

SMT: Linear Arithmetic and Combination of Theories

ALC

IST, ULisboa

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

Context – SMT Lazy Solving

9 end

```
input: formula \varphi in theory \mathcal{T}
   output: truth value
1 \alpha \leftarrow \mathcal{T}2\mathcal{B}(\varphi)
                                                                        // abstract input formula
2 while true do
        (res, \tau) \leftarrow SAT(\alpha)
                                                                                    // Boolean model
   if res = false then return false
   \mathcal{L} \leftarrow \bigcup_{l \in \tau} \mathcal{B}2\mathcal{T}(l)
                                                                     // convert to theory model
6 (res, \mathcal{L}') \leftarrow \mathcal{T}\text{-SAT}(\mathcal{L})
                                                                                       // theory check
         if res = true then return true
         \alpha \leftarrow \alpha \land \bigvee_{l \in \mathcal{L}'} \neg \mathcal{T}2\mathcal{B}(l)
                                                                                // block explanation
```

Linear arithmetic

```
\begin{array}{lll} \mathsf{atom}: & \mathsf{sum} \ \mathsf{op} \ \mathsf{sum} \\ \mathsf{op}: & \leq |<|= \\ \mathsf{sum}: & \mathsf{term} + \mathsf{sum} \end{array}
```

 $term: \quad uninterpreted Constant \mid interpreted Constant$

• Integers: ILA

• Reals: **RLA**

Example RLA/ILA formula:

$$((x_1 + x_2 \ge 2 \lor x_3 + x_4 \ge 3) \land ((x_1 + x_2 \le 1 \lor x_3 + x_4 \le 2) \land ((x_5 + x_6 \ge 2 \lor x_7 + x_8 \ge 3) \land ((x_5 + x_6 \le 1 \lor x_7 + x_8 \le 2)$$

• Represent Boolean structure as CNF formula:

$$(a \vee b) \wedge (c \vee d) \wedge (e \vee f) \wedge (g \vee h)$$

SAT	Model/Core	(R I)LA	Explanation clause
Outcome		Outcome	(sent to SAT solver)

Example RLA/ILA formula:

$$((x_1 + x_2 \ge 2 \lor x_3 + x_4 \ge 3) \land ((x_1 + x_2 \le 1 \lor x_3 + x_4 \le 2) \land ((x_5 + x_6 \ge 2 \lor x_7 + x_8 \ge 3) \land ((x_5 + x_6 \le 1 \lor x_7 + x_8 \le 2)$$

• Represent Boolean structure as CNF formula:

$$(a \lor b) \land (c \lor d) \land (e \lor f) \land (g \lor h)$$

SAT Outcome	Model/Core	(R I)LA Outcome	Explanation clause (sent to SAT solver)
SAT	$\{a,ar{b},c,ar{d},e,ar{f},g,ar{h}\}$	UNSAT	$(\bar{a} \lor \bar{c})$

Example RLA/ILA formula:

$$((x_1 + x_2 \ge 2 \lor x_3 + x_4 \ge 3) \land ((x_1 + x_2 \le 1 \lor x_3 + x_4 \le 2) \land ((x_5 + x_6 \ge 2 \lor x_7 + x_8 \ge 3) \land ((x_5 + x_6 \le 1 \lor x_7 + x_8 \le 2)$$

Represent Boolean structure as CNF formula:

$$(a \vee b) \wedge (c \vee d) \wedge (e \vee f) \wedge (g \vee h)$$

SAT Outcome	Model/Core	(R I)LA Outcome	Explanation clause (sent to SAT solver)
SAT	$\{a,\bar{b},c,\bar{d},e,\bar{f},g,\bar{h}\}$	UNSAT	$(\bar{a} \lor \bar{c})$
SAT	$\{a,\bar{b},\bar{c},d,e,\bar{f},g,\bar{h}\}$	UNSAT	$(\bar{e}\vee\bar{g})$

Example RLA/ILA formula:

$$((x_1 + x_2 \ge 2 \lor x_3 + x_4 \ge 3) \land ((x_1 + x_2 \le 1 \lor x_3 + x_4 \le 2) \land ((x_5 + x_6 \ge 2 \lor x_7 + x_8 \ge 3) \land ((x_5 + x_6 \le 1 \lor x_7 + x_8 \le 2)$$

Represent Boolean structure as CNF formula:

$$(a \vee b) \wedge (c \vee d) \wedge (e \vee f) \wedge (g \vee h)$$

SAT Outcome	Model/Core	(R I)LA Outcome	Explanation clause (sent to SAT solver)
SAT	$\{a,\bar{b},c,\bar{d},e,\bar{f},g,\bar{h}\}$	UNSAT	$(ar{a}eear{c})$
SAT	$\{a,\bar{b},\bar{c},d,e,\bar{f},g,\bar{h}\}$	UNSAT	$(ar{e}eear{g})$
SAT	$\{a,\bar{b},\bar{c},d,e,\bar{f},\bar{g},h\}$	SAT	Done

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

Recap. Ch. 29 of Introduction to Algorithms (Cormen et al. -3^{rd} Ed.)

Recap. Ch. 29 of Introduction to Algorithms (Cormen et al. -3^{rd} Ed.)

Basic solution does not work. Build auxiliary linear program:

Slack form:

Pivot between x_0 and s_3

Slack form:

Pivot between x_3 and s_2

- Optimal solution was found with $x_0 \neq 0$. RLA formula is unsatisfiable
 - If $x_0 = 0$, then formula would be satisfiable
- Unsatisfiable core can be determined by analysing final slack form
 - Variable s_i is a non-basic variable (right-hand side) in final slack form means constraint i belongs to the unsatisfiable core
- In our example, the unsatisfiable core would be:

$$\begin{array}{ccccc} x_1 & & + & x_3 & \leq & 0 \\ & - & x_3 & \leq & -1 \end{array}$$

Remarks on Simplex

Standard Simplex only supports weak inequalities (\leq). But we also have =, <.

- Rewrite equalities with two inequalities
- Rewrite strict inequalities as weak with additional variable:
 - 1. To decide: $\bigwedge_i \alpha_{i1} x_1 + \cdots + \alpha_{in} x_n < \beta_i$
 - 2. Maximize x_{n+1} subject to $\bigwedge_i \alpha_{i1} x_1 + \cdots + \alpha_{in} x_n + x_{n+1} \leq \beta_i$
 - 3. If optimum positive, original satisfiable.

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

Using Fourier-Motzkin (FM)

- Alternative to Simplex
- Idea:
 - If $A \le x$ and $x \le B$ then $A \le B$
 - Elimination by enforcing all bounds to be nonempty:

$$\left(\bigwedge_{i} A_{i} \leq x \wedge \bigwedge_{j} x \leq B_{j}\right) \Leftrightarrow \bigwedge_{i,j} A_{i} \leq B_{j}$$

• Complexity: Elimination of one variable is quadratic. Elimination of n variables: $m^2/4, m^4/16, \dots m^{2^n}/4^n$

FM phase 1 eliminate equalities

$$\sum_{j=1}^{n} a_{ij} \cdot x_j = b_i$$

ullet Pick equality i and remove x_n

FM phase 1 eliminate equalities

$$\sum_{j=1}^{n} a_{ij} \cdot x_j = b_i$$

$$x_n = \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$

• Pick equality i and remove x_n

FM phase 1 eliminate equalities

$$\sum_{j=1}^{n} a_{ij} \cdot x_j = b_i$$

$$x_n = \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$

$$\bigwedge_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

• Pick equality i and remove x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

ullet Pick inequality i and remove x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

$$a_{in} \cdot x_n \le b_i - \sum_{j=1}^{n-1} a_{ij} \cdot x_j$$

• Pick inequality i and remove x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

$$a_{in} \cdot x_n \le b_i - \sum_{j=1}^{n-1} a_{ij} \cdot x_j$$

$$x_n \le \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$

ullet Pick inequality i and remove x_n

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

$$a_{in} \cdot x_n \le b_i - \sum_{j=1}^{n-1} a_{ij} \cdot x_j$$

$$x_n \le \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$

$$\beta_l \le x_n \le \beta_u$$

- Pick inequality i and remove x_n
- ullet Combine **all** pairs l and u

$$\sum_{j=1}^{n} a_{ij} \cdot x_j \le b_i$$

$$a_{in} \cdot x_n \le b_i - \sum_{j=1}^{n-1} a_{ij} \cdot x_j$$

$$x_n \le \frac{b_i}{a_{in}} - \sum_{j=1}^{n-1} \frac{a_{ij}}{a_{in}} \cdot x_j$$

$$\beta_l \le x_n \le \beta_u$$

$$\beta_l \le \beta_u$$

- Pick inequality i and remove x_n
- Combine **all** pairs l and u
- If variable unbounded, then remove variable

FM: An example

Initial formula:

• Eliminate x_1 :

FM: An example

• Initial formula:

• Eliminate x_1 :

Bounds:
$$(x_2 + 2x_3) \le x_1 \le \min(x_2, x_3)$$

$$\begin{array}{cccc} & 2x_3 & \leq 0 \\ x_2 & + & x_3 & \leq 0 \\ & -x_3 & \leq -1 \end{array}$$

FM contd.

