## Topology

**Definition.** A topology on a set X is a collection  $\tau$  of subsets of X satisfying:

- 1.  $\varnothing, X \in \tau$
- 2. An intersection of finite subcollections of  $\tau$  is in  $\tau$
- 3. A union of any subcollection of  $\tau$  is in  $\tau$

The ordered pair  $(X, \tau)$  is called a **topological space**.

**Definition.** Let  $(X, \tau)$  be a topological space. An **open subset** of X is a member of  $\tau$ .

**Definition.** Let  $\tau$  and  $\sigma$  be two topologies on a set X. We say that  $\tau$  is **weaker** (or smaller, coarser) than  $\sigma$  if  $T \subseteq \sigma$ . In this case,  $\sigma$  is then said to be **stronger** (or larger, finer) than  $\tau$ .

**Definition.** Let X be any set. The collection  $\tau = P(X)$  is a topology on X and is called the **discrete topology** on X. Here  $(X, \tau)$  is called the **discrete topological space**.

**Definition.** Let X be any set. The collection  $\tau = \{\emptyset, X\}$  is called the **indiscrete** topology on X. Here  $(X, \tau)$  is called the **indiscrete topology**.

**Definition.** Let X be any set. The collection  $tau = \{A \subseteq X : X \setminus A \text{ is finite }\} \cup \{\emptyset\} \text{ is called the } \textbf{co-finite topology}.$ 

**Definition.** Let X be any set. The collection  $tau = \{A \subseteq X : X \setminus A \text{ is countable } \} \cup \{\emptyset\} \text{ is called the } \mathbf{co\text{-}countable topology}.$ 

**Definition.** A topology  $\tau$  on a set X is said to be **metrizable** if there exists a metric d on X such that the topology  $\tau_d$  generated by the metric d coincides with  $\tau$ .

**Definition.** Two metrics defined on a set X are said to be **equivalent** if they generate the same topology. In other words,  $d_1$  and  $d_2$  are equivalent if the collection of open sets in  $(X, d_1)$  and  $(X, d_2)$  are the same.

**Definition.** The topology generated by the Euclidean metric on  $\mathbb{R}^n$  is called the **usual topology** on  $\mathbb{R}^n$ . For  $Y \subseteq \mathbb{R}^n$ , the topology generated by the Euclidean metric is called the usual topology on Y.

**Definition.** By a **neighbourhood** of a point x in a topological space  $(X, \tau)$ , we mean an open set containing x.

**Definition.** A subset A of a topological space  $(X, \tau)$  is said to be **closed** if  $X \setminus A$  is open in X, that is  $X \setminus A \in \tau$ 

## Theorem.

- $\bullet$   $\varnothing$  and X are closed in X
- An intersection of any collection of closed sets is closed in X
- A union of a finite collection of closed sets in X is closed in X

**Definition.** Let X be a topological space. A collection  $\beta$  of open subsets of X is said to be a **basis** for the topology on X if for every open set U in X and  $x \in U$ , there exists a  $B \in \beta$  such that  $x \in B \subseteq U$ .

Members of  $\beta$  are called **basis open sets** corresponding to basis  $\beta$ .

**Note.** For any topological space  $(X, \tau)$ ,  $\tau$  is a basis for  $\tau$ .

**Note.** In  $\mathbb{R}$  the set  $\{(x - \varepsilon, x + \varepsilon) : x \in \mathbb{R} \text{ and } \varepsilon > 0\}$  is a basis for the usual topology.

**Note.** For  $(\mathbb{R}, \tau)$ , where  $\tau$  is the discrete topology,  $\beta = \{\{x\} : x \in \mathbb{R}\}$  is a basis for  $\tau$  on  $\mathbb{R}$ .

**Note.** In  $\mathbb{R}$  the set  $\left\{\left(x-\frac{1}{n},x+\frac{1}{n}\right):x\in\mathbb{R}\text{ and }n\in\mathbb{N}\right\}$  is a basis for the usual topology.

**Note.** In  $\mathbb{R}$  the set  $\{(a,b): a,b \in \mathbb{Q} \text{ and } a < b\}$  is a basis for the usual topology. This is a countable basis for  $\mathbb{R}$  with the usual topology.

**Note.** Let  $(X, \tau)$  be a metrizable space. Then  $\beta = \{B(x, \varepsilon) : x \in X, \varepsilon > 0\}$  is a basis for  $\tau$ .

**Definition.** Let  $(X, \tau)$  be a topological space. A collection  $S \subseteq \tau$  is said to be a **subbasis** for the topology  $\tau$  if for every open set U in  $\tau$  and  $x \in U$ , there exists a

finite subcollection  $\{S_1, S_2, ..., S_n\}$  in S such that  $x \in \bigcap_{i=1}^n S_i \subseteq U$ 

Members of S are called **subbasis open sets** corresponding to S.

**Note.** For a topological space  $(X, \tau)$  a collection S is a subbasis for the topology  $\tau$  if and only if the collection of all finite intersections of members in S forms a basis for the topology  $\tau$ .

**Theorem.** Let  $(X, \tau)$  be a topological space and  $\beta$  be a collection of open sets in  $(X, \tau)$ .

Then  $\beta$  is a basis for the topology  $\tau$  on X if and only if every open set U in  $(X, \tau)$  can be written as a union of members in  $\beta$ .

**Theorem.** If X is a set, a basis for a topology on X is a collection  $\beta$  of subsets of X such that

- for every  $x \in X$  there exists  $B \subset \beta$  containing x.
- if  $x \in B_1 \cap B_2$ , for some  $B_1, B_2 \in \beta$ , then there exists  $B_3 \in \beta$  such that  $x \in B_3 \subseteq B_1 \cap B_2$ .

**Definition.** The topology generated by the basis  $\beta = \{[a,b) : a,b \in \mathbb{R}, a < b\}$  is known as the **lower limit topology** on  $\mathbb{R}$ .

The space  $\mathbb{R}$  equipped with the lower limit topology is known as the **Sorgenfrey** line  $\mathbb{R}_l$ .

**Proposition.** The lower limit topology on  $\mathbb{R}$  is strictly finer than the usual topology on  $\mathbb{R}$ 

**Definition.** Let  $K = \{\frac{1}{n} : n \in \mathbb{N}\}$ . Consider the basis  $\beta = \{(a,b) \setminus K : a,b \in \mathbb{Q}, a < b\} \cup \{(a,b) : a,b \in \mathbb{R}, a < b\}$ . The topology generated by the basis  $\beta$  is known as the k-topology on  $\mathbb{R}$ .

**Proposition.** The k-topology on  $\mathbb{R}$  is strictly finer than the usual topology on  $\mathbb{R}$ .

**Proposition.** The lower limit topology and the k-topology on  $\mathbb{R}$  are incomparable.

**Definition.** Let X be a set. Let S be a collection of subsets of X whose union equals X. Any such collection is called a **subbasis** for a topology X.

**Theorem.** Let S be a subbasis for a topology on X. Then

 $\tau = \{U \subseteq X : \text{for every } x \in U \text{ there exists a finite number of members } S_1, S_2, ..., S_n \in S \text{ such that } x \in S_1 \cap S_2 \cap ... \cap S_n \subseteq U\} \text{ is the topology generated by the subbasis } S.$ 

**Theorem.** Let  $\beta$  be a basis for a topology on X. Then the topology generated by  $\beta$  is equal to the intersection of all topologies on X that contains  $\beta$ .

**Theorem.** If  $\beta$  is a basis for a topology on a set X, then the topology generated by  $\beta$  on  $\tau$  is the smallest topology on X that contains  $\beta$ .

**Definition.** Let X be a set. A function  $f: \mathbb{N} \to X$  is called a **sequence** in X.

**Definition.** Let (X,Y) be a topological space. A sequence  $(X_n)$  is said to **converge** to  $x \in X$  if for every neighbourhood U of x, there exists  $n_0 \in \mathbb{N}$  such that  $x_n \in U \ \forall n \geq n_0$ 

**Definition.** A sequence  $(x_n)$  is said to be **eventually constant** if there exists  $n_0 \in \mathbb{N}$  such that  $x_n = x_{n_0} \ \forall n \geq n_0$ .

**Theorem.** In any topological space, every eventually constant sequence is convergent.

**Definition.** Let  $f: \mathbb{N} \to X$  be a sequence in X. Then for any strictly increasing function  $g: \mathbb{N} \to \mathbb{N}$ , the composition  $f \circ g: \mathbb{N} \to X$  is called a **subsequence** of f.

