MyCPU_{2.3}

- Selfbuild Guide -

© 2009 / Dennis Kuschel

MyCPU23 Technical Details

- 8 bit processor, 8 bit internal and external data bus
- 16 address lines, 64kb addressable RAM and 64kb addressable ROM memory, 128kb addressable memory total
- Architecture similar to Harvard (separate code and data memory, but only one common address and data bus)
- Maximum processor core speed is around 10 MHz when 74ACxxx gates and fast EPROM's are used, but 8 MHz is guaranteed, and at least 4 MHz can be reached with the cheaper 74HCxxx gates. Save operation is still possible with 74HCxxx gates and a 20MHz oscillator (core frequency approx. 6,7 MHz).
- 1 maskable hardware interrupt (IRQ)
- 5 x 8bit general purpose register
- lookup-table based ALU for maximum speed
- 61 integrated circuits (55 logic gate IC's and 6 EPROM's)
- User definable microcode, the microcode for a 6502 like CPU is provided
- Voltage operating range is 4.75V 5.25V
- Power consumption is max. 150mA at 5V = 0.75W
- up to 20% faster than MyCPU22

MyCPU23 Microcode Details

- The instruction set is similar to that one of the 6502, but is not binary compatible
- 256 OP-Codes
- 14 Addressing Modes: immediate 16bit, immediate 8bit, immediate zeropage, direct absolute, direct zeropage, direct absolute plus index, indirect absolute, indirect zeropage, indirect absolute plus index, indirect zeropage plus index, indirect plus index absolute, absolute pointer 16bit, absolute pointer 8bit, immediate registers
- 1 Software Interrupt
- 256 byte call stack, 8 bit stack pointer
- 3 8bit general purpose registers: accu, x- and y- index-register. The x- and y- register can be put together to a 16bit data pointer register.
- User performance index: 6.9 core clock cycles per OP-Code in average, resulting in a speed of 1.16 MIPS at 8 MHz processor core frequency.

Contents

1	Boards	1	
1.1	Arithmetic Logic Unit (ALU)	1	
1.1.1	Description	1	
1.1.2	Placement of Components	1	
1.1.3	Partlist	2	
1.2	Microcode Control	3	,
1.2.1	Description	3	j
1.2.2	Placement of Components	3	j
1.2.3	Partlist	4	
1.2.4	Jumper Settings	5	
1.3	Signal Decoder	6)
1.3.1	Description	6)
1.3.2	Placement of Components	6)
1.3.3	Partlist		
1.4	Program Counter		
1.4.1	Description		
1.4.2	Placement of Components		
1.4.3	Partlist	9	
1.5	Interface and Registers	10)
1.5.1	Description		
1.5.2	Placement of Components		
1.5.3	Partlist	11	
1.5.4	CPU Frequency Jumper Settings		
2	Overall Part List		
2.1	Detailed list of required parts		
3	Board Stack		
3.1	Stacking the Boards		
4	Signals on Board Connectors		
4.1	ALU		
4.2	Control Unit		
4.3	Decoder		
4.4	Program Counter		
4.5	Interface Board		
5	CPU Bus Connector		
5.1	Layout of the Bus Connector		
5.2	Bus Signal Description		
6	CPU Reset And Interrupt Sequence		
6.1	Reset Behaviour		
6.2	Hardware Interrupt		
6.3	Software Interrupt		
7	Backplane		
7.1	Backplane Cable		
8	Schematics		
8.1	List of all Schematics		
8.2	Schematics sorted by Boards		
9	Change Log		
9.1	Changes in the MyCPU design	35	

