```
In [1]:
```

```
install.packages("Imtest")
library("Imtest")

Installing package into '/usr/local/lib/R/site-library'
(as 'lib' is unspecified)

also installing the dependency 'zoo'

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':
    as.Date, as.Date.numeric
```

```
In [25]:
```

```
df = read.table('/content/data_hw4.csv', header = TRUE, dec=',', sep=';')
df
```

A data.frame: 22 × 4

year	x	GDP	у
<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
2000	9.2	1362.5	0.047627
2001	8.5	1376.7	0.010422
2002	8.3	1495.7	0.086439
2003	8.5	1840.9	0.230795
2004	8.9	2116.5	0.149709
2005	8.9	2194.7	0.036948
2006	8.8	2318.6	0.056454
2007	8.0	2657.1	0.145993
2008	7.5	2915.8	0.097362
2009	9.1	2691.0	-0.077097
2010	9.3	2642.4	-0.018060
2011	9.2	2862.0	0.083106
2012	9.8	2683.9	-0.062229
2013	10.3	2811.0	0.047356
2014	10.3	2852.2	0.014657
2015	10.4	2438.2	-0.145151
2016	10.0	2471.3	0.013576
2017	9.4	2589.0	0.047627
2018	9.0	2789.7	0.077520
2019	8.4	2730.1	-0.021364
2020	8.0	2622.0	-0.039596
2021	7.9	2935.5	0.119565

In [26]:

```
1 df1 = df[19:22, c(2,4)]
2 df = df[1:19,c(2, 4)]
3 df1
```

A data.frame: 4 × 2

	x	У
	<dbl></dbl>	<dbl></dbl>
19	9.0	0.077520
20	8.4	-0.021364
21	8.0	-0.039596
22	7.9	0.119565

In [27]:

```
1 df$y = as.numeric(df$y)
2 df
```

A data.frame: 19 × 2

	X	у
	<dbl></dbl>	<dbl></dbl>
1	9.2	0.047627
2	8.5	0.010422
3	8.3	0.086439
4	8.5	0.230795
5	8.9	0.149709
6	8.9	0.036948
7	8.8	0.056454
8	8.0	0.145993
9	7.5	0.097362
10	9.1	-0.077097
11	9.3	-0.018060
12	9.2	0.083106
13	9.8	-0.062229
14	10.3	0.047356
15	10.3	0.014657
16	10.4	-0.145151
17	10.0	0.013576
18	9.4	0.047627
19	9.0	0.077520

Выборочная парная:

```
r_{xy} = \frac{\widehat{Cov}(x, y)}{S_x S_y} = \frac{\overline{x}\overline{y} - \overline{x}\overline{y}}{\sqrt{\overline{x^2} - \overline{x}^2} \sqrt{\overline{y^2} - \overline{y}^2}}.
```

```
In [28]:
```

```
1 cor_y_x = cor(df[,1], df[,2])
2
3 print(c("Корреляция у и х1", cor_y_x))
```

[1] "Корреляция у и х1" "-0.6013084317926"

Построение модели

(Intercept) 0.63818 0.19205 3.323 0.00403 **

x -0.06507 0.02097 -3.103 0.00646 **

--
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.07054 on 17 degrees of freedom Multiple R-squared: 0.3616, Adjusted R-squared: 0.324 F-statistic: 9.628 on 1 and 17 DF, p-value: 0.006464

In [31]:

1 plot(df[,2], df[,1])

In [32]:

1 predict(model) 0.0395769934889779 0.0851225553436891 0.0981355730164636 0.0851225553436891 0.0590965199981397 0.0590965199981397 7 0.0656030288345271 0.117655099525626 0.150187643707562 10 0.0460835023253652 0.0330704846525904 12 0.0395769934889779 13 0.000537940470653919 -0.0319946037112827 15 -0.0319946037112827 16 -0.03850111254767 17 -0.0124750772021207 18

0.0265639758162032

0.0525900111617524

19

In [36]:

```
1 epsilons = array(df$y - predict(model))
2 c('ɛ:', epsilons)
```

'ε:' '0.00805000651102208' '-0.0747005553436891' '-0.0116965730164636'

'0.145672444656311' '0.0906124800018603' '-0.0221485199981397'

- '-0.00914902883452707' '0.0283379004743744' '-0.0528256437075622'
- '-0.123180502325365' '-0.0511304846525904' '0.0435290065110221'
- '-0.0627669404706539' '0.0793506037112827' '0.0466516037112827'
- '-0.10664988745233' '0.0260510772021207' '0.0210630241837968' '0.0249299888382476'

In [37]:

```
1 library(stats)
2 shapiro.test(epsilons)
```

Shapiro-Wilk normality test

```
data: epsilons
W = 0.98428, p-value = 0.9802
```

p-value > 0.05 следовательно гипотеза Н0 не отвергается

Тест Шапиро-Уилка (считается одним из самых эффективных (ранг критерия = 1, наибольшее предпочтение) и основан на оценке дисперсии случайной величины, на поквантильном сравнении эмпирического и теоретического (нормального) распределений) этот тест больше всего подходит для проверки нормальности случайных отклонений для этой задачи.

In [44]:

```
1 library(stats)
2 jarque.bera.test(epsilons)
```

Error in jarque.bera.test(epsilons): could not find function "jarque.bera.te
st"

Traceback:

In [42]:

```
1 library(stats)
2 pearson.test(epsilons)
```

Error in pearson.test(epsilons): could not find function "pearson.test"
Traceback:

Честно пытался понять, почему не работает вызов этих тестов, так и не нашёл проблему

In []:

1