

Subject Name: Theory of Computation

Subject Code:3160704

Faculty: Ms. Poonam Patel, Ms. Rupal Raviya

L	UNIT NO- 1: Review of Mathematical Theory TOPIC:1: Sets, Functions, Logical statements, Proofs, relations,	Heil
	languages	T
Sr. No	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
	Define: Set [LJIET]	01
1	Answer: A set is a group or collection of objects or numbers, considered as an entity	T
1	unto itself. Sets are usually symbolized by uppercase, italicized, boldface letters such as	1
	A, B, S, or Z. Each object or number in a set is called a member or element of the set.	T-
2	Give True or False: [LJIET]	01
2	If $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.(True)	
	Define: One-One Function [LJIET]	01
3	Answer: The function is injective (one-to-one) if every element of the co-domain is	
	mapped to by at most one element of the domain. An injective function is an injection.	
	Give True or False: [LJIET]	01
4	If $x \in A$ and $A \subseteq B$ then $x \in B$.(True)	
	If $n(A) = 110$, $n(B) = 300$, $n(A - B) = 50$ then find $n(A \cup B)$ [LJIET] Answer: $n(A - B) = n(A) - n(A \cup B)$	01
5	50=110- n(A π B) n(A π B)=60	,_1
	Now, $n(A \cup B) = n(A) + n(B) - n(A \prod B)$	10
	=110+300-60 n(A U B)=350	8
	Classify the following relations as reflexive, sym-metric, transitive or their combinations:	01 for each
	1 $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$ on the set $A = \{1, 2, 3\}$ [LJIET]	17
	Answer: Reflexive and Transitive	
6	(b) $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ on the set $A = \{3, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,$	
	9, 12} [LJIET]	
	Answer: Reflexive only	-
	Define: Onto function [LJIET] Answer: The function is surjective (onto) if every element of the co-domain is mapped	01
7	to by at least one element of the domain. (That is, the image and the co-domain of the	
	function are equal.) A surjective function is a surjection.	
	ranction are equal.) 11 surjective function is a surjection.	01

Semester: VI (2022-23)

L.J. Institute of Engineering & Technology

Answer: The function is bijective (one-to-one and onto or one-to-one correspondence) if every element of the co-domain is mapped to by exactly one element of the domain. (That is, the function is both injective and surjective.) A bijective function is a bijection. 01 Define: Equivalence Relation [LJIET] **Answer:** A Relation between elements of a set which is reflexive, symmetric, and transitive and which defines exclusive classes whose members bear the relation to each other and not to those in other classes. Sr. Marks **DESCRIPTIVE OUESTIONS** No 3 Prove that $\sqrt{2}$ (square root of 2) is irrational by method of Contradiction. [Jan-2013-1 OLD][Dec-2013-OLD] [LJIET] Explain Equivalence Relation.[May-2011-OLD][Dec-2013-OLD] [LJIET] 2 3 Answer the following: [Dec-2014] [LJIET] 3.5 (i) Given the relation R in A as $R = \{(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)\}$ is R (a) reflexive 3 (b) symmetric (c) transitive? (d) antisymmetric? Answer the following. 3.5 (i) What is meant by "one to one" and "onto" function? Check whether function f: R → 4 R+, $f(x) = x^2$ is one to one and onto. [Dec-2015-OLD] [LJIET] Define one-to-one, onto and bijection function. Check whether the function f: $R \rightarrow R+$. 4 5 $f(x) = x^2$ is one to one or onto.[Jan 2013-OLD] [LJIET] Explain one-to-one, onto and bijection function with suitable example, [Dec-2013-OLD] 4 6 [LJIET] 7 Prove that $\sqrt{2}$ is Irrational by method of Contradiction. [Dec-2015-OLD] [LJIET] Define onto function. In each case, a relation on the set {1, 2, 3} is given. Of the three properties, reflexivity, symmetry, and transitivity, determine which ones the relation has. Give reasons. 8 a. $R = \{(1, 3), (3, 1), (2, 2)\}$ b. $\mathbf{R} = \{(1, 1), (2, 2), (3, 3), (1, 2)\}$ c. $R = \phi$.[May-2018-OLD] [LJIET] In the given relation determine the properties (reflexivity, symmetry, transitivity), which 2 9 ones the relation has: $R = \{(1,1),(2,2),(3,3),(1,2)\}$ and $R = \emptyset$. [June-2013-OLD] [LJIET] 7 **10** Define One-to-one and Onto Functions. Also explain Compositions and Inverse of functions. [May-2014-OLD, May-2016] [LJIET] Let $A = \{1, 2, 3, 4, 5, 6\}$ and R be a relation on A such that aRb if a is a multiple of b. 11 7 Write R. Check if the relation is i) Reflexive ii) Symmetric iii) Asymmetric iv) Transitive.[Oct-2016-OLD] [LJIET] Define relation. Define reflexive and transitive relation. A binary relation R on NxN is **12** 7 defined as (a,b)R(c,d) if $a \le c$ or $b \le d$. Prove that R is reflexive but not transitive. [May-**2016-OLD**] [LJIET] Using proof by contradiction, prove $\sqrt{3}$ is Not a rational number. [May-2016-OLD] 7 13 [LJIET] Explain following One to one and onto function ii. Properties of equivalence relation [Oct-2016-OLD] [NOV-2018-OLD] [LJIET] **15** Explain one-to-one, onto and bijection function with suitable example. [May-2017-OLD] [LJIET] Explain equivalence relation with example. [May-2017-OLD] [LJIET] **16**

17	Define relation. Define reflexive and transitive relation. A relation R is given as	7
1,	$R = \{(0,0),(1,1),(2,2),(3,3),(3,1),(1,0),(0,1),(1,3)\}$. Prove that R is reflexive, symmetric but	,
	Not transitive. [Nov-2017-OLD] [LJIET]	
18	Define onto and one-to-one functions. [May-2017-OLD] [LJIET]	2
19	Define reflexivity, symmetry, and transitivity properties of relations. OR Explain	3,4
	reflexivity, symmetry, and transitivity properties of relations. [May-2017-OLD] [Nov-	3,4
10	2018-OLD] [Nov-2021-OLD][LJIET]	
20	Consider the relation $R = \{(1,2), (1,1), (2,1), (2,2), (3,2), (3,3)\}$ defined over $\{1, 2, 3\}$. Is	3
	it reflexive? Symmetric? Transitive? Justify each of your answers. [May-2017-OLD]	T
	[LJIET]	
21	Draw truth table for following logic formula: (¬P V ¬Q). Is it a tautology? A	3
	contradiction? Or neither? Justify your answer. [May-2017-OLD] [LJIET]	
22	Define one-to-one, onto and bijection function. [Nov-2017-OLD][Nov-2018-	3
	OLD][Nov-2021-NEW] [LJIET]	T
23	Check whether the function f: $R^+ \rightarrow R$, $f(x) = x^2$ is one to one and onto. [Nov-2017-	4
	OLD] [LJIET]	
24	Explain equivalence relation with example. [Nov-2017-OLD] [LJIET]	7
25	Define one-to-one, onto and bijection function. Check whether the function $f: \mathbb{R}^+ \to \mathbb{R}$,	4
	$f(x) = x^2$ is one and onto. [May-2011-OLD] [LJIET]	
26	Prove by Contradiction that for any sets A, B and C, if $A \cap B = \emptyset$ and $C \subseteq B$, then $A \cap C$	2
	=Ø. [May-2 <mark>01</mark> 8-OLD] [LJIET]	-
27		3.5
	Define bijection function. Explain Compositions and Inverses of Functions. [May-2018-	
	OLD] [LJIET]	
28	Prove that the statements: $(p \vee q) \rightarrow r$ and $(p \rightarrow r) \vee (q \rightarrow r)$ are logically equivalent.	3
20	[NOV-2018-OLD] [LJIET]	7
29	Define reflexivity, symmetry, and transitivity properties of relations. Consider the relation R = $\{(1, 2), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3)\}$ defined over $\{1, 2, 3\}$. Is it reflexive? Symmetric?	
	Transitive? Justify each of your answers. [May-2019-OLD] [LJIET]	
30	Explain one to one and onto functions with example. Give inverse of the function $f: R^+ \to R^+$	7
30	, $f(X) = X^2$ [Dec-2019-OLD] [LJIET]	,
31	Out of these two statements which one is true and which is false. Justify your answer.	4
	1. $\forall x (\exists y ((x-y)^2 < 4))$	
	2. $\exists y (\forall x ((x - y)^2 < 4))$ [Oct-2020-OLD] [LJIET]	
32	Define – Equivalence relation. A relation on the set $\{1, 2, 3\}$ is given as $R = \{(a,b) \mid a-b \text{ is an } a \mid a \mid a \mid b \text{ is an } a \mid a \mid a \mid b \text{ is an } a \mid a \mid b \text{ is an } a \mid a \mid a \mid a \mid b \text{ is an } a \mid a$	4
	even no}. Check whether R is equivalence relation or not. Give reasons. [Dec-2019-OLD]	17
	[LJIET]	
33	Let relation $R = \{(a,b) : a + b = 10 \text{ and } a, b \in N\}$. Decide whether R is an equivalence	4
	relation or not. Justify your answer with proper reason. [Jan-2021-OLD] [LJIET]	
34	The given relation R on set $A = \{1,2,3\}$ determine whether the	4
	Relation is reflexive, symmetric or transitive, give reason.	
	$R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (3,1), (3,3)\}$ [Nov-21_New][LJIET]	
35	Define bijection. Decide and justify whether the function $f: N \to N$ defined by $f(n) = n^2$	4
TI	is bijection or not. [Jan-2021-OLD] [LJIET]	
36	Define One-to-one and Onto Functions. Also explain Compositions and Inverse of	4
	Functions. [Jan-2021-OLD] [LJIET]	
37	What is a proposition? Which logical connectives do we use to generate compound	3
20	proposition? [Oct-2020-OLD] [LJIET]	2
38	Define onto, one-to-one, and bijection functions. [Aug-2021-OLD][LJIET]	3
39	Explain on to, one to one, and Bijection Function with suitable example. [Nov-	3

	2021OLD][LJIET]	
40	Explain proposition, compound proposition and logical connectives. [Dec-2022-OLD]LJIET]	7
41	Explain reflexivity, symmetry, and transitivity properties of relations. [Dec-2022-OLD]LJIET]	4
42	Using principle of Mathematical Induction, prove that for every $n \ge 1$, $7 + 13 + 19 + + (6n + 1) = n(3n + 4)$ [Dec-2022-OLD]LJIET]	
43	Define the following functions: one-one, on-to, and inverse. [Dec-2022-NEW] [LJIET]	3
44	Prove "There must be a prime number between n and n!" [Dec-2022-NEW][LJIET]	4
45	Answer the following: [Jun-2022-OLD][LJIET]	4
	In each case, say whether the statement is tautology, a contradiction or neither and	
	in case of neither find a simpler statement that is logically equivalent.	
	$1 > (p \to q) \land (p \to \neg q)$	T.
16	$2 > p \lor (p \rightarrow q)$	2
46	Answer the following: [Jun-2022-OLD][LJIET]	3
	In each case, a relation on the set {1,2,3} is given. Of the three properties, reflexivity, symmetry and transitivity, determine which ones the relation has. Give	T-
	reasons.	
	1> R = $\{(1,3),(3,1),(2,2)\}$	
	2 > R = ((1,1),(2,2),(3,3),(1,2))	
	3> R = Ø	45
47	Define Equivalence Relation. [Jun-2022-OLD][LJIET]	3
48	Define one-to-one function. Justify whether the function $f : R \rightarrow R^+$	4
	defined by f(n)=n ² is bijection or not[Jun-2022-OLD][LJIET]	
49	Define: Set, Subset, Complement[Jun-2022-NEW][LJIET]	3
	TOPIC:2:Mathematical induction, strong principle, Recursive	1
18	definitions	Secret Secret
Sr.	CHOPT OHECTIONS (1 March) / MCO / Tarra Ealer/Ethian the blanks	
No	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
No 1	Define Induction principle. [LJIET]	Marks 01
	Define Induction principle. [LJIET] Answer: • Basis step:	
	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true.	
	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true.	
1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true.	01
	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET]	-
1	Define Induction principle. [LJIET] Answer: • Basis step:	01
1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive	01
1	Define Induction principle. [LJIET] Answer: • Basis step:	01
1	Define Induction principle. [LJIET] Answer: • Basis step:	01
2	Define Induction principle. [LJIET] Answer: • Basis step:	01
2 Sr.	Define Induction principle. [LJIET] Answer: • Basis step:	01
1 2 Sr. No	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET]	01 01 Marks
2 Sr. No	Define Induction principle. [LJIET] Answer: • Basis step:	01 01 Marks
2 Sr. No 1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET] Answer the following:[Dec-2014-OLD] [LJIET] Given the relation R in A as R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)}	01 01 Marks
2 Sr. No 1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET] Answer the following:[Dec-2014-OLD] [LJIET] Given the relation R in A as R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)} (ii) Show that 2 ⁿ > n ³ for n >10 by Mathematical Induction.	01 01 Marks 4
2 Sr. No 1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET] Answer the following:[Dec-2014-OLD] [LJIET] Given the relation R in A as R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)} (ii) Show that 2 ⁿ > n ³ for n > 10 by Mathematical Induction. Answer the following.	01 01 Marks
2 Sr. No 1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET] Answer the following: [Dec-2014-OLD] [LJIET] Given the relation R in A as R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)} (ii) Show that 2 ⁿ > n ³ for n >10 by Mathematical Induction. Answer the following. (ii) What do you mean be recursive definition? Give the recursive definition of	01 01 Marks 4
2 Sr. No 1	Define Induction principle. [LJIET] Answer: • Basis step: P(1) is true. • Assume p(k) is true. • P(K+1) is shown to be true. Define: Recursive Function [LJIET] Answer: A recursive function is a function which either calls itself or is in a potential cycle of function calls. As the definition specifies, there are two types of recursive functions. Consider a function which calls itself: we call this type of recursion immediate recursion. DESCRIPTIVE QUESTIONS Give the recursive definition of PAL of Palindrome over any alphabet Σ.[May-2011-OLD] [LJIET] Answer the following:[Dec-2014-OLD] [LJIET] Given the relation R in A as R={(1,1), (2,2), (2,3), (3,2), (4,2), (4,4)} (ii) Show that 2 ⁿ > n ³ for n > 10 by Mathematical Induction. Answer the following.	01 01 Marks 4

	$7 + 13 + 19 + \ldots + (6n + 1) = n(3n + 4)$ [Dec-2015-OLD] [LJIET]		
5	Using Principle of Mathematical Induction, prove that for every $n \ge 1$,	7	
	n	-	
	$\Sigma i = n (n+1) / 2$		
	i=0 [May-2011-OLD] [LJIET]		
6	Using Principle of Mathematical Induction, prove that for every $n \ge 1$,	7	70.7
10	7 + 13 + 19 + + (6n + 1) = n(3n + 4) .[May-2011-OLD] [Dec-2013-OLD] [LJIET]		
7	Define Mathematical Induction and prove the following: For every $n \ge 0$, [May-2012-	7	
	OLD] [MAY-2018-OLD] [LJIET]		-
	$\sum_{n=1}^{\infty} \frac{n(n+1)(2n+1)}{n(n+1)(2n+1)}$	101	
	<u></u>		
8	Using Principle of Mathematical Induction, Prove that For every $n \ge 1$. [Jan 2013-	7	Ŧ
0	OLD] [LJIET]	,	ı,
	$\Sigma i^2 = n (n+1)(2n+1)/6$		I
	i=1		
9	Define the Strong Principle of Mathematical Induction. Prove the following using	7	-
	mathematical Induction. [May-2014-OLD] [LJIET]	_ ′	
	7+ 13 + 19 + + $(6n+1) = n (3n+4)$		
10	Answer the following: [Dec-2014-OLD] [LJIET]	7	
10	(i) Give recursive definition of each of the following sets.	,	
	a. The set T of positive integer divisible by 2 or 7.		
	b. The set U of all string in $\{0,1\}^*$ containing the substring 00.	^	
	(ii) Prove that for any every $n > 0$, $n(n^2 + 5)$ is divisible by 6.	N	6
11	Define Mathematical Induction Principle and Prove that for every $n \ge 0$, [May-2015-	7	
11	OLD] [LJIET]	Name of the last	
	N		
	Σ i = n (n+1) / 2		
	i=0		
12	Define Mathematical Induction Principle and Prove that for every $n \ge 1$,	7	
	n	,	
	$\sum_{i} i^2 = n (n+1)(2n+1) / 6$		
	i=1		1
	[May-2016] [May-2019-OLD] [LJIET]		17
13	Use the principle of mathematical induction to prove that	7	
	$1+3+5++r=n^2$ for all n>0 where r is an odd integer & n is the number of		0
	terms in the sum. (Note: $r=2n-1$).[Oct-2016-OLD] [LJIET]		
14	Define mathematical induction. [May-2016-OLD] [LJIET]	7	
	Prove that if $0 < a < 1$ then $(1-a)n \ge 1 - na$.		
15	Define Mathematical Induction principle and prove that for any n>=4, n!>2n. [Oct-	7	
	2016-OLD] [LJIET]		
16	Using Principle of Mathematical Induction, prove that for every n >= 1	6 6 17	Π.
Liv	n		
0392	$\sum_{i=n}^{n} (n+1)/2$		
	$\sum_{i=n}^{\infty} i = n(n+1)/2$		
	i=0 OR		
	State the principle of mathematical induction and prove by mathematical		
	induction that for all positive integers n $1+2+3+\ldots+n=n$ $(n+1)/2$.		
	measured that for all positive integers if 1.2.5 If (II.1).2.		

	OR	
	Prove $1+2+3++n = (n*(n+1))/2$ using Principal of Mathematical Induction. [May-	
	2017-OLD][Nov-2017-OLD][Nov-2018-OLD][Dec-2019-OLD] [LJIET]	
17	Prove that √2 is Irrational by method of Contradiction. [Dec-2015-OLD][May-2017-OLD] [May-2017-OLD] [May-2017	7
18	OLD] [Nov-2017-OLD] [LJIET] State proof by contradiction. [Nov-2017-OLD] [LJIET]	2
19	Prove that $\sqrt{2}$ is an irrational number. [Nov-2017-OLD] [LJIET]	5
20	Define weak principle of mathematical induction. Using Mathematical induction prove	7
20	that $1+2+3++n = n*(n+1)/2$ [Nov-2017-OLD] [LJIET]	,
21	Give recursive definition of a tree. [May-2017-OLD] [LJIET]	3
22	Give the definition of "Transitive Closure of a relation" using Induction. [June-2013-	2
	OLD] [LJIET]	U
23	Find the transitive closure and the symmetric closure of the relation	2
	{ (1,2), (2,3), (3,4), (5,4) } [May-2018-OLD][LJIET]	
24	Give recursive definition for the language L which is the set of all integers (positive	2
25	and negative) divisible by 7. [May-2018-OLD][LJIET] State the strong principle of mathematical induction and show how will you give proof	4
23	by induction? [NOV-2018-OLD][LJIET]	4
26	Give recursive definition for Language Pal of palindromes. [NOV-2018-OLD][LJIET]	3
27	Write Principle of Mathematical Induction. Prove that for every $n \ge 1$,	7
	$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{(n+1)}$	1
	Write the principle of Mathematical Induction. Prove using mathematical induction that	
	for every $n \ge 0$,	9
	n	
	¬ 1 n	-
	$\sum_{i} \frac{1}{i(i+1)} = \frac{n}{n+1}$	J 27
	$\stackrel{\longleftarrow}{\longleftarrow}$ i (i + 1) n + 1	
	i=1	-
	(Consider the sum on the left is 0 for $n = 0$) [May-2018-OLD][Dec-2019-	***
	OLD][LJIET]	
28	Prove by mathematical induction: for every $n \ge 1$, $1 + 3 + 5 + + (2n - 1) = n^2$ [May-2019-	4
20	OLD][Nov-2021-NEW][LJIET]	2
29	Write the strong principle of mathematical induction and show that $P(n)$ is true for every $n \ge 2$, where $P(n)$ is the statement: n is either a prime or a product of two or more primes. [Oct-	3
	2, where $P(h)$ is the statement. It is either a prime of a product of two of more primes. [Oct-2020-OLD][LJIET]	
30	Define – bijection function. Check whether the function $f: Z \to Z$ defined by $f(x)=2x$ is a	3
50	bijection function or not. Justify your answer. [Dec-2019-OLD][LJIET]	
31	Using the principle of mathematical induction, for all $n > 0$, prove that,	7
	$1 \times 2 + 3 \times 4 + 5 \times 6 + \dots + (2n-1) \times 2n = (n(n+1)(4n-1))/3$	1
	[Jan-2021-OLD][LJIET]	J
32	Answer the following: [Jan-2021-OLD][LJIET]	3
10	Define Mathematical Induction Principle and Prove that for every $n \ge 1$,	
	n	
	$\Sigma i^2 = n (n+1)(2n+1) / 6$	
	i=1	
33	Use the principle of mathematical induction to prove that	7

	$1+3+5++(2n-1)=n^2$, for all n>0 where r is an odd integer & n is the number of terms in the sum. [Aug-2021-OLD][LJIET]	
34	What is PMI? Prove $7+13+19++(6n+1)=n(3n+4)$ using PMI. [Nov-2021-	7
	OLD][LJIET]	
35	What are quantified statements? Write a quantified statement which says that:	7
10	"Everybody has to go through some difficulty for some time". [Dec-2022-OLD][LJIET]	
36	State the strong principle of mathematical induction and prove that all integers	7
	bigger than 2 have prime factorizations [Dec-2022-OLD][LJIET]	
37	Define Primitive Recursive Functions. [Dec-2022-OLD][LJIET]	3
38	Write Principle of Mathematical Induction. Prove that for every $n \ge 0$,	7
	0+1+2+3++n = n(n+1)/2[Jun-2022-OLD][LJIET]	
39	Write and explain the principle of mathematical induction using	4
	example. [Jun-2022-NEW][LJIET]	1
	UNIT NO- 2:	
		7
	Regular Languages and Finite Automata	
	TOPIC:1:Regular expressions, regular languages, applications,	
	Automata with output-Moore machine, Mealy machine, Finite	
	automata, memory requirement in a recognizer, definition, union,	10.5
	intersection and complement of regular languages.	44
Sr.	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
No		
1	What is the difference between the strings and the words of a language? [LJIET]	01
	Answer: A string is any combination of the letters of an alphabet where as the words of	1
	a language are the strings that are always made according to certain rules used to define	
	that language.	01
2	What is Null String (Λ)? [LJIET] Answer: The string with zero occurrences of symbols (letters) from Σ .	01
3	There are tuples in finite state machine.(5) [LJIET]	01
3	Explanation: states, input symbols, initial state, accepting state and transition function.	V1
4	Number of states require to accept string ends with 10. [LJIET]	01
•	a) 3	VI.
	b) 2	
	c) 1	
	d) can't be represented.	,
	Answer: b	
5	Finite automata requires minimum number of stacks.(0) [LJIET]	01
6	FSM with output capability can be used to add two given integer in binary	01
	representation. Give True or False.(True) [LJIET]	
7	Define Regular Expression? [LJIET]	01
	Answer: Regular Expression is the generalized form of any regular language through	
0	which you can construct any string related to that language.	0.1
8	Differentiate between (a,b) and (a+b)? [LJIET]	01
	Answer:	
	(a, b) = Represents a and b. (a + b) = Represents either a or b.	
9	Define: Mealy Machine [LJIET]	01
7	Answer: A Mealy Machine is an FSM whose output depends on the present state as well	O1
	as the present input.	
O.C	Computation (3160704) 2022-2023	Раде

