

Vidyalankar Institute of Technology Workst.cdu.in Department of Computer Engineering Exp. No.3

Semester	T.E. Semester V – Computer Engineering
Subject	Data Warehousing and Mining
Subject Professor In-charge	Prof. Kavita Shirsat
Assisting Teachers	Prof. Kavita Shirsat
Laboratory	M-313A

Student Name	Vibodh Bhosure
Roll Number	20102A0032
Grade and Subject	
Teacher's Signature	

Experiment Number Experiment Title To implement ID3 algorithm on a dataset and find each attribute Resources / Apparatus Required Hardware: Computer system Description In simple words, a decision tree is a structure that endes (rectangular boxes) and edges(arrows) and idataset (table of columns representing features/at rows corresponds to records). Each node is either udecide (known as decision node) or represent an of (known as leaf node). The initial node is called the		
Resources / Apparatus Required Hardware: Computer system In simple words, a decision tree is a structure that a nodes (rectangular boxes) and edges(arrows) and i dataset (table of columns representing features/at rows corresponds to records). Each node is either a decide (known as decision node) or represent an o (known as leaf node). The initial node is called the		
Resources / Apparatus Required Description In simple words, a decision tree is a structure that a nodes (rectangular boxes) and edges(arrows) and i dataset (table of columns representing features/at rows corresponds to records). Each node is either a decide (known as decision node) or represent an o (known as leaf node). The initial node is called the	entropy for	
Required Computer system Python In simple words, a decision tree is a structure that a nodes (rectangular boxes) and edges(arrows) and i dataset (table of columns representing features/at rows corresponds to records). Each node is either a decide (known as decision node) or represent an o (known as leaf node). The initial node is called the		
Description In simple words, a decision tree is a structure that a nodes (rectangular boxes) and edges(arrows) and i dataset (table of columns representing features/at rows corresponds to records). Each node is either a decide (known as decision node) or represent an o (known as leaf node). The initial node is called the		
nodes (rectangular boxes) and edges(arrows) and i dataset (table of columns representing features/at rows corresponds to records). Each node is either u decide (known as decision node) or represent an o (known as leaf node). The initial node is called the		
dataset (table of columns representing features/at rows corresponds to records). Each node is either a decide (known as decision node) or represent an o (known as leaf node). The initial node is called the	contains	
rows corresponds to records). Each node is either underide (known as decision node) or represent an outlier (known as leaf node). The initial node is called the	is built from a	
decide (known as decision node) or represent an o (known as leaf node). The initial node is called the	tributes and	
(known as leaf node). The initial node is called the	used to	
	utcome	
	root node	
(colored in blue), the final nodes are called the leaf	f nodes	
(colored in green) and the rest of the nodes are cal	lled	
intermediate or internal nodes. The root and intern	mediate	
nodes represent the decisions while the leaf nodes	represent	
the outcomes. ID3 stands for Iterative Dichotomise	er 3 and is	
named such because the algorithm iteratively (rep	eatedly)	
dichotomizes(divides) features into two or more gr	roups at each	
step. Invented by Ross Quinlan, ID3 uses a top-dow	vn greedy	
approach to build a decision tree. In simple words,	the top-	
down approach means that we start building the tr	ree from the	
top and the greedy approach means that at each it		
select the best feature now to create a node. Most		
ID3 is only used for classification problems with no	- ,	
features only.		
,		
Program # -*- coding: utf-8 -*- """ID3.ipynb		
Automatically generated by Colaboratory.		


```
Original file is located at
https://colab.research.google.com/drive/1J3Hpy2rS8LQ
WjUK7f42DE4NZNOWpMdLL
from google.colab import files
uploaded = files.upload()
import pandas as pd
import numpy as np
import math
data = pd.read_csv('PlayTennis.csv')
def highlight(cell_value):
    color_1 = 'background-color: pink;'
    color_2 = 'background-color: lightgreen;'
    if cell_value == 'no':
        return color_1
    elif cell_value == 'yes':
       return color_2
data.style.applymap(highlight)\
    .set_properties(subset=data.columns, **{'width':
'100px'})\
    .set_table_styles([{'selector': 'th', 'props':
[('background-color', 'lightgray'), ('border', '1px
solid gray'),
('font-weight', 'bold')]},
[('background-color', 'white'), ('border', '1.5px
solid black')]}])
def find_entropy(data):
    entropy = 0
    for i in range(data.nunique()):
        x = data.value_counts()[i]/data.shape[0]
        entropy += (-x * math.log(x,2))
    return round(entropy,3)
def information_gain(data, data_):
    info = 0
    for i in range(data_.nunique()):
        df = data[data_ == data_.unique()[i]]
        w_avg = df.shape[0]/data.shape[0]
        entropy = find_entropy(df.play)
        x = w_avg * entropy
        info += x
    ig = find_entropy(data.play) - info
    return round(ig, 3)
```



```
def entropy_and_infogain(datax, feature):
    for i in range(data[feature].nunique()):
        df =
datax[datax[feature]==data[feature].unique()[i]]
        if df.shape[0] < 1:
            continue
        display(df[[feature,
'play']].style.applymap(highlight)\
                .set_properties(subset=[feature,
 play'], **{'width': '80px'})\
                .set_table_styles([{'selector':
 th', 'props': [('background-color', 'lightgray'),
('font-weight', 'bold')]},
                                   {'selector':
'td', 'props': [('border', '1px solid gray')]},
'tr:hover', 'props': [('background-color', 'white'),
('border', '1.5px solid black')]}]))
        print(f'Entropy of {feature} -
{data[feature].unique()[i]} =
{find_entropy(df.play)}')
    print(f'Information Gain for {feature} =
{information_gain(datax, datax[feature])}')
"""**Info(D) for complete Dataset**
print(f'Entropy of the entire dataset:
{find_entropy(data.play)}')
"""**Outlook**"""
entropy_and_infogain(data, 'outlook')
entropy_and_infogain(data, 'temp')
entropy_and_infogain(data, 'humidity')
entropy_and_infogain(data, 'windy')
```



```
sunny = data[data['outlook'] == 'sunny']
sunny.style.applymap(highlight)\
    .set_properties(subset=data.columns, **{'width':
 '100px'})\
    .set_table_styles([{'selector': 'th', 'props':
[('background-color', 'lightgray'), ('border', '1px
solid gray'),
('font-weight', 'bold')]},
[('background-color', 'white'), ('border', '1.5px
solid black')]}])
print(f'Entropy of the Sunny dataset:
{find_entropy(sunny.play)}')
"""**Calculating the Information gain for each
attribute**
entropy_and_infogain(sunny, 'temp')
entropy_and_infogain(sunny, 'humidity')
entropy_and_infogain(sunny, 'windy')
rainy = data[data['outlook'] == 'rainy']
rainy.style.applymap(highlight)\
    .set_properties(subset=data.columns, **{'width':
    .set_table_styles([{'selector': 'th', 'props':
[('background-color', 'lightgray'), ('border', '1px
solid gray'),
('font-weight', 'bold')]},
[('background-color', 'white'), ('border', '1.5px
solid black')]}])
print(f'Entropy of the Rainy dataset:
{find_entropy(rainy.play)}')
```



```
attribute**

**Temp**
"""

entropy_and_infogain(rainy, 'temp')

"""**Humidity**""

entropy_and_infogain(rainy, 'humidity')

"""**Windy**""

entropy_and_infogain(rainy, 'windy')
```

