#### Infra-estrutura de Hardware

# Operações Lógicas



Juliana R.Basto Diniz julianabdiniz@gmail.com

# Circuitos Lógicos

- Podem-se construir circuitos digitais a partir de um pequeno número de elementos primitivos combinados;
- Circuitos digitais possuem apenas dois valores lógicos presentes;
- Portas lógicas podem executar várias funções destes sinais de dois valores.

#### Conceito:

"Portas lógicas constituem a base do hardware sobre a qual todos os computadores digitais são construídos"

# Álgebra Booleana

- Usada para descrever os circuitos obtidos através da combinação de portas lógicas;
- Recebe o nome de Booleana, pois foi descoberta por George Boole;
- Função booleana tem uma ou mais variáveis de entrada
  - Fornece resultado que depende somente das variáveis de entrada.

### Função Booleana

- Função com N variáveis, possuindo 2<sup>n</sup> conjuntos possíveis de valores de entrada;
- A função pode ser descrita completamente através de uma tabela de 2<sup>n</sup> linhas, onde cada linha possui o valor da função para uma combinação diferente de valores de entrada.

#### Tabela Verdade

- A tabela que nos referimos anteriormente é denominada tabela da verdade;
- Qualquer função booleana pode ser completamente especificada por sua tabela verdade;

#### Inversor ou NOT



#### Multiplicador ou AND



| A | X |
|---|---|
| 0 | 1 |
| 1 | 0 |

| A | В | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

#### Somador ou OR



| A | В | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 |   |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

1

| VOR | Α | X |
|-----|---|---|
|     |   | l |

B

| A | В | X |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 0 |

#### **NAND**



| A | В | X |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

### Tabela Verdade para 3 variáveis

M=f(A,B,C)

| A | В | С | M |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

0, se a maioria é de zeros 1, se a maioria é de uns

- Observar que qualquer função booleana pode ser especificada dizendo quais combinações das variáveis de entrada produzem um valor de saída 1.
- Na tabela anterior, há quatro combinações das variáveis de entrada que fazem M igual a 1.

- O sinal de multiplicação (.) representa a operação AND;
- O sinal de adição (+) representa a operação OR;
- Colocaremos uma barra superior (-) para indicar que o valor da variável é invertido;

#### Transcrevendo as linhas com saída 1

| A | В | $\mathbf{C}$ | M |         |                                |    |
|---|---|--------------|---|---------|--------------------------------|----|
| 0 | 1 | 1            | 1 | <b></b> | A . B .C                       | ou |
| 1 | 0 | 1            | 1 | <b></b> | <del>A</del> .B.C              | ou |
| 1 | 1 | 0            | 1 |         | $A \cdot \overline{B} \cdot C$ | ou |
| 1 | 1 | 1            | 1 |         | A . B . C                      | ou |

- Assim a função M será verdadeira se qualquer uma das 4 condições forem verdadeiras;
- Pode-se então escrever:
  - M=A.B.C + A.B.C + A.B.C + A.B.C
- Uma função de n variáveis pode ser descrita através da soma de, no máximo 2<sup>n</sup> termos de produtos de n variáveis.

## Circuito Digital

- 1-Faça a tabela verdade para a função
- 2-Providencie inversores para gerar o complemento de cada entrada
- 3-Desenhe uma porta AND para cada termo com 1 na coluna de resultado na tabela verdade
- 4-Ligue as portas AND às entradas adequadas;
- 5-Ligue as saídas de todas as portas AND a uma porta OR

# Circuito Digital



- Reduzindo o número de portas lógicas:
  - Reduz-se o custo de componentes;
  - Reduz-se a área da placa de circuito impresso;
  - Reduz-se o consumo da potência;



- $\blacksquare$  AB+AC = A(B+C)
- Duas funções são equivalentes se e somente se, tiverem a mesma saída para todas as entradas possíveis



| A | В | C | B+C | A | M |
|---|---|---|-----|---|---|
| 0 | 0 | 0 | 0   | 0 | 0 |
| 0 | 0 | 1 | 1   | 0 | 0 |
| 0 | 1 | 0 | 1   | 0 | 0 |
| 0 | 1 | 1 | 1   | 0 | 0 |
| 1 | 0 | 0 | 0   | 1 | 0 |
| 1 | 0 | 1 | 1   | 1 | 1 |
| 1 | 1 | 0 | 1   | 1 | 1 |
| 1 | 1 | 1 | 1   | 1 | 1 |

- Pode-se comparar as tabelas verdades e verificar a equivalência dos circuitos
- Apesar da equivalência, nota-se que o circuito 2 é melhor que o 1, pois contém o menor número de portas;

## Lei de Morgan

- $\overline{AB} = \overline{A} + \overline{B}$
- Pode-se aplicar a propriedade distributiva de modo que : ABC=A + B + C
- A+B=A.B
- A+B+C=A.B.C

# Símbolos Alternativos para portas lógicas



## Porta Lógica EXclusive OR

- Também chamado de XOR, ou OU Exclusivo;
- Simbologia:



| A | В | X |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

#### Por onde estudar?

Organização Estruturada de Computadores

Andrew Tanembaum
Ed Prentice Hall do Brasil
Capítulo 3

- Notas de Aula
- Lista de Exercícios