Regular Language (RL)

- Basic languages
 - φ:empty language
 - {ε}:null language
 - $\{0\}$: simple language, $0 \in \Sigma$
- A regular language over an alphabet ∑ is one that can be obtained from these basic languages using the operations of union, concatenation and kleene *

Some Properties of Regular Languages

properties

For regular languages L_{1} and L_{2} we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Are regular Languages

We Say:

Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Regular Expression (RE)

- Let Σ be an alphabet, a RL over Σ can be described by an explicit formula known as regular expression. In other words, value of a RE is a language.
- REs are slightly simple formulas by replacing brackets $\{\}$ with parentheses () and \cup by +.
- If r, s are RE over Σ denoting the RL R, S over Σ , then (r+s), (rs) and (r*) are RE over Σ denoting R \cup S, RS and R* respectively.

Examples of Regular Language

Let $\Sigma = \{0, 1\}$ then RL over inputs are

- {0}
- {001}
- $\{0,1\}$ i.e. $\{0\} \cup \{1\}$
- $\{00,10,11,01\}$ i.e. $\{00\} \cup \{10\} \cup \{11\} \cup \{01\}$
- $\{001\}\{0,1\}$ i.e. $\{001\}\{0\} \cup \{001\}\{1\}$
- $\{1,\epsilon\}\{001\}$ i.e. $\{1001\} \cup \{001\}$

4

Examples of RE

Let $\Sigma = \{0, 1\}$ then RE over inputs are

- ε (empty)
- **♦** (null)
- 0
- **001**
- 0+1
- 00+10+11+01
- 001(0+1)
- (111)*
- $(1+\epsilon)001$

Note on Regular Expression (RE)

- If r is a set of strings, r* denotes the set of all strings formed by concatenating zero or more strings from r.
- If r is a set of strings, r+ denotes the set of all strings formed by concatenating one or more strings from r or r+ = ((r*)r)=(r(r*)).
- We can neglect the parentheses assuming that * has a higher precedence than concatenation and concatenation has a higher precedence than +

- □01* + 1 is grouped as ((0(1*)) + 1)

 Language: string 1 plus all strings consisting of a 0 followed by any no of 1's.
- □(01)* + 1 Language : string 1 plus all strings of 01 , zero or more times.
- □0(1*+1) Language : set of strings that start with 0 and followed by any no of 1's

More Examples of RE

- all strings ending with "011"
- (0+1)*011
- all strings with no "0" after "1"
- 0*1*
- all strings with at least one "0" and one "1", and no "0" after "1"
- 00*11* or 0+1+
- all strings with an even number of 0's followed by odd number of 1's.
- (00)*(11)*1
- all string containing "00" as substring.
- (0+1)*00(0+1)*

Class Discussion

What languages do the following RE represent?

- -(1+0)*(01+110)
- **11***(0+1)
- $-(0+1+\epsilon)$

Context-free grammar: definition

Definition. A context-free grammar

G = (N, T, P, S) consists of

- a finite set N of non-terminal / variable symbols;
- a finite set T of terminal symbols not in N;
- a finite set P of production rules of the form

 $U \rightarrow v$, where U is in N and v is a string in $(T \cup N)^*$

a start symbol S in N.

Example

The grammar G with non-terminal symbols

N = {S}, terminal symbols = {a, b}, and productions

 $S \rightarrow aSb$

 $S \rightarrow ba$

Following a common practice, we use <u>capital letters</u> for <u>non-terminal symbols</u> and <u>small letters</u> for <u>terminal symbols</u>.

Example: $G = (\{S\}, \{a,b\}, S, P)$ with productions $S \rightarrow aSa$, $S \rightarrow bSb$ $S \rightarrow \in$

- This is context free as well as linear.
- S →aSa →aaSaa → aabSbaa →aabbaa
- $L(G)=\{ww^R: w \in \{a,b\}^*\}$

Exercise

Give a CFG for the following languages:

- L={ $a^nb^n | n ≥ 0$ }
- L={x | even number of a's and b's }
- L={ x | x is a palindrome over {a, b}* }