

COE150

FAST FOURIER TRANSFORM (FFT)

A Fast Fourier Transform (FFT) is an algorithm that calculates the discrete Fourier transform (DFT) of some sequence.

The aim of FFT is to have an efficient algorithm for evaluating the DFT and to reduce the number of mathematical operations in solving the DFT.

20XX PRESENTATION TITLE

DISCRETE FOURIER TRANSFORM

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}$$

Computational complexity:

Complex multiplications: $N(N) = N^2$

Complex additions: $N(N - 1) = N^2 - N$

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk}$$

$$X[k] = \sum_{n=even}^{N-1} x[n]W_N^{nk} + \sum_{n=odd}^{N-1} x[n]W_N^{nk}$$

Let n = 2r,

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r]W_N^{2rk} + \sum_{r=0}^{\frac{N}{2}-1} x[2r+1]W_N^{(2r+1)k}$$

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r] (W_N^2)^{rk} + W_N^k \sum_{r=0}^{\frac{N}{2}-1} x[2r+1] (W_N^2)^{rk}$$

$$X[k] = \sum_{r=0}^{\frac{N}{2}-1} x[2r] W_{N/2}^{rk} + W_N^k \sum_{r=0}^{\frac{N}{2}-1} x[2r+1] W_{N/2}^{rk}$$

$$X[k] = G[k] + W_N^k H[k]$$

RADIX-2 FFT

The radix-2 FFT algorithms are used for data vectors of lengths $N = 2^K$.

Two Types of Radix-2 FFT:

- Decimation in Time (DIT)
- Decimation in Frequency (DIF)

Basic Butterfly Computation

$$A = a + W_N' b$$

$$B = a - W_N' b$$

For N=8,

Example:

$$x(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0\}$$
. Find $X(k)$.

20XX

PRESENTATION TITLE

First stage:

[1]
$$\frac{1}{2} + (1)0 = \frac{1}{2}$$

[2]
$$\frac{1}{2} - (1)0 = \frac{1}{2}$$

[3]
$$\frac{1}{2} + (1)0 = \frac{1}{2}$$

[2]
$$\frac{1}{2} - (1)0 = \frac{1}{2}$$
[3]
$$\frac{1}{2} + (1)0 = \frac{1}{2}$$
[4]
$$\frac{1}{2} - (1)0 = \frac{1}{2}$$

$$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$$

[5]
$$\frac{1}{2} + (1)0 = \frac{1}{2}$$

[6]
$$\frac{1}{2} - (1)0 = \frac{1}{2}$$

[7]
$$\frac{1}{2} + (1)0 = \frac{1}{2}$$

[8]
$$\frac{1}{2}$$
 - (1)0 = $\frac{1}{2}$

Second stage:

[1]
$$\frac{1}{2} + (1)\frac{1}{2} = 1$$

[2]
$$\frac{1}{2} + (-i)\frac{1}{2} = \frac{1}{2} - \frac{1}{2}i$$
[3]
$$\frac{1}{2} - (1)\frac{1}{2} = 0$$
[4]
$$\frac{1}{2} - (-i)\frac{1}{2} = \frac{1}{2} + \frac{1}{2}i$$

[3]
$$\frac{1}{2} - (1)\frac{1}{2} = 0$$

[4]
$$\frac{1}{2} - (-i)\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$$

[5]
$$\frac{1}{2} + (1)/\frac{1}{2} = 1$$

[6]
$$\frac{1}{2} + (-i)\frac{1}{2} = \frac{1}{2} - \frac{1}{2}i$$

$$[7] \quad \frac{1}{2} - (1) \frac{1}{2} = 0$$

[8]
$$\frac{1}{2} - (-i)\frac{1}{2} = \frac{1}{2} + \frac{1}{2}i$$

$$\{\mathbf{1}, \ \frac{1}{2} - \frac{1}{2}i, \ 0, \ \frac{1}{2} + \frac{1}{2}i, \ 1, \ \frac{1}{2} - \frac{1}{2}i, \ 0, \ \frac{1}{2} + \frac{1}{2}i\}$$

