분류	질문	답변	중요도 관련 개념	备 为
	좋은 코드의 조건이 뭘까요?			
	좋은 알고리즘의 조건이 뭘까요?			
	배열에 대해 설명해주세요	선형 자료구조 - 랜덤 접근 가능 - 배열		
		말 그대로 선형구조로 된 자료를 탐색하는 방법이다. 보통 어떤 값이 어디에 있는지 알아내는 게 목적이다.		
		"O(1)"은 알고리즘의 시간 복잡도를 나타내는 표기법 중 하나로, 상수 시간을 의미 모든 자료에 O(1)으로 접근이 보장되는 자료구조들이다. "O(1)으로 접근 가능한 자료구조"라 어떤 연산이 입력 크기와 관계없이 항상 일정한 시간 내에 실행되는 자료구조를 의미 즉, 입력의 크기에 관계없이 항상 일정한 시간내에 실행되는 자료구조를 의미 즉, 입력의 크기에 관계없이 항상 일정 시간만큼 소요 된다는 뜻 랜덤 접근 가능한 자료구조는 인택스를 사용하여 직접 접근할 수 있기 때문에, 원하는 위치에 있는 데이터를 빠르게 찾을 수 있습니다.	상	https://opentutorials.org/module/1335/8677
		가장 쉬운 자료구조이자 언어에 따라 활용법이 가장 크게 달라지는 자료구조. 배열이란 연관된 데이터를 하나의 변수에 그룹핑해서 관리하기 위한 방법. 배열을 이용하면 하나의 변수에 여러 정보를 담을 수 있고, 반복문과 결합하면 많은 정보도 효율적으로 처리할 수 있습니다.		
		배열의 단점입니다. 배열은 인택스에 따라서 값을 유지하기 때문에 엘리먼트가 삭제돼도 빈자리가 남게 됩니다. *삭제한 자리를 뒤에 위치한 엘리먼트로 메꾸는 것입니다. 이렇게 데이터가 순서에 따라서 빈틈없이 연속적으로 위치하는 데이터 스트럭처를 리스트(list) 인맥스가 중요한 경우는 배열을 사용하면 됩니다. null를 처리에서 제외해야 한다면 조건문을 사용하면 되겠죠. 인맥스가 중요 하지 않은 경우에는 리스트를 사용하면 됩니다.		
		선형 자료구조 - 랜덤 접근 불가능 - 링크드 리스트		
		말 그대로 선형구조로 된 자료를 탐색하는 방법이다. 보통 어떤 값이 어디에 있는지 알아내는 게 목적이다.		
	링크드 리스트에 대해 설명해주세요	모든 자료에 O(1)으로 접근이 보장되지 않는 자료구조들이다. 연결 리스트는 각 노드가 다음 노드를 가리키는 방식으로 데이터를 저장하는 자료구조입니다. 특정 인덱스에 있는 데이터에 접 근하려면 리스트의 시작부터 순자적으로 노드를 탐색해야 하므로, 회약의 경우 O(n) 시간이 걸릴 수 있습니다 (여기서 n은 리스트의 일 입이).	상	
		으크 జంగు, 렌덤 접근이 불가능한 자료구조들은 데이터에 접근할 때 순차적인 탐색이 필요하거나, 특정 위치에 바로 접근할 수 없어서 입 력의 크기에 따라 접근 시간이 달라질 수 있습니다.		
		값과 다음 노드를 가지고 있다. 옵션으로 이전 노드를 가지게 할 수도 있으며, 맨 뒤 노드가 맨 앞 노드를 다음 노드로 가지게 할 수도 있다. 또한, 충간에서 삼입과 삭제를 할 수 있다. 가장 간단하게 구현한 것은 뛰의 큐. 다만, 링크드 리스트는 원소들이 이곳 저곳에 흩어져있어서 구현체의 속도가 느리기 때문에, 잘 사용되지는 않는 편이다.		
	배열과 링크드 리스트를 비교해주세요	- 배열은 배열이 길이 만큼 꼭 찬 상태에서 요소를 추가하면 배열의 길이의 두배에 해당하는 메모리를 미리 할당하여 그 만큼 될 필요한 메모리를 사용하게 됩니다. - 배열은 push와 pop을 제외한 모든 배열의 요소 추가 및 제거 메서드에서 O(n)의 시간 복잡도를 가집니다. 만약 첫번째 인맥스 에 요소를 추가해야 할 경우 나머지 모든 요소들을 오른쪽으로 한 칸씩 옮겨야합니다.		
