

LECTURE 2: DATA COLLECTION (WHAT TO MEASURE, AND HOW TO MEASURE IT)

Experimental Methods 1, E2019
BSc in Cognitive Science, Aarhus University
Wednesday 11/09/2019
Fabio Trecca

WHAT DO I NEED TO ANSWER A RESEARCH QUESTION?

- Data (I data point = I individual observation)
- Explanation of the data

RECAP

- The study of human cognition is interdisciplinary
- · It must rely on insights from many disciplines
- It combines 1st, 2nd, and 3rd person methods
- However, the word "Cognitive Science" reflects specifically the use of quantitative/experimental methods that characterize much of the discipline

THE RESEARCH PROCESS

Correlational vs. Experimental research
Between- vs. Within-subject design
Measurement error
Unsystematic vs. systematic variation

HYPOTHESIS

- H_{0 (null hypothesis)} = No difference between the means
- H_I (alternative hypothesis) = Difference between the means

• Null hypothesis significance testing (NHST): we can't prove the $H_{\rm I}$, but we can reject the $H_{\rm O}$

WHY DO WE NEED STATS?

To discern systematic variation from unsystematic variation

VARIABLES

- Categorical
 - Binary/Logical (frequency)
 - Nominal (frequency)
 - Ordinal (frequency + order)
- Continuous
 - Interval (full arithmetic)
 - Ratio (full arithmetic)

DATA ANALYSIS

- Plot the data (= frequency distribution, e.g., histograms)
 - what is the frequency with which certain values of my variables occur in relation to others?
- Fit models (e.g., mean, correlation, linear regression)
 - what is the best way to summarise the raw data?

$$\mu = ?, \sigma = ?$$

THE NORMAL (FREQUENCY) DISTRIBUTION

- A.k.a. Gaussian distribution, bell curve
- Symmetrical gravitation toward the mean with decreasing N of data points as we approach the tails
- Many cognitive and behavioural processes are normally distributed
- Defined by two parameters: mean (μ) and standard deviation (σ)
- Results from sum of independent events/ factors

MEASURES OF CENTRALTENDENCY

mode

median

mean

 In normal distribution: mode=median=mean

FREQUENCY DISTRIBUTION VS. PROBABILITY DISTRIBUTION

- Two ways of thinking about the same thing:
 - frequency distribution tells me something about the data I have
 - probability distribution allows me to use the data I have to predict the distribution of new data points

CENTRAL LIMIT THEOREM (I)

- Given a dataset with unknown underlying distribution, the sample means will approximate the normal distribution
- · Samples should be of sufficient size

CENTRAL LIMIT THEOREM (2)

CENTRAL LIMITTHEOREM (3)

sampling distribution of the mean

SAMPLING DISTRIBUTION OF SAMPLE MEANS

https://saylordotorg.github.io/text_introductory-statistics/s10-02-the-sampling-distribution-of-t.html

LAW OF LARGE NUMBERS (I)

- $\theta = 0.5$
- Average results obtained from a large number of trials will tend to become closer to the expected value as more trials are performed
- Observed probability approaching the theoretical probability

LAW OF LARGE NUMBERS (2)

LAW OF LARGE NUMBERS (3)

- Important implication:
- The more you sample from a population (e.g., participants in an experiment), the closer the sample mean will be to the population mean
- Over time, independent event (generated by a random process) tend to approximate a normal distribution (the expected mean)

DEVIATION FROM NORMALITY (I)

Skewness

- · Most values on one side of the distribution, few on the other
- Normal distribution has skewness = 0

mode>median>mean mode=median=mean mode<median<mean

DEVIATION FROM NORMALITY (2)

Kurtosis

- How light- vs. heavytailed a distribution is
- Leptokurtic (k > 0)
 or platykurtic (k < 0)
- Normal distribution has kurtosis = 0

BIMODALITY

- Distributions with two modes
- May be a sign of two underlying unimodal distributions
- Different generative processes?
- E.g., height in men vs. women

WHY IS THE NORMAL DISTRIBUTION IMPORTANT?

- Many statistical tests (e.g., t-test) will only work on data that are normally distributed
- Most linear models (e.g., regression) will only work on data whose residuals (=measurement error) is normally distributed

TOMORROW

- Data mining = working with data sets with the purpose to discover patterns and insights
- Please make sure to download the <u>CogSciPersonalityTest2019Data</u> before this class.