

#### FACULTAD DE CIENCIAS

# TÍTULO DE LA TESIS

# T E S I S

QUE PARA OPTAR POR EL GRADO DE: Licenciatura en Física

#### PRESENTA:

Jonathan Alexis Urrutia Anguiano

TUTOR:

Dr. Alejandro Reyes Coronado



México, Cd. de México, YYYY

# Índice general

| L. | Teo  | ría    |                                                      | 1  |
|----|------|--------|------------------------------------------------------|----|
|    | 1.1. | Fórmu  | ılas de Fresnel                                      | 1  |
|    |      | 1.1.1. | Coeficientes de amplitud                             | 3  |
|    |      | 1.1.2. | Reflectancia y transmitancia                         | 6  |
|    | 1.2. | Soluci | ón de Mie                                            | 8  |
|    |      | 1.2.1. | Solución a la ecuación de onda con simetría esférica | 10 |
|    | 1.3. | Respu  | esta electromagnética de materiales plasmónicos      | 21 |
|    |      | 1.3.1. | Correción por tamaño para partículas esféricas       | 23 |
|    |      | 1.3.2. | Plasmones                                            | 25 |
|    | 1.4. | Model  | o de esparcimiento coherente                         | 26 |
|    |      | 1.4.1. | Monocapa suspendida                                  | 27 |
|    |      | 1.4.2. | Monocapa sobre un sustrato                           | 27 |

La luz, al pasar de un medio lineal, homogéneo e isótropo a otro medio material con las mismas características, se descompone en dos haces: uno reflejado y otro transmitido. Para calcular la intensidad de los haces reflejado y transmitido se emplean las fórmulas de Fresnel. En su deducción se consideran las condiciones de frontera impuestas por las ecuaciones de Maxwell sobre los campos electromagnéticos (EMs), de las que se deduce, además, la dirección de propagación de los haces reflejado y transmitido. Una vez determinadas las condiciones de frontera de los campos EMs y la dirección de propagación de la luz, se calcula la relación entre los campos eléctricos evaluados en la frontera entre ambos medios, resultando en los coeficientes de amplitud. Finalmente, la conservación de la energía que es considerada, resultando en las ecuaciones de Fresnel.

#### 1.1. Fórmulas de Fresnel

Las ecuaciones de Maxwell en su forma diferencial son [1]

| Ecuaciones de Maxwell (Forma diferencia                                                                           | al)                      |        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------|--------|
| $ abla \cdot \mathbf{E} = rac{ ho_{tot}}{arepsilon_0},$                                                          | (Ley de Gauss eléctrica) | (1.1a) |
| $\nabla \cdot \mathbf{B} = 0,$                                                                                    | (Ley de Gauss magnética) | (1.1b) |
| $ abla 	extbf{X} 	extbf{E} = -rac{\partial 	extbf{B}}{\partial t},$                                              | (Ley de Faraday-Lenz)    | (1.1c) |
| $\nabla \times \mathbf{B} = \mu_0 \mathbf{J}_{tot} + \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t},$ | (Ley de Ampère-Maxwell)  | (1.1d) |

donde **E** es el campo eléctrico, **B** el campo magnético,  $\rho_{tot}$  es la densidad volumétrica de carga total y  $\mathbf{J}_{tot}$  la densidad volumétrica de corriente total,  $\varepsilon_0$  la permitividad eléctrica del vacío y  $\mu_0$  la permeabilidad magnética del vacío.

Al sustituir las ecuaciones de Maxwell en la expresión de la fuerza de Lorentz, que es la fuerza ejercida sobre una partícula con carga q y velocidad  $\mathbf{v}$  en presencia de campos EMs [1], dada por  $\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ , se deduce el teorema de conservación de la energía [1]. De éste,

se define el vector de Poynting S, correspondinte al flujo de energía por unidad de tiempo, por unidad de área, transportado por los campos EMs [1], dado por la expresión

#### Vector de Poynting

$$\mathbf{S} = \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B}. \tag{1.2}$$

Al desacoplar las ecuaciones de Maxwell, los campos EMs obedecen la ecuación de onda [2]. Una solución a esta ecuación se obtiene al emplear la transformada Fourier<sup>1</sup> [3], proceso que concluye con ondas planas como soluciones, es decir, los campos EMs son oscilantes y están dados por la expresión

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{\mathbf{0}}e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)} \qquad \mathbf{y} \qquad \mathbf{B}(\mathbf{r},t) = \mathbf{B}_{\mathbf{0}}e^{i(\mathbf{k}\cdot\mathbf{r} - \omega t)}, \tag{1.3}$$

en donde  $\mathbf{E}_0$  y  $\mathbf{B}_0$  son las amplitudes de las ondas EMs,  $\mathbf{k}$  es el vector de onda, que indica la dirección de propagación de la onda plana, y  $\omega$  es la frecuencia angular de la onda plana; la triada de vectores  $\{\mathbf{k}, \mathbf{E}, \mathbf{B}\}$  constituye una base ortogonal derecha en el vacío [1]. Para que las ondas planas sean solución de las ecuaciones de Maxwell, se impone la relación de dispersión, que forza a la magnitud del vector de onda k y la frecuencia angular  $\omega$  a obedecer la expresión

#### Relación de dispersión en el vacío

$$\omega = ck, \tag{1.4}$$

en donde c es la velocidad de la luz.

Cuando un haz de luz modelado por una onda plana se propaga a través de un medio material, la función dieléctrica  $\varepsilon$  y la permeabilidad magnética  $\mu$  del material determinan sus propiedades EMs. En general, se define el índice de refracción n como

# Índice de refracción

$$n = \sqrt{\frac{\varepsilon \,\mu}{\varepsilon_0 \mu_0}}.\tag{1.5}$$

Tanto n, como  $\varepsilon$  y  $\mu$  se determinan de forma experimental y son, en general, cantidades complejas. Para medios no magnéticos ( $\mu_0 = \mu$ ), la parte imaginaria de la función dieléctrica  $\text{Im}[\varepsilon]$  se asocia con la absorción de energía por el material [4].

Las ecuaciones de Maxwell imponen constricciones sobre los campos EMs cuando estos cruzan la frontera entre dos medios distintos, denominada interfaz. En la Fig. 1.1 se muestra la interfaz entre dos medios arbitrarios caracterizados por la función dieléctrica  $\varepsilon_i$  y la permeabilidad magnética  $\mu_i$ , con i = 1, 2 según sea el caso. Para deducir las constricciones de los campos EMs sobre la interfaz, estos se evalúan en la Fig. 1.1a) en el cilindro de área en las caras A y de altura  $\delta \to 0$ , mientras que en la Fig. 1.1b) se evalúan los campos EMs en el circuito de largo l y altura

 $<sup>\</sup>frac{1}{2} \mathcal{F}[f(\mathbf{r},\omega)] = \int_{-\infty}^{\infty} f(\mathbf{r},t) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} dt, \text{ con } \omega \text{ una función de } \mathbf{k}. \text{ La transformada de Fourier inversa es entonces } \mathcal{F}^{-1}[f(\mathbf{r},t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\mathbf{r},t) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} d\omega.$ 



Fig. 1.1: Esquema de una interfaz entre dos medios distintos y arbitrarios con a) una densidad de carga superficial  $\sigma_{tot}$  y b) una densidad de corriente superficial  $\mathbf{K}_{tot}$ . Los campos EMs son evaluados en a) en el cilindro de área A y altura  $\delta \to 0$  y en b) en el circuito de largo l y altura  $\delta \to 0$ . En ambas figuras el vector normal a la superficie es  $\hat{\mathbf{u}}$ .

 $\delta \to 0$ ; en ambas figuras el vector normal a la interfaz es  $\hat{\mathbf{u}}$ . Al considerar el límite  $\delta \to 0$ , los campos EMs se evlúan sobre la interfaz y, al considerar que los medios son lineales, homogéneos e isótropos, así como la ausencia de cargas externas,  $\sigma_{ext} = 0$  y  $\mathbf{K}_{ext} = \mathbf{0}$ , los campos EMs obedecen las expresiones [1]

# Condiciones de frontera de los campos EM $\varepsilon_{1}E_{1}^{\perp} - \varepsilon_{2}E_{2}^{\perp} = 0, \qquad (1.6a) \qquad \qquad E_{1}^{\parallel} - E_{2}^{\parallel} = 0, \qquad (1.6b)$ $B_{1}^{\perp} - B_{2}^{\perp} = 0, \qquad (1.6c) \qquad \qquad \frac{\mathbf{B}_{1}^{\parallel}}{\mu_{1}} - \frac{\mathbf{B}_{2}^{\parallel}}{\mu_{2}} = \mathbf{0}. \qquad (1.6d)$

#### 1.1.1. Coeficientes de amplitud

Cuando un haz de luz modelado por una onda plana [Ec. (1.3)] incide sobre la interfaz entre dos medio lineales, homogéneos e isótropos, el haz de luz es descompuesto en un haz reflejado y otro transmitido, también descritos por ondas planas. Los haces incidentes, reflejados y transmitidos se propagan a través del plano de incidencia, definido por el vector de onda del haz incidente, y el vector normal a la interfaz. Dado que las condiciones de frontera sobre la onda plana incidente y reflejada en el medio de incidencia, caracterizado por el índice de refracción  $n_i$ , y la onda transmitida, en el medio de transmisión, con índice de refracción  $n_t$ , son válidas para todo tiempo y todo punto en la interfaz, la fase de las tres ondas son iguales, por lo que se cumple

Ley de la reflexión y ley de Snell 
$$\theta_i = \theta_r \qquad (1.7) \qquad n_i \sin \theta_i = n_t \sin \theta_t, \qquad (1.8)$$

en donde  $\theta_i$  es el ángulo de incidencia;  $\theta_r$ , el de reflexión y  $\theta_t$ , el de transmisión; ambos medidos desde la dirección normal a la superficie. La Ec. (1.7) es la ley de la reflexión, y la Ec. (1.8) es la ley de Snell<sup>2</sup>, que determinan la dirección de propagación del haz reflejado y el transmitido.

Para calcular la potencia reflejada y transmitida se calculan primero los coeficientes de

<sup>&</sup>lt;sup>2</sup>La ley fue nombrada así debido al físico holandés Willebroerd Snellius aunque investigaciones más recientes indican que el registro más antiguo de esta ley (correctamente formulada) fue en el año 984 en el libro *On the Burning Instruments* del matemático persa Ibn Sahl [5].

amplitud de reflexión  $r = E_r/E_i$  y de transmisión  $t = E_t/E_i$ , que son el cociente del campo eléctrico reflejado  $E_r$ , o transmitido  $E_t$ , entre el campo eléctrico incidente  $E_i$ . El valor de los coeficientes de amplitud r y t depende de la polarización del campo eléctrico incidente, es decir, de la dirección en la que  $\mathbf{E}_i$  oscila. En Fig. 1.2 se muestra un haz de luz que se propaga en el medio de incidencia (con índice de refracción  $n_i$ ) en la dirección  $\mathbf{k}_i$  e incide en la interfaz a un ángulo  $\theta_i$  respecto al vector normal al plano. Este haz se refleja según la Ec. (1.7) a un ángulo  $\theta_r = \theta_i$  y se propaga en una dirección  $\mathbf{k}_r$ , y se refracta en un ángulo  $\theta_t$  dado por la Ec. (1.8) y se propaga en una dirección  $\mathbf{k}_t$ . En la Fig. 1.2a) el campo eléctrico oscila en una dirección perpendicular al plano de incidencia, por lo que se le denomina polarización s (del alemán senkrecht), mientras que en la Fig. 1.2b) el campo eléctrico oscila paralelo al plano de incidencia, por lo que se le denomina polarización p.



Fig. 1.2: Esquema de de una onda plana en polarización a) s y b) p propagándose en una dirección  $\mathbf{k}_i$  e incidiendo con un ángulo de incidencia  $\theta_i$  en una interfaz plana entre dos medio lineales, homogéneos e isótropos, donde el medio de incidencia tiene un índice de refracción  $n_i$  y el de transmisión  $n_t$ . El haz reflejado se propaga con un ángulo  $\theta_r = \theta_i$  según la ley de reflexión [Ec. (1.7)] y el ángulo transmitido se propaga con un ángulo  $\theta_t$  dado por la ley de Snell [Ec. (1.8)]. En el esquema se asume que la orientación de los campos EMs incidentes ( $\mathbf{E}_i$ ,  $\mathbf{B}_i$ ) es la misma para los campos EMs reflejados ( $\mathbf{E}_r$ ,  $\mathbf{B}_r$ ) y transmitidos ( $\mathbf{E}_t$ ,  $\mathbf{B}_t$ ).

