

MAC317 Introdução ao Processamento de Sinais Digitais

Prof. Marcel P. Jackowski

mjack@ime.usp.br

Aula #17: Wavelets

Fourier é ótimo para sinais estacionários

- Sinais cujo conteúdo não muda ao longo do tempo
 - Em outras palavras, o conteúdo de frequência é estacionário
 - O que realmente significa termo frequência ?
- Neste caso, não é preciso saber "quando" um determinado componente de frequência existe
 - Todos os componentes de frequência existem em todos os momentos

Sinais não-estacionários

Non-stationary signal (varying frequencies):

 $f_5(t)$

Three frequency components, NOT present at all times!

 $F_5(u)$

Sinais não-estacionários

Por exemplo possuem a mesma TF os sinais:

```
f(t)=\cos(2\pi^*10^*t), 0 < t <200 ms

f(t)=\cos(2\pi^*25^*t), 200 < t <400 ms

f(t)=\cos(2\pi^*50^*t), 400 < t <800 ms

f(t)=\cos(2\pi^*100^*t), 800 < t <1000 ms

g(t)=\cos(2\pi^*25^*t), 0 < t <200 ms

g(t)=\cos(2\pi^*100^*t), 200 < t <400 ms

g(t)=\cos(2\pi^*10^*t), 400 < t <800 ms

g(t)=\cos(2\pi^*50^*t), 800 < t <1000 ms
```

Short Time Fourier Transform

Given a signal we take the FFT on a window sliding with time

Espectograma ideal

• The evolution of the magnitude with time is called Spectrogram.

Espectograma

Princípio da incerteza

• Either you have good resolution in time or in frequency, not both.

either good localization in time ...

... or good localization in freq.

Short Time Fourier Transform

- Problema:
 - Janelas de tamanho fixo
- Além disso, como definir o tamanho da janela?
 - Janela pequena:
 - Pouca informação sobre o sinal
 - Maior esforço computacional
 - Janela grande:
 - Aumenta o erro na consideração do sinal ser estacionário

Evolução

- Uma transformada em janelas, mas de tamanho variável:
 - Intervalos maiores quando queremos informações mais precisas sobre <u>baixas frequências</u>
 - Intervalos menores quando queremos informações mais precisas sobre altas frequências
- A transformada de Wavelet, proposta por Mallat em 1989, sugere o uso de janelas de tamanho variável
 - A área da janela deve ser constante mas sua largura pode variar com o tempo

Fourier e Wavelets

- É impossível aumentar o detalhamento em um dos domínios sem diminuí-lo no outro
- Usando wavelets, é possível escolher a melhor combinação de detalhamentos para um certo objetivo

Transformada Wavelet

- Capaz de descrever informação no tempo e na frequência simultaneamente
- A transformada wavelet passa o sinal por vários filtros passa-alta e passa-baixa, que filtram as diferentes contribuições do sinal
- Este procedimento é repetido para diferentes segmentos do sinal no domínio de tempo
- A largura da janela (resolução) é alterada quando a transformação é calculada para cada componente

O que é um wavelet?

- A function that "waves" above and below the xaxis with the following properties:
 - Varying frequency
 - Limited duration
 - Zero average value
- This is in contrast to sinusoids, used by FT, which have infinite duration and constant frequency

Wavelets

- Wavelets são uma classe de funções usadas para representar um sinal utilizando diferentes posições e escalas
- Uma família de wavelets pode ser construída a partir de uma única função, chamada wavelet mãe

$$\Psi_{a,b}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-b}{a}\right), \quad a \neq 0, \quad b \in \Re$$

• As wavelets filhas são, então, formadas por translação e contração da "wavelet mãe"

Parâmetro de escala

Para a>1 a função sofre uma dilatação, para a<1 obtém uma contração do sinal

- As escalas maiores correspondem à uma visão global e escalas menores correspondem a detalhes
- As baixas frequências correspondem a uma informação global (que geralmente se estende por todo o sinal ou imagem)
- As frequências altas (escalas reduzidas) correspondem a uma informação detalhada (que geralmente dura um período de tempo relativamente curto).

