

Interacción Terreno Estructura I Especialización en Ingeniería Geotécnica

Carga última de un pilote

(Conceptualmente) la carga última es la suma de la carga última por la punta $Q_{u,p}$ mas la carga última por fricción del fuste $Q_{u,f}$

$$Q_{ult} = Q_{u,p} + Q_{u,f}$$

La contribución de cada término depende de la estratigrafía y de método constructivo

Carga última de un pilote

(Conceptualmente) la carga última es la suma de la carga última por la punta $Q_{u,p}$ mas la carga última por fricción del fuste $Q_{u,f}$

$$Q_{ult} = Q_{u,p} + Q_{u,f}$$

- ¿Porqué "conceptualmente"?
- Porque la carga última sólo se desarrolla para deformaciones enormes que no son útiles en construcciones civiles

Métodos para determinar la capacidad de carga

Fórmulas estáticas

- Métodos directos (formulas analíticas y/o modelos numéricos)
- Métodos indirectos (correlaciones y formulas empíricas)

Fórmulas dinámicas (Hincados)

- Fórmulas de hinca
- Ecuación de onda

Ensayos de carga

Carga última por la punta $Q_{u,p}$

Hay dos mecanismos posibles

- Mecanismo 1 (rígido-plástico): fórmula trinómica
- Mecanismo 2 (elastoplástico):
 expansión de cavidad esférica

La carga última por la punta es la menor de ambas

$$Q_{u,p} = min\left[Q_{u,p}^{(1)}, Q_{u,p}^{(2)}\right]$$

¿Deformación enorme?

.UBAfiuh

Capacidad de carga por punta Modelo rígido-plástico

La capacidad de carga por la punta depende de

- **Ficha**
- Parámetros resistentes del terreno
- Tapada y napa

$$q_u = (c N_c + \sigma'_v N_q) \cdot s_c d_c$$

$$N_c = (N_q - 1) \cot \phi$$

Capacidad de carga por $p\iota^{N_q^*}$ Modelo rígido-plástico

La capacidad de carga por la punta depende de

- Ficha
- Parámetros resistentes del terreno
- Tapada y napa

$$q_u = (c N_c + \sigma'_v N_q) \cdot s_c d_c$$

$$N_c = (N_q - 1) \cot \phi$$

Diferentes coeficientes N_q según diferentes autores

¿Porqué andan mal las fórmulas de capacidad de carga?

Hipótesis: Suelo elastoplástico perfecto con plasticidad asociativa

- Forma: espiral logarítmica
- El suelo dilata (muchísimo)
- Ignora compresión volumétrica por aumento de presión
- Ángulo de fricción interna constante

La no linealidad de $\phi[p,e]$

- $D_f = 40m \ (\sigma'_v = 400 \ kPa)$
- $D_r \cong 75\%$
- $\phi = \phi_{cv} + \psi = 32^{\circ} + 6^{\circ} = 38^{\circ}$
- $q_{ult} = \sigma'_v \cdot N_q = 84MPa$

La no linealidad de $\phi[p, e]$

- $q_{ult} = 84MPa \rightarrow \psi = 0$
- $\phi = \phi_{cv} = 32^{\circ}$
- $q_{ult} = \sigma'_v \cdot N_q = 28 MPa$

Carga última por punta: mecanismo más realista

Expansión de cavidad esférica (Vesic 1977)

Formulas de Vesic

Mecanismo de falla basado en expansión de cavidad esférica

•
$$q_{ult} = cN_c[\phi] + pN_\sigma[\phi]$$

•
$$N_{\sigma} = c_1 \tan^2 \left[\frac{\pi}{4} + \frac{\phi}{2} \right] I_{rr}^{c_3}$$

•
$$c_1 = \frac{3}{3-\sin[\phi]} e^{\left(\frac{\pi}{2}-\phi\right)\tan[\phi]} / c_3 = \frac{4}{3} \frac{\sin[\phi]}{1+\sin[\phi]}$$

