Statical Methods: Chi-Square, ANNOVA and Regression Analysis.

```
import warnings
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import statsmodels.graphics.gofplots as gof
from scipy.stats import chi2_contingency, chisquare
from statsmodels.formula.api import ols
from statsmodels.stats import outliers_influence as sm_oi
from statsmodels.stats.anova import anova_lm

warnings.filterwarnings("ignore")
sns.set_theme("notebook", "whitegrid")
```

Custom Functions

```
def custom_statsmodel_OLS(_DF, *vars):
    """fitting OLS on specified independent and dependent variables- DF, dependent_var and is
    # sm.add_constant
    try:
        LOS_COLS = [v for v in vars]
        _X = LOS_COLS[1:]
        _Y = LOS_COLS[0]
        xvars = sm.add_constant(_DF[_X])
        yvar = DF[Y]
        _model_spec = sm.OLS(yvar, xvars)
        return _model_spec
    except Exception as e:
        print(f"There is an error while creating a model spec due to:{e}")
def custom_model_preds(_model, _new_df):
   """Predictions on new data points"""
   _feat = sm.add_constant(_new_df)
   _pred = _model.predict(sm.add_constant(_feat))
    _df_pred = pd.DataFrame(_pred)
    _df_pred.columns = ["predicted_y"]
```

```
return _df_pred
def custom_VIF(_MSPEC):
   """Custom function to get the VIF"""
   var_names = _MSPEC.exog_names
   X = \_MSPEC.exog
    _limit = X.shape[1]
    try:
        vif_dict = {}
        for idx in range(_limit):
           vif = round(sm_oi.variance_inflation_factor(X, idx), 5)
            vif_dict[var_names[idx]] = vif
        _DF = pd.DataFrame([vif_dict]).T
        _DF.columns = ["VIF"]
        _DF = _DF.reset_index()
        df_sorted = _DF.iloc[1:].sort_values(by="VIF", ascending=False)
        ax = sns.barplot(x="index", y="VIF", data=df_sorted)
        # Add text labels to the top of each bar
        for bar in ax.containers[0]:
            ax.text(
                bar.get_x() + bar.get_width() / 2,
                bar.get_height(),
                int(bar.get_height()),
                ha="center",
                va="bottom",
            )
        ax.set_xlabel("FIELD")
        ax.set_ylabel("VIF")
        plt.xticks(rotation=45)
        plt.title("VIF")
        plt.tight_layout()
        plt.show()
    except Exception as e:
        pass
def custom_ols_qqplot(_resid):
    """Q-Q Plot of residuals"""
    gof.qqplot( resid, line="s")
   plt.xlabel("Standard Normal Quantiles")
    plt.ylabel("Standardized Residuals")
```

```
plt.title("Normal Q-Q plot")
plt.show()

def custom_ols_res_vs_fitted(_fitted, _resid):
    """Fitted Vs Residuals Plot"""
    plt.scatter(_fitted, _resid)
    plt.axhline("0", color="r")
    plt.xlabel("Fitted Values")
    plt.ylabel("Residual")
    plt.title("Residual Vs Fitted")
```

Chi-Square and Annova- Cases

```
# Importing data
df_ecom = pd.read_excel(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/ecom.xlsx"
)
df_smoke = pd.read_csv(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/smoking.csv"
)
df_health = pd.read_excel(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/HealthStats_SSBB.xlsx"
)
```

```
df_ecom.head()
```

	Gender	Age	Overall Use_Level	Amazon_Level	Flipkart_Level	Swiggy_Level	Zomato_Level	(
0	Male	34	Medium	High	Medium	Medium	Medium	_]
1	Male	33	High	High	Low	Medium	Medium]
2	Female	34	High	High	Low	Low	Low	Ι
3	Male	32	Low	Medium	Medium	Low	Medium]
4	Female	40	Low	Low	Medium	Low	Low]

```
df_health.head()
```

	Participant No.	Data Segment	Industry	Stress-Per	Stress-Pro	$Activity_Level$	Age	Sex
0	1	Group-1	ITES	Medium	High	High	30	F
1	2	Group-1	Mfg & Process	Low	High	Medium	40	M
2	3	Group-1	ITES	Medium	Medium	High	42	F
3	4	Group-1	ITES	Medium	Medium	High	34	M
4	5	Group-1	Mfg & Process	Low	Medium	High	31	\mathbf{M}

```
df_ecom_sel = df_ecom[["Overall Use_Level", "Overall CS_Level"]]
```

Experiment 1

Hypothesis

```
Ho: There is no association between Overall Usage and Customer CS Score(Independent)
Ha: There is an association between Overall Usage and Customer CS Score(Dependent)
```

```
df_ecom_CT = (
    pd.crosstab(df_ecom_sel["Overall Use_Level"], df_ecom_sel["Overall CS_Level"])
    .reset_index()
    .drop(["Overall Use_Level"], axis=1)
)

CS_LVEL = df_ecom_CT.to_numpy()

_chi2, _pvalue, _ddof, _expected = chi2_contingency(CS_LVEL)

print(
    f"P-Value Caluclated is:{round(_pvalue,3)} which is lesser than to 0.05, hence we can rejoint to the continuous c
```

P-Value Caluclated is:0.041 which is lesser than to 0.05, hence we can reject the null hypoti

Experiment 2:

Hypothesis

Ho: There is no association between Maritual Status and Smoking Ha: There is an association between Maritual Status and Smoking

