

CAZDNZI

-7SE2217

Line
Number

1 |
2 |
3 |
4 | SYSTEM INTERCONNECTIONS
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |

Memorandum of
ONTARIO HYDRO
to the
Royal Commission
on Electric Power Planning
with respect to the
Public Information Hearings

June, 1976

Digitized by the Internet Archive
in 2023 with funding from
University of Toronto

<https://archive.org/details/39261809040150>

Line
NumberI N D E X

1	13.0	SYSTEM INTERCONNECTIONS	
2	13.1	Introduction	1
3	13.2	Interconnected Utility Organizations	1
4	13.3	Operation of an Interconnected System	2
5	13.4	Advantages and Disadvantages of Interconnections	4
6	A.	Advantages	4
7	B.	Disadvantages	11
8	13.5	Existing and Planned Interconnections	12
9	13.6	Interchange Capability and Circulating Power	14
10	13.7	History of Exports and Imports with the United States	15
11	13.8	Export Policy	17
12	13.9	Export License for Interruptible Power and Energy	18
13	13.10	Import Policy	19
14	13.11	Interconnection Agreements	20
15	13.12	Financial Benefits of Interconnections	21
16	13.13	Planning New Interconnections	22
17	13.14	Purchases and Sales	22
18	13.15	National/Provincial Grid	27
19	13.16	Summary	28
20			
21			
22			
23			
24			
25			
26			
27			
28			
29			
30			
31			
32			
33			
34			
35			
36			
37			
38			
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52			
53			
54			
55			

1 13.1

Introduction

A transmission line which directly connects adjacent electric systems is called an interconnection.

For many years Ontario Hydro has been interconnected with the Great Lakes Power Corporation in the Sault Ste. Marie area of Ontario, Hydro-Quebec in Quebec, Manitoba Hydro in Manitoba, the Detroit Edison Company in Michigan and the Niagara Mohawk Power Corporation and the Power Authority of the State of New York (PASNY) in New York. Most of these interconnections form part of the bulk power networks of the interconnected utilities, and power may flow in either direction from moment to moment. The networks of Ontario Hydro, Manitoba Hydro, Great Lakes Power, Hydro-Quebec's Abitibi System, Detroit Edison, Niagara Mohawk, and PASNY are connected in this way and form part of a large power grid. This power grid extends over most of the Central and Eastern United States and the Canadian provinces of Saskatchewan, Manitoba, Ontario, New Brunswick and Nova Scotia. Because of stability considerations, the main part of the Hydro-Quebec system cannot operate in parallel with this large power grid. However, portions of Hydro-Quebec's system can be isolated and connected to the Ontario Hydro system. This enables deliveries of power from Quebec to Ontario. A similar procedure can be adopted to enable deliveries of power from Ontario to Quebec.

13.2

Interconnected Utility Organizations

Following the major power failure in the northeastern United States and Ontario on November 9, 1965, Ontario Hydro and electric utilities in New York and New England began a re-examination of the whole philosophy of interconnections and of the existing mechanisms for co-ordinated planning and operation. It was determined that while the interconnected network had provided a high level of reliability to the customer, it should be enhanced by greater co-ordination in the planning of future power systems, and in day to day system operation.

On January 19, 1966, executives representing electric utilities in New York, New England and Ontario signed an agreement establishing the Northeast Power Co-ordinating Council (NPCC), the first such organization in North America. The purpose of the Council is "to promote maximum reliability and efficiency of electric service in the interconnected systems of the signatory parties by extending the co-ordination of their system

1 planning and operating procedures". Today, the 21
2 NPCC member systems supply 98% of electric
3 requirements in New England, New York, Ontario and New
4 Brunswick.

5 Similar re-examinations took place throughout the
6 world and eight other councils were formed in North
7 America. In 1968 the National Electric Reliability
8 Council (NERC) was formed to augment the reliability
9 and adequacy of bulk power supply in the electric
10 utility systems of North America. This Council
11 consists of the nine regional reliability councils,
12 including NPCC, and encompasses almost all of the
13 power systems of the United States and the Canadian
14 systems in Ontario, British Columbia, Manitoba and New
15 Brunswick. Figure 13-1 shows a map of the 9 regional
16 councils.
17

18 13.3 Operation of an Interconnected System

19
20 Interconnected power systems are generally subject to
21 some type of regulatory approval. Operating
22 agreements signed by the utilities involved provide
23 the vehicle by which mutually acceptable standards,
24 types or classes of transactions and billing rates are
25 established. These agreements are limited in their
26 scope to the immediately adjacent utilities or systems
27 through which all interchanges with systems beyond
28 must be transacted. This is essential as a means of
29 protecting each system's right to use its transmission
30 capability for its own purposes.
31

32 Communications between adjacent interconnected systems
33 are normally made by dedicated voice circuits which
34 connect the system control centres. Other equipment
35 such as telecopier and teletype facilities is also
36 used to broadcast general information and routine data
37 over large geographic areas encompassing many systems.
38

39 Interconnected systems are operated, insofar as
40 practical, in accordance with the same criteria for
41 which they are designed. However, just as one part of
42 an individual system should not be allowed to cause
43 collapse of the entire system, so no system should be
44 allowed to cause the collapse of the interconnected
45 group of systems.
46

47 Each system in an interconnection operates its various
48 elements within limits which are designed to prevent
49 cascading i.e. trouble on one system spreading to
50 others. Weaknesses which develop on a system due to
51 scheduled or forced outages of components are made
52
53
54

NATIONAL ELECTRIC RELIABILITY COUNCIL

ECAR	East Central Area Reliability Coordination Agreement	MAIN	Mid-America Interpool Network	SERC	Southeastern Electric Reliability Council
ERCOT	Electric Reliability Council of Texas	MARCA	Mid-Continent Area Reliability Coordination Agreement	SPP	Southwest Power Pool
MAAC	Mid-Atlantic Area Council	NPCC	Northeast Power Coordinating Council	WSCC	Western Systems Coordinating Council

1 known to adjacent systems so they may be prepared in
2 the event of a further contingency and also as
3 explanation for abnormal power flows which may occur.
4

5 Under emergency conditions where a system encounters
6 or expects to encounter a situation where load exceeds
7 its generation, the system operator contacts his
8 counterparts in the adjacent systems and makes his
9 problem known. He is then obligated to attempt to buy
10 power and energy if it is available, in the amount he
11 requires to make his system self-sufficient. Self-
12 sufficiency is reached on any system when its on-line
13 generation and purchases exceed its load in every hour
14 of each day by an amount equal to or greater than the
15 operating reserve set by system policy. Normally the
16 operating reserve is equal to the output of the
17 heaviest loaded generator on-line in each hour.
18

19 Under normal conditions system operators compare on an
20 hourly basis the amount of spare generation available
21 and the cost of the energy which it is capable of
22 producing. If advantageous, purchases and sales are
23 entered into which result in the lowest cost
24 generation being loaded to replace higher cost
25 generation on an inter-system basis. Generally the
26 benefits obtained through this type of economy
27 transaction are shared equally by the participants.
28

