ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ»

Факультет программной инженерии и компьютерной техники

Дисциплина: «Вычислительная математика»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4 Вариант 10.

Выполнил:

Студент гр. P32151 Понамарев Степан Андреевич

Проверил:

Машина Екатерина Алексеевна

- 1. **Цель лабораторной работы**: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.
- 2. Задание лабораторной работы:

Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.
- 3. Рабочие формулы:

1.
$$y = \frac{18x}{x^4 + 10}$$
, при $x \in [0, 4]$ $h = 0, 4$ – уравнение по заданию.

2.
$$S = \sum_{i=1}^{n} \varepsilon_i^2$$
 – мера отклонения.

3.
$$\delta = \sqrt{\frac{\sum_{i=1}^{11} [\phi(x_i) - y_i]^2}{n}} - CKO.$$

4. n = 11 - число точек.

- 4. Вычислительная реализация задачи (вариант 10):
 - 1. Таблица табулирования заданной функции на указанном интервале.

0	0,4	0,8	1,2	1,6	2	2,4	2,8	3,2	3,6	4
0	0,72	1,38	1,79	1,74	1,38	1,00	0,71	0,50	0,36	0,27

2. Вспомогательные обозначения

$$SX = \sum_{i=1}^{11} x_i = 22, \quad SXX = \sum_{i=1}^{11} x_i^2 = 61,6, \quad SY = \sum_{i=1}^{11} y_i = 9,86,$$

$$SXY = \sum_{i=1}^{111} x_i y_i = 17,468, \quad SXXX = \sum_{i=1}^{11} x_i^3 = 193,6, \quad SXXY = \sum_{i=1}^{11} x_i^2 y_i = 39,046,$$

$$SXXXX = \sum_{i=1}^{11} x_i^4 = 648,525.$$

3. Линейное приближение

Нахождение коэффициентов линейного уравнения сводится к решению системы:

$$\begin{cases} an + bSX = SY \\ aSX + bSXX = SXY \end{cases}$$

где a, b – коэффициенты из формулы y = a + bx

Из неё находим:

$$\begin{cases} 11a + 22b = 9,86 \\ 22a + 61,6 \ b = 17,468 \end{cases}$$

$$\Delta = SXX \cdot n - SX^2 = 61,6 \cdot 11 - 22^2 = 193,6$$

$$\Delta_1 = SXY \cdot n - SX \cdot SY = 17,468 \cdot 11 - 22 \cdot 9,857 = -24,707$$

$$\Delta_2 = SXX \cdot SY - SX \cdot SXY = 61,6 \cdot 9,857 - 22 \cdot 17,468 = 222,897$$

$$a = \frac{\Delta_2}{\Lambda} = 1,1513, \qquad b = \frac{\Delta_1}{\Lambda} = -0,1276$$

Расчёт СКО:

х	0,000	0,400	0,800	1,200	1,600	2,000	2,400	2,800	3,200	3,600	4,000
у	0,000	0,718	1,383	1,789	1,740	1,385	1,001	0,705	0,501	0,364	0,271
$\varphi(x)$	1,151	1,100	1,049	0,998	0,947	0,896	0,845	0,794	0,743	0,692	0,641
ε	1,325	0,146	0,112	0,625	0,628	0,239	0,024	0,008	0,058	0,107	0,137

$$S = \sum_{i=1}^{11} \varepsilon^2 = \sum_{i=1}^{11} (\varphi(x_i) - y_i)^2 = \sum_{i=1}^{11} (a + bx_i - y_i)^2 = 3.41$$

$$\delta = \sqrt{\frac{S}{n}} = \sqrt{\frac{3.41}{11}} = 0.557 - \text{CKO}$$

4. Квадратичное приближение

Нахождение коэффициентов квадратичного уравнения сводится к решению системы:

$$\begin{cases} an + bSX + cSXX = SY \\ aSX + bSXX + cSXXX = SXY \\ aSXX + bSXXX + cSXXXX = SXXY \end{cases}$$

