Fiche d'entraînement : limites et comparaisons

Exercice 1:

Soit f une fonction définie sur \mathbb{R}^* telle que, pour tout $x \in \mathbb{R}^*$, $\frac{1}{r^2} + 1 \le f(x) \le \frac{2}{r^2} + 1$.

- 1) Déterminer $\lim_{x \to +\infty} f(x)$
- 2) Déterminer $\lim_{x \to -\infty} f(x)$
- 3) Déterminer $\lim_{x\to 0} f(x)$

Exercice 2:

Soit f une fonction définie sur]1; $+\infty$ [telle que, pour tout x > 1: $\frac{2x^2 + 3}{3x^2 - x} \le f(x) \le \frac{2x^2 + 5x}{3x^2 - x}$ Déterminer $\lim_{x \to +\infty} f(x)$. Exercice 3 :

Déterminer la limite des fonctions suivantes en $+\infty$ et en $-\infty$.

$$1) f(x) = \frac{x + 2\sin(x)}{x}$$

2)
$$g(x) = (2 + \cos(x)) x^3$$

3)
$$h(x) = x^2 + 3\sin(x)$$

Exercice 4:

Soit f une fonction définie sur \mathbb{R} telle que, pour tout réel x, on a : $e^{3x-2} - 4 \le f(x) \le 3e^{3x-2} - 4$

- 1) Déterminer $\lim_{x \to -\infty} f(x)$
- 2) Déterminer $\lim_{x \to +\infty} f(x)$

Solutions

Exercice 1:

1)
$$\bullet \lim_{x \to +\infty} \frac{1}{x^2} = 0 \text{ donc } \lim_{x \to +\infty} \left(\frac{1}{x^2} + 1 \right) = 1$$

$$\bullet \lim_{x \to +\infty} \frac{2}{x^2} = 0 \text{ donc } \lim_{x \to +\infty} \left(\frac{2}{x^2} + 1 \right) = 1$$

$$\bullet \forall x \in \mathbb{R}^* \frac{1}{x^2} + 1 \le f(x) \le \frac{2}{x^2} + 1$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = 1 \text{ grâce au théorème des gendarmes.}$$

2)
$$\bullet \lim_{x \to -\infty} \frac{1}{x^2} = 0 \text{ donc } \lim_{x \to -\infty} \left(\frac{1}{x^2} + 1 \right) = 1$$

$$\bullet \lim_{x \to -\infty} \frac{2}{x^2} = 0 \text{ donc } \lim_{x \to -\infty} \left(\frac{2}{x^2} + 1 \right) = 1$$

$$\bullet \forall x \in \mathbb{R}^*, \frac{1}{x^2} + 1 \le f(x) \le \frac{2}{x^2} + 1$$

$$\Rightarrow \lim_{x \to -\infty} f(x) = 1 \text{ grâce au théorème des gendarmes.}$$

3)
$$\lim_{x \to 0} \frac{1}{x^2} = +\infty \operatorname{donc} \lim_{x \to 0} \left(\frac{1}{x^2} + 1 \right) = +\infty$$

$$\Rightarrow \lim_{x \to 0} f(x) = +\infty \text{ (th\'eor\`eme de comparaison)}.$$

Exercice 2:

•
$$\lim_{x \to +\infty} \frac{2x^2 + 3}{3x^2 - x} = \lim_{x \to +\infty} \frac{2x^2}{3x^2} = \frac{2}{3}$$

• $\lim_{x \to +\infty} \frac{2x^2 + 5x}{3x^2 - x} = \lim_{x \to +\infty} \frac{2x^2}{3x^2} = \frac{2}{3}$
• $\forall x > 1, \frac{2x^2 + 3}{3x^2 - x} \le f(x) \le \frac{2x^2 + 5x}{3x^2 - x}$ $\Rightarrow \lim_{x \to -\infty} f(x) = \frac{2}{3}$ grâce au théorème des gendarmes.

Exercice 3:

1) $\forall x \in \mathbb{R}, -1 \le \sin(x) \le 1 \text{ donc } -2 \le \sin(x) \le 2 \text{ donc } -2 + x \le \sin(x) + x \le 2 + x \text{ (on ajoute } x) \text{ et donc si on divise par } x$:

•
$$\frac{-2+x}{x} \le \frac{\sin(x)+x}{x} \le \frac{2+x}{x}$$
 si $x > 0$ (inégalité (1))
• $\frac{-2+x}{x} \ge \frac{\sin(x)+x}{x} \ge \frac{2+x}{x}$ si $x < 0$ (inégalité (2))

