Threading Inserts - Types and Profiles

Partial Profile

- Suitable for a wide range of pitches with a common angle (60°or 55°)
- Inserts with small root-corner radius suitable for the smallest pitch range.
- Additional operations to complete the outer/internal diameter is necessary.
- Not recommended for mass production.
- · Eliminates the need for different inserts.

Full Profile

- Performs complete thread profile.
- Root corner radius is suitable only for the relevant pitch.
- · Recommended for mass production.
- · Suitable for one profile only.

Thread Turning Methods

^{• (1)}See page B24

Mini - Tool Features

M-Type Threading Insert - Accuracy

Thread Helix Angle and Anvil Selection

Helix Angle λ Evaluation

$$tg \lambda = \frac{1 \times P}{3.14 \cdot D}$$

$$\lambda^{\circ} = \frac{20 \times P}{D}$$

- P Pitch (mm)
- D- Effective diameter of thread (mm)
- λ Angle of inclination

Anvil Selection According to Thread Helix Angle λ

				Standard				
Thre	ead Helix Angle λ	> 4°	3°- 4°	2°- 3°	1°- 2°	0°- 1°	Negativ	e Anvils
	Inclination Angle β	4.5°	3.5°	2.5°	1.5°	0.5°	-0.5°	-1.5°
I(IC)	Toolholder			Anv	ril Designa	tion		
16	EX RH OR IN LH	AE 16 +4.5	AE 16 +3.5	AE 16 +2.5	AE 16	AE 16 +0.5	AE 16 -0.5	AE 16 -1.5
(3/8)	EX LH OR IN RH	Al 16 +4.5	Al 16 +3.5	Al 16 +2.5	Al 16	Al 16 +0.5	Al 16 -0.5	Al 16 -1.5
22	EX RH OR IN LH	AE 22 +4.5	AE 22 +3.5	AE 22 +2.5	AE 22	AE 22 +0.5	AE 22 -0.5	AE 22 -1.5
(1/2)	EX LH OR IN RH	Al 22 +4.5	Al 22 +3.5	Al 22 +2.5	Al 22	Al 22 +0.5	Al 22 -0.5	Al 22 -1.5
27	EX RH OR IN LH	AE 27 +4.5	AE 27 +3.5	AE 27 +2.5	AE 27	AE 27 +0.5	AE 27 -0.5	AE 27 -1.5
(5/8)	EX LH OR IN RH	Al 27 +4.5	Al 27 +3.5	Al 27 +2.5	Al 27	Al 27 +0.5	Al 27 -0.5	Al 27 -1.5
22U	EX RH OR IN LH	AE 22U +4.5	AE 22U +3.5	AE 22U+2.5	AE 22U	AE 22U+0.5	AE 22U -0.5	AE 22U -1.5
(1/2U)	EX LH OR IN RH	AI 22U +4.5	AI 22U +3.5	AI 22U +2.5	AI 22U	AI 22U +0.5	Al 22U -0.5	Al 22U -1.5
27U	EX RH OR IN LH	AE 27U +4.5	AE 27U +3.5	AE 27U+2.5	AE 27U	AE 27U+0.5	AE 27U -0.5	AE 27U -1.5
(5/8U)	EX LH OR IN RH	AI 27U +4.5	AI 27U +3.5	AI 27U +2.5	AI 27U	AI 27U +0.5	AI 27U -0.5	AI 27U -1.5

Anvils for negative inclination β used when turning RH thread with LH holder or LH thread with RH holder.

(1) H₁ remains constant for every anvil combination.

Anvils for positive inclination angle β applicable when turning RH thread with RH holder or LH thread with LH holders.

AE Anvils: EX-RH and **IN-LH Toolholders**

Al Anvils: IN-RH and EX-LH Toolholders.

PARTIAL PROFILES 60° PARTIAL PROFILES 55°

IN-LH Toolholders

Al Anvils: IN-RH and

EX-LH Toolholders.

AE Anvils: EX-RH and

IN-LH Toolholders

Al Anvils: IN-RH and EX-LH Toolholders.

