Applicant: Björn Nilsson Serial No.: 10/618,868 DIV

Filed : July 14, 2003

Page : 2 of 21

Amendments to the Claims:

This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A compound of the formula (I):

$$R_2$$
 R_1
 R_1
 R_2
 R_1

wherein

(iii) Y and Z represent both nitrogen and X represents CH, forming a pyrimidine derivative, and wherein R₁ and R₂ are each, independently, selected from a group A consisting of

$$R_3$$
 N
 R_4
 R_3
 R_4
 R_4
 R_4
 R_4

or from a group B, consisting of aryl-C₁-C₆-alkyl, aryl-C₁-C₆-alkoxy, heteroaryl-C₁-C₆-alkoxy, aryloxy-C₂-C₆-alkoxy, heteroaryloxy-C₂-C₆-alkoxy, 1-indanyloxy, 2-indanyloxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio, C₅-C₆-cycloalkylthio, C₅-C₈-alkoxy, C₅-C₈-alkylthio, C₃-C₆-alkynyloxy, C₃-C₆-alkenyloxy, fluoro-C₂-C₄-alkoxy, C₄-C₈-cycloalkyloxy, C₃-C₈-cycloalkyl-C₁-C₄-alkoxy, halogen, aryl-C₁-C₄-alkylthio, heteroaryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylamino, heteroaryl-C₁-C₄-alkylamino, heteroaryl and aryl; with the proviso that:

(i) R₁ and R₂ are different and are not both selected from group A or group B at the same time;

Applicant: Björn Nilsson Attorney's Docket No.: 13425-056002 / 00410-US -

Serial No.: 10/618,868 Filed: July 14, 2003

Page : 3 of 21

(iii) when X is CH and Z and Y both are nitrogen in formula (I), forming a pyrimidine derivative, and R_2 is 1-piperazinyl, then R_1 is other than phenoxy, phenyl or phenyl substituted by bromo, and C_5 - C_8 alkoxy; and when R_2 is 4-methylpiperazin-1-yl or 4-(2-hydroxyethyl)piperazin-1-yl, then R_1 is other than 5-nitro-2-furyl;

(iv) when X is CH and Z and Y both are nitrogen in formula (I), forming a pyrimidine derivative, and R_1 is 1-piperazinyl, then R_2 is other than C_5 - C_8 alkoxy;

and where R₃ is H or C₁₋₄-alkyl, allyl, 2-hydroxyethyl, 2-cyanoethyl, or a nitrogen protecting group;

 R_4 is hydrogen, or C_{1-4} alkyl;

and wherein any aryl or heteroaryl residue, alone or as part of another group, in R_1 or R_2 may be independently substituted in one or more positions, by C_{1-4} -alkyl, C_{1-4} -alkoxy, C_{1-4} -alkylthio, C_{2-4} -acyl, C_{1-4} -alkylsulphonyl, cyano, nitro, hydroxy, C_{2-6} -alkenyl, C_{2-6} -alkynyl, fluoromethyl, trifluoromethoxy, halogen, $-N(R_5)(R_6)$, aryl, aryloxy, arylthio, aryl- C_{1-4} -alkyl, aryl- C_{2-4} -alkenyl, aryl- C_{2-4} -alkynyl, heteroaryl, heteroaryloxy, heteroarylthio or heteroaryl- C_{1-4} -alkyl, aryl- C_{1-4} -alkoxy, aryloxy- C_{1-4} -alkyl, dimethylamino- C_{2-4} -alkoxy; and

wherein any aryl or heteroaryl residue as substituents on aryl or heteroaryl, alone or as part of another group, in R_1 or R_2 in turn may be substituted in one or more postions, independently of each other by C_{1-4} -alkyl, C_{1-4} -alkoxy, halogen, trifluoromethyl, cyano, hydroxy or dimethylamino; and

R₅ and R₆ independently of each other are hydrogen, methyl or ethyl, or together with the nitrogen atom to which they are bound form a pyrrolidine, piperazine, morpholine, thiomorpholine or a piperidine ring;

or a pharmaceutically acceptable salt, geometrical isomer, tautomer, optical isomer, or *N*-oxide form thereof.

