Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

 $\{\textit{lefb.eng,ronety}\} \ \textit{Quea.edu.br}$

February 23, 2018

Overview

- Introdução
- 2 Justificativa
- Objetivos
- Fundamentação Teórica
 - Problemas de Sequenciamento
 - Problema Máquina Única
 - Similaridades com o Problema do Caixeiro Viajante
- Resultados Parciais
 - Métodos Implementados
 - Resultados
- Trabalhos Futuros
- Cronograma
- Referencial Bibliográfico

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- 8 Referencial Bibliográfico

Introdução

- Para prestar socorro à população em atendimentos de urgência e emergência em saúde, as regiões sem acesso terrestre contam com o serviço de SAMU Fluvial.
- Atendimento similiar às ambulâncias terrestes.

Figure: Ambulâncias Fluviais

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- 8 Referencial Bibliográfico

Justificativa

- Fábrica do Polo Industrial de Manaus
- Produção de **70 modelos** de placas diferentes.
- Máquina NXT

(a) Máquina NXT similar à utilizada na empresa

(b) Carretéis de Componentes

Figure: Máquina NXT e carretéis de componentes

Figure: Cenário hipotético de escolha de setup

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- 8 Referencial Bibliográfico

Objetivos

Objetivo Geral

Estudar o problema de sequenciamento em uma única máquina com tempos de *setup* dependentes da sequência, minimizando o tempo total para completar o processamento.

Objetivos

Objetivo Geral

Estudar o problema de sequenciamento em uma única máquina com tempos de *setup* dependentes da sequência, minimizando o tempo total para completar o processamento.

Objetivos Específicos

- Coletar dados referentes ao número de modelos de placas produzidas, os insumos utilizados e aos atuais tempos de setup;
- Implementar dois métodos, sendo um de otimização baseado em programação dinâmica, e outro da regra de menor tempo de setup em algoritmo guloso;
- Testar os métodos utilizando os dados coletados e instâncias clássicas da literatura, cujas soluções ótimas são conhecidas.
- Comparar o desempenho entre os dois métodos.

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
 - Problemas de Sequenciamento
 - Problema Máquina Única
 - Similaridades com o Problema do Caixeiro Viajante
- Resultados Parciais
- Trabalhos Futuros
- Cronograma

Problemas de Sequenciamento

Scheduling

"Um processo de decisão utilizado regularmente em muitas indústrias de manufatura e de serviços, que lida com a alocação de recursos para tarefas através de dados períodos de tempo e seu objetivo é otimizar um ou mais critérios" [?].

Notação de Graham

Identificar os problemas de scheduling de forma individual

Problema $1|s_{jk}|C_{max}$

• De forma simplificada o problema de sequenciamento neste cenário é:

$$1|s_{jk}|C_{max} \tag{1}$$

• Entretantro no cotidiano da empresa, a situação é mais complexa:

$$1|s_{jk}, r_j, d_j, prmp, prec|C_{max}$$
 (2)

• O Makespan é definido, matematicamente, por:

$$C_{max} = \sum_{j=1}^{n} p[j] + \sum_{j=1}^{n} s[j-1], [j]$$
 (3)

Similaridades com o Problema do Caixeiro Viajante

Definição

"Um vendedor precisa passar por várias cidades afim de vender seus produtos e precisa descobrir o menor percurso entre estas cidades, passando apenas uma vez por cada uma e retornar para a cidade inicial, economizando tempo e custos de transporte".

Qual seria a melhor rota a ser escolhida?

(a) Representação das cidades a serem visitadas

(b) Esquema exemplificando o tempo de setup entre modelos

Figure: Comparação do Problema $1|s_{ik}|C_{max}$ com o Caixeiro Viajante

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
 - Métodos Implementados
 - Resultados
- Trabalhos Futuros
- Cronogram
- 8 Referencial Bibliográfico

Métodos Implementados

- Algoritmo Guloso
 - Regra de Liberação de menor tempo de setup.[?]
- Programação Dinâmica
 - Recursão com apoio de tabela

Resultados

Regra MST(Algoritmo Guloso):

Instância	Solução Encontrada	Desvio do Ótimo
P01	291	0 (0%)
ULYSSES16	9988	3129~(46%)
GR17	2187	102 (5%)
ULYSSES22	10586	3573~(51%)
J22	2232	61 (3%)

Otimização por PD:

Instância	n	t(s)	Solução Encontrada	Solução Ótima
P01	15	0,031	291	291
ULYSSES16	16	0,062	6859	6859
GR17	17	0,234	2085	2085
ULYSSES22	22	16,302	7013	7013
J22	22	16,303	2171	

Resultados – Instância P01

Resultados – Instância Ulysses16

Resultados – Instância GR17

Resultados – Instância J22

- Introdução
- 2 Justificativa
- Objetivos
- 4 Fundamentação Teórica
- Resultados Parciais
- Trabalhos Futuros
- Cronograma
- 8 Referencial Bibliográfico

Trabalhos Futuros

Implementação de Algoritmos Heurísticos para ampliação do tamanho da instância.

Trabalhos Futuros

Implementação de Algoritmos Heurísticos para ampliação do tamanho da instância.

Desenvolvimento de outras restrições do problema geral: $1|s_{jk}, r_j, d_j, prmp, prec|C_{max}$

Cronograma

Mês	Atividades
Março	Implementação do Algoritmo Genético
	Desenvolvimento do Artigo para CSBC
	Estudar Operadores Genéticos
Abril	Implementar novos Operadores
	Desenvolver Componentes Híbridos
	Implementação de novas restrições do problema geral Scheduling
Maio	Desenvolvimento do Artigo para SBPO
	Execução de Testes com instâncias maiores
	Teste das novas restrições
Junho	Aperfeiçoar AG
	Teste de novas instâncias
Julho	Apresentação Final

Referencial Bibliográfico

Modelo de otimização mutiobjetivo para adequação de embarcações de alta velocidade Apresentação Parcial PAIC 2017/2018

Luiz Eduardo Fernandes Bentes, Renata da Encarnação Onety

Universidade do Estado do Amazonas Escola Superior de Tecnologia – EST Manaus - Amazonas - Brasil

 $\{\textit{lefb.eng,ronety}\} \ \textit{Quea.edu.br}$

February 23, 2018