엘머로 해 보는 구조(Mechanical Structure) 해석 (중)

DymaxionKim

2017-11-17

Contents

1. 개요	1
2. 자중에 의한 변형과 스트레스 해석	1
(1) Model - Setup	1
(2) Model - Equation	2
(3) Model - Material	3
(4) Model - Body force	4
(5) Model - Initial condition	5
(6) Model - Boundary condition	5
(7) Model - Set body properties	5
(8) Model - Set boundary properties	5
(9) Sif - Generate	5
(10) Run – Start solver	6
(11) Paraview 후처리	6
2. 맺음말	7
3. 착고 자료	7

1. 개요

지난 상편에서 진행한 전처리에 이어서, 본 하편에서는 다음 조건을 적용하여 해석을 실시해 본다.

(1) 별도의 외력 없이 중력만 인가하여 자중에 의한 스트레스와 변형량을 본다.

2. 자중에 의한 변형과 스트레스 해석

- 다시 엘머를 시작하고, File Load project를 하고 직전에 작업하던 디렉토리로 가서 Open하면 원래 작업하던 상태 그대로 로딩되는 것을 확인할 수 있다.
- 이제 시뮬레이션 인풋 조건들을 지정해 줘 보자.

(1) Model - Setup

• Header 카테고리의 항목들은 다음과 같은 의미를 가지고 있다.

항목명	내용
MeshDB	항목이 2개 보이는데, 앞의 것은 상위 디렉토리이고 뒤의 것은 하위 디렉토리명을 넣는 것이다. 즉
	./mesh일 경우에, 앞에 .을 넣고 뒤에 mesh라고 따로 써넣는다. 본 예제에서는 그냥 현재
	디렉토리(.)에 있으므로 둘 다 .,.으로 되어 있다.
Include Path	특정 계산을 위해 만들어진 별도 라이브러리가 있을 경우, Include 시킬 경로를 써 넣어줄 수 있다. 본
	예제에서는 사용하지 않는다.
Result directory	계산 결과 파일들이 저장될 장소이다. 아무것도 없으면 그냥 현재 디렉토리에 저장된다.

Figure 1:

MeshDB, Include Path, Result directory는 원래 그대로 둔다. 매쉬파일들은 당연히 현재 작업 디렉토리에 있으므로 .으로 되어 있고, 결과 파일의 출력 장소도 별도 지정되지 않았으므로 현재 디렉토리에 저장될 것이다. * Free text 부분은 임의의 주석이나 추가 명령들을 직접 써넣어 줄수 있는 곳이다. 주석을 넣을 때는 앞에 !를 넣어주면 된다. * Simulation 카테고리에서의 항목들은 대략 다음과 같은 의미를 가지고 있다.

