Toolkit for Weighting and Analysis of Nonequivalent Groups:

A tutorial for the twang package

Greg Ridgeway, Dan McCaffrey, Andrew Morral RAND

April 12, 2006

1 Introduction

While working on an evaluation of drug treatment programs and writing up our methodology that appeared in McCaffrey et al. (2004), we developed several R scripts and functions throughout the experimentation. The twang package is the collection of functions that we found most useful. In fact, these are the functions that we now regularly use in our work. Since many of our colleagues at RAND have found them useful, we have made the package more generally available.

There are now numerous propensity scoring methods in the literature. They differ in how they estimate the propensity score (e.g. logistic regression, CART), the target estimand (e.g. treatment effect on the treated, population treatment effect), and how they utilize the resulting estimated propensity scores (e.g. stratification, matching, weighting). We originally developed the twang package with a particular process in mind, generalized boosted regression to estimate the propensity scores and weighting of the comparison cases to estimate a treatment effect on the treated. The main workhorse of twang is the ps() function that implements this. However, the framework of the package is flexible enough to allow the user to use propensity score estimates from other methods and implement new stop.method objects to assess the quality of balance between the treatment and control groups. The same set of functions are also useful for other tasks such as non-response weighting, discussed in section 4.

The propensity score is the probability that a particular case would be assigned or exposed to a treatment condition. Rosenbaum & Rubin (1983) showed that knowing the propensity score is sufficient to separate the effect of a treatment on an outcome from confounding factors that influence both treatment assignment and outcomes, provide the necessary conditions hold. The propensity score has the balancing property that given the propensity score the distribution of features for the treatment cases is the same as that for the control cases. While the treatment selection probabilities are generally not known, good estimates of them can be effective at removing confounding from treatment effect estimates. This package aims to compute good estimates of the propensity scores from the data, check their quality by assessing whether or not they have the balancing properties that we expect in theory, and use them in computing treatment effect estimates.

2 An example to start

If you have not already done so, install twang by typing install.packages("twang"). twang relies on other R packages, especially gbm and survey. You may have to run install.packages()

for these as well if they are not already installed. You will only need to do this step once. In the future running update.packages() regularly will ensure that you have the latest versions of the packages, including bug fixes and new features.

To start using twang, first load the package. You will have to do this step once for each R session that you run.

> library(twang)

```
Loading required package: gbm
Loading required package: survival
Loading required package: splines
Loading required package: lattice
Loading required package: mgcv
This is mgcv 1.3-13
Loaded gbm 1.5-5
Loading required package: survey
Loading required package: xtable
Loading required package: mlmRev
Loading required package: lme4
Loading required package: Matrix
Loading required package: Matrix
```

To demonstrate the package we utilize data from Lalonde's National Supported Work Demonstration analysis (Lalonde 1986, Dehejia & Wahba 1999, http://www.columbia.edu/~rd247/nswdata.html). This dataset is provided with the twang package.

> data(lalonde)

R can read data from many other sources. The manual "R Data Import/Export," available at http://cran.r-project.org/doc/manuals/R-data.pdf, describes that process in detail.

For the lalonde dataset, the variable treat is the 0/1 treatment indicator, 1 indicates "treatment" by being part of the National Supported Work Demonstration and 0 indicates "comparison" cases drawn from the Current Population Survey. We wish to adjust for eight other covariates: age, education, black, Hispanic, having no degree, married, earnings in 1974 (pretreatment), and earnings in 1975 (pretreatment). Note that we specify no outcome variables at this time. The ps() function is the primary method in twang for estimating propensity scores. This step is computationally intensive and can take a few minutes.

```
> par(mfrow = c(1, 2))
> ps.lalonde <- ps(treat ~ age + educ + black +
+ hispan + nodegree + married + re74 + re75,
+ data = lalonde, plots = "optimize", stop.method = stop.methods[c("es.stat.mean",
+ "ks.stat.max")], n.trees = 2000, interaction.depth = 2,
+ shrinkage = 0.01, perm.test.iters = 0, verbose = FALSE)</pre>
```

The arguments to ps() require some discussion. The first argument specifies a formula indicating that treat is the 0/1 treatment indicator and that the propensity score model should predict treat from the eight covariates listed there separated by "+". The "+" does not mean that these variables are being added together nor does it mean that model is linear. This is just R's notation for variables in the model. There is no need to specify interaction terms in the formula. There is also no need, and can be counterproductive, to create indicator variables to

Figure 1: Optimization of es.stat.mean and ks.stat.max. The horizontal axes indicate the number of iterations and the vertical axes indicate the measure of imbalance between the two groups. For es.stat.mean the measure is the average effect size difference between the two groups and for ks.stat.max the measure is the largest of the KS statistics

represent categorical covariates (aka "dummy code"), provided the categorical variable is stored as a factor (see help(factor) for more details).

The next argument, data, indicates the dataset.

The plots controls the diagnostic plots that the ps function can create. They are described in more detail later. For now plots="none" skips the plots, but they can be created later using the plot() method. If the call to ps() includes an argument pdf.plots=TRUE then all the plots are written to a pdf file in the current working directory (use getwd() to learn what your working directory is and setwd() to set it). The default is pdf.plots=FALSE

n.trees, interaction.depth, and shrinkage are parameters for the gbm model that ps() computes and stores. The resulting gbm object describes a family of candidate propensity score models indexed by the number of gbm iterations from one to n.trees.

The stop.method argument takes a stop.method object which contains a set of rules and measures for assessing the quality of the balance between the treatment and comparison groups. The ps function selects the optimal number of gbm iterations to minimize the differences between the treatment and control groups as measured by the rules of the given stop.method object. Figure 1 illustrates this process. For each panel, the number of gbm iterations is plotted on the horizontal axis plots the measure of balance is plotted on the vertical axis. Each iteration adds model complexity to the propensity score model giving it greater modeling flexibility. The increased flexibility improves the balance of the two groups up to a certain point at which additional iterations offer no improvement or actually make the balance worse. In this example, iterating gbm for 946 iterations minimized the average effect size difference and 946 iterations minimized the largest of the eight Kolmogorov-Smirnov (KS) statistics computed for the eight covariates. n.trees is the maximum number of iterations that ps() will run and it will issue a warning if the estimated optimal number of iterations is too close to the bound. Increase

n.trees if this warning appears.

