Experiment 4

1. Kendall's Tau

given

8			
i	$r(y_i^a)$	$r(y_i^b)$	q_i
5	1	2	1
6	2	3	1
7	3.5	5	<mark>2</mark>
4	3.5	1	0
3	5	<mark>4</mark>	0
2	6	7.5	2
8	7	7.5	1
1	8	6	0

 q_i : number of $r(y_i^b)$ lower or equal $r(y_i^b)$ and in the order above under $r(y_i^b)$

It is sorted according to increasing ranks $r(y_i^a)$ of the first sequence.

Hint: If two elements had the same rank, then from both the average value is taken.

$$\tau = 1 - \frac{4\sum_{i=1}^{n} q_i}{n \cdot (n-1)} = 1 - \frac{4 \cdot (1+1+2+2+1)}{8 \cdot 7} = 1 - \frac{4 \cdot 7}{8 \cdot 7} = 0.5$$

this example was taken from:

Walz Guido, Lexikon der Mathematik: Band 2. Springer Berlin Heidelberg,

2017. doi: 10.1007/978-3-662-53504-2

Hint: It is not equivalent to the correct formula from Wikipedia (see below)

https://de.wikipedia.org/wiki/Rangkorrelationskoeffizient#Kendalls Tau

$$\tau = \frac{\#concordant - \#discordant}{S} = \frac{C - D}{\sqrt{(C + D + T_a) \cdot (C + D + T_b)}}$$

concordant: $y_i^a < y_j^a \land y_i^b < y_j^b$ | $y_i^a > y_j^a \land y_i^b > y_j^b$ (sort order agreement) discordant: $y_i^a < y_j^a \land y_i^b > y_j^b$ | $y_i^a > y_j^a \land y_i^b < y_j^b$ (sort order disagreement)

 T_a : $y_i^a = y_j^a \wedge y_i^b \neq y_j^b$ (bindings in a) $y_i^a \neq y_i^a \wedge y_i^b = y_i^b$ (bindings in b)

idea

sort by $r(y_i^a)$ in ascending order and compute signs for $r(y_i^b) - r(y_i^b)$ for i < j and count signs

assumption: y_i^a and y_i^b are unique

if $r(y_i^b) - r(y_i^b) < 0$

then concordant because $r(y_i^a) - r(y_j^a) < 0$ holds,

since $r(y_i^a)$ are sorted in ascending order

else discordant

$r(y_i^a)$	1	2	3.5	3.5	5	6	7	8
$r(y_i^b)$	2	3	5	1	4	7.5	7.5	6

calculation

count boxes: $\frac{n \cdot (n-1)}{2} = \frac{8 \cdot 7}{2} = 28$

1-2	1-3.5	1-3.5	1-5	1-6	1-7	1-8
2-3	2-5	2-1	2-4	2-7.5	2-7.5	2-6
-	-	+	-	-	-	-

2-3.5	2-3.5	2-5	2-6	2-7	2-8
3-5	3-1	3-4	3-7.5	3-7.5	3-6
-	+	-	_	_	-

3.5-3.5	3.5-5	3.5-6	3.5-7	3.5-8
5-1	5-4	5-7.5	5-7.5	5-6
а	+	-	-	-

3.5-5	3.5-6	3.5-7	3.5-8
1-4	1-7.5	1-7.5	1-6
-	-	-	-

5-6	5-7	5-8
4-7.5	4-7.5	4-6
-	-	-

6-7	6-8
7.5-7.5	7.5-6
b	+

7-8	
7.5-6	
+	

C: 21 D: 5 T_a : 1 T_b : 1

$$\tau = \frac{C - D}{\sqrt{(C + D + T_a) \cdot (C + D + T_b)}} = \frac{21 - 5}{\sqrt{27 \cdot 27}} \approx 0.5925926$$
 (correct)

> cor(c(8,6,5,3.5,1,2,3.5,7), c(6,7.5,4,1,2,3,5,7.5), method="kendall")
[1] 0.5925926

2. Tukey's Biweight

W-Estimator (usual fast implementation – works nicely)

Hint: algorithm from Statistical Algorithms Description Document, 2002, Affymetrix

```
#' Implements Tukey's one-step biweight algorithm for robust mean calculation
#' using a w-estimator instead of a m-estimator.
#' Hint: Parameter c is by default set on value 9.
#' @param x {vector} the values
#' for which the value has to be computed
#' @param c {numerical} tuning parameter
#' @return {numerical} the function value
#' @source Statistical Algorithms Description Document, 2002, Affymetrix
#' at page 22
Math.tukeysBiweightRobustMean <- function(x, c = 9) {
 median <- median(x);</pre>
 mad <- mad(x, constant = 1);  # median(c * |x i - median(x)|), hint: default method multiplies with constant c = 1.4826</pre>
  # epsilon to avoid division by zero
  uValues <- (x-median)/(c * mad + Maths.EPSILON); # analogous to (x-mean)/sd
 weights <- sapply(uValues, Math.weight); # where outlier weights removed because their values are 0
 mean <- sum(weights*x)/sum(weights); # where outlier weights removed because their values are 0</pre>
  return(mean); # compute mean
#' Implements Tukey's weighting function.
#' @param u {numerical} the value for which a weight has to be computed
#' @return {numerical} a weight
Math.weight <- function(u) {</pre>
 if (abs(u) \le 1) {
   return((1-u^2)^2);
  return(0);
```

given

$$y = \langle 2, 3, 5 \rangle$$

 $c = 9$

calculation

median = 3

$$MAD_y = median\{|2 - 3|, |3 - 3|, |5 - 3|\} = median\{0, 1, 2\} = 1$$

$$m_1 = \frac{2-3}{9 \cdot 1 + 0.0001} = \frac{-1}{9.0001} \approx -0.111$$

$$m_2 = \frac{3-3}{9 \cdot 1 + 0.0001} = 0$$

$$m_3 = \frac{5-3}{9 \cdot 1 + 0.0001} = \frac{2}{9.0001} \approx 0.222$$

$$w(m_1) = \begin{cases} \left(1 - m_1^2\right)^2, |m_1| \le 1 \\ 0, |m_1| > 1 \end{cases} = \left(1 - \left(\frac{-1}{9.0001}\right)^2\right)^2 \approx 0.975$$

$$w(m_2) = \left(1 - 0^2\right)^2 = 1$$

$$w(m_3) = \left(1 - \left(\frac{2}{9.0001}\right)^2\right)^2 \approx 0.904$$

$$\bar{y} = \frac{w(m_1) \cdot 2 + w(m_2) \cdot 3 + w(m_3) \cdot 5}{w(m_1) + w(m_2) + w(m_3)} = 3.288936942$$

> dplR::tbrm(c(2,3,5));

[1] 3.288936

> Math.tukeysBiweightRobustMean(a)

[1] 3.288937