The Curse of Dimensionality for Numerical Integration of Smooth Functions

Aicke Hinrichs, Erich Novak*
Mathematisches Institut, Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany
email: a.hinrichs@uni-jena.de, erich.novak@uni-jena.de

Mario Ullrich[†]
Dipartimento di Matematica, Università Roma Tre
Largo San Leonardo Murialdo 1, 00146 Roma, Italy
email: ullrich.mario@gmail.com

Henryk Woźniakowski[‡]
Department of Computer Science, Columbia University,
New York, NY 10027, USA, and
Institute of Applied Mathematics, University of Warsaw
ul. Banacha 2, 02-097 Warszawa, Poland
email: henryk@cs.columbia.edu

November 6, 2012

^{*}This author was partially supported by the DFG-Priority Program 1324.

[†]This author was supported by DFG GRK 1523 and ERC Advanced Grant PTRELSS.

[‡]This author was partially supported by the National Science Foundation.

Abstract

We prove the curse of dimensionality for multivariate integration of C^k functions. The proofs are based on volume estimates for k = 1 together with smoothing by convolution. This allows us to obtain smooth fooling functions for k > 1.

MSC: 65D30,65Y20,41A63,41A55

Keywords: curse of dimensionality, numerical integration, high dimensional numerical problems

1 Introduction

We study multivariate integration for different classes F_d of smooth functions $f: \mathbb{R}^d \to \mathbb{R}$. Our emphasis is on large values of $d \in \mathbb{N}$. We want to approximate

$$S_d(f) = \int_{D_d} f(x) \, \mathrm{d}x \quad \text{for} \quad f \in F_d$$
 (1)

up to some error $\varepsilon > 0$, where $D_d \subset \mathbb{R}^d$ has (Lebesgue) measure 1. The results in this paper hold for arbitrary sets D_d , the standard example of course is $D_d = [0, 1]^d$.

We consider (deterministic) algorithms that use only function values. We consider classes F_d of functions bounded in absolute value by 1 and containing all constant functions $f(x) \equiv c$ with $|c| \leq 1$. This implies that the initial error is one, i.e.,

$$\inf_{c \in \mathbb{R}} \max_{f \in F_d} |S_d(f) - c| = \max_{f \in F_d} |S_d(f)| = 1,$$

so that multivariate integration is well scaled and that is why we consider $\varepsilon < 1$.

Let $n(\varepsilon, F_d)$ denote the minimal number of function values needed for this task in the worst case setting¹. By the *curse of dimensionality* we mean that $n(\varepsilon, F_d)$ is exponentially large in d. That is, there are positive numbers c, ε_0 and γ such that

$$n(\varepsilon, F_d) \ge c (1 + \gamma)^d$$
 for all $\varepsilon \le \varepsilon_0$ and infinitely many $d \in \mathbb{N}$. (2)

For many natural classes F_d the bound in (2) will hold for all $d \in \mathbb{N}$. This applies in particular to the classes considered in this paper.

¹We add that $n(\varepsilon, F_d)$ is the information complexity of multivariate integration over F_d and is proportional to the (total) complexity as long as F_d is convex and symmetric. The last two assumptions are needed to guarantee that a linear algorithm is optimal and its implementation cost is linear in $n(\varepsilon, F_d)$.

There are many classes F_d for which the curse of dimensionality has been proved, see [5, 7] for such examples. However, it has been *not* known if the curse of dimensionality occurs for probably the most natural class which is the unit ball of r times continuously differentiable functions,

$$C_d^r = \{ f \in C^r(\mathbb{R}^d) \mid ||D^{\beta}f|| \le 1 \text{ for all } |\beta| \le r \},$$

where $\beta = (\beta_1, \beta_2, \dots, \beta_d)$, with non-negative integers β_j , $|\beta| = \sum_{j=1}^d \beta_j$, and D^{β} denotes the operator of β_j times differentiation with respect to the *j*th variable for $j = 1, 2, \dots d$. By $\|\cdot\|$ we mean the sup norm, $\|D^{\beta}f\| = \sup_{x \in \mathbb{R}^d} |(D^{\beta}f)(x)|$.

For r=0, we obviously have $n(\varepsilon, \mathcal{C}_d^0)=\infty$ for all $\varepsilon<1$ and all $d\in\mathbb{N}$. Therefore from now on we always assume that $r\geq 1$. For r=1, the curse of dimensionality for \mathcal{C}_d^1 follows from the results of Sukharev [8]. Whether the curse holds for $r\geq 2$ has been an open problem for many years.

