Data compression for positive vectors

Amina Benaceur

January 30, 2025

Let N and \mathcal{N} be two integers such that $0 < N \leq \mathcal{N}$. Suppose that we have a family of positive column vectors $(\boldsymbol{a}^1, \dots, \boldsymbol{a}^N) \in \mathbb{R}_+^{\mathcal{N}}$ forming the matrix $\boldsymbol{A} \in \mathbb{R}^{\mathcal{N} \times N}$. We denote X_N the space spanned by positive linear combinations of the vectors $(\boldsymbol{a}^1, \dots, \boldsymbol{a}^N)$, i.e.,

$$X_N = \operatorname{span}_+ \{ \boldsymbol{a}^1, \dots, \boldsymbol{a}^N \}.$$

Let n > 0 be an integer satisfying n < N. The goal is to find a set of positive vectors that forms a good approximation space for $(\boldsymbol{a}^1, \dots, \boldsymbol{a}^n)$. Ideally, we search for the set of vectors $(\boldsymbol{b}^1, \dots, \boldsymbol{b}^n)$ satisfying

$$(\boldsymbol{b}^1, \dots, \boldsymbol{b}^n) = \underset{(\boldsymbol{b}^k)_{k=1}^n \in X_N}{\operatorname{argmin}} \underset{z \in \operatorname{span}_+ \{\boldsymbol{b}^k\}_{k=1}^n}{\sum_{i=1}^N \|\boldsymbol{a}^i - z\|^2}.$$
 (1)

In actual practice, the vectors $(\boldsymbol{b}^1,\ldots,\boldsymbol{b}^n)$ solution to problem (1) are difficult to compute. We devise an algorithm that builds an alternate set of vectors $(\boldsymbol{\xi}^1,\ldots,\boldsymbol{\xi}^n)$ such that

$$\forall j \in \{1, \dots, N\}, \quad \exists (\alpha^{j,1}, \dots \alpha^{j,n}) \in \mathbb{R}_+^n : \quad \boldsymbol{a}^j \approx \sum_{k=1}^n \alpha^{j,k} \boldsymbol{\xi}^k.$$
 (2)

It holds that $\mathbf{A}^T \mathbf{A} \in \mathbb{R}_+^{N \times N}$. Additionally, if the columns of \mathbf{A} are pairwise non-orthogonal, we get $\mathbf{A}^T \mathbf{A} \in (\mathbb{R}_+^*)^{N \times N}$. The Perron-Frobenius theorem thus ensures the existence of $\lambda^1 \in \mathbb{R}_+^*$ and $\mathbf{v}^1 \in (\mathbb{R}_+^*)^{N \times N}$ such that $\mathbf{A}^T \mathbf{A} \mathbf{v}^1 = \lambda^1 \mathbf{v}^1$. We then set the first basis vector as $\boldsymbol{\xi}^1 = \mathbf{v}^1$. Additionally, the residual vector $\mathbf{r}^{j,1}$ associated with \mathbf{a}^j satisfies

$$a^{j} = \langle a^{j}, \xi^{1} \rangle \xi^{1} + r^{j,1}.$$
 (3)

Note that $r^{j,1}$ is not necessarily positive. Hence, we adjust the decomposition of a^j as follows

$$\mathbf{a}^{j} = \left(\langle \mathbf{a}^{j}, \boldsymbol{\xi}^{1} \rangle - \max_{1 \leq i \leq N} \frac{\langle \mathbf{a}^{j}, \boldsymbol{\xi}^{1} \rangle \xi_{i}^{1} - a_{i}^{j}}{\xi_{i}^{1}} \right) \boldsymbol{\xi}^{1} + \boldsymbol{\psi}^{j,1}, \tag{4}$$

Proposition 1. The decomposition in (4) is positive, i.e.

- 1. $\xi^1 \in (\mathbb{R}_+^*)^N$;
- 2. The coefficient $<\boldsymbol{a}^{j},\boldsymbol{\xi}^{1}>-\max_{1\leq i\leq N}\frac{<\boldsymbol{a}^{j},\boldsymbol{\xi}^{1}>\xi_{i}^{1}-a_{i}^{j}}{\xi_{i}^{1}}$ is positive;

3.
$$\psi^{j,1} \in \mathbb{R}^N_+$$
.

