

Retrieval Evaluation

Reference - Chap 04: Retrieval Evaluation, Baeza-Yates & Ribeiro-Neto, Modern Information Retrieval, 2nd Edition

Guru Swaroop Bennabhaktula

Postdoctoral researcher

27th Sep, 2023

Introduction

An example of an Information Retrieval System - Google search

Introduction

Characteristics of the Metrics for Retrieval

- Quantitative
- , Interpretable
 - . A high value \longrightarrow high relevance to the user
 - . A low value --> low relevance to the user
- Repeatable

Systematic evaluation of the IR system allows answering questions:

- A modification to the ranking function is proposed, do we go ahead and launch it?
- A new probabilistic function has just been devised, is it superior to the vector model and the BM25 rankings?

Reference Collections

- It is a labelled dataset required to evaluate an IR system
- A reference collection consists of
 - A set $D = \{d_i\}$ of pre-selected documents
 - A set $I = \{i_m\}$ of information need descriptors
 - A set of binary relevance judgements associated with each pair (i_m, d_i)
 - $R(i_m,d_j) = \begin{cases} 1 & \text{if } d_j \text{ is relevant to } i_m \\ 0 & \text{otherwise} \end{cases}$ where, $i_m \in I$ $d_j \in D$
 - These judgements are produced by a human specialist

Retrieval Metrics

- Precision and Recall
- Single Value Summaries
 - P@n, MAP, R-Precision, F
- User Oriented Measures
- DCG Discounted Cumulative Gain
- > Rank Correlation Metrics

- Consider a reference collection, D
- For a given query, $i_m \in I$
 - R Set of relevant documents
 - A Answer set (set of retrieved documents)
 - $R \cap A$ Relevant documents in the answer set

Precision

- Fraction of retrieved documents that are relevant
- $P = \frac{|R \cap A|}{|A|}$

Recall

- Fraction of relevant documents that are retrieved
- $R = \frac{|R \cap A|}{|R|}$

Notation:

For a set X, |X| denotes its cardinality i.e., the number of elements in the set

> Issues

- The definition of precision and recall assume that all documents in answer set A have been examined.
- In practice, users are presented with a ranked set of documents.
- Users examine the documents one by one starting from the top
- Precision and recall vary as the user proceeds with the examination of answer set A

Possible solution

It is more appropriate to plot Precision v/s Recall

IDO 41

Recall, $R = \frac{|R \cap A|}{|R|}$

Precision, P =

- Consider a reference collection
- \rightarrow Given a query q_1
- Relevant docs R_{q_1}
 - 10 relevant documents
 - $R_{q_1} = \{d_3, d_5, d_9, d_{25}, d_{39}, d_{44}, d_{56}, d_{71}, d_{89}, d_{123}\}$
- \rightarrow PR plot for 11 standard recall values r_i

Recall r_j	Precision @ R $P(r_j)$
0.0	1.00
0.1	1.00
0.2	0.67
0.3	0.50
0.4	0.40
0.5	0.33
0.6	0
0.7	0
0.8	0
0.9	0
1.0	0

Ranking produced by a retrieval algorithm

Rank	Document	$\mathop{\sf Recall}_r$	Precision @ R $P(r)$
1	d ₁₂₃	0.1	1.00
2	d ₈₄		
3	d ₅₆	0.2	0.67
4	d_6		
5	d ₈		
6	d_9	0.3	0.50
7	d ₅₁₁		
8	d ₁₂₉		
9	d ₁₈₇		
10	d ₂₅	0.4	0.40
11	d ₃₈		
12	d_{48}		
13	d ₂₅₀		
14	d ₁₁₃		
15	d_3	0.5	0.33

- Let's consider another query
- Given a query q_2
- Relevant docs R_{q_2}
 - 3 relevant documents
 - $R_{q_2} = \{d_3, d_{56}, d_{129}\}$
- \rightarrow PR plot for 11 standard recall values r_i

$$P(r_j) = \max_{r_j \le r} P(r)$$

Recall	Precision @ R
r_{j}	$P(r_j)$
0.0	0.33
0.1	0.33
0.2	0.33
0.3	0.33
0.4	0.25
0.5	0.25
0.6	0.25
0.7	0.20
0.8	0.20
0.9	0.20
1.0	0.20

