Notes and exercises from *Topology*

John Peloquin

Introduction

This document contains notes and exercises from [1].

Chapter I

Section 8

Remark. Let X be a set, \mathscr{B} a filter base on X, and Y a separated topological space. If $f: X \to Y$ and $\lim_{\mathscr{B}} f = b$, then b is the only adherent value of f along \mathscr{B} .

Proof. First, b is an adherent value of f along \mathcal{B} . If V is a neighborhood of b, then by assumption there is $B \in \mathcal{B}$ with $f(B) \subset V$. For any $B' \in \mathcal{B}$, there is $B'' \in \mathcal{B}$ with $B'' \subset B \cap B'$ and hence

$$f(B'') \subset f(B \cap B') \subset f(B) \cap f(B') \subset V \cap f(B')$$

Since $B'' \neq \emptyset$, it follows that $V \cap f(B') \neq \emptyset$.

Second, if $b' \neq b$, there are neighborhoods V', V of b', b with $V' \cap V = \emptyset$. By assumption, there is $B \in \mathcal{B}$ with $f(B) \subset V$, so $V' \cap f(B) = \emptyset$ and $b' \not\in \overline{f(B)}$. It follows that b' is not an adherent value of f along \mathcal{B} .

Section 10

Remark. Let E be a set, \mathscr{B} a filter base on E, and $F = F_1 \times \cdots \times F_n$ a topological product space. If $f = (f_i) : E \to F$ and $l = (l_i) \in F$, then $\lim_{\mathscr{B}} f = l$ if and only if $\lim_{\mathscr{B}} f_i = l_i$ for all i.

Proof. If $\lim_{\mathscr{B}} f = l$ and ω_i is an open neighborhood of l_i in F_i , then

$$\omega = F_1 \times \cdots \times F_{i-1} \times \omega_i \times F_{i+1} \times \cdots \times F_n$$

is an open neighborhood of l in F, so there is $B \in \mathcal{B}$ with $f(B) \subset \omega$ and hence $f_i(B) \subset \omega_i$. It follows that $\lim_{\mathcal{B}} f_i = l_i$.

Conversely, suppose $\lim_{\mathscr{B}} f_i = l_i$ for all i. If V is a neighborhood of l in F, then there is an elementary open neighborhood $\omega = \omega_1 \times \cdots \times \omega_n$ of l in V. Now ω_i is an open neighborhood of l_i in F_i , so there is $B_i \in \mathscr{B}$ with $f_i(B_i) \subset \omega_i$ for all i. Finally, there is $B \in \mathscr{B}$ with $B \subset B_1 \cap \cdots \cap B_n$, so $f(B) \subset \omega \subset V$. It follows that $\lim_{\mathscr{B}} f = l$.

Section 11

Remark. Let X be a set, \mathscr{B} a filter base on X, and E a compact topological space. If $f: X \to E$, then f has an adherent value along \mathscr{B} . Moreover, if l is the only adherent value, then $\lim_{\mathscr{B}} f = l$.

Proof. The family $\{\overline{f(B)} \mid B \in \mathcal{B}\}$ has the finite intersection property, so has nonempty intersection by compactness of E.

If V is an open neighborhood of l, then the family

$$\{\overline{f(B)} \cap \complement V \mid B \in \mathscr{B}\}\$$

has empty intersection. By compactness of E, there is a finite subfamily with empty intersection. It follows that there is $B \in \mathcal{B}$ with $f(B) \cap CV = \emptyset$, that is $f(B) \subset V$. Therefore $\lim_{\mathcal{B}} f = l$.

Section 12

Remark. Let *E* be a separated topological space which is not compact. Then the family

$$\mathcal{B} = \{B \subset E \mid CB \text{ is compact}\}\$$

is a filter base on *E*.

Proof. If $B_1, B_2 \in \mathcal{B}$, then

$$\mathbb{C}(B_1 \cap B_2) = (\mathbb{C}B_1) \cup (\mathbb{C}B_2)$$

is compact (11.14), so $B_1 \cap B_2 \in \mathcal{B}$. Finally, $\emptyset \notin \mathcal{B}$ since E is not compact. \square

Remark. Since compact sets are topologically "finite", this filter base allows us to take limits as " $x \to \infty$ " in E.

Remark. Let E be a locally compact topological space which is not compact. If $f: E \to \mathbb{R}$ is continuous and $\lim_{x \to \infty} f(x) = l \in \mathbb{R}$, then f is bounded. Moreover, f attains its bounds which are distinct from l.

Proof. By assumption, there is $K \subseteq E$ compact with l-1 < f(x) < l+1 for $x \notin K$. On the other hand, f is continuous on K (9.5), and hence bounded on K (11.17), so f is bounded on E.

Let $s = \sup_E f$. If $l \neq s$ then l < s, and by assumption there is $K \subset E$ compact with f(x) < (l+s)/2 for $x \notin K$. It follows that $s = \sup_K f$, so f(x) = s for some $x \in K$ (11.17). Similarly for $\inf_E f$.

Section 14

Remark. If *G* is a topological group and *V* is a neighborhood of the unit $e \in G$, then $A \subset G$ is small of order *V* if and only if $AA^{-1} \subset V$.

Remark. If *G* is an additive (commutative) topological group, to see that $x \mapsto -x$ is uniformly continuous it suffices to observe that if *V* is a neighborhood of $0 \in G$ and $A \subset G$ is small of order *V*, then -A is also small of order *V* since

$$-A - (-A) = -A + A = A - A \subset V$$

This does not require *V* to be symmetric.

References

[1] Choquet, G. Topology. Academic Press, 1966.