29 Effective interconnected system operation requires
30 that each system operate as a load control area or
31 arrange to be included in a load control area operated
32 by another system. Each load control area, such as
33 Ontario Hydro, is equipped with and utilizes on a
34 continuous basis, accurate and reliable automatic
35 generation control facilities. With this automatic
36 equipment it is possible for each system to closely
37 and continuously match its load demand with its
38 generation and to make controlled sales and purchases
39 of power and energy on its interconnections.
40

41 System speed or frequency is held at an average of 60
42 Hz through proper use of load control facilities.
43 However, since frequency can be above or below the
44 average 60 Hz for prolonged periods of time, the
45 accumulated time error as indicated by electric clocks
46 driven from the electric power system can deviate from
47 true time. This time error is tolerated within a band
48 of ± 3 seconds before co-ordinated interconnected
49 system procedures are used to restore displayed time
50 to its true point.
51
52
53
54
55

1 The system frequency is common to all systems which
2 are interconnected. An action or problem on any one
3 system which tends to mismatch its load and generation
4 immediately affects all systems in the form of high or
5 low frequency. Should a system be deficient in
6 generation, then low frequency results and power is
7 automatically transferred to it by all other systems.
8 If a surplus of loaded generation should occur on a
9 system then all others react to the resulting high
10 frequency and assist in absorbing the surplus power.
11 This uncontrolled flow of power is called inadvertent
12 energy. Complex accounting and payback procedures
13 have been developed to keep the accumulated
14 inadvertent energy at low levels.

15 Operation of an interconnected system automatically
16 assists in overcoming short term operating problems.
17 However, each member system has a responsibility not
18 to take undue advantage of the automatic
19 interconnection capability. In an emergency, it must
20 either correct the problem on its system or make
21 arrangements to purchase adequate generating capacity.
22

23 13.4 Advantages and Disadvantages of Interconnections

24 A. Advantages

- 25 (a) Increase in System Generation Reliability or
26 Reduction in Reserve Generation.

27 As noted in the memorandum on Reliability, it is
28 impossible to design, construct, and operate a
29 generating system to be completely reliable.
30 There is always some chance, however small, that
31 the generating system cannot completely supply
32 the load. This chance depends primarily upon the
33 planned level of generation reserves, whether the
34 actual load is substantially greater or smaller
35 than the forecast load, whether the generation in
36 an operating condition is more or less than the
37 forecast amount, whether the transmission system
38 is less than planned, and whether fuel supplies
39 and stream flows are adequate.

40 If two systems are interconnected, there is some
41 chance that when one is unable to completely
42 supply its load, the other may, at that time,
43 have surplus generation available which it can
44 use to supply power to the first. This
45 assistance could enable the first system to
46 reduce or eliminate the load interruptions which
47 it would otherwise have to impose on its
48
49
50
51
52
53
54
55

1 customers. At other times, the situation might
2 reverse, with the second system receiving
3 assistance from the first. There will also be
4 occasions in which both systems are unable to
5 supply their own loads at the same time. In such
6 cases, neither system would be able to offer
7 assistance to the other.

8
9 Two possibilities arise by virtue of an
10 interconnection:

- 11 - Each of the systems can achieve an increase
12 in reliability.
13
14 - One or both systems can deliberately reduce
15 its own reserve generating capacity and
16 depend upon the other for assistance to
17 maintain the same reliability.

18
19 Increase in Reliability

20
21 Figure 13-2 illustrates the possibility of the
22 improvement in reliability which can result from
23 interconnecting two identical systems with
24 neither system reducing its installed generation.
25 The data in the Figure are obtained by
26 application of Loss of Load Probability (LOLP)
27 programs similar to those described in the
28 memorandum on Reliability. The Figure shows the
29 change in reliability as the interconnection
30 capacity between the two systems is increased.
31 It assumes that the generation and load levels in
32 each of the systems remain the same when the
33 interconnection is made. Three cases are shown,
34 corresponding to three alternative reliability
35 levels in each system when they are not
36 interconnected.

37
38 As illustrated, interconnecting systems reduces
39 the Loss-Of-Load probability and therefore
40 improves the reliability of each system. The
41 relative improvement is less if the reliability
42 with zero interconnection capacity is low.

43
44 Reduction in Reserve Generating Capacity

45
46 Figure 13-3 illustrates the possible reduction in
47 reserve requirements resulting from the same
48 interconnection arrangement, i.e., with two
49 identical systems. In this case, instead of
50 using the interconnection to improve reliability,
51 it is used to maintain a constant reliability

Based on Ontario Hydro East System generation proposed for December 1982 interconnected with identical system. Each system reduces its reserve after interconnection to maintain LOLP at the following level:

Case (a) 100/2400

Case (b) 10/2400

Case (c) 1/2400

ILLUSTRATION OF THE POSSIBLE REDUCTION IN RESERVE REQUIREMENTS AS A FUNCTION OF THE INTERCONNECTION CAPACITY

1 with lower generation reserves on each system.
2 Three cases are shown corresponding to three
3 levels of reliability. From Figure 13-3 the
4 following data can be derived:
5

6 For Each System

Case	LOLP	Required Reserve Level				Possible Reductions in Required Reserve	
		No Interconnection		With Interconnection		MW	% of Load
		MW	% of Load	MW	% of Load		
(a)	100/2400	3381	13.4	2631	10.2	750	3.2
(b)	10/2400	4636	19.4	3562	14.3	1074	5.1
(c)	1/2400	5692	25.0	4265	17.6	1427	7.4

Reliance on interconnections to reduce generation reserves may appear attractive but it requires the systems to depend on each other to achieve the required reliability. If the interconnection capacity exists, the main risk is that either or both of the systems may have reserves substantially less than the required level because of errors in load forecast or inability to install generation on schedule. Also, government action may restrict the interchange of energy. Such factors may result in either or both of the systems suffering poor reliability for eight or more years because of the long lead time for new generation.

In the extremes, the alternatives shown in Figures 13-2 and 13-3 are mutually exclusive. That is, if the systems take maximum advantage from the increase in reliability, no generation reductions are possible. On the other hand, no increase in reliability will result if sufficiently large reductions are made in reserve generation capacity. However, it may be possible to achieve a portion of both these benefits at the same time.

Figures 13-2 and 13-3 deal with the increase in reliability of peak supply. Under some circumstances there will also be an increase in the reliability of energy supply. This would not be the case during periods of shortages of fuel which affect both of the systems.

ILLUSTRATION OF SURPLUS POWER
AVAILABLE FOR DIVERSITY EXCHANGES

ONTARIO HYDRO EAST SYSTEM 1979 (LRF48)

FIGURE 13-4

ILLUSTRATION OF INCREASED YEAR ROUND LOAD THAT THE SYSTEM COULD SUPPLY BY REDISTRIBUTION OF SURPLUS POWER THROUGH DIVERSITY EXCHANGES

FIGURE 13-5

1 diversity exchanges to reduce its generating
2 capacity program because of:
3

- 4 - possible limitations in transmission in
5 intervening systems.
6
7 - possible government action to restrict
8 energy transfers.
9
10 - the possibility that the intervening systems
11 would use the power themselves if they
12 should be in short supply.

