

2001 YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 1

DATE: PM Friday 17 August

General Instructions

- Working time 2 hours
- · Write using blue or black pen
- Write your Barker Student Number at the top of each page of your answers
- Board-approved calculators may be used
- A Table of Standard Integrals is provided at the back of this paper

Total marks (84)

- Attempt Questions 1 7
- Begin EACH Question on a NEW PAGE
- Only write on ONE side of the page
- ALL necessary working MUST be shown in every question

Question 1 (12 marks)

Start a NEW page.

Marks

(a) Evaluate $\lim_{x\to 0} \left(\frac{\sin 3x}{2x} \right)$

1

(b) Use the table of standard integrals to evaluate $\int_0^2 \frac{4}{\sqrt{x^2 + 16}} dx$

2

(c) Differentiate $e^{2x} \sin x$

2

(d) The interval AB has end points A(-1, 3) and B(2, -3).

2

Find the coordinates of the point P which divides the interval AB externally in the ratio 1:2.

(e)

Find the acute angle between the lines x - y + 3 = 0 and 2x + y + 1 = 0.

2 Give your answer correct to the nearest minute.

(f) Solve the inequality $\frac{x^2-4}{x} < 3$

3

Question 2 (12 marks)

Start a NEW page.

Marks

(a) Evaluate $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) - \tan^{-1}(1)$, giving your answer in exact form.

2

- (b) Use the substitution $u^2 = x + 4$ (where u > 0) to evaluate $\int_{-3}^{0} \frac{x}{\sqrt{x + 4}} dx$
- (c) Find the value of the term independent of x in the expansion $\left(2x + \frac{1}{x^2}\right)^6$

(d) The region enclosed by the curve $y = \tan x$, the x-axis and the ordinate at $x = \frac{\pi}{4}$ is rotated about the x-axis.

Find the exact volume of the solid of revolution that is formed.

Question 3 (12 marks) Start a NEW page.

Marks

(a) Prove that
$$\frac{\cos 2\theta}{\sin \theta} + \frac{\sin 2\theta}{\cos \theta} = \cos ec\theta$$

3

- (b) For the function $f(x) = 3\sin^{-1}(2x)$
 - (i) State the domain.

1

(ii) State the range.

1

(iii) Sketch the function, clearly labeling the domain and range.

1

(iv) Find the equation of the tangent to the curve at the point where it crosses the x-axis. 2

(c) (i)

Prove that $\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta$

2

(i1) Hence, or otherwise, evaluate $\int_0^{\frac{\pi}{3}} \sin^2 \theta \ d\theta$

2

3

(a) A post HD stands vertically at one corner of a flat rectangular field ABCD.

The angles of elevation of the top H of the post HD from the nearest corners A and C are 30° and 45° respectively.

Let the height of the post HD be h metres and let AD = a metres.

- (i) By drawing a diagram which shows the above information, find the length of BD in terms of h.
- (ii) Hence, find the angle of elevation of H from the corner B (correct to the nearest minute).

(b) Prove, by Mathematical Induction, that $7^n + 5$ is divisible by 3, where n is any positive integer.

- (c) The point $P(2ap, ap^2)$ is a point on the parabola $x^2 = 4ay$ with focus S(0, a).
 - (i) Find M, the mid-point of the chord OP, where O is the origin. 1
 - (ii) Find the gradient of the chord *OP*.
 - (iii) Hence, find the point A on the parabola where the tangent is parallel to the chord OP.
 - (iv) Show that A is equidistant from M and the x-axis.

Question 5 (12 marks)

Start a NEW page.

Marks

(a) Solve the equation $100e^{-3t} = 20e^{2t}$

2

(b) (i) Express $\cos 3\theta + \sin 3\theta$ in the form $R\cos(3\theta - \alpha)$, where R > 0 and

2

(ii) Hence, or otherwise, find all the values of θ in the range $0 \le \theta \le \pi$ for

2

which $\cos 3\theta + \sin 3\theta = 1$.

 α is an acute angle in radians.

(c) A particle moves in a straight line such that its displacement x centimetres at any time t seconds is given by $x = \cos 3t + \sin 3t$.