The gbm package has various tools for exploring the relationship between the covariates and the treatment assignment indicator if these are of interest. summary() computes the relative influence of each variable for estimating the probability of treatment assignment. The gbm estimates depend on the number of iterations, which is specified by the n.trees argument in the summary method for gbm. In this example, we choose the number of iterations to be the optimal number for minimizing the maximum KS statistics. This value can be found in the n.trees element of the ks.stat.max element of the desc element of the ps object ps.lalonde. Figure 2 shows the barchart of the relative influence if plot=TRUE.

```
> summary(ps.lalonde$gbm.obj, n.trees = ps.lalonde$desc$ks.stat.max$n.trees,
      plot = FALSE)
       var
              rel.inf
1
     black 46.9866311
2
       age 21.3639461
3
     re74 16.9928215
4
     re75 5.0567355
5
      educ 4.5293987
6 married 3.8981933
7 nodegree 0.6554839
   hispan 0.5167900
```

2.1 Assessing "balance" using balance tables

Having estimated the propensity scores, bal.table produces a table that shows how well the resulting propensity score weights balance the treatment and comparison groups.

```
> lalonde.balance <- bal.table(ps.lalonde)
> lalonde.balance
```

\$unw									
	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	р	ks	ks.pval
age	25.816	7.155	28.030	10.787	-0.309	-2.994	0.003	0.158	0.003
educ	10.346	2.011	10.235	2.855	0.055	0.547	0.584	0.111	0.075
black	0.843	0.365	0.203	0.403	1.757	19.371	0.000	0.640	0.000
hispan	0.059	0.237	0.142	0.350	-0.349	-3.413	0.001	0.083	0.319
nodegree	0.708	0.456	0.597	0.491	0.244	2.716	0.007	0.111	0.075
married	0.189	0.393	0.513	0.500	-0.824	-8.607	0.000	0.324	0.000
re74	2095.574	4886.620	5619.237	6788.751	-0.721	-7.254	0.000	0.447	0.000
re75	1532.055	3219.251	2466.484	3291.996	-0.290	-3.282	0.001	0.288	0.000

<pre>\$es.stat.mean</pre>									
	tx.mn	tx.sd	ct.mn	ct.sd	${\tt std.eff.sz}$	stat	р	ks	ks.pval
age	25.816	7.155	25.787	7.737	0.004	0.030	0.976	0.088	0.983
educ	10.346	2.011	10.524	2.238	-0.089	-0.600	0.549	0.084	0.989
black	0.843	0.365	0.843	0.364	0.000	0.002	0.998	0.000	1.000
hispan	0.059	0.237	0.046	0.210	0.056	0.634	0.527	0.013	1.000
nodegree	0.708	0.456	0.625	0.485	0.183	0.919	0.359	0.084	0.989
married	0.189	0.393	0.192	0.395	-0.008	-0.061	0.951	0.003	1.000
re74	2095.574	4886.620	1800.480	4253.284	0.060	0.527	0.598	0.054	1.000

Figure 2: Relative influence of the covariates on the estimated propensity score

\$ks.stat.max

	tx.mn	tx.sd	ct.mn	ct.sd	std.eff.sz	stat	р	ks	ks.pval
age	25.816	7.155	25.787	7.737	0.004	0.030	0.976	0.088	0.983
educ	10.346	2.011	10.524	2.238	-0.089	-0.600	0.549	0.084	0.989
black	0.843	0.365	0.843	0.364	0.000	0.002	0.998	0.000	1.000
hispan	0.059	0.237	0.046	0.210	0.056	0.634	0.527	0.013	1.000
nodegree	0.708	0.456	0.625	0.485	0.183	0.919	0.359	0.084	0.989
married	0.189	0.393	0.192	0.395	-0.008	-0.061	0.951	0.003	1.000
re74	2095.574	4886.620	1800.480	4253.284	0.060	0.527	0.598	0.054	1.000
re75	1532.055	3219.251	1349.576	2795.808	0.057	0.461	0.645	0.072	0.998

bal.table() returns a lot of information, not all of which is needed for all analyses. The returned component is a list with named components, one for an unweighted analysis (named unw) and one for each stop.method specified, here es.stat.mean and ks.stat.max. McCaffrey et al (2004) essentially used es.stat.mean for the analyses, but our more recent work has been utilizing ks.stat.max. See section XXX for a more detailed description of these choices.

The table contains the following items

- tx.mn, ct.mn The treatment means and the propensity score weighted control means for each of the variables. The unweighted table (unw) shows the unweighted means
- tx.sd, ct.sd The treatment standard deviations and the propensity score weighted control standard deviations for each of the variables. The unweighted table (unw) shows the unweighted standard deviations
- std.eff.sz The standardized effect size, defined as the treatment group mean minus the comparison group mean divided by the treatment group standard deviation (this value is sometimes referred to as "standardized bias" when people discuss propensity scores)
- stat, p Depending on whether the variable is continuous or categorical, stat is a t-statistic or a χ^2 statistic. p is the associated p-value
- ks, ks.pval The Kolmogorov-Smirnov test statistic and its associated p-value. If in the call to ps() perm.test.iters>0 then these p-values are Monte Carlo p-values. Otherwise they are analytic approximations that are not necessarily accurate when there are ties. For categorical variables this is just the χ^2 test

