Student: Arfaz Hossain	Instructor: Muhammad Awais	Assignment: HW-6 [Sections 10.4, 10.5]
Date: 03/07/22	Course: Math 101 A04 Spring 2022	& 10.6]

Determine if the series converges or diverges. Give a reason for your answer.

$$\sum_{n=3}^{\infty} \frac{10}{\ln(\ln n)}$$

To determine the convergence or divergence of the series, use the comparison test.

Let $\sum a_n$ be a series with no negative terms. The series $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all n > N, for some integer N. The series $\sum a_n$ diverges if there is a divergent series of nonnegative terms $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

Notice that the expression $\frac{10}{\ln{(\ln{n})}}$ is positive for $n \ge 3$ and $\ln{n} < n$ for all n.

Since In n < n and both values are positive, the relationship shown below is true.

$$\frac{1}{\ln(\ln n)} > \frac{1}{n}$$

The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is the divergent harmonic series.

Since $\frac{10}{\ln{(\ln{n})}} \ge \frac{1}{n}$ for all $n \ge 3$ and the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the series $\sum_{n=3}^{\infty} \frac{10}{\ln{(\ln{n})}}$ diverges by the comparison test.