

FS-LCore-M307RL 用户手册

文档版本: V1.0

更新历史

版本	更新内容	编写人	核准人	更新时间
V1.0	第一次发布	Chreey	Barry	2025-05-22

版权声明

Copyright © Freestrong. Ltd. All rights reserved.

联系邮箱: <u>support@freestrong.com</u>

更多信息,请登录: www.freestrong.com

目 录

更新	折历す	†	•••••••	2
版材	又声明	月		2
目	录	•••••		3
引言	計	•••••		4
1	快退	赴入门		5
	1.1	硬件准备	· 「·······	5
	1.2	通信演示		6
2	产品	品概述		8
	2.1	产品描述	<u> </u>	8
	2.2	产品特点	į	8
	2.3	产品参数	Ţ	8
	2.4	硬件介绍	<u>,</u>	9
		2.4.1	接口描述	9
		2.4.2	指示灯状态	10
		2.4.3	外形尺寸	10
3	应用	月接口 		11
	3.1	电源供电	<u>L</u>	11
		3.1.1	VIN 供电	11
		3.1.2	VB 供电	11
	3.2	开关机		11
	3.3	串口		12
	3.4	4G天线	妾口	12
4	使用	月方法示例	J	13
	4.1	网络拓扎	图	13
	4.2	指令格式	<u>v</u>	13
	4.3	初始化档	注测	14
	4.4	TCP 通信	示例	15
	4.5	UDP 通信	言示例	16
	4.6	MQTT 追	6信示例	17
			信实例	
5	小智	g AI 聊天	机器人开源教程	21
6	联系	系方式		22
7	免責	青声明		22

引言

手册主要讲解 FS-LCore-ML307RL 核心板快速使用、产品概述、应用接口和使用方法等。

1 快速入门

FS-LCore-M307RL 核心板(以下简称"核心板")是一款串口转 4G 模块,可为串口设备赋予远程数据传输能力。

本章为快速入门指南,重点演示核心板的基础功能,通过 TCP 协议实现串口与服务器之间的数据传输。建议新用户仔细阅读本章并按照指示操作一遍,以对核心板有一个系统的认识,熟悉此类产品用户可跳过本章节。针对特定的细节和说明,请参考后续章节。

1.1 硬件准备

- 1. 焊接排针,建议按照天线接口朝上方向焊接排针,方便后续安装天线。
- 2. 焊接天线,将配套的 4G 弹簧天线焊接到核心板上对应的 4G 弹簧天线孔接口处,如图 1-1 所示:

图 1-1 核心板接天线示意图

3. 将 Nano SIM 卡缺口朝里插入卡座,直到 SIM 卡推到最底部,自动锁紧。如图 1-2 所示。取 卡时只需按压 SIM 卡,就会自动弹出。

图 1-2 插卡示意图

注:请勿带电插拔 SIM 卡,否则容易损坏核心板或 SIM 卡。

4. 核心板通过杜邦线连接到 USB 转 TTL 模块上,测试只需接 VIN、GND、TXD、RXD 即可, USB 转 TTL 另外一端接入电脑; 串口线是交叉连接, 如图 1-3 所示:

注:核心板默认串口电平为 3.3V TTL, USB 转 TTL 模块串口电平必须和核心板匹配, 否则无法正常通信。

图 1-3 串口通信接线图

5. 通电后, 红灯常亮(电源指示灯), 蓝灯闪烁(网络指示灯), 说明核心板已开机, 可以进行进行指令交互。

注:如果采用外接电源,调试时需要"共地",即核心板、电源、USB转 TTL 三者的 GND 接在一起。

1.2 通信演示

在操作过程中,要保证前一条指令返回了正确参数后,才能继续点击下一条命令。若前一条指令未正确执行,后续指令可能会执行失败。

以下是具体的 AT 指令操作及返回示例:

序号	状态	示例	说明
	发送	AT	握手测试。
1	响应	ок	返回"OK"表示串口通信正常。
	发送	AT+CPIN?	检测 SIM 卡状态。
2	m4 14	+CPIN: READY	返回"READY"说明读卡成功,若返回
	响应	ОК	ERROR,则读卡失败。
	发送	AT+CSQ	查询射频信号质量。
3 响	响应	+CSQ: 24,99	参数 1: 信号质量 (0~31), 确保信号质量大于 18
		ок	否则数据通信可能不稳定。

trong		
		参数 2: 未启用,可忽略。
发送	AT+CEREG?	查询网络注册状态。
喧点	+CEREG: 0,1	参数 1: 控制未经请求的结果代码,0为禁用。
ын) <u>улу</u>	OK	参数 2: 注册状态, 1 和 5 表示注册成功。
发送	AT+CGATT?	查询网络附着状态。
11台 13台	+CGATT: 1	W. ** ** ** ** ** ** ** ** ** ** ** ** **
刊刊 <u>) </u>	OK	附着状态,1表示成功,0表示失败。
发送	AT+MIPOPEN=0,"TCP","112.125.89.8",47792	建立 TCP 连接,实际应用需要将服务器的地址修
		改为自己的服务器
响应	ок	次·按·代·九
	+MIPOPEN: 0,0	连接成功
发送	AT+MIPSEND=0,10	设置发送数据长度为 10 字节
响应	>	可以发送数据
发送	1234567890	需要发送的数据
n4 ; ;	+MIPSEND: 0,10	42 \ \ +4 \ +1
啊 <u>炒</u>	ОК	发送成功
发送	AT+MIPCLOSE=0	断开 TCP 连接
响应	ок	Not. TT +P: T-b
	+MIPCLOSE: 0	断开成功
	发响发响发响发响发响发	发送 AT+CEREG? 响应 +CEREG: 0,1 OK 发送 AT+CGATT? 响应 +CGATT: 1 OK 发送 AT+MIPOPEN=0,"TCP","112.125.89.8",47792 响应 OK +MIPOPEN: 0,0 发送 AT+MIPSEND=0,10 响应 > 发送 1234567890 响应 OK 发送 AT+MIPSEND: 0,10 OK 次送 AT+MIPCLOSE=0 响应 OK

图 1-4 通信演示图

2 产品概述

2.1 产品描述

FS-LCore-M307RL是飞思创推出的高集成度 4G Cat.1 核心板,基于中移 ML307R-DL 模组设计,集成了 DC-DC、电平转换、天线、SIM 卡和硬件防护等关键电路,采用 8Pin 插针式封装,具有高度易用性和稳定性,用户可轻松快速的部署到现有系统中。

核心板自带原厂 AT 固件,可通过 MCU 发指令灵活控制,轻松让设备具有联网功能,实现远程数据传输。

核心板广泛应用于工业控制、智慧储能、智慧农业、共享支付等物联网场景。

2.2 产品特点

- ◆ 4G Cat.1 全网通
- ◆ 中移低成本 4G 方案, 高性价比
- ◆ 高度集成化设计,即插即用
- ◆ 尺寸仅 22*24mm, 紧凑型设计易嵌入
- ◆ 支持 TCP、UDP、MQTT 和 HTTP 等协议
- ◆ 宽压供电,适用不同应用场景
- ◆ AI 小智专用 4G 模组,可直接用于小智开源项目中。

2.3 产品参数

表格 2-1 基本参数表

产品名称	4G AT 核心板	
产品型号	FS-LCore-M307RL	
支持运营商	移动 4G、联通 4G、电信 4G	
封装形式	插针式 8PIN	
电源接口	VIN: 5~16V; VBAT: 3.4V-4.5V	
LED灯	电源指示灯、网络指示灯	
SIM 接口	自弹式 Nano 卡座	
4G 天线接口	第一代 IPEX 座	
LIA DE	3.3V TTL (可更改为 5V)	
UART	波特率(bps): 1200,2400,4800,9600,19200,38400,57600,115200,230400,460800 等	
外形尺寸	22.00*24.00*12.44mm(长*宽*高,含插针高度)	

工作温度	-35~75°C
扩展工作温度	-40~85°C
存储温度	-45~90°C
存储湿度	5%~95%(无凝露)
通信速率	最大 10Mbps (DL) /最大 5Mbps (UL)
支持频段	LTE-TDD: B34/B38/B39/B40/B41; LTE-FDD: B1/B3/B5/B8
网络协议	TCP/UDP/MQTT/HTTP 等