Para polarización s y medios no magnéticos ( $\mu = \mu_0$ ), el campo eléctrico es perpendicular al plano de incidencia y paralelo a la interfaz por lo que, mediante la Ec. (1.6b),  $E_i + E_r = E_t$ , en donde se asume que la orientación del campo eléctrico incidente se preserva en el haz reflejado y transmitido, como se observa en la Fig. 1.2a). Al emplear la continuidad de la componente paralela a la interfaz de  $\mathbf{B}/\mu$  [Ec. (1.6d)], la relación E = (c/n)B y la ley de la reflexión [Ec. (1.7)] y de Snell [Ec. (1.8)] se obtienen los coeficientes de amplitud r y t para polarización s, dados por

Coeficientes de amplitud para polarización 
$$s$$

$$r_s = \frac{n_i \cos \theta_i - \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}{n_i \cos \theta_i + \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}, \quad (1.9) \qquad t_s = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}. \quad (1.10)$$

Cuando el campo eléctrico es paralelo al plano de incidencia, y por tanto perpendicular a la interfaz como se observa en la Fig. 1.2b), se cumple la relación  $E_i \cos \theta_i - E_r \cos \theta_r = E_t \cos \theta_t$  por la Ec. (1.6b). Al asumir nuevamente que la orientación de oscilación del campo eléctrico

reflejado y transmitido coincide con la del campo eléctrico incidente, y al emplear las Ecs. (1.6d), (1.7) y (1.8), así como la relación E = (c/n)B, se calculan los coeficientes de amplitud r y t para polarización p, dados por

Coeficientes de amplitud para polarización 
$$p$$

$$r_p = \frac{n_t^2 \cos \theta_i - n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}{n_t^2 \cos \theta_i + n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}, \quad (1.11) \quad t_p = \frac{2n_i n_t \cos \theta_i}{n_t^2 \cos \theta_i + n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}. \quad (1.12)$$

Los coeficientes de amplitud dependen de las propiedades ópticas de los medios, descritas por los índices de refracción presentes en sus expresiones, y según el valor de los índices de refracción se presentan distintos fenómenos físicos descritos por las Ecs. (1.9)–(1.12). Cuando la luz cruza una interfaz, entre dos medios lineales, homogéneos e isótropos, y se cumple que  $n_t > n_i$ , se está en una configuración de incidencia externa, mientras que en caso contrario,  $n_t < n_i$ , se está en incidencia interna. En la Fig. 1.3 se grafican los coeficientes de amplitud r (líneas continuas) y t (líneas punteadas) como función del ángulo de incidencia  $\theta_i$  para una interfaz de entre aire (n=1) y un medio con un índice de refracción n=1.5, en configuración de incidencia externa [Fig. 1.3a)] e interna [Fig. 1.3b)] para ambas polarizaciones, en donde las líneas azules corresponden a la polarización s y las rojas a p. Dado que los índices de refracción  $n=\sqrt{\varepsilon}$  son cantidades reales, ninguno de los dos medios es absorbente.



Fig. 1.3: Coeficientes de amplitud r (líneas continuas) y t (líneas punteadas), como función del ángulo de incidencia  $\theta_i$ , en configuración de incidencia a) externa e b) interna para una interfaz entre aire (n=1) y un medio con índice de refracción n=1.5. Los cálculos para polarización s se muestran en azul y para p en rojo.

En la Fig. 1.3 el coeficiente de amplitud de reflexión  $r_p$  [Ec. (1.11)] toma un valor nulo para el ángulo de incidencia denominado ángulo de Brewster  $\theta_B$ , que cumple con la expresión

$$\tan \theta_B = \frac{n_t}{n_i},\tag{1.13}$$

tanto para incidencia externa [Fig. 1.3a)], donde  $\theta_B \approx 56^\circ$ , como para interna [Fig. 1.3b)], donde  $\theta_B \approx 33^\circ$ . El cambio de signo del coeficiente de reflexión  $r_p$  para  $\theta_i > \theta_B$  corresponde a un cambio de fase de  $\pi$  radianes del campo eléctrico reflejado respecto al campo eléctrico incidente. De la Ec. (1.13) se deduce que el ángulo de Brewster de incidencia externa  $\theta_B^{ext}$  es complementario al

de incidencia interna  $\theta_B^{int}$ , es decir,  $\theta_B^{ext} + \theta_B^{int} = 90^{\circ}$  como se observa en las gráficas de la Fig. 1.3. Cuando se considera una configuración de incidencia interna, se cumple la relación  $n_i > n_t$ , por los coeficientes de amplitud [Ecs. (1.9)–(1.12)] son cantidades complejas para un ángulos de incidencia mayores al ángulo crítico  $\theta_c$  que cumple la expresión

$$\sin \theta_c = \frac{n_t}{n_i}.\tag{1.14}$$

Al sustituir la Ec. (1.14) en la ley de Snell [Ec. (1.8)] se obtiene que  $\theta_t = 90^{\circ}$  por lo que para  $\theta_i > \theta_c$  toda la luz es reflejada y no transmitida, es decir, se está en el régimen reflexión total interna. En la Fig. 1.3b) se observa que los coeficientes de amplitud son máximos en  $\theta_c \approx 48^{\circ}$  sin embargo, para  $\theta_i > \theta_c$ , los coeficientes de amplitud [Ecs. (1.9)–(1.12)] son cantidades complejas, lo que indica que los campos eléctricos reflejado y transmitido tienen un desfase, distinto de  $\pi$  radianes, respecto al campo eléctrico incidente. Para corroborar que toda la luz es reflejada en incidencia interna para  $\theta_i > \theta_c$  se considera la conservación de la energía transportada por los campos EMs al cruzar la interfaz.

#### 1.1.2. Reflectancia y transmitancia

El análisis del comportamiento de las ondas EMs al cruzar una interfaz plana, entre dos medios lineales homogéneos e isótropos, en términos de las amplitudes de los campos eléctricos describen el comportamiento de la magnitud y los cambios de fase en los campos eléctricos y no la cantidad de luz transmitida o reflejada. Esta información se obtiene al considerar la energía transportada por los campos EMs, por lo que se emplea el vector de Poynting [Ec. (1.2)] escrito únicamente en términos del campo eléctrico usando la relación E = nB/c

$$\mathbf{S} = nc\varepsilon_0 E_0^2 \hat{\mathbf{k}}.\tag{1.15}$$

Al considerar campos eléctricos armónicos, es decir, tipo ondas planas, es necesario calcular el promedio temporal<sup>3</sup> de la Ec. (1.15), denominado irradiancia [2], dada por

$$I = \langle S \rangle_t = \frac{nc\varepsilon_0}{2} E_0^2. \tag{1.16}$$

La irradiancia I corresponde a la energía promedio por unidad de tiempo, por unidad de área, transportada por los campos EMs en la dirección  $\hat{\mathbf{k}}$  [1]. Para calcular la energía por unidad de tiempo P transportada por los campos EMs al cruzar la interfaz se multiplica la Ec. (1.16) por la sección transversal del haz de luz. En la Fig. 1.4 se muestran las secciones transversales de un haz incidente que incide a un ángulo  $\theta_i$  sobre la interfaz entre dos medios con índice de refracción  $n_i$  y  $n_t$ , respectivamente. Cuando el haz se refleja, a un ángulo  $\theta_r = \theta_i$ , y se refracta a un ángulo  $\theta_r$ , la sección transversal del haz cambia. Si el área de los haces justo en la interfaz es A, mediante la ley de la reflexión [Ec. (1.7)] y la ley de Snell [Ec. (1.8)], la sección transversal del has incidente y el reflejado es  $A \cos \theta_i$ , mientras que la del haz transmitido es  $A \cos \theta_t$ .

Al emplear la Ec. (1.16) y multiplicarla por el área de alguno de los tres haces mostrados

<sup>&</sup>lt;sup>3</sup>Al considerar los campos EMs como ondas planas [Ec. (1.3)], el vector de Poynting es  $\mathbf{S} = \mathrm{Re}(\mathbf{E}) \times \mathrm{Re}(\mathbf{B}/\mu) = \mathbf{E} \times (\mathbf{B}/\mu)^*$ , en donde \* es el complejo conjugado y al calcular el promedio temporal  $\langle \mathbf{S} \rangle_t = (1/\tau) \int_t^{t+\tau} \mathbf{S}(t') dt'$  para campos EMs tipo ondas planas, se obtiene que  $\langle \mathbf{S} \rangle_t = (1/2) \, \mathrm{Re}[\mathbf{E} \times (\mathbf{B}/\mu)^*]$ .



Fig. 1.4: Sección transversal de un haz de luz incidiendo en una interfaz entre dos medio lineales, homogéneos e isótropos con índices de refracción  $n_i$  y  $n_t$ . El haz incide sobre la interfaz a un ángulo de  $\theta_i$ , se refleja con un ángulo  $\theta_r$  y se transmite a un ángulo  $\theta_t$ , calculados medinate las ley de la reflexión y de Snell, respectivamente. El área del haz sobre la interfaz es A, mientras que en los haces, al propagarse, es  $A\cos\theta$ , en donde  $\theta$  es el ángulo de propagación respectivo para cada haz.

en la Fig. 1.4, se obtiene que la energía por unidad de tiempo transportada por cada haz de luz es

$$P = IA\cos\theta = \frac{nc\varepsilon_0}{2}E_0^2\cos\theta,$$

en donde el ángulo  $\theta$  e indice de refracción n toman los valores de  $\theta_i$  y  $n_i$  para el haz incidente y el reflejado, mientras que toma los valores de  $\theta_t$  y  $n_t$  para el haz transmitido. Cuando se normaliza la energía por unidad de tiempo transportada por el haz reflejado y por el haz transmitido, entre la del haz incidente se obtienen las expresiones de la reflectancia R y la transmitancia T

Reflectancia y transmitancia 
$$R = rr^*, \qquad (1.17) \qquad T = \frac{n_t \cos \theta_i}{n_i \cos \theta_t} tt^*, \qquad (1.18)$$

en donde r es el coeficiente de amplitud de reflexión y t el de transmisión, dados por las Ecs. (1.9)-(1.12), y \* el complejo conjugado.

En la Fig. 1.5 se presentan la reflectancia (líneas continuas) y transmitancia (líneas punteadas) como función del ángulo de incidencia  $\theta_i$ , para la polarización s (en azul) y p (en rojo), de un haz de luz que incide en la interfaz entre aire (n=1) y un medio con índice de refracción n=1.5 para una configuración de incidencia externa [Fig. 1.5a)] e incidencia interna [Fig. 1.5a)].

El ángulo de Brewster  $\theta_B$  es apreciable en las gráficas de la Fig. 1.5, en donde se observa  $R_p = 0$ . Asimismo es apreciable en la Fig. 1.5b) que para ángulos de incidencia mayores al ángulo crítico, se cumple que  $R_p = R_s = 1$ , mientras que  $T_s = T_p = 0$ , es decir, que toda la luz



Fig. 1.5: Reflectrancia (líneas sólidas) y transmitancia (líneas punteadas), como función del ángulo de incidencia  $\theta_i$ , en configuración de incidencia **a)** externa e **b)** interna para una interfaz entre aire (n = 1) y un medio con índice de refracción n = 1.5. Los cálculos para polarización s se muestran en azul y para p en rojo.

es reflejada. En la Fig. 1.5 se observa que es válida la relación

$$R+T=1$$
,

sin embargo, ésta es válida únicamente para índices de refracción  $n=\sqrt{\varepsilon}$  que sean cantidades reales, es decir, que la interfaz sea formada por dos medios lineales, homogéneos e isótropos que, además, no sean absorbentes. Cuando la luz se propaga a través de algún medio absorbente, se cumple en general

$$R+T+A=1$$
,

en donde el término A es la energía absorbida por el material, relativa a la energía del haz incidente.

#### 1.2. Solución de Mie

El problema de absorción y esparcimiento de luz por una partícula esférica fue resuelto por el físico alemán Gustav Mie en 1908 [6]. La solución de Mie consiste en expandir una onda plana, que ilumina a una esfera de tamaño y material arbitrario, en una base de armónicos esféricos vectoriales que son una base ortogonal esférica y cuyos elementos satisfacen las ecuaciones de Maxwell [7]. Al considerar las condiciones de contorno que satisfacen los campos EMs sobre la superficie de la esfera, se escriben los campos EMs dentro de la partícula y los campos esparcidos por ésta como una serie en la base de los armónicos esféricos vectoriales, cuyos coeficientes corresponden a una expanción multipolar y son conocidos como los coeficientes de Mie [7]. A pesar de que existen publicaciones previas a la de Mie en donde el problema de la absorción y esparcimiento de luz es tratado de forma semejante, el trabajo de Mie destacó debido a que en él se desarrollan relaciones recursivas que facilitan el cálculo numérico y se discute la convergencia de este resultado [8]. El desarrollo de una solución apta para el cálculo numérico permitió que en el artículo de Mie se expusieran diez casos prácticos, los que contribuyó al impacto de su solución sobre el trabajo de otros autores [8].

