

Fully Autonomous Intralogistic Swarm Experiment (FAISE)

Betreuer

Betreuer 1 Betreuer 2

Betreuer 3

 $\frac{\text{Projektbeginn:}}{\text{Projektende:}} \quad \begin{array}{c} 10.11.2013 \\ 30.11.2014 \end{array}$

 $\underline{\text{Kontakt}}$

PLZ Ort

Telefonnummer

faise@uni-oldenburg.de

http://www.faise.uni-oldenburg.de

Inhaltsverzeichnis Inhaltsverzeichnis

Inhaltsverzeichnis

Glo	ossar	3
Sy	mbolverzeichnis	3
Αb	Abbildungsverzeichnis	
Ta	bellenverzeichnis	4
1.	Einleitung	5
2.	Stand der Technik 2.1. Fahrerlose Transportsysteme	6 8
3.	Projektorganisation	12
Α.	Anhang	13
Lit	Literaturverzeichnis	
В.	Abschließende Erklärung	15

Inhaltsverzeichnis Inhaltsverzeichnis

Glossar

Symbolverzeichnis

Abbildungsverzeichnis

1.	Prinzipskizze zur induktiven und optischen Spurführung (Quelle: Günter	
	Ullrich, 2011 S. 79)	9
2.	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Trans-	
	pondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	10
3.	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Trans-	
	pondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	10
4.	Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Trans-	
	pondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)	11

Tabellenverzeichnis

1. Einleitung

TODO ...

2. Stand der Technik

Die Fahrerlose Transportsysteme und die Materialflusssysteme sind Prozesse der Logistik. In den vergangenen Jahren hat die Verbreitung Fahrerlose Transportsysteme (FTS) stark zugenommen. Beim Einsatz von FTS stellen sich vielfältige Konfigurierungs- und Planungsprobleme, so auch die Eisatzplanung für die einzelnen Fahrerlosen Transportfahrzeuge. (vgl. Günther; Krüger; Schrecker; 2000, S. 2). Der innerbetriebliche Materialfluss von Industrieunternehmen bietet fahrerlosen Transportsystemen (FTS) zahlreiche Einsatzgebiete: Sie verketten Produktionsprozesse, verknüpfen Fertigungsstationen oder ganze Betriebsbereiche und beschicken Montageplätze. Darüber hinaus dienen sie als mobile Werkbank oder versorgen und entsorgen Lager unterschiedlicher Art. Um die Systemvorteile von Fahrerlosen Transportsystemen und Materialflusssysteme zu optimieren, braucht man ein massgerechtes Wissen auf Ihr spezifisches Anlagekonzept abzustimmen. Allerdings wichtige Kriterien sind z.B. die Einbindung der Fahrerlosen Transportsysteme in den gesamtbetrieblichen Materialfluss, die Anpassung an die vorhandenen Steuerungshierarchien und die optimale Auslegung der Technik in Bezug auf Fahrzeugbauart, Lastaufnahmemittel, Energiekonzept, Kommunikation und Leitsystem. (vgl. Werner Swoboda, Industrie Anzeiger). Ziele von Fahrerlosen Transportsystemen und Materialflusssystemen sind Kostensenkung durch Personaleinsparung, Verringerung von Transportschäden, hohe Zuverlässigkeit in Vorgängen und bessere Materialflussplanung. Dieses Kapitels wird in drei Teile gegliedert. Das erste Teil wird über die Fahrerlose Transportsystem vorstellen und erklären bzw. die Fahrerlose Transportfahrzeuge, die Orientierungs- und die Steuerungssystem; das zweite Teil ist eine Darstellung der Materialflusssysteme und seine verschiedene Funktionen und das dritte Teil wird erklären, wie fahrerlose Transport- und Materialflusssysteme in großer Firmen wie Volkswagen und BMW Anwendung findet.

2.1. Fahrerlose Transportsysteme

Nach Verein Deutscher Ingenieur 2510 bestehen FTS im Wesentlichen aus "einem oder mehreren Fahrerlosen Transportfahrzeugen (FTF), einer Leitsteuerung, Einrichtung zur Standortbestimmung und Lagererfassung, Einrichtungen zur Datenübertragung sowie Infrastruktur und peripheren Einrichtungen". In seinem Buch Transport und Lagerlogistik fasst Martin die Definition von VDI 2510 eines FTS zusammen. Er beschreibt ein FTS als mit FTF ausgestattete rechnergesteuerte Materialflussanlagen zum automatischen Transport von Gütern im innerbetrieblichen Materialfluss. (vgl. Martin H, 2006, S.262f). Bei FTS handelt es sich um Flurgebundene Fördersystemen mit automatisch geführten FTF. Die einzelnen FTF befördern Ladungsträger zwischen zwei oder mehrere

Stationen innerhalb eines Gebietes. Die Fahrzeugsteuerung wird automatisch und rechnergestützt erfolgt. Der Einsatzbereich von FTS ist generell überwiegend innerbetrieblich ausgerichtet. In diesen Rahmen übernehmen FTS sowohl reine Förderaufgaben, wie Verkettung von Fertigungs- und Montageeinrichtungen als auch Aufgaben der Lagerbedienung und Kommissionierung. (vgl. Günther; Krüger; Schrecker; 2000, S. 3). Das FTS ist eine Technik, die im Vergleich gegenüber Stetigfördersystemen zum Vorteil hat, die hohen Anpassungsfähigkeiten an den ändernden Marktsituationen. Daher die Forschungs- und Entwicklungsaktivitäten konzentrieren sich heutzutage auf die sog. âZellulare Fördersystemeâ, in welchen stetige Förderanlagen zur Verknüpfung von Logistischen Funktionen durch individuelle, autonom arbeitende FTF ersetzt werden (vgl. Ten Hompel; Heidenblut, 2008). Die Haupteinsatzgebiete des FTS liegen nun in der Intralogistik. Also bei der Organisation, der Steuerung, der Durchführung und der Optimierung des innerbetrieblichen Waren- und Materialflusses und Logistik, der Informationsströme sowie des Warenumschlags in Industrie, Handel und öffentlichen Einrichtungen. Z.B. Automobilund Zulieferindustrie, Papiererzeugung und averarbeitung, Elektroindustrie, Getränke-, Lebensmittelindustrie, Baustoffe, Stahlindustrie, Kliniklogistik (Günter Ullrich, 2011 S. 13). FTS bestehen im Wesentlichen aus drei Systemkomponenten: Die Fahrerlose Transportfahrzeuge, das Orientierungssystem, das Steuerungssystem. Fahrerlose Transportfahrzeuge Die FTF sind flurgebundene Fördermittel mit eigenem Fahrantrieb, die automatisch geführt, gesteuert und berührungslos geführt werden. Sie dienen dem Materialtransport, und zwar zum Ziehen und/oder Tragen von Fördergut mit aktiven oder passiven (FTF mit passiver Lastaufnahme werden von anderen Fördermitteln gezogen oder manuell mit den Gütern bestückt) Lastaufnahmemittel (VDI 2510). Da das FTS mit Fahrerlosen Aspekten Systematisiert ist, ergibt sich dann aus den funktionalen Ebene Unterschieden zu fahrerbedienten Fahrzeugen, wie z. B. den klassischen Gabelstaplern und FTF: In Rahmen dieser Arbeit wird es nur eine Kategorie von FTF tiefer eingegangen: das Mini-FTF. Die Mini-FTF sind kleine, schnelle, intelligente und flexible Fahrzeuge, die extrem schnell Bedürfnisse befriedigen können. Heutzutage arbeiten viele Universitäten in der ganzen Welt in Swarm bzw. Schwärme-Experiment. Hier die kleine FTF sollen intelligent miteinander arbeiten. Die Fahrzeuge sollen sich ohne eine eigene separate FTS-Leitsteuerung untereinander verständigen, Strategien entwickeln und gemeinsam Arbeiten ausführen. Die Forschungsgebiete heißen Agentensysteme und Schwarmtheorie. Die Mini-FTF können nur intralogistische Aufgaben auffüllen. Dennoch sind viele unkonventionelle Einsatzfälle denkbar. Die Kommissionierung (eine ausführliche Begriffserklärung wird im Teil Materialfluss gegeben) ist die verbreite Anwendungsmöglichkeit von Mini-FTF (Günter Ullrich, 2011 S. 105). Als Zusammenfassung kann man sagen, dass die Fahrzeugsteuerung die Systemsicherheit, das Energiemanagement, das Lastaufnahmemittel und die Lenkung eines FTF gewährleistet. Eine FTF kann ohne Energie nicht funktionieren. Damit ein FTF seine Aufgabe erfüllen kann, ist eine Energieversorgung notwendig. Die Energie kann durch Akkus oder Traktionsbatterien oder mit Hilfe eines Induktionssystems oder Stromschiene versorgt werden. Jedoch können die beiden Versorgungsarten gekoppelt werden, um einen Hybridsystem zu bekommen. Die Notwendigkeit der Existenz eine Ladestation in einem FTS ist unumstritten. Die FTF müssen immer mit Energie versorgt werden. Je nachdem wie die FTF programmiert sind, kann ein FTF selber zur Ladestation beim Energiebedarf fahren, oder kann ein Auftraggeber (Mensch) es zu Ladestation führen.

2.1.1. Orientierungssystem bzw. Navigation

Das Orientierungssystem bzw. die Navigation dient zur Lokalisierung des Fahrzeugs. Sie ist ein Hilfsmittel zur Berechnung des sichersten Wegs um das Ziel zu erreichen. Ausserdem dient die Navigation auch zur Vermeidung von eventuellen Kollisionen. Sie gilt sowohl als für die Orientierung als auch für die Sicherheit des Fahrzeuges und sein Umfeld. Während seiner Bewegung bzw. Orientierung folgt das FTF einer physischen oder virtuellen Linie (Spur), damit es sein Ziel Gefahrlos erreichen kann. Allerdings aufgrund eines Sicherheitssystems sollte das FTF sofort anhalten, wenn Hindernisse oder Kollisionsgefahr vor ihn stehen. Mit Navigationshilfe kennt man nicht nur die Positionierung und Orientierung des Fahrzeuges sondern auch wohin das Fahrzeug gelangen würde, wenn keine auf seine Bewegung verändernden Massnahmen ergriffen wurde. Die Steuerung sagt was zu tun ist, und die Navigation bestimmt durch welchen Weg das Fahrzeug dem gewünschten Ziel sicher zu erreichen ist bzw. auf einem vorgegebenen Weg zu verfolgen oder eine alternative Weg zu nehmen. Die Steuerung von fahrerlosen Transportfahrzeugen, deren Grundfunktionen und der Umgang mit diesen werden in den VDI- Richtlinien [VDI92], [VDI94], [VDI04] vorgestellt. Für das Konstrukt von fahrerlose Transportsysteme werden verschiedene Ansätze verfolgt, die abhängig vom System verschiedene Konstruktionsbemühungen auf das Fahrzeug oder auf der Strecke erfordern. Es gibt mehrere Navigationsverfahren: die physische Leitlinie, die Orientierung durch Magnetmarken, das Global Positioning System (GPS) und die Lasernavigation (vgl. Günter Ullrich, 2011 S. 112).

- Die physische Leitlinie: Fahrerlose Transportsysteme, die auf physischen Leitlinien navigieren bzw. fahren, benutzen Einrichtungen am oder im Fussboden. Die verschiedenen Varianten sind:
- Orientierung durch optische Leitspur: Bei dieser Methode wird ein farbstrich mit deutlichem Farbkontrast zum umgebenden Boden entweder lackiert oder mit

einem speziellen Gewebeband aufgebracht wird. Eine geeignete Kamerasensorik unter dem Fahrzeug nutzt ebenfalls Kantendetektions-Algorithmen und errechnet so die Ansteuerungssignale für den Lenkmotor (Günter Ullrich, 2011 S. 112). Optische Verfahren dienen durch eine ständige Kurskorrektur eine hohe Fahrgenauigkeit zu erreichen.

• Orientierung durch induktive Leitspur: Diese Methode der Navigation fahrerloser Transportfahrzeuge ist profitabel aufgrund der permanenten Kurskorrektur und ist ausserdem besonders zuverlässig und fahrzeugseitig durch die Nutzung einfacher Komponente. Es ist möglich, die Stromversorgung der Fahrzeuge fahrbahnseitig zu realisieren, so dass die Nutzung schweren Akkumulatoren entfällt. Jedoch sind Systeme mit Leitdrahtsteuerung nicht flexibel und sie sind in der Konstruktion sehr teuer.

Abbildung 1: Prinzipskizze zur induktiven und optischen Spurführung (Quelle: Günter Ullrich, 2011 S. 79)

- Orientierung durch Magnetmarken: Eine weitere Möglichkeit der Steuerung ist die Abtastung von Magnetstreifen oder magnetischen Markierungen auf der Strassenoberfläche. Dabei bedarf es zur Berechnung der Leitlinie einerseits der Koppelnavigation, zusätzlich der für die Peilung in regelmässigen Abständen in den Boden eingelassenen Marken. Diese Marken können rein passive Dauermagnete oder aber quasi-aktive Transponder sein (Günter Ullrich, 2011 S. 80). Das Bild 2 ist eine Repräsentation der Navigation durch Magnetstreifen.
- Bei der Lasernavigation bestimmt der Laserscanner die Position des FTF, dazu kommen noch optische Sensoren für Hinderniserkennung z.B. Mensch. Lasergeführte FTS bieten einen hohen Wert an Flexibilität, da sie ohne Bodeninstallation funktionieren. Nur bei engerem Raum, kann die Lasernavigation nicht so effizient wie z.B. eine induktive Spurführung sein, wenn viele Fahrzeuge zum Einsatz kommen. Um

