NOM	Prénom	Classe
CORRIGÉ		

Durée 45 minutes

Pas de document, ni calculatrice, ni téléphone portable

Inscrire les réponses aux endroits indiqués sur la feuille d'énoncé, sans râture ni surcharge (utiliser un brouillon!)

1. Définition : Matrice d'adjacence d'une relation \mathcal{R} dans un ensemble $E = \{x_1, x_2, ..., x_n\}$:

C'est la matrice M de taille $n \times n$ à coefficients dans $\{0,1\}$ telle que $\forall i = 1..n / \forall j = 1..n / M_{i,j} = 1 \text{ si } x_i \mathcal{R} x_j$ et 0 sinon

2. Définition : Produit de 2 relations \mathcal{R} et \mathcal{S} dans un ensemble \mathcal{E}

C'est la relation \mathcal{T} telle que $\forall x \in E / \forall y \in E / x \mathcal{T} y \Leftrightarrow \text{il existe } z \in E \text{ tel que } x \mathcal{R} z \text{ et } z \mathcal{R} y$

3. Définition : Fermeture transitive d'une relation $\mathcal R$ dans un ensemble E

C'est la relation \mathcal{R}^* telle que $\forall x \in E / \forall y \in E / x \, \mathcal{R}^* y \Leftrightarrow \text{il existe } k \in \mathbb{N} \text{ tell que } x \, \mathcal{R}^k y$

4. Définition: Transitivité

Une relation \mathcal{R} dans un ensemble E est transitive

si et seulement si $\forall x, y, z \in E / (x \mathcal{R} y \text{ et } y \mathcal{R} z) \Rightarrow (x \mathcal{R} z)$

5. Définition: Relation d'ordre

Une relation \mathcal{R} dans un ensemble E est une relation d'ordre

si et seulement si R est réflexive, antisymétrique et transitive

6. Complexité:

Sachant qu'un produit de matrices $n \times n$ est de complexité $O(n^3)$, quelle est la complexité de la puissance $n^{\text{ième}}$ d'une telle matrice? $O(n^3 \ln(n))$ (on utilise un algorithme "binaire" pour la puissance

7. Démontrer que, si une relation $\mathcal R$ dans un ensemble E est réflexive, alors $\mathcal R$ est contenue dans $\mathcal R^2$

 $\forall x, y \in E$, si $x \in \mathbb{R}$, puisque par réflexivité $y \in \mathbb{R}$ y on a bien $x \in \mathbb{R}^2 y$: $x \xrightarrow{\mathbb{R}} y \xrightarrow{\mathbb{R}} y \text{ donc } x \xrightarrow{\mathbb{R}^2} y$

8. La relation suivante est-elle transitive? ...NON.....

Si non, ajouter un minimum de flèches pour obtenir une relation transitive.

9. Dans l'ensemble E des matrices $n \times n$, on définit la relation \mathcal{R} en posant, pour 2 matrices A et B: $A \mathcal{R} B \Leftrightarrow \text{il existe 2 matrices inversibles } U$ et V telles que $B = U^{-1} A V$. Démontrer que \mathcal{R} est une relation d'équivalence.

Réflexivité : pour tout A, $A = I^{-1} A I$ donc U existe (U = I) et V existe (V = I)

Symétrie : Si $A \mathcal{R} B$, alors il existe U et V telles que $B = U^{-1} A V$ et alors $U B V^{-1} = U^{-1} U A V V^{-1} = A$, soit $A = (U^{-1})^{-1} A V^{-1}$ donc $B \mathcal{R} A$

Transitivité : Si $A \mathcal{R} B$, et $B \mathcal{R} C$ alors il existe U et V telles que $B = U^{-1} A V$ et il existe X et Y telles que $C = X^{-1} B Y$ alors $C = X^{-1} B Y = X^{-1} U^{-1} A V Y = (U X)^{-1} A (V Y)$, donc $A \mathcal{R} C$

