A.Belcaid

ENSA-Safi

March 1, 2022

- ① Définition
 - Prédécesseurs, Successeurs
 - Degrés
- Chemins et circuits
- Représentation
 - Multiplication matrices
- Connexité
- 5 Ordonnancement d'un graphe

<u>A.Belcaid</u> 2/15

• Un graphe orienté traduit des relations asymétriques entre des entités.

- Un graphe orienté traduit des relations asymétriques entre des entités.
- On graphe orienté $G=(V,\mathsf{E})$ est définit par des sommets V et des relations $\mathsf{E}=V\times V.$

- Un graphe orienté traduit des relations asymétriques entre des entités.
- Pour deux sommets (x, y) adjacents, le lien (x, y) est appelé arc de x vers y.

- Un graphe orienté traduit des relations asymétriques entre des entités.
- Pour deux sommets (x, y) adjacents, le lien (x, y) est appelé arc de x vers y.
 - x s'appelle extrémité initiale.
 - y s'appelle extrémité finale.

Exemple

Exemple

Dans un tournoi, les joueurs s'affrontent deux a deux. On a obtenus les résultats suivants:

- Le Joueur A a battu B et D.
- Le Joueur B a battu C et D.
- Le Joueur C a battu A.
- Le Joueur D a battu C.

Figure: Graphe représentant les résultats du jeu.

Prédécesseurs

Dans un graphe G = (V, E), les **prédécesseurs** d'un sommet x notés $\Gamma^-(x)$.

$$\Gamma^-(x) = \{y \in V \mid (y,x) \in E\}$$

<u>A.Belcaid</u> 5/15

Prédécesseurs

Dans un graphe G=(V,E), les prédécesseurs d'un sommet x notés $\Gamma^-(x)$.

$$\Gamma^-(x) = \{ y \in V \mid (y, x) \in E \}$$

Successeurs

Dans un graphe G=(V,E), les Successeurs d'un sommet x notés $\Gamma^+(x)$.

$$\Gamma^+(x) = \{ y \in V \mid (x, y) \in E \}$$

Prédécesseurs

Dans un graphe G=(V,E), les prédécesseurs d'un sommet x notés $\Gamma^-(x)$.

$$\Gamma^-(x) = \{ y \in V \mid (y, x) \in E \}$$

Successeurs

Dans un graphe G = (V, E), les Successeurs d'un sommet x notés $\Gamma^+(x)$.

$$\Gamma^+(x) = \{ y \in V \mid (x, y) \in E \}$$

Calculer $\Gamma^-(C)$ et $\Gamma^+(C)$.

Prédécesseurs

Dans un graphe G = (V, E), les **prédécesseurs** d'un sommet x notés $\Gamma^{-}(x)$.

$$\Gamma^{-}(x) = \{ y \in V \mid (y, x) \in E \}$$

Successeurs

Dans un graphe G=(V,E), les Successeurs d'un sommet x notés $\Gamma^+(x)$.

$$\Gamma^+(x) = \{ y \in V \mid (x, y) \in E \}$$

Calculer $\Gamma^-(C)$ et $\Gamma^+(C)$.

Figure: Graphe représentant les résultats du jeu.

<u>A.Belcaid</u> 5/15

- On garde la notion d'ordre et de taille dans un graphe orienté.
- Cependant, nous avons besoin de différencier entre les arcs entrants et sortants.
- 1 Le demi degré intérieur d'un sommet x est:

$$d^- = |\Gamma^-|$$

2 Le demi degré extérieur d'un sommet x est:

$$d^+ = |\Gamma^+|$$

- On garde la notion d'ordre et de taille dans un graphe orienté.
- Cependant, nous avons besoin de différencier entre les arcs entrants et sortants.
- 1 Le demi degré intérieur d'un sommet x est:

$$d^- = |\Gamma^-|$$

2 Le demi degré extérieur d'un sommet x est:

$$d^+ = |\Gamma^+|$$

Pour le graphe de la figure (2), on as:

Table: Degrés des sommets

Sommet	Α	В	С	D	Total
$d^+(x)$	2	2	1	1	6
$d^{-}(x)$	1	1	2	2	6
$d_{G}(x)$	3	3	3	3	12

Théorème de degré

Théorème

block Soit G = (V, E) un graphe **orienté**, nous avons alors la propriété suivante:

$$\sum_{x \in V} d_G^+(x) = \sum_{x \in V} d_G^-(x) \tag{1}$$

Ainsi, la somme des degrés d'un graphe orienté est toujours paire.

Chemins et Circuits

- Puisque les arcs possèdent une direction, on ne peut pas parler de notes de chaines et de alertcycle.
- Dans un graphe G=(V,E), un chemin entre deux sommets x et y est une suite x_0,x_1,\ldots,x_k tel que

$$\left\{ \begin{array}{ccc} x_0=x & \text{et } x_k=y \\ \\ (x_i,x_{i+1}) \in E & \forall i \in \{0,k-1\} \end{array} \right.$$

- Lorsque le début du chemin **coïncide** avec sa fin $(x_0 = x_k)$, on dit que le chemin est **circuit**.
- La longueur d'un chemin est le nombre d'arcs qu'il contient.