(i) Prove that the motion is Simple Harmonic Motion.

2

(ii) State the period of the motion.

1

(iii) Find the initial position of the particle.

1

(iv) Find the velocity of the particle when it first returns to its initial position. (You may use your results from Part (b))

2

Question 6 (12 marks) Start a NEW page.

Marks

1

1

- (a) Consider the function $f(x) = \frac{x+1}{x^2+3}$
 - (i) Find the points where the curve crosses the x-axis and the y-axis.
 - (ii) Find the coordinates of any stationary points on the curve y = f(x) and, without finding the second derivative, determine their nature.
 - (iii) Describe the behaviour of y = f(x) for large positive and negative values of x. 1
 - (iv) Sketch the curve y = f(x), using an appropriate scale and showing all the information above. Label the axes and any critical points.
- (b) The graph shown below represents the relationship between T, the temperature in C° of a cooling cup of coffee, and t, the time in minutes.

The rate of cooling of this coffee is given by $\frac{dT}{dt} = -k(T - A)$, where k and A are constants and k > 0.

(i) Show that $T = A + Be^{-kt}$ is a solution to the differential equation $\frac{dT}{dt} = -k(T - A)$, given that B is a constant.

- (ii) By examining the graph when t = 0 and $t \to \infty$, find the values of A and B
- (iii) If the temperature of the coffee is $50^{\circ}C$ after 90 minutes, show that $k = -\frac{1}{90} \ln \left(\frac{14}{39} \right).$
- (iv) Hence, find the rate at which the coffee is cooling after 90 minutes.

Question 7 (12 marks)

Start a NEW page.

Marks

(a) Use the binomial expansion of $(1 + x)^{2n}$ to show that

(i)
$$1 - 2\binom{2n}{1} + 4\binom{2n}{2} - \dots + \binom{2n}{2n}4^n = 1$$

(ii)
$$\binom{2n}{1} - 4\binom{2n}{2} + 12\binom{2n}{3} - \dots - n\binom{2n}{2n}4^n = -2n$$

(b) A Mathematics teacher hits a golf ball from a point 0 towards a flat, elevated green as shown in the diagram below. The hole at the base of the flag is situated in the centre of the green.

The golf ball is projected from the point 0 with a initial velocity of $V ms^{-1}$ and at an angle of α to the horizontal. You may assume the only force acting on the golf ball in flight is gravity, which you may approximate to be $10ms^{-2}$.

- (i) Taking the point 0 as the origin, show that the parametric equations of the flight path of the golf ball are given by $x = Vt\cos\alpha$ and $y = -5t^2 + Vt\sin\alpha$.
- (ii) If the angle of projection is given by $\alpha = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$, find the value of $V ms^{-1}$ 3 which will enable the teacher to hit the golf ball directly into the hole on the green. The hole is situated 158.5 metres horizontally and 5 metres vertically from the point 0. Give your answer correct to the nearest integer.
- (iii) Using your value of $V ms^{-1}$ from Part (ii), find the alternative angle of projection (from the point 0) that would enable the teacher to still hit the golf ball directly into the hole.

