

# DIVING INTO SPACE WORLD WITH DATA SCIENCE

Aziz Sayadi 9/16/2023

## OUTLINE



#### EXECUTIVE SUMMARY

#### Methodologies

- Data Collection and Data Wrangling
- EDA and Interactive Visual Analytics
- Predictive Analysis

#### Results

- EDA with visualization
- EDA with SQL
- Interactive Map with Folium
- Plotly Dash dashboard
- Predictive Analysis

#### INTRODUCTION

The SpaceX Falcon 9 rocket has transformed the modern space industry since its first launch in 2010. In this data science project, we will analyze SpaceX's publicly available Falcon 9 mission data and gain insights.

#### Main Goal:

 Predicting The Successful landing of Falcon 9 First Stage

#### Key Problems:

- What factors (orbit, payload mass, etc..) most influence whether a mission achieves a landed/recovered first stage?
- What are the possible dangers in the case of failed landing?



#### METHODOLOGY

#### **Executive Summary**

- Data collection methodology:
  - Describe how data was collected
- Perform data wrangling
  - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

## DATA COLLECTION



- Using Get Requests:
  - Collecting Data From SpaceX
     API
- Using Web Scraping with Beautiful Soup:
  - Collecting Data From Wikipedia Falcon 9 launches records

#### DATA COLLECTION - SPACEX API

After Requesting Data from SpaceX API, We've noticed that a lot of the data are IDs.

So, we used the API again to get informations about rocket, payloads, launchpad and cores.

https://github.com/azizsayadi1155/applied -datascience-capstone/blob/main/jupyterlabs-spacex-data-collection-api.ipynb



#### DATA COLLECTION - SCRAPING

After getting the html page content, we've collected the relevant column names from the HTML table header, Then we've created a dictionary to save the headers and to append each element to the appropriate list, after that we've created the data frame.

https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/jupyter-labs-webscraping.ipynb



#### DATA WRANGLING

Missing Values

1

Replace Missing values with the mean Launches

2

Determine the number of launches on each site Orbits

3

Determine the number and the occurrence of each orbit

Outcomes

4

Determine the number of mission outcomes per orbit type

Outcome Label

5

Create a landing outcome label

https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/labs-jupyter-spacex-data\_wrangling\_jupyterlite.jupyterlite.ipynb

#### EDA with Data Visualization



https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/jupyter-labs-edadataviz.ipynb.jupyterlite.ipynb

#### Scatter chart:

 Revealing relationship between features (e.g., FlightNumber and Orbit)

#### • Bar chart:

 Finding which orbit have high success rate

#### • Line chart:

 Visualizing Success rate trend over years

#### EDA with SQL

- Display the names of unique launch sites
- Display 5 records where launch sites begin with 'CCA'
- Display the total payload mass carried by NASA(CRS) Boosters
- Display average payload mass by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved
- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster versions which have carried the maximum payload mass
- List the records which will display the month names, failure landing outcomes in drone ship ,booster versions, launch site for the months in year 2015
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/jupyter-labs-eda-sql.ipynb

#### BUILD AN INTERACTIVE MAP WITH FOLIUM

#### Markers

• Mark Launch Sites Locations

#### Circles

Identify which launch sites have high success rate

#### Lines

• Determine the distance between a launch site and its proximities

https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/jupyter launch site location folium.jupyterlite.ipynb

#### BUILD A DASHBOARD WITH PLOTLY DASH

#### Pie Chart

- Show Total Success launches by site
- Show Total
   Success launches
   for a selected site

#### **Scatter Chart**

- Show Correlation between payload and class for all sites
- Show Correlation between payload and class for a selected site

#### Payload Slider

 Precise the range of payload mass

#### Site dropdown

Easily selecting a site

https://github.com/azizsayadi1155/applied-datascience-capstone/blob/main/spacex\_dash\_app.py

## PREDICTIVE ANALYSIS (CLASSIFICATION)



- Data standardization transforms data into a standard format and easy to understand for models
- We used GridSearchCV to find the optimal parameter values for a given model

https://github.com/azizsayadi1155/applied-datasciencecapstone/blob/main/SpaceX Machine Learning Prediction n Part 5.jupyterlite.ipynb



