Selecting a Sample

Topics covered

- Differences in sampling in quantitative and qualitative research
- Definition of sampling terminology in quantitative research
- Principles of sampling
- Types of sampling
- Sample size
- Concept of saturation point in qualitative research

Differences in sampling in quantitative and qualitative research

Quantitative research

- Unbiased
- Representative
- Make inferences
- Random samples
- Large sample sizes

Qualitative research

- Ease of access
- Purpose driven
- Information rich respondents
- A few cases until saturation is reached

Figure 12.1 Principles of sampling

Figure 12.1 The concept of sampling

Sampling in quantitative research

Sampling is the process of selecting a few (a sample) from a bigger group (the sampling population) to become the basis for predicting an outcome for the bigger group.

- Advantage: Researching a sample is easier
- Disadvantage: The sample and the sampling population differ

Sampling terminology

- Study population is the group the sample is taken from
- Sample size refers to the number of items/people in the sample
- Sampling frame is a list of each item/person in the study population
- Sample statistics are the results found in the sample
- Population parameter are the estimates for the population from the sample statistics

Principles of Sampling

- 1. There will be a difference between the sample statistics and the true population mean, which is attributable to the selection of the units in the sample.
- 2. The greater the sample size, the more accurate the estimate of the true population mean.
- 3. The greater the difference in the variable under study in a population, for a given sample size, the greater the difference between the sample statistics and the true population mean.

Figure 12.2 Types of sampling

Figure 12.2 Types of sampling in quantitative research

Random/Probability sampling designs

Each element in the sampling frame has an equal and independent chance of selection in the sample Advantages:

- Representative of the total sampling population, the inferences drawn from such samples can be generalised to the total sampling population.
- Some statistical tests based upon the theory of probability can be applied only to data collected from random samples.

Specific random sampling designs

- Simple random sampling (SRS)
- Stratified random
- Cluster sampling
- Systematic sampling

Non-random/ non-probability sampling designs

- Quota sampling
- Accidental sampling
- Judgmental or purposive sampling
- Expert sampling
- Snowball sampling

Sample size

The greater the heterogeneity or diversity in what to be found out about, the greater the number of respondents needed to contact to reach saturation point.

Cause-effect studies need to consider:

- Level of confidence
- Degree of accuracy
- Level of variation

Concept of saturation point in qualitative research

- Qualitative research uses non-probability sampling
- Collecting information from a predetermined number of people
- Sampling until saturation point is reached (no new information collected)
- Guided by judgment as to who is likely to provide the 'best' information.

Summary

 Quantitative research wants to represent the sampling population which is best achieved through random sampling

 Qualitative research uses non-random sampling with a purpose to collect the best information from the sample

