# ECE 509: Cyber Security: Concept, Theory and Practices

Salim Hariri

Fall 2022

### Today's Lecture Outline

- Threat Modeling
  - STRIDE Methodology
  - DREAD Methodology

#### What will be covered in this class?

| App                                       | olication Se                                | ecurity &           | & Re              | silience       |  |
|-------------------------------------------|---------------------------------------------|---------------------|-------------------|----------------|--|
| User and Web                              | User and Web Applications                   |                     | ile<br>rms        | Web Protocols  |  |
| Encryption                                | ncryption Forensic An                       |                     | I                 | nsider Threats |  |
| O                                         | <b>Operating System Security</b>            |                     |                   |                |  |
| Basic Control H                           | Basic Control Hijacking Rootkits, Isolation |                     |                   |                |  |
| Computer I                                | Networks a                                  | nd Proto            | ocols             | Security       |  |
| Computer Networks Communication Protocols |                                             |                     | ication Protocols |                |  |
| Wireless                                  | Wired                                       | d IP Based Non IP B |                   | Non IP Based   |  |

### Threat Modeling

- Threat modeling aims at finding security problems.
- Using a model means use abstraction to obtain a bigger picture, rather than the code itself
- Threat modeling involves answering the following four key questions:
  - What are you building?
  - What can go wrong?
  - What should you do about those things that can go wrong?
  - Did you do a decent job of analysis?

#### What can go wrong?



#### Types of Threats



#### Threats Against the Network

| Threat                | Examples                                           |
|-----------------------|----------------------------------------------------|
| Information gathering | Port scanning                                      |
|                       | Using trace routing to detect network topologies   |
|                       | Using broadcast requests to enumerate subnet hosts |
| Eavesdropping         | Using packet sniffers to steal passwords           |
| Denial of service     | SYN floods                                         |
| (DoS)                 | ICMP echo request floods                           |
|                       | Malformed packets                                  |
| Spoofing              | Packets with spoofed source addresses              |

#### Threats Against the Host

| Threat                   | Examples                                        |  |
|--------------------------|-------------------------------------------------|--|
| Arbitrary code execution | Buffer overflows in ISAPI DLLs (e.g., MS01-033) |  |
|                          | Directory traversal attacks (MS00-078)          |  |
| File disclosure          | Malformed HTR requests (MS01-031)               |  |
|                          | Virtualized UNC share vulnerability (MS00-019)  |  |
| Denial of service (DoS)  | Malformed SMTP requests (MS02-012)              |  |
|                          | Malformed WebDAV requests (MS01-016)            |  |
|                          | Malformed URLs (MS01-012)                       |  |
|                          | Brute-force file uploads                        |  |
| Unauthorized access      | Resources with insufficiently restrictive ACLs  |  |
|                          | Spoofing with stolen login credentials          |  |
| Exploitation of open     | Using NetBIOS and SMB to enumerate hosts        |  |
| ports and protocols      | Connecting remotely to SQL Server               |  |

#### Threats Against the Application

| Threat                 | Examples                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------|
| SQL injection          | Including a DROP TABLE command in text typed into an input field                              |
| Cross-site scripting   | Using malicious client-side script to steal cookies                                           |
| Hidden-field tampering | Maliciously changing the value of a hidden field                                              |
| Eavesdropping          | Using a packet sniffer to steal passwords and cookies from traffic on unencrypted connections |
| Session hijacking      | Using a stolen session ID cookie to access someone else's session state                       |
| Identity spoofing      | Using a stolen forms authentication cookie to pose as another user                            |
| Information disclosure | Allowing client to see a stack trace when an unhandled exception occurs                       |

#### Threat Model Framework



- 1. Model the system/assets i.e. identify the assets and analyze them
- 2. Find threats using that model
- 3. Address threats using the approaches.
- 4. Validate your work for completeness and effectiveness.
- Rate/Prioritize threats based on their impacts

# Step 1. Modelling of the System/ Asset

- There are three ways the term asset is commonly used in threat modeling:
  - Things attackers want
    - User passwords or keys
    - Social security numbers or other identifiers
    - Credit card numbers
    - Your confidential business data
  - Things you want to protect
    - Unlike the tangible things attackers want, many of these assets are intangibles
  - Stepping stones to either of these
    - For example, every computer has CPU and storage that an attacker can use
- Software architecture diagrams, UML diagrams, and attacker intention understanding can be used for asset modelling

#### Step 2. Find Threats

- In this step the security expert will identify the threats that can be exploited to target the different assets and systems identified
- Device and system domain knowledge is used to identify the threats targeting the devices
- Datasets like the national vulnerability database, and MITRE CVE are used to identify the threats

NVD: https://nvd.nist.gov

#### MITRE CVE:

https://cve.mitre.org/about/cve\_and\_nvd\_relationship.html

## Step 2. Formal methods for Threat Identification

- Method 1: Threat List
  - Create a list of possible threats
  - Identify the threats that will target the concerned system
- Method 2: STRIDE
  - Categorized list of threat types
  - Identify threats by type/category
- Method 3: Threat trees
  - Root nodes represent attacker's goals

#### STRIDE

- STRIDE is a mnemonic for things that go wrong in security.
  - Spoofing is pretending to be something or someone you're not.
  - Tampering is modifying something you're not supposed to modify.
    - It can include packets on the wire (or wireless), bits on disk, or the bits in memory.
  - Repudiation means claiming you didn't do something (regardless of whether you did or not).
  - Denial of Service are attacks designed to prevent a system from providing service, including by crashing it, making it unusably slow, or filling all its storage.
  - Information Disclosure is about exposing information to people who are not authorized to see it.
  - Elevation of Privilege is when a program or user is technically able to do things that they're not supposed to do.

#### **Attack Trees**

#### Attack Tree

- There are three ways you can use attack trees to enumerate threats:
  - You can use an attack tree someone else created to help you find threats.
  - You can create a tree to help you think through threats for a project you're working on.
  - Or you can create trees with the intent that others will use them
- Once you've modeled your system with a DFD or other diagram, you use an attack tree to analyze it
- Creating New Attack Tree
  - 1 Decide on a representation (AND, OR, etc.)
  - 2. Create a root node.
  - 3. Create subnodes.
  - 4. Consider completeness.
  - 5. Prune the tree.
  - 6. Check the presentation.

### Attack Tree – Creating a root node

- The root node can be the component that prompts the analysis, or an adversary's goal.
- If the root node is a component, the subnodes should be labeled with what can go wrong for the node.
- If the root node is an attacker goal, consider ways to achieve that goal. Each alternative way to achieve the goal should be drawn in as a subnode
- Some possible structures for first-level subnodes include:
  - Attacking a system:
    - physical access
    - · subvert software
    - subvert a person
  - Attacking a system via:
    - People
    - Process
    - Technology

#### Threat Trees: Goal Root Node Example



#### Step 3. Address Threats

- Address the security mechanisms to counter or prevent the threats identified in step 3
- Domain specific knowledge is used to address these threats
- The NVD and MITRE CVE list provide mitigation techniques for some of the attacks

#### How to Address Each Threat?

- Mitigating threats aim at making it harder to exploit a threat.
  - Requiring passwords to control who can log in mitigates the threat of spoofing.
- Eliminating threats is almost always achieved by eliminating features
  - If you have a threat that someone will access the administrative function /url/admin
  - You can eliminate it by removing the interface, handling administration through the command line.
- Transferring threats by letting someone or something else handle the risk.
  - For example, you could pass authentication threats to the operating system, or trust boundary enforcement to a firewall product.
  - You can also transfer risk to customers, by asking them to click through lots of hard-to-understand dialogs before they can do the work they need to do.
- Accepting the risk of the identified threats.
  - For most organizations, searching everyone on the way in and out of the building is not worth the expense and job satisfaction of those workers.
  - Other organizations such as government agencies take a different approach
  - The cost of preventing someone from inserting a back door in the motherboard is expensive, so you might choose to accept the risk.

### Addressing Spoofing Threats

 Table 1-1 and the list that follows show targets of spoofing, mitigation strategies that address spoofing, and techniques to implement those mitigations

Table 1-1: Addressing Spoofing Threats

| THREAT<br>TARGET                | MITIGATION STRATEGY                              | MITIGATION TECHNIQUE                                                                             |
|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Spoofing a                      | Identification and authen-                       | Usernames, real names, or other identifiers:                                                     |
| person                          | tication (usernames and something you know/have/ | Passwords                                                                                        |
|                                 | are)                                             | ❖ Tokens                                                                                         |
|                                 |                                                  | <ul><li>Biometrics</li></ul>                                                                     |
|                                 |                                                  | Enrollment/maintenance/expiry                                                                    |
| Spoofing a "file"               | Leverage the OS                                  | ❖ Fullpaths                                                                                      |
| on disk                         |                                                  | Checking ACLs                                                                                    |
|                                 |                                                  | Ensuring that pipes are created properly                                                         |
|                                 | Cryptographic authenticators                     | Digital signatures or authenticators                                                             |
|                                 |                                                  |                                                                                                  |
| Spoofing a net-<br>work address | Cryptographic                                    | ❖ DNSSEC                                                                                         |
| Workadaress                     |                                                  | ♦ HTTPS/SSL                                                                                      |
|                                 |                                                  | ❖ IPsec                                                                                          |
| Spoofing a program in memory    | Leverage the OS                                  | Many modern operating systems have some form of application identifier that the OS will enforce. |

### Addressing Tampering Threats

Table 1-2: Addressing Tampering Threats

| THREAT TARGET                    | MITIGATION<br>STRATEGY                  | MITIGATION TECHNIQUE                                                        |
|----------------------------------|-----------------------------------------|-----------------------------------------------------------------------------|
| Tampering with a file            | Operating system                        | ACLs                                                                        |
|                                  | Cryptographic                           | Digital Signatures                                                          |
|                                  |                                         | ❖ Keyed MAC                                                                 |
| Racing to create a file          | Using a directory that's                | ACLs                                                                        |
| (tampering with the file system) | protected from arbitrary user tampering | Using private directory structures                                          |
|                                  |                                         | (Randomizing your file names just makes it annoying to execute the attack.) |
| Tampering with a net-            | Cryptographic                           | ♦ HTTPS/SSL                                                                 |
| work packet                      |                                         | ❖ IPsec                                                                     |
|                                  | Anti-pattern                            | Network isolation (See note on network isolation anti-pattern.)             |
|                                  | ECE 509                                 | Salim Hariri/University of A                                                |

#### Addressing Repudiation Threats

- Addressing repudiation focuses on ensuring that your system is designed to log and ensuring that those logs are preserved and protected.
- Table 1-3 and the list that follows show targets of repudiation, mitigation strategies that address repudiation, and techniques to implement those mitigations.

**Table 1-3:** Addressing Repudiation Threats

| THREAT TARGET                        | MITIGATION STRATEGY    | MITIGATION TECHNIQUE                                    |
|--------------------------------------|------------------------|---------------------------------------------------------|
| Nologsmeansyou can't prove anything. | Log                    | Be sure to log all the security-relevant information.   |
| Logscomeunderattack                  | Protect your logs.     | Sendoverthenetwork.                                     |
|                                      |                        | ❖ ACL                                                   |
| Logsasachannelforattack              | Tightly specified logs | Documenting log design early in the development process |

# Addressing Information Disclosure Threats

Table 1-4: Addressing Information Disclosure Threats

| THREAT TARGET                                                         | MITIGATION STRATEGY | MITIGATION TECHNIQUE                                                |
|-----------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|
| INKEAL TARGET                                                         | WITIGATION STRATEGY | WITIGATION TECHNIQUE                                                |
| Network monitoring                                                    | Encryption          | ♦ HTTPS/SSL                                                         |
|                                                                       |                     | ❖ IPsec                                                             |
| Directory or filename (for example lay off-letters/adamshostack.docx) | Leverage the OS.    | ACLs                                                                |
| File contents                                                         | LeveragetheOS.      | ACLS                                                                |
|                                                                       | Cryptography        | File encryption such as PGP, disk encryption (FileVault, BitLocker) |
| API information                                                       | Design              | Careful design control                                              |
| disclosure                                                            |                     | Consider pass by reference or value.                                |

# Addressing Denial of Service Threats

Table 1-5: Addressing Denial of Service Threats

| THREAT<br>TARGET     | MITIGATION<br>STRATEGY | MITIGATION TECHNIQUE                                                                                                                                                                                                                                                                                      |
|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network              | Look for exhaustible   | ❖ Elastic resources                                                                                                                                                                                                                                                                                       |
| flooding             | resources.             | Work to ensure attacker resource consumption is<br>as high as or higher than yours.                                                                                                                                                                                                                       |
|                      |                        | Network ACLS                                                                                                                                                                                                                                                                                              |
| Program<br>resources | Carefuldesign          | Elastic resource management, proof of work                                                                                                                                                                                                                                                                |
|                      | Avoid multipliers.     | Look for places where attackers can multiply CPU consumption on your end with minimal effort on their end: Do something to require work or enable distinguishing attackers, such as client does crypto first or login before large work factors (of course, that can't mean that logins are unencrypted). |
| System resources     | LeveragetheOS.         | Use OS settings.                                                                                                                                                                                                                                                                                          |

# Addressing Elevation of Service Threats -1

**Table 1-6:** Addressing Elevation of Privilege Threats

| THREAT TARGET                                   | MITIGATION<br>STRATEGY                | MITIGATION TECHNIQUE                                                             |
|-------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|
| Data/code confusion                             | Use tools and architectures that      | <ul><li>Prepared statements or stored procedures in SQL</li></ul>                |
|                                                 | separate data and code.               | Clear separators with canonical forms                                            |
|                                                 |                                       | Late validation that data is what the next function expects                      |
| Control flow/<br>memory corrup-<br>tion attacks | Use atype-safe<br>language.           | W riting code in a type-safe language protects against entire classes of attack. |
|                                                 | Leverage the OS formemory protection. | Mostmodernoperating systems have memory-protection facilities.                   |

# Addressing Elevation of Service Threats -2

| THREAT TARGET                  | MITIGATION<br>STRATEGY | MITIGATION TECHNIQUE                                                                                                                                           |
|--------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | Use the sandbox.       | Modern operating systems support sand-<br>boxing in various ways (AppArmoron Linux,<br>AppContainer or the MOICE pattern on<br>Windows, Sandboxlib on Mac OS). |
|                                |                        | Don'trunasthe "nobody" account, create a<br>new one for each app. Postfix and Q Mail are<br>examples of the good pattern of one account<br>per function.       |
| Command injec-<br>tion attacks | Be careful.            | Validate that your input is the size and form you expect.                                                                                                      |
|                                |                        | Don't sanitize. Log and then throw it away if<br>it's weird.                                                                                                   |

## Step 4. Validate the Threat model

- Validate the addressing mechanisms identified in step 3
- Simulation based approaches or actual testing will be used to perform validation

### Step 5. Rate

#### Simple model:



#### Dread Model

- Greater granularization of threat potential
- Rates (prioritizes) each threat on scale of 1-15
- Developed and widely used by Microsoft

#### DREAD

into a field

- Damage potential
- Reproducibility
- **Exploitability**
- A Affected users
- Discoverability



# Practical example of Threat Modelling: Smart Speaker

 Smart Speakers are IoT devices that connect to Wi-Fi network to play music based on voiced commands

Example: Google Home, Alexa

#### Summary

- Without threat modelling, protecting yourself is like "shooting in the dark"
- You need expertise in understanding most common attacks – read security bulletins
- Developers must learn and use secure coding practices
  - Learn some crypto too
- Assume you are vulnerable, prove you are not

#### References

- http://msdn.microsoft.com/security/securec ode/threatmodeling/default.aspx
- http://sec.cs.kent.ac.uk/cms2004/Program/ CMS2004final/p4a6.pdf
- http://cpd.ogi.edu/seminars04/hickmanthre atmodeling.pdf
- Reference for threat modeling tool:
  - http://thesource.ofallevil.com/downloads/details.aspx?FamilyID=28a7e041-8909-4084-8b05-06c3135e2a16&displaylang=en



