# Yolo v1, v2

**Object Detection** 

### **Object Detection**

이미지 및 비디오 내에서 유의미한 특정 객체를 감지하는 작업



#### 1. Bounding Box



# 2. IOU(Intersection Over Union) 실제 값과 모델이 예측한 값이 얼만나 겹치는지 (교집합 / 합집합)





#### 3. Confidence Score



- 물체가 있을 확률
- 물체가 있을 확률 \* IOU
- 어떤 물체의 Class일 확률 \* IOU

### 4. NMS(Non-Maximum Suppresion)



박스의 중복을 제거 및 물체를 가장 잘 나타낸 박스를 남김

#### 4. NMS(Non-Maximum Suppresion)



- 1. 특정 Confidence Score이하의 Bounding Box 제거
- **2.** 남은 Bounding Box들을 Confideence Score기준으로 내림차순 [0.9, 0.8, 0.7, 0.65, 0.6, 0.6]
- 3. 맨 앞 박스부터 기준으로, 이 박스와 IOU가 특정 Threshold 이상인 박스들은 제거
- 그 후 2, 3과정을 반복

#### 5. Precision(정밀도), Recall(재현율)

|                      |              | PREDICTIVE VALUES        |    |  |
|----------------------|--------------|--------------------------|----|--|
|                      |              | POSITIVE (1) NEGATIVE (0 |    |  |
| <b>MALUES</b>        | POSITIVE (1) | TP                       | FN |  |
| <b>ACTUAL VALUES</b> | NEGATIVE (0) | FP                       | TN |  |

### TP : 실제 결과 : True, 모델의 예측 : True

-> 물체가 있는 위치와 Class를 모델이 잘 찾은 경우이다

#### FP: 실제 결과: False, 모델의 예측: True

-> 물체가 있다고 예상했지만, 실제로는 물체가 없는 경우

### FN:실제 결과: True, 모델의 예측: False

-> 실제 존재하는 물체를 탐지하지 못한 경우

### TN : 실제 결과 : False, 모델의 예측 : False

-> 실제로 그 자리에 물체가 없었고 모델도 그 자리에 Bounding Box를 예측하지 않은 경우이다

### 5. Precision(정밀도)

#### PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)





맞을 것이라고 예상 한 것중 옳게 검출한 비율

정밀도 
$$= \frac{TP}{TP + FP}$$

### Recall(재현율)

#### PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

ACTUAL VALUES POSITIVE (1) NEGATIVE (0)



검출해내야 하는 물체들 중 제대로 검출된 비율

재현도 
$$= \frac{TP}{TP + FN}$$

### 5. Precision(정밀도), Recall(재현율)

15개의 Object가 검출되어야 하는 이미지에서 아래와 같이 모델이 10개의 객체만 검출했고, 그 때의 Confidence와 TP/FP 여부가 있다고 가정

| Detections | confidences | TP or FP |
|------------|-------------|----------|
| Α          | 57%         | TP       |
| В          | 78%         | TP       |
| C          | 43%         | FP       |
| D          | 85%         | TP       |
| E          | 91%         | TP       |
| F          | 13%         | FP       |
| G          | 45%         | TP       |
| Н          | 68%         | FP       |
| T.         | 95%         | TP       |
| J          | 81%         | TP       |

|                      |              | PREDICTIVE VALUES |              |  |
|----------------------|--------------|-------------------|--------------|--|
|                      |              | POSITIVE (1)      | NEGATIVE (0) |  |
| VALUES               | POSITIVE (1) | TP = 7            | FN = 8       |  |
| <b>ACTUAL VALUES</b> | NEGATIVE (0) | FP = 3            | TN           |  |



