Duality in Linear Programming

```
Maximize 2x_1 + 3x_2 subject to: 4x_1 + 8x_2 \le 12 2x_1 + x_2 \le 3 3x_1 + 2x_2 \le 4 x_1, x_2, \ge 0
```

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Can we infer an upper bound on the objective function from the constraints?

```
Maximize 2x_1 + 3x_2 subject to: 4x_1 + 8x_2 \le 12 2x_1 + x_2 \le 3 3x_1 + 2x_2 \le 4 x_1, x_2, \ge 0
```

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

```
Maximize 2x_1 + 3x_2 subject to: 4x_1 + 8x_2 \le 12 2x_1 + x_2 \le 3 3x_1 + 2x_2 \le 4 x_1, x_2, \ge 0
```

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

Do you see an even better upper bound?

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

Better: $2x_1 + 3x_2 \le \frac{1}{2}(4x_1 + 8x_2) \le \frac{1}{2}(12) = 6$

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

Better: $2x_1 + 3x_2 \le \frac{1}{2}(4x_1 + 8x_2) \le \frac{1}{2}(12) = 6$ Better: $2x_1 + 3x_2 \le \frac{1}{3}(4x_1 + 8x_2 + 2x_1 + x_2) \le \frac{1}{3}(12 + 3) = 5$

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

Better: $2x_1 + 3x_2 \le \frac{1}{2}(4x_1 + 8x_2) \le \frac{1}{2}(12) = 6$ Better: $2x_1 + 3x_2 \le \frac{1}{3}(4x_1 + 8x_2 + 2x_1 + x_2) \le \frac{1}{3}(12 + 3) = 5$

How good of an upper bound can we get in this way?

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Without computing the optimum, we can infer: $2x_1 + 3x_2 \le 4x_1 + 8x_2 \le 12$ by the nonnegative constraints —

Better: $2x_1 + 3x_2 \le \frac{1}{2}(4x_1 + 8x_2) \le \frac{1}{2}(12) = 6$

Better: $2x_1 + 3x_2 \le \frac{1}{3}(4x_1 + 8x_2 + 2x_1 + x_2) \le \frac{1}{3}(12 + 3) = 5$

How good of an upper bound can we get in this way?

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2, d_2 \geq 3$ and h as small as possible.

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2, d_2 \geq 3$ and h as small as possible.

How do we get this?

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2, d_2 \geq 3$ and h as small as possible.

How do we get this?

Use variables as coefficients for the inequalities!

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2, d_2 \geq 3$ and h as small as possible.

How do we get this?

$$y_1(4x_1 + 8x_2) + y_2(2x_1 + x_2) + y_3(3x_1 + 2x_2) \le 12y_1 + 3y_2 + 4y_3$$

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2$, $d_2 \geq 3$ and h as small as possible.

How do we get this?

$$\underbrace{y_1(4x_1 + 8x_2) + y_2(2x_1 + x_2) + y_3(3x_1 + 2x_2)} \le 12y_1 + 3y_2 + 4y_3$$

$$= (4y_1 + 2y_2 + 3y_3)x_1 + (8y_1 + y_2 + 2y_3)x_2$$
 with $y_1, y_2, y_3 \ge 0$.

Thus
$$d_1 = 4y_1 + 2y_2 + 3y_3$$
, $d_2 = 8y_1 + y_2 + 2y_3$, $h = 12y_1 + 3y_2 + 4y_3$.

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Derived from the constraints, we want an inequality

$$d_1x_1 + d_2x_2 \le h$$

with $d_1 \geq 2, d_2 \geq 3$ and h as small as possible.

How do we get this?

$$y_1(4x_1 + 8x_2) + y_2(2x_1 + x_2) + y_3(3x_1 + 2x_2) \le 12y_1 + 3y_2 + 4y_3$$

$$= (4y_1 + 2y_2 + 3y_3)x_1 + (8y_1 + y_2 + 2y_3)x_2$$
 with $y_1, y_2, y_3 \ge 0$.

Thus
$$d_1 = 4y_1 + 2y_2 + 3y_3$$
, $d_2 = 8y_1 + y_2 + 2y_3$, $h = 12y_1 + 3y_2 + 4y_3$.

To find the best y_1, y_2, y_3 , we solve a dual linear program:

Minimize
$$12y_1 + 3y_2 + 4y_3$$

subject to: $4y_1 + 2y_2 + 3y_3 \ge 2$
 $8y_1 + y_2 + 2y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$

How well does a dual linear program bound the original? Perfectly!

Dual LP has optimum $(y_1, y_2, y_3) = (\frac{5}{16}, 0, \frac{1}{4})$ with value 4.75.

Primal LP has optimum $(x_1, x_2) = (\frac{1}{2}, \frac{5}{4})$ with value 4.75.

How well does a dual linear program bound the original? Perfectly!

Dual LP has optimum $(y_1, y_2, y_3) = (\frac{5}{16}, 0, \frac{1}{4})$ with value 4.75.

Primal LP has optimum $(x_1, x_2) = (\frac{1}{2}, \frac{5}{4})$ with value 4.75.

Primal LP

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, \ge 0$

Dual LP

Minimize
$$12y_1 + 3y_2 + 4y_3$$
 subject to: $4y_1 + 2y_2 + 3y_3 \ge 2$ $8y_1 + y_2 + 2y_3 \ge 3$ $y_1, y_2, y_3 \ge 0$

How well does a dual linear program bound the original? Perfectly!

Dual LP has optimum $(y_1, y_2, y_3) = (\frac{5}{16}, 0, \frac{1}{4})$ with value 4.75.

Primal LP has optimum $(x_1, x_2) = (\frac{1}{2}, \frac{5}{4})$ with value 4.75.

Primal LP

Maximize
$$2x_1 + 3x_2$$
 subject to: $4x_1 + 8x_2 \le 12$ $2x_1 + x_2 \le 3$ $3x_1 + 2x_2 \le 4$ $x_1, x_2, > 0$

Dual LP

Minimize
$$12y_1 + 3y_2 + 4y_3$$
 subject to: $4y_1 + 2y_2 + 3y_3 \ge 2$ $8y_1 + y_2 + 2y_3 \ge 3$ $y_1, y_2, y_3 \ge 0$

More generally, the dual of maximize $\boldsymbol{c}^T\boldsymbol{x}$ subject to $A\boldsymbol{x} \leq \boldsymbol{b}$ and $\boldsymbol{x} \geq 0$ is

minimize b^Ty subject to $A^Ty \geq c$ and $y \geq 0$

Weak duality theorem:

For feasible solutions x and y, we have

$$c^T x \leq b^T y$$
.

If the primal is unbounded, then the dual is infeasible.

Weak duality theorem:

For feasible solutions x and y, we have

$$c^T x \leq b^T y$$
.

If the primal is unbounded, then the dual is infeasible.

Proof:
$$c^T x \le (A^T y)^T x$$
 (dual constraints: $A^T y \ge c$)

Weak duality theorem:

For feasible solutions x and y, we have

$$c^T x \leq b^T y$$
.

If the primal is unbounded, then the dual is infeasible.

Proof:
$$c^Tx \leq (A^Ty)^Tx$$

= y^TAx
 $\leq y^Tb$ (primal constraints: $Ax \leq b$)

Weak duality theorem:

For feasible solutions x and y, we have

$$c^T x \leq b^T y$$
.

If the primal is unbounded, then the dual is infeasible.

Proof:
$$c^T x \leq (A^T y)^T x$$

$$= y^T A x$$

$$\leq y^T b$$

$$= b^T y$$

$$[y_1, \dots, y_m] \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$

$$= [b_1, \dots, b_m] \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Weak duality theorem:

For feasible solutions x and y, we have

$$c^T x \leq b^T y$$
.

If the primal is unbounded, then the dual is infeasible.

If the dual is unbounded (from below), then the primal is infeasible.

Proof:
$$c^T x \leq (A^T y)^T x$$

$$= y^T A x$$

$$\leq y^T b$$

$$= b^T y$$

$$[y_1, \dots, y_m] \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} = b_1 y_1 + b_2 y_2 + \dots + b_m y_m$$

$$= [b_1, \dots, b_m] \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

Strong duality theorem:

Optimal feasible solutions satisfy $c^T x = b^T y$.

Feasibilty vs Optimality (via Duality)

"Finding an optimal solution is no harder than finding a feasible solution."

First explanation: binary search

Example: Maximize x_1+x_2 subject to $-x_1+x_2\leq 1$ $x_1+6x_2\leq 15$ $4x_1-x_2\leq 10$ $x_1,x_2\geq 0$

"Finding an optimal solution is no harder than finding a feasible solution."

First explanation: binary search

Example: Maximize
$$x_1+x_2$$
 subject to $-x_1+x_2\leq 1$ $x_1+6x_2\leq 15$ $4x_1-x_2\leq 10$ $x_1,x_2\geq 0$

"Finding an optimal solution is no harder than finding a feasible solution." Second explanation: Simplex method Phase 1 vs Phase 2

Maximize
$$x_1 + 2x_2$$
 subject to: $x_1 + 3x_2 + x_3 = 4$ $2x_2 + x_3 = 2$ $x_1, x_2, x_3 \geq 0$ Note: $(x_1, x_2, x_3) = (0, 0, 0)$ is not feasible.

"Finding an optimal solution is no harder than finding a feasible solution."

Second explanation: Simplex method Phase 1 vs Phase 2

Auxilliary problem to find feasible solution via simplex method:

Maximize
$$x_1+2x_2$$
 subject to: $x_1+3x_2+x_3=4$
$$2x_2+x_3=2$$

$$x_1,x_2,x_3\geq 0$$

Note: $(x_1, x_2, x_3) = (0, 0, 0)$ is not feasible.

Maximize
$$-x_4-x_5$$
 subject to: $x_1+3x_2+x_3+x_4=4$ $2x_2+x_3+x_5=2$ $x_1,x_2,x_3,x_4,x_5\geq 0$

The objective value is $0 \iff$ there is a feasible solution to the original problem.

Third explanation, using duality:

Primal: maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$.

Dual: minimize b^Ty subject to $A^Ty \ge c$ and $y \ge 0$.

Weak duality: $c^T x \leq b^T y$

Third explanation, using duality:

Primal: maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$.

Dual: minimize b^Ty subject to $A^Ty \ge c$ and $y \ge 0$.

Weak duality: $c^T x \leq b^T y$

How can we combine this such that any feasible solution is optimal?

Third explanation, using duality:

Primal: maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$.

Dual: minimize $b^T y$ subject to $A^T y \ge c$ and $y \ge 0$.

Weak duality: $c^T x \leq b^T y$

Finding an optimal solution to

Maximize $c^T x$ subject to $Ax \leq b$, $x \geq 0$

is the same as finding a feasible solution to

Maximize
$$c^Tx$$
 subject to $Ax \leq b$
$$A^Ty \geq c$$

$$c^Tx \geq b^Ty$$

$$x \geq 0, y \geq 0$$

Third explanation, using duality:

Primal: maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$.

Dual: minimize $b^T y$ subject to $A^T y \ge c$ and $y \ge 0$.

Weak duality: $c^T x \leq b^T y$

Finding an optimal solution to

Maximize $c^T x$ subject to $Ax \leq b$, $x \geq 0$

is the same as finding a feasible solution to

Maximize c^Tx subject to $Ax \leq b$ $A^Ty \geq c$ $c^Tx \geq b^Ty$ $x \geq 0, y \geq 0$

We know $c^Tx \leq b^Ty$ for any feasible solutions to the primal and the dual, so adding $c^Tx \geq b^Ty$ as a constraint implies optimality.

Duality recipe and physical interpretation

Primal: Maximize $c^T x$ subject to $Ax \leq b$ and $x \geq 0$.

Dual: Minimize b^Ty subject to $A^Ty \ge c$ and $y \ge 0$.

A is of size $m \times n$ Primal has n variables, m constraints Dual has m variables, n constraints

	Primal linear program	Dual linear program
Variables	x_1, x_2, \ldots, x_n	y_1,y_2,\ldots,y_m
Matrix	A	A^T
Right-hand side	b	c
Objective function	$\max c^T x$	$\min b^T y$
Constraints	i th constraint has \leq	$y_i \ge 0$
	\geq	$y_i \leq 0$
		$y_i \in \mathbb{R}$
	$x_j \ge 0$	j th constraint has \geq
	$x_j \leq 0$	\leq
	$x_j \in \mathbb{R}$	

Primal: Maximize $c^T x$ subject to $Ax \leq b$.

(without nonnegative constraints for x_i)

Dual: Minimize $b^T y$ subject to ???

Primal: Maximize $c^T x$ subject to $Ax \leq b$.

(without nonnegative constraints for x_i)

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Dualization recipe

Primal: Maximize $c^T x$ subject to $Ax \leq b$.

(without nonnegative constraints for x_i)

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Primal: Maximize
$$3x_1+2x_2+4x_3$$
 subject to $2x_1-x_3\geq 4$ $x_1+x_2+3x_3=7$ $x_1\leq 0, x_3\geq 0$

Dual: Minimize ???? subject to

Dualization recipe

Primal: Maximize $c^T x$ subject to $Ax \leq b$.

(without nonnegative constraints for x_i)

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Primal: Maximize
$$3x_1+2x_2+4x_3$$
 subject to $2x_1-x_3\geq 4$ $x_1+x_2+3x_3=7$ $x_1\leq 0, x_3\geq 0$

Dual: Minimize
$$4y_1+7y_2$$
 subject to $2y_1+y_2\leq 3$ $y_2=2$ $-y_1+3x_2\geq 4$ $y_1\leq 0$

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize b^Ty subject to $A^Ty=c$ and $y\geq 0$.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

$$A = \begin{bmatrix} \dots & a_1^T & \dots \\ a_2^T & \dots \\ \vdots & \vdots \\ \dots & a_m^T & \dots \end{bmatrix}$$

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Imagine
$$c$$
 points downwards \approx gravity $\begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \end{bmatrix}$ $A = \begin{bmatrix} \dots & a_2^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_m^T & \dots \end{bmatrix}$ equilibrium of forces: $c = y_1 a_1 + y_2 a_2$

We get
$$c = \sum_{i=1}^m y_i a_i = A^T y$$
.

(all other y_i 's are 0)

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Imagine
$$c$$
 points downwards \approx gravity $\begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \\ \vdots & \vdots & \dots \\ a_1^T x^* = b_1 & x^* & a_2^T x^* = b_2 & \dots & a_m^T & \dots \end{bmatrix}$ equilibrium of forces: $c = A^T y$

We get
$$c = \sum_{i=1}^m y_i a_i = A^T y$$
.

(all other y_i 's are 0)

So *y* is a feasible solution of the dual.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Imagine
$$c$$
 points downwards \approx gravity
$$A = \begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_m^T & \dots \end{bmatrix}$$

$$\begin{array}{c} a_1^T x^* = b_1 & x^* & a_2^T x^* = b_2 & \dots & a_m^T & \dots \\ \end{array}$$
 equilibrium of forces: $c = A^T y$

Now, $y^T(Ax - b) = 0$, because

- $y_i = 0$ if the *i*th face is not supporting
- the ith component of Ax b is zero if the ith face is supporting.

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Imagine
$$c$$
 points downwards \approx gravity $\begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \end{bmatrix}$
$$A = \begin{bmatrix} \dots & a_2^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_m^T & \dots \end{bmatrix}$$
 equilibrium of forces: $c = A^T y$

Now, $y^T(Ax - b) = 0$, because

- $y_i = 0$ if the *i*th face is not supporting
- the *i*th component of Ax b is zero if the *i*th face is supporting.

$$\Rightarrow b^T y = y^T b = y^T A x = c^T x$$
 ("physical proof" of strong duality)

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and y > 0.

Imagine
$$c$$
 points downwards \approx gravity $\begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \end{bmatrix}$
$$A = \begin{bmatrix} \dots & a_2^T & \dots \\ \vdots & \vdots & \dots \\ \dots & a_m^T & \dots \end{bmatrix}$$
 equilibrium of forces: $c = A^T y$

Now, $y^T(Ax - b) = 0$, because

- $y_i = 0$ if the *i*th face is not supporting
- the *i*th component of Ax b is zero if the *i*th face is supporting.

 $\Rightarrow b^T y = y^T b = y^T A x = c^T x$ ("physical proof" of strong duality)

Note: We will see a mathematical proof shortly

Primal: Maximize c^Tx subject to $Ax \leq b$ (no nonnegativity constraints).

Dual: Minimize $b^T y$ subject to $A^T y = c$ and $y \ge 0$.

Imagine
$$c$$
 points downwards \approx gravity
$$A = \begin{bmatrix} \dots & a_1^T & \dots \\ \dots & a_2^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & a_m^T & \dots \end{bmatrix}$$

$$\begin{array}{c} a_1^T x^* = b_1 & x^* & a_2^T x^* = b_2 & \dots & a_m^T & \dots \\ \end{array}$$
 equilibrium of forces: $c = A^T y$

Now, $y^T(Ax - b) = 0$, because

- $y_i = 0$ if the ith face is not supporting
- the ith component of Ax-b is zero if the ith face is supporting.

Remark: " $y_i > 0 \Rightarrow a_i^T x = b$ " is called complementary slackness, and characterizes optimality here.

Def. The convex cone generated by $a_1,...,a_n\in\mathbb{R}^m$ is $\{x_1a_1+...+x_na_n\mid x_1,...,x_n\geq 0\}$

Def. The convex cone generated by $a_1,...,a_n \in \mathbb{R}^m$ is $\{x_1a_1+...+x_na_n \mid x_1,...,x_n \geq 0\}$

Note $C = \{Ax \mid x \ge 0\}$ is the convex cone generated by the columns of A.

Def. The convex cone generated by $a_1,...,a_n \in \mathbb{R}^m$ is $\{x_1a_1+...+x_na_n \mid x_1,...,x_n \geq 0\}$

Note $C = \{Ax \mid x \ge 0\}$ is the convex cone generated by the columns of A.

Ax = b has a solution $x \ge 0 \Leftrightarrow b \in C$

Def. The convex cone generated by $a_1, ..., a_n \in \mathbb{R}^m$ is $\{x_1a_1 + ... + x_na_n \mid x_1, ..., x_n \geq 0\}$

Note $C = \{Ax \mid x \ge 0\}$ is the convex cone generated by the columns of A.

Ax=b has a solution $x\geq 0 \Leftrightarrow b\in C$

Farkas Lemma (geometric): If $b \notin C$ then there is a hyperplane through 0 separating C and b.

Farkas Lemma

Let A be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$.

Then exactly one of the following two possibilities occurs.

- (1) There exists $x \in \mathbb{R}^n$ with Ax = b and $x \ge 0$
- (2) There exists $y \in \mathbb{R}^m$ with $y^T A \ge 0^T$ and $y^T b < 0$.

Def. The convex cone generated by $a_1,...,a_n \in \mathbb{R}^m$ is $\{x_1a_1+...+x_na_n \mid x_1,...,x_n \geq 0\}$

Note $C = \{Ax \mid x \ge 0\}$ is the convex cone generated by the columns of A.

Ax=b has a solution $x\geq 0 \Leftrightarrow b\in C$

Farkas Lemma (geometric): If $b \notin C$ then there is a hyperplane through 0 separating C and b.

Farkas Lemma

Let A be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$.

Then exactly one of the following two possibilities occurs.

- (1) There exists $x \in \mathbb{R}^n$ with Ax = b and $x \ge 0$
- (2) There exists $y \in \mathbb{R}^m$ with $y^TA \ge 0^T$ and $y^Tb < 0$.

proof idea:

Let z be closest point in C to b. Choose y = z - b

Farkas Lemma

Let A be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$.

Then exactly one of the following two possibilities occurs.

- (1) There exists $x \in \mathbb{R}^n$ with Ax = b and $x \ge 0$
- (2) There exists $y \in \mathbb{R}^m$ with $y^T A \ge 0^T$ and $y^T b < 0$.

proof idea:

Let z be closest point in C to b. Choose y = z - b

would need to prove:

- z exists
- $y^T b < 0$
- $y^T x \ge 0$ for $x \in C$

A Variant of the Farkas Lemma

Farkas Lemma

Let A be an $m \times n$ matrix, and let $b \in \mathbb{R}^m$.

Then exactly one of the following two possibilities occurs.

- (1) There exists $x \in \mathbb{R}^n$ with Ax = b and $x \ge 0$
- (2) There exists $y \in \mathbb{R}^m$ with $y^T A \ge 0^T$ and $y^T b < 0$.

Farkas: When does a system of linear equalities have a nonnegative solution?

