Exercise 17.3. Use the division algorithm to find q(x) and r(x) such that a(x) = q(x)b(x) + r(x) with $\deg r(x) < \deg b(x)$ for each of the following pairs of polynomials.

(c)
$$a(x) = 4x^5 - x^3 + x^2 + 4$$
 and $b(x) = x^3 - 2$ in $\mathbb{Z}_7[x]$ (d) $a(x) = x^5 + x^3 - x^2 - x$ and $b(x) = x^3 + x$ in $\mathbb{Z}_2[x]$

Proof. content...

Exercise 17.4. Find the greatest common divisor of each of the following pairs p(x) and q(x) of polynomials. If $d(x) = \gcd(p(x), q(x))$, find two polynomials a(x) and b(x) such that a(x)p(x) + b(x)q(x) = d(x).

- (a) $p(x) = 7x^3 + 6x^2 8x + 4$ and $q(x) = x^3 + x 2$ where $p(x), q(x) \in \mathbb{Q}[x]$
- (b) $p(x) = x^3 + x^2 x + 1$ and $q(x) = x^3 + x 1$ where $p(x), q(x) \in \mathbb{Z}_2[x]$

Proof. content...

Proof. content...

Proof. content...

Exercise 17.11. Prove or disprove: There exists a polynomial p(x) in $\mathbb{Z}_6[x]$ of degree n with more than n distinct zeros.

Exercise 17.19. Let \mathbb{Q}^* be the multiplicative group of positive rational numbers. Prove that \mathbb{Q}^* is isomorphic to $(\mathbb{Z}[x], +)$.

Exercise 17.21. If F is a field, show that there are infinitely many irreducible polynomials in F[x].

Proof. content...