

What is claimed is:

1. A compound of Formula I:

5

wherein:

X is selected from C₁-C₈ alkyl, halo, -OR¹⁰, -NR¹⁴R¹⁵, nitro, cyano, -COOR¹⁰, -COR¹³, -OCOR¹³, -N(R¹⁷)COR¹³, -N(R¹⁷)CONR¹⁴R¹⁵, -N(R¹⁷)COOR¹³, -SO₃H, -SO₂NR¹⁴R¹⁵, -C(=NR¹⁷)NR¹⁴R¹⁵, -N(R¹⁷)SO₂R¹⁶, and a 5 or 6-membered heterocyclic group;

10 or X and an adjacent R³, taken together with the atoms to which they are bonded, form an alkylenedioxy moiety;

Z is CH, CR³ or N, wherein when Z is CH or CR³, k is 0-4 and t is 0 or 1, and when Z is N, k is 0-3 and t is 0;

15 Y is selected from -O-, -S-, -N(R¹⁰)-, and -C(R⁴)(R⁵)-;

W¹ is selected from C₁-C₈ alkyl, C₃-C₈ cycloalkyl, aryl and Het, wherein said C₁-C₈ alkyl, C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹¹R¹², -C₀-C₆ alkyl-SO₂R¹⁰, -C₀-C₆ alkyl-SOR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OC(O)NR¹¹R¹², -C₀-C₆ alkyl-OC(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)NR¹¹R¹², and -C₀-C₆ alkyl-NR¹¹COR¹³, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

25 W² is selected from H, halo, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OCONR¹¹R¹², -C₀-C₆ alkyl-NR¹¹CONR¹¹R¹², -C₀-C₆ alkyl-NR¹¹COR¹³, 30 -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the C₃-C₇ cycloalkyl, Ar and Het moieties of said -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and

- C₀-C₆ alkyl-C₃-C₇ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰,
- 5 -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹¹R¹², -C₀-C₆ alkyl-SO₂R¹⁰, -C₀-C₆ alkyl-SOR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OC(O)NR¹¹R¹², -C₀-C₆ alkyl-OC(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)NR¹¹R¹², and -C₀-C₆ alkyl-NR¹¹COR¹³, where said C₁-C₆ alkyl, is optionally unsubstituted or substituted by one or more halo substituents;
- 10 W³ is selected from the group consisting of: H, halo, C₁-C₆ alkyl, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OCONR¹¹R¹², -C₀-C₆ alkyl-NR¹¹CONR¹¹R¹², -C₀-C₆ alkyl-NR¹¹COR¹³, -C₀-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;
- 15 Q is selected from C₃-C₈ cycloalkyl, Ar and Het; wherein said C₃-C₈ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹¹R¹², -C₀-C₆ alkyl-SO₂R¹⁰, -C₀-C₆ alkyl-SOR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OC(O)NR¹¹R¹², -C₀-C₆ alkyl-OC(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)NR¹¹R¹², and -C₀-C₆ alkyl-NR¹¹COR¹³, where said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;
- 20 25 p is 0-8;
n is 2-8;
m is 0 or 1;
q is 0 or 1;
t is 0 or 1;
- 30 each R¹ and R² are independently selected from H, halo, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-SR¹⁰, -C₁-C₆ alkyl-Het, -C₁-C₆ alkyl-Ar and -C₁-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹ and R² together with the carbon to which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any 35 of said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;
- each R³ is the same or different and is independently selected from halo, cyano, nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CONR¹¹R¹², -C₀-C₆ alkyl-COR¹³, -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰,

- C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹¹R¹², -C₀-C₆ alkyl-SO₂R¹⁰,
 -C₀-C₆ alkyl-SOR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OC(O)NR¹¹R¹²,
 -C₀-C₆ alkyl-OC(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)NR¹¹R¹², and
 -C₀-C₆ alkyl-NR¹¹COR¹³, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted
 5 by one or more halo substituents;
- each R⁴ and R⁵ is independently selected from H, halo, C₁-C₆ alkyl,
 -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
 R⁶ and R⁷ are each independently selected from H, halo, C₁-C₆ alkyl,
 -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- 10 R⁸ and R⁹ are each independently selected from H, halo, C₁-C₆ alkyl,
 -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
 R¹⁰ is selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar,
 -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
 each R¹¹ and each R¹² are independently selected from H, C₁-C₆ alkyl,
- 15 C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and
 -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹¹ and R¹² together with the nitrogen to which they are
 attached form a 4-7 membered heterocyclic ring which optionally contains one or more
 additional heteroatoms selected from N, O, and S;
- R¹³ is selected from C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar,
 20 -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
 R¹⁴ and R¹⁵ are each independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl,
 C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl,
 -C₀-C₆ alkyl-O-Ar, -C₀-C₆ alkyl-O-Het, -C₀-C₆ alkyl-O-C₃-C₇ cycloalkyl,
 -C₀-C₆ alkyl-S(O)_xC₁-C₆ alkyl, -C₀-C₆ alkyl-S(O)_xAr, -C₀-C₆ alkyl-S(O)_xHet,
 25 -C₀-C₆ alkyl-S(O)_xC₃-C₇ cycloalkyl, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH-C₃-C₇ cycloalkyl,
 -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-Het,
 -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and
 -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹⁴ and R¹⁵, together with the nitrogen
 to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains
 30 one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is
 optionally substituted by one or more of the substituents independently selected from the
 group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₆ alkyl), -N(unsubstituted
 C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), unsubstituted -OC₁-C₆ alkyl, -CO₂H,
 -CO₂(unsubstituted C₁-C₆ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₆ alkyl),
 35 -CON(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), -SO₃H, -SO₂NH₂,
 -SO₂NH(unsubstituted C₁-C₆ alkyl) and -SO₂N(unsubstituted C₁-C₆ alkyl)(unsubstituted
 C₁-C₆ alkyl);
 R¹⁶ is C₁-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het; and
 R¹⁷ is H, C₁-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het;

provided that X is not COOR¹⁰ when Y is -O-, p is 0-8, n is 2-8, m is 1, q is 0 or 1, t is 0, each R¹ and R² is independently selected from H, C₁-C₆ alkyl, -OH, -O-C₁-C₆ alkyl, -SH, and -S-C₁-C₆ alkyl, each R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are independently H or C₁-C₄ alkyl, k is 0 or 1, W³ is H, W¹ and W² are each independently selected from C₃-C₈ cycloalkyl and aryl

5 and R³ and Q are as defined above; or

provided that the compound is not

5-[3-[(3,4-dichlorophenyl)methyl][2-(2-naphthalenyl)ethyl]amino]propoxy]-3-methoxy-1,2-benzeneddicarboxylic acid

5-[3-[(3,4-dichlorophenyl)methyl][2-(2-naphthalenyl)ethyl]amino]propoxy]-3-

10 methoxy-1,2-benzeneddicarboxylic acid, dimethyl ester

4-[[[2-(4-carboxyphenoxy)ethyl][2-[2-[(5-

phenylpentyl)oxy]phenyl]ethyl]amino]methyl] benzoic acid

4-[[[2-[4-(ethoxycarbonyl)phenoxy]ethyl][2-[2-(octyloxy)phenyl]ethyl]amino]methyl]-benzoic acid methyl ester,

15 4-[[[2-(4-carboxyphenoxy)ethyl][2-[2-(octyloxy)phenyl]ethyl]amino]methyl], benzoic acid,

α -[[[3-(4-fluorophenyl)-1,1-dimethylpropyl](phenylmethyl)amino]methyl]-3-(phenylmethoxy)-benzenemethanol hydrochloride,

N-[2-(4-amino-3,5-dichlorophenyl)ethyl]-4-fluoro-N-(phenylmethyl)-

20 benzenepropanamine monohydrochloride,

N-[2-(4-amino-3,5-dichlorophenyl)ethyl]-4-chloro-N-(phenylmethyl)-benzenepropanamine monohydrochloride,

4-amino-3,5-dichloro- α -[[[3-(4-fluorophenyl)propyl](phenylmethyl)amino]methyl]-benzenemethanol monohydrochloride,

25 4-amino-3,5-dichloro- α -[[[3-(4-chlorophenyl)propyl](phenylmethyl)amino]methyl]-benzenemethanol monohydrochloride,

2-chloro-5-[2-[[3-(4-fluorophenyl)-1-methylpropyl](phenylmethyl)amino]-1-hydroxyethyl]-benzamide monohydrochloride,

4-[2-[[2-hydroxy-2-[4-(phenylmethoxy)phenyl]ethyl](phenylmethyl)amino]ethoxy]-

30 benzeneacetamide,

4-[2-[[2-[3,4-bis(phenylmethoxy)phenyl]ethyl](phenylmethyl)amino]ethoxy]-benzenesulfonamide monohydrochloride,

(R)-3-(phenylmethoxy)- α -[[[3-[3-(phenylmethoxy)phenyl]propyl](phenylmethyl)amino]methyl]-benzenemethanol

35 2,2-dichloro-acetic acid (R)-{benzyl-[3-(3-benzyloxy-phenyl)-propyl]-amino}-(3-benzyloxy-phenyl)-ethyl ester,

3-amino- α -[[[3-(3,4-dimethoxyphenyl)-1-methylpropyl](phenylmethyl)amino]methyl]-4-(phenylmethoxy)-benzenemethanol,

α-[[[3-(3,4-dimethoxyphenyl)-1-methylpropyl](phenylmethyl)amino]methyl]-3-nitro-4-(phenylmethoxy)-benzenemethanol,
α-[[[3-(3,4-dimethoxyphenyl)-1-methylpropyl](phenylmethyl)amino]methyl]-3-nitro-5-(phenylmethoxy)-benzenemethanol,
5 3-amino-α-[[[3-(3,4-dimethoxyphenyl)-1-methylpropyl](phenylmethyl)amino]methyl]-5-(phenylmethoxy)-benzenemethanol, or
4-[2-[[2-(4-fluorophenoxy)ethyl](phenylmethyl)amino]ethyl]-1-piperazineacetic acid ethyl ester;
or a pharmaceutically acceptable salt or solvate thereof.

10

2. The compound according to claim 1, wherein p is 0, 1 or 2.

3. The compound according to claim 1, wherein t is 0.

15

4. The compound according to any one of claims 1-3, wherein R¹ and R² are independently H or C₁-C₄ alkyl or R¹ and R² together with the carbon to which they are attached form a 3-5 membered carbocyclic ring.

20

5. The compound according to any one of claims 1-4, wherein k is 0 or 1.
6. The compound according to any one of claims 1-5, wherein R³ is selected from halo, C₁-C₄ alkyl and C₁-C₄ alkoxy.

25

7. The compound according to any one of claims 1-6, wherein X is selected from C₁-C₆ alkyl, halo, -OR¹⁰, -NR¹⁴R¹⁵, cyano, -COR¹³, -COOR¹⁰, -OCOR¹³, -N(R¹⁷)CONR¹⁴R¹⁵, -N(R¹⁷)COR¹³, -SO₂NR¹⁴R¹⁵, -N(R¹⁷)SO₂R¹⁶, and a 5 or 6-membered heterocyclic group or X and an adjacent R³, taken together with the atoms to which they are bonded, form an alkyleneoxy moiety.

30

8. The compound according to any claim 7, wherein R¹⁰ is H, C₁-C₄ alkyl or phenyl; R¹³ is H, C₁-C₄ alkyl, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or -C₀-C₄ alkyl-phenyl; R¹⁴ and R¹⁵ are each independently selected from H, C₁-C₆ alkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-O-Ar, -C₀-C₄ alkyl-O-Het, -C₀-C₄ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-S(O)₂-C₁-C₄ alkyl, -C₀-C₄ alkyl-S(O)₂-Ar, -C₀-C₄ alkyl-S(O)₂-Het, -C₀-C₄ alkyl-S(O)₂-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-NH-Ar, -C₀-C₄ alkyl-NH-Het, -C₀-C₄ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹⁴ and R¹⁵, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is

optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H, -CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl); R¹⁸ is C₁-C₄ alkyl or phenyl; and R¹⁷ is H or C₁-C₄ alkyl.

8. The compound according to any one of claims 1-7 wherein n is 3.

10 9. The compound according to any one of claims 1-8, wherein q is 1.

10. The compound according to any one of claims 1-9, wherein R⁸ and R⁹ are each H.

15 11. The compound according to any one of claims 1-10, wherein Q is a substituted or unsubstituted phenyl or furanyl group or a benzo[1,3]dioxyl or benzo[1,4]dioxyl group containing one, two or three substituents selected from halo, C₁-C₄ alkyl; C₁-C₄ alkylthio; or -NR^{Q1}R^{Q2}, where R^{Q1} and R^{Q2} taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may 20 optionally contain one or more additional heteroatoms selected from N, O and S.

12. The compound according to claim 11, wherein said substituents are selected from fluoro, chloro, trifluoromethyl, tert-butyl, isopropyl, methylthio and piperidin-1-yl.

25 13. The compound according to any one of claims 1-12, wherein m is 0 or m is 1 and R⁶ and R⁷ are each H.

30 14. The compound according to any one of claims 1-13, wherein W¹ is phenyl, naphthyl, thienyl, pyridyl, furanyl, pyrrolyl, cyclohexyl, cyclopentyl, morpholinyl, or pyrrolidinyl, where each phenyl, naphthyl, thienyl, pyridyl, furanyl, pyrrolyl, cyclohexyl, cyclopentyl, morpholinyl, or pyrrolidinyl may be optionally substituted from 1 to 3 times with one or more of the substituents independently selected from C₁-C₄ alkyl, -OH, halo, -O- 35 C₁-C₄ alkyl, and -C₁-C₄ haloalkyl.

15. The compound according to any one of claims 1-14, wherein W² is C₁-C₄ alkyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, aryl, Het hydroxy, aryloxy-, C₁-C₄ alkoxy-, -OCOC₁-C₄ alkyl, -OCOaryl, or -NR^{W1}R^{W2}, where R^{W1} and R^{W2} are independently H or 40 C₁-C₄ alkyl or taken together with the nitrogen to which they are attached form a 4-7

membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S.

16. The compound according to any one of claims 1-15, wherein W³ is H or
 5 C₁-C₄ alkyl.
17. The compound according to claim 1, wherein X is selected from C₁-C₆ alkyl, halo, -OR¹⁰, -NR¹⁴R¹⁵, cyano, -COR¹³, -COOR¹⁰, -OCOR¹³, -N(R¹⁷)CONR¹⁴R¹⁵, -N(R¹⁷)COR¹³, -SO₂NR¹⁴R¹⁵, -N(R¹⁷)SO₂R¹⁶, and a 5 or 6-membered heterocyclic group or
 10 X and an adjacent R³, taken together with the atoms to which they are bonded, form an alkyleneoxy moiety, where R¹⁰ is H, C₁-C₄ alkyl or phenyl, R¹³ is H, C₁-C₄ alkyl, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or -C₀-C₄ alkyl-phenyl, R¹⁴ and R¹⁵ are each independently selected from H, C₁-C₆ alkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-O-Ar, -C₀-C₄ alkyl-O-Het, -C₀-C₄ alkyl-O-C₃-C₇ cycloalkyl,
 15 -C₀-C₄ alkyl-S(O)₂-C₁-C₄ alkyl, -C₀-C₄ alkyl-S(O)₂-Ar, -C₀-C₄ alkyl-S(O)₂-Het, -C₀-C₄ alkyl-S(O)₂-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-NH-Ar, -C₀-C₄ alkyl-NH-Het, -C₀-C₄ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹⁴ and R¹⁵, together with the nitrogen
 20 to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H,
 25 -CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), R¹⁶ is C₁-C₄ alkyl or phenyl, and R¹⁷ is H or C₁-C₄ alkyl; p is 0, 1 or 2; R¹ and R² are independently H or C₁-C₄ alkyl or R¹ and R² together with the carbon to which they
 30 are attached form a 3-5 membered carbocyclic ring; k is 0 or k is 1 and R³ is halo, C₁-C₄ alkyl or C₁-C₄ alkoxy; n is 3 and each R⁴ and R⁵ are independently selected from H and C₁-C₃ alkyl; Z is CH or N; Y is -O- or -C(R⁴)(R⁵); q is 1; R⁸ and R⁹ are each H; Q is a substituted or unsubstituted phenyl or furanyl group or a benzo[1,3]dioxyl or
 35 benzo[1,4]dioxyl group, where the substituted phenyl or furanyl group contains one, two or three substituents selected from halo, C₁-C₄ alkyl; C₁-C₄ alkylthio; or -NR^{Q1}R^{Q2}, where R^{Q1} and R^{Q2} taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S; t is 0 or 1; m is 0 or 1; R⁶ and R⁷ are independently selected from H and C₁-C₄ alkyl; W¹ is methyl, unsubstituted phenyl, naphthyl, pyridyl, thiophenyl or pyrrolyl or
 40 substituted phenyl or pyridyl containing one or two substituents independently selected from

halo, alkyl and alkoxy, specifically, chloro, methyl and methoxy; W^2 is C_1-C_4 alkyl, C_2-C_4 alkynyl, C_3-C_6 cycloalkyl, aryl, Het hydroxy, aryloxy-, C_1-C_4 alkoxy-, -OCOC $_1-C_4$ alkyl, -OCOaryl, or -NR $^{W1}R^{W2}$, where R W1 and R W2 are independently H or C_1-C_4 alkyl or taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S; W 3 is H or C_1-C_4 alkyl; or a pharmaceutically acceptable salt or solvate thereof.

18. The compound according to claim 1, wherein X is chloro, bromo, cyano, carboxy-, methylcarboxy-, hydroxy, methoxy, methyl, trifluoromethyl, 1,3-dihydroxy-prop-2-yl (-CH(CH₂OH)₂, isopropyl, n-butyl, isobutyl, 2,2-dimethylpropyl, phenylcarbonyl, triazolyl, tetrazolyl, -NH₂, -NHCH₃, -NHCH₂CH₃, -NHCH₂CH₂CH₃, -NHCH₂CH₂CH₂CH₃, -NHCH₂CH₂CH₂CH₂CH₃, -NHCH₂C(CH₃)₃, -NHCH₂CH(CH₃)₂, -NHCH₂CH₂CH(CH₃)₂, -NH-cyclopentyl, -NH-phenyl, -NHCH₂-cyclopropyl, -NHCH(CH₃)₂, -NHCH₂CF₃, -N(CH₃)₂, -N(CH₂CH₃)₂, -NHCH(CH₂CH₃)₂, -NHCH₂CH(CH₂CH₃)₂, -NHCH₂CH₂OH, -NHCH₂CO₂H, 10 -N(CH₃)CH₂CO₂H, -NHC(CH₃)₂CO₂H, -NHCH(CH₃)CO₂H, -(R)-NHCH(CH₃)CO₂H, -(S)-NHCH(CH₃)CO₂H, -NHCH₂-1H-imidazol-2-yl, -NHCH₂-(1-CH₃-imidazol-2-yl, -NH-(pyrimidin-2-yl), -morpholin-4-yl, -thiomorpholin-4-yl, -piperidin-1-yl, 15 -piperidin-1-yl-(4-carboxylic acid), -piperidin-1-yl-(4-acetic acid), -piperidin-4-yl-(1-acetic acid), -2,5-dimethyl-pyrrol-1-yl, -pyrrolidin-1-yl, -((R)-2-CO₂H-pyrrolidin-1-yl), -((S)-2-CO₂H-pyrrolidin-1-yl), -piperazin-1-yl, -(4-methyl-piperazin-1-yl), 20 -piperazin-1-yl-(4-acetic acid), -NHCH₂-(5-bromo-thien-2-yl), -NHCH₂-1H-imidazol-2-yl, -NHCH₂-(1-methyl-imidazol-2-yl), -NHOCH₃, -N(CH₃)COCH₃, -NHCO₂(CH₃)₃, -NHCOCH₂CH₃, -NHCOC(CH₃)₂, -NHCO-furan-2-yl, -N(CH₃)CO-furan-2-yl, 25 -NHCO-thien-2-yl, -NHCO-cyclopropyl, -NHCO-(5-bromo-thien-2-yl), -NHCO-(2,5-dimethyl-pyrrol-3-yl), -NSO₂CH₃, -N(CH₃)SO₂CH₃, -NSO₂CF₃, -NSO₂phenyl, -N(CH₃)SO₂phenyl, -NSO₂CH₂CH₃, -NSO₂CH₂CF₃, -NSO₂CH₂CH₂CH₃, -NSO₂CH(CH₃)₂, -NHCONH(2-chlorophenyl), -N(CH₃)CONH(3,5-dimethoxyphenyl), -N(CH₃)CONH(2-chlorophenyl), -N(CH₃)CO-(benzo[1,3]diox-5-yl), -SO₂NHCH₃, and -SO₂N(CH₃)₂; p is 0, 1 or 2; R¹ and R² are H C₁-C₄ alkyl or R¹ and R² together with the carbon to which they are attached form a 3, 4 or 5 membered carbocyclic ring; Z is CH of N; k is 0 or k is 1 and R³ is methyl, trifluoromethyl, chloro or methoxy; n is 3 and R⁴ and R⁵ are independently selected from H and methyl; Y is -O- or -C(R⁴)(R⁵)-; q is 1; R⁸ and R⁹ are each H; Q is 2-chloro-3-(trifluoromethyl)phenyl, 3-methyl-4-fluoro-phenyl, 4-tert-butyl-phenyl, 4-(methylthio)phenyl, 2,4,5-trifluoro-phenyl, 4-isopropyl-phenyl, 30 5-(piperidin-1-yl)-furan-2-yl, benzo[1,3]diox-5-yl, or 2,3-dihydrobenzo[1,4]dioxin-6-yl; t is 0 or 1; m is 0 or 1; R⁶ and R⁷ are independently selected from H and methyl; W¹ is methyl, phenyl, naphth-1-yl, pyrid-2-yl, 4-methyl-pyrid-2-yl, thien-2-yl, thien-3-yl, pyrrol-2-yl, 35 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-methoxyphenyl, or 4-methoxyphenyl; W² is methyl, ethyl, ethynyl, isopropyl, n-butyl, 2-methylpropyl, trifluoromethyl, cyclohexyl, 40 unsubstituted phenyl, hydroxy, methoxy, phenoxy, dimethylamino, morpholin-4-yl,

phenylcarbonyloxy, or methylcarbonyloxy; W³ is H or methyl; or a pharmaceutically acceptable salt or solvate thereof.

19. A compound selected from:

diphenylethyl-amino]-propoxy}-phenyl)-carbamic acid tert-butyl ester; 3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethylamino]-propoxy]-phenylamine; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-acetamide; Furan-2-carboxylic acid *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-amide; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-methanesulfonamide; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-benzenesulfonamide; 1-(2-Chloro-phenyl)-3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-urea; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-amine; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-acetamide; Furan-2-carboxylic acid *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-amide; *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-methanesulfonamide; (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-benzenesulfonamide; 3-(2-Chloro-phenyl)-1-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-1-methyl-urea; Benzo[1,3]dioxole-5-carboxylic acid *N*-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-*N*-methyl-amide; 1-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy]-phenyl)-3-(3,5-dimethoxy-phenyl)-1-methyl-urea; Propane-1-sulfonic acid (5-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-2-methyl-phenyl)-amide; 3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-2-methyl-phenylamine; 2-Chloro-5-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenylamine; 3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-cyclopentyl-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-isopropyl-amine, Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-ethyl-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-(3-methyl-butyl)-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-isobutyl-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-(2,2,2-trifluoroethyl)-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-cyclopropylmethy-l-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-(2-ethyl-butyl)-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-(2,2-dimethyl-propyl)-amine, (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-hexyl-amine, Butyl-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy]-phenyl)-amine, [1-(3-[3-[(2-Chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy]-phenyl)-piperidine-4-carboxylic acid, [1-(3-[3-[(2-Chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy]-phenyl)-piperidin-4-yl]-acetic acid; [4-(3-[3-[(2-Chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy]-phenyl)-piperidine-4-yl]-acetic acid; *rac*- \pm -(3-[3-[(2-

Chloro-3-trifluoromethyl-benzyl)-(trifluoro-phenyl-propyl)-amino]-propoxy}-phenyl)-acetic acid; *rac*- \pm -(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-dimethylamino-2-phenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid; *rac*- \pm -(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-morpholin-4-yl-2-phenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(6-morpholin-4-yl-pyridin-2-yloxy)-propyl]-amine; [3-(6-Chloro-pyridin-2-yloxy)-propyl]-{(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine}; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[6-(4-methyl-piperazin-1-yl)-pyridin-2-yloxy]-propyl}-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(6-piperazin-1-yl-pyridin-2-yloxy)-propyl]-amine; [4-(6-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-pyridin-2-yl)-piperazin-1-yl]-acetic acid; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((S)-2-phenyl-propyl)amino]- (R)-1-methyl-propoxy}-phenyl)acetic acid; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((S)-2-phenyl-propyl)amino]- (R)-1-methyl-propoxy}-phenyl) ethanol; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((S)-2-phenyl-propyl)amino]- (R)-2-methyl-propoxy}-phenyl)acetic acid; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((S)-2-phenyl-propyl)amino]- (R)-2-methyl-propoxy}-phenyl) ethanol; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((R)-2-phenyl-propyl)amino]- (R)-2-methyl-propoxy}-phenyl)acetic acid; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((R)-2-phenyl-propyl)amino]- (R)-2-methyl-propoxy}-phenyl)ethanol; 2-(3-{3-[(2-Chloro-3-(trifluoromethyl)benzyl)((R)-2-phenyl-propyl)amino]- (R)-2-methyl-propoxy}-phenyl)ethanol; 3-{3-[(3-Chloro-2-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy-N,N-dimethyl-benzenesulfonamide, Cyclopropanecarboxylic acid 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzylamide; N -(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzyl)-isobutyramide; Acetic acid (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzylcarbamoyl)-methyl ester; N -(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzyl)-propionamide; 2,5-Dimethyl-2-H -pyrazole-3-carboxylic acid 3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzylamide; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-(3-o-tolyloxy-propyl)-amine; 2-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzonitrile; 3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzonitrile; [3-(3-Chloro-phenoxy)-propyl]-(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(2-methoxy-phenoxy)-propyl]-amine; [3-(2-Chloro-phenoxy)-propyl]-(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-(3-phenoxy-propyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-isopropyl-phenoxy)-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(4-methoxy-phenoxy)-propyl]-amine; 3-{3-[(Chloro-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenol; 2-{3-[(Chloro-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenol; 3-{3-[(Chloro-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenylamine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-trifluoromethyl-phenoxy)-propyl]-amine;

1-(3-{3-[(Chloro-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethanone; (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-phenyl-amine; [3-(Benzodioxol-5-yloxy)-propyl]-{(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine}; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-(3-m-tolyloxy-propyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-methoxy-phenoxy)-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-isobutyl-phenoxy)-propyl]-amine; [3-(3-Butyl-phenoxy)-propyl]-{(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine}; (2-Chloro-3-trifluoromethyl-benzyl)-{3-[3-(2,2-dimethyl-propyl)-phenoxy]-propyl}-(2,2-diphenyl-ethyl)-amine; (4-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzyl)-methyl-amine; (2-Chloro-3-trifluoromethyl-benzyl)-[3-(4-dimethylaminomethyl-phenoxy)-propyl]-(2,2-diphenyl-ethyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(4-morpholin-4-ylmethyl-phenoxy)-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[4-(4-methyl-piperazin-1-ylmethyl)-phenoxy]-propyl}-amine; (3-{3-[(Chloro-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzyl)-methyl-amine; (2-Chloro-3-trifluoromethyl-benzyl)-[3-(3-dimethylaminomethyl-phenoxy)-propyl]-(2,2-diphenyl-ethyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-morpholin-4-ylmethyl-phenoxy)-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(4-methyl-piperazin-1-ylmethyl)-phenoxy]-propyl}-amine; (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-benzyl)-isopropyl-amine; {3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-trifluoromethyl-phenylamine; {3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methyl-phenylamine; Ethanesulfonic acid (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methyl-phenyl)-amide; Propane-2-sulfonic acid (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methyl-phenyl)-amide; Methanesulfonic acid (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methyl-phenyl)-amide; 2,2,2-Trifluoro-ethanesulfonic acid (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methyl-phenyl)-amide; Ethanesulfonic acid (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-phenyl)-amide; 2,2,2-Trifluoro-ethanesulfonic acid (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-phenyl)-1,1,1-trifluoro-methanesulfonamide; Propane-2-sulfonic acid (3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-phenyl)-amide; {3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methoxy-phenylamine; Ethanesulfonic acid (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl-amino)]-propoxy}-4-methoxy-phenyl)-amide; (2-Chloro-3-trifluoromethyl-benzyl)-{3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl}-(S)-2-phenyl-propyl amine; (2-Chloro-3-trifluoromethyl-benzyl)-{3-[3-(2-ethylamino-ethyl)-phenoxy]-propyl}-(S)-2-phenyl-propyl-amine; (3-{(R)-3-[(2-Chloro-3-trifluoromethyl-benzyl)-(S)-2-phenyl-propyl]-amino]-butoxy}-phenyl)-acetic acid; (3-{(S)-3-[(2-Chloro-3-

trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-butoxy}-phenyl)-acetic acid; 2-(3-[2-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-ethanol; 2-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propoxy]-phenyl)-2-methyl-propionic acid; 2-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-((R)-2-phenyl-propyl)-amino]-propoxy]-phenyl)-2-methyl-propionic acid; (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-thiophen-3-yl-propyl)-amino]-propoxy]-phenyl)-acetic acid; 2-(3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-thiophen-3-yl-propyl)-amino]-propoxy]-phenyl)-ethanol; (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-thiophen-2-yl-propyl)-amino]-propoxy]-phenyl)-acetic acid; (3-[3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2-pyridin-2-yl-propyl)-amino]-propoxy]-phenyl)-acetic acid; [3-(3-[(2-Chloro-3-trifluoromethyl-benzyl)-[2-(4-methyl-pyridin-2-yl)-propyl]-amino]-propoxy)-phenyl]-acetic acid; [3-(3-[(2-Chloro-3-trifluoromethyl-benzyl)-[3,3,3-trifluoro-2-(1*H*-pyrrol-2-yl)-propyl]-amino]-propoxy)-phenyl]-acetic acid; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-(3-[3-[2-(4-methyl-piperazin-1-yl)-ethyl]-phenoxy]-propyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-(3-[3-(2-methylamino-ethyl)-phenoxy]-propyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-[(1*H*-imidazol-2-ylmethyl)-amino]-ethyl)-phenoxy]-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-[3-(2-ethylamino-ethyl)-phenoxy]-propyl]-amine; [3-(3-[(5-Bromo-thiophen-2-ylmethyl)-amino]-ethyl)-phenoxy]-propyl]-[2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-[(thiophen-2-ylmethyl)-amino]-ethyl)-phenoxy]-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-{3-[3-(2-dimethylamino-ethyl)-phenoxy]-propyl}-[2,2-diphenyl-ethyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(2-pyrrolidin-1-yl-ethyl)-phenoxy]-propyl}-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl}-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-((R)-1-methyl-3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl)-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{(R)-2-methyl-3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl}-amine; {3-[3-(2-Amino-ethyl)-phenoxy]-propyl}-[2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amine; [2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethyl]-isopropyl-amine; [2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethyl]-propyl-amine; 2-[2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethylamino]-ethanol; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-[(1-methyl-1*H*-imidazol-2-ylmethyl)-amino]-ethyl)-phenoxy]-propyl]-amine; (2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-[3-(2-thiomorpholin-4-yl-ethyl)-phenoxy]-propyl]-amine; [2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethyl]-methyl-amino]-acetic acid; [2-(3-[(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-butoxy]-phenyl)-ethylamino]-acetic acid; {[2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethyl]-methyl-amino}-acetic acid; 2-[2-(3-[3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy]-phenyl)-ethylamino]-2-methyl-propionic acid; (S)-2-[2-(3-[3-(2-chloro-3-trifluoromethyl-benzyl)-

carboxymethylenephenoxylpropylamine, N-(2-Phenyl-3-methylbutyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxylpropylamine, N-(2-Phenylhexyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxylpropylamine, N-(2-Phenyl-3-butynyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxylpropylamine;

5 (S)-N-(2-Phenyl-2-methoxyethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxylpropylamine,

(R)-N-(2-Phenyl-2-methoxyethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxylpropylamine, (R)-N-(2-Phenyl-2-methoxyethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-[2-hydroxy-2-methylpropyl]phenoxy)propylamine; 2-(3-{3-[[2-

10 Chloro-3-(trifluoromethyl)benzyl](2-methyl-propyl)amino]-propoxy}-phenyl)acetic acid; 1-(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-cyclobutanecarboxylic acid; 1-(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-cyclopentanecarboxylic acid; 1-(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-phenyl)-cyclopropanecarboxylic acid;

15 and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

20. The compound according to claim 19, selected from:

2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]propoxy}phenyl)-ethanol,

20 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenylethyl)-{3-[3-(1,2,4-triazol-3-ylmethyl)-phenoxy]-propyl}-amine,

(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(1,2,3,4-tetrazol-5-ylmethyl)-phenoxy]-propyl}-amine,

25 (2-chloro-3-trifluoromethyl-benzyl)-(2-cyclohexyl-2-phenyl-ethyl)-{3-[3-(1,2,3,4-tetrazol-5-ylmethyl)-phenoxy]-propyl}-amine,

(S)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,

(R)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,

30 2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl]-benzylamino]propoxy}-phenyl)acetic acid,

2-(3-{3-[[2-chloro-3-(trifluoromethyl)-benzyl]phenethylamino]propoxy}-phenyl)acetic acid,

35 2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-hydroxy-2-phenyl-ethyl)amino]propoxy}-phenyl)acetic acid,

2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-acetoxy-2-phenyl-ethyl)amino]propoxy}-phenyl)acetic acid,

40 2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-phenoxy-2-phenyl-ethyl)amino]propoxy}-phenyl)acetic acid,

- (3-{3-[(2-acetoxy-2-phenyl-ethyl)-(2-chloro-3-trifluoromethyl-benzyl)-amino]-propoxy}-phenyl)-acetic acid methyl ester,
 benzoic acid 2-[3-(3-methoxycarbonylmethyl-phenoxy)(2-chloro-3-(trifluoromethyl)benzyl}propylamino]-1-phenyl ethyl ester,
- 5 (3-{4-[(2-chloro-3-(trifluoromethyl)benzyl)-(2,2-diphenylethyl)-amino]butyl}phenyl)-acetic acid,
 2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2,2-diphenylethyl)amino]propoxy}phenyl)-ethanol,
 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenylethyl)-{3-[3-(1,2,4-triazol-3-ylmethyl)-phenoxy]-propyl}-amine,
- 10 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(1,2,3,4-tetrazol-5-ylmethyl)-phenoxy]-propyl}-amine,
 (S)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,
- 15 (R)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,
 (S)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}-phenyl)acetic acid,
 furan-2-carboxylic acid *N*-(3-{3-[(2-Chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propoxy}-phenyl)-amide,
- 20 (R)-2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}-phenyl)acetic acid,
 2-(3-{3-[[2-chloro-3-(trifluoromethyl)benzyl](2-acetoxy-2-phenyl-ethyl)amino]propoxy}-phenyl)acetic acid,
- 25 (3-{3-[(2-acetoxy-2-phenyl-ethyl)-(2-chloro-3-trifluoromethyl-benzyl)-amino]-propoxy}-phenyl)-acetic acid methyl ester,
 (3-{4-[(2-chloro-3-(trifluoromethyl)benzyl)-(2,2-diphenylethyl)-amino]butyl}phenyl)-acetic acid,
 1-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]propoxy}-phenyl)-cyclobutanecarboxylic acid,
- 30 *N*-(2,2-diphenylethyl)-*N*-(2-chloro-3-trifluoromethylbenzyl)-3-(3-[2-hydroxy-2-methylpropyl]phenoxy)propylamine,
 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-{2-[(1*H*-imidazol-2-ylmethyl)-amino]-ethyl}-phenoxy)-propyl]-amine,
- 35 *N*-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]propoxy}-phenyl)-methanesulfonamide,
N-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]propoxy}-phenyl)-*N*-methyl-amine,
 [2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]propoxy}-phenyl)-ethylamino]-acetic acid,
- 40

- (R)-1-[2-(3-{(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-ethyl]-pyrrolidine-2-carboxylic acid,
- N-(2-[3-chlorophenyl]-propyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenephenoxy)propylamine,
- 5 (2-chloro-3-trifluoromethyl-benzyl)-{3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl}-((S)-2-phenyl-propyl amine,
- [4-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propoxy}-phenyl)-piperazin-1-yl]-acetic acid,
- 10 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propoxy}-phenyl)-2-methyl-propionic acid,
- (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(4-methyl-piperazin-1-yl)-phenoxy]-propyl}-amine,
- (3-((R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-butoxy)-phenyl)-acetic acid,
- 15 [1-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propoxy}-phenyl-piperidine-4-carboxylic acid,
- [4-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-phenoxy}-phenyl)-piperazin-1-yl]-acetic acid,
- [4-(3-{(R)-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-methyl-propoxy}-phenyl)-piperazin-1-yl]-acetic acid,
- 20 and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

21. The compound according to claim 1, wherein W¹ and W² are not each independently C₃-C₈ cycloalkyl or aryl or W³ is not H or any one of R⁶ or R⁷ is not H or R⁸ and R⁹ are each C₁-C₄ alkyl when:

- X is COOR¹⁰;
- Z is CH or CR³ and k is 0-4 or Z is N and k is 0-3;
- p is 0-8;
- 30 n is 2-8;
- q is 0 or 1;
- Q is selected from optionally unsubstituted or substituted C₃-C₈ cycloalkyl, phenyl and monocyclic Het;
- each R¹ and R² is independently selected from H, C₁-C₈ alkyl, -OH, -O-C₁-C₆ alkyl, -SH, and -S-C₁-C₆ alkyl; and
- 35 each R³ is the same or different and is independently selected from halo, cyano, nitro, -CONR¹²R¹³, -COR¹⁴, -SR¹¹, -SO₂R¹¹, -SOR¹⁴, -OCOR¹⁴ and optionally unsubstituted or substituted C₁-C₈ alkyl, C₃-C₆ alkenyl, -5-6 membered-Het, -C₀-C₆ alkyl-CO₂R¹¹, or -C₀-C₆ alkyl-NR¹²R¹³.

40

22. A pharmaceutical composition comprising a compound according to any one of claims 1-21.

23. The pharmaceutical composition according to claim 22 further comprising a 5 pharmaceutically acceptable carrier or diluent.

24. A method for the prevention or treatment of an LXR mediated disease or condition comprising administering a therapeutically effective amount of a compound having Formula I-A:

10

wherein:

X is selected from C_1-C_8 alkyl, halo, $-OR^{10}$, $-NR^{14}R^{15}$, nitro, cyano, $-COOR^{10}$,

$-COR^{13}$, $-OCOR^{13}$, $-N(R^{17})COR^{13}$, $-N(R^{17})CONR^{14}R^{15}$, $-N(R^{17})COOR^{13}$, $-SO_3H$,

15 $-SO_2NR^{14}R^{15}$, $-C(NR^{17})NR^{14}R^{15}$, $-N(R^{17})SO_2R^{16}$, and a 5 or 6-membered heterocyclic group;

or X and an adjacent R^3 , taken together with the atoms to which they are bonded, form an alkylenedioxy moiety;

Z is CH, CR^3 or N, wherein when Z is CH or CR^3 , k is 0-4 and t is 0 or 1, and when

20 Z is N, k is 0-3 and t is 0;

Y is selected from $-O-$, $-S-$, $-N(R^{10})-$, and $-C(R^4)(R^5)-$;

W¹ is selected from C_1-C_6 alkyl, C_3-C_8 cycloalkyl, aryl and Het, wherein said

C_1-C_8 alkyl, C_3-C_8 cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, C_1-C_6 alkyl, C_3-C_6 alkenyl,

25 C_3-C_6 alkynyl, $-C_0-C_6$ alkyl- CO_2R^{10} , $-C_0-C_6$ alkyl- $C(O)SR^{10}$, $-C_0-C_6$ alkyl- $CONR^{11}R^{12}$, $-C_0-C_6$ alkyl- COR^{13} , $-C_0-C_6$ alkyl- $NR^{11}R^{12}$, $-C_0-C_6$ alkyl- SR^{10} , $-C_0-C_6$ alkyl- OR^{10} , $-C_0-C_6$ alkyl- SO_3H , $-C_0-C_6$ alkyl- $SO_2NR^{11}R^{12}$, $-C_0-C_6$ alkyl- SO_2R^{10} , $-C_0-C_6$ alkyl- SOR^{13} , $-C_0-C_6$ alkyl- $OCOR^{13}$, $-C_0-C_6$ alkyl- $OC(O)NR^{11}R^{12}$, $-C_0-C_6$ alkyl- $OC(O)OR^{13}$, $-C_0-C_6$ alkyl- $NR^{11}C(O)OR^{13}$, $-C_0-C_6$ alkyl- $NR^{11}C(O)NR^{11}R^{12}$, and $-C_0-C_6$ alkyl- $NR^{11}COR^{13}$,

30 where said C_1-C_6 alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

W^2 is selected from H, halo, $C_1\text{-}C_6$ alkyl, $C_2\text{-}C_6$ alkenyl, $C_2\text{-}C_6$ alkynyl, - $C_0\text{-}C_6$ alkyl-NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SR¹⁰, - $C_0\text{-}C_6$ alkyl-OR¹⁰, - $C_0\text{-}C_6$ alkyl-CO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-C(O)SR¹⁰, - $C_0\text{-}C_6$ alkyl-CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-COR¹³, - $C_0\text{-}C_6$ alkyl-OCOR¹³, - $C_0\text{-}C_6$ alkyl-OCONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-NR¹¹CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-NR¹¹COR¹³,

5 - $C_0\text{-}C_6$ alkyl-Het, - $C_0\text{-}C_6$ alkyl-Ar and - $C_0\text{-}C_6$ alkyl- $C_3\text{-}C_7$ cycloalkyl, wherein said $C_1\text{-}C_6$ alkyl is optionally unsubstituted or substituted by one or more halo substituents, and wherein the $C_3\text{-}C_7$ cycloalkyl, Ar and Het moieties of said - $C_0\text{-}C_6$ alkyl-Het, - $C_0\text{-}C_6$ alkyl-Ar and - $C_0\text{-}C_6$ alkyl- $C_3\text{-}C_7$ cycloalkyl are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl,

10 $C_3\text{-}C_6$ alkynyl, - $C_0\text{-}C_6$ alkyl-CO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-C(O)SR¹⁰, - $C_0\text{-}C_6$ alkyl-CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-COR¹³, - $C_0\text{-}C_6$ alkyl-NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SR¹⁰, - $C_0\text{-}C_6$ alkyl-OR¹⁰, - $C_0\text{-}C_6$ alkyl-SO₃H, - $C_0\text{-}C_6$ alkyl-SO₂NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-SOR¹³, - $C_0\text{-}C_6$ alkyl-OCOR¹³, - $C_0\text{-}C_6$ alkyl-OC(O)NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-OC(O)OR¹³, - $C_0\text{-}C_6$ alkyl-NR¹¹C(O)OR¹³, - $C_0\text{-}C_6$ alkyl-NR¹¹C(O)NR¹¹R¹², and - $C_0\text{-}C_6$ alkyl-NR¹¹COR¹³,

15 where said $C_1\text{-}C_6$ alkyl, is optionally unsubstituted or substituted by one or more halo substituents;

W^3 is selected from the group consisting of: H, halo, $C_1\text{-}C_6$ alkyl, - $C_0\text{-}C_6$ alkyl-NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SR¹⁰, - $C_0\text{-}C_6$ alkyl-OR¹⁰, - $C_0\text{-}C_6$ alkyl-CO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-C(O)SR¹⁰, - $C_0\text{-}C_6$ alkyl-CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-COR¹³, - $C_0\text{-}C_6$ alkyl-OCOR¹³,