		1	
	It can be described by a 6 tuple $(Q, \sum, O, \delta, X, q0)$ where –		
	Q is a finite set of states.		
	\sum is a finite set of symbols called the input alphabet.		
	O is a finite set of symbols called the output alphabet.		
	δ is the input transition function where $\delta: Q \times \Sigma \to Q$		
T .	X is the output transition function where X: $Q \rightarrow O$	i di di mila	
10	q0 is the initial state from where any input is processed (q $0 \in Q$).		- 52 -
10	Define: Moore Machine [LJIET]	01	
	Answer: Moore machine is an FSM whose outputs depend on only the present state.		T
	A Moore machine can be described by a 6 tuple $(Q, \sum, O, \delta, X, q0)$ where –		10.
	Q is a finite set of states.	10.5	
	\sum is a finite set of symbols called the input alphabet.		
	O is a finite set of symbols called the output alphabet.		U
	δ is the input transition function where $\delta: Q \times \Sigma \to Q$		T
	X is the output transition function where X: $Q \times \Sigma \rightarrow O$		
	q0 is the initial state from where any input is processed (q $0 \in Q$).		
11	Define FA [LJIET]	01	L
	Answer: A finite automaton (FA) is a simple idealized machine used to recognize		
	patterns within input taken from some character set (or alphabet) C. The job of an FA is		-
	to accept or reject an input depending on whether the pattern defined by the FA occurs in		
	the input.		-
12	Regular expression for all strings starts with ab and ends with bba is? [LJIET]	01	
	Answer: ab(a+b)*bba		
13	Is the following set regular [LJIET]	01	14
	$\{0^{2n} \mid n > = 1\}$		
	If yes, write down the corresponding regular expression. Else, prove that the language is		6
	not regular.		1
- 1	Answer: Yes. (00)+	Section 1	
14	The basic limitation of finite automata is that	01	
	a) It can't remember arbitrary large amount of information.	F.	
	b) It sometimes recognize grammar that are not regular.		
	c) It sometimes fails to recognize regular grammar.		
	d) All of the mentioned [LJIET]		
	Answer: a)		
15	Specify True or False: Deterministic Finite Automata are strictly weaker class than Non-	01	17
	deterministic Finite Automata (NFAs), i.e., there exists a language that is accepted by an		1
	NFA but is not accepted by any DFA.(False) [LJIET]		
16	A language is regular if and only if	01	0
	a) accepted by DFA		
	b) accepted by PDA		
	c) accepted by LBA		
	d) accepted by Turing machine [LJIET]		
	Answer: a)		
17	Which of the following is not a regular expression? [LJIET]	01	-
10	a) $[(a+b)^*-(aa+bb)]^*$		10
	b) [(0+1)-(0b+a1)*(a+b)]*		
	c) (01+11+10)*		
	d) (1+2+0)*(1+2)*		
	Answer: b)		
18	Give an example of DFA: [LJIET]	01	

	Answer: The string in $\{0,1\}^*$ that ends with 01.	
19	The language described by the regular expression $(0+1)*0(0+1)*0(0+1)*$ over the alphabet $\{0\ 1\}$ is the set of	01
L	 (A) All strings containing at least two 1's (B) All strings containing at least two 0's (C) All strings that begin and end with either 0's or 1's 	JIET
	(D) All strings containing the substring 00 [LJIET] Answer: B	T
20	Regular expressions are closed under a) Union b) Intersection c) Kleen star d) All of the mentioned [LJIET] Answer: d	01 J
21	W is any string whose length is n in {0, 1}* and L is the set of all sub-strings of W. The minimum number of states in a non-deterministic finite automaton that accepts L is[LJIET] Answer: n+1	01
22	The DFA shown below accepts the set of all strings over {0, 1} that	01
	(A) End with 00 (B) End with 0 (C) Begin either with 0 or 1 (D) Contain the substring 00 [LJIET] Answer: A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
23	b q1 a b b dq2	01
	Which one of the following is true for this automaton? [LJIET] (A) b*ab*ab*ab* (B) b*a(a+b)* (C) b*ab*ab* (D) (a+b)* Answer: B	
24	Define: Transition Diagram [LJIET] Answer: Transition diagram is a directed graph in which the vertices of the graph correspond to the states of FA. If there is a transition from state q to state p on input a, then there is an arc labeled 'a ' from q to p in the transition diagram.	IET
25	What are the applications of automata theory? [LJIET]	01
	Answer: In compiler construction. In switching theory and design of digital circuits.	

	To verify the correctness of a program.	
	Design and analysis of complex software and hardware systems.	
	To design finite state machines such as Moore and mealy machines.	
26	What is a Regular language ? [LJIET]	01
	Answer: The language accepted by M is L(M) is the set $\{x \mid \delta(q0,x) \text{ is in } F\}$. A language	
-	is regular if it is accepted by some finite automaton.	
27	Differentiate L* and L+ [LJIET]	01
	Answer: L* denotes Kleene closure and is given by L* =U Li	
	i=0	
	example: $0^* = \{ \mathcal{C}, 0,00,000, \dots \}$	
	Language includes empty words also.	01
	L+ denotes Positive closure and is given by L+= U Li	
	$i=1 \text{ example:} 0+=\{0,00,000,\}$	0
28	Construct a r.e for the language which accepts all strings with atleast two c's over the set	01 -
	Σ ={c,b} [LJIET]	01
	Answer: $(b+c)* c (b+c)* c (b+c)*$	
29	What is the closure property of regular sets? [LJIET]	01
	Answer: The regular sets are closed under union, concatenation and Kleene closure.	
	r1Ur2=r1+r2 $r1.r2=r1r2$ $(r)*=r*$.	
30	Give a regular expression for the following regular language: [LJIET]	01
	The set of all strings containing 00.	01
	Answer: $(0 + 1)$ * 00 $(0 + 1)$ *	100
31	For which of the following applications regular expressions can be used? [LJIET]	01
	A. Designing compilers	VI.
	B. Developing text editors	
	C. Simulating sequential circuits	0
	D. All of these	
- 4	Answer: D	Secretary Control
Sr.	DESCRIPTIVE QUESTIONS	Marks
No	DESCRIPTIVE QUESTIONS	
1	Check the validity of the following equality with proper reason. [Nov-2011-OLD]	2
	[LJIET]	10
	(00*1)*1=1+0(0+10)*11	
2	Define Dead-End State with Example.[Nov-2011-OLD] [LJIET]	2
3	Give definition of Regular Grammars.[Nov-2011-OLD] [LJIET]	1
		<u> </u>
4		3
4	Write Regular Expressions for the following languages of all strings in {0,1}*	
4	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01.	
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET]	
	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET]	3
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET]	3
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET]	3 3.5
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1	3 3.5
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly	3 3.5
5	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading	3 3.5
5 6 7	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading 0's.[Nov-2011-OLD] [LJIET]	3 3.5
5 6 7	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading 0's.[Nov-2011-OLD] [LJIET] Enlist applications where the finite automaton is useful. Also Find a string of minimum	3 3.5
5 6 7	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading 0's.[Nov-2011-OLD] [LJIET] Enlist applications where the finite automaton is useful. Also Find a string of minimum length in {0,1}* not in the language corresponding to the regular expression: 1*(0+10)*1*.[Nov-2011-OLD] [LJIET] Compare FA, NFA and NFA- Λ with illustration OR Compare FA, NFA and NFA-	3 3.5
5 6 7	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading 0's.[Nov-2011-OLD] [LJIET] Enlist applications where the finite automaton is useful. Also Find a string of minimum length in {0,1}* not in the language corresponding to the regular expression: 1*(0+10)*1*.[Nov-2011-OLD] [LJIET]	3 3.5 5
5 6 7	Write Regular Expressions for the following languages of all strings in {0,1}* (i) Strings that do not end with 01. (ii) Strings with odd numbers of 1's (Ones) .[May-2011-OLD] [LJIET] Explain Regular Grammar.[May-2011-OLD] [LJIET] Draw FA for regular expression: (111+100)*0.[June-2013-OLD] [LJIET] Draw an DFA that recognize the language of all strings of 0's and 1's of length at least 1 that, if they were interpreted as binary representation of integers, would represent evenly divisible by 3. Your DFA should accept the string 0 but no other strings with leading 0's.[Nov-2011-OLD] [LJIET] Enlist applications where the finite automaton is useful. Also Find a string of minimum length in {0,1}* not in the language corresponding to the regular expression: 1*(0+10)*1*.[Nov-2011-OLD] [LJIET] Compare FA, NFA and NFA- Λ with illustration OR Compare FA, NFA and NFA-	3 3.5 5

	OLDIMON 2015 OLDI ILLIETI	
	OLD][May-2015-OLD] [LJIET]	
	Where $\Sigma = \{ 0, 1 \}$ L1 = $\{ x \mid 00 \text{ is not a substring of } x \}$	
	$L1 = \{ x \mid 00 \text{ is not a substring of } x \}$ $L2 = \{ x \mid x \text{ ends with } 01 \}$	
TD 0908 80	Draw FAs recognizing the following languages	
11	(1) L1 - L2 (2) L1∩L2	100000
11/0	Write definition of Finite Automata and draw FA for the strings:	
	(i) The string with next to last symbol as 0.	
	(ii) The string with number of 0s odd and number of 1s odd.[May-2011-OLD] [LJIET]	
12	Find unrestricted grammar to generate the following language,	7
	$\{ a^n \times b^n \ge 0, x \in \{a, b\}^*, x = n \}.$ [Nov-2011-OLD] [LJIET]	0
13	Suppose that L1 and L2 are the subsets:	7
	\cap	0
	1 () 0.1	T
	$L_1 = 0$	
	(A) J(B)	
		-
	∩ 1	
	1 () 0.1	7
	$L_2 = 0$ 0	
	$A \rightarrow C$	
	1	-
	Draw the Fas recognizing the following languages.[May-2012-OLD][LJIET]	-
	• L1 ∩ L2	
	• L1 – L2	9
14	Attempt the following:	7
- 1	• Draw FA for (11+110)* 0	1
	• Write a Regular Expression for the String of 0's and 1's in which string ends with 1 and	
	does not contain substring 00.[May-2012-OLD] [LJIET]	
15	Write Regular Expressions for the following languages of all strings in {0,1}*	4
	(i) Strings that contains odd number of 0's (zeroes).	10
	(ii) Strings that begin or end with 00 or 11.[Jan-2013-OLD] [LJIET]	85
16	Write definition of finite automata and draw FA for the strings:[Jan-2013-OLD]	7
	[LJIET]	E7
	(i) The string in $\{0,1\}^*$ ending in 10 or 11.	1
	(ii) The string corresponding to Regular expression {11}*{00}*	
17	Draw Finite Automata (FA) for following languages:	8
	L1 = $\{x / 11 \text{ is not a substring of } x, x \in \{0,1\}^*\}$	
	$L2 = \{x \mid x \text{ ends with } 10, x \in \{0,1\}^*\}$	1
	Find FA accepting languages (i) $L1 \cap L2$ (ii) $L1 - L2$ and (iii) $L2 - L1$ [Jan-2013-OLD]	<u></u>
	[Dec-2013-OLD] [Nov-2021-OLD] [LJIET]	
18	Define regular language and regular expressions.[June-2013-OLD] [LJIET]	7
	• Find regular expression for the following:	renom I
100	Language of all string that do not end with 01.	HC. I t
	 Describe the language corresponding to following: (1+01)*(0+01)* 	
19	Let M1 and M2 be the FA in fig below for the language L1 and L2, find L1 U L2 and L1	3.5, 7
17	\cap L2 and L2 – L1.[June-2013-OLD][May-2014-OLD] [LJIET]	3.3, 1
	L2 and L2 - L1.[June-2013-OLD][May-2014-OLD] [LJIE1]	

Г			<u> </u>	
		$M_1 \longrightarrow (A) \xrightarrow{0} (B) (C) \qquad M_2 \longrightarrow (X) (Y) \xrightarrow{1} (Z)$		
	-			
	20	(a) (b)		,
-	20	Write Regular Expressions for the following languages of all strings in {0,1}*	4	
	20	(i) Strings that start with 1 and do not end with 10.	-	W
		(ii) Strings with length 6 or less.[Dec-2013-OLD] [LJIET]		20.
-	21	Attempt the following: [May-2014-OLD][LJIET]	7	
		1)Draw FA for $(a + b)^*$ baaa.		
		2)Write a Regular Expression for the String of 0's and 1's in which number of 0's and		9
		1's are even.		
	22	Find a regular expression corresponding to each of the following subsets of $\{0, 1\}^*$.	7	J.
		[Dec-2014-OLD] [LJIET]	,	100
		i. The language of all strings that do not contain the substring 110.		H
		ii. The language of all strings containing both 101 and 010 as substrings.		
		iii. The language of all strings in which both the number of 0's and the number of 1's are		
-	22	odd.		
	23	For each of the following regular expressions, draw an FA recognizing the corresponding	7	
		language.[Dec-2014-OLD] [LJIET] i. 1(01 + 10)* + 0(11 + 10)*		
		ii. $(010 + 00)^{*} + 0(11 + 10)^{*}$		
}	24	Let M1, M2 and M3 be the FAs pictured in Figure below, recognizing languages L1, L2,	7	
	⊿ -T	and L3 respectively. [Dec-2014-OLD][LJIET]	,	0
		1 0 0.1		T
			Specific Co.	
				-
		$M_1 \longrightarrow (A) \xrightarrow{0} (B) (C) M_2 \longrightarrow (X) (Y) \xrightarrow{1} (Z)$		
		(a) (b)		8
		0,1		
		$M_3 \longrightarrow (R) (S)$		
				0
		Draw FAs recognizing the following languages:		7.7
		i. L1 U L2 :: L1 O L2		
		ii. L1 ∩ L2 iii. L1 - L2		4
		iv. $L1 - L2$		1
		v. L3 - L2		١.
ŀ	25	Write definition of finite automata and draw FA for the strings:	17	
		(i) The string in {0,1}* ending in 10 or 11		
		(ii) The string corresponding to Regular expression {11}*{00}* [May-2015-OLD]		
		[LJIET]		
	26	Write Regular Expressions for following	7	
		(i) The language of all strings in $\{0,1\}^*$ that do not end with 11.		
	Of 1	Computation (2160704) 2022 2022	Dog	1

	(') m 1	1	
	(ii) The language of all strings containing both 101 and 010 as substrings.		
27	(iii) Strings with length 6 or less in {a,b}. [Dec-2015-OLD] [LJIET]	7	
27	Write Regular Expressions corresponding to each of the following subsets of $\{0,1\}^*$	7	
	(i) The language of all strings in $\{0,1\}^*$ that containing at least two 0's.		
7 A 1907 - 19	(ii) The language of all strings containing both 101 and 010 as substrings.		
	(iii) The language of all strings that do not end with 01. [May-2016-OLD] [May-2019-OLD] [LJIET]	11174	7
28	Draw Finite Automata to accept following.	7	
20	(i) Strings that ends in 11 or 10.	,	
	(ii) Strings of the language in $\{0,1\}^*$ with odd no. of zeroes and odd no. of ones.		ı
	[Dec-2015-OLD] [LJIET]		10,
29	Draw FA for accepting: [May-2016-OLD] [Dec-2013-OLD] [Jun-22-OLD] [LJIET]	7,6	Ī
	(i) The string in {0,1}* ending in 1 and not containing substring 00.	7,0	U
	(ii)The strings with odd no of 1's and odd no of 0's.		
30	Design a FA for the regular expression $(0 + 1)(01)*(011)*$.[Oct-2016-OLD] [LJIET]	7	t
31	Write a regular expression for language L over {0,1} such that every string in L	7	
	i) Begins with 00 and ends with 11.	,	I
	ii) Contains alternate 0 and 1.[Oct-2016-OLD] [LJIET]		I
32	There are 2 languages over $\Sigma = \{a, b\}$	7	
	L1 = all strings with a double "a"		
	L2 = all strings with an even number of "a"	ì	-
	Find a regular expression and an FA that define L1 \cap L2. [Oct-2016-OLD] [LJIET]	4	٦
33	Prove the formula $(00*1)*1 = 1+0(0+10)*11$. [May-2016-OLD] [LJIET]	7	
34	Convert the Mealy machine shown in given figure into Moore machine. [May-2016-	7	
	OLD] [Aug-2021-OLD] [LJIET]		
	\wedge		6
- 4	b 0/\		1
- 1	\rightarrow $(S0)$ $a 0$ $(S1)$	Secretary .	
	b 1		-
		_	-
35	Define language. [May-2016-OLD] [LJIET]	7	
	Draw Deterministic Finite Automata for the following languages		
	i) L1 = $\{x \in (0,1)^* \mid x \text{ contains } 110111\}$		8
	ii) L2 = { $x \in (0,1)^* x$ contains odd number of zero and even number of 1} iii) L3 = { $x \in (0,1)^* x$ do not contains 110 }		
36	Define NFA and NFA-Λ. Convert the following NFA to DFA [May-2016-OLD]	7	_
30	[Jan-2021-OLD] [LJIET]	/	12
			0
	1		
	0,1		
	((q₁))		
	q ₀		
	1		
37	Write regular expression for the following languages	7	
37	i) L1 = $\{x \in (0,1)^* \mid x \text{ do not ends with } 11\}$,	
	1) 21 (A 0 (0)1) A 00 HOL OHOL WITH 11)	I	

	ii) L2 = $\{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$ [May-2016-OLD] [LJIET]		
38	Draw FA for each of the following RE. [Oct-2016-OLD] [LJIET]	7	
30	i. (0+1)*(1+00)(0+1)*	'	
	ii. (0+1)*(01+110)		
	iii. (111+100)*0		
39	Find regular expression for following [Oct-2016-OLD] [LJIET]	7	
39	i. Language of all strings containing exactly two 0's.	1 1 1 7	100
110			/ 1
	ii. Language of all strings that begins or ends with 00 or 11.		
40	iii. Language of all strings in which every 0 is followed immediately by 11.	0.7	100
40	Draw Finite Automata (FA) for following languages:	8,7	
	$L1 = \{x / 00 \text{ is not a substring of } x \}$	100	
	$L2 = \{x \mid x \text{ ends with } 01\}$		
	Find FA accepting the language (i) $L1 - L2$ and (ii) $L1 \cap L2$		
	OR		
	Suppose that language L1 and L2 are the subsets given below.		
	$L1 = \{x \mid 00 \text{ is not a substring of } x\}$		1
	$L2 = \{ x \mid x \text{ ends with } 01 \}$		-
	Draw FA for intersection L1 and L. [Dec-2015-OLD][Oct-2016-OLD] [LJIET]		-86-
41	Draw Finite Automata (FA) for following languages:	9	
	$L1 = \{x / 00 \text{ is not a substring of } x \}$		
	$L2 = \{x \mid x \text{ ends with } 01\}$		1500
	Find FA accepting languages (i) L1 \cap L2 and (ii) L2 - L1. [May-2011-OLD] [Nov-		
	2011] [LJIET]	_	7.1
42	Write Regular Expressions for the following languages of all strings in	7	-
	$\{0,1\}^*$		
	(i) Strings that do not end with 01.		
- 4	(ii) The language of all strings containing both 101 and 010 as substrings [May-2017-		
	OLD] [LJIET]		
12	Lat M1 and M2 hadra trace EA and already hallows	7	
43	Let M1 and M2 be the two FAs as given below.	7	
	$\bigcap_{i=0}^{1}$ 0.1		100
			8
	$((A)) \qquad ((B)) \qquad (C)$		
	M2		17
			0
	Draw FA recognizing (L1 vL2) and (L1-L2)where L1 and L2 correspond to M1 and M2	0.00	T.
	respectively. [May-2017-OLD] [LJIET]		
		_	
44	Draw a FA for following regular language.	7	
	(') (11 · 110) \(\phi \)		
	(i) (11+110)* 0		

	(") (0.1)*(10.11) FM - 2017 OF DEFENDA	
45	(ii) (0+1)*(10+11) [May-2017-OLD] [LJIET]	-
45	Define language.	7
	Draw Deterministic Finite Automata for the following languages i) L1 = { $x \in (0,1)^* x$	
	contains 101}	
7 to 1949 - 19	ii) L2 = { $x \in (0,1)^*$ x contains odd number of zero and ends with 00}	
46	iii) L3 = $\{x \in (0,1)^* \mid x \text{ ends with } 11\}$ [Nov-2017-OLD] [LJIET]	
46	Write regular expression for the following languages	
	i) L1 = $\{x \in (0,1)^* \mid x \text{ ends with } 11\}$	
L	ii) $L2 = \{x \in (0,1)^* \mid x \text{ contains both } 101 \text{ and } 110\}$ [Nov-2017-OLD] [LJIET]	
47	Prove that any Regular Language can be accepted by FA. [Nov-2017-OLD] [Jun-2022-	7
	OLD] [LJIET]	0).
48	Explain 'finite state machines with outputs'. Discriminate between Mealy and Moore	3
	machines.	
	[May-2017-OLD] [LJIET]	T
49	Convert the Moore machine shown in Fig. 2 into an equivalent Mealy machine.	4 I
	1	
		11.7
	A P	
		7
	a a, b	
	b (s)	
		200
	b	
		6
	(r.)	
4		Secret Control
	May 2017 OLDI II HETI	
50	[May-2017-OLD] [LJIET] Fig. 3 shows two DFAs M1 and M2, to accept languages L1 and L2, respectively.	7
30	Determine DFAs to recognize L1 U L2.	,
	Determine DFAS to recognize LT U Lz.	F1
		["
	M_1 A B C M_2 X Y C X	17
		17
	[May-	9
	2017-OLD] [LJIET]	
51	Write RE for the languages of all Strings that do not end with 01. [Nov-2017-OLD]	3
	[LJIET]	
52	Draw a FA for following regular language.	4
	Dian alli for fortowing regular language.	BENEFI.
Lie	(i) (11+110)* 0 (ii) (0+1)*(10+11) [Nov-2017-OLD] [LJIET]	
53	Design a moore machine to determine residue number 3 for binary number. [Nov-2017-	7
33	,	'
EA	OLD] [LJIET] Write Vleame's Theorem next L Any recorder language can be essented by a finite	7
54	Write Kleene's Theorem part-I, Any regular language can be accepted by a finite automation. [Nov-2017-OLD] [Aug-2021-OLD] [LJIET]	7
1	Lautomation_LNov-ZUL/-OLDLIAug-ZUZI-OLDLILLIE/FI	1

	OR		
	Prove Kleene's theorem part-1[Jun-2022-NEW] [LJIET]		
55	Show that for any language L, $L^* = (L^*)^* = (L^*)^* = (L^*)^*$ [June-2013-OLD] [LJIET]	4	
56	For following regular expression, Draw an FA recognizing the corresponding language. [May-2018-OLD] [LJIET]	3.5	
T	$(0+1)^* (1+00) (0+1)^*$	665	
57	Write Regular Expression corresponding to each of the following subsets of {0, 1}*	3.5	
	a. The language of all strings containing both 101 and 010 as substrings.		1
	b. The language of all strings in which both the number of 0's and the number of		10
	1's are even. [May-2018-OLD] [LJIET]	(6)	
58	Let M ₁ and M ₂ be the FAs pictured below, recognizing languages L ₁ and L ₂	7	- 2
	respectively		90
	1 0		
	$11 \qquad 11 \qquad \bigcirc$		Т
	$M_1 = \begin{pmatrix} 0 & 1 & C \end{pmatrix}$		
	A B B		
	0 1 1,0		- 17
	Ň A		92
	Λ		
	$M_2 = X \xrightarrow{1} (X) \xrightarrow{1} (Z)$		
- 1			
	<u> </u>		1
	O Company of the Comp	į.	100
	Draw the FAs recognizing the following languages:	7	1.0
	$L_1 \cap L_2$		
	L ₂ - L ₁ [May-2018-OLD] [LJIET]		
59	What is the regular expression of following FA? [NOV-2018-OLD] [LJIET]	4	
	0 1 0		
	- 01		
	$\rightarrow 0$ 0		
60	L1 and L2 are two languages:	7	-
10	$L1 = \{x \mid 11 \text{ is not a substring of } x\}$	K.	
	$L2 = \{x \mid x \text{ starts with } 0 \text{ and ends with } 0\}$		
	Draw FA for both L1 and L2 and construct FA for L3 = L2 - L1 [NOV-2018-OLD]		
61	[LJIET]	7	
61	An NFA with states 1-5 and input alphabet {a, b} has the following transition table.	7	
	[NOV-2018-OLD] [LJIET]		