**Theorem.** In a topological space  $(X, \tau)$ , every subsequence of a convergent sequence is convergent.

**Definition.** Let A be a non-empty set. A relation  $\leq$  on a set A is called a **partial** order relation if the following condition holds for all  $\alpha, \beta, \gamma$  in A:

- 1. reflexive:  $\alpha \leq \alpha$
- 2. anti-symmetric:  $\alpha \leq \beta$  and  $\beta \leq \alpha \implies \alpha = \beta$
- 3. transitive:  $\alpha \leq \beta$  and  $\beta \leq \gamma \implies \alpha \leq \gamma$

**Definition.** A directed set J is a set with a partial order relation  $\leq$  such that for each pair  $\alpha$  and  $\beta$  of J, there exists a  $Y \in J$  such that  $\alpha \leq Y$  and  $\beta \leq Y$ .

**Definition.** A **net** in X is a function f from a directed set J to X.

Note. Every sequence is a net.

**Definition.** Let J be a directed set with a partial order relation ' $\leq$ '. A subset K of J is said to be **cofinal** in J if for each  $\alpha \in J$ , there exists  $\beta \in K$  such that  $\alpha \leq \beta$ .

**Proposition.** If  $g: \mathbb{N} \to \mathbb{N}$  is a strictly increasing function then  $g(\mathbb{N})$  is cofinal in  $\mathbb{N}$ .

**Theorem.** If J is a directed set and K is cofinal in J, then K is a directed set.

**Definition.** Let  $f: J \to X$  be a net in X. If I is a directed set and  $g: I \to J$  such that

- $i < j \implies g(i) < g(j) \ \forall i, j \in I$
- g(I) is cofinal in J

Then  $f \circ g \colon I \to X$  is called a **subnet** of f.

**Definition.** The net  $(X_{\alpha})_{\alpha \in J}$  is said to **converge** to a point  $x \in X$  if for every neighbourhood U of x, there exists  $\alpha_0 \in J$  such that  $x_{\alpha} \in U$  for all  $\alpha \geq \alpha_0$ .

**Definition.** Let  $(X, \tau)$  be a topological space and  $S \subseteq X$ . A point  $x \in X$  is called a **closure point** of S if for every neighbourhood U of x, we have  $U \cap S \neq \emptyset$ . The set of all closure points of S is called the **closure** of A and is denoted cl(A) or  $\overline{A}$ .

**Definition.** A point  $x \in X$  is said to be a **limit point** of S if for every neighbourhood of x, we have  $(U \cap S) \setminus \{x\} \neq \emptyset$ . The set of all limit points is called the **derived set** and is denoted S'

**Theorem.** Let X be a topological space and  $S \subseteq X$ . Then  $\bar{S}$  is the smallest closed set in X that contains S.

**Proposition.** A subset of a topological space X is closed if and only if  $S = \bar{S}$ 

**Theorem.** Let  $(X, \tau)$  be a metrizable space and  $S \subseteq X$ . Then  $x \in \bar{S}$  if and only if there exists a sequence  $\langle x_n \rangle$  in S such that  $x_n \to x$ .

**Theorem.** Let X be a topological space and  $S \subseteq X$ . Then show that  $x \in \bar{S}$  if and only if there exists a net  $\langle x_{\lambda} \rangle$  in S such that  $x_{\lambda} \to x$ 

**Definition.** Let X be a topological space and  $A \subseteq X$ . A point  $x \in X$  is said to be an **interior point** of A if there exists a neighbourhood U of X such that  $U \subseteq A$  (or) if there exists an open set U in X such that  $x \in U \subseteq A$ .

The set of all interior points of A is called the **interior** of A and is denoted  $A^{\circ}$ .

**Theorem.** Let X be a topological space and  $S \subseteq X$ . Then  $S^{o}$  is the largest open set contained in S.

**Theorem.** Let X be a topological space and  $S \subseteq X$ . Then S is open if and only if  $S = S^{\circ}$ .

**Definition.** Let  $(X, \tau_1)$  and  $(Y, \tau_2)$  be two topological spaces. The collection  $\mathcal{B} = \tau_1 \times \tau_2 = \{u \times v : u \in \tau_1, v \in \tau_2\}$  is a basis for a topology on  $X \times Y$ . The topology generated by  $\mathcal{B}$  is called the **product topology** on  $X \times Y$ .

**Theorem.** Let  $(X, \tau)$  and  $(Y, \sigma)$  be two topological spaces. Let  $\mathcal{B}$  be a basis for  $\tau$  and  $\mathcal{C}$  be a basis for  $\sigma$ . Then the collection  $\mathcal{D} = \{U \times V : U \in \mathcal{B}, V \in \mathcal{C}\}$  is a basis for the product topology on  $X \times Y$ .

**Result.** The product topology on  $\mathbb{R} \times \mathbb{R}$  coincides with the usual topology on  $\mathbb{R}^2$