항목명	내용
Max. output level	계산 진행 도중, 텍스트로 출력되는 메시지를 얼마나 자세하게 할 것인지 정하는 것이다. 1을 주면 메시지가 최소화되고, 10을 주면 온갖 정보들이 수다스럽게 출력된다. 그냥 기본값 5 정도면 충분하다
Coordinate system	좌표계를 고를 수 있다. 일반적인 Cartesian 뿐만 아니라, Axi Symmetric, Cylindric Symmetric도 선택할 수 있다.
Coordinate Mapping	위에서 선택해 준 좌표계의 축 번호를 정해준다. Cartesian좌표계일때 1 2 3이라면, x y z로 대응된다.
Simulation type	Steady state, Transient, Scanning 중 택일 가능하다. Transient는 시간에 대한 변화를 보고자 할 때 선택한다. Scanning은 시간이 아닌 다른 변수, 예컨데 외력을 특정 함수나 테이블을 이용하여 여러 케이스별로 줘 보고 싶을 때 하나씩 전부 다 계산해서 결과를 내놓는 것이다.
Output intervals	Transient,Scanning 해석일 때, 예컨데 100개의 결과를 계산했는데 전부 다 저장하면 용량이 너무 커지니까 1번씩 걸러서 저장하고 싶다면 2를 넣으면 된다. 모든 결과를 다 저장하려면 디폴트값이 1로 한다.
Solver input file	는 다. 현재 설정하고 있는 내용이 저장될, 시뮬레이션 인풋 파일(sif)의 파일 이름을 정해준다. 여러가지의 조건으로 다양하게 해석해 보고자 한다면, 기본값인 case.sif 말고 다른 이름으로 지정하면 될 것이다.
Steady state max. iter	Steady state 해석을 할 때만 유효한 변수이다. 이때 하나의 샷(Shot)만 얻어내고자 할 때는 1로 해주면 된다. 만일 여러개의 샷을 얻어내고자 할 때는, 예컨데 여기에 10을 넣어주고 아래의 Free text란에 Steady State Min Iterations = 5를 해 주면, 결과 파일이 단계별로 5개 생긴다. 이를 이용해 Steady state 해석을 하고서 손쉽게 애니메이션을 만들어낼 수도 있다.
Timestepping method	Transient 해석시 사용되는 적분알고리즘을 선택하는 것이다. 일단 기본값인 BDF(Backward Differentiation Formula)만 선택되도록 되어 있다.
BDF order	BDF 알고리즘의 차수를 설정한다. 기본값은 가장 단순한 1차로 지정되어 있고, 차수를 높여갈 수록 정밀도는 더 높아질 것이다. 이론상 최고값은 6 정도로 두는 것이 맞을 것이다.
Timestep intervals Timestep size	Transient 해석시 전체 시간을 정해준다. 10초 동안의 변화를 계산하고 싶다면 10을 넣어주면 된다. Transient 해석시 몇 초 간격으로 끊어주는지 정해준다. 0.1초 간격으로 계산하고 싶다면 0.1을 넣어주면 된다.
Post file	결과 파일의 이름을 넣어준다. 확장자는 .ep와 .vtu 중에 선택할 수 있다ep 포멧은 ElmerGUI에 내장된 ElmerPost 및 ElmerVTK에서 읽어서 가시화할 때 사용하고, .vtu 포멧은 Paraview 등 표준 VTK 포멧을 지원하는 후처리기로 가시화할 때 사용하면 된다.
Free text	Simulation 카테고리 안의 이곳에 기본 조건을 추가할 수 있다. 본 예제에서는 Coordinate Scaling = 0.001을 써 넣어 주었다. 이것은 불러들인 매쉬파일은 원래 CAD에서 그린 mm 단위의 형상을, 강제로 0.001배 해서 m 단위로 스케일링(단위변환)을 해 준 것이다. 엘머는 기본적으로 단위계가 따로 정해져 있지는 않으나, ElmerGUI에서 기본으로 제공하는 상수 및 물성치들이 모두 MKS단위계로 맞추어져 있기 때문에 길이 단위는 m(미터)로 맞추는 것이 편하다.

- Constants 카테고리는 기본적인 물리상수들을 써준다. 기본 제공된 것 이외의 다른 물리상수나 변수를 추가해 주려면, 이 카테고리의 Free text란에 넣어주면 된다. 단, 이때 그냥 Diameter = 0.2억점에 상하되었다. \$Diameter = 0.2억 같이 변수명 앞에 \$기호를 써줘야 엘머건 정상적으로 인식한다.
- 특히 Gravity는 중력가속도임을 쉽게 알 수 있는데, 여기서 기본값은 0 -1 0 9.82로 표기되어 있어 y축 아래쪽 방향으로 중력이 작용한다고

Figure 2:

활성화 시킨다. 아울러 옵션으로 스트레스 계산도 활성화해 준다.

- Apply to bodies: 항목에는 현재 모델에서 구분된 물체(Body)가 표시된다. 본 예제에서는 1개의 물체만 있기 때문에 혼동될 염려가 없으므로 직접 체크해 준다.
- Edit Solver Settings에서는 물리방정식을 푸는 해석자에 관한 옵션들이 들어있다. 눌러서 들어가 보자.

Figure 3:

- 첫번째 탭인 Solver specific options에서 위 그림과 같이 필요한 기능만 체크해 준다. 본 예제에서는 Calculate loads를 체크해서 외력을 관한 정보를 결과에 포함시키고, Calculate stresses로 응력도 결과에 포함시키는 것으로 한다. 그리고 Displacement mesh로 변형까지 결과에 포함시키자.
- 그리고 Linear system 탭에서 Method를 Umfpack Direct Solver로 선택해 주었다. 이것으로 계산이 잘 된다면 디폴트였던 BiCGStab Iterative Solver보다 훨씬 빠르게 계산을 마칠 수 있을 것이다.

(3) Model - Material

• Add해서 새로운 Material을 정의해 주자.

Figure 4:

- Material library에 들어있는 기본적인 것을 선택해도 되지만, 여기서는 청동(Bronze) 소재의 물성을 사용해보고 싶다. 위 그림과 같이 그에 해당하는 구조해석을 위한 물성치를 넣어준다.
- 정의된 재료의 물성치를 적용할 물체(Body)도 체크해 준다.

(4) Model - Body force

• 여기서는, 물체(Body)에 적용되는 힘을 넣어준다.

