

强化学习基础 策略迭代与值迭代

开悟强化学习 人工智能专业课程

目录

- 1. 策略迭代
- 2. 值迭代
- 3. 实验任务及报告提交要求

单智能体RL形式化定义:

由六元组构成的马尔可夫决策过程定义 具体定义如下:

Markov Decision Process(MDP) $(S, A, R, T, P_0, \gamma)$

- S denotes the state space
- A is the action space
- R = R(s, a) is the reward function
- $T: S \times A \times S \rightarrow [0,1]$ is the state transition function
- P_0 is the distribution of the initial state
- γ is a discount factor
- Goal: find the optimal policy that maximizes expected reward

从一个初始化的策略出发,先进行策略评估(policy evaluation),然后改进策略(policy improvement),评估改进的策略,再进一步改进策略,经过不断迭代更新,直达策略收敛,这种算法被称为"策略迭代"

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

https://blog.csdn.net/qq_3061590

实例:一个4×4的小网格世界,左上角和右下角是目的地,每个格子行动方向为上下左右,每走一步reward-1,求一个在每个状态都能以最少步数到达目的地的最优行动策略。解决思路:我们从最开始的随机(1/4)策略开始,对其进行policy evaluation,然后进行policy iteration by acting greedy

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

$$\gamma = 1$$
 $r = -1$
on all transitions

Greedy Policy w.r.t. v_k

ŀ	 0
n.	v

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	\leftrightarrow	\leftrightarrow	\leftrightarrow		
\leftrightarrow	\leftrightarrow	\leftrightarrow	\leftrightarrow	_	random
\Leftrightarrow	‡	\Rightarrow	\leftrightarrow		policy
-		-			

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

7	100
D.	
n.	 100

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	20	10	1.4
-200	-20.	-10.	-14.

2.值迭代

对每一个当前状态 s,对每个可能的动作 a 都计算一下采取这个动作后到达的下一个状态的期望价值。看看哪个动作可以到达的状态的期望价值函数最大,就将这个最大的期望价值函数作为当前状态的价值函数 V(s),循环执行这个步骤,直到价值函数收敛。

- ・在网格环境MiniWorld上实现策略迭代算法或者值迭代算法其中之一(取折扣因子 $\gamma = 0.9$).
- ・详见【第8次作业.pdf】
- ・期限: 2023年5月14日23:59