Skeggøx Automatic Axe Scoring

Mitchell Karchemsky, Lynn Marciano, Parham Motameni

Motivation

- Axe Throwing!
- Human-Reliant Scoring System
- Lots of variability

Picture of different scoring scenarios

Difficulty in scoring: Cross sectional view

Can we classify axes with a single image?

Design Rational

Design Rational

- Single point camera
- No interventions or augmentations of existing setup
- Collect and label our own data
- Automatic reporting from video stream

Challenges

- Single point camera (No depth!)
- Camera setup
- Different axes
- Different boards
- Scoring is difficult
- Human scoring

Implementation

Raspberry Pi 0 + HQ Camera

Nvidia Jetson Nano

Data

Label	Count
5 Points	1588
3 Points	610
0 Points	291
1 Point	148
Right Clutch	82
Empty Board	82
Left Clutch	74

- Approximately 3000 Data points/photos
- Collected over 8 weeks
- High Data bias

Difficulty in scoring: Cross sectional view

Difficulty in scoring: "Edge" Cases

Automated Scale and Crop

Challenges

Unreliable Edge Detection

Similar Board and Background Colors

Various Geometric Distortions

Pre-Processing Steps

Original

Blur + Binary + Morphological Transformation

Canny Edge Detection

Probabilistic
Hough
Transformation +
Perpendicular
Line Coords

Final Scale + Crop

Neural Network

Neural Network Setup

- Pytorch
- Multiple architectures tested
 - resnet50, mixnet-xl, efficientnet_b2
 - Preprocess vs Raw
 - Visual Data transformations
 - o Blur
 - Random Rotation (-10,10 degrees)
 - Random horizontal flip
 - $\{\text{Left, Right}\}\ \text{Clutch} \rightarrow \text{Clutch}$

Model Summary Results

Unmodified Dataset

Model Architecture	Dataset Used	Validation Accuracy	Test Accuracy
MixNet-XL	Original 2700	93.18%	91.00%
MixNet-XL	Original 3031	90.70%	87.91%
ResNet50	Original 3031	92.25%	90.11%
EfficientNet B2	Original 3031	90.31%	89.23%

Utilizing Scale and Crop

Model Architecture	Dataset Used	Validation Accuracy	Test Accuracy
ResNet50	Scale + Crop 3031	91.47%	91.43%
MixNet-XL	Scale + Crop 3031	90.31%	89.45%
EfficientNet B2	Scale + Crop 3031	89.53%	87.47%

No-Pre-Process Network: Mixnet-xl

Score:

 91% on validation dataset

Takeaways:

- Preprocessing may not be necessary
- Confusion Matrix looks good even with imbalance

Pre-Process Network: Mixnet-xl

0

10

44

11

0

5

Predicted

Utilizing the Scale and Crop Images

0

11

0

1

Score:

- 150

- 100

-50

• 91% on validation dataset

Takeaways:

 Only a slight improvement than original images

Results

Results

Results

Discussion

Discussion and Acknowledgements

- More diverse data
- Augmented Data Generation
- Data Preprocessing Overfitting?
- More cameras/sensors

Skeggox Automatic Axe Scoring

Mitchell Karchemsky, Lynn Marciano, Parham Motameni