•
$$N_c = cot[\phi] \cdot \left(\frac{1+2K_0}{3}N_{\sigma} - 1\right)$$

$$\bullet \quad p = \frac{1 + 2K_0}{3} \sigma_0'$$

•
$$I_{rr} = \frac{I_r}{1 + \epsilon_v I_r}$$
; $I_r = \frac{G}{c + p \tan(\phi)}$

•
$$\epsilon_v = 50 \, I_r^{-1.8}$$
 (Yasufuku 2001)

Vesic vs Brinch-Hansen

Diseño ULS de un pilote

Análisis LRFD: resistencia minorada mayor que la suma de las cargas mayoradas

$$Q_d \geq \sum LF_i \cdot P_i$$

donde $Q_d = RF_p \cdot Q_{u,p} + RF_f \cdot Q_{u,f}$

 RF_p y RF_f dependen de

- Incertidumbre en comportamiento del terreno
- Procedimiento constructivo
- Precisión del modelo de cálculo

Algunos factores de resistencia *RF* (para puentes)

Los factores *RF* dependen de

- Modelo
- Terreno
- Proc. const.
- Factores LF
- Parámetros medios vs caracterís-ticos (ϕ_{80})

7	Terre no	Método de diseño	Método constructivo	RF
	Arena	Reese & Wright (1977)	Todos	0.50
	Arcilla		Todos	0.40
Resis- tencia total	Arcilla y arena	Reese & O'Neill (1988)	Seco/lodos	0.85
			Encamisado	0.65
		Reese & Wright (1977)	Seco y lodos	0.75
			Encamisado	0.50
	Roca	Carter & Kulhawy (1988)	Todos	0.60
		O'Neill & Reese (1999)	10008	0.75
Resis-	Todos	Reese & O'Neill (1988)	Todos	0.45
tencia	10005	Reese & Wright (1977)	10008	0.43
por el	Roca	Carter & Kulhawy (1988)	Todos	0.50
fuste		O'Neill & Reese (1999)	10005	0.65

(Pailowsky 2002, 2004)

Carga última <u>nominal</u> por la punta $Q_{u,p}^*$ de pilotes perforados (I/II)

Punta de pilotes perforados: Deformaciones enormes para alcanzar la carga última

• Curva $P-\delta$ puede modelarse como una hipérbola rectangular,

$$P_p[\delta] = \delta/(1/K_{i,p} + \delta/Q_{u,p})$$

- Rigidez inicial: $K_{i,p} = 2\pi G_0 R/(1-\nu)$
 - Parámetros del suelo bajo la punta
- Asíntota final = carga última: $Q_{u,p}$
- Rigidez tangente: $K_{t,p}[\delta] = K_{i,p}(1 P/Q_{u,p})^2$

.UBAfiuba

Carga última <u>nominal</u> por la punta $Q_{u,p}^*$ de pilotes perforados (II/II)

Criterio 1: Asentamiento total de la punta δ_t

 $\bullet \quad Q_{u,p}^* = \delta_t / \big(1/K_{i,p} + \delta_t / Q_{u,p} \big)$

Carga última <u>nominal</u> por la punta $Q_{u,p}^*$ de pilotes perforados (II/II)

Criterio 1: Asentamiento total de la punta δ_t

•
$$Q_{u,p}^* = \delta_t / \left(1/K_{i,p} + \delta_t / Q_{u,p} \right)$$

Criterio 2: Asentamiento permanente δ_p

•
$$Q_{u,p}^* = \frac{1}{2} \left(\sqrt{K_{i,p} \delta_p} \sqrt{K_{i,p} \delta_p} + 4Q_{u,p} - K_{i,p} \delta_p \right)$$

Carga última <u>nominal</u> por la punta $Q_{u,p}^*$ de pilotes perforados (II/II)

Criterio 1: Asentamiento total de la punta δ_t

• $Q_{u,p}^* = \delta_t / (1/K_{i,p} + \delta_t / Q_{u,p})$

Criterio 2: Asentamiento permanente δ_p

•
$$Q_{u,p}^* = \frac{1}{2} \left(\sqrt{K_{i,p} \, \delta_p} \sqrt{K_{i,p} \, \delta_p + 4Q_{u,p}} - K_{i,p} \, \delta_p \right)$$

Criterio 3: rigidez límite $K_{t,p}^{lim} = 10\% \cdot K_{i,p}$

- $K_t[\delta]/K_{i,p} = (1 Q_{u,p}^*/Q_{u,p})^2 = 10\% \to \delta_t$
- $Q_{u,p}^* = 0.69 \cdot Q_{u,p}$

Carga última <u>nominal</u> por la punta $Q_{u,p}^*$ de pilotes hincados

Punta de pilotes hincados: precarga P_0 inducida por hinca

• Durante hinca: martillo vence punta y fricción

- · Al fin de la hinca
 - Fricción lateral $Q_{u,f}$ está movilizada
 - No hay carga exterior: $P_0 + Q_{u,f} = 0 \rightarrow P_0 = -Q_{u,f}$
- Curva carga-asentamiento

$$P_p[\delta] = \delta / \left(1/K_{i,p} + \delta/(Q_{u,p} - P_0)\right) + P_0$$

• La carga última nominal $Q_{u,p}^*$ puede ser del mismo orden que carga última $Q_{u,p}$

Carga límite de diseño por la punta

La carga límite de diseño por la punta es $Q_{d,p} = RF_p \cdot Q_{u,p}^*$

- CIRSOC 402 está en redacción, no tenemos los RF_p todavía para este método de cálculo de la carga última
- Pero sabemos que RF_p depende del tipo de suelo
 - Arcillas compactas: $Q_{u,p}^*$ se alcanza con baja deformación
 - Arenas densas: $Q_{u,p}^*$ requiere una deformación enorme
- Y sabemos que RFp depende del método constructivo
 - Pilote hincado, punta limpia ya predeformada $∂RF_p ≈ 0.8$?
 - Pilote perforado con lodo, (puede tener) punta sucia, el terreno debe deformarse para desarrollar carga, $\xi RF_p \cong 0.5$?

Contenido

- Definición y tipos de fundación profunda
- Métodos de instalación de pilotes
- Diseño para estados límites últimos
 - Carga límite de diseño por la punta
 - Carga límite de diseño por fricción
 - Carga límite de diseño para pilotes hincados
- Diseño para estados límites de servicio
- Aspectos de diseño

Carga última por fricción lateral

 $Q_{u,f}$ es la integral de la resistencia al corte en la interfaz suelo-pilote f_s en toda la superficie lateral

•
$$Q_{u,f} = \int f_S \cdot dA$$

f_s depende

- De la resistencia al corte del terreno
- Del método constructivo
 - Tensión horizontal σ_h de contacto en cada punto
 - Disturbación del terreno | uso de lodos | contaminantes

 f_s se desarrolla plenamente con asentamiento limitado

Predimensionamiento de fricción lateral en condición no drenada

Resistencia al corte del suelo:

$$s = s_u$$

Método simplificado:

$$f_s = \alpha \cdot s_u$$

$$-\alpha = 0.21 + 26kPa/s_u \le 1.0$$

Dispersión grande:

- Instalación puede mejorar arcillas muy blandas
- Gráfico incluye muchos métodos constructivos

Predimensionamiento de fricción lateral en condición drenada

• Resistencia al corte del suelo: $s = \sigma'_h \tan[\phi]$

• Resistencia al corte de la interfaz: $f_s = \sigma'_h \tan[\delta]$

• Fórmula simplificada: $f_S = K\sigma'_v \tan[\delta]$

- *K*: hincados: 1.2 < K < 3.0 | perforados: $K_0 < K < 1.0$

- δ : acero: $\delta = 20^{\circ}$ | madera: $\delta = 2/3 \phi$ | hormigón: $\delta = 3/4 \phi$

Table 4-5

Common Values for Corrected K

	Displacemen	Displacement Piles		ent Piles
Soil Type	Compression	<u>Tension</u>	<u>Compression</u>	<u>Tension</u>
Sand Silt	2.00	0.67	1.50	0.50 0.35
Clay	1.25	0.90	1.00	0.70

