For example, if $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 0 & 1 \end{pmatrix}$, then A has rank 2 and since $m \ge n$, $A^+ = (A^\top A)^{-1}A^\top$

where

$$A^{+} = \begin{pmatrix} 5 & 8 \\ 8 & 14 \end{pmatrix}^{-1} A^{\top} = \begin{pmatrix} 7/3 & -4/3 \\ 4/3 & 5/6 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} -1/3 & 2/3 & -4/3 \\ 1/3 & -1/6 & 5/6 \end{pmatrix}.$$

If $A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & -1 \end{pmatrix}$, since A has rank 2 and $n \ge m$, then $A^+ = A^{\top} (AA^{\top})^{-1}$ where

$$A^{+} = A^{\top} \begin{pmatrix} 14 & 5 \\ 5 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3/17 & -5/17 \\ -5/17 & 14/17 \end{pmatrix} = \begin{pmatrix} 3/17 & -5/17 \\ 1/17 & 4/17 \\ 4/17 & -1/17 \\ 5/17 & -14/17 \end{pmatrix}.$$

Let $A = V \Sigma U^{\top}$ be an SVD for any $m \times n$ matrix A. It is easy to check that both AA^+ and A^+A are symmetric matrices. In fact,

$$AA^{+} = V\Sigma U^{\top}U\Sigma^{+}V^{\top} = V\Sigma\Sigma^{+}V^{\top} = V\begin{pmatrix} I_{r} & 0\\ 0 & 0_{m-r} \end{pmatrix}V^{\top}$$

and

$$A^{+}A = U\Sigma^{+}V^{\top}V\Sigma U^{\top} = U\Sigma^{+}\Sigma U^{\top} = U\begin{pmatrix} I_{r} & 0\\ 0 & 0_{n-r} \end{pmatrix}U^{\top}.$$

From the above expressions we immediately deduce that

$$AA^+A = A,$$

$$A^+AA^+ = A^+,$$

and that

$$(AA^+)^2 = AA^+,$$

 $(A^+A)^2 = A^+A,$

so both AA^+ and A^+A are orthogonal projections (since they are both symmetric).

Proposition 23.4. The matrix AA^+ is the orthogonal projection onto the range of A and A^+A is the orthogonal projection onto $\operatorname{Ker}(A)^{\perp} = \operatorname{Im}(A^{\top})$, the range of A^{\top} .

Proof. Obviously, we have $\operatorname{range}(AA^+) \subseteq \operatorname{range}(A)$, and for any $y = Ax \in \operatorname{range}(A)$, since $AA^+A = A$, we have

$$AA^+y = AA^+Ax = Ax = y,$$