Language detection using character n-gram profiles Inspiration from Cavnar and Trenkle (1994)

Atreya Shankar Applying for: Scientific Researcher in NLP

July 6, 2021

Overview

- Introduction
- Methodology
- **3** Results
- 4 Discussion
- **5** Conclusions

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Motivation

Figure 1: Levels/structures of languages; figure taken from Hickey (2005)

- Morphological profiling probably has lower data and compute requirements
- Makes sense given no external libraries are allowed

Methodology

- Character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- WiLI-2018 data set for 235 languages with 235,000 paragraphs (Thoma, 2018)
- Similarities: Data is lowercased and punctuations/special-tokens are removed
- Differences: Use vector-based difference norm instead of out-of-place distance
- Two hyperparameters: character n-gram length and ranked n-gram cutoff

N-Gram-Based Text Categorization

William B. Cavnar and John M. Trenkle Environmental Research Institute of Michigan P.O. Box 134001 Ann Arbor MI 48113-4001

Figure 2: Excerpt from Cavnar, Trenkle, et al. (1994)

Figure 3: Flowchart from Cavnar, Trenkle, et al. (1994)

Methodology

- Character n-gram profiling technique from Cavnar, Trenkle, et al. (1994)
- WiLI-2018 data set for 235 languages with 235,000 paragraphs (Thoma, 2018)
- Similarities: Data is lowercased and punctuations/special-tokens are removed
- Differences: Use vector-based difference norm instead of out-of-place distance
- Two hyperparameters: character n-gram length and ranked n-gram cutoff

N-Gram-Based Text Categorization

William B. Cavnar and John M. Trenkle Environmental Research Institute of Michigan P.O. Box 134001 Ann Arbor MI 48113-4001

Figure 2: Excerpt from Cavnar, Trenkle, et al. (1994)

Figure 3: Flowchart from Cavnar, Trenkle, et al. (1994)

Results

N-gram length	N-gram cutoff	Weighted Test F ₁	Best Language	Worst Language
2	100	0.865	Navajo	Konkani
2	300	0.893	Navajo	Pampanga
3	100	0.859	Dhivehi	Chavacano
3	300	0.898	Navajo	Chavacano

Table 1: Tabular summary of model performances; MLP from Thoma (2018) achieved an accuracy of 0.883

Language	N_1	N_2	N_3	\mathbb{N}_4	N_5
English	the	and			ent
Deutsch	der				
Italiano			ent		lla

Table 2: Tabular summary of top five character trigrams with highest relative frequency per language

Results

N-gram length	N-gram cutoff	Weighted Test F ₁	Best Language	Worst Language
	100		Navajo	Konkani
2			Navajo	Pampanga
	100	0.859	Dhivehi	
3	300	0.898	Navajo	Chavacano

Table 1: Tabular summary of model performances; IVILP from Thoma (2018) achieved an accuracy of 0.883

Language	N_1	N_2	N_3	N ₄	N_5
English	the	and	ing	ion	ent
Deutsch	der	sch	die	ein	che
Italiano	del	ell	ent	ion	lla

Table 2: Tabular summary of top five character trigrams with highest relative frequency per language

Discussion

Gold language	Utterance	Predicted language
English	What is this?	Cantonese
Deutsch	Was ist das?	Chavacano
Italiano	Cos'è questo?	Asturian

Table 3: Examples of erroneous language detection for short phrases

Conclusions

Bibliography I

Cavnar, William B, John M Trenkle, et al. (1994). "N-gram-based text categorization". In: Proceedings of SDAIR-94, 3rd annual symposium on document analysis and information retrieval. Vol. 161175. Citeseer.

Hickey, Raymond (2005). "Levels of language". In: Universität Duisburg-Essen.

Thoma, Martin (2018). "The WiLl benchmark dataset for written language identification". In: arXiv preprint arXiv:1801.07779.