Сингулярные элементы модулей аффинных алгебр Ли в моделях конформной теории поля

Антон Назаров

По материалам кандидатской диссертации см. также arXiv:1007.0318, 1102.1702, 1107.4681, 1111.6787, 1112.4354 научный руководитель В. Д. Ляховский

Кафедра физики высоких энергий и элементарных частиц физического факультета
Санкт-Петербургского государственного университета
198904, Санкт-Петерубрг, Россия
e-mail: anton.nazarov@hep.phys.spbu.ru

2 февраля 2012

Действие WZNW-моделей

Модели Весса-Зумино-Новикова-Виттена можно строить начиная со следующего действия:

$$S = S_0 + k\Gamma, \quad k \in \mathbb{Z}$$
 (1)

 S_0 — действие нелинейной σ -модели:

$$S_0 = -\frac{k}{8\pi} \int_{S^2} d^2x \ Tr(\partial^{\mu} g^{-1} \partial_{\mu} g), \quad g(x) : \mathbb{C} \cup \{\infty\} \sim S^2 \to G$$
 (2)

Топологический член Весса-Зумино:

$$\Gamma = -\frac{i}{24\pi} \int_{B} \epsilon_{ijk} Tr \left(\tilde{g}^{-1} \frac{\partial \tilde{g}}{\partial y^{i}} \tilde{g}^{-1} \frac{\partial \tilde{g}}{\partial y^{j}} \tilde{g}^{-1} \frac{\partial \tilde{g}}{\partial y^{k}} \right) d^{3}y$$
 (3)

 Γ определен на трехмерном многообразии B, ограниченном S^2 . \tilde{g} – продолжение g на B.

 $\pi_3(G)=\mathbb{Z}\Rightarrow k\in\mathbb{Z},\;e^{-S[g]}$ определен однозначно.

Аффинная алгебра

- ullet Токи $J(z)=-k\partial_z gg^{-1}$ $ar{J}(ar{z})=kg^{-1}\partial_{ar{z}}g$
- Калибровочная инвариантность $g(z,\bar{z}) o \Omega(z) g(z,\bar{z}) ar{\Omega}^{-1}(\bar{z})$, где $\Omega,\ ar{\Omega} \in \mathcal{G}$
- Тождества Уорда $\Omega = 1 + \omega$:

$$\delta_{\omega,\bar{\omega}}\left\langle X\right
angle =-rac{1}{2\pi i}\oint dz\sum\omega^{a}\left\langle J^{a}X
ight
angle +rac{1}{2\pi i}\oint dar{z}\sumar{\omega}^{a}\left\langle ar{J}^{a}X
ight
angle$$

• $J(z)=\sum_a J^a(z)t^a=\sum_a\sum_n J^a_nt^az^{n-1}\Rightarrow$ соотношения аффинной алгебры $\hat{\mathfrak{g}}$:

$$\left[J_n^a, J_m^b\right] = \sum_c i f^{abc} J_{n+m}^c + kn \delta^{ab} \delta_{n+m,0}$$

ullet Конструкция Сугавары $L_n = rac{1}{2(k+h^{\scriptscriptstyle V})} \sum_{a} \sum_{m} : J_m^a J_{n-m}^a : \Leftrightarrow \mathit{Vir} \subset U(\hat{\mathfrak{g}}).$

Примарные поля

• Полная киральная алгебра $\hat{\mathfrak{g}} \ltimes Vir$:

$$[L_n, L_m] = (n - m)L_{n+m} + \frac{c}{12}(n^3 - n)\delta_{n+m,0}$$

$$[L_n, J_m^a] = -mJ_{n+m}^a$$
(4)

