(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

. | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1986 | 1

(43) Internationales Veröffentlichungsdatum 10. Juni 2004 (10.06.2004)

PCT

(10) Internationale Veröffentlichungsnummer WO 2004/048501 A1

(51) Internationale Patentklassifikation⁷:

C09K 19/34

(21) Internationales Aktenzeichen:

PCT/EP2003/012813

(22) Internationales Anmeldedatum:

17. November 2003 (17.11.2003)

(25) Einreichungssprache:

102 55 311.4

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

27. November 2002 (27.11.2002) D

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): MERCK PATENT GMBH [DE/DE]; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): KIRSCH, Peer [DE/DE]; Beethovenring 28, 64342 Seeheim-Jugenheim (DE), HAHN, Alexander [DE/DE]; Strassburger Str. 1, 65428 Rüsselsheim (DE). POETSCH, Eike [DE/DE]; Am Buchwald 4, 64367 Mühltal (DE). MEYER, Volker [DE/DE]; Ahornweg 3, 64846 Gross-Zimmern (DE). HECKMEIER, Michael [DE/DE]; Gutenbergstrasse 7, 69502 Hemsbach (DE). KLASEN-MEMMER, Melanie [DE/DE]; Hauptstrasse 31A, 67259 Heuchelheim (DE). LÜSSEM, Georg [DE/DE]; Steinbergstrasse 7, 85238 Petershausen (DE). HOCK, Christian [DE/DE]; Dahlienweg 14, 63814 Mainaschaff (DE).

- (74) Gemeinsamer Vertreter: MERCK PATENT GMBH; Frankfurter Strasse 250, 64293 Darmstadt (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

- (54) Title: LIQUID CRYSTALLINE COMPOUNDS
- (54) Bezeichnung: FLÜSSIGKRISTALLINE VERBINDUNGEN

$$R^{1}-(A^{1}-Z^{1})_{a}$$
 $(Z^{2}-A^{2})_{b}$ $-CF_{2}O-(A^{3}-Z^{3})_{c}$ $-A^{4}-R^{2}$ (I)

(57) Abstract: The invention relates to liquid crystalline compounds of formula (I), wherein R¹, R², A¹, A², A³, A⁴, Z¹, Z², Z³, a, b and c have the meanings cited in Claim 1, in addition to liquid crystalline media containing at least one compound of (I) and electro-optical displays containing one such liquid crystalline medium.

(57) Zusammenfassung: Die Erfindung betrifft flüssigkristalline Verbindungen der Formel (I), worin R¹, R², A¹, A², A³, A⁴, Z¹, Z², Z³, a, b und c die in Anspruch 1 angegebenen Bedeutungen haben, sowie flüssigkristalline Medien enthaltend mindestens eine Verbindung der (I) und elektrooptische Anzeigen enthaltend ein solches flüssigkristallines Medium.

Flüssigkristalline Verbindungen

Die vorliegende Erfindung betrifft flüssigkristalline Verbindungen sowie ein flüssigkristallines Medium, dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.

Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflusst werden können. Elektrooptische Vorrichtungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("supertwisted nematic"), SBE-Zellen ("superbirefringence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur.

Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien niedere Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.

Weiterhin sollten sie bei üblichen Betriebstemperaturen, d.h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, dass die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach

Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.

5

10

15

20

Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nichtlinearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen)
Medien mit großer positiver dielektrischer Anisotropie, breiten nematischen
Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifischen
Widerstand, guter UV- und Temperaturstabilität und geringem Dampfdruck
erwünscht.

Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:

- MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium-Wafer als Substrat.
 - 2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
- Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.

Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet
zwei Technologien: TFT's aus Verbindungshalbleitern wie z.B. CdSe oder
TFT's auf der Basis von polykristallinem oder amorphem Silizium. An
letzterer Technologie wird weltweit mit großer Intensität gearbeitet.

15

20

25

Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt-Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, dass je ein Filterelement einem schaltbaren Bildelement aegenüber liegt.

Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten 10 Polarisatoren in Transmission und sind von hinten beleuchtet.

Der Begriff MFK-Anzeigen umfasst hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).

Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc. Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige und es kann das 30 Problem der "after image elimination" auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr

10

15

wichtig, um akzeptable Standzeiten zu erhalten. Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, dass der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, dass auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.

Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.

Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende 20 Vorteile in den Zellen ermöglichen:

- erweiterter nematischer Phasenbereich (insbesondere zu tiefen Temperaturen)
- 25 Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use, Automobil, Avionik)
 - erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)

Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren.

Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannungen und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.

Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, IPS-, TN- oder STN-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellenspannungen aufweisen. Für diese Aufgabe werden flüssigkristalline Verbindungen benötigt, die einen hohen Klärpunkt und eine niedrige Rotationsvikosität besitzen.

Es wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn man die erfindungsgemäßen flüssigkristallinen Verbindungen verwendet.

20 Gegenstand der Erfindung sind somit flüssigkristalline Verbindungen der Formel I,

$$R^{1}-(A^{1}-Z^{1})_{a} - (Z^{2}-A^{2})_{b} - CF_{2}O - (A^{3}-Z^{3})_{c} - A^{4}-R^{2}$$

worin

30

35

R¹ und R²

jeweils unabhängig voneinander H, Halogen, einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, wobei einer der Reste R¹ und R² auch CN, OCN, SCN, NCS oder SF₅ bedeuten kann,

$$A^1$$
, A^2 , A^3 und A^4

jeweils unabhängig voneinander

10

15

5

 Z^1 , Z^2 und Z^3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF₂O-, -OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -CH₂CH₂-, -CF=CF-, -CH=CH-, -C \equiv C- oder eine Einfachbindung, und

a, b und c

jeweils unabhängig voneinander 0, 1, 2 oder 3, wobei $a + b + c \le 3$ ist.

20

25

30

35

bedeuten.

Gegenstand der Erfindung ist weiterhin die Verwendung der Verbindungen der Formel I in flüssigkristallinen Medien.

Die Verbindungen der Formel I besitzen einen breiten Anwendungsbereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formel I flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.

20

Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Insbesondere zeichnen sich die erfindungsgemäßen Verbindungen durch ihren breiten nematischen Phasenbereich aus. In flüssigkristallinen Mischungen unterdrücken die erfindungsgemäßen Substanzen die smektischen Phasen und führen zu einer deutlichen Verbesserung der Tieftemperatur-Lagerstabilität. Chemisch, thermisch und gegen Licht sind sie stabil.

10 Gegenstand der Erfindung sind insbesondere die Verbindungen der Formel I, worin R¹ Alkyl oder Alkenyl und R² Halogen oder OCF₃ bedeutet. Halogen bedeutet vorzugsweise F, ferner Cl.

Insbesondere bevorzugt sind Verbindungen der Formel I, worin a = 0, ferner a = 1, ist. Z^1 , Z^2 und/oder Z^3 ist vorzugsweise eine Einfachbindung, ferner -CF₂O-, -OCF₂-, -C₂F₄-, -CH₂O-, -OCH₂- oder -COO-.

 A^1 , A^2 , A^3 und A^4 bedeuten vorzugsweise -H-, -O-,

$$- \bigcirc F$$
 oder $- \bigcirc F$

25 A⁴ bedeutet insbesondere O oder O.

Besonders bevorzugt sind Verbindungen der Formeln IA

 $R^{1} = \begin{pmatrix} H \\ H \end{pmatrix}_{a} \begin{pmatrix} CF_{2}O \\ CF_{2}O \end{pmatrix} \begin{pmatrix} CF_{2}O \\ CF_{2}O \\ CF_{2}O \\ CF_{2}O \end{pmatrix} \begin{pmatrix} CF_{2}O \\ CF_{$

worin

a und b jeweils 0, 1 oder 2 und a + b = 1 oder 2 bedeuten. Vorzugsweise bedeutet a = 1 und b = 0 oder a = 0 und b = 1. Vorzugsweise ist L^1 = F und L^2 = H oder Fluor, insbesondere bedeuten L^1 = L^2 = Fluor.

R¹ bedeutet vorzugsweise Alkyl, Alkoxy, Alkenyl, Alkenyloxy. Vorzugsweise bedeutet R² F, Cl, OCF₃, OCHF₂, OCHFCF₃, OCF₂CHFCF₃, CN, SF₅, NCS, SCN, insbesondere F oder OCF₃, R¹ bedeutet vorzugsweise geradkettiges Alkyl oder Alkenyl. L¹ und L² bedeuten jeweils unabhängig voneinander H oder F. Besonders bevorzugt sind Verbindungen worin X = L¹ = L² = Fluor, ferner X = OCF₃ und L¹ = L² = F bedeuten.

Besonders bevorzugte Verbindungen der Formel I sind die Verbindungen der Formeln I1 bis I31,

15
$$R^1$$
 O H CF_2O O X

$$20 \qquad R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} F \\ O \\ \end{array} \longrightarrow \begin{array}{c} I2 \end{array}$$

$$R^{1} \longrightarrow CH_{2}CH_{2} \longrightarrow H \longrightarrow CF_{2}O \longrightarrow X \qquad I4$$

$$R^1$$
 CF_2O X $I5$

$$R^{1}$$
 $CF_{2}O$ $CH_{2}CH_{2}$ H $CF_{2}O$ $CF_{2}O$ $CF_{2}O$

$$R^{1}$$
 O H $CF_{2}O$ O O X $I7$

10

$$R^1$$
 O H CF_2O O O X $I8$

15

$$R^{1} \longrightarrow H \longrightarrow CF_{2}O \longrightarrow O \longrightarrow K$$

. 25

$$R^1$$
 O H CF_2O O X

$$R^1$$
 O H CF_2O O X $I11$

30

$$R^1$$
 CF_2O O COO O X $I13$

$$R^{1}$$
 $CF_{2}O$ COO O X $I14$

$$R^{1}$$
 $CF_{2}O$ CF_{2}

$$R^1$$
 CF_2O O CF_2O O X $I17$

$$R^1$$
 H CF_2O O X 119

5 $R^1 \longrightarrow H \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow K$ I21

15 R^{1} O H $CF_{2}O$ O X 123

 $R^{1} \longrightarrow O \longrightarrow O \longrightarrow CF_{2}O \longrightarrow X \qquad 125$

30 R^1 O O O CF_2O O X126

$$R^1$$
 O O CF_2O O X 127

WO 2004/048501

$$R^1$$
 O O CF_2O O X 128

10

$$R^{1} \longrightarrow O \longrightarrow O \longrightarrow CF_{2}O \longrightarrow O \longrightarrow X$$
 129

15

$$R^1$$
 O O CF_2O O X I30

25

35

20

worin R¹ die oben angegebenen Bedeutungen hat. X besitzt die Bedeutungen von R².

Die Verbindungen der Formel I lassen sich sehr leicht in die Enantiomere auftrennen, in dem man das Racemat z. B. über eine chirale HPLC-Säule gibt. Gegenstand der Erfindung sind daher die Verbindungen der Formel I, die sowohl als Racemat als auch als Enantiomer vorliegen.

Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Verbindungen der Formel I können z.B. wie folgt hergestellt werden:

10

5

Schema 1

Schema 2

5

$$R^{1}$$
- $(-A^{1}-Z^{1})_{e}$ O $CF_{2}Br_{2}$, $P(NMe_{2})_{3}$, P^{1} - $(A^{1}-Z^{1})_{e}$ O P^{1} - O P

$$\frac{\operatorname{Br}_{2^1}\operatorname{CH}_2\operatorname{Cl}_2}{0\,{}^{\circ}\operatorname{C}} \qquad \operatorname{R}^1\text{-}(\operatorname{A}^1\text{-}\operatorname{Z}^1)_{\operatorname{a}} - \left(\operatorname{D} \operatorname{CF}_2\operatorname{Br} \operatorname{Br} \operatorname{CF}_2\operatorname{Br} \operatorname{Br} \operatorname{CF}_2\operatorname{Br} \operatorname{CF}_2\operatorname{CF}_2\operatorname{CF}_2\operatorname{Br} \operatorname{CF}_2\operatorname{CF}_2\operatorname{CF}_2\operatorname{CF}_2\operatorname{CF}_2\operatorname{Br} \operatorname{CF}_2$$

Schema 3

$$R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow Br \xrightarrow{1. \text{ BuLi, THF; -40°C}} R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow COOH$$

25
$$H_2$$
, 5% Pt-C R^1 - $(A^1-Z^1)_a$ H -COOH

$$\frac{\text{HS}(\text{CH}_2)_3\text{SH, TfOH,}}{\text{Toluol/iOctan; -H}_2\text{O}} \quad \text{R}^1\text{-(A}^1\text{-Z}^1)_a \quad \begin{array}{c} \text{O} \\ \text{H} \\ \text{S} \end{array} \quad \text{CF}_3\text{SO}_3$$

Schema 4

$$R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{1. \text{ Bul.i, THF; -40°C}}{2. \text{ CO}_{2}} \longrightarrow R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{HS(CH_{2})_{3}SH, \text{ TfOH,}}{Toluol/iOctan; -H_{2}O} \longrightarrow R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$CF_{3}SO_{3} \longrightarrow CF_{3}SO_{3} \longrightarrow CH_{2}CI_{2}, -78°C \longrightarrow R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{1. \text{ R}^{2}\text{ PhOH, NEt}_{3}; \qquad CH_{2}CI_{2}, -78°C \longrightarrow R^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{1. \text{ R}^{2}\text{ PhOH, NEt}_{3}; \qquad CH_{2}CI_{2}, -78°C \longrightarrow F$$

$$\frac{1. \text{ R}^{1}-(A^{1}-Z^{1})_{a} \longrightarrow O \longrightarrow F$$

$$\frac{1. \text{ R}^$$

Schema 5 (L¹, L²: H oder F)

15

20

1.
$$LI \longrightarrow O$$
, Et_2O
 $R^1 \longrightarrow O$

2. Et_3SiH , BF_3 OEt_2
 $R^1 \longrightarrow O$
 $R^1 \longrightarrow O$

WO 2004/048501

5

15

20

25

30

35

Gegenstand der Erfindung sind auch elektrooptische Anzeigen (insbesondere STN- oder MFK-Anzeigen mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die derartige Medien enthalten sowie die Verwendung dieser Medien für elektrooptische Zwecke.

10 Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes.

Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer und UV-Stabilität und dielektrischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik.

Die Forderung nach hohem Klärpunkt, nematischer Phase bei tiefer Temperatur sowie einem hohen $\Delta\epsilon$ konnte bislang nur unzureichend erfüllt werden. Flüssigkristallmischungen, wie z. B. MS 99295 (Merck KGaA, Darmstadt, Deutschland) weisen zwar vergleichbare Klärpunkte und Tieftemperaturstabilitäten auf, sie haben jedoch relativ hohe Δ n-Werte als auch höhere Schwellenspannungen von ca. \geq 1,7 V.

Andere Mischungssysteme besitzen vergleichbare Viskositäten und Werte von Δε, weisen jedoch nur Klärpunkte in der Gegend von 60 °C auf.

Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es bei Beibehaltung der nematischen Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 °C, Klärpunkte oberhalb 80°, vorzugsweise oberhalb 90°, besonders bevorzugt oberhalb 100 °C, gleichzeitig dielektrische Anisotropiewerte $\Delta\epsilon \geq 4$, vorzugsweise ≥ 6 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MKF-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine Operationsspannungen gekennzeichnet. Die TN-Schwellen liegen unterhalb 1,5 V, vorzugsweise unterhalb 1,3 V.

25

Es versteht sich, dass durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 110°) bei höheren Schwellenspannung oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschaften realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringeren Schwellen erhalten werden. Die erfindungsgemäßen MFK-Anzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C.H. Gooch und H.A. Tarry, Electron. Lett. 10, 2-4, 10 1974; C.H. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften wie z.B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE-PS 30 22 818) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum eine kleinerere dielektrische 15 Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche 20 Doppelbrechung einstellen.

> Die Fließviskosität v_{20} bei 20 °C ist vorzugsweise < 60 mm² · s⁻¹, besonders bevorzugt < 50 mm² · s⁻¹. Der nematische Phasenbereich ist vorzugsweise mindestens 90°, insbesondere mindestens 100°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -30° bis +80°. Die Rotationsviskosität y₁ bei 20 °C ist vorzugsweise < 200 mPa·s, besonders bevorzugt < 180 mPa·s, insbesondere < 160 mPa·s.

Messungen des "Capacity Holding-ratio" (HR) [S. Matsumoto et al., Liquid 30 Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] haben ergeben, dass erfindungsgemäße Mischungen enthaltend Verbindungen der Formel I eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend 35

anstelle den Verbindungen der Formel I Cyanophenylcyclohexane der

- Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d. h. sie zeigen eine deutlich kleinere Abnahme des HR unter UV-Belastung.
- Vorzugsweise basieren die erfindungsgemäßen Medien auf mehreren (vorzugsweise zwei, drei oder mehr) Verbindungen der Formel I, d.h. der Anteil dieser Verbindungen ist 5-95 %, vorzugsweise 10-60 % und besonders bevorzugt im Bereich von 15-40 %.
- Die einzelnen Verbindungen der Formeln I bis IX und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindungen hergestellt werden.
- 20 Bevorzugte Ausführungsformen sind im folgenden angegeben:
 - Das Medium enthält vorzugsweise ein, zwei oder drei homologe Verbindungen der Formel I, wobei jedes Homologe zu maximal 10 % in der Mischung enthalten ist.
- 25
 Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis IX:

$$R^{0} = H + O + X^{0}$$

$$R^{0} \longrightarrow H \longrightarrow C_{2}H_{4} \longrightarrow O \longrightarrow X^{0} \longrightarrow X^{0}$$

$$R^{0} \longrightarrow H \longrightarrow O \longrightarrow Z^{0} \longrightarrow O \longrightarrow X^{0}$$

$$V$$

 $R^0 \longrightarrow H \longrightarrow Z^0 \longrightarrow Y^1$ 15

$$R^{0} = H + C_{2}H_{4} + O + X^{0}$$
 VI

$$R^0$$
 H Z^0 X^0 VII

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow X^0 \qquad \qquad VIII$$

$$R^0 \longrightarrow 0 \longrightarrow H \longrightarrow 0 \longrightarrow X^0$$
 IX

worin die einzelnen Reste die folgenden Bedeutungen haben:

n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen

F, Cl, halogeniertes Alkyl, halogeniertes Alkenyl,
 halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu
 7 C-Atomen,

15 Z^0 -CH=CH-, -C₂H₄-, -(CH₂)₄-, -C₂F₄-, -CH₂O-, -OCH₂-, -CF=CF-, -CF₂O-, -OCF₂- oder -COO-,

Y¹,Y²,
20 Y³ und Y⁴ jeweils unabhängig voneinander H oder F, und
r 0 oder 1.

Die Verbindung der Formel IV ist vorzugsweise

25

$$R^0 \longrightarrow 0 \longrightarrow F$$

30

$$R^0$$
 H O O X^0

- 21 -

$$R^0$$
— H — O
 F
 O
 X^0

5

$$R^0$$
 \longrightarrow COO \longrightarrow OO \bigcirc \bigcirc OO \bigcirc \bigcirc OO \bigcirc \bigcirc

10

$$R^0$$
 H O F O F X^0

15

oder

20

$$R^0$$
 H O F O F X^0

25

Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln

$$R^0$$
 H H COO O F

$$R^0$$
 H O COO O F

$$R^0$$
 H O R^0 F

$$R^0$$
 O O F O F

$$R^0$$
 H H O F

$$R^0$$
 H C_2F_4 H CF_2O O F

10

15 und/oder

$$R^0$$
 H O F

20

worin R^0 und Y^2 die oben angegebene Bedeutung haben.

- Das Medium enthält vorzugsweise ein, zwei oder drei, ferner vier, Homologe der Verbindungen ausgewählt aus der Gruppe H1 bis H19 (n = 1-7):

30

$$C_nH_{2n+1}$$
 H O F

H1

$$C_nH_{2n+1}$$
 H O F H3

$$C_nH_{2n+1}$$
 H
 H
 H
 H
 H
 H

$$C_nH_{2n+1}$$
 H C_2H_4 H O F $H5$

$$C_nH_{2n+1}$$
 H C_2H_4 O F $H6$

$$C_nH_{2n+1}$$
 H O O F $H7$

$$C_nH_{2n+1}$$
 H O O OCF₃

$$C_nH_{2n+1}$$
 H O C_nH_{2n+1} H9

$$C_nH_{2n+1}$$
 H O F

$$C_nH_{2n+1}$$
 H O F H11

$$C_nH_{2n+1}$$
 H O CI

$$C_nH_{2n+1}$$
 H O COO O F H13

$$C_nH_{2n+1}$$
 H COO O F H14

$$C_nH_{2n+1}$$
 H H COO O F H15

$$C_nH_{2n+1}$$
 H CF_2O O F H16

WO 2004/048501

5

10

15

20

25

30

 C_nH_{2n+1} H CF_2O O F H17

PCT/EP2003/012813

$$C_nH_{2n+1}$$
 O O CF_2O O F $H19$

Das Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln X bis XV:

$$R^0$$
 H H O X

$$R^0$$
 H H CF_2O O X^0 X^1

$$R^0 \longrightarrow H \longrightarrow H \longrightarrow O \longrightarrow X^0 \qquad XII$$

WO 2004/048501

5

15

20

- 27 -

 R^0 H C_2H_4 H O XIV

$$R^0 \longrightarrow H \longrightarrow O \longrightarrow O \longrightarrow H \longrightarrow X^0 \qquad XV$$

worin R^0 , X^0 , Y^1 , Y^2 , Y^3 und Y^4 jeweils unabhängig voneinander eine der in Anspruch 8 angegebene Bedeutung haben. Vorzugsweise bedeutet X^0 F, CI, CF₃, OCF₃, OCHF₂. R^0 bedeutet vorzugsweise Alkyl, Oxaalkyl, Fluoralkyl, Alkenyl oder Alkenyloxy.

- Der Anteil an Verbindungen der Formeln I bis IX zusammen beträgt im Gesamtgemisch mindestens 50 Gew.-%.
- Der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch 5 bis 50 Gew.-%.
 - Der Anteil an Verbindungen der Formel II beträgt im Gesamtgemisch 3-40 Gew.-%.
- Der Anteil an Verbindungen der Formeln II bis IX im Gesamtgemisch beträgt 30 bis 70 Gew.-%.

- Das Medium enthält Verbindungen der Formeln II, III, IV, V, VI, VII,
 VIII und/oder IX.
 - Ro ist geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen.
- Das Medium besteht im wesentlichen aus Verbindungen der 20 Formeln I bis XV.
 - Das Medium enthält 5-40 Gew.-% an Verbindungen der Formeln H17 und/oder H18.
- 25 Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formein XVI bis XX:

$$R^0 \longrightarrow O \longrightarrow O \longrightarrow X^0$$
 XVI $R^0 \longrightarrow O \longrightarrow O \longrightarrow CH_2CH_2 \longrightarrow O \longrightarrow X^0$ XVII

WO 2004/048501

15

20

worin R⁰ und X⁰ die oben angegebene Bedeutung haben und die 1,4-Phenylenringe durch CN, Chlor oder Fluor substituiert sein können. Vorzugsweise sind die 1,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert.

Das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den Formeln RI bis RIX,

worin

n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen,

d 0, 1 oder 2,

Y¹ Hoder F,

Alkyl oder

Alkyl* jeweils unabhängig voneinander ein geradkettiger oder verzweigter Alkylrest mit 1-9 C-Atomen,

Alkenyl oder

Alkenyl* jeweils unabhängig voneinander einen geradkettigen oder verzweigten Alkenylrest mit bis zu 9 C-Atomen

bedeuten.

Das Medium enthält vorzugsweise eine oder mehrere Verbindungen der Formeln

worin n und m jeweils eine ganze Zahl von 1-9 bedeuten.

- Das Gewichtsverhältnis I: (II + III + IV + V + VI + VIII + IX) ist vorzugsweise 1 : 10 bis 10 : 1.
 - Das Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln I bis XV.

10

15

20

Es wurde gefunden, dass bereits ein relativ geringer Anteil an Verbindungen der Formel I im Gemisch mit üblichen Flüssigkristallmaterialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formel II. III, IV, V, VI, VII, VIII oder IX zu einer beträchtlichen Erniedrigung der Schwellenspannung und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird. Die Verbindungen der Formeln I bis IX sind farblos, stabil und untereinander und mit anderen Flüssigkristallmaterialien gut mischbar.

Der Ausdruck "Alkyl" oder "Alkyl*" umfasst geradkettige und verzweigte Alkylgruppen mit 1-9 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlenstoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Alkenyl" oder "Alkenyl*" umfasst geradkettige und verzweigte Alkenylgruppen mit bis zu 9 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders bevorzugte Alkenylgruppen sind C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl, C5-C7-4-Alkenyl, C6-C7-5-Alkenyl und C7-6-Alkenyl, insbesondere C2-C7-1E-Alkenyl, C4-C7-3E-Alkenyl und C₅-C₇-4-Alkenyl. Beispiele bevorzugter Alkenylgruppen sind Vinyl, 1E-Propenyl, 1E-Butenyl, 1E-Pentenyl, 1E-Hexenyl, 1E-Heptenyl, 3-Butenyl, 3E-Pentenyl, 3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl, 4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und 25 dergleichen. Gruppen mit bis zu 5 Kohlenstoffatomen sind im allgemeinen bevorzugt.

Der Ausdruck "Fluoralkyl" umfasst vorzugsweise geradkettige Gruppen mit endständigen Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluor-30 butyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.

Der Ausdruck "Oxaalkyl" umfasst vorzugsweise geradkettige Reste der Formel C_nH_{2n+1} -O- $(CH_2)_m$, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6.

Durch geeignete Wahl der Bedeutungen von R⁰ und X⁰ können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissionskennlinien etc. in gewünschter Weise modifiziert werden. Beispielsweise führen 1E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematischen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k₃₃ (bend) und k₁₁ (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten.

4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von k₃₃/k₁₁ im Vergleich zu Alkyl- und Alkoxyresten.

15

20

25

Eine Gruppe - CH_2CH_2 - in Z^1 und/oder Z^2 führt im allgemeinen zu höheren Werten von k_{33}/k_{11} im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k_{33}/k_{11} ermöglichen z.B. flachere Transmissionskennlinien in TN-Zellen mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Transmissionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexierbarkeit) und umgekehrt.

Das optimale Mengenverhältnis der Verbindungen der Formeln I und II + III + IV + V + VI + VII + VIII + IX hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I, II, III, IV, V, VI, VII, VIII und/oder IX und von der Wahl weiterer gegebenenfalls vorhandener Komponenten ab. Geeignete Mengenverhältnisse innerhalb des oben angegebenen Bereichs können von Fall zu Fall leicht ermittelt werden.

30

35

Die Gesamtmenge an Verbindungen der Formeln I bis XV in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprechzeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I bis XV ist.

10

In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel II bis IX (vorzugsweise II und/oder III), worin X⁰ OCF₃, OCHF₂, F, OCH=CF₂, OCF=CF₂, OCF₂CHFCF₃, oder OCF₂-CF₂H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formel I führt zu besonders vorteilhaften Eigenschaften.

Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefasst und umfasst auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.

- 15 Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
- Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher Weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in
 der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der
 Komponenten in einem organischen Lösungsmittel, z.B. in Aceton,
 Chloroform oder Methanol, zu mischen und das Lösungsmittel nach
 Durchmischung wieder zu entfernen, beispielsweise durch Destillation.

Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze, wie z. B. Stabilisatoren, Antioxidation, enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden.

C bedeutet eine kristalline, S eine smektische, Sc eine smektische C, SB eine smektische B. N eine nematische und I die isotrope Phase.

V₁₀ bezeichnet die Spannung für 10 % Transmission (Blickrichtung senkrecht zur Plattenoberfläche). ton bezeichnet die Einschaltzeit und toff die Ausschaltzeit bei einer Betriebsspannung entsprechend dem 2fachen Wert von V₁₀. An bezeichnet die optische Anisotropie und no den Brechungsindex. $\Delta \epsilon$ bezeichnet die dielektrische Anisotropie ($\Delta \epsilon = \epsilon_{\parallel} - \epsilon_{\perp}$, wobei ε_{II} die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und ϵ_{\perp} die Dielektrizitätskonstante senkrecht dazu bedeutet). Die elektrooptischen Daten wurden in einer TN-Zelle im 1. Minimum (d.h. bei einem d \cdot Δ n-Wert von 0,5 μ m) bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten wurden bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird.

15

20

25

10

5

In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste C_nH_{2n+1} und C_mH_{2m+1} sind geradkettige Alkylreste mit n bzw. m C-Atomen. n und m bedeuten jeweils unabhängig voneinander 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 oder 15. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich ein Code für die Substituenten R1, R2, L1 und L2:

	Code für R1, R2, L1, L2	R1	R2	L1	<u>L</u> 2
30	nm	C _n H _{2n+1}	C _m H _{2m+1}	Н	Н
	nOm	C_nH_{2n+1}	OC_mH_{2m+1}	Н	Н
	nO.m	OC_nH_{2n+1}	C_mH_{2m+1}	Н	Н
	n	C_nH_{2n+1}	CN	Н	·H
35	nN.F	C_nH_{2n+1}	CN	Н	F
	nF	C_nH_{2n+1}	F	Н	Н
	nOF	OC_nH_{2n+1}	F	H	Н
	nCl	C_nH_{2n+1}	CI	H	Н

	Code für R ¹ , R ² , L ¹ , L ²	R1 .	R ²	L1	L2
	nF.F	C _n H _{2n+1}	F	Н	F
	nF.F.F	C_nH_{2n+1}	F ,	F	F
5	nCF ₃	C_nH_{2n+1}	CF ₃	Н	Н
	nOCF ₃	C_nH_{2n+1}	OCF ₃	Н	Н
	nOCF ₃ .F	C_nH_{2n+1}	OCF ₃	Н	F
	nOCF ₂	C_nH_{2n+1}	OCHF ₂	Н	Н
40	nS	C _n H _{2n+1}	NCS	Н	Н
10	rVsN	C _r H _{2r+1} -CH=CH-C _s H _{2s} -	CN	Н	Н
	rEsN	C _r H _{2r+1} -O-C ₂ H _{2s} -	CN	H	H
	nAm	C_nH_{2n+1}	$COOC_mH_{2m+1}$	Н	Н
	nOCCF ₂ .F.F	C_nH_{2n+1}	OCH ₂ CF ₂ H	F	F

Bevorzugte Mischungskomponenten finden sich in den Tabellen A und B.

Tabelle A:

5 CPTP

$$R^1 - C_2H_4 - C_2C -$$

10 CEPTP

$$R^1 - H - C_2H_4 - O$$
 L^1
 L^2

15 ECCP

$$R^{1} - H - C_{2}H_{4} - H - O - R^{2}$$

CECP

$$R^{1} - H - C_{2}H_{4} - O + R^{2}$$

$$R^{1} - H - C_{2}H_{4} - O + R^{2}$$

EPCH

$$R^1$$
 O $C \equiv C$ O R^2 C

PTP

$$R^1$$
 C_2H_4 O C_2 R^2

BECH

PCH

35

$$R^1$$
 H O C_2H_4 O R^2 R^1 H O H R^2

EBCH 5

$$R^1$$
 O O R^2 C

CPC

$$R^1 - O - C_2H_4 - O - R^2$$

10 В

$$R^1$$
 H O R^2

FET-nF

15 CGG

CGU

$$R^1$$
 \longrightarrow O \longrightarrow C \longrightarrow C

CUP

$$R^1$$
 H CF_2O O R^2

CCQU

$$R^1$$
 O O R^2

PGU

20

25

Tabelle B:

CBC-nmF

$$C_nH_{2n+1}$$
 H O OC_mH_{2m+1}

15 PCH-nOm

$$C_nH_{2n+1}$$
 O O C_2H_4 O C_1

20 FET-nCl

$$C_nH_{2n+1}$$
 H H COO O O OCF₃

CP-nOCF₃

$$C_nH_{2n+1} - H - OC_mH_{2m+1}$$

CCH-nOm

BCH-n.Fm

$$C_nH_{2n+1} - \underbrace{H} - C_2H_4 - \underbrace{O} - C_mH_{2m+1}$$

Inm

$$C_{n}H_{2n+1} - H - O - O - H - C_{m}H_{2m+1}$$

CBC-nm

10
$$C_nH_{2n+1}$$
 H C_2H_4 O C_mH_{2m+1}

ECCP-nm

$$C_nH_{2n+1}$$
 H $CH_2O-C_mH_{2m+1}$

CCH-n1EM

$$C_nH_{2n+1}$$
 O O O C_mH_{2m+1}

20 T-nFm

15

25

$$C_nH_{2n+1}$$
 H O F C_nH_2

$$C_nH_{2n+1}$$
 H O OCF_3

CGU-n-F

$$C_nH_{2n+1}$$
 H O F F

30 CGG-n-F

35 CCP-nOCF₂.F(.F)

20

25

30

$$C_nH_{2n+1}$$
 H O F

CCP-nF.F.F

$$C_nH_{2n+1}$$
 H
 O
 F
 F
 F
 F

10 CCGU-n-F

15 CGU-n-OXF

$$C_nH_{2n+1}$$
 H
 O
 F
 F
 F

CUZU-n-F

CGU-n-O1DT

$$C_nH_{2n+1}$$
 H COO F

CCZU-n-F

$$C_nH_{2n+1}$$
 H O OCF_3

CCP-nOCF₃

$$C_{n}H_{2n+1} - H - O - F$$

BCH-nF.F.F

10
$$C_nH_{2n+1}$$
 H O O F

CDU-n-F

15

$$C_nH_{2n+1}$$
 $-C_2F_4$ $-C_2O$ $-C_2O$ F

20 CWCQU-n-F

$$C_nH_{2n+1}$$
 H CH_2O O C_mH_{2m+1}

CCOC-n-m

$$C_{n}H_{2n+1} \longrightarrow H \longrightarrow COO \longrightarrow F$$

30 CGZU-n-F

$$C_nH_{2n+1}$$
 O F COO O F

5 CGU-1V-F CCG-V-F

$$C_{n}H_{2n+1} \longrightarrow F$$

$$C_{n}H_{2n+1} \longrightarrow F$$

$$C_{n}H_{2n+1} \longrightarrow F$$

$$CCP-V-M$$

20 CGZP-n-OT

$$C_{n}H_{2n+1} \longrightarrow F$$

$$CCP-V-M$$

20 CGZP-n-OT

$$C_{n}H_{2n+1} \longrightarrow F$$

$$CCG-V-F$$

$$CCG-V-F$$

$$CCGZP-N-OT$$

$$CCGZP-N-OT$$

$$CUZP-N-OT$$

35 CCQU-n-F

35

$$C_nH_{2n+1}$$
 H H CF_2O O F

CCQG-n-F

 $C_{n}H_{2n+1} \longrightarrow C_{p}F$

$$C_nH_{2n+1}$$
 O O F

Dec-U-n-F

Nap-U-n-F

CQGZP-n-F

15 $C_nH_{2n+1} - H - CF_2O - O - NCS$

CCQP-n-S

 $C_{n}H_{2n+1} \longrightarrow O \longrightarrow CF_{2}O \longrightarrow F$

CPUQU-n-F

 $C_{n}H_{2n+1} - H - (CH_{2})_{4} - O F$

30 CCEEU-n-F
$$C_nH_{2n+1} - H - (CH_2)_4 - H - O F$$

CEECU-n-F

$$H$$
 CF_2O O F

5 CCQU-V-F

$$H$$
 H CF_2O O F

10 CCQU-1V-F

$$C_nH_{2n+1}$$
 O O CF_2O O F

15 **PUQU-n-F**

$$C_nH_{2n+1}$$
 H O CF_2O O F

CGUQU-n-F

$$C_nH_{2n+1}$$
 O O F

PGU-n-F

$$Br \longrightarrow O \longrightarrow CF_2O \longrightarrow O \longrightarrow F$$

PQU-Br-F

30

20

5 PUQU-F-F

$$H_7C_3$$
 O O F

10 **IS-9003**

$$C_nH_{2n+1}$$
 $-CF_2O$ $-CF_2O$

15 ACQU-n-F

$$C_nH_{2n+1}$$
 O O CF_2O O F

20 APUQU-n-F

AUUQPU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow F \longrightarrow CF_2O \longrightarrow O \longrightarrow F$$

AUUQGU-n-F

35

$$C_nH_{2n+1}$$
 O H $-CF_2O$ O $-OCF_3$

ACQP-n-OT

10

$$C_nH_{2n+1}$$
 O H CF_2O O O O O O O

ACQG-n-OT

$$C_nH_{2n+1}$$
 O H CF_2O O F

15 ACQG-n-F

ACQGU-n-F

25

$$C_nH_{2n+1}$$
 O H CF_2O O F

ACQGP-n-F

30

ACQPG-n-OT

$$C_nH_{2n+1}$$
 O H CF_2O O F F

5 ACQPU-n-F

$$C_nH_{2n+1} \longrightarrow O \longrightarrow O \longrightarrow CF_2O \longrightarrow F$$

AGUQU-n-F

15
$$C_nH_{2n+1}$$
 O O F O CF_2O O F

AUUQU-n-F

$$C_{n}H_{2n+1} \longrightarrow O \longrightarrow CF_{2}O \longrightarrow CF_{$$

25 AUUQU-n-T

AUUQP-n-T

5 AUUQU-n-OT

$$C_nH_{2n+1}$$
 O O C_mH_{2m+1}

10 PGP-n-m

Tabelle C:

15

In der Tabelle C werden mögliche Dotierstoffe angegeben, die in der Regel den erfindungsgemäßen Mischungen in Mengen von 0,1 bis 10 Gew.% zugesetzt werden.

C 15

CB 15

CM 21

R/S-811

10

CM 44

15

CM 45

CM 47

CN

$$C_3H_7 - H - H - O - OCH-C_6H_{1}$$

R/S-2011

5 R/S-4011

R/S-5011

15 <u>Tabelle D</u>

Stabilisatoren, die beispielsweise den erfindungsgemäßen Mischungen zugesetzt werden können, werden nachfolgend genannt.

35

. _>

15 HO O O OH

20

5

10

30

5

Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Kp. Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm, 20 °C), $\Delta \varepsilon$ die dielektrische Anisotropie 1kHz, 20 °C), die Fließviskosität ν_{20} (mm²/sec) wurde bei 20 °C bestimmt. Die Rotationsviskosität γ_1 (mPa-s) wurde ebenfalls bei 20 °C bestimmt.

35

"Übliche Aufarbeitung" bedeutet: man gibt gegebenenfalls Wasser hinzu, extrahiert mit Dichlormethan, Diethylether, Methyl-tert.Butylether oder Toluol, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Destillation unter reduziertem Druck oder Kristallisation und/oder Chromatographie. Folgende Abkürzungen werden verwendet:

n-BuLi 1,6 molare Lösung von n-Butyllithium in n-Hexan

DMAP 4-(Dimethylamino)-pyridin

THF Tetrahydrofuran

10 DCC N,N'-Dicyclohexylcarbodiimid

LDA Lithiumdimethylamid

RT Raumtemperatur

Beispiel 1

15

5

$$H_7C_3$$
 O
 H
 CF_2O
 O
 F

20

Schritt 1.1

Die Herstellung von <u>B</u> erfolgt analog zu Lit. a) R. Baker, A. L. Boyes, C. J. Swain, *J. Chem. Soc. Perkin Trans.* 1, 1990, 1415-1421; b) H. Hagiwara, T. Okabe, H. Ono, V. P. Kamat. T. Hoshi, T. Suzuku, M. Ando, *J Chem. Soc. Perkin Trans.* 1, 2002, 895-900.

· 30

Schritt 1.2

5

10

15

20

$$H_7C_3$$
 O Br

Eine Lösung von 207 mmol 1,4-Dibrombenzol in 250 ml Diethylether wird bei -50 °C tropfenweise mit 207 mmol BuLi (15 % in Hexan) versetzt. Dann tropft man eine Lösung von 170 mmol B in 50 ml Diethylether bei derselben Temperatur zu, rührt 30 min nach, lässt auf 0 °C kommen und arbeitet wie üblich wässrig auf. Das Rohprodukt (51 g) wird in 400 m l CH₂Cl₂ gelöst und bei -75 °C mit 400 mmol Triethylsilan versetzt. Man tropft 400 mmol Bortrifluorid-Etherat zu, wobei die Temperatur nicht über -70 °C steigen darf. Danach lässt man auf -10 °C kommen, hydrolysiert mit ges. NaHCO₃-Lösung und arbeitet wie üblich wässrig auf. Das Rohprodukt enthält die trans/cis-Isomere in einem Verhältnis 9:1. Man kristallisiert aus Pentan bei -20 °C μm.

Schritt 1.3

$$H_7C_3$$
 O $B(OH)_2$

25 <u>D</u>

73 mmol <u>C</u> werden in 200 ml THF gelöst und auf -70 °C gekühlt. Man tropft zuerst 73 mmol BuLi (15 % in Hexan) zu, gefolgt von 73 mmol Trimethylborat in 50 ml THF. Man lässt auf -20 °C kommen, stellt durch Zugabe von 2N HCl auf pH = 2 ein und arbeitet wässrig auf. Das Rohprodukt wird mit heißem Heptan digeriert und bei 0 °C kristallisiert.

Schritt 1.4

5

10

$$H_7C_3$$
 O OH

Eine Mischung von 60 mmol $\underline{\mathbf{D}}$, 300 ml Toluol, 120 mmol NaOH, 50 ml Wasser und 30 ml 30 % H_2O_2 wird 2 h bei 45 °C gerührt. Die Mischung wird mit 10 % HCl auf pH = 2 eingestellt und wässrig aufgearbeitet. Das Rohprodukt wird aus Heptan umkristallisiert.

Schritt 1.5

H₇C₃
$$\longrightarrow$$
 O $=$ O

22 mmol <u>E</u> werden in 100 ml Xylol in Gegenwart von 1,5 g Wasser feuchtem 5 % Pd-C-Katalysator bei 5 bar und 130 °C für 27,5 h hydriert. Die Aufarbeitung erfolgt wie üblich. Man erhält ein farbloses Öl.

Schritt 1.6

$$H_7C_3 \longrightarrow O \longrightarrow S \longrightarrow S \longrightarrow S$$

Eine Lösung von 17 mmol 2-Trimethylsilyl-1,3-dithian in 75 ml THF wird bei -70 °C mit 17 mmol BuLi (15 % in Hexan) versetzt. Man lässt innerhalb von 4 h auf 0 °C kommen, kühlt dann wieder auf -70 °C und tropft 17 mmol <u>F</u> in 25 ml THF zu, man lässt auf Raumtemperatur kommen, rührt 18 h nach und arbeitet wie üblich wässrig auf. Das Rohprodukt wird aus Heptan kristallisiert. Man erhält farblose Kristalle.

Schritt 1.7

Eine Lösung von 6,12 mmol G in 50 ml CH₂Cl₂ wird bei -20 °C 10 tropfenweise mit 6,27 mmol Trifluormethansulfonsäure versetzt. Man lässt für 30 min auf Raumtemperatur kommen und kühlt dann auf -70 °C. Nun werden zuerst eine Lösung von 9,1 mmol 3,4,5-Trifluorphenol und 10,1 mmol Triethylamin in 20l CH₂Cl₂, 5 min später 31 mmol Triethylamin-Tris(hydrofluorid) zugegeben. Nach weiteren 5 min gibt man in kleinen 15 Portionen eine Suspension von 31,5 mmol DBH (1,3-Dibrom-5,5-dimethylhydanthoin) zu und rührt 1 h bei -70 °C nach. Man lässt auf -10 °C kommen und gießt die Reaktionsmischung in 400 ml eiskalte NaOH. Man arbeitet wie üblich wässrig auf und reinigt das Rohprodukt durch Chromatographie an Kieselgel (Heptan/Toluol 3:2) und Kristallisation aus 20 Pentan bei -70 °C. Man erhält farblose Kristalle: K 35 N 66,3 I; $\Delta n = 0.0570; \Delta \epsilon = 13.4$

Analog werden die folgenden Verbindungen der Formel

$$R^{1} \underbrace{\begin{array}{c} O \\ H \end{array}} - CF_{2}O \underbrace{\begin{array}{c} L^{1} \\ O \\ L^{2} \end{array}}$$

30 hergestellt:

	R ¹	X	L ¹	L ²	
•	Н	F .	Н	Η .	
35	CH₃	F	Н	Н	
33	CH₃ C₂H₅	F	Н	Н	
	n-C ₄ H ₉	F.	Н	н .	

	R ¹	X	L ¹	L ²	
	n-C ₅ H ₁₁	F	Н	Н	
	n-C ₆ H ₁₃	F	Н	Н	
	Н	F	F	Н	
5	CH₃	F	F	Н	
	C ₂ H ₅	F	F	Н	
	n-C ₃ H ₇	F	F	Н	K 41 S _B 51 N 95,9 I;
					$\Delta \varepsilon = 9.7$; $\Delta n = 0.0688$
	n-C ₄ H ₉	F	F	Н	K 31 S _B 64 N 97,1 I;
10					$\Delta \varepsilon = 9,3$; $\Delta n = 0,0621$
	n-C ₅ H ₁₁	F	F	Н	
•	n-C ₆ H ₁₃	F	F	Н	•
	Н	F	F	F	
	CH ₃	F	F	F	K 54 I,
15					$\Delta \varepsilon = 14,8$; $\Delta n = 0,0490$
	C ₂ H ₅	F	F	F	K 48 N (34,7) I;
	02:10				$\Delta \varepsilon = 14,1$; $\Delta n = 0,0540$
	n-C ₃ H ₇	F	F	F ·	
	n-C ₄ H ₉	F	F	F	K 43 N 66,1 I,
20	54.15				$\Delta \varepsilon = 13,3$; $\Delta n = 0,0590$
	n-C ₅ H ₁₁	F	F	F	K 39 N 75,3 l;
					$\Delta \varepsilon = 11.8$; $\Delta n = 0.0568$
	n-C ₆ H ₁₃	F	· F	F	
	Н	Cl	Н	Н	
25	CH ₃	CI	Н	Н	
•	C ₂ H ₅	Cl	Н	Н	
	n-C ₃ H ₇	CI	Н	Н	
	n-C ₄ H ₉	Cl	Н	Н	
	n-C ₅ H ₁₁	CI	Ĥ	Н	
30	n-C ₆ H ₁₃	ÇI	, H	Н	
	Н	CI	F	Н	-
	СН₃	Cl	F	Н	
	C ₂ H ₅	CI	F	·H	
• .	n-C ₃ H ₇	Cl	. F	Н	
35	n-C ₄ H ₉	CI	F	Н	
	n-C₅H ₁₁	CI	F	Н	

	R ¹	X	L ¹	L ²	
	n-C ₆ H ₁₃	Cl	F	Н	
	Н	Cl	F	F	
	CH₃	CI	F	F	
5	C ₂ H ₅	Cl	F	F	•
	n-C ₃ H ₇	CI	F	F	
	n-C ₄ H ₉	CI	F	F	
	n-C ₅ H ₁₁	CI	F	. F	. ,
	n-C ₆ H ₁₃	Cl	F	F	
10	н	OCF ₃	Н	Н	
	CH₃	OCF ₃	Н	Н	
	C ₂ H ₅	OCF ₃	H	Н	
	n-C ₃ H ₇	OCF ₃	Н	Н	K -41 S _B 123 N 129,3 I;
					$\Delta \varepsilon = 9,1$; $\Delta n = 0,0780$
15	n-C ₄ H ₉	OCF ₃	Н	Н	K? -54 S _B 129 I;
•					$\Delta \varepsilon$ = 9,1; Δ n = 0,0689
	n-C ₅ H ₁₁	OCF ₃	Н	Н	
	n-C ₆ H ₁₃	OCF ₃	Н	Н	
	Н	OCF ₃	F	Н	
20	CH ₃	OCF ₃	F	Н	
	C ₂ H ₅	OCF ₃	F	Н	
	n-C ₃ H ₇	OCF ₃	F	H	S _B 74 N 105,8 I;
					$\Delta \varepsilon = 11,7$; $\Delta n = 0,0701$
	n-C₄H ₉	OCF ₃	F	Н	S _B 81 N 105,8 I;
25	:	• •			$\Delta \varepsilon = 11,5$; $\Delta n = 0,0623$
	n-C ₅ H ₁₁	OCF ₃	F	Н	
	n-C ₆ H ₁₃	OCF ₃	.F	H	
	н .	OCF ₃	F	F	
	CH₃	OCF ₃	F	F	
30	C ₂ H ₅	OCF ₃	F	F	
	n-C ₃ H ₇	OCF ₃	F	F	•
•	n-C ₄ H ₉	OCF ₃	F	F	
	n-C₅H ₁₁	OCF ₃	F	F	
	n-C ₆ H ₁₃	OCF ₃	F	F	
35	Н	OCHF ₂	Н	Н	
	CH₃	OCHF ₂	Н	Н	•

	•			
	R ¹	X	L ¹	L ²
	C ₂ H ₅	OCHF ₂	Н	Н
	n-C ₃ H ₇	OCHF ₂	Н	Н
	n-C₄H ₉	OCHF ₂	Н	Н
5	n-C ₅ H ₁₁	OCHF ₂	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н
	Н	OCHF ₂	F	Н
	CH ₃	OCHF ₂	F	Н
	C₂H₅	OCHF ₂	F	Н
10	n-C ₃ H ₇	OCHF ₂	F	Н
	n-C ₄ H ₉	OCHF ₂	F	Н
	n-C ₅ H ₁₁	OCHF ₂	F	Н
	n-C ₆ H₁₃	OCHF ₂	F	Н
	н	OCHF ₂	F	F
15	CH ₃	OCHF ₂	F	F
	C ₂ H ₅	OCHF ₂	F	F
	n-C ₃ H ₇	OCHF ₂	F	F
	n-C ₄ H ₉	OCHF ₂	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	F
20	n-C ₆ H ₁₃	OCHF ₂	F	F
	Н	OCHFCF ₃	Н	Н
	CH₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н
25	n-C₄H ₉	OCHFCF ₃	. Н .	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Ή	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	H
	Н	OCHFCF ₃	F	Н
	CH₃	OCHFCF ₃	F	Н
30	C ₂ H ₅	OCHFCF ₃	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н
	n-C ₄ H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
35	Н	OCHFCF ₃	F	F
	CH₃	OCHFCF ₃	F	F

	5 1	~	L ¹	L ²
	R ¹	X		
	C ₂ H ₅	OCHFCF ₃	F	F
	n-C ₃ H ₇	OCHFCF₃	F	F -
_	n-C₄H ₉	OCHFCF ₃	F	F
5	n-C ₅ H ₁₁	OCHFCF ₃	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
	Н	OCHFCF ₃	Н	Н
	CH₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF3	Н	Н
10	n-C ₃ H ₇	OCHFCF ₃	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н
	n-C₅H₁₁	OCHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н
15	CH₃	OCHFCF ₃	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н
	n-C ₄ H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н
20	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F.
	CH₃	OCHFCF ₃	F	F
	C ₂ H ₅	OCHFCF ₃	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F
25	n-C ₄ H ₉	OCHFCF ₃	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
	H	OCF ₂ CHFCF ₃	Н	· H
	r. CH₃	OCF ₂ CHFCF ₃	Н	Н
30	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н
35	H	OCF ₂ CHFCF ₃	F	H.
		OCF ₂ CHFCF ₃	F.	н
	CH₃	OGF20FF0F3	1	1.1

	R ¹	×	L ¹	L ²	
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	
•	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	Н	
5	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	
	Н	OCF ₂ CHFCF ₃	F	F	
	CH₃	OCF ₂ CHFCF ₃	F	F	
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	
10	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F	
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	
	Н	NCS	H	Н	
15	CH ₃	NCS	Н	Н	
	C ₂ H ₅	NCS	Н	Н	
	n-C₃H ₇	NCS	H	Н	
	n-C₄H ₉	NCS	Н	Н	
	n-C ₅ H ₁₁	NCS	Н	Н	
20	n-C ₆ H ₁₃	NCS	Н	Н	
	Н	NCS	F	Н	
	CH₃	NCS	F	Н	
	C ₂ H ₅	NCS	F	Н	
	n-C ₃ H ₇	NCS	F	Н	
25	n-C ₄ H ₉	NCS	· F	Н	
	n-C ₅ H ₁₁	NCS	F	Н	
	n-C ₆ H ₁₃	NCS	F	Н	
	Н	NCS	F	F	
	CH₃	NCS	F	F	
30	C_2H_5	NCS	F	F	
	n-C ₃ H ₇	NCS	F	F	
	n-C ₄ H ₉	NCS	F	F	
	n-C ₅ H ₁₁	NCS	F	F	
	n-C ₆ H ₁₃	NCS	F	F	
35	Н	C ₂ F ₅	Н	Н	
	CH₃	C ₂ F ₅	Н	Н	
	•				

	R ¹	x	L ¹	L ²
•	C ₂ H ₅	C ₂ F ₅	Н	н
	n-C ₃ H ₇	C ₂ F ₅	Н	H
	n-C ₄ H ₉	C ₂ F ₅	Н	H
5	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н
	Н	C ₂ F ₅	F	H ·
	CH ₃	C ₂ F ₅	F	Н
	C ₂ H ₅	C ₂ F ₅	F	Н
10	n-C ₃ H ₇	C_2F_5	F	Н
	n-C ₄ H ₉	C ₂ F ₅	F	Н
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н
•	n-C ₆ H ₁₃	C ₂ F ₅	F	Н
	H	C ₂ F ₅	F	F
15	CH ₃	C ₂ F ₅	F	F
	C ₂ H ₅	C ₂ F ₅	F	´F
	n-C₃H ₇	C_2F_5	F	F
	n-C ₄ H ₉	C_2F_5	F	F
	n-C ₅ H ₁₁	C_2F_5	F	F
20	n-C ₆ H ₁₃	C_2F_5	F	F
	Н	C ₃ F ₇	Н	H
	CH₃ .	C ₃ F ₇	Н	H .
	C ₂ H ₅	C ₃ F ₇	Н	Н
	n-C₃H ₇	C ₃ F ₇	Н	H .
25	n-C₄H ₉	C ₃ F ₇	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	H
	Н	C ₃ F ₇	F	Н
	CH ₃	C ₃ F ₇	F	Н
30	C ₂ H ₅	C ₃ F ₇	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	Н
	n-C ₄ H ₉	C ₃ F ₇	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н .
35	H	C ₃ F ₇	F	F
	CH₃	C ₃ F _{7.}	F	. F

	R ¹	X	L ¹	L ²		
	C ₂ H ₅	C ₃ F ₇	F	F		
	n-C ₃ H ₇	C ₃ F ₇	· F	F		
	n-C ₄ H ₉	C ₃ F ₇	F	F		
5	n-C ₅ H ₁₁	· C ₃ F ₇	F	F		
	n-C ₆ H ₁₃	C ₃ F ₇	F	F		
	Н	SF ₅	Н	Н		
	CH₃	SF ₅	Н	Н		
	C ₂ H ₅	SF ₅	H	Н		
10	n-C₃H ₇	SF ₅	Н	Н	•	
	n-C₄H ₉	, SF₅	Н	Н		
	n-C ₅ H ₁₁	SF ₅	Н	Н		
	n-C ₆ H ₁₃	SF ₅	Н	Н		
	Н	SF ₅	F	Н		
15	CH₃	SF ₅	F	Н		
	C ₂ H ₅	SF ₅	F	Н		
	n-C₃H ₇	SF ₅	F	Н		
	n-C ₄ H ₉	SF ₅	F	Н		
	n-C ₅ H ₁₁	SF ₅	F	Н		
20	n-C ₆ H ₁₃	SF ₅	F	Н		
	Н	SF ₅	F	F		
	CH₃	SF ₅	F	F		
	C ₂ H ₅	SF ₅	F	F		
	n-C ₃ H ₇ .	SF ₅	F	F	•	
25	n-C₄H ₉	SF ₅	F	F		• .
	n-C ₅ H ₁₁	SF ₅	F	F		
•	n-C ₆ H ₁₃	SF ₅	F	F		
	Н	CN	Н	Н		
	CH₃	CN	Н	Н		·
30	C ₂ H ₅	CN	. Н	Н		
	n-C₃H ₇	CN	Н	Н		
	$n-C_4H_9$	CN	Н	Н		•
	n-C ₅ H ₁₁	CN	Н	Н		
	n-C ₆ H ₁₃	CN	Н	Н		
35	H ·	CN	F	Н		
	CH₃	CN	F	. H		

	R ¹	X	L ¹	L²	
	C ₂ H ₅	CN	F	Н	
	n-C ₃ H ₇	CN	F	Н	
	n-C₄H ₉	CN	F	Н	
5	n-C ₅ H ₁₁	CN	F	Н	
	n-C ₆ H ₁₃	CN	F	н	
	Н	CN	F	F	
	CH₃	CN	F	F	
	C ₂ H ₅	CN	F	F	
0	n-C ₃ H ₇	CN	F	F	
	n-C₄H ₉	CN	F	F	
	n-C ₅ H ₁₁	CN	F	F	
	n-C ₆ H ₁₃	CN	F	F	

15 Beispiel 2

35

Schritt 2.1

20
$$H_{5}C_{2} \longrightarrow O \longrightarrow B(OH)_{2} + Br \longrightarrow O \longrightarrow CF_{2}O \longrightarrow F$$

$$\downarrow \qquad \qquad \downarrow$$
25
$$H_{5}C_{2} \longrightarrow O \longrightarrow O \longrightarrow CF_{2}O \longrightarrow F$$

$$\downarrow \qquad \qquad \downarrow$$
80
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
80
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
80
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Eine Mischung aus 50 mmol <u>I</u>, 50 mmol <u>J</u>, 2,5 mmol Pd(PPh₃)₄, 300 ml Toluol und 300 ml Na-Boratpuffer (pH=9) wird 18 h bei 80 °C gerührt. Man gießt die Mischung in 500 ml 0,1 N HCl, extrahiert das Produkt mit CH₂Cl₂, trocknet über Na₂SO₄ und rotiert zur Trockene ein. Das Rohprodukt wird in

n-Heptan über Kiegelgel chromatographiert und anschließend zweimal bei -20 °C aus n-Heptan umkristallisiert. K 78 N 93,1 I; Δn = 0,1493; $\Delta \epsilon$ = 27,3

Analog werden die folgenden Verbindungen der Formel

10

hergestellt:

	R ¹ ·	X	L ¹	L ²	L ³	L ⁴	
15	Н	F	Н	Н	Н	Н	
	CH ₃	F	Н	Н	Н	Н	
	C ₂ H ₅	F	Н	Н	Н	Н	
	C ₃ H ₇	F	Н	Н	Н	Н	
	n-C ₄ H ₉	F	Н	H	Н	H	
20	n-C ₅ H ₁₁	F	Н	Н	H	H	
	n-C ₆ H ₁₃	F	Н	H	Н	Н	
	Н	F	F	Н	Н	Н	
	CH₃	F	F	Н	Н	Н	
	C ₂ H ₅	F.	F	Н	Н	Н	
25	n-C ₃ H ₇	F	F	Н	Н	Н	
	n-C ₄ H ₉	F	F	Н	Н	Н	
	n-C ₅ H ₁₁	F	F	Н	Н	Н	
	n-C ₆ H ₁₃	F	F	Н	Н	Н	
•	Н	F	F	F	Н	Н	
30	CH₃	F	F	F	Н	Н	
	n-C ₃ H ₇	F	F	F	Н	Н	K 75 N 118,0 l;
							$\Delta \varepsilon = 23,2; \Delta n = 0,1450$
	n-C ₄ H ₉	F	F	F	Н	Н	
	n-C ₅ H ₁₁	F	F	F	Н	Н	
35	n-C ₆ H ₁₃	F	F	F	Н	Н	
	Н	Cl	Н	Н	H	Н	•

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	CI	Н	Н	Н	Н
	C ₂ H ₅	CI	Н	Н	Н	Н
	n-C ₃ H ₇	Cl	Н	Н	Н	Н
5	n-C ₄ H ₉	Cl	Н	Н	Н	Н
	n-C ₅ H ₁₁	CI	Н	Н	Н	Н
	n-C ₆ H ₁₃	CI	Н	Н	Н	Н
	Н	CI	F	Н	Н	Н
	CH ₃	CI .	F	Н	Н	Н
10	C ₂ H ₅	CI	F	Н	Н	Н
	n-C ₃ H ₇	CI	F	Н	Н	Н
	n-C₄H ₉	CI	F	Н	Н	Н
	n-C₅H ₁₁	Cl	F	Н	Н	Н
	n-C ₆ H ₁₃	CI	F	Н	Н	Н
15	Н	Cl	F	F	Н	Н
	CH₃	CI	F	F	Н	Н
	C ₂ H ₅	CI	F	F	Н	Н
	n-C ₃ H ₇	CI	F	F	H	Н
	n-C ₄ H ₉	CI	F	F	Н	Н
20	n-C ₅ H ₁₁	Cl	F	F	Н-	Н
	n-C ₆ H ₁₃	Cl	F	F	H	Н
	Н	OCF ₃	Н	Н	Н	Н
	CH ₃	OCF ₃	Н	Н	Н	H
	C ₂ H ₅	OCF ₃	H	Н	Н	Н
25	n-C₃H ₇	OCF₃	H.	H.	Н	Н
	n-C ₄ H ₉	OCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н	Н	Н
	Н	OCF ₃	F	Н	Н	Н
30	CH₃	OCF ₃	F	Н	H	Н
	C ₂ H ₅	OCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCF ₃	F	Н	Н	Н
	n-C ₄ H ₉	OÇF₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₃	F	Н	Н	Н
35	n-C ₆ H ₁₃	OCF ₃	F	Н	Н	Н
	Н	OCF ₃	F	F	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCF ₃	F	F	Н	Н
5	n-C₄H ₉	OCF ₃	F	F	Н	H
	n-C ₅ H ₁₁	OCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	H	Н
	Н	OCHF ₂	Н	Н	Н	Н
10	CH ₃	OCHF ₂	Н	Н	Н	Н
	C ₂ H ₅	OCHF ₂	Н	Н	Н	Н
	n-C ₃ H ₇	OCHF ₂	Ή	Н	Н	Н
	n-C ₄ H ₉	OCHF ₂	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	Н	Н
15	· H	OCHF ₂	F	Н	Н	Н
	CH₃	OCHF ₂	F	Н	Н	Н
	C ₂ H ₅	OCHF ₂	F	Н	Н	Н
	n-C₃H ₇	OCHF ₂	F	Н	Н	Н
	n-C ₄ H ₉	OCHF ₂	F	Н	Н	Н
20	n-C ₅ H ₁₁	OCHF ₂	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н	·H	Н
	Н	OCHF ₂	F	F	Н	Н
25	CH ₃	OCHF ₂	F	F	Н	Н
	C_2H_5	OCHF ₂	F	F	Н	Н
	n-C₃H ₇	OCHF ₂	F	F	Н	Н
	n-C ₄ H ₉	OCHF ₂	F	F	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	F	·F	Н	Н
30	n-C ₆ H ₁₃	OCHF ₂	F	F	Н	Н
	Н	OCHFCF ₃	Н	Н	H	Н
	CH₃	OCHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	H
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	Н	Н
35 .	n-C ₄ H ₉	OCHFCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	H
	Н	OCHFCF₃	F	Н	Н	Н

	R ¹	Х	L¹	L ²	L ³	L ⁴
	CH ₃	OCHFCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	Н	Н
5	n-C ₄ H ₉	OCHFCF3	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
	Н	OCHFCF ₃	F	F	Н	Н
	CH ₃	OCHFCF3	F	F	Н	Н
10	C ₂ H ₅	OCHFCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	F	F	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
15	Н	OCHFCF ₃	Н	Н	Н	Н
	CH₃	OCHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	H	Н	Н	Н
	n-C₃H ₇	OCHFCF ₃	Н	Н	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	H	Н
20	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
	Н	OCHFCF ₃	F	Н	Н	Н
	CH ₃	OCHFCF ₃	F	Н	Н	Н
25	C_2H_5	OCHFCF3	F	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
30	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	H
	H·	OCHFCF ₃	F	F	Н	Н
	CH ₃	OCHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	F	Н	Н
	n-C₃H ₇	OCHFCF ₃	F	F	Н	Н
35	n-C ₄ H ₉	OCHFCF ₃	F	F	Н	Н
	n-C5H11	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF3	F	F	Н	Н
	Н	OCF ₂ CHFCF ₃	Н	Н	Н	Н

•	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	Н	Н
5	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	Н	OCF ₂ CHFCF ₃	F	Н	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
10	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	Н	Н	Н
•	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	H	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
15	Н	OCF ₂ CHFCF ₃	F	F	Н	Н
	CH ₃	OCF ₂ CHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F	Н	Н
20	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	Н	Н
	Н	NCS	Н	Н	Н	Н
	CH₃	NCS	Н	Н	Н	Н
	C ₂ H ₅	NCS	Н	Н	Н	Н
25	n-C ₃ H ₇	NCS	Н	Н	Н	Н
	n-C ₄ H ₉	NCS	Н	Н	Н	Н
	n-C ₅ H ₁₁	NCS .	Н	Н	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н	Н	Н
	Н	NCS	F	Н	H '	Н
30	CH₃	NCS	F	Н	Н	H
	C ₂ H ₅	NCS	F	. H	Н	Н
•	n-C ₃ H ₇	NCS	F	H.	Н	Н
	n-C ₄ H ₉	NCS	F	Н	Н	Н
	n-C ₅ H ₁₁	NCS	F	Н	Н	Н
35	n-C ₆ H ₁₃	NCS	F	Н	Н	Н
	Н	NCS	F	F	Н	Н

	R ¹	x		L1	L ²	L ³	L ⁴
	CH ₃	NCS		F	F	Н	Н
	C ₂ H ₅	NCS		F	F	Н	Н
	n-C ₃ H ₇	NCS		F	F	Н	H
5	n-C ₄ H ₉	NCS		F	F	H	Н
	n-C ₅ H ₁₁	NCS		F	F	Н	Н
	n-C ₆ H ₁₃	NCS		F	F	Н	Н
	Н	C_2F_5		Н	Н	Н	Н
	CH₃	C_2F_5		Н	Н	Н	Н
10	C₂H₅	C ₂ F ₅		Н	Н	Н	Н
	n-C₃H ₇	C_2F_5		Н	Н	Н	Н
	n-C₄H ₉	C ₂ F ₅		Н	Н	Н	Н
	n-C ₅ H ₁₁	C ₂ F ₅		Н	Н	Н	Н
	n-C ₆ H ₁₃	C_2F_5		Н	Н	Н	Н
15	H	C_2F_5	•	F	Н	Н	Н
	CH₃	C_2F_5		F	Н	Н	Н
	C ₂ H ₅	C_2F_5		F	Η.	Н	Н
-	n-C ₃ H ₇	C_2F_5		F	Н	Н	H
	n-C ₄ H ₉	C_2F_5		F	Н	Н	Н
20	n-C ₅ H ₁₁	C_2F_5		F	Н	Н	Н
	n-C ₆ H ₁₃	C_2F_5		F	Н	Н	Н
	Н	C_2F_5	•	F	F	Н	Н
	CH₃	C_2F_5		F	F	Н	Н
	C ₂ H ₅	C_2F_5		F	F	Н	Н
25	n-C ₃ H ₇	C_2F_5		F	F	Н	Н
	n-C₄H ₉	C_2F_5		F	F	Н	Н
	n-C ₅ H ₁₁	C_2F_5		F	F	Н	Н
	n-C ₆ H ₁₃	C_2F_5		F	F	H	Н
	Н	C ₃ F ₇		Н	Н	Н	Н
30	CH₃	C ₃ F ₇		H	Н	Н	Η.
	C ₂ H ₅	C_3F_7		Н	Н	Н	Н
	n-C ₃ H ₇	C ₃ F ₇	•	H	Н	Н	Н
	n-C ₄ H ₉	C ₃ F ₇		Н	H	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	•	Н	Н	Н	Н
35	n-C ₆ H ₁₃	C ₃ F ₇		H	Н	Н	Н
	Н	C ₃ F ₇		F	Н	Н	Н

	R ¹	. X		L ¹	L ²	L ³	L ⁴
	CH ₃	C ₃ F ₇		F	Н	Н	Н
	C ₂ H ₅	C ₃ F ₇		F	Н	Н	Н
	n-C ₃ H ₇	C ₃ F ₇		F	Н	Н	Н
5	n-C ₄ H ₉	C ₃ F ₇		F	Н	Н	Н
	n-C ₅ H ₁₁	C_3F_7		F	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇		F	Н	Н	Н
	Н	C ₃ F ₇	٠	F	F	Н	Н
	CH₃	C ₃ F ₇		F	F	Н	Н
10	C ₂ H ₅	C ₃ F ₇		F	F	Н	Н
•	n-C ₃ H ₇	C ₃ F ₇		F	F	Н	Н
	n-C ₄ H ₉	C_3F_7		F·	F	Н	Н
	n-C ₅ H ₁₁	C_3F_7		F	F	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇		F	F	Н	Н
15	H .	SF ₅		Н	Н	Н	Н
	CH ₃	SF ₅		Н	Н	Н	Н
	C_2H_5	SF ₅		Н	Н	Н	Н
	n-C ₃ H ₇	SF ₅		H	Н	Н	Н
	n-C ₄ H ₉	SF ₅		Н	Н	Н	Н
20	n-C ₅ H ₁₁	SF ₅		Н	Н	Н	Н
	n-C ₆ H ₁₃	SF ₅		Н	Н	Н	Н
	Н	SF ₅		F	Н	Н	Н
	CH₃	SF ₅		F	Н	Н	Н
	C ₂ H ₅	SF ₅		F	Н	H	Н
25	$n-C_3H_7$	SF ₅		F	Н	Н	Н
	n-C ₄ H ₉	SF ₅		F	H	Н	Н
	n-C ₅ H ₁₁	SF ₅		F	Н	Н	Н
	n-C ₆ H ₁₃	SF ₅		F	Н	Н	Н
	Н	SF ₅		F	F	Н	Н
30	CH ₃	SF ₅		F	F	Н	Н
	C_2H_5	SF ₅		F	F	Н	Н
	n-C ₃ H ₇	SF ₅		F	F	Н	Н
	n-C ₄ H ₉	SF ₅		F	F	Н	Н
	n-C ₅ H ₁₁	SF ₅		F	F	Н	Н
35	n-C ₆ H ₁₃	SF ₅		F	F	Н	Н
	· H	CN		. Н	Н	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	CN	Н	Н	Н	Н
	C₂H₅	CN	Н	Η.	Н	Н
	n-C₃H ₇	CN	Н	Н	Н	Н
5	n-C ₄ H ₉	CN	Н	Н	Н	Н
	n-C ₅ H ₁₁	CN	Н	Н	Н	Н
	n-C ₆ H ₁₃	CN	Н	Н	Н	Н
	Н	CN	F	Н	Н	Н
	CH₃	CN	·F	Н	Н	Н
10	C ₂ H ₅	CN	F	Н	Н	Н
	n-C ₃ H ₇	CN	F	Н	Н	Н
	n-C₄H ₉	CN	F	Н	Н	Н
	n-C ₅ H ₁₁	CN	F	Н	Н	Н
	n-C ₆ H ₁₃	CN	F	Н	Н	Н
15	H	CN	F	F	Н	Н
	CH ₃	CN	F	F	Н	Н
	C ₂ H ₅	CN	F	F	Н	Н
	n-C₃H ₇	CN	F	F	Н	Н
	n-C ₄ H ₉	CN	F	F	Н	Н
20	n-C ₅ H ₁₁	CN	F	F	Н	Н
	n-C ₆ H ₁₃	CN	F	F	H	Н
	,H	F	Н	Н	F	Н
	CH₃	F	Н	Н	, F	Н
	C ₂ H ₅	F	Н	Н	F	Н
25	C ₃ H ₇	F	Н	H	F	Н
	n-C₄H ₉	F	Н	Н	F	Н
	n-C ₅ H ₁₁	F	Н	Н	F	Н
	n-C ₆ H ₁₃	F	H	Н	F	Н
	H	F	F	Н	F	Н
30	CH₃	F	F	Н	F	Н
	C ₂ H ₅	F	F	Н	F	H
	n-C ₃ H ₇	F	F	Н	F	Н
	$n-C_4H_9$	F	· F	Н	F	Н
	n-C ₅ H ₁₁	F	F	Н	F	Н
35	n-C ₆ H ₁₃	F	F	H	F	Н
-	Н	F	F	F	F	Н

	R ¹	X		L ¹	L ²	L ³	L ⁴	-
	CH ₃	F		F	F	F	Н	
	C ₂ H ₅	F		F	F	F	Н	K 89 N (76,8) I, Δ ε = 29,9; Δ n = 0,1310
5	n-C₃H ₇	F		F	F	F	Н	K 70 N 102,3 l; $\Delta \varepsilon$ = 29,7; Δn = 0,1364
	n-C ₄ H ₉	F		F	F	F	Н	
	n-C ₅ H ₁₁	F	٠	F	F	F	Н	
	n-C ₆ H ₁₃	F		F	F	F	Н	
10	н	CI		Н	Н	F	Н	
	CH ₃	Cl		Ή	Н	F	Н	
	C ₂ H ₅	CI		Н	Н	F	Н	
	n-C ₃ H ₇	CI		Н	Н	F	Н	
	n-C ₄ H ₉	CI		Н	Н	F	Н	
15	n-C ₅ H ₁₁	CI		Н	H	F	H	
	n-C ₆ H ₁₃	CI		· H	Н	F	Н	
	н	CI		F	Н	F	Н	
	CH₃	Cl		F	Н	F	H	
	C_2H_5	Cl		F	· H	F	Н	
20	n-C ₃ H ₇	CI		F	Н	F	Н	
	n-C ₄ H ₉	Cl		F	Н	F	Н	
	n-C ₅ H ₁₁	Cl		F	Н	F	Н	
	n-C ₆ H ₁₃	CI		F	Н	F	Н	
	Н	Cl		F	F	F	Н	
25	CH₃	CI		F	F	F	Н	
	C ₂ H ₅	CI		F	F	F	Н	
	n-C ₃ H ₇	CI		F	·F	F	Н	
	n-C ₄ H ₉	CI		F	F	F	Н	
	n-C ₅ H ₁₁	CI		F	F	F	Н	•
30	n-C ₆ H ₁₃	Cl		F	F	F	Н	
	Н	OCF ₃		Н	Н	F	Н	
	CH₃	OCF₃		Н	Н	F	Н	
	C ₂ H ₅	OCF ₃		Н	. H	F	Н	
	n-C ₃ H ₇	OCF₃		Н	Н	F	Н	
35	n-C₄H ₉	OCF ₃		Н	Н	F	Н	,
	n-C₅H ₁₁	OCF ₃		Н	Н	, F	Н	

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	OCF ₃	Н	Н	F	Н
	Н	OCF ₃	F	Н	F	Н
	CH₃	OCF ₃	F	Н	F	Н
5	C ₂ H ₅	OCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCF ₃	F	Н	F	Н
	n-C ₄ H ₉	OCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н	F	Н
10	H.	OCF ₃	F	F	F	Н
	CH ₃	OCF ₃	F	F	F	Н
	C ₂ H ₅	OCF ₃	F	F	F	Н
	n-C ₃ H ₇	OCF ₃	F	F	F	Н
	n-C ₄ H ₉	OCF ₃	F	F	F	H
15	n-C ₅ H ₁₁	OCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	F	Н
	Н	OCHF ₂	Н	Н	F	Н
	CH ₃	OCHF ₂	Н	Н	F	Н
	C ₂ H ₅	OCHF ₂	Н	Н	F	Н
20	n-C ₃ H ₇	OCHF ₂	Н	Н	F	Н
	n-C₄H ₉	OCHF ₂	Н	Н	F	H ·
	n-C ₅ H ₁₁	OCHF ₂	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	Н
0.5	Н	OCHF ₂	F	Н	F	Н
25	CH ₃	OCHF ₂	F	Н	F	Н
	C ₂ H ₅	OCHF ₂	F	Н	F	Н
	n-C ₃ H ₇	OCHF ₂	F	Н	F	Н
	n-C ₄ H ₉	OCHF ₂	F	H	F	Н
00	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	Н
30	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	Н
	Н	OCHF ₂	F	F	F	Н
	CH₃	OCHF ₂	F	F	F	Н
	C ₂ H ₅	OCHF ₂	F	F	F	Н
	n-C ₃ H ₇	OCHF ₂	F	F	F	H
35	n-C ₄ H ₉	OCHF ₂	F	F	F	Н
	n-C ₅ H ₁₁	OCHF ₂	F	F	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	OCHF ₂	F	F	F	Н
	Н	OCHFCF ₃	H	Н	F	Н
	CH ₃	OCHFCF ₃	Н	Н	F	Н
5	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	Н
10	H	OCHFCF ₃	F	Н	F	Н
	CH₃	OCHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	H	F	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	F	Н
15	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
	Н	OCHFCF ₃	F	F	F	H
	CH₃	OCHFCF ₃	F	F	F	H
	C ₂ H ₅	OCHFCF ₃	F	F	F	Н
20 ·	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Η .
	n-C ₄ H ₉	OCHFCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
	Н	OCHFCF ₃	Н	Н	F	Н
25	CH₃	OCHFCF ₃	Н	· H	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	H	F	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	Н
•	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	H
30	n-C ₆ H ₁₃	OCHFCF ₃	H	Н	F	Н
	Н	OCHFCF ₃	F	Н	F	Н
	CH ₃	OCHFCF ₃	F	Н	F	Н
	C_2H_5	OCHFCF ₃	F	, H	F.	H
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	Н
35	n-C ₄ H ₉	OCHFCF ₃	F	H	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н

	R ¹	X	L1	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	Н
	Н	OCHFCF ₃	F	F	F	Н
	CH ₃	OCHFCF ₃	F	F	F	Н
5	C ₂ H ₅	OCHFCF ₃	F	F.	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Н
	n-C ₄ H ₉	OCHFCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCHFCF3	F	F	F	Н
	n-C ₆ H ₁₃	OCHFCF3	F	F	F	Н
10	H	OCF2CHFCF3	Н	Н	F	Н
	СН₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	Н	Н	F	Н
15	n-C ₅ H ₁₁	OCF2CHFCF3	Н	Н	·F	Н
	n-C ₆ H ₁₃	OCF2CHFCF3	Н	Н	F	Н
	н	OCF2CHFCF3	F	Н	F	Н
·	СН₃	OCF ₂ CHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	Н
20 ·	n-C₃H ₇	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	H
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	Н
•	Н	OCF ₂ CHFCF ₃	F	F	F	H ·
25	CH₃	OCF ₂ CHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	Н
	$n-C_3H_7$	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F	F	Η.
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	Н
30	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	Н
	Н	NCS	Н	Н	F	Н
	CH ₃	NCS-	Н	Н	F	Н
	C ₂ H ₅	NCS	Н	Н	F	Н
	n-C ₃ H ₇ .	NCS	Н	Н	·F	Н
35	n-C ₄ H ₉	NCS	Н	Н	F	Н
	n-C ₅ H ₁₁	NCS	Н	Н	F	Н

	R ¹	×		L ¹	L ²	L ³	L ⁴ .
	n-C ₆ H ₁₃	NCS		Н	Н	F	Н
	Н	NCS		F	Н	F	Н
٠	CH ₃	NCS		F	Н	F	Н
5	C ₂ H ₅	NCS		F	Н	F	Н
	n-C ₃ H ₇	NCS		F	Н	F	Н
	n-C ₄ H ₉	NCS		F	Н	F _.	Н
	n-C ₅ H ₁₁	NCS		F	Н	F	Н
	n-C ₆ H ₁₃	NCS		F	Н	F	Н
10	н	NCS		F	F	F	Н
	CH₃	NCS		F	F	F	Н
	C_2H_5	NCS		F	F	F	H
	$n-C_3H_7$	NCS		F	F	F	Н
	n-C ₄ H ₉	NCS		F	F	F	H.
15	n-C ₅ H ₁₁	NCS		F	F	F	Н
	n-C ₆ H ₁₃	NCS		F	F	F	Н
	Н	C ₂ F ₅		Н	Н	F	Н
	CH ₃	C_2F_5		Н	Н	F	Н
	C_2H_5	C_2F_5		· H	Н	F	Н
20	n-C ₃ H ₇	C_2F_5		Н	Н	F	Н
	n-C ₄ H ₉	C_2F_5		Н	Н	F	Н
	n-C ₅ H ₁₁	C_2F_5		Н	Н	F	Н
	n-C ₆ H ₁₃	C_2F_5		Н	H	F	Н
	Н	C ₂ F ₅		F	H	F	Н
25 .	CH ₃	C_2F_5		F	Н	F	Н
	C ₂ H ₅	C ₂ F ₅	•	F	H	F	Н
	n-C ₃ H ₇	C_2F_5		F	Н	F	Н
	n-C ₄ H ₉	C_2F_5		F	Н	F	Н
	n-C ₅ H ₁₁	C_2F_5	•	F	Н	F	Н
30	n-C ₆ H ₁₃	C ₂ F ₅		F	Н	F	Н
	Н	C_2F_5		F	F	F	Н
	CH ₃	C_2F_5	•	F	F	F	Н
•	C ₂ H ₅	C_2F_5		F	F	F	Н
	n-C ₃ H ₇	C_2F_5		F	F	F	Н
35	n-C ₄ H ₉	C_2F_5		F	F	F.	Н
v	n-C ₅ H ₁₁	C_2F_5		F	F	F	Н

	R ¹	×	 L ¹	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	Н
	Н	C ₃ F ₇	Н	Н	F	Н
	CH₃	C ₃ F ₇	Н	Н	F	Н
5	C ₂ H ₅	C ₃ F ₇	Н	Н	F	Н
	n-C ₃ H ₇	C_3F_7	Н	Н	F	Н
	n-C ₄ H ₉	C_3F_7	H	Н	F	Н
	n-C ₅ H ₁₁	C_3F_7	Н	Н	F	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	F	Н
10	Н	C ₃ F ₇	F	Н	F	Н
	CH₃	C ₃ F ₇	F	Ĥ	F	Н
	C_2H_5	C ₃ F ₇	F	Н	F	Н
	n-C ₃ H ₇	C ₃ F ₇	F	Н	F	·H
	n-C ₄ H ₉	C ₃ F ₇	F	Н	F	Н
15	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	F	Н
	n-C ₆ H ₁₃	C_3F_7	F	Н	F	Н
	Н	C ₃ F ₇	F	F	F	Н
	CH ₃	C ₃ F ₇	F	F	F	Н
	C_2H_5	C ₃ F ₇	F	F	F	Н
20	n-C ₃ H ₇	C ₃ F ₇	F	F	F	Н
	n-C ₄ H ₉	C ₃ F ₇	F	F	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	F	Н
	n-C ₆ H ₁₃	C ₃ H ₇	F	F	F	Н
	н	SF ₅	Н	Н	F	Н
25	CH ₃	SF ₅	Н	Н	F	Н
•	C ₂ H ₅	SF ₅	Н	Н	F	Н
	n-C ₃ H ₇	SF ₅	Н	Н	F	Н
	n-C ₄ H ₉	SF ₅	Н	Н	F	Н
	n-C ₅ H ₁₁	SF ₅	Н	Ή	F	Н
30	n-C ₆ H ₁₃	SF ₅	Н	Н	F	Н
	Н	SF ₅	F	Н	F	Н
	CH₃	SF ₅	F	Н	F	Н
	. C ₂ H ₅	SF ₅	F	Н	F	Н
	n-C ₃ H ₇	SF ₅	F	Н	F	Н
35	n-C₄H ₉	SF ₅	F	Н	F	Н
	n-C ₅ H ₁₁	SF ₅	F	. Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
•	n-C ₆ H ₁₃	SF ₅	F	Н	F	Н
	Н	SF ₅	F	F	F	Н
	CH₃	SF ₅	F	F	F	Н
5	C ₂ H ₅	SF ₅	F	F	F	Н
	n-C₃H ₇	SF ₅	F	F	F	Н
	n-C ₄ H ₉	SF ₅	F	F	F	Н
	n-C ₅ H ₁₁	SF ₅	F	F	F	Н
	n-C ₆ H ₁₃	SF ₅	F	F	F	Н
10	H.	CN	H	Н	F	Н
	CH₃	CN	Н	Н	F	Н
	C ₂ H ₅	CN	Н	Н	F	Н
	n-C ₃ H ₇	CN	Н	Н	F	H
	n-C ₄ H ₉	CN	Н	H	F	Н
15	n-C ₅ H ₁₁	CN	Н	Н	F	Н
	n-C ₆ H ₁₃	CN	Н	Н	F	Н
	Н	CN	F	Н	F.	Н
	CH₃	CN	F	Н	F	Н
	C ₂ H ₅	CN	F	Н	F	Н
20	n-C₃H ₇	CN	F	Н	F	Н
	n-C₄H ₉	CN	F	Н	F	Н
	n-C ₅ H ₁₁	CN	F	Н	F	H
	n-C ₆ H ₁₃	CN	F	Н	F	Н
	Н	CN	F	F	F	Н
25	CH ₃	CN	F	F	F	Н
	C ₂ H ₅	CN	F	F	F	Н
	n-C ₃ H ₇	CN	F	F	F	Н
	n-C ₄ H ₉	CN	F	F	F	H _.
	n-C ₅ H ₁₁	CN	F	F	F	Н
30	n-C ₆ H ₁₃	CN	F	F	F	Н
	Н	F	Н	Н	F	F
	CH₃	F	Н	Н	F	F
	C_2H_5	F	Н	Н	F	F
	n-C ₄ H ₉	F	Н	Н	F	F
35	n-C ₅ H ₁₁	F	Н	Н	F	F
_	n-C ₆ H ₁₃	F	Н	Н	F	F

	R ¹	X	L ¹	L ²	L ³	L ⁴	
	Н	F	F	Н	F	F	
	CH ₃	F	F	Н	F	F	
	C ₂ H ₅	F	F	Н	F	F	•
5	n-C ₃ H ₇	F	F	Н	F	.F	
	n-C ₄ H ₉	F F	F	Н	F	F	
	n-C ₅ H ₁₁	F	F	. Н	F	F	•
	n-C ₆ H ₁₃	F	F	Н	F	F	
-	Н	F	F	F	F	F	
10	CH₃	F	F	F	F	F	
	C ₂ H ₅	F	F	F	F	F	
	C ₂ H ₅	F	F	F	F	F	K 91 N (58,8) I;
							$\Delta \varepsilon = 35,0$; $\Delta n = 0,1149$
	n-C ₃ H ₇	F	F	F	F	F	K 83 N (83,0) I;
15							$\Delta \varepsilon = 34,9$; $\Delta n = 0,1231$
	n-C ₄ H ₉	F	F	F	F	F	K 90 N 79,4 I;
							$\Delta \varepsilon = 32,4$; $\Delta n = 0,1171$
	n-C ₅ H ₁₁	F	F	F	F	F	K 82 N 84,3 I;
	•						$\Delta \varepsilon = 31,9$; $\Delta n = 0,1205$
20	n-C ₆ H ₁₃	F	F	F	F	F	K 89 N (83,4) I;
							$\Delta \varepsilon = 30,6$; $\Delta n = 0,1116$
	n-C ₇ H ₁₅	F	F	F	F	F	K 82 N 84,3 I;
		•					$\Delta \varepsilon = 30,3; \Delta n = 0,1130$
	Н	CI	Н	Н	F	F	
25	·CH ₃	CI	Н	Н	F	F	
	C ₂ H ₅	CI	Н	Н	F	F	
	n-C ₃ H ₇	CI	Н	Н	F	F	
	n-C ₄ H ₉	CI	Н	Н	F	F	
	n-C ₅ H ₁₁	CI	·H	Н	F	F	
30 ·	n-C ₆ H ₁₃	CI	Н	Н	F	F	
	Н	CI	F	Н	F	F	
	CH ₃	CI	F	Н	F	F	
	C_2H_5	CI	F	Н	F	F	
	n-C ₃ H ₇	CI	F	Н	F	F	
35	n-C ₄ H ₉	CI	F	H	F	F	
	n-C ₅ H ₁₁	Cl	F	Н	F	F	

	R ¹	X		L ¹	L ²	L ³	L ⁴	
	n-C ₆ H ₁₃	Cl		F	Н	F	F	
	Н	CI		F	F	F	F	
	CH₃	CI		F	F	F	F	
5	C ₂ H ₅	CI :		F	F	F	F	
	n-C₃H ₇	CI		F	F	F	F	K 80 N 106,7 I;
								$\Delta \varepsilon = 31,5$; $\Delta n = 0,1372$
	n-C ₄ H ₉	Cl .		F	F	F	F	
	n-C ₅ H ₁₁	CI		F	F	F	F	
10	n-C ₆ H ₁₃	CI		F	F	F	F	
	Н	OCF ₃		Н	Н	F	F	,
	CH₃	OCF ₃		Н	Н	F	F	
	C ₂ H ₅	OCF ₃		Н	Н	F	F	
	n-C ₃ H ₇	OCF ₃		Н	Н	F	F	K 80 N 119,8 I;
15								$\Delta \varepsilon = 25,3$; $\Delta n = 0,1330$
	n-C ₄ H ₉	OCF ₃		Н	Н	F	F	
	n-C ₅ H ₁₁	OCF ₃		Н	Н	F	F	
	n-C ₆ H ₁₃	OCF ₃		Н	Н	F	F	
	Н	OCF ₃		F	Н	F	F	
20	CH ₃	OCF ₃		F	H	F	F	,
	C ₂ H ₅	OCF ₃		F	Н	F	F	
	n-C ₃ H ₇	OCF ₃		F	Н	F	F	K 48 S _A (46) N 105,1 I;
	_							$\Delta \varepsilon = 29.8$; $\Delta n = 0.1180$
	n-C ₄ H ₉	OCF ₃		F	Н	F	F	
25	n-C ₅ H ₁₁	OCF ₃		F	H	F	F	
	n-C ₆ H ₁₃	OCF ₃		F	Н	F	F	
	Н	OCF₃		F	F	F	F	
	CH₃	OCF ₃		F	F	F	F	
	C ₂ H ₅	OCF ₃		F	F	F	F	•
30	n-C ₃ H ₇	OCF ₃		F	F	F	F	K 73 N 97,5 I;
		_	•					$\Delta \varepsilon = 35,6$; $\Delta n = 0,1158$
	n-C ₄ H ₉	OCF₃		F	F	F	F	
	n-C ₅ H ₁₁	OCF ₃		F	F	F	F	
	n-C ₆ H ₁₃	OCF ₃	•	F	F	F	F	
35	Н	OCHF ₂	•	Н	Н	F	F	
	CH₃	OCHF ₂		Н	Н	F	·F	
	- •							

_	R ¹	X ·	L ¹	L ²	L ³	Ľ ⁴
	C ₂ H ₅	OCHF ₂	Н	Н	F	F
	n-C ₃ H ₇	OCHF ₂	Н	Н	F	F
	n-C ₄ H ₉	OCHF ₂	Н	Н	F	F
5	n-C ₅ H ₁₁	OCHF ₂	Н	Н	F	F
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	F
	Н	OCHF ₂	F	Н	F	F
	CH ₃	OCHF ₂	F	Н	F	F
	C ₂ H ₅	OCHF ₂	F.	Н	F	F
10	n∸C₃H ₇	OCHF ₂	F	Н	F	F
	n-C ₄ H ₉	OCHF ₂	F	Н	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	F
	Η .	OCHF ₂	F	F	F	F
15	CH ₃	OCHF ₂	F	F	F	F
	C ₂ H ₅	OCHF ₂	F	F	F	F
	n-C ₃ H ₇	OCHF ₂	F	F	F	F
	n-C ₄ H ₉	OCHF ₂	F	F	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	F	F	F
20	n-C ₆ H ₁₃	OCHF ₂	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
	CH ₃	OCHFCF ₃	Н	Н	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	Н	H	F	F
25	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F ·
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н	OCHFCF ₃	F	Н	F	F
	CH₃	OCHFCF ₃	F	Н	F	F
30	C ₂ H ₅	OCHFCF ₃	F	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C ₄ H ₉	OCHFCF ₃	F	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	F
35	H	OCHFCF ₃	F	F	F	F
	CH ₃	OCHFCF ₃	F	F	F	F

	R ¹	X	L ¹	L ²	L ³	L ⁴
	C ₂ H ₅	OCHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	F
	n-C ₄ H ₉	OCHFCF ₃	F	F	F	F
5	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
	CH₃	OCHFCF ₃	Н	H.	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
10	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	H	OCHFCF ₃	F	Н	F	F
15	CH ₃	OCHFCF ₃	F	Н	F	F
	C_2H_5	OCHFCF ₃	F	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCHFCF ₃	F	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
20	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	F
	Н	OCHFCF ₃	F	·F	F	F
	CH₃	OCHFCF ₃	F	F	F	F
	C ₂ H ₅	OCHFCF ₃	F	F	F	·F
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	F
25	n-C ₄ H ₉	OCHFCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCF ₂ CHFCF ₃	. H	Н	F	F
	CH ₃	OCF ₂ CHFCF ₃	Н	Н	F	F
30	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C₃H ₇	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н	F	F
•	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	F
35	н	OCF ₂ CHFCF ₃	F	Н	F	F
	CH₃	OCF ₂ CHFCF ₃	F	H	F	F

	R ¹	Х	L ¹	L ²	L ³	L ⁴	
•	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	F	
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	H·	F	F	
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	Н	F	F	r
5	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	F	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	F	
	Н	OCF ₂ CHFCF ₃	F	F	F	F	
	CH ₃	OCF ₂ CHFCF ₃	F	F	F	F	
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	F	
10	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	F	F	
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F	F	F	•
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	F	
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	F	
	н	NCS	Н	Н	F	F	
15	СН₃	NCS	Н	Н	F	F	•
	C ₂ H ₅	NCS	Ĥ	Н	F	F	
	n-C ₃ H ₇	NCS	Н	Н	F	F	K 107 N 185,5 I;
							$\Delta \varepsilon = 31,4$; $\Delta n = 0,2052$
	n-C₄H ₉	NCS	Н	Н	F	F	
20	n-C₅H ₁₁	NCS	Н	Н	F	F	
	n-C ₆ H ₁₃	NCS	Н	Н	F	F	,
	Н	NCS	F	Н	F	F	
	CH ₃	NCS	F	Н	F	F	
	C ₂ H ₅	NCS	F	Н	F	F	•
25	n-C₃H ₇	NCS	F	Н	F	F	
	n-C ₄ H ₉	NCS	F	Н	F	F	
	n-C ₅ H ₁₁	NCS	F	Н	F	F	
	n-C ₆ H ₁₃	NCS	F	Н	F	F	
	Н	NCS	F	F	F	F	
30	CH₃	NCS	F	F	F.	F	
	C ₂ H ₅	NCS	F	F	F	F	
	n-C ₃ H ₇	NCS	F	F	F	F	
	n-C ₄ H ₉	NCS	F	F	F	F	
	n-C ₅ H ₁₁	NCS	F	F	F	F	
35	n-C ₆ H ₁₃	NCS	F	F	F	F	
	Н	C ₂ F ₅	Н	Н	F	F	

	R ¹	X		L ¹	L ²	L ³	L ⁴
	CH ₃	C ₂ F ₅		Н	Н	F	F
	C ₂ H ₅	C_2F_5		Н	Н	F	F
	n-C ₃ H ₇	C_2F_5		H	Н	F	F
5	n-C ₄ H ₉	C_2F_5	•	Н	Н	F	F
	n-C ₅ H ₁₁	C ₂ F ₅		Н	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅		Н	Н	F	F
	Н	C ₂ F ₅		F	Н	F	F
	CH₃	C_2F_5		F	Н	F	F
10	C ₂ H ₅	C_2F_5		F	Н	F	F
	n-C ₃ H ₇	C_2F_5		F	Н	F	F
	n-C ₄ H ₉	C ₂ F ₅		F	Н	F	F
	n-C ₅ H ₁₁	C_2F_5		F	Н	F	F
	n-C ₆ H ₁₃	C_2F_5		F	Н	F	F
15	Н	C ₂ F ₅		F	F	F	F
	CH₃	C_2F_5		F	F	F	F
	C_2H_5	C ₂ F ₅		F	F	F	F
	n-C ₃ H ₇	C_2F_5		F	F	F	F
	n-C ₄ H ₉	C_2F_5		F	F	F	F
20	n-C ₅ H ₁₁	C ₂ F ₅		F	F	F	F
	n-C ₆ H ₁₃	C_2F_5		F	F	F	F
	Н	C ₃ F ₇		Н	Н	F	F
	CH ₃	C ₃ F ₇		Н	Н	F	F
	C ₂ H ₅	C ₃ F ₇		Н	Н	F	F
25	n-C ₃ H ₇	C ₃ F ₇		Н	Н	·F	F
	n-C₄H ₉	C ₃ F ₇		Н	Н	F	F
	n-C ₅ H ₁₁	C ₃ F ₇		Н	H	F	F
	n-C ₆ H ₁₃	C_3F_7		H	Н	F	F
	H [.]	C_3F_7		. F	Н	F	F
30	CH₃	C ₃ F ₇		F	Н	F	F
	C ₂ H ₅	C_3F_7		F	Н	F	F
	n-C ₃ H ₇	C_3F_7		F	Н	F	F
	n-C ₄ H ₉	C_3F_7		F	Н	F	F
	n-C ₅ H ₁₁	C ₃ F ₇		F	Н	F	F
35	n-C ₆ H ₁₃	C ₃ F ₇		F	Н	F	F
	Н	C ₃ F ₇		F	F	F	F

	R ¹	X	L ¹	L ²	L^3	L ⁴	
	CH ₃	C ₃ F ₇	F	F	F	F	,
	C ₂ H ₅	C ₃ F ₇	F	F	F	F	
	n-C₃H ₇	C ₃ F ₇	F	F	F	F	
5	n-C ₄ H ₉	C ₃ F ₇	F	F	F	F	
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	F	F	
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	F	F	
	Н	SF ₅	Н	Н	F	F	
	CH₃	SF ₅	Н	Н	F	F	
10	C ₂ H ₅	SF ₅	Н	Н	F	F	
	n-C ₃ H ₇	SF ₅	Н	Н	F	F	
	n-C₄H ₉	SF ₅	H	Н	F	F	
	n-C ₅ H ₁₁	SF ₅	Н	H	F	F	
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	F	
15	Н	SF ₅	F	Н	F	F	
	CH₃	SF ₅	F	Н	F	F	
	C ₂ H ₅	SF ₅	F	Н	F.	F	
	n-C ₃ H ₇	SF ₅	F	Н	F	F	
	n-C ₄ H ₉	SF ₅	F	H.	F	F	•
20	n-C ₅ H ₁₁	SF ₅	F	Н	F	F	
	n-C ₆ H ₁₃	SF ₅	F	Н	F	F	
	Н	SF ₅	F	F	F	F	
•	CH₃	SF ₅	F	F	F	F	
	C ₂ H ₅	SF ₅	F F	F	F	F	
25	n-C ₃ H ₇	SF ₅	F	F	F	F	K 110 N (83,4) I;
							$\Delta \varepsilon = 33.8$; $\Delta n = 0.1211$
	n-C ₄ H ₉	SF ₅	F	F	F	F	
	n-C ₅ H ₁₁	SF ₅	F	F	F	F	
	n-C ₆ H ₁₃	SF ₅	F	F	F	F	
30	Н	CN ·	Н	Н	F	F	
	CH₃	CN	Н	Н	F	F	
	C ₂ H ₅	CN	Н	Н	F	F	
	n-C ₃ H ₇	CN	Н	Н	F	F	
	n-C ₄ H ₉	CN	Н	Н	F	F	•
35	n-C ₅ H ₁₁	CN	Н	Н	F	F	
	n-C ₆ H ₁₃	CN	Н	Н	F	F	

	R ¹	X	\mathbf{L}^{1}	L ²	L ³	L ⁴	
·	Н	CN	F	Н	F	F	
	CH ₃	CN	F	Н	F	F	
	C ₂ H ₅	CN	F	Н	F	F	
5	n-C ₃ H ₇	CN	F	H ·	F	F	
	n-C₄H ₉	CN	F	Н	F	F	
	n-Ç ₅ H ₁₁	CN	F	Н	F	F	
	n-C ₆ H ₁₃	CN .	F	Н	F	F	
	Н	CN	F	F	F	F	
10	CH ₃	CN	F	F	F	F	
	C ₂ H ₅	CN	F ·	F	F	F	K 98 N _{Re} (71) S _C (84) N 127,6 I
				_	_	_	$\Delta \varepsilon = 67.8$; $\Delta n = 0.1459$
15	n-C ₃ H ₇	CN	F	F	F	F	K 75 S _c ? (65) N 144,1 I
15				_	_	_	$\Delta n = 0,1561; \Delta \epsilon = 66,5$
	n-C₄H ₉	CN	F	F	F	F	K 79 N 139,3 I;
			_	_	_		$\Delta \varepsilon = 64,2; \Delta n = 0,1477$
	n-C ₅ H ₁₁	CN	F	F	F	F	K 65 S _C (44) N 141,5 I;
20							$\Delta \varepsilon = 61.8$; $\Delta n = 0.1490$
20	n-C ₆ H ₁₃	CN	F	F	F	F	
	n-C ₇ H ₁₅	CN	F	F	F	F	K 51 N 130,8 I;
		•					$\Delta \varepsilon = 58,4$; $\Delta n = 0,1459$
	Н	CF ₃	Н	Н	F	F	
O.F.	C ₂ H ₅	CF ₃	H	Η .	F	F	
25	n-C ₃ H ₇	CF₃	Н	Н	F	F	K 95 N (87,5) I;
							$\Delta \varepsilon = 31,5$; $\Delta n = 0,1330$
	n-C ₄ H ₉	CF₃	Н	Н	F	F	•
	n-C ₅ H ₁₁	CF₃	.Н	Н	F	F	
00	n-C ₆ H ₁₃	CF₃	Н	Н	F	F	
30	CH₂=CH	CF ₃	Н	Н	F	F	
	Н	CF ₃	F	F	F	F	•
	C ₂ H ₅	CF ₃	F	F	F	F	•
•	n-C₃H ₇	CF ₃	F	F	F	F	K 91 I;
		·					$\Delta n = 0,1190; \Delta \varepsilon = 40,8$
35	n-C ₄ H ₉	CF ₃	F	F	F	F	
	n-C ₅ H ₁₁	CF ₃	F	F	F	F	

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	CF ₃	F	F	F	F
	CH ₂ =CH	CF ₃	F	F	F	F
	Н	F	Н	Н	F	F
5	C_2H_5	F	Н	Н	F	F
	n-C ₃ H ₇	F	Н	Н	F	F
	n-C ₄ H ₉	F	Н	Н	F	F
	n-C ₅ H ₁₁	F	Н	Н	F	F
	n-C ₆ H ₁₃	F	Н	Н	F	F
10	CH ₂ =CH	F	Н	Н	F	F

Beispiel 3

WO 2004/048501

$$C_3H_7 \longrightarrow \begin{array}{c} O \\ \end{array} \longrightarrow \begin{array}{c} H \\ \end{array} \longrightarrow \begin{array}{c} CF_2O \longrightarrow \begin{array}{c} F \\ O \\ \end{array} \longrightarrow \begin{array}{c} F \\ \end{array} \longrightarrow \begin{array}{c$$

Schritt 3.1

20

25

30

35

M

Eine Lösung von 61,2 mmol <u>L</u> in 500 ml CH₂Cl₂ wird bei -20 °C tropfenweise mit 62,7 mmol Trifluormethansulfonsäure versetzt. Man lässt für 30 min auf Raumtemperatur kommen und kühlt dann auf -70 °C. Nun werden zuerst eine Lösung von 91 mmol 4-Brom-3-fluorphenol und 101 mmol Triethylamin in 200 ml CH₂Cl₂, 5 min später 310 mmol Triethylamin-Tris(hydrofluorid) zugegeben. Nach weiteren 5 min gibt man in kleinen Portionen eine Suspension von 315 mmol 1,3-Dibrom-5,5-dimethylhydanthoin zu und rührt 1 h bei -70 °C nach. Man lässt auf -10 °C

kommen und gießt die Reaktionsmischung in eiskalte NaOH. Man arbeitet wie üblich wässrig auf und reinigt das Rohprodukt durch Chromatographie an Kieselgel (Heptan/MTB-Ether 4:1) und Kristallisation aus Ethanol bei -20 °C.

5

Schritt 3.2

Eine Mischung aus 50 mmol M, 50 mmol 3,4,5-Trifluorbenzolboronsäure, 2,5 mmol Pd(PPh₃)₄, 300 ml Toluol und 300 ml Na-Boratpuffer (pH=9) wird 18 h bei 80 °C gerührt. Man gießt die Mischung in 500 ml 0,1 N HCl, extrahiert das Produkt mit CH₂Cl₂, trocknet über Na₂SO₄ und rotiert zur Trockene ein. Das Rohprodukt wird in n-Heptan über Kieselgel chromatographiert und anschließend bei -20 °C aus n-Heptan umkristallisiert. K 61 N 191,8 I; Δn = 0,1220; Δε = 19,1

20

15

Analog werden die folgenden Verbindungen der Formel

$$25 \qquad R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} O \\ \end{array} \longrightarrow \begin{array}{c} L^{1} \\ O \\ L^{2} \end{array}$$

hergestellt:

30						-	
	R^1	X	L	¹ L	·	·	
	Н	F	. +	l H	4		
	СН₃	F	H	{ 	4		
	C ₂ H ₅	F	٠. ٢	ł F	- i		
35 .	n-C₃H ₇	F	ŀ	 	H K84N2	32,4 1;	
					$\Lambda_{c} = 0.4$	An = 0.1390	

	R ¹	x	L ¹	L ²	
	n-C ₄ H ₉	F	Н	Н	
	n-C ₅ H ₁₁	F	Н	Н	
•	n-C ₆ H ₁₃	F	Н	Н	
5	Н	F	F	Н	
	CH₃	F	F	Н	•
	C ₂ H ₅	F	F	Н	
	n-C ₃ H ₇	F	F	Н	$K 44 S_{M}$? 45 N 212,6 I;
					$\Delta \varepsilon = 13,4$; $\Delta n = 0,1328$
10	n-C ₄ H ₉	F	F	Н	•
	n-C ₅ H ₁₁	F	F	H	
	n-C ₆ H ₁₃	F	F	Н	
	Н	F	F	F	
	CH ₃	F	F	F	
15	C ₂ H ₅	F	F	F	
	n-C ₄ H ₉	F	F	F	
	n-C ₅ H ₁₁	F	F	F	
	n-C ₆ H ₁₃	F	F	F	
	Н	Cl	Н	Н	
20	CH ₃	CI	Н	Н	
	C ₂ H ₅	Cl	Н	Н	
	n-C ₃ H ₇	Cl	Н	Н	
	n-C ₄ H ₉	CI	Н	Н	
	n-C ₅ H ₁₁	Cl	Н	Н	
25	n-C ₆ H ₁₃	CI	Н	Н	
	Н	CI	F	H	
	CH₃	CI	F	H	
	C_2H_5	CI	F	H	
	n-C ₃ H ₇	CI	F	H	
30	n-C ₄ H ₉	CI	F	Н	
	n-C ₅ H ₁₁	Cl	F	Н	
	n-C ₆ H ₁₃	CI	F	Н	
	н	CI	F	F	
	CH ₃	CI	F	F	
35	C ₂ H ₅	CI	F	F	
	n-C ₃ H ₇	CI	F	F	

	R ¹	X	L ¹	L ²
	n-C ₄ H ₉	Cl	F	F
	n-C ₅ H ₁₁	CI	F	F
	n-C ₆ H ₁₃	CI	F	F
5	Н	OCF ₃	Н	Н
	CH₃	OCF ₃	Н	Н
	C ₂ H ₅	OCF ₃	Н	Н
	n-C₃H ₇	OCF ₃	Н	Н
	n-C ₄ H ₉	OCF ₃	Н	Н
10	n-C₅H ₁₁	OCF ₃	H	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н
	Н	OCF ₃	F	H
	CH ₃	OCF ₃	F	Н
	C ₂ H ₅	OCF ₃	F	Н
15	n-C₃H ₇	OCF ₃	F	Н
	n-C ₄ H ₉	OCF ₃	F	Н
	n-C ₅ H ₁₁	OCF ₃	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н
	H	OCF ₃	F	F
20	CH ₃	OCF ₃	F	F
	C ₂ H ₅	OCF ₃	F	F
	$n-C_3H_7$	OCF ₃	F	F
	n-C ₄ H ₉	OCF ₃	F	F
	n-C ₅ H ₁₁	OCF ₃	F	F
25	n-C ₆ H ₁₃	OCF ₃	F	F
	Н	OCHF ₂	H	H
	CH₃	OCHF ₂	Н	Н
	C ₂ H ₅	OCHF ₂	Н	Н
	n-C ₃ H ₇	OCHF ₂	Н	н .
30	n-C₄H ₉	OCHF₂	Н	н
	n-C ₅ H ₁₁	OCHF ₂	H	H
	n-C ₆ H ₁₃	OCHF ₂	Н	Н .
	Н	OCHF ₂	F	Н.
	CH₃	OCHF ₂	F	Н
35	C ₂ H ₅	OCHF ₂	·F	Н
	n-C ₃ H ₇	OCHF ₂	F	Н

	R ¹	X	L ¹	L ²		
•	n-C ₄ H ₉	OCHF ₂	F	Н		
	n-C ₅ H ₁₁	OCHF ₂	F	Η.		
	n-C ₆ H ₁₃	OCHF ₂	F	Н		
5	Н	OCHF ₂	F	F		
	CH ₃	OCHF ₂	F	F		
	C ₂ H ₅	OCHF ₂	F	F		
	n-C ₃ H ₇	OCHF ₂	F	F		
	n-C ₄ H ₉	OCHF ₂	F	F		
10	n-C₅H₁₁	OCHF ₂	F	F		
	n-C ₆ H ₁₃	OCHF ₂	F	F		
	Н	OCHFCF ₃	Н	Н		
	CH ₃ .	OCHFCF ₃	Н	Н		
	C ₂ H ₅	OCHFCF ₃	Н	Н		
15	n-C ₃ H ₇	OCHFCF ₃	Н	Н		
	n-C₄H ₉	OCHFCF ₃	Н	Н		
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н		
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Ή		
	Н	OCHFCF ₃	F	Н		
20	CH₃	OCHFCF ₃	F	Н		
	C ₂ H ₅	OCHFCF ₃	F	H		
	n-C₃H ₇	OCHFCF ₃	F	Н	•	
	n-C ₄ H ₉	OCHFCF3	F	Н		
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н		
25	n-C ₆ H ₁₃	OCHFCF ₃	F	Н		
	Н	OCHFCF ₃	F	F		
	CH₃	OCHFCF ₃	F	F		
	C ₂ H ₅	OCHFCF ₃	F	F		
	n-C ₃ H ₇	OCHFCF ₃	F	F		
30	n-C₄H ₉	OCHFCF ₃	Æ	F		
•	n-C ₅ H ₁₁	OCHFCF ₃	F	F		
	n-C ₆ H ₁₃	OCHFCF ₃	F	F		
	H	OCHFCF ₃	Н	H		
	CH₃	OCHFCF ₃	Н	Н		•
35	C ₂ H ₅	OCHFCF ₃	Н	Н		
	n-C₃H ₇	OCHFCF ₃	Н	Н		

	R ¹	x	L ¹	L ²		
	n-C ₄ H ₉	OCHFCF ₃	Н	Н		
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н		
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н		
5	Н	OCHFCF ₃	F	Н		
	CH₃	OCHFCF ₃	F	Н		
	C_2H_5	OCHFCF ₃	F	Н		
	n-C₃H ₇	OCHFCF ₃	F	Н		
	n-C ₄ H ₉	OCHFCF ₃	F	H		
10	n-C ₅ H ₁₁	OCHFCF ₃	F	Н		
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н		
	Н	OCHFCF ₃	F	F		
	CH₃	OCHFCF ₃	F	F		
	C ₂ H ₅	OCHFCF ₃	F	F		
15	n-C ₃ H ₇	OCHFCF ₃	F	F		•
	n-C₄H ₉	OCHFCF ₃	F	F		
	n-C ₅ H ₁₁	OCHFCF ₃	F	F		
	n-C ₆ H _{13.}	OCHFCF ₃	F	F		•
	Н	OCF ₂ CHFCF ₃	H	Н		,
20	CH ₃	OCF ₂ CHFCF ₃	Н	Н	•	•
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н		
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н		
•	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н		
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н		
25	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н		
	Н	OCF ₂ CHFCF ₃	۰۴	Н		
	CH₃	OCF ₂ CHFCF ₃	F	Н		
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н		
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н		
30	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	• Н		
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	. Н		
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	H		
	Н	OCF ₂ CHFCF ₃	F	F	•	
	CH₃	OCF ₂ CHFCF ₃	F	F		
35	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F		
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F		

	R ¹	×	L ¹	L ²
		OCF ₂ CHFCF ₃	 F	 F
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F
	n-C ₅ H ₁₁		F	F
5	n-C ₆ H ₁₃	OCF₂CHFCF₃ NCS	г Н	H
•	H			
	CH₃	NCS	Н	Н
	C ₂ H ₅	NCS	Н	Н
	n-C ₃ H ₇	NCS	Н	Н
10	n-C₄H ₉	NCS	Н	H
10	n-C ₅ H ₁₁	NCS	Н	Н
	n-C ₆ H ₁₃	NCS	Н	Н
	Н	NCS	F	Н
	CH _{3.}	NCS	F	Н
	C ₂ H ₅	NCS	F	Н
15	n-C₃H ₇	NCS	F	Н
	n-C ₄ H ₉	NCS	·F	Н
	n-C ₅ H ₁₁	NCS	F	Н
	n-C ₆ H ₁₃	NCS	F	Н
	Н	NCS	F	F
20	CH ₃	NCS	F	F
	: C ₂ H ₅	NCS	F	F
	n-C₃H ₇	NCS	F	F
	n-C ₄ H ₉	NCS	F	F
	n-C ₅ H ₁₁	NCS	F	F
25	n-C ₆ H ₁₃	NCS	F	F
	H	C ₂ F ₅	Н	Н
	CH₃	C ₂ F ₅	Н	Н
	C ₂ H ₅	C ₂ F ₅	Н	Н
	n-C₃H ₇	C ₂ F ₅	Н	Н
30	n-C ₄ H ₉	C ₂ F ₅	Н	H
	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н
		C ₂ F ₅	Н	н
	n-C ₆ H₁₃		F	н
	Н	C ₂ F ₅	F	Н
35	CH₃	C ₂ F ₅	F	Н
50	C ₂ H ₅	C ₂ F ₅		
	n-C ₃ H ₇	C ₂ F ₅	F	Н

	m1		. 1	. 2	
	R ¹	X	L ¹	L ²	
	n-C₄H ₉	C ₂ F ₅	F	Н	
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н	•
-	n-C ₆ H ₁₃	C ₂ F ₅	F	Н	
5	Н	C ₂ F ₅	F	F	
	CH₃	C ₂ F ₅	F	F	
	C ₂ H ₅	C ₂ F ₅	F	F	
	n-C ₃ H ₇	C ₂ F ₅	F	F	•
	n-C ₄ H ₉	C ₂ F ₅	F	F	
10	n-C ₅ H ₁₁	C ₂ F ₅	F	F	
	n-C ₆ H ₁₃	C ₂ F ₅	F	F	
	Н	C ₃ F ₇	Н	Н	
	CH ₃ ·	C ₃ F ₇	Н	Н	
	C ₂ H ₅	C ₃ F ₇	Н	Н	
15	n-C₃H ₇	C ₃ F ₇	Н	Н	
	n-C ₄ H ₉	C ₃ F ₇	Н	Н	
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	•
	Н	C ₃ F ₇	F	Н	
20	CH ₃	C ₃ F ₇	F	Н	
	C ₂ H ₅	C ₃ F ₇	F	H	
	n-C₃H ₇	C ₃ F ₇	F	Н	
	n-C ₄ H ₉	C ₃ F ₇	F	Н	
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	
25	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	
	·H	C ₃ F ₇	F	F	•
	CH ₃	C ₃ F ₇	F	F	
	C ₂ H ₅	C ₃ F ₇	F	F	
	n-C ₃ H ₇	C ₃ F ₇	F	F	
30	n-C ₄ H ₉	C ₃ F ₇	F	F	
	n-C ₅ H ₁₁	C ₃ F ₇	F	.F	
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	
	Н	SF ₅	н	н	•
	CH₃	SF ₅	Н	` H	
35	C ₂ H ₅	SF ₅	Н	H	
	n-C ₃ H ₇	SF ₅	Н	Н	

	R ¹	×	L ¹	L ²
	n-C ₄ H ₉	SF ₅	Н	Н
	n-C ₅ H ₁₁	SF ₅	Н	н
	n-C ₆ H ₁₃	SF₅	Н	Н .
5	Н	SF ₅	F	Н
	CH ₃	SF ₅	F	Н
	C ₂ H ₅	SF₅	F	н .
	n-C ₃ H ₇	SF ₅	F	Н
	n-C ₄ H ₉	SF ₅	F	Н
10	n-C ₅ H ₁₁	SF ₅	F	Н
	n-C ₆ H ₁₃	SF ₅	F	H ·
	Н	SF ₅	F	F
	CH₃	SF ₅	F	F
	C ₂ H ₅	SF ₅	F	F
15	n-C ₃ H ₇	SF ₅	F	F
	n-C ₄ H ₉	SF ₅	F	F
	n-C ₅ H ₁₁	SF ₅	F	F
	n-C ₆ H ₁₃	SF ₅	F	F
	Н	CN	Н	н
20	CH₃	CN	Н	Н
	C ₂ H ₅	CN	Н	H .
•	n-C ₃ H ₇	CN	H	Н
	n-C ₄ H ₉	CN	Н	Н
	n-C ₅ H ₁₁	CN	Н	Н
25	n-C ₆ H ₁₃	CN	Н	Н
	Н	CN	F	Н
	CH₃	CN	F	н
	C ₂ H ₅	CN	F	Н
	n-C ₃ H ₇	CN	F	Н
30	n-C ₄ H ₉	CN	F	Н

Beispiel 4

WO 2004/048501

Schritt 4.1

Eine Lösung von 61,2 mmol <u>N</u> in 500 ml CH₂Cl₂ wird bei -20 °C tropfenweise mit 62,7 mmol Trifluormethansulfonsäure versetzt. Man lässt für 30 min auf Raumtemperatur kommen und kühlt dann auf -70 °C. Nun werden zuerst eine Lösung von 91 mmol 4-Brom-phenol und 101 mmol Triethylamin in 200 ml CH₂Cl₂, 5 min später 310 mmol Triethylamin-Tris(hydrofluorid) zugegeben. Nach weiteren 5 min gibt man in kleinen Portionen eine Suspension von 315 mmol 1,3-Dibrom-5,5-dimethylhydanthoin zu und rührt 1 h bei -70 °C nach. Man lässt auf -10 °C kommen und gießt die Reaktionsmischung in eiskalte NaOH. Man arbeitet wie üblich wässrig auf und reinigt das Rohprodukt durch Chromatographie an Kieselgel (Heptan/MTB-Ether 4:1) und Kristallisation aus Ethanol bei -20 °C.

30 ·

20

25

Schritt 4.2

$$c_3H_7$$
 O H CF_2O O F

Eine Mischung aus 50 mmol $\underline{\mathbf{O}}$, 50 mmol 3,4,5-Trifluorbenzolboronsäure, 2,5 mmol Pd(PPh₃)₄, 300 ml Toluol und 300 ml Na-Boratpuffer (pH=9) wird 18 h bei 80 °C gerührt. Man gießt die Mischung in 500 ml 0,1 N HCl, extrahiert das Produkt mit CH₂Cl₂, trocknet über Na₂SO₄ und rotiert zur Trockene ein. Das Rohprodukt wird in n-Heptan über Kieselgel chromatographiert und anschließend bei -20 °C aus n-Heptan umkristallisiert. K 60 S_B 81 N 206,6 I; Δ n = 0,1291; Δ ε = 15,7

Analog werden die folgenden Verbindungen der Formel

$$20 \qquad R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} C \\ O \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow \begin{array}{c} C \end{array} \longrightarrow \begin{array}{c} C \\ C \end{array} \longrightarrow$$

hergestellt:

25						
	R ¹	X	L¹	L ²		
	Н	F	Н	Н		•
	CH₃	F	H.	Н		
	C ₂ H ₅	F	Н	Н	•	
30	n-C ₃ H ₇	F	Н	Н		
	n-C ₄ H ₉	F	H	Н	-	
	n-C ₅ H ₁₁	F	Н	Н		
	n-C ₆ H ₁₃	F	· H	H		
	Н	F	F	Н		
35	CH₃	F	· F	Н		
	C ₂ H ₅	F	F	Н		

	R ¹	X	L ¹	L ²	
	n-C ₃ H ₇	F	F	Н	K 47 S _B 91 N 238,0 l;
	•				$\Delta \varepsilon = 10,7$; $\Delta n = 0,1370$
	n-C₄H ₉	F	F	Н	
5	n-C ₅ H ₁₁	F	F	Н	
	n-C ₆ H ₁₃	F	F	Н	
	Н	F	F	F	
	CH₃	F	F	F	
	C ₂ H ₅	F	F	F	
10	n-C ₄ H ₉	F	F	F	
	n-C ₅ H ₁₁	F	F	F	
	n-C ₆ H ₁₃	F	F	F	
	H	Cl	Н	Н	
	CH₃	CI	H	Н	
15	C ₂ H ₅	CI	H	Н	
	n-C ₃ H ₇	Cl	Н	H	
	n-C ₄ H ₉	Cl	Н	Н	
	n-C ₅ H ₁₁	Cl	Н	Н	
	n-C ₆ H ₁₃	CI	Н	Н	
20	Н	CI	F	Н	
	CH ₃	CI	F	Н	
	C ₂ H ₅	CI	F	Н	
	n-C ₃ H ₇	CI	F	Н	
	n-C₄H ₉	CI	. F	Н	
25	n-C ₅ H ₁₁	CI	F	Н	
	n-C ₆ H ₁₃	Cl	F	Н	
	Н	CI	F	F	
	CH₃	CI .	F	F	
	C ₂ H ₅	Cl	F	F	
30	n-C ₃ H ₇	CI	F	F	
	n-C ₄ H ₉	CI	F	F	
	n-C ₅ H ₁₁	CI	F	F	
	n-C ₆ H ₁₃	CI	F	F	
_	Н	OCF ₃	Н	Н	
35	CH ₃	OCF ₃	, Н.	Н	
	C ₂ H ₅	OCF ₃	Н	Н	
		•			

	R ¹	X	L ¹	L^2	
		OCF ₃	Н	<u></u> Н	
	n-C ₃ H ₇	OCF ₃	Н	Н	
	n-C ₄ H ₉	OCF₃ OCF₃	Н	Н	
5	n-C ₅ H ₁₁		Н	Н	
-	n-C ₆ H₁₃ ⊔	OCF₃ OCF₃.	F	Н	
	H	OCF ₃ .	F	п Н	
	CH₃	OCF ₃	F	Н	
			F	Н	
10	n-C ₃ H ₇	OCF ₃	F	Н	
	n-C₄H ₉	OCF ₃	F	Н	
	n-C ₅ H ₁₁	OCF ₃	F		
	n-C ₆ H ₁₃	OCF₃		H	
	H	OCF₃	F	F	
15	CH₃	OCF₃	F	F	
	C ₂ H ₅	OCF₃	F	F	
	n-C₃H ₇	OCF₃	F	F	
	n-C ₄ H ₉	OCF₃	F	F	
	n-C ₅ H ₁₁	OCF ₃	F	F	
20	n-C ₆ H₁₃	OCF ₃	F	F	
20	H	OCHF ₂	. H	Н	
	CH₃	OCHF ₂	H	H	
	C ₂ H ₅	OCHF ₂	Н	Н	
	n-C ₃ H ₇	OCHF ₂	Н	Н	
20	n-C ₄ H ₉	OCHF ₂	Н	Н	
20	n-C ₅ H ₁₁	OCHF ₂	Н	Н	
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	
	Н	OCHF ₂	F	Н	
	CH₃	OCHF ₂	F	Н	
	C ₂ H ₅	OCHF ₂	F	Н	
30	n-C₃H ₇	OCHF ₂	F	Н	
	n-C₄H ₉	OCHF ₂	F	Н	
	n-C ₅ H ₁₁	OCHF ₂	F	Н	
	n-C ₆ H ₁₃	OCHF ₂	F	Н	
	Н	OCHF ₂	F	F	
35	CH₃	OCHF ₂	F	F	
	C ₂ H ₅	OCHF ₂	F	F	

	R ¹	X	L ¹	L ²
	n-C ₃ H ₇	OCHF ₂	F	F
	n-C ₄ H ₉	OCHF ₂	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	F
5	n-C ₆ H ₁₃	OCHF ₂	F	F
	Н	OCHFCF ₃	Н	Н
	CH₃	OCHFCF₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н
10	n-C ₄ H ₉	OCHFCF ₃	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н
	CH ₃	OCHFCF ₃	F	H
15	C ₂ H ₅	OCHFCF ₃	F	Н
	n-C₃H ₇	OCHFCF ₃	F	H
	n-C ₄ H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	H ⁻
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
20	Н	OCHFCF ₃	F	F
	CH ₃	OCHFCF ₃	F	F
	C ₂ H ₅	OCHFCF ₃	F	F
•	n-C ₃ H ₇	OCHFCF ₃	F	F
	n-C ₄ H ₉	OCHFCF ₃	F·	F
25	n-C ₅ H ₁₁	OCHFCF ₃	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F
	Н	OCHFCF ₃	Н	Н
	CH₃	OCHFCF ₃	Н	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н
30	n-C ₃ H ₇	OCHFCF ₃	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н
	Н	OCHFCF ₃	F	Н .
35	CH₃	OCHFCF ₃	·F	Н
	C ₂ H ₅	OCHFCF₃	F	H

	R ¹	X	L ¹	L ²
	n-C ₃ H ₇	OCHFCF₃	F	Н .
	n-C ₄ H ₉	OCHFCF ₃	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н
5	n-C ₆ H ₁₃	OCHFCF ₃	F	Н
	Н	OCHFCF ₃	F	F
	CH ₃	OCHFCF ₃	F	F
	C ₂ H ₅	OCHFCF ₃	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F
10	n-C ₄ H ₉	OCHFCF ₃	F	F .
	n-C ₅ H ₁₁	OCHFCF3	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F _.
	H	OCF ₂ CHFCF ₃	Н	Н
	CH₃	OCF ₂ CHFCF ₃	Н	Н .
15	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н .
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н
00	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н
20	Н	OCF ₂ CHFCF ₃	F	Н
	CH₃	OCF ₂ CHFCF ₃	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	Н
05	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	н .
25	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F.	Н
	Н	OCF ₂ CHFCF ₃	F	F
	CH₃	OCF ₂ CHFCF ₃	F.	F
00	C ₂ H ₅	OCF ₂ CHFCF ₃		F
30	n-C ₃ H ₇	OCF ₂ CHFCF ₃		F
	n-C ₄ H ₉	OCF ₂ CHFCF ₃		F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F
25	Н	NCS	Н	H
35	CH₃	NCS	Н	Н
	C ₂ H ₅	NCS	Н	Н

	R ¹	X	L¹	L²				
	n-C ₃ H ₇	NCS	Н	Н				
	n-C ₄ H ₉	NCS ·	Н	Н				
	n-C ₅ H ₁₁	NCS	Н	Н				
5	n-C ₆ H ₁₃	NCS	Н	Н	•			
	Н	NCS	F	Н				
	CH₃	NCS	F	Н				
	C ₂ H ₅	NCS	F	Н				
	n-C ₃ H ₇	NCS	F	Н				
10	n-C ₄ H ₉	NCS	F	Η .				
	n-C ₅ H ₁₁	NCS	F	Н				
	n-C ₆ H ₁₃	NCS	F	Н				
	H ·	NCS	F	F				
	CH ₃	NCS	, F	F				
15	C ₂ H ₅	NCS	F	F				
	n-C ₃ H ₇	NCS	F	F	•	•		
	$n-C_4H_9$	NCS	F	F				
	n-C ₅ H ₁₁	NCS	F	F				
	n-C ₆ H ₁₃	NCS	F	F				
20	Н	C ₂ F ₅	Н	H	•			
	CH₃	C ₂ F ₅	Н	Н				
	C ₂ H ₅	C ₂ F ₅	Н	Н				÷
	n-C ₃ H ₇	C ₂ F ₅	Н	Н				•
	n-C₄H ₉	C ₂ F ₅	Н	Н				
25	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н				
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н		·		
	Н	C ₂ F ₅	F	Н				
	CH ₃	C ₂ F ₅	F	Н				
	C ₂ H ₅	C ₂ F ₅	F	Н				
30	n-C₃H ₇	C ₂ F ₅	F	Н			•	
	n-C₄H ₉	C ₂ F ₅	F	Н				
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н				
	n-C ₆ H ₁₃	C ₂ F ₅	F	Н				
	H ·	C ₂ F ₅	F	F				
35	CH ₃	C ₂ F ₅	F	F				
	C ₂ H ₅	C ₂ F ₅	F	F	٠		•	

	R ¹	Х	 L ¹	L ²				
	n-C ₃ H ₇	C ₂ F ₅	F	F				
•	n-C₄H ₉	C ₂ F ₅	F	F				
	n-C ₅ H ₁₁	C ₂ F ₅	F	F				
5	n-C ₆ H ₁₃	C ₂ F ₅	F	F				
	Н	C ₃ F ₇	Н	Н	٠			
	CH ₃	C ₃ F ₇	Н	Н	•			
	C ₂ H ₅	C ₃ F ₇	Н	Н				
•	n-C ₃ H ₇	C ₃ F ₇	Н	Н		•		
10	n-C ₄ H ₉	C ₃ F ₇	Н	Н				
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н				
·	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н				
	H	C ₃ F ₇	F	Н		•		
	CH₃	C ₃ F ₇	F	H				
15	C ₂ H ₅	C ₃ F ₇	F	Н				
	n-C₃H ₇	C ₃ F ₇	F	Н				
	n-C ₄ H ₉	C ₃ F ₇	F	Н				
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н				
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н				
20	H	C ₃ F ₇	F	F				
	CH₃	C ₃ F ₇	F	F				
	C ₂ H ₅	C₃F ₇	F	F				
	n-C ₃ H ₇	C ₃ F ₇	F	F	•			
	n-C ₄ H ₉	C ₃ F ₇	F	F	•			
25	n-C ₅ H ₁₁	C ₃ F ₇	F	F				
	n-C ₆ H ₁₃	C ₃ F ₇	 F	F	٠			
	Н	SF ₅	Н	Н				
	CH ₃	SF ₅	Н	Н				
	C ₂ H ₅	SF ₅	Н	Н				
30	n-C ₃ H ₇	SF ₅	Н	Н				
	n-C ₄ H ₉	SF ₅	Н	Н				
•	n-C ₅ H ₁₁	SF ₅	H	Н				
	n-C ₆ H ₁₃	SF ₅	Н	H				
_	Н	SF ₅	F	H				•
35	CH₃	· SF ₅	F	Н			-	
	C ₂ H ₅	SF ₅	F	Н				

	R ¹	X .	L ¹	L ²
	n-C ₃ H ₇	SF ₅	F	Н
	n-C ₄ H ₉	SF ₅	F	Н
	n-C ₅ H ₁₁	SF ₅	F	н
5	n-C ₆ H ₁₃	SF ₅	F	Н
	Н	SF ₅	F	F
	CH₃	SF ₅	F	F
	C ₂ H ₅	SF ₅	F	F
	n-C ₃ H ₇	SF ₅	F	F
10	n-C ₄ H ₉	SF ₅	·F	F
	n-C ₅ H ₁₁	SF ₅	F	F
	n-C ₆ H ₁₃	SF ₅	F	F
	H ·	CN .	Н	Н
	CH₃	CN	Н	Н
15	C ₂ H ₅	CN	Н	Н
	n-C ₃ H ₇	CN	H	Н
	n-C ₄ H ₉	CN	Н	Н
	n-C ₅ H ₁₁	CN	Н	Н
	n-C ₆ H ₁₃	CN	Н	Н
20				

25

30

Beispiel 5

$$C_3H_7$$
 O O CF_2O O O F

Schritt 5.1

5

Zu einer auf -70 °C abgekühlten Lösung von 65 mmol P in 100 ml
Dichlormethan wird ein Gemisch aus 98 mmol Q und 16,3 ml Triethylamin
(117 mmol) in 80 ml Dichlormethan unter Rühren zugetropft. Nach
beendeter Zugabe wird noch 1 h bei -70 °C gerührt. Anschließend wird mit
325 mmol Triethylamintrishydrofluorid bei derselben Temperatur
tropfenweise versetzt. Anschließend werden 325 mmol Brom bei -70 °C
tropfenweise zugegeben. Nach 1 h Rühren bei -70 °C lässt man auf -10 °C
erwärmen und gießt das Reaktionsgemisch in eine Mischung aus 500 ml
Eiswasser und 95 ml 32%ige Natronlauge. Die Phasen werden getrennt
und die wässrige Phase wird mit Dichlormethan extrahiert. Die vereinigten
organischen Phasen werden wie üblich aufgearbeitet.

Schritt 5.2

Eine Mischung aus 10 mmol S und 10 mmol 2,6-Difluor-4-(trans-5'propyltetrahydropyranyl-(2))-phenylboronsäure in 60 ml Toluol und 60 ml
Natriumborat-Pufferlösung (pH = 9) wird mit 0,5 mmol Pd(PPh₃)₄ unter
Rühren 16 h bei 80 °C erwärmt. Nach dem Erkalten wird das zweiphasige
Reaktionsgemisch unter Rühren auf 100 ml 0,1 N HCl gegossen, die
organische Phase abgetrennt und die wässrige Phase mit Toluol zweimal
extrahiert. Die vereinigten Toluolphasen werden nach dem Trocknen
eingedampft, und der Rückstand wird über Kieselgel (Heptan/Methyl-tert.butylether) filtriert. Zuletzt wird erst aus Ethanol und dann aus n-Heptan
umkristallisiert.

K 115 N 197,7 l; Δ ε = 35,4; Δ n = 0,1706

Analog werden die folgenden Verbindungen der Formel

$$R^{1} \longrightarrow O \longrightarrow F \longrightarrow CF_{2}O \longrightarrow O \longrightarrow X$$

hergestellt.

20

30	R ¹	X	L ¹	L ²	L ³	L ⁴	_
	Н	F	Н	Н	Н	Н	
	CH ₃	F	Н	Н	Н	Н	
	C ₂ H ₅	F	Н	Н	Н	Н	•
35	C ₃ H ₇	·F	Н	Н	Н	Н	
	n-C ₄ H ₉	F	Н	Н	Н	Н	
	n-C ₅ H ₁₁	F	Н	Η·	Н	Н	

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₆ H ₁₃	F	Н	Н	Н	Н
	Н	F	F	Н	Н	Н
	CH ₃	F	F	Н	Н	Н
5	C ₂ H ₅	F	F	Н	Н	Н
	n-C ₃ H ₇	F	F	Н	Н	Н
	n-C ₄ H ₉	F	F	Н	H	Н
	n-C ₅ H ₁₁	F	F	Н	Н	Н
	n-C ₆ H ₁₃	F	F	Н	Н	Н
10	Н	F	F	F	Н	Н
	CH ₃	F	F	F	Н	Н
	n-C ₄ H ₉	F	F	F	Н	Н
	n-C ₅ H ₁₁	F	F	F	Н	Н
	n-C ₆ H ₁₃	F	F	F	Н	Н
15	H	CI	Н	Н	Н	Н
	CH ₃	CI .	H	Н	Н	Н
	C ₂ H ₅	CI	Н	Н	Н	Н
	n-C ₃ H ₇	CI	H.	Н	Н	Н
	n-C ₄ H ₉	Cł	H	H	Н	H
20	n-C ₅ H ₁₁	CI	Н	Н	Н	Н
	n-C ₆ H ₁₃	CI	Н	Н	Н	Н
	Н	CI	F	Н	Н	Н
	CH ₃	Cl .	F	Н	Н	Н
	C ₂ H ₅	CI .	F	Н	Н	Н
25	n-C ₃ H ₇	CI	F	Н	Н	Н
	n-C ₄ H ₉	CI	F	Н	Н	·H
	n-C ₅ H ₁₁	CI	F	Н	Н	Н
	n-C ₆ H ₁₃	CI	F	Н	Н	Н
	Н	Cl	F	F	Н	H
30	CH ₃	CI	F	F	Н	H
	C ₂ H ₅	CI	F	F	Н	Н
	n-C ₃ H ₇	CI	F	F	Н	Ή
	n-C ₄ H ₉	. Cl	F	F	Н	Н
	n-C ₅ H ₁₁	CI	F	F	Н	Н
35	n-C ₆ H ₁₃	CI	F·	F	Н	Н
	Н	OCF ₃	Н	Н	Н	Н

	R ¹	×	L ¹	L ²	L ³	L ⁴
	CH ₃	OCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCF ₃	Н	Н	Н	Н
	n-C₃H ₇	OCF ₃	Н	H	Н	Н
5	n-C ₄ H ₉	OCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCF ₃	Н	Н	Н	Н
	Н	OCF ₃	F	Н	Н	Н
•	CH₃	OCF ₃	F	Н	Н	Н
10	C ₂ H ₅	OCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₃	F	H	Н	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н	Н	H
15	Н	OCF ₃	F	F	Н	H
	CH₃	OCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₃	F	F	Н	Н
	n-C ₃ H ₇	OCF ₃	F	F	Н	Н
	n-C ₄ H ₉	OCF ₃	F	F	Н	Н
20	n-C ₅ H ₁₁	OCF ₃	F	F	H	Н
	n-C ₆ H ₁₃	OCF ₃	F	F	Н	Н
•	Н	OCHF ₂	Н	Н	H	Н
	CH ₃	OCHF ₂	Н	Н	H	Н
	C ₂ H ₅	OCHF ₂	Н	Н	H	Н
25	n-C₃H ₇	OCHF ₂	Н	H	Н	Н
	n-C ₄ H ₉	OCHF ₂	H	Н	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	Н	Н
	Н .	OCHF ₂	F	Н	Н	H
30	CH₃	OCHF ₂	F	Н	Н	Н
	C ₂ H ₅	OCHF ₂	F	Н	Н	Н
	n-C ₃ H ₇	OCHF ₂	F	Н	Н	Н
	n-C₄H ₉	OCHF ₂	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	F	Н	Н	Н
35	n-C ₆ H ₁₃	OCHF ₂	F	Н	Н	Н
	Н	OCHF ₂	F	F	Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCHF ₂	F	F	Н	Н
	C ₂ H ₅	OCHF ₂	F	F	Н	Н
	n-C ₃ H ₇	OCHF ₂	F	F	Н	Н
5	n-C ₄ H ₉	OCHF ₂	F	F	Н	Н
	n-C ₅ H ₁₁	OCHF ₂	F	F	Н	Н
	n-C ₆ H ₁₃	OCHF ₂	F	F	Н	Н
	Н	OCHFCF ₃	Н	Н	Н	H
	CH ₃	OCHFCF ₃	Н	Н	Н	Н
10	C ₂ H ₅	OCHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
15	Н	OCHFCF ₃	F	Н	Н	Н
	CH₃	OCHFCF ₃	F	Н	Н	Н
	C_2H_5	OCHFCF ₃	F	Н	Н	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	F	Н	Н	Н
20	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
•	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
	Н	OCHFCF ₃	F	F	Н	H
	CH₃	OCHFCF3	F	F	Н	Н
	C_2H_5	OCHFCF ₃	F	F	Н	Н
25	n-C₃H ₇	OCHFCF ₃	F	F	Н	· H
	n-C₄H ₉	OCHFCF ₃	F	F	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
	. H	OCHFCF ₃	Н	Н	Н	Н
30	CH₃	OCHFCF ₃	Н	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	. Н	Н	Н	Н
•	n-C₃H ₇	OCHFCF ₃	Н	Н	Н	Н
	n-C₄H ₉	OCHFCF ₃	Н	Н	· H	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	Н	Н
35	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	Н	Н
	Н .	OCHFCF ₃	F	Н	. Н	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	CH ₃	OCHFCF ₃	F	Н	Н	Н
	C ₂ H ₅	OCHFCF ₃	F	Н	Н	Н
	n-C₃H ₇	OCHFCF ₃	F	Н	Н	Н
5	n-C ₄ H ₉	OCHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	Н	Н
	Н	OCHFCF ₃	F	F	Н	Н
	CH₃	OCHFCF ₃	F	F	Н	H
10	C_2H_5	OCHFCF ₃	F	F	Н	Н
	n-C₃H ₇	OCHFCF ₃	F	F	Н	Н
	n-C ₄ H ₉	OCHFCF ₃	F	F	Н	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	Н	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	Н	Н
15	Н	OCF ₂ CHFCF ₃	Н	Н	Н	H.
	CH ₃	OCF ₂ CHFCF ₃	Н	H	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н	Н	Н
20	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	H	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	Н	Н
	Н	OCF ₂ CHFCF ₃	F	Н	Н	Н
	CH₃	OCF ₂ CHFCF ₃	F	Н	Н	Н
	C_2H_5	OCF ₂ CHFCF ₃	F	Н	Н	Н
25	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F.	Н	Н	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	Н	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	Н	Н
•	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	Ή	H
	Н	OCF ₂ CHFCF ₃	F	F	Н	H
30	CH ₃	OCF ₂ CHFCF ₃	F	F	Н	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	F	Н	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	Н	Н
35	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	, F	F	Н	Н
	Н .	NCS	Н	Н	· H	Н

	R ¹	X		L ¹	L ²	L ³	L ⁴
	CH ₃	NCS		Н	Н	Н	Н
	C ₂ H ₅	NCS		Н	Н	Н	Н
	n-C ₃ H ₇	NCS		Н	Н	Н	Н
5	n-C ₄ H ₉	NCS		Н	Н	Н	Н
	n-C ₅ H ₁₁	NCS		Н	Н	Н	Н
	n-C ₆ H ₁₃	NCS		Н	Н	Н	Н
	Н	NCS		F	Н	Н	Н
	CH₃	NCS		F	Н	·H	Н
10	C ₂ H ₅ ·	NCS		F	Н	Н	Н
	n-C ₃ H ₇	NCS	•	F	Н	Н	H
	n-C₄H ₉	NCS		F	Н	Н	Н
	n-C ₅ H ₁₁	NCS	•	F	Н	Н	Н
15	$n-C_6H_{13}$	NCS ·		F	H	Н	Н
	Н	NCS		F	F	Н	Н
	CH ₃	NCS		F	F ~	Н	H
	C ₂ H ₅	NCS		F	F	Н	Н
	n-C ₃ H ₇	NCS		F	F	Н	Н
	n-C ₄ H ₉	NCS		F.	F	Н	Н
20	. n-C ₅ H ₁₁	NCS		F	F	Н	Н
	n-C ₆ H ₁₃	NCS		F	F	Н	H H
	Н	C ₂ F ₅	F.	Н	H	Н	Н
	CH₃	C ₂ F ₅		Н	Н	Н	Н
05	C ₂ H ₅	C ₂ F ₅		Н	Н	Н	Н
25	n-C ₃ H ₇	C_2F_5		Н	Н	H H	Н
	n-C ₄ H ₉	C ₂ F ₅		Н	Н	Н	H
	n-C ₅ H ₁₁	C ₂ F ₅		H	H H	Н	Н
	n-C ₆ H ₁₃	C ₂ F ₅	٠	F	Н	Н	H.
30	Н	C ₂ F ₅		F	H	Н	.H
30	CH₃	C ₂ F ₅		F	H	Н	Н
	C ₂ H ₅	C ₂ F ₅		F	Н	Н	н
	n-C ₃ H ₇	C ₂ F ₅		F	H	H	н
	n-C ₄ H ₉	C ₂ F ₅		F	Н	H	 Н
35	n-C ₅ H ₁₁	C ₂ F ₅		F	Н	 H	н
JJ	n-C ₆ H ₁₃	C ₂ F ₅		F	F	Н	 H
	Н	C ₂ F ₅		1"		• •	• • •

	R ¹	×	L ¹	L ²	L ³	L ⁴
	CH ₃	C ₂ F ₅	F	F	Н	Н
	C ₂ H ₅	C_2F_5	F	F	Н	Н
•	n-C₃H ₇	C ₂ F ₅	F	F	Н	Н
5	n-C₄H ₉	C ₂ F ₅	F	Ę	Н	Н
	n-C ₅ H ₁₁	C ₂ F ₅	F	F	Н	Н
	n-C ₆ H ₁₃	C_2F_5	F	F	Н	Н
	Н	C_3F_7	Н	Н	Н	Н
	CH₃	C_3F_7	Н	Н	Н	Н
10	C ₂ H ₅	C_3F_7	Н	Н	Н	Н
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	Н	Н
	n-C ₄ H ₉	C_3F_7	Н	Н	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	Η.	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	Н	Н
15	Н	C_3F_7	F	Н	Н	Н
	CH ₃	C ₃ F ₇	F	Н	Н	Н
	C ₂ H ₅	C ₃ F ₇	F	Н	Н	Н
	n-C ₃ H ₇	C_3F_7	F	Н	Н	Н
	n-C₄H ₉	C ₃ F ₇	F	Н	Н	Н
20	n-C ₅ H ₁₁	C_3F_7	F	Н	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	Н	Н
	Н	C ₃ F ₇	F	F	Н	Н
	CH₃	C ₃ F ₇	F	F	Н	Н
	C ₂ H ₅	C_3F_7	F	F	Н	Н
25	n-C ₃ H ₇	C ₃ F ₇	F	F	Н	Н
	n-C ₄ H ₉	C ₃ F ₇	F	F	Н	Н
	n-C ₅ H ₁₁	C ₃ F ₇	F	F	Н	Н
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	Н	Н
00	Н	SF ₅	Н	Н	Н	Н
30	CH₃	SF ₅	Н	Н	Н	Н
	C ₂ H ₅	SF ₅	Н	H.		Н
	n-C ₃ H ₇	SF ₅	Н	Н	Н	Н
	n-C₄H ₉	SF ₅	Н	Н	Н	Н
0.5	n-C ₅ H ₁₁	SF ₅	Н	Н	Н	H
35.	n-C ₆ H ₁₃	SF ₅	Н	Н	Н	Н
	Н	SF ₅	F	Н	H	Н

	R ¹	X		L ¹	L ²	L ³	L ⁴
•	CH₃	SF ₅		F	Н	Н	Н
	C ₂ H ₅	SF ₅		F	Н	Н	Н
	n-C ₃ H ₇	SF ₅		F	Н	Н	Н
5	n-C ₄ H ₉	SF ₅		F	Н	Н	Н
	n-C ₅ H ₁₁	SF ₅		F	Н	Н	Н
	n-C ₆ H ₁₃	SF ₅		F	Н	Н	Н
	Н	SF ₅		F	F	Н	Н
	CH₃	SF ₅		F	F	Н	Н
10	C ₂ H ₅	SF ₅		F	F	Н	H
	n-C ₃ H ₇	SF ₅		F	F	Н	Н
	n-C ₄ H ₉	SF ₅		F	F	Н	Н
	n-C ₅ H ₁₁	SF ₅		F	F	Н	Н
	n-C ₆ H ₁₃	SF ₅		F	F	Н	Н
15	Н	CN		Н	Н	Н	Н
	CH₃	CN		Н	Н	Н	Н
	C ₂ H ₅	CN		Н	Н	Н	Н
	n-C ₃ H ₇	CN		Н	Н	Н	Н
	n-C₄H ₉	CN		Н	Н	Н	Н
20	n-C ₅ H ₁₁	CN		Н	Н	Н	Н
	n-C ₆ H ₁₃	CN		Н	Н	Н	Н
	Н	CN		F	Н	Н	Н
	CH ₃	CN		F	Н	Н	Н
	C ₂ H ₅	CN		F	Н	Н	Н
25	n-C₃H ₇	CN		F	Н	H	Н
	n-C ₄ H ₉	·CN		F	Н	Н	Н
	n-C ₅ H ₁₁	CN		F	Н	Н	Н
	n-C ₆ H ₁₃	CN		F	Н	Н	Н
	Н	CN		F	F	Н	Н
30	CH ₃	CN	•	F	F	Н	Н
	C ₂ H ₅	CN		F	F	Н	Н
	n-C ₃ H ₇	CN		F	F	Н	Н
	n-C ₄ H ₉	CN	•	F	F	H	Н
	n-C ₅ H ₁₁	CN		F	F	Н	Н
35	n-C ₆ H ₁₃	CN		F	F	Н	Н
	Н	F		Н	Н	F	Н

	R ¹	X		L ¹	L ²	L ³	L ⁴	
	CH ₃	F		Н	Н	F	Н	
	C ₂ H ₅	F		Н	Н	F	Н	
	C ₃ H ₇	F		Н	Н	F	Н	
5	n-C ₄ H ₉	F		Н	Н	F	Н	
	n-C ₅ H ₁₁	F		Н	Н	F	Н	
	n-C ₆ H ₁₃	F		Н	Н	F	H	
	Н	F		F	Н	F	Н	
	CH₃	F		F	Н	F	Н	
10	C ₂ H ₅	F		F	Н	F	Н	
	n-C ₃ H ₇	F		F	Н	F	Н	
	n-C ₄ H ₉	F		F	Н	F	Н	
·	n-C ₅ H ₁₁	F		F	H	F	Н	
	n-C ₆ H ₁₃	F		F	Н	F	Н	
15	Н	F		F	F	F	Н	
	CH₃	F		F	F	F	Н	
	C ₂ H ₅	F		F	F	F	Н	
	n-C ₃ H ₇	F		F	F	F	Н	K 98 N 193,0 I,
								$\Delta \varepsilon = 37.9$; $\Delta n = 0.1649$
20	n-C₄H ₉	F		F	F	F	Н	
	n-C ₅ H ₁₁	F		F	F	F	Н	
	n-C ₆ H ₁₃	F		F	F	F	Н	
	Н	CI		Н	Н	F	Н	
	CH ₃	CI		Н	Н	F	Н	
25	C ₂ H ₅	CI	•	Н	H	F	Н	
	n-C ₃ H ₇	Cl		Н	Н	F	Н	•
•	n-C₄H ₉	CI		Н	Н	F	Н	
	n-C ₅ H ₁₁	CI		Н	Н	F	Н	
	n-C ₆ H ₁₃	CI		Н	Н	F	Н	
30	Н	CI		F	Н	F	Н	•
	CH₃	CI		F	Н	F	Н	
	C_2H_5	Cl		F	Н	F	Н	
	n-C₃H ₇	CI		F	Н	F	Н	
	n-C ₄ H ₉	CI		F	Н	F	Н	
35	n-C ₅ H ₁₁	CI	•	F	Н	. F	H	
	n-C ₆ H ₁₃	ÇI		F	Н	F	Н	•

	R ¹	x	L ¹	L ²	L ³	L ⁴
	Н	Cl	F	F	F	Н
	CH₃	CI	F	F	F	Н
	C ₂ H ₅	CI	F	F	F	Н
5	n-C ₃ H ₇	CI	F	F	F	Н
	n-C ₄ H ₉	CI	F	F	F	Н
	n-C ₅ H ₁₁	Cl	F	F	F	Н
	n-C ₆ H ₁₃	Cl	F	F	F	Н
	H.	OCF ₃	Н	Н	F	Н
10	CH ₃	OCF ₃	Н	Н	F	Н
	C_2H_5	OCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCF ₃	Н	Н	F	Н
	n-C ₄ H ₉	OCF ₃	Н	Н	F	H
	n-C ₅ H ₁₁	OCF ₃	Н	Н	F	Н
15	n-C ₆ H ₁₃	OCF ₃	. Н	Н	F	Н
	Н	OCF ₃	F	Н	F	Н
	CH ₃	OCF ₃	F	Н	F	H
	C ₂ H ₅	OCF ₃	F	Н	F	Н
	n-C₃H ₇	OCF₃	F	Н	F	Н
20	n-C ₄ H ₉	OCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCF ₃	F	Н	F	Н
	H	OCF ₃	F	F	F	Н
	CH₃	OCF ₃	F	F	F	Н
25	C ₂ H ₅	OCF ₃	F	F	F	Н
	n-C₃H ₇	OCF ₃	F	F	F.	Н
	n-C ₄ H ₉	OCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCF₃	F	F	F	H
	n-C ₆ H ₁₃	OCF ₃	· F	F	F	Н
30	Н	OCHF ₂	Н	Н	F	Н
	CH ₃	OCHF ₂	Н	H	F	Н
	C ₂ H ₅	OCHF ₂	Н	Н	F	Н
	n-C ₃ H ₇	OCHF ₂	Н	Н	F	Н
	n-C ₄ H ₉	OCHF ₂	Н	Н	·F	Н
35	n-C ₅ H ₁₁	OCHF ₂	H	H	F	H
	n-C ₆ H ₁₃	OCHF ₂	H	Н	F	Н

	R ¹	X	L ¹	L ²	L ³	L ⁴
	H	OCHF ₂	F	Н	F	Н
	CH ₃	OCHF ₂	F	Н	F	Н
	C ₂ H ₅	OCHF ₂	F	Н	F	Н
5	n-C ₃ H ₇	OCHF ₂	F	Н	F	Н
	n-C₄H ₉	OCHF ₂	F	Н	F	H
	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	Н
	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	Н
	Н	OCHF ₂	F	F	F	Н
10	CH₃	OCHF ₂	F	F	F	Н
	C ₂ H ₅	OCHF ₂	F	F	F	Н
	n-C ₃ H ₇	OCHF ₂	F	F	F	Н
	n-C₄H ₉	OCHF ₂	F	F	F	Н
	n-C ₅ H ₁₁	OCHF ₂	F.	F	F	Н
15	n-C ₆ H ₁₃	OCHF ₂	F	F	F	Н
	Н	OCHFCF ₃	Н	Н	F	Н
	CH₃	OCHFCF3	Н	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
	n-C₃H ₇	OCHFCF ₃	Н	Η.	F	Н
20	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	Н
	Н	OCHFCF ₃	F	Н	F	Н
	CH₃	OCHFCF ₃	F	Н	F	Н
25	C ₂ H ₅	OCHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	Н
	n-C ₄ H ₉	OCHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	H
30	Н	OCHFCF ₃	F	F		Н
	CH ₃	OCHFCF ₃	F	F	F	H.
	C ₂ H ₅	OCHFCF ₃	F	F	F	H
	$n-C_3H_7$	OCHFCF ₃	F	F	F	Н
c=	n-C ₄ H ₉	OCHFCF ₃	F	F	F	Н
35	n-C ₅ H ₁₁	OCHFCF ₃	F	F		H -
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н

•						
	R ¹	Χ	L ¹	L ²	L ³	L ⁴
	Н	OCHFCF ₃	Н	Н	F	Н
	CH₃	OCHFCF ₃	Н	. Н	F	Н
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	Н
5	n-C₃H ₇	OCHFCF ₃	Н	Н	F	Н
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	H
	Н .	OCHFCF ₃	F	Н	F	Η .
10	CH ₃	OCHFCF ₃	F	Н	F	Н
	C ₂ H ₅	OCHFCF ₃	F	H	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	Н
	n-C ₄ H ₉	OCHFCF ₃	F	Н	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	H
15	n-C ₆ H ₁₃	OCHFCF ₃	F	. H	F	Н
	Н	OCHFCF ₃	F	F	F	Н
	CH₃	OCHFCF ₃	F	F	F	Н
	C ₂ H ₅	OCHFCF ₃	F	F	F	Н
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	Н
20	n-C₄H ₉	OCHFCF ₃	F	F	F	Н
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	Н
	Н	OCF ₂ CHFCF ₃	Ħ	Н	F	Н
	CH₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
25	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	F	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н	F	Н
•	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	H	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	Н
30	Н	OCF ₂ CHFCF ₃	F	Н	F	Н
	CH₃	OCF ₂ CHFCF ₃	F	H	F	Н
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₃ H ₇	OCF ₂ CHFCF ₃		Н	F	Н
	n-C₄H ₉	OCF ₂ CHFCF ₃		Н	F	Н
35	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	·F	Н	F	·H

	R ¹	X	L ¹	L ²	L ³	L ⁴
	Н	OCF ₂ CHFCF ₃	F	F	F	Н
	CH₃	OCF ₂ CHFCF ₃	F	F	F	Н
•	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	Н
5	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F.	F	Н
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	Н
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	Н
	H	NCS	Н	Н	F	Н
10	CH₃	NCS	Н	Н	F	Ĥ
	C ₂ H ₅	NCS	Н	H.	F	Н
	n-C ₃ H ₇	NCS	Н	Н	F	Н
	n-C₄H ₉	NCS	Н	Н	F	Н
	n-C ₅ H ₁₁	NCS	Н	Н	F	Н
15	n-C ₆ H ₁₃	NCS	Н	·H	F	Н
	Н	NCS	F٠	Н	F	Н
	CH₃	NCS	F	Н	F	Н
	C ₂ H ₅	NCS	F	Н	F	Н
	n-C ₃ H ₇	NCS	F	Н	F	Н
20	n-C₄H ₉	NCS	F	Н	F	Н
	n-C ₅ H ₁₁	NCS	F	Н	F	Н
	$n-C_6H_{13}$	NCS	F	Н	F	Н
	Н	NCS	F	F	F	Н
	CH ₃	NCS .	F	F	F	Н
25	C₂H ₅	NCS	F	F	F	Н
	n-C ₃ H ₇	NCS	F	F	F	Н
	n-C ₄ H ₉	NCS	F	F	F	Н
•	n-C ₅ H ₁₁	NCS	F	F	F	H.
	n-C ₆ H ₁₃	NCS	F	F	F	Н
30	Н	C ₂ F ₅	. H	Н	F	Н
	CH ₃	C ₂ F ₅	Н	Н	F	H
	C ₂ H ₅	C ₂ F ₅	Н	Н	F	Η .
	n-C ₃ H ₇	C ₂ F ₅	Н	Н	F	Н
	n-C₄H ₉	C ₂ F ₅	Н	Н	F	. H
35	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н	F	Н
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	F	Н

	R ¹	X		L ¹	L ²	L ³	L ⁴
	H	C ₂ F ₅	•	F	Н	F	Н
	CH₃	. C ₂ F ₅		F	Н	F	Н
	C ₂ H ₅	C ₂ F ₅		F	Н	F	Н
5	n-C ₃ H ₇	C ₂ F ₅		F	Н	F	Н
	n-C₄H ₉	C_2F_5		F	Н	F	Н
	n-C ₅ H ₁₁	C ₂ F ₅		F	Н	F	Н
	n-C ₆ H ₁₃	C_2F_5		F	Н	F	Н
	Н	C_2F_5		F	F	F	Н
10	CH₃	C ₂ F ₅		F	F	F	Н
	C ₂ H ₅	C_2F_5		F	F	F	Н
	$n-C_3H_7$	C_2F_5		F	F	F	Н
	n-C₄H ₉	C_2F_5		F	F	F	Н
	n-C ₅ H ₁₁	C ₂ F ₅		F	F	F	Н
15	n-C ₆ H ₁₃	C_2F_5		F	F	F	Н
	Н	C ₃ F ₇		Н	Н	F	Н
	CH ₃	C_3F_7		Н	Н	F	Н
	C ₂ H ₅	C ₃ F ₇		Н	Н	F	Н
	n-C₃H ₇	C_3F_7		Н	Н	F	Н
20	n-C ₄ H ₉	C ₃ F ₇		Н	Н	F	Н
	n-C ₅ H ₁₁	C ₃ F ₇		Н	Н	F	Н
	n-C ₆ H ₁₃	C ₃ F ₇		Н	Н	F	Н
	Н	C ₃ F ₇		F	Н	F	Н
	CH ₃	C ₃ F ₇		F	. H .	F	Н
25	C ₂ H ₅	C ₃ F ₇		F	Н	F	Н
	n-C ₃ H ₇	C ₃ F ₇		F	H	F	Н
	n-C ₄ H ₉	C ₃ F ₇		F	Н	F	H
	n-C ₅ H ₁₁	C ₃ F ₇		F	Н	F	H
20	n-C ₆ H ₁₃	C ₃ F ₇		F	H	F	H
30	Н	C ₃ F ₇		F	F	F	Н
	CH ₃	C ₃ F ₇		F	F	F	Н
	C_2H_5	C₃F ₇		F	F	F	Н
	n-C₃H ₇	C ₃ F ₇		F	F	F	Н
25	n-C ₄ H ₉	C ₃ F ₇		F	F	F	Н
35	n-C ₅ H ₁₁	C ₃ F ₇		F	F	F	Н
	n-C ₆ H ₁₃	C_3H_7		F	F	F	Н

	R.1	X	L ¹	L ²	L ³	L ⁴
	Н	SF ₅	Н	Н	F	Н
	CH ₃	SF ₅	Н	Н	F	Н
	C₂H₅	SF ₅	Н	Н	F	Н
5	n-C ₃ H ₇	SF ₅	Н	Н	F	Н
	n-C ₄ H ₉	SF ₅	Н	Н	F	Н
	n-C ₅ H ₁₁	SF ₅	Н	Н	F	Н
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	Н
	H	SF ₅	F	Н	F	Н
10	CH ₃	SF ₅	F	Н	F	Н
	C ₂ H ₅	SF ₅	ŗ	Н	F	Н
	n-C ₃ H ₇	SF ₅	F	Н	F	Н
	n-C ₄ H ₉	SF ₅	F	Н	F	Н
	n-C ₅ H ₁₁	SF ₅	F	Н	F	Н
15	n-C ₆ H ₁₃	SF ₅	F	Н	F	Н
	Н	SF ₅	F	F	F	Η.
	CH₃	SF ₅	F	F	F	Н
	C ₂ H ₅	SF ₅	F	F	F	Н
00	n-C ₃ H ₇	SF ₅	F	F	F	Н
20	n-C ₄ H ₉	SF ₅	. F	F	F	Н
	n-C ₅ H ₁₁	SF ₅	F	F	F	Н
	n-C ₆ H ₁₃	SF ₅	F	F	F	Н
	Н	CN	. н	H	. F	Н
05	CH₃	CN	Н	Н	F	Н
25	C_2H_5	CN	Н	H	F	Н
	n-C ₃ H ₇	CN	Н	Н	F	Н
	n-C ₄ H ₉	CN	Н	Н	F	Н
	n-C ₅ H ₁₁	CN	Н	Н	F	Н
20	n-C ₆ H ₁₃	CN	H	Н	F	Н
30	Н	CN	F	Н	F	Н
	CH₃	CN	F	Н	F	Н
	C ₂ H ₅	CN	F	Н	F	Н
	n-C ₃ H ₇	CN	F	Н	F	Н
35	n-C₄H ₉	CN	F	Н	F.	H
33	n-C ₅ H ₁₁	CN	F	Н	F	Н
	n-C ₆ H ₁₃	CN	F	Н	F	Н

	R^1	×	L ¹	L ²	L³	L ⁴	
	Н	CN	F	F	F	Н	_
	CH ₃	CN	F	F	F	Н	
	C ₂ H ₅	CN	F	F	F	Н	
5	n-C ₃ H ₇	CN	F	F	F	H.	
	n-C ₄ H ₉	CN	F	F	F	Н	•
	n-C ₅ H ₁₁	CN	F	F	F	Н	
	n-C ₆ H ₁₃	CN	F	F	F	Н	
•	H	F	Н	Н	F	F	
10	СН₃	F	Н	Н	F	F	
	C ₂ H ₅	F	Н	Н	F	F	
	n-C ₄ H ₉	F	Н	Н	F	F	
	n-C ₅ H ₁₁	F	Н	Н	F	F	
	n-C ₆ H ₁₃	F	Н	Н	F	F	
15	Н	F	F	Н	F	F	
	CH₃	F	F	Н	F	F	
	C ₂ H ₅	F	F	Н	F	F	
	n-C₃H ₇	F	F	Н	F	F	
	n-C ₄ H ₉	F	F	Н	F	F	
20	n-C ₅ H ₁₁	F	F	Н	F	F	
	n-C ₆ H ₁₃	F	F	Н	F	F	
	Н	F	F	F	F	F	
,	CH₃	F	F	F	F	F	
	C ₂ H ₅	F	F	F	F	F	
25	C ₂ H ₅	F	F	F	F	F	
	n-C ₃ H ₇	Ę	F	F	F	F	K 144 N 181,4 I;
							$\Delta \varepsilon = 42,1$; $\Delta n = 0,1510$
	n-C ₄ H ₉	F	F	F	F	F	
	n-C ₅ H ₁₁	F	F	F	F	F	
30	n-C ₆ H ₁₃	F	F	F	F	·F	
	Н	CI	Н	Н	F	F	
	СН₃	CI	Н	Н	F	F	
	C ₂ H ₅	Cl	Н	Н	F	F	
•	n-C ₃ H ₇	CI	Н	Н	F	F	
35	n-C ₄ H ₉	CI	Н	Н	F	F	
	n-C ₅ H ₁₁	CI	н	Н	F	F	

	R ¹	x	L ¹	L ²	L ³	L ⁴	
	n-C ₆ H ₁₃	Cl	Н	Н	F	F	
	Н	CI	F	Н	F	F	
	CH₃	CI	F	Н	F	F	
5	C ₂ H ₅	CI	F	Н	F	F	
	n-C ₃ H ₇	CI	F	Н	F	F	•
	n-C ₄ H ₉	CI	F	Н	F	F	
	n-C ₅ H ₁₁	CI	F	Н	F	F	
	n-C ₆ H ₁₃	CI	F	Н	F	F	
10	Н	CI	F	F	F	F	
	CH ₃	Cl	F	F	F	F	
	C ₂ H ₅	Cl	F	F	F	F	
•	n-C₃H ₇	CI	F	F	F	F	
	n-C ₄ H ₉	Cl	F	F	F	F	
15	n-C ₅ H ₁₁	Cl	F	F	F	F	
	n-C ₆ H ₁₃	CI	F	F	F	F	
	Н	OCF ₃	Н	Н	F	F	
	CH ₃	OCF ₃	Н	Н	F	F	
	C ₂ H ₅	OCF ₃	Н	H	F	F	•
20	n-C ₃ H ₇	OCF ₃	Н	Н	F	F	
	n-C₄H ₉	OCF ₃	Н	Н	F	F	
	n-C ₅ H ₁₁	OCF ₃	Н	Н	F	F	•
	n-C ₆ H ₁₃	OCF ₃	Н	Н	F	F	
	Н	OCF ₃	F	Н	F	F	
25	CH₃	OCF ₃	F	H	·F	·F	
	C ₂ H ₅	OCF ₃	F	Н	F	F	
	n-C ₃ H ₇	OCF₃	F	Н	F	F	K 121 N 205,2 I;
							$\Delta \varepsilon = 37,7$; $\Delta n = 0,1634$
	n-C₄H ₉	OCF ₃	F	Н	F	F	
30	n-C ₅ H ₁₁	OCF ₃	F	Н	F	F	
	n-C ₆ H ₁₃	OCF ₃	F	Н	F	F	
	Н	OCF ₃	F	F	F	F	
	CH ₃	OCF ₃	F	F	F	F	
0.5	C ₂ H ₅	OCF ₃	F	F	F	F	
35	n-C₃H ₇	OCF ₃	F	F	F	F	K 128 N 201,2 I; $\Delta \varepsilon = 43.8$; $\Delta n = 0.1411$

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C ₄ H ₉	OCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCF ₃	F	F	F	F
5	н	OCHF ₂	Н	Н	F	F
	CH₃	OCHF ₂	Н	Н	F·	F
•	C ₂ H ₅	OCHF ₂	Н	Н	F	F
	n-C ₃ H ₇	OCHF ₂	Н	Н	F	F
	n-C ₄ H ₉	OCHF ₂	Н	Н	F	F
10	n-C ₅ H ₁₁ ·	OCHF ₂	Н	Н	F	F
	n-C ₆ H ₁₃	OCHF ₂	Н	Н	F	F
	H	OCHF ₂	F	Н	F	F
	CH₃	OCHF ₂	F	Н	F	F
	C ₂ H ₅	OCHF ₂	F	Н	F	F
15	n-C ₃ H ₇	OCHF ₂	F	Н	F	F
	n-C ₄ H ₉	OCHF ₂	F	Н	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	Н	F	F
	n-C ₆ H ₁₃	OCHF ₂	F	Н	F	F
	Н .	OCHF ₂	F	F	F	F
20	CH ₃	OCHF ₂	F	·F	F	F
	C ₂ H ₅	OCHF ₂	F	F	F	F
	n-C₃H ₇	OCHF ₂	F	F	F	F
	n-C ₄ H ₉	OCHF ₂	F	F	F	F
	n-C ₅ H ₁₁	OCHF ₂	F	F	F	F
25	n-C ₆ H ₁₃	OCHF ₂	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
	CH₃	OCHFCF ₃	Н	Н	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
30	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н	OCHFCF ₃	F	Н	F	F
	CH₃	OCHFCF3	F	Н	F	F
35	C ₂ H ₅	OCHFCF ₃	F	Н	F	F.
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F

	R ¹	x	L ¹	L ²	L ³	L ⁴
•	n-C ₄ H ₉	OCHFCF₃	F	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	Н	F	F
5	Н	OCHFCF₃	F	F·	F	F
	СН₃	OCHFCF ₃	F	F	F	F
	C ₂ H ₅	OCHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	F	F	F
	n-C ₄ H ₉	OCHFCF ₃	F	F	F	F
10	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	Н	OCHFCF ₃	Н	Н	F	F
	CH₃	OCHFCF ₃	Н	Н	F	F
	C ₂ H ₅	OCHFCF ₃	Н	Н	F	F
15	n-C ₃ H ₇	OCHFCF ₃	Н	Н	F	F
	n-C ₄ H ₉	OCHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	Н	Н	F	F
•	n-C ₆ H ₁₃	OCHFCF ₃	Н	Н	F	F
	Н	OCHFCF ₃	F	Н	F	F
20	CH₃	OCHFCF ₃	F	H	F	F
	C ₂ H ₅	OCHFCF ₃	F	Н	F	F
	n-C ₃ H ₇	OCHFCF ₃	F	Н	F	F
	n-C ₄ H ₉	OCHFCF ₃	F	Н	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	Н	F	F
25	n-C ₆ H ₁₃	OCHFCF ₃	F	. H	F	F
	н	OCHFCF ₃	F	F	F	F
	CH₃	OCHFCF ₃	F	F	F	F
	C ₂ H ₅	OCHFCF ₃	F	F	F	F
	n-C ₃ H ₇	OCHFCF₃	F	F	F	F
30	n-C ₄ H ₉	OCHFCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCHFCF ₃	F	F	F	F
	H ´	OCF ₂ CHFCF ₃	Н	Н	F	F
	CH₃	OCF ₂ CHFCF ₃	Н	Н	F	F
35	C ₂ H ₅	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₃ H ₇	OCF ₂ CHFCF ₃	Н	Н	F	F

	R ¹	Χ .	L ¹	L ²	L ³	L ⁴
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	Н	Н	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	Н	Н	F	F
5	Н	OCF ₂ CHFCF ₃	F	Н	F	F
	CH₃	OCF ₂ CHFCF ₃	F	Н	F	F
	C ₂ H ₅	OCF ₂ CHFCF ₃	F	Н	F	F
	n-C₃H ₇	OCF ₂ CHFCF ₃	F	Н	F	F
	n-C₄H ₉	OCF ₂ CHFCF ₃	F	H	F	F
10	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	Н	F	F
•	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	Н	F	F
	Н	OCF ₂ CHFCF ₃	F	F	F	F
	CH₃	OCF ₂ CHFCF ₃	F	F	F	F
•	C ₂ H ₅	OCF ₂ CHFCF ₃	F	F	F	F
15	n-C ₃ H ₇	OCF ₂ CHFCF ₃	F	·F	F	F
	n-C ₄ H ₉	OCF ₂ CHFCF ₃	F	F	F	F
	n-C ₅ H ₁₁	OCF ₂ CHFCF ₃	F	F	F	F
	n-C ₆ H ₁₃	OCF ₂ CHFCF ₃	F	F	F	F
	Н	NCS	Н	Н	F	F
20	CH ₃	NCS	Н	Н	F	F
	C ₂ H ₅	NCS	Н	Н	F	F
. •	n-C₃H ₇	NCS	Н	Н	F	F
	n-C ₄ H ₉	NCS	Н	Н	. F	F
	n-C ₅ H ₁₁	NCS	Н	Н	F	F
25	n-C ₆ H ₁₃	NCS	Н	Н	·F	F
	Н	NCS	F	Н	F	F
•	CH₃	NCS	F	Н	F	F
	C ₂ H ₅	NCS	F	Н	F	F
	n-C ₃ H ₇	NCS	F	Н	F	F
30	n-C ₄ H ₉	NCS	F	Н	F	F
	n-C ₅ H ₁₁	NCS	F	Н	F	F
	n-C ₆ H ₁₃	NCS	F	Н	F	F
	Н	NCS	F	F	F	F
	CH ₃	NCS	F	F	F	F
35	C ₂ H ₅	NCS	F	F	F	F
	n-C ₃ H ₇	NCS	F	F	F	F

	R ¹	X	L ¹	L ²	L ³	L ⁴
·	n-C ₄ H ₉	NCS	F	F	F	F
	n-C ₅ H ₁₁	NCS	F	F	F	F
	n-C ₆ H ₁₃	NCS	F	F	F	F
5	Н	C ₂ F ₅	Н	Н	F	F
	CH ₃	C ₂ F ₅	Н	Н	F	F
	C ₂ H ₅	C ₂ F ₅	Н	Н	F	F
	n-C ₃ H ₇	C ₂ F ₅	Н	Н	F	F
	n-C ₄ H ₉	C ₂ F ₅	Н	Н	F	F
10	n-C ₅ H ₁₁	C ₂ F ₅	Н	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	Н	Н	F	F
	Н	C ₂ F ₅	F	Н	F	F
	CH₃	C ₂ F ₅	F	Н	F	F
	C ₂ H ₅	C ₂ F ₅	F	Н	F	F
15	n-C ₃ H ₇	C ₂ F ₅	F	Н	F	F
	n-C ₄ H ₉	C ₂ F ₅	F	Н	F	F
	n-C ₅ H ₁₁	C ₂ F ₅	F	Н	F	F
	n-C ₆ H ₁₃	C ₂ F ₅	F	Н	F	F
	Н	C ₂ F ₅	F	F	F	F
20	CH ₃	C ₂ F ₅	F	F	F	F
	C ₂ H ₅	C ₂ F ₅	F	F	F	F
	n-C ₃ H ₇	C ₂ F ₅	F	F	F	F
	n-C ₄ H ₉	C ₂ F ₅	F	F	F	F
	n-C ₅ H ₁₁	C ₂ F ₅	F	F	F	F
25	n-C ₆ H ₁₃	C ₂ F ₅	F	F	F	F
	Н	C ₃ F ₇	Н	Н	F	F
	CH₃	C ₃ F ₇	Н	Н	F	F '
	C ₂ H ₅	C ₃ F ₇	Н	Н	F	F
	n-C ₃ H ₇	C ₃ F ₇	Н	Н	F	F
30	n-C ₄ H ₉	C ₃ F ₇	Н	Н	F	F
	n-C ₅ H ₁₁	C ₃ F ₇	Н	Н	F	F
	n-C ₆ H ₁₃	C ₃ F ₇	Н	Н	F	F
	Н	C ₃ F ₇	F	Н	F	F
	CH₃	C ₃ F ₇	F	Н	F	F
35	C ₂ H ₅	C ₃ F ₇	F	Н	F	F
	n-C ₃ H ₇	C ₃ F ₇	F	Н	F	F

	R ¹	X	L ¹	L ²	L ³	L ⁴
	n-C₄H ₉	C ₃ F ₇	F	H ·	F	F
	n-C ₅ H ₁₁	C ₃ F ₇	F	Н	F·	F
	n-C ₆ H ₁₃	C ₃ F ₇	F	Н	F	F
5	H	C ₃ F ₇	F	F	F	F
	CH ₃	C ₃ F ₇	F	F	F	F
	C ₂ H ₅	C ₃ F ₇	F	F	F	F
	n-C ₃ H ₇	C ₃ F ₇	F	F	F	F
	n-C₄H ₉	C ₃ F ₇	F	F	F	F
10	n-C ₅ H ₁₁	C ₃ F ₇	F	F	F	F
	n-C ₆ H ₁₃	C ₃ F ₇	F	F	F	F
	Н	SF ₅	Н	Н	F	F
	CH₃	SF ₅	Н	Н	F	F
	C ₂ H ₅	SF ₅	Н	Н	F	F
15	n-C ₃ H ₇	SF ₅	Н	Н	F	F
	n-C ₄ H ₉	SF ₅	Н	Н	F	F
	n-C ₅ H ₁₁	SF ₅	Н	Н	F	F
	n-C ₆ H ₁₃	SF ₅	Н	Н	F	F
	Н	SF ₅	F	Н	F	F
20	CH ₃	SF ₅	F	Н	F	F
	C ₂ H ₅	SF ₅	F	Н	F	F
	n-C ₃ H ₇	SF ₅	F	Н	F	F
	n-C ₄ H ₉	SF ₅	F	Н	F	F
	n-C ₅ H ₁₁	SF ₅	F	Н	F	F
25	n-C ₆ H ₁₃	SF ₅	F	Н	F	F
	Н	SF ₅	F	F	F	F
	CH₃	SF ₅	F	F	F	F
	C ₂ H ₅	SF ₅	F	F	F	F
	$n-C_3H_7$	SF ₅	F	F	F	F
30	n-C ₄ H ₉	SF ₅	F	F	F	F
	n-C ₅ H ₁₁	SF ₅	F	F	F	F
	n-C ₆ H ₁₃	SF ₅	F	F	F	F
	Н	CN	Н	Н	·F	F
	CH₃	CN	Н	Н	F	F
35	C ₂ H ₅	CN	Н	Н	F	F
	n-C ₃ H ₇	CN	Н	Ή	F	F

	R ¹	×	L ¹	L ²	L ³	L ⁴
	n-C ₄ H ₉	CN	Н	Н	F	F
	n-C ₅ H ₁₁	CN	Н	Н	F	F
	n-C ₆ H ₁₃	CN	Н	Н	F	F
5	Н	CN	F	Н	F	F
	CH ₃	CN	F	Н	F	F
	C ₂ H ₅	CN	F	Н	F	F
	n-C ₃ H ₇	CN	F	Н	F	F
	n-C ₄ H ₉	CN	F	Н	F	F
10	n-C ₅ H ₁₁	CN	F	Н	F	F
	n-C ₆ H ₁₃	CN	F	Н	F	F
	Н	CN	F	F	F	F
	CH₃	CN	F	F	F	F
	C ₂ H ₅	CN	F	F	F	F
15	n-C ₃ H ₇	CN	F	F	F	F
	n-C ₄ H ₉	CN	F	F	F	F
•	n-C ₅ H ₁₁	CN	F	F	F	F
•	n-C ₆ H ₁₃	CN	F	F	F	F
	Н	CF ₃	Н	Н	F	F
20	C ₂ H ₅	CF ₃	Н	Н	F	F
	n-C ₃ H ₇	CF₃	Н	Н	F	F
	n-C₄H ₉	CF ₃	Н	Н	F	F
	n-C ₅ H ₁₁	CF₃	Н	Н	F	F
	n-C ₆ H ₁₃	CF ₃	Н	Н	F	F
25	CH ₂ =CH	CF ₃	Н	Н	F	F
•	Н	CF ₃	·F	F	F	F
	C ₂ H ₅	CF₃	F	F	F	F
	n-C ₃ H ₇	CF ₃	F	F	F	F
	n-C ₄ H ₉	CF ₃	F	F	F	F
30	n-C ₅ H ₁₁	CF ₃	F	F	F	F
	n-C ₆ H ₁₃	CF ₃	F	F	F	F
	CH ₂ =CH	.CF ₃	F	F	F	F
	Н	F	.H	Н	F	F
	C ₂ H ₅	F	Н	Н	F	, F
35	n-C ₃ H ₇	F	Н	Н	F	F
	n-C ₄ H ₉	F	Н	Н	F	F

R ¹	X	L ¹	L ²	L ³	L ⁴
n-C ₅ H ₁₁	F	Н	Н	F	F
n-C ₆ H ₁₃	F	Н	Н	F	F
CH ₂ =CH	F	Н	Н	F	F

5

Beispiel 6

Enantiomerentrennung von

10

15

8,7 g <u>T</u> werden zur Enantiomerentrennung über eine präparative Enantio-HPLC-Säule gegeben. Nach Erhalt der beiden Fraktionen wird jeweils aus Ethanol umkristallisiert und der Drehwert bestimmt.

20

25

Analog werden die folgenden Racemate in die Enantiomere getrennt:

 C_3H_7 O O CF_2O O F

Enantio-HPLC: 99,97 % - Drehwert: +32,0° Enantio-HPLC: 99,40 % - Drehwert: -32,1°

 C_5H_{11} C_5H_{11} C_5O C_5 C_5

Enantio-HPLC: 100,0 % - Drehwert: +4,5° Enantio-HPLC: 99,9 % - Drehwert: -4,9 °

 $C_2H_5 \longrightarrow O \longrightarrow F \longrightarrow CF_2O \longrightarrow F$

Enantio-HPLC: 99,98 % - Drehwert: +28,5° Enantio-HPLC: 100,00 % - Drehwert: -31,4°

<u>Mischungsbeispiele</u>

Beispiel M1

ACQU-3-F

5	CCH-5CF ₃	3,00 %	Klärpunkt [°C]:	+80,0
	CCP-1F.F.F	3,00 %	Δn [589 nm, 20 °C]:	+0,0660
	CCP-2F.F.F	8,00 %	Δε [kHz, 20 °C]:	+10,4
	CCP-3F.F.F	8,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-5F.F.F	5,00 %	Verdrillung [°]:	90
10	CCP-20CF ₃ .F	8,00 %	V ₁₀ [V]:	1,31
	CCP-50CF ₃ .F	8,00 %		•
	CCOC-3-3	2,00 %		
	CCOC-4-3	2,00 %		
	CCQU-2-F	10,00 %		
15	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	ACQU-3-F	15,00 %	•	
	CCH-301	3,00 %		
	CCH-501	5,00 %		
20	·			
	Beispiel M2			
	CCH-501	7,00 %	Klärpunkt [°C]:	+88,5
	CCH-5CF ₃	7,00 %	∆n [589 nm, 20 °C]:	+0,0657
25	CCP-2F.F.F	4,00 %	Δε [kHz, 20 °C]:	+9,9
	CCP-3F.F.F	7,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-5F.F.F	5,00 %	Verdrillung [°]:	90
	CCP-30CF ₃ .F	8,00 %	V ₁₀ [V]:	1,45
	CCP-50CF ₃ .F	8,00 %		
30	CCOC-3-3	3,00 %		
	CCOC-3-5	2,00 %		
	CCOC-4-3	4,00 %		
	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
35	CCQU-5-F	8,00 %		

15,00 %

- 135 -

	Beispiel M3			
	CCH-301	7,00 %	Klärpunkt [°C]:	+81,0
	CCH-501	10,00 %	∆n [589 nm, 20 °C]:	+0,0608
5	CCH-5CF ₃	2,00 %	Δε [kHz, 20 °C]:	+8,4
	CCP-2F.F.F	9,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-3F.F.F	4,00 %	Verdrillung [°]:	90
	CCP-5F.F.F	4,00 %	V ₁₀ [V]:	1,49
	CCP-30CF ₃ .F	2,00 %		
10	CCP-50CF ₃ .F	4,00 %		
	CCOC-3-3	3,00 %		
	CCOC-3-5	2,00 %		
	CCOC-4-3	4,00 %		
	ACQU-3-F	15,00 %		
15	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	CCH-35	4,00 %		
20	Beispiel M4			
	CCP-1F.F.F	4,00 %	Klärpunkt [°C]:	+79,0
	CCP-2F.F.F	10,00 %	∆n [589 nm, 20 °C]:	+0,0808
	CCP-3F.F.F	9,00 %	∆ε [kHz, 20 °C]:	+15,5
25	CCP-5F.F.F	5,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-30CF ₃ .F	5,00 %	Verdrillung [°]:	90
	CCP-50CF ₃ .F	7,00 %	γ₁ [20 °C, mPa⋅s]:	150
	PUQU-2-F	5,00 %	V ₁₀ [V]:	0,98
	PUQU-3-F	5,00 %		
30	CCQU-2-F	11,00 %		
	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	CCGU-3-F	4,00 %		
	ACQU-3-F	15,00 %		•
35			•	

CCP-50CF₃

PUQU-2-F PUQU-3-F

APUQU-2-F

CGUQU-3-F

CBC-33 ·

35

- 136 -

	Beispiel M5			
	BCH-3F.F	10,80 %	Klärpunkt [°C]:	+89,0
	BCH-5F.F	9,00 %	∆n [589 nm, 20 °C]:	+0,0930
5	ECCP-30CF ₃	4,50 %	Δε [kHz, 20 °C]:	+6,2
	ECCP-50CF ₃	4,50 %		
	CBC-33F	1,80 %		
	CBC-53F	1,80 %		
	CBC-55F	1,80 %		
10	PCH-6F	7,20 %		
	PCH-7F	5,40 %		
	CCP-20CF ₃	7,20 %		
	CCP-30CF ₃	10,80 %		
	CCP-40CF ₃	6,30 %		
15	CCP-50CF ₃	9,90 %		
	PCH-5F	9,00 %		
	ACQU-3-F	10,00 %		
	Beispiel M6			
20				
	CCH-35	3,00 %	Klärpunkt [°C]:	+81,0
	· CC-3-V1	4,00 %	∆n [589 nm, 20 °C]:	+0,0912
	CCP-1F.F.F	10,00 %	d · ∆n [20 °C, µm]:	0,50
	CCP-2F.F.F	9,00 %	Verdrillung [°]:	90
25	CCP-3F.F.F	9,00 %	γ₁ [20 °C, mPa⋅s]:	129
	CCP-20CF ₃ .F	6,00 %	V ₁₀ [V]:	1,30
	CCG-V-F	9,00 %		
	CCP-20CF ₃	8,00 %		
•	CCP-30CF ₃	8,00 %		
30	CCP-40CF ₃	6,00 %		
	_			

7,00 %

5,00 %

7,00 % 4,50 %

3,50 %

1,00 %

- 137 -

	Beispiel M7			٠.
	CCP-2F.F.F	11,00 %	Klärpunkt [°C]:	+80,0
	CCP-20CF ₃	7,00 %	Δn [589 nm, 20 °C]:	+0,1034
5	CCP-30CF ₃	8,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-40CF ₃	5,00 %	Verdrillung [°]:	90
	PGU-2-F	8,00 %	V ₁₀ [V]:	1,22
	PGU-3-F	7,00 %		
	CC-3-V1	10,00 %		
10	CCH-35	3,00 %		
	CCP-V-1	5,00 %		
	CCP-20CF ₃ .F	8,00 %		
	CCP-30CF ₃ .F	11,00 %		
	PUQU-2-F	4,00 %		
15	PUQU-3-F	6,00 %		
	ACQU-3-F	7,00 %		
	Beispiel M8			
20	CCP-1F.F.F	6,00 %	$S \rightarrow N [^{\circ}C]$:	-40,0
	CCP-2F.F.F	10,00 %	Klärpunkt [°C]:	+80,0
	CCP-20CF ₃	8,00 %	Δn [589 nm, 20 °C]:	+0,1029
	CCP-30CF ₃	8,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-40CF ₃	6,00 %	Verdrillung [°]:	90
25	CCP-50CF ₃	8,00 %	V ₁₀ [V]:	1,24
	PGU-2-F	8,00 %		
	PGU-3-F	7,00 %	•	
	CC-3-V1	8,00 %	•	
	CCH-35	5,00 %		
30	CCP-V-1	5,00 %	•	
	CCP-30CF ₃ .F	3,00 %	•	
	PUQU-2-F	4,00 %		
	PUQU-3-F	6,00 %		•
	ACQU-3-F	8,00 %		
35				

- 138 -

	Beispiel M9			
	CC-3-V1	5,00 %	S → N [°C]:	-30,0
	CCP-1F.F.F	5,00 %	Klärpunkt [°C]:	+85,5
5	CCP-2F.F.F	8,00 %	Δn [589 nm, 20 °C]:	+0,0931
	CCP-20CF ₃ .F	8,00 %	Δε [kHz, 20 °C]:	12,1
	CCP-20CF ₃	5,00 %	γ₁ [20 °C, mPa⋅s]:	135
	CCP-30CF ₃	8,00 %	d - Δn [20 °C, μm]:	0,50
	CCP-40CF ₃	6,00 %	Verdrillung [°]:	90
10	CCP-50CF ₃	8,00 %	V ₁₀ [V]:	1,23
	PUQU-2-F	5,00 %	· -	
	PUQU-3-F	7,00 %		
	PGU-2-F	5,00 %		,
	CCP-V-1	10,00 %		
15	ACQU-3-F	12,00 %		
	ACQU-4-F	8,00 %		
	Beispiel M10	•		
20	CC-3-V1	6,00 %	$S \rightarrow N$ [°C]:	-40,0
•	CCP-1F.F.F	6,00 %	Klärpunkt [°C]:	+83,5
	CCP-2F.F.F	7,00 %	∆n [589 nm, 20 °C]:	+0,0917
	CCP-20CF ₃ .F	10,00 %	Δε [kHz, 20 °C]:	11,7
	CCP-20CF ₃	8,00 %	γ₁ [20 °C, mPa⋅s]:	125
- 25	CCP-30CF ₃	8,00 %	d · Δn [20 °C, μm]:	0,50
	CCP-40CF ₃	6,00 %	Verdrillung [°]:	90
	CCP-50CF ₃	4,00 %	V ₁₀ [V]:	1,25
	PUQU-2-F	5,00 %		
	PUQU-3-F	8,00 %	•	
30	PGU-2-F	4,00 %		
	CCP-V-1	10,00 %		
	ACQU-3-F	10,00 %		
	ACQU-4-F	8,00 %		
		•		•

Beispiel M11 (IPS)

	CDU-2-F	5,00 %	Klärpunkt [°C]:	+81
	PGU-2-F	2,50 %	∆n [589 nm, 20 °C]:	+0,0850
5	CCZU-2-F	4,00 %	Δε [kHz, 20 °C]:	10,1
	CCZU-3-F	11,00 %	γ₁ [20 °C, mPa⋅s]:	98
	CCP-V-1	15,00 %		
	CCQU-3-F	10,00 %		
	PŲQU-2-F	4,00 %		
10	PUQU-3-F	5,00 %		
	CC-3-V1	11,00 %		
	PCH-302	3,50 %		
	CC-5-V	11,00 %		
	ACQU-3-F	9,00 %		
15	ACQU-4-F	9,00 %		
	Beispiel M12 (IPS)			
	PGU-2-F	9,00 %	Klärpunkt [°C]:	81,0
20	PGU-3-F	2,00 %	∆n [589 nm, 20 °C]:	0,1090
	CGZP-2-OT	8,00 %	Δε [kHz, 20 °C]:	11,0
	CGZP-3-OT	10,00 %	γ ₁ [20 °C, mPa·s]:	100
	CCP-20CF ₃	6,00 %		
	CCP-30CF ₃	6,50 %		
25	PUQU-2-F	4,00 %		
	PUQU-3-F	3,50 %		
	CCP-V-1	9,00 %		•
	CC-3-V1	11,00 %		
	PCH-302	15,00 %	•	
30	ACQU-3-F	8,00 %		
	ACQU-4-F	8,00 %		

- 140 -

	Beispiel M13			·
	CC-4-V	17,00 %	Klärpunkt [°C]:	74,5
•	CC-3-V1	3,00 %	∆n [589 nm, 20 °C]:	+0,0890
5	CCQU-2-F	12,00 %	Δε [kHz, 20 °C]:	12,7
	CCQU-3-F	12,00 %	γ₁ [20 °C, mPa⋅s]:	119
	CCQU-5-F	10,00 %	V ₁₀ [V]:	1,09
•	CCP-20CF ₃	5,00 %		
	PGU-2-F	3,00 %		
10	PGU-3-F	6,00 %		
	AUUQGU-3-F	8,00 %		
•	CCP-1F.F.F	8,00 %		
	CCP-3F.F.F	9,00 %		
	BCH-3F.F.F	7,00 %		
15	·			
	Beispiel M14			
	CC-3-V1	6,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-1F.F.F	9,00 %	Klärpunkt [°C]:	83,5
20	CCP-2F.F.F	9,00 %	∆n [589 nm, 20 °C]:	0,0941
	CCP-3F.F.F	10,00 %	Δε [kHz, 20 °C]:	11,4
	CCQU-3-F	11,00 %	γ₁ [20 °C, mPa·s]:	137
	CCQU-5-F	9,00 %	V ₁₀ [V]:	1,23
	CCP-20CF ₃	6,00 %		
25	CCP-30CF ₃	8,00 %		;
	CCP-50CF ₃	2,00 %		
	CGU-2-F	4,00 %		
	PGU-2-F	6,00 %	•	
	PGU-3-F	6,00 %		
30	CCP-V-1	7,00 %		
	ACQU-3-F	7,00 %		

- 141 -

Beispiel M15

	CC-3-V1	5,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CCP-1F.F.F	7,00 %	Klärpunkt [°C]:	84,0
5	CCP-2F.F.F	10,00 %	Δn [589 nm, 20 °C]:	0,0919
	ACQU-1-F	8,00 %	Δε [kHz, 20 °C]:	11,9
	ACQU-3-F	8,00 %	γ₁ [20 °C, mPa⋅s]:	135
	CCG-V-F	11,00 %	V ₁₀ [V]:	1,19
	BÇH-3F.F	2,50 %		
10	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		
	CCP-40CF ₃	5,00 %		
	CCP-V-1	8,00 %	•	
	PUQU-2-F	5,50 %		
15	PUQU-3-F	8,00 %		
	CCGU-3-F	6,00 %		
	Beispiel M16			
20	CC-3-V1	5,00 %		
	CCP-1F.F.F	7,00 %	÷	
	CCP-2F.F.F	6,00 %		
	CCQU-3-F	10,00 %		
	CCG-V-F	6,00 %		
25	CCP-20CF ₃	8,00 %		
	CCP-30CF ₃	8,00 %		•
	CCP-40CF ₃	6,00 %		
	CCP-50CF ₃	8,00 %		
	ACQU-2-F	6,00 %		
30	ACQU-3-F	6,00 %		
	PUQU-2-F	5,00 %		
	PUQU-3-F	7,00 %		
	PGU-3-F	6,00 %		•
	CCP-V-1	6,00 %		
35				

	Beispiel M17			
	CCP-20CF ₃	8,00 %	S → N [°C]:	< -30,0
	CCP-30CF ₃	8,00 %	Klärpunkt [°C]:	75,0
5	CCP-40CF ₃	5,00 %	Δn [589 nm, 20 °C]:	0,0858
	PGU-2-F	5,00 %	Δε [kHz, 20 °C]:	13,3
	PGU-3-F	5,00 %	γ ₁ [20 °C, mPa⋅s]:	152
	CCP-1F.F.F	10,00 %	V ₁₀ [V]:	1,07
	CCP-2F.F.F	11,00 %	- 10 [-] -	.,
10	CCP-3F.F.F	12,00 %		
	CCZU-2-F	3.00 %		
	CCZU-3-F	13,00 %		
	ACQU-2-F	8,00 %		
	ACQU-3-F	8,00 %		
15	ACQU-5-F	4,00 %		
	Beispiel M18			
	CC-4-V	11,00 %	S → N [°C]:	< -40,0
20	CDU-2-F	7,00 %	Klärpunkt [°C]:	76,5
	CDU-3-F	8,00 %	∆n [589 nm, 20 °C]:	0,0870
	CDU-5-F	9,00 %	Δε [kHz, 20 °C]:	13,6
	CCP-1F.F.F	8,50 %	γ₁ [20 °C, mPa⋅s]:	146
	CCP-20CF ₃	8,00 %	V ₁₀ [V]:	1,09
25	CCP-30CF ₃	6,50 %		
	PGU-2-F	3,00 %		•
	PGU-3-F	6,00 %		
	CCGU-3-F	6,00 %		
	CBC-33	3,00 %	•	
30	ACQU-2-F	8,00 %		
•	ACQU-3-F	8,00 %		•
	ACQU-5-F	8,00 %		
	•			•

- 143 -

	Beispiel M19			
	CC-4-V	10,00 %	S → N [°C]:	< -40,0
	CCP-1F.F.F	9,00 %	Klärpunkt [°C]:	75,0
5	CCP-2F.F.F	9,00 %	Δn [589 nm, 20 °C]:	0,0869
	CCP-30CF ₃ .F	8,00 %	Δε [kHz, 20 °C]:	13,1
	CCP-20CF ₃	8,00 %	γ₁ [20 °C, mPa⋅s]:	128
	CCP-30CF ₃	8,00 %	V ₁₀ [V]:	1,06
	ACQU-2-F	8,00 %		
10	ACQU-3-F	8,00 %	•	
	ACQU-4-F	8,00 %		
	PGU-2-F	2,00 %		
	PUQU-2-F	5,00 %		
	PUQU-3-F	8,00 %		
15	CCGU-3-F	6,00 %		
	CBC-33	3,00 %		
	Beispiel M20		·	
20	CC-4-V	18,00 %	$S \rightarrow N [^{\circ}C]$:	< -40,0
	CC-3-V1	3,00 %	Klärpunkt [°C]:	75,0
	CCQU-2-F	11,00 %	∆n [589 nm, 20 °C]:	0,0891
	CCQU-3-F	12,00 %	Δε [kHz, 20 °C]:	13,0
•	CCQU-5-F	8,00 %	γ₁ [20 °C, mPa⋅s]:	113
25	CCP-20CF ₃	8,00 %	V ₁₀ [V]:	1,08
	PGU-2-F	2,00 %		
	PGU-3-F	6,00 %		
	APUQU-2-F	8,00 %		
	APUQU-3-F	9,00 %	·	
30	CCP-1F.F.F	7,00 %		•
	CCP-2F.F.F	7,00 %		
	CCGU-3-F	1,00 %		

- 144 -

CC-4-V 17,00 % S \rightarrow N [°C]: PUQU-2-F 5,00 % Klärpunkt [°C]: 5 PUQU-3-F 7,00 % Δ n [589 nm, 20 °C]: CCP-20CF3 6,00 % Δ E [kHz, 20 °C]:	14,0
5 PUQU-3-F 7,00 % Δn [589 nm, 20 °	C]: 0,0894 14,0 : 120
	14,0 : 120
CCP-20CF ₃ 6.00 % Δε [kHz. 20 °C]:	: 120
CCP-30CF ₃ 5,00 % γ ₁ [20 °C, mPa·s]	1,06
CCP-2F.F.F 5,00 % V ₁₀ [V]:	
CCZU-2-F 3,00 %	
10 CCZU-3-F 13,00 %	
PGU-3-F 6,00 %	
ACQU-1-F 8,00 %	
ACQU-3-F 8,00 %	
ACQU-4-F 8,00 %	
15 CCGU-3-F 6,00 %	
CBC-33 3,00 %	
Beispiel M22	•
20 CC-4-V 16,00 % S → N [°C]:	< -40,0
CC-3-V1 8,00 % Klärpunkt [°C]:	75,5
CCP-1F.F.F 5,00 % △n [589 nm, 20 °	C]: 0,0916
CCP-2F.F.F 6,00 % Δε [kHz, 20 °C]:	13,6
CCQU-2-F 10,00 % γ ₁ [20 °C, mPa·s]	: 107
25 CCQU-3-F 12,00 % V ₁₀ [V]:	1,08
CCP-20CF ₃ 4,00 %	
CCZU-3-F 13,00 %	
PGU-2-F 5,00 %	
PGU-3-F 5,00 %	
30 APUQU-2-F 8,00 %	
APUQU-3-F 8,00 %	

- 145 -

•	Beispiel M23			
			•	
	CCP-1F.F.F	6,00 %	Klärpunkt [°C]:	78,2
	CCP-2F.F.F	9,00 %	Δn [589 nm, 20 °C]:	0,0791
5	CCP-3F.F.F	6,00 %	Δε [kHz, 20 °C]:	14,3
	CCP-5F.F.F	4,00 %		
	CCP-20CF ₃ .F	5,00 %		
	CCP-30CF ₃ .F	5,00 %		
	CCP-50CF ₃ .F	7,00 %		
10	CDU-2-F	7,00 %		
	CDU-3-F	10,00 %		
	CDU-5-F	10,00 %		
	CGU-3-F	4,00 %		
	CCGU-3-F	9,00 %		
15	ACQU-3-F	18,00 %		
	Beispiel M24	·		
	CCQU-2-F	13,00 %	Klärpunkt [°C]:	84,5
20	CCQU-3-F	14,00 %	∆n [589 nm, 20 °C]:	0,0779
	CCQU-5-F	13,00 %	Δε [kHz, 20 °C]:	18,7
	ACQU-5-F	33,00 %	γ₁ [20 °C, mPa⋅s]:	182
	APUQU-2-F	7,00 %	V ₁₀ [V]:	0,95
	APUQU-3-F	9,00 %	•	
25	CC-4-V	11,00 %		•

- 146 -

	Beispiel M25			
	CC-4-V	18,00 %	Klärpunkt [°C]:	74,5
	CC-3-V1	5,00 %	Δn [589 nm, 20 °C]:	0,0882
5	CCP-2F.F.F	8,00 %	Δε [kHz, 20 °C]:	12,9
	CCQU-2-F	9,00 %	γ ₁ [20 °C, mPa⋅s]:	103
	CCQU-3-F	11,00 %	V ₁₀ [V]:	1,09
	CCQU-5-F	11,00 %		
	CCQG-3-F	6,00 %		
10	BCH-3F.F.F	8,00 %		
	APUQU-2-F	6,00 %		
	APUQU-3-F	6,00 %		
	PUQU-2-F	3,00 %		
	PUQU-3-F	6,00 %		
15	CCGU-3-F	1,50 %		•
	PGP-2-3	1,50 %		
	Beispiel M26 (IPS)			
20	CCP-20CF ₃	7,00 %	Klärpunkt [°C]:	80,0
	CCP-30CF ₃	7,00 %	Δn [589 nm, 20 °C]:	0,1102
	CCP-40CF ₃	7,00 %	Δε [kHz, 20 °C]:	11,1
	CCP-50CF ₃	3,50 %	γ ₁ [20 °C, mPa⋅s]:	82
	CCZU-3-F	5,00 %	V ₁₀ [V]: 1,13	
25	PGU-2-F	9,00 %		
	PGU-3-F	8,00 %		
	PUQU-2-F	6,00 %	,	
	PUQU-3-F	6,00 %		
	CC-3-V1	13,00 %		
30	CC-4-V	14,00 %		
	CCP-V-1	8,00 %		
	APUQU-2-F	6,50 %		

	Beispiel M27 (IPS)			
	CCP-20CF₃	8,00 %	Klärpunkt [°C]:	79,5
	CCP-30CF ₃	8,00 %	∆n [589 nm, 20 °C]:	0,1095
5	CCP-40CF ₃	8,00 %	Δε [kHz, 20 °C]:	11,4
	CCZU-3-F	5,00 %	γ₁ [20 °C, mPa⋅s]:	87
	PGU-2-F	9,00 %	V ₁₀ [V]: 1,11	
	PGU-3-F	8,50 %		
	PUQU-2-F	6,00 %		
10	PUQU-3-F	5,00 %		
	CC-3-V1	12,50 %		
	CC-4-V	14,00 %		
	CCP-V-1	9,00 %		
	AGUQU-2-F	3,50 %		
15	AGUQU-3-F	3,50 %		
	Beispiel M28 (IPS)			
	CCP-2F.F.F	6,50 %	Klärpunkt [°C]:	78,0
20	CCP-30CF ₃	6,00 %	∆n [589 nm, 20 °C]:	0,0805
	CCZU-2-F	4,00 %	Δε [kHz, 20 °C]:	14,8
	CCZU-3-F	15,00 %	γ₁ [20 °C, mPa⋅s]:	121
	CDU-2-F	9,00 %		
	CDU-3-F	4,00 %		
25	CCQU-3-F	13,00 %		
	CCQU-5-F	10,00 %		
	PUQU-2-F	5,00 %		
	PUQU-3-F	5,00 %		
	APUQU-2-F	6,00 %		
30	CC-3-V1	12,00 %		
	CC-4-V	4,50 %		

- 148 -

Beispiel 28 (IPS)

	CDU-2-F	9,00 %	Klärpunkt [°C]:	76,5
	CDU-3-F	8,00 %	Δn [589 nm, 20 °C]:	0,0960
5	PGU-2-F	9,00 %	Δε [kHz, 20 °C]:	12,7
	CCZU-2-F	4,00 %	γ₁ [20 °C, mPa⋅s]:	92
	CCZU-3-F	11,00 %	V ₁₀ [V]:	1,02
	PUQU-2-F	4,00 %		
	PUQU-3-F	6,00 %		
10	APUQU-2-F	7,00 %		
	CCP-V-1	14,50 %		
	CC-3-V1	12,50 %		
	CC-4-V	10,00 %		
	CCH-35	5,00 %		
15				
	Beispiel M30 (IPS)			
	CCP-30CF₃	3,50 %	Klärpunkt [°C]:	75,5
	CDU-2-F	5,00 %	∆n [589 nm, 20 °C]:	0,0975
20	PGU-2-F	6,50 %	Δε [kHz, 20 °C]:	8,4
	PUQU-2-F	8,00 %	γ ₁ [20 °C, mPa⋅s]:	67
	PUQU-3-F	8,00 %	V ₁₀ [V]:	1,28
	CCP-V-1	13,00 %		
	CCP-V2-1	9,50 %	•	
25	CC-3-V1	13,00 %		
	CC-5-V	9,00 %		
	CC-4-V	14,00 %		
	PCH-302	3,50 %		
	APUQU-2-F	7,00 %		
30				
	•	•	•	

Beispiel M31 (IPS)

	PGU-2-F	6,50 %	Klärpunkt [°C]:	74,0
	CDU-2-F	9,00 %	∆n [589 nm, 20 °C]:	0,1005
5 ·	PUQU-2-F	11,00 %	Δε [kHz, 20 °C]:	14,1
	PUQU-3-F	10,00 %	γ₁ [20 °C, mPa⋅s]:	92
	CCP-30CF ₃	8,00 %		
	CCZU-3-F	11,50 %		
	CC-4-V	10,00 %		
10	CC-5-V	3,00 %		
	CC-3-V1	11,00 %		
	CCP-V2-1	13,00 %		
	APUQU-2-F	7,00 %		
15	Beispiel M32			
	CCQU-2-F	10,00 %	Klärpunkt [°C]:	82,0
	CCQU-3-F	12,00 %	∆n [589 nm, 20 °C]:	0,0792
	CCQU-5-F	8,00 %	∆ε [kHz, 20 °C]:	11,2
20	CCP-1F.F.F	6,00 %	V ₁₀ [V]:	1,20
	CCP-2F.F.F	5,00 %		
	CCP-3F.F.F	5,00 %		
	CC-3-V1	10,00 %		
-	CC-4-V	14,00 %		
25	CGU-2-F	5,00 %		
	CCGU-3-F	5,00 %		
	ACQG-3-F	5,00 %		
	ACQG-4-F	5,00 %		
	APUQU-2-F	5,00 %		
30	APUQU-3-F	5,00 %		

- 150 -

	Beispiel M33			
	CCQU-2-F	11,00 %	Klärpunkt [°C]:	81,5
	CCQU-3-F	13,00 %	Δn [589 nm, 20 °C]:	0,0804
5	CCQU-5-F	11,00 %	Δε [kHz, 20 °C]:	13,6
	CCP-1F.F.F	8,00 %	γ₁ [20 °C, mPa⋅s]:	153
	CCP-2F.F.F	10,00 %	V ₁₀ [V]:	1,06
	CCP-3F.F.F	10,00 %		
	CCP-5F.F.F	6,00 %		
10	CC-3-V1	9,00 %	•	
	CGU-3-F	4,00 %		
	ACQG-3-F	3,00 %		
	ACQG-4-F	5,00 %		
	APUQU-2-F	5,00 %		
15	APUQU-3-F	5,00 %		
,	Beispiel M34			
	CCH-5CF ₃	5,00 %	Klärpunkt [°C]:	80,5
20	CCP-1F.F.F	5,00 %	∆n [589 nm, 20 °C]:	0,0660
	CCP-2F.F.F	9,00 %	Δε [kHz, 20 °C]:	9,7
•	CCP-3F.F.F	8,00 %	V ₁₀ [V]:	1,27
•	CCP-5F.F.F	5,00 %	•	
	CCP-20CF ₃ .F	6,00 %		
25	CCP-50CF ₃ .F	6,00 %		
	CCOC-3-3	2,00 %		
•	CCOC-4-3	2,00 %	•	•
	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %		
30	CCQU-5-F	8,00 %		
	CCH-501	6,00 %		
	ACQG-3-F	8,00 %	•	•
	ACQG-4-F	8,00 %		

	Beispiel M35			
,	CCP-1F.F.F	7,00 %	Klärpunkt [°C]:	81,5
	CCP-2F.F.F	8,00 %	Δn [589 nm, 20 °C]:	0,0658
5	CCP-3F.F.F	7,00 %	Δε [kHz, 20 °C]:	13,5
	CCP-5F.F.F	4,00 %	V ₁₀ [V]:	1,06
	CCQU-2-F	11,00 %		·
	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
10	ACQU-2-F	8,00 %		
	ACQU-3-F	9,00 %		
	ACQU-5-F	8,00 %		
	ACQG-3-F	7,00 %		
	ACQG-4-F	5,00 %		
15	CCOC-3-3	3,00 %		
	CCOC-4-3	3,00 %		
٠	Beispiel M36			
20	AUUQU-3-F	6,00 %	Klärpunkt [°C]:	98,0
	AGUQU-3-F	6,00 %	Δn [589 nm, 20 °C]:	0,0927
	APUQU-2-F	6,00 %	Δε [kHz, 20 °C]:	18,9
	CGU-2-F	5,00 %		
	CGU-3-F	5,00 %	•	
25	CGU-5-F	5,00 %		
	CCZU-2-F	5,50 %		
	CCZU-3-F	10,50 %		
	CCZU-5-F	5,50 %		
•	CCQU-2-F	10,00 %		
30	CCQU-3-F	10,00 %		
	CCQU-5-F	10,00 %	·	
	CC-5-V	9,50 %		
	CCPC-33	2,00 %		
	CCPC-34	2,00 %		
35	CCPC-35	2,00 %		
	•			

- 152 -

	Beispiel M37			
	CCQU-2-F	7,00 %	Klärpunkt [°C]:	85,5
	CCQU-3-F	8,00 %	Δn [589 nm, 20 °C]:	0,0783
5	CCQU-5-F	8,00 %	Δε [kHz, 20 °C]:	11,66
	CCQG-3-F	6,00 %	γ₁ [20 °C, mPa⋅s]:	213
	ACQU-2-F	17,00 %	V ₁₀ [V]:	0,90
	ACQU-5-F	16,00 %		
	PUQU-2-F	5,00 %		
10	PÚQU-3-F	5,00 %		
	CCGU-3-F	5,00 %		
	CCOC-4-3	3,00 %		
	CCZU-2-F	3,00 %		
	CCZU-3-F	14,00 %		
15	CCZU-5-F	3,00 %		
	Beispiel M38			
	BCH-3F.F	10,80 %	Klärpunkt [°C]:	56,9
20	BCH-5F.F	9,00 %	∆n [589 nm, 20 °C]:	0,0834
	ECCP-30CF ₃	4,50 %	Δε [kHz, 20 °C]:	4,1
	ECCP-50CF ₃	4,50 %	γ₁ [20 °C, mPa⋅s]:	65
	CBC-33F	1,80 %		
	CBC-53F	1,80 %		
25	CBC-55F	1,80 %		
	PCH-6F	7,20 %		
	PCH-7F	5,40 %		
	CCP-20CF ₃	7,20 %		
•	CCP-30CF ₃	10,80 %		
30	CCP-40CF ₃	6,30 %	·	
	CCP-50CF ₃	9,90 %		
	PCH-5F	9,00 %		
	AUUQPU-3-F	10,00 %		
		•		

	Beispiel M39			•
	00D 45 5 5	2.00.9/	Vlärnunkt (°C).	70.5
	CCP-1F.F.F	3,00 %	Klärpunkt [°C]:	79,5 0.0706
_	CCP-2F.F.F	6,00 %	Δn [589 nm, 20 °C]:	0,0796
5	CCP-3F.F.F	7,00 %	Δε [kHz, 20 °C]:	10,12
	CCP-5F.F.F	5,00 %	γ₁ [20 °C, mPa⋅s]:	202
	CCQU-2-F	11,00 %	V ₁₀ [V]:	0,93
	CCQU-3-F	12,00 %		
4.0	CCQU-5-F	8,00 %		
10	CGU-2-F	4,00 %		
	CGU-3-F	7,00 %		
	CCGU-3-F	9,00 %	· •	
	ACQU-2-F	8,00 %		
	ACQU-3-F	10,00 %		
15	ACQU-4-F	10,00 %		
	Beispiel M40	·		
	CCH-5CF₃	2,00 %	Klärpunkt [°C]:	79,5
20	CCP-2F.F.F	9,00 %	Δn [589 nm, 20 °C]:	0,0659
20	CCP-3F.F.F	7,00 %	Δε [kHz, 20 °C]:	8,22
	CCP-5F.F.F	4,00 %	_{γ1} [20 °C, mPa⋅s]:	169
	CCP-20CF ₃ .F	7,00 %	V ₁₀ [V]:	1,14
	CCP-50CF ₃ .F	6,00 %	A 10 [A].	1,17
2 . 5	CCOC-3-3	2,00 %		
20	CCOC-4-3	•		
		2,00 %		
	CCQU-2-F	10,00 %		
	CCQU-3-F	12,00 %	•	
	CCQU-5-F	8,00 %	•	
30	ACQU-2-F	8,00 %		
	ACQU-3-F	10,00 %		
		•		
	ACQU-4-F CCH-501	8,00 % 5,00 %	-	

- 154 -

	Beispiel M41			
•	CCP-1F.F.F	6,00 %	Klärpunkt [°C]:	80,0
	CCP-2F.F.F	9,00 %	Δn [589 nm, 20 °C]:	0,0694
5	CCP-3F.F.F	10,00 %	Δε [kHz, 20 °C]:	8,96
	CCP-5F.F.F	6,00 %	γ ₁ [20 °C, mPa·s]:	175
	CCP-20CF ₃ .F	4,00 %	V ₁₀ [V]:	1,11
	CCP-50CF ₃ .F	8,00 %		
	CCQU-2-F	11,00 %		
10	CĊQU-3-F	12,00 %	•	
	CCQU-5-F	8,00 %		
	ACQU-3-F	26,00 %		
	Beispiel M42			•
15	,			
	CCP-1F.F.F	8,00 %	Klärpunkt [°C]:	88,0
	CCP-2F.F.F	7,00 %	Δn [589 nm, 20 °C]:	0,0788
	CCP-3F.F.F	9,00 %	Δε [kHz, 20 °C]:	8,51
	CCP-5F.F.F	6,00 %	γ₁ [20 °C, mPa⋅s]:	192
20	CCP-30CF ₃ .F	9,00 %	V ₁₀ [V]:	1,13
	CCP-50CF ₃ .F	9,00 %		
	CGU-2-F	5,00 %		•
	CCGU-3-F	5,00 %		
	CCQU-2-F	11,00 %		
25	CCQU-3-F	12,00 %		
	CCQU-5-F	8,00 %		
	ACQU-3-F	6,00 %		
	ACQU-4-F	5,00 %		
	•			

	Beispiel M43			
	CCP-1F.F.F	2,00 %	Klärpunkt [°C]:	81,0
	CCP-20CF₃	8,00 %	Δn [589 nm, 20 °C]:	0,0785
5	CCP-30CF ₃	8,00 %	Δε [kHz, 20 °C]:	7,27
	CCP-40CF ₃	6,00 %	γ₁ [20 °C, mPa⋅s]:	108
	CCP-50CF ₃	8,00 %	V ₁₀ [V]:	1,34
	CCP-20CF ₃ .F	12,00 %		
	ACQU-2-F	8,00 %		
10	ACQU-3-F	8,00 %		
	ACQU-4-F	8,00 %		
	PUQU-2-F	5,00 %		
	PUQU-3-F	7,00 %		
	CC-3-V1	8,00 %		
15	CC-4-V	9,00 %		
	CCOC-4-3	3,00 %		
	Beispiel M44			
20	CC-3-V1	5,00 %	S → N [°C]:	< 20,0
•	CCP-1F.F.F	. 8,00 %	Klärpunkt [°C]:	82,5
	CCP-2F.F.F	10,00 %	∆n [589 nm, 20 °C]:	0,0939
•	CCQU-2-F	10,00 %	Δε [kHz, 20 °C]:	10,6
	CCQU-3-F	5,00 %	γ₁ [20 °C, mPa⋅s]:	128
25	CCP-20CF ₃	8,00 %	V ₁₀ [V]:	1,19
	CCP-30CF ₃	8,00 %		
	CGU-2-F	9,00 %		
	PGU-3-F	5,00 %		
٠	CCP-V-1	6,00 %		
30	CCG-V-F	18,00 %		
	APUQU-3-F	8,00 %		

- 156 -

Beispiel M45

	CCP-2F.F.F	7,00 %	Klärpunkt [°C]:	88,0
	CCP-3F.F.F	6,00 %	∆n [589 nm, 20 °C]:	0,0720
5	CCP-5F.F.F	6,00 %	Δε [kHz, 20 °C]:	16,1
	ACQU-2-F	10,00 %	γ_1 [20 °C, mPa·s]:	210
	ACQU-3-F	10,00 %	V ₁₀ [V]:	0,97
	ACQU-5-F	11,00 %		
	CCQU-2-F	10,00 %	•	
10	CCQU-3-F	12,00 %		
	CCQU-5-F	10,00 %		
	CCGU-3-F	5,00 %		
	CCZU-2-F	4,00 %		
	CCZU-3-F	9,00 %		
15	•	•		

20

25

Patentansprüche

1. Flüssigkristalline Verbindungen der Formel I,

5
$$R^{1}-(A^{1}-Z^{1})_{a}$$
 $(Z^{2}-A^{2})_{b}-CF_{2}O-(A^{3}-Z^{3})_{c}-A^{4}-R^{2}$

worin

10 R^1 und R^2

15

35

jeweils unabhängig voneinander H, Halogen, einen halogenierten oder unsubstituierten Alkyl- oder Alkoxyrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH₂-Gruppen jeweils unabhängig voneinander durch -C≡C-, -CH=CH-, -O-, -CO-O- oder -O-CO- so ersetzt sein können, dass O-Atome nicht direkt miteinander verknüpft sind, wobei einer der Reste R¹ und R² auch CN, OCN, SCN, NCS oder SF₅ bedeuten kann,

20 A^1, A^2, A^3 und A^4

jeweils unabhängig voneinander

$$Z^1$$
, Z^2 und Z^3 jeweils unabhängig voneinander -CO-O-, -O-CO-, -CF₂O-, -OCF₂-, -CH₂O-, -OCH₂-, -CH₂CH₂-, -CH₂CH₂-, -CF=CF-, -CH=CH-, -C=C- oder eine Einfachbindung, und

a, b und c jeweils unabhängig voneinander 0, 1, 2 oder 3, wobei $a + b + c \le 3$ ist.

bedeuten.

10

35

2. Flüssigkristalline Verbindungen der Formel IA

15
$$R^1 \longrightarrow H$$
 $CF_2O \longrightarrow CF_2O$ A

worin

20 R^1 , R^2 , a, b, c und die in Anspruch 1 angegebenen Bedeutungen haben, wobei a + b = 1 oder 2 ist,

L¹ und L² jeweils unabhängig voneinander H oder F, und

bedeuten.

- 3. Flüssigkristalline Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass a = 1 und b = 0 oder a = 0 und b = 1 ist.
- 30 4. Flüssigkristalline Verbindungen nach Anspruch 2, dadurch gekennzeichnet, dass L¹ Fluor und L² Fluor oder Wasserstoff bedeuten.
 - 5. Flüssigkristalline Verbindungen nach Anspruch 2, dadurch gekennzeichnet, dass L¹ und L² Fluor bedeuten.

6. Flüssigkristalline Verbindungen der Formeln I1 bis I31,

$$R^1$$
 \longrightarrow H CF_2O O X

$$R^1$$
 O H CF_2O O X $I2$

$$R^{1}$$
 O H $CF_{2}O$ O F $CF_{2}O$ O C

$$R^{1}$$
 \longrightarrow $CH_{2}CH_{2}$ \longrightarrow $CF_{2}O$ \longrightarrow $CF_{2}O$ \longrightarrow O \longrightarrow O

$$R^{1}$$
 $CH_{2}CH_{2}$ H $CF_{2}O$ O X $I5$

$$R^1$$
 CH_2CH_2 H CF_2O O F $I6$

$$R^1$$
 O H CF_2O O O X $I7$

20

25

. 30

19

 $R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} (F) \\ O \end{array}$

 R^1 O H CF_2O O O X I10

 R^1 O H CF_2O O F X I12

 R^{1} $CF_{2}O$ O COO O X I13

 $R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} COO \longrightarrow \\ COO \longrightarrow \end{array} \longrightarrow \begin{array}{c} F \\ O \longrightarrow \\ CF_{2}O \longrightarrow \end{array} \longrightarrow \begin{array}{c} COO \longrightarrow \\ COO \longrightarrow \end{array} \longrightarrow \longrightarrow \begin{array}{c} COO \longrightarrow \\ COO \longrightarrow \end{array} \longrightarrow \begin{array}{c} COO \longrightarrow \end{array} \longrightarrow \begin{array}{c} COO \longrightarrow \end{array} \longrightarrow \begin{array}{c} COO \longrightarrow \\ COO \longrightarrow \longrightarrow COO \longrightarrow \longrightarrow COO \longrightarrow \longrightarrow$

30

$$R^{1}$$
 $CF_{2}O$
 COO
 COO

$$R^1$$
 \longrightarrow H \longrightarrow CF_2O \longrightarrow CF_2O \longrightarrow O \longrightarrow CF_2O \longrightarrow O \longrightarrow

$$R^{1}$$
 $CF_{2}O$
 $CF_{2}O$

$$R^{1} \longrightarrow \begin{array}{c} O \\ H \end{array} \longrightarrow \begin{array}{c} CF_{2}O \longrightarrow \begin{array}{c} CF_{2}$$

$$R^{1} \longrightarrow H \longrightarrow CF_{2}O \longrightarrow X \qquad I19$$

$$R^1$$
 H CF_2O O X $I20$

$$R^{1}$$
 H $CF_{2}O$ O F $I21$

$$R^{1}$$
 H $CF_{2}O$ O X $I24$

15
$$R^1$$
 O O CF_2O O X 125

30
$$R^{1} \longrightarrow O \longrightarrow CF_{2}O \longrightarrow CF_{2}O \longrightarrow F$$
35

$$R^{1}$$
 O O $CF_{2}O$ O X $I30$

10

15

worin R¹ die in Anspruch 1 angegebenen Bedeutungen hat und X die Bedeutung von R² hat.

20

- Flüssigkristallines Medium enthaltend mindestens zwei mesogene Verbindungen, dadurch gekennzeichnet, dass es mindestens eine Verbindung der Formel I nach Anspruch 1 enthält.
- 25
- 8. Flüssigkristallines Medium nach Anspruch 7, dadurch gekennzeichnet, dass es eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis IX,

$$R^0$$
 H H O X^0 H

$$R^{0} \stackrel{\longrightarrow}{H} C_{2}H_{4} \stackrel{\bigvee}{O} \stackrel{\bigvee}{X^{0}} \qquad III$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{Z^{0}} \stackrel{\longrightarrow}{O} \stackrel{\bigvee}{X^{0}} \qquad IV$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{Z^{0}} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{O} \stackrel{\bigvee}{X^{0}} \qquad V$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{C_{2}H_{4}} \stackrel{\longrightarrow}{O} \stackrel{\bigvee}{X^{0}} \qquad VI$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{C_{2}H_{4}} \stackrel{\longrightarrow}{O} \stackrel{\bigvee}{X^{0}} \qquad VIII$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{C_{2}H_{4}} \stackrel{\longrightarrow}{O} \stackrel{\longleftarrow}{X^{0}} \qquad VIII$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{O} \stackrel{\longrightarrow}{V^{1}} \stackrel{\longrightarrow}{V^{1}} \qquad VIII$$

$$R^{0} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{H} \stackrel{\longrightarrow}{O} \stackrel{\longrightarrow}{V^{1}} \qquad VIII$$

worin

n-Alkyl, Oxaalkyl, Fluoralkyl, Alkenyloxy oder Alkenyl mit jeweils bis zu 9 C-Atomen

5

F, CI, halogeniertes Alkyl, halogeniertes Alkenyl,
 halogeniertes Alkenyloxy oder halogeniertes Alkoxy mit bis zu
 7 C-Atomen,

10 Z⁰.

-CH=CH-, - C_2H_{4-} , -(CH₂)₄₋, - C_2F_{4-} , -CH₂O-, -OCH₂₋, -CF=CF-, -CF₂O-, -OCF₂₋ oder -COO-,

Y1,Y2,

Y³ und Y⁴ jeweils unabhängig voneinander H oder F, und r 0 oder 1

bedeuten,

enthält.

20

15

- 9. Verwendung des flüssigkristallinen Mediums nach Anspruch 7 oder 8 für elektrooptische Zwecke.
- 10. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristal 25 lines Medium nach Anspruch 7 oder 8.

intermional Application No
PCT/EP 03/12813

		P	CT/EP 03/12813
A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER CO9K 19/34		
	International Patent Classification (IPC) or to both national classification	tion and IPC	
B. FIELDS	SEARCHED cumentation searched (classification system followed by classification	o symbols)	
IPC 7	CO9K	n oyuwow _i	
	ion searched other than minimum documentation to the extent that su		
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, sea	arch terms used)
EPO-In	ternal, WPI Data, PAJ		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
х	DE 100 08 712 A (MERCK PATENT GMB 31 August 2000 (2000-08-31)		1-10
	page 3, line 32 -page 13, line 65	; CIAINS	
Х	EP 1 182 186 A (CHISSO CORP) 27 February 2002 (2002-02-27)		1–10
	Form. 60		
	page 66, line 5 page 12, paragraph 37 —page 13, p	aragraph	
	46		·
	claims 		
A	DE 100 50 071 A (CHISSO CORP) 28 June 2001 (2001-06-28) claims		1,2,6,9, 10
		,	
	-	-/	
	·		
X Furt	ther documents are listed in the continuation of box C.	X Patent family mer	nbers are listed in annex.
			ned after the international filing date of in conflict with the application but
const	ent defining the general state of the art which is not dered to be of particular relevance		ne principle or theory underlying the
filing	date	cannot be considered	relevance; the claimed invention i novel or cannot be considered to
which	ent which may throw doubts on priority claim(s) or I is ciled to establish the publication date of another on or other special reason (as specified)	"Y" document of particular	step when the document is taken alone relevance; the claimed invention
"O" docum	ment referring to an oral disclosure, use, exhibition or means	document is combine	d to involve an inventive step when the ed with one or more other such docu— ution being obvious to a person skilled
"P" docum	neath published prior to the international filling date but that the priority date claimed	in the art. *&* document member of	
Date of the	actual completion of the international search	Date of mailing of the	international search report
3	31 March 2004	08/04/200	04
Name and	mailing address of the ISA	Authorized officer	
1	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,	Combatas	-1au A
1	Fax: (+31-70) 340-3016	Serbetso	grou, A

Interioral Application No PCT/EP 03/12813

		PCT/EP 03/12813
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 117 476 A (MERCK PATENT GMBH) 5 September 1984 (1984-09-05) claims	1,2,6
Ρ,Α	DE 103 03 638 A (MERCK PATENT GMBH) 6 November 2003 (2003-11-06) page 4 -page 5	1,2,6,9, 10
P,A	EP 1 302 523 A (MERCK PATENT GMBH) 16 April 2003 (2003-04-16) claims 1-9	1-10
P,A	DE 102 43 776 A (MERCK PATENT GMBH) 10 April 2003 (2003-04-10) page 8 -page 9 page 24 -page 25; claims	1-10
P,A	DE 102 29 476 A (MERCK PATENT GMBH) 13 February 2003 (2003-02-13) claims page 8 -page 12; claims	1-10

Information on patent family members

Intermonal Application No PCT/EP 03/12813

Patent document dited in search report	İ	Publication date		Patent family member(s)	Publication date
DE 10008712	A	31-08-2000	DE	10008712 A1	31-08-2000
EP 1182186	Α	27-02-2002	JP	2002053513 A	19-02-2002
			EP	1182186 A2	27-02-2002
			US	2004016906 A1	29-01-2004
			US	2004004207 A1	08-01-2004
			US	2002120168 A1	29-08-2002
DE 10050071	A	28-06-2001	JP	2001115161 A	24-04-2001
			DE	10050071 A1	28-06-2001
		•	US	6558758 B1	06-05-2003
EP 0117476	A	05-09-1984	DE	3306960 A1	30-08-1984
			DE	3466218 D1	22-10-1987
			EΡ	0117476 A1	05-09-1984
			JP	59164788 A	17-09-1984
			US	4818431 A	04-04-1989
DE 10303638	Α	06-11-2003	DE	10303638 A1	06-11-2003
EP 1302523	A	16-04-2003	DE	10150198 A1	24-04-2003
			CN	1412274 A	23-04-2003
			EP	1302523 A1	16-04-2003
			JP	2003183656 A	03-07-2003
	_		US	2003197153 A1	23-10-2003
DE 10243776	Α	10-04-2003	DE	10243776 A1	10-04-2003
•			JР	2003176251 A	24-06-2003
			US	2003213935 A1	20-11-2003
DE 10229476	A	13-02-2003	DE	10229476 A1	13-02-2003
			GB	2379442 A	12-03-2003
			JP	2003176265 A	24-06-2003
			US	2003216554 A1	20-11-2003

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C09K19/34

Nach der Internationalen Patentidassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprütstoff (Klassifikationssystem und Klassifikationssymbole) $\begin{tabular}{ll} \bf IPK & \bf 7 & \bf C09K \end{tabular}$

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte etektronische Datenbank (Name der Datenbank und evil. verwendete Suchbegriffe)

EPO-In	ternal, WPI Data, PAJ		
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN		· · · · · · · · · · · · · · · · · · ·
Kalegorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	e der in Betracht kommenden Telle	Betr. Anspruch Nr.
X	DE 100 08 712 A (MERCK PATENT GMB 31. August 2000 (2000-08-31) Seite 3, Zeile 32 -Seite 13, Zeil Ansprüche		1–10
X	EP 1 182 186 A (CHISSO CORP) 27. Februar 2002 (2002-02-27) Form. 60 Seite 66, Zeile 5 Seite 12, Absatz 37 -Seite 13, Ab Ansprüche	satz 46	1-10
A	DE 100 50 071 A (CHISSO CORP) 28. Juni 2001 (2001-06-28) Ansprüche	·/	1,2,6,9, 10
Besonder A Veröffe aber i E älteres Anme L Veröffe schein ander soll og ausge 'O' Veröffe eine E 'P' Veröffe dem b	en im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie führt) milichung, die sich auf eine mündliche Offenbarung, eenutzung, eine Ausstellung oder andere Maßnahmen bezieht intlichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	kann nicht als äuf erfindertscher Tätigl werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorte in diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derseiber	t worden ist und mit der r zum Verständnis des der oder der ihr zugrundellegenden utung; die beanspruchte Erfindung chung nicht als neu oder auf uchtet werden utung; die beanspruchte Erfindung weit beruhend beirachtet einer oder mehreren anderen Verbindung gebracht wird und nahellegend ist n Patentfamilie ist
	Abschlusses der internationalen Recherche	Absendedatum des Internationalen Re	echerchenberichts
	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Filjswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Bevoltmächtigter Berßensteter Serbetsoglou, A	

Interionales Aktenzeichen
PCT/EP 03/12813

		PUITER O	3/ 12013
C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie ^o	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht	kommenden Telle	Betr. Anspruch Nr.
A	EP 0 117 476 A (MERCK PATENT GMBH) 5. September 1984 (1984-09-05) Ansprüche		1,2,6
P,A	DE 103 03 638 A (MERCK PATENT GMBH) 6. November 2003 (2003-11-06) Seite 4 -Seite 5		1,2,6,9, 10
P,A	EP 1 302 523 A (MERCK PATENT GMBH) 16. April 2003 (2003-04-16) Ansprüche 1-9		1-10
P,A	DE 102 43 776 A (MERCK PATENT GMBH) 10. April 2003 (2003-04-10) Seite 8 -Seite 9 Seite 24 -Seite 25; Ansprüche		1-10
P,A	DE 102 29 476 A (MERCK PATENT GMBH) 13. Februar 2003 (2003-02-13) Ansprüche Seite 8 -Seite 12; Ansprüche		1-10

Intermediate Aktenzeichen
PCT/EP 03/12813

lm Recherchenbericht ngeführtes Patentdokument	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 10008712	31-08-2000	DE	10008712	A1	31-08-2000
EP 1182186 /	27-02-2002	JP EP US US	1182186		19-02-2002 27-02-2002 29-01-2004 08-01-2004 29-08-2002
DE 10050071	28-06-2001	JP DE US	2001115161 10050071 6558758	A1	24-04-2001 28-06-2001 06-05-2003
EP 0117476	05-09-1984	DE DE EP JP US	3306960 3466218 0117476 59164788 4818431	D1 A1 A	30-08-1984 22-10-1987 05-09-1984 17-09-1984 04-04-1989
DE 10303638	06-11-2003	DE	10303638	A1	06-11-2003
EP 1302523	16-04-2003	DE CN EP JP US	10150198 1412274 1302523 2003183656 2003197153	A A1 A	24-04-2003 23-04-2003 16-04-2003 03-07-2003 23-10-2003
DE 10243776	10-04-2003	DE JP US	10243776 2003176251 2003213935	Α	10-04-2003 24-06-2003 20-11-2003
DE 10229476	13-02-2003	DE GB JP US	10229476 2379442 2003176265 2003216554	A A	13-02-2003 12-03-2003 24-06-2003 20-11-2003