In [27]:

```
import pandas as pd
import numpy as np

import seaborn as sns
from matplotlib import pyplot as plt
from sklearn.metrics import plot_confusion_matrix,classification_report
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import MultinomialNB as MB
from sklearn.naive_bayes import GaussianNB as GB
```

Import new dataset

In [2]:

```
data_train = pd.read_csv("SalaryData_Train.csv")
data_test = pd.read_csv("SalaryData_Test.csv")
data_train.head()
```

Out[2]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	s
0	39	State-gov	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	Ma
1	50	Self-emp- not-inc	Bachelors	13	Married-civ- spouse	Exec- managerial	Husband	White	Ma
2	38	Private	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	Ma
3	53	Private	11th	7	Married-civ- spouse	Handlers- cleaners	Husband	Black	Ma
4	28	Private	Bachelors	13	Married-civ- spouse	Prof- specialty	Wife	Black	Fema
4									•

In [3]:

data_train.info() #no null values

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 30161 entries, 0 to 30160
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	age	30161 non-null	int64
1	workclass	30161 non-null	object
2	education	30161 non-null	object
3	educationno	30161 non-null	int64
4	maritalstatus	30161 non-null	object
5	occupation	30161 non-null	object
6	relationship	30161 non-null	object
7	race	30161 non-null	object
8	sex	30161 non-null	object
9	capitalgain	30161 non-null	int64
10	capitalloss	30161 non-null	int64
11	hoursperweek	30161 non-null	int64
12	native	30161 non-null	object
13	Salary	30161 non-null	object

dtypes: int64(5), object(9)
memory usage: 3.2+ MB

In [4]:

data_train.describe() #capital gain and capital loss are not good predictors

Out[4]:

	age	educationno	capitalgain	capitalloss	hoursperweek
count	30161.000000	30161.000000	30161.000000	30161.000000	30161.000000
mean	38.438115	10.121316	1092.044064	88.302311	40.931269
std	13.134830	2.550037	7406.466611	404.121321	11.980182
min	17.000000	1.000000	0.000000	0.000000	1.000000
25%	28.000000	9.000000	0.000000	0.000000	40.000000
50%	37.000000	10.000000	0.000000	0.000000	40.000000
75%	47.000000	13.000000	0.000000	0.000000	45.000000
max	90.000000	16.000000	99999.000000	4356.000000	99.000000

In [5]:

```
dims = (10,5)
fig, ax = plt.subplots(figsize=dims)
sns.countplot(ax = ax, data=data_train,x='workclass',hue='Salary',palette='cool_r')
```

Out[5]:

<AxesSubplot:xlabel='workclass', ylabel='count'>

In [6]:

```
dims = (20,5)
fig, ax = plt.subplots(figsize=dims)
sns.countplot(data=data_train,x='occupation',hue='Salary',palette='cool_r')
```

Out[6]:

<AxesSubplot:xlabel='occupation', ylabel='count'>


```
data_train.Salary.value_counts() #Data is highly biased
Out[7]:
 <=50K
          22653
>50K
           7508
Name: Salary, dtype: int64
In [8]:
data_test.Salary.value_counts() #Data is highly biased
Out[8]:
 <=50K
          11360
>50K
           3700
Name: Salary, dtype: int64
In [9]:
data_train.occupation.value_counts()
Out[9]:
Prof-specialty
                      4038
Craft-repair
                      4030
                      3992
 Exec-managerial
Adm-clerical
                      3721
 Sales
                      3584
Other-service
                      3212
Machine-op-inspct
                      1965
Transport-moving
                      1572
Handlers-cleaners
                      1350
Farming-fishing
                       989
Tech-support
                       912
Protective-serv
                       644
```

Visualisation EDA

Name: occupation, dtype: int64

Priv-house-serv Armed-Forces 143

In [7]:

```
In [10]:
```

```
sns.pairplot(data_train,hue='Salary',palette='cool_r')
```

Out[10]:

<seaborn.axisgrid.PairGrid at 0x1886941e6d0>

Feature Engineering

All the features in the dataset are relevant and can be used for model training. There a number of categorical

values onto which label encoding can be performed. capital gain and capital loss add lots of variability in the data and hence removing them would be a good move.