Replacing the standard anvil with a negative angle anvil will eliminate side rubbing

Flank Clearance and Effective Inclination Angle

Inclination angle β of the cutting edges correspond to a specific thread helix angle λ and insures equal clearance angle on both sides of insert.

- a Flank clearance angle
- λ Helix angle
- β Effective inclination angle is achieved by selecting the suitable anvil

Infeed Methods for Threading Operations

Flank Infeed

Radial Infeed

Alternating Flank Infeed

Flank Equal

Equal depth of cut for each pass

$$\frac{D_1}{2} = \frac{D_2}{2} = \frac{D_3}{2} = \frac{D_n}{2}$$

Flank Diminishing

Diminished depth of cut for each pass

- $\frac{D_1}{2} > \frac{D_2}{2} > \frac{D_3}{2} > \frac{D_n}{2} > \frac{D_{n+1}}{2}$
- H Depth of thread profile (on Ø)
- D Depth of pass (on Ø)
- U Depth of finishing pass (on Ø)

Cutting Data

Maximum depth of first cut for CNC control / External Threading - M-Type Inserts

	Pitc	h		No. of	220000	Max. Depth for First Pass (D1) mm									
Full Profile	mm		Insert Designation				bon Steel		rbon Steel		/ Steel		ss Steel		S Aluminum
	mm	TPI		Min.	Max.	Eq.	Dim.	Eq.	Dim.	Eq.	Dim.	Eq.	Dim.	Eq.	Dim.
ISO	1.00		16 ERM 1.00 ISO	5	9	0.34	0.51	0.31	0.46	0.27	0.41	0.22	0.33	0.48	0.71
Metric	1.25		16 ERM 1.25 ISO	6	11	0.42	0.63	0.38	0.57	0.34	0.50	0.27	0.41	0.59	0.88
	1.50		16 ERM 1.50 ISO	6	12	0.46	0.69	0.41	0.62	0.37	0.55	0.30	0.45	0.64	0.97
	1.75		16 ERM 1.75 ISO	8	13	0.48	0.72	0.43	0.65	0.38	0.58	0.31	0.47	0.67	1.01
	2.00		16 ERM 2.00 ISO	8	14	0.50	0.75	0.45	0.68	0.40	0.60	0.33	0.49	0.70	1.05
	2.50		16 ERM 2.50 ISO	10	15	0.53	0.80	0.48	0.72	0.42	0.64	0.34	0.52	0.74	1.12
	3.00		16 ERM 3.00 ISO	12	17	0.56	0.84	0.50	0.76	0.45	0.67	0.36	0.55	0.78	1.18
American		24	16 ERM 24 UN	5	9	0.34	0.51	0.31	0.46	0.27	0.41	0.22	0.33	0.48	0.71
UN		20	16 ERM 20 UN	6	10	0.42	0.63	0.38	0.57	0.34	0.50	0.27	0.41	0.59	0.88
		18	16 ERM 18 UN	6	11	0.46	0.69	0.41	0.62	0.37	0.55	0.30	0.45	0.64	0.97
		16	16 ERM 16 UN	7	12	0.47	0.71	0.42	0.64	0.38	0.57	0.31	0.46	0.66	0.99
			16 ERM 16 UN	6	13	0.46	0.69	0.41	0.62	0.37	0.55	0.28	0.41	0.64	0.97
		12	16 ERM 12 UN	8	14	0.50	0.75	0.45	0.68	0.40	0.60	0.33	0.49	0.70	1.05
		8	16 ERM 8 UN	12	17	0.56	0.84	0.50	0.76	0.45	0.67	0.36	0.55	0.78	1.18
British		19	16 ERM 19 W	6	11	0.35	0.52	0.32	0.47	0.28	0.42	0.21	0.31	0.49	0.73
BSW		16	16 ERM 16 W	7	12	0.47	0.71	0.42	0.64	0.38	0.57	0.31	0.46	0.66	0.99
		14	16 ERM 14 W	8	13	0.50	0.75	0.45	0.68	0.40	0.60	0.33	0.49	0.70	1.05
		11	16 ERM 11 W	9	14	0.44	0.66	0.40	0.59	0.35	0.53	0.29	0.43	0.62	0.92
NPT		18	16 ERM 18 NPT	10	20	0.24	0.36	0.22	0.32	0.19	0.29	0.16	0.23	0.34	0.50
		14	16 ERM 14 NPT	13	26	0.24	0.36	0.22	0.32	0.19	0.29	0.14	0.22	0.34	0.50
		11.5	16 ERM 11.5 NPT	15	24	0.27	0.40	0.24	0.36	0.22	0.32	0.18	0.26	0.38	0.56
		8	16 ERM 8 NPT	17	30	0.31	0.46	0.28	0.41	0.25	0.37	0.20	0.30	0.43	0.64
Round		6	16 ERM 6 RND	9	20	0.42	0.63	0.38	0.57	0.34	0.50	0.27	0.41	0.59	0.88
Partial	0.50-1.50	48-16	16 ERM A 60	(1)	0.22	0.33	0.20	0.30	0.18	0.26	0.14	0.21	0.31	0.46	
Profile 60°	1.75-3.00	14-8	16 ERM G 60			0.50	0.75	0.45	0.68	0.40	0.60	0.33	0.49	0.70	1.05
	0.50-3.00	48-8	16 ERM AG 60			0.24	0.36	0.22	0.32	0.19	0.29	0.16	0.23	0.34	0.50
	3.50-5.00	7-5	22 ERM N 60			0.41	0.62	0.37	0.56	0.33	0.50	0.27	0.40	0.57	0.87
Partial	1.75-3.00	14-8	16 ERM G 55			0.50	0.75	0.45	0.68	0.40	0.60	0.33	0.49	0.70	1.05
Profile 55°	0.50-3.00	48-8	16 ERM AG 55			0.22	0.33	0.20	0.30	0.18	0.26	0.14	0.21	0.31	0.46