Représentation

- On peut utiliser les mêmes représentations pour un graphe oriente.
- Matrice d'adjacence: matrice de taille n x n représentant les arcs entre les nœuds.
- La matrice incidence nécessite des nombres negatifs pour indiquer la direction des arcs.
 - Pour un arc entrant on met 1.
 - Pour un arc **sortant** on met -1.

- La matrice d'adjacence possède un avantage de taille.
- On peut remarquer que celle ci donne tous les chemins de longueur 1 entre les sommets.
- Ainsi la matrice $M^2=MM$ va montrer le nombre de chemins de longueur 2 entre deux sommets.

A.Belcaid 10/15

- La matrice d'adjacence possède un avantage de taille.
- On peut remarquer que celle ci donne tous les chemins de longueur 1 entre les sommets.
- Ainsi la matrice $M^2=MM$ va montrer le nombre de chemins de longueur 2 entre deux sommets.

<u>A.Belcaid</u> 10/15

- La matrice d'adjacence possède un avantage de taille.
- On peut remarquer que celle ci donne tous les chemins de longueur 1 entre les sommets.
- Ainsi la matrice M² = MM va montrer le nombre de chemins de longueur 2 entre deux sommets.

$$M = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

A.Belcaid 10/15

- La matrice d'adjacence possède un avantage de taille.
- On peut remarquer que celle ci donne tous les chemins de longueur 1 entre les sommets.
- Ainsi la matrice $M^2=MM$ va montrer le nombre de chemins de longueur 2 entre deux sommets.

$$M^2 = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

<u>A.Belcaid</u> 10/15

- La matrice d'adjacence possède un avantage de taille.
- On peut remarquer que celle ci donne tous les chemins de longueur 1 entre les sommets.
- Ainsi la matrice $M^2=MM$ va montrer le nombre de chemins de longueur 2 entre deux sommets.

$$M^3 = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

<u>A.Belcaid</u> 10/15

Connexité

A.Belcaid 11/15

Algorithmes pour SCC

- Un graphe est dit fortement connexe si pour toute paire de sommets (x, y), il existe au moins un chemin entre x et y.
- Une composante fortement connexe (Strongly Connected Component (SCC)) est un sous-graphe qui est fortement connexe.
- On peut calculer les composantes fortement connexes d'un graphe par un algorithme dit de marquage:

Algorithm Algorithme de margquage

- 1: k = 0
- 2: choisir une sommet x et le marquer par (+) et (-)
- 3: k = k + 1
- 4: marquer tous les successeurs de x par (+).
- 5: marquer tous lss prédécesseurs de x par (-).
- 6: Les composantes marques par (+) et (-) forment une composante connexe C_k .
- 7: Retirer tous les sommets de C_k puis recommencer.

A.Belcaid 12/15

Exemple illustratif

Table: Algorithme de marquage

	1	2	3	4	5	6	
Marques	+-	+	+	+	+	+	$C_1 = \{1\}$
Marques		+-	+-	+	+	+	$C_1 = \{2, 3\}$
Marques				+-	+-	+-	$C_1 = \{4, 5, 6\}$

Ordonnancement d'un graphe

- Dans un graphe orienté connexe et sans circuit, l'Ordonnancement des sommets consiste a organiser les sommet en niveaux tel que tous les arcs vont d'un niveau inférieur a un niveau supérieur.
- Mathématiquement, ceci consiste a propose une fonction $f:V\to \mathbb{N}$ qui donne le rang de chaque sommet.

<u>A.Belcaid</u> 14/15

Ordonnancement d'un graphe

- Dans un graphe orienté connexe et sans circuit, l'Ordonnancement des sommets consiste a organiser les sommet en niveaux tel que tous les arcs vont d'un niveau inférieur a un niveau supérieur.
- Mathématiquement, ceci consiste a propose une fonction $f:V\to \mathbb{N}$ qui donne le rang de chaque sommet.

<u>A.Belcaid</u> 14/15

Ordonnancement d'un graphe

- Dans un graphe orienté connexe et sans circuit, l'Ordonnancement des sommets consiste a organiser les sommet en niveaux tel que tous les arcs vont d'un niveau inférieur a un niveau supérieur.
- Mathématiquement, ceci consiste a propose une fonction $f:V\to\mathbb{N}$ qui donne le rang de chaque sommet.

<u>A.Belcaid</u> 14/15

Algorithme d'ordonnancement

A.Belcaid 15/15

Algorithme d'ordonnancement

Algorithm Algorithme d'ordonnancement

1: k = 1 #Valeur qui représente le rang

2: déterminer les sommets non classes, dont les prédécesseurs est vide.

3: leur affecter le niveau k

4: k=k+1 #passer au niveau suivant

5: Reprendre s'il existe d'autres sommets non classés.

A.Belcaid 15/15