In [13]:

```
labels = ['workclass', 'education', 'maritalstatus', 'occupation', 'relationship', 'race',
dftrain = data_train.copy()
dftest = data_test.copy()
label_encoder = preprocessing.LabelEncoder()
for x in labels:
    dftrain[x] = label_encoder.fit_transform(dftrain[x])
    dftest[x] = label_encoder.fit_transform(dftest[x])
dftrain.head()
```

Out[13]:

	age	workclass	education	educationno	maritalstatus	occupation	relationship	race	sex
0	39	5	9	13	4	0	1	4	1
1	50	4	9	13	2	3	0	4	1
2	38	2	11	9	0	5	1	4	1
3	53	2	1	7	2	5	0	2	1
4	28	2	9	13	2	9	5	2	0
4									•

Train test split

we dont need to split since we have a seperate data set on which testing can be done

In [23]:

```
X_train = dftrain.iloc[:,:-1]
y_train = dftrain['Salary']
X_test = dftest.iloc[:,:-1]
y_test = dftest['Salary']
```

Naive Bayes Classifier

Default Parameters - MultinomialNB

In [25]:

```
model_mb = MB()
model_mb.fit(X_train,y_train)
```

Out[25]:

```
   MultinomialNB
MultinomialNB()
```

In [26]:

```
model_gb = GB()
model_gb.fit(X_train,y_train)
```

Out[26]:

```
▼ GaussianNB
GaussianNB()
```

Evaluation

In [28]:

```
def report(model):
    preds = model.predict(X_test)
    print(classification_report(y_test,preds))
    plot_confusion_matrix(model,X_test,y_test)
#MultinomialNB Evaluation
print('MultinomialNB')
report(model_mb) #model has high inbuilt bias
```

MultinomialNB

	precision	recall	f1-score	support
0	0.79	0.96	0.87	11360
1	0.62	0.21	0.32	3700
accuracy			0.77	15060
macro avg	0.71	0.58	0.59	15060
weighted avg	0.75	0.77	0.73	15060

In [29]:

```
#GaussianNB Evaluation
print('GaussianNB')
```

report(model_gb) #model has high inbuilt bias but better results as compared to multinomial

GaussianNB

	precision	recall	f1-score	support
0	0.81	0.95	0.87	11360
1	0.67	0.33	0.44	3700
accuracy			0.79	15060
macro avg	0.74	0.64	0.66	15060
weighted avg	0.78	0.79	0.77	15060

K-Fold validation

In [30]:

```
kfold = KFold(n_splits=10, random_state=100, shuffle=True)
results = cross_val_score(model_mb, X_train, y_train, cv=kfold)
print(results.mean())
```

0.7729185807392064

In [31]:

```
kfold = KFold(n_splits=10, random_state=100, shuffle=True)
results = cross_val_score(model_gb, X_train, y_train, cv=kfold)
print(results.mean())
```

0.7953978735881289

Bias Removal from training dataset

In [33]:

```
from imblearn.combine import SMOTETomek
from collections import Counter

#SMOTEK TECHNIQUE

#Define training dataset
X_train2 = dftrain.iloc[:,:-1]
y_train2 = dftrain['Salary']

#Count before
print(Counter(y_train2))

smt = SMOTETomek(sampling_strategy = 'auto')
X_train3, y_train3 = smt.fit_resample(X_train2, y_train2)

#Count after
print(Counter(y_train3))
```

Counter({0: 22653, 1: 7508}) Counter({0: 22228, 1: 22228})

Building Final model

We will go for the gaussian model

```
In [34]:
```

```
model_fnl = GB()
model_fnl.fit(X_train3,y_train3)
```

Out[34]:

```
▼ GaussianNB
GaussianNB()
```

In [35]:

```
print('GaussianNB')
report(model_fnl) #Model performs much better after removing Bias from taining model.
```

GaussianNB

support	f1-score	recall	precision	
11360	0.88	0.93	0.84	0
3700	0.55	0.47	0.68	1
15060	0.81			accuracy
15060	0.72	0.70	0.76	macro avg
15060	0.80	0.81	0.80	weighted avg

In [36]:

```
model_fnl.predict_proba(X_test)
```

Out[36]:

Conclusion

We had tried out naive bayes classifier for our dataset. Both gaussian and multinomial methodologies were tried out where the former seemed a better option. Initial results were very poor as the input training dataset involved a lot of built-in bias. The testing dataset was also highly biased. The built in bias of the training model was removed using the Smotek technique. The final model had a descent accuracy which could be further improved if tested on an unbiased dataset

In []:			