SAT Solving in Interactive Configuration

Mikoláš Janota

Lero University College Dublin Ireland

Feature Diagrams

Feature Diagrams

Legend Selection

Eliminate

Autoselect

Legend Selection

Legend Selection

Eliminate

Legend Selection

"I'm Done"

Legend Selection

Eliminate

Autoselect

"I'm Done"

Legend Selection

Eliminate

"I'm Done" sometimes doesn't work

Legend Selection

"I'm Done" sometimes doesn't work

Legend Selection

What is the general problem?

Provide assistance during interactive configuration.

What is the general problem?

Provide assistance during interactive configuration.

Why is it important?

• **applicability** – a means to personalization of products and systematic reuse of software components and services

What is the general problem?

Provide assistance during interactive configuration.

Why is it important?

- applicability a means to personalization of products and systematic reuse of software components and services
- constraints reduce the risk of incorrect usage

What is the general problem?

Provide assistance during interactive configuration.

Why is it important?

- applicability a means to personalization of products and systematic reuse of software components and services
- constraints reduce the risk of incorrect usage
- interactive increases comfort for the user

Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (BDDs)

Why is constructing BDDs hard?

• the number of models of a formula grows exponentially

Why is constructing BDDs hard?

- the number of models of a formula grows exponentially
- the ordering of the variables matters

Why is constructing BDDs hard?

- the number of models of a formula grows exponentially
- the ordering of the variables matters
- the way of constructing the BDD matters

Why is constructing BDDs hard?

- the number of models of a formula grows exponentially
- the ordering of the variables matters
- the way of constructing the BDD matters
- heuristics are needed for the two above

Specific Problem

Thesis

Are modern SAT solvers suitable means for implementing assistance during interactive configuration?

... where the suitability is measured by the response time.

Why SAT solvers?

The problem solved is computationally challenging

- Deciding whether a variable must have a certain value is co-NP-complete.
- Deciding whether a variable can be safely eliminated is Π_2^P -complete.

Why SAT solvers?

The problem solved is computationally challenging

- Deciding whether a variable must have a certain value is co-NP-complete.
- Deciding whether a variable can be safely eliminated is Π^P₂-complete.

SAT Solvers are neat

- SAT solvers are means to deciding an NP-complete problem (formula satisfiability).
- Modern SAT solvers became very efficient.
- The tools can be used off-the-shelf.

Novelty

Existing Alternative Approaches to Assistance

- ad hoc
- precompilation
- not backtrack free or not complete

Novelty

Existing Alternative Approaches to Assistance

- ad hoc
- precompilation
- not backtrack free or not complete

Completing Configuration

- The presented formalization is novel.
- Similar algorithms exist but applied in different context.

Novelty

Existing Alternative Approaches to Assistance

- ad hoc
- precompilation
- not backtrack free or not complete

Completing Configuration

- The presented formalization is novel.
- Similar algorithms exist but applied in different context.

Syntactic Optimization

 Presented optimization is known but the focus on the proof reconstruction is novel.

Research Methodology

Constructive Research

- review of related work
- formulation of hypothesis
- formalization of the problem
- development of the algorithms
- an empirical evaluation of the implemented algorithms

A Case for the Thesis

Contributions

- study of a lazy approach to interactive configuration,
- study of approaches to configuration process completion.

A Case for the Thesis

Contributions

- study of a lazy approach to interactive configuration,
- study of approaches to configuration process completion.

Advantages over the precompilation methods

- precompilation may fail or may require specific expertise to be carried out.
- more informative explanations can be provided.

A Case for the Thesis

Contributions

- study of a lazy approach to interactive configuration,
- study of approaches to configuration process completion.

Advantages over the precompilation methods

- precompilation may fail or may require specific expertise to be carried out.
- more informative explanations can be provided.

Conclusions from the Evaluation

- the time of feedback during configuration was satisfactory,
- the runtime off the algorithm for configuration completion was satisfactory in majority of the cases but timed out in some.

How Do We Go About This?

Use a SAT Solver

- determines the satisfiability of a given Boolean formula
- operates on Conjunctive Normal Form (CNF)
- a certification of the response is produced
- nowadays SAT solvers are very efficient

How Do We Go About This?

