$$\overrightarrow{AM} \begin{pmatrix} x-3 \\ y-1 \end{pmatrix}$$
 et  $\overrightarrow{u} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$  sont colinéaires. On en déduit:

$$5(x-3) - (-1)(y-1) = 0.$$

Après calculs, on conclut qu'une équation cartésienne de d est 5x + y - 16 = 0.

#### Remarque:

Une autre méthode consiste à appliquer le théorème énoncé plus haut.

Ainsi, comme  $\overrightarrow{u} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$  est un vecteur directeur de d, une équation de d est

de la forme :  $5x + 1 \times y + c = 0$ .

Pour déterminer c, on substitue les coordonnées de A dans l'équation.

2)  $\overrightarrow{BC}$  est un vecteur directeur de d'.

$$\overrightarrow{BC} \begin{pmatrix} 1-5\\ -3-3 \end{pmatrix} = \overrightarrow{BC} \begin{pmatrix} -4\\ -6 \end{pmatrix}.$$

Le théorème nous donne une équation cartésienne de d': -6x + 4y + c = 0.

Pour trouver, on utilise le point B ou le point C.

B(5;3) appartient à d' donc :  $-6 \times 4 + 4 \times 3 + c = 0$  donc c = 18.

Une équation cartésienne de d' est : -6x + 4y + 18 = 0 ou, une fois simplifiée, -3x + 2y + 9 = 0.

# 3) Equation réduite de droite

#### Théorème:

Soit  $\mathcal{D}$  une droite du plan d'équation cartésienne ax + by + c = 0.

❖ Cas b=0: 𝒯 est une droite du plan parallèle à l'axe des ordonnées si et seulement si 𝒯 admet une équation réduite du type x=k, avec  $k\in \mathbb{R}$ .

Un vecteur directeur de  $\mathscr{D}$  est  $\overrightarrow{u} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ .

**Cas**  $\mathbf{b} \neq \mathbf{0}$ :  $\mathscr{D}$  est une droite du plan non parallèle à l'axe des ordonnées si et seulement si  $\mathscr{D}$  admet une équation réduite du type y = mx + p, avec m et p réels.

Un vecteur directeur de  $\mathscr{D}$  est  $\overrightarrow{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ , où m est le coefficient directeur de la droite.

# 4) Retour sur les équations réduites de droites

#### Propriété:

Soit  $\mathcal{D}$  une droite du plan.

- ❖ Si ② est parallèle à l'axe des ordonnées, alors l'équation de ② est de la forme x = c, avec c un nombre réel.
- ❖ Si ② n'est pas parallèle à l'axe des ordonnées, alors l'équation de ② est de la forme y = ax + b, avec a et b deux nombres réels.



#### Rappel:

a est appelé le coefficient directeur de la droite  $\mathscr{D}$ .

b est appelé l'ordonnée à l'origine de la droite  ${\mathcal D}$ .

#### Exercice:

Donner le coefficient directeur et l'ordonnée à l'origine de chacune des droites d'équations : a) y = -2x + 4 b) y = -1 c) 3x + 2y = 2

|                       | a) | b) | c) |
|-----------------------|----|----|----|
| Coefficient directeur |    |    |    |
| Ordonnée à l'origine  |    |    |    |

# Exemples:

La droite  $\mathcal{D}$  a pour équation x = 3.

La droite  $\mathcal{D}'$  a pour équation y = 3x + 2 : son ordonnée à l'origine est 2 et son coefficient directeur est +3 .

<u>Méthode</u> : Représenter graphiquement une droite d'équation donnée



| Soit $(O, \vec{i}, \vec{j})$ un repère du plan.<br>Dans ce repère, <b>en expliquant le plus précisément possible</b> , tracer les droites $d_1, d_2$ et $d_3$ d'équations : $(d_1) : y = 2x + 3, (d_2) : y = 4, (d_3) : x = 3.$ |     |            |  |  |                   |       |  |                   |            |       |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--|--|-------------------|-------|--|-------------------|------------|-------|---|
| 1, <i>u</i> <sub>2</sub> et <i>u</i> <sub>3</sub> d equations . ( <i>u</i> <sub>1</sub> )                                                                                                                                       | • • | <i>y</i> — |  |  | (u <sub>2</sub> ) | · y · |  | (u <sub>3</sub> ) | . <i>A</i> | <br>• |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       | _ |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       | _ |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       | _ |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       | _ |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       | _ |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |
|                                                                                                                                                                                                                                 |     |            |  |  |                   |       |  |                   |            |       |   |

# Propriété réciproque :

Soit  $(O, \vec{i}, \vec{j})$  un repère du plan et a, b, c trois nombres réels. L'ensemble des points M du plan dont les coordonnées (x,y) sont telles que : y=ax+b ou x=c, est une droite.

Méthode: Vérifier si un point appartient à une droite d'équation donnée

Soit  $(O, \vec{i}, \vec{j})$  un repère du plan.

