Linear systems with external disturbances

5.1 Norms of signals

• The \mathcal{L}_1 -norm of vector-valued signal $v(t) \in \mathbb{R}^w$ is given by

$$||v(t)||_1 := \sum_{i=1}^w \int_0^\infty |v_i(t)| dt.$$

If $||v(t)||_1 < \infty$, it can be said that v(t) belongs to the \mathcal{L}_1 -space defined as

$$\mathcal{L}_1 := \left\{ v(t) \in \mathbb{R}^w \mid ||v(t)||_1 < \infty \right\}.$$

The \mathcal{L}_2 -norm of vector-valued signal $v(t) \in \mathbb{R}^w$ is given by

$$||v(t)||_2 := \left(\sum_{i=1}^w \int_0^\infty v_i^2(t)dt\right)^{\frac{1}{2}} = \left(\int_0^\infty v^T(t)v(t)dt\right)^{\frac{1}{2}}.$$

If $||v(t)||_2 < \infty$, it can be said that v(t) belongs to the \mathcal{L}_2 -space defined as

$$\mathcal{L}_2 := \left\{ v(t) \in \mathbb{R}^m \mid ||v(t)||_2 < \infty \right\}.$$

The \mathcal{L}_{∞} -norm of vector-valued signal $v(t) \in \mathbb{R}^{w}$ is given by

$$||v(t)||_{\infty} := \max_{i=1,2,...,w} \left(\sup_{t \ge 0} |v_i(t)| \right).$$

If $||v(t)||_{\infty} < \infty$, it can be said that v(t) belongs to the \mathcal{L}_{∞} -space defined as

$$\mathcal{L}_{\infty} := \left\{ v(t) \in \mathbb{R}^{w} \mid ||v(t)||_{\infty} < \infty \right\}.$$

5.2 External disturbances

In general, the linear systems with external disturbances are described as

$$\dot{x}(t) = Ax(t) + Bu(t) + Nw(t)$$

$$z(t) = Gx(t) + Hu(t)$$
(13)

where $w(t) \in \mathbb{R}^d$ denotes the external disturbances, and $z(t) \in \mathbb{R}^q$ denotes the performance output. To handle the disturbance attenuation problem, the influence of w(t)disturbance w(t) is characterized through some vector-valued signal on z(t) is expressed as a performance index. At that time, the spaces, such as $w(t) \in \mathcal{L}_2$ and $w(t) \in \mathcal{L}_{\infty}$. As is well known, one representative performance index is the \mathcal{H}_{∞} performance. **Definition 1.** For $w(t) \in \mathcal{L}_2$, system (13) has the \mathcal{H}_{∞} performance level γ if the response z(t) satisfies

$$\frac{||z(t)||_2^2}{||w(t)||_2^2} \le \gamma^2$$

that is,

$$\int_0^\infty z^T(\tau)z(\tau)d\tau \le \gamma^2 \int_0^\infty w^T(\tau)w(\tau)d\tau.$$