Chapitre 1

Propriétés ondulatoires de la lumière

Trains d'ondes émis par une source

(lumière non polarisée)

La lumière est modélisée par une onde EM $\vec{E}(M,t)$, $\vec{B}(M,t)$

<u>Modèle scalaire</u> = simplification

A – Modèle scalaire de la lumière (p7)

A.1 Le signal lumineux

Par définition,

$$s(M,t) = a(M)\cos(\omega t - \varphi(M))$$

est appelé signal lumineux (ou amplitude lumineuse)

Le modèle scalaire **permet** d'expliquer :

- l'optique géométrique
- les interférences 干涉
- la diffraction 衍射

Le modèle scalaire ne permet pas d'expliquer :

- la polarisation 偏振 de la lumière
- l'interaction entre lumière et matière

• Avantage : superposition

$$s(M,t) = s_1(M,t) + s_2(M,t)$$

A2. Eclairement

- ① Flux lumineux 光通量
- ② Intensité lumineuse 光强度
- ③ Eclairement 照明
- **4** Luminance 亮度

Les détecteurs sont sensibles à l'énergie lumineuse qu'ils reçoivent. Ils ont un temps de réponse $\tau_R \gg \tau_c$.

Exemples

 $ext{ceil} \sim 10^{-2} s$

Capteur numérique $\sim 10^{-3} s$ à $10^{-7} s$

Photomultiplicateur $\sim 10^{-10} s$

Les détecteurs optiques ne sont sensibles qu'à la valeur moyenne temporelle de la puissance rayonnée instantanée

$$\langle d\mathcal{P}(M,t)\rangle = \langle Ks^2(M,t)dS\rangle$$
 et $K=2$

On appelle **intensité** 光强度 (ou **éclairement**) d'une surface, exprimée en $W.m^{-2}$, la puissance lumineuse moyenne reçue par unité de surface

$$I = \frac{\langle d\mathcal{P} \rangle}{dS}$$

Par définition,

$$I(M) = 2\langle s^2(M, t) \rangle$$

A.3 Onde lumineuse monochromatique

Signal sinusoïdal

$$s(M,t) = a(M)\cos(\omega t - \varphi(M))$$

a(M) amplitude optique au point M $\varphi(M)$ retard de phase de l'onde au point M

$$\omega$$
, T , f , λ_0 , λ , k_0 , k

Spectre électromagnétique

Notation complexe

$$\underline{s}(M,t) = a(M).e^{j(\omega t - \varphi_M)}$$

$$\underline{s}(M,t) = \underline{A}(M).e^{j\omega t}$$

$$s(M,t) = Re\{\underline{s}(M,t)\}$$

$$a(M) = |\underline{A}(M)|$$

$$\varphi_M = -arg\underline{A}(M)$$

Eclairement d'une onde monochromatique

Par définition,

$$I = 2\langle s^2(M, t) \rangle$$

On a donc

$$I = a^{2}(M) = |\underline{A}(M)|^{2}$$

$$I = |\underline{s}(M,t)|^{2} = \underline{s}(M,t) \times \underline{s}^{*}(M,t)$$

Rappel:
$$\langle \cos^2(\omega t - \varphi(M)) \rangle = \frac{1}{2}$$

B – Propagation et déphasage (p10)

B.1 Chemin optique 光程

Par définition: le chemin optique entre S à M, noté (SM), est égale à la <u>distance</u> que parcourrait la lumière dans le vide (à la célérité c), pendant la durée τ_{SM} nécessaire au parcours SM dans le milieu considéré d'indice de réfraction n

Cas d'un milieu homogène

$$(SM) = c \times \tau_{SM} = n \times SM$$

Unité du chemin optique : mètre (m)

Expression générale

$$(SM) = \int_{SM} n(P) dl_P$$

Cas où la lumière traverse plusieurs milieux homogènes

Donner l'expression du chemin optique (MN)

B.2 Déphasage d'une onde lumineuse monochromatique par propagation

$$s(M,t) = \gamma s(S, t - \tau_{SM})$$

$$a(M)\cos(\omega t - \varphi(M)) = \gamma a(S)\cos(\omega(t - \tau_{SM}) - \varphi(S))$$

Montrer que :

$$\varphi(M) - \varphi(S) = \frac{2\pi}{\lambda_0}(SM) = \varphi_{SM}$$

Valeurs particulières

Soient N et M deux points situés sur le même rayon. M et N sont :

en phase

$$\varphi(M) - \varphi(N) = 2m\pi$$

$$(NM) = m\lambda_0$$

en opposition de phase

$$\varphi(M) - \varphi(N) = (2m + 1)\pi$$

$$(NM) = \left(m + \frac{1}{2}\right)\lambda_0$$

B.3 Surfaces d'ondes

Surface d'onde 波面 (ou surface équiphase 等相面, 等相)

$$\varphi(M) = constante$$

Pour une source ponctuelle $(SM) = constante \implies$ Les surfaces d'ondes sont des cercles centrés sur S

Théorème de Malus

Après un nombre quelconque de réflexions et de réfractions, les rayons lumineux issues d'une source ponctuelle sont orthogonaux aux surfaces d'ondes

Ex : onde sphérique, onde plane

Question 1.1

Exemple: Déterminer la forme des surfaces d'onde pour une source ponctuelle dont l'onde subit une réflexion sur un miroir plan

B.4 Stigmatisme et chemin optique

Le chemin optique qui relie deux points conjugués est indépendant du rayon considéré