Les points  $A \begin{pmatrix} 6,4\\42 \end{pmatrix}$  et  $B \begin{pmatrix} 346\\2419 \end{pmatrix}$  appartiennent-ils à la droite d d'équation y = 7x - 3?

- Le point A appartient à la droite d d'équation y = 7x 3 revient à dire que les coordonnées de A vérifient l'équation de la droite d. On remplace donc x dans l'équation de la droite et on compare le résultat à y. Ici, ce n'est pas le cas, puisque :  $42 \neq 7 \times 6, 4 3 = 41, 8 : A \notin d$ .
- Faire de même avec les coordonnées du point B.

### 5) Conséquence pour la pente

Propriété:

Si  $A \begin{pmatrix} x_A \\ y_A \end{pmatrix}$  et  $B \begin{pmatrix} x_B \\ y_B \end{pmatrix}$  sont deux points distincts d'une droite  $\mathscr D$  tel que

 $x_A \neq x_B$  alors la droite  $\mathscr{D}$  a pour coefficient directeur  $m = \frac{y_B - y_A}{x_B - x_A}$ .

Rem : Cette pente correspond au m apparaissant dans le vecteur directeur  $\overrightarrow{u} \begin{pmatrix} 1 \\ m \end{pmatrix}$ . Voir ce <u>lien</u>.

Méthode : Déterminer une équation de droite dont on connaît deux points

Soit  $(O, \vec{i}, \vec{j})$  un repère du plan.

Soit  $A \begin{pmatrix} 4 \\ -1 \end{pmatrix}$  et  $B \begin{pmatrix} 3 \\ 5 \end{pmatrix}$  deux points d'une droite d. Déterminer une équation de la droite d.

### II. Parallélisme et vecteur directeur

### 1) Parallélisme

Propriété : Soit  $(O, \vec{i}, \vec{j})$  un repère du plan

Soit  $\mathscr{D}$  et  $\mathscr{D}'$  deux droites non parallèles à l'axe des ordonnées.

 $\mathcal{D}$  et  $\mathcal{D}'$  sont parallèles si et seulement si elles ont le même coefficient directeur.

#### Exemple:

Dans un repère du plan,  $d_1$ ,  $d_2$ ,  $d_3$  et  $d_4$  admettent pour équations respectives :

$$y = 3x + 4,$$
  $y = 3x + 9,$   $x = 8$   $x = -1$ 

$$y = 3x + 9,$$

$$x = 8$$

$$x = -1$$

lacktriangle Les droites  $d_1$  et  $d_2$  sont parallèles car \_\_\_\_\_\_

lacktriangle Les droites  $d_1$  et  $d_3$  sont sécantes car \_\_\_\_\_\_

lacktriangle Les droites  $d_3$  et  $d_4$  sont parallèles car \_\_\_\_\_\_

# 2) Vecteur directeur

#### **Définition**:

Soit  $\mathcal{D}$  une droite du plan.

On appelle vecteur directeur de  $\mathcal{D}$  tout vecteur non nul  $\overrightarrow{u}$  qui possède la même **direction** que la droite  $\mathcal{D}$ .



Méthode: Déterminer graphiquement un vecteur directeur d'une droite

Soit  $(O, \vec{i}, \vec{j})$  un repère du plan.

Donner deux vecteurs directeurs  $\overrightarrow{u}$  et  $\overrightarrow{v}$  pour les droites  $d_1$ ,  $d_2$ ,  $d_3$  et  $d_4$ .

 $\diamond$  Pour  $d_1$ :









### Propriété:

Soit  $(O, \vec{i}, \vec{j})$  un repère du plan.

- ightharpoonup Si  $\mathscr D$  n'est pas parallèle à l'axe des ordonnées, alors le vecteur  $\overrightarrow{u} \begin{pmatrix} 1 \\ a \end{pmatrix}$  est un vecteur directeur de  $\mathscr D$  d'équation y = ax + b.



# Exemple:

- ♣ La droite  $\mathscr{D}$  d'équation y = -2x + 3 admet le vecteur  $\overrightarrow{u} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$  pour vecteur directeur.
- $\$  La droite  $\mathscr{D}'$  d'équation y = -1
- La droite  $\mathcal{D}'$  d'équation x = 3
- ❖ La droite  $\mathcal{D}''$  d'équation 4y = 2x + 3 \_\_\_\_\_

<u>Méthode</u> : Déterminer une équation de droite dont on connaît un point et un vecteur directeur

Soit A(-3;4) un point d'une droite d admettant  $\overrightarrow{u}\begin{pmatrix}2\\-1\end{pmatrix}$  comme vecteur directeur. **Déterminer une équation de la droite d.** 

**a.** Trouver un vecteur  $\overrightarrow{v}$  colinéaire à  $\overrightarrow{u}$  ayant pour forme  $\overrightarrow{v} \begin{pmatrix} 1 \\ a \end{pmatrix}$  .

