Vision of Internet platform and QoS Framework

Objective

• To study performance and QoS of the platform

- Response time
- throughput
- end-to-end delay

Multihost vision: internet platform (PS= packet switch node in WAN)

Single-host vision: internet platform

(PS= packet switch nodes in WAN)

Single host vision and internet user platform

Fig. 1. General view of the system platform

Protocol recall

Description of protocols

- Layer 6: Application layer
- Layer 5: Presentation layer
- Layer 4: Transport layer (protoc. **TCP**)
- Layer 3: Network layer (protoc. **IP**)
- Layer 2: Distinto in
 - Logical Link Control sub-layer (protoc. LLC) e
 - Media Access Control sub-layer (protoc. MAC)
- Layer 1: Physical layer (protoc. **P**)

Architecture of a VoIP Gateway

Copyright Franco Angeli

Performance model of a VoIP Gateway

The OSI (Open System Interconnection) reference model (also known as the ISO/OSI model)

Vision of the Host Layers and the Media Layers

vertical description of the network functions (from HOST towards LAN)

vertical description of the network functions

(from LAN towards Gateway)

Vertical description of the network functions Through virtual machines (or abstract)

Functionality of the network described by the various abstraction levels from the bottom to the top: progressive *virtualization* of the network

VM₁ hardware or physical machine (*circuit level*) protoc. P

VM₂ firmware machine (*microprogram language network level*) protoc. MAC/LLC

VM₃ network layer machine (network language level) protoc.IP

VM₄ transport layer machine (network *operating system language level*) protoc.TCP

VM₅ presentation layer machine (presentation towards network language level) prot.HTTP or others

VM₆ user program level (*user* programming language level)
G.Tazeolla ISP Lecture
Copyright Franco Angeli

Network/Transport/ Presentation level protocols

- *Network/Transport* Internet level protocol: TCP/IP (Transmission Control Protocol/Internet Protocol).
- Transport/Presentation level protocols.
 - Hypertext Transfer Protocol (HTTP) for the transmission of information via the WEB
 - Simple Mail Transfer Protocol (SMTP) for the management of electronic mail messages
 - Network News Transfer Protocol (NNTP) for the management of discussion groups
 - File Transfer Protocol (FTP) for the transfer of files between remote machines

Vertical description of the network

```
platform (hardware-part) = (VM_1, VM_2)
```

platform (system-part (software)) =
$$(VM_3, VM_4)$$

User (software) workload=
$$(VM_5, VM_6)$$

Vertical description of the network functions

Machine VM_i

is

- set of resources R_i
- Language for their use L_i

Vertical description of the network functions

Each primitive (instruction or command) of Language L_i

is created by a program written in the L_{i-1} Language of VM_{i-1} machine

- VM₁ physical layer (in LAN & GW)
 - resource R_1 = physical components (electrical, electronic), connections among these etc.
 - language L_1 = undefined in that level 1 is the only one where the functionalities aren't further emulated

- VM₂ LLC/MAC Layer (in LAN & GW) machine
- -R₂ resources = internal registers, logic-arithmetic operators, sequencer, controllers, shifters, transfer networks, etc.
- $-L_2$ language = microprogram language
 - uses resource R₂
 - its (micro)instructions or (micro)commands are directly interpreted by the physical machine VM_1

- VM₃ IP Layer (in HOST)
- resources R_3 = memory locations (main, secondary), addressable registers of processors (main and peripheral or I/O), logic-arithmetic unit, control etc.
 - language L_3 = base language of HOST (machine language) in binary
 - uses R3 resources
 - each instruction or command written in L_3 is implemented by a microprogram written with (micro)instructions of language L_2 of VM_2

- VM_4 Transport Layer (in HOST)
 - resources R_4 = physical *spaces* of memory (main and secondary), *physical* processors as a whole (main, peripheral) etc.,
 - -L₄ language = operating system language of HOST for programming assignment procedures R₄ resources according to the need which begin from the higher level:

 scheduler to govern memory spaces
 dispatcher to govern processors
 supervisor to govern peripheral units etc.

- VM_5 Presentation Layer (in HOST)
 - $-R_5$ resources = logic spaces of memory (files, databases etc.), logic processors which interpret instructions in language L_4
 - $-L_5$ language = symbolic programming language, standard language (C, C⁺⁺, Java etc.
 - + HTML *for web documents description*)
 developed
 by having assembler instructions at a internal *sub-level*to VM₅ itself.

- VM₆ Application Layer (in HOST)
 - $-R_6$ = still *logic processors* and *logic* spaces of memory, but at a more abstract level of level 4 logics, in that the processors now interpret commands written in language L5
 - -L₆ language = higher level language, or a synthetic language (menu commands etc.)
 - logic memory spaces gather all that has been created by user programs at this level, thus file icons, folders etc.

Internet service (WPA program from HA (VM₅ / VM₆ level) towards HB)

Fig. 3. Sol Galazeo Hahl SPol Lecturie ation Copyright Franco Angeli

WPA service towards platform

Informal platform model, WPA&WPB services and protocols

Fig. 2. Detailed view of the packet flow in the system platform when transferring data from HA to HB

Formal platform model, WPA&WPB services and protocols

Calculations on formal models: response time

- A is an access node (host)
- response time seen by A =
 - = time from the instant in which a user in A launches a request to another resource R of the distributed imp., to the instant in which the response from R arrives to the user
 - = from A to R journey time
 - + from R to A return time

end-to-end delay

- If R = other host Bwhere another user is the one which wants to communicate with A (or vice versa).
 - only interests the message journey time from A to B (or vice versa)
- This time is called **end-to-end delay** =
 - = delay from one end to another of the platform

Calculations on the formal model: network throughput

- A is an access node (host)
- B is a node (host) which interacts with A

throughput of the network =

= Number of packets per unit of time that transit via the network

Example of results from the formal model prediction of the window size effect on the end-to-end delay

Example of results from the formal model prediction of the window size effect on the system capacity

Copyright Franco Angeli

Example of results from the formal model (predict the execution time E(t) of the internet service) study of the processing power effect of HA and HB and the workload platform n

- The average execution time E(t) is **the sum** of the response times the application **spends in the various** service centers visited by application tasks.
- In other words E(t) is the global, or end-to-end response time (in both directions).
- We assume that the designer is interested in **predicting the effect on E(t)** of concentrating the processing power in HA or HB for a given capacity of the network N.
- Predict E(t)
 versus 7 different combinations of
 the processing power Ca and Cb of HA and HB,

(predict the internet service execution time) study of the processing power effect of HA and HB and the workload platform n

- Various values of the reference processing power C were experimented up to finding out the two most significant cases:
 - a) the network is not the system bottleneck
 - b) the network is the system bottleneck
- For a network N with standard logical capacity values of various centers from HA to LAN1 to WAN to etc...to HB, it was found that

 $C = 10^3$ statements/sec

and

 $C = 10^5$ statements/sec

• were the values of the reference processing power C to obtain the cases a) and b) respectively.

(predict the internet service execution time) study of the processing power effect of HA and HB and the workload platform n

• Seven different combinations of HA and HB processing power:

Note:

When $C = 10^3$ statements/sec (network IS NOT the system bottleneck)

When $C = 10^5$ statements/sec (network IS the system bottleneck)

(predict the internet service execution time) study of the processing power effect of HA and HB and the workload platform n

- The value of the looping factor **n** gives the network workload (platform workload)
- Indeed, the demand vectors of all nodes included in the loop are divided by n, so that whichever is the value of n, the workload on HA and HB remains unchanged.
- On the contrary, the only workload that changes is the network workload, which is taken **n** times.
- The value $\mathbf{n} = \mathbf{9}$ was chosen as the lowest value in order to obtain a significant network workload.

Fig. 9. E(t) versus combinations of C_a and C_b for $C = 10^3$ statements/sec (network is not the system bottleneck)

- When the network is NOT the system bottleneck, the host processing power has visible effects on E(t):
- E(t) progressively decreases from its highest value E(t) = 131 sec to significant lower values when the processing power is concentrated on either HA (left side of the curve) or HB (right side of the curve).
- In the former case a decrease from E(t) = 131 to E(t) = 93 sec is seen with a 29% decrease.
- In the latter one, a decrease to E(t) = 116 is recognized, with a 11.5% decrease

Fig. 10. E(t) versus combinations of C_a and C_b for $C = 10^5$ statements/sec (network is the system bottleneck)

• Instead, when the network IS the system bottleneck:

there is no impact on E(t) of the processing power concentration on either HA or HB

Since the network is largely responsible for the delays

Conclusions

- The dependence of the quality of the *internet service* on the
 - processing rates of the network versus the hosts
 - and of the hosts
- shows that internet services such as:
 - distributed information retrieval
 - distributed interactive video
 - mobile telecommunication services
 - industrial process control
 - remote network management
 - network-based cooperative work
 - electronic commerce B2C, B2B, C2C
 - etc
- can benefit from formal model studies from the early phases of the internet development lifecycle instead of using fix it later or fly fix fly approaches

QoS platform control

Model-driven management of QoS of platforms and internet services

QoS framework

- ISO/IEC 13236-1998 International Standard
- Structured collection of concepts to describe the Quality of Service (QoS) of IT systems
- Intended to assist those that produce specification and design of IT systems and those that define the communication services

G.Iazeolla P Lecture Copyright Franco Angeli

• QoS characteristic of the network a quantified aspect of QoS, for example time delay, capacity, accuracy etc

QoS requirement

the user expectation of the QoS, for example, is the expectation that the time for a specific service (e.g. downloading a stream of data) must not exceed a specified value

Considered QoS characteristics

• capacity-related characteristic

network *throughput*, i.e. number of packets per time unit delivered from source to sink through the network

• time-related characteristic

network end-to-end delay, i.e. the time for a packet to get across network

Example of QoS requirements

- capacity-related characteristic
 - E1: the time to download a stream of data of
 x kByte of length from sending host A to
 receiving host B should not exceed y sec.
- time-related characteristic
 - **E2**: the time it takes host B to receive a command of one packet length sent from host A should not exceed *z* sec.

QoS management/maintenance

- network QoS management
 all activities designed to assist in satisfying one or more
 QoS requirements
- operational phase of QoS management
 management activities intended to honor the
 agreements on the QoS to be delivered
- network QoS maintenance
 the activity intended to maintain QoS to acceptable levels (tuning activity)

G.Iazeolla ISP Lecture Copyright Franco Angeli

QoS management/maintenance

- Network tuning
 - –a compensatory adjustment of the network operation
 - directed by an efficient performance model, an on-line approach to system evaluation

Relationships between QoS concepts

G.Iazeolla P Lecture Copyright Franco Angeli

Network QoS tuning

G.Iazeolla SISP Lecture Copyright Franco Angeli

Time-efficiency of the performance model

• *model-based tuning* = identify the network variables to reset in a short time

time-efficiency essential to conduct the *decision process* in due time

G.Iazeolla5ISP Lecture Copyright Franco Angeli

Time-efficiency objective

Reduce model evaluation time from about 30 hours of the brute-force approach to a few seconds of the efficient approach

Efficient evaluation method

 Hierarchical hybrid approach based on decomposition and aggregation

Based on three abstraction levels

Level-1 Model (part of)

Level-2 Model

G.Iazeolla SP Lecture Copyright Franco Angeli

Level-2 Model (expanded view)

G.Iazeolla P Lecture Copyright Franco Angeli

Level-3 Model

 $E(t_s)$ = function of ack throughput ($\gamma(C-n)$)

$$E(t_s) = 1 / \gamma(i) \quad \text{for} \quad 0 \le i \le C$$
$$= 1 / \gamma(C) \quad \text{for} \quad i > C$$

G.Iazeolla5TSP Lecture Copyright Franco Angeli

Network QoS tuning

- a) measurement of the system performance (SP) characteristics, e.g. mean end-to-end delay or mean network capacity
- b) translation to QoS values
- c) calculation of QoS difference
- d) identification of QoS related components
- e) modification of parameters of identified components and system reset

G.Iazeolla SP Lecture Copyright Franco Angeli

Decision process of tuning operations

The tuning decision process, i.e.:

- d) identification of QoS related components
- e) modification of parameters of identified components and system reset
- ... is performance-model driven

Identification of QoS related components (step 1)

- QoS user requirement:
 - the time for downloading a stream of data
 must not exceed a specified value
- related QoS characteristics:
 - -end-to-end delay
 - network capacity

Identification of QoS related components (step 2)

packet arrival process

packet acknowledgement process

Parameters of identified components

• arrival rate λ of user application packets

network window size C

Network reset operations

Illustration of the effect of variables reset on the mean end-to-end delay and on the network capacity

Effect on end-to-end delay

Mean end-to-end delay versus λ

G.Iazeolla GAP Lecture Copyright Franco Angeli

Effect on end-to-end delay (2)

- Assume we are in the case of the QoS requirement E2, and that the negotiated QoS is a time of no more than 15 seconds to deliver a command of one packet length to B.
- By using the model, it is possible to find the values of the parameters λ or C that guarantee a mean end-to-end delay lower than or equal to 15 seconds. By looking at the previous figure it is easily seen that:
 - for $\lambda \le 2.8$ all values of the window size C (4, 7 or 12) can be chosen,
 - for 2,8 < λ ≤ 3,8 C=7 or C=12 can be chosen,
 - for 3,8 < λ ≤ 4,3 only C=12 can be chosen, while no values of C can guarantee the considered requirement if λ > 4,3.

Effect on network capacity

Network capacity versus λ

G.Iazeolla GP Lecture Copyright Franco Angeli

Effect on *network capacity* (2)

- Assume we are in the case of the QoS requirement E1, and that the negotiated QoS is a time of no more than 10 seconds to download a stream of data of 140 Kbytes. In other words, a throughput of no less than 14 Kbytes/sec, or 1,75 packets/sec for packets of 8 Kbytes length, is required.
- By using the model, it is possible to find the values of the parameters λ or C that guarantee a mean network throughput greater than or equal to 1,75 packets per second. By looking at previous figure we can easily see that for $1,75 \le \lambda \le 2$ only a window size C=12 can be chosen, while for $\lambda > 2$ C=7 can be chosen as well.

Conclusions

- Performance modeling is called to play an important role in the network QoS management activities
- To play such a role, however, some important improvements need to be achieved in the modeling research and application
 - Methods for QoS-oriented model production
 - Model capability in identifying QoS-related components and parameters
 - Model evaluation effectiveness for its on-line use in the tuning operation loop

Complete development of the formal model

Next lectures