# Neighborhoods of London

July 09, 2021

#### Introduction

London is a quite popular tourist and vacation destination for people all around the world. It is diverse and multicultural and offers a wide variety of experiences that is widely sought after. We try to group the neighbourhoods of London and draw insights to what they look like now.

#### **Business Problem**

The aim is to help tourists choose their destinations depending on the experiences that the neighbourhoods have to offer and what they would want to have. This also helps people make decisions if they are thinking about migrating to London or even if they want to relocate neighbourhoods within the city. Our findings will help stakeholders make informed decisions and address any concerns they have including the different kinds of cuisines, provision stores and what the city has to offer.

## **Data Description**

We require geolocation data for London. Postal codes of the city serve as a starting point. Using Postal codes we can find out the neighbourhoods, boroughs, venues and their most popular venue categories.

To derive our solution, We scrape our data from https://en.wikipedia.org/wiki/List\_of\_areas\_of\_London

This wikipedia page has information about all the neighbourhoods, we limit it to London.

1. borough: Name of Neighbourhood

2. town: Name of borough

3. post\_code : Postal codes for London

This wikipedia page lacks information about the geographical locations. To solve this problem we use ArcGIS API

#### ArcGIS API

ArcGIS Online enables you to connect people, locations, and data using interactive maps. Work with smart, data-driven styles and intuitive analysis tools that deliver location intelligence. Share your insights with the world or specific groups.

More specifically, we use ArcGIS to get the geo locations of the neighbourhoods of London. The following columns are added to our initial dataset which prepares our data.

1. latitude: Latitude for Neighbourhood

2. longitude : Longitude for Neighbourhood

Based on all the information collected for London, we have sufficient data to build our model. We cluster the neighbourhoods together based on similar venue categories. We then present our observations and findings. Using this data, our stakeholders can take the necessary decision.

#### Foursquare API Data

We will need data about different venues in different neighbourhoods of that specific borough. In order to gain that information we will use "Foursquare" locational information. Foursquare is a location data provider with information about all manner of venues and events within an area of interest. Such information includes venue names, locations, menus and even photos. As such, the foursquare location platform will be used as the sole data source since all the stated required information can be obtained through the API.

After finding the list of neighbourhoods, we then connect to the Foursquare API to gather information about venues inside each and every neighbourhood. For each neighbourhood, we have chosen the radius to be 500 meters.

The data retrieved from Foursquare contained information of venues within a specified distance of the longitude and latitude of the postcodes. The information obtained per venue as follows:

1. Neighbourhood: Name of the Neighbourhood

2. Neighbourhood Latitude: Latitude of the Neighbourhood

3. Neighbourhood Longitude: Longitude of the Neighbourhood

4. Venue: Name of the Venue

5. Venue Latitude: Latitude of Venue

6. Venue Longitude: Longitude of Venue

7. Venue Category: Category of Venue

Based on all the information collected, we have sufficient data to build our model. We cluster the neighbourhoods together based on similar venue categories. We then present our observations and findings. Using this data, our stakeholders can make the necessary decision.

## Methodology

```
import pandas as as pd
import requests
import numpy as np
import matplotlib.cm as cm
import matplotlib.colors as colors
import folium
from sklearn.cluster import KMeans
```

#### Package breakdown:

1. Pandas: To collect and manipulate data in JSON and HTMl and then data analysis

2. requests: Handle http requests

3. matplotlib: Detailing the generated maps

- 4. folium: Generating maps of London
- 5. sklearn: To import Kmeans which is the machine learning model that we are using.

The approach taken here is to explore the city, plot the map to show the neighbourhoods being considered and then build our model by clustering all of the similar neighbourhoods together and finally plot the new map with the clustered neighbourhoods. We draw insights and then compare and discuss our findings.

#### **Data Collection**

```
url_london = "https://en.wikipedia.org/wiki/List_of_areas_of_London"
wiki_london_url = requests.get(url_london)
wiki_london_data = pd.read_html(wiki_london_url.text)
wiki_london_data = wiki_london_data[1]
Wiki_london_data
```

| C→ |        | Location        | London borough                    | Post town      | Postcode district | Dial code | OS grid ref |
|----|--------|-----------------|-----------------------------------|----------------|-------------------|-----------|-------------|
|    | 0      | Abbey Wood      | Bexley, Greenwich [7]             | LONDON         | SE2               | 020       | TQ465785    |
|    | 1      | Acton           | Ealing, Hammersmith and Fulham[8] | LONDON         | W3, W4            | 020       | TQ205805    |
|    | 2      | Addington       | Croydon[8]                        | CROYDON        | CR0               | 020       | TQ375645    |
|    | 3      | Addiscombe      | Croydon[8]                        | CROYDON        | CR0               | 020       | TQ345665    |
|    | 4      | Albany Park     | Bexley                            | BEXLEY, SIDCUP | DA5, DA14         | 020       | TQ478728    |
|    |        |                 |                                   |                |                   |           |             |
|    | 526    | Woolwich        | Greenwich                         | LONDON         | SE18              | 020       | TQ435795    |
|    | 527    | Worcester Park  | Sutton, Kingston upon Thames      | WORCESTER PARK | KT4               | 020       | TQ225655    |
|    | 528    | Wormwood Scrubs | Hammersmith and Fulham            | LONDON         | W12               | 020       | TQ225815    |
|    | 529    | Yeading         | Hillingdon                        | HAYES          | UB4               | 020       | TQ115825    |
|    | 530    | Yiewsley        | Hillingdon                        | WEST DRAYTON   | UB7               | 020       | TQ063804    |
|    | 531 ro | ws × 6 columns  |                                   |                |                   |           |             |

# **Data Preprocessing**

For London, We replace the spaces with underscores in the title. The borough column has numbers within square brackets that we remove using:

€

```
wiki_london_data.rename(columns=lambda x: x.strip().replace(" ", "_"), inplace=True)
Wiki_london_data
```

#### **Feature Selection**

We need only the boroughs, Postal codes, and Post town for further steps. We can drop the locations, dial codes and OS grid.

```
df1 = wiki_london_data.drop( [ wiki_london_data.columns[0], wiki_london_data.columns[4],
wiki_london_data.columns[5] ], axis=1)
df1.head()
```

|   | London borough                    | Post_town      | Postcode district |
|---|-----------------------------------|----------------|-------------------|
| 0 | Bexley, Greenwich [7]             | LONDON         | SE2               |
| 1 | Ealing, Hammersmith and Fulham[8] | LONDON         | W3, W4            |
| 2 | Croydon[8]                        | CROYDON        | CR0               |
| 3 | Croydon[8]                        | CROYDON        | CR0               |
| 4 | Bexley                            | BEXLEY, SIDCUP | DA5, DA14         |

# Visualizing the Neighborhoods in London



### One Hot Encoding

Since we are trying to find out what are the different kinds of venue categories present in each neighbourhood and then calculate the top 10 common venues to base our similarity on, we use the One Hot Encoding to work with our categorical datatype of the venue categories. This helps to convert the categorical data into numeric data.

We won't be using label encoding in this situation since label encoding might cause our machine learning model to have a bias or a sort of ranking which we are trying to avoid by using One Hot Encoding.

We perform one hot encoding and then calculate the mean of the grouped venue categories for each of the neighbourhoods.

# Top Venues in the Neighborhoods

|   | Neighbourhood            | 1st Most<br>Common Venue | 2nd Most<br>Common Venue | 3rd Most<br>Common Venue  | 4th Most<br>Common Venue | 5th Most<br>Common Venue | 6th Most<br>Common Venue | 7th Most<br>Common Venue | 8th Most<br>Common Venue | 9th Most<br>Common Venue | 10th Most<br>Common Venue |
|---|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|
| 0 | Barnet                   | Pub                      | Coffee Shop              | Bus Stop                  | Park                     | Hotel                    | Italian Restaurant       | BBQ Joint                | Breakfast Spot           | Café                     | Grocery Store             |
| 1 | Barnet, Brent,<br>Camden | Pizza Place              | Park                     | Furniture / Home<br>Store | Yoshoku<br>Restaurant    | Fast Food<br>Restaurant  | Event Space              | Exhibit                  | Fabric Shop              | Falafel Restaurant       | Farm                      |
| 2 | Bexley                   | Lake                     | Motorcycle Shop          | Convenience Store         | Gym / Fitness<br>Center  | Pet Store                | Flea Market              | Farmers Market           | Exhibit                  | Food & Drink<br>Shop     | Fabric Shop               |
| 3 | Bexley, Greenwich        | Indian Restaurant        | Print Shop               | Pizza Place               | Grocery Store            | Fast Food<br>Restaurant  | Ethiopian<br>Restaurant  | Event Space              | Exhibit                  | Fabric Shop              | Falafel Restaurant        |
| 4 | Bexley, Greenwich        | Lake                     | Yoshoku<br>Restaurant    | Escape Room               | Event Space              | Exhibit                  | Fabric Shop              | Falafel Restaurant       | Farm                     | Farmers Market           | Fast Food<br>Restaurant   |

