2 概形

习题 2.1. 设 A 是环, $X = \operatorname{Spec} A$, $f \in A$, $D(f) \subseteq X$ 为 V((f)) 的开补集. 证明 $(D(f), \mathcal{O}_X|_{D(f)})$ 同构于 $\operatorname{Spec} A_f$.

证明. 构造同构映射 $\phi: D(f) \to \operatorname{Spec} X$ 如下. 若 $\mathfrak{p} \in D(f)$,则 $f \notin \mathfrak{p}$,从而 $\mathfrak{p}_f \subseteq A_f$. 定义 $\phi(\mathfrak{p}) = \mathfrak{p}_f$,则 ϕ 作 为集合的映射是双射. 此外,还有自然的同构 $A_{\mathfrak{p}} \cong (A_f)_{\mathfrak{p}_f}$,因此容易定义并验证同构 $(\phi, \phi^{\sharp}): (D(f), \mathcal{O}_X|_{D(f)}) \cong \operatorname{Spec} A_f$.

习题 2.2. 设 (X, \mathcal{O}_X) 是概形, $U \subseteq X$ 是开集. 证明 $(U, \mathcal{O}_X|_U)$ 是概形. 我们将其称之为开集 U 上的诱导概形结构, 并将 $(U, \mathcal{O}_X|_U)$ 称为 X 的开子概形.

证明. 注意到任意仿射概形中存在一组由同构于仿射概形的开集构成的基, 即 $(D(f), \mathcal{O}|_{D(f)})$. 因此仿射性是局部性质. 从而概形的开子集仍然局部仿射, 因此也是概形.

习题 2.3. 设 (X, \mathcal{O}_X) 是概形. 如果对任意开集 $U \subseteq X$, $\mathcal{O}_X(U)$ 中都没有幂零元素, 就说 (X, \mathcal{O}_X) 既约.

- (a) 证明: (X, \mathcal{O}_X) 既约当且仅当对任意 $P \in X$, 局部环 $\mathcal{O}_{X,P}$ 里都没有幂零元素.
- (b) 令 (X, \mathcal{O}_X) 为概形. 令 $(\mathcal{O}_X)_{\text{red}}$ 为预层 $U \mapsto \mathcal{O}_X(U)_{\text{red}}$, 其中, 对任意环 A, A_{red} 表示 A 商掉幂零元的理想构成的商环. 证明 $(X, (\mathcal{O}_X)_{\text{red}})$ 是概形. 我们称之为 X 的既约化概形, 记作 X_{red} . 证明存在同态 $X_{\text{red}} \to X$, 其限制在底空间上是同胚.
- (c) 设 $f: X \to Y$ 是概形同态, 且 X 既约. 证明 f 穿过 Y_{red} .
- 证明. (a) 若 U 是开集, $s \in \mathcal{O}_X(U)$ 幂零,则对任意 $P \in U$, s_P 幂零. 因此若 $\mathcal{O}_{X,P}$ 中都无幂零元素,即知 $s_P = 0 \forall P \in U$,因此 s = 0. 充分性即证. 反之,若 X 既约,则对任意 $P \in X$, $\mathcal{O}_{X,P} = \varinjlim_{P \in U} \mathcal{O}_X(U)$ 是既约环的 直极限,因此也既约.
 - (b) 只需注意到 $(A_f)_{\text{red}} \cong (A_{\text{red}})_f$,因此 $(\operatorname{Spec} A)_{\text{red}} \cong \operatorname{Spec} A_{\text{red}}$. $X_{\text{red}} \to X$ 的映射容易构造,即在每个截面上对应商同态.
 - (c) 若 X 既约, 则同态 $f^*: \mathcal{O}_Y(U) \to f_*(\mathcal{O}_X)(U)$ 必定将幂零元映射到 0, 因此穿过 $\mathcal{O}_Y(U)_{\mathrm{red}}$. 从而易知 f 穿过 Y_{red} .