Ranking produced by a retrieval algorithm

Rank	Document	$\mathop{\sf Recall}_r$	Precision @ R $P(r)$
1	d ₄₂₅		
2	d ₈₇		
3	d ₅₆	0.33	0.33
4	d ₃₂		
5	d ₁₂₄		
6	d ₆₁₅		
7	d ₅₁₂		
8	d ₁₂₉	0.66	0.25
9	d ₄		
10	d ₁₃₀		
11	d ₁₉₃		
12	d ₇₁₅		
13	d ₈₁₀		
14	d_5		
15	d_3	1.0	0.20

- In the examples so far, the PR figures have been computed only for a single query
- Usually, however, the retrieval algorithms are evaluated by considering several distinct test queries
- Let's say we have N_a test queries, we average the precision and recall levels as:

$$\bar{P}(r_j) = \sum_{i=1}^{N_q} \frac{P_i(r_j)}{N_q}$$
 where, $\bar{P}(r_j)$ is the average precision at recall level r_j $P_i(r_j)$ is the precision at recall level r_j for the i^{th} query

The figure on the right illustrates the PR plot averaged over queries q_1 and q_2

Recall r_j	P @ R $P_1(r_j)$	P @ R $P_2(r_j)$	Precision @ R $\bar{P}(r_j)$
0.0	1.00	0.33	0.66
0.1	1.00	0.33	0.66
0.2	0.67	0.33	0.50
0.3	0.50	0.33	0.41
0.4	0.40	0.25	0.32
0.5	0.33	0.25	0.29
0.6	0	0.25	0.12
0.7	0	0.20	0.10
0.8	0	0.20	0.10
0.9	0	0.20	0.10
1.0	0	0.20	0.10

- Averaged PR curves can be used to compare the performance of distinct IR algorithms
- For instance,

- Ranking 1 Preferred for web search
- > Ranking 2 Preferred for medical / legal domains

Issues with P & R measures:

- Estimation of maximum recall for a query is infeasible / impractical
 - Example In web-based applications, it is not possible to identify all relevant documents for a given query.
- Averaging precision over many queries might disguise important anomalies
 - Example Outliers may go undetected
- > Interpreting a PR plot can become cumbersome. Need a simplistic approach.
 - Single valued score

- Average Precision at n
- MAP Mean Average Precision
- R-Precision
 - Precision Histograms
- Mean reciprocal rank
- E-measure
- F-measure

Average Precision @ n

- In the case of web-search, the majority of searches do not require a high recall
- \rightarrow Let's revisit the example query q_1
 - For this query we have
 - P@5 = 0.40
 - P@10 = 0.40
- These metrics provide an early indication of which algorithm might be preferable in the eyes of the users
 - Question Can we use Precision @ R as an early indication to evaluate web search results?

Rank n	Document	Precision @ n $P(n)$
1	d ₁₂₃	1.00
2	d ₈₄	0.50
3	d ₅₆	0.67
4	d_6	0.50
5	d ₈	0.40
6	d_9	0.50
7	d ₅₁₁	0.43
8	d ₁₂₉	0.38
9	d ₁₈₇	0.33
10	d ₂₅	0.40
11	d ₃₈	0.36
12	d_{48}	0.33
13	d ₂₅₀	0.31
14	d ₁₁₃	0.29
15	d_3	0.33

Mean Average Precision

- The idea here is to generate a single-valued summary of the "entire ranking" by averaging the precision values after each new relevant document is observed
- Avg. precision for query q_1

$$AP_1 = \frac{1 + 0.67 + 0.5 + 0.4 + 0.33 + 0 + 0 + 0 + 0 + 0}{10} = 0.28$$

 \rightarrow Avg. precision for query q_2

$$\bullet \quad AP_2 = \frac{0.33 + 0.25 + 0.20}{3} = 0.26$$

- ightarrow Mean average precision for query set $\{ q_1, q_2 \}$
 - $MAP = \frac{AP_1 + AP_2}{2} = 0.27$

