hhu,

Visualizing morphological data

Stefan Hartmann HHU Düsseldorf

hhu.

Visualizing (morphological) data

Stefan Hartmann HHU Düsseldorf

Plan for today

- Basics of data visualization
- Data wrangling in R
- Basics of ggplot2
- A first example graph
- Break
- Case studies and hands-on exercises

Why visualize?

For yourself

- Exploring your data
- detecting outliers
- checking assumptions of statistical tests or models (e.g. are the data normally distributed?)
- etc.

For others

- Showing your findings in a clear and efficient way
- Graphs tend to be more reader-friendly than tables...
- and much more reader-friendly than long inline lists!

Choosing the "right" plot

- What kind of data are you dealing with?
- What is your research question?

- What kind of variable are we dealing with here?
- Which visualization seems most appropriate to you?

- What kind of variable are we dealing with here?
- Which visualization seems most appropriate to you?

- What kind of variable are we dealing with here?
- Which visualization seems most appropriate to you?

Alternative visualizations

stubbornmule.net

- from
 - http://www.stubbornmule.net/20 10/10/visualizing-smoking-risk/
- "Risk Characterization Theatre" from Rifkin & Bouwer (2007)

10

The plot as a metaphor

Figure 7. Reversing the metaphor in mid-graph while changing cales on both axes (© June 14, 1981, The New York Times).

"The essence of a graphic display is that a set of numbers having both magnitudes and an order are represented by an appropriate visual metaphor - the magnitude and order of the metaphorical representation match the numbers." (Wainer 1984: 139)

Plot types

Best practice for reporting & displaying data

- Most importantly: Know your data!
- When reporting percentages, also report the denominator (i.e. the size of your sample)
- Example: "50% of academics are alcoholics" it makes a difference whether your sample size is 2 or 2,000.
- When reporting comparisons of absolute frequencies, double-check if your samples are comparable.
- Example: "255 women agree that cats are adorable, but only 5 men."
 it makes a difference whether your sample consists of 300 women and 300 men or of 300 women and 10 men.

When reporting means, also report standard deviations.

Best practices

- Show the data
- Avoid distorting the data
- Keep "Ink-to-data ratio" as low as possible
- Use meaningful x and y labels
- Avoid overplotting (e.g. 3-dimensional plots when only 2 dimensions are displayed)

Beware of overplotting

Further tips

■ If there is no natural order to your data, order them by value

Some random stuff

Some random stuff

Further tips

Don't cut the y axis unless there are good conceptual reasons to do so.

hhu,

Data wrangling in R

Types of data

Types of data in R

character: "a", "swc"

double: 2, 15.5

integer: 2L (the L tells R R to store this as an integer)

■ logical: TRUE, FALSE

complex: 1+4i (complex numbers with real and imaginary parts)

19

Base R and Tidyverse

What is the Tidyverse?

- family of packages developed by RStudio/Posit
- implement an own "dialect" of R
- still fully compatible with base R, but adding more syntax possibilities

Base R and Tidyverse

Pros and cons of the Tidyverse

Pro:

- syntax is arguably more intuitive and cleaner once you get used to it (especially "piping"!)
- offers really neet functions for data wrangling
- ggplot2 offers great possibilities for visualization
- it is very widely used and many replies in forums rely on it

Cons:

- it is under very active development, some functions become deprecated or change their names → problems for reproducibility
- can be a bit patronizing (although this can sometimes be a good thing)
- some things are ridiculously counterintuitive

Data wrangling and preprocessing

Steps

- Structuring
- Cleaning
- Validating
- Handling missing data (→ imputation)
- Merging data from different sources
- Transforming variables (can also be seen as already part of the statictical analysis*)

^{*}In fact, all these steps are, strictly speaking, part of the analysis!

Data wrangling

"Tidy data"

- Use "tidy data": One variable per column
- One observation per row

Hi there thi	s is my cool fan	cy Excel spreadsh	neet with the re	esults of my	Subject I□ ▼	Stimulus 🔻	Response ▼	Answer -	Age ▼	gender	-
psycholinguistic experiment!!!					190808	1	980	yes	28	female	
					190808	2	1080	no	28	female	
Subject ID	190808				809653	1	830	no	45	male	
					809653	2	420	yes	45	male	
	Stimulus 1	response time	980		207436	1	320	yes	25	male	
		answer	yes		207436	2	954	no	25	male	
					185848	1	430	yes	30	female	
	Stimulus 2	response time	1080		185848	2	850	no	30	female	
			no		947379	1	530	yes	84	female	
					947379	2	1045	no	84	female	
		metadata	age	28	374957	1	890	yes	18	female	
			gender	female	374957	2	1150	no	18	female	