习题 2.4. 令 A 是环, (X, \mathcal{O}_X) 是概形. 任意给定 $f: X \to \operatorname{Spec} A$, 考虑整体截面上的映射, 就得到环同态 $A \to \Gamma(X, \mathcal{O}_X)$. 因此存在自然映射

 $\alpha: \operatorname{Hom}_{\operatorname{\mathfrak{S}ch}}(X,\operatorname{Spec} A) \to \operatorname{Hom}_{\operatorname{\mathfrak{Rings}}}(A,\Gamma(X,\mathcal{O}_X)).$

证明 α 是双射.

证明. 设 $g: A \to \Gamma(X, \mathcal{O}_X)$, 定义映射 $f: X \to \operatorname{Spec} A$ 如下. 对于 $P \in X$, 考虑复合映射 $A \to \Gamma(X, \mathcal{O}_X) \to \mathcal{O}_{X,P}$, 则 $\mathcal{O}_{X,P}$ 的极大理想的原像也是 A 中的素理想, 即为 f(P). 由定义, 自然有映射 $f_{\mathfrak{p}}^{\sharp}: A_{\mathfrak{p}} \to f_{*}(\mathcal{O}_{X})_{\mathfrak{p}}$. 因此容易定义概形同态 $(f, f^{\sharp}): X \to \operatorname{Spec} A$.

若记以上构造为自然映射 β : Hom $\mathfrak{Rings}(A,\Gamma(X,\mathcal{O}_X)) \to \operatorname{Hom}_{\mathfrak{Sch}}(X,\operatorname{Spec} A)$, 不难验证 α 与 β 互为逆映射. 从而 α 必定是双射.

习题 2.5. 描述 Spec Z, 并证明它是概形范畴中的终对象.

证明. Spec $\mathbb Z$ 的底空间是以所有素数为点的有限补空间. 对一个开集 U, 设 U 不包含的素数为 p_1, \dots, p_k , 则 $\Gamma(U, \operatorname{Spec} \mathbb Z)$ 是所有分母仅有 p_1, \dots, p_k 这些素因子的有理数构成的环.

由习题 2.4 即知 Spec Z 是概形范畴的终对象, 因为 Z 是环范畴的始对象.

习题 2.6. 描述零环的谱, 并证明它是概形范畴的始对象.

证明. 零环的谱是空集. 显然是始对象.

习题 2.7. 令 X 是概形. 对任意 $x \in X$, 设 \mathcal{O}_x 是 x 处的局部环, \mathfrak{m}_x 是其极大理想. 定义 x 处的剩余域是 $k(x) = \mathcal{O}_x/\mathfrak{m}_x$. 设 K 是域. 证明要给出 Spec $K \to X$ 的同态, 等价于给出点 $x \in X$ 及域嵌入 $k(x) \to K$.

证明. Spec K 是单点空间, 因此由定义立证.

习题 2.8. 设 X 是概形. 对 $x \in X$, 定义 X 中 x 处的 Zariski 切空间 T_x 是 k(x)-向量空间 $\mathfrak{m}_x/\mathfrak{m}_x^2$ 的对偶空间. 假设 X 是域 k 上的概形, $k[\epsilon]/\epsilon^2$ 是 k 上的对偶数环. 证明要给出从 $Spec\ k[\epsilon]/\epsilon^2$ 到 X 的同态, 等价于给出一个k-有理点 $x \in X$ (即 k(x) = k) 和 T_x 的一个元素.

证明. Spec $k[\epsilon]/\epsilon^2$ 也是单点空间. 因此由定义易证.

习题 2.9. 设 X 是拓扑空间, Z 是其不可约闭子集. Z 的一般点就是闭包等于 Z 的点. 若 X 是概形, 证明每个 (非空) 不可约闭子集都有唯一的一般点.

证明. 在一般情况下,对任意与 Z 相交的仿射开子集 U, 由上述推导即知存在唯一的 $\S_U \in Z \cap U$ 使得 $\{\S_U\}^{\vdash} \cap U = Z \cap U$. 若 U, V 是两个这样的开集,则由不可约性质知 $U \cap V \cap Z$ 非空. 取仿射开集 $W \subseteq U \cap V$ 使得 $W \cap Z$ 非空. 由上述推导, \S_U 和 \S_V 也同时属于 W,并且是 W 中 $W \cap Z$ 的唯一一般点. 因此所有 \S_U 全部相等,也就是 Z 的一般点.

