НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» ФАКУЛЬТЕТ ІНФОРМАТИКИ ТА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ КАФЕДРА ОБЧИСЛЮВАЛЬНОЇ ТЕХНІКИ

Лабораторна робота № 4

з дисципліни «<u>Архітектура комп'ютерів</u>» на тему «ОБРОБКА ІНФОРМАЦІЇ В ЕОМ НА ПРОГРАМНОМУ, МІКРОПРОГРАМНОМУ І АПАРАТНОМУ РІВНЯХ»

Виконав: студент 2 курсу ФІОТ гр. ІО-32 Попенко Р.Л.

1 Завдання

Розробити архітектуру комп'ютера, систему команд, структурну схему та мікропрограму реалізації етапів виконання команд.

Система команд повинна забезпечувати обчислювання заданого алгебраїчного виразу на програмному рівні. Операнди є цілими 16-розрядними числами (один знаковий та 15 основних розрядів). Операнди вводяться у режимі програмного опиту готовності зовнішніх пристроїв. Результат виводиться у пристрій виводу. Послідовність даних, що вводяться та виводяться, визначається розробником. Система команд містить лише одноадресні команди (рис.1).

Рисунок 1.1 – Структура команди.

Кількість типів команд обирається розробником, виходячи з необхідності реалізації заданих обчислень з урахуванням вводу та виводу даних, а також перевірки готовності зовнішніх пристроїв. Введення кожного типу команд у систему команд повинно бути обґрунтованим. Зокрема, система команд повинна містити команди виконання заданих операцій, вводу та виводу даних, команди умовних та безумовних переходів, пересилання даних.

Обробка інформації на мікро програмному рівні повинна містити вибірку команди, розпакування команди, виконання операції та формування адреси наступної команди. Однакові блоки мікрокоманд бажано оформляти у вигляді мікропідпрограм. При програмному опитуванні дані регістру стану зовнішнього пристрою мають формат, зображений на рис.2.

Рисунок 1.2 – Формат регістру стану зовнішнього пристрою

Початкові умови згідно з варіантом

Номер залікової книжки: 110010010010							
a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1
1	0	0	1	0	0	1	0
	Адреса РС			Ortonovia			
	ПВв	Γ	ІВив	Адресація	Операція (X & Y) * Z		
	12h		92h				
	Адреса РД				Спосіб множення		
							1
	13h		93h	Пряма	3ій		

2 Архітектура та алгоритм обчислення

	Структура НОЗП	Структура ПМК			
R0	Результат		0		
:		РЗП (регістри загального призначення)	÷	Вектори команд	
		П	15H		
R7	ЛК		:		
R8	PK		20H		
÷		Робочі регістри	: 66H	Мікропрограма	
R14	адреса операнда				
R15	Операнд				
RQ					

Рисунок 2.1 Модель програміста

Структ	ура ОП	Структура ЗП	
00000Н		0000Н	
i i		:	
0006Н		0012H	РС (пристрій
0008H	Дані	0012H	вводу)
00AH		001011	РД (пристрій
:		0013H	вводу)
0020H		÷	
0022H	Пиотионо		
0024H	Програма обчислення	0092Н	DC (unuamniŭ
0026Н	кннэцэйроо		РС (пристрій виводу)
0028H			виводу)
:		0093H	РД (пристрій
FFFFFH		009311	виводу)
		<u> </u>	
		FFFFH	

Рисунок 2.2 Розподіл загальної пам'яті

Рисунок 2.3 Алгоритм обчислень

3 Програма обчислень

Для реалізації програми обчислень потрібні такі команди

Команда	Код	Операція
mov r8, [mem]	0 0 0 0	Зчитування команди з ЗП
mov r15, x	0 0 1 0	Запис операнда у регістр
and r15, y	0 1 0 0	Логічне множення операндів
mov [mem], r15	0 1 1 0	Запис операнду у ЗП
mul r14, r15	1000	Множення операндів
exit	1100	Вихід з програми