Use a SAT Solver

- · determines the satisfiability of a given Boolean formula
- operates on Conjunctive Normal Form (CNF)
- a certification of the response is produced
- nowadays SAT solvers are very efficient

Assumptions

- constraints encoded in a CNF
- decisions so far encoded as a conjunction of literals

$$\phi \equiv f_1 \wedge \neg f_8 \wedge \dots$$

Towards Satisfiability

Proposition

for a formula ϕ and a literal I

$$\phi \models I$$
 iff $(\phi \land \neg I)$ is unsatisfiable

Example

for
$$\phi = (x \Rightarrow y) \land x$$

$$\phi \models y$$

 $\phi \wedge \neg y$ is unsatisfiable

SAT Solver for Configuration

Testing all unassigned variables after each user's decision

```
Test-Vars()
    foreach x that was not assigned to by the user
          do CanBeTrue \leftarrow TEST-SAT(\phi, x)
 3
              CanBeFalse \leftarrow \text{TEST-SAT}(\phi, \neg x)
              if \neg CanBeTrue \land \neg CanBeFalse
                then error "Unsatisfiable constraint!"
 5
              if \neg CanBeTrue then Set(x, False)
              if \neg CanBeFalse then Set(x, True)
              if CanBeTrue ∧ CanBeFalse
 8
                then Reset(x)
 9
                      Unlock(x)
10
                else Lock(x)
```

Can We Improve This?

SAT

- For satisfiable queries, the SAT solver returns with a satisfying assignment.
- All the values in this assignment are satisfiable and don't need to be queried for.

Can We Improve This?

SAT

- For satisfiable queries, the SAT solver returns with a satisfying assignment.
- All the values in this assignment are satisfiable and don't need to be queried for.

Example

if we have

$$SAT((x \Rightarrow y) \land y) = \{x, y\}$$

then

$$((x \Rightarrow y) \land x)$$

is satisfiable

Can We Improve This?

UNSAT

- Can a negative response of the solver help in the future?
- Example

$$\begin{cases}
f_1 => f_2 \\
\neg f_2 \\
\dots
\end{cases} \neg f_1$$

• Recording disabled values may help with further queries.

Satisfiability with Caching

- KnownValues represent values known to be SAT
- DisabledValues represent values known to be UNSAT

```
TEST-SAT(\phi: Formula, l: Literal) : Boolean

1 if l \in KnownValues then return TRUE

2 if l \in DisabledValues then return FALSE

3 L \leftarrow SAT(\phi \land l \land \bigwedge_{k \in DisabledValues} \neg k)

4 if L \neq null

5 then KnownValues \leftarrow KnownValues \cup L

6 else DisabledValues \leftarrow DisabledValues \cup \{l\}

7 return L \neq null
```

Explanations

- The solver produces a unsatisfiable subset of given formulas.
- This may not be minimal, several techniques how to minimize.
- In the tool an iterative technique by Zhang and Malik.

Conditions

- All variables must have a value.
- Values must conform to the constraints.

Conditions

- All variables must have a value.
- Values must conform to the constraints.

Scenarios

• manual — user fills in everything

Conditions

- All variables must have a value.
- Values must conform to the constraints.

Scenarios

- manual user fills in everything
- blind completion automated tool fills in everything

Conditions

- All variables must have a value.
- Values must conform to the constraints.

Scenarios

- manual user fills in everything
- blind completion automated tool fills in everything
- smart completion automated tool fills as much as possible without making decisions for the user

Smart Completion

Legend Selection

Autoeliminate

Decisions and Dispensable Variables

 A set of variables is eliminable iff they can be all eliminated all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v \right)$$

Decisions and Dispensable Variables

 A set of variables is eliminable iff they can be all eliminated all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v \right)$$

- A set of variables X must be decided iff
 - 1. X it is not eliminable.
 - 2. All of the proper subsets of X are eliminable.

$$\neg \mathcal{D}(\phi, X) \wedge (\forall Y \subsetneq X)(\mathcal{D}(\phi, Y))$$

Decisions and Dispensable Variables

 A set of variables is eliminable iff they can be all eliminated all at once.

$$\mathcal{D}(\phi, X) \stackrel{\text{def}}{=} SAT \left(\phi \land \bigwedge_{v \in X} \neg v \right)$$

- A set of variables X must be decided iff
 - 1. X it is not eliminable.
 - 2. All of the proper subsets of X are eliminable.

$$\neg \mathcal{D}(\phi, X) \wedge (\forall Y \subsetneq X)(\mathcal{D}(\phi, Y))$$

 A variable is dispensable iff it does not belong to any set that must be decided.

Examples

$\mathbf{x}\vee\mathbf{y}\vee\mathbf{z}$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not eliminable: $\{x, y, z\}$
- {x, y, z} must be decided and none of the variables are dispensable.

Examples

$$\mathbf{x}\vee\mathbf{y}\vee\mathbf{z}$$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not eliminable: $\{x, y, z\}$
- {x, y, z} must be decided and none of the variables are dispensable.

$$\mathbf{x} \Rightarrow (\mathbf{y} \lor \mathbf{z})$$

• $\{x, y, z\}$ is eliminable therefore does not have to be decided and all variables are dispensable.

