

(2)

20000828091

USAARL REPORT NO. 85-2

AD-A 153 848

Reproduced From
Best Available Copy

By
William R. Nelson
Don T. Mozo

MEDICAL RESEARCH DIVISION

LIMITATION STATEMENT A
Approved for public release
Distribution Unlimited

February 1985

U.S. ARMY AFRC MEDICAL RESEARCH LABORATORY
FORT RUCKER, ALABAMA 36362

85

4

25

USAARL

NOTICE

Qualified Requesters

Qualified requesters may obtain copies from the Defense Technical Information Center, Cameron Station, Alexandria, Virginia, 22314. Orders will be expedited if placed through the librarian or other person designated to request documents from the Defense Technical Information Center.

Change of Address

Organizations receiving reports from the US Army Aeromedical Research Laboratory on automatic mailing lists should confirm correct address when corresponding about laboratory reports.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.

Disclaimer

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other official documentation. Citation of trade names in this report does not constitute an official Department of the Army endorsement or approval of the use of such commercial items.

Human Use

Human subjects participated in these studies after giving free and informed voluntary consent. Investigators adhered to AR 70-25 and USAMRDC Reg 70-25 on Use of Volunteers in Research.

Reviewed:

Bruce C Leibrecht

BRUCE C. LEIBRECHT, Ph.D.
LTC, MS

Director, Sensory Research Division

J.D. La Motte
J.D. LAMOTHE, PH.D.

LTC(P), MS

Chairman, Scientific Review
Committee

Released for Publication:

Dudley R. Price

DUDLEY R. PRICE
Colonel, MC, SFS
Commanding

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER USAARL Report No. 85-2	2. GOVT ACCESSION NO. AD-A153848	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Effects of XM-40 Chemical Protective Mask on Real-Ear Attenuation and Speech Intelligibility Characteristics of the SPH-4 Aviator Helmet	5. TYPE OF REPORT & PERIOD COVERED	
7. AUTHOR(s) William R. Nelson and Ben T. Mozo	6. PERFORMING ORG. REPORT NUMBER	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Sensory Research Division US Army Aeromedical Research Laboratory Fort Rucker, AL 36362	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62777A, 3E16277A878, AC, 135	
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Medical Research and Development Command Fort Detrick Frederick, MD 21701	12. REPORT DATE February 1985	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 24	
15. SECURITY CLASS. (of this report) Unclassified		
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Chemical Protective Mask, Real-Ear Attenuation, Speech Intelligibility, Noise, Aviator Helmet, SPH-4, Microphone Position, Hearing Conservation, Voice Communication.		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) See reverse.		

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ABSTRACT:

Chemical Defense (CD) measures depend primarily on the use of protective clothing and equipment. Adequate protection only can be achieved if each item in the CD ensemble is compatible with every other item. The design or modification of each component must give consideration to its impact on the performance of all items. This study investigated the effects of the XM-40 Chemical Protective (CP) Mask on the protective functions of the SPH-4 aviator helmet. Based on the results it was concluded that the XM-40 compromised the noise attenuation and speech communication functions of the SPH-4.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

	PAGE NO.
List of Tables	2
List of Figures	2
Introduction	3
Methods and Instrumentation	3
Real-Ear Attenuation	3
Intelligibility	4
Results and Discussion	7
Real-Ear Attenuation	7
Speech Intelligibility	7
Conclusions and Recommendations	10
References	11
Appendices	
A. Various Views of Three Prototype XM-40 CP Masks	12
B. List of Equipment Manufacturers	18

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC T&S	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Identification	
By _____	
Distribution/	
Availability Codes	
Audit and/or Dist. Spec.	
A-1	

LIST OF TABLES

TABLE NO.	PAGE NO.
1 Conditions Used in the Evaluation of Speech Intelligibility	6
2 Octave-band Sound Pressure Levels of the Simulated UH-60A Noise Environment	7
3 Mean and Standard Deviations of Real-Ear Attenuation Values Measured in dB for SPH-4 Helmet with and without the XM-40 CP Mask.	8
4 Experimental Listener Conditions, Talker with SPH-4 Only.	8
5 Experimental Talker Conditions, Listeners with SPH-4 Only.	9

LIST OF FIGURES

FIGURE NO.	PAGE NO.
1 Real-Ear Attenuation Test System	5

INTRODUCTION

The use of protective equipment by today's soldier is essential to enhance and ensure his ability to perform on the battlefield. The soldier's protective equipment must be designed with its effect on the total system being a primary consideration.

This study investigated the effects of three prototype versions of the XM-40 Chemical Protective (CP) mask on the hearing protective and communicative functions of the SPH-4 aviator helmet. The effects of the masks on hearing protection were determined by a comparison of the real-ear attenuation for the SPH-4 with and without the mask. The effects of the masks on communication were assessed in terms of speech intelligibility in two modes. They were (1) a comparison of the listener's ability to discriminate words with and without the mask when the speaker used the standard SPH-4 with its standard boom microphone; and (2) a comparison of the listener's ability to discriminate words while wearing a standard SPH-4 when the speaker was wearing each of the three prototype masks. The primary difference between the three masks was in the configuration of the microphone within the mask.

The request for this evaluation was initiated by the US Army Aviation Board.

METHODS AND INSTRUMENTATION

REAL-EAR ATTENUATION

The real-ear attenuation of the SPH-4 helmet, when worn in combination with one of the three CP masks, was measured using the ANSI Standard S3.19-1974. Since the principle difference between the three prototypes was the microphone configuration inside the mask and since in this case the microphone position does not affect attenuation. It was deemed appropriate to test only one mask prototype for attenuation. Ten listeners were college students with normal hearing. They were required to have hearing thresholds for both ears not greater than 10 dB at the 250-1000 Hertz test frequencies and no higher than 20 dB at any other test frequency as measured on a standard audiometry (ANSI S3.6-1969). The same listeners were used to evaluate the real-ear attenuation characteristic of the same SPH-4 with and without the mask.

The real-ear attenuation measurement was conducted in a custom-built Tracoustics Corporation Audiometric Examination Room* measuring 10'X9'4"X6'6" (1xwXh) located at the Acoustical Sciences Research Group Laboratory, Sensory

*See Appendix B.

Research Division, United States Aeromedical Research Laboratory, Fort Rucker, Alabama. This room had been modified to give the reverberant characteristics specified in the standard.

The signals used in the test were generated and controlled by the instrumentation shown in Figure 1. The noise generator (Brüel and Kjaer (B&K) Type 1405)* was set to output white noise into the band pass filter, B&K Type 1618. The electronic switch, Grason-Stadler Type 1287B*, was pulsed with a one Hertz symmetric square wave control signal. The rise and fall time of the electronic switch was adjusted to 30 milliseconds to exclude audible transients during on-off or off-on transitions of the test signal. The spectrum shaper was used to provide an equalized output sound pressure level at the listener's head position over the total frequency bandwidth of the test signals. The step attenuator provided the experimenter with a calibrated control of the test signal to check the subject's reliability. Also it extended the useable range of the recording attenuator. This is useful especially for devices which have high efficiency in the low frequencies.

The recording attenuator was modified to include a 0.5% linearity potentiometer with its wiper shaft position directly related to the attenuator level. This is related directly to the output level of the test signal presented to the listener. The recording attenuator's motor direction was controlled by the subject with a noiseless photoelectric switch. For each test sound, the listener controlled the signal level in the fashion described by Von Bekesy (1947) to determine the threshold of audibility. At each reversal point of the tracking process, the potentiometer output was input into the microprocessor control system where it was processed. The system summed 10 reversal points, computed the average, and this output was sent to a printer. The real-ear attenuation was determined by taking the differences between hearing threshold values measured under two conditions. A free-field reference threshold was obtained for all test signals with the listener's head position fixed by the use of a chin rest. An attenuated threshold measurement then was made under identical conditions except the listener wore an SPH-4 with or without a CP mask. A full standard real-ear attenuation test (three attenuation values for each test frequency for each of the 10 listeners) was run for both conditions.

INTELLIGIBILITY

Appendix A shows various views of the masks evaluated in this experiment. The speech intelligibility of each prototype XM-40 mask worn in combination with the SPH-4 helmet was measured using phonetically balanced (PB) words. The list of words used in this experiment is described in ANSI S3.2-1960 (R1971). Each list consisted of 50 PB words. A different PB word list was assigned to each of five test conditions which are summarized in Table 1.

