Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 r_5 + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$\frac{2ik}{t_1 + 2k^2t_1} \frac{i\sqrt{2}k(2k^2r_5 t_1)}{(t_1 + 2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
${\mathfrak r}_{1}^{\#1}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2t_5(t_1+t_2))}$	$\frac{i k (6 k^2 r_5 + t_1 + 4 t_2)}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$\frac{k^2 \left(6 k^2 r_5 + t_1 + 4 t_2\right)}{\left(1 + k^2\right)^2 \left(3 t_1 t_2 + 2 k^2 r_5 \left(t_1 + t_2\right)\right)}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_2}{(1 + k^2)^2 (3 t_1 t_2 + 2 k^2 r_5 (t_1 + t_2))}$	$-\frac{ik(6k^2r_5+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))} \frac{k^2(6k^2r_5+t_1+4t_2)}{(1+k^2)^2(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2(t_1+t_2)}{3t_1t_2+2k^2r_5(t_1+t_2)}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{(1 + k^2) (3t_1 t_2 + 2k^2 r_5 (t_1 + t_2))}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{(1+k^2)(3t_1t_2+2k^2r_5(t_1+t_2))}$	0	0	0	0
	$^{\sharp 1}_{+} + \alpha \beta$	^{‡2} † αβ	$^{+1}_{+} + \alpha \beta$	$r_1^{\#1} + \alpha$	$r_1^{\#2} + \alpha$	$\int_{1}^{\#1} + \alpha$	$\frac{\pi^2}{1^-} + \alpha$

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{lphaeta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1}^{\sharp 1}{}_{lpha}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1\alpha}^{2}$
$\omega_{1}^{\#1} \dagger^{lphaeta}$	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_2 \right)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2} \dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}\bar{l}k(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp_1}$ † lpha	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	Īkt ₁
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	$-ikt_1$	0	0	0