The class C_d^r for $D_d = [0, 1]^d$ (and functions and norms restricted to D_d) was already studied in 1959 by Bakhvalov [2], see also [4]. He proved that there are two positive numbers $a_{d,r}$ and $A_{d,r}$ such that

$$a_{d,r} \, \varepsilon^{-d/r} \le n(\varepsilon, \mathcal{C}_d^r) \le A_{d,r} \, \varepsilon^{-d/r} \quad \text{for all } d \in \mathbb{N} \text{ and } \varepsilon \in (0, 1).$$
 (3)

This means that for a fixed d and for ε tending to zero, we know that $n(\varepsilon, \mathcal{C}_d^r)$ is of order $\varepsilon^{-d/r}$ and the exponent of ε^{-1} grows linearly² in d. Unfortunately, since the known dependence on d in $a_{d,r}$ is exponentially small and the known dependence on d in $A_{d,r}$ is exponentially large in d, Bakhvalov's result does not allow us to conclude whether the curse of dimensionality holds for the class \mathcal{C}_d^r . In fact, if we reverse the roles of d and ε , and consider a fixed ε and d tending to infinity, the bound (3) on $n(\varepsilon, \mathcal{C}_d^r)$ is useless. We prove the following result.

Main Theorem. The curse of dimensionality holds for the classes C_d^r with the *super-exponential* lower bound

$$n(\varepsilon, \mathcal{C}_d^r) \ge c_r (1 - \varepsilon) d^{d/(2r+3)}$$
 for all $d \in \mathbb{N}$ and $\varepsilon \in (0, 1)$,

where $c_r \in (0,1]$ depends only on r.

We also prove that the curse of dimensionality holds for even smaller classes of functions F_d for which the norms of arbitrary directional derivatives are bounded proportionally to $1/\sqrt{d}$.

²In the language of tractability, this result means that we do *not have* polynomial tractability but does not allow us to conclude the lack of weak tractability.

We now discuss how we obtain lower bounds on $n(\varepsilon, F_d)$ for numerical integration defined on convex and symmetric classes F_d . The standard proof technique is to find a fooling function $f \in F_d$ that vanishes at the points $\mathcal{P} = \{x_1, x_2, \dots, x_n\}$ at which we sample functions from F_d , and the integral of f is as large as possible. All algorithms that use function values at x_j 's must give the same approximation of the integral of f and of the integral of -f. That is why the integral of f is a lower bound on the worst case error of all algorithms using function values at x_j 's. If for all choices of x_1, x_2, \dots, x_n the integral of f is larger than ε then we know that $n(\varepsilon, F_d) \geq n$.

We start with the fooling function

$$f_0(x) = \min \left\{ 1, \frac{1}{\delta \sqrt{d}} \operatorname{dist}(x, \mathcal{P}_{\delta}) \right\} \quad \text{for all} \quad x \in \mathbb{R}^d,$$

where

$$\mathcal{P}_{\delta} = \bigcup_{i=1}^{n} B_{\delta}^{d}(x_{i})$$

and $B_{\delta}^d(x_i)$ is the ball with center x_i and radius $\delta \sqrt{d}$. The function f_0 is Lipschitz. By a suitable smoothing via convolution we construct a fooling function $f_r \in \mathcal{C}_d^r$ and $f_r|_{\mathcal{P}} = 0$.

2 Preliminaries

In this section we precisely define our problem. Let F_d be a class of Lebesgue integrable functions $f: \mathbb{R}^d \to \mathbb{R}$. For $f \in F_d$, we approximate the integral $S_d(f)$, see (1), by algorithms

$$A_{n,d}(f) = \phi_{n,d}(f(x_1), f(x_2), \dots, f(x_n)),$$

where $x_j \in \mathbb{R}^d$ can be chosen adaptively and $\phi_{n,d} : \mathbb{R}^n \to \mathbb{R}$ is an arbitrary mapping. Adaption means that the selection of x_j may depend on the already computed values $f(x_1), f(x_2), \ldots, f(x_{j-1})$. The (worst case) error of the algorithm $A_{n,d}$ is defined as

$$e(A_{n,d}) = \sup_{f \in F_d} |S_d(f) - A_{n,d}(f)|.$$

The minimal number of function values to guarantee that the error is at most ε is defined as

$$n(\varepsilon, F_d) = \min\{n \in \mathbb{N} \mid \exists A_{n,d} \text{ such that } e(A_{n,d}) \leq \varepsilon\}.$$

Hence we minimize n over all choices of adaptive sample points x_j and mappings $\phi_{n,d}$. It is well known that as long as the class F_d is convex and symmetric we may restrict the

minimization of n by considering only nonadaptive choices of x_j and linear mappings $\phi_{n,d}$. Furthermore,

$$n(\varepsilon, F_d) = \min \left\{ n \in \mathbb{N} \mid \inf_{\mathcal{P} \subset \mathbb{R}^d, \#\mathcal{P} = n} \sup_{f \in F_d, f|_{\mathcal{P}} = 0} |S_d(f)| \le \varepsilon \right\}, \tag{4}$$

see [4, Prop. 1.2.6] or [9, Theorem 5.5.1]. In this paper we always consider convex and symmetric F_d so that we can use the last formula for $n(\varepsilon, F_d)$. For more details see, e.g., Chapter 4 in [5].

Observe that we allow $x_j \in \mathbb{R}^d$ instead of only $x_j \in D_d$. In this paper we are interested in *lower* bounds and this assumption makes our results even stronger.

As already mentioned, our lower bounds are based on a volume estimate of a neighborhood of certain sets in \mathbb{R}^d , see also [3]. In the following we denote by A_{δ} , for $A \subset \mathbb{R}^d$, the $(\delta \sqrt{d})$ -neighborhood of A, which is defined by

$$A_{\delta} = \left\{ x \in \mathbb{R}^d \mid \operatorname{dist}(x, A) \le \delta \sqrt{d} \right\}, \tag{5}$$

where $\operatorname{dist}(x, A) = \inf_{a \in A} ||x - a||_2$ denotes the Euclidean distance of x from A.

Since we need the \sqrt{d} -scaling of the distance, we will omit it in the notation as we already did for A_{δ} . Furthermore, we denote by $B_{\delta}^{d}(x)$ the d-dimensional ball with center $x \in \mathbb{R}^{d}$ and radius $\delta \sqrt{d}$, i.e.,

$$B_{\delta}^{d}(x) = \{ y \in \mathbb{R}^{d} \mid ||x - y||_{2} \le \delta \sqrt{d} \}.$$

We will need some standard volume estimates for Euclidean balls. Recall that the volume of a Euclidean ball of radius 1 is given by

$$V_d = \frac{\pi^{d/2}}{\Gamma(1+d/2)}.$$

From Stirling's formula for the Γ function we have

$$\Gamma(x+1) = \sqrt{2\pi x} x^x e^{-x + \frac{\theta_x}{12x}}$$
 for all $x > 0$,

where $\theta_x \in (0,1)$, see [1, p. 257]. This leads to the estimate

$$\Gamma(x+1) > \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$
 for all $x > 0$.

Combining this estimate with the volume formula for the ball, we obtain for all $d \in \mathbb{N}$,

$$\lambda_d \left(B_\delta^d(x) \right) = \left(\delta \sqrt{d} \right)^d V_d < \left(\delta \sqrt{d} \right)^d \frac{\left(\frac{2\pi e}{d} \right)^{d/2}}{\sqrt{\pi d}} = \frac{\left(\delta \sqrt{2\pi e} \right)^d}{\sqrt{\pi d}} < \left(\delta \sqrt{2\pi e} \right)^d. \tag{6}$$

The volume formula for the Euclidean unit ball also shows the recurrence relation

$$\frac{V_{d-1}}{V_d} = \frac{d}{d-1} \frac{V_{d-3}}{V_{d-2}}$$
 for all $d \ge 4$.

This easily implies

$$\frac{2}{\sqrt{d}} \frac{V_{d-1}}{V_d} < \frac{2}{\sqrt{d-2}} \frac{V_{d-3}}{V_{d-2}}$$
 for all $d \ge 4$.

The last inequality can be used in an inductive argument leading to

$$\frac{2}{\sqrt{d}} \frac{V_{d-1}}{V_d} \le 1 \quad \text{for all} \quad d \ge 2. \tag{7}$$

This will be needed later.

3 Convolution

In this section we fix $k \in \mathbb{N}$ and study the convolution

$$f_k := f * g_1 * \dots * g_k$$

of a function f defined on \mathbb{R}^d with (normalized) indicator functions g_j . We are interested in properties of f_k in terms of the properties of the initial function f. Recall that the convolution of two functions f and g on \mathbb{R}^d is defined by

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - t) g(t) dt$$
 for all $x \in \mathbb{R}^d$.

Fix a number $\delta > 0$ and a sequence $(\alpha_j)_{j=1}^k$ with $\alpha_j > 0$ such that

$$\sum_{j=1}^{k} \alpha_j \le 1.$$

For example, we may take $\alpha_j = 1/k$ for j = 1, 2, ..., k. For j = 1, ..., k, we define the ball

$$B_j = \left\{ x \in \mathbb{R}^d \, \middle| \ \|x\|_2 \le \alpha_j \, \delta \sqrt{d} \right\}$$

and the function $g_j : \mathbb{R}^d \to \mathbb{R}$ by

$$g_j(x) = \frac{\mathbb{1}_{B_j}(x)}{\lambda_d(B_j)} = \frac{1}{\lambda_d(B_j)} \begin{cases} 1 & \text{if } x \in B_j, \\ 0 & \text{otherwise.} \end{cases}$$
(8)

Thus, the convolution of a function f with g_i can be written as

$$(f * g_j)(x) = \frac{1}{\lambda_d(B_j)} \int_{B_j} f(x+t) dt$$
 for all $x \in \mathbb{R}^d$.

