Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe

Wykład 7

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe. Izometria.
Pochodne kierunkowe
Izometria

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Pochodne kierunkowe. Izometria.

Pochodne kierunkowe

Izometria

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_p M$ z przestrzeni stycznej.

Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon)\to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

$$\nabla_{v} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f: M \to \mathbb{R}$ oraz wektor $v \in T_p M$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$ taka że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Oczywiście złożenie $f \circ \alpha: \mathbb{R} \to \mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodna

Definicja

$$\nabla_{\nu} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f:M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon) \to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

$$\nabla_{\mathbf{v}} f \stackrel{\mathrm{def.}}{=} (f \circ \alpha)'(0)$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $p \in M$ będzie punktem na niej. Załóżmy, że mamy daną funkcję gładką $f:M \to \mathbb{R}$ oraz wektor $v \in T_pM$ z przestrzeni stycznej. Z definicji przestrzeni stycznej istnieje krzywa $\alpha:(-\varepsilon,\varepsilon) \to M$ taka że $\alpha(0)=p$ oraz $\alpha'(0)=v$. Oczywiście złożenie $f\circ\alpha:\mathbb{R}\to\mathbb{R}$ jest funkcją gładką, możemy więc rozważać jej pochodną.

Definicja

$$\nabla_{\nu} f \stackrel{\text{def.}}{=} (f \circ \alpha)'(0).$$

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\varepsilon, \varepsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p \text{ oraz } \beta'(0) = v \text{ wtedy}$

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

- Niech $x: U \to M$ lokalny układ współrzędnych wokół
- ightharpoonup Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ightharpoonup Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli $\beta:(-\varepsilon,\varepsilon) \to M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli $\beta:(-\varepsilon,\varepsilon)\to M$ jest drugą krzywą o tej własności, że $\beta(0) = p \text{ oraz } \beta'(0) = v \text{ wtedy}$

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

- ▶ Niech $x: U \rightarrow M$ lokalny układ współrzędnych wokół $p \in M$.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ightharpoonup Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Definicja pochodnej kierunkowej nie zależy od wyboru krzywej α , tj. jeśli β : $(-\epsilon,\epsilon) \rightarrow M$ jest drugą krzywą o tej własności, że $\beta(0) = p$ oraz $\beta'(0) = v$ wtedy

$$(f \circ \alpha)'(0) = (f \circ \beta)'(0).$$

- Niech x: U → M − lokalny układ współrzędnych wokół p ∈ M.
- ▶ Załóżmy, że $\alpha(-\varepsilon, \varepsilon) \subset x(u)$, oraz $\beta(-\varepsilon, \varepsilon) \subset x(U)$.
- ► Z założenia mamy $\alpha'(0) = v = \beta'(0)$.

Zatem również

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0),$$

gdzie *J* oznacza jakobian odwzorowania (macierz pochodnych czastkowych).

Zatem również

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych cząstkowych). \Box

Zatem również

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0)$$

gdzie J oznacza jakobian odwzorowania (macierz pochodnych cząstkowych).

$$(x^{-1}\circ\alpha)'(0)=(x^{-1}\circ\beta)'(0).$$

Mamy wtedy

$$(f \circ \alpha)'(0) = [(f \circ x) \circ (x^{-1} \circ \alpha)]'(0) =$$

$$= J(f \circ x) \underbrace{(x^{-1} \circ \alpha(0))}_{=p = (x^{-1} \circ \beta)(0)} \underbrace{(x^{-1} \circ \alpha)'(0)}_{=v = (x^{-1} \circ \beta)'(0)} =$$

$$= J(f \circ x)(x^{-1} \circ \beta(0))(x^{-1} \circ \beta)'(0) = (f \circ \beta)'(0),$$

gdzie *J* oznacza jakobian odwzorowania (macierz pochodnych cząstkowych).

