1 ЖИЫН ЖӘНЕ ОҒАН ҚОЛДАНАТЫН АМАЛДАР. ҚАСИЕТТЕРІ.

1.1 Негізгі анықтамалар. Жиын ұғымы фундаментальді анықталмаған ұғым. Интуициялық түрде ішкі жиын деп бір бүтін кез – келген жиынтық

Жиын деп белгілі бір объектінің белгілі қасиеттеріне байланысты топтастырылуы.

Ол объектілердің де өз айырмашылықтары болуы мүмкін. Жиындарға мысалдар ретінде бөлмедегі орындықтар жиынын, бір үйде тұратын адамдар, топтағы студенттер, натурал сандар жиыны, алфавиттегі әріптер жиыны, т.б. мысалдар келтіруге болады.

Жиынның құрамындағы жеке объектілер оның элементтері деп аталады. Нақты жиындарды белгілеу үшін латынның үлкен әріптері қабылданған: A,S,X,... Жиынның элементтерін белгілеу үшін кіші әріптерді a,s,x,... қолдану қабылданған. x объектісі X жиынына тиісті екенін көрсету үшін, яғни, x элементі X жиынының элементі екенін көрсету үшін, $x \in X$ белгісі қолданылады. Ал $x \not\in X$ белгісі (жазбасы) x элементі X жиынына тиісті емес екенін көрсетеді. X жиыны X жиынының **ішкі жиыны** деп аталады, егер, X жиынының кез — келген элементі X жиында жатса. Бұл факт X X X X деп белгіленеді. (кейде, бұл жиындар әртүрлі екені нақты белгілі болса, онда: X

Бір де бір элементі жоқ жиын **құр (бос)** жиын деп аталады. Оны \varnothing деп белгілейміз.

1.2 Жиындарғы қолданылатын амалдар және қасиеттері. Жиындарға элементар алгебрадағы қосу, көбейту сияқты амалдарды қолдануға болады. Жиындарға қолданылатын амалдарды графикалық бейнеде кескіндеу үшін Эйлера-Венн деп аталатын диаграмманы қолданамыз.

X және Y жиындарының **бірігуі** (кейде қосындысы) деп, X, Y жиындарыныңтым болмаса біреуінде жататын элементтер жиыны.

X және Y жиындарының **айырмасы** деп, X жиынына тиісті ал, Y жиынына тиісті емес элементтердің жиынын айтамыз

X және Y жиындары **қиылыспайтын** деп аталады, егер оларда ортақ элемент болмаса, яғни, егер $X \cap Y = \emptyset$.

Х және Ү жиындарының симметриялы айырмасы деп, жиындардың біреуіне тиісті ал екіншісіне тиісті емес элементтердің жиынын айтамыз.

А,В,С, Х, Ү, Z – кез – келген жиындар болсын.

- 1. Қиылысудың, бірігудің, симметриялық айырманың коммутативтілігі:
- a) $A \cap B = B \cap A$; 6) $A \cup B = B \cup A$; b) $A \div B = B \div A$.
- 2. Қиылысудың, бірігудің, симметриялық айырманың ассоциативтілігі:
- a) $A \cap (B \cap C) = (A \cap B) \cap C$; 6) $A \cup (B \cup C) = (A \cup B) \cup C$; b) $A \div (B \div C) = (A \div B) \div C$.
- 3. Қиылысудың, бірігудің, симметриялық айырманың дистрибутивтігі:
- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, δ) $A \cap (B \div C) = (A \div B) \cap (A \div C)$.

2. БИНАРЛЫ ҚАТЫНАСТАРДЫҢ МАҢЫЗДЫ ТҮРЛЕРІ: ЭКВИВАЛЕНТТІК ФУНКЦИЯНЫҢ ДЕРБЕС РЕТІ

п элементтер тізбегінен тұратын жиын n- ші реттелген жиын немесе кортеждер деп аталады. n- де әрбір элементтің өз орыны болады. Мысалы, $a \neq b$ реттелген (a,b) және (b,a) екіліктері әртүрлі (кейде реттелген жұптар $\langle a,b \rangle$ деп белгіленеді). Онда $\{a,b\} = \{b,a\}$.

X және Y жиындарының элементтерінен құралған, реттелген (x,y) жұптарының жиыны X және Y жиындарының декарттық немесе тура көбейтінді деп аталады. Сайып келгенде, декарттық көбейтінді элементтері ұзындығы екі болатын (x,y) түріндегі барлық

1 – сурет. Жиындардың декарттық көбейтіндісі

кортеждер. Геометриялық бейнеде 1 суретпен көрсетуге болады. Мұнда X және Y жиындары нақты осьтер, ал $X \times Y$ – декарттық көбейтіндісі боялған бөлігі.

 $X_1, \ X_2, \ \dots \ X_n$ жиындарының декарттық көбейтіндісі деп, $X_1 \times X_2 \times \dots \times X_n$ деп белгіленетін, ұзындығы n болатын барлық мүмкін болатын кортеждерді айтамыз. Бірінші компонент X_1 – ге тиісті элемент, екінші компонент болып – X_2 -нің элементі, т.с.с. болады.

Қатынасқа мысалдар болып теоретикалық – сандық немесе теоретика – жиындық немесе предикаттың геометриялық қасиеті: «...- дан кіші», «...- ға бөлінеді», «конгруэнтті ...». Сәйкестік ұғымын

нақтылау үшін жиынның реттелген жұбын, үштігін, n-ші кортежін қолданамыз.

Бинарлық қатынас деп $X \times Y$ жиынының еркін ішкі жиындарының бірін айтамыз. Бұл жағдайда X және Y жиындарының арасында бинарлық қатынас (сәйкестік) анықталған дейміз. Бұл факт $(x,y) \in R$ деп белгіленеді. Немесе басқаша түрде бұл жазба xRy, мұндағы $x \in X$, $y \in Y$, $R - X \times Y$ нақты ішкі жиынын көрсететін қатынас белгісі.

Тернарлы қатынас (сәйкестілік) деп X×Y×Z декарттық көбейтіндінің элементтерінен құралған реттелген үштіктер жиынының ішкі жиыны.

n-ды қатынас (сәйкестілік) деп $X_1 \times X_2 \times ... \times X_n$ декарттық көбейтіндінің элементтерінен құралған реттелген n-ды жиынының ішкі жиыны.