Para el estudio del esparcimiento por una partícula arbitraria inmersa en un medio con índice de refracción  $n_m$ , denominado matriz, se considera que la partícula es iluminada por una onda plana con una longitud de onda  $\lambda$ , cuya dirección de propagación define la dirección z, es decir,

$$\mathbf{E}^{i} = (E_x^{i} \hat{\mathbf{e}}_x + E_y^{i} \hat{\mathbf{e}}_y) e^{i(kz - \omega t)}, \tag{1.19}$$

donde  $k = 2\pi n_m/\lambda$  es el número de onda. En la Fig. 1.6 se muestra una partícula localizada en el origen iluminada por una onda plana [Ec. (1.19)] que se propaga en la dirección z. De forma análoga al plano de incidencia<sup>4</sup> se define el plano de esparcimiento ( en color verde en la Fig. 1.6) con el vector de dirección del esparcimiento  $\hat{\mathbf{e}}_r$  y la dirección del haz incidente  $\hat{\mathbf{e}}_z$ . Con base en el plano de esparcimiento es posible definir las componentes ortogonales  $\perp$  y paralelas  $\parallel$  de los campos EMs, así como su polarización.



Fig. 1.6: Diagrama del plano de esparcimiento (en verde) definido por el vector  $\mathbf{r}$ , posición donde se evalúan los campos EMs, y el vector  $\hat{\mathbf{e}}_z$ , cuando una onda plana propagándose en dirección z (en rojo) ilumina a una partícula arbitraria. La base canónica cartesiana para vectores se muestra en azul, mientras que la base canónica esférica se muestra en negro. Las direcciones paralelas  $\parallel$  y perpendiculares  $\perp$  al plano de incidencia para el campo eléctro incidente, denotado por el subíndice i y el esparcido, denotado por el subíndice s se muestran en morado. En ambas figuras, el haz incidente se muestra en rojo.

Como se muestra en la Fig. 1.6, los vectores unitarios perpendicular y paralelo al plano de esparcimiento de la onda incidente,  $\hat{\mathbf{e}}_{\perp}^{i}$  y  $\hat{\mathbf{e}}_{\parallel}^{i}$ , respectivamente, están dados por

$$\hat{\mathbf{e}}_{\perp}^{i} = -\hat{e}_{\varphi} = \sin\varphi \,\hat{\mathbf{e}}_{x} - \cos\varphi \,\hat{\mathbf{e}}_{y},\tag{1.20a}$$

$$\hat{\mathbf{e}}_{\parallel}^{i} = \sin\theta \,\hat{\mathbf{e}}_{r} + \cos\theta \,\hat{\mathbf{e}}_{\theta} = \cos\varphi \,\hat{\mathbf{e}}_{x} + \sin\varphi \,\hat{\mathbf{e}}_{y}, \tag{1.20b}$$

$$\hat{\mathbf{e}}_z = \hat{\mathbf{e}}_\perp^i \times \hat{\mathbf{e}}_\parallel^i, \tag{1.20c}$$

y a su vez, la base de vectores ortonormales con la que se describirán los campos EMs esparcidos

<sup>&</sup>lt;sup>4</sup>En el problema de un onda plana incidente a una superficie plana, el plano de incidencia se define por el vector normal a la superficie y la dirección de propagación de la onda plana.

 $\{\hat{\mathbf{e}}_{\perp}^{s},\hat{\mathbf{e}}_{\parallel}^{s},\hat{\mathbf{e}}_{r}\}$  por la partícula son

$$\hat{\mathbf{e}}_{\perp}^s = -\hat{\mathbf{e}}_{\varphi},\tag{1.21a}$$

$$\hat{\mathbf{e}}_{\parallel}^{s} = \hat{\mathbf{e}}_{\theta},\tag{1.21b}$$

$$\hat{\mathbf{e}}_r = \hat{\mathbf{e}}_{\perp}^s \times \hat{\mathbf{e}}_{\parallel}^s. \tag{1.21c}$$

Al despejar  $\hat{\mathbf{e}}_x$  y  $\hat{\mathbf{e}}_y$  de las Ecs. (1.20), y reescribirlos en la base de los vectores unitarios en la dirección perpendicular y normal al plano de esparcimiento como

$$\begin{split} \mathbf{\hat{e}}_{x} &= \sin \varphi \, \mathbf{\hat{e}}_{\perp}^{i} + \cos \varphi \, \mathbf{\hat{e}}_{\parallel}^{i}, \\ \mathbf{\hat{e}}_{y} &= -\cos \varphi \, \mathbf{\hat{e}}_{\perp}^{i} + \sin \varphi \, \mathbf{\hat{e}}_{\parallel}^{i}, \end{split}$$

se obtiene que  $\mathbf{E}^{i}$  [Ec. (1.19)] se puede escribir como

$$\mathbf{E}_{i} = \left[ (\cos \varphi E_{x}^{i} + \sin \varphi E_{y}^{i}) \hat{\mathbf{e}}_{\perp}^{i} + (\sin \varphi E_{x}^{i} - \cos \varphi E_{y}^{i}) \hat{\mathbf{e}}_{\parallel}^{i} \right] e^{ikz}$$

$$= E_{\perp}^{i} \hat{\mathbf{e}}_{\perp}^{i} + E_{\parallel}^{i} \hat{\mathbf{e}}_{\parallel}^{i}$$

$$(1.22)$$

en donde se omite el término de la fase temporal  $e^{-i\omega t}$  y la fase espacial  $e^{ikz}$  se incluye en los coficientes  $E^i_{\perp}$  y  $E^i_{\parallel}$ . Adicionalmente, al considerar para el campo eléctrico esparcido únicamente los términos que corresponden al campo lejano, es decir, el término con componentes transversales y que decae como  $r^{-1}$  y cumple con la relación  $kr \ll 1$ , el campo esparcido  $\mathbf{E}^s$  puede escribirse como [7]

$$\mathbf{E}^{s} \propto \frac{e^{ikr}}{-ikr} \mathbf{E}_{0}^{s} = \frac{e^{ikr}}{-ikr} \left( E_{\perp}^{s} \hat{\mathbf{e}}_{\perp}^{s} + E_{\parallel}^{s} \hat{\mathbf{e}}_{\parallel}^{s} \right)$$
(1.23)

en donde  $\mathbf{E}_0^s$  es la amplitud del campo esparcido,  $E_{\perp}^s$  y  $E_{\parallel}^s$  sus componentes en la base de los vectores paralelo y perpendicular al plano de esparcimiento [Ec. (1.21)]. Es posible relacionar al campo eléctrico esparcido  $\mathbf{E}^s$  [Ec. (1.23)] con el incidente  $\mathbf{E}^i$  [Ec. (1.22) mediante la matriz matriz de esparcimiento  $\mathbb{S}$ 

$$\begin{pmatrix} E_{\parallel}^s \\ E_{\perp}^s \end{pmatrix} = \frac{e^{ik(r-z)}}{-ikr} \begin{pmatrix} S_2 & S_3 \\ S_4 & S_1 \end{pmatrix} \begin{pmatrix} E_{\parallel}^i \\ E_{\perp}^i \end{pmatrix}, \tag{1.24}$$

en donde, de forma general,  $S_j = S_j(\theta, \varphi)$ , con j = 1, 2, 3 y 4, además de que las componentes de la matriz de esparcimiento en la Ec. (1.24) dependen de la geometría de la partícula iluminada por la onda plana.

#### 1.2.1. Solución a la ecuación de onda con simetría esférica

Las ecuaciones de Maxwell, al considerar una región del espacio sin cargas externas, y campos EMs armónicos en el tiempo, se reescriben como [3]

$$\nabla \cdot \mathbf{E} = 0, \qquad (1.25a) \qquad \nabla \cdot \mathbf{H} = 0, \qquad (1.25b)$$

$$\nabla \times \mathbf{E} = i\omega \mu \mathbf{H}, \qquad (1.25c) \qquad \nabla \times \mathbf{H} = -i\omega \varepsilon \mathbf{E}, \qquad (1.25d)$$

en donde  $\mathbf{H} = \mathbf{B}/\mu$  es el campo H, y la función dieléctrica  $\varepsilon$  y la permeabilidad magnética  $\mu$  del material son funciones continuas. Al desacoplar las ecuaciones de Maxwell, se concluye que los campos EMs son soluciones a la ecuación de Helmholz

$$\nabla^2 \mathbf{E} - k^2 \mathbf{E} = \mathbf{0}, \qquad (1.26a) \qquad \nabla^2 \mathbf{H} - k^2 \mathbf{H} = \mathbf{0}, \qquad (1.26b)$$

en donde  $k = nk_0$  es la magnitud del vector de onda, n es el índice de refracción del material [Ec. (1.5)] y  $k_0 = \omega/c$  es la relación de dispersión en el vacío [Ec. (1.4)].

Se propone un campo vectorial M tal que

$$\mathbf{M} = \nabla \times (\mathbf{r}\psi) \,, \tag{1.27}$$

donde  $\psi$  es una función escalar y  $\mathbf{r}$  el vector de posición; dado que  $\mathbf{M}$  es el rotacional de  $\mathbf{r}\psi$ , se cumple que  $\nabla \cdot \mathbf{M} = \mathbf{0}$  y que  $\mathbf{M}$  y  $\mathbf{r}$  son vectores perpendiculares<sup>5</sup> La la ecuación de Helmholtz para  $\mathbf{M}$ , dado que el operador laplaciano y el rotacional conmutan<sup>6</sup>, es

$$\nabla^{2}\mathbf{M} + k^{2}\nabla\mathbf{M} = \nabla \times \left[\nabla^{2}\left(\mathbf{r}\psi\right) + k^{2}\left(\mathbf{r}\psi\right)\right],$$

y como  $\nabla^2(\mathbf{r}\psi) = 2\nabla\psi + \mathbf{r}\nabla^2\psi^7$  y  $\nabla \times (\nabla\psi) = 0$ , la ecuación de Helmholtz para **M** puede reescribirse como

$$\nabla^2 \mathbf{M} + k^2 \nabla \mathbf{M} = \nabla \times \left[ \mathbf{r} \left( \nabla^2 \psi + k^2 \psi \right) \right]. \tag{1.28}$$

Adicional a  $\mathbf{M}$ , se define el vector  $\mathbf{N}$  dado por

$$\mathbf{N} = \frac{\nabla \times \mathbf{M}}{k},\tag{1.29}$$

cuyo laplaciano es  $\nabla^2 \mathbf{N} = \nabla^2 (\nabla \times \mathbf{M}/k) = \nabla \times (\nabla^2 \mathbf{M}/k)$ , y por tanto la ecuación de Helmholtz para  $\mathbf{N}$  es

$$\nabla^2 \mathbf{N} + k^2 \mathbf{N} = \nabla \times \left( \frac{\nabla^2 \mathbf{M}}{k} \right) + k \nabla \times \mathbf{M} = \frac{1}{k} \nabla \times \left( \nabla^2 \mathbf{M} + k^2 \mathbf{M} \right).$$

Los campos **M** y **N** cumplen con la ecuación de Helmholtz vectorial [Ec. (1.26)] si, y sólo si, la función escalar  $\psi$  cumple con la ecuación de Helmholtz escalar  $\nabla^2 \psi + k^2 \psi = 0$ . Si este es

<sup>&</sup>lt;sup>5</sup>Empleando la convención de la suma de Einstein y con  $\epsilon_{ijk}$  el símbolo de Levi-Civita:  $M_i = [\nabla \times (\mathbf{c}\psi)]_i = \epsilon_{ijk}\partial_j(r_k\psi) = \psi\epsilon_{ijk}\partial_j(r_k) - \epsilon_{ikj}r_k\partial_j\psi = \psi[\nabla \times \mathbf{r}]_i - [\mathbf{r} \times \nabla \psi]_i = -[\mathbf{r} \times \nabla \psi]_i.$ 

<sup>&</sup>lt;sup>6</sup>Para un campo vectorial arbitrario  $\mathbf{A}$  se cumple que  $\nabla^2 \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$ , por lo que el rotacional del laplaciano de  $\mathbf{A}$  es  $\nabla \times (\nabla^2 \mathbf{A}) = \nabla \times [\nabla(\nabla \cdot \mathbf{A})] - \nabla \times [\nabla \times (\nabla \times \mathbf{A})] = -\nabla \times [\nabla \times (\nabla \times \mathbf{A})]$  pues el rotacional del gradiente de cualquier función es nulo. Además, al sustituir  $\mathbf{A} \to \nabla \times \mathbf{A}$  en la expresión del laplaciano de  $\mathbf{A}$  y considerando que la divergencia del rotacional de cualquier función es nulo, se obtiene que $\nabla^2(\nabla \times \mathbf{A}) = \nabla[\nabla \cdot (\nabla \times \mathbf{A})] - \nabla \times [\nabla \times (\nabla \times \mathbf{A})] = -\nabla \times [\nabla \times (\nabla \times \mathbf{A})]$ . Por tanto,  $\nabla^2$  y  $\nabla$ × con operadores que conmutan.

 $<sup>{}^{7}[\</sup>nabla^{2}(\mathbf{r}\psi)]_{i} = \partial_{jj}^{2}(r_{i}\psi) = \partial_{j}[\partial_{j}(r_{i})\psi + r_{i}\partial_{j}\psi] = \partial_{jj}r_{i} + 2\partial_{j}r_{i}\partial_{j}\psi + r_{i}\partial_{jj}^{2}\psi, \text{ donde } \partial_{j}r_{i} = \delta_{ij} \text{ con } \delta_{ij} \text{ la delta de Kronecker, po lo que se cumple que } [\nabla^{2}(\mathbf{r}\psi)]_{i} = 2\partial_{i}\psi + r_{i}\partial_{jj}\psi = 2[\nabla\psi]_{i} + [\mathbf{r}\nabla^{2}\psi]_{i}.$ 

el caso, entonces, el rotacional de N está dado por

$$\nabla \times \mathbf{N} = \nabla \times \left(\frac{\nabla \times \mathbf{M}}{k}\right) = \frac{\nabla(\nabla \cdot \mathbf{M}) - \nabla^2 \mathbf{M}}{k} = -\frac{\nabla^2 \mathbf{M}}{k} = \frac{k^2 \mathbf{M}}{k} = k\mathbf{M}.$$
 (1.30)

Los campos vectoriales  $\mathbf{M}$  y  $\mathbf{N}$  son conocidos como los armónicos vectoriales,  $\psi$  como su función generadora y  $\mathbf{r}$  como el vector de guía o vector piloto. Los armónicos vectoriales  $\mathbf{M}$  y  $\mathbf{N}$  cumplen con tener divergencia nula y que el rotacional de uno es porporcional al otro [Ecs. (1.29) y (1.30)], es decir, que cumplen con las ecuaciones de Maxwell[Ecs. (1.25)] siempre que se cumpla que

#### $\psi$ : Función generadora de los armónicos vectoriales

$$\nabla^2 \psi + k^2 \psi = 0. \tag{1.31}$$

Cuando se considera una partícula esférica de radio a e índice de refracción  $n_p$ , inmersa en un medio denominado matriz con índice de refracción  $n_m$  (ver Fig. 1.7), iluminada por una onda plana propagándose a lo largo del eje z, es conveniente emplear coordenadas esféricas  $\{r, \theta, \varphi\}$ , en las que los la función generadora de los armónicos vectoriales es

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2} + k^2\psi = 0,\tag{1.32}$$

Al resolver la Ec. (1.32) es posible construir un conjunto de funciones linealmente independientes que sean una base para los campos EMs incidente, esparcido y dentro de la esfera, lo que permite determinar mediante las condiciones a la frontera la forma de la matriz de esparcimiento [Ec. (1.24)], resolviendo el problema del esparcimiento de luz debido a la partícula.



Fig. 1.7: Esfera de radio a e ínide de refracción  $n_p$ , inmersa en una matriz con índice  $n_m$ . La esfera es iluminada por una onda plana con vector de onda  $\mathbf{k}_i$ , que se propaga en la dirección  $\hat{e}_z$ . Se escoge como vector piloto  $\mathbf{r}$ .

Para resolver la Ec. (1.32) se emplea el método de separación de variables, donde se propone como solución  $\psi = R(r)\Theta(\theta)\Phi(\varphi)$ . Al despejar los términos que dependen únicamente de r en la Ec. (1.32) se obtiene como resultado que una función con dependencia radial es igual

a una función con dependencia angular, por lo tanto se igualan a una constante  $\ell(\ell+1)$ 

$$\frac{1}{R} \frac{d}{dr} \left( r^2 \frac{dR}{dr} \right) + k^2 r^2 = \ell(\ell+1) = -\frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left( \sin \theta \frac{d\Theta}{d\theta} \right) - \frac{1}{\sin^2 \theta} \frac{1}{\Phi} \frac{\partial^2 \psi}{\partial \varphi^2}.$$
(1.33)

Si a su vez, se despejan de la parte angular de la Ec. (1.33) los términos con dependencia en  $\theta$  se obtiene que una función que depende únicamente de  $\theta$  es igual a una que depende únicamente de  $\varphi$ , por lo que ambas partes se igualan a la constante  $m^2$ . Entonces, las funciones R(r),  $\Theta(\theta)$ , y  $\Phi(\varphi)$  cumplen con las ecuaciones

$$\frac{1}{\Phi} \frac{\mathrm{d}^2 \psi}{\mathrm{d}\varphi^2} + m^2 \Phi = 0. \tag{1.34}$$

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left( \sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \left[ \ell(\ell+1) - \frac{m^2}{\sin^2\theta} \right] \Theta = 0, \tag{1.35}$$

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left[k^2r^2 - \ell(\ell+1)\right]R = 0,\tag{1.36}$$

tanto  $\ell$  como m son constantes que se determinan ante condiciones impuestas a  $\psi$ . Dado que  $\psi$  debe ser una función con periodicidad  $2\pi$  en  $\varphi$ , es decir que  $\psi(\varphi) = \psi(\varphi + 2\pi)$ , las soluciones linealmente independientes de la Ec. (1.34) son

$$\Phi_e(\varphi) = \cos(m\varphi),$$
(1.37a)
$$\Phi_o(\varphi) = \sin(m\varphi),$$
(1.37b)

con m un número entero no negativo y donde los subíndices e y o hacen referencia a que son funciones pares (even, e) e impares (odd, o), respectivamente. Las funciones  $\sin(m\varphi)$  y  $\cos(m\varphi)$  obedecen las relaciones de ortogonalidad

$$\int_0^{2\pi} \sin(m\varphi) \cos(m'\varphi) d\varphi = 0 \qquad \forall m, m', \tag{1.38a}$$

$$\int_0^{2\pi} \sin(m\varphi) \sin(m'\varphi) d\varphi = \int_0^{2\pi} \cos(m\varphi) \cos(m'\varphi) d\varphi = \delta_{m,m'} \frac{\pi}{2}, \quad (1.38b)$$

en donde  $\delta_{m,m'}$  es la delta de Kronecker.

Al realizar el cambio de variable  $\mu = \cos \theta$  en la Ec. (1.35), ésta se reescribe como

$$(1-\mu^2)\frac{\mathrm{d}^2\Theta}{\mathrm{d}\mu^2} - 2\mu\frac{\mathrm{d}\Theta}{\mathrm{d}\mu} + \left[\ell(\ell+1) - \frac{m^2}{(1-\mu^2)}\right]\Theta = 0,$$

cuyas soluciones son las funciones asociadas de Legendre  $P_{\ell}^{m}(\cos\theta)$  de grado  $\ell$  y orden m [9], imponiendo  $\ell=m,m+1,m+2,\ldots$  para que la Ec. (1.35) sea finita en  $\theta=0$  y  $\theta=\pi$ —o bien  $\mu=\pm 1$ —. Las funciones asociadas de Legendre cumplen con la relación de ortogonalidad

$$\int_{-1}^{1} P_{\ell}^{m}(\mu) P_{\ell'}^{m} d\mu = \delta_{\ell,\ell'} \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!},$$
(1.39)

Asimismo, las funciones asociadas de Legendre se reducen a los polinomios de Legendre cuando m=0, ademas de que las funciones asociadas y los polinomios de Legendre se relacionan mediante la identidad

$$P_{\ell}^{m}(\mu) = (1 - \mu^{2})^{m/2} \frac{\mathrm{d}^{m} P_{\ell}(\mu)}{\mathrm{d}\mu^{m}},$$
(1.40)

de donde se deduce que  $P_{\ell}^{m}(\cos \theta)|_{\theta=0,\pi}=0$  para toda m distinta de cero.

Para resolver la Ec. (1.36) se emplea el cambio de variable  $\rho = kr$  y de define la función  $Z = R\sqrt{\rho}$ , por lo que la Ec. (1.36) se reescribe como

$$\rho \frac{\mathrm{d}}{\mathrm{d}\rho} \left( \rho \frac{\mathrm{d}Z}{\mathrm{d}\rho} \right) + \left[ \rho^2 - \left( \ell + \frac{1}{2} \right)^2 \right] Z = 0, \tag{1.41}$$

cuyas soluciones son las funciones esféricas de Bessel  $j_{\ell}$  y  $y_{\ell}$  o cualquier combinación lineal de ellas, por lo que de forma general las soluciones de la Ec. (1.41) son [9]

$$j_{\ell}(\rho) = \sqrt{\frac{\pi}{2\rho}} J_{\ell+1/2}(\rho),$$
 (1.42a)  $y_{\ell}(\rho) = \sqrt{\frac{\pi}{2\rho}} Y_{\ell+1/2}(\rho),$  (1.42b)

$$h_{\ell}^{(1)}(\rho) = j_{\ell}(\rho) + iy_{\ell}(\rho),$$
 (1.42c)  $h_{\ell}^{(2)}(\rho) = j_{\ell}(\rho) - iy_{\ell}(\rho),$  (1.42d)

en donde  $J_{\ell}$  y  $Y_{\ell}$  son las funciones de Bessel del primer y segundo tipo respectivamente y  $h_{\ell}$  son las funciones esféricas de Bessel del tercer tipo, también denominadas como funciones esféricas de Hankel. Todas las funciones esféricas de Bessel  $z_{\ell}$ —donde  $z_{\ell}$  es cualquier función de las Ecs. (1.42)— cumplen con las relaciones de recurrencia

$$z_{\ell-1}(\rho) + z_{\ell+1}(\rho) = \frac{2\ell+1}{\rho} z_{\ell}(\rho), \tag{1.43}$$

$$(2\ell+1)\frac{\mathrm{d}z_{\ell}(\rho)}{\mathrm{d}\rho} = \ell z_{\ell-1}(\rho) - (\ell+1)z_{\ell+1}(\rho), \tag{1.44}$$

 $con j_0(\rho) = \sin \rho / \rho \ y \ j_1(\rho) = \sin \rho / \rho^2 - \cos \rho / \rho, \ y_0(\rho) = -\cos \rho / \rho \ y \ y_1(\rho) = -\cos \rho / \rho^2 - \sin \rho / \rho.$ 

Dado que las soluciones para la ecuación azimutal son las Ecs. (1.37), para la polar la Ec. (1.40) y para la radial las Ecs. (1.42), las funciones generadoras de los armónicos esféricos vectoriales son

$$\psi_{em\ell} = \cos(m\varphi)P_{\ell}^{m}(\cos\theta)z_{\ell}(kr), \quad (1.45a) \quad \psi_{om\ell} = \sin(m\varphi)P_{\ell}^{m}(\cos\theta)z_{\ell}(kr), \quad (1.45b)$$

Al emplear las Ecs. (1.45) en la Ec. (1.27) se obtiene como resultado  $\mathbf{M}_{em\ell}$  y  $\mathbf{M}_{om\ell}$ , dados por las expresiones

#### Armónicos esféricos vectoriales $\mathbf{M}_{em\ell}$ y $\mathbf{M}_{om\ell}$

$$\mathbf{M}_{em\ell} = -m\sin(m\varphi)z_{\ell}(kr)\frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta}\,\hat{\mathbf{e}}_{\theta} - \cos(m\theta)z_{\ell}(kr)\frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\,\hat{\mathbf{e}}_{\varphi},\qquad(1.46a)$$

$$\mathbf{M}_{om\ell} = m\cos(m\varphi)z_{\ell}(kr)\frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta}\,\hat{\mathbf{e}}_{\theta} - \sin(m\theta)z_{\ell}(kr)\frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\,\hat{\mathbf{e}}_{\varphi}.$$
 (1.46b)