Components of these tables are likely to be useful in reports and presentations demonstrating that indeed the two groups have been balanced. The xtable package aids in formatting for LATEX and Word documents. Table 1 shows the results for ks.stat.max reformatted for a LATEX document. For Word documents, paste LATEX description of the table into a Word document, highlight it, Table->Convert->Text to Table, then under "Separate text at" insert "&" in the Other: box. Additional formatting from there will finish it.

```
> xtable(pretty.tab, caption = "Balance of the treatment and comparison groups",
+ label = "tab:balance", digits = c(0, 2, 2,
+ 2, 2), align = c("l", "r", "r", "r", "r"))
```

-	E(V1 +_1)	E(Y0 t=1)	KS	E(Y0 t=0)
	E(Y1 t=1)	(-1-)		(-)
age	25.82	25.79	0.09	28.03
educ	10.35	10.52	0.08	10.23
black	0.84	0.84	0.00	0.20
hispan	0.06	0.05	0.01	0.14
nodegree	0.71	0.62	0.08	0.60
married	0.19	0.19	0.00	0.51
re74	2095.57	1800.48	0.05	5619.24
re75	1532.06	1349.58	0.07	2466.48

Table 1: Balance of the treatment and comparison groups

The summary() method for ps objects offers a compact summary of the sample sizes of the groups and the balance measures

> summary(ps.lalonde)

```
type n.treat n.ctrl
                                      ess
                                             max.es
1
            เมทพ
                     185
                            429 429.00000 1.756775
11 es.stat.mean
                     185
                            429
                                 28.09103 0.183351
                     185
                            429
                                 28.09103 0.183351
   ks.stat.max
      mean.es
                 max.ks max.ks.p
                                     mean.ks iter
1 0.56872589 0.6404460
                               NA 0.27024507
11 0.05724476 0.0875748
                               NA 0.04970737
                                               946
12 0.05724476 0.0875748
                               NA 0.04970737
                                              946
```

In general, weighted means have greater sampling variance than unweighted means from a sample of equal size. The effective sample size (ESS) of the weighted comparison group captures this increase in variance as

$$ESS = \frac{\left(\sum_{i \in C} w_i\right)^2}{\sum_{i \in C} w_i^2}.$$
 (1)

The ESS is approximately the number of observations from a simple random sample needed to obtain an estimate with sampling variation equal to the sampling variation obtained with the weighted comparison observations. Therefore, the ESS will give an estimate of the number of comparison participants that are comparable to the treatment group. The ESS is an accurate measure of the relative size of the variance of means when the weights are fixed or uncorrelated with outcomes otherwise the ESS underestimates the effective sample size (Little & Vartivarian, 2004). It is unlikely to be the case with propensity score weights that the weights are uncorrelated with outcomes. Hence the ESS might be an lower bound on the effective sample size, but it still serves as a useful measure on the effective number of control cases used in estimating weighted means.

The ess column in the summary results shows the ESS for the estimated propensity scores. Note that although the original comparison group had 429 cases, the propensity score estimates effectively utilize only 28.1 or 28.1 of the comparison cases, depending on the rules and measures used to estimate the propensity scores. While this may seem like a large loss of sample size, this indicates that many of the original cases were unlike the treatment cases and, hence, were not useful for isolating the treatment effect.

2.2 Graphical assessments of balance

The plot() method can generate useful diagnostic plots from the propensity score objects. Boxplots comparing the estimated propensity score weights between the treatment and comparison groups checks for overlap in the groups.

```
> par(mfrow = c(1, 2))
> plot(ps.lalonde, plots = "ps boxplot")
> par(mfrow = c(1, 1))
```


P-values from independent tests in which the null hypothesis is true have a uniform distribution. Therefore, a QQ plot comparing the quantiles of the observed p-values to the quantiles of the uniform distribution inform us of how similar the propensity score weighting makes the samples look like what we would expect from a randomized study. Setting plots="t pvalues" generates such QQ plots.

```
> par(mfrow = c(1, 2))
> plot(ps.lalonde, plots = "t pvalues")
> par(mfrow = c(1, 1))
```

1 2 3 4 5 6 7 8 pretreatment covariates red (unw), black (wt)

es.stat.mean

Before weighting (closed circles), many variables have statistically significant differences between groups (i.e., with p-values near zero). After weighting (open circles) the p-values are above the 45-degree line, which represents the cumulative distribution of a uniform variable on [0,1]. This indicates that the p-values are even larger than would be expected in a randomized study. plot() can create similar figures for KS statistic p-values by setting plots="ks pvalues".

```
> par(mfrow = c(1, 2))
> plot(ps.lalonde, plots = "spaghetti")
> par(mfrow = c(1, 1))
```


2.3 Analysis of outcomes

The survey package is useful for performing the outcomes analyses using propensity score weights. Its statistical methods properly account for the weights when computing standard error estimates.

> library(survey)

The get.weights function extracts the propensity score weights from a ps object. Those weights may then be used as case weights in a svydesign object.

```
> lalonde$w <- get.weights(ps.lalonde, type = "ATT",
+     stop.method = "ks.stat.max")
> design.ps <- svydesign(ids = ~1, weights = ~w,
+     data = lalonde)</pre>
```

The type argument to the get.weights function specifies whether the weights are for estimating the treatment effect on the treated, computed as 1 for the treatment cases and p/(1-p) for the comparison cases, or for estimating the treatment effect on the population, computed as 1/p for the treatment cases and 1/(1-p) for the comparison cases. The third argument to get.weights selects which set of weights to utilize. If no stop.method is selected then it returns the first set of weights.

The svydesign function from the survey package creates an object that stores the dataset along with design information needed for analyses. See help(svydesign) for more details on setting up svydesign objects.