 $J_{\mathfrak{g}}^{a}(z)\phi_{i}(w)\sim rac{-t_{i}^{a}\phi_{i}(w)}{z-w}.$

• Примарные поля определяются операторным разложением

ullet Примарные поля ϕ_λ соответствуют старшим весам представлений:

$$egin{aligned} J_0^a \ket{\phi_\lambda} &= -t_\lambda^a \ket{\phi_\lambda} & J_n^a \ket{\phi_\lambda} &= 0 \quad \text{при } n > 0 \ L_0 \ket{\phi_\lambda} &= rac{1}{2(k+h^
u)} \sum_a J_0^a J_0^a \ket{\phi_\lambda} &= rac{(\lambda,\lambda+2
ho)}{2(k+h^
u)} \ket{\phi_\lambda} &= h_\lambda \ket{\phi_\lambda} \end{aligned}$$

• Сингулярные векторы

$$J_n^a\ket{v}=0$$
 при $n>0$ $J_0^+\ket{v}=0$

Coset-модели и калибровочная WZNW-модель

Добавим в действие калибровочные поля A, \bar{A} со значениями в подалгебре $\mathfrak{a} \subset \mathfrak{g}$:

$$S(g, A) = S_{WZNW}(g) + \frac{k}{4\pi} \int d^2z \left(\mathcal{K}(A, g^{-1}\bar{\partial}g) - \mathcal{K}(\bar{A}, (\partial g)g^{-1}) + \mathcal{K}(A, g^{-1}\bar{A}g) - \mathcal{K}(A, \bar{A}) \right)$$

Теперь токи

$$J_{(\mathfrak{g},\mathfrak{a})} = -k\partial gg^{-1} - kgAg^{-1}$$

Из тождеств Уорда получаем

$$\left\langle A^b(z)\phi_1\ldots\phi_N\right\rangle = \frac{2}{k+2h_{\mathfrak{a}}^{\mathsf{v}}}\sum_{k}\frac{\tilde{t}_k^b}{z-z_k}\left\langle \phi_1\ldots\phi_N\right\rangle$$

Алгебраическая структура связана с $\hat{\mathfrak{g}}, \hat{\mathfrak{a}}: \hat{\mathfrak{a}} \subset \hat{\mathfrak{g}}.$ Генераторы алгебры Вирасоро – разности выражений Сугавары:

$$L_n = L_n^{\mathfrak{g}} - L_n^{\mathfrak{a}}$$

Примарные поля и сингулярные элементы

Для генераторов подалгебры â:

$$\left[L_{n}, \tilde{J}_{m}^{b}\right] = 0 \quad \Longleftrightarrow \quad \tilde{J}_{m}^{b} |v\rangle = 0 \Rightarrow \tilde{J}_{m}^{b} L_{n} |v\rangle = 0$$

Сингулярные векторы по отношению к $\hat{\mathfrak{a}}$ образуют модули алгебры Вирасоро в coset-моделях. Функции ветвления $b^{\mu}_{(\hat{\mathfrak{g}}\downarrow\hat{\mathfrak{a}})\nu}(q)$ являются характерами модулей алгебры Вирасоро.

Примарные поля нумеруются парами весов $(\mu,\nu)\in\mathfrak{h}_{\hat{\mathfrak{g}}}\oplus\mathfrak{h}_{\hat{\mathfrak{a}}}$, такими, что $b^{\mu}_{\nu}(q)\neq 0$. Некоторые пары эквивалентны. Эквивалентность дается действием т.н. "простых токов" (J,\tilde{J}) , таких, что $h_J-h_{\tilde{J}}=0$. Конформный вес примарного поля

$$L_{0} \left| \phi_{(\mu,\nu)} \right\rangle = \left(\frac{1}{2(k+h^{\nu})} \sum_{a} J_{0}^{a} J_{0}^{a} - \frac{1}{2(k+h^{\nu}_{\mathfrak{a}})} \sum_{b} \tilde{J}_{0}^{b} \tilde{J}_{0}^{b} \right) \left| \phi_{\lambda} \right\rangle = \left(\frac{(\mu,\mu+2\rho)}{2(k+h^{\nu})} - \frac{(\nu,\nu+2\rho_{\mathfrak{a}})}{2(k+h^{\nu})} \right) \left| \phi_{(\mu,\nu)} \right\rangle \quad (5)$$

Формула Вейля-Каца для характеров и сингулярные элементы

Модуль Верма

$$M^\mu=\mathit{U}(\mathfrak{g})\underset{\mathit{U}(\mathfrak{b}_+)}{\otimes}\mathit{D}^\mu(\mathfrak{b}_+)$$
 где $\mathfrak{g}=\mathfrak{n}_+\oplus\mathfrak{h}\oplus\mathfrak{n}_-,\mathfrak{b}_+=\mathfrak{n}_+\oplus\mathfrak{h}$

$$D^{\mu}(\mathfrak{b}_{+}):D(E^{\alpha})=0,\ D(H)=\mu(H)\quad \forall \alpha>0.$$

$$\mathrm{ch} M^{\mu} = \frac{e^{\mu}}{\prod_{\alpha \in \Delta^{+}} (1 - e^{-\alpha})^{\mathrm{mult}(\alpha)}} = \frac{e^{\mu}}{\sum_{w \in W} \epsilon(w) e^{w\rho - \rho}}, \quad \epsilon(w) := \det(w)$$

У M^{μ} есть единственный максимальный подмодуль и нетривиальный фактормодуль L^{μ} – неприводимый модуль старшего веса.

$$\mathrm{ch} L^{\mu} = \frac{\sum_{w \in W} \epsilon(w) \mathrm{e}^{w(\mu + \rho) - \rho}}{\sum_{w \in W} \epsilon(w) \mathrm{e}^{w\rho - \rho}} = \sum_{w \in W} \epsilon(w) \, \mathrm{ch} M^{w(\mu + \rho) - \rho} (\mathsf{F}\mathsf{\Gamma}\mathsf{\Gamma})$$

Разложение сингулярного элемента

Пусть $\mathfrak{a}\subset\mathfrak{g}$ — конечномерные или аффинные. Можно разложить $L^\mu_\mathfrak{g}$ на модули \mathfrak{a} :

$$L^{\mu}_{\mathfrak{g}} = \bigoplus_{
u} b^{\mu}_{
u} L^{
u}_{\mathfrak{g}}$$

В терминах характеров

$$\pi_{\mathfrak{a}}\left(\frac{\sum_{\omega\in W}\epsilon(\omega)e^{\omega(\mu+\rho)-\rho}}{\prod_{\alpha\in\Delta^{+}}(1-e^{-\alpha})^{\mathrm{mult}(\alpha)}}\right)=\sum_{\nu\in P_{\mathfrak{a}}^{+}}b_{\nu}^{(\mu)}\frac{\sum_{\omega\in W_{\mathfrak{a}}}\epsilon(\omega)e^{\omega(\nu+\rho_{\mathfrak{a}})-\rho_{\mathfrak{a}}}}{\prod_{\beta\in\Delta_{\mathfrak{a}}^{+}}(1-e^{-\beta})^{\mathrm{mult}_{\mathfrak{a}}(\beta)}}.$$

Хотим домножить на знаменатель и переписать как рекуррентное соотношение на коэффициенты ветвления.

Рассмотрим корни, ортогональные к $\Delta_{\mathfrak{a}}$.

Пусть $\Delta_{\mathfrak{b}}^+ = \left\{ \alpha \in \Delta_{\mathfrak{g}}^+ : \forall \beta \in \Delta_{\mathfrak{a}}; \alpha \bot \beta \right\}$ — подмножество положительных корней \mathfrak{g} , ортогональных корневой системе \mathfrak{a} .

Обозначим $W_{\mathfrak{b}}$ подгруппу группы Вейля W, порожденную отражениями ω_{β} , соотв. корням $\beta \in \Delta_{\mathfrak{b}}^+$.

Подсистема $\Delta_{\mathfrak{b}}$ определяет подалгебру $\mathfrak{b}=\mathfrak{a}_{\perp}$ $\in \mathfrak{g}$ \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow

 $\mathfrak{a},\mathfrak{b}$ – "ортогональная пара" подалгебр $\mathfrak{g},\mathfrak{b}$ регулярная. Подалгебра Картана раскладывается $\mathfrak{h}=\mathfrak{h}_{\mathfrak{a}}+\mathfrak{h}_{\perp}+\mathfrak{h}_{\mathfrak{b}}.$ Введем

$$\mathcal{D}_{\mathfrak{a}} := \rho_{\mathfrak{a}} - \pi_{\mathfrak{a}}\rho.$$

$$\mathcal{D}_{\mathfrak{b}} := \rho_{\mathfrak{b}} - \pi_{\mathfrak{b}}\rho.$$

Лемма

Пусть $\widetilde{\mathfrak{a}_{\perp}}=\mathfrak{a}_{\perp}\oplus\mathfrak{h}_{\perp}$, $\widetilde{\mathfrak{a}}=\mathfrak{a}\oplus\mathfrak{h}_{\perp}$, L^{μ} – модуль старшего веса с сингулярным элементом $\Psi^{(\mu)}$, $R_{\mathfrak{a}_{\perp}}$ – знаменатель Вейля для подалгебры \mathfrak{a}_{\perp} . $U\sim W/W_{\mathfrak{a}_{\perp}}$. Тогда элемент $\Psi^{(\mu)}_{(\mathfrak{a},\mathfrak{a}_{\perp})}=\pi_{\mathfrak{a}}\left(\frac{\Psi^{\mu}_{\mathfrak{g}}}{R_{\mathfrak{a}_{\perp}}}\right)$ можно разложить в сумму по $u\in U$:

$$\Psi_{(\mathfrak{a},\mathfrak{a}_{\perp})}^{(\mu)} = -\pi_{\mathfrak{a}}\left(\frac{\Psi^{\mu}}{R_{\mathfrak{a}_{\perp}}}\right) = \sum_{u \in H} \epsilon(u) \mathrm{dim}\left(L_{\widetilde{\mathfrak{a}_{\perp}}}^{\mu_{\widetilde{\mathfrak{a}_{\perp}}}(u)}\right) e^{\mu_{\mathfrak{a}}(u)}.$$

4 D > 4 B > 4 B > 4 B > B = 990

Рекуррентные соотношения на коэффициенты ветвления

$$k_{\xi}^{(\mu)} = -\frac{1}{s(\gamma_0)} \left(\sum_{u \in W/W_b} \epsilon(u) \operatorname{dim} \left(L_b^{\pi_{(b)}[u(\mu+\rho)-\rho]-\mathcal{D}_b} \right) \right)$$
$$\delta_{\xi-\gamma_0,\pi_{(a\oplus b_{\perp})}[u(\mu+\rho)-\rho]+\mathcal{D}_b} + \sum_{\gamma \in \Gamma_{\hat{a}\subset \hat{\mathfrak{g}}}} s(\gamma+\gamma_0) k_{\xi+\gamma}^{(\mu)} \right).$$

Рекурсия задается множеством $\Gamma_{\hat{\mathfrak{a}}\subset\hat{\mathfrak{a}}}$ весов $\{\xi\}$, появляющихся в разложении

$$\prod_{\alpha \in \Delta^+ \setminus \Delta_h^+} \left(1 - e^{-\pi_{\hat{\mathfrak{a}}}\alpha}\right)^{\operatorname{mult}(\alpha) - \operatorname{mult}_{\hat{\mathfrak{a}}}(\pi_{\hat{\mathfrak{a}}}\alpha)} = -\sum_{\gamma \in P_{\hat{\mathfrak{a}}}} \mathsf{s}(\gamma) e^{-\gamma}$$

Веса надо сдвинуть на γ_0 – минимальный вес в $\{\xi\}$ – и исключить нулевой элемент:

 $\Gamma_{\hat{\mathbf{a}}\subset\hat{\mathbf{a}}}=\{\xi-\gamma_0\}\setminus\{0\}.$

Простой пример: $A_1 \subset B_2$

Рис.: Ортогональная подалгебра $\mathfrak b$ и размерности $\mathfrak b$ -модулей

