Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2006/300711

International filing date:

19 January 2006 (19.01.2006)

Document type:

Certified copy of priority document

Document details:

Country/Office: JP

Number:

2005-012597

Filing date:

20 January 2005 (20.01.2005)

Date of receipt at the International Bureau:

23 February 2006 (23.02.2006)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2005年 1月20日

出 願 番 号 Application Number:

特願2005-012597

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP 2 0 0 5 - 0 1 2 5 9 7

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

山 願 人
Applicant(s):

株式会社オティックス 株式会社ファインシンター

2006年 2月 8日

特許庁長官 Commissioner, Japan Patent Office

特許願 【書類名】 P1404620LA 【整理番号】 平成17年 1月20日 . 【提出日】 特許庁長官殿 【あて先】 F16H 53/02 【国際特許分類】 【発明者】 愛知県四尾市中畑町浜田ト10番地 株式会社オティックス内 【住所乂は居所】 山本 保 【氏名】 【発明者】 愛知県四尾市中畑町浜田下10番地 株式会社オティックス内 【住所乂は居所】 磯貝 英二 【氏名】 【発明者】 愛知県西尾市中畑町浜田下10番地 株式会社オティックス内 ・【住所又は居所】 木下 和正 【八名】 【発明者】 愛知県春日井市大泉寺町438番地 株式会社ファインシンター 【住所又は居所】 西村 邦弘 【氏名】 【発明者】 愛知県春日井市大泉寺町438番地 株式会社ファインシンター 【住所又は居所】 佐藤 英和 【氏名】 【特許出願人】 000185488 【識別番号】 株式会社オティックス 【氏名又は名称】 【特許出願人】 000220435 【識別番号】 株式会社ファインシンター 【氏名又は名称】 【代理人】 【識別番号】 100096840 【弁理士】 後呂 和男 【氏名又は名称】 052 - 533 - 718【電話番号】 【選任した代理人】 100097032 【識別番号】 【弁理士】 ▲高▼木 芳之 【氏名又は名称】 【手数料の表示】 018898 【予納台帳番号】 16,000円 【納付金額】 【提出物件の日録】 特許請求の範囲 【物件名】 明細書] 【物件名】 図面 . 【物件名】 要約書 1 【物件名】 0001534 【包括委任状番号】

【書類名】特許請求の範囲

【請求項1】

回転部材の内孔にシャフトを挿入することにより、前記シャフト上に前記回転部材が固定 された回転組立体において、

前記内孔の径を前記シャフトの挿入部の外径よりも小さく形成するとともに、前記内孔および前記シャフトの外周面のうちの一側に、その挿入方向に延びる複数の溝を形成し、

前記回転部材を加熱して前記内孔を拡径させた後、前記内孔に前記シャフトを挿入して冷却することにより前記内孔が再び縮径し、前記内孔および前記シャフトの外周面のうちの他側が相手側より押圧されて盛上がり、前記溝内に入り込むことにより双方が固定されて形成されることを特徴とする回転組立体。

【請求項2】

前記回転部材は、前記内孔を取り囲む円周状の外周面と、この外周面と連続するとともに外方に突出したカムプロフィールを有するカムピースとされ、前記複数の溝は前記内孔に形成され、前記内孔に駆動シャフトを挿入することにより、その上に前記カムピースが固着されて形成されたカムシャフトであることを特徴とする請求項1記載の回転組立体。

【請求項3】

前記内孔のうち、前記円周状の外周面が前記カムプロフィールにつながる箇所の内方に位置する部位には、前記駆動シャフトに前記カムピースが固着された時に、前記駆動シャフトの外周面に当接しないように大径の逃し部が形成されたことを特徴とする請求項2記載の回転組立体。

【請求項4】

前記カムビースの前記内孔の硬度が、前記駆動シャフトの外周面の硬度よりも高いことを 特徴とする請求項2または請求項3記載の回転組立体。

【請求項5】

回転部材の内孔にシャフトを挿入することにより、前記シャフト上に前記回転部材が固定された回転組立体を形成する回転組立体の製造方法において、

前記内孔の径を前記シャフトの挿入部の外径よりも小さく形成するとともに、前記内孔 および前記シャフトの外周面のうちの一側に、その挿入方向に延びる複数の溝を形成し、 前記回転部材を加熱して前記内孔を拡径させた後、前記内孔に前記シャフトを挿入して冷 切することにより前記内孔が再び縮径し、前記内孔および前記シャフトの外周面のうちの 他側が相手側より押圧されて盛上かり、前記溝内に入り込むことにより双方が固定される ことを特徴とする回転組立体の製造方法。

【書類名】明細書

【発明の名称】回転組立体とその製造方法

【技術分野】

[0001]

本発明は、シャフト上に回転部材が固着された回転組立体とその製造方法に関する。

【背景技術】

[0002]

カムビースに段付部を有する内孔を形成し、この内孔にパイプ状のシャフトを挿入した 後、シャフト内に高圧流体を注入して外方に膨出させることにより、シャフトを内孔の段 付部に収容させて、カムピースをシャフト上に固定したカムシャフトに関する従来技術が あった(例えば、特許文献1参照)。この技術によれば、シャフトの段付部に収容された 部位が引っかかりとなって、カムビースとシャフトとの間の固着強度を向上させることが できる。

[0003]

しかしながら、上述の従来技術によるカムシャフトを形成するためには、シャフト内に 高圧の流体を注入しなければならず、製造のために高圧の流体源やシャフトのシール装置 等の設備を必要とするとともに、多大な手間と工数を要するものであった。高圧を注入せ ずに、カムシャフトを加熱して内孔を拡径した後、シャフトを内孔に挿入して冷却し、固 定する方法があったが、内孔がシャフトから押圧されることによりカムビースの表面形状 が影響を受けて変化し、これを是正するためにカムビースの表面を研磨等する必要があっ

【特許文献1】特開2003-314576公報(第1図、第2図)

【発明の開示】

【発明が解決しようとする課題】

[0004]

本発明は上記のような事情に基づいて完成されたものであって、回転部材をシャフト上 に容易に固定できる回転組立体とその製造方法を提供することを目的とする。

【課題を解決するための手段】

[0005]

上記の目的を達成するための手段として、請求項1の発明は、回転部材の内孔にシャフ トを挿入することにより、前記シャフト上に前記回転部材が固定された回転組立体におい て、前記内孔の径を前記シャフトが挿入部の外径よりも小さく形成するとともに、前記内 孔および前記シャフトの外周面のうちの一側に、その挿入方向に延びる複数の溝を形成し 、前記回転部材を加熱して前記内孔を拡径させた後、前記内孔に前記シャフトを挿入して 冷却することにより前記内孔が再び縮径し、前記内孔および前記シャフトの外周面のうち の他側が相手側より押圧されて盛上がり、前記溝内に入り込むことにより双方が固定され て形成されることを特徴とする回転組立体とした。

[0006]

請求項2の発明は、前記回転部材は、前記内孔を取り囲む円周状の外周面と、この外周 面と連続するとともに外方に突出したカムプロフィールを有するカムピースとされ、前記 複数の溝は前記内孔に形成され、前記内孔に駆動シャフトを挿入することにより、その上 に前記カムビースが固着されて形成されたカムシャフトであることを特徴とする請求項し 記載の凹転組立体とした。

[0007]

請求項3の発明は、前記内孔のうち、前記円周状の外周面が前記カムプロフィールにつ なかる箇所の内方に位置する部位には、前記駆動シャフトに前記カムピースが固着された 時に、前記駆動シャフトの外周面に当接しないように大径の逃し部が形成されたことを特 徴とする請求項2記載の回転組立体とした。

[0008]

