

LINMA2491 Operational Research

Simon Desmidt Issambre L'Hermite Dumont

Academic year 2024-2025 - Q2

Contents

1	Defi	nition and notation	2
2		Iodelling	
		Introduction	
	2.2	Representations	5
	2.3	Multi Stage Stochastic Linear Program	6
3	Performance		
	3.1	Notations	9
	3.2	Expected value of perfect information	9
		The value of the stochastic solution	
	3.4	Basic inequalities	10
	3.5	Bounds on EVPI and VSS	11

Definition and notation

- Given Ω , a sigma-algebra \mathcal{A} is a set of subsets of Ω , with the elements called events, such that:
 - $-\Omega \in \mathcal{A}$
 - **-** if A ∈ A then also Ω − A ∈ A
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcup_{i=1}^{\infty} A_i \in A$
 - if A_i ∈ A for i = 1, 2, ... then also $\bigcap_{i=1}^{\infty} A_i \in A$
- Consider:

- The state space is the set of all values of the system at each stage.

$$S_0 = \{C\}, \qquad S_1 = \{C_u, C_d\}, \qquad S_2 = \{C_{uu}, C_{ud}, C_{dd}\}$$
 (1.1)

- The sample space is the set of all possible combination of the system.

$$\Omega = S_0 \times S_1 \times S_2 = \{ (C, C_u, C_{uu}), (C, C_u, C_{ud}), (C, C_u, C_{dd}), \dots \}$$
 (1.2)

- The power set of Ω is the set of all of the subsets, denoted $\mathcal{B}(\Omega)$.
- The probability space is the triplet (Ω, \mathcal{A}, P) where P is a probability measure.
 - $-P(\emptyset)=0$
 - $-P(\Omega)=1$
 - $P(\bigcup_{i=1}^{\infty} A_i) = \sum_i P(A_i)$ if A_i are disjoint
- $\forall t$, A_t is the set of events on which we have information at stage t. For example, $A_0 = \{C\}$, $A_1 = \{C, C_u, C_d\}$. Thus is it evident that $t_1 \leq t_2 \Rightarrow A_{t_1} \subseteq A_{t_2}$

• Consider the following problem with $x \in \mathbb{R}^n$ and domain \mathcal{D} :

$$\min f_0(x), \qquad s.t.$$

 $f_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$ (1.3)

Then the Lagrangian function is defined as $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{j=1}^{p} \nu_j h_j(x)$$
 (1.4)

• The Lagrange dual function is defined as $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$:

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$
 (1.5)

- The Lagrange dual problem is a lower bound on the optimal value of the primal problem
- Lagrange relaxation of Stochastic Programs, consider the two problems:

$$\min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)] \qquad \min f_{1}(x) + \mathbb{E}_{\omega}[f_{2}(y(\omega), \omega)]$$

$$s.t \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1} \qquad s.t. \quad h_{1i}(x) \leq 0, i = 1, \dots, m_{1}$$

$$h_{2i}(x, y(\omega), \omega) \leq 0, i = 1, \dots, m_{2} \qquad h_{2i}(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_{2}$$

$$x(\omega) = x \qquad (1.6)$$

The red constraint is the non-anticipativity constraint, it transforms the deterministic variable into a stochastic variable. A VERIFIER

• The dual of a stochastic program is:

$$g(\nu) = g1(\nu) + \mathbb{E}_{\omega}(g2(\nu,\omega))$$
where
$$g_1(\nu) = \inf f_1(x) + \left(\sum_{\omega \in \Omega} \nu(\omega)\right)^T x$$
s.t. $h_{1i}(x) \leq 0, i = 1, \dots, m_1$
and
$$g_2(\nu,\omega) = \inf f_2(y(\omega)\omega) - \nu x(\omega)$$
s.t. $h_{2i}(x(\omega), y(\omega), \omega) \leq 0, i = 1, \dots, m_2$

$$(1.7)$$

- With p^* the solution of the primal problem and d^* the solution of the dual problem, we have:
 - **-** Weak duality: d^* ≤ p^*
 - Strong duality: $d^* = p^*$
- The KKT conditions are necessary and sufficient for optimality in convex optimization, there aren't unique. They are:

- Primal constraint: $f_i(x) \leq 0, i = 1, \dots, m, h_j(x) = 0, j = 1, \dots, p$
- Dual constraint: $\lambda \geq 0$
- Complementarity slackness: $\lambda_i f_i(x) = 0, i = 1, \dots, m$
- Gradient of the Lagrangian: $\nabla_x L(x, \lambda, \nu) = 0$

