

Projet IMA: Inpainting d'images

--«Object Removal by Exemplar-Based Inpainting» by A. Criminisi, P. Pérez, K. Toyama

Alessandro Montaldo Chun Wu Tuteur : Yann Gousseau

I. Introduction

La technique 'Inpainting' vise à reconstruire des zones inconnues dans une image en utilisant l'information connue de son voisinage.

État de l'art

L'approche basée géométrie(traditional image inpainting)

Flou introduit par le processus de diffusion et l'absence totale de texture dans la zone cible.

I. Introduction

État de l'art

- L'approche basée motif ou patch ("texture synthesis")
 - Copier/coller de patchs d'images en calculant la similarité des patches.
 - Bon pour de larges zones à remplir En revanche, ces méthodes n'assurent pas une géométrie 'globale' de la zone à remplir.

I. Introduction

En 2004, Criminisi, etc., a combiné les deux approches d'un nouvel algorithme (Exemplar-Based Inpainting) avec les avantages des deux approches.

L'essentiel de notre projet est d'implémenter l'algorithme d'Exemplar-Based Inpainting en Python.

Figure 1: Supprimer des objets volumineux des images.(a) Image originale. (b) La région correspondant à la personne au premier plan a été sélectionnée manuellement, puis automatiquement supprimée.

Source: "Object Removal by Exemplar-Based Inpainting" by A.

Criminisi, P. Pérez, K. Toyama

II. Algorithme de Criminisi

(Exemplar-Based Inpainting)

- Extract the manually selected initial front δΩ⁰.
- Repeat until done:
 - 1a. Identify the fill front $\delta\Omega^t$. If $\Omega^t = \emptyset$, exit.
 - **1b.** Compute priorities $P(\mathbf{p}) \ \forall \mathbf{p} \in \delta\Omega^t$.
 - 2a. Find the patch $\Psi_{\hat{\mathbf{p}}}$ with the maximum priority, i.e., $\Psi_{\hat{\mathbf{p}}} \mid \hat{\mathbf{p}} = \arg \max_{\mathbf{p} \in \delta \Omega^t} P(\mathbf{p})$
 - **2b.** Find the exemplar $\Psi_{\hat{\mathbf{q}}} \in \Phi$ that minimizes $d(\Psi_{\hat{\mathbf{p}}}, \Psi_{\hat{\mathbf{q}}})$.
 - Copy image data from Ψ_{q̂} to Ψ_{p̂}.
 - 3. Update $C(\mathbf{p}) \ \forall \mathbf{p} \ | \mathbf{p} \in \Psi_{\hat{\mathbf{p}}} \cap \Omega$

Table 1: Region filling algorithm.

Figure 2: Propagation de la structure par synthèse de texture basée sur des exemples(patches).

– Source : "Object Removal by Exemplar-Based Inpainting" by A. Criminisi, P. Pérez, K. Toyama.

II. Algorithme de Criminisi

(Exemplar-Based Inpainting)

Détails de l'algorithme

Initialement $C(p) = \begin{cases} 0, \forall p \in T \\ 1, \forall p \in S \end{cases}$

$$C(p) = \frac{\sum_{\mathbf{q} \in \psi_{p \cap S}} C(q)}{|\psi_p|}$$

Calculer la priorité de patch

$$P(\mathbf{p})=C(\mathbf{p})D(\mathbf{p})$$

Où C (p) est le terme de confiance;

D (p) est le terme de données; p est le pixel central d'un patch

✓ D (p) -- encourager la propagation de la structure linéaire dans la région cible.

$$D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp} \cdot \mathbf{n}_{\mathbf{p}}|}{\alpha}$$

Où n_p est la normale au contour $\delta\Omega$ de la région cible Ω et ∇I_p^{\perp} est l'isophote au point p.

II. Algorithme de Criminisi

(Exemplar-Based Inpainting)

Choisir le meilleur patch source

$$\psi_{\widehat{q}} = \arg\min_{\psi_q \in \Phi} d\left(\psi_{\widehat{p}}, \psi_q\right)$$

Avec
$$d(\psi_{\widehat{p}}, \psi_q)$$

la somme des différences au carré (SSD) des pixels déjà remplis(connues) dans les deux patchs

Updating confidence values

$$C(q) = C(\hat{p}) \ \forall q \in \psi_{\hat{p} \cup \Omega}$$

III. Détails d'implémentation

Interface GUI

Figure 3 : Captures d'écran de l'interface GUI ; a) Le région cible est dessiné en rouge à l'aide d'un curseur ; b) Le masque qu'on a dessiné est présenté en blanc.

III. Détails d'implémentation

- Implémentation de la fonction 'findFrontierPoints'
 - Recherche horizontale
 - Recherche verticale

Implémentation de la fonction pour calculer la priorité de pixel

Mais pour D(p)

$$D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp} \cdot \mathbf{n}_{\mathbf{p}}|}{\alpha} \longrightarrow Simplification \longrightarrow D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp}|}{\alpha}$$

IV. Results and Discussions

> Effet de taille de patch

✓ Image « Église »

Figure 4 : Résultats avec tailles de patch différentes ;

- a) Image originale;
- b) Image avec la région cible sélectionnée en rouge ;
- c) Résultats avec taille de patch de 3x3;
- d) Patch de 5x5;
- e) Patch 7x7

IV. Results and Discussions

> Effet de taille de patch

√ Image « Chien »

Figure 5 : Résultats avec tailles de patch différentes ;

- a) Image originale;
- b) Image avec la région cible sélectionnée en rouge ;
- c) Résultats avec taille de patch de 3x3;
- d) Patch de 5x5;
- e) Patch 7x7

IV. Results and Discussions

> Effet d'isophoto

b)

Figure 6 : Effet d'isophote ;
a) Image originale ;
b) Image avec la région cib

- b) Image avec la région cible sélectionnée en rouge ;
- c) Résultat obtenu sans/avec isophote (parail pour les deux cas);
- e) Ordre de remplissage (de pixels foncés aux pixels clairs) sans isophote;
- f) Ordre de remplissage avec isophote

V. Conclusion

- Améliorations
 - Terme de donnéés D(p)

$$D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp}|}{\alpha}$$

$$D(\mathbf{p}) = \frac{|\nabla I_{\mathbf{p}}^{\perp} \cdot \mathbf{n_p}|}{\alpha}$$

- Optimisation de l'implémentation de l'algorithme
- Une taille de patch adaptative

Références:

[1] A. Criminisi, P. Perez, K. Toyama. Region filling and object removal by exemplar-based inpainting. In 2004 IEEE Transactions on Image Processing 9 1200-1212.

[2] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image inpainting. In Proc. ACM Conf. Comp. Graphics (SIGGRAPH), pp. 417–424, New Orleans, LU, Jul 2000.

[3] Jino Lee, Dong-Kyu Lee, and Rae-Hong Park. Robust exemplar-based inpainting algorithm using region segmentation. In IEEE Transactions on Cosumer Electronics (Volume:58, Issue:2, May 2012), pp. 553-561, 05 July 2012.

Merci pour votre attention

