Контрольная 4. Распределения, сходимости.

- 1. (12) Пусть у нас есть процесс испытаний Бернулли с n=10000 испытаниями и p вероятностью успеха в этом процессе. Мы хотим оценить вероятности событий
 - (a) (2) Выпало ровно 2000 успехов при p=0,25
 - (b) (2) Выпало ровно 7 успехов при p = 0,001
 - (c) (2) Выпало от 1500 до 2100 успехов при p=0.2
 - (d) (2) Выпало больше 6 успехов при p=0,0005
 - (e) (2) Выпало ровно 9989 успехов при p=0.9997
 - (f) (2) Выпало меньше 1500 успехов при p=0.5

с помощью теорем Муавра-Лапласа, т.Пуассона, неравенств Чебышева и Маркова. Выберите нужную теорему и решите задачу.

- 2. (3) Последовательность случайных величин $\{\xi_n\}_{n=1}^{\infty}$ распределена по экспоненциальному закону с параметром λ . По ЗБЧ $\frac{\sum \xi_n \mu}{\sigma \sqrt{n}} \to N(0,1)$. Оценить неравенством Бэрри-Эссена скорость сходимости к нормальному распределению.
- 3. (3)Пусть G(n,p) случайный граф на n вершинах и вероятностью ребра р. Докажите: Докажите, что при вероятности ребра р такой, что $pn^{\frac{5}{4}} \to 0$ при $n \to \infty$ асимптотически почти наверняка нет связных компонент, изоморфных графу-дереву-звезде на 5 вершинах.
- 4. (3) Пусть последовательность сл.в. $\{\xi_n\}_{n=1}^\infty$ имеют одинаковое невырожденное распределение с нулевым средним значением и с конечной дисперсией. Найти $D\xi_1$ если

$$\lim_{n\to\infty}P(\frac{\sum_{i=1}^n\xi_i}{\sqrt{n}}>1)=\frac{1}{3}$$

- 5. (3)Пусть ξ_n принимает значения $n^{-\lambda}$ и $-n^{-\lambda}$ с вероятностью 1/2 каждое. Выяснить, при каких значениях λ для последовательности $\{\xi_n\}_{n=1}^{\infty}$ выполнена ЦПТ.
- 6. (3) Пусть $\{\xi_n\}_{n=1}^{\infty}$ последовательность случайных величин, причём ξ_n принимает значения $e^{-\alpha n}$ и $e^{\alpha n}$ с вероятностями $1-e^{-\beta n}$ и $e^{-\beta n}$ соответственно. При каких значениях α и β имеет место сходимость $\xi_n \stackrel{\mathbb{P}}{\to} \xi$
- 7. (3) Пусть $\xi_n \stackrel{\mathbb{P}}{\to} 1$, $\mu_n \stackrel{\mathbb{P}}{\to} 1$ и $\nu_n \stackrel{\mathbb{P}}{\to} 1$. Доказать, что $\xi_n \mu_n \cdot \nu_n \stackrel{\mathbb{P}}{\to} 0$