Abbildung 2: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

die Systemvorteile eine Lasernavigation optimal zu benutzen, benötigt man allerdings ein passendes Anlagenkonzept. Die wichtigen Kriterien sind: die Einbindung in den gesamtbetrieblichen Materialflusssystem, die Anpassung an die vorhandenen Steuerungshierarchien und die optimale Auslegung der Technik in Bezug auf Fahrzeugbauart, Lastaufnahmemittel, Energiekonzept, Kommunikation und Leitsystem. Ein Aspekt, der für das Laser-geführte FTS spricht, ist die Wirtschaftlichkeit. Und dies trotz der Alternativen Elektro-, Low-Cost- sowie induktiv geführtes FTS. Letztere lassen sich so einrichten, dass sie auch auf leitdrahtlosen, rein rechnergeführten Teilstrecken verkehren können. Keinerlei kostenintensive Bodeninstallation benötigt dagegen das über Lasersensor gesteuerte, völlig frei navigierende Laser-FTS. Die Fahrzeuge orientieren sich lediglich an im Raum verteilten Reflektoren und mit Hilfe der Kombination von Winkel- und Distanzmessung. (Werner Swoboda, Industrie Anzeiger). Das Bild 4 ist eine Visualisierung der Lasernavigation.

Abbildung 3: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

• Orientierung durch GPS: Seine Anwendung im Bereich der Fahrzeugsteuerung wird in Form des DGPS eingesetzt, die als Referenzsignal dient. DGPS bedeutet differential GPS und meint die Verwendung eines zusätzlichen GPS-Empfängers, der

nicht auf dem FTF, sondern stationär fest installiert ist. Mit Hilfe dieses ortsfesten GPS-Empfängers wird der sich zeitlich ändernde Fehler ermittelt, der dem GPS-System eigen ist. Mit Hilfe dieser Kenntnis können zeitgleich die fahrenden GPS-Empfänger auf den FTF exakte Positionen ermitteln (Quelle: Günter Ullrich, 2011 S. 27). Diese Navigationstechnik braucht eine freie Sichtkegel von 15 Grad nach oben (siehe Bild 4), m zuverlässig arbeiten zu können. DieSchritte zur Erlangung der erforderlichen Fahr- und Positioniergenauigkeit sind:

- Prüfung der örtlichen Gegebenheiten, insb. der Empfangsstärken der Satelliten
- Einsatz des Differential-GPS
- Real Time Kinematic Differential GPS.

Abbildung 4: Prinzipskizze zur Koppelnavigation (links) und zur Magnet- bzw. Transpondernavigation (rechts) (Quelle: Günter Ullrich, 2011 S. 79)

Im Rahmen des Projekt FAISE wird die Navigation durch den Laser durchgeführt. Es kann hier kein Global Positioning System (GPS) verwendet werden, da das ganze Experiment in einem geschlossenen Raum gemacht wird. Weiterhin es kann auch keine Navigation durch die physische Leitlinie oder durch die Stützpunkte im Boden erzielt, weil der Boden gebrochen werden müsste.

2.1.2. Steuerungstechnik

Die interne Materialflusssteuerung ist eine Vorstufe der Transportauftragsabwicklung und wird nur dann benötigt, wenn die Transportaufträge nicht klar dezidiert übertragen, sondern aufbereitet werden müssen. Eine Anforderung wie z. B. benötige Ware A an Maschine B erfordert eine Umsetzung in einen oder mehrere Transportaufträge nach dem klassischen Muster. Hole von C und Bringe nach D. Die FTS-interne Materialflusssteuerung kombiniert also Quelle und Senke über die in ihr hinterlegten Transportbeziehungen zu einem Transportauftrag und schickt diesen zur Durchführung an die Transportauftragsverwaltung. Diese ganze Transportauftragsverwaltung ist in der FTS-Leisteuerung geregelt. Die