Maximum depth of first cut for CNC control / Internal Threading - M-Type Inserts

Pitch				No of	o. of passes Max. Depth for First Pass (D1) mm										
Full Profile	mm	TPI	Insert Designation	Min.	Max.		rbon Steel		arbon Steel		y Steel		ess Steel		is Aluminum
ISO		IPI	11 IRM 1.50 ISO	10		Eq.	Dim.	Eq.	Dim.	Eq.	Dim.	Eq.	Dim.	Eq.	Dim.
	1.50		16 IRM 1.00 ISO		20 16	0.20	0.30	0.18	0.27	0.16	0.24	0.12	0.18	0.28	0.42
Metric	1.00		16 IRM 1.25 ISO	9		0.14	0.20	0.13	0.18	0.11	0.16	0.09	0.13	0.20	0.28
	1.25		16 IRM 1.50 ISO	9	16	0.19	0.28	0.17	0.25	0.15	0.22	0.12	0.18	0.27	0.39
	1.50		16 IRM 1.75 ISO	10	20	0.20	0.30	0.18	0.27	0.16	0.24	0.12	0.18	0.28	0.42
	1.75		16 IRM 2.00 ISO	11	18	0.21	0.32	0.19	0.29	0.17	0.26	0.14	0.21	0.29	0.45
	2.00		16 IRM 2.50 ISO	12	21	0.22	0.33	0.20	0.30	0.18	0.26	0.14	0.21	0.31	0.46
	2.50			14	21	0.23	0.34	0.21	0.31	0.18	0.27	0.15	0.22	0.32	0.48
	3.00		16 IRM 3.00 ISO 16 IRM 20 UN	16	22	0.24	0.35	0.22	0.32	0.19	0.29	0.16	0.23	0.34	0.50
American		20		7	13	0.20	0.30	0.18	0.27	0.16	0.24	0.12	0.18	0.28	0.42
UN		18	16 IRM 18 UN	8	15	0.20	0.30	0.18	0.27	0.16	0.24	0.12	0.18	0.28	0.42
		16	16 IRM 16 UN	11	19	0.20	0.30	0.18	0.27	0.16	0.24	0.13	0.20	0.28	0.42
		14	16 IRM 14 UN	11	20	0.21	0.31	0.19	0.28	0.17	0.25	0.13	0.19	0.29	0.43
		12	16 IRM 12 UN	12	21	0.23	0.34	0.21	0.31	0.18	0.27	0.15	0.22	0.32	0.48
		8	16 IRM 8 UN	14	20	0.24	0.36	0.22	0.32	0.19	0.29	0.16	0.23	0.34	0.50
British		19	16 IRM 19 W	7	12	0.28	0.42	0.25	0.38	0.22	0.34	0.17	0.25	0.39	0.59
BSW		16	16 IRM 16 W	9	14	0.26	0.39	0.23	0.35	0.21	0.31	0.17	0.25	0.36	0.55
		14	16 IRM 14 W	10	16	0.27	0.41	0.24	0.37	0.22	0.33	0.18	0.27	0.38	0.57
		11	16 IRM 11 W	12	19	0.31	0.46	0.28	0.41	0.25	0.37	0.20	0.30	0.43	0.64
NPT		14	16 IRM 14 NPT	21	35	0.13	0.20	0.12	0.18	0.10	0.16	0.08	0.12	0.18	0.28
		11.5	16 IRM 11.5 NPT	21	33	0.17	0.25	0.15	0.23	0.14	0.20	0.11	0.16	0.24	0.35
		8	16 IRM 8 NPT	20	34	0.23	0.34	0.21	0.31	0.18	0.27	0.14	0.20	0.32	0.48
Round		6	16 IRM 6 RND	12	24	0.30	0.46	0.27	0.41	0.24	0.37	0.20	0.30	0.42	0.64
Partial	0.50-1.25	48-16	06 IRM A 60			0.22	0.33	0.20	0.30	0.18	0.26	0.14	0.21	0.31	0.46
Profile 60°	0.50-1.50	48-16	08 IRM A 60		(1)	0.13	0.20	0.12	0.18	0.10	0.16	0.08	0.13	0.18	0.28
	0.50-1.50	48-16	11 IRM A 60			0.13	0.20	0.12	0.18	0.10	0.16	0.08	0.13	0.18	0.28
	0.50-1.50	48-16	16 IRM A 60			0.13	0.20	0.12	0.18	0.10	0.16	0.08	0.13	0.18	0.28
	1.75-3.00	14-8	16 IRM G 60			0.22	0.33	0.20	0.30	0.18	0.26	0.14	0.21	0.31	0.46
	0.50-3.00	48-8	16 IRM AG 60			0.14	0.21	0.13	0.19	0.11	0.17	0.09	0.14	0.20	0.29
	3.50-5.00	7-5	22 IRM N 60			0.23	0.34	0.21	0.31	0.18	0.27	0.15	0.22	0.32	0.48
Partial	1.75-3.00	14-8	16 IRM G 55			0.34	0.50	0.31	0.45	0.27	0.40	0.22	0.33	0.48	0.70
Profile 55°	0.50-3.00	48-8	16 IRM AG 55			0.14	0.20	0.13	0.18	0.11	0.16	0.09	0.13	0.20	0.28

 $[\]bullet$ $^{(1)}$ As per the number of passes for the relevant pitch

Number of Cutting Passes for Regular Type Inserts

Pitch	mm TPI	0.5 48	1.0	1.5 16	2.0	2.5 10	3.0 8	4.0 6	6.0 4
Number of Passes	•••	4-6	5-9		6-14		8-17	10-20	11-22