Hypothesis

```
Ho: There is no association between Gender and Smoking Ha: There is an association between Gender and Smoking
```

```
df_smoke_tidy = df_smoke[["marital_status", "smoke"]]
df_gender_tidy = df_smoke[["gender", "smoke"]]
df_smoke_CT = (
    pd.crosstab(df_smoke_tidy["marital_status"], df_smoke_tidy["smoke"])
    .reset_index()
    .drop(["marital_status"], axis=1)
df_gender_CT = (
   pd.crosstab(df_gender_tidy["gender"], df_gender_tidy["smoke"])
    .reset_index()
    .drop(["gender"], axis=1)
)
smoke_NUM = df_smoke_CT.to_numpy()
gender_NUM = df_gender_CT.to_numpy()
# ChiSquare ex1
_chi2, _pvalue, _ddof, _expected = chi2_contingency(smoke_NUM)
print(
   f"P-Value Caluclated is:{round(_pvalue,3)} which is lesser than to 0.05, hence we can re
)
P-Value Caluclated is:0.0 which is lesser than to 0.05, hence we can reject the null hypothe
# ChiSquare ex2
```

f"P-Value Caluclated is:{round(_pvalue,3)} which is greater than to 0.05, hence we failed

P-Value Caluclated is:0.513 which is greater than to 0.05, hence we failed to reject the nul

_chi2, _pvalue, _ddof, _expected = chi2_contingency(gender_NUM)

Experiment 3

Hypothesis

Ho: There is no association between Industry and HappyNess Index Ha: There is an association between Industry and HappyNess Index

```
df_health_CT = (
    pd.crosstab(df_health["Industry"], df_health["Happiness-Index-State"])
    .reset_index()
    .drop(["Industry"], axis=1)
)
health_NUM = df_health_CT.to_numpy()

# ChiSquare ex2
```

```
# ChiSquare ex2
_chi2, _pvalue, _ddof, _expected = chi2_contingency(health_NUM)
```

```
print(
    f"P-Value Caluclated is:{round(_pvalue,3)} which is greater than to 0.05, hence we failed)
```

P-Value Caluclated is:0.08 which is greater than to 0.05, hence we failed to reject the null

Conclusions

- 1) There is an association between Maritual Status and Smoking
- 2) There is no association between Gender and Smoking
- 3) There is no association between Industry and HappyNess Index

Experiment 4:

Hypothesis

```
Ho: The average age of all marital status are equal Ha: The average age of all marital status are not equal
```

Hypothesis

Ho: The average age of all usage level customers are equal Ha: The average age of all usage level customers are not equal

Hypothesis

Ho: The average BMI of All industry participants are equal Ha: The average BMI of All industry participants are not equal

```
df_msage = df_smoke[["marital_status", "age"]]

# Define the model formula
model_1 = ols("age ~ marital_status", data=df_msage).fit()

# Perform ANOVA
anova_table_ex1 = anova_lm(model_1)

# Print ANOVA results
print(anova_table_ex1)
```

```
df sum_sq mean_sq F PR(>F)
marital_status 4.0 234048.777309 58512.194327 274.597439 7.189135e-182
Residual 1686.0 359258.847765 213.083540 NaN NaN
```

```
print(
    f"P-Value Caluclated is:{round(anova_table_ex1['PR(>F)'][0],3)} which is lesser than to
)
```

P-Value Caluclated is:0.0 which is lesser than to 0.05, hence we can reject the null hypothe

```
df_cs = df_ecom[["Overall Use_Level", "Age"]]
df_cs.columns = ["usage", "age"]

# Define the model formula
model_2 = ols("age ~ usage", data=df_cs).fit()

# Perform ANOVA
anova_table_ex2 = anova_lm(model_2)

# Print ANOVA results
print(anova_table_ex2)
```

```
usage 2.0 23.580519 11.790260 0.17447 0.840748
Residual 30.0 2027.328571 67.577619 NaN NaN

print(
    f"P-Value Caluclated is:{round(anova_table_ex2['PR(>F)'][0],3)} which is greater than to
```

F

PR(>F)

P-Value Caluclated is:0.841 which is greater than to 0.05, hence we failed to reject the null

```
df_h = df_health[["Industry", "BMI"]]

# Define the model formula
model_3 = ols("BMI ~ Industry", data=df_h).fit()

# Perform ANOVA
anova_table_ex3 = anova_lm(model_3)

# Print ANOVA results
print(anova_table_ex3)
```

```
df sum_sq mean_sq F PR(>F)
Industry 2.0 173.765060 86.882530 5.370873 0.005568
Residual 153.0 2475.021863 16.176613 NaN NaN
```

```
print(
    f"P-Value Caluclated is:{round(anova_table_ex3['PR(>F)'][0],3)} which is lesser than to
)
```

P-Value Caluclated is:0.006 which is lesser than to 0.05, hence we reject the null hypothesis

Conclusions

df

sum_sq

mean_sq

- 1) The average age of all usage level customers are equal
- 2) The average age of all marital status are not equal
- 3) The average BMI of All industry participants are not equal

Linear Regression Analysis - Cases

Case 1: BikeShare

Data Importing and Data Preparation

```
df_dcbikes = pd.read_csv(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/dcbikeshares.csv"
)
```

```
df_dcbikes.head()
```

	instant	dteday	season	yr	mnth	holiday	weekday	workingday	weathersit	temp	atemp
0	1	1/1/2011	1	0	1	0	6	0	2	0.344167	0.3636
1	2	1/2/2011	1	0	1	0	0	0	2	0.363478	0.3537
2	3	1/3/2011	1	0	1	0	1	1	1	0.196364	0.1894
3	4	1/4/2011	1	0	1	0	2	1	1	0.200000	0.2121
4	5	1/5/2011	1	0	1	0	3	1	1	0.226957	0.2292

```
df_dcbikes_tidy.head()
```

	season	holiday	workingday	weathersit	temp	atemp	hum	windspeed	casual	register
0	1	0	0	2	0.344167	0.363625	0.805833	0.160446	331	654
1	1	0	0	2	0.363478	0.353739	0.696087	0.248539	131	670
2	1	0	1	1	0.196364	0.189405	0.437273	0.248309	120	1229
3	1	0	1	1	0.200000	0.212122	0.590435	0.160296	108	1454
4	1	0	1	1	0.226957	0.229270	0.436957	0.186900	82	1518

