Introductory Complex Analysis Cheat Sheet

Field of Complex Numbers

We construct the field of complex numbers as the following quotient ring, $\mathbb{C} = \mathbb{R}[x]/\langle x^2 + 1 \rangle$

Algebra of Complex Numbers

- Addition: (a + ib) + (c + id) = (a + c) + i(b + d)
- Multiplication: (a+ib)(c+id) = (ac-bd) + i(ad+bc)
- Division: $\frac{a+ib}{c+id} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$ Square root: $\sqrt{a+ib} = \pm \left(\sqrt{\frac{a+\sqrt{a^2+b^2}}{2}} + i\frac{b}{|b|}\sqrt{\frac{-a+\sqrt{a^2+b^2}}{2}}\right)$
- $\Re(a+ib) = a, \Im(a+ib) =$

Conjugation, Absolute Value

- Complex conjugation: $\overline{a+ib} = a-ib$
 - $\overline{a+b} = \overline{a} + \overline{b}$
 - $-\overline{ab}=\overline{a}\cdot\overline{b}$

Geometrically, conjugation is reflection over the real axis.

- Absolute value: $|a| = +\sqrt{a\overline{a}}$
 - $|ab| = |a| \cdot |b|$
 - $-|a+b|^2 = |a|^2 + |b|^2 + 2\Re(a\overline{b})$
 - $-|a-b|^2 = |a|^2 + |b|^2 2\Re(a\overline{b})$
 - $|a+b|^2 + |a-b|^2 = 2(|a|^2 + |b|^2)$

The absolute value function forms the metric on \mathbb{C} . \mathbb{C} is complete under

Basic Topological definitions in C

Some basic results:

- For $z_0 \in \mathbb{C}$, r > 0 we denote the ball (i.e. disk) of radius r around z_0 to be $B(z_0, r) = \{z \in \mathbb{C} \mid |z - z_0| < r\}$
- A point $z \in \mathbb{C}$ is a **limit point** of $E \subseteq \mathbb{C}$ if $\forall \varepsilon > 0$, $B(z, \varepsilon) \cap E$ contains a point other than z.
- A subset $E \subseteq \mathbb{C}$ is said to be **open** if $\forall z \in E, \exists r > 0$, s.t. $B(z,r) \subset E$.
- A subset $E \subseteq \mathbb{C}$ is said to be **closed**, if $\mathbb{C} \setminus E$ is open in C. Or equivalently a set which contains all its limit points.

Some properties of open sets:

- \mathbb{C} and \emptyset are open subsets of \mathbb{C} .
- All finite intersections of open sets are open sets.
- The collection of all open sets on \mathbb{C} form a topology on \mathbb{C} .

Interior, closure, density

- **Interior:** Let $E \subseteq \mathbb{C}$. The interior of E is defined as, E° =set of all interior points of E, or equivalently, $\cup \{\Omega \mid \Omega \subseteq E \land \Omega \text{ is open in } \mathbb{C}\}$
- Closure: Let $E \subseteq \mathbb{C}$. The closure of E is defined as $\{F \mid E \subseteq \mathbb{C}\}$ $F \wedge F$ is closed in \mathbb{C}
- **Density:** Let $E \subseteq D$, the closure of E in D is D. Then E is called dense

Path: A path in a metric space from a point $x \in X$ to $y \in Y$ is a continuous mapping $\gamma: [0,1] \to X$ s.t. $\gamma(0) = x$ and $\gamma(1) = y$.

Separated and Connected

For a metric space (X, d).

- **Separated:** X is separated if \exists disjoint non-empty open subsets A, B of X s.t. $X = A \cup B$.
- Connected:
 - *X* is connected if it has no separation.
 - X is connected $\iff X$ does not contain a proper subset of Xwhich is both open and closed in X.
 - Continuous functions preserve connectedness.
 - An open subset $\Omega \in \mathbb{C}$ is connected \iff for $z, w \in \Omega$, there exists a path from z to w.

Basic Topological definitions in C contd.

Open cover: Let (X, d) be a metric space and E be a collection of open sets in X. We say that \mathscr{U} is an open cover of a subset $K \subseteq X$, if $K \subseteq \bigcup \{\mathscr{U} \mid \mathscr{U} \in E\}$ **Compactness:** For some $K \subseteq X$ is compact if for every open cover E of K, there exists $E_1, \dots, E_n \in E$ s.t. $K \subset U_{i=1}^n E_n$, i.e. it is compact if it has a finite

- In a metric space, a compact set is closed.
- A closed subset of a compact set is closed.

Limit point compact: We say a metric space *X* is limit point compact if every infinite subset of *X* has a limit point.

• If *X* is a compact metric space, then it is also limit point compact.

Sequentially compact: We say a metric space *X* is sequentially compact if every sequence has a convergent sub-sequence.

- If *X* is limit point compact then *X* is sequentially compact.
- Let X be sequentially compact, then X is a compact metric space.

Lebesgue number lemma: Let X be sequentially compact, and let \mathscr{U} be an open cover of X. Then $\exists \ \delta > 0$ s.t. for $x \in X$, $\exists \ u \in \mathscr{U}$ s.t. $B(x, \delta) \subseteq u$.

