TO PASS BOW or higher

Linear Regression with Multiple Variables

LATEST SUBMISSION GRADE

100%

Suppose m=4 students have taken some class, and the class had a midterm exam and a final exam. You
have collected a dataset of their scores on the two exams, which is as follows:

midterm exam	(midterm exam) ²	final exam
89	7921	96
72	5184	74
94	8836	87
69	4761	78

You'd like to use polynomial regression to predict a student's final exam score from their midterm exam score. Concretely, suppose you want to fit a model of the form $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$, where x_1 is the midterm score and x_2 is (midterm score)². Further, you plan to use both feature scaling (dividing by the "max-min", or range, of a feature) and mean normalization.

What is the normalized feature $x_1^{(1)}$? (Hint: midterm = 89, final = 96 is training example 1.) Please round off your answer to two decimal places and enter in the text box below.

✓ Correct

2. You run gradient descent for 15 iterations

with $\alpha=0.3$ and compute

1/1 point

	J	J(heta) after each iteration. You find that the		
	va	lue of $J(heta)$ decreases quickly then levels		
of		f. Based on this, which of the following conclusions seems		
	m	ost plausible?		
		✓ Correct		
		appose you have $m=28$ training examples with $n=4$ features (excluding the additional all-ones ature for the intercept term, which you should add). The normal equation is $\theta=(X^TX)^{-1}X^Ty$. For the ven values of m and n , what are the dimensions of θ , X , and y in this equation?		
		✓ Correct		
	4.	Suppose you have a dataset with $m=50$ examples and $n=15$ features for each example. You want to use multivariate linear regression to fit the parameters θ to our data. Should you prefer gradient descent or the normal equation?		
		✓ Correct		
	5.	Which of the following are reasons for using feature scaling?		
		✓ Correct		