Implementation of ASRAN algorithm in NS3

An adaptive TCP Transmission Adjustment for flying Ad Hoc Netwok (UAV)

Flying Ad Hoc Networks

Possible reasons for segment loss:

- Congested Network
 - Normally Assumed by TCP
 - Reduce transmission speed
- Transient Link instability
 - Frequent node mobility
 - Routing update
 - Reduction in transmission speed is not desired

Adaptive Ssthresh Reviser for flying Ad hoc Network (ASRAN)

<u>Aim</u>

quickly recovers unnecessarily reduced throughput in a UAV Network

Target

Identify the cause of segment loss:

- Congested Network congestion avoidance algorithm (linear increase)
- Transient Link Instability continue with slow start (exponential increase)

Congestion Control - TCP NewReno

- Slow Start Threshold value ssthresh
- Slow start Exponential increase of cwnd
- Segment loss
 - ssthresh = cwnd size = cwnd/2
 - Congestion Avoidance phase starts
 - Linear increase of cwnd

ASRAN Algorithm

Last_max_cwnd = cwnd size of successful transmission until the previous segment loss

Original ssthresh = cwnd / 2

SSthresh = max(last_max_cwnd, original_ssthresh)

ASRAN Algorithm

Last_max_cwnd > original_ssthresh: transient link instability

- Ssthresh = last_max_cwnd
- exponential increase

(a) CWND fluctuation in ASRAN activated scenario

ASRAN Algorithm

Last_max_cwnd < original_ssthresh:

Buffer overflow

- Ssthresh = original_ssthresh
- Linear Increase

(b) CWND fluctuation in buffer overflow scenario with ASRAN

Works better than TCP Cubic Algo

Gain of ASRAN = ASRAN Throughput / Cubic Throughput = 1.622

Reference:

Lee, J.Y.; Lee, W.; Kim, H.; Kim, H. Adaptive TCP Transmission Adjustment for UAV Network Infrastructure. *Appl. Sci.* **2020**, *10*, 1161. https://doi.org/10.3390/app10031161