Para el cálculo  $\mathbf{N}_{em\ell}$  y  $\mathbf{N}_{om\ell}$  se sustituyen las Ecs. (1.46a) y (1.46b) en la Ec. (1.29). Para simplificar las expresiones de las componentes radiales de  $\mathbf{N}_{em\ell}$  y  $\mathbf{N}_{om\ell}$ , se agrupan los términos que dependen de  $\varphi$  y kr y, dado que las funciones asociadas de Legendre cumplen con la relación

$$-\ell(\ell+1)P_{\ell}^{m}(\cos\theta) = \frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\right) - \frac{m^{2}}{\sin^{2}\theta} P_{\ell}^{m}(\cos\theta),$$

que es una consecuencia de la Ec. (1.35), las expresiones de  $N_{em\ell}$  y  $N_{om\ell}$  son

# $f Armónicos\ esféricos\ vectoriales\ f N_{em\ell}\ y\ f N_{om\ell}$

$$\mathbf{N}_{em\ell} = \cos(m\varphi) \frac{z_{\ell}(kr)}{kr} \ell(\ell+1) P_{\ell}^{m}(\cos\theta) \,\hat{\mathbf{e}}_{r}$$

$$+ \cos(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \left[ kr \, z_{\ell}(kr) \right] \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta} \,\hat{\mathbf{e}}_{\theta}$$

$$- m \sin(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \left[ kr \, z_{\ell}(kr) \right] \frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta} \,\hat{\mathbf{e}}_{\varphi},$$

$$(1.46c)$$

$$\mathbf{N}_{om\ell} = \sin(m\varphi) \frac{z_{\ell}(kr)}{kr} \ell(\ell+1) P_{\ell}^{m}(\cos\theta) \,\hat{\mathbf{e}}_{r}$$

$$+ \sin(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \left[ kr \, z_{\ell}(kr) \right] \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta} \,\hat{\mathbf{e}}_{\theta}$$

$$+ m \cos(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \left[ kr \, z_{\ell}(kr) \right] \frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta} \,\hat{\mathbf{e}}_{\varphi}.$$

$$(1.46d)$$

Los armónicos esféricos vectoriales son solución a la ecuación de Helmholtz, por lo que cualquier solución de los campos EM puede escribirse como una serie infinta en términos de las Ecs. (1.46). Para resolver el problema de los campos EMs esparcidos por una partícula esférica, estos es, determinar las componentes de la matriz de esparcimiento  $\mathbb S$  de la Ec. (1.24), se expande una onda plana  $\mathbf E^i$  en la base de los armónicos esféricos vectoriales. Para esto, se emplean sus condiciones de ortogonalidad, calculadas a partir de la relaciones de ortogonalidad de las Ecs. (1.37) y (1.39), dando como resultado que los armónicos esféricos vectoriales son ortogonales cuando tienen paridad distinta y cuando se realiza el producto interior entre  $\mathbf M$  y  $\mathbf N$ , es decir

$$\langle \mathbf{M}_{em\ell}, \mathbf{M}_{om'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{N}_{em\ell}, \mathbf{N}_{om'\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall m, m', \ell, \ell', \quad (1.47)$$

$$\langle \mathbf{M}_{om\ell}, \mathbf{N}_{em'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell}, \mathbf{N}_{om'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{em\ell}, \mathbf{N}_{em'\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall m, m', \ell, \ell', \quad (1.48)$$

$$\langle \mathbf{M}_{em\ell}, \mathbf{N}_{om\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell}, \mathbf{N}_{em\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall \ell, \ell' m, \quad (1.49)$$

en donde se definió el producto interior  $\langle \mathbf{A}, \mathbf{B} \rangle_{\theta, \varphi}$  como

$$\langle \mathbf{A}, \mathbf{B} \rangle_{\theta, \varphi} \equiv \int_0^{2\pi} \int_0^{\pi} \mathbf{A} \cdot \mathbf{B} \sin \theta d\theta d\varphi.$$

De igual manera, cuando se realiza el producto interior con elementos de los armónicos esféricos vectoriales de la misma paridad, y considerando las combinaciones de  $\langle \mathbf{M}, \mathbf{M} \rangle$  y  $\langle \mathbf{N}, \mathbf{N} \rangle$  se obtienen las relaciones

$$\langle \mathbf{M}_{em\ell}, \mathbf{M}_{em\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell}, \mathbf{M}_{om\ell'} \rangle_{\theta,\varphi} = \delta_{\ell,\ell'} \pi z_{\ell}(\rho)^{2} \frac{\ell(\ell+1)}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \quad \forall \ell, \ell', m, \qquad (1.50)$$

$$\langle \mathbf{N}_{em\ell}, \mathbf{N}_{em\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{N}_{om\ell}, \mathbf{N}_{om\ell'} \rangle_{\theta,\varphi} \qquad (1.51)$$

$$= \delta_{\ell,\ell'} \pi \frac{\ell(\ell+1)}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \left\{ \left[ \frac{z_{\ell}(\rho)}{\rho} \right]^{2} \ell(\ell+1) + \left[ \frac{1}{\rho} \frac{\mathrm{d}[\rho z_{\ell}(\rho)]}{\mathrm{d}\rho} \right]^{2} \right\} \quad \forall \ell, \ell', m.$$

Al considerar una onda plana con longitud de onda  $\lambda$ , polarizada en la dirección x, y caracterizada por el campo eléctrico  $\mathbf{E}^i$  propagándose en la dirección z en una matriz con índice de refracción  $n_m = \sqrt{\varepsilon_m \mu_m/\varepsilon_0 \mu_0}$  (ver Fig. 1.7), en la base de los vectores ortonormales polares canónicos, así como en la base de los armónicos esféricos vectoriales [Ecs. (1.46)] es

$$\mathbf{E}^{i} = E_{0}e^{ik_{m}r\cos\theta}(\sin\theta\cos\varphi\hat{\mathbf{e}}_{r} + \cos\theta\cos\varphi\hat{\mathbf{e}}_{\theta} - \sin\varphi\hat{\mathbf{e}}_{\varphi})$$

$$= \sum_{m=0}^{\infty} \sum_{\ell=m}^{\infty} [B_{em\ell}\mathbf{M}_{em\ell} + B_{om\ell}\mathbf{M}_{om\ell} + A_{em\ell}\mathbf{N}_{em\ell} + A_{om\ell}\mathbf{N}_{om\ell}].,$$

donde se omite la dependencia temporal  $e^{-i\omega t}$ ,  $E_0$  es la magnitud del campo eléctrico,  $k_m=2\pi n_m/\lambda$  es el número de onda, y  $B_{em\ell}$ ,  $B_{om\ell}$ ,  $A_{em\ell}$  y  $A_{om\ell}$  son los coeficientes en la expansión de armónicos esféricos vectoriales de la onda plana, que se determinan a partir de las Ecs. (1.51) y (1.50). Dado que en la componente radial de la onda plana en la base canónica es proporcional a  $\cos \varphi$ , se sigue que m=1 al comparar con las expresiones de  $\mathbf{N}_{em\ell}$  [Ec. (1.46c)] y  $\mathbf{N}_{om\ell}$  [Ec. (1.46d)] —únicos elementos con componente radial—, y además que  $A_{om\ell}=0$  pues  $\mathbf{N}_{om\ell}$  es proporcional a  $\sin \varphi$  en la componente radial. Asimismo, por la dependencia con  $\sin \varphi$  en la componente  $\hat{\mathbf{e}}_{\varphi}$ ,  $B_{em\ell}=0$  pues  $\mathbf{M}_{em\ell}$  es proporcional a  $\cos \varphi$  en dicha entrada. Puesto que la onda plana es finita en todo el espacio, se escoge  $z_{\ell}=j_{\ell}$ , denotado en los armónicos esféricos vectoriales con el superíndice (1). Entonces, la onda plana en la base de los armónicos esféricos vectoriales se escribe como

$$\mathbf{E}^{i} = \sum_{\ell=1}^{\infty} \left[ B_{o1\ell} \mathbf{M}_{o1\ell}^{(1)} + A_{e1\ell} \mathbf{N}_{e1\ell}^{(1)} \right],$$

con  $B_{o1\ell} = \langle \mathbf{E}^i, \mathbf{M}_{o1\ell}^{(1)} \rangle_{\theta,\varphi} / \langle \mathbf{M}_{o1\ell}^{(1)}, \mathbf{M}_{o1\ell}^{(1)} \rangle_{\theta,\varphi}$  y  $A_{e1\ell} = \langle \mathbf{E}^i, \mathbf{N}_{e1\ell}^{(1)} \rangle_{\theta,\varphi} / \langle \mathbf{N}_{e1\ell}^{(1)}, \mathbf{N}_{e1\ell}^{(1)} \rangle_{\theta,\varphi}$ . Al emplear las Ecs. (1.50) y (1.51) con m = 1, y las condiciones de ortogonalidad de los armónicos esféricos vectoriales, se calcula la expresión de la onda plana en una base esférica, dada por

$$\mathbf{E}^{i} = E_{0} \sum_{\ell=1}^{\infty} i^{\ell} \frac{2\ell+1}{\ell(\ell+1)} \Big( \mathbf{M}_{o1\ell}^{(1)} - i \mathbf{N}_{e1\ell}^{(1)} \Big).$$
 (1.52a)

El campo magnético incidente se calcula empleando la Ley de Farady-Lenz [Ec. (1.25c)], cuyo resultado es

$$\mathbf{H}^{i} = \frac{-k_{m}}{\omega \mu_{m}} \sum_{\ell=1}^{\infty} E_{\ell} \left( \mathbf{M}_{e1\ell}^{(1)} + i \mathbf{N}_{o1\ell}^{(1)} \right), \tag{1.52b}$$

con 
$$E_{\ell} = E_0 i^{\ell} (2\ell + 1) / [\ell(\ell + 1)].$$

Para calcular los campos EMs esparcidos ( $\mathbf{E}^s$ ,  $\mathbf{H}^s$ ) y los campos EMs dentro de la partícula esférica ( $\mathbf{E}^p$ ,  $\mathbf{H}^p$ ), se emplean las condiciones a la frontera de los campos EMs en una interfaz arbitraria [Ecs. (1.6)], en donde la componente paralela a la interfaz es continua. Es decir

$$\left(\mathbf{E}^{i} + \mathbf{E}^{s} - \mathbf{E}^{p}\right) \times \hat{\mathbf{e}}_{r} = \left(\mathbf{H}^{i} + \mathbf{H}^{s} - \mathbf{H}^{p}\right) \times \hat{\mathbf{e}}_{r} = \mathbf{0}.$$
(1.53)

De las Ecs. (1.52) y de las condiciones a la frontera [Ec. (1.53)], se deduce que en la expansión de los campos EMs esparcidos, y los internos, los coeficientes para  $m \neq 1$  son nulos. Los campos EMs dentro de la partícula ( $\mathbf{E}^p$ ,  $\mathbf{H}^p$ ) son finitos en la esfera, por lo que se emplea como solución a la ecuación de onda las funciones  $j_{\ell}(k_p r)$ , con  $k_p = 2\pi n_p/\lambda$  el número de onda dentro de la esfera. Las expresiones para los campos EMs son

$$\mathbf{E}^{p} = \sum_{\ell=1}^{\infty} E_{\ell} \left( c_{\ell} \mathbf{M}_{o1\ell}^{(1)} - i d_{\ell} \mathbf{N}_{e1\ell}^{(1)} \right), \quad (1.54a) \quad \mathbf{H}^{p} = \frac{-k_{p}}{\omega \mu_{p}} \sum_{\ell=1}^{\infty} E_{\ell} \left( d_{\ell} \mathbf{M}_{e1\ell}^{(1)} + i c_{\ell} \mathbf{N}_{o1\ell}^{(1)} \right), \quad (1.54b)$$

con 
$$E_{\ell} = E_0 i^{\ell} (2\ell + 1) / [\ell(\ell + 1)].$$

Para los campos esparcidos ( $\mathbf{E}^s$ ,  $\mathbf{H}^s$ ) las funciones  $j_\ell$  y  $y_\ell$  no tienen puntos indeterminados, por lo que se emplearan las funciones esféricas de Hankel  $h_\ell^{(1)}$  y  $h_\ell^{(2)}$ , que en su límite asintótico ( $\ell^2 \ll kr$ ), son [7]

$$h_{\ell}^{(1)}(k_m r) \approx -i^{\ell} \frac{e^{ik_m r}}{ik_m r},$$
  $h_{\ell}^{(2)}(k_m r) \approx -i^{\ell} \frac{e^{-ik_m r}}{ik_m r},$ 

