Central Tendency

Central Tendency

- We are in section 2.5 of the textbook
- Central tendency describes the "average" or "typical" value of a data set, the center of the data.
- The *mode* is the most common (frequent) data value.
- The *median* is the middle of the data when sorted in order.
 - With an even number of data values, the median is halfway between the middle two points.
- The *mean* is calculated by adding the values and dividing by the number of values. ∇

Notation: sample mean $\bar{x} = \frac{\sum x}{N}$

- N the size of a sample or data set (number of points)
- The (random) variable x
- Add values \sum
- Mean of variable x is \bar{x} (sample mean).

Population mean μ

- Outliers are data points that are much larger or much smaller than the others.
 - Median is not very sensitive to outliers (unchanged if the same number of data points at the top and bottom are thrown out)
 - Mean is very sensitive to outliers (a very large outlier will increase the value of the mean; small will decrease the mean)
- Which measure of central tendency should you use?
 - Nominal data use mode only
 - Ordinal data mode, median, or mean based on discipline standards
 - Quantitative data with outliers median
 - Mean is the most commonly used center measure

1.	The university is studying the majors and grades of a collection of students.	For each	of the
	following variables, identify the measures of central tendency that apply.		

- (a) The GPA of each student.
- (b) The major of each student.
- (c) The number of hours each student is taking this semester.
- (d) The high school each student attended.
- 2. Compute the mean and median of the following data set.

8 12 15 16 20

3. Compute the mean and median of the following data set.

40 70 74 80 90 100

- 4. We have a data set with 30 data points of ratio data, which are not all the same. Suppose that the highest value increases by 10.
 - (a) Does the median change? If so, how much? If not, why not?

(b) Does the mean change? If so, how much? If not, why not?

- 5. We have a data set with 30 data points of ratio data, which are not all the same. Suppose that the highest value increases by 12 and the lowest value decreases by 12.
 - (a) Does the median change? If so, how much? If not, why not?

(b) Does the mean change? If so, how much? If not, why not?