END OF PAPER

	JAN	Ī			
17th Aug FriaiAn	SOLUTION	119 YR12 P-1			p. 2
2001 2001 Noncion	00001101	EXTENS /	- 2//3 - 0\ (1/3)	71	
YRII BU TRIAL HSC d) AG	1,3), 8(2,-3)	f) cont···	=2[(3-8)-(3-4)]	$\int = \pi f(\tan x - x) \int_0^{\pi}$	<u> 111)</u>
SOLUTIONS	-	1 14	$\Gamma = -10$		· · · · · · · · · · · · · · · · · · ·
(EXTENSION 1) Kil=	1:-2.		<u>3</u>	= TI (tan 1 - TI)-(tano	b)
OUTSTINIA WEKE	elv. uz Kuzlu				1 1 1
QUESTION I x= kx1	+lx, y= Kyz+ly, K+l	A K A	$(2x+\frac{1}{x^2})$	= 11 1- 4	31
11/2 /24 2001				1/= +=(1/4 -) 3	1 2
$x \rightarrow 0$ $(1x)$ $x = /x2$	$\frac{-1}{-2x^{\frac{3}{2}}}, y = \frac{1y-3-2x3}{-1}$		(KH) th term=(K)(2x) (x	$V = \frac{\pi(4-\pi)}{4} o^{3}$	
	/ -1	= x2-1 or 0 <x24< td=""><td></td><td></td><td>iv) $f'(x) = 3x / \sqrt{2}$</td></x24<>			iv) $f'(x) = 3x / \sqrt{2}$
$= \lim_{x \to 0} \frac{3 \times 0 \text{ in } 3 \times}{2}$ $= \lim_{x \to 0} \frac{3 \times 0 \text{ in } 3 \times}{2}$	u= -3-6	QUESTION 2	x = x	QUESTION 3	(1-0x) ²
2 - 30	> 4 = -3-6	GOEST TOWN	1 × av a		
$=\frac{3}{2}\times 1$ $x=4$, y= 9 V	a) $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ - $\tan^{-1}(1)$	6-K-2K=0 · 6-3K=0	a) <u>cos20 , sin20 = cos</u>	co = 6
a .		[2]	L=2 V		Grosses x-axis at 0,0)
$=\frac{3}{2}$ in The	point is (-4,9)	~ cm	: the third term	2/10 0930	1'(0)= 6 = (
	(43=0 -> M = 1	$= \underbrace{SII}_{6} - \underbrace{II}_{4} \qquad \checkmark \checkmark$	Its value is		f'(0)= 6=6
$\frac{1}{2}$) $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$	$f+3=0 \longrightarrow M_1=1$ $f+1=0 \longrightarrow M_2=-2$.	= <u>777</u> /2	$\binom{6}{2}^{2}^{2} = 240$	= 1-271020 + 2010 Copt	
$\sqrt{x^2+16}$		12.	- 4u=tonx	Sin & copto	: egun tangent is
6. tano:	$= \left/ \frac{M_1 - M_2}{1 + M_1 M_2} \right/$	1 7	1) 19 1	$= 1-2nin^2\theta + 2nin^2\theta$	y-y=m(x-x,) y-0=6(x-0)
450 c 52 2 37 2	(/ + M, m 2 /	$b)u^2 = x+4$		1in O	$4 = 6 \times 6$
$=4[ln{x+1x^2+4^2}]_0$	= 1+2 /	$dx = \partial x$			r
=4[ln(2+J20)	$=$ $\left \frac{1+2}{1-2} \right $	de = 211.	/ " - 1	sinO	C) i) RHS=1-1cos20
=4[ln(2+J20), ln(0+4)]	, ,	dic = 2udu		= cosec O	
=	[-3]	x=-3, 4=1	<u> </u>	= RHS	= [(1-20,20)
1.9248473 / fano=	71°34' V	$-20 = 0$, $\mu = 2$.	1/ = 1/2		$= \underbrace{1 \left(1 - \left(1 - 20 \right) \right)^2 \left(0 \right)}_{2}$
) $d\left(e^{ix} \sin x\right)$		$T = \int \frac{u^2 - 4}{u^2} \text{and} du$	V=TI y dx	b) $f(x)=31$ in $-1(2x)$	
$\int \frac{d}{dx} \left(e^{ix} \sin x \right) \int \frac{d^{2}}{dx} dx$	$\frac{2-4}{c}$ < 3	J Vu2		i) -1 ≤ 2x ≤)	$= \frac{1}{2} \times 2 \sin^2 \theta_{\nu}$
Plancox+ dinxx2e	-	2 2, 1	$= \pi \int dan^{2}x dx$	1 = xx = 1	= oin²O
2x $2x$ x	2-4) (3x2 V 4x (3x2 L	= 5 4 × 24 de	O II Dr	∴-1 ≤ x ≤1 √	= LH3
C COSX + &C DINX 90-	4x 23x)	$= \pi \int (\sec^2 x_{-1}) dx$	D-3# EYE3#	
	3x-4)40	r.,3 72	= 11] (sec >c-1) dx	d 1 d	
· ∞6	c-4/x+1)<0V	$=2\left[\frac{u^3}{3}-4u\right]^2$	0		
	!	<i>←</i> J1			

· (BD)2 (A13)2+(A)2 But it's true for n=1 it is true for n=1+1=2, it's true for n=2+1=3 and so on for all the integer n. 7+5=12, which is divisible by 3 .- true for n=1 QUESTION 4 Skp 2 Assume true for n=K. ie $7^{K}+5=M$ where Mi) 1 is an integer ie assume 745=3M. $(11) M OP = ap^2 - 0$ $\tan 30^\circ = \frac{h}{a}$ Prove 7k+15 is diris. by 3. $h = a \tan 30^{\circ}$ $h = \frac{a}{\sqrt{3}}$ $|iii\rangle_{\mathcal{A}} = \frac{x^2}{2a}$ $\frac{dy}{dx} = \frac{2x}{2a} = \frac{x}{a}$ $\frac{x}{2a} = \frac{p}{2} \qquad x = ap$ $x = ap, y = \frac{a^2p^2}{4a} = \frac{ap^2}{4}$ +an 45° = h CD CD = h = h V is divis. by 3. if the for <math>n=K, it's the for n=K+1. $A = \{ap, ap^2, 4\}$

entro		
iv)	* * * * * * * * * * * * * * * * * * *	:-t= 11 sec ·
$\frac{1/2}{dx^{2}} \frac{MA = \alpha e^{2} - \alpha \rho^{2} - \alpha \rho^{2}}{2} \frac{d\rho^{2}}{4} \frac{d\rho^{2}}{4}$	2 = Vacos (30-11)	6
2 4 4	4/	$4 = II$, $2c = -3 \text{ nin3} \times II + 3 \text{ cos} = \frac{1}{6}$
list Abx-axis = ap2 1	(B)	6)
7	12 cos (30-II) = 1	$\dot{x} = -3a in T + 3co-1$
equidistant.		3
	100 (30- 17)= 1	=-3x1 +3x0
QUESTION 5	4/ 12	$= -3xI + 3xO$ $\dot{x} = -3cn/s$
a) 100e = 20e	: 30-11 = -11, 11, 711, 911 4, 4, 4, 4	<i>15π</i>
$\frac{100}{20} = \frac{e^{-3t}}{e^{-3t}}$	4 4 4 4 4 4	9'
	:30=0, TT, 2TT, 5TT	QUESTION6 .
5 <i>f</i>		
5 = e V	∴ Ø=0, π, 2π, 5π. ✓	a?f(x)=x+1
	6 3 6	x 2+3
5+ lne= ln5		
: + = ln 5 /	C/x = const + sinst	i) Crosses y-ascis at 1
	f	
	173 4	
	i) ic = -30in3t + 3cost	Crosses x-axis when
6)	$\dot{x} = -9\cos 3t - 9\sin 3t$	Crosses x-axis when
<i>i</i>)		Crosses x-axis when $x+1 = 0$ x^2+3
i) 2038 + 11038 = Reco(38-d)	$\dot{x} = -9\cos 3t - 9\sin 3t$ $= -9(\cos 3t + \sin 3t)$ $\dot{x} = -9 \times \sqrt{2}$	Crosses x -axis when $x+1 = 0$ x^2+3 $x+1=0 \longrightarrow x=-1$
i) xxx30 + Ain30 = Reco(30-d) =Rcx30ccx d+	$\dot{z} = -9\cos 3t - 9\sin 3t$ = $-9(\cos 3t + \sin 3t)$	$\frac{x+1}{x^2+3} = 0$
i) 2030 + Nin30=Reon(30-d)	$ \dot{x} = -9\cos 3t - 9\sin 3t $ $ = -9(\cos 3t + \sin 3t) $ $ \dot{x} = -9x $ $ \dot{x} = -n^2x : SHM $	$\frac{x+1}{x^2+3} = 0$
i) 20230 + Min30=Reco(30-d) =Rossocod + Rain30aind	$ \dot{x} = -9\cos 3t - 9\sin 3t $ $ = -9(\cos 3t + \sin 3t) $ $ \dot{x} = -9x $ $ \dot{x} = -n^2x : SHM $	$\begin{array}{c} x+t = 0 \\ x^2+3 \\ x+t = 0 \longrightarrow x=-1 \end{array}$
i) 20230 + Min30=Reco(30-d) =Rossocod + Rain30aind	$ \dot{x} = -9\cos 3t - 9\sin 3t $ $ = -9(\cos 3t + \sin 3t) $ $ \dot{x} = -9 \times \checkmark $ $ \dot{x} = -n^2 \times : SHM $ Ii) Penad = 2π \tag{3}	$\begin{array}{c} x+t = 0 \\ x^2+3 \\ x+t = 0 \longrightarrow x=-1 \end{array}$
