Algebraic geometry 1 Exercise sheet 11

Solutions by: Eric Rudolph and David Čadež

11. Januar 2024

Exercise 3.

1. Since k is algebraically closed, the only irreducible polynomials $f \in k[x,y]$ are of degree 1.

Hence, we can write

$$f_r = l_1 \dots l_r,$$

where $l_i \in k[x, y]$ is of degree 1. From the assumption that f_r is homogenous it follows that the l_i are homogenous.

Therefore, we can write

$$Z = V(f_r) = V(l_1 \dots l_r) = \cup_i V(l_i)$$

and since $V(l_i)$ is a line through the origin, Z can be written as the finite union of lines through the origin.

2. Assume that r=1, i.e. $X=V(f_1)$. We want to show that for $x=\{0\}$ we have that $\mathcal{O}_{X,x}$ is a field, which would imply that it is regular.

We calculate

$$\mathcal{O}_{X,x} = \varinjlim_{x \in D(g)} k[x,y]/f_1[g^{-1}] = \varinjlim_{x \in D(g)} k[u][g^{-1}] = K(A),$$

using that f_1 is homogenous of degree 1 and where K(A) is the field of fractions of A.