Бинарлық қатынастардың қасиеттері

- 1. Егер X және Y жиындары бинарлық сәйкестілікте беттессе, онда X жиынындағы элементтердің қатынасты туралы айтылады. Қатынастардың негізгі қасиеттерін қарастырамыз.
- 1. R қатынасы X жиынында **рефлексивті** деп аталады, егер кез келген $x \in X$ элементі үшін xRx орындалса. (немесе, басқаша $(x,x) \in R$).
- 2 R қатынасы X жиынында **антирефлексивті** деп аталады, егер кез келген $x \in X$ элементі үшін xRx орындалмаса. (немесе, басқаша $(x,x) \notin R$).

3. БИНАРЛЫҚ ҚАТЫНАСТАРДЫҢ МАҢЫЗДЫ ТҮРЛЕРІ. ЕРЕКШЕ БИНАРЛЫ ҚАТЫНАСТАР ТҮРІНДЕГІ ФУНКЦИЯЛАР.

ЭКВИВАЛЕНТТІ КЛАСТАРҒА БӨЛУ ТУРАЛЫ ТЕОРЕМА.

Әрбір R қатынасына R^{-1} **кері қатынас** наықтауға болады. Бұның қысқаша анықтамасы келесі түрде болады:

$$R^{-1} = \{(x,y) | xRy\} = \{(x,y) | (y,x) \in R\}.$$

Мысалы, «х у-тің бөлгіші» қатынасына кері қатынас «у х-ке еселі», «х у-тен үлкен» қатынасына кері қатынас «у х-тен кіші».

Нөлдік қатынас деп, элементтердің ешқай жұбына орындалмайтын қатынас. **Әмбебап** (бірлік) қатынас деп кез – келген элементтер жұбына орындалатын қатынасты айтамыз.

R қатынасына \overline{R} толықтауыш қатынас деп $(x_1,x_2)\in \overline{R} \Leftrightarrow (x_1,\ x_2)\not\in R$ қатынасын айтамыз.

Енді қатынастардың негізгі түрлерін қарастырамыз.

1. $R \subset X \times X$ қатынасы X жиынының элементтері арасындағы рефлексивті, симметриялы және транзитивті қатынас эквивалентті қатынас деп аталады және $x_1 \sim x_2$, немесе $x_1 \equiv x_2$, немесе кейде $x_1 \approx x_2$, $x_1 \cong x_2$, $x_2 \approx x_3$, $x_3 \approx x_4$, деп белгіленеді. Эквиваленттік қатынасқа мысал болып Евклид кеңістігіндегі векторлар теңдігі, Евклид геометриясындағы фигуралар теңдігі жатады.

X жиынының **бөлшектенуі** деп оның ішкі жиындарының төмендегі шарттарды қанағаттандыратын $\{X_1, X_2, ... X_n\}$ жиынын айтамыз:

1)
$$X_i \neq \emptyset$$
, $i=1,\ldots,n;$ 2) $X_i \cap X_j = \emptyset$, мұнда $i \neq j;$ 3) $\bigcup_{i=1}^n X_i = X$.

Лемма (эквиваленттілік кластарға бөлу туралы). Жиында берілген эквиваленттіктің кез – келген қатынасы осы жиынды қиылыспайтын ішкі жиындарға бөледі. Кері тұжырым да дұрыс: жиынның әрбір қиылыспайтын ішкі жиындарға бөлшектенуі эквиваленттіліктің қандайда бір қатынасын анықтайды.

Бір факультеттің курстары осы факультеттегі студенттер жиынының бөлшектенуі, ал бір курстың топтары курс студенттері жиынының бөлшектенуі. \sim эквиваленттілік қатынасы қоятын бөлшектену келесідей анықталады: x және у элементтері бөлшектенудің бір ішкі жиынына түседі, егер олар эквивалентті болса, яғни, $x,y \in X_i \Leftrightarrow x \sim y$. Бұл ішкі жиындар эквиваленттік кластар деп аталады.

Қатынас **жартылай ретті** деп аталады, егер ол рефлексивті немесе антирефлексивті, антисимметриялы және транзитивті болса. Егер қатынас антирефлексивті болса, онда реті **қатаң**; ал ол рефлексивті болса, онда — қатаң емес ретті деп атайды. Мысалы, нақты сандар жиынында « $x_1 \ge x_2$ » қатынасы және P(A) дәреже — жиында « $X \subseteq Y$ » қатынасы қатаң емес ретті жартылай қатынас деп аталады. Ал « $x_1 > x_2$ » және « $X \subseteq Y$ » қатынастары — қатаң жартылай ретті қатынастарға мысалдар. Белгіленуі: $>,<, \square, \square$ — қатаң ретті жағдайда және $\square, \square, \ge, \le$ қатаң емес жағдайларда.

4. ПІКІРЛЕР ЛОГИКАСЫНДАҒЫ ДӘЛЕЛДЕУ ӘДІСТЕРІ. БУЛЬДІК ФУНКЦИЯЛАР ТӘРІЗДІ КҮРДЕЛІ ПІКІРЛЕР.

A,B,C-X көпмүшесінің туынды көпмүшесі делік, яғни $A,B,C\in P(X)$. Бұдан келесі теңдеулер шығады:

- 1. Қиылысу, бірігу коммутативтілігі: *a*) $A \cap B = B \cap A$; *б*) $A \cup B = B \cup A$.
- 2. Қиылысу, бірігу ассоциативтілігі: *a*) $A \cap (B \cap C) = (A \cap B) \cap C$; б) $A \cup (B \cup C) = (A \cup B) \cup C$.
 - 3. Жуық бірігүдің қиылысуының және жуық қиылысудың бірігүінің делдалдығы:
 - $(A \cap A) \cap (B \cup C) = (A \cap B) \cup (A \cap C), \ \delta(A \cup C) = (A \cup B) \cap (A \cup C).$
 - 5. Бірігу мен қиылысудың идемпотенттілігі: a) $A \cup A = A$; b0 $A \cap A = A$.
 - 7. Бос көпмүшенің құрылымы: a) $A \cup \emptyset = A$; δ) $A \cap \emptyset = \emptyset$.

8. Толықтауыш құрылымы: a) $A \cap \overline{A} = \emptyset$; b) $B \cup \overline{B} = X$; b) A = A; b) $\overline{A \cup B} = \overline{A} \cap \overline{B}$; b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$, бұнда толықтауыш X көпмүшесіне байланысты алынады.

Сонымен көпмүше – булевалық алгебра (көпмүшелер) деп аталатын жүйені құрайтын қиылысу, бірігу және толықтыру операциялары бар дәреже.

Пікірлер алгебрасы. Математикалық логиканы оқуды біз басқа логикалық есептеулер (ықтималдық логикасы т.б.) негізделетін пікірлер алгебрасын оқудан бастаймыз. Пікірлер алгебрасы кейбір дискретті құрылғылар сипаттайтын құрастыру модельдері үшін негіз ретіндегі өзіндік қызығушылық болып табылады.

Пікірлер деп ненің анық ақиқат, ненің жалған екенін, екеуін бір бірінсіз дербес мағынасын білдіретін жай сөйлемді ұғамыз.

Мысалы 1. Волга Каспий теңізіне құяды. 2. Екі үштен көп. 3. Мен жалған айттым.

Бұл мысал пікір болып табылады (1 – ақиқат, 2 – жалған). 3 – пікір емес (егер ол шындық деп ұйғарсақ, онда ол ой бір уақытта жалған және керісінше осы сөйлемнен ақиқат ойы жеткізіліп тұр). Бұл **суайт парадоксы** деп аталады.

Алгебрада пікірлер пікірлердің ішкі құрылымын қарастырмайды, тек олардың ақиқат және жалған екендігін анықтаумен шектеледі. Сондықтан да пікірге екі «ақиқат» немесе «шындық» мәндерінің біреуін білдіретін көлем ретінде қарауға болады.

5. ПІКІРДІ ЕСЕПТЕУДЕГІ ТОЛЫҚТЫЛЫҚ ТУРАЛЫ ТЕОРЕМА

Біз пікірлер алгебрасын қарастырдық. Бұл қарастыру мазмұнды болды. Енді онды формальді тұрғысынан алғанда формальді теорияға түсінік бере отырып сипаттауға тырысып көрейік.

2.3.1 Формальді теориялардың арасында ең маңыздысы болып **аксиомалық** (немесе дедуктивті) деп аталатын формальді теориялар тобы саналады. Біз соларды қарастырумен шектелеміз.

Аксиомалық теорияларға келесі «ақиқат» формулаларын белгілеу тәртібі тән:

- I. Формальді теорияны құруды оның әліппесін құрайтын белгілердің көпмүшелерін белгілеуден бастайды;
- II. Содан кейін теория формулалары (есептеулердің дұрыс құрылымы) құралатын ережелер көрсетіледі;
 - III формулалардың кейбір көпмүшелері бар, олар **теория аксиомалары** деп аталады;
- IV формулалар арасындағы қатынастың соңғы көпмүшесі көрсетіледі; бұл қатынастар қорытынды ережелері деп аталады;

V қорытынды ережелері жаңа формулаларды осы формулалардың шекті қатарына сәйкес қояды; осы ережелердің көмегімен аксиомалардан жаңа «ақиқат» формулалары — **теоремалар** алынады.

Формальді теория – бұл «ақиқат» теоремалары деп аталатын көпмүше формулалары белгіленген формальді тілдегі барлық формулалардың көпмүшесі. Барлық формулалары ақиқат болып табылмайтын теория **қарама қайшылықсыз деп** аталады.

Теорема 2.1. Пікірлерді есептеудің кез келген теоремасы пікірлер алгебрасының тавтологиясы болып табылады.

Теорема 2.2. Пікірлерді есептеу қарама қайшылықсыз.

Дәлелдеу. Пікірлерді есептеудің кез келген теоремасы тавтология болып табылады. Пікірлер алгебрасындағы теоремаларды жоққа шығару өтірікке тең және пікірлерді есептеу теоремасы болып табылады.

Теорема 2.3. Пікірлер алгебрасының кез келген тавтологиясы пікірлерді есептеу теоремасы болып табылады.

Салдар 2.1. (пікірлерді есептеудің дұрыстығы (толықтығы) туралы теорема). Пікірлер формуласын (теоремасын) есептеуде дәлелденетін көпмүше тавтология көпмүшесімен сәйкес келеді.

Теорема 2.4. (Пікірлерді есептеу Посты бойынша толықтық туралы теорема) $\varphi(X_1,...,X_n)$ – теорема болып табылмайтын формула болсын. $\varphi(X_1,...,X_n)$ алынған барлық

формулалар аксиомалары ретінде қосылған пікірлерді есептеуден алынған теория ауыспалы пікірлерді дербес формулаларға ауыстырғанда қарама қайшы болады.

6. ПРЕДИКАТТАР МЕН КВАНТОРЛАР. ПРЕДИКАТТАР ЛОГИКАСЫНДА ДӘЛЕЛДЕУЛЕР ҚҰРУ. КВАНТОРЛАРМЕН ІС ӘРЕКЕТТІҢ КЕЙБІР ЕРЕЖЕЛЕРІ.

Пікірлер алгебрасының дамуы предикаттар логикасы болып табылады. Бұл да логикалық жүйе немесе ғылымды сипаттайтын белгілі бір тіл. Предикаттар логикасында пікірлермен бірге предикаттар деп аталатын күрделірек ұйғарым қарастырылады.

 $\forall x P(x)$ теңдеуі (кез келген x үшін, P(x) дұрыс») пікірді білдіреді, яғни P(x) предикаты M көпмүшесінің барлық элементтері үшін нақты болған жағдайда ғана ақиқат болып табылады. Мұндағы \forall белгісі — жалпылық кванторы.

 $\exists x P(x)$ теңдеуі («P(x) дұрыс болатындай x бар») пікірді білдіреді, яғни P(x) предикаты M кем дегенде бір элементі үшін анық болған жағдайда ғана ақиқат болып табылады; \exists белгісі — **тіршілік кванторы**.

Кванторларды қолдану мысалдарын қарастырайық. Натуралды сандар өрісінің үстінен предикаттар берілді делік:

- 1) $x^2 = xx$, онда $\forall x(x^2 = xx)$ нақты пікір;
- 2) x+2=7, онда $\forall x(x+2=7)$ жалған, ал $\exists x(x+2=7)$ шындық пікірі;
- 3) x+2 = x, онда $\exists x(x+2 = x)$ жалған пікір.