Values of δ

Pile Material	δ
Steel Concrete	0.67 \$\phi\$ to 0.83 \$\phi\$ 0.90 \$\phi\$ to 1.0 \$\phi\$
Timber	0.80 ϕ to 1.0 ϕ

(USACE)

Predimensionamiento de fricción lateral en condición drenada

Método simplificado:

- Arenas con desplazamiento: $\beta = 0.18 + 0.65D_r$
- Arenas sin desplazamiento: $\beta = 1.5 0.245 \sqrt{z[m]}$
- Gravas gruesas: $\beta = 3.4e^{-0.085z[m]}$
- Gravas finas: $\beta = 2.0 0.15z^{0.75[m]}$

Mecanismo de resistencia por el fuste (drenada): fricción y dilatancia

Resistencia al corte de la interfaz: $f_s = \sigma'_h \tan[\delta]$

Componentes de la tensión horizontal: $f_s = (\sigma'_{h0} + \Delta \sigma'_{hl}) \tan[\delta]$

- σ'_{h0} : tensión horizontal antes de aplicación de carga vertical
- $\Delta \sigma'_{hl}$: cambio de tensiones por distorsión del suelo en contacto

Tensión horizontal antes de la carga σ'_{h0} . UBA fiuba comportamiento de la interfaz pilote-terreno

Pilote perforado

- Perforación: $\sigma'_r = 0$
- Llenado: $\sigma'_r = (\gamma_H \gamma_w)_Z$
- Contracción por endurecimiento: $\Delta \sigma_r \cong -10\%$
- $\sigma'_{r0} \cong \sigma'_{v}$

Tensión horizontal antes de la carga σ'_{h0} . UBA fiulba comportamiento de la interfaz pilote-terreno

Pilote perforado

- Perforación: $\sigma'_r = 0$
- Llenado: $\sigma'_r = (\gamma_H \gamma_W)z$
- Contracción por endurecimiento: $\Delta \sigma_r \cong -10\%$
- $\sigma'_{r0} \cong \sigma'_{v}$

Pilote hincado

• Penetración: expansión de cavidad plástica: $\sigma_r \rightarrow f[G, v, c, \phi] \cdot \sigma_v$

• $\sigma'_{r0} \gg \sigma'_{v}$

Parámetros para el cálculo de la resistencia por el fuste - Resumen

Pilotes hincados (con desplazamiento lateral del suelo)

- Desplazamiento lateral de suelo grande: $\sigma_h \gg \sigma_v$
- Arenas: distorsión enorme en superficie lateral: $\phi = \phi_{cv}$
- Arcillas blandas: σ_h induce consolidación radial: $f_s > s_u$
- Arcillas duras: se rompe estructura (del suelo): $f_s < s_u$

Pilotes perforados (sin desplazamiento lateral del suelo)

- Desplazamiento lateral de suelo sólo por dilatancia
- Arenas: distorsión lateral sólo por carga: $\phi = \phi_{max}$
- Arcillas blandas: no hay mejora del terreno: $f_s < s_u$
- Arcillas duras: expansión de suelo rompe estructura: $f_s < s_u$ y dilatancia $\sigma_h \gg \sigma_v$ (mejora resistencia drenada)

Pilotes perforado en arenas Método 3M

- Método para determinar la fricción última en pilotes perforados en arena
- El método postula que, en la falla, la interfaz suelo pilote sufre una distorsión tal que se alcanza el estado critico $c_a' \to 0, \psi \to 0, \phi' \to \phi_{cv}$
- La fricción puede calcularse como:

$$f_s = \sigma'_{hf} \cdot \tan \delta' = (\sigma'_{h0} + \Delta \sigma'_{hl}) \cdot \sin[\phi_{cv}]$$

