A Practical Overview of Deductive Program Synthesis

Alexander D. Weinert

RWTH Aachen University

Spring School on Program Synthesis Papenburg 2012

Another Point of View

Traditional Programming

Specify how to do something

Program Synthesis

Specify what to do

Our task

Define methods for

- Specification
- Transformation of specification to program

Specification

Prerequisite

- Only consider side-effect-free programs
 - No GUI, no persistence, . . .

Criteria

User-oriented

- Easy to write
- Oriented on well-known languages

Tool-oriented

Unambiguous

 \Rightarrow Logic

Specifications in Logic

Natural formulation

Find a program prog(x) with output y, such that post(x,y) holds. I assure that pre(x) holds.

Mathematical notation

Background theories

Integers, Strings, Sets, ...

Expressions in logic

- Basic propositions: true, false, a|b, char(x), a ∈ X, ...
- Basic functions: gcd(x,y), head(a), union(X,Y), ...
- Equality: x=y, last(a)=head(b), union(X,Y)=union(A,B), ...
- Boolean connectives: $\neg \varphi_1$, $\varphi_1 \land \varphi_2$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \to \varphi_2$ "if, then"
- Quantifiers: $\exists y. \varphi(y)$, $\forall y. \varphi(y)$, "there exists" "for all"

Valid formula

$$\mathtt{pre}(\mathtt{X}) := \forall n.\mathsf{Int}(n) \to n \in \mathtt{X}$$

Specification of a square root program

Square root

$$\operatorname{sqrt}(\mathbf{x}, \epsilon) \Leftarrow \operatorname{Find} \mathbf{y}, \text{ such that}$$

$$y^2 \leq x \land x < (y + \epsilon)^2,$$

$$\text{where } \epsilon > 0$$

$$post(x,\epsilon,y) := y^2 \le x \land x < (y+\epsilon)^2$$

 $pre(x,\epsilon) := \epsilon > 0$

Front and last element of lists

Front and last element

$$\langle front(s), last(s) \rangle \Leftarrow Find \langle y, z \rangle$$
, such that $char(z) \wedge s = y \cdot z$, where $\neg(s = \epsilon)$

$$post(s,y,z) := (char(z) \land s = y \cdot z)$$

 $pre(s) := s \neq \epsilon$

The method

General idea

We want to show: There exists a program fulfilling the specification

Proof has to be "sufficiently constructive"

Reminder

To Show

If pre(x) holds, then post(x,y) holds for some y.

Tableau notation

Assertions	Goals	Outputs
pre(x)		
	<pre>post(x,y)</pre>	У

Output some y that fulfills the postcondition

General tableaux

Assertions	Goals	Outputs
$A_{c,1}(x)$		$t_{c,1}(x)$
$A_{c,2}(x)$		$t_{c,2}(x)$
:		•
$\overline{A_{c,m}(x)}$		$t_{c,m}(x)$
	$G_{c,1}(x)$	$t_{c,m+1}(x)$
	$G_{c,2}(x)$	$t_{c,m+2}(x)$
	:	:
	$G_{c,n}(x)$	$t_{c,m+n}(x)$

Associated Sentence

If for all x: $A_{c,1}(x) \text{ and } A_{c,2}(x) \text{ and } \dots A_{c,m}(x)$ then there exists some x: $G_{c,1}(x) \text{ or } G_{c,2}(x) \text{ or } \dots G_{c,n}(x)$

Steps of Deduction

Assertions	Goals	Outputs
pre(x)		
	post(x,y)	у

or

Assertions	Goals	Outputs		
false			$\stackrel{-}{\leftarrow}$ generated	program

General Form

	Assertions	Goals	Outputs	
	$A_{c,1}(x)$		$t_{c,1}(x)$	
			:	
Prerequisite	$A_{c,m}(x)$		$t_{c,m}(x)$	
		$G_{c,1}(x)$	$t_{c,m+1}(x)$	
		:	:	
		$G_{c,n}(x)$	$t_{c,m+n}(x)$	
-	Assertions	Goals	0	
	Assertions	Goals	Outputs	
	$A'_{c,1}(x)$	Goals	$t'_{c,1}(x)$	-
		GOAIS	·	-
Deduction	$A'_{c,1}(x)$	GOAIS	$t'_{c,1}(x)$	- - -
Deduction		$G'_{c,1}(x)$	·	- - -
Deduction	$A'_{c,1}(x)$		$t'_{c,1}(x)$ \vdots $t'_{c,m'}(x)$	- - - -

Duality

Duality

Assertions	Goals	Outputs
$\neg \varphi$		t
	>	

\$

Assertions	Goals	Outputs
	φ	t

$$\cdots \land \forall x. \neg \varphi(x)$$

$$\Leftrightarrow \cdots \land \neg \exists x. \varphi(x)$$

$$\Leftrightarrow \cdots \lor \exists x. \varphi(x)$$

Duality: Example

Assertions	Goals	Outputs
$s eq \epsilon$		

?

