ML2: The landscape of machine learning

Pierre CHAINAIS

- ► Books :
 - T. Hastie, R. Tibshirani et J. Friedman (2009)
 The Elements of Statistical Learning
 Springer Series in Statistics, disponible en ligne.
 - C. M. Bishop (2009)
 Pattern Recognition and Machine Learning, Springer.
 - K.P. Murphy (2012)

 Machine Learning: a probabilistic perspective

 The MIT Press
- ► Slides, TP... online on Moodle .
- ► Evaluation : TP + short exams + final test

- Linear models for regression
- 2 Classification and theory of decision
- Unear models for supervised classification
- Oimension reduction
- Unsupervised classification, clustering
- Evaluation of performances
- O Decision trees
- Boosting : AdaBoost (clever learning)
- Support vector machines (kernel approaches)
- Neural networks (deep learning)

- ▶ to identify the numbers on images (0,..., 9) from a 16x16 gray level image (0 to 255).
- ► Supervised classification

SPAM

WINNING NOTIFICATION! We are pleased to inform you of the result of the Lottery Winners International Program held on the 4th november 2013.

You have been approved for a lump sum pay out of 175,000 euros.

CONGRATULATIONS!!!

NON SPAM

Dear Pascal,

Could you please send me the report #1234 on the project advancement?

Thanks in advance.

Regards, Clara

- Basis of reference mails, identified as SPAM or NOT
- ▶ Purpose : predict whether a new mail is SPAM or NOT
- Avoid to delete important messages! (false alarm)
- ► Supervised classification

Examples DNA sequences analysis

64 sequences (individuals) of 6830 genetical responses to a reference

- Which are the groups of similar samples? (similarities and links between individuals)
- Which are the genes with similar expressions? (similarities and links between genes)
- Are there genes which are more characteristic than others? (extraction of characteristics)
- **▶** Clustering

Clouds of points : identification of groups (clusters)

clustering: unsupervised classification

Regression

Regression

Regression

Regression

Regression

ML2: The landscape of machine learning 1. Linear models for regression

Pierre CHAINAIS

- 1 Linear models for regression
 - Position of the problem
 - Examples of bases of functions
 - Least square estimation
 - Linear regression
 - General case : bases of functions
 - Multiple outputs
 - Geometrical interpretation
 - Regularized least squares
 - Bayesian approach
 - Cost functions for regression
 - The bias-variance compromise

Linear regression

Example : prediction of the level of prostate specific antigen

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
lweight	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
lcp	-0.29	0.15	-1.87
gleason	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

and also local cosines, wavelets...

Regularized least squares

Polynomial approximation: importance of the order

Polynomial approximation: importance of the order

PLS

2.452

0.419

0.344

0.220

0.243

0.079

0.011

-0.026

Regularized least squares

LS

2.465

0.680

0.263

0.210

0.305

-0.288

-0.021

-0.141

Term

Intercept lcavol

lweight

mlascon

age

1bph

svi

lcp

Example : prediction of the level of prostate specific antigen

Best Subset

2.477

0.740

0.316

greason	0.021		0.040		0.202	0.011
pgg45	0.267		0.133		-0.056	0.084
Test Error	0.521	0.492	0.492	0.479	0.449	0.528
Std Error	0.179	0.143	0.165	0.164	0.105	0.152

Ridge

2.452

0.420

0.238

0.162

0.227

0.000

0.040

-0.046

Lasso

2.468

0.533

0.169

0.002

0.094

PCR

2.497

0.543

0.289

0.214

0.315

0.232

-0.051

-0.152

different data averaged estimates M=25 Gaussian kernels, N=25 points, ridge regression (λ)

M=25 Gaussian kernels, N=25 points, ridge regression (λ)