若 $X \cong \operatorname{Spec} A$ 是仿射概形,则其非空不可约闭子集必定形如 $V(\mathfrak{p})$,从而有唯一的一般点 \mathfrak{p} . 进一步地,若 D(f) 是与 $V(\mathfrak{p})$ 相交的仿射开集,则 $\mathfrak{p} \in D(f)$,因此 \mathfrak{p} 也是 $D(f) \cap V(\mathfrak{p})$ 的一般点.

习题 2.10. 描述 Spec $\mathbb{R}[x]$. 其底空间与 \mathbb{R} 这个集合有何区别? 与 \mathbb{C} 呢?

证明. Spec $\mathbb{R}[x]$ 中有一般点 (0), 还有若干闭点;闭点与 $\mathbb{R}[x]$ 中的不可约多项式——对应:即对每个 $r \in \mathbb{R}$, 有闭点 (x-r);对任意 $b^2-4c<0$,有闭点 (x^2+bx+c) .截面则与习题 2.5 类似.

其底空间比集合 $\mathbb R$ 多出一般点以及二次多项式对应的闭点. 而与 $\mathbb C$ 相比, 每个复数都与其复共轭等同起来了 (此外当然也多出了一般点).

习题 2.11. 令 $k = \mathbb{F}_p$ 是 p 元有限域, 描述 $\operatorname{Spec} k[x]$. 其点处的剩余域是什么? 给定一个域, $\operatorname{Spec} k[x]$ 中有多少以其为剩余域的点?

证明. Spec k[x] 的点有一个一般点 (0), 以及若干闭点, 与首一不可约多项式一一对应. (0) 处的剩余域是分式域 k(x). 若 f 是不可约多项式, 则 (f) 处的多项式是 $k[x]/(f) \cong \mathbb{F}_q$, 其中 $q = p^{\deg f}$.

若给定 k 的有限扩域 $\mathbb{F}_q, q=p^n$,则以其为剩余域的点的个数即为 k[x] 中 n 次首一不可约多项式的个数,由 Gauss 公式即为

$$\frac{1}{n}\sum_{d|n}\mu(\frac{n}{d})q^d.$$

П

习题 2.12 (粘接引理). 结论很有用, 但是证明平凡. 不写了!

习题 2.13. 若拓扑空间 X 的任意开覆盖都有子覆盖, 就称 X 拟紧 (其实就是一般情况下提及的紧).

- (a) 证明: 拓扑空间 Noether 当且仅当其任意开子集拟紧.
- (b) 若 X 是仿射概形, 证明 sp(X) 拟紧, 但是一般并不 Noether. 如果 sp(X) Noether, 就说 X Noether.
- (c) 若 A 是 Noether 环, 证明 sp(Spec A) 是 Noether 空间.
- (d) 给出上一条的逆命题的一个反例,即 sp(Spec A)是 Noether 空间,但 A 不 Noether.

证明. (a) 由定义平凡.

- (b) 若 sp(Spec A) $\subseteq \bigcup_i U_i$, 不妨设每个 U_i 都是基本开集 $D(f_i)$. 那么作为理想, $1 = \sum_i (f_i)$, 即存在有限个 f_i 可以 生成 A. 因此对应的有限个 $D(f_i)$ 覆盖 Spec A, 从而覆盖 sp(Spec A).
- (c) 若 A 是 Noether 环,则其理想满足升链条件,对应在 Spec A 中就说明其闭集满足降链条件. 因此 Spec A 是 Noether 空间, sp(Spec A) 作为其子空间也是 Noether 空间.
- (d) 设 $A = k[x_1, x_2, ...]/(x_1^2, x_2^2, ...)$. 记 $\mathfrak{p} = (x_1, x_2, ...) \subseteq A$, 则 $A/\mathfrak{p} \cong k$, 且 \mathfrak{p} 中元素都幂零. 因此 A 只有 \mathfrak{p} 一个 素理想, 从而 Spec A Noether. 但是 A 显然不 Noether.

习题 2.14. (a) 设 S 是分次环. 证明 $Proj S = \emptyset$ 当且仅当 S_+ 中仅包含幂零元素.