• Eliminate x_2 (unbounded removed):

$$\begin{array}{rcl}
2x_3 & \leq & 0 \\
-x_3 & \leq & -1
\end{array}$$

• Eliminate x_3 :

Bounds:
$$1 \le x_3 \le 0$$

$$1 \leq 0$$

FM contd.

• Eliminate x_2 (unbounded removed):

$$\begin{array}{rcl}
2x_3 & \leq & 0 \\
-x_3 & \leq & -1
\end{array}$$

• Eliminate x_3 :

Bounds:
$$1 \le x_3 \le 0$$

$$1 \leq 0$$

- Formula is unsatisfiable
- Unsatisfiable core can be determined by a trace back on the dependencies of the final constraints

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

Decision procedures for integer domains

- Number of techniques, integer linear programming (ILP) solvers
- Several techniques based on
 - solving in reals (relaxation)
 - blocking non-integer solutions

Branch and Bound in Integer Linear Programming

• Main steps:

Branch and Bound in Integer Linear Programming

- Main steps:
 - 1. Solve relaxed linear program (e.g. Simplex)

Branch and Bound in Integer Linear Programming

- Main steps:
 - 1. Solve relaxed linear program (e.g. Simplex)
 - 2. Pick real valued variable $x_i = v_i$ and create two new constraints:
 - $x_i \le \lfloor v_i \rfloor$ $x_i \ge \lceil v_i \rceil$
 - 3. Split on the two constraints (one and only one must hold)

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Theory Combinations

SMT: Approaches

- Two main approaches: eager and lazy
- Eager techniques convert to a single SAT call
- Lazy techniques call SAT repeatedly

SMT: Eager

- Small model property: in some theories, if there is a model there is a small one (bounded)
- Example: Satisfiable formulas in *Integer difference logic*'s must have a bounded solution
- Ackermann reduction: encode congruence axioms as implications

SMT: Lazy

- SAT handles the propositional structure
- Theory solver checks models from the SAT solver within the theory
- Example: equivalence with uninterpreted functions solved by congruence closure
- Nelson-Oppen closure enables combining multiple theory solvers

Outline

Theories: Real / Integer Linear Arithmetic

Theories Solver for RLA: The Simplex Method

Theories Solver for RLA: Fourier-Motzkin

Theories: Integer Linear Arithmetic

SMT: Recap

Language

• Signature $\Sigma = \Sigma_F \cup \Sigma_P$

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.
- Countable set of variables V, disjoint from Σ .

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.
- Countable set of variables V, disjoint from Σ .

Semantics

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.
- Countable set of variables \mathcal{V} , disjoint from Σ .

Semantics

• Σ -model (or structure): $\mathcal{A} = (A, \mathcal{I})$

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.
- Countable set of variables V, disjoint from Σ .

Semantics

- Σ -model (or structure): $\mathcal{A} = (A, \mathcal{I})$
- A is the universe (or domain)

Language

- Signature $\Sigma = \Sigma_F \cup \Sigma_P$
- Every predicate $p \in \Sigma_P$ and function $f \in \Sigma_F$ has a fixed arity.
- Functions with arity 0 are called constants.
- Countable set of variables V, disjoint from Σ .

Semantics

- Σ -model (or structure): $\mathcal{A} = (A, \mathcal{I})$
- A is the universe (or domain)
- I is the interpretation

Context – Models and Satisfiability

• A model ${\mathcal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics

Context - Models and Satisfiability

- A model ${\mathcal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics
- For convenience, free variables are treated as uninterpreted constants.

Context – Models and Satisfiability

- A model ${\mathcal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics
- For convenience, free variables are treated as uninterpreted constants.
- In SMT, for a given theory T, a formula φ is T-satisfied by a model A if A satisfies φ and it also satisfies T.