All speaker conditions utilized PB words recorded by a single speaker in a simulated UH-60A aircraft noise environment shown in Table 2. The speech samples used in this experiment were recorded on a Nagra Model SJ* magnetic tape recorder. The sample lists were reproduced and adjusted in

REAL EAR ATTENUATION TEST SYSTEM

FIGURE 1. Real-Ear Attenuation Test System.

level with a Grason-Stadler 1701 Diagnostic Audiometer*. Each list was presented to the subject in the simulated aircraft noise environment through the SPH-4 communication system at a level which was 10 dB above speech reception threshold (SRT). The SRT was determined with a "high quality" speech signal presented to the listener for each of the test conditions. The SRT was used to equalize the speech level at the listener's ear for all test conditions. This provides for a measure of intelligibility of each device relative to the other devices in the sample at equal listener levels. The order of the five test conditions was randomized for each subject. It must be understood that the percentage scores may not represent those achievable for conditions different from those tested.

Ten subjects were used in this part of the study. Each subject had normal hearing which is defined as no more than 10 dB hearing loss (reference ANSI S3.6-1969) for the frequencies 250, 500, and 1000 Hertz and no more than 20 dB hearing loss for the frequencies 2000, 3000, 4000, 6000, and 8000 Hertz.

TABLE I
CONDITIONS USED IN THE EVALUATION OF SPEECH INTELLIGIBILITY.

Test Condition	Speaker's Condition	Listener's Condition
1	Wearing SPH-4	Wearing SPH-4
2	Wearing SPH-4	Wearing SPH-4 with Prototype C
3	Wearing SPH-4 with Prototype A	Wearing SPH-4
4	Wearing SPH-4 with Prototype B	Wearing SPH-4
5	Wearing SPH-4 with Prototype C	Wearing SPH-4

Note: Prototype A was marked XM-43.
Prototype B was marked 2A/C.
Prototype C was marked M15.
The prototype designation was made by the US Army Aviation Board. The above mentioned markings were on the CP masks when received at USAARL.

TABLE 2

OCTAVE-BAND SOUND PRESSURE LEVELS OF THE SIMULATED UH-60A NOISE ENVIRONMENT.

Octave-Band Center Frequencies in Hertz

63	125	250	500	1K	2K	4K	8K	16K
97	97	98	95	89	88	82	83	80

RESULTS AND DISCUSSION

REAL-EAR ATTENUATION

The objective of the real-ear attenuation test was to assess the effects of the XM-40 CP mask on the noise attenuation ability of the SPH-4. The mean real-ear attenuation values by test frequency are shown in Table 3. A comparison of the attenuation results for the SPH-4 and the SPH-4 in combination with the mask reveals little difference in the attenuation of the SPH-4 with and without the mask except at 2 kHz, 6.3 kHz, and 8 kHz. Evaluation of mean attenuation data by individual T-tests with 53 degrees of freedom and $\alpha = .05$ indicates significant differences at 2 kHz ($T=2.05$), 6.3 kHz ($T=4.67$), and 8 kHz ($T=2.84$). Although the effects on attenuation are less severe than those noted by Mozo (1984) in a similar test of the M-24 and XM-33 CD masks, the current data indicate that high frequency attenuation is compromised significantly when the XM-40 mask is used with the SPH-4 helmet.

SPEECH INTELLIGIBILITY

The intelligibility portion of the study was divided into two parts: (1) the effects of XM-40 mask configuration on the listener's ability to understand speech and (2) the effects of the various microphone configurations within the mask on the talker's speech intelligibility.

For the first part of the intelligibility test, only one prototype mask was selected. The average listener's speech intelligibility under the two experimental conditions are contained in Table 4. With both speaker and listener wearing the SPH-4 only, the mean intelligibility was 62.4% and the standard deviation was 10.0%. When the listener donned the XM-40 CP mask, the mean was 44.2% with a standard deviation of 11.6%. A repeated measures one-way analysis of variance (ANOVA) as described by Winer (1962) was done on the intelligibility scores. An *a priori* error rate (α)

TABLE 3

MEAN AND STANDARD DEVIATIONS OF REAL-EAR ATTENUATION VALUES MEASURED IN dB
FOR SPH-4 HELMET WITH AND WITHOUT THE XM-40 CP MASK.