FTS-Leitsteuerung ist die Kommandozentrale, um das FTS in das Umfeld zu integrieren. Außerdem steuert es die FTF, die sich im System befinden. Damit ist das FTS dann in der Lage, die ihm übertragenen Aufträge zu erfüllen. "Eine FTS-Leitsteuerung besteht aus Hard- und Software. Kern ist ein Computerprogramm, das auf einem oder mehreren Rechnern abläuft. Sie dient der Koordination mehrerer Fahrerloser Transportfahrzeuge und/oder übernimmt die Integration des FTS in die innerbetrieblichen Abläufe." (VDI 4451). Die Leitsteuerung bringt das FTS in seinem Umfeld zusammen, bietet seinen Bedienern vielfältige Service-Möglichkeiten und nimmt Transportaufträge entgegen. Weiterhin stellt sie den Aufgaben entsprechende Funktionsblöcke zur Verfügung. Die FTS-Leitsteuerung ist der Kern der FTS. In Rahmen des Projekt FAISE, wird es auch eine Leisteuerung benötigt. Eine Leitsteuerung ist nur mit Hilfe eine Systemarchitektur zu implementieren und zu verstehen. In seinem Buch Fahrerlose Transportsysteme, hat Günter Ulrich zwei verschiedene Systemarchitekturen dargestellt. Eine für eine einfache FTS und eine andere für eine komplexe FTS. Da es bei FAISE nur mit vier FTF gearbeitet wird, ist es sinnvoll mit einer einfachen Systemarchitektur zu arbeiten. Das Bild 3 ist eine Repräsentation einer einfachen Systemarchitektur.

Abbildung 5: Die Systemarchitektur eines einfachen FTS (Quelle: Günter Ullrich, 2011 S. 93)

Es gibt eine geringe Anzahl von FTF, mit denen die Leitsteuerung per WLAN in Verbindung ist. Außerdem gibt es ein LAN, über das es eine direkte Verbindung mit einem übergeordneten Rechner gibt, von dem die Transportaufträge kommen. über die angedeutete Telefonleitung ist eine VPN-Verbindung zur Ferndiagnose eingerichtet. Die Datenübertragung zu den übergeordneten Host-Rechnern erfolgt meist über lokale, Ethernet basierte Netzwerke mit dem Protokoll TCP/IP. Solche Host-Rechner können beispielweise Materialflusssteuerungssysteme zur Produktionssteuerung (z. B. SAP) Produktionsplanungssysteme (PPS) Lagerverwaltungssysteme (LVS) sein.â(vgl. Günter Ullrich, 2011 S. 96). Außerdem nach der VDI 4451(Blatt 3) âzum internen Umfeld der FTF-Steuerung gehören das Lastaufnahmemittel (LAM), Sensoren und Aktoren, Bedienfeld am Fahrzeug und das Sicherheitssystem. Das externe Umfeld besteht aus der FTS-Leisteuerung, anderen FTF, automatischen Stationen und Gebäudeeinrichtungenâ. Die Abbildung 1 stellt eine Darstellung eine FTF-Steuerung und ihr Steuerungsumfeld dar. Die administrative Ebene, die

Abbildung 6: Allgemeine Darstellung einer FTF-Steuerung mit Datenschnittstellen (vgl. VDI 4451)

häufig über einen stationären Leitrechner realisiert wird, verwaltet die Transportaufträge der ganzen Materialflusssteuerung. Die operative Ebene, die auch als Fahrzeugsteuerung bezeichnet wird, erhält ihre Informationen über die Fahrzeugdisposition der administrativen Ebene. Der Funktionsblock Kommunikation leitet den stattgefundenen Datenaustausch zum Manager weiter. Dieser sorgt für die Koordination, indem er die Fahraufträge in einzelne Befehle aufteilt, sowie für ein reibungsloses Zusammenwirken der einzelnen Funktionsblöcke. Neben dem Block Kommunikation sind weitere Blöcke vorhanden. Dazu gehört für die gesamte Lastübergabe inklusive der Lastlagererfassung verantwortliche Lastaufnahme, das Energiemanagement, welches den Lade- und Allgemeinzustand der Batterien überwacht, und der Block überwachung/Sicherheitsschnittstelle, welcher zum Schutz der Personen und Sachgegenstände dient. Der Funktionsblock Fahren und die damit verbundene Sensorik bzw. Aktorik koordinieren die Ablaufsteuerung der Funktionen des Orientierungssystems (Langenbach Maik, 2012, S. 33).

