

46887.pdf

fibsbook

Gráficos

3º Grado en Ingeniería Informática

Facultad de Informática de Barcelona (FIB) Universidad Politécnica de Catalunya

MÁSTER EN PROJECT MANAGEMENT

Convocatoria Abril 2023

eaebarcelona.com

Reservados todos los derechos. No se permite la explotación económica ni la transformación de esta obra. Queda permitida la impresión en su totalidad.

Encuentra el trabajo de tus sueños

Participa en retos y competiciones de programación

Examen Final de Gràfics Curs 20		17-18 Q1
Nom i Cognoms:		
Tots els exercicis tenen el mateix pes.		
Exercici 1		
Aquí teniu una llista d'etapes/tasques, ordenades per ordre alfabètic. Torna-les a escriure a la dreta, però ordenades segons l'ordre al pipeline gràfic.		
- Depth test		
- Fragment Shader		
- Geometry shader		
- Rasterització		
Exercici 2		
Aquí teniu una llista d'etapes/tasques, ordenades per ordre alfabètic. Torna-les a escriure a la dreta, però ordenades segons l'ordre habitual al pipeline gràfic.		
- Clipping		
- Divisió de perspectiva		
- Rasterització		
- Vertex shader		

Exercicis 3, 4, 5 i 6

Indica quina és la matriu (o **producte de matrius**) que aconsegueix la conversió demanada, **usant la notació següent** (vigileu amb l'ordre en que multipliqueu les matrius):

$$\begin{split} M &= model Matrix & M^{-1} &= model Matrix Inverse \\ V &= viewing Matrix & V^{-1} &= viewing Matrix Inverse \\ P &= projection Matrix & P^{-1} &= projection Matrix Inverse \end{split}$$

N = normalMatrix I = Identitat

- a) Pas d'un vèrtex de eye space a world space
- b) Pas d'un vèrtex de clip space a world space
- c) Pas d'un vèrtex de object space a clip space
- d) Pas d'un vèrtex de object space a model space
- e) Pas d'un vèrtex de object space a world space
- f) Pas d'un vèrtex de world space a eye space
- g) Pas de la normal de model space a eye space
- h) Pas d'un vèrtex de eye space a clip space

Exercici 7

Indica, per cadascuna de les següents tècniques basades en textures, si sempre requereixen (SI) o no (NO) accedir a un *height field*:

- (a) Color mapping
- (b) Relief mapping
- (c) Parallax mapping
- (d) Displacement mapping

Encuentra el trabajo de tus sueños

Participa en retos y competiciones de programación

Ten contacto de calidad con empresas líderes en el sector tecnológico mientras vives una experiencia divertida y enriquecedora durante el proceso.

Exercici 8

Amb la imatge de l'esquerra, volem texturar el quad del mig, per obtenir la imatge de la dreta:

Completa el següent VS per obtenir el resultat desitjat:

```
void main() {
   vtexCoord =
   glPosition = vec4(vertex, 1.0);
}
```

Exercici 9

Sigui F(u,v) un height field. Indica una tècnica vista a classe que faci servir el gradient de F(u,v).

Exercici 10

Indica, per cada path en la notació estudiada a classe, L(D|S)*E, si és simulat (SI) o no (NO) per la tècnica de *Two-pass raytracing*:

- (a) LSSDSSE
- (b) LDE
- (c) LSE
- (d) LDDSE

Participa en retos y competiciones de programación

Exercicis 11 i 12

Amb la notació de la figura, indica, en el cas de Ray-tracing

- (a) Quin vector té la direcció del shadow ray?
- (b) Quin vector és paral·lel al raig reflectit?

(d) Quin vector depèn de l'índex de refracció?

Aquí teniu l'equació d'obscuràncies:

$$W(P,N) = \frac{1}{\pi} \int_{\Omega} \rho(d(P,\omega)) \cdot (N \cdot \omega) d\omega$$

Què representa ρ?

(b) Com hauria de ser ρ per obtenir oclusió ambient?

Exercici 14

Tenim un cub representat amb una malla triangular formada per 8 vèrtexs i 12 triangles. Volem construir un VBO per representar aquest cub, de forma que el VS rebi com a atributs les coordenades (x,y,z) del vèrtex i les components del vector normal (nx,ny,nz), sense cap suavitzat d'aresta (volem que el cub aparegui il·luminat correctament). Quants vèrtexs necessitem representar al VBO?

Exercici 15

Indica clarament la línia on ens podria ser útil un environment map:

```
funció traçar_raig(raig, escena, \mu)
 si profunditat_correcta() llavors
   info:=calcula_interseccio(raig, escena)
   si info.hi_ha_interseccio() llavors
      color:=calcularI_D(info,escena); // I_D
      si es_reflector(info.obj) llavors
         raigR:=calcula_raig_reflectit(info, raig)
         color+= K_R*traçar_raig(raigR, escena, \mu) //I_R
      fsi
      si es_transparent(info.obj) llavors
         raigT:=calcula_raig_transmès(info, raig, \mu)
         color+= K_T*traçar_raig(raigT, escena, info. \mu) //I_T
   sino color:=colorDeFons
   fsi
 sino color:=Color(0,0,0); // o colorDeFons
 retorna color
ffunció
```

Exercici 16

Completa aquest fragment shader que implementa la tècnica de Shadow mapping:

```
uniform sampler2D shadowMap;
uniform vec3 lightPos;
in vec3 N;
in vec3 P;
in vec4 vtexCoord; // coordenades de textura en espai homogeni
out vec4 fragColor;
void main()
{
    vec3 L = normalize(lightPos - P);
    float NdotL = max(0.0, dot(N,L));
    vec4 color = vec4(NdotL);
    vec2 st =
    float storedDepth = texture(shadowMap, st).r;
    float trueDepth =
    if (trueDepth <= storedDepth) fragColor = color;</pre>
    else fragColor = vec4(0);
}
```


Exercici 17

Considerant aquesta figura generada amb ray-tracing,

- (a) Quin és el light path dominant que explica el color del píxel numerat amb un "1"?
- (b) Quin és el light path dominant que explica el color del píxel numerat amb un "5"?

Exercici 18

Indica quantes vegades cal pintar l'escena en les següents tècniques:

- a) Shadow mapping, suposant que la llum és dinàmica
- b) Reflexió amb objectes virtuals, amb stencil (ignoreu els passos en que només es dibuixa el mirall):