Quadratic (free) action	$S_{F} == \iiint (\frac{1}{6} (-6t_{1} \omega_{\kappa \alpha}^{\alpha \prime} \omega_{\kappa \alpha}^{\kappa} - 2(t_{1} - 2t_{2}) \omega_{\kappa \lambda}^{\kappa \lambda} \omega_{\kappa \lambda}^{\prime} + 2t_{1} \omega_{\kappa \lambda}^{\prime} \omega_{\kappa \lambda}^{\prime} +$	$2t_2 \omega_{\kappa\lambda}^{\prime} \omega^{\kappa\lambda}_{\prime} + 6 f^{\alpha\beta} \tau_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - 6 r_5 \partial_{\prime} \omega^{\kappa\lambda}_{\prime} \partial^{\prime} \omega_{\alpha}^{\alpha} +$	$4 r_2 \partial^\beta \omega^{\theta \alpha}_{ \kappa} \partial_\theta \omega_{\alpha\beta}^{ \kappa} - 2 r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} - 4 r_2 \partial_\theta \omega_{\alpha\beta}^{ \kappa} \partial_\kappa \omega^{\theta\alpha\beta} - 6 r_5 \partial_\alpha \omega_{\lambda}^{ \alpha}$	$\partial_{\kappa}\omega^{\theta\kappa\lambda} + 6r_5\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} - 6r_5\partial_{\alpha}\omega_{\lambda}^{\ \alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} + 12r_5\partial_{\theta}\omega_{\lambda}^{\ \alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta} -$	$2t_1 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} + t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\ \theta} - 4t_1 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\ \theta} - t_2 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\ \theta} -$	$2t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha \lambda} + t_2 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\alpha \lambda} + 6t_1 \ \omega_{\kappa \alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \prime} + 6t_1 \ \omega_{\kappa \lambda}^{\ \lambda} \partial^{\kappa} f'_{\ \prime} +$	$12t_1\partial^\alpha f_{\kappa\alpha}\partial^\kappa f^{\prime}_{\prime}-6t_1\partial_\kappa f^\lambda_{\lambda}\partial^\kappa f^{\prime}_{\prime}+2t_1\omega_{\prime\theta\kappa}\partial^\kappa f^{\prime\theta}+2t_2\omega_{\prime\theta\kappa}\partial^\kappa f^{\prime\theta}+$	$8t_1\;\omega_{_{IK\theta}}\partial^\kappa f^{I\theta} - 4t_2\;\omega_{_{IK\theta}}\partial^\kappa f^{I\theta} - 2t_1\;\omega_{\theta_{IK}}\partial^\kappa f^{I\theta} - 2t_2\;\omega_{\theta_{IK}}\partial^\kappa f^{I\theta} +$	$4t_1\ \omega_{ heta_{K_I}}\ \partial^{\kappa}f^{' heta}+4t_2\ \omega_{ heta_{K_I}}\ \partial^{\kappa}f^{' heta}-6t_1\ \omega_{_{I}lpha}^{lpha}\ \partial^{\kappa}f^{'}-6t_1\ \omega_{_{I}\lambda}^{\lambda}\ \partial^{\kappa}f^{'}+$	$2t_{1}\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha}-t_{2}\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha}+2t_{1}\partial_{\kappa}f_{\lambda}\partial^{\kappa}f_{\lambda}^{\theta}-t_{2}\partial_{\kappa}f_{\lambda}\partial^{\kappa}f_{\alpha$	$4t_{1}\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\theta}^{\theta}+t_{2}\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\theta}^{\theta}-6t_{1}\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\kappa}+2r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta}+$	$4r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta}$ $-4r_2\partial^eta\omega_{lpha}^{\ lpha\lambda}\partial_\lambda\omega_{lphaeta}^{\ \ \prime}+4r_2\partial^eta\omega_{lpha}^{\ \ \lambdalpha}\partial_\lambda\omega_{lphaeta}^{\ \ \prime}+$	$6 r_5 \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \beta} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - 6 r_5 \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}))[t, \varkappa, y, z] dz dy dx dt$
Quadratic	S _F ==	$2t_2 \omega_{\kappa\lambda}' \omega$	$4 r_2 \partial^{\beta} \omega^{\theta \alpha}$	$\partial_{\kappa}\omega^{\theta\kappa\lambda}+6$	$2t_1 \partial^{\alpha} f_{\theta \kappa} \hat{c}$	$2t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \hat{c}$	$12t_1 \partial^{\alpha} f_{\kappa o}$	$8t_1\omega_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{}_{{$	$4t_1~\omega_{ heta_{K'}}~\partial$	$2t_1 \partial^{\alpha} f^{\lambda}_{\kappa} \hat{c}$	$4t_1 \partial_{\kappa} f^{\lambda}_{\ \ \theta} \hat{c}$	$4 r_2 \partial_{\kappa} \omega^{\theta lpha eta}$	$6 r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}$

				_	l				
$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$r_2 + t_2$
$\tau_{0}^{\#2}$	0	0	0	0					k^2
		t ₁			$f_{0}^{\#2}$	0	0	0	0
$\tau_0^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0	$f_{0}^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0	$\omega_{0}^{\#1}$	-t ₁	$-i\sqrt{2} kt_1$	0	0
	$\sigma_{0}^{\#1}\dagger$	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}$ †		$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ †	$\omega_{0}^{\#1} \dagger$

0

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
Total constraints:	16					

$\omega_{2}^{\#1}$ $\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$	0	0	<u>5</u> 2
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
•	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$

Massive and massless spectra

Massive particle

Pole residue:
$$\frac{-3t_{1}t_{2}(t_{1}+t_{2})+3r_{5}(t_{1}^{2}+2t_{2}^{2})}{r_{5}(t_{1}+t_{2})(-3t_{1}t_{2}+2r_{5}(t_{1}+t_{2}))} > 0$$
Polarisations: 3

Square mass:
$$-\frac{3t_{1}t_{2}}{2r_{5}t_{1}+2r_{5}t_{2}} > 0$$
Spin: 1
Parity: Even

$$\begin{array}{c}
?\\
J^P = 0^-\\
\\
?
\end{array}$$

	Massive particle						
	Pole residue:	$-\frac{1}{r_2} > 0$					
,	Polarisations:	1					
?	Square mass:	$-\frac{t_2}{r_2} > 0$					
	Spin:	0					
	Parity:	Odd					

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& r_5 > 0 \&\& t_1 < 0 \&\& t_2 > -t_1$