3.27pt

Regularization methods in multiple regression

Malgorzata Bogdan

University of Wroclaw, Lund University

KAU, 06/03/201

High dimensional regression

$$Y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + z_{n \times 1}, \ z \sim N(0, \sigma^2 I)$$

High dimensional regression

$$Y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + z_{n \times 1}, \ z \sim N(0, \sigma^2 I)$$

 $Y = (Y_1, \dots, Y_n)^T$ - wektor of trait values for n individuals

High dimensional regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \quad z \sim N(0,\sigma^2I)$$

$$Y = (Y_1,\ldots,Y_n)^T \text{ - wektor of trait values for } n \text{ individuals}$$

$$X_{n\times p} \text{ - matrix of regressors}$$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β does not exist

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p>n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{eta} = argmin_{eta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{eta} = argmin_{eta \in R^p} L(b)$$
 , where $|L(b)| = ||Y - Xb||^2 + \gamma ||b||^2$

$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

When n > p but p is large (say n/2) the variance of LS estimates may be very large

When p > n the matrix X'X is singular and the LS estimate of β does not exist

Ridge regression:

$$\hat{eta} = argmin_{eta \in R^p} L(b)$$
 , where $L(b) = ||Y - Xb||^2 + \gamma ||b||^2$

$$\frac{\partial L(b)}{\partial b} = -2X'(Y - Xb) + 2\gamma b = 0$$

$$-X'Y + (X'X + \gamma I)b = 0 \Leftrightarrow b = (X'X + \gamma I)^{-1}X'Y$$

$$\hat{eta} = (X'X + \gamma I)^{-1}X'Y, \ \ \ \ \ \ \ \ \ \ \ \gamma > 0$$

$$\hat{eta} = (X'X + \gamma I)^{-1}X'Y, \text{ where } \gamma > 0$$

$$\hat{Y} = X\hat{\beta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$\hat{eta} = (X'X + \gamma I)^{-1}X'Y, \ \ \ \ \ \ \ \ \ \ \ \gamma > 0$$

$$\hat{Y} = X\hat{eta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$Tr[M] = Tr[(X'X + \gamma I)^{-1}X'X]$$

$$\hat{eta} = (X'X + \gamma I)^{-1}X'Y, \;\; ext{where} \;\; \gamma > 0$$

$$\hat{Y} = X\hat{eta} = MY$$
, with $M = X(X'X + \gamma I)^{-1}X'$

$$Tr[M] = Tr[(X'X + \gamma I)^{-1}X'X]$$

$$Tr[M] = \sum_{i=1}^{n} \lambda_i(M)$$
, where $\lambda_1(M), \ldots, \lambda_n(M)$ are eigenvalues of M

$$X'Xu = \lambda u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \ (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$

$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'Xu = \lambda u$$

$$(X'X + \gamma I)u = (\lambda + \gamma)u, \quad (X'X + \gamma I)^{-1}u = \frac{1}{\lambda + \gamma}u$$
$$(X'X + \gamma I)^{-1}X'Xu = \frac{\lambda}{\lambda + \gamma}u, \quad Tr(M) = \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$
$$\hat{P}E = RSS + 2\sigma^2 \sum_{i=1}^{n} \frac{\lambda_i(X'X)}{\lambda_i(X'X) + \gamma}$$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$X'X = I$$
, $\hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$

$$Z = X' \epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$X'X = I, \quad \hat{\beta} = \frac{1}{1+\gamma}X'Y = \frac{1}{1+\gamma}(\beta + X'\epsilon)$$

$$Z = X'\epsilon \sim N(0, \sigma^2 I)$$

$$E(\hat{\beta}_i - \beta_i)^2 = E\left(\frac{1}{1+\gamma}\beta_i - \beta_i + \frac{1}{1+\gamma}Z_i\right)^2$$
$$= \frac{\gamma^2}{(1+\gamma)^2}\beta_i^2 + \frac{\sigma^2}{(1+\gamma)^2}$$

$$E||\hat{\beta} - \beta||^2 = \frac{\gamma^2}{(1+\gamma)^2}||\beta||^2 + \frac{p\sigma^2}{(1+\gamma)^2}$$

When rigde is better than LS ?

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$ Otherwise, when

$$|||\beta||^2 < \frac{\gamma+2}{\gamma}p\sigma^2$$

When rigde is better than LS?

$$\frac{\gamma^2||\beta||^2 + p\sigma^2}{(1+\gamma)^2} < p\sigma^2$$

Ridge is always better than LS when $||\beta||^2 < p\sigma^2$

Otherwise, when

$$|||\beta||^2 < \frac{\gamma+2}{\gamma} p\sigma^2$$

$$\gamma < \frac{2p\sigma^2}{||\beta||^2 - p\sigma^2}$$

$$Y = X\beta$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is identifiable with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is identifiable with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i : \beta_i \neq 0\}$$

$$Y = X\beta$$

Basis Pursuit (Chen and Donoho, 1994): when p > n recover β by minimizing $||b||_1 = \sum_{i=1}^n |b_i|$ subject to Y = Xb.

BP can recover β if it is identifiable with respect to L_1 norm, i.e.

If
$$X\gamma = X\beta$$
 and $\gamma \neq \beta$ then $\|\gamma\|_1 > \|\beta\|_1$.

$$k = ||\beta||_0 = \#\{i : \beta_i \neq 0\}$$

Basis Pursuit can recover β if k is small enough.

Transition curve (Donoho and Tanner, 2005)

Let's assume than $p \to \infty$, $n/p \to \delta$ and $k/n \to \epsilon$.

If X_{ij} are iid $N(0, \tau^2)$ then the probability that BP recovers β converges to 1 if $\epsilon < \rho(\delta)$ and to 0 if $\epsilon > \rho(\delta)$, where $\rho(\delta)$ is the transition curve.

Transition curve (2)

Phase Transition: (l_1, l_0) equivalence

Victoria Stodden

Department of Statistics, Stanford University

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y - Xb||_2^2 \le \epsilon$

Or alternatively: $\min_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$

Noisy case - multiple regression

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + z_{n\times 1}, \ z \sim N(0, \sigma I)$$

Convex program: Minimize $||b||_1$ subject to $||Y - Xb||_2^2 \le \epsilon$

Or alternatively: $\min_{b \in R^p} ||y - Xb||_2^2 + \lambda ||b||_1$

BPDN (Chen and Donoho, 1994) or LASSO (Tibshirani, 1996)

Selection of the tuning parameter for LASSO

- General rule: the reduction of λ_L results in identification of more elements from the true support (true discoveries) but at the same time it produces more falsely identified variables (false discoveries)
- The choice of λ_L is challenging- e.g. crossvalidation typically leads to many false discoveries
- When $X^TX = I$ Lasso selects X_j iff $|\hat{eta}_j^{LS}| > \lambda$
- Selection $\lambda = \sigma \Phi^{-1}(1 \alpha/(2p)) \approx \sigma \sqrt{2 \log p}$ corresponds to Bonferroni correction and controls FWER.

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$ Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

Let $I := \{i \in \{1, ..., p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

Irrepresentable condition:

$$\|X_{\bar{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)\|_\infty \leq 1$$

The sign vector of β is defined as $S(\beta) = (S(\beta_1), \dots, S(\beta_p)) \in \{-1, 0, 1\}^p$, where for $x \in \mathbb{R}$, $S(x) = \mathbf{1}_{x>0} - \mathbf{1}_{x<0}$

Let $I := \{i \in \{1, \dots, p\} \mid \beta_i \neq 0\}$, and let $X_I, X_{\overline{I}}$ be matrices whose columns are respectively $(X_i)_{i \in I}$ and $(X_i)_{i \notin I}$.

Irrepresentable condition:

$$\|X_{\overline{I}}'X_I(X_I'X_I)^{-1}S(\beta_I)\|_{\infty} \leq 1$$

When

$$||X_{\bar{I}}'X_{I}(X_{I}'X_{I})^{-1}S(\beta_{I})||_{\infty} > 1$$

then probability of the support recovery by LASSO is smaller than 0.5 (Wainwright, 2009).

