

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 509 974 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:
13.01.1999 Bulletin 1999/02

(51) Int. Cl.⁶: C07D 471/04, A61K 31/435

(21) Application number: 92850067.7

(22) Date of filing: 25.03.1992

(54) Pyrrolo[2,3-b]pyridines having therapeutic activity and a process for the preparation thereof

Pyrrolo[2,3-b]pyridine mit therapeutischer Wirkung und Verfahren zu deren Herstellung

Pyrrolo[2,3-b]pyridines ayant une activité thérapeutique et un procédé pour leur préparation

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB GR IT LI LU MC NL
PT SE

• Svensson, Arne
S-431 34 Mölndal (SE)

(30) Priority: 27.03.1991 SE 9100920

(74) Representative:
Hjertman, Ivan T. et al
AB ASTRA
Patent and Trade Mark Department
151 85 Södertälje (SE)

(43) Date of publication of application:
21.10.1992 Bulletin 1992/43

(73) Proprietor: Astra Aktiebolag
151 85 Södertälje (SE)

(56) References cited:

- CHEMICAL ABSTRACTS, vol. 106, no. 5, 02 February 1987, Columbus, Ohio, US; abstract no. 27516S, SAIFY, Z.S. 'Anti-inflammatory properties of 7-azaindole derivatives' page 29; XP002059720 & PAK. J. PHARMACOL. 1986,
- CHEMICAL ABSTRACTS, vol. 106, no. 1, 05 January 1987, Columbus, Ohio, US; abstract no. 4911C, SAIFY, Z.S. 'Synthesis of some azaindole derivatives of potential biological interest. Significance of physical parameters in drug design' page 462; XP002059721 & J. PHARM. 1984, (UNIV. KARACHI),

(72) Inventors:

- Briving, Carin
S-427 00 Billdal (SE)
- Elebring, Marie
S-435 43 Mölnlycke (SE)
- Carlsson, Stig
S-435 31 Mölnlycke (SE)
- Carter, Robert
S-435 43 Mölnlycke (SE)
- Kühler, Thomas
S-414 56 Göteborg (SE)
- Nordberg, Peter
S-416 63 Göteborg (SE)
- Starke, Ingemar
S-413 01 Göteborg (SE)

Remarks:

Consolidated with 92906977.1/0580616 (European application no./publication no.) by decision dated 10.01.96.

EP 0 509 974 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

DescriptionField of the invention

5 The object of the present invention is to provide novel compounds, and therapeutically acceptable salts thereof, which inhibit exogenously or endogenously stimulated gastric acid secretion and thus can be used in the prevention and treatment of peptic ulcer.

The present invention also relates to the use of the compounds of the invention for inhibiting gastric acid secretion in mammals including man. In a more general sense, the compounds of the invention may be used for prevention and 10 treatment of gastrointestinal inflammatory diseases, and gastric acid-related diseases in mammals including man, such as gastritis, gastric ulcer, duodenal ulcer, reflux esophagitis and Zollinger-Ellison syndrom. Furthermore, the compounds may be used for treatment of other gastrointestinal disorders where gastric antisecretory effect is desirable e.g. 15 in patients with gastrinomas, and in patients with acute upper gastrointestinal bleeding. They may also be used in patients in intensive care situations, and pre- and postoperatively to prevent acid aspiration and stress ulceration. The invention also relates to pharmaceutical compositions containing at least one compound of the invention, or a therapeutically acceptable salt thereof, as active ingredient. In a further aspect, the invention relates to processes for preparation of such new compounds, and to the use of the active compounds for the preparation of pharmaceutical compositions for the medical use indicated above.

Prior art

Certain pyrrolo[2,3-b]pyridines have been disclosed by Saify (1985) Pak. J. Pharmacol. 2, 43-36; Saify (1984) Pharm. Univ. Kar. 2, 99-103; Timpe *et al.* (1980) J. Prakt. Chem. 322, 517-521; and Ogali *et al.* (1988) Indian Journal of Chemistry 27B, 656-651.

25 Saify (1985) discloses 7-phenacyl-7-azainzolinium bromide for use as an anti-inflammatory agent. This compound exhibited activity in reducing oedema, which could be attributed to the similarity in structure to that of indomethacin.

The invention

30 It has been found that compounds of the following formula I are effective as inhibitors of gastric acid secretion. The compounds of the formula I exert this effect by inhibiting the gastrointestinal H⁺K⁺-ATPase enzyme. The compounds of the invention are of the following formula I:

55 or a pharmaceutically acceptable salt thereof, wherein

X represents

or $-\text{CH}_2-$;

R¹ represents H, (1-6C) alkyl, $\text{CH}_2\text{-O-}\text{R}^7$, halogen, phenyl or phenyl substituted with (1-6C) alkyl, (1-6C) alkoxy, (1-6C) acyl, halogen, or (1-6C) alkoxy carbonyl;

10 R² represents H, (1-6C) alkyl, CH_2CN ,

25 S-CN, CH_2OH , $\text{CH}_2\text{C=CH}$, CF_3 , CH_2NC or NH_2 ;
R³ represents H, (1-6C) alkyl, CF_3 , $\text{O-}\text{R}^9$, NH_2 , halogen, CN,

S-R¹⁰ or NHCOR^{10} ;

35 R⁴ and R⁵, which are the same or different, represent H, (1-6C) alkyl, CN, halogen, O-R¹¹, NO_2 , NH_2 , S-R¹², NHCOR^{13} ,

50 R⁶, R⁷, R⁸, R⁹, R¹¹, and R¹³ which are the same or different, represent H or (1-6C) alkyl;
R¹⁰ represents (1-6C) alkyl or phenyl (1-6C) alkyl;

R¹² and R¹⁴, which are the same or different, represent (1-6C) alkyl;

R¹⁵ represents H, (1-6C) alkyl, OH or (1-6C) alkoxy; provided that R¹ and R² are not simultaneously H.

55 The term halogen includes fluoro, chloro bromo and iodo.

Both the pure enantiomers, racemic mixtures and unequal mixtures of two enantiomers are within the scope of the present invention. It should be understood that all the diastereomeric forms possible (pure enantiomers or racemic mix-

tures) are within the scope of the invention. Also included in the invention are derivatives of the compounds of the formula I which have the biological function of the compounds of the formula I.

Depending on the process conditions and the starting materials, the end products of the formula I are obtained either in neutral or salt form. Both the free base or acid and the salts of these end products are within the scope of the invention.

Acid addition salts of the new compounds may in a manner known per se be transformed into free base using basic agents such as alkali or by ion exchange. The free base obtained may also form salts with organic or inorganic acids. In the preparation of acid addition salts, preferably such acids are used which form suitably therapeutically acceptable salts.

10 Examples of such acids are hydrohalogen acids, sulfonic acids, phosphoric acid, nitric acid, aliphatic, alicyclic, aromatic or heterocyclic carboxyl or sulfonic acids, such as formic acid, acetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, maleic acid, hydroxymaleic acid, pyruvic acid, p-hydroxybenzoic acid, embonic acid, methanesulfonic acid, ethanesulfonic acid, hydroxyethanesulfonic acid, ethylene-sulfonic acid, halogenbensenenesulfonic acid, toluenesulfonic acid or naphylsulfonic acid.

15 These or other salts of the new pyrrolo[2,3-*b*]pyridine, as e.g. picrates, may serve as purifying agents of the free bases obtained. Salts of the bases may be formed, separated from solution, and then the free base can be recovered in higher purity from a new salt solution.

Base addition salts of the new compounds may be transformed into the acid form using inorganic or organic acids, and then reconverted to a therapeutically suitable salt such as sodium and potassium salts by addition of NaOH and KOH, respectively.

Preferred groups of compounds of the formula I are:

1. Compounds wherein X is

30 or -CH₂- and R⁶ is as defined above

2. Compounds wherein R¹ is (1-6C) alkyl, optionally substituted phenyl, CH₂OR⁷ or halogen and R⁷ is as defined above.

35 3. Compounds wherein R² is H, (1-6C) alkyl, CH₂C≡CH, CH₂OH, CH₂CN,

40

$\text{CH}_2\text{NC}, \text{NH}_2,$

SCN, halogen or CF₃.

50

4. Compounds wherein R³ is H, (1-6C) alkyl, O-R⁹, NH₂, C≡N, S-R¹⁰,

55

halogen, CF_3 or NHCOR^{10} and R^9 and R^{10} are as defined above.

5. Compounds wherein R⁴ and R⁵ are the same or different and selected from H, (1-6C) alkyl, C=N, halogen, O-R¹¹, NO₂, NH₂, S-R¹², NHCOR¹³, CF₃ or

and R¹¹, R¹², R¹³ and R¹⁵ are as defined above.

10 More preferred groups of compounds of the formula I are:

1. Compounds wherein X is

20 or -CH₂-

2. Compounds wherein R¹ is CH₃, C₂H₅, CH(CH₃)₂, CH₂CH₂CH₃, Cl, Br or phenyl

25 3. Compounds wherein R² is H, CH₃, C₂H₅, CH₂CN,

30 F, Cl, Br, SCN, CH₂OH, CH₂C=CH, CF₃ or CH₂NC

35 4. Compounds wherein R³ is H, CH₃, C₂H₅, CH(CH₃)₂, CH₂CH₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, S-CH₃, S-C₂H₅,

40 or NHCOCH₃.

5. Compounds wherein R⁴ and R⁵ are the same or different and selected from H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, S-CH₃ or CF₃.

45 The radical R³ is in position 4, 5 or 6, preferably in position 5 or 6 in the compound of Formula I.

The radicals R⁴ and R⁵ are in positions 2, 3, 4, 5 or 6 of the phenyl nucleus.

The most preferred compound of the invention is:

50

55

5

10

15

20

25

30

35

40

45

50

55

5

10

15

20

25

35

30

40

45

50

55

The compounds may be prepared in the following way.

A. A compound of the general formula II

15 wherein R¹, R² and R³ are as defined above is reacted with a compound of the general formula III

25 wherein X, R⁴ and R⁵ are as defined above and Y is a leaving group, such as a halide, tosyloxy or mesyloxy whereby a compound of the general formula I, wherein X, R¹, R², R³, R⁴ and R⁵ are as defined above, is obtained. It is convenient to conduct this reaction in a solvent. The solvent used for the reaction is preferably a polar solvent such as acetonitrile or dimethyl formide or an alcohol, e.g. ethanol or isopropanol.

30 The reaction temperature ranges usually from about 20°C to about the boiling point of the solvent used, more preferably from about 20°C to about 80°C. The reaction time ranges from about 0.1 to about 96 hours.

35 B. Compounds of the formula I wherein X is CHO_H and R¹, R², R³, R⁴ and R⁵ are as defined above are prepared by reducing a compound of formula I wherein X is C=O and R¹, R², R³, R⁴ and R⁵ are as defined above, e.g. by reacting with a reducing agent such as NaBH₄, LiAlH₄ or by catalytic hydrogenation.

40 C. Compounds of the formula I wherein R² is OH and X, R¹, R³, R⁴ and R⁵ are as defined above are prepared by reacting a compound of formula I wherein X, R¹, R³, R⁴ and R⁵ are as defined above and R² is O(1-6C)alkyl with a dealkylation agent such as B(Br)₃ or (CH₃)₃Sil.

D. Compounds of the formula I wherein X is CHO-R⁶ and R¹, R², R³, R⁴ and R⁵ are as defined above are prepared by reacting a compound of formula I wherein X is CHO_H and R¹, R², R³, R⁴ and R⁵ are as defined above with a compound of formula IV

45 wherein R⁶ is as defined above and Z is a reactive esterified hydroxy group.

E. Compounds of the formula I wherein R⁴ is 2-OH, R⁵ is different from R⁴, and X, R¹, R² and R³ are as defined above are prepared by reacting a compound of formula I wherein X, R¹, R², R³ and R⁵ are as defined above provided that R⁵ is different from R⁴, and R⁴ is 2-O(C₁-C₆alkyl), with a dealkylation agent such as B(Br)₃ or (CH₃)₃Sil.

50 The compound of the formula I thus obtained is then, if desired, converted to a pharmaceutically acceptable salt.

Examples

Example 1

Preparation of 2-methyl-7-(2-phenylethyl)-pyrrolo[2,3-b]pyridine

A solution of 85 mg (0.64 mmol) of 2-methyl-pyrrolo[2,3-b] pyridine and 140 mg (0.76 mmol) of (2-bromoe-

thyl)benzene in 1 ml acetonitrile was refluxed for 40 h. The solvent was evaporated and the residue was treated with ether. The solid that formed was isolated by filtration to give 188 mg (62%) of 2-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine hydrobromide.

5 (¹H-NMR, 500 MHz, CDCl₃) 2.78(s,3H), 3.44(t,2H), 5.40(t,2H) 6.44(s,1H), 6.97(dd,2H), 7.08(dd,1H), 7.18(m,3H), 7.31(d,1H), 8.17(d,1H).

Example 2

10 3-Chloro-2-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine hydrobromide

A solution of 28.4 mg (0.17 mmol) of 3-chloro-2-methyl pyrrolo [2,3-b]pyridine and 36 mg (0.2mmol) of (2-bromoethyl)benzene in 0.4 ml of dimethylformamid was heated at 80°C for 20 h. The solvent was evaporated. The solid that formed was treated with ethyl acetate and isolated by filtration to give 30 mg (50%) of 3-chloro-2-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine hydrobromide.

15 (¹H-NMR, 500 MHz, CDCl₃) 2.77(s,3H), 3.45(t,2H), 5.40(t,2H), 6.95(dd,2H), 7.14(dd,1H), 7.2(m,3H), 7.28(d,1H), 8.24(d,1H).

20 Example 3

3-Cyanomethyl-2-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine

A solution of 130 mg (0.76 mmol) of 3-cyanomethyl-2-methyl-pyrrolo[2,3-b] pyridine and 150 mg (0.81 mmol) of 2-bromoethyl-benzene in 2 ml of acetonitrile was refluxed for 40 h. The solvent was evaporated and the crude product was chromatographed on silica gel with ethyl acetate: methanol: water 100:12:4. Recrystallization from a small amount of ether: petroleumether 1:1 gave 53 mg (25%) of 3-cyanomethyl-2-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]-pyridine.

30 (¹H-NMR, 500 MHz, CDCl₃) 2.59(s,3H), 3.34(t,2H), 3.83(s,2H), 4.84(t,2H), 6.66(dd,1H), 7.01(dd,2H), 7.07(d,1H), 7.23(m,3H), 7.94(d,1H).

Example 4

35 3-Methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine hydrobromide.

35 A solution of 0.3 g (2.3 mmol) 3-methylpyrrolo[2,3-b]pyridine and 0.5 g (2.7 mmol) (2-bromoethyl)benzene in 10 ml acetonitril was refluxed for 72 h. The solvent was evaporated and the solid that formed was treated with ether. Recrystallization from ethyl acetate gave 0.2 g (27%) of the title compound as a white solid.

40 (¹H-NMR, 300 MHz, CDCl₃) 2.35(s,3H), 3.45(t,2H), 5.4(t,2H), 6.9-7.0(m,2H), 7.1(t,1H), 7.2-7.3(m,3H), 7.4(dd,1H), 7.55(s,1H), 8.25(dd,1H).

Example 5

45 2-Hydroxymethyl-3-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine hydrobromide

A solution of 0.11 g (0.68 mmol) 2-hydroxymethyl-3-methylpyrrolo-[2,3-b]pyridine and 0.13 g (7 mmol) (2-bromoethyl)benzene in 5 ml acetonitril was refluxed for 24 h. The solvent was evaporated. Chromatography on silica gel eluting with methylene chloride and methanol (10:1) gave the desired product. (0.03 g 13%).

50 (¹H-NMR,500 MHz,CDCl₃), 2.35(s,3H), 3.4(t,2H), 4.95(s,2H), 5.1(t,2H), 6.95-7.0(m,2H), 7.05(t,1H), 7.2-7.25(m,3H), 7.35(dd,1H), 8.15(dd,2H).

Example 6

55 2-Chloro-3-methyl-7-(2-phenylethyl)pyrrolo[2,3-b]pyridine

A solution of 0.1 g (0.6 mmol) 2-chloro-3-methylpyrrolo-[2,3-b]pyridine and 0.14 g (0.78 mmol) (2-bromoethyl)ben-

zene in 10 ml acetonitril was refluxed 72 h. The solvent was evaporated. The solid that formed was treated with ether and ethyl acetate and isolated by filtration. Chromatography on silica gel eluting with methylene chloride and methanol (10:1) gave the desired product. (0.03 g 18%).

(¹H-NMR, 300 MHz, CDCl₃) 2.3(s,3H), 3.35(t,2H), 4.8(t,2H), 6.65(t,1H), 6.95-7.0(m,2H), 7.05(dd,1H), 7.2-7.25(m,3H), 7.8(dd,1H).

Example 7

6-Amino-2,3-dimethyl-7-(2-phenylethyl)-pyrrolo[2,3-b]pyridine hydrobromide

A solution of 6-amino-2,3-dimethyl-pyrrolo[2,3-b]pyridine (1.0g, 6,2mmol) and phenethyl bromide (1,7g, 9,3 mmol) in 30 ml CH₃CN was refluxed for 48 h. The mixture was allowed to cool and the precipitate was filtered off. Chromatography on silica gel eluting with methylene chloride and methanol (9:1) gave the desired product (0,1g, 6%).

(¹H-NMR, 500 MHz, CDCl₃+CD₃OD) 2.10(s,3H), 2.25(s,3H), 3.20(t,2H), 4.70(t,2H), 6.60(d,1H), 7.10(dd,2H), 7.15-7.20(m,3H), 7.75(d,1H).

Example 8

2,3-Dimethyl-7-phenacylpyrrolo[2,3-b]pyridine

A solution of 2,3-dimethylpyrrolo[2,3-b]pyridine (146 mg, 1 mmol) and phenacyl chloride (170 mg, 1.1 mmol) in 3 ml CH₃CN was refluxed for 4.5 h. The mixture was allowed to cool and the precipitated product filtered off and washed with a small volume of ice cold CCl₄ affording 207 mg (69%) pure title compound as the hydrochloride salt.

(¹H-NMR, 300 MHz, DMSO-d₆), 2.29(s,3H), 2.42(s,3H), 6.66(s,2H), 7.65(m,3H), 7.80(t,1H), 8.11(d,2H), 8.47(d,1H), 8.62(d,1H), 13.5(b,1H).

Example 9

3-Chloro-2-methyl-7-phenacylpyrrolo[2,3-b]pyridinehydrochloride

A solution of 200 mg (1.2 mmol) of 3-chloro-2-methyl pyrrolo-[2,3-b]pyridine and 204 mg (1,3 mmol) of 2-chloroacetoephon in 10 ml of CH₃CN was refluxed for 48 h. The reaction mixture was cooled to room temperature and stirred for one hour. The precipitate was filtered off to give 260 mg (67%) of 3 chloro-2-methyl-7-phenacylpyrrolo-[2,3-b]pyridinehydrochloride.

(¹H-NMR, 500 MHz,DMSO-d₆) 2.50(s,3H), 6.62(s,2H), 7.68(t,2H), 7.78(m,2H), 8.11(d,2H), 8.62(d,1H), 8.70(d,1H).

Example 10

2,3-Dimethyl-7-(p-bromophenacyl)pyrrolo[2,3-b]pyridine, hydrobromide

This compound was prepared by reacting 2,3-dimethylpyrrolo [2,3-b]pyridine with p-bromophenacyl bromide following the procedure in example 8. Yield: 92%.

(¹H-NMR, 300 MHz, DMSO-d₆) 2.29 (s, 3H), 2.41 (s, 3H), 6.47 (s, 2H), 7.63 (dd, 1H), 7.92 (m, 2H), 8.03 (m, 2H), 8.43 (d, 1H), 8.64 (d, 1H), 12.8 (b, 1H)

Example 11

2,3-Dimethyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridine.

A solution of 2,3-dimethyl-7-phenacylpyrrolo[2,3]pyridine (120 mg, 0.4mmol) in 3 ml MeOH was treated twice with 20 mg NaBH₄ portions and allowed to react for 2h at room temperature. The solvent was evaporated and the residue partitioned between 50 ml CH₂Cl₂ and 25 ml 2.5% NaOH. The organic layer was separated, washed with 10 ml 2M HCl, dried over MgSO₄ and evaporated leaving 113 mg (94%) title compound as the hydrochloride.

(¹H-NMR, 300 MHz, DMSO-d₆). 2.26(s,3H), 2.48(s,3H), 4.81(dd,1H), 4.97(dd,1H), 5.15(dd,1H), 5.91(dd,1H), 7.37(m,3H), 7.53(t,1H), 7.61(d,2H), 8.51(t,2H), 13.4(b,1H).

Example 12

5

3-Chloro-2-methyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridine

To a solution of 120 mg (0.37mmol) of 3-chloro-2-methyl-7-phenacylpyrrolo-[2,3-b]pyridine hydrochlorid in 2 ml methanol was added 30 mg (0.79mmol) of sodium borohydride. The mixture was stirred for 20 h at room temperature.

10 The solvent was evaporated and the residue was partitioned between 2 ml of 0,2 M hydrochloric acid and 2 ml of ethyl acetate. The aqueos layer was basified by addition of 2M sodium hydroxide and extracted twice with 2 ml of methylene chloride. The combined organic phase was dried over sodium sulfate and the solvent was evaporated. The residue was treated with acetonitrile and the precipitate was filtered off to give 20 mg (19%) 3-chloro-2-methyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo-[2,3-b]pyridine.

15

(¹H-NMR, 500 MHz, CDCl₃) 2.55(s,3H), 4.76(dd,1H), 4.91(dd,1H), 5.32(dd,1H), 6.73(dd,1H), 7.20(d,1H), 7.25(m,1H), 7.28(m,4H), 7.88(d,1H).

Example 13

20

2,3-Dimethyl-7-(2-(p-cyanophenyl)-2-hydroxyethyl)pyrrolo[2,3-b]pyridine.

The title compound was prepared on a 0.4 mmol scale mainly according to example 11 above yielding 68 mg (61%) pure title compound as a yellow solid.

25

(¹H-NMR, 300 MHz, CDCl₃). 2.27(s,3H), 2.51(s,3H), 4.73 (dd,1H), 4.91 (dd, 1H), 5.36 (dd,1H), 6.65 (t,1H), 7.03(d,1H), 7.40(d,2H), 7.56(d,2H), 7.78(d,1H).

Example 14

30

2-Methyl-7-phenacyl-pyrrolo[2,3-b]pyridine hydrochloride

2-methyl-pyrrolo[2,3-b]pyridine (0.5g, 3.78mmol), phenacyl chloride (0.62g, 4.0mmol) and acetonitrile (10ml) were refluxed for 12 h. The solid was filtered off and washed with cold carbon tetrachlorid (2ml). The crude product was recrystallized from chloroform/ether, 1:1, to give 0.95g (88%) title compound.

