Task1: Execution command: ./Task1 Asphalt\ cracks/Asphalt-1.png

To solving this task, two different approaches are implemented.

The series of operation for the first approach are:

GrayScale \rightarrow Average Filter \rightarrow Log Transform \rightarrow Bilateral Filter \rightarrow Canny Edge Detection \rightarrow Denoising by using **connectedComponents**(removing group of pixel where their size are under the defined threshold).

For the second approach, KMeans algorithm utilized.

Task2: Execution command: ./Task2 street_scene.png

To solving this task, two different approaches are implemented.

The series of operation for the first approach are:

Convert to HSV \rightarrow Median Filter \rightarrow Define color ranges to segment Sky and Asphalt \rightarrow Create masks for Sky and Asphalt \rightarrow Copy the mask into the original image \rightarrow Consider remaining pixel as the third category(everything else) \rightarrow Denoising by using **connectedComponents**(adding pixel into else mask).

For the second approach, KMeans algorithm utilized.

Task3: Execution command: ./Task3 robocup.jpg

The series of operation for this task are:

Convert to $HSV \to Define color ranges to segment Robot's T-shirts <math>\to Create T$ -shirts mask $\to Denoising by using$ **connectedComponents** $(removing group of pixel where their size are under the defined threshold) <math>\to Set$ the remaining pixel color to black