請求項1の発明は、前記カムピースの前記内孔の硬度が、前記駆動シャフトの外周面の

硬度よりも高いことを特徴とする請求項2または請求項3記載の回転組立体とした。

[0009]

請求項5の発明は、回転部材の内孔にシャフトを挿入することにより、前記シャフト上 に前記回転部材が固定された回転組立体を形成する回転組立体の製造方法において、前記 内孔の径を前記シャフトの挿入部の外径よりも小さく形成するとともに、前記内孔および 前記シャフトの外周面のうちの一側に、その挿入方向に延びる複数の溝を形成し、前記回 転部材を加熱して前記内孔を拡径させた後、前記内孔に前記シャフトを挿入して冷却する ことにより前記内孔が再び縮径し、前記内孔および前記シャフトの外周面のうちの他側か 相手側より押圧されて盛上がり、前記溝内に入り込むことにより双方が固定されることを 特徴とする回転組立体の製造方法とした。

【発明の効果】

[0010]

<請求項」の発明>

内孔およびシャフトの外周面のうちの他側が相手側より押圧されて盛上がり、溝内に入 り込むことにより双方が固定されるため、溝内に入り込んだ部位が引っかかりとなり、容 易に回転部材をシャフト上に強固に固定することができる。また、回転部材をシャフトに 取り付ける前に、内孔に検査用ゲージ等を挿入する際、溝の存在により内孔がゲージ等と 接触する面積が減少するため、挿入時の抵抗を低減でき、検査作業性が向上する。

$[0\ 0\ 1\ 1]$

<請求項2の発明>

回転部材は、内孔を取り囲む円周状の外周面と、この外周面と連続するとともに外方に 突出したカムプロフィールを有するカムピースとされ、複数の溝は内孔に形成され、内孔 に駆動シャフトを挿入することにより、その上にカムビースが固着されて形成されたカム シャフトである構成としたことにより、カムビースが駆動シャフトに固定されると、駆動 シャフトが滞内に入り込むため、カムビースが駆動シャフトから受ける押圧力が緩和され て、カムプロフィールの形状変化を防ぐことかできる。

[0012]

<請求項3の発明>

内孔のうち、円周状の外周面がカムプロフィールにつなかる箇所の内力に位置する部位 には、駆動シャフトにカムビースが固着された時に、駆動シャプトの外周面に当接しない ように大径の逃し部が形成されたことにより、カムビースの外形のうち、内孔に近く、か つエンジンのバルブ部材の作動量を制御するための、カムプロフィールにつなかる箇所の 形状が、カムビースの駆動シャフトへの固着により変化することを防止できる。

[0013]

<請求項4の発明>

カムピースの内孔の硬度が、駆動シャフトの外周面の硬度よりも高いことにより、カム ピースが駆動シャフトに固定されると、駆動シャフトが盛り上かって溝内に入り込みやす く、双方が強固に固定されるとともに、カムピース側の変形が少ないため、カムプロフィ ールの形状への影響を低減できる。

[0014]

<請求項5の発明>

内孔およびシャフトの外周面のうちの他側が相手側より押圧されて盛上がり、溝内に入 り込むことにより双方が固定されるため、溝内に入り込んだ部位が引っかかりとなり、簡 単な方法で回転部材をシャフト上に強固に固定することができる。また、回転部材がシャ フトに固定されると、内孔およびシャフトの外周面のうちの他側が満内に入り込むため、 回転部材がシャフトから受ける押圧力が緩和されて、その外形状が変化することを防止で

【発明を実施するための最良の形態】

[0015]