EDA 1: Visualize the distribution of daily bike rentals and temperature as well as the relationship between these two variables.

```
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(22, 6))
v1 = sns.regplot(x="temp", y="cnt", data=df_dcbikes_tidy, ax=ax1)
v2 = sns.heatmap(df_dcbikes_tidy[["temp", "cnt"]].corr(), annot=True, ax=ax2)
plt.show()
```


EDA2: Visualize the distribution of daily bike rentals and temperature per season

```
df_eda2 = df_dcbikes_tidy[["season", "temp", "cnt"]]
```

```
vis_season_grid = sns.FacetGrid(df_dcbikes_tidy, col="season")
vis_season_grid.map_dataframe(sns.regplot, x="temp", y="cnt")
vis_season_grid.add_legend()
plt.show()
```



```
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))
v1 = sns.heatmap(
    df_eda2.loc[df_eda2["season"] == 1, ["temp", "cnt"]].corr(),
    annot=True,
    ax=axes[0, 0],
v2 = sns.heatmap(
    df_eda2.loc[df_eda2["season"] == 2, ["temp", "cnt"]].corr(),
    annot=True,
    ax=axes[0, 1],
v3 = sns.heatmap(
    df_eda2.loc[df_eda2["season"] == 3, ["temp", "cnt"]].corr(),
    annot=True,
    ax=axes[1, 0],
v4 = sns.heatmap(
    df_eda2.loc[df_eda2["season"] == 4, ["temp", "cnt"]].corr(),
    annot=True,
    ax=axes[1, 1],
v1.set_title("Season-1(Winter) TEMP VS CNT")
v2.set_title("Season-2(Spring) TEMP VS CNT")
v3.set_title("Season-3(Summer) TEMP VS CNT")
v4.set_title("Season-4(Fall) TEMP VS CNT")
plt.show()
```



```
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(16, 8))
v1 = sns.heatmap(
    df_dcbikes_tidy.loc[
        df_dcbikes_tidy["season"] == 1, ["temp", "atemp", "hum", "windspeed", "cnt"]
    ].corr(),
    annot=True,
    ax=axes[0, 0],
v2 = sns.heatmap(
    df_dcbikes_tidy.loc[
        df_dcbikes_tidy["season"] == 2, ["temp", "atemp", "hum", "windspeed", "cnt"]
    ].corr(),
    annot=True,
    ax=axes[0, 1],
v3 = sns.heatmap(
    df_dcbikes_tidy.loc[
        df_dcbikes_tidy["season"] == 3, ["temp", "atemp", "hum", "windspeed", "cnt"]
    ].corr(),
    annot=True,
    ax=axes[1, 0],
v4 = sns.heatmap(
```

```
df_dcbikes_tidy.loc[
          df_dcbikes_tidy["season"] == 4, ["temp", "atemp", "hum", "windspeed", "cnt"]
          ].corr(),
          annot=True,
          ax=axes[1, 1],
)
v1.set_title("Season-1(Winter)")
v2.set_title("Season-2(Spring)")
v3.set_title("Season-3(Summer)")
v4.set_title("Season-4(Fall)")
plt.show()
```


Regression Model

Experiment 1:One Numerical

Regression Equaltion: $bikecounts = \beta_0 + \beta_1 * temp + e$

```
OLS_M1 = custom_statsmodel_OLS(df_eda2, "cnt", "temp")
```

```
OLS_M1_fit = OLS_M1.fit()
```

Results: Ordinary least squares

=======						=======	=======	
Model:		OLS		Adj.	R-squ	0.393		
Dependent	Variable:	cnt		AIC:			12777.5357	
Date:		2024-03-29	11:14	BIC:			12786.7245	
No. Observ	vations:	731		Log-l	Likeli	hood:	-6386.8	
Df Model:		1		F-sta	atisti	c:	473.5	
Df Residua	als:	729		Prob	(F-st	atistic):	2.81e-81	
R-squared	:	0.394		Scale	e:		2.2783e+06	
	Coef.	Std.Err.	t	P:	 > t	[0.025	0.975]	
const	1214.6421	161.1635	7.536	57 O	.0000	898.242	1 1531.0421	
temp	6640.7100	305.1880	21.759	94 0	.0000	6041.557	7 7239.8623	
Omnibus:		20.477	I	ourbii	n-Wats	 on:	0.468	
Prob(Omni	bus):	0.000		Jarque	e-Bera	(JB):	12.566	
Skew:		0.167	I	0.002				
Kurtosis:		2.452	Condition No.:			7		
=======				=====		======		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $bike \hat{counts} = 1214.64 + 6640.71 * temp + e$

Inferences:

- 1. The p-value represents the probability of observing a slope as extreme or more extreme as the one we calculated in the sample, assuming there is truly no relationship between X and Y i.e null hypothesis. In our case p-value caluclated for temp is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between temp and counts.
- 2. For every increase of 1 unit in temperature, there is an associated increase of, on average, 6640 units of bike counts.
- 3. An average of bike counts 1214 when the temp is 0
- 4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.39.

Comment: The Q-Q plot indicates that the residuals are approximately normally distributed.

custom_ols_res_vs_fitted(OLS_M1_fit.fittedvalues, OLS_M1_fit.resid)

Comment: The fitted vs. residual plot suggests a random scatter of residuals, with no apparent trends.

custom_VIF(OLS_M1)

Comment: The VIF suggests that temp might have a relatively low collinearity with other independent variables, making it a potentially good choice for exploration.

```
_new_df = pd.DataFrame({"temp": [0.35, 0.28, 0.34]})
custom_model_preds(OLS_M1_fit, _new_df)
```

	predicted_y
0	3538.890619
1	3074.040919
2	3472.483519

Experiment 2: One numerical and One Categorical

 $bikecounts = \beta_0 + \beta_1 * temp + \beta_2 * season2 + \beta_1 * season3 + \beta_1 * season4 + e$

```
df_eda2_encoded = pd.get_dummies(
         df_eda2, columns=["season"], dtype="int", drop_first=True
)

OLS_M2 = custom_statsmodel_OLS(
         df_eda2_encoded, "cnt", "temp", "season_2", "season_3", "season_4"
)

OLS_M2_fit = OLS_M2.fit()
```

print(OLS_M2_fit.summary2())

