

Introduction to Data Structures and Algorithms

Dr. Sirasit Lochanachit

Outline

- 1. Resources
- 2. What is a "Data Structure"?
- 3. What is an "Algorithm"?
- 4. Prerequisites
- 5. Topics
- 6. Grading

Resources

1. Course Website:

https://github.com/noswolf/DSA_BIT/tree/DSAP_23

- 2. Google Colaboratory
 - Interactive notebooks

What is a "Data Structure"?

How do we store, organise, and retrieve data on a computer?

What is a "Data Structure"?

- Way to store and organise data
- Enable efficient access and modification of data
- Designed for a specific algorithm
 - Strengths and limitations
 - Time and space complexity

Abstract Data Type

- A data type where only **behavior** is defined but not implementation.
- Examples: Array, List, Map, Queue, Set, and etc.

Common vs Abstract Data Type

Common

- Integer
- Floating-point number
- Character
- String
- Boolean
- etc.

Abstract

- Array
- List
- Map
- Queue
- etc.

Type of Data Structure

Check out for a comprehensive list of data structures at https://en.wikipedia.org/wiki/List of data structures

What is an "Algorithm"?

- Well-defined procedure or set of instructions to
 - transform input to output or
 - accomplish a task or
 - solve a computational problem

Why care about an "Algorithm"?

How can we efficiently (in space/time) carry out some typical data processing operations?

How do we analyze and describe their performance?

Example: Sorting numbers

1. Input:

- 2. Sorting Algorithms
- 3. Output:

Overview

Prerequisites

- Fluent in Python Programming
- Comfortable with development processes
 - Writing a function
 - Debugging and testing a code

Lesson Plan (till Midterm)

Week	Topics	Individual Assignments
03/07/2023	Python Crash Course	#1
10/07/2023	Algorithm Analysis	#2
17/07/2023	Arrays	#3
24/07/2023	Stacks [VD0]	#4
31/07/2023	Queues	#5
07/08/2023	Linked Lists	
14/08/2023	Linked Lists (Cont.) [VD0]	#6
21/08/2023	Trees	

Lesson Plan (after Midterm)

Week	Topics	Individual Assignments
04/09/2023	Search Trees	#7
11/09/2023	Search Trees (Cont.)	-
18/09/2023	Searching and Hashing	#8
25/09/2023	Sorting	#9
02/10/2023	Recursion and Sorting	-
09/10/2023	Graphs	#10
16/10/2023	Graphs (Cont.)	-
23/10/2023	-	-
	Final Exam	

Grading

Attendance 5%

Class Notes 5% Submit on MS Teams

Individual Assignment 30% Team Code: qm9svn3

Midterm Exam 30%

Final Exam 30%

Class Notes

For each lecture, submit your own notes either on

lecture slide

or

your notebook

Can be handwritten or typed

Submit as a pdf file only on MS Teams

Late Policy

Class notes: flexible over semester

- Hard deadline: 30 October 2023

Individual Assignments: Late submission is not allowed

- Hard deadline: normally 1 or 2 week(s) after posted

Reading List

Essential

Goodrich, M.T., Tamassia, R. and Goldwasser, M.H., 2013. *Data structures and algorithms in Python*. John Wiley & Sons Ltd.

Recommended

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., 2022. *Introduction to algorithms*. MIT press.

Miller, B.N. and Ranum, D.L., 2011. *Problem solving with algorithms and data structures using python*, 2nd ed. Franklin, Beedle & Associates Inc.