Confidence의 threshold = 0

Confidence의 threshold = 95%

#### 6. AP(Average Precision), mAP(mean Average Precision)

AP : Recall을 0부터 1까지 0.1씩 바꿔가면서 그 때의 Precision을 계산하고 평균낸 값 mAP : 각 Class마다 AP를 계산하고 그들을 평균낸 값

| Detections | confidences | TP or FP | 누적 TP | 누적 FP | Precision | Recall     |
|------------|-------------|----------|-------|-------|-----------|------------|
| Î          | 95%         | TP       | 1     | 0     | 1/1=1     | 1/15=0.067 |
| Е          | 91%         | TP       | 2     | 0     | 2/2=1     | 2/15=0.13  |
| D          | 85%         | TP       | 3     | 0     | 3/3=1     | 3/15=0.2   |
| J          | 81%         | TP       | 4     | 0     | 4/4=1     | 4/15=0.27  |
| В          | 78%         | TP       | 5     | 0     | 5/5=1     | 5/15=0.33  |
| Н          | 68%         | FP       | 5     | 1     | 5/6=0.83  | 5/15=0.33  |
| Α          | 57%         | TP       | 6     | 1     | 6/7=0.86  | 6/15=0.4   |
| G          | 45%         | TP       | 7     | 1     | 7/8=0.88  | 7/15=0.47  |
| С          | 43%         | FP       | 7     | 2     | 7/9=0.78  | 7/15=0.47  |
| F          | 13%         | FP       | 7     | 3     | 7/10=0.7  | 7/15=0.47  |



2-Stage Detector - 정확도는 높지만, 학습 및 예측,. 최적화속도가 느리다



1. Stage Detector 1. 파이프라인이 간단하기 때문에 학습과 예측속도가 빠르다. 2. 모든 학습 과정이 이미지 전체를 통해 일어나기 때문에 단일 대상의 특징뿐만 아니라 이미지 전체의 맥락을 학습하게 된다.



#### Detection 과정

- 1. Input Image를 S x S의 Grid로 이미지를 나눠준다
- 2. 이후 각 Grid Cell에 대해 두 가지 Task 를 동시 진행 ① Bounding Box
  - 각 grid cell은 B개의 Bounding BOX를 가진다
  - 박스의 중심 x, y와 w, h & Confidence score를 가진다 confidence = Pr(Object) \* IoU(pred, true)
  - 2 Classification
- => Output Shape = S\* S (B \*5 +C) = 7 X 7 X30
- 3. NMS를 거쳐 겹치는 Box들을 제거 후 최종 결과 도출



#### **1**Bounding box - Coodination



Label에서 사용한 이미지를 7x7로 Grid를 나누고

각 Object에 대해 Bounding Box와 Center point를 표시하면, 아래 그림과 같이 표시할 수 있습니다.

Dog (5,3) Person(4,4)



Dog의 x, y, w, h 값

[0.34419263456090654, 0.611, 0.4165305949008499, 0.262]



#### ② Classification

각 grid cell에 대해 수행 C개의 Class에 대해 Class Probabilities 예측  $Pr(class_i|object)$ 



Shape = S \* S \* C



특징을 추출하는 것이 목적이기에 Classificatino 목적으로 만들어진 모델 사용 ImageNet 데이터로 Pre-train 된 모델을 가져와 fine tuning

#### Yolo v1 - Loss

Grid 별 두 개 Box 중 Ground Truth와 IOU가 더 큰 한 개 Box에 대해서만 Loss를 계산하고 학습

문제 1) 2-stage Detector와 다르게 Localization Error와 Classificatino Error를 동일하게 가중치준다

문제 2 ) 객체를 포함하고 있지 않은 grid cell은 confidence 값이 0을 갖는다

=> 모형이 불안정해짐

$$\lambda_{\text{coord}} = 5 \text{ and } \lambda_{\text{noobj}} = .5.$$

Localization loss

$$\begin{split} & S^2 \sum_{i=0}^B \sup_{j=0} \operatorname{grid} \operatorname{cell} \operatorname{i@l} \operatorname{Bounding} \operatorname{box} \operatorname{predictor} \operatorname{j@l} \operatorname{End} \operatorname{two} \operatorname{perdictor} \operatorname{i@l} \operatorname{End} \operatorname{two} \operatorname{perdictor} \operatorname{i@l} \operatorname{End} \operatorname{two} \operatorname{perdictor} \operatorname{i@l} \operatorname{End} \operatorname{End} \operatorname{i@l} \operatorname{End} \operatorname{End$$

