```
In[1]:= {NotebookFileName[], DateString[]}
Out[1]= {H:\morpheus\worm4\worm4.nb, Sat 24 Apr 2021 11:15:55}
```

Setup

```
In[2]:= Needs ["Developer"]
In[3]:= $HistoryLength = 5
Out[3]= 5
In[4]:= curDir = FileNameDrop[NotebookFileName[]]
Out[4]= H:\morpheus\worm4
In[5]:= modelName = FileNameTake[curDir, -1]
Out[5]= worm4
In[6]:= logFile = "logger.csv"
Out[6]= logger.csv
In[7]:= ksfdDir = "D:\\WSL\\KSFD"
Out[7]= D:\WSL\KSFD
In[8]:= ksfdDataDir = FileNameJoin[{ksfdDir, "data"}]
Out[8]= D:\WSL\KSFD\data
In[9]:= FileNames["*", ksfdDataDir]
Out[9]= {D:\WSL\KSFD\data\energies138.mx, D:\WSL\KSFD\data\energies139.mx,
     D:\WSL\KSFD\data\energies140.mx, D:\WSL\KSFD\data\energies141.mx,
     D:\WSL\KSFD\data\energies157.mx, D:\WSL\KSFD\data\images103,
     D:\WSL\KSFD\data\images133, D:\WSL\KSFD\data\images134, D:\WSL\KSFD\data\images135,
     D:\WSL\KSFD\data\images136g, D:\WSL\KSFD\data\images136m, D:\WSL\KSFD\data\images90,
     D:\WSL\KSFD\data\images91, D:\WSL\KSFD\data\images93,
     D:\WSL\KSFD\data\images94, D:\WSL\KSFD\data\last133plot.png,
     D:\WSL\KSFD\data\last92plot.png, D:\WSL\KSFD\data\o103endPlot.pdf,
     D:\WSL\KSFD\data\o103step0Plot.pdf, D:\WSL\KSFD\data\o134nx128dtndterrs.csv,
     D:\WSL\KSFD\data\o134nx512dtndterrs.csv, D:\WSL\KSFD\data\o134nxndt1errs.csv,
     D:\WSL\KSFD\data\o135ampsPlot.pdf, D:\WSL\KSFD\data\o135step0Plot.pdf,
     D:\WSL\KSFD\data\o136gnx512dtnerrs.csv, D:\WSL\KSFD\data\o136gnxndt4errs.csv,
     D:\WSL\KSFD\data\o136mnx512dtnerrs.csv, D:\WSL\KSFD\data\o136mnxndt4errs.csv,
     D:\WSL\KSFD\data\o93nx512dtndterrs.csv, D:\WSL\KSFD\data\o93nxndt1errs.csv,
     D:\WSL\KSFD\data\o94ampsPlot.pdf, D:\WSL\KSFD\data\o94step0Plot.pdf,
     D:\WSL\KSFD\data\o95dterrs.csv, D:\WSL\KSFD\data\o95nx512dtnerrs.csv,
     D:\WSL\KSFD\data\o95nxerrs.csv, D:\WSL\KSFD\data\o95nxndt2errs.csv,
     D:\WSL\KSFD\data\options138, D:\WSL\KSFD\data\options139, D:\WSL\KSFD\data\options140,
     D:\WSL\KSFD\data\options141, D:\WSL\KSFD\data\options143_6, D:\WSL\KSFD\data\options157}
```

Functions

```
In[10]:= sweepDir1 = FileNameJoin[{curDir, modelName <> "a"}]
 Out[10]= H:\morpheus\worm4\worm4a
  In[11]:= sims1 = FileNames["sim*", sweepDir1];
       Short[sims1]
\label{eq:out_12J//Short} $$ $$ \H:\morpheus\worm4\times\sin_0.0_0.0, <<674>, H:\mo...8_8000$$
```

```
In[13]:= sim1 = Import[
        FileNameJoin[{sims1[1], logFile}],
        {"CSV", "Dataset"}
        , HeaderLines \rightarrow 1
```

time	0
cell.id	1
8 total >	
time	0
cell.id	2
8 total >	
time	0
cell.id	3
8 total >	
time	0
cell.id	4
8 total >	
time	0
cell.id	5
8 total >	
time	0
cell.id	6
8 total >	
time	0
cell.id	7
8 total >	
time	0
cell.id	8
8 total >	
time	0
cell.id	9
8 total >	
time	0
cell.id	10
8 total >	

Out[13]=

4 | worm4.nb

In[14]:= sim1[1]["MKtemp"]
Out[14]= 0

In[15]:= **sim1[1]** // **Keys**

	time
	cell.id
	cell.center.x
	cell.center.y
Out[15]=	delta_r.x
	delta_r.y
	MKtemp
	cmstrength

In[16]:= sim1[GroupBy["time"]]

0	time	0	
	cell.id	1	
	8 total >		
	time	0	
	cell.id	2	
	8 total >		
	time	0	
	cell.id	3	
	8 total >		
	100 total >		
_			
10000	time	10000	
	cell.id	1	
	8 total >		
	time	10 000	
	cell.id	2	
	8 total >		
	time	10 000	
	cell.id	3	
	8 total >		
	100 total >		

In[17]:= sim1[GroupBy["time"]][[-1]][StandardDeviation]

time	0.0
cell.id	29.0115
cell.center.x	12.6052
cell.center.y	12.6111
delta_r.x	9.9862
delta_r.y	9.9745
MKtemp	0.0
cmstrength	0.0

Out[17]=

Out[16]=

```
In[18]:= MissingQ[ds1[[1, "MKtime"]]]
              ... Part: Part specification ds1[1, MKtime] is longer than depth of object.
Out[18]= False
 In[19]:= estimateVelocityDiffusion[
                   sweepDir_String,
                   logName_: logFile
                ] := Module [ {sweepds, tfinal, MKtime, temp, cms, \mux, \muy, \sigmax, \sigmay},
                   sweepds = Import[
                         FileNameJoin[{sweepDir, logName}],
                         {"CSV", "Dataset"}
                         , HeaderLines \rightarrow 1
                      ];
                   sweepds = sweepds[GroupBy["time"]][-1];
                   temp = sweepds[1]["MKtemp"];
                   cms = sweepds[1]["cmstrength"];
                   tfinal = sweepds[1]["time"];
                   MKtime = sweepds[1]["MKtime"];
                   If[FailureQ[MKtime] | | MissingQ[MKtime], MKtime = tfinal / 10 000];
                   \{\sigma x, \sigma y\} = \text{sweepds}[All, {"delta_r.x", "delta_r.y"}][StandardDeviation] /@
                         {"delta_r.x", "delta_r.y"};
                   \{\mu x, \mu y\} = \text{sweepds}[All, {"delta_r.x", "delta_r.y"}][Mean] /@ {"delta_r.x", "delta_r.y"};
                   < |
                      "cmstrength" \rightarrow cms,
                      "temperature" → temp,
                      "MKtime" \rightarrow MKtime,
                      "cmtratio" → If[PossibleZeroQ[temp], ∞, cms/temp],
                      "tfinal" → tfinal,
                      "vmean" \rightarrow \mu x / tfinal,
                      "Dx" \rightarrow \sigma x^2 / (2 \text{ tfinal}),
                      "Dy" \rightarrow \sigma y^2 / (2 \text{ tfinal}),
                      "Dxy" -> (\sigma x^2 + \sigma y^2) / (4 tfinal)
                      |>
 In[20]:= estimateVelocityDiffusion[sims1[1]]]
out20 out2
                vmean \rightarrow 0.00004655, Dx \rightarrow 0.00498621, Dy \rightarrow 0.00497453, Dxy \rightarrow 0.00498037
```

Plots

In[21]:= ds1 = Dataset[estimateVelocityDiffusion /@ sims1]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	0	1	∞	10000	0.00004655	0.00498621	0.004
0	0.2	1	0.0	10000	-0.0000241385	0.00684214	0.008
0	0.4	1	0.0	10000	-0.000244853	0.0363752	0.038
0	0.6	1	0.0	10000	0.0000673799	0.0681142	0.060
0	0.8	1	0.0	10000	0.000129053	0.0972709	0.097
0	1	1	0	10000	-0.000549561	0.116088	0.109
0	10	1	0	10000	0.000207029	0.169672	0.239
0	100	1	0	10000	-0.0000432087	0.16959	0.215
0	1000	1	0	10000	-0.000705839	0.267672	0.253
0	10000	1	0	10000	0.000150761	0.284062	0.280
0	2	1	0	10000	-0.000341603	0.154172	0.109
0	20	1	0	10000	0.000160617	0.183204	0.203
0	200	1	0	10000	0.0010539	0.261324	0.216
0	2000	1	0	10000	-0.000558769	0.217894	0.226
0	4	1	0	10000	-0.000302816	0.176871	0.188
0	40	1	0	10000	0.000346383	0.179997	0.216
0	400	1	0	10000	0.000392544	0.202208	0.229
0	4000	1	0	10000	-0.00102218	0.243589	0.292
0	6	1	0	10000	0.000788141	0.159843	0.153
0	60	1	0	10000	0.000254052	0.205308	0.182
	20 of 676 ∨ ∨				_		

Out[21]=

Out[22]=

In[22]:= ds1[GroupBy["temperature"]][-1]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	8000	1	0	10000	-0.000518815	0.258732	0.284503
0.2	8000	1	0.000025	10000	0.000775013	0.251578	0.276628
0.4	8000	1	0.00005	10000	0.00036839	0.282974	0.26931
0.6	8000	1	0.000075	10000	-0.000231954	0.243678	0.308253
0.8	8000	1	0.0001	10000	0.000547282	0.382868	0.310287
10000	8000	1	5/4	10000	0.192566	0.275149	0.275523
1000	8000	1	1/8	10000	0.0401048	0.332414	0.319793
100	8000	1	1/80	10000	0.00423985	0.290144	0.28207
1	8000	1	0.000125	10000	-0.000128128	0.31865	0.35872
10	8000	1	0.00125	10000	0.000188936	0.366922	0.33639
2000	8000	1	1/4	10000	0.0721517	0.324797	0.332349
200	8000	1	1/40	10000	0.00885501	0.258511	0.223076
20	8000	1	0.0025	10000	-0.000773436	0.313912	0.290117
2	8000	1	0.00025	10000	-0.00035091	0.307887	0.30108
4000	8000	1	1/2	10000	0.121491	0.417061	0.29546
400	8000	1	1/20	10000	0.0174633	0.314154	0.40110
40	8000	1	0.005	10000	0.00140717	0.289698	0.336082
4	8000	1	0.0005	10000	0.00121919	0.291916	0.26509
6000	8000	1	3/4	10000	0.154264	0.553458	0.27344
600	8000	1	3/40	10000	0.0259479	0.258868	0.26681
	0 of 26 V V						

```
ln[23]:= \{tfinal1, MKtime1\} = ds1[1]] /@ {"tfinal", "MKtime"}
 Out[23]= \{10000, 1\}
 In[24]:= DeleteDuplicates@Flatten@Normal@Keys[ds1]
 \texttt{Out} [24] = \{ \texttt{cmstrength, temperature, MKtime, cmtratio, tfinal, vmean, Dx, Dy, Dxy} \}
 In[25]:= Normal[ds1[GroupBy["cmstrength"]] [1, All, "temperature"]] // Sort // InputForm
Out[25]//InputForm=
        {0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10000}
```

In[26]:= ds1[GroupBy["cmstrength"]] [1] [SortBy["temperature"]]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	0	1	∞	10000	0.00004655	0.00498621	0.00497
0	0.2	1	0.0	10000	-0.0000241385	0.00684214	0.00817
0	0.4	1	0.0	10000	-0.000244853	0.0363752	0.03806
0	0.6	1	0.0	10000	0.0000673799	0.0681142	0.06008
0	0.8	1	0.0	10000	0.000129053	0.0972709	0.09794
0	1	1	0	10000	-0.000549561	0.116088	0.10963
0	2	1	0	10000	-0.000341603	0.154172	0.10947
0	4	1	0	10000	-0.000302816	0.176871	0.18867
0	6	1	0	10000	0.000788141	0.159843	0.15385
0	8	1	0	10000	0.000209514	0.160657	0.18224
0	10	1	0	10000	0.000207029	0.169672	0.23937
0	20	1	0	10000	0.000160617	0.183204	0.20395
0	40	1	0	10000	0.000346383	0.179997	0.21617
0	60	1	0	10000	0.000254052	0.205308	0.18284
0	80	1	0	10000	0.000747709	0.161558	0.20391
0	100	1	0	10000	-0.0000432087	0.16959	0.21522
0	200	1	0	10000	0.0010539	0.261324	0.21641
0	400	1	0	10000	0.000392544	0.202208	0.22995
0	600	1	0	10000	0.000205537	0.164203	0.17140
0	800	1	0	10000	-0.00064113	0.212823	0.24169
	-20 of 26 ∨ ∨						

Out[26]=

Out[27]=

In[27]:= ds1[SortBy["cmstrength"]][GroupBy["cmstrength"]]

	cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx					
0	0	0	1	ω	10000	0.00004655	0.0049					
	0	0.2	1	0.0	10000	-0.000024138	0.0068					
	26 total >											
0.2	0.2	0	1	ω	10000	0.0001502	0.0049					
	0.2	0.2	1	1.0	10000	0.00367486	0.0083					
	26 total >											
0.4	0.4	0	1	ω	10000	0.0001502	0.0049					
	0.4	0.2	1	2.0	10000	0.00917963	0.0208					
	26 total >											
0.6	0.6	0	1	∞	10000	0.0001502	0.00490					
	0.6	0.2	1	3.0	10000	0.0252299	0.0648					
	26 total >											
0.8	0.8	0	1	ω	10000	0.0001502	0.0049					
	0.8	0.2	1	4.0	10000	0.0704344	0.1602					
	26 total >	26 total >										
1	1	0	1	ω	10000	0.172329	0.22672					
	1	0.2	1	5.0	10000	0.170042	0.1838					
	26 total >											
2	2	0	1	ω	10000	0.200677	0.1330					
	2	0.2	1	10.0	10000	0.200415	0.0952					
	26 total >											
4	4	0	1	∞	10000	0.23437	0.1132					
	4	0.2	1	20.0	10000	0.233877	0.1369					
	26 total >											
6	6	0	1	ω	10000	0.241841	0.1432					
	6	0.2	1	30.0	10000	0.24116	0.1479					
	26 total >											
8	8	0	1	ω	10000	0.24486	0.12160					
	8	0.2	1	40.0	10000	0.244492	0.1657					
	26 total >											

```
In[28]:= Clear[dsPlots];
     dsPlots[
        xname_String,
        yname_String:"Dxy",
        byname_String: "cmstrength",
        dsin_Dataset : ds1
       ] := Block[{is = 400, dss, gds, temp, labels, data},
        gds = dsin[SortBy[byname]][GroupBy[byname]];
        gds = Normal[gds];
        labels = {};
        data = Table[
          temp = ds[[1]][byname];
          AppendTo[labels, temp];
          Transpose@{
             Normal[ds[All, xname]],
             Normal[ds[All, yname]]]
           },
           {ds, gds}
        ListLogLinearPlot[data
         , PlotRange \rightarrow {Full, Full}
         , PlotLegends → labels
         , Joined \rightarrow True
         , Frame \rightarrow {{True, True}, {True, True}}
         , FrameLabel → {{yname, None}, {xname, None}}
         , ImageSize \rightarrow is
        ]
      ]
In[30]:= dsPlots["temperature", "Dy"]
        0.4
                                                                                              — 1000
                                                                             0.2
                                                                                      - 20
                                                                                              ___ 2000
                                                                             0.4
                                                                                      40
                                                                                               <del>-</del> 4000
        0.3
                                                                             0.6
                                                                                   — 60
                                                                                              — 6000
     ි <sub>0.2</sub>
                                                                             8.0
                                                                                      - 80
                                                                                               — 8000
                                                                                             — 10 000
                                                                                      - 100
                                                                             2
                                                                                     _ 200
        0.1
                                                                                   4
                                                                             6
                                                                                   <del>----</del> 600
                                                                                   — 800
        0.0
```

