Amendments to the Claims:

The following listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Currently Amended) An optical recording medium, including a reflective layer and a recording layer, and constructed in a manner that a recording mark is formed on the recording layer by irradiating a laser beam so as to record information,

the recording layer being continuously formed in a relative moving direction to the laser beam with plural virtual recording cells, each of which has an arbitrary unit length and a unit width perpendicular to the unit length in the relative moving direction,

in the case where the laser beam is irradiated to the virtual recording cell over the entire allowable irradiation time T securable to one virtual recording cell, when the laser beam having a reference power, which is preset so that an optical reflectance of the virtual recording cell is reduced more than 50% with respect to the an initial reflectance, being irradiated to the virtual recording cell do that an irradiation time is modulated into five stages or more within the allowable irradiation time T, the virtual recording cell being formed with a recording mark which gives five stages or more different optical reflectance to the virtual recording cell.

- 2. (Currently Amended) The optical recording medium according to claim 1, wherein the recording layer has a characteristic in which, in the case where the laser beam in the reference power is irradiated to the virtual recording cell over the entire allowable irradiation time T, the reference power is preset so that a change of the optical reflectance until 4/4T comes after 3/4T during a time period between 3/4 T and 4/4T of the allowable irradiation time T elapsed is less than 20% of the initial reflectance.
- 3. (Currently Amended) The optical recording medium according to claim 2, wherein the reference power characteristic of the recording layer is preset so such that a-the change of the optical reflectance during the time period between 3/4 T and 4/4T until 4/4T

comes after 3/4T of the allowable irradiation time T elapsed is more than 5% of the initial reflectance.

- 4. (Currently Amended) The optical recording medium according to elaims claim 1, wherein the recording layer contains an organic dye.
- 5. (Currently Amended) The optical recording medium according to <u>claimelaims</u>2, wherein the recording layer contains an organic dye.
- 6. (Currently Amended) The optical recording medium according to <u>claimelaims</u>
 3, wherein the recording layer contains an organic dye.
- 7. (Currently Amended) An optical recording method, which irradiates an laser beam to an optical recording medium including a reflective layer and a recording layer, and forms a recording mark is formed on the recording layer so as to record information, comprising the following stages of:

continuously forming a virtual recording cell, which has an arbitrary unit length and a unit width perpendicular to the unit length, on the recording layer in a relative moving direction to the laser beam;

presetting a reference power of the laser beam so that an optical reflectance of the virtual recording cell is reduced more than 50% with respect to the an initial reflectance in the case where the laser beam is irradiated to the virtual recording cell to the virtual recording cell-over the entire allowable irradiation time T securable to one virtual recording cell;

irradiating the laser beam having the preset reference power to the virtual recording cell so that the irradiation time is modulated into five stages or more; and

forming a recording mark which gives five stages or more different optical reflectance to the virtual recording cell.

8. (Currently Amended) The optical recording method according to claim 7, wherein in the case where the laser beam is irradiated to the virtual recording cell over the entire allowable irradiation time T, the reference power is preset so that a change of the

optical reflectance until 4/4T comes after 3/4Tduring a portion between 3/4 T and 4/4T of the allowable irradiation time T elapsed is less than 20% of the initial reflectance.

- 9. (Currently Amended) The optical recording method according to claim 8, wherein the reference power is preset so that a change of the optical reflectance <u>during a time</u> <u>period between 3/4 T and 4/4T until 4/4T comes after 3/4T</u> of the allowable irradiation time T elapsed is more than 5% of the initial reflectance.
- 10. (Original) The optical recording method according to claim 7, wherein the recording layer contains an organic dye, and is applied in the case of recording information in the recording layer.
- 11. (New) A method for reducing a reflectance of an optical recording medium, comprising:

determining a reference power for irradiating a laser beam, the laser beam able to burn the recording medium to reduce the reflectance of the recording medium, the reference power enabling the laser beam to reduce the reflectance of the recording medium more than 50%; and

irradiating the laser beam on the recording medium with an irradiating power, the irradiating power less than the reference power and varying based on information to be recorded on the recording medium.

- 12. (New) The method of claim 11, the laser beam able to reduce the reflectance of the recording medium to five different levels in a fraction of a time period during which the cell may be irradiated.
- 13. (New) The method of claim 12, a size of the cell being smaller than a size of the laser beam.
- 14. (New) The method of claim 12, the fraction of the time period being a first 3/4 of the time period.

- 15. (New) The method of claim 12, the fraction of a time period being a portion between 1/4 and 3/4 of the time period.
- 16. (New) The method of claim 12, the laser beam able to reduce no more than 20 % of the reflectance of the recording medium during a last quarter of the time period.
- 17. (New) The method of claim 12, the laser beam able to reduce at least 5 % of the reflectance of the recording medium during a last quarter of the time period.

(New) The method of claim 12,

18.

- the cell being one of a plurality of virtual recording cells,

 the plurality of virtual recording cells arranged continuously along a direction
 in which the laser beam moves relative to the recording medium with neighboring virtual
 recording cells adjacent to each other.
- 19. (New) The method of claim 18,

 the plurality of virtual recording cells having a same predetermined length in
 the direction in which the laser beam moves relative to the recording medium.
- 20. (New) The method of claim 18, the time period being a time duration for the laser beam to pass a virtual recording cell.