

Generación de funciones lógicas mediante decodificadores binarios con salidas activas a nivel alto

Apellidos, nombre	Martí Campoy, Antonio (amarti@disca.upv.es)
Departamento	Informática de Sistemas y Computadores
Centro	Universidad Politécnica de Valencia

1 Resumen de las ideas clave

En este artículo se va a presentar la utilización de decodificadores binarios con salidas activas a nivel alto para la generación de funciones lógicas. Son muchas las formas de diseñar una función lógica, y una de las más sencillas es la utilización del bloque combinacional conocido como decodificador binario. Para poder adquirir los conocimientos y habilidades presentadas en este artículo debes tener los conocimientos previos presentados en tabla 1, aunque durante el texto los refrescaremos un poco.

Tabla 1 Conocimientos previos

	Conocimientos previos			
1.	Qué es una función lógica y su aridad			
2.	Tipos y tablas de verdad de puertas lógicas			
3.	Formas de representar una función lógica: tabla de verdad, formas canónicas y expresiones algebraicas			
4.	Funcionamiento de un decodificador binario			

5. Circuito interno de un decodificador binario

2 Objetivos

Una vez termines de leer este artículo docente y hayas reproducido los ejemplos presentados, deberás ser capaz de **implementar** una función lógica mediante el uso de decodificadores binarios con salidas activas a nivel **alto**.

Además, la implementación de la función lógica podrá tomar como punto de partida diferentes representaciones de la misma, como la tabla de verdad o una forma canónica, por lo que serás capaz de **traducir** desde una representación a otra.

Por último, y atendiendo a criterios de simplificación de circuitos, podrás **escoger** el tipo de puerta lógica más adecuada.

3 Introducción

En primer lugar, una breve descripción de los conceptos previos más importantes para poder alcanzar los objetivos propuestos en este artículo. Estas descripciones pueden ampliarse consultando la bibliografía propuesta al final del documento.

Función lógica: expresión formal del comportamiento de un circuito digital.
La aridad de una función lógica es el número de variables de entrada.

- Tabla de verdad: representación única en forma de tabla de una función lógica.
- Formas canónicas: representación única como suma de productos o como producto de sumas de una función lógica.
- Expresión algebraica: combinación de variables y operadores lógicos para expresar una función lógica.
- Puerta lógica: circuito digital que implementa una función lógica básica.
- Circuito o función combinacional: circuito en el que las salidas en un instante de tiempo dependen exclusivamente de las entradas en ese mismo instante de tiempo.
- Decodificador binario: circuito combinacional, con m entradas binarias y n=2^m salidas binarias. Las salidas se activan de forma exclusiva, es decir sólo se activa una de ellas en un instante dado.
- La función realizada por un decodificador binario consiste en activar la salida de orden i que corresponde con la codificación binaria de sus entradas. La Figura 1 presenta el símbolo lógico de un decodificador binario de m a n=2^m con salidas activas a nivel **alto**.
- Una salida activa a nivel alto quiere decir que tomará valor uno cuando esté activada, y valor cero cuando no esté activada.

Figura 1 Símbolo lógico de un decodificador de m a n con salidas activas a nivel alto

Para ver si el funcionamiento de este decodificador está claro, vamos a hacernos un par de preguntas. Suponemos un decodificador binario de 2 a 4 con las salidas activas a nivel alto. Las entradas se llaman B y A, siendo A la de menor peso, y las salidas reciben el nombre de SO, S1, S2 y S3. Si los valores de las entradas son B=1 y A=0, el valor de las salidas S0, S1, S2 y S3 será:

Por favor, piensa la respuesta antes de ver la solución¹

Hagamos otro intento. Si los valores de las entradas son B=0 y A=1, el valor de las salidas S0, S1, S2 y S3 será:

Por favor, piensa la respuesta antes de ver la solución²

¹ El valor de las salidas será S0=0, S1=0, S2=1, S3=0, ya que BA=10 se corresponde con el valor binario 2, por lo que se activa la salida S2 con valor 1 (alto)

4 Generación de funciones

En este apartado veremos, en primer lugar, el significado algebraico de las salidas del decodificador binario con salidas activas a nivel alto. En segundo lugar recordaremos brevemente que una función lógica puede crearse a partir de la forma canónica disyuntiva, conocida como la suma de sus minitérminos. Por último, uniendo las dos ideas previas, usaremos puertas lógicas para generar una función usando decodificadores binarios con salidas activas a nivel alto.

4.1 Significado de las salidas del decodificador binario

La implementación interna de un decodificador binario con salidas activas a nivel alto es muy sencilla. Para cada una de las salidas se realiza un circuito que activa dicha salida (poniendo un 1) si las entradas toman el valor correspondiente. Por ejemplo, para un decodificador de 2 a 4, las salidas se corresponden con las expresiones algebraicas mostradas en la Ecuación 1, que coinciden además, con las expresiones de los minitérminos³.

Ahora que conocemos que las salidas de un decodificador binario corresponden con la implementación de cada uno de los minitérminos, podemos incluir esta información en el símbolo lógico, que se muestra en la Figura 2. Esto es importante para, posteriormente, comprender como generar una función usando decodificadores binarios con salidas activas a nivel alto.