2. (Withdrawn) The compound according to claim 1, wherein X and Z represent both CH and Y represents nitrogen, forming a pyridine derivative.

- 3. (Withdrawn) The compound according to claim 1, wherein formula (I) represents a 4-trifluoromethylpyridine derivative.
 - 4. (Cancelled)
- 5. (Original) The compound according to claim 1 wherein R₃ is hydrogen and R₁ or R₂ is selected from

$$R_3$$
 R_3
 R_4
 R_3
 R_4
 R_4
 R_3
 R_4

(Original) The compound according to claim 1 wherein R₁ or R₂ is selected from 6.

$$R_3$$
 R_4
 R_3
 R_4

and where R₃ is hydrogen and R₄ is selected from hydrogen, methyl or ethyl.

7. (Original) The compound according to claim 1 wherein R₁ or R₂ is

$$\binom{R_3}{N}$$
 R_4

Applicant: Björn Nilsson Serial No.: 10/618,868

Filed : July 14, 2003 Page : 5 of 21

and where R₃ is hydrogen and R₄ is selected from hydrogen, methyl or ethyl.

8. (Original) The compound according to claim 1, wherein R₁ or R₂ is selected from

$$\binom{N}{N}$$
 $\binom{N}{N}$ \binom{N}

- 9. (Previously Presented) The compound according to claim 1, which is selected from the group consisting of:
- 4-(Benzyloxy)-2-(1-piperazinyl)pyrimidine,
- 4-[(2-Methoxybenzyl)oxy]-2-(1-piperazinyl)pyrimidine, and
- 2-{[3-(Benzyloxy)benzyl]oxy}-4-(1-piperazinyl)pyrimidine,

or a pharmacologically acceptable salt thereof.

- 10. (Original) A pharmaceutical composition comprising a compound according to claim 1 as an active ingredient, together with a pharmaceutically acceptable carrier.
 - (Cancelled) . 11.
 - 12. (Cancelled)
- (Previously Presented) A method for the treatment of an eating disorder, 13. comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.
- 14. (Previously Presented) A method for the treatment of obesity, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.

Applicant: Björn Nilsson Attorney's Docket No.: 13425-056002 / 00410-US -

Serial No.: 10/618,868

Filed : July 14, 2003 Page : 6 of 21

15. (Currently Amended) A method for the treatment of <u>Alzheimer's disease</u> a memory disorder, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.

- 16. (Currently Amended) A method for the treatment of <u>depression a mood disorder</u>, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.
- 17. (Previously Presented) A method for the treatment of an anxiety disorder, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.
- 18. (Currently Amended) A method for the treatment of sexual dysfunctions, epilepsy or urinary disorders, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.
- 19. (Previously Presented) A method for the treatment of pain, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.

20. (Cancelled)

21. (Previously Presented) A method for the treatment of schizophrenia, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.

Applicant: Björn Nilsson Serial No.: 10/618,868

Filed : July 14, 2003 Page : 7 of 21

> (Currently Amended) A method of making a compound of claim 1, formula (I): 22.

$$R_2$$
 R_1
 R_1
 R_2
 R_1

wherein:

Y and Z represent both nitrogen and X represents CH, forming a pyrimidine derivative, and wherein R₁ and R₂ are each, independently, selected from a group A consisting of

$$R_3$$
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4

or from a group B, consisting of aryl-C₁-C₆-alkoxy, heteroaryl-C₁-C₆-alkoxy, aryloxy-C₂-C₆alkoxy, heteroaryloxy-C₂-C₆-alkoxy, 1-indanyloxy, 2-indanyloxy, aryloxy, heteroaryloxy, arylthio, heteroarylthio, C₅-C₆-cycloalkylthio, C₅-C₈-alkoxy, C₅-C₈-alkylthio, C₃-C₆-alkynyloxy, C₃-C₆-alkenyloxy, fluoro-C₂-C₄-alkoxy, C₄-C₈-cycloalkyloxy, C₃-C₈-cycloalkyl-C₁-C₄-alkoxy, aryl-C₁-C₄-alkylthio, heteroaryl-C₁-C₄-alkylthio, aryl-C₁-C₄-alkylamino, heteroaryl-C₁-C₄alkylamino, heteroaryl and aryl;

with the proviso that:

