Fitness, Selection and Population

幸存者选择

—、sampling

得到概率之后怎么抽,要选入个

Roulette wheel

多次重复随机

Stochastic universal sampling

随机初始化+等分概率递增

二、parent selection

FPS

Fitness propotional selection

- fi占总fi比例
- 为增大不同解之间选择压力, 经常把所有评分都减去最小的

When fitness values are all very close, there is almost no selection pressure

Individual	Fitness	Sel. prob. P _{FPS}
A	101	0.326
В	104	0.335
C	105	0.339

Windowing:

$$f_i = f_i - \beta^t$$
e.g., $\beta^t = \min_{j \in \{1,2,\dots,u\}} f_j$
the least fitness of the current population

LRS

Linear ranking selection

- RS: 最好的i是u-1, 最差是0
- 最差的也有概率被选中
- 选中最好的概率是s/u, 抽u次期望为s
- s越大, 选中好解 (above-median fitness) 概率越大

rank
$$P_{LRS}(i) = \underbrace{\frac{2-s}{\mu}} + \frac{2i(s-1)}{\mu(\mu-1)}$$

the probability of selecting the worst individual

The sum of the probabilities:

$$\sum_{i=0}^{\mu-1} P_{LRS}(i) = \frac{2-s}{\mu} \cdot \mu + \frac{2(s-1)}{\mu(\mu-1)} \cdot \frac{\mu(\mu-1)}{2} = 1$$

The influence of $s \in (1,2]$:

$$(2i-(u-1))\cdot s$$

- ➤ As *s* increases, the prob. of selecting individuals with above-mediation fitness increases, while that with below-median fitness decreases
- \triangleright When μ is odd, the probability of selecting the individual with median fitness is a constant, i.e., 1/μ

Individual	Fitness	Rank	P_{LRS} with $s = 1.5$	P_{LRS} with $s=2$
A	1	0	0.1	0
В	4	1	0.15	0.1
С	5	2	0.2	0.2
D	7	3	0.25	0.3
E	9	4	0.3	0.4

TS

Assume that the selection is without replacement, and the best solution is unique

The probability of selecting the best solution at least once:

$$1 - \left(1 - \left(\binom{\mu - 1}{k - 1} \middle/ \binom{\mu}{k}\right)\right)^{\lambda} = 1 - \left(1 - (k/\mu)\right)^{\lambda}$$

US

纯随机

三. Survive selection

μ个父代,λ个子代

Aged-based

- 每个个体存活相同轮数
 - > Fitness is not taken into account
 - ➤ Each individual exists in the population for the same number of iterations
- For example, population size: μ , number of offspring: λ
 - ➤ If $\lambda = \mu$, the μ individuals in the current population are simply discarded, and replaced by the μ offspring
 - ➤ If $\lambda < \mu$, λ individuals (selected by the FIFO strategy) in the current population are replaced by the λ offspring

Fitness-based

保留适应的

Replace worst λ

- Replace worst (GENITOR) for $\mu > \lambda$
 - \succ The worst λ individuals in the current population is replaced by the λ offspring
- (μ, λ) selection for $\mu < \lambda$ May be better in leaving local optima
 - \triangleright The best μ offspring forms the next population

best μ from λ

(μ,λ) 扔掉了所有parent

best μ from $(\lambda + \mu)$

round-robin tournament小组赛

选择压力与参数q正相关

- Each individual x is evaluated against q other individuals randomly chosen from the current population and the offspring
- \triangleright For each comparison, a "win" is assigned if x is better than its opponent
- \triangleright The μ individuals with the greatest number of wins are retained to form the next population

The parameter q controls the selection pressure

Positively corelated

$$a = \mu + \lambda - 1$$

$$q = \mu + \lambda - 1$$
 $(\mu + \lambda)$ selection

$$q=1$$

q = 1 Even the worst individual can be selected

四、population diversity

种群多样性

种群:维护的多个解的集合,不能太像

fitness sharing

有很多邻居时,降低fitness

个体只有邻近才会在分母贡献

特点: 最高峰上明显会保存更多

crowding

子代和相近的父代竞争,留一个

特点: 在不同区域会有相对均匀划分

Island model

切分成多个子种群,希望可以探索不同部分,算法可以不一样

某个种群的好个体交互给其他的

经验: 25-150代传递一次, 每次传递2-5个

copy or move? fitness or random?