

ML Math Club: Probability Fundamentals

Moataz Ben Trad

Data Science student | Al Enthusiastic
ML/AI Mentor in gdg on campus ISAMM

lookup.KeyVal f.constant([' =tf.constant(.lookup.Stati

Content

- 1. Introduction to Probability
- 2. Basics of Probability Theory
- 3. Conditional Probability & Bayes' Theorem


```
/*1*/
child: Column(
   crossAxisAlignment: CrossAxisAlignmen
```


Join at slido.com #4587614

Introduction to Probability

lookup.KeyValuef.constant(['en=tf.constant([@.lookup.Static\

buckets=5)

Definition:

The measure of how likely it is that an event will happen.

It's a way of quantifying uncertainty. We often express probability as a number

between 0 and 1, where:

-0 means the event is impossible.

-1 means the event is certain.

Why Does Probability Matter?

- -Helps model **uncertainty** in real-world scenarios.
- Forms the **foundation** of statistics & machine learning.
- Used in **decision-making** and Al models.

-etc.

Real-World Applications:

Weather Prediction: Forecasting based on historical data.

Spam Filtering: Classifying emails as spam/non-spam using Bayes' Theorem.

Recommendation Systems: Predicting user preferences in Netflix, Spotify, etc.

Example:

- If it's cloudy, what's the probability of rain? —
- Based on past data: P(Rain | Cloudy) = 70%

Basics of Probability Theory

Lookup.KeyValue f.constant(['en =tf.constant([G .lookup.StaticV buckets=5)

Sample Space & Events

The general formula for calculating probability is:

P = A/S

Sample Space (S) \rightarrow Set of all possible outcomes.

Event (A) \rightarrow A subset of the sample space.

Example (Coin Flip)

Sample space: S={P,F}

Event: Getting A={P}

Probability: P(A)=0.5

Probability Axioms

- -The probability of any event is between 0 and 1.
- -The probability of the sample space is 1.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Example (Rolling a Die)

Sample space: S={1,2,3,4,5,6}

Rolling a 4 or a 6 on a Die

$$P(4 \cup 6)=P(4)+P(6)=\%+\%=\frac{1}{3}$$

What is a Random Variable?

Discrete: Takes countable values

Continuous: Takes values in a range

<> Google Developer Groups

Discrete vs. Continuous Random Variables

Discrete RV:

Finite or countable set of outcomes.

Example: Rolling a die (values: 1, 2, 3, 4, 5, 6).

Continuous RV:

Infinite possible values within a range.

Example: A person's weight (e.g., 65.3 kg, 65.31 kg).

https://www.bibmath.net/formulaire/index.php?

https://www.bibmath.net/ressources/index.php?

The number of students in a classroom.

The time taken to complete a marathon

Conditional Probability & Bayes' Theorem

Lookup.KeyValue f.constant(['en =tf.constant([@ .lookup.Static\

_buckets=5)

What is Conditional Probability?

The probability of an event **A** occurring given that event **B** has already occurred.

$$P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Example (Probability of Passing an Exam)

P(Pass | Studied) = High

P(Pass | Didn't Study) = Low

Bayes' Theorem

Bayes' Theorem allows us to reverse conditional probabilities:

$$P(A|B) = rac{P(B|A) \cdot P(A)}{P(B)}$$

Spam vs Not Spam

with

NAÏVE Bayes Classifier

Example:

What's the probability that a randomly selected email would be SPAM?

$$P(S) = \frac{Spam}{Spam + Not Spam} = \frac{3}{8} \qquad P(S) = \frac{Not Spam}{Spam + Not Spam} = \frac{5}{8}$$

NAÏVE Bayes Classifier

Bag of Words:

<u>Email</u>		BOG Features
Hello Friend	\longrightarrow	[1, 1, 0, 0, 0]
Win Prize Money	\longrightarrow	[0, 0, 1, 1, 1]
Vocab		

["hello", "friend", "win", "prize", "money"]

Bag of Words

$$P(S) = P(S) * P(hello | S) * P(friend | S)$$

$$P(S) = \frac{3}{8} * \frac{2}{17} * \frac{3}{17} = 0.00778$$

$$P(N) = P(N) * P(hello | N) * P (friend | N)$$

$$P(N) = \frac{5}{8} * \frac{7}{18} * \frac{5}{18} = 0.0675$$

If an email contains the words "win" and "free", and we apply the Naïve Bayes formula, what are we calculating?

What does conditional probability measure?

Which of the following is the correct formula for Bayes' Theorem?

Let's Code!

Google Developer Groups

```
/*_*/
child: Column(
```

2/ ontainer(padding: const Edge child: const Text(

style: TextStyle(
fontWeight: FontW

