1 A proof of focalisation

Let $\vdash_{\text{foc}} \Gamma$ mean "there is a *focalised* proof of $\vdash \Gamma$ ", in the sense of [Laurent04].

We define the focalised syntactic phase model as (M, \bot, φ) where M is the free commutative monoid over formulas of MALL, $\bot = \{\Gamma \in M \mid \vdash_{\text{foc}} \Gamma\}$, and $\varphi(X) = \{X\}^{\bot}$ for positive atoms X. Let $\llbracket A \rrbracket$ be the interpretation of a formula A in this model.

For a formula A, let |A| denote the number of main negative subformulas in A. Define Ψ_A as a |A|-ary monotonous operator on $\mathcal{P}(M)$ by induction:

- $\Psi_A(N) = N$ if A is negative
- $\Psi_X() = \{X^{\perp}\}$
- $\Psi_{B \otimes C}(B_1, \dots, B_{|B|}, C_1, \dots, C_{|C|}) = \Psi_B(B_1, \dots, B_{|B|}) \cdot \Psi_C(C_1, \dots, C_{|C|})$
- $\Psi_{B \oplus C}(B_1, \dots, B_{|B|}, C_1, \dots, C_{|C|}) = \Psi_B(B_1, \dots, B_{|B|}) \cup \Psi_C(C_1, \dots, C_{|C|})$
- $\Psi_1() = \{\emptyset\}$
- $\Psi_0() = \emptyset$

Lemma 1. For any formula A with main negative subformulas $A_1, \ldots, A_{|A|}$, $[A] = \Psi_A([A_1], \ldots, [A_{|A|}])^{\perp \perp}$.

Proof. By induction, using positivity results from [Girard99, appendix F]: $(X^{\perp\perp} \cdot Y^{\perp\perp})^{\perp\perp} = (X \cdot Y)^{\perp\perp}$ and $(X^{\perp\perp} \cup Y^{\perp\perp})^{\perp\perp} = (X \cup Y)^{\perp\perp}$.

- If A is negative, then $[\![A]\!] = [\![A]\!]^{\perp \perp}$ because $[\![A]\!]$ is a fact.
- If A = X, then $[X] = \{X\}^{\perp} \subseteq \{X^{\perp}\}^{\perp \perp}$, which is equivalent to the atomic cut rule:

$$\frac{\vdash_{\text{foc}} \Gamma, X \quad \vdash_{\text{foc}} X^{\perp}, \Delta}{\vdash_{\text{foc}} \Gamma, \Delta}$$

And clearly $\{X\} \subseteq \{X^{\perp}\}^{\perp}$, hence $[X] = \{X^{\perp}\}^{\perp\perp}$.

• If $A = B \otimes C$, then

• If $A = B \oplus C$, then

$$\begin{split} \llbracket B \oplus C \rrbracket &= (\llbracket B \rrbracket \cup \llbracket C \rrbracket)^{\perp \perp} \\ &= (\Psi_B(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket)^{\perp \perp} \cup \Psi_C(\llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket)^{\perp \perp})^{\perp \perp} \\ &= (\Psi_B(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket) \cup \Psi_C(\llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket))^{\perp \perp} \\ &= \Psi_{B \oplus C}(\llbracket B_1 \rrbracket, \dots, \llbracket B_{|B|} \rrbracket, \llbracket C_1 \rrbracket, \dots, \llbracket C_{|C|} \rrbracket)^{\perp \perp} \end{split}$$

- If A = 1 then $[1] = {\emptyset}^{\perp \perp}$ by definition.
- If A = 0 then $\llbracket 0 \rrbracket = \emptyset^{\perp \perp}$ by definition.

Lemma 2. For any formula A with main negative subformulas $A_1, \ldots, A_{|A|}, \Psi_A(\{A_1\}^{\perp}, \ldots, \{A_{|A|}\}^{\perp}) \subseteq \{A\}^{\perp}$.

Proof. Let $\vdash_{foc(A)} A$, Γ mean "there is a proof of $\vdash_{foc} A$, Γ in which the last rule introduces the main connective of A" if A is positive, and $\vdash_{foc} A$, Γ otherwise. Let $Foc(A) = \{\Gamma \in M \mid \vdash_{foc(A)} A, \Gamma\}$. Clearly $Foc(A) \subseteq \{A\}^{\perp}$.

We prove by induction on A that $\Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|})) = \operatorname{Foc}(A)$:

- If A is negative, the result is trivial.
- If A = X, then $\Psi_X() = \{X^{\perp}\} = \text{Foc}(X)$.
- If $A = B \otimes C$, then we have

$$\Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|})) = \Psi_B(\operatorname{Foc}(B_1), \dots, \operatorname{Foc}(B_{|B|})) \cdot \Psi_C(\operatorname{Foc}(C_1), \dots, \operatorname{Foc}(C_{|C|}))$$

$$= \operatorname{Foc}(B) \cdot \operatorname{Foc}(C)$$

by the induction hypothesis. Moreover,

$$\frac{\vdash_{\text{foc}(B)} B, \Gamma \quad \vdash_{\text{foc}(C)} C, \Delta}{\vdash_{\text{foc}(B \otimes C)} B \otimes C, \Gamma, \Delta}$$

And this rule is invertible, hence $Foc(B) \cdot Foc(C) = Foc(B \otimes C)$, from which the result follows.

• If $A = B \oplus C$, then we have

$$\Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|})) = \Psi_B(\operatorname{Foc}(B_1), \dots, \operatorname{Foc}(B_{|B|})) \cup \Psi_C(\operatorname{Foc}(C_1), \dots, \operatorname{Foc}(C_{|C|}))$$

$$= \operatorname{Foc}(B) \cup \operatorname{Foc}(C)$$

by the induction hypothesis. Moreover,

$$\frac{\vdash_{\text{foc}(B)} B, \Gamma}{\vdash_{\text{foc}(B \oplus C)} B \oplus C, \Gamma, \Delta} \quad \frac{\vdash_{\text{foc}(C)} C, \Delta}{\vdash_{\text{foc}(B \oplus C)} B \oplus C, \Gamma, \Delta}$$

And these rules are complete, hence $Foc(B) \cup Foc(C) = Foc(B \oplus C)$, from which the result follows.

- If A = 1, clearly $\Psi_1() = \{\emptyset\} = \text{Foc}(1)$.
- If A = 0, clearly $\Psi_0() = \emptyset = \text{Foc}(0)$.

Since $A_1, \ldots, A_{|A|}$ are negative, we have

$$\Psi_A(\{A_1\}^{\perp}, \dots, \{A_{|A|}\}^{\perp}) = \Psi_A(\operatorname{Foc}(A_1), \dots, \operatorname{Foc}(A_{|A|}))$$

$$= \operatorname{Foc}(A)$$

$$\subseteq \{A\}^{\perp}$$

Lemma 3. For any formula A, $[A] \subseteq \{A\}^{\perp}$.

Proof. By induction:

- If A = X, then $[X] = \{X\}^{\perp}$ by definition.
- If $A = X^{\perp}$, we have $\{X^{\perp}\} \subseteq \{X\}^{\perp}$ using the axiom rule, hence $[X^{\perp}] = \{X\}^{\perp \perp} \subseteq \{X^{\perp}\}^{\perp}$.

• If A = B & C, we have $[B \& C] = [B] \cap [C] \subseteq \{B\}^{\perp} \cap \{C\}^{\perp}$ by the induction hypothesis. Moreover,

$$\frac{\vdash_{\text{foc}} B, \Gamma \quad \vdash_{\text{foc}} C, \Gamma}{\vdash_{\text{foc}} B \& C, \Gamma}$$

Hence $\{B\}^{\perp} \cap \{C\}^{\perp} \subseteq \{B \& C\}^{\perp}$, from which the result follows.

- If $A = \top$, we have $\llbracket \top \rrbracket = M = \{\top\}^{\perp}$ using the rule for \top .
- If $A = B \ \ C$, let $\Gamma \in \llbracket B \ \ C \rrbracket = (\llbracket B \rrbracket^{\perp} \cdot \llbracket C \rrbracket^{\perp})^{\perp}$. By the induction hypothesis, $\llbracket B \rrbracket \subseteq \{B\}^{\perp}$, hence $B \in \{B\}^{\perp \perp} \subseteq \llbracket B \rrbracket^{\perp}$, and similarly $C \in \llbracket C \rrbracket^{\perp}$, therefore $\vdash_{\text{foc}} B, C, \Gamma$. Moreover,

$$\frac{\vdash_{\text{foc}} B, C, \Gamma}{\vdash_{\text{foc}} B \, ?\!\! C, \Gamma}$$

Hence $\Gamma \in \{B \ {}^{\alpha}C\}^{\perp}$, from which the result follows.

- If $A = \bot$, we have $\llbracket \bot \rrbracket = \bot = \{\bot\}^\bot$ using the rule for \bot .
- Otherwise, A is a positive non-atomic formula with main negative subformulas $A_1, \ldots, A_{|A|}$. Then,

$$\begin{split} \llbracket A \rrbracket &= \Psi_A(\llbracket A_1 \rrbracket, \dots, \llbracket A_{|A|} \rrbracket)^{\perp \perp} & \text{by lemma 1} \\ &\subseteq \Psi_A(\{A_1\}^\perp, \dots, \{A_{|A|}\}^\perp)^{\perp \perp} & \text{by the induction hypothesis and monotonicity of } \Psi_A \\ &\subseteq \{A\}^{\perp \perp \perp} = \{A\}^\perp & \text{by lemma 2} \end{split}$$

Theorem 4 (Focalised completeness). If a formula A of MALL is valid in all phase models, then A has a focalised proof.

Proof. In particular $\emptyset \in [\![A]\!]$, hence $\emptyset \in \{A\}^{\perp}$ by lemma 3, therefore $\vdash_{\text{foc}} A$.

Combining this with the soundness theorem, we get:

Corollary 4.1 (Focalisation). Every provable formula A of MALL has a focalised proof.

References

[Laurent04] Olivier Laurent. 'A proof of the focalization property of linear logic'. In: (Apr. 2004).

[Girard99] Jean-Yves Girard. 'On the Meaning of Logical Rules I: Syntax Versus Semantics'. In: Computational Logic. Springer Berlin Heidelberg, 1999, pp. 215–272. ISBN: 978-3-642-58622-4.