i) 2030 + 1030=Re00(30-d) =R0030c00d+ R01030010d · Re00d=1 → cood=1 R	$ \dot{x} = -9\cos 3t - 9\sin 3t $ $ = -9(\cos 3t + \sin 3t) $ $ \dot{x} = -9 \times \checkmark $ $ \dot{x} = -n^2 \times : SHM $ (i) $Peniod = 2\pi \checkmark $ 3	$\frac{x+1}{x^2+3} = 0$
i) 2030 + 1030=Re00(30-d) =R0030c00d+ R01030010d · Re00d=1 → cood=1 R	$ \dot{x} = -9\cos 3t - 9\sin 3t $ $ = -9(\cos 3t + \sin 3t) $ $ \dot{x} = -9x \checkmark $ $ \dot{x} = -n^{2}x : SHM $	$ \begin{array}{c} x+1 = 0 \\ x^2+3 \\ x+1=0 \longrightarrow x=-1 \end{array} $ $ x = 0 \longrightarrow x=-1 $ $ x = 0 \longrightarrow x=-1 $ $ (x^2+3)^2 $
i) 20230 + Min30=Reco(30-d) =Rossocod + Rain30aind	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \dot{x} &= -n^2 \times \therefore SHM \end{array} $ $ \begin{array}{rcl} II) & Peniod &= & 2\pi \checkmark \\ && & & & & & & & \\ 3 && & & & & & \\ && & & & & & & \\ && & & & $	$ \begin{array}{c} x+1 = 0 \\ x^2+3 \\ x+1=0 \longrightarrow x=-1 \end{array} $ $ x = 0 \longrightarrow x=-1 $ $ x = 0 \longrightarrow x=-1 $ $ (x^2+3)^2 $
i) $2030 + 0in30 = Reco(30-d)$ $= Recosd + d$ $Rain30 ain d$ $Record = 1 \rightarrow cood = 1$ $Raind = 1 \rightarrow aind = 1$ R	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \dot{x} &= -n^2 \times \therefore SHM \end{array} $ $ \begin{array}{rcl} II) & Peniod &= & 2\pi \checkmark \\ && & & & & & & & \\ 3 && & & & & & \\ && & & & & & & \\ && & & & $	$ \begin{array}{c} x+1 = 0 \\ x^2+3 \\ x+1=0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x+1 = 0 \\ x = -1 \end{array} $ $ \begin{array}{c} x+1 = 0 \\ x = -1 \end{array} $ $ \begin{array}{c} x+1 = 0 \\ x = -1 \end{array} $
i) 2020 + 111130 = Reco(30-d) = Recosd + Roin30aind ∴ Record = 1 -> cood = 1 R R aind = 1 -> aind = 1 R I R ² =2	$ \dot{x} = -9\cos 3t - 9\sin 3t = -9(\cos 3t + \sin 3t) \dot{x} = -9x \dot{x} = -n^2x : SHM $ II) Peniod = 2TT 3 III) $ t = 0, x = \cos 0 + \sin 0 $ $ x = 1 \text{ unit right} $ of 0	$ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ x+1 = 0 \longrightarrow x = -1 \end{array} $ $ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ (x^{2}+3)^{2} \end{array} $ $ = x^{2}+3-2x^{2}-2x \\ (x^{2}+3)^{2} $
i) 2020 + 111130 = Reco(30-d) = Recosd + Roin30aind ∴ Record = 1 -> cood = 1 R R aind = 1 -> aind = 1 R I R ² =2	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \dot{x} &= -n^2 \times : SHM \end{array} $ $ \begin{array}{rcl} II) & Peniod &= & 2II \\ &3 & & & & & & \\ III) & & & & & & & \\ && & & & & & & \\ && & & & $	$ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ x+1 = 0 \longrightarrow x = -1 \end{array} $ $ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ (x^{2}+3)^{2} \end{array} $ $ = x^{2}+3-2x^{2}-2x \\ (x^{2}+3)^{2} $
