WHAT IS CLAIMED IS:

	1	1. An improved distributed Bragg reflector comprising:
_	\int_{2}^{2}	a first portion comprising a first phase;
SUB	$\int_{-\infty}^{\infty}$	at least a second portion spaced apart from said first portion comprising a
J• /	4	second phase, said phase being different from the first phase.
PS	5	
	1	2. The reflector of claim 1, wherein the second portion has a second phase
	2	opposite that of said first phase of said first portion.
	1	3. The reflector of claim 1, wherein said spaced apart first portion and second
	2	portion are configured to maximize the coupling constant (K) as evenly as possible across a
	3	selected tuning range.
	1	4. A method for configuring a selected grating distributed Bragg reflector for
	2	use in a laser having an output within a specific region of bandwidth, the method comprising
 	3	the steps of:
	4	a) selecting a preferred K for at least one wavelength of the specific region of
	5	the bandwidth that is to be used;
	6	b) selecting a preferred tuning range for said reflector;
	7	c) generating a sampling function that, when applied to the reflector, results
	8	in the closest fit to the desired average K with the smallest amount of variation within the
	9	selected tuning range.
	1	5. A method for configuring a selected grating distributed Bragg reflector for
	2	use in a laser having an output comprising at least one wavelength within a specific region of
	3	bandwidth, the method comprising the steps of:
	4	a) selecting a preferred tuning range for said reflector;
	5	b) determining an average K for the at least one output wavelength of the
	6	specific region of the bandwidth that is to be used:

<u></u>		1
A5 /7		c) generating a sampling function that, when applied to the reflector, results
1, 18	in the closest	fit to the desired average K with the smallest amount of variation within the
9	preferred tuni	ng range.
	•	\
1	6	The method of claim 5, wherein the at least one wavelength is a plurality of
2	wavelengths.	
		X
1	7.	The method of claim 5, further comprising the step of sampling the reflector
2	in accordance	with the sampling function.
1	8.	The method of claim 4, wherein the at least one wavelength is a plurality of
2	wavelengths.	IA .
		' \
1	9.	The method of claim 4, wherein the at least one wavelength is a plurality of
2	wavelengths.	
1	10.	The method of claim 4, further comprising the step of sampling the reflector
2	in accordance	with the sampling function.
1		
	\	
A	DD Ab >	
•	<i>,</i>	