Figures

Fig. 1: Arithmetic Logic Unit (ALU) Board	1
Fig. 2: Arithmetic Logic Unit - Placeplan	2
Fig. 3: Microcode Control Board	
Fig. 4: Microcode Control – Placeplan	
Fig. 5: Signal Decoder Board (Prototype, R30+R31 missing)	
Fig. 6: Signal Decoder – Placeplan	
Fig. 7: Program Counter Board	
Fig. 8: Program Counter – Placeplan	
Fig. 9: Interface and Register Board	
Fig. 10: Interface and Register – Placeplan	
Fig. 11: Clock Control - Jumper Settings	
Fig. 12: MyCPU Board Connectors	17
Fig. 13: CPU Bus Connector	
Fig. 14: MyCPU Backplane Cable	25
Fig. 15: ALU, Control and Registers	26
Fig. 16: ALU, Look-up Tables	27
Fig. 17: Microcode and common steering	28
Fig. 18: Program Counter, lower 8 address lines	29
Fig. 19: Program Counter, upper 8 address lines	30
Fig. 20: General Purpose Registers	
Fig. 21: Clock-generation and –control	32
Fig. 22: Reset Generator	33
Fig. 23: Bus Interface	34
Tables	
Tab. 1: CPU Bus Signals	23
Tab. 2: CPU Interrupt Vectors	

Author:

Dennis Kuschel Kurt-Georg-Kiesinger-Allee 14 28279 Bremen, Germany

web: http://www.mycpu.eu email: dennis_k@freenet.de

IMPORTANT INFORMATION

about stability issues

The design uses several 74**AC**xxx - gates. For a proper operation it is recommended to replace all 74**AC**xxx - parts through 74**HC**xxx - parts. This modification reduces the maximum operation frequency, but it increases the system stability. With this configuration you should be able to reach at least 5.7 MHz. Please see chapter 1.5.4.4 for details. Note: If you encounter stability problems, it is always a good idea to try other settings for JP4.

UPGRADE INFORMATION

If you have a MyCPU v2.1 or v2.2 you can upgrade to MyCPU v2.3. Please upgrade the boards "Interface and Registers" and "Microcode Control". The other boards do not have changed, thus the ALU, the Program Counter and the Decoder Board can be reused. But on the Decoder and on the Program Counter Board the population has changed, several 74ACxxx parts where replaced by 74HCxxx types.

Important: The content of the microcode EPROM's on the Microcode Control Board has changed. You need to re-program the EPROM's IC1, IC2 and IC3.

1 Boards

1.1 Arithmetic Logic Unit (ALU)

Fig. 1: Arithmetic Logic Unit (ALU) Board

1.1.1 Description

The Arithmetic Logic Unit is the part of the Microprocessor that does all the mathematics calculations. The ALU is based on lookup-tables to keep the design as simple as possible. The unit supports 16 arithmetic operations, where eight operations take two 8-bit-operands and eight operations take only one operand. The result of every operation is also 8-bit wide. The ALU supports three flags: Carry, Sign and Overflow. Since the ALU is table-based, the slowest operation takes only three clock cycles: Two clock cycles are needed to load both operands, and one more cycle is used to store the result in the destination register.

1.1.2 Placement of Components

After you have soldered all Via's, you can continue with the integrated circuits. I suggest you not to use sockets for the IC's, except for the EPROM's. If you wish to use sockets for all IC's, you must use precision sockets. Only the high quality sockets allow you to solder the pads on the top side of the board. I strongly recommend you to follow the placement order I have noted in the placeplan below (see blue numbers, and start with the IC that has the blue number 1). When all IC's are placed and soldered, you can continue to place the capacitors. In the last round the board connectors are placed and soldered.

ATTENTION!

Please be careful, and don't forget to solder a pad on the top side of the board. I have marked all critical pads with red colour in the placeplan below. Please check if you have really soldered these pads!

Fig. 2: Arithmetic Logic Unit - Placeplan

1.1.3 Partlist

74HC00	IC48
74HC04	IC47
74HC74	IC49, IC50
74AC157	IC56
74HC541	IC51, IC53
74HC574	IC52, IC54, IC55, IC60, IC61
27C64 -or- 27C256, 100ns	IC59
27C801 -or- 27C080, 100ns	IC57, IC58
100nF	C47, C48, C49, C50, C51, C52, C53, C54, C55, C56, C57, C58,
	C59, C60, C61
10 pin header	VA, VB, VC
16 pin header	V0
20 pin header	V5

Note: If you are using the fast 100ns EPROM's and you will not clock the CPU core higher than 8 MHz, the 74AC157 can be replaced by the slower 74HC157.

