

Cálculo computacional II

Unidade 2: Regra da cadeia

Cristina Vaz

C2-aula 18/6/25

UFPA

Sumário

<u>∂f</u> ∂t

Regra da cadeia Lista 2

1 Regra da cadeia

Lista 2

Caso 1:
$$z = f(x, y), x = g(t)$$
 e $y = h(t) \Rightarrow z = f(g(t), h(t))$

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt}$$

ou

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

<u>∂f</u> ∂t

Regra da cadeia

Lista 2

Caso 2:

$$z = f(x,y), x = g(s,t)$$
 e $y = h(s,t) \Rightarrow z = f(g(s,t),h(s,t))$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

е

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Regra da cadeia

∟ista 2

Teorema (Caso 2)

Sejam $f: D_f \subset \mathbb{R}^2 \to \mathbb{R}$ uma diferenciável em D_f e as funções $g: D_g \subset \mathbb{R}^2 \to \mathbb{R}$ e $h: D_h \subset \mathbb{R}^2 \to \mathbb{R}$ são diferenciáveis tal que $(g(s,t),h(s,t)) \in D_f$. Então z(s,t) = f(g(s,t),h(s,t)) é uma função diferenciável em \mathbb{R}^2 tal que

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Regra da cadeia

Calcule
$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial t}$$
 para $z = e^x + sen(y)$, $x = st^2 = s^2t$

<u>∂f</u> ∂t

Regra da cadeia

Lista 2

Exemplo

Calcule
$$\frac{\partial z}{\partial s}$$
 e $\frac{\partial z}{\partial t}$ para $z = e^x + sen(y)$, $x = st^2$ e $y = s^2t$

Solução: Aplicar a regra da cadeia.

$$f_x = e^x e f_y = \cos(y)$$

$$x_s = t^2 e x_t = 2st$$

$$y_{s} = 2st e y_{t} = s^{2}$$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \Rightarrow \frac{\partial z}{\partial s} = (e^x)t^2 + (\cos(y))(2st)$$

$$\frac{\partial z}{\partial s} = t^2 e^x + 2st \cos(y)$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t} \Rightarrow \frac{\partial z}{\partial t} = (e^{x})(2st) + (\cos(y))(s^{2})$$

$$\frac{\partial z}{\partial t} = 2st e^{x} + s^{2}\cos(y)$$

<u>∂f</u> ∂t

Regra da cadeia

Lista 2

Caso 3:

$$w = f(x,y,z), x = g(s,t,r), y = h(s,t,r) e z = v(s,t,r) \Rightarrow$$

 $w = f(g(s,t,r),h(s,t,r),v(s,t,r))$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t}$$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

Regra da cadeia

Lista 2

Exemplo

Calcule
$$\frac{\partial w}{\partial s}$$
, $\frac{\partial w}{\partial t}$ e $\frac{\partial w}{\partial r}$ para $z = x^2y + y^2z^3$, $x = rse^t$, $y = rs^2e^{-t}$ e $z = sr^2sen(t)$

Regra da cadeia

Lista 2

Exemplo

Calcule
$$\frac{\partial w}{\partial s}$$
, $\frac{\partial w}{\partial t}$ e $\frac{\partial w}{\partial r}$ para $z = x^2y + y^2z^3$, $x = rse^t$, $y = rs^2e^{-t}$ e $z = sr^2sen(t)$

Solução: Aplicar a regra da cadeia.

$$w_x = 2xy$$
, $w_y = x^2 + 2yz^3$, $w_z = 3y^2z^2$
 $x_s = re^t$, $y_s = 2rse^{-t}$, $z_s = r^2sen(t)$
 $x_t = rse^t$, $y_t = -rs^2e^{-t}$, $z_t = sr^2cos(t)$
 $x_r = se^t$, $y_r = s^2e^{-t}$, $z_r = 2srsen(t)$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

<u>∂f</u> ∂t

Regra da cadeia

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

$$\frac{\partial w}{\partial s} = 2xy(re^t) + (x^2 + 2yz^3)(2sye^{-t}) + 3y^2z^2(r^2sen(t))$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

$$\frac{\partial w}{\partial s} = 2xy(re^{t}) + (x^{2} + 2yz^{3})(2sye^{-t}) + 3y^{2}z^{2}(r^{2}sen(t))$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \Rightarrow$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

$$\frac{\partial w}{\partial s} = 2xy(re^{t}) + (x^{2} + 2yz^{3})(2sye^{-t}) + 3y^{2}z^{2}(r^{2}sen(t))$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial w}{\partial y}\frac{\partial y}{\partial t} + \frac{\partial w}{\partial z}\frac{\partial z}{\partial t} \Rightarrow$$

$$\frac{\partial w}{\partial t} = 2xy(rse^{t}) - (x^{2} + 2yz^{3})(rs^{2}e^{-t}) + 3y^{2}z^{2}(r^{2}s\cos(t)$$

<u>∂f</u> ∂t

Regra da cadeia

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

$$\frac{\partial w}{\partial s} = 2xy(re^{t}) + (x^{2} + 2yz^{3})(2sye^{-t}) + 3y^{2}z^{2}(r^{2}sen(t))$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \Rightarrow$$

$$\frac{\partial w}{\partial t} = 2xy(rse^{t}) - (x^{2} + 2yz^{3})(rs^{2}e^{-t}) + 3y^{2}z^{2}(r^{2}s\cos(t))$$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \Rightarrow$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial y}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \Rightarrow$$

$$\frac{\partial w}{\partial s} = 2xy(re^{t}) + (x^{2} + 2yz^{3})(2sye^{-t}) + 3y^{2}z^{2}(r^{2}sen(t))$$

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \Rightarrow$$

$$\frac{\partial w}{\partial t} = 2xy(rse^t) - (x^2 + 2yz^3)(rs^2e^{-t}) + 3y^2z^2(r^2s\cos(t))$$

$$\frac{\partial w}{\partial t} = 2xy(rse^t) - (x^2 + 2yz^3)(rs^2e^{-t}) + 3y^2z^2(r^2s\cos(t))$$

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r} \Rightarrow$$

 $\frac{\partial w}{\partial r} = 2xy(se^{t}) + (x^{2} + 2yz^{3})(s^{2}e^{t}) + 3y^{2}z^{2}(2srsen(t))$

_ista /

Teorema (Caso geral)

Sejam $f: D_f \subset \mathbb{R}^n \to \mathbb{R}$ uma diferenciável em D_f e as funções $g_j: D_{g_i} \subset \mathbb{R}^m \to \mathbb{R}$ diferenciáveis tais que

$$x_j = g_j(t_1, t_2, \dots, t_m)$$

$$(x_1(g_1(\vec{t})),x_2(g_2(\vec{t})),\ldots,x_n(g_n(\vec{t}))\in D_f$$

Então $u(x_1, x_2, ..., x_n) = u(x_1(g_1(\vec{t})), x_2(g_2(\vec{t})), ..., x_n(g_n(\vec{t})))$ é uma função diferenciável e

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x}{\partial t_i}$$

para i = 1, 2, 3, ..., m

Comentários e dúvidas sobre a Lista 2

Regra da cadeia

Lista 2

Comentários e dúvidas sobre a Lista 2

OBRIGADA