Modelling

2.1 Introduction

- For a certain sequence of events $x \to \omega \to y(\omega)$, where ω is the uncertainty,
 - A first-stage decision is a decision that is made before the uncertainty is revealed (i.e. in x);
 - A second-stage decision is a decision that is made after the uncertainty is revealed (i.e. in $y(\omega)$).
- We can have the following mathematical formulation:

$$\min c^{T}x + \mathbb{E}[\min q(\omega)^{T}y(\omega)]$$

$$Ax = b$$

$$T(\omega)x + W(\omega)y(\omega) = h(\omega)$$

$$x \ge 0, y(\omega) \ge 0$$
(2.1)

- First-stage decision variable: $x \in \mathbb{R}^{n_1}$
- First-stage parameter: $c \in \mathbb{R}^{n_1}$, $b \in \mathbb{R}^{m_1}$ and $A \in \mathbb{R}^{m_1 \times n_1}$
- Second-stage decision: $y(\omega) \in \mathbb{R}^{n_2}$
- Second-stage data: $q(\omega) \in \mathbb{R}^{n_2}$, $h(\omega) \in \mathbb{R}^{m_2}$ and $T(\omega) \in \mathbb{R}^{m_2 \times n_1}$, $W(\omega) \in \mathbb{R}^{m_2 \times n_2}$

2.2 Representations

2.2.1 Scenario Trees

A scenario tree is a graphical representation of a Markov process $\{\xi_t\}_{t\in\mathbb{Z}}$, where the nodes are the history of realizations $(\xi_{[t]} = (\xi_1, \dots, \xi_t))$, and the edges are the transitions from $\xi_{[t]}$ to $\xi_{[t+1]}$.

- We denote the root as t = 1;
- An ancestor of a node $\xi_{[t]}$, $A(\xi_{[t]})$ is a unique adjacent node which precedes ξ_t ;
- The children of a node, $C(\xi_{[t]})$ are the nodes that are adjacent to $\xi_{[t]}$ and occur at stage t+1.

2.2.2 Lattice

A lattice is a graphical representation of a Markov process $\{\xi_t\}_{t\in\mathbb{Z}}$, where the nodes are the realizations ξ_t and the edges correspond to the transitions from ξ_t to ξ_{t+1} .

2.2.3 Serial Independence

A process satisfies serial independence if, for every stage t, ξ_t has a probability distribution that does not depend on the history of the process. Thus, the probability measure is

$$\mathbb{P}\left[\xi_t(\omega) = i \left| \xi_{[t-1]}(\omega) \right.\right] = p_t(i) \qquad \forall \, \xi_{[t-1]} \in \Xi_{[t-1]}, i \in \Xi_t$$
 (2.2)

2.3 Multi Stage Stochastic Linear Program

2.3.1 Notation

- Probability space: $(\Omega, 2^{\Omega}, \mathbb{P})$ with filtration $\{A\}_{t \in \{1, ..., H\}}$
- $c_t(\omega) \in \mathbb{R}^{n_t}$: cost coefficients
- $h_t(\omega) \in \mathbb{R}^{m_t}$: right-hand side parameters
- $W_t(\omega) \in \mathbb{R}^{m_t \times n_t}$: coefficients of $x_t(\omega)$
- $T_{t-1}(\omega) \in \mathbb{R}^{m_t \times n_{t-1}}$: coefficients of $x_{t-1}(\omega)$
- $x_t(\omega)$: set of state and action variables in period t

- We implicitly enforce non-anticipativity by requiring that x_t and ξ_t are adapted to filtration $\{A\}_{t \in \{1,...,H\}}$
- $\forall A \in \mathcal{A}_k \setminus \mathcal{A}_{k-1}, x_t(\omega_1) = x_t(\omega_2) \forall \omega_1, \omega_2 \in A$

2.3.2 General formulation of the MSLP

The extended formulation of the MSLP is:

$$\min c_1^T x_1 + \mathbb{E}[c_2(\omega)^T x_2(\omega) + \dots + c_H(\omega)^T x_H(\omega)]$$
s.t. $W_1 x_1 = h_1$

$$T_1(\omega) x_1 + W_2(\omega) x_2(\omega) = h_2(\omega), \omega \in \Omega$$

$$\vdots$$

$$T_{t-1}(\omega) x_{t-1}(\omega) + W_t(\omega) x_t(\omega) = h_t(\omega), \omega \in \Omega$$

$$\vdots$$

$$T_{H-1}(\omega) x_{H-1}(\omega) + W_H(\omega) x_H(\omega) = h_H(\omega), \omega \in \Omega$$

$$x_1 > 0, x_t(\omega) > 0, t = 2, \dots, H$$

$$(2.3)$$

We can now consider two specific instantiations of the MSLP: the scenario tree (MSLP-ST) and the lattice (MSLP-L). Using these notations:

- $\omega_t \in S_t$: index in the support Ξ_t of random input ξ_t
- $\omega_{[t]} \in S_1 \times \cdots \times S_t$ (interpretation: index in $\Xi_{[t]} = \Xi_1 \times \cdots \times \Xi_t$, which is the history of realizations, up to period t)

2.3.3 Scenario Tree formulation

$$\min c_{1}^{T}x_{1} + \mathbb{E}\left[c_{2}(\omega_{[2]})^{T}x_{2}(\omega_{[2]}) + \dots + c_{H}(\omega_{[H]})^{T}x_{H}(\omega_{[H]})\right]$$
s.t. $W_{1}x_{1} = h_{1}$

$$T_{1}(\omega_{[2]})x_{1} + W_{2}(\omega_{[2]})x_{2}(\omega_{[2]}) = h_{2}(\omega_{[2]}), \omega_{[2]} \in S_{1} \times S_{2}$$

$$\vdots$$

$$T_{t-1}(\omega_{[t]})x_{t-1}(\omega_{[t-1]}) + W_{t}(\omega_{[t]})x_{t}(\omega_{[t]}) = h_{t}(\omega_{[t]}), \omega_{[t]} \in S_{1} \times \dots \times S_{t}$$

$$\vdots$$

$$T_{H-1}(\omega_{[H]})x_{H-1}(\omega_{[H-1]}) + W_{H}(\omega_{[H]})x_{H}(\omega_{[H]}) = h_{H}(\omega_{[H]}), \omega_{[H]} \in S_{1} \times \dots \times S_{H}$$

$$x_{1} \geq 0, x_{t}(\omega_{[t]}) \geq 0, t = 2, \dots, H$$

$$(2.4)$$

2.3.4 Lattice formulation

$$\min c_{1}^{T}x_{1} + \mathbb{E}\left[c_{2}(\omega_{2})^{T}x_{2}(\omega_{[2]}) + \dots + c_{H}(\omega_{H})^{T}x_{H}(\omega_{[H]})\right]
s.t. \quad W_{1}x_{1} = h_{1}
T_{1}(\omega_{2})x_{1} + W_{2}(\omega_{2})x_{2}(\omega_{[2]}) = h_{2}(\omega_{2}), \omega_{[2]} \in S_{1} \times S_{2}
\vdots
T_{t-1}(\omega_{t})x_{t-1}(\omega_{[t-1]}) + W_{t}(\omega_{t})x_{t}(\omega_{[t]}) = h_{t}(\omega_{t}), \omega_{[t]} \in S_{1} \times \dots \times S_{t}
\vdots
T_{H-1}(\omega_{H})x_{H-1}(\omega_{[H-1]}) + W_{H}(\omega_{H})x_{H}(\omega_{[H]}) = h_{H}(\omega_{H}), \omega_{[H]} \in S_{1} \times \dots \times S_{H}
x_{1} \geq 0, x_{t}(\omega_{[t]}) \geq 0, t = 2, \dots, H$$
(2.5)

ightarrow Note: There exists some relations to other decision making problems such as statistical decision theory, dynamic programming, online optimization and stochastic control.

Performance

3.1 Notations

Using (2.1), let's define the following:

- $z(x,\xi) = c^T x + Q(x,\xi) + \delta(x|K_1)$
- $Q(x,\xi) = \min_{y} \{q(\omega)^T y \mid W(\omega)y = h(\omega) T(\omega)x\}$
- $K_1 = \{x | Ax = b, x \ge 0\}$ is the set of feasible first-stage decisions
- $K_2(\omega) = \{x \mid \exists y \ge 0 : W(\omega)y = h(\omega) T(\omega)x\}$ is the set of first-stage decisions that have a feasible reaction in the second stage for $\omega \in \Omega$
- It is possible that $z(x,\xi) = +\infty$ (if $x \notin K_1 \cap K_2(\omega)$)
- It is possible that $z(x,\xi) = -\infty$ (unbounded below)

3.2 Expected value of perfect information

There are 2 tactics:

• **wait-and-see** value is the expected value of reacting with perfect foresight (we know everything that will happen) $x^*(\xi)$ to ξ :

$$WS = \mathbb{E}[\min_{x} z(x, \xi)] = \mathbb{E}[z(x^*(\xi), \xi)]$$
(3.1)

• **here-and-now** value is the expected value of the recourse problem (remove non-anticipativity constraint):

$$SP = \min_{x} \mathbb{E}[z(x,\xi)]$$
 (3.2)

The **expected value of perfect information** is like the value we give to getting a perfect forecast for the future and is thus defined like this:

$$EVPI = SP - WS (3.3)$$

3.3 The value of the stochastic solution

Here too there are 2 tactics:

• expected value problem

$$EV = \min_{x} z(x, \bar{\xi}) = \mathbb{E}[\xi]$$
 (3.4)

and its **expected value solution** is noted $x^*(\bar{\xi})$.