1.2 Microcode Control

Fig. 3: Microcode Control Board

1.2.1 Description

The control board is the core of the CPU. It contains the big state-machine the controls all components of the CPU. The state machine is implemented as a lookup-table with feedback lines. The lookup-table is built with three 128kb*8 EPROM's. The 8 bits of the OP-code, five counter lines, the three flag lines and the interrupt line are the inputs for the lookup table. The 24 output lines of the EPROM's steer the several components of the CPU. Commonly said, the three EPROM's contain the microcode of the CPU. The microcode can be seen as an interpreter for the OP-code. A microcode can have a depth of 32 micro instructions, but in common only 10 micro instructions are required to interpret an OP-code.

1.2.2 Placement of Components

After you have soldered all Via's, you can continue with the integrated circuits. I suggest you not to use sockets for the IC's, except for the EPROM's. If you wish to use sockets for all IC's, you must use precision sockets. Only the high quality sockets allow you to solder the pads on the top side of the board. I strongly recommend you to follow the placement order I have noted in the placeplan below (see blue numbers, and start with the IC that has the blue number 1). When all IC's are placed and soldered, you can continue to place the capacitors and resistors. In the last round the jumper block and the board connectors are placed and soldered.

ATTENTION!

Please be careful, and don't forget to solder a pad on the top side of the board. I have marked all critical pads with red colour in the placeplan below. Please check if you have really soldered these pads! DO NOT USE SOCKETS FOR IC9 - IC16!

Fig. 4: Microcode Control – Placeplan

1.2.3 Partlist

74AC00	IC10
74AC08	IC16
74HC08	IC9 <i>Must be a 74HC</i> 08
74AC32	IC11
74AC74	IC14, IC15
74HC74	IC12, IC13
74HC161	IC6, IC7
74AC574	IC4, IC5, IC8
27C010 -or- 27C1001, 60ns	IC1, IC2, IC3
100nF	C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13,
	C14, C15, C16
10μF / 16V, tantalum	C104
47 Ohm	R1, R2, R3, R4, R5
470 Ohm	R6
4.7 kOhm	R29
10 pin header	VA, VB, VC
14 pin header	V1
16 pin header	V0, V4
20 pin header	V5
2*4 pin jumper block + jumper	JP4

1.2.4 Jumper Settings

The Jumper JP4 is used to change the runtime compensation of the EPROM delay. This is required if the CPU shall run on high clock frequencies (6 MHz and above). Usually the jumper can be set to position 1 (like shown in the figures). But if you observe instabilities or crashes, you may try other jumper positions (2 trough 4) to fix a possible problem with the EPROM delay time.

Please keep the jumper JP4 in mind when you have taken MyCPU extension boards into service and you observe instabilities. The more components are connected to MyCPU, the less stable the MyCPU may work. You can try to compensate this with JP4.

1.3 Signal Decoder

Fig. 5: Signal Decoder Board (Prototype, R30+R31 missing)

1.3.1 Description

The signal decoder board belongs to the CPU microcode control board. The eight output lines of EPROM IC1 are demultiplexed on this board. This board generates 16 read- and 16 write-control-lines. These lines are used to read data from and write data to registers.

1.3.2 Placement of Components

After you have soldered all Via's, you can continue with the integrated circuits. I strongly recommend you to follow the placement order I have noted in the placeplan below (see blue numbers, and start with the IC that has the blue number 1). When all IC's are placed and soldered, you can continue to place the capacitors and resistors. In the last round the board connectors are placed and soldered.

ATTENTION!

Please be careful, and don't forget to solder a pad on the top side of the board. I have marked all critical pads with red colour in the placeplan below. Please check if you have really soldered these pads!

Fig. 6: Signal Decoder – Placeplan

1.3.3 Partlist

74HC138 IC17, IC18, IC19, IC20, IC21

47 Ohm R28, R30, R31

470 Ohm R27

100nF C17, C18, C19, C20, C21

10 pin header VA, VB 14 pin header V1, V2, V3

16 pin header V4 20 pin header V5

1.4 Program Counter

Fig. 7: Program Counter Board

1.4.1 Description

The board contains the program counter (PC) and the rest of the address line logic. The program counter is a 16 bit wide counter that is built with four 4-bit counters (74HC161). The counters can be loaded with a new initial address and the actual counter state can also be read back. Further more there is a logic that allows the CPU to access random addresses.

