

抽象代数

作者: Autin

目录

第	一部	分环论	1
第	1郵		2
	1.1	定义和例子	2
	1.2	- 些特殊的环	2
	第 1	章 练习	4
第	2 季	芭畴	6
	2.1	子环	6
	第 2	章 练习	6
第	3 章标	推分解,商环,同构定理	7
	3.1	像与核	7
	3.2	商环	9
	第 3	章 练习	11
第	4 擊	不	13
	4.1	素理想和极大理想	13
	4.2	素元和不可约元	14
	4.3	欧氏整环、PIDs	15
	4.4	PIDs、UFDs	17
	4.5	整环的分式域	18
		4.5.2 分式域的具体构造	
第	5 彰		23
	5.1	域上的多项式环	23
	5.2	多项式环上的不可约元	25

B	录

第二部	分 模论 27
第6載	I Aleb 群 28
6.1	R -模范畴 \ldots \ldots \ldots 2.
6.2	标准分解和商
6.3	整环上的模
第三部第7章	分 域论 31 32
7.1	 域和域同态
7.2	·· 有限扩张和扩张的次数 · · · · · · · · · · · · · · · · · · ·
7.3	· 单扩张
7.4	代数扩张

第一部分

环论

第1章 环

1.1 定义和例子

定义 1.1 (环)

(含幺) 环是一组资料 $(R,+,\cdot)$, 其中

- 1. (R,+) 是交換群。
- 2. 乘法运算 $\cdot: R \times R \to R$ 简记为 $a \cdot b = ab$,满足下述性质:对于所有的 $a,b,c \in R$
 - a(b+c) = ab + ac, (b+c)a = ba + ca, (分配率, 或日双线性),
 - a(bc) = (ab) c (乘法结合律);
- 3. 存在元素 $1 \in R$,使得对于所有的 $a \in R$,皆有 $a \cdot 1 = a = 1 \cdot a$,称为 R 的 幺元。

Remark

- 1. 除去和幺元相关的性质,得到 $(R,+,\cdot)$ 称作无幺环。
- 2. 定义蕴含了 R, · 构成幺半群, 故幺元 1 唯一。
- 3. 练习1.

1.2 一些特殊的环

定义 1.2 (交換环)

称环 R 是交换的,若

$$\forall a, b \in \mathbb{R}, \quad ab = ba$$

Remark 类似地可以定义交换的无幺环。

定义 1.3 (零因子)

设 R 是环 (或无幺环)。 称 $a \in R$ 是一个零因子,若存在非零元 $b \in R$,使得 ab = 0 或 ba = 0.

Remark 0 总是非平凡环中的零因子 $(0 \cdot 1 = 0, 1 \neq 0)$ 。

定义 1.4 (整环)

无非零零因子的非平凡交换环被称为是一个整环。

*

命题 1.1 (消去律)

若 R 是环, $a \in R$ 。若 a 不是零因子,则乘法消去律对 a 成立,即

$$\forall b, c \in R$$
 , $ab = ac \implies b = c \blacksquare ba = ca \implies b = c$

特别地,若R是整环,则消去律对于R中任一非零元成立。

Proof 当 a 不是零因子,

$$ab = ac \implies a(b-c) = 0 \implies b = c$$

定义 1.5 (可逆元(单位))

设 R 是环, $a,b\in R$ 。称 b 是 a 的一个乘法逆,若 $ab=ba=1_R$ 。 若 $a\in R$ 是 (在 R 中) 是乘法可逆的,则称 a 是一个可逆元 (或单位)。R 中单位的全体记作 R^* 。

定义 1.6 (除环和域)

若非零环 R 中的每个元素皆可逆,则称 R 为除环。交换除环称为域。

命题 1.2

若 R 是一个有限整环,则 R 是一个域。

Proof 设 R 是有限整环, $a \in R$ 是非零元 (由整环的定义存在)。为了说明 a 是可逆元,令

$$r_1, \cdots, r_m$$

是 R 的所有元素,且无充分。断言

$$ar_1, \cdots, ar_m$$

也无重复地组成 R 的全体元素。事实上,由于 a 不是零因子,故 $ar_i=ar_j$ 蕴含 $r_i=r_j$ 。这表明上列元素无重复。又 R 最多只有 m 个元素,因此 ar_1,\cdots,ar_m 就是 R 的所有元素。 立即有 $ar_i=1$ 对某个 r_i 成立,R 的交换性立即给出 $r_ia=1$,于是 a 是可逆元。

Remark

• 若 R 是域,则 $R^* = R \setminus \{0\}$

●第1章 练习 ◆

1. 设 $\mathbb{Z}[i]=\{a+bi:a,b\in\mathbb{Z}\}$,其中 $i^2=-1$ 。证明集合 $\mathbb{Z}[i]$ 在复数加法和乘法下构成一个无幺环。(Gauss 整环)

Proof

(a). 加法子群:

任取 $a+bi, c+di \in \mathbb{Z}[i]$, 其中 $a,b,c,d \in \mathbb{Z}$, 我们有

$$(a+bi) - (c+di) = (a-c) + (b-d)i \in \mathbb{Z}[i]$$

因此 $(\mathbb{Z}[i],+)$ 是 \mathbb{C} 的一个加法子群。

(b). 乘法封闭:

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i \in \mathbb{Z}[i]$$

故对复数乘法封闭。

(c). 双线性、结合律:

继承自 ℂ

综上 $\mathbb{Z}[i]$ 是一个无幺环。

2. 设 R 是无幺环,若对于任意的 $a,b,c\in R$, $a\neq 0,ab=ca$ 蕴含 b=c。则 R 是交换的。

Proof 任取 $a, b \in R$, 注意到

$$a\left(ba\right) = \left(ab\right)a$$

由条件 ab = ba

3. 设 R 是非平凡的有限无幺环,若 R 无非零零因子,则 R 是除环。

Proof

(a). 任取 $0 \neq a \in R$, 由 a 不是零因子, $ax = ay \implies x = y$,因此左乘 a 是 R 上的单同态,又 R 有限,故 aR = R,同理 Ra = a。故存在 r_1, r_2 ,使得

$$ar_1 = a = r_2 a$$

我们有

$$a(r_1 - r_2) a = ar_1 a - ar_2 a = a \cdot a - a \cdot a = 0$$

于是再一次由 a 不是零因子

$$a\left(r_1-r_2\right)=0,$$

进而 $r_1 = r_2 =: r$ 。

(b). 再任取 $b \in R$, 由上面的讨论, 存在 r', 使得

$$br' = b = r'b$$

。再由 aR = R 知,存在 c,使得 ac = b。于是

$$r'b = b = ac = rac = rb$$

由 b 不是零因子 $r=r\pi$ 。这表明 r 是 R 中的幺元,记作 1 。

(c). 最后,根据 aR = R = Ra, 可得存在 $d, d' \in R$, 使得

$$ad = 1 = d'a$$

由

$$a(d - d') a = ada - ad'a = a - a = 0$$

可得 d=d', 因此 ad=da=1, 这表明 a 是可逆元。

4. 设 R 是 (含幺) 环, a,b 是 R 中的元素。证明 1-ab 可逆当且仅当 1-ba 可逆。

Proof 有对称性,只证一边即可,设1-ab可逆,则

$$(1 - ba) (b (1 - ab)^{-1} a) = b (1 - ab)^{-1} a - bab (1 - ab)^{-1} a$$
$$= b (1 - ab) (1 - ab)^{-1} a$$
$$= ba$$
$$= 1 - (1 - ba)$$

因此

$$(1 - ba) (1 + b (1 - ab)^{-1} a) = 1$$

这表明 1-ba 可逆。

第2章 环范畴

2.1 子环

定义 2.1 (子环)

设 R 是环,S 是 R 的子集。设 $0_R\in S$, $1_R\in S$,并且 S 在 R 中的运算 + 和运算 \cdot 下封闭。称 S 是 R 一个子环,若 S 满足所有环公理,并且 $0_S=0_R, 1_S=1_R$ 。

Remark

• 对于无幺环,则无需 $1_R \in S$ 以及 $1_S = 1_R$ 。

命题 2.1 (子环判据)

设 R 是一个环, $S \subseteq R$ 是包含了 0_R 和 1_R 的子集。则 S 是 R 的子环,当且仅当它在 + 和·下封闭,并且包含 S 的加法逆。

Remark 对于无幺环,不需要 $1_R \in S$ 。

●第2章练习◎

1. 设 $R=\left\{\overline{0},\overline{2},\overline{4},\overline{6},\overline{8}\right\}$ 是环 \mathbb{Z}_{10} 的子无幺环。问 R 是否有幺元? Remark R 在(含幺)环范畴下不是 \mathbb{Z}_{10} 的子环;在无幺环范畴下是 \mathbb{Z}_{10} 的子无幺环。

Proof 注意到

$$\overline{6} \cdot \overline{2} = \overline{12} = \overline{2}, \quad \overline{6} \cdot \overline{4} = \overline{24} = \overline{4}, \quad \overline{6} \cdot \overline{6} = \overline{36} = \overline{6}, \quad \overline{6} \cdot \overline{8} = \overline{48} = \overline{8}$$

因此 R 有单位元 $\overline{6}$ 。

第3章 标准分解,商环,同构定理

3.1 像与核

命题 3.1

设 $f: R \to S$ 是环同态。则像 $S' = \operatorname{im} f := f(R)$ 是 S 的子环。

Remark

• 使用与下面相似的讨论可得: 当 R' 是 R 的子环时, f(R') 是 S 的一个子环。

Proof

因为环同态映 1 为 1, 映 0 为 0, 所以 f(R) 同时包含 0 和 1。

为了说明 f(R) 在运算下封闭,令 $s_1, s_2 \in f(R)$; 则 $\exists r_1, r_2 \in R$,使得 $s_1 = f(r_1), s_2 = f(r_2)$ 。由于 f 保持运算,我们有

$$s_1 + s_2 = f(r_1) + f(r_2) = f(r_1 + r_2), \quad s_1 \cdot s_2 = f(r_1) \cdot f(r_2) = f(r_1 \cdot r_2)$$

因此 $s_1 + s_2$ 种 $s_1 \cdot s_2$ 位于 f(R) 中。

最后,为了说明 $f\left(R\right)$ 包含加法逆,令 $s\in f\left(R\right)$,则 $\exists r\in R$,使得 $s=f\left(r\right)$,并且

$$-s = -f(r) = f(-r)$$

因此 $-s \in f(R)$.