13 Daily Time-Zone Diversity

14
15 Since Ontario, Quebec, New York and Michigan are
16 all on Eastern Time there is no appreciable
17 diversity between their daily peak load periods.
18 Diversity does exist between Ontario and other
19 parts of Canada but the benefit to be gained by
20 Ontario from daily diversity exchanges with them
21 is small, as shown in Figures 13-6 and 13-7,
22 because:

- 23
24 - The other systems are much smaller than
25 Ontario.
26
27 - There is a trend toward flattening of the
28 daily load shape, and therefore the relative
29 diversity in daily peak loads is expected to
30 decrease.

31 (c) Advance or Joint Development

32
33 By making a firm agreement for sale over the
34 interconnection extending over a period of a few
35 years, one utility can install generating
36 capacity in advance of its own need and sell it
37 to another utility which can postpone
38 installation of capacity on its system. This may
39 be advantageous in the case of a major hydro-
40 electric development where a large number of
41 units are to be installed. Power is now
42 purchased under short-term contracts from Quebec
43 and Manitoba on this basis.

44 (d) Reduction in Transmission Requirements and Losses

45
46 With system interconnections there is usually a
47 reduction in power and energy losses as a result
48 of the additional transmission paths available.

ILLUSTRATION OF POSSIBLE TIME-ZONE
DIVERSITY BETWEEN ONTARIO HYDRO EAST SYSTEM
AND WESTERN CANADA

THIS ILLUSTRATION USES ACTUAL LOADS FOR ONTARIO AND ESTIMATES FOR ALL OTHER PROVINCES AND ASSUMES THAT ALL PROVINCES HAVE THE SAME DAILY LOAD SHAPE AS ONTARIO'S EAST SYSTEM ON DECEMBER 18, 1979

SUM OF NON-COINCIDENT PEAKS = 27422 MW

COINCIDENT PEAKS = 26484 MW

DIVERSITY = 938 MW / SHARE TO ONTARIO = 350 MW / SHARE TO WESTERN PROV. = 588 MW

FIGURE 13-6

ILLUSTRATION OF POSSIBLE TIME-ZONE
DIVERSITY BETWEEN ONTARIO HYDRO EAST SYSTEM
AND WESTERN CANADA

THIS ILLUSTRATION USES ACTUAL LOADS FOR ONTARIO AND ESTIMATES FOR ALL OTHER PROVINCES AND ASSUMES THAT ALL PROVINCES HAVE THE SAME DAILY LOAD SHAPE AS ONTARIO'S EAST SYSTEM ON JANUARY 22, 1976

FIGURE 13 - 7

1 Also there may be a reduction in transmission
2 requirements.
3
4
5
6
7
8
9
10
11
12
13
14

(e) Reduced Operating Reserve

Since each party to an interconnection has access to its neighbours' operating reserves and the parties are unlikely to require the reserves at precisely the same time, the amount of operating reserve which must be carried by each system can be less than it would have to carry if operating separately. This is an important advantage of interconnections because of the daily saving it produces.

(f) Improved Reliability Against Major Contingencies

Interconnections reduce the probability of interruption of load due to major contingencies such as those listed below, provided these contingencies do not affect both systems simultaneously:

- interrelated multiple outages or reductions in generating or transmission capacity.
- extreme weather effects.
- latefall in the in-service dates of new facilities.
- shortages of critical materials such as heavy water or fuel.
- malicious damage or sabotage.
- strikes.
- loads being much higher than forecast.

(g) Economy Transactions

One system may have surplus generating capacity which can produce energy at a lower cost than some of the higher cost generating units on a neighbouring system. Under these conditions a sale of power over the interconnections can provide both parties with cost advantages.

The table below shows the purchases of this type from the United States and other Canadian

Line
Number

1 provinces since 1970. About 85% of the purchases
2 were from Canadian sources. The net savings are
3 the generation cost that would have been incurred
4 without the purchase less the gross cost of the
5 purchases. (The economic benefits of economy
6 sales are included in section (h) following.)
7

Year	Economy Purchases GWh	Purchase Cost M\$	Net Savings M\$
1970	1397	5.2	4.8
1971	584	1.6	1.3
1972	1617	4.7	4.0
1973	2040	5.3	3.8
1974	1601	6.3	5.0
1975	1577	8.1	6.6

19 (h) Economic Benefit from Sales
20

21 The preceding describes the benefit of energy
22 imports or exchanges. The interconnections
23 provide the means to deliver assistance to others
24 in the form of interruptible sales, either to
25 meet capacity shortages or to achieve economy
26 savings. Such sales, made from resources which
27 otherwise would be idle or only partially
28 utilized, have resulted in substantial economic
29 benefits as indicated by the following table.
30 This table shows the energy sales outside Ontario
31 since 1970, virtually all being to the United
32 States. The net return or "profit" is the gross
33 revenue received less the estimated incremental
34 cost to Ontario Hydro of generating and
35 transmitting the energy.
36

Year	Energy Sales GWh	Total Revenue M\$	Net Return M\$
1970	1582	17.6	6.3
1971	1777	21.9	6.4
1972	3755	36.3	16.1
1973	5362	61.2	31.7
1974	5890	101.1	54.7
1975	1967	42.1	20.1

48 The net return in 1974 of \$54.7 million was equal
49 to 6% of the 1974 primary revenue; i.e. it would
50 have taken the equivalent of a 6% increase in
51 1974 primary rates to replace the "profit" on
52 1974 sales.
53

1 | (i) Frequency Stability

2 |
3 | With the present interconnection covering a large
4 | part of North America, it is possible to maintain
5 | system frequency much more constant than could be
6 | accomplished with an isolated system. The sudden
7 | change in frequency which occurs on failure of a
8 | generating unit is very small on a large
9 | interconnected system. This reduces the risk of
10 | damage to large turbine-generators installed at
11 | thermal plants. These units can be operated only
12 | for short periods at frequencies that differ even
13 | slightly from 60 Hz. Also electric motor speeds
14 | are more constant, an important consideration for
15 | some industrial users.

16 | B. Disadvantages

17 |
18 | The major advantages are obtained at the cost of some
19 | disadvantages.

- 20 |
21 | - Interconnection facilities must be installed and
22 | expanded as the member systems grow in size. In
23 | addition some increase in system internal
24 | transmission may be required.
25 |
26 | - Planning and operation of the power system
27 | becomes more complex because of constant co-
28 | ordination among member systems.
29 |
30 | - Each system loses some autonomy in its planning
31 | and operation.
32 |
33 | - Reliance on interconnection assistance to reduce
34 | reserves greatly increases the dependence of one
35 | system on the other. In the event that one
36 | system is unable to meet its reliability
37 | requirements this failure will be reflected in
38 | the lowering of the reliability of both systems.
39 |
40 | - Occasionally, a disturbance on one system will
41 | cascade through the interconnection into another
42 | system, causing some interruption of load.
43 |
44 | - Interconnected operation is an additional
45 | obstacle to the use of frequency reduction as a
46 | method of load curtailment.
47 |
48 | - In addition changes in government policy may
49 | seriously restrict the value of interconnections,
50 | and unpredictably eliminate many of the
51 | advantages.

Line
Number

1 13.5

Existing and Planned Interconnections

A listing of Ontario Hydro's existing and planned 60 hz interconnections (115 kV and above) is shown in Figure 13-8, and the locations of these facilities are shown in Figure 13-9.

