1

CSC230

Intro to C++ Lecture 19

Outline

□Lab 9 discussion

TREE

Why we need tree?

- What is the most important operation on data?
 - Search
 - Array
 - Linked List
 - HashMap

Problem with Linked List

Searching in Linked List

- Searching in a linked list is time consuming
 - Traverse from the very beginning
 - How many nodes you have to visit if
 - Searching 1
 - Searching 2
 - Searching 3
 - •
 - Searching 7

Review: Linear Search

```
Traversing

    Traver

            Public int getSize()

    Singly

                 int i=0;
                  Node current = head;
                  while (current! = NULL)
              i++;
                                                         Tail
               current = current.getNext()
  Node
     Data
               return i;
   Referenc
                                                      ence
                     NH
```

Review: Linear Search

Insertion on Linked List

- How to insert QC after NY (middle)?
 - Create a new node with QC as the element
 - Find the node you want to insert after

Review: Linear Search

Search on the Linked List

How to find

```
Pata

Reference

MA
```

```
public int GetNth(int index)
     Node current = head;
     int count = 0;
  while (current != null)
        if (count == index)
           return current.data;
        count++;
        current = current.next;
System.out.println("Access failed");
     return 0;
```


Idea of Binary Search

- How many nodes you have to visit to find 93 with linear search algorithm?
- How many nodes you have to visit to find 33 with linear search algorithm?

• Did you see the numbers in small size?

- Search for number 93
- Based on the indexes, how can we find it faster?
- In other words, how to make use of the indexes?
 - Record the low, high and mid
 - Start the search from the middle

- Search for number 93
- Based on the indexes, how can we find it faster?
- In other words, how to make use of the indexes?
 - Compare the target with the middle
 - Focus on the right side only
 - What is our next step?

Idea of Binary Search

- Search for number 93
- Based on the indexes, how can we find it faster?
- In other words, how to make use of the indexes?
 - Compare the target with the middle
 - Focus on the right side only
 - What is our next step?

Now, how to move forward?

- Search for number 96 with binary search algorithm
- Which nodes you will visit?
- First step: 53

- Search for number 96 with binary search algorithm
- Which nodes you will visit?
- First step: 53
- Second step: 93

- Search for number 96 with binary search algorithm
- Which nodes you will visit?
- First step: 53
- Second step: 93
- Third step: 96

To solve the problem: BST

Binary Search Tree

- It is a tree structure
 - Each node can have at most two children
- It is a special tree
 - For every node in the tree, its key is greater than its left child's key and less than its right child's key

To solve the problem: BST

Searching in Binary Search Tree

items	Linked List	BST	key	Linked List	BST
			1	1	3
1	1	1	2	2	2
3	2	1.67	3	3	3
<u> </u>		1.07	4	4	1
7	4	2.43	5	5	3
15	8	3.29	6	6	2
31	16	4.16	7	7	3
63	32	5.09	Average	4	2.43
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

Tree Overview

Tree: **recursive** data structure (similar to list)

- Each node may have zero or more successors (children)
- Each node has exactly one predecessor (parent) except the root, which has none
- All nodes are reachable from root

Binary tree: tree in which each node can have at most **two** children: a left child and a right child

Tree Terminology

M: root of this tree

G: root of the left subtree of M

B, H, J, N, S: leaves

N: left child of P; S: right child

P: parent of N

M and G: ancestors of D

P, N, S: descendents of W

J is at depth 2 (i.e. length of path from root = no. of edges)

W is at height 2 (i.e. length of longest path to a leaf)

Tree Terminology

- Root: node without parent (A)
- Siblings: nodes share the same parent
- Internal node: node with at least one child (A, B, C, F)
- External node (leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Descendant of a node: child, grandchild, grand-grandchild, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Degree of a node: the number of its children
- Degree of a tree: the maximum degree of its node.

• **Subtree**: tree consisting of a node and its descendants

Tree Properties

Property

Number of nodes

Height

Root Node

Leaves

Interior nodes

Ancestors of H

Descendants of B

Siblings of E

Right subtree of A

Degree of this tree

Tree ADT

- We use positions to abstract nodes
- Generic methods:
 - integer size()
 - boolean isEmpty()
 - objectIterator elements()
 - positionIterator positions()
- Accessor methods:
 - position root()
 - position parent(p)
 - positionIterator children(p)

- Query methods:
 - **boolean isInternal**(p)
 - boolean isExternal(p)
 - boolean isRoot(p)
- Update methods:
 - swapElements(p, q)
 - object replaceElement(p, o)
- Additional update methods may be defined by data structures implementing the Tree ADT

Tree Terminology

How to construct a binary tree?