The aim of the National Supported Work Demonstration analysis is to determine whether the program was effective at increasing earnings in 1978. The propensity score adjusted test can be computed with svyglm.

```
> glm1 <- svyglm(re78 ~ treat, design = design.ps)
> summary(glm1)
Call:
svyglm(re78 ~ treat, design = design.ps)
Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              5720.2
                          759.4
                                  7.533 1.79e-13 ***
               628.9
                          953.9
                                  0.659
treat
                                            0.51
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 49340405)
Number of Fisher Scoring iterations: 2
```

The analysis estimates an increase in earnings of \$629 for those that participated in the NSW compared with similarly situated people observed in the CPS. The effect, however, does not appear to be statistically significant.

Some authors have recommended utilizing both propensity score adjustment and additional covariate adjustment to minimize mean square error or to obtain "doubly robust" estimates of the treatment effect (Huppler-Hullsiek & Louis 2002, Bang & Robins 2005). These estimators are consistent if either the propensity scores are estimated correctly or the regression model is specified correctly. For example, note that the balance table for ks.stat.max made the two groups more similar on nodegree, but still some differences remained, 70.8% of the treatment group had no degree while 62.5% of the comparison group had no degree. While linear regression is sensitive to model misspecification when the treatment and comparison groups are dissimilar, the propensity score weighting has made them more similar, perhaps enough so that additional modeling with covariates can adjust for any remaining differences. In addition to potential bias reduction, the inclusion of additional covariates can reduce the standard error of the treatment effect if some of the covariates are strongly related to the outcome.

```
> glm2 <- svyglm(re78 ~ treat + nodegree, design = design.ps)
> summary(glm2)
Call:
svyglm(re78 ~ treat + nodegree, design = design.ps)
Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              6890.9
                         1256.5
                                  5.484 6.08e-08 ***
               785.6
                          980.3
                                  0.801
                                           0.423
treat
                         1141.4 -1.642
                                           0.101
nodegree
             -1874.5
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for gaussian family taken to be 48568844)
Number of Fisher Scoring iterations: 2
```

Adjusting for the remaining group difference in degree slightly increased the estimate of the program's effect to \$786, but the difference is still not statistically significant. We can covariate adjust for the other variables seeking additional bias and variance reduction, but that too in this case has no effect on the estimated program effect.

```
> glm3 <- svyglm(re78 ~ treat + age + educ + black +
+ hispan + nodegree + married + re74 + re75,
+ design = design.ps)
> summary(glm3)

Call:
svyglm(re78 ~ treat + age + educ + black + hispan + nodegree +
    married + re74 + re75, design = design.ps)

Survey design:
svydesign(ids = ~1, weights = ~w, data = lalonde)
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.914e+03 4.033e+03 -0.475 0.63530
            6.674e+02 9.320e+02
                                 0.716 0.47419
                                0.082 0.93494
            4.257e+00 5.213e+01
age
educ
            7.101e+02 2.405e+02
                                2.953 0.00327 **
           -7.854e+02 9.577e+02 -0.820 0.41252
black
hispan
            6.961e+02 1.642e+03
                                0.424 0.67178
            4.625e+02 1.504e+03 0.307 0.75861
nodegree
            5.215e+02 1.046e+03 0.498 0.61835
married
            4.487e-02 1.618e-01 0.277 0.78163
re74
re75
            1.566e-01 1.749e-01 0.895 0.37112
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for gaussian family taken to be 46719953)

Number of Fisher Scoring iterations: 2

2.4 Estimating the program effect using linear regression

The more traditional regression approach to estimating the program effect would fit a linear model with a treatment indicator and linear terms for each of the covariates.

```
> glm4 <- lm(re78 ~ treat + age + educ + black +
     hispan + nodegree + married + re74 + re75,
     data = lalonde)
> summary(glm4)
Call:
lm(formula = re78 ~ treat + age + educ + black + hispan + nodegree +
   married + re74 + re75, data = lalonde)
Residuals:
  Min
          1Q Median
                       3Q
                             Max
-13595 -4894 -1662 3929 54570
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.651e+01 2.437e+03 0.027 0.9782
treat
            1.548e+03 7.813e+02 1.982
                                         0.0480 *
age
            1.298e+01 3.249e+01
                                 0.399
                                        0.6897
educ
            4.039e+02 1.589e+02
                                 2.542 0.0113 *
black
           -1.241e+03 7.688e+02 -1.614
                                         0.1071
           4.989e+02 9.419e+02
                                 0.530
                                         0.5966
hispan
            2.598e+02 8.474e+02
nodegree
                                 0.307
                                         0.7593
            4.066e+02 6.955e+02 0.585
married
                                         0.5590
re74
            2.964e-01 5.827e-02 5.086 4.89e-07 ***
            2.315e-01 1.046e-01 2.213
re75
                                         0.0273 *
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 6948 on 604 degrees of freedom
Multiple R-Squared: 0.1478, Adjusted R-squared: 0.1351
F-statistic: 11.64 on 9 and 604 DF, p-value: < 2.2e-16
```

This model estimates a rather strong treatment effect, estimating a program effect of \$1548 with a p-value=0.048. Several variations of this regression approach also estimate strong program effects. For example using square root transforms on the earnings variables yields a p-value=0.016. These estimates, however, are very sensitive to the model structure since the treatment and comparison subjects differ greatly as seen in the unweighted balance comparison (\$unw) from bal.table(ps.lalonde).

2.5 Propensity scores estimated from logistic regression

Propensity score analysis is intended to avoid these problems, but the quality of the balance and the treatment effect estimates can be sensitive to the method used to estimate the propensity scores. Consider estimating the propensity scores using logistic regression instead of ps().

```
> ps.logit <- glm(treat ~ age + educ + black + hispan +
+     nodegree + married + re74 + re75, data = lalonde,
+     family = binomial)
> lalonde$w.logit <- rep(1, nrow(lalonde))
> lalonde$w.logit[lalonde$treat == 0] <- exp(predict(ps.logit,
+     subset(lalonde, treat == 0)))</pre>
```

predict() for logistic regression model produces estimates on the log-odds scale by default. Exponentiating those predictions for the comparison subjects gives the propensity score weights p/(1-p). dx.wts() from the twang package diagnoses the balance for an arbitrary set of weights producing a balance table.

```
> bal.logit <- dx.wts(lalonde$w.logit, data = lalonde,
      vars = c("age", "educ", "black", "hispan",
          "nodegree", "married", "re74", "re75"),
+
      treat.var = "treat", perm.test.iters = 0)
> print(bal.logit)
  type n.treat n.ctrl
                            ess
                                   max.es
  unw
           185
                  429 429.00000 1.7567745 0.56872589
           185
                  429 99.81539 0.1188496 0.03188410
     max.ks
               mean.ks iter
1 0.6404460 0.27024507
                         NA
2 0.3078039 0.09302319
```

For propensity score weights estimated with logistic regression, the largest KS statistic was reduced from the unweighted sample's largest KS of 0.64 to 0.31, still quite a large KS statistic. Table 2 shows the details of the balance of the treatment and comparison groups. The means of the two groups appear to be quite similar while the KS statistic shows substantial differences in their distributions.

	E/371 1)	E/V01/ 1)	TZO	E(VOL 0)
	E(Y1 t=1)	E(Y0 t=1)	KS	E(YU t=0)
age	25.82	24.97	0.31	28.03
educ	10.35	10.40	0.04	10.23
black	0.84	0.84	0.00	0.20
hispan	0.06	0.06	0.00	0.14
nodegree	0.71	0.69	0.02	0.60
married	0.19	0.17	0.02	0.51
re74	2095.57	2106.05	0.23	5619.24
re75	1532.06	1496.54	0.13	2466.48

Table 2: Logistic regression estimates of the propensity scores

Table 3 compares the balancing quality of the propensity score weights directly with one another.

	n.treat	ess	max.es	mean.es	max.ks	mean.ks
unw	185	429.00	1.76	0.57	0.64	0.27
logit	185	99.82	0.12	0.03	0.31	0.09
es.stat.mean	185	28.09	0.18	0.06	0.09	0.05
ks.stat.max	185	28.09	0.18	0.06	0.09	0.05

Table 3: Summary of the balancing properties of logistic regression and gbm

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for gaussian family taken to be 49598072)

Number of Fisher Scoring iterations: 2

The analysis estimates an increase in earnings of \$1214 for those that participated in the NSW compared with similarly situated people observed in the CPS. Table 4 compares all of the treatment effect estimates

Treatment effect	PS estimate	Linear adjustment
\$629	GBM, minimize KS	none
\$786	GBM, minimize KS	nodegree
\$667	GBM, minimize KS	all
\$1548	None	all
\$1214	Logistic regression	none
\$1237	Logistic regression	all

Table 4: Treatment effect estimates by various methods

3 The details of twang

3.1 Propensity score weighting

Propensity score weighting Propensity score weighting (Rosenbaum 1987, Wooldridge 2002, Hirano and Imbens 2001, McCaffrey et al. 2004) addresses this problem by first reweighting the comparison cases so that the distribution of their features match the distribution of features of the treatment cases. Let $f(\mathbf{x}|t=1)$ be the distribution of features for the treatment cases and $f(\mathbf{x}|t=0)$ be the distribution of features for the comparison cases. If treatments were randomized then we would expect these two distributions to be similar. When they differ we will construct a weight, $w(\mathbf{x})$, so that

$$f(\mathbf{x}|t=1) = w(\mathbf{x})f(\mathbf{x}|t=0). \tag{2}$$

For example, if f(age=65, sex=F|t=1)=0.10 and f(age=65, sex=F|t=1)=0.05 (i.e. 10% of the treatment cases and 5% of the comparison cases are 65 year old females) then we need to give a weight of 2.0 to every 65 year old female in the comparison group so that they have the same representation as in the treatment group. More generally, we can solve (2) for $w(\mathbf{x})$ and apply Bayes Theorem to the numerator and the denominator to give an expression for the propensity score weight for comparison cases,

$$w(\mathbf{x}) = K \frac{f(t=1|\mathbf{x})}{f(t=0|\mathbf{x})} = K \frac{P(t=1|\mathbf{x})}{1 - P(t=1|\mathbf{x})},$$
(3)

where K is a normalization constant that will cancel out in the outcomes analysis. Equation (3) indicates that if we assign a weight to comparison case i equal to the odds that a case with features \mathbf{x}_i would be exposed to the treatment, then the distribution of their features would balance. Note that for comparison cases with features that are atypical of treatment cases, the propensity score $P(t=1|\mathbf{x})$ would be near 0 and would produce a weight near 0. On the other hand, comparison cases with features typical of the treatment cases would receive larger weights.

3.2 Estimating the propensity score

In randomized studies $P(t = 1|\mathbf{x})$ is known and fixed in the study design. In observational studies the propensity score is unknown and must be estimated, but poor estimation of the propensity scores can cause just as much of a problem for estimating treatment effects as poor regression modeling of the outcome. Logistic regression is the common method for estimating propensity scores, and can suffice for many problems. Logistic regression for propensity scores estimates the log-odds of a case being in the treatment given \mathbf{x} as

$$\log \frac{P(t=1|\mathbf{x})}{1 - P(t=1|\mathbf{x})} = \beta' \mathbf{x}$$
(4)

Usually, β is selected to maximize the logistic log-likelihood

$$\ell\beta = \frac{1}{n} \sum_{i=1}^{n} t_i \beta' \mathbf{x}_i - \log\left(1 + \exp(\beta' \mathbf{x}_i)\right)$$
 (5)

Maximizing (5) provides the maximum likelihood estimates of β . However, in an attempt to remove as much confounding as possible, observational studies often record data on a large number of potential confounders, many of which can be correlated with one another. Standard methods for fitting logistic regression models to such data with the iteratively reweighted least squares algorithm can be statistically and numerically unstable. To improve the propensity score estimates we might also wish to include non-linear effects and interactions in \mathbf{x} . The inclusion of such terms only increases the instability of the models.

One increasingly popular method for fitting models with numerous correlated variables is the lasso (least absolute subset selection and shrinkage operator) introduced in statistics in Tibshirani (1996). For logistic regression, lasso estimation replaces (5) with a version that penalizes the absolute magnitude of the coefficients

$$\ell\beta = \frac{1}{n} \sum_{i=1}^{n} t_i \beta' \mathbf{x}_i - \log\left(1 + \exp(\beta' \mathbf{x}_i)\right) - \lambda \sum_{j=1}^{J} |\beta_j|$$
 (6)

The second term on the right-hand side of the equation is the penalty term since it decreases the overall of $\ell\beta$ when there are coefficient that are large in absolute value. Setting $\lambda=0$ returns the standard (and potentially unstable) logistic regression estimates of β . Setting λ to be very large essentially forces all of the β_j to be equal to 0 (the penalty excludes β_0). For a fixed value of λ the estimated $\hat{\beta}$ can have many coefficients exactly equal to 0, not just extremely small but precisely 0, and only the most powerful predictors of t will be non-zero. As a result the absolute penalty operates as a variable selection penalty. In practice, if we have several predictors of t that are highly correlated with each other, the lasso tends to include all of them in the model, shrink their coefficients toward 0, and produce a predictive model that utilizes all of the information in the covariates, producing a model with greater out-of-sample predictive performance than models fit using variable subset selection methods.

Our aim is to include as covariates all piecewise constant functions of the potential confounders and their interactions. That is, in \mathbf{x} we will include indicator functions for continuous variables like $I(\text{age} < 15), I(\text{age} < 16), \dots, I(\text{age} < 90)$, etc., for categorical variables like I(sex = male), I(prior MI = TRUE), and interactions among them like I(age < 16)I(sex = male)I(prior MI = TRUE). This collection of basis functions spans a plausible set of propensity score functions, are computationally efficient, and are flat at the extremes of \mathbf{x} reducing the likelihood of propensity score estimates near 0 and 1 that can occur with linear basis functions of \mathbf{x} . Theoretically with the lasso we can estimate the model in (6), selecting a λ small enough

so that it will eliminate most of the irrelevant terms and yield a sparse model with only the most important main effects and interactions. Boosting (Friedman 2001, 2003, Ridgeway 1999) effectively implements this strategy using a computationally efficient method that Efron *et al.* (2004) showed is equivalent to optimizing (6). With boosting it is possible to maximize (6) for a range of values of λ with no additional computational effort than for a specific value of λ . We use boosted logistic regression as implemented in the generalized boosted modeling (gbm) package in R (Ridgeway 2005).

3.3 Evaluating the propensity score weights

As with regression analyses, propensity score methods cannot adjust for unmeasured covariates that are uncorrelated with the observed covariates. Nonetheless, the quality of the adjustment for the observed covariates achieved by propensity score weighting is easy to evaluate. The estimated propensity score weights should equalize the distributions of the cases' features as in (2). This implies that weighted statistics of the covariates of the comparison group should equal the same statistics for the treatment group. For example, the weighted average of the age of comparison cases should equal the average age of the treatment cases. To assess the quality of the propensity score weights one could compare a variety of statistics such as means, medians, variances, and Kolmogorov-Smirnov statistics for each covariate as well as interactions. The twang package provides both the standardized effect sizes and KS statistics and p-values testing for differences in the means and distributions of the covariates for analysts to use in assessing balance. In addition, the package encodes decisions on how to assess the quality of the balance in stop.method objects which determine how to select the gbm iterations and tune the weights. There are three stop.method objects included with twang, described in more detail later, that compare means, KS statistics, and within propensity score strata mean differences.

3.4 Analysis of outcomes

With propensity score analyses the final outcomes analysis is generally straightforward, while the propensity score estimation may require complex modeling. Once we have propensity score weights that equalize the distribution of features of treatment and control cases, we give each treatment case a weight of 1 and each comparison case a weight $w_i = p(\mathbf{x}_i)/(1-p(\mathbf{x}_i))$. We then estimate the treatment effect estimate with a weighted regression model that contains only a treatment indicator. No additional covariates are needed if the propensity score weights account for differences in \mathbf{x} .

A combination of propensity score weighting and covariate adjustment can be useful for several reasons. First, the propensity scores may not have been able to completely balance all of the covariates. The inclusion of these covariates in addition to the treatment indicator in a weighted regression model may correct this if the imbalance is relatively small. Second, in addition to exposure, the relationship between some of the covariates and the outcome may also be of interest. Their inclusion can provide coefficients that can estimate the direction and magnitude of the relationship. Third, as with randomized trials, stratifying on covariates that are highly correlated with the outcome can improve the precision of estimates. Lastly, the inclusion of covariates can make the treatment effect estimate more robust in the sense that if either the propensity score model is correct or the regression model is correct then the treatment effect estimator will be unbiased (Kuppler Hullsiek & Louis 2004).

4 Non-response weights

The twang package was designed to estimate propensity score weights for estimating treatment effects in observational or quasi-experimental studies. However, the package can be used in other applications. For example, it can be used to generate and diagnose nonresponse weights for survey nonresponse or study attrition. We now present an example that uses the tools in twang. This example uses the subset of the US Sustaining Effects Study data distributed with the HLM software (Bryk, Raudenbush, Congdon, 1996) and also available in the R package mlmRev. The data include mathematics test scores for 1721 students in kindergarten to fourth grade. They also include the students race (Black, Hispanic, or other), gender, an indicator for whether or not the student had been retained in grade, the percent low income students at the school, the school size, the percent of mobile student, the students' grade-levels, student and school IDs, and grades converted to year by centering. The study analysis plans to analyze growth in math achievement from grade 1 to grade 4 using only students with complete data. However, the student with complete data differ from other students and reduce the potential for bias from excluding incomplete cases, the analysis plans to weight complete cases with nonresponse weights.

Nonresponse weights equal the reciprocal of the probability of response and are applied only to respondents. Let p denote the probability of response and and 1/p denote the nonresponse weight. Using basic algebra we can rewrite the nonresponse weights:

$$\frac{1}{p} = 1 + \frac{1-p}{p} \tag{7}$$

This formula shows that the weight has a component for respondent (which equals 1) and component for the nonrespondents ((1-p)/p). The goal of nonresponse weighting is to develop the weights so that the weighted respondents look like the entire sample – both the respondents and nonrespondents. Since, the respondents already look like themselves, we must find good estimates of the second component of the weight, (1-p)/p. We want to find weights that make the respondents look like the nonrespondents. The ps() function finds weights that make the control group like the treatment group in terms of the distribution of covariates by estimating the treatment on the treated weight. Hence if we call the nonrespondents the "treatment" group and respondents the "control" group then ps() function can provide estimates of (1-p)/p and the diagnostic tools in twang can be used to diagnosis the weights. To obtain the final nonresponse weight we just add 1 to the weights from ps().

Before we can generate nonresponse weights, we need to prepare the data using the following commands.

First we read in the data

