EGMO:Chpater 1

Munir Uz Zaman

Date: June 17, 2022

Problem 0.1 (JMO 2011/5)

Points A, B, C, D, E lie on a circle ω and point P lies outside the circle. The given points are such that

- lines PB and PD are tangent to ω .
- P, A, C are collinear.
- $DE \parallel AC$.

Show that BE bisects AC.

Problem 0.2 (Lemma 1.44 Three Tangents)

Let ABC be an acute angled triangle. Let BE and CF be the altitudes of $\triangle ABC$ and let M be the midpoint of BC. Prove that ME, MF and the line through A parallel to BC are all tangents to the circle AEF.

Proof: Since $\triangle BEC$ is a right triangle and M is the midpoint of the hypotenuse BC, we have MB = ME = MC. Likewise MB = MF = MC. Therefore

$$MB = ME = MF = MC$$

Hence B, E, F, C are all lying on the same circle with center M. If we can show that $\angle FAE = \angle FEM$ then it'll be shown that EM is tangent to circle AFE.

$$\angle FEM = \angle FEB + \angle MEB$$

Now since ME = MB,

$$\angle FEM = \angle FEB + \angle MEB$$

 $\Longrightarrow \angle FEM = \angle FEB + \angle MBE$

Since CBEF is cyclic, $\angle FEB = \angle BCF$.

$$\angle FEM = \angle FEB + \angle MBE$$

$$\Rightarrow \angle FEM = \angle BCF + \angle MBE$$

$$\Rightarrow \angle FEM = 180^{\circ} - \angle BHC$$

$$\Rightarrow \angle FEM = 180^{\circ} - \angle FHE$$

$$\Rightarrow \angle FEM = \angle FAE$$

Therefore EM is tangent to circle AFE. Likewise FM is also tangent to AFE. Now we need to show that ℓ is tangent to circle AFE. It suffices to show that $\angle XAB = \angle AEF$.

$$\angle AEF = \angle EFC + \angle ECF$$

$$\implies \angle AEF = 180^{\circ} - \angle FEC$$

$$\implies \angle AEF = \angle CBF$$

$$\implies \angle AEF = \angle XAB$$

Problem 0.3 (Canada 1997/4)

The point O is inside the parallelogram ABCD such that $\angle AOB + \angle COD = 180^{\circ}$. Show that $\angle OBC = \angle ODC$.

Proof: Apply the translation $T: \overrightarrow{P} \to \overrightarrow{P} + \overrightarrow{CB}$ on points C, O, D. Let T(O) = O'. Clearly A, B are the points D, C after applying the translation T.

$$\angle COD + \angle AOB = 180^{\circ} \implies \angle BO'A + \angle AOB = 180^{\circ}$$

Therefore AO'BO is cyclic. Hence $\angle O'AB = \angle O'OB$. As $OO' \parallel BC$,

$$\angle O'AB = \angle O'OB = \angle OBC \implies \angle ODC = \angle OBC$$

Problem 0.4 (Simson line)

Let ABC be a triangle and let P be any point on the circumcircle of $\triangle ABC$. Let X,Y,Z be the feet of the perpendiculars from P onto lines BC,CA,AB. Prove that X,Y,Z are collinear.

Proof: It suffices to show that $\angle XYC = \angle AYZ$. Since XYPC is cyclic, $\angle XYC = \angle XPC$.

$$\angle XYC = \angle XPC = 90^{\circ} - \angle PCX$$

Since ABCP is cyclic, $\angle PCX = 180^{\circ} - \angle PAB$. Therefore

$$\angle XYC = 90^{\circ} - \angle PCX$$
$$= \angle PAB - 90^{\circ}$$
$$= \angle ZPA$$

Since AZPY is cyclic, $\angle ZPA = \angle AYZ$. Hence

$$\angle XYZ = \angle AYZ$$