1.4.2 Placement of Components

After you have soldered all Via's, you can continue with the integrated circuits. I strongly recommend you to follow the placement order I have noted in the placeplan below (see blue numbers, and start with the IC that has the blue number 1). When all IC's are placed and soldered, you can continue to place the capacitors and resistors. In the last round the board connectors are placed and soldered.

ATTENTION!

Please be careful, and don't forget to solder a pad on the top side of the board. I have marked all critical pads with red colour in the placeplan below. Please check if you have really soldered these pads!

Fig. 8: Program Counter - Placeplan

1.4.3 Partlist

IC34
IC35, IC37, IC39, IC41
IC36, IC38, IC44, IC46
IC40, IC42, IC43, IC45
C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45,
C46
R25, R26
VA, VB
V1, V2, V3
V0, V6

1.5 Interface and Registers

Fig. 9: Interface and Register Board

1.5.1 Description

The board contains the core-registers ACCU / X-Reg / Y-Reg, the stack pointer register and a temporary register, the bus interface driver, a clock generating- and control-circuit, and the reset logic.

The board has two sockets for two different oscillators, whereas only one oscillator is required and the second one is optional. For possible oscillator frequencies and jumper settings please see chapter 1.5.4.

1.5.2 Placement of Components

After you have soldered all Via's, you can continue with the integrated circuits. I strongly recommend you to follow the placement order I have noted in the placeplan below (see blue numbers, and start with the IC that has the blue number 1). When all IC's are placed and soldered, you can continue to place the capacitors and resistors. In the last round the board connectors and jumpers are placed and soldered.

ATTENTION!

Please be careful, and don't forget to solder a pad on the top side of the board. I have marked all critical pads with red colour in the placeplan below. Please check if you have really soldered these pads!

Fig. 10: Interface and Register – Placeplan

1.5.3 Partlist

74AC00	IC63
74AC08	IC29, IC32, IC62
74AC74	IC31
74HC74	IC64
74HC245	IC22
74HC393	IC30
74HC541	IC28, IC65
74HC574	IC23, IC24, IC25, IC26, IC27
LM393	IC33
10n	C105
100n	C22 - C33, C62 - C65, C100, C101
2.2μF / 16V, tantalum	C103
10μF / 16V, tantalum	C102
10 Ohm	R13
47 Ohm	R8, R9, R23
100 Ohm	R18
470 Ohm	R10, R11, R22
1 kOhm	R31, R32, R33, R34, R35, R36, R37, R38
2.2 kOhm	R12
4.7 kOhm	R19, R21
10 kOhm	R20, R30, R14
22 kOhm	R16
47 kOhm	R15

220 kOhm	R17
SIL 8 x 4,7 kOhm	R7
SIL 8 x 10 kOhm	R24
D1	1N4148
Crystal Oscillator	Q1, Q2

3 pin jumper JP1, JP2, JP3, JP5

2 pin connector (with cable) J2
DIN 41612 Connector J1
10 pin header VA, VB
14 pin header V1, V2
16 pin header V0, V6

1.5.4 CPU Frequency Jumper Settings

The figure below describes the various jumpers on the interface board:

Fig. 11: Clock Control - Jumper Settings

Default jumper settings: JP1: [1-2], JP2: [2-3], JP3: [2-3], JP5: [2-3]

Default oscillator population: Q1: not populated, Q2: populated with 16MHz oscillator

1.5.4.1 Oscillator population

Q1 and Q2 shall be placed with a socket. You should use a precision DIL socket (14 pins) for the oscillators. Before soldering the sockets, the pins 4 and 11 should be removed (cut with a knife). This enables you to fix the oscillator in the socket with a cable strip.

Q1 must be populated when Q2 has an other frequency than 8.0000 MHz or 16.0000 MHz. Then Q1 must be populated with either 8.0000 MHz (set JP1 to 2-3) or 16.0000 MHz (set JP1 to 1-2). Don't forget to set JP2 to position 1-2.