10

100

temperature

1000

 10^{4}

In[31]:= dsPlots["temperature", "Dx"]

In[32]:= dsPlots["temperature", "Dxy"]


```
In[33]:= vplot2 = dsPlots["cmtratio", "Dx", "cmstrength"];
       Show[vplot2
        , Frame -> True
       ]
                                                                                        - 0
                                                                                                <del>----</del> 10
                                                                                                            — 1000
          0.5
                                                                                        0.2
                                                                                                               _ 2000
                                                                                                   - 20
                                                                                        0.4
                                                                                                            <del>----</del> 4000
          0.4
                                                                                                  <del>-</del> 40
                                                                                          0.6
                                                                                                   - 60
                                                                                                            — 6000
      ŏ <sup>0.3</sup>
                                                                                        - 0.8
                                                                                                            — 8000
                                                                                                Out[34]=
                                                                                                            — 10 000
                                                                                         1
                                                                                                   - 100
          0.2
                                                                                          2
                                                                                                <del>----</del> 200
                                                                                         4
                                                                                                — 400
          0.1
                                                                                        - 6
                                                                                                — 600
                                                                                                — 800
                                                                                        - 8
          0.0
                          0.001
                                                                   1000
                                            cmtratio
In[35]:= Show[
        dsPlots["cmstrength", "vmean", "temperature"]
        , Frame -> True
       ]
          0.25
                                                                                        – 0
                                                                                                 <del>----</del> 10
                                                                                                            — 1000
          0.20
                                                                                        0.2
                                                                                                   - 20
                                                                                                               - 2000
                                                                                        - 0.4
                                                                                                  <del>-</del> 40
                                                                                                            <del>----</del> 4000
          0.15
                                                                                                            — 6000
                                                                                         0.6
                                                                                                <del>----</del> 60
                                                                                         0.8
                                                                                                Out[35]=
          0.10
                                                                                          1
                                                                                                            — 10 000
                                                                                                   - 100
                                                                                          2
                                                                                                <del>----</del> 200
          0.05
                                                                                          4
                                                                                                — 400
                                                                                                <del>----</del> 600
                                                                                        - 6
          0.00
                                                                                         8
                                                                                                — 800
                                       10
                                                    100
                                                                 1000
                                                                                10<sup>4</sup>
```

cmstrength

In[38]:= ds1[Select[#["temperature"] == 10000 && #["cmstrength"] == 10000 &]]

	cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy	Dxy
Out[38]=	10000	10000	1	1	10000	0.177795	0.45439	0.354104	0.40424

```
In[39]:= Show
       LogLinearPlot [(1 - e^{-x})/4, \{x, 10^{-5}, 100\}]
         , PlotStyle → {Thickness[0.02], Gray}
       vplot2
       , Frame -> True
       , PlotRange -> All
                                                                       — 0
                                                                               <del>----</del> 10
                                                                                          — 1000
      0.25
                                                                       - 0.2 -
                                                                                 _ 20
                                                                                            _ 2000
      0.20
                                                                       - 0.4 <del>- 4</del>0
                                                                                          — 4000
                                                                        - 0.6 --- 60
                                                                                          — 6000
      0.15
                                                                                          — 8000
                                                                       — 0.8 — 80
Out[39]=
                                                                        - 1
                                                                               — 100
                                                                                          — 10 000
      0.10
                                                                        - 2
                                                                               — 200
      0.05
                                                                               — 400
                                                                        - 6
                                                                               <del>----</del> 600
      0.00 ⊢
                                                                        - 8
                                                                                — 800
                    0.001
                                                      1000
```

OK, let's try to understand this. Metropolis works like this. First, we have a set of possible steps we might take. What those steps are for the CPM is not clearly documented in the Morpheus doco anywhere that I can find. This is really the critical question. We then choose one from that set and calculate the ΔE for that step. If $\Delta E < 0$, we take the step. If $\Delta E > 0$, we calculate $P = e^{-\Delta E/T}$, then we take the step. with probability P, meaning that we are unlikely to take steps that cause a big positive change in energy, big being assessed relative to the temperature. For chemotaxis, $E = \mu F$, where μ is a parameter, chemotaxis strength, and F is some spatially varying field.

Now, in these calibration runs I set up a field whose gradient is exactly $\nabla F = (F_x, F_y) = (1, 0)$ in grid units. Then I varied μ and T. The first thing you can see from the above description is that the result should depend only on the ratio $\frac{\mu}{\tau}$. Thus in some of the plots above I plotted diffusion or velocity vs cmtratio, which is $\frac{\mu}{\tau}$. And if fact it more or less works. The curves more or less superimpose. This is more obvious for velocity. plots of v vs $\frac{\mu}{\tau}$ for different temperatures almost superimpose, except at $T \le 1$. The plots of D_x vs $\frac{\mu}{T}$ are a lot noisier, but the curves for different μ match pretty well. (Actually, something simpler is true for D-D and D_V depend only on T to a good first approximation. D_X depends on on T except at $T \le 1$, where μ makes a difference.) Something weird is going on at low T-1'm guessing that integer arithmetic is used in some part of the computation, so that there is truncation.

Now, there are two limits where the results are sort of predictable. First, in the limit of very high T, every step should be taken. So the velocity should be low. And the diffusion should be maximal, and should correspond to $\frac{1}{4}(\|\Delta \vec{x}\|^2)$, where $\Delta \vec{x}$ is the change in cell center position caused by a single step. This maxes out at about 0.3, although it is easy to imagine that it has not saturated even at $T = 10^4$ and would go higher if I went to higher temps. I also noted when I ran the sims that it took a lot longer to run a sim at $T = 10^4$ than at, say, T = 10. This suggests that T also affects the sampling strategy, causing a larger sample to be tried.

The other simple limit in principle is $\frac{\mu}{\tau} \to \infty$. This should cause every step that produces a move in the positive x direction to be accepted and every step in the negative x direction rejected. So the mean velocity should just be the mean size of a positive x step. This is consistently $v \approx 0.25$.

Suppose that $\Delta x = \{-1, 0, 1\}$ with probabilities $\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}$. And let's suppose we always accept the positive step. We accept the negative step with probability $e^{-\mu/T}$. Then the predicted mean velocity is

$$\overline{V} = \frac{1}{4} \cdot 1 + \frac{1}{2} \cdot 0 + \frac{1}{4} \cdot e^{-U/T} \cdot (-1)$$
$$= \frac{1}{4} \left(1 - e^{-U/T} \right)$$

In fact, that fits the v vs $\frac{\mu}{\tau}$ plot fairly well. The variance, though, ought to be

So, the results mostly make sense. At every T, the maximum velocity, that attained when $\frac{\mu}{T}$ is large, approaches $\frac{1}{4}$. Furthermore, the approach to this v_{max} is exponential $-v = \frac{1}{4} (1 - e^{-\mu/T})$ is a fairly good approximation at all but the lowest T.