Final stage:

$$X(0) = 1 + (1)1 = 2$$

$$X(1) = \left(\frac{1}{2} - \frac{1}{2}i\right) + (0.7 - 0.7i)\left(\frac{1}{2} - \frac{1}{2}i\right) = 0.5 - 1.2i$$

$$X(2) = 0 + (-i)(0) = 0$$

$$X(3) = \left(\frac{1}{2} + \frac{1}{2}i\right) + (-0.7 - 0.7i)\left(\frac{1}{2} + \frac{1}{2}i\right) = 0.5 - 0.2i$$

$$X(\mathbf{k}) = \{2, 0.5 - 1.2i, 0, 0.5 - 0.2i, 0, 0.5 + 0.2i, 0, 0.5 + 1.2i\}$$

$$X(4) = 1 - (1)(1) = 0$$

$$X(4) = 1 - (1)(1) = 0$$

$$X(5) = \left(\frac{1}{2} - \frac{1}{2}i\right) - (0.7 - 0.7i)\left(\frac{1}{2} - \frac{1}{2}i\right) = 0.5 + 0.2i$$

$$X(6) = 0 - (-i)(0) = 0$$

$$X(2) = 0 + (-i)(0) = 0$$

$$X(6) = 0 - (-i)(0) = 0$$

$$X(3) = \left(\frac{1}{2} + \frac{1}{2}i\right) + (-0.7 - 0.7i)\left(\frac{1}{2} + \frac{1}{2}i\right) = 0.5 - 0.2i$$

$$X(7) = \left(\frac{1}{2} + \frac{1}{2}i\right) + (-0.7 - 0.7i)\left(\frac{1}{2} + \frac{1}{2}i\right) = 0.5 + 1.2i$$

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x(n)W_N^{kn} + \sum_{n=N/2}^{N-1} x(n)W_N^{kn}$$

$$X(k) = \sum_{n=0}^{\frac{N}{2}-1} x(n)W_N^{kn} + W_N^{Nk/2} \sum_{n=0}^{\frac{N}{2}-1} x(n + \frac{N}{2})W_N^{kn}$$

Since
$$W_N^{Nk/2}=(-1)^k$$
,
$$X(k)=\sum_{n=0}^{\frac{N}{2}-1}[x(n)+(-1)^kx(n+\frac{N}{2})]\,W_N^{kN}$$
 where $k=0,1,\ldots,N-1$

20XX PRESENTATION TITLE 16

Split(decimate) X(k) into even and odd,

$$X(2k) = \sum_{n=0}^{\frac{N}{2}-1} \left[x(n) + x \left(n + \frac{N}{2} \right) \right] W_{N/2}^{kn}$$

and

$$X(2k+1) = \sum_{n=0}^{\frac{N}{2}-1} \{ \left[x(n) - x\left(n + \frac{N}{2}\right) \right] W_N^n \} W_{N/2}^{kn}$$

where k = 0, 1, ..., N - 1

If we define the $\frac{N}{2}$ - point sequence $g_1(n)$ and $g_2(n)$,

$$g_1(n) = x(n) + x\left(n + \frac{N}{2}\right)$$

 $g_2(n) = [x(n) - x\left(n + \frac{N}{2}\right)]W_N^n$
where $n = 0, 1, ..., N - 1$

then,

$$X(2k) = \sum_{n=0}^{\frac{N}{2}-1} g_1(n) W_{N/2}^{kn}$$

$$X(2k+1) = \sum_{n=0}^{\frac{N}{2}-1} g_2(n) W_{N/2}^{kn}$$

Basic Butterfly Computation

PRESENTATION TITLE

For N=8,

Example:

$$x(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0\}$$
. Find $X(k)$.

