NOZIONI DI BASE

G = generatore

C = circuito

V = tensione

I = corrente

- Fornendo <u>ENERGIA</u> ad un circuito elettrico si viene ad instaurare una <u>CORRENTE</u> che scorre nel circuito stesso.
- La corrente è un flusso di cariche elettriche che si mettono in moto grazie alla energia fornita. Si misura in Ampere (A).
- In tali condizioni il circuito preleva dal generatore una certa <u>POTENZA</u> che sarà utilizzata dal carico (es. una lampada) per produrre l'effetto desiderato (es. l'accensione della lampada).
- Il generatore è caratterizzato dalla <u>TENSIONE NOMINALE</u>, la quale si misura in Volt (V). È un indice della capacità del generatore a fornire energia.

CORRENTE E TENSIONE

Tensione <=> Diff. Quota

Corrente <=> Flusso del liquido

- Possiamo fare una analogia con un circuito idraulico.
- Affinché il liquido si metta in moto è necessario che vi sia differenza di quota fra partenza ed arrivo.
- In un circuito elettrico la tensione (o differenza di potenziale) è analoga alla differenza di quota e la corrente (flusso di cariche) è analoga al flusso di liquido nella condotta.
- Quanto maggiore è la tensione, tanto è più facile instaurare una corrente.

ALTERNATA E CONTINUA

- Le grandezze elettriche (tensione e corrente) possono essere di tipo <u>CONTINUO</u> o <u>ALTERNATO</u>.
- Le grandezze di tipo continuo non variano nel tempo.
 Ad esempio la tensione ai capi di una pila resta costante nel tempo.
- Le grandezze di tipo alternato non restano costanti nel tempo, ma variano periodicamente. Ad esempio la tensione di rete ha l'andamento indicato in figura (sinusoidale).
- Le grandezze caratteristiche sono: frequenza f, ampiezza A (da cui il valore efficace = $A/\sqrt{2}$), angolo di fase (ϕ).
- Chiaramente anche le correnti potranno essere di tipo alternato o continuo.

UO Verifiche Periodiche Via Turati 15 ter Avenza

CONDUTTORI ED ISOLANTI

Legge di Ohm

$$V = R \times I$$

$$R = \frac{\rho \cdot L}{S}$$

- Una volta applicata una certa differenza di potenziale ad un materiale, in questo scorrerà una corrente.
- Le cariche che si muovono sono quelle negative (elettroni), i quali si muovono dal – al +. Convenzionalmente si è stabilito per la corrente il verso delle cariche positive (dal + al -).
- L'entità della corrente dipende dalla resistenza R del materiale, la quale dipenda a sua volta da:
- \checkmark Le caratteristiche chimico-fisiche del materiale (resisività ρ)
- ✓ Le dimensioni (lunghezza L e sezione S).
- Materiali a <u>bassa resistività</u> (10⁻⁸ ohm m) si dicono conduttori (metalli)
- Materiali ad <u>alta resistività</u> (10¹⁰ ohm m) si dicono isolanti (materie plastiche, ceramica, mica, ...).

<u>IMPEDENZA</u>

Legge di Ohm

$$V = R \times I \Longrightarrow R = \frac{V}{I}$$

Se R non è costante al variare della frequenza

$$V = Z \times I \Rightarrow Z = \frac{V}{I}$$

- Nella legge di Ohm si stabilisce un legame tra corrente e tensione (R=V/I).
- Al variare della frequenza tale rapporto può variare. In tal caso R non è costante, ma dipende dalla frequenza.
- In tal caso il rapporto fra V e I prende il nome di impedenza (Z).
- Per esempio, una bobina presenta una impedenza bassissima alle basse frequenze ed una impedenza sempre maggiore al crescere della frequenza.
- In formula : $Z=2\pi f L$

RIGIDITA' DIELETTRICA

- La rigidità dielettrica è definita come il valore limite di campo elettrico, espresso in kV/mm (kilovolt per millimetro), oltre il quale si produce una scarica disruptiva in un materiale dielettrico.
- Superato tale valore il materiale cessa di essere isolante e può subire, specialmente se solido, alterazioni permanenti per effetto del calore generato dall'arco elettrico.
- La rigidità dielettrica determina il limite massimo di tensione sopportabile da un condensatore o da un cavo elettrico, oppure la distanza minima di separazione in aria che deve avere un conduttore in alta tensione per garantire l'isolamento.
- Esempio: aria secca: 3 kV/mm

