习题 6 参考答案

1.
$$f(x_1, x_2, \dots, x_n) = (2\pi\sigma^2)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2}$$
.

2.
$$f(x_1, x_2, \dots, x_n) = \begin{cases} \frac{1}{(b-a)^n}, & a \leq x_1, x_2, \dots, x_n \leq b, \\ 0, &$$
其他.

3. $f(x_1, x_2, x_3) = \begin{cases} 216x_1x_2x_3(1-x_1)(1-x_2)(1-x_3), & 0 < x_1, x_2, x_3 < 1, \\ 0, &$ 其他.

3.
$$f(x_1, x_2, x_3) = \begin{cases} 216x_1x_2x_3(1-x_1)(1-x_2)(1-x_3), & 0 < x_1, x_2, x_3 < 1, \\ 0, & 其他. \end{cases}$$

4.
$$P\{X_1 = x_1, X_2 = x_2, \dots, X_n = x_n\} = \frac{\lambda^{\sum\limits_{i=1}^n x_i}}{\prod\limits_{i=1}^n (x_i!)} e^{-n\lambda}$$
,其中 x_1, x_2, \dots, x_n 都在

集合{0,1,2,…}中取值

5.

损坏件数 k	0	1	2	3	4
损坏 k 件的频率	$\frac{6}{20}$	$\frac{7}{20}$	$\frac{3}{20}$	$\frac{2}{20}$	$\frac{2}{20}$

$$F_{20}(x) = \begin{cases} 0, & x < 0, \\ \frac{6}{20}, & 0 \le x < 1, \\ \frac{13}{20}, & 1 \le x < 2, \\ \frac{16}{20}, & 2 \le x < 3, \\ \frac{18}{20}, & 3 \le x < 4, \\ 1, & x \ge 4. \end{cases}$$

- 6. 略.
- **7.** 3. 39, 2. 967 7, 1. 722 7, 2. 670 9, 14. 163.
- **8.** (1) $\overline{X} = \frac{1}{n} \sum_{k=1}^{n} x_k^* m_k$, $S^2 = \frac{1}{n-1} \sum_{k=1}^{n} (x_k^* \overline{X})^2 m_k$; (2) 4, 18.983, 4.357.

9. (1) PG. (2)
$$E(\overline{Y}) = \frac{\mu - a}{c}$$
, $E(S_Y^2) = \frac{\sigma^2}{c^2}$; **10.** 0.682 6.

11. (1)
$$mp, \frac{mp(1-p)}{n}, mp(1-p);$$
 (2) $\lambda, \frac{\lambda}{n}, \lambda;$

(3)
$$\frac{a+b}{2}$$
, $\frac{(b-a)^2}{12n}$, $\frac{(b-a)^2}{12}$; (4) $\frac{1}{\lambda}$, $\frac{1}{n\lambda^2}$, $\frac{1}{\lambda^2}$; (5) μ , $\frac{\sigma^2}{n}$, σ^2 .

15.
$$P\left\{\overline{X} = \frac{k}{n}\right\} = \frac{(n\lambda)^k}{k!} e^{-n\lambda}, k = 0, 1, 2, \cdots$$
 16. $\Gamma(na, n\lambda)$.

17.
$$\chi^2(n)$$
. **18.** $\chi^2(2)$. **19.** (1) 0.950; (2) $\frac{2}{9}\sigma^4$.

20. (1)
$$f_{Y_1}(y) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma} y^{-\frac{1}{2}} e^{-\frac{y}{2\sigma^2}}, & y > 0, \\ 0, & y \leq 0; \end{cases}$$

$$(2) f_{Y_2}(y) = \begin{cases} \frac{n^{\frac{n}{2}}}{2^{\frac{n}{2}} \Gamma(\frac{n}{2}) \sigma^n} y^{\frac{n}{2} - 1} e^{-\frac{ny}{2\sigma^2}}, y > 0, \\ 0, & y \leq 0. \end{cases}$$

21.
$$\mathbb{A}_{n}$$
. **22.** (1) $t(m)$; (2) $F(n,m)$. **23.** $t(n-1)$.

26.
$$F(1,1)$$
,提示:先证明 $(X_1+X_2)^2$ 与 $(X_1-X_2)^2$ 相互独立. **27.** 略.