por lo que  $h_{\ell}^{(1)}$  corresponde a una onda esférica saliente, y  $h_{\ell}^{(2)}$  una entrante. Dado que el campo esparcido es una onda saliente, se emplea  $h_{\ell}^{(1)}$  como solución radial a la función generadora de los armónicos esféricos vectoriales. Entonces, los campos EMs esparcidos ( $\mathbf{E}^s, \mathbf{H}^s$ ) son

$$\mathbf{E}^{s} = \sum_{\ell=1}^{\infty} E_{\ell} \left( i a_{\ell} \mathbf{N}_{e1\ell}^{(3)} - b_{\ell} \mathbf{M}_{o1\ell}^{(3)} \right), \quad (1.55a) \quad \mathbf{H}^{s} = \frac{k}{\omega \mu} \sum_{\ell=1}^{\infty} E_{\ell} \left( i b_{\ell} \mathbf{N}_{o1\ell}^{(3)} + a_{\ell} \mathbf{M}_{e1\ell}^{(3)} \right), \quad (1.55b)$$

en donde se denota mediante el superíndice (3) que se emplea  $h_{\ell}^{(1)}$  para la solución radial. Dado que para los campos EMs de la onda plana incidente, para de los campos EMs esparcidos y los campos EMs dentroe de la partícula se cumple que m=1, se definen las funciones  $\pi_{\ell}$  y  $\tau_{\ell}$  como

$$\pi_{\ell}(\cos \theta) = \frac{P_{\ell}^{1}(\cos \theta)}{\sin \theta}, \qquad (1.56a) \qquad \tau_{\ell}(\cos \theta) = \frac{dP_{\ell}^{1}(\cos \theta)}{d\theta}, \qquad (1.56b)$$

para expresar la dependencia angular polar en los armónicos esféricos vectoriales [Ecs. (1.46)]. Las relaciones de recurrencia de las funciones asociadas de Legendre [9] permiten expresar a  $\pi_{\ell}$ 

y  $\tau_{\ell}$  como [7]

$$\pi_{\ell}(\mu) = \frac{2\ell - 1}{\ell - 1} \mu \pi_{\ell - 1}(\mu) - \frac{\ell}{\ell - 1} \pi_{\ell - 2}(\mu), \qquad \tau_{\ell}(\mu) = \ell \mu \pi_{\ell}(\mu) - (\ell + 1) \pi_{\ell - 1}(\mu),$$

en donde se empleó el cambio de variable  $\mu = \cos \theta$  y se define  $\pi_0 = 0$  y  $\pi_1 = 1$ . Las funciones  $\pi_\ell$  y  $\tau_\ell$  son funciones pares e impares, respectivamente, y a pesar de no ser orotogonales, sí lo son la suma aritmética de ellas, es decir

$$\int_{-1}^{1} [\tau_{\ell}(\mu) \pm \pi_{\ell}(\mu)] [\tau_{\ell'}(\mu) \pm \pi_{\ell'}(\mu)] = 0, \qquad \ell \neq \ell'.$$
(1.57)

Para determinar los coeficientes  $a_{\ell}, b_{\ell}, c_{\ell}$  y  $d_{\ell}$  de las Ecs. (1.54) y (1.55) se emplean las condiciones a la frontera [Ec. (1.53)], por lo que se deben de satisfaces las ecuaciones

$$\begin{split} E^i_\theta + E^s_\theta &= E^p_\theta, \\ H^i_\theta + H^s_\theta &= H^p_\theta, \\ H^i_\varphi + H^s_\varphi &= H^p_\varphi, \end{split}$$
 
$$H^i_\varphi + H^s_\varphi = H^p_\varphi,$$

en r = a, que es la superficie de la partícula esférica. Al emplear la ortogonalidad de las funciones  $\sin \varphi$  y  $\cos \varphi$  [Ec. (1.57)], rescribir los armónicos esféricos vectoriales [Ecs. (1.46)] en términos de  $\pi_{\ell}$  y  $\tau_{\ell}$  y emplear la ortogonalidad de  $\tau_{\ell} \pm \pi_{\ell}$  [Ec. (1.57)], junto con las expresiones de los campos EMs de la onda plana incidente [Ecs. (1.52)], de los campos EMs dentro de la partícula [Ecs. (1.54)] y los campos EMs esparcidos [Ecs. (1.55)] se obtienen el sistema de ecuaciones

$$j_{\ell}(Nx)c_{\ell} + h_{\ell}^{(1)}(x)b_{\ell} = j_{\ell}(x),$$

$$\mu_{m}[Nj_{\ell}(Nx)]'c_{\ell} + \mu_{p}[xh_{\ell}^{(1)}(x)]'b_{\ell} = \mu_{p}[xj_{\ell}(x)]',$$

$$\mu_{m}Nj_{\ell}(Nx)d_{\ell} + \mu_{p}h_{\ell}^{(1)}(x)a_{\ell} = \mu_{p}j_{\ell}(x),$$

$$[Nj_{\ell}(Nx)]'d_{\ell} + N[xh_{\ell}^{(1)}(x)]'a_{\ell} = N[xj_{\ell}(x)]',$$

en donde ' denota la derivada respecto al argumento de las funciones de Bessel,  $x = k_m a = 2\pi n_m a/\lambda$  es el parámetro de tamaño y  $N = n_p/n_m$  es el índice de refracción relativo entre la partícula y la matriz. Al determinar los coeficientes  $a_\ell$  y  $b_\ell$ , se obtiene una expresión analítica para los campos EMs esparcidos, por lo que es posible determinar las componentes de la matriz de esparcimiento  $\mathbb S$  en la Ec. (1.24). La solución para los coeficientes  $a_\ell$  y  $b_\ell$ , los coeficientes de

los campo EMs esparcidos<sup>8</sup>, son

$$a_{\ell} = \frac{\mu_m N^2 j_{\ell}(Nx) [x j_{\ell}(x)]' - \mu_p j_{\ell}(x) [Nx j_{\ell}(x)]'}{\mu_m N^2 j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_p h_{\ell}^{(1)}(x) [Nx j_{\ell}(Nx)]'},$$
(1.58a)

$$b_{\ell} = \frac{\mu_{p} N j_{\ell}(Nx) [x j_{\ell}(x)]' - \mu_{m} j_{\ell}(x) [Nx j_{\ell}(x)]'}{\mu_{p} j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_{m} h_{\ell}^{(1)}(x) [Nx j_{\ell}(Nx)]'},$$
(1.58b)

sin embargo, para el caso en el que la partícula esférica no es magnéntica, es decir  $n_p = \sqrt{\varepsilon_p/\varepsilon_0}$ , las Ecs. (1.58) se reescriben como

$$a_{\ell} = \frac{N\psi_{\ell}(Nx)\psi_{\ell}'(x) - \psi_{\ell}(x)\psi_{\ell}'(Nx)}{N\psi_{\ell}(Nx)\xi_{\ell}'(x) - \xi_{\ell}(x)\psi_{\ell}'(Nx)},$$
(1.59a)

$$b_{\ell} = \frac{\psi_{\ell}(Nx)\psi_{\ell}'(x) - N\psi_{\ell}(x)\psi_{\ell}'(Nx)}{\psi_{\ell}(Nx)\xi_{\ell}'(x) - N\xi_{\ell}(x)\psi_{\ell}'(Nx)},$$
(1.59b)

en donde  $\psi_{\ell}(\rho) = \rho j_{\ell}(\rho)$  y  $\xi_{\ell}(\rho) = \rho h_{\ell}^{(1)}(\rho)$  son las funciones de Riccati-Bessel [7, 9] y los términos  $\psi'_{\ell}$  y  $\xi'_{\ell}$  denotan las derivadas de las funciones respecto a su argumento. Los armónicos esféricos vectoriales representan una expansión multipolar del campo eléctrico esparcido por una partícula esférica y los coeficientes de Mie [Ec. (1.59)] modulan la contribución al campo total esparcido de cada término:  $a_{\ell}$ , los multipolos eléctricos;  $b_{\ell}$ , los magnéticos [10]. En la Fig. 1.8 se muestran la contribuciones multipolares del campo eléctrico esparcido  ${}^{9}$   ${\bf E}^{s}$  [Ec. (1.55a)], considerando únicamente las componentes transversal a una superficie esférica y concéntrica a la partícula esparcidora.

Los campos EMs esparcidos [Ecs. (1.55)] fueron calculados al considerar una onda plana incidente  $\mathbf{E}^i$  polarizada en la dirección x sin embargo, debido a la simetría de la esfera, una onda plana polarizada en la dirección y se describe mediante la transformación  $\varphi \to \varphi + \pi/2$ , por lo que los campos EMs esparcidos y dentro de la esfera se calculan mediante el mismo procedimiento [7]. Entonces, cualquier cantidad relacionada con la absorción y esparcimiento de una esfera se calcula únicamente mediante lo coeficientes de Mie [Ecs. (1.59)]. En particular, para determinar la matriz de esparcimiento  $\mathbb S$  se relaciona el campos eléctrico esparcido en el límite de campo lejano, en donde al emplear las funciones de Ricatti-Bessel, y sus derivadas, en el límite asintótico  $\ell \ll kr$ , las componentes radiales de los campos EMs decaen como  $\ell \ll kr$  por lo que es despreciable. Al escribir los armónicos esféricos [Ecs. (1.46)] en términos de  $\ell \ll kr$  y las funciones de Ricatti-Bessel  $\ell \ll kr$  en el límite asintótico despreciando los términos proporcionales a  $\ell \ll kr$ , el campo eléctrico esparcido en la componente paralela al plano de esparcimiento (ver

$$c_{\ell} = \frac{\mu_{p} j_{\ell}(x) [x h_{\ell}^{(1)}(x)]' - \mu_{p} h_{\ell}^{(1)}(x) [x j_{\ell}(x)]'}{\mu_{p} j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_{m} h_{\ell}^{(1)}(x) [Nx j_{\ell}(Nx)]'}, \qquad d_{\ell} = \frac{\mu_{p} N j_{\ell}(x) [x h_{\ell}^{(1)}(x)]' - \mu_{p} N h_{\ell}^{(1)}(x) [x j_{\ell}(x)]'}{\mu_{m} N^{2} j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_{p} h_{\ell}^{(1)}(x) [Nx j_{\ell}(Nx)]'},$$

 $<sup>^{8}</sup>$ Las expresiones de los coeficientes para los campos EMs dentro de la partícula esférica [Ec. (1.54) son

<sup>&</sup>lt;sup>9</sup>En el artículo original de Mie (ref. [6]) se les denomina a la contribuciones multipolares como ondas parciales. <sup>10</sup>En el límite  $\ell^2 \ll \rho$ , se cumple que  $h_\ell^{(1)}(\rho) \approx (-i)^\ell e^{i\rho}/i\rho$  y  $\mathrm{d}h_\ell^{(1)}/\mathrm{d}\rho = (-i)^\ell e^{i\rho}/\rho$ . Por lo tanto,  $\xi(\rho) \approx (-i)^\ell e^{i\rho}/i$  y  $\mathrm{d}\xi/\mathrm{d}\rho = (-i)^\ell e^{i\rho}/(i\rho+1)$ .



Fig. 1.8: Contribuciones multipolares a) eléctricas  $a_\ell$  y b) magnéticas  $b_\ell$  de orden  $\ell=1,2,3$  y 4 del campo esparcido  $\mathbf{E}^s$  por una partícula esférica, evaluadas en una superficie matemática esférica y concéntrica a la partícula que radía los campos EMs, en donde el plano de la página corresponde al plano de oscilación del campo eléctrico incidente  $\mathbf{E}^i$ . En las gráficas presentadas, el color rojo corresponde a los valores máximos del campo eléctrico, mientras que los rojos son los puntos menos intensos, donde se presentan los nodos en la superficie esférica.

