Exercise 15. (Q7): Let (x_n) be the sequence defined recursively by $x_1 = 3$ and

$$x_{n+1} = \frac{1}{4 - x_n}$$

for $n \ge 1$. Prove that $\lim x_n = L$ exists and find the value of L.

Proof: In order to show that the limit exists, we will show that (x_n) is a bounded, monotonic sequence. First we will prove that $x_n \ge 2 - \sqrt{3}$ for all $n \in \mathbb{N}$. We do this by induction.

Base Case: $x_1 = 3$, then

$$x_2 = \frac{1}{4-3}$$
$$= 1$$
$$\geq 2 - \sqrt{3}.$$

Induction Step: Let $k \in \mathbb{N}$, we suppose directly that $x_k \geq 2 - \sqrt{3}$, then

$$x_{k+1} = \frac{1}{4 - x_k}$$

$$\ge \frac{1}{4 - 2 + \sqrt{3}}$$

$$= \frac{1}{2 + \sqrt{3}}$$

$$= \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})}$$

$$= 2 - \sqrt{3}.$$

thus $x_{k+1} \ge 2 - \sqrt{3}$; therefore, $x_n \ge 2 - \sqrt{3}$ for all $n \in \mathbb{N}$.

We next want to show that $x_n \leq 3$ for all $n \in \mathbb{N}$. We work this by induction.

Base Case: $x_1 = 3$, then

$$x_2 = \frac{1}{4-3}$$
$$= 1$$
$$\le 3.$$

Induction Step: Let $k \in \mathbb{N}$, we suppose directly that $x_k \leq 3$, then

$$x_{k+1} = \frac{1}{4 - x_k}$$

$$\leq \frac{1}{4 - 3}$$
= 1,

thus $x_{k+1} \leq 3$; therefore, $x_k \leq 3$ for all $k \in \mathbb{N}$. We now know that (x_n) is bounded such that $2 - \sqrt{3} \leq x_n \leq 3$ for all $n \in \mathbb{N}$.

Next we show that $x_n - x_{n+1} \ge 0$ for all $n \in \mathbb{N}$.

$$x_n - x_{n+1} = x_n - \frac{1}{4 - x_n}$$

$$= \frac{x_n (4 - x_n) - 1}{4 - x_n}$$

$$= \frac{-(x_n - 2 + \sqrt{3}) (x_n - 2 - \sqrt{3})}{4 - x_n}$$

$$\ge 0,$$