由命题2.1即得。

定义 3.1 (理想)

称环 (或无幺环) R 的一个子集 I 是一个理想,若 (I,+) 是 R 的 (正规) 子群,且满足以下被称为是"吸收性"的性质

$$(\forall a \in I) (\forall r \in R), \quad ar \in I \mathbf{1} ra \in I$$

Remark

。上面的定义也称 I 是一个双边理想;若只满足 $ar \in I$ 则称为右理想,左理想同理。

命题 3.2

环 R 的非空子集 I 是一个理想,当且仅当它在加法下封闭且满足吸收性。

•

Remark 对于无幺环,无法利用下面的 $-a = (-1) \cdot a \in I$ Proof 只需说明充分性。

由 I 非空,它至少存在一个元 $a \in I$,由吸收性 $0 = 0 \cdot a \in I$ 。

此外,对于任意的 $a \in I$,由吸收性 $-a = (-1) \cdot a \in I$.

以下表明 I 是 R 的一个加法子群,又它满足吸收性,故 I 是 R 的一个理想。

命题 3.3

设 $f: R \to S$ 是一个环同态。则 $(\ker f)$ 是 R 的一个理想。

Proof 首先 $f(0) = 0, 0 \in \ker f$, 故 $\ker f$ 非空。

汪取 $a, b \in \ker f$,

$$f(a + b) = f(a) + f(b) = 0 + 0 = 0$$

因此 $a+b \in \ker f$, $\ker f$ 对加法封闭。

再任取 $r \in R$,

$$f(ra) = f(r) f(a) = f(r) \cdot 0 = 0 = 0 \cdot f(r) = f(ar)$$

因此 $ra, ar \in \ker f$, 这表明 $\ker f$ 具有吸收性, 故由命题3.2, $\ker f$ 是 R 的一个理想。

命题 3.4

若 R 是交换环 (或无幺环), $a \in R$, 则子集

$$(a): \{ra: r \in R\}$$

是R的一个理想。

Remark

• 类似地有 (a_1, \dots, a_n) 是 R 的一个理想。

Proof $a \in (a)$, 故 (a) 非空。取 $r_1, r_2 \in R$,则

$$r_1 a - r_2 a = (r_1 - r_2) a \in (a)$$

故(a)是加法子群。

此外, 任取 b=ca, 其中 $c \in R$, 我们有

$$rb = r\left(ca\right) = \left(rc\right)a \in \left(a\right)$$

这表明 R 有左吸收性。此外右 R 交换,R 也有右吸收性。 由命题3.2, (a) 是 R 的一个理想。

定义 3.2

设 R 是交换环, $a\in R$ 。则 (a) 被称为是由 a 生成的主理想。此外,对于 $a_1,\cdots,a_n\in R$,理想 (a_1,\cdots,a_n) 被称为是由 a_1,\cdots,a_n 生成的理想。

3.2 商环

引理 3.1

设 I 是环 R 的理想, $a,a',b,b'\in R$, 若 $a'-a\in I,b'-b\in I$ 则

$$a' \cdot b' - a \cdot b \in I$$

Proof 设 a' - a = i, b' - b = j, 则

$$a' \cdot b' - a \cdot b = (a+i)(b+i) - ab$$
$$= ai + ib + i^{2} \in I$$

定义 3.3

设 I 是环 R 的理想,a+I,b+I 是 R/I 中的元素,定义

$$(a+I)\cdot(b+I) := (a\cdot b) + I$$

Remark 该定义由上述引理是良定义的。

定理 3.1

设 I 是环 R 的理想, $(R/I,+,\cdot)$ 是一个环,使得 $0_{R/I}=0+I=I, 1_{R/I}=1+I$

Proof trivial 的验证,只取一项举例:

任取陪集 a+I, 考虑 (-a)+I,

 $(a+I)+((-a)+I)=(a-a)+I=0+I, \quad ((-a)+I)+(a+I)=(-a+a)+I=0+I$ 故加法逆存在。

Example 3.1 设 $R = \mathbb{Z}[x]$ 是整系数多项式环。考察 $\mathbb{Z}[x]/(x)$ 。

每个 $\mathbb{Z}[x]$ 中的元素写作 $f(x)=a_0+a_1x+\cdots+a_nx^n$ 。注意到 $a_0=f(0)$,且

$$(a_0 + a_1x + \dots + a_nx^n) - a_0 = (a_1 + a_2x + \dots + a_nx^{n-1}) \cdot x \in (x)$$

因此 $f(x) - f(0) \in (x)$, 有陪集的等式

$$f(x) + (x) = f(0) + (x)$$

商环 $\mathbb{Z}[x]/(x)$ 中任意的元素都有形式 a+(x), 其中 a 是一个整数。

另外, 定义

$$\varphi: \mathbb{Z} \to \mathbb{Z}[x]/(x)$$

 $a \mapsto a + (x)$

上面的讨论告诉我们 φ 是满射。另一方面,若 $\varphi(a)=\varphi(b)$,其中 $a,b\in\mathbb{Z}$,则

$$b + (x) = a + (x)$$

这表明 b-a 写作 x 与某个元的乘积,但是 b-a 是整数,只能有 b-a=0 ,故 φ 是单射。此外 φ 是环同态,首先 $\varphi(1)=1+(x)$ 是单位元,且

$$\varphi(a+b) = (a+b) + (x) = [a+(x)] + [b+(x)] = \varphi(a) + \varphi(b)$$

也可以直接证明对乘法的保持。

因此 $\mathbb{Z}[x]/(x) \simeq \mathbb{Z}$.

上面的讨论没有用到 Z 的特殊性质,相同的讨论完全可以得到

$$R[x]/(x) \simeq R$$

对任意的环 1R 成立。

Example 3.2 设 R 是交换环, $r \in R$,考虑 R[x] 的理想 (x-r) ,考虑 R[x]/(x-r) 。

令 x=t+r,则 $g\left(t\right):=f\left(t+r\right)$ 是 t 的多项式,则上面的例子告诉我们 $g\left(t\right)-g\left(0\right)$ 是 t 的乘积。于是

$$f\left(x\right) - f\left(r\right) \in \left(x - r\right)$$

给出陪集的等式

$$f(x) + (x - r) = f(r) + (x - r)$$

我们知道 R[x]/(x-r) 中任意元素都写作 a+(x-r), $a\in R$ 。类似地,定义 $\varphi:R\to R[x]/(x-r)$,可以类似地验证 φ 是环同构。

因此我们有结论 $R[x]/(x-r)\simeq R$ 都与任意的交换环 R 和 $r\in R$ 成立。

Example 3.3 考虑 $\mathbb{R}[x]/(x^2+1)$, 证明 $\mathbb{C} \simeq \mathbb{R}[x]/(x^2+1)$ 。

使用与上面两个例子类似的技巧,可以得到 $\mathbb{R}[x]/(x^2+1)$ 中的每个元素唯一地写

 $^{^{1}}$ 由于x与 $\mathbb{R}[x]$ 中任意元素交换,因此甚至无需假设R是交换的, $(x):=\{rx:r\in R\}$ 自动就是一个理想。

作

$$a + bx + \left(x^2 + 1\right)$$

进而由一对实数 (a,b) 决定。我们规定实数对有着与 $\mathbb{R}[x]/(x^2+1)$ 上相同的加法和乘法,那么

$$(a_1, b_1) + (a_2, b_2) \sim (a_1 + b_1 x + (x^2 + 1)) + (a_2 + b_2 x + (x^2 + 1))$$

$$= (a_1 + a_2) + (b_1 + b_2) x + (x^2 + 1)$$

$$\sim (a_1 + a_2, b_1 + b_2)$$

对于乘法

$$(a_1, b_1) \cdot (a_2, b_2) \sim (a_1 + b_1 x + (x^2 + 1)) \cdot (a_2 + b_2 x + (x^2 + 1))$$

$$= (a_1 + b_1 x) \cdot (a_2 + b_2 x) + (x^2 + 1)$$

$$= a_1 a_2 + (a_1 b_2 + a_2 b_1) x + b_1 b_2 x^2 + (x^2 + 1)$$

$$= (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) x + (x^2 + 1)$$

$$\sim (a_1 a_2 - b_1 b_2, a_1 b_2 + a_2 b_1)$$

定义 $a+bi\mapsto a+bx+(x^2+1)$, 得到 $\mathbb{C}\simeq\mathbb{R}[x]/(x^2+1)$

●第3章练习◆

1. 设 U 是环(或无幺环)R 的理想,令 $r(U)=\{x\in R: \forall u\in U, xu=0\}$ 。证明: r(U) 也是 R 的理想。