This dependence is apparently well explained by a sample distribution that that includes steps of $\Delta x \in \{-1, 0, 1\}$ with probabilities $\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}$. If you choose the positive option at every step where it is available, or 0 otherwise, you get a mean velocity of $\frac{1}{4}$.

The puzzle, though, is the variance. This distribution has a variance of $\frac{1}{2}$. That should lead to a maximum diffusion constant of $\frac{1}{4}$. But the numbers are larger than that for high T.

In[44]:= ds1[Select[#["temperature"] == 10000 &]] [[All, "Dxy"]

	0.282494	0.35158	0.341085	0.331976	0.332783	0.404247
	0.294257	0.299865	0.368932	0.354827	0.326023	0.324923
[44]=	0.32896	0.291229	0.414863	0.316053	0.326324	0.33532
	0.42873	0.308854	0.361861	0.31982	0.347661	0.360548
	0.321269	0.323127	:		:	

```
In[45]:= ListPlot[
        ds1[Select[#["temperature"] == 10000 &]] [All, {"cmtratio", "Dxy"}]
        , PlotRange \rightarrow All
       ]
      0.40
Out[45]= 0.35
       0.30
                     0.2
                                 0.4
                                             0.6
                                                        8.0
                                                                     1.0
In[46]:= Show[
        ListPlot[
         ds1[Select[#["temperature"] == 10000 &]] [[All, {"cmtratio", "vmean"}]
         , PlotRange \rightarrow All
        Plot [(1 - e^{-x})/4, \{x, 0, 1\}]
      0.15
      0.10
Out[46]=
      0.05
                                                                    1.0
                                 0.4
                                             0.6
                                                        0.8
                     0.2
```

```
In[47]:= ListPlot[
        ds1[Select[#["temperature"] == 8000 &]] [All, {"cmtratio", "Dxy"}]
        , PlotRange → All
      0.40
Out[47]=
      0.30
      0.25
                  0.2
                                     0.6
                                              0.8
                                                       1.0
                                                                1.2
```

Together, these numbers suggest that the sample changes as T increases, with the mean of the positive possibilities growing a bit larger than $\frac{1}{4}$ and the variance growing, too.

I probably ought to do this calculation with a diagonal gradient to see if Δx and Δy are correlated, which could cause problems. But if that is true, I'm not sure what I could do with the information. I don't have a way of making the chemotactic strength nonisotropic. So I guess I would just have to live with it.

Simulation parameter values

Let's suppose I set up a toy model with 360 worms on an 0.2 × 0.2 cm domain with a 75 × 75 grid.

```
In[48]:= width2 = height2 = Quantity[0.2, "Centimeters"];
      nx2 = ny2 = 75;
      dt2 = Quantity[0.15, "Seconds"];
       \{dx2, dy2\} = \{width2, height2\} / \{nx2, ny2\}
Out[51]= \{0.00266667 \text{ cm}, 0.00266667 \text{ cm}\}
In[52]:= {wormwidth2, wormlength2} = Quantity[{15, 240}, "Micrometers"]
Out[52]= \{ 15 \, \mu \text{m}, 240 \, \mu \text{m} \}
In[53]:= wormsize2 = (wormwidth2 wormlength2) / (dx2 dy2)
Out[53]= 5.0625
In[54]:= gridunitD2 = (dx2 dy2) / Quantity[dt2, "Seconds"]
Out[54]= 0.0000474074 \text{ cm}^2/\text{ s}^2
```

That's what a diffusion constant of 1 in grid units would correspond to in cm 2 s $^{-1}$.

```
In[55]:= d139final = Import[
                                       FileNames["*", FileNameJoin[{ksfdDataDir, "options139"}]][-1],
                                       "Data"
                         i139final = d139final["/images"];
                         p139final = <|ImportString[d139final["/params"], "JSON"]|>
 \text{Out} \texttt{[57]=} \quad \Big\langle \left| \text{D\_1\_1} \rightarrow \frac{1}{1\,000\,000} \text{, nligands\_2} \rightarrow \text{1, alpha\_2} \rightarrow \text{1500, alpha\_1} \rightarrow \text{1500, Umin} \rightarrow \frac{1}{10\,000\,000} \right. \Big\rangle 
                             randgridnh \rightarrow 0, nwidth \rightarrow 384, variance_interval \rightarrow 100., variance_timing_function \rightarrow 2002.03,
                             s_1_1 \rightarrow 0.01, tmax \rightarrow 200000., ngroups \rightarrow 1, atol \rightarrow 0.01, randgridnw \rightarrow 0,
                             \text{CFL\_safety\_factor} \rightarrow \text{0.5, dt} \rightarrow \frac{1}{100\,000\,000}, \, \text{rhomin} \rightarrow \frac{1}{10\,000\,000}, \, \text{lastvart} \rightarrow \text{0.,} 
                             s_2_1 \rightarrow 0.001, ky0 \rightarrow 2., aUr \rightarrow 0.120891, kx0 \rightarrow 3.4641, nligands_1 \rightarrow 1, aUa \rightarrow 0.863036,
                            maxsteps \rightarrow 10000, rhomax \rightarrow 28000, rtol \rightarrow \frac{1}{1000000}, maxscale \rightarrow 2., ndepth \rightarrow 384,
                             \texttt{dim} \rightarrow \textbf{2, murho0} \rightarrow 9000. \textbf{, rho0} \rightarrow 9000. \textbf{, srho0} \rightarrow 90. \textbf{, D}\_2\_1 \rightarrow \frac{1}{100\,000} \textbf{, nheight} \rightarrow 384 \textbf{, nheight} \rightarrow
                             sigma \rightarrow 0.02357, series_1_1 \rightarrow 1, cushion \rightarrow 2000, variance_rate \rightarrow 0., t0 \rightarrow 0.,
                             k0 \rightarrow 4., lamda \rightarrow 0.000955351, gamma_2_1 \rightarrow 0.001, slowdown \rightarrow 0.02, s2 \rightarrow 5.55545 \times 10^{-6},
                             beta_2 \rightarrow -0.0000111109, beta_1 \rightarrow 0.0000111109, depth_1_1 \rightarrow 0.4, gamma_1_1 \rightarrow 0.01,
                             conserve_worms \rightarrow False, randgridnd \rightarrow 0, U0_1_1 \rightarrow , width \rightarrow 1, nelements \rightarrow 384,
                            \texttt{height} \rightarrow \textbf{1, degree} \rightarrow \textbf{3, depth} \rightarrow \textbf{1., weight\_1\_1} \rightarrow \textbf{1., Nworms} \rightarrow \textbf{0, t} \rightarrow \textbf{200203.} \ \Big| \ \Big\rangle
                          The following is our desired worm diffusion rate in real units.
   ln[58] = \sigma 139 = Quantity[p139final["s2"], "Centimeters"<sup>2</sup>/"Seconds"]
Out[58]= 5.55545 \times 10^{-6} \text{ cm}^2/\text{ s}
                         In grid units, we need
  ln[59] = \sigma 139 / gridunitD2
Out[59]= 0.117185 s
   In[60]:= p139final["D_1_1"] / (dx2 dy2)
Out[60]= 0.140625 / cm^2
```

worm4b

```
In[61]:= sweepDir2 = FileNameJoin[{curDir, "worm4b2"}]
 Out[61]= H:\morpheus\worm4\worm4b2
 In[62]:= sims2 = FileNames["sim*", sweepDir2];
       Short[sims2]
Out[63]//Short= {H:\morpheus\worm4\worm4b2\sim_0.0_0.0, <<674>>, H:\mo..._8000}
```

