Linear Algebra: Inner Product Spaces

Arjun Vardhan

†

Created: 22nd July 2022 Last updated: 25th July 2022

1 Introduction

- An inner product is a function that assigns a scalar to a pair of vectors.
- Let $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$. The norm of a vector in \mathbb{R}^n is defined as $||x|| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$. The inner product of two vectors is defined as $\langle x, y \rangle = x_1 y_1 + x_2 y_2 + ... + x_n y_n$.
- Let V be a vector space over \mathbb{C} . An inner product in V must satisfy the following properties:
 - 1. Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$.
 - 2. **Linearity:** $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$, for all $x, y, z \in V$ and all $\alpha, \beta \in \mathbb{C}$.
 - 3. Non-negativity: $\langle x, x \rangle \geq 0$ for all $x \in V$.
 - 4. Non-degeneracy: $\langle x, x \rangle = 0$ if and only if x = 0.

If such a function exists, then V together with its inner product is an inner product space.

- Given an inner product space, the norm of a vector x is defined as $||x|| = \sqrt{\langle x, x \rangle}$.
- $\langle x,0\rangle=0$ for all vectors x. Proof: $\langle x,0\rangle=\langle x,x-x\rangle=\langle x,x\rangle+\langle x,-x\rangle=\langle x,x\rangle-\langle x,x\rangle=0$.
- Let $x \in V$. Then x = 0 if and only if $\langle x, y \rangle = 0$ for all $y \in V$. *Proof:*
- Corollary: Let x,y be vectors in an inner product space V. x=y if and only if $\langle x,z\rangle=\langle y,z\rangle$ for all $z\in V$. Proof:
- Suppose two operators $A, B: X \to Y$ satisfy
- Cauchy-Schwarz Inequality: $|\langle x, y \rangle| \le ||x|| ||y||$. *Proof:*
- Triangle Inequality: $||x + y|| \le ||x|| + ||y||$. Proof:
- Polarization Identities: Let $x, y \in V$. If V is a real inner product space, then $\langle x, y \rangle = \frac{1}{4}(\|x+y\|^2 \|x-y\|^2)$. If V is a complex inner product space, then $\langle x, y \rangle = \frac{1}{4}(\|x+y\|^2 \|x-y\|^2 + i\|x+iy\|^2 i\|x-iy\|^2)$. Proof:
- Parallelogram Identity: $||u + v||^2 + ||u v||^2 = 2(||u||^2 + ||v||^2)$. Proof:
- It is easy to show that the norm satisifies the following properties:
 - 1. Homogeneity: $\|\alpha v\| = |\alpha| \cdot \|v\|$ for all vectors v, all scalars α .
 - 2. Non-negativity: $||v|| \ge 0$ for all vectors v.
 - 3. Non-degeneracy: ||v|| = 0 if and only if v = 0.

A vector space equipped with a function satisfying the above properties, along with the triangle inequality, is called a normed space.

2 Orthogonality, Orthogonal and Orthonormal Bases

- Two vectors u and v are called orthogonal if $\langle u,v\rangle=0$. This is denoted by $u\perp v$.
- Pythagorean Identity: If $u \perp v$, then $||u|| + ||v|| = ||u||^2 + ||v||^2$. Proof:
- A vector v is said to be orthogonal to a subspace E if $v \perp w$ for all $w \in E$.
- Subspaces E and F are said to be orthogonal if all vectors in E are orthogonal to all vectors in F.
- Let E be spanned by $v_1, v_2, ..., v_n$. Then $v \perp E$ if and only if $v \perp v_k$ for all k. Proof:
- A system of vectors $v_1, v_2, ..., v_n$ is called orthogonal if $v_i \perp v_j$ whenever $i \neq j$. If $||v_k|| = 1$ for all k, the system is called orthonormal.
- Generalized Pythagorean Identity: Let $v_1, v_2, ..., v_n$ be orthogonal. Then, $\left\| \sum_{k=1}^n \alpha_k v_k \right\|^2 = \sum_{k=1}^n |\alpha_k|^2 \|v_k\|^2$. Proof:
- Any orthogonal system $v_1, v_2, ..., v_n$ of nonzero vectors is linearly independent. Proof:
- If an orthogonal or orthonormal system $v_1, v_2, ..., v_n$ is also a basis, it is called an orthogonal or orthonormal basis.
- Let $v_1, v_2, ..., v_n$ be an orthogonal basis for V, and let $x \in V$. Then $x = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n$. Taking the inner product of both sides with v_1 , we get $\langle x, v_1 \rangle = \langle \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n, v_1 \rangle = \alpha_1 \|v_1\|^2$ (as $\langle v_i, v_j \rangle = 0$ whenever $i \neq j$). Thus $\alpha_1 = \frac{\langle x, v_1 \rangle}{\|v_1\|^2}$. The same process can be used to find all other coordinates for any vector in this basis, i.e, $\alpha_k = \frac{\langle x, v_k \rangle}{\|v_k\|^2}$.