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Variant: When does a system of linear inequalities have a nonnegative solution?

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

 $Ax \leq b$ has solution $x \geq 0$ $\Leftrightarrow b' := Ax$ lies in C and the "negative octant" with b as origin.

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

 $Ax \leq b$ has solution $x \geq 0$

 $\Leftrightarrow b' := Ax$ lies in C and the "negative octant" with b as origin.

 \Leftrightarrow b lies in the convex cone C^+ spanned by $a_1, \ldots a_n$ and by the

standard basis vectors e_1, \ldots, e_m

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

 $Ax \leq b$ has solution $x \geq 0$

 $\Leftrightarrow b' := Ax$ lies in C and the "negative octant" with b as origin.

 $\Leftrightarrow b$ lies in the convex cone C^+ spanned by $a_1, \ldots a_n$ and by the standard basis vectors e_1, \ldots, e_m

 \Leftrightarrow (Farkas Lemma) C^+ and b cannot be separated by a hyperplane through 0

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

 $Ax \leq b$ has solution $x \geq 0$

 $\Leftrightarrow b' := Ax$ lies in C and the "negative octant" with b as origin.

 $\Leftrightarrow b$ lies in the convex cone C^+ spanned by $a_1, \ldots a_n$ and by the standard basis vectors e_1, \ldots, e_m

 \Leftrightarrow (Farkas Lemma) C^+ and b cannot be separated by a hyperplane through 0

 \Leftrightarrow C and b cannot be separated by a hyperplane through 0 with e_1, \ldots, e_n on the side of C

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

 $Ax \leq b$ has solution $x \geq 0$

 $\Leftrightarrow b' := Ax$ lies in C and the "negative octant" with b as origin.

 $\Leftrightarrow b$ lies in the convex cone C^+ spanned by $a_1, \ldots a_n$ and by the

standard basis vectors e_1, \ldots, e_m

 \Leftrightarrow (Farkas Lemma) C^+ and b cannot be separated by a hyperplane through 0

 \Leftrightarrow C and b cannot be separated by a hyperplane through 0 with e_1, \ldots, e_n on the side of C

→ Variant of Farkas Lemma

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Proof

Bring $Ax \leq b$ into equational form using slack variables:

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Proof

Bring $Ax \leq b$ into equational form using slack variables:

Form the matrix $\bar{A} = (A \mid I_m)$.

 $Ax \leq b$ has a nonnegative solution if and only if

 $\bar{A}\bar{x}=b$ has a nonnegative solution.

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Proof

Bring $Ax \leq b$ into equational form using slack variables:

Form the matrix $\bar{A} = (A \mid I_m)$.

 $Ax \leq b$ has a nonnegative solution if and only if $\bar{A}\bar{x} = b$ has a nonnegative solution.

By the Farkas Lemma, this is if and only if every $y \in \mathbb{R}^m$ with $y^T \bar{A} \geq 0^T$ satisfies $y^T b \geq 0$.

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Proof

Bring $Ax \leq b$ into equational form using slack variables:

Form the matrix $\bar{A} = (A \mid I_m)$.

 $Ax \leq b$ has a nonnegative solution if and only if $\bar{A}\bar{x} = b$ has a nonnegative solution.

By the Farkas Lemma, this is if and only if every $y \in \mathbb{R}^m$ with $y^T \bar{A} \geq 0^T$ satisfies $y^T b \geq 0$.

Means exactly $y^TA \geq 0^T$ and $y \geq 0$.

Proof of Strong Duality from the Farkas Lemma

Variant of the Farkas Lemma

The system $Ax \leq b$ has a nonnegative solution $x \geq 0$ if and only if every nonnegative $y \in \mathbb{R}^m$ with $y^TA \geq 0^T$ also satisfies $y^Tb \geq 0$.

Primal: $\max c^T x$ subject to $Ax \leq b$ and $x \geq 0$

Dual: min b^Ty subject to $A^Ty \ge c$ and $y \ge 0$

want to prove:

Strong duality: Optimal solutions x^*, y^* satisfy $c^T x^* = b^T y^*$.

Proof of Strong Duality from the Farkas Lemma

Strong duality: Optimal solutions x^{*},y^{*} satisfy $c^{T}x^{*}=b^{T}y^{*}.$ Proof

- (1) $Ax \leq b$, $c^T x \geq c^T x^*$ has a solution $x \geq 0$.
- (2) $Ax \leq b$, $c^Tx \geq c^Tx^* + \varepsilon$ has no solution $x \geq 0$ for any $\varepsilon > 0$.

Proof of Strong Duality from the Farkas Lemma

Strong duality: Optimal solutions x^*, y^* satisfy $c^T x^* = b^T y^*$. Proof

- (1) $Ax \leq b$, $c^T x \geq c^T x^*$ has a solution $x \geq 0$.
- (2) $Ax \leq b$, $c^Tx \geq c^Tx^* + \varepsilon$ has no solution $x \geq 0$ for any $\varepsilon > 0$.

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_\varepsilon} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

Strong duality: Optimal solutions x^*, y^* satisfy $c^T x^* = b^T y^*$. Proof

- (1) $Ax \leq b$, $c^T x \geq c^T x^*$ has a solution $x \geq 0$.
- (2) $Ax \leq b$, $c^Tx \geq c^Tx^* + \varepsilon$ has no solution $x \geq 0$ for any $\varepsilon > 0$.

