Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1-3. (Cancelled)
- 4. (Currently Amended) A compound according to claim 1 of [[the]]formula (I),

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH₂-CH₂-;

 R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

R₂ is C_1 -C₁₂-alkyl, C_2 -C₁₂-alkenyl, C_2 -C₁₂-alkinyl; or C_1 -C₁₂-alkyl, C_2 -C₁₂-alkenyl or C_2 -C₁₂-alkinyl, which are substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C_1 -C₆-alkyl-groups, C_3 -C₈-cycloalkenyl which is optionally substituted with one to three C_1 -C₆-alkyl-groups, norbornylenyl-, C_3 -C₈-halocycloalkyl, C_1 -C₁₂-alkoxy, C_1 -C₆-alkoxy-C₁-C₆-alkoxy, C_3 -C₈-cycloalkoxy, C_1 -C₁₂-haloalkoxy, C_1 -C₁₂-alkylthio, C_3 -C₈-cycloalkylthio, C_1 -C₁₂-haloalkylthio, C_1 -C₁₂-haloalkylsulfinyl, C_3 -C₈-cycloalkylsulfinyl, C_3 -C₈-cycloalkylsulfinyl, C_3 -C₈-halocycloalkylsulfinyl, C_3 -C₈-halocycloalkylsulfinyl, C_3 -C₈-cycloalkylsulfonyl, C_1 -C₁₂-haloalkylsulfonyl, C_3 -C₈-halocycloalkylsulfonyl, C_3 -C₈-cycloalkylsulfonyl, C_1 -C₁₂-haloalkylsulfonyl, C_3 -C₈-halocycloalkylsulfonyl, C_3 -C₈-cycloalkylsulfonyl, C_3 -C₈-cycloalky

substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO₂, C_1 - C_{12} -alkyl, C_3 - C_8 -Cycloalkyl, C_1 - C_{12} -Haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -Haloalkoxy, C_1 - C_1 -alkylthio, C_1 - C_1 -alkylthio, C_1 - C_1 -alkylthio, C_1 - C_1 -alkylthio, C_1 - C_1 -alkyl C_1 - C_1 - C_1 - C_1 -alkyl C_1 - C_1

X is O, NR₅ or a bond;

Y is O or S;

Z is O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 - C_{12} -alkyl;

 $\frac{R_6 \text{ is H, C}_1\text{--}C_{12}\text{-alkyl which is optionally substituted with halogen, C}_1\text{--}C_6\text{-alkoxy, CN, C}_2\text{--}C_8\text{-alkinyl, C}_2\text{--}C_8\text{-alkinyl, C}_1\text{--}C_{12}\text{-Haloalkenyl, -X-C(=Y)-R}_9, -X-C(=Y)\text{--}Z_R_9, -SO}_2\text{--}R_9, }{\text{aryl, heterocyclyl, aryl-C}_1\text{--}C_{12}\text{-alkyl, heterocyclyl-C}_1\text{--}C_{12}\text{-alkyl; or aryl, heterocyclyl, aryl-C}_1\text{--}C_{12}\text{-alkyl}} \\ \text{or heterocyclyl-C}_1\text{--}C_{12}\text{-alkyl, which are -- depending on the substitution possibilities -- optionally} \\ \text{substituted in the ring with one to five substituents selected from the group consisting of halogen,} \\ \text{--}C_6\text{--alkoxy, C}_1\text{--}C_6\text{--haloalkyl or C}_1\text{--}C_6\text{--haloalkoxy; or} \\ \text{--}C_6\text{--alkoxy, C}_1\text{--}C_6\text{--haloalkyl or C}_1\text{--}C_6\text{--haloalkoxy; or} \\ \\ \text{--}C_6\text{--alkoxy, C}_1\text{--}C_6\text{--haloalkyl or C}_1\text{--}C_6\text{--haloalkoxy; or} \\ \text{---}C_6\text{--alkoxy, C}_1\text{---}C_6\text{--haloalkyl or C}_1\text{---}C_6\text{--haloalkoxy; or} \\ \text{---}C_6\text{--alkoxy, C}_1\text{---}C_6\text{--haloalkyl or C}_1\text{----}C_6\text{--haloalkyl or C}_1\text{----}C_6\text{--haloalkyl or C}_1\text{----}C_6\text{--haloalkyl or C}_1\text{-----}C_6\text{--haloalkyl or C}_1\text{-----}C_6\text{--haloalkyl or C}_1\text{--------}$

 R_4 and R_6 together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO_2 ; and

 R_9 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_1 2-alkyl, heterocyclyl- C_1 2-alkyl; or aryl, heterocyclyl, aryl- C_1 2-alkyl or

heterocyclyl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -alkoxy, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form.