Interconnections with Quebec

Ontario Hydro has had major interconnections with Quebec since 1928. These were initially established to import power on long-term contracts of up to 44 years duration. They are located on the lower Ottawa River near Ottawa, and at the interprovincial border between Montreal and Cornwall. For technical reasons the Quebec main system cannot operate in parallel with the Ontario Hydro system. Therefore Hydro Quebec supplies Ontario with power by disconnecting generation from its system and connecting it to the Ontario system. At present Ontario Hydro can assist Hydro-Quebec in emergencies by allowing Quebec to withdraw generation supplying firm power to the Ontario system. In addition Ontario Hydro can assist Hydro-Quebec by isolating some Ontario generation on the Quebec system.

If the present firm contracts are not renewed, Ontario will be able to provide only limited support to Quebec in emergencies. The Ontario transmission system is not designed for easy isolation of major blocks of generation at Saunders or Lennox for export to Quebec. Furthermore, until transmission facilities in Eastern Ontario are expanded, any isolation of facilities to supply Quebec would jeopardize the supply to Ottawa. Interconnection by isolated generation does not provide the operating flexibility which is achieved on interconnections where the systems operate in parallel. However, direct interconnection of the main systems of Quebec and Ontario would require costly transmission additions.

There are also interconnections between Quebec's Abitibi system and Ontario Hydro's system in Northeastern Ontario. In addition to normal use, during the next few years, Ontario Hydro expects to provide assistance to Hydro Quebec's Abitibi system to meet forecast deficiencies in peak power and energy. However by 1980, Hydro Quebec expects to have completed a 735 kV line to interconnect its main system with its Abitibi system. Thereafter power exchanges between Ontario Hydro and Quebec's Abitibi system will only be possible by isolated generation.

**ONTARIO HYDRO
EXISTING AND PLANNED 60 HZ INTERCONNECTIONS
115 kV AND ABOVE**

<u>Location</u>	<u>Designation</u>	<u>Date</u>	<u>Nominal</u> <u>Voltage</u>	<u>Nominal</u> <u>Winter</u>
		<u>Established</u>		<u>MVA</u>
#	<u>Col. 1</u>	<u>(Note 1)</u> <u>Col. 2</u>	<u>Col. 3</u>	<u>(Note 2)</u> <u>Col. 4</u>
<u>QUEBEC</u>				
Beauharnois	B5D	Oct. 1932	230	530
	B31L	Apr. 1941	230	530
Chenaux	X2Y	July 1942	115	65
Val Tetreau	V12 M	Nov. 1928	115	175
Val Tetreau	F10 MV	Nov. 1928	115	175
Masson	H4AK	July 1933	115	140
Masson	H9A	Aug. 1940	115	160
Paugan	P33C	Oct. 1928	230	315
Paugan	P4C	July 1930	230	315
Rouyn	K2R	Dec. 1949	115	85
Rapide des Iles	D3KZ	Oct. 1966	115	100
Holden	1331	Oct. 1966	115	145
<u>MANITOBA</u>				
Kenora	SK1	Oct. 1956	115	75
	K21W	Oct. 1972	230	200
	K22W	Apr. 1973	230	200
<u>GREAT LAKES POWER</u>				
Mississagi	P21G	Dec. 1968	230	250
	P22G	Dec. 1968	230	250
Wawa	T ₁	Jan. 1969	115	125
	T ₂	Jan. 1969	115	125
<u>NEW YORK</u>				
Niagara	PA27	Dec. 1961	230	480
	BP76	May 1955	230	550
Cornwall	L33P	Dec. 1958	230	360
	L34P	Future(4)	230	360
<u>MICHIGAN</u>				
Sarnia	B3N	Sep. 1953	230	590
Windsor	J5D	Sep. 1953	230	570
Lambton	L4D	Dec. 1966	345	800
	L51D	1976	345	895
NOTES:				
(1) The "date established" is the in-service date of the original interconnection. Changes to some of the interconnections have been made since to increase the voltage and/or the capacity.				
(2) The Nominal Winter Capacities are based on the more limiting of the line or transformer capacity included in the interconnection.				
(3) The total permissible interchange with the various utilities is not the arithmetic sum of the nominal capacities of the interconnections with that utility because power flows may not be shared by the interconnections in proportion to their capacities.				
(4) L34P was originally placed in-service as RM3 in 1947 at 115 kV. It has not been used in recent years. Present plans are to re-establish this tie, with a phase shifter, for 230 kV operation.				

GEOGRAPHIC LOCATION OF INTERCONNECTIONS

1 Although the total capacity of the interconnections
2 with Quebec listed in Figure 13-8 is 2720 MW, system
3 transmission considerations limit the transfer
4 capability to Ontario to 1300-1500 MW, and the
5 capability to Quebec to 300-500 MW. Unless
6 transmission is added, the limits will decrease in
7 future years because of load growth near the border.
8

9 Interconnections in Northeastern Ontario

10 Because of the large distances and small population,
11 development of an interconnected system in Northern
12 Ontario occurred later than in Southern Ontario.
13 Isolated systems of Ontario Hydro and private
14 companies in Northeastern Ontario were integrated by
15 Ontario Hydro transmission lines and eventually
16 interconnected with the main Southern Ontario system
17 in 1950. The area around Sault Ste. Marie is supplied
18 by a private company, Great Lakes Power Corporation,
19 which has been interconnected with Ontario Hydro since
20 1960.
21

22 Interconnection with the Ontario Hydro West System
23 and Manitoba

24 Ontario Hydro's West System supplying the area from
25 Marathon to Kenora developed as an isolated system.
26 It was interconnected with the Manitoba system in 1956
27 and with Ontario Hydro's East System in 1970.
28
29

30 The first interconnection with Manitoba Hydro
31 (designated SK1) was established in 1956 by the
32 construction of a 115 kV line from Kenora TS to
33 Manitoba Hydro's Seven Sisters Generating Station.
34 Two 230 kV interconnections (K21W and K22W) between
35 Kenora and Manitoba Hydro's Whiteshell station, were
36 placed in service in October 1972 and April 1973, to
37 accept the firm power deliveries commencing in 1972.
38 The interconnections include phase-shifting
39 transformers. Manitoba Hydro is also connected to the
40 Saskatchewan Power Corporation and to the United
41 States systems in North Dakota. These in turn are
42 connected to the continental grid in the United States
43 so that a parallel loop exists around the Great Lakes.
44
45

46 Interconnections with Michigan and New York

47 The first 60 Hz interconnections with Detroit Edison
48 were established in 1953, a 115 kV interconnection
49 (M3S) between Ontario Hydro's Sarnia Scott station and
50 Detroit Edison's Marysville station and a 115 kV
51 interconnection (J5D) between Keith Generating Station
52
53

Line
Number

1 at Windsor and Detroit Edison 's Waterman Station.
2 Provision was made in the construction of these
3 interconnections for future conversion to 230 kV
4 operation. In 1966 a third 115 kV interconnection,
5 (L4D) with provision for future conversion to 345 kV
6 was established between Lambton GS and Detroit
7 Edison's St. Clair Power Plant.