We will frequently use the following probabilistic interpretation. Let Y_j be a random variable that is uniformly distributed on B_j . Then the convolution of f with g_j can be written as the expected value

$$(f * g_j)(x) = \mathbb{E}[f(x + Y_j)].$$

The next theorem is the basis for the induction steps of the proofs of our main results. For $f: \mathbb{R}^d \to \mathbb{R}$, we use the Lipschitz constant

$$Lip(f) = \sup_{x \neq y} \frac{|f(x) - f(y)|}{\|x - y\|_2}.$$

Define

$$C^r = \{ f : \mathbb{R}^d \to \mathbb{R} \mid D^{\theta_\ell} \dots D^{\theta_1} f \text{ is continuous for all } \ell \leq r \text{ and all } \theta_1, \dots, \theta_r \in \mathbb{S}^{d-1} \}$$

where \mathbb{S}^{d-1} is the unit sphere in \mathbb{R}^d and $D^{\theta_1}f(x) = \lim_{h\to 0} \frac{1}{h} (f(x+h\theta_1) - f(x))$ is the derivative in the direction of θ_1 .

Theorem 1. For $k \in \mathbb{N}$ and $f \in C^r$, define

$$f_k = f * q_1 * \dots * q_k$$
 with q_k from (8).

For $d \geq 2$, let $\Omega \subset \mathbb{R}^d$ and let Ω_δ be its neighborhood defined as in (5). Then

- (i) if f(x) = 0 for all $x \in \Omega_{\delta}$ then $f_k(x) = 0$ for all $x \in \Omega$,
- $(ii) \operatorname{Lip}(f_k) \le \operatorname{Lip}(f),$
- (iii) if $\int_{D_d} f(x+t) dx \ge \varepsilon$ for all $t \in \mathbb{R}^d$ with $||t||_2 \le \delta \sqrt{d}$ then $\int_{D_d} f_k(x) dx \ge \varepsilon$,
- (iv) for all $\ell \leq r$ and all $\theta_1, \theta_2, \dots, \theta_r \in \mathbb{S}^{d-1}$,

$$\operatorname{Lip}\left(D^{\theta_{\ell}} D^{\theta_{\ell-1}} \dots D^{\theta_1} f_k\right) \leq \operatorname{Lip}\left(D^{\theta_{\ell}} D^{\theta_{\ell-1}} \dots D^{\theta_1} f\right),\,$$

(v) $f_k \in C^{r+k}$, and for all $\ell \le r$, all $j = 1, \ldots, k$ and all $\theta_1, \theta_2, \ldots, \theta_{\ell+j} \in \mathbb{S}^{d-1}$,

$$\operatorname{Lip}\left(D^{\theta_{\ell+j}} D^{\theta_{\ell+j-1}} \dots D^{\theta_1} f_k\right) \leq \left(\prod_{i=1}^j \frac{1}{\delta \alpha_{k+1-i}}\right) \operatorname{Lip}\left(D^{\theta_{\ell}} D^{\theta_{\ell-1}} \dots D^{\theta_1} f\right).$$

The parts (i)–(iv) of this theorem show that some properties of the initial function f are preserved by convolutions. Part (v) states that we gain one "degree of smoothness" with every convolution, loosing only a multiplicative constant for its Lipschitz constant.

Proof. First note that we can write f_k as

$$f_k(x) = \mathbb{E}[f(x+Y)], \text{ for all } x \in \mathbb{R}^d,$$

where Y is a random variable with probability density function $g_1 * ... * g_k$. By construction of g_k 's which are the indicator functions of the balls whose sum of the radii is at most $\delta \sqrt{d}$, we have

$$\{t \in \mathbb{R}^d \mid g_1 * \dots * g_k(t) > 0\} \subset \{t \in \mathbb{R}^d \mid ||t||_2 \le \delta \sqrt{d}\},$$

which implies that $x + Y \in \Omega_{\delta}$ almost surely for every $x \in \Omega$. Thus, f(x) = 0 for all $x \in \Omega_{\delta}$ implies that $f_k(x) = 0$ for all $x \in \Omega$, which is property (i).

Property (ii) is proven by

$$|f_k(x) - f_k(y)| = |\mathbb{E}[f_k(x+Y) - f_k(y+Y)]| \le \mathbb{E}[|f(x+Y) - f(y+Y)|]$$

$$\le \text{Lip}(f) \,\mathbb{E}[||(x+Y) - (y+Y)||_2] = \text{Lip}(f) \,||x-y||_2.$$

To prove (iii), we use Fubini's theorem and we obtain

$$\int_{D_d} f_k(x) \, \mathrm{d}x = \int_{D_d} \mathbb{E} \big[f(x+Y) \big] \, \mathrm{d}x = \mathbb{E} \Big[\int_{D_d} f(x+Y) \, \mathrm{d}x \Big] \ge \varepsilon$$

by assumption.

For the proof of properties (iv) and (v), let $\theta = (\theta_1, \dots, \theta_\ell) \in (\mathbb{S}^{d-1})^\ell$. We write D^{θ} for $D^{\theta_\ell} \dots D^{\theta_1}$. Clearly, $f \in C^r$ and $\ell \leq r$ implies that $D^{\theta} f \in C^{r-\ell} \subseteq C$. Since f_k is at least as smooth as f, both $D^{\theta} f$ and $D^{\theta} f_k$ are well defined.

We need the well-known fact that $D^{\theta}(f * g) = (D^{\theta}f) * g$ if $f \in C^{\ell}$ and g has compact support. For $g = g_1 * \ldots * g_k$, we have

$$\begin{aligned} \left| D^{\theta} f_k(x) - D^{\theta} f_k(y) \right| &= \left| \left((D^{\theta} f) * g \right)(x) - \left((D^{\theta} f) * g \right)(y) \right| \\ &= \left| \int_{\mathbb{R}^d} \left[(D^{\theta} f(x+t) - D^{\theta} f(y+t)) \right] g(t) dt \right| \\ &\leq \operatorname{Lip}(D^{\theta} f) \left\| x - y \right\|_2 \int_{\mathbb{R}^d} g(t) dt \\ &= \operatorname{Lip}(D^{\theta} f) \left\| x - y \right\|_2 \end{aligned}$$

for all $x, y \in \mathbb{R}^d$. The last equality follows since the g_k is normalized. This proves (iii).

For (v), we need to prove that $f_k \in C^{r+k}$ with $f_0 = f \in C^r$ by assumption, and then it is enough to show that for all $m \le r + k$ and all $\theta = (\theta_m, \dots, \theta_1) \in (\mathbb{S}^{d-1})^m$,

$$\operatorname{Lip}\left(D^{\theta}f_{k}\right) \leq \frac{1}{\delta\alpha_{k}}\operatorname{Lip}\left(D^{\bar{\theta}}f_{k-1}\right),$$

where $\bar{\theta} = (\theta_{m-1}, \dots, \theta_1) \in (\mathbb{S}^{d-1})^{m-1}$.

Assume inductively that $f_{k-1} \in C^{m-1}$, which holds for k = 1. This implies $D^{\bar{\theta}}(f_{k-1} * g_k) = (D^{\bar{\theta}} f_{k-1}) * g_k$, and

$$D^{\theta} f_{k}(x) = D^{\theta_{m}} \left((D^{\bar{\theta}} f_{k-1}) * g_{k} \right)(x)$$

$$= D^{\theta_{m}} \left(\frac{1}{\lambda_{d}(B_{k})} \int_{\mathbb{R}^{d}} D^{\bar{\theta}} f_{k-1}(x+t) \mathbb{1}_{B_{k}}(t) dt \right)$$

$$= \frac{1}{\lambda_{d}(B_{k})} D^{\theta_{m}} \left(\int_{\theta_{m}^{\perp}} \int_{\mathbb{R}} D^{\bar{\theta}} f_{k-1}(x+s+h\theta_{m}) \mathbb{1}_{B_{k}}(s+h\theta_{m}) dh ds \right)$$

$$= \frac{1}{\lambda_{d}(B_{k})} \int_{\theta_{m}^{\perp}} D^{\theta_{m}} \left(\int_{\mathbb{R}} D^{\bar{\theta}} f_{k-1}(x+s+h\theta_{m}) \mathbb{1}_{B_{k}}(s+h\theta_{m}) dh \right) ds,$$

where θ_m^{\perp} is the hyperplane orthogonal to θ_m . For any function f on \mathbb{R} of the form

$$f(x) = \int_{x-a}^{x+a} g(y) \, \mathrm{d}y$$

with some continuous function g we have

$$f'(x) = g(x+a) - g(x-a).$$

Therefore, we obtain

$$D^{\theta} f_k(x) = \frac{1}{\lambda_d(B_k)} \int_{B_k \cap \theta_m^{\perp}} D^{\bar{\theta}} f_{k-1} \Big(x + s + h_{\max}(s) \, \theta_m \Big) - D^{\bar{\theta}} f_{k-1} \Big(x + s - h_{\max}(s) \, \theta_m \Big) \, \mathrm{d}s$$

with

$$h_{\max}(s) = \max\{h \ge 0 \mid s + h\theta_m \in B_k\}.$$

For each $s \in B_k \cap \theta_m^{\perp}$, define the points $s_1 = s + h_{\max}(s) \theta_m \in B_k$ and

 $s_2 = s - h_{\max}(s) \, \theta_m \in B_k$. Then

$$|D^{\theta} f_{k}(x) - D^{\theta} f_{k}(y)| \leq \frac{1}{\lambda_{d}(B_{k})} \int_{B_{k} \cap \theta_{m}^{\perp}} \left[\left| D^{\bar{\theta}} f_{k-1}(x+s_{1}) - D^{\bar{\theta}} f_{k-1}(x+s_{2}) - D^{\bar{\theta}} f_{k-1}(y+s_{2}) \right| \right] ds$$

$$\leq \frac{1}{\lambda_{d}(B_{k})} \int_{B_{k} \cap \theta_{m}^{\perp}} \left[\left| D^{\bar{\theta}} f_{k-1}(x+s_{1}) - D^{\bar{\theta}} f_{k-1}(y+s_{1}) \right| + \left| D^{\bar{\theta}} f_{k-1}(x+s_{2}) - D^{\bar{\theta}} f_{k-1}(y+s_{2}) \right| \right] ds$$

$$\leq \frac{2 \lambda_{d-1}(B_{k} \cap \theta_{m}^{\perp})}{\lambda_{d}(B_{k})} \operatorname{Lip}(D^{\bar{\theta}} f_{k-1}) \|x-y\|_{2}.$$

In particular, this shows the implication

$$f_{k-1} \in C^{m-1} \implies f_k \in C^m$$

for all $k \in \mathbb{N}$. Taking m = r + k we have $f_k \in C^{r+k}$, as claimed.

For $m \leq r + k$, it remains to bound $2\lambda_{d-1}(B_k \cap \theta_m^{\perp})/\lambda_d(B_k)$. Recall that B_k is a ball with radius $\delta \alpha_k \sqrt{d}$ and that V_d is the volume of the Euclidean unit ball in \mathbb{R}^d . We obtain from (7) that

$$\frac{2\lambda_{d-1}(B_k \cap \theta_m^{\perp})}{\lambda_d(B_k)} = \frac{2(\delta\alpha_k\sqrt{d})^{d-1}}{(\delta\alpha_k\sqrt{d})^d} \frac{V_{d-1}}{V_d} = \frac{2}{\delta\alpha_k\sqrt{d}} \frac{V_{d-1}}{V_d} \le \frac{1}{\delta\alpha_k}.$$

4 Main Results

Let $\mathcal{P} = \{x_1, \dots, x_n\} \subset \mathbb{R}^d$ be a collection of n points. As pointed out in the introduction, we want to construct functions that vanish at \mathcal{P} and have a large integral. For this, we choose

$$f_0(x) = \min \left\{ 1, \frac{1}{\delta \sqrt{d}} \operatorname{dist}(x, \mathcal{P}_{\delta}) \right\} \quad \text{for all} \quad x \in \mathbb{R}^d,$$

where

$$\mathcal{P}_{\delta} = \bigcup_{i=1}^{n} B_{\delta}^{d}(x_{i})$$

and $B_{\delta}^{d}(x_{i})$ is the ball with center x_{i} and radius $\delta\sqrt{d}$.

The function $\operatorname{dist}(\cdot, \mathcal{P}_{\delta})$ is Lipschitz with constant 1. Hence for $\delta \leq 1$

$$\operatorname{Lip}(f_0) = \frac{1}{\delta\sqrt{d}}.\tag{9}$$

Additionally, $f_0(x) = 0$ for all $x \in \mathcal{P}_{\delta}$ by definition.

Using these facts we can apply Theorem 1 to prove the curse of dimensionality for the following class of functions that are defined on \mathbb{R}^d . For a fixed $r \in \mathbb{N}$, we now take $\alpha_1 = \cdots = \alpha_r = \frac{1}{r}$ and define

$$F_{d,r,\delta} = \{ f \colon \mathbb{R}^d \to \mathbb{R} \mid f \in C^r \text{ satisfies } (10) - (12) \},$$

where

$$||f|| \leq 1, \tag{10}$$

$$\operatorname{Lip}(f) \leq \frac{1}{\delta\sqrt{d}},\tag{11}$$

$$\forall k \le r : \max_{\theta_1, \dots, \theta_k \in \mathbb{S}^{d-1}} \operatorname{Lip}(D^{\theta_1} \dots D^{\theta_k} f) \le \frac{1}{\delta \sqrt{d}} \left(\frac{r}{\delta}\right)^k.$$
 (12)

Theorem 2. For any $r \in \mathbb{N}$ and $\delta \in (0, 1]$,

$$n(\varepsilon, F_{d,r,\delta}) \ge (1 - \varepsilon) \begin{cases} 1 & \text{for } d = 1, \\ (\delta \sqrt{18e\pi})^{-d} & \text{for } d \ge 2, \end{cases}$$
 for all $\varepsilon \in (0, 1)$.