- (b) 设 $\varphi: S \to T$ 是分次环的分次同态 (即保持次数的同态). 令 $U = \{ \mathfrak{p} \in \operatorname{Proj} T \mid \mathfrak{p} \not\supseteq \varphi(S_+) \}$. 证明 $U \in \operatorname{Proj} T$ 的开子集, 且 φ 决定了一个自然同态 $f: U \to \operatorname{Proj} S$.
- (c) 即使 φ 不是同构, f 也可能是. 比如说, 设 $\varphi_d: S_d \to T_d$ 在 $d \ge d_0$ 的情况下都是同构, 其中 d_0 是非负整数. 证明 $U = \operatorname{Proj} T$ 并且 $f: \operatorname{Proj} T \to \operatorname{Proj} S$ 是同构.
- (d) 设 V 是射影簇, 其分次坐标环是 S. 证明 $t(V) \cong \text{Proj } S$.
- 证明. (a) 若 S_+ 中不仅包含幂零元素,则考虑不包含某个非幂零元素及其幂的极大真齐次理想,不难证明其是齐次素理想.

反之,设 S_+ 中仅包含幂零元素,则若 $\mathfrak{p} \subseteq S$ 是齐次素理想,则 $\mathfrak{p} \supseteq \sqrt{(0)} \supseteq S_+$. 因此一切齐次素理想都包含 S_+ ,从而 $\operatorname{Proj} S = \emptyset$.

(b) $U = \operatorname{Proj} T - V(\varphi(S_+))$ 当然是 $\operatorname{Proj} T$ 中的开集. 若 $\mathfrak{p} \in U$, 可以定义 $f(\mathfrak{p}) = \ker(S \to T \to T/\mathfrak{p}) = \varphi^{-1}(\mathfrak{p})$. 而 f^* 可以由 φ 诱导的局部环同态 $S_{(f(\mathfrak{p}))} \to T_{(\mathfrak{p})}$ 定义.

(c) 若 φ_d 在 $d \ge d_0$ 的情况下都是同构,则 $T/\varphi(S)$ 中次数大于 0 的齐次元素都是幂零元. 因此易知 $U = \operatorname{Proj} T$. 为证明 f 是同构,只需证明 φ 诱导的局部环同态 $S_{(\varphi^{-1}\mathfrak{p})} \to T_{(\mathfrak{p})}$ 都是同构. 取元素验证其既单又满即可.

(d) 不会.

习题 2.15. 不会代数簇, 不写了.

习题 2.16. \diamondsuit X 是概形, $f \in \Gamma(X, \mathcal{O}_X)$, 定义

$$X_f = \{ x \in X \mid f_x \notin \mathfrak{m}_x \}.$$

其中 $f_x \in \mathcal{O}_x$ 是 f 在 x 处的茎, \mathfrak{m}_x 是 \mathcal{O}_x 的极大理想.

- (a) 设 $U = \operatorname{Spec} B \in X$ 中的仿射开集, $\bar{f} \in \Gamma(U, \mathcal{O}_X|_U)$ 是 f 的限制, 证明 $U \cap X_f = D(\bar{f})$. 由此说明 X_f 是开集.
- (b) 假设 X 拟紧. 令 $A = \Gamma(X, \mathcal{O}_X)$, $a \in A$ 且 a 限制在 X_f 上消失. 证明存在 n > 0, 使得 $f^n a = 0$ [提示:用仿射开集覆盖 X].
- (c) 现在假设 X 可以由有限个仿射开集 U_i 覆盖, 且交集 $U_i \cap U_j$ 全都拟紧 (比如说, $\operatorname{sp}(X)$ 是 Noether 空间时即满足此条件). 令 $b \in \Gamma(X_f, \mathcal{O}_{X_f})$. 证明对某个 n > 0, $f^n b \in A$ 中元素的限制.
- (d) 沿用 (c) 中的假设, 证明 $\Gamma(X_f, \mathcal{O}_{X_f}) \cong A_f$.
- 证明. (a) 若 $x \in U$, 则 $f_x = \bar{f}_x$. 因此显然.
 - (b) 先设 $X = \operatorname{Spec} A$ 是仿射开集. 则 $X_f = D(f)$, $\mathcal{O}_X|_{X_f} \cong \operatorname{Spec} A_f$. 因此 a 限制在 X_f 上消失等价于存在 n > 0 使得 $f^n a = 0$.

