BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers

Zhiqi Li^{1,2*}, Wenhai Wang^{2*}, Hongyang Li^{2*}, Enze Xie³, Chonghao Sima², Tong Lu¹, Yu Qiao², Jifeng Dai^{2⊠}

¹Nanjing University ²Shanghai AI Laboratory ³The University of Hong Kong

ECCV 2022

세미나 발표자 : 김형균 (PseudoLab 10th)

Relationship

Bottom-Up (2D → 3D)

LSS **BEVDet BEVDepth BEVFusion** GaussianBeV (Philion et al.) (Huang et al.) (Yinhao et al.) (Zhijian et al.) (Florian et al.) 2022-06 2020-08 2022-11 2024-09 2024-12 **FB-BEV** (Zhiqi et al.) 2021 2024 2022 2023 2025 **PointBeV BEVFormer** Simple-BEV PETRv2 2023-08 (Li et al.) (Adam et al.) (Liu et al.) (Loick et al.) 2022-07 2022-09 2022-11 2024-05

Top-Down (3D → 2D)

Colored : Camera-only

Bold: Attention mechanism

Agenda

- Problem Definition
- Methodology: BEVFormer
- Experiment Results
- Key takeaways

- Multi-Camera 기반 3D Perception: Bird's-Eye View (BEV) Representation
 - Lidar 센서에 비해 저렴한 가격
 - 원거리 및 고해상도 정보 습득 가능
 - 주행에 필요한 Vision-based 이미지 감지 가능 (e.g., 주행 신호, 정지선, 횡단보도 등)

Camera-view 이미지를 통한 Object detection 과 Segmentation task

기존의 Multi-Camera BEV Representation Models

- 1. Depth Information 기반
 - e.g., Lift-Splat-Shoot, BEVDet, ...
 - Bottom-Up Method (2D → 3D)
 - Depth Estimation에서 누적된 오차가 Downstream Task 성능 저하에 큰 영향

- 2. Temporal Information 사용 X
 - Temporal Information의 활용 가능성
 - 움직이는 물체 추적
 - 가려진 물체 추론
 - 물체의 속도 추론

BEVFormer: Multi-Camera BEV Representation via Spatiotemporal Transformer

2. Temporal Information 사용 X

- Temporal Information의 활용 가능성
 - 움직이는 물체 추적
 - 가려진 물체 추론
 - 물체의 속도 추론

BEVFormer: Multi-Camera BEV Representation via Spatiotemporal Transformer

BEVFormer: Multi-Camera BEV Representation via Spatiotemporal Transformer

Grid-shaped BEV Queries

Methodology

BEVFormer: Multi-Camera BEV Representation via Spatiotemporal Transformer

Overview

Overview

Grid-shaped Temporal Spatial Self-Attention Cross-Attention

Overview

Grid-shaped
BEV queries

Temporal
Spatial
Cross-Attention

Overview

Grid-shaped
BEV queries

Temporal
Spatial
Cross-Attention

Grid-shaped BEV Queries

- BEV Queries(Q) 와 BEV Features(B)의 크기는 서로 동일
- $Q \in \mathbb{R}^{H \times W \times C}(H : Grid \ height, W : Grid \ width, C : Features)$ 각 Grid point P=(x, y)에서의 Query feature : $Q_p \in \mathbb{R}^{1 \times C}$
- 각 Grid point와 Ego Vehicle 간의 실제 거리

$$x' = \left(x - \frac{W}{2}\right) \times s, \ y' = \left(y - \frac{H}{2}\right) \times s$$

e.g., W = 200, H = 200, s = 0.512m, Grid 좌표 (100,100) → 실제 (0m, 0m) Grid 좌표 (90,120) → 실제 (-5.12m, 10.24m)

BEV Queries / Features

- Temporal Self-Attention (TSA)
 - RNN 과 Self-Attention 메커니즘 컨셉을 적용
 - RNN 이전 타임스탬프의 BEV Feature (B_{t-1}) 의 정보를 현재 타임스탬프의 BEV Queries (Q)에 반영
 - Self-Attention BEV Query (Q)에서 각각의 위치 Q_p 마다, 관련이 높을 것으로 예상되는 주변 위치의 BEV Feature (B_{t-1}) 정보를 B_t 에 반영

NOTE! Training과 Inference의 효율을 높이기 위해, Deformable DETR(Zhu et al., 2020) [1] 의 Attention 메커니즘을 활용.

Current BEV B_t

Add & Norm

Feed Forward

Add & Norm

Spatial Cross-Attention

**Add & Norm

Temporal Self-Attention

History BEV B_{t-1}

BEV Queries Q

(a) Overall Architecture

Current BEV B_t

Add & Norm

Feed Forward

Add & Norm

Spatial Cross-Attention

X 6

Add & Norm

Temporal Self-Attention

History BEV B_{t-1}

BEV Queries Q

Figure 2: Illustration of the proposed deformable attention module.

Current BEV B_t

Add & Norm

Feed Forward

Add & Norm

Spatial Cross-Attention

Add & Norm

Temporal Self-Attention

History BEV B_{t-1}

BEV Queries Q

Figure 2: Illustration of the proposed deformable attention module.

Current BEV B_t

Add & Norm

Feed Forward

Add & Norm

Spatial Cross-Attention

X 6

Add & Norm

Temporal Self-Attention

History BEV B_{t-1}

BEV Queries Q

Figure 2: Illustration of the proposed deformable attention module.

Current BEV B_t

Add & Norm

Feed Forward

Add & Norm

Spatial Cross-Attention

**Add & Norm

Temporal Self-Attention

History BEV B_{t-1}

BEV Queries Q

Figure 2: Illustration of the proposed deformable attention module.

Spatial Cross-Attention (SCA)

Spatial Cross-Attention (SCA)

1. Hit Views \mathcal{V}_{hit} 선정

2. BEV Query와 Multi-Camera Feature 간의 Cross-Attention (Multi-Scale Deformable Attention)

- Spatial Cross-Attention (SCA)
 - 1. Hit Views \mathcal{V}_{hit} 선정

BEV Query Q 의 각 Point 에 대응되는 Camera Image 의 Feature 만을 사용하기 위함

- a. Grid 내 Point (x, y) 의 실제 거리 (x', y')
- b. 높이 정보를 고려하기 위해 $\{z_j'\}_{j=1}^{N_{ref}}$ 를 추가
- c. Camera의 Extrinsic & Intrinsic 정보를 바탕으로 계산된 **Projection Matrix** T_i 를 사용하여 각 Camera의 2D 이미지에 투영

$$\mathcal{P}(p,i,j) = (x_{ij},y_{ij})$$
 where $z_{ij}\cdot \begin{bmatrix} x_{ij} & y_{ij} & 1\end{bmatrix}^T = T_i\cdot \begin{bmatrix} x' & y' & z'_j & 1\end{bmatrix}^T$.

- Spatial Cross-Attention (SCA)
 - 2. BEV Query와 Multi-Camera Feature 간의 Cross-Attention

$$SCA(Q_p, F_t) = \frac{1}{|\mathcal{V}_{hit}|} \sum_{i \in \mathcal{V}_{hit}} \sum_{j=1}^{N_{ref}} MSDeformAttn(Q_p, \mathcal{P}(p, i, j), F_t^i)$$

$$MSDeformAttn(q, \hat{\mathcal{P}}, \{x^l\}_{l=1}^L) = \sum_{i=1}^{N_{head}} \mathcal{W}_i [\sum_{j=1}^{N_{key}} \sum_{l=1}^L \mathcal{A}_{ijl} \cdot \mathcal{W}_i' x^l (\phi_l(\hat{\mathcal{P}}) + \Delta p_{ijl})]$$

