

Department of Computer Engineering

Artificial Intelligence

Assignment 7 Part 2

Dr. Rohban

Parsa Mohammadian — 98102284

January 7, 2022

Contents

1																					1
	1.1																				1
	1.2																				1
	1.3																				1

1

1.1

V-value is state-value function. It means that $V^{\pi}(s)$ is the value of starting from state s and obeying policy π . At the other hand, Q-value is action-value function. So $Q^{\pi}(s,a)$ is the value of taking action a from state s and obeying policy π . Since R and P are not available, we can only use Q-value for this kind of problems (model-free).

1.2

In ϵ -greedy method, we choose currently best action with probability $1-\epsilon$ and randomly choose other actions with probability ϵ . For the normal policy iteration ($\epsilon=1$ or always choose the current best action), we only exploit our current knowledge and never explore. In this fashion we might stuck in local optimum. But when ϵ is not 1, we explore with probability $1-\epsilon$ and seek for better local optimum even if we have already found one, and finally we might get to the global optimum.

1.3

$$\forall s : \mathbb{E}_{a \sim \pi'}[Q^{\pi}(s, a)] \ge \mathbb{E}_{a \sim \pi}[Q^{\pi}(s, a)]$$

$$\mathbb{E}[X] = \sum_{x \in X} p(x)x$$

$$\Rightarrow \sum_{a \in A} P(a)Q^{\pi'}(s, a) \ge \sum_{a \in A} P(a)Q^{\pi}(s, a)$$

$$P(a) \propto \pi(a|s)$$

$$\Rightarrow \sum_{a \in A} \pi(a|s)Q^{\pi'}(s, a) \ge \sum_{a \in A} \pi(a|s)Q^{\pi}(s, a)$$

$$V^{\pi}(s) = \sum_{a \in A(s)} \pi(a|s)Q^{\pi}(s, a)$$

$$\Rightarrow V^{\pi'}(s) \ge V^{\pi}(s)$$