Additional pertinent questions from AY 21/22 CA 2

Answers follow on subsequent page. For most effectiveness, do the questions first without referencing the model answers.

[Questions 1–3] (MCQ; 2 marks each) Mark (a) for true and (b) for false for each of the following statements on **Decision Trees**.

Let's examine decision tree learning as taught in lecture, with categorical inputs *X* and output *Y*. Here we assume we do not employ pruning.

- 1. The depth of the tree cannot exceed n + 1.
- 2. If $IG(Y|X_i) = 0$, then X_i will not be used in the decision tree.
- 3. Suppose one of the attributes has a unique value in each instance. Then the decision tree must have depth 0 or 1.
- 4. (MCQ; 2 marks) We stated that validation generally produces an optimistic estimate of *L*_{test}. Why?
 - (a) Because we choose the model based on their performance.
 - (b) Because possibly many parameters are tested in the validation process.
 - (c) Because possibly many values of parameters are tested in the validation process.

[Questions 5–6] In lecture, we have seen a soft order constraint of the form $\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta} < C$. For some problems, there exists a more general soft order constraint of the form $\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{M}^{\mathsf{T}}\boldsymbol{M}\boldsymbol{\theta} < C$ which captures the relationship among the θ_i . Let us fix the constant C and $\boldsymbol{\theta} = [\theta_1,...,\theta_n]^{\mathsf{T}}$ $1 \times n$

- 5. (MCQ; 4 marks) Define **M** such that we obtain the constraint $\sum \theta_i^2 < 4C$.
- (a) $[1,1,...,1]^{\mathsf{T}}_{n\times 1}/4$.
- (b) $I_{n \times n}/4$.
- (c) $[1,1,...,1]_{1\times n}/4$.
- (d) $I_{n \times n} / 8$.
- (e) None of the above.
- 6. (MCQ; 4 marks) Define **M** such that we obtain the constraint $(\sum \theta_i)^2 < C$.
- (a) $[1,1,...,1]^{\mathsf{T}}_{n\times 1}$.
- (b) $I_{n\times n}$.
- (c) $[1,1,...,1]_{1\times n}$.
- (d) $I_{n\times n}/4$.
- (e) None of the above.

- 1. The depth of the tree cannot exceed n + 1.
 - Correct answer: (a) True because the attributes are categorical and can each be split only once.
- 2. If $IG(Y|X_i) = 0$, then X_i will not be used in the decision tree.

Correct answer: (b) The attribute may have non-zero IG when used further down in the decision tree in subproblems, after splitting on other attributes.

3. Suppose one of the attributes has a unique value in each instance. Then the decision tree must have depth 0 or 1.

Correct answer: (a) True because that attribute will have perfect information gain. If an attribute has perfect information gain it must split the records into "pure" buckets which can be split no more.

- 4. (MCQ; 2 marks) We stated that validation generally produces an optimistic estimate of *Ltest*. Why?
- (a) Because we choose the model based on their performance.
- (b) Because possibly many parameters are tested in the validation process.
- (c) Because possibly many values of parameters are tested in the validation process.

Correct answer: (a)

[Questions 5–6] In lecture, we have seen a soft order constraint of the form $\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{\theta} < C$. For some problems, there exists a more general soft order constraint of the form $\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{M}^{\mathsf{T}}\boldsymbol{M}\boldsymbol{\theta} < C$ which captures the relationship among the θ_i . Let us fix the constant C and $\boldsymbol{\theta} = [\theta_1,...,\theta_n]^{\mathsf{T}} \times \mathbf{1} \times \mathbf{n}$

- 4. (MCQ; 4 marks) Define **M** such that we obtain the constraint $\sum \theta_i^2 < 4C$.
- (a) $[1,1,...,1]^{\mathsf{T}}_{n\times 1}/4$.
- (b) $I_{n \times n}/4$.
- (c) $[1,1,...,1]_{1\times n}/4$.
- (d) $I_{n\times n}/8$.
- (e) None of the above.

Correct answers: (e)

Explanation: $M = I_{n \times n}/2$

We can see that $\boldsymbol{\theta}^{\mathsf{T}}(\boldsymbol{I}^{\mathsf{T}}/2)(\boldsymbol{I}/2)\boldsymbol{\theta} = 1/4\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{I}\boldsymbol{I}\boldsymbol{\theta} = 1/4\sum_{i}\theta_{i}^{2}$

- 5. (MCQ; 4 marks) Define **M** such that we obtain the constraint $(\sum \theta_i)^2 < C$.
- (a) $[1,1,...,1]^{\mathsf{T}}_{n\times 1}$.
- (b) $I_{n \times n}$.
- (c) $[1,1,...,1]_{1\times n}$.
- (d) $I_{n\times n}/4$.
- (e) None of the above.

Correct answers: (c)

Explanation: $M=[1,1,...,1]_{1\times n}$

We can see that $\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{M}^{\mathsf{T}} \boldsymbol{M} \boldsymbol{\theta} = [(\sum \theta_i)] \boldsymbol{M} \boldsymbol{\theta} = [(\sum \theta_i), ..., (\sum \theta_i)] \boldsymbol{\theta} = (\sum \theta_i)^2 \mathbf{s}$