МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: Математическая логика и теория алгоритмов тема: «Теория алгоритмов»

Вариант - 23

Выполнил: ст. группы ПВ-211 Тутов Данил Андреевич

Проверили: Куценко Дмитрий Александрович Рязанов Юрий Дмитриевич Цель работы: изучить теорию алгоритмов

Задания

Теоретическая часть:

Решить задачи из лабораторного практикума по математической логике согласно своему варианту. Для построения машин Тьюринга и Поста воспользоваться программным эмулятором Algo2000 или аналогичным.

Машина Тьюринга:

- > сдвиг вправо
- > сдвиг влево
- - остаться на месте
- _ пробел

Дан номер года. Определить, високосный он или нет.

В начальный момент времени каретка расположена над первой цифрой номера, изначальное состояние Q1, алфавит: 1, 2, 3, 4, 6, 7, 8, 9, 0.

Если год високосный на ленте остаётся цифра 1, в ином случае - 0.

A/Q	Q0	Q1	Q2	Q4	Q5	Q6	Q7
1		>	_ < Q7	_ < Q6	_ < Q7	_ < Q6	_< Q7
2		>	_ < Q4	_< Q7	_< Q6	_ < Q6	_< Q7
3		>	_ < Q7	_< Q6	_ < Q7	_ < Q6	_< Q7
4		>	_ < Q5	_< Q7	_< Q6	_< Q6	_< Q7
5		>	_ < Q7	_< Q6	_< Q7	_ < Q6	_< Q7
6		>	_ < Q4	_< Q7	_< Q6	_ < Q6	_< Q7
7		>	_ < Q7	_< Q6	_< Q7	_ < Q6	_< Q7
8		>	_ < Q5	_< Q7	_< Q6	_ < Q6	_< Q7
9		>	_ < Q7	_< Q6	_ < Q7	_ < Q6	_< Q7
0		>	_ < Q5	_< Q7	_< Q6	_< Q6	_< Q7
Пробел_		< Q2				1 - Q0	0 - Q0
Комментарий:		Поиск конца	Обработка последней цифры	Обработка предпоследней цифры, если последняя 2 или 6	Обработка предпоследней цифры, если последняя 0, 4 или 8	Високосный год	Невисокосный год

(1 λ	λ λ	λλ	λλ	λλ	λλ	λλ	. λ 7	λ	λλ	λλ	λλ	λ >
Слово: 24		acimic may some 12	Пом	иестить	Очистить	ь ленту						
Алфавит: 123	4567890		3	адать								
Начальное со	стояние	: q1 v										
Машина: Зап	устить	Сделать	шаг (брос	Сохрани	ть Загр	узить					
остояние (+)	1	2	3	4	5	6	7	8	9	0	λ	коммент
q0 (-)	1 N	2 N	3 N	4 N	5 N	6 N	7 N	8 N	9 N	0 N	λ N	коммент
\sim						The Bull Continue			The state of the s		University of the same of	
q0 (-)	N	N	N R	N R	N R	N	N R	N R	N R	N R	N	сто
q0 (-)	N R λ, L, q7	N R λ,L,q4	N R	N R λ,L,q5	N R λ,L,q7	N R	N R λ,L,q7	N R λ,L,q5	N R λ,L,q7	N R λ,L,q5	N ,L,q2	сто
q0	N R λ,L,q7 λ,L,q6	N R λ,L,q4	N R λ,L,q7 λ,L,q6	N R λ,L,q5 λ,L,q7	N R λ,L,q7 λ,L,q6	N R λ,L,q4	N R λ,L,q7	N R λ,L,q5 λ,L,q7	N R λ,L,q7 λ,L,q6	N R λ,L,q5 λ,L,q7	N ,L,q2 N	сто ищем к Обработ Обработ
q1 (-) q2 (-) q4 (-)	N R λ,L,q7 λ,L,q6 λ,L,q7	N R λ,L,q4 λ,L,q7	N R λ,L,q7 λ,L,q6 λ,L,q7	N R λ,L,q5 λ,L,q7	N R λ,L,q7 λ,L,q6 λ,L,q7	N R λ,L,q4 λ,L,q7	R λ,L,q7 λ,L,q6	N R λ,L,q5 λ,L,q7	N R λ,L,q7 λ,L,q6 λ,L,q7	N R λ,L,q5 λ,L,q7 λ,L,q6	N ,L,q2 N N	сто ищем к Обработ Обработ Обработ

№20

На информационной ленте машины Тьюринга находится массив из 2 · N меток. Уменьшить этот массив в 2 раза.

В начальный момент времени каретка расположена над первой цифрой номера, изначальное состояние Q1, алфавит: 1, #.

1 - метка, # - символ, используемый при решении задачи.