Proof

(a). 显然 $0 \in r(U)$, 故 r(U) 非空。任取 $x, y \in r(U)$,

$$(x-y)u = xu - y_0 = 0$$

故 $x-y \in r(U)$, 这表明 r(U) 是加法子群。

(b). 任取 $x \in r(U)$, $a \in R$ 。由 U 是理想,对于每个 $u \in U$, $au \in U$, 于是

$$(ax) u = a (xu) = 0, \quad (xa) u = x (au) = 0$$

这表明 $ax, xa \in r(U)$, 故 r(U) 满足吸收性。

综上可得 r(U) 是 R 的一个理想。

2. 设R 是环(或无幺环),I,J 是R 的理想。令 $IJ=\{\sum_{k=1}^n a_ib_i:a_i\in I,b_i\in J,n\in\mathbb{N}\}$

- 证明 IJ 也是环 R 的理想,且 $IJ \subseteq I \cap J$;
- 给出 I,J,使得 $IJ \neq I \cap J$

Proof

迁取 $\sum_{i=1}^n a_i b_i, \sum_{i=1}^m c_i d_i \in IJ$,则

$$\sum_{i=1}^{n} a_i b_i - \sum_{i=1}^{m} c_i d_i = \sum_{i=1}^{n} a_i b_i + \sum_{i=1}^{m} (-c_i) d_i \in IJ$$

故 IJ 是 R 的加法子群。

任取 $r \in R$,

$$r\left(\sum_{i=1}^{n} a_i b_i\right) = \sum_{i=1}^{n} (ra_i) b_i \in IJ, \quad \left(\sum_{i=1}^{n} a_i b_i\right) \cdot r = \sum_{i=1}^{n} a_i (b_i r) \in IJ$$

因此 IJ 是 R 的理想。

由 I,J 是 R 的理想 $IJ\subseteq I$, $JI\subseteq J$ 由,因此 $IJ\subseteq I\cap J$ 。这就证明了第一个结论。

对于第二个结论,考虑 $R=\mathbb{Z}$, I=(2), J=(4), 则 IJ=(8), $I\cap J=(4)$.

3. 设 R 是交换环, I,J 是 R 的理想。若 I+J=R, 证明 $IJ=I\cap J$ 。

Proof

由上面的练习 $IJ\subseteq I\cap J$ 。由 I+J=R,存在 $i\in I, j\in J$,使得 $i+j=1_R$ 。于是任取 $x\in I\cap J$,

$$x = x (i + j) = xi + xj = ix + xj \in IJ$$

因此, $I \cap J \subseteq IJ$.

第4章 整环

4.1 素理想和极大理想

定义 4.1 (素理想和极大理想)

- 1. 设 R 是交换环,令 I 是 R 的理想。若商环 R/I 是整环,则称 I 是素理想。
- 2. 设 R 是交换环,令 I 是 R 的理想。若商环 R/I 是一个域,则称 I 是极大理想。

Remark

1. 极大理想是素理想。 Proof 域是整环。

定理 4.1 (素理想的一个等价刻画)

设 R 是交换环,令 I 是 R 的素理想。那么 I 是素理想当且仅当 $I \neq (1)$,且以下成立:

$$\forall a, b \in R \quad ab \in I \iff (a \in I) \lor (b \in I)$$

Proof

- 1. 设 I 是素理想,则 R/I 是整环,特别地在 R/I 中 $0 \neq 1$ 。进而 R/I 是非平凡的环,从而 $I \neq (1)$ 。设 $a,b \in R$ 使得 $ab \in I$,那么 ab+I = 0。又 ab+I = (a+I)(b+I),根据整环的定义,a+I=0,或 b+I=0。这表明 $a \in I$ 或 $b \in I$ 。
- 2. 若上述条件对 I 成立。由 R 交换可得 R/I 交换。又 $I \neq (1)$,故 R/I 非平凡,因此在其中 $0 \neq 1$ 。设 (a+I), (b+I) 是 R/I 中的元素,使得 (a+I) (b+I) = 0,这表明 ab+I=0,即 $ab \in I$ 。有条件知 $a \in I$ 或 $b \in I$,即 a+I=0 或 b+I=0,这说明 R/I 无非零的零因子,即 R/I 是整环。

定理 4.2 (极大理想的一个等价刻画)

设 R 是交换环,I 是 R 的理想。那么 I 是极大理想当且仅当 $I \neq (1)$ 并且不存在 理想 J,使得 $I \subsetneq J \subsetneq R$ 。

Proof

1. 设 I 是极大理想,那么 R/I 是一个域,特别地 R/I 是非平凡的环,从而 $I \neq (1)$ 。反证: 若存在理想 J,使得 $I \subseteq J \subseteq R$,那么 J/I 是 R/I 的理想,并且 $(0) \subseteq J/I \subseteq (1)$

在 R/I 中成立。但是域中的理想只有 (0) 和 (1) (域 F 的非零理想包含可逆元,进而包含单位元,故为 (1)),故 J/I 不是一个域。

2. 反之,若条件成立。首先由于 $I \neq (1)$,R/I 不是平凡环,进而 $0 \neq 1$ 在 R/I 中成立。若 R/I 不是一个域,那么存在非平凡的理想 \bar{J} (若不然,任意 $a \in \bar{J}$ 成立 $1 \in (a)$,进而 a 可逆,R/I 为域),由对应定理, \bar{J} 对应到(真)包含了 I 的 R 的(真)理想,故矛盾。

4.2 素元和不可约元

定义 4.2 (整除和最大公因子)

- 1. 设 R 是交换环,令 $a,b \in R$ 。称 b 整除 a,记作 b|a,若 $a \in (b)$,即存在 $c \in R$,使得 a = bc。
- 2. 设 R 是整环, $a,b \in R$ 。称 $d \in R$ 是 a 和 b 的一个最大公因子 (gcd),若 (d) 是包含了 a 和 b 的最小的 R 的主理想。

Remark

1. 最大公因子不一定存在。最大公因子为 1 时,1 也不一定写成 a,b 的线性组合。

定义 4.3 (不可约元)

设 R 是整环, $q \in R$ 。称 q 是不可约元,若 q 不是可逆元,并且 $\forall a,b \in R \quad q = ab \implies a$ 是可逆元或b 是可逆元.

Remark

- 1. $q \neq 0$.
- 2. 等阶刻画: 条件等阶于 $\forall a,b \in R, \quad q=ab \implies (q)=(a) \text{ or } (q)=(b).$ Proof 若 a 是可逆元,则存在 $d\in R$,使得 b=dq,故 (q)=(b)。反之,若 (q)=(b),则存在 $d\in R$,使得 b=dq,故 $q=adq \implies ad=1$,从而 a 是可逆元。这表明当 q=ab 时,a 可逆当且汉当 (q)=(b)。

定理 4.3 (不可约元的一个等价刻画)

设 R 是整环, $q\in R, q\neq 0$,且 q 不是可逆元。那么 q 是不可约的,当且仅当理想 (q) 在所有 R 的真主理想中是极大的:即 $(q)\subset (a)$ 蕴含 (a)=(1) 或 (a)=(q)。

Proof 若 q 不可约,令 $a \in R$, $(q) \subset (a)$ 。那么 q = ab 对某个 $b \in R$ 成立。又 q 不可约,故 a 是可逆元或 b 是可逆元,对于前者 (a) = 1,对于后者 (a) = (ab) = (q)。这表

明(q)确实在真主理想中极大。

反之,若 $q \neq 0$, q 不是可逆元,并且具有上面的极大性条件。是 q = ab,那么 $(q) \subset (a)$,要么 (a) = (1),要么 (a) = (q),对于前者 a 是可逆元。对于后者我们有 a = qu 对某个可逆元 u 成立,故 q = qub,得到 ub = 1,从而 bu 是可逆元。

命题 4.1 (非零素元不可约)

设 R 是整环, $p \in R$ 是非零素元。那么 p 不可约。

Proof 设 $p \in R$ 是非零素元,设 $(p) \subset (a)$ 。我们说明 (a) = 1 或 (a) = (p),进而 p 不可约。由 $(p) \subset (a)$,存在 $b \in R$,使得 p = ab。由于 p 是素元,故 $a \in (p)$ 或 $b \in (p)$ 。对于前者, $(a) \subset (p)$,我们有 (a) = (p)。对于后者,存在 $c \in R$ 使得 b = cp,于是 p = acp,得到 ac = 1。故 a 是可逆元,从而 (a) = (1)。

4.3 欧氏整环、PIDs

定义 4.4 (欧氏整环)

设 R 是整环。称 R 是一个欧氏整环,若存在函数 $\nu: R\setminus\{0\}\to\mathbb{Z}^{\geqslant 0}$,具有如下性质: 对于所有 $a\in R$ 和所有非零的 $b\in R$,存在 $q,r\in R$ 使得

$$a = bq + r$$

其中要以 r=0, 要以 $\nu(r)<\nu(q)$, 函数 ν 称为欧式赋值。

定义 4.5 (PID)

设 R 是整环。称 R 是一个主理想环 (PID),若 R 的每个理想都是主理想,即对于 R 的每个理想 I,存在 $a \in R$,使得 I = (a)。

定理 4.4 (欧氏整环 ⇒⇒ PIDs)

