Multiple Linear Regression - Cumulative Lab

Introduction

In this cumulative lab you'll perform an end-to-end analysis of a dataset using multiple linear regression.

Objectives

You will be able to:

- Prepare data for regression analysis using pandas
- Build multiple linear regression models using StatsModels
- Measure regression model performance
- Interpret multiple linear regression coefficients

Your Task: Develop a Model of Diamond Prices

Photo by Tahlia Doyle on Unsplash

Business Understanding

You've been asked to perform an analysis to see how various factors impact the price of diamonds. There are various guides online that claim to tell consumers how to avoid getting "ripped off", but you've been asked to dig into the data to see whether these claims ring true.

Data Understanding

We have downloaded a diamonds dataset from Kaggle, which came with this description:

- ullet price price in US dollars (326--18,823)
- carat weight of the diamond (0.2--5.01)
- cut quality of the cut (Fair, Good, Very Good, Premium, Ideal)

- color diamond colour, from J (worst) to D (best)
- clarity a measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
- **x** length in mm (0--10.74)
- **y** width in mm (0--58.9)
- **z** depth in mm (0--31.8)
- **depth** total depth percentage = z / mean(x, y) = 2 * z / (x + y) (43--79)
- table width of top of diamond relative to widest point (43--95)

Requirements

1. Load the Data Using Pandas

Practice once again with loading CSV data into a pandas dataframe.

2. Build a Baseline Simple Linear Regression Model

Identify the feature that is most correlated with price and build a StatsModels linear regression model using just that feature.

3. Evaluate and Interpret Baseline Model Results

Explain the overall performance as well as parameter coefficients for the baseline simple linear regression model.

4. Prepare a Categorical Feature for Multiple Regression Modeling

Identify a promising categorical feature and use pd.get dummies() to prepare it for modeling.

5. Build a Multiple Linear Regression Model

Using the data from Step 4, create a second StatsModels linear regression model using one numeric feature and one one-hot encoded categorical feature.

6. Evaluate and Interpret Multiple Linear Regression Model Results

Explain the performance of the new model in comparison with the baseline, and interpret the new parameter coefficients.

1. Load the Data Using Pandas

Import pandas (with the standard alias pd), and load the data from the file diamonds.csv into a DataFrame called diamonds.

Be sure to specify index_col=0 to avoid creating an "Unnamed: 0" column.

```
In [11]: # Your code here
import pandas as pd
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
diamonds = pd.read_csv('diamonds.csv', index_col=0)
```

The following code checks that you loaded the data correctly:

```
In [12]: # Run this cell without changes

# diamonds should be a dataframe
assert type(diamonds) == pd.DataFrame

# Check that there are the correct number of rows
assert diamonds.shape[0] == 53940

# Check that there are the correct number of columns
# (if this crashes, make sure you specified `index_col=0`)
assert diamonds.shape[1] == 10
```

Inspect the distributions of the numeric features:

```
In [13]: # Run this cell without changes
diamonds.describe()
```

Out[13]:		carat	depth	table	price	x	у	Z
	count	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000	53940.000000
	mean	0.797940	61.749405	57.457184	3932.799722	5.731157	5.734526	3.538734
	std	0.474011	1.432621	2.234491	3989.439738	1.121761	1.142135	0.705699
	min	0.200000	43.000000	43.000000	326.000000	0.000000	0.000000	0.000000
	25%	0.400000	61.000000	56.000000	950.000000	4.710000	4.720000	2.910000
	50%	0.700000	61.800000	57.000000	2401.000000	5.700000	5.710000	3.530000
	75%	1.040000	62.500000	59.000000	5324.250000	6.540000	6.540000	4.040000
	max	5.010000	79.000000	95.000000	18823.000000	10.740000	58.900000	31.800000

And inspect the value counts for the categorical features:

```
In [14]: # Run this cell without changes
    categoricals = diamonds.select_dtypes("object")

for col in categoricals:
    print(diamonds[col].value_counts(), "\n")
```

```
cut
Ideal
             21551
Premium
             13791
Very Good
             12082
              4906
Good
Fair
              1610
Name: count, dtype: int64
color
G
     11292
Е
      9797
      9542
      8304
D
      6775
Ι
      5422
J
      2808
Name: count, dtype: int64
clarity
SI1
        13065
VS2
        12258
SI2
         9194
VS1
         8171
VVS2
         5066
VVS1
         3655
ΙF
         1790
I1
          741
Name: count, dtype: int64
```

2. Build a Baseline Simple Linear Regression Model

Identifying a Highly Correlated Predictor

The target variable is <code>price</code> . Look at the correlation coefficients for all of the predictor variables to find the one with the highest correlation with <code>price</code> .

```
In [22]: # Your code here - look at correlations
# Show correlations between numeric columns
```

```
corr = diamonds.corr(numeric_only=True)
         # Display correlation of all variables with price
         corr['price'].sort_values(ascending=False)
Out[22]: price
                   1.000000
          carat
                   0.921591
                   0.884435
                   0.865421
                   0.861249
          table
                   0.127134
          depth
                  -0.010647
          Name: price, dtype: float64
 In [ ]: Identify the name of the predictor column with the strongest correlation below.
In [25]: # Replace None with appropriate code
         most_correlated ='carat'
         The following code checks that you specified a column correctly:
In [26]: # Run this cell without changes
         # most correlated should be a string
         assert type(most_correlated) == str
         # most_correlated should be one of the columns other than price
         assert most_correlated in diamonds.drop("price", axis=1).columns
```

Plotting the Predictor vs. Price

We'll also create a scatter plot of that variable vs. price:

```
In [27]: # Run this cell without changes

# Plot a sample of 1000 data points, most_correlated vs. price
diamonds.sample(1000, random_state=1).plot.scatter(x=most_correlated, y="price");
```


Setting Up Variables for Regression

Declare y and X_baseline variables, where y is a Series containing price data and X_baseline is a DataFrame containing the column with the strongest correlation.

```
In [29]: # Replace None with appropriate code
y = diamonds['price']

X_baseline = diamonds[['carat']]
```

The following code checks that you created valid y and X_baseline variables:

```
In [30]: # Run this code without changes

# y should be a series
assert type(y) == pd.Series

# y should contain about 54k rows
assert y.shape == (53940,)

# X_baseline should be a DataFrame
assert type(X_baseline) == pd.DataFrame

# X_baseline should contain the same number of rows as y
assert X_baseline.shape[0] == y.shape[0]

# X_baseline should have 1 column
assert X_baseline.shape[1] == 1
```

Creating and Fitting Simple Linear Regression

The following code uses your variables to build and fit a simple linear regression.

```
In [31]: # Run this cell without changes
import statsmodels.api as sm

baseline_model = sm.OLS(y, sm.add_constant(X_baseline))
baseline_results = baseline_model.fit()
```

3. Evaluate and Interpret Baseline Model Results

Write any necessary code to evaluate the model performance overall and interpret its coefficients.

```
# Calculate residuals (errors)
residuals = y - y_pred

# Compute evaluation metrics
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
import numpy as np

mae = mean_absolute_error(y, y_pred)
rmse = np.sqrt(mean_squared_error(y, y_pred))
r2 = r2_score(y, y_pred)

print(f"\nModel Performance Metrics:")
print(f"R-squared: {r2:.4f}")
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations:	price OLS Least Squares Sat, 04 Oct 2025 14:32:24 53940	R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC:	0.849 0.849 3.041e+05 0.00 -4.7273e+05 9.455e+05
Df Residuals:	53938	BIC:	9.455e+05
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			
CO6	ef std err	t P> t	[0.025 0.975]
const -2256.360	06 13.055 -172	2.830 0.000 -22	81.949 -2230.772
carat 7756.425	56 14.0 67 551	1.408 0.000 77	28.855 7783.996
Omnibus:	 14025.341	 Durbin-Watson:	0.986
Prob(Omnibus):	0.000	Jarque-Bera (JB):	153030.525
Skew:	0.939	Prob(JB):	0.00
Kurtosis:	11.035	Cond. No.	3.65
=======================================			=======================================

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model Performance Metrics:

R-squared: 0.8493

Mean Absolute Error (MAE): 1007.46 Root Mean Squared Error (RMSE): 1548.53

Then summarize your findings below:

Your written answer here

The baseline simple linear regression using carat as the sole predictor shows a very strong positive relationship with diamond price, explaining about 85% ($R^2 = 0.849$) of the variation in prices. The model estimates that each additional 1 carat increases the price by approximately USD 7,756, confirming carat weight as the primary driver of diamond value. The relatively low MAE (USD 1,007) and RMSE (USD1,549) indicate good predictive accuracy, though residual patterns suggest some non-linearity and heteroscedasticity for

larger stones. Overall, the model provides a strong baseline for understanding diamond pricing and sets a solid foundation for further improvement by adding other characteristics such as cut, color, and clarity.

► Solution (click to expand)

carat was the attribute most strongly correlated with price, therefore our model is describing this relationship.

Overall this model is statistically significant and explains about 85% of the variance in price. In a typical prediction, the model is off by about \$1k.

- The intercept is at about -\$2.3k. This means that a zero-carat diamond would sell for -\$2.3k.
- The coefficient for carat is about \$7.8k. This means for each additional carat, the diamond costs about \$7.8k more.

4. Prepare a Categorical Feature for Multiple Regression Modeling

Now let's go beyond our simple linear regression and add a categorical feature.

Identifying a Promising Predictor

Below we create bar graphs for the categories present in each categorical feature:

```
axes[index].set_ylabel("Average Price")
axes[index].set_xlabel(feature.capitalize())

plt.tight_layout()
plt.show()
```


Identify the name of the categorical predictor column you want to use in your model below. The choice here is more open-ended than choosing the numeric predictor above -- choose something that will be interpretable in a final model, and where the different categories seem to have an impact on the price.

```
In [37]: # Replace None with appropriate code
cat_col = 'cut'
```

The following code checks that you specified a column correctly:

```
In [39]: # Run this cell without changes

# cat_col should be a string
assert type(cat_col) == str

# cat_col should be one of the categorical columns
assert cat_col in diamonds.select_dtypes("object").columns
```

Setting Up Variables for Regression

The code below creates a variable X_iterated : a DataFrame containing the column with the strongest correlation **and** your selected categorical feature.

```
In [40]: # Run this cell without changes
X_iterated = diamonds[[most_correlated, cat_col]]
X_iterated
```

Out[40]:		carat	cut
	1	0.23	Ideal
	2	0.21	Premium
	3	0.23	Good
	4	0.29	Premium
	5	0.31	Good
	•••		
	53936	0.72	Ideal
	53937	0.72	Good
	53938	0.70	Very Good
	53939	0.86	Premium
	53940	0.75	Ideal

53940 rows × 2 columns

Preprocessing Categorical Variable

If we tried to pass X_iterated as-is into sm.OLS, we would get an error. We need to use pd.get_dummies to create dummy variables for cat_col.

DO NOT use drop_first=True, so that you can intentionally set a meaningful reference category instead.

```
In [45]: # Replace None with appropriate code

# Use pd.get_dummies to one-hot encode the categorical column in X_iterated

X_iterated = pd.concat([diamonds[['carat']], pd.get_dummies(diamonds[cat_col], prefix=cat_col)], axis=1)

X_iterated
```

Out	[45	

	carat	cut_Fair	cut_Good	cut_ldeal	cut_Premium	cut_Very Good
1	0.23	False	False	True	False	False
2	0.21	False	False	False	True	False
3	0.23	False	True	False	False	False
4	0.29	False	False	False	True	False
5	0.31	False	True	False	False	False
•••						
53936	0.72	False	False	True	False	False
53937	0.72	False	True	False	False	False
53938	0.70	False	False	False	False	True
53939	0.86	False	False	False	True	False
53940	0.75	False	False	True	False	False

53940 rows × 6 columns

The following code checks that you have the right number of columns:

```
In [46]: # Run this cell without changes

# X_iterated should be a dataframe
assert type(X_iterated) == pd.DataFrame
```

```
# You should have the number of unique values in one of the
# categorical columns + 1 (representing the numeric predictor)
valid_col_nums = diamonds.select_dtypes("object").nunique() + 1

# Check that there are the correct number of columns
# (if this crashes, make sure you did not use `drop_first=True`)
assert X_iterated.shape[1] in valid_col_nums.values
```

Now, applying your domain understanding, **choose a column to drop and drop it**. This category should make sense as a "baseline" or "reference". For the "cut_Very Good" column that was generated when <code>pd.get_dummies</code> was used, we need to remove the space in the column name.