In[64]:= estimateVelocityDiffusion[sims2[-1]]]

$$\label{eq:out_out_fid} \begin{array}{ll} \text{Out}[64] = & \left\langle \, \middle| \, \text{cmstrength} \rightarrow \text{8, temperature} \rightarrow \text{8000, MKtime} \rightarrow \text{0.15, cmtratio} \rightarrow \frac{1}{1000} \text{,} \right. \\ \\ & \left. \text{tfinal} \rightarrow \text{1500, vmean} \rightarrow \text{0.0031493, Dx} \rightarrow \text{1.48052, Dy} \rightarrow \text{2.06624, Dxy} \rightarrow \text{1.77338} \, \middle| \, \right\rangle \end{array}$$

In[65]:= ds2 = Dataset[estimateVelocityDiffusion /@ sims2]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx
0	0	0.15	∞	1500	0.0000586667	0.00472924
0	0.2	0.15	0.0	1500	0.000133778	0.0202838
0	0.4	0.15	0.0	1500	-0.000402444	0.13506
0	0.6	0.15	0.0	1500	-0.000951619	0.299735
0	0.8	0.15	0.0	1500	-0.00166478	0.406173
0	1	0.15	0	1500	0.00325044	0.627768
0	10	0.15	0	1500	0.000444487	0.950335
0	100	0.15	0	1500	0.00292561	1.19553
0	1000	0.15	0	1500	0.00422094	1.24679
0	10000	0.15	0	1500	0.00604645	2.40613
0	2	0.15	0	1500	0.00242859	0.641311
0	20	0.15	0	1500	-0.00609222	0.987535
0	200	0.15	0	1500	-0.000310101	0.938662
0	2000	0.15	0	1500	0.00832676	1.61467
0	4	0.15	0	1500	-0.00153308	0.567142
0	40	0.15	0	1500	-0.0000319382	1.19626
0	400	0.15	0	1500	0.00226206	1.17687
0	4000	0.15	0	1500	0.00419683	1.61481
0	6	0.15	0	1500	-0.00116685	1.00051
0	60	0.15	0	1500	0.00672245	0.781455

ln[66]:= {tfinal2, MKtime2} = ds2[1]] /@ {"tfinal", "MKtime"}

Out[66]= { **1500, 0.15**}

Out[65]=

In[67]:= ds2[GroupBy["temperature"]][[-1]]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	8000	0.15	0	1500	0.00786922	2.09757	2.22
0.2	8000	0.15	0.000025	1500	0.00476517	1.89948	1.78
0.4	8000	0.15	0.00005	1500	-0.00104947	1.33388	1.86
0.6	8000	0.15	0.000075	1500	0.00559173	1.8551	1.85
0.8	8000	0.15	0.0001	1500	-0.00063802	1.75056	1.83
10000	8000	0.15	5/4	1500	1.28184	1.78372	1.83
1000	8000	0.15	1/8	1500	0.271511	2.33548	1.39
100	8000	0.15	1/80	1500	0.0304989	1.62275	2.10
1	8000	0.15	0.000125	1500	0.00640358	2.00112	1.98
10	8000	0.15	0.00125	1500	0.0061581	1.3857	1.74
2000	8000	0.15	1/4	1500	0.486441	2.77179	1.32
200	8000	0.15	1/40	1500	0.0692196	2.1099	2.26
20	8000	0.15	0.0025	1500	0.00729434	1.89216	1.55
2	8000	0.15	0.00025	1500	-0.00222092	1.82031	1.90
4000	8000	0.15	1/2	1500	0.782442	3.53221	2.34
400	8000	0.15	1/20	1500	0.110522	1.90741	1.68
40	8000	0.15	0.005	1500	0.0094493	1.6366	1.90
4	8000	0.15	0.0005	1500	-0.00232761	2.19666	1.90
6000	8000	0.15	3/4	1500	1.00969	3.15898	2.04
600	8000	0.15	3/40	1500	0.163292	2.66306	1.57
	0 of 26 ∨ ⊻		,				

In[68]:= DeleteDuplicates@Flatten@Normal@Keys[ds2]

Out[68]= {cmstrength, temperature, MKtime, cmtratio, tfinal, vmean, Dx, Dy, Dxy}

In[69]:= Normal[ds2[GroupBy["cmstrength"]][[1, All, "temperature"]]] // Sort // InputForm

Out[69]//InputForm=

Out[67]=

 $\{0,\ 0.2,\ 0.4,\ 0.6,\ 0.8,\ 1,\ 2,\ 4,\ 6,\ 8,\ 10,\ 20,\ 40,\ 60,\ 80,\ 100,$ 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000, 10000}

Out[70]=

In[70]:= ds2[GroupBy["cmstrength"]][1][SortBy["temperature"]]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	0	0.15	ω	1500	0.0000586667	0.00472924	0.
0	0.2	0.15	0.0	1500	0.000133778	0.0202838	0.
0	0.4	0.15	0.0	1500	-0.000402444	0.13506	0.
0	0.6	0.15	0.0	1500	-0.000951619	0.299735	0.
0	0.8	0.15	0.0	1500	-0.00166478	0.406173	0.
0	1	0.15	0	1500	0.00325044	0.627768	0.
0	2	0.15	0	1500	0.00242859	0.641311	0.
0	4	0.15	0	1500	-0.00153308	0.567142	0.
0	6	0.15	0	1500	-0.00116685	1.00051	0.
0	8	0.15	0	1500	0.00355325	0.797968	0.
0	10	0.15	0	1500	0.000444487	0.950335	0.
0	20	0.15	0	1500	-0.00609222	0.987535	0.
0	40	0.15	0	1500	-0.0000319382	1.19626	0.
0	60	0.15	0	1500	0.00672245	0.781455	1.
0	80	0.15	0	1500	0.0027837	0.838457	0.
0	100	0.15	0	1500	0.00292561	1.19553	1.
0	200	0.15	0	1500	-0.000310101	0.938662	1.
0	400	0.15	0	1500	0.00226206	1.17687	1.
0	600	0.15	0	1500	0.00502242	1.53833	1.
0	800	0.15	0	1500	-0.00647744	1.33995	1.
	-20 of 26 ∨ ∨				-		

In[71]:= ds2[SortBy["cmstrength"]][GroupBy["cmstrength"]]

Out[71]=

	cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	D
0	0	0	0.15	ω	1500	0.0000586667	C
	0	0.2	0.15	0.0	1500	0.000133778	C
	26 total >						
0.2	0.2	0	0.15	ω	1500	0.001328	С
	0.2	0.2	0.15	1.0	1500	0.021898	C
	26 total >						
0.4	0.4	0	0.15	ω	1500	0.001328	C
	0.4	0.2	0.15	2.0	1500	0.0597404	C
	26 total >						
0.6	0.6	0	0.15	ω	1500	0.001328	0
	0.6	0.2	0.15	3.0	1500	0.174522	C
	26 total >						
0.8	0.8	0	0.15	ω	1500	0.001328	C
	0.8	0.2	0.15	4.0	1500	0.465822	C
	26 total >					00 0.001328 00 0.001328 00 0.001328 00 0.001328 00 0.174522 00 0.001328 00 0.465822 00 1.10091 1.09067 00 1.28761 1.28052 00 1.47197 1.47432 00 1.51869 1.51245	
1	1	0	0.15	ω	1500	1.10091	0
	1	0.2	0.15	5.0	1500	1.09067	C
	26 total >						
2	2	0	0.15	ω	1500	1.28761	C
	2	0.2	0.15	10.0	1500	1.28052	c
	26 total >						
4	4	0	0.15	ω	1500	1.47197	С
	4	0.2	0.15	20.0	1500	1.47432	C
	26 total >						
6	6	0	0.15	ω	1500	1.51869	C
	6	0.2	0.15	30.0	1500	1.51245	c
	26 total >						
8	8	0	0.15	ω	1500	1.52225	С
	8	0.2	0.15	40.0	1500	1.52269	С
	26 total >						

