Sistemas Operacionais

Prof. Robson de Souza

Aulas 1 e 2

Conteúdo: Introdução, conceitos de Sistemas Operacionais, histórico e exemplos.

Introdução

O que é um Sistema Operacional?

Para Tanenbaum:

É uma máquina estendida

- Oculta os detalhes complicados que têm quer ser executados
- Apresenta ao usuário uma máquina virtual, mais fácil de usar

É um gerenciador de recurso

- Cada programa tem um tempo com o recurso
- Cada programa tem um espaço no recurso

Para Silberschatz:

Um programa que atua como intermediário entre o usuário de um computador e o hardware do computador Objetivos do sistema operacional:

- Executar programas do usuário e facilitar a resolução de problemas do usuário
- Tornar o uso do sistema de computador conveniente
- Usar o hardware de computador de uma maneira eficiente

Estrutura de um Sistema Operacional:

Sistema bancário	Reserva de passagens aéreas	Visualizador Web	Programas de aplicação
Compiladores	Editores	Interpretador de comandos	Programas do sistema
Sistema operacional			do sistema
Linguagem de máquina			
Microarquitetura			Hardware
Dispositivos físicos			

Linguagem de máquina:

Linguagem de programação que é realmente entendida pelo processador, não requerendo qualquer tipo de tradução ou compilação. Cada processador possui um conjunto definido de instruções de máquina, definidos pelo seu fabricante.

Microarquitetura:

Diversos dispositivos físicos são agrupados em unidades funcionais. Esse nível contém alguns registradores internos à CPU e unidade lógica-aritmética.

Histórico:

Em 1642 o matemático francês Blaise Pascal inventa uma máquina de somar.

E 1673 o matemático e filósofo alemão Gottfried Leibniz cria uma máquina de somar e multiplicar utilizando o conceito de acumulador.

Em 1820 o francês Charles Colmar inventa uma máquina capaz de executar as quatro operações.

Em 1822 o inglês Charles Babbage cria uma máquina para cálculos polinomiais. Em 1833 ele inventa a máquina analítica → é o que mais se aproxima com o computador atual. Possuía unidade central de processamento, memória, dispositivos de entrada e saída. Augusta Ada Byron era responsável pela seqüência de instruções.

O inglês George Boole cria a lógica booleana.

Final do século XIX, Herman Hollerith cria o mecanismo de cartões perfurados. Em 1896 funda a Tabulating Machine Company → em 1924 torna-se a International Business Machine (IBM).

Em 1930 o alemão Konrad Zue desenvolve o Z-1, uma calculadora eletronica a base de reles. Nos EUA, John Vincent Atanasoff e Clifford Berry desenvolvem uma máquina para cálculo de equações lineares \rightarrow o primeiro computador da história.

Em 1937 o matemático ingles Alan Turing desenvolve um modelo teórico conhecido como Máquina Universal ou Máquina de Touring, capaz de executar qualquer següência de instruções ou algoritmos.

1945, é lançado o primeiro computador digital eletrônico → ENIAC.

1949, é implementado o primeiro computador com o conceito de "programa armazenado" → EDSAC.

Nesta fase os computadores ainda não possuíam sistema operacional ou funções de interfaces com o usuário tais como teclados e monitores.

John von Neumann desenvolve a arquitetura de programação armazenada ou "arquitetura von Neumann".

As válvulas começam a substituídas pelos transistores.

Em 1951 é lançado o 1° computador para fins comerciais → UNIVAC.

Em 1951 é posto em operação pelo MIT o Whirwind que oferece, entre outras inovações, a tecnologia de memória magnética e o conceito de processamento *batch*.

O primeiro sistema operacional é desenvolvido em 1953 para tentar automatizar as tarefas manuais. Desenvolvido pelos usuários do computador IBM 701.

Surge as primeiras linguagens de programação de alto nível: FORTRAN, ALGOL E COBOL.

Década de 60:

É introduzido o conceito de multiprogramação permitindo que vários programas compartilhassem a memória ao mesmo tempo e, enquanto um programa executava uma estrada ou saída, o processador executava um outro programa.

A IBM lança em 1964 o System/360 \rightarrow seu s.o. OS/360 implementa sistemas batch, multiprogramação e time-sharing , este desenvolvido em 1962 pelo MIT. São introduzidos vídeo e teclado para interação usuário/máquina.

A Digital lança o PDP-8, criando o mercado de minicomputadores, antes dominado somente por *mainframes* .

Em 1969 Ken Thompson desenvolve, utilizando um PDP-7, o s.o. que viria a ser conhecido por Unix.

Década de 70:

Com a integração em larga escala e muito larga escala surge o PDP-11 e o sistema VAX/VMS de 32 bits.

Em 1971 a Intel lança o primeiro microprocessador → Intel 4004 e 3 anos depois o Intel 8080.

Em 1976 Steve Jobs lança o Apple II de 8 bits.

Apple e Microsoft são criadas e o s.o. dominante é o CP/M (Control Program Monitor

São desenvolvidas as arquiteturas de rede SNA e NCP (predecessor do TCP/IP).

Em 1975 Dennis Ritchie desenvolve a linguagem C

Com técnicas de paralelismo, multiprocessadores e processadores vetoriais é lançado em 1976 o Cray-1 e surge assim os supercomputadores.

Década de 80:

A IBM lança o IBM PC em 1981. Utiliza o intel8088 de 16bits e o s.o. é o DOS (*Disk Operating Systems*). É lançada a arquitetura TCP/IP.

Na área de mini e superminis ganha impulso os sistemas multiusuários e surge as estações de trabalho.

Em 1982 é fundada a Sun Microsystems.

Surge os primeiros s.o. com interface gráfica para microprocessadores.

É lançado o Microsoft Windows e OS/2 e surgem os sistemas operacionais de rede com o Novell Netware e os D.O.S. (*Distributed Operating System*).

Década de 90:

Em o finlandês Linus Torvalds começa a desenvolver o Linux.

Em 1993 a Microsoft lança o Windows NT.

Tipos de Sistemas Operacionais:

- Sistemas monoprogramáveis / monotarefa

Apenas uma tarefa por vez.

- Sistemas multiprogramáveis / multitarefa

Permite mais de uma tarefa "ao mesmo tempo".

- Sistemas com múltiplos processadores

Podem ser fortemente acoplados ou fracamente acoplados.

Os fortemente acoplados possuem processadores distintos mas compartilham a memória principal.

Os fracamente acoplados possuem memória e processador distintos que são interligados por meio de um link de comunicação.

Link para um infográfico e matéria do Tecmundo sobre o histórico dos S.Os:

https://www.tecmundo.com.br/s is tema-operacional/2031-a-historia-dos-sistemas-operacional ilustracao-.htm

Referências bibliográficas:

TANENBAUM, Andrew. 2ª ed. Sistemas Operacionais Modernos, Editora Pearson, 2003.

SILBERSCHATZ, Abraham. Sistemas Operacionais com JAVA, 6ª ed. Editora Campus

MACHADO, Francis B. Arquitetura de Sistemas Operacionais, 4ª ed, LTC, 2007.