Ranking for query q_1

Rank	Document	Precision @ n
n		P(n)
1	d ₁₂₃	1.00
2	d ₈₄	
3	d ₅₆	0.67
4	d_6	
5	d ₈	
6	d_9	0.50
7	d ₅₁₁	
8	d ₁₂₉	
9	d ₁₈₇	
10	d ₂₅	0.40
11	d ₃₈	
12	d_{48}	
13	d ₂₅₀	
14	d ₁₁₃	
15	d_3	0.33

R - Precision

- R The number of relevant docs for a given query
- > This is a special case of Average Precision @ n, with n = R
- Revisiting the example query q_1
 - For this query we have
 - R = 10 (number of relevant docs)
 - R-Precision, P@R = P@10 = 0.40

	Rank n	Document	Precision @ n $P(n)$
	1	d ₁₂₃	1.00
	2	d ₈₄	0.50
	3	d ₅₆	0.67
	4	d_6	0.50
	5	d ₈	0.40
	6	d_9	0.50
	7	d ₅₁₁	0.43
	8	d ₁₂₉	0.38
	9	d ₁₈₇	0.33
R =	10	d ₂₅	0.40
	11	d ₃₈	0.36
	12	d_{48}	0.33
	13	d ₂₅₀	0.31
	14	d ₁₁₃	0.29
	15	d_3	0.33

Precision Histograms

- > This is a natural extension of R-Precision
- Useful for comparing 2 different retrieval algorithms
 - $RP_A(i)$: R-Precision for algorithm A, wrt the i^{th} query
 - $RP_B(i)$: R-Precision for algorithm B, wrt the i^{th} query
 - $RP_{A/B}(i) = RP_A(i) RP_B(i)$

A precision histogram for 10 hypothetical queries

Observations:

- A performs well for 8 queries
- > B performs well only for 2 queries

The E-Measure

- It is a measure that combines both precision and recall
- It allows a user to specify relative importance of precision and recall

$$E(j) = 1 - \frac{1+b^2}{\frac{b^2}{r(j)} + \frac{1}{P(j)}} \qquad 0 \le E(j) \le 1$$

where,

P(i) is the precision at the i^{th} position in the ranking

r(j) is the recall at the j^{th} position in the ranking

 $b \ge 0$ is a user specified parameter (relative importance of precision and recall)

If
$$b == 0$$
 then $E(j) = 1 - P(j)$

If
$$b \to \infty$$
 then $\lim_{h \to \infty} E(j) = 1 - r(j)$

of If
$$b == 1$$
 then $E(j) = 1 - \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}} = 1 - F(j)$

where, F(j) is the harmonic mean of P(j) and r(j) - also known as the F-measure

The F-Measure

- > It is the harmonic mean precision and recall
- $F(j) = \frac{2}{\frac{1}{r(j)} + \frac{1}{P(j)}}$

Properties

- Assumes values in the interval [0, 1]
- F=0 indicates that no relevant documents were retrieved F=1 indicates that the set of relevant documents equal the set of retrieved documents
- F assumes a high value only when both precision and recall are high
- Maximizing F implies finding the best possible compromise between precision and recall
- F-measure and E-measure are related by the equation F(j) = 1 E(j)

User Oriented Measures

Issue - Assume set of relevant documents is the same for all users

Solution - User Oriented Measures

Coverage Ratio – The fraction of documents known and relevant that are in the answer set.

$$coverage \ ratio = \frac{|K \cap R \cap A|}{|K \cap R|}$$

Novelty Ratio – The fraction of relevant documents in the answer set that unknown to the user.

novelty ratio =
$$\frac{(R \cap A) - K}{|R \cap A|}$$

- A high coverage ratio indicates that the system is finding most relevant documents to the user
- A high novelty ratio indicates that the system is revealing many unknown yet relevant documents to the user

For a given reference collection, an information request, and a retrieval algorithm

- Are all relevant documents equally important? Is it always the case?
 - Precision and recall allow only binary relevance assessments
 - They do not distinguish between highly relevant docs or mildly relevant ones
- These issues can be addressed by a technique known as DCG (or) discounted cumulative gain
 - DCG assigns multi-grade relevance scores for documents
 - 0 : non-relevant
 - 1 : mildly relevant
 - 2: moderately relevant
 - 3: highly relevant
 - DCG metric is designed such that
 - Highly relevant documents are preferred at the top of the ranking
 - Relevant documents appearing at the end of the ranking are less valuable

Consider the graded relevance scores, assigned by specialists, for queries q_1 and q_2

- $R_{q_1} = \{[d_3, 3], [d_5, 3], [d_9, 3], [d_{25}, 2], [d_{39}, 2], [d_{44}, 2], [d_{56}, 1], [d_{71}, 1], [d_{89}, 1], [d_{123}, 1]\}$
- $R_{q_2} = \{[d_3, 3], [d_{56}, 2], [d_{129}, 1]\}$

For a query q_i

- 1. Compute Gain Vector, G_i , based on relevance scores
- 2. Compute Cumulative Gain, CG_i

$$CG_{j}[i] = \begin{cases} G_{j}[1] & \text{if } i = 1\\ G_{j}[i] + CG_{j}[i - 1] & \text{otherwise} \end{cases}$$

3. Compute Discounted Cumulative Gain, DCG

$$DCG_{j}[i] = \begin{cases} G_{j}[1] & \text{if } i = 1\\ \frac{G_{j}[i]}{\log_{2} i} + DCG_{j}[i - 1] & \text{otherwise} \end{cases}$$

Rank	Doc	G_1	CG_1	DCG_1
1	d ₁₂₃	1	1	1.0
2	d_{84}	0	1	1.0
3	d ₅₆	1	2	1.6
4	d_6	0	2	1.6
5	d ₈	0	2	1.6
6	d_9	3	5	2.8
7	d ₅₁₁	0	5	2.8
8	d ₁₂₉	0	5	2.8
9	d ₁₈₇	0	5	2.8
10	d ₂₅	2	7	3.4
11	d ₃₈	0	7	3.4
12	d_{48}	0	7	3.4
13	d ₂₅₀	0	7	3.4
14	d ₁₁₃	0	7	3.4
15	d_3	3	10	4.2

Average DCG

- Given a set of N_q queries, average $\overline{CG}[i]$ and $\overline{DCG}[i]$ can be computed as
 - $\bullet \quad \overline{CG}[i] = \sum_{j=1}^{N_q} \frac{CG_j[i]}{N_q}$
 - $\bullet \quad \overline{DCG}[i] = \sum_{j=1}^{N_q} \frac{DCG_j[i]}{N_q}$
- For queries q_1 and q_2 these averages are given by:

Rank	G_1	G_2	\overline{CG}	\overline{DCG}
1	1	0	0.5	0.5
2	0	0	0.5	0.5
3	1	2	2	1.5
4	0	0	2	1.5
5	0	0	2	1.5
6	3	0	3.5	2.1
7	0	0	3.5	2.1
8	0	1	4	2.2
9	0	0	4	2.2
10	2	0	5	2.5
11	0	0	5	2.5
12	0	0	5	2.5
13	0	0	5	2.5
14	0	0	5	2.5
15	3	3	8	3.3

Ideal DCG

- Need ideal DCG scores to determine how much room for improvement there is
- \rightarrow For a given test query q, lets assume the relevance assessment contains
 - n_3 documents with a relevance score of 3
 - n_2 documents with a relevance score of 2
 - n_1 documents with a relevance score of 1
 - n₀ documents with a relevance score of 0
- Then, the ideal gain vector for the query q, is created by sorting all relevance scores in descending order:
 - $IG = [3, \ldots, 3, 2, \ldots, 2, 1, \ldots, 1, 0, \ldots, 0]$
 - As before we can compute:
 - Ideal cumulative gain *ICG*
 - Ideal discounted cumulative gain IDCG
- > Finally, for a set of queries we can compute:
 - Average Ideal cumulative gain \overline{ICG}
 - Average Ideal discounted cumulative gain IDCG

Ideal DCG

- For instance, consider the example queries q_1 and q_2 , with the graded relevance scores
 - $R_{q_1} = \{[d_3, 3], [d_5, 3], [d_9, 3], [d_{25}, 2], [d_{39}, 2], [d_{44}, 2], [d_{56}, 1], [d_{71}, 1], [d_{89}, 1], [d_{123}, 1]\}$
 - $R_{q_2} = \{[d_3, 3], [d_{56}, 2], [d_{129}, 1]\}$

Rank	G_1	G_2	\overline{CG}	\overline{DCG}	IG_1	IG_2	\overline{ICG}	<i>IDCG</i>
1	1	0	0.5	0.5	3	3	3.0	3.0
2	0	0	0.5	0.5	3	2	5.5	5.5
3	1	2	2	1.5	3	1	7.5	6.8
4	0	0	2	1.5	2	0	8.5	7.3
5	0	0	2	1.5	2	0	9.5	7.7
6	3	0	3.5	2.1	2	0	10.5	8.1
7	0	0	3.5	2.1	1	0	11.0	8.3
8	0	1	4	2.2	1	0	11.5	8.4
9	0	0	4	2.2	1	0	12.0	8.6
10	2	0	5	2.5	1	0	12.5	8.7
11	0	0	5	2.5	0	0	12.5	8.7
12	0	0	5	2.5	0	0	12.5	8.7
13	0	0	5	2.5	0	0	12.5	8.7
14	0	0	5	2.5	0	0	12.5	8.7
15	3	3	8	3.3	0	0	12.5	8.7

Normalized DCG

- In order to directly compare two DCG curves, it is necessary to normalize them
- Given a set of N_q queries, $NCG[i] = \frac{\overline{CG}[i]}{\overline{ICG}[i]}$; $NDCG[i] = \frac{\overline{DCG}[i]}{\overline{IDCG}[i]}$
- > The AUC represents the quality of the ranking algorithm
 - Useful for comparing two distinct ranking algorithms

Rank	\overline{CG}	\overline{DCG}	\overline{ICG}	\overline{IDCG}	NCG	NDCG
1	0.5	0.5	3.0	3.0	0.17	0.17
2	0.5	0.5	5.5	5.5	0.09	0.09
3	2	1.5	7.5	6.8	0.27	0.21
4	2	1.5	8.5	7.3	0.24	0.20
5	2	1.5	9.5	7.7	0.21	0.19
6	3.5	2.1	10.5	8.1	0.33	0.25
7	3.5	2.1	11.0	8.3	0.32	0.25
8	4	2.2	11.5	8.4	0.35	0.26
9	4	2.2	12.0	8.6	0.33	0.26
10	5	2.5	12.5	8.7	0.40	0.29
11	5	2.5	12.5	8.7	0.40	0.29
12	5	2.5	12.5	8.7	0.40	0.29
13	5	2.5	12.5	8.7	0.40	0.29
14	5	2.5	12.5	8.7	0.40	0.29
15	8	3.3	12.5	8.7	0.64	0.38

Key Takeaways

- Account for multiple level of relevance assessments
 - Advantage Distinguish between highly relevant and mildly relevant
 - Disadvantage It is hard to get such labeled data
- Allows to systematically combine document ranks with relevance scores
- > CG provides a single metric of retrieval performance at any position in the ranking
- DCG makes the metric more immune to outliers

Rank Correlation Metrics

- Precision and Recall allow comparing the *relevance* of the results produced by the two ranking functions
- However, there are situations in which
 - We cannot directly measure the relevance
 - We are more interested in measuring how differently a ranking function varies when compared to another well known ranking function
- In these cases we are interested in measuring the relative ordering produced by the two ranking functions
- This can be measured by using statistical functions known as the rank correlation metrics
 - The Spearman Coefficient
 - The Kendall Tau Coefficient

Rank Correlation Metrics

Properties

- \rightarrow Consider the rankings R_1 and R_2
- A rank correlation metric yields a correlation coefficient $C(R_1, R_2)$ with the following properties:
 - $-1 \le C(R_1, R_2) \le 1$ i.e., values are bound
 - If $C(R_1, R_2) == 1$ then, the agreement between the two rankings is perfect i.e., they are the same
 - If $C(R_1,R_2)==-1$ then, the disagreement between the two rankings is perfect i.e., they are the reverse of each other
 - If $C(R_1, R_2) == 0$ then, the two rankings are completely independent
 - Increase in the values of $C(R_1,R_2)$ implies increase in the agreement between the two rankings

The Spearman Coefficient

- It is one of the most widely used rank correlation metric
- Let's derive this coefficient
 - Let $s_{1,j}$ be the position of the document d_j in ranking R_1
 - Let $s_{2,i}$ be the position of the document d_i in ranking R_2
- Consider 10 example documents retrieved by the rankings R_1 and R_2

Docs	$s_{1,j}$	$s_{2,j}$	$s_{1,j} - s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	3	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1
Sum of squared distances 24				24

The Spearman Coefficient

Let there be K documents

- Sum of squared distances between the rankings is given by
 - $\sum_{j=1}^{K} (s_{1,j} s_{2,j})^2$
- > The maximum value of sum of squares of ranking differences is given by

$$\frac{K \times (K^2 - 1)}{3}$$

In order to get bounded scores (in the range [0, 1]), compute the fraction

$$\frac{\sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{\frac{K \times (K^2 - 1)}{3}}$$

- > The value of the above fraction is
 - 0 when the two rankings are in perfect agreement
 - 1 when the rankings are in perfect disagreement
- If we multiply the fraction with 2, its value shifts to the range [0, 2]
- If we further subtract the result from 1, the resultant value shifts to the range [-1, +1]

The Spearman Coefficient

Formally, we define the Spearman rank correlation coefficient as

$$S(R_1, R_2) = 1 - \frac{6 \times \sum_{j=1}^{K} (s_{1,j} - s_{2,j})^2}{K \times (K^2 - 1)}$$

where,

- R_1, R_2 two distinct rankings
- K number of ranked documents
- $s_{1,i}$ Rank of document d_i in R_1
- $s_{2,j}$ Rank of document d_j in R_2

For the two rankings in the adjacent Table we have

$$S(R_1, R_2) = 1 - \frac{6 \times 24}{10 \times (10^2 - 1)}$$
$$= 1 - \frac{144}{990}$$
$$= 0.854$$

Docs	$s_{1,j}$	$S_{2,j}$	$s_{1,j}-s_{2,j}$	$(s_{1,j} - s_{2,j})^2$
d_{123}	1	2	-1	1
d_{84}	2	3	-1	1
d_{56}	3	1	+2	4
d_6	4	5	-1	1
d_8	5	4	+1	1
d_9	6	7	-1	1
d_{511}	7	8	-1	1
d_{129}	8	10	-2	4
d_{187}	9	6	+3	9
d_{25}	10	9	+1	1

Sum of squared distances

- Kendall Tau coefficient has a simple algebraic structure with an intuitive interpretation
- When we think of rank correlations, we think of how two rankings tend to vary in similar ways, i.e., how they tend to move in the same direction
- To illustrate, consider two documents d_j and d_k and their positions in the rankings R_1 and R_2
 - Further, consider the differences in rank positions for these two documents in each ranking, i.e.,

$$s_{1,k} - s_{1,j} s_{2,k} - s_{2,j}$$

- If these differences have the same sign, we say that the document pair $[d_k,\ d_j]$ is **concordant** in both the rankings
- If these differences have a different sign, we say that the document pair $[d_k, d_j]$ is **discordant** in both the rankings

- Consider the top 5 documents in rankings R_1 and R_2
- \rightarrow The ordered document pairs in R_1

```
[d_{123}, d_{84}], [d_{123}, d_{56}], [d_{123}, d_{6}], [d_{123}, d_{8}]

[d_{84}, d_{56}], [d_{84}, d_{6}], [d_{84}, d_{8}]

[d_{56}, d_{6}], [d_{56}, d_{8}]

[d_{6}, d_{8}]
```

Docs	$S_{1,j}$	$S_{2,j}$	$s_{1,j} - s_{2,j}$
d_{123}	1	2	-1
d_{84}	2	3	-1
d_{56}	3	1	+2
d_6	4	5	-1
d_8	5	4	+1