8
9 In 1968, L4D was converted to 345 kV operation. M3S
10 and J5D were converted to 230 kV operation in April
11 1973 and May 1973 respectively and a phase-shifting
12 transformer was installed in J5D in 1975. A second
13 345 kV interconnection from Lambton to St. Clair was
14 recently placed in service.

15 Initially, Ontario Hydro had limited export capability
16 with Niagara Mohawk using the 69 kV, 25 Hz tie lines
17 at Niagara. Also, at times, power was exported at
18 Cornwall using a 60 Hz circuit designated HM3 and
19 operating at 115 kV, which was rented from the Cedars
20 Rapids Transmission Company.

21
22 The first permanent 60 Hz interconnection with New
23 York was established in 1955 at 230 kV between Beck GS
24 and the Packard station of Niagara Mohawk (BP76). In
25 1958, a 230 kV interconnection at Cornwall (L33P) was
26 established with PASNY and includes a phase-shifting
27 transformer. A second 230 kV interconnection (PA27)
28 was constructed between Beck GS and the Niagara
29 station of PASNY in 1961 and a second 230 kV
30 interconnection at Cornwall is planned for service in
31 1978.

32
33 All interconnections with the United States have
34 voltage regulation on the transformers.

35 13.6 Interchange Capability and Circulating Power

36
37 The total capacities of the interconnections listed in
38 Figure 13-8 are 2855 MW for transfers with Michigan
39 and 1750 MW for transfers with New York. However,
40 because the flows on the interconnections cannot be
41 precisely controlled, and because there are
42 transmission limitations in Ontario and the United
43 States, the range of export and import capabilities
44 following completion of the second 230 kV
45 interconnection at Cornwall in 1978 is as follows:

46 Export from Ontario 1000 to 2500 MW

47 Import to Ontario 1500 to 3000 MW

1 A complicating feature of operation of the
2 interconnections with Michigan and New York is the
3 circulating power around Lakes Erie and Ontario. Even
4 with no net import or export there is usually a flow
5 of power over the interconnections, with power leaving
6 Ontario for New York and simultaneously returning to
7 Ontario from Michigan, or vice versa. The flow of
8 circulating power sometimes reaches 600 megawatts. A
9 net export under these conditions will increase the
10 flow out of Ontario to New York and decrease or
11 possibly reverse the flow into Ontario from Michigan,
12 or vice versa. Circulating power therefore
13 necessitates considerably larger capacity on
14 individual tie lines than would be the case if precise
15 control of all ties were possible, but it does have
16 the advantage that it reduces total transmission
17 losses by providing a greater number of transmission
18 paths over which the power may flow.

19 A measure of control of circulating power is possible
20 by two techniques, both of which are costly and result
21 in an increase in total transmission losses:

- 22
- 23 - Phase-shifting transformers can be installed in
 - 24 the interconnections, as has been done at
 - 25 Cornwall, Windsor and Whiteshell, Manitoba.
 - 26
 - 27 - High Voltage Direct Current interconnections can
 - 28 be used. This method of control has not been
 - 29 used by Ontario Hydro.

30

31 Figure 13-10 shows the transfer limits with existing

32 and planned interconnections after allowance for

33 circulating power and other factors.

34

35 13.7 History of Exports and Imports with the United States,

36

37 Almost immediately after the first two

38 interconnections with Michigan were placed in-service

39 in 1953, Ontario Hydro started buying emergency

40 assistance to offset low water conditions and the

41 major failure of the Hearn plant in 1954. Although

42 the quantities were small by today's standards, this

43 assistance was of critical value at the time. Even

44 under these adverse conditions, some export sales were

45 possible at other times of the year, during spring

46 freshet and low load conditions.

47

48 By the late 1950's the situation had reversed.

49 Resource conditions, particularly stream flows, were

50 favourable in Ontario. Niagara Mohawk had lost the

51 output of the entire Schoellkopf generating station as

TRANSFER LIMITS IN LATE 1970's
WITH EXISTING AND PLANNED INTERCONNECTIONS

IMPORT

	<u>MW</u>
Quebec	1300 to 1500
Manitoba	200 to 300
Great Lakes Power	*
United States	1500 to 3000

EXPORT

Quebec	300 to 500
Manitoba	0 to 100
Great Lakes Power	150 to 250
United States	1000 to 2500

Note: The Great Lakes Power Co. load normally exceeds their generating capacity. Surplus power is available very infrequently.

June 14, 1976

1 a result of a rockslide in the Niagara gorge. Large
2 sales, mostly from hydraulic sources, were made to
3 displace fossil-fuelled generation in New York and
4 Michigan or to provide capacity assistance to Niagara
5 Mohawk.
6

7 In the mid 1960's, with very poor water conditions and
8 commissioning problems at Lakeview GS, electricity
9 purchases usually exceeded sales. In 1968, for
10 example, Ontario purchased emergency assistance from
11 the United States to meet capacity shortages on 81
12 occasions in amounts up to 550 MW. Meanwhile coal
13 purchases for thermal stations were rising rapidly.
14 In the early 1970's, the load-resource situation
15 deteriorated in the neighbouring United States systems
16 and improved in Ontario. With favourable water
17 conditions in Ontario, and the excellent performance
18 of Pickering GS, Ontario Hydro had surplus capacity
19 available most of the time to assist the hard-pressed
20 American utilities.

21 In late 1973 and early 1974, the Arab oil crisis added
22 a new factor. The American systems purchased energy
23 almost continuously whenever surplus generation was
24 available to displace their oil-fired units. The
25 assistance from Ontario Hydro, using American coal,
26 was a significant factor in easing the effect of the
27 oil crisis in the Northeastern United States. In
28 December, 1974, Ontario Hydro, with five 500 MW units
29 out-of-service for an extended period, again required
30 assistance, and a total of 510 MW of reserve capacity
31 was purchased from the United States.
32

33 In 1975, largely as a result of the recession in the
34 United States, the situation again changed suddenly
35 and export sales dropped to about one-third the record
36 1974 quantities. With almost no load growth in 1975,
37 the American load and capacity balance had improved so
38 that only occasional assistance was required
39 throughout the year to cover equipment outages or to
40 displace higher cost generation.
41

42 Ontario Hydro is now dependent on United States coal
43 for a large portion of its electric energy supply.
44 Figure 13-11 shows net electric energy generated by
45 Ontario Hydro from coal imported from the United
46 States and net electric energy exports to the United
47 States since 1950. The graph shows that the electric
48 energy produced from imported coal has for many years
49 greatly exceeded the electric energy exported. Figure
50 13-12 shows the export and import electricity
51 transactions with the United States since 1950. This
52
53
54
55

ONTARIO HYDRO
ENERGY INTERCHANGES WITH UNITED STATES
(EXCLUDING BORDER ACCOMMODATIONS)

GROWTH OF INTERCHANGE TRANSACTIONS WITH THE USA
ENERGY SALES AND PURCHASES

GIGAWATT HOURS

FIGURE 13-12

1 graph reflects the variations over the years in
2 resource availability, requirements for emergency
3 assistance and opportunities for profit.
4

