = f(h(t)) \leftrightarrow k_z(t_i, t_i) = k_f(h(t_i), h(t_i))$

Build your own kernel (2): frequency domain

▶ a stationary kernel $k(t_i, t_j) = k(t_i - t_j) = k(\tau)$ is positive semidefinite (satisfies Mercer) iff:

$$S(\omega) = \mathcal{F}\{k\}(\omega) \geq 0 \ \forall \ \omega$$

- ▶ Power spectral density (Wiener-Khinchin, ...)
- ▶ Note $k(0) = \int S(\omega) d\omega$

Kernel Summary

- GP gives a distribution over functions...
- the kernel determines the type of functions.
- can/should be tailored to application
- toward a GP toolbox

$$f \sim \mathcal{GP}(0, k_{ff}), \text{ where } k_{ff}(t_i, t_j) = \sigma_f^2 \exp\left\{-\frac{1}{2\ell^2}(t_i - t_j)^2\right\}$$
 $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$

- ▶ Option 1: hyperparameters → model selection.
- ▶ Option 2: functional form of k_{ff} → kernel choices.
- Option 3: the GP?
- ▶ Option 4: the data distribution → likelihood choices.

Data up to now

- continuous regression made sense
- ▶ data likelihood model: $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$

Binary label data

- Classification (not regression) setting
- $y_i | f_i \sim \mathcal{N}(f_i, \sigma_n^2 I)$ is inappropriate

GP Classification

▶ Probit or Logistic "regression" model on $y_i \in \{-1, +1\}$:

$$p(y_i|f_i) = \phi(y_if_i) = \frac{1}{1 + \exp(-y_if_i)}$$

Warps f onto the [0, 1] interval

GP Classification

▶ Probit or Logistic "regression" model on $y_i \in \{-1, +1\}$:

$$p(y_i|f_i) = \phi(y_if_i) = \frac{1}{1 + \exp(-y_if_i)}$$

Warps f onto the [0, 1] interval

What we want to calculate

predictive distribution:

$$p(y^*|y) = \int p(y^*|f^*)p(f^*|y)df^*$$

predictive posterior:

$$p(f^*|y) = \int p(f^*|f)p(f|y)df$$

data posterior:

$$p(f|y) = \frac{\prod_{i} p(y_{i}|f_{i})p(f)}{p(y)}$$

None of which is tractable to compute

However...

predictive distribution:

$$p(y^*|y) = \int p(y^*|f^*) \frac{q(f^*|y)}{df^*}$$

predictive posterior:

$$q(f^*|y) = \int p(f^*|f)q(f|y)df$$

data posterior:

$$q(f|y) \approx p(f|y) = \frac{\prod_i p(y_i|f_i)p(f)}{p(y)}$$

▶ If *q* is Gaussian, these are tractable to compute

Approximate Inference

- ▶ Methods for producing a Gaussian $q(f|y) \approx p(f|y)$
- Laplace Approximation, Expectation Propagation, Variational Inference
- Technologies within a GP method
- Subject of much research; often work well

Likelihood choices

Using Approximate Inference

► Allows "regression" on the [0, 1] interval

Using Approximate Inference

▶ Allows "regression" on the [0, 1] interval

What about SVM?

- illustrate flexibility of GP
- draw an interesting connection
- ► GP joint:

$$-\log p(y, f) = \frac{1}{2} f^{T} K_{ff}^{-1} f - \sum_{i} \log(p(y_{i}|f_{i}))$$

▶ SVM loss (for $f_i = f(x_i) = w^T x_i$):

$$\ell(w) = \frac{1}{2}w^Tw + C\sum_i(1 - y_if_i)$$

SVM

- illustrate flexibility of GP
- draw an interesting connection
- GP joint:

$$-\log p(y, f) = \frac{1}{2} f^{T} K^{-1} f - \sum_{i} \log(p(y_{i}|f_{i}))$$

SVM loss (for $f_i = f(x_i) = \phi(x_i) = k(\cdot, x_i)$):

$$\ell(\phi) = \frac{1}{2} f^{\mathsf{T}} K^{-1} f + C \sum_{i} (1 - y_{i} f_{i})$$

(more reading: Seeger (2002), Relationship between GP, SVM, Splines) Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Our [weakness] grows out of our [strength]

Everything is happily Gaussian

- ... except when it isn't.
- ▶ nonnormal likelihood → approximate inference
- ▶ model selection $p(y|\{\sigma_f, \sigma_n, \ell\})$

Nonparametric flexibility

... but we have to compute on all the data:

$$f|y \sim \mathcal{N}\left(K_{fy}K_{yy}^{-1}(y-m_y) + m_f \right), K_{ff} - K_{fy}K_{yy}^{-1}K_{fy}^T$$

- ▶ $\mathcal{O}(n^3)$ in runtime, $\mathcal{O}(n^2)$ in memory
- sparsification methods (pseudo points, etc.)
- special structure methods (kernels, input points, etc.)

Shortcomings \rightarrow active research

- Applications
- Approximate inference
- Computational complexity / sparsification

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Connections

Already we have seen:

- ▶ Wiener processes
- ▶ linear regression
- SVM
- what else?

Temporal linear Gaussian models

- Wiener process (Brownian motion, random walk, OU process)
- Linear dynamical system (state space model, Kalman filter/smoother, etc.)

$$f(t) = Af(t-1) + w(t)$$
 $y(t) = f(t) + n(t)$

Gauss-Markov processes (ARMA(p, q), etc.)

$$f(t) = \sum_{i=1}^{p} \alpha_i f(t-i) + \sum_{i=1}^{q} \beta_i w(t-i)$$

► Intuition of linearity and Gaussianity → GP

Other nonparametric models (or parametric limits)

Kernel smoothing (Nadaraya-Watson, locally weighted regression):

$$y^* = \sum_{i=1}^n \alpha_i y_i$$
 where $\alpha_i = k(t_i, t^*)$

Compare to:

$$y^*|y \sim \mathcal{N}\left(K_{y^*y}K_{yy}^{-1}(y-m_y) \ , \ K_{y^*y^*}-K_{y^*y}K_{yy}^{-1}K_{y^*y}^T\right)$$

Neural network limit (infinite bases, important to know about, Neal '96):

$$f(t) = \lim_{m \to \infty} \sum_{i=1}^{m} v_i h(t; u_i)$$

Outline

Outline

Gaussian Process Basics

Gaussians in words and pictures Gaussians in equations Using Gaussian Processes

Beyond Basics

Kernel choices Likelihood choices Shortcomings of GP Connections

Conclusions & References

Conclusions

- Gaussian Processes can be effective tools for regression and classification
- Quantified uncertainty can be highly valuable
- GP can be extended in interesting ways (linearity helps)
- GP appear as limits or general cases of a number of ML technologies
- GP are not without problems

Some References/Pointers/Credits

- Rasmussen and Williams, Gaussian Processes for Machine Learning
- Bishop, Pattern Recognition and Machine Learning
- www.gaussianprocess.org (better updated/kept than .com)
- loads of papers at AISTATS/NIPS/ICML/JMLR over the last 12 years.