	Test Frequencies in Hertz									
	80	125	250	500	1K	2K	3.5K	4K	6.3K	8K
<u>SPH-4</u>										
Mean	16.2	12.7	12.3	21.7	19.4	30.1	42.6	47.4	49.7	48.1
SD	5.4	4.0	3.4	4.3	3.1	2.5	3.5	3.8	5.3	6.0
<u>SPH-4 with Prototype C</u>										
Mean	15.0	12.7	12.8	22.9	19.5	31.5	41.2	46.1	42.5	43.7
SD	5.4	4.3	3.9	4.4	2.8	2.7	3.8	4.9	6.4	5.8
<u>T-values</u>										
	0.85	0.0	0.52	1.05	0.13	2.05*	1.46	1.13	4.67*	2.84*

* p<.05, df = 58

TABLE 4
EXPERIMENTAL LISTENER'S CONDITIONS, TALKER WITH SPH-4 ONLY.

Test Condition	Mean	Standard Deviation
SPH-4	62.40	10.10
SPH-4 with Prototype C	44.20	11.56

of .05 was selected. The result of this analysis indicates the XM-40 CD mask significantly degrades a listener's ability to understand speech when compared with the SPH-4 alone ($F(1,9) = 21.99$, $p < .001$).

As noted, when the talker used the boom microphone under these experimental conditions, mean speech intelligibility was 62.4%. Table 5 contains the mean talker speech intelligibility and standard deviation (SD) for the SPH-4 alone and in combination with the three prototype CD masks. When the talkers donned the XM-40 mask identified as prototype A, average talker speech intelligibility was reduced to 46.4% with SD = 7.59. Prototype B yielded a mean of 52.4% discrimination and a SD = 8.2. The mask identified as prototype C resulted in a mean of 49.0% and a SD = 9.1. To determine the significance of differences in speech intelligibility for the various masks, the data were analyzed using a repeated measure one-way ANOVA model with *a priori* rate (α) of .05. The results indicated that the main effect for microphone configuration is significant ($F(3,27) = 11.40$, $p < .001$). Examination of the results in Table 5 suggest that this significant effect of microphone is a result of the degradation of intelligibility of prototype A and C compared to the SPH-4.

TABLE 5
EXPERIMENTAL TALKER'S CONDITIONS, LISTENERS WITH SPH-4 ONLY.

Test Condition	Mean	Standard Deviation
SPH-4	62.40	10.10
SPH-4 with Prototype A	46.40	7.59
SPH-4 with Prototype B	52.40	8.15
SPH-4 with Prototype C	49.00	9.06

It is important to remember the experimental conditions created a very difficult listening situation in order to magnify the differences in performance of the different prototype microphone configurations as compared with the SPH-4 alone. Better results would be expected from all four devices under more optimal listening conditions.

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this study, it is concluded that wearing the XM-40 CP mask with the SPH-4 aviator helmet compromises noise attenuation at 2 kHz, 6.3 kHz, and 8 kHz, but that the compromise of attenuation is less than that experienced with the M-24 and XM-33 CP masks. It was further concluded that wearing the XM-40 mask significantly decreased the ability of a listener to understand speech communication received via an SPH-4 helmet.

With regard to talker intelligibility, the independent variable was microphone configuration within the mask. None of the microphone placements resulted in performance as good as the SPH-4 boom microphone, but of the configurations considered, the prototype identified as "B" was best during the present study.

It is recommended that further efforts be made to improve CP mask compatibility with the SPH-4 helmet. It is further recommended that careful attention be given to microphone placement within the mask. The microphone should never be placed outside the mask.

REFERENCES

- American National Standards Institute. 1974. Acoustical Society of America. Standard Method for the Measurement of Real-Ear Protection of Hearing Protectors and Physical Attenuation of Ear Muffs. S3.19-1974.
- American National Standards Institute. (R 1971) USA Standard Method for Measurement of Monosyllabic Word Intelligibility. S3.2-1960.
- American National Standards Institute. American National Standard Specifications for Audiometers. S3.6-1969 (R1973).
- Mozo, B. T. 1984. Effects of Chemical Protective and Oxygen Masks on Attenuation and Intelligibility When Worn with the SPA-4 Helmet. USAARL Report No. 84-5.
- Tukey, J. W. 1949. Comparing individual means in the analysis of variance. *Biometrics*, 5:99-114.
- Von Bekesy, Georg. 1947. A new audiometer. *Acta Otolaryngologica*, 35:411-422.
- Winer, B. J. 1962. Statistical principles in experimental design. New York: McGraw-Hill.