If Q1 is not populated, Q2 must have a frequency of either 8.0000 MHz or 16.0000 MHz, and JP2 must be set to position 2-3, and JP1 to 2-3 for an 8 MHz oscillator or to 1-2 for a 16 MHz oscillator.

If Q1 is populated, Q2 can have any frequency.

Summary:

- JP1 sets the clock divider for the 4.000 MHz bus clock
- JP2 chooses the clock source for the 4.000 MHz bus clock (either Q1 or Q2)

For the first run please use always the default configuration (see red box on previous page). When you got your MyCPU running with this configuration, you can start tweaking your MyCPU according to chapter 1.5.4.4.

1.5.4.2 Bus Wait States

Jumper JP5 can be used to disable bus wait states. Note that bus wait states are enabled by default. You may disable bus wait states to tune the MyCPU, but this requires really fast periphery like fast memories and a short backplane bus. With VGA-Unit or IDE-Controller attached you should always leave bus wait states enabled.

1.5.4.3 Fast internal clock cycles

By default MyCPU uses faster (that means shorter) clock cycles for internal register-to-register transfers. If you are using very slow EPROM's for the Microcode or you could not procure 74ACxxx-chips, it may be necessary to disable fast clock cycles. To slow down the internal clock, please set JP3 to position 1-2.

1.5.4.4 Tuning the MyCPU clock frequency

You can try to increase the CPU core clock frequency by using other jumper settings and by increasing the oscillator frequency. The following flowcharts will help you. You should use the first flow chart if you could not obtain all the required 74ACxxx parts. Use the second flowchart when you have populated the boards with 74ACxxx chips where they are required.

Use this flowchart to tweak you MyCPU if you have a pure 74HCxxx design or if you failed to procure all the required 74ACxxx parts:

Use this flowchart if you have populated 74ACxxx parts where they are required:

2 Overall Part List

2.1 Detailed list of required parts

2	74 A COO	IC10 IC62
2 x 1 x	74AC00 74HC00	IC10, IC63 IC48
1 x 1 x	74HC00 74HC04	IC48 IC47
1 x 4 x	74AC08	IC16, IC29, IC32, IC62
4 x 1 x		IC9
	74HC08	
1 x 5 x	74AC32	IC11
5 x	74AC74	IC14, IC15, IC30, IC31, IC64 IC12, IC13, IC49, IC50, IC34
	74HC74	
5 x	74HC138	IC17, IC18, IC19, IC20, IC21 IC56
1 x	74AC157	
6 x	74HC161	IC6, IC7, IC35, IC37, IC39, IC41 IC22
1 x	74HC245	
8 x	74HC541	IC28, IC36, IC38, IC44, IC46, IC51, IC53, IC65
3 x	74AC574	IC4, IC5, IC8
14 x	74HC574	IC23, IC24, IC25, IC26, IC27, IC40, IC42, IC43, IC45,
2	27(0)10, (0)	IC52, IC54, IC55, IC60, IC61
3 x	27C010, 60ns	IC1, IC2, IC3
1 x	27C64 or 27C256, 100ns	IC59
2 x	27C801, 100ns	IC57, IC58
1 x	LM393	IC33
1 x	10nF	C105
67 x	100nF	C1 - C65, C100, C101
1 x	2,2µF / 16V, tantalum	C103
2 x	10μF / 16V, tantalum	C102, C104
1 x	10 Ohm	R13
11 x	47 Ohm	R1, R2, R3, R4, R5, R8, R9, R23, R28, R30, R31
1 x	100 Ohm	R18
7 x	470 Ohm	R6, R10, R11, R22, R25, R26, R27
8 x	1 kOhm	R31, R32, R33, R34, R35, R36, R37, R38
1 x	2.2 kOhm	R12
3 x	4.7 kOhm	R19, R21, R29
3 x	10 kOhm	R14, R20, R30
1 x	22 kOhm	R16
1 x	47 kOhm	R15
1 x	220 kOhm	R17
1 x	SIL 8 x 4,7 kOhm	R7
1 x	SIL 8 x 10 kOhm	R24
1 x	D1	1N4148
2 x	Crystal Oscillator	Q1, Q2
4 x	3 pin jumper	JP1, JP2, JP3, JP5
1 x	2*4 pin jumper block + jumper	JP4
1 x	DIN 41612 Connector	J1
1 x	2 pin connector (with cable)	J2 5 :: VA 5 :: VB 2 :: VC
12 x	10 pin header	5 x VA, 5 x VB, 2 x VC
9 x	14 pin header	4 x V1, 3 x V2, 2 x V3
8 x	16 pin header	4 x V0, 2 x V4, 2 x V6
3 x	20 pin header	3 x V5
5 x	print board, 100 x 160 mm	
16 x	distance husk with screw	