20XX PRESENTATION TITLE 21

First stage:

[1]
$$\frac{1}{2} + 0 = \frac{1}{2}$$
 [5] $(\frac{1}{2} - 0)(1) = \frac{1}{2}$

[2]
$$\frac{1}{2} + 0 = \frac{1}{2}$$
 [6] $(\frac{1}{2} - 0)(0.7 - 0.7i) = \frac{1}{2}(0.7 - 0.7i)$

[3]
$$\frac{1}{2} + 0 = \frac{1}{2}$$
 [7] $\left(\frac{1}{2} - 0\right)(-i) = -\frac{1}{2}i$

[4]
$$\frac{1}{2} + 0 = \frac{1}{2}$$
 [8] $(\frac{1}{2} - 0)(-0.7 - 0.7i) = \frac{1}{2}(-0.7 - 0.7i)$

$$\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, (0.7 - 0.7i), -\frac{1}{2}i, \frac{1}{2}(-0.7 - 0.7i)\}$$

Second stage:

$$[1] \qquad \frac{1}{2} + \frac{1}{2} = 1$$

[5]
$$\frac{1}{2} + \left(-\frac{1}{2}i\right) = \frac{1}{2} - \frac{1}{2}i$$

[2]
$$\frac{1}{2} + \frac{1}{2} = 1$$

$$\begin{bmatrix} 6 \end{bmatrix} \qquad \frac{1}{2} (0.7 - 0.7i) + \frac{1}{2} (-0.7 - 0.7i) = -0.7i$$

$$\begin{bmatrix} 7 \end{bmatrix} \qquad \left(\frac{1}{2} - \left(-\frac{1}{2}i\right)\right) (1) = \frac{1}{2} + \frac{1}{2}i$$

$$\begin{bmatrix} 8 \end{bmatrix} \qquad \left(\frac{1}{2} (0.7 - 0.7i) - \frac{1}{2} (-0.7 - 0.7i)\right) (-i) = -0.7i$$

[3]
$$\left(\frac{1}{2} - \frac{1}{2}\right)(1) = 0$$

[7]
$$\left(\frac{1}{2} - \left(-\frac{1}{2}i\right)\right)(1) = \frac{1}{2} + \frac{1}{2}i$$

[4]
$$\left(\frac{1}{2} - \frac{1}{2}\right)(-i) = 0$$

$$\left(\frac{1}{2}(0.7 - 0.7i) - \frac{1}{2}(-0.7 - 0.7i)\right)(-i) = -0.7i$$

$$\{\mathbf{1}, 1, 0, 0, \frac{1}{2} - \frac{1}{2}i, -0.7i, \frac{1}{2} + \frac{1}{2}i, \frac{1}{2} + -0.7i\}$$

Final stage:

$$X(0) = 1 + 1 = 2$$

$$X(1) = \left(\frac{1}{2} - \frac{1}{2}i\right) + (-0.7i) = 0$$

$$X(4) = 1 - 1 = 0$$

$$X(5) = \left(\left(\frac{1}{2} - \frac{1}{2}i \right) - \left(-0.7i \right) \right) = 0.5 + 0.2i$$

$$X(2) = 0 + 0 = 0$$

$$X(3) = \left(\frac{1}{2} + \frac{1}{2}i\right) + \left(-0.7i\right) = 0.5 - 0.2i$$

$$X(6) = 0 - 0 = 0$$

$$X(3) = \left(\frac{1}{2} + \frac{1}{2}i\right) + (-0.7i) = 0.5 - 0.2i$$

$$X(7) = \left(\frac{1}{2} + \frac{1}{2}i\right) + (-0.7i) = 0.5 + 1.2i$$

$$X(k) = \{2, 0.5 - 1.2i, 0, 0.5 - 0.2i, 0, 0.5 + 0.2i, 0, 0.5 + 1.2i\}$$

COMPUTATION COMPLEXITY

N	Direct Computation		DIT/DIF RADIX-2 FFT		IMPROVEMENT
	Complex Multiplication N^2	Complex Addition N^2-N	Complex Multiplication $\frac{N}{2}log_2N$	Complex Addition $Nlog_2N$	IMPROVEMENT IN PROCESSING SPEED FOR MULTIPLICATION
8	64	52	12	24	5.3 times
16	256	240	32	64	8 times
256	65536	65280	1024	2048	64 times

20XX PRESENTATION TITLE 25

ACTIVITY #5

1. EVEN DIT – 6 samples

2. DIT RADIX 2 FFT

3. DIF RADIX 2 FFT

20XX PRESENTATION TITLE 26