In[72]:= dsPlots["temperature", "Dy", "cmstrength", ds2]

In[73]:= dsPlots["temperature", "Dx", "cmstrength", ds2]

In[74]:= dsPlots["temperature", "Dxy", "cmstrength", ds2]

In[75]:= vplot2 = dsPlots["cmtratio", "Dx", "cmstrength", ds2]; Show[vplot2


```
In[77]:= Show[
        dsPlots["cmstrength", "vmean", "temperature", ds2]
        , Frame -> True
         1.5
                                                                                 — 0
                                                                                                    — 1000
                                                                                          <del>----</del> 10
                                                                                  - 0.2
                                                                                            - 20
                                                                                                      _ 2000
                                                                                  0.4
                                                                                         <del>----</del> 40
                                                                                                     <del>----</del> 4000
         1.0
                                                                                  0.6 — 60
                                                                                                     — 6000
Out[77]=
                                                                                  8.0
                                                                                            – 80
                                                                                                    — 8000
                                                                                   1
                                                                                            - 100
                                                                                                    — 10 000
         0.5
                                                                                   2
                                                                                         ___ 200
                                                                                   4
                                                                                          — 400
                                                                                   6
                                                                                         — 600
         0.0
                                                                                          — 800
                                                                                   8
                                 10
                                                 100
                                                             1000
                                                                          10<sup>4</sup>
                                        cmstrength
```


, Frame -> True] 1.5 - 0 **-** 10 **—** 1000 - 0.2 - 20 **—** 2000 0.4 - 40 ---- 4000 1.0 0.6 ---- 60 **—** 6000 Out[79]= X 8.0 **—** 8000 **-** 100 **—** 10 000 0.5 - 2 **—** 200 4 - 6 **—** 600 0.0 - 8 **—** 800 0.001 1000

In[80]:= ds2[Select[#["temperature"] == 10000 && #["cmstrength"] == 10000 &]]

cmtratio

	cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy	Dxy
Out[80]=	10 000	10000	0.15	1	1500	1.18536	2.12323	2.55923	2.3412

```
In[81]:= Show
       LogLinearPlot[(1-e^{-x})/(4 \text{ MKtime2}), \{x, 10^{-5}, 100\}
         , PlotStyle → {Thickness[0.02], Gray}
       vplot2
       , Frame -> True
       , PlotRange -> All
                                                                        — 0
                                                                                  <del>----</del> 10
                                                                                           <del>----</del> 1000
      1.5
                                                                        — 0.2 — 20
                                                                                             — 2000
                                                                       — 0.4 — 40
                                                                                             — 4000
                                                                         — 0.6 — 60
                                                                                             — 6000
      1.0
                                                                         — 0.8 — 80
                                                                                             Out[81]=
                                                                                            <del>----</del> 10 000
                                                                          - 1
                                                                                  — 100
                                                                          - 2
                                                                                  <del>----</del> 200
      0.5
                                                                          - 4
                                                                                  — 400
                                                                        <del>----</del> 6
                                                                                  <del>----</del> 600
```

In[82]:= ds2[Select[#["temperature"] == 10000 &]][[All, "Dxy"]

0.001

0.0

Out[82]=

	*		*		-
2.30664	1.94221	2.13957	1.99959	2.22267	2.34123
2.16509	2.09507	2.0055	2.36627	2.11582	1.92697
2.04434	2.245	2.4803	1.95141	1.99374	1.93879
2.83283	2.14044	2.31357	1.90675	2.62995	2.0286
2.02104	2.15148	:	:	:	:
	-	-	-	-	-

1000

— 800

- 8

```
In[83]:= ListPlot[
         ds2[Select[#["temperature"] == 10000 &]] [[All, {"cmtratio", "Dxy"}]
         , PlotRange \rightarrow All
       2.8
       2.6
Out[83]=
        1.8
                        0.2
                                      0.4
                                                    0.6
                                                                  8.0
                                                                                1.0
In[84]:= Show
         ListPlot[
           ds2[Select[#["temperature"] == 10000 &]] [[All, {"cmtratio", "vmean"}]
           , PlotRange → All
         Plot\left[\left.\left(1-e^{-x}\right)\right.\right/\left(4\,\text{MKtime2}\right)\text{, }\left\{x\text{, 0, 1}\right\}
        1.2
        1.0
       8.0
Out[84]= 0.6
       0.4
                                      0.4
                                                    0.6
                                                                  0.8
                                                                                1.0
                        0.2
```

```
In[85]:= ListPlot[
       ds2[Select[#["temperature"] == 8000 &]] [All, {"cmtratio", "Dxy"}]
       , PlotRange → All
      ]
      3.0
      2.5
Out[85]=
                0.2
                         0.4
                                  0.6
                                           8.0
                                                    1.0
```

OK, let's figure out what T will give me the closest match to the σ I want. I'll try to match it at μ = 0.

Out[87]=

 $ln[86]:= \mu02ds = ds2[Select[PossibleZeroQ[#["cmstrength"]] \&]];$ μ 02ds = μ 02ds [SortBy ["temperature"]]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	D
0	0	0.15	ω	1500	0.0000586667	0.00472924	0.
0	0.2	0.15	0.0	1500	0.000133778	0.0202838	0.
0	0.4	0.15	0.0	1500	-0.000402444	0.13506	0.
0	0.6	0.15	0.0	1500	-0.000951619	0.299735	0.
0	0.8	0.15	0.0	1500	-0.00166478	0.406173	0.
0	1	0.15	0	1500	0.00325044	0.627768	0.
0	2	0.15	0	1500	0.00242859	0.641311	0.
0	4	0.15	0	1500	-0.00153308	0.567142	0.
0	6	0.15	0	1500	-0.00116685	1.00051	0.
0	8	0.15	0	1500	0.00355325	0.797968	0.
0	10	0.15	0	1500	0.000444487	0.950335	0.
0	20	0.15	0	1500	-0.00609222	0.987535	0.
0	40	0.15	0	1500	-0.0000319382	1.19626	0.
0	60	0.15	0	1500	0.00672245	0.781455	1.
0	80	0.15	0	1500	0.0027837	0.838457	0.
0	100	0.15	0	1500	0.00292561	1.19553	1.
0	200	0.15	0	1500	-0.000310101	0.938662	1.
0	400	0.15	0	1500	0.00226206	1.17687	1.
0	600	0.15	0	1500	0.00502242	1.53833	1.
0	800	0.15	0	1500	-0.00647744	1.33995	1.

```
ln[88]:= \sigma 139 / (gridunitD2 MKtime2)
Out[88]= 0.781235 s
In[89]:= width2 = height2 = Quantity[0.2, "Centimeters"];
      nx2 = ny2 = 75;
      dt2 = Quantity[MKtime2, "Seconds"];
      \{dx2, dy2\} = \{width2, height2\} / \{nx2, ny2\}
Out[92]= \{ 0.00266667 \text{ cm}, 0.00266667 \text{ cm} \}
```

```
In[93]:= {wormwidth2, wormlength2} = Quantity[{15, 240}, "Micrometers"]
                      \{ 15 \, \mu \text{m}, 240 \, \mu \text{m} \}
Out[93]=
 ln[94]:= wormsize2 = (wormwidth2 wormlength2) / (dx2 dy2)
Out[94]= 5.0625
 In[95]:= \sigma139
Out[95]= 5.55545 \times 10^{-6} \text{ cm}^2/\text{ s}
 ln[96]:= gridunitD2 = (dx2 dy2) / dt2
Out[96]= 0.0000474074 \text{ cm}^2/\text{ s}
 \label{eq:lock_loss} $$ \ln[97] = Block [ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", "Dy", "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \right] $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \right] $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \right] $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \right] $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \right] $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \end{tabular} $$ \end{tabular} $$ \left[ \{ is = 400, \, ds = \mu02ds, \, dfs = \{"Dx", \, "Dy", \, "Dxy" \}, \, data, \, mint, \, maxt, \, targetD \}, \end{tabular} $$ \end{
                              ds = ds[Select[! PossibleZeroQ[#["temperature"]] &]];
                             targetD = (\sigma 139 / (dx2 dx2)) Quantity[1, "Seconds"];
                             data = Table[
                                      ds[All, {"temperature", d}][Values] // Normal,
                                       {d, dfs}
                                  ];
                              {mint, maxt} = MinMax[data[All, All, 1]]];
                                  {mint, maxt, targetD},
                                  ListLogLinearPlot[data
                                      , PlotRange \rightarrow All
                                      , Joined → True
                                       , Mesh → All
                                       , ImageSize \rightarrow is
                                      , PlotLegends → dfs
                                       , Epilog → {Line[{{Log[mint], targetD}, {Log[maxt], targetD}}]}
                                  ]
                             }
                          // Column
                      {0.2, 10000, 0.781235}
                    2.5 ⊢
                    2.0
                     1.5
                                                                                                                                                                                                                                                                          Dx
Out[97]=
                                                                                                                                                                                                                                                                          Dy
                     1.0

    Dxy

                    0.5
                                                                                                                                                                                                                                           10<sup>4</sup>
                                                                                                            10
                                                                                                                                                     100
                                                                                                                                                                                               1000
```

Looks like I want $T \approx 6$. I might use T = 10 just to have a round number. It's probably close enough, and I can always adjust MKtime if I want to.

ln[98]:= μ 02ds[All, {"temperature", "Dxy"}]] // Transpose

temperature	0	0.2	0.4	0.6	0.8	1
	2	4	6	8	10	20
	40	60	80	100	200	400
	600	800	1000	2000	4000	6000
	8000	10 000	:	:	:	:
Dxy	0.0049999	0.01902	0.168373	0.282612	0.469109	0.577738
	0.671213	0.705879	0.943108	0.870461	0.929956	0.90720
	1.08189	0.966382	0.869398	1.10423	1.03224	1.23262
	1.532	1.43984	1.35463	1.73114	1.5792	1.72958
	2.1605	2.30664	:	:	:	:

OK, now for the velocity, i.e. chemotaxis strength,

In[99]:= **dx2**

Out[99]= **0.00266667 cm**

Here I have an analytical expression that is accurate enough to go on with. In grid units, the velocity, for chemotaxis strength μ , field gradient ∇F , and temperature T, is

$$\|v\| = \frac{1}{4} \left(1 - e^{-\mu \|\nabla F\|/T} \right)$$

$$\approx \frac{\mu \|\nabla F\|}{4T}$$

Strictly speaking, I know this only for the case of $\nabla F = (1, 0)$. But I'm assuming (because I have no good alternative) that the chemotactic response is isotropic and that only the product $\mu \nabla F$ matters, i.e., the argument of the exponential is bilinear in μ and ∇F .

Suppose I have a potential field V in units of $cm^2 s^{-1}$. The gradient of this potential has units of velocity, specifically cms⁻¹. What do I choose for μ ? T is given—it was chosen to produce the right diffusion rate σ .) I'm going to assume the velocities are small.

$$\nabla F = \nabla V dx$$

$$v = \nabla V \left(\frac{dt}{dx} \right)$$

$$\approx \frac{\mu \nabla F}{4T}$$

$$= \frac{\mu \nabla V dx}{4T}$$

$$\nabla V \left(\frac{dt}{dx}\right) \approx \frac{\mu \nabla V dx}{4T}$$

$$1 \approx \frac{\mu dx^2}{4T dt}$$

$$\mu \approx \frac{4T dt}{dx^2}$$

Here dt is the Metropolis kinetics time, e.g. 0.15 s for the case I'm working on, and dx is the grid spacing. This doesn't seem right. It seems like dx ought to show up in the final computation of μ .

Well, let's try an example. Suppose U_a changes from 0 to 25 000 over a distance of 0.01 cm, which is plausible. Then V_{U_a} changes from 0 to -3×10^{-5} over that distance. So the gradient is $\|\nabla V\| \approx 3 \times 10^{-3} \text{ cm/s}.$

```
In[100]:= Vu [
              \alpha_{-}: 1500
              \beta : 2 \sigma 139
            ] :=
            -\beta Log[1+U/\alpha];
            "V" \rightarrow Vu /@ {0, 25000},
            "∇V" -> Abs[Vu[25000]] / Quantity[0.01, "Centimeters"],
            "∀F" → (QuantityMagnitude@Abs[Vu[25000]] / Quantity[0.01, "Centimeters"]) dx2,
            "v" \rightarrow (Abs[Vu[25000]] / Quantity[0.01, "Centimeters"]) (dt2/dx2),
            "\mu / T" \rightarrow (4 dt2) / dx2^2,
             "(\mu \nabla F) / T" -> ((4 dt2) / dx2^2) (Abs[Vu[25000]] / Quantity[0.01, "Centimeters"]) dx2,
            "(μ∇F) / (4 T)" ->
              ((4 dt2) / (4 dx2^2)) (Abs[Vu[25000]] / Quantity[0.01, "Centimeters"]) dx2
           } //
           Column
         V \rightarrow \left\{ \text{ 0. cm}^2/\text{s}, -0.0000319069 cm}^2/\text{s} \right\}
         \nabla V \rightarrow 0.00319069 \text{ cm/s}
         \nabla F \rightarrow 8.50852 \times 10^{-6}
 \text{Out[101]=} \quad v \rightarrow \textbf{0.179477} 
         \mu / T \rightarrow 84375. \text{ s/cm}^2
         (\mu \, \nabla \, F) / T \rightarrow 0.717906
         (\mu \, \nabla \, F) / (4 \, T) \rightarrow 0.179477
```

Yup, looks like that works out.

dt = 0.05

In[102]:= μ01ds = ds1[Select[PossibleZeroQ[#["cmstrength"]] &]]; μ 01ds = μ 01ds [SortBy ["temperature"]]

cmstrength	temperature	MKtime	cmtratio	tfinal	vmean	Dx	Dy
0	0	1	∞	10000	0.00004655	0.00498621	0.00497
0	0.2	1	0.0	10000	-0.0000241385	0.00684214	0.00817
0	0.4	1	0.0	10000	-0.000244853	0.0363752	0.03806
0	0.6	1	0.0	10000	0.0000673799	0.0681142	0.06008
0	0.8	1	0.0	10000	0.000129053	0.0972709	0.09794
0	1	1	0	10000	-0.000549561	0.116088	0.10963
0	2	1	0	10000	-0.000341603	0.154172	0.10947
0	4	1	0	10000	-0.000302816	0.176871	0.18867
0	6	1	0	10000	0.000788141	0.159843	0.15385
0	8	1	0	10000	0.000209514	0.160657	0.18224
0	10	1	0	10000	0.000207029	0.169672	0.23937
0	20	1	0	10000	0.000160617	0.183204	0.20395
0	40	1	0	10000	0.000346383	0.179997	0.21617
0	60	1	0	10000	0.000254052	0.205308	0.18284
0	80	1	0	10000	0.000747709	0.161558	0.20391
0	100	1	0	10000	-0.0000432087	0.16959	0.21522
0	200	1	0	10000	0.0010539	0.261324	0.21641
0	400	1	0	10000	0.000392544	0.202208	0.22995
0	600	1	0	10000	0.000205537	0.164203	0.17140
0	800	1	0	10000	-0.00064113	0.212823	0.24169

