МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра математического обеспечения и применения ЭВМ

ОТЧЕТ

по практической работе №2

по дисциплине «Вычислительная математика»
Тема: Изучение понятия обусловленности вычислительной

ЗАДАЧИ

Студент гр. 0303	 Калмак Д.А.
Преподаватель	 Сучков А.И.

Санкт-Петербург

Цель работы.

Исследование обусловленности задачи нахождения корня уравнения на примере линейной функции.

Основные теоретические положения.

Под обусловленностью вычислительной задачи понимают чувствительность ее решения к малым погрешностям входных данных.

Задачу называют хорошо обусловленной, если малым погрешностям входных данных отвечают малые погрешности решения, и плохо обусловленной, если возможны сильные изменения решения. Количественной мерой степени обусловленности вычислительной задачи является число обусловленности, которое можно интерпретировать как коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных. Пусть между абсолютными погрешностями входных данных х и решения у установлено неравенство: $\Delta(y^*) \leqslant \nu_{\Delta}\Delta(x^*)$, где x^* и y^* – приближённые входные данные и приближённое решение соответственно. Тогда величина ν_{Δ} называется абсолютным числом обусловленности.

Если же установлено неравенство $\delta(y^*) \leqslant \nu_\delta \delta(x^*)$, между относительными ошибками данных и решения, то величину ν_δ называют относительным числом обусловленности. Для плохо обусловленной задачи $\nu \gg 1$.

Ответ на вопрос о том, при каком значении v задачу следует признать плохо обусловленной, зависит, с одной стороны, от предъявляемых требований к точности решения и, с другой, – от уровня обеспечиваемой точности исходных данных. Например, если требуется найти решение с точностью 0.1%, а входная информация задается с точностью 0.02%, то уже значение v=10 сигнализирует о плохой обусловленности. Однако, при тех же требованиях к точности результата, гарантия, что исходные данные задаются с точностью не ниже 0.0001%, означает, что при v=103 задача хорошо обусловлена.

Если рассматривать задачу вычисления корня уравнения у=f(x), то роль числа обусловленности будет играть величина $\nu_{\Delta}=\frac{1}{|f'(\varepsilon)|}$, где ε - корень уравнения.

Постановка задачи.

Используя программу task2.exe, исследовать обусловленность задачи нахождения корня уравнения f(x) = 0 для линейной функции f(x) = c(x - d). Значения функции f(x) следует вычислить приближенно с точностью delta, варьируемой в пределах от 0.1 до 0.000001.

Выполнение работы.

1. Графически или аналитически отделить корень уравнения f(x)=0, т.е. найти отрезки [a, b], на которых функция удовлетворяет условиям применимости метода бисекции.

$$d = -8.6462$$
; $c = 1$;
 $f(x) = (x+8.6462)$

Поиск отрезка, на котором функция удовлетворяет условиям применимости метода бисекции, представлен в табл. 1.

Таблица 1 – Поиск отрезка

X	f(x)
-10	-1.3538
-9	-0.3538
-8	0.6462
-7	1.6462

$$[a, b] = [-9, -8]$$

 $\Delta(y^*)\leqslant \nu_\Delta\Delta(x^*),$ где x^* и y^*- приближённые входные данные и приближённое решение соответственно. $\Delta(x^*)-$ delta. $\Delta(y^*)-$ eps. $\nu\Delta=\frac{1}{|f'(\epsilon)|}$

 $v_{\Delta} = \frac{1}{|c|} \Rightarrow \text{ eps } \leqslant \frac{\text{delta}}{|c|}$. Обусловленность задачи лучше, когда модуль тангенса угла наклона прямой больше.

2. Провести вычисления по программе, варьируя значения параметров с (тангенс угла наклона прямой), ерѕ (точность вычисления корня) и delta (точность задания исходных данных).

В результате вычислений были получены зависимости от c, delta, eps. (см. табл. 2-4) Чем больше c, тангенс угла наклона прямой, тем лучше обусловленность задачи, что соответствует теории.

Таблица 2 – Зависимость от с

eps	c	d	a	b	delta	X	k	d-x
0.000001	0.1	-8.6462	-9	-8	0.0001	-8.646484	8	0.000284
0.000001	1	-8.6462	-9	-8	0.0001	-8.646240	11	0.000040
0.000001	10	-8.6462	-9	-8	0.0001	-8.646202	16	0.000002
0.000001	100	-8.6462	-9	-8	0.0001	-8.646200	18	0.000000

Таблица 3 – Зависимость от delta

eps	c	d	a	b	delta	X	k	d-x
0.0001	1	-8.6462	-9	-8	0.0001	-8.646240	11	0.000040
0.0001	1	-8.6462	-9	-8	0.001	-8.646484	8	0.000284
0.0001	1	-8.6462	-9	-8	0.01	-8.648438	6	0.002238
0.0001	1	-8.6462	-9	-8	0.1	-8.625000	2	0.021200

Таблица 4 - 3ависимость от eps

eps	c	d	a	b	delta	X	k	d-x
0.0000001	100	-8.6462	-9	-8	0.001	-8.646202	16	0.000002
0.000001	100	-8.6462	-9	-8	0.001	-8.646202	16	0.000002
0.00001	100	-8.6462	-9	-8	0.001	-8.646194	16	0.000006

Выводы.

Таким образом, была исследована обусловленность задачи нахождения корня уравнения на примере линейной функции. Обусловленность задачи нахождения корня уравнения f(x) = 0 для линейной функции f(x) = c(x - d) лучше, когда тангенс угла наклона прямой с больше и когда точность вычисления корня ерѕ и точность задания исходных данных delta меньше.