You are designing a reactor to carry out an irreversible reaction A \rightarrow 2B + 2C. You want to determine the optimal type of reactor to use. You decide that you will have an inflow of material F"F= 300 mol/min. You have performed laboratory scale experiments and collected some data on the system:

XA	0	0.2	0.4	0.5	0.6	8.0	0.9
- r A [mol L54min54]	2. 0	3.2	9.5	10	8.5	2.5	2.0

- **a.** Create a Jupyter notebook and use Python to construct a Levenspiel plot of the data. For all your plots, be sure to label the axes appropriately (don't forget units!), give it a title, and include a legend.
- **b.** Carry out a least squares fit of the data and plot the experimental data and the fit.
- **c.** You desire 60% conversion of the reactant. Compute the volume for a CSTR this would require. Compute the volume for a PFR this would require.

Suggestion: Use the numpy.trapz() function to find a numerical solution to the integral. (For more information on the function see the documentation available at https://docs.scipy.org/doc/numpy/reference/generated/numpy.trapz.html).

- **d.** For each of the above points, describe what you are coding in Markup cells and explain why you believe this makes sense.
- **e.** Print out the Jupyter notebook that you used to create your plots and calculate your values.