Algorithmic Framework for Code-Executing Math Solvers

tabularx

1 Definition of the $mini_bench$

Table 1: Sample from mini_bench (GSM8K Test Subset)

#	Question (abridged)	Answer
1	Janet's ducks lay 16 eggs/day. She eats 3 and uses 4 for muffins. She sells the rest at \$2 each. How much does she earn per day?	18
2	A robe takes 2 bolts of blue fiber and half that much white. How many total bolts?	3
3	Josh buys a house for \$80k, renovates for \$50k. The value increases 150%. What's his profit?	70000
4	James runs 3 sprints, $3\times/\text{week}$. Each sprint is 60m. How many meters per week?	540
5	Wendi feeds each chicken 3 cups/day. She gives 15 cups AM, 25 PM. Her flock has 20 chickens. How much for the last meal?	20
6	Kylar buys 16 glasses: 1st is \$5, 2nd is 60% of price. What's the total cost?	64
7	Toulouse = $2 \times$ Charleston; Charleston = $4 \times$ Seattle; Seattle has 20 sheep. How many total sheep?	260
8	Carla downloads 200GB. At 2GB/min, she restarts at 40% (after 20min pause). How long to redownload fully?	160
9	John drives 3h at 60mph. On return: 2h traffic (0 mph), 0.5h at 30mph, then 1.5h at 80mph. How far is he from home after 4h?	45
10	Eliza earns $10/hr$ for $40h/week$. Overtime = $1.2 \times rate$. If she works $45h$ this week, how much does she earn?	460

2 I - Single-Model Majority Voting

Algorithm 1: Candidate Generation via LLM Sampling

Algorithm 1 GenerateCandidates

Input: Math question q, number of generations N

Output: List of N decoded responses \mathcal{R}

- 1: Construct a structured prompt P containing q.
- 2: Tokenize P and send to LLM using sampling-based decoding with:
 - ullet num_return_sequences =N
 - do_sample = True, temperature = 0.7, top_p = 0.9
- 3: For each of the N outputs:
 - Decode the output into text.
 - Extract Python code between ""python ... "".
- 4: **return** \mathcal{R} , the list of code blocks

Algorithm 2: Majority Voting Over Code Results

Algorithm 2 MajorityVote

Input: List of numerical outputs $A = \{a_1, a_2, \dots, a_n\}$

Output: Most frequent result a^*

- 1: Filter out any None or invalid results from A.
- 2: Count occurrences of each remaining value using a frequency map F.
- 3: Identify the maximum frequency $f^* = \max F[a_i]$.
- 4: Let $C = \{a_i \in A \mid F[a_i] = f^*\}$ be the tied candidates.
- 5: Break ties by selecting a random $a^* \in C$.
- 6: **return** a^*

3 II - Multi-Model Majority Voting

Algorithm 1: Model Answer Generation via Code Execution

```
Algorithm 3 GenerateAnswer

Input: Math question q, model M, tokenizer T
Output: Normalized numerical result r

1 Format prompt P to instruct model to generate Python code
Tokenize prompt: inputs ← T(P)
Run model generation: output ← M(inputs)
Extract code block delimited by ""python ..."
if code is valid then

2 Execute code using exec()
Retrieve variable result from local scope
Normalize numerical value using float()
return r

3 else
4 return None
```

Algorithm 2: Majority Vote over Model Outputs

Algorithm 3: Multi-Model Majority Voting Evaluation

Algorithm 5 EvaluateModelsAndMajority

Benchmark set \mathcal{B} , model set $\mathcal{M}_1, \dots, \mathcal{M}_k$ Individual accuracies and ensemble accuracies

```
foreach model \mathcal{M}_i do
```

Sort models by accuracy into list \mathcal{M}_{sorted}

```
for
each N in top-N values do
```

```
\begin{array}{l} \textbf{foreach}\;(q,a)\;in\;\mathcal{B}\;\textbf{do}\\ \quad \text{Let}\;R\leftarrow \text{list of predictions}\;r_1,\ldots,r_N\;\text{from top-N models}\\ r^*\leftarrow \text{MajorityVote}(R)\\ \quad \textbf{if}\;r^*==a\;\textbf{then}\\ \quad \  \  \, \text{Lincrement ensemble correct count} \end{array} Compute ensemble accuracy as \frac{\text{correct}}{|\mathcal{B}|}
```

4 Results

Table 2: Prediction Reasoning for Wendy's Dentist Bill Problem

Program	Prediction Reasoning
Vanilla	Wendy paid \$600 for the tooth extraction. (incorrect)
Vanilla + DSPy Compilation	Wendy paid \$240 for the tooth extraction. (incorrect)
СоТ	Wendy paid \$150 for the tooth extraction. (incorrect)
CoT + DSPy Compilation	Let's denote the cost of the tooth extraction as x . Wendy's bill was five times the cost of a filling, which is \$120. So: \$70 (cleaning) + 2 × \$120 (fillings) + $x = 600 . $\Rightarrow 70 + 240 + x = 600 \Rightarrow x = 600 - 310 = 290$. (correct)
Reflection	The cost of the tooth extraction is \$250. (incorrect)
Reflection + DSPy Compilation	Given that Wendy's dentist bill was five times the cost of a filling, and each filling costs \$120, the total bill is $5 \times $120 = 600 . The bill includes the cleaning (\$70) and 2 fillings (\$120 each), so: $$70 + 2 \times $120 = 310 . Therefore, the cost of the tooth extraction is: $$600 - $310 = \boxed{290}$. (correct)

Table 3: Comparison of DSPy-Compiled Reasoning between GPT-3.5 and GPT-40-mini

Model	Program (Compiled)	Prediction Reasoning
GPT-3.5	CoT + DSPy Compilation	Let's denote the cost of the tooth extraction as x . Wendy's bill was five times the cost of a filling, which is \$120. So: \$70 (cleaning) + $2 \times 120 (fillings) + $x = 600$. $\Rightarrow 70 + 240 + x = 600 \Rightarrow x = 600 - 310 = 290$. (correct)
	Reflection + DSPy Compilation	Wendy's dentist bill was five times the cost of a filling. Each filling is \$120, so: \$600. Cleaning: \$70, Fillings: $2 \times $120 = 240 . Total known = \$310, Tooth extraction = \$600 - \$310 = $\boxed{290}$. (correct)
GPT-4o-mini	CoT + DSPy Compilation	The bill is $5 \times $120 = 600 . Cleaning = \$70, Fillings = $2 \times $120 = 240 . Total known = \$310, Tooth extraction = $$600 - $310 = \boxed{290}$. (correct)
	Reflection + DSPy Compilation	Charges: \$70 (cleaning), $2 \times $120 = 240 (fillings). Cleaning + fillings = \$310. Total = $5 \times $120 = 600 . Tooth extraction = $$600 - $310 = \boxed{290}$. (correct)