5. (Currently Amended) A compound according to claim 1 of [[the]]formula (I),

wherein

n is 0 or 1;

A-B is -CH=CH- or -CH₂-CH₂-;

 R_1 is C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl or C_2 - C_{12} -alkenyl;

 $\begin{array}{l} \underline{R_2 \text{ is } C_1\text{-}C_{12}\text{-}alkyl, C_2\text{-}C_{12}\text{-}alkenyl, C_2\text{-}C_{12}\text{-}alkinyl; or } C_1\text{-}C_{12}\text{-}alkyl, C_2\text{-}C_{12}\text{-}alkenyl or } C_2\text{-}C_{12}\text{-}alkinyl, } \\ \underline{\text{which are substituted with one to five substituents selected from the group consisting of } OH, \\ \underline{\text{halogen, CN, -N_3, -NO_2, C_3\text{-}C_8\text{-}cycloalkyl which is optionally substituted with one to three} \\ \underline{\text{C_1\text{-}C_6\text{-}alkyl-groups, } C_3\text{-}C_8\text{-}cycloalkenyl which is optionally substituted with one to three} \\ \underline{\text{C_1\text{-}C_6\text{-}alkyl-groups, norbornylenyl-, } C_3\text{-}C_8\text{-}halocycloalkyl, } C_1\text{-}C_{12}\text{-}alkoxy, } C_1\text{-}C_6\text{-}alkoxy\text{-}C_1\text{-}C_6\text{-}alkoxy, } \\ \underline{\text{C_3\text{-}C_8\text{-}cycloalkoxy, } C_1\text{-}C_{12}\text{-}haloalkoxy, } C_1\text{-}C_{12}\text{-}alkylthio, } C_3\text{-}C_8\text{-}cycloalkylthio, } \\ \underline{\text{C_3\text{-}C_8\text{-}cycloalkoxy, } C_1\text{-}C_{12}\text{-}haloalkylsulfinyl, } C_1\text{-}C_{12}\text{-}haloalkylsulfinyl, } \\ \underline{\text{C_3\text{-}C_8\text{-}cycloalkylsulfinyl, } C_3\text{-}C_8\text{-}cycloalkylsulfinyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkylsulfonyl, } C_3\text{-}C_8\text{-}cycloalkylsulfonyl, } C_1\text{-}C_{12}\text{-}haloalkylsulfonyl, } \\ \underline{\text{C_3\text{-}C_8\text{-}halocycloalkylsulfonyl, } C_3\text{-}C_8\text{-}cycloalkylsulfonyl, } \\ \underline{\text{C_3\text{-}C_8\text{-}halocycloalkylsulfonyl, } C_3\text{-}C_8\text{-}cycloalkylsulfonyl, } \\ \underline{\text{C_3\text{-}C_8\text{-}halocycloalkylsulfonyl, } C_1\text{-}C_{12}\text{-}haloalkylsulfonyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}haloalkyl, } C_1\text{-}C_{12}\text{-}haloalkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}haloalkyl, } C_1\text{-}C_{12}\text{-}haloalkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkyl, } C_3\text{-}C_8\text{-}Cycloalkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}haloalkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkyl, } C_1\text{-}C_{12}\text{-}haloalkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkyl, } C_1\text{-}C_{12}\text{-}alkyl, } \\ \underline{\text{C_1\text{-}C_{12}\text{-}alkyl, } C_1\text{-}C_{12}\text{-}alkyl, } \\ \underline{\text{C_1$

 $\underline{C_1-C_{12}-\text{alkylthio},\ C_1-C_{12}-\text{haloalkylthio},\ C_1-C_6-\text{alkoxy-}C_1-C_6-\text{alkyl},\ C_2-C_8-\text{alkenyl},\ C_2-C_8-\text{alkinyl},}{\text{Si}(C_1-C_{12}-\text{alkyl})_3,\ -X-C(=Y)-R_4,\ -X-C(=Y)-Z-R_4,\ \text{aryl},\ \text{aryloxy},\ \text{heterocyclyl}\ \text{and}\ \text{heterocyclyloxy};\ \text{or}}$