Ecuación 1 Expresiones algebraicas para las salidas de un decodificador binario de 2 a 4 con salidas activas a nivel alto

$$S0 = \bar{B} \cdot \bar{A} = \sum_{B,A} (0)$$

S0 tomará valor 1 si B = A = 0

$$S1 = \bar{B} \cdot A = \sum_{B,A} (1)$$

S1 tomará valor 1 si B = 0 y A = 1

$$S2 = B \cdot \bar{A} = \sum_{B|A} (2)$$

S2 tomará valor 1 si B = 1 y A = 0

$$S3 = B \cdot A = \sum_{B,A} (3)$$

S3 tomará valor 1 si B = 1 y A = 1

4.2 Forma Canónica Disyuntiva

Una forma sencilla de construir una función lógica es a partir de la Forma Canónica Disyuntiva, también conocida como suma de productos o suma de los minitérminos de la función.

² El valor de las salidas será S0=0, S1=1, S2=0, S3=0, ya que BA=01 se corresponde con el valor binario 1, por lo que se activa la salida S1 con valor 1 (alto)

³ Un minitérmino es el producto de todas las variables de entrada, que aparecen en forma directa si su valor es 1 y en forma negada si su valor es 0

Figura 2 Decodificador 2 a 4 con identificación de los minitérminos

¿Cuáles son los miniterminos de una función? Son aquellos para los que la función toma valor 1. Y la forma Canónica Disyuntiva dice que una función es la suma de sus minitérminos. Pero mejor veamos un ejemplo. La Tabla 2 muestra una función de nombre G y aridad 3, y la Ecuación 2 muestra la Forma Canónica Disyuntiva de esta función.

Tabla 2 Tabla de verdad de la función G

Minitérmino	СВА	G
0	000	0
1	001	1
2	010	1
3	011	0
4	100	1
5	101	0
6	110	1
7	111	1

Ecuación 2 Forma Canónica Disyuntiva para la función G

$$G = \sum_{C,B,A} (1,2,4,6,7)$$

Para construir el circuito que implementa la función G se puede utilizar puertas lógicas, implementado los minitérminos de la función con puertas AND y usando una puerta OR para sumar los minitérminos. En total, contando las puertas NOT necesarias para construir los minitérminos, necesitamos ______4 puertas.

4.3 Generación de funciones con decodificadores

Tal como hemos visto antes, podemos crear una función siguiendo los pasos mostrados en la Figura 3.

El último paso corresponde a la implementación de los minitérminos de la función mediante puertas NOT y puertas AND, y a la suma usando una puerta OR. Pero, como hemos visto anteriormente, un decodificador binario con salidas activas a nivel alto implementa, en cada una de sus salidas, un minitérmino, por lo que la

⁴ Se necesitan una puerta OR de 5 entradas, 5 puertas AND de 3 entradas, y 3 puertas NOT. En total, 9 puertas.

primera parte de la construcción del circuito puede ser sustituida por un decodificador binario, con tantas entradas como variables de entrada tenga la función lógica que se desea implementar.

Figura 3 Pasos para la implementación de una función lógica

4.3.1 Implementación con una puerta OR

Podemos aplicar la propiedad asociativa para la suma, mostrada en la Ecuación 3, a la suma de minitérminos de la función de ejemplo G, mostrada en la Ecuación 4.

Ecuación 3 Propiedad asociativa para la suma

$$(a+b+\cdots+n)=a+b+\cdots+n$$

Ecuación 4 Aplicación de la propiedad asociativa a la forma canónica disyuntiva de la función G del ejemplo de la Tabla 1

$$G = \sum_{C,B,A} (1,2,4,6,7) = \sum_{C,B,A} (1) + \sum_{C,B,A} (2) + \sum_{C,B,A} (4) + \sum_{C,B,A} (6) + \sum_{C,B,A} (7)$$

Bien, lo que nos dice la propiedad asociativa en este caso es que podemos coger los minitérminos de una función, es decir, las salidas correspondientes del decodificador, y sumarlas mediante una puerta OR. Y la salida de esta puerta OR corresponde con la implementación de la función. La Figura 4 muestra la implementación de la función G utilizando un decodificador de 3 a 8 con salidas activas a nivel alto y una puerta OR.

Figura 4 Implementación de la función G mediante un decodificador binario y una puerta OR

De este modo, para implementar una función lógica tan sólo necesito un decodificador binario con tantas entradas como tenga la función y una puerta OR.

4.3.2 Implementación con una puerta NOR

Pero, ¿qué pasa si no puedo conseguir la puerta OR que necesito?

Hagamos otra pregunta. ¿Qué sucede si en lugar de coger los minitérminos que **SÍ** son de la función, cogemos los que **NO** son de la función?

Esto sería lo mismo que cambiar los ceros por unos y los unos por ceros en la salida de la función. Por ejemplo, con la función G, tendríamos la tabla de verdad mostrada en la Tabla 3, con la función \overline{G} , la negación de la función G. La Ecuación 5 muestra la forma canónica disyuntiva para \overline{G} .

