General Purpose Transistors

NPN Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SC-70/SOT-323 which is designed for low power surface mount applications.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC8 BC8 BC8	47	65 45 30	V
Collector-Base Voltage BC8 BC8 BC8 BC8	47	80 50 30	V
Emitter-Base Voltage BC8 BC8 BC8	47	6.0 6.0 5.0	V
Collector Current – Continuous	Ic	100	mAdc

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C	P _D	200	mW
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	620	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

1. FR-5 = 1.0 x 0.75 x 0.062 in.

ON Semiconductor®

www.onsemi.com

SC-70/SOT-323 CASE 419 STYLE 3

MARKING DIAGRAM

XX = Specific Device Code

M = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 12 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector – Emitter Breakdown Voltage (I _C = 10 mA)	BC846 Series BC847 Series BC848 Series	V _{(BR)CEO}	65 45 30	- - -	- - -	V
Collector – Emitter Breakdown Voltage ($I_C = 10 \mu A, V_{EB} = 0$)	BC846 Series BC847 Series BC848 Series	V _(BR) CES	80 50 30	- - -	- - -	V
Collector – Base Breakdown Voltage $(I_C = 10 \mu A)$	BC846 Series BC847 Series BC848 Series	V _{(BR)CBO}	80 50 30	- - -	- - -	V
Emitter – Base Breakdown Voltage ($I_E = 1.0 \mu A$)	BC846 Series BC847 Series BC848 Series	V _{(BR)EBO}	6.0 6.0 5.0	- - -	- - -	V
Collector Cutoff Current (V _{CB} = 30 V)	(V _{CB} = 30 V, T _A = 150°C)	I _{CBO}	- -	- -	15 5.0	nA μA
ON CHARACTERISTICS						
DC Current Gain ($I_C = 10 \mu A$, $V_{CE} = 5.0 V$)	BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C	h _{FE}	- - -	90 150 270	- - -	-
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC846A, BC847A, BC848A BC846B, BC847B, BC848B BC847C, BC848C		110 200 420	180 290 520	220 450 800	
Collector – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)			- -	- -	0.25 0.6	V
Base – Emitter Saturation Voltage (I_C = 10 mA, I_B = 0.5 mA) (I_C = 100 mA, I_B = 5.0 mA)			- -	0.7 0.9	- -	V
Base – Emitter Voltage (I_C = 2.0 mA, V_{CE} = 5.0 V) (I_C = 10 mA, V_{CE} = 5.0 V)			580 -	660 -	700 770	mV
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain - Bandwidth Product (I _C = 10 mA, V _{CE} = 5.0 Vdc, f = 100 MHz)		f _T	100	-	-	MHz
Output Capacitance (V _{CB} = 10 V, f = 1.0 MHz)			-	-	4.5	pF
Noise Figure (I_C = 0.2 mA, V_{CE} = 5.0 Vdc, R_S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz)			_	_	10	dB

BC846A, BC847A, BC848A

300 150°C VCE = 5 V VCE = 5 V 25°C 25°C 0 0.001 0.01 0.1 I_C, COLLECTOR CURRENT (A)

Figure 1. DC Current Gain vs. Collector Current

Figure 2. DC Current Gain vs. Collector Current

Figure 3. Collector Emitter Saturation Voltage vs. Collector Current

Figure 4. Base Emitter Saturation Voltage vs.
Collector Current

Figure 5. Base Emitter Voltage vs. Collector Current

BC846A, BC847A, BC848A

Figure 6. Collector Saturation Region

Figure 7. Base-Emitter Temperature Coefficient

Figure 8. Capacitances

Figure 9. Current-Gain - Bandwidth Product

BC846B

600 150°C 400 25°C 300 25°C 100 0.001 10.01 10.01 10.01 10.01 10.01 10.01

Figure 10. DC Current Gain vs. Collector Current

Figure 11. DC Current Gain vs. Collector Current

Figure 12. Collector Emitter Saturation Voltage vs. Collector Current

Figure 13. Base Emitter Saturation Voltage vs.
Collector Current

Figure 14. Base Emitter Voltage vs. Collector Current

BC846B

Figure 15. Collector Saturation Region

Figure 16. Base-Emitter Temperature Coefficient

Figure 17. Capacitance

Figure 18. Current-Gain - Bandwidth Product

BC847B, BC848B

600 VCE = 5 V VCE = 5 V VCE = 5 V VCE = 5 V 150°C 25°C 25°C 100 0 0.001 0.01 0.1 1

Figure 19. DC Current Gain vs. Collector Current

Figure 20. DC Current Gain vs. Collector Current

Figure 21. Collector Emitter Saturation Voltage vs. Collector Current

Figure 22. Base Emitter Saturation Voltage vs. Collector Current

Figure 23. Base Emitter Voltage vs. Collector Current

BC847B, BC848B

400 300

θ√B, TEMPERATURE COEFFICIENT (mV/°C) 55°C to +125°C 1.2 1.6 2.0 2.4 2.8 0.2 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

Figure 24. Collector Saturation Region

Figure 25. Base-Emitter Temperature Coefficient

Figure 26. Capacitances

Figure 27. Current-Gain - Bandwidth Product

BC847C, BC848C

1000 900 150°C 800 hFE, DC CURRENT GAIN 700 600 25°C 500 400 –55°C 300 200 100 0.001 0.01 0.1 I_C, COLLECTOR CURRENT (A)

Figure 28. DC Current Gain vs. Collector Current

Figure 29. DC Current Gain vs. Collector Current

Figure 30. Collector Emitter Saturation Voltage vs. Collector Current

Figure 32. Base Emitter Voltage vs. Collector Current

BC847C, BC848C

400

θ√B, TEMPERATURE COEFFICIENT (mV/°C) 55°C to +125°C 1.2 1.6 2.0 2.4 2.8 0.2 1.0 10 100 I_C, COLLECTOR CURRENT (mA)

Figure 33. Collector Saturation Region

Figure 34. Base-Emitter Temperature Coefficient

Figure 35. Capacitances

Figure 36. Current-Gain - Bandwidth Product

Figure 37. Safe Operating Area for BC846A, BC846B

Figure 38. Safe Operating Area for BC847A, BC847B, BC847C

Figure 39. Safe Operating Area for BC848A, BC848B, BC848C

DEVICE ORDERING AND SPECIFIC MARKING INFORMATION

Device	Specific Marking Code	Package	Shipping [†]	
BC846BWT1G	1B		2 000 / Tong & Dool	
SBC846BWT1G*	IB		3,000 / Tape & Reel	
BC847AWT1G	1E		2 000 / Topo % Dool	
SBC847AWT1G*	16		3,000 / Tape & Reel	
BC847BWT1G	1F		2 000 / Tono % Dool	
SBC847BWT1G*	IF	SC-70 (SOT-323) (Pb-Free)	3,000 / Tape & Reel	
BC847CWT1G	1G		3,000 / Tape & Reel	
SBC847CWT1G*	16			
BC847CWT3G	1G		10,000 / Tape & Reel	
SBC847CWT3G*	16			
BC848BWT1G	1K			
NSVBC848BWT1G*	- IK		3,000 / Tape & Reel	
BC848CWT1G	1L	1		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE N

. .

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

A2 C

TYLE 3:
PIN 1. BASE
2. EMITTER
3. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Email: orderlit@onsemi.com

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 700 2910

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative