Classical differential geometry

IKHAN CHOI

1. Coordinates and parametrizations

Definition 1.1. An *m*-dimensional parametrization is a smooth map $U \to \mathbb{R}^n$ such that

- (1) $U \subset \mathbb{R}^m$ is open and connected,
- (2) α is one-to-one (optional),
- (3) $d\alpha$ is nondegenerate; $\{\partial_i \alpha\}_{i=1}^m$ is linearly independent.

The third condition is important; in language of manifolds, the third condition defines what we call *immersed submanifolds*. We will see that the second condition is not important at all.

Definition 1.2. A regular curve is a subset of \mathbb{R}^n that is the image of a one-dimensional parametrization.

Definition 1.3. A regular surface is a subset of \mathbb{R}^n that is the image of a two-dimensional parametrization.

2. Curves in a space

Theorem 2.1. For every regular curve, there is a parametrization α such that $\|\alpha'\| = 1$.

Proof. Suppose we have a parametrization $\beta: I_t \to \mathbb{R}^d$. Define $\tau: I_t \to I_s$ such that

$$\tau(t_0) := \int_0^{t_0} \|\beta'(t)\| \, dt.$$

Then, s is a diffeomorphism. Define $\alpha: I_s \to \mathbb{R}^d$ by $\alpha:=\beta \circ \tau^{-1}$. Then, by the chain rule,

$$\alpha' = \frac{d\alpha}{ds} = \frac{d\beta}{dt} \frac{d\tau^{-1}}{ds} = \beta' \left(\frac{d\tau}{dt}\right)^{-1} = \frac{\beta'}{\|\beta'\|}.$$

2.1. Frenet-Serret theory.

First Written: September 22, 2019. Last Updated: September 22, 2019. 2 IKHAN CHOI

2.1.1. Theory.

Definition 2.1. We say a curve parametrized as $\alpha: I \to \mathbb{R}^3$ is degenerate if the normalized tangent vector $\alpha'/\|\alpha'\|$ is never locally constant everywhere. In other words, α is nowhere straight.

Definition 2.2 (Frenet-Serret frame). Let α be a nondegenerate curve. We define tangent unit vector, normal unit vector, binormal unit vector by:

$$\mathbf{T}(t) := \frac{\alpha'(t)}{\|\alpha'(t)\|}, \qquad \mathbf{N}(t) := \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}, \qquad \mathbf{B}(t) := \mathbf{T}(t) \times \mathbf{N}(t),$$

and *curvature* and *torsion* by:

$$\kappa(t) := \langle \mathbf{T}'(t), \mathbf{N}(t) \rangle, \quad \tau(t) := -\langle \mathbf{B}'(t), \mathbf{N}(t) \rangle.$$

Note that κ cannot vanish by definition.

Theorem 2.2 (Frenet-Serret formula). Let α be a unit speed nondegenerate curve.

$$\begin{pmatrix} \mathbf{T}' \\ \mathbf{N}' \\ \mathbf{B}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}.$$

Proof. Note that $\{T, N, B\}$ is an orthonormal basis.

Step 1: Show that $\mathbf{T}', \mathbf{B}', \mathbf{N}$ are parallel. Two vectors \mathbf{T}' and \mathbf{N} are parallel by definition. Since $\langle \mathbf{T}, \mathbf{B} \rangle = 0$ and $\langle \mathbf{B}, \mathbf{B} \rangle = 1$ are constant, we have

$$\langle \mathbf{B}', \mathbf{T} \rangle = \langle \mathbf{B}, \mathbf{T} \rangle' - \langle \mathbf{B}, \mathbf{T}' \rangle = 0, \qquad \langle \mathbf{B}', \mathbf{B} \rangle = \frac{1}{2} \langle \mathbf{B}, \mathbf{B} \rangle' = 0,$$

which show \mathbf{B}' and \mathbf{N} are parallel. By the definition of κ and τ , we have

$$\mathbf{T}' = \kappa \mathbf{N}, \quad \mathbf{B}' = -\tau \mathbf{B}.$$

Step 2: Describe N'. Since

$$\langle \mathbf{N}', \mathbf{T} \rangle = -\langle \mathbf{N}, \mathbf{T}' \rangle = -\kappa,$$

 $\langle \mathbf{N}', \mathbf{N} \rangle = \frac{1}{2} \langle \mathbf{N}, \mathbf{N} \rangle' = 0,$
 $\langle \mathbf{N}', \mathbf{B} \rangle = -\langle \mathbf{N}, \mathbf{B}' \rangle = \tau,$

we have

$$\mathbf{N}' = -\kappa \mathbf{T} + \tau \mathbf{B}.$$

Remark. Skew-symmetricity in the Frenet-Serret formula is not by chance. Let $\mathbf{X}(t)$ be the curve of orthogonal matrices $(\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t))^T$. Then, the Frenet-Serret formula reads

$$\mathbf{X}'(t) = A(t)\mathbf{X}(t)$$

for a matrix curve A(t). Since $\mathbf{X}(t+h) = R_t(h)\mathbf{X}(t)$ for a family of orthogonal matrices $\{R_t(h)\}_h$ with $R_t(0) = I$, we can describe A(t) as

$$A(t) = \left. \frac{dR_t}{dh} \right|_{h=0}.$$

By differentiating the relation $R_t^T(h)R_t(h) = I$ with respect to h, we get to know that A(t) is skew-symmetric for all t. In other words, the tangent space $T_ISO(3)$ forms a skew symmetric matrix.

Proposition 2.3. Let α be a nondegenerate space curve.

