Ground rules

https://slideplayer.com/slide/5291168/

Time dependent Schrodinger Equation

$$i\hbar \frac{\partial}{\partial t} \Psi(x, y, z, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z) \right] \Psi(x, y, z, t)$$

where
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Classical wave equation for de Broglie waves

Separation of variables:

$$\Psi_n(x, y, z, t) = \psi_n(x, y, z)\phi(t)$$

Separation of variables

$$i\hbar \frac{\partial}{\partial t} \psi_n (x, y, z) \phi(t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z) \right] \psi_n (x, y, z) \phi(t)$$

$$\psi_n(x,y,z).i\hbar\frac{\partial\phi(t)}{\partial t} = \phi(t)\left[-\frac{\hbar^2}{2m}\nabla^2\psi_n(x,y,z) + V(x,y,z).\psi_n(x,y,z)\right]$$

$$\frac{i\hbar}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = \left[-\frac{\hbar^2}{2m.\psi_n(x,y,z)} \nabla^2 \psi_n(x,y,z) + V(x,y,z).\psi_n(x,y,z) \right] = W$$

Separation constant

$$\Psi_n(x, y, z, t) = \psi_n(x, y, z)\phi(t)$$

Separation of variables

$$i\hbar \frac{\partial}{\partial t} \psi_n (x, y, z) \phi(t) = \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(x, y, z) \end{bmatrix} \psi_n (x, y, z) \phi(t)$$

$$\hat{H}, \text{Hamiltonian}$$

$$\text{operator}$$

$$x = y = z \text{ if } \frac{\partial \phi(t)}{\partial t} = \phi(t) \begin{bmatrix} -\frac{\hbar^2}{2m} \nabla^2 \psi_n (x, y, z) + V(x, y, z) \psi_n (x, y, z) \end{bmatrix} \psi_n (x, y, z) \psi_n (x, y, z)$$

$$\psi_n(x,y,z).i\hbar \frac{\partial \phi(t)}{\partial t} = \phi(t) \left[-\frac{\hbar^2}{2m} \nabla^2 \psi_n(x,y,z) + V(x,y,z).\psi_n(x,y,z) \right]$$

$$\frac{i\hbar}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = \left[-\frac{\hbar^2}{2m \cdot \psi_n(x, y, z)} \nabla^2 \psi_n(x, y, z) + V(x, y, z) \cdot \psi_n(x, y, z) \right] = W$$

$$\frac{i\hbar}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = W \cdot \left[-\frac{\hbar^2}{2m \cdot \psi_n(x, y, z)} \nabla^2 \psi_n(x, y, z) + V(x, y, z) \cdot \psi_n(x, y, z) \right] = W$$

$$\frac{i\hbar}{\phi(t)} \frac{\partial \phi(t)}{\partial t} = W; \quad \left[-\frac{\hbar^2}{2m \cdot \psi_n(x, y, z)} \nabla^2 \psi_n(x, y, z) + V(x, y, z) \cdot \psi_n(x, y, z) \right] = W$$

$$\Psi_n(x, y, z, t) = \psi_n(x, y, z) e^{-iWt/\hbar}$$

Stationary states

In classical mechanics \hat{H} represents total energy

We can therefore write

$$\widehat{H}\psi = W\psi$$
 as $\widehat{H}\psi = E\psi$

$$\Psi_n(x, y, z, t) = \psi_n(x, y, z)e^{-iE_nt/\hbar}$$

Each $\psi_n(x,y,z)$: a particular value of energy E_n

Quantization? Not yet!!

Eigenvalues and Eigenfunctions

In classical mechanics \hat{H} represents total energy

We can therefore write

$$\widehat{H}\psi = W\psi$$
 as $\widehat{H}\psi = E\psi$

$$\Psi_n(x, y, z, t) = \psi_n(x, y, z)e^{-iE_nt/\hbar}$$

Schrodinger equation is an eigenvalue equation

There can be many solutions $\psi_n(x)$ each corresponding to different energy E_n

Mathematical description of Quantum mechanics: built upon the concept of operators

Classical Variable

QM Operator

Position, *x*

Momentum, $p_{v} = mv$

$$\hat{p}_x = \frac{\hbar}{i} \frac{d}{dx} = -i\hbar \frac{d}{dx}$$

Kinetic Energy, $T_x = \frac{p_x^2}{2m}$

$$\widehat{T}_x = \frac{-\hbar^2}{2m} \frac{d^2}{dx^2}$$

Kinetic Energy, $T = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m}$ $\hat{T} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$

$$\widehat{T} = \frac{-\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)$$

Potential Energy, V(x)

$$\hat{V}(x)$$

The values which come up as result of an experiment are the eigenvalues of the appropriate operator

In any measurement of observable associated with operator \hat{A} , the only values that will be ever observed are the eigenvalues an, which satisfy the eigenvalue equation:

$$\hat{A} \cdot \Psi_n = a_n \cdot \Psi_n$$

 Ψ_n are the eigenfunctions of the system and a_n are corresponding eigenvalues

If the system is in state Ψ_k , a measurement on the system will yield an eigenvalue a_k

Only real eigenvalues will be observed, which will specify a number corresponding to the classical variable

If
$$Y(x) = Sin(cx)$$

$$\frac{d}{dx}Y(x) = c \times Cos(cx)$$

$$\frac{d^2}{dx^2}Y(x) = -c^2 \times Sin(cx) = -c^2 \times Y(x)$$

If
$$Y(x) = e^{ax}$$

$$\frac{d}{dx}Y(x) = a \times e^{ax}$$

$$\frac{d^2}{dx^2}Y(x) = a^2 \times e^{ax} = a^2 \times Y(x)$$

There may be, and typically are, many eigenfunctions for the same QM operator!

All the eigenfunctions of Quantum Mechanical operators are "Orthogonal"

Superposition of states

Schrodinger equation: Classical wave equation for de Broglie waves

General solutions of Classical wave equation: Standing waves

Superposition of **Normal modes**

(Length: Half integral multiple of wavelength)

Solutions of Schrodinger equation:

Linear combination of wavefunctions that are **orthogonal** to each other

https://www.slideserve.com/urbana/standing-waves

Before and after measurement

Measurement: Property has a value of *P*

Before measurement:

Realist: Value = P (Einstein)

 \Rightarrow Quantum theory is incomplete

Orthodox: Entanglement (Bohr,

Copenhagen interpretation)

 \Rightarrow *Measurement produces the value*

Agnostic: Don't know, don't care

Before and after measurement

Measurement: Property has a value of *P*

Before measurement:

Realist: Value = *P* (Einstein)

 \Rightarrow Quantum theory is incomplete

Orthodox: Entanglement (Bohr,

Copenhagen interpretation)

 \Rightarrow *Measurement produces the value*

Agnostic: Don't know, don't care

Immediately after measurement:

Same Value = P

Wavefunction collapse

But what is this wavefunction?

Google Doodle, December 11, 2017