$$+\sum_{i=0}^{S^2}\sum_{j=0}^{B}\mathbb{1}_{ij}^{\text{obj}}\left(C_i-\hat{C}_i\right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left( C_i - \hat{C}_i \right)^2$$

Classification loss

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

: Bounding Box 좌표 손실에 대한 파라미터

#### Yolo v1 - LocalizationLoss

- 1. 많은 grid cell은 객체를 포함하지 않음
- 2. confidence score가 0이 되어 객체를 포합하는 grid cell의 gradient를 압도하여 모델이 불안정해질 수 있다.
- => cood를 5로 설정 하여 높은

- S<sup>2</sup>: grid cell의 수(=7x7=49)
- B: grid cell별 bounding box의 수(=2)

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

 $x_i, y_i, w_i, h_i$  : ground truth box 값 $\hat{x}_i, \hat{y}_i, \hat{w}_i, \hat{h}_i$  예측 bounding box 값

$$+ \left. \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}^{\text{obj}}_{ij} \left[ \left( \sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left( \sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$



Localization loss

크기가 큰 bounding box의 작은 오류가 크기가 작은 bounding box의 오류보다 덜 중요하다는 것을 반영하기 위해 값에 루트를 쓰어주게 됩니다.

#### Yolo v1 - Confidence Loss

 $\lambda_{noobj}$ : 객체를 포함하지 않는 grid cell에 대한 가중치, 논문에서는 0.5로 설정 coord=5로 설정한것에 비해 상당히 작게 설정하여 객체를 포함하지 않는 grid cell의 영향력을 줄임

Ci : 객체가 포함되어 있을 경우 1, 그렇지 않을 경우 0 C^i : 예측한 bounding box의 confidence score

$$\begin{split} &+\sum_{i=0}^{S^2}\sum_{j=0}^{B}\mathbb{1}_{ij}^{\text{obj}}\left(C_i-\hat{C}_i\right)^2\\ &+\lambda_{\text{noobj}}\sum_{i=0}^{S^2}\sum_{j=0}^{B}\mathbb{1}_{ij}^{\text{noobj}}\left(C_i-\hat{C}_i\right)^2 \end{split}$$

Confidence loss

### Yolo v1 - Confidence Loss

- $oldsymbol{p}_i(c)$  : 실제 class probabilities
- $\hat{p_i}(c)$  : 예측한 class probabilities

$$+\sum_{i=0}^{S^2} \mathbb{1}_i^{\text{obj}} \sum_{c \in \text{classes}} (p_i(c) - \hat{p}_i(c))^2$$

Classification loss

# Yolo v1: Experiments

| Real-Time Detectors     | Train     | mAP  | <b>FPS</b> |
|-------------------------|-----------|------|------------|
| 100Hz DPM [31]          | 2007      | 16.0 | 100        |
| 30Hz DPM [31]           | 2007      | 26.1 | 30         |
| Fast YOLO               | 2007+2012 | 52.7 | 155        |
| YOLO                    | 2007+2012 | 63.4 | 45         |
| Less Than Real-Time     |           |      |            |
| Fastest DPM [38]        | 2007      | 30.4 | 15         |
| R-CNN Minus R [20]      | 2007      | 53.5 | 6          |
| Fast R-CNN [14]         | 2007+2012 | 70.0 | 0.5        |
| Faster R-CNN VGG-16[28] | 2007+2012 | 73.2 | 7          |
| Faster R-CNN ZF [28]    | 2007+2012 | 62.1 | 18         |
| YOLO VGG-16             | 2007+2012 | 66.4 | 21         |