"Long" vs. "wide" format

Subject IC ▼	Time_Stim ▼	Time_Stimulus ▼	Answer_5 ▼	Answer_\$ ▼	Age ▼	gender	-	Subject II ▼	Stimulus 🔻	Response ▼	Answer	Age ▼	gender	~
190808	980	1080	yes	no	28	female		190808	1	980	yes	28	female	
809653	830	420	no	yes	45	male		190808	2	1080	no	28	female	
207436	320	954	yes	no	25	male		809653	1	830	no	45	male	
185848	430	850	yes	no	30	female		809653	2	420	yes	45	male	
947379	530	1045	yes	no	84	female		207436	1	320	yes	25	male	
374957	890	1150	yes	no	18	female		207436	2	954	no	25	male	
								185848	1	430	yes	30	female	
								185848	2	850	no	30	female	
								947379	1	530	yes	84	female	
								947379	2	1045	no	84	female	
								374957	1	890	yes	18	female	
								374957	2	1150	no	18	female	
		Wi	de							lo	ong			

"Long" vs. "wide" format

From long to wide format

- If necessary, data can be converted from "long" to "wide" format using the pivot_wider() and pivot_longer() functions from the tidyverse family of packages.
- (They may not be 100% intuitive but with a bit of trail and error they work really well!)

Dealing with dataframes

Reading in dataframes

Commands for reading in spreadsheets:

CSV: readr::read_csv()

TSV etc.: readr::read_delim(delim="\t", ...)

Excel: readxl::read_xlsx()

plain text: read_lines()

large files: vroom::vroom or datatable::data.table()

Dealing with dataframes

Merging multiple dataframes

- In many cases we want to **combine** dataframes, e.g. because one dataframe contains metadata pertaining to the other dataframe
- Example: We have one file with corpus data, with one column specifying the author, and one file with birth and death dates of each author crawled from the German National Library and/or Wikipedia
- We can combine the dataframes using dplyr's join() commands.

Dealing with dataframes

Hands-on task

hhu,

Basics of ggplot

ggplot

The syntax of ggplot

- A ggplot consists of three components
 - the data,
 - a set of aesthetic mappings,
 - at least one layer (usually created with the geom function) describing how to render each observation.

(Wickham et al. 2023) hhu.de

Main Components of the Grammar of Graphics

ggplot

Creating a ggplot

- A ggplot is built layer by layer
- We start out with the data and the aesthetic mappings
- Basic syntax:

```
p \leftarrow ggplot(data, aes(x = ..., y = ..., group = ...))
```

■ We specify the **geometric objects** to plot, e.g.

```
p <- p + geom line() # lineplot
```

Optional: We customize the scales (position, color, size) and/or change the theme of the plot

ggplot

A basic ggplot

First step: generating fake data

Try to create a dataframe with two columns x and y, with x containing the numbers from 1 to 100 and y 100 normally-distributed random numbers (rnorm(100)).

Second step: visualizing the data

Plot x against y using base R first and then using ggplot.

Third step: customizing the plot

Play around with different scale configurations and themes.

Different Geoms (Plot Type) in ggplot2

Two Variables (X,Y)

- Discrete X. continuous Y
- Visualise distribution of Y with respect to X

geom col()

- heights of bars represent values

geom_boxplot()

- summarise distribution using median. hinges and whiskers

geom iitter() - adds jitter to prevent

overplotting

geom violin()

- mirrored density plot (smoothed distribution)

geom ribbon()

discrete X

- uncertainty in

geom errorbar()

continuous Y against

- uncertainty in continuous Y against continuous X

One Variable (X)

- Continuous X
- Visualise distribution of X

geom histogram()

- divide X into bins and count no. observation

geom_freqpoly()

- display counts with lines able to overlay multiple
- distributions

geom density()

- smoothed version of the histogram

Two Variables (X,Y)

- Continuous X. continuous Y
- Visualise relationship between X and Y

 $\mathbf{A}_{\mathbf{B}}$

geom point()

geom text()

- scatterplot of X vs Y

- labelling data points

geom line()

- connect data points. ordered by X
- alt: geom_path()

geom smooth()

- add smoothed curve
- helps to see trends

geom area()

- can be stacked to see cumulative contribution

Contour Plots

- Representing a third dimension using contours

Visualising Errors

and Uncertainties

geom density2d()

- contour represents 2D density of data points

geom contour()

- contour represents z-axis value / height

More plot types

Beeswarm plots

- Packages beeswarm and ggbeeswarm
- can be combined with violin or boxplots

Interactive plots

- e.g. (gg)plotly packge
- and shinyplots (shinyplots.io)

Some tips and tricks

- Cheat sheets
- Code snippets

hhu,

Hands-on examples...

Task 1a

ung-nominalizations

- The file ungbaby.csv contains a concordance of ung-nominalizations from a subset of the German Text Archive
- The file dtababy_author_texttype.csv contains metadata about the authors and text types.

Find out how the two files can be merged in such a way that the metadata about author and texttype are added to each row, based on the document ID.

Task 1b

ung-nominalizations – Morphological productivity

- Use the resulting dataframe to calculate the potential productivity (e.g. Baayen 2009) of the pattern for each text type and for each decade.
- To do so, use the tidyverse *summarise()* command.

40

Task 1c

ung-nominalizations – Visualizing productivity

■ Now **visualize** the productivity development. Select the plot time that seems most appropriate to you and plot one panel for each of the three text types.