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_\varepsilon} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

(1) is $\hat{A}x \leq \hat{b_0}$ and (2) is $\hat{A}x \leq \hat{b_{arepsilon}}$

Strong duality: Optimal solutions x^*, y^* satisfy $c^T x^* = b^T y^*$. Proof

- (1) $Ax \leq b$, $c^T x \geq c^T x^*$ has a solution $x \geq 0$.
- (2) $Ax \leq b$, $c^Tx \geq c^Tx^* + \varepsilon$ has no solution $x \geq 0$ for any $\varepsilon > 0$.

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

(1) is $\hat{A}x \leq \hat{b_0}$ and (2) is $\hat{A}x \leq \hat{b_{\varepsilon}}$

Farkas variant \Rightarrow since (2) has no solution, there is a non-negative

$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with $\hat{y}^T\hat{A}\geq 0^T$ but $\hat{y}^T\hat{b_{\varepsilon}}<0$

Strong duality: Optimal solutions x^*, y^* satisfy $c^T x^* = b^T y^*$. Proof

- (1) $Ax \leq b$, $c^T x \geq c^T x^*$ has a solution $x \geq 0$.
- (2) $Ax \leq b$, $c^Tx \geq c^Tx^* + \varepsilon$ has no solution $x \geq 0$ for any $\varepsilon > 0$.

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

(1) is $\hat{A}x \leq \hat{b_0}$ and (2) is $\hat{A}x \leq \hat{b_{arepsilon}}$

Farkas variant \Rightarrow since (2) has no solution, there is a non-negative $\hat{y} = (u, z) \in \mathbb{R}^{m+1}$ with $\hat{y}^T \hat{A} \geq 0^T$ but $\hat{y}^T \hat{b_\varepsilon} < 0$

Since (1) has a nonnegative solution, the same \hat{y} satisfies $\hat{y}^T \hat{b_0} \geq 0$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is $\hat{y}=(u,z)\in\mathbb{R}^{m+1}$ with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$

$$u^T A - z c^T \ge 0$$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$ $u^TA-zc^T>0$ $\Rightarrow u^TA>zc^T$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_\varepsilon}<0$, and $\hat{y}^T\hat{b_0}\geq 0$ $u^TA-zc^T\geq 0 \Rightarrow u^TA\geq zc^T\Rightarrow v=u/z$ is feasible dual solution if $z>0$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is $\hat{y}=(u,z)\in\mathbb{R}^{m+1}$ with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_\varepsilon}<0$, and $\hat{y}^T\hat{b_0}\geq 0$ $u^TA-zc^T\geq 0 \ \Rightarrow u^TA\geq zc^T\Rightarrow v=u/z \text{ is feasible dual solution if } z>0$ $b^Tu=u^Tb< z(c^Tx^*+\varepsilon)$

$$\operatorname{Let} \hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1)\times n} \text{ and } \hat{b_\varepsilon} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}.$$

There is $\hat{y} = (u,z) \in \mathbb{R}^{m+1}$ with: $\hat{y}^T \hat{A} \geq 0$, $\hat{y}^T \hat{b_{\varepsilon}} < 0$, and $\hat{y}^T \hat{b_0} \geq 0$ $u^T A - z c^T \geq 0 \ \Rightarrow u^T A \geq z c^T \Rightarrow v = u/z \text{ is feasible dual solution if } z > 0$ $b^T u = u^T b < z (c^T x^* + \varepsilon) \Rightarrow b^T v < c^T x^* + \varepsilon \text{ if } z > 0$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$
$$u^TA-zc^T\geq 0 \Rightarrow u^TA\geq zc^T\Rightarrow v=u/z \text{ is feasible dual solution if } z>0$$

$$b^Tu=u^Tb< z(c^Tx^*+\varepsilon)\Rightarrow b^Tv< c^Tx^*+\varepsilon \text{ if } z>0$$

$$b^Tu=u^Tb>zc^Tx^*$$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y} = (u,z) \in \mathbb{R}^{m+1}$$
 with: $\hat{y}^T \hat{A} \geq 0$, $\hat{y}^T \hat{b_\varepsilon} < 0$, and $\hat{y}^T \hat{b_0} \geq 0$
$$u^T A - z c^T \geq 0 \Rightarrow u^T A \geq z c^T \Rightarrow v = u/z \text{ is feasible dual solution if } z > 0$$

$$b^T u = u^T b < z (c^T x^* + \varepsilon) \Rightarrow b^T v < c^T x^* + \varepsilon \text{ if } z > 0$$

$$b^T u = u^T b \geq z c^T x^* \Rightarrow z c^T x^* < z (c^T x^* + \varepsilon)$$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$
$$u^TA-zc^T\geq 0 \Rightarrow u^TA\geq zc^T\Rightarrow v=u/z \text{ is feasible dual solution if }z>0$$

$$b^Tu=u^Tb< z(c^Tx^*+\varepsilon)\Rightarrow b^Tv< c^Tx^*+\varepsilon \text{ if }z>0$$