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f,g:M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v,w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a,b \in \mathbb{R}$ zachodzi

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Niech M $\subset \mathbb{R}^3$ *będzie powierzchnią gładką i niech f, g:M* $\to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów v, $w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych a, $b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f,g:M \to \mathbb{R}$ będą funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów $v,w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych $a,b \in \mathbb{R}$ zachodzi

- $\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

Niech M $\subset \mathbb{R}^3$ *będzie powierzchnią gładką i niech f, g:M* $\to \mathbb{R}$ beda funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów v, $w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych a, $b \in \mathbb{R}$ zachodzi

$$\nabla_{av+bw} f = a \nabla_v f + b \nabla_w f$$

Niech M $\subset \mathbb{R}^3$ *będzie powierzchnią gładką i niech f, g:M* $\to \mathbb{R}$ beda funkcjami gładkimi. Dla wszystkich: punktów $p \in M$, wektorów v, $w \in T_pM$ z przestrzeni stycznej w punkcie p, oraz liczb rzeczywistych a, $b \in \mathbb{R}$ zachodzi

- $\nabla_{av+bw}f = a\nabla_v f + b\nabla_w f$
- $\nabla_{\mathbf{v}}(af + bg) = a\nabla_{\mathbf{v}}f + b\nabla_{\mathbf{v}}(g)$
- $\nabla_{\mathbf{v}}(f\mathbf{g}) = \mathbf{g}\nabla_{\mathbf{v}}f + f\nabla_{\mathbf{v}}\mathbf{g}$

Uwaga

Dwie pierwsze własności mówią, że ∇ jest operatorem liniowym ze względu na argument (funkcję) i kierunek (wektor).

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_w(0)} = v + w.$$

Udowodnimy teraz pierwszą własność.

$$\alpha_v(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_w(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Pochodne kierunkowe

Własność drugą i trzecią pozostawiamy jako (proste) ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_v(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t)$$
 $\alpha_w(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t)$

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_v(0)} = v + w.$$

Własność drugą i trzecią pozostawiamy jako (proste)

ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_{\nu}(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_{\nu}(0)} = v + w.$$

Własność drugą i trzecią pozostawiamy jako (proste) ćwiczenia. Wystarczy w nich skorzystać z podstawowych własności różniczkowania funkcji.

Udowodnimy teraz pierwszą własność.

Niech $v = (v_1, v_2)$ oraz $w = (w_1, w_2)$. Bez straty ogólności możemy założyć, że x(0,0) = p. Zdefiniujmy

$$\alpha_{v}(t) \stackrel{\text{def.}}{=} x(av_1t, av_2t) \qquad \alpha_{w}(t) \stackrel{\text{def.}}{=} x(bw_1t, bw_2t),$$

oraz niech

$$\beta(t) \stackrel{\text{def.}}{=} x((av_1 + bw_1)t, (av_2 + bw_2)t)$$

Wówczas pochodna β w t = 0 jest równa

$$\beta'(t)\big|_{t=0} = \underbrace{a(v_1x_1 + v_2x_2)}_{=\alpha'_v(0)} + \underbrace{b(w_1x_1 + w_2x_2)}_{=\alpha'_w(0)} = v + w.$$

Wtedy

$$\nabla_{av+bw} f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} = a \nabla_v f + b \nabla_w f.$$

Wtedy

$$\nabla_{av+bw} f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} = a \nabla_v f + b \nabla_w f(t)$$

Wtedv

$$\nabla_{av+bw} f = (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} =$$

$$= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) =$$

$$= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) =$$

$$= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} = a \nabla_v f + b \nabla_w f(0)$$

$$\begin{split} \nabla_{av+bw} f &= (f \circ \beta)'(0) = \frac{\partial f(\beta(t))}{\partial \beta(t)} \beta'(t) \Big|_{t=0} = \\ &= a \frac{\partial f(\beta(0))}{\partial \beta(0)} (v_1 x_1 + v_2 x_2) + b \frac{\partial f(\beta(0))}{\partial \beta(0)} (w_1 x_1 + w_2 x_2) = \\ &= a \frac{\partial f(\alpha_v(0))}{\partial \alpha_v(0)} \alpha'_v(0) + b \frac{\partial f(\alpha_w(0))}{\partial \alpha_w(0)} \alpha'_w(0) = \\ &= a (f \circ \alpha_v)'(t) \Big|_{t=0} + b (f \circ \alpha_w)'(t) \Big|_{t=0} = a \nabla_v f + b \nabla_w f. \end{split}$$

