Feuille 3

Inversion et déterminants

Les feuilles d'exercices sont découpées en trois types d'exercice :

- Les *indispensables* : à savoir faire en autonomie.
- Les $exercices\ d'application$: pour mieux maîtriser et comprendre le cours.
- *Pour aller plus loin* : exercices présentant des développements mathématiques ou des études de modélisations de phénomènes issues d'autres disciplines.

Indispensables

Exercice 1. Soit
$$A = \begin{pmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$$
.

- 1. En utilisant la méthode du pivot de Gauss, effectuer des opérations sur les lignes jusqu'à obtenir la matrice identité.
- 2. Réaliser les mêmes opérations que précédemment sur la matrice identité. Noter A' la matrice obtenue.
- 3. Quel est le lien entre A et A'? Justifier que la méthode permet de trouver l'inverse d'une matrice (si elle existe).

Exercice 2. (déterminant 2x2) Soit $a, b, c, d \in \mathbb{R}$. Pour $(e_1, e_2) \in \mathbb{R}^2$, on définit $(S_{(e_1, e_2)}) : \begin{cases} ax + by = e_1 \\ cx + dy = e_2 \end{cases}$

- 1. À quelle condition $(S_{(e_1,e_2)})$ admet des solutions quel que soit $(e_1,e_2) \in \mathbb{R}^2$?
- 2. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. À quelle condition les lignes de A ne sont-elles pas colinéaires? Montrer que sous cette condition, A est inversible et trouver son inverse.

Exercice 3. Soient $B = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ et $C = \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$. Calculer $\det B$, $\det C$, $\det(BC)$ et $\det(B+C)$. Que remarquez-vous? Cette formule est-elle générale?

Exercice 4 (Systèmes linéaires et déterminant). On considère la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 2 & 3 \end{pmatrix}$.

- 1. Calculer $\operatorname{d\acute{e}t}(A)$ et rang A. En déduire que le système AX = B a une unique solution, quel que soit $B \in \mathbb{R}^3$.
- 2. Mêmes questions avec la matrice $\begin{pmatrix} 1 & 1 & 0 & 0 \\ 2 & 2 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$
- 3. En utilisant la même méthode, déterminer l'ensemble des $x \in \mathbb{R}$ tel que $A_x X = B$ a une solution pour tout $B \in \mathbb{R}^3$, où $A_x = \begin{pmatrix} 1 & 4 & 16 \\ 1 & x & x^2 \\ 1 & 5 & 25 \end{pmatrix}$

Exercice 5. Calculer le déterminant des matrices suivantes, puis en effectuant des opérations sur les lignes du couple $(A \mid I)$, calculer leur inverse. Que se passe-t-il, si avec cette méthode, on essaie de calculer l'inverse d'une matrice non inversible?

1

$$A_1 = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 6 \\ 2 & 4 & 2 \end{pmatrix}; A_2 = \begin{pmatrix} 1 & 2 & 3 \\ -1 & 1 & 0 \\ -1 & 4 & 4 \end{pmatrix}; A_3 = \begin{pmatrix} 2 & 3 & 1 & 5 \\ 1 & 0 & 3 & 1 \\ 0 & 2 & -3 & 2 \\ 0 & 2 & 3 & 1 \end{pmatrix}$$

Exercice 6. On se place dans $M_n(\mathbb{R})$ et l'on considère la matrice suivante, disons pour n=4:

$$A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}.$$

- 1. En calculant $d\acute{e}t(A)$, déterminer si A est inversible et si oui, calculer son inverse.
- 2. Écrire la matrice $A + I_4$ et calculer son carré.
- 3. (*) Sachant que $(A + I_4)(A + I_4) = A^2 + 2A + I_4$, déduire de la question précédente une égalité $A(A + aI_4) = bI_4$ pour des réels a, b que l'on déterminera. Comparer avec le résultat de la question 1.

Applications

Exercice 7 (Aires et volumes). 1. Calculer l'aire du parallélogramme construit sur les vecteurs : $\vec{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

2. Calculer le volume du parallélépipède construit sur les vecteurs

$$\vec{u} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \vec{v} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \text{ et } \vec{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

3. Montrer que le volume d'un parallélépipède dont les sommets sont des points de \mathbb{R}^3 à coefficients entiers est un nombre entier.

Exercice 8. On considère le parallèlogramme défini par les vecteurs suivants $(t \in [0,1])$:

$$U = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad V_t = \begin{pmatrix} t \\ -t^2 \end{pmatrix}$$

- 1. Calculer l'aire du parallèlogramme.
- 2. Pour quelle valeur de t obtient-on l'aire maximale? Que vaut-elle?

Exercice 9. 1. En s'inspirant de l'exercice 4 du TD1, donner l'expression générale de la matrice 3×3 de la rotation autour de l'axe Oz et d'angle θ dans \mathbb{R}^3 .

- 2. Calculer le déterminant de cette matrice et l'inverse de cette matrice.
- 3. Donner l'expression générale de la matrice 3×3 correspondant à la symétrie par rapport au plan xOy.
- 4. Calculer le déterminant de cette matrice et l'inverse de cette matrice.
- 5. Donner l'expression générale de la matrice 3×3 correspondant à la rotation autour de l'axe Oz et d'angle $\theta = \pi$ suivie par la symétrie par rapport au plan xOy. De quelle transformation s'agit-il?
- 6. Calculer le déterminant de cette matrice et l'inverse.

Pour aller plus loin

Exercice 10. Soit

$$A = \begin{pmatrix} a_1 & 0 & 0 & \cdots & 0 \\ 0 & a_2 & 0 & \cdots & 0 \\ 0 & 0 & a_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & a_p \end{pmatrix}$$

où $a_1, a_2, a_3, \dots, a_p$ sont p réels. A quelle condition A est-elle inversible?

Exercice 11. Soit $A \in \mathcal{M}_2(\mathbb{K})$.

- 1. Écrire une relation linéaire entre A^2 , A et I_2 faisant intervenir les coefficients de la matrice A.
- 2. En déduire une condition nécessaire et suffisante (sans utiliser le déterminant) pour que A soit inversible. Donner alors l'expression de A^{-1} .
- 3. On suppose que la somme des éléments diagonaux de A est non nulle. Montrer que pour tout $B \in \mathcal{M}_2(\mathbb{K}), A^2B = BA^2 \Longrightarrow AB = BA$.

Exercice 12 (Déterminant de Vandermonde). Soient \mathbb{K} un corps et $n \in \mathbb{N}^*$. Pour $a_1, \ldots, a_n \in \mathbb{K}$, on considère le déterminant :

$$V(a_1, \dots, a_n) = \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ a_1 & a_2 & \dots & a_n \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \dots & a_n^{n-1} \end{pmatrix}.$$

Le but de l'exercice est de démontrer la formule : $V(a_1, \ldots, a_n) = \prod_{1 \leq i < j \leq n} (a_j - a_i)$.

- 1. Expliquer pour quoi la formule est vraie si deux des a_i sont égaux
- 2. Vérifier le résultat pour n = 2 et n = 3.
- 3. En réalisant des opérations bien choisies sur les lignes, puis en développant par rapport à la première colonne, montrer que

(†)
$$V(a_1, \dots, a_n) = V(a_2, \dots, a_n) \prod_{i=1}^{n} (a_i - a_1).$$

4. Conclure alors par récurrence.

Exercice 13. Soient $x_0, x_1, \dots, x_p \in \mathbb{R}$. À quelle condition sur x_0, x_1, \dots, x_p telle que pour tout $y_0, y_1, \dots, y_p \in \mathbb{R}$, il existe un polynôme P de degré $\leq p$ tel que $P(x_i) = y_i$ $(i \in \{0, 1, \dots, p\})$?

Exercice 14. Soient
$$X$$
 une valeur indéterminée et $A = \begin{pmatrix} 2-X & -3 & -6 \\ 0 & 5-X & 6 \\ -1 & -5 & -5-X \end{pmatrix} \in M_3(\mathbb{R}[X])$.
Calculer le polynôme $P = \det(A) \in \mathbb{R}[X]$ et déterminer ses racines. Si λ est racine de P , que peut-on

Calculer le polynôme $P = \text{dét}(A) \in \mathbb{R}[X]$ et déterminer ses racines. Si λ est racine de P, que peut-on dire sur A?

Exercice 15. Soit A une matrice nilpotente de $\mathcal{M}_n(\mathbb{K})$ (il existe $n \in \mathbb{N}$ tel que $A^n = 0$). En remarquant que $A = A - I_n + I_n$ et en utilisant la formule du binôme de Newton montrer que $A - I_n$ est inversible.

Exercice 16. Calculer les déterminants des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \\ 3456 & 1 \end{pmatrix},$$

$$D = \begin{pmatrix} 4 & 3 & 3 & 4 & 7 \\ 9 & 1 & 5 & 9 & 5 \\ 5 & 4 & 6 & 5 & 4 \\ 3 & 9 & 9 & 3 & 5 \\ 3 & 7 & 2 & 3 & 6 \end{pmatrix}, \quad E = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 10 \\ 6 & 12 & 5 & 0 & 2 \\ 1 & 14 & 11 & 3 & 18 \\ 1 & 2 & 6 & 1 & 11 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 2 & 1 & 1 & 1 \end{pmatrix},$$

LU1MA002 Mathématiques pour les Études Scientifiques II

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 3 & 8 & 3 & 7 & 2 \\ 0 & 0 & 2 & 8 & -1 & 1 \\ 0 & 0 & 0 & 1 & 8 & 5 \\ 0 & 0 & 0 & 0 & -1 & 9 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}, \quad M = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 0 & 0 & 0 & 5 \\ 3 & 0 & 0 & 0 & 0 & 4 \\ 4 & 0 & 0 & 0 & 0 & 3 \\ 5 & 0 & 0 & 0 & 0 & 2 \\ 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$