ПОЛУЧЕНИЕ СЛОЖНЫХ ОКСИДОВ НА ОСНОВЕ LaAlO₃ И ИССЛЕДОВАНИЕ ИХ СТРУКТУРЫ И ЭЛЕКТРИЧЕСКИХ СВОЙСТВ

Набиев Б.А. $^{(1)}$, Обвинцева Ю.А. $^{(1)}$, Егорова А.В. $^{(1,2)}$, Белова К.Г. $^{(1)}$, Анимица И.Е. $^{(1)}$ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19 $^{(2)}$ Институт химии твердого тела УрО РАН 620990, г. Екатеринбург, ул. Первомайская, д. 91

Создание новых электролитных материалов на основе сложных оксидов представляет собой важную область исследований в материаловедении. Главные требования для использования электролитов — это высокая ионная проводимость и химическая стабильность в различных условиях pO_2 , pH_2O , pCO_2 . Перспективными для исследований являются допированные перовскиты с формулой $A^{3+}B^{3+}O_3$, в частности лантансодержащие перовскиты $LaB^{3+}O_3$, так как они обладают устойчивостью по отношению к кислотным газам и высоким ионным транспортом. Среди известных перовскитных систем можно выделить допированные соединения на основе $LaAlO_3$. Алюминаты имеют ряд преимуществ, включая доступность исходных материалов, отличную термодинамическую стабильность, а также обширные области $T-p(O_2)$ ионной проводимости и значительную химическую стойкость.

Настоящая работа посвящена разработке новых со-допированных материалов на основе перовскита алюмината лантана. В работе осуществлен синтез соединений при одновременной замене в обе подрешетки катионами $\mathrm{Sr}^{2+}/\mathrm{Zn}^{2+}$ в алюминате лантана с помощью двух методик: твердофазного синтеза и глициннитратной технологии. Проведено уточнение структуры полученных сложных оксидов. Определены границы области гомогенности и кристаллохимические параметры. Исходная матрица LaAlO_3 имеет перовскитную структуру с ромбо-эдрической симметрией, в то время как твердые растворы на его основе характеризуются кубической симметрией.

Исследованы транспортные свойства исходного и содопированных образцов при варьировании T, pO_2 , pH_2O . Методом электрохимического импеданса получены температурные зависимости общей электропроводности в интервале температур $300-1000\,^{\circ}\text{C}$ в сухой ($pH_2O=3\cdot10^{-5}\,\text{атм}$) и влажной ($pH_2O=2\cdot10^{-2}\,\text{атм}$) атмосферах. Со-допированные образцы обладают проводимостью на $2.5\,$ порядка величины выше относительно базового состава. Совместное введение допантов $\text{Sr}^{2+}/\text{Zn}^{2+}$ оптимизирует электрические характеристики, за счет появления высокого уровня кислородного дефицита. Как матричный, так и со-допированные образцы не реагируют на смену влажности. Значимый протонный транспорт в таких системах не реализуется.

Химическую устойчивость фаз оценивали по данным РФА образцов, предварительно обработанных в течение 10 ч при температуре 500 °C в смеси газов воздух: CO_2 (1:1).