(¹H NMR, 300 MHz, DMSO-d₆); 1.25(s,3H), 6.65(s,2H), 6.70(s,1H), 7.65(m,3H), 7.80(t,1H), 8.10(d,2H), 8.50(d,1H), 8.65(d,1H).

40 Example 15

2,3-Dimethyl-7-(2-trifluoromethylphenacyl)-pyrrolo[2,3-b]pyridine hydrobromide

The title compound was made according to the general method from Example 14. 2,3-dimethyl-pyrrolo[2,3-b]pyridine (438mg, 3 mmol), 2-trifluoromethylphenacyl bromide (798mg, 3 mmol) in acetonitrile (5ml). Yield 0.44 g (36%).

(¹H-NMR, 300 MHz, DMSO-d₆), 2.45(s,3H), 2.50(s,3H), 6.55(s,2H), 7.65(t,1H), 7.95(t,1H), 8.05(m,2H), 8.40(d,2H), 8.65(d,1H).

50 Example 16

3-Bromo-2-methyl-7-phenacyl-pyrrolo[2,3-b]pyridine hydrobromide.

The title compund was made according to the general method from Example 14. 3-bromo-2-methyl-pyrrolo[2,3-b]pyridine (250 mg, 1.19 mmol) phenacyl bromide (200 mg, 1.3 mmol) in acetonitrile (50ml). Yield 146 mg (37%).

(¹H-NMR, 300 MHz, DMSO-d₆), 2.5(s,3H), 6.7(s,2H), 7.65(t,1H), 7.75(m,3H), 8.1(d,2H), 8.6(m,2H).

Example 172-Chloro-3-methyl-7-phenacylpyrrolo-[2,3-b]pyridine. Hydrochloride.

5 A solution of 1.2 g (7.2 mmol) 2-chloro-3-methylpyrrolo[2,3-b]pyridine and 1.3 g (8.7 mmol) phenacyl chloride in 50 ml acetonitrile was refluxed for 48 h. The solvent was allowed to cool and the precipitated product was filtered off and dried, affording 1.5 g (65%) pure title compound.

(¹H-NMR, 300 MHz, CDCl₃) 2.35(s,3H), 7.0(s,2H), 7.4(dd,1H), 7.55(t,2H), 7.65(t,1H), 7.8(d,1H), 8.2-8.3(m,3H).

Example 182-Chloro-3-methyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[(2,3-b)]pyridine

15 A solution of 0.8 g (2,5 mmol) 2-chloro-3-methyl-7-phenacylpyrrolo[2,3-b]pyridine in 50 ml methanol was cooled to 0°C. It was then treated with NaBH₄-portions until all starting material had reacted. (The reaction was followed by TLC). The solvent was evaporated and the residue partitioned between methylene chloride and water. The organic layer was separated, dried over Na₂SO₄ and evaporated. The residue was treated with ether and isolated by filtration to give 0,6 g (84%) of the title compound as white solid.

(¹H-NMR, 300 MHz, CD₃OD) 2.3(s,3H), 4.5(dd,1H), 4.9(dd,1H), 5.25(dd,1H), 6.95(t,1H), 7.25-7.4(m,3H), 7.5(d,2H), 7.85(d,1H), 8.0(d,1H).

Example 193-Methoxy-2-methyl-7-phenacyl pyrrolo[2,3-b]pyridine. Hydrochloride.

25 A solution of 0,75 g (4,6 mmol) 3-methoxy-2-methylpyrrolo[2,3-b] pyridine and 0,75g (4,8mmol) phenacyl chloride in 50 ml acetonitrile was refluxed for 14 h. Working up in the same manner as ex. 17 gave 0,5 g (34%) of the desired product.

(¹H-NMR, 300 MHz, CDCl₃) 2.55(s,3H), 3.95(s,3H), 7.0(s,2H), 7.35(t,1H), 7.5(t,2H), 7.6(t,1H), 7.9(d,1H), 8.25(d,2H), 8.35(d,1H).

Example 202-Methoxymethyl-3-methyl-7-phenacyl pyrrolo[2,3-b]pyridine. Hydrochloride.

35 A solution of 0,13 g (0,74 mmol) 2-methoxymethyl-3-methylpyrrolo[2,3-b]pyridine and 0,16 g (1,1 mmol) phenacyl chloride in 20 ml acetonitrile was refluxed for 15 h. Working up in the same manner as ex. 17 gave 0,05 g (20%) of the title compound.

(¹H-NMR, 300 MHz, CDCl₃), 2.4(s,3H), 3.45(s,3H), 4.8(s,2H), 7.05(s,2H), 7.4(dd,1H), 7.55(t,2H), 7.65(t,1H), 7.85(d,1H), 8.25(d,2H), 8.35(d,1H).

Example 212-Chloro-3-methyl-7-(p-fluorophenacyl) pyrrolo[2,3-b]pyridinehydrochloride

45 A solution of 1,2 g (7,2 mmol) 2-chloro-3-methylpyrrolo [2,3-b]pyridine and 1,5 g (8,7 mmol) p-fluorophenacyl chloride in 50 ml acetonitrile was refluxed for 48 h. The mixture was allowed to cool and the precipitated product filtered off. The solid was treated with ethyl acetate and filtered off again affording 1,4 g (57%) of the desired product.

(¹H-NMR, 300 MHz, CD₃OD) 2.4(s,3H), 6.45(S,2H), 7.4(dd,2H), 7.65(dd,1H), 8.25(dd,2H), 8.45(cl,1H), 8.7(d,1H).

Example 222-Chloro-3-methyl-7-(2-(p-fluorophenyl)-2-hydroxyethyl)pyrrolo[2,3-b]pyridine.

5 A solution of 1,0 g (2,8 mmol) of 2-chloro-3-methyl-7-(p-fluorophenacyl)pyrrolo [2,3-b]pyridine hydrochloride in 50 ml methanol was treated with NaBH₄ in the same manner as ex. 18 to give 0,85 g (99%) of the title compound as white solid.

10 (1H-NMR, 300 MHz, CD₃OD) 2.3(s,3H), 4.5(dd,1H), 4.9(dd,1H), 5.3(dd,1H), 6.95(t,1H), 7.1(t,2H), 7.45-7.55(m,2H), 7.8(d,1H), 8.0(d,1H).

Example 232-Chloro-3-cyanomethyl-7-phenacylpyrrolo[2,3-b]pyridine

15 A solution of 0,66 g (3,4 mmol) 2-chloro-3-cyanomethyl-pyrrolo[2,3-b]pyridine, and 0,65 g (3,8 mmol) phenacyl bromide in 40 ml acetonitrile was refluxed for 20 h. The mixture was allowed to cool and the precipitated product was filtered off and recrystallized from acetonitrile. Chromatography on silica gel eluting with ethyl acetate gave the desired product (0,094g, 9%).

20 (1H-NMR, 300 MHz, CDCl₃) 3.9(s,2H), 6.15(s,2H), 7.05(t,1H), 7.5-7.65(m,3H), 7.7(t,1H), 8.1(d,2H), 8.25(d,1H).

Example 242,3-Dimethyl-7-(o-methylthiophenacyl)pyrrolo[2,3-b]pyridinehydrobromide.

25 A solution of 0,2 g (1,4 mmol) 2,3-dimethylpyrrolo[2,3-b]pyridine and 0,34 g (1,4 mmol) o-methylthiophenacyl bromide was stirred at room temperature for 4 h. The precipitated product was filtered off and dried affording 0,11 g (20%) of the title compound.

30 (1H-NMR, 300 MHz, CDCl₃) 2.25(s,3H), 2.45(s,3H), 2.6(s,3H), 6.9(s,2H), 7.35-7.45(m,3H), 7.6(t,1H), 7.75(d,1H), 8.25(d,1H), 8.65(d,1H).

Example 253-Hydroxy-2-methyl-7-phenacylpyrrolo[2,3-b]pyridine.

35 To a solution of 0,05 g (0,16 mmol) 3-methoxy-2-methyl-7-phenacyl pyrrolo[2,3-b]pyridine in 10 ml methylene chloride was added 0,5 ml (0,2 mmol) bortribromide in methylene chloride (1M) at RT. The reaction was followed by T.L.C.

40 The mixture was stirred 20 h. and was evaporated. The product was solved in 2 ml methylene chloride/methanol 10/1 and a small amount of water and chromatography of this mixture on silica gel eluting with methylene chloride/methanol 10/1 gave the product as an oil. The oil was treated with ether to give the title product as yellow solid.

45 (1H-NMR, 300 MHz, DMSO-d₆), 2.35(s,3H), 6.45(s,2H), 7.55(bs,1H), 7.7(t,2H), 7.8(t,1H), 8.15(d,2H), 8.4(d,1H), 8.6(d,1H).

Example 262,3-Dimethyl-5-trifluoromethyl-7-phenacylpyrrolo[2,3-b]pyridine

50 A solution of 0,1 g (0,47 mmol) 2,3-dimethyl-5-trifluoromethyl-pyrrolo[2,3-b]pyridine and 0,13g (0,84 mmol) 2-chloroacetophenone in 5 ml acetonitrile was refluxed for 48 h. The solvent was evaporated. Chromatography on silica gel eluting with methylene chloride and methanol (100:5) gave the desired product (0,023 g 15%).

55 (1H-NMR, 300 MHz, CDCl₃) 2.3(s,3H), 2.45(s,3H), 6.15(s,2H), 7.55(t,2H), 7.65(t,1H), 7.75(s,1H), 7.95(s,1H), 8.05(d,2H).

Example 272,3-Dimethyl-7-(p-cyanophenacyl)pyrrolo[2,3-b]pyridine.

5 A solution of 2,3-dimethylpyrrolo[2,3-b]pyridine (146 mg, 1 mmol) and p-cyanophenacyl bromide (248 mg, 1.1 mmol) in 3 ml CH₃CN was refluxed for 1.5 h. The mixture was allowed to cool and the precipitated product filtered off and washed with a small volume of ice cold CCl₄ affording 313 mg (85%) pure title compound as the hydrobromide salt.

10 (1H-NMR, 300 MHz, CDCl₃) 2.30(s,3H), 2.50(s,3H), 7.10(s,2H), 7.40(dd,1H), 7.68(d,2H), 8.00(d,1H), 8.29(d,1H), 8.39(d,2H), 13.6(b,1H).

Example 282,3-Dimethyl-7-(p-fluorophenacyl)pyrrolo[2,3-b]pyridine.

15 The title compound was prepared on a 1 mmol scale from 2,3-dimethylpyrrolo[2,3-b]pyridine and p-fluorophenacyl bromide following the procedure in example 27 above yielding 260 mg (64%) pure product as the hydrobromide.

20 (1H-NMR, 300 MHz, CDCl₃) 2.28(s,3H), 2.56(s,3H), 6.99(s,2H), 7.18(m,2H), 7.38(dd,1H), 7.83(d,1H), 8.24(d,1H), 8.35(m,2H), 13.8(b,1H).

Example 292,3-Dimethyl-7-(p-methoxyphenacyl)pyrrolo[2,3-b]pyridine.

25 The title compound was prepared from 2,3-dimethylpyrrolo[2,3-b]pyridine (120 mg, 0.82 mmol) and p-methoxyphenacyl bromide (207 mg, 0.90 mmol) following the procedure in example 27 above furnishing 223 mg (73%) pure hydrobromide as a light yellow solid.

30 (1H-NMR, 300 MHz, CDCl₃) 2.27(s,3H), 2.58(s,3H), 3.88(s,3H), 6.91(s,2H), 7.00(m,2H), 7.37(dd,1H), 7.81(d,1H), 8.22(d,1H), 8.28(m,2H).

Example 302,3-Dimethyl-7-(m-methoxyphenacyl)pyrrolo[2,3-b]pyridine.

The title compound was prepared on a 0.9 mmol scale fr 2,3-dimethylpyrrolo[2,3-b]pyridine and m-methoxyphenacyl bromide in the same manner as described in example 27 giving 228 mg (70%) pure product as the hydrobromide.

40 (1H-NMR, 300 MHz, CDCl₃) 2.27(s,3H), 2.57(s,3H), 3.91(s,3H), 6.97(s,2H), 7.18(dd,1H), 7.37(dd,1H), 7.43(t,1H), 7.75(bt,1H), 7.79(d,1H), 7.89(d,1H), 8.22(d,1H).

Example 312,3-Dimethyl-7-(o-methoxyphenacyl)pyrrolo[2,3-b]pyridine.

The title compound was prepared on a 1 mmol scale from 2,3-dimethylpyrrolo[2,3-b]pyridine and o-methoxyphenacyl bromide in the same manner as described in example 27 yielding 244 mg (71%) pure hydrobromide as a light yellow solid.

50 (1H-NMR, 300 MHz, CDCl₃) 2.26(s,3H), 2.60(s,3H), 4.20(s,3H), 6.71(s,2H), 7.04(m,1H), 7.11(d,1H), 7.35(dd,1H), 7.59(m,1H), 7.69(d,1H), 7.95(dd,1H), 8.20(d,1H).

Example 322,3-Dimethyl-7-(2,4-difluorophenacyl)pyrrolo[2,3-b]pyridine.

The title compound was prepared on a 1 mmol scale from 2,3-dimethylpyrrolo[2,3-b]pyridine and o,p-difluorophen-

acyl bromide following the procedure described in example 27 giving 194 mg (56%) pure hydrochloride as a yellow solid.

(¹H-NMR, 300 MHz, CDCl₃) 2.27(s,3H), 2.53(s,3H), 6.76(d,2H), 6.96 (m overlapping signals, 2H), 7.34(dd,1H), 7.80(d,1H), 8.15(m,1H), 8.22(d,1H), 14.9(b,1H).

Example 33

5-Chloro-3-cyanomethyl-2-methyl-7-phenacylpyrrolo[2,3-b]pyridine

A mixture of 5-chloro-3-cyanomethyl-2-methyl-pyrrolo[2,3-b]pyridine (147 mg, 0.7 mmol) and phenacylbromide (142 g, 7 mmol) in 12 ml CH₃CN was refluxed for 22h. The reaction mixture was cooled and precipitated title compound was collected and washed with small portions of ice cold diethyl ether. Treatment of the filtrate with diethyl ether afforded a second and third lot of pure title compound. Total yield 257 mg (91%) calculated as the hydrobromide.

(¹H-NMR, 300 MHz, DMSO-d₆). 2.53(s,3H), 4.24(s,2H), 6.50(s,2H), 7.70(t,2H), 7.83(t,1H), 8.10(d,2H), 8.90(d,1H), 9.042(s,1H).

Example 34

2,3-Dimethyl-7-(2-phenyl-2-methoxyethyl)-pyrrolo[2,3-b]pyridine

A solution of 2,3-dimethyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridine (as the base) (266 mg, 1.0 mmol) in 25 ml dry THF was deaerated and treated with 55% NaH dispersion in oil (48 mg, 1.1 mmol) for 30 min. Methyl iodide (62 μ l, 1.0 mmol) was added and allowed to react for 50 min. The solvent was evaporated and the residue partitioned between 100 ml CH₂Cl₂ and 20 ml 5% NaOH. The organic layer was dried over MgSO₄ and evaporated. The residue was chromatographed (silica, CH₂Cl₂ saturated with NH₃). Pure fractions were pooled and evaporated leaving a gum which partly crystallized. Trituration with diethyl ether furnished 207 mg (65%) pure title compound.

(¹H-NMR, 300 MHz, CDCl₃). 2.29(s,3H), 2.54(s,3H), 3.14(s,3H), 4.41(dd,1H), 4.86(dd,1H), 4.99(dd,1H), 6.64(t,1H), 7.38 (overlapping signals, 6H), 7.75(d,1H).

Example 35

2,3-Dimethyl-7-(o-nitrophenacyl)pyrrolo[2,3-b]pyridine.

The title compound was prepared on a 5 mmol scale from 2,3-dimethylpyrrolo[2,3-b]pyridine and o-nitrophenacyl bromide in the same manner as described in example 27 yielding 1.3 g (66%) pure hydrobromide as a yellow solid. Reprocessing of the motherliquor gave additional material.

(¹H-NMR, 300 MHz, DMSO-d₆). 2.30(s,3H), 2.47(s,3H), 6.38(s,2H), 7.68(dd,1H), 7.97(dt,1H), 8.08(t,1H), 8.21(dt,2H), 8.37(d,1H), 8.67(d,1H), 12.9(b,1H).

Example 36

2,3-Dimethyl-7-(o-aminophenacyl)pyrrolo[2,3-b]pyridine.

2,3-dimethyl-7-(o-nitrophenacyl)pyrrolo[2,3-b]pyridine (1.02 g, 2.6 mmol) was dissolved in 39 ml abs. EtOH and treated with SnCl₂.2H₂O (4.75 g, 21 mmol) and 13 ml conc HCl at 80°C for 3h. The reaction mixture was allowed to cool and then partitioned between 500 ml 2M HCl and 250 ml CH₂Cl₂. The organic layer was extracted with additional 150 + 50 ml 2M HCl. The aqueous layers were combined and washed with 400 ml diethyl ether. The pH was adjusted to 12 and the basified product extracted with 800 + 400 + 200 ml CH₂Cl₂. The latter organic layers were combined, dried over MgSO₄, and evaporated leaving 340 mg (46%) pure amine as an intense yellow solid.

(¹H-NMR, 300 MHz, CDCl₃). 2.28(s,3H), 2.47(s,3H), 6.09(s,2H), 6.21(b,2H), 6.71(m,2H), 6.81(t,1H), 7.33(m,2H), 7.82(d,1H), 7.88(d,1H).

Example 372,3-Dimethyl-7-(p-methylphenacyl)pyrrolo[2,3-b]pyridine.

5 A solution of 2,3-dimethylpyrrolo[2,3-b]pyridine (0.16 g, 1.1 mmol) and p-methylphenacyl bromide (0.26 g, 1.2 mmol) in 4.5 ml CH₃CN was warmed to reflux which was enough to initiate crystallisation of the product as a light yellow solid. The precipitate was isolated as described in example 27 furnishing 0.29 g (74%) pure hydrobromide.

10 (1H-NMR, 300 MHz, CDCl₃). 2.27(s,3H), 2.41(s,3H), 2.57(s,3H), 6.94(s,2H), 7.32(d,2H), 7.37(dd,1H), 7.80(d,1H), 8.17(d,2H), 8.23(d,1H), 13.8(b,1H).

Examples 38 and 39(R and S)-2,3-dimethyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridinehydrochloride.

15 R(-)-2-methoxy-2-phenylacetic acid was dissolved in 3 ml SOCl₂ at 0°C and allowed to react for 4h at room temperature. The excess SOCl₂ was evaporated and the residue treated with a solution of a racemic mixture of 2,3-dimethyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridine prepared according to Example 11 (302 mg, 1.0 mmol) and Et₃N (279 µl, 2.0 mmol) in 20 ml CH₂Cl₂. After reacting for 16h at room temperature the mixture was partitioned between 150 ml CH₂Cl₂ and 50 ml 2M HCl. The organic layer was collected, washed with 50 ml 5% Na₂CO₃, dried over MgSO₄, and evaporated. Diastereomers 1 and 2 were separated by chromatography (silica, CH₂Cl₂ saturated with NH₃/diethyl ether;1/1). Diastereomer 2 was further purified by chromatography (silica, CH₂Cl₂ saturated with NH₃). Yields, 149 mg (36%) and 90 mg (22%) of isomers 1 and 2, respectively. Each isomer (149 mg, 0.36 mmol 1 and 89 mg, 0.21 mmol 2) was dissolved in a few ml of MeOH and LiOH (a 5-fold molar excess) dissolved in a few ml H₂O was added and allowed to react for 1 h at room temperature. The solvent was evaporated and each residue partitioned between 100 ml CH₂Cl₂ and 50 ml 5% Na₂CO₃. Each organic layer was washed once with 50 ml 2M HCl, dried over MgSO₄, and evaporated leaving 100 mg (92%) enantiomer 1 and 52 mg (82%) enantiomer 2.

30 (1H-NMR, 300 MHz, DMSO-d₆). Cf. Example 11

Example 402,3-Dimethyl-7-(o-hydroxyphenacyl)pyrrolo[2,3-b]pyridine.

35 A solution of 2,3-dimethyl-7-(o-methoxyphenacyl) pyrrolo[2,3-b] pyridine (75 mg, 0.2 mmol) in 20 ml CH₂Cl₂ was cooled to 0°C and treated with 1M BBr₃ in CH₂Cl₂ (200 µl, 0.2 mmol). After reacting for an additional hour the reaction mixture was poured into a stirred solution of 5 % NaHCO₃. The aqueous layer was extracted with 50 + 10 ml CH₂Cl₂ and the combined organic layers washed with 50 ml 2M HCl (reextraction twice with 10 ml CH₂Cl₂). The combined organic layers were dried over MgSO₄ and evaporated. The residue was chromatographed (silica, CH₂Cl₂/MeOH ; 9/1) affording 35 mg (62%) pure title compound.

40 (1H-NMR, 500 MHz, CDCl₃). 2.27(s,2H), 2.50(s,3H), 6.40(b,2H), 6.93(b,1H), 6.98(d,1H), 7.14(t,1H), 7.40(b,1H), 7.65(d,1H), 7.85(b,1H), 8.07(d,1H).

Example 412,3-Dimethyl-6-methylthio-7-phenethylpyrrolo[2,3-b]pyridine.

45 A refluxing solution of 2,3-dimethyl-6-methylthio-pyrrolo[2,3-b] pyridine (100 mg, 0.5 mmol) in 5 ml CH₃CN was treated with five portions of phenethyl bromide (85 µl, 1.2 mmol), one each 24 h. The solvent was evaporated and the residue chromatographed (silica, CH₂Cl₂ saturated with NH₃/diethyl ether/petroleum ether; 5/2/3) affording 20 mg (13%) pure title compound.

50 (1H-NMR, 500 MHz, CDCl₃). 2.27(s,3H), 2.52(s,3H), 2.53(s,3H), 3.25(m,2H), 5.10(m,2H), 6.75(d,1H), 7.25(m,1H), 7.31 overlapping signals, 4H), 7.68(d,1H).

Example 422,3-Dimethyl-7-phenethyl-6-phenethylthiopyrrolo[2,3-b]pyridine hydrochloride

5 A refluxing solution of 2,3-dimethyl-6-methylthio-pyrrolo [2,3-b]pyridine (391 mg, 2.0 mmol) in 9 ml CH₃CN was treated with five portions of phenethyl bromide (553 µl, 4.0 mmol), one each 24 h. The solvent was evaporated and the residue chromatographed (silica, CH₂Cl₂ saturated with NH₃/diethyl ether/petroleum ether; 5/2/3). Pure fractions were pooled, diluted to the double volume with CH₂Cl₂ and washed with 50 ml 2M HCl. The organic layer was dried over MgSO₄ and evaporated leaving 221 mg (26%) pure product.