Class for Binary Tree Node

```
Points to left subtree
template <class T>
class TreeNode{
                                                Points to right subtree
  T datum;
  TreeNode<T>* left, * right;
public:
  TreeNode(T x){datum=x; left = nullptr; right = nullptr;}
  TreeNode(T x, TreeNode<T>* lft, TreeNode<T>* rgt){
    datum = x; left = lft; right = rgt;
};
                                 more methods: getLeft, setLeft, etc.
```

Binary versus general tree

In a binary tree each node has exactly two pointers: to the left subtree and to the right subtree

Of course one or both could be nullptr

In a general tree, a node can have any number of child nodes

Very useful in some situations ...

Class for General Tree nodes

```
template <class T>
class GTreeNode{
   T datum;
   GTreeNode<T>* left, * sibling;
   appropriate getters/setters
};
```

- Parent node points directly only to its leftmost child
- Leftmost child has pointer to next sibling, which points to next sibling, etc.

Applications of Trees

- Most languages (natural and computer) have a recursive, hierarchical structure
- This structure is implicit in ordinary textual representation
- Recursive structure can be made explicit by representing sentences in the language as trees: Abstract Syntax Trees (ASTs)
- ASTs are easier to optimize, generate code from, etc. than textual representation
- A parser converts textual representations to AST

Example

Expression grammar:

- \blacksquare E \rightarrow integer
- $\blacksquare \qquad \mathsf{E} \to (\mathsf{E} + \mathsf{E})$

In textual representation

Parentheses show hierarchical structure

In tree representation

Hierarchy is explicit in the structure of the tree

Text

AST Representation

-34

$$(2 + 3)$$

$$((2+3) + (5+7))$$

Recursion on Trees

Recursive methods can be written to operate on trees in an obvious way

Base case

- empty tree
- □ leaf node

Recursive case

- solve problem on left and right subtrees
- put solutions together to get solution for full tree

Tree Traversal

- Two main methods:
 - Preorder
 - Postorder
- Recursive definition
- □ Preorder:
 - visit the root
 - traverse in preorder the children (subtrees)
- Postorder
 - traverse in postorder the children (subtrees)
 - visit the root

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Algorithm *preOrder(v) visit(v)*

for each child w of v
preorder (w)

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

Algorithm postOrder(v)
for each child w of v
postOrder (w)
visit(v)

Searching in a Binary Tree

```
/** Return true iff x is the datum in a node of tree t*/
template <class T>
bool treeSearch(T x, TreeNode<T>* t){
   if(t == nullptr) return false;
   if(t->getDatum() == x) return true;
   return treeSearch(x, t->getLeft()) || treeSearch(x, t->getRight());
}
```

- Analog of linear search in lists: given tree and an object, find out if object is stored in tree
- Easy to write recursively, harder to write iteratively

Searching in a Binary Tree

```
/** Return true iff x is the datum in a node of tree t*/
template <class T>
bool treeSearch(T x, TreeNode<T>* t){
   if(t == nullptr) return false;
   if(t->getDatum() == x) return true;
   return treeSearch(x, t->getLeft()) || treeSearch(x, t->getRight());
}
```

Important point about t. We can think of it either as

- (1) One node of the tree OR
- (2) The subtree that is rooted at t

Binary Search Tree (BST)

If the tree data are **ordered**: in **every** subtree,
All **left** descendents of node come **before** node
All **right** descendents of node come **after** node
Search is MUCH faster


```
/** Return true iff x if the datum in a node of tree t.

Precondition: node is a BST */

template <class T>

bool treeBSearch(T x, TreeNode<T>* t){
    if(t == nullptr) return false;
    if(t->getDatum() == x) return true;
    if(t->getDatum() > x)
        return treeBSearch(x, t->getLeft());
    else
    return treeBSearch(x, t->getRight());
}
```

Remember the binary search for array? Are they similar?

Building a BST

- To insert a new item
 - Pretend to look for the item
 - Put the new node in the place where you fall off the tree
- This can be done using either recursion or iteration
- Example
 - □ Tree uses *alphabetical* order
 - Months appear for insertion in calendar order

What Can Go Wrong?

- A BST makes searches very fast, unless...
 - Nodes are inserted in alphabetical order
 - In this case, we're basically building a linked list (with some extra wasted space for the left fields that aren't being used)
- BST works great if data arrives in random order

