Advanced Microeconomics II Quiz 3

WISE, Xiamen University

Spring 2012

1. Consider the T-period repeated game of G where G is described by the following matrix:

	Player 2		
	b_1	b_2	b_3
a_1	10, 10	2,2	0,3
Player 1 a_2	2, 2	4,4	0, 2
a_3	3,0	2,0	1,1

(a) (10 points) When T = 2 how many subgame perfect equilibrium outcomes of this game are there where the outcome in the second stage is (a_3b_3) ?

Solution: The three pure strategy Nash equilibria of this simultaneous-move game are (a_1, b_1) , (a_2, b_2) and (a_3, b_3) . The payoffs associated with (a_3b_3) are the lowest Nash equilibrium payoffs. Thus it is impossible to punish if we require that (a_3, b_3) be the outcome in the last period. Thus, there are three sub-game perfect Nash equilibria outcomes of this game where the outcome in the second stage is (a_3b_3) , each associated with a different first-stage game Nash equilibrium outcome.

(b) (10 points) When T = 2 how many subgame perfect equilibrium outcomes of this game are there where the outcome in the second stage is (a_2b_2) ?

Solution: There are three sub-game perfect Nash equilibria outcomes of this game where the outcome in the second stage is (a_2b_2)), each associated with a different first-stage game Nash equilibrium outcome.

In addition, the payoff of each player in the stage game Nash equilibrium outcome of (a_2b_2) is 4 and the payoff of each player in the stage game Nash equilibrium outcome of (a_1b_1) is 1. The difference between the stage game Nash equilibrium payoffs for each player is 3. Hence, any stage game outcome where each player's most profitable deviation is no more than 3 is sustainable in the first period. The outcome is supported by punishing deviations with the lowest Nash equilibrium payoffs in the second period. Hence, (a_3b_2, a_2b_2) and (a_2b_3, a_2b_3) are additional subgame equilibrium outcomes, bringing the total to 5.

(c) (10 points) When T = 2 how many subgame perfect equilibrium outcomes of this game are there where the outcome in the second stage is (a_1b_1) ?

Solution: There are three sub-game perfect Nash equilibria outcomes of this game where the outcome in the second stage is (a_1b_1) , each associated with a different first-stage game Nash equilibrium outcome.

In addition, the payoff of each player in the stage game Nash equilibrium outcome of (a_1b_1) is 10 and the payoff of each player in the stage game Nash equilibrium

outcome of (a_1b_1) is 1. The difference between the stage game Nash equilibrium payoffs for each player is 9. Hence, any stage game outcome where each player's most profitable deviation is no more than 9 is sustainable in the first period. The outcome is supported by punishing deviations with the lowest Nash equilibrium payoffs in the second period. Hence, (a_2b_1, a_1b_1) , (a_3b_1, a_1b_1) , (a_1b_2, a_1b_1) , (a_1b_3, a_1b_1) , (a_3b_2, a_1b_1) and (a_2b_3, a_1b_1) are additional sub-game equilibrium outcomes, bringing the total to 9.

(d) (10 points) How long does T need to be for there to exist a subgame perfect equilibrium payoff profile where the (average per period) equilibrium payoff profile is within ϵ of (2,2)? Be clear about the strategies of both players.

Solution: Define $V = \{(2,3), (1,3)\}$. Let $(k,j) \in V$ and define the strategies in this way.

The strategy for player 1 is to play a_2 in period 1 and to play a_2 for every period until T(k,l) - L(k,l) if the history only contains outcomes (a_2b_1) ; otherwise play a_j . In the last L(k,l) periods play a_k if the history from 1 to L(k,l) only contains the outcomes (a_2b_1) ; otherwise play a_j .

The strategy for player 2 is to play b_1 in period 1 and to play b_1 for every period until T(k,l) - L(k,l) if the history only contains outcomes (a_2b_1) ; otherwise play b_j . In the last L(k,l) periods play b_k if the history from 1 to L(k,l) only contains the outcomes (a_2b_1) ; otherwise play b_j .

It is left to define L(k,l) and T(k,l). We require L(k,l) to be long enough to make any one period deviation unprofitable. The most profitable stage game one-player deviation is 8. When (k,l) = (2,3) each period of punishment costs a player 3. Hence it takes three periods of punishment to make this deviation unprofitable so L(2,3) = 3. When (k,l) = (1,3) each period of punishment costs a player 9. Hence it takes one period of punishment to make this deviation unprofitable so L(1,3) = 1. We require T to be long enough so that the payoffs are within ϵ of (2,2). In partic-

We require T to be long enough so that the payoffs are within ϵ of (2,2). In particular, when (k,l)=(2,3) we require that

$$\frac{(T(2,3)-3)2+3\times 4}{T(2,3)}-2<\epsilon \Rightarrow T(2,3)>6/\epsilon.$$

When (k, l) = (1, 3) we require that

$$\frac{(T(1,3)-1)2+1\times 10}{T(1,3)}-2<\epsilon \Rightarrow T(1,3)>8/\epsilon.$$

Note that (k, l) = (1, 2) does not work here since the payoffs in the 'bad' stage game Nash equilibrium are 4 so a player who deviated in the first period would get an average payoff equal to approximately 4 rather than 2. Also note that when T = 3, the outcome (2,0), (0,2), (4,4) is a subgame perfect equilibrium outcome and has the equilibrium payoff profile of exactly (2,2). Player 1's strategy is $s_1(\emptyset) = a_3$; $s_1(a_3b_2) = a_2$ and $s_1(h) = a_3$ for any other h of length one; $s_1(a_3b_2, a_2b_3) = a_2$

and $s_1(h) = b_3$ for any other h of length two. Player 2's strategy is $s_2(\varnothing) = b_2$; $s_2(a_3b_2) = b_3$ and $s_2(h) = b_3$ for any other h of length one; $s_2(a_3b_2, a_2b_3) = b_2$ and $s_2(h) = b_3$ for any other h of length two. I leave to you to check that this is indeed a subgame perfect equilibrium.