Assertions	Goals	Outputs
$s \neq \epsilon$		
	$s = \epsilon$	

Splitting Rules

AND-Splitting

OR-Splitting

Assertions	Goals	Outputs
$\varphi \wedge \psi$		t

Assertions	Goals	Outputs
	$\varphi \lor \psi$	t

{

,

Assertions	Goals	Outputs
φ		t
ψ		t

Assertions	Goals	Outputs
	φ	t
	ψ	t

Recall:

If for all x all assertions hold, then there exists some x, such that some goals hold.

Splitting Rules

IF-Splitting

Assertions	Goals	Outputs
	If $arphi$, then ψ	t

{

Assertions	Goals	Outputs
	$\neg \varphi \lor \psi$	t

Assertions	Goals	Outputs
φ		t
	$\overline{\psi}$	t

Splitting: Example

Assertions	Goals	Outputs
	if $s \neq \epsilon$, then $s = t_1 \cdot t_2$	

	Assertions	Goals	Outputs	
-		if $s \neq \epsilon$, then $s = t_1 \cdot t_2$		_
Disprove this	$ ightarrow$ $s eq \epsilon$			or show
		$s=t_1\cdot t_2$		← this

Simplification

Let
$$\varphi \equiv \psi$$

Assertions	Goals	Outputs
φ		t
	}	

Assertions	Goals	Outputs
ψ		t

Example

Assertions	Goals	Outputs
$\neg(a \wedge b)$		а

Assertions	Goals	Outputs
$\neg a \lor \neg b$		а

Equality

Assertions	Goals	Outputs
$\phi(au=\sigma)$		S
$\psi(au)$		t

?

Assertions	Goals	Outputs
$\phi(\mathtt{false})$		$\texttt{if}(\tau = \sigma)$
\vee		then t
$\psi(\sigma)$		else s

Equality: Example

Assertions	Goals	Outputs
$x = 5 \land y = 2$		
$x \cdot y = 10$		

?

Assertions	Goals	Outputs
$false \land y = 2$		
$5 \cdot y = 10$		

Resolution

GG-Resolution

Assertions	Goals	Outputs
	$\varphi(\tau)$	S
	$\psi(au)$	t

Assertions	Goals	Outputs
		if $ au$
	$\varphi(true) \wedge \psi(false)$	then s
		else t

Resolution

AA-Resolution

Assertions	Goals	Outputs
$\varphi(au)$		S
$\psi(au)$		t

?

Assertions	Goals	Outputs
		if $ au$
$\varphi(true) \lor \psi(false)$		then s
		else t

Also: AG-Resolution, GA-Resolution

Resolution: Example

Assertions	Goals	Outputs
	Integer(x)	true
	\neg Integer(x)	false

?

Assertions	Goals	Outputs
		if $Integer(x)$,
	true	then true
		else false

Conditional Substitution

$$r \Rightarrow s$$
 if C

Example

$$n|0 \Rightarrow \text{ true if integer(n)} \land n \neq 0$$

Assertions	Goals	Outputs
$\varphi(r)$		t(r)
	\$	

Assertions	Goals	Outputs
	$\varphi(r)$	t(r)

Assertions	Goals	Outputs
if C then $\varphi(s)$		t(s)

Assertions	Goals	Outputs
	$C \wedge \varphi(s)$	t(s)

Conditional Substitution: Example

Assertions	Goals	Outputs
	$(1 < x \land x < 2) \lor (x 0)$	X

Example

$$n|0\Rightarrow$$
 true if integer(n) \wedge $n\neq 0$

Assertions	Goals	Outputs
	$(1 < x \land x < 2) \lor (integer(n) \land x \neq 0 \land true)$	Х
	$(1 < x \land x < 2) \lor (integer(n) \land x \neq 0)$	X

Induction \leftrightarrow Recursion

Mathematical Induction

- Start of induction
- Induction Hypothesis
- Induction step

Recursion

- Ground case
- Recursive call
- Use of recursive result

Observation

Induction

Recursion

Recursion rule

Assumption

< is a well-founded relation

Assertions	Goals	f(in)
pre(in)		
	<pre>post(in,out)</pre>	out

?