Results: Ordinary least squares

______ OLS Adj. R-squared: 0.453 Dependent Variable: cnt AIC: 12704.6549 2024-03-29 11:14 BIC: 12727.6269 Log-Likelihood: -6347.3 No. Observations: 731 Df Model: 4 F-statistic: 152.0 726 Prob (F-statistic): 2.05e-94 Df Residuals: 0.456 Scale: R-squared: 2.0537e+06 ______ Coef. Std.Err. t P>|t| [0.025 0.975] 745.7873 187.4757 3.9780 0.0001 377.7282 1113.8465 const 6241.3453 518.1419 12.0456 0.0000 5224.1099 7258.5806 temp season_2 848.7236 197.0817 4.3065 0.0000 461.8056 1235.6416 season_3 490.1956 259.0055 1.8926 0.0588 -18.2936 998.6848 season_4 1342.8730 164.5878 8.1590 0.0000 1019.7482 1665.9978 Omnibus: 7.571 Durbin-Watson: 0.523 0.023 5.112 Jarque-Bera (JB): Prob(Omnibus): Skew: 0.011 Prob(JB): 0.078 Kurtosis: 2.591 Condition No.: 14

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

 $bike \hat{counts} = 745.7873 + 6241.34 * temp + 848.72 * season2 + 490.19 * season3 + 1342.87 * season4 + e$

Inferences: 1. P-value caluclated - For temp is 0, we can reject the null in favor of alternate i.e there is a truly relationship between temp and counts. - For season_2 is 0.001, we can reject the null in favor of alternate i.e there is a truly relationship between Spring season and bike counts. - For season_3 is 0.05, we failed to reject the null i.e there is a truly no relationship between summer season and bike counts. - For season_4 is 0.0000, we can reject the null in favor of alternate i.e there is a truly relationship between Fall season and bike counts.

- 2. Taking into account all the other explanatory variables in our model, For every increase of 1 unit in temperature, there is an associated increase of, on average, 6241 units of bike counts.
- 3. Taking into account all the other explanatory variables in our model,
 - In 'Season2(Spring)' the average number of bike counts 848 units higher on average compared to the Season1(Winter).
 - In 'Season4(Fall)' the average number of bike counts 1342 units higher on average compared to the Season1(Winter).
- 4. An average of bike counts 745 when all the exploratory variables are zero
- 5. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.45.

custom_ols_qqplot(OLS_M2_fit.resid)

custom_ols_res_vs_fitted(OLS_M2_fit.fittedvalues, OLS_M2_fit.resid)

custom_VIF(OLS_M2)

_new_df = df_eda2_encoded.loc[:10, ["temp", "season_2", "season_3", "season_4"]]

custom_model_preds(OLS_M2_fit, _new_df)

	predicted_y
0	2893.852416
1	3014.379035
2	1971.362862
3	1994.056394
4	2162.304338
5	2021.193763
6	1972.348995
7	1775.609309
8	1609.171355
9	1687.188171

 $\frac{\text{predicted_y}}{10 \quad 1801.142653}$

Experiment 3: More than one numerical: cnt = f(temp, atemp, hum, windspeed)

df_exp_3 = df_dcbikes_tidy[["temp", "atemp", "hum", "windspeed", "cnt"]]

sns.heatmap(df_exp_3.corr(), annot=True)
plt.show()

OLS_M3 = custom_statsmodel_OLS(df_exp_3, "cnt", "temp", "atemp", "hum", "windspeed")

OLS_M3_fit = OLS_M3.fit()

Results: Ordinary least squares

=======			======			========
Model:		OLS		Adj. R-s	quared:	0.461
Dependent	Variable:	cnt		AIC:		12693.7344
Date:		2024-03-29	11:14	BIC:		12716.7065
No. Observ	ations:	731		Log-Like	lihood:	-6341.9
Df Model:		4		F-statis	tic:	157.0
Df Residua	als:	726		Prob (F-	statistic):	9.23e-97
R-squared:	:	0.464		Scale:		2.0232e+06
	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	3860.3685	355.3890	10.862	24 0.0000	3162.6557	4558.0812
temp	2111.8136	2282.1976	0.925	3 0.3551	-2368.6810	6592.3083
atemp	5139.1524	2576.9972	1.994	12 0.0465	79.8964	10198.4085
hum	-3149.1098	383.9943	-8.200	0.0000	-3902.9815	-2395.2380
windspeed	-4528.6748	721.0854	-6.280	0.0000	-5944.3362	-3113.0134
Omnibus:		7.790		Durbin-Wa	atson:	0.410
Prob(Omnik	ous):	0.020		Jarque-Be	era (JB):	6.102
Skew:		0.124		Prob(JB)		0.047
Kurtosis:		2.628		Condition	n No.:	91
=======			======			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

$$\begin{array}{l} bike \hat{counts} = 3860.36 + 2111.81 * temp + 5139 * atemp + (-3149.10) * hum + (-4528.67) * wind speed + e \end{array}$$

Inferences 1. P-value caluclated - For temp is 30, we failed to reject the null in favor of alternate i.e there is NO truly relationship between temp and counts. - For atemp is 0.04, we can reject the null in favor of alternate i.e there is a truly relationship between atemp and bike counts. - For hum is 0.05, we can reject the null i.e there is a truly relationship between humidity and bike counts. - For windspeed is 0.0000, we can reject the null in favor of alternate i.e there is a truly relationship between windspeed and bike counts.

- 2. Taking into account all the other explanatory variables in our model,
 - for every increase of one unit in temperature, there is an associated increase of on average 2111 in bike counts.

- for every increase of one unit in atemperature, there is an associated increase of on average 5139 in bike counts.
- for every increase of one unit in humidity, there is an associated decrease of on average 3149 in bike counts.
- \bullet for every increase of one unit in windpspeed, there is an associated decreased of on average 4528 in bike counts.
- 3. An average of bike counts 3860 when all the exploratory variables are zero
- 4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.46.

custom_ols_qqplot(OLS_M3_fit.resid)

custom_ols_res_vs_fitted(OLS_M3_fit.fittedvalues, OLS_M3_fit.resid)

custom_VIF(OLS_M3)

Case 2: Auto

Data Importing, Prep and EDA

```
df_auto = pd.read_csv(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/auto.csv"
)
```

df_auto.head()

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
0	18.0	8	307.0	130	3504	12.0	70	1
1	15.0	8	350.0	165	3693	11.5	70	1
2	18.0	8	318.0	150	3436	11.0	70	1

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin
3	16.0	8	304.0	150	3433	12.0	70	1
4	17.0	8	302.0	140	3449	10.5	70	1

```
sns.heatmap(
    df_auto[["mpg", "horsepower", "weight", "acceleration", "displacement"]].corr(),
    annot=True,
)
plt.show()
```


sns.pairplot(df_auto[["mpg", "horsepower", "weight", "acceleration", "displacement"]])
plt.show()

Regression Model

Experiment 1: One Numerical: mpg=f(horsepower)

```
SL1 = custom_statsmodel_OLS(df_auto, "mpg", "horsepower")
```

SL1_modelfit = SL1.fit()

print(SL1_modelfit.summary2())

Results: Ordinary least squares

==========		-===		=====			=====		
Model:		OLS	3		Adj.	R-square	d:	0.6	305
Dependent Var:	iable:	mpg	5		AIC:			2361.3237	
Date:		202	24-03-29	11:15	BIC:			236	39.2662
No. Observation	ons:	392	2		Log-l	Likelihoo	d:	-11	178.7
Df Model:		1			F-sta	atistic:		599	9.7
Df Residuals:		390)		${\tt Prob}$	(F-stati	stic):	7.0)3e-81
R-squared:		0.6	806		Scale	e:		24.	.066
	Coef	 , 	Std.Err.	1	 t 	P> t	[0.02	 25 	0.975]
const	39.93	59	0.7175	55	.6598	0.0000	38.52	52	41.3465
horsepower	-0.15	78	0.0064	-24	.4891	0.0000	-0.170)5	-0.1452
Omnibus:			16.432	I	 Ourbii	 n-Watson:			0.920
Prob(Omnibus)	:		0.000		Jarque	e-Bera (J	B):		17.305
Skew:			0.492	I	Prob(JB):			0.000
Kurtosis:			3.299	(Condi	tion No.:			322
	=====	-===		=====			=====	====	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

$$\hat{mpg} = 39.9359 + (-0.15) * \hat{horsepower} + e$$

Inferences:

- 1. In our case p-value caluclated for HorsePower is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between Horsepower and MPG.
- 2. For every increase of 1 unit in Horse Power, there is an associated decrease of, on average, 0.15 units of MPG.
- 3. An average of MPG is 39 when the Horsepower is 0
- 4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.60

custom_ols_res_vs_fitted(SL1_modelfit.fittedvalues, SL1_modelfit.resid)

Experiment2: two numericals: mpg=f(horsepower,acceleration)

```
SL2 = custom_statsmodel_OLS(df_auto, "mpg", "horsepower", "acceleration")
```

```
SL2_modelfit = SL2.fit()
```

print(SL2_modelfit.summary2())

Results: Ordinary least squares

Model: OLS Adj. R-squared: 0.628

Dependent Variable: mpg AIC: 2338.2770
Date: 2024-03-29 11:15 BIC: 2350.1908
No. Observations: 392 Log-Likelihood: -1166.1

Df Model:	2		F-sta	31.7				
Df Residuals:	38	9	Prob (F-statistic): 8.67e-8					
R-squared:	0.	630	Scale	:	22.635			
	Coef.	Std.Err.	t	P> t	[0.025	0.975]		
const	52.5593	2.5870	20.3164	0.0000	47.4730	57.6457		
horsepower	-0.1880	0.0086	-21.7883	0.0000	-0.2049	-0.1710		
acceleration	-0.6098	0.1204	-5.0662	0.0000	-0.8464	-0.3731		
Omnibus:		31.573	Durbin	 ı-Watson:		0.984		
Prob(Omnibus)	:	0.000	Jarque	e-Bera (J	B):	37.488		
Skew:		0.685	Prob(J	ß):		0.000		
Kurtosis: 3.64			Condit	ion No.:		1209		
=========		=======				======		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.21e+03. This might indicate that there are strong multicollinearity or other numerical problems.

$$\hat{mpg} = 52.5593 + (-0.18) * horsepower + (-0.60) * acceleration + e$$

Inferences:

- 1. p-value caluclated
 - for HorsePower is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between Horsepower and MPG.
 - for Accelaration is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between Accelaration and MPG.
- 2. For every increase of 1 unit in HorsePower, there is an associated decrease of, on average, 0.18 units of MPG.
- 3. For every increase of 1 unit in Accelaration, there is an associated decrease of, on average, 0.6 units of MPG.
- 4. An average of MPG is 52 when the Horsepower is 0
- 5. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.62

custom_ols_res_vs_fitted(SL2_modelfit.fittedvalues, SL1_modelfit.resid)

custom_VIF(SL2)

Experiment3: More than 2 numericals: mpg=f("horsepower", "weight", "acceleration", "displacement")

```
SL3 = custom_statsmodel_OLS(
    df_auto, "mpg", "horsepower", "weight", "acceleration", "displacement"
)
```

```
SL3_modelfit = SL3.fit()
```

print(SL3_modelfit.summary2())