где a, b, c – коэффициенты из формулы $y = a + bx + cx^2$

Из неё находим:

$$\begin{cases}
11a + 22b + 61,6c = 9,86 \\
22a + 61,6b + 193,6c = 17,468 = 61,6a + 193,6b + 648,525c = 39,046
\end{cases}$$

$$\begin{cases}
a = 0,368 \\
b = 1,178 \\
c = -0,326
\end{cases}$$

Расчёт СКО:

x	0,000	0,400	0,800	1,200	1,600	2,000	2,400	2,800	3,200	3,600	4,000
y	0,000	0,718	1,383	1,789	1,740	1,385	1,001	0,705	0,501	0,364	0,271
											-
$\varphi(x)$	0,368	0,787	1,102	1,312	1,418	1,420	1,317	1,111	0,799	0,384	0,136
ε	0,135	0,005	0,079	0,227	0,103	0,001	0,100	0,164	0,089	0,000	0,165

$$S = \sum_{i=1}^{11} \varepsilon^2 = \sum_{i=1}^{11} (\varphi(x_i) - y_i)^2 = \sum_{i=1}^{11} (a + bx_i + cx_i^2 - y_i)^2 = 1,071$$

$$\delta = \sqrt{\frac{S}{n}} = \sqrt{\frac{1,071}{11}} = 0,312 - \text{CKO}$$

Наилучшее приближение является квадратичным с СКО равным $\delta = 0.312$.

5. Графики

1. Линейное приближение:

2. Квадратичное приближение:

5. Листинг программы

main.py:

```
from InputManager import InputManager
from OLS import *

output_result = ""

def my_print(*args):
    global output_result
```

InputManager.py:

```
class InputManager:
    @staticmethod
    def string_input(message=""):
        buf = ""
        while buf == "":
            buf = input(message).strip()
        return buf

@staticmethod
```

```
_check_number(buf):
```

```
def int_input_with_borders(left, right, message=""):
    if left >= right:
        raise ValueError
    if message != "":
        print(message)
    i = int(InputManager.enum_input([*range(left, right + 1)], f"Введите число от
    {left} до {right}: "))
    return i

@staticmethod
def point_input(message=""):
    x, y = None, None
    while x is None or y is None:
        line = InputManager.string_input(message).split()
        if len(line) != 2:
            continue
        x, y = InputManager._convert_to_number(line[0]),
InputManager._convert_to_number(line[1])
    return x, y
```

series.py:

```
self.X.append(x)
self.Y.append(y)
```

```
self.X.append(x)
self.Y.append(y)

def set_n(self, n):
    self.n = n

def set_x(self, x):
    self.X = x
    self.n = min(len(x), self.n)

def set_y(self, y):
    self.Y = y
    self.n = min(len(y), self.n)

def set_xy(self, x, y):
    self.set_n(min(len(x), len(y)))
    self.set_y(y)

def print_points(self):
    print("MoxonHhe Toukk: ", end="")
    print(*[f"((self.X[i]), {self.Y[i]})" for i in range(self.n)], sep=", ")

def copy(self):
    sm = SeriesManager()
    sm.set_n(self.n)
    sm.set_x(self.X)
    sm.set_y(self.Y)
    return sm
```

OLS.py:

```
class LinearFunction(Function):
```

```
Среднеквадратичное отклонение: {round(np.sqrt(self.mse), 4)}\n""
   linf = LinearFunction(ser)
b, a = linf.get_a_b()
```

```
self.phi = lambda x: a * np.log(x) + b
p = self.calculate(self.series.X)
```