**b.** Écrire l'équation de la droite en laissant l'ordonnée à l'origine b inconnue.

c. Trouver b en se servant du point A.

\_\_\_\_\_\_

#### III. Positions relatives de droites

# 1) <u>Droites et systèmes</u>

### Propriété:

Si les droites  $\mathscr{D}$  et  $\mathscr{D}'$  d'équations respectives y=ax+b et y=a'x+b' sont sécantes, alors les coordonnées de leur point d'intersection I est l'unique couple (x,y) solution du système  $\begin{cases} y=ax+b \\ y=a'x+b' \end{cases}$ 

# Exemple:

- Les droites  $\mathscr{D}$  d'équation y=-x+3 et la droite  $\mathscr{D}'$  d'équation y=2x-3 se coupent au point A.
- ❖ Ce point A appartient simultanément à  $\mathscr{D}$  et  $\mathscr{D}'$  donc A(x,y) est la solution de :  $\begin{cases} y = -x + 3 \\ y = 2x 3 \end{cases}$
- Graphiquement on lit : A(2; 1).



| ٥r             | opriété :                                                                                                             |
|----------------|-----------------------------------------------------------------------------------------------------------------------|
|                | les droites $\mathcal{D}$ et $\mathcal{D}'$ d'équations respectives $y = ax + b$ et $y = a'x + b'$                    |
| 80             | nt parallèles, alors le système $\begin{cases} y = ax + b \\ y = a'x + b' \end{cases}$ n'admet pas de solution.       |
| = <sub>x</sub> | emple :                                                                                                               |
|                | Les droites $\mathscr{D}$ d'équation $-3x + y = 1$ et la droite $\mathscr{D}'$ d'équation                             |
|                | 6x - 2y = 6 se coupent-elles ?                                                                                        |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
|                |                                                                                                                       |
| >r             | opriété :                                                                                                             |
|                | les droites ${\mathcal D}$ et ${\mathcal D}'$ sont confondues alors, le système associé admet une inité de solutions. |
|                |                                                                                                                       |
|                | emple:                                                                                                                |
| *              | Les droites $\mathscr{D}$ d'équation $-6x - 3y = -6$ et la droite $\mathscr{D}'$ d'équation                           |
|                | 2x + y = 2 se coupent-elles ?                                                                                         |

# 2) Applications

### Indice:

Ex 39 p 193 Ex 140 p 199

Ex 145 p 199

#### Exercices:

1) Donner le coefficient directeur et l'ordonnée à l'origine des droites suivantes :

$$d1: y = 2x+1$$
  $d2: y = 5x-3$   $d3: y = -2x-7$   $d4: y = 7x$   $d5: y = -5$ 

2 )Même exercice :

$$d1: y + 3 = 5x$$
  $d2: 3y = 9x-6$   $d3: x = -2y+1$   $d4: y = 7(x+5)$ 

3) Représenter dans un repère les droites suivantes :

$$d1: y = -3x+5$$
  $d2: y = 4x-2$   $d2: y = 5$ 

4) Soit d la droite d'équation y = 9x-11. Les points A(12 ; 97) et B(-6 ; 65) appartiennent-ils à la droite d ? Justifier.

5) Soit d et d' les droites d'équation respective y = -3 et x = 3. Parmi les points A(3; -3), B(3; 3), C(-3; 3) et D(-3; -3) lesquels appartiennent à la droite d ? à la droite d' ?

6) Dans chaque cas, dire si les droites d1 et d2 sont parallèles.

a) d1: 
$$y = 3x+5$$
 et d2:  $y = 3x-2$  b) d1:  $y = -3x+7$  et d2:  $y = 3x+8$ 

c) d1: 
$$y = 4x+1$$
 et d2:  $y = 4x$  d) d1:  $y = 5$  et d2:  $y = 5x$ 

7) Même exercice:

a) d1: 
$$y = 2x+3$$
 et d2:  $y = 3x+2$  b) d1:  $y = 5x+1$  et d2:  $y = 1+5x$ 

c) 
$$d1: y = 5$$
 et  $d2: y = 7$  d)  $d1: x = 3$  et  $d2: x = -1$ 

8) Pour chacune des affirmations indiquer si elle est vraie ou fausse.

- a. La droite d'équation y = 2 est parallèle à l'axe des ordonnées.
- b. La droite d'équation y = x est parallèle à l'axe des abscisses.
- c. Les droites d'équations y = x et y = -x sont parallèles.
- d. Les droites d'équation y = 3 et x = 2 sont sécantes.

9) Répondre aux questions suivantes:

- a. Donner l'équation de la droite d1 passant par le point A(0; 2) et parallèle à la droite d2 d'équation y = -2x+5.
- b. Donner l'équation de la droite d3 passant par le point A(0 ; -1) et parallèle à l'axe des abscisses.
- c. Donner l'équation de la droite d4 passant par le point A(3 ; 2) et parallèle à l'axe des ordonnées.