在一般情况下, 由于 X 可以由仿射开集覆盖, 而其拟紧, 从而其可以由有限个仿射开集覆盖, 设为 $U_1, ..., U_k$, 其中 $U_i \cong \operatorname{Spec} B_i$. 记 f, a 在 U_i 上的限制为 $\bar{f_i}, \bar{a_i} \in B_i$. 由上述推导, 对每个 i, 存在 n_i 使得 $f_i^{n_i} \bar{a_i} = 0$. 取 n 为 n_i 中的最大值, 则由层的唯一性公理即知 $f^n a = 0$.

- (c) 先设 $X = \operatorname{Spec} A$ 是仿射开集, 则 $b \in \Gamma(X_f, \mathcal{O}_{X_f}) \cong A_f$, 从而存在 n 使得 $f^n b$ 是 A 中元素的限制.
 - 一般情况下,同 (b),设 X 可以由 $U_1, ..., U_k$ 覆盖, $U_i \cong \operatorname{Spec} B_i$. 同理定义 $\bar{f_i} \in \Gamma(U_i, \mathcal{O}_X), \bar{b_i} \in \Gamma(U_i \cap X_f, \mathcal{O}_X)$. 则存在 n,使得每个 $\bar{f_i}^n \bar{b_i}$ 是 $a_i \in A$ 的限制. 此时对每一对 $i \neq j$, $a_i a_j$ 在 $U_i \cap U_j \cap X_f$ 上的限制为 0. 因此由 (b),存在 m_{ij} 使得 $f^{n_{ij}}(a_i a_j)$ 在 $U_i \cap U_j$ 上限制为 0. 取 m 为 m_{ij} 的最大值,则 $\{f^m a_i\}$ 彼此兼容,从而可以 粘贴成 $t \in A$,其在 X_f 上的限制即是 $f^{n+m}b$.

- (d) 显然 f 在 $\Gamma(X_f, \mathcal{O}_{X_f})$ 上可逆. 从而由 (b) (c) 易证.
- **习题 2.17** (仿射性的判别条件). (a) 设 $f: X \to Y$ 是概形同态, 且 Y 可以由若干开集 U_i 覆盖, 使得每个限制映射 $f^{-1}(U_i) \to U_i$ 是同构. 证明 f 也是同构.
- (b) 概形 X 仿射当且仅当存在有限个元素 $f_1, ..., f_r \in A = \Gamma(X, \mathcal{O}_X)$, 使得每个开集 X_{f_i} 都仿射, 且 $(f_1, ..., f_r) = A$ [提示: 使用前面的习题 2.4 和习题 2.16d].
- 证明. (a) 容易知道 f 在底空间上是同胚. 且 f 在茎上都是同构, 从而 f 是同构.
 - (b) 由习题 2.16d 知道 $X_{f_i} \cong \operatorname{Spec} A_{f_i}$. 用习题 2.4 的方法构造映射 $g: X \to \operatorname{Spec} A$. 不难发现 $g \not \in X_{f_i}$ 映射到 $D(f_i)$, 且映射 $g(X_{f_i}): \mathcal{O}_X(X_{f_i}) \to A_{f_i}$ 是同构. 因此再由习题 2.4 就知道 $g|_{X_{f_i}}$ 即是同构 $X_{f_i} \cong \operatorname{Spec} A_{f_i}$. 由 $(f_1, \dots, f_r) = A$ 即知 $D(f_i)$ 覆盖 $\operatorname{Spec} A$. 因此由 (a) 即证.

习题 2.18. 本习题中, 我们将比较环同态的若干性质和其诱导的谱的同态的性质.

- (a) 设 A 是环, $X = \operatorname{Spec} A$, $f \in A$. 证明 f 幂零当且仅当 D(f) 为空.
- (b) 令 $\varphi: A \to B$ 是环同态, $f: Y = \operatorname{Spec} B \to X = \operatorname{Spec} A$ 是诱导的仿射概形同态. 证明 φ 是单射当且仅当对应的层映射 $f^*: \mathcal{O}_X \to f_*\mathcal{O}_Y$ 是单射. 更进一步地, 证明这种情况下 f 是支配的, 即 f(Y) 在 X 中稠密.
- (c) 在同样的假设下, 证明: 若 φ 是满射, 则 f 将 Y 同胚到 X 的闭子集, 且 f^* 是满射.
- (d) 证明 (c) 的逆命题, 即如果 f 将 Y 同胚到 X 的闭子集, 且 f^* 是满射, 则 φ 是满射 [提示:考虑 $X' = \operatorname{Spec}(A/\ker\varphi)$, 并使用 (b) 和 (c)].

