Front matter

lang: ru-RU title: "Отчет по лабораторной работе №2" subtitle: "Задача о погоне - вариант 37" author: "Кан Ир-сен НПИбд-01-19"

Formatting

toc-title: "Содержание" toc: true # Table of contents toc_depth: 2 lof: true # List of figures fontsize: 12pt linestretch: 1.5 papersize: a4paper documentclass: scrreprt polyglossia-lang: russian polyglossia-otherlangs: english mainfont: PT Serif romanfont: PT Serif sansfont: PT Sans monofont: PT Mono mainfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX romanfontoptions: Ligatures=TeX sansfontoptions: Ligatures=TeX sansfontoptions: Ligatures=TeX,Scale=MatchLowercase monofontoptions: Scale=MatchLowercase indent: true pdf-engine: lualatex header-includes: - \linepenalty=10 # the penalty added to the badness of each line within a paragraph (no associated penalty node) Increasing the ualue makes tex try to haue fewer lines in the paragraph. - \interlinepenalty=0 # ualue of the penalty (node) added after each line of a paragraph. - \hyphenpenalty=50 # the penalty for line breaking at an automatically inserted hyphen - \exhyphenpenalty=50 # the penalty for line breaking at an explicit hyphen - \binoppenalty=700 # the penalty for breaking a line at a relation - \clubpenalty=150 # extra penalty for breaking after insertine of a paragraph - \widowpenalty=150 # extra penalty for breaking before last line of a paragraph - \displaywidowpenalty=50 # extra penalty for breaking before last line before a display math - \brokenpenalty=100 # extra penalty for page breaking after a hyphenated line - \predisplaypenalty=10000 # penalty for breaking before a display - \postdisplaypenalty=0 # penalty for breaking after a display - \footnote in standard LaTeX) - \raggedbottom # or \flushbottom - \usepackage{float} # keep figures where there are in the text

- \floatplacement{figure}{H} # keep figures where there are in the text

Цель работы

Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии k км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в п раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

Задание

- 1. Провести необходимые рассуждения и вывод дифференциальных уравнений, если скорость катера больше скорости лодки в п раз.
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Определить по графику точку пересечения катера и лодки.

Выполнение лабораторной работы

Принимаем за \$t_0=0, X_0=0\$ - место нахождения лодки браконьеров в момент обнаружения, \$X_0=k\$ - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.

Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров \$x_0=0 (\theta=x_0=0)\$, а полярная ось г проходит через точку нахождения катера береговой охраны.

Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер x, а катер x, а катер x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как r или r или

Отсюда мы найдем два значения \$x_1\$ и \$x_2\$, задачу будем решать для двух случаев.

 $x_1=\frac{k}{n+1}$, при $\theta=0$

 $x_2=\frac{k}{n-1}$, при $\theta=-\pi$

Тогда получаем \$r\frac{d\theta}{dt}=u\sqrt{n^2-1}\$

Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений

 $\$ \begin{cases} $\frac{dr}{dt}=v \ r\frac{dt}{u} = \sqrt{r^2-1} \ \$

с начальными условиями

 $\$ \begin{cases} \theta_0=0 \ r_0=\frac{k}{n+1} \end{cases} \ \$\$

 $\ \phi_{cases} \rightarrow r_0=\frac{k}{n-1} \$

Исключая из полученной системы производную по t, можно перейти κ следующему уравнению: $\frac{d^2}{d\theta} = \frac{d^2}{d\theta}$

Начальные условия остаются прежними. Решив это уравнение, мы получим траекторию движения катера в полярных координатах. Теперь, когда нам известно все, что нам нужно, построим траекторию движения катера и лодки для двух случаев.

Условие задачи

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 14.1 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3.9 раза больше скорости браконьерской лодки

Код программы

```
from math import *
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plot
# заданые значения в задании
n = 3.5
s = 8.5
fi = pi * 2/5 # сторона побега
# диферинциальное уровнения движеняи катера
def diff(tetha, r):
    dr = r/sqrt(n**2 - 1)
    return dr
# простое уровнения описания движения ложги
def f2(t):
    xt = tan(fi+pi)*t
    return xt
#Решения первого случия когда он идет по часовой стрелке
r0 = s / (n+1)
# solved diff equations
# Задаем значения тета на какомнубуть интервале
tetha = np.arange(0, 2*pi, 0.01)
r = odeint(diff, r0, tetha)
# простой превод из обычных координат в полярные
t = np.arange(0.00000000000001, 20)
r1=np.sqrt(t**2 + f2(t)**2)
tetha1 = np.arctan(f2(t)/t)
#Рисования картинки
plot.rcParams["figure.figsize"] = (10, 10)
plot.polar(tetha, r, 'red')
plot.polar(tetha1, r1, 'green')
tmp = 0
for i in range(len(tetha)):
    if round(tetha[i], 2) == round(fi+pi, 2):
print("Teta:", tetha[tmp], "r:", r[tmp][0])
print("X:", r[tmp][0]/sqrt(2), "Y:", -r[tmp][0]/sqrt(2))
plot.legend()
plot.savefig("01.png", dpi=400)
r0 = s/(n-1)
tetha = np.arange(0, 2*pi, 0.01)
r = odeint(diff, r0, tetha)
# вычесления троектории лодки
```

```
t=np.arange(0.00000000000001, 20)
rl=np.sqrt(t**2+f2(t)**2)
tetha1 = np.arctan(f2(t)/t)

plot.rcParams["figure.figsize"] = (8, 8)

plot.polar(tetha, r, 'red', label = 'катер')
plot.polar(tetha1, r1, 'green', label = 'лодка')

# вычесления точка пересичения

tmp=0

for i in range(len(tetha)):
    if round(tetha[i], 2) == round(fi+pi, 2):
        tmp=i

print("Teta:", tetha[tmp], "r:", r[tmp][0])
print("X:", r[tmp][0]/sqrt(2), "Y:", -r[tmp][0]/sqrt(2))
plot.legend()
plot.savefig("02.png", dpi=400)
```

Решение

```
траектории для случая 1 { #fig:001 width=70% height=70% }
```

Tочка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет координаты $\$ \begin{cases} \theata=315 \ r=6.88 \end{cases} \

```
траектории для случая 2 { #fig:002 width=70% height=70% }
```

Tочка пересечения красного и зеленого графиков - точка пересечения катера и лодки, исходя из графика, имеет координаты $\$ \begin{cases} \theta=315 \ r=8.87 \end{cases} \ \$

Наблюдаем, что при погоне «по часовой стрелке» для достижения цели потребуется пройти значительно меньшее расстояние.

Выводы

Рассмотрели задачу о погоне. Провели анализ и вывод дифференциальных уравнений. Смоделировали ситуацию.