TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC7W139F, TC7W139FU

2-TO-4 LINE DECODER

The TC7W139 is a high speed C²MOS 2 to 4 LINE DECODER/DEMULTIPLEXER fabricated with silicon gate C²MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the C^2MOS low power dissipation.

All inputs are equipped with protection circuits against static discharge or trasient excess voltage.

FEATURES

 $V_{CC} = 5V$

• Low Power Dissipation $I_{CC} = 2\mu A$ (Max.) at

Ta = 25°C

• High Noise Immunity $V_{NIH} = V_{NIL}$

=28% V_{CC} (Min.)

Output Drive Capability 10 LSTTL Loads

Symmetrical Output Impedance ... |IOH| = IOI = 4mA

Balanced Propagation Delays t_{pLH}≒t_{pHL}

• Wide Operating Voltage Range ... $V_{CC(opr)} = 2V \sim 6V$

TRUTH TABLE

INPUTS			OUTI	SELECTED		
SELECT		<u>70</u>	_{V1}	$ \overline{Y2} $	 73	OUTPUT
В	Α	10	T I	12	13	Output
L	L	L	Н	Н	Н	<u></u> 70
L	Н	Н	L	Н	Н	<u></u> <u>Y1</u>
Н	L	Н	Н	Г	Н	<u>¥2</u>
Н	Η	Н	Н	Н	L	<u></u> 73

Weight SOP8-P-1.27 : 0.05g (Typ.) SSOP8-P-0.65 : 0.02g (Typ.)

MARKING

TC7W139F

TC7W139F

Type Name

7W139F

Lot No.

7W139

PIN ASSIGNMENT (TOP VIEW)

961001EBA2

[●] TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage Range	Vcc	-0.5~7	V
DC Input Voltage	VIN	-0.5~V _{CC} + 0.5	٧
DC Output Voltage	VOUT	$-0.5 \sim V_{CC} + 0.5$	٧
Input Diode Current	ΙΚ	± 20	mΑ
Output Diode Current	lok	± 20	mA
DC Output Current	IOUT	± 25	mΑ
DC V _{CC} / Ground Current	lcc	± 25	mΑ
Power Dissipation	PD	300	mW
Storage Temperature	T _{stg}	- 65∼150	°C
Lead Temperature 10s	TL	260	°C

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	2~6	V
Input Voltage	VIN	0~V _{CC}	V
Output Voltage	Vout	0~V _{CC}	V
Operating Temperature	T _{opr}	- 40~85	°C
		$0\sim1000 \ (V_{CC}=2.0V)$	
Input Rise and Fall Time	t _r , t _f	$0 \sim 500 \ (V_{CC} = 4.5V)$	ns
		$0 \sim 400 \ (V_{CC} = 6.0V)$	

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 The information contained herein is subject to change without notice.

DC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	TEST CONDITION			Т	Ta = 25°C			Ta = -40~85°C		
CHARACTERISTIC	STIVIBUL			Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT	
High-Level				2.0	1.5	-	-	1.5	_		
Input Voltage	∣ v _{iH}		_	4.5	3.15	—	—	3.15	—	V	
input voitage				6.0	4.2	_	_	4.2	_		
Low-Level				2.0	—	—	0.5	—	0.5		
Input Voltage	V _{IL}	İ	_	4.5	—	—	1.35	<u> </u>	1.35	V	
input voitage				6.0	_	_	1.8	_	1.8		
	V _{ОН}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -20μA	2.0	1.9	2.0	—	1.9	—		
lliah Laval				4.5	4.4	4.5	—	4.4	—		
High-Level				6.0	5.9	6.0	_	5.9	_		
Output Voltage			$I_{OH} = -4mA$	4.5	4.18	4.31	 	4.13	-		
			$I_{OH} = -5.2 \text{mA}$	6.0	5.68	5.80	_	5.63			
	Vol	V _{IN} = V _{IH} or V _{IL}		2.0	_	0.0	0.1	_	0.1		
Low-Level			$I_{OL} = 20 \mu A$	4.5	—	0.0	0.1	—	0.1		
				6.0	_	0.0	0.1	_	0.1	V	
Output Voltage			$I_{OL} = 4mA$	4.5	—	0.17	0.26	—	0.33		
			$I_{OL} = 5.2 \text{mA}$	6.0		0.18	0.26	_	0.33		
Input Leakage Current	IN	V _{IN} = V _{CC} (or GND	6.0			± 0.1	_	± 1.0		
Quiescent Supply Current			or GND	6.0			2.0	_	20.0	μΑ	

AC ELECTRICAL CHARACTERISTICS ($C_L = 15pF$, $V_{CC} = 5V$, Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Transition Time	t _{TLH} t _{THL}	_	_	4	8	200
Propagation Delay Time (A, B- \overline{Y})	t _{pLH} t _{pHL}	_		12	22	ns

AC ELECTRICAL CHARACTERISTICS ($C_L = 50pF$, Input $t_r = t_f = 6ns$)

PARAMETER	SYMBOL	TEST CONDITION		Ta = 25°C			Ta = -4	UNIT	
PARAIVIETER	STIVIBUL	TEST CONDITION	Vcc	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
Output Transition	t		2.0	_	30	75	_	95	
Time	t _{TLH}	_	4.5	_	8	15	_	19	
Time	^t THL		6.0	 	7	13	_	16	
Propagation Dolay	4		2.0	_	45	130	_	165	ns
Propagation Delay	t _{pLH}	<u> </u>	4.5	—	15	26	_	33	
Time (A, B- \overline{Y})	t _{pHL}		6.0	_	13	22	_	28	
Input Capacitance	CIN	_		_	5	10	_	10	
Power Dissipation Capacitance	C _{PD}	(Note 1)			46	_		_	pF

Note 1 : CpD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.

ICC (opr) = CpD·VcC·fIN + ICC

OUTLINE DRAWING

SOP8-P-1.27

0.15+0.1

Weight: 0.05g (Typ.)

Unit: mm

OUTLINE DRAWING SSOP8-P-0.65

Unit: mm

Weight: 0.02g (Typ.)