Separation of true and false predictors

Theorem (Tardivel, Bogdan, 2019)

For any $\lambda > 0$ LASSO can separate well the causal and null features if and only if vector β is identifiable with respect to l_1 norm and $\min_{i \in I} |\beta_i|$ is sufficiently large.

Irrepresentability and identifiability curves

n=100, p=300, elements of X were generated as iid N(0,1)

identifiability and irrepresentability curves

Modifications of LASSO

Corollary

Appropriately thresholded LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Conjecture

Adaptive (reweighted) LASSO can properly identify the sign of sufficiently large β if and only if β is identifiable with respect to l_1 norm.

Problem with shrinkage

Intuitive explanation:

$$\hat{\beta} = \eta_{\lambda}(\beta_i + X_i'z + v_i)$$

$$v_i = \langle X_i, \sum_{j \neq i} X_j(\beta_j - \hat{\beta}_j) \rangle$$

Problem with shrinkage

Intuitive explanation:

$$\hat{eta} = \eta_{\lambda}(eta_i + X_i'z + v_i)$$
 $v_i = \langle X_i, \sum_{j
eq i} X_j(eta_j - \hat{eta}_j)
angle$ $\eta_{\lambda}(t) = sign(t)(|t| - \lambda)_+, \;\;\; ext{applied componentwise}$

If $X^TX = I$ then $X_i'z = Z_i \sim N(0,1)$, $v_i = 0$ and H_{0i} is rejected if $\beta_i + Z_i > \lambda$

Problem with shrinkage

Intuitive explanation:

$$\hat{\beta} = \eta_{\lambda}(\beta_i + X_i'z + v_i)$$
$$v_i = \langle X_i, \sum_{i \neq i} X_j(\beta_j - \hat{\beta}_j) \rangle$$

$$\eta_{\lambda}(t) = sign(t)(|t| - \lambda)_{+},$$
 applied componentwise

If $X^TX = I$ then $X_i'z = Z_i \sim N(0,1)$, $v_i = 0$ and H_{0i} is rejected if $\beta_i + Z_i > \lambda$

When the design is not orthogonal: $v_i \neq 0$ - additional noise, dependent on λ (level of shrinkage), the level of sparsity and magnitude of true signals

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J. Fourier Anal. Appl. 2008]

$$\beta_{aL} = \operatorname{argmin}_{b} \left\{ \frac{1}{2} \left\| y - Xb \right\|_{2}^{2} + \lambda \sum_{i=1}^{p} w_{i} |b|_{i} \right\}, \tag{1}$$

where $w_i = \frac{1}{\hat{\beta}_i}$, and $\hat{\beta}_i$ is some consistent estimator of β_i .

Adaptive LASSO

Adaptive LASSO [Zou, JASA 2006], [Candès, Wakin and Boyd, J. Fourier Anal. Appl. 2008]

$$\beta_{aL} = \operatorname{argmin}_{b} \left\{ \frac{1}{2} \left\| y - Xb \right\|_{2}^{2} + \lambda \sum_{i=1}^{p} w_{i} |b|_{i} \right\}, \tag{1}$$

where $w_i = \frac{1}{\hat{\beta}_i}$, and $\hat{\beta}_i$ is some consistent estimator of β_i . Reduces bias and improves model selection properties

1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k = 5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}
- 4. For adaptive LASSO weights based on LASSO estimator with λ as in 2 and 3, selection based on LASSO with λ as in 1

- 1. λ for LASSO selected as to control FWER at the level 0.05 for k=5 (theoretical result in (Tardivel and Bogdan, 2019))
- 2. λ for thresholded LASSO and independent gaussian design selected according to AMP theory for LASSO (see e.g. (Wang, Weng, Maleki, 2018))
- 3. For correlated design (off diagonal covariance 0.9) we used 0.5 λ_{AMP}
- 4. For adaptive LASSO weights based on LASSO estimator with λ as in 2 and 3, selection based on LASSO with λ as in 1
- 5. Threshold selected by using knockoff control variables (Foygel-Barber and Candès, 2015; Candès, Fan, Janson, Lv, 2016)

Probability of the sign recovery

Family Wise Error Rate

Thresholded LASSO (1)

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{\tilde{X}}$$
 and for $i \neq j$ $Cov(X_i, \tilde{X}_j) = Cov(X_i, X_j)$.

