Image Denoising with Union of Directional Orthonormal DWTs

聯新馬大學

March 27, 2012, ICASSP2012, Kyoto

Shogo MURAMATSU and Dandan HAN

Dept. of Electrical and Electronic Eng., Niigata University, Japan

ABSTRACT

- A novel image denoising technique is proposed by using directional lapped orthogonal transforms (DirLOTs).
- A redundant dictionary is constructed with multiple hierarchical DirLOTs and it is applied to solve the basis pursuit denoising (BPDN) problem.
- The denoising performance is evaluated for several images through the heuristic shrinkage and block-coordinate-relaxation algorithm.

Key words— DirLOT, Basis pursuit, Wavelet denoising, Heuristic shrinkage, Block-coordinate-relaxation (BCR) algorithm

Introduction

- A common problem of image denoising, i.e. removal of additive white Gaussian noise (AWGN) from an observed image is dealt with.
- Purpose is to find a good candidate image $\hat{\mathbf{x}}$ of \mathbf{x}^* only from \mathbf{x} .

- Popular denoising approaches include solving the basis pursuit denoising (BPDN) problem.
- ■BPDN assumes that the candidate $\hat{\mathbf{x}}$ is expressed by a linear-combination of image prototypes (atoms) in a dictionary **D**:

where $\hat{\mathbf{y}}$ refers to the solution of

$$\hat{\mathbf{y}} = \arg\min_{\mathbf{y}} \frac{1}{2} \underbrace{\|\mathbf{x} - \mathbf{D}\mathbf{y}\|_2^2}_{\mathsf{Fidelity}} + \lambda^T \underbrace{\|\mathbf{y}\|}_{\mathsf{Sparsity}}.$$

■ In this work, we suggest to adopt

Union of Directional Symmetric Orthonormal DWTs as a Dictionary **D**

Review of Directional LOTs (DirLOTs)

Figure: Lattice structure of a 2-D non-separable lapped orthogonal transform.

(a) $|H_0(e^{j\omega_y}, e^{j\omega_x})|$

(b) Basis images

Figure: A design example of 2×2 -Ch. DirLOT with the 2-order trend vanishing moments (TVMs) of $\phi = \frac{\pi}{6}$, where $[N_y, N_x]^T = [4, 4]^T$, i.e. the basis size is 10×10 .

- DirLOTs are 2-D non-separable lapped orthogonal transforms with directional characteristics [ICIP2010,PCS2010,APSIPA2010].
- Bases are symmetric and real-valued, and have compact-support.

Union of Directional Symmetric Orthonormal DWTs (DirSOWTs)

Suggestion of dictionary D

$$\mathbf{D} = \left[\mathbf{\Phi}_{0 \cup rac{\pi}{2}}^T \; \mathbf{\Phi}_{\phi_1}^T \; \mathbf{\Phi}_{\phi_2}^T \; \mathbf{\Phi}_{\phi_3}^T \; \cdots \; \mathbf{\Phi}_{\phi_{K-1}}^T
ight]$$

 $lackbox{\Phi}_{0\cup\frac{\pi}{2}}$: Nondirectional SOWT.

where *K* is the redundancy.

- $\blacksquare \Phi_{\phi}$: Directional SOWT for TVM direction ϕ .
- **D** becomes a normalized tight frame and satisfies

Heuristic Shrinkage and BCR Iterative-shrinkage

Heuristic shrinkage is available for tight frames and simply calculates

$$\hat{\mathbf{y}} = \frac{1}{\kappa} \mathsf{Shrink} \left(\mathbf{D}^T \mathbf{x} \right)$$

■BCR Iterative-shrinkage Alg. is available for union of orthogonal transforms and iteratively solves

$$\hat{\mathbf{y}}_k = \arg\min_{\mathbf{y}_k} \frac{1}{2} \| (\tilde{\mathbf{y}}_k + \mathbf{\Phi}_k(\mathbf{x} - \tilde{\mathbf{x}})) - \mathbf{y}_k \|_2^2 + \boldsymbol{\lambda}_k^T |\mathbf{y}_k|$$

where $\tilde{\mathbf{y}}_k$ and $\tilde{\mathbf{x}}$ are the estimations of \mathbf{y}_k and \mathbf{x}^* in the previous step, respectively. \mathbf{y}_k , $\hat{\mathbf{y}}_k$ and λ_k are the k-th subvector of \mathbf{y} , $\hat{\mathbf{y}}$ and λ , respectively.

Figure: Soft-shrinkage function

Experimental Results

Table: Adopted transforms and the features.

Abrv.	Features	K			
DB5	Daubechies' least asymmetric compactly-supported				
	wavelet with five VMs, separable, orthonormal				
SON4	Symmetric orthonormal DWT with two VMs of				
	$[N_y, N_x]^T = [4, 4]^T$, nonseparable, nondirectional				
NSCT	Nonsubsampled contourlet with $2^3, 2^3, 2^4, 2^4$ directions in the scales from coarser to finer, near tight, symmetric				
		49			
UDN4	Union of SON4 and DirSOWTs with two TVMs of $[N_y, N_x]^T = [4, 4]^T$, multidirectional, tight, symmetric				

- ■UDN4: TVM direction $\phi_k \in \{-\frac{4\pi}{18}, -\frac{3\pi}{18}, -\frac{2\pi}{18}, \cdots, \frac{13\pi}{18}\}$, K = 1 + 18 = 19
- Sweeping scalar $\lambda = \lambda 1$

SSIM index for

 $(\sigma = 20).$

"barbara" with AWGN

(a) Original

(b) Noisy picture

(c) DB5

(d) NSCT (e) UDN4(HS) (f) UDN4(BCR) Figure: Denoising results. (a)Original picture, (b) Noisy picture with AWGN ($\sigma = 20$), (c)-(f) Denoised pictures.

\blacksquare Adaptive determination of vector λ

Table: Comparison of SSIM indexes among four transforms for various pictures and noise levels, where BayesShrink was used to determine the parameter λ .

				DB5	SONA	NSCT	UDN4	
		σ	003	30114	NSCT (HS)	(HS)	(BCR)	
		20	0.726	0.723	0.753	0.746	0.725	
W H		30	0.668	0.664	0.666	0.684	0.664	
The second	goldhill	40	0.625	0.621	0.592	0.640	0.621	
100		20	0.794	0.793	0.780	0.814	0.792	
		30	0.749	0.748	0.693	0.768	0.748	
	lena	40	0.719	0.720	0.616	0.736	0.720	
		20	0.748	0.760	0.767	0.778	0.750	
AAT		30	0.680	0.671	0.687	0.681	0.685	
	barbara	40	0.626	0.608	0.619	0.623	0.633	
900		20	0.668	0.714	0.757	0.698	0.730	
		30	0.558	0.606	0.653	0.591	0.613	
	baboon	40	0.486	0.515	0.566	0.505	0.523	

Conclusions

- Proposed to apply a union of DirLOTs to image denoising
- Perceptually preferable results were given with a simple computation
- Prospective performance was shown with iterative shrinkage Alg.
- Future works include the application to image restoration.

Acknowledgment

This work was supported by JSPS KAKENHI (23560443).