Color Transforms

X 0 1 5 3 4 1 6 7.... kernel 1 2 -1 result -3 8 12 10 0 6

X 1 5 3 4 1 6 7.... 0 kernel 1 2 -1 result 12 10 0 -3 8 X 0 3 4 1 5 -1

$$z = x \otimes y$$

8

12

10

0

-3

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-1

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Destination image

	5	-2		
		4		
			3	

What is the value of this destination pixel?

A. -3

B. -2

C. 3

D. 4

E. Something else.

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

Destination image

	5	-2		
	4			
			5	
ĺ				

What is the value of this destination pixel?

A. -3

B. -2

C. 3

D. 4

E. Something else.

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

5	-2		
4			
		4	

Source image

1	3	1	1	1	4
4	0	3	4	2	3
2	5	0	4	2	2
4	3	1	1	0	1
1	0	2	1	1	3
0	2	4	0	2	2

Kernel

0	1	0
0	0	0
1	0	-2

- 1. Destination image is smaller
- 2. "Zero-padding" of source image

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	P
0	101	98	104	102	100	
0	99	101	106	104	99	To the second
0	104	104	104	100	98	
						10

Kernel

0	-1	0
-1	5	-1
0	-1	0

320			

$$0*0+0*-1+0*0 +0*-1+105*5+102*-1 +0*0+103*-1+99*0 = 320$$

Kernel

-1	1
-2	2
-1	1

Assume grayscale images

Source pixel value 0 .. 255

Destination pixel value?

Normalize it so that it falls in the range 0 .. 255

Kernel

You apply this filter to a checkerboard image. What is the result after normalization?

A.

В.

C.

D.

E. Something else

filterimage.py

Image Filters

Kernel

Vertical edge detection filter

Take absolute value and re-normalize

Filterimage_comb.py

Image Filters

Kernel

Vertical edge detection filter

Kernel

Horizontal edge detection filter

Filterimage_comb.py

Image Filters

Kernel

+ abs()

+ normalize

Vertical edge detection filter

Kernel

+ abs()

+ normalize

Horizontal edge detection filter

combine

- Sum and normalize
- Sqrt(sum of squares) and normalize

Kernel

	1	
1	1	1
	1	

+ normalize

What do you think this filter does to an image?

- A. It finds diagonal edges
- B. It blurs the image
- C. It sharpens the image

- D. It embosses the image
- E. Something else.

Kernel

	1	
1	1	1
	1	

+ normalize

Blurring

Kernel

	1	
1	1	1
	1	

+ normalize

Blurring

Kernel

-1	-1	-1
-1	9	-1
-1	-1	-1

+ bound to 0 .. 255

Sharpening

Kernel

1	1	
1		-1
	-1	-1

+ normalize

Emboss

JPEG

Lossy compression format

- We want to represent the image with fewer bits
 - Fewer pixels
 - Fewer bits per pixel
 - •