		- 연결 리스트는 필요한 만큼만 메모리가 늘어나고 줄어들며 첫번째 인덱스에 요소를 추가하더라도 O(1)의 시간 복잡도를 가집 니다. 따라서 또 다른 대표적인 선형 구조인 큐의 구현을 할 때 배열로 구현하는 것보다 연결 리스트를 활용하는 것이 훨씬 효율적입니다. - 또한 각 노드를 차례대로 접근해야하는 경우에도 배열보다 연결 리스트 가 좋습니다.	상	
		배열과 비교한 링크드 리스트의 특징 - 배열에 비해 공간 복잡도에서 이정을 가집니다 순서대로 데이터에 접근해야 할 때 매우 효율적입니다 첫번째 인덱스에 요소를 추가할 때 배열에 비해 시간 복잡도에서 이정을 가집니다. O(1) vs O(n) - 특정 인덱스에 랜덤하게 접근해야 하는 경우 배열을 사용하는 편이 효율적입니다. O(1) vs O(n) 연결 리스트의 요소(elements)들은 특정 메모리 주소나 인텍스에 저장되지 않습니다. 오하려 각 요소는 포인터 또는 다음 객체		
		에 대한 링크를 가지는 독립적인 객체에 가깝습니다 연결 리스트의 각 요소를 노드(node)라 부릅니다. 노드는 일반적으로 데이터 그리고 다음 노드를 가리키는 링크, 이 2가지 아이 템으로 구성됩니다 연결 기소들이 가장 첫 번째 T점은 청도(head)라고 불론니다. 청도는 여名 리스트의 첫 번째 노드로 의미하니다. 미나마아 노드		
	자바스크립트로 링크드 리스트 구현하는법	연결 리스트의 가장 첫 번째 지점을 해도(head)라고 부릅니다. 해도는 연결 리스트의 첫 번째 노도를 의미합니다. 마지막 노드는 null을 가르킵니다. 만약 연결 리스트가 비어있는 경우, 해도는 null을 참조하게 됩니다. 자바스크립트로 연결 리스트를 표현 const list = { head: { value: 6 next. { value: 10 next. { value: 3 next. rull	삼	https://www.freecodecamp.org/korean/news/implementing-a-linked-list-in-javascript/

링크드 리스트의 장점과 단점	경점 -데이터 구조의 큰 들을 바꾸지 않고 노드를 추가하거나 삭제하기 쉽다는 장점 (배열과 대비되는 점) 단점 - 연결 리스트는 탐색이 느립니다. 배열과 달리, 연결 리스트는 데이터에 무작위 접근(random access)을 할 수 없기 때문입니다. 노드들은 첫 번째 노드부터 순차적으로만 접근해야 합니다 연결 리스트는 배열보다 더 많은 메모리를 사용합니다. 왜냐하면 각 노드는 포인터를 당고 있기 때문입니다.	ਰੰਤ ਰੰਤ	
링크드 리스트의 유형	3가지 - 단일 연결 리스트(Singly Linked Lists): 각 노드는 하나의 포인터만 가집니다. 우리가 위에서 이야기한 유형이 단일 연결 리스트입니다 이중 연결 리스트(Doubly Linked Lists): 각 노드는 2개의 포인터를 가지는데, 하나는 다음 노드를 그리고 나머지 하나는 이 전 노드를 가르킵니다 원형 연결 리스트(Circular Linked Lists): 연결 리스트를 응용한 유형으로, 마지막 노드의 포인터가 첫 노드 또는 특정 노드를 가르킴니고 있는 마치 루프 형태를 가지는 유형을 말합니다.	ਲ	
	엄결 리스트는 앞뒤로 언결이 되었는지 아닌지 여부에 따라 단일(Singly) 연결 리스트와 이종(양방향, Doubly) 연결 리스트가 있다. 단일 언결 리스트는 한 방향으로만 연결되어 있다. 따라서 나와 연결된 다음 노드는 알 수 있지만 내 이전 노드는 알 수 없다. 그 러므로 역형해서 바로 이동할 수도 없다. 반면 이종 언결 리스트는 이전과 이후 노드를 모두 저장하고 있어 양방향 이동이 자유롭다. 단일 연결 리스트는 각 노드가 다음 노드만을 황조하지만 이중 연결 리스트에서는 이전 노드와 다음 노드 양 쪽을 참조합니다.		
단일 연결 리스트와 이중 연결 리스트를 비교 설명해주세요.	단말 Data Next Data Next Data Next Prev Data Next Prev Data Next	KI60	https://velog.io/@717lumos/%EC%9E%90%EB%A3%8C%EA%B5%AC%EC%A1%
	이용 연결리스트		BO-%EC%97%B0%EA%B2%B0%EB%A6%AC%EC%848%A4%ED%86A%B8Linked- List-%EB%8B%A6%EC%9D%BC%EC%97%B0%EA%B22%B0%EB%A6%AC%EC% 8A%A4%ED%8A4%B8-%EC%9D%B4%EC%A4%91%EC%97%B0 EB%A6%AC%EC%8A%A4%ED%8A%B8 EB%A6%AC%EC%8A%A4%ED%8A%B8
https://www.freecodecamp.org/korean/news/implementing-a-linked-list-in- javascript/ https://prgms.tistory.com/134			