Proof. It holds that $\boldsymbol{\xi}^1 \in (\mathbb{R}_+^*)^N$ by construction.

Second, we prove 2. By definition, a_i^j is positive for all $i, j \in \{1, \dots, N\}$. Hence,

$$\forall \ 1 \leq i \leq N: \ < \boldsymbol{a}^{j}, \boldsymbol{\xi}^{1} > \geq < \boldsymbol{a}^{j}, \boldsymbol{\xi}^{1} > -\frac{a_{i}^{j}}{\xi_{i}^{1}}.$$

Maximizing over $i \in \{1, ..., N\}$, we get

$$\geq \max_{1\leq i\leq N} rac{ \xi_{i}^{1}-a_{i}^{j}}{\xi_{i}^{1}},$$

whereof the positivity of the coefficient $< a^j, \xi^1 > -\max_{1 \le i \le N} \frac{< a^j, \xi^1 > \xi_i^1 - a_i^j}{\xi_i^1}$.

Let us now address 3. It follows from (4) that

$$\begin{split} \forall l \in \{1, \dots, N\} : \quad \psi_l^{j,1} &= a_l^j - \left(< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > -\max_{1 \leq i \leq N} \frac{< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_i^1 - a_i^j}{\xi_i^1} \right) \xi_l^1. \\ &= a_l^j - < \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_l^1 + \max_{1 \leq i \leq N} \frac{< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_i^1 - a_i^j}{\xi_i^1} \xi_l^1. \\ &= -\frac{\left(< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_l^1 - a_l^j \right)}{\xi_l^1} \xi_l^1 + \max_{1 \leq i \leq N} \frac{< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_i^1 - a_i^j}{\xi_i^1} \xi_l^1. \\ &= \left(\max_{1 \leq i \leq N} \frac{< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_i^1 - a_i^j}{\xi_i^1} - \frac{\left(< \boldsymbol{a}^j, \boldsymbol{\xi}^1 > \xi_l^1 - a_l^j \right)}{\xi_l^1} \right) \xi_l^1. \end{split}$$

Both factors in the latter equality are positive, whereof the positivity of $\psi_l^{j,1}$ for all $l \in \{1,\ldots,N\}$. It then follows that $\psi^{j,1} \in \mathbb{R}^N_+$, which concludes the proof.

We can then reiterate the same process at stage k by applying the same strategy to the set of positive vectors $(\boldsymbol{\psi}^{j,1},\ldots,\boldsymbol{\psi}^{j,N})$. We introduce the matrix $\boldsymbol{\Psi}^{k-1} \in \mathbb{R}_+^{N \times N}$ whose column vectors are $\boldsymbol{\psi}^k$ for $k \in \{1,\ldots,N\}$. The eigenvector associated with the dominant eigenvalue of the matrix $\boldsymbol{\Psi}^{k-1,T}\boldsymbol{\Psi}^{k-1}$ is denoted $\boldsymbol{\xi}^k$ so that $\boldsymbol{\Psi}^{k-1,T}\boldsymbol{\Psi}^{k-1}\boldsymbol{\xi}^k = \lambda^k\boldsymbol{\xi}^k$. Consequently, at stage $m \in \{0,\ldots,n\}$, such a strategy yields positive decompositions of the form

$$\boldsymbol{a}^{j} \approx \sum_{k=1}^{m} \alpha^{j,k} \boldsymbol{\xi}^{k}, \qquad \forall j \in \{1, \dots, N\}.$$
 (5)

where, for all $j \in \{1, \dots, N\}$ and $k \in \{1, \dots, m\}$,

$$\alpha^{j,k} = <\psi^{j,k-1}, \xi^k > -\max_{1 \le i \le N} \frac{<\psi^{j,k-1}, \xi^k > \xi_i^k - \psi_i^{j,k-1}}{\xi_i^k}.$$
 (6)

We then set the approximation space as $\operatorname{span}_{+}\{A\boldsymbol{\xi}^{1},\ldots,A\boldsymbol{\xi}^{n}\}$.