APPENDIX A

Various Views of Three Prototype XM-40 CP Masks.

Front views of Prototype XM-40 CP Masks, from left to right, Prototype A, Prototype B, and Prototype C.

Front views with SPH-4 Helmet, from left to right, Prototype A, Prototype B, and Prototype C.

Side views with SPH-4 Helmet, from left to right, Prototype A, Prototype B, and Prototype C.

Side view of three prototype CP masks showing cross-strap configuration. From left to right, Prototype A, Prototype B, and Prototype C.

Views of nose cone of three prototype CP masks showing microphone configuration. From left to right, Prototype A, Prototype B, and Prototype C.

APPENDIX B
List of Manufacturers

Altec Lansing Corporation
1515 S. Manchester Avenue
Anaheim, California 92803

Bruei and Kjaer Instruments Incorporated
185 Forest Street
Marlborough, Massachusetts 01752

Datel Systems Incorporated
1020 Turnpike Street
Canton, Massachusetts 02021

Grason-Stadler
56 Winthrop Street
Concord, Massachusetts 01742

Nagra Magnetic Recorders Incorporated
19 West 44th Street, Room 715
New York, New York 10036

Pro Log Corporation
2411 Garden Road
Monterey, California 93940

Tracoustics Incorporated
P.O. Box 3610
Austin, Texas 78764

INITIAL DISTRIBUTION

Commander
US Army Natick Research &
Development Center
ATTN: Documents Librarian
Natick, MA 01760

Commander
US Army Research Institute of
Environmental Medicine
Natick, MA 01760

Naval Submarine Medical Research
Laboratory
Medical Library, Naval Submarine Base
Box 900
Groton, CT 06340

US Army Avionics Research &
Development Activity
ATTN: SAVAA-P-TP
Fort Monmouth, NJ 07703-5401

Commander/Director
US Army Combat Surveillance &
Target Acquisition Laboratory
ATTN: DELCS-D
Fort Monmouth, NJ 07703-5304

US Army Research & Development
Support Activity
Fort Monmouth, NJ 07703

Commander
10th Medical Laboratory
ATTN: Audiologist
APO New York 09180

Chief
Benet Weapons Laboratory
LCWSL, USA ARRADCOM
ATTN: DRDAR-LCB-TL
Watervliet Arsenal
Watervliet, NY 12189

Commander
Naval Air Development Center
Biophysics Laboratory (ATTN: G. Kydd)
Code 60B1
Warminster, PA 18974

Commander
Man-Machine Integration System (Code 602)
Naval Air Development Center
Warminster, PA 18974

Naval Air Development Center
Technical Information Division
Technical Support Detachment
Warminster, PA 18974

Commander
Naval Air Development Center
ATTN: Code 6021 (Mr. Brindle)
Warminster, PA 18974

Dr. E. Handler
Human Factors Applications, Inc.
295 West Street Road
Warminster, PA 18974

Uniformed Services University
of the Health Sciences
4301 Jones Bridge Road
Bethesda, MD 20014

Commanding Officer
Naval Medical Research &
Development Command
National Naval Medical Center
Bethesda, MD 20014

Under Secretary of Defense for
Research & Engineering
ATTN: Military Assistant for
Medical and Life Sciences
Washington, DC 20301

Director
Army Audiology & Speech Center
Walter Reed Army Medical Center
Washington, DC 20307-5001

COL Franklin H. Top, Jr., MD
Walter Reed Army Institute
of Research
Washington, DC 20307-5100

Commander
US Army Institute of Dental Research
Walter Reed Army Medical Center
Washington, DC 20307-5300

Naval Air Systems Command
Technical Library Air 950D
Rm 278, Jefferson Plaza II
Department of the Navy
Washington, DC 20361

Naval Research Laboratory Library
Code 1433
Washington, DC 20375

Naval Research Laboratory Library
Shock & Vibration Information Center
Code 5804
Washington, DC 20375

Harry Diamond Laboratories
ATTN: Technical Information Branch
2800 Powder Mill Road
Adelphi, MD 20783-1197

Director
US Army Human Engineering Laboratory
ATTN: Technical Library
Aberdeen Proving Ground, MD 21005-5001

US Army Materiel Systems
Analysis Agency
ATTN: Reports Processing
Aberdeen Proving Ground, MD 21005-5017