Tabla 3 Tabla de verdad de la función G y \overline{G}

Minitérmino	СВА	G	G
0	000	0	1
1	001	1	0
2	010	1	0
3	011	0	1
4	100	1	0
5	101	0	1
6	110	1	0
7	111	1	0

Ecuación 2 Forma Canónica Disyuntiva para la función G

$$G = \sum_{C.B.A} (1,2,4,6,7)$$

Ecuación 5 Forma Canónica Disyuntiva para la función $\overline{\mathbf{G}}$

$$\overline{G} = \sum_{C,B,A} (0,3,5)$$

Pero nosotros no queremos implementar la función \overline{G} , sino que queremos implementar la función G. Y esto lo podemos conseguir cogiendo los minitérminos que **NO** son de la función y utilizar, en lugar de una puerta **OR**, una puerta **NOR**. De esta forma, aprovechamos la propiedad llamada involución⁵ y al negar \overline{G} , obtenemos G, que es lo que queríamos.

La Figura 5 muestra la implementación de la función G mediante el uso de un decodificador de 3 a 8 con salidas activas a nivel alto y una puerta NOR.

Figura 5 Implementación de la función G mediante un decodificador binario y una puerta NOR

⁵ La propiedad llamada involución dice que $\bar{a}=a$, es decir, que si negamos una función dos veces, obtenemos la función original.

4.3.3 Resumen

El resultado de utilizar una puerta OR usando los minitérminos que SÍ son de la función es el mismo que el de utilizar una puerta NOR usando los minitérminos que NO son de la función. Así pues, a nivel funcional las dos opciones son equivalentes. Sin embargo, algunas funciones tienes un número mayor de unos que de ceros en sus salidas, o viceversa. En estos casos, la utilización de una puerta OR o de una puerta NOR puede tener importancia en la complejidad y coste del circuito final, ya que es posible escoger la puerta con menor número de entradas.

4.3.4 Ejercicios

A continuación unos sencillos ejercicios. Para la función lógica F expresada por su forma canónica disyuntiva, responde a las siguientes preguntas:

$$F = \sum_{D,C,B,A} (1,2,6,7,11,14,15)$$

- a. ¿Qué tamaño de decodificador binario necesitamos para implementarla?
- b. Si utilizamos una puerta OR, ¿De cuantas entradas será la puerta?
- c. Si utilizamos una puerta OR, ¿Cuáles serán las salidas del decodificador que conectaremos a la puerta OR?
- d. Si utilizamos una puerta NOR, ¿De cuantas entradas será la puerta?
- e. Si utilizamos una puerta NOR, ¿Cuáles serán las salidas del decodificador que conectaremos a la puerta NOR?
- f. ¿Es mejor utilizar una puerta OR o una puerta NOR?
- g. Intenta responder las preguntas antes de ver las soluciones, por favor 6.

5 Conclusiones

En este artículo has podido conocer una forma rápida y sencilla de implementar una función lógica. La Figura 6 muestra los pasos a seguir para, a partir de la tabla de verdad de una función lógica, llegar a la implementación de la misma utilizando un decodificador con salidas activas a nivel alto y una puerta OR o una puerta NOR.

Algunas ideas importantes que debes recordar:

- El decodificador debe tener tantas entradas como entradas tenga la función. Es decir, debe tener la misma aridad que la función.
- La entrada de menor peso de la función debe conectarse a la entrada de menor peso del decodificador. Y así sucesivamente con las siguientes entradas hasta la de mayor peso.
- Las salidas del decodificador que no se utilizan se dejan al aire.
- No es mejor utilizar una puerta OR o una puerta NOR, pero dependiendo de la función, es posible que resulte más sencillo una opción frente a la otra. Pero funcionalmente las dos opciones son idénticas.

⁶ a: De 4 entradas a 16 salidas; b: De 7 entradas; c: S1, S2, S6, S7, S11, S14, S15; d: De 16-7=9 entradas; e: S0, S3, S4, S5, S8, S9, S10, S12, S13; f: La puerta OR necesita dos entradas menos que la puerta NOR, por lo que parece mejor utilizar la OR.

• Si el decodificador tiene entrada de habilitación, esta debe estar siempre activada, ya que de lo contrario no se genera ninguna función.

Figura 6 Pasos para la implementación de una función lógica utilizando decodificadores binarios con salidas activas a nivel alto

6 Bibliografía

6.1 Libros:

- [1] <u>John F. Wakerly</u> "Digital design: principles and practices", Upper Saddle River: Pearson Prentice Hall. 2006
- [2] Antonio Lloris Ruiz; Alberto Prieto Espinosa; Luis Parrilla Roure "Sistemas digitales", Aravaca, Madrid: McGraw-Hill/Interamericana de España. 2003

6.2 Referencias de fuentes electrónicas:

[3] <u>Martí Campoy, Antonio</u> "Circuitos combinacionales: decodificadores" Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica. 2011. http://politube.upv.es/play.php?vid=46040