```
> library(mlmRev)
> data(egsingle)
```

Next we create the patterns of grades for which students have responses

```
> tmp <- sapply(split(egsingle, egsingle$childid),
+ function(x) {
+ paste(as.character(x$grade), collapse = "")
+ })
identify students with test scores for every grade from 1 to 4
> tmp <- data.frame(childid = names(tmp), gpatt = tmp,
+ resp = as.numeric((1:length(tmp)) %in% grep("1234",</pre>
```

as.character(tmp))))

and merge this back to create a single data frame

```
> egsingle <- merge(egsingle, tmp)</pre>
```

Because nonresponse is a student-level variable rather than a student-by-year-level variable we create one record per student.

```
> egsingle.one <- unique(egsingle[, -c(3:6)])</pre>
```

We also create a race variable

```
> egsingle.one$race <- as.factor(race <- ifelse(egsingle.one$black ==
+ 1, 1, ifelse(egsingle.one$hispanic == 1, 2,
+ 3)))</pre>
```

As discussed above, to use ps() to estimate nonresponse, we need to let nonrespondents be the treatment group by modeling an indicator of nonresponse rather than an indicator of response. We create this indicator and are set to estimate weights.

```
> egsingle.one$nresp <- 1 - egsingle.one$resp</pre>
```

Fitting gbm model

Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
1	1.3849	nan	0.0100	0.0004
2	1.3841	nan	0.0100	0.0004
3	1.3832	nan	0.0100	0.0005
4	1.3820	nan	0.0100	0.0004
5	1.3811	nan	0.0100	0.0004
6	1.3800	nan	0.0100	0.0005
7	1.3793	nan	0.0100	0.0002
8	1.3784	nan	0.0100	0.0004
9	1.3776	nan	0.0100	0.0003
10	1.3769	nan	0.0100	0.0002
100	1.3266	nan	0.0100	0.0001
200	1.2992	nan	0.0100	-0.0000
300	1.2832	nan	0.0100	-0.0000
400	1.2709	nan	0.0100	-0.0001
500	1.2621	nan	0.0100	-0.0000
600	1.2550	nan	0.0100	-0.0001
700	1.2496	nan	0.0100	-0.0000
800	1.2451	nan	0.0100	-0.0002
900	1.2410	nan	0.0100	-0.0001
1000	1.2376	nan	0.0100	-0.0001
1100	1.2345	nan	0.0100	-0.0001
1200	1.2319	nan	0.0100	-0.0001
1300	1.2295	nan	0.0100	-0.0001

1400	1.2273	nan	0.0100	-0.0001
1500	1.2253	nan	0.0100	-0.0000
1600	1.2234	nan	0.0100	-0.0001
1700	1.2215	nan	0.0100	-0.0001
1800	1.2199	nan	0.0100	-0.0000
1900	1.2183	nan	0.0100	-0.0001
2000	1.2171	nan	0.0100	-0.0001
2100	1.2159	nan	0.0100	-0.0001
2200	1.2149	nan	0.0100	-0.0000
2300	1.2136	nan	0.0100	-0.0001
2400	1.2125	nan	0.0100	-0.0001
2500	1.2114	nan	0.0100	-0.0001

```
Diagnosis of unweighted analysis
Optimizing with es.stat.mean stopping rule
Optimized at 1013
Diagnosis of es.stat.mean weights
Optimizing with ks.stat.max stopping rule
Optimized at 185
Diagnosis of ks.stat.max weights
```

The optimal number of iterations for gbm to minimize the maximum KS statistic is 2048 and the optimal number of iterations for gbm to minimize the average effect size is . The weights do an excellent job matching the distribution of the respondent group covariates to those of the nonrespondents.

```
> pretty.tab <- bal.table(egsingle.ps)$ks.stat.max[,
+ c("tx.mn", "ct.mn", "std.eff.sz", "ks")]
> names(pretty.tab) <- c("E(Y1|t=1)", "E(Y0|t=1)",
+ "Std.Eff.", "KS")
> xtable(pretty.tab, caption = "Balance of the nonrespondents and respondents",
+ label = "tab:balance2", digits = c(0, 2, 2,
+ 2, 2), align = c("l", "r", "r", "r", "r"))
```

	E(Y1 t=1)	E(Y0 t=1)	Std.Eff.	KS
race:1	0.73	0.71	0.04	0.02
race:2	0.16	0.15	0.04	0.01
race:3	0.11	0.14	-0.10	0.03
female:Female	0.52	0.48	0.07	0.04
female:Male	0.48	0.52	-0.07	0.04
size	761.33	762.12	-0.00	0.04
lowinc	80.75	80.71	0.00	0.04
mobility	36.44	35.48	0.07	0.04

Table 5: Balance of the nonrespondents and respondents

The final step is to add 1 to the weights to get the final nonresponse weight and then add the nonresponse weights to the respondent data so analyses can proceed.