Context - Models and Satisfiability

- A model ${\cal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics
- For convenience, free variables are treated as uninterpreted constants.
- In SMT, for a given theory T, a formula φ is T-satisfied by a model A if A satisfies φ and it also satisfies T.
- A formula is \mathcal{T} -satisfiable if there is a model that \mathcal{T} -satisfies it.

Context – Models and Satisfiability

- A model ${\mathcal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics
- For convenience, free variables are treated as uninterpreted constants.
- In SMT, for a given theory T, a formula φ is T-satisfied by a model A if A satisfies φ and it also satisfies T.
- A formula is \mathcal{T} -satisfiable if there is a model that \mathcal{T} -satisfies it.
- x < y < (x+1) is $\mathcal{T}_{\mathsf{LRA}}$ -satisfiable (linear real arithmetic) with a model x=0,y=.5.

Context - Models and Satisfiability

- A model ${\mathcal A}$ satisfies ϕ iff ϕ evaluates to true under standard semantics
- For convenience, free variables are treated as uninterpreted constants.
- In SMT, for a given theory T, a formula φ is T-satisfied by a model A if A satisfies φ and it also satisfies T.
- A formula is \mathcal{T} -satisfiable if there is a model that \mathcal{T} -satisfies it.
- x < y < (x+1) is $\mathcal{T}_{\mathsf{LRA}}$ -satisfiable (linear real arithmetic) with a model x = 0, y = .5.
- x < y < (x+1) is $\mathcal{T}_{\mathsf{LIA}}$ -unsatisfiable (linear integer arithmetic)

Context – Lazy solving

```
input: formula \varphi in theory \mathcal{T}
   output: truth value
1 \alpha \leftarrow \mathcal{T}2\mathcal{B}(\varphi)
                                                                        // abstract input formula
2 while true do
        (res, \tau) \leftarrow SAT(\alpha)
                                                                                    // Boolean model
4 if res = false then return false
5 | \mathcal{L} \leftarrow \bigcup_{l \in \tau} \mathcal{B}2\mathcal{T}(l)
                                                                     // convert to theory model
6 | (res, \mathcal{L}') \leftarrow \mathcal{T}\text{-SAT}(\mathcal{L})
                                                                                       // theory check
      if res = true then return true
         \alpha \leftarrow \alpha \land \bigvee_{l \in \mathcal{L}'} \neg \mathcal{T}2\mathcal{B}(l)
                                                                               // block explanation
9 end
```

Observe: Effectively enumerating sets of literals \mathcal{L} , s.t. $\mathcal{L} \Rightarrow \varphi$. Theory solver decides if \mathcal{L} satisfiable.

• Until now we have assumed there is a single theory.

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

$$(a=b+2) \wedge (A=write(B,a+1,4)) \wedge (read(A,b+3)=2 \vee f(a-1) \neq f(b+1))$$

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

$$(a=b+2) \land (A=write(B,a+1,4)) \land (read(A,b+3)=2 \lor f(a-1) \neq f(b+1))$$

 Nelson-Oppen method: Use lazy solving and let the theory solvers communicate through equality.

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

$$(a=b+2) \land (A=write(B,a+1,4)) \land (read(A,b+3)=2 \lor f(a-1) \neq f(b+1))$$

- Nelson-Oppen method: Use lazy solving and let the theory solvers communicate through equality.
- Setup: The theories \mathcal{T}_1 and \mathcal{T}_2 have the respective signatures: $\Sigma^1 = \Sigma^1_P \cup \Sigma^1_F \cup C$ and $\Sigma^2 = \Sigma^2_P \cup \Sigma^2_F \cup C$.

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

```
(a=b+2) \land (A=write(B,a+1,4)) \land (read(A,b+3)=2 \lor f(a-1) \neq f(b+1))
```

- Nelson-Oppen method: Use lazy solving and let the theory solvers communicate through equality.
- Setup: The theories \mathcal{T}_1 and \mathcal{T}_2 have the respective signatures: $\Sigma^1 = \Sigma^1_P \cup \Sigma^1_F \cup C$ and $\Sigma^2 = \Sigma^2_P \cup \Sigma^2_F \cup C$.
- C is a set of constants and $\Sigma^1 \cap \Sigma^2 = C \cup \{=\}$.

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

```
(a=b+2) \land (A=write(B,a+1,4)) \land (read(A,b+3)=2 \lor f(a-1) \neq f(b+1))
```

- Nelson-Oppen method: Use lazy solving and let the theory solvers communicate through equality.
- Setup: The theories \mathcal{T}_1 and \mathcal{T}_2 have the respective signatures: $\Sigma^1 = \Sigma^1_P \cup \Sigma^1_F \cup C$ and $\Sigma^2 = \Sigma^2_P \cup \Sigma^2_F \cup C$.
- C is a set of constants and $\Sigma^1 \cap \Sigma^2 = C \cup \{=\}$.
- Only equalities on C will be used to interact between the two respective theory solvers.

- Until now we have assumed there is a single theory.
- In practice important to combine theories.

```
(a=b+2) \land (A=write(B,a+1,4)) \land (read(A,b+3)=2 \lor f(a-1) \neq f(b+1))
```

- Nelson-Oppen method: Use lazy solving and let the theory solvers communicate through equality.
- Setup: The theories \mathcal{T}_1 and \mathcal{T}_2 have the respective signatures: $\Sigma^1 = \Sigma^1_P \cup \Sigma^1_F \cup C$ and $\Sigma^2 = \Sigma^2_P \cup \Sigma^2_F \cup C$.
- C is a set of constants and $\Sigma^1 \cap \Sigma^2 = C \cup \{=\}$.
- Only equalities on C will be used to interact between the two respective theory solvers.
- We want to decide a set of literals φ on the signature $\Sigma^1 \cup \Sigma^2$.

• Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c=t.

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

Example

• \mathcal{T}_E ...theory of the equality (EUF), \mathcal{T}_Z ...theory of integers.

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- \mathcal{T}_E ...theory of the equality (EUF), \mathcal{T}_Z ...theory of integers.
- $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- \mathcal{T}_E ...theory of the equality (EUF), $\mathcal{T}_{\mathbb{Z}}$...theory of integers.
- $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- $w_1 \le x \land x \le w_2 \land f(x) \ne f(w_1) \land f(x) \ne f(w_2) \land w_1 = 1 \land w_2 = 2$

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- \mathcal{T}_E ...theory of the equality (EUF), \mathcal{T}_Z ...theory of integers.
- $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- $w_1 \le x \land x \le w_2 \land f(x) \ne f(w_1) \land f(x) \ne f(w_2) \land w_1 = 1 \land w_2 = 2$
- $w_1 \le x \land x \le w_2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$

- Iteratively replace each sub-term t by a fresh constant $c \in C$ and add the literal c = t.
- Separate into two sets of literals φ_1 , φ_2 , so that φ_i is on the signature Σ^i .

- \mathcal{T}_E ...theory of the equality (EUF), \mathcal{T}_Z ...theory of integers.
- $1 \le x \land x \le 2 \land f(x) \ne f(1) \land f(x) \ne f(2)$
- $w_1 \le x \land x \le w_2 \land f(x) \ne f(w_1) \land f(x) \ne f(w_2) \land w_1 = 1 \land w_2 = 2$
- $w_1 \le x \land x \le w_2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Simplify $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$

Second Step: Guess and Check

• For the separation φ_1 , φ_2 consider all the shared constants X.

Second Step: Guess and Check

- For the separation φ_1 , φ_2 consider all the shared constants X.
- Guess some equivalence relation R on X.

Second Step: Guess and Check

- For the separation φ_1 , φ_2 consider all the shared constants X.
- Guess some equivalence relation R on X.
- Build the arrangement formula:

$$\alpha(X,R) = \bigwedge_{u,v \in X, uRv} u = v \ \land \ \bigwedge_{u,v \in X, \neg uRv} u \neq v$$

Second Step: Guess and Check

- For the separation φ_1 , φ_2 consider all the shared constants X.
- Guess some equivalence relation R on X.
- Build the arrangement formula:

$$\alpha(X,R) = \bigwedge_{u,v \in X, uRv} u = v \ \land \ \bigwedge_{u,v \in X, \neg uRv} u \neq v$$

• Check satisfiability of $\varphi_1 \wedge \alpha(X,R)$ and $\varphi_2 \wedge \alpha(X,R)$.

Second Step: Guess and Check

- For the separation φ_1 , φ_2 consider all the shared constants X.
- Guess some equivalence relation R on X.
- Build the arrangement formula:

$$\alpha(X,R) = \bigwedge_{u,v \in X, uRv} u = v \ \land \ \bigwedge_{u,v \in X, \neg uRv} u \neq v$$

- Check satisfiability of $\varphi_1 \wedge \alpha(X,R)$ and $\varphi_2 \wedge \alpha(X,R)$.
- $\varphi_1 \wedge \varphi_2$ is satisfiable iff the we get satisfiability for some R.