Figure 5:

• 본 예제의 해석 목표는 자중에 의한 응력을 알아보는 것이므로, 중력가속도(Gravity)와 밀도(Density)를 곱해준다. 물론 -z축 방향이므로, z축에 해당하는 Force 3란에 기입하고 마이너스(-)부호를 넣는다. 아울러, 곱셈 수식을 엘머가 인식해서 적용할 수 있도록 \$기호도 앞에

넣어주는 것을 잊지 않는다.

• 정의된 Body Force가 적용할 물체(Body)도 체크해 준다.

(5) Model - Initial condition

• 본 예제는 Steady state 해석이므로, 초기조건(Initial condition)은 불필요하기 때문에 생략한다.

(6) Model - Boundary condition

• 경계조건은, 모델의 고리 부분을 고정했다고 가정하고 그 부위의 변위를 0으로 만들어주기 위해 하나 설정해 준다.

엘머로 해 보는 오픈소스 엔지니어링

Figure 6:

- x,y,z 모두 변위를 0으로 해서 고정하였다.
- Apply to boundaries: 부분은 체크하지 않고 일단 보류한다. 이유는 물체(Body)의 경우와는 달리, 경계면이 여러가지 많이 있기 때문에 어느 번호가 고정하기를 원하는 경계면인지 알 수 없기 때문이다.

(7) Model - Set body properties

• 물체(Body)는 이미 모두 선택되었기 때문에 생략한다.

(8) Model - Set boundary properties

- 경계면(Boundary)를 선택하기 위해 이 메뉴를 눌러서 체크해 준다.
- 이후 그래픽 화면에서, 아래의 그림에서 붉은 부분의 경계면을 더블클릭해서 선택해 준다.
- 팝업창이 뜨면, 조금 전에 설정해 둔 경계조건을 선택해서 Apply해 주면 적용이 된다.
- 이제 Model 메뉴에서 필요한 설정은 모두 끝났다.

(9) Sif - Generate

- 이 메뉴를 누르면, 앞서 Model에서 설정된 사항들을 적용하여 시뮬레이션 인풋 파일이 생성된다.
- Sif Generate로 생성된 내용을 확인해 보자.
- 생성된 내용을 프로젝트로 갱신 저장하기 위해, File Save project를 해 준다.

Figure 7:

(10) Run - Start solver

- 이 메뉴를 누르면 곧바로 계산이 시작된다. 메시지창과 수렴 그래프창이 뜨는데, 현재는 Direct solver로 계산하기 때문에 수렴 그래프창은 별 의미가 없다.
- 계산이 완료되면, 결과파일인 case.vtu가 생성되었음을 알 수 있다.

(11) Paraview 후처리

- 이제 Paraview 프로그램을 실행하고, case.vtu 파일을 불러들여 본다.
- 좌측 Properties 탭의 Apply 버튼을 누르면 형상이 화면에 나타난다.

Figure 8:

- 그리고 위 그림에 표시된 부분에서 vonmises등을 선택해서 확인해 본다.
- Von Mises 응력의 경우, 최고값(Max)이 7.7e+06으로 나온다. 현재 MKS단위계로 맞추어져 있으므로, 단위는 당연히 [kgf/m⊠2]일 것이다. 일반적으로 사용하는 단위로 환산하면, 75.511205[MPa]이 된다.
- Paraview의 좀 더 자세한 사용법은 추후에 알아보자.
- 이상 자중에 의한 응력을 해석해서 확인해 보았다.

2. 맺음말

- 이번 편에서는 가장 기본적인 선형 정적 응력해석 중에서, 중력에 의한 자중을 고려하여 수행해 보았다.
- 본 편의 모델링 데이타는 다음 장소에서 다운로드 받으면 된다.

https://github.com/dymaxionkim/Elmer_Examples_for_CADG/tree/master/CADG_03_Elmer_Structure

3. 참고 자료

• 성덕대왕신종의 부분명칭과 크기

http://blog.daum.net/_blog/BlogTypeView.do?blogid=03Pdg&articleno=15960218

• 이장무, 新羅 鐘의 設計에 관한 연구, 학술원논문집 제55집 1호 (2016)

http://www.nas.go.kr

• 김석현,이중혁, 등가 종 모델을 이용한 맥놀이 주기 조절법, 한국음향학회지 제31권 제8호 (2012)
http://ocean.kisti.re.kr/downfile/volume/ask/GOHHBH/2012/v31n8/GOHHBH_2012_v31n8_561.pdf

• J.M.LEE, A STUDY ON THE VIBRATION CHARACTERISTICS OF A LARGE SIZE KOREAN BELL, Journal of Sound and Vibration (2002)

http://sci-hub.bz/10.1006/jsvi.2002.5092

7