Hence the curse of dimensionality holds for the class $F_{d,r,\delta}$ for $\delta < 1/\sqrt{18e\pi}$.

Note that this result shows that the growth rate of $n(\varepsilon, F_{d,r,\delta})$ in d can be arbitrarily large if we choose δ small enough.

Proof. Since the initial error for the classes $F_{d,r,\delta}$ is 1 we obtain $n(\varepsilon, F_{d,r,\delta}) \geq 1$ for all $\varepsilon \in (0,1)$. This proves the statement for d=1.

For $d \geq 2$, we use Theorem 1 with k = r, $\Omega = \mathcal{P}$ and $f_r(x) = f_0 * g_1 * \dots * g_r(x)$. Here g_k 's are as in Theorem 1. Recall that we have chosen $\alpha_1 = \dots = \alpha_r = 1/r$ and $\alpha_j = 0$ for j > r. The properties of the initial function f_0 and Theorem 1 immediately imply that f_r satisfies (10)–(12). It remains to bound its integral. Note that $f_0(x) = 1$ for all $x \notin \mathcal{P}_{2\delta}$. Clearly, $f_r(x) \geq 0$ for all $x \in \mathbb{R}^d$. Since $f_r(x)$ depends only on the values $f_0(x+t)$ for $t \in \mathbb{R}^d$

with $||t||_2 \leq \delta \sqrt{d}$, it follows that $f_r(x) = 1$ for $x \notin \mathcal{P}_{3\delta}$. We thus obtain

$$\int_{D_d} f_r(x) dx \ge \int_{D_d \setminus \mathcal{P}_{3\delta}} f_r(x) dx = 1 - \lambda_d(\mathcal{P}_{3\delta} \cap D_d)$$

$$\ge 1 - \lambda_d(\mathcal{P}_{3\delta}) \ge 1 - n\lambda_d(B_{3\delta}^d)$$

$$> 1 - \frac{n(3\delta\sqrt{2e\pi})^d}{\sqrt{\pi d}}$$

$$> 1 - n(3\delta\sqrt{2e\pi})^d,$$

where the last inequality follows from the bound that is given in (6). Hence $\int_{D_d} f_r(x) dx \le \varepsilon$ implies that

$$n \ge (1 - \varepsilon) \left(\delta \sqrt{18\varepsilon\pi}\right)^{-d}$$
.

Since this holds for arbitrary \mathcal{P} , the result follows.

By Theorem 2, we know how the parameter δ comes into play. For p>0, let

$$\delta = \frac{1}{\sqrt{18e\pi}} d^{-p/(r+1)}.$$

For this δ , we obtain a somehow stronger form of the curse of dimensionality for the class

$$\widetilde{F}_{d,r,p} = \{ f : \mathbb{R}^d \to \mathbb{R} \mid f \in C^r \text{ satisfies (13)-(15)} \},$$

where

$$||f|| \leq 1, \tag{13}$$

$$||f|| \le 1,$$
 (13)
 $\operatorname{Lip}(f) \le d^{-\frac{1}{2} + \frac{p}{r+1}} \sqrt{18e\pi},$ (14)

$$\forall k \le r : \max_{\theta_1, \dots, \theta_k \in \mathbb{S}^{d-1}} \operatorname{Lip}(D^{\theta_1} \dots D^{\theta_k} f) \le d^{-\frac{1}{2} + \frac{p(k+1)}{r+1}} r^k \left(\sqrt{18e\pi}\right)^{k+1}. \tag{15}$$

Theorem 3. For any $r \in \mathbb{N}$ and p > 0,

$$n(\varepsilon, \widetilde{F}_{d,r,p}) \ge (1-\varepsilon) d^{pd/(r+1)}$$
 for all $d \in \mathbb{N}$ and $\varepsilon \in (0,1)$.

Hence the curse of dimensionality holds for the class $\widetilde{F}_{d,r,p}$.

Note that the classes $\widetilde{F}_{d,r,p}$ are contained in the classes

$$C_d^r = \{ f \in C^r \mid ||D^{\beta}f|| \le 1 \quad \text{for all} \quad |\beta| \le r \},$$

if p < 1/2 and d is large enough. This holds if

$$d \ge \left(r^r \left(18e\pi\right)^{(r+1)/2}\right)^{1/(1/2-p)}.\tag{16}$$

From this we easily obtain the main result already stated in the introduction.

Main Theorem. For any $r \in \mathbb{N}$, there exists a constant $c_r \in (0,1]$ such that

$$n(\varepsilon, \mathcal{C}_d^r) \ge c_r (1 - \varepsilon) d^{d/(2r+3)}$$
 for all $d \in \mathbb{N}$ and $\varepsilon \in (0, 1)$.

Hence the curse of dimensionality holds for the class \mathcal{C}_d^r .

Proof. The case d=1 is trivial since the initial error for the classes \mathcal{C}_d^r is again 1.

For $d \geq 2$, we know from Theorem 3 and the discussion thereafter that $n(\varepsilon, C_d^r) \geq (1-\varepsilon) d^{pd/(r+1)}$ for all p < 1/2 if $d \geq d_0$, where $d_0 = d_0(r,p)$ is the right hand side of (16). This implies that for

$$\widetilde{c}_{r,p} = d_0^{-pd_0/(r+1)},$$

which depends only on r and p, we have

$$n(\varepsilon, \mathcal{C}_d^r) \ge \widetilde{c}_{r,p} (1 - \varepsilon) d^{pd/(r+1)}$$
 for all $d \ge 2$.

The choice $p^* = (r+1)/(2r+3)$ yields the result with $c_r = \tilde{c}_{r,p^*}$.

Note that c_r in the last theorem is super exponentially small in r.

Remark 1. The reader might find it more natural to define classes of functions $F_{d,r}(D_d)$ that are defined only on $D_d \subset \mathbb{R}^d$. Not all such functions can be extended to smooth functions on \mathbb{R}^d , and even if they can be extended then the norm of the extended function could be much larger. Our lower bound results for functions defined on \mathbb{R}^d can be also applied for functions defined on $D_d \subset \mathbb{R}^d$ and this makes them even stronger.

Remark 2. Note that the possibility of super-exponential lower bounds on the complexity depends on the definition of the Lipschitz constant. For the class

$$F_d = \left\{ f \colon [0,1]^d \to \mathbb{R} \mid \sup_{x,y \in [0,1]^d} \frac{|f(x) - f(y)|}{\|x - y\|_{\infty}} \le 1 \right\},\,$$

Sukharev [8] proved that for $n=m^d$ the midpoint rule is optimal with error $e_n=\frac{d}{2d+2}n^{-1/d}$. Hence, roughly, $n(\varepsilon, F_d) \approx 2^{-d}\varepsilon^{-d}$ and the complexity is "only" exponential in d for $\varepsilon < 1/2$. Remark 3. We mention two results for the very small class

$$F_d = C_d^{\infty} = \{ f \in C^{\infty}([0,1]^d) \mid ||D^{\beta}f|| \le 1 \text{ for all } \beta \in \mathbb{N}_0^d \}.$$

O. Wojtaszczyk [10] proved that $\lim_{d\to\infty} n(\varepsilon, F_d) = \infty$ for every $\varepsilon < 1$, hence the problem is not strongly polynomially tractable. It is still open whether the curse of dimensionality holds for this class F_d . The same class F_d was studied for the approximation problem in [6]. For this problem the curse of dimensionality is present even if we allow algorithms that use arbitrary linear functionals.

References

- [1] M. Abramowitz, I. A. Stegun, *Handbook of mathematical functions*, tenth printing, NBS, Applied Mathematics Series 55, 1972.
- [2] N. S. Bakhvalov, On approximate computation of integrals, Vestnik MGU, Ser. Math. Mech. Astron. Phys. Chem, 4, 3–18, 1959, in Russian.
- [3] A. Hinrichs, E. Novak, H. Woźniakowski, The curse of dimensionality for the class of monotone functions and for the class of convex functions, J. Approx. Th. 163, 955–965, 2011.
- [4] E. Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, LNiM 1349, Springer-Verlag, Berlin, 1988.
- [5] E. Novak and H. Woźniakowski, *Tractability of Multivariate Problems*, Volume I: Linear Information, European Math. Soc. Publ. House, Zürich, 2008.
- [6] E. Novak and H. Woźniakowski, Approximation of infinitely differentiable multivariate functions is intractable, *J. Complexity* **25**, 398–404, 2009.
- [7] E. Novak and H. Woźniakowski, *Tractability of Multivariate Problems*, Volume II: Standard Information for Functionals, European Math. Soc. Publ. House, Zürich, 2010.
- [8] A. G. Sukharev, Optimal numerical integration formulas for some classes of functions of several variables, *Soviet Math. Dokl.* **20**, 472–475, 1979.
- [9] J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, *Information-Based Complexity*, Academic Press, 1988.
- [10] O. Wojtaszczyk, Multivariate integration in $C^{\infty}([0,1]^d)$ is not strongly tractable, J. Complexity 19, 638–643, 2003.