练习二参考答案

一、填空题

(1)
$$\lim_{x\to 0} \frac{(1+x^2)^{\frac{1}{3}}-1}{(1+x)(\cos x-1)} = -\frac{2}{3}.$$

- (2) 函数 $y = x \cdot 2^x$ 的极小值点 $x = -\frac{1}{\ln 2}$.
- (4) 函数 y = y(x) 由方程 $x^2y + e^y = x$ 所确定,则 $y' = \frac{1 2xy}{x^2 + e^y}$.
- (5) $\int_{-a}^{a} (x^3 + 2) \sqrt{a^2 x^2} \, dx = \pi a^2.$

二、选择题

(1) 设曲线
$$y = \frac{1 + e^{-x^2}}{1 - e^{-x^2}}$$
, 则该曲线 (D)

(A) 没有渐近线

(B) 仅有水平渐近线

(C) 仅有铅直渐近线

- (D) 既有水平又有铅直渐近线.
- (2) 若 f(x) 的一个原函数为 e^x ,则 $\int f'(2x)dx = (A)$

(A)
$$\frac{1}{2}e^{2x} + C$$
 (B) $2e^x + C$ (C) $\frac{1}{2}e^x + C$ (D) $2e^{2x} + C$.

(C)
$$\frac{1}{2}e^x + C$$
 (D) $2e^{2x} + C$

- (3) 设函数 f(x) 连续, t>0,则 $t\int_0^{\frac{t}{t}} f(tx) dx$ 的值 (A)
- (A) 依赖于s , 不依赖于t和x
- (B) 依赖于s和t,不依赖于x
- (C) 依赖于t 和x , 不依赖于s
- (D) 依赖于s和x,不依赖于t.
- (4) 积分 $\int_{-1}^{1} \frac{1}{r^2} dx = (D)$
- (A) -2
- (B) 2
- (C) 0
- (D) 发散.

三、计算题

(1) 求函数
$$y = \ln(1+x^2) + \arctan \frac{1+x}{1-x}$$
 的微分 dy.

解:
$$y' = \frac{2x}{1+x^2} + \frac{1}{1+\left(\frac{1+x}{1-x}\right)^2} \left(\frac{1+x}{1-x}\right)' = \frac{2x}{1+x^2} + \frac{(1-x)^2}{2(1+x^2)} \cdot \frac{2}{(1-x)^2} = \frac{2x+1}{1+x^2}$$
,

所以
$$dy = \frac{2x+1}{1+x^2} dx$$
.

(2) 设函数
$$y = f(x)$$
 由参数方程
$$\begin{cases} x = 1 + t^2 \\ y = \cos t \end{cases}$$
 所确定,求
$$\frac{d^2 y}{dx^2}.$$

解:
$$\frac{dy}{dx} = \frac{-\sin t}{2t}.$$

$$\frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left(\frac{dy}{dx}\right)}{\frac{dx}{dt}} = \frac{-2t\cos t + 2\sin t}{(2t)^2 \cdot 2t} = \frac{\sin t - t\cos t}{4t^3}.$$

(3)
$$\bar{x}a,b$$
 的值,使 $\lim_{x\to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} dt}{bx-\sin x} = 1$.

解: 由
$$\lim_{x\to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} dt}{bx - \sin x} = \lim_{x\to 0} \frac{x^2}{\sqrt{a+x}} = 1$$
,得 $b = 1$,

又由
$$\lim_{x\to 0} \frac{x^2}{1-\cos x} = \lim_{x\to 0} \frac{x^2}{\sqrt{a+x}} = \lim_{x\to 0} \frac{2}{\sqrt{a+x}} = 1$$
,得 $a=4$,故 $a=4,b=1$.

方法二: 令
$$\sqrt{a+t} = u$$
 , 则 $t = u^2 - a$

$$\int_0^x \frac{t^2}{\sqrt{a+t}} dt = \int_{\sqrt{a}}^{\sqrt{a+x}} \frac{(u^2 - a)^2}{u} \cdot 2u du = 2 \left[\frac{1}{5} u^5 - \frac{2}{3} a u^3 + a^2 u \right]_{\sqrt{a}}^{\sqrt{a+x}}$$

$$\lim_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a+t}} dt}{bx - \sin x} = \lim_{x \to 0} \frac{2\left[\frac{1}{5}u^5 - \frac{2}{3}au^3 + a^2u\right]_{\sqrt{a}}^{\sqrt{a+x}}}{bx - \sin x}$$

$$= \lim_{x \to 0} \frac{(a+x)^{\frac{3}{2}} - 2a(a+x)^{\frac{1}{2}} + a^2(a+x)^{-\frac{1}{2}}}{b - \cos x}$$

该极限存在,所以
$$\lim_{x\to 0}(b-\cos x)=0\Rightarrow b=1$$

原式=
$$\lim_{x\to 0} \frac{(a+x)^{\frac{3}{2}} - 2a(a+x)^{\frac{1}{2}} + a^2(a+x)^{-\frac{1}{2}}}{\frac{1}{2}x^2}$$

$$= \lim_{x \to 0} \frac{(a+x)^2 - 2a(a+x) + a^2}{\frac{1}{2}x^2\sqrt{a+x}} = \lim_{x \to 0} \frac{2}{\sqrt{a+x}} = 1 \Rightarrow a = 4$$

(4) 求不定积分 $\int e^{-x} \sin 2x dx$.

解:
$$I = -\int \sin 2x de^{-x} = -e^{-x} \sin 2x + 2\int e^{-x} \cos 2x dx$$

 $= -e^{-x} \sin 2x - 2\int \cos 2x de^{-x} = -e^{-x} \sin 2x - 2e^{-x} \cos 2x - 4\int e^{-x} \sin 2x dx$,
 $I = -\frac{1}{5}e^{-x}(\sin 2x + 2\cos 2x) + C$.

(5)
$$\text{if } f(x) = \begin{cases}
 xe^{-x^2}, & x \ge 0 \\
 \frac{1}{1 + \cos x}, & -1 < x < 0
\end{cases}, \quad
 \vec{x} \int_{1}^{4} f(x - 2) \, dx.$$

原式 =
$$\int_{-1}^{2} f(u) du = \int_{-1}^{0} \frac{1}{1 + \cos x} dx + \int_{0}^{2} x e^{-x^{2}} du$$

= $\tan \frac{x}{2} \Big|_{1}^{0} - \frac{1}{2} e^{-x^{2}} \Big|_{0}^{2} = \tan \frac{1}{2} - \frac{1}{2} e^{-4} + \frac{1}{2}$.

四、设
$$f(x)$$
是多项式,且 $\lim_{x\to\infty} \frac{f(x)-8x^8}{2x^2+3x+1} = 4$, $\lim_{x\to0} \frac{f(x)}{x} = 8$,求 $f(x)$.

解: 由
$$\lim_{x\to\infty} \frac{f(x)-8x^8}{2x^2+3x+1} = 4$$
,可设 $f(x) = 8x^8+8x^2+ax+b$,

又由
$$\lim_{x\to 0} \frac{f(x)}{x} = 87$$
 和 $\lim_{x\to 0} f(x) = 0$,从而 $b = 0$,

则
$$\lim_{x\to 0} \frac{f(x)}{x} = \lim_{x\to 0} \frac{8x^8 + 8x^2 + ax}{x} = 8$$
,得 $a = 8$,所以 $f(x) = 8x^8 + 8x^2 + 8x$.

五、求函数 $y = x^4(12\ln x - 7)$ 的凹凸区间及拐点.

解: 函数的定义域为 $x \in (0, +\infty)$,

$$y' = 4x^3 (12 \ln x - 7) + x^4 \cdot 12 \cdot \frac{1}{x} = 48x^3 \ln x - 16x^3$$
, $y'' = 48 \cdot 3x^2 \ln x$,

可知函数的凹为 $[1,+\infty)$, 函数的凸区间(0,1], 函数的拐点为(1,-7).

六、设
$$f(x)$$
 是连续函数,且 $f(x) = \arctan x - \int_0^1 x f(x) dx$,求 $f(x)$.

解: 设
$$\int_0^1 x f(x) dx = A$$
, 则 $\int_0^1 x f(x) dx = \int_0^1 \left[\arctan x - x \int_0^1 x f(x) dx \right] dx$

故
$$A = \int_0^1 x \arctan x dx - A \int_0^1 x dx$$
, $A = \int_0^1 \arctan x d\left(\frac{x^2}{2}\right) - \frac{A}{2}$,

$$\frac{3A}{2} = \frac{x^2}{2} \arctan x \Big|_0^1 - \int_0^1 \frac{x^2}{2} \frac{1}{1+x^2} dx = \frac{\pi}{8} - \frac{1}{2} [x - \arctan x] \Big|_0^1$$

$$=\frac{\pi}{8}-\frac{1}{2}+\frac{\pi}{8}=\frac{\pi}{4}-\frac{1}{2}$$
, $A=\frac{\pi}{6}-\frac{1}{3}$, 所以 $f(x)=\arctan x-\frac{\pi}{6}+\frac{1}{3}$.

方法二.
$$f'(x) = \frac{1}{1+x^2}$$
, 则 $f(x) = \arctan x - \int_0^1 f(x) d\left(\frac{x^2}{2}\right)$

$$= \arctan x - \left[\frac{x^2}{2} \cdot f(x)\right]_0^1 + \int_0^1 \frac{x^2}{2} \cdot \frac{1}{1+x^2} dx = \arctan x - \frac{1}{2} f(1) + \frac{1}{2} \int_0^1 \left(1 - \frac{1}{1+x^2}\right) dx$$

$$= \arctan x - \frac{1}{2}f(1) + \frac{1}{2} - \frac{1}{2}\left[\arctan x\right]_0^1 = \arctan x - \frac{1}{2}f(1) + \frac{1}{2} - \frac{\pi}{8},$$

令
$$x=1$$
, 得 $f(1) = \frac{\pi}{12} + \frac{1}{3}$. 又 $f(1) = \frac{\pi}{4} - \int_0^1 x f(x) dx$,

所以
$$\int_0^1 x f(x) dx = \frac{\pi}{6} - \frac{1}{3}$$
, 所以 $f(x) = \arctan x - \frac{\pi}{6} + \frac{1}{3}$.

七、设
$$f(x)$$
在 $[0,2]$ 上连续,在 $(0,2)$ 内二阶可导,且 $\lim_{x\to \frac{1}{2}}\frac{f(x)}{\cos \pi x}=0$, $2\int_{\frac{1}{2}}^{1}f(x)dx=f(2)$,

证明: 存在 $\xi \in (0, 2)$, 使得 $f''(\xi) = 0$.

证明: 由题设及
$$\lim_{x \to \frac{1}{2}} \frac{f(x)}{\cos \pi x} = 0$$
, 得 $f\left(\frac{1}{2}\right) = 0$, $f'\left(\frac{1}{2}\right) = 0$,

又由
$$2\int_{\frac{1}{2}}^{1} f(x) dx = f(2)$$
及积分中值定理得, $\exists \xi_1 \in \left[\frac{1}{2}, 1\right]$,使得 $f(\xi_1) = f(2)$,

由罗尔定理 $\exists \xi_2 \in (\xi_1, 2)$,使 $f'(\xi_2) = 0$,

显然
$$\xi_2 > \frac{1}{2}$$
,由 $f'(x)$ 在 $[0,2]$ 上连续,在 $(0,2)$ 内可导,且 $f'(\frac{1}{2}) = f'(\xi_2) = 0$,

对
$$f'(x)$$
 在 $\left[\frac{1}{2},\xi_2\right]$ 上应用罗尔定理得: $\exists \xi \in \left(\frac{1}{2},\xi_2\right) \subset (0,2)$,使 $f''(\xi) = 0$.