### Potential Services/Applications

- Inter-Component Communication
- Long-Range Communication (Cellular, Radio, Satellite, etc.)
- Remote Application Interface
- OS & Kernel
- Component Compromises
- Configuration Management
- Data Storage (File System)
- Data Logs
- Sensors
- Actuators
- Communications
- Client Application
- Cloud Integration
- Software Deployment
- Credentials, PKI and Secrets

#### THREAT MODELING OF AUTONOMOUS VEHICLE



### MITRE Adversarial Tactics, Techniques and Common Knowledge (ATT&CK)

| Initial Access               | Execution                   | Persistence                      | Privilege Escalation                  | Defense Evasion                  |  |
|------------------------------|-----------------------------|----------------------------------|---------------------------------------|----------------------------------|--|
| Valid Accounts               |                             | Scheduled Task                   |                                       | XSL Script Processing            |  |
| Trusted Relationship         | Trap                        |                                  | Process Injection                     |                                  |  |
| Supply Chain Compromise      | LSASS Driver                |                                  | Extra Window Memory Injection         |                                  |  |
| Spearphishing via Service    | Local Job                   | Scheduling                       | Bypass User A                         | account Control                  |  |
| Spearphishing Link           | Laur                        | nchctl                           | Access Token                          | Manipulation                     |  |
| pearphishing Attachment      | XSL Script Processing       |                                  | Valid Accounts                        |                                  |  |
| Replication Through          | Windows Remote              |                                  | Plist Modification                    |                                  |  |
| Removable Media              | Management                  | Ir                               | mage File Execution Options Injection | on                               |  |
| <b>Exploit Public-Facing</b> | User Execution              |                                  | <b>DLL Search Order Hijacking</b>     | _                                |  |
| Application                  | Trusted Developer Utilities | Web                              | Shell                                 | Web Service                      |  |
| Hardware Additions           | Third-party Software        | Startu                           | p Items                               | Trusted Developer Utilities      |  |
| Drive-by Compromise          | Space after Filename        | Setuid a                         | nd Setgid                             | Timestomp                        |  |
|                              | Source                      | Service Registry Pe              | rmissions Weakness                    | Template Injection               |  |
|                              | Signed Script               | Port M                           | lonitors                              | Space after Filename             |  |
|                              | Proxy Execution             | Path Into                        | erception                             | Software Packing                 |  |
|                              | Service Execution           | New S                            | Service                               | SIP and Trust                    |  |
|                              | Scripting                   | Launch Daemon                    |                                       | Provider Hijacking               |  |
|                              | Rundll32                    | Hooking                          |                                       | Signed Binary<br>Proxy Execution |  |
|                              | Regsvr32                    | File System Permissions Weakness |                                       |                                  |  |
|                              | Regsvcs/Regasm              | Dylib H                          | lijacking                             | Rundll32                         |  |
|                              | PowerShell                  | Application                      | Shimming                              | Rootkit                          |  |
|                              | Mshta                       | Appln                            | it DLLs                               | Regsvr32                         |  |
|                              | InstallUtil                 | AppCe                            | ert DLLs                              | Regsvcs/Regasm                   |  |
|                              | Graphical User Interface    | Accessibili                      | ty Features                           | Redundant Access                 |  |
|                              | Exploitation for            | Winlogon Helper DLL              | Sudo Caching                          | Process Hollowing                |  |
|                              | Client Execution            | Windows Management               | Sudo                                  | Process Doppelganging            |  |
|                              | Execution through API       | Instrumentation                  | SID-History Injection                 | Port Knocking                    |  |
|                              | Dynamic Data Exchange       | Event Subscription               | Exploitation for                      | Obfuscated Files                 |  |
|                              | Control Panel Items         | SIP and Trust Provider           | Privilege Escalation                  | or Information                   |  |
|                              | Compiled HTML File          | Hijacking                        |                                       | Network Share                    |  |
|                              | Command-Line Interface      | Security Support Provider        |                                       | Connection Removal               |  |
|                              | CMSTP                       | Screensaver                      |                                       | Modify Registry                  |  |
|                              | AppleScript                 | Registry Run                     |                                       | Masquerading                     |  |
|                              | Windows Management          | Keys / Startup Folder            | 1                                     | LC_MAIN Hijacking                |  |
|                              | Instrumentation             | Re-opened Applications           |                                       | Launchctl                        |  |
|                              | Signed Binary               | Rc.common                        |                                       | InstallUtil                      |  |
|                              | Proxy Execution             | Port Knocking                    |                                       | Install Root Certificate         |  |
|                              | Execution through           | Office Application Startup       |                                       | Indirect Command Execution       |  |
|                              | Module Load                 | Netsh Helper DLL                 | 1                                     | Component Firmware               |  |

