Outils de combinatoire analytique en sage

Matthieu Dien, Marguerite Zamansky

Outils de combinatoire analytique en sage Projet STL

Matthieu Dien Marguerite Zamansky

Université Pierre et Marie Curie

23 avril 2013

Définitions

Matthieu Dien, Marguerite Zamansky

Classe Combinatoire

Une classe combinatoire \mathcal{A} est un ensemble muni d'une application taille $|\cdot|:\mathcal{A}->\mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, \{a \in \mathcal{A}, |a| = n\} \text{ est fini}$$

Paramètre Scalaire

Un paramètre scalaire χ de $\mathcal A$ est une fonction surjective de $\mathcal A$ dans $\mathbb N$

Marguerite Zamansky

Définitions

(suite)

Série génératrice multivariée

Une série génératrice A associée à une classe combinatoire \mathcal{A} et k paramètres scalaires χ_i :

$$A(X_1 \dots X_k) = \sum_{i_1, \dots, i_k \ge 0}^{+\infty} a_{i_1, \dots, i_k} X_1^{i_1} \dots X_k^{i_k}$$

permet de compter le nombre d'élément de \mathcal{A} : $a_{i_1,...,i_k} = \text{Card}(e \in \mathcal{A}, \chi_j(e) = i_j, \forall j \in [\![1,k]\!])$

Marguerite Zamansky

Séries Génératrices Multivariées

Exemple (1)

Arbres binaire-ternaire:

$$ABT(z,u,v,w) = z \cdot w + u \cdot w \cdot ABT^2(z,u,v,w) + v \cdot w \cdot ABT^3(z,u,v,w)$$

z : les feuilles

u : les nœuds binaires

v : les nœuds ternaires

w: la taille totale

Marguerite Zamansky

Séries Génératrices Multivariées

Exemple (2)

Arbre de Catalan : un arbre général (enraciné et planaire)

Longueur de cheminement : somme des distances entre chaque noeud et la racine d'un arbre

Matthieu Dien, Marguerite Zamansky

Séries Génératrices Multivariées

Exemple (2)

Arbre de Catalan : un arbre général (enraciné et planaire)

Longueur de cheminement : somme des distances entre chaque noeud et la racine d'un arbre

Longueur de cheminement d'un arbre de Catalan :

$$AG(z, u) = z \cdot SEQ(AG(zu, u))$$

z : le nombre de nœuds

u : longueur de cheminement

Matthieu Dien, Marguerite Zamansky

• logiciel libre de calcul formel et numérique

- logiciel libre de calcul formel et numérique
- regroupe des outils déjà connus et éprouvés (GP/PARI, GAP, Singular, Maxima)

Sage

- logiciel libre de calcul formel et numérique
- regroupe des outils déjà connus et éprouvés (GP/PARI, GAP, Singular, Maxima)
- et ses propres paquets (combinat, rings, matrix ...)

Sage

- logiciel libre de calcul formel et numérique
- regroupe des outils déjà connus et éprouvés (GP/PARI, GAP, Singular, Maxima)
- et ses propres paquets (combinat, rings, matrix ...)
- le tout interfacé par un top-level Python

Outils de combinatoire analytique en sage

Implémentation

Matthieu Dien, Marguerite Zamansky

Formal multivariate power series

 Basé sur le travail fait sur les séries génératrices monovariées.

Implémentation

Matthieu Dien, Marguerite Zamansky

Formal multivariate power series

- Basé sur le travail fait sur les séries génératrices monovariées.
- Représentation mémoire sous forme de stream.

Outils de combinatoire analytique en sage

Démonstration

Matthieu Dien, Marguerite Zamansky

sage block

La spécification calcul des coefficients

Conclusion

Matthieu Dien, Marguerite Zamansky

• Patch bug dans Sage

Conclusion

- Patch bug dans Sage
- Proposition du package

Conclusion

- Patch bug dans Sage
- Proposition du package
- Continuer l'implémentation pour avoir les fonctionnalités disponibles dans Gfun

Outils de combinatoire analytique en sage

Matthieu Dien, Marguerite Zamansky

Merci à Antoine Genitrini et Frédéric Peschanski

www.sagemath.org

Analytic Combinatorics, Philippe Flajolet et Robert Sedgewick