Prática 2

Lucas Loscheider Reis Muniz

João Guilherme Monteiro Guimarães

1 – Registrador: responsável por simular um flip-flop do tipo D.

O flip-flop do tipo D possui apenas uma entrada, um terminal de clock e duas saídas (Q e ~Q).

Module registrador (p_Input, p_Clock, p_WriteOn, p_Output);

Input p_Clock, p_WriteOn; // clock e variável p_WriteOn responsável por autorizar ou //o registro da entrada na saída.

Input [15:0] p_Input; // a entrada

Output reg [15:0] p_Output; // saída

always@(posedge p_Clock) // Analisa se houve alteração do clock do valor zero ao um //(borda de subida).

if (p_WriteOn) // caso p_WriteOn seja um, a saída recebera o valor da entrada.

p_Output = p_Input;

endmodule

Segue abaixo uma foto das instruções simuladas no modelsim:

Podemos ver que toda vez que o clock muda de zero para um, caso writeOn seja de valor um, a entrada é registrada na saída.

2 - Somador e subtrator

//Responsável por realizar a soma e subtração das entradas p_A e p_B, dependendo do valor //de controle p_Controle.

Module somador (p_A, p_B, p_Controle, p_Output);

Input p_Controle; //identifica se será soma ou subtração

Input [15:0] p_A, p_B; // duas entradas de 16 bits

Output reg [15:0] p_Output; // resultado da soma ou subtração

always@(p_A, p_B, p_Controle) // checa a mudança nas variáveis

if(p_Controle) // caso o controle seja de valor 1, será feita a soma

$$p_Output = p_A + p_B;$$

else // caso o controle seja de valor 0, será a subtração

$$p_Output = p_A - p_B;$$

endmodule

segue a imagem abaixo

Observamos que, determinado um valor constante de p_B, com p_A variando temos na saída o resultado dessa subtração. Quando Controle passa para um, obtemos o resultado da soma.