М жүйесіндегі предикаттар логикасының қарастырғанда берілген жүйеде (өрісте) тепе тең әсерлі формулалар туралы айтуға болады, яғни барлық бос заттық ауыспалы заттарына және барлық предикаттар белгілеріне ортақ бір мән – нақты предикаттар қабылдайтын формулалар туралы.

Мысал. Жүйелер (өрістер) үстіндегі $\forall x W(x)$ және $\exists x W(x)$ формулаларын қарастырайық 1) M_I , $\{a\}$ көпмүшесінен және A(x) пен B(x) предикаттарынан, A(a) шындық, B(a) жалған; 2) M_2 , $\{a,b\}$ көпмүшесінен және A(x) предикатынан: A(a) шындық, A(b) жалған. Сонда $\forall x W(x)$ және $\exists x W(x)$ формулалары M_I , өрісінде (жүйесінде) тең әсерлі, бірақ M_2 өрісінде олай емес.

Предикаттар логикасының формулалары тепе тең әсерлі деп аталады, егер кез келген өрісте тепе тең әсерлі болса.

Теорема 3.2 Келесы формулалар жалпымәнді:

- 1. $\forall x W(x) \rightarrow \exists x W(x)$. 2. $\exists x \forall y V(x,y) \rightarrow \forall y \exists x V(x,y)$.
 - 7. КҮРДЕЛІ СӨЙЛЕМДЕРДІ ЖАЗУ ҮШІН ФОРМУЛА ТІЛІНІҢ ҚОЛДАНУЫ

Тек екі мәнді ғана қабылдай алатын айнымалыларды кейде сондай—ақ **логикалық** айнымалылар немесе **пропозиционалдық** айнымалылар деп атайды. Дәлірек айтқанда, x логикалық айнымалысы белгілі бір пікірді білдіріуі мүмкін. Мұнда x айнымалысының мәні θ тең деп есептелінеді, егер оның мәнін білдіретін пікір жалған болса, және θ тең болса, егер бұл пікір шындық болса.

Функция тәуелді аргументтер саны (міндетті түрде булева емес) **кеңістік** немесе (арность) деп аталады.

Кесте 4.2.			
х	F(x)	$\frac{-}{x}$	
0	0	1	
1	1	0	

Бұл теңдеулерді логикалық заңдар ретінде де қарастыруға болады, егер айнымалылар кез-келген ұйғарым болса, ал теңдеулерді ұйғарымдардың тең әсерлілігі ретінде қабылдасақ.

4.3.1 x_i айнымалысы $f(x_1,...,x_i,......x_n)$ функциясы үшін нақты болып табылады, егер басқа айнымалалар $\alpha_1,...,\alpha_{i-1},\alpha_{i+1},...,\alpha_n$ ($\alpha_j \in \{0,1\}$) мәні $f(\alpha_1,...,\alpha_{i-1},0,\alpha_{i+1},...,\alpha_n) \neq f(\alpha_1,...,\alpha_{i-1},1,\alpha_{i+1},...,\alpha_n)$ болса. Нақты емес айнымалылар жалған айнымалылар деп аталады.

Х	у	Z	f
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Осы бөлімнің басында айнымалылар мәндері жазбасының лексикографиялық тәртібі талқыланды. Ары қарай барлық жерде осы жазба тәсілін қолданамыз. Бірақ онда барлық кестені сызудың мәні болмайды — оның соңғы бағанасын ғана көрсеткен жеткілікті. Бір қатарға жазылған бұл бағанада жоғарыдан төменге қарай реті солдан оңға қарай ретіне сәйкес келсе функцияның **мәндік векторы** деп аталады. Мысалы , f функциясы үшін 4.1 мысалы бойынша бұл вектор f = (1,0,1,0,0,0,0,0), ал 4 по табл. 4.4 кестесі бойынша f = (1,0,0,0) деп жазылады.

8. ФОРМУЛАНЫҢ ЭКВИВАЛЕНТТІЛІГІ, БУЛЬДІК ФУНКЦИЯНЫҢ НЕГІЗГІ ҚАСИЕТТЕРІ. КЕМЕЛДЕНГЕН ДНФ ЖӘНЕ КНФ. БУЛЬДІК ФУНКЦИЯ ҮШІН ЖЕГАЛКИННІҢ ПОЛИНОМЫ

 $\overline{f}(\overline{x}_1,...,\overline{x}_n) = \neg f(\neg x_1,...,\neg x_n)$ функциясы f функциясы үшін екі жақты функция деп аталады және f^* білдіреді.

Мысал:
$$(x \& y)^* = (x \cdot y)^* = \overline{\overline{x} \cdot \overline{y}} = x \vee y$$
.

Пікір 1. f екі жақты функциясына екі жақты функция f функциясының өзіне тең.

Дэлелдеу.
$$[f^*(x_1,...,x_n)]^* = [\overline{f(x_1,...,x_n)}]^* = f(x_1,...,x_n) = f(x_1,...,x_n).$$

Теорема 4.1 (Екі жақтылық қағидасы). Функцияның суперпозициясына екі жақты функция $[f_0(f_1,...,f_m)]^* = f_0^*(f_1^*,...,f_m^*)$ екі жақты функциясының суперпозициясына тең.

Дэлелдеу.
$$[f_0(f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))]^* = \neg f_0(f_1(\neg x_1,...,\neg x_n),...,f_m(\neg x_1,...,\neg x_n))$$

= $\neg f_0(\neg \neg f_1(\neg x_1,...,\neg x_n),...,\neg \neg f_m(\neg x_1,...,\neg x_n)) = \neg f_0(\neg f_1^*(x_1,...,x_n),...,\neg f_m^*(x_1,...,x_n)) = f_0^*(f_1^*(x_1,...,x_n),...,f_m^*(x_1,...,x_n)).$

Салдары 4.1 (Екі жақтылық қағидасының басқаша құрылуы). Формулада берілген функцияның екі жақтылығын табу үшін осы формуладағы барлық функцияларды екі жақты функцияга ауыстыру қажет.

4.5 Дизъюнктивті және конъюнктивті қалыпты формалар

f булевалық функциясы үшін (ары қарай жай ғана функция) дизьюнктивті қалыпты формасы (дқф) f функциясына тең ретіндегі қарапайым конъюнкциялардың дизьюнкцисы деп аталады, ал қарапайым конъюнкция деп айнымалы немесе олардың жоққа шығарылуының конъюнкциясы аталады.

Мысал. Бірнеше булевалық функцияларды қарастырайық: $A = x \ y \lor z$, $B = x \lor y \lor z$, $C = x \ y \ z$, $D = x \ \& (y \lor z) = x \ (y \lor z) = x \land (y \lor z)$, $E = x \ y \ (x \lor z)$. A, B, C функциялары д.қ.ф. орналасқан, находятся в д.н.ф., A екі қарапайым $x \ y$ и z; B конъюнкциялардың дизьюнкциясы болғандықтан — әрбіреуі бір әріптен тұратын үш қарапайым конъюнкциялардың дизьюнкциясы. C — бір қарапайым конъюнкцияның дизьюнкциясы.

Теорема 4.2 1) 0 тең әрбір булева функция д.қ.ф. түрінде жазылуы мүмкін; 2) 1 тең әрбір булева функция к.қ.ф. түрінде жазылуы мүмкін.

Салдар 4.2 Әрбір булева функция д.қ.ф. түрінде де, к.қ.ф. түрінде де жазылуы мүмкін.

9. ҚОСАРЛАНҒАН ФУНКЦИЯЛАР. ҚОСАРЛАНУ ПРИНЦИПІ. МОНОТОНДЫ ФУНКЦИЯЛАР

Түрі кәдімгі көпмүше бірнеше айнымалылардың, қайсыда көбейту ролінде конъюнкция, қосу ролінде орындайды – қосу модульмен екі, ал коэффициенттермен нольдер немесе бірліктерді келеді.

п айнымалыларымен Жегалкин көпмүшесінің max дәрежесі қандай? Жауап : п . дәреже n жоғарырақ теңдіктердің түрында алынбайды : x = x (x = x (x = x , x = x және т . б .

Теорема 4.3 кез келген жалғыз тәсілмен Жегалкин көпмүшесі түрінде буль функцияны жазып қоюға болады .

Дәлелдеу (ал бір жағынан құру тәсілі). Бұл тәсіл $x+1=\overline{x}$ негізделген. Егер функция ДҚФ түрінде берілсе, онда ең алдымен де Морганның ережелерін қолдана отырып дизъюнкцияны жоямыз, ал барлық жоққа шығаруларды бірлікті қосумен ауыстырамыз.

Теорема 4.4 Егер $D = \{f_1, ..., f_k\}$ — жиыны толық, ал $F = \{g_1, ..., g_l\}$ жүйесі әрбір D алынған f_j функциясы F жүйесі функциясының суперпозициясы ретінде жазылатын болса, онда F жиыны да — толық болады.

Дәлелдеу. h — өздігімен таңдалған булева функция болсын. D жүйесі толық болса, онда h — D жүйесінің функциялары ғана кіретін формула түрінде жазылуы мүмкін. f_i функциясының әрбір жағдайы бойынша бұл формулада F функциясын суперпозициямен ауыстыруға болады, нәтижесінде жазбасында g_i функциясы ғана қатысатын формула пайда болады.

10. ТОЛЫҚТЫЛЫҚ. ТОЛЫҚ ЖҮЙЕГЕ МЫСАЛДАР. ТОЛЫҚТЫЛЫҚ КРИТЕРИІ

Лемма 4.1 «Жаппай үлкен емес» қатынасы – бөлшектік қатар, яғни ол рефлексивті, антисимметриялы және транзитивті.

Теорема 4.5 T_0 , T_1 , L, M, S функциясының топтары тұйық.

Бұл ұйғарым осы топтың өз анықтамасынан, сондай ақ тұйықтық анықтамасынан шығалы

Булевалық функциялар теориясында толықтық туралы келесі теорема өте маңызды болып табылады.

Теорема 4.6 (толықтық туралы). K функциясының кейбір жиыны толық болуы үшін осы жиынның T_0 , T_1 , L, M, S тобының ешбіреуінде толығымен болмауы қажет және жеткілікті.

11. БУЛЬДІК ФУНКЦИЯЛАРДЫ МИНИМИЗАЦИЯЛАУ. ҚАРАПАЙЫМДЫЛЫҚ ИНДЕКСІ. ГЕОМЕТРИЯЛЫҚ ЖАҒДАЙЫ

ЖЕТІЛГЕН, ТУПИКТІК, МИНИМАЛЬДІ, ҚЫСҚАРҒАН ДҚФ-ТАР ТАБУ ӘДІСТЕРІ

Квайн әдісі

5.1 **Квайн әдісі** толысқан формадан қысқарған д.қ.ф. табады. Ол екі леммаға негізделген:

Лемма 5.1. $xK \lor \overline{x}K = xK \lor \overline{x}K \lor K$.

Лемма 5.2. $xK \vee K = K$.

Блейк әдісі

Бұл әдіс кез-келген д.қ.ф.-дан шыға отырып қысқарған д.қ.ф. табады. Ол екі леммаға негізделген:

Лемма 5.3. $xK_1 \vee \overline{X} K_2 = xK_1 \vee \overline{X} K_2 \vee K_1 K_2$

Лемма 5.4. $K_1K_2 \vee K_2 = K_2$.

Нельсон әдісі

Бұл әдіс кез-келген д.қ.ф.-дан шыға отырып қысқарған д.қ.ф. табады. Конъюнкция операциясының дизъюнкцияға қатысты дистрибутивтік қасиетіне негізделген: $x \wedge (y \vee z) = xy \vee xz$. Алгоритмнің бірінші сатысында берілген к.қ.ф.-да жақшаның ішіндегі элементар дизъюнкцияларды мүшелеп көбейту арқылы жақшаны ашу амалы жүргізіледі. Екінші этапта барлық мүмкін болатын түрлендірулер жүргізу арқылы қарапайым түрге келтіріледі. Осымен алгоритм аяқьалады.

Мысал: $h = (\overline{x} \lor y)(y \lor z)(x \lor \overline{z})$

 $h = (\,\overline{x}\,y \vee yy \vee \,\,\overline{x}\,z \vee yz)(x \vee \,\,\overline{z}\,\,) = (y \vee \,\,\overline{x}\,z)(x \vee \,\,\overline{z}\,\,) = yx \vee \,\,\overline{x}\,zx \vee y\,\overline{z} \vee \,\,\overline{x}\,z\,\overline{z} \,=\, yx \vee y\,\overline{z}\,.$

Шекаралық нүктелер әдісі

Бұл әдіс қарапайым импликанттардың кез-келген дизъюнкциясынан шыға отырып тупиктік д.қ.ф.-тарды табуға негізделген, ал егер алғашқы д.қ.ф. қысқарған болса, онда шыдамдылықпен назар сала отырып тупиктік д.қ.ф.-ны табуға болады. Келесі леммаларға негізделген:

Лемма 5.5 ∂p түрлі r литердан (**рангасы** r) тұратын элементар конъюнкция, 2^{n-r} нүкте береді, мұндағы n — айнымалылардың жалпы саны.

Лемма 5.6. K_i қарапайым импликанты жойылады сонда тек сонда, қашан K_i (β_{r+1} , β_{r+2} , ..., β_n) барлық конъюнкциялары басқа K_j мұндағы $i \neq j$ импликанттарымен жұтылып кетсе яғни, кез-келген (β_{r+1} , β_{r+2} , ..., β_n) нөлдер мен бірлер жиыны үшін K_i (β_{r+1} , β_{r+2} , ..., β_n) конъюнкциясының бөлігі K_j болып табылатындай K_j мұндағы $i \neq j$ импликантасы табылады.

Барлық тупиктік д.қ.ф. табу әдісі

Қысқарған д.қ.ф. берілсе, шекаралық нүктелер мен Нельсон әдістерінің принциптеріне негізделе отырып барлық тупиктік д.қ.ф.-ды табуға болады..

ГЕОМЕТРИЯЛЫҚ МАҒЫНАСЫ

Геометриялық әдіс қысқарған немесе бірнеше п≤4 тупиктік д.қ.ф.-тарды табуға көмектеседі. f = (1,1,0,1,0,1,0,1) функциясын қарастырайық. Функцияның мәндерінің кестесі арқылы N_f жиынын табамыз, N_f – функция 1 немесе ақиқат мәнін қабылдайтын нуктелер жиыны: $P_1 = (0,0,0), P_2 = (0,0,1), P_3 = (0,1,1), P_4 = (1,0,1), P_5 = (1,1,1).$ Бұл нүктелерді координаталар басына орналасқан бірлік кубиктардың төбелер ретінде белгілейміз. P_2 , P_3 , P_4 және P_5 нүктелері толығымен кубиктің z=1 теңдеуімен берілетін жоғарғы қабырғасын жабады. Шынында да бұл нүктелердің барлығының үшінші координатасы 1-ге тең. Сонымен қатар бұл қабырғаның өлшемділігі 2-ге тең, ал N_{f} жиынында осы нүктелерді қамтитын өлшемі одан үлкен қабырға жоқ. Осылайша элементар конъюнкция $z^1 = z - f$ функциясы үшін қарапайым импликанта. $P_1 = (0,0,0)$ нүктесі бұлшетімен қамтылған жоқ, сондықтан бұл нүкте x = 0, y = 0, z = 0 теңдеулер жүйесімен беріледі, яғни элементар конъюнкция $x^0y^0z^0 = XYZ$. Бірақ оны қарапайым импликанта деп санауға болмайды, себебі Р₁ нуктесі кубиктің 0z осінде жатқан қабырғасында жатыр және толығымен N_f жиынына кіреді. Бұл қабырға (өлшемі 1-ге тең) P_1 және P_2 екі нүктеден тұрады, олардың екі ортақ координатасы x = 0 және y = 0, сонымен қатар $P_1 P_2$ қабырғасы N_f жиынында бірмезгілде болатын кубтың ешбір жағына сәйкес келмейді. Сондықтан $x^0y^0 = X Y$ конъюнкциясы – f үшін қарапайым импликанта.

Егер біз тек қандай да бір тупиктік д.қ.ф. іздесек онда $z \lor xy$ ізделінді форма болып табылады, себебі оның конъюнкцияларына сәйу\кес келетін қабырғалар толығымен $N_{\rm f}$

Табл.5.7

жиынын қамтып жатыр.Қысқарған д.қ.ф. тапқан кезде N_f жиынының ішінде басқа да ең үлкен қабырғаларды іздеу керек. Берілген жағдайда ол жоқ, яғни $z \lor X y$ формуласы қысқарған түрде болып саналады.

n = 4 болған жағдайда әдетте төртөлшемді куб салмайды, **Карно картасын (Вейч диаграммасы)** құрады. Мағынасы жағынан бұл да функцияның мәндер кестесіне ұқсас, бірақ оған

қарағанда жинықы. Мысалы, f = (1,1,1,0,1,1,1,1,0,0,1,1,1,0,0,0) функциясының мәндер кестесін 4х4 шаршыда орналастыруға болады (5.7 кесте). Бұл жағдайда функцияның он бір жағдайда бірлік міән, бесеуінде нөлдік мән қабылдайды.Сондықтан ККарно картасын толтыруды нөлден бастаймыз. Біріншісі мәндер кестесінің төртінші жолында,

координатасы (0,0,1,1). Келесі торды былай анықтаймыз: Бірінші нөл тоды алғашқы екі жолдан таңдау керектігін білдіреді.Екінші нөл осы сегіз тордың бүйір жақтағы төртеуін қалтыру керектігін білдіреді. Үшінші координата — бірлік, ол төрт тордың ішінде екінші және үшінші жолда жатқандары қалу керектігін талап етеді, ондай тордан екеу, бірінші және төртінші бағанда орналасқан, соңғы бірлік соның ішіндегі төртінші бағанға тиістісін таңдау керектігін білдіреді. Картаның қалған торларын бірліктермен толтырамыз. Картаны толығымен толтырғаннан соң қандай да бір тупиктік д.қ.ф. құруды бастаймыз.

12. КЕМЕЛДЕНГЕН, ТУПИКТІК, МИНИМАЛДЫ, ҚЫСҚАРТЫЛҒАН ДҚФ.

f буль функциясы үшін **дизьюнктивті қалыпты форма** (д.қ.ф.) деп элементар коньюнкциялрдың дизьюнкциясын, ал **элементар коньюнкция деп** айнымалылардың немесе олардың терістеулерінің коньюнкциясын айтады.

