Essentials of Analytical Geometry and Linear Algebra I, Class #2

Innopolis University, September 2022

1 Dot Product

- 1. Find $|\mathbf{a}|^2 2\sqrt{3}\mathbf{a} \cdot \mathbf{b} 7|\mathbf{b}|^2$ given that $|\mathbf{a}| = 4$, $|\mathbf{b}| = 1$, $\angle(\mathbf{a}, \mathbf{b}) = 150^\circ$.
- 2. Find the angle¹ between $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -5 \\ 1 \\ -1 \end{bmatrix}$.
- 3. Prove that vectors $\mathbf{b}(\mathbf{a} \cdot \mathbf{c}) \mathbf{c}(\mathbf{a} \cdot \mathbf{b})$ and \mathbf{a} are perpendicular to each other.
- 4. All three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} have length of 3 and $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$. Find $\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{c} + \mathbf{c} \cdot \mathbf{a}$
- 5. Find an angle between \mathbf{a} and \mathbf{b} if:

(a)
$$\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix}$;

(b)
$$\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$;

(c)
$$\mathbf{a} = \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix}$.

- 6. There are two vectors on some basis $\mathbf{a} = \begin{bmatrix} x \\ 1-x \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} x^2 2x \\ x^2 2x + 1 \end{bmatrix}$. It is needed to find x, when:
 - (a) vectors are collinear;
 - (b) they have the same direction.
- 7. There are two vectors $\mathbf{a} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix}$. Length of \mathbf{c} is equal to 1 and the vector is perpendicular to \mathbf{a} . The angle between \mathbf{b} and \mathbf{c} is $\arccos(\sqrt{\frac{2}{27}})$. Find the coordinates of \mathbf{c} . How many solutions the task have?

¹If not stated otherwise, the coordinate system in this section is supposed to be Cartesian.

2 Cross Product

1. Find the cross product 2 of:

(a) vectors
$$\mathbf{a} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ -5 \\ -3 \end{bmatrix}$;

(b) vectors
$$\mathbf{a} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -18 \\ 12 \\ -6 \end{bmatrix}$.

- 2. Simplify the expressions:
 - (a) $(\mathbf{a} + \mathbf{b}) \times (\mathbf{a} \mathbf{b})$;
 - (b) $(3\mathbf{a} \mathbf{b} \frac{1}{3}\mathbf{c}) \times (2\mathbf{a} + \frac{3}{2}\mathbf{b} 3\mathbf{c}).$

 $^{^{2}}$ If not stated otherwise, the coordinate system in this assignment is supposed to be Cartesian.