17MA1301A

UNIT-IV

8. a. The following table gives angular displacement θ at different intervals of time t.

θ	0.052	0.105	0.168	0.242	0.327	0.408	0.489
t	0	0.02	0.04	0.06	0.08	0.1	0.12

Find
$$\frac{d\theta}{dt}$$
, $\frac{d^2\theta}{dt^2}$ at $t = 0$.

b. Find the value of $\int_0^1 \left(\frac{1}{1+x^2}\right) dx$ taking 5 sub intervals by Trapezoidal rule correct to 4 decimal places. Also compare it with its exact value.

(or)

- 9. a. Given $\frac{dy}{dx} \sqrt{xy} = 2$ and y(1) = 1. Find the value of y(1.5) in steps of 0.25 using Euler's modified method. **7M**
 - b. Use Runge Kutta method to solve $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for the interval $0 < x \le 0.4$ with h = 0.2.

* * *

VR17

	 	 	 	 	 _
Reg. No:					
1105.110.					

VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B.Tech. DEGREE EXAMINATION, MARCH, 2021 Third Semester

17MA1301A COMPLEX ANALYSIS AND NUMERICAL METHODS (CE/EC/EI/IT)

Time: 3hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- 1. a. Define analytic function.
 - b. Show that f(z) = z is analytic function.
 - c. Write Cauchy's integral formula.
 - d. Expand e^z about z = 0 in Taylor's series expansion.
 - e. Find the fixed points for the function $w = \frac{1+z}{1-z}$.
 - f. Find the relation between Δ and E.
 - g. Define algebraic and transcendental equations.
 - h. Find y(0.2) by Euler's method, given $\frac{dy}{dx} = x + y$, y(0) = 0, choose h = 0.2.
 - i. Define Laplace equation.
 - j. Write Simpson's -1/3 rule formula.

17MA1301A

PART-B

 $4 \times 15 = 60M$

UNIT-I

- a. Show that $f(z) = \sqrt{|xy|}$ is not analytic at z = 0, although the C-R equations are satisfied at the origin. **8M**
 - Find the analytic function f(z) whose real part is $u(x, y) = x^3 3y^2$. **7M**

(or)

- a. Evaluate $\int_{C} (z+1)dz$, where c is the boundary of the square whose vertices are at the points z = 0, z = 1, z = 1 + i, z = i. 8M
 - b. Evaluate $\int_{C} \frac{z}{z^2 + 1} dz$, where c is the circle $\left| z + \frac{1}{2} \right| = 2$. **7M**

UNIT-II

- a. Find Laurent's series of $f(z) = \frac{1}{z^2 4z + 3}$ for
 - i) 1 < |z| < 3 ii) |z| > 3

8M

b. Evaluate $\int_{C}^{z \sec z} \frac{dz}{(1-z)^2} dz$ where C is the circle |z| = 2. **7M**

(or)

VR17 17MA1301A

- 5. a. Evaluate $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta$.
 - Find the bilinear transformation which maps the points z = -1, i, 1, into the points w = 1, i, -1. **7M**

UNIT-III

- Find the real root of the equation $x^3 x 2 = 0$ by Newton-Raphson method. **7**M
 - b. Solve the system of equations -20x + y - 2z = 17, 3x + 20y + z = 18, 2x - 3y + 20z = 25 using Gauss-Seidel iteration method. **8M**

(or)

Use Gauss forward formula to find y when x = 3.75 from the following data **8M**

X	2.5	3	3.5	4	4.5	5
у	24.145	22.043	20.225	18.644	17.262	16.047

Using Lagrange's interpolation formula, find the form of the function f(x) from the following table **7M**

X	0	1	3	4	
f(x)	-12	0	12	24	

8M