Results: Ordinary least squares

Model: OLS Adj. R-squared: 0.704

Date:	o. Observations: 392 Model: 4 Residuals: 387			Likelihoo ntistic: (F-stati	od: - 2 2.stic): 9	2251.1955 2271.0518 -1120.6 233.4 9.63e-102 18.035	
	Coef.	Std.Err.	t	P> t	[0.02	0.975]	
const	45.251	1 2.4560	18.4244	0.0000	40.4223	50.0800	
horsepower	-0.043	6 0.0166	-2.6312	0.0088	-0.0762	2 -0.0110	
weight	-0.005	3 0.0008	-6.5123	0.0000	-0.0069	0.0037	
acceleration	-0.023	1 0.1256	-0.1843	0.8539	-0.2701	0.2238	
displacement	-0.006	0.0067	-0.8944	0.3717	-0.0192	0.0072	
Omnibus:		38.359	Durbir	n-Watson:		0.861	
<pre>Prob(Omnibus): Skew:</pre>		0.000	Jarque	e-Bera (J	ΙΒ):	51.333	
		0.715	Prob(JB):		0.000	
Kurtosis:		4.049	Condit	cion No.:		35594	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.56e+04. This might indicate that there are strong multicollinearity or other numerical problems.

 $\hat{mpg} = 45.2511 + (-0.04)*horsepower + (0.0053)*weight + (0.0231)*acceleration + (-0.0060)*displacement + e$

Inferences:

1. p-value caluclated

- for HorsePower is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between Horsepower and MPG.
- for Weight is 0 hence we can reject the null in favor of alternate i.e there is a truly relationship between Weight and MPG.
- for Accelaration is 0.85 we fail to reject the null i.e there is NO truly relationship between Accelaration and MPG.
- for Displacement is 0.37 we fail to reject the null i.e there is NO truly relationship between Displacement and MPG.

- 2. For every increase of 1 unit in Horse Power, there is an associated decrease of, on average, 0.04 units of MPG.
- 3. For every increase of 1 unit in weight, there is an associated decrease of, on average, 0.005 units of MPG.
- 4. An average of MPG is 45.25 when the Horsepower is 0
- 5. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.704

custom_VIF(SL3)

Case 3: CarSeats

Data Importing and Prep

```
df_carseats = pd.read_csv(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/carseats.csv"
)

df_carseats = pd.get_dummies(
    df_carseats, columns=["ShelveLoc", "Urban", "US"], dtype="int", drop_first=True)
```

df_carseats.head()

	Sales	CompPrice	Income	Advertising	Population	Price	Age	Education	ShelveLoc_Good	Sh
0	9.50	138	73	11	276	120	42	17	0	0
1	11.22	111	48	16	260	83	65	10	1	0
2	10.06	113	35	10	269	80	59	12	0	1
3	7.40	117	100	4	466	97	55	14	0	1
4	4.15	141	64	3	340	128	38	13	0	0

Regression Model

Experiment 1: More than 1 Numericals: Sales=f("CompPrice", "Income", "Advertising", "Population", "Price", "Age", "Education")

```
car_SL1 = custom_statsmodel_OLS(
    df_carseats,
```

```
"Sales",

"CompPrice",

"Income",

"Advertising",

"Population",

"Price",

"Age",

"Education",
```

```
car_SL1_fit = car_SL1.fit()
```

```
print(car_SL1_fit.summary2())
```

Results: Ordinary least squares

_____ OLS Adj. R-squared: 0.533 Dependent Variable: Sales AIC: 1668.6475 Date: 2024-03-29 11:15 BIC: 1700.5792 No. Observations: 400 Log-Likelihood: -826.32 Df Model: 7 F-statistic: 66.18 Df Residuals: Prob (F-statistic): 1.41e-62 392 R-squared: 0.542 Scale: 3.7208

	Coef.	Std.Err.	t	P> t	[0.025	0.975]
const	7.7077	1.1176	6.8965	0.0000	5.5104	9.9050
CompPrice	0.0939	0.0078	11.9797	0.0000	0.0785	0.1093
Income	0.0129	0.0035	3.7034	0.0002	0.0060	0.0197
Advertising	0.1309	0.0151	8.6539	0.0000	0.1011	0.1606
Population	-0.0001	0.0007	-0.1802	0.8571	-0.0015	0.0012
Price	-0.0925	0.0051	-18.3137	0.0000	-0.1025	-0.0826
Age	-0.0450	0.0060	-7.4854	0.0000	-0.0568	-0.0332
Education	-0.0400	0.0371	-1.0770	0.2821	-0.1130	0.0330
Omnibus:		8.263	Durbin	-Watson:		1.969
<pre>Prob(Omnibus):</pre>		0.016	Jarque	-Bera (J	B):	7.705
Skew:		0.288	Prob(JB):			0.021
Kurtosis:		2.639 Condition No.:				4049

Kurtosis: 2.639 Condition No.: 4049

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.05e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Inferences 1. P-value caluclated - For CompPrice is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between ComPrice and Sales. - For Income is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Income and Sales. - For Advertising is 0.0002, we can reject the null i.e there is a truly relationship between Advertising and Sales. - For Price is 0.00, we can reject the null i.e there is a truly relationship between Price and Sales. - For Age is 0.00, we can reject the null i.e there is a truly relationship between Age and Sales. - For Education is 0.28, we fail to reject the null i.e there is NO truly relationship between Population is 0.85, we fail to reject the null i.e there is NO truly relationship between Population and Sales.