3 Orthogonal Projection and Gram-Schmidt Orthogonalization

- Let E be a subspace of inner product space V. For a vector $v \in V$, its orthogonal projection onto E, denoted $P_E v$, is a vector $w \in E$ such that $v w \perp E$.
- Let $w = P_E v$. Then for all $x \in E$, $||v w|| \le ||v x||$. If ||v x|| = ||v w|| for some $x \in E$, then x = w. Proof:
- Let $v_1, v_2, ..., v_n$ be an orthogonal basis in E. Then the orthogonal projection of v in E is given by $P_E v = \sum_{k=1}^n \alpha_k v_k$, where $\alpha_k = \frac{\langle v, v_k \rangle}{\|v_k\|^2}$. Proof:
- Gram-Schmidt Orthogonalization Algorithm: Let $x_1, x_2, ..., x_n$ be a linearly independent system in inner product space V. Then we can find an orthogonal system $v_1, v_2, ..., v_n$ in V such that $\operatorname{span}(x_1, x_2, ..., x_n) = \operatorname{span}(v_1, v_2, ..., v_n)$. Additionally, for all $r \leq n$, we get $\operatorname{span}(v_1, v_2, ..., v_r) = \operatorname{span}(x_1, x_2, ..., x_r)$. First, let $v_1 = x_1$. Let $E_1 = \operatorname{span}(v_1) = \operatorname{span}(x_1)$. Define $v_2 = x_2 P_{E_1}x_2 = x_2 \frac{\langle x_2, v_1 \rangle}{\|v_1\|^2} v_1$. Let $E_2 = \operatorname{span}(v_1, v_2)$. Clearly $\operatorname{span}(x_1, x_2) = E_2$. Define $v_3 = x_3 P_{E_2}x_3 = x_3 \frac{\langle x_3, v_1 \rangle}{\|v_1\|^2} v_1 \frac{\langle x_3, v_2 \rangle}{\|v_2\|^2} v_2$. Let $E_3 = \operatorname{span}(v_1, v_2, v_3)$. Again, it is clear that $\operatorname{span}(x_1, x_2, x_3) = E_3$. As $x_3 \notin E_2$, $v_3 \neq 0$. (If x_3 had been in E_2 , so would v_3 , which would imply that $\langle v_3, v_3 \rangle = 0$ and thus $v_3 = 0$). Now suppose that we have made r steps in this process and obtained $v_1, v_2, ..., v_r$ such that $E_r = \operatorname{span}(v_1, v_2, ..., v_r) = \operatorname{span}(x_1, x_2, ..., x_r)$. Then let $v_{r+1} = x_{r+1} P_E x_{r+1} = x_{r+1} \sum_{k=1}^r \frac{\langle x_{r+1}, v_k \rangle}{\|v_k\|^2} v_k$. Since $x_{r+1} \notin E_r$, $x_{r+1} \neq 0$. Continuing this algorithm to the nth step we get an orthogonal system $v_1, v_2, ..., v_n$.
- For a subspace E, its orthogonal complement, denoted E^{\perp} , is the set of all vectors orthogonal to E.

• For a subspace E, $(E^{\perp})^{\perp} = E$. Proof: