

Accelerating Neural Recommendation Training with Embedding Scheduling

Chaoliang Zeng, Xudong Liao, Xiaodian Cheng, Han Tian, Xinchen Wan, Hao Wang, and **Kai Chen**

iSING Lab, Hong Kong University of Science and Technology

作者团队背景

Research Interests

- Data Center Networks
- High-performance Networking
- Al-centric Networking
- Machine Learning Systems
- Hardware Acceleration
- Privacy-preserving Computing

Kai Chen's Homepage (hkust.edu.hk)

目录

- Background and Motivation
- > Related Work
- Design
- > Evaluation
- > Conclusion

1. 什么是深度学习推荐模型 (Deep learning recommendation models, DLRM)

DLRM: 嵌入表+MLP

- 高性能
- 灵活性
- 可扩展性
- 开源

2. 什么是参数服务器 (Parameter Server, PS)

PS架构系统工作流程:

- Pull Weights
- Push Gradients
- Aggregate Gradients
- Model Update

3. RDMA 和传统 TCP/IP 的比较

高吞吐、低延迟的网络通信 (大规模并行计算机集群)

直接通过网络接口访问内存数据

4. 什么是FAE (Frequently Accessed Embeddings)

GPU workers

FAE oversample training data containing only hot embeddings

Accelerating Recommendation System Training by Leveraging Popular Choices

5. 什么是HET (Huge Embedding Model Training via Cache-enabled Distributed Framework)

HET applies a stalenesstolerant embedding update method

HET: Scaling out Huge Embedding Model Training via Cache-enabled Distributed Framework

DLRM: 嵌入表+MLP

稀疏特征 -> 密集表示 [id]

HET架构Embedding cache存在

显著的 Pull / Push 通信开销

	Model	Dataset
W1	Wide & Deep [7]	Criteo AD [10]
W2	Neural Collaborative Filtering [19]	MovieLens 25M [17]
W3	DeepFM [16]	Avazu [23]
W4	Deep & Cross [43]	Criteo Sponsored Search [40]

Table 1: Workloads in our case studies.

Larger batch size

More embedding transmissions

	Model	Dataset
W1	Wide & Deep [7]	Criteo AD [10]
W2	Neural Collaborative Filtering [19]	MovieLens 25M [17]
W3	DeepFM [16]	Avazu [23]
W4	Deep & Cross [43]	Criteo Sponsored Search [40]

Table 1: Workloads in our case studies.

Consumes up to 63% of endto-end DLRM training time.

Related Work

Distributed recommendation systems

- Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters 提出使用同步和异步机制分别更新MLP和嵌入表。然而,异步方案是不可拓展的,并且会随着worker数量提升而降低准确性。
- ●XDL: An Industrial Deep Learning Framework for High-dimensional Sparse Data 提出的优化包括分层样例压缩、工作流管道和零复制。它提供了对DLRM training pipeline的系统优化,并可以从嵌入调度中受益,进一步优化worker/PS之间的通信。

Related Work

Communication acceleration

- <u>SparCML: High-Performance Sparse Communication for Machine Learning</u> 等提出了许多优化稀疏参数同步的集体通信方法。
- Poseidon: An Efficient Communication Architecture for Distributed Deep

Learning on GPU Clusters 等利用通信调度,它组织不同层的消息传输顺序,使通信与计算重叠。

以上所有的通信加速方法都试图回答"如何有效地传递信息"。

Related Work

Serving large embedding tables

- ●Merlin HugeCTR: GPU-accelerated Recommender System Training and Inference 等直接跨多个GPU worker应用模型并行性,其中每个GPU在其高带宽内存(HBM)上存储一个表分片。
- <u>Distributed Hierarchical GPU Parameter Server for Massive Scale Deep</u>
 <u>Learning Ads Systems</u> 等利用数据集的偏度特征来加速高人气的嵌入访问。
- ●<u>Training Personalized Recommendation Systems from (GPU) Scratch: Look Forward not Backwards</u> 等侧重于通过调度嵌入IO和工作线程内的计算来进行缓存 预取。

- ●应该在哪里训练嵌入
- ●哪些嵌入应该同步

正向传播的缓存命中

- 尽可能更多的在训练中使用 cache embedding
- 按需同步

优化缓存命中

NSDI '24 - Accelerating Neural Recommendation Training with Embedding Scheduling

优化嵌入同步 (push)

可行性分析

可预测性

不频繁性

Herald: 解耦目标以支持实时调度

Herald training数据流

```
Algorithm 1: Static LAIA
   input :Batch samples (Inputs) and worker list
           (Workers)
   output : Inputs partition (Alloc)
1 Init Alloc;
2 Init all workers as available;
3 \ capacity = size(Inputs)/size(Workers);
4 for i in Inputs do
       for w in Workers do
           score_{(i,w)} = |cache(w) \cap embs(i)|;
       end
       Find worker w with the largest score among the
        available workers:
       Alloc_{(i,w)} = 1;
 9
       if \Sigma_i Alloc_w == capacity then
10
           Mark w as unavailable;
11
       end
12
13 end
14 return Alloc;
```

Location-aware Inputs Allocation (LAIA)

- 计算分数量化相关性 (Line 6)
- 分配任务给得分最高的worker (Line 8-9)
- ●保证各worker的任务均匀分布 (Line 10-12)
- 若存在共同最高分: 倾向均匀分 布地随机选择worker

DOI 差异明显: 低DOI更新更频繁,调度耗时高于调度优化

表分析: 选取DOI最高(值得调度)的k个表进行调度

LAIA 案例

Parameter server

GPU worker 1

Ε	mbedding cache
Table	Cached IDs
0	0, 1, 2
1	1000, 1001, 1002

GPU worker 2

Е	mbedding cache
Table	Cached IDs
0	7, 8, 10
1	1006, 1007, 1008

GPU worker 3

Ε	mbedding cache
Table	Cached IDs
0	1, 3, 10
1	1003, 1004, 1005

最高分任务分配

Sample #1

0, 1, 10 1000, 1001

Sample #2

1, 2, 5 1003, 1004

Sample #3

2, 7, 8 1005, 1006

Worker Pull

Worker Push

Parameter server

GPU worker 1

E	mbedding cache
Table	Cached IDs
0	0, 1, 2, 10
1	1000, 1001, 1002

GPU worker 2

Embedding cache	
Table	Cached IDs
0	7, 8, 10 , 2
1	1006, 1007, 1008 ,1005

GPU worker 3

Ε	mbedding cache
Table	Cached IDs
0	1, 3, 10 , 2, 5
1	1003, 1004, 1005

 0, 1, 10
 1000, 1001

 2, 7, 8
 1005, 1006

 1, 2, 5
 1003, 1004

 1, 2, 3
 1002, 1003

 4, 5, 6
 1006, 1009

 0, 1, 5
 1004, 1006

Evaluation

Herald平均减少了48%-89%的嵌入传输次数

Evaluation

自适应Herald与静态Herald相比,传输增量小于1.11倍

Evaluation

100Gbps以太网上, Herald相 较于HET, 在TCP和RDMA端 到端训练中分别达到1.09-2.11 倍和1.02-1.61倍的提升

Conclusion

- ●Herald利用嵌入缓存访问的可预测性和不频繁性(可行性)
- ●Herald应用自适应位置感知输入分配机制和按需同步策略来减少训练期间worker和PS之间的嵌入传输
- ●Herald可以显著降低嵌入通信开销,从而提高端到端推荐模型的训练效率

IDEAS

- 能否进一步提高?
- ✓ 如何找出更适合的k(选择嵌入表数)值,从而降低总体耗时;
- ✓ 在 LAIA 算法中, 能否提出一个新的评分方法减少评分耗时;
- ✓ Herald 和 XDL 能否进行融合,进一步提升优化效果;
- 能否用到我们的场景?
- ✓ 有很好的适配性,尤其是对于算力有限的场景中;

Thanks for listening 请老师同学们批评指正

汇报人: 黄 凯 2024 年 7 月 4 日