5 13.8

6

7 Export Policy

8

9 Exports to customers outside Ontario are defined under
10 the following three classifications:
11

- 12
- 13 - Firm Export - Export sales which are given
14 approximately equal priority with firm loads in
15 Ontario.
16
- 17 - Interruptible Export - Export sales which have a
18 lower priority than Ontario loads and which would
19 be interrupted to protect the reliability of
20 supply in Canada.
21
- 22 - Inadvertent Equichange - Offsetting inadvertent
23 or unscheduled exports and imports of electricity
24 which are a natural result of operating two or
25 more systems in parallel. These equichanges do
26 not involve any net export of energy from Canada
27 and are not classified as "sales".
28

29 Ontario Hydro does not at present supply firm power
30 directly to utilities or end users outside Ontario,
31 except as a matter of "border accommodation" to
32 certain customers in the United States who are
33 difficult or impractical to supply from an American
34 utility but can more easily be served from a Canadian
35 utility and vice versa. There are three exports and
36 two imports to Ontario of this type. The largest is a
37 sale of about 30 megawatts to the Ontario-Minnesota
38 Pulp and Paper Company at Fort Frances, which it
39 exports to the Boise Cascade Company at International
40 Falls. The total of these firm exports by Ontario
41 Hydro represent less than two-tenths of one percent of
42 Ontario Hydro's 1975 installed capacity.
43

44 Future firm exports, if any, would be a matter of
45 negotiation between the parties concerned and would be
46 considered in terms of the overall merits of the
47 specific proposal. Any contract for such exports
48 would require the approval of the Provincial Cabinet
49 and, in the case of exports to the United States, the
50 National Energy Board.
51

52 The policy on the export of surplus interruptible
53 power is as follows:
54

1 "In order to obtain the benefits of improved quality
2 of service, improved reliability, and reduced cost of
3 service to Ontario Hydro customers that are provided
4 by the necessarily-reciprocal agreements for
5 participation in the interconnected network, it is the
6 policy of Ontario Hydro to export surplus
7 interruptible power in accordance with the following:
8
9
10 "(a) to provide emergency assistance to the maximum
11 extent deemed consistent with the safe and proper
12 operation of its own system and with its prior
13 obligations to other Canadian systems;
14
15 "(b) to take advantage of opportunities for profitable
16 sales at times other than emergencies in such
17 quantities as deemed desirable, having due regard
18 for conditions on the Ontario Hydro system;
19
20 "(c) to obtain a fair and economic return for the
21 services provided and to maximize the longer term
22 economic gain to Ontario, taking into account all
23 applicable costs incurred in Canada and having
24 due regard to the possibility that Ontario Hydro
25 may need to purchase in future under the same
26 conditions;
27
28 "(d) to adhere to the Corporation's policies on the
29 conservation of energy and to any applicable
30 governmental rules and regulations, including
31 those relating to the use of resources,
32 environmental restrictions, priority of supply
33 and quantities that may be exported."
34 13.9

Export Licence for Interruptible Power and Energy

35 Any interconnection agreement requires the approval of
36 the Government of Ontario. Any export of power to the
37 United States must meet the terms of a license granted
38 by the National Energy Board.
39

40 The minimum requirements for granting an export
41 license, as stated in the National Energy Board's 1974
42 Annual Report, are as follows:
43

44 "Applicants for licences to export power must
45 satisfy the Board that the energy proposed to be
46 exported will be surplus to reasonably
47 foreseeable Canadian needs.
48

49 "To ensure that export prices are just and
50 reasonable, an applicant must also satisfy the
51 Board that the price will cover the cost of
52
53
54
55

Line
Number

1 producing the power and transmitting it to the
2 border, that it will not be less than the price
3 to Canadians for comparable service, and that it
4 will not be markedly less than the lowest cost
5 alternative to the purchaser. The value to
6 Canada of related imports is also taken into
7 account."

8 In March 1976 Ontario Hydro applied for a licence for
9 two basic types of surplus interruptible energy
10 exports. The first type consists of unscheduled
11 transfers of inadvertent energy over the
12 interconnections as described in section 13.6. The
13 second type consists of scheduled transfers of all
14 other classifications provided for in the
15 interconnection agreements.

16 There are no obligations in these agreements to export
17 and import any specific quantities of energy. Because
18 of the many variables and uncertainties involved, the
19 volume of exports and imports cannot be predicted with
20 accuracy. The range of variability is illustrated by
21 Figure 13-12, which shows the history of export sales
22 and purchases since 1950. The following table is an
23 estimate of the potential maximum energy exports of
24 each basic type that could occur in any individual
25 year. These are the amounts that Ontario Hydro has
26 used in its application for an export licence.

Year	Inadvertent	Scheduled
	Equichange	Transfers
	(Gwh)	(Gwh)
1976	6,000	10,000
1977	7,000	13,000
1978	8,000	13,000
1979	9,000	15,000
1980	10,000	18,500
1981	11,000	20,000
1982	12,000	23,000
1983	13,000	26,000
1984	14,000	28,000
1985	15,000	30,000

44
45 13.10

Import Policy

46
47 Ontario Hydro is prepared to purchase power from other
48 utilities when this is advantageous. At present
49 Ontario Hydro purchases firm power from Quebec and
50 Manitoba, but not from United States utilities.

1 Adjacent regions in the United States have in recent
2 years been experiencing severe difficulties in
3 obtaining:

- 4
- 5 - the necessary approvals for constructing new
6 generating and transmission facilities,
7
- 8 - gas, oil and low sulphur coal to run existing
9 plant, and,
- 10
- 11 - the necessary capital to build new facilities.

12

13 In view of these conditions, it is unlikely that firm
14 power at an acceptable price and reliability level can
15 be purchased from United States utilities in the
16 foreseeable future. Possible future firm purchases
17 from Quebec and Manitoba are being investigated, as
18 described in Section 13.14.

19

20 Interruptible power is purchased from other utilities,
21 if available, when such purchases are advantageous for
22 either operating or economic reasons.

23

24 The import of electricity from the United States is
25 not subject to National Energy Board licensing.

26 13.11

27 Interconnection Agreements

28

29 Utilities, in dealing with neighbouring utilities,
30 operate under formal interconnection agreements or
31 their equivalent. These agreements make provision for
32 sharing of reserves, emergency and economy transfers,
33 seasonal diversity transfers, co-ordinated maintenance
34 and possible co-ordinated development and they provide
35 the ground rules for the day-to-day operation of the
36 power system.

37

38 Ontario Hydro has formal interconnection agreements
39 with:

- 40
- 41 - Hydro-Quebec
- 42
- 43 - Manitoba Hydro
- 44
- 45 - Great Lakes Power Corporation
- 46
- 47 - Niagara Mohawk
- 48
- 49 - PASNY
- 50
- 51 - Michigan (Detroit Edison and Consumers' Power)

1 - Ontario-Minnesota Pulp and Paper Company

2
3 A typical agreement provides:

- 4
5 - a statement of licence and government authority,
6 if necessary;
- 7
8 - a description of interconnection facilities and
9 metering points, and billing practices;
- 10
11 - a description of various types of electric
12 service that can be provided;
- 13
14 - for the establishment of formal operating and
15 planning committees, outlining their duties and
16 authorizing them to carry out the provisions of
17 the agreement;
- 18
19 - a statement of liability;
- 20
21 - a statement of effective date and term;
- 22
23 - other legal requirements.

