RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN DEUTSCHE POST LEHRSTUHL FÜR OPTIMIERUNG VON DISTRIBUTIONSNETZWERKEN Universitätsprofessor Dr.rer.nat.habil. Hans-Jürgen Sebastian

Klausur Methoden und Anwendungen der Optimierung 10. Februar 2011

Nr.:										
Name:										
Vorname	: :									
Matrikel	nummer:									
Studieng	ang / Fachrichtung	g:								
Hinweise:										
• Füller	n Sie die Felder oben v	vollständig	g aus 1	und u	ntersc	hreibe	en Sie	die F	Klausur.	
	iche Einträge in dem men (Kein Bleistift!).	Klausurex	empla	ar sinc	l mit	dokun	nenter	nechte	en Schreibute	ensilien vor-
	ntworten sind in dies Blätter.	sem Klaus	surexe	mplar	einzu	ıtrage	n. Be	i Bed	larf erhalten	Sie weitere
	d keine Hilfsmittel au enrechnern und Vorles				_		Insbes	onde	re ist die Ber	nutzung von
• Handy	ys dürfen nicht zur Kl	ausur mit	gebra	cht we	erden.					
• Die H	öchstpunktzahl beträ	gt 90 Pun	kte; d	ie Bea	rbeitı	ıngsz∈	eit bet	rägt	90 Minuten.	
• Beant	worten Sie die Aufgab	en möglic	hst st	ichpu	nktart	ig.				
• Überp	orüfen Sie die Klausur	auf Volls	tändig	gkeit (Seiten	1 bis	10)!			
Mit meiner diese zu akz	Unterschrift bestätig zeptieren.	e ich, die	obige	en Hin	weise	zur I	Kenntı	nis ge	enommen zu	haben und
Untersch	rift:									
	Aufgabe	Fragen	A1	A2	A3	A4	A5	Σ	Note	

9

15

11

14

90

30

11

erreichbare Punkte

erreichte Punkte

Aufgabenteil (60 Punkte)

Aufgabe 1: Schnittebenenverfahren von Gomory (11 Punkte)

Gegeben ist das folgende ganzzahlige lineare Optimierungsproblem:

$$\max z = 3x_1 + 2x_2$$
 s.d.
$$4x_1 \leq 19$$

$$x_1 + x_2 \leq 6$$

$$x_1, x_2 \in \mathbb{N}_0$$

Die Anwendung des Simplex-Algorithmus auf dessen LP-Relaxation führt zu folgendem optimalen Endtableau:

	x_1	x_2	s_1	s_2	b_i^*
x_1	1	0	1/4	0	19/4
x_2	0	1	-1/4	1	5/4
Δz_j	0	0	1/4	2	67/4

Da die optimale Lösung der LP-Relaxation für das ursprüngliche Problem nicht zulässig ist, soll diese mit Hilfe des Schnittebenenverfahrens von Gomory bestimmt werden.

(a) Stellen Sie die dafür notwendige Gomory-Restriktion für die Basisvariable x_1 auf. (3 Punkte)

(b) Erweitern Sie obiges Endtableau des primalen Simplex-Algorithmus um die in (a) aufgestellte Gomory-Restriktion und führen Sie einen dualen Simplex-Schritt durch. (4 Punkte)

	b_i^*
Δz_j	

	b_i^*
Δz_j	

(c) Ist die in Aufgabenteil (b) bestimmte Lösung zulässig für das ursprüngliche Problem? Begründen Sie Ihre Antwort! (1 Punkt)

(d) Bestimmen Sie für die in Aufgabenteil (a) aufgestellte Gomory-Restriktion die Gleichung der entsprechenden Schnittebene und geben Sie diese explizit an. (3 Punkte)

Aufgabe 2: Dijkstra-Algorithmus (9 Punkte)

Gegeben ist der folgende Digraph mit 5 Knoten:

Führen Sie für obigen Digraphen den Dijkstra-Algorithmus zur Bestimmung der kürzesten Wegen von Knoten S zu den Knoten 1, 2, 3 und 4 durch.

(a) Tragen Sie hierfür in der untenstehenden Tabelle für jede Iteration des Dijkstra-Algorithmus den ausgewählten Knoten, die Menge der vorläufig markierten Knoten, die Menge der endgültig markierten Knoten sowie die Labels $d(1), \ldots, d(4)$ ein. (6 Punkte)

Iteration		vorläufig markierte Knoten	endgültig markierte Knoten	d(1)	d(2)	d(3)	d(4)
Initialisierung	-	S	-	∞	∞	∞	∞

(b) Geben Sie die ermittelten kürzesten Wege von Knoten S zu den Knoten 1, 2, 3 und 4 sowie deren Länge explizit an. (3 Punkte)

Aufgabe 3: Transportproblem (15 Punkte)

Gegeben ist ein Transportproblem mit folgenden Angebots- und Nachfragemengen

Angebotsmengen						
a_1	a_2	a_3	a_4			
10	20	30	10			

Nachfragemengen							
b_1	b_2	b_3	b_4				
15	15	25	15				

sowie folgender Kostenmatrix:

c_{ij}	B_1	B_2	B_3	B_4
A_1	1	8	2	7
A_2	6	2	8	4
A_3	8	3	4	5
A_4	6	8	9	9

(a) Bestimmen Sie mit Hilfe der Greedy-Heuristik eine zulässige Startlösung für das obige Transportproblem. (2 Punkte)

Greedy	B_1	B_2	B_3	B_4	a_i
A_1					10
A_2					20
A_3					30
A_4					10
b_j	15	15	25	15	

(b) Verwenden Sie die obige Lösung als Ausgangsbasislösung für die MODI-Methode. Bestimmen Sie dazu in der folgenden Tabelle die Werte der dualen Entscheidungsvariablen u_i und v_j für die Basislösung aus (a). (2 Punkte)

	B_1	B_2	B_3	B_4	u_i
A_1	1	8	2	7	0
A_2	6	2	8	4	
A_3	8	3	4	5	
A_4	6	8	9	9	
v_j		-			

(c) Überprüfen Sie die so bestimmte duale Lösung auf Zulässigkeit, indem Sie die Werte der Δz_{ij} bestimmen. (2 Punkte)

	B_1	B_2	B_3	B_4	u_i
A_1					
A_2					
A_3					
A_4					
v_{j}					

(d) Bestimmen Sie die nächste Basislösung und tragen Sie diese in die nachfolgende Tabelle ein. (2 Punkte)

	B_1	B_2	B_3	B_4	a_i
A_1					10
A_2					20
A_3					30
A_4					10
b_j	15	15	25	15	

(e) Führen Sie nun einen weiteren Schritt der MODI-Methode durch. Vervollständigen Sie dazu in der folgenden Tabelle die Werte der u_i und der v_j für die Basislösung aus (d). (2 Punkte)

	B_1	B_2	B_3	B_4	u_i
A_1	1	8	2	7	0
A_2	6	2	8	4	
A_3	8	3	4	5	
A_4	6	8	9	9	
v_j					

(f) Bestimmen Sie die Werte der $\Delta z_{ij}.$ (2 Punkte)

	B_1	B_2	B_3	B_4	u_i
A_1					
A_2					
A_3					
A_4					
v_j					

- (g) Ist die in Aufgabenteil (d) ermittelte Basislösung optimal? Begründen Sie Ihre Antwort! (1 Punkt)
- (h) Geben Sie eine alternative optimale Lösung an. (2 Punkte)

	B_1	B_2	B_3	B_4	a_i
A_1					10
A_2					20
A_3					30
A_4					10
b_j	15	15	25	15	

Aufgabe 4: Vehicle Routing Problem (11 Punkte)

Ein Unternehmer möchte 7 Kunden A, B, C, D, E, F und G von einem Lager θ aus mit einem homogenen Gut beliefern. Dazu steht ein Fahrzeug mit einer maximalen Ladekapazität von 40 ME zur Verfügung. Gehen Sie weiter von den folgenden Daten aus:

Kunde	Nachfrage [ME]
A	8
B	5
C	12
D	10
E	9
F	15
G	10

Entfernung	A	В	C	D	E	F	G
0	41	20	54	42	22	51	64
A	-	41	45	73	60	90	89
В		-	36	32	22	51	50
C			-	54	57	81	60
D				-	22	28	22
E					-	30	45
F						-	41

Der Unternehmer möchte einen Tourenplan mit Hilfe des Savings-Verfahrens erstellen.

(a) Bestimmen Sie die Savings $s_{AB},\,s_{AF}$ sowie $s_{CG}.$ (3 Punkte)

$$s_{AB} =$$
 $s_{CG} =$

(b) Bestimmen Sie einen Tourenplan mittels des Savings-Verfahrens und geben Sie diesen explizit an. Benutzen Sie dazu die im Folgenden angegebenen, um die aus Aufgabenteil (a) ergänzten, Savings. (8 Punkte)

Aufgabe 5: Nichtlineare Programmierung (14 Punkte)

Gegeben ist das folgende nichtlineare Optimierungsproblem:

min
$$f(x)$$
 = $(x_1 + 1)^2 + (x_2 + 2, 5)^2$
s.d.
$$-x_1 + x_2 \le 1$$

$$x_1 + 2x_2 \le 3$$

$$(x_1 - 2)^2 + (x_2 - 2)^2 \le 13$$

$$x_1, x_2 \in \mathbb{R}$$

(a) Geben Sie die Kuhn-Tucker-Bedingungen KTB' für obiges Problem an. Verwenden Sie dabei die Standardform, d.h. nicht die Formulierung als Sattelpunkt der Lagrange-Funktion. (5 Punkte)

(b) Erfüllt einer der folgenden Punkte die Kuhn-Tucker-Bedingungen KTB'? (6 Punkte)

$$P_1(-1;0)$$
 $P_2(2;-1)$ $P_3(0;-1)$

(c)	Ist einer davon Optimalpunkt des obigen Problems? Begründen Sie Ihre Antwort. (2 Punkte)
(d)	Ist das Verfahren von Wolfe auf obiges Problem anwendbar? Begründen Sie Ihre Antwort. (1 Punkt)