Advanced Sensing Techniques

Introduction

Dr. B. Mukherjee & Prof. S. Sen

Introduction

Industrial Revolution: Automation (Three phases)

Ref: J.H. Huijsing: Smart Sensor Systems: Why? Where? How? In Smart Sensor Systems, edited by G.C.M. Meijer, Wiley. Sussex, 2008.

1/14/2022

Example Illustration of Sensorization

Automatic Washing Machine

Revolution: Manual to Automatic

Simplified view of a smart-phone board

MEMS & Sensors in red (scope of this report)

Revolution: Basic to Smart

Important Sensors:

Temperature sensor, Humidity sensor Force sensor, Proximity sensor, Level sensor, Flow sensor, Speed sensor, Vibration sensor etc.

Important Sensors Used:

Accelerometer, Gyroscope, Magnetometer, Proximity sensor, Microphone, etc.

Sensors in a car

Automotive Sensing Opportunities

Sensorization

Applications

Popular Sensors

Analog Devices

Pressure Sensor Bosch MEMS

Sensor Signal Domains

Common Measured Quantity

Domain	Quantity
Mechanical	Position/Displacement, Velocity, Acceleration, Force, Strain, Stress, Pressure, Torque etc.
Thermal	Temperature, Flux, Specific Heat, Thermal Conductivity
Electrical	Charge, Voltage, Current, Electric Field (amplitude, phase,), Conductivity
Magnetic	Magnetic Field (amplitude, phase, polarization), Flux, Permeability
Optical	Refractive Index, Reflectivity, Absorption
Chemical	Fluid Concentrations (Gas or Liquid), Biological parameters/variables

Basic Sensor Structure

Desired features of Advanced Sensors and Systems

- Miniaturization
- Hybridization/Integration/ Packaging
- Incorporation of complex signal processing capabilities
- Improved data communication
- Enhancement of sensing domain

Hybrid Smart Sensor Types

Recent Developments in Sensing Elements

- Newer Sensing Materials
- Newer Sensing Methodology
- New Sensing structures
- Precision manufacturing
- Small size

 Ready integration with sensor electronics

Micro-Relay - Cronos

MEMS

MEMS

MOEMS

Gas Sensors

Bio Sensors

Developments in Signal Conditioning & Processing

- Features:
- A/D Conversion
- Digital Filtering
- Linearization
- Self test and auto-calibration
- Provide intelligence and decision making capacity
 - Provide compatibility with network interface

Integrated in a single IC

Challenges:

- ➤ With improvement of IC technology, the operating voltage is reduced. It decreases linear operating range
- Reduction of power consumption
- Reduction of noise, interference
- Size, monolithic integration

11

Developments in Signal Conditioning & Processing

Digital Signal Processing:

- Flexibility in noise removal by digital filtering
- Complex and fast computation

Smartness:

Provides network connectivity

Intelligence:

- Provides several intelligent functions, e.g. memory, self testing, self identification, self validation etc.
- Uses advanced features like Neural Network, Fuzzy logic etc.

Example: Commercial IMU SensorsADXL-50, MPU 6050

Note: Pin names in round brackets () apply only to MPU-6000 Pin names in square brackets [] apply only to MPU-6050

Desired functionalities in a sensor to provide smartness

Self test, self diagnostic Digital output in standard format Software functions like signal processing and Data logging Multi-channel data fusion Conforming to standard data transfer and control protocol. Security

Advanced features:

- Fault diagnostics and reconfiguration
- Sensor fusion

 $y = f(x, P_1, P_2, \dots, P_m)$

Modeling, Simulation and Experimentation Cycle

Scope for Advanced Sensing Techniques:

- Materials
- Fabrication Techniques
- Hybridization/Integration/Packaging
- Mathematical Modelling
- Design Methodology
- Newer Sensing Techniques
- Applications

Sensing materials

Sensing materials

A. Silicon:

Advantages:

- Versatile; Small size
- Easy for batch fabrication/microfabrication
- Can readily be integrated with signal conditioning circuits
- High young modulus (comparable to steel)
- High melting point
- Good structural stability

Physical and chemical effects of sensors on Silicon:

Signal Domain for Si Type of Sensing

1. Radiant Photovoltaic, Photoconductive

2. Mechanical Pressure sensing (diaphragm),

vibrations sensing (accelerometer)

Piezo-resistivity

3. Thermal IC temperature sensor

4. Magnetic Hall effect sensor, Magneto-resistance

5. Chemical ISFET/ChemFET

B. Ceramic materials:

- Piezoelectric effect
- Ferroelectric effect
- Pyroelectric effect

Radiation Charge

Materials:

- Quartz (SIO₂)
- ZnO (Piezoelectric + Pyroelectric)
- LiNbO₃ (Ferroelectric + Pyroelectric)
- Pb(ZrTi)O₃ (PZT) (Ferroelectric effect)

Since Si does not have any Piezoelectric property, such property can be added by depositing a layer of piezoelectric material on crystalline Silicon. Example: deposition of ZnO layers on Si-structures in SAW (Surface Acoustic Wave) sensors.

C. Metal oxides: Example: ZnO, SnO₂, Al₂O₃, TiO₂,

```
Used for: (i) Humidity sensing (Al<sub>2</sub>O<sub>3</sub>)
(ii) Gas sensing e.g. CO, CO<sub>2</sub>, CH<sub>4</sub>,
(O<sub>2</sub> gas sensing using ZrO<sub>2</sub>)
```

D. Polymer/ Plastics:

Examples:

- 1. PVDF (a polymer type ferroelectric material, used for medical imaging)
- 2. Electret (A plastic material that can trap electric charge- Electret microphone)
- 3. Polymer sensors for detection of enzymes

E. Other types of semiconductors:

Examples:

CdS, InAs, GaS etc: For radiation detection and other applications

F. Thin film and thick film materials:

- Deposition of thin layers of resistive, piezoelectric, semiconductor or magnetic materials on sensitive substrates.
- These layers often display the same effect as bulk materials and can easily be combined with electronic circuits.
- Examples: Thin film Nichrome strain gages, Thick film Thermistors, Ni-Fe head magnetic recording heads.
- Thick film: 10-50 micron
- Thin film < 10 micron
- Deposition techniques are different.

G. Optical Fiber based Sensors:

Single mode and multimode fibers for sensing (i) temperature, (ii) strain, (iii) velocity, (iv) current, (v) voltage, (vi) magnetic field.

H. Newer materials:

Examples: Shape Memory Alloys (SMA), Carbon Nano-tubes, Ghraphene oxides etes

Shape memory Alloy (e.g. Ni-Ti Alloy)

SMA: An alloy that "remembers" its original shape An alloy after deformation returns to its pre-deformed shape when heated. An alloy that undergoes large strain & capable of recovering the initial configuration

One Way Shape Memory Effect

- When a SMA is in its cold state (below As), the metal can be bent or stretched and will hold this shape until heated above the transition T.
- Upon heating, the shape changes to its original.
- When the metal cools again, it will remain in the hot shape until deformed again.
- In this case, cooling from high Tdoes not cause macroscopic shape change.

Two Way Shape Memory Effect

- The material remembers two shapes: one at high T & the other at low T.
- Shows shape memory effect during both cooling and heating.
- The metal can be trained to leave some reminders of the deformed low temp condition in the high temperature phases.
- Above a certain T, the metal loses the 2 way memory effect. This is
 "Iled "amnesia"

Thank You