Rapport de projet

Électronique Analogique

Théo de Morais & Maël CREAC'H – S1A A - 2020

Table des matières

Les résultats obtenus par simulation :	3
AOP numéro 1	3
AOP numéro 2 (Vs1 = Vsat+)	4
AOP numéro 2 (Vs1 = Vsat-)	5
AOP numéro 3	6
Analyse du fonctionnement global du montage :	7
Le rôle des résistances :	7
Caractéristiques expérimentales :	8
Photo du montage :	9
Le tableur ·	10

Les résultats obtenus par simulation :

AOP numéro 1

Nos expressions sont :

$$V^- = V_S$$

$$V^{+} = \frac{R_5 * V_{S1}}{R_5 + R_6}$$

Détermination des seuils :

$$V_{S1} = V_{SAT} + \text{ quand } V_{S3} < \frac{R_5 * V_{S1}}{R_5 + R_6}$$

$$V_{S1} = V_{SAT}$$
 - quand $V_{S3} > \frac{R_5 * V_{S1}}{R_5 + R_6}$

AOP numéro 2 (Vs1 = Vsat+)

Équations de fonctionnement :

$$V = \frac{R_2 * V_{VMC4} + R_1 * V_{S2}}{R_1 + R_2}$$

$$V += 0$$

$$Vmc_4 = \frac{-R_1 * V_{S2}}{R_2}$$

AOP numéro 2 (Vs1 = Vsat-)

Équations de fonctionnement :

$$V += VMC$$

$$V -= \frac{R_2 * V_{VMC4} + R_1 * V_{S2}}{R_1 + R_2}$$

$$VMC = V_{S2}$$

AOP numéro 3

Équations de fonctionnement :

$$i(t) = \frac{Ve}{R \, 4}$$

$$Vc(t) = \frac{Ve * t}{R \cdot 4 * C}$$

Analyse du fonctionnement global du montage :

Nous avons décomposé le schéma complet en blocs afin d'expliquer le fonctionnement de chacun d'entre eux.

L'AOP n°1 est un comparateur à double seuil, qui va récupérer un signal triangle en V_{s3} pour renvoyer un signal carré en V_{s1} qui va varié entre Vsat + et Vsat –. La tension que renvoi le transitor est égale à 0V quand Vs1 = Vsat +, et lorsque Vs1 = Vsat-, la tension aux bornes du transitor est égale à V_MCV4.

L'AOP n°2 va permettre de transformer le signal continu V_MCV4 est un signal carré, d'amplitude V_MCV4.

L'AOP n°3 est un intégrateur qui va transformer le signal carré en VS2 en signal triangulaire.

Le rôle des résistances :

R1 et R2 permettent de régler l'amplitude de Vs2.

R4 permet d'agir sur la fréquence du signal Vs3.

R6 et R5 permettent de régler l'amplitude de Vs3.

Caractéristiques expérimentales :

Figure 1: Appui sur la note LA du clavier

Figure 2: Résultat de l'oscilloscope

Photo du montage :

Figure 3 : Cablage opérationnel du projet

Le tableur :

Le tableur comporte plusieurs feuilles comportant chaque une les enseignements suivants :

La fréquence en fonction de la tension, le calcul des résistances et la répartition des taches.

Le tableur est disponible sur le <u>lien</u> suivant : <u>https://bit.ly/374Cc81</u>