Таблиця 3.1 Програма обчислень

4 Структура комп'ютера та мікропрограма обчислень

Рисунок 4.1 Структурна схема ЕОМ

Операційна схема третього способу:

Змістовний мікроалгоритм третього способу:


```
link l1:ct
link 12:rdm
link ewh:16
link M: z, z, z, z, z, z, z, 14, 13, 12, 11 \bufer, 4-1 of it link to 14-11 of
local bus
accept dev[1]:I, 12h, 13h, 12, 2 \input device accept dev[2]:O, 92h, 93h,12, 2 \output device
accept dev buf[1]:0fff4h, 24ffh, 31ach
accept r7: 20h \reg of current adr
dw 06h:000eh \x
dw 08h:0007h \y
dw 0Ah:0013h \z
dw 20h: 000100000000110% \setminus save x to r15
dw 22h: 001000000001000% \ r15 & y
dw 24h: 010000000001010% \ mult
dw 26h: 0011000000001010% \ result to z
dw 28h: 010100000000000% \ END
org Oh {cjp nz, loadFromOP;}
org 2h {cjp nz, saveToReg;}
org 4h {cjp nz, andXY;}
org 6h {cjp nz, saveToMem;}
org 8h {cjp nz, mult;}
org OAh {cjp nz, end;}
loadFromOP
{or nil, r7, r7; ewl; oey;}
{xor nil, r7, r7; ewh; oey;}
{r;cjp rdm, cp; or r8, z, bus d;} \write command to r6
{and nil, r8, 8000h; load rm, flags;}
{cjp not rm z, end;}
     \rasshifrovka
{and nil, r8, 400h; load rm, flags;}
{cjp not rm z, end;}
{and r14, r8, 03ffh;} \adr of operand
{or nil, r8, z; oey; JMAP;} \jump to action
andXY
{cjs nz, fromMem;}
{and r15, r15, r14;} \x \x \x \y
{cjp nz, next;}
saveToReg
{cjs nz, fromMem;}
{or r15, 0, r14;} \r15=operand
{cjp nz, next;}
saveToMem
{or nil, r14,z;ewl;oey;}
{w; cjp rdm, cp; or nil, r15, z;oey;} \mem[i]=operand
{cjp nz, next;}
fromMem
{or nil, r14,z; ewl; oey;}
{r; or r14, bus d, z; cjp rdm, cp;} \r14=operand
{crtn nz;}
next
{add r7, r7, 2, z;}
{cjp nz, loadFromOP;} \next command
```

```
mult \multiplication
{cjs nz, fromMem;}
{xor r0, r0, r0;}
{and nil, r14, 8000h; load rm, flags;} \mnozhnyk[1]=?
{cjp rm z, shift;}
{add r0, r0, r15, z;}
shift
{or sll, r14, r14, z;} \z=r14
{or sll, r0, r0, z;} \res=r0
{or nil, r14, r14; load rm, flags;}
{cjp not rm z, start;} \if z!=0
{or srl, r0, r0, z;} \usuvaemo zsuv
{or r15, 0, r0;} \result
{cjp nz, next;}
\{and nil, r1, 8000h; load rm, flags;}
\{cjp rm_z, end;}
\{xor r1, r1, 0ffffh;}
\{xor r0, r0, 0ffffh;}
\{add r0, r0, 1, z; load rm, flags;} proverka znaka i perevod v PK
\{add r1, r1, 0, rm c;}
\{or r1, r1, 8000h;}
end {}
```

5 Висновки

В процесі розробки був розроблений інструментарій для забезпечення необхідних перетворень інформації, які необхідні для обчислень за даним алгебраїчним виразом з введенням та виведенням інформації на зовнішні пристрої. На мікропрограмному рівні була розроблена система команд та реалізований алгоритм організації процесу обчислень.