

GiveMeExample: Learning Confusing Words by Example Sentences

Chieh-Yang Huang, Lun-Wei Ku

Institute of Information Science, Academia Sinica Contact: appleternity@iis.sinica.edu.tw, lwku@iis.sinica.edu.tw

EXPERIMENT

Learners labeled dataset.

An Example Question We Provide To Learner

- A total of 6 learners of 2 high, 2 medium, 2 low language proficiency help us label the most useful example sentence pair.
- 10 verb confusion sets and 200 questions are proposed for evaluation.
- For each question, we use the best rank among the 6 gold pairs to calculate the Mean Reciprocal Rank (MRR).

$$MRR = \frac{1}{\|Q\|} \sum_{q \in Q} \frac{1}{\min(rank_q)}$$

DIFFICULTY SCORER

- The automatic difficulty scorer is built based on the work of Pilan et al. but with several modifications.
- In order to give a score to a sentence instead of a category, we apply linear regression instead of SVM.
- Some features only for the Swedish language in Pilan's work are removed.
- ◆ Training data is manually labeled by a native speaker, who considers the degree of difficulty of composite lexicons and the syntactic structure of sentences.
- We set hard constrain for the difficulty score using a upper bound threshold.
 - "I accept it." is simple but not a good example sentence because only provides limited information.

WORD USAGE MODEL

- We build word usage model to estimate P(s|w) for each word w with the observed sentence s.
- Contexture Feature
 - lacktriangle Given an observed sentence s = $W_1 ... W_{i-k} ... W_i ... W_{i+k} ... W_n$, where w_i is target word and k is window size.
- Feature Contexture $\{e_{w_{i-k}}P_{w_{i-k}} \dots e_{w_{i-1}}P_{w_{i-1}}$ $e_{w_{i+1}}P_{w_{i+1}}\dots e_{w_{i+k}}P_{w_{i+k}}\},$ where e_w is word embedding of w, P_w is Part-Of-Speech of w.
- We apply Gaussian Mixture Model (GMM) to learn data's distribution.
- For each word, we use 5000 sentences to train its word usage model. Besides, the number of Gaussian mixture model is set to 50.

LEARNING DIFFERENCE

- When searching for the useful example sentences of the target word w_i in word set W. The clarification ability relates to two factors.
- lacktriangle Fitness Score: $P(s|w_i)$, whether w_i is appropriate for the sentence
- **Relative Closeness:**

 $\prod_{w_j \in W - w_i} P(s|w_i) / P(s|w_j) ,$ multiplication of probability ratios. The idea comes from that s should fit the target word w_i but be inappropriate for the rest of words in W.

• We define the clarification scoring function as the multiplication of these two scores:

$$score(s|w_i)$$

$$= P(s|w_i) * \prod_{w_j \in W - w_i} \frac{P(s|w_i)}{P(s|w_j)}$$

RESULT

	accept / agree	delay / postpone	refuse / disagree	excuse / forgive	invent / discover
GiveMeExample	0.547	0.549	0.560	0.508	0.376
Random	0.434	0.428	0.413	0.402	0.411
	manage / arrange	prevent / deter	realize / understand	destroy / spoil	occur / happen
	0.456	0.420	0.511	0.447	0.450
GiveMeExample	0.430	0.420	0.511	0.117	3.12 3

- Average MRR of GiveMeExample is 0.486.
- Average MRR of Random Baseline is 0.423.