I Modélisation

Soient x_1, x_2, x_3, x_4 les quantités respectives de lait (à la consommation), de beurre, de gouda et d'édam, et p_1, p_2, p_3, p_4 les prix correspondants. À partir d'une quantité définie de lait brut x_t , l'objectif est de maximiser les profits effectués par la vente des produits x_i au prix p_i , soit

$$\max_{x_i, p_i} \sum_{i=1}^4 p_i x_i.$$

On résumera dans un premiers temps, et de manière formelle, l'ensemble des contraintes sur les prix et quantités. Puis on donnera les valeurs numériques pour chacun des paramètres.

1.1 Contraintes formelles

1. En introduisant $\varepsilon_i > 0$ les élasticités simples de chacun des produits, ainsi que ε_{34} et ε_{43} les élasticités croisées entre le gouda et l'édam, on obtient les relations prix-quantités suivantes

$$\frac{x_1 - \overline{x_1}}{\overline{x_1}} = -\varepsilon_1 \frac{p_1 - \overline{p_1}}{\overline{p_1}},\tag{1a}$$

$$\frac{x_2 - \overline{x_2}}{\overline{x_2}} = -\varepsilon_2 \frac{p_2 - \overline{p_2}}{\overline{p_2}},\tag{1b}$$

$$\frac{x_3 - \overline{x_3}}{\overline{x_3}} = -\varepsilon_3 \frac{p_3 - \overline{p_3}}{\overline{p_3}} + \varepsilon_{34} \frac{p_4 - \overline{p_4}}{\overline{p_4}},\tag{1c}$$

$$\frac{x_4 - \overline{x_4}}{\overline{x_4}} = -\varepsilon_4 \frac{p_4 - \overline{p_4}}{\overline{p_4}} + \varepsilon_{43} \frac{p_3 - \overline{p_3}}{\overline{p_3}},\tag{1d}$$

avec $\overline{x_i}$ et $\overline{p_i}$ les quantités produites et les prix de l'année précédente (qui sont des données du problème). Ces relations permettent de réduire le nombre de variables du problème (4 au lieu de 8), et de ne s'intéresser qu'aux prix de vente.

2. *Matière grasse :* La matière grasse totale répartie dans les quatre produits ne peut dépasser celle contenue dans le lait brut. En notant $\alpha_i^f > 0$ le pourcentage de matière grasse du produit i, la contrainte s'écrit

$$\sum_{i=1}^{4} \alpha_i^f x_i \le \alpha_t^f x_t,$$

où x_t est la quantité totale de lait brut, et α_t^f sa teneur en matière grasse.

3. Lactose : De la même manière, en notant $\alpha_i^l>0$ le pourcentage de lactose dans le produit i, il vient

$$\sum_{i=1}^{4} \alpha_i^l x_i \le \alpha_t^l x_t.$$

4. Social: La contrainte sociale s'écrit

$$\sum_{i=1}^4 \beta_i \frac{p_i - \overline{p_i}}{\overline{p_i}} \le 0,$$

où la pondération β_i est la part dans le budget de chacun des produits, définie par

$$\beta_i = \frac{\overline{p_i}\,\overline{x_i}}{\sum_{j=1}^4 \overline{p_j}\,\overline{x_j}}.$$

5. En plus des trois contraintes inégalités précédentes (matière grasse, lactose, social), les quantités produites x_i doivent être positives, soit

$$x_1 \ge 0, \qquad x_2 \ge 0, \qquad x_3 \ge 0, \qquad x_4 \ge 0.$$
 (2)

1.2 Formulation (numérique) du problème

Table 1: Prix, quantités de l'année précédente, élasticités des différents produits

	Prix $\overline{p_i}$	Quantités $\overline{x_i}$	Élasticité simple ε_i	Part dans le budget β_i
Lait	2055	400	0.3	0.64
Beurre	54	4000	1.5	0.16
Gouda	63	3250	0.7	0.16
Edam	17	2500	0.4	0.4

Table 2: Teneurs en gras et en lactose des différents produits

	Matières grasses α_i^f	Lactose α_i^l
Lait (brut)	0.121	0.250
Lait	0.026	0.086
Beurre	0.800	0.020
Gouda	0.306	0.297
Edam	0.241	0.371

Dans cette partie, les quantités sont expérimées en $\times 10^3$ tonnes, et les prix en $\times 10^3$ €/tonnes¹. En remplaçant les données du tableau 1 dans les relations prixquantités (1), on obtient

$$x_1 = -1.5413p_1 + 2671,$$

 $x_2 = -0.0203p_2 + 135,$
 $x_3 = -0.0136p_3 + 0.0015p_4 + 103,$
 $x_4 = 0.0016p_3 - 0.0027p_4 + 19.$

¹Les unités ont peu d'importance pour la suite du projet. Aussi, on ne tiendra pas compte de la cohérence des prix/quantités avec la réalité du marché actuel.

Pour les contraintes inégalités, avec $x_t = 1000$ la quantité totale de lait brut

$$0.026x_1 + 0.800x_2 + 0.306x_3 + 0.241x_4 \le 121$$
, Matière grasse $0.086x_1 + 0.020x_2 + 0.297x_3 + 0.371x_4 \le 250$, Lactose $0.0160x_1 + 0.0004x_2 + 0.0005x_3 + 0.0002x_4 \le 10$. Social

En remplaçant x_i par leur expression en fonction de p_i donnée par (1), on obtient donc la formulation du problème suivante

$$\max_{C^T p \le d} b^T p - \frac{1}{2} p^T A p$$

avec A, b, C, d donnés par

$$A := \begin{pmatrix} 3.0825 & 0 & 0 & 0 \\ 0 & 0.0405 & 0 & 0 \\ 0 & 0 & 0.0271 & -0.0031 \\ 0 & 0 & -0.0031 & 0.0054 \end{pmatrix}, \qquad b := \begin{pmatrix} 2671 \\ 135 \\ 103 \\ 19 \end{pmatrix},$$

$$C := \begin{pmatrix} -0.0401 & -0.0162 & -0.0039 & 0.0002 \\ -0.1326 & -0.0004 & -0.0034 & 0.0006 \\ 1.5413 & 0 & 0 & 0 \\ 0 & 0 & 0.0203 & 0 & 0 \\ 0 & 0 & 0.0136 & -0.0015 \\ 0 & 0 & -0.0016 & 0.0027 \\ 0.0160 & 0.0004 & 0.0005 & 0.0002 \end{pmatrix}, \qquad d := \begin{pmatrix} -92.6 \\ -29.0 \\ 2671 \\ 135 \\ 103 \\ 19 \\ 10 \end{pmatrix}.$$