Isometries on the Complex Plane

A function $f: \mathbb{C} \to \mathbb{C}$ is called an **isometry** if $|f(z) - f(w)| = |z - w|, \forall z, w \in \mathbb{C}$.

- Let f be an isometry s.t. f(0) = 0, then the inner product $\langle f(z), f(w) \rangle =$ $\langle z, w \rangle, \forall z, w \in \mathbb{C}.$
- If f is an isometry s.t. f(0) = 0 then f is a linear map.
- The standard argument for $a+ib \in \mathbb{C}$, $\operatorname{Arg}(a+ib) = \tan^{-1} \frac{b}{a}$

Functions on the Complex Plane

Uniform convergence: Let $\Omega \subseteq \mathbb{C}$ and $f_1, \dots, f_n : \Omega \to \mathbb{C}$ be a set of functions on Ω . We say, $\{f\}_{n\in\mathbb{N}}$ converges uniformly to f if given $\varepsilon>0, \exists n\in\mathbb{N}$ s.t. $|f_n(x) - f(x)| < \varepsilon, \forall x \in \Omega \text{ and } n \geq N.$

Complex exponential: For $z \in C$, $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$

Trigonometric functions: For $z \in \mathbb{C}$, $\cos(x) = \frac{e^{iz} + e^{-iz}}{2}$ and $\sin(x) = \frac{e^{iz} - e^{iz}}{2}$

Hyperbolic trigonometric functions: For $z \in \mathbb{C}$, $\cosh(x) = \frac{e^z + e^{-z}}{2}$ and $\sinh(z) = \frac{e^z - e^{-z}}{2}$

Complex differentiability

Complex derivative: Let $\Omega \subseteq \mathbb{C}$ and $f: \Omega \to \mathbb{C}$, we say that f is complex differentiable at a point $z_0 \in \Omega$ if z_0 is an interior point and the following limit exists $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$. The limit is denoted as $f'(z_0)$ or $\frac{\mathrm{d}f(z)}{\mathrm{d}z}$. Holomorphic functions: If $f:\Omega\to\mathbb{C}$ is complex differentiable at every point

 $z \in \Omega$, then f is said to be a holomorphic on Ω . Entire function: Functions which are complex differentiable on \mathbb{C} are called entire functions.

- Complex differentiability implies continuity.
- Complex derivatives of a function are linear transformations.
- **Product rule:** If $f,g:\Omega\to\mathbb{C}$ are complex differentiable at $z_0\in\Omega$. Then fg is complex differentiable at z_0 with derivative $f'(z_0)g(z_0) +$ $q'(z_0) f(z_0)$.
- Quotient rule: If $f, g: \Omega \to \mathbb{C}$ are complex differentiable at $z_0 \in \Omega$, and g doesn't vanish at z_0 . Then $\left(\frac{f}{g}\right)'(z_0)=\frac{f'(z_0)g(z_0)-g'(z_0)f(z_0)}{g(z_0)^2}$
- Chain rule: If $f: \Omega \to \mathbb{C}$ and $g: D \to \mathbb{C}$ are complex differentiable at $z_0 \in \Omega$, and $f(\Omega) \subseteq D$. Then $g(f(x))'(z_0) = g'(f(z_0))f'(z_0)$

Formal Power Series: A formal power series around $z_0 \in \mathbb{C}$ is a formal expansion $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, where $a_n \in \mathbb{C}$ and z is indeterminate.

Radius of convergence: For a formal power series $\sum a_n(z-z_0)^n$ the radius of convergence $R \in [0, \infty]$ given by $R = \liminf_{n \to \infty} |a_n|^{-1/n}$. Using the ratio test is identical i.e. $R = \liminf_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$

- The series converges absolutely when $z \in B(z_0, R)$, and for r < R, the series converges uniformly, else if $|z - z_0| > R$ the series diverges.
- Let $z \in \mathbb{C}$ s.t. $|z z_0| > R$, then \exists infinitely many $n \in N$ s.t. $|a_n|^{-1/n} < R$

Abel's Theorem: Let $F(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series with a positive radius of convergence R, suppose $z_1 = z_0 + Re^{i\theta}$ be a point s.t. $F(z_1)$ converges. Then $\lim_{r\to R^-} F(z_0 + re^{i\theta}) = F(z_1)$

Differentiation of Power Series

Let $F(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n$ be a power series around z_0 with a radius of convergence R. Then F is **holomorphic** in $B(z_0, R)$.

• $F(x)' = \sum_{n=1}^{\infty} n a_n (z - z_0)^{n-1}$ with same radius of convergence R.

• $a_n = \frac{F^n(z_0)}{n!}$

Cauchy product of two power series: For power series $F(z) = \sum a_n (z-z_0)^n$ and $G(z) = \sum a_n(z-z_0)^n$ with degree of convergence at least R. Then the Cauchy product $F(z)G(z) = \sum c_n(z-z_0)^n$ where $c_n = \sum_{k=0}^n a_k b_{n-k}$ also has degree of convergence at least R.

