Aufgabe 3 Endliche Automaten

Gegeben ist das folgende Blockschaltbild eines endlichen Automaten:

Die Ausgänge werden gemäß folgender kombinierter Zustandsübergangs- und Ausgabetabelle gesteuert. (Der aktuelle Zustand ist mit Z und der Folgezustand mit Z* gekennzeichnet.)

A	Z	Z*	X	Y
0	Z0	Z0	1	1
1	Z0	Z1	1	0
0	ZI	Z0	0	1
1	Z1	Z2	0	0
0	Z.2	Z0	1	1
1	Z2	Z3		0
0	Z3	Z1	0	0
1	Z3	Z0	0	1
			11	Manly

- a) Geben Sie für jeden Ausgang an, ob er ein Moore- oder ein Mealy-Ausgang ist.
- **b)** Ergänzen Sie im Zeitdiagramm den Verlauf von Z, X und Y mit den folgenden Eigenschaften ohne kombinatorische Verzögerungen:
 - Ein Zustandsübergang soll bei der positiven Flanke des clk –Eingangs erfolgen.
 - Bei reset=1 soll der Automat synchron in den Zustand Z0 übergehen.

c) Zeichnen Sie das Zustandsübergangsdiagramm des Automaten.