$$b^Tu=u^Tb\geq zc^Tx^*\Rightarrow zc^Tx^*< z(c^Tx^*+\varepsilon)\Rightarrow z\neq 0 \text{, thus }z>0$$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is
$$\hat{y}=(u,z)\in\mathbb{R}^{m+1}$$
 with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$
$$u^TA-zc^T\geq 0 \ \Rightarrow u^TA\geq zc^T\Rightarrow v=u/z \text{ is feasible dual solution if }z>0$$

$$b^Tu=u^Tb< z(c^Tx^*+\varepsilon)\Rightarrow b^Tv< c^Tx^*+\varepsilon \text{ if }z>0$$

$$b^Tu=u^Tb\geq zc^Tx^*\Rightarrow zc^Tx^*< z(c^Tx^*+\varepsilon)\Rightarrow z\neq 0 \text{, thus }z>0$$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is $\hat{y}=(u,z)\in\mathbb{R}^{m+1}$ with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$

$$\begin{aligned} u^TA - zc^T &\geq 0 \ \Rightarrow u^TA \geq zc^T \Rightarrow v = u/z \text{ is feasible dual solution } \frac{1}{z} > 0 \\ b^Tu &= u^Tb < z(c^Tx^* + \varepsilon) \Rightarrow b^Tv < c^Tx^* + \varepsilon \text{ if } z > 0 \\ b^Tu &= u^Tb \geq zc^Tx^* \Rightarrow zc^Tx^* < z(c^Tx^* + \varepsilon) \Rightarrow z \neq 0 \text{, thus } z > 0 \end{aligned}$$

 \Rightarrow for optimal solution y^* of dual: $b^Ty^* < c^Tx^* + \varepsilon$ for any $\varepsilon > 0$

Let
$$\hat{A} = \begin{bmatrix} A \\ -c^T \end{bmatrix} \in \mathbb{R}^{(m+1) \times n}$$
 and $\hat{b_{\varepsilon}} = \begin{bmatrix} b \\ -c^T x^* - \varepsilon \end{bmatrix} \in \mathbb{R}^{m+1}$.

There is $\hat{y}=(u,z)\in\mathbb{R}^{m+1}$ with: $\hat{y}^T\hat{A}\geq 0$, $\hat{y}^T\hat{b_{\varepsilon}}<0$, and $\hat{y}^T\hat{b_0}\geq 0$

$$\begin{aligned} u^TA - zc^T &\geq 0 \ \Rightarrow u^TA \geq zc^T \Rightarrow v = u/z \text{ is feasible dual solution } \text{if } z > 0 \\ b^Tu &= u^Tb < z(c^Tx^* + \varepsilon) \Rightarrow b^Tv < c^Tx^* + \varepsilon \text{ if } z > 0 \\ b^Tu &= u^Tb \geq zc^Tx^* \Rightarrow zc^Tx^* < z(c^Tx^* + \varepsilon) \Rightarrow z \neq 0 \text{, thus } z > 0 \end{aligned}$$

 \Rightarrow for optimal solution y^* of dual: $b^Ty^* < c^Tx^* + \varepsilon$ for any $\varepsilon > 0$

 $\Rightarrow b^T y^* = c^T x^*$, thus strong duality holds.

Complementary Slackness

Corollary Let $x^\star=(x_1^\star,...,x_n^\star)$ be a feasible solution of the linear program maximize c^Tx subject to $Ax\leq b$ and $x\geq 0$, (P)

and let $y^\star=(y_1^\star,...,y_m^\star)$ be a feasible solution of the dual linear program minimize b^Ty subject to $A^Ty\geq c$ and $y\geq 0$. (D)

Then the following two statements are equivalent:

- 1. x^* is optimal for (P) and y^* is optimal for (D).
- 2. For all i=1,...,m, x^{\star} satisfies the ith constraint of (P) with equality or $y_i^{\star}=0$; similarly, for all j=1,...,n, y^{\star} satisfies the jth constraint of (D) with equality or $x_i^{\star}=0$.

Complementary Slackness

Corollary Let $x^\star=(x_1^\star,...,x_n^\star)$ be a feasible solution of the linear program maximize c^Tx subject to $Ax\leq b$ and $x\geq 0$, (P)

and let $y^\star=(y_1^\star,...,y_m^\star)$ be a feasible solution of the dual linear program minimize b^Ty subject to $A^Ty\geq c$ and $y\geq 0$. (D)

Then the following two statements are equivalent:

- 1. x^* is optimal for (P) and y^* is optimal for (D).
- 2. For all i=1,...,m, x^{\star} satisfies the ith constraint of (P) with equality or $y_i^{\star}=0$; similarly, for all j=1,...,n, y^{\star} satisfies the jth constraint of (D) with equality or $x_i^{\star}=0$.

Proof: Follows from duality

$$\sum_{j=1}^{n} c_j x_j \ge \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i\right) x_j = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j\right) y_i \ge \sum_{i=1}^{m} b_i y_i$$

Complementary Slackness

Corollary Let $x^\star=(x_1^\star,...,x_n^\star)$ be a feasible solution of the linear program maximize c^Tx subject to $Ax\leq b$ and $x\geq 0$, (P)

and let $y^\star=(y_1^\star,...,y_m^\star)$ be a feasible solution of the dual linear program minimize b^Ty subject to $A^Ty\geq c$ and $y\geq 0$. (D)

Then the following two statements are equivalent:

- 1. x^* is optimal for (P) and y^* is optimal for (D).
- 2. For all i=1,...,m, x^{\star} satisfies the ith constraint of (P) with equality or $y_i^{\star}=0$; similarly, for all j=1,...,n, y^{\star} satisfies the jth constraint of (D) with equality or $x_i^{\star}=0$.

Proof: Follows from duality

$$\sum_{j=1}^{n} c_j x_j^{\star} = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_i^{\star} \right) x_j^{\star} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j^{\star} \right) y_i^{\star} = \sum_{i=1}^{m} b_i y_i^{\star}$$

Duality shows Max Flow = Min Cut

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction \rightarrow need to determine orientation and amount per edge (with direction)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction \rightarrow need to determine orientation and amount per edge (with direction)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

 \rightarrow need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

 \rightarrow need to determine orientation and amount per edge (with direction)

- \rightarrow introduce variable x_{uv} for each edge (u,v) and require
- 1. flow \leq capacities on edges how?
- 2. inflow = outflow on all nodes (except origin, destination)

How to send as much data as possible over a local network?

nodes cannot store data and links can transport in only one direction

→ need to determine orientation and amount per edge (with direction)

- ightarrow introduce variable x_{uv} for each edge (u,v) and require
 - 1. flow \leq capacities on edges how?
 - 2. inflow = outflow on all nodes (except origin, destination)

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$ $x_{oc} = x_{cd} + x_{ce}$ origin $x_{oc} = x_{cd} + x_{ce}$ origin $x_{oc} = x_{cd} + x_{ce} = x_{cd} = x_{cd}$

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$ $x_{oc} = x_{cd} + x_{ce}$ origin $x_{ad} + x_{cd} = x_{dn}$

Optimal solution: 4

 $x_{oc} = x_{cd} + x_{ce}$

 $x_{ad} + x_{cd} = x_{dn}$

 $x_{be} + x_{ce} = x_{en}$

Linear Program Formulation

maximize
$$x_{oa} + x_{ob} + x_{oc}$$
 subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob} \le 1$, $-1 \le x_{oc} \le 1$ $-1 \le x_{ab} \le 1$, $-1 \le x_{ad} \le 1$, $-3 \le x_{be} \le 3$ $-4 \le x_{cd} \le 4$, $-4 \le x_{ce} \le 4$, $-4 \le x_{dn} \le 4$ $-1 \le x_{en} \le 1$ $x_{oa} = x_{ab} + x_{ad}$ $x_{ob} + x_{ab} = x_{be}$

Optimal solution: 4

(n) destination

well-known "max flow = min cut" \rightarrow now via LP-duality!

Linear Program Formulation

maximize
$$x_{oa}+x_{ob}+x_{oc}$$
 let the vertices be numbered subject to $-3 \le x_{oa} \le 3$, $-1 \le x_{ob}$ capacity and x_{ij} the following and x_{ij} the following capacity and x_{ij} the following capac

 $x_{be} + x_{ce} = x_{en}$

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

Optimal solution: 4

well-known "max flow = min cut" \rightarrow now via LP-duality!

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

actually we can relax the constraint without changing the optimum

Linear Program Formulation

first we formulate the LP more concisely: let the vertices be numbered $1, \ldots, n$, let c_{ij} the capacity and x_{ij} the flow on directed edge (i, j), and let f be the max flow.

Let's write this in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$. A, x, b, c?

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ \vdots \\ x_{ij} \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} A = \begin{bmatrix} -1 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\ 0 &$$

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ ... \\ ... \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ ... \\ ... \end{bmatrix} A = \begin{bmatrix} -1 & ... & ... & ... \\ 0 & ... & ... & ... \\ 1 & ... & ... & ... \\ 0 & 1 & 0 & ... & ... \\ ... & 0 & ... & ... \\ 0 & ... & ... & 0 \\ 0 & ... & ... & 0 & 1 \end{bmatrix} b = \begin{bmatrix} 0 \\ ... \\ 0 \\ c_{ij} \\ ... \\ ... \\ ... \\ ... \end{bmatrix}$$
 every column contains exactly one -1 and one 1

Linear Program Formulation

in Matrix form $\max f$ subject to $Ax \leq b, x \geq 0$ where

$$x = \begin{bmatrix} f \\ x_{ij} \\ \vdots \\ x_{ij} \end{bmatrix} c = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} A = \begin{bmatrix} -1 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 1 & \dots & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ 0 & 1 & 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots & \dots \\ \vdots \\ 0 & \dots & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots \\ 0 & \dots & \dots \\$$

What is the dual?

Linear Program Formulation

in Matrix form $\min \sum y_{ij}$ subject to $y^TA \geq c, x \geq 0$ where

every row contains exactly one -1 and one 1

$$c = \begin{bmatrix} 1 \\ 0 \\ \cdots \\ \vdots \end{bmatrix}$$

Linear Program Formulation

in constraint form

minimize
$$\sum c_{ij}y_{ij}$$
 subject to $-u_1+u_n\geq 1$
$$u_i-u_j+y_{ij}\geq 0$$

$$u_i\geq 0$$

$$y_{ij}\geq 0$$
 origin 1 0 destination

Linear Program Formulation

in constraint form

actually, we can restrict all variables to be integer, even 0-1

Linear Program Formulation

in constraint form

actually, we can restrict all variables to be integer, even 0-1 \rightarrow Min Cut