2.4 硬件介绍

2.4.1 接口描述

图 2-1 正面接口描述

图 2-2 背面接口描述

表格 2-2 引脚定义

		农田 2-2 开冲足入	
序号	名称	说明	
1	VB	电池供电引脚, 支持 3.4~4.5V 输入。	
2	VIN	电源输入正极,支持 5V~16V 电源输入。	
3	GND	电源输入负极。	
4	TX	主串口发送引脚,已上拉至 3.3V。	
5	RX	主串口接收引脚,已上拉至 3.3V。	
6	EN	核心板电源使能脚,高电平使能,默认上拉到 VIN (上电自动开机)。	
7	RDY	保留引脚。	
8	D/P	控制休眠与唤醒引脚。	

注意: VB与 VIN 不能同时作为供电输入使用,采用 VB给核心板供电时,EN 引脚失效。

2.4.2 指示灯状态

核心板有电源和网络指示灯,用户可以通过指示灯的状态来判断核心板的工作状态,如表格 2-3 所示:

表格 2-3 指示灯状态说明

指示灯	指示灯状态	核心板工作状态
由海松二(<i>大</i> (大)	常亮	上电
电源指示灯(红灯)	熄灭	掉电
	快闪(50ms 亮/950ms 灭)	未注册网络
网络指示灯(蓝灯)	慢闪(100ms 亮/1900ms 灭)	己注册网络
[四年]日小月(監月)	熄灭	关机或休眠状态

2.4.3 外形尺寸

图 2-3 外形尺寸 (单位 mm, 公差±0.4mm)

3 应用接口

核心板有引出8个引脚,客户可根据实际产品需求进行设计,未使用到的引脚悬空即可。

3.1 电源供电

核心板支持两种供电方式: VIN、VB供电,(二选一,不可同时供电)

3.1.1 VIN 供电

VIN 支持 5~16V 输入,外部供电电源的额定功率需在 8W 以上,在最高功率输出的情况下电压不得低于 5V。建议在靠近核心板电源引脚的位置放置一个 100~470uF 的电容,以保证核心板平稳工作。当输入电压较高时,建议添加保护电路,如图 3-1 所示。

图 3-1 VIN 供电参考电路

自恢复保险丝及瞬态抑制二极管推荐型号如下:

表格 3-1 物料推荐

物料	型号	厂商	描述
自恢复保险丝	SMD1812P200TF/24	RUILON	24V, 2A, SMD1812 封装
瞬态抑制二极管	SMAJ5.0A	MDD	5V 供电使用,单向,SMA(DO-214AC)封装
(TVS)	SMAJ16A	MDD	16V 以下供电使用,单向,SMA(DO-214AC)封装

3.1.2 VB 供电

VBAT 供电范围为 3.4V~4.5V, 典型值 3.8V, 一般用于锂电池供电。

核心板在注网时,峰值电流可达 2A,采用 VBAT 供电时,用户的外围电路需提供充足的供电能力。建议在 VBAT 上放置大电容(470~1000uF),防止外部电源在脉冲电流时间段内出现电压跌落,导致核心板重启等意外情况。

3.2 开关机

EN 引脚为板载 DCDC 电源芯片的使能引脚,高电平使能。EN 已内部上拉至 VIN,即核心板上电自动开机。拉低 EN 失能电源芯片,核心板断电关机。

当使用 MCU 控制 EN 时,必须增加如图 3-2 所示的三极管驱动电路,以防止对 MCU 造成损坏。

图 3-2 EN 参考设计

3.3 串口

核心板串口电平为 3.3V TTL, 可与串口电平为 3.3V 的单片机直连。

核心板支持的波特率有: 4800bps、9600bps、19200bps、38400bps、57600bps、115200bps、230400bps、460800bps、921600bps等。

默认串口参数为: 115200bps、8位数据位、无校验位、1位停止位。

在与主控通信时, TX和RX是交叉接线。

图 3-3 串口接线示意图

3.4 4G 天线接口

核心板有引出两种天线接口,IPEX 一代天线座和弹簧天线孔。用户可根据实际项目需求选择对应的天线。

表格 3-2 天线选择

注:采用 4G 内置天线时,建议进行整机天线匹配调试,以确保天线辐射性能达到最佳增益效果。

4 使用方法示例

本章提供简单的协议介绍和通信示例,更多的协议指令请查看资料包中的软件设计文件夹。

建议用户先使用串口调试助手发指令调试核心板,模拟单片机与核心板的指令交互情况,确保 核心板连上服务器且数据交互正常,再将相关指令添加到 MCU 程序中。

核心板采用原厂标准 AT 固件,需要 MCU 发指令配置以及处理各种异常情况,每次上电都需要重新配置,如需要 DTU 固件的产品可联系我司销售。

4.1 网络拓扑图

图 4-1 网络拓扑图

4.2 指令格式

AT 指令末尾必须加回车换行,否则核心板无法执行指令。为了提升文章的阅读性,文中的 AT 指令隐去了回车换行符且无回显。

表格 4-1 各场景下的回车换行符

场景	说明	
串口调试助手	一般都有换行选项,勾选后直接用;也可以输入指令后,键盘敲"ENTER"键回车。	
ASCII码	在程序代码中,一般用转义字符"\r\n"代表回车换行。	
十六进制	0x0D 0x0A	

4.3 初始化检测

核心板只有在网络注册成功的情况下,才能连接服务器,否则会报错。建议用户连接服务器前先查询核心板的各项基础状态,确保各项状态都正常,再发起连接。

序号	状态	示例	说明	
	发送	AT	握手测试。	
1	响应	OK	返回"OK"表示串口通信正常。	
	发送	AT+CPIN?	检测 SIM 卡状态。	
2	响应	+CPIN: READY OK	返回"READY"说明读卡成功,若返回ERROR,则读卡失败。	
	发送	AT+CSQ	查询射频信号质量。	
3	响应	+CSQ: 24,99 OK	参数 1: 信号质量 (0~31), 确保信号质量大于 18 否则数据通信可能不稳定。 0 -113dBm 或者以下 1 -111dBm 230 -109dBm53dBm	
	47.7 4	AT CEREC?	31 -51dBm 或者更高 99 未知或不可检测 参数 2: 未启用,可忽略。	
4	发送 响应	AT+CEREG? +CEREG: 0,1 OK	查询网络注册状态。 参数 1: 控制未经请求的结果代码,0为禁用。 参数 2: 注册状态,1和5表示注册成功。 0 未注册,模块目前没有搜索到要注册的新运营商 1 注册成功 2 未注册,但模块正在搜索一个新的运营商来注册 3 注册被拒绝 4 未知 5 注册,漫游	
	发送	AT+CGATT?	查询网络附着状态。	
5	响应	+CGATT: 1 OK	附着状态,1表示成功,0表示失败。	

4.4 TCP 通信示例

TCP 全称为传输控制协议(Transmission Control Protocol),是一种面向连接的、可靠的、基于字节流的传输层协议。发送数据前需要先建立连接,通过确认机制、重传机制和流量控制机制等保证了数据的准确性和可靠性。在物联网中,TCP 常用于需要可靠传输的场景,如传感器数据的上传、远程控制等。

指令示例如下:

序号	状态	示例	说明
	发送	ATLANDO DE N. O. HTGDH H110, 105, 00, 011, 477,00	第"0"路建立 TCP 连接。
		AT+MIPOPEN=0,"TCP","112.125.89.8",47792	请填写自己的服务器 IP 地址和端口号。
1	响应	OK	近回00丰三笠"0" 购达拉出地
	비리 <u>).자</u>	+MIPOPEN: 0,0	返回 0,0 表示第"0"路连接成功。
	发送	AT+MIPSEND=0,10	定长发送,向第"0"路链接发送10个字
			符数据。
	响应	>	收到">"即可输入数据。
2	发送	1234567890	数据。
	响应	+MIPSEND: 0,10	B. T. 42 24 1.0 A c> 55 ** 44 F
		OK	成功发送 10 个字符数据。
3	发送	AT+MIPCLOSE=0	断开 TCP 连接。
	响应	OK	断开成功。