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $f: M \to \mathbb{R}^3$ będzie odwzorowaniem gładkim (tj. polem wektorowym). **Pochodna** f w punkcie $p \in M$ definiujemy jako

$$Df_p: T_pM \to R^3$$

 $v \mapsto \nabla_v f = (\nabla_v f_1, \nabla_v f_2, \nabla_v f_3).$

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie odwzorowaniem gładkim. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p: T_pM \to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Niech $M, N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie odwzorowaniem gładkim. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p:T_pM\to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

Niech M, $N \subset \mathbb{R}^3$ będą powierzchniami gładkimi, $p \in M$ punktem, oraz niech $f: M \to N$ będzie odwzorowaniem gładkim. Wtedy dla każdego $v \in T_pM$ mamy $Df_p(v) \in T_{f(p)}N$ oraz

$$Df_p:T_pM\to T_{f(p)}N$$

jest odwzorowaniem liniowym.

Dowód:

Liniowość wynika natychmiast z liniowości pochodnej kierunkowej, (Lemat 7.3, punkt drugi) więc musimy tylko pokazać, że $Df_p(v) \in T_{f(p)}N$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Niech $v \in T_p M$. Wtedy istnieje taka krzywa $\alpha: (-\varepsilon, \varepsilon) \to M$, że $\alpha(0) = p$ oraz $\alpha'(0) = v$. Mamy wtedy

$$\mathit{Df}_p(v) = \nabla_v f = (f \circ \alpha)'(0).$$

Zauważmy, że krzywa

$$f \circ \alpha : (-\varepsilon, \varepsilon) \to N$$

jest krzywą na powierzchni N, oraz $(f \circ \alpha)(0) = f(p)$. Zatem z definicji przestrzeni stycznej otrzymujemy $(f \circ \alpha)'(0) \in T_{f(p)}N$, czyli $Df_p(v) \in T_{f(p)}N$.

Rozważmy odwzorowanie $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ zadane wzorem

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.)

$$T_{f(p)}(S^1 \times \mathbb{R}) = \{(1, y, z) : y, z \in \mathbb{R}\}.$$

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

$$f(s,t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R}) = \{(1, y, z) : y, z \in \mathbb{R}\}.$$

Wybierzmy $v = (a, b) \in T_p \mathbb{R}^2$ i niech $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ będzie zadana przez $\alpha(t) = (at, bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b)$

Rozważmy odwzorowanie $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ zadane wzorem

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p=(0,0)\in\mathbb{R}^2$ mamy f(p)=(1,0,0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R}) = \{(1, y, z) : y, z \in \mathbb{R}\}.$$

Wybierzmy $v = (a, b) \in T_p\mathbb{R}^2$ i niech $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ będzie zadana przez $\alpha(t) = (at, bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)'\big|_{t=0} =$$

= $(-a \sin at, a \cos at, b)\big|_{t=0} = (0, a, b)$

Rozważmy odwzorowanie $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ zadane wzorem

$$f(s, t) = (\cos s, \sin s, t).$$

(Jest to odwzorowanie które owija walec arkuszem papieru.) Dla $p = (0, 0) \in \mathbb{R}^2$ mamy f(p) = (1, 0, 0). Zauważmy, że

$$T_{f(p)}(S^1 \times \mathbb{R}) = \{(1, y, z) : y, z \in \mathbb{R}\}.$$

Wybierzmy $v = (a, b) \in T_p \mathbb{R}^2$ i niech $\alpha: (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ będzie zadana przez $\alpha(t) = (at, bt)$. Wtedy oczywiście

$$\alpha(0) = p$$
, $\alpha'(0) = v$, oraz $f \circ \alpha(t) = (\cos at, \sin at, bt)$.

$$Df_p(v) = \nabla_v f = (f \circ \alpha)' \big|_{t=0} =$$

= $(-a \sin at, a \cos at, b) \big|_{t=0} = (0, a, b).$

Definicja

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim.

► Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem,

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

► Funkcję f nazywamy **lokalną izometrią**, jeśli dla

Definicia

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim.

▶ Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

► Funkcję f nazywamy **lokalną izometrią**, jeśli dla

Definicja

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim.

► Mówimy, że f jest **izometrią** jeśli f jest dyfeomorfizmem, oraz pierwsza forma podstawowa jest niezmienniczna ze względu na f, i.e.

$$I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w)),$$

dla wszystkich $p \in M$ i wszystkich $v, w \in T_p(M)$.

Funkcję f nazywamy **lokalną izometrią**, jeśli dla każdego punktu $p \in M$ istnieje jego otoczenie otwarte $U \subset M$ takie, że $f(U) \subset N$ jest zbiorem otwartym (w N), oraz $f|_{U}: U \to f(U)$ jest izometrią.

Uwaga

Warto zauważyć, że izometria od lokalnej izometrii różni się tylko i wyłącznie tym, że lokalna izometria nie musi być dyfeomorfizmem całych przestrzeni. Jest to niewielka, lecz jak zobaczymy ważna różnica.

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

1. f jest lokalna izometria.

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalna izometria.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.

Niech M, $N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalna izometria.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- 3. Dla każdego $p \in M$ istnieje lokalny układ współrzędnych $x: U \to M$ wokół p taki, że $f \circ x: U \to N$ jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ii} jak x.

Niech $M, N \subset \mathbb{R}^3$ będą gładkimi powierzchniami i niech $f: M \to N$ będzie odwzorowaniem gładkim. Następujące warunki są równoważne.

- 1. f jest lokalną izometrią.
- 2. Równość $I_p(v, w) = I_{f(p)}(Df_p(v), Df_p(w))$ zachodzi dla wszystkich $p \in M$ oraz $v, w \in T_pM$.
- Dla każdego p ∈ M istnieje lokalny układ współrzędnych x: U → M wokół p taki, że f ∘ x: U → N jest lokalnym układem współrzędnych o takich samych współczynnikach metrycznych g_{ij} jak x.
- 4. Dla każdego punktu $p \in M$ istnieje takie jego otoczenie otwarte $A \subset M$, że jeśli $\alpha:(a,b) \to A$ jest gładką krzywą, to długość $\alpha \subset M$ jest taka sama jak długość $f \circ \alpha \subset N$.

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

Udowodnimy tylko, że lokalna izometria zachowuje

współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy teraz krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$$

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz.

Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy teraz krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$$

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz. Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$.

 $\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2$

Dowód:

Udowodnimy tylko, że lokalna izometria zachowuje współczynniki metryczne. Resztę implikacji pozostawiamy jako (opcjonalne) zadania.

Niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$.

(2) \Rightarrow (3): Pokażemy, że pochodna złożenia $f \circ x$ ma rangę 2, więc z twierdzenia o funkcji uwikłanej wynika, że $f \circ x$ na pewnym otoczeniu $V \subset U$ jest dyfeomorfizmem na swój obraz. Niech $\{e_1, e_2\}$ będzie standardową bazą w \mathbb{R}^2 . Niech $q \in x(U)$ oraz niech $\overline{q} = x^{-1}(q)$. Zdefiniujmy teraz krzywe

$$\alpha_{q,i}(t) = x(\overline{q} + te_i), \quad i = 1, 2,$$

Z definicji $\alpha_{q,i}$ wiemy, że:

$$\alpha_{q,i}(0) = q,$$
 $\alpha'_{q,i}(0) = x_i,$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$.

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

$$\alpha_{q,i}(0) = q,$$

$$\alpha'_{q,i}(0) = x_i,$$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

$$\alpha_{q,i}(0) = q,$$

$$\alpha'_{q,i}(0) = q, \qquad \qquad \alpha'_{q,i}(0) = x_i,$$

natomiast z reguły łańcuchowej wynika, że

$$f \circ \alpha_{q,i}(0) = f(q),$$
 $(f \circ \alpha_{q,i})'(0) = (f \circ x)_i,$

gdzie wartości pochodnych x_i oraz $(f \circ x)_i$ są wzięte dla $\overline{q} \subset U$. Ponownie z definicji uzyskujemy

$$(f \circ x)_i = (f \circ \alpha_{q,i})'(0) = \nabla_{x_i} f = Df_q(x_i),$$

więc korzystając z założeninia mamy

$$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$$

dla wszystkich i, j = 1, 2.