Cauchy-Riemann Differential Equations

For a complex function f(z) = u(z) + iv(z),

 $f'(x) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ or $f'(x) = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$ Therefore, we get the two Cauchy-Riemann Differential equations,

A function is holomorphic iff it satisfies the Cauchy-Riemann equations. Wirtinger derivatives:

• $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right)$ • $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right)$ If f is holomorphic at z_0 then, $\frac{\partial f}{\partial \overline{z}} = 0$ and $f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$

Harmonic Functions

Laplacian: Define $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

Harmonic function: Let $u: \Omega \to \mathbb{R}$ be a twice differentiable function. We say that u is a harmonic function if $\Delta u = 0$

For any holomorphic function f, $\Re(f)$, $\Im(f)$ are examples of harmonic functions, but there are harmonic functions which are not holomorphic.

Boundary of a set: For a metric space X, $\Omega \in X$,

the boundary of $\Omega = \partial \Omega = \overline{\Omega} \cap \overline{\Omega^C}$

Maximum principle for harmonic functions: Let $u:\Omega\to\mathbb{R}$ be a twice differentiable harmonic function. Let $k \subset \Omega$ be a compact sub set of Ω . Then, $\sup_{z \in k} u(z) = \sup_{z \in \partial k} u(z)$ and $\inf_{z \in k} u(z) = \inf_{z \in \partial k} u(z)$

Maximum principle for holomorphic functions: Let $\Omega \subseteq \mathbb{C}$ be open and connected and let $f:\Omega\to\mathbb{C}$ be a holomorphic function. Then, for compact $k \subseteq \Omega$, we have, $\sup_{z \in k} |f(z)| = \sup_{\partial k} |f(z)|$

Harmonic conjugate: Let $u:\Omega\to\mathbb{R}$ be a twice differentiable harmonic function. We say that $v: \Omega \to \mathbb{R}$ is a harmonic conjugate of u if f = u + iv is holomorphic.

ullet For a harmonic function from $\mathbb C$ to $\mathbb R$ there exists a uniquely determined harmonic conjugate from \mathbb{C} to \mathbb{R} (up to constants).

Riemann Sphere

Extended complex plane: $\widehat{\mathbb{C}} = \mathbb{C} \bigcup \{\infty\}$

Consider S^2 , associate every point z=x+iy with a line L that connects to the point P=(0,0,1). L=(1-t)z+tP, where $t\in\mathbb{R}$.

The point at which L for some z touches S^2 is given as $\left(\frac{2x}{|z|^2+1}, \frac{2y}{|z|^2+1}, \frac{|z|^2-1}{|z|^2+1}\right)$, associate P with ∞ . This gives a stereographic projection of the complex plane unto S^2 . This sphere is known as the

Möbius transformations

Riemann sphere.

A map $S(z)=\frac{az+b}{cz+d}$ for $a,b,c,d\in\mathbb{C}$ is called a Möbius transformation if $ad-bc\neq 0$.

Every mobius transformation is holomorphic at $\mathbb{C} \setminus \{-d/c\}$, i.e. every point other than is zero.

- The set of all mobius transformations is a group under transposition.
- S forms a bijection with $\widehat{\mathbb{C}}$

Every mobius transformation can be written as composition of,

- 1. Translation: $S(z) = z + b, b \in \mathbb{C}$
- 2. Dilation: $S(z) = az, a \neq 0, a = e^{i\theta}$
- 3. Inversion: S(z) = 1/z

Curves in $\mathbb C$

A continuous parametrized curve is a continuous map $\gamma:[a,b]\to\mathbb{C}$ for $a,b\in\mathbb{R}.$

- If a = b the curve is trivial.
- $\gamma(a)$ is initial point and $\gamma(b)$ is terminal point.
- γ is said to be closed if $\gamma(a) = \gamma(b)$.
- γ is said to be simple if it is injective, i.e. doesn't "cross" itself.
- A curve $-\gamma$ is a reversal of γ if $\gamma: [-a, -b] \to \mathbb{C}$ and if $-\gamma(t) = \gamma(-t)$
- γ is said to be continuously differentiable if $\gamma'(t_0)$ (defined usually) exists and is continuous.

Reparametrization: We say a curve $\gamma_2:[a_2,b_2]\to\mathbb{C}$ is a continuous reparametrization of $\gamma_1:[a_1,b_1]\to\mathbb{C}$, if there exists a homeomorphism $\varphi:[a_1,b_1]\to[a_2,b_2]$ s.t. $\varphi(a_1)=a_2,\varphi(b_1)=b_2$ and $\gamma_2(\varphi(t))=\gamma_1(t)\forall t\in[a_1,b_1]$.

• Reparametrization is an equivalence relation.

Arc length: Arc length of curve $\gamma = |\gamma| = \sup \sum_{i=0}^{n} |\gamma(x_{i+1} - \gamma(x_i))|$ for all partitions of [a, b].