<実施形態1>

本発明の実施形態1を図1乃至図5によって説明する。図1に示すように、本実施形態による回転組立体であるカムシャフト1は、駆動シャフト2上に複数のカムピース3が固着されて形成されている。駆動シャフト2は、STKM材等の炭素鋼あるいは合金網による公属粉末を金型内にて加圧成形し、高温で焼結させた焼結材にて形成されている。図2に示すように、カムピース3の内部には内孔31が貫通しており、内孔31の内径は駆動シャフト2の挿人部の外径よりも小さく形成されている。また、カムピース3には、内孔31の一部を取り囲むように円周状の外周面32が形成されており、更に、外方へ突出したカムプロフィール33が、外周面32と連続するように形成されている。

[0016]

内孔31には、駆動シャフト2をカムピース3に挿入する(後述する)方向に延びるように、複数の溝34が形成されている。溝34は、内孔31上に均等に配置される4なに形成されている。図2に示したカムピース3においては、溝34間に配置された各々の判別が短形状に形成されているため、溝34の断面も矩形状に形成されているため、溝34の断面も矩形状に形成されているため、溝34の断面の突出部35 B、あるいは図5(C)に示すように円形状断面の突出部35 Cと同形状断面の突出部35 B、あるいは図5(C)に示すように円形状断面の突出部35 Cと適により、それぞれの間に配置された溝34 A、34 B、34 Cの断面形状を適定とにより、それぞれの間に配置された溝34 A、34 B、34 Cの断面形状を適定をいさせても同様の効果が得られる。カムピース30 の少なくとも内孔31 の硬度(H v 1 5 0 で 2 0 0)よりも高く形成されている。溝34 は、カムピース30 の成形時に外形状と同時に成形してもよいが、カムピース30 外形状の成形後に機械加工によって形成した後、カムピース32 を焼結してもよい。

[0017]

次に、カムビース3を、駆動シャフト2上に固着させる方法について説明する。まず、内孔31に複数の満34か形成されたカムビース3を、200℃以上の高温に加熱することにより、内孔31の内径dを拡張する。この状態で、カムビース3の内孔31内に、駆動シャフト2をその長さ方向に挿入する(焼き嵌め)。加熱により内孔31は拡径されているため、駆動シャフト2の挿入は円滑に行うことができる。

[0018]

次に、駆動シャフト2を複数のカムビース3の内孔31に挿入した状態で冷却すると、 拡径されていた内孔31が再び縮径し、駆動シャフト2の外周面を内方に押圧し始める。 従って、内孔31よりも硬度の低い駆動シャフト2の外周面が、内孔31によって押圧され、内孔31によって拘束されていない溝34と対向した部位が外方に盛上がり、それぞれ溝34内に入り込む(図3および図4示)。これにより、駆動シャフト2とカムビース3が互いに強固に固定され、カムシャフト1か完成する。カムシャフト1は図示しない内燃機関のシリンダーヘッドにおいて回転可能に固定され、回転することにより、カムプロフィール33と当接する給排気バルブの作動を制御する。

[0019]

本実施形態によれば、駆動シャフト2の外周面が内孔31より押圧されて盛上がり、溝34内に入り込むことにより双方が固定されるため、溝34内に入り込んだ部位が引っかかりとなり、簡単な方法でカムピース3を駆動シャフト2上に強固に固定することができる。また、カムピース3を駆動シャフト2に取り付ける前に、内孔31の内径dの精度を検査するために、内孔31に凶示しない検査用ゲージ等を挿入する際、溝34の存在により内孔31がゲージ等と接触する面積が減少するため、挿入時の抵抗を低減でき、検査作業性が向上する。また、カムピース3が駆動シャフト2に固定されると、駆動シャフト2が溝34内に入り込むため、カムピース3が駆動シャフト2から受ける押圧力が緩和されて、カムプロフィール33の形状が変化することがない。

[0020]

また、カムピース3の内孔31の硬度が、駆動シャフト2の外周面の硬度よりも高いことにより、カムピース3が駆動シャフト2に固定されると、駆動シャフト2が溝内に入り

込みやすく、双方が強固に固定されるとともに、カムピース3側の変形が少ないため、カムプロフィール33の形状への影響を低減できる。更に、溝34をカムピース3の成形時に内孔31に形成すれば、機械加工を施す必要がなく、その生産性を向上させることができる。

