MA 166: Quiz 7 Solutions

TA: Carlos Salinas

March 6, 2016

You have 15 minutes to complete this quiz. You may work in groups, but you are not allowed to use any other resources.

Problem 1. For **one** of the following integrals, determine whether it is convergent or divergent. If it is convergent, evaluate it

(a) $\int_0^1 \frac{dx}{\sqrt{x}}$ (b) $\int_1^5 \frac{dx}{(5-x)^2}$ (c) $\int_0^\infty xe^{-x^2} dx$.

Problem 2. Find the length of the curve

$$y = \ln(x^2 - 1), \qquad 2 \le x \le 5.$$

Solutions

Here are the solutions to the quiz.

Solution. For the following problems, let t be a dummy variable.

(a) Take the limit as $t \to 0$ of the indefinite integral

$$I_{1} = \lim_{t \to 0} \int_{t}^{1} \frac{dx}{\sqrt{x}}$$

$$= \lim_{t \to 0} \int_{t}^{1} x^{-1/2} dx$$

$$= \lim_{t \to 0} \left[\frac{1}{2} x^{1/2} \right]_{t}^{1}$$

$$= \lim_{t \to 0} \frac{1}{2} - \frac{1}{2} t^{1/2}$$

$$= \frac{1}{2}.$$

So the integral converges and its value is 1/2.

(b) Take the limit as $t \to 5$ of the indefinite integral

$$I_2 = \lim_{t \to 5} \int_t^1 \frac{dx}{(5-x)^2}$$
$$= \lim_{t \to 5} \int_1^t (5-x)^{-2} dx$$

make the substitution u = 5 - x, du = -dx $= \lim_{t \to 5} - \int_{5-t}^{4} u^{-2} du$ $= \lim_{t \to 5} \int_{5-t}^{4} u^{-2} du$ $= \lim_{t \to 5} - \left[-u^{-1} \right]_{5-t}^{4}$ $= \lim_{t \to 5} \left[u^{-1} \right]_{5-t}^{4}$

So the integral does not exist because for any number you can think of N, we can pick a value t such that $(5-t)^{-1}$ is bigger than N, in fact let's see just when $(5-t)^{-1} = N$

 $= \lim_{t \to 5} \frac{1}{4} - \frac{1}{5-t}$

 $=\frac{1}{4}-\lim_{t\to 5}\frac{1}{5-t}$

$$\frac{1}{5-t} = N$$

$$5-t = \frac{1}{N}$$

$$t = 5 - \frac{1}{N}.$$

Now let M be a number bigger than N and set t = 5 - 1/M then

$$\frac{1}{5-t} = \frac{1}{5-(5-1/M)} = \frac{1}{1/M} = M > N.$$

This is what it means for an integral to not converge.

(c) Take the limit as $t \to 0$ of the indefinite integral

$$I_3 = \lim_{t \to \infty} \int_0^t x e^{-x^2} \, dx$$

use the substitution $u = x^2$, du = 2x dx

$$\begin{split} &= \lim_{t^2 \to \infty} \frac{1}{2} \int_0^{t^2} e^{-u} \ du \\ &= \frac{1}{2} \lim_{t^2 \to \infty} \int_0^{t^2} e^{-u} \ du \\ &= \frac{1}{2} \lim_{t^2 \to \infty} \left[-e^{-u} \right]_0^{t^2} \\ &= \frac{1}{2} \lim_{t^2 \to \infty} \left[e^{-u} \right]_t^{t^2} \\ &= \frac{1}{2} \lim_{t^2 \to \infty} \left(e^0 - e^{t^2} \right) \\ &= \frac{1}{2} \lim_{t^2 \to \infty} \left(1 - e^{-t^2} \right) \\ &= \frac{1}{2} - \frac{1}{2} \left(\lim_{t^2 \to \infty} e^{-t^2} \right) \\ &= \frac{1}{2} \end{split}$$

So the integral converges and its value is 1/2.

Solution. Remember the formula for the arc-length of a curve

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \tag{1}$$

(

So we need to find the derivative of $y = \ln(x^2 - 1)$

$$\frac{d}{dx}\left(\ln(x^2-1)\right) = \frac{2x}{x^2-1}.$$

Next we plug this into our equation and we have

$$L = \int_{2}^{5} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

$$= \int_{2}^{5} \sqrt{1 + \left(\frac{2x}{x^{2} - 1}\right)^{2}} dx$$

$$= \int_{2}^{5} \sqrt{1 + \frac{4x^{2}}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \sqrt{\frac{(x^{2} - 1)^{2}}{(x^{2} - 1)^{2}} + \frac{4x^{2}}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \sqrt{\frac{(x^{2} - 1)^{2} + 4x^{2}}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \sqrt{\frac{x^{4} - 2x^{2} + 1 + 4x^{2}}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \sqrt{\frac{x^{4} + 2x^{2} + 1}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \sqrt{\frac{(x^{2} + 1)^{2}}{(x^{2} - 1)^{2}}} dx$$

$$= \int_{2}^{5} \frac{x^{2} + 1}{x^{2} - 1} dx$$

$$= \int_{2}^{5} \frac{x^{2} + 1 - 1 + 1}{x^{2} - 1} dx$$

$$= \int_{2}^{5} \frac{x^{2} - 1 + 1 + 1}{x^{2} - 1} dx$$

$$= \int_{2}^{5} \frac{(x^{2} - 1) + 2}{x^{2} - 1} dx$$

$$= \int_{2}^{5} \frac{1}{x^{2} - 1} dx + \int_{2}^{5} \frac{2}{x^{2} - 1} dx$$

$$= \int_{2}^{5} 1 dx + \int_{2}^{5} \frac{2}{x^{2} - 1} dx$$

 $I_1 = 3$, I_2 requires a bit more work. First note that $x^2 - 1 = (x - 1)(x + 1)$ so by the partial fractions decomposition we have

$$\frac{2}{(x-1)(x+1)} = \frac{A}{x-1} + \frac{B}{x+1}$$
$$2 = A(x+1) + B(x-1)$$
$$0x + 2 = (A+B)x(A-B)$$

so A + B = 0 and A - B = 2 hence A - (-B) = 2A = 2 gives us that A = 1 and B = -1. Now we can find I_2

$$I_{2} = \int_{2}^{5} \frac{2}{x^{2} - 1}$$

$$= \int_{2}^{5} \frac{1}{x - 1} - \frac{1}{x + 1} dx$$

$$= \left[\ln|x - 1| - \ln|x + 1| \right]_{2}^{5}$$

$$= \left[\ln\left|\frac{x - 1}{x + 1}\right| \right]_{2}^{5}$$

$$= \ln\left|\frac{4}{6}\right| - \ln\left|\frac{1}{3}\right|$$

$$= \ln 2.$$

Hence

$$L = I_1 + I_2 = 3 + \ln 2.$$

(