f(x)

$$\frac{f}{N} = \frac{3}{6} = 0.5$$

$$P(E) = 0.5$$

$$P(A \text{ or } B) = P(A) + P(B)$$

$$P(A) = \frac{1}{6}$$

$$P(B) = \frac{1}{6}$$

$$P(A \text{ or } B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Site	Re1. Frequency 0.1067 0.281 0.300 0.167 0.068 0.042	Event A B C D E F	What is probability $5/u$ 180 and 1999 acres? $P(D \text{ or } E \text{ or } F) = P(D) + P(E) + P(F)$ $= 0.167 + 0.068 + 0.042$ $= 0.277$
-	Total: 1		

The Complementation Rule

The Complement of
$$E$$
 is (NOT E)

 $P(E)$???? $P(NOT E)$

For any E ,

 $P(E) = |-P(not E)$

a) < 2000 acres b)
$$\geq 50$$
 acres.
 $P(A) + P(B) + ... + P(G)$
 $1 - P(G) = 1 - 0.036$
 $1 - P(A) + P(B)$
 $1 - P(A) + P(B)$

The General Addition Rule

If A and B are any two events, then

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

0.613

Note. For mutually exclusive events A. B. P(A and B) = 0.

Consider A: roll is greater than 4 B: roll is even

 $P(A \text{ or } B) = \frac{4}{6} = \frac{2}{3}$

P(A or B) = P(A) + P(B) - P(A and B)= $\frac{2}{6} + \frac{3}{6} - \frac{1}{6}$

1 2 3 4 5 6

 $=\frac{4}{6}=\frac{2}{3}$