20 - $C_0\text{-}C_6$ alkyl-OCONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-NR¹¹CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-NR¹¹COR¹³, - $C_0\text{-}C_6$ alkyl-Het, - $C_1\text{-}C_6$ alkyl-Ar and - $C_1\text{-}C_6$ alkyl- $C_3\text{-}C_7$ cycloalkyl, wherein said $C_1\text{-}C_6$ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

Q is selected from $C_3\text{-}C_8$ cycloalkyl, Ar and Het; wherein said $C_3\text{-}C_8$ cycloalkyl, Ar and Het are optionally unsubstituted or substituted with one or more groups independently selected from halo, cyano, nitro, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkynyl, - $C_0\text{-}C_6$ alkyl-CO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-C(O)SR¹⁰, - $C_0\text{-}C_6$ alkyl-CONR¹¹R¹², - $C_0\text{-}C_6$ alkyl-COR¹³, - $C_0\text{-}C_6$ alkyl-NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SR¹⁰, - $C_0\text{-}C_6$ alkyl-OR¹⁰, - $C_0\text{-}C_6$ alkyl-SO₃H, - $C_0\text{-}C_6$ alkyl-SO₂NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-SO₂R¹⁰, - $C_0\text{-}C_6$ alkyl-SOR¹³, - $C_0\text{-}C_6$ alkyl-OCOR¹³, - $C_0\text{-}C_6$ alkyl-OC(O)NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-OC(O)OR¹³, - $C_0\text{-}C_6$ alkyl-NR¹¹C(O)OR¹³,

30 - $C_0\text{-}C_6$ alkyl-NR¹¹C(O)NR¹¹R¹², and - $C_0\text{-}C_6$ alkyl-NR¹¹COR¹³, where said $C_1\text{-}C_6$ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

p is 0-8;
n is 2-8;
m is 0 or 1;
35 q is 0 or 1;
t is 0 or 1;
each R¹ and R² are independently selected from H, halo, $C_1\text{-}C_6$ alkyl, $C_3\text{-}C_6$ alkenyl, $C_3\text{-}C_6$ alkynyl, - $C_0\text{-}C_6$ alkyl-NR¹¹R¹², - $C_0\text{-}C_6$ alkyl-OR¹⁰, - $C_0\text{-}C_6$ alkyl-SR¹⁰, - $C_1\text{-}C_6$ alkyl-Het, - $C_1\text{-}C_6$ alkyl-Ar and - $C_1\text{-}C_6$ alkyl- $C_3\text{-}C_7$ cycloalkyl, or R¹ and R² together with the carbon to
40 which they are attached form a 3-5 membered carbocyclic or heterocyclic ring, wherein said

heterocyclic ring contains one, or more heteroatoms selected from N, O, and S, where any one of said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;

- each R³ is the same or different and is independently selected from halo, cyano,
- 5 nitro, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-CO₂R¹⁰, -C₀-C₆ alkyl-C(O)SR¹⁰, -C₀-C₆ alkyl-CNR¹¹R¹², -C₀-C₆ alkyl-NR¹¹R¹², -C₀-C₆ alkyl-SR¹⁰, -C₀-C₆ alkyl-OR¹⁰, -C₀-C₆ alkyl-SO₃H, -C₀-C₆ alkyl-SO₂NR¹¹R¹², -C₀-C₆ alkyl-SO₂R¹⁰, -C₀-C₆ alkyl-SOR¹³, -C₀-C₆ alkyl-OCOR¹³, -C₀-C₆ alkyl-OC(O)NR¹¹R¹²,
- 10 -C₀-C₆ alkyl-OC(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)OR¹³, -C₀-C₆ alkyl-NR¹¹C(O)NR¹¹R¹², and -C₀-C₆ alkyl-NR¹¹COR¹³, wherein said C₁-C₆ alkyl is optionally unsubstituted or substituted by one or more halo substituents;
- each R⁴ and R⁵ is independently selected from H, halo, C₁-C₆ alkyl, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- 15 R⁶ and R⁷ are each independently selected from H, halo, C₁-C₆ alkyl, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- R⁸ and R⁹ are each independently selected from H, halo, C₁-C₆ alkyl, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-Ar and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- R¹⁰ is selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar,
- 20 -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- each R¹¹ and each R¹² are independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, or R¹¹ and R¹² together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S;
- 25 R¹³ is selected from C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl;
- R¹⁴ and R¹⁵ are each independently selected from H, C₁-C₆ alkyl, C₃-C₆ alkenyl, C₃-C₆ alkynyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het, -C₀-C₆ alkyl-C₃-C₇ cycloalkyl,
- 30 -C₀-C₆ alkyl-O-Ar, -C₀-C₆ alkyl-O-Het, -C₀-C₆ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-S(O)_x-C₁-C₆ alkyl, -C₀-C₆ alkyl-S(O)_x-Ar, -C₀-C₆ alkyl-S(O)_x-Het, -C₀-C₆ alkyl-S(O)_x-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-NH-Het, -C₀-C₆ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₆ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₆ alkyl-Ar, -C₀-C₆ alkyl-Het and -C₀-C₆ alkyl-C₃-C₇ cycloalkyl, where x is 0, 1 or 2, or R¹⁴ and R¹⁵, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₆ alkyl), -N(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), unsubstituted -OC₁-C₆ alkyl, -CO₂H,

-CO₂(unsubstituted C₁-C₆ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₆ alkyl), -CON(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl), -SO₃H, -SO₂NH₂, -SO₂NH(unsubstituted C₁-C₆ alkyl) and -SO₂N(unsubstituted C₁-C₆ alkyl)(unsubstituted C₁-C₆ alkyl);

- 5 R¹⁶ is C₁-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het; and
R¹⁷ is H, C₁-C₆ alkyl, -C₀-C₆ alkyl-Ar or -C₀-C₆ alkyl-Het;
provided that X is not COOR¹⁰ when Y is -O-, p is 0-8, n is 2-8, m is 1, q is 0 or 1, t
is 0, each R¹ and R² is independently selected from H, C₁-C₆ alkyl, -OH, -O-C₁-C₆ alkyl, -SH,
and -S-C₁-C₆ alkyl, each R⁴, R⁵, R⁶, R⁷, R⁸ and R⁹ are independently H or C₁-C₄ alkyl, k is 0
10 or 1, W³ is H, W¹ and W² are each independently selected from C₃-C₈ cycloalkyl and aryl
and R³ and Q are as defined above;
or a pharmaceutically acceptable salt or solvate thereof.

25. The method according to claim 24, wherein R¹ and R² are independently H
15 or C₁-C₄ alkyl or R¹ and R² together with the carbon to which they are attached form a 3-5
membered carbocyclic ring.

26. The method according to claim 24 or 25, wherein X is selected from
C₁-C₆ alkyl, halo, -OR¹⁰, -NR¹⁴R¹⁵, cyano, -COR¹³, -COOR¹⁰, -OCOR¹³, -N(R¹⁷)CONR¹⁴R¹⁵,
20 -N(R¹⁷)COR¹³, -SO₂NR¹⁴R¹⁵, -N(R¹⁷)SO₂R¹⁶, and a 5 or 6-membered heterocyclic group or
X and an adjacent R³, taken together with the atoms to which they are bonded, form an
alkylenedioxy moiety.

27. The method according to any claim 26, wherein R¹⁰ is H, C₁-C₄ alkyl or
phenyl; R¹³ is H, C₁-C₄ alkyl, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or -C₀-C₄ alkyl-phenyl; R¹⁴ and
25 R¹⁵ are each independently selected from H, C₁-C₆ alkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het,
-C₀-C₄ alkyl-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-O-Ar, -C₀-C₄ alkyl-O-Het, -C₀-C₄ alkyl-O-
C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-S(O)₂-C₁-C₄ alkyl, -C₀-C₄ alkyl-S(O)₂-Ar, -C₀-C₄ alkyl-S(O)₂-
Het, -C₀-C₄ alkyl-S(O)₂-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-NH-Ar, -C₀-C₄ alkyl-NH-Het,
30 -C₀-C₄ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Ar,
-C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-Ar,
-C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹⁴ and R¹⁵, together with the nitrogen
to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains
35 one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is
optionally substituted by one or more of the substituents independently selected from the
group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted
C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H,
-CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl),
-CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂,

-SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl); R¹⁶ is C₁-C₄ alkyl or phenyl; and R¹⁷ is H or C₁-C₄ alkyl.

28. The method according to any one of claims 24-27 wherein n is 3.

5

29. The method according to any one of claims 24-28, wherein Q is a substituted or unsubstituted phenyl or furanyl group or a benzo[1,3]dioxyl or benzo[1,4]dioxyl group containing one, two or three substituents selected from halo, C₁-C₄ alkyl; C₁-C₄ alkylthio; or -NR^{Q1}R^{Q2}, where R^{Q1} and R^{Q2} taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S.

