Badania Operacyjne - Projekt

Michał Dziedzic, Kacper Sala, Paweł Tyszko, Mikołaj Zatorski 2021

1 Wstęp

2 Opis zagadnienia

2.1 Ogólny opis problemu

Naszym celem jest rozwiązanie problemu przeprowadzki. Zakładamy, że mamy n przedmiotów do przewiezienia z punktu A do punktu B. Każdy przedmiot ma określoną masę. Przewozić przedmioty możemy za pomocą naszego samochodu osobowego (ma on oczywiście skończoną ładowność l_C), lub też wynajętego samochodu ciężarowego (ładowność l_T). Każdy przejazd ma swoją cenę, w przypadku samochodu osobowego kosztuje nas paliwo (p_C), w przypadku ciężarowego koszt wynajmu + paliwo (łącznie p_T).

Naszym celem jest znalezienie takiego rozłożenia **wszystkich** przedmiotów pomiędzy przejazdy samochodem osobowym lub ciężarowym, aby łączny koszt naszej przeprowadzki był jak najmniejszy.

2.2 Model matematyczny

2.2.1 Struktury danych

 $S = \{s_1, s_2, ..., s_n\}$ - zbiór przedmiotów

 $mass:S\to\mathbb{R}_+$ - funkcja zwracająca masę przedmiotu

 $l_T \in \mathbb{R}_+$ - ładowność ciężarówki

 $l_C \in \mathbb{R}_+$ - ładowność samochodu osobowego

 $p_T \in \mathbb{R}_+$ - cena przejazdu ciężarówki

 $p_C \in \mathbb{R}_+$ - cena przejazdu samochodu osobowego

2.2.2 Reprezentacja rozwiązania

 ${\cal P}$ - partycja zbioru ${\cal S}$ (podział przedmiotów na przejazdy odpowiednim samochodem)

$$P = \{P_1, P_2, ..., P_m\} \subset 2^S$$
, gdzie:

• $\forall i, j \in \{1, 2, ..., m\} : i \neq j \implies P_i \cap P_j = \emptyset$

$$\bullet \bigcup_{i=1}^{m} P_i = S$$

•
$$\forall P_i \in P : mass(P_i) = \sum_{s \in P_i} mass(s) \le l_T$$

2.2.3 Funkcja celu

Minimalizacja łącznego kosztu wszystkich przejazdów, tj. $cost(P) = \sum_{P_i \in P} cost(P_i) \to \min,$

gdzie $cost(P_i)$ jest kosztem przejazdu i, tj.

$$cost(P_i) = \begin{cases} 0 & P_1 = \emptyset \\ p_C & mass(P_i) \le l_C \\ p_T & mass(P_i) \le l_T \end{cases}$$

2.2.4 Odległość

Specjalny przypadek odległości edycyjnej definiowany dla partycji zbioru, opisany w [2].

2.2.5 Sąsiedztwo

Pojedyncza zamiana elementu pomiędzy klasami (w tym stworzenie nowej klasy dla tego elementu) tworzy sąsiada danej partycji.

2.2.6 Warunki ograniczające

- Skończone ładowności l_T oraz l_C ,
- \bullet Wszystkie przedmioty z S muszą zostać załadowane,
- Implicite założenia o ładownościach i cenach:
 - $-l_C < l_T$
 - $-p_C < p_T$
 - $\forall s_i \in S : mass(s_i) \leq l_T$

3 Opis algorytmów

3.1 Generacja populacji rozwiązań

W generowaniu pojedynczego rozwiązania będziemy kierować się następującym algorytmem:

- 1. Losowe przemieszanie zbioru wejściowego S
- 2. Przypisanie przedmiotów $s_1, s_2, ..., s_i$ do zbioru car_items , gdzie:

- $i = \lfloor n \cdot p \rfloor$
- p jest zdefiniowane z góry (np. jako $zmienna\ losowa$), bądź domyślnie wynosi $\frac{p_C}{p_T}$
- 3. Przypisanie przedmiotów $s_{i+1}, s_{i+1}, ..., s_n$ do zbioru truck items
- 4. Przeniesienie ze zbioru car_items do zbioru $truck_items$ przedmiotów, dla których $mass(s) > p_C$
- 5. Wewnątrz zbiorów *car_items* oraz *truck_items* podział na przejazdy wg *naiwnego algorytmu* (opisany poniżej)

Ponieważ krok 1. powyższego algorytmu zawiera element losowy, każde wygenerowane w ten sposób rozwiązanie jest inne. Co więcej, możemy zmieniać parametr p, który również w znacznym stopniu wpływa na rozwiązanie.

