Nombre dérivé et tangente

Différenciation

- Parcours 1: exercices 38; 42; 45; 57; 58; 77 et 80
- Parcours 2 :exercices 48; 49; 67; 73; 79; 83 et 84
- Parcours 3: exercices 43; 46; 55; 59; 64; 70; 90; 94 et 100
- 38 [Calculer.] O O

Soit f la fonction définie sur $\mathbb R$ par $f(x)=x^2$.

1. Soit *h* un réel non nul.

Exprimer f(1+h)-f(1) en fonction de h.

- 2. Montrer que f est dérivable en 1 et donner la valeur du nombre dérivé de f en 1.
- 3. Vérifier le résultat à la calculatrice.
- (39) [Calculer.]

Soit f la fonction définie sur $\mathbb R$ par $f(x)=-x^2+x.$

- **1.** Soit h un réel non nul. Exprimer f(2+h)-f(2) en fonction de h.
- 2. Montrer que f est dérivable en 2 et donner la valeur du nombre dérivé de f en 2 .
- 3. Vérifier le résultat à la calculatrice.

Soit f la fonction définie sur $\mathbb R$ par $f(x)=x^3$.

1. Vérifier que pour tous réels a et b:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$$

2. Soit h un réel non nul.

Exprimer le quotient
$$\frac{(2+h)^3-2^3}{h}$$
 en fonction de h .

- 3. En déduire que f est dérivable en 2 et calculer $f^{\prime}(2)$.
- 4. Vérifier le résultat à la calculatrice.

(41) [Calculer.]

Soit f la fonction définie sur \mathbb{R}^* par $f(x)=rac{1}{x}.$

1. a. Soit h un réel non nul.

Vérifier que
$$f(1+h)-f(1)=-rac{h}{1+h}.$$

- **b.** Montrer que f est dérivable en 1 et calculer $f^{\prime}(1)$.
- 2. Montrer que f est dérivable en 2 et calculer $f^{\prime}(2)$.
- 3. Vérifier les résultats à la calculatrice.

42 [Calculer.] • • •

Soit f la fonction définie sur $\mathbb R$ par f(x)=5x-3 .

Démontrer que f est dérivable en -1 et calculer $f^{\prime}(-1)$.

Soit f la fonction définie sur $]-\infty$; $2[\cup]2$; $+\infty[$ par $f(x)=\frac{x+1}{2-x}.$ Démontrer que f est dérivable en 3 et calculer f'(3).

(44) [Chercher.]

Soit f une fonction définie et dérivable sur l'intervalle [-2;4] dont on donne la représentation graphique \mathcal{C}_f dans un repère $(O;\overrightarrow{i},\overrightarrow{j})$. Les droites T_A et T_B sont les tangentes respectives en A et en B à \mathcal{C}_f .

- 1. Par lecture graphique, déterminer la valeur du nombre dérivé de f en 0 .
- 2. Déterminer f'(3) graphiquement.

45 [Chercher.] • O O

On considère une fonction f définie et dérivable sur l'intervalle [-6;1]. Soit \mathcal{C}_f sa représentation graphique dans un repère $(O;\overrightarrow{i},\overrightarrow{j})$. On a également tracé trois tangentes d_1,d_2 et d_3 à \mathcal{C}_f respectivement en A d'abscisse $\frac{-5}{2}$, en B d'abscisse -4 et en O. On admet que d_1 est parallèle à l'axe des abscisses.

Déterminer graphiquement les nombres dérivés de f en $x_1=-4$, en $x_2=\dfrac{-5}{2}$ et en $x_3=0$.

Soit f la fonction définie sur $\mathbb R$ par $f(x)=3x^2-2x+1$. Soit a un réel. À l'aide du taux de variation de f en a, justifier que f est dérivable en a et exprimer f'(a) en fonction de a.

i Pour les exercices 47 à 50

On considère une fonction f définie et dérivable sur un intervalle I et de représentation graphique \mathcal{C}_f dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$ La droite T est la tangente à \mathcal{C}_f au point A d'abscisse a.

(47) [Chercher.]

On donne ${\rm I}=[-1\ ;4]$ et a=2. Déterminer graphiquement f'(a).