A total of 10 ordered pairs (Note - For K docs there are K * (K - 1)/2 ordered pairs)

Similarly, the ordered document pairs in R_2

$$[d_{56}, d_{123}],$$
 $[d_{56}, d_{84}],$ $[d_{56}, d_{8}],$ $[d_{56}, d_{6}]$ $[d_{123}, d_{84}],$ $[d_{123}, d_{8}],$ $[d_{123}, d_{6}]$ $[d_{84}, d_{8}],$ $[d_{84}, d_{6}]$ $[d_{8}, d_{6}]$

- On comparing the two sets of ordered pairs for R_1 and R_2 we can compute the concordant (C) and discordant (D) pairs
- \rightarrow For ranking R_1 we have

```
C, D, C, C
```

- D, C, C
- C, C
- D
- Similarly, for R_2
 - D, D, C, C
 - C, C, C
 - C, C
 - D
- There are a total of 20 pairs, 14 concordant, and 6 discordant pairs

Docs	$S_{1,j}$	$S_{2,j}$	$s_{1,j} - s_{2,j}$
d_{123}	1	2	-1
d_{84}	2	3	-1
d_{56}	3	1	+2
d_6	4	5	-1
d_8	5	4	+1

The Kendall Tau coefficient is defined as

$$\tau(R_1, R_2) = P(R_1 = R_2) - P(R_1 \neq R_2)$$

where,

 $P(R_1 = R_2)$ is the probability that the rankings are concordant

 $P(R_1 \neq R_2)$ is the probability that the rankings are discordant

Docs	$S_{1,j}$	$S_{2,j}$	$s_{1,j} - s_{2,j}$
d_{123}	1	2	-1
d_{84}	2	3	-1
d_{56}	3	1	+2
d_6	4	5	-1
d_8	5	4	+1

In our example,

$$\tau (R_1, R_2) = P(R_1 = R_2) - P(R_1 \neq R_2)$$
$$= \frac{14}{20} - \frac{6}{20}$$
$$= 0.4$$

Note - Kendall Tau coefficient is defined only for ranking over same set of documents

In case a different set of documents are retrieved by the two rankings then ignore the non-common documents

- Side-by-side panels
- A/B Testing
- Crowdsourcing
- > Evaluation with clickthrough data

Side-by-side panels

> Top 5 answers produced by two retrieval algorithms for the query, "information retrieval evaluation"

IPDF1 Pharmaceutical Information Flver

PDF/Adobe Acrobat

PHARMACEUTICAL INFORMATION RETRIEVAL AND EVALUATION SERVICE. Future Solutions Now ... information need, • retrieval of the appropriate documents, • evaluation ... www.uiowa.edu/~idis/Pharm_Info_Flyer.pdf

ROMIP: Russian Information Retrieval Evaluation Seminar

Russian information retrieval evaluation initiative was launched in 2002 with ... a basis for independent evaluation of information retrieval methods, aimed to be ... romip.ru/en

IPDFI Reflections on Information Retrieval Evaluation Mei-Mei Wu & Diane ...

PDF/Adobe Acrobat

Reflections on Information Retrieval Evaluation. Mei-Mei Wu ... Research and evaluation in information retrieval. Journal of Documentation , 53 (1), 51-57. ... pnclink.org/annual/annual/1999/1999od/wu-mm.pdf

Information retrieval - Wikipedia, the free encyclopedia

Information retrieval (IR) is the science of searching for ... that was needed for evaluation of text retrieval methodologies on a very large text collection. ... en.wikipedia.org/wiki/Information_retrieval

The Music Information Retrieval Evaluation eXchange (MIREX)

The 2005 Music Information Retrieval Evaluation eXchange (MIREX 2005): Preliminary Overview. ... Music Information Retrieval Systems Evaluation Laboratory: ... www.dlib.org/dlib/december06/downie/12downie.html

IPDFI Reflections on Information Retrieval Evaluation Mei-Mei Wu & Diane ...