10 (¹H-NMR, 500 MHz, CDCl₃). 2.29(s,3H), 2.55(s,3H), 2.90(t,2H), 3.16(t,2H), 3.24(m,2H), 5.14(m,2H), 6.92(d,1H), 7.13(d,2H), 7.23(overlapping signals, 4H), 7.29 (overlapping signals, 4H), 7.68(d,1H).

Example 432,3-Dimethyl-6-methylthio-7-phenacylpvrrolo[2,3-b]pyridine.

15 A mixture of 2,3-dimethyl-6-methylthiopyrrolo[2,3-b]pyridine (100 mg, 0.5 mmol) and phenacyl chloride (804 mg, 5 mmol) in 3 ml CH₃CN was refluxed for 72h. The solvent was evaporated and the residue chromatographed (silica, 20 CH₂Cl₂/MeOH;59/5). Pure fractions were pooled, evaporated, and taken up in 100 ml CH₂Cl₂. The organic layer was washed with 25 ml 2M HCl, dried over MgSO₄, and evaporated leaving 64 mg (35%) pure product as the hydrochloride.

25 (¹H-NMR of the free base, 300 MHz, CDCl₃). 2.25(s,3H), 2.45(s,3H), 2.53(s,3H), 6.62(b,2H), 7.05(d,1H), 7.55(m,2H), 7.66(m,1H), 7.85(d,1H), 8.12(m,2H).

Example 442,3-Dimethyl-5-methylthio-7-phenacylpvrrolo[2,3-b]pyridine.

30 The title compound was prepared on a 0.6 mmol scale from 2,3-dimethyl-5-methylthiopyrrolo[2,3-b]pyridine (prepared according to the procedure described for 2,3-dimethyl-6-methylthio-pyrrolo[2,3-b]pyridine) and phenacyl chloride as described in Example 43 yielding 140 mg (63%) pure title compound as the hydrochloride.

35 (¹H-NMR, 500 MHz, CDCl₃). 2.26(s,3H), 2.57(s,3H), 2.60(s,3H), 6.95(b,2H), 7.60(m,2H), 7.69(m,2H), 8.22(s,1H), 8.30(m,2H).

Example 452,3-Dimethyl-5-methylsulfinyl-7-phenacylpvrrolo[2,3-b]pyridine.

40 A solution of 2,3-dimethyl-5-methylthio-7-phenacylpvrrolo[2,3-b] pyridine (35 mg, 0.1 mmol) in 20 ml CH₂Cl₂ was cooled to -20°C and treated with 71% m-CPBA (27 mg, 0.1 mmol) for 30 min. The volume was adjusted 50 ml with CH₂Cl₂ and the organic layer washed twice with 50 ml 5% Na₂CO₃ and once with 2M HCl (reextraction twice with 25 ml CH₂Cl₂). The organic layer was dried over MgSO₄ and evaporated leaving 15 mg (41%) pure title compound.

45 (¹H-NMR of the hydrochloride, 300 MHz, CDCl₃). 2.31(s,3H), 2.59(s,3H), 2.95(s,3H), 7.05(s,2H), 7.54(t,2H), 7.66(t,1H), 8.16(s,1H), 8.25(d,2H), 8.36(s,1H).

Example 462,3-Dimethyl-7-(o-carboxyphenethyl)pyrrolo[2,3-b]pyridine.

50 A solution of 2,3-dimethylpyrrolo[2,3-b]pyridine (554 mg, 3.8 mmol) and o-bromophenethyl bromide (1000 mg, 3.8 mmol) in 11 ml CH₃CN was refluxed for 16 h. The solvent was evaporated and the residue chromatographed (silica, 55 CH₂Cl₂/MeOH ; 9/1) to give 546 mg enriched product. Pure 2,3-dimethyl-7-(o-bromophenethyl) pyrrolo[2,3-b]pyridine was obtained by a second chromatography (silica, CH₂Cl₂ saturated with NH₃/petroleum ether ; 7/3). A deaerated solution of 2,3-dimethyl-7-(o-bromophenethyl) pyrrolo[2,3-b]pyridine (249 mg, 0.76 mmol) in 25 ml dry THF was cooled to -78°C and treated with 1.6M n-BuLi in hexane (576 µl, 0.91 mmol). After 3 min a vigorous stream of CO₂(g) was bubbled

through the solution. The solution was allowed to warm to room temperature and 1.5 ml H₂O was added. The solvent was evaporated and the residue chromatographed (reversed phase silica, MeOH/H₂O ; 6/4) yielding 51 mg (23%) pure amino acid.

5 (1H-NMR of the hydrochloride, 300 MHz, CDCl₃). 2.22(s,3H), 2.56(s,3H), 3.55(t,2H), 5.07(t,2H), 6.86(d,1H),
7.04(m,1H), 7.19(m,1H), 7.24(m,1H), 7.83(dd,1H), 7.91(d,1H), 8.09(d,1H).

Example 47

10 5-Bromo-2,3-dimethyl-7-phenacyl pyrrolo[2,3-b]pyridine.

A solution of 5-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine (prepared in a similar manner as 6-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine (200 mg, 0.9 mmol) and phenacyl bromide (200 mg, 1.3 mmol) in 15 ml CH₃CN was refluxed for 16h. The mixture was allowed to cool and the precipitated product filtered off and washed with a small volume of diethyl ether affording 243 mg (72%) pure title compound as the hydrochloride.

(¹H-NMR, 500 MHz, DMSO-d₆). 2.28(s,3H), 2.43(s,3H), 6.58(s,2H), 7.68(t,2H), 7.81(t,1H), 8.09(d,2H), 8.84(s,1H),
8.95(s,1H).

20 Example 48

5-Cyano-2,3-dimethyl-7-phenacyl pyrrolo[2,3-b]pyridine.

A mixture of 5-cyano-2,3-dimethyl-pyrrolo[2,3-b]pyridine (77 mg, 0.5 mmol) and phenacyl chloride (650 mg, 4.2 mmol) in 12 ml CH₃CN was refluxed for 62 h. The mixture was basified with a saturated Na₂CO₃ solution and extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and evaporated. The residue was chromatographed (silica, CH₂Cl₂/diethyl ether;7/3) yielding 34 mg (26%) pure title compound.

(DI-MS, EI at 70 eV) m/z 289 (25), 260 (15), 171 (38), 170 (50), 146 (32), 105(100).

30 (¹H-NMR, 300 MHz, CDCl₃) 2.26(s,3H), 2.43(s,3H), 6.09(s,2H), 7.54(t,2H), 7.68(t,1H), 7.75(d,1H), 7.89(d,1H),
8.06(overlapping signals,2H).

Example 49

35 Preparation of 3-cyanomethyl-2-methyl-7-phenacylpyrrolo[2,3-b]pyridine hydrochloride.

A solution of 1.0 g (5.8 mmol) of 3-cyano-methyl-2-methyl pyrrolo[2,3-b]pyridine and 1.08 g (7.0 mmol) of phenacyl chloride in 50 ml acetonitrile was refluxed for 14h. Working up in the same manner as described in example 17 gave 0,5 g 58% of the desired title compound.

40 (¹H-NMR, 300 MHz, DMSO-d₆), 2.50(s,3H), 4.25(s,2H), 6.62(s,2H), 7.6-7.83(m,4H), 8.10(d,2H), 8.56(d,1H),
8.79(d,1H).

Example 50

45 Preparation of 3-(1-pyrazolo)methyl-2-methyl-7-phenacylpyrrolo [2,3-b]pyridine.

A solution of 30 mg (0.14 mmol) of 3-(1-pyrazolo)methyl-2-methyl pyrrolo[2,3-b]pyridine and 32 mg (0.21 mmol) of phenacyl chloride in 1 ml acetonitrile was refluxed for 10h. The solvent was evaporated and the crude product was treated with acetonitrile and the product was isolated by filtration. The product was partitioned between methylene chloride and a saturated sodium bicarbonate solution. The organic layer was dried over sodium sulfate and the solvent was evaporated to give 18 mg (39%) of the title compound.

(¹H-NMR, 300 MHz, CD₃OD), xHCl, 2.60(s,3H), 5.60(s,2H), 6.32(t,1H), 6.42(b,2H), 7.5-7.8(m,6H), 8.15(m,2H),
8.33(d,1H), 8.49(d,1H).

Example 51Preparation of 3-cyanomethyl-2-methyl-7-(4-fluorophenacyl)pyrrolo[2,3-b]pyridine hydrochloride.

5 A solution of 75 mg (0.44 mmol) of 3-cyanomethyl-2-methylpyrrolo [2,3-b]pyridine and 99 mg (0.57 mmol) of 4-fluorophenacyl chloride in 1 ml acetonitrile was refluxed for 48 h. The solvent was evaporated and the residue was treated with 0.4 ml acetonitrile. After filtration the solid was treated with 0,3 ml methanol and 0,4 ml acetonitrile to give 75 mg (55%) of the title compound.

10 (¹H-NMR, 500 MHz, DMSO-d₆), 2.50(s,3H), 4.25(s,2H), 6.62(s,2H), 7.53(m,1H), 7.75(m,1H), 8.20(dd,2H), 8.55(d,1H), 8.80(d,1H).

Example 52Preparation of 2,3-dimethyl-7(2-(2-acetaminophenyl)ethyl)pyrrolo[2,3-b]pyridine hydrobromide.

15 A solution of 73 mg (0,5 mmol) 2,3 dimethylpyrrolo[2,3-b]pyridine and 122 mg (0,5 mmol) of (2-bromoethyl)acetanilide in 2 ml acetonitrile was refluxed for 10 h. The solvent was evaporated and the crude product was treated with 5 ml petroleum ether:ether 1:1 and the insoluble fraction was treated with ether. The ethereal layer was separated from the 20 oily residue, which crystallized from acetonitrile and gave 15 mg (7,7%) of the title compound.

(¹H-NMR, 300 MHz, CDCl₃), 2.20(s,3H), 2.38(s,3H), 2.42(s,3H), 3.38(t,2H), 5.08(t,2H), 6.48(m,1H), 6.73(m,1H), 7.08(m,1H), 7.23-7.35(m,2H), 8.09(d,1H), 8.55(m,1H), 10.1(s,1H).

Example 53Preparation of 2,3-dimethyl-7(2,6-difluorophenacyl)pyrrolo[2,3-b]pyridine hydrobromide.

25 A solution of 100 mg (0.68 mmol) 2,3-dimethylpyrrolo[2,3-b]pyridine and 193 mg (0.82 mmol) 2,6-difluorophenacyl bromide in 2 ml acetonitrile were refluxed for 3 h. Working up in the same manner as described in example 17 gave 145 mg (54%) of the desired product.

(¹H-NMR, 300 MHz, CDCl₃), 2.28(s,3H), 2.62(s,3H), 6.72(s,2H), 7.07(m,2H), 7.38(m,1H), 7.58(m,1H), 7.73(d,1H), 8.24(d,1H).

Example 54Preparation of 3-thiocyanato-2-methyl-7-phenacylpyrrolo[2,3-b] pyridine hydrochloride

35 A solution of 100 mg (0.53 mmol) of 3-thiocyanato-2-methyl pyrrolo [2,3-b]pyridine and 122 mg (0.79 mmol) of phenacyl chloride in 3 ml acetonitrile:dimethylformamide 2:1 was warmed at 70°C for 36 h. The reaction mixture was cooled to room temperature and the acetonitrile was evaporated. To the residue was added 10 ml diethyl ether. The precipitated product was filtered off and washed with acetonitrile giving 37 mg (23%) of the title compound.

45 (¹H-NMR, 300 MHz, DMSO-d₆), 2.65 (s, 3H), 6.66 (s, 2H), 7.7 (m, 2H), 7.79-7.9 (m, 2H), 8.11 (d, 2H), 8.68 (d, 1H), 8.85 (d, 1H).

Example 552-(p-bromophenyl)-3-methyl-7-phenacyl pyrrolo[2,3-b]pyridine

The title compound was prepared from 2-(p-bromophenyl)-3-methyl-pyrrolo-[2,3-b]pyridine and phenacylbromide on a 1.7 mmol scale according to the procedure described in example 8 yielding 620 mg (74%).

55 (¹H-NMR, 500 MHz, CDCl₃), 2.55 (s, 3H), 7.35 (s, 2H), 7.50 (t, 1H), 7.60 (t, 2H), 7.65 (d, 2H), 7.70 (t, 1H), 7.85 (m, 3H), 8.35 (d, 2H), 8.45 (d, 1H).

Example 56Methyl-p[3-methyl-7-phenacyl pyrrolo[2,3-b]-pyridine-2-yl] benzoate

5 The title compound was prepared from methyl-[p-(3-methyl-pyrrolo[2,3-b]-pyridine)-2]yl benzoate and phenacyl-bromide on a 0.4 mmol scale according to the procedure described in example 8 yielding 70 mg (46%).

(¹H-NMR, 300 MHz, CDCl₃). 2.55 (s, 3H), 3.90 (s, 3H), 6.15 (s, 2H), 6.90 (t, 1H), 7.55 (m, 3H), 7.65 (m, 1H), 8.0 (m, 5H), 8.15 (m, 2H).

Example 57Isopropyl-[p(3-methyl-7-phenacyl-pyrrolo[2,3-b]-pyridine)-2]yl benzoate

15 The title compound was prepared from isopropyl-[p-(3-methyl-pyrrolo[2,3-b]-pyridine)-2]yl benzoate and phenacyl-bromide on a 0.2 mmol scale according to the procedure described in example 8 yielding 25 mg (30%).

(¹H-NMR, 300 MHz, CDCl₃). 1.35 (s, 3H), 1.40 (s, 3H), 2.55 (s, 3H), 5.25 (m, 1H), 6.15 (s, 2H), 6.85 (t, 1H), 7.55 (m, 3H), 7.65 (t, 1H), 8.05 (m, 5H), 8.15 (d, 2H).

Example 583-Methyl-2-phenyl-7-phenacylpyrrolo[2,3-b]pyridine

25 The title compound was prepared from 3-methyl-2-phenyl-pyrrolo[2,3-b]pyridine and phenacylbromide on a 4 mmol scale according to the procedure described in example 8 yielding 1.58 g (97%).

(¹H-NMR, 500 MHz, CDCl₃). 2.24 (s, 3H), 7.39-7.56 (several overlapping signals, 8H), 7.65 (t, 1H), 7.87 (d, 1H), 7.93 (overlapping d, 2H), 8.33 (overlapping d, 2H), 8.39 (d, 1H), 13.6 (b, 1H).

Example 593-Methyl-2-(p-methylphenyl)-7-phenacylpyrrolo[2,3-b]pyridine

35 The title compound was prepared from 3-methyl-2-(p-methylphenyl)-pyrrolo[2,3-b]pyridine and phenacyl bromide on a 3 mmol scale according to the procedure described in example 8 yielding 1.21 g (96%).

(¹H-NMR, 500 MHz, CDCl₃). 2.37 (s, 3H), 2.52 (s, 3H), 7.29 (d, 2H), 7.37 (s, 2H), 7.43 (dd, 1H), 7.53 (t, 2H), 7.63 (t, 1H), 7.81 (d, 2H), 7.86 (d, 1H), 8.33 (overlapping signals, 3H), 13.5 (b, 1H).

Example 602-(p-Methoxyphenyl)-3-methyl-7-phenacylpyrrolo[2,3-b]pyridine

45 The title compound was prepared from 2-(p-methoxyphenyl)-3-methyl-pyrrolo[2,3-b]pyridine and phenacylbromide on a 10 mmol scale according to the procedure described in example 8 yielding 4.02 g (92%).

(¹H-NMR, 300 MHz, CDCl₃). 2.50 (s, 3H), 3.83 (s, 3H), 7.00 (d, 2H), 7.36 (s, 2H), 7.42 (dd, 1H), 7.53 (t, 2H), 7.63 (t, 1H), 7.82 (d, 1H), 7.91 (d, 2H), 8.33 (overlapping signals, 3H), 13.5 (b, 1H).

Example 612,3-dimethyl-7-(2-phenyl-2-methoxyiminoethyl)-pyrrolo[2,3-b]pyridine (E and Z isomers)

55 A mixture of 2,3-dimethyl-7-phenacylpyrrolo[2,3-b]pyridine hydrochloride (301 mg, 1 mmol) and methoxylamine hydrochloride (460 mg, 5 mmol) in 3 ml MeOH and 4.5 ml pyridine was allowed to react for 5 days at room temperature. The methanol was evaporated and the residue partitioned between 150 ml CH₂Cl₂ and 50 ml 2M HCl. The organic layer was collected, dried over MgSO₄, and evaporated. Chromatography (silica, CH₂Cl₂/MeOH;92.5/7.5) afforded 179 mg

and 74 mg of each isomer, respectively.

Each isomer was dissolved in 100 ml CH_2Cl_2 and washed with 20 ml 2M HCl, dried over MgSO_4 , and evaporated leaving 198 mg (60%) of isomer 1 and 70 mg (21%) of isomer 2. No attempts to establish the stereochemistry was done at this stage.

($^1\text{H-NMR}$ of isomer 1, 300 MHz, CDCl_3). 2.27 (s, 3H), 2.57 (s, 3H), 4.10 (s, 3H), 6.02 (s, 2H), 6.71 (t, 1H), 7.27 (signals overlapping with residual CHCl_3 , 3H), 7.38 (d, 1H), 7.70 (m, 2H), 7.74 (d, 1H).

($^1\text{H-NMR}$ of isomer 2, 300 MHz, CDCl_3). 2.22 (s, 3H), 2.60 (s, 3H), 3.86 (s, 3H), 6.19 (s, 2H), 7.13 (t, 1H), 7.31 (m, signals overlapping with residual CHCl_3 , 3H), 7.77 (m, 2H), 7.85 (d, 1H), 7.98 (d, 1H).

Example 62

2-Chloro-3-cyanomethyl-7-(2-phenyl-2-hydroxyethyl) pyrrolo[2,3-b]pyridine

A solution of 2-chloro-3-cyanomethyl-7-phenacylpyrrolo(2,3-b]pyridine (15 mg 0.05 mmol) in 3 ml MeOH was treated with 10 mg NaBH_4 and allowed to react for 30 min at room temperature. The solvent was evaporated and the residue partitioned between CH_2Cl_2 and water. The organic layer was separated, dried over Na_2SO_4 and evaporated. Chromatography on silica gel eluting with ether gave the desired product (7 mg 46%).

($^1\text{H-NMR}$, 300 MHz, CD_3OD): 4.0 (s, 2H), 4.55 (dd, 1H), 4.95 (s, 2H), 5.3 (dd, 1H), 7.05 (dd, 1H), 7.25-7.4 (m, 3H), 7.5 (d, 2H), 7.95 (d, 1H), 8.2 (d, 1H)

Example 63

Preparation of 3-(cyanomethyl)-5-fluoro-2-methyl-7-phenacylpyrrolo[2,3-b]pyridine hydrobromide

A mixture of 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine (0.28 g, 1.5 mmol) and phenacyl bromide 0.32 g, 1.6 mmol) in acetonitrile (5 ml) was refluxed under argon for 3 h, during which time the initial solution was transformed into a suspension. Then the suspension was cooled in an ice bath, filtered and washed with diethyl ether (2x2 ml). The crystalline product was purified by recrystallization from hot acetonitrile to give 0.52 g (90%) of the title compound.

MS m/z (relative intensity) 307 (14, M+), 306(8), 279(10), 278(20), 105(100), 91(41), 77(97).

Example 64

Preparation of 5-bromo-3-methyl-7-phenacyl-2-phenylpyrrolo[2,3-b]pyridine

5-Bromo-3-methyl-2-phenylpyrrolo[2,3-b]pyridine (0.34 g, 1.2 mmol) and phenacyl bromide (0.49 g, 2.4 mmol) in acetonitrile (20 ml) was refluxed over night to give a clear solution. The cooled solution was alkalized with sodium carbonate solution (10%) and extracted with methylene chloride. Drying over MgSO_4 , filtration and evaporation of solvents gave a residue which was dissolved in the minimum amount of ethanol. Crystallization was driven to completeness by keeping crystals and mother liquor in the fridge for a few days. Recrystallization by dissolving in hot ethanol and cooling in the fridge over night gave 0.35 g (73%) of yellow crystals.

(free base, $^1\text{H-NMR}$, 300 MHz, CDCl_3) 2.50 (s, 3H), 6.12 (s, 2H), 7.29 (dt, 1H, J_1 7.5 Hz, J_2 1Hz), 7.40 (t, 2H, J 7 Hz), 7.52-7.60 (m, 3H), 7.65-7.70 (m, 1H), 7.86-7.89 (m, 2H), 8.01 (d, 1H, J 2 Hz), 8.12 (d, 2H, J 7 Hz).

Example 65

Preparation of 3-(cyanomethyl)-7-phenacyl-2-phenylpyrrolo[2,3-b]pyridine

3-(Cyanomethyl)-2-phenylpyrrolo[2,3-b]pyridine (0.35 g, 1.5 mmol) and phenacyl bromide (0.36 g) in acetonitrile (5 ml) was refluxed for 18 h. The resulting solid product was isolated by filtration and washed with diethyl ether to give pure 3-(cyanomethyl)-7-phenacyl-2-phenylpyrrolo[2,3-b]pyridine hydrobromide (0.46 g, 70%).

($^1\text{H-NMR}$, 300 MHz, DMSO-d_6). 4.40 (s, 2H), 6.68 (s, 2H), 7.56-74 (m, 8H), 7.78-7.91 (m, 2H), 8.12 (d, 2H, J 7 Hz), 8.74 (d, 1H, J 6 Hz), 9.04 (d, 1H, J 8 Hz).

Example 66Preparation of 3-(carbamoylmethyl)-7-phenacyl-2-phenylpyrrolo[2,3-b]pyridine hydrobromide

5 3-(Carbamoylmethyl)-2-phenylpyrrolo[2,3-b]pyridine (0.35 g, 1.4 mmol) and phenacyl bromide (0.33 g) in acetonitrile (5 ml) were refluxed under argon for 3 h. The resulting yellow suspension was isolated by filtration (0.4 g). The sparingly soluble raw product was dissolved in a mixture of methanol (20 ml) and methylene chloride (480 ml), loaded on a flash chromatography column ($\text{SiO}_2/\text{CH}_2\text{Cl}_2:\text{MeOH}$ 96:4), and eluted with a) 1000 ml $\text{MeOH}:\text{CH}_2\text{Cl}_2$ 2.5:97.5; b) 1000 ml $\text{MeOH}:\text{CH}_2\text{Cl}_2$ 5:95; c) 1000 ml $\text{MeOH}:\text{CH}_2\text{Cl}_2$ 1:9 to afford pure 3-(carbamoylmethyl)-7-phenacyl-2-phenylpyrrolo[2,3-b]pyridine which was isolated as its hydrobromide (0.14 g, 22%).