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3}, \qquad \tau = \frac{\alpha' \times \alpha'' \cdot \alpha'''}{\|\alpha' \times \alpha''\|}.$$

Proof. If we let $s = \|\alpha'\|$, then

$$\alpha' = s\mathbf{T},$$

$$\alpha'' = s'\mathbf{T} + s^2\kappa\mathbf{N},$$

$$\alpha''' = (s'' - s^3\kappa^2)\mathbf{T} + (3ss'\kappa + s^2\kappa')\mathbf{N} + (s^3\kappa\tau)\mathbf{B}.$$

Now the formulas are easily derived.

2.1.2. Problems. Let α be a nondegenerate unit speed space curve, and let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet-Serret frame for α . Consider a diagram as follows:

$$\langle \alpha, \mathbf{T} \rangle = ? \longleftrightarrow \langle \alpha, \mathbf{N} \rangle = ? \longleftrightarrow \langle \alpha, \mathbf{B} \rangle = ?$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\langle \alpha', \mathbf{T} \rangle = 1 \qquad \langle \alpha', \mathbf{N} \rangle = 0 \qquad \langle \alpha', \mathbf{B} \rangle = 0.$$

Here the arrows indicate which information we are able to get by differentiation. For example, if we know a condition

$$\langle \alpha(t), \mathbf{T}(t) \rangle = f(t),$$

then we can obtain by differentiating it

$$\langle \alpha(t), \mathbf{N}(t) \rangle = \frac{f'(t) - 1}{\kappa(t)}$$

since we have known $\langle \alpha', \mathbf{T} \rangle$ but not $\langle \alpha, \mathbf{N} \rangle$, and further

$$\langle \alpha(t), \mathbf{B}(t) \rangle = \frac{\left(\frac{f'(t)-1}{\kappa(t)}\right)' + \kappa(t)f(t)}{\tau(t)}$$

since we have known $\langle \alpha, \mathbf{T} \rangle$ and $\langle \alpha', \mathbf{N} \rangle$ but not $\langle \alpha, \mathbf{B} \rangle$. Thus, $\langle \alpha, \mathbf{T} \rangle = f$ implies

$$\alpha(t) = f(t) \cdot \mathbf{T} + \frac{f'(t) - 1}{\kappa(t)} \cdot \mathbf{N} + \frac{\left(\frac{f'(t) - 1}{\kappa(t)}\right)' + \kappa(t)f(t)}{\tau(t)} \cdot \mathbf{B}.$$

Suggested a strategy for space curve problems:

- Formulate the assumptions of the problem as the form \langle (interesting vector), (Frenet-Serret basis) \rangle = (some function).
- Aim for finding the coefficients of the position vector in the Frenet-Serret frame, and obtain relations of κ and τ by comparing with assumptions.
- Heuristically find a constant vector and show what you want directly.

Example 2.1 (Plane curves). Let α be a nondegenerate curve in \mathbb{R}^3 . TFAE:

- (1) the curve α lies on a plane,
- (2) $\tau = 0$,
- (3) the osculating plane constains a fixed point.

Example 2.2 (Helices). Let α be a nondegenerate curve in \mathbb{R}^3 . TFAE:

- (1) the curve α is a helix,
- (2) $\tau/\kappa = \text{const}$,

4

(3) normal lines are parallel to a plane.

Example 2.3 (Sphere curves). Let α be a nondegenerate curve in \mathbb{R}^3 . TFAE:

- (1) the curve α lies on a sphere,
- (2) $(1/\kappa)^2 + ((1/\kappa)'/\tau)^2 = \text{const},$
- (3) $\tau/\kappa = (\kappa'/\tau\kappa^2)'$,
- (4) normal planes contain a fixed point.

Example 2.4 (Bertrand mates). Let α be a nondegenerate curve in \mathbb{R}^3 . TFAE:

- (1) the curve α has a Bertrand mate,
- (2) there are two constants $\lambda \neq 0$, μ such that $1/\lambda = \kappa + \mu \tau$.
- 2.2. Example problems. Here we give an example solution of several problems.

Example 2.5. A space curve whose normal lines always pass through a fixed point lies in a circle.

Proof. Step 1: Formulate conditions. Reparametrize α to become a unit speed curve. By the assumption, there is a constant point $p \in \mathbb{R}^3$ such that the vectors $\alpha - p$ and \mathbf{N} are parallel so that we have

$$\langle \alpha - p, \mathbf{T} \rangle = 0, \qquad \langle \alpha - p, \mathbf{B} \rangle = 0.$$

Our goal is to show that $\|\alpha - p\|$ is constant and there is a constant vector v such that $\langle \alpha - p, v \rangle = 0$.

Step 2: Collect information. Differentiate $\langle \alpha - p, \mathbf{T} \rangle = 0$ to get

$$\langle \alpha - p, \mathbf{N} \rangle = -\frac{1}{\kappa}.$$

Differentiate $\langle \alpha - p, \mathbf{B} \rangle = 0$ to get

$$\tau = 0$$

Step 3: Complete proof. We can deduce that $\|\alpha - p\|$ is constant from

$$(\|\alpha - p\|^2)' = \langle \alpha - p, \alpha - p \rangle' = 2\langle \alpha - p, \mathbf{T} \rangle = 0.$$

Also, if we heuristically define a vector $v := \mathbf{B}$, then v is constant since

$$v' = -\tau \mathbf{N} = 0,$$

and clearly $\langle \alpha - p, v \rangle = 0$

Example 2.6. A sphere curve of constant curvature lies in a circle.

Example 2.7. A curve is a circular helix iff it has more than one Bertrand mates.

3. Surfaces in a space

$$\nu_x = S(\alpha_x) = \kappa_1 \alpha_x$$

4. Curves on a surface