10 30. The method according to any one of claims 24-29, wherein W¹ is phenyl, naphthyl, thienyl, pyridyl, furanyl, pyrrolyl, cyclohexyl, cyclopentyl, morpholinyl, or pyrrolidinyl, where each phenyl, naphthyl, thienyl, pyridyl, furanyl, pyrrolyl, cyclohexyl, cyclopentyl, morpholinyl, or pyrrolidinyl may be optionally substituted from 1 to 3 times with one or more of the substituents independently selected from C₁-C₄ alkyl, -OH, halo, -O-C₁-C₄ alkyl, and -C₁-C₄ haloalkyl.

15 20 31. The method according to any one of claims 24-30, wherein W² is C₁-C₄ alkyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, aryl, Het hydroxy, aryloxy-, C₁-C₄ alkoxy-, -OCOC₁-C₄ alkyl, -OCOaryl, or -NR^{W1}R^{W2}, where R^{W1} and R^{W2} are independently H or C₁-C₄ alkyl or taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S.

25 32. The method according to claim 24, wherein X is selected from C₁-C₆ alkyl, halo, -OR¹⁰, -NR¹⁴R¹⁵, cyano, -COR¹³, -COOR¹⁰, -OCOR¹³, -N(R¹⁷)CONR¹⁴R¹⁵, -N(R¹⁷)COR¹³, -SO₂NR¹⁴R¹⁵, -N(R¹⁷)SO₂R¹⁶, and a 5 or 6-membered heterocyclic group or X and an adjacent R³, taken together with the atoms to which they are bonded, form an alkyleneoxy moiety, where R¹⁰ is H, C₁-C₄ alkyl or phenyl, R¹³ is H, C₁-C₄ alkyl, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or -C₀-C₄ alkyl-phenyl, R¹⁴ and R¹⁵ are each independently selected from H, C₁-C₆ alkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het, -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-O-Ar, -C₀-C₄ alkyl-O-Het, -C₀-C₄ alkyl-O-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-S(O)₂-C₁-C₄ alkyl, -C₀-C₄ alkyl-S(O)₂-Ar, -C₀-C₄ alkyl-S(O)₂-Het, -C₀-C₄ alkyl-S(O)₂-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-NH-Ar, -C₀-C₄ alkyl-NH-Het, -C₀-C₄ alkyl-NH-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Ar, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-Het, -C₀-C₄ alkyl-N(C₁-C₄ alkyl)-C₃-C₇ cycloalkyl, -C₀-C₄ alkyl-Ar, -C₀-C₄ alkyl-Het and -C₀-C₄ alkyl-C₃-C₇ cycloalkyl, or R¹⁴ and R¹⁵, together with the nitrogen to which they are attached, form a 4-7 membered heterocyclic ring which optionally contains

one or more additional heteroatoms selected from N, O, and S, wherein said C₁-C₆ alkyl is optionally substituted by one or more of the substituents independently selected from the group halo, -OH, -SH, -NH₂, -NH(unsubstituted C₁-C₄ alkyl), -N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), unsubstituted -OC₁-C₄ alkyl, -CO₂H,

5 -CO₂(unsubstituted C₁-C₄ alkyl), -CONH₂, -CONH(unsubstituted C₁-C₄ alkyl), -CON(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), -SO₃H, -SO₂NH₂,

-SO₂NH(unsubstituted C₁-C₄ alkyl) and -SO₂N(unsubstituted C₁-C₄ alkyl)(unsubstituted C₁-C₄ alkyl), R¹⁶ is C₁-C₄ alkyl or phenyl, and R¹⁷ is H or C₁-C₄ alkyl; p is 0, 1 or 2; R¹ and R² are independently H or C₁-C₄ alkyl or R¹ and R² together with the carbon to which they

10 are attached form a 3-5 membered carbocyclic ring; k is 0 or k is 1 and R³ is halo, C₁-C₄ alkyl or C₁-C₄ alkoxy; n is 3 and each R⁴ and R⁵ are independently selected from H and C₁-C₃ alkyl; Z is CH or N; Y is -O- or -C(R⁴)(R⁵); q is 1; R⁸ and R⁹ are each H; Q is a substituted or unsubstituted phenyl or furanyl group or a benzo[1,3]dioxyl or

15 benzo[1,4]dioxyl group, where the substituted phenyl or furanyl group contains one, two or three substituents selected from halo, C₁-C₄ alkyl; C₁-C₄ alkylthio; or -NR^{Q1}R^{Q2}, where R^{Q1} and R^{Q2} taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic ring, which may optionally contain one or more additional heteroatoms selected from N, O and S; t is 0 or 1; m is 0 or 1; R⁶ and R⁷ are independently selected from H and C₁-C₄ alkyl; W¹ is methyl, unsubstituted phenyl, naphthyl, pyridyl, thienyl or pyrrolyl or

20 substituted phenyl or pyridyl containing one or two substituents independently selected from halo, alkyl and alkoxy, specifically, chloro, methyl and methoxy; W² is C₁-C₄ alkyl, C₂-C₄ alkynyl, C₃-C₆ cycloalkyl, aryl, Het hydroxy, aryloxy-, C₁-C₄ alkoxy-, -OCOC₁-C₄ alkyl, -OCOaryl, or -NR^{W1}R^{W2}, where R^{W1} and R^{W2} are independently H or C₁-C₄ alkyl or taken together with the nitrogen to which they are attached form a 4-7 membered heterocyclic

25 ring, which may optionally contain one or more additional heteroatoms selected from N, O and S; W³ is H or C₁-C₄ alkyl; or a pharmaceutically acceptable salt or solvate thereof.

33. The method according to claim 24, wherein X is chloro, bromo, cyano, carboxy-, methylcarboxy-, hydroxy, methoxy, methyl, trifluoromethyl, 1,3-dihydroxy-prop-2-yl (-CH(CH₂OH)₂), isopropyl, n-butyl, isobutyl, 2,2-dimethylpropyl, phenylcarbonyl, triazolyl, tetrazolyl, -NH₂, -NHCH₃, -NHCH₂CH₃, -NHCH₂CH₂CH₃, -NHCH₂CH₂CH₂CH₃, -NHCH₂CH₂CH₂CH₂CH₃, -NHCH₂CH₂CH₂CH₂CH₂CH₃, -NHCH₂C(CH₃)₃, -NHCH₂CH(CH₃)₂, -NHCH₂CH₂CH(CH₃)₂, -NH-cyclopentyl, -NH-phenyl, -NHCH₂-cyclopropyl, -NHCH(CH₃)₂, -NHCH₂CF₃, -N(CH₃)₂, -N(CH₂CH₃)₂, -NHCH(CH₂CH₃)₂, -NHCH₂CH(CH₂CH₃)₂, -NHCH₂CH₂OH, -NHCH₂CO₂H,

35 -N(CH₃)CH₂CO₂H, -NHC(CH₃)₂CO₂H, -NHCH(CH₃)CO₂H, -(R)-NHCH(CH₃)CO₂H, -(S)-NHCH(CH₃)CO₂H, -NHCH₂-1H-imidazol-2-yl, -NHCH₂-(1-CH₃-imidazol-2-yl, -NH-(pyrimidin-2-yl), -morpholin-4-yl, -thiomorpholin-4-yl, -piperidin-1-yl, -piperidin-1-yl-(4-carboxylic acid), -piperidin-1-yl-(4-acetic acid), -piperidin-4-yl-(1-acetic acid), -2,5-dimethyl-pyrrol-1-yl, -pyrrolidin-1-yl, -((R)-2-CO₂H-pyrrolidin-1-yl),

40 -((S)-2-CO₂H-pyrrolidin-1-yl), -piperazin-1-yl, -(4-methyl-piperazin-1-yl),

-piperazin-1-yl-(4-acetic acid), -NHCH₂-(5-bromo-thien-2-yl), -NHCH₂-1H-imidazol-2-yl, -NHCH₂-(1-methyl-imidazol-2-yl), -NHOCH₃, -N(CH₃)COCH₃, -NHCO₂C(CH₃)₃, -NHCOCH₂CH₃, -NHCOC(CH₃)₂, -NHCO-furan-2-yl, -N(CH₃)CO-furan-2-yl, -NHCO-thien-2-yl, -NHCO-cyclopropyl, -NHCO-(5-bromo-thien-2-yl),

5 -NHCO-(2,5-dimethyl-pyrrol-3-yl), -NHSO₂CH₃, -N(CH₃)SO₂CH₃, -NHSO₂CF₃, -NHSO₂phenyl, -N(CH₃)SO₂phenyl, -NHSO₂CH₂CH₃, -NHSO₂CH₂CF₃, -NHSO₂CH₂CH₂CH₃, -NHSO₂CH(CH₃)₂, -NHCONH(2-chlorophenyl), -N(CH₃)CONH(3,5-dimethoxyphenyl), -N(CH₃)CONH(2-chlorophenyl), -N(CH₃)CO-(benzo[1,3]diox-5-yl), -SO₂NHCH₃, and -SO₂N(CH₃)₂; p is 0, 1 or 2; R¹ and R² are H C₁-C₄ alkyl or R¹ and R² together with the