(free base, $^1\text{H-NMR}$, 500 MHz, DMSO-d_6) 3.70 (s, 2H), 6.33 (s, 2H), 6.68-7.71 (t, 2H, J 7 Hz), 7.27 (t, 1H, J 7.5 Hz), 7.37 (t, 2H, J 7.5 Hz), 7.44 (br s, disappears on addition of D_2O), 7.64 (t, 2H, J 8 Hz), 7.77 (t, 1H, J 7 Hz), 7.89 (d, 2H, J 8 Hz), 8.01 (d, 1H, J 6 Hz), 8.17 (D, 2H, J 7.5 Hz), 8.23 (d, 1H, J 7.5 Hz).

15

Example 675-Chloro-3-cyanomethyl-2-methyl-7-(2-phenyl-2-hydroxyethyl)pyrrolo[2,3-b]pyridine

20 The title compound was prepared from 5-chloro-3-cyanomethyl-2-methyl-7-phenacylpyrrolo[2,3-b]pyridine (example 33) and NaBH_4 on a 0.33 mmol scale according to the procedure described in example 11. Chromatography of the crude material (silica, $\text{CH}_2\text{Cl}_2/\text{MeOH}$; 96/4) afforded 45 mg (42%) pure product.

($^1\text{H-NMR}$, 300 MHz, CDCl_3). 2.54 (s, 3H), 3.78 (s, 2H), 4.67-4.90 (m, 2H), 5.30 (m, 1H), 7.32 (coinciding signals, 6H), 7.95 (d, 1H).

Example 68Preparation of 3-cyanomethyl-2-methyl-7-(2,4-difluorophenacyl)pyrrolo[2,3-b]pyridine

30 The title compound was prepared from III and 2-chloro-2',4'-difluoroaceto-phenone on a 2.3 mmol scale according to the procedure described in example 8 yielding 570 mg (68%).

($^1\text{H-NMR}$, 300 MHz, DMSO-d_6). 2.50 (s, 3H), 4.25 (s, 2H), 6.45 (m, 2H), 7.40 (dt, 1H), 7.65 (dt, 1H), 7.75 (t, 1H), 8.10 (m, 1H), 8.55 (d, 1H), 8.80 (d, 1H).

Example 69Preparation of 3-cyanomethyl-2-methyl-7-(2-methoxyphenacyl)pyrrolo[2,3-b]pyridine

40 The title compound was prepared from III and w-bromo-2-methoxyacetophenone on a 4.2 mmol scale according to the procedure described in example 8 yielding 0.9 g (54%).

($^1\text{H-NMR}$, 300 MHz, DMSO-d_6). 2.50 (s, 3H), 4.10 (s, 3H), 4.25 (s, 2H), 6.25 (s, 2H), 7.15 (t, 1H), 7.40 (d, 1H), 7.75 (m, 2H), 7.90 (dd, 1H), 8.60 (d, 1H), 8.80 (d, 1H).

Example 70Preparation of 3-cyanomethyl-2-methyl-7-(2-hydroxyphenacyl)pyrrolo[2,3-b]pyridine

50 To a deaerated solution of the compound according to example 69 (3.6 g, 8.9 mmol) in 60 ml CH_2Cl_2 10.6 ml of 1 M BBr_3 in CH_2Cl_2 (10.6 mmol) was added dropwise. The solution was stirred at room temperature for 3h and was then poured into 50 ml of 1 M NaHCO_3 . The water was extracted three times with 100 ml CH_2Cl_2 and the combined organic layers was washed once with 100 ml 2 M HCl. The organic layer was dried over Na_2SO_4 and evaporated. The residue was recrystallized from CH_3CN affording 2.2 g (73 %).

($^1\text{H-NMR}$, 500 MHz, DMSO-d_6). 2.50 (s, 3H), 4.25 (s, 2H), 6.35 (s, 2H), 7.00 (t, 1H), 7.20 (d, 1H), 7.60 (t, 1H), 7.70 (t, 1H), 7.85 (d, 1H), 8.60 (d, 1H), 8.75 (d, 1H).

Example 71Preparation of 3-cyanomethyl-5-fluoro-2-methyl-7-(4-fluorophenacyl)pyrrolo[2,3-b]pyridine hydrochloride

5 A mixture of 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo [2,3-b]pyridine (10mg, 05.03 mmol) and 4-fluorophenacyl chloride (19 mg, 0.11 mmol) in acetonitrile (0.2 ml) was refluxed under argon for 26 h, during which time the initial solution was transformed into a suspension. Then the suspension was allowed to reach room temperature, diluted with diethyl ether (2 ml), and filtered. The crystalline product was washed with diethyl ether to give 8 mg (42 %) of the title compound.

10 (¹H-NMR, 500 MHz, CD₃OD) 8.77 (dd, 1H, J₁ 8Hz, J₂ 2 Hz), 8.66 (m, 1H), 8.23 (m, 2H), 7.39 (t, 1H, J 8.5 Hz), 6.47 (s, 2H), 4.12 (s, 2H), 2.57 (s, 3H).

Example 72Preparation of 3-cyanomethyl-5-fluoro-2-methyl-7-((2,4-difluorophenacyl)phenacyl)pyrrolo[2,3-b]pyridine hydrochloride

15 The title compound was prepared from 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine (10 mg, 0.053 mmol) and 2,4-difluorophenacyl chloride (128 mg, 0.67 mmol) in acetonitrile (0.2 ml) in the same fashion as described
20 in example 71; yield 16 mg (80%).

(¹H-NMR, 500 MHz, CD₃OD) 8.77 (dd, 1H, J₁ 7.5 Hz, J₂ 1.5Hz), 8.65 (m, 1H), 8.16 (m, 1H), 8.07 (m, 1H), 7.33 (m, 1H), 7.23 (m, 1H), 6.32 (s, 2H), 4.12 (s, 2H), 2.57 (s, 3H).

Example 73Preparation of 3-cyanomethyl-5-fluoro-2-methyl-7-(2-methoxyphenacyl)pyrrolo[2,3-b]pyridine hydrobromide

25 A mixture of 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine (20 mg, 0.11 mmol) and 2-methoxyphenacyl bromide (30 mg, 0.13 mmol) in acetonitrile (0.2 ml) was refluxed under argon for 6 h, during which time the initial solution was transformed into a suspension. Then the suspension was allowed to reach room temperature, diluted with diethyl ether (2 ml), filtered, and washed with diethylether to give 36 mg (81%) of the title compound.

35 (¹H-NMR, 500 MHz, CD₃OD) 8.74 (dd, 1H, J₁ 8 Hz, J₂ 2 Hz.), 8.68 (m, 1H), 8.00 (dd, 1H, J₁ 8 Hz J₂ 2 Hz), 7.73 (m, 1H), 7.34 (d, 1H, J 8 Hz), 7.12 (t, 1H, J 7.5 Hz), 6.29 (s, 2H), 4.15 (s, 3H), 4.12 (s, 2H), 2.56 (s, 3H).

Example 74Preparation of 3-cyanomethyl-5-fluoro-2-methyl-7-(2-hydroxyphenacyl)pyrrolo[2,3-b]pyridine

40 A mixture of 3-cyanomethyl-5-fluoro-2-methyl-7-(2-methoxyphenacyl)pyrrolo[2,3-b]pyridine hydrobromide (25 mg, 0.06 mmol), methylene chloride (2 ml), and BBr₃ in methylene chloride (1 M; 0.4 ml) under argon was refluxed for 8 h. The red gum was digested in a methylene chloride aqueous sodium bicarbonate mixture. The organic phase was dried over anhydrous Na₂SO₄, filtered, and evaporated to give a yellow crystalline product. Yield 19 mg (98 %).

45 (¹H-NMR, 500 MHz, CD₃OD) 8.17 (dd, 1H, J₁ 8.5 Hz, J₂ 2 Hz), 8.09 (m, 1H), 7.98 (dd, 1H, J₁ 8 Hz, J₂ 1.5 Hz), 7.57 (m, 1H), 7.02 (m, 2H), 3.96 (s, 2H), 3.34 (s, 2H), 2.46 (s, 3H).

50

55

The following Table 1 gives illustrative examples of compounds of the invention

Table 1 Illustrative compounds of the invention

5

10

15

20

25

30

35

40

45

50

55

Example No.	X	R ₁	R ²	R ³	R ⁴	R ⁵	Yield %
1	CH ₂	CH ₂	CH ₂ CN	CH ₃	H	H	62
2	CH ₂	CH ₃	CH ₃	CH ₃	H	H	50
3	CH ₂	CH ₃	CH ₃	CH ₃	H	H	25
4	CH ₂	CH ₃	CH ₃	CH ₃	H	H	27
5	CH ₂	CH ₃	CH ₃	CH ₃	H	H	13
6	CH ₂	CH ₃	CH ₃	CH ₃	H	H	18
7	CH ₂	CH ₃	CH ₃	CH ₃	H	H	6
8	CH ₂	CH ₃	CH ₃	CH ₃	H	H	69
9	CH ₂	CH ₃	CH ₃	CH ₃	H	H	67
10	CH ₂	CH ₃	CH ₃	CH ₃	H	H	32
11	CH ₂	CH ₃	CH ₃	CH ₃	H	H	34
12	CH ₂	CH ₃	CH ₃	CH ₃	H	H	61
13	CH ₂	CH ₃	CH ₃	CH ₃	H	H	19
14	CH ₂	CH ₃	CH ₃	CH ₃	H	H	88
15	CH ₂	CH ₃	CH ₃	CH ₃	H	H	36
16	CH ₂	CH ₃	CH ₃	CH ₃	H	H	37
17	CH ₂	CH ₃	CH ₃	CH ₃	H	H	65
18	CH ₂	CH ₃	CH ₃	CH ₃	H	H	84
19	CH ₂	CH ₃	CH ₃	CH ₃	H	H	34
20	CH ₂	CH ₃	CH ₃	CH ₃	H	H	20
21	CH ₂	CH ₃	CH ₃	CH ₃	H	H	57
22	CH ₂	CH ₃	CH ₃	CH ₃	H	H	99
23	CH ₂	CH ₃	CH ₃	CH ₃	H	H	9
24	CH ₂	CH ₃	CH ₃	CH ₃	H	H	20
55							

Example No.	X	R ₁	R ²	R ³	R ⁴	R ⁵	Yield %
25	C=O	CH ³	HO	H	H	H	23
26	C=O	CH ³	CH ³	s-CF ₃	H	H	15
27	C=O	CH ³	CH ³	H	4'-CN	H	85
28	C=O	CH ³	CH ³	H	4'-F	H	64
29	C=O	CH ³	CH ³	H	3'-OCH ₃	H	73
30	C=O	CH ³	CH ³	H	2'-OCH ₃	H	70
31	C=O	CH ³	CH ³	H	2'-F	H	71
32	C=O	CH ³	CH ³	s-Cl	4'-F	H	56
33	CHOH	CH ³	CH ³	H	H	H	91
34	CHOH	CH ³	CH ³	H	H	H	65
35	CHOH	CH ³	CH ³	H	H	H	66
36	CHOH	CH ³	CH ³	H	2'-NO ₂	H	46
37	CHOH	CH ³	CH ³	H	4'-CH ₃	H	74
38	CHOH	CH ³	CH ³	H	H	H	92
39	CHOH	CH ³	CH ³	H	2'-OH	H	82
40	CH ₂	CH ³	CH ³	H	H	H	62
41	CH ₂	CH ³	CH ³	H	H	H	13
42	CH ₂	CH ³	CH ³	H	H	H	26
43	C=O	CH ³	CH ³	H	H	H	35
44	C=O	CH ³	CH ³	H	H	H	63
45	C=O	CH ³	CH ³	H	H	H	41
46	CH ₂	CH ³	CH ³	H	2'-COOH	H	23
47	C=O	CH ³	CH ³	H	H	H	72

Example No.	X	R ₁	R ²	R ³	R ⁴	R ⁵	Yield %
48	C=O	CH ₃	CH ₃	S-CN	H	H	26
49	C=O	CH ₃	CH ₂ CN	H	H	H	58
50	C=O	CH ₃	CH ₂ CN	H	H	H	39
51	C=O	CH ₃	CH ₃	H	H	H	55
52	CH ₂	CH ₃	CH ₃	H	H	H	8
53	C=O	CH ₃	CH ₃	H	H	H	54
54	C=O	CH ₃	SCN	H	H	H	23
55	C=O	CH ₃	CH ₃	H	H	H	74
56	C=O	O	O-C(=O)CH ₃	CH ₃	H	H	49
57	C=O	O	O-C(=O)CH(CH ₃) ₂	CH ₃	H	H	30
58	C=O	O	O-C(=O)CH ₃	CH ₃	H	H	97
59	C=O	O	O-C(=O)CH ₃	CH ₃	H	H	96
60	C=O	O	O-C(=O)CH ₃	CH ₃	H	H	32
61 Isom1	C=NOCH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₂ CN	60
61 Isom2	C=NOCH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₂ CN	21
62	CHOH	CH ₃	CH ₃	CH ₃	CH ₃	5-F	48
63	C=O	CH ₃	CH ₃	CH ₃	CH ₃	CH ₂ CN	90
64	C=O	O	O	CH ₃	CH ₃	CH ₂ CN	73
65	C=O	O	O	CH ₃	CH ₃	CH ₂ CN	70
66	C=O	O	O	CH ₃	CH ₃	CH ₂ CN	22
67	CHOH	CH ₃	CH ₃	CH ₃	CH ₃	5-Cl	42

Example No.	X	R1	R2	R3	R4	R5	Yield %
68	C=O	CH ₃	CH ₂ CN	H	2'-F	4'-F	68
69	C=O	CH ₃	CH ₂ CN	H	2'-OCH ₃	H	54
70	C=O	CH ₃	CH ₂ CN	H	2'-OH	H	73
71	C=O	CH ₃	CH ₂ CN	S-F	4'-F	H	42
72	C=O	CH ₃	CH ₂ CN	S-F	2'-F	4'-F	80
73	C=O	CH ₃	CH ₂ CN	S-F	2-OCH ₃	H	81
74	C=O	CH ₃	CH ₂ CN	S-F	2'-OH	H	98
75	CHOH	Cl	CH ₂ CN	S-OH	H	H	
76	C=O	Cl	CH ₃	S-F	H	H	
77	C=O	Cl	CH ₃	S-F	2'-F	H	
78	C=O	Cl	CH ₃	S-OCH ₃	H	H	
79	CHOH	Cl	CH ₃	S-OH	4'-F	H	
80	C=O	Cl	CH ₃	6-CH ₂ OCH ₃	H	H	
81	CHOH	Cl	CH ₃	6-NH ₂	H	H	
82	C=O	Cl	CH ₂ OH	6-NHCOCH ₃	H	H	
83	C=O	Cl	CH ₃	H	H	H	
84	C=O	CH ₃	CF ₃	H	H	H	
85	CHOH	Cl	CH ₂ C(=O)CH	H	H	H	
86	C=O	CH ₃	CH ₂ CN	S-OCH ₃	H	H	
87	C=O	Cl	NH ₂	S-F	H	H	
88	CHOH	Cl	CH ₃	5-OCH ₃	H	H	
89	CHOH	Cl	CH ₃	5-F	H	H	
90	CHOH	CH ₃	CH ₂ CN	S-F	H	H	
91	CHOH	CH ₃	CH ₂ CN	4'-F	H	H	

Example No.	X	R ₁	R ₂	R ₃	R ₄	R ₅	Yield %				
								5	10	15	20
32	CHOH	CH ₃	CH ₂ CN	S-F	2'-OCH ₃	H					
33	CHOH	CH ₃	CH ₂ CN	S-F	2'-OH	H					
34	CHOH	CH ₃	CH ₂ CN	S-F	2'-F	4'-F					
35	CH ₂	CH ₃	CH ₂ CN	S-F	2'-OCH ₃	H					
36	CH ₂	CH ₃	CH ₂ CN	S-F	2'-OH	H					
37	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	4'-F					
38	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
39	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
40	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
41	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
42	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
43	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
44	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
45	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
46	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
47	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
48	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
49	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
50	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
51	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
52	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
53	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
54	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					
55	CH ₂	CH ₃	CH ₂ CN	S-F	2'-F	H					

The following examples illustrate intermediates useful in the preparation of compounds exemplified in the examples

Example I

5 Preparation of 3-[(dimethylamino)methyl]-2-methylpyrrolo[2,3-b] pyridine

A solution of 200 mg (1.5 mmol) 2-methyl-pyrrolo[2,3-b]pyridine 200 mg (2.5 mmol) dimethylaminohydrochloride and 73 mg (2.5 mmol) paraformaldehyde in 2,5 ml methanol was refluxed for four days. The reaction mixture was cooled to room temperature and the solvent was evaporated under reduced pressure. To the residue was added 2 ml water and 10 2 ml methylene chloride and the pH was adjusted to 11 with 2 M sodium hydroxide. The organic layer was washed once with water dried over sodium sulfate and the solvent was evaporated to give 0.17 g (60%) of title compound.

(¹H-NMR, 500 MHz, CDCl₃). 2.25(s,6H), 2.50(s,3H), 3.55(s,2H), 7.03(dd,1H), 7.92(d,1H), 8.01/dd,1H).

15 Example II

Preparation of 3-[(trimethylamino)methyl]pyrrolo[2,3-b] pyridine.

A solution of 163 mg (0.86 mmol) of Example I and 135 mg (0.95 mmol) of methyl iodide in 1 ml ethanol were stirred 20 for 40 hours at room temperature. The solvent was evaporated and the crude product 270 mg (95%) was used directly in the next step.

(¹H-NMR, 500 MHz, DMSO-d₆). 3.10(s,9H), 3.30(s,3H), 4.62(s,2H), 7.12(dd,1H), 8.08(d,1H), 8.19(d,1H).

25 Example III

Preparation of 3-cyanomethyl-2-methylpyrrolo[2,3-b]pyridine

To a solution of 270 mg (0.82 mmol) of Example II in 2,5 ml dimethylformamide was added 44 mg (0.90) mmol of 30 sodium cyanide and heated at 100°C for 1,5 hours with stirring the reaction mixture was cooled to room temperature and partitioned between water and methylene chloride. The organic layer was dried over sodium sulfate and the solvent was evaporated to give 130 mg (98%) of the title compound.

(¹H-NMR, 500 MHz, CDCl₃). 2.53(s,3H), 3.77(s,2H), 7.12(dd,1H), 7.92(dd,1H), 8.27(dd,1H).

35 Example IV

Preparation of 3-chloro-2-methylpyrrolo[2,3-b]pyridine

40 To a solution of 0,7 g (5.3 mmol) of 2-methylpyrrolo[2,3-b]pyridine in 2,5 ml glacial acetic acid was added dropwise 0,8 g (5.9 mmol) of sulfonyl chloride at room temperature and with stirring. The reaction mixture was stirred for 1 hour. The solvent was evaporated and the residue was partitioned between methylene chloride and a saturated sodium bicarbonate solution. The organic layer was dried over sodium sulfate and the solvent was evaporated. The residue was crystallized from ether : ethyl acetate, 5:1 to give 0,45 g (51%) of the title compound.

45 (¹H-NMR, 500 MHz, CDCl₃). 2.50(s,3H), 7.12(dd,1H), 7.84(dd,1H), 8.25(dd,1H).

Example V

50 Preparation of 2-hydroxyethyl-3-methylpyrrolo[2,3-b]pyridine

2,3-dimethylpyrrolo[2,3-b]pyridine(0,2 g 0.0014 mol) was treated in 3 ml acetic acid with an equimolecular amount 55 of bromine and after 5 min yellow precipitate was formed. The solid was filtered off and treated with 3 ml water for 60 min. The mixture was made alkaline with bicarbonate and extracted with methylene chloride. When the organic layer had been dried and evaporated the product was isolated as a yellow oil. (0,12 g, 53%).

(¹H-NMR, 300 MHz, CDCl₃). 2.2(s,3H), 4.7(s,2H), 7.0(dd,1H), 7.8(dd,1H), 8.25(dd,1H).

Example VIPreparation of 2-chloro-3-methylpyrrolo[2,3-b]pyridine

5 3-methylpyrrolo[2,3-b]pyridine (0,5 g 0.0038 mol) was treated in 2 ml acetic acid with an equimolecular amount of sulfuryl chloride at 0°C for 5 min. The mixture was allowed to warm to room temperature and was stirred for 5 min. After evaporation the residue was dissolved in methylene chloride and was treated with bicarbonate. The organic layer was separated, dried and removed under reduced pressure. Chromatography on silica gel eluting with ethyl acetate gave the desired product. (0,18 g 29%).

10 (¹H-NMR, 300 MHz, CDCl₃). 2.25(s,3H), 7.05(dd,1H), 7.75(dd,1H), 8.25(dd,1H).

Example VIIPreparation of 2,3-dimethyl-5-trifluoromethylpyrrolo[2,3-b]pyridine

A mixture of 2-chloro-5-trifluoromethylpyridine (10 g 0.055 mol) and hydrazine mono hydrate (2,7 g, 0.055 mol) in 35 ml n-propanol was refluxed for 2 h and was then stirred 20 h at RT. To the solution was added 4,35 g (0.06 mol) methylethylketon and the mixture was refluxed for 30 min. After the solvent was removed under reduced pressure the residue was partitioned between methylene chloride and bicarbonate solution. The organic layer was dried over Na₂SO₄ and evaporated. The residue was solved in 80 ml diethylene glycol and refluxed for 5 h. The reaction mixture was poured into ice-water and extracted with methylene chloride. The organic layer was separated dried over Na₂SO₄ and evaporated. The residue was treated with warm petroleumether (60-80) which was decantated and evaporated chromatography twice on silica gel with 1 methylene chloride/ methanol 2 ethyl acetate, gave the desired product. (0,2 g 1.7%).

(¹H-NMR, 300 MHz, CDCl₃). 2.3(s,3H), 2.45(s,3H), 8.0(s,1H), 8.5(s,1H).

Example VIIIPreparation of 3-methoxy-2-methylpyrrolo[2,3-b]pyridine.