- A curve that has a finite arc length is called **rectifiable**.
- $|\gamma| = \int_a^b |\gamma'(t)| dt$

First Fundamental Theorem of Calculus

Let $f:\Omega\to\mathbb{C}$ be a continuous function. Let $F:\Omega\to\mathbb{C}$ be called the antiderivative of f, i.e. F is holomorphic in Ω and $F'(z)=f(z), \forall z\in\Omega$. For a rectifiable curve $\gamma,\int_{\gamma}f(z)dz=F(z_1)-F(z_0)$, where z_0 is the initial point and z_1 is the terminal point.

Second Fundamental Theorem of Calculus

Let $f:\Omega\to\mathbb{C}$ be a continuous function such that $\int_\gamma f=0$. Whenever γ is a closed polygonal path contained in Ω . For fixed $z_0\in\Omega$, define a path γ_1 from z_0 to z_1 such that $F(z_1)=\int_{\gamma_1}f(z)\,dz$. Then F is a well defined holomorphic function s.t. $F'(z_1)=f(z_1)\ \forall z_1\in\Omega$

Properties of complex integration

For continuously differentiable curves $\gamma:[a,b]\to\mathbb{C}$, and $\sigma:[b,c]\to\mathbb{C}$

- For a reparametrization $\widehat{\gamma}$ of γ we can say that $\int_{\widehat{\gamma}} f(z) dz = \int_{\widehat{\gamma}} f(z) dz$
- $\int_{-\infty}^{\infty} f(z) dz = -\int_{\infty}^{\infty} f(z) dz$
- $\int_{\gamma+\sigma} f(z) dz = \int_{\gamma} f(z) dz + \int_{\sigma} f(z) dz$
- $\int_{\mathcal{L}} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$
- If f is bounded by M then $\int_{\mathcal{L}} f(z) dz \leq M|\gamma|$
- For $c \in \mathbb{C}$, we have, $\int_{\mathcal{D}} (cf+g)(z) dz = c \int_{\mathcal{D}} f(z) dz + \int_{\mathcal{D}} g(z) dz$

Homotopy of curves

Consider two curves $\gamma_0, \gamma_1 \to \Omega$ with the same initial and end point [a,b]. We say that γ_0 is homotopic to γ_1 ($\gamma_0 \sim \gamma_1$) if there exists a continuous map $H: [0,1] \times [a,b] \to \Omega$ s.t. $H(0,t) = \gamma_0(t)$ and $H(1,t) = \gamma_1(t), \ \forall t \in [a,b]$. $H(s,a) = z_0, H(s,b) = z_1 \ \forall s \in [0,1]$

For **closed curves** γ_0 at z_0 and γ_1 at z_1 , we say that γ_0 is homotopic to γ_1 as closed curves if there exists a continuous map $H:[0,1]\times[a,b]\to\Omega$, s.t. $H(0,t)=\gamma_0(t), H(1,t)=\gamma_1(t), \ \forall t\in[a,b]$. And $H(s,a)=H(s,b), \ \forall s\in[0,1]$.

Homotopy is an equivalence relation.

Cauchy-Goursat Theorem

Cauchy-Goursat theorem: If a curve γ_0 is homotopic to a reparametrization of γ_1 then, the integral of some function $f:\Omega\to\mathbb{C}$ is homotopy invariant, i.e., $\int f=\int f$

Alternative statement: Let $f:\Omega\to\mathbb{C}$ be holomorphic on Ω , and $\gamma_0:[a,b]\to\Omega$ is a rectifiable curve which is null-homotopic (i.e. homotopic to a constant map). Then, $\int f(z)\,dz=0$

Cauchy's theorem for convex domains

Let $\Omega\subseteq\mathbb{C}$ be a convex and open set and $f:\Omega\to\mathbb{C}$ be holomorphic on Ω . Then f has an anti derivative F on Ω , and if γ is a closed rectifiable curve on Ω then $\int_{\gamma}f=0$.

Cauchy's integral formula

Let $f:\Omega\to\mathbb{C}$ be holomorphic. Fix $z_0\in\Omega$ and let r>0 be s.t. $\overline{B(z_0,r)}\subseteq\Omega$. Suppose γ is a closed curve in $\Omega\setminus\{z_0\}$ s.t. γ is homotopic to a reparametrization to γ_1 where $\gamma_1(t)=z_0+re^{it}$ for $t\in[0,2\pi]$. Then,

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

Complex analytic function

An alternative statement, we say $f:\Omega\to\mathbb{C}$ is complex analytical if given $z_0\in\Omega,\exists\,B(z_0,r)\subseteq\Omega$ s.t. the formal power series $\sum_{n=0}^\infty a_n(z-z_0)^n$ converges in $B(z_0,r)$ to f.

Let $f: \Omega \to \mathbb{C}$ be holomorphic on Ω . Suppose for $z_0 \in \Omega$, $\overline{B(z_0,r)} \subset \Omega$, then for every $n \in \mathbb{N}$, let $a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-z_0)^{n+1}} dz$ where $\gamma(t) = z_0 + re^{it}$ for $t \in [0, 2\pi]$. Then the power series $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges in $B(z_0, r)$ to f(z).

Corollary: If $f: \Omega \to \mathbb{C}$ is holomorphic then f' is also holomorphic. Therefore f is infinitely differentiable.

Factor theorem for analytic function

For a analytic function $f:\Omega\to\mathbb{C}$ s.t. $f(z_0)=0$ at $z_0\in\Omega,\exists$ a unique analytic function $g:\Omega\to\mathbb{C}$ s.t. $f(z)=(z-z_0)g(z)$

Principle of analytical continuation

- Let Ω be open and connected subset of \mathbb{C} . and $f,g:\Omega\to\mathbb{C}$ be analytic functions on Ω . Suppose f,g agree on a non-empty subset of Ω , and this subset has an accumulation point. Then $f\equiv g$ on Ω .
- A consequence to this is that, non-trivial holomorphic functions have isolated zeros.

Higher-order Cauchy integral formula

Let $f:\Omega\to\mathbb{C}$ be analytic on Ω and $z_0\in\Omega$ with $\overline{B(z_0,r)}\subseteq\Omega$. Let γ be a closed curve in $\Omega\setminus\{z_0\}$ that is homotopic to a reparametrization of γ_1 where $\gamma_1(t)=z_0+re^{it}$ for $t\in[0,2\pi]$. Then,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

Cauchy estimates: If $|f(z)| \le M \ \forall z \in \gamma([0,2\pi])$ then, $\forall n \in \mathbb{N}$, then we have $|f^{(n)}(z_0)| \le \frac{Mn!}{r^n}$

Liouville's Theorem

Let f be a entire function which is bounded. Then f is a constant function.

Fundamental Theorem of Algebra

Let $p(z) = a_0 + a_1 z + \dots + a_n z^n$ be a non constant polynomial s.t. $a_i \in \mathbb{C}, a_n \neq 0$. Then $\exists z_1, z_2, \dots, z_n$ s.t. $p(z) = a_n(z - z_1) \dots (z - z_n)$.

Morera's Theorem

Let $f:\Omega\to\mathbb{C}$ be a continuous function such that, $\int_{\gamma}f(z)\,dz=0, \forall$ closed polygonal paths $\gamma\in\Omega$. Then f is holomorphic on Ω .

Uniform limit of holomorphic functions

Let $f_n : \Omega \to \mathbb{C}$ be a holomorphic on $\Omega, \forall n \in \mathbb{N}$ s.t. f_n converges uniformly on compact sets to f. Then f is holomorphic.

Winding number

Let $\gamma:[a,b]\to\mathbb{C}$ be a closed curve and let z_0 be a point not in the image of γ . Then the winding number of γ around z_0 is

$$W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - z_0}$$

- Winding number is invariant over homotopy.
- Let z_0 be a point not in the image of γ then $\exists r>0$ s.t. for $z\in B(z_0,r), W_\gamma(z_0)=W_\gamma(z)$
- The winding number is always an integer.
- The winding number is locally constant.

Generalized Cauchy Integral formula: Let $f:\Omega\to\mathbb{C}$ be holomorphic on Ω and $\gamma:[a,b]\to\Omega$ be a closed curve which is null homotopic. Then for z_0 not in the image of γ ,

$$f(z_0)W_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)} dz$$

Open Mapping Theorem

• $f: \Omega \to \mathbb{C}$ be holomorphic on Ω . Then $G: \Omega \times \Omega \to \mathbb{C}$ given by

$$G(z,w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{when } z \neq w \\ f'(z) & \text{when } z = w \end{cases}$$

then G is continuous.

- Let $f:\Omega\to\mathbb{C}$ be holomorphic on some open set. Suppose $z_0\in\Omega$ s.t. $f'(z_0) \neq 0$. Then \exists a neighbourhood U of $z_0 \in \Omega$ s.t. f restricted to U is injective. And V = f(U) is an open set and the inverse $g: V \to U$ of fis holomorphic.
- Let $f:\Omega\to\mathbb{C}$ be a non-constant holomorphic function on open, connected set Ω . Let $z_0 \in \Omega$ and $w_0 = f(z_0)$. Then \exists a neighbourhood U of z_0 and bijective holomorphic function φ on U s.t. $f(z) = w_0 + (\varphi(z))^m$ for $z \in U$ and some integer m > 0. And φ maps U unto B(0, r) for some

Open Mapping Theorem: Let $f: \Omega \to \mathbb{C}$ be a non-constant holomorphic function on open connected set Ω , then $f(\Omega)$ is an open set.