Figure 2: Illustration of the proposed def

- Spatial Cross-Attention (SCA)
 - 2. BEV Query와 Multi-Camera Feature 간의 Cross-Attention

$$SCA(Q_p, F_t) = \frac{1}{|\mathcal{V}_{hit}|} \sum_{i \in \mathcal{V}_{hit}} \sum_{j=1}^{V_{ref}} MSDeformAttn(Q_p, \mathcal{P}(p, i, j), F_t^i)$$

- Spatial Cross-Attention (SCA)
 - 2. BEV Query와 Multi-Camera Feature 간의 Cross-Attention

- Spatial Cross-Attention (SCA)
 - 1. Hit Views v_{hit} 선정
 - 2. BEV Query와 Multi-Camera Feature 간의 Cross-Attention

$$SCA(Q_p, F_t) = \frac{1}{|\mathcal{V}_{hit}|} \sum_{i \in \mathcal{V}_{hit}} \sum_{j=1}^{N_{ref}} MSDeformAttn(Q_p, \mathcal{P}(p, i, j), F_t^i)$$

$$MSDeformAttn(q, \hat{\mathcal{P}}, \{x^l\}_{l=1}^L) = \sum_{i=1}^{N_{head}} \mathcal{W}_i [\sum_{j=1}^{N_{key}} \sum_{l=1}^L \mathcal{A}_{ijl} \cdot \mathcal{W}_i' x^l (\phi_l(\hat{\mathcal{P}}) + \Delta p_{ijl})]$$

Figure 2: Illustration of the proposed def

Recap

Experiments

Experiment Setup

Training

- Dataset
 - NuScenes Dataset [1]: 3D OD + Seg
 - Waymo Open Dataset [2]: 3D OD
- Backbone
 - ResNet101-DCN (FCOS3D [3])
 - VoVnet-99 (DD3D [4])
- Head
 - 3D OD: Deformable DETR [5]
 - Panoptic SegFormer [6]
- Loss Function
 - 3D Object Detection Task: L1 loss
 - Segmentation Task: Generalized IoU loss

^[1] Caesar, Holger, et al. "nuscenes: A multimodal dataset for autonomous driving." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

^[2] Sun, Pei, et al. "Scalability in perception for autonomous driving: Waymo open dataset." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.

^[3] Wang, Tai, et al. "Fcos3d: Fully convolutional one-stage monocular 3d object detection." Proceedings of the IEEE/CVF international conference on computer vision. 2021.

^[4] Park, Dennis, et al. "Is pseudo-lidar needed for monocular 3d object detection?." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

^[5] Zhu, Xizhou, et al. "Deformable detr: Deformable transformers for end-to-end object detection." arXiv preprint arXiv:2010.04159 (2020).

^[6] Li, Zhiqi, et al. "Panoptic segformer: Delving deeper into panoptic segmentation with transformers." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

Experiment Results

Table 1: **3D detection results on nuScenes test set.** * notes that VoVNet-99 (V2-99) [21] was pre-trained on the depth estimation task with extra data [31]. "BEVFormer-S" does not leverage temporal information in the BEV encoder. "L" and "C" indicate LiDAR and Camera, respectively.

Method	Modality	Backbone	NDS↑	mAP†	mATE↓	mASE↓	mAOE↓	mAVE↓	mAAE↓
SSN [55]	L	-	0.569	0.463	-	-	-	-	_
CenterPoint-Voxel [52]	L	-	0.655	0.580	-	-	-	-	-
PointPainting [43]	L&C	-	0.581	0.464	0.388	0.271	0.496	0.247	0.111
FCOS3D [45]	С	R101	0.428	0.358	0.690	0.249	0.452	1.434	0.124
PGD [44]	C	R101	0.448	0.386	0.626	0.245	0.451	1.509	0.127
BEVFormer-S	C	R101	0.462	0.409	0.650	0.261	0.439	0.925	0.147
BEVFormer	C	R101	0.535	0.445	0.631	0.257	0.405	0.435	0.143
DD3D [31]	С	V2-99*	0.477	0.418	0.572	0.249	0.368	1.014	0.124
DETR3D [47]	C	V2-99*	0.479	0.412	0.641	0.255	0.394	0.845	0.133
BEVFormer-S	C	V2-99*	0.495	0.435	0.589	0.254	0.402	0.842	0.131
BEVFormer	С	V2-99*	0.569	0.481	0.582	0.256	0.375	0.378	0.126

- 1. Camera-only Baseline 모델 (Attention X)에 비해, 9.0 Points 높은 NDS 퍼포먼스와 현저히 **줄어든 Velocity 예측 에러**를 보여줌.
- 2. Lidar 센서를 사용한 Baseline 모델에 준하는 NDS 퍼포먼스를 보여줌.

Experiment Results

Table 4: **3D detection and map segmentation results on nuScenes** val set. Comparison of training segmentation and detection tasks jointly or not. *: We use VPN [30] and Lift-Splat [32] to replace our BEV encoder for comparison, and the task heads are the same. †: Results from their paper.

Method	Task Head		3D De	tection	BEV Segmentation (IoU)			
Method	Det	Seg	NDS↑	mAP↑	Car	Vehicles	Road	Lane
Lift-Splat [†] [32]	×	1	_	-	32.1	32.1	72.9	20.0
FIERY [†] [18]	X	✓	-	-	-	38.2	-	-
VPN* [30]	/	Х	0.333	0.253	-	-	-	-
VPN^*	X	✓	-	-	31.0	31.8	76.9	19.4
VPN^*	1	✓	0.334	0.257	36.6	37.3	76.0	18.0
Lift-Splat*	1	X	0.397	0.348	-	-	-	-
Lift-Splat*	X	1	_	-	42.1	41.7	77.7	20.0
Lift-Splat*	1	✓	0.410	0.344	43.0	42.8	73.9	18.3
BEVFormer-S	1	X	0.448	0.375	-	-	-	-
BEVFormer-S	X	1	-	-	43.1	43.2	80.7	21.3
BEVFormer-S	1	✓	0.453	0.380	44.3	44.4	77.6	19.8
BEVFormer	1	X	0.517	0.416	-	-	-	-
BEVFormer	X	✓	-	-	44.8	44.8	80.1	25.7
BEVFormer	✓	✓	0.520	0.412	46.8	46.7	77.5	23.9

* BEVFormer-S

Spatial Cross-Attention만 적용된 BEVFormer

- 2D → 3D 기반 Baseline 모델인 VPN과 LSS 보다 전반적으로 향상된 퍼포먼스를 보여줌.
- 2. BEVFormer 모델의 Multi-Task Learning 적용 가능성을 확인. (예외, Road and Lane Segmentation)

Experiment Results

- 1. BEVFormer는 Object
 Visibility 가 낮은 (0-40 %)
 환경에서도 Robust한
 퍼포먼스를 보여줌.
- 2. 특히, Visibility가 낮은 환경에서, Temporal information이 3D Object의 Translation, Orientation, 그리고 Velocity 예측 에러를 줄이는 데 효과적임을 보여줌.

Figure 3: The detection results of subsets with different visibilities. We divide the nuScenes val set into four subsets based on the visibility that {0-40%, 40-60%, 60-80%, 80-100%} of objects can be visible. (a): Enhanced by the temporal information, BEVFormer has a higher recall on all subsets, especially on the subset with the lowest visibility (0-40%). (b), (d) and (e): Temporal information benefits translation, orientation, and velocity accuracy. (c) and (f): The scale and attribute error gaps among different methods are minimal. Temporal information does not work to benefit an object's scale prediction.

Key takeaways

Key takeaways

BEVFormer

- BEV map의 각 위치에서의 Feature 정보를 **Spatiotemporal Attention Mechanism**을 활용하여 Multi-camera image로부터 효율적으로 추출
- Depth Estimation의 오차로부터 자유로운 **Top-Down (3D → 2D) 방식의 방법론**.
- Camera 만 사용하더라도 **Lidar 사용 모델과 대등한 수준의 퍼포먼스**.

Thanks!