What is your biosensor good for?

We predict the range of biochemical values that you can measure **accurately**.

A model to predict the accuracy of biochemical measurements made with two-state biosensors

Julian Stanley, Sean Johnsen, Jodie Schiffer, and Javier Apfeld • Northeastern University, Boston, MA 02115

Introduction

Two-state biosensors change conformation and spectral properties in response to a specific biochemical input.

We use the roGFP1_R12 two-state biosensor to make absolute quantitative measurements of glutathione redox potential (E_{GSH}).

Existing two-state biosensors measure pH, [ATP], and more.

Previous work developed a map between fluorescence ratio (R) and E_{GSH} .

Two-state biosensors change conformation in response to a specific input.

Methods

Error propagation from ratio fluorescence (R) to biochemical measurement (E_{GSH} , pH, [ATP], etc.) was modeled on paper and then simulated in R.

Sensor spectra was collected from literature and email and then digitized.

Microscopy errors were calculated retrospectively from fluorescent images accumulated from >6 years of experiments. Timeseries data was fit using a GCV-optimized spline; residuals were error. For non-timeseries data, standard deviations were error.

Web application was built with R Shiny.

Results

Errors propagate from ratio fluorescence into redox potential via a non-linear map that explodes near its edges.

This map allows us to predict the error in E_{GSH} .

The relationship between fluorescence (R) and redox potential (E_{GSH}) at different levels of microscopy error.

Using a constant microscopy error, we predict the ranges of redox potential that roGFP sensors can measure accurately.

Our prediction of well-suited ranges can be applied to most two-state fluorescent sensors.

Left: Errors in E_{GSH} for roGFP1_R12. Right: The ranges of E_{GSH} that redox biosensors can measure given empirical microscopy errors.

Discussion

Our framework enables us to:

- 1. Estimate the E_{GSH} values roGFP1_R12 is well-suited to measure.
- 2. Quantify how much accuracy is changed by optimizing microscopy methods.
- 3. Identify biosensors best suited for measuring different ranges of E_{GSH} , pH, etc.
- 4. Reclaim underused sensors.
- 5. Identify which new biosensors are needed.

To repeat our analysis, we developed an R shiny web application: https://sensoroverlord.org.

The map between E_{GSH} and accuracy as a phase plot (left) for roGFP1_R12 (right) in general.

Additional figures

Left: empirical distribution in microscopy error using roGFP1_R12. Right: ranges that two-state pH sensors are well-suited to measure.

Maps from: (A) R to F_{Ox} , (B) R to F_A (C) F_{ox} to E_{GSH} , (D) F_{prot} to pH.