- 2. Taking into account all the other explanatory variables in our model,
 - for every increase of one unit in CompPrice, there is an associated increase of on average 0.09 in Sales
 - for every increase of one unit in Income, there is an associated increase of on average 0.01 in Sales
 - for every increase of one unit in Advertising, there is an associated increase of on average 0.13 in Sales.
 - for every increase of one unit in Price, there is an associated decreased of on average 0.09 in Sales.
 - for every increase of one unit in Age, there is an associated decreased of on average 0.04 in Sales.
- 3. An average of Sales 7.7 when all the exploratory variables are zero
- 4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.53

custom_VIF(car_SL1)

custom_ols_qqplot(car_SL1_fit.resid)

custom_ols_res_vs_fitted(car_SL1_fit.fittedvalues, car_SL1_fit.resid)

Experiment 2: More than 1 Numericals and Categorical: Sales=f("CompPrice", "Income", "Advertising", "Population", "Price", "Age", "Education", "ShelveLoc_Good

```
car_SL2 = custom_statsmodel_OLS(
    df_carseats,
    "Sales",
    "CompPrice",
    "Income",
    "Advertising",
    "Population",
    "Price",
    "Age",
    "Education",
    "ShelveLoc_Good",
    "ShelveLoc_Medium",
```

```
"Urban_Yes",
"US_Yes",
)
```

```
car_SL2_fit = car_SL2.fit()
```

print(car_SL2_fit.summary2())

Results: Ordinary least squares

	.esulus.	======================================	reast sq.	======= :ares	======	======	
Model:	OLS		Adj. R	-square	d: 0	.870	
Dependent Variable	e: Sales		AIC:		1	161.9744	
Date:	2024-0	03-29 11:	15 BIC:		1	209.8719	
No. Observations:	400		Log-Lil	kelihoo	d: -	-568.99	
Df Model:	11		F-stat:	istic:	2	243.4	
Df Residuals:	388		Prob (1	F-stati:	stic): 1	.60e-166	
R-squared:	0.873		Scale:		1	.0382	
	Coef.	Std.Err.	t	P> t	[0.025	0.975]	
const	5.6606	0.6034	9.3805	0.0000	4.4742	6.8471	
CompPrice	0.0928	0.0041	22.3778	0.0000	0.0847	0.1010	
Income	0.0158	0.0018	8.5647	0.0000	0.0122	0.0194	
Advertising	0.1231	0.0111	11.0660	0.0000	0.1012	0.1450	
Population	0.0002	0.0004	0.5611	0.5750	-0.0005	0.0009	
Price	-0.0954	0.0027	-35.7002	0.0000	-0.1006	-0.0901	
Age	-0.0460	0.0032	-14.4718	0.0000	-0.0523	-0.0398	
Education	-0.0211	0.0197	-1.0700	0.2853	-0.0599	0.0177	
ShelveLoc_Good	4.8502	0.1531	31.6778	0.0000	4.5492	2 5.1512	
ShelveLoc_Medium	1.9567	0.1261	15.5165	0.0000	1.7088	2.2047	
Urban_Yes	0.1229	0.1130	1.0877	0.2774	-0.0992	0.3450	
US_Yes	-0.1841	0.1498	-1.2286	0.2200	-0.4787	0.1105	
Omnibus:	0.8	311	Durbin-V	Watson:		2.013	
<pre>Prob(Omnibus):</pre>	0.0	667	Jarque-l	Bera (J	B):	0.765	
Skew:	0.	107	Prob(JB)):		0.682	
Kurtosis:	2.9	994 =======	Condition	on No.:		4146	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 4.15e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Inferences 1. P-value caluclated - For CompPrice is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between ComPrice and Sales. - For Income is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Income and Sales. - For Advertising is 0.00, we can reject the null i.e there is a truly relationship between Advertising and Sales. - For Price is 0.00, we can reject the null i.e there is a truly relationship between Price and Sales. - For Age is 0.00, we can reject the null i.e there is a truly relationship between Age and Sales. - For Education is 0.28, we fail to reject the null i.e there is NO truly relationship between Population is 0.85, we fail to reject the null i.e there is NO truly relationship between Urban and Sales. - For Uran Yes, we fail to reject the null i.e there is NO truly relationship between Urban and Sales. - For US Yes, we fail to reject the null i.e there is NO truly relationship between US and Sales.

- 2. Taking into account all the other explanatory variables in our model,
 - for every increase of one unit in CompPrice, there is an associated increase of on average 0.09 in Sales
 - for every increase of one unit in Income, there is an associated increase of on average 0.01 in Sales
 - for every increase of one unit in Advertising, there is an associated increase of on average 0.12 in Sales.
 - for every increase of one unit in Price, there is an associated decreased of on average 0.09 in Sales.
 - for every increase of one unit in Age, there is an associated decreased of on average 0.04 in Sales.
 - For ShelveLoc_Good the average number of Sales 4.85 units higher on average compared to the ShelveLoc_Bad
 - \bullet For Shelve Loc_Medium the average number of Sales 1.95 units higher on average compared to the Shelve Loc_Bad
- 3. An average of Sales 5.6 when all the exploratory variables are zero
- 4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.87

custom_VIF(car_SL2)

Case 4: BodyFat

Data Importing and Prep

```
df_bodyfat = pd.read_csv(
    r"/Users/malleshamyamulla/Desktop/SSBBA/assignments/w4/data/bodyfat.csv"
)
```

df_bodyfat.head()

	Density	Age	Weight	Height	ADI	FFW	Neck	Chest	ADC	Hip	Thigh	Knee	Ankle	E
0	1.0708	23	154.25	67.75	23.7	134.9	36.2	93.1	85.2	94.5	59.0	37.3	21.9	32
1	1.0853	22	173.25	72.25	23.4	161.3	38.5	93.6	83.0	98.7	58.7	37.3	23.4	30
2	1.0414	22	154.00	66.25	24.7	116.0	34.0	95.8	87.9	99.2	59.6	38.9	24.0	28

	Density	Age	Weight	Height	ADI	FFW	Neck	Chest	ADC	Hip	Thigh	Knee	Ankle	E
3	1.0751	26	184.75	72.25	24.9	164.7	37.4	101.8	86.4	101.2	60.1	37.3	22.8	32
4	1.0340	24	184.25	71.25	25.6	133.1	34.4	97.3	100.0	101.9	63.2	42.2	24.0	32

```
sns.heatmap(df_bodyfat.corr(), annot=True)
plt.show()
```