[•] For mini-tools (06IR or 08IR) add 1÷3 passes. Increase for hard materials

Recommended Cutting Conditions According to DIN/ISO513 and VDI 3323

			Tensile	Deireall	Material		Uncoated			
ISO		Material			Brinell HB	Material	TT7010	TT9030	TT8010	P30
				(N/mm ²)	ПБ	Group No.	Cutting Speed (m/min)			
		< 0.25 %C	Annealed	420	125	1	160	180	105	100
	Non-alloy steel	, >= 0.25 %C	Annealed	650	190	2	160	180	105	100
	cast steel, free	< 0.55 %C	Quenched and tempered	850	250	3	150	160	100	90
	cutting steel	>= 0.55 %C	Annealed	750	220	4	150	160	100	90
			Quenched and tempered	1000	300	5	130	140	85	85
Р	Low alloy steel		Annealed	600	200	6	80	80	60	60
	and cast steel			930	275	7	130	130	85	85
	(less than 5%		Quenched and tempered	1000	300	8	120	120	80	80
	alloying elemer	nts)		1200	350	9	95	100	60	60
	High alloy stee	l, cast steel	Annealed	680	200	10	80	80	50	5
	and tool steel.		Quenched and tempered	1100	325	11	60	60	40	40
	Stainless steel		Ferritic/martensitic	680	200	12	105	110	50	50
M	and cast steel		Martensitic	820	240	13	150	160	100	100
	and dade ded		Austenitic	600	180	14	70	80	45	45
	Gray cast iron		Ferritic		160	15		120	100	
	(GG)		Pearlitic		250	16		130	100	
K	Cast iron nodular		Ferritic		180	17		130	100	
18	(GGG)		Pearlitic		260	18		100	80	
	Malleable cast iron		Ferritic		130	19		130	70	
			Pearlitic		230	20		100	50	
	Aluminum-		Not cureable		60	21		1400	800	
	wrought alloy		Cured		100	22		500	380	
	Aluminum-	<=12% Si	Not cureable		75	23		700	400	
	cast, alloyed		Cured		90	24		420	330	
N	,,	>12% Si	High temp.		130	25		240	180	
		>1% Pb	Free cutting		110	26		300	200	
	Copper alloys		Brass		90	27		400	280	
			Electrolitic copper		100	28		120	100	
	Non metallic		Duroplastics, fiber plastics			29		300	180	
			Hard rubber			30		300	180	
		Fe based	Annealed		200	31		60	30	
	High temp.		Cured		280	32		50	30	
_	alloys	Ni or	Annealed		250	33		30	20	
S		Co based	Cured		350	34		20	10	
			Cast		320	35		20	10	
	Titanium,			Rm 400		36		140	100	
	Ti alloys		Alpha+beta alloys cured	Rm 1050		37		50	30	
	Hardened steel		Hardened		55 HRc	38		40	25	
н			Hardened		60 HRc	39		30	20	
	Chilled cast iro		Cast		400	40		30	20	
	Cast iron nodular		Hardened		55 HRc	41		20	15	

^{*} For more information of material groups, see the TaeguTec concise catalogue "Material conversion Table" section.

Trouble Shooting

Problem	Caused by	Solution
Premature Wear	Cutting speed too high Infeed depth too small Highly abrasive material Inadequate coolant supply Wrong inclination anvil Wrong turned dia. prior to threading Insert is above center line	Increase depth of cut Modify flank infeed Use coated grade Apply coolant Reselect anvil Check turned dia.
Chipped Edge	Cutting speed too high Depth of cut too large Wrong grade Poor chip control Inadequate coolant supply Center height incorrect	Proceedings of the second of t
Plastic Deformation	Excessive heat in cutting zone Wrong grade Inadequate coolant supply	 Reduce depth of cut Check turned dia. Use coated grade Use harder grade
Built-Up Edge	Cutting edge too cold Wrong grade Inadequate coolant supply	Increase depth of cut Use coated grade
Broken Nose during 1st Pass	Cutting edge too cold Depth of cut too large Wrong grade Wrong turned dia. prior to threading Corner height incorrect Infeed depth too shallow Wrong inclination anvil Tool overhang too long	Reduce depth of cut Increase number of infeed passes Use tougher grade Check turned dia. Adjust center height Modify flank infeed Reselect anvil
Poor Surface Finish	Wrong cutting speed Excessive heat in cutting zone Poor chip control Inadequate coolant supply Wrong inclination anvil Tool overhang too long Center height incorrect	Reduce RPM Reduce depth of cut Modify flank infeed
Poor Chip Control	Excessive heat in cutting zone Wrong grade Inadequate coolant supply Wrong turned dia. prior to threading	Check turned dia. Use M-type insert Apply coolant