CS 771A: Introduction to Machine Learning Quiz I ((14 Aug 2019)	
Name	SAMPLE SOLUTIONS			30 marks	
Roll No		Dept.			Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ. We will entertain no requests for leniency.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. Write T or F for True/False (write only in the box on the right hand side) (5x2=10 marks)

1	Classifying natural numbers into prime vs non-prime is a good example of a problem that can be solved using machine learning (e.g. by binary classification)	F
2	Learning with prototypes cannot be used if there are more than two classes	F
3	If $f, g: \mathbb{R} \to \mathbb{R}$ are two convex functions (not necessarily differentiable), then the average function $h(x) \triangleq (f(x) + g(x))/2$ must always be convex as well	Т
4	Let $f: \mathbb{R} \to \mathbb{R}$ be a doubly differentiable function (i.e. first and second derivatives exist). If $f'(x^0) = 0$ at $x^0 \in \mathbb{R}$, then it must always be true that $f''(x^0) = 0$	F
5	The boundary of the unit 2D circle i.e. $\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ is a convex set	F

Q2. Fill the circle (don't tick) next to all the correct options (many may be correct).(4x3=12 marks)

2.1 Suppose $f, g: \mathbb{R} \to \mathbb{R}$ are two convex functions (not necessarily differentiable) and we define p(x) = f(x) + g(x) and q(x) = f(x) - g(x). Two claims are made about these functions

Claim 1: p(x) + q(x) must always be convex

Claim 2: q(x) must always be convex

Α	Claim 1 is TRUE, claim 2 is FALSE	
В	Claim 1 is FALSE, claim 2 is TRUE	
C	Both claims are TRUE	
D	Both claims are FALSE	

2.2 Let $f(x) = \sin(x)$. Which of the following statements is true about the function f(x)?

Α	f(x) has more than one local minima	
В	$f^{\prime\prime\prime\prime}(x)=f(x)$	
С	f(x) is a convex function	
D	f(x) is a concave function	

2.3 Which of the following statements is true about the kNN algorithm?

Α	When used for binary classification, the kNN algorithm always produces decision boundaries that are linear (i.e. a line or a hyperplane)	O
В	The kNN algorithm can be used to solve regression problems	
С	The value k in kNN must always be a positive integer	
D	There exists no dataset, nor any value of k , for which kNN has linear decision boundary	\bigcirc

2.4 Which of the following statements is true?

		_
Α	In held-out validation, the validation set is a subset of the test set	Ŏ
В	In held-out validation, the validation set is a subset of the training set	
С	Using cross validation is more expensive than held-out validation	
D	Using cross validation is less expensive than held-out validation	

Q3 Consider the following optimization problem.

(2+2=4 marks)

At which point in \mathbb{R}^2 is the solution to this optimization problem achieved? Write your answer in space below.

At which point in \mathbb{R}^2 would the solution have been achieved, had the objective function instead been $(-x^2 - y^2)$ (but constraints remained the same)?

Q4. Let $\mathbf{a} \in \mathbb{R}^d$ be a constant vector and $b \in \mathbb{R}$ be a constant scalar. For $\mathbf{x} \in \mathbb{R}^d$, let us define the function $f(\mathbf{x}) = \ln(1 + \exp(-b \cdot \mathbf{a}^\mathsf{T} \mathbf{x}))$ (where \ln is the natural logarithm). Find $\nabla f(\mathbf{x})$ and briefly show all major steps in your derivation. Write only in the space provided. (4 marks)

We have $f(t) = \ln(t)$ where $t(s) = 1 + \exp(-s)$ where $s(\mathbf{x}) = b \cdot \mathbf{a}^{\mathsf{T}} \mathbf{x}$. We have $f'(t) = \frac{1}{t'}$, $t'(s) = -\exp(-s)$, and $\nabla s(\mathbf{x}) = b \cdot \mathbf{a}$. Thus, applying the chain rule gives us

$$\nabla f(\mathbf{x}) = \frac{-b \cdot \exp(-b \cdot \mathbf{a}^{\mathsf{T}} \mathbf{x})}{1 + \exp(-b \cdot \mathbf{a}^{\mathsf{T}} \mathbf{x})} \cdot \mathbf{a}$$