Assertions	Goals	f(in)
If $z < in$,		
then if pre(z),		
then $post(z,f(z))$		

Recursion: Example

Assertions	Goals	last(s)
$s \neq \epsilon$		
	$\operatorname{char}(t_2) \wedge s = t_1 \cdot t_2$	t_2

?

Assertions	Goals	Outputs
if $s' < s \land s' \neq \epsilon$,		
then $char(last(s'))$		
$\wedge s' = t_1' \cdot exttt{last(s')}$		

Derivation of Front and Last

Basic proposition:
$$\operatorname{char}(x)$$
Basic functions: Concatenation (\cdot) , $\operatorname{head}(x)$, $\operatorname{tail}(x)$
 $\langle \operatorname{front}(s), \operatorname{last}(s) \rangle \Leftarrow \operatorname{Find} \langle t_1, t_2 \rangle$, such that $\operatorname{char}(t_2) \wedge s = t_1 \cdot t_2$, where $\neg (s = \epsilon)$
 \updownarrow

No.	Assertions	Goals	front(s)	last(s)
1.	$\neg (s = \epsilon)$			
2.		$char(t_2) \wedge s = t_1 \cdot t_2$	t_1	t_2

Variables: t_1, t_2 Constants: s

No.	Assertions	Goals	front(s)	last(s)
1.	$\neg (s = \epsilon)$			
2.		$char(t_2) \land s = t_1 \cdot t_2$	t_1	t_2

Target

- Recursive program
 - Base case: only one character
 - Recursive case: more than one character

No.	Assertions	Goals	front(s)	last(s)
3.		$char(t_2) \land s = t_2$	ϵ	t ₂

Resolution

No.	Assertions	Goals	front(s)	last(s)
1.	$\neg (s = \epsilon)$			
2.		$char(t_2) \wedge s = t_1 \cdot t_2$	t_1	t ₂
3.		$char(t_2) \land s = t_2$	ϵ	t ₂
	x = x			
		$\neg(x=x)$		

$$\operatorname{char}(t_2) \wedge s = t_2 \qquad \neg(x = x)$$

$$\downarrow t_2 := s \qquad \downarrow x := s$$

$$\operatorname{char}(s) \wedge s = s \qquad \neg(s = s)$$

$$\operatorname{char}(s) \wedge true \qquad \wedge \neg(s = s)$$

$$\Rightarrow$$
 char(s)

Recursion

No.	Assertions	Goals	front(s)	last(s)
1.	$\neg (s = \epsilon)$			
2.		$char(t_2) \wedge s = t_1 \cdot t_2$	t_1	t ₂
4.		char(s)	ϵ	S
5.		$char(u) \wedge char(t_2)$		
		$\wedge s = u \cdot t_1 \cdot t_2$	$u \cdot t_1$	t_2

Induction Hypothesis

If
$$x < s$$
 , then
$$\text{if } \neg(x = \epsilon) \quad \text{, then}$$

$$\text{char}(\texttt{last}(x)) \land x = \texttt{front}(x) \cdot \texttt{last}(x)$$

Recursion (cont.)

No.	Assertions	Goals	front(s)	last(s)
5.		$char(u) \wedge char(t_2)$		
		$\wedge s = u \cdot t_1 \cdot t_2$	$u \cdot t_1$	t_2

Induction Hypothesis

If
$$x < s \land \neg(x = \epsilon)$$
, then $\operatorname{char}(\operatorname{last}(x)) \land x = \operatorname{front}(x) \cdot \operatorname{last}(x)$

$$t_1 := front(x), t_2 := last(x)$$

No.	Assertions	Goals	front(s)	last(s)
5.		$x < s \land \neg(x = \epsilon)$		
		$char(u) \wedge char(last(x))$	u·front(x)	last(x)
		$\wedge s = u \cdot x$		

Recursion (simplification)