[0021]

く実施形態2>

次に、本発明の実施形態2の特徴部を図6によって説明する。本実施形態によるカムピース3Aの内孔31には、実施形態1と同様に複数の溝34が形成されている。溝34は、カムプロフィール33の内方に位置する部位(図6において内孔31の上部)と、これと対向し、円周状の外周面32の内方に位置する部位(図6において内孔31の下部)に各々一続きに形成されている。対向するように形成された一連の溝34間には、内孔31を外方にえぐって形成した大径の逃し部37が設けられている。一対の逃し部37は互いに対向し、カムピース3Aの円周状の外周面32がカムプロフィール33とつながる部位である立上り部36の内方に位置しており、カムピース3Aが駆動シャフト2に固着された時に、駆動シャフト2の外周面に内孔31が当接しないように、円周状に溝34の数個分の長さだけ延びている。

[0022]

本実施形態によれば、内孔31のうち、立1り部36の内方に位置する部位には、駆動シャフト2にカムピース3Aが固着された時に、駆動シャフト2の外周面に当接しないように大径の逃し部37が形成されたことにより、カムピース3Aの駆動シャフト2への固着により、内孔31に近く駆動シャフト2からの押圧力を受けやすい位置にあっても、立上り部36の外形状が変化することを、いっそう防止できる。尚、カムプロフィール33は内孔31から離れた位置にあるため、外形状が変化することが少なく、円周状の外周面32は相手部材と当接せず、エンジンのバルブ部材の作動量を制御するカム面として機能しないため、その内方に逃し部37を設けなくとも支障はない。

[0023]

<他の実施形態>

本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。

- (1) 溝は駆動シャフトの外周面側に形成してもよい。
- (2) 本発明はカムシャフトのみでなく、ステアリングシャフトあるいはトランスミッションのカウンターギヤ等、あらゆる回転組立体に適用可能である。

【図面の簡単な説明】

[0024]

- 【図1】実施形態1によるカムシャフトの一部外観図である。
- 【図2】図1に示したカムピースの正面図である。
- 【図3】図1のA-A断面図である。
- 【図4】 図3の要部拡大図である。
- 【図5】実施形態1の変形例1を示す要部拡大図(A)、変形例2を示す要部拡大図
- (B) および変形例3を示す要部拡大図(C)である。
- 【図6】実施形態2によるカムシャフトの断面図である。

【符号の説明】

[0025]

- 1 … カムシャフト
- 2…駆動シャフト
- 3 … カムピース
- 3 1 … 内孔
- 32…円周状の外周面
- 33…カムプロフィール

3 4 … 溝

3 6 … 立上り部3 7 … 逃げ部

【図2】

2…駆動シャフト 3…カムピース 3 1…内孔 3 2…円周状の外周面 3 3…カムプロフィール 3 4…溝

【図4】

(B)

(C)

【書類名】要約書

【要約】

【課題】 回転部材をシャフト上に容易に固定できる回転組立体とその製造方法を提供することを目的とする。

【解決手段】 カムシャフト1のカムピース3には、駆動シャフト2が挿入される内孔31が形成され、内孔31には駆動シャフト2の挿入方向に延びる複数の溝34が形成されている。カムピース3を加熱して内孔31を拡径した状態で、駆動シャフト2を内孔31に挿入する。この状態で冷却して内孔31を再び縮径することにより、駆動シャフト2の外周面が内孔31によって押圧されて盛上がり、溝34内に入り込むことにより、駆動シャフト2上にカムピース3が強固に固定される。

【選択図】 図3

0 0 0 1 8 5 4 8 8 19920409 名称変更

愛知県西尾市中畑町浜田下10番地 株式会社オティックス 0002101 名称変更

東京都豊島区南池袋2丁目30番11号 株式会礼ファインシンター