- (i) R₁ and R₂ are different and are not both selected from group A or group B at the same time; and
- (ii) when X is CH and Z and Y both are nitrogen in formula (I), forming a pyrimidine derivative, and R₂ is 1-piperazinyl, then R₁ is other than phenoxy, phenyl or phenyl substituted by bromo, and C₅-C₈ alkoxy; and when R₂ is 4-methylpiperazin-1-yl or 4-(2hydroxyethyl)piperazin-1-yl, then R₁ is other than 5-nitro-2-furyl; and
- (iii) when X is CH and Z and Y both are nitrogen in formula (I), forming a pyrimidine derivative, and R₁ is 1-piperazinyl, then R₂ is other than C₅-C₈ alkoxy;

Applicant: Björn Nilsson Serial No.: 10/618,868

: July 14, 2003 Filed Page : 8 of 21

and where R₃ is H or C₁₋₄-alkyl, allyl, 2-hydroxyethyl, 2-cyanoethyl, or a nitrogen protecting group;

R_4 is hydrogen, or C_{1-4} alkyl;

and wherein any aryl or heteroaryl residue, alone or as part of another group, in R₁ or R₂ may be independently substituted in one or more positions, by C₁₋₄-alkyl, C₁₋₄-alkoxy, C₁₋₄alkylthio, C2-4-acyl, C1-4-alkylsulphonyl, cyano, nitro, hydroxy, C2-6-alkenyl, C2-6-alkynyl, fluoromethyl, trifluoromethyl, trifluoromethoxy, halogen, -N(R5)(R6), aryl, aryloxy, arylthio, aryl-C₁₋₄-alkyl, aryl-C₂₋₄-alkenyl, aryl-C₂₋₄-alkynyl, heteroaryl, heteroaryloxy, heteroarylthio or heteroaryl-C₁₋₄-alkyl, aryl-C₁₋₄-alkoxy, aryloxy-C₁₋₄-alkyl, dimethylamino-C₂₋₄-alkoxy; and wherein any aryl or heteroaryl residue as substituents on aryl or heteroaryl, alone or as part of another group, in R₁ or R₂ in turn may be substituted in one or more postions, independently of each other by C₁₋₄-alkyl, C₁₋₄-alkoxy, halogen, trifluoromethyl, cyano, hydroxy or dimethylamino; and

R5 and R6 independently of each other are hydrogen, methyl or ethyl, or together with the nitrogen atom to which they are bound form a pyrrolidine, piperazine, morpholine, thiomorpholine or a piperidine ring;

or a pharmaceutically acceptable salt, geometrical isomer, tautomer, optical isomer, or Noxide form thereof;

the method comprising:

(a) converting contacting a compound of the following formula:

wherein

Y and Z represent both nitrogen and X represents CH, forming a pyrimidine derivative, and wherein each Hal is independently a halogen; with a compound selected from the group consisting of:

Applicant: Björn Nilsson Attorney's Docket No.: 13425-056002 / 00410-US -

Serial No. : 10/618,868 DIV

Filed : July 14, 2003
Page : 9 of 21

(i) R^2 -OH, wherein R^2 is aryl- C_1 - C_6 -alkyl, heteroaryl- C_1 - C_6 -alkyl, aryloxy- C_2 - C_6 -alkyl, heteroaryloxy- C_2 - C_6 -alkyl, 1-indanyl, 2-indanyl, aryl, heteroaryl, C_5 - C_8 -alkyl, C_3 - C_6 -alkynyl, C_3 - C_6 -alkenyl, fluoro- C_2 - C_4 -alkyl, C_4 - C_8 -cycloalkyl, or C_3 - C_8 -cycloalkyl- C_1 - C_4 -alkyl, each of which is optionally substituted;

