ICCS240 Database Management

Integrity Constraints: Functional Dependency (FD)

Many slides in this lecture are either from or adapted from slides provided by Jeff Ullman, Stanford U

Werner Nutt, Free U of Bozen-Bolzano

Example of a bad relation

Students(Id, Name, AdvisorId, AdvisorName, FavouriteAdvisorId)

• If you know a student's Id, can you determine the values of any other attributes?

 $Id \rightarrow Name$

Id → FavouriteAdvisorId

How about AdvisorId \rightarrow AdvisorName?

- Suppose a student Id can have/be associated with multiple advisors AdvisorID.
- What is the key for the Sudents then?

{Id, AdvsiorId}

Why is this relation bad?

Parts of the key determine other attributes.

Motivation for Functional Dependencies

- Reason about constraints on attributes in a relation
- Procedurally determine the keys of a relation
- Detect when a relation has redundant information
- Improve database designs systematically using normalization

Functional Dependencies (FD)

A functional dependency (or FD) is written

$$X \to A \text{ or } X \to Y$$

Notation: X, Y, Z represents sets of attributes

A, B, C, ... represent single attributes

The attribute on the left side of the FD is called **determinant**.

 $X \to A$ ("X functionally determines A") is an assertion about a relation R:

Whenever two tuples of R agree on all the attributes of X, then they must also agree on the attribute A

$$t_1[X] = t_2[X]$$
 implies $t_1[A] = t_2[A]$, for all $t_1, t_2 \in R$

Convention: We say " $X \rightarrow A$ holds in (relation) R"

Notation: No set brackets in sets of attributes: just ABC rather than $\{A, B, C\}$.

Example: FD's to asserts over Drinkers

Drinkers(name, addr, beers_liked, manf, fav_beer)

FDs with multiple attributes

FDs with **more than one** attribute on the right don't increase expressivity ...

... but allow for convenient shorthands that combine FDs

Example: name \rightarrow addr and name \rightarrow fav_beer become name \rightarrow addr fav_beer

More than one attribute on the left, however, may be essential Example: bar beer → price

Keys of Relations

Given relation R and a set K of attributes of R, K is a superkey for relation R if K functionally determines all of R

K is a key for R if K is a superkey,

but there is no proper subset of K that is a super key.

(That is, K is a minimal super key.)

Sometimes we call "keys" also "candidate keys", to indicate they are candidates for choosing the primary key

Example

name	addr	beers_liked	manf	fav_beer
Alice	Voyager	Bud	A.B.	WickedAle
Alice	Voyager	WickedAle	Pete's	WickedAle
Bob	Enterprise	Bud	A.B.	Bud

Drinkers(name, addr, beers_liked, manf, fav_beer)

We have

name → addr fav_beer
beers_liked → manf

Therefore, {name, beers_like} determine all the other attributes

Hence, {name, beers_like} is a *superkey*

Example (cont.)

name	addr	beers_liked	manf	fav_beer
Alice	Voyager	Bud	A.B.	WickedAle
Alice	Voyager	WickedAle	Pete's	WickedAle
Bob	Enterprise	Bud	A.B.	Bud

Neither {name} nor {beers_liked} is a superkey:

name → manf doesn't hold

beers_liked → addr doesn't hold

Hence: {name, beers_liked} is a key

There are no other keys, but many other superkeys.

In fact, any superset of {name, beers_liked} is a superkey.

ER and Relational Keys

- Keys in ER concern entities
- Keys in relations concern tuples
- Usually, one tuple corresponds to one entity, so the ideas are similar
- But in poor relational designs,
 one tuple may represent several entities
 ... so ER keys and relational keys are different

Example Data: Drinkers

name	addr	beers_liked	manf	fav_beer
Alice	Voyager	Bud	A.B.	WickedAle
Alice	Voyager	WickedAle	Pete's	WickedAle
Bob	Enterprise	Bud	A.B.	Bud

Relational key = {name, beers_liked}

```
But in E/R,

name is a key for Drinkers

beers_liked is a key for Beers
```

Where do keys come from?

- 1. We could simply assert a key K. Then the only FD's are $K \to A$ for all attributes A, and K turns out to be the only key obtainable from the FD's.
- 2. We could assert FD's and deduce the keys by systematic exploration.
 - E/R model gives us FDs from entity-set keys and from man-one relationships

FDs from "Physics"

- While most FDs come from E/R keyness and many-one relationships, some are simply from physical laws (or our domain knowledge)
- Example: "no two courses can meet in the same room at the same time" tells us:

hour room \rightarrow course

Inferring FDs – Motivation

We are given FDs

$$X_1 \rightarrow A_1, X_2 \rightarrow A_2, \dots, X_n \rightarrow A_n$$

and we want to know whether an FD

$$Y \rightarrow B$$

must hold in any relation that satisfies the given FDs.

Example: If $A \to B$ and $B \to C$ hold, then surely $A \to C$ holds

Important for design of good relation schemas

Inference Test

```
<--Y-->abc...d
```

T1: 000...0000...0

T2: 000...0???...?

To test if $Y \rightarrow B$, ...

- \triangleright Start assuming two tuples agree in all attributes of Y.
- ➤ Use the given FDs to infer that these tuples must also agree in certain other attributes.
 - If B is eventually found to be one of these attributes, then $Y \to B$ is true.
 - Otherwise, the two tuples, with any forced equalities form a two-tuple relation that proves $Y \rightarrow B$ does not follow from the given FDs.

Closure Test – an easier way

- An easier test is based on the concept of attribute closure.
- Let R be a relation, \mathcal{F} be a set of FDs over R, and Y be a set of attributes of R
- The **closure** of Y with respect to \mathcal{F} , denoted Y^+ , consists of all attributes that are determined by Y given \mathcal{F} .
- Observation: $Y \to B$ follows from \mathcal{F} iff $B \in Y^+$

- Basic: $Y^+ := Y$.
- Induction:

Look for an FD's whose left side X is a *subset* of the current Y^+ . If the FD is $X \to A$, add A to Y^+ .

Example

Given a relation $R = \{A, B, C, D, E, F, G\}$ having a set of FDs $\mathcal{F} = \{A \rightarrow BC, B \rightarrow DF, E \rightarrow F\}$, what is the closure of A?

- Basic: $A^+ = \{A\}$
- Induction step1: $A \to BC \in \mathcal{F}$, then $A^+ = \{A, B, C\}$
- Induction step2: $B \to DF \in \mathcal{F}$, then $A^+ = \{A, B, C, D, F\}$
- ...
- $A^+ = R \setminus \{E, G\}$

Closure Test – Idea

Finding all implied FDs

We know how we can determine whether one FD follows from a set of FDs $\mathcal{F} = \{X_1 \to A_1, ..., X_n \to A_n\}$

Question: How can we find all such FDs?

Motivation: To get a better schema, we "normalize", i.e.,

we break one relation schema

into two or more schema

Example: Finding all implied FDs

• Relation R with attributes ABCD with FDs

$$AB \rightarrow C, C \rightarrow D, D \rightarrow A$$

• Decompose R into ABC, AD

Question: What FDs hold in ABC

• Answer: Not only $AB \rightarrow C$, but also $C \rightarrow A!$

Why $C \rightarrow A$?

Thus, tuples in the projection with equal Cs have equal As: $C \rightarrow A$.

Projecting FDs

How can we find the FDs that hold on the projection of R?

Basic Idea:

Attributes in left and right sides are disjoint

- 1. Start with the given FDs
- 2. Find all **non-trivial** FDs that follow from the given FDs
- 3. Restrict to those FDs that involve **only attributes** of the **projected** schema

An (exponential) algorithm to find projecting FDs

- 1. For each set of attribute X, compute X^+
- 2. Add $X \to A$ for all $A \in X^+ \setminus X$
- 3. However, drop $XY \to A$ whenever we discover $X \to A$ (Because $XY \to A$ follows from $X \to A$ in any projection)
- 4. Finally, return only FDs involving projected attributes.

Optimization – a few tricks

Suppose that Z is the set of all attributes of R. Then

- $\emptyset^{+} = \emptyset$
- $Z^{+} = Z$
- If $X \subseteq Y$ and $X^+ = Z$, then $Y^+ = Z$.

Example

Relation ABC with FDs $A \rightarrow B$ and $B \rightarrow C$

Project onto *AC*

- $A^+ = \{A, B, C\} \rightarrow A \rightarrow B, A \rightarrow C$ (optimization: we do not need to compute AB^+ or AC^+)
- $B^+ = \{B, C\}$ \rightarrow $B \rightarrow C$ $C^+ = \{C\}$ \rightarrow nothing $BC^+ = \{B, C\}$ \rightarrow nothing

Resulting FDs: $A \rightarrow B$, $A \rightarrow C$ and $B \rightarrow C$.

Projection onto $AC: A \to C$. (The only FD that involves a subset of AC.)

A Geometric View of FDs

- Imagine the set of all instances of a particular relation.
- That is, all finite sets of tuples that have the proper number of components.
- Each instance is a point in this space.

Example: R(A, B)

An FD is a subset of instances

• For each FD $X \to A$, there is a subset of all instances that satisfy the FD.

We can represent an FD by a region in the space

• Trivial FD: an FD that is represented by the entire space

Example: $A \rightarrow A$

Example: $A \rightarrow B$ for R(A, B)

Representing Sets of FDs

If each FD is a set of relation instances, then a collection of FDs corresponds to the

in the intersection of those sets.

(Geometrically) Implication of FDs

$$\mathcal{F} = \{X_1 \to A_1, \dots, X_n \to A_n\}$$
 set of FDs

• An FD $Y \to B$ follows from $\mathcal F$ or is implied by $\mathcal F$ if every instance that satisfies all FDs in $\mathcal F$ also satisfies $Y \to B$

This can be visualized:

- If $Y \to B$ follows from the set $\mathcal{F} = \{X_1 \to A_1, \dots, X_n \to A_n\}$, then in the space of instances the **region for** $Y \to B$ must **include** the **intersection** of the regions for the FDs $X_i \to A_i$.
- That is,
 - Every instance satisfying all the $X_i \to A_i$ surely satisfies $Y \to B$.
 - But an instance could satisfy $Y \rightarrow B$, yet not be in this intersection.

Example

Finding Keys from FDs

An (exponential) algorithm for computing all keys

Given a relation $R(A_1, ..., A_n)$ and the set \mathcal{F} of all FDs that hold in R, we can use the following algorithm to compute all possible keys for R.

- 1. For every subset $K \subseteq \{A_1, ..., A_n\}$ compute K^+ .
- 2. If $K^+ = \{A_1, ..., A_n\}$ and for every attribute A, $(K \{A\})^+ \neq \{A_1, ..., A_n\}$, then output K as a key.

Source: T.M. Murali

More on Inference Rules

Inference Rules

- The Armstrong's axioms are the basic inference rule.
- Armstrong's axioms are used to conclude functional dependencies on a relational database.
- The inference rule is a type of assertion. It can apply to a set of FDs.
- Using the inference rule, we can derive additional FDs from the initial set.

6 types of Inference Rule:

1. Reflexive Rule: If $X \supseteq Y$, then $X \to Y$

2. Augmentation Rule: If $X \to Y$, then $XZ \to YZ$

3. Transitive Rule: If $X \to Y$ and $Y \to Z$, then $X \to Z$

4. Union Rule: If $X \to Y$ and $X \to Z$, then $X \to YZ$

5. Decomposition Rule: If $X \to YZ$, then $X \to Y$ and $X \to Z$

6. Pseudo Transitive Rule: If $X \to Y$ and $YZ \to W$, then $XZ \to W$

Minimal Basis

Minimal Basis

- A relation may have a large set of equivalent sets of FDs.
- If we are given a set $\mathcal F$ of FDs, then any set of FDs that is equivalent to $\mathcal F$ is called a basis of $\mathcal F$.

A set \mathcal{B} of FDs is a **minimal basis** for a relation R if

- 1. Every FD in \mathcal{B} has one attribute on the right hand side.
- 2. If we remove any FD from \mathcal{B} , then the result is not a basis.
- 3. For any FD in \mathcal{B} , if we remove one or more attribute from the *left hand side* of the FD, then the result is not a basis.

Example of Minimal Basis

• R(A, B, C) is a relation such that each attribute functionally determines the other two attributes

• FDs:
$$A \to BC, B \to AC, C \to AB$$
,
 $A \to B, A \to C, B \to A, B \to C, C \to A, C \to B$,
 $AB \to C, BC \to A, AC \to B$, ...

Minimal bases :

$${A \rightarrow B, B \rightarrow A, B \rightarrow C, C \rightarrow B}, {A \rightarrow B, B \rightarrow C, C \rightarrow A}, ...$$

Adapt from source: T.M. Murali

Exercise

Given a relation R(A, B, C, D, E, F, G) with the following FDs \mathcal{F} :

(1)
$$A \rightarrow BC$$
, (2) $E \rightarrow CF$, (3) $B \rightarrow E$, (4) $CD \rightarrow EF$, (5) $A \rightarrow G$

Answer the following questions:

- 1. Find the closure of *A*
- 2. Find the closure of *G*
- 3. Find a candidate key for R

More exercise (or HW?)

Contracts(cno, suppNo, projNo, deptNo, partNo, qty, value)

Short: C S Pr D Pa Q V

A designer has found the following set of FDs:

- C is a key, i.e., $C \rightarrow SPrDPaQV$
- A project purchases each part using a single contract, $PrPa \rightarrow C$
- A department purchases at most on part from a supplier, $SD \rightarrow Pa$

His colleague has come up with a slightly different set:

- A project purchases each part using a single contract. $PrPa \rightarrow C$
- A contract determines project, supplier and department. $C \rightarrow PrSD$
- SPrD is a key, $SDPr \rightarrow CPaQV$

Are the findings of the second designer different from those of the first?