Induction Hypothesis

$$\mathsf{lf} \; x < s \land \neg (x = \epsilon), \; \mathsf{then} \quad \frac{\mathsf{char}(\mathsf{last}(x))}{\mathsf{char}(\mathsf{last}(x))} \; \land x = \mathsf{front}(x) \cdot \mathsf{last}(x)$$

No.	Assertions	Goals		front(s)	last(s)
5.		$x < s \land \neg(x = \epsilon)$			
		$char(u) \land char(last(x))$		$u \cdot \mathtt{front}(x)$	last(x)
		$\wedge s = u \cdot x$			

No.	Assertions	Goals	front(s)	last(s)
5.		$x < s \land \neg(x = \epsilon)$		
		$char(u) \land s = u \cdot x$	u·front(x)	last(x)

Recursion (simplification cont.)

No.	Assertions	Goals	front(s)	last(s)
5.		$x < s \land \neg(x = \epsilon)$		
		$char(u) \land \mathbf{s} = \mathbf{u} \cdot \mathbf{x}$	$u \cdot front(x)$	last(x)

Decomposition Lemma

If
$$\neg (y = \epsilon)$$
, then $y = \text{head}(y) \cdot \text{tail}(y)$

$$y := s, u := head(y), x := tail(y)$$

No.	Assertions	Goals	front(s)	last(s)
5.		$ ail(s) < s \land$	head(s).	last(
		$\neg(\mathtt{tail}(s) = \epsilon) \land$	front(tail(s)
		$char(\mathtt{head}(s)) \land$	tail(y))
		$ eg(s=\epsilon)$)	

Recursion (simplification cont.)

No.	Assertions	Goals	front(s)	last(s)
5.		$tail(s) < s \land$	head(s).	last(
		$\neg(\mathtt{tail}(s) = \epsilon) \land$	front(tail(s)
		$char(\mathtt{head}(s)) \land$	$\mathtt{tail}(y))$)
		$\lnot(s=\epsilon)$		

Resolution

Domain knowledge:
$$\neg(s = \epsilon) \rightarrow \operatorname{char}(\operatorname{head}(s))$$
 and $\neg(\operatorname{head}(s) = \epsilon) \rightarrow \operatorname{tail}(s) < s$. Formally: Resolution

No.	Assertions	Goals	front(s)	last(s)
5.		$\neg(\mathtt{tail}(s) = \epsilon) \land$	head(s).	last(
		$\lnot(s=\epsilon)$	front(tail(y))	$\mathtt{tail}(s))$

Simplification

No.	Assertions	Goals		front(s)	last(s)
5.		$\neg(\mathtt{tail}(s) = \epsilon)$	\wedge	$\texttt{head}(s) \cdot$	last(
		$\lnot(s=\epsilon)$		front(tail(y))	tail(s))

Trichotomy property

Domain Knowledge:

$$y = \epsilon \lor \operatorname{char}(y) \lor \neg(\operatorname{tail}(y) = \epsilon)$$

No.	Assertions	Goals	front(s)	last(s)
5.		$\neg (s = \epsilon) \land$	$\mathrm{head}(s)$.	last(
		$\neg(char(s))$	front(tail(y))	tail(s))

Final steps

No.	Assertions	Goals	front(s)	last(s)
5.		$\neg (s = \epsilon) \land$	$\mathtt{head}(s)\cdot$	last(
		$\neg(char(s))$	front(tail(y))	tail(s))
1.	$\neg (s = \epsilon)$			
		$\neg(char(s))$	$\mathrm{head}(s)$.	last(
			front(tail(y))	tail(s))
4.		char(s)	ϵ	S
		true	if $char(s)$,	if $char(s)$,
			then ϵ , else	then <i>s</i> , else
			$\texttt{head}(s) \cdot$	last(
			front(tail(y))	tail(s))

Final remarks

- Very good result in this case
- Efficient choice of rules by humans
- Not clear which axioms have to be used
- Result might not always be understandable
- No specification of performance

Thank you for your attention

- Manna, Z. and Waldinger, R. (1980).

 A Deductive Approach to Program Synthesis.

 IEEE Transactions on Programming Languages and Systems, 2(1):90–121.
- Manna, Z. and Waldinger, R. (1992).
 Fundamentals of Deductive Program Synthesis.

 IEEE Transactions on Software Engineering, 18(8):674–702.