A solution of 7,4 g (68 mmol) 2-hydrazinopyridine and 6,0 g (68 mmol) methoxyaceton in 50 ml of ethanol was refluxed for 1 h. The solvent was removed under reduced pressure. The resulting oil was dissolved in diethylene glycol and refluxed for 1,5 h. The mixture was allowed to cool and was poured into ice-water. Extraction with methylene chloride gave an black oily residue which was treated with boiling petroleumether (60-80). After decanting the solvent was allowed to cool and the precipitated product filtered off affording 4,5 g (41%) pure title compound as a yellow solid.

(¹H-NMR, 300 MHz, CDCl₃). 2.45(s,3H), 3.9(s,3H), 7.0(t,1H), 7.85(d,1H), 8.15(d,1H).

Example IX2-Chloro-3-cyanomethylpyrrolo[2,3-b]pyridine.

45 3-cyanomethylpyrrolo[2,3-b]pyridine (1,55 g, 0.098 mol) was treated in 5 ml acetic acid with an equimolecular amount of sulfurylchloride at 0°C for 5 min. The mixture was allowed to warm to room temperature and was stirred 5 min. After evaporation the residue was dissolved in methylen chloride and was treated with bicarbonate. The organic layer was separated, dried over Na₂SO₄ and the solvent was removed under reduced pressure. Chromatography on silica gel eluting with ethyl acetate gave the desired product. (0,4 g 21%).

50 (¹H-NMR, 500 MHz, CDCl₃). 3.85(s,2H), 7.2(t,1H), 8.05(d,1H), 8.4(d,1H).

Example X2-Methoxymethyl-3-methylpyrrolo[2,3-b]pyridine.

2,3-dimethylpyrrolo[2,3-b]pyridine 0,5 g (0.0034 mol) was treated in 7 ml acetic acid with an equimolecular amount of bromine and after 5 min a yellow precipitate was formed. The solid was filtered off and treated with 20 ml methanol.

The mixture was refluxed for 30 min. and was then evaporated. The residue was partitioned between methylene chloride and bicarbonate solution. The organic layer was separated dried over Na_2SO_4 and evaporated. The residue was treated with boiling petroleumether (60-80) which was decanted and allowed to cool. The precipitated product was filtered off affording 0.13 g (22%) as white solid.

5

($^1\text{H-NMR}$, 300 MHz, CDCl_3). 2.3(s,3H), 3.4(s,3H), 4.65(s,2H), 7.05(dd,1H), 7.85(d,1H), 8.3(d,1H).

Example XI

10 Preparation of 6-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine

A mixture of 2,6-dibromopyridine (47.4 g, 0.3 mol) and hydrazine mono hydrate (97.2 ml, 2.0 mol) in 400 ml propanol was refluxed for 19 h. The solvent was evaporated and the residue taken up in 1000 ml CH_2Cl_2 . The organic layer was washed with 500 ml 5% Na_2CO_3 (reextraction with 500 + 250 + 250 ml CH_2Cl_2), dried over MgSO_4 , and evaporated. The residue was recrystallized from 100 ml abs. EtOH leaving 30.0 g 2-bromo-6-hydrazinopyridine. Reprocessing of the mother liquor gave additional 2.5 g. Yield 32.5 g (87%).

15 A suspension of 2-bromo-6-hydrazinopyridine (32.5 g, 0.17 mol) in abs EtOH was treated with ethyl methyl ketone (20ml, 0.22 mol) for 1h at reflux. The reaction mixture was allowed to cool and treated with additional ethyl methyl ketone (10 + 3 + 1 ml) until all starting material had dissapeared according to TLC. The reaction mixture was taken up in 150 ml diethylene glycol and the EtOH evaporated at reduced pressure at 70°C. The remaining solution was deaerated and heated to reflux for 22h. The reaction mixture was cooled and partitioned between 1250 ml CH_2Cl_2 and 1000 ml 2M HCl (reextracted with 250 ml CH_2Cl_2). The organic layer was washed with further 500 ml 2M HCl and 500 ml H_2O , dried over MgSO_4 , and evaporated. Chromatography (silica, CH_2Cl_2 /diethyl ether ; 95/5) afforded 6 g 6-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine. Recrystallization from 120 ml abs EtOH gave 4,2 g (11%).

25

($^1\text{H-NMR}$, 500 MHz, CDCl_3) 2.19(s,3H), 2.42(s,3H), 7.16(d,1H), 7.59(d,1H), 9.12(b,1H).

Example XII

30 Preparation of 2,3-dimethyl-6-methylthiopyrrolo[2,3-b]pyridine

A deaerated solution of 6-bromo-2,3-dimethyl-pyrrolo[2,3-b] pyridine (225 mg, 1.0 mmol) in 25 ml dry THF was cooled to -78°C and treated with 1.6M n-BuLi in hexane (1.5 ml, 2.4 mmol). The reaction mixture was brought to 0°C and the lithiate trapped with dimethyl disulfide (444 μl , 5 mmol). After reacting for 5 min 1.5 ml H_2O was added and the THF evaporated. The residue was taken up in 100 ml CH_2Cl_2 and washed with 50 ml 5% NaHCO_3 , 50 ml 2M HCl (reextracted twice with 25 ml CH_2Cl_2), and 50 ml 5% NaHCO_3 . The organic layer was dried over MgSO_4 and evaporated leaving 160 mg (83%) pure 2,3-dimethyl-6-methylthio-pyrrolo[2,3-b]pyridine.

40

($^1\text{H-NMR}$, 500 MHz, CDCl_3) 2.17(d,3H), 2.36(s,3H), 2.60(s,3H), 6.94(d,1H), 7.58(d,1H), 8.42(b,1H).

Example XIII

Preparation of 3-thiocyanato-2-methylpyrrolo[2,3-b]pyridine

45 To a solution of 300 mg (2.36 mmol) of 2-methylpyrrolo[2,3-b] pyridine and 920 mg (11.3 mmol) of sodium thiocyanate in 5 ml acetic acid was added 450 mg (2.8 mmol) bromine in 1 ml acetic acid at 5°C. The reaction mixture was stirred for 30 min at 5°C and thereafter for 16 h at room temperature. The solid was filtered off. To the filtrate was added 20 ml water. The precipitated product was filtered off and washed with water giving 160 mg (37%) of the title compound.

50

($^1\text{H-NMR}$ 300 MHz DMSO-d_6). 2.55(s,3H), 7.22(dd,1H), 7.97(dd,1H), 8.28(dd,1H), 12.5(s,1H).

Example XIV

Preparation of 3-(1-pyrazolo)methyl-2-methylpyrrolo[2,3-b]pyridine

55 To a solution of 95 mg (0.29 mmol) of 3[(trimethylammonio)-methyl]-pyrrolo[2,3-b]pyridine in 1,0 ml dimethylformamide was added 24 mg (0.35 mmol) of pyrazole and heated at 100°C for 1.5 hours with stirring. The reaction mixture was cooled to room temperature and partitioned between water and methylene chloride. The organic layer was dried

over sodium sulfate and the solvent was evaporated to give 30 mg (48%) of the title compound.

¹H NMR (300 MHz, CDCl₃). 2.55(s,3H), 5.45(s,2H), 6.20(m,1H), 7.03(m,1H), 7.52(m,1H), 7.62(d,1H), 7.7(m,1H), 8.21(m,1H).

5

Example XV

5-Cyano-2,3-dimethyl-pyrrolo[2,3-b]pyridine

An autoclave was charged with 5-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine (prepared in a similar manner as 6-bromo-2,3-dimethyl-pyrrolo[2,3-b]pyridine (247 mg, 1.1 mmol) and CuCN (135 mg, 1.5 mmol). The mixture was covered with pyridine and heated to 220°C for 12 h. After cooling the reaction mixture was poured into a mixture of FeCl₃ hexahydrate (0.9 g), conc HCl (0.5 ml), and water (10 ml). The mixture was heated to 80°C for 1 h and extracted with CH₂Cl₂. The organic layer was washed four times with 2M HCl, dried over MgSO₄ and evaporated leaving 77 mg (40%) 5-cyano-2,3-dimethyl-pyrrolo[2,3-b]pyridine.

(¹H-NMR, 300 MHz, DMSO-d₆) 2.18(s,3H), 2.35(s,3H), 8.32(d,1H), 8.45(d,1H).

Example XVI

20

5-chloro-3-cyanomethyl-2-methyl-pyrrolo[2,3-b]pyridine

A mixture of 2,5-dichloropyridine (10.7 g, 0.07 mol) and hydrazine mono hydrate (34.0 ml, 0.7 mol) in 140 ml propanol was refluxed for 17h. The solvent was evaporated and the residue taken up in 500 ml CH₂Cl₂. The organic layer was washed with 200 ml 5% NaHCO₃ (reextraction with 100 ml CH₂Cl₂), dried over MgSO₄, and evaporated. The residue was recrystallized from 17 ml abs. EtOH leaving 4.7 g 5-chloro-2-hydrazinopyridine. Reprocessing of the mother liquor gave additional 0.1 g. Yield 4.8 g (48%). A mixture of 5-chloro-2-hydrazinopyridine (4.9 g, 34 mmol) and α-(methylthio)acetone (3.5 g, 34 mmol) in 10 ml abs EtOH was heated to reflux. The reaction mixture was allowed to cool and taken up in 30 ml diethylene glycol. The EtOH was evaporated at reduced pressure at 70°C and the remaining solution deaerated and heated to reflux for 1.5h. The reaction mixture was cooled and taken up in 500 ml CH₂Cl₂. The organic layer was washed twice with 400 ml H₂O (each portion was reextracted with 100 ml CH₂Cl₂), dried over MgSO₄, and evaporated. The residue was filtered through silica eluting with CH₂Cl₂. Fractions containing product were pooled, a small volume of abs EtOH was added, and the CH₂Cl₂ evaporated. The precipitated 5-chloro-2-methyl-3-methylthio-pyrrolo[2,3-b]pyridine was collected and washed with a small volume of ligroine affording 1.5 g (20%) pure product. Reprocessing of the mother liquor gave additional material, 1.0 g (14%).

A deaerated solution of 5-chloro-2-methyl-3-methylthio-pyrrolo[2,3-b]pyridine (1.1 g, 5.0 mmol) in 45 ml 1,4-dioxane was heated to 70° C and treated with small portions of Raney-Ni until all starting material had disappeared according to GC-MS (total reaction time: 48h). The catalyst was filtered off and washed with several portions of 5% Na₂CO₃. Pure 5-chloro-2-methyl-pyrrolo[2,3-b]pyridine appeared as a white precipitate in the filtrate and was collected. A second lot was obtained after evaporating the filtrate, dissolving it in 2M HCl, and carefully basifying the solution with Na₂CO₃. Yield 0.6 g (74%).

A mixture of 5-chloro-2-methyl-pyrrolo[2,3-b]pyridine (514 mg, 3.1 mmol), paraformaldehyde (102 mg, 3.4 mmol), and dimethylammonium hydrochloride (277 mg, 3.4 mmol), in 12 ml butanol was refluxed for 1.5h. Most of the solvent was evaporated and the remaining moist residue treated with ice cold diethyl ether. The precipitate was collected and dried leaving 707 mg (93%) of a 1:1 mixture of 5-chloro-3-dimethylaminomethyl-2-methyl-pyrrolo[2,3-b]pyridine and the corresponding hydrochloride.

A 1:1 mixture of 5-chloro-3-dimethylaminomethyl-2-methyl pyrrolo[2,3-b]pyridine and the corresponding hydrochloride (674 mg, 140 mmol) and conc HCl (1.16 ml, 140 mmol) each 12h until all starting material had disappeared according to DI-MS. The reaction mixture was taken up in 200 ml 5% Na₂CO₃ and extracted twice with 200 ml CH₂Cl₂. The combined organic layers were dried over MgSO₄ and evaporated leaving 147 mg (26%) pure 5-chloro-3-cyanomethyl-2-methyl-pyrrolo[2,3-b]pyridine.

(¹H-NMR, 500 MHz, CDCl₃) 2.51(s,3H), 3.72(s,2H), 7.87(d,1H), 8.21(d,1H), 9.16(b,1H).

55

Example XVII2-(p-Bromophenyl)-3-methyl-pyrrolo[2,3-b]pyridine

5 A mixture of 2-hydrazinopyridine (11.1 g, 0.10 mol) and p-bromopropiophenone (25 g, 0.12 mol) in 85 ml 95% EtOH was refluxed for 12 h. Evaporation of the solvent afforded a quantitative yield of the corresponding hydrazone.

(DI-ms, EI at 70 ev) m/z 303 (5), 274 (70), 183 (100), 155 (65).

10 The residue was dissolved in 100 ml DEG, deaerated and violently refluxed in a nitrogen atmosphere for 6 h. The reaction mixture was allowed to cool and poured into 700 ml H₂O. The precipitated product was collected and recrystallized from EtOH affording 6.48 g (22%) of the desired product.

(¹H-NMR, 300 MHz, CDCl₃). 2.45 (s, 3H), 7.10 (dd, 1H), 7.50 (d, 2H), 7.65 (d, 2H), 7.90 (dd, 1H), 8.25 (d, 1H).

Example XVIII2-(p-Carboxyphenyl)-3-methyl-pyrrolo[2,3-b]pyridine

20 2-(p-Bromophenyl)-3-methyl-pyrrolo-[2,3-b]pyridine (1 g, 3.5 mmol) was dissolved in 200 ml dry THF, deaerated and cooled to -78° C. n-Butyllithium (5.19 ml, 8.4 mmol) was added dropwise and the mixture was allowed to reach room temperature CO₂ (g) was bubbled through the solution for 10 min.

Excess of n-butyllithium was destroyed with a small amount of water. The solvent was evaporated and the residue partitioned between 100 ml CH₂Cl₂ and 100 ml 5% Na₂CO₃. The water layer was acidified (pH 2) with 2 M HCl. The precipitated product was filtered off and dried affording 0.38 g (44%) of the title compound.

(¹H-NMR, 300 MHz, D₂O). 2.35 (s, 3H), 7.15 (bs, 1H), 7.65 (d, 2H), 7.95 (m, 3H), 8.20 (bs, 1H).

Example XIXp-[3-Methyl-pyrrolo[2,3-b]-pyridine-2]yl-benzoylchloride

30 2-(p-Carboxyphenyl)-3-methyl-pyrrolo-[2,3b]pyridine (1 g, 4 mmol) was dissolved in 20 ml thionyl chloride at 0° C. The solution was allowed to react at room temperature for 2 h. The solvent was evaporated. The residue was evaporated twice with CH₂Cl₂ to remove excess of thionyl chloride to give quantitative yield of the title compound.

(¹H-NMR, 300 MHz, CDCl₃). 2.50 (s, 3H), 7.40 (t, 1H), 7.80 (d, 2H), 8.20 (m, 3H), 8.40 (d, 1H).

Example XXmethyl-[p-(3-methyl-pyrrolo[2,3-b]-pyridine)-2]yl benzoate

40 p-[3-methyl-pyrrolo[2,3-b]-pyridine-2]yl benzoylchloride (0.41 g, 1.5 mmol) was chromatographed on silica gel (CH₂Cl₂ : MeOH, 95:5) to give 0.28 g (69%) of the title compound.

(¹H-NMR, 300 MHz, CDCl₃). 2.50 (s, 3H), 3.95 (s, 3H), 7.10 (dd, 1H), 7.75 (d, 2H), 7.95 (d, 1H), 8.15 (d, 2H), 8.20 (d, 1H).

Example XXIIsopropyl-[p(3-methyl-pyrrolo[2,3-b]-pyridine)-2]yl benzoate

50 p-[3-Methyl-pyrrolo[2,3-b]-pyridine-2]yl benzoylchloride (1.1 g, 4 mmol) was dissolved in 20 ml CH₂Cl₂. 2-Propanol (1.20, 20 mmol) and triethylamine (0.4 g, 4 mmol) was added and the mixture was allowed to react at room temperature for 24 h. The solvent was evaporated and the residue was purified by chromatography (silica, CH₂Cl₂ : MeOH, 97:3) to give 102 mg (9%) of the title compound.

(¹H-NMR, 300 MHz, CDCl₃). 1.40 (s, 3H), 1.45 (s, 3H), 2.55 (s, 3H), 5.35 (m, 1H), 7.10 (dd, 1H) 7.85 (d, 2H), 7.95

(d, 1H), 8.20 (m, 3H).

Example XXII

5 3-Methyl-2-phenylpyrrolo[2,3-b]pyridine

A mixture of 1-hydrazinopyridine (21.8 g, 20 mmol) and propiophenone (29.3 g, 22 mmol) in 160 ml 95% EtOH was refluxed for 3 h. Evaporation of the solvent afforded a quantitative yield of the corresponding hydrazone.

10 (DI-MS, EI at 70 eV) m/z 225 (8), 196 (100), 148 (15).

The residue was dissolved in 200 ml DEG, deaerated and violently refluxed in a nitrogen atmosphere for 4 h. The reaction mixture was allowed to cool overnight and poured into 1000 ml H₂O. The precipitated product was collected and recrystallized from EtOH affording 18.4 g (44%) of the desired product.

15 (¹H-NMR, 500 MHz, CDCl₃). 2.49 (s, 3H), 7.07 (dd, 1H), 7.42 (t, 1H), 7.55 (t, 2H), 7.73 (d, 2H), 7.91 (d, 1H), 8.21 (d, 1H), 11.38 (b, 1H).

Example XXIII

20 3-Methyl-2-(p-methylphenyl)-pyrrolo[2,3-b]pyridine

The title compound was prepared on a 10 mmol scale following the procedure described in example XXII above. Yield 0.9 g (4%). (DI-MS, EI at 70 eV of the hydrazone) m/z 239 (5), 210 (100), 148 (12).

25 (¹H-NMR, 500 MHz, CDCl₃ of the title compound). 2.45 (s, 3H), 2.47 (s, 3H), 7.08 (dd, 1H), 7.34 (d, 2H), 7.59 (d, 2H), 7.89 (dd, 1H), 8.23 (dd, 1H), 10.6 (b, 1H).

Example XXIV

30 2-(p-Methoxyphenyl)-3-methyl-pyrrolo[2,3-b]pyridine

The title compound was prepared on a 20 mmol scale following the procedure described in example XXII above. Yield 6.0 g (13%). (DI-MS, EI at 70 eV of the hydrazone) m/z 255 (8), 226 (100), 211 (12).

35 (¹H-NMR, 500 MHz, CDCl₃ of the title compound). 2.45 (s, 3H), 3.90 (s, 3H), 7.06 (m, 3H), 7.63 (d, 2H), 7.87 (dd, 1H), 8.12 (dd, 1H), 10.7 (b, 1H).

Example XXV

40 Preparation of 5-fluoro-2hydrazinopyridine

A mixture of 2-chloro-5-fluoropyridine (5 g, 0.038 mol) and hydrazine monohydrate (15 ml, 0.32 mol) in n-propanol (40 ml) in a teflon container was purged with argon and heated in a stainless steel bomb at 200°C for 19 h (magnetic stirring). Evaporation of solvent and excess hydrazine monohydrate in vacuo gave a solid residue (5.9 g) which was dissolved in sodium bicarbonate solution (5%) and extracted with 6x50 ml ethyl acetate. The combined extracts were dried over anhydrous Na₂SO₄, filtered and evaporated to give an oil (2.9 g) which proved difficult to purify and was therefore used as such in the next step. The crude product consisted of a ternary mixture of the desired product, 2-chloro-5-hydrazinopyridine, and 5-hydrazinopyridine.

50 (¹H-NMR, 500 MHz, DMSO-d₆). 6.73 (dd, 1H, J₁ 9 Hz, J₂ 3.5 Hz), 7.41 (td, 1H, J₁ 9.5 Hz, J₂ 3 Hz), 7.95 (d, 1H, J₁ 3 Hz)

Example XXVI

55 Preparation of 5-fluoro-2-methyl-3-methyltiopyrrolo[2,3-b]pyridine

A solution of crude 5-fluoro-2-hydrazinopyridine (6.7 g, max. 0.053 mol) and (α -methylthio)acetone (6.04 g, 0.058

mol) in ethanol (99.5%, 15 ml) was heated to reflux for a couple of minutes and then evaporated under reduced pressure to afford an oil (11.5 g). A solution of the oil in diethylene glycol (50 ml) was heated at reflux temperature under argon for 8 h. The reaction mixture was cooled to room temperature, diluted with Na₂CO₃ solution (10%, 200 ml), and extracted with diethyl ether (200 ml) and methylene chloride (2x200 ml). The combined extracts were dried over anhydrous Na₂SO₄ and evaporated in vacuo to give an oil from which the title compound (0.22 g, 2%, two steps) was isolated by flash chromatography (SiO₂/MeOH:CH₂Cl₂ 0, 1, and 2%).

MS m/z (relative intensity) 196 (100, M⁺), 181 (100), 137 (58).

10 Example XXVII

Preparation of 5-fluoro-2-methylpyrrolo[2,3-b]pyridine

Raney-Ni (10 g wet alloy, Aldrich W2, was washed with 10x50 ml deionized water and 5x40 ml dioxane) was suspended in a solution of 5-fluoro-2-methyl-3-methylpyrrolo[2,3-b]pyridine (0.5 g, 2.5 mmol) in dioxane (50 ml). The reaction mixture was stirred under hydrogen for 43 h. More Raney-Ni (5 g wet) was added and stirring under hydrogen was continued over a weekend (69 h). Filtration through Celite and evaporation gave 0.24 g crude product. Additional crude product (0.48 g) was isolated by Soxhlet extraction of the Raney-Ni. The crude product was used in the next step without prior purification.

MS m/z (relative intensity) 150 (75, M⁺), 149 (100), 122 (15).

Example XXVIII

25 Preparation of 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine

Mannich reagent (0.8 ml, prepared according to Liebigs (1971) Ann. Chem., 743, 95-111) was added under stirring to pre-cooled (-78°C) 5-fluoro-2-methylpyrrolo[2,3-b]pyridine (0.33 g, 2.2 mmol) under argon. The flask containing the reaction mixture was then placed in an ice bath and stirring was continued to give a white suspension. The ice lumps melted within 2 h and the resulting water bath was allowed to attain room temperature. After 24 h almost all suspension had dissolved. The reaction mixture was cooled in an ice bath, diluted with deionized water (8 ml) and extracted with diethyl ether (2 x 5 ml) to remove some remaining starting material and a by-product (probably the corresponding Mannich dimer). Sodium cyanide (1.08 g, 0.022 mol) was added to the water phase, assumed to contain 3-(dimethylaminomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine, and the resulting solution was refluxed for 2 h to afford a suspension which was isolated by filtration. Purification by flash chromatography (SiO₂/CH₂Cl₂:MeOH 19:1) gave 0.28 g (67%, two steps) of 3-(cyanomethyl)-5-fluoro-2-methylpyrrolo[2,3-b]pyridine.

MS m/z (relative intensity) 189 (100, M⁺), 188 (97), 174 (83), 163 (55), 162 (35), 147 (18), 121 (19).

