Sieć rzeczywista i sieć odwrotna

- Węzły, proste sieciowe, płaszczyzny sieciowe symbole
- Mozaikowa budowa kryształu rzeczywistego
- Sieć odwrotna:
 - konstrukcja wektorowa
 - konstrukcja geometryczna
 - właściwości

Węzły, proste sieciowe, płaszczyzny sieciowe

Każda sieć przestrzenna może być rozumiana na trzy sposoby:

jako zbiór pojedynczych węzłów

• • •

jako zbiór rodzin prostych sieciowych (węzłowych), czyli prostych obsadzonych węzłami

jako zbiór rodzin płaszczyzn sieciowych (węzłowych), czyli płaszczyzn obsadzonych węzłami

Zbiór równoległych prostych sieciowych jest nazywany <u>rodziną prostych sieciowych</u>. Zbiór równoległych płaszczyzn sieciowych jest nazywany <u>rodziną płaszczyzn sieciowych</u>.

Każdy węzeł, każda prosta sieciowa i każda płaszczyzna sieciowa ma swój własny symbol.

Węzły

Symbole węzłów

Należy dokonać normalizacji długości periodów identyczności a, b, c, tzn. nadać im wartość równą 1.

Węzeł w początku układu współrzędnych ma symbol 0,0,0. Kolejne węzły na osi X mają symbole: 1,0,0; 2,0,0; 3,0,0 itd. Kolejne węzły na osi Y mają symbole: 0,1,0; 0,2,0; 0,3,0 itd. Kolejne węzły na osi Z mają symbole: 0,0,1; 0,0,2; 0,0,3 itd.

Przecinki w symbolu można pominąć.

Poszczególne wartości w symbolu nazywamy wskaźnikami.

Poniżej przedstawiono również symbole węzłów leżących pomiędzy osiami X i Y.

Proste sieciowe

Symbole prostych sieciowych

Położenie prostej sieciowej jest określone przez dwa węzły.

Tworzenie symbolu

- Przykładowo załóżmy, że symbole dwóch węzłów są następujące: 0,2,3 oraz 6,0,1.
 Należy odjąć od siebie pierwsze wskaźniki obu węzłów i analogicznie drugie oraz trzecie: 0-6, 2-0 oraz 3-1 lub na odwrót 6-0, 0-2 oraz 1-3.
 Otrzymujemy -6, 2,2 lub 6, -2, -2.
- Otrzymane różnice należy wyrazić w postaci najmniejszych liczb całkowitych. Zatem trzeba w tym przypadku dokonać dzielenia przez 2, co daje -3,1,1 lub 3,-1,-1.
- Następnie uzyskane wartości liczbowe należy ująć w nawiasy kwadratowe, a minus zapisać powyżej liczby. Nie należy używać spacji pomiędzy poszczególnymi miejscami w symbolu.
 Przecinki są pisane tylko wtedy gdy są niezbędne.
 - Np. symbol [1212] byłby niejednoznaczny bez przecinków; następujące symbole [12,1,2], [1,2,12] oraz [1,21,2] są symbolami odmiennych prostych sieciowych.
- Zatem utworzony symbol prostej sieciowej jest następujący:
 - $[\bar{3}11]$ lub $[3\bar{1}\bar{1}]$. Pierwszy z nich jest preferowany ze względu na tylko jeden minus.

Poszczególne wartości w symbolu nazywamy wskaźnikami.

Symbole prostych sieciowych - cd.

Można wykazać, że wszystkie proste sieciowe w jednej rodzinie mają jednakowy symbol, a odległość pomiędzy dwiema sąsiednimi prostym sieciowymi jest stała.

Kierunki charakterystyczne w układzie regularnym:

- a) osie krystalograficzne X, Y, Z: [100], [010], [001]
- b) przekątne przestrzenne komórki elementarnej

c) przekątne ścian komórki elementarnej

Kierunki w układzie heksagonalnym i trygonalnym:

Płaszczyzny sieciowe

Symbole płaszczyzn sieciowych

Współcześnie w krystalografii dla płaszczyzn sieciowych są stosowane symbole Millera. Symbole te mają zastosowanie w opisie zjawiska dyfrakcji w kryształach.

Położenie płaszczyzny sieciowej jest określone za pomocą trzech węzłów.

Tworzenie symbolu Millera:

- Przykładowo załóżmy, że symbole trzech węzłów są następujące: 200, 030, 006.
 Oznacza to, że:
 - oś X jest przecinana przez płaszczyznę w 2a
 - oś Y jest przecinana przez płaszczyznę w 3b
 - oś Z jest przecinana przez płaszczyznę w 6c.

- Wskaźniki Millera pokazują ile razy odcinki odcięte na osiach krystalograficznych X, Y, Z mieszczą się w odpowiadających im periodach identyczności a, b, c. Zatem należy zapisać następujące ilorazy: a/2a, b/3b, c/6c co daje: 1/2, 1/3, 1/6.
- Otrzymane wartości muszą być wyrażone w postaci najmniejszych liczb całkowitych: 3, 2, 1.
- Następnie otrzymane wartości liczbowe należy ująć w nawiasy okrągłe, a ewentualny minus (tu niewystępujący) zapisać powyżej liczby.
 - Nie należy używać spacji pomiędzy poszczególnymi miejscami w symbolu.
 - Przecinki są pisane tylko wtedy, gdy symbol bez nich byłby niejednoznaczny.
- Zatem utworzony symbol prostej sieciowej jest następujący: (321)

Płaszczyzny sieciowe – cd.

Symbole płaszczyzn sieciowych – cd.

Jeżeli płaszczyzna sieciowa jest równoległa do jakiegoś kierunku krystalograficznego, to na miejscu odpowiadającym temu kierunkowi występuje 0.

- Ogólny symbol płaszczyzny sieciowej to (hkl).
- Wszystkie płaszczyzny sieciowe w jednej rodzinie mają jednakowy symbol, a odległość pomiędzy dwiema sąsiednimi płaszczyznami sieciowymi w rodzinie jest stała.
 Odległość ta jest istotna wielkościa wystepujaca w opisie zjawiska
 - Odległość ta jest istotną wielkością występującą w opisie zjawiska dyfrakcji w kryształach.

Płaszczyzny sieciowe – cd.

Symbole płaszczyzn sieciowych – cd.

Przecięcie osi: $1, 1/2, \infty$

Odwrotność: 1, 2, 0

Symbol Millera: (120)

Przecięcie osi: 1/3, 1, ∞

Odwrotność: 3, 1, 0

Symbol Millera: (310)

Przecięcie osi: 1, −1, ∞

Odwrotność: 1, -1, 0

Symbol Millera: $(1\overline{1}0)$

lub:

Przecięcie osi: −1, 1, ∞

Odwrotność: -1, 1, 0

Symbol Millera: $(\overline{1}10)$

Zależność między: prostymi sieciowymi a krawędziami kryształu płaszczyznami sieciowymi a ścianami kryształu

- Krawędzie kryształu są równoległe do tzw. ważnych prostych sieciowych tzn. prostych sieciowych gęsto obsadzonych węzłami. Oznacza to, że krawędzie kryształu i równoległe do nich proste sieciowe mają taki sam symbol.
 - Można powiedzieć, że najbardziej zewnętrzna prosta sieciowa jest krawędzią kryształu.
- Ściany kryształu są równoległe do tzw. ważnych płaszczyzn sieciowych tzn. płaszczyzn sieciowych gęsto obsadzonych węzłami. Oznacza to, że ściany kryształu i równoległe do nich płaszczyzny sieciowe mają taki sam symbol.
 - Można powiedzieć, że najbardziej zewnętrzna płaszczyzna sieciowa jest ścianą kryształu.

Zależność między: prostymi sieciowymi a krawędziami kryształu płaszczyznami sieciowymi a ścianami kryształu - cd.

Płaszczyzny sieciowe o niskich wskaźnikach Millera:

- są gęsto obsadzone węzłami, zatem <u>przejawiają się jako</u>
 ściany kryształu
- charakteryzują się dużą odległością międzypłaszczyznową,
 a zatem <u>słabszymi oddziaływaniami</u> między atomami znajdującymi się na sąsiednich płaszczyznach.

Wniosek: jeżeli chcemy przeciąć kryształ, należy robić to równolegle do wyraźnej (dużej) ściany kryształu.

Wtedy są największe szanse, że kryształ nie ulegnie zniszczeniu.

Mozaikowa budowa kryształu rzeczywistego

Kryształ rzeczywisty nie posiada w całej swej objętości jednej idealnej sieci. Kryształ rzeczywisty jest zbudowany z bloków.

- Wewnątrz jednego bloku sieć jest idealna.
- Wymiary bloków są rzędu 1000 Å.
- Bloki są nieznacznie skręcone względem siebie: od kilku dziesiątych stopnia do kilku stopni.

Taka budowa kryształu jest nazywana budowa mozaikowa.

Kryształy o wysokiej mozaikowatości są trudne w badaniach krystalograficznych, gdyż dają bardzo szerokie refleksy. Ocena natężenia takich szerokich refleksów jest trudna i obarczona dużym błędem (informacja o budowie kryształu na poziomie atomowym jest zawarta właśnie w natężeniach refleksów).

Przyczyną mozaikowej budowy kryształu są dyslokacje, głównie krawędziowe.

Dyslokacja krawędziowa polega na występowaniu tzw. półpłaszczyzny sieciowej pomiędzy dwiema płaszczyznami sieciowymi. Duża liczba dyslokacji prowadzi do występowania wielu bloków.

Monokryształ, bliźniak, proszek

Definicje:

- Monokryształ charakteryzuje się jednakową orientacją sieci przestrzennej w każdym swoim punkcie.
 W definicji tej nie jest brana pod uwagę mozaikowa budowa kryształu.
- Bliźniak są to dwa lub więcej kryształów zrośniętych ze sobą pod pewnym kątem. Zatem orientacja sieci przestrzennej w każdym punkcie nie jest jednakowa.
 W definicji tej nie jest brana pod uwagę mozaikowa budowa kryształu.

Przejawem zbliźniaczenia jest zewnętrzny kąt pomiędzy dwiema ścianami kryształu mniejszy niż 180°.

 Proszek jest to zbiór monokryształów mikro- lub nanokrystalicznych. Orientacja ziaren w preparacie jest dowolna, zatem orientacja sieci przestrzennych jest również dowolna.
 W definicji tej pomijana jest mozaikowa budowa kryształu.

15

Sieć odwrotna

- Sieć przestrzenna kryształu jest nazywana siecią rzeczywistą (w przestrzeni rzeczywistej, fizycznej).
- Do sieci rzeczywistej jest konstruowana sieć odwrotna (w przestrzeni odwrotnej, matematycznej), służąca do opisu zjawiska dyfrakcji.
 - Koncepcja sieci odwrotnej została wprowadzona do krystalografii przez Paula P. Ewalda.
- Sposoby konstrukcji sieci odwrotnej:
 - konstrukcja wektorowa
 - konstrukcja geometryczna.

Konstrukcja wektorowa sieci odwrotnej

 \vec{a} , \vec{b} , \vec{c} – wektory jednostkowe na osiach **X**, **Y**, **Z** w sieci rzeczywistej

 \vec{a}^* , \vec{b}^* , \vec{c}^* – wektory jednostkowe na osiach **X***, **Y***, **Z*** w sieci odwrotnej

$$\vec{a}^* = \frac{\vec{b} \times \vec{c}}{V}$$

 \overrightarrow{a}^* prostopadły do \overrightarrow{b} , \overrightarrow{c}

$$\overrightarrow{b}^* = \frac{\overrightarrow{c} \times \overrightarrow{a}}{V}$$

 \overrightarrow{b}^* prostopadły do \overrightarrow{c} , \overrightarrow{a}

$$\vec{c}^* = \frac{\vec{a} \times \vec{b}}{V}$$

 $\overrightarrow{c^*}$ prostopadły do $\overrightarrow{a}, \ \overrightarrow{b}$

V – objętość komórki elementarnej w sieci rzeczywistej

x – iloczyn wektorowy

Konstrukcja wektorowa sieci odwrotnej – cd.

Kierunki i zwroty osi sieci odwrotnej względem osi sieci rzeczywistej w układzie heksagonalnym:

Kierunki i zwroty osi Z i Z* są identyczne.

- W sieci rzeczywistej γ = 120°; w płaszczyźnie XY kąty między osiami wynoszą 120° oraz 60°.
- W sieci odwrotnej γ* = 60°; w płaszczyźnie X*Y* kąty między osiami wynoszą 120° oraz 60°.

Wniosek: w obu sieciach układ krystalograficzny jest heksagonalny.

Sieć rzeczywista i sieć odwrotna należą do tego samego układu krystalograficznego.

W układach prostokątnych kierunki i zwroty X, Y, Z pokrywają się odpowiednio z kierunkami i zwrotami X*, Y*, Z*.