Regression Model

Experiment 1:

```
body_fat_SL = custom_statsmodel_OLS(
    df_bodyfat,
```

```
"Body Fat",
"Density",
"Age",
"Weight",
"Height",
"ADI",
"FFW",
"Neck",
"Chest",
"ADC",
"Hip",
"Thigh",
"Knee",
"Ankle",
"EBC",
"FC",
"WC",
```

```
body_fat_SL_fit = body_fat_SL.fit()
```

```
print(body_fat_SL_fit.summary2())
```

Results: Ordinary least squares

______ Model: OLS Adj. R-squared: 0.986 Dependent Variable: Body Fat AIC: 680.7642 Date: 2024-03-29 11:15 BIC: 740.7645 No. Observations: 252 Log-Likelihood: -323.38 Df Model: 16 F-statistic: 1138. Df Residuals: 235 Prob (F-statistic): 1.62e-212 0.987 Scale: 0.81750 R-squared: Coef. Std.Err. t P>|t| [0.025 0.975] ______ 253.2587 15.2445 16.6132 0.0000 223.2255 283.2920 -234.0972 13.1352 -17.8221 0.0000 -259.9750 -208.2193 Density 0.0057 0.0068 0.8377 0.4030 -0.0077 0.0192 Age Weight 0.1594 0.0164 9.7451 0.0000 0.1272 0.1916 Height ADI -0.2339 0.0645 -3.6260 0.0004 -0.3610 -0.1068

FFW	-0.2301	0.0183	-12.5450	0.0000	-0.2662	-0.1939)
Neck	0.0199	0.0499	0.3990	0.6903	-0.0785	0.1183	3
Chest	0.0688	0.0224	3.0749	0.0024	0.0247	0.1128	3
ADC	0.0238	0.0234	1.0183	0.3096	-0.0223	0.0699)
Hip	0.0191	0.0312	0.6125	0.5408	-0.0424	0.0806	3
Thigh	0.0691	0.0313	2.2055	0.0284	0.0074	0.1309)
Knee	0.0116	0.0522	0.2230	0.8237	-0.0911	0.1144	Ł
Ankle	0.0033	0.0475	0.0705	0.9438	-0.0902	0.0969)
EBC	-0.0030	0.0367	-0.0805	0.9359	-0.0752	0.0693	3
FC	0.0987	0.0425	2.3232	0.0210	0.0150	0.1824	Ŀ
WC	0.1632	0.1152	1.4165	0.1580	-0.0638	0.3902)
							-
Omnibus:	24	49.344	Durbin	n-Watson	.:	1.872	
<pre>Prob(Omnibus):</pre>	0	.000	Jarque	e-Bera (JB):	25144.989)
Skew:	3	.415	Prob(.	JB):		0.000	
Kurtosis:	5:	1.457	Condit	tion No.	:	110523	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.11e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Inferences 1. P-value caluclated - For Density is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Density and Body Fat - For Weight is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Weight and Body Fat - For ADI is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between ADI and Body Fat - For Chest is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Chest and Body Fat - For Density is 0.00, we can reject the null in favor of alternate i.e there is a truly relationship between Density and Body Fat - For Thigh is 0.02, we can reject the null in favor of alternate i.e there is a truly relationship between Thigh and Body Fat - For the independent variables: Age, Height, Neck, ADC, Hip, Knee, Ankle, EBC, and WC are having more p-value i.e >0.05, hence we failed to raject the null i.e there is NO true relationship between these variables and body fat

- 2. Taking into account all the other explanatory variables in our model,
 - for every increase of one unit in Weight, there is an associated increase of on average 0.15 in Body Fat
- 3. An average of Body Fat 253 when all the exploratory variables are zero

4. The proportion of variability in the outcome variable i.e bike count explained by this model is about 0.98

custom_VIF(body_fat_SL)


```
df_bodyfat_sel = df_bodyfat[
    ["Knee", "Neck", "EBC", "WC", "Age", "Height", "FC", "Ankle", "Body Fat"]
]
```

```
body_fat_SL_2 = custom_statsmodel_OLS(
    df_bodyfat_sel,
    "Body Fat",
    "Knee",
    "Neck",
    "EBC",
    "WC",
```

```
"Age",
"Height",
"FC",
"Ankle",
```

```
body_fat_SL_2_fit = body_fat_SL_2.fit()
```

```
print(body_fat_SL_2_fit.summary2())
```

Results: Ordinary least squares

=======================================			
Model:	OLS	Adj. R-squared:	0.442
Dependent Variable:	Body Fat	AIC:	1609.1443
Date:	2024-03-29 11:15	BIC:	1640.9092
No. Observations:	252	Log-Likelihood:	-795.57
Df Model:	8	F-statistic:	25.83
Df Residuals:	243	<pre>Prob (F-statistic):</pre>	1.05e-28
R-squared:	0.460	Scale:	33.534

	Coef.	Std.Err.	t	P> t	[0.025	0.975]		
const	-23.6281	9.1181	-2.5913	0.0101	-41.5887	-5.6674		
Knee	1.1799	0.2454	4.8071	0.0000	0.6964	1.6634		
Neck	0.7565	0.2681	2.8217	0.0052	0.2284	1.2846		
EBC	0.6198	0.2074	2.9889	0.0031	0.2113	1.0282		
WC	-2.4084	0.7041	-3.4207	0.0007	-3.7953	-1.0215		
Age	0.1878	0.0331	5.6709	0.0000	0.1226	0.2531		
Height	-0.3859	0.1099	-3.5119	0.0005	-0.6023	-0.1694		
FC	0.2852	0.2632	1.0835	0.2797	-0.2333	0.8037		
Ankle	0.1151	0.2918	0.3944	0.6936	-0.4596	0.6898		
Omnibus	 :	0.516	Durl	oin-Watson	 1:	1.798		
Prob(Omr	nibus):	0.773	Jaro	que-Bera	(JB):	0.553		
Skew:		0.108	Prol	0.758				
Kurtosis:		2.921	Cond	dition No	.:	2811		

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.81e+03. This might indicate

that there are strong multicollinearity or other numerical problems.

custom_VIF(body_fat_SL_2)

END