Жоғарыда қарастырылған д.қ.ф.-дың (к.қ.ф.-дың) әрбір элементар конъюнкциясында (дизьюнкциясында) әр литера тек бір рет кездеседі, яғни жетілген д.қ.ф. (к.қ.ф.). Алайда жетілген д.қ.ф. өте күрделі және кең ауқымды. Көп жағдайдафункцияны д.қ.ф. түрінде өте қысқа жолмен жазуға болады. Мысалы, $H = \sqrt[3]{x} \ y \ z \lor x \ y \ z = (y \lor y) \ x \ z \lor x \ y \ z = 1 \cdot x \ z \lor x \ y \ z = x \ z \lor x \ y \ z = g \ G$. Немесе одан да қысқарақ: $H = x \ z \lor y \ z = \sqrt[3]{x} \ F$. Мұндағы $A = \sqrt[3]{x} \ F$ графикалық теңдік. Осылайша д.қ.ф. F, G және G функция ретінде тең болғанымен (бір ғана функцияны білдіреді, мұны ақиқаттық кестесін құру арқылы көруге болады.), д.қ.ф. ретінде әр түрлі..

Қалыпты формалардың «ұзақ», «қысқа» жазылу ұғымын әр тү.рлі тәсілмен түсіндіруге болады.Соның бір қарапайым түрі: A д.қ.ф. немесе к.қ.ф. құрамына кіретін литералар саны (әріптер, айнымалылар мен олардың терістеулерінің саны, дизъюнкция мен конъюнкция белгілері кірмейді) әріптік қарапайымдылық индексі деп аталады және $L_{\mathcal{B}}(A)$ деп белгіленеді. Жоғарыда берілген д.қ.ф. үшін : $L_{\mathcal{B}}(H)=9$, $L_{\mathcal{B}}(G)=5$, $L_{\mathcal{B}}(F)=4$.

5.1.2 Буль функцияларын минимизациялау проблемаларын әдетте қайсыбір ең кіші мәнді қарапайымдылық индексімен берілген функцияны жүзеге асыратын д.қ.ф.-ны табу деп түсіндіреді. Мұндай д.қ.ф. осы индекс бойынша минимальді деп саналады. Төменде келтірілген әдістер ең алдымен $L_{\mathcal{B}}$ индекске есептелініп алынған, бірақ кейбіреуі кез-келген қарапайымдылық индексі үшін қолданыла береді.

 $A = X \ \overline{y} \lor \overline{y} z \lor xy \lor y \overline{z}$ және $B = X \ \overline{y} \lor xz \lor y \overline{z}$ д.қ.ф. бір ғана функцияны білдіреді. Мұндағы A д.қ.ф.-дан элементар конъюнкциялардың ешқайсысының ешбір әрпін жойып жіберуге болмайды., сондай-ақ ешбір конъюнкцияны да алып тастуға келмейді. Осылайша A (B) д.қ.ф.-сын әрі қарай ықшамдауға, яғни ешқандай элементті алып тастауға болмайды. Мұндай д.қ.ф. **тупиктік** деп аталады. $L_{B}(A) = 8$, а $L_{B}(B) = 6$.

Теорема 5.1. Элементар конъюнкция K f функцясы үшін қарапайым импликант болып табылады, сонда тек сонда, қашан $(K \rightarrow f) = 1$, ал қандай да бір литерді жою арқылы K-дан алынған кез-келген элементар конъюнкция K, бұл қасиетке ие бола алмайды. Қысқарған д.н.ф. барлық қарапайым импликанттардың дизъюнкциясы болып табылады.

13. ГРАФТАР ТЕОРИЯСЫНДАҒЫ АНЫҚТАМАЛАР. МЫСАЛДАР. ОРГРАФТАР, МУЛЬТИГРАФТАР. ІШКІ ГРАФТАР

Граф – G = (V, E) қосы, ол екі жиыннан тұрады: V – төбелері деп аталатын әртүрлі нысандар жиыны (әдетте оларды жазықтықтағы нүктелермен көрсетеді), ал $E - e_i = (v_{iI}, v_{i2})$, $v_{ij} \square V$ қабырғалары деп аталатын төбелер қосының жанұясы (оларды доғамен немесе сәйкес төбелердің арасындағы стрелкамен белгілейді). Сәйкесінше, V төбелер жиыны, ал E - қабырғалар жиыны. Егер e_i қабырғасының төбелерінің реті бар болса, онда граф бағытталған, қысқаша — орграф деп аталады, бұл жағдайда граф сала отырып оның доғаларының ұштарын белгілеп, бағытын көрсетеді. Қабырғаның басы бастапқы нүкте, соңы соңғы нүкте деп аталады. Бағыты берілмеген жағдайда граф бағытталмаған деп

аталады. **Қарапайым** графтың ілгіштері және еселі қабырғалары болмайды. Қарапайым графтарды еселі қабырғалары бар **мультиграфтардан** ерекшелеу үшін жай графтар деп атайды.

Төбенін денгейі леп графтың осы төбе инцидентті (төбені қамтитын) болатын қабырғалар санын айтады. Графтың кему және өсу бойынша реттелген төбелер деңгейінің тізімі деңгейлер векторы немесе дәрежелер векторы деп аталады. Мысалы, G_1 графта ол (3,3,4,4,4,4), 6.2 суретте көрсетілген G2 графта (1,2,2,2,3).

Теорема 6.2. Графтың

барлық төбелерінің дәрежелерінің қосындысы екі еселенген қабырғаларының санына тең.

 G_2 графты 6.2 суреттегіден басқаша да бейнелеуге болады. Мысалы 6.3 суреттегідей. Бұған көз жеткізу үшін G_2 графтың A_1 төбесіне 6.3 суреттегі графтың A төбесін, A_2 төбесіне — D төбесін, A_3 төбесіне — E төбесін, A_4 төбесіне —B төбесін, A_5 төбесіне — C төбесін сәйкес қоямыз. Нәтижесінде төбелердің арасында өзара бірмәнді сәйкестік орын алды, 6.2 суреттегі графтың төбелері қабырғамен байланысады, сонда тек сонда, егер сәйкес төбелер іргелес болса.