PDF/Adobe Acrobat

digital library initiatives, information retrieval (IR) evaluation has Evaluation of evaluation in information retrieval. Proceedings of the ... pnclink.org/annual/annual/1999/1999pdf/wu-mm.pdf

[PDF] Retrieval Evaluation with Incomplete Information

PDF/Adobe Acrobat

The philosophy of information. retrieval evaluation. In Evaluation of Cross-Language. Information Retrieval Systems. Proceedings of CLEF ... www.nist.gov/itl/iad/IADpapers/2004/p102-buckley.pdf

Evaluation criteria for information retrieval systems. - [Traduzir esta página]

The contrast between the value placed on discriminatory power in discussions of indexing and classification and on the transformation of a query into a set ... informationr.net/ir/4-4/paper62.html - 36k

Information retrieval - Wikipedia, the free encyclopedia - [Traduzir esta página]

The aim of this was to look into the **information retrieval** community by supplying the infrastructure that was needed for **evaluation** of text **retrieval** ... en.wikipedia.org/wiki/Information retrieval - 59k

[PDF] Information Retrieval System Evaluation: Effort, Sensitivity, and ...

PDF/Adobe Acrobat

Information Retrieval System Evaluation:. Effort, Sensitivity, and Reliability. Mark Sanderson. Department of Information Studies, University of ... dis.shef.ac.uk/mark/publications/my_papers/SIGIR2005.pdf

Side-by-side panels

- In a side-by-side experiment, users are aware that they are participating in an experiment
- Further, a side-by-side experiment cannot be repeated in the same conditions of a previous execution
- Finally, side-by-side panels do not allow to measure by how much is system A better when compared to system B

A / B Testing

- A/B testing consists of displaying to selected users a modification in the layout of a page
 - The group of selected users constitute a fraction of all users such as, for instance, 1%
 - The method works well for sites with large audiences
- By analyzing how the users react to the change, it is possible to analyze if the modification proposed is positive or not
- A/B testing provides a form of real-world human experimentation, without the setting of a lab

Crowdsourcing

- It can be used to quickly get labelled data (query

 relevance documents) for a reference collection
- Crowdsourcing is a term used to describe tasks that are outsourced to a large group of people, called "workers"
- It is an open call to solve a problem or carry out a task, one which usually involves a monetary value in exchange for such service
- > Example: Amazon Mechanical Turk

Evaluation with clickthrough data

- Reference collections can be prepared for a relatively small number of queries
- In real-world applications (such as web search), the query log is typically composed of billions of queries.
 - It is impractical to make reference collections for such a large query set
- one very promising alternative is evaluation based on the analysis of clickthrough data
- > It can be obtained by observing how frequently the users click on a given document, when it is shown in the answer set for a given query
- This is particularly attractive because the data can be collected at a low cost

Evaluation with clickthrough data

A minimal example...

- A click ≠ relevance judgement. It just indicates user preference
 - It is correlated (to relevance judgement) but noisy
 - Used to generate preferences
- We could build evaluation metrics directly from user preferences
 - Consider the Kendall Tau rank correlation coefficient: $\tau = \frac{|C| |D|}{|C| + |D|}$
 - |C|, |D| number of concordant and discordant pairs respectively

$$\begin{array}{c} d_1\\ d_2\\ d_3 \text{ (clicked)} \\ d_4 \end{array} \qquad \begin{array}{c} d_3 > d_1\\ d_3 > d_2\\ d_3 > d_4 \end{array} \qquad \begin{array}{c} d_1 > d_2 & d_2 > d_3\\ d_1 > d_3 & d_2 > d_4\\ d_1 > d_4 & d_3 > d_4 \end{array} \qquad \tau = \frac{1-2}{1+2} = -0.33$$

Summary

Key Takeaway

- No single best metric for retrieval evaluation.
- Use metrics based on the context, considering its pros and cons

Assignment

- > Aim To evaluate web search results
- Part A Retrieve web search results
 - Learn to programmatically retrieve the web search results from popular search engines such as Google search, Yahoo, etc.,
- Part B Evaluation
 - Evaluate the retrieved results
 - Compare the retrieved results by different search engines to one another