ARITHMETIC

ASESORÍA TOMO VIII

¿Cuántas palabras con sentido o no se pueden formar con todas las letras de la palabra AMARRADA?

Resolución

Del dato tenemos:

AMARRADA

cada letra se encuentra

- ★ 2 veces el R
- ★ 4 veces el A
- ★ 1 vez el M
- \star 1 vez el D

Permutación con repetición

$$Pr_{(2;4;1;1)}^{8} = \frac{8!}{2! \times 4! \times 1! \times 1!}$$

$$Pr_{(2;4;1;1)}^{8} = \frac{8 \times 7 \times 6 \times 5 \times 4!}{2 \times 4!}$$

piden: número de palabras

∴ 840

RPTA:

840

A una reunión de amigos acuden 5 parejas de esposos. ¿De cuántas maneras pueden sentarse alrededor de una mesa redonda de modo que los esposos siempre se sienten juntos?

<u>Resolución</u>

Del dato tenemos:

5 parejas de esposos (se sientan juntas**)**

Permutación circular

$$Pc_{(5)} = (5-1)!$$

$$Pc_{(5)} = 4! = 24$$

como son 5 parejas cada una se puede cambiar de lugar, entonces:

$$24 \times 2! \times 2! \times 2! \times 2! \times 2!$$

piden: número de maneras

∴ 768

768

4 hombres y 3 mujeres deben sentarse en una fila de 7 asientos de modo que ningún hombre ocupe sitio par. ¿De cuántas maneras diferentes podrán sentarse?

<u>Resolución</u>

Del dato tenemos:

fila de 7 asientos

impar impar impar impar

H M H M H M H

par par par

aplicando permutación lineal para los 4 hombres y 3 mujeres

Donde:

maneras = 24 \times 6

Piden: # maneras diferentes

 $\cdot \cdot$ Total = 144 maneras

RPTA:

144

¿De cuántas maneras diferentes se pueden sentar 10 personas en una mesa redonda de 6 asientos si 4 personas están en espera?

Resolución

RPTA:

25200 maneras

Pamela tiene 7 frutas diferentes. ¿Cuántos jugos surtidos de diferentes sabores puede preparar?

Resolución

Puede preparar jugos surtidos con frutas de 2 en 2, de 3 en 3, así hasta de 6 en 6

$$C_0^7 + C_1^7 + C_2^7 + C_3^7 + C_4^7 + C_5^7 + C_6^7 + C_7^7$$

$$2^7 - 1 - 7$$

N° de maneras:

$$2^7 - 1 - 7 = 120$$

RPTA:

120 maneras

En una reunión hay 12 hombres y 7 mujeres, se desea formar grupos de 3 personas. ¿De cuántas maneras podrán hacerlo si deben de haber, por lo menos, 2 mujeres en el grupo?

Resolución

como no interesa el orden aplicamos combinaciones

Del dato tenemos:

al menos dos mujeres

*
$$C_{2}^{7} \times C_{1}^{12}$$

$$\frac{7!}{(7-2)! \cdot 2!} \times \frac{12!}{(12-1)! \cdot 1!}$$

RPTA:

Tres primas van a cenar con tres amigos. Si todos se sientan alrededor de una mesa circular con seis asientos, ¿cuál es la probabilidad de que las primas estén siempre juntas?

Resolución

casos posibles:
$$n(\Omega) = Pc(6) = 5! = 120$$

casos favorables:
$$n(A) = Pc(4) \times 3! = 3! \times 3! = 36$$

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{36}{120} = \frac{3}{10}$$

$$P(A) = 3/10$$

Se tiene 5 libros: 3 de aritmética y 2 de química ordenados en un estante. ¿Cuál es la probabilidad de que los libros de química sean separados por los 3 libros de aritmética?

Resolución

casos posibles n (Ω)

Se ordenan 5 libros

$$n(\Omega) = 5!$$

$$n(\Omega) = 120$$

Del dato tenemos:

Evento A: Los libros de química en los extremos

casos favorables n (A)

$$n(A) = 3! \times 2!$$
 $n(A) = 12$

Piden:

$$P(A) = \frac{12}{120} : P(A) = \frac{1}{10}$$

RPTA:

1/10

En una sección de 50 alumnos se desea formar una comisión de tres miembros. ¿Cuál es la probabilidad de que el alumno delegado Paolo Costa siempre integre la comisión?

Resolución

casos posibles $n(\Omega)$

Se escogen 3 alumnos de 50

n (
$$\Omega$$
) = C_3^{50} = $\frac{50!}{(50-3)!}$ 3!
n (Ω) = $\frac{50.49.48.47!}{47!.8}$
n (Ω) = 50.49.8

Evento A: el alumno Paolo es fijo

n (A) =
$$C_2^{49}$$
 = $C_2^{49!}$ = C_2^{49

RPTA:

3/50

Se tiene un grupo de 7 hombres y 4 mujeres. Si se va a elegir una comisión de 3 personas, determine la probabilidad de que la comisión esté integrada al menos por 1 hombre.

Examen de admisión UNI 2018

Resolución

casos posibles $n(\Omega)$

Se escogen 3 personas de 11

$$n(\Omega) = C_3^{11} = \frac{11!}{(11-3)! \ 3!}$$

$$n(\Omega) = \frac{11. \ 10. \ 9. \ \cancel{\$}!}{\cancel{\$}! \ .6}$$

$$n(\Omega) = 165$$

Evento A: al menos 1 hombre

$$P_{(al\ menos\ 1\ hombre)} = 1 - P_{(ning\'un\ hombre)}$$
 $P_{(al\ menos\ 1\ hombre)} = 1 - P_{(todas\ mujeres)}$
 $P_{(al\ menos\ 1\ hombre)} = 1 - \frac{C_3}{165}$
 $P_{(al\ menos\ 1\ hombre)} = 1 - \frac{4}{165}$