DISTANZE MINIME D'ISOLAMENTO IN ARIA

Fascia tension	ne nominale del sistema <i>U</i> n	Tensione massima per il componente U _m (Valore efficace) kV	Tensione nominale di tenuta a frequenza industriale di breve durata (Valore efficace) kV	Tensione nominale di tenuta ad impulso atmosferico 1,2/50 μs (Valore di picco) kV	Distanze minime tra fase e terra e fase e fase (N) Impianti all'interno mm	Distanze minime tra fase e terra e fase e fase (N) Impianti all'esterno mm	
	3	3,6	10	20 40	60 60	120 120	
	6	7,2	20	40 60	60 90	120 120	
	10	12	28	60 75	90 120	150 150	
A	15 ¹⁾	17,5	38	75 95	120 160	160 160	
	20	24	50	95 125		60 20	
	30 ²⁾	36	70	145 170		70 20	
	36	41,5	80	170 200		20 60	

⁽¹⁾ Queste tensioni nominali del sistema non dovrebbero essere utilizzate. Si consiglia di non usarle per la costruzione di nuovi impianti.

⁽²⁾ Questo livello di tensione non è compreso nella Norma CEI EN 60071-1

DISTANZE DI GUARDIA E DI VINCOLO

Fascia di tensione	Tensione nominale del sistema	Tensione massima per il componente	Tensione nominale di tenuta a frequenza industriale di breve durata	Tensione nominale di tenuta ad impulso atmosferico	Distanza di guardia	Distanze di vincolo		
	U _n (Valore efficace) kV	U _m (Valore efficace) kV	(Valore efficace) kV	1,2/50 μs (Valore di cresta) kV	d _g mm	Verticale d _{vv} mm	Orizzontale d _{vo} mm	
A	3	3,6	10	20 40	150 150	3030 3030	2000 2000	
	6	7,2	20	40 60	150 150	3060 3060	2000 2000	
	10	12	28	60 75	150 150	3100 3100	2000 2000	
	15	17,5	38	75 95	180 200	3150 3150	2000 2000	
	20	24	50	95 125	220 280	3200 3200	2000 2000	
	30	36	70	145 170	340 400	3300 3300	2000 2000	

Avenza

RESISTORE

- Tutti i materiali (anche i conduttori) oppongono una certa resistenza al passaggio della corrente.
- A causa di tale resistenza, il passaggio della corrente provoca il riscaldamento del materiale (effetto Joule).
- Il <u>RESISTORE</u> è un componente elettrico realizzato in modo tale da avere una resistenza stabilita.
- Nei circuiti di potenza viene utilizzato per produrre calore o dissipare energia.

CONDENSATORE

- È costituito da 2 conduttori separati da un isolante (dielettrico).
- Immagazzina l'energia del campo elettrico (analogamente alla batteria).
- Consente il passaggio della corrente alternata, mentre blocca il passaggio della corrente continua.
- Viene utilizzato come filtro per migliorare la qualità dell'alimentazione elettrica sia in corrente continua che in alternata, eliminando i disturbi e le componenti indesiderate.
- È caratterizzato dalla <u>CAPACITA</u>, che si misura in <u>FARAD</u> (F).

INDUTTANZA

Bobina avvolta in aria

Bobina avvolta su materiale ferromagnetico

- È costituito da un conduttore avvolto in spire.
- Immagazzina l'energia del campo magnetico (dualmente al condensatore).
- Consente il passaggio della corrente continua, mentre blocca il passaggio della corrente alternata.
- Viene utilizzato come filtro per migliorare la qualità dell'alimentazione elettrica. Inoltre si ritrova all'interno di trasformatori, motori elettrici, elettromagneti.
- È caratterizzato dalla <u>INDUTTANZA</u>, che si misura in <u>HENRY</u> (H).

UO Verifiche Periodiche Via Turati 15 ter Avenza

SISTEMA TRIFASE

V1, V2, V3 tensioni stellate V12, V23, V13 tensioni concatenate

- Un sistema trifase <u>SIMMETRICO</u> è una rete alimentata da tre generatori di tensione alternata sinusoidale aventi la stessa frequenza, il medesimo valore efficace e le cui fasi differiscono di 120 gradi elettrici.
- La distribuzione di energia elettrica avviene prevalentemente con il sistema trifase. Esso consente un risparmio di rame a parità di potenza trasmessa, dà origine al campo rotante, ha una potenza istantanea costante, ha la possibilità di rendere disponibili due tensioni (es. nelle linee in bassa tensione V1=230 V e V12=400 V).

TRASFORMATORE

- Il funzionamento del trasformatore si basa sulla legge di Lenz.
- Funziona solo in alternata.
- La tensione alternata applicata al primario (V_1) stabilisce una corrente che dà luogo ad un flusso magnetico alternato (F).
- Per effetto dell'accoppiamento magnetico, l'avvolgimento secondario viene percorso dal flusso F e, per la legge di Lenz, si viene a creare ai suoi capi una tensione V2.
- L'utilizzo principale del trasformatore è quello di cambiare il valore efficace della tensione, in modo da ottenere sul secondario una tensione maggiore o minore del primario

AUTOTRASFORMATORE

 $V_1/V_2=n_1/n_2$ n₁, n₂ numero di spire L'autotrasformatore è un particolare tipo di trasformatore costituito da un unico avvolgimento dotato di prese intermedie. Avere un solo avvolgimento semplifica molto la costruzione dell'autotrasformatore, riduce di molto le perdite ohmiche dovute alla resistenza dei conduttori ed elimina i problemi di isolamento fra avvolgimenti. D'altro canto, al contrario del normale trasformatore, primario e secondario non sono isolati.

MOTORE ELETTRICO

- Si basa sul principio del campo magnetico rotante: "Una terna di avvolgimenti disposti opportunamente ed alimentati da un sistema di tensioni trifase, genera un campo magnetico rotante". Se si inserisce un magnete all'interno del campo, questo viene posto in rotazione.
- Le 3 bobine costituiscono lo <u>STATORE</u>, mentre la parte mobile di definisce <u>ROTORE</u>.
- La velocità di rotazione dipende dalla frequenza della rete e dalle caratteristiche costruttive del motore
- Ogni motore è dotato di una targa che riporta le caratteristiche principali (Tensione, Corrente, Potenza nominale, numero di giri)

FUSIBILE

- Ha la funzione di interrompere l'energia elettrica quando la corrente supera una certa soglia, data dalla corrente nominale del fusibile (In).
- Funziona per effetto Joule:
- la corrente che scorre nel fusibile provoca riscaldamento
- se la corrente I è inferiore ad In, il fusibile riesce a dissipare il calore prodotto e non si brucia.
- se I supera In, il riscaldamento provoca la fusione del conduttore con conseguente interruzione del circuito.

<u>DIODO</u>

- Consente il passaggio della corrente in un solo senso.
- Il carico è attraversato dalla corrente solo in una direzione.
- La tensione ai capi del carico ha una componente continua.
- Consente di convertire la tensione da alternata a continua.

RADDRIZZATORE

- È costituito da uno più diodi.
- La configurazione più frequente è il "ponte di Graetz" (raddrizzatore a doppia seminonda).
- La configurazione a ponte migliora l'efficienza.
- La tensione in uscita ha una componente continua e un residuo di alternata.
- Il filtro serve a ridurre la componente alternata.

UN ESEMPIO

UO Verifiche Periodiche Via Turati 15 ter Avenza Per approfondire:http://digilander.libero.it/nick47/cacc.htm

UNITA' DI MISURA

Grandezza	Unità di misura	Simbolo	
Corrente	Ampere	Α	
Tensione	Volt	V	
Potenza	Watt	W	
Potenza reattiva	Var	Var	
Potenza apparente	Volt – Ampere	VA	

UNITA' DI MISURA

Grandezza	Unità di misura	Simbolo
Resistenza	Ohm	Ω
Impedenza	Ohm	Ω
Capacità	Farad	F
Induttanza	Henry	Н
Sfasamento	Gradi	0
Frequenza	Hertz	Hz

COLLEGAMENTI SERIE

Si parla di collegamento in serie quando due o più componenti sono collegati in modo da formare un percorso unico per la corrente elettrica che li attraversa; nel caso di componenti elettrici a due terminali (detti bipoli) il collegamento in serie prevede che l'estremità di ciascuno di essi sia collegata solo con l'estremità di un altro, come se fossero persone che si prendono per mano a formare una catena.

 $I_1 = I_2 = I_3 = I_4 = I_5 = I \text{ (corrente erogata dal generatore)}$ $V_1 \neq V_2 \neq V_3 \neq V_4 \neq V_5 \neq V \text{ (tensione del generatore)}$

COLLEGAMENTI PARALLELO

 Si parla invece di collegamento in parallelo quando i componenti sono collegati ad una coppia di conduttori in modo che la tensione elettrica sia applicata a tutti quanti allo stesso modo.

$$I_1 \neq I_2 \neq I_3 \neq I_4 \neq I_5 \neq I \text{ (corrente erogata dal generatore)}$$

$$V_1 = V_2 = V_3 = V_4 = V_5 = V \text{ (tensione del generatore)}$$

RESISTORI IN SERIE

 Sono equivalenti ad un unico resistore con resistenza pari alla somma delle singole resistenze

$$R = R_1 + R_2 + R_3 + R_4 + R_5$$

RESISTORI IN PARALLELO

$$R = \frac{R_1 \times R_2}{R_1 + R_2}$$

ESEMPI

 $R = R_1 + R_2$