i) $2030 + 0in30 = Reco(30-d)$ $= Recosdered + Rain30 aind$ $Record = 1 - 3 cond = 1$ $Raind = 1 - 3 cond = 1$ R $Raind = 1 - 3 cond = 1$ R $R = 1 + 2 - 2$ $R = 1 + 2 - 2$	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \ddot{x} &= -n^2 \times :: SHM \end{array} $ $ \begin{array}{rcl} II) & Peniod &= & 2II & \checkmark \\ 3 & & & & & & & \\ III) & & & & & & & \\ & & & & & & & & \\ & & & & $	$ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ x+1 = 0 \longrightarrow x = -1 \end{array} $ $ \begin{array}{r} x+1 = 0 \\ x^{2}+3 \\ (x^{2}+3)^{2} \end{array} $ $ = x^{2}+3-2x^{2}-2x \\ (x^{2}+3)^{2} $
i) $2030 + 0in30 = Reco(30-d)$ $= Recosded + Rein30 = ind$ $Record = 1 - 2 cond = 1$ $R = 0ind = 1$	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \ddot{x} &= -n^2 \times \therefore SHM \end{array} $ II) Peniod = 2π $ \begin{array}{rcl} \ddot{x} &= \cos 0 + \sin 0 \\ x &= 1 & \sin t \cos 0 \end{array} $ iv) Returns to initial position when $x = 1$ $ \begin{array}{rcl} \cos 3t + \sin 3t &= 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
i) $0.030 + 0.030 = Reco(30-d)$ $= Record + Record + Record + Record = 1 - 2 cond = 1$ $R = 0.000 = 1$	$ \begin{array}{rcl} \dot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \dot{x} &= -9 \times \\ \dot{x} &= -n^2 \times : SHM \end{array} $ II) Peniod = 2TI \(3\) III) $ t = 0, \times = \cos 0 + \sin 0 \\ x = 1 \text{ unit right of } 0 $ $ of 0 \(x = 1 \text{ unit right of } 0 $ Position when \(x = 1 \) Position when \(x = 1 \) Position \($ \begin{array}{c} x+1 = 0 \\ x^2+3 \\ x+1=0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x+1 = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x+1 = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x = 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $ $ \begin{array}{c} x^2+3 \longrightarrow 0 \longrightarrow x=-1 \end{array} $
i) $2030 + 0in30 = Rcos(30-d)$ $= Rcos30 = 0 d + Roin30 ain d$ $Roin30 = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$ $R 0ind = 1 - 2 cos d = 1 R$	$ \begin{array}{rcl} \ddot{x} &= -9\cos 3t - 9\sin 3t \\ &= -9(\cos 3t + \sin 3t) \\ \ddot{x} &= -9 \times \checkmark \\ \ddot{x} &= -n^2 \times \therefore SHM \end{array} $ II) Peniod = 2π $ \begin{array}{rcl} \ddot{x} &= \cos 0 + \sin 0 \\ x &= 1 & \sin t \cos 0 \end{array} $ iv) Returns to initial position when $x = 1$ $ \begin{array}{rcl} \cos 3t + \sin 3t &= 1 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

