```
df = pd.read_csv('dataset/final_data.csv')
```

## df.head(5)

|   | symboling   | normalize | ed-losses   | make        | aspiration   | num-of-doors | \      |
|---|-------------|-----------|-------------|-------------|--------------|--------------|--------|
| 0 | 3           | 122       |             | alfa-romero | std          | two          |        |
| 1 | 3           |           | 122         | alfa-romero | std          | two          |        |
| 2 | 1           |           | 122         | alfa-romero | std          | two          |        |
| 3 | 2           |           | 164         | audi        | std fou      |              |        |
| 4 | 2           | 164       |             | audi std    |              | four         |        |
|   |             |           |             |             |              |              |        |
|   | body-style  | drive-wh  | heels engir | ne-location | wheel-base   | length       | . \    |
| 0 | convertible |           | rwd         | front       | 88.6         | 0.811148     | • •    |
| 1 | convertible |           | rwd         | front       | 88.6         | 0.811148     |        |
| 2 | hatchback   |           | rwd         | front       | 94.5         | 0.822681     | •      |
| 3 | sedan       |           | fwd         | front 99.8  |              | 0.848630     | •      |
| 4 | sedan       |           | 4wd         | front       | 99.4         | 0.848630     | •      |
|   |             |           |             |             |              |              |        |
|   | compression | -ratio h  | horsepower  | peak-rpm ci | ity-mpg high | nway-mpg pr  | rice \ |
| 0 |             | 9.0       | 111.0       | 5000.0      | 21           | 27 1349      | 95.0   |
| 1 |             | 9.0       | 111.0       | 5000.0      | 21           | 27 1650      | 00.0   |
| 2 |             | 9.0       | 154.0       | 5000.0      | 19           | 26 1650      | 0.0    |
| 3 |             | 10.0      | 102.0       | 5500.0      | 24           | 30 1395      | 50.0   |
| 4 |             | 8.0       | 115.0       | 5500.0      | 18           | 22 1745      | 50.0   |
|   |             |           |             |             |              |              |        |

|   | symboling | normalized-<br>losses | make            | aspiration | num-<br>of-<br>doors | body-style  | drive-<br>wheels | engine-<br>location | wheel-<br>base | length   | <br>compression-<br>ratio | hor |
|---|-----------|-----------------------|-----------------|------------|----------------------|-------------|------------------|---------------------|----------------|----------|---------------------------|-----|
| 0 | 3         | 122                   | alfa-<br>romero | std        | two                  | convertible | rwd              | front               | 88.6           | 0.811148 | <br>9.0                   | 111 |
| 1 | 3         | 122                   | alfa-<br>romero | std        | two                  | convertible | rwd              | front               | 88.6           | 0.811148 | <br>9.0                   | 111 |
| 2 | 1         | 122                   | alfa-<br>romero | std        | two                  | hatchback   | rwd              | front               | 94.5           | 0.822681 | <br>9.0                   | 154 |
| 3 | 2         | 164                   | audi            | std        | four                 | sedan       | fwd              | front               | 99.8           | 0.848630 | <br>10.0                  | 102 |
| 4 | 2         | 164                   | audi            | std        | four                 | sedan       | 4wd              | front               | 99.4           | 0.848630 | <br>8.0                   | 115 |

5 rows × 29 columns

```
X = df[['length','width','curb-weight','engine-size','horsepower','city-mpg','highway-mpg'
Y = df[['price']].copy()
```

Χ

|     | 1        | ما عداد کیری |             |             | h          |          | ` |
|-----|----------|--------------|-------------|-------------|------------|----------|---|
|     | length   | width        | curb-weight | engine-size | horsepower | city-mpg | ١ |
| 0   | 0.811148 | 0.890278     | 2548        | 130         | 111.0      | 21       |   |
| 1   | 0.811148 | 0.890278     | 2548        | 130         | 111.0      | 21       |   |
| 2   | 0.822681 | 0.909722     | 2823        | 152         | 154.0      | 19       |   |
| 3   | 0.848630 | 0.919444     | 2337        | 109         | 102.0      | 24       |   |
| 4   | 0.848630 | 0.922222     | 2824        | 136         | 115.0      | 18       |   |
|     |          |              |             |             |            |          |   |
| 196 | 0.907256 | 0.956944     | 2952        | 141         | 114.0      | 23       |   |
| 197 | 0.907256 | 0.955556     | 3049        | 141         | 160.0      | 19       |   |
| 198 | 0.907256 | 0.956944     | 3012        | 173         | 134.0      | 18       |   |
| 199 | 0.907256 | 0.956944     | 3217        | 145         | 106.0      | 26       |   |
| 200 | 0.907256 | 0.956944     | 3062        | 141         | 114.0      | 19       |   |
|     |          |              |             |             |            |          |   |