		$\begin{array}{c c} q & \partial(q,a) \\ \hline 1 & \{1,2\} \\ \hline \end{array}$	{1}			
		2 {3} 3 {4}	{3}	~	1.1 Draw its transition diagram	
		3 {4} 4 {5}	(4) Ø	_	.2 Calculate $\partial^*(1,a)$	
		$\frac{+}{5}$ $\boxed{0}$	{5}		.3 Calculate ∂* (1,aaabaab)	
62				ne into Mes	aly machine. Draw state transition diagram of	1
02	Mealy machin		ic macm	ne mto wice	try machine. Draw state transition diagram of	
	Present	Next		Output		
	State	0	1			0.0
	\rightarrow p ₀	r	q_0	3		
	p_1	r	q_0	1		
	q_0	p_1	S ₀	0		T
	q_1	p_1	S ₀	1		
	r	q ₁	p ₁	0		T
	S ₀	S ₁	r	0	The second secon	JI.
	S ₁	S ₁	r	1	May 2019 OI DI II HETI	
63	Find a regular	evnrecci	on correc	nonding to	in [May-2018-OLD] [LJIET] each of the following subsets of {0, 1}*	3
0.5					end with 00 or 11.	3
					th 11 and 010 as substrings.[May-2018-	
	OLD] [LJIET		8			
64					anguages?[Nov-2018-OLD] [LJIET]	3
65					e[Nov-2018-OLD] [LJIET]	4
66					a? Draw Finite Automata to accept following.	7
	()	e accepti	ing string	s ending wi	ith '01' over input alphabets $\Sigma =$	
	(ii) the language	ge accent	ting strip	ac andina w	rith 'abba' over input alphabets Σ	/
	$= \{a, b\} [Nov-2]$				Till abba over input alphabets 2	
67					each of the following subsets of	4
	$\{0, 1\}^*$	•				
					end with 00 or 11.	
		age of all	strings b	eginning w	ith 1 and ending with 0. [Nov-2018-OLD]	1.7
68	[LJIET]	nnliasti -	ng of me	ulon overes	pions and finite automate? [No.: 2019 Of Di	1
Uð	What are the a [Aug-2021-O]			uiai express	sions and finite automata? [Nov-2018-OLD]	4
	Design Moore	machine		rate 1's com	plement of binary number. [May-2019-	3
	OLD] [LJIET	_			V	17
69				the alphabet	ts {a, b} consisting strings:	4
	☐ Second last			with the TML	2010 OLD II HETI	
70	Draw FA for f				ay-2019-OLD] [LJIET]	7
70	$\Box L1 = \{w \mid 0\}$					
	\Box L2 = {w w				O] [LJIET]	
71	Suppose that L	1 and L2 a	are the su	bsets		7

	Old state	After input a	After input b	Output				
	Old state	New state	New state	Output				
	$-q_0$	$\mathbf{q_1}$	q_2	0				
-	q_1	q_3	q_2	1				
10	q_2	q_2	q_3	0				
	q_3	q_3	q_3	1				
	.[Dec-2019-OLD] [LJI							
78	Write regular expression	ns for the following la		$\Sigma = \{0, 1\}$:	3			
	(i) The language of all the			1				
	(ii) The language of all number of 1's.[Jan-202		even number of U's ar	nd even		0		
79	Define FA and Write recu		[Nov-2021-NEW][L	JIET]	3	T		
80	Find a regular expression	of following subsets of	{0, 1}*		4			
	 The language of all stri The language of all stri 			y_2021_		-		
	NEW][LJIET]	ngs chung with I and II	or containing oo. [140)	7-2021-				
81	Draw Finite Automata to a	_			7			
	(i) The language accepting (ii) The language accepting			NEW][LJIET]				
82	Let M1 and M2 be t				7			
	and L2 respectively	•	I iguie, recognizin	5 milguages L1				
($M_1 = A O B O C$							
	$M_2 =$		1,0					
	Draw FAs recognize	ing the following la	nguages.			17		
	a. L1 U L2							
	b. L1 - L2					9		
	[Nov-2021-NEV		6			17		
83	Give the difference betw NEW][LJIET]		<u>, </u>		3			
84	Design and mealy machin [Nov-2021-NEW][LJII		nput of sequence abb co	omes, other wise 0.	4	1		
85	Draw DFA for the following Draw DFA for the following DFA for the		ed over $\Sigma = \{a, b\}$: [Ja	an-2021-	4			
	OLD][LJIET]					100		
	(i) The language of all the	_	•					
86	(ii) The language of all t Let M_1 and M_2 be the F .			e languages	7			
00	L_1 and L_2 , respectively[c ranguages	,			

	.L2 = {Where every string has odd occurrences of "ba"} [Dec-2022-NEW][LJIET]		
98	Enlist types of grammars, types of languages and types of automata. [Dec-2022-NEW][LJIET]	3	
99	Find a regular expression of following subsets of {0, 1}*[Jun-2022-OLD][LJIET]	4	
	1. The language of all strings that contain odd number of 1's		
T .	2. The language of all strings with next to last symbol 0.		
100 e	Draw Finite Automata to accept following over input alphabets $\Sigma = \{0, 1\}$ [Jun-2022-	7	- 14
	OLD][LJIET]		
	1. The language accepting strings not containing '00'.		1
	2. The language accepting even number of 0's and odd numbers of 1's		
101	Define Moore machine and Design it to generate 1's complement of	4	100
	binary number.[Jun-2022-OLD][LJIET]		
102	Explain how to Convert moore machine to mealy machine[Jun-2022-OLD][LJIET]	3	3
103	Draw Finite automata for following regular expression: [Jun-2022-NEW][LJIET]	7	-
	(i). $(0+1)*(1+00)(0+1)*$		
	(ii). (111 + 100)*0		
04	Explain Regular language & Regular expressions. [Jun-2022-NEW][LJIET]	3	Ī
05	Find a regular expression corresponding to each of the following	4	-
	subsets of {0,1}* [Jun-2022-NEW][LJIET]		ï
	(i). the language of all strings that do not end with 01		
	(ii). the language of all strings that begin with or end with 00 or		
	11		
	TOPIC:2: Non Determinism Finite Automata, Conversion from NFA to		3
	FA, Λ-Non Determinism Finite Automata Conversion of NFA- Λ to		
	NFA and equivalence of three Kleene's Theorem Minimization of		
	NFA and equivalence of three Kleene's Theorem, Minimization of		
	Finite automata Regular And Non Regular Languages – pumping)	
	Finite automata Regular And Non Regular Languages – pumping lemma.	Mari	
	Finite automata Regular And Non Regular Languages – pumping	Mar	k
lo	Finite automata Regular And Non Regular Languages — pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks		k
	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET]	Mar 01	k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA.		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, (Q, Σ, Δ, q0, F), consisting		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ		·k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$		k
lo	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$		k
<u>1</u>	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET]	01	k
1 1	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$.	01	k
<u>1</u>	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in	01	k
<u>1</u>	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists	01	k
1 1	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA.	01	k
<u>1</u>	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA. Deterministic Finite Automaton is a FA in which there is only one path for a specific	01	k
1 1	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA.	01	k
1 1	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA. Deterministic Finite Automaton is a FA in which there is only one path for a specific input from current state to next state. There is a unique transition on each input	01	k
2	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA. Deterministic Finite Automaton is a FA in which there is only one path for a specific input from current state to next state. There is a unique transition on each input symbol. (Write examples with diagrams).	01 01	<u>k</u>
2	Finite automata Regular And Non Regular Languages – pumping lemma. SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Define: NFA [LJIET] Answer: A nondeterministic finite automaton (NFA), or nondeterministic finite state machine, does not need to obey these restrictions. In particular, every DFA is also an NFA. An NFA is represented formally by a 5-tuple, $(Q, \Sigma, \Delta, q0, F)$, consisting a finite set of states Q a finite set of input symbols Σ a transition function $\Delta: Q \times \Sigma \to P(Q)$ an initial (or start) state $q0 \in Q$ a set of states F distinguished as accepting (or final) states $F \subseteq Q$. Differentiate NFA and DFA. [LJIET] Answer: NFA or Non Deterministic Finite Automaton is the one in which there exists many paths for a specific input from current state to next state. NFA can be used in theory of computation because they are more flexible and easier to use than DFA. Deterministic Finite Automaton is a FA in which there is only one path for a specific input from current state to next state. There is a unique transition on each input symbol. (Write examples with diagrams). Define: Pumping Lemma Theorem [LJIET]	01 01	k

	$ \mathbf{w} \ge \mathbf{c}$	
	We can break w into three strings, $w = xyz$, such that $-$	
	$ \mathbf{y} > 0$ $ \mathbf{x}\mathbf{y} \le \mathbf{c}$	1 1 1 1 1 1
10	$ XY \le C$ For all $h > 0$, the string viviles in also in I	
4	For all $k \ge 0$, the string xykz is also in L.	0.1
4	Give application of Pumping Lemma Theorem [LJIET]	01
	Answer: Pumping Lemma is to be applied to show that certain languages are not regular. It should never be used to show a language is regular.	J.
	1) If L is regular, it satisfies Pumping Lemma.	1
	2) If L is non-regular, it does not satisfy Pumping Lemma.	
5	True or False: [LJIET]	01 -
3	a^n b^m, where the alphabet is a; b and $n \ge 0$; $m \ge 0$, is a regular language. (True)	
6	Which of the following is true? [LJIET]	01
	a) Every subset of a regular set is regular	
	b) Every finite subset of non-regular set is regular	JL.
	c) The union of two non regular set is not regular	-
	d) Infinite union of finite set is regular	
	Answer: b	
7	Write Kleens Theorem [LJIET]	01
	Answer: Any regular language is accepted by a finite automaton.	
Sr.	DESCRIPTIVE QUESTIONS	Marks
No		
1	Write a Short note on Application of Pumping Lemma.[Dec-2013-OLD] [LJIET]	3
2	Use the pumping lemma to show that following language is not regular: $L = \{ww w \in \{0,1\}^n\}$	2
2	{0,1}*} .[June-2013-OLD] [LJIET]	2
3	Use the pumping lemma to show that following language is not regular. $L = \{xy \mid x, y \in \{0, 1\}^* \text{ and } y \text{ is either } x \text{ or } x^r \}. [May-2018] [LJIET]$	3
4	Define Nondeterministic Finite Automata (NFA) and write down recursive definition of	3
7	δ^* for NFA- Λ .[May-2011-OLD] [LJIET]	5
5	For following NFA find minimum FA accepting same language:[LJIET] [June-2013-	5
	OLD]	
	a	-
		1.7
	(4)	:
	a (5) \ a	
		=
	→(1) b(") \	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
	LJIET LJIET LJ	
	Y2Y T / 10 N 10 10 10 10	
1000	3 b a	
	3 b a 7	
	7	
6	What do you mean by Regular Language? Explain the application of the Pumping	4

7			ular or Not.[Jan-201	3-OLD] [LJIET] that the language $L = \{a^n : n \text{ is } a\}$	5,7					
,	prime number} is OR	_	n Languages. Prove	that the ranguage $L = \{a : n \text{ is } a\}$	5,7					
	Define pumping lemma for regular language. Prove that the language									
-	1 1 0		2 2	[May-2016-OLD] [LJIET]	-					
8				recognizing the corresponding	6					
	languages.									
	(i) (00 + 1)* (10)*									
	(ii) 001*0*11. [Ma									
9	[LJIET]			xplain. [Dec-2015-OLD]	6					
10				015-OLD][May-2016] [<mark>L</mark> JIET]	7					
11				NFA and FA with sui <mark>tab</mark> le	7					
			016-OLD][Nov-202							
12				amping Lemma to show	7					
	that following $L = \{ 0^n \frac{1^{2n}}{r} / r \}$	languages are not	regular.							
			- <mark>2015</mark> -OLD] [LJIE	TI						
13			egular. [Oct-2016-C		7					
14				L2 is also a regular language.	7					
1	[Oct-2016-OLD]		anguages then E111	E2 is also a regular language.	,					
15		NFA and DFA. I	nitial Stat <mark>e:</mark> A , <mark>Fina</mark>	l State: D [May-2015-OLD]	7					
	Q	δ(q, ^)	δ(q, 0)	$\delta(q, 1)$						
- 1	A	{B}	{A}	Ø						
-	В	{D}	{C}	Ø						
	C	Ø	Ø	{B}	/					
	D	Ø	{D}	Ø						
16		014-OLD] [May-	2016-OLD] [Oct-20	pumping lemma for regular 016-OLD] [Nov-2018-OLD]	3,7					
17	Write kleene's the	orem part -1. [De	c-2014-OLD][Nov-2	2021-NEW] [LJIET]	7					
18				e can be accepted by a Finite	6,7					
	Automaton (FA). Prove that any Re OLD] [LJIET]			A. [May-2016-OLD ,Oct-2016-						
19	Prove : The language	50 decepted by diff	THE CONTOLLER OF THE	<u> </u>						
19 20			ssible). [May-2014-0		7					

			$\overline{}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
L	b a LJIET L	JIE	Γ
28	Define Pumping Lemma. Use the Pumping Lemma to show that the following languages	7	
	are not regular: [May-2012-OLD] [LJIET] • $L = \{ 0^n \ 10^{2n} / n \ge 0 \}$	10.1	
	• $L = \{ 0^i 1^j 0^k / k > i+j \}$		0
29	Define δ^* for!FA- NFA and NFA- Λ . Also Calculate δ^* (1, ab) and δ^* (1, abaab) from the following transition table.[May-2012-OLD] [Jun-2022-OLD] [LJIET]	7	I
	$q \mid \delta(q,a) \mid \delta(q,b)$		
	1 {1,2} {1}		H
	2 { 3} { 3}		
	3 {4} {4}		9
	4 {5} Ø		
	5 Ø {5}		
30	Convert the following NFA into FA. [May-2012-OLD] [LJIET]	7	
	OR Convert following NFA into equivalent DFA. Draw DFA and give Transition		T
	Table for it. [Jun-2022-OLD][LJIET]		0
	a		-
	a b		
	a 3 a		100
	ь()		
21			-
31	Explain the procedure for converting the given DFA in to minimum number of state DFA. Using this procedure convert the following DFA into minimum number of states	7	
	DFA (minimized FA) where $\Sigma = \{0,1\}$. [Nov-2011-OLD] [LJIET]		
	$Q \qquad \delta(q,a) \qquad \delta(q,b)$		
	-+1 {3} {2}		
	2 {4} {1} 3 {5} {4}		-
	The same that the same transfer to the same transfe		пΙ
LU	4 {4} {4} 5 {3} {2} LJIET LJ		
32	Consider the following NFA-^.	7	\exists
	Q $\delta(q,\Lambda)$ $\delta(q,0)$ $\delta(q,1)$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	B {D} {C} Ø		

			<u> </u>		<u> </u>	(7)				1	
			C	Ø	Ø (D)	{B}					
	543.0		+D	Ø	{D}	Ó					
				FA-^ into				A DATE - 2011 OT	D1		
			IS INFA	as an inp	ut and co	nvert it in	to equivalent DFA	A.[Nov-2011-OL]	נט		
22	[LJII		NICA	airran in T	labla bala	40 :40 0	mana din a DE/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		7	
33							orresponding DFA	A and draw the		1117	10
1	DFA	Tioci-	ZU10-U	OLD] [LJ		Lo					
		Currer	nt State]	Input sym	bol				
		Currer	ıı omic	<u></u>	0		1				
		\rightarrow	Q_0		Q_1		Q0, Q2			10.	- 50
			Q1		Q_2		Q ₀				
			Q2 *		Q0						0
34	Mini	mize tł	ne follo	owing FSN	M [May-	2016-OL	D] [LJIET]			7	- 1
									0,1		-
			>		1	-(C	1	F)		T
		>	\prec								
		•),	0		•	o)1			
								1			
		- E	3			(E)	Y	Œ			10000
				1							
		1 0		- /		2011 0		o		_	7.
35							LD] [LJIET]			7	1
26				010)(0+1))+1)(01)*				_	- 0
36							ge corresponding			7	
37))* [Oct-2016-C itial State: A ,			8	-
31								riiai State. E		0	-
		Q 		δ(q, ^) {B,D}		(q, 0) {A}	$\delta(\mathbf{q}, 1)$			į.	
				Ø		$\{C\}$	~				3.0
							{E}				-
		C		Ø		Ø (E)	{B}				
		<u>T</u>		Ø		{E}	{D}				
	[E		Ø		Ø	Ø				17
20				LD] [LJI]		15:	2012 27 77	0012 07 77			
38	Conv	ert fol				_	m-2013-OLD][D	ec-2013-OLD] [I	JIET]	8	
			Q	$\frac{\delta(q,\Lambda)}{(p,p)}$	$\delta(q, 0)$	$\delta(q, 1)$					
			A	{B,D}	{A}	Ø					
			В	Ó	{C}	{E}					17
			C	Ó	Ø (E)	{B}					
			D	Ø Ø	{E}	{D}					1
20	<u> </u>	, C 1	E	~	Ø	Ø 1 E A EM	2011 OLDIE			0	
39	Conv	ert fol					ay-2011-OLD] [7	8	
Le		1	q	δ (q, Λ)	$\delta(q, 0)$	δ(q,		ULLI	1/0		
5362		<u> </u>	A	(D)	(A)) ⁄⁄					1003
		<u> </u>	A	{B}	{A}	Ø					
		<u> </u>	В	{D}	{C	Ø (D)					
1			C	Ø Ø	Ø	(B) Ø					
			D	\sim	{D}						

	Compare FA, NFA	and NFA-^.[May-2017	'-OLD] [Nov-2021-OL	D] [LJIET]	7
		orem part-I, Any regula	ar language can be acc	epted by a finite	7
	Convert following N	NFA- Λ to NFA			7
	a	$\delta (q, \Lambda)$	$\delta(q, 0)$	δ(q, 1)	Π
10	 4	{B}		Ó	
	A		{A}		
	В	{ D }	{C}	Ó	Н
	С	Ø	Ø	{ B }	61
	D	Ø	{ D }	Ø	
	[May-20 <mark>17-OLD]</mark> [
3	Define NFA and NI	FA- Λ . Convert the follo	wing NFA to DFA		7
			1		
	0				
		0.1			
		0,1	(q_1)		
	\rightarrow q ₀				
	\bigcirc	1			
			[Nov-2017	-OLD] [LJIET]	1
4	Prove that the follow	wing language is ambig	uous and convert into	unambiguous	7
	$E \rightarrow E + E \mid E * E \mid$	id [Nov-2017-OLD] [1			
5	Minimize the follow	ing FA.			7
			0,1		
		1			
	(A)	1 (C)	F		
	A		F	1	
	A			1	
			T F	1	
	0 0 0	0			
		0			
		0			
	0 0				
	0 0			HEE. T	
J	0 0 B			[Nov-2017-OLD]	TET
	O B ELJIET]	D	1 E		TET
6	O B ELJIET]	na for FA. Prove that L	1 E		TET 7

48	Give recursive definitions of the extended transition functions, δ (i.e., for strings) for DFA and NFA. [May-2017-OLD] [LJIET]								
49	Minimize the DF	A shown in Fig.	 1.				7		
	0	6	1	(t)					
L									
	0			0, 1			T		
			٠.,		(u)				
							6		
), 1 [M:	ay- <mark>20</mark> 17-	-		
	OLD] [LJIET]				[1716	uy-2017-			
50	C 1 4 NE	A A 1 : 4 1: C	11	1			7		
50	Consider the NFA	 	L				7 1		
		Λ	a	b	c				
	→p	Φ	<u>{p}</u>	{q}	{r}				
	q	{p}	<u>{q}</u>	{r}	Φ				
	* r	{q}	{r}	Φ	{p}				
	(i) Compute the A	Λ-closure of each	state.						
	(ii) Convert the N	NFA- Λ to a DFA.	[May-2017-	OLD] [LJIE]	n		0		
51	Use Pumping Lea	mma to show that	$t L = \{x \in \{0\}\}$			ot a regular	7		
52	language. [May-2 Give recursive de			s State the hie	erarchy of the or	perators used	3		
32	in regular express	sions. [May-2017	'-OLD] [LJI	ET]	rareny of the of	ociators asca			
53	Using constructive						4		
54	(0+1)*1(0+1). Give recursive de					nd NFA.	4,3		
	[Nov-2017-OLD] [Aug-2021-OL	D] [LJIET]		., 0 101 2011 0		ŕ		
55 56	Compare FA, NF Convert followin			OLD] [LJIET]			7		
30				2(-, 0)	2/	1)	h ' h		
	<u>q</u>	δ (q, 1	(1)	$\delta(q, 0)$	δ(q	, 1)			
	A	{ B }		{A}	Ø				
	В	{D }		{ C }	Ø				
	C	Ø		Ó	{ B }				
	D	Ó		{D }	Ó				
LU	[Nov-2017-OLD][LJIET]	LU	LÌL	LULL	ı ııu			
57	Convert followin				[NOV-2018-O]	LD][LJIET]	7		
			q ∂(q, 1) A {B,		$\partial (q,1)$ Ø				
			В	(C)	{E}				
			C Q	Ø Ø	{B}				

	D Ø {E} {D}		
70	E Ø Ø Ø		
58	Draw NFA – Λ for $((0 + 1)*10 + (00)*(11)*)*$ Show step by step construction. [NOV-2018-OLD][LJIET]	7	
59	State part-1 and part-2 of Kleens theorem and show the proof. [NOV-2018-	7	
	OLD][LJIET]		7
60	Convert this NFA to FA [NOV-2018-OLD][LJIET]		
	0,1		
		0.00	Bl. d
	q_0 q_1 q_2 q_3 q_4 q_5		
		9	
61	Figure shows NFA-^. Draw an FA accepting the same language. [May-2018-OLD	7	ľ
][LJIET]		
	4		IL Z
		7	
			_
62	Let M1, M2 and M3 be the FAs pictured in Figure, recognizing languages L1, L2 and	7	
	L3, respectively.		
	Λ Λ		
- 1	$M_1 = A \rightarrow A \rightarrow B \rightarrow C$		
	1,0		1
	Λ Λ		
	$M_2 = X \xrightarrow{1} X \xrightarrow{1} X$		
	0,1		
	$M3 = \mathbb{R}$		TW
	0,1		
	Draw FAs recognizing the following languages. a. L1 U L2		
	b. L1 ∩ L3.[May-2018-OLD] [LJIET]		
63	Define NFA-Λ. Explain how to convert NFA-Λ into NFA and FA with	7	K
	suitable example.[Nov-2018-OLD] [LJIET]		
64	Write difference between DFA and NDFA. Convert the following NDFA to	7	
	DFA.		

L	0 0 0	0 0,1 d	1 0	e	JIET L	JIET L J
65	Minimize th	ne given DFA :[May	-2019-OLD][LJ			4
	State /	Transition	a	b		
		→ (1)	{3}	{2}		IR.
		2	{4}	{1}		
		3	{5}	{4}		
		4	{4}	{4} {2}		
		5	{3}			
66	Convert NF	A-^ to NFA and DFA				7
	Q δ (q, ^)		δ (q, 0)	δ (q, 1)		
	A	{B}	$\{A\}$	ф		
4	В	{D}	{C}	ф		
	С	ф	ф	{B}		
				_ ` /		
		Ф	{D}	ф		
	D	Φ	{D}	ф	[May-2019-OLD	
67	D][LJIET]			T	[May-2019-OLD emma to show that the	7
67	D [LJIET] Define Pum following la	ping Lemma for Re	gular Langu <mark>ages</mark> .	T		7
67	D[LJIET] Define Pum following la $L = \{0^n 1^{2n}\}$	ping Lemma for Reinguages are not reg	egular Lan <mark>guages.</mark> gular.	Use Pumping L		7
67	Define Pum following la $L = \{ 0^n 1^{2n} $ $L = \{ ww^R \}$	uping Lemma for Reanguages are not reg $ n > 0 $ $ w \in \{0,1\}^* \}$ [May	egular Languages. gular. y-2019-OLD][L	Use Pumping L		7
68	D [LJIET] Define Pum following la $L = \{ 0^n 1^{2n} $ $L = \{ ww^R \}$ Define NFA 2019-OLD	ping Lemma for Resuguages are not regular n > 0 } w ∈ {0,1}* } [May A - Λ. Give Recursive][LJIET]	egular Languages. gular. gular	Use Pumping L IIET] * for DFA,NFA	temma to show that the and NFA $-\Lambda$. [Dec-	7
	$\begin{array}{ c c c }\hline D\\ \hline \hline \\ \hline$	ping Lemma for Reanguages are not reg $ n > 0 $ $ m > 0 $ $ m \in \{0,1\}^* $ [May A - A. Give Recursive] [LJIET] recognizing the languages	egular Languages. gular. y-2019-OLD][L. ye Definition of δ guage ({0,1}*{10	Use Pumping L IIET] * for DFA,NFA U {00}*{11}*	temma to show that the and NFA $-\Lambda$. [Dec-	I
68	D J[LJIET] Define Pum following la L = { 0 ⁿ 1 ²ⁿ L = { ww ^R Define NFA 2019-OLD Draw NFA theorem par	ping Lemma for Reanguages are not reg $ n > 0 $ $ w \in \{0,1\}^* $ [May $ A - A$. Give Recursive] [LJIET] recognizing the language $ L + L + L + L + L + L + L + L + L + L $	egular Languages. y-2019-OLD][Laye Definition of δ guage ({0,1}*{10} } [Dec-2019-OL]	Use Pumping L IIET] * for DFA,NFA U {00}*{11}* D][LJIET]	temma to show that the and NFA $-\Lambda$. [Dec-	7
68	D [LJIET] Define Pum following la $L = \{ 0^{n} 1^{2n} $ $L = \{ ww^{R} $ Define NFA 2019-OLD Draw NFA theorem par Define Pum Regular Lar	pping Lemma for Reanguages are not reg $ n > 0 $ } $ w \in \{0,1\}^* $ [May $ \Delta - \Lambda $. Give Recursive I[LJIET] recognizing the language $ \Delta + \Lambda $ where $ \Delta - \Lambda $ is a ping Lemma for Reanguage using Pumping Pumping Lemma for Reanguage using Pumping I $ \Delta + \Lambda = 1$	egular Languages. gular. y-2019-OLD][Laye Definition of δ guage ({0,1}*{10}) [Dec-2019-OL] gular Languages. ling Lemma	Use Pumping L IIET] * for DFA,NFA U {00}*{11}* D][LJIET] Show that follo	emma to show that the and NFA – Λ . [Dec-	7
68 69 70	D [LJIET] Define Pum following la $L = \{ 0^{n} 1^{2n} $ $L = \{ ww^{R} $ Define NFA 2019-OLD Draw NFA theorem par Define Pum Regular Lar $L = \{ 0^{i}1^{i} $	uping Lemma for Reanguages are not reg $ n > 0 $ $ w \in \{0,1\}^* \}$ [May $ A - A $. Give Recursive I[LJIET] recognizing the language to 1, where $ \Sigma = \{0,1\} $ aping Lemma for Reanguage using Pumping $ B = \{0,1\} $ where $ B = \{0,1\} $ and $ B = \{0,1\} $ where $ B = \{0,1\} $ and $ B = \{0,1\} $ where $ B = \{0,1\} $ and $ B = \{0,1\} $ where $ B = \{0,1\} $ and $ B = \{0,1\} $ where $ $	egular Languages. y-2019-OLD][Laye Definition of δ guage ({0,1}*{10} guage Languages. guage Languages. guage Lemma 0,1} [Dec-2019-OL]	Use Pumping L VIET] * for DFA,NFA Use Pumping L VIET] * for DFA,NFA Use Pumping L VIET] VIET]	and NFA – Λ. [Dec- ') * using kleene's wing language is not a	7
68	D [LJIET] Define Pum following la $L = \{ 0^n 1^{2n} $ $L = \{ ww^R $ Define NFA 2019-OLD Draw NFA theorem par Define Pum Regular Lar $L = \{ 0^i 1^i i $ Define CFG	uping Lemma for Reanguages are not regardless are not regardless. [May $0.5 \times 0.5 \times$	gular Languages. gular. y-2019-OLD][Laye Definition of δ guage ({0,1}*{10}) [Dec-2019-OL] gular Languages.	Use Pumping L JIET] * for DFA,NFA D][LJIET] Show that follo OLD][LJIET] Column Co	and NFA – Λ. [Dec- ') * using kleene's wing language is not a	7
68 69 70	D [LJIET] Define Pum following la $L = \{ 0^{n} 1^{2n} $ $L = \{ ww^{R} $ Define NFA 2019-OLD Draw NFA theorem par Define Pum Regular Lar $L = \{ 0^{i}1^{i} i $ Define CFG Let FA ₁ and	uping Lemma for Reanguages are not regardless are not regardless. [May $0.5 \times 0.5 \times$	gular Languages. gular. y-2019-OLD][L. ye Definition of δ guage ({0,1}*{10} } [Dec-2019-OL] gular Languages. gular Languag	Use Pumping L IIET] * for DFA,NFA U {00}*{11}* D [[LJIET] Show that follo DLD [[LJIET] Q Dec-2019-Oure recognizing the second content of	and NFA – Λ. [Dec- ') * using kleene's wing language is not a	7

76	Convert NFA- Λ to FA for following figure.	7	
L	1 a 3 b 4 LJET L	JIE	r I
78	[Nov-2021-NEW][LJIET] Using kleene's Theorem Draw NFA-Λ for ((0+1)*10 + (00)*)* [Nov-2021-NEW][LJIET]	4	
79	Convert the following NFA into its equivalent DFA using the subset construction. [Jan-2021-	7	0
	OLD][LJIET] a 2 b a 3		I
80	For following NFA find minimum FA accepting same language[Jan-2021-OLD][LJIET]	7	
81	State the pumping lemma for regular language. Prove that $\{0^n1^n \mid n >= 0\}$ is not a regular language. [Jan-2021-OLD][LJIET]	7	12
82	Convert the Given NFA into its equivalent DFA-[Jan-2021-OLD][LJIET]	7	0
LJ	A B A B ILI	MEA	
83	L1 is a language over {0, 1}* that accepts strings ending in 11. L2 is a language over {0, 1}* that accepts strings containing 101 as sub-string. Write the regular expressions, draw FA for L1 and L2 and derive FA for L1 U L2. [Oct-2020-OLD][LJIET]	7	
84	Apply the subset construction technique to convert the given NFA to FA. [Oct-2020-OLD][LJIET]	7	

L	_	q1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1	- (q4)	JIET	LJIET	LJIE	
85	Draw NFA-Λ	for ((0+1)*10 +	· (00)*(11)*)* [O	ct-2020-OLD][L	JIET]	4	-
86	(i) The lang	uage of all stri	ngs containing b	oth 101 and 010	llowing subsets of $\{0,1\}^*$) as substrings. lg-2021-OLD][LJIET]	4	
87			to NFA [Aug-2			7	
	q	$\delta(q, \Lambda)$	$\delta(q, 0)$	δ(q, 1)			
	A	{B}	{A}	φ			1
	В	{D}	{C}	φ			
	С	φ	φ	{B}			
	D	φ	{D}	φ			
88	Minimize the	e DFA shown i	n Fig: [Aug-202	1-OLD][LJIET]		7	_
		p 0	q 0 r		0, 1	7	
					0, 1	680	
	*			3	u		
	· <i>J</i>				0, 1		
89			l its application.		LD][LJIET]	4	
	the regular la	anguage. [Dec-	2022-OLD][LJ	IET]	mata that recognize	7	
90			states. Find Λ -0		of the states in	7	
			22-OLD][LJIET				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				LJIET		

	1									1				ı	
			q	δ(q,	a)	δ(q,	(b)	δ(q,	Λ)						
			1	Ø		Ø		{2	-	1					
			2	{3}	}	Ø		{5		1					
10.00			3	ø	,	{4	}	Ø		1					
70			4	{4}	}	Ø		{1		10		Γ'			
			5	ø)	{6,		0		-	Allo Albard			<i>y</i>	- A
			6	{5}	(ø,	-	ø							T
			7	Ø	,	ø		{1						101	
91	Convert the NI	ΞΔ_Λ in th	ne ah		ection			_	_	DILL	HETI			7	
92	Give the Recur													7	
	0011), $\delta^*(q0,1)$	001) and 6													T
	OLD][LJIET]				0/	- 0)	L C/	- 1\							
				q	0((q,0)	0(q,1)							F
				q_0		q_0	q	o, q 1	1						-
				\mathbf{q}_1		q_2		\mathbf{q}_2							
				q ₂		q3		q ₃							
				q_3		Ø		Ø							
93	Convert the NI													7	
94	Write and expl										IET]			7	_
95	Write Regular (i) The language	-			_				_	K I J				4	
	(ii) The langua									bstri	ngs.				
96	Consider the N													7	
		Λ			a	l		b			c			ř.	
	→ p	Φ			{p)}		{q	}		{r]	}	1		
	q	{p	}		{c	[}		{r	}		Φ				
	*r	{q	}		{1	}		Φ)		{p	}	7		
	(i) Compute the				ate.										
97	(ii) Convert the Draw FA for for				Diti	HET	1							7	
91	\Box L1 = {w 00					79 1E 1	ı							'	
	\Box L2 = {w w	ends in 0	1 } in	g langu	ages										
	Find FA accept	ting langu	ages	s (i)L1 U	J L2	and (i	i)L1 (∩ L2							
98	Define pumpin	ıg lemma	for r	egular l	angu	ıage. []	Dec-2	022-N	EWI	LJII	E T 1			4	
	Show that the l														
00	lemma theory.		9 7				H		T	C		7			
99	Construct the N substring "bba"				ount	s the no	o. of (occurre	nces (10		L	Le	1 7	
	Now convert the				to M	ealy m	achir	ne. Sho	w the	trans	sition				
	table and transi					•						`]			
100	Define the step	os to conve	ert ε	-NFA i	nto l	NFA. T	hen o	convert	the fo	ollov	ving			7	,
	ε -NFA into N	FA. [Dec-				IET]									
APT OF	Computation (3	160704)				202	2-20	72							Page 3

L	TET (2) b ET L	JIE	r L
101	Construct the regular expressions for the following languages. $L1 = \{\text{Where the no. of 'a' is odd}\}, \Sigma = \{a,b\}$	4	J
	L2 = {Where every string starts with '0' and of even length}, $\Sigma = \{0,1\}$ [Dec-2022-NEW][LJIET]		I
102	Construct the regular expressions for the following languages.	4	F
	L1 = {Where every string starts with 'b' and does not contain 2 consecutive a's}, $\Sigma = \{a,b\}$		1
	L2 = {Where every string starts with '1' and of odd length}, $\Sigma = \{0,1\}$ [Dec-2022-		9
103	NEW][LJIET] Define pumping lemma for context free language.	4	
103	Show that the language $L = \{ww \mid w \in \{a,b\}^*\}$ is not context free language		
104	using pumping lemma theory. [Dec-2022-NEW][LJIET]	5.4	-
104	Prove "The pumping lemma for regular languages" and use it to prove that the Palindromes language is not regular [Jun-2022-OLD][LJIET]	7,4	0
	OR		
	Using pumping lemma prove that the language palindrome is not regular[Jun-2022-OLD][LJIET]	The same of	
105	Define FA, NFA, NFA- Λ[Jun-2022-OLD][LJIET]	3	1
106	Let M1 and M2 be the FAs pictured in Figure, recognizing languages L1	7	
	and L2 respectively[Jun-2022-OLD][LJIET]		
	$M_1 = \underbrace{\begin{array}{c} 0 \\ 0 \\ 0 \end{array}}$		I
LJ	$\mathbf{M}_2 = \mathbf{A} \underbrace{\mathbf{B}}_{0} \mathbf{B}$		
	Draw FAs recognizing the following languages. a. L1 U L2' b. L2 - L1		

_		
107	Using subset construction method Convert NFA- Λ to NFA for	4
	following figure[Jun-2022-OLD][LJIET]	
	(at)	
	(q1)	
	\sim	
	1 1 1	
10	To the second of	. H. H. H. G. H. H.
	0,1	
		-
	\sim	
	1/ \0	0
	(q^2) (q^3)	-
108	Find minimum state FA for following figure. [Jun-2022-OLD][LJIET]	7
		J.C.
	a / b	-
		Ω!
		-
	(3)	
	1 6/	
		0
		1
	A b Com	No. of Parties
	0 -0,0	
<u>. </u>		
109	Using kleene's Theorem Draw NFA- Λ for $((01)*10 + (00)*)*$ [Jun-2022-OLD][LJIET]	4
110	Explain procedure to minimize finite automata[Jun-2022-NEW][LJIET]	7
	UNIT NO- 3 : Context free grammar (CFG)	
	TOPIC:1: Definition, Unions Concatenations And Kleen's of	17
	Context free language Regular grammar, Derivations and	-
	Languages, Relationship between derivation and derivation trees	
Sr.	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
No	D.C. OEG H. HERE	0.1
1	Define: CFG [LJIET]	01
	Answer: A context free grammar (CFG) is denoted as G=(V,T,P,S) where V and T are	
	finite set of variables and terminals respectively. V and T are disjoint. P is a finite set of	
	productions each is of the form A-> α where A is a variable and α is a string of symbols	
W1 - 1	from (V U T)*.	0.1.0
2	True or False: It is known that context-free languages are not closed under intersection.	01 for each
	Since every regular language is content free, it follows that the intersection of a regular	
	language with a context-free one is also not context-free.(False) [LJIET]	
	Let $\Sigma = (;)$ be an alphabet. The following grammar represents the empty language.	
	$S \rightarrow (S)$. [LJIET]	
	Answer: True	
3	The language which is generated by the grammar S-> aSa I bSb I a I b over the alphabet	01

L.J. Institute of Engineering & Technology Semester: VI (2022-23) {a, b} is the set of (A) Strings that begin and end with the same symbol (B) All odd and even length palindromes (C) All odd length palindromes (D) All even length palindromes [LJIET] **Answer:** C A CFG G is given with the following productions where S is the start symbol, A is a 410 01 non-terminal and a and b are terminals.[LJIET] $S \rightarrow aSIA$ Which of the following strings is generated by the grammar above? A→aAblbAale (A) aabbaba (B) aabaaba (C) abababb (**D**) aabbaab Answer: D Give True or false: [LJIET] 5 01 for each The context free languages are closed under union.(True) (a) The context free languages are closed under intersection. (False) (b) Ι The context free languages are closed under Kleene star. (True) The context free languages are closed under complementation. (False) (d) The context free languages are closed under concatenation. (True) Define: Parsing. [LJIET] 01 **Answer:** Breaking a data block into smaller chunks by following a set of rules, so that it can be more easily interpreted, managed, or transmitted by a computer. 7 Give types of Parsing. [LJIET] 01 **Answer:** 1)Top down Parsing 2) Bottom Up Parsing Differentiate Top down Parsing and Bottom Up Parsing [LJIET] 8 01 **Answer:** When the parser starts constructing the parse tree from the start symbol and then tries to transform the start symbol to the input, it is called top-down parsing. As the name suggests, bottom-up parsing starts with the input symbols and tries to construct the parse tree up to the start symbol. 9 What are the uses of Context free grammars? [LJIET] 01 **Answer:** Construction of compilers. Simplified the definition of programming languages. Describes the arithmetic expressions with arbitrary nesting of balanced parenthesis { (,) Describes block structure in programming languages. Model neural nets. What is Subtree? [LJIET] **10** 01 **Answer:** A Subtree of a derivation tree is a particular vertex of the tree together with all its descendants, the edges connecting them and their labels. The label of the root may not be the start symbol of the grammar. 11 What are the three ways to simplify a context free grammar? [LJIET] 01 **Answer:** By removing the useless symbols from the set of productions. By eliminating the empty productions. By eliminating the unit productions. 12 What is a parser? [LJIET] 01 **Answer:** A parser for grammar G is a program that takes as input a string w and produces as output either a parse tree for w, if w is a sentence of G or an error message

13

indicating that w is not a sentence of G.

What are the closure properties of CFL? [LJIET]

01

	Answer: CFL are closed under union, concatenation and Kleene closure. CFL are closed	
	under substitution, homomorphism. CFL are not closed under intersection,	
	complementation.	
14	What are the different types of grammars/languages? [LJIET]	01
	Answer: • Unrestricted or Phase structure grammar.(Type 0 grammar)	
-	• Context sensitive grammar or context dependent grammar (Type1)	WWW.
70	• Context free grammar (Type 2)	
	• Regular grammar (Type 3)	
15	Define: Regular Grammers [LJIET]	01
13	Answer: A regular grammar is a formal grammar that is right-regular or left-regular.	VI I
1.0	Every regular grammar describes a regular language.	01
16	Define: Right Linear Regular Grammer [LJIET]	01
	Answer: A right regular grammar (also called right linear grammar) is a formal grammar	
	(N, Σ, P, S) such that all the production rules in P are of one of the following forms:	T
		1
	$B \rightarrow a - $ where B is a non-terminal in N and a is a terminal in Σ	
	$B \rightarrow aC - where B$ and C are non-terminals in N and a is in Σ	.11.2
		F =
	$B \to \varepsilon - where B$ is in N and ε denotes the empty string, i.e. the string of length 0.	A2
17	Define: Left Linear Regular Grammer [LJIET]	01
_,	Answer: In a left regular grammar (also called left linear grammar), all rules obey the	V-
	forms:	
	$A \rightarrow a$ — where A is a non-terminal in N and a is a terminal in Σ	
	Where It is a non-terminal in It and a is a terminal in 2	
		0
	$A \rightarrow Ba$ where A and B are in N and a is in Σ	
	$A \rightarrow Ba$ – where A and B are in N and a is in Σ) i
		ì
Sr	$A \rightarrow \epsilon$ – where A is in N and ϵ is the empty string.	Marks
Sr.		Marks
No	$A \rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS	12
	$A \rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD]	Marks 3
No 1	$A \rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET]	3
No	$A \rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-	12
No 1 2	A $\rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET]	3 4
No 1	A $\rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 \cap L2 is not a CFL and	3
No 1 2	A $\rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET]	3 4
No 1 2	A $\rightarrow \epsilon$ – where A is in N and ϵ is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 \cap L2 is not a CFL and	3 4
No 1 2 3	A → ε – where A is in N and ε is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET]	3 4 7
No 1 2 3	A → ε – where A is in N and ε is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-	3 4 7
No 1 2 3 4	A → ε – where A is in N and ε is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET]	3 4 7
No 1 2 3 4	A → ε – where A is in N and ε is the empty string. DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET]	3 4 7
No 1 2 3 4 5	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ }	3 4 7 7
No 1 2 3 4 5 6		3 4 7 7 7 2
No 1 2 3 4 5 6 7 T	BESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x ^r }.[June-2013-OLD] [LJIET] Explain bottom up parsing with example.[June-2013-OLD] [LJIET]	3 4 7 7 7 2
No 1 2 3 4 5 6	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x'}.[June-2013-OLD] [LJIET] Explain bottom up parsing with example.[June-2013-OLD] [LJIET] Differentiate Regular Grammars and Context Sensitive Grammars.[May-2014-OLD]	3 4 7 7 7 2
No 1 2 3 4 5 6 7 8	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L¹ is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x ^r }.[June-2013-OLD] [LJIET] Explain bottom up parsing with example.[June-2013-OLD] [LJIET] Differentiate Regular Grammars and Context Sensitive Grammars.[May-2014-OLD] [LJIET]	3 4 7 7 7 2 7 7
No 1 2 3 4 5 6 7 8 9	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing. [Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL. [May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example. [May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs. [June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x ^r }. [June-2013-OLD] [LJIET] Explain bottom up parsing with example. [June-2013-OLD] [LJIET] Differentiate Regular Grammars and Context Sensitive Grammars. [May-2014-OLD] [LJIET] Top down and bottom up parsing. [Dec-2014-OLD] [LJIET]	3 4 7 7 7 2 7 7 7
No 1 2 3 4 5 6 7 8	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing.[Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL.[May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example.[May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs.[June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x¹}.[June-2013-OLD] [LJIET] Explain bottom up parsing with example.[June-2013-OLD] [LJIET] Differentiate Regular Grammars and Context Sensitive Grammars.[May-2014-OLD] [LJIET] Top down and bottom up parsing.[Dec-2014-OLD] [LJIET] Consider following grammar:	3 4 7 7 7 2 7 7
No 1 2 3 4 5 6 7 8	DESCRIPTIVE QUESTIONS Write short note on Top Down Parsing And Bottom Up Parsing. [Jan-2013-OLD] [LJIET] Give the difference between Top Down Parsing And Bottom Up Parsing. [May-2011-OLD] [LJIET] Prove: There are context-free languages L1 and L2 so that L1 ∩ L2 is not a CFL and there is a CFL L so that L' is not a CFL. [May-2012-OLD] [LJIET] Explain Derivation Tree, Expression Tree and Ambiguity with Example. [May-2012-OLD] [LJIET] Write theorem: If L1 and L2 are context free languages, then the language L1 U L2, L1L2 and L1* are also CFLs. [June-2013-OLD] [LJIET] Use the pumping lemma to show that following language is not regular: L = {xy x,y ∈ {0,1}* and y is either x or x ^r }. [June-2013-OLD] [LJIET] Explain bottom up parsing with example. [June-2013-OLD] [LJIET] Differentiate Regular Grammars and Context Sensitive Grammars. [May-2014-OLD] [LJIET] Top down and bottom up parsing. [Dec-2014-OLD] [LJIET]	3 4 7 7 7 2 7 7 7

	$B \rightarrow 0B \mid 1B \mid \Lambda$		
	Give leftmost and rightmost derivations of the string 00101. Also draw the parse tree		
	corresponding to this string. [May-2017-OLD] [LJIET]		
11	Prove that the language $L = \{ww w \text{ is in } (0+1)^*\}$ is not a CFL. [May-2018-	3	
	OLD][LJIET]		
12	Write a short note on parsing[NOV-2018-OLD] [LJIET]	7	
13/	Explain Union Rule and Concatenation Rule for Context-Free Grammar. OR Explain	4	
	Union Rule and Concatenation Rule for Context Free Grammar. [May-2018-OLD][
	Nov-2018-OLD] [LJIET]		W
14	Let G be the grammar	4	
	$S \rightarrow aB \mid bA$	10	
	$A \rightarrow a \mid aS \mid bAA$		12.
	$B \rightarrow b \mid bS \mid aBB$		U
	For string aaabbabbba, find Left most derivation and Right most derivation. [May-2018-		T
	OLD] [LJIET]		
15	Decide whether the given language is a CFL, and prove your answer.	3	
	$L = \{ xyx \mid x, y \in \{a, b\}^* \text{ and } x \ge 1 \} [May-2018-OLD] [LJIET]$		
16	Consider the grammar:	3	
	$S \rightarrow aAS \mid a$		
	$A \rightarrow SbA \mid SS \mid ba$		
	Derive left most and right most derivation of string aabbaa using given grammar. [May-		
	2019-OLD][LJIET]		
17	Write CFG for the following languages:	4	22
	i. $\{a^ib^jc^k \mid i=j+k\}$		
	ii. $\{a^ib^jc^k \mid j=i \text{ or } j=k\}$.[Dec-2019-OLD][LJIET]		
18	Prove that the context-free languages are closed under union.[Jan-2021-OLD][LJIET]	3	
19	Give the context free grammar for the following languages.[Jan-2021-OLD][LJIET]	7	
	1. $L = \{ a^n b^n n > = 0 \}$	The same of	
	2. Language for Palindroms.	į.	1
	3. Language for Non-Palindroms.		١,
	4. Language for Algebraic Expressions		
	5. L = { x belongs to $\{0,1\}^* \mid n_0(x) = n_1(x) \}$		
	6. L = { x belongs to $\{0,1\}^* \mid n_0(x) \neq n_1(x) \}$		82
20	7. The set of odd-length strings in {a,b}* with middle symbol a.	7	-
20	Prove The Theorem: "If L1 and L2 are context – free languages, then the languages L1	/	
21	U L2, L1L2, L1* are also CFL.".[Jun-2022-OLD][LJIET]	7	
41	Define Context free grammar & context free language.".[Jun-2022-NEW][LJIET]	/	_
	TOPIC:2: Ambiguity Unambiguous CFG and Algebraic Expressions		
	BacosNaur Form (BNF), Normal Form – CNF		
Sr.	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Maı	rks
No	Define: CNE II HETI	01	_
1	Define: CNF [LJIET] Answer: In formal language theory, a context-free grammar G is said to be in	U1	
THE THE	Chomsky normal form (first described by Noam Chomsky) if all of its production		
2	rules are of the form: $A \rightarrow BC$, or. $A \rightarrow a$	01	
<u> </u>	What is a ambiguous grammar? [LJIET] Answer: A grammar is said to be ambiguous if it has more than one derivation trees	U1	
	Answer: A grammar is said to be ambiguous if it has more than one derivation trees		
	for a sentence or in other words if it has more than one leftmost derivation or more than		
2	one rightmost derivation.	Λ1	
3	Define: BNF [LJIET]	01	

	Answer: Backus–Naur form or Backus normal form (BNF) is a notation technique for	
	context-free grammars, often used to describe the syntax of languages used in	
	computing, such as computer programming languages, document formats, instruction	
	sets and communication protocols.	
Sr. No	DESCRIPTIVE QUESTIONS	Marks
1./0	Give definition of Context-Free Grammars.[Nov-2011-OLD][LJIET]	2
2.	Explain in brief Chomsky Normal Form(CNF) . [May-2011-OLD][LJIET]	3
3.	Define Context Free Grammar (CFG). Describe the language accepted by following	4
	CFG:	
	$S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda.[Jan-2013-OLD [LJIET]]$	
4.	Design a CFG for the following language.[May-2011-OLD] [Jan-2013-OLD] [Dec-	4
	2013-OLD][LJIET]	0
	$L = \{ 0^i 1^j 0^k / j > i + k \}$	T
5.	Find CFG for the following languages.[Nov-2011-OLD] [LJIET]	5
	1. L = { $a^i b^j a^k j > i + k$ }	70
	2. L = { $a^{i} b^{j} a^{k} i = j \text{ or } j = k$ }	H
6.	Given the Context Free Grammar G, find a CFG G' in Chomsky Normal	5
	Form generating L(G) – { }	
	$S \rightarrow SS \mid A \mid B$	
	$A \rightarrow SS \mid AS \mid a$	-
_	$B \rightarrow \bigwedge$ [May-2015-OLD] [LJIET]	_
7.	Given the context-free grammar G, find a CFG G' in Chomsky Normal Form	5
0	generating $L(G) - \{^{\wedge}\}$. G has production $S \rightarrow S(S) \mid ^{\wedge}$. [Nov-2011-OLD] [LJIET]	-
8.	For the following CFG's, describe the language it accepts.[Nov-2011-OLD][LJIET]	5
1	$(1) S \rightarrow SS XaXaX ^{\wedge}$	3
	$X \rightarrow bX \mid ^{\wedge}$	March 1
	$2. S \rightarrow aM \mid bS$	
	$M \rightarrow aF \mid bS$	
	$F \rightarrow aF \mid bF \mid ^{\wedge}$	
	$3. S \rightarrow aS \mid bS \mid a \mid b \mid^{\wedge}$	10
9.	Define CFG. Prove that the following CFG is Ambiguous.	6
	$S \rightarrow S + S \mid S * S \mid (S) \mid a$	
	Write the unambiguous CFG for the above grammar.[May-2011-OLD] [LJIET]	
10.	Give the context free grammar for the following languages.	7,3
	(011+1)*(01)*	, i
	OR	9
	Find the CFG for the regular expression : (011+1)* (01)*	
	[May-2016-OLD][NOV-2018-OLD][Dec-2019-OLD][LJIET]	
11.	Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form	7
	generating $L(G) - \{ \}$	
1000	$(1) S \rightarrow aY \mid Ybb \mid Y$	
L	$I_{X \to \Lambda \mid a}$ LJET LJET LJET LJ	HET:
1.00	$Y \rightarrow aXY \mid bb \mid Xxa$	
	$2) S \rightarrow AA$	
	$A \rightarrow B \mid BB$	
	$B \rightarrow abB \mid b \mid bb$ [May-2015-OLD] [LJIET]	
12.	Define Context Free Grammar(CFG).	7

	Find CFG for following language:	
	$L = \{ 0^{i} 1^{j} 0^{k} / j > i + k \} [Dec-2015-OLD] [LJIET]$	
13.	Prove that following CFG is Ambiguous and convert it into unambiguous. $S \rightarrow S + S \mid S * S \mid (S) \mid a$ [Dec-2015-OLD] [LJIET]	7
14.	Design an ambiguous grammar for if-then-else statement that also generates if-then	
-	statement. Re-write an equivalent unambiguous grammar. Prove that Grammar is	7
10	Unambiguous by tracing "ic1tic2taea". [May-2015-OLD] [LJIET]	
15.	Define Context Free Grammar(CFG). Design CFG for Generating Following Language:	7
	(1) For Balanced Parenthesis	T
	(2) Set of even length strings in $\{a, b, c, d\}^*$ with two middle symbol equal. [May-	
	2015-OLD] [LJIET]	0.
16.	Generate the Context-Free Grammars that give the following languages. [Dec-2014-	7
	OLD][LJIET]	0
	(i) {w w contains at least three 1s}	T
	(ii) {w w starts and ends with the same symbol}	1
17.	Define CFG and Design a CFG for the following language.[May-2014-OLD] [LJIET]	7
	$L = \{ x \in \{0, 1\}^* \mid n_0(x) \neq n_1(x) \}$	H
18.	Let L be the language corresponding to the regular expression (011+1)* (01)*. Find the	7
10	CFG generating L. [May-2014-OLD] [LJIET]	
19.	Given the CFG G, find a CFG G' in Chomsky Normal form generating $L(G) - \{\Lambda\}$.	7
	[May-2014-OLD] [May-2019-OLD] [LJIET]	-
	$S \rightarrow A \mid B \mid C$	
	$A \rightarrow aAa \mid B$	
	B→ bB bb	
	C → aCaa D D → baD abD aa	0
20.	Find context free grammar generating following language $\{a^i b^j c^k \mid I = j \text{ or } I = k\}$	7
20.	• Show that CFG S→ a Sa bSS SSb SbS is ambiguous.	Marie Control
	 find an equivalent unambiguous grammar for following: 	
	S \rightarrow A B A \rightarrow aAb ab B \rightarrow abB ϵ .[June-2013-OLD] [LJIET]	
21.	Prove that the following CFG is Ambiguous.[Jan-2013-OLD] [Dec-2013-OLD][LJIET]	7,6
21.	$S \rightarrow S + S \mid S * S \mid (S) \mid a$	7,0
	Write the unambiguous CFG for the above grammar. Draw Parse tree for the string $a + a * a$.	82
22.	Prove that the following CFG is Ambiguous.	7
	$S \rightarrow S + S \mid S * S \mid a \mid b$	2.7
	Write the unambiguous CFG based on precedence rules for the above grammar. Derive	17
	the parse tree for expression $(a + a)*b$ from the unambiguous grammar. [Oct-2016-OLD]	1
	[LJIET]	9
23.	Convert following CFG to equivalent Chomsky Normal Form(CNF)	7
	$S \rightarrow AACD \mid ACD \mid AAC \mid CD \mid AC \mid C$	
	$A \rightarrow aAb \mid ab$	
	$C \rightarrow aC \mid a$	
0.4	D →aDa bDb aa bb.[Jan-2013-OLD ,Dec-2013-OLD] [LJIET]	_
24.	Define CFG and Design a CFG for the following language. [May-2012-OLD][LJIET] $L = \{ 0^i 1^j 0^k / j > I + k \}$	7
25.		7
	$S \rightarrow AaA \mid CA \mid BaB$	
	A→ aaBa CDA aa DC	
	$B \rightarrow bB \mid bAB \mid bb \mid aS$	
	$C \rightarrow Ca \mid bC \mid D$	
25.	$L = \{ 0^i 1^j 0^k / j > I + k \}$ Given the CFG G, find a CFG G' in Chomsky Normal form generating L(G) − { Λ} S→ AaA CA BaB A→ aaBa CDA aa DC B→ bB bAB bb aS	7

Semester: VI (2022-23)

L.J. Institute of Engineering & Technology

 $D \rightarrow bD \mid \Lambda.[May-2012-OLD, Dec-2014-OLD] [LJIET]$ 26. Check whether the given grammar is in CNF $S \rightarrow bA|aB$ $A \rightarrow bAA|aS|a$ $B \rightarrow aBB|bS|b$ If it is not in CNF, Find the equivalent CNF. [May-2016-OLD] [LJIET] Convert the CFG, G ({S,A,B},{a,b},P,S) to CNF, where P is as follows 27. 7 $S \rightarrow aAbB A \rightarrow Ab \mid b B \rightarrow Ba \mid a$.[Oct-2016-OLD] [Aug-2021-OLD] [LJIET] Define Context Sensitive Grammar. Design a CSG for the following language 7 28. $L = \{a^n b^n c^n | n > 0\}.[May-2016-OLD][LJIET]$ 29. Prove that the following language is ambiguous and convert into unambiguous 7 $S \rightarrow S + S \mid S * S \mid a$ [May-2016-OLD] [LJIET] Define Context-Sensitive Grammar. What is the language of following context-sensitive **30.** 3 grammar? $S \rightarrow aTb \mid ab$ $aT \rightarrow aaTb | ac.[Nov-2018-OLD] [LJIET]$ 31. Define Context Free Grammar. Design a CFG for the following language. [May-2016-7 **OLD**] [LJIET] $L = \{ x \in (0,1)^* \mid n0(x) = n1(x) \}$ For the following CFG, Find Chomsky normal form **32.** 7 S->AACD A->aAb|_A C-> aC|_a D->aDa|_bDb|_A [Oct-2016-OLD][May-2018-OLD][Aug-2021-OLD] [LJIET] 33. For the following CFG, Find Chomsky normal form 7 S->AaA|CA|BbB A->aaBa|CDA|aa|DC B->bB|bAB|bb|aS C->Ca|bC|D D->bD|A [Oct-2016-OLD] [LJIET] Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form 7 34. generating $L(G) - \{ \}$ $S \rightarrow aY \mid Ybb \mid Y \mid X \rightarrow \land \mid a \mid Y \rightarrow aXY \mid bb \mid Xxa \quad [May-2017-OLD] [LJIET]$ **35.** Define Context Free Grammar. Design a CFG for the following language $L = \{a^n b^n \mid n\}$ 7 >0}. [Nov-2017-OLD] [LJIET] **36.** Convert the following language in Chomsky normal form. 7 $S \rightarrow ASB \mid SAB A \rightarrow BC B \rightarrow bB \mid c C \rightarrow e \mid [Nov-2017-OLD] \mid [LJIET]$ Give the recursive definition of the iterated derivation (i.e., derivation in zero or more **37.** 4 steps), denoted as =>*. Give mathematical description of the language of a CFG. [May-2017] [LJIET] **38.** Define CFG. When is a CFG called an 'ambiguous CFG'? [May-2017-OLD] [Nov-3 2017-OLD] [Aug-2021-OLD] [LJIET] **39.** Consider following grammar: 4 $S \rightarrow ASB \mid \Lambda$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$ i. Eliminate useless symbols, if any. ii. Eliminate Λ productions. [May-2017-OLD] [Aug-2021-OLD] [LJIET] Given the Context Free Grammar G, find a CFG G' in Chomsky Normal Form generating $L(G) - \{ \}$ $S \rightarrow aY \mid Ybb \mid Y \stackrel{.}{X} \rightarrow \wedge \mid a \stackrel{.}{Y} \rightarrow aXY \mid bb \mid Xxa$ [Nov-2017-OLD] [LJIET] (1) Write a CFG for solving simple (& parenthesized) expression, such as + and *. 7 41. (ii) Also write CFG fir regular expression $r = (a + b) (a + b + 0 + 1)^*$ Use CFG defined for part(i). (iii) Derive the string (which is defined in part(ii)) a * (a + b00) by applying left most

	derivation and right most derivation. [May-2018-OLD] [LJIET]		
42.	Define Context Free Grammar. Design a CFG for the language	7	
120	$L = \{ a^i b^j c^k \mid i \neq j + k \}$ [May-2018-OLD] [LJIET]	•	
43.	Show that the CFG with productions	3	
	$S \rightarrow a \mid Sa \mid bSS \mid SSb \mid SbS$		
	is ambiguous. [May-2018-OLD] [LJIET]		
44.	Given the context-free grammar G, find a CFG G' in Chomsky Normal Form. G:.	7	
100	$S \rightarrow AaA \mid CA \mid BaB$.8.
	$A \rightarrow aaBa \mid CDA \mid aa \mid DC$		
	$B \rightarrow bB \mid bAB \mid bb \mid aS$		
	$C \rightarrow Ca \mid bC \mid D$		
	$D \rightarrow bD \mid \epsilon$	*//	1
	ε represents null. [May-2018-OLD] [LJIET]		
45.	Define Context Free Grammar. Find context-free grammar for the language: $L = \{a^ib^j \mid i < i\}$	7	
	2j}. [May-2018-OLD] [LJIET]		T
46.	Define Context-Sensitive Grammar. Write a CSG for $\{a^nb^nc^n \mid n \ge 1\}$. [May-2018-OLD]	4	1
	[LJIET]		10
47.	What is CNF? Convert the following CFG into CNF.	7	H
	$S \rightarrow ASA \mid aB$		
	$A \rightarrow B \mid S$		
	$B \rightarrow b \mid \epsilon$. [Nov-2018-OLD] [LJIET]		
48.	Give the left linear grammar for RE (10)*1. [May-2019-OLD] [LJIET]	3	15-02
49.	Define CFG. When a CFG is called an 'ambiguous CFG'? [Nov-2018-OLD] [LJIET]	4	
50.	Consider the grammar: S->ABA, A->aA ε , B->bB ε	7	-
50.	Is given grammar ambiguous? If so then remove ambiguity[May-2019-OLD] [LJIET]	,	1
51.	Find context free grammar for the following language.	7	0
31.	L1={ $\mathbf{a}^{i}\mathbf{b}^{j}\mathbf{c}^{k} \mid \mathbf{i} = \mathbf{j} + \mathbf{k}$ }, L2= (011+1)* (01)*, L3=(0+1)1*(1+(01)*) [May-2019-OLD]	•	
- 1	[LJIET]		
52.	Eliminate useless symbols, ε -productions and unit productions for the following	7	
34.	grammar:	-	
	S->0A0 1B1 BB, A->C, B->S A, C->S ε [May-2019-OLD] [LJIET]		
53.	Give CFG for following languages:	4	
33.	1). $L = a*b*$ 2). $L = \{a^{n+2} b^n \mid n >= 0\}$ [May-2019-OLD] [LJIET]	4	
54.	Construct finite automata for following left linear grammar:	7	-
34.	Construct finite automata for following left inlear grainmar: $S \rightarrow X0 \mid Y1$	'	
	S -> X0 Y1 X -> Y1		
	Y -> Y0 1 [May-2019-OLD] [LJIET]		12
55.		7	
55.	Define Ambiguous grammar. Write Unambiguous grammar for following grammar : $E \rightarrow E + E \mid E * E \mid (E) \mid id$	'	0
	Derive string "id+id*id" using unambiguous grammar. [May-2019-OLD] [LJIET]		
54		7	
56.	Design Context Free Grammar for following Language:	'	
57	$L = \{ 0^{i}1^{j}0^{k} \mid j > i + k \} $ [May-2019-OLD] [LJIET]		-
57.	Convert following CFG to Chomsky Normal Form,	7	
West of	$(1) S \rightarrow AACD$ $(2) A \rightarrow AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$		
100	(2) $A \rightarrow aAb \mid \Lambda$ (3) $C \rightarrow aC \mid a$	- K	,
	(3) & 1 40 4		
= ^	(4) D \rightarrow aDa bDb Λ [Dec-2019-OLD] [LJIET]		
58.	Prove that following Grammar is an Ambiguous Grammar	7	
	$S \rightarrow S + S \mid S^*S \mid (S) \mid a$		
	Draw parse tree for string a+a*a using above grammar [Dec-2019-OLD] [LJIET]		
59.	Prove that – "If there is a CFG for the language L that has no Λ -productions, then there	3	

	is a CFG for L with no Λ -productions and no unit productions". Support your answer		
	with the help of the following CFG: $S \rightarrow A \mid bb \mid A \rightarrow B \mid b \mid B \rightarrow S \mid a[Dec-2019-OLD]$		
60	[LJIET]	_	
60.	Define – ambiguous grammar, leftmost derivation. Check whether the following	7	
70.00	grammars are ambiguous or not. Justify your answer with proper reason.		
	i. $S \rightarrow ABA$ $A \rightarrow aA \mid A \rightarrow bB \mid A$	1 1 1 7	
AL C	ii. $S \rightarrow A \mid B$		H
	A \rightarrow aAb aabb B \rightarrow abB Λ [Dec-2019-OLD] [LJIET]		
61.	Describe the language generated by the following grammars:	3	
01.	i. S \rightarrow aA bC b	0)	
	$A \rightarrow aS \mid bB \mid B \rightarrow aC \mid bA \mid a \mid C \rightarrow aB \mid bS$		1
			0
	ii. $S \rightarrow aT \mid bT \mid \Lambda$		Ť
	$T \rightarrow aS \mid bS$		
	[Dec-2019-OLD] [LJIET]		
62.	Convert the following CFG into its equivalent CNF:	7	H
	$S \rightarrow TU \mid V$		
	$T \to aTb \mid \Lambda \stackrel{\mathbf{U}}{\longrightarrow} cU \mid \Lambda V \to aVc \mid W \stackrel{\mathbf{W}}{\longrightarrow} bW \mid \Lambda$		
(2	[Dec-2019-OLD] [LJIET]	2	
63.	Define Context Sensitive Language and Context Sensitive Grammar. Write CSG for	3	
	L= $\{a^n b^n c^n n \ge 1\}$. [Dec-2019-OLD] [LJIET]	1	
64.	Define 1) Parse tree 2) Ambiguous grammar[May-2019-OLD] [LJIET]	3	-
65.	Define Context Free Grammar. Find context-free grammar for the language:	4	
05.	L= $\{a^i b^j c^k j=i+k\}$ [Nov-2021-NEW][LJIET]	7	6
66.	Define Ambiguous grammar. for following grammar say whether the grammar is	3	
- 4	ambiguous or not. give reason	No. of Parties	
	$S \rightarrow ABA, A \rightarrow aA \mid \Lambda, B \rightarrow bB \mid \Lambda$ [Nov-2021-NEW][LJIET]		
67.	Give an unambiguous grammar for SIMPLE CALCULATOR contain +, -, *, /,(,) operator for	4	
	terminal 'id'. And draw a parse tree for (id+id)*id-id [Nov-2021-NEW][LJIET]		
68.	Find the CFG for the regular expression: $(01*1+1)*(01)*$ [Nov-2021-NEW][LJIET]	3	
69.	Given the context-free grammar G, find a CFG G' in Chomsky Normal Form. S -> AaA CA BaB	7	8
	A -> aaBa DC		
	B -> bb aS		
	$C \rightarrow Ca \mid bC \mid D$		17
	$D \rightarrow bD \mid \Lambda$ [Nov-2021-NEW][LJIET]		
70.	For the following CFG, find out two left most derivations for the string "aaabb" and also draw the corresponding parse trees. [Jan-2021-OLD][LJIET]	4	0
	the corresponding parse trees. [Jan-2021-OLD][LJIE1] $S \rightarrow XY$		
	$X \to XX \mid a$		
	$Y \rightarrow YY \mid b$		
71.	Define CNF. Also convert the following CFG into its equivalent CNF. [Jan-2021-OLD][LJIET]	7	
WE OW	$S \rightarrow aX \mid Y \mid bab$		
Le	$X \rightarrow ^{\wedge} Y$ $Y \rightarrow bb bXb$		
72.	What language over {a, b}* does the CFG with productions[Jan-2021-OLD][LJIET]	3	
	$S \rightarrow aT \mid bT$		
	$T \rightarrow aS \mid bS \mid^{\wedge}$ generate? Prove your answer.		
73.	Find context-free grammar generating the languages below. [Jan-2021-OLD][LJIET]	7	
	(i) $\{a^i b^j c^k j=i \text{ or } j=k\}$		

	(;;) (ai hì ak ; / ; 1, 1)	
7.4	(ii) $\{a^i b^j c^k j \neq i + k \}$	_
74.	Define CFG. Prove that the following CFG is Ambiguous. [Jan-2021-OLD][LJIET]	7
	$S \rightarrow S + S \mid S * S \mid (S) \mid a$	
7.5	Write the unambiguous CFG for the above grammar.	4
<i>75.</i>	Define a CFG for language having strings with equal number of 0's and 1's.	4
76	$L = \{ x \in \{0,1\}^* n_0(x) = n_1(x) \} $ [Oct-2020-OLD][LJIET] What is an Ambiguous CFC2 Explain with reference to denoting also problem. [Oct 2020.]	
76.	What is an Ambiguous CFG? Explain with reference to dangling else problem. [Oct-2020-OLD][LJIET]	3
77		7
77.	Derive a CFG equivalent to following regular expression (011 + 1)*(01)* [Oct-2020-OLD][LJIET]	/
78.	What are Nullable variable in a CFG? How can we remove them from a production? [Oct-2020-	3
70.	OLD][LJIET]	3
79.	What are the steps to convert a CFG to Chomsky Normal Form? [Oct-2020-OLD][LJIET]	7
80.	What language will be generated by this CFG: [Oct-2020-OLD][LJIET]	4
ou.	What larguage will be generated by this CPG. [Oct-2020-OLD][LSIET] $S \rightarrow aT \mid bT \mid \Lambda$	4
	$T \rightarrow aS \mid bS$	
81.	Consider the grammar:	3
01.	S→aAS a	3
	$A \rightarrow SbA \mid SS \mid ba$	
	Derive left most and right most derivation of string aabbaa using given grammar. [Aug-	
02	2021-OLD][LJIET]	4
82.	Define CFG. Create CFG for (011+1)*(01)* [Aug-2021-OLD][LJIET]	4
83.	Explain Ambiguous Grammar and remove ambiguity with suitable example. [Aug-2021-OLD][LJIET]	4
84.	Suppose that the language L over {a, b}* is define as follows:	7
	1. a ∈ L	
	2. For any $x \in L$, $ax \in L$.	
	3. For any x and y in L, all the strings bxy, xby, and xyb are in L.	
	4. No other strings are in L.	Section 1
	Prove that L contains every element of {a,b}* having more a's than b's.	
	[Dec-2022-OLD][LJIET]	<u>[</u>
		-
85.	Convert the following grammar to CNF. [Dec-2022-OLD][LJIET]	7
	$S \rightarrow ABDA$	
	$A \rightarrow aAb \mid \Lambda$	
	$B \rightarrow cB \mid c$	1
	$D \rightarrow bDb \mid aDa \mid \Lambda$	
86.	Construct a deterministic bottom-up parser for a CFG[Dec-2022-OLD][LJIET]	7
	$S \rightarrow A$ \$	
	$A \rightarrow A + T$	
	$A \rightarrow T$	13
	$T \rightarrow T * a$	
	$T \rightarrow a$	
87.	Derive the string "aabbababbaa" using leftmost derivation for the	7
37.	following grammar. [Dec-2022-OLD][LJIET]	,
	S \rightarrow aA bC b	
40	S S CALL OF THE LAIR LAIR LAIR LA	
	$A \rightarrow aS \mid bB$	
	$B \rightarrow aC \mid bA \mid a$	
	$C \rightarrow aB \mid bS$	
00		
88.	Prove that following CFG is Ambiguous. [Dec-2022-OLD][LJIET]	4

Semester: VI (2022-23) S -> S + S | S * S | (S) | aFind CFG for following language: [Dec-2022-OLD][LJIET] 89. $L = \{ 0^{i} 1^{j} 0^{k} / j > i + k \}$ Define type 2 grammar with example. [Dec-2022-NEW][LJIET] 90. 3 91. Define: CNF. Show the steps to convert CFG into CNF. Convert the following CFG into equivalent CNF. [Dec-2022-NEW][LJIET] Explain ambiguous and unambiguous context free grammar with example. [Dec-2022-92. NEW|[LJIET] 93. Enlist closure properties for the context sensitive language. [Dec-2022-NEW][LJIET] 94. Answer the following: 3 1. Find a CFG in Chomsky normal form for the following Grammar G. G has productions $\{S \rightarrow SS \mid (S) \mid \Lambda \}$ [Jun-2022-OLD][LJIET] 95. Answer the following: [Jun-2022-OLD][LJIET] 4 Give the context free grammar for the following. 1> L = { $x \{0,1\} * | n_0(x) \neq n_1(x) \}$ $2 > L = \{ x \in \{0,1\} * | n_0(x) = n_1(x) \}$ 96. Check whether the given grammar is in CNF[Jun-2022-OLD] [LJIET] S->bA|aB A->bAA|aS|a B->aBB|bS|b If it is not in CNF, Find the equivalent CNF. 97. Prove The Theorem: "If L1 and L2 are context – free languages, then the 7 languages $L_1 \cup L_2$, L_1L_2 , L_1* are also CFL." [Jun-2022-OLD] [LJIET] Explain ambiguous grammar with example. [Jun-2022-OLD] [LJIET] 98. 3 99. Define Context Free Grammar. Find context-free grammar for the language: a. $L = \{a^i b^j c^k \mid j=i+k\}$ b. $L = \{ x \in \{0,1\} * \mid n_0(x) = n_1(x) \}$ [Jun-2022-OLD] [LJIET] Given the context-free grammar G, find a CFG G' in Chomsky Normal 100. Form. [Jun-2022-OLD] [LJIET] $S \rightarrow 0A0 \mid 1B1 \mid BB$ $A \rightarrow 0B \mid C$ $B \rightarrow S1 \mid A$ $C \rightarrow 01 \mid \Lambda$ Write CFG for following[Jun-2022-NEW] [LJIET] 4 101. (i) $L=\{a^ib^jc^k \mid i=j \text{ or } j=k\}$ (ii) L= $\{a^ib^jc^k \mid j>i+k\}$ Convert following CFG to CNF: [Jun-2022-NEW] [LJIET] 7 102. $S \rightarrow S(S)/^{\wedge}$ Define Regular grammar and give example. [Jun-2022-NEW] [LJIET] 3 **103.** 104. Explain types of derivation and ambiguity. [Jun-2022-NEW] [LJIET] 4 Convert following CFG to CNF: [Jun-2022-NEW] [LJIET] 105. $S->aX/Yb X->S/^ Y->bY/b$ UNIT NO- 4: Pushdown Automata, CFL And NCFL TOPIC:1: Definition, deterministic PDA, Equivalence of CFG and PDA, Pumping lemma for CFL, Intersections and Complements of CFL, Non-CFL SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks Sr. Marks No

The language accepted by a Pushdown Automation in which the stack is limited to 10

01

	items is best described as[LJIET]		
	(A) Context Free		
	(B) Regular		
	(C) Deterministic Context Free		
	(D) Recursive		
T	Answer: B		
2	Define: PDA [LJIET]	01	
	Answer: A pushdown Automata M is a system $(Q, \Sigma, \Gamma, \delta, q0, Z0, F)$ where		
	Q is a finite set of states.		r
	Σ is an alphabet called the input alphabet.		
	Γ is an alphabet called stack alphabet. q0 in Q is called initial state.	io!	
	Zo in Γ is start symbol in stack. F is the set of final states.		T
	δ is a mapping from Q X (Σ U { ϵ }) X Γ to finite subsets of Q X Γ *.	9	U
3	What is the significance of PDA? [LJIET]	01 -	=
	Answer: Finite Automata is used to model regular expression and cannot be used to		L
	represent non regular languages. Thus to model a context free language, a Pushdown		
	Automata is used.		L
4	What are the components of PDA ? [LJIET]	01	II.
	Answer: The PDA usually consists of four components:	7	
	A control unit.		
	A Read Unit.		
	An input tape.		1
	A Memory unit.		
5	Is it true that the language accepted by a PDA by empty stack and final states are	01	
	different languages. [LJIET]		0
	Answer: No, because the languages accepted by PDA 's by final state are exactly the		0
	languages accepted by PDA's by empty stack.		7
6	Which of the following is not possible algorithmically ? [LJIET]	01	Л
	A. Regular grammar to context free grammar		-
	B. Non-deterministic FSA to deterministic FSA	9	2
	C. Non-deterministic PDA to deterministic PDA		
	D. None of these		
	Answer: C	3.5	
Sr. No	DESCRIPTIVE QUESTIONS	Marks	
1	Convert following CFG to PDA	2	
-	S \rightarrow 0S1 00 11 [May-2015-OLD] [LJIET]		
2	[May-2015-OLD] [LJIET]	6	
3	Design and draw a deterministic PDA accepting "Balanced strings of Brackets" which are	6,7	9
	accepted by following CFG.	","	
	$S \rightarrow SS \mid [S] \mid \{S\} \mid \Lambda$		
	OR		(2)
	Design a pushdown automata to check well-formed parenthesis. [May-2011-OLD ,May-		
WC - 19	2019] [LJIET]		. 1
4	For the language L={set of strings over alphabet {a, b} with exactly twice as many a's as	∀7	1
LIU	b's} design a PDA (Push Down Automata) and trace it for the		-
	sring "abaabbaaaaabaab" [May-2015-OLD] [LJIET]		
	For the language L={ $a^i b^j c^k \mid i, j, k \ge 0$ and $i + j = k$ } design a PDA (Push Down	7	
5	+ For the ranguage L= $\{$ a \cup C [*] 1.1. \times \setminus 0 and 1 $+$ 1 $ \times$ 3 design a FDA (Fush Down	,	
5	Automata) and trace it for String "bbbbbccccc" [May-2015-OLD] [LJIET]	,	

	strings with more a's than b's. Trace it for the string "abbabaa". [Dec-2015-OLD][May-		
	2016] [LJIET]		
	OR		
	Design and draw a deterministic PDA accepting strings with more a's than b's. Trace it for the string "abbabas" [Jun 2022 OI D] [I HET]		
7	Trace it for the string "abbabaa".[Jun-2022-OLD] [LJIET]	7	4
1	Define Push Down Automata (PDA). Draw PDA accepting strings of Brackets like following.	10 10 744	1
	S \rightarrow SS {S} [S] Λ [Dec-2015-OLD] [LJIET]		
8	Design and draw a deterministic PDA accepting strings with more a's than b's. Trace it	6,7	_
0	for the string "abbabaa" .[Jan-2013-OLD] [May-2014-OLD] [LJIET]	0,7	
9	Write transition table for PDA recognizing following language:	7	Т
	{ $a^i b^j c^k j = i \text{ or } j = k$ }.[June-2013-OLD] [LJIET]	,	ľ
10	For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ (Palindrome with middle character=c), Design a	7	,
10	PDA(Push Down Automata) and trace it for string "abacaba" .[Dec-2013-OLD] [LJIET]		
11	Design and draw a deterministic PDA accepting strings of the language $L = \{x \in \{a, b\}^* \mid a, b\}^* \mid a$	7	Ħ
	$n_a(x) > n_b(x)$. Trace it for the string "aababaab" .[Dec-2013-OLD] [LJIET]		
12	Prove: The language pal= $\{x \in \{a, b\}^* \mid x = x^r\}$ cannot be accepted by any deterministic	7	4
_ _	pushdown automaton. [May-2014-OLD] [LJIET]		4
13	Write PDA for following languages: [Dec-2014-OLD][LJIET]	7	
	$\{x \in \{a,b,c\}^* \mid na(x) < nb(x) \text{ or } na(x) < nc(x)\}.$	2.0	
14	Give transition table for deterministic PDA recognizing the following language	7	
	$\{a^n b^{n+m} a^m n, m \ge 0\}$. [Nov-2011-OLD] [LJIET]		I
15	Give transition table for deterministic PDA recognizing the following language	7	
	$\{ a^i b^j c^k i, j, k \ge 0 \text{ and } j = i \text{ or } j = k \}. [Nov-2011-OLD, Dec-2014-OLD] [LJIET] $		i
16	Define PDA and design PDA for $L = \{x \in \{a, b\}^* \mid n_a(x) > n_b(x)\}$. [May-2012-OLD]	7	J
	[LJIET]		
- 4	OR	_	
	Design PDA for the language $L = \{ x \in \{a, b\}^* \mid n_a(x) > n_b(x) \}$. $\}.$ [May-2019-OLD]		T
17	For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA(Push Down Automata) and	7	4
	trace it for string "bacab".		
	OR Cive transition table for DDA mass priming the fallowing large and trace the mass of		
	Give transition table for PDA recognizing the following language and trace the move of the machine for input string abcba: $L=\{xcx^r \mid x \in \{a,b\}*\}$	1	1
	[Jan-2013-OLD][Dec-2019-OLD] [LJIET]		4
18	Write PDA for following languages: [May-2016] [LJIET]	7	┪
10	$\{a^i b^j c^k \mid i, j, k >= 0 \text{ and } j = i \text{ or } j = k\}.$,	0
19	Given a CFG, $G = (\{S,A,B\},\{0,1\},P,S)$ with P as follows	7	Ť
	S> 0B 1A A> 0S 1AA 0 B> 1S 0BB 1	,	
	Design a PDA M corresponding to CFG, G. Show that the string 0001101110 belongs to		1
	CFL, L(G).[Oct-2016-OLD] [LJIET]		1
20	Design a PDA, M to accept $L = \{ a^n b^{2n} n \ge 1 \}$.[Oct-2016-OLD] [LJIET]	7	1
21	Define PDA. Draw a PDA for the complement of the following language	7	,
LU	$L = \{ww^{R} \mid w \in (0,1)^{*}\}$ [May-2016-OLD] [LJIET]		
22	Draw the PDA for the following language. [May-2016-OLD] [LJIET]	7	
	$L = \{ a^i b^j c^k \mid i = j + k \}$		_
23	Write PDA for language of palindrome. Trace it with example. [Oct-2016-OLD] [LJIET]	7	_
24	Write PDA for the string with equal number of a's and b's. Trace it with example. [Oct-	7	
	2016-OLD] [LJIET]		╛

25	For the language $L = \{ xcx^r / x \in \{a,b\}^* \}$ design a PDA(Push Down Automata) and trace it for string "abcba" .[May-2011-OLD] [LJIET]	8
26	For the language $L = \{ xcx^r \mid x \in \{a,b\}^* \}$ design a PDA(Push Down Automata) and	7
20	trace it for string "abcba". [May-2017-OLD] [LJIET]	,
	trace it for suring account [way-2017-OLD] [Loller]	
27	Write transition table for PDA recognizing following language:	7
10	$\{a^i b^j c^k j = i \text{ or } j = k \}$. [May-2017-OLD] [LJIET]	
	[u v c j = 1 or j = k j. [Nay-2017-OLD] [Lond]	
28	Define PDA. Draw a PDA for the following language	7
	$L = \{0^n 1^n \mathbf{w} \in (0,1) \text{ and } n \ge 0\}$ [Nov-2017-OLD] [LJIET]	1
29	Draw the PDA for the following language	7
	$L = \{a^i \frac{b^j}{c^k} i = j + k\}$ [Nov-2017-OLD] [LJIET]	
30	Give formal definition of PDA. Give mathematical description of 'acceptance of a string	3
	by a PDA by empty stack'. [May-2017-OLD] [LJIET]	Ť
31	Convert the following grammar to a PDA:	7
	$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$	200
	$E \rightarrow I \mid E * E \mid E + E \mid (E)$ [May-2017-OLD] [Aug-2021-OLD] [LJIET]	
32	Using pumping lemma for CFL's, show that the language $L = \{a^m \ b^m \ c^n \mid m \le n \le 2m\}$ is	4
	not context free. [May-2017-OLD] [LJIET]	778
33	For the language $L = \{ xcx^r \mid x \in \{a,b\}^* \}$ design a PDA(Push Down Automata). [Nov-	4
	2017-OLD] [Aug-2021-OLD] [LJIET]	1000
34	Design a PDA to recognize the language generated by the following grammar:	4
	$S \rightarrow 0AB$	12
	$A \rightarrow 1A \mid 1$	1-
	$B \rightarrow 0B \mid 1A \mid 0$	
	Show the acceptance of the input string string "011100" by this PDA. [May-2018-OLD]	1
1	[LJIET]	
35	Prove that $L = \{a^nb^nc^n \mid n \ge 0\}$ is not a CFL using pumping lemma. [May-2018-OLD]	3
	[LJIET]	
36	Consider following PDA machine $M = (\{p, q\}, \{0,1\}, (x, z\}, \delta, q, Z)$ where δ is given by	4
	$\delta(\mathbf{q}, 1, \mathbf{z}) = (\mathbf{q}, \mathbf{xz})$	
	$\delta(\mathbf{q}, 1, \mathbf{x}) = (\mathbf{q}, \mathbf{x}\mathbf{x})$	10
	$\delta(\mathbf{q}, ^{\wedge}, \mathbf{x}) = (\mathbf{q}, ^{\wedge})$	8
	$\delta(\mathbf{q}, 0, \mathbf{x}) = (\mathbf{p}, \mathbf{x})$	5=
	$\delta(p, 1, x) = (p, \varepsilon)$	
	$\delta(p, 0, z) = (q, z)$	
	Construct Equivalent CFG. [May-2018-OLD] [LJIET]	<u> </u>
37	Design DPDA for the language L that accepts strings with more a's than b's. Trace String	7
	"abbabaa". [May-2018-OLD] [LJIET]	
38	Construct pushdown automata for the following language:	7
	L = {the set of strings over alphabet {a, b} with exactly twice as many a's and b's }	12
20	Trace string "abaabbaaa". [May-2018-OLD] [LJIET]	7
39	Define PDA and give PDA to accept strings of palindrome. Show trace on the string baab. [NOV-2018-OLD] [LJIET]	,
40	Define deterministic pushdown automata. Construct an example of DPDA that accepts	7
40	strings with more a's than b's. [NOV-2018-OLD] [LJIET]	
41	A language L {a, b}* is defined as follows:	7
	A language $L\{a, b\}^*$ is defined as follows. $1. a \in L$	•
	2. For any $x \in L$, $ax \in L$	
	3. For any x and y in L, all the strings bxy, xby and xyb are in L	
L	1	

	A NT A		
	4. No other strings are in L. Prove that every element of L has more a's than b's. [NOV-2018-OLD] [LJIET]		
42	Construct PDA for	4	
12	$S \rightarrow 0AB$		
	$A \rightarrow 1A \mid 1$		
T .			-
10	$B \rightarrow 0B \mid 1A \mid 0$		
43	Trace the string 01011 using PDA. [May-2018-OLD] [LJIET]	7	
43	Give transition tables for deterministic PDA recognizing following language:	,	T
	$L = \{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$		20
44	Trace it for the string abbaababbb [May-2018-OLD] [LJIET]	3	
44	Show using pumping lemma that the given language is not a CFL.	3	
4.5	$L = \{ a^n b^{2n} a^n \mid n \ge 0 \} [May-2018-OLD] [LJIET]$	4	
45	Prove that There are CFLs L1 and L2 so that L1 \cap L2 is not a CFL, and there is a CFL	4	I
16	L so that L' is not a CFL. [May-2018-OLD] [LJIET]	7	
46	For the PDA, $(\{q0, q1\}, \{0, 1\}, \{0, 1, z0\}, \delta, q0, z0, \phi),$	'	L
	where δ is		1
	$\delta(q0, \varepsilon, z0) = \{(q1, \varepsilon)\}$		
	$\delta(q0, 0, z0) = \{(q0, 0z0)\}$		
	$\delta(q0, 0, 0) = \{(q0, 00)\}$		
	$\delta(q0, 1, 0) = \{(q0, 10)\}$		
	$\delta(q0, 1, 1) = \{(q0, 11)\}$		
	$\delta(q0, 0, 1) = \{(q1, \epsilon)\}$		
	$\delta(q1, 0, 1) = \{(q1, \epsilon)\}$		6
	$\delta(q1, 0, 0) = \{(q1, \epsilon)\}$		7
- 4	$\delta(q1, \varepsilon, z0) = \{(q1, \varepsilon)\}$	Section 1	
4=	Obtain CFG accepted by the above PDA. [May-2018-OLD] [LJIET]	_	-
47	Define PDA. Describe the pushdown automata for language $\{0^n1^n n \ge 0\}$. [Nov-2018-	7	
40	OLD] [LJIET]	7	
48	Explain push down automata with example and their application in detail.[Nov-2018-	7	
49	OLD] [LJIET]	3	ं
	Compare PDA with FSM.[May-2019-OLD] [LJIET]	4	17
50	Write a note on DPDA and NPDA. [May-2019-OLD] [Aug-2021-OLD] [LJIET]	7	
51	Design PDA for the language $L = \{ xcx^r x \in \{a, b\}^* \}$ [May-2019-OLD] [LJIET]	/	
52	Define PDA. Give DPDA for CFG S \rightarrow SS [S] {S} Λ [Dec-2019-OLD] [LJIET]	7	0
53	Give Bottom Up PDA for following CFG,	7	- 1
	(1) $S \rightarrow S+T \mid T$,	
	(2) $T \rightarrow T * a \mid a$ [Dec-2019-OLD] [LJIET]		
54	Give transition table for PDA accepting the language of all odd-length strings over {a, b}	7	
	with middle symbol a. Also draw a PDA for the same. [Dec-2019- OLD] [LJIET]		
55	Convert the following CFG into its equivalent PDA.	3	٩.
LU	$S \to AB A \to BB B \to AB A \to a$		
	$B \rightarrow a \mid b$		
56	. [Dec-2019- OLD] [LJIET] Show using the numbing lemme that the following language is not a CEI	4	
50	Show using the pumping lemma that the following language is not a CFL.	4	
	$L = \{a^i b^j c^k \mid i < j < k\}$		

57 Design a PDA to accept L = (xcy x, y∈ (a,b)* and x = y). [Nov-2021-NEW][LJIET] 58 Design a PDA to accept L = (a*b* n>=0). [Nov-2021-NEW][LJIET] 59 Design a PDA to accept L = (a*b* n>=0). [Nov-2021-NEW][LJIET] 60 Define - A Pushdown Automaton and acceptance by a PDA. [Jan-2021-OLD] [LJIET] 61 Convert the CFG with following productions into its equivalent PDA. [Jan-2021-OLD] [LJIET] 62 Design a PDA to accept L = {xcx* x ∈ (a,b)* Jan-2021-OLD] [LJIET] 63 Design a PDA to accept L = {xcx* x ∈ (a,b)* Jan-2021-OLD] [LJIET] 64 Design a PDA to accept L = {xcx* x ∈ (a,b)* Jan-2021-OLD] [LJIET] 65 Discuss pumping lemma for context free languages [Jan-2021-OLD] [LJIET] 66 Discuss pumping lemma for context free languages [Jan-2021-OLD] [LJIET] 67 Design a PDA to accept L = {xcx* x ∈ (a,b)* Jan-2021-OLD] [LJIET] 68 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 69 Design a PDA for the following languages [Jot-2021-OLD] [LJIET] 60 Draw the PDA for the following languages [Jot-2021-OLD] [LJIET] 61 Design PDA for L={xcx*/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 62 Design PDA for L={xcx*/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)·(01)·(Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 Design the pushdown automata [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language [0*1* n≥0* Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q,0}, q1), {a, b, c}, {a, b, C}, {a, b, C}, {a, o, O, (q1)}) has the following Transition functions 1. δ (q0, a, Λ) = (q0, A) 2. δ (q0		[Dec-2019-OLD] [LJIET]	
58 Design a PDA to accept L = [xcy x, y∈ (a,b)* and x = y . [Nov-2021-NEW][LJIET] 4 59 Design a PDA to accept L = [a*b* n>=0). [Nov-2021-NEW][LJIET] 3 60 Define - A Pushdown Automaton and acceptance by a PDA. [Jan-2021-OLD] [LJIET] 3 5 S S S 61 Convert the CFG with following productions into its equivalent PDA. [Jan-2021-OLD] [LJIET] 7 5 S S S	57		3
59 Design a PDA to accept L = {a* b* n>=0}. [Nov-2021-NEW][LJIET] 60 Define - A Pushdown Automaton and acceptance by a PDA. [Jan-2021-OLD] [LJIET] 61 Convert the CFG with following productions into its equivalent PDA. [Jan-2021-OLD] [LJIET] 62 Design a PDA to accept L = {wew ^R w ∈ (a,b)*]. [Jun-2021-OLD] [LJIET] 63 Discuss pumping lemma for context free languages. [Jan-2021-OLD] [LJIET] 64 Design a PDA to accept L = {xex x ∈ (a,b)* }. [Jun-2022-OLD] [LJIET] 65 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 66 Draw the PDA for the following language[Jan-2021-OLD] [LJIET] 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 68 Explain push down automata with example. [Aug-2021-OLD][LJIET] 69 Design a PDA for L={xex x ∈ (a,b)* }. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)·(01)* [Dec-2022-OLD][LJIET] 74 Convert the Following CFG into CNF. [Dec-2022-OLD][LJIET] 75 Design the pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Supba ABB Sb b 78 Define Pushdown Automata for language [0*1*]n≥ 0} [Dec-2022-OLD][LJIET] 79 Design the pushdown automata for language [0*1*]n≥ 0} [Dec-2022-OLD][LJIET] 70 Design the pushdown automata for language [0*1*]n≥ 0} [Dec-2022-OLD][LJIET] 71 Suppose the PDA m = ({q0, q1}, {a, b, c}}, {a, b, Z0}, {b, q0, Z0, {q1}}) has the following transition functions 1. δ (q0, a, Λ) = (q0, b) 3. δ (q0, b, Λ) = (q0, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, c) = (q1, Λ) 5. δ (q1, b, c) = (q1, Λ) 5. δ (q1, b, c) = (q	58	Design a PDA to accept $L = \{xcy \mid x, y \in (a,b)^* \text{ and } x = y \}$. [Nov-2021-NEW][LJIET]	4
61 Convert the CFG with following productions into its equivalent PDA. [Jan-2024-OLD] [LJIET] 62 Design a PDA to accept L = {wew} {w ∈ (a,b)*}. [Jun-2022-OLD] [LJIET] 75 OR 76 Design a PDA to accept L = {xex' x ∈ (a,b)*}. [Jun-2022-OLD] [LJIET] 77 Discuss pumping lemma for context free languages. [Jan-2021-OLD] [LJIET] 78 Design a PDA to accept L = {xey x , y ∈ (a,b)* and x = y }. [Jan-2021-OLD] [LJIET] 79 Design a PDA to accept L = {xey x , y ∈ (a,b)* and x = y }. [Jan-2021-OLD] [LJIET] 70 Design a PDA to accept L = {xey x , y ∈ (a,b)* and x = y }. [Jan-2021-OLD] [LJIET] 71 Draw the PDA for the following language. [Jan-2021-OLD] [LJIET] 72 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 73 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 74 Design PDA for L={xxex/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD] [LJIET] 75 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 76 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 77 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 77 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 78 Find the CFG for the regular expression: (011+1): (01)* [Dec-2022-OLD][LJIET] 79 Design the pushdown automata. [Dec-2022-OLD][LJIET] 70 Design the PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 70 Design the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, {a, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b) = (q1, λ) 5.	59		4
S → [S] SS ^ 62 Design a PDA to accept L = {wcw ^R w ∈ (a,b)*}{Jan-2021-OLD} [LJIET] OR Design a PDA to accept L = {xcx ^R x ∈ (a,b)*}. Jun-2022-OLD] [LJIET] 63 Discuss pumping lemma for context free languages, Jan-2021-OLD] [LJIET] 64 Design a PDA to accept L = {xcy x, y ∈ (a,b)* and x = y }. Jan-2021-OLD] [LJIET] 65 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 66 Draw the PDA for the following language[Jan-2021-OLD] [LJIET] 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 68 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 69 Design a PDA for L={x∈x/x∈(a,b)*}. The string in L are odd length palindromes over [a,b). [Aug-2021-OLD] [LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD] [LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD] [LJIET] 75 → bA aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD] [LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD] [LJIET] 77 South and the pushdown automata for language [0*1*] ≥ 0* [Dec-2022-OLD] [LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, {a, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ)	60	Define - A Pushdown Automaton and acceptance by a PDA. [Jan-2021-OLD] [LJIET]	3
62 Design a PDA to accept L = {wew ^R w ∈ (a,b)*}{Jan-2021-OLD} [LJIET] 63 Discuss pumping lemma for context free languages, {Jan-2021-OLD} [LJIET] 64 Design a PDA to accept L = {xex' x ∈ (a,b)*}. [Jun-2022-OLD] [LJIET] 65 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 66 Draw the PDA for the following languages[Jan-2021-OLD] [LJIET] 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 68 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 69 Design PDA for L={xex'x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 S→ bA aB A → bAA aS a B → aBB bS b Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language [0 ⁿ 1 ⁿ n> 0} [Dec-2022-OLD][LJIET] 78 Suppose the PDA = {{q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}} has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ)	61		1114
Design a PDA to accept L = {xxx* x ∈ (a,b)*}. [Jun-2022-OLD] [LJIET] 63 Discuss pumping lemma for context free languages, [Jan-2021-OLD] [LJIET] 64 Design a PDA to accept L = {xxy x, y ∈ (a,b)*} and x = y , [Jan-2021-OLD] [LJIET] 75 Differentiate Turing machine, PDA and FA with example, [Jan-2021-OLD] [LJIET] 66 Draw the PDA for the following languages [Jan-2021-OLD] [LJIET] 77 L = {a¹b¹c² i = j+k} 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 78 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 69 Design PDA for L={x∈x²/x∈{a.b}*}. The string in L are odd length palindromes over {a.b}. [Aug-2021-OLD] [LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 73 Find the CFG for the regular expression: (011+1)·(01)·[Dec-2022-OLD] [LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD] [LJIET] 75 Define Pushdown Automata. [Dec-2022-OLD] [LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD] [LJIET] 77 Design the pushdown automata for language [0⁴1* n≥ 0↑ Dec-2022-OLD] [LJIET] 78 Suppose the PDA = {{q0, q1}, {a, b, c}, {a, b, Z0}, ō, q0, Z0, {q1}}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ. (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ)	62	Design a PDA to accept $L = \{wcw^R \mid w \in (a,b)^*\}$ [Jan-2021-OLD] [LJIET]	7,4
63 Discuss pumping lemma for context free languages, Jan-2021-OLD] [LJIET] 64 Design a PDA to accept L = {xcy x, y∈ {a,b}}* and x = y }, Jan-2021-OLD] [LJIET] 75 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 76 Draw the PDA for the following language [Jan-2021-OLD] [LJIET] 77 L = {abc ¹ c ¹ i = j+k} 78 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 79 L = {x ∈ {a, b} * na(x) > na(x)} 80 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 81 Design PDA for L={x∈x/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD] [LJIET] 82 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 83 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 84 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 85 Design and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 86 Design and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 87 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD] [LJIET] 88 Design the CFG into CNF. [Dec-2022-OLD] [LJIET] 98 Design the pushdown Automata. [Dec-2022-OLD] [LJIET] 99 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 90 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 91 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 92 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 93 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 94 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 95 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 96 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 97 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD] [LJIET] 98 Design the pushdown automata for language {0°1° n> 0} [Dec-2022-OLD]			T
64 Design a PDA to accept L = {xcy x, y∈ (a,b)* and x = y }.[Jan-2021-OLD] [LJIET] 7 65 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD] [LJIET] 7 66 Draw the PDA for the following language[Jan-2021-OLD] [LJIET] 7 L = {a*b*c*i = j+k} 7 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 7 68 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 4 69 Design PDA for L={x≤x/x≤{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD] [LJIET] 7 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 7 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 7 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 7 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD] [LJIET] 7 74 Convert the following CFG into CNF. [Dec-2022-OLD] [LJIET] 7 75 Define Pushdown Automata. [Dec-2022-OLD] [LJIET] 2 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD] [LJIET] 7 <td< th=""><th></th><th></th><th></th></td<>			
65 Differentiate Turing machine, PDA and FA with example. [Jan-2021-OLD][Jun-2022-OLD] 66 Draw the PDA for the following language[Jan-2021-OLD] [LJIET] 7 L = {a'b'c ^k i = j+k} 7 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] 7 L = {x ∈ {a, b} * n _e (x) > n _e (x)} 7 68 Explain push down automata with example. [Aug-2021-OLD][LJIET] 4 69 Design PDA for L={xex/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 7 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 7 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 7 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 7 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 7 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] 7 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 7 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 3 76 Construct a PDA equivalent to the following			3
[LJIET] Draw the PDA for the following language[Jan-2021-OLD] [LJIET] $L = \{abc^k i = j + k\}$ Pevelop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] $L = \{x \in \{a,b\}^* \mid n_a(x) > n_b(x)\}$ Explain push down automata with example. [Aug-2021-OLD][LJIET] 48 Explain push down automata with example. [Aug-2021-OLD][LJIET] Posign a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] To Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] To How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] Tind the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] Tind the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] To Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] To be AbA aS a			
66 Draw the PDA for the following language [Jan-2021-OLD] [LJIET] L = {a/b'c} i = j+k} 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] L = {x ∈ {a, b} * n _a (x) > n _b (x)} 68 Explain push down automata with example. [Aug-2021-OLD] [LJIET] 69 Design PDA for L={x∈x/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD] [LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD] [LJIET] 71 How are PDDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD] [LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD] [LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD] [LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD] [LJIET] 75 S → bA aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD] [LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD] [LJIET] 77 Design the pushdown automata for language {0*1* n≥ 0} [Dec-2022-OLD] [LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD] [LJIET]	65		7
L = {a ^{tbck} i = j+k} 67 Develop a DPDA that accepts following language: [Oct-2020-OLD] [LJIET] L = {x ∈ {a, b} * n _a (x) > n _b (x)} 68 Explain push down automata with example. [Aug-2021-OLD][LJIET] 69 Design PDA for L={x∈x/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression : (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 S → bA aB B → aBB bS b Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ)	66		7
 L = {x ∈ {a, b} * n_a(x) > n_b(x)} Explain push down automata with example. [Aug-2021-OLD][LJIET] Design PDA for L={x ∈ x/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] S → bA aB A → bAA aS a B → aBB bS b Define Pushdown Automata. [Dec-2022-OLD][LJIET] Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] S -> 0BB B -> OS 1S 0 Design the pushdown automata for language {0⁰¹ n≥ 0} [Dec-2022-OLD][LJIET] Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions λ (q0, a, Λ) = (q0, a) λ (q0, a, Λ) = (q0, b) λ (q0, a, Λ) = (q1, Λ) δ (q1, a, a) = (q1, Λ) δ (q2, a) δ (q3, a) δ (q4, b) δ (q		$L = \{a^i b^j c^k i = j + k\}$	
68 Explain push down automata with example. [Aug-2021-OLD][LJIET] 69 Design PDA for L= xex/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 → bA aB Δ → bAA aS a Δ → bAA aS a Δ → bAA aS bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language {0*1*n ∞ 0}{Dec-2022-OLD][LJIET]} 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	67		7
69 Design PDA for L={x∈x/x∈{a,b}*}. The string in L are odd length palindromes over {a,b}. [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 S → bA aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] S -> 0BB B -> 0S 1S 0 77 Design the pushdown automata for language {0 ⁿ 1 ⁿ n≥ 0} [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	68		4
 {a,b}: [Aug-2021-OLD][LJIET] 70 Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 De h aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language {0*1*n≥ 0} [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET] 			7
To Design a deterministic PDA Accepting "Balance string of brackets". [Aug-2021-OLD][LJIET] To Doub and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] To Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] Tind the CFG for the regular expression: (011+1)* (01)* [Dec-2022-OLD][LJIET] To Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] To bA aB A → bAA aS a B → aBB bS b To Define Pushdown Automata. [Dec-2022-OLD][LJIET] To Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] To Design the pushdown automata for language {0*1* n≥ 0}{[Dec-2022-OLD][LJIET]} To Design the pushdown automata for language {0*1* n≥ 0}{[Dec-2022-OLD][LJIET]} To Design the pushdown intuctions 1. δ (q₀, a, Λ) = (q₀, a) 2. δ (q₀, b, Λ) = (q₀, a) 2. δ (q₀, b, Λ) = (q₀, b) 3. δ (q₀, c, Λ) = (q₁, Λ) 4. δ (q₁, a, a) = (q₁, Λ) 5. δ (q₁, b, b) = (q₁, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	UZ		,
OLD][LJIET] 71 How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression : (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 S → bA aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language {0 ⁿ¹ⁿ n≥ 0}{[Dec-2022-OLD][LJIET]} 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	70		7
How are DPDA and NPDA different? Show which is more powerful than the other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression : $(011+1)^*$ $(01)^*$ [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 \rightarrow bA aB A \rightarrow bAA aS a B \rightarrow aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 \rightarrow So BB B \rightarrow 0S 1S 0 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = $(\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q0, a, \wedge) = (q0, a) 2. δ (q0, b, \wedge) = (q0, b) 3. δ (q0, c, \wedge) = (q1, \wedge) 4. δ (q1, a, a) = (q1, \wedge) 5. δ (q1, b, b) = (q1, \wedge) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	70		, 1
other and capable of accepting languages which the other cannot. [Dec-2022-OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression: $(011+1)^*(01)^*$ [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 \rightarrow bA aB A \rightarrow bAA aS a B \rightarrow aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = $(\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. $\delta(q_0, a, \Lambda) = (q_0, a)$ 2. $\delta(q_0, b, \Lambda) = (q_0, b)$ 3. $\delta(q_0, c, \Lambda) = (q_1, \Lambda)$ 4. $\delta(q_1, a, a) = (q_1, \Lambda)$ 5. $\delta(q_1, b, b) = (q_1, \Lambda)$ Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	71		7
OLD][LJIET] 72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 77 73 Find the CFG for the regular expression : (011+1)* (01)* [Dec-2022-OLD][LJIET] 4 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 7 8 A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 3 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 4 8 S -> OBB B -> OS 1S 0 9 [Dec-2022-OLD][LJIET] 7 77 Design the pushdown automata for language {0 ⁿ 1 ⁿ n≥ 0} [Dec-2022-OLD][LJIET] 7 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 3 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 4. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) 5. δ (q2, c) 6. δ (q2, c) 6. δ (q3, c) 6. δ (q3, c) 7. δ (q3, c) 7. δ (q3, c) 8. δ (q3, c) 7. δ (q3, c)	′1		-
72 Write and explain the pumping lemma for CFL. [Dec-2022-OLD][LJIET] 73 Find the CFG for the regular expression : $(011+1)^*$ ($01)^*$ [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 $S \rightarrow bA \mid aB \mid A \rightarrow bAA \mid aS \mid a \mid B \rightarrow aBB \mid bS \mid b$ 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 30 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA $M = (\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. $\delta (q0, a, \Lambda) = (q0, a)$ 2. $\delta (q0, b, \Lambda) = (q0, b)$ 3. $\delta (q0, c, \Lambda) = (q1, \Lambda)$ 4. $\delta (q1, a, a) = (q1, \Lambda)$ 5. $\delta (q1, b, b) = (q1, \Lambda)$ Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			
73 Find the CFG for the regular expression : (011+1)* (01)* [Dec-2022-OLD][LJIET] 74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] 75 S → bA aB A → bAA aS a B → aBB bS b 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 8 -> 0BB B -> 0S 1S 0 77 Design the pushdown automata for language {0*1* n≥ 0} [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	72		7
74 Convert the following CFG into CNF. [Dec-2022-OLD][LJIET] S → bA aB A → bAA aS a B → aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] S -> 0BB B -> 0S 1S 0 77 Design the pushdown automata for language {0 ⁿ 1 ⁿ n≥ 0} [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			4
S \rightarrow bA aB A \rightarrow bAA aS a B \rightarrow aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] S \rightarrow 0BB B \rightarrow 0S 1S 0 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ($\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q_0 , q_0 , δ) = (q_0 , δ) 2. δ (q_0 , δ) = (q_0 , δ) 3. δ (q_0 , δ) = (q_0 , δ) 4. δ (q_1 , q_0 , δ) = (q_1 , δ) 5. δ (q_1 , δ) = (q_1 , δ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			7
A \rightarrow bAA aS a B \rightarrow aBB bS b 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] S -> 0BB B -> 0S 1S 0 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ($\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			1
 75 Define Pushdown Automata. [Dec-2022-OLD][LJIET] 76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] 78 Suppose the pushdown automata for language {0ⁿ1ⁿ n≥ 0}[Dec-2022-OLD][LJIET] 78 Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, δ, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q1, a, a) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET] 		$A \rightarrow bAA \mid aS \mid a$	
76 Construct a PDA equivalent to the following CFG. [Dec-2022-OLD][LJIET] $S -> 0BB$ $B -> 0S \mid 1S \mid 0$ 77 Design the pushdown automata for language $\{0^n1^n \mid n \geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA $M = (\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions $1. \ \delta \ (q_0, a, \ \wedge) = (q_0, a)$ $2. \ \delta \ (q_0, b, \ \wedge) = (q_0, b)$ $3. \ \delta \ (q_0, c, \ \wedge) = (q_1, \ \wedge)$ $4. \ \delta \ (q_1, a, a) = (q_1, \ \wedge)$ $5. \ \delta \ (q_1, b, b) = (q_1, \ \wedge)$ Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]		$B \rightarrow aBB \mid bS \mid b$	
S -> 0BB B -> 0S 1S 0 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = $(\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	75		3
B -> 0S 1S 0 77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA M = $(\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q0, a, \wedge) = (q0, a) 2. δ (q0, b, \wedge) = (q0, b) 3. δ (q0, c, \wedge) = (q1, \wedge) 4. δ (q1, a, a) = (q1, \wedge) 5. δ (q1, b, b) = (q1, \wedge) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	76		4
77 Design the pushdown automata for language $\{0^n1^n n\geq 0\}$ [Dec-2022-OLD][LJIET] 78 Suppose the PDA $M = (\{q0, q1\}, \{a, b, c\}, \{a, b, Z0\}, \delta, q0, Z0, \{q1\})$ has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			==
Suppose the PDA M = ({q0, q1}, {a, b, c}, {a, b, Z0}, \delta, q0, Z0, {q1}) has the following transition functions 1. δ (q0, a, Λ) = (q0, a) 2. δ (q0, b, Λ) = (q0, b) 3. δ (q0, c, Λ) = (q1, Λ) 4. δ (q1, a, a) = (q1, Λ) 5. δ (q1, b, b) = (q1, Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			
the following transition functions 1. δ (q ₀ , a, Λ) = (q ₀ , a) 2. δ (q ₀ , b, Λ) = (q ₀ , b) 3. δ (q ₀ , c, Λ) = (q ₁ , Λ) 4. δ (q ₁ , a, a) = (q ₁ , Λ) 5. δ (q ₁ , b, b) = (q ₁ , Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			7
1. δ (q ₀ , a, Λ) = (q ₀ , a) 2. δ (q ₀ , b, Λ) = (q ₀ , b) 3. δ (q ₀ , c, Λ) = (q ₁ , Λ) 4. δ (q ₁ , a, a) = (q ₁ , Λ) 5. δ (q ₁ , b, b) = (q ₁ , Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	78		3
3. δ (q ₀ , c, \wedge) = (q ₁ , \wedge) 4. δ (q ₁ , a, a) = (q ₁ , \wedge) 5. δ (q ₁ , b, b) = (q ₁ , \wedge) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]			13
4. δ (q ₁ , a, a) = (q ₁ , Λ) 5. δ (q ₁ , b, b) = (q ₁ , Λ) Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]		2. $\delta(q_0, b, \Lambda) = (q_0, b)$	
Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]		3. $\delta(q_0, c, \Lambda) = (q_1, \Lambda)$	
Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	ne en	4. $\delta(q_1, a, a) = (q_1, \Lambda)$	
•	Lie	5. $\delta(q_1, b, b) = (q_1, \Lambda)$	TEL
		Show the acceptance of abbcbba by the above PDA. [Dec-2022-OLD][LJIET]	
79 Prove that $L = \{a^nb^nc^n \mid n \ge 1\}$ is not a CFL [Dec-2022-OLD][LIJET]	79	Prove that $L = \{a^nb^nc^n \mid n \ge 1\}$ is not a CFL. [Dec-2022-OLD][LJIET]	4
			7
[Dec-2022-OLD][LJIET]			-

81	What is Instantaneous Description? Construct the pushdown automata	7
	over $\Sigma = \{a,b\}$ for the language $L = \{a^n c b^n / n >= 1\}$. [Dec-2022-NEW][LJIET]	
82	Define the following operations for Push Down Automata: PUSH, POP, and SKIP. [Dec-2022-NEW][LJIET]	3
83	Give transition table for deterministic PDA recognizing the following	7
L	language. { $a^n b^{n+m} a^m \mid n,m \ge 0$ } [Jun-2022-OLD][LJIET]	HET
84	State the pumping lemma for Context Free Language[Jun-2022-OLD][LJIET]	3
85	Define PDA. Convert the CFG with following productions into its	7
	equivalent PDA. [Jun-2022-OLD][LJIET]	
	07	0
	$S \rightarrow [S] SS ^{\wedge}$	27.
86	Design a PDA to accept $L = \{ X / Na(X) = Nb(X), X \in \{a,b\}^* \}$ [Jun-2022-OLD][LJIET]	4
87	What is a pushdown automaton? Explain \}* \{ [Jun-2022-NEW][LJIET]	3
88	Give the difference between top down and bottom up parsing. [Jun-2022-	4
	NEW][LJIET]	l l
89	Design and draw deterministic PDA Accepting "Balance string of brackets" [Jun-2022-NEW][LJIET]	7
90	Explain deterministic pushdown automata. [Jun-2022-NEW][LJIET]	3
91	Explain conversion from PDA to CFG[Jun-2022-NEW][LJIET]	4
92	Design and draw PDA to accept string with more a's than b's. [Jun-2022-NEW][LJIET]	7
	UNIT NO- 5 : Turing Machine (TM)	-
	TOPIC:1:TM Definition, Model Of Computation And Church Turning	0
	Thesis, computing functions with TM, Combining TM, Variations Of	
4	TM, Non Deterministic TM, Universal TM, Recursively and	-
	Enumerable Languages, Context sensitive languages and Chomsky	
C	hierarchy	NG. 1
Sr. No	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
1	What is a turing machine? [LJIET]	01
•	Answer: Turing machine is a simple mathematical model of a computer. TM has	VI.
	unlimited and unrestricted memory and is a much more accurate model of a general	17
	purpose computer. The turing machine is a FA with a R/W Head. It has an infinite tape	17
	divided into cells ,each cell holding one symbol.	
2	What are the applications of TM? [LJIET]	01
	Answer: TM can be used as:	
	Recognizers of languages.	
	Computers of functions on non negative integers. Generating devices.	
3	What are the various representation of TM? [LJIET]	01
	Answer: We can describe TM using:	
	Instantaneous description.	
Lie	Transition table.	
1000	Transition diagram.	5
4	What are the techniques for Turing machine construction? [LJIET]	01
	Answer: • Storage in finite control.	l '
	1	
	 Multiple tracks. Checking off symbols. 	

Semester: VI (2022-23)

L.J. Institute of Engineering & Technology

• Shifting over • Subroutines. 5 What is a multi-tape Turing machine? [LJIET] 01 **Answer:** A multi-tape Turing machine consists of a finite control with k-tape heads and k- tapes; each tape is infinite in both directions. On a single move depending on the state of finite control and symbol scanned by each of tape heads, the machine can change state print a new symbol on each cells scanned by tape head, move each of its tape head independently one cell to the left or right or remain stationary. 6 What are UTMs or Universal Turing machines? [LJIET] 01 **Answer:** Universal TMs are TMs that can be programmed to solve any problem, that can be solved by any Turing machine. A specific Universal Turing machine U is: Input to U: The encoding "M" of a Tm M and encoding "w" of a string w. Behavior: U halts on input "M" "w" if and only if M halts on input w. State the halting problem of TMs. [LJIET] 01 **Answer: The halting problem for TMs is:** Given any TM M and an input string w, does M halt on w? This problem is undecidable as there is no algorithm to solve this problem. What properties of recursive enumerable seta are not decidable? [LJIET] 8 01 **Answer:** Emptiness Finiteness Regularity Context-freedom. 9 Is it true that the language accepted by a non-deterministic Turing machine is different 01 from recursively enumerable language? [LJIET] **Answer:** No, the language accepted by non-deterministic Turing machine is same as recursively enumerable language. What are recursively enumerable languages? [LJIET] 10 01 **Answer:** The languages that is accepted by TM is said to be recursively enumerable (r. e) languages. Enumerable means that the strings in the language can be enumerated by the TM. The class of r. e. languages include CFL's. Marks Sr. **DESCRIPTIVE QUESTIONS** No 1 Write Short Note on Following: 3 (i) Universal TM **OR** Write a short note on Universal Turing Machine OR Discuss universal Turing machine OR][May-2019-OLD][Nov-2021-OLD] [LJIET] Write short note on Universal Turing Machine.[Jan-2013-OLD][Dec-2013-OLD][Mav-2 3,7 2016-OLD][NOV-2018-OLD][Jun-2022-OLD] [LJIET] 3 Explain Universal Turing Machine.[Dec-2015][Oct-2016-OLD][May-2018-3.5,7,4 OLD][LJIET] Define Turing Machine. Describe its capabilities. Also write short notes on Universal 4 5 Turing Machine.[May-2011-OLD] [LJIET] Write Short note on Following: (i) Halting Problem (ii) Church Turing Thesis [May-2015-OLD] [LJIET] Design a Turing Machine to copy strings. [Dec-2015-OLD] [LJIET] 6 Define Turing Machine. Draw TM for accepting Palindrome Strings in {a,b}*. [Dec-**2015-OLD]** [LJIET] 8 7 Write TM accepting Palindrome.

	OR	
	Draw a transition diagram for a Turing machine for the language of all palindromes over {a,	
	b). [June-2013-OLD][May-2018-OLD] [LJIET]	
9	,	7
	Draw the TM to copy string and delete a symbol. [May-2014-OLD] [LJIET]	
10	Write a Turing Machine to copy strings. [Aug-2021-OLD] [LJIET]	7
170	OR P. T.	
A. C.	Draw a TM to copy strings. [Dec-2014-OLD][Oct-2016-OLD] [LJIET]	
	OR The state of th	
	Design Turing Machine to copy string. [May-2019-OLD] [LJIET]	
11	Write a Turing Machine to delete a symbol.[Dec-2014-OLD] [LJIET]	7
12	Draw a transition diagram for a Turing machine accepting the following language { x &	7
	$\{a, b, c\}^* \mid n_a(x) = n_b(x) = n_c(x)\}.$ [Nov-2011-OLD] [LJIET]	0
13	Draw a transition diagram for a Turing machine accepting the following language.	7
	$\{ a^n b^n c^n \mid n \ge 0 \}$.[Nov-2011-OLD][Oct-2016][Jun-2022-OLD][LJIET]	
14	Draw the TM for L = $\{ss \mid s \in (a, b)^*\}$.	7
	OR	T
	Draw a TM to accept $\{ ss \mid s \in \{a,b\}^* \}$. OR Draw a transition diagram for a Turing	li li
	machine accepting the language $\{SS \mid S \in \{a, b\}^*\}$. [May-2012-OLD][June-2013-	
	OLD][Oct-2016-OLD][May-2018-OLD] [LJIET]	
15	Explain Universal TM and Church Turing Thesis.[May-2012-OLD] [LJIET]	7
16	Draw the TM which recognize words of the form { a ⁿ b ⁿ c ⁿ n>=1}.[May-2016-OLD]	7
	[LJIET]	
17	Explain Universal Turing Machine and Church Turing Hypothesis.[May-2016-OLD]	7
	[LJIET]	
18	Explain Universal Turing machine with the help of an example. [Oct-2016-OLD]	7
	[LJIET]	
19	Explain Universal Turing Machine and Halting Problem. [Dec-2014-OLD][Dec-2015-	7
	OLD] [LJIET]	
20	Define a Turing Machine. Design a Turing machine for deleting nth symbol from a	7
	string w from the alphabet $\Sigma = \{0,1\}$. [May-2016-OLD] [LJIET]	
21	Draw Turing Machine(TM) which recognizes words of the form $\{a^nb^nc^n n \ge 1\}$	8 r
	[May-2015-OLD] [LJIET]	0
22	Design Turing Machine(TM) to accept Palindrome over {a,b}, even as well as odd.	8, 7
	[May-2015-OLD] [May-2016] [May-2019-OLD] [LJIET]	0, 7
23	Draw a Turing Machine(TM) to accept Palindromes over {a,b}. (Even as well as Odd	8,7
	Palindromes) .[May-2011-OLD][Jan-2013-OLD][Dec-2013-OLD][Oct-2016-OLD]	0,7
	[LJIET]	Į.
24	Draw a Turing Machine(TM) to accept Palindromes over {a,b}. (Even as well as Odd	7
	Palindromes). OR Draw a transition diagram for a Turing machine for the language of all	,
	palindromes over {a, b}. [May-2017-OLD][Nov-2017][Nov-2018-OLD] [Aug-2021-	-
	OLD] [LJIET]	
	OR OR	
	Draw Turing Machine (TM) accepting Palindrome over {a,b}. [Dec-2019-OLD] [Nov-	
	21-New] [LJIET]	
	THE STREET LOTE I LOTE I LOTE I LO	
	Draw a transition diagram for a Turing machine for the language of all palindromes over	
	[a, b]. [Dec-2022-OLD][LJIET]	
25	Write a short note on Universal Turing Machine. [May-2017-OLD] [Nov-2017-OLD]	4,7
	[Nov-2017-OLD] [Aug-2021-OLD] [Jun-2022-OLD] [LJIET]	- - ,,
L	Trot act. Onniting acat Onnitions acas. Onnitions 1	

26	Write a Turing Machine to copy strings. [May-2017-OLD] [Nov-2017] [LJIET]	7
27	Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string	7
	w from the alphabet $\Sigma = \{0,1\}$. [Nov-2017-OLD] [LJIET]	
28	Give definition of Turing Machine. What do you mean by an instantaneous description	3
	of a Turing Machine? [May-2017-OLD] [LJIET]	
29	Design a Turing machine to accept the language $\{0^n1^n \mid n \ge 1\}$. [May-2017-OLD] [LJIET]	7
30	Design a Turing machine for the language over {0,1} containing strings with equal number of 0's and 1's. [May-2017-OLD] [LJIET]	7
31	Design a Turing Machine that creates a copy of its input string. Trace String "baa". [May-	7
31	2018-OLD] [LJIET]	
32	Design a Turing Machine which recognizes words of the form $a^nb^nc^n \mid n \ge 1$. Trace string	7
32	"aabbcc". [May-2018-OLD] [LJIET]	
33	Define Turing Machine and draw a TM to accept {a,b}*{aba}{a,b}* [NOV-2018-OLD] [LJIET]	7
34	Write Short note on Church-Turing Thesis. OR Write a short note on church-turing	4
J-1	thesis. [May-2018-OLD] [Nov-2018] [Aug-2021-OLD] [Nov-2021-OLD] [Dec-2022-	10
	OLD][LJIET]	J.
35	What is Turing Machine? Write advantages of TM over FSM.[Nov-2018] [Aug-2021-OLD] [Aug-2021-OLD] [LJIET]	3
36	Describe recursive languages and recursively enumerable languages.[Nov-2018-OLD] [LJIET]	4
37	Define grammar and chomsky hierarchy.[Nov-2021-NEW] [Aug-2021-OLD] [LJIET] OR	3
	Explain Chomsky Hierarchy. [Nov-2018-OLD][May-2018-OLD] [LJIET]	-
38	Give the formal definition of Turing machine. Also compare the power of DFA, NFA,	3
	DPDA, NDPA and TM[May-2019-OLD][LJIET]	
39	Write a note on post machines.[May-2019-OLD][LJIET]	4
40	Design a Turing machine to reverse the string over alphabet {0, 1} [May-2019-OLD][LJIET]	7
41	Compare and contrast push down automata and Turing machine.	3
	[May-2019-OLD][LJIET]	
42	Enlist limitations of Turing machines. [May-2019-OLD] [Aug-2021-OLD] [LJIET]	4
43	Design a Turing machine which accepts the language consisting string which contain aba as	7
	a substring over alphabets {a, b}[May-2019-OLD][LJIET]	-
44	Write a short note on Halting problem[May-2019-OLD][LJIET]	4
45	What is decidability? How to prove that the given language is undecidable? List some	7
	undecidable problems. [May-2019-OLD][LJIET]	
46	Draw Turing Machine (TM) accepting $\{SS \mid S \in \{a,b\}^*\}$	7
	OR	
	Draw a Turing Machine that accepts the language $\{xx \mid x \in \{a,b\}^*\}$. Also trace the TM on	
	input string aa. [Dec-2019-OLD][Dec-2019-OLD][LJIET]	
47	Discuss – Nondeterministic Turing Machines and Universal Turing Machines.	4
	[Dec-2019-OLD][LJIET]	
48	Draw a Turing Machine that accepts the language	7.
	$\{a^nb^na^n\mid n\geq 0\}$ over $\{a,b\}^*$. Also trace the TM on input string	
	. Also trace the TM on input string	
40	aaabbbaaa. [Dec-2019- OLD][LJIET]	-
49	Develop a Turing Machine to accept the language $L = \{X / N_a(X) = N_b(X), X = (-1)^{\frac{1}{2}} \}$	7
	$X \in \{a,b\}^*\}$	
		l

Semester: VI (2022-23) [Nov-2021-NEW][LJIET] **50** Discuss - universal Turing machine. [Jan-2021-OLD][LJIET] 4 Draw Turing machine for $L = \{xx \mid x \in \{a, b\}^*\}$. Also trace out the same on input string 51 aba. [Jan-2021-OLD][LJIET] 52 Discuss chomsky hierarchy. [Jan-2021-OLD][LJIET] 3 Draw Turing machine to accept language $L = \{x \in \{a, b\}^* \mid x \text{ ends with aba}\}.$ 7 53 Also trace out the same on input string aba. [Jan-2021-OLD][LJIET] 54 Write Short note on Universal Turing Machine. [Jan-2021-OLD][LJIET] 7 7 Define a Turing Machine. Design a Turing machine for deleting nth symbol from a string 55 w from the alphabet $\Sigma = \{0,1\}$.[Jan-2021-OLD][LJIET] Draw Turing machine which accept palindrome language.[Jan-2021-OLD][LJIET] **56** 7 **57** Define a Turing Machine. [Oct-2020-OLD] [LJIET] 3 Draw a Turing Machine to accept a regular language. [Oct-2020-OLD][LJIET] 58 $\{a, b\} * \{aba\}$ 59 Develop a Turing Machine to accept even length palindromes over {a,b}*.[Oct-2020-7 OLD][LJIET] Develop a Turing Machine that creates a copy of its input string to the right of the input **60** 7 but with a blank space separating the copy from the original. [Oct-2020-OLD][LJIET] 61 What important points do we derive from Church-Turing thesis? [Oct-2020-4 OLD][LJIET] Design a TM for accepting Palindromes for odd and even length. [Aug-2021-**62** 7 OLD][LJIET] Explain Halting Problem with suitable example. [Nov-2021-OLD][LJIET] 7 **63** 64 Draw a Turing Machine to accept a regular language {a,b}*{baa}{a,b}*[Dec-2022-OLD][LJIET] Draw a Turing Machine to reverse a string. [Dec-2022-OLD][LJIET] 65 7 Write a note on multi-tape Turing Machines, [Dec-2022-OLD][LJIET] 7 66 Enlist limitations of Turing machines. [Dec-2022-OLD][LJIET] **67** 3 Design a Turing machine to reverse the string over alphabet {0, 1}. 68 [Dec-2022-OLD][LJIET] Write a short note on Halting problem.[Dec-2022-OLD][Jun-2022-OLD][LJIET] 69 3.4 **70** Discuss Universal Turing Machine. .[Dec-2022-OLD][LJIET] 3 Enlist and explain the operations performed by tape in turing machine [Dec-2022-71 3 **NEW||LJIET|** Discuss universal turing machine with example. [Dec-2022-NEW][LJIET] **72** 4 Write down 7-tuple definition for the turing machine. **73** Construct the turing machine and its transition table over $\Sigma = \{a,b\}$ for the language $L = \{a^nb^n / n >= 1\}.[Dec-2022-NEW][LJIET]$ Construct Turing Machine to delete one letter from an alphabetic input String. 7 **74** [Jun-2022-OLD][LJIET] Define Turing Machine.[Jun-2022-OLD][LJIET] 75 3 76 Develop a Turing Machine to accept palindromes over {a,b}*[Jun-2022-OLD][LJIET] 7 77 Develop a Turing Machine to accept the language $L = \{WW \mid W \in \{a,b\}^*\} [Jun-2022-$ OLD][LJIET] **78** What is Turing machine? Explain its capabilities. [Jun-2022-NEW][LJIET] 3 **79** Explain Church Turing thesis. [Jun-2022-NEW][LJIET] 4 Design a Turing machine to copy a string. [Jun-2022-NEW][LJIET] 7 80

Explain Universal Turing machine[Jun-2022-NEW][LJIET]

4

Semester: VI (2022-23) 82 Design a Turing machine to delete a symbol. [Jun-2022-NEW][LJIET] 7

84	Design a Turing machine to delete a symbol. [Jun-2022-NEW][LJIET]	1
	UNIT NO- 6: Computable Functions	
	TOPIC:1: Partial, total, constant functions, Bounded Mineralization,	
	Minimalization	
Sr.	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
No		
1	When we say a problem is decidable? [LJIET]	01
	Answer: A problem whose language is recursive is said to be decidable. Otherwise the	-
	problem is said to be undecidable.	
2	Define constant functions [LJIET]	01
	Answer: A constant function is a function whose (output) value is the same for every	
	input value.	U
3	Define: Composition [LJIET]	01
	Answer: There are two operations that make new functions from old: composition and	
	primitive recursion. Composition replaces the arguments of a function by another.	24
Sr.	DESCRIPTIVE QUESTIONS	Marks
No	Anguaga the College in a	2.5
1	Answer the following (i) Explain time and space complexity [Dec-2015-OLD] [LJIET]	3.5
2	Explain Halting Problem.[Dec-2015-OLD] [LJIET]	3.5
3	Show that the uncomputability of the given busy-beaver function implies the	7
3	unsolvability of the halting problem. Busy Beaver function, $b: N \rightarrow N$ as follows,	,
	b(0) is 0. For $n > 0$, $b(n)$ is obtained by considering TMs having n non halting states	
	and tape alphabet {0, 1} .[Nov-2011-OLD] [LJIET]	-
4	Define:[May-2014-OLD] [LJIET]	7
-	[1] Basic complexity Classes	
- 4	[2] Primitive Recursive Functions	
	[3] The Time and Space Complexity of a Turing Machine	
5	Explain unbounded minimization and μ recursive functions. [Dec-2014-OLD] [LJIET]	7
6	Write Short note on Following:	7
	(i) Halting Problem	10
	(ii) Primitive Recursive Function.[May-2016- OLD] [LJIET]	
7	Define Constant functions, Successor functions and Projection function. [May-2018-	3
	OLD] [LJIET]	17
8	Write Short note on Following:	7
	(i) Halting Problem	·
	(ii) Church Turing Thesis [May-2019-OLD] [LJIET]	0
9	Explain Time Complexity and Space Complexity. [May-2019-OLD] [LJIET]	7
10	Explain unbounded minimization and μ recursive functions [Dec-2019-OLD] [LJIET]	7
11	Define Bounded Minimalization of a predicate P. [Oct-2020-OLD][LJIET]	3
12	Define Bounded Minimalization [Dec-2022-OLD][Dec-2022-NEW] [LJIET]	3,4
	TOPIC:2: Primitive Recursive Functions, Regular function, μ-	
LJ	Recursive Functions, Quantification, All Computable Functions Are μ- Recursive	
Sr.	SHORT QUESTIONS (1 Mark) / MCQ / True-False/Fill in the blanks	Marks
No	· · · · · · · · · · · · · · · · · · ·	
1	Which of the following is not primitive recursive but partially recursive? [LJIET]	01
	a)Carnot function	
	b)Rieman function	

	\B110	
	c)Bounded function	
	d)Ackermann function	
2	Answer: d	0.1
2	Define: Regular function [LJIET]	01
	Answer: In algebraic geometry, a morphism between algebraic varieties is a function	
	between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function.	
3	Define: Primitive Recursive Functions [LJIET]	01
3	Answer: In computability theory, primitive recursive functions are a class of functions	VI
	that are defined using primitive recursion and composition as central operations and are a	
	strict subset of the total μ -recursive functions (μ -recursive functions are also called	
	partial recursive).	T
4	Define: Recursive Functions [LJIET]	01
-	Answer: A function is μ -recursive if it can be built up using the base functions and the	-
	operations of composition, primitive recursion and unbounded minimization.	
5	Define: Ackermann's function [LJIET]	01
	Answer: Ackermann's function is a famous function that is not primitive recursive. It is	T
	defined by: $A(0, y) = y + 1$	
	A(x, 0) = A(x - 1, 1)	F1
	A(x, y + 1) = A(x - 1, A(x, y))	
Sr.	DESCRIPTIVE QUESTIONS	Marks
No		
1	Show that the function $f1(x,y) = x + y$ is primitive recursive.	2,3,7
	OR	
	Prove that following add(x,y) = $x+y$ is primitive recursive function. [May-2015-	
2	OLD, May 2016-OLD, May-2018-OLD] [LJIET]	4,7
2	Write short note on Primitive Recursive Functions. [Jan-2013-OLD] [LJIET] OR	4,7
	Explain Primitive recursive Function. OR Explain primitive recursive function by suitable	
	example. [Dec-2013-OLD,Oct-2016-OLD, Nov-2018-OLD] [LJIET]	
3	Explain the following	7
_	1. Primitive Recursive Operation & Function.	r.
4	2.μ Recursive Functions.[June-2013-OLD] [LJIET] Write the grown Let f. Σ*1 Σ*2. Then fine computable if and only if fine procursive	7
4	Write theorem: Let $f: \Sigma^*1 \Sigma^*2$. Then f is computable if and only if f is μ recursive.	1
5	[June-2013-OLD] [LJIET] Cive definitions of the following New 2011 OLDIU HET:	7
S	Give definitions of the following.[Nov-2011-OLD][LJIET]	,
	[1] Initial Functions	
	[2] Composition	
	[3] The Primitive Recursive Functions	
6	Define functions by Primitive Recursion. Show that the function $f(x, y) = x + y$ is	7
	primitive recursive.[Oct-2016-OLD] [LJIET]	_
7	Write a short note on μ-recursive function. [May-2017-OLD] [Nov-2017-OLD]	7
0	[LJIET]	mp.m
8	Prove that following $add(x,y) = x+y$ is primitive recursive function. [Nov-2017-OLD]	1.7
•	[LJIET]	4
9	Describe recursive languages and recursively enumerable languages. [May-2017-OLD]	4
10	[LJIET] Driefly describe following terms: (1) helting problem (2) undecideble problem [May	2
10	Briefly describe following terms: (1) halting problem (2) undecidable problem. [May-	3
	2017-OLD] [LJIET]	

Semester: VI (2022-23)

L.J. Institute of Engineering & Technology

Show that the function f(x, y) = x*y is primitive recursive. [MAY-2018-OLD] [LJIET] 11 Define Primitive Recursive Function. Show that Addition function of two positive 3.5 12 integers is primitive recursive. [MAY-2018-OLD] [LJIET] Prove the theorem: "A language is recursive if and only if both it and its complement are 13 3 recursively enumerable". [MAY-2018-OLD] [LJIET] 14 Define - Primitive recursive functions and also give complete primitive recursive derivations for the function, $f:N \to N$ defined by Add(x,y)=x+y. [Dec-2019- OLD] [LJIET] 15 Discuss Recursive definition. Also define the language L defined by the 3 following recursive definition over $\Sigma = \{a, b\}$: $^{\wedge} \in L$; For every $x \in L$, xa, bx, and abx are in L; Nothing else is in L. [Jan-2021-OLD] [LJIET] Discuss primitive recursive function using proper example. [Jan-2021-OLD] [LJIET] 16 Write a note on Bounded Minimalization. [Dec-2022-OLD][LJIET] **17** State the following functions: Partial, Constant and Total. [Dec-2022-NEW][LJIET] 18 3 Explain Primitive Recursive Functions. [Jun-2022-NEW][LJIET] 3 19 **UNIT NO-7: Undecidability** TOPIC:1:A Language That Can't Be Accepted, and a Problem That Can't Be Decided Non Recursive Enumerable (RE) Language. Undecidable Problem with RE, Undecidable Problems about TM, Undecidable Problems Involving Context-Free Languages, The Class P and NP, Post's Correspondence Problem Sr. Marks **DESCRIPTIVE QUESTIONS** No Explain in Brief: Halting Problem.[May-2011-OLD, Jan-2013-OLD] [LJIET] 1 3 2 Write Short Note on following: (i) Halting Problem (ii) Explain P and NP Completeness [May-2018-OLD] [LJIET] 3 Write Short note on Any Two: (i) The Primitive Recursion Function (ii) P and NP Completeness (iii) Equivalence Relation [MAY-2018-OLD] [LJIET] Explain following terms 4 7 1) P and NP Completeness 2) Time and Space Complexity [Dec-2019-OLD] [LJIET] 5 Write Short Note on Following: 3 (ii) NP-Hard and NP-Complete Language [May-2015-OLD][LJIET] 6 Explain in Brief: 1) Basic complexity Classes. 2) P and NP completeness [June-2013-OLD ,Dec-2013-OLD] [LJIET] Answer the following (ii) Explain P and NP completeness.[Dec-2015-OLD] [LJIET] 3.5 Explain in Brief: 1) Basic complexity Classes. [Jan-2013-OLD] [LJIET] 3 Write short note on the Sets P, NP, Pspace and NPSpace.[Jan-2013-OLD, Dec-2013-4 OLD] [LJIET] Explain the following Term: P and NP Completeness. [May-2011-OLD][LJIET] 3 10 7 11 Give definitions of the following.[Nov-2011-OLD][LJIET] [1] Polynomial-time Reducibility [2] NP-hard and NP-complete languages

[3] The Sets P, NP, PSpace and NPSpace

12	Give definitions of the following.[Nov-2011-OLD][LJIET]	7	
	[1] Basic complexity Classes		
	[2] Step-counting Functions		
	[3] The Time and Space Complexity of a Turing Machine		
14	Explain the following	7	
L.	 Time and space complexity. NP complete problem.[June-2013-OLD] [LJIET] 	JIE	Γ
15	Explain Polynomial Time Reductions and NP- Completeness. [May-2014-OLD]	7	
	[LJIET]		T
16	Answer the following: [Dec-2014-OLD] [LJIET]	7	
	(i) Explain time and space complexity	65	-
	(ii) Explain P and NP completeness		
17	Explain P, NP and NP complete problem.[Oct-2016-OLD] [LJIET].[Dec-2022-	7,4	0
	NEW][LJIET]		
18	Differentiate the NP Hard and NP Complete Problems.[May-2012-OLD] [LJIET]	7	
19	Discuss - recursively enumerable languages.[Jan-2021-OLD] [LJIET]	3	-
20	Explain Undecidable problem about TM[LJIET]	7	3-4
21	Explain Post's Correspondence Problem.[Dec-2022-NEW][LJIET]	7	
22	Define P, NP, NP-Hard and NP-Complete problem? [Nov-2021-OLD][LJIET]	4	
23	Define the following terms: Recursive language, and Recursive Enumerable Language[Dec-	3	
24	2022-NEW][LJIET]	_	
24	Describe: Recursive function. Prove that every recursive function is Computable .[Dec-2022-NEW][LJIET]	7	