#### FLIGHT NUMBER VS. LAUNCH SITE



- CCAFS SLC 40 has more flights but no clear success rate
- VAFB SLC 4E has less flights with high success rate
- KSC LC 39A high success rate with a significant flights

#### PAYLOAD VS. LAUNCH SITE



- CCAFS SLC 40 has more success rate above 15k payload mass
- VAFB SLC 4E has no more than 10k payload mass but high success rate just before 10k
- KSC LC 39A high success rate between 2000 and 5000, above 15k also

### SUCCESS RATE VS. ORBIT TYPE



• ES-L1, GEO, HEO, SSO have the highest success rate

## FLIGHT NUMBER VS. ORBIT TYPE



- ISS with more flights and success rate
- SSO less flights but all succeed

## PAYLOAD VS. ORBIT TYPE



 SSO high success rate but below 5000 payload mass

## LAUNCH SUCCESS YEARLY TREND



Success rate highly increased after 2013

#### ALL LAUNCH SITES NAMES

```
Display the names of the unique launch sites in the space mission
In [9]:
         %sql select distinct Launch_Site from SPACEXTABLE
          sqlite:///my_data1.db
       Done.
Out[9]:
          Launch_Site
          CCAFS LC-40
          VAFB SLC-4E
           KSC LC-39A
         CCAFS SLC-40
```

 Distinct used when there are duplicates and we want to see only unique values

#### LAUNCH SITE BEGIN WITH 'CCA'

|       | Display 5 records where launch sites begin with the string 'CCA'                |               |                 |                 |                                                                                 |                 |              |                       |                 |                     |  |
|-------|---------------------------------------------------------------------------------|---------------|-----------------|-----------------|---------------------------------------------------------------------------------|-----------------|--------------|-----------------------|-----------------|---------------------|--|
| [11]: | <pre>%sql select * from SPACEXTABLE where Launch_Site like 'CCA%' limit 5</pre> |               |                 |                 |                                                                                 |                 |              |                       |                 |                     |  |
|       | * sqlite:///my_data1.db<br>Done.                                                |               |                 |                 |                                                                                 |                 |              |                       |                 |                     |  |
| [11]: | Date                                                                            | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                                         | PAYLOAD_MASSKG_ | Orbit        | Customer              | Mission_Outcome | Landing_Outcome     |  |
|       | 2010-<br>04-06                                                                  | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                   | 0               | LEO          | SpaceX                | Success         | Failure (parachute) |  |
|       | 2010-<br>08-12                                                                  | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |  |
|       | 2012-<br>05-22                                                                  | 07:44:00      | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C2                                                     | 525             | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |  |
|       | 2012-<br>08-10                                                                  | 00:35:00      | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX<br>CRS-1                                                                 | 500             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |  |
|       | 2013-<br>01-03                                                                  | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX<br>CRS-2                                                                 | 677             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |  |

 We use like for filtering with % means any other characters, we also set the limit 5 to show only 5 records

#### TOTAL PAYLOAD MASS NASA

```
Display the total payload mass carried by boosters launched by NASA (CRS)

**sqlite://my_data1.db
Done.

**SUM(PAYLOAD_MASS_KG_)

45596
```

 We use sum to get the total of values with setting condition on customer must be "NASA(CRS)"

#### AVERAGE PAYLOAD MASS F9 V1.1

```
Display average payload mass carried by booster version F9 v1.1

**sql select AVG(PAYLOAD_MASS__KG_) from SPACEXTABLE where Booster_Version like "F9 v1.1"

**sqlite://my_data1.db
Done.

Dut[13]: AVG(PAYLOAD_MASS__KG_)

2928.4
```

 We use avg to get the average of values with setting condition on booster\_version must be "F9 v1.1"

## FIRST SUCCESSFUL GROUND LANDING DATE

 We use min to get the minimum value in that case the first date with setting condition on landing\_outcome must be "Success (ground pad)"

## SUCCESSFUL DRONE SHIP LANDING WITH PAYLOAD BETWEEN 4000 AND 6000



We use between to specify a range (min,max)

#### TOTAL NUMBER OF SUCCESSFUL AND FAILURE MISSION OUTCOMES

| List the total number of succes                                            | ssful and f | ailure mission outcomes |  |  |  |  |  |  |
|----------------------------------------------------------------------------|-------------|-------------------------|--|--|--|--|--|--|
| %sql select Mission_Outcome, count(*) from SPACEXTABLE group by Mission_Ou |             |                         |  |  |  |  |  |  |
| * sqlite:///my_data1.db<br>Done.                                           |             |                         |  |  |  |  |  |  |
| Mission_Outcome                                                            | count(*)    |                         |  |  |  |  |  |  |
| Failure (in flight)                                                        | 1           |                         |  |  |  |  |  |  |
| Success                                                                    | 98          |                         |  |  |  |  |  |  |
| Success                                                                    | 1           |                         |  |  |  |  |  |  |
| Success (payload status unclear)                                           | 1           |                         |  |  |  |  |  |  |
|                                                                            |             |                         |  |  |  |  |  |  |

 We use group by to cluster the same values together and then apply count to each one

#### BOOSTERS CARRIED MAXIMUM PAYLOAD



 In this case we used a subquery to determine the max mass because we cannot apply it directly in the where clause

#### 2015 LAUNCH RECORDS

List the records which will display the month names, failure landing\_outcomes in drone ship ,booster versions, launch\_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7, 4) = '2015' for year.

```
%sql select substr(Date,6,2) as month, Landing_Outcome, Booster_Version, Launch_Site from SPACEXTABLE \
where substr(Date,1,4)='2015' and Landing_Outcome = "Failure (drone ship)"

* sqlite://my_data1.db
Done.

month Landing_Outcome Booster_Version Launch_Site

10 Failure (drone ship) F9 v1.1 B1012 CCAFS LC-40

04 Failure (drone ship) F9 v1.1 B1015 CCAFS LC-40
```

 In this case we used substr to extract the month and the year from the date

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order. %sql select Landing Outcome, count(\*) as count from SPACEXTABLE where Date between '2010-06-04' and '2017-03-20' group by Lar \* sqlite:///my\_data1.db Done. Landing\_Outcome count No attempt 10 Success (ground pad) 5 Success (drone ship) Failure (drone ship) 5 Controlled (ocean) Uncontrolled (ocean) Precluded (drone ship) Failure (parachute)

 Here we grouped by landing\_outcome and apply count to each group then order by count column then we added desc to let them in descending order

## SECTION 3 LAUNCH SITES PROXIMITIES ANALYSIS

## MARKED LAUNCH SITES



• All the launch sites are so close to coast and near the equator line

## LAUNCH CLASS CLUSTERS



CCAFS sites have relatively higher success rate

## LAUNCH SITES PROXIMITIES



 CCAFS launch sites are close to parkway highway but still not close to any railway or city



## LAUNCH SITES Dropdown list



 Once you select a site dash will automatically render the appropriate figure for that site

### TOTAL SUCCESS LAUNCHES BY SITE



KSC LC 39A has the most success launches

#### CORRELATION PAYLOAD VS. LAUNCH



- FT has the most success launches
- Payload mass between 4k and 7k contributed to more failed launches



## CLASSIFICATION ACCURACY



#### CONFUSION MATRIX



- For the not landing case, the model predicts 5 correctly out of 6 which is good
- For the landing case, the model successfully predicts 12 out of 12 correctly which is so good

#### CONCLUSION

- Most of the launch sites are locating near the equator line and so close to the coast
- ES-L1, GEO, HEO, and SSO have a 100% success rate
- KSC LC-39A has the highest success rate
- The decision tree model scored higher than others and has better predictions according to the confusion matrix

#### APPENDIX

Dash Documentation: <a href="https://dash.plotly.com">https://dash.plotly.com</a>

SpaceX Falcon9 Datasheet:

https://sma.nasa.gov/LaunchVehicle/assets/spacex-falcon-9-data-

sheet.pdf

Falcon 9 Wiki: <a href="https://en.wikipedia.org/wiki/Falcon">https://en.wikipedia.org/wiki/Falcon</a> 9

SpaceX API Docs : <a href="https://docs.spacexdata.com">https://docs.spacexdata.com</a>

## THANK YOU