In[104]:= dt3 = Quantity[0.05, "Seconds"]

Out[104]= 0.05 s

Out[103]=

```
log_{105} = Block[{is = 400, dss = {\mu01ds, \mu02ds}, dfs = {"Dx", "Dy", "Dxy"}, data, mint, maxt, targetD},
        dss = Table[
          ds[Select[! PossibleZeroQ[#["temperature"]] &]],
           {ds, dss}
         ];
        targetD = (\sigma 139 / (dx2 dx2)) dt3;
        data = Table[
           ds[All, {"temperature", d}][Values] // Normal,
           {ds, dss}, {d, dfs}
         ];
        data[2, All, All, 2] *= 0.15;
        {mint, maxt} = MinMax[data[All, All, All, 1]]];
        {
         {mint, maxt, targetD},
         ListLogLinearPlot[data[1]]
           , PlotRange → All
           , Joined → True
           , Mesh → All
           , ImageSize → is
           , PlotLegends \rightarrow dfs
          , Epilog → {Line[{{Log[mint], targetD}, {Log[maxt], targetD}}]}
         ListLogLinearPlot[data[2]
           , PlotRange \rightarrow All
           , Joined → True
           , Mesh → All
           , ImageSize → is
           , PlotLegends → dfs
           , Epilog → {Line[{{Log[mint], targetD}, {Log[maxt], targetD}}]}
         ],
         data
        }
       // Column
      {0.2, 10000, 0.0390618}
     0.30
     0.25
     0.20
                                                                            Dx
     0.15
                                                                            Dy

    Dxy

     0.10
     0.05
                                           100
                                                       1000
                                                                   10^{4}
     0.35
```

```
0.30
      0.25
                                                                              Dx
      0.20
                                                                              Dy
      0.15
                                                                              Dxy
      0.10
      0.05
                                                        1000
                                10
                                            100
       \{\{\{\{0.2, 0.00684214\}, \{0.4, 0.0363752\}, \{0.6, 0.0681142\}, \}\}
           \{0.8, 0.0972709\}, \{1, 0.116088\}, \{2, 0.154172\}, \{4, 0.176871\}, \{6, 0.159843\},
           \{8, 0.160657\}, \{10, 0.169672\}, \{20, 0.183204\}, \{40, 0.179997\}, \{60, 0.205308\},
Out[105]=
          \{80, 0.161558\}, \{100, 0.16959\}, \{200, 0.261324\}, \{400, 0.202208\},
           \{600, 0.164203\}, \{800, 0.212823\}, \{1000, 0.267672\}, \{2000, 0.217894\},
          {4000, 0.243589}, {6000, 0.239021}, {8000, 0.258732}, {10000, 0.284062}},
         {{0.2, 0.00817876}, {0.4, 0.0380614}, {0.6, 0.0600807}, {0.8, 0.0979445},
           \{1, 0.109638\}, \{2, 0.109479\}, \{4, 0.188675\}, \{6, 0.153853\}, \{8, 0.182244\},
          \{10, 0.239375\}, \{20, 0.203953\}, \{40, 0.216172\}, \{60, 0.182847\},
          \{80, 0.20391\}, \{100, 0.215223\}, \{200, 0.21641\}, \{400, 0.229952\},
          \{600, 0.171406\}, \{800, 0.241698\}, \{1000, 0.253822\}, \{2000, 0.226766\},
           \{4000, 0.292021\}, \{6000, 0.238811\}, \{8000, 0.284503\}, \{10000, 0.280925\}\},
         {{0.2, 0.00751045}, {0.4, 0.0372183}, {0.6, 0.0640975}, {0.8, 0.0976077},
           \{1, 0.112863\}, \{2, 0.131825\}, \{4, 0.182773\}, \{6, 0.156848\}, \{8, 0.17145\},
          \{10, 0.204524\}, \{20, 0.193578\}, \{40, 0.198085\}, \{60, 0.194078\},
           \{80, 0.182734\}, \{100, 0.192407\}, \{200, 0.238867\}, \{400, 0.21608\},
          {600, 0.167805}, {800, 0.22726}, {1000, 0.260747}, {2000, 0.22233},
           {4000, 0.267805}, {6000, 0.238916}, {8000, 0.271617}, {10000, 0.282494}}},
        \{\{\{0.2, 0.00304257\}, \{0.4, 0.020259\}, \{0.6, 0.0449603\}, \{0.8, 0.060926\}, \}
          \{1, 0.0941652\}, \{2, 0.0961967\}, \{4, 0.0850713\}, \{6, 0.150077\},
           \{8, 0.119695\}, \{10, 0.14255\}, \{20, 0.14813\}, \{40, 0.179439\}, \{60, 0.117218\},
          \{80, 0.125769\}, \{100, 0.17933\}, \{200, 0.140799\}, \{400, 0.17653\},
          \{600, 0.23075\}, \{800, 0.200992\}, \{1000, 0.187019\}, \{2000, 0.242201\},
           {4000, 0.242221}, {6000, 0.287654}, {8000, 0.314636}, {10000, 0.360919}},
         {{0.2, 0.00266343}, {0.4, 0.030253}, {0.6, 0.0398233}, {0.8, 0.0798068},
          \{1, 0.0791562\}, \{2, 0.105167\}, \{4, 0.126692\}, \{6, 0.132855\}, \{8, 0.141443\},
          \{10, 0.136437\}, \{20, 0.124031\}, \{40, 0.145128\}, \{60, 0.172696\},
          \{80, 0.135051\}, \{100, 0.151939\}, \{200, 0.168871\}, \{400, 0.193256\},
          \{600, 0.22885\}, \{800, 0.230961\}, \{1000, 0.219369\}, \{2000, 0.277141\},
           {4000, 0.231539}, {6000, 0.231221}, {8000, 0.333514}, {10000, 0.331074}},
         \{\{0.2, 0.002853\}, \{0.4, 0.025256\}, \{0.6, 0.0423918\}, \{0.8, 0.0703664\},
           \{1, 0.0866607\}, \{2, 0.100682\}, \{4, 0.105882\}, \{6, 0.141466\}, \{8, 0.130569\},
          \{10, 0.139493\}, \{20, 0.136081\}, \{40, 0.162284\}, \{60, 0.144957\},
          \{80, 0.13041\}, \{100, 0.165634\}, \{200, 0.154835\}, \{400, 0.184893\},
          \{600, 0.2298\}, \{800, 0.215977\}, \{1000, 0.203194\}, \{2000, 0.259671\},
          {4000, 0.23688}, {6000, 0.259437}, {8000, 0.324075}, {10000, 0.345996}}}}
```

Equilibrium

Here's another idea: perhaps I shouldn't try to match the velocity, but merely the equilibrium. This is fairly straightforward. I know that at equilibrium, the is a Boltzmann equilibrium with temperature σ . But the Metropolis kinetics used for the cellular Potts model is based on a Boltzmann distribution. Thus I get the following simple answer for the chemotactic strength:

$$\mu = \frac{T}{\sigma}$$

I tried that out, and it seems to work pretty well.