Algorytm naiwny do podziału przedmiotów na przejazdy:

```
Dane wejsciowe:
    S - zbior przedmiotow
    c – ladownosc pojazdu
function divide(S, c):
    trips = array()
    current_trip_items = array()
    current capacity = c
    for s in S:
        if current\_capacity - mass(s) >= 0:
            current_trip_items.append(s)
        else:
            trips.append(current trip items)
            current_trip_items = array()
            current trip items.append(s)
            current capacity = c
        end if
        current capacity -= mass(s)
    end for
    if length(current_trip_items) > 0:
        trips.append(current trip items)
    end if
    return trips
end function
```

3.2 Algorytm genetyczny

3.2.1 Reprezentacja genetyczna

Pojedynczy podział zbioru wejściowego S, $P = \{P_1, P_2, ..., P_m\} \subset 2^S$, można reprezentować jako jeden chromosom, w którym genami są poszczególne podzbiory razem z informacją, jaki transport jest wymagany do ich przewozu.

Taki podział wymaga metody uporządkowania, której definicja zbioru nie zapewnia. Ten problem będzie rozwiązany przez określenie względnej sprawności genu.

3.2.2 Funkcja sprawności

Inspirując się [1], definiujemy funcję sprawności zarówno dla całego rozwiązania, jak i pojedynczego genu. Sprawność rozwiązania będzie liczona jako zwykła przeciwność funkcji kosztu (tj. fitness(P) = -cost(P) (może być ona ujemna lecz to nie jest istotne - zależy nam na jej maksymalizacji), natomiast sprawność genu jako dwie podobne funkcje:

$$massFitness(P_i, trans_i) = \begin{cases} \frac{mass(P_i)}{l_C} & trans_i = car \land mass(P_i) < l_C \\ \frac{mass(P_i)}{l_T} & trans_i = truck \land mass(P_i) < l_T \\ 0 & \text{w p.w.} \end{cases}$$

$$costFitness(P_i, trans_i) = \begin{cases} \frac{mass(P_i)}{p_C} & trans_i = car \land mass(P_i) < l_C \\ \frac{mass(P_i)}{p_T} & trans_i = truck \land mass(P_i) < l_T \\ 0 & \text{w p.w.} \end{cases}$$

Definicja funkcji sprawności pozwala nam zdefiniować kolejność genów w chromosomie potrzebną do fazy krzyżowania. Obie funkcje są wykorzystywane ponieważ mają odmienne pożądane cechy:

- Funkcja costFitness ma lepszą szansę na korelację ze sprawnością całego rozwiązania i wykorzystuje więcej informacji o problemie,
- Funkcja massFitness zawsze ma wartości z przedziału [0,1].

3.2.3 Populacja początkowa

Populację początkową wygenerujemy za pomocą algorytmu opisanego w punkcie 3.1. Rozmiar początkowej $(population_size)$ populacji ustawimy domyślnie na 100.

3.2.4 Selekcja

Algorytmów selekcji jest wiele, od tych bardziej losowych (np. algorytm ruletki) do tych bardziej deterministycznych (np. metoda rankingowa). My wykorzystamy tę drugą, ponieważ lepiej radzi sobie z odróżnianiem silnich osobników od słabych:

 Metoda rankingowa - Dla każdego chromosomu obliczamy sprawność, a następnie sortujemy je malejąco według niej. Ostatecznie wybieramy \[\frac{population_{size}}{10} \] najlepszych osobników, które będą stanowić trzon następnej populacji. Pozostałe osobniki odrzucamy.

3.2.5 Krzyżowanie

Algorytm krzyżowania jest oparty na algorytmie eager breeder[1], z jedną modyfikacją która ma na celu zmniejszyć ilość przcy przy naprawianiu chromosomu potomka. Podczas krzyżowania dopuszczamy zmianę metody transportu zapisaną w genie. W tej fazie przez "sprawność genu" rozumiemy funkcję costFitness

Faza właściwego krzyżowania

- 1. Do dziecka dodaj wszyskie geny identyczne u obojga rodziców,
- 2. Dla każdego rodzica dodaj sprawniejszą połowę genów niedodanych w 1-szym kroku