Fig. 1.6) es

$$E_{\theta}^{s}\hat{\mathbf{e}}_{\parallel}^{s} = \frac{\cos\varphi}{kr} \sum_{\ell}^{\infty} E_{0}i^{\ell} \frac{2\ell+1}{\ell(\ell+1)} (ia_{\ell}\xi_{\ell}^{\prime}\tau_{\ell} - b_{\ell}\xi_{\ell}\pi_{\ell}) \hat{\mathbf{e}}_{\theta} \approx E_{0}\cos\varphi \frac{e^{ikr}}{-ikr} \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\tau_{\ell} + b_{\ell}\pi_{\ell}) \hat{\mathbf{e}}_{\theta}$$

$$E_{\varphi}^{s}\hat{\mathbf{e}}_{\perp}^{s} = \frac{\sin\varphi}{kr} \sum_{\ell}^{\infty} E_{0}i^{\ell} \frac{2\ell+1}{\ell(\ell+1)} (-ia_{\ell}\xi_{\ell}^{\prime}\pi_{\ell} + b_{\ell}\xi_{\ell}\tau_{\ell}) \hat{\mathbf{e}}_{\varphi} \approx E_{0}\sin\varphi \frac{e^{ikr}}{-ikr} \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\pi_{\ell} + b_{\ell}\tau_{\ell}) (-\hat{\mathbf{e}}_{\varphi})$$

donde  $\hat{\mathbf{e}}_{\parallel}^{s} = \hat{\mathbf{e}}_{\theta}$ . Asimismo, la componente paralela la plano de esparcimiento del campo eléctrico es

donde  $\hat{\mathbf{e}}_{\perp}^{s} = -\hat{\mathbf{e}}_{\varphi}$ . Al emplear la Ec. (1.22) para reescribir a la onda plana incidente  $\mathbf{E}^{i}$  [Ec. (1.52a)] en la base de  $\{\hat{\mathbf{e}}_{\parallel}^{i}, \hat{\mathbf{e}}_{\perp}^{i}\}$  [Ec. (1.20)] se relaciona determina la forma explícita de la matriz de esparcimiento para una partícula esférica

#### Matriz de esparcimiento de Mie

$$\begin{pmatrix} E_{\parallel}^{s} \\ E_{\perp}^{s} \end{pmatrix} = \frac{e^{ik(r-z)}}{-ikr} \begin{pmatrix} S_{2} & 0 \\ 0 & S_{1} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{i} \\ E_{\perp}^{i} \end{pmatrix}, \tag{1.60}$$

donde

$$S_1(\theta) = \sum_{\ell=0}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\pi_{\ell} + b_{\ell}\tau_{\ell}) \quad (1.61a) \quad S_2(\theta) = \sum_{\ell=0}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\tau_{\ell} + b_{\ell}\pi_{\ell}) \quad (1.61b)$$

## 1.3. Respuesta electromagnética de materiales plasmónicos

En el artículo original de Mie [6] se emplea la solución a los campos electromagnéticos (EMs) esparcidos para describir las propiedad ópticas de suspenciones coloidales de partículas esféricas de oro. En sus calculos, Mie asumió la respuesta electromagnética (EM) del oro dada por los datos experimentales de la función dieléctrica  $\varepsilon(\omega)$  del oro en bulto era válida también para nanopartículas (NPs) cuyo radio fuera al menos un orden de magnitud menor al de la longitud de onda de la luz que iluma a la NP [8]. A pesar de que la suposición de Mie es válida para los cálculos que publicó [8], en general la respuesta electromagnética de los materiales depende de sus dimensiones y a la nanoescala los efecto de superficie toman relevancia respecto a los de bulto [11], por lo que la función dieléctrica de bulto debe corregirse para NPs. Para corregir la respuesta EM de NPs esféricas de materiales plasmónicos a partir de la función dieléctrica experimental de bulto, se emplea el modelo de Drude-Sommerfeld, el cual describe la función dieléctrica de un material en bulto con electrones de conducción a partir de asumir un gas de electrones libres [12]. Al corregir el modelo de Drude-Sommerferd considerando los efectos de superficie de la NP e introducir esta corrección en los datos experimentales del bulto se construye una función dieléctrica apta para NPs y el cálculo de sus propiedades ópticas mediante la solución de Mie.

Para corregir la respuesta EM en bulto de materiales plasmónicos, se asume que su función dieléctrica corresponde a la suma de la respuesta de la interacción de la radiación EM con los electrones de conducción del material  $\varepsilon^{inter}(\omega)$ , correspondiente a las transiciones electrónicas interbanda, y con los electrones ligados  $\varepsilon^{intra}(\omega)$ , correspondientes a las transiciones electrónicas intrabanda [13], es decir

$$\varepsilon^{B}_{exp}(\omega) = \varepsilon^{inter}(\omega) + \varepsilon^{intra}(\omega),$$

en donde  $\varepsilon_{exp}^B(\omega)$  es la función dieléctrica de bulto que puede se medida de forma experimental [14]. Para describir la contribución de los electrones de conducción en la respuesta EM del material  $\varepsilon^{inter}(\omega)$  se emplea el modelo de Drude-Somerfeld que, desde un enfoque clásico, es la solución a la ecuación de movimiento de los electrones libres en un material ante la presencia de un campo eléctrico externo oscilante [12]. El efecto de un campo eléctrico externo  $\mathbf{E}$  sobre los electrones libres de un material es un cambio de su posición, por lo que aparecen momentos dipolares  $\mathbf{p} = q_e \mathbf{r}$ ; con  $q_e$ , la carga del electrón y  $\mathbf{r}$ , su desplazamiento. El efecto neto en el material es una polarización  $\mathbf{P} = n_v \mathbf{p}$ , donde  $n_v$  es la densidad volumétrica electrónica [15]. La respuesta óptica del material dada por el modelo de Drude, caracterizada por la función dieléctrica  $\varepsilon_D(\omega)$ , depende de  $\mathbf{E}$  y  $\mathbf{P}$  como

$$\mathbf{P} = \varepsilon_0 \left( \frac{\varepsilon_D}{\varepsilon_0} - 1 \right) \mathbf{E},$$

donde se asume que la polarización ocurre en la dirección del campo eléctrico [15]. Al reescribir

 $\mathbf{P}$  como  $n_v q_e \mathbf{r}$  se obtiene que

$$n_v q_e \mathbf{r} = \varepsilon_0 \left(\frac{\varepsilon_D}{\varepsilon_0} - 1\right) \mathbf{E}.$$
 (1.62)

Si el material se encuentra ante la presencia de un campo eléctrico oscilante de la forma  $\mathbf{E}_0 e^{-i\omega t}$ , la ecuación de movimiento que obedece un electrón libre del material es [10, 12]

$$m_e^* \frac{\partial^2 \mathbf{r}}{\partial t^2} + \gamma \frac{\partial \mathbf{r}}{\partial t} = q_e \mathbf{E}_0 e^{-i\omega t},$$
 (1.63)

donde  $m_e^*$  es la masa efectiva del electrón<sup>11</sup> [12] y  $\gamma$  es la constante fenomenológica de amortiguamiento [10], que es el inverso del tiempo promedio entre eventos de colisiones de los electrones [15, 12]. Al multiplicar la Ec. (1.63) por  $n_v q_e$ , resolverla con el Ansatz  $\mathbf{r} = \mathbf{r}_0 e^{-i\omega t}$  y compararla con la Ec. (1.62), se obtiene la función dieléctrica

#### Modelo de Drude-Sommerfeld

$$\frac{\varepsilon_D(\omega)}{\varepsilon_0} = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)},\tag{1.64}$$

con la frecuancia de plasma  $\omega_p$  dada por [15, 12]

$$\omega_p = \sqrt{\frac{n_v e^2}{m_e^* \varepsilon_0}}. (1.65)$$

Dado que la constante fenomenológica  $\gamma$  depende de la geometría del material, se emplea en la Ec. (1.64) la constante fenomenológica de bulto  $\gamma_{\infty}$  dada por [10]

$$\gamma_{\infty} = \frac{v_F}{L} \tag{1.66}$$

donde  $v_F$  es la velocidad de Fermi<sup>12</sup> del material a una temperatura dada y L es el camino libre medio, que representa la distancia promedio que recorren los electrones entre eventos de colisiones [12].

La frecuencia de plasma  $\omega_p$  en el modelo de Drude-Sommerfeld delimita regímenes donde el material plasmónico se comporta como un metal o como un dieléctrico [16]. En la Fig. 1.9 se muestran las funciones dieléctricas (gráfica interna) y los índices de refracción (gráfica principal) modelados por una función tipo Drude con  $\omega_p = 4.3$  eV [Fig. 1.9a)] y 10 eV [Fig. 1.9b)], y  $\gamma = 0.15$  eV. En estas gráficas se observa que  $\text{Re}[\varepsilon(\omega)] < 0$  para  $\omega < \omega_p$ , por lo que al sustituir el índice de refracción en la expresión de una onda plana propagante se obtiene una onda evanescente, es decir, la onda plana no penetra el material y es reflejada: el material presenta una respuesta metálica. Para  $\omega > \omega_p$ , se cumple que  $\text{Re}[\varepsilon(\omega)] > 0$  y  $\text{Im}[\varepsilon(\omega)] \approx 0$ , por lo que el índice de

<sup>&</sup>lt;sup>11</sup>La masa efectiva es el resultado de la interacción de un electrón con el potencial de la red cristalina que conforma al material, los fonones de la red y con los otros electrones en la red [12].

 $<sup>^{12}</sup>$ En un sistema con N electrones, que obedecen el principio de exclusión de Pauli, la energía de Fermi  $E_F$  es la máxima ocupada, dada por  $E_F = (\hbar^2/2m_e^*)k_F^2$ , con  $k_F$ , la norma del vector de onda de Fermi [12]. Puesto que la velocidad de Fermi es  $v_F = p_F/m_e^* = \hbar k_F/m$  y que para un gas de electrones libres  $k_F = (3\pi n_v)^{1/3}$ , se obtiene que para metales típicos  $v_F \approx 10^{15}$  nm s<sup>-1</sup> [12].



Fig. 1.9: Índice de refracción (gráfica externa) y función dieléctrica (gráfica interna) del modelo de Drude-Sommerfeld para las frecuencias de plasma a)  $\omega_p=4.3$  eV y b)  $\omega_p=10$  eV; ambos casos con  $\gamma=0.15$  eV, como función de la energía. En el marco superior se observa su dependencia en longitud de onda  $\lambda$ .

refracción, en dicho régimen, se comporta como el de un material transparente.

#### 1.3.1. Correción por tamaño para partículas esféricas

Para corregir la función dieléctrica de bulto obtenida mediante métodos experimentales  $\varepsilon_B^{exp}(\omega)$  se modifica la constante fenomenológica en el modelo de Drude-Sommerfeld<sup>13</sup> dado que ésta depende del camino libre medio de los electrones L y debe modificarse cuando el radio de las NPs a es menor a L [10]. Por ejemplo, para metales típicos, como el oro y la plata, a frecuencias del espectro visible y a una temperatura de 273 K, el camino libre medio de los electrones es de 56 nm para el oro y 42 nm para la plata<sup>14</sup>, por lo que para NPs de oro o plata con radios menores a 60 nm se hace una corrección de la constante fenomenológica para materiales de bulto. La corrección de  $\gamma_{\infty}$  para una partícula esférica de radio a se calcula al considedar el camino libre medio efectivo de los electrones, proporcional al radio de la partícula, obteniedo así un término de amortiguamiento adicional al de bulto y que es aditivo a éste [10], es decir,

$$\gamma = \gamma_{\infty} + \gamma_a = v_F \left( \frac{1}{L} + \frac{A}{a} \right).$$

donde A es un parámetro del orden de la unidad [13, 17] y depende de la teoría con la que sea cálculado el camino libro medio efectica [10]. Entonces, para NPs esféricas modeladas por una función dieléctrica tipo Drude [Ec. (1.64)] se emplea la corrección por tamaño de la función dieléctrica dada por

$$\frac{\varepsilon(\omega)}{\varepsilon_0} = \frac{\varepsilon_B^{exp}(\omega)}{\varepsilon_0} - \left(1 - \frac{\omega_p^2}{\omega(\omega + i\gamma_\infty)}\right) + \left(1 - \frac{\omega_p^2}{\omega[\omega + i(\gamma_\infty + v_F A/a)]}\right)$$
(1.67)

 $<sup>^{13}</sup>$ También es posible hacer una corrección de tamaño en la contribución interbanda de la función dieléctrica sin embargo, para los datos experimentales de [14], la corrección para partículas esféricas es apreciable para NPs con radios menores a 2 nm [17].

<sup>&</sup>lt;sup>14</sup>Cálculos a partir de los datos obtenidos de [ashcroft1976solid].

en donde se resta la contribución del material de bulto a la función dieléctrica experimental  $\varepsilon_B^{exp}(\omega)$  y se introduce la función dieléctrica con la corrección  $\gamma = \gamma_\infty + \gamma_a$ . Para realizar este proceso se debe encontrar los parámetros  $\omega_p$  y  $\gamma_\infty$  que mejor ajusten al modelo de Drude sin embargo, la función dieléctrica experimental del material  $\varepsilon_B^{exp}(\omega)$  depende del método de fabricación de la muestra, del sustraso sobre el que está puesta, además de que los valores de los parámetros de la función dieléctrica tipo Drude cambian de valor según sea el método empleado para su cálculo [18]. Asimismo, la función dieléctrica experimental presenta contribuciones no plasmónicas que no son descritas por Drude apreciables a energías  $\hbar\omega$  más altas que las transiciones interbanda, por lo que el ajuste debe realizarse hasta un valor de  $\omega$  que ya no siga las tendencias del modelo de Drude [17].

