Analysis of Algorithms II

Recitation Week-7

2022-2023 Spring

Q1)Count the number of inversions for the given numbers; 1, 20, 6, 7, 5, 8, 11, 3. Use divide and conquer (DnC) approach.

Q1)Count the number of inversions for the given numbers; 1, 20, 6, 7, 5, 8, 11, 3. Use divide and conquer (DnC) approach.

Direct approach -> Modify Bubble-Sort

DnC approach -> Modify Merge-Sort

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 1.

i = i + 1

Merging step

j = j + 1

inversion_count = 2

Increment this
number by how
many numbers are

there after and

includingthe

Merging step

 \rightarrow Increment by 1.

current value of i.

j = j + 1

Increment this number by how many numbers are there after and including the

inversion_count = 3

Merging step

 \rightarrow Increment by 1.

current value of i.

inversion_count = 5

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 2.

inversion_count = 8

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 3.

inversion_count = 11

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 3.

inversion_count = 11

inversion_count = 11

inversion_count = 12

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 1.

inversion_count = 12

inversion_count = 13

Increment this number by how many numbers are there after and including the current value of i.

 \rightarrow Increment by 1.

inversion_count = 13

Convex-Hull Problem

- For a given point cloud, the goal is to find the polygon with minimum sides that contains all points on or within the polygon.
- Informally you can think of it as you pound some nails into some wood. You use a rubber band to wrap all the nails from the outside. The rubber band forms the asked polygon.
- There are both iterative (Graham Scan, Jarvis March) and DnC approaches (normal, Quick-Hull).

Q2) Analyze (normal) DnC approach using point cloud below

Q2-A) Normal Approach

Partition like Merge-Sort;

- Sort points regarding x-coordinates
- To find division lines, use median of medians algorithm

Merge two convex-hulls by finding the upper and lower tangent lines.

How to find them?

For now, just add one point to a convex-hull

If you look at the relationship between the line, previous and next vertices (points on the current polygon); you can observe;

- If both previous and next vertices stay below to the line -> upper tangent
- If both previous and next vertices stay upper to the line -> lower tangent

Now, merge the sub-convex-hulls;

- For the left sub-convex-hull, find the rightmost vertex
- For the right sub-convex-hull, find the leftmost vertex
- Alternately find the tangent lines until reached by changing the vertices

For now, just find the upper tangent

Both are below, we found an upper-tangent for right polygon

next is above, prev is below -> select next as pivot

Both are below, we found an upper-tangent for left polygon

next is above, prev is below -> select next as pivot

Both are below, we found an upper-tangent for right polygon

next is above, prev is below -> select next as pivot

Both are below, we found an uppertangent for left polygon As this line is upper tangent for both polygons, we can end our search

After finding the lower tangent in a similar manner, we can connect two sub-convex-hulls.

Do not forget discarding inner (old) edges

The final polygon is

$$T(n) = 2T(n/2) + O(n)$$
 --> O(nlogn)

Partition Finding Median Merging

Additional Resources for Convex-Hull Problem

- https://www.youtube.com/watch?v=EzeYI7p9MjU
- https://www.youtube.com/playlist?list=PLtTatrCwXHzFp1Y_c6i82waJ 2b7OWyiKM
- https://www.youtube.com/watch?v=NH6WbP3IDac
- https://www.youtube.com/watch?v=B6AOzBnenZU