3 Board Stack

3.1 Stacking the Boards

The CPU consists of 5 printed boards. If wire-wrap connectors with long pins are used for V0 - V6 and VA - VC, the boards can simply put together (please see the picture below for details). The stacking order is as follows:

first board (top of the stack):
second board:
third board:
fourth board:
fifth board (bottom of the stack):

Arithmetic Logic Unit (ALU)
Microcode Control Board
Signal Decoder Board
Program Counter Board (PC)
Bus interface and registers

Note:

Alternatively you can use ribbon cable with board connectors between the boards. Ribbon cable is much cheaper than the wire-wrap connectors, but it does not look so good.

Fig. 12: MyCPU Board Connectors

4 Signals on Board Connectors

This chapter describes the board connectors. Legend:

- An arrow from the signal name to the connector pin describes an input signal.
- An arrow from the connector pin to the signal name describes an output signal.
- An double-arrow describes a bidirectional signal, in this design it is only the data bus.

4.1 ALU

4.2 Control Unit

4.3 Decoder

4.4 Program Counter

4.5 Interface Board

5 CPU Bus Connector

5.1 Layout of the Bus Connector

CPU Bus Connector (DIN41612 / IEC603-2)

Fig. 13: CPU Bus Connector

A1	GND	C1	GND
A2	GND	C2	GND
А3	+5V	C3	+5V
A4	D1	C4	D0
A5	D3	C5	D2
A6	D5	C6	D4
A7	D7	C7	D6
A8	+5V	C8	+5V
A9	/RDC(code)	C9	/RD (data)
A10	reserved	C10	/WR (data)
A11	BUSCLK	C11	IRQ
A12	A1	C12	A0
A13	A3	C13	A2
A14	A5	C14	A4
A15	A7	C15	A6
A16	A9	C16	A8
A17	A11	C17	A10
A18	A13	C18	A12
A19	A15	C19	A14
A20	GND	C20	GND
A21	(+12V)	C21	(+12V)
A22	(-12V)	C22	(-12V)
A23	(IRQ1)	C23	(IRQ0)
A24	(IRQ3)	C24	(IRQ2)
A25	(IRQ5)	C25	(IRQ4)
A26	(IRQ7)	C26	(IRQ6)
A27	(/IOEN2)	C27	(/IOEN1)
A28	(/IOEN3)	C28	4.000MHz
A29	/HALT	C29	/INT.RES
A30	+5V	C30	+5V
A31	GND	C31	GND
A31	GND	C32	GND

5.2 Bus Signal Description

Pin	Direction	Active Level	Description
A1			GND
A2			GND
А3			+5V
A4	bidirectional	high	D1
			Bidirectional data bus line
A5	bidirectional	high	D3
			Bidirectional data bus line
A6	bidirectional	high	D5
		_	Bidirectional data bus line
A7	bidirectional	high	D7
			Bidirectional data bus line
A8			+5V
A9	output	low	/RDC

			T
			Read code memory (max. 64 kByte). If this line is low, the CPU
			reads data from the code memory (ROM). The address lines are
			valid at least one half CPU clock cycle before this line is
			asserted. The exact timing of this signal depends on the CPU
			microcode.
A10			Reserved
A11	Quitout	high	BUSCLK
AII	output	riigii	
			Bus clock, has the same frequency like CPU core frequency and
			is phase synchronous to the /RDC, /RD and /WR lines.
A12	output	high	A1
			Address bus line
A13	output	high	A3
			Address bus line
A14	output	high	A5
	•	J	Address bus line
A15	output	high	A7
/ 10	Jacque	ı ıı gı ı	Address bus line
A16	output	high	A9
AIG	Output	riigri	
A 4 7		la ! aula	Address bus line
A17	output	high	A11
			Address bus line
A18	output	high	A13
			Address bus line
A19	output	high	A15
	•	· ·	Address bus line
A20			GND
A21			(reserved for +12V supply on backplane)
A22			(reserved for -12V supply on backplane)
-			
A23			(reserved for IRQ1 input line to interrupt controller board)
A24			(reserved for IRQ3 input line to interrupt controller board)
A25			(reserved for IRQ5 input line to interrupt controller board)
A26			(reserved for IRQ7 input line to interrupt controller board)
A27			(reserved for /IOEN2 output line of memory board)
A28			(reserved for /IOEN3 output line of memory board)
A29	input	low	/HALT
	•		Input with internal pull-up. If asserted the CPU is halted (the
			internal clock is switched off). When the CPU is halted, the
			signal BUSCLK is low, but the 4.000MHz-line is still working.
			The /HALT-signal can be used by slow I/O-devices to lengthen
100			the current I/O-access.
A30			+5V
A31			GND
A31			GND
C1			GND
C2			GND
C3			+5V
C4	bidirectional	high	D0
•		٠٠٠ق٠٠	Bidirectional data bus line
C5	bidirectional	high	D2
55	Sidirodioriai	ingii	Bidirectional data bus line
C6	bidirectional	hiah	D4
00	bidirectional	high	
	In Calling and	1. 1 . 1	Bidirectional data bus line
C7	bidirectional	high	D6
			Bidirectional data bus line
C8			+5V
C9	output	low	/RD
			Read data memory (max. 64 kByte). If this line is low, the CPU
			reads data from the data memory (RAM) or an I/O-device. The
			address lines are valid at least one half CPU clock cycle before
			this line is asserted. The exact timing of this signal depends on

			the CPU microcode.
C10	output	low	WR
	·		Write data memory (max. 64 kByte). If this line is low, the CPU
			writes data to the data memory (RAM) or to an I/O-device. The
			address lines are valid at least one half CPU clock cycle before
			this line is asserted. The exact timing of this signal depends on
			the CPU microcode.
C11	input	high	IRQ
			Input with internal pull-down. Maskable Interrupt Input. If this line
			is asserted, the CPU leaves the normal program execution and
0.10			executes an interrupt service routine.
C12	output	high	A0
040		1 * - 1	Address bus line
C13	output	high	A2
C14	atat	h: ala	Address bus line A4
C14	output	high	
C15	Quitout	high	Address bus line A6
	output	riigri	Address bus line
C16	output	high	A8
	output	Illigii	Address bus line
C17	output	high	A10
"	output	1.1.9.1	Address bus line
C18	output	high	A12
	5 to 4 to 5	g	Address bus line
C19	output	high	A14
			Address bus line
C20			GND
C21			(reserved for +12V supply on backplane)
C22			(reserved for -12V supply on backplane)
C23			(reserved for IRQ0 input line to interrupt controller board)
C24			(reserved for IRQ2 input line to interrupt controller board)
C25			(reserved for IRQ4 input line to interrupt controller board)
C26			(reserved for IRQ6 input line to interrupt controller board)
C27			(reserved for /IOEN1 output line of memory board)
C28	output	high	4.000 MHz Clock
			This clock is <u>not</u> synchronous to the CPU core frequency. It
			remains active when the /HALT-signal is asserted. This clock
			can be used by hardware devices for bus delay timing.
C29	output	low	/INT.RES
			Synchronous reset output. On power-on, this line is low for
			several 100 milliseconds. It can be used to reset external
Can			hardware devices.
C30			+5V GND
C31			
C32			GND

Tab. 1: CPU Bus Signals

6 CPU Reset And Interrupt Sequence

6.1 Reset Behaviour

On power-up, IC33 generates a reset pulse with a duration of 100ms. This is enough time for the crystal oscillators to start swinging. The CPU logic needs 3 core clock cycles (= 12-16 crystal clocks) for the reset to take effect. That means, when the reset is asserted, the crystal has to swing 12-16 times until all the internal CPU logic is initialized. While the reset signal is asserted, the CPU fetches the OP-code at address 0000h again and again.

After IC33 has finished the reset the CPU executes the OP-code fetched from address 0000h. In most cases a jump command is stored at address 0000h that points to the reset routine in the ROM.

After the reset the interrupt is masked (disabled), and all registers have undefined values.

6.2 Hardware Interrupt

The hardware interrupt is microcode-dependent. With the MyCPU23-microcode the CPU executes the code at address 0003h when the interrupt line is asserted (= set high).

But before the CPU starts executing the code at address 0003h, the current program counter and the flags register are saved to the stack. Also all further interrupts are disabled by masking the interrupt line. When the CPU executes the RTI (=return from interrupt) -instruction, the interrupt line is automatically enabled again, the flags are restored from stack and the processor continues execution of the main program.

Note: If the interrupt line is asserted while the CPU executes the RTI command, the CPU will immediately jump to address 0003h again, without executing any OP-code from the main program stream.

6.3 Software Interrupt

The MyCPU23-microcode provides one software interrupt. The software interrupt is executed when the CPU fetches a BRK (=break program flow) -instruction. The CPU then continues program execution at ROM address 0006h. At this point the CPU has stored the old program counter and the flags to stack memory to be able to return to the interrupted program after the software interrupt has been serviced. The difference to the hardware interrupt is that the hardware interrupt line is not automatically masked when the software interrupt is raised. Because of this there exists a different instruction for finishing the software interrupt: RTB (=return from break interrupt).

Address	Type of interrupt
(Interrupt Vector)	
0000h	Hardware Reset
0003h	Hardware Interrupt
0006h	Software Interrupt

Tab. 2: CPU Interrupt Vectors

7 Backplane

7.1 Backplane Cable

The backplane consists of 0.35 meters of a 64 wire ribbon cable and 9 DIN 41612 connectors:

Fig. 14: MyCPU Backplane Cable

8 Schematics

8.1 List of all Schematics

- Fig. 15: ALU, Control and Registers
- Fig. 16: ALU, Look-up Tables
- Fig. 17: Microcode and common steering
- Fig. 18: Program Counter, lower 8 address lines
- Fig. 19: Program Counter, upper 8 address lines
- Fig. 20: General Purpose Registers
- Fig. 21: Clock-generation and –control
- Fig. 22: Reset Generator
- Fig. 23: Bus Interface

8.2 Schematics sorted by Boards

Board 1,	Arithmetic Logic Unit	Fig. 15, Fig. 16

Board 2, Microcode Control Fig. 17 Board 3, Signal Decode Fig. 17

Board 4, Program Counter Fig. 18, Fig. 19

Board 5, Register and Interface Fig. 20, Fig. 21, Fig. 22, Fig. 23

Fig. 15: ALU, Control and Registers

Fig. 16: ALU, Look-up Tables

Fig. 17: Microcode and common steering

Fig. 18: Program Counter, lower 8 address lines

Fig. 19: Program Counter, upper 8 address lines

Fig. 20: General Purpose Registers

Fig. 21: Clock-generation and -control

Fig. 22: Reset Generator

Fig. 23: Bus Interface

9 Change Log

9.1 Changes in the MyCPU design

Date	Name	Chapter	Description
2006-12-16	D.Kuschel	1.4	IC36, IC38 replaced by 74HC541
			IC40, IC42 replaced by 74HC574
			Information on page IV inserted.
		4	Chapter "Signal on Board Connectors" added
2007-01-13	D.Kuschel	1.5	Interface Board replaced by new version, chapter
			reworked.
		8	Schematics of Bus-Interface and Clock-Control
			updated
		2.1	Table updated
2008-09-24 D.Kus	D.Kuschel	1.5	Layout of Interface Board changed (bug fixed)
		1.5.3	Values of R8 and R13 changed to 10 Ohm
		8.2	Figure 21 and 23 updated
2009-02-08	D.Kuschel	all	Updated to MyCPU v2.3