

Low-Carbon Routing Algorithms For Cloud Computing Services in IP-over-WDM Networks

TREND Plenary Meeting, Volos-Greece 01-05/10/2012

TD3.3: Energy-efficient service provisioning and content distribution

Contributors: CNIT-PoliMi & FW (presented at ICC 2012)

Speaker: Francesco Musumeci (CNIT-PoliMi)

- Introduction
- Power consumption models
- Low-carbon routing algorithms
- Case study
- Conclusions

- Introduction
 - Scope
 - Renewable energy sources
- Power consumption models
- Low-carbon routing algorithms
- Case study
- Conclusions

Scope

- ICT responsible for 8% of global energy consumption (2% of total CO₂ emissions)
- Great benefits in reduction of greenhouse gas emissions using <u>renewable energy sources</u> (RES) e.g., sun and wind
 - RES usually in remote locations, hard to connect to electrical grid → DCs delocalization
- Scope: dynamic low-CO₂ emissions routing
 - Difference between CO₂ reduction and energy efficiency
 - Trade-off: transport power vs processing power (in DCs)

Renewable energy sources

- Wind powered data centers
- Power profile during 24 hours of the day
- Shifted according to the time zone
- Variations due to the waxing and
 - waning of the wind → hard to predict

- Power profile during 24 hours of the day
- Shifted according to the time zone
- Variations mainly due to diurnal cycle of the sun →power from 6 to 22

- Introduction
- Power consumption models
 - Data center power supply
 - Processing power
- Low-carbon routing algorithms
- Case study
- Conclusions

Renewable energy production

- Power needed in each DC to support the whole traffic request:
 - 300 MW for USA24 topology
 - 150 MW for ItalyNet topology
- Solar Energy generated from CSP (Concentrated Solar Power) system with parabolic troughs
 - Reference: Nevada Solar One
 - Our case: area of 6 km² for USA24 and 3 km² for ItalyNet
- Wind Energy generated from Wind farm, group of wind turbines joined together
 - Reference: Wild Horse Wind Farm, Washington
 - Our case: 166 turbines (1.8 MW each) covering an area of 47 km² for USA24 and 83 turbines in 23 km² for ItalyNet

Processing power

- Analysis on energy consumption of Cloud
 Computing*, describing 3 possible types of service:
 - Storage as a Service (S_taaS)
 - Software as a Service (SaaS)
 - Processing as a Service (PaaS)
- We estimate the energy for a single connection during the processing phase

*Baliga et al., "Green cloud computing: Balancing energy in processing, storage and transport".

Data center consumption and design

Model for the energy consumption per unity of Gbit (Wh/Gbit) of a single user connection:

Data center consumption and design

Model for the energy consumption per unity of Gbit (Wh/Gbit) of a single user connection:

$$E_{proc}$$
=1.5 * T_{proc} * P_{server}

- We assume a 8.54 Gbyte (DVD) video file conversion from MPEG-2 to MPEG-4 which requires on the computation server (HP DL380 G5) 1.25 hours → 0.0183 hours/Gbit
- Consider a 10 Gb/s lightpath which lasts t seconds (10*t Gb of data):

■ For SaaS and S_taaS the power consumption is 27*t and 1.41*t Wh

- Introduction
- Power consumption models
- Low-carbon routing algorithms
 - Anycast routing
 - Energy-aware routing algorithms
- Case study
- Conclusions

Routing problem

Algorithms

- Routing algorithms: aim to <u>minimize the total non-</u> <u>renewable (brown) energy</u> of the network (emissions → 1 kwh=228 gCO2)
- Sun&Wind Energy-Aware Routing (SWEAR): chooses for each connection between two paths
 - 1 Maximum usage of renewable energy
 - 2 Lowest transport energy
- Green Energy-Aware Routing (GEAR): finds for each connection the path with
 - Lowest non-renewable (brown) energy
- Consider trasport power (brown)
 - Trade-off between transport power and (green) processing power

SWEAR - A simple example

GEAR - A simple example

- Introduction
- Power consumption models
- Low-carbon routing algorithms
- Case study
- Conclusions

Case Study

- Poisson interarrival traffic
- Holding time with negative exponential distribution
 - Average duration 1 s
- Each connection requires an entire 10 Gbit/s lighpath
- Traffic uniformly distributed

- 24 nodes, 43 links
- 16 wavelenghts/link
- 6 Data centers:
 - 1 with Wind energy (1)
 - 2 with Solar energy (14,15)
 - 3 with Non-Renewable energy (5,11,17)

Case Study

- 21 nodes, 36 links
- 16 wavelenghts/link
- 6 Data centers:
 - 1 with Wind energy (15)
 - 2 with Solar energy (7,20)
 - 3 with Non-Renewable energy (1,11,13)

Case Study

- GEAR and SWEAR compared with two reference algorithms:
 - Shortest Path (SP)
 - Best Green Data Center (BGD): always routing towards the DC with more renewable energy

Results (Total Brown Power)

Reduction in total emissions vs. SP:

- 21% with SWEAR
- 24% with GEAR

Reduction in total emissions vs. BGD:

- 25% with SWEAR
- 27% with GEAR

Results for *ItalyNet*

Results (Other contributions)

Results (Total Brown Power)

Results for USA24

Results for *ItalyNet*

Results (Blocking probability)

- SP shows best performances, routing without constraints on emissions
- SWEAR performances are comparable to SP, thanks to the Load Balancing phase
- GEAR has worse performances than SWEAR
- BGD forces the routing towards the DC with more green energy
- → create bottlenecks that arise P_b

- Introduction
- Power consumption models
- Low-carbon routing algorithms
- Case study
- Conclusions

Conclusions

- On national network we achieve a total emissions reduction up to 24% vs SP and 27% vs BGD
- On continental network we achieve a total emissions reduction up to 11% vs SP and 20% vs BGD (lower reduction due to transport power effect)
- P_b performance remains acceptable
- If it's not done properly, "Follow the wind&sun" routing can be useless

Thank you!

