

Advance Technical Information

PolarHT[™] Power MOSFET

IXTQ 110N10P IXTT 110N10P

 $V_{DSS} = 100 V$ $I_{D25} = 110 A$ $R_{DS(on)} = 15 m\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C}$ to 175°C $T_J = 25^{\circ}\text{C}$ to 175°C; $R_{GS} = 1 \text{ M}\Omega$	100 100	V V	
V _{GSM}		±20	٧	
D _{D25}	$T_{\rm C} = 25^{\circ}{\rm C}$ External lead current limit $T_{\rm C} = 25^{\circ}{\rm C}$, pulse width limited by $T_{\rm IM}$	110 75 250	A A A	
I _{AR}	$T_c = 25^{\circ}\text{C}$	60	A	
E _{AR}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	40 1.0	mJ J	
dv/dt	$I_{S} \leq I_{DM}, di/dt \leq 100 \text{ A/}\mu\text{s}, V_{DD} \leq V_{DSS},$ $T_{J} \leq 150^{\circ}\text{C}, R_{G} = 4 \Omega$	10	V/ns	
P _D	T _C = 25°C	480	W	
T _J T _{JM} T _{stg}		-55 +175 175 -55 +150	°C °C °C	
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C	
M _d	Mounting torque (TO-3P)	1.13/10	Nm/lb.in.	
Weight	TO-3P TO-268	5.5 5.0	g g	

TO-3P (IXTQ)

TO-268 (IXTT)

G = Gate D = Drain S = Source TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
 - easy to drive and to protect

SymbolTest ConditionsCharacteristic Values $(T_J = 25^{\circ}C)$, unless otherwise specified)Min. | Typ. | Max.

V _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	100		V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$	2.5	5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$		±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150°C	25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$		15	mΩ

Pulse test, $t \le 300 \,\mu s$, duty cycle d $\le 2 \,\%$

Advantages

- Easy to mount
- Space savings
- High power density

PolarHT[™] DMOS transistors utilize proprietary designs and process. US patent is pending.

Symbo		aracteristic Values s otherwise specified)		
	Min.	Тур.	Max.	
\mathbf{g}_{fs}	$V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$ 30	40	S	
\mathbf{C}_{iss}		3550	pF	
\mathbf{C}_{oss}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$	1370	pF	
C _{rss}	J	440	pF	
t _{d(on)}		21	ns	
t _r	$V_{gs} = 10 \text{ V}, V_{ds} = 0.5 V_{dss}, I_{d} = 60 \text{ A}$	25	ns	
$\mathbf{t}_{d(off)}$	$R_{\rm G} = 4 \Omega $ (External)	65	ns	
t,	J	25	ns	
$\mathbf{Q}_{\mathrm{g(on)}}$)	110	nC	
\mathbf{Q}_{gs}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 V_{DSS}, I_{D} = 0.5 I_{D25}$	25	nC	
\mathbf{Q}_{gd}	J	62	nC	
R _{thJC}			0.31 K/W	
$\mathbf{R}_{\mathrm{thCK}}$	(TO-3P)	0.21	K/W	

Source-Drain Diode

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbo	I	Test Conditions	Min.	typ.	Max.	
I _s		$V_{GS} = 0 V$			110	Α
SM		Repetitive			250	Α
$\mathbf{V}_{\mathtt{SD}}$		$\begin{split} I_{_F} &= I_{_S}, \ V_{_{GS}} = 0 \ V, \\ \text{Pulse test, } t \leq 300 \ \mu\text{s, duty cycle d} \leq 2 \ \% \end{split}$			1.5	V
t _{rr}	}	I _F = 25 A -di/dt = 100 A/μs		130		ns
\mathbf{Q}_{RM}	J	$V_R = 50 \text{ V}$		2.0		μС

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. $R_{\rm DS(on)}$ Normalized to 0.5 $I_{\rm D25}$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Source Current vs. Source-To-Drain Voltage

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Forward-Bias Safe Operating Area

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance