Project Design Phase-II Solution Requirements (Functional & Non-functional)

Team ID	PNT2022TMID30607
Project Name	Project – A Novel Method For Handwritten Digit
	Recognition System
Maximum Marks	4 Marks

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR No.	Sub Requirement (Story / Sub-Task)		
FR-1	Image Data: Handwritten digit recognition refers to a computer's capacity to identify		
	human handwritten digits from a variety of sources, such as photographs, documents,		
	touch screens, etc., and categorise them into ten established classifications (0-9). In the		
	realm of deep learning, this has been the subject of countless studies.		
FR-2	Website: Web hosting makes the code, graphics, and other items that make up a website		
	accessible online. A server hosts every website you've ever visited. The type of hosting		
	determines how much space is allotted to a website on a server. Shared, dedicated, VPS,		
	and reseller hosting are the four basic varieties.		
FR-3	Digit Classifier Model: To train a convolutional network to predict the digit from an image,		
	use the MNIST database of handwritten digits. get the training and validation data first.		
FR-4	Cloud: The cloud offers a range of IT services, including virtual storage, networking, servers,		
	databases, and applications. In plain English, cloud computing is described as a virtual		
	platform that enables unlimited storage and access to your data over the internet.		
FR-5	Modified National Institute of Standards and Technology dataset: The abbreviation MNIST		
	stands for the MNIST dataset. It is a collection of 60,000 tiny square grayscale photographs,		
	each measuring 28 by 28, comprising handwritten single digits between 0 and 9.		

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	One of the very significant problems in pattern
		recognition applications is the recognition of
		handwritten characters. Applications for digit
		recognition include filling out forms, processing
		bank checks, and sorting mail.
NFR-2	Security	The system generates a through description of the
		instantiation parameters, which might reveal
		information like the writing style, in addition to a
		categorization of the digit. The generative models
		are capable of segmentation driven by recognition.
		The procedure uses a relatively.
NFR-3	Reliability	The samples are used by the neural network to
		automatically deduce rules for reading handwritten
		digits. Furthermore, the network may learn more
		about handwriting and hence enhance its accuracy
		by increasing the quantity of training instances.
		Numerous techniques and algorithms, such as Deep

		Learning/CNN, SVM, Gaussian Naive Bayes, KNN, Decision Trees, Random Forests, etc., can be used to recognise handwritten numbers.
NFR-4	Performance	With typed text in high -quality photos, optical character recognition (OCR) technology offers accuracy rates of greater than 99%. However, variances in spacing, abnormalities in handwriting, and the variety of human writing styles result in less precise character identification.
NFR-6	Scalability	The task of handwritten digit recognition, using a classifier, has great importance and use such as — online handwriting recognition on computer tablets, recognize zip codes on mail for postal mail sorting, processing bank check amounts, numeric entries in forms filled up by hand (for example - tax forms) and so on.