2.2. Materialflusssysteme

Damit ein Produkt auf den Markt kommen kann, muss man ihn denken, ihn erstellen und dann ihn vermarken. Die Produkterstellung und -vermarktung sind Prozesse des Wirtschaftens. Vorprodukte oder Materialen werden von Beschaffungsmärkten in die Unternehmen geführt und dort werden sie durch besondere Produktionsprozesse transformiert. Am Ende der Produktion, steht ein Endprodukt, der für den Konsum bereits ist. Die Produktion und Logistik von Gütern sind daher sehr wichtige Bereiche für den Unternehmenserfolg. Allerdings führen heute die unterschiedlichen Ausprägungen der Logistik z.B. in Produktions-, Handels-, oder Verkehrsunternehmen zu einer terminologischen Differenzierung der Logistik. Der Materialflussbegriff leitet sich einfach von dem logistische Konzept ab, in anderen Wörtern das Materialflusssystem führt in der Logistik zurück. Die Abbildung 2. dient zur Erläuterung einer konventionellen Wertschöpfungskette.

Abbildung 7: Elemente einer Wertschöpfungskette (vgl. Wulz, J, 2008, S. 7)

Der Begriff Materialfluss bedeutet die Verkettung aller Prozesse bei der Beschaffung, Bearbeitung, Verarbeitung sowie bei der Distribution von Gütern innerhalb festgelegter Bereiche. Deswegen lässt sich der Materialfluss in vier Stufen unterordnet: externer Transport, betriebsinterner Materialfluss, gebäudeinterner Materialfluss und Materialfluss am Arbeitsplatz. Nach dem Verein Deutscher Ingenieur bzw. VDI-241 beinhaltet die Logistik fünf Hauptfunktionen. Diese Funktionen sind Bearbeiten, Prüfen, Handhaben, Fördern, Lagern und Aufenthalten. Neben diesen Hauptfunktionen zählen auch Nebenfunktionen wie z.B. Montieren, Umschlagen, Kommissionieren, Palettieren und Verpacken (VDI 2411). Jedoch ist auf der Ebene des Materialflusssystems nur drei Funktionen zu berücksichtigen: Fördern, Lagern, Handhaben. Die anderen Funktionen setzen sich normalerweise aus den erläuterten Funktionen zusammen. Dieses Arbeitsteil wird in zwei Teile gegliedert. Im ersten Teil werden die drei Funktionen der Materialflusssysteme vorgestellt Im zweiten Teil wird eine Planung von Materialflusssystemen dargestellt.

Funktionen von Materialflusssystemen

• Funktion Fördern

Fördern bedeutet Transportieren und ist eine der wichtigsten Aspekte innerhalb des Materialflusssystems. Nach der VDI 2411 ist Fördern das Fortbewegen von Arbeitsgegenständen in einem System. âDie Fortbewegung oder Ortveränderung von Gütern oder Personen mit technischen Mitteln wird allgemein als Transport bezeichnet. Findet diese Ortsveränderung in einem räumlich begrenzten Gebiet wie beispielsweise innerhalb eines Betriebes oder Werkes statt, so wird dieser Vorgang durch den Begriff Fördern präzisiert. Das Fördern bzw. die Fördertechnik umfasst also das Bewegen von Gütern und Personen über relativ kurze Entfernungen einschließslich der dazu notwendigen technischen organisatorischen und personellen Mittelâ(Ten Hompel, Schmidt, Nagel, 2007, S. 119). Das Fördermittel (technisches Transportmittel, zur Ortsveränderung von Gütern oder Personen) und das Förderelement bilden das physikalische Bestandteil eines Fördervorgang. Der Ablauf und die Steuerung werden durch den Fördervorgang dargestellt. In Punkto Fördermittel kann auf verschiedenste Elemente der Materialflusstechnik zurückgegriffen werden. Dies umfasst unter anderen Rollenbahnen, und FTS. Neben der Möglichkeit auf automatisierte Fördermittel zurückzugreifen, kommen auch manuell mechanisierte bzw. rein manuelle Systeme zum Einsatz. In diesem Fall ist der Mensch oder der Bediener eines Fördermittels wesentlich für den Ablauf eines reibungslosen Materialflusses in Zusammenspiel mit den physikalischen Elementen sowie dem Prozessablauf verantwortlich. (Wulz, J. 2008, S. 8). Das Bild 4 gilt als Beispiel eines Fördersystems.

