Fehlerrechnung

Inhalt

Absoluter Fehler:	2
Relativer Fehler:	
Fehlerfortpflanzung	. 2
Analytische Darstellung – Funktionsgleichung	
Partielle Ableitungen erster Ordnung	
Partielle Ableitungen zweiter Ordnung	
Extremwerte von Funktionen in mehreren Variablen	
Maximalen fehler	_

Absoluter Fehler:

$$\Delta x = x - x_0$$

Relativer Fehler:

$$\frac{\Delta x}{x_0} \approx \frac{\Delta x}{x}$$

Fehlerfortpflanzung

Anhand des Beispiels $x = x_0 \pm |\Delta x| = 6 \pm 0.2$ und $y = y_0 \pm |\Delta y| = 3 \pm 0.1$ wird nun die Fehlerfortpflanzung bei den Grundrechnungsarten erklärt.

Addition: z = x + y

Maximalwert: 6,2 + 3,1 = 9,3

Minimalwert: 5,8 + 2,9 = 8,7

 \Rightarrow z = 9 ± 0,3

Allgemein gilt: $z = (x_0 \pm |\Delta x|) + (y_0 \pm |\Delta y|) = (x_0 + y_0) \pm (|\Delta x| + |\Delta y|)$

Subtraktion: z = x - y

Maximalwert: 6,2 - 2,9 = 3,3

Minimalwert: 5,8 – 3,1 = 2,7

 \Rightarrow z = 3 ± 0,3

Allgemein gilt: $z = (x_0 \pm |\Delta x|) - (y_0 \pm |\Delta y|) = (x_0 - y_0) \pm (|\Delta x| + |\Delta y|)$

Abschätzung der Fehlerfortpflanzung bei Addition und Subtraktion

Für zwei Messwerte $x = x_0 \pm \Delta x$ und $y = y_0 \pm \Delta y$ gilt:

Der maximale absolute Fehler ist die Summe der Beträge der absoluten Fehler der

Messwerte. $\Delta z_{max} = |\Delta x| + |\Delta y|$

Multiplikation: $z = x \cdot y$

- Maximalwert: (6 + 0,2) · (3 + 0,1) = 18 + 0,6 + 0,6 + 0,02 ≈ 19,2
 Da der Wert 0,02 im Vergleich zur angegebenen Genauigkeit noch um eine Größenordnung kleiner ist als die ursprüngliche Abweichung, kann er bei der Angabe des Ergebnisses vernachlässigt werden.
- Minimalwert: $(6 0.2) \cdot (3 0.1) = 18 0.6 0.6 + 0.02 \approx 16.8$ Auch hier wird der Wert 0.02 vernachlässigt.

$$\Rightarrow$$
 z = x · y \approx 18 \pm 1,2

Allgemein gilt:
$$z = x \cdot y = (x_0 \pm |\Delta x|) \cdot (y_0 \pm |\Delta y|) = x_0 \cdot y_0 \pm y_0 \cdot |\Delta x| \pm x_0 \cdot |\Delta y| + \underbrace{|\Delta x| \cdot |\Delta y|}_{\text{vernachlässigbar klein}}$$

$$\Rightarrow \left|\Delta z\right| \approx \left|y_0 \cdot \Delta x\right| + \left|x_0 \cdot \Delta y\right|$$

Analytische Darstellung – Funktionsgleichung

- Explizite Darstellung: z = f(x, y)
 ZB: z = 3x 4y + 5
 Die Funktionsgleichung ist nach der Variablen z aufgelöst.
- Implizite Darstellung: F(x, y, z) = 0
 ZB: 3x 4y z + 5 = 0
 Der Funktionsterm wird nicht nach einer Variablen aufgelöst, sondern in Form einer homogenen Gleichung angegeben.

Im Gegensatz zur impliziten Darstellung ist die explizite Darstellung nicht immer möglich, da zum Beispiel $z^3 - 2z + x + y = 0$ nicht nach zumgeformt werden kann.

Partielle Ableitungen erster Ordnung

Partielle = Teilweise

Partielle Ableitungen zweiter Ordnung

Für die partiellen Ableitungen zweiter Ordnung schreibt man:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{yx}$$

$$\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) = \frac{\partial^2 f}{\partial x \partial y} = f_{xy}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}$$

Die Berechnungen erfolgen in der Reihenfolge, in der die Indizes angegeben sind. Die Ableitungen \mathbf{f}_{xy} und \mathbf{f}_{yx} nennt man gemischt partielle Ableitungen.

Satz von Schwarz

Für stetig differenzierbare Funktionen gilt: Bei gemischt partiellen Ableitungen hängt das Ergebnis nicht von der Reihenfolge der Variablen ab, nach denen differenziert wurde.

ZB: Für eine Funktion in drei Variablen f(x, y, z) gilt:

$$\bullet \ f_{xxy} = f_{xyx} = f_{yxx}$$

$$\bullet \ f_{xyz} = f_{xzy} = f_{yxz} = f_{yzx} = ...$$

Extremwerte von Funktionen in mehreren Variablen

Maximalen fehler ?