R₂ is aryl, heterocyclyl C₃-C₈-Cycloalkyl, C₃-C₈-Cycloalkenyl; or aryl, heterocyclyl C₃-C₈-Cycloalkyl or C₃-C₈-Cycloalkenyl, which are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂-alkyl, C₃-C₈-cycloalkyl, C₁-C₁₂-haloalkyl, C₁-C₁₂-alkoxy, C₁-C₁₂-haloalkoxy, C_1-C_{12} -alkylthio, C_1-C_{12} -haloalkylthio, C_1-C_6 -alkoxy- C_1-C_6 -alkyl, dimethylamino- C_1-C_6 -alkoxy, C₂-C₈-alkenyl, C₂-C₈-alkinyl, methylendioxy, aryl, aryloxy, heterocyclyl and heterocyclyloxy; wherein-R₃ is C₁-C₈-alkyl which is substituted with one to five substituents selected from the group consisting of OH, halogen, CN, -N₃, -NO₂, C₃-C₈-cycloalkyl which is optionally substituted with one to three C₁-C₆-alkyl groups, norbornylenyl-, C₃-C₈-Cycloalkenyl which is optionally substituted with one to three methyl groups; C₃-C₈-halocycloalkyl, C₃-C₈-cycloalkoxy, C₁-C₁₂-haloalkoxy, C₁-C₁₂-alkylthio, aryl, heterocyclyl, arylthio or heterocyclyloxy; wherein the aryl, heterocyclyl, arylthio and heterocyclyloxy groups are optionally – depending on the substitution possibilities on the ring – substituted with one to five substituents selected form the group consisting of OH, Halogen, CN, NO_2 , C_1 - C_{12} -alkyl, C_3 - C_8 -cycloalkyl, C_1 - C_{12} -haloalkyl, C_1 - C_{12} -alkoxy, C_1 - C_{12} -haloalkoxy, C_1 - C_{12} alkylthio, C₁-C₁₂-haloalkylthio, C₁-C₆-alkoxy-C₁-C₆-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkinyl, $Si(C_1-C_{12}-alkyl)_3$, -X-C(=Y)-R₄, -X-C(=Y)-Z-R₄, aryl, aryloxy, heterocyclyl and heterocyclyloxy[[.]]:

X is O, NR₅ or a bond;

Y is O or S;

Z is O, S or NR₅

 R_4 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

 R_5 is H, C_1 - C_8 -alkyl, C_3 - C_8 -cycloalkyl, C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, benzyl or -C(=O)- C_1 - C_{12} -alkyl;

 $\underline{R_6 \text{ is H, C}_{1}\text{-}C_{12}\text{-}alkyl \text{ which is optionally substituted with halogen, C}_{1}\text{-}C_{6}\text{-}alkoxy, CN, C}_{2}\text{-}C_{8}\text{-}alkoxy, CN, C}_{2}\text{-}alkoxy, CN,$

substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1-C_6 -haloalkyl or C_1-C_6 -haloalkoxy; or

R₄ and R₆ together are a three- to five membered alkylene bridge, wherein one of the methylene groups may be replaced by O, S or SO₂; and

 R_9 is H, C_1 - C_{12} -alkyl which is optionally substituted with one to five substituents selected from the group consisting of halogen, hydroxy, C_1 - C_6 -alkoxy and CN; C_2 - C_8 -alkenyl, C_2 - C_8 -alkinyl, aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, heterocyclyl- C_1 - C_{12} -alkyl, or aryl, heterocyclyl, aryl- C_1 - C_{12} -alkyl, which are – depending on the substitution possibilities – optionally substituted in the ring with one to five substituents selected from the group consisting of halogen, C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkyl and C_1 - C_6 -haloalkoxy;

and, where applicable, to E/Z isomers, mixtures of E/Z isomers and/or tautomers, in each case in free form or in salt form.

- 6-7. (Cancelled)
- 8. (New) A compound according to claim 4 of the formula (I), wherein R₃ is C₇-C₈ alkyl.