2003~2004 学年第二学期《高等数学》期末考试试题 A 卷(216 学时)			
专	业班级	学号	姓名
一、填空题(每小题 2 分,共 8 分) (1) 设 S 为: $x^2 + y^2 + z^2 = 1$ 的外侧, 则 $\oint_S x dy dz + \cos y dz dx + dx dy =。$			
	设函数 $u = \ln(x^2 + div(gradu)) _{M} = $	$y^2 + z^2$) 在点 $M(1,2,-2)$ 处的梯度 §	$gradu _{M} = \underline{\hspace{1cm}},$
(3)	设周期为4的偶函数	数 $f(x)$ 在 $[0, 2]$ 上的表达式为 $f(x)$	=x,它的傅里叶级数的和函数

为 s(x) ,则 s(-5)=____。

(4) 顶点在原点,准线为
$$\begin{cases} x = h \\ z^2 - 2y^2 = 1 \end{cases}$$
 的锥面方程为_____。

二、选择题 (每小题 2 分, 共 8 分)

(1) () 级数
$$\sum_{n=1}^{\infty} \frac{(x-2)^{2n}}{n4^n}$$
 的收敛域为:
A. (0,4) B. (0,4] C. [0,4) D. [0,4]

(2) ()在曲线 $x = t, y = -t^2, z = t^3$ 的所有切线中,与平面 x + 2y + z = 4 平行的切线 A. 只有一条; B. 只有 2 条; C. 至少有 3 条 D. 不存在

D. 不存在

(3) ()
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2) e^{-(x+y)} =$$

A. 0
B. 1
C. -1
(4) () 直线 $\frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+5}{1}$ 与直线 $\begin{cases} x-y=6\\ 2y+z=3 \end{cases}$ 的交角为:

A.
$$\frac{\pi}{6}$$
; B. $\frac{\pi}{4}$; C. $\frac{\pi}{3}$;

三、计算下列各题(每小题 7 分, 共 28 分):

(1) $I = \iint_D e^{\frac{y}{x+y}} dxdy$, $\sharp + D = \{(x,y) \mid x+y \le 1, 0 \le x, 0 \le y\}$.

(2)
$$\forall I = \iiint_{\Omega} f(\sqrt{x^2 + y^2 + z^2}) dx dy dz$$
, $\not \exists \vdash \Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2\}, f(x)$

[0,1]上连续, f(0) = 0, f'(0) = 1, 求极限: $\lim_{t \to 0^+} \frac{I}{\pi t^4}$.

(3) 设方程
$$z + xy = f(xz, yz)$$
 确定可微函数 $z = z(x, y)$, 求 $\frac{\partial z}{\partial x}$ 。

(4) 求微分方程 $y'' + 3y' + 2y = 4e^{-2x}$ 的通解。

四、 (10 分) 讨论函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
 在 $(0,0)$ 处的连续性、可导性、可微性。

- 五、(10 分)已知 $\varphi(\pi)=1$,试确定 $\varphi(x)$,使曲线积分 $I=\int\limits_A^B \Big(\sin x-\varphi(x)\Big)\frac{y}{x}\mathrm{d}x+\varphi(x)\mathrm{d}y$ 与路径无关,并求当A,B两点分别为(1,0)及 (π,π) 时这个积分的值。
- 六、(10 分)设 Σ 为平面y+z=5被拄面 $x^2+y^2=25$ 所截得的部分,计算曲面积分: $I=\iint\limits_{\Sigma}(x+y+z)\mathrm{d}s$
- 七、(10分) 求曲面x+2y-1=0和 $x^2+2y^2+z^2=1$ 的交线上离原点最近的点。
- 八、(6 分)设 f(x) 在 [a,b] 上连续,试研究 $\int_a^b dx \int_a^b [f(x)-f(y)]^2 dy$,从而证明不等式 $[\int_a^b f(x)dx]^2 \leq (b-a)\int_a^b f^2(x)dx$,此外仅当 f(x) 为常数时等号才成立。
- 九、(10 分) 求过点 M(2,1,3) 且与直线 $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z}{-1}$ 垂直相交的直线方程。