Schwarz reflection principle

Let Ω be a open connected set which is symmetric w.r.t \mathbb{R} . Then define the following,

- $\Omega_+ = \{ z \in \Omega \mid \Im(z) > 0 \}$
- $\Omega_{-} = \{z \in \Omega \mid \Im(z) < 0\}$
- $I = \{z \in \Omega \mid \Im(z) = 0\}$

Schwarz reflection principle: Let Ω be defined as above. Then if $f: \Omega_+ \bigcup I \to I$ \mathbb{C} which is continuous on $\Omega_+ \bigcup I$ and holomorphic on Ω_+ . Suppose for $f(x) \in \mathbb{R}, \ \forall x \in I \text{ then there exists } g: \Omega \to \mathbb{C} \text{ holomorphic on } \Omega \text{ s.t.}$ g(z) = f(z) for $z \in \Omega_+ \bigcup I$

Singularity of a holomorphic function

- **Isolated singularity:** If f is holomorphic on $B(z_0, R) \setminus \{z_0\}$ for some R > 0 then z_0 is called an isolated singularity.
- **Removable singularity:** Let z_0 be an isolated singularity of a holomorphic function f as defined above. It is called removable if there exists holomorphic function g on $B(z_0, R)$ s.t. g(z) = f(z) on $B(z_0, R) \setminus \{z_0\}$.
- Riemann removable singularity theorem: Let z_0 be an isolated singularity of a function f, then z_0 is a removable singularity if and only if fis locally bounded around z_0 .
- **Pole:** If z_0 is an isolated singularity as defined above and if $\lim_{z \to z_0} |f(z)| =$ ∞ then z_0 is called a pole of f.
- Essential singularity: A singularity that is neither removable nor a pole.

Doubly infinite series

- Let z_n be a function defined for $n=0,\pm 1,\pm 2,\cdots$, then it is doubly infinite. A doubly infinite series converges if $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_{-n}$ both con-
 - Splitting up the series in similar manners you can define absolute and uniform convergence.

Annulus

An annulus $A(z_0, R_1, R_2)$ around a point z_0 for $0 \le R_1 \le R_2$ is the set of all $z \in \mathbb{C}$ s.t. $R_1 \leq |z - z_0| \leq R_2$.

Laurent series expansion

Let f be a function holomorphic on $A(z_0, R_1, R_2)$, then there exists $a_n \in \mathbb{C}$ for $n \in \mathbb{Z}$ s.t.

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

where the doubly infinite series converges absolutely and uniformly in some $A(z_0, r_1, r_2)$ when $R_1 < r_1 < r_2 < R_2$.

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz$$

where $\gamma(z) = z_0 + re^{it}$ for $t \in [0, 2\pi]$ and $R_1 < r < R_2$.

Important results

- f has a removable singularity at $z_0 \iff a_n = 0$ for n < 0 in the Laurent series expansion of f
- f has a pole at z_0 of order $m \iff a_n = 0$ for n < -m in the Laurent series expansion of f.
- f has a essential singularity at $z_0 \iff a_n \neq 0$ for infinitely many negative integers n.

Casorati-Weierstrass theorem

Let z_0 be an essential singularity of f then given $\alpha \in \mathbb{C}$, there exists a sequence $z_n \in B(z_0, R) \setminus \{z_0\}$ s.t. $z_n \to z_0$ and $\tilde{f}(z_n) \to \alpha$.

• Alternatively, f approaches any given value arbitrarily closely in any neighborhood of an essential singularity.

Meromorphic functions

Let Ω be a open connected subset of $\mathbb C$ and let $S\subset\Omega$. Let $f:\Omega\setminus S\to\mathbb C$ be holomorphic on Ω . We say that f is a meromorphic function on Ω if,

- *S* is a discrete set.
- f either has removable singularities or poles at point of S.

Operations on meromorphic functions

Let $\mathcal{M}(\Omega)$ denote the equivalence classes of meromorphic functions over Ω .

- We say that two meromorphic functions $f: \Omega \setminus S_1$ and $g: \Omega \setminus S_2$ are equivalent if f(z) = g(z) on $\Omega \setminus (S_1 \cup S_2)$.
- For $f, g \in \mathcal{M}(\Omega)$, define f + g to be the equivalence class of (f + g): $\Omega \setminus (S_1 \cup S_2)$
- Similarly, fq is the equivalence class of $fq: \Omega \setminus (S_1 \cup S_2)$.

The space of all meromorphic functions is a field.

Order of meromorphic functions

The order of a meromorphic function is defined as follows,

- If $z_0 \in S$ is a removable singularity then the order of f at z_0 is the order of the zero at z_0 of f, i.e., $f(z) = (z - z_0)^m q(z)$ then m is the order.
- If $z_0 \in S$ is a pole and the pole is of order m then order of f at z_0 is -m.
- If $f \equiv 0$ then $\operatorname{Ord}_{z_0} = \infty$.
- $\operatorname{Ord}_{z_0}(f+g) \ge \min(\operatorname{Ord}_{z_0}(f), \operatorname{Ord}_{z_0}(g))$
- $\operatorname{Ord}_{z_0}(fg) = \operatorname{Ord}_{z_0}(f) + \operatorname{Ord}_{z_0}(g)$

Residue of a function

Residue of a function: Let $f: \Omega \setminus S \to \mathbb{C}$ be a holomorphic function, where Ω is an open set and S is a discrete subset of Ω . Then for $z_0 \in S$, let r > 0be s.t. $\overline{B(z_0,r)} \subseteq \Omega$ and $B(z_0,r) = \{z_0\}$. Then in $B(z_0,r) \setminus \{z_0\}$, consider the Laurent series expansion of f given by $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$. We define the residue of f at z_0 to be Res $(f, z_0) = a_{-1}$.

