Numerical Techniques Exercise 1

1a)

Simplify

$$\partial_t b + \partial_z (u \, b) = 0, \qquad u = \alpha \, b^2 - \beta \, b^2 \, \partial_z b \quad \text{with} \quad z \in [0, H],$$
 (1)

to

$$\partial_t b + \partial_z (\alpha b^3 - \beta b^3 \partial_z b) = 0. ag{5}$$

Working:

Linearize by subbing in b=D_o + b'

$$\frac{\partial}{\partial t} \left(\partial_0 + b' \right) + \frac{\partial}{\partial z} \left(\alpha \left(\partial_0 + b' \right)^3 + \beta \left(\partial_0 + b' \right)^3 \partial_z \left(\partial_0 + b' \right) \right) = 0$$

Time derivative

Spatial derivatives

As b' is a small perturbation (b'<<1), b' taken to a power (b'^2,b'^3 etc..) is taken to be negligible. Its derivatives are also taken to be negligible. Therefore the equation simplifies to

These are convection-diffusion equations as have both convection and diffusion terms.

b) i) Discretize equation (6)

Taylor expansions are used to find approximations for δt , δz and δzz .

δt:

Changing notation to make easier to write:

For δz a similar method is used, scheme is upwind so information from j-1 is used

For δzz the forward and backward differences are summed in order to find the central difference approximation

Subbing these approximations into the equation gives

$$\frac{b_{j}^{n+1}-b_{j}^{n}}{\Delta t}+\left(36C b_{0}^{2}\right) \frac{b_{j}^{n}-b_{j-1}^{n}}{\Delta z}-\left(\beta b_{0}^{3}\right) \frac{b_{j-1}^{n}-2b_{j}^{n}+b_{j+1}^{n}}{\Delta z^{2}}=0$$

Which can be rearranged for b(n+1,j) and written in the form

Where

This is an explicit scheme so values of b at timestep n+1 only depend on values at timestep n

Boundary conditions:

Boundary condition
$$b(0,t) = b_B$$
 port by $b = b_T$

Dirichlet $b(H,t)$ b_T b_T

b) ii) Discretize equation 5 (non-linearised)

$$\frac{\partial b}{\partial t} + \frac{\partial}{\partial z} \left(\alpha b^{3} - \beta b \frac{\partial}{\partial z} b \right) = 0$$

Time derivative, forward euler – same as before :

$$0 \frac{\partial b}{\partial t}, \text{ as befor } => \frac{\partial b}{\partial t} \approx \frac{b_j^{n+1} - b_j^n}{\Delta t}$$

Convective term:

Diffusive term:

Sold this hook in

$$\begin{bmatrix}
b^{2} \frac{\partial b}{\partial 2} \end{bmatrix}_{j}^{n} \approx \frac{1}{2\Delta^{2}} \left(\left(b_{j}^{n} \right)^{3} \left(b_{j+1}^{n} \right)^{3} \right) \left(b_{j+1}^{n} - b_{j}^{n} \right) - \left(b_{j}^{n} \right)^{2} \left(b_{j}^{n} + b_{j}^{n} \right)^{3} \right) \\
\left(b_{j}^{n} - b_{j-1}^{n} \right)$$

Full discretization:

Full ducetieation

$$b_{j}^{n+1} = b_{j}^{n} = \Delta t \left(3 \propto (b_{j}^{n})^{2} \left(\frac{b_{j}^{n} - b_{j}^{n}}{\Delta z} \right) - \frac{\beta}{2\Delta z^{2}} \right)$$

$$b_{j}^{n+1} = b_{j} - \frac{\Delta t}{\Delta z^{2}} \left(\Delta 3 \propto (b_{j}^{n})^{2} \left(b_{j}^{n} - b_{j-1}^{n} \right) + \frac{1}{2} \beta \left(\frac{1}{2} \right) \right)$$

$$\frac{\Delta t}{\Delta z^{2}} = \frac{1}{2} \left(\frac{b_{j}^{n} - b_{j-1}^{n}}{b_{j}^{n} - b_{j}^{n}} \right) - \frac{1}{2} \left(\frac{b_{j}^{n} - b_{j-1}^{n}}{b_{j+1}^{n} - b_{j}^{n}} \right) - \left(\frac{b_{j}^{n} + b_{j-1}^{n}}{b_{j+1}^{n} - b_{j}^{n}} \right) \left(\frac{b_{j}^{n} - b_{j-1}^{n}}{b_{j+1}^{n} - b_{j}^{n}} \right) - \left(\frac{b_{j}^{n} + b_{j-1}^{n}}{b_{j}^{n} + b_{j-1}^{n}} \right) \left(\frac{b_{j}^{n} - b_{j-1}^{n}}{b_{j}^{n} - b_{j-1}^{n}} \right) \right)$$

Sove be's on before		
$b(0,t)=b_B \qquad \qquad b(H,t)=b_T$		
ie wen j=0 wen j=J		
Sole equation for middle points	A N	
b (=,0) = b;(=), ie wen t=0		- (

c) Fourier analysis for stability for linearised discretisation:

Form for b is subbed into the discretised equation to give

$$b_{j}^{n} = \lambda^{n} e^{-ik_{j}\Delta z}$$

$$= b_{j}^{n} = \lambda b_{j}^{n}$$

$$Sub His into discretion version of eq 6$$

$$b_{j}^{n+1} = b_{j}^{n} \text{ into } (30C B \Delta z (b_{j}^{n} - b_{j-1}^{n}) - B B (b_{j}^{n} - 2b_{j}^{n} + b_{j-1}^{n})$$

$$\lambda b_{j}^{n} = b_{j}^{n} \text{ into } (30C B \Delta z (b_{j}^{n} - e^{-ik\Delta z} b_{j}^{n}) - B B (b_{j}^{n} - 2b_{j}^{n} + b_{j-1}^{n})$$

$$(b_{j}^{n} = b_{j}^{n} \text{ into } (30C B \Delta z (b_{j}^{n} - e^{-ik\Delta z} b_{j}^{n}) - B B (b_{j}^{n} - 2b_{j}^{n} + b_{j-1}^{n})$$

$$\lambda = |a_{j}| \text{ into } (30C B \Delta z (1 - e^{-ik\Delta z}) - B B (-2b_{j}^{n} + b_{j-1}^{n})$$

$$\lambda = |a_{j}| \text{ into } (30C B \Delta z (1 - e^{-ik\Delta z}) - 2B B (-1)$$

$$\lambda = |a_{j}| \text{ into } (30C B \Delta z (1 - e^{-ik\Delta z}) - 2B B (-1)$$

$$\lambda = |a_{j}| \text{ into } (30C B \Delta z (1 - e^{-ik\Delta z}) - 2B B (-1)$$

$$\lambda = |a_{j}| \text{ into } (30C B \Delta z (1 - e^{-ik\Delta z}) - 2B B (-1)$$

For stability the I λ I <1 as if it is greater than 1, λ ⁿ will increase every timestep and 'blow up' -> the solution will be unstable.

In the case where alpha = 0 and beta is non zero

$$1 + \alpha = 0 \quad \text{and} \quad \beta \neq 0$$

$$1 + 2\mu\beta Do^{3}(\cosh\Delta z - 1)$$

1 < 1 for shitten on bj: 1 e ikijsz	
11.2.003/ 11.11.1	
1+ 3m & Ro (cos kax-1)/ < 1	
$\sin^2 \frac{1}{2}\theta = \frac{1}{2} (1 - \cos \theta)$	
Williams and the contract of t	
F4	-
1 + 2/1 / B (coshax -1)	
= 1-4 m B B3(1(1-cwk4x))	
=> 1 - 4x1 & B 3 sin 2 (1/2 kAx) / < 1	
100	
Sin is +re so 1-4/1/20035in is alm	*
want 1-4,2,8 0, si 2 (2 hAx) >-1	
4,4B Do sin ((2kAx) < 2	
$ABB^3 \sin^2(\frac{1}{2}h4x) < \frac{1}{2}$	
mox when of sin2 (EhAx) is 1	
in that case $1/2$	r
$ABB^{3} < \frac{1}{2}$ $AC \frac{1}{2}BB^{3}$	

In the case that alpha is non zero and beta is 0:

Muliphying out books (1-A + A cos 0)2 = 1-2A + A2 + 2 A cos 0 - 2A2 cos 0 + A2 cos 0 sub boch in 1-2A + A2 + 2Acoo - 2A'cos 0 + A2 (cos 0+sin 8) X+2A2-2A+2Acod-2A200 <X 2A2- 2A + 2A coo - 2A2 coo < 0 A2 - A+A cost - A2 cost < 0 (A2-A) (1-cos 0) <0 2 sin 2 20 - cos0 = (A2-A) 2 sin 2 20 40 & if sin 20 =0. fruit asut it sin = 20 = 1 A- A <0 A (A-1) <0 ALI

d) Use the maximum principle to determine a suitable timestep for the discretisation of the linearised equation

	d) Maximum principle to determe a stable tire step for 6) Discretization of 6=>
	Discretization of 6=>
	b;"= b; - m (3 oc Do 12 (bi - bi-1) -
	$\beta D_{3}^{3} (b_{j-1}^{2} - 2b_{j}^{2} + b_{j+1})$
	gridpoint => bj, b
	Rearrange to find the weighting for each term: bj-1
	9804
	b) = b; - 130 Cb 12 b; # 18 Cb 26;
	+ 1 3 ac Di 12 bj-1 + 1 B Do3 bj-1
	· ·
	+ 18 Do3 bj+1
(1)	Weighting for bj = 1-30cm b21z -3mBB3
	•
(2)	Weighting for bj- = 3 cc/4 Do 12 + MB Do3
	Weighting For bj+1 = MB Po?
9	weight 5 101 0j+1 - MB 10
	a, pe, Do, B are all + ve tato
-	From moximum principle want by to be the moximum value. For the to hold we need
_	the maximum value. For this to hold we need
	be position or coefficients or non-negation. I ad I will always
	of method on a Mich of all actions

e) Derive stable time-step for non-linear example

$$b_{j}^{n+1} = b_{j}^{n} - 3\Delta_{2}\mu \alpha (b_{j}^{n})^{2}(b_{j}^{n} - b_{j-1}^{n}) + \frac{1}{2}\mu \beta (b_{j}^{n} + b_{j+1}^{n})$$

$$(b_{j+1}^{n} - b_{j}^{n}) - ((b_{j}^{n} + b_{j+1}^{n})(b_{j}^{n} - b_{j-1}^{n}))$$

0	WANT TO EXPAND DUCKETIZATION TO FIND + VE AND - VE TERMS
(A)	-31 zna(b) (b) - bj-1) => +31 zna(b) (bj-1)
	- 31 za cc (b;)3
8	+ zm B (bj + bj+1) (bj+1 - bj)
	$= \frac{1}{2} \mu \beta \left(b_{j}^{n3} b_{j+1} + b_{j+1}^{n+1} \right)$
	$-\frac{1}{2}\mu\beta b_{j}(b_{j}^{3}+b_{j+1}^{n-3})$
0	$=\frac{1}{2}\alpha\beta\left(b_{j}^{ns}+b_{j-1}^{ns}\right)\left(b_{j}^{n}-b_{j-1}^{n}\right)$
	$= -\frac{1}{2} \mu \beta \left(b_{j}^{n4} + b_{j}^{n} b_{j-1}^{n3} \right)$
	+ 12MB (b, 3b, 1 + b, -1)
	$= > -\frac{1}{2}\mu\beta b_{j}^{n} \left(b_{j}^{n3} + b_{j-1}^{n3} \right)$
	+ 2 ps (bj bj -1 + bj -1)
	Full disribus = bin+1 = bin + A + B + C
0	The take dems with A B ad C
	with always be posite, as coefficients as position ΔZ , in, it is so it $B_0^*>0$, then teno or position

2)a) **Steady state solution of equation**

(2a)						1
Sho	w that	steady	state	Solute of	4	7
	w that		*			
	dtb +	a (al	5° - βb	3 226):	0	
Satisfies	ВЬ	s db dz	= ab	2- Q		
			*			
·Steady	state	()	deb :	0		
hi	state a solely optial a	a hinet	a da	as F=	const	vt
<0	ntul	formities	22	, <u>d</u>	20.1010	
30 /		20.00	02	dŧ		
	$\frac{d}{dz}$ ($x = b$	3 - /	3 b3 dt	=	0	**
					,	
Ingrate 1	ntegrate w	1 5				
=>	3	13 db				
C	Cb3 -	136 de	= 1	2	Q:	Some
						Constant
4	36 de	- 00	L3 C)	113	
P	so de	2 1	.0 -0	(

	Euler forward spacial duartisals =>
1	
	$\frac{db}{dz} \approx \frac{b_{j+1} - b_j}{\Delta z}$
	dt At
	Sub in to equature
	$\beta b_j^3 \left(\frac{b_{j+1} - b_j}{\Delta z} \right) = \alpha b_j^3 - Q$
	$\frac{b_{j+1}-b_j}{\Delta z} = \frac{\alpha}{\beta} - \frac{\alpha}{\beta b_j^3}$
	$b_{j+1} = b_j + \Delta_z \left(\frac{\alpha}{\beta} - \frac{Q}{\beta b_j^2} \right)$
	USAgr+

This solution has been programmed in the file 'steadystate.py' and gives the following result for a gridsize of J=10000, delta_z =0.0001

Figure 1: Height vs. dike width for steady state solution, 10000 gridpoints used

b) Non-linear solver programmed within 'nonlinear solver.py'. The criteria from part e) was used to pick a suitable timestep for each iteration. For each iteration the maximum time step was calculated for each value of j (as maximum timestep is dependent on B(j, n), B(j+1,n) etc.) and the smallest value chosen in order to ensure stability for all points. Plots were generated for the specified grid sizes (J= number of points) and times (t):

Figure 2: Height vs. dike width for steady state and time dependant solutions, J=11

Figure 3: Height vs. dike width for steady state and time dependant solutions, J=21

Figure 4: Height vs. dike width for steady state and time dependant solutions, J=41

As the time increases, the time dependant solution approaches the steady state solution, with results for t=0.5,1 and 2 being indistinguishable on the plot. **Figure 5** shows the results for a grid size of 41 used for the time dependant result, against a higher resolution steady state result with the number of grid points in steady state

simulation (J_ss) equal to 10000, as in 2a. A higher resolution steady state solution is closer to the time dependant solution.

Figure 5: Height vs. dike width for steady state and time dependant solutions, with high resolution steady state solution ($J_s=10000$)

c) Code used for these solutions is in the files 'l2norm.py' and 'question5c.py'. Error was calculated between the time-dependant solution (calculated at t=2) and the steady-state solution, calculated using J_ss=100001 grid points. I observed that for coarser grids in the time dependant solution (J=11,21) the error decreased at the last point, whereas for finer meshes (J=41) it increased, as shown in **Figures 6 and 7.**

Figure 6: Error^2 vs Z for a grid of 21 points used for solution at t=2, b_t = 0.585373798

Figure 7: Error 2 vs Z for a grid of 41 points used for solution at t=2, b_t = 0.585373798

I concluded this was to do with the boundary condition imposed, $b(H,t)=b_t$. I therefore changed my value of b_t to the final value in my steady state solution, $b_t = 0.58144799$. From this I found the results shown in **Figure 7** and **8**. The graphs now follow the same behaviour: error increases with iterations (Z increasing) however decreases close to the

boundary condition. However, through comparing these graphs, it can be seen that the error for earlier points has increased for the new value of b_t. I decided to calculate the L^2 norm using the revised values for b_t, as I will be more accurately able to estimate the integral of a function without jumps. This is a possible area to be refined.

Figure 7: Error^2 vs Z for a grid of 21 points used for solution at t=2, b_t = 0.58144799

Figure 8: Error^2 vs Z for a grid of 41 points used for solution at t=2, b_t = 0.58144799

The L^2 norm was calculated using Equation 11, with the area under the graphs estimated using the trapezoid rule.

$$L^{2} = \sqrt{\int_{0}^{H} e^{2}(z, t) \, \mathrm{d}z}$$
 (11)

The l^2 norm was calculated for J=11,21,31,41,51,61,71,81 , corresponding to delta_z values of 0.0125 to 0.1.

