Skriftlig eksamen i Dynamiske Modeller Sommeren 2014

VALGFAG

Mandag den 11. august 2014

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog må man ikke medbringe eller anvende lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

2. årsprøve 2014 S-2DM rx

Skriftlig eksamen i Dynamiske Modeller

Mandag den 11. august 2014

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter femtegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^5 + z^4 - z - 1.$$

Desuden betragter vi differentialligningerne

$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} - \frac{dx}{dt} - x = 0$$

og

(**).
$$\frac{d^5x}{dt^5} + \frac{d^4x}{dt^4} - \frac{dx}{dt} - x = 24e^t$$

(1) Vis, at udsagnet

$$\forall z \in \mathbf{C} : P(z) = (z^4 - 1)(z + 1)$$

er opfyldt.

- (2) Bestem samtlige rødder i polynomiet P.
- (3) Bestem den fuldstændige løsning til differentialligningen (*).
- (4) Godtgør, at differentialligningen (*) ikke er globalt asymptotisk stabil.
- (5) Bestem den fuldstændige løsning til differentialligningen (**).

Opgave 2. Vi betragter 3×3 matricen

$$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 4 & 9 \end{array}\right)$$

og vektordifferentialligningerne

(§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z}$$

og

(§§)
$$\frac{d\mathbf{z}}{dt} = A\mathbf{z} + \begin{pmatrix} 4\\11\\11 \end{pmatrix}.$$

- (1) Bestem egenværdierne og egenrummene for matricen A.
- (2) Vis, at matricen A er regulær, og bestem den inverse matrix A^{-1} .
- (3) Bestem den fuldstændige løsning for vektordifferentialligningen (§).
- (4) Bestem den fuldstændige løsning til vektordifferentialligningen (§§).

Opgave 3. Vi betragter vektorfunktionen $\mathbf{f}: \mathbf{R}^3 \to \mathbf{R}^3$, som er givet ved forskriften

$$\forall (x, y, z) \in \mathbf{R}^3 : \mathbf{f}(x, y, z) = (x + y + z^2, 2x + y^2 - z, 3x^2 + y + z).$$

- (1) Bestem Jacobimatricen $D\mathbf{f}(x, y, z)$ for vektorfunktionen \mathbf{f} i et vilkårligt punkt $(x, y, z) \in \mathbf{R}^3$.
- (2) Bestem Jacobimatricen $D\mathbf{f}(0,0,0)$, og vis, at $D\mathbf{f}(0,0,0)$ er regulær.
- (3) Bestem den inverse matrix $(D\mathbf{f}(0,0,0))^{-1}$.
- (4) Løs vektorligningen

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \mathbf{f}(\underline{0}) + D\mathbf{f}(\underline{0}) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

med hensyn til (x, y, z).

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^1 \left(5 - 4x^2 + \dot{x} - \dot{x}^2 \right) dt = \int_0^1 \left(5 - 4x^2 + \frac{dx}{dt} - \left(\frac{dx}{dt} \right)^2 \right) dt$$

og den funktion $F: \mathbf{R}^2 \to \mathbf{R}$, som har forskriften

$$\forall (x,y) \in \mathbf{R}^2 : F(x,y) = 5 - 4x^2 + y - y^2.$$

- (1) Vis, at funktionen F er strengt konkav overalt på definitionsmængden \mathbf{R}^2 .
- (2) Bestem den funktion $x^* = x^*(t)$, der maksimerer integralet I(x), idet betingelserne $x^*(0) = 0$ og $x^*(1) = e^2 e^{-2}$ er opfyldt.