10 carbon to which they are attached form a 3, 4 or 5 membered carbocyclic ring; Z is CH or N; k is 0 or k is 1 and R³ is methyl, trifluoromethyl, chloro or methoxy; n is 3 and R⁴ and R⁵ are independently selected from H and methyl; Y is -O- or -C(R⁴)(R⁵); q is 1; R⁶ and R⁹ are each H; Q is 2-chloro-3-(trifluoromethyl)phenyl, 3-methyl-4-fluoro-phenyl, 4-tert-butyl-phenyl, 4-(methylthio)phenyl, 2,4,5-trifluoro-phenyl, 4-isopropyl-phenyl,

15 5-(piperidin-1-yl)-furan-2-yl, benzo[1,3]diox-5-yl, or 2,3-dihydrobenzo[1,4]dioxin-6-yl; t is 0 or 1; m is 0 or 1; R⁶ and R⁷ are independently selected from H and methyl; W¹ is methyl, phenyl, naphth-1-yl, pyrid-2-yl, 4-methyl-pyrid-2-yl, thien-2-yl, thien-3-yl, pyrrol-2-yl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-methoxyphenyl, or 4-methoxyphenyl; W² is methyl, ethyl, ethynyl, isopropyl, n-butyl, 2-methylpropyl, trifluoromethyl, cyclohexyl,

20 unsubstituted phenyl, hydroxy, methoxy, phenoxy, dimethylamino, morpholin-4-yl, phenylcarbonyloxy, or methylcarbonyloxy; W³ is H or methyl; or a pharmaceutically acceptable salt or solvate thereof.

34. The method according to claim 24, comprising administering a compound
 25 selected from:

2-(3-{3-[2-chloro-3-(trifluoromethyl)benzyl](2,2-dephenylethyl)amino]propoxy}phenyl)-ethanol,
 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenylethyl)-{3-[3-(1,2,4-triazol-3-ylmethyl)-phenoxy]-propyl}-amine,
 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(1,2,3,4-tetrazol-5-ylmethyl)-phenoxy]-propyl}-amine,
 (S)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,
 (R)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-{3-[3-(1,2,3,4-tetrazol-3-ylmethyl)-phenoxy]-propyl}-amine,
 35 (S)-2-(3-{3-[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}phenyl)acetic acid,
 (R)-2-(3-{3-[2-chloro-3-(trifluoromethyl)benzyl](2-phenyl-propyl)amino]propoxy}phenyl)acetic acid,

- 2-(3-{3-[(2-chloro-3-(trifluoromethyl)benzyl)(2-acetoxy-2-phenyl-ethyl)amino]propoxy}-phenyl)acetic acid,
 (3-{3-[(2-Acetoxy-2-phenyl-ethyl)-(2-chloro-3-trifluoromethyl-benzyl)-amino]-propxoy}-phenyl)-acetic acid methyl ester,
- 5 (3-{4-[(2-chloro-3-(trifluoromethyl)benzyl)-(2,2-diphenylethyl)-amino]butyl}phenyl)-acetic acid,
 1- $(3\{-3\{[(2\text{-chloro-3\text{-trifluoromethyl\text{-benzyl}})\text{-diphenylethyl\text{-amino}}]\text{-propxoy}\}\text{-phenyl}\})\text{-cyclobutanecarboxylic acid}$,
- N-(2,2-diphenylethyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-[2-hydroxy-2-
- 10 methylpropyl]phenoxy)propylamine,
 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-[3-(3-{2-[(1H-imidazol-2-ylmethyl)-amino]-ethyl}-phenoxy)-propyl]-amine,
 N-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propxoy}-phenyl)-methanesulfonamide,
- 15 N-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propxoy}-phenyl)-N-methyl-amine,
 [2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propxoy}-phenyl)-ethylamino]-acetic acid,
 (R)-1-[2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propxoy}-phenyl)-ethyl]-pyrrolidine-2-carboxylic acid,
- 20 furan-2-carboxylic acid N-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-2,2-diphenylethyl-amino]-propxoy}-phenyl)-amide,
 N-(2-[3-chlorophenyl]-propyl)-N-(2-chloro-3-trifluoromethylbenzyl)-3-(3-carboxymethylenepheoxy)propylamine,
- 25 (2-chloro-3-trifluoromethyl-benzyl)-{3-[3-(2-morpholin-4-yl-ethyl)-phenoxy]-propyl}-((S)-2-phenyl-propyl amine,
 [4-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-propxoy}-phenyl)-piperazin-1-yl]-acetic acid,
 2-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propxoy}-phenyl)-2-methyl-propionic acid,
- 30 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(4-methyl-piperazin-1-yl)-phenoxy]-propyl}-amine,
 (3-{(R)-3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-butoxy}-phenyl)-acetic acid,
- 35 [1-(3-{3-[(2-chloro-3-(trifluoromethyl)-benzyl)-(2,2-diphenylethyl)-amino]-propxoy}-phenyl)-piperidine-4-carboxylic acid,
 [4-(3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-((S)-2-phenyl-propyl)-amino]-propxoy}-phenyl)-piperazin-1-yl]-acetic acid,
 [4-(3-{(R)-[(2-chloro-3-trifluoromethyl-benzyl)-diphenylethyl-amino]-methyl-propxoy}-phenyl)-piperazin-1-yl]-acetic acid,
- 40 phenyl)-piperazin-1-yl]-acetic acid,

and a stereoisomer, a stereoisomeric mixture or racemate thereof and a pharmaceutically acceptable salt or solvate thereof.

35. The method according to any one of claims 24-34, wherein said LXR
5 mediated disease or condition is cardiovascular disease.

36. The method according to any one of claims 24-35, wherein said LXR
mediated disease or condition is atherosclerosis.

10 37. The method according to any one of claims 24-35, wherein said LXR
mediated disease or condition is inflammation.

15 38. A method for increasing reverse cholesterol transport, said method comprising administering a therapeutically effective amount of the compound according to
any one of claims any one of claims 1-21.

39. A method for inhibiting cholesterol absorption, said method comprising
administering a therapeutically effective amount of the compound according to any one of
claims any one of claims 1-21.

20 40. A compound according to any one of claims 1-21 for use as a medicament.

41. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for the prevention or treatment of an LXR mediated disease or condition.

25 42. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for the prevention or treatment of cardiovascular disease.

30 43. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for the prevention or treatment of atherosclerosis.

44. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for the prevention or treatment of inflammation.

35 45. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for increasing reverse cholesterol transport.

46. Use of a compound according to any one of claims 1-21 for the preparation
of a medicament for inhibiting cholesterol absorption.

47. A pharmaceutical composition comprising a compound according to any one of claims 1-21 for use in the prevention or treatment of an LXR mediated disease or condition.

5 48. A compound selected from the group:

{3-[4-(t-butyldimethylsilylhydroxy)but-1-ynyl]phenyl}acetic acid methyl ester,

{3-[4-hydroxybutyl]phenyl}acetic acid methyl ester,

{3-[4-(toluene-4-sulfonyloxy)butyl]phenyl}acetic acid methyl ester,

(S)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-amine,

10 (R)-(2-chloro-3-trifluoromethyl-benzyl)-(2-phenyl-propyl)-amine,

(2-chloro-3-trifluoromethyl-benzyl)-(naphthalene-1-ylmethyl)-amine,

(2-chloro-3-trifluoromethyl-benzyl)-(phenethyl)-amine,

(2-chloro-3-trifluoromethyl-benzyl)-(benzyl)-amine,

(2-chloro-3-trifluoromethyl-benzylamino)-phenyl-ethanol,

15 3-(3-benzyloxy-benzyl)-1,2,4-triazole,

3-(3-benzyloxy-benzyl)-ethoxymethyl-1,2,4-triazole,

[3-(ethoxymethyl)-1,2,4-triazol-3-ylmethyl]-phenol,

{3-[3-(3-bromo-propoxy)-benzyl]}-(ethoxymethyl)-1,2,4-triazole,

(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(ethoxymethyl)-1,2,4-triazol-3-

20 ylmethyl-phenoxy]-propyl}-amine,

5-(3-benzyloxy-benzyl)-1,2,3,4-tetrazole,

5-(3-benzyloxy-benzyl)-ethoxymethyl-1,2,3,4-tetrazole,

5-(3-hydroxy-benzyl)-ethoxymethyl-1,2,3,4-tetrazole,

5-[3-(3-bromo-propoxy)-benzyl]-{ethoxymethyl)-1,2,3,4-tetrazole,

25 (2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-{3-[3-(ethoxymethyl)-1,2,3,4-tetrazol-

5-ylmethyl-phenoxy]-propyl}-amine,

or pharmaceutically acceptable salts or solvates thereof.