Question 1.2

Sur la figure 1.5, déterminer le chemin optique (AA') en fonction de la distance AA', de l'épaisseur e de la lentille et de l'indice n du verre

B.5 Ondes fondamentales

Onde sphérique 球面波 Onde plane 平面波 Ondes sphériques dont les surfaces d'onde sont des portions de sphères

Plaçons la source à l'origine O. On a : $\varphi(M) - \varphi(O) = k \times OM$

et

$$\underline{s}(M,t) = a(M) \exp j(\omega t - k \times OM - \varphi(O))$$

- Phase de l'OSPM

Onde divergente (div)

$$\varphi(M) - \varphi(O) = k_0 \times (OM)$$

Onde convergente (conv)

$$\varphi(O) - \varphi(M) = k_0 \times (MO)$$

On pose $\vec{k} = +k\vec{e}_r$ (div) et $\vec{k} = -k\vec{e}_r$ (conv)

$$\varphi(M) - \varphi(O) = \vec{k} \cdot \overrightarrow{OM}$$

- Amplitude d'une OSPM

Dans un milieu **non absorbant**, la puissance moyenne est la même sur toutes les sphères

$$\mathcal{P}(r) = \mathcal{P}(0)$$

$$\iint_{Sr} \mathcal{P}(M)dS = \iint_{Sr} a^2(M)dS = \mathcal{P}(O)$$

$$a^2(r)4\pi r^2 = \mathcal{P}(0)$$

$$a(r) = \frac{1}{r} \sqrt{\frac{\mathcal{P}(0)}{4\pi}} = \frac{\alpha}{r}$$

Expression d'une OSPM dans un milieu homogène

$$\underline{s}(M,t) = \frac{\alpha}{r} \exp j(\omega t - \vec{k} \cdot \vec{r})$$

A grande distance, l'OSPM peut être assimilée à une onde plane

Ondes planes de direction \vec{u} : les surfaces d'onde sont des plans perpendiculaires à \vec{u}

Question 1.4

Proposer une méthode pour produire une onde plane à l'aide d'une source ponctuelle et d'une lentille convergente

$$\varphi(M) - \varphi(H) = k \times HM$$

Montrer que : $\varphi(M) - \varphi(P) = k\vec{u} \cdot \overrightarrow{PM}$

Expression d'une OPPM dans un milieu homogène

En choisissant pour point P l'origine O du repère, on a :

$$\underline{s}(M,t) = a(M) \exp j(\omega t - \vec{k} \cdot \overrightarrow{OM})$$

C – Autres phénomènes affectant le signal optique (p17)

C1. Changement d'amplitude: absorption 吸收

Le milieu de propagation peut absorber une partie de l'énergie

⇒ l'amplitude de l'onde diminue

$$s(M,t) = \gamma_{NM} s\left(N, t - \frac{(NM)}{c}\right)$$
$$\gamma_{NM} = \exp(-\alpha NM)$$

 α : coefficient d'absorption (dimension L^{-1})

C.2 Réflexion et transmission sur un dioptre

<u>Déphasages</u> 相位差 particuliers

Certaines situations introduisent une discontinuité de la phase

- Passage sur un dioptre
- Réflexion sur un miroir métallique
- Passage par un point de convergence

- Passage sur un dioptre

En EM, on définit :

 \underline{r} : coefficient de **réflexion** en amplitude

$$\underline{A}_r(M) = \underline{r} \, \underline{A}_i(M)$$

t : coefficient de transmission en amplitude

$$\underline{A}_t(M) = \underline{t} \, \underline{A}_i(M)$$

En EM, on montre que :

$$\underline{r} = \frac{n_1 - n_2}{n_1 + n_2}$$
 et $\underline{t} = \frac{2n_1}{n_1 + n_2}$

$$\underline{r} = \frac{n_1 - n_2}{n_1 + n_2}$$

- Si $n_1>n_2$ alors $\underline{r}\in\mathbb{R}^+\Longrightarrow \varphi_r(M)=\varphi_i(M)$ Les ondes incidente et réfléchie sont en phase
- Si $n_1 < n_2$ alors $\underline{r} \in \mathbb{R}^- \Rightarrow \varphi_r(M) = \varphi_i(M) + \pi$ Les ondes incidente et réfléchie sont en opposition de phase

$$\underline{t} = \frac{2n_1}{n_1 + n_2}$$

• $\underline{t} \in \mathbb{R}^+ \Longrightarrow \varphi_t(M) = \varphi_i(M)$

Les ondes incidente et transmise sont en phase

Question 1.5

Déterminer en ordre de grandeur les coefficients de réflexion et de transmission en puissance pour une interface air-verre

Question 1.6

Vérifier que l'on a bien R+T=1

- Réflexion sur un miroir métallique

En EM, on montre que pour un miroir parfait

$$rac{r}{} = -1$$

$$\varphi_r(M) = \varphi_i(M) + \pi$$
$$\varphi_r(M) = \varphi_i(M) + \varphi_{sup}$$

- Passage par un point de convergence

Il y a un déphasage de π lorsque l'onde passe par un point de convergence (Ex : point F)

Généralisation

Pour les points A et B appartenant au même rayon, on a

$$\varphi_{AB} = \frac{2\pi}{\lambda_0}(AB) + \varphi_{sup}$$

$$\triangleright \varphi_{sup} = +\pi$$

Si réflexion sur un milieu plus réfringent ($n_1 < n_2$) Si réflexion sur une surface métallique

Si passage par un point de convergence

$$\triangleright \varphi_{sup} = +\frac{\pi}{2}$$

Si passage au travers d'un trou diffractant