Commander
US Army Test & Evaluation Command
ATTN: AMSTE-AD-H
Aberdeen Proving Ground, MD 21005-5055

US Army Ordnance Center &
School Library
Bldg 3071
Aberdeen Proving Ground, MD 21005-5201

Director
US Army Ballistic Research Laboratory
ATTN: DRXBR-OD-ST (Technical Reports)
Aberdeen Proving Ground, MD 21005-5066

US Army Environmental Hygiene
Agency Library
Bldg E2100
Aberdeen Proving Ground, MD 21010

Commander
US Army Medical Research Institute
of Chemical Defense
ATTN: SGRD-UV-AO
Aberdeen Proving Ground, MD 21010-5425

Technical Library
Chemical Research & Development Center
Aberdeen Proving Ground, MD 21010-5423

Commander
US Army Medical Research &
Development Command
ATTN: SGRD-RMS (Mrs. Madigan)
Fort Detrick, MD 21701-5012

Commander
US Army Medical Research Institute
of Infectious Diseases
Fort Detrick, Frederick, MD 21701

Commander
US Army Medical Bioengineering Research
& Development Laboratory
ATTN: SGRD-UBZ-I
Fort Detrick, Frederick, MD 21701

Dr. R. Newburgh
Director of Biological Sciences Division
Office of Naval Research
600 North Quincy Street
Arlington, VA 22217

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

US Army Materiel Development &
Readiness Command
5001 Eisenhower Avenue
Alexandria, VA 22333

US Army Foreign Science &
Technology Center
ATTN: MTZ
220 7th Street, NE
Charlottesville, VA 22901-5396

Commandant
US Army Aviation Logistics School
ATTN: ATCQ-TDN
Fort Eustis, VA 23604

Director
Applied Technology Laboratory
USARTL-AVSCOM
ATTN: Library, Bldg 401
Fort Eustis, VA 23604

US Army Training & Doctrine Command
ATTN: ATCD-ZX
Fort Monroe, VA 23651

Commander
US Army Training & Doctrine Command
ATTN: Surgeon
Fort Monroe, VA 23651-5000

Structures Laboratory Library
USARTL-AVSCOM
NASA Langley Research Center
Mail Stop 266
Hampton, VA 23665

Naval Aerospace Medical
Institute Library
Bldg 1953, Code 102
Pensacola, FL 32508

US Air Force Armament Development
& Test Center
Eglin Air Force Base, FL 32542

Command Surgeon
US Central Command
MacDill AFB, FL 33608

US Army Missile Command
Redstone Scientific Information Center
ATTN: Document Section
Redstone Arsenal, AL 35898-5241

Air University Library
(AUL/LSE)
Maxwell AFB, AL 36112

Commander
US Army Aeromedical Center
Fort Rucker, AL 36362

Commander
US Army Aviation Center &
Fort Rucker
ATTN: ATZQ-CDR
Fort Rucker, AL 36362

Director
Directorate of Combat Developments
Bldg 507
Fort Rucker, AL 36362

Director
Directorate of Training Development
Bldg 502
Fort Rucker, AL 36362

Chief
Army Research Institute Field Unit
Fort Rucker, AL 36362

Commander
US Army Safety Center
Fort Rucker, AL 36362

Commander
US Army Aviation Center &
Fort Rucker
ATTN: ATZQ-T-ATL
Fort Rucker, AL 36362

Commander
US Army Aircraft Development
Test Activity
ATTN: STEBG-MP-QA
Cairns AAF
Ft Rucker, AL 36362

President
US Army Aviation Board
Cairns AAF
Fort Rucker, AL 36362

US Army Research & Technology
Laboratories (AVSCOM)
Propulsion Laboratory MS 302-2
NASA Lewis Research Center
Cleveland, OH 44135

AFAMRL/HEX
Wright Patterson AFB, OH 45433

US Air Force Institute of
Technology (AFIT/LDEE)
Bldg 640, Area B
Wright-Patterson AFB, OH 45433

John A. Dellinger, MS, ATP
University of Illinois - Willard Airport
Savoy, IL 61874

Henry L. Taylor
Director
Institute of Aviation
University of Illinois - Willard Airport
Savoy, IL 61874