```
In [47]: # Your code here
# Remove space in column names for consistency
X_iterated.columns = X_iterated.columns.str.replace(' ', '_')

# Drop one category to serve as reference (e.g., 'cut_Ideal')
X_iterated = X_iterated.drop(columns=['cut_Ideal'])

# Check updated columns
X_iterated.head()
```

Out[47]: carat cut_Fair cut_Good cut_Premium cut_Very_Good 0.23 1 False False False False 0.21 2 False False True False 0.23 False True False False 0.29 False False True False **5** 0.31 False True False False

We now need to change the boolean values for the four "cut" column to 1s and 0s in order for the regression to run.

```
In [48]: # Your code here
# Convert boolean dummy columns (True/False) to numeric (1/0)
X_iterated = X_iterated.astype(int)
```

```
# Check result
X_iterated.head()
```

Out[48]:

	carat	cut_Fair	cut_Good	cut_Premium	cut_Very_Good
1	0	0	0	0	0
2	0	0	0	1	0
3	0	0	1	0	0
4	0	0	0	1	0
5	0	0	1	0	0

Now you should have 1 fewer column than before:

```
In [49]: # Run this cell without changes

# Check that there are the correct number of columns
assert X_iterated.shape[1] in (valid_col_nums - 1).values
```

5. Build a Multiple Linear Regression Model

Using the y variable from our previous model and X_iterated, build a model called iterated_model and a regression results object called iterated_results.

```
In [51]: # Your code here
import statsmodels.api as sm

# Build and fit multiple linear regression: price ~ carat + cut dummies
iterated_model = sm.OLS(y, sm.add_constant(X_iterated))
iterated_results = iterated_model.fit()
```

6. Evaluate and Interpret Multiple Linear Regression Model Results

If the model was set up correctly, the following code will print the results summary.

```
In [52]: # Run this cell without changes
    print(iterated_results.summary())
```

OLS Regression Results

Dep. Variable	:	price	R-squared	l:	0.730				
Model:		OLS	OLS Adj. R-squared:		0.730				
Method:	Le	east Squares	Squares F-statistic:		2.919e+04				
Date:	Sat,	04 Oct 2025	Prob (F-s	statistic):		0.00			
Time:		14:56:59	Log-Likelihood:		-4.8844e+05				
No. Observation	ons:	53940	AIC:		9.	9.769e+05			
Df Residuals:		53934	BIC: 9.770e+05			770e+05			
Df Model:		5							
Covariance Ty	pe:	nonrobust							
==========	========					=======			
	coef	std err	t	P> t	[0.025	0.975]			
const	1669.6722	14.885	112.171	0.000	1640.497	1698.847			
carat	6033.5706	15.933	378.673	0.000	6002.341	6064.800			
cut_Fair	-1020.9982	53.782	-18.984	0.000	-1126.411	-915.586			
cut_Good	-364.0458	32.856	-11.080	0.000	-428.444	-299.648			
cut_Premium	-160.1686	22.852	-7.009	0.000	-204.959	-115.378			
cut_Very_Good	-47.0074	23.601	-1.992	0.046	-93.265	-0.750			
Omnibus:		11688.261	Durbin-Wa	atson:		0.796			
Prob(Omnibus)	:	0.000	Jarque-Be	era (JB):	37	224.268			
Skew:		1.105	Prob(JB):			0.00			
Kurtosis:		6.417	Cond. No.			7.11			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Summarize your findings below. How did the iterated model perform overall? How does this compare to the baseline model? What do the coefficients mean?

Create as many additional cells as needed.

Your written answer here The multiple regression model including both carat and cut categories explains about 73% of the variation in diamond prices ($R^2 = 0.73$), which is lower than the baseline model's $R^2 = 0.85$ using carat alone. This indicates that while cut has a statistically significant effect, it does not add much explanatory power beyond carat. The coefficient for carat (6033.57) remains positive and highly significant, meaning that for every one-carat increase, price rises by roughly USD 6,034, holding cut constant. The negative coefficients for cut levels (Fair, Good, Premium, Very Good) indicate that these cuts are priced below the reference category (Ideal), consistent with the notion that Ideal cuts command higher prices. For example, a Fair cut diamond is priced about USD 1,021 less than an Ideal cut, on average. Overall, while cut quality does

influence prices, carat weight remains the dominant determinant of diamond value, and including categorical cut variables refines but does not drastically improve model performance.

Summary

Congratulations, you completed an iterative linear regression process! You practiced developing a baseline and an iterated model, as well as identifying promising predictors from both numeric and categorical features.