(ii) R^2 -SH, wherein R^2 is aryl, heteroaryl, C_5 - C_6 -cycloalkyl, C_5 - C_8 -alkyl, aryl- C_1 - C_4 -alkyl, each of which is optionally substituted;

(iii) R^2 -NH₂, wherein R^2 is aryl-C₁-C₄-alkyl or an heteroaryl-C₁-C₄-alkyl, each of which is optionally substituted; or

(iv) R^2 -B(OH)₂; wherein R^2 is heteroaryl or aryl, each of which is optionally substituted; to form a compound of formula (IX):

$$R_2$$
 N
 Hal
 (IX)

wherein R_2 is selected from Group B as defined above in claim 1 and with the proviso that R_2 is not any of the following groups:

[[R_3 R_4 R_4

Applicant: Björn Nilsson Serial No.: 10/618,868

Filed : July 14, 2003 Page : 10 of 21

(b) contacting the compound of formula (IX) with a compound selected from the group consisting of:

$$R_3$$
 R_3 R_4 R_4

or

(a') converting contacting a compound of the following formula:

whereinY and Z represent both nitrogen and X represents CH, forming a pyrimidine derivative, and wherein each Hal is independently a halogen; with a compound selected from the group consisting of:

$$R_3$$
 R_3 R_4 R_3 R_4 R_4 R_3 R_4 R_4

to form a compound of formula (XIII):

Applicant: Björn Nilsson Serial No.: 10/618,868 DIV

Filed : July 14, 2003 Page : 11 of 22

wherein Am is an amine residue selected from the group consisting of:

- (b') converting contacting the compound of formula (XIII) with a compound selected from the group consisting of:
- (i) R¹-OH, wherein R¹ is aryl-C₁-C₆-alkyl, heteroaryl-C₁-C₆-alkyl, aryloxy-C₂-C₆-alkyl, heteroaryloxy-C₂-C₆-alkyl, 1-indanyl, 2-indanyl, aryl, heteroaryl, C₅-C₈-alkyl, C₃-C₆-alkynyl, C₃-C₆-alkenyl, fluoro-C₂-C₄-alkyl, C₄-C₈-cycloalkyl, or C₃-C₈-cycloalkyl-C₁-C₄-alkyl, each of which is optionally substituted;
- (ii) R¹-SH, wherein R¹ is aryl, heteroaryl, C₅-C₆-cycloalkyl, C₅-C₈-alkyl, aryl-C₁-C₄alkyl, or heteroaryl-C₁-C₄-alkyl, each of which is optionally substituted;
- (iii) R¹-NH₂, wherein R¹ is aryl-C₁-C₄-alkyl or an heteroaryl-C₁-C₄-alkyl, each of which is optionally substituted; or
 - (iv) R¹-B(OH)₂; wherein R¹ is heteroaryl or aryl, each of which is optionally substituted; to form a compound of the following formula:

Applicant: Björn Nilsson Serial No.: 10/618,868 DIV

Filed : July 14, 2003 : 12 of 21 Page

wherein R₁ is selected from Group B as defined above in claim 1 and with the proviso that R_L is not any of the following groups:

thereby producing a compound of claim 1.

- 23. (Cancelled)
- (Cancelled) 24.
- 25. (Original) The compound according to claim 1, wherein R₃ is an acyl- or alkoxycarbonyl group forming a cleavable amide or carbamate linkage.
 - 26. (Cancelled)
 - 27. (Cancelled)
- 28. (New) A method for the treatment of urinary incontinence, comprising administering to a subject in need thereof a therapeutically effective amount of a compound according to claim 1.