• $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$
- $x = w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \wedge w_2 = 2$.

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$
- $x = w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \wedge w_2 = 2$.
- $x = w_1 \land x \neq w_2$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_1)$.

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$
- $x = w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \wedge w_2 = 2$.
- $x = w_1 \land x \neq w_2$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_1)$.
- $x = w_2 \land x \neq w_1$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_2)$.

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$
- $x = w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \wedge w_2 = 2$.
- $x = w_1 \land x \neq w_2$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_1)$.
- $x = w_2 \land x \neq w_1$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_2)$.
- $x \neq w_1 \land w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \land w_2 = 2$.

- $1 \le x \land x \le 2 \land w_1 = 1 \land w_2 = 2$ and $f(x) \ne f(w_1) \land f(x) \ne f(w_2)$
- Possible partitions: $\{\{x,w_1,w_2\}\}$ $\{\{x,w_1\},\{w_2\}\}$ $\{\{x,w_2\},\{w_1\}\}$ $\{\{x\},\{w_1,w_2\}\}$ $\{\{x\},\{w_1\},\{w_2\}\}$
- $x = w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \wedge w_2 = 2$.
- $x = w_1 \land x \neq w_2$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_1)$.
- $x = w_2 \land x \neq w_1$ UNSAT in \mathcal{T}_E because $f(x) \neq f(w_2)$.
- $x \neq w_1 \land w_1 = w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because $w_1 = 1 \land w_2 = 2$.
- $x \neq w_1 \land x \neq w_2 \land w_1 \neq w_2$ UNSAT in $\mathcal{T}_{\mathbb{Z}}$ because it cannot be that $x \neq 1 \land x \neq 2 \land 1 \leq x \leq 2$.

• $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$
- Shared: x, w_1 , w_2 .

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$
- $x = w_1$ gives contradiction with $w_1 = x + 1$.

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$
- $x = w_1$ gives contradiction with $w_1 = x + 1$.
- $x = w_2$ gives contradiction with $f(x) \neq f(w_2)$.

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1 = x + y \land x \le y + z \land x + z \le y \land y = 1 \land w_2 = 2$ and $w_1 = f(x) \land f(x) \ne f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$
- $x = w_1$ gives contradiction with $w_1 = x + 1$.
- $x = w_2$ gives contradiction with $f(x) \neq f(w_2)$.
- x has to be in its own equivalence class, i.e. $x \neq w_1$, $x \neq w_2$.

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1 = x + y \land x \le y + z \land x + z \le y \land y = 1 \land w_2 = 2$ and $w_1 = f(x) \land f(x) \ne f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$
- $x = w_1$ gives contradiction with $w_1 = x + 1$.
- $x = w_2$ gives contradiction with $f(x) \neq f(w_2)$.
- x has to be in its own equivalence class, i.e. $x \neq w_1$, $x \neq w_2$.
- Adding $w_1=w_2$ permits models: $\{x=1,z=0,y=1,w_1=w_2=2\}$ $\{w_1=w_2=*_1,x=*_2,f=\{*_1\mapsto *_2,*_2\mapsto *_1\}\}$

- $f(x) = x + y \land x \le y + z \land x + z \le y \land y = 1 \land f(x) \ne f(2)$.
- $w_1=x+y\wedge x\leq y+z\wedge x+z\leq y\wedge y=1\wedge w_2=2$ and $w_1=f(x)\wedge f(x)\neq f(w_2)$
- Shared: x, w_1 , w_2 .
- Simplify as $w_1=x+1 \land x \leq 1+z \land x+z \leq 1 \land y=1 \land w_2=2$ and $w_1=f(x) \land f(x) \neq f(w_2)$
- $x = w_1$ gives contradiction with $w_1 = x + 1$.
- $x = w_2$ gives contradiction with $f(x) \neq f(w_2)$.
- x has to be in its own equivalence class, i.e. $x \neq w_1$, $x \neq w_2$.
- Adding $w_1=w_2$ permits models: $\{x=1,z=0,y=1,w_1=w_2=2\}\\ \{w_1=w_2=*_1,x=*_2,f=\{*_1\mapsto *_2,*_2\mapsto *_1\}\}$
- Merged model $\{x=y=1, z=0, w_1=w_2=2, f=\{2\mapsto 1, 1\mapsto 2, \text{rest arbitrary}\}\}$

• For the models (A_1, \mathcal{I}_1) and (A_2, \mathcal{I}_2) build a bijection h between A_2 and A_1 so that $h(\mathcal{I}_2(c)) = \mathcal{I}_1(c)$ for all shared constants c.

- For the models (A_1, \mathcal{I}_1) and (A_2, \mathcal{I}_2) build a bijection h between A_2 and A_1 so that $h(\mathcal{I}_2(c)) = \mathcal{I}_1(c)$ for all shared constants c.
- Such h exists because both models must respect the guessed equivalence relation.

- For the models (A_1, \mathcal{I}_1) and (A_2, \mathcal{I}_2) build a bijection h between A_2 and A_1 so that $h(\mathcal{I}_2(c)) = \mathcal{I}_1(c)$ for all shared constants c.
- Such *h* exists because both models must respect the guessed equivalence relation.

Example

- For the models (A_1, \mathcal{I}_1) and (A_2, \mathcal{I}_2) build a bijection h between A_2 and A_1 so that $h(\mathcal{I}_2(c)) = \mathcal{I}_1(c)$ for all shared constants c.
- Such h exists because both models must respect the guessed equivalence relation.

Example

• Models: $\mathcal{I}_1 = \{x=1, z=0, y=1, w_1=w_2=2\}$ $\mathcal{I}_2 = \{w_1=w_2=*_1, x=*_2, f=\{*_1\mapsto *_2, *_2\mapsto *_1\}\}$

- For the models (A_1, \mathcal{I}_1) and (A_2, \mathcal{I}_2) build a bijection h between A_2 and A_1 so that $h(\mathcal{I}_2(c)) = \mathcal{I}_1(c)$ for all shared constants c.
- Such h exists because both models must respect the guessed equivalence relation.

Example

- Models: $\mathcal{I}_1 = \{x=1, z=0, y=1, w_1=w_2=2\}$ $\mathcal{I}_2 = \{w_1=w_2=*_1, x=*_2, f=\{*_1\mapsto *_2, *_2\mapsto *_1\}\}$
- $h(*_1) = 2$, $h(*_2) = 1$, rest some arbitrary bijection.

Nelson-Oppen does not to work for arbitrary theories.

- Nelson-Oppen does not to work for arbitrary theories.
- Theories needs to be stably infinite

- Nelson-Oppen does not to work for arbitrary theories.
- Theories needs to be stably infinite
 - A theory $\mathcal T$ is stably infinite iff for every satisfiable $\Sigma_{\mathcal T}$ -formula ϕ , there is a $\mathcal T$ -model that satisfies ϕ and that has a universe of infinite cardinality

- Nelson-Oppen does not to work for arbitrary theories.
- Theories needs to be stably infinite
 - A theory $\mathcal T$ is stably infinite iff for every satisfiable $\Sigma_{\mathcal T}$ -formula ϕ , there is a $\mathcal T$ -model that satisfies ϕ and that has a universe of infinite cardinality
 - Examples: EUF, LIA, LRA, etc.

- Nelson-Oppen does not to work for arbitrary theories.
- Theories needs to be stably infinite
 - A theory $\mathcal T$ is stably infinite iff for every satisfiable $\Sigma_{\mathcal T}$ -formula ϕ , there is a $\mathcal T$ -model that satisfies ϕ and that has a universe of infinite cardinality
 - Examples: EUF, LIA, LRA, etc.
- Combination of more than two theories is done analogously.

- Nelson-Oppen does not to work for arbitrary theories.
- Theories needs to be stably infinite
 - A theory $\mathcal T$ is stably infinite iff for every satisfiable $\Sigma_{\mathcal T}$ -formula ϕ , there is a $\mathcal T$ -model that satisfies ϕ and that has a universe of infinite cardinality
 - Examples: EUF, LIA, LRA, etc.
- Combination of more than two theories is done analogously.
- For certain theories there are more efficient methods than considering all partitions (convex theories).

Summary

• Theory combinations:

Summary

- Theory combinations:
 - Nelson-Oppen method enables combining theory solvers (under certain conditions).

Summary

- Theory combinations:
 - Nelson-Oppen method enables combining theory solvers (under certain conditions).
 - Theory solvers communicate through equality.