# Optomechanical possibilities

# Conclusions & Outlook

#### Photonics North, Niagara Falls, May 26th 2022



# GaAs Optomechanics





Opt. Mat. Express, 10, 57 (2020)

#### converter

## Optomechanical mode

Jarschel et al, APL Photonics 6, 036108 (2021)







#### Photo-Thermal

#### **Forces**











 $S^{\theta} = \boldsymbol{\alpha} \delta T(\vec{r}, t)$ 

APL Photonics 6 (8), 086101



Optics express 29, 1736-1748 (2021)

## Strong Confined

#### Brillouin





PRL **125**, 233601 (2020)





#### Quasinormal-modes



Nat Commun **12**, 5625 (2021).

## Optomechanical

## synchronization







Volume 4, Issue 7, Jul. 2019

# Brillouin optomechanics in nanophotonic structures

APL Photon. 4, 071101 (2019); doi.org/10.1063/1.5088169

Gustavo S. Wiederhecker, Paulo Dainese, and Thiago P. Mayer Alegre







#### Thiago Alegre

#### Paulo Dainese

APL Photonics **4**, 071101 (2019)

## Bridge radio and optical frequencies

information (including quantum)

## Interface with molecular vibration

## OM cavities and waveguides based on active materials

Nonlinear optical interactions to write and read

Fundamental and technological challenges