Abbildung 8: Beispiel eines Stetigförderer (entnommen aus Ten Hompel, Schmidt, Nagel, 2007, S. 131)

• Funktion Lagern

Das Lagern ist jedes geplante Liegen des Arbeitsgegenstandes im Materialfluss. Das Lager ist ein räumlich abgegrenzter Bereich bzw. eine Fläche zum Aufbewahren von Stück- und/oder Schüttgütern in Form von Rohmaterialien, Zwischenprodukte oder Endprodukte, das mengenmässig erfasst wird (VDI-2411). Die Einlagerung von Lagereinheiten, die Aufbewahrung und Bereithaltung von Lagereinheiten auf Lagerplätzen und die Auslagerung einer Lagereinheit, sind die grundlegenden Prozesse in einem Lager. Aufgrund der starken Veränderungen im Markt, müssen auch die unternehmerischen Abläufe an Lagersysteme schnell angepasst werden. In einem Lagersystem werden im Verlauf des Materialflusses Speicher- bzw. Lagerfunktionen sowie Förderfunktionen wahrgenommen. Aufgabe eines Lagers ist das Bevorraten, Puffern und Verteilen von Gütern. Während Vorratslager lang- und mittelfristige und Pufferlager kurzfristige Bedarfsschwankungen ausgleichen sollen, erfüllen Verteillager neben der Bevorratungs- noch eine Kommissionierfunktion. Daher können die Aufgaben eines Lagers anhand folgender Ausgleichsmassnahmen beschrieben werden: Zeitausgleich, Mengenausgleich, Raumausgleich und Sortimentsausgleich. (Stich, V.; Bruckner, A.; 2002). Ein Zeitausgleich ist immer dann erforderlich, wenn die Zeitfunktion der Nachfrage nicht der Zeitfunktion der Produktion entspricht. Beispielsweise steht eine losgrössenoptimierte Fertigung einer saisonalen Nachfrage gegenüber. Gerade in Bereichen mit Serienfertigung, in denen aus Kostengründen in der Regel grössere Mengen als die Nachfragemengen produziert werden, muss Mengenausgleich vollzogen werden. Sobald der Produktionsort nicht mit dem des Produktabnehmers übereinstimmt, findet mit Hilfe von Verkehrsträgern ein Raumausgleich statt. Mit zunehmender Sortimentsbreite steigt die Wahrscheinlichkeit, dass die Anzahl der Produktionsstandardorte steigt. (Lagenbach, M, 2012, S. 14).

• Funktion Handhaben

Der Begriff Handhaben wurde gedanklich von de menschlichen Hand abgeleitet, wird aber auch für automatische ablaufende Vorgänge zur Manipulation von Objekten gebraucht. Handhaben bedeutet etwas greifen, bewegen und an einem bestimmten Ort ablegen. Das heißt, durch Handhaben wird die Lage oder Position von Objekten geändert. Im übertragenen Sinne bedeutet handhaben auch bewerkstelligen bzw. praktisch ausüben. Von Handhabungstechnik spricht man, wenn für die Handhabung Geräte eingesetzt werden. Die Richtline VDI 2860 definiert die Funktion Handhaben als âdas Schaffen, definiertes Verändern oder vorübergehendes Aufrechterhalten einer vorgegebenen räumlichen Anordnung von geometrisch bestimmten Körpern.â Die Teilfunktionen des Handhabens stellen das Speichern, das Bewegen, das Sichern, das Kontrollieren und das Verändern von Gütern dar. Das Handhaben kann sowohl als eine Funktion als auch eine Fertigung des Materialflusses betrachtet werden. Eine mögliche Handhabungsfunktion im Materialfluss ist z.B. das Palettieren, worunter die Stapelung von Stückgütern zu einem Stückgutstapel nach einem gewissen Muster verstanden wird. Handhabungsfunktionen können entweder von Automaten z.B. Roboter oder von Menschen durchgeführt werden. Auf Grund der Greifflexibilität ist der Mensch jedoch meist unübertroffen in der Handhabung.

2.3. Fallbeispiele

2.3.1. FTS in der Gläsernen Manufaktur Dresden (Volkswagen)

Volkswagen AG montiert das neue Modell der Luxusklasse PPhaetonin der "Gläsernen Manufakturin Dresden. Die Materialversorgung übernimmt ein fahrerloses Transportsystem mit 56 frei navigierenden Fahrzeugen. Die gesamte Steuerungs- und Navigationstechnik stammt von FROG Navigation Systems, dem Projektpartner des Generalunternehmers AFT (Mechanik). Die Produktion ist auf drei Ebenen unterteilt: . Die eigentliche Montage findet auf den beiden oberen Montageebenen statt: Die Rohrkarosse befindet sich auf einer Montageplattform, die Teil des Schuppenbandes ist, das sich sicher in den Hallenboden einfügt und mit konstanter Geschwindigkeit durch die Montagezyklen bewegt. Danach erfolgt die übergabe an eine schwere Elektrohängebahn (EHB) zur Hängemontage. Während der Hängemontage erfolgt die Hochzeit, d. h. das Zusammenfügen von Karosse und Triebsatz, wobei der Triebsatz von einem Fahrerlosen Transportfahrzeug (FTF) herangebracht wird. Anschließend wird die Karosse wieder auf eine Schubplattform, die sog Schuppe, zur Komplettierung und Qualitätskontrolle gestellt.

