MME 9621: Computational Methods in Mechanical Engineering

Assignment 4

(Due date: 29 March 2024, Friday. Submit through owl)

Note:

- (i) For all of the problems, comment on accuracy and cost of computing.
- (ii) Please submit your computer programs with necessary outputs.
- (iii) Mark distribution: Problem 1 (60), Problem 2 (40).
- 1. A large flat plate at temperature T = 925 K is placed in front of a second large flat plate. The heated plate emits radiation to the second plate and the second plate reflects some radiation back to the heated plate. The emissivity as a function of wavelength of the heated plate is given by equation (1) where the wavelength λ is measured in micrometers.

$$\epsilon(\lambda) = \begin{cases} 0.850 \left(1 - \frac{\lambda}{10.5} \right) 0 \le \lambda \le 10.5 \\ 0 & \text{otherwise} \end{cases}$$
 (1)

The reflectivity of the second plate as a function of wavelength λ is given by equation (2),

$$\rho(\lambda) = \begin{cases} 0.35 & \text{for } 0 \le \lambda \le 4.5 \\ 0.82 & \text{for } \lambda > 4.5 \end{cases}$$
 (2)

The energy flux of radiation being absorbed by the first plate is given by equation (3),

$$Q_{\rm abs} = \rho(\lambda) \int_0^\infty \epsilon^2(\lambda) E(\lambda, T) d\lambda$$

(3)

where,
$$E(\lambda, T) = \frac{2\pi C_1}{\lambda^5 \left(e^{\frac{C_2}{\lambda T}} - 1\right)}$$

with
$$C_1 = hc_0^2$$
, $C_2 = \frac{hc_0}{k_B}$ (4)

Considering $c_0 = 2.9979 * 10^8 \text{ m/s}, h = 6.626 * 10^{-34} \text{ Js and } k_B = 1.3806 * 10^{-23} \text{ J/K},$

calculate the energy flux absorbed by the first plate.

Use (a) MATLAB function and (b) Simpson's 1/3 rule.

2. An automobile is modeled as shown in Figure 1 with mass M, mass moment of inertia J_G , suspension system springs of k_1 , k_2 and k_3 with weights m_1 and m_2 . Four degrees of freedom are defined for the system as x_1 , x_2 , x_3 and θ . The governing equations for the free harmonic oscillations with variables $x_r = X_r e^{i\omega t}$ (r = 1, 2, 3) and $\theta = \Theta e^{i\omega t}$ are as follows:

$$\begin{split} &-m_{1}\omega^{2}X_{1}+\left(k_{1}+k_{2}\right)X_{1}-k_{2}X_{3}+k_{2}l_{1}\Theta=0\\ &-m_{2}\omega^{2}X_{2}+\left(k_{1}+k_{3}\right)X_{2}-k_{3}X_{3}-k_{3}l_{2}\Theta=0\\ &-M\omega^{2}X_{3}-k_{2}X_{1}-k_{3}X_{2}+\left(k_{2}+k_{3}\right)X_{3}+\left(k_{3}l_{2}-k_{2}l_{1}\right)\Theta=0\\ &-J_{G}\omega^{2}\Theta+k_{2}l_{1}X_{1}-k_{3}l_{2}X_{2}+\left(k_{3}l_{2}-k_{2}l_{1}\right)X_{3}+\left(k_{2}l_{1}^{2}+k_{3}l_{2}^{2}\right)\Theta=0 \end{split}$$

If k_1 =18,000 N/m, k_2 =20,000 N/m, k_3 =20,000 N/m, l_1 =1.0 m, l_2 =1.5 m, M =1000 kg, m_1 = 100 kg, m_2 = 200 kg, radius of gyration r =0.9 m and J_G =M r^2 ,

find the natural frequencies of the system.

Use (a) Q-R factorization, (b) MATLAB 'eig' function.

Figure 1.