- 1. If z_0 is a removable singularity then $Res(z_0) = 0$.
- 2. If z_0 is a pole of order m then $(z-z_0)^m f(z)=g(z)$, where $g(z)\neq 0$ on $B(z_0,r)\setminus\{z_0\}$ then, $\operatorname{Res}(z_0)=a_{m-1}=\frac{g^{(m-1)}(z_0)}{(m-1)!}$.

Residue theorem

Let Ω be an open connected subset of $\mathbb C$ and S be a finite subset of Ω and let $f:\Omega\setminus S\to \mathbb{C}$ be a holomorphic function. Let γ be a null homotopic closed curve on Ω . Then,

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{k} W_{\gamma}(z_j) \operatorname{Res}(f, z_j)$$

where $S = \{z_1, \dots, z_k\}$ and W_{γ} is the winding number.

Log derivative

For a holomorphic function $f:\Omega\to\mathbb{C}$. Define the log derivative of f to be the meromorphic function $\frac{f'(z)}{f(z)}$

- 1. $\frac{(fg)'}{fg} = \frac{f'}{f} + \frac{g'}{g}$
- 2. $\frac{(f/g)'}{(f/g)} = \frac{f'}{f} \frac{g'}{g}$
- 3. When f has a pole of order m at z_0 then for $f(z) = \frac{g(z)}{(z-z_0)^m}$ the log derivative of f is $\frac{g'(z)}{g(z)} - \frac{m}{(z-z_0)}$

Argument principle

Let $f: \Omega \backslash S \to \mathbb{C}$ be a meromorphic function s.t. f has zeros of order d_1, \ldots, d_n at $z_1, \ldots z_n$ after removing the removable singularities. And f has poles of order e_1, \ldots, e_m at points w_1, \ldots, w_m . Let γ be a closed curve which is null homotopic in Ω s.t. the zeros and poles don't lie in the image of γ . Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=0}^{n} d_i W_{\gamma}(z_i) - \sum_{j=1}^{m} e_j W_{\gamma}(w_j)$$

Rouche's theorem

Let γ be a closed curve which is null homotopic in Ω . Let f,g be functions holomorphic in Ω and |q(z)| < |f(z)| on γ then f and f+q have the same number of zeros counting multiplicities on the interior of $H([0,1] \times [a,b])$ where H is the null homotopy from γ to a constant path.

Branch of the complex logarithm

Let Ω be an open connected subset of $\mathbb{C}\setminus\{0\}$. Define a branch of the logarithm on Ω as a function $f:\Omega\to\mathbb{C}$ s.t. $\exp(f(z))=z, \forall z\in\Omega$. For $\Omega = \mathbb{C} \setminus \{\Re(x) \le 0\}$ define the standard branch to be

$$Log(z) = \ln|z| + iArg(z)$$

As defined above Log(z) is holomorphic on Ω .

Schwarz lemma

Let $\mathbb D$ denote the open unit disc. Let $f:\mathbb D\to\mathbb D$ be a holomoprhic function s.t. f(0)=0. Then,

$$|f(z)| \le |z|, \forall z \in \mathbb{D}, \text{ and } |f'(z)| \le 1$$

Also, if |f(z)| = |z| for some $z \in \mathbb{D}$ or if |f'(0)| = 1 then $\exists \lambda \in \mathbb{C}, |\lambda| = 1$ s.t. $f(z) = \lambda z$.

Automorphism

A function $f:\Omega\to\Omega$ is an automorphism if f is holomorphic and has a holomorphic inverse.

Automorphisms of the unit disc

Define a function $\varphi_{\alpha}: \mathbb{D} \to \mathbb{C}$ defined as $\varphi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$. Let $f: \mathbb{D} \to \mathbb{D}$ be an automorphism. Then there exists $\alpha \in \mathbb{D}$ and $\lambda \in \partial \mathbb{D}$ s.t.

$$f(z) = \lambda \varphi_{\alpha}(z)$$

Phragmén-Lindelöf method

Let $\Omega = \{z \in \Omega : a < \Re(z) < b\}$. Let $f : \overline{\Omega} \to \mathbb{C}$, s.t. f is continuous on $\overline{\Omega}$ and holomorphic on Ω . Suppose for some z = x + iy, we have |f(z)| < B and let $M(x) = \sup\{|f(x+iy)| : -\infty < y < \infty\}$. Then,

$$M(x)^{b-a} \le M(a)^{b-x} M(b)^{x-a}$$

And further

$$|f(z)| \le M(x) \le \max\{M(a), M(b)\} = \sup_{z \in \partial \Omega} |f(z)|$$

Schwarz-Pick theorem

First define $\rho(z,w)=\left|\frac{z-w}{1-\overline{w}z}\right|$ for $z,w\in\mathbb{D}.$ Let $f:\mathbb{D}\to\mathbb{D}$ be holomorphic. Then,

$$\rho(f(z), f(w)) \le \rho(z, w) \ \forall z, w \in \mathbb{D}$$

and,

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2} \, \forall z \in \mathbb{D}$$

Lifting of maps

Let X,Y,Z be open subsets of $\mathbb C$ and let $f:Y\to X$ and $g:Z\to X$ be continuous maps. Then we say, a map $\widetilde g:Z\to Y$ is a lift of g w.r.t. f if $f\circ\widetilde g=g$.