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{ ilde{X}}$$
 and for $i
eq j$ $\mathit{Cov}(X_i, ilde{X}_j) = \mathit{Cov}(X_i, X_j).$

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

 $\hat{eta}(\lambda)$ - vector of 2p estimates of regression coefficients by LASSO applied on the augmented design matrix $X_{aug}=[X,\tilde{X}]$

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{ ilde{X}}$$
 and for $i
eq j$ $\mathit{Cov}(X_i, ilde{X}_j) = \mathit{Cov}(X_i, X_j).$

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

 $\hat{eta}(\lambda)$ - vector of 2p estimates of regression coefficients by LASSO applied on the augmented design matrix $X_{aug} = [X, \tilde{X}]$

Function $w: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is faithful if it obeys

- (I) w is antisymmetric, w(v, u) = -w(u, v)
- (II) for any fixed c, w(x,c) tends to infinity as $|x| \to \infty$.

Foygel-Barber and Candés (Ann. Stat. 2015), Candès, Fan, Janson and Lv (JRSSB, 2017) - augment X with the matrix \tilde{X} of specifically constructed control variables

Necessary requirement:

$$\Sigma_X = \Sigma_{ ilde{X}}$$
 and for $i
eq j$ $\mathit{Cov}(X_i, ilde{X}_j) = \mathit{Cov}(X_i, X_j).$

When X_{ij} are iid N(0, 1/n) then \tilde{X}_{ij} are also iid N(0, 1/n).

 $\hat{eta}(\lambda)$ - vector of 2p estimates of regression coefficients by LASSO applied on the augmented design matrix $X_{aug}=[X,\tilde{X}]$

Function $w: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is faithful if it obeys

- (I) w is antisymmetric, w(v, u) = -w(u, v)
- (II) for any fixed c, w(x,c) tends to infinity as $|x| \to \infty$.

$$W_j = w(\widehat{\beta}_j, \widehat{\beta}_{p+j})$$

Knockoff filter

Define a random threshold as

$$\hat{t}(\lambda) = \min \left\{ t > 0 : \frac{1 + \#\{j : W_j(\lambda) \le -t\}}{\#\{j : W_j(\lambda) \ge t\}} \le q \right\}$$

and select

$$\widehat{\mathcal{S}(\lambda)} = \{j : W_j(\lambda) \geq \hat{t}(\lambda)\},\$$

Knockoff filter

Define a random threshold as

$$\hat{t}(\lambda) = \min \left\{ t > 0 : \frac{1 + \#\{j : W_j(\lambda) \le -t\}}{\#\{j : W_j(\lambda) \ge t\}} \le q \right\}$$

and select

$$\widehat{\mathcal{S}(\lambda)} = \{j : W_j(\lambda) \geq \hat{t}(\lambda)\},\$$

Foygel-Barber and Candès (2015), Candès, Fan, Janson and Lv (2017) - The above knockoff procedure $KN(\lambda,q)$ controls FDR at the level q.

Knockoff filter

Define a random threshold as

$$\hat{t}(\lambda) = \min \left\{ t > 0 : \frac{1 + \#\{j : W_j(\lambda) \le -t\}}{\#\{j : W_j(\lambda) \ge t\}} \le q \right\}$$

and select

$$\widehat{\mathcal{S}(\lambda)} = \{j : W_j(\lambda) \geq \hat{t}(\lambda)\},\$$

Foygel-Barber and Candès (2015), Candès, Fan, Janson and Lv (2017) - The above knockoff procedure $KN(\lambda,q)$ controls FDR at the level q.