|   | highway-mpg | wheel-base | bore |
|---|-------------|------------|------|
| 0 | 27          | 88.6       | 3.47 |
| 1 | 27          | 88.6       | 3.47 |
| 2 | 26          | 94.5       | 2.68 |
| 3 | 30          | 99.8       | 3.19 |
| 4 | 22          | 99.4       | 3.19 |
|   |             |            |      |

|     | length   | width    | curb-weight | engine-size | horsepower | city-mpg | highway-mpg | wheel-base | bore |
|-----|----------|----------|-------------|-------------|------------|----------|-------------|------------|------|
| 0   | 0.811148 | 0.890278 | 2548        | 130         | 111.0      | 21       | 27          | 88.6       | 3.47 |
| 1   | 0.811148 | 0.890278 | 2548        | 130         | 111.0      | 21       | 27          | 88.6       | 3.47 |
| 2   | 0.822681 | 0.909722 | 2823        | 152         | 154.0      | 19       | 26          | 94.5       | 2.68 |
| 3   | 0.848630 | 0.919444 | 2337        | 109         | 102.0      | 24       | 30          | 99.8       | 3.19 |
| 4   | 0.848630 | 0.922222 | 2824        | 136         | 115.0      | 18       | 22          | 99.4       | 3.19 |
|     |          |          |             |             |            |          |             |            |      |
| 196 | 0.907256 | 0.956944 | 2952        | 141         | 114.0      | 23       | 28          | 109.1      | 3.78 |
| 197 | 0.907256 | 0.95556  | 3049        | 141         | 160.0      | 19       | 25          | 109.1      | 3.78 |
| 198 | 0.907256 | 0.956944 | 3012        | 173         | 134.0      | 18       | 23          | 109.1      | 3.58 |
| 199 | 0.907256 | 0.956944 | 3217        | 145         | 106.0      | 26       | 27          | 109.1      | 3.01 |
| 200 | 0.907256 | 0.956944 | 3062        | 141         | 114.0      | 19       | 25          | 109.1      | 3.78 |

201 rows × 9 columns

Υ

```
price
0
    13495.0
    16500.0
1
2
    16500.0
3
     13950.0
4
     17450.0
. .
196 16845.0
197 19045.0
198 21485.0
199 22470.0
200 22625.0
```

[201 rows x 1 columns]

|     | price   |
|-----|---------|
| 0   | 13495.0 |
| 1   | 16500.0 |
| 2   | 16500.0 |
| 3   | 13950.0 |
| 4   | 17450.0 |
|     |         |
| 196 | 16845.0 |
| 197 | 19045.0 |
| 198 | 21485.0 |
| 199 | 22470.0 |
| 200 | 22625.0 |

201 rows × 1 columns

feature = X.values

value = Y.values

from sklearn.model\_selection import train\_test\_split
feature\_train,feature\_test,value\_train,value\_test=train\_test\_split(feature,value,test\_size)

## **Feature Scaling**

from sklearn.preprocessing import StandardScaler sc = StandardScaler feature\_train=sc.fit\_transform(feature\_train) feature\_test=sc.fit\_transform(feature\_test)

```
from sklearn.linear_model import LinearRegression
# create an object
ml=LinearRegression()
ml.fit(feature_train, value_train)
LinearRegression()
▼ LinearRegression
LinearRegression()
value_pred = ml.predict(feature_test)
print(value_pred)
[[ 5844.78826709]
 [11348.76667238]
 [20251.35191747]
 [21406.74779824]
 [20982.97703476]
 [ 9879.57644106]
 [14505.61640274]
 [ 6268.36622588]
 [17371.50852175]
 [ 7133.70247958]
 [11507.71500216]
 [20541.38134988]
 [ 7886.8953474 ]
 [ 8265.97639025]
 [17609.8386963]
 [18850.71526732]
 [ 7187.296721 ]
 [15162.619681]
 [10059.0243429]
 [ 6519.28263493]
value=[[0.811148,0.890278,2548,130,111.0,21,27,88.6,3.47]]
ml.predict(value)
array([[11136.98548867]])
from sklearn.metrics import r2_score
r2_score(value_test, value_pred)
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(12,10))
plt.scatter(value_test,value_pred)
plt.xlabel('Actual')
plt.ylabel('Predict')
```

Text(0, 0.5, 'Predict')

<Figure size 864x720 with 1 Axes>

## Download



future\_value = pd.DataFrame({'Actual value':value\_test, 'Predicted value':value\_pred, 'Difference': value\_testvalue\_pred}) future\_value[0:20]

```
import pickle
pickle.dump(LinearRegression,open("model.pkl", "wb"))
```