? Aide

Graphiquement, $f^{\prime}(a)$ est le coefficient directeur de T .

On donne ${\rm I}=[-3\ ;1]$ et a=-1. Sachant que ${\rm T}$ passe par ${\rm A}$ et par le point ${\rm B}(2\ ;-1),$ calculer f'(a).

Le coefficient directeur de la droite $\left(AB\right)$ peut se calculer à partir des coordonnées de A et B .

On donne $I=[-3\ ;3]$ et a=1. Sachant que ${\rm T}$ passe par le point ${\rm A}\left(1\ ; \frac{-3}{2}\right)$ et par le point ${\rm B}\left(-1\ ; \frac{5}{2}\right)$, calculer f'(a).

On donne $I=\left[-2\,;rac{1}{2}
ight]$ et a=0. Sachant que T passe par A et par le point $B\left(rac{1}{2}\,;2
ight)$, calculer f'(a).

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse en justifiant la réponse.

- 1. « Pour tout réel $h \neq 0$, on suppose que le taux de variation d'une fonction f entre -1 et -1+h est égal à h^2-3h+2 . Alors f est dérivable en -1 et le nombre dérivé de f en -1 est égal à 2. »
- 2. « Pour tout réel $h \neq 0$ et strictement supérieur à -1, on suppose que le taux de variation d'une fonction f entre 1 et 1+h est égal à $\frac{1}{\sqrt{1+h}+1}$. Alors f est dérivable en 1 et f'(1)=1.»
- 3. « Pour tout réel h non nul et différent de -1, on suppose que la différence f(2+h)-f(2) est égale à $\frac{-3h}{1+h}$. Alors f est dérivable en 2 et f'(2)=0. »

[Représenter.]

On considère une fonction f définie et dérivable sur l'intervalle $\left[-3;3\right]$ dont on donne le tableau de valeurs suivant :

x	-3	-2	0	$\frac{3}{2}$	3
f(x)	-2	0	2	0	-4
f'(x)	0	2	0	$\frac{-5}{2}$	0

Tracer une courbe représentative possible pour la fonction f dans le repère suivant.

53 | [Représenter.]

On considère une fonction f définie et dérivable sur l'intervalle $[0\ ;4]$ telle que :

$$f(0)=f(2)=f(4)=1, f(1)=f(3)=-1$$
 et

$$f'(0) = f'(1) = f'(2) = f'(3) = f'(4) = 0.$$

Tracer une courbe représentative possible pour la fonction f dans un repère (O; I, J).

Cliquez ici pour avoir accès à un espace de dessin

Soit f la fonction définie sur $]0\ ; +\infty[$ par $f(x)=rac{1}{x}.$

Soient deux réels a>0 et $h\neq 0$ tels que a+h>0.

- **1.** Déterminer f(a+h) f(a) en fonction de h.
- **2**. En déduire l'expression du taux de variation au(h) de f en a.
- 3. Que peut-on dire de au(h) lorsque h devient de plus en plus proche de 0 ?
- **4.** Justifier alors que f est dérivable sur $]0;+\infty[$ et exprimer f'(a).
- **5.** Justifier alors que f est dérivable sur $]-\infty$; 0[et exprimer f'(a) lorsque a est un réel strictement négatif.

Démonstration au programme

Lien vers vidéo: https://www.youtube.com/watch?v=BUx15mF75E4

Soit f la fonction définie sur $[0;+\infty[$ par $f(x)=\sqrt{x}.$

- **1.** Soit h un réel non nul. À l'aide d'une identité remarquable, développer et simplifier l'expression $(\sqrt{2+h}-\sqrt{2})(\sqrt{2+h}+\sqrt{2})$.
- 1, exprimer le taux de variation de f en 2 en fonction de h.
- 3. En déduire que f est dérivable en 2 et donner la valeur de $f^{\prime}(2)$.
- **4.** De manière analogue, démontrer que f est dérivable en tout réel a strictement positif et exprimer f'(a) en fonction de a avec a+h>0.
- 5. Justifier que f n'est pas dérivable en 0.

Démonstration au programme

Lien vers vidéo : https://www.youtube.com/watch?v=ltv8xakRoNA