Examples

$$\mathbf{x} \lor \mathbf{y} \lor \mathbf{z}$$

- Deselectable: $\{x, y\}$, $\{x, z\}$, $\{y, z\}$, $\{x\}$, $\{y\}$, $\{z\}$, and \emptyset
- Not eliminable: $\{x, y, z\}$
- $\{x, y, z\}$ must be decided and none of the variables are dispensable.

$$x \Rightarrow (y \lor z)$$

• $\{x, y, z\}$ is eliminable therefore does not have to be decided and all variables are dispensable.

$$(x \Rightarrow (y \lor z)) \land x$$

• $\{y, z\}$ must be decided.

Dispensable Variables and Minimal Models

• A variable is dispensable iff it is False in all minimal models.

Dispensable Variables and Minimal Models

• A variable is dispensable iff it is False in all minimal models.

Dispensable Variables and Minimal Models

• A variable is dispensable iff it is False in all minimal models.

$$x \lor y \lor z$$

$$x \quad y \quad z$$

$$T \quad F \quad F$$

$$F \quad T \quad F$$

$$F \quad F \quad T$$

$$x \Rightarrow (y \lor z)$$

$$x \quad y \quad z$$

$$F \quad F \quad F$$

Enumerating All Minimal Models

schema

Other Relations

Non-monotonic Reasoning

• Propositional Circumscription

$$\phi \models_{\min} \psi$$

Generalized Closed World Assumption (GCWA)

• For a general set of possibilities, it is hard to help the user.

- For a general set of possibilities, it is hard to help the user.
- But it is possible, if there is a preference on the possibilities.

- For a general set of possibilities, it is hard to help the user.
- But it is possible, if there is a preference on the possibilities.
- We can focus on the most preferred possibilities.

- For a general set of possibilities, it is hard to help the user.
- But it is possible, if there is a preference on the possibilities.
- We can focus on the most preferred possibilities.

General Case Meets the Boolean Case

• A value c is settled for a variable v iff v has the value c in all most preferred possibilities.

General Case Meets the Boolean Case

 A value c is settled for a variable v iff v has the value c in all most preferred possibilities.

Settled Values and Dispensable Variables

• A variable is dispensable iff False is settled for it under the point-wise preference for False.

General Case Meets the Boolean Case

 A value c is settled for a variable v iff v has the value c in all most preferred possibilities.

Settled Values and Dispensable Variables

• A variable is dispensable iff False is settled for it under the point-wise preference for False.

Experimental Results

Name	#variables	#clauses		
E-shop	287	420		
Violet	170	341		
Berkeley	94	183		
T-shirt	16	40		
3blocks	283	9690		
rocket	351	2398		

Name	Length	#decisions	поор	BIS	Cat	Ord	BCO
E-shop	144.3	7215	53	42	53	9	7
Violet	50.34	2517	16	15	16	4	4
Berkeley	25.12	1256	14	11	14	7	5
T-shirt	4.7	235	8	7	8	5	5
3blocks	6.7	335	655	616	557	3418	2671
rocket	7.52	376	166	163	158	274	260

Times for Minimal Model Enumeration

Percentages of Dispensable Variables

dispensables for Eshop-fm.xml

interactive configuration

- Interactive configuration is about helping a user to find a solution to the problem
- This is solved by multiple calls to a SAT solver

interactive configuration

- Interactive configuration is about helping a user to find a solution to the problem
- This is solved by multiple calls to a SAT solver

smart completion

To provide smart completion we introduce dispensable variables.

interactive configuration

- Interactive configuration is about helping a user to find a solution to the problem
- This is solved by multiple calls to a SAT solver

smart completion

- To provide smart completion we introduce dispensable variables.
- Dispensable variables are closely related to CWA.

interactive configuration

- Interactive configuration is about helping a user to find a solution to the problem
- This is solved by multiple calls to a SAT solver

smart completion

- To provide smart completion we introduce dispensable variables.
- Dispensable variables are closely related to CWA.
- In non-propositional case we needed preference.

interactive configuration

- Interactive configuration is about helping a user to find a solution to the problem
- This is solved by multiple calls to a SAT solver

smart completion

- To provide smart completion we introduce dispensable variables.
- Dispensable variables are closely related to CWA.
- In non-propositional case we needed preference.
- Dispensable variables can be seen as a preference for deselecting.
- Analogously CWA as a preference for False.

 SAT solvers are fast enough to be used as oracles in more challenging problems