24 Ontario Hydro's interprovincial and international
25 interconnection agreements are given in Reference 1.

26
27 13.12 Financial Benefits of Interconnections

28
29 Interconnections not involving long-term purchases or
30 sales do not lend themselves to cost-benefit analysis
31 because the tangible benefits cannot be estimated very
32 far into the future. Many of the benefits come from
33 daily operating cost savings and these are very
34 difficult to estimate even a few years in the future.

35
36 The tangible benefits from non-firm interchanges can
37 be substantial, but variable as in the export to the
38 United States, where net profits varied from
39 \$54,700,000 in 1974 to \$20,000,000 in 1975. Past
40 experience has shown tangible benefits to be
41 significant in most years, but this is little help in
42 forecasting. Also some major benefits such as
43 improved reliability, cannot be estimated in financial
44 terms.

45
46 While the benefits cannot be quantified over the long
47 term, the investments necessary for most of Ontario
48 Hydro's interconnections have been relatively small.
49 They have involved two or three circuit breakers, a
50 regulating transformer, and a few miles of
51 transmission line, with the costs shared by the

Line
Number

1 utilities involved. The decision to install them has
2 been made largely on a basis of intangibles and
3 judgement based on past experience. If future Ontario
4 Hydro interconnections involve large expenditures for
5 internal transmission, more evidence of benefits may
6 be required before a decision is made to proceed.
7

8 Interconnections built for specific firm power
9 purchases and sales are more amenable to cost-benefit
10 analysis during the period of the firm agreement.
11 Assessment of the value of the interconnection in
12 later years is subject to the difficulties expressed
13 above.

14 13.13

15 Planning New Interconnections

16 Interconnections are generally planned and constructed
17 by the utilities directly involved. Planning for
18 expansion of interconnections to meet the changing
19 requirements of growing systems is an ongoing process,
20 just as is planning for expansion of the Ontario Hydro
21 system to meet growing loads. Extensive studies are
22 carried out to assess the capabilities of existing
23 interconnections with time, assess the benefits of
24 additional interconnection capacity, develop and
25 assess effects of alternatives on the performance of
26 the system, prepare technical specifications and cost
27 estimates, assess justification of additional capacity
28 and reach agreement on sharing of cost.
29

30 Each utility is responsible for obtaining the
31 necessary Government approvals within its
32 jurisdiction. For example Ontario Hydro would have to
33 obtain the approval of the Government of Ontario and a
34 license from the National Energy Board for major
35 expansion or construction of an international
36 connection.
37

38 13.14

39 Purchases and Sales

40 Ontario Hydro has frequent discussions with
41 neighbouring utilities concerning possible
42 opportunities for purchases and sales. The Operations
43 Branch co-ordinate Ontario Hydro's interconnection
44 purchases and sales for about two years into the
45 future. This consists of arranging short-term
46 interruptible sales that provide interruptible
47 emergency assistance and economy transactions. For
48 the longer term, when purchases can affect the
49 installation of new facilities, the planning and
50 operating functions deal jointly with the other
51 parties to the interconnection arrangements.
52

**Line
Number**

Firm Purchases from Other Provinces

Ontario Hydro has had a long history of firm power purchases. It has purchased firm power from Quebec since the 1920s, and from Manitoba since 1972. These purchases were made when Ontario Hydro required power and when it was available at advantageous prices.

The firm purchases currently covered by contract or letter of intent are:

The contracts and agreements for the above firm purchases reflect the recent fundamental changes that have taken place in the nature of firm purchases.

187 MW of the purchase from Quebec terminates on November 1, 1976. This contract was originally executed in 1929, and was amended a few years later. The amended agreement provided fixed amounts of power and energy which ratcheted up in the initial years. The final amount of 187 MW has been supplied for almost 40 years, at a fixed price and has been associated with a specific generating station at Beauharnois. Several similar long term purchases were made from other Quebec sources but these have already expired.

The remaining 1000 MW purchase from Hydro-Quebec will terminate on May 31, 1977. This is purchased under two agreements of much shorter duration than for the 187 MW mentioned above. The first agreement was executed on October 2, 1970, and stipulated the delivery of certain amounts of interruptible energy starting June 1, 1971, and of firm power and energy starting June 1, 1975, all purchased at fixed prices. The second agreement was executed on November 24, 1971, and provided additional energy and firm power at higher prices, which included the concept of varying price for the additional energy that escalates by stated amounts, year by year. This power and energy was not related to a specific generating station but in effect it became available as a result of a temporary surplus in Quebec associated with the Churchill Falls hydroelectric development.

A similar situation applies to the purchase from Manitoba Hydro. This represents three agreements each of short duration. The first was executed on November 16, 1971, and provides certain amounts of firm power and energy for delivery up to March 31, 1978. These purchases are at a fixed price. The second was executed on January 30, 1974 and May 21, 1974, and the third on May 28, 1975. They provide power and energy in the period April 1, 1977 to April 30, 1982. The second and third agreements have common terms and price. This price is to be related to specific actual escalation factors and actual interest rates that occur up to 1980. In essence these agreements were made possible by a temporary surplus in Manitoba associated with Kettle Rapids for the first agreement and Long Spruce for the last two agreements. These are both hydroelectric developments.

Thus, the nature of recent firm purchases has changed from the earlier concept of fixed amounts of power and energy supplied for long periods of time at fixed prices, to the concept of supply:

- for relatively short periods of time, associated with temporary surplus capacity on the seller's system.
 - at variable prices, related to estimated or actual future escalation rates.

These temporary surpluses on the seller's system have resulted from the power and energy from large-scale hydroelectric developments overrunning the seller's own requirements, or the deliberate advancement of

1 some stages in these developments in order to achieve
2 surplus for use in firm sales to markets outside the
3 seller's system.
4
5 Prices now quoted by sellers tend to be at least the
6 larger of either the average cost of his new
7 developments or the average price to his own firm
8 customers. Higher prices than these are quoted if the
9 seller believes the market will bear them.
10
11 Up to the present, sellers have not required Ontario
12 Hydro to provide capital contributions toward
13 development of generating stations. Current
14 indications are that they may require such
15 contribution for future large scale firm sales.
16
17 These changes in conditions of sale tend to render
18 purchases less attractive, by reducing the advantages
19 formerly available to the purchaser, namely:
20
21 - a reduction in the amount of capital the
22 purchaser must raise. (If capital contributions
23 are required in future purchases.)
24
25 - low prices associated with the incremental cost
26 of advancing new projects or with surplus sales.
27 (If prices are based on average project costs or
28 on rates charged to the seller's own customers,
29 and these are greater than incremental cost. The
30 seller may consider such prices to be necessary
31 from the provincial political viewpoint.)
32
33 This is of particular concern where the seller is
34 developing hydroelectric capacity, on the assumption
35 that the energy production costs from alternative
36 thermal plants that he could develop will continue to
37 escalate in the future. In such cases, the average
38 cost of the hydroelectric development, although lower
39 than thermal plant costs in the long run, may be
40 higher in the early years when the seller has excess
41 power and energy to sell to Ontario Hydro. Thus, the
42 selling price to Ontario Hydro would be higher than
43 Ontario Hydro's costs from alternative thermal plants.
44
45 Two major factors affecting the benefits of firm
46 purchases are their nature (whether they are derived
47 from thermal or hydroelectric generation) and the
48 extent to which idle electric transmission and fossil
49 fuel transportation facilities exist in the areas
50 involved.
51
52
53
54
55

The cost of transmitting electrical energy long distances tends to be higher than the cost of transmitting equivalent fossil fuels by rail, ship, or pipeline. This is particularly the case where usable rail facilities are already available. It may not be the case where little, if any, new electric transmission must be constructed and where rail rates are rigidly structured to reflect average historical costs rather than the incremental costs of rail delivery. Thus, when the present 200 MW purchase from Manitoba Hydro expires, it may prove less costly for Ontario Hydro to import electric power instead of additional coal from Saskatchewan. This possibility is being investigated but it depends upon the reliability of the Manitoba Hydro system and their willingness to transmit power from Saskatchewan to Ontario.

Hydroelectric energy must be transmitted electrically. If this requires new transmission, a large cost penalty may be involved. However, with Ontario Hydro's proposed transmission systems, by the end of the 1970s it could import 1000 MW to 1200 MW from Hydro-Quebec and 200 MW to 300 MW from Manitoba.

Ontario Hydro is continuing its past practice of pursuing the possibilities of making firm purchases from other provinces and making such purchases when they are advantageous. This is done by periodically reviewing the possibility of purchases from Hydro-Quebec, Manitoba Hydro, and Saskatchewan Power Corporation.

The current status of these discussions is as follows:

With Hydro-Québec

Discussion are on going to determine whether further purchases can be made. Hydro-Quebec has informed Ontario Hydro that it will not have surplus firm power available in the winter months with its committed generation program. It has also advised that advancement of the committed generation program is not possible and it is unlikely that Hydro-Quebec would advance future commitments without a capital contribution. Negotiations are also underway for a purchase of interruptible energy of three million GWh per year from June 1977 to May 1982.

Because the mainly hydro-electric system in Quebec and the mainly thermal system in Ontario are complementary, there is scope for emergency and

1 economy transfers between the two systems even if firm
2 power is not available. Therefore, a planning study
3 is being initiated between Quebec and Ontario to
4 consider the possibility of additional interchanges
5 and interconnection facilities.
6

7 Among the alternatives to be considered is a direct-
8 current link. Such a link would provide most of the
9 benefits of normal interconnected operation and would
10 reduce the need to effect power transfers by isolation
11 of generation from one system to another. As
12 explained earlier, a parallel ac interconnection
13 between the two systems is not practical for technical
14 reasons.

15 With Manitoba

16 Manitoba Hydro has indicated that they might be able
17 to extend their sales at a level of 100 MW in 1982/83,
18 following termination of existing agreements. This
19 will be the subject of continuing discussions.
20

21 With Saskatchewan

22 A preliminary proposal has been made by Saskatchewan
23 Power for the sale of up to 300 MW starting in 1981.
24 It would be necessary to involve Manitoba in this
25 transaction.
26

27 Purchases and Sales with United States Utilities

28 Discussions have been held regarding the possible
29 purchase by Michigan of interruptible power and energy
30 in the order of 1000 MW for the six summer months in
31 1978, 1979, and 1980.
32

33 National/Provincial Grid

34 As described in previous sections, Ontario Hydro has
35 interconnections with the neighbouring provinces of
36 Quebec and Manitoba. Likewise interconnections have
37 been developed between Manitoba and Saskatchewan,
38 between Alberta and British Columbia and between
39 Quebec and New Brunswick and Nova Scotia. All these
40 interconnections developed from the requirements of
41 adjacent provinces, rather than from considerations of
42 Canada as a whole.
43

44 A major study was carried out in the 1960's by a
45 Federal - Provincial Ministerial Committee to consider
46 a high capacity transmission grid interconnecting all
47 provinces of Canada. The recommendations of that
48

1 Committee, given in their report of July 1967, were
2 that further studies of the national network should be
3 deferred for the time being, but that consideration
4 should be given to strengthening regional ties. Those
5 recommendations were similar to Ontario Hydro's views,
6 and the interconnections between Ontario and Manitoba
7 and Quebec have been strengthened since 1967.

8 Proposals for further study of a National Grid, or at
9 least of major interprovincial grids in eastern and
10 western Canada, have been raised several times since
11 1967. In 1973 a proposal was made for an Eastern
12 Canada Grid, as a means of facilitating development of
13 nuclear power in Nova Scotia and hydro power in
14 Labrador. The National Grid was raised again in
15 January 1974 at the First Ministers' meeting on
16 energy, and the Federal Government offered to assist
17 financially in studies. In early 1975 the
18 Interprovincial Advisory Council on Energy (IPACE)
19 initiated a study of a National Grid. This study is
20 at the stage of finalizing its terms of reference.
21

22 In addition to the proposed IPACE studies there are
23 two major studies of regional grids now underway:
24

- 25 1. Quebec, Nova Scotia, New Brunswick, Prince Edward
26 Island and Newfoundland are considering a
27 regional grid.
- 28 2. Quebec and Ontario have started a major study of
29 increased interconnection capacity between Quebec
30 and Ontario.

33 13.16

Summary

34 Interconnections have many potential advantages, which
35 fall mainly in the areas of increased system
36 reliability and reduced operating costs. These
37 include the possibility of purchase of power during
38 emergencies, prevention of widespread system outages
39 upon the occurrence of major contingencies, cost
40 savings in day-to-day operation, and the possibility
41 of profitable power sales or purchases. In Ontario
42 Hydro's view, these advantages outweigh the
43 disadvantages.

44 Ontario Hydro proposes to continue use of
45 interconnections, to study the need to expand
46 interconnection capacity, and to profit where possible
47 from available firm purchases and from co-ordinated
48 development with other systems in Canada and the
49 United States.

1 In recent years Ontario Hydro has selected its
2 generation reserve requirements by using a 1 in 2400
3 Loss-of-Load Probability, (LOLP) which takes no
4 account of possible assistance from interconnections.
5 The interconnections do exist however and have been
6 counted upon to provide assistance in the event of
7 major contingencies not accounted for in the LOLP
8 computation.

9
10 One potential advantage of interconnections is the
11 possibility of reducing generating reserves in Ontario
12 by increased reliance on assistance from other
13 systems. This would make Ontario Hydro more dependent
14 on other utilities for maintaining reliability and in
15 fact would reduce existing levels of reliability.
16 Ontario Hydro believes this is not a prudent action at
17 the present time because it believes that, in the next
18 five to ten year period, utilities in adjacent areas
19 will have inadequate reserves (Reference 2).
20 Furthermore, in the case of the United States
21 utilities, if the United States generation or fuel
22 shortage reaches the state of national emergency, the
23 U.S. federal government may prohibit or restrict the
24 export of electricity to Canada.

25
26 However, it is possible that because of the shortage
27 of capital funds Ontario Hydro will have to increase
28 its reliance on interconnections in spite of the
29 attendant risks.

REFERENCES

- 1 1. Ontario Hydro International and Interprovincial
2 Interconnection Agreements January 1975.
- 3
- 4
- 5
- 6 2. "Review of Overall Reliability and Adequacy of the North
7 American Bulk Power Systems (Fifth Annual Review)" National
8 Electric Reliability Council, July, 1975.
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55