• expected value of using the EV solution measures the performance of $x^*(\bar{\xi})$:

$$EEV = \mathbb{E}[z(x^*(\bar{\xi}), \xi)] \tag{3.5}$$

The **value of the stochastic solution** is noted like this:

$$VSS = EEV - SP \tag{3.6}$$

3.4 Basic inequalities

3.4.1 Crystal Ball

For every ξ , we have $z(x^*(\xi), \xi) \leq z(x^*, \xi)$ where x^* is the optimal solution to the stochastic program. And if we take the expectation of this inequality, we have $WS \leq SP$, because WS is a relaxation. It explains that we can do better with a crystal ball.

3.4.2 Lazy solution

Knowing that x^* is the optimal solution of $\min_{x} \mathbb{E}[z(x,\xi)]$ and $x^*(\bar{\xi})$ is a solution but not necessarily optimal then we have $SP \leq EEV$, because:

$$\min_{x} \mathbb{E}[z(x,\xi)] = SP \le EEV = \mathbb{E}[z(x^*(\bar{\xi}),\xi)]$$
(3.7)

3.4.3 Link between all the values

We know that: $VSS \ge 0$

•
$$EVPI \ge 0$$

•
$$VSS < EEV - EV$$

•
$$EVPI \le EEV - EV$$

• If
$$EEV - EV = 0$$
 then $VSS = EVPI = 0$

and the inequalities can be summarized in the following diagram:

3.5 Bounds on EVPI and VSS

First let's introduce the pairs subproblem of ξ^r and ξ^k :

$$\min z^{P}(x, \xi^{r}, \xi^{k}) = c^{T}x + p^{r}q^{T}y(\xi^{r}) + (1 - p^{r})q^{T}y(\xi^{k})$$

$$s.t. Ax = b$$

$$Wy(\xi^{r}) = \xi^{r} - Tx$$

$$Wy(\xi^{k}) = \xi^{k} - Tx$$

$$x, y \ge 0$$

$$(3.8)$$

- $(\bar{x}^k, \bar{y}^k, y(\xi^r))$ denotes an optimal solution to the problem and z^k is the optimal objective function value $z^P(\bar{x}^k, \bar{y}^k, y(\xi^k))$
- $z^{P}(x, \xi^{r}, \xi^{r})$ corresponds to the deterministic optimization against the reference scenario
- if $\xi^r \notin \Xi$, $p^r = 0$ and $z^P(x, \xi^r, \xi^k) = z(x, \xi^k)$

The sum of pairs expected value (SPEV):

$$SPEV = \frac{1}{1 - p^r} \sum_{k=1, k \neq r}^{K} p^k \min z^P(x, \xi^r, \xi^k)$$
 (3.9)

When $\xi^r \notin \Xi$ then SPEV = WS: When $p^r = 0, z^P(x, \xi^r, \xi^k)$ coincides with $z(x, \xi^k)$. Therefore $SPEV = \sum_{k=1}^K p^k \min_x z(x, \xi^k) = WS$. We then know $WS \leq SPEV \leq SP$.

3.5.1 Upper bound on SP: EVRS and EPEV

- The **expected value of the reference scenario** is $EVRS = \mathbb{E}_{\xi}(\bar{x}^r, \xi)$, where \bar{x}^r is the optimal solution to $z(x, \xi^r)$.
- The expectation of pairs of expected value is defined as

$$EPEV = \min_{k=1,\dots,K \cup \{r\}} \mathbb{E}_{\xi}(\bar{x}^r, \xi)$$

where $(\bar{x}^k, \bar{y}^k, y(\xi^K))$ is the optimal solution to the pairs subproblem of ξ^r and ξ^k .

As SP, EPEV, EVRS are the optimal values of $\min_x \mathbb{E}_{\xi} z(x, \xi)$ over smaller feasible sets:

$$SP \le EPEV \le EVRS$$
 (3.10)

Because

- $SP: x \in K_1 \cap K_2$
- *EPEV*: $x \in K_1 \cap K_2 \cap \{\bar{x}^k, k = 1, ..., K \cup \{r\}\}$
- $EVRS: x \in \bar{x}^r \cap K_1 \cap K_2$