Faza naprawy chromosomu

- 1. Dla każdego przedmiotu, który pojawia się w 2 różnych genach usuń go z genu o mniejszej srawności; jeśli oba geny mają identyczną sprawność, usuń go z losowego
- 2. Dla każdego przedmiotu, który nie pojawia się:
 - dodaj go do najsprawnieszego genu, którego spawność w wyniku takiej operacji wzrośnie
 - jeśli nie jest to możliwe, dodaj go do najmniej sprawnego genu, w którym przedmiot się zmieści
 - jeśli i to nie jest możliwe, umieść go w nowym genie

3.2.6 Mutacja

Algorytm mutacji polega na przejściu (być może kilka razy) do sąsiedniego rozwiązania. Przez "sprawność genu" rozumiemy tutaj funkcję massFitness.

- Wybieramy losowy gen stosując wagi odwrotnie proporcjonalne do sprawności
- Z podzbioru danego genu wybieramy losowy przedmiot
- Przedmiot ten przenosimy do innego losowego genu wg tych samych zasad, co przy naprawie po krzyżowaniu, z pominięciem genu z którego go usunęliśmy

3.3 Algorytm rojowy (pszczoły)

3.3.1 Reprezentacja

TO DO

3.3.2 Funkcja sprawności

TO DO

3.3.3 Populacja początkowa

Populację początkową wygenerujemy za pomocą algorytmu opisanego w punkcie 3.1. Rozmiar początkowej (population_size) populacji ustawimy domyślnie na 100.

3.3.4 Selekcja

NOT APPLIED (?)

3.3.5 Krzyżowanie

Algorytm krzyżowania jest analogiczny jak dla algorytmu genetycznego (3.2.5).

3.3.6 Mutacja

Algorytm mutacji jest analogiczny jak dla algorytmu genetycznego (3.2.6).

4 Uruchamianie aplikacji

4.1 Wymagania

python3 w wersji co najmniej 3.8

4.2 Uruchamianie

Aby uruchomić aplikację należy wykonać poniższe komendy w terminalu:

```
git clone https://github.com/MikeyZat/badania-operacyjne.git
cd badania-operacyjne
pip3 install requirements.txt
python3 main.py [infile] [options]
```

- , gdzie *infile* to ścieżka do pliku z danymi testowymi (domyślnie ex.json), a dostępne opcje to:
 - $\bullet\,$ -
n Ilość pokoleń, które chcemy wygenerować (domyślnie 1000)
 - $\bullet\,$ -u Ilość pokoleń z rzędu bez poprawy, po których powinniśmy się zatrzymać (domyślnie 200)

• -k - Rozmiar populacji w każdym pokoleniu (domyślnie 100)

5 Eksperymenty

5.1 Dane testowe

Algorytmu będziemy testować na czterech zestawach danych wejściowych:

- 1. simple.json $l_T = 40, l_C = 10, p_T = 50, p_C = 15, N = 15$
- 2. **medium.json** $l_T = 30, l_C = 15, p_T = 60, p_C = 10, N = 50$
- 3. **ex.json** $-l_T = 30, l_C = 15, p_T = 60, p_C = 10, N = 100$
- 4. hard.json $l_T = 100, l_C = 40, p_T = 150, p_C = 20, N = 200$

5.2 Rozwiązania losowe

Aby mieć jakikolwiek punkt odniesienia, będziemy losować rozwiązanie i zapisywać jego koszt. Takie algorytm jest oczywiście bardzo niederministyczne i mało skuteczne, ale pomoże nam w ocenie skuteczności pozostałych algorytmów. Z uwagi na losowość rozwiązania, do każdego zestawu testowego wykonamy 10 prób i jako wynik zapiszemy ich średnią, wraz z odchyleniem standardowym.

5.3 Algorytm genetyczny

Dla danych testowych wykonaliśmy po 10 prób i jako wyniki przedstawiliśmy średnią z pomiarów wraz z odchyleniem standardowym:

TO DO

5.4 Algorytm rojowy (pszczoły)

Dla danych testowych wykonaliśmy po 10 prób i jako wyniki przedstawiliśmy średnią z pomiarów wraz z odchyleniem standardowym:

TO DO

6 Podsumowanie

7 Bibliografia

[1] W. A. Greene. Genetic algorithms for partitioning sets. *International Journal on Artificial Intelligence Tools*, 10, 2001.

[2] D. C. Porumbel, J. K. Hao, and P. Kuntz. An efficient algorithm for computing the distance between close partitions. *Discrete Applied Mathematics*, 159, Styczeń 2011.