## Redes de Computadores II



Temas: Protocolo UDP.

## Protocolos da Camada de Transporte

- Camada responsável por definir os tamanhos dos pacotes e permitir a comunicação múltipla dos processos.
  - □ UDP (*User Datagram Protocol*):
    - Protocolo não orientado à conexão;
    - Mais utilizado em serviços de transmissão de áudio e vídeo;
    - Indicado em serviços que quando interrompidos não prejudicam a comunicação.

### Serviços mais comuns:

| Porta     | Protocolo | Aplicação                                   |
|-----------|-----------|---------------------------------------------|
| 53        | DNS       | Sistemas de resolução de nomes de domínio   |
| 67 e 68   | DHCP      | Protocolo de configuração de hosts dinâmico |
| 161 e 162 | SNMP      | Protocolo para gerenciamento de redes       |
| 520 e 521 | RIP       | Protocolo de roteamento de pacotes          |

## Segmento:



| Porta Origem | Porta Destino | 1 |                  |
|--------------|---------------|---|------------------|
| Comprimento  | Checksum      |   | Cabeçalho<br>UDP |
| Da           | dos           |   | •                |

## Campos:

- Porta de Origem e de Destino: número que identifica a aplicação (processo) da origem e destino;
- Comprimento: possui no mínimo 8 bytes do cabeçalho e, no máximo, 65.507 (65.535-20-8);
- <u>Checksum</u>: é utilizado para verificação de erros na transmissão.

- Cálculo do checksum:
  - Esse cálculo é feito com os 16 bits da porta de origem e de destino e do comprimento.
  - Os passos são:
    - Somar os 16 bits dos 3 campos. Se ocorrer stack overflow, o bit excedente não pode ser descartado, ele deve ser somado aos bits LSBs novamente até ser absorvido;
    - 2. Gerar o complemento a 1 do resultado da soma;
    - Obs: Esse complemento a 1 é o checksum.
  - Desta forma o campo é preenchido e o segmento pode ser enviado ao destinatário;

- Cálculo do checksum:
  - Ao chegar no destinatário o processo de verificação do checksum segue o seguinte passo:
    - 1. Somar o *checksum* com os outros 3 campos, da mesma forma que no procedimento anterior. Se o resultado for tudo 1, não houve alteração dos dados na transmissão, se houver ao menos um 0, significa que houve alteração e o pacote é descartado.

Exemplo do Cálculo do checksum:

| 10     | 30 |
|--------|----|
|        |    |
| 'AULA' |    |

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |
|--------|----|
|        |    |
| 'AULA' |    |

**Dados** 

- 1. Achar o comprimento
- 2. Calcular o checksum

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
|        |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o checksum

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
|        |    |  |
| 'AULA' |    |  |

**Dados** 

#### Passos:

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o checksum

Cabeçalho mínimo do UDP = 8bytes Dados = 'AULA' = 4 bytes Comprimento total = ?

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
|        |    |  |
| 'AULA' |    |  |

**Dados** 

#### Passos:

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o checksum

Cabeçalho mínimo do UDP = 8bytes Dados = 'AULA' = 4 bytes Comprimento total = 12 bytes

### Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |
|--------|----|
| 12     |    |
| 'AULA' |    |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o checksum

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o *checksum* → converter cada valor do segmento em binários, exceto o campo dados, e realizar os cálculos indicados anteriormente

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

#### Dados

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o *checksum* → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

| ?????????????? | ?????????????? |  |
|----------------|----------------|--|
| ?????????????? |                |  |
| 'AULA'         |                |  |

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o *checksum* → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

|    |   | 10 |   | LSB |
|----|---|----|---|-----|
| 16 | 8 | 4  | 2 | 1   |
| 0  | 1 | 0  | 1 | 0   |

| ?????????????? | ?????????????? |  |
|----------------|----------------|--|
| ?????????????? |                |  |
| 'AULA'         |                |  |

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o *checksum* → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

|    |   | 10 |   | LSB |
|----|---|----|---|-----|
| 16 | 8 | 4  | 2 | 1   |
| 0  | 1 | 0  | 1 | 0   |

| 00000000001010 | ????????????? |  |
|----------------|---------------|--|
| ?????????????? |               |  |
| 'AULA'         |               |  |

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- 2. Calcular o *checksum* → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

|    |   | 12 |   | LSB |
|----|---|----|---|-----|
| 16 | 8 | 4  | 2 | 1   |
| 0  | 1 | 1  | 0 | 0   |

| 00000000001010  | 000000000011110 |  |
|-----------------|-----------------|--|
| 000000000001100 |                 |  |
| 'AULA'          |                 |  |

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- Calcular o checksum → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |
|--------|----|
| 12     |    |
| 'AULA' |    |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- Calcular o checksum → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente



## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |  |
|--------|----|--|
| 12     |    |  |
| 'AULA' |    |  |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- Calcular o checksum → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

```
(Resultado) 0 0 0 0 0 0 0 0 0 1 1 0 0 (Checksum) 1 1 1 1 1 1 1 1 1 1 0 0 1 1
```

## Exemplo do Cálculo do checksum:

### Porta Origem Porta Destino

| 10     | 30 |
|--------|----|
| 12     |    |
| 'AULA' |    |

**Dados** 

- Achar o comprimento → somar a quantidade de bytes do cabeçalho aos dados
- Calcular o checksum → converter cada valor do segmento em binários de 16 bits, exceto o campo dados, e realizar os cálculos indicados anteriormente

| 000000000001010 | 000000000011110  |  |
|-----------------|------------------|--|
| 00000000001100  | 1111111111001011 |  |
| 'AULA'          |                  |  |

Na comparação do checksum:

| 000000000001010 | 000000000011110  |  |
|-----------------|------------------|--|
| 00000000001100  | 1111111111001011 |  |
| 'AULA'          |                  |  |

### Exercícios:

| 30      | 80 |  |
|---------|----|--|
|         |    |  |
| 'REDES' |    |  |

| 15          | 20 |
|-------------|----|
|             |    |
| 'TECNOLOGO' |    |

| 70 | 100 |  |
|----|-----|--|
|    |     |  |
| 67 |     |  |

# Bibliografia

## BÁSICA:

- BRITO, S. H. B. IPv6: o novo protocolo da internet. São Paulo: Novatec, 2013.
- COMER, D. Interligação de redes com TCP/IP: princípios, protocolos e arquitetura. Rio de Janeiro: Elsevier; Campus, 2006. v.1.
- SOUSA, L. B. Projetos e implementação de redes: Fundamentos, soluções, arquiteturas e planejamento. 2. ed. São Paulo: Érica, 2011.

### COMPLEMENTAR:

- BIRKNER, MATTHEW H. (ED.). Projeto de interconexão de redes: CISCO Internetwork Design - CID. São Paulo: Pearson Education, 2003.
- BRITO, S. H. B. Laboratórios de tecnologias cisco em infraestrutura de redes.
  2.ed. São paulo: Novatec, 2014.
- FREITAS, A. E. S.; BEZERRA, R. M. S. IPv6: conceitos e aspectos práticos. Rio Janeiro: Ciência Moderna, 2015.
- LIMA, João Paulo de. Administração de redes Linux: passo a passo. Goiânia: Terra, 2003.
- STARLIN, G. Redes de computadores: comunicação de dados TCP/IP: conceitos, protocolos e uso. Rio de Janeiro: Alta Books, 2004.
- VASCONCELOS, L.; VASCONCELOS, M. Manual prático de redes. Rio de Janeiro: Laércio Vasconcelos Computação, 2008.