TRIGONOMETRY Chapter 08

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

Dados tres segmentos de recta, ¿ siempre se construi 6cm 8cm 10*cm*

HELICO - MOTIVACIÓN

En este caso deberá elegirse uno de los segmentos, por ejemplo el mayor.

Usando una regla y compás, trazar un triángulo.

Repite estos pasos con otros segmentos, como por ejemplo: 10 cm, 4 cm y 3 cm ... Coméntame tus resultados en la próxima clase!

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

HELICO THEORY

Para calcular RT:

senα	cosα	tanα	cotα	secα	cscα
CO	<u>CA</u>	СО	CA	Н	Н
H	Н	CA	CO	CA	CO

Resumiendo:

RT A	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{1}{\sqrt{2}}$
cos	$\frac{\sqrt{3}}{2}$	1 2	4 5	3 5	$\frac{1}{\sqrt{2}}$
tan	$\begin{array}{c c} \hline 2 \\ \hline 1 \\ \hline \sqrt{3} \\ \end{array}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$\frac{4}{3}$	3 4 5	1
sec	$\frac{2}{\sqrt{3}}$	2	$\frac{5}{4}$	$\frac{\overline{3}}{3}$	$\sqrt{2}$
csc	2	$\frac{2}{\sqrt{3}}$	5 3	$\frac{5}{4}$	$\sqrt{2}$

A partir del gráfico, calcule el perímetro del triángulo rectángulo ACB.

RESOLUCIÓN

En ΔACB (Notable de 37° y 53°):

$$3k = 18 \text{ m} \implies k = 6 \text{ m}$$

Luego:

$$2p = 5k + 4k + 3k$$

$$2p = 12k$$

$$2p = 12 (6 m)$$

$$2p = 72 \text{ m}$$

En el triángulo rectángulo ABC, se tiene que AC = 10 cm .- Determine la

30°

 $d\sqrt{3}$

longitud del lado BD.

4k

RESOLUCIÓN

En \triangle ABC (Notable de 37° y 53°):

$$5k = 10 \text{ cm}$$
 \Rightarrow $k = 2 \text{ cm}$

Luego:

$$BC = 3k = 3(2 cm) = 6 cm$$

En $\triangle BDC$ (Notable 30° y 60°):

$$2d = 6 \text{ cm} \implies d = 3 \text{ cm}$$

$$\therefore$$
 BD = 3 cm

A partir del gráfico, calcule cos β

RESOLUCIÓN

En ΔBDC (Notable de 30° y 60°):

$$2k = 4 u \implies k = 2 u$$

Luego:
$$BD = k\sqrt{3} = 2\sqrt{3} u$$

En
$$\triangle BDA$$
: $\cos \beta = \frac{2\sqrt{3} M}{8 M}$

$$\therefore \cos\beta = \frac{\sqrt{3}}{4}$$

A partir del gráfico, calcule tan β

RESOLUCIÓN

En $\triangle BCD$ (Notable de $45^{\circ} - 45^{\circ}$):

Los catetos miden igual.

$$BC = CD = 3 u$$

En \(\Delta ACB : \)

$$\tan \beta = \frac{3 \, \text{M}}{9 \, \text{M}}$$

$$\therefore \tan \beta = \frac{1}{3}$$

RESOLUCIÓN

En $\triangle BCD$ (Notable de 30° y 60°):

$$BC = 1 \qquad DC = \sqrt{3}$$

Luego: AD = DC =
$$\sqrt{3}$$

En
$$\triangle ACB$$
: $\cot \alpha = \frac{2\sqrt{3}}{1}$

$$\cot \alpha = 2\sqrt{3}$$

Dos barras metálicas se encuentran apoyadas en su parte superior, tal como muestra la figura. - Calcule sen θ .

RESOLUCIÓN

En ΔBHA (Notable de 30° y 60°):

$$2k = 30 \text{ cm}$$
 \Rightarrow $k = 15 \text{ cm}$

Luego: BH =
$$k\sqrt{3}$$

BH =
$$15\sqrt{3}$$
 cm

En
$$\triangle BHC$$
: sen $\theta = \frac{15\sqrt{3} \text{ cm}}{45 \text{ cm}}$

∴
$$sen\theta = \frac{\sqrt{3}}{3}$$

El siguiente gráfico muestra un jardín que tiene forma triangular, - Para cercarlo con un alambre se ha colocado tres estacas que están representadas por los vértices A, B y C .- Calcule la cotangente del ángulo formado por los alambres en la estaca A .

RESOLUCIÓN

En \triangle CHB (Notable de 30° y 60°):

$$2k = 8 m$$
 \Rightarrow $k = 4 m$

Luego:
$$CH = K = 4 \text{ m}$$

$$BH = k\sqrt{3} = 4\sqrt{3} m$$

$$k = 4 \text{ m}$$
 En $\triangle AHC$: $\cot A = \frac{10\sqrt{3} \text{ m}}{4 \text{ m}}$

$$\therefore \cot A = \frac{5\sqrt{3}}{2}$$

