Листок 14

Тема 14 (4.1). Кольцо целых гауссовых чисел

Упражнения и задачи

- 1. Пусть R евклидово кольцо (с нормой $N(\cdot)$). Докажите, что u единица $R\iff N(u)=1.$
- 2. Пусть R кольцо. Докажите следующие утверждения (свойства делимости на языке идеалов):
 - $a|b \Leftrightarrow (b) \subseteq (a)$;
 - u единица \Leftrightarrow (u) = R;
 - a, b ассоциированы \Leftrightarrow (a) = (b);
 - p простой элемент $\Leftrightarrow ab \in (p) \Rightarrow a \in (p)$ или $b \in (p)$;
 - p неприводимый элемент $\Leftrightarrow (p) \subseteq (a) \Rightarrow (a) = R$ или (a) = (p).
- 3. Пусть R кольцо главных идеалов, $a,b \in R$ d НОД a,b. Докажите, что $\exists d \in R$: (d) = (a,b).
- 4. Пусть R кольцо главных идеалов. Докажите, что $p \in R$ неприводимый элемент $\iff p$ простой.
- 5. Докажите свойство показателя в кольце главных идеалов: если p неприводимый элемент, $a, b \in R^*$, то $\nu_p(ab) = \nu_p(a) + \nu_p(b)$.
- 6. Докажите теорему об однозначности разложения на простые множители в кольцах главных идеалов.
- 7. Пусть $\pi \in \mathbb{Z}[i]$ простой элемент, $\nu_{\pi}(\alpha)$ соответствующий показатель, $|\alpha|_{\pi} = (\operatorname{N} p)^{-\nu_{\pi}(\alpha)}$ метрика заданная на $\mathbb{Z}[i]$ и $\mathbb{Q}(i)$. Опишите ограничение этой метрики на \mathbb{Q} .
- 8. Докажите, что $\mathbb{Z}[\omega]$ евклидово кольцо. Найдите единицы $\mathbb{Z}[\omega]$.
- 9. Докажите, что для функций определенных в лекции выполняется $d(n_1) = d_1(n) d_3(n)$.
- 10. Докажите оценку для числа представлений в виде суммы двух квадратов: $r_2(n) = \mathcal{O}_{\varepsilon}(n^{\varepsilon})$.

SageMath

- Рассмотрите примеры арифметики кольца гауссовых чисел: ZZ[I], исследуйте базовые функции такие как gcd(), xgcd(), factor(),
- Исследуйте функции для нахождения разложений целых чисел в виде суммы двух и четырёх квадратов, например, библиотека sum_of_squares.

Темы для самостоятельного изучения

- Арифметика кольца чисел Эйзенштейна $\mathbb{Z}[\omega]$, [IR], §§9.1–9.2.
- Алгебра кватернионов, число представлений суммой четырёх квадратов, [DSV], §§2.5—2.6.