AMENDMENT(S) TO THE SPECIFICATION

Please replace the paragraph beginning at page 1, line 24, that was previously replaced by an Amendment dated August 14, 2008, with the following rewritten paragraph:

Double-cone device 100 comprises two coaxial frustroconical sections, referred to as entry cone 102 and exit cone 104, held together by a cylindrical tube 110. Entry cone 102 is characterised by its length L1, larger diameter D1, -smaller diameter d1, and conical angle q1. Similarly, exit cone 104 is characterised by its length L2, larger diameter D2, -smaller diameter d2 and conical angle q2. The region of minimum diameter length h between the two sections smaller diameter d1 and smaller diameter d2 is referred to as orifice 106. Double-cone device 100 is fed with a feed flow 112 that enters entry cone 102 and discharges out through exit cone 104. The feed flow can be any fluid i.e. either liquid or gas.

Please replace the paragraph beginning at page 2, line 10, with the following rewritten paragraph:

During the flow within double-cone device 100, the feed flow undergoes a pressure variation that is a function of the geometry of double-cone device 100 and the fluid velocity at the inlet of entry cone 102. This pressure variation within double-cone device 100 is illustrated in FIG.2. As shown in FIG.2, the pressure within double-cone device 100 gradually falls as the fluid flows through entry cone 102 and then again rises in exit cone 104. The pressure is minimum at point (Z=0) within orifice 106. Also, pressures P_1 at the beginning ($Z=-L_1-h/2$) of the entry cone 102 and P_2 at outlet point ($Z=L_2+h/2$) of exit cone 104 are different. This difference in pressure $\Delta P_1=P_1$ is referred to as the pressure-drop across device 100.

00964931.1 -4-