

Projetando um DAC para RaspberryPi

Live 14 - Alimentação Pt. 1

Valeu apoiadores!

Alexandre

Alex G.

Beatriz

Cássio

Digão

Edson

Emanuel

Erik

Henrique

Leonardo B.

Leonardo C.

Luiz

Rogério

Sorteios KZ ZS10 Pro 2 (Reloaded)

- Aberto
 - KZ ZS10 Pro 2 + Camiseta Amplificou Direito
 - Regra: Comentário no LIVE de HOJE!
 - Sorteio na próxima LIVE a combinar
 - Corte (Data da live 1) dia
 - Todos apoiadores acima do nível Técnico já participam

Fonte de Alimentação

Objetivo

 Alimentar nossos circuitos de DAC e Amplificador

Requisitos

- Estabilidade da tensão
- Capacidade de corrente
- Baixo ruído
- Sequenciamento correto

Lembrando nossa spec

Tensões de entrada vindas da RaspberryPi (requisito)

Iten	Descrição	Requisito	Prioridade	Justificativa
1	Tamanho	65 x 56.5mm	Referência	Norma
2	Entrada áudio	I2S – SCK, WS e SD	Obrigatório	Compatibilidade com RPi
3	Saída SE - Conector	3.5mm TRS	Obrigatório	Conectividade
4	Saída DIFF - Conector	4.4mm Pentaconn	Obrigatório	Conectividade
5	Potência de Saída	150mW RMS	Obrigatório	Fones target
6	Entrada energia	5V – 500mA 3.3V – 500mA	Referência	Compatibilidade com fontes de mercado p/ RPi

Reguladores de Tensão Lineares

Reguladores Lineares

- Vantagens
 - Simples de projetar (+ poucos componentes)
 - Baixo ruído
 - Reação rápida a variações na carga
- Desvantagens
 - Eficiência menor (comparada a DC-DC)
 - Apenas abaixam tensão
 - Podem dissipar bastante calor

Reguladores Chaveados (DC-DC)

Reguladores DC-DC inversores (chaveados)

Reguladores Chaveados

- Vantagens
 - Alta eficiência
 - Versatilidade
 - Correntes de saída maiores
- Desvantagens
 - Mais complexos de projetar (+ componentes)
 - Ruído de chaveamento
 - Resposta a transiente

Metodologia

- Tomamos nota de todas as tensões que precisamos
- Requisitos de corrente para cada tensão
- Escolha de topologia
 - Tensões exclusivamente analógicas → Reguladores lineares
 - Tensões exclusivamente digitais → Reguladores chaveados
 - Podemos usar reguladores chaveados para subir tensão e lineares para reduzir o ruído
- Escolha dos componentes