欧氏整环都是 PID。

Idea 理想皆由赋值最小的元素生成,具体地 I 中元素对赋值最小元 b 的余数为 0 (最小性),故为 b 整除,即 $I\subset (b)$ 。

Proof 设 R 是欧式整环, I 是 R 的理想。不妨 $I \neq (0)$, 那么令

$$S := \{ \nu(s) \in \mathbb{Z}^{\geq 0} : s \in I, s \neq 0 \}$$

于是 S 有最小元 $\nu(b)$ 。首先,显然有 $(b) \subset I$,接下来说明另一边。任取 $a \in I$,存在

 $q, r \in R$, 使得 a = bq + r, 使得 r = 0 或 $\nu(r) < \nu(b)$, 我们有

$$r = a - bq \in I$$

 \ddot{r} $\nu(r)<\nu(b)$,则与 $\nu(b)$ 的最小性矛盾,故 r=0。这表明 $a\in(b)$,a 选取的任意性 给出 $I\subset(b)$ 。综上 I=(b) 是主理想。

命题 4.2 (PID 和最大公因子)

若 R 是 PID, $a,b \in R$ 。>理想 (a,b) = (d) 对某个 $d \in R$ 成立,因此 (a,b) 本身就是包含了 a 和 b 的最小的主理想,即 a,b 的最大公因子。> 此外,d 是 a 和 b 的线性组合,因为 $d \in (a,b)$,而 (a,b) 就是 a,b 线性组合的全体。

Remark

1. 特别地, a,b 互素 (即最大公因子为 1), 当且仅当 (a,b)=(1)。这是 PID 中的特殊性质。

命题 4.3 (PID 中非零素理想的极大性)

设 R 是一个 PID, I 是非零素理想。那么 I 是极大理想。

•

Proof 设 I 是 R 的非零素理想。由于 R 是 PID,故 I=(p) 对某个 $p\in R, p\neq 0$ 成立。 I 是素理想,那么 p 是不可约的,进而 (p) 在 R 的所有真主理想中极大,而 R 的任意真理想都是主理想,故 (p) 在 R 的真理想中极大,即 I 是 R 的极大理想。

定理 4.5 (PID 的升链条件)

设 R 是 PID,那么 R 的任意理想升链皆稳定。即若

$$I_1 \subset I_2 \subset \cdots$$

是 R 的一个理想升链,则存在 m,使得 $I_m = I_{m+1} = \cdots$ 。

Proof $\Diamond I_1 \subset I_2 \subset \cdots$ 是一个理想升链,那么

$$I := \bigcup_{j \geqslant 1} I_j = \{ r \in R : \exists j, r \in I_j \}$$

是 R 的一个理想。由 R 是 PID 知,存在 $r\in R$,使得 I=(r)。根据 I 的定义,存在 m,使得 $r\in I_m$,于是 $(r)\subset I_m$,这就有

$$I = (r) \subset I_m \subset I_{m+1} \subset \cdots \subset I$$

于是 $I_m = I_{m+1} = \cdots = I$ 。

4.4 PIDs · UFDs

命题 4.4

设 $R \in PID$, $q \in R$ 是不可约元。那么 (q) 是极大理想,特别地 q 是素元。

Proof (q) 在所有真主理想中极大,而 PID 上任意理想皆为主理想,故 (q) 是极大理想。立即有 (q) 是素理想,即 q 是素元。

定理 4.6 (PID 上的算数学基本定理)

设 R 是 PID, $a \in R$; 设 $a \neq 0$, 且 a 不是可逆元。那么存在有限多个不可约元 q_1, \dots, q_r ,使得

$$a = q_1 \cdots q_r$$

此外,分解在相伴的意义下唯一,即若

$$a = q_1 \cdots q_r = p_1 \cdots p_s$$

是两个不可约分解,那么 s=r,且在一个指标重排后, $(p_1)=(q_1)$ $,\cdots$ $,(p_r)=(q_r)$ $_{igodots}$

Remark PID \implies UFD

Idea

- 1. 利用 PID 上的升链条件,将分解翻译成主理想的包含关系。在不可约分解不存在的前提下,构造无穷严格升链。
- 2. 若存在元素分解不唯一,那么可以找到具有最少因子个数 r 的非唯一分解元,其中 $r\geq 2$,由此造出有 r-1 个不可约因子的元,导出矛盾。主要利用 PID 上不可约元的素性。

Proof

1. 存在性: 设存在 $a \in R$, $a \neq 0$, a 不可逆,且不存在不可约分解。那么特别地,a 本身是可约元。从而由定义,存在不可逆元 $a_1,b_1 \in R$ 使得 $a = a_1b_1$ 。注意到 $(a) \subsetneq (a_1)$ 且 $(a) \subsetneq (b_1)$ 。断言 a_1,b_1 中存在可约元,否则 a 有不可约分解,矛盾,不妨设 a_1 是不可约的。对 a_1 重复上述讨论,依次类排,我们得到无穷升链

$$(a) \subsetneq (a_1) \subsetneq (a_2) \subsetneq \cdots$$

与 PID 的升链条件矛盾。

2. 唯一性: 若分解不唯一, 存在最小的 $r \in \mathbb{N}^+$, 使得存在不可约因子, $q_1, q_2, \cdots, q_r, p_1, p_2, \cdots, p_r$ 使得

$$a := q_1 q_2 \cdots q_r = p_1 p_2 \cdots p_s$$

是两个不同的不可约分解。断言 r>1,若不然 $q_1=p_1p_2\cdots p_s$, q_1 不可约迫使 s=1,与分解的不唯一性矛盾。接下来假设 r>2 ,我们有

$$q_1q_2\cdots q_r\in (p_1)$$

而由 (p_1) 是素理想,存在某个 q_i ,通过一个重排不妨设 i=1,使得 $(q_1)\subseteq (p_1)$,由 (q_1) 的极大性,我们得到 $(q_1)=(p_1)$,因此不妨设 $p_1=q_1$ (通过乘以一个可逆元)。于是此时

$$q_1q_2\cdots q_r=q_1p_2\cdots p_s$$

又 R 是整环,由消去律可得

$$q_2 \cdots q_r = p_2 \cdots p_s$$

由对 r 的假设知,只能有 s=r,

$$(q_2) = (p_2), \cdots, (q_r) = (p_r)$$

从而 a 的分解是唯一的,矛盾。

定义 4.6

称整环 R 是一个"唯一分解整环"(UFD),若定理 4.6 中的结论对 R 成立。即每个非零、非单位元都有在相伴意义下唯一的不可约分解

4.5 整环的分式域

先来看分式域概念提出的一个原型

命题 4.5

可以笼统地说 $\mathbb Q$ 是包含了 $\mathbb Z$ 的最小的域。意思是若 k 是包含了 $\mathbb Z$ 的一个域,那 $\mathbf U$ 中存在唯一的包含了 $\mathbb Z$ 的 $\mathbb Q$ 的同构复制。可以用以下交换图表述:

Proof 给定含入同态 $\iota:\mathbb{Z} \to \mathbb{Q}$,和 $i:\mathbb{Z} \to k$,任取 $\frac{p}{q} \in \mathbb{Q}$,其中 $q,p \in \mathbb{Z}$ 。现在考虑 $\mathbb{Q} \to k$ 的同态 φ ,要是交换图成立,必然有 $\varphi(p) = i(p)$, $\varphi(q) = i(q)$,且 $\varphi\left(\frac{1}{q}\right) = (\varphi(q))^{-1} = (i(q))^{-1}$ 。那么 $\varphi\left(\frac{p}{q}\right) = \varphi(p)\,\varphi\left(\frac{1}{q}\right) = i(p)\,(i(q))^{-1}$ 由 p,q 唯一确定。此外,容易验证 φ 是单同态,从而 $\varphi(\mathbb{Q}) \simeq \mathbb{Q}$ 。

4.5.1 分式域的泛性质

仿照上例, 对一般的整环刻画它的分式域

定义 4.7 (分式域的泛性质)

设R 是整环, k 是包含了R 的一个域,若F 使得下图成立,则称F 为R 的一个分式域。

Remark

1. 唯一性:上述 F 若存在,则在同构意义下唯一。

Proof 设 F' 是另一个满足条件的域,置 k=F',得到 $F\subseteq F'$,互换位置得到 $F'\subseteq F$ 。又存在 $F\to F'$ 的单同态,上述讨论表明此同态为同构。

4.5.2 分式域的具体构造

 \mathbb{Q} 的构造无非就是 $\mathbb{Z} \times \mathbb{Z} \setminus \{0\}$ 上模去一个等价关系

$$(r_1, s_1) \sim (r_2, s_2) : \iff \frac{r_1}{s_1} = \frac{r_2}{s_2} \iff r_1 s_2 = r_2 s_1$$

类似地推广到 R 上

定义 4.8

令 \hat{F} 是如下集合

$$\hat{F} := \{ (r, s) \in R \times R : s \neq 0 \}$$

定义 \hat{F} 上的关系

$$(r_1, s_1) \sim (r_2, s_2) : \iff r_1 s_2 = r_2 s_1$$

Remark

1. ~ 是一个等价关系

Proof

(a).
$$rs = rs \implies (r,s) \sim (r,s)$$

(b).
$$(r_1, s_1) \sim (r_2, s_2) \iff r_1 s_2 = r_2 s_1 \iff r_2 s_1 = r_1 s_2 \iff (r_2, s_2) \sim (r_1, s_1)$$

(c). 若 $(r_1, s_1) \sim (r_2, s_2)$, $(r_2, s_2) \sim (r_3, s_3)$ 那么

$$r_1 s_2 = r_2 s_1, \quad r_2 s_3 = r_3 s_2$$

从而

$$(r_1s_3) s_2 = (r_1s_2) s_3 = (r_2s_1) s_3 = s_1 (r_2s_3) = s_1 (r_3s_2) = (s_1r_3) s_2$$

(注意到这里用到了 R 的交换性) 利用 R 上的消去律,可得 $r_1s_3=s_1r_3$,即 $(r_1,s_1)\sim (r_3,s_3)$ 。

接下来利用此等价关系,构造 R 上的分式域。

定义 4.9

设 R 是 (交換) 整环。定义 R 的分式域,为配有以下加法 + 和乘法·的商环 $F = \tilde{F} \setminus \sim$

$$[(r_1, s_1)] + [(r_2, s_2)] := [(r_1s_2 + r_2s_1, s_1s_2)]$$
$$[(r_1, s_1)] \cdot [(r_2, s_2)] := [(r_1r_2, s_1s_2)]$$

Remark

1. 上述的加法和乘法是良定义的:

Proof 若 $(r_1, s_1) \sim (r'_1, s'_1)$,即 $r_1 s'_1 = r'_1 s_1$ 。需要说明

(a).
$$(r_1s_2 + r_2s_1)(s_1's_2) = (r_1's_2 + r_2s_1')(s_1s_2)$$

(b). $r_1r_2s_1's_2 = r_1'r_2s_1s_2$

第二个式子对 $r_1s_1'=r_1's_1$ 两边乘 r_2s_2 后由交换性立即得到。第一个式子可以通过第二个式子化为 $r_2s_1s_1's_2=r_2s_1's_1s_2$,而这由交换性立即得到。

- 2. $(F, +, \cdot)$ 满足环公理。
- 3. [(0,1)] 为零元, [(1,1)] 为幺元。
- 4. 在 F 中,零元和幺元不相等。

Proof 在 R 中, $0 \neq 1$,从而 $0 \cdot 1 \neq 1 \cdot 1$ 在 R 中成立,进而 $[(0,1)] \neq [(1,1)]$ 。

5. F 是域。

Proof 由乘法的定义和 R 的交换性,显然 F 是交换环。只需要证明 F 上的非零元皆可逆。为此,任取 $[(r,s)] \neq [(0,1)]$,则 $r \neq 0$ 。那么 $(s,r) \in \hat{F}$,我们有 $[(s,r)] \in F$,并且

$$[(r,s)] \cdot [(s,r)] = [(rs,sr)]$$

因为 $rs \cdot 1 = sr \cdot 1$, 故 [(rs, sr)] = [(1, 1)], 这就说明了 [(r, s)] 可逆,且逆元为 [(s, r)]。

6. 通常记 [(r,s)] 为 $\frac{r}{s}$.

接下来说明上述的构造确实满足我们一开始提出的泛性质。首先注意到 R 到 F 有 自然的嵌入 $r\mapsto [(r,1)]$,记作 $\iota:R\hookrightarrow F$,这相当于将 r 与 $\frac{r}{i}$ 做等同。

定理 4.7

上述构造的 F 满足泛性质4.7。

具体地,设 R 是(交换)整环,F 和 $\iota:R\hookrightarrow F$ 分别设是 R 的分式域和上述的单的环同态。令 k 是一个域, $i:R\hookrightarrow k$ 是单(环)同态。那么存在唯一的单同态 $j:F\hookrightarrow k$,使得下图交换

即使得 $i = j \circ \iota$.

 \Diamond

Proof

1. 唯一性: 若这样的单同态 $j:F\hookrightarrow k$ 存在,接下来说明这样的 j 是唯一的。为此,任取 $\frac{r}{s}\in F$,其中 $r,s\in R$ 。由图表的交换性, $j\left(\frac{r}{1}\right)=j\left(\iota\left(r\right)\right)=i\left(r\right)$, $j\left(\frac{s}{1}\right)=j\left(\iota\left(s\right)\right)=i\left(s\right)$,再由 j 是环同态,

$$j\left(\frac{r}{s}\right) = j\left(\frac{r}{1}\right)j\left(\frac{1}{s}\right) = j\left(\frac{r}{1}\right)\left(j\left(\frac{s}{1}\right)\right)^{-1} = i\left(r\right)\left(i\left(s\right)\right)^{-1}$$

由 r,s 唯一确定,故 j 若存在则唯一。

2. 存在性:上面的讨论给出了j的唯一表示,接下来仅需要说明

$$j\left(\frac{r}{s}\right) := i\left(r\right)\left(i\left(s\right)\right)^{-1}$$

确实给出了满足条件的环同态。

(a). 良定义: 若 $\frac{r_1}{s_1}=\frac{r_2}{s_2}$, 那么 $r_1s_2=r_2s_1$,因此

$$i(r_1) i(s_2) = i(r_2) i(s_1)$$

由 i 是环同态可得

$$i(r_1)(i(s_1))^{-1} = i(r_2)i(s_2)^{-1}$$

(b). 环同态:

$$j\left(\frac{r_1}{s_1}\right) + j\left(\frac{r_2}{s_2}\right) = i(r_1)i(s_1)^{-1} + i(r_2)i(s_2)^{-1} = i(r_1s_2)i(s_1s_2)^{-1} + i(r_2s_1)i(s_1s_2)^{-1}$$

$$= (i(r_1s_2) + i(r_2s_1))i(s_1s_2)^{-1} = i(r_1s_2 + r_2s_1)i(s_1s_2)^{-1}$$

$$= j\left(\frac{r_1s_2 + r_2s_1}{s_1s_2}\right)$$

$$= j\left(\frac{r_1}{s_1} + \frac{r_2}{s_2}\right),$$

$$j\left(\frac{r_1}{s_1}\right) \cdot j\left(\frac{r_2}{s_2}\right) = i(r_1)i(s_1)^{-1} \cdot i(r_2)i(s_2)^{-1} = i(r_1)i(r_2)i(s_1)^{-1}i(s_2)^{-1}$$

$$= i(r_1r_2)i(s_1s_2)^{-1} = j\left(\frac{r_1r_2}{s_1s_2}\right)$$

$$= j\left(\frac{r_1}{s_1} \cdot \frac{r_2}{s_2}\right),$$

此外 $j\left(\frac{1}{1}\right) = i\left(1\right)i\left(1\right)^{-1} = 1$ 明所欲证。

- (c). 单同态: 事实上, 域到环的同态皆为单同态。
- (d). 图的交换性: 任取 $r \in R$,

$$j \circ \iota(r) = j\left(\frac{r}{1}\right) = i(r)i(r)^{-1} = i(r)$$

表明 $j \circ \iota = i$.

结论 整环 R 上的分式域构造,可以看成是强制让 R 上的所有非零元可逆。F 的构造让非零元 $s \in R$ 在 F 中有了逆元 $\frac{1}{s}$ 。这种构造是交换环的"局部化"的特殊情况。

第5章 多项式环

5.1 域上的多项式环

即将说明若 k 是一个域,k[x] 是一个欧式整环。在此之前,需要对首项系数可逆的多项式的"长除法"。

引理 5.1 ("长除法")

设 R 是一个环,f(x), $g(x) \in R[x]$ 是多项式,其中 $f(x) \neq 0$ 。若 f(x) 的首项系数可逆,那么存在多项式 g(x), $r(x) \in R[x]$,使得

$$g(x) = q(x) f(x) + r(x)$$

使得 r(x) = 0 或 $\deg r(x) < \deg f(x)$ 成立。

Proof 当 $\deg g(x) < \deg f(x)$ 时,容易看出结论成立。

接下来,固定 $f(x) \in R[x]$,若命题不成立,我们取 g 是使得结论不成立的,次数最小的多项式,设 $n = \deg g(x)$, $m = \deg f(x)$,那么 $n \ge m$ 。设

$$f(x) = a_0 + a_1 x^1 + a_2 x^2 + \dots + a_m x^m, \quad g(x) = b_0 + b_1 x^1 + b_2 x^2 + \dots + b_n x^n$$

由假设 a_m 是可逆元, 故存在 $u=a_m^{-1}\in R$, 使得 $ua_m=1$ 。令

$$g_1(x) := g(x) - b_n u f(x) x^{n-m} = (b_0 + \dots + b_n x^n) - (b_n u a_0 x^{n-m} + \dots + b_n u a_m x^n)$$

则 g_1 的 n 次项系数为 0,故 $\deg g_1\left(x\right)\leq n-1$,那么根据假设, $g_1\left(x\right)$ 对 $f\left(x\right)$ 的"长除法"存在,设

$$g_1(x) = q_1(x) f(x) + r_1(x)$$

其中 $r_1(x) = 0$ 或 $\deg r_1(x) < \deg f(x)$ 。紧接着有

$$g(x) = b_n u f(x) x^{n-m} + q_1(x) f(x) + r_1(x) = (b_n u x^{n-m} + q_1(x)) f(x) + r_1(x)$$

从而 g(x) 对 f(x) 的"长除法"存在,与对 g 的假设矛盾。

方便起见,引入根的概念

定义 5.1 (根)

设 R 是一个环, $g(x) \in R[x]$ 是一个多项式。若 $a \in R$ 使得 g(a) = 0,则称 a 是 g(x) 的一个根。

1. (x-a) 是 g 的一个因子,当且仅当 a 是 g(x) 的一个根。

定理 5.1

设 k 是一个域,那么 k[x] 是一个欧式整环。

 \Diamond

Proof k 是一个域,特别地它是一个(交换)整环,从而 k[x] 是一个(交换)整环。定义一个赋值 $\nu:(k[x]\setminus 0)\to \mathbb{Z}^{\geq 0}$, $\nu(f(x):=\deg f(x))$ 。 由于 k 是域,每个非零多项式 f(x) 的首项系数总是可逆元。因此对于所有的 f(x) , $g(x)\in k[x]$,其中 $f(x)\neq 0$,都存在 g(x) 和 r(x),使得

$$g(x) = q(x) f(x) + r(x)$$

使得 r(x) = 0 或 $\nu(r(x)) < \nu(f(x))$ 。根据定义4.4,k(x) 是一个欧式整环。

推论 5.1

若 k 是一个域。那么 k[x] 是一个 PID, 进而 k[x] 中有唯一分解性 (UFD)。

Proof 由定理4.4,每个欧氏整环都是一PID,由定理4.6,每个PID都是一个UFD。

命题 5.1 (带余除法的唯一性)

设 R 是整环,令 f(x), $g(x) \in R[x]$,其中 $f(x) \neq 0$ 。设 f(x) 的首项系数是可逆元,那么 g(x) 对 f(x) 的带余除法是唯一的。

Proof 设

$$g(x) = q_1(x) f(x) + r_1(x) = q_2(x) f(x) + r_2(x)$$

始终 r_1, r_2 均要么为 0,要么次数小于 f(x),则

$$(q_1(x) - q_2(x) f(x)) + (r_1(x) - r_2(x)) = g(x) - g(x) = 0$$

因此 $(q_1(x)-q_2(x))$ $f(x)=r_1(x)-r_2(x)$ 。若 $r_2(x)-r_1(x)\neq 0$,由整环的性质,左侧式子的次数一定不低于 f(x) 的次数,但是等式右侧的式子次数严格小于 f(x) 的次数。因此

$$(q_1(x) - q_2(x)) f(x) = r_2(x) - r_1(x) = 0$$

立即有 $r_1(x) = r_2(x)$, $q_1(x) = q_2(x)$ (因为 R 是整环)。

推论 5.2

设 R 是整环, $f(x) \neq 0$ 。设 f(x) 的首项系数是单位。则 R[x]/(f(x)) 中的每个陪集都有唯一的表示 r(x)+(f(x)),使得要么 r(x)=0,要么 $\deg r(x) < \deg f(x)$

Idea 商环 R[x]/(f(x)) 由此可视作带余除法的余数环。

Proof 设 g(x) + (f(x)) 是 R[x]/(f(x)) 中的元素。由命题5.1和引理5.1,存在唯一的 g(x) 和 r(x),使得

$$g(x) = q(x) f(x) + r(x)$$

满足 r(x) = 0 或 deg r(x) < deg f(x). 此时

$$g(x) + (f(x)) = r(x) + (f(x))$$

这就说明了存在性。 若 r'(x) + (f(x)) = g(x) + (f(x)),则存在 q'(x),使得 g(x) = q'(x) f(x) + r'(x),带余除法的唯一性给出 r'(x) = r(x)。

定理 5.2

设 k 是域, $f(x) \in k[x]$ 是次数为 d 的非零多项式。则 k[x]/(f(x)) 是 d-维线性空间。

Remark 回忆 $\mathbb{C}\simeq\mathbb{R}[x]/(x^2+1)$,由此可知,在线性空间的意义下, $\mathbb{C}\simeq\mathbb{R}^2$ Proof k[x]/(f(x)) 中每一个元素唯一地写作

$$r\left(x\right) + \left(f\left(x\right)\right)$$

其中 $r(x)=a_0+a_1x+\cdots+a_{d-1}x^{d-1}$ 是次数小于 $\deg f(x)$ 的多项式。将系数 (a_0,\cdots,a_{d-1}) 与陪集 g(x)+(f(x)) 建立映射。。 又该映射保持加法和 k-标量乘法,且是单射(带余除法的唯一性) 故为线性空间的同构。

Example 5.1 环 $(\mathbb{Z}/5\mathbb{Z})[x]/(x^3+1)$ 的元素个数为 125 个。

Proof 由于 5 是素数,故 $\mathbb{Z}/5\mathbb{Z}$ 是有限的交换整环,进而是一个域。由上面的命题,环 $(\mathbb{Z}/5\mathbb{Z})$ $[x]/(x^3+1)$ 域同构于 $\mathbb{Z}/5\mathbb{Z}$ 上的 3 维线性空间,该线性空间上的元素个数为 $5^3=125$ 个。

5.2 多项式环上的不可约元

命题 5.2

设 k 是一个域, $f(x) \in k[x]$ 是次数不低于 2 的多项式。若 f(x) 有根,则 f(x) 是可约的。

Proof 若 a 是 f(x) 的根, 那么 (x-a) 是 f(x) 的因子。若 $\deg f(x) \geq 2$, 我们有

 $f\left(x\right)=\left(x-a\right)g\left(x\right)$,其中 $\deg g\left(x\right)\geq 1$ 。特别地 $g\left(x\right)$ 不是 R[x] 中的可逆元,故 $f\left(x\right)$ 是可约的。

命题 5.3

若 k 是一个域,令 $f(x) \in k[x]$ 是次数为 2 或 3 的多项式。那么 f(x) 不可约,当且仅当 f(x) 在 k 中无根。

Proof (⇒)是命题5.2的一个特殊情况。

(\Longleftrightarrow)反证法: 若 f(x) 可约,设 $f(x)=q_1(x)\,q_2(x)$,对于某两个不可逆的多项式 $q_1(x)$, $q_2(x)$ 成立。由于 k 是域,我们有 $q_1(x)$ 和 $q_2(x)$ 不为常系数多项式(否则它们可逆)。因为 $\deg f(x)=2$ 或 3 , q_1,q_2 其中一个次数为次数为 1 ,它等于某个 ax+b ,使得 $a,b\in k,a\neq 0$ 。但是根据条件假设 $-ba^{-1}$ 不是 f(x) 的根矛盾。

第二部分 模论

第6章 模和Aleb群

定义 6.1 (模)

设R为环,左R-模意谓以下资料

- 加法群 (M,+);
- 映射 $R \times M \to M$, 记作 $(r, m) \mapsto r \cdot m = rm$, 满足以下条件
 - 1. $r(m_1+m_2)=rm_1+rm_2, \quad r\in R, m_1, m_2\in M$
 - **2.** $(r_1 + r_2) m = r_1 m + r_2 m, \quad r_1, r_2 \in R, m \in M$,
 - 3. $(r_1r_2m) = r_1(r_2m)$,
 - **4.** $1_R \cdot m = m$

Example 6.1 设 R 为含幺环,M:=(R,+),取映射 $R\times M\to M$ 为 R 上的左乘映射,构成一个左 R -模。

Example 6.2 设
$$R$$
 为含幺环, $V:=\left\{egin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}: v_i \in R, 1 \leq i \leq n \right\}=:R^n$ 。取左作用为

逐项的左乘作用,则 V 是 R -模,称为环 $\overset{.}{R}$ 的自由模。

Example 6.3 加法群都是 Z-模。

Example 6.4 若 R 为域,则 R-模就是域 R 上的向量空间,也是 R 上的自由模。

6.1 R -模范畴

定义 6.2 (模同态)

设 R 是环, M,N 是 R -模。称函数 $f:M\to N$ 是一个 R -模同态,若 $\forall r\in R, \forall a,b\in M$,

$$f(a+b) = f(a) + f(b)$$

$$f(r \cdot a) = r \cdot f(a)$$

也称 f 是 R-线性的。

Example 6.5 考虑环同态 $f: R \to S$, 定义 R 在 S 上的作用, 通过

$$r \cdot s := f(r) s, \quad \forall r \in R, \forall s \in S$$

则 S 在此作用下称为一个 R-模。

定义 6.3 (子模)

设 R 是一个环,M 是 R -模,N 是 M 的子集,且 N 也是 R-模。称 N 是 M 的一个子模,若含入映射 $\iota:N\hookrightarrow M$ 是 R-模同态。

命题 6.1 (像与核)

设 $f: M \to N$ 是 R -模同态, 那么:

- 1. 若 M' 是 M 的子模, 则 f(M') 是 M 的子模;
- 2. 若 N' 是 M 的子模, 则 $f^{-1}(N')$ 是 M 的子模;

定义 6.4 (生成模)

令 M 是 R -模, m_1,\cdots,m_n 是 M 中的元素。称 m_1,\cdots,m_n 的全体 R -线性组合,记作 $\langle m_1,m_2,\cdots,m_n\rangle$,为 M 的由 $1_1,1_2,\cdots,1_n$ 生成的子模。

定义 6.5 (有限生成与循环)

称 R -模 M 是有限生成的,若存在 $m_1,m_2,\cdots,m_n\in M$,使得 $M=\langle m_1,m_2,\cdots,m_n\rangle$ 。

称 M 是循环的,若 $M = \langle m \rangle$ 对某个 $m \in M$ 成立。

定义 6.6 (直和)

设 R 是环, M,N 是 R-模。称 R -模 $(M\times N,+,\cdot)$ 为 M 和 N 的直和,记作 $M\oplus N$, 其中 $+,\cdot$ 按以下方式定义

$$(m_1, n_1) + (m_2, n_2) := (m_1 + m_2, n_1 + n_2)$$

 $r \cdot (m, n) := (rm, rn).$

6.2 标准分解和商

定理 6.1 (标准分解)

令 $f:M\to N$ 是 R-模同态,以下交换图成立

$$M \xrightarrow{\pi} M/\ker f \xrightarrow{\sim} f(M) \xrightarrow{\iota} N$$

其中 π 是投影映射, ι 是含入映射, \widetilde{f} 是诱导同态。此外 \widetilde{f} 是同构。

\Diamond

6.3 整环上的模

第三部分 域论

第7章 域扩张

7.1 域和域同态

定义 7.1

设 k 是域。k 的一个域扩张是指,配备了同态 $k \hookrightarrow F$ 的一个域 F,使得 k 等同于 F 的一个子域。

Remark

1. 域同态无非是域之间的环同态,它一定是单射。

Example 7.1 设 $f(t)\in\mathbb{Q}[t]$ 是非零不可约多项式。则 $\mathbb{Q}[t]/(f(t))$ 是一个域, $Q\subseteq\mathbb{Q}[t](f(t))$ 是一个域扩张。

Example 7.2 设 $\mathbb{Q}(t)$ 是多项式环 $\mathbb{Q}[t]$ 的分式域; 即 $\mathbb{Q}[t]$ 由商 f(t)/g(t), 其中 $f(t), g(t) \in \mathbb{Q}[t]$, 且 $g(t) \neq 0$ 。则 $\mathbb{Q} \subseteq \mathbb{Q}[t]$ 是一个域扩张。

Example 7.3 $\mathbb{Q}\subseteq \overline{\mathbb{Q}}$,其中 $\overline{\mathbb{Q}}$ 是"代数数",即可以写作有理系数多项式根的复数的全体。

定义 7.2

设 k 是域。定义 k 的特征,为 $\mathbb{Z}\to k$ 的唯一环同态的核的非负生成元。即最小的 正整数 n,使得 $n\cdot 1_k=0_k$,或者当正整数不存在时取 0。

Remark

 $\bullet \ \mathbb{Z} \to k$ 的唯一性是因为 \mathbb{Z} 是环范畴的始对象。

引理 7.1

设 $k \subseteq F$ 是一个域扩张。则 $\operatorname{char} k = \operatorname{char} F$

 \bigcirc

Proof 由于 \mathbb{Z} 到任意环的环同态唯一,故图

交換。由于 $k\hookrightarrow F$ 是单射,故 $\ker\,i=\ker\,j$,进而有相同的生成元,即 $\mathrm{char}\,\,k=\mathrm{char}\,\,F$

引理 7.2

设 F 是域,则 F 包含了唯一的 $\mathbb Q$ 的复制或 $\mathbb Z/p\mathbb Z$ 的复制,其中 p>0 是素数。

Proof 若 char F = n,则要么 n = p 对某个素数成立(整环的特征是素数),要么 n = 0 。对于后者, $\mathbb{Z} \to F$ 是单射,由定理??,存在唯一的单同态 $\mathbb{Q} \hookrightarrow F$ 。

若 n=p>0,则由同构定理, $\mathbb{Z}/p\mathbb{Z}\simeq i\,(\mathbb{Z})\subseteq F$,唯一性由 $\mathbb{Z}\to F$ 像集的唯一性可得。

定义 7.3

对于每个素数 p, 记域 $\mathbb{Z}/p\mathbb{Z}$ 为 \mathbb{F}_p

上面的引理表明,特征为 k 的域的范畴有始对象 \mathbb{F}_p ,特征为 0 的域的范畴有始对象 \mathbb{Q} ;即存在唯一的域同态 $\mathbb{F}_p \to k$ (其中 $\mathrm{char}\ k=p$) 或存在唯一的域同态 $\mathbb{Q} \to k$ (其中 $\mathrm{char}\ k=0$) 。

因此,可以在每个单独的范畴中研究域扩张问题。

事实上,对于给定的域 k,我们考虑域 k 的扩张的范畴: 对象是域扩张 $k\hookrightarrow F$,态射是 (环) 同态 $j:F'\hookrightarrow F''$,使得下图交换

称 j 延扬了 id_k 。可以视同态为一列扩张 $k\subseteq F'\subseteq F''$ 。

始对象是平凡扩张 $\mathrm{id}_k:k\to k$ 。分别令 $k=\mathbb{Q}$,,可以将上面的讨论统一起来。

7.2 有限扩张和扩张的次数

回忆每个环同态 $R \to S$ 都能使得 S 称为一个 R-模;特别地,若 $k \subseteq F$ 是一个域扩张,则 F 视为 k 上的线性空间。

定义 7.4 (扩张的次数)

域扩张 $k \subseteq F$ 的次数,记作 [F:k] ,被定义为 F 作为 k-线性空间的维数。

定义 7.5

称域扩张 $k \subseteq F$ 是"有限"的,若 F 是有限维 k-线性空间。

*

 \Diamond

引理 7.3

设 k 是域, $f(t) \in k[t]$ 是不可约多项式。则 k[t]/f(t) 是一个域,且将 a 映到陪集 a+(f(t)) 的同态 $k \to k[t]/(f(t))$ 定义出域扩张 $k \subseteq k[t]/(f(t))$ 。则扩张是有限扩张,且

$$[k(t)/(f(t)):k] = \deg f$$

Proof k[t] 是欧氏整环进而是 PID(定理4.4), PIDs 中的不可约元生成极大理想 (命题4.4), 故 k[t]/(f(t)) 是一个域。且 k[t]/(f(t)) 由定理5.2是一个 $\deg f$ 维线性空间, 陪集 $1+(f(t),\cdots,t^{d-1}+(f(t)))$ 构成一组基。

命题 7.1

设 $k \subseteq E \subseteq F$ 是域扩张。若 $k \subseteq E$ 和 $E \subseteq F$ 都是有限扩张,则 $k \subseteq F$ 是有限扩张,且

$$[F:k] = [F:E][E:k]$$

Proof 令 [E:k]=m, [F:E]=n。设 $\varepsilon_1,\cdots,\varepsilon_m$ 是 E 在 k 上的一组基, $\varphi_1,\cdots,\varphi_n$ 是 F 在 E 上的一组基。断言 $\varepsilon_i\varphi_j$, $i=1,\cdots,m$, $j=1,\cdots,n$ 构成 F 在 k 上的一组基。为了说明 F 可以由这组基线性表出,任取 $f\in F$,设 $e_1,\cdots,e_n\in E$,使得

$$f = e_1 \varphi_1 + \dots + e_n \varphi_n = \sum_{i=1}^n e_i \varphi_i$$

而每个对于每个 e_i , 都存在 $k_{i1},\cdots,k_{im}\in k$, 使得

$$e_i = \sum_{i=1}^{m} k_{ij} \varepsilon_j$$

于是

$$f = \sum_{i=1}^{n} \sum_{j=1}^{m} k_{ij} \varepsilon_j \varphi_i$$

这就说明了 $(\varepsilon_j \varphi_i)$ 在 k 上张成了 F.

为了说明线性无关性,考虑 $arepsilon_j arphi_i$ 在 k 上的线性组合

$$\sum_{i,j} k_{ij} \varepsilon_j \varphi_i = 0$$

由 φ_i 的线性无关性,对于每个 $i=1,2,\cdots,n$,

$$\sum_{j=1}^{m} k_{ij} \varepsilon_j = 0, \quad i = 1, \cdots, n$$

再由 (ε_i) 的线性无关性,

$$k_{i1} = \cdots = k_{im} = 0, \quad i = 1, \cdots, n$$

定义 7.6

若 $k \subset E \subset F$ 是域扩张, 称 E 为扩张 $k \subset F$ 的中间域。

.

Remark

• 容易看到若 E 是有限扩张 $k \subseteq F$ 的中间域,则 $k \subseteq E$ 和 $E \subseteq F$ 都是有限扩张。

Example 7.4 扩张 $\mathbb{Q} \subseteq \mathbb{Q}[t]/(t^7+2t^2+2)$ 没有非平凡的中间域。

Proof 若 $\mathbb{Q} \subseteq E \subseteq \mathbb{Q}[t]/(t^7+2t^2+2)$,则

$$[\mathbb{Q}[t]/(t^7+2t^2+2):E][E:\mathbb{Q}]=7$$

要仏 [E:Q]=1,要仏 $[\mathbb{Q}[t]/(t^7+2t^2+2):E]=1$

7.3 单扩张

定义 7.7

设 $k\subseteq F$ 是域扩张, $\alpha_1,\cdots,\alpha_r\in F$ 。记 $k\left(\alpha_1,\cdots,\alpha_r\right)$ 为 F 中最小的包含了 k 和所有 α_i 的子域。

若 $F = k(\alpha_1, \dots, \alpha_r)$, 则称 $k \subseteq F$ 是通过 $\alpha_1, \dots, \alpha_r$ 有限生成的。

定义 7.8 (单扩张)

称扩张 $k \subseteq F$ 是一个单扩张, 若 $F = k(\alpha)$ 对某个 $\alpha \in F$ 成立。

命题 7.2

设 $k \subseteq k(\alpha) = F$ 是单扩张。则以下其一成立

- $F \simeq k[t]/(p(t))$ 对某个满足 $p(\alpha) = 0$ 的不可约首一多项式 $p(t) \in k[t]$ 成立;
- F 同构于 k[t] 的分式域 k(t)。

对于第一种情况, $[F:k]=\deg p(t)$, 对于第二种情况, $[F:k]=\infty$ 。

Proof 定义 - 个同态 φ

$$\varphi: k[x] \to F$$

$$f(t) \mapsto f(\alpha)$$

若 $\ker \varphi \neq 0$,则由于 k[t] 是 PID,对于某个多项式 $p(t) \in k[t]$,我们有 $\ker \varphi = (p(t))$ 。根据构造, $p(\alpha) = 0$,通过乘以首项系数的逆,不妨设 p(t) 是首一的。由第一同构定理, φ 诱导出单同态

$$\tilde{\varphi}: k[t]/(p(t)) \hookrightarrow F$$

特别地,k[t]/(p(t)) 视作 F 的子环是一个整环,从而 (p(t)) 是素理想,进而是极大理想(命题4.3),因此 k[t]/(p(t)) 是一个域。 $\operatorname{im} \tilde{\varphi} \subseteq F$ 是包含了 $\varphi(t) = \alpha$ 和 $\varphi(k) = k$ 的 F 的子域,又 F 是包含了 k 和 α 的最小的子域,故 $\operatorname{im} \tilde{\varphi} = F$ 。因此 $\tilde{\varphi}$ 也是满射,进而是同构。此时由定理5.2, $[F:k] = [(k[t]/(p(t))):k] = \deg p$ 。这就说明了第一种情况。

若 $\ker \varphi = (0)$,则 $\varphi: k[t] \to F$ 是单射。又 k[t] 是整环,它有分式域 k(t)。由泛性质4.7,存在单同态

$$k(t) \hookrightarrow F$$

,同态像是包含了 $\varphi(t)=\alpha$ 种 $\varphi(k)=k$ 的域,从而 $k(t)\simeq F$

定义 7.9

设 $k\subseteq F$ 是域扩张, $\alpha\in F$ 。称 α 是 k 上的 d 次代数元,若 $[k\left(\alpha\right):k]=d$ 是有限的。称 α 是超越的,若它不是代数的。

引理 7.4

设 $k\subseteq F$ 是域扩张, $\alpha\in F$ 。则 α 在 k 上是代数的,当且仅当 α 是某个非零多项式 $f(t)\in k[t]$ 的根。此时 α 是多项式 $p(t)\in k[t]$ 的根,其中 p(t) 是唯一的使得 p(t)|f(t) 且 $k(\alpha)\simeq k[t]/(p(t))$ 的不可约首一多项式。

Proof 若 α 是 k 上的代数元,则 $k \subseteq k(\alpha)$ 是命题7.2中满足第一条的扩张,特别地 $p(\alpha) = 0$ 对某个非零不可约首一多项式成立。

反之,若 $f(\alpha)=0$ 对某个非零 $f(t)\in k[t]$ 成立。考虑"赋值"同态

$$\varphi: k[t] \to F$$

映 g(t) 为 $g(\alpha)$ 。由假设 $f(t) \in \ker \varphi$,特别地 $\ker \varphi \neq (0)$ 。由命题7.2 的证明过程, $k(\alpha) \simeq k[t]/\ker \varphi$ 是 k 的有限扩张,从而 α 是代数元。

此外, $\ker \varphi$ 由一个不可约的首一多项式 p(t) 生成。由于 $f(t) \in \ker \varphi = (p(t))$,故 f(t) 是 p(t) 的一个倍数。

最后,k[t] 的首一生成元是唯一的: 若 $(p_1(t))=(p_2(t))$,则 $p_1(t)$, $p_2(t)$ 相差一个单位,故当它们首一时相等。

定义 7.10 (极小多项式)

设 α 在 k 上是代数的, α 在 k 上的极小多项式是指使得 $p(\alpha)=0$ 的唯一的不可约首一多项式 $p(t)\in k[x]$ 。

Remark

 \bullet α 的次数就是 α 的极小多项式的次数。

命题 7.3

若 α 是 k 上的代数元,则 $k(\alpha)$ 中的每个元素都写成 k-系数的 α 多项式。

•

Proof 由命题7.2的证明过程,

$$\varphi: k[x] \to F = k(\alpha)$$

$$f(t) \mapsto f(\alpha)$$

是满射。

Example 7.5 "代数数"是复数在 $\mathbb Q$ 上的代数元,用 $\overline{\mathbb Q}$ 表示代数数的全体。 对于 $i\in\overline{\mathbb Q}$,i 在 $\mathbb Q$ 上的极小多项式是 t^2+1 。

命题 7.4

令 $k\subseteq E\subseteq F$ 是域扩张, $\alpha\in F$,设 α 在 k 上是代数的,有极小多项式 $p_k\left(t\right)$ 。则 α 在 E 上也是代数的,它的极小多项式 $p_E\left(t\right)$ 是 $p_k\left(t\right)$ 的一个因子。

Remark $p_k(t)$ 在域 k 上是不可约的,但在更大的域 (例如 E) 上可能有非平凡的因子。 比如 $t-\alpha$ 就是 $p_k(t)$ 在 F[t] 上的因子。

Proof $k\subseteq E$, $p_k(t)$ 可以看做是 E[t] 上的多项式。因为 $p_k(\alpha)=0$, 于是 α 在 E 上是代数的,由引理7.4,它的极小多项式 $p_E(t)\in E[t]$ 整除 $p_k(t)$ 。

Example 7.6

$$\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right) = \mathbb{Q}\left(\sqrt{2} + \sqrt{3}\right)$$

是一个单扩张

Proof 显然 $\mathbb{Q}\left(\sqrt{2}+\sqrt{3}\right)\subseteq\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right)$.

$$\alpha = \sqrt{2} + \sqrt{3}$$
, α

$$\begin{cases} \alpha = \sqrt{2} + \sqrt{3}, \\ \alpha^3 = 11\sqrt{2} + 9\sqrt{3} \end{cases}$$

易见 $\sqrt{2}$, $\sqrt{3}$ 都写作 α 的 \mathbb{Q} - 多项式。

命题 7.5

有限域的有限扩张是单扩张。

•

Proof 设 $k \subseteq F$ 是域扩张,其中 k 是有限域。若扩张是有限的,则 F 也是有限域,故而乘法群 F^* 是循环群(有限域的乘法群是循环的)。设 $F^* = \langle \alpha \rangle$,则 F 中的任一元素写作 α 的次幂,进而位于 $k(\alpha)$ 中。故 $k \subseteq k(\alpha) = F$ 是单扩张。

命题 7.6

设 $k\subseteq F=k\left(lpha
ight)$ 是单扩张,lpha 是 k 上的代数元。则 $k\subseteq F$ 只容许有限个中间域。

Remark

若 t 是 k 上的超越元,

Proof 设 $p(t) \in k[t]$ 是 α 在 k 上的极小多项式,令 E 是扩张 $k \subseteq k(\alpha)$ 的中间域。视 p(t) 为 E[t] 上的多项式,则由命题7.4, α 在 E 上的极小多项式 $p_E(t)$ 是 p(t) 在 E[t] 中的因子。令 $p_E(t) = e_0 + e_1 t + \cdots + e_{d-1}^{d-1} + t^d \in E[t]$,故 $[k(\alpha) : E] = d$ 。

断言 $E=k(e_0,\cdots,e_{d-1})$, 事实上, 一方面我们有

$$E' \subseteq E \subseteq k(\alpha)$$

另一方面 E' 包含了 $p_E(t)$ 的所有系数,故 p_E 也是 E' 上的多项式。又因为 $p_E(t)$ 在 E 上不可约,从而也在 E' 上不可约,进而 $p_E(t)$ 一定是 α 在 E' 上的极小多项式。因此 $[k(\alpha):E']=d=[k(\alpha):E]$,于是由命题7.1

$$d = [k(\alpha) : E'] = [k(\alpha) : E][E : E'] = d[E : E']$$

从而 [E:E']=0, E:E', 断言成立。

断言表明 E 由 p(t) 的因子 $p_E(t)$ 唯一确定,而 p(t) 在 $k(\alpha)[t]$ 中只有有限个首一的因子,故中间域的选取是有限的。

定理 7.1 (*)

设 $k\subseteq F$ 是域扩张。则 $F=k\left(lpha
ight)$ 对某个 k 上的代数元 lpha 成立,当且仅当扩张只容许有限个中间域。

Proof " 仅当" 的方向就是上面的命题, 接下来说明" 当" 的方向。

首先断言 $k \subseteq F$ 是有限生成的,若不然:可以构造无限长的递增扩域链

$$k \subsetneq k(u_1) \subsetneq k(u_1, u_2) \subsetneq k(u_1, u_2, u_3) \subsetneq \cdots \subseteq F,$$

给出了无限多个中间域。由此不妨设 F 是有 n 个元素 u_1, \cdots, u_n 生成的: $F = k (u_1, \cdots, u_n)$ 。 再断言 u_i 是代数元,事实上,若 u_i 是超越元,则 $k (u_1, \cdots, u_{i-1})$ 和 $k (u_1, \cdots, u_i)$ 之间存在无穷多个中间域,进而 k 和 F 中间域也有无穷多个。特别地, $k \subset F$ 是有限扩张。

可以通过归纳化简为 n=2 的情况,具体地,若对于 $n\geq 3$ 是命题成立(可化为单扩张),则

$$F = k(u_1, \dots, u_n) = k(u_1, \dots, u_{n-1})(u_n) = k(u)(u_n) = k(u, v)$$

对于某个 u 成立, 其中置 $v=u_n$ 。因此只需要证明 n=2 的情况。

因此,不妨设 $F=k\,(u,v)$ 。若 k 是有限域,则由于 $k\subseteq F$ 是有限扩张,命题7.5 给 出 $k\subseteq F$ 是单扩张。

7.4 代数扩张

定义 7.11

称域扩张 $k \subseteq F$ 是代数扩张,若 F 上的每一个元素都是 k 上的代数元。

命题 7.7

有限扩张都是代数扩张。事实上,若 $k\subseteq F$ 是有限扩张,且 [F:k]=d ,则每个 $\alpha\in F$ 都是 k 上的代数元,且它的次数整除 d。