Cette interrogation ne sera pas ramassée, il faut plutôt la voir comme un « quizz » de révision sur les cours de la semaine : savez-vous traiter tous les exercices ? Si non, il faut revoir les points en question, ce sont des aspects importants du cours.

Exercice 1 Soit $n \in \mathbb{N}$ et $\alpha \in \mathbb{R}$. Donner les DL suivants (DL_n(0) pour DL à l'ordre n en 0).

 $DL_n(0)$ de e^x :

$$DL_n(0)$$
 de $\frac{1}{1+x}$:

$$DL_n(0)$$
 de $ln(1+x)$:

$$DL_3(0) de (1+x)^{\alpha}$$
:

$$DL_5(0)$$
 de $sin(x)$:

Exercice 2 Soit x_1, \ldots, x_n des vecteurs d'un \mathbb{K} -ev E. Donner les définitions quantifiées de « (x_1, \ldots, x_n) est libre », de « (x_1, \ldots, x_n) est une famille génératrice de E » et de « (x_1, \ldots, x_n) est une base de E ».

Exercice 3 Soit E et F deux \mathbb{K} -ev, soit $\varphi \in \mathcal{L}(E,F)$ injective, soit (x_1,\ldots,x_n) une famille libre de vecteurs de E.

Que peut-on dire de la famille $(\varphi(x_1), \dots, \varphi(x_n))$? Le démontrer.

Exercice 4 Soient F et G deux sev d'un ev E en somme directe, de bases respectives \mathscr{F} et \mathscr{G} . Donner une base de F+G, et montrer que c'est bien une base.

Exercice 5 Soit f un projecteur. Montrer que Im f = Ker(f - Id).

Exercice 6 Montrer qu'une fonction lipschitzienne est uniformément continue.

Exercice 7 Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ décroissante, soit $n \in \mathbb{N}^*$. Montrer comment encadrer $\int_0^n f$ par deux sommes, en partant d'un encadrement de $\int_k^{k+1} f$, que l'on illustrera.

Exercice 8 Énoncer et démontrer la formule de changement de variables.

Exercice 9 Énoncer la formule de Taylor avec reste intégral.