### MITRE Adversarial Tactics, Techniques and Common Knowledge (ATT&CK)

| CredentialAccess                      | Discovery                       | Lateral Movement            | Collection                            | Exfiltration                                                                                        | Command and Control                        |
|---------------------------------------|---------------------------------|-----------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------|
| Network Sniffing                      |                                 | Windows Remote              | Video Capture                         | Scheduled Transfer                                                                                  | Web Service                                |
| THO Factor Flathenication             | System Time Discovery           | Management                  | Screen Capture                        | Physical Medium Standard Not<br>Exfiltration Over Command Layer P<br>and Control Channel Standard A | Uncommonly Used Port                       |
|                                       | System Service Discovery        | Third-party Software        | Man in the Browser                    |                                                                                                     | Standard Non-Application<br>Layer Protocol |
| Private Keys                          | System Owner/User               | <b>Taint Shared Content</b> | Input Capture                         |                                                                                                     |                                            |
| Password Filter DLL                   | Discovery                       | SSH Hijacking               | Email Collection                      |                                                                                                     | Standard Application                       |
| LLMNR/NBT-NS Poisoning                | System Network                  | Shared Webroot              | Data Staged                           |                                                                                                     | Layer Protocol                             |
| Keychain                              | Configuration Discovery         | Replication Through         | Data from Removable Media             | Data Encrypted                                                                                      | Remote Access Tools                        |
| Kerberoasting                         | Security Software Discovery     | Removable Media             | Data from Network<br>Shared Drive     | Data Compressed                                                                                     | Port Knocking                              |
| Input Prompt                          | Remote System Discovery         | Remote File Copy            |                                       | Automated Exfiltration                                                                              | Multilayer Encryption                      |
| Input Capture                         | Query Registry                  | Remote Desktop Protocol     | Data from Information<br>Repositories | Exfiltration Over Other<br>Network Medium                                                           | Multiband Communication                    |
| Hooking                               | Process Discovery               | Pass the Ticket             |                                       |                                                                                                     | Multi-Stage Channels                       |
| Forced Authentication                 | Permission Groups Discovery     | Pass the Hash               | Automated Collection                  | Exfiltration Over                                                                                   | Multi-hop Proxy                            |
| Exploitation for<br>Credential Access | Peripheral Device Discovery     | Logon Scripts               | Audio Capture                         | Alternative Protocol                                                                                | Fallback Channels                          |
|                                       | Password Policy Discovery       | Exploitation of             | Data from Local System                |                                                                                                     | Domain Fronting                            |
| Credentials in Files                  | Network Share Discovery         | Remote Services             | Clipboard Data                        |                                                                                                     | Data Obfuscation                           |
| Credential Dumping                    | Network Service Scanning        | Application Deployment      |                                       |                                                                                                     | Data Encoding                              |
| Brute Force                           | File and Directory Discovery    | Software                    | 1                                     |                                                                                                     | Custom Cryptographic                       |
| Bash History                          | Browser Bookmark Discovery      | Windows Admin Shares        | 1                                     |                                                                                                     | Protocol                                   |
| Account Manipulation                  | Application Window              | Remote Services             |                                       |                                                                                                     | Connection Proxy                           |
| Securityd Memory                      | Discovery                       | Distributed Component       |                                       |                                                                                                     | Communication Through                      |
| Credentials in Registry               | System Network                  | Object Model                | 1                                     |                                                                                                     | Removable Media                            |
|                                       | Connections Discovery           | AppleScript                 |                                       |                                                                                                     | Standard Cryptographic<br>Protocol         |
|                                       | System Information<br>Discovery |                             |                                       |                                                                                                     | Remote File Copy                           |
|                                       | Account Discovery               |                             |                                       |                                                                                                     | Custom Command and<br>Control Protocol     |
|                                       |                                 |                             |                                       |                                                                                                     | Commonly Used Port                         |