Uniqueness of lifts: Let X,Y,Z be open connected subsets of $\mathbb C$ and let $f:Y\to X$ be a *local* homeomorphism. Let $g:Z\to X$ be a continuous map. Let $\widetilde{g_1}$ and $\widetilde{g_2}$ be lifts of g w.r.t. f and suppose they are equal at some point in Z. Then $\widetilde{g_1}\equiv\widetilde{g_2}$.

- Let $f: Y \to X$ be a holomorphic map s.t. $f'(y) \neq 0$ on Y. Let $g: Z \to X$ be a holomorphic map s.t. $\widetilde{g}: Z \to Y$ is a lift of g w.r.t. f. Then \widetilde{g} is holomorphic.
- Let X,Y be open subsets of $\mathbb C$ let, $f:Y\to X$ be a local homeomorphism. Let γ_0,γ_1 be curves in X from z_1 to z_2 which are homotopic. Suppose that for every $s\in[0,1]$, we can lift $\gamma_s(t)=H(s,t)$ to a path $\widetilde{\gamma}_s:[a,b]\to Y$ w.r.t. f s.t. $\widetilde{\gamma}_s(a)=\widetilde{z_1},\ \forall s\in[0,1].$ Then $\widetilde{\gamma_0},\widetilde{\gamma_1}$ are homotopic in Y.

Covering spaces

Let X,Y be open subsets of \mathbb{C} . We say that a continuous map $f:Y\to X$ is a covering map if given $x\in X$ there exists a neighbourhood U of X and open sets $\{V_{\alpha}\}_{\alpha\in A}$ in Y s.t. $f^{-1}(U)=\coprod_{\alpha\in A}V_{\alpha}$ (disjoint union of V_{α}) and $f|_{V_{\alpha}}:V_{\alpha}\to U$ is a homeomorphism. Then Y is called a cover of X.

- Let $f: Y \to X$ be a covering map and $\gamma[a,b] \to X$ be a curve from x_0 to x_1 in X. Suppose $y_0 \in f^{-1}(\{x_0\})$. Then there exists a unique lift $\widetilde{\gamma}[a,b] \to Y$ of γ w.r.t. f s.t. $\widetilde{\gamma}(a) = y_0$.
- For connected X let $f: Y \to X$ be a covering map. Suppose $x_0, x_1 \in X$. Then the cardinality of $f^{-1}(x_0)$ is the same as the cardinality of $f^{-1}(x)$.
- For open subsets X, Y of $\mathbb C$ let, $f: Y \to X$ be a covering map from Y to X. Let Z be an open connected subset of $\mathbb C$, which is simply connected and locally connected. Suppose $g: Z \to X$ is a continuous map. Then given $z_0 \in C$ and $y_0 \in Y$ s.t. $g(z_0) = f(y_0)$, then there exists a unique lift $\widetilde{g}: Z \to Y$ of g w.r.t f.
- Let Ω be a simply connected, locally connected, open connected subset of $\mathbb C$ and $g:\Omega\to\mathbb C^*$ be a holomorphic map. Then there exists a lift $\widetilde g:\Omega\to\mathbb C$ s.t. $\exp(\widetilde g)=g$.

Bloch's theorem

- For $f: \mathbb{D} \to \mathbb{C}$ s.t. f(0) = 0, f'(0) = 1 and $|f(z)| \leq M \ \forall z \in \mathbb{D}$. Then $B(0, \frac{1}{6M}) \subseteq f(\mathbb{D})$.
- Let $f: B(0,R) \to \mathbb{C}$ be holomorphic s.t. f(0) = 0, $f'(0) = \mu$ for some $\mu > 0$ and $f(z) \le M \ \forall z \in B(0,R)$. Then, $B(0,\frac{R^2\mu^2}{6M}) \subseteq f(B(0,R))$.

Bloch's theorem: Let Ω be an open connected subset of $\mathbb C$ s.t. $\overline{\mathbb D}\subset\Omega$. Let $f:\Omega\to\mathbb C$ s.t. f(0)=0,f'(0)=1. Then there exists a ball B' contained in $\mathbb D$ s.t. $f|_{B'}$ is injective and $B(0,\frac{1}{72})\subseteq f(B')\subseteq f(\mathbb D)$.

Little Picard's theorem

- Let Ω be an open connected subset of $\mathbb C$ which is simply connected. Let $f:\Omega\to\mathbb C$ which omits 0 and 1. Then there exists a holomorphic function $g:\Omega\to\mathbb C$ s.t. $f(z)=-\exp(\pi i\cosh(2g(z)))$
- The function *g* as defined above doesn't contain any disk of radius 1.

Little Picard's theorem: If *f* is an entire function which omits two points, then *f* is a constant function.