Deep Learning in Applications

2 big blocks:

2 big blocks:

- 1. Natural Language Processing
 - a. Language models
 - b. Text generation
 - c. Neural machine translation

- 2 big blocks:
- 1. Natural Language Processing
- 2. Reinforcement Learning
 - a. Simple approaches to non-gradient optimization
 - b. Q-learning, SARSA
 - c. DQN
 - d. REINFORCE, AAC

- 2 big blocks:
- 1. Natural Language Processing
- 2. Reinforcement Learning

- 2 big blocks:
- 1. Natural Language Processing
- 2. Reinforcement Learning

All flavored with Deep Learning

Rules of play

- 1. Homeworks:
 - a. Provided in the beginning of the week
 - b. Modular structure with several milestones
 - c. 2 or 3 assignments
- 2. Tests:
 - a. Small tests at the beginning of each day
 - b. Form of Midterm and Final exam will be fixed later
- 3. [optional] Project:
 - a. One can choose some real problem/interesting extra material
- 4. Opportunities
- a. Internships/Interviews in tech companies (if it works:)
 - b. Fun

Technical stuff

- Python 3.6+
 - Miniconda is recommended for env managing
- Supported platforms: Linux/macOS/docker
 - Anything else on your own risk
- Course chat in Telegram, link is below
- All materials are available at github:
 https://github.com/neychev/harbour_dlia2019
- Canvas page of our course:
 https://canvas.harbour.space/courses/58/

This course is using materials and generally based on such courses as:

- Stanford:
 - <u>CS224n</u> Natural Language Processing
 - CS234n Reinforcement Learning
- Yandex School of Data Analysis:
 - o Practical RL
 - NLP course
- Berkeley:
 - CS188x Intro to Al
 - CS294-112 Deep Reinforcement Learning

Special thanks to the teams for developing the materials and making them available online

Word Representations

Agenda

- NLP: introduction
- **Text Preprocessing**
- Feature Extraction: classical approach
 - ▶ Bag-of-Words
 - ▶ Bag-of-Ngramms
 - ▶ TF-IDF
- Tea / Coffee break (optional)
- **Word Embeddings**

Natural Language Processing: Introduction

Natural Language Processing

Popular NLP tasks

- Sentiment analysis
- Spam filtering
- Fake news detection
- Topic prediction
 - #hashtag prediction

Popular NLP tasks

Sentiment analysis
Spam filtering
Fake news detection
Topic prediction
#hashtag prediction

Text classification tasks

Text classification in general

Text classification in general

- Discrete labels:
 - Binary
 - Multi-class
 - Multi-label

Discrete labels:

- Binary: spam filtering, sentiment analysis
- Multi-class
- Multi-label

Discrete labels:

- Binary: spam filtering, sentiment analysis
- Multi-class: categorization of items by its description
- Multi-label

Discrete labels:

- Binary: spam filtering, sentiment analysis
- Multi-class: categorization of items by its description
- Multi-label: #hashtag prediction

- Discrete labels:
 - Binary: spam filtering, sentiment analysis
 - Multi-class: categorization of items by its description
 - Multi-label: #hashtag prediction
- Continuous labels:
 - Predict product price by its description

Text classification in general

Text classification in general

Text Preprocessing

Tokenization: split the input into tokens

Token normalization

- Token normalization:
 - Stemming: removing and replacing suffixes to get to the root of the word (stem)

- Token normalization:
 - Stemming: removing and replacing suffixes to get to the root of the word (stem)
 - Lemmatization: to get base or dictionary form of a word (lemma)

Stemming: Porter vs Lancaster

Porter stemmer

Base starting option

Snowball stemmer (Porter 2)

- Based on Porter
- More aggressive
- Most popular option now

Lancaster stemmer

Published in 1990

The most aggressive

Easy adding of your

Stemming example

- Porter's stemmer:
 - Heuristics, applied one-by-one:
 - SSES SS (dresses dress)
 - IES I (ponies poni)
 - S <empty> (dogs dog)
 - What's wrong?

Stemming example

- Porter's stemmer:
 - Heuristics, applied one-by-one:
 - SSES SS (dresses dress)
 - IES I (ponies poni)
 - S <empty> (dogs dog)
 - What's wrong?
 - Overstemming and understemming

Overstemming

Understemming

Lemmatization

- Lemmatizer from NLTK:
 - Tries to resolve word to its dictionary form
 - Based on WordNet database
 - For the best results feed part-of-speech tagger

BTW, what is WordNet?

3/27

Handful tools for preprocessing

- NLTK
 - nltk.stem.SnowballStemmer
 - nltk.stem.PorterStemmer
 - nltk.stem.WordNetLemmatizer
 - nltk.corpus.stopwords
 - BeautifulSoup (for parsing HTML)
 - Regular Expressions (import re)

What's left?

- Capital Letters
- Punctuation
- Contractions (e.g, etc.)
- Numbers (dates, ids, page numbers)
- Stop-words ("the", "is", etc.)
- Tags

Feature extraction

the dog is on the table

the dog is on the table

- No information about words order
- Word vectors are huge and very sparse
- Word vectors are not normalized

- How to improve BOW?
 - Use n-gramms instead of words!

The brown dog plays with a little cat

The brown dog plays dog plays

plays with

The brown

with a

a little

little cat

Do we need all this bigramms?

The brown dog plays
with a little cat

dog plays
little cat

little cat

Meaningful n-gramms are often called collocations

Meaningful n-gramms are often called **collocations**How to detect meaningful n-gramms?

Collocations: first step

Delete:

- High-frequency n-gramms
 - Articles, prepositions
 - Auxiliary verbs (to be, to have, etc.)
 - General vocabulary
- Low-frequency n-gramms
 - Typos
 - Combinations that occur 1-2 times in a text

Collocations: context is all you need

- - Coocurrence counters in a window of fixed size
 - $\triangleright \mathcal{N}_{uv}$ states for the number of times we've seen word u and word v together in the window

Collocations: context is all you need

- Coocurrence counters in a window of fixed size
 - \triangleright n_{uv} states for the number of times we've seen word u and word v together in the window
- Better solution: Pointwise Mutual Information (PMI)

$$PMI = log \frac{p(u, v)}{p(u)p(v)} = log \frac{n_{uv}n}{n_{u}n_{v}}$$

Collocations: context is all you need

- Coocurrence counters in a window of fixed size
 - $\triangleright n_{uv}$ states for the number of times we've seen word u and word v together in the window
- Better solution: Pointwise Mutual Information (PMI)

$$PMI = log \frac{p(u, v)}{p(u)p(v)} = log \frac{n_{uv}n}{n_{u}n_{v}}$$

Much better solution: Positive PMI (pPMI)

$$pPMI = \max(0, PMI)$$

Collocations

Use statistics:

▶ T-criterion

$$t = \frac{\overline{x} - \mu}{\sqrt{\frac{s^2}{N}}}$$

 H_0 : 'social media' occurs with probability:

$$\mu = P(social)P(media) = \frac{C(social)(media)}{N^2}$$

 H_a : 'social media' does not occur with such a probability

Collocations

Use statistics:

Chi-squared

$$\chi^2 = \sum_{ij} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

$$E(social \ media) = \frac{C(social)}{N} \cdot \frac{C(media)}{N} \cdot N$$

$$O_{ij} \ from \ table$$

	w1 = social	w1 != social
w2 = media	C(social media)	C(x media) where x could be any word
w2 != media	C(social x) where x could be any word	C(any pair not starting with social or ending with media)

PMI T-test With Filter		Chi-Sq Test
(universal, studios)	(front, desk)	(wi, fi)
(howard, johnson)	(great, location)	(cracker, barrel)
(cracker, barrel)	(friendly, staff)	(howard, johnson)
(santa, barbara)	(hot, tub)	(la, quinta)
(sub, par)	(continental, breakfast)	(front, desk)
(santana, row)	(free, breakfast)	(universal, studios)
(e, g)	(great, place)	(santa, barbara)
(elk, springs)	(parking, lot)	(santana, row)
(times, square)	(customer, service)	(, more)
(ear, plug)	(desk, staff)	(flat, screen)
(la, quinta)	(walk, distance)	(french, quarter)
(fire, pit)	(comfortable, bed)	(elk, springs)
(san, clemente)	(nice, hotel)	(walking, distance)
	(universal, studios) (howard, johnson) (cracker, barrel) (santa, barbara) (sub, par) (santana, row) (e, g) (elk, springs) (times, square) (ear, plug) (la, quinta) (fire, pit)	(universal, studios) (front, desk) (howard, johnson) (great, location) (cracker, barrel) (friendly, staff) (santa, barbara) (hot, tub) (sub, par) (continental, breakfast) (santana, row) (free, breakfast) (e, g) (great, place) (elk, springs) (parking, lot) (times, square) (customer, service) (ear, plug) (desk, staff) (la, quinta) (walk, distance) (fire, pit) (comfortable, bed)

Term Frequency (tf): gives us the frequency of the word in each document in the corpus.

$$tf(t,d) = f_{t,d}$$

Inverse Data Frequency (idf): used to calculate the weight of rare words across all documents in the corpus. The words that occur rarely in the corpus have a high IDF score.

$$\operatorname{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

N: total number of documents in the corpus N=|D|

 $|\{d \in D: t \in d\}|$: number of documents where the term t appears

Sentence A: The car is driven on the road.

Sentence B: The truck is driven on the highway.

(each sentence is a separate document)

Word	TF		IDF	TF * IDF		
	A	В		A	В	
The	1/7	1/7				
Car	1/7	0				
Truck	0	1/7				
Is	1/7	1/7				
Driven	1/7	1/7				
On	1/7	1/7				
The	1/7	1/7				
Road	1/7	0				
Highway	0	1/7				

Word		TF		TF * IDF	
	A	В		A	В
The	1/7	1/7	log(2/2)=0		
Car	1/7	0	log(2/1)=0.3		
Truck	0	1/7	log(2/1)=0.3		
Is	1/7	1/7	log(2/2)=0		
Driven	1/7	1/7	log(2/2)=0		
On	1/7	1/7	log(2/2)=0		
The	1/7	1/7	log(2/2)=0		
Road	1/7	0	log(2/1)=0.3		
Highway	0	1/7	log(2/1)=0.3		

Word	TF		IDF	TF * IDF	
	A	В		A	В
The	1/7	1/7	log(2/2)=0	0	0
Car	1/7	0	log(2/1)=0.3	0.043	0
Truck	0	1/7	log(2/1)=0.3	0	0.043
Is	1/7	1/7	log(2/2)=0	0	0
Driven	1/7	1/7	log(2/2)=0	0	0
On	1/7	1/7	log(2/2)=0	0	0
The	1/7	1/7	log(2/2)=0	0	0
Road	1/7	0	log(2/1)=0.3	0.043	0
Highway	0	1/7	log(2/1)=0.3	0	0.043

TF-IDF example: much easier

from sklearn.feature_extraction.text
import TfidfVectorizer

Word Embeddings

One-hot vectors

One-hot vectors:

One-hot vectors

```
Rome Paris
Rome = [1, 0, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

Problems:

- Huge vectors
- VERY sparse
- No semantics or word similarity information included

Distributional semantics

Does vector similarity imply semantic similarity?

"You shall know a word by the company it keeps"

Firth, 1957

Word representations via matrix factorization

Input: PMI, word coocurrences, etc.

Method: dimensionality reduction (SVD)

Output: word similarities

Why not to learn word vectors?

Word2vec (Mikolov et al. 2013) - a framework for learning word embeddings

Male-Female

Verb tense

Country-Capital

Main idea:

- Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a center word c and context ("outside") words o
- Use the similarity of the word vectors for c and o to calculate the probability of o given c (or vice versa)
- Keep adjusting the word vectors to maximize this probability

For each position t predict context words within a window of fixed size m, given center word.

$$L(\theta) = \prod_{t=1}^{I} \prod_{\substack{-m \le j \le m \\ j \ne 0}} P(w_{t+j} \mid w_t; \theta)$$

For each position t predict context words within a window of fixed size m, given center word.

$$L(\theta) = \prod_{t=1}^{I} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$

Let's get rid of multiplication:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

For each position t predict context words within a window of fixed size m, given center word.

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

$$= -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$
How to calculate this?

Word2vec

For each position t predict context words within a window of fixed size m, given center word.

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$

$$= -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log P(w_{t+j} \mid w_t; \theta)$$
How to calculate this?

We will use two types of vectors:

Word2vec

We will use two types of vectors:

Then for a center word c and a context word o:

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Word2vec

 v_w when w is a central word u_w when w is a context word

Exponentiation makes anything positive

$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Dot product compares similarity of o and c.

$$u^T v = u.v = \sum_{i=1}^n u_i v_i$$

Larger dot product = larger probability

Normalize over entire vocabulary to give probability distribution

Word2vec: architecture

Gradient descent

 $oldsymbol{ heta}$ represents all the parameters of the model

$$heta = egin{bmatrix} v_{aardvark} \ v_{a} \ dots \ v_{zebra} \ u_{aardvark} \ u_{a} \ dots \ u_{zebra} \end{bmatrix} \in \mathbb{R}^{2dV}$$

Word2vec: two models

Continuous BOW (CBOW)

$$p(w_i|w_{i-h},...,w_{i+h})$$

Predict center word from (bag of) context words

Skip-gram

$$p(w_{i-h}, \ldots w_{i+h}|w_i)$$

Predict context ("outside") words (position independent) given center word

Word2vec: two models

Continuous BOW (CBOW)

$$p(w_i|w_{i-h},...,w_{i+h})$$

Predict center word from (bag of) context words

Predicting one word each time Relatively fast

Skip-gram

$$p(w_{i-h}, \ldots w_{i+h}|w_i)$$

Predict context ("outside") words (position independent) given center word

Predicting context by one word

Much slower

Better with infrequent words

CBOW

Skip-gram

Word2vec improvements

Subsampling frequent words Negative sampling

What's the problem with words like "the"?

What's the problem with words like "the"?

- "the" appears in the context of pretty much every word.
- We will have many more samples of ("the", ...) than we need to learn a good vector for "the".

What's the problem with words like "the"?

- "the" appears in the context of pretty much every word.
- We will have many more samples of ("the", ...) than we need to learn a good vector for "the".

Let's remove frequent words with some probability!

The probability of keeping the word:

$$P(w_i) = (\sqrt{\frac{z(w_i)}{0.001}} + 1) \cdot \frac{0.001}{z(w_i)}$$

 $z(w_i)$ is the fraction of the total words in the corpus that are that word

Graph for (sqrt(x/0.001)+1)*0.001/x

- $P(w_i) = 1.0$ (100% chance of being kept) when $z(w_i) <= 0.0026$.
 - This means that only words which represent more than 0.26% of the total words will be subsampled.
- $P(w_i) = 0.5$ (50% chance of being kept) when $z(w_i) = 0.00746$.
- $P(w_i) = 0.033$ (3.3% chance of being kept) when $z(w_i) = 1.0$.
 - That is, if the corpus consisted entirely of word w_i , which of course is ridiculous.

Negative sampling

- each training sample will tweak all of the weights in the neural network
- negative sampling addresses this by having each training sample only modify a small percentage of the weights

Negative sampling

randomly select just a small number of "negative" words ("negative" word is one for which we want the network to output 0)

update the weights for all our "positive" words

Negative sampling

more frequent words are more likely to be selected as negative samples

$$P(w_i) = \frac{f(w_i)}{\sum_{j=0}^{n} (f(w_j))}$$

Word2vec: word analogies

King - man + woman = queen
$$x$$
 y y' $target$

$$\cos(x-y+y',target) \rightarrow \max_{target}$$