# Model Building K-Means

Moving on to the most exciting part - Model Building! We will be using the K-Means Clustering Machine learning algorithm to cluster similar neighbourhoods together. We will be going with the number of clusters as 5.

| > | borough                              | town   | post_code | latitude  | longitude | Cluster<br>Labels | 1st<br>Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue |
|---|--------------------------------------|--------|-----------|-----------|-----------|-------------------|--------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|
| 0 | Bexley,<br>Greenwich                 | LONDON | SE2       | 51.499741 | 0.124061  | 3                 | Lake                           | Yoshoku<br>Restaurant       | Escape<br>Room              | Event<br>Space              | Exhibit                     | Fabric<br>Shop              | Falafel<br>Restaurant       | Farm                        | Farmers<br>Market           | Fast Food<br>Restaurant      |
| 1 | Ealing,<br>Hammersmith<br>and Fulham | LONDON | W3, W4    | 51.497765 | -0.255852 | 2                 | Coffee<br>Shop                 | Park                        | Grocery<br>Store            | Playground                  | Comedy<br>Club              | Fish &<br>Chips Shop        | Spa                         | Metro<br>Station            | French<br>Restaurant        | Mediterranean<br>Restaurant  |
| 6 | City                                 | LONDON | EC3       | 51.513145 | -0.078733 | 2                 | Coffee<br>Shop                 | Pub                         | Hotel                       | Sandwich<br>Place           | Gym /<br>Fitness<br>Center  | Italian<br>Restaurant       | Cocktail Bar                | French<br>Restaurant        | Restaurant                  | Wine Bar                     |
| 7 | Westminster                          | LONDON | WC2       | 51.514625 | -0.114860 | 2                 | Pub                            | Hotel                       | Theater                     | Coffee<br>Shop              | Sandwich<br>Place           | Cocktail<br>Bar             | Japanese<br>Restaurant      | Garden                      | Plaza                       | Chinese<br>Restaurant        |
| 9 | Bromley                              | LONDON | SE20      | 51.482490 | 0.119194  | 2                 | Bus Stop                       | Forest                      | Campground                  | Athletics &<br>Sports       | Motorcycle<br>Shop          | Gym /<br>Fitness<br>Center  | Convenience<br>Store        | Pet Store                   | Fast Food<br>Restaurant     | Fabric Shop                  |

# Visualizing the Clustered Neighborhoods



#### **Examining Clusters**

```
Cluster 1

london_data_nonan.loc[london_data_nonan['Cluster Labels'] == 1, london_data_nonan.columns[[1] + list(range(5, london_data_nonan.shape[1]))]]

Cluster 2

london_data_nonan.loc[london_data_nonan['Cluster Labels'] == 2, london_data_nonan.columns[[1] + list(range(5, london_data_nonan.shape[1]))]]

Cluster 3

london_data_nonan.loc[london_data_nonan['Cluster Labels'] == 3, london_data_nonan.columns[[1] + list(range(5, london_data_nonan.shape[1]))]]

Cluster 4

london_data_nonan.loc[london_data_nonan['Cluster Labels'] == 4, london_data_nonan.columns[[1] + list(range(5, london_data_nonan.shape[1]))]]

Cluster 5

london_data_nonan.loc[london_data_nonan['Cluster Labels'] == 5, london_data_nonan.columns[[1] + list(range(5, london_data_nonan.shape[1]))]]
```

#### Results and Discussion

The neighbourhoods of London are very multicultural. There are a lot of different cuisines including Indian, Italian, Turkish and Chinese. London seems to have a lot of Restaurants, bars, juice bars, coffee shops, Fish and Chips shops and Breakfast spots. It has a lot of shopping options too with that of the Flea markets, flower shops, fish markets, Fishing stores, clothing stores. For leisure, the neighbourhoods are set up to have lots of parks, gyms and art galleries.

Overall, the city of London offers a multicultural, diverse and certainly an entertaining experience.

#### Conclusion

The purpose of this project was to explore the city of London and see how attractive it is to potential tourists and migrants. We explored the city based on their postal codes and then extrapolated the common venues present in each of the neighbourhoods finally concluding with clustering similar neighbourhoods together.

We could see that each of the neighbourhoods had a wide variety of experiences to offer which is unique in it's own way. The cultural diversity is quite evident which also gives the feeling of a sense of inclusion.

London seems to offer a vacation stay or a romantic getaway with a lot of places to explore, beautiful landscapes and a wide variety of culture. Overall, it's up to the stakeholders to decide which experience they would prefer more and which would be more to their liking.