Output

>

	outlook	play
0	sunny	no
1	sunny	no
7	sunny	no
8	sunny	yes
10	sunny	yes

Entropy of outlook - sunny = 0.971

	outlook	play	
2	overcast	yes	
6	overcast	yes	
11	overcast	yes	
12	overcast	yes	

Entropy of outlook - overcast = 0.0

	outlook	play
3	rainy	yes
4	rainy	yes
5	rainy	no
9	rainy	yes
13	rainy	no

Entropy of outlook - rainy = 0.971 Information Gain for outlook = 0.246

	humidity	play
0	high	no
1	high	no
2	high	yes
3	high	yes
7	high	no
11	high	yes
13	high	no

Entropy of humidity - high = 0.985

opy or numeu.	112811	. ~ .
humidity	play	
normal	yes	
normal	no	
normal	yes	
	normal normal normal normal normal	humidity play normal yes normal no normal yes normal yes normal yes normal yes normal yes

Entropy of humidity - normal = 0.592 Information Gain for humidity = 0.151

Vidyalankar Institute of Technology Wovevett.edu.in Department of Computer Engineering Exp. No.3

	windy	play
0	False	no
2	False	yes
3	False	yes
4	False	yes
7	False	no
8	False	yes
9	False	yes
12	False	yes
Entr	ony of windy	- False = 0.

Entropy of windy - False = 0.811

	windy	play
1	True	no
5	True	no
6	True	yes
10	True	yes
11	True	yes
13	True	no
		T 4 0

Entropy of windy - True = 1.0 Information Gain for windy = 0.048

	outlook	temp	humidity	windy	play
0	sunny	hot	high	False	no
1	sunny	hot	high	True	no
7	sunny	mild	high	False	no
8	sunny	cool	normal	False	yes
10	sunny	mild	normal	True	yes

0 hot no		temp	play
Tiot III	0	hot	no
1 hot no	1	hot	no

Entropy of temp - hot = 0.0

	temp	play
7	mild	no
10	mild	yes

Entropy of temp - mild = 1.0

	temp	play
8	C00	l yes

Entropy of temp - cool = 0.0 Information Gain for temp = 0.571

	humidity	play
0	high	no
1	high	no
7	high	no

Entropy of humidity - high = 0.0

	humidity	play
8	normal	yes
10	normal	yes

Entropy of humidity - normal = 0.0 Information Gain for humidity = 0.971

	windy	play
0	False	no
7	False	no
8	False	yes

Entropy of windy - False = 0.918

	windy	play
1	True	no
10	True	yes

Entropy of windy - True = 1.0 Information Gain for windy = 0.02

	outlook	temp	humidity	windy	play
3	rainy	mild	high	False	yes
4	rainy	cool	normal	False	yes
5	rainy	cool	normal	True	no
9	rainy	mild	normal	False	yes
13	rainy	mild	high	True	no

	temp	play
3	mild	yes
9	mild	yes
13	mild	no

Entropy of temp - mild = 0.918

	temp	play
4	cool	yes
5	cool	no

Entropy of temp - cool = 1.0 Information Gain for temp = 0.02

Vidyalankar Institute of Technology Departr	nen	t of Com	nputer E	ngineering	Exp. No.3
		humidity	play		
	3	high	yes		
	13	high	no		
	Enti	opy of humid	ity - high =	1.0	
		humidity	play		
	4	normal	yes		
	5	normal	no		
	9	normal	yes		
		ropy of humid ormation Gain			
		windy	play		
	3	False	yes		
	4	False	yes		
	9	False	yes		
	Ent	ropy of windy	- False = 0	.0	
		windy	play		
	5	True	no		
	13	True	no		
		ropy of windy ormation Gain			
Conclusion:	A random dataset was taken from Kaggle repository and ID3 algorithm was implemented on the dataset. It is identified that Windy attribute has highest Information Gain hence, it is the decision node.				