Para que um f seja uma Psi (Ψ)

Área zero:

$$\int_{-\infty}^{\infty} \psi(t)dt = 0$$

Energia finita:

$$\int_{-\infty}^{\infty} |\psi(t)|^2 dt$$

Tem que ter um
suporte compacto

o que significa que ela
deve desaparecer fora
de um intervalo finito

Tipos de funções

• There are many different wavelets, for example:

A transformada de wavelet decompõe uma função definida no domínio do tempo em outra função, definida **no domínio do tempo** e no **domínio da frequência**.

Aproximação usando wavelets

• Like sin() and cos() functions in the Fourier Transform, wavelets can define a set of basis functions $\psi_k(t)$:

$$f(t) = \sum_{k} a_{k} \psi_{k}(t)$$

• Span of $\psi_k(t)$: vector space S containing all functions f(t) that can be represented by $\psi_k(t)$

Wavelet "mãe"

The basis can be constructed by applying translations and scalings (stretch/compress) on the "mother" wavelet $\psi(t)$:

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}}\psi(\frac{t-\tau}{s})$$

Example:

Construção

• É conveniente atribuir valores especiais para s e t para definir a base wavelet $s=2^{-j}$ e $t=k.2^{-j}$

(dyadic/octave grid)

$$\psi(s,\tau,t) = \frac{1}{\sqrt{s}} \psi(\frac{t-\tau}{s}) = \frac{1}{\sqrt{2^{-j}}} \psi\left(\frac{t-k.2^{-j}}{2^{-j}}\right) = 2^{\frac{j}{2}} \psi(2^{j}t - k) = \psi_{jk}(t)$$

Aplicações

- Astronomy, acoustics, nuclear engineering, neurophysiology, music, magnetic resonance imaging, speech discrimination, optics, fractals, turbulence, earthquake-prediction, radar, human vision, and pure mathematics applications
 - Identifying pure frequencies
 - Denoising signals
 - Detecting discontinuities and breakdown points
 - Detecting self-similarity
- Compressing images

Transformada contínua (CWT)

Ilustrando a CWT

- I. Take a wavelet and compare it to a section at the start of the original signal
- 2. Calculate a number, C, that represents how closely correlated the wavelet is with this section of the signal. The higher C is, the more the similarity.

Ilustrando a CWT

3. Shift the wavelet to the right and repeat step2. until you've covered the whole signal.

Ilustrando a CWT

4. Scale the wavelet and go to step 1.

5. Repeat steps I through 4 for all scales.

Visualizado a CWT

 Wavelet analysis produces a time-scale view of the input signal or image

$$C(\tau,s) = \frac{1}{\sqrt{s}} \int_{t} f(t) \psi^{*} \left(\frac{t-\tau}{s}\right) dt$$

Transformada contínua

Forward CWT:
$$C(\tau, s) = \frac{1}{\sqrt{S}} \int_{t}^{s} f(t) \psi^* \left(\frac{t - \tau}{S}\right) dt$$

Inverse CWT:
$$f(t) = \frac{1}{\sqrt{S}} \iint_{\tau} C(\tau, s) \psi(\frac{t - \tau}{S}) d\tau ds$$

Note the double integral!

Transformada Fourier vs Transformada Wavelet

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{j2\pi ux} du$$

Transformada Fourier vs Transformada Wavelet

$$f(t) = \frac{1}{\sqrt{S}} \iint_{\tau} C(\tau, s) \psi(\frac{t - \tau}{S}) d\tau ds$$

Propriedades da CWT

- Simultaneous localization in time and scale
 - The location of the wavelet allows to explicitly represent the location of events in time
 - The shape of the wavelet allows to represent different detail or resolution

Propriedades da CWT

• <u>Sparsity</u>: for functions typically found in practice, many of the coefficients in a wavelet representation are either zero or very small

$$f(t) = \frac{1}{\sqrt{S}} \iint_{\tau} C(\tau, s) \psi(\frac{t - \tau}{S}) d\tau ds$$

Propriedades da CWT

$$f(t) = \frac{1}{\sqrt{S}} \iint_{\tau} C(\tau, s) \psi(\frac{t - \tau}{S}) d\tau ds$$

- Adaptability: Can represent functions with discontinuities or corners more efficiently
- Linear-time complexity: many wavelet transformations can be accomplished in O(N) time

Transformada discreta (DWT)

$$a_{jk} = \sum_{t} f(t) \psi_{jk}^{*}(t)$$
 (forward DWT)

$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$
 (inverse DWT)

where
$$\psi_{jk}(t) = 2^{j/2} \psi(2^j t - k)$$

Representação multiresolução

fine details

wider, large translations

$$f(t) = \sum_{k} \sum_{j} a_{jk} \psi_{jk}(t)$$

.

coarse details

Representação multiresolução

coarse details

Representação multiresolução

Representação multiresolução

A família de Haar discreta

 Proposta pelo matemático Alfred Haar (húngaro) em 1909

Aproximação com Haar

V⁴ approximation

Uma função f(x) pode ser escrita como combinação linear de uma base.

A wavelet de Haar esta associada a uma base de ondas quadradas em diversas resoluções.

V³ approximation

Considerando diversos coeficientes c_i

Exemplo

Coeficientes de Haar

- É útil pensar os coeficientes como filtros
- Os coeficientes são ordenados usando dois padrões dominantes: um que funciona como um filtro de **suavização** (média), e outro que trabalha para obter os dados dos **detalhes** da informação.
- Essas duas ordenações dos coeficientes são chamados de um par de espelhados de quadratura

Exemplo de representação

- Como representaríamos o sinal discreto [9, 7, 3, 4] usando Haar ?
- Repare que esse sinal pode ser entendido como decomposto no mesmo nível de resolução das bases:

Ou seja, ficaria: (mas repare que todas as ondas tem a mesma resolução)

Automatização

 Cada conjunto: resolução, base, função de escala é representada por um conjunto de filtros de médias e detalhes aplicado até um determinado nível.

Wavelets em 2D

- Cada linha (ou coluna) da imagem pode ser vista como um sinal 2D
- Depois de se tratar todas as linhas (ou coluna),
 se consideram o mesmo nas colunas (ou linhas)
- Essa forma é chamada de decomposição padrão
- Considerando o mesmo nível de resolução do exemplo do sinal ID anterior, a base de Haar
 2D pode ser representado similarmente

Base de Haar 2D da decomposição padrão

Em imagens

- O que se vê são regiões enormes onde os valores dos pixels são muito próximos, o que significa que os coeficientes de wavelets associadas ou são nulos ou desprezíveis
- Somente em regiões de transições, próximas aos contornos onde os valores dos "pixels" variam muito, teremos uma mudança significativa nos valores dos "pixels", portanto, haverá coeficientes de wavelets apreciáveis.

Exemplo

Boats image

WT in 3 levels

Representação de sinais

- Utilizam diversos tipos de função base de forma a representar a informação original
 - Com perdas ou sem perdas
 - Baixas e altas frequências
- De certa forma, representam a "essência" dos dados, e muito útil no aprendizado computacional
 - Exemplo: Redes convolucionais
- Qual função base escolher ?
 - Depende da natureza dos sinais e da aplicação

Referências

- Amara Graps; An Introduction to Wavelets, IEEE Computational Sciences and Engineering, Vol. 2, No 2, Summer 1995, pp 50-61.
- Y. Meyer, Wavelets: Algorithms and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 1993, pp. 13-31, 101-105.
- G. Kaiser, A Friendly Guide to Wavelets,
 Birkhauser, Boston, 1994, pp. 44-45.