SRN										
-----	--	--	--	--	--	--	--	--	--	--

PES University, Bangalore (Established under Karnataka Act No. 16 of 2013)

UE14EC205

END SEMESTER ASSESSMENT (ESA) B.TECH. III SEMESTER- Dec. 2015 **UE14EC205- ELECTROMAGNETIC FIELD THEORY**

111	me:	3 Hrs Answer All Questions Max Marks	: 10
1.	a)	Obtain the vector in Cartesian coordinates that extends from P(r=4, θ =20°, ϕ =10°) to Q (r=7, θ =120°, ϕ =75°) and then find the unit vector \mathbf{a}_{PQ} .	4
	b)	State Coulomb's law along with mathematical expression and find the electric field intensity E at a point on y axis due to an infinite line charge of charge density $\rho_L C/m$ placed on z axis.	5
	(c)	State Gauss's law along with mathematical expression and use the same to find the electric flux density \mathbf{D} at $r \geq a$ and $r \leq a$ due to a charged sphere of radius 'a' with uniform charge density of ρ_0 C/m³.	5
	d)	What is an electric dipole and dipole moment? Assuming an electric dipole at the origin obtain an expression for potential V at a far off point $P(r,\theta,\phi)$ and then find E at P.	6
The second second	a)	Derive Continuity Equation from the principle of conservation of charges and obtain expression for relaxation time after defining the same.	5
	b)	Consider the interface between conductor and dielectric having permittivity ϵ . Assuming the conductor to be perfect obtain the boundary conditions for both tangential E and normal component of electric flux density D. Obtain also the boundary conditions for Conductor and free space interface.	6
	c)	Find the capacitance of two concentric spherical shells filled with a dielectric of ϵ_r =9 between the shells, the radii of the inner shell being a= 2cm and that of the outer shell b= 6cm.	4
1	d)	Verify Laplace's Equation given the potential field V= 100(ρ-(1/ρ))cosφ volts.	5
	a)	State Biot Savart Law and derive the mathematical expression assuming vector potential $A=\int_L \mu_0 IdI/(4\pi R)$ where R is the distance vector for the line element di' at the source point (x',y',z') to the field point (x,y,z)	6
	b)	Evaluate both sides of Stoke's Theorem for the magnetic field ${\bf H}$ =10sin $\theta {\bf a}_{\phi}$ A/m. The surface is specified by r=3,0 $\leq \theta \leq \pi/2$; $0 \leq \phi \leq \pi/2$; closed path forming its perimeter is composed of three circular arcs; $\theta = \pi/2$, $\phi = 0 \tan \pi/2$, $\phi = 0 \tan \pi/2$, $\phi = 0$; at r=3.	8
	c)	A certain magnetic field intensity in free space is given by $\mathbf{H} = (x\mathbf{a_x} + y\mathbf{a_y}) / (x^2 + y^2)$ A/m. Find the current density \mathbf{J} and magnetic vector potential \mathbf{A} if i) $\mathbf{A_x} = \mathbf{A_y} = 0$; and ii) $\mathbf{A_z} = 0$ at $\mathbf{P}(1,1,1)$.	6
	a)	A point charge Q= 5×10^{-18} C is moving through an uniform field B= $-0.4a_x + 0.2a_y - 0.1a_z$ Wb/m² with a velocity of $\mathbf{v} = (2a_x - 3a_y + 6a_z) \times 10^5$ m/s at t=0. i)Find the electric field intensity E at t=0 if the net force on the charge is zero ii) If E is entirely in x direction and the magnitude of the net force is 2pN at t=0 find E _x .	5
	b)	In a magnetic boundary problem given that H_1 = - $2a_x$ + $6a_y$ + $4a_z$ A/m in the region y-x-2 ≤ 0 where μ_1 =5 μ_0 . Calculate i) Magnetization M_1 and B_1 and ii) H_2 and B_2 in the region y-x-2 ≤ 0 where μ_2 =2 μ_0 .	6
•		Derive the expression for displacement current density starting from Ampere's Law and list the Maxwell's Equations in differential form.	5
(d)	In free space the magnetic field of an EM wave is given by $H=0.5\omega\epsilon_0\cos(\omega t-50x)$ a_z A/m. Find the displacement current density.	4
6	- 1	An Electromagnetic wave propagating in a lossy dielectric medium is characterized by μ_r =4, ϵ_r =2.5, σ = 10 ³ mho/m at 10 MHz. Find attenuation constant α , phase constant β , velocity of propagation v and wave impedance η .	6
1	b)	Derive Poynting Theorem starting from Maxwell's Equations for an Electromagnetic Wave propagating in a medium	5
	c)	What is skin depth and obtain its relation with attenuation and phase constants α and β .	5
	d)	A plane wave propagating along z direction is incident normally on the boundary z=0 between medium 1 (z < 0) characterized by $\sigma_{1=0}$ $\epsilon_{r1}=9$ $\mu_{r1}=1$ and medium2 (z>0) which is free space. Determine the transmission and reflection coefficient at the boundary	4