Рис.: Корни алгебр B_2, A_1 и Ψ^{ω_1}

Связь с обобщенной резольвентой Бернштейна-Гельфанда-Гельфанда

Рассмотрим ситуацию без проекции $(\operatorname{rank}\mathfrak{a}=\operatorname{rank}\mathfrak{g}).$

$$M_I^{\mu_{\mathfrak{a}_{\perp}}(u)} = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_I)} L_{\mathfrak{a}_{\perp}}^{\mu_{\mathfrak{a}_{\perp}}(u)} \quad \Delta_{\mathfrak{a}_{\perp}}^+ \sim \Delta_I^+,$$
 где $I \subset S$

Введем $R_I:=\prod_{\alpha\in\Delta^+\setminus\Delta^+_{\mathfrak{p}_I}}(1-e^{-\alpha})^{\mathrm{mult}(\alpha)}$. Тогда $\mathrm{ch}M_I^\mu=rac{1}{R_I}\mathrm{ch}L^\mu_{\mathfrak{p}_I}$

Рис.: Вложение $A_1 \oplus u(1) \subset B_2$ и обобщенные модули Верма. Пунктир – с положительным знаком $\epsilon(u)$, точки – с отрицательным:

Точная последовательность

$$0 \to M_r^I \xrightarrow{\delta_r} M_{r-1}^I \xrightarrow{\delta_{r-1}} \dots \xrightarrow{\delta_1} M_0^I \xrightarrow{\varepsilon} L^{\mu} \to 0,$$

$$M_k^I = \bigoplus_{u \in U, \text{ length}(u) = k} M_I^{u(\mu+\rho)-\rho}, \quad M_0^I = M_I^{\mu}$$

Рис.: Резольвента модуля L^{ω_1} . Центральная часть точной последовательности

$$0 \to Im(\delta_2) \to \left(e^{\mu_{\widetilde{\alpha}}(e)} \mathrm{ch} M_I^{\pi_{\mathfrak{a}_\perp}[\omega_1] - \mathcal{D}_{\mathfrak{a}_\perp}} = M_I^{\omega_1}\right) \to L^{\omega_1} \to 0.$$
 Здесь $u_{\widetilde{\alpha}}(e) = \pi_{\widetilde{\alpha}}[u] + \mathcal{D}$

Сплинты

Определение

$$\phi$$
 – "вложение" $\Delta_0 \hookrightarrow \Delta$: $\phi(\gamma) = \phi(\alpha) + \phi(\beta) \quad \forall \alpha, \beta, \gamma \in P_0 : \gamma = \alpha + \beta.$

 ϕ индуцирует вложение формальных алгебр: $\mathcal{E}_0 \hookrightarrow \mathcal{E}$ и для $\mathcal{E}_i = \operatorname{Im}_{\phi}\left(\mathcal{E}_0\right)$ есть $\phi^{-1}: \mathcal{E}_i \longrightarrow \mathcal{E}_0$.

Определение

Корневая система Δ "расщепляется" на (Δ_1, Δ_2) , если существует два вложения $\phi_1: \Delta_1 \hookrightarrow \Delta$ и $\phi_2: \Delta_2 \hookrightarrow \Delta$, где (a) Δ – несвязное объединение образов ϕ_1 и ϕ_2 , и (b) ни ранг Δ_1 , ни ранг Δ_2 не превосходит ранга Δ .

Пусть
$$\Delta_1 = \Delta_{\mathfrak{a}}$$
. $\Delta_{\mathfrak{s}} := \Delta_2 = \Delta \setminus \Delta_{\mathfrak{a}}$ определяет веер вложения $\Gamma_{\mathfrak{a} \hookrightarrow \mathfrak{g}}$.
$$\prod_{\beta \in \Delta_{\mathfrak{s}}^+} \left(1 - e^{-\beta}\right) = -\sum_{\gamma \in P} s(\gamma) e^{-\gamma}$$

$$\Psi_{\mathfrak{g}}^{(\mu)} = e^{-\rho} \sum_{w \in W_{\mathfrak{a}}} w \circ \left(e^{\rho_{\mathfrak{a}}} \phi_2\left(\Psi^{\widetilde{\mu} + \rho_{\mathfrak{s}}}\right)\right) \quad \mu = \sum_{k} m_k \omega_{\mathfrak{s}}^k, \quad \widetilde{\mu} = \sum_{k} m_k \omega_{\mathfrak{s}}^k$$

Пример

Рис.: Веса $L_{B_2}^{[3,2]}$ с кратностями показаны слева. Короткий пунктир – контур сингулярного элемента. Справа – разложение сингулярного элемента $\Psi_{B_2}(L_{B_2}^{[3,2]})$ в сумму образов сингулярных элементов $\Psi_{A_2}(L^{[3,2]})$ (длинный пунктир). Кратности $L_{A_2}^{[3,2]}=$ коэффициентам ветвления $L_{B_2\downarrow A_1\oplus u(1)}^{[3,2]}.$

Рис.: Орбита группы Вейля (длинный пунктир) для $\Psi_{G_2}(L^{[3,2]})$ и его разложение в сумму образов сингулярных элементов модулей A_2 (короткий). Кратности весов $L_{A_2}^{[3,2]}$ совпадают с коэффициентами ветвления $L_{G_2 \downarrow A_2}^{[3,2]}$.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q G

Аффинное расширение $\hat{\mathfrak{a}} \subset \hat{\mathfrak{g}}$. Так как $\operatorname{rank} \mathfrak{g} \leq \operatorname{rank} \mathfrak{a} + \operatorname{rank} \mathfrak{s}$, для знаменателей Вейля

$$\begin{split} \prod_{\alpha \in \hat{\Delta}_1^+} (1 - e^{-\alpha})^{\mathrm{mult}(\alpha)} \prod_{\beta \in \hat{\Delta}_2^+} (1 - e^{\phi \circ \beta})^{\mathrm{mult}(\beta)} &= \\ \prod_{\gamma \in \hat{\Delta}^+} (1 - e^{-\gamma})^{\mathrm{mult}(\gamma)} \prod_{n=0}^{\infty} (1 - e^{-n\delta})^{\mathrm{rank}\mathfrak{a} + \mathrm{rank}\mathfrak{s} - \mathrm{rank}\mathfrak{g}} \\ \Theta_{\widehat{\lambda} = (\lambda, k, 0)}^{(\hat{\mathfrak{g}})} (\tau, z) &= \sum_{\xi \in Q_{\mathfrak{g}} + \frac{\lambda}{k}} e^{2\pi i k \left(\frac{1}{2}(\xi, \xi)\tau + (\xi, z)\right)} \end{split}$$

Соотношение, связывающее тета-функции алгебр $\hat{\mathfrak{g}}, \hat{\mathfrak{s}}, \hat{\mathfrak{a}}$:

$$\left(\sum_{v \in W_{\mathfrak{a}}} \epsilon(v) \Theta_{v \rho_{\mathfrak{a}}}^{(\hat{\mathfrak{a}})}(\tau, z)\right) \cdot \left(\sum_{u \in W_{\mathfrak{s}}} \epsilon(u) \Theta_{\phi \circ (u \rho_{\mathfrak{s}})}^{(\hat{\mathfrak{s}})}(\tau, z)\right) = \left(\sum_{w \in W} \epsilon(w) \Theta_{w \rho_{\mathfrak{g}}}^{(\hat{\mathfrak{g}})}(\tau, z)\right)$$

Ветвление на конечномерные подалгебры

Рассмотрим ветвление модуля $\hat{\mathfrak{g}}$ на модули \mathfrak{g}

$$\mathrm{ch} L_{\hat{\mathfrak{g}}}^{\hat{\mu}} = \sum_{n=0}^{\infty} e^{-n\delta} \sum_{\nu \in P} b_{\nu}^{(\hat{\mu})}(n) \mathrm{ch} L_{\mathfrak{g}}^{\nu} \quad m_{\hat{\nu}=(\nu,k,n)}^{(\hat{\mu})} = \sum_{\xi \in P} b_{\xi}^{(\hat{\mu})}(n) m_{\nu}^{(\xi)}$$

Введем $b_{
u}^{(\hat{\mu})}(q) := \sum_{n=0}^{\infty} b_{
u}^{(\hat{\mu})}(n) q^n$, они связаны с q-размерностью $\dim_q L_{\hat{\mathfrak{q}}}^{\hat{\mu}} = \sum_{n=0}^{\infty} q^n \sum_{\nu \in P} b_{\nu}^{(\hat{\mu})}(n) \dim L_{\mathfrak{q}}^{\nu} = \sum_{\nu \in P} b_{\nu}^{(\hat{\mu})}(q) \dim L_{\mathfrak{q}}^{\nu}.$ $\sigma_{\nu}^{(\hat{\mu})}(q) = \sum_{\varepsilon \in P} m_{\nu}^{(\xi)} b_{\varepsilon}^{(\hat{\mu})}(q).$

Введем порядок на множестве весов ξ следующим образом: припишем весу ξ значение (ρ, ξ) и упорядочим веса по этим значениям. Тогда

$$\sigma(q) = Mb(q)$$
 $b(q) = M^{-1}\sigma(q)$

 $\sigma(q)$ и b(q) – бесконечные векторы струнных функций и функций ветвления. Матрица M содержит кратности весов в \mathfrak{g} -модулях. Обратная матрица M^{-1} содержит рекуррентные соотношения на кратности весов.

Матричные соотношения для сплинтов

Рассмотрим ветвление модулей $\hat{\mathfrak{g}}$ на модули \mathfrak{a} в предположении существовании сплинта $\Delta_{\mathfrak{g}}^+ = \Delta_{\mathfrak{a}}^+ \cup \phi(\Delta_{\mathfrak{s}}^+)$. Разложим \mathfrak{g} -модули на \mathfrak{a} -модули используя свойство сплинта:

$$\operatorname{ch} \mathcal{L}_{\hat{\mathfrak{g}}}^{\hat{\mu}} = \sum_{n=0}^{\infty} e^{-n\delta} \sum_{\nu \in P_{\mathfrak{a}}} b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{a})\nu}^{(\hat{\mu})}(n) \operatorname{ch} \mathcal{L}_{\mathfrak{a}}^{\nu} =$$

$$\sum_{n=0}^{\infty} e^{-n\delta} \sum_{\nu \in P} b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{g})\nu}^{(\hat{\mu})}(n) \sum_{\xi \in P_{\mathfrak{a}}} b_{(\mathfrak{g}\downarrow\mathfrak{a})\xi}^{(\nu)} \operatorname{ch} \mathcal{L}_{\mathfrak{a}}^{\xi} =$$

$$= \sum_{n=0}^{\infty} e^{-n\delta} \sum_{\nu \in P} b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{g})\nu}^{(\hat{\mu})}(n) \sum_{\xi \in P_{\mathfrak{a}}} \mathcal{M}_{\widetilde{\nu}-\phi^{-1}(\nu-\xi)}^{\widetilde{\nu}} \operatorname{ch} \mathcal{L}_{\mathfrak{a}}^{\xi} \quad (6)$$

Матричное соотношение выполняется для функций ветвления $b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{a})}(q)=M_{\mathfrak{s}}\ b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{a})}(q)$ и мы можем написать $\sigma(q)=M_{\mathfrak{a}}\ b_{(\hat{\mathfrak{g}}\downarrow\mathfrak{a})}(q)$. Зная коэффициенты ветвления для вложения $\mathfrak{g}\subset\hat{\mathfrak{g}}$ сразу получаем (градуированные) функции ветвления для вложения $\mathfrak{a}\subset\hat{\mathfrak{g}}$.

Заключение

- Сингулярные элементы модулей аффинных алгебр Ли появляются в coset-моделях CFT
- Структура модуля определяется сингулярным элементом
- Разложение сингулярного элемента позволяет вычислять функции ветвления
- Проясняется связь с обобщенной резольвентой Бернштейна-Гельфанда-Гельфанда
- Особый тип разложения сплинт. Он сильно упрощает вычисление коэффициентов ветвления.
- Из существования сплинта следуют соотношения на тета-функции и функции ветвления.

Спасибо за внимание!