4.5 UDP 通信示例

UDP 全称为用户数据报协议(User Datagram Protocol),是一种无连接、不可靠的、基于数据报的传输层协议。它没有确认机制和重传机制,因此传输速度相对较快,但也可能因为网络拥堵等原因导致数据丢失或乱序。在物联网中,UDP 适用于一些对实时性要求较高、对数据完整性要求较低的场景,如音频和视频流传输。

指令示例如下:

序号	状态	示例	说明
1	发送	AT+MIPOPEN=0,"TCP","112.125.89.8",45597	第 "0" 路创建 UDP。
			请填写自己的服务器 IP 地址和端口号。
	响应	ок	返回 0,0 表示第"0"路创建成功。
		+MIPOPEN: 0,0	
2	发送	AT+MIPSEND=0,10	定长发送,向第"0"路链接发送10个字
			符数据。
	响应	>	收到">"即可输入数据。
	发送	1234567890	数据。
	响应	+MIPSEND: 0,10	成功发送 10 个字符数据。
		OK	
3	发送	AT+MIPCLOSE=0	关闭 UDP。
	响应	OK	关闭成功。

4.6 MQTT 通信示例

MQTT全称为消息队列遥测传输协议(Message Queuing Telemetry Transport),是一种基于发布/订阅模式的消息协议,常用于物联网中的消息传递。它工作在 TCP/IP 协议族上,具有轻量、简单、开放和易于实现的特点,适用于硬件性能低下的远程设备和网络状况糟糕的情况。采用消息订阅/发布模式,提供一对多的消息发布,从而解除应用程序耦合,适用于需要消息传递的场景,如设备间的通信、远程控制、数据采集等。

指令示例如下:

序号	状态	示例	说明
1	发送	AT+MQTTCONN=0,"broker.emqx.io",1883,"Freestrong" ,"username","password"	第"0"路创建 MQTT 连接。
			请填写所需要连接服务器 IP 地址/域名,
			端口号,ClientID,用户名,密码。
	响应	ок	V. C
		+MQTTURC: "conn",0,0	返回"conn",0,0 表示第 "0" 路连接成功。
	发送	AT+MQTTSUB=0,"topic/r",0	订阅主题"topic/r"。
			请填写自己需要订阅的主题。
2	响应	+MQTTSUB: 0,30131	FE OV #==TMPH
		OK	返回 OK 表示订阅成功。
	发送	AT+MQTTPUB=0,"topic/t",0,0,0,5,"HELLO"	向 MQTT 主题"topic/t"发布消息
			"HELLO"。
3			请填写自己的需要发送的主题和数据。
	响应	+MQTTPUB: 0,30132,16	返回 OK 表示发送成功。
		OK	返回 OK 农小及达成功。
4	接收	+MQTTURC: "publish",0,0,"topic/r",10,10,1234567890	收到来自主题 topic/r 的消息,内容为
			"1234567890"。
3	发送	AT+MIPCLOSE=0	断开连接。
	响应	OK	断开成功。

4.7 HTTP 通信示例

HTTP全称为超文本传输协议(Hypertext Transfer Protocol),是一种应用层协议,用于在网络中传输超文本(例如网页)。在物联网应用中,HTTP适用于需要提供 Web 接口或 API 的应用,常用于数据的上传和下载、远程控制等场景。

GET 指令示例如下:

序号	状态	示例	说明
1	发送	AT+MHTTPCREATE="http://httpbin.org"	第"0"路创建实例。
			 请填写自己的服务器 IP 地址和端口号。
	响应	+MHTTPCREATE: 0	
		ок	返回 OK 表示第"0"路创建成功。
	发送	AT+MHTTPCFG="header",0,"Accpet: */*"	设置请求头(根据实际需求设置)。
2	响应	OK	返回 OK 表示设置成功。
	47.14		设置请求路径为"/get",发送 GET 请求。
3	发送	AT+MHTTPREQUEST=0,1,4,"/get"	请填写自己的服务器请求路径。
	响应	OK	返回 OK 表示请求成功。
		+MHTTPURC: "header",0,200,228,HTTP/1.1 200 OK	
	接收	Content-Type: application/json	
		Content-Length: 150	
		Connection: keep-alive	
		Server: gunicorn/19.9.0	
		Access-Control-Allow-Origin: *	HTTP/1.1 200 OK 表示请求成功。
		Access-Control-Allow-Credentials: true	+MHTTPURC: "header":表示此 URC 为
4		+MHTTPURC: "content",0,150,150,150,{	HTTP 响应头部分。
4		"args": {},	+MHTTPURC: "content":表示此URC为
		"headers": {	HTTP 响应体部分。
		"Accpet": "*/*",	
		"Content-Length": "0",	
		"Host": "httpbin.org",	
		}	
		"url": "http://httpbin.org/get"	
		}	
5	发送	AT+MHTTPDEL=0	删除第"0"路的实例,并清空该实例所有
			配置。
	响应	ОК	删除成功。

POST 指令示例如下:

PUSI 指令亦例如下:				
序号	状态	示例	说明	
1	发送	AT+MHTTPCREATE="http://httpbin.org"	第"0"路创建实例。	
			请填写自己的服务器 IP 地址和端口号。	
	响应	+MHTTPCREATE: 0	返回 OK 表示第"0"路创建成功。	
		OK	应□ UN 水小界 U 增捌建成切。	
2	发送	AT+MHTTPCFG="header",0,"Accpet: */*"	设置请求头 (根据实际需求设置)。	
	响应	OK	返回 OK 表示设置成功。	
	发送	AT+MHTTPCONTENT=0,0,0,"{"msg":"hello"}"	设置请求体数据为 {"msg":"hello"}。	
3			请填写自己需要发送的请求体。	
	响应	OK	返回 OK 表示设置成功。	
	(2,1,4	AT+MHTTPREQUEST=0,2,0,"/post"	设置请求路径为"/post",发送 POST 请求。	
3	发送		请填写自己的服务器请求路径。	
	响应	OK	返回 OK 表示设置成功。	
		+MHTTPURC: "header",0,200,228,HTTP/1.1 200 OK		
	接收	Content-Type: application/json		
		Content-Length: 322		
		Connection: keep-alive		
		Server: gunicorn/19.9.0		
		Access-Control-Allow-Origin: *		
		Access-Control-Allow-Credentials: true		
		+MHTTPURC: "content",0,322,322,322,{		
		"args": {},	UTTD/1 1 200 OV 丰二连七片中	
		"data": "{\"msg\":\"hello\"}",	HTTP/1.1 200 OK 表示请求成功 +MHTTPURC: "header":表示此 URC 为	
		"files": {},		
4		"form": {},	HTTP 响应头部分。 +MHTTPURC: "content":表示此 URC 为	
		"headers": {	HTTP 响应体部分。	
		"Accpet": "*/*",		
		"Content-Length": "15",		
		"Host": "httpbin.org",		
		"X-Amzn-Trace-Id": "Root=1-682150f5-		
		150e5c2301e4bd494c74f602"		
		},		
		"json": {		
		"msg": "hello"		
		},		
		"url": "http://httpbin.org/post"		

		}	
5	发送	AT+MHTTPDEL=0	删除第"0"路的实例,并清空该实例所有 配置
	响应	ОК	删除成功

5 小智 AI 聊天机器人开源教程

4G 版的小智 AI 聊天机器人开源项目使用的是 ML307R-DL 模组,通过主控发 AT 指令配置模组 联网。我们 ML307R 核心板可直连主控,插上 SIM 卡和天线即可交互。

完整资料: 小智 AI 开源教程

DIY 接线教程: 面包板硬件清单和接线教程

6 联系方式

公司: 深圳市飞思创电子科技有限公司

网址: www.freestrong.com

邮箱: support@freestrong.com

电话: 0755-86528386

7 免责声明

本文档提供有 FS-LCore-ML307RL 产品的信息,本文档未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除在其产品的销售条款和条件声明的责任之外,我司概不承担任何其它责任。并且,我司对本产品的销售和使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等均不作担保。本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。