Pronosticando el físico

Aprendizaje automático para predecir el cambio del cuerpo al perder peso

Pablo Ramón Guevara

24/07/2023

Resumen rápido

Hemos usado un modelo del cuerpo 3D y una red neuronal para predecir cómo cambia el cuerpo durante un régimen de pérdida de peso.

- Revisión de la literatura sobre modelar cuerpos humanos en 3D.
- Procesamiento y limpieza de los datos disponibles.
- Desarrollo e implementación de una red neuronal.

Representación del cuerpo en 30

Taxonomía de modelos

Basada en los tipos de entradas y salidas:

Entrada

- 2D
- 3D
- Modelos paramétricos

Salida

- Espacio 2D
- Mallas 3D
- Vóxels 3D
- NeRF

Modelos paramétricos

Representar y generar modelos 3D basados en parámetros ajustables.

Skinned Multi-Person Linear Model (SMPL)

Divide un cuerpo en:

- 10 parámetros de forma β
- 72 parámetros de pose θ

Análisis de datos y preprocesamien

Datos disponibles

- 80 pacientes
- 400 sesiones
- 200 escaneos 3D

Tipo	Fuente	Medidas (unidad)
		Muñeca (cm)
A		• Cintura (cm)
Antropométrico	Cinta métrica flexible	Cadera (cm)
		 Grasa por extremidad y tronco (%)
		 Músculo por extremidad y tronco
		(%)
		Grasa total y músculo (%)
		 Área de grasa visceral (cm²)
	 Báscula Tanita MC 780-P MA 	Peso (kg)
Composición corporal	Estadiómetro Seca 213	Altura (m)
		Actividad (puntuación)
		 Género
Otro, Estilo de vida	Entrevista	Edad (años)
		Glucosa (mg/dL)
		 Colesterol (mg/dL)
Sangre (capilar)	Accutrend Plus	 Triglicéridos (mg/dL)
		 Presión sistólica (mmHg)
Presión arterial	Omron M3	 Presión diastólica (mmHg)

Tech4Diet

Sistema escaneo 3D

Sistema escaneo 3D

13 cámaras Intel Realsense RGB-D.

Extracción de parámetros SMPL

- Adquisición de modelos 3D.
- Estimación de plantilla intermedia BPS.
- Primera minimización.
- Segunda minimización.

Garcia-D'Urso et al. (2023). Accurate estimation of parametric models of the human body from 3d point clouds

Redes neuronales

Análisis de arquitecturas para sequencias

Tipos planteados:

- Recurrentes
 - RNN
 - LSTM
 - GRU
- Transformers

Desarrollo de una red neuronal

PyTorch

Basada en LSTM

Resultados