Example: Lasso coefficient difference statistics $LCD(\lambda, q)$

$$W_j(\lambda) = |\hat{\beta}_j(\lambda)| - |\hat{\beta}_{j+p}(\lambda)|$$

Gain in power over LSM

Gain in power over LSM

Theoretical results using the mean field asymptotics

Su, B., Candès, Ann. Stat. 2017 - FDR-Power Tradeoff Diagram for LASSO

Theoretical results using the mean field asymptotics

Su, B., Candès, Ann. Stat. 2017 - FDR-Power Tradeoff Diagram for LASSO

Weinstein, Su, Bogdan, Barber, Candés, 2020 - Breaking the tradoff diagram with thresholded LASSO

M.B., E.van den Berg, C.Sabatti, W.Su, E.J.Candès, AOAS 2015

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \frac{1}{2} \|y - Xb\|_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge ... \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge ... \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

$$\hat{\beta} = \operatorname{argmin}_{b \in \mathbb{R}^p} \frac{1}{2} \|y - Xb\|_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge \ldots \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge \ldots \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

The above optimization problem is convex and can be efficiently solved even for large design matrices.

$$\hat{\beta} = argmin_{b \in \mathbb{R}^p} \frac{1}{2} ||y - Xb||_{\ell_2}^2 + \sum_{i=1}^p \lambda_i |b|_{(i)}.$$

where $|b|_{(1)} \ge ... \ge |b|_{(p)}$ are ordered magnitudes of coefficients of b and $\lambda_1 \ge ... \ge \lambda_p \ge 0$ is the sequence of tuning parameters.

The above optimization problem is convex and can be efficiently solved even for large design matrices.

Sorted L-One Norm:
$$J_{\lambda}(b) = \sum_{i=1}^{p} \lambda_{i} |b|_{(i)}$$
 reduces to $||b||_{1}$ if $\lambda_{1} = \ldots = \lambda_{p}$ and to $||b||_{\infty}$ if $\lambda_{1} > \lambda_{2} = \ldots = \lambda_{p} = 0$.

Unit balls for different SLOPE sequences by D.Brzyski

FDR control with SLOPE

Theorem (B,van den Berg, Sabatti, Su and Candès (2015))

When $X^TX = I$ SLOPE with

$$\lambda_i := \sigma \Phi^{-1} \Big(1 - i \cdot \frac{q}{2p} \Big)$$

controls FDR at the level $q\frac{p_0}{p}$.

Orthogonal design, n = p = 5000

Let $k=||\beta||_0$ and consider the setup where $k/p \to 0$ and $\frac{k\log p}{n} \to 0$.

X is standardized so that each column has a unit L_2 norm.

Let $k=||\beta||_0$ and consider the setup where $k/p \to 0$ and $\frac{k\log p}{n} \to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

Let $k=||\beta||_0$ and consider the setup where $k/p \to 0$ and $\frac{k\log p}{n} \to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

SLOPE rate of the estimation error - $k \log(p/k)$

LASSO rate of the estimation error - $k \log p$

Let $k=||\beta||_0$ and consider the setup where $k/p \to 0$ and $\frac{k\log p}{n} \to 0$.

X is standardized so that each column has a unit L_2 norm.

Su and Candès (Annals of Statistics, 2016),

Bellec, Lecué, Tsybakov (2018, AOS):

SLOPE with the BH related sequence of tuning parameters attains minimax rate for the estimation error $||\hat{\beta} - \beta||^2$.

SLOPE rate of the estimation error - $k \log(p/k)$ LASSO rate of the estimation error - $k \log p$

Extension to logistic regression by Abramovich and Grinshtein (2018, IEEE Trans. Inf. Theory)

IDEAL

Group SLOPE, (D.Brzyski, A.Gossmann, W.Su and MB, JASA, 2019)

Identification of groups of predictors:

$$[[\beta]]_I := (\|X_{I_1}\beta_{I_1}\|_2, \dots, \|X_{I_m}\beta_{I_m}\|_2)^{\mathsf{T}}.$$

Identification of groups of predictors:

$$[[\beta]]_I := (\|X_{I_1}\beta_{I_1}\|_2, \dots, \|X_{I_m}\beta_{I_m}\|_2)^{\mathsf{T}}.$$

$$\beta^{gS} := \operatorname{argmin}_{b} \left\{ \frac{1}{2} \left\| y - Xb \right\|_{2}^{2} + \sigma J_{\lambda} \left(W[[b]]_{I} \right) \right\},$$

where W is a diagonal matrix with $W_{i,i}:=w_i,$ for $i=1,\ldots,m$.

Identification of groups of predictors:

$$[[\beta]]_I := (\|X_{I_1}\beta_{I_1}\|_2, \dots, \|X_{I_m}\beta_{I_m}\|_2)^{\mathsf{T}}.$$

$$\beta^{gS} := \operatorname{argmin}_{b} \left\{ \frac{1}{2} \left\| y - Xb \right\|_{2}^{2} + \sigma J_{\lambda} \left(W[[b]]_{I} \right) \right\},$$

where W is a diagonal matrix with $W_{i,i}:=w_i,$ for $i=1,\ldots,m.$

Selection of

$$\lambda_i^{\max} := \max_{j=1,\dots,m} \left\{ \frac{1}{w_j} F_{\chi_{l_j}}^{-1} \left(1 - \frac{q \cdot i}{m} \right) \right\}$$

allows to control group FDR and obtain a minimax rate of estimation of $[[\beta]]_I$ if variables in different groups are orthogonal to each other.

Identification of groups of predictors:

$$[[\beta]]_I := (\|X_{I_1}\beta_{I_1}\|_2, \dots, \|X_{I_m}\beta_{I_m}\|_2)^{\mathsf{T}}.$$

$$\beta^{gS} := \operatorname{argmin}_{b} \left\{ \frac{1}{2} \left\| y - Xb \right\|_{2}^{2} + \sigma J_{\lambda} \left(W[[b]]_{I} \right) \right\},$$

where W is a diagonal matrix with $W_{i,i}:=w_i,$ for $i=1,\ldots,m.$

Selection of

$$\lambda_i^{\max} := \max_{j=1,\dots,m} \left\{ \frac{1}{w_j} F_{\chi_{l_j}}^{-1} \left(1 - \frac{q \cdot i}{m} \right) \right\}$$

allows to control group FDR and obtain a minimax rate of estimation of $[[\beta]]_I$ if variables in different groups are orthogonal to each other.

Heuristic adjustment for the situation when variables in different groups are independent.

Applications for GWAS

n = 5402, p = 26233 - roughly independent SNPs

Applications for GWAS

n=5402, p=26233 - roughly independent SNPs Scenario 1: $Y=X\beta+z$ - additive model

$$X_{ij} = \begin{cases} -1 & \text{for } aa \\ 0 & \text{for } aA \\ 1 & \text{for } AA \end{cases}$$
 (2)

Applications for GWAS

n = 5402, p = 26233 - roughly independent SNPs

Scenario 1: $Y = X\beta + z$ - additive model

$$X_{ij} = \begin{cases} -1 & \text{for } aa \\ 0 & \text{for } aA \\ 1 & \text{for } AA \end{cases}$$
 (2)

Scenario 2: modeling dominance

$$Z_{ij} = \begin{cases} -1 & \text{for } aa, AA \\ 1 & \text{for } aA \end{cases},$$

$$y = [X, Z][\beta'_X, \beta'_Z]' + \epsilon .$$
(3)

Simulation results

Gaussian design (1), n = p = 5000

Spike and Slab LASSO (Rockova, George, 2018)

LASSO has a Bayesian interpretation as a posterior mode under the Laplace prior

$$\pi(\beta) = C(\lambda) \prod_{i=1}^{n} e^{-|\beta_i|\lambda}$$

Spike and Slab LASSO (Rockova, George, 2018)

LASSO has a Bayesian interpretation as a posterior mode under the Laplace prior

$$\pi(\beta) = C(\lambda) \prod_{i=1}^{n} e^{-|\beta_i|\lambda}$$

Spike and Slab LASSO uses a spike and slab Laplace prior:

$$\gamma = (\gamma_1, \ldots, \gamma_p)$$

 $\gamma_i=1$ if β_i is "large" and $\gamma_i=0$ if β_i is "small"

$$\pi(eta|\lambda,\gamma) \propto c^{\sum_{i=1}^{
ho} 1(\gamma_i=1)} \prod_{i=1}^{
ho} \mathrm{e}^{-w_i|eta_i|\lambda},$$

where $w_i = 1$ if $\gamma_i = 0$ and $w_i = c \in (0,1)$ if $\gamma_i = 1$.

Spike and Slab LASSO (2)

The maximum aposteriori rule is given by reweighted LASSO

$$\hat{\beta}(\gamma) = \operatorname{argmin}_{b \in R^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda \sum_{i=1}^p w_i |b_i|$$

$$w_i = c\gamma_i + (1 - \gamma_i)$$

Spike and Slab LASSO (2)

The maximum aposteriori rule is given by reweighted LASSO

$$\hat{eta}(\gamma) = argmin_{b \in R^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda \sum_{i=1}^p w_i |b_i|$$

$$w_i = c\gamma_i + (1 - \gamma_i)$$

Prior for γ : $\gamma_1, \ldots, \gamma_p$ are iid such that

$$P(\gamma_i = 1) = \theta = 1 - P(\gamma_i = 0)$$

Spike and Slab LASSO (2)

The maximum aposteriori rule is given by reweighted LASSO

$$\hat{\beta}(\gamma) = \operatorname{argmin}_{b \in R^p} \frac{1}{2} ||y - Xb||_2^2 + \lambda \sum_{i=1}^p w_i |b_i|$$

$$w_i = c\gamma_i + (1 - \gamma_i)$$

Prior for γ : $\gamma_1, \ldots, \gamma_p$ are iid such that

$$P(\gamma_i = 1) = \theta = 1 - P(\gamma_i = 0)$$

In consecutive iterations γ_i is replaced with

$$\pi_i^t = P(\gamma_i = 1 | eta^t, c) = rac{c heta \mathrm{e}^{-c | eta_i^t | \lambda_0}}{c heta \mathrm{e}^{-c | eta_i^t | \lambda_0} + (1 - heta) \mathrm{e}^{-|eta_i^t | \lambda_0}}$$

and then a new estimate $\hat{\beta}^{t+1}$ is calculated by solving reweighted LASSO with the vector γ replaced with the vector π^t .

Adaptive SLOPE with missing values (1)

W. Jiang, MB, J.Josse, B.Miasojedow, V.Rockova, TraumaBase Group (in progress)

code available at github.com/simMajewski/SLOBE-Rcpp

Otraumabase.eu

ABSLOPE (2)

Prior for β is given by

$$\pi(\beta|\gamma,c,\sigma^2) \propto c^{\sum_{i=1}^n 1(\gamma_i=1)} \prod_{i=1}^n e^{-w_i|\beta_i|\lambda_{r(W\beta,i)}},$$

where W is the diagonal matrix with $W_{ii}=w_i$ and $\lambda=\lambda^{BH}$

ABSLOPE (2)

Prior for β is given by

$$\pi(\beta|\gamma,c,\sigma^2) \propto c^{\sum_{i=1}^n 1(\gamma_i=1)} \prod_{i=1}^n e^{-w_i|\beta_i|\lambda_{r(W\beta,i)}},$$

where W is the diagonal matrix with $W_{ii} = w_i$ and $\lambda = \lambda^{BH}$

Missing at Random (MAR) mechanism under assumption $X_i = (X_{i1}, \dots, X_{ip})$ is normally distributed:

$$X_i$$
 iid $\mathcal{N}_p(\mu, \Sigma)$, $i = 1, \dots, n$.