Opracowanie: Marek Kaluba

Izometria

► Zatem $||(f \circ x)_i|| = ||x_i||$ i kat między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .

 $\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_i) \rangle = \langle x_i, x_i \rangle$

- ► Stad $(f \circ x)_1$ i $(f \circ x)_2$ sa liniowo niezależne (na odp.
- ightharpoonup Zatem $f \circ x: V \to N$ jest lokalnym układem
- \triangleright Współczynniki metryczne $f \circ x$ są takie same jak samego

$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_i) \rangle = \langle x_i, x_i \rangle$

- ► Zatem $||(f \circ x)_i|| = ||x_i||$ i kat między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ▶ Stad $(f \circ x)_1$ i $(f \circ x)_2$ sa liniowo niezależne (na odp. małym $V \subset U$).
- ightharpoonup Zatem $f \circ x: V \to N$ jest lokalnym układem
- \triangleright Współczynniki metryczne $f \circ x$ są takie same jak samego

$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$

- ▶ Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ▶ Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ► Zatem $f \circ x$: $V \rightarrow N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- Współczynniki metryczne $f \circ x$ są takie same jak samego x (powyższa równość).

$\langle (f \circ x)_i, (f \circ x)_i \rangle = \langle Df_q(x_i), Df_q(x_j) \rangle = \langle x_i, x_j \rangle$

- ▶ Zatem $||(f \circ x)_i|| = ||x_i||$ i kąt między $(f \circ x)_1$ i $(f \circ x)_2$ jest taki sam jak między x_1 i x_2 .
- ▶ Stąd $(f \circ x)_1$ i $(f \circ x)_2$ są liniowo niezależne (na odp. małym $V \subset U$).
- ► Zatem $f \circ x$: $V \rightarrow N$ jest lokalnym układem współrzędnych (tw. o funkcji uwikłanej),
- Współczynniki metryczne f ∘ x są takie same jak samego x (powyższa równość).

Pokażemy teraz, że funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią).

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1)$

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

Pokażemy teraz, że funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p = (p_1, p_2) \in \mathbb{R}^2$ oraz niech $U = (p_1 - \pi, p_1 + \pi) \times \mathbb{R}$. Wtedy inkluzja $x: U \to \mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f \circ x: U \to S^1 \times \mathbb{R}$ jest injekcją. Co

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

Pokażemy teraz, że funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s, t) = (\cos s, \sin s, t)$$

jest lokalną izometrią (ale oczywiście nie jest izometrią). Niech $p = (p_1, p_2) \in \mathbb{R}^2$ oraz niech $U = (p_1 - \pi, p_1 + \pi) \times \mathbb{R}$. Wtedy inkluzja $x: U \to \mathbb{R}^2$ jest lokalnym układem współrzędnych w \mathbb{R}^2 , oraz $f \circ x: U \to S^1 \times \mathbb{R}$ jest injekcją. Co więcej mamy

$$(f \circ x)_1 = (-\sin s, \cos s, 0)$$
 oraz $(f \circ x)_2 = (0, 0, 1),$

wiec

$$(f \circ x)_1 \times (f \circ x)_2 = (\cos s, \sin s, 0) \neq (0, 0, 0)$$

czyli $f \circ x$ jest lokalnym układem współrzędnych.

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Obliczenie współczynników metrycznych zarówno dla x jak i $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że f nie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.

Obliczenie współczynników metrycznych zarówno dla x jak i $f \circ x$ skutkuje wyznaczeniem macierzy pierwszej formy podstawowej, w każdym z przypadków równej

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right].$$

Jednocześnie jest jasnym, że fnie może być izometrią, ponieważ w przeciwnym przypadku \mathbb{R}^2 musiałoby być dyfeomorficzne z $S^1 \times \mathbb{R}$.