Im Untergeschoss, der Logistikebene, wird die verbauende Ausrüstung zur Verfügung gestellt und in Betrieb genommen. Die FTS überminnt die Versorgungsleitungen der Materialien und damit eine erhebliche logistische Funktion . Um zwischen den Ebenen zu wechseln, nutzen die automatischen Fahrzeug-Hebebühnen . Das FTS hat die grundsätzliche Aufgabe, die Montagelinien (Schuppenband oder EHB) zu versorgen. Dabei wird allerdings zwischen folgenden sechs Gewerken unterschieden:

- 1. Anlieferung von Warenkörben auf die Schuppe
- 2. Anlieferung von Schalttafeln (Cockpits)
- 3. Anlieferung von Kabelsträngen
- 4. Anlieferung des Triebwerks mit Fahrwerk und Ausführung der Hochzeit
- 5. Anlieferung von Warenkörben zur Hängemontage
- 6. Anlieferung der Türen plus Warenkörbe

2.3.2. FTS beim Automobilhersteller BMW im Werk Leipzig

Das BMW-Werk in Leipzig hat im Jahre 2005 mit der Produktion der 3er reihe (E90) gestartet Im Bereich der Teileversorgung übernimmt erstmals in der Geschichte der Automobilindustrie ein Fahrerloses Transportsystem (FTS) umfangreiche Logistikfunktionen. Folgende Prozesse wurde für die Teilversorgung im Leipzig-Werk definiert:

- Direktanlieferung per LKW: Gro
 sse Teile mit geringer Komplexit
 ät (z. B. Bodenmatte oder Kofferraumverkleidung) werden per LKW zeitnah und in unmittelbare N
 ähe des Verbauortes angeliefert.
- Modulanlieferung per EHB8: Gro

 sse und komplexe Baugruppen (z. B. Cockpit) werden direkt auf dem Werksgel

 ände von externen Lieferanten oder BMW Mitarbeitern montiert.
- Lagerware per FTS: Die Mehrzahl der Teile wird in einem Versorgungszentrum gelagert, kommissioniert und mit Fahrerlosen Transportfahrzeugen (FTF) an die jeweiligen Verbauorte in der Montage gebracht (Günter Ullrich, 2011 S. 36).

Es sind 74 FTF im Einsatz, als Ladehilfsmittel werden mehr als 2.000 Rollwagen in zwei unterschiedlichen Ausführungen eingesetzt. Je FTF werden entweder zwei kleine Rollwagen, zur Aufnahme von Behältern bis DIN-Grösse, oder ein so genannter übergrosser Rollwagen

zur Aufnahme von Großsbehältern eingesetzt. Zusätzlich gibt es noch die Sequenziergestelle mit Sonderaufbauten (Günter Ullrich, 2011 S. 37). Durch einen Laser-Scanner auf dem FTF wird den Personenschutz und Hinderniserkennung übernommen.

Die Fahrerlosen Transportfahrzeuge finden ihren Weg mit Hilfe der so genannten freien Navigation. Damit ist gemeint, das die Fahrzeuge ohne physikalische Leitspuren und nach einem kombinierten Prinzip aus Kopplung und Peilung arbeiten. Kopplung bedeutet die Auswertung von fahrzeuginternen Sensoren (Messräder und ein faseroptischer Kreisel), wodurch der zurückgelegte Weg samt Kurven bestimmt wird (Günter Ullrich, 2011 S. 37). Bei jeder Peilung werden aufgetretene Fahrfehler, die durch Schlupf der Räder oder durch Veränderungen des Raddurchmessers auftreten können, korrigiert. Die Vorteile dieses, auch Magnet Navigation genannten, Verfahrens liegen in der Zuverlässigkeit und der Flexibilität bei zukünftigen Layoutanpassungen (Günter Ullrich, 2011 S. 37).

3. Projektorganisation

TODO...

A. Anhang

TODO ...

TODO...

Literatur

Literatur

B. Abschließende Erklärung

TODO...

Oldenburg, den 30. März 2014