Graphical model of ABSLOPE

Stochastic approximation EM algorithm

- $\pi(\theta)$ B(a,b), $\pi(c)$ U(0,1)
- ullet Gibbs sampling of latent variables : $heta,c,\gamma,c,X_{ extit{mis}}$
- Estimate parameters $\beta, \sigma, \mu, \Sigma$ by maximizing the complete-data likelihood with sampled values for the latent variables
- When p > n, Σ is estimated using the shrinkage estimator of Ledoit and Wolf (2004)
- Approximation of SAEM: ψ ,

$$\psi^{t+1} = \psi^t + \eta_t \left[\hat{\psi}_{MLE}^t - \psi^t \right],$$

$$\eta^t=1$$
 for $t\in\{1,\ldots,t_0\}$ and $\eta^t=rac{1}{t-t_0}$ for $t>t_0$

n=p=500, $\rho=0$, Na=10%, independent regressors

independent regressors, strong signals, σ estimated

n=p=500, $\rho=0$, Na=10%, independent regressors

n=p=500, $\rho=0$, Na=10%, correlated regressors

n=p=500, $\rho=0$, Na=10%, correlated predictors

LASSO and SLOPE work

- J. Larsson, M. Bogdan, J. Wallin, "The strong screening for SLOPE", NeurlPS 2020.
- P.J. Kremer, S. Lee, M. Bogdan, S. Paterlini, "Sparse portfolio selection via the sorted L1-Norm", Journal of Banking and Finance 110, 105687, 2020.
- M. Kos, M. Bogdan, "On the asymptotic properties of SLOPE", Sankhya A 82 (2), 499-532, 2020.
- W. Jiang, M. Bogdan, J. Josse, B. Miasojedow, V. Rockova, TraumaBase Group, "Adaptive Bayesian SLOPE – High-dimensional Model Selection with Missing Values", arxive 2020.
- A. Weinstein, W.J. Su, M. Bogdan, R.F. Barber, E.J. Candès, "A power analysis for knockoffs with the lasso coefficient-difference statistic", arxive 2020.
- S.Lee, P.Sobczyk, M.Bogdan, "Structure Learning of Gaussian Markov Random Fields with False Discovery Rate Control", Symmetry 11 (10), 1311, 2019.
- D. Brzyski, A. Gossmann, W.Su, M. Bogdan, "Group SLOPE adaptive selection of groups of predictors", Journal of the American Statistical Association, 114(525), 419-433, 2019.
- W.Su, M. Bogdan, E.J. Candès, "False Discoveries Occur Early on the Lasso Path", Annals of Statistics, 45 (5), 2133 – 2150, 2017.
- D. Brzyski, C.B. Peterson, P.Sobczyk, E.J. Candès, M. Bogdan, C. Sabatti, "Controlling the rate of GWAS false discoveries", Genetics, 205, 61–75, 2017.
- S. Lee, D. Brzyski, M. Bogdan, "Fast Saddle-Point Algorithm for Generalized Dantzig Selector and FDR Control with the Ordered In-Norm", Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, JMLR:W and CP vol.51, 780-789, 2016.

SLOPE packages in R

- SLOPE by J.Larsson also for Generalized Linear Models (logistic, Poisson regression)
- grpSLOPE by A. Gossmann
- geneSLOPE by P. Sobczyk

Summaries

- F. Frommlet, M. Bogdan and D. Ramsey, "Phenotypes and genotypes: The Search for Influential Genes", Springer-Verlag, London, 2016
- M. Bogdan and F. Frommlet, "Identifying important predictors in large data bases-multiple testing and model selection", to appear in "Handbook of Multiple Comparisons", Chapman Hall/CR, 2021.

Open SLOPE projects

 PhD position at the Department of Statistics at Lund University (Sweden)

```
https://stat-lu.github.io/PhDpos/
https://lu.varbi.com/en/what:job/jobID:383509/
```

 Google of Summer Code - creating package for ABSLOPE, mentored by J. Larsson from Lund