Ejemplo de cálculo de $\Delta \sigma'_{hl}$: pilotes perforados en arena

Banda de corte: suelo circundante adherido al pilote

- Espesor t_S depende de
 - Rugosidad del contacto
 - Tamaño de partícula del terreno (D_{50})
- Aumento de espesor en banda de corte
 - Dilatancia: $du = tan[\psi] d\delta$
 - Reacción elástica: $d\sigma'_h = 2G/R \cdot du$
 - Reacción elastóplástica: expansión cavidad cilíndrica

Pilotes perforado en arenas (Método 3M) PAGULTAD DE INGENIERÍA

Durante el corte, la distorsión disminuye debido al ablandamiento. Si consideramos una reducción lineal desde el valor pico (ψ_p) al valor de estado critico $(\psi_{cs} = 0)$

$$du = \tan \psi \ dw$$
; $d\gamma = dw/t_s \rightarrow u = \int_0^{\gamma_s} t_s \tan \psi \ d\gamma = t_s \tan \psi_p \frac{\gamma_{cs}}{2}$

Ejemplo: pilote axial simétrico sin dilatancia

$$\psi = 0^{\circ} \rightarrow \frac{\partial \delta_h}{\partial \delta_v} = 0$$

Pilote baja sin cambiar la tensión radial.

La fricción lateral depende de la tensión horizontal que había antes de la instalación del pilote

Ejercicio: pilote axial simétrico con dilatancia

▼ Cap point

▲ Hardening point

δ_v produce δ_h

La fricción lateral depende de la tensión horizontal aumentada por la deformación

Cap + hardening point

Curvas $P - \delta$: efecto de la dilatancia

Dilatancia más simetría de revolución:

- Aumento de la presión radial σ'_r = horizontal σ'_h
- Aumento de resistencia por el fuste f_s
- Esto no es un error, es real en suelos densos

20000 Dilatancia produce aumento de 18000 confinamiento 16000 14000 12000 Carga [KN] 00000 Carga [KN] 00000 8000 6000 4000 Axial S/dilatancia 2000 Axial C/dilatancia 0.01 0.02 0.03 0.04 Asentamiento [m]

Cuidado: la dilatancia no tiene ₀ límite en muchos modelos pero sí en la realidad.

Ejemplo de cálculo de $\Delta \sigma'_{hl}$: pilotes perforados en arena_5

La resistencia al corte se agota rápidamente en los estratos superficiales

- Pilote elástico, mayor desplazamiento arriba que abajo
- Menor resistencia de fuste f_s
 - Por menor confinamiento
 - Porque el suelo tiene peor calidad (o no habrían pilotes)
- Mayor "rigidez relativa" G/f_s

Contenido

- Definición y tipos de fundación profunda
- Métodos de instalación de pilotes
- Diseño para estados límites últimos
 - Carga límite de diseño por la punta
 - Carga límite de diseño por fricción
 - Carga límite de diseño para pilotes hincados
- Diseño para estados límites de servicio
- Aspectos de diseño

Resumen de funcionamiento de pilotes .UBAfiub hincados – fórmulas analíticas

Un pilote se hinca hasta "rechazo". Llega a su posición "fallando" al terreno que lo rodea.

- Carga última por el fuste
 - Tensión horizontal $\sigma'_{h0} \gg \sigma'_{v}$
 - Arenas: banda de corte en estado crítico:
 - $\Delta \sigma_h = 0 \text{ y } \delta = \phi_{cv}$
 - $f_s \cong K_p \cdot \sigma'_v \cdot \sin[\phi_{cv}] \cong 1.5 \cdot \sigma'_v$
 - Arcillas blandas consolidan luego de la hinca: incremento de resistencia
 - Arcillas compactas pueden sufrir ablandamientos.
- Punta: terreno pre-deformado por la hinca
 - $Q_{u,p}$ confiable pero se calcula con ϕ_{cv}

Diseño de pilotes hincados mediante fórmula de hinca

La longitud de la ficha (y la carga última del pilote) queda controlada por:

- Capacidad y estado del martillo
- Estratigrafía del terreno
- Longitud, armadura y calidad de hormigón (para soportar tensiones durante la hinca)

En suelos densos es difícil superar una ficha de dos o tres diámetros El pilote puede parar en lentes densas intermedias