#### **TrickBot**

TrickBot is an advanced Trojan that malicious actors spread primarily by spearphishing campaigns using tailored emails that contain malicious attachments or links, which—if enabled—execute malware (Phishing: Spearphishing Attachment [T1566.001], Phishing: Spearphishing Link [T1566.002]).

The phishing emails contain links that redirect to a website hosted on a compromised server that prompts the victim to click on photo proof of their traffic violation (User Execution: Malicious Link [T1204.001], User Execution: Malicious File [T1204.002]). In clicking the photo, the victim unknowingly downloads a malicious JavaScript file that, when opened, automatically communicates with the malicious actor's command and control (C2) server to download TrickBot to the victim's system

TrickBot is capable of data exfiltration over a hardcoded C2 server, cryptomining, and host enumeration (e.g., reconnaissance of Unified Extensible Firmware Interface or Basic Input/Output System [UEFI/BIOS] firmware) (Exfiltration Over C2 Channel [T1041], Resource Hijacking [T1496], System Information Discovery [T1082]).[2]

### Applying ATT&CK to TrickBot



Figure 1: ATT&CK Navigator visualization of enterprise techniques used by TrickBot

### TrickBott ATT&CK Techniques

| Initial Access [TA0001]                                        |                  |                                                                                                                                                                                                   |  |  |  |
|----------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Technique Title                                                | ID               | Use                                                                                                                                                                                               |  |  |  |
| Phishing: Spearphishing Attachment                             | T1566.001        | TrickBot has used an email with an Excel sheet containing a malicious macro to deploy the malware.                                                                                                |  |  |  |
| Phishing: Spearphishing Link                                   | T1566.002        | TrickBot has been delivered via malicious links in phishing emails.                                                                                                                               |  |  |  |
| Execution [TA0002]                                             |                  |                                                                                                                                                                                                   |  |  |  |
| Scheduled Task/Job:<br>Scheduled Task                          | T1053.005        | TrickBot creates a scheduled task on the system that provides persistence.                                                                                                                        |  |  |  |
| Command and Scripting<br>Interpreter: Windows<br>Command Shell | T1059.003        | TrickBot has used macros in Excel documents to download and deploy the malware on the user's machine.                                                                                             |  |  |  |
| Command and Scripting Interpreter: JavaScript/JScript          | T1059.007        | TrickBot victims unknowingly download a malicious JavaScript file that, when opened, automatically communicates with the malicious actor's C2 server to download TrickBot to the victim's system. |  |  |  |
| Native API                                                     | <u>T1106</u>     | TrickBot uses the Windows Application Programming Interface (API) call, CreateProcessW(), to manage execution flow.                                                                               |  |  |  |
| User Execution: Malicious<br>Link                              | T1204.001        | TrickBot has sent spearphishing emails in an attempt to lure users to click on a malicious link.                                                                                                  |  |  |  |
| User Execution: Malicious File                                 | T1204.002        | TrickBot has attempted to get users to launch malicious documents to deliver its payload.                                                                                                         |  |  |  |
| Persistence [TA0003]                                           |                  |                                                                                                                                                                                                   |  |  |  |
| Scheduled Task/Job:<br>Scheduled Task                          | T1053.005        | TrickBot creates a scheduled task on the system that provides persistence.                                                                                                                        |  |  |  |
| Create or Modify System<br>Process: Windows Service            | <u>T1543.003</u> | TrickBot establishes persistence by creating an autostart service that allows it to run whenever the machine boots.                                                                               |  |  |  |