Para determinar los parámetros  $\omega_p$  y  $\gamma$  del modelo de Drude [Ec. (1.64)] se emplea el método propuesto es [17], donde se relaciona  $\text{Re}[\varepsilon_D(\omega)/\varepsilon_0]$  con  $\text{Im}[\varepsilon_D(\omega)/\varepsilon_0]$  a partir de dos relaciones lineales. Las partes real e imaginaria de la Ec. (1.64) son

$$\operatorname{Re}[\varepsilon_D(\omega)/\varepsilon_0] = 1 - \frac{\omega_p^2 \omega^2}{\omega^4 + (\omega \gamma)^2}, \quad (1.68a) \quad \operatorname{Im}[\varepsilon_D(\omega)/\varepsilon_0] = \frac{\omega_p^2(\omega \gamma)}{\omega^4 + (\omega \gamma)^2}. \quad (1.68b)$$

Dado que  $1 - \text{Re}[\varepsilon_D(\omega)/\varepsilon_0] = \omega_p^2 \omega^2/[\omega^4 + (\omega\gamma)^2]$ , al calcular  $1 - \text{Re}[\varepsilon_D(\omega)/\varepsilon_0]\gamma/\omega$  y sustituir con la Ec. (1.68b) se obtiene que

$$\{1 - \operatorname{Re}[\varepsilon_D(\omega)/\varepsilon_0]\}\frac{\gamma}{\omega} = \operatorname{Im}[\varepsilon_D(\omega)/\varepsilon_0],$$

por lo que se cumple la relación

$$\omega \operatorname{Im}[\varepsilon_D(\omega)/\varepsilon_0] = \gamma \{1 - \operatorname{Re}[\varepsilon_D(\omega)/\varepsilon_0]\}. \tag{1.69}$$

Asimismo, al calcular la suma del cuadrado de la parte real y la parte imaginaria de la función dieléctrica tipo Drude se obtiene

$$\{1 - \operatorname{Re}[\varepsilon_D(\omega)/\varepsilon_0]\}^2 + \operatorname{Im}[\varepsilon_D(\omega)/\varepsilon_0]]^2 = \frac{\omega_p^4 \omega^4}{[\omega^4 + (\omega\gamma)^2]^2} + \frac{\omega_p^4 (\omega\gamma)^2}{[\omega^4 + (\omega\gamma)^2]^2}$$
$$= \frac{\omega_p^4 [\omega^4 + (\omega\gamma)^2]}{[\omega^4 + (\omega\gamma)^2]^2}$$
$$= \frac{\omega_p^4}{\omega^4 + (\omega\gamma)^2},$$

y al multiplicar ambos lados de la ecuación por  $\omega^2$  y sustituir con la Ec. (1.68a) se obtiene

$$\omega^{2}(\{1 - \operatorname{Re}[\varepsilon_{D}(\omega)/\varepsilon_{0}]\}^{2} + \operatorname{Im}[\varepsilon_{D}(\omega)/\varepsilon_{0}]^{2}) = \omega_{p}^{2}\{1 - \operatorname{Re}[\varepsilon_{D}(\omega)/\varepsilon_{0}]\}, \tag{1.70}$$

Es decir, al graficar las Ecs. (6) y (7) como función de  $1 - \text{Re}[\varepsilon(\omega)]$  se obtienen dos funciones lineales sin ordenada al origen por lo que, al emplear los valores experimentales de la función dieléctrica, cuando estos no correspondan a una recta que cruza por el origen, la función dieléctrica deja de ser modelada por el modelo de Drude. Asimismo, es posible determinad los parámetros  $\omega_p$  y  $\gamma$  de la función dieléctrica empleando los valores de la parte real y la parte

imaginario de  $\varepsilon(\omega)$  es decir, considerando ambas contribuciones. Las funciones a ajustar son

En la Fig. 1.10 se muestran los resultados experimentales para el índice de refracción de bulto del oro [Fig. 1.10a)] y de la plata [Fig. 1.10b)], obtenidos de [14]. Los datos experimentales muestran una respuesta cualitativa semejante al modelo de Drude-Sommerfeld (Fig. 1.9) para energías bajas: energías menores a 2.50 eV para el oro y menores a 3.5 eV para la plata.

#### 1.3.2. Plasmones

El campo esparcido [Ec. (??)] está en términos de los coeficientes  $a_{\ell}$  y  $b_{\ell}$  [Ecs. (1.59)], que dependen, entre otros parámetros, del índice de refracción de la partícula. De la Ec. (??) se observa que, para un multipolo  $\ell$  fijo, la contribución del campo eléctrico es máxima cuando el denominador de los coeficientes de Mie es mínimo [15]. Si se considera que la respuesta óptica de la partícula es  $\varepsilon_p(\omega) = n_p^2(\omega)$ , y se fijan los parámetros a,  $n_m$  y  $\lambda$ , entonces a la frecuencia  $\omega_{\ell} = c(2\pi/\lambda_{\ell})$ , donde el denominador de las Ecs. (1.59) es nulo, se le denomina modo normal de orden  $\ell$  [7, 19]. Los modos normales eléctricos ocurren a las frecuencias en las que se cumple la condición

$$\psi_{\ell}(mx)\xi_{\ell}'(x) - m\xi_{\ell}(x)\psi_{\ell}'(mx) = 0. \tag{1.71}$$

Al considerar el límite de partícula pequeña ( $x \ll 1$ ) para esferas inmersas en vacío ( $n_m = 1$ ), haciendo un desarrollo en serie de Taylor de las funciones de Bessel y Hankel alrededor del origen y sustituyéndolas en la Ec. (1.71), se obtiene que los modos normales eléctricos cumplen la relación [19]

$$\varepsilon_p(\omega_\ell) = -\frac{\ell+1}{\ell}.\tag{1.72}$$

Si se emplea la función dieléctrica del modelo de Drude-Sommerfeld [Ec. (1.64)] para  $\omega = \omega_{\ell}$  y se sustituye en la Ec. (1.72), al despejar  $\omega_{\ell}$  tras considerar además el límite  $\gamma \to 0$ , la



Fig. 1.10: Gráficas del índice de refracción (gráfica externa) y de la función dieléctrica (gráfica interna) a) del oro y b) de la plata, como función de la energía. En el marco superior se observa su dependencia en longitud de onda  $\lambda$ . Los puntos en ambas gráficas corresponden a los datos experimentales obtenidos de [14] y las líneas continuas son sólo una ayuda visual al lector.

expresión para la frecuencia de resonancia del modo normal del multipolo  $\ell$  es [19]

$$\frac{\omega_{\ell}}{\omega_{p}} = \sqrt{\frac{\ell}{2\ell + 1}}. (1.73)$$

Adicionalmente, si se considera la contribución de todos los órdenes multipolares  $(\ell \to \infty)$ , la mayor frecuencia de resonancia es  $\omega_{\infty} = \omega_p/\sqrt{2}$ , que corresponde a la SPR de superfice.

Para partículas esféricas de radio arbitrario a con una función dieléctrica dada por el modelo de Drude-Sommerfeld, la frecuencia de resonancia  $\omega_{\ell}$  sufre un corrimiento al rojo debido al tiempo de acomplamiento a/c entre la interacción EM de la esfera y la densidad de carga inducida que corresponde al plasmón de superficie [20]. En la Fig. 1.11 se muestran las frecuencias de resonancia  $\omega_{\ell}$  normalizadas respecto a la frecuancia de plasma  $\omega_{p}$ , como función del parámetro adimensional  $a\omega_{p}/c$  para los multipolos  $\ell = 1, 2, 3$  y 4. El límite de partícula pequeña [Ec. (1.73)] se recupera cuando  $a \to 0$  (lado izquierdo de la gráfica en la Fig. 1.11). Para una función dieléctrica arbitraria, los modos normales se calculan como la frecuencia a la que la partícula extingue<sup>15</sup> la mayor cantidad de luz [10].

## 1.4. Modelo de esparcimiento coherente

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed



Fig. 1.11: Frecuencias de resonancia  $\omega_{\ell}/\omega_{p}$  para una esfera con una función dieléctrica tipo Drude, como función del parámetro adimensional  $\omega_{p}a/c$ , para los multipolos  $\ell=1,2,3$  y 4.

<sup>&</sup>lt;sup>15</sup>Extinción se entiende como la pérdida de luz ocacionada por la absorción y esparcimiento de luz de la partícula; esta relación es conocida como el *teorema óptico* [7].

interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

#### 1.4.1. Monocapa suspendida

Desarrollo del CSM y los resultados para una monocapa

#### 1.4.2. Monocapa sobre un sustrato

Desarrollo de las multiples reflexiones dentro del sistema

- [1] D. J. Griffiths. Introduction to electrodynamics. Pearson, 2013 (véanse páginas 1-3, 6).
- [2] E. Hecht. Optics. Addison Wesley, 4th ed. Edición, 1998 (véanse páginas 2, 6).
- [3] J. D. Jackson. *Classical electrodynamics*. John Wiley & Sons, 3rd ed. Edición, 1999 (véanse páginas 2, 10).
- [4] H. Ibach y H. Lüth. Solid-state physics: an introduction to principles of material science. Springer, 2003 (véase página 2).
- [5] A. Kwan, J. Dudley y E. Lantz. Who really discovered snell's law? *Physics World*, 15(4):64, 2002 (véase página 3).
- [6] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3):377-445, 1908. ISSN: 15213889. DOI: 10.1002/andp.19083300302 (véanse páginas 8, 19, 21).
- [7] C. F. Bohren y D. R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 1998 (véanse páginas 8, 10, 17-19, 25, 26).
- [8] H. Horvath. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. *Journal of Quantitative Spectroscopy and Radiative Transfer*, 110(11):787-799, 2009. ISSN: 00224073. DOI: 10.1016/j.jqsrt.2009.02.022 (véanse páginas 8, 21).
- [9] y. H.J. W. G. B. Arfken. *Mathematical methods for physicists*. Harcourt Academic Press, 2001 (véanse páginas 13, 14, 17, 19).
- [10] U. K. y M. Vollmer. Optical Properties of Metal Clusters. Springer, 1995 (véanse páginas 19, 22, 23, 26).
- [11] D. R. Boverhof, C. M. Bramante, J. H. Butala, S. F. Clancy, M. Lafranconi, J. West y S. C. Gordon. Comparative assessment of nanomaterial definitions and safety evaluation considerations. *Regulatory toxicology and pharmacology*, 73(1):137-150, 2015 (véase página 21).
- [12] R. Gross y A. Marx. *Festkörperphysik*. Walter de Gruyter GmbH & Co KG, 2014 (véanse páginas 21, 22).
- [13] C. Noguez. Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical. J. Phys. Chem, 100(111):3806-3819, 2007 (véanse páginas 21, 23).
- [14] P. B. Johnson y R.-W. Christy. Optical constants of the noble metals. *Physical review B*, 6(12):4370, 1972 (véanse páginas 21, 23, 25).
- [15] L. Novotny y B. Hecht. *Principles of nano-optics*. Cambridge university press, 2006 (véanse páginas 21, 22, 25).
- [16] A Trügler. Optical properties of metallic nanoparticles. Tesis doctoral, Ph. D. thesis, Karl–Franzens–Universität Granz, Graz, Alemania, 2011 (véase página 22).

- [17] L. J. Mendoza Herrera, D. M. Arboleda, D. C. Schinca y L. B. Scaffardi. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles. *Journal of Applied Physics*, 116(23), 2014. ISSN: 10897550. DOI: 10.1063/1.4904349 (véanse páginas 23, 24).
- [18] V. B. Svetovoy, P. J. Van Zwol, G. Palasantzas y J. T. M. De Hosson. Optical properties of gold films and the Casimir force. *Physical Review B Condensed Matter and Materials Physics*, 77(3):1-12, 2008. ISSN: 10980121. DOI: 10.1103/PhysRevB.77.035439 (véase página 24).
- [19] C. A. M. Escudero. Linear momentum transfer from swift electrons to small metallic nanoparticles: dipole approximation. Tesis de maestría, Ms. C. thesis, Universidad Nacional Autónoma de México, Ciudad de México, México, oct. de 2017 (véanse páginas 25, 26).
- [20] J Aizpurua. Coupling of electrons and electromagnetic surface modes in scanning transmission electron microscopy. Tesis doctoral, Ph. D. thesis, Universidad de País Vasco, País Vasco, España, 1998 (véase página 26).