证明. (a) 平凡.

(b) 若 f^* 是单射, 则 $f^*(X)$: $\mathcal{O}_X(X) = A \to f_*\mathcal{O}_Y(X) = B$ 是单射, 即 φ 是单射.

反之, 若 φ 是单射, 则对任意 $a \in A$, $A_a \to B_{\varphi(a)}$ 也是单射; 即 $f^*(D(a))$ 是单射. 若 U 是开集, $s \in \mathcal{O}_X(U)$, $f^*(U)(s) = 0$, 则 s 限制在每个 $D(a) \subseteq U$ 上为 0. 由于 D(a) 构成一组基, 由层的唯一性公理即知 s = 0. 因此 f^* 是单射.

并且若 φ 是单射, 则对任意 $a \in A$, a 不幂零, $\varphi(a)$ 也不幂零. 因此 $B_{\varphi(a)}$ 非 0 环, 即 $f^{-1}(D(a)) \neq \emptyset$. 因此 f(Y) 与所有开集相交非空, 即稠密.

- (c) 设 φ 是满射, 则 $B \cong A/\ker \varphi$, 从而 B 的素理想通过 f 和 A 中所有包含 $\ker \varphi$ 的素理想一一对应. 因此 f 将 Y 同胚到 $V(\ker \varphi) \subseteq A$. 且类似 (b), 若 $a \in A$, 则 $A_a \to B_{\varphi(a)}$ 是满射. 从而 f^* 在一组开集基上的映射都 为满射, 因此 f^* 是满射 (因为茎上的映射都是满射).
- (d) 定义 $X' = \operatorname{Spec}(A/\ker\varphi)$, 则 φ 分解为 $\pi: A \to A/\ker\varphi$ 和 $\varphi': A/\ker\varphi \to B$. 因此 f 也分解为 $f': Y \to X'$ 和 $p: X' \to X$. 由于 φ' 是单射, f'(Y) 在 X' 中稠密. 然而 X' (拓扑上) 可以看作 X 的子空间, 从而 f'(Y) 是 X' 的闭集, 因此 f'(Y) = X'.

而 $f^*: \mathcal{O}_X \to p_*\mathcal{O}_{X'} \to f_*\mathcal{O}_Y$ 是满射,因此由 p 是单射即知 $f'^*: \mathcal{O}_{X'} \to f_*'\mathcal{O}_Y$ 是满射.而 f^* 又是单射,因此是同构.f' 也是同胚,所以 $X'\cong Y$,因此 $A/\ker\varphi\cong B$,即 φ 是满射.

- 1) Spec A 不连通.
- 2) 存在非零元素 $e_1, e_2 \in A$ 使得 $e_1e_2 = 0, e_1^2 = e_1, e_2^2 = e_2, e_1 + e_2 = 1$ (这样的元素称为正交幂等元).
- 3) A 同构于两个非零环的直积.

证明. 若 (2) 成立, 则 $\operatorname{Spec} A = D(e_1) \cup D(e_2), D(e_1) \cap D(e_2) = \emptyset$, 因此 (1) 成立.

若(3)成立,则两个直积因子中的单位元即是正交幂等元,从而(2)成立.

若 (1) 成立,记 Spec $A = U_1 \cup U_2, U_1 \cap U_2 = \emptyset$. 设 $U_1 = V(\mathfrak{a}_1), U_2 = V(\mathfrak{a}_2)$,其中 $\mathfrak{a}_1, \mathfrak{a}_2$ 是根理想.则 $\mathfrak{a}_1 \cap \mathfrak{a}_2 = 0, \mathfrak{a}_1 + \mathfrak{a}_2 = A$. 因此 $A = \mathfrak{a}_1 \times \mathfrak{a}_2$.从而 (3) 成立.