

Exam File Provided By The UofS IEEE Student Branch

ieee.usask.ca

EE323

Total mark: 50

MIDTERM

October 23, 2001 1:30pm – 3:00pm

Name:

Solution

Stud. #: -

1. Question 1 (15 marks)

Open books, open notes. Answer all questions.

Use the other site of the paper if you require more space.

In the non-inverting voltage-to-current converter shown, the basic op-amp has infinite input resistance and zero output resistance. For input v_s and output i_o , find an expression for the feedback factor $\beta = v_f/i_o$. For an open loop gain $A = 10^3$ mA/V, what must β be for a closed-loop gain of 10 mA/V? For this β , find values of R_1 , R_2 , and r to make $i_o/v_s = 10$ mA/V, (while allowing the voltage across R_L to be as large as possible for a given power supply, yet using no resistor smaller than 150 Ω). What is the value of i_o when $v_s=1$ V?

$$\frac{1}{2} = i_0 \frac{r}{r_+ R_1 + R_2}$$

(A) Choose
$$r=15051$$
, $R_2=15052 \Rightarrow 160 = \frac{150R_1}{360+R_1}$ or $50R_1=30680$

2. Question 2 (20 marks)

Consider the circuit shown, using diodes which conduct at $V_D = 0.7V$, and an amplifier saturating at $\pm 10V$, with R1 = R2 = 10 K and C1 = 10C2 = 0.01 μF . Find the output pulse width and frequency, if v_I is a 60 Hz square wave of 2Vpp amplitude. Sketch the waveforms at nodes a through e. What is the smallest input signal required to trigger the circuit? How long does it take for this circuit to be ready for a new input?

Curve 2 Cap charges to L.

Same T₁ = T₂ since discharges from +0.7V to -0.7V

and charges from -0.7V to +0.7V

T₂ = 14 us (recovering period)

The circuit is ready for the next trigger signal

The circuit is ready for the next trigger signal (regative edge) at 8.3 ms + 28 µs = 8.33 ms (the next negative edge for 60 Hz input is at 25 ms = 16.7 ms

F= = 16.7ms = 60Hz

(note that duty cycle is not 50% as VIN)

The smallest input organal requires is 1.4Vpp.

3. Question 3 (15 marks)

A 5V peak triangular voltage with a period of 20ms, depicted on the axis shown below, is applied to an ideal op-amp integrator. Sketch v_{OUT} as a function of time. The capacitor has ze<u>ro initial charge.</u>

$$\theta$$
 o (t <5ms, v_{en} = dt where $d = \frac{1V}{ms}$ and t is in ms
 $RC = (10K)(5\mu F) = 50ms$
 $\Rightarrow v_o = -\frac{1}{RC}\int_0^t xtdt = -\frac{xt^2}{2RC} = \frac{1/ms}{2(soms)} t^2 = -\frac{t^2}{150ms^2}$

$$t = 0$$
, $v_0 = 0$ $(5ms)^2 = -0.25mV$ } parabola $t = 5ms$, $v_0 = -\frac{(5ms)^2}{100ms^2} = -0.25mV$

- 5<t<10ms > VIN possitive (but returning to zero), vo will continue increasing negatively but its slope will become onore shallow as time progress t=10ms > vo=-0.5V
- Dover the next 10 ms, during which time vin become negative, vo will begin to increase from the negative peak, reaching zero at t = 20 ms.

