数形结合专题

函数与不等式

函数中数形结合主要为合理利用函数图像,快速找到零点,交点等(有时也会与导数,二次函数的零点列方程式问题相结合)。另外,一些最值问题,若能巧妙构造为点到点,转化为图像距离问题,也会变得容易。

1.
$$f(x) = \frac{2ln(-x)}{x}$$
, $g(x) = \frac{x-2m}{3x^2}$, $h(x) = g(f(x)) + \frac{1}{m}$ 有3个零点,且 $x_1 < x_2 < x_3$. 那么 $f(x_1) + f(x_2) + 2f(x_3)$ 取值可能为 () .

A.
$$\frac{2}{e}$$
 B. $-\frac{2}{e}$ **C.** $\frac{1}{e}$ **D.** $-\frac{1}{e}$

2.
$$f(x) = egin{cases} 3x - x^3 & x < 0 \ 2^{-x} - 1 & x \geq 0 \end{cases}$$

 $4f^2(x)-4af(x)+2a+3=0$,有5个不同实根,a可能值().

A.
$$-\frac{3}{2}$$
 B. $-\frac{4}{3}$ **C.** $-\frac{5}{4}$ **D.** $-\frac{7}{6}$

3.
$$f(x) = \begin{cases} |lnx| & 0 < x \leq 2 \\ f(4-x) & 2 < x < 4 \end{cases}$$
, $f(x) = m$ **有4个不等实根** $x_1 < x_2 < x_3 < x_4$.有不等式 $kx_3x_4 + x_1^2 + x_2^2 \geq k + 11$ 恒成立,k最小值为.

4. 已知函数
$$f(x)=egin{cases} e^{x-1}+1&x\leq 1\ |ln(x-1)|&x>1 \end{cases}$$
,则函数 $F(x)=f[f(x)]-2f(x)-rac{1}{2}$ 的零点个数为_.

5.
$$f(x) = \sqrt{x^4 - 3x^2 - 6x + 13} - \sqrt{x^4 - x^2 + 1}$$
的最大值为

6. $k,b\in R$, 关于 x 不等式 $kx+b\geq lnx$ 在 $(0,+\infty)$ 恒成立, 求 $\frac{b}{k}$ 最小值.

复数

虽然在近几年的数学高考中,复数考察要求有所淡化,但复数与平面向量、解析几何等等,高中数学的其他重要分支(高考主体和核心)之间,有着非常丰富、至关重要的关联(特别是复数的几何意义)。

复数的四种表示: 代数形式, 三角形式, 几何形式, 指数形式。

- 1. 复数|z+i|+|z-i|=2 , 则 $|z+1+i|_{min}=$ _.
- 2. $z=(x-2)+yi, (x,y\in R), |z|=\sqrt{3},$ 则 $\frac{y}{x}$ 范围是_.
- 3. 复数 $z \cdot \overline{z} + iz i\overline{z} \le 0$,则 | z | 范围为_.
- 4. $|z_1|=|z_2|=1, |z_1+z_2|=\sqrt{2}$, 则 $|z_1-z_2|=$ _.
- 5. 复数|z|=1,则 $(|z-1||z-i|)_{max}=$ _.
- 6. 复数|z+2-2i|=1,则 $(|z-2-2i|-3)_{max}=$ _.
- 7. 复数z 满足 |z|=2|z-3-3i|, 则|z|范围为_.
- 8. 复数 z_1 对应的点在两复数1+i,1-i分别对应的点为端点的线段上运动,复数 z_2 对应点在以原点为圆心,以1为半径的圆上运动,则复数 z_1+z_2 对应的点的轨迹围成的图形面积为_.

平面向量

主要讨论平面向量的几何意义。

- 1. $\vec{a}, \vec{b}, \vec{c}$ 满足 $|\vec{a}|=4, |\vec{b}|=2\sqrt{2}, \langle \vec{a}, \vec{b} \rangle = \frac{\pi}{4}$, $(\vec{c}-\vec{a})\cdot(\vec{c}-\vec{b})=-1$.求 $|\vec{c}-\vec{a}|$ 最大值。
- 2. 在 ΔABC 中, $(3\vec{AB}+2\vec{AC})\cdot\vec{BC}=0$. $t\in R$, $|\vec{BA}-t\vec{BC}|$ 最小值为 $\frac{6}{5}|\vec{BC}|$,求 $\angle BAC$.
- 3. 在 ΔABC 中, AB=4, AC=5, BC=7, $t\in R$, 当 $(|\vec{AB}+t\vec{AC}-(t-2)\vec{BC}|)$ 取最小值时,t的取值为___.