* Pour la limite en $+\infty$ il faut donc utiliser l'inégalité (1) (car x > 0):

$$\begin{array}{l}
\bullet \lim_{x \to +\infty} \frac{-2+x}{x} = \lim_{x \to +\infty} \frac{x}{x} = 1 \\
\bullet \lim_{x \to -\infty} \frac{-2+x}{x} = \lim_{x \to -\infty} \frac{x}{x} = 1 \\
\bullet \forall x > 0, \frac{-2+x}{x} \le \frac{\sin(x)+x}{x} \le \frac{2+x}{x}
\end{array}$$

$$\Rightarrow \lim_{x \to +\infty} f(x) = 1 \text{ grâce au théorème des gendarmes.}$$

* Pour la limite en $-\infty$ il faut donc utiliser l'inégalité (2) (car x < 0):

2) $\forall x \in \mathbb{R}, -1 \le \cos(x) \le 1 \text{ donc } 1 \le 2 + \cos(x) \le 3 \text{ (on ajoute 2) et donc si on multiplie par } x^3$:

•
$$x^3 \le (2 + \cos(x)) x^3 \le 3x^3 \text{ si } x > 0 \text{ (inégalité (1))}$$

•
$$x^3 \ge (2 + \cos(x)) x^3 \ge 3x^3 \text{ si } x < 0 \text{ (inégalité (2))}$$

* Pour la limite en $+\infty$ il faut donc utiliser l'inégalité (1) (car x > 0):

•
$$\lim_{x \to +\infty} x^3 = +\infty$$

• $\forall x > 0, (2 + \cos(x)) x^3 \ge x^3$ $\implies \lim_{x \to +\infty} (2 + \cos(x)) x^3 = +\infty$ (théorème de comparaison).

* Pour la limite en $-\infty$ il faut donc utiliser l'inégalité (2) (car x < 0):

$$\left. \begin{array}{l} \bullet \lim_{x \to -\infty} x^3 = -\infty \\ \bullet \forall x < 0, (2 + \cos(x)) \, x^3 \le x^3 \end{array} \right\} \Longrightarrow \lim_{x \to -\infty} \left(2 + \cos(x) \right) x^3 = -\infty \text{ (th\'eor\`eme de comparaison)}.$$

3) $\forall x \in \mathbb{R} - 1 \le \sin(x) \le 1 \text{ donc } -3 \le \sin(x) \le 3 \text{ (on multiplie par 3) donc } x^2 - 3 \le x^2 + 3\sin(x) \le x^2 + 3 \text{ (on ajoute } x^2)$

* Pour la limite en $+\infty$:

$$\left. \begin{array}{l} \bullet \lim_{x \to +\infty} x^2 = +\infty \ \mathrm{donc} \lim_{x \to +\infty} \left(x^2 - 3 \right) = +\infty \\ \bullet \forall \, x \in \mathbb{R}, \, x^2 + 3 \sin(x) \geqslant x^2 - 3 \end{array} \right\} \Longrightarrow \lim_{x \to +\infty} \left(x^2 + 3 \sin(x) \right) = +\infty \ \mathrm{(th\'eor\'eme de comparaison)}.$$

* Pour la limite en $-\infty$:

$$\begin{array}{l}
\bullet \lim_{x \to -\infty} x^2 = +\infty \operatorname{donc} \lim_{x \to -\infty} (x^2 - 3) = +\infty \\
\bullet \forall x \in \mathbb{R}, x^2 + 3\sin(x) \ge x^2 - 3
\end{array}
\right\} \implies \lim_{x \to -\infty} \left(x^2 + 3\sin(x) \right) = +\infty \text{ (théorème de comparaison)}.$$

Exercice 4:

1) $x \mapsto e^{3x-2}$ est la composée de $x \mapsto 3x-2$ suivie de $x \mapsto e^x$

$$\left. \begin{array}{l}
\bullet \lim_{x \to -\infty} 3x - 2 = -\infty \\
\bullet \lim_{x \to -\infty} e^x = 0
\end{array} \right\} \implies \text{par composition } \lim_{x \to -\infty} e^{3x - 2} = 0.$$

Donc $\lim_{x \to -\infty} e^{3x-2} - 4 = -4$ et $\lim_{x \to -\infty} 3e^{3x-2} - 4 = -4$ donc, grâce au théorème des gendarmes, $\lim_{x \to -\infty} f(x) = -4$.

$$\left. \begin{array}{l} \bullet \lim_{x \to +\infty} 3x - 2 = +\infty \\ \bullet \lim_{x \to +\infty} e^x = +\infty \end{array} \right\} \Longrightarrow \text{par composition } \lim_{x \to +\infty} e^{3x - 2} = +\infty \text{ donc } \lim_{x \to +\infty} e^{3x - 2} - 4 = +\infty.$$

On a donc: $\begin{cases} \bullet \lim_{x \to +\infty} e^{3x-2} - 4 = +\infty \\ \bullet \forall x \in \mathbb{R}, f(x) \ge e^{3x-2} - 4 \end{cases} \implies \lim_{x \to +\infty} f(x) = +\infty \text{ (Théorème de comparaison)}.$