A/Q	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9
1		1 <		1 >	_>	_>		1 >	1 <	1 >
		Q2		Q4	Q3	Q6		Q7	Q8	Q9
#			#>	# <	# <	_>	# >Q7		# <	_>
			Q3	Q5	Q5	Q9			Q5	Q0
_						_ <	_>	1 <		_>
						Q5	Q6	Q8		Q9
Комментарий:		Ставим	Ставим	Удаляем	Удаляем	Перенос	Перенос	Перенос	Перенос	Удаление
		перед	перед	каждую	каждую	меток за	меток за	меток за	меток за	последнего
		массивом	массивом	вторую	вторую	последний	последний	последний	последний	символа#
		меток #	меток#	метку в	метку в	символ #,	символ#	символ#	символ#	
				массиве,	массиве,	удаление				
				и ставим	и ставим	символа #,				
				после	после	если все				
				массива	массива	метки				
				меток #	меток#	перенесены				

№37

Число k представляется на ленте машины Поста k+1 идущими подряд метками. Одна метка соответствует нулю. Составить программу копирования исходного числа и прибавления k нему единицы. Головка расположена над одной из меток, принадлежащих заданному числу k. При этом исходное число должно остаться на ленте.

Команд	Переход	Комментарий
<		Ищем свободную ячейку перед крайней левой меткой
?	3, 1	Ищем свободную ячейку перед крайней левой меткой
>		Переходим на крайнюю левую метку
?	17, 5	Переходим на крайнюю левую метку
0		Убираем метку(временно)
>		Ищем свободную ячейку после крайней правой метки
?	8, 6	Ищем свободную ячейку после крайней правой метки
>		Пропускаем 1 свободную ячейку, чтобы разделить изначальный и конечный массивы меток
?	10, 8	Ищем куда поставить метку в результирующий массив: через пробел после начального массива, либо после уже поставленной метки результирующего массива
1		Ставим метку в результирующий массив
<		Ищем пробел, разделяющий массивы
?	13, 11	Ищем пробел, разделяющий массивы
<		Ищем пробел в начальном массиве, откуда брали метку, либо же доходим до начала изначального массива, если перенесли только одну метку
?	15, 13	Ищем пробел в начальном массиве, откуда брали метку, либо же доходим до начала изначального массива, если перенесли только одну метку
1		Вставляем убранную ранее метку

>	4	Переносим следующую метку
>		Если в начальном массиве нет пробелов, то все метки перенесены
?	19, 7	Ищем конец результирующего массива
1		Ставим метку, тем самым увеличивая число на 1

№68.4 Доказать, что следующие функции примитивно рекурсивны:

Практическая часть

Практическая часть: разработать программу на языке Brainfuck, решающую задачу «На информационной ленте машины Тьюринга в трех ячейках в произвольном порядке записаны три различные буквы "А" (здесь и далее без кавычек), "В" и "С". Необходимо составить функциональную схему машины Тьюринга, которая сумеет поменять местами крайние буквы».

• Считываем. Ввод заканчиваем 0.

• Идем в начало.

• Копируем первую букву в соседнюю ячейку, исходную букву удаляем.

$$[-<+>]$$

• Идем в конец и копируем последнюю букву в первую.

• Идем в самое начало и копируем содержимое в последнюю ячейку.

• Вывод результата.

Программная реализация

```
#include <iostream>
#include <windows.h>
#include <ctime>
void read bfFile(FILE *cmdlist) {
    char c;
    int i = 0;
    while (!feof(cmdlist)) {
        if (i == 50) {
            printf("\n");
            i = 0;
        }
        fscanf(cmdlist, "%c", &c);
        if (!feof(cmdlist)) {
            printf("%c", c);
            i++;
        }
    }
    printf("\n");
}
void translate_brainfuck_fFile(FILE *cmdlist, char *tier) {
    int loop;
    char cmd_char;
    do {
        fscanf(cmdlist, "%c", &cmd char);
        switch (cmd char) {
            case '>\overline{'}:
                tier++;
                break;
            case '<':
                tier--;
                break;
            case '+':
                (*tier)++;
                break;
            case '-':
                 (*tier)--;
                break;
            case '.':
                putchar(*tier);
                break;
            case ',':
                *tier = getchar();
                break;
            case '[':
                 if (!*tier) {
                     loop = 1;
                     while (loop) {
                         fscanf(cmdlist, "%c", &cmd_char);
                         if (cmd_char == '[') {
                             loop++;
                         if (cmd char == ']') {
                             loop--;
                     }
                 break;
```

```
case ']':
                 if (*tier) {
                     loop = 1;
                     while (loop) {
                          fseek(cmdlist, -2, SEEK_CUR);
fscanf(cmdlist, "%c", &cmd_char);
                          if (cmd_char == '[') {
                              loop--;
                          }
                          if (cmd char == ']') {
                              loop++;
                          }
                     }
                 }
                 break;
             default:
                 fprintf(stderr, "Error");
                 exit(1);
        (*tier)++;
    } while ((!feof(cmdlist)));
   printf("\n");
}
int main() {
   SetConsoleOutputCP(CP UTF8);
    srand(time(NULL));
    char cpu[30000];
    FILE *read = fopen("exercise.txt", "r");
    read bfFile(read);
    translate_brainfuck_fFile(read, cpu);
}
```