In [1]: import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns In [3]: %matplotlib inline In [7]: dataset= pd.read_csv(r'C:\Users\DELL\Downloads\20th - mlr\20th - mlr\MLR\House_d dataset Out[7]: id date price bedrooms bathrooms sqft_living sqft **0** 7129300520 20141013T000000 221900.0 1.00 5 3 1180 **1** 6414100192 20141209T000000 538000.0 2.25 7 2570 **2** 5631500400 20150225T000000 2 180000.0 1.00 770 10 5 **3** 2487200875 20141209T000000 604000.0 3.00 1960 1954400510 20150218T000000 510000.0 3 2.00 1680 3 263000018 20140521T000000 3 21608 360000.0 2.50 1530 1 **21609** 6600060120 20150223T000000 5 400000.0 2.50 2310 2 **21610** 1523300141 20140623T000000 402101.0 1 0.75 1020 2 21611 291310100 20150116T000000 400000.0 2.50 1600 **21612** 1523300157 20141015T000000 325000.0 2 1 0.75 1020 21613 rows × 21 columns In [9]: dataset.head() Out[9]: price bedrooms id date bathrooms sqft_living sqft_lot **0** 7129300520 20141013T000000 221900.0 5650 3 1.00 1180 **1** 6414100192 20141209T000000 538000.0 3 2.25 2570 7242 **2** 5631500400 20150225T000000 180000.0 2 1.00 770 10000 **3** 2487200875 20141209T000000 604000.0 3.00 1960 5000 **4** 1954400510 20150218T000000 510000.0 8080 3 2.00 1680 5 rows × 21 columns In [11]: print(dataset.isnull().any())

```
price
                         False
        bedrooms
                         False
        bathrooms
                         False
        sqft_living
                         False
        sqft_lot
                         False
        floors
                         False
        waterfront
                         False
        view
                         False
        condition
                         False
                         False
        grade
        sqft_above
                         False
        sqft_basement
                         False
        yr_built
                         False
        yr_renovated
                         False
        zipcode
                         False
        lat
                         False
        long
                         False
        sqft_living15
                         False
        sqft_lot15
                         False
        dtype: bool
In [13]: print(dataset.dtypes)
        id
                           int64
        date
                          object
        price
                         float64
        bedrooms
                           int64
        bathrooms
                         float64
        sqft_living
                           int64
        sqft_lot
                           int64
        floors
                         float64
        waterfront
                           int64
                           int64
        view
                           int64
        condition
        grade
                           int64
        sqft_above
                           int64
                           int64
        sqft_basement
        yr_built
                           int64
        yr_renovated
                           int64
        zipcode
                           int64
        lat
                         float64
                         float64
        long
        sqft_living15
                           int64
        sqft lot15
                           int64
        dtype: object
In [15]: dataset= dataset.drop(['id','date'], axis=1)
In [31]: with sns.plotting_context("notebook", font_scale=2.5):
             g= sns.pairplot(dataset[['sqft_lot','sqft_above','price','sqft_living','bedr
         g.set(xticklabels=[]);
         plt.show()
        C:\Users\DELL\anaconda3\Lib\site-packages\seaborn\axisgrid.py:2100: UserWarning:
        The `size` parameter has been renamed to `height`; please update your code.
        warnings.warn(msg, UserWarning)
```

id

date

False

False

def backwardElimination(x, SL):
 numVars = len(x[0])

for i in range(0, numVars):

temp = np.zeros((21613,19)).astype(int)

```
regressor_OLS = sm.OLS(y, x).fit()
        maxVar = max(regressor_OLS.pvalues).astype(float)
        adjR_before = regressor_OLS.rsquared_adj.astype(float)
        if maxVar > SL:
            for j in range(0, numVars - i):
                if (regressor_OLS.pvalues[j].astype(float) == maxVar):
                    temp[:,j] = x[:,j]
                    x = np.delete(x, j, 1)
                    tmp_regressor = sm.OLS(y, x).fit()
                    adjR_after = tmp_regressor.rsquared_adj.astype(float)
                    if (adjR_before >= adjR_after):
                        x_rollback = np.hstack((x, temp[:,[0,j]]))
                        x_rollback = np.delete(x_rollback, j, 1)
                        print (regressor_OLS.summary())
                        return x_rollback
                    else:
                        continue
   regressor_OLS.summary()
   return x
SL = 0.05
X_{\text{opt}} = X[:, [0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,16,17]]
X_Modeled = backwardElimination(X_opt, SL)
```

OLS Regression Results

=====

Dep. Variable: y R-squared (uncentered):

0.905

Model: OLS Adj. R-squared (uncentered):

0.905

Method: Least Squares F-statistic: 1.2

11e+04

Date: Wed, 20 Aug 2025 Prob (F-statistic):

0.00

Time: 15:20:47 Log-Likelihood: -2.94

61e+05

No. Observations: 21613 AIC: 5.8

92e+05

Df Residuals: 21596 BIC: 5.8

94e+05

Df Model: 17 Covariance Type: nonrobust

	coef	std err		t P>	> t	[0.025	0.975]
x1	-3.551e+04	1888.716	-18.8	802 0.	.000	-3.92e+04	-3.18e+04
x2	4.105e+04	3253.759	12.6	518 0.	.000	3.47e+04	4.74e+04
x3	110.2642	2.268	48.6	607 0.	.000	105.818	114.711
x4	0.1334	0.048	2.7	786 0.	.005	0.040	0.227
x5	5261.5471	3541.347	1.4	186 0.	.137	-1679.755	1.22e+04
хб	5.833e+05	1.74e+04	33.5	98 0.	.000	5.49e+05	6.17e+05
x7	5.236e+04	2128.298	24.6	600 0.	.000	4.82e+04	5.65e+04
x8	2.721e+04	2323.818	11.7	709 0.	.000	2.27e+04	3.18e+04
x9	9.548e+04	2145.492	44.5	i 03	.000	9.13e+04	9.97e+04
x10	71.3928	2.238	31.9	002 0.	.000	67.006	75.779
x11	38.8714	2.624	14.8	313 0.	.000	33.728	44.015
x12	-2561.7953	68.006	-37.6	570 0.	.000	-2695.092	-2428.498
x13	20.4187	3.646	5.6	600 0.	.000	13.272	27.566
x14	-519.0756	17.826	-29.1	19 0.	.000	-554.016	-484.136
x15	6.022e+05	1.07e+04	56.1	106 0.	.000	5.81e+05	6.23e+05
x16	-2.179e+05	1.31e+04	-16.6	83 0.	.000	-2.44e+05	-1.92e+05
x17	23.0994	3.392	6.8	311 0.	.000	16.452	29.747
x18	-0.3761	0.073	-5.1	137 0.	.000	-0.520	-0.233
Omnibus:		18403.146		Durbin-Watson:			1.991
Prob(Omnibus):		0.000		Jarque-Bera (JB):			1873534.498
Skew:		3.572		Prob(JB):			0.00
Kurtosis:		48.049		Cond. No.			4.80e+17

Notes:

- [1] R^2 is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [3] The smallest eigenvalue is 9.48e-22. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.