Indice

- 1. Sistema binario e sistema floating-point IEEE754
- 2. Errori assoluto e relativo, errore di rappresentazione
- 3. Operazioni macchina e loro proprietà, precisione macchina
- 4. Stabilità di un algoritmo e cancellazione numerica
- 5. Problema matematico e buona posizione
- 6. Condizionamento numerico
- 7. Numero di condizionamento di una matrice
- 8. Algoritmi di sostituzione
- 9. Fattorizzazione LU senza pivoting
- 10. Algoritmo LU con pivoting parziale
- 11. Punti fissi, lemma delle contrazioni
- 12. Metodi iterativi lineari stazionari

1. Sistema binario e sistema floating-point IEEE754

Sistema binario

La rappresentazione in base N di un numero reale x è data da:

$$x=\pm(x_{n}N^{n}+x_{n-1}N^{n-1}+\cdots+x_{0}+x_{-1}N^{-1}+\cdots+x_{-r}N^{-r})$$

dove:

- ullet $n\in\mathbb{N}$
- $r \in \mathbb{N} \cup +\infty$
- $x_j \in {0,1,\ldots,N-1}$ per ogni $j=n,n-1,\ldots,-r$

Per i computer, la base utilizzata è tipicamente N=2, quindi le cifre sono 0,1.

Conversione da base 10 a base 2

Per la parte intera, si utilizza la divisione iterata per 2:

- 1. Si divide il numero per 2
- 2. Si annota il resto (0 o 1)
- 3. Si continua con il quoziente fino a ottenere 0

Per la parte frazionaria, si utilizza la moltiplicazione iterata per 2:

- 1. Si moltiplica la parte frazionaria per 2
- 2. Si annota la parte intera del risultato (0 o 1)

3. Si continua con la parte frazionaria del risultato fino a ottenere 0 o un ciclo

Esempio:
$$(10011010010)_2 = 2^{10} + 2^7 + 2^6 + 2^4 + 2^1 = 1024 + 128 + 64 + 16 + 2 = 1234_{10}$$

Problema importante: Non tutti i numeri decimali hanno una rappresentazione binaria finita. Ad esempio, 0.1_{10} ha una rappresentazione binaria periodica: $0.1_{10}=(0.00011001100110011\dots)_2$

IEEE754 - Rappresentazione in virgola mobile

Lo standard IEEE754 definisce la rappresentazione dei numeri in virgola mobile nei computer moderni.

Struttura generale

Un numero $x \neq 0$ in formato IEEE754 viene rappresentato come:

$$(x)_2 = (-1)^s \times 2^{e-b} \times 1.f$$

dove:

- s è il bit di segno (0 per positivo, 1 per negativo)
- e è l'esponente con bias b
- 1.*f* è la mantissa (parte frazionaria normalizzata)

Formati IEEE754

Formato a 32 bit (float):

- 1 bit per il segno
- 8 bit per l'esponente (e), con bias b=127
- 23 bit per la mantissa (f)
- Range di e: 0 < e < 255

Formato a 64 bit (double):

- 1 bit per il segno
- 11 bit per l'esponente (e), con bias b = 1023
- 52 bit per la mantissa (f)
- Range di e: 0 < e < 2047

Casi speciali

- 1. **Zero**: e=0, f=0 (può essere +0 o -0 a seconda del bit di segno)
- 2. **Infinito**: $e=e_{max}, f=0$ (+ ∞ o - ∞ a seconda del bit di segno)
- 3. **NaN** (Not a Number): $e = e_{max}, f > 0$ (risultato di operazioni indefinite)

4. **Numeri denormalizzati**: e = 0, f > 0 (per rappresentare numeri molto piccoli)

Spaziatura e limiti

La spaziatura tra i numeri rappresentabili non è uniforme: è più densa vicino allo zero e meno densa per numeri di grande modulo.

Massimo e minimo modulo rappresentabile:

- Numero normalizzato più piccolo (in modulo): $2^{1-b} \approx 1.18 \times 10^{-38}$ (float)
- Numero normalizzato più grande (in modulo): $2^{e_{max}-b} imes (2-2^{-p})pprox 3.4 imes 10^{38}$ (float)

2. Errori assoluto e relativo, errore di rappresentazione

Definizioni di errore

Sia \tilde{x} un'approssimazione di x:

- Errore assoluto: $e_{abs} = |x \tilde{x}|$
- Errore relativo: $e_{rel}=rac{|x- ilde{x}|}{|x|}=rac{e_{abs}}{|x|}$ (per x
 eq 0)

Errore di rappresentazione

Quando un numero reale x viene rappresentato in un computer come fl(x), si verifica un errore di rappresentazione dovuto alla precisione finita.

Troncamento

Nel troncamento, tutte le cifre oltre quelle rappresentabili vengono semplicemente scartate.

Per esempio, se approssimiamo $\pi=3.14159...$ con 3 cifre decimali per troncamento, otteniamo $\tilde{\pi}=3.141.$

Arrotondamento

Nell'arrotondamento, la cifra rappresentabile meno significativa viene incrementata se la cifra successiva è maggiore o uquale a 5.

Per esempio, se approssimiamo $\pi=3.14159...$ con 3 cifre decimali per arrotondamento, otteniamo $\tilde{\pi}=3.142.$

Modello matematico dell'errore di rappresentazione

In generale, possiamo modellare la rappresentazione di un numero reale \boldsymbol{x} in un computer come:

$$fl(x) = x(1+\delta), \quad |\delta| \le arepsilon_{mach}$$

dove ε_{mach} è la precisione macchina, che rappresenta il più piccolo numero positivo tale che $fl(1+\varepsilon_{mach})>1$.

Per IEEE754:

- Float (32 bit): $\varepsilon_{mach} \approx 5.96 imes 10^{-8}$
- Double (64 bit): $\varepsilon_{mach} \approx 1.11 \times 10^{-16}$

3. Operazioni macchina, loro (non) proprietà, precisione macchina

Operazioni macchina

Le operazioni aritmetiche eseguite su numeri macchina (\tilde{x}, \tilde{y}) producono risultati approssimati. In generale, per un'operazione $\circ \in +, -, \times, \div$:

$$ilde{x}\circ_{M} ilde{y}=fl(ilde{x}\circ ilde{y})=(ilde{x}\circ ilde{y})(1+\delta),\quad |\delta|\leqarepsilon_{mach}$$

Non proprietà delle operazioni macchina

Le operazioni macchina non conservano tutte le proprietà algebriche delle operazioni esatte:

- 1. Non associatività: $(a +_M b) +_M c \neq a +_M (b +_M c)$
- 2. Non distributività: $a \times_M (b +_M c) \neq a \times_M b +_M a \times_M c$

La commutativià è generalmente conservata: $a +_M b = b +_M a$ e $a \times_M b = b \times_M a$.

Esempio di non associatività: Consideriamo $(10^{16} + 1) - 10^{16}$ e $10^{16} + (1 - 10^{16})$ in precisione doppia.

- Nel primo caso: $fl(10^{16}+1)=10^{16}$, quindi $fl(fl(10^{16}+1)-10^{16})=0$
- Nel secondo caso: $fl(1-10^{16})=-10^{16}$, quindi $fl(10^{16}+fl(1-10^{16}))=0$ II risultato esatto sarebbe 1.

Precisione macchina

La precisione macchina ε_{mach} è fondamentale per quantificare l'accuratezza delle operazioni. In IEEE754:

- Per numeri normalizzati in formato a 32 bit: $arepsilon_{mach} = 2^{-24} pprox 5.96 imes 10^{-8}$
- Per numeri normalizzati in formato a 64 bit: $arepsilon_{mach} = 2^{-53} pprox 1.11 imes 10^{-16}$

4. Stabilità di un algoritmo, stabilità delle operazioni macchina e cancellazione numerica

Stabilità di un algoritmo

Un algoritmo è stabile se piccole perturbazioni nei dati di input producono piccole perturbazioni nei risultati.

Definizione formale: Un algoritmo A che risolve un problema P è stabile se, per ogni input x e perturbazione δx , esiste una costante K tale che:

$$rac{|A(x+\delta x)-A(x)|}{|A(x)|} \leq Krac{|\delta x|}{|x|}$$

Stabilità della somma

Consideriamo la somma di n numeri $S_n = \sum_{i=1}^n a_i$ e la sua approssimazione $\tilde{S}_n = \sum_{i=1}^n \tilde{a}_i$.

Teorema: Se $\tilde{a}_i = a_i(1+\delta_i)$ con $|\delta_i| \leq \delta$ per ogni i, allora:

$$| ilde{S}_n - S_n| \leq \delta \sum_{i=1}^n |a_i|$$

Dimostrazione:

$$| ilde{S}_n - S_n| = \left|\sum_{i=1}^n ilde{a}_i - \sum_{i=1}^n a_i
ight| \qquad = \left|\sum_{i=1}^n (ilde{a}_i - a_i)
ight| = \left|\sum_{i=1}^n a_i \delta_i
ight| \qquad \leq \sum_{i=1}^n |a_i \delta_i| \leq \delta \sum_{i=1}^n |a_i|$$

Cancellazione numerica

La cancellazione numerica avviene quando si sottraggono due numeri quasi uguali, risultando in una significativa perdita di cifre significative.

Esempio: Calcoliamo $f(x) = \frac{1-\cos(x)}{x^2}$ per x molto piccolo.

Approccio diretto:

- ullet Per $x=10^{-8},\,\cos(x)pprox 0.999999999995$
- $1 \cos(x) \approx 5 \times 10^{-16}$
- $ullet f(x) pprox rac{5 imes 10^{-16}}{10^{-16}} pprox 0.5$

Ma sappiamo che $\lim_{x \to 0} f(x) = \frac{1}{2}$, quindi il risultato è abbastanza accurato.

Usando l'identità trigonometrica $1-\cos(x)=2\sin^2(x/2)$:

•
$$f(x) = rac{2\sin^2(x/2)}{x^2} = rac{2\sin^2(x/2)}{4(x/2)^2} = rac{1}{2} \cdot rac{\sin^2(x/2)}{(x/2)^2}$$

- Per x piccolo, $\frac{\sin^2(x/2)}{(x/2)^2} \approx 1$
- Quindi $f(x) pprox rac{1}{2}$

Esempio di instabilità: Integrale iterato

Consideriamo il calcolo di $I_n=e^{-1}\int_0^1 x^n e^x dx$ per $n=0,1,\dots,40$ usando la formula ricorsiva:

$$I_n = 1 - nI_{n-1}$$

con
$$I_0 = \frac{1-e}{e}$$
.

L'algoritmo si dimostra instabile per n grande a causa dell'amplificazione degli errori di arrotondamento nella ricorsione.

5. Problema matematico, buona posizione

Definizione di problema matematico

Un problema matematico P può essere visto come una funzione $P: X \to Y$ che mappa uno spazio di input X a uno spazio di output Y.

Problema ben posto (secondo Hadamard)

Un problema $P: X \to Y$ è ben posto se:

- 1. **Esistenza**: Per ogni input $x \in X$ esiste almeno una soluzione $y \in Y$ tale che P(x) = y
- 2. **Unicità**: Per ogni input $x \in X$ esiste al più una soluzione $y \in Y$ tale che P(x) = y
- 3. Continuità/Stabilità: La soluzione y=P(x) dipende con continuità dai dati di input x

Problema mal posto

Un problema che non soddisfa almeno una delle tre condizioni è detto mal posto.

Esempio di problema mal posto: Differenziazione numerica. Piccole perturbazioni nei dati possono portare a grandi cambiamenti nella derivata calcolata.

6. Condizionamento numerico assoluto e relativo di un problema ben posto

Condizionamento numerico

Il condizionamento numerico di un problema quantifica quanto le perturbazioni nei dati di input influenzano la soluzione.

Condizionamento assoluto

Sia $P: X \to Y$ un problema ben posto e sia $x \in X$. Il condizionamento assoluto di P in x è:

$$K_{abs}(P,x) = \lim_{\delta o 0} \sup_{|\delta x| \leq \delta} rac{|P(x+\delta x) - P(x)|}{\delta}$$

Se P è differenziabile in x, allora $K_{abs}(P,x) = |P'(x)|$.

Condizionamento relativo

Il condizionamento relativo di P in x è:

$$K_{rel}(P,x) = \lim_{\delta o 0} \sup_{|\delta x| \le \delta|x|} rac{|P(x+\delta x) - P(x)|}{|P(x)|} \cdot rac{|x|}{\delta|x|} = K_{abs}(P,x) \cdot rac{|x|}{|P(x)|}$$

Problema ben condizionato vs mal condizionato

- Un problema è ben condizionato se $K_{rel}(P,x)$ è piccolo
- Un problema è mal condizionato se $K_{\it rel}(P,x)$ è grande

Esempio di problema mal condizionato: Calcolo delle radici di un polinomio di grado elevato. Piccole variazioni nei coefficienti possono causare grandi variazioni nelle radici.

7. Numero di condizionamento di una matrice e stima dell'errore relativo della soluzione di un sistema lineare

Numero di condizionamento di una matrice

Sia $A \in \mathbb{R}^{n \times n}$ invertibile. Il numero di condizionamento di A rispetto a una norma $|\cdot|$ è:

$$\operatorname{cond}(A) = |A| \cdot |A^{-1}|$$

Proprietà del numero di condizionamento

- 1. $cond(A) \ge 1$ per qualsiasi matrice invertibile
- $2. \operatorname{cond}(A) = \operatorname{cond}(A^{-1})$
- 3. $\operatorname{cond}(cA) = \operatorname{cond}(A)$ per qualsiasi $c \neq 0$
- 4. Se A è ortogonale, allora $\mathrm{cond}_2(A)=1$

Stima dell'errore relativo nella soluzione di sistemi lineari

Consideriamo il sistema Ax = b con A invertibile e la sua versione perturbata $A\tilde{x} = \tilde{b}$.

Teorema: Se $\tilde{b} = b + \delta b$, allora:

$$rac{| ilde{x}-x|}{|x|} \leq \operatorname{cond}(A) \cdot rac{|\delta b|}{|b|}$$

Dimostrazione:

$$ilde{x} - x = A^{-1} ilde{b} - A^{-1} b \hspace{1cm} = A^{-1} (ilde{b} - b) \ = A^{-1} \delta b$$

Prendendo le norme:

$$| ilde{x} - x| = |A^{-1}\delta b| \leq |A^{-1}| \cdot |\delta b|$$

Dividendo per |x| e notando che $|b| = |Ax| \le |A| \cdot |x|$:

$$rac{| ilde{x}-x|}{|x|} \leq |A^{-1}| \cdot rac{|\delta b|}{|x|} \qquad = |A^{-1}| \cdot rac{|\delta b|}{|b|} \cdot rac{|b|}{|x|} \ \leq |A^{-1}| \cdot |A| \cdot rac{|\delta b|}{|b|} \qquad = \operatorname{cond}(A) \cdot rac{|\delta b|}{|b|}$$

Caso in cui è perturbata anche la matrice

Se consideriamo perturbazioni sia nella matrice che nel termine noto, $(A+\delta A) ilde{x}= ilde{b}$, allora:

$$rac{| ilde{x}-x|}{|x|} \leq rac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\cdotrac{|\delta A|}{|A|}}igg(rac{|\delta b|}{|b|}+rac{|\delta A|}{|A|}igg)$$

purché $\operatorname{cond}(A) \cdot \frac{|\delta A|}{|A|} < 1$.

8. Algoritmi di sostituzione avanti e sostituzione indietro, condizioni per l'applicabilità

Algoritmo di sostituzione in avanti

Per risolvere un sistema triangolare inferiore Lx=b con L avente elementi diagonali non nulli:

```
Per i = 1, 2, ..., n:

x[i] = (b[i] - sum(L[i,j] * x[j] per j = 1, 2, ..., i-1)) / L[i,i]
```

Condizioni per l'applicabilità: L deve essere triangolare inferiore con elementi diagonali non nulli.

Algoritmo di sostituzione all'indietro

Per risolvere un sistema triangolare superiore Ux = b con U avente elementi diagonali non nulli:

```
Per i = n, n-1, ..., 1:

x[i] = (b[i] - sum(U[i,j] * x[j] per j = i+1, i+2, ..., n)) / U[i,i]
```

Condizioni per l'applicabilità: U deve essere triangolare superiore con elementi diagonali non nulli.

Complessità computazionale

Entrambi gli algoritmi hanno complessità $O(n^2)$, che è ottimale per questo tipo di problemi.

9. Fattorizzazione LU senza pivoting: algoritmo, limitazioni alla sua applicabilità e problematiche numeriche

Fattorizzazione LU

La fattorizzazione LU decompone una matrice quadrata A come prodotto di una matrice triangolare inferiore L con diagonale unitaria e una matrice triangolare superiore U:

$$A = LU$$

Algoritmo per la fattorizzazione LU senza pivoting

```
Per k = 1, 2, ..., n-1:
    Per i = k+1, k+2, ..., n:
        m[i,k] = A[i,k] / A[k,k]
    Per j = k+1, k+2, ..., n:
        A[i,j] = A[i,j] - m[i,k] * A[k,j]
```

Dopo l'esecuzione dell'algoritmo:

- La parte triangolare superiore di A diventa U
- La parte triangolare inferiore è sostituita dai valori m[i,j] che formano L

Limitazioni e problematiche

- 1. **Limitazione algebrica**: L'algoritmo richiede che tutti i pivot (elementi diagonali) siano non nulli, altrimenti non è possibile completare la fattorizzazione.
- 2. **Problematica numerica**: Anche se tutti i pivot sono non nulli, se alcuni sono molto piccoli si possono verificare instabilità numeriche. Ad esempio, quando dividiamo per un pivot molto piccolo, i valori m[i,k] possono diventare molto grandi, amplificando gli errori di arrotondamento.

Esempio: Consideriamo la matrice

$$A = \begin{pmatrix} 10^{-10} & 1 & 1 \end{pmatrix}$$

Se utilizziamo la fattorizzazione LU senza pivoting, otteniamo:

$$L = egin{pmatrix} 1 & 0 \ 10^{10} & 1 \end{pmatrix}, \quad U = egin{pmatrix} 10^{-10} & 1 \ 0 & -10^{10} + 1 \end{pmatrix}$$

L'elemento 10^{10} in L è molto grande e può causare instabilità numerica.

10. Algoritmo LU con pivoting parziale per righe: "idea" del pivoting e sua motivazione, output dell'algoritmo

Pivoting parziale per righe

L'idea del pivoting parziale è di scambiare le righe della matrice A in modo che, ad ogni passo k, il pivot A[k,k] sia l'elemento di maggior modulo nella colonna k considerando solo le righe da k a n.

Motivazione

Il pivoting parziale per righe mira a:

- 1. Evitare la divisione per zeri o numeri molto piccoli
- 2. Ridurre gli errori di arrotondamento minimizzando l'amplificazione degli errori

Algoritmo LU con pivoting parziale

```
Per k = 1, 2, ..., n-1:
    Trova l'indice r ≥ k tale che |A[r,k]| = max{|A[i,k]| : i = k, k+1, ...,
n}

Se r ≠ k, scambia le righe k e r di A
    Registra lo scambio nella matrice di permutazione P

Per i = k+1, k+2, ..., n:
    m[i,k] = A[i,k] / A[k,k]
    Per j = k+1, k+2, ..., n:
    A[i,j] = A[i,j] - m[i,k] * A[k,j]
```

Output dell'algoritmo

La fattorizzazione LU con pivoting parziale produce:

- 1. Una matrice di permutazione P
- 2. Una matrice triangolare inferiore L con diagonale unitaria
- 3. Una matrice triangolare superiore U

tali che:

$$PA = LU$$

Vantaggi rispetto alla fattorizzazione senza pivoting

- 1. Maggiore stabilità numerica
- 2. Garanzia che l'algoritmo possa essere completato per qualsiasi matrice invertibile
- 3. Controllo della crescita degli elementi di L

11. Punti fissi, lemma delle contrazioni con dimostrazione

Punti fissi

Definizione: Un punto x^* è un punto fisso di una funzione $F:D\to\mathbb{R}^n$ se $F(x^*)=x^*$.

Contrazioni

Definizione: Una funzione $F:D\to\mathbb{R}^n$ con $D\subset\mathbb{R}^n$ è una contrazione rispetto a una norma $|\cdot|$ se esiste una costante L<1 tale che:

$$|F(x) - F(y)| \le L|x - y|, \quad \forall x, y \in D$$

Lemma delle contrazioni

Teorema (Lemma delle contrazioni): Sia $F: \mathbb{R}^n \to \mathbb{R}^n$ una contrazione rispetto a una norma $|\cdot|$ con costante L < 1. Allora:

- 1. Esiste un unico punto fisso $x^* \in \mathbb{R}^n$ di F
- 2. Per ogni scelta di $x^{(0)}\in\mathbb{R}^n$, la successione $x^{(k)}{}_{k\in\mathbb{N}}$ definita da $x^{(k+1)}=F(x^{(k)})$ converge a x^*
- 3. Vale la stima di errore: $|x^{(k+1)}-x^*| \le L|x^{(k)}-x^*|$, quindi $|x^{(k)}-x^*| \le L^k|x^{(0)}-x^*|$ Dimostrazione:
- 4. Dimostriamo prima che la successione $x^{(k)}$ è di Cauchy.

Definiamo $s^{(k)} = x^{(k+1)} - x^{(k)}$. Notiamo che:

$$egin{split} x^{(k+l)}-x^{(k)} &= \sum_{j=0}^{l-1} s^{(k+j)} \ |s^{(k)}| &= |F(x^{(k)})-F(x^{(k-1)})| \leq L|x^{(k)}-x^{(k-1)}| = L|s^{(k-1)}| \end{split}$$

Quindi:

$$|x^{(k+l)} - x^{(k)}| \leq \sum_{j=0}^{l-1} |s^{(k+j)}| \leq \sum_{j=0}^{l-1} L^j |s^{(k)}| \leq |s^{(k)}| rac{1 - L^l}{1 - L}$$

Per k sufficientemente grande, $|x^{(k+l)}-x^{(k)}|<\epsilon$ per ogni l, quindi la successione è di Cauchy.

In \mathbb{R}^n , ogni successione di Cauchy converge, quindi esiste $\lim_{k o\infty}x^{(k)}=x^*.$

5. Dimostriamo che x^* è un punto fisso:

$$x^* = \lim_{k o\infty} x^{(k+1)} = \lim_{k o\infty} F(x^{(k)}) = F(\lim_{k o\infty} x^{(k)}) = F(x^*)$$

dove abbiamo usato la continuità di F.

6. Dimostriamo l'unicità:

Supponiamo che esistano due punti fissi x^* e y^* con $x^* \neq y^*$. Allora:

$$|x^* - y^*| = |F(x^*) - F(y^*)| \le L|x^* - y^*| < |x^* - y^*|$$

Questa è una contraddizione, quindi $x^* = y^*$.

7. Dimostriamo la stima di errore:

$$|x^{(k+1)}-x^*|=|F(x^{(k)})-F(x^*)|\leq L|x^{(k)}-x^*|$$

Iterando questa disuguaglianza, otteniamo:

$$|x^{(k)}-x^*| \leq L^k |x^{(0)}-x^*|$$

12. Metodi iterativi lineari stazionari per soluzione di Ax=b

Introduzione ai metodi iterativi

I metodi iterativi costruiscono una successione di vettori $x^{(k)}_{k\in\mathbb{N}}$ che converge alla soluzione esatta x^* del sistema Ax=b.

Metodo iterativo lineare stazionario

Definizione: Un metodo iterativo lineare stazionario ha la forma:

$$x^{(k+1)} = F(x^{(k)}) = Ex^{(k)} + q, \quad k \in \mathbb{N}$$

dove $E \in \mathbb{R}^{n \times n}$ e $q \in \mathbb{R}^n$ sono indipendenti da k.

Convergenza

Teorema: Sia $|\cdot|$ una norma in \mathbb{R}^n e $|\cdot|_*$ la norma indotta in $\mathbb{R}^{n\times n}$. Se $|E|_*<1$, allora per ogni $x^{(0)}\in\mathbb{R}^n$, la successione generata dal metodo iterativo converge all'unico punto fisso \bar{x} di F e vale la stima:

$$|x^* - x^{(k+1)}| \leq \|E\|_*^k |x^* - x^{(0)}|$$

Convergenza

Teorema: Sia $|\cdot|$ una norma in \mathbb{R}^n e $|\cdot|_*$ la norma indotta in $\mathbb{R}^{n\times n}$. Se $|E|_*<1$, allora per ogni $x^{(0)}\in\mathbb{R}^n$, la successione generata dal metodo iterativo converge all'unico punto fisso \bar{x} di F e vale la stima:

$$|x^* - x^{(k+1)}| \leq \|E\|_*^k |x^* - x^{(0)}|$$

Consistenza

Affinché il metodo converga alla soluzione del sistema Ax = b, deve valere la condizione di consistenza:

$$(I_n - E)A^{-1}b = q$$

Metodo di Richardson

Il metodo di Richardson è definito come:

$$x^{(k+1)}=(I_n-A)x^{(k)}+b,\quad k\in\mathbb{N}$$

Questo corrisponde alla scelta $E = I_n - A$ e q = b.

Proprietà spettrali

La convergenza del metodo può essere analizzata tramite le proprietà spettrali della matrice di iterazione E:

$$x^{(k)} = E^k x^{(0)} + \left(\sum_{j=0}^{k-1} E^j
ight) q$$

Se $E = P^{-1}\Lambda P$ con $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, allora:

$$\lim_{k o\infty}x^{(k)}=P^{-1}\mathrm{diag}\left(rac{1}{1-\lambda_1},\ldots,rac{1}{1-\lambda_n}
ight)Pq=(I_n-E)^{-1}q$$

Il metodo converge se e solo se $\rho(E) < 1$, dove $\rho(E)$ è il raggio spettrale di E (il massimo dei moduli degli autovalori).

Precondizionamento

Per migliorare la convergenza, si può introdurre una matrice di precondizionamento P:

$$x^{(k+1)} = (I_n - P^{-1}A)x^{(k)} + P^{-1}b, \quad k \in \mathbb{N}$$

Metodi classici:

- 1. **Metodo di Jacobi**: P = D (parte diagonale di A)
- 2. **Metodo di Gauss-Seidel**: P = D + L (parte diagonale più triangolare inferiore di A)