The okicmd and okithm Packages

Taihei Oki

December 16, 2021

1 The okicmd Package

1.1 Options

Options can be passed as \usepackage[option1,option2] {okicmd}.

Option name	Default?	Description
loadams	✓	Load the amsmath and amssymb packages.
noloadams		Stop loading the amsmath and amssymb packages.
argminspace	\checkmark	Make short spaces after "arg" in \argmin and \argmax.
noargminspace		Stop making short spaces after "arg" in \argmin and \argmax.

1.2 Letters

Input	Output	IATEX equivalent
1	ℓ	\ell
\ell	l	1
\epsilon	ε	\varepsilon
\varepsilon	ϵ	\epsilon
\phi	φ	\varphi
\varphi	ϕ	\phi

1.3 Parentheses

Possible size options are \normal, \big, \Big, \bigg, and \Bigg. If no size option is passed, parentheses' size is adjusted automatically by \left and \right.

Input	Output	IATEX (almost) equivalent
\prn{\cdot}	(·)	\left(\cdot\right)
\prn[\normal]{\cdot}	(\cdot)	(\cdot)
\prn[\big]{\cdot}	(\cdot)	\bigl(\cdot\bigr)
\prn[\Big]{\cdot}	(\cdot)	\Bigl(\cdot\Bigr)
\prn[\bigg]{\cdot}	$\left(\cdot\right)$	\biggl(\cdot\biggr)
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$	\Biggl(\cdot\Biggr)
\curl{\cdot}	$\{\cdot\}$	\left\{\cdot\right\}
\sqbr{\cdot}	$[\cdot]$	\left[\cdot\right]
\agbr{\cdot}	$\langle \cdot \rangle$	\left\langle\cdot\right\rangle
\dbbr{\cdot}	$\llbracket \cdot \rrbracket$	\left\llbracket\cdot\right\rrbracket
\pipe{\cdot}	-	\left \cdot\right
\dbpp{\cdot}	$\ \cdot\ $	\left\ \cdot\right\
\floor{\cdot}	$\lfloor \cdot floor$	\left\lfloor\cdot\might\rfloor
\ceil{\cdot}	[.]	\left\lceil\cdot\right\rceil
\pprn{\cdot}	$((\cdot))$	<pre>\left(\left(\cdot\right)\right)</pre>
\ccurl{\cdot}	$\{\{\cdot\}\}$	\left\{\left\{\cdot\right\}\right\}
\ssqbr{\cdot}	$[[\cdot]]$	\left[\left[\cdot\right]\right]
\aagbr{\cdot}	$\langle\langle\cdot\rangle\rangle$	<pre>\left\langle\left\langle \cdot\right\rangle\right\rangle</pre>

1.4 Logic

Input	Output	IAT _E X equivalent
\bigland	\wedge	\bigwedge
\biglor	V	\bigvee
a \defeq b	$a \coloneqq b$	a \coloneqq b
a \eqdef b	b =: a	a \eqqcolon b
P \defiff Q	$P \stackrel{\mathrm{def}}{\Longleftrightarrow} Q$	<pre>P \overset{\mathrm{def}}{\iff} Q</pre>

1.5 Sets

Input	Output	IATEX (almost) equivalent
\set{a, b, c}	$\{a,b,c\}$	\left\{a, b, c\}
$\operatorname{set}\{a \in S\}[a^2 = 1]$	$\left\{a\in S\mid a^2=1\right\}$	<pre>\left\{a \in S\middle a^2 = 1\right\}</pre>
\set*{a}[\$a\$ is odd]	$\{a \mid a \text{ is odd}\}$	<pre>\left\{a\middle \text{\$a\$ is odd}\right\}</pre>
\card{X}	X	\left X\right
X \symdif Y	$X \triangle Y$	<pre>X \mathbin{\triangle} Y</pre>
\setN	\mathbb{N}	\mathbb{N}
\setZ	${\mathbb Z}$	\mathbb{Z}
\setQ	$\mathbb Q$	\mathbb{Q}
\setR	\mathbb{R}	\mathbb{R}
\setC	$\mathbb C$	\mathbb{C}
\setH	\mathbb{H}	\mathbb{H}
\setF	\mathbb{F}	\mathbb{F}
\setK	\mathbb{K}	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$	\mathbb{Z}_{\ge0}
\setQp	$\mathbb{Q}_{\geq 0}$	\mathbb{Q}_{\ge0}
\setRp	$\mathbb{R}_{\geq 0}^-$	\mathbb{R}_{\ge0}
\setNpp	$\mathbb{N}_{>0}^-$	\mathbb{N}_{<>0}
\setZpp	$\mathbb{Z}_{>0}$	\mathbb{Z}_{>0}
\setQpp	$\mathbb{Q}_{>0}$	\mathbb{Q}_{<>0}
\setRpp	$\mathbb{R}_{>0}$	\mathbb{R}_{<>0}

1.6 Maps

Input	Output	LATEX (almost) equivalent
\doms{X}{Y}	$X \to Y$	{X}\to{Y}
\funcdoms{f}{X}{Y}	$f:X\to Y$	<pre>{f}\vcentcolon{X}\to{Y}</pre>
\restr{f}{S}	$f _S$	\left.f\right _{S}
\id_K	id_K^{\sim}	\operatorname{id}_K
\dom f	$\operatorname{dom} f$	\operatorname{dom} f
\cod f	$\operatorname{cod} f$	\operatorname{cod} f
\supp f	$\operatorname{supp} f$	<pre>\operatorname{supp} f</pre>

1.7 Lattices

Input	Output	IAT _E X equivalent
x \meet y	$x \wedge y$	<pre>x \mathbin{\wedge} y</pre>
x \join y	$x \vee y$	<pre>x \mathbin{\vee} y</pre>
\bigmeet	\wedge	\bigwedge
\bigjoin	\vee	\bigvee

1.8 Algebra

Input	Output	IATEX (almost) equivalent
\Hom(G)	$\operatorname{Hom}(G)$	\operatorname{Hom}(G)
\End R	$\operatorname{End} R$	\operatorname{End} R
\Aut_k K	$\operatorname{Aut}_k K$	\operatorname{Aut}_k K
$\gcd\{a,b\}$	$\langle a,b \rangle$	\left\langlea,b\right\rangle
$\gcd\{a,b\}[ab = e]$	$\langle a,b \mid ab = e \rangle$	<pre>\left\langlea,b\middle ab = e\right\rangle</pre>
\abel{G}	$G_{ m ab}$	<pre>G_{\mathrm{ab}}</pre>
$\operatorname{Comm}\{G\}$	[G,G]	<pre>\left[G, G\right]</pre>
\ord G	$\operatorname{ord} G$	\operatorname{ord} G
\sym_n	\mathfrak{S}_n	\mathfrak{S}_n
\sgn(\sigma)	$\operatorname{sgn}(\sigma)$	\operatorname{sgn}(\sigma)
\mult{R}	$R^{ imes}$	R^{\times}
$M_{m,n}(R)$	$M_{m,n}(R)$	\operatorname{M}_{m,n}(R)
$\GL_n(R)$	$\mathrm{GL}_n(R)$	\operatorname{GL}_n(R)
$\S_L_n(R)$	$\mathrm{SL}_n(R)$	\operatorname{SL}_n(R)
$\backslash 0(n)$	$\mathrm{O}(n)$	\operatorname{0}(n)
\SO(n)	SO(n)	\operatorname{SO}(n)
$\setminus U(n)$	$\mathrm{U}(n)$	\operatorname{U}(n)
$\S U(n)$	SU(n)	\operatorname{SU}(n)
L \extends K	L / K	L \mathbin{/} K
$\ch(K)$	$\operatorname{ch}(K)$	\operatorname{ch}(K)
\GF(2)	GF(2)	\operatorname{GF}(2)

1.9 Number Theory

Input	Output	IATEX (almost) equivalent
\abs{x}	x	\left x\right
\intset{n}	[n]	\left[n\right]
a \coprime b	$a \perp b$	a \mathrel{\bot} b
a \divides b	$a \mid b$	a \mid b
a \ndivides b	$a \nmid b$	a \nmid b

1.10 Linear Algebra

Input	Output	ĿATEX (almost) equivalent
\tr A	$\operatorname{tr} A$	\operatorname{tr} A
\rank A	$\operatorname{rank} A$	\operatorname{rank} A
\trank A	$\operatorname{t-rank} A$	\operatorname{t-rank} A
\Det A	$\operatorname{Det} A$	\operatorname{Det} A
\Pf A	$\operatorname{Pf} A$	\operatorname{Pf} A
\perm A	$\operatorname{perm} A$	\operatorname{perm} A
\Hf A	$\operatorname{Hf} A$	\operatorname{Hf} A
\diag(2 1 \dotgc 2 2)	$\operatorname{diag}(a_1,\ldots,a_n)$	\operatorname{diag}
\diag(a_1,\dotsc,a_n)	$\operatorname{diag}(a_1,\ldots,a_n)$	$(a_1, dotsc, a_n)$
\blockdiag(A_1,\dotsc,A_n)	block-diag (A_1, \ldots, A_n)	\operatorname{block-diag}
(blockdiag(H_1, \dotsc, H_II)	block-diag (A_1,\ldots,A_n)	(A_1, \ldots, A_n)
\vectorize(A)	$\operatorname{vec}(A)$	\operatorname{vectorize}(A)
\Row(A)	$\operatorname{Row}(A)$	\operatorname{Row}(A)
\Col(A)	$\operatorname{Col}(A)$	\operatorname{Col}(A)
\trsp{A}	$A^{ op}$	A^\top
\adjo{A}	A^*	A^*
\onevec	1	\mathds{1}
\norm{x}	$\ x\ $	\left\ x\right\
\inpr{x}{y}	$\langle x,y \rangle$	<pre>\left\langle{x},{y} \right\rangle</pre>

1.11 Analysis

Input	Output	IATEX (almost) equivalent
\intoo{a,b}	(a,b)	\left(a,b\right)
\intoc{a,b}	(a,b]	\left(a,b\right]
\intco{a,b}	[a,b)	\left[a,b\right)
\intcc{a,b}	[a,b]	\left[a,b\right]
\e	e	\mathrm{e}
\d	d	\mathrm{d}
$\displaystyle \operatorname{dif}\{f\}\{x\}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$	\frac{\mathrm{d} f}{\mathrm{d} x}
$\pdif{f}{x}$	$rac{\mathrm{d}f}{\mathrm{d}x} \ rac{\partial f}{\partial x} \ \mathrm{d}f \ \mathrm{d}f$	\frac{\partial f}{\partial x}
$\dif{f}{x}$		<pre>\dfrac{\mathrm{d} f}{\mathrm{d} x}</pre>
\dpdif{f}{x}	$\frac{\mathrm{d}x}{\partial f}$	<pre>\dfrac{\partial f}{\partial x}</pre>

1.12 Complex Analysis

Input	Output	IATEX equivalent
\i	i	\mathrm{i}
∖Re z	$\operatorname{Re} z$	\operatorname{Re} z
\Im z	$\operatorname{Im} z$	\operatorname{Im} z
\Arg z	$\operatorname{Arg} z$	\operatorname{Arg} z
\Log z	$\operatorname{Log} z$	\operatorname{Log} z
\Sin z	$\operatorname{Sin} z$	\operatorname{Sin} z
\Cos z	$\cos z$	\operatorname{Cos} z
\Tan z	$\operatorname{Tan} z$	\operatorname{Tan} z
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$	\operatorname*{Res}_{z=0} f(z)

1.13 Computer Science, Optimization

Spaces after "arg" in \argmin and \argmax are omitted by passing the noargminspace option.

Input	Output	L ^A T _E X equivalent
\argmin_{x \in S} f(x)	$\operatorname{argmin}_{x \in S} f(x)$	<pre>\operatorname*{arg~min} _{x \in S} f(x)</pre>
\argmax_{x \in S} f(x)	${\arg\max}_{x\in S}f(x)$	<pre>\operatorname*{arg~max} _{x \in S} f(x)</pre>
\Order(n)	$\mathrm{O}(n)$	\mathrm{0}(n)
\order(n)	o(n)	\mathrm{o}(n)
\poly(n)	poly(n)	\operatorname{poly}(n)
\polylog(n)	$\operatorname{polylog}(n)$	<pre>\operatorname{polylog}(n)</pre>

2 The okithm Package

2.1 Theorems

If the language is set to Japanese like by \usepackage[main = japanese] {babel}, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by giving the option notheorem to okicmd.

```
1 \begin{theorem} [Awesome theorem]
2    The square root $\sqrt{2}$ of two is irrational.
3 \end{theorem}
4
5 \begin{definition} [Coprime]
6    Integers $a$ and $b$ are said to be \emph{coprime} if their greatest common divisor is one.
7 \end{definition}
8
9 \begin{lemma}
10    If $a$ and $b$ are coprime, so are $a^2$ and $b^2$.
11 \end{lemma}
12
13 \begin{proposition}
14    If $\sqrt{2} = a/b$, then $a^2 = 2b^2$.
15 \end{proposition}
```

```
16
17 \begin{corollary}
    If \sqrt{2} = a/b with $a$ and $b$ being coprime, then $a$ is even.
19 \end{corollary}
20
21 \begin{example}
    If a = 2 and b = 1, then a is even but \left| \frac{2}{n} \right|
22
23 \end{example}
24
25 \begin{remark}
    Note that $a$ and $b$ must be integers.
27 \end{remark}
28
29 \begin{proof}[of Awesome theorem]
    Suppose to the contrary that \sqrt{2} = a/b with coprime $a$ and $b$.
    Then both $a$ and $b$ are even, which contradicts the assumption.
32 \end{proof}
Theorem 2.1 (Awesome theorem). The square root \sqrt{2} of two is irrational.
Definition 2.2 (Coprime). Integers a and b are said to be coprime if their greatest common
divisor is one.
Lemma 2.3. If a and b are coprime, so are a^2 and b^2.
Proposition 2.4. If \sqrt{2} = a/b, then a^2 = 2b^2.
Corollary 2.5. If \sqrt{2} = a/b with a and b being coprime, then a is even.
Example 2.6. If a=2 and b=1, then a is even but \sqrt{2} \neq a/b.
                                                                                       Remark 2.7. Note that a and b must be integers.
Proof (of Awesome theorem). Suppose to the contrary that \sqrt{2} = a/b with coprime a and
b. Then both a and b are even, which contradicts the assumption.
```

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
| \begin{algorithmic} [1] | \lambda \lin \setN\$ | \lin \setN\$ |
```

```
2: for i = 1 to n do

3: s \leftarrow s + i

4: return s
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle = short.