

Upgrade

What is Entropy and why Information gain matter in Decision Trees?

According to Wikipedia, Entropy refers to disorder or uncertainty.

Definition: Entropy is the measures of impurity, disorder or uncertainty in a bunch of examples.

What an Entropy basically does?

Entropy controls how a Decision Tree decides to **split** the data. It actually effects how a **Decision Tree** draws its boundaries.

The Equation of Entropy:

Equation of Entropy

. . .

What is Information gain and why it is matter in Decision Tree?

Definition: Information gain (IG) measures how much "information" a feature gives us about the class.

Why it matter?

- **Information gain** is the main key that is used by **Decision Tree Algorithms** to construct a Decision Tree.
- Decision Trees algorithm will always tries to maximize Information gain.
- An **attribute** with highest **Information gain** will tested/split first.

The Equation of Information gain:

```
Information gain = entropy (parent) - [weightes average] * entropy (children)

Equation of Information gain
```

To understand Entropy and Information gain, lets draw a simple table with some features and labels.

This example taken from Udacity (Introduction to Machine Learning) course

Here in this table,

- Grade, Bumpiness and Speed Limit are the features and Speed is label.
- Total four observation.

. .

First, lets work with Grade feature

In the Grade column there are four values and correspond that values there are four labels.

Lets consider all the labels as a parent node.

```
SSFF => parent node
```

So, what is the entropy of this parent node?

Lets find out,

firstly we need to find out the *fraction of examples* that are present in the parent node. There are 2 types *(slow and fast)* of example present in the parent node, and parent node contains total 4 examples.

```
1. P(slow) => fraction of slow examples in parent node
2. P(fast) => fraction of fast examples in parent node
```

lets find out P(slow),

p(slow) = no. of slow examples in parent node / total number of examples

$$p_{slow} = \frac{2}{4} = 0.5$$

fraction of P(slow) examples

Similarly the fraction of fast examples P(fast) will be,

$$p_{fast} = \frac{2}{4} = 0.5$$

fraction of P(fast) examples

So, the **entropy** of parent node:

Entropyparent = -
$$\sum P_{slow}log_2(P_{slow}) + P_{fast}log_2(P_{fast})$$

entropy of parent node

```
Entropy(parent) = -\{0.5 \log 2(0.5) + 0.5 \log 2(0.5)\}
= -\{-0.5 + (-0.5)\}
= 1
```

So the *entropy* of parent node is 1.

. .

Now, lets explore how a **Decision Tree Algorithm** construct a **Decision Tree** based on **Information gain**

First lets check whether the parent node split by Grade or not.

If the *Information gain* from Grade feature is greater than all other features then the parent node can be split by Grade.

To find out *Information gain of Grade* feature, we need to virtually split the parent node by Grade feature.

CCEE

Now, we need to find out the entropy both of this child nodes.

Entropy of the right side child node (F) is 0, because all of the examples in this node belongs to the same class.

Lets find out *Entropy* of the left side node SSF:

In this node SSF there are two type of examples present, so we need to find out the *fraction of slow and fast example* separately for this node.

```
P(slow) = 2/3 = 0.667
P(fast) = 1/3 = 0.334
```

So,

```
Entropy(SSF) = -\{0.667 \log 2(0.667) + 0.334 \log 2(0.334)\}
= -\{-0.38 + (-0.52)\}
= 0.9
```

we can also find out the *Entropy* by using scipy library.

Now, we need to find out Entropy (children) with weighted average.

```
Total number of examples in parent node: 4
" " " " left child node: 3
" " " " right child node: 1
```

Formula of Entropy(children) with weighted avg.:

```
[Weighted avg]Entropy(children) =
  (no. of examples in left child node) / (total no. of examples in
  parent node) * (entropy of left node)
+
  (no. of examples in right child node) / (total no. of examples in
  parent node) * (entropy of right node)
```

[weighted_{avg}](children) =
$$\frac{3}{4}$$
 * 0.9 + $\frac{1}{4}$ * 0

Entropy(children) with weighted avg. is = 0.675

```
Information gain = entropy (parent) - [weightes average] * entropy (children)
```

Equation of Information gain

Information gain from Grade feature is 0.325.

Decision Tree Algorithm choose the highest Information gain to *split/construct* a **Decision Tree.** So we need to check all the feature in order to split the Tree.

Information gain from Bumpiness

virtually split by Bumpyness

The *entropy* of left and right child nodes are same because they contains same classes.

entropy(bumpy) and entropy(smooth) both equals to 1.

So, *entropy (children)* with weighted avg. for Bumpiness:

Hence,

Till now we have to *Information gain*:

```
IG(Grade) => 0.325
IG(Bumpiness) => 0
```

. .

virtually split by SpeedLimit

The *entropy* of left side child node will be 0, *because all of the examples in this node belongs to the same class.*

Similarly, *entropy* of right side node is 0.

Hence, *Entropy(children)* with weighted avg. for <code>speedLimit:</code>

```
[weighted avg.] entropy(children) = 2/4 *0 + 2/4 *0
= 0
```

So, *Information gain* from SpeedLimit:

Final Information gain from all the features:

```
IG(Grade) => 0.325
IG(Bumpiness) => 0
IG(SpeedLimit) => 1
```

As we know that, **Decision Tree Algorithm** construct **Decision Tree** based on features that have highest **Information gain**

So, here we can see that <code>speedLimit</code> has highest *Information gain*. So the final **Decision Tree** for this <u>datasets</u> will be look like this:

Final Decision Tree

Coinmonks

WRITTEN BY

Nasir Islam Sujan

Follow

Research Assistant | Machine Learning Practitioner | ASP.NET, C# developer | UI/UX designer.

Coinmonks

Following 🗸

Coinmonks is a technology-focused publication embracing decentralize technologies. We are Non-profit and education is our core value. Learn, Build and thrive. Our other project—https://coinmonks.com, https://cryptofi.co, https://coincodecap.com

See responses (8)

More From Medium

More from Coinmonks

Bitcoin's bull run: This is what's different compared to 2017

Lucien Lecarme in Coinmonks
Jun 24 · 8 min read *

908

 $\overline{ }$

More from Coinmonks

Whitepaper Deep Dive - Move: Facebook Libra Blockchain's New Programming Language

More from Coinmonks

Bitcoin: Welcome to Bitfinex's Second Tether Bubble

 \Box