Optimal Mixed Strategies for Cost-Adversarial Planning Games

R. Horčík ¹ Á. Torralba ² P. Rytíř ¹ L. Chrpa ¹ S. Edelkamp ¹

¹Czech Technical University in Prague

²Aalborg University

2-Player Normal Form Games

Formally, 2NFG is $\langle X, Y, u_1, u_2 \rangle$ where

X,Y are sets of Row's and Column's players pure strategies $u_1\colon X\times Y\to \mathbb{R},\, u_2\colon X\times Y\to \mathbb{R}$ utilities

Game is zero-sum if $u_1(x,y) + u_2(x,y) = 0$. It is almost zero-sum if $u_1(x,y) + u_2(x,y) = f(x)$.

Nash Equilibrium

Mixed strategy is a prob. distribution $p \colon X \to [0,1]$ (resp. $q \colon Y \to [0,1]$)

Best response w.r.t. q is p' such that

$$u_1(p',q) = \max_{p} u_1(p,q)$$

Definition: Pair of strategies $\langle p^*, q^* \rangle$ is Nash Equilibrium if p^* and q^* are mutually the best responses w.r.t. each other.

For zero-sum games NE can be computed in P-time by LP.

For large games, use an iterative method like Double Oracle based on the best response computations.

Extensive Form Games

Strategies as Plans

EFGs can be presented as NFGs.

Pure strategies are policies of the form $\pi: State \to Action$.

Observation

If we need to prepare the whole action sequence in advance, we can model pure strategies as plans!

The cost of a plan is the opposite of our utility and opponent's strategy influences the action costs.

Cost-Adversarial Planning Games

 Π — planning task $\mathcal{P}(\Pi)$ — set of all its plans c — base cost function \mathcal{C} — finite set of cost functions

Cost-Adversarial Planning Game (CAPG)

is an almost zero-sum game $\langle \mathcal{P}(\Pi), \mathcal{C}, u_1, u_2 \rangle$ where $u_1(\pi, g) = -c(\pi) - g(\pi), \quad u_2(\pi, g) = g(\pi)$ for $\pi \in \mathcal{P}(\Pi)$ and $g \in \mathcal{C}$.

The best response w.r.t. a cost function is the optimal plan!

CAPGs can be solved by Double Oracle + optimal planner.

Patrolling Games

Location 6 - 70%, other locations - 30%

Poacher's Mixed Strategy

Guard's Mixed Strategy

Experiments

	ipdb		Imcut		ms	
domain	NE	COV	NE	COV	NE	COV
patrol				90		
transport	13	14	9	11	11	11
transport-road	13	14	10	11	11	11
data-network	3	12	3	12	3	10
visitall ¹¹	11	16	9	10	9	9

NE found in almost all cases when the optimal planner solved the base planning task.