Commander
US Army Aviation Systems Command
ATTN: DRSAV-WS
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Project Officer
Aviation Life Support Equipment
ATTN: AMCPO-ALSE
4300 Goodfellow Boulevard
St. Louis, MO 63120-1798

Commander
US Army Aviation Systems Command
ATTN: SGRD-UAX-AL (MAJ Lacy)
Bldg 105, 4300 Goodfellow Boulevard
St. Louis, MO 63120

Commander
US Army Aviation Systems Command
ATTN: DRSAV-ED
4300 Goodfellow Boulevard
St. Louis, MO 63120

US Army Aviation Systems Command
Library & Information Center Branch
ATTN: DRSAV-DIL
4300 Goodfellow Boulevard
St. Louis, MO 63120

Commanding Officer
Naval Biodynamics Laboratory
P.O. Box 24907
New Orleans, LA 70139

Federal Aviation Administration
Civil Aeromedical Institute
CAMI Library AAC 64D1
P.O. Box 25082
Oklahoma City, OK 73125

US Army Field Artillery School
ATTN: Library
Snow Hall, Room 14
Fort Sill, OK 73503

Commander
US Army Academy of Health Sciences
ATTN: Library
Fort Sam Houston, TX 78234

Commander
US Army Health Services Command
ATTN: HSOP-SO
Fort Sam Houston, TX 78234-6000

Commander
US Army Institute of Surgical Research
ATTN: SGRD-USM (Jan Duke)
Fort Sam Houston, TX 78234-6200

Director of Professional Services
AFMSC/GSP
Brooks Air Force Base, TX 78235

US Air Force School of
Aerospace Medicine
Strughold Aeromedical Library
Documents Section, USAFSAM/TSK-4
Brooks Air Force Base, TX 78235

US Army Dugway Proving Ground
Technical Library
Bldg 5330
Dugway, UT 84022

Dr. Diane Damos
Psychology Department
Arizona State University
Tempe, AZ 85287

US Army Yuma Proving Ground
Technical Library
Yuma, AZ 85364

US Army White Sands Missile Range
Technical Library Division
White Sands Missile Range
New Mexico, 88002

US Air Force Flight Test Center
Technical Library, Stop 238
Edwards Air Force Base, CA 93523

US Army Aviation Engineering
Flight Activity
ATTN: SAVTE-M (Tech Library) Stop 217
Edwards Air Force Base, CA 93523-5000

Commander
Code 3431
Naval Weapons Center
China Lake, CA 93555

US Army Combat Developments
Experimental Center
Technical Information Center
Bldg 2925
Fort Ord, CA 93941-5000

Aeromechanics Laboratory
US Army Research &
Technical Laboratories
Ames Research Center, M/S 215-1
Moffett Field, CA 94035

Commander
Letterman Army Institute of Research
ATTN: Medical Research Library
Presidio of San Francisco, CA 94129

Sixth US Army
ATTN: SMA
Presidio of San Francisco, CA 94129

Director
Naval Biosciences Laboratory
Naval Supply Center, Bldg 844
Oakland, CA 94625

Col G. Stebbing
USDAO-AMLO, US Embassy
Box 36
FPO New York 09510

Staff Officer, Aerospace Medicine
RAF Staff, British Embassy
3100 Massachusetts Avenue, NW
Washington, DC 20008

Canadian Society of Aviation Medicine
c/o Academy of Medicine, Toronto
ATTN: Ms. Carmen King
288 Bloor Street West
Toronto, Ontario M5S 1V8

Canadian Air Line Pilot's Association
MAJ J. Soutendam (Retired)
1300 Steeles Avenue East
Brampton, Ontario, L6T 1A2

Canadian Forces Medical Liaison Officer
Canadian Defence Liaison Staff
2450 Massachusetts Avenue, NW
Washington, DC 20008

Commanding Officer
404 Squadron CFB Greenwood
Greenwood, Nova Scotia B0P 1N0

Officer Commanding
School of Operational &
Aerospace Medicine
DCIEM, P.O. Box 2000
1133 Sheppard Avenue West
Downsview, Ontario M3M 3B9

National Defence Headquarters
101 Colonel By Drive
ATTN: DPM
Ottawa, Ontario K1A 0K2

Canadian Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

Netherlands Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

German Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

British Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

French Army Liaison Office
Bldg 602
Fort Rucker, AL 36362

END

FILMED

6-85

DTIC