6. Пример работы программы.


```
Логарифмическая функция:
Формула функции: phi(x) = a * ln(x) + b
Значение функции в точках: [-5.31 7.79 9.28 16.74 18.67 19.86 20.22 22.39]
Отклонения: [7.52 -4.50 -5.64 -7.78 -5.30 -1.81 -0.27 17.78]
Сумма отклонений: 0.0
Среднеквадратичное отклонение: 8.0382

Нарисовать график функции: phi(x) = a * x^b
Козфициенты: =a=8.832, b=0.821
Значение функции в точках: [1.33 5.00 5.81 12.32 14.96 16.87 17.50 21.77]
Отклонения: [0.88 -1.71 -2.17 -3.36 -1.59 1.18 2.45 18.40]
```

```
X III 🕀 🖯 1:1 🖸 🧷
Степенная функция:
                                                                                                                                                      640x480 PNG (24-bit color) 15,09 ki
                                                                                                                              Степенная функция.
                                                                                                             35
                                                                                                             30
    Среднеквадратичное отклонение: 6.7851
                                                                                                             25
                                                                                                             15
Наилучшее приближение: Экспоненциальная функция.
                                                                                                             10
Введите имя файла:
                                                                                                                      0.5
                                                                                                                             1.0
                                                                                                                                     1.5
                                                                                                                                            2.0
                                                                                                                                                   2.5
                                                                                                                                                           3.0
```

Результаты работы программы, записанные в файл:

```
могия функции: phi(x) = ax + b
Коэффициенты: a=11.3792, b=-3.506
Значение функции в точках: [-2.37 2.18 3.32 13.56 18.11 21.53 22.67 30.63]
Отклонения: [4.58 1.11 0.32 -4.60 -4.74 -3.48 -2.72 9.54]
       Сумма отклонений: -0.0
        Коэффициенты: [11.3792 -3.586]
       Среднеквадратичное отклонение: 4.696232532573318
Коэффициент корреляции: 0.92
       Линейная зависимость: весьма высокая
Полиномиальная функция 2-й степени:
       иномиальная функция 2-и степени:
Формула функции: phi(x) = a0 + a1*x + a2*x^2
Коэффициенты: [4.27 -6.61 6.07]
Значение функции в точках: [3.67 2.48 2.49 8.01 13.63 19.11 21.18 39.08]
Отклонения: [-1.46 0.81 1.15 0.95 -0.26 -1.06 -1.23 1.09]
       .
Среднеквадратичное отклонение: 1.0548933595392476
Полиномиальная 3-й степени:
       множивльная 3-и степени:

Формула функции: phi(x) = a0 + a1*x + a2*x^2 + a3*x^3

Коэффициенты: [1.66 4.31 -2.35 1.73]

Значение функции в точках: [2.87 3.45 3.78 8.68 13.23 18.17 28.17 40.89]

Отклонения: [0.14 -0.16 -0.14 0.28 0.14 -0.12 -0.22 0.08]

Сумма отклонений: 0.0
       Среднеквадратичное отклонение: 0.1712
Экспоненциальная фунция:
       поненциальная <u>фунция:</u> Формула функции: phi(x) = a * exp(bx)
Коэффициенты: a=1.9975, b=1.0005
Значение функции в точках: [2.21 3.29 3.64 8.96 13.37 18.05 19.95 40.18]
Отклонения: [0.00 -0.00 -0.00 0.00 0.00 0.00 -0.01]
Сумма отклонений: -0.0017
        Среднеквадратичное отклонение: 0.0044
Логарифмическая функция:
        .
Формула функции: phi(x) = a * ln(x) + b
Значение функции в точках: [-5.31 7.79 9.28 16.74 18.67 19.86 20.22 22.39]
       Отклонения: [7.52 -4.50 -5.64 -7.78 -5.30 -1.81 -0.27 17.78]
Сумма отклонений: 0.0
       Формула функции: phi(x) = a * x^b
       Жоэффициенты: a=8.832, b=0.821
Значение функции в точках: [1.33 5.00 5.81 12.32 14.96 16.87 17.50 21.77]
Отклонения: [0.88 -1.71 -2.17 -3.36 -1.59 1.18 2.45 18.40]
Сумма отклонений: 14.0815
Наилучшее приближение: Экспоненциальная функция.
СКО: 0.0
```

7. Ещё пример работы программы:

8. Выводы

арисовать график функции? [y/n]:

В ходе выполнения лабораторной работы я изучил и реализовал несколько методов аппроксимации функции по табличным данным: линейную, квадратичную, кубическую, логарифмическую, экспоненциальную и степенную.