A В С Рис.6.3 Е

Көп жағдайда қандай төбелері іргелес екенін ғана емес, қай төбесінде және қандай қабырғада қандай салмақ екенін де білген маңызды. Бұл салмақтар орайына қарай әр түрлі мағына білдіреді: арақашықтық, шығын, кіріс, жұмысты орындауға қажетті уақыт, істен шығу ықтималдығы және т.б. Қажет жағдайда

$$\begin{array}{c} k \\ A \\ \end{array} \begin{array}{c} K \\ B \\ \end{array} \begin{array}{c} M \\ C \\ \end{array} \begin{array}{c} K \\ B_1 \\ \end{array} \begin{array}{c} M \\ B_2 \\ \end{array} \begin{array}{c} M \\ B_1 \\ \end{array} \begin{array}{c} M \\ B_2 \\ \end{array} \begin{array}{c} M \\ \end{array} \begin{array}{c} M \\ B_1 \\ \end{array} \begin{array}{c} M \\ B_2 \\ \end{array} \begin{array}{c} M \\ B_2 \\ \end{array} \begin{array}{c} M \\ B_1 \\ \end{array} \begin{array}{c} M \\ B_2 \\$$

қосымша төбелер мен қабырғалар да қосады. 6.8 сурет сол операцияны көрсетеді.

Кейбір жағдайда графтарды инциденттік матрицасымен беру де ыңғайлы. Ол тікбұрышты, жолдарының саны графтың төбелерінің санына сәйкес, ал бағандарының саны графтағы қабырғалар санына сәйкес келеді.

14. ӨЛШЕНЕТІН ГРАФ. ҚАСҚАРТЫЛҒАН ЖОЛДАР

Графта қабырғалар екі рет кездеспейтін бағытты жол деп атайды. Мысалы, G_5 (6.4сур.) графтағы $A_1A_2A_3A_1A_6AA_4A_3A_1$ бағыты жол болмайды, себебі оған A_1A_3 қабырғасы екі рет кіреді. Э**йлер** жолы (айналымы) деп графта графтың барлық қабырғаларын қамтитын жолды айтады, яғни бұл бағытта графтың әр қабырғасы тек бір рет қана кездеседі (ескерту – төбесі туралы ештеңе айтылмайды, кез-келген жолда төбелер бірнеше рет кездесуі мүмкін. Эйлер жолы бар граф эйлер графы деп аталады, сондай-ақ

егер жолдың бастапқы төбесі мен соңғы төбелері сәйкес келетін болса, граф эйлер циклі деп аталады.

Ағаш – циклсіз граф. Ағаштар практикада әдетте әртүрлі иерархиялық бейнелеулерді салуда қолданылады. Графта циклдің болуы көп жағдайда оның

цикломатиялық санын анықтауға $\lambda(G) = m - n + k$ мүмкіндік береді: мұндағы т – графтағы қабырғалар саны, n – төбелер саны, k – байланыстылық компоненттерінің саны. Например, Мысалы, 6.11 суреттегі графта екі байланыс компоненттері бар: G₁ және G₂, сондықтан оның цикломатиялық саны: (6 +6) -(7+5)+2=2. Егер эрбір байланыс компонентін графтың өзі ретінде карастырсак, олардың онда цикломатиялық сандары бірдей:

$$\lambda(G_1) = 6 - 7 + 1 = 0$$
,

$$\lambda(G_2) = 6 - 5 + 1 = 2$$
.

 G_1 графы ағаш екені белгілі. Келесі теорема $\lambda(G_1) = 0$ теңдігінің кездейсоқ алынбағанын көрсетеді.

Теорема 6.7. Кез-келген графтың цикломатиялық саны — теріс емес шама, графтың циклі болмаған жағдайда ғана бұл шама нөлге тең болады.

Ағаштың келесі қасиеттері жиі қолданылады:

Теорема 8. *N төбесі бар ағаштың эквивалентті анықтамалары.*

- а) Графтың N-1 қабырғасы бар және ешқандай цикл жоқ.
- б) Граф байланысты және N-1қабырғасы бар.
- в) Граф байланысты, кез-келген қабырғасын жою арқылы граф байланысты болмай қалады.
 - г) Кез-келген екі төбе бір ғана жолмен байланысады.
- д) Граф циклсіз және кез-келген екі төбесінің арасына бір қабырға қосу бір ғана циклдің пайда болуына әкеледі.

15. ЭЕМ-ДА ГРАФТАРДЫҢ БЕРІЛУІ (МАТРИЦАЛЫҚ ЖӘНЕ БАСҚАСЫ). ИЗОМОРФТЫ ГРАФТАР. АҒАШТАР.АҒАШТАРДЫҢ ӘРТҮРЛІ АНЫҚТАМАЛАРЫНЫҢ ЭКВИВАЛЕНТТІГІ.

Графты сурет түрінде беру әрқашан ыңғайлы бола бермейді. Мысалы, ЭЕМ операциялау кезінде. Бұл үшін графты матрицалық әдіспен беру оңтайлы. Осындай әдістердің бірі – іргелес матрица. Егер G графта n төбесі болса, онда оның іргелес матрицасын $M(G) = \left\| \mu_{i,j} \right\|_{n \times n}$ n жолдан және бағаннан тұрады. Сондай-ақ i,j орында, яғни, i-жол мен и j-бағанның қиылысына 1 жазамыз, егер G графта i-төбесінен j-төбеге дейінгі қабырға бар болса; керісінше жағдайда 0 қоямыз:

6.2 және 6.3 суреттердегі графтар үшін іргелес матрицалар келесі түрде болады:

$$\mathbf{M}(G_2) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}; \ \mathbf{M}(G_3) = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix},$$

Бұл жерде біз G_3 графта төбелердің алфавиттік ретпен орналасқанын ескердік, яғни A – бірінші, B – екінші, C – үшінші және т.б. Сондай-ақ G_2 және G_3 графтары изоморфты ($G_2 \cong G_3$), болғанмен, олардың іргелес матрицалары әртүрлі екенін ескертеміз.

Кез-келген графтың цикломатиялық саны — теріс емес шама, графтың циклі болмаған жағдайда ғана бұл шама нөлге тең болады.

Ағаштың келесі қасиеттері жиі қолданылады:

Ереже 1. N төбесі бар ағаштың эквивалентті анықтамалары.

- а) Графтың N-1 қабырғасы бар және ешқандай цикл жоқ.
- б) Граф байланысты және N-1қабырғасы бар.
- в) Граф байланысты, кез-келген қабырғасын жою арқылы граф байланысты болмай қалады.
 - г) Кез-келген екі төбе бір ғана жолмен байланысады.
- д) Граф циклсіз және кез-келген екі төбесінің арасына бір қабырға қосу бір ғана циклдің пайда болуына әкеледі.