Résumé de Cours

La fonction logarithme népérien **PROF: ATMANI NAJIB** 2ème BAC Sciences ex (pc-svt...)

La fonction logarithme népérien :

La fonction logarithme népérien notée ln est l'unique fonction, définie et dérivable sur $]0, +\infty$ [et Vérifiant ln1=0

et pour tout réel x > 0, $(\ln x)' = \frac{1}{-} > 0$

Il est continu et strictement croissant sur $]0, +\infty[$. Premières propriétés (directement liées à la définition)

Pour tous réels : $\forall x \succ 0$; $\forall y \succ 0$; $\forall r \in \mathbb{Q}$

- 1) $\ln x = \ln y \Leftrightarrow x = y$ 2) $x \le y \Leftrightarrow \ln x \le \ln y$
- 3) $lnx > 0 \Leftrightarrow x > 1$ 4) $lnx < 0 \Leftrightarrow 0 < x < 1$
- 5) $ln(x \times y) = ln x + ln y$ 6) $e \approx 2,71828 \cdots$ et ln(e) = 1
- 7) $ln\left(\frac{1}{x}\right) = -\ln x$ 8) $ln\left(\frac{x}{y}\right) = \ln x \ln y$
- 9) $ln\sqrt{a} = \frac{1}{2}lna$ 10) $ln(x^r) = r \ln x$
- 11) $ln(e^x) = x \quad \forall x \in \mathbb{R}$ 12) $\left(e^{\ln x} = x\right) \left(\forall x \succ 0\right)$
- 13) $e^x = y \Leftrightarrow x = \ln y \quad \forall x \in \mathbb{R} \quad \text{et } \forall y \succ 0$

(Limites usuelles)

- 1) $\lim_{x \to 0^+} \ln x = +\infty$ 2) $\lim_{x \to 0^+} \ln x = -\infty$
- 3) $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$
- 4) $\lim_{r \to +\infty} \frac{\ln x}{r^r} = 0$ (où $r \in \mathbb{Q}_*^+$)
- 5) $\lim_{x \to 0} x^r \ln x = 0$ (où $r \in \mathbb{Q}_*^+$)
- 6) $\lim_{x \to 1} \frac{\ln x}{x 1} = 1$
- 7) $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$

Dérivée et primitives de la fonction $\mathbf{x} \to \mathbf{ln}(\mathbf{u}(\mathbf{x}))$

1)Si u est une fonction dérivable sur I et ne s'annule pas sur I alors la fonction : f(x) = ln(|u(x)|) est dérivable sur I

et
$$(\forall x \in I) (f'(x) = \frac{u'(x)}{u(x)})$$

2)Si u est une fonction dérivable sur I et ne s'annule pas sur

I alors les fonctions primitives de la fonction $x \to \frac{u'(x)}{u(x)}$ sont

les fonctions ;F(x) = l n(|u(x)|) + Cte

FONCTIONS LOGARITHMIQUES DE BASE a

Soit $(a \succ 0)$ et $(a \neq 1)$

On note \log_a la fonction logarithmique de base \boldsymbol{a}

définie sur $]0, +\infty[$ par $: (\forall x \in]0, +\infty[) (\log_a = \frac{\ln x}{\ln a})$

 $\forall x \succ 0 ; \forall y \succ 0 ; \forall r \in \mathbb{Q}$

- 1) $\log_a(x \times y) = \log_a x + \log_a y$ 2) $\log_a(1/x) = -\log_a x$
- 3) $\log_a(x/y) = \log_a x \log_a y$ 4) $\log_a(\sqrt{x}) = (1/2)\log_a x$
- $5)\log_a(x^r) = r\log_a x$
- $6)\log_e = \frac{\ln x}{\ln a} = \ln x$

 $\forall x \in]0, +\infty[; (\log_a(x))' = \frac{1}{r \ln a} \text{ donc La fonction } \log_a$

- est une bijection de $]0, +\infty[$ vers \mathbb{R} 1) $(\forall x > 0)(\forall y > 0)(\log_a(x) = \log_a(y) \iff x = y)$
- 2) $(\forall x > 0)(\forall r \in \mathbb{Q})(\log_a(x) = r \iff x = a^r)$
- 3) \log_a strictement croissante si $(a \succ 1)$

 \log_a strictement décroissante si $(0 \prec a \prec 1)$

Cas particulier a = 10; logarithme décimal:

La fonction logarithmique de base 10 s'appelle la fonction logarithmique décimal et se note par log et $(\forall x \in]0, +\infty[)$

- $(\log x = \frac{\ln x}{\ln 10})$ et on a : $\log(10) = 1$
- 1) $(\forall x > 0)(\forall r \in \mathbb{Q})(log(x) = r \iff x = 10^r)$
- 2) $(\forall r \in \mathbb{Q})(log(10^r) = r \quad 3) log(x) > r \iff x > 10^r$

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