```
> egsingle.one$wgt <- 1 + get.weights(egsingle.ps,
+ type = "ATT", stop.method = "ks.stat.max")</pre>
```

Fitting gbm model						
Iter	TrainDeviance	ValidDeviance	StepSize	Improve		
1	1.3853	nan	0.0100	0.0002		
2	1.3845	nan	0.0100	0.0004		
3	1.3833	nan	0.0100	0.0004		
4	1.3823	nan	0.0100	0.0005		
5	1.3814	nan	0.0100	0.0004		
6	1.3804	nan	0.0100	0.0004		
7	1.3795	nan	0.0100	0.0003		
8	1.3789	nan	0.0100	0.0002		
9	1.3779	nan	0.0100	0.0005		
10	1.3773	nan	0.0100	0.0003		
100	1.3263	nan	0.0100	0.0001		
200	1.2984	nan	0.0100	0.0000		
300	1.2827	nan	0.0100	-0.0000		
400	1.2711	nan	0.0100	-0.0002		
500	1.2629	nan	0.0100	-0.0000		
600	1.2562	nan	0.0100	-0.0001		
700	1.2508	nan	0.0100	-0.0001		
800	1.2463	nan	0.0100	-0.0001		
900	1.2421	nan	0.0100	-0.0001		
1000	1.2391	nan	0.0100	-0.0001		
1100	1.2360	nan	0.0100	-0.0001		
1200	1.2329	nan	0.0100	-0.0001		
1300	1.2307	nan	0.0100	-0.0000		
1400	1.2283	nan	0.0100	-0.0001		
1500	1.2259	nan	0.0100	-0.0001		
1600	1.2240	nan	0.0100	-0.0001		
1700	1.2224	nan	0.0100	-0.0000		
1800	1.2209	nan	0.0100	-0.0001		
1900	1.2193	nan	0.0100	-0.0001		
2000	1.2177	nan	0.0100	-0.0001		
2100	1.2165	nan	0.0100	-0.0001		
2200	1.2151	nan	0.0100	-0.0001		
2300	1.2141	nan	0.0100	-0.0001		
2400	1.2130	nan	0.0100	-0.0001		
2500	1.2119	nan	0.0100	-0.0001		

Diagnosis of unweighted analysis
Optimizing with es.stat.mean stopping rule
Optimized at 1658
Diagnosis of es.stat.mean weights
Optimizing with ks.stat.max stopping rule
Optimized at 182
Diagnosis of ks.stat.max weights


```
> egsinge.resp <- merge(subset(egsingle, subset = resp ==
+ 1), subset(egsingle.one, subset = resp ==
+ 1, select = c(childid, wgt)))</pre>
```

References

- [1] Bang H. and J. Robins (2005). "Doubly robust estimation in missing data and causal inference models," *Biometrics* 61:692-972.
- [2] Huppler Hullsiek K., and T. Louis (2002) "Propensity score modeling strategies for the causal analysis of observational data," *Biostatistics* 3:179-193.
- [3] Dehejia, R.H. and S. Wahba (1999). "Causal effects in nonexperimental studies: re-evaluating the evaluation of training Programs," *Journal of the American Statistical Association* 94:1053–1062.
- [4] Efron, B., T. Hastie, I. Johnstone, R. Tibshirani (2004). "Least angle regression," *Annals of Statistics* 32(2):407–499.
- [5] Friedman, J.H. (2001). "Greedy function approximation: a gradient boosting machine," Annals of Statistics 29(5):1189–1232.
- [6] Friedman, J.H. (2002). "Stochastic gradient boosting," Computational Statistics and Data Analysis 38(4):367–378.
- [7] Friedman, J.H., T. Hastie, R. Tibshirani (2000). "Additive logistic regression: a statistical view of boosting," *Annals of Statistics* 28(2):337–374.
- [8] Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical Learning. Springer-Verlag, New York.
- [9] Hirano, K. and G. Imbens (2001). "Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization," Health Services and Outcomes Research Methodology 2:259–278.
- [10] Lalonde, R. (1986). "Evaluating the econometric evaluations of training programs with experimental data," American Economic Review 76:604–620.
- [11] Little, J. and S. Vartivarian (2004). ${\rm ``Does"}$ weighting for nonresponse invariance of survey means? ASA Proceedings of the Joint Stacrease $_{
 m the}$ tistical3897-3904 American ${\bf Statistical}$ Association (Alexandria, VA) Meetings,http://www.bepress.com/cgi/viewcontent.cgi?article=1034&context=umichbiostat.
- [12] McCaffrey, D., G. Ridgeway, Andrew Morral (2004). "Propensity score estimation with boosted regression for evaluating adolescent substance abuse treatment," Psychological Methods 9(4):403– 425.
- [13] Ridgeway, G. (1999). "The state of boosting," Computing Science and Statistics 31:172–181.
- [14] Ridgeway, G. (2005). GBM 1.5 package manual. http://cran.r-project.org/doc/packages/gbm.pdf.
- [15] Ridgeway, G. (2006). "Assessing the effect of race bias in post-traffic stop outcomes using propensity scores." Journal of Quantitative Criminology 22(1).
- [16] Rosenbaum, P. and D. Rubin (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects," *Biometrika* 70(1):41–55.
- [17] Rosenbaum, P. (1987). "Model-based direct adjustment," Journal of the American Statistical Association 82:387–394.

- [18] Tibshirani, R. (1996). "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society, Series B 58(1):267–288.
- $[19] \ \ Wooldridge, J.\ (2002).\ Econometric\ analysis\ of\ cross\ section\ and\ panel\ data, MIT\ Press,\ Cambridge.$