### Yolo v1 한계

1. Anchor Box를 사용하지 않고, Cell 단위로 Bounding Box Regressor 과정을 통해 Box를 찾는다 => Localization Error로 인해 성능이 낮아진다.

2. 각 Grid Cell에 대해 2개의 Bounding Box를 찾지만, Classification은 한 개에 대해서만 수행한다. => 겹치는 Object는 Detection하기 어렵다



YOLO v1 마지막 Layer

3. 마지막 Layer Size가 7\*7로 매우 작아서 큰 물체는 잘 찾지만, 작은 물체에 대해서는 잘 찾지 못한다.

#### **Anchor Box**

#### 이미지에서 다양한 형태의 Object를 Detection하기 위한 미리 정해진 크기와 비율을 가진 Bounding box



Localization loss

$$\begin{split} & \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbbm{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right] \\ & + \lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbbm{1}_{ij}^{\text{obj}} \left[ \left( \sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left( \sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right] \end{split}$$

Bounding Box Regressor

Yolo v1에서 Anchor Box를 사용하지 않고 Cell 단위에서 Bounding Box Regressor 과정을 통해 Box사이즈를 Object에 맞도록 조정

- **1.** 속도 개선
  - BackBone으로 Darknet 19 모델을 사용하여 속도를 빠르게 유지 (FPS 45 -> 40)
- 2. 모든 Conv Layer 뒤에 Batch Normalization 적용 mAP 약 2% 증가 Vanishing Gradient 문제 해결, Learning Rate를 키울 수 있기 때문에 더 빨리 수렴 Regularization 역할을 하기에 Dropout 기법 사용하지 않아도 된다는 장점
- 3. High Resolution Classifer mAP 약 4% 증가

Yolo v1에서는 이미지 사이즈를 224\*224로 Pre-train Classifier 모델을 그대로 사용하고, 실제 입력 받을 때는 448\*448 사이즈의 고해상도 이미지를 사용하여 해상도가 맞지 않음

- => Yolo v2에서는 Classfler를 똑같이 224\*224로 학습하고, 마지막 10 epoch정도는 448\*448의 고해상도 이미지로 Fine tuning 함으로써 해결
- 4. Convolutional with Anchor Boxes

Box는 2개를 예측하고, Classification은 한 번만 수행했던 v1과 달리, 각 Grid Cell에 대해 5개의 Anchor Box를 예측 모든 Anchor Box에 대해 Classification을 수행 즉 Output tensor : 13x13x{(5+C}x5 => mAP 69.5 -> 69.2 감소, Recall : 81 -> 88로 상승

#### 5. Dimension Cluster - Anchor 개수, 크기 탐색

#### K-Means Clustering





GT들의 width와 height로 K-Means Clustering을 수행하고, 적절한 k개를 탐색 v2 논문에서의 k = 5 -> Anchor Box 수 = 5

각 Cluster의 Center point = Anchor Box의 사이즈

단, Clustering의 기준을 유클리디안 거리가 아닌 IOU기준으로 한다.

#### 5. Dimension Cluster(2)





유클리디안 거리를 기준으로 유사도를 측정한다면 실제로는 왼쪽 박스들이 더 유사하지만, 오른쪽 박스들이 더 유사하다고 계산 될 것이기에, 유클리디안 거리가 아닌 IOU를 기준으로 Cluster를 구한다

### Yolo v2에서 개선된 부분 - Direct Location Prediction

Dimesion Cluster로 얻은 (tx, ty, tw, th, t0)



- : 미리 지정한 Anchor Box
- : 예측하고자 하는 Box

 $p_w, p_h$ : 사전에 정한 Anchor box의 크기

bৣ, bৢ : ground truth에 가까워지도록 계 속해서 학습되는 trained anchor box의 중심 좌표

- Box가 Cell을 벗어나 아무 위치에나 존재 -> 학습 초기 iteration시 모델이 불안정
- => Bounding Box Regression을 통해 얻은  $t_x, t_y$  에 Sigmoid 함수를 적용하여 Box의 중심점이 Cell 내에 존재하도록 한다.

7. Fine-Grained Features - Feature map이 작을 때 큰 물체는 잘 예측하지만, 작은 물체는 예측하기 어려움



#### 8. Multi - Scale Training

- Anchor Box를 이용해 Bounding Box를 예측하게 되면서 네트워크 구조가 conv and pooling layer로만 구성
- Fully connected layer가 없으므로 입력의 크기를 즉석에서 변경 가능
- 가장 작은 크기는 320x320, 가장 큰 크기는 608 x 608 (subsampling 비율이 32이기 때문에 32의 배수로 설정)

| Type          | Filters | Size/Stride    | Output           |
|---------------|---------|----------------|------------------|
| Convolutional | 32      | $3 \times 3$   | 224 × 224        |
| Maxpool       |         | $2 \times 2/2$ | $112 \times 112$ |
| Convolutional | 64      | 3 × 3          | $112 \times 112$ |
| Maxpool       |         | $2 \times 2/2$ | $56 \times 56$   |
| Convolutional | 128     | 3 × 3          | $56 \times 56$   |
| Convolutional | 64      | 1 × 1          | $56 \times 56$   |
| Convolutional | 128     | $3 \times 3$   | $56 \times 56$   |
| Maxpool       |         | $2 \times 2/2$ | $28 \times 28$   |
| Convolutional | 256     | 3 × 3          | $28 \times 28$   |
| Convolutional | 128     | 1 × 1          | $28 \times 28$   |
| Convolutional | 256     | 3 × 3          | $28 \times 28$   |
| Maxpool       |         | $2 \times 2/2$ | $14 \times 14$   |
| Convolutional | 512     | 3 × 3          | $14 \times 14$   |
| Convolutional | 256     | 1 × 1          | $14 \times 14$   |
| Convolutional | 512     | 3 × 3          | $14 \times 14$   |
| Convolutional | 256     | 1 × 1          | $14 \times 14$   |
| Convolutional | 512     | 3 × 3          | $14 \times 14$   |
| Maxpool       |         | $2 \times 2/2$ | 7 × 7            |
| Convolutional | 1024    | 3 × 3          | $7 \times 7$     |
| Convolutional | 512     | 1 × 1          | 7 × 7            |
| Convolutional | 1024    | 3 × 3          | 7 × 7            |
| Convolutional | 512     | 1 × 1          | 7 × 7            |
| Convolutional | 1024    | 3 × 3          | 7 × 7            |
| Convolutional | 1000    | 1 × 1          | 7 × 7            |
| Avgpool       |         | Global         | 1000             |
| Softmax       |         |                |                  |

# 학습 진행 상황



# 학습 진행 상황





# To do List

- 1. 학습 데이터 accuracy 개선
- 2. 현재까지 나온 yolo version 별 한계점 및 개선 사항, 구조 파악
- 3. Action Reognition개념 및 알고리즘 파악

### Reference

https://herbwood.tistory.com/17 https://m.blog.naver.com/sogangori/221011203855 https://leedakyeong.tistory.com/entry/Object-Detection-YOLO-v1v6-%EB%B9 %84%EA%B5%90

https://yeomko.tistory.com/47

https://blog.naver.com/intelliz/221709190464

https://velog.io/@skhim520/YOLO-v2-%EB%85%BC%EB%AC%B8-%EB%A6%A

C%EB%B7%B0

https://bokonote.tistory.com/11

https://arxiv.org/abs/1506.02640

https://arxiv.org/abs/1612.08242

https://arxiv.org/abs/1804.02767

https://arxiv.org/abs/2004.10934

https://herbwood.tistory.com/13