40 Example XXIX

Preparation of 5-bromo-2-hydrazinopyridine

Starting from 2,5-dibromopyridine the title compound was prepared in the same fashion as 5-chloro-2-hydrazinopyridine.

(¹H-NMR, 300 MHz, CDCl₃). 3.78 (br s, 2H), 5.83 (br s, 1H), 6.65 (d, 1H, J 9 Hz), 7.54 (dd, 1H, J₁ 9 Hz, J₂ 2.5 Hz), 8.14 (d, 1H, J 2.5).

50 Example XXX

Preparation of 5-bromo-3-methyl-2-phenylpyrrolo[2,3-b]pyridine

5-Bromo-2-hydrazinopyridine (15.6 g, 0.083 mol) and propiophenone (11.1 ml) was heated at 90°C (steam bath) for 30 min. Then toluene (100 ml) was added and the resulting solution was refluxed for 2 h to remove water by azeotropic distillation (Dean Stark apparatus). Evaporation of solvent gave 26.4 g of crude product, assumed to be the desired hydrazone. Crude hydrazone (3.02 g) was dissolved in diethylene glycol (30 ml) and heated at 245° C under argon for 24 h. The reaction mixture was cooled, crushed ice and extracted with methylene chloride. Drying over MgSO₄

and evaporation of solvent left a tarry residue which was triturated with diethyl ether to produce 0.84 g (30%) of a brownish, semi-crystalline product.

($^1\text{H-NMR}$, 300 MHz, DMSO-d₆). 2.50 (s, 3H), 7.41 (t, 1H, J 7 Hz), 7.52 (t, 2H, J 7 Hz), 7.71 (d, 2H, J 7 Hz), 8.23 (m, 2H).

Example XXXI

Preparation of 2-phenylpyrrolo[2,3-b]pyridine

A mixture of acetophenone (28.2 g, 0.24 mol) and 2-hydrazinopyridine (25.7 g, 0.24 mol) was heated on a steam bath for 0.5 h. Toluene (200 ml) was added to give a solution which was refluxed for 2 h to remove water by azeotropic distillation (Dean Stark apparatus). Evaporation of solvent gave 55.4 g of crude product, assumed to be the desired hydrazone. The crude hydrazone was purified by distillation (Vigreux apparatus) to give a yellow oil (38.4 g, 77%). Fresh hydrazone (18 g, 0.085 mol) was dissolved in tetraethylene glycol (180 ml) and refluxed under argon for 6 h. The reaction mixture was cooled, diluted with diethyl ether (250 ml) and water (250 ml) under stirring. The phases were separated and the water phase was reextracted with diethyl ether (200 ml). The combined ether phases were dried over anhydrous sodium sulphate, filtered and evaporated to leave a black oil (14.9 g) which was further purified by kugel-rohr distillation, flash chromatography (SiO₂/MeOH:CH₂Cl₂, first none methanol, then gradually more methanol to increase mobility) and recrystallization (methylene chloride) to afford 1.5 g of pure 2-phenylpyrrolo [2,3-b]pyridine.

MS m/z (relative intensity) 195 (15, M+1), 194 (100, M⁺), 193 (20), 166 (12), 139 (10), 97 (21), 91 (18), 84 (11).

Example XXXII

Preparation of 3-(cyanomethyl)-2-phenylpyrrolo[2,3-b]pyridine

Aqueous formaldehyde (36%, 1.7 ml) was cooled (ice bath), then acetic acid (3 ml) and aqueous dimethylamine (40%, 2.5 ml) were added. That solution was kept at 0°C for 30 minutes before part of it (2.6 ml) was transferred to a pre-cooled (-78°C) flask containing 2-phenylpyrrolo[2,3-b]pyridine under argon. After 5 min the temperature was changed to 0°C (ice bath) and it was allowed to reach room temperature within 2 h. Stirring of the resulting suspension was maintained for 110 h. Re-cooling to 0°C and addition of cooled deionized water (25 ml) and diethyl ether (7 ml) under stirring gave two phases which were separated. The organic phase was discarded since it was assumed to contain some remaining starting material and some Mannich dimer.

Sodium cyanide (3.6 g) was added to the water phase which was assumed to contain 3-(dimethylaminomethyl)-2-phenylpyrrolo [2,3-b]pyridine. The mixture was refluxed for 3 h without any noticeable change in TLC appearance (SiO₂/CH₂Cl₂:MeOH 19:1), indicating that the Mannich base was unchanged. 3-(Dimethylaminomethyl)-2-phenylpyrrolo[2,3-b]pyridine was recovered from the reaction mixture by the following procedure. Water (25 ml) was added, solid material was filtered off, and filtrate was extracted with methylene chloride. The major part of the Mannich base was isolated from the filter cake by repeated washing with methylene chloride. The combined washings (3x100 ml), containing the sparingly soluble Mannich base, was dried and evaporated until precipitation just started. The saturated solution was loaded on a flash chromatography column (SiO₂/CH₂Cl₂, prepared in CH₂Cl₂ :MeOH 9:1). Recovered 3-(dimethylaminomethyl)-2-phenylpyrrolo[2,3-b]pyridine (1.26 g, 68%) was isolated by eluting with methylene chloride methanol mixtures (1.500 ml CH₂Cl₂:2.500 ml MeOH:CH₂Cl₂ 2.98:3.500 ml MeOH:CH₂Cl₂ 4.96:4.500 ml MeOH:CH₂Cl₂ 8.92).

Ethyl iodide (1.94 g, 0.012 mol) was added to a solution of recovered Mannich base (1.25 g, 5 mmol) in methanol (10 ml). The solution was stirred under argon for 1.5 h. Then a solution of potassium cyanide (0.81 g, 0.012 mol) in deionized water (1.8 ml) was added. The reaction mixture was heated to reflux for 1 h. Solvents were evaporated and the resulting residue was diluted with water (10 ml) and extracted with ethyl acetate (3x10 ml). The combined extracts were dried (MgSO₄) and evaporated in vacuo to give a solid which was purified by flash chromatography (SiO₂/CH₂Cl₂, elution with increasing amounts of methanol, see above) leaving pure title compound (0.85 g, 73%).

($^1\text{H-NMR}$, 300 MHz, DMSO-d₆). 4.18 (s, 2H), 7.17 (q, 1H, J₁ 7.5 Hz, J₂ 4.5 Hz), 7.43-7.51 (m, 1H), 7.54-7.60 (m, 2H), 7.67-7.71 (m, 2H), 8.14 (dd, 1H, J₁ 7.5 Hz, J₂ 1.5 Hz), 8.30 (dd, 1H, J₁ 4.5 Hz, J₂ 1.5 Hz).

Example XXXIIIPreparation of 3-(carbamoylmethyl)-2-phenylpyrrolo[2,3-b]pyridine

5 3-(Cyanomethyl)-2-phenylpyrrolo[2,3-b]pyridine (0.37 g, 1.39 mmol), powdered KOH (0.82 g), and t-butanol (5 ml) were heated to reflux under argon for 3 h. The reaction mixture was then cooled to room temperature and diluted with deionized water (6.5 ml) to give a precipitate. The suspension was extracted with methylene chloride and filtered. The filter cake consisted of pure title compound

10 (¹H-NMR, 300 MHz, DMSO-d₆). 3.59 (s, 2H), 6.96-7.03 (m, 2H), 7.33-7.51 (m, 4H), 7.79-7.84 (m, 2H), 8.13 (dd, 1H, J₁ 7.5 Hz, J₂ 1.5 Hz), 8.30 (dd, 1H, J₁ 4.5 Hz, J₂ 1.5 Hz).

For clinical use the compounds of the invention are formulated into pharmaceutical formulations for oral, rectal, parenteral or other mode of administration. The pharmaceutical formulation contains a compound of the invention in combination with a pharmaceutically acceptable carrier. The carrier may be in the form of a solid, semi-solid or liquid diluent, or a capsule. These pharmaceutical preparations are a further object of the invention. Usually the amount of active compounds is between 0.1-95% by weight of the preparation, between 0.2-20% by weight in preparations for parenteral use and between 1 and 50% by weight in preparations for oral administration. In the preparation of pharmaceutical formulations containing a compound of the present invention in the form of dosage units for oral administration the compound selected may be mixed with a solid, powdered carrier, such as lactose, saccharose, sorbitol, mannitol, starch, amylopectin, cellulose derivatives, gelatin, or another suitable carrier, as well as with lubricating agents such as magnesium stearate, calcium stearate, sodium steryl fumarate and polyethylene glycol waxes. The mixture is then processed into granules or pressed into tablets. Soft gelatine capsules may be prepared with capsules containing a mixture of the active compound or compounds of the invention, vegetable oil, fat, or other suitable vehicle for soft gelatine capsules. Hard gelatine capsules may contain granules of the active compound. Hard gelatine capsules may also contain the active compound in combination with a solid powdered carrier such as lactose, saccharose, sorbitol, mannitol, potato starch, corn starch, amylopectin, cellulose derivatives or gelatine.

Dosage units for rectal administration may be prepared in the form of suppositories which contain the active substance mixed with a neutral fat base, or they may be prepared in the form of a gelatine rectal capsule which contains the active substance in a mixture with a vegetable oil, paraffin oil or other suitable vehicle for gelatine rectal capsules, or they may be prepared in the form of a ready-made micro enema, or they may be prepared in the form of a dry micro enema formulation to be reconstituted in a suitable solvent just prior to administration.

Liquid preparations for oral administration may be prepared in the form of syrups or suspensions, e.g. solutions or suspensions containing from 0.2% to 20% by weight of the active ingredient and the remainder consisting of sugar or sugaralcohols and a mixture of ethanol, water, glycerol, propylene glycol and polyethylene glycol. If desired, such liquid preparations may contain colouring agents, flavouring agents, saccharine and carboxymethyl cellulose or other thickening agent. Liquid preparations for oral administration may also be prepared in the form of a dry powder to be reconstituted with a suitable solvent prior to use.

Solutions for parenteral administration may be prepared as a solution of a compound of the invention in a pharmaceutically acceptable solvent, preferably in a concentration from 0.1% to 10% by weight. These solutions may also contain stabilizing unit dose ampoules or vials. Solutions for parenteral administration may also be prepared as a dry preparation to be reconstituted with a suitable solvent extemporaneously before use.

The typical daily dose of the active substance varies within a wide range and will depend on various factors such as for example the individual requirement of each patient, the route of administration and the disease. In general, oral and parenteral dosages will be in the range of 5 to 500 mg per day of active substance.

Pharmaceutical formulations containing a compound of the invention as active ingredient are illustrated in the following examples.

Example A. Syrup.

50 A syrup containing 1% (weight per volume) of active substance was prepared from the following ingredients:

55

Compound according to Example 49	1.0 g
Sugar, powder	30.0 g

(continued)

5	Saccharine	0.6 g
	Glycerol	5.0 g
	Flavouring agent	0.05 g
	Ethanol 96%	5.0 g
	Distilled water q.s. to a final volume of	100 ml

10 Sugar and saccharine were dissolved in 60 g of warm water. After cooling the acid addition salt was dissolved in the sugar solution and glycerol and a solution of flavouring agents dissolved in ethanol were added. The mixture was diluted with water to a final volume of 100 ml.

The above given active substance may be replaced with other pharmaceutically acceptable acid addition salts.

15 Formulation B. Tablets

A tablet containing 50 mg of active compound was prepared from the following ingredients:

20

25	I	Compound according to Example 49	500 g
		Lactose	700 g
		Methyl cellulose	6 g
		Polyvinylpyrrolidone cross-linked	50 g
		Magnesium stearate	15 g
30		Sodium carbonate	6 g
		Distilled water	q.s.
	II	Hydroxypropyl methylcellulose	36 g
		Polyethylene glycol	9 g
35		Colour Titanium dioxide	4 g
		Purified water	313 g

40

I Compound according to example 49, powder, was mixed with lactose and granulated with a water solution of methyl cellulose and sodium carbonate. The wet mass was forced through a sieve and the granulate dried in an oven. After drying, the granulate was mixed with polyvinylpyrrolidone and magnesium stearate. The dry mixture was pressed into tablet cores (10 000 tablets), each tablet containing 50 mg of active substance, in a tabletting machine using 7 mm diameter punches.

45

II A solution of hydroxypropyl methylcellulose and polyethylene glycol in purified water was prepared. After dispersion of titanium dioxide the solution was sprayed onto the tablets I in an Accela Cota®, Manesty coating equipment. A final tablet weight of 175 mg was obtained.

50

Formulation C. Solution for intravenous administration

A parenteral formulation for intravenous use, containing 4 mg of active compound per ml, was prepared from the following ingredients:

55

5

Compound according to Example 49	4 g
Polyethylene glycol 400 for injection	400 g
Disodium hydrogen phosphate	q.s.
Sterile water to a final volume of	1.000 ml

10

Compound according to Example 49 was dissolved in polyethylene glycol 400 and 550 ml of water was added. pH of the solution was brought to pH 7.4 by adding a water solution of disodium hydrogen phosphate and water was added to a final volume of 1000 ml. The solution was filtered through a 0.22 µm filter and immediately dispensed into 10 ml sterile ampoules. The ampoules were sealed.

15

Biological tests

A. Inhibiting effect *in vitro* on acid secretion in isolated rabbit gastric glands was measured as described by Bergrindh *et al.* (1976), Acta physiol. scand., 97, 401-414.

20 Most of the compounds in Table 1 had an IC₅₀ value in the range of 0,2-100 µM.

B. Inhibiting effect *in vivo* on acid secretion in conscious female rat was measured according to the following method:

25 Female rats of the Sprague-Dawley strain were used. They were equipped with cannulated fistulae in the stomach (lumen) and the upper part of the duodenum, for collection of gastric secretions and administration of test substances, respectively. A fourteen days recovery period after surgery was allowed before testing commenced.

30 Before secretory tests, the animals were deprived of food but not water for 20 h. The stomach was repeatedly washed through the gastric cannula with tapwater (37°C), and 6 ml of Ringer-Glucose given s.c. Acid secretion was stimulated with infusion during 3.0 h (1,2 ml/h, s.c.) of pentagastrin and carbachol (20 and 110 nmol/kg h, respectively), during which time gastric secretions were collected in 30-min fractions. Test substances or vehicle were given iv or id at 60 min after starting the stimulation, in a volume of 1 ml/kg. Gastric juice samples were titrated to pH 7.0 with NaOH, 0.1 mol/L, and acid output calculated as the product of titrant volume and concentration. Further calculations were based on group mean responses from 4-5 rats. The acid output during the periods after administration of test substances or vehicle were expressed as fractional responses, setting the acid output in the 30-min period preceding administration to 1.0. Percentage inhibition was calculated from the fractional responses elicited by test compound and vehicle. ED₅₀-values were obtained from graphical interpolation on log dose-response curves, or estimated from single-dose experiments assuming a similar slope for all dose-response curves. The results are based on gastric acid secretion during two hours after drug/vehicle administration.

40 The compound according to Example 49 had after id administration an ED₅₀ value of 2 µmol/kg.

The compound according to Example 63 had after iv administration an ED₅₀ value of 1.3 µmol/kg.

Claims

45 Claims for the following Contracting States : AT, BE, CH, LI, DE, DK, ES, FR, GB, IT, LU, MC, NL, PT, SE

1. A compound of the formula I

50

55

or a pharmaceutically acceptable salt thereof,

20 wherein X represents

30 or -CH₂-;

R¹ represents H, (1-6C) alkyl, CH₂-O-R⁷, halogen, phenyl or phenyl substituted with (1-6C) alkyl, (1-6C) alkoxy, (1-6C) acyl, halogen or (1-6C) alkoxy carbonyl;

35 R² represents H, (1-6C) alkyl, CH₂CN,

40 halogen, O-R⁸,

50 S-CN, CH₂OH, CH₂=CH, CF₃, CH₂NC or NH₂;

R³ represents H, (1-6C) alkyl, CF₃, O-R⁹, NH₂, halogen, CN,

S-R¹⁰ or NHCOR¹⁰;

5 R⁴ and R⁵, which are the same or different represent H, (1-6C) alkyl, CN, halogen, O-R¹¹, NO₂, NH₂, S-R¹², NHCOR¹³,

15 CF₃ or

25

R⁶, R⁷, R⁸, R⁹, R¹¹ and R¹³ which are the same or different represent H or (1-6C) alkyl;

30

R¹⁰ represents (1-6C) alkyl or phenyl (1-6C) alkyl;

R¹² and R¹⁴, which are the same or different represent (1-6C) alkyl;

35

R¹⁵ represents H, (1-6C) alkyl, OH or (1-6C) alkoxy;

40

provided that R¹ and R² are not simultaneously H.

2. A compound according to claim 1 wherein X is -CO-,

45

50

and R⁶ is H or (1-6C) alkyl.

40

3. A compound according to claim 1 wherein R¹ is (1-6C) alkyl, optionally substituted phenyl, -CH₂OR⁷, or halogen, wherein R⁷ is H or (1-6C) alkyl.

45

4. A compound according to claim 1 wherein R² is H, (1-6C) alkyl, -CH₂C=CH, -CH₂OH, -CH₂CN, -CH₂CONH₂, -CH₂NC, -NH₂.

50

50

—SCN, halogen or —CF₃.

55

5. A compound according to claim 1 wherein R³ is H, (1-6C) alkyl, -OR⁹, -NH₂, (1-6C) alkyl-amino, (1-6C)dialkylamino, -CN, -SR¹⁰, halogen, -CF₃, or -NHCOR¹⁰, wherein R⁹ is H or (1-6C) alkyl, and R¹⁰ is (1-6C) alkyl or phenyl-(1-6C)-alkyl.

6. A compound according to claim 1 wherein R⁴ and R⁵ are the same or different and selected from H, (1-6C) alkyl, -CN, halogen, -OR¹¹, -NO₂, -NH₂, (1-6C) alkylamino, (1-6C)dialkylamino, -SR¹², -NHCOR¹³, -CF₃, or -COR¹⁵.

wherein R¹¹ is H or (1-6C) alkyl, R¹² is (1-6C) alkyl, R¹³ is H or (1-6C) alkyl and R¹⁵ is H, (1-6C) alkyl, OH, or (1-6C) alkoxy.

- 7. A compound according to claim 1 wherein X is as defined in claim 2, R¹ is as defined in claim 3, R² is as defined in claim 4, R³ is as defined in claim 5, and R⁴ and R⁵ are as defined in claim 6.
- 8. A compound according to claim 1 wherein X is -CO-, -CH(OH)-, -CH(OCH₃)-, -CH(OC₂H₅)-, or -CH₂-.
- 9. A compound according to claim 1 wherein R¹ is CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, or phenyl.
- 10. A compound according to claim 1 wherein R² is H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, CH₂C=CH, CF₃, or CH₂NC.
- 11. A compound according to claim 1 wherein R³ is H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

- 20 or NHCOCH₃.
- 12. A compound according to claim 1 wherein R⁴ and R⁵, which are the same or different, are selected from H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCH₃, or CF₃.
- 13. A compound according to claim 1 wherein X is as defined in claim 8, R¹ is as defined in claim 9, R² is as defined in claim 10, R³ is as defined in claim 11, and R⁴ and R⁵ are as defined in claim 12.

- 30 14. A compound of the formula

or a pharmaceutically acceptable salt thereof.

- 50 15. A compound of the formula

5

10

15

or a pharmaceutically acceptable salt thereof.

20

16. A compound of the formula

25

30

35

40 or a pharmaceutically acceptable salt thereof.

17. A compound of the formula

45

50

55

or a pharmaceutically acceptable salt thereof.

18. A compound of the formula

5

10

15

20

or a pharmaceutically acceptable salt thereof.

19. A compound of the formula

25

30

35

40

or a pharmaceutically acceptable salt thereof.

20. A compound of the formula

45

50

55

5

10

15

or a pharmaceutically acceptable salt thereof.

21. A compound of the formula

20

25

30

35

or a pharmaceutically acceptable salt thereof.

22. A compound of the formula

40

45

50

55

or a pharmaceutically acceptable salt thereof.

23. A compound of the formula

or a pharmaceutically acceptable salt thereof.

20 24. A compound of the formula

or a pharmaceutically acceptable salt thereof.

25. A compound of the formula

or a pharmaceutically acceptable salt thereof.

26. A compound of the formula

27. A compound of the formula

28. A compound of the formula

or a pharmaceutically acceptable salt thereof.

29. A compound of the formula

5

10

15

20

or a pharmaceutically acceptable salt thereof.

30. A compound of the formula

25

30

35

or a pharmaceutically acceptable salt thereof.

40

31. A pharmaceutical composition containing as active ingredient a compound according to any one of claims 1-30.

32. A compound as defined in any one of claims 1-30 for use in therapy.

45 33. A compound as defined in any one of claims 1-30 for use in inhibiting gastric acid secretion in mammals and man.

34. A compound as defined in any one of claims 1-30 for use in the treatment of gastrointestinal inflammatory diseases in mammals and man.

50 35. The use of a compound according to any one of claims 1-30 in the manufacture of a medicament for inhibiting gastric acid secretion in mammals, including man.

36. The use of a compound according to any one of claims 1-30 in the manufacture of a medicament for the treatment of gastrointestinal inflammatory diseases in mammals, including man.

55 37. A process for the preparation of a compound of the formula I as defined in claim 1, by

A. reacting a compound of the formula

10 with a compound of the formula

20 in which formulas X, R¹, R², R³, R⁴, R⁵, are as defined in claim 1 and Y is a leaving group such as a halide, tosyloxy or mesyloxy;

25 B. for preparing compounds of the formula I wherein R¹, R², R³, R⁴, and R⁵, are as defined in claim 1 and wherein X is CHOH, reducing a compound of the formula I wherein X is CO;

30 C. for preparing compounds of the formula I wherein R² is OH and R¹, R³, R⁴, R⁵, and X are as defined in claim 1, reacting a compound of the formula I wherein R¹, R³, R⁴, R⁵ and X are as defined in claim 1 and wherein R² is -O(1-6C) alkyl, with a dealkylation agent;

D. for the preparation of a compound of the formula I wherein R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 and wherein X is -CHOR⁶ where R⁶ is as defined in claim 1, by reacting a compound of the formula I, wherein R¹ R², R³, R⁴ and R⁵ are as defined in claim 1 and X is -CH(OH)-, with a compound of the formula IV

wherein R⁶ is as defined in claim 1 and Z is a reactive esterified hydroxy group;

40 E. for the preparation of a compound of the formula I wherein X, R¹, R² and R³ are as defined in claim 1, R⁴ is OH in position 2, and R⁵ is different from R⁴, reacting a compound of the formula I wherein X, R¹, R² and R³ are as defined in claim 1, R⁴ is -O(C1-C6)- alkyl, and R⁵ is different from R⁴, with a dealkylation agent; whereafter the compound of the formula I thus obtained if desired is converted to a pharmaceutically acceptable salt.

45 38. A process according to claim 37 for the preparation of a compound as defined in any one of claims 2-30.

Claims for the following Contracting State : GR

50 1. A process for the preparation of a compound of the formula I:

or a pharmaceutically acceptable salt thereof,

20 wherein X represents

or -CH₂-;

30 R¹ represents H, (1-6C) alkyl, CH₂-O-R⁷, halogen, phenyl or phenyl substituted with (1-6C) alkyl, (1-6C) alkoxy, (1-6C) acyl, halogen or (1-6C) alkoxy carbonyl;

35 R² represents H, (1-6C) alkyl, CH₂CN,

40 halogen, O-R⁸,

45 S-CN, CH₂OH, CH₂=CH, CF₃, CH₂NC or NH₂;

50 R³ represents H, (1-6C) alkyl, CF₃, O-R⁹, NH₂, halogen, CN,

55 S-R¹⁰ or NHCOR¹⁰;

R⁴ and R⁵, which are the same or different, represent H, (1-6C) alkyl, CN, halogen, O-R¹¹, NO₂, NH₂, S-R¹²,

NHCOR¹³,

5

CF₃ or

10

15

 $R^6, R^7, R^8, R^9, R^{11}$ and R^{13} which are the same or different, represent H or (1-6C) alkyl;

20

 R^{10} represents (1-6C) alkyl or phenyl (1-6C) alkyl;

25

 R^{12} and R^{14} , which are the same or different, represent (1-6C) alkyl;

25

 R^{15} represents H, (1-6C) alkyl, OH or (1-6C) alkoxy;provided that R^1 and R^2 are not simultaneously H;
by

A. reacting a compound of the formula

30

III

35

with a compound of the formula

40

III

50

in which formulas X, R^1 , R^2 , R^3 , R^4 , R^5 , are as defined in claim 1 and Y is a leaving group such as a halide, tosyloxy or mesyloxy;

55

B. for preparing compounds of the formula I wherein R^1 , R^2 , R^3 , R^4 , and R^5 , are as defined in claim 1 and wherein X is CHO, reducing a compound of the formula I wherein X is CO;C. for preparing compounds of the formula I wherein R^2 is OH and R^1 , R^3 , R^4 , R^5 , and X are as defined in claim 1, reacting a compound of the formula I wherein R^1 , R^3 , R^4 , R^5 and X are as defined in claim 1 and wherein R^2 is -O(1-6C) alkyl, with a dealkylation agent;

D. for the preparation of a compound of the formula I wherein R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 and wherein X is -CHOR⁶ where R⁶ is as defined in claim 1, by reacting a compound of the formula I, wherein R¹, R², R³, R⁴ and R⁵ are as defined in claim 1 and X is -CH(OH)-, with a compound of the formula IV

5

R⁶-Z

IV

wherein R⁶ is as defined in claim 1 and Z is a reactive esterified hydroxy group;

E. for the preparation of a compound of the formula I wherein X, R¹, R² and R³ are as defined in claim 1, R⁴ is OH in position 2, and R⁵ is different from R⁴, reacting a compound of the formula I wherein X, R¹, R² and R³ are as defined in claim 1, R⁴ is -O(C₁-C₆)- alkyl, and R⁵ is different from R⁴, with a dealkylation agent; whereafter the compound of the formula I thus obtained if desired is converted to a pharmaceutically acceptable salt.

15

2. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein X is -CO-,

20

25

and R⁶ is H or (1-6C) alkyl.

3. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R¹ is (1-6C) alkyl, optionally substituted phenyl, -CH₂OR⁷, or halogen, wherein R⁷ is H or (1-6C) alkyl.

4. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R² is H, (1-6C) alkyl, -CH₂C≡CH, -CH₂OH, -CH₂CN, -CH₂CONH₂, -CH₂NC, -NH₂,

35

40

—SCN, halogen or —CF₃.

45

5. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R³ is H, (1-6C) alkyl, -OR⁹, -NH₂, (1-6C) alkyl-amino, (1-6C)dialkylamino, -CN, -SR¹⁰, halogen, -CF₃, or -NHCOR¹⁰, wherein R⁹ is H or (1-6C) alkyl, and R¹⁰ is (1-6C) alkyl or phenyl-(1-6C)-alkyl.

6. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R⁴ and R⁵ are the same or different and selected from H, (1-6C) alkyl, -CN, halogen, -OR¹¹, -NO₂, -NH₂, (1-6C) alkylamino, (1-6C)dialkylamino, -SR¹², -NHCOR¹³, -CF₃, or -COR¹⁵, wherein R¹¹ is H or (1-6C) alkyl, R¹² is (1-6C) alkyl, R¹³ is H or (1-6C) alkyl, and R¹⁵ is H, (1-6C) alkyl, OH, or (1-6C) alkoxy.

7. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein X is as defined in claim 2, R¹ is as defined in claim 3, R² is as defined in claim 4, R³ is as defined in claim 5, and R⁴ and R⁵ are as defined in claim 6.

8. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein X is -CO-, -CH(OH)-, -CH(OC₃H₇)-, -CH(OC₂H₅)-, or -CH₂-.

9. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R¹ is CH₃, C₂H₅,

CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, or phenyl.

10. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R² is H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, CH₂C=CH, CF₃, or CH₂NC.

5 11. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R³ is H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

15 or NHCOCH₃.

12. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein R⁴ and R⁵, which are the same or different, are selected from H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCN₃, or CF₃.

20 13. A process according to claim 1 for the preparation of a compound as defined in claim 1 wherein X is as defined in claim 8, R¹ is as defined in claim 9, R² is as defined in claim 10, R³ is as defined in claim 11, and R⁴ and R⁵ are as defined in claim 12.

25 14. A process according to claim 1 for the preparation of a compound of the formula

45 or a pharmaceutically acceptable salt thereof.

50 15. A process according to claim 1 for the preparation of a compound of the formula

5

10

15

or a pharmaceutically acceptable salt thereof.

20

16. A process according to claim 1 for the preparation of a compound of the formula

25

30

35

40

or a pharmaceutically acceptable salt thereof.

17. A process according to claim 1 for the preparation of a compound of the formula

45

50

55

or a pharmaceutically acceptable salt thereof.

18. A process according to claim 1 for the preparation of a compound of the formula

5

10

15

20

25

30

35

40

or a pharmaceutically acceptable salt thereof.

19. A process according to claim 1 for the preparation of a compound of the formula

45

50

55

5

10

15

or a pharmaceutically acceptable salt thereof.

20 21. A process according to claim 1 for the preparation of a compound of the formula

25

30

35

or a pharmaceutically acceptable salt thereof.

22. A process according to claim 1 for the preparation of a compound of the formula

40

45

50

55

or a pharmaceutically acceptable salt thereof.

23. A process according to claim 1 for the preparation of a compound of the formula

5

10

15

or a pharmaceutically acceptable salt thereof.

20 24. A process according to claim 1 for the preparation of a compound of the formula

25

30

35

or a pharmaceutically acceptable salt thereof.

25. A process according to claim 1 for the preparation of a compound of the formula

40

45

50

55

or a pharmaceutically acceptable salt thereof.

26. A process according to claim 1 for the preparation of a compound of the formula

5

10

15

20

25

30

35

40

or a pharmaceutically acceptable salt thereof.

27. A process according to claim 1 for the preparation of a compound of the formula

or a pharmaceutically acceptable salt thereof.

40

28. A process according to claim 1 for the preparation of a compound of the formula

45

50

55

or a pharmaceutically acceptable salt thereof.

29. A process according to claim 1 for the preparation of a compound of the formula

or a pharmaceutically acceptable salt thereof.

20 30. A process according to claim 1 for the preparation of a compound of the formula

or a pharmaceutically acceptable salt thereof.

40 31. The use of a compound prepared according to any one of claims 1-30 in the manufacture of a medicament for inhibiting gastric acid secretion in mammals, including man.

32. The use of a compound prepared according to any one of claims 1-30 in the manufacture of a medicament for the treatment of gastrointestinal inflammatory diseases in mammals, including man.

45

Patentansprüche

Patentansprüche für folgende Vertragsstaaten : AT, BE, CH, LI, DE, DK, ES, FR, GB, IT, LU, MC, NL, PT, SE

50 1. Verbindung der Formel I

55

oder ein pharmazeutisch unbedenkliches Salz davon,

20 wobei X für

oder -CH₂- steht;

30 R¹ für H, C₁₋₆-Alkyl, CH₂-O-R⁷, Halogen oder gegebenenfalls mit C₁₋₆-Alkyl, C₁₋₆-Alkoxy, C₁₋₆-Acyl, Halogen oder C₁₋₆-Alkoxycarbonyl substituiertes Phenyl steht;

R² für H, C₁₋₆-Alkyl, CH₂CN,

40 Halogen, O-R⁸,

S-CN, CH₂OH, CH₂=CH, CF₃, CH₂NC oder NH₂ steht;

R³ für H, C₁₋₆-Alkyl, CF₃, O-R⁹, NH₂, Halogen, CN,

55 S-R¹⁰ oder NHCOR¹⁰ steht;

R⁴ und R⁵ gleich oder verschieden sind und für H, C₁₋₆-Alkyl, CN, Halogen, O-R¹¹, NO₂, NH₂, S-R¹², NHCOR¹³,

5

CF₃ oder

10

15 stehen;

R⁶, R⁷, R⁸, R⁹, R¹¹ und R¹³ gleich oder verschieden sind und für H oder C₁₋₆-Alkyl stehen;
 R¹⁰ für C₁₋₆-Alkyl oder Phenyl-C₁₋₆-alkyl steht;
 R¹² und R¹⁴ gleich oder verschieden sind und für C₁₋₆-Alkyl stehen;
 R¹⁵ für H, C₁₋₆-Alkyl, OH oder C₁₋₆-Alkoxy steht; mit der Maßgabe, daß R¹ und R² nicht gleichzeitig für H stehen.

20

2. Verbindung nach Anspruch 1, in welcher X für -CO-,

25

oder -CH₂-

30

und R⁶ für H oder C₁₋₆-Alkyl steht.

3. Verbindung nach Anspruch 1, in welcher R¹ für C₁₋₆-Alkyl, gegebenenfalls substituiertes Phenyl, CH₂-O-R⁷ oder Halogen steht, wobei R⁷ für H oder C₁₋₆-Alkyl steht.

35 4. Verbindung nach Anspruch 1, in welcher R² für H, C₁₋₆-Alkyl, -CH₂C≡CH, -CH₂OH, -CH₂CN, -CH₂CONH₂, -CH₂NC, -NH₂,

40

45 -SCN, Halogen oder -CF₃ steht.

5. Verbindung nach Anspruch 1, in welcher R³ für H, C₁₋₆-Alkyl, -OR⁹, -NH₂, C₁₋₆-Alkylamino, C₁₋₆-Dialkylamino, -CN, -SR¹⁰, Halogen, -CF₃ oder NHCOR¹⁰ steht, wobei R⁹ für H oder C₁₋₆-Alkyl und R¹⁰ für C₁₋₆-Alkyl oder Phenyl-C₁₋₆-alkyl steht.

50 6. Verbindung nach Anspruch 1, in welcher R⁴ und R⁵ gleich oder verschieden sind und unter H, C₁₋₆-Alkyl, -CN, Halogen, -OR¹¹, -NO₂, -NH₂, C₁₋₆-Alkylamino, C₁₋₆-Dialkylamino, -SR¹², NHCOR¹³, -CF₃ oder -COR¹⁵ ausgewählt sind, wobei R¹¹ für H oder C₁₋₆-Alkyl, R¹² für C₁₋₆-Alkyl, R¹³ für H oder C₁₋₆-Alkyl und R¹⁵ für H, C₁₋₆-Alkyl, OH oder C₁₋₆-Alkoxy steht.

55 7. Verbindung nach Anspruch 1, in welcher X die in Anspruch 2 angegebene Bedeutung hat, R¹ die in Anspruch 3 angegebene Bedeutung hat, R² die in Anspruch 4 angegebene Bedeutung hat, R³ die in Anspruch 5 angegebene Bedeutung hat und R⁴ und R⁵ die in Anspruch 6 angegebene Bedeutung haben.

8. Verbindung nach Anspruch 1, in welcher X für -CO-, -CH(OH)-, -CH(OCH₃)-, -CH(OC₂H₅)- oder -CH₂- steht.

9. Verbindung nach Anspruch 1, in welcher R¹ für CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br oder Phenyl steht.

5 10. Verbindung nach Anspruch 1, in welcher R² für H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, -CH₂C=CH, CF₃ oder CH₂NC steht.

11. Verbindung nach Anspruch 1, in welcher R³ für H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

10

oder NHCOCH₃ steht.

15

12. Verbindung nach Anspruch 1, in welcher R⁴ und R⁵ gleich oder verschieden sind und unter H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCH₃ oder CF₃ ausgewählt sind.

20 13. Verbindung nach Anspruch 1, in welcher X die in Anspruch 8 angegebene Bedeutung hat, R¹ die in Anspruch 9 angegebene Bedeutung hat, R² die in Anspruch 10 angegebene Bedeutung hat, R³ die in Anspruch 11 angegebene Bedeutung hat und R⁴ und R⁵ die in Anspruch 12 angegebene Bedeutung haben.

25 14. Verbindung der Formel

25

30

35

40

oder ein pharmazeutisch unbedenkliches Salz davon.

45 15. Verbindung der Formel

50

55

5

10

15

20 oder ein pharmazeutisch unbedenkliches Salz davon.

16. Verbindung der Formel

25

30

35

40

oder ein pharmazeutisch unbedenkliches Salz davon.

17. Verbindung der Formel

45

50

55

5

10

15

oder ein pharmazeutisch unbedenkliches Salz davon.

18. Verbindung der Formel

20

25

30

35

oder ein pharmazeutisch unbedenkliches Salz davon.

19. Verbindung der Formel

40

45

50

55

oder ein pharmazeutisch unbedenkliches Salz davon.

20. Verbindung der Formel

5

10

15

oder ein pharmazeutisch unbedenkliches Salz davon.

20 21. Verbindung der Formel

25

30

35

oder ein pharmazeutisch unbedenkliches Salz davon.

40 22. Verbindung der Formel

45

50

55

oder ein pharmazeutisch unbedenkliches Salz davon.

23. Verbindung der Formel

5

10

15

20

25

30

35

40

oder ein pharmazeutisch unbedenkliches Salz davon.

45

25. Verbindung der Formel

50

55

5

10

15

oder ein pharmazeutisch unbedenkliches Salz davon.

20

26. Verbindung der Formel

25

30

35

oder ein pharmazeutisch unbedenkliches Salz davon.

27. Verbindung der Formel

45

50

55

oder ein pharmazeutisch unbedenkliches Salz davon.

28. Verbindung der Formel

5

10

15

20

oder ein pharmazeutisch unbedenkliches Salz davon.

29. Verbindung der Formel

25

30

35

40

30. Verbindung der Formel

45

50

55

oder ein pharmazeutisch unbedenkliches Salz davon.

31. Pharmazeutische Zusammensetzung, enthaltend als Wirkstoff eine Verbindung nach einem der Ansprüche 1-30.

32. Verbindung nach einem der Ansprüche 1-30 zur Verwendung bei der Therapie.

5 33. Verbindung nach einem der Ansprüche 1-30 zur Verwendung bei der Hemmung der Magensauresekretion bei Säugetieren und Menschen.

10 34. Verbindung nach einem der Ansprüche 1-30 zur Verwendung bei der Behandlung von gastrointestinalen entzündlichen Krankheiten bei Säugetieren und Menschen.

15 35. Verwendung einer Verbindung nach einem der Ansprüche 1-30 bei der Herstellung eines Arzneimittels zur Hemmung der Magensauresekretion bei Säugetieren einschließlich Menschen.

36. Verwendung einer Verbindung nach einem der Ansprüche 1-30 bei der Herstellung eines Arzneimittels zur Behandlung von gastrointestinalen entzündlichen Krankheiten bei Säugetieren einschließlich Menschen.

15 37. Verfahren zur Herstellung einer Verbindung der Formel I gemäß Anspruch 1, bei dem man

20 A. eine Verbindung der Formel

II

30 mit einer Verbindung der Formel

III

40 umsetzt, wobei in diesen Formeln X, R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und Y für eine Abgangsgruppe wie Halogenid, Tosyloxy oder Mesyloxy steht;

45 B. zur Herstellung von Verbindungen der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für CHOH steht, eine Verbindung der Formel I, in welcher X für CO steht, reduziert;

50 C. zur Herstellung von Verbindungen der Formel I, in welcher R² für OH steht und R¹, R³, R⁴, R⁵ und X die in Anspruch 1 angegebenen Bedeutungen haben, eine Verbindung der Formel I, in welcher R¹, R³, R⁴, R⁵ und X die in Anspruch 1 angegebenen Bedeutungen haben und R² für -O-C₁₋₆-Alkyl steht, mit einem Dealkylierungsmittel umsetzt;

D. zur Herstellung einer Verbindung der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für -CHOR⁶ steht, worin R⁶ die in Anspruch 1 angegebene Bedeutung hat, steht, eine Verbindung der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für -CH(OH)- steht, mit einer Verbindung der Formel IV

IV

55 worin R⁶ die in Anspruch 1 angegebene Bedeutung hat und Z für eine reaktive veresterte Hydroxylgruppe steht, umsetzt;

E. zur Herstellung einer Verbindung der Formel I, in welcher X, R¹, R² und R³ die in Anspruch 1 angegebenen Bedeutungen haben, R⁴ für OH in 2-Position steht und R⁵ von R⁴ verschieden ist, eine Verbindung der Formel

I, in welcher X, R¹, R² und R³ die in Anspruch 1 angegebenen Bedeutungen haben, R⁴ für -O-C₁₋₆-Alkyl steht und R⁵ von R⁴ verschieden ist, mit einem Dealkylierungsmittel umsetzt; wonach man die so erhaltene Verbindung der Formel I gegebenenfalls in ein pharmazeutisch unbedenkliches Salz überführt.

5

38. Verfahren nach Anspruch 37 zur Herstellung einer Verbindung nach einem der Ansprüche 2-30.

Patentansprüche für folgenden Vertragsstaat : GR

10 1. Verfahren zur Herstellung einer Verbindung der Formel I:

15

20

25

oder eines pharmazeutisch unbedenklichen Salzes davon,

30

wobei X für

40

oder -CH₂- steht;

R¹ für H, C₁₋₆-Alkyl, CH₂-O-R⁷, Halogen oder gegebenenfalls mit C₁₋₆-Alkyl, C₁₋₆-Alkoxy, C₁₋₆-Acyl, Halogen oder C₁₋₆-Alkoxy carbonyl substituiertes Phenyl steht;

R² für H, C₁₋₆-Alkyl, CH₂CN,

45

50

Halogen, O-R⁸,

55

55

S-CN, CH₂OH, CH₂=CH, CF₃, CH₂NC oder NH₂ steht;

R³ für H, C₁₋₆-Alkyl, CF₃, O-R⁹, NH₂, Halogen, CN,

5

S-R¹⁰ oder NHCOR¹⁰ steht;R⁴ und R⁵ gleich oder verschieden sind und für H, C₁₋₆-Alkyl, CN, Halogen, O-R¹¹, NO₂, NH₂, S-R¹², NHCOR¹³,

10

15

CF₃ oder

20

stehen;

R⁶, R⁷, R⁸, R⁹, R¹¹ und R¹³ gleich oder verschieden sind und für H oder C₁₋₆-Alkyl stehen;

25

R¹⁰ für C₁₋₆-Alkyl oder Phenyl-C₁₋₆-alkyl steht;R¹² und R¹⁴ gleich oder verschieden sind und für C₁₋₆-Alkyl stehen;R¹⁵ für H, C₁₋₆-Alkyl, OH oder C₁₋₆-Alkoxy steht; mit der Maßgabe, daß R¹ und R² nicht gleichzeitig für H stehen, bei dem man

30

A. eine Verbindung der Formel

35

II

40

mit einer Verbindung der Formel

45

III

50

umsetzt, wobei in diesen Formeln X, R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und Y für eine Abgangsgruppe wie Halogenid, Tosyloxy oder Mesyloxy steht;

55

B. zur Herstellung von Verbindungen der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für CHOH steht, eine Verbindung der Formel I, in welcher X für CO steht, reduziert;C. zur Herstellung von Verbindungen der Formel I, in welcher R² für OH steht und R¹, R³, R⁴, R⁵ und X die in Anspruch 1 angegebenen Bedeutungen haben, eine Verbindung der Formel I, in welcher R¹, R³, R⁴, R⁵ und X die in Anspruch 1 angegebenen Bedeutungen haben und R² für -O-C₁₋₆-Alkyl steht, mit einem

Dealkylierungsmittel umsetzt;

D. zur Herstellung einer Verbindung der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für -CHOR⁶, worin R⁶ die in Anspruch 1 angegebene Bedeutung hat, steht, eine Verbindung der Formel I, in welcher R¹, R², R³, R⁴ und R⁵ die in Anspruch 1 angegebenen Bedeutungen haben und X für -CH(OH)- steht, mit einer Verbindung der Formel IV

R⁶-Z

IV

worin R⁶ die in Anspruch 1 angegebene Bedeutung hat und Z für eine reaktive veresterte Hydroxylgruppe steht, umsetzt;

E. zur Herstellung einer Verbindung der Formel I, in welcher X, R¹, R² und R³ die in Anspruch 1 angegebenen Bedeutungen haben, R⁴ für OH in 2-Position steht und R⁵ von R⁴ verschieden ist, eine Verbindung der Formel I, in welcher X, R¹, R² und R³ die in Anspruch 1 angegebenen Bedeutungen haben, R⁴ für -O-C₁₋₆-Alkyl steht und R⁵ von R⁴ verschieden ist, mit einem Dealkylierungsmittel umsetzt;

wonach man die so erhaltene Verbindung der Formel I gegebenenfalls in ein pharmazeutisch unbedenkliches Salz überführt.

2. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher X für -CO-,

25 oder -CH₂- und R⁶ für H oder C₁₋₆-Alkyl steht.

3. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R¹ für C₁₋₆-Alkyl, gegebenenfalls substituiertes Phenyl, CH₂-O-R⁷ oder Halogen steht, wobei R⁷ für H oder C₁₋₆-Alkyl steht.

30 4. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R² für H, C₁₋₆-Alkyl, -CH₂C=CH, -CH₂OH, -CH₂CN, -CH₂CONH₂, -CH₂NC, -NH₂,

40 -SCN, Halogen oder -CF₃ steht.

45 5. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R³ für H, C₁₋₆-Alkyl, -OR⁹, -NH₂, C₁₋₆-Alkylamino, C₁₋₆-Dialkylamino, -CN, -SR¹⁰, Halogen, -CF₃ oder NHCOR¹⁰ steht, wobei R⁹ für H oder C₁₋₆-Alkyl und R¹⁰ für C₁₋₆-Alkyl oder Phenyl-C₁₋₆-alkyl steht.

50 6. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R⁴ und R⁵ gleich oder verschieden sind und unter H, C₁₋₆-Alkyl, -CN, Halogen, -OR¹¹, -NO₂, -NH₂, C₁₋₆-Alkylamino, C₁₋₆-Dialkylamino, -SR¹², NHCOR¹³, -CF₃ oder -COR¹⁵ ausgewählt sind, wobei R¹¹ für H oder C₁₋₆-Alkyl, R¹² für C₁₋₆-Alkyl, R¹³ für H oder C₁₋₆-Alkyl und R¹⁵ für H, C₁₋₆-Alkyl, OH oder C₁₋₆-Alkoxy steht.

55 7. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher X die in Anspruch 2 angegebene Bedeutung hat, R¹ die in Anspruch 3 angegebene Bedeutung hat, R² die in Anspruch 4 angegebene Bedeutung hat, R³ die in Anspruch 5 angegebene Bedeutung hat und R⁴ und R⁵ die in Anspruch 6 angegebene Bedeutung haben.

60 8. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher X für -CO-, -CH(OH)-, -CH(OC₃H₇)-, -CH(OC₂H₅)- oder -CH₂- steht.

65 9. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R¹ für CH₃, C₂H₅,

CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br oder Phenyl steht.

10. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R² für H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, -CH₂C=CH, CF₃ oder CH₂NC steht.

5 11. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R³ für H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

15 oder NHCOCH₃ steht.

12. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher R⁴ und R⁵ gleich oder verschieden sind und unter H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCH₃ oder CF₃ ausgewählt sind.

20 13. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung gemäß Anspruch 1, in welcher X die in Anspruch 8 angegebene Bedeutung hat, R¹ die in Anspruch 9 angegebene Bedeutung hat, R² die in Anspruch 10 angegebene Bedeutung hat, R³ die in Anspruch 11 angegebene Bedeutung hat und R⁴ und R⁵ die in Anspruch 12 angegebene Bedeutung haben.

25 14. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch unbedenklichen Salzes davon.

45 15. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

50

55

5

10

15

oder eines pharmazeutisch unbedenklichen Salzes davon.

20

16. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

25

30

35

40

oder eines pharmazeutisch unbedenklichen Salzes davon.

45

17. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

50

55

5

10

15

oder eines pharmazeutisch unbedenklichen Salzes davon.

18. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

20

25

30

35

oder eines pharmazeutisch unbedenklichen Salzes davon.

19. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

40

45

50

55

oder eines pharmazeutisch unbedenklichen Salzes davon.

20. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch unbedenklichen Salzes davon.

20 21. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch unbedenklichen Salzes davon

22. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch unbedenklichen Salzes davon.

23. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

5

10

15

oder eines pharmazeutisch unbedenklichen Salzes davon.

20 24. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

25

30

35

oder eines pharmazeutisch unbedenklichen Salzes davon.

25. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

40

45

50

55

oder eines pharmazeutisch unbedenklichen Salzes davon.

26. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

20 oder eines pharmazeutisch unbedenklichen Salzes davon.

27. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

40 oder eines pharmazeutisch unbedenklichen Salzes davon.

28. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

oder eines pharmazeutisch unbedenklichen Salzes davon.

29. Verfahren nach Anspruch 1 zur Herstellung einer Verbindung der Formel

5

10

15

20

25

30

35

40

oder eines pharmazeutisch unbedenklichen Salzes davon.

45

31. Verwendung einer nach einem der Ansprüche 1-30 hergestellten Verbindung bei der Herstellung eines Arzneimittels zur Hemmung der Magensäuresekretion bei Säugetieren einschließlich Menschen.

32. Verwendung einer nach einem der Ansprüche 1-30 hergestellten Verbindung bei der Herstellung eines Arzneimittels zur Behandlung von gastrointestinalen entzündlichen Krankheiten bei Säugetieren einschließlich Menschen.

Revendications

Revendications pour les Etats contractants suivants : AT, BE, CH, LI, DE, DK, ES, FR, GB, IT, LU, MC, NL, PT, SE

50

1. Composé de formule I :

55

5

10

15

I

20 ou un sel pharmaceutiquement acceptable de celui-ci,

dans laquelle X représente

25

30

ou -CH<sub>2</sub>-;

R<sup>1</sup> représente H, un alkyle en C<sub>1</sub>-C<sub>6</sub>, CH<sub>2</sub>-O-R<sup>7</sup>, un halogène, un phényle ou un phényle substitué avec un alkyle en C<sub>1</sub>-C<sub>6</sub>, un alkoxy en C<sub>1</sub>-C<sub>6</sub>, un acyl en C<sub>1</sub>-C<sub>6</sub>, un halogène ou un alkoxy carbonyle en C<sub>1</sub>-C<sub>6</sub>,

R<sup>2</sup> représente H, un alkyle en C<sub>1</sub>-C<sub>6</sub>, CH<sub>2</sub>CN,

35

40

un halogène, O-R<sup>8</sup>,

45

50

S-CN, CH<sub>2</sub>OH, CH<sub>2</sub>=CH, CF<sub>3</sub>, CH<sub>2</sub>NC ou NH<sub>2</sub>;

R<sup>3</sup> représente H, un alkyle en C<sub>1</sub>-C<sub>6</sub>, CF<sub>3</sub>, O-R<sup>9</sup>, NH<sub>2</sub>, un halogène, CN,

55

S-R<sup>10</sup> ou NHCOR<sup>10</sup>

R<sup>4</sup> et R<sup>5</sup>, qui sont identiques ou différents, représentent H, un alkyle en C<sub>1</sub>-C<sub>6</sub>, CN, un halogène, O-R<sup>11</sup>, NO<sub>2</sub>, NH<sub>2</sub>, S-R<sup>12</sup>, NHCOR<sup>13</sup>,

NHCOR^{14}

O

5

 CF_3 ou

15 $\text{R}^6, \text{R}^7, \text{R}^8, \text{R}^9, \text{R}^{11}$ et R^{13} , qui sont identiques ou différents, représentent H ou un alkyle en $\text{C}_1\text{-C}_6$;
 R^{10} représente un alkyle en $\text{C}_1\text{-C}_6$ ou un (alkyl en $\text{C}_1\text{-C}_6$)phényle;
 R^{12} et R^{14} , qui sont identiques ou différents, représentent un alkyle en $\text{C}_1\text{-C}_6$;
 R^{15} représente H, un alkyle en $\text{C}_1\text{-C}_6$, OH ou un alkoxy en $\text{C}_1\text{-C}_6$;
à condition que R^1 et R^2 ne soient pas simultanément H.

20

2. Composé suivant la revendication 1, dans lequel X est -CO-,

or $-\text{CH}_2-$

30 et R^6 est H ou un alkyle en $\text{C}_1\text{-C}_6$.

3. Composé suivant la revendication 1, dans lequel R^1 est un alkyle en $\text{C}_1\text{-C}_6$, un phényle éventuellement substitué, CH_2OR^7 , ou un halogène, dans lequel R^7 est H ou un alkyle en $\text{C}_1\text{-C}_6$.

35 4. Composé suivant la revendication 1, dans lequel R^2 est H, un alkyle en $\text{C}_1\text{-C}_6$, $-\text{CH}_2\text{C}\equiv\text{CH}$, $-\text{CH}_2\text{OH}$, $-\text{CH}_2\text{CN}$, $-\text{CH}_2\text{CONH}_2$, $-\text{CH}_2\text{NC}$, $-\text{NH}_2$,

45 -SCN, un halogène ou $-\text{CF}_3$.

50 5. Composé suivant la revendication 1, dans lequel R^3 est H, un alkyle en $\text{C}_1\text{-C}_6$, $-\text{OR}^9$, $-\text{NH}_2$, un alkylamino en $\text{C}_1\text{-C}_6$, un dialkylamino en $\text{C}_1\text{-C}_6$, $-\text{CN}$, $-\text{SR}^{10}$, un halogène, $-\text{CF}_3$ ou $-\text{NHCOR}^{10}$, dans lequel R^9 est H ou un alkyle en $\text{C}_1\text{-C}_6$, et R^{10} est un alkyle en $\text{C}_1\text{-C}_6$ ou un (alkyl en $\text{C}_1\text{-C}_6$)phényle.

55 6. Composé suivant la revendication 1, dans lequel R^4 et R^5 sont identiques ou différents et sont sélectionnés parmi H, alkyle en $\text{C}_1\text{-C}_6$, $-\text{CN}$, un halogène, $-\text{OR}^{11}$, $-\text{NO}_2$, $-\text{NH}_2$, un alkylamino en $\text{C}_1\text{-C}_6$, un dialkylamino en $\text{C}_1\text{-C}_6$, $-\text{SR}^{12}$, $-\text{NHCOR}^{13}$, $-\text{CF}_3$ ou $-\text{COR}^{15}$, dans lequel R^{11} est H ou un alkyle en $\text{C}_1\text{-C}_6$, R^{12} est un alkyle en $\text{C}_1\text{-C}_6$, R^{13} est H ou alkyle en $\text{C}_1\text{-C}_6$ et R^{15} est H, un alkyle en $\text{C}_1\text{-C}_6$, OH ou un alkoxy en $\text{C}_1\text{-C}_6$.

55 7. Composé suivant la revendication 1, dans lequel X est tel que défini à la revendication 2, R^1 est tel que défini à la revendication 3, R^2 est tel que défini à la revendication 4, R^3 est tel que défini à la revendication 5, R^4 et R^5 sont tels que définis à la revendication 6.

8. Composé suivant la revendication 1, dans lequel X est -CO-, -CH(OH)-, -CH(OCH₃)-, -CH(OC₂H₅)- ou -CH₂-.

9. Composé suivant la revendication 1, dans lequel R¹ est CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, ou un phényle.

5 10. Composé suivant la revendication 1, dans lequel R² est H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, CH₂C=CH, CF₃ ou CH₂NC.

10 11. Composé suivant la revendication 1, dans lequel R³ est H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

15 ou NHCOCH₃.

12. Composé suivant la revendication 1, dans lequel R⁴ et R⁵, qui sont identiques ou différents, sont sélectionnés à partir de H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCH₃ ou CF₃.

20 13. Composé suivant la revendication 1, dans lequel X est tel que défini à la revendication 8, R¹ est tel que défini à la revendication 9, R² est tel que défini à la revendication 10, R³ est tel que défini à la revendication 11, et R⁴ et R⁵ sont tels que définis à la revendication 12.

25 14. Composé de formule

30 ou un sel pharmaceutiquement acceptable de celui-ci.

35 40 45 15. Composé de formule

50

55

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20

16. Composé de formule

25

30

35

40

ou un sel pharmaceutiquement acceptable de celui-ci.

45

17. Composé de formule

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

18. Composé de formule

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20 19. Composé de formule

25

30

35

ou un sel pharmaceutiquement acceptable de celui-ci.

40 20. Composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

21. Composé de formule

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20 22. Composé de formule

25

30

35

ou un sel pharmaceutiquement acceptable de celui-ci.

40

23. Composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

24. Composé de formule

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20 25. Composé de formule

25

30

35

ou un sel pharmaceutiquement acceptable de celui-ci.

40

26. Composé de formule

45

50

55

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20

27. Composé de formule

25

30

35

ou un sel pharmaceutiquement acceptable de celui-ci.

40 28. Composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

29. Composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

20 30. Composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

31. Composition pharmaceutique, contenant un composé suivant l'une quelconque des revendications 1 à 30 comme ingrédient actif.

40

32. Composé tel que défini à l'une quelconque des revendications 1 à 30, destiné à une utilisation thérapeutique.

33. Composé tel que défini à l'une quelconque des revendications 1 à 30, destiné à une utilisation dans l'inhibition de la sécrétion d'acide gastrique chez les mammifères et l'homme.

45

34. Composé tel que défini à l'une quelconque des revendications 1 à 30, destiné à une utilisation dans le traitement des maladies inflammatoires gastro-intestinales chez les mammifères et l'homme.

50

35. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 30 dans la fabrication d'un médicament pour l'inhibition de la sécrétion d'acide gastrique chez les mammifères, y compris l'homme.

36. Utilisation d'un composé suivant l'une quelconque des revendications 1 à 30 dans la fabrication d'un médicament pour le traitement des maladies inflammatoires gastro-intestinales chez les mammifères, y compris l'homme.

55

37. Procédé pour la préparation d'un composé de formule I tel que défini à la revendication 1,

A. en faisant réagir un composé de formule

II

10

avec un composé de formule

III

20 formules dans lesquelles X, R¹, R², R³, R⁴, R⁵ sont comme définis dans la revendication 1 et Y est un groupe partant tel qu'un halogénure, un tosyloxy ou un mésyloxy;

B. pour la préparation de composés de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1, et dans laquelle X est CHOH, en réduisant un composé de formule I dans laquelle X est CO;

C. pour la préparation de composés de formule I, dans laquelle R² est OH et R¹, R³, R⁴, R⁵ et X sont tels que définis à la revendication 1, en faisant réagir un composé de formule I dans laquelle R¹, R³, R⁴, R⁵ et X sont tels que définis à la revendication 1 et dans laquelle R² est un -O-alkyle en C₁-C₆, avec un agent de désalkylation;

D. pour la préparation d'un composé de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1, et dans laquelle X est -CHOR⁶ où R⁶ est tel que défini à la revendication 1, en faisant réagir un composé de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1 et X est -CH(OH) -, avec un composé de formule IV

IV

35 dans laquelle R⁶ est tel que défini à la revendication 1 et Z est un radical hydroxy estérifié réactif;

E. Pour la préparation d'un composé de formule I, dans laquelle X, R¹, R² et R³ sont tels que définis à la revendication 1, R⁴ est OH en position 2, et R⁵ est différent de R⁴, en faisant réagir un composé de formule I dans laquelle X, R¹, R² et R³ sont tels que définis à la revendication 1, R⁴ est -O-alkyle en C₁-C₆, et R⁵ est différent de R⁴, avec un agent de désalkylation;

40 après quoi le composé de formule I ainsi obtenu est converti, si on le souhaite, en un sel pharmaceutiquement acceptable.

38. Procédé suivant la revendication 37, pour la préparation d'un composé tel que défini à l'une quelconque des revendications 2 à 30.

45 Revendications pour l'Etat contractant suivant : GR

1. Procédé pour la préparation d'un composé de formule I

50

55

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci,

20

dans laquelle X représente

25

30

ou $-\text{CH}_2-$:

R^1 représente H, un alkyle en C₁-C₆, CH₂-O-R⁷, un halogène, un phényle ou un phényle substitué avec un alkyle en C₁-C₆, un alkoxy en C₁-C₆, un acyle en C₁-C₆, un halogène ou un alkoxy carbonyle en C₁-C₆;

R^2 représente H, un alkyle en C₁-C₆, CH₂CN,

35

40

un halogène, O-R⁸,

45

50

S-CN, CH₂OH, CH₂=CH, CF₃, CH₂NC ou NH₂;

R^3 représente H, un alkyle en C₁-C₆, CF₃, O-R⁹, NH₂, un halogène, CN,

55

S-R¹⁰ ou NHCOR¹⁰

R^4 et R^5 , qui sont identiques ou différents, représentent H, un alkyle en C₁-C₆, CN, un halogène, O-R¹¹, NO₂, NH₂, S-R¹², NHCOR¹³,

CF₃ ou

15 R⁶, R⁷, R⁸, R⁹, R¹¹ et R¹³, qui sont identiques ou différents, représentent H ou un alkyle en C₁-C₆;
 R¹⁰ représente un alkyle en C₁-C₆ ou un (alkyl en C₁-C₆)phényle;
 R¹² et R¹⁴, qui sont identiques ou différents, représentent un alkyle en C₁-C₆;
 R¹⁵ représente H, un alkyle en C₁-C₆, OH ou un alkoxy en C₁-C₆;
 à condition que R¹ et R² ne soient pas simultanément H;

20 A. en faisant réagir un composé de formule

II

30 avec un composé de formule

III

40 formules dans lesquelles X, R¹, R², R³, R⁴, R⁵ sont comme définis à la revendication 1 et Y est un groupe partant tel qu'un halogénure, un tosyloxy ou un mésyloxy;

B. pour la préparation de composés de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1, et dans laquelle X est CHO_H, en réduisant un composé de formule I dans laquelle X est CO;

C. pour la préparation de composés de formule I, dans laquelle R² est OH et R¹, R³, R⁴, R⁵ et X sont tels que définis à la revendication 1, en faisant réagir un composé de formule I dans laquelle R¹, R³, R⁴, R⁵ et X sont tels que définis à la revendication 1 et dans laquelle R² est un O-alkyle en C₁-C₆, avec un agent de désalkylation;

D. pour la préparation d'un composé de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1, et dans laquelle X est -CHOR⁶ où R⁶ est tel que défini à la revendication 1, en faisant réagir un composé de formule I, dans laquelle R¹, R², R³, R⁴ et R⁵ sont tels que définis à la revendication 1 et X est -CH(OH)-, avec un composé de formule IV

IV

dans laquelle R⁶ est tel que défini à la revendication 1 et Z est un radical hydroxy estérifié réactif;

E. pour la préparation d'un composé de formule I dans laquelle X, R¹, R² et R³ sont tels que définis à la revendication 1, R⁴ est OH en position 2, et R⁵ est différent de R⁴, en faisant réagir un composé de formule

I dans laquelle X, R¹, R² et R³ sont tels que définis à la revendication 1, R⁴ est -O-alkyle en C₁-C₆, et R⁵ est différent de R⁴, avec un agent de désalkylation; après quoi le composé de formule I ainsi obtenu est converti, si on le souhaite, en un sel pharmaceutiquement acceptable.

5

2. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1 dans lequel X est -CO-,

et R⁶ est H ou un alkyle en C₁-C₆

15

3. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R¹ est un alkyle en C₁-C₆, un phényle éventuellement substitué, -CH₂OR⁷, ou un halogène, dans lequel R⁷ est H ou un alkyle en C₁-C₆.

20 4. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R² est H, un alkyle en C₁-C₆, -CH₂C=CH, -CH₂OH, -CH₂CN, -CH₂CONH₂, -CH₂NC, -NH₂,

30 -SCN, un halogène ou -CF₃.

35 5. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R³ est H, un alkyle en C₁-C₆, -OR⁹, -NH₂, un alkylamino en C₁-C₆, un dialkylamino en C₁-C₆, -CN, -SR¹⁰, un halogène, -CF₃ ou -NHCOR¹⁰, dans lequel R⁹ est H ou un alkyle en C₁-C₆, et R¹⁰ est un alkyle en C₁-C₆ ou un (alkyl en C₁-C₆)phényle.

40 6. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R⁴ et R⁵ sont identiques ou différents et sont sélectionnés parmi H, un alkyle en C₁-C₆, -CN, un halogène, -OR¹¹, -NO₂, -NH₂, un alkylamino en C₁-C₆, un dialkylamino en C₁-C₆, -SR¹², -NHCOR¹³, -CF₃ ou COR¹⁵ dans lequel R¹¹ est H ou un alkyle en C₁-C₆, R¹² est un alkyle en C₁-C₆, R¹³ est H ou un alkyle en C₁-C₆ et R¹⁵ est H, un alkyle en C₁-C₆, OH ou un alkoxy en C₁-C₆.

45 7. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel X est tel que défini à la revendication 2, R¹ est tel que défini à la revendication 3, R² est tel que défini à la revendication 4, R³ est tel que défini à la revendication 5, R⁴ et R⁵ sont tels que définis à la revendication 6.

50 8. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel X est -CO-, -CH(OH)-, -CH(OCH₃)-, -CH(OC₂H₅)- ou -CH₂-.

9. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R¹ est CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, Cl, Br, ou un phényle.

10. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R² est H, CH₃, C₂H₅, CH₂CN, CH₂CONH₂, F, Cl, Br, -SCN, CH₂OH, CH₂C=CH, CF₃ ou CH₂NC.

55

11. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R³ est H, CH₃, C₂H₅, CH(CH₃)₂, (CH₂)₂CH₃, CF₃, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, F, Cl, Br, SCH₃, SC₂H₅,

ou NHCOCH₃.

10

12. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel R⁴ et R⁵, qui sont identiques ou différents, sont sélectionnés parmi H, CH₃, C₂H₅, CH(CH₃)₂, F, Cl, Br, OH, OCH₃, OC₂H₅, OCH(CH₃)₂, NO₂, NH₂, NHCH₃, NHC₂H₅, N(CH₃)₂, N(C₂H₅)₂, SCH₃ ou CF₃.

15

13. Procédé suivant la revendication 1, pour la préparation d'un composé tel que défini à la revendication 1, dans lequel X est tel que défini à la revendication 8, R¹ est tel que défini à la revendication 9, R² est tel que défini à la revendication 10, R³ est tel que défini à la revendication 11, et R⁴ et R⁵ sont tels que définis à la revendication 12.

14. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

35

15. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

55

ou un sel pharmaceutiquement acceptable de celui-ci.

16. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

5

10

15

ou un sel pharmaceutiquement acceptable de celui-ci.

20

17. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

25

30

35

ou un sel pharmaceutiquement acceptable de celui-ci.

40

18. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

19. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

20 20. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

40 21. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

22. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

5

10

15

20

25

30

35

40

ou un sel pharmaceutiquement acceptable de celui-ci.

23. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

24. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

25. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

20 ou un sel pharmaceutiquement acceptable de celui-ci.

26. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

40 ou un sel pharmaceutiquement acceptable de celui-ci.

27. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

ou un sel pharmaceutiquement acceptable de celui-ci.

28. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

5

10

15

20

ou un sel pharmaceutiquement acceptable de celui-ci.

29. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

25

30

35

40

ou un sel pharmaceutiquement acceptable de celui-ci.

30. Procédé suivant la revendication 1 pour la préparation d'un composé de formule

45

50

55

ou un sel pharmaceutiquement acceptable de celui-ci.

31. Utilisation d'un composé préparé suivant l'une quelconque des revendications 1 à 30 dans la fabrication d'un médicament pour l'inhibition de la sécrétion d'acide gastrique chez les mammifères, y compris l'homme.

5 32. Utilisation d'un composé préparé suivant l'une quelconque des revendications 1 à 30 dans la fabrication d'un médicament pour le traitement des maladies inflammatoires gastro-intestinales chez les mammifères, y compris l'homme.

10

15

20

25

30

35

40

45

50

55