For otal pts f(x) = 0. $\frac{(3+x)(1-x)}{(x^2+3)^2} = 0$ when x=-3, 4= 1 (-3, 1) Test: ri) +=0, T=100°. :- min. turning pt ax (-3, 1) Max. tur. pt at (), 1) :100 = A+Be ° j)lim x→∞ -A+ B=100. ASH-70° 10° -K. :-T-7A. ie A->22.

=0

T= 22 + 78C 50 = 22+78 C 78C = 28 $e^{-90K} = \frac{28}{78} = \frac{14}{39}$ $\frac{|iv|}{at} \frac{dT}{dt} = -K(t-A)$ from 1). dT = -0.3187°C/min

		:
QUESTION 7		7 A
70		
$v(1+x)^m$		
	,	
$\frac{2n}{i)(1+x)} = \frac{2n}{c} \frac{2n}{n} x^{o} + \frac{2n}{n} x^{i} + \frac{2n}{n} x^{i}$		
$\binom{2n}{2}x^2+\cdots+\binom{2n}{2n}x^{2n}$		
ld x = -2 on B.S. of *		
$(-(1) = 0)x^{2} + (1)(-2)$		
$+\binom{2n}{1}(-2)^2+\cdots+\binom{2n}{2n}(-2)^2$		
	· · · · · · · · · · · · · · · · · · ·	
$e\left[\frac{1}{2}\right]^{n} = 1 - 2\binom{2n}{1} + 4\binom{2n}{2}$	(Loft /25)	
$1 = 1 - 2\binom{2n}{1} + 4\binom{2n}{2} + \cdots +$	1,1/27)	
	7 (2n) as required.	
i) Differentiate B.S of #		
: 2n-/	WIT X	
$\frac{2n(1+x)}{2n(1+x)} = 0 + (1) + 2x(2)$ $\frac{2n}{2}$ $\frac{2n}{2}$	1302 /27 6 1/27	2n-1
Now let x = - 2	3/4 (2 n/4) (2n)	
2n(-1) = (1) - 4(2) + 12(3)	7) (27)	2n-1
(20)	14	4
$rn[(1)^{2}]^{n}$ $(-1)^{-1}]=\binom{2n}{1}-4\binom{2n}{2}+n$	(1/29)	12m-12
(2n)	3/ + (2n) (2n/(-2	1 · (-2) } ·
$\frac{1}{2n\left(-1\right)} = \binom{2n}{1} - 4\binom{2n}{2} + 12\binom{2n}{2}$	(2n)	h
(2n)	$\frac{327}{4}$	
-2n = (1) - 4(1) + 12/2	7)	1
$\therefore -2n = \binom{2n}{1} - 4\binom{2n}{1} + 12\binom{2n}{3}$	$\frac{1}{2n} \frac{1}{4}$	as required
	······································	
·		
i	<u> </u>	

$-y = -\frac{5x^2\sec^2d}{v^2} + x \tan d$
$y = -\frac{5x^2}{V^2} \left(1 + \tan^2 \lambda \right) + \infty + \tan \lambda$
Using 2c=158-5, 4=5, tand=1
$5 = -\frac{5 \times 158 \cdot 5^{2}}{V^{2}} \left(1 + \frac{1}{3} \right) + 158 \cdot 5 \times \frac{1}{\sqrt{3}}$
$5V^2 = -5x/58-5^2 \times \frac{4}{3} + \frac{158.5}{\sqrt{3}}$
$\sqrt{3}V^2 = -5 \times (58.5^2 \times 4 \times \sqrt{3} + 158.5 V^2 \times 3)$
$V^2(158.5 \times 3 - 15\sqrt{3}) = 5 \times 158.5^2 \times 4 \times \sqrt{3}$
$V^{2} = \frac{20\sqrt{3} \times 158 \cdot 5^{2}}{158 \cdot 5 \times 3 - 15\sqrt{3}}$
V=1935.980031 working
V= 443-999 M/s V= 44 M/s
Using * in part 11) above
$4 = \frac{-5x^2}{V^2}(1 + \tan^2 x) + 2e \tan x$
$5 = -\frac{5 \times 158.5^{2}}{44^{2}} (1+\tan^{2} d) +158-5 \tan^{2} d$

•
iii) Cont
5x44 = -5x158-5 (1+fan2d) +158-5x442x fand
$5x44^2 = -5x/58\cdot 5 - 5x/58\cdot 5 + 4n^2 4 + 158-5x44^2x + 4n d$
: 158-54 44 Jand -5x 158-5
5x158.52 fan' d -158.5x442 fan L + (5x442+5x158.52)=0.
= tand= 158.5x442+ 158.5x444-4x5x158-5 x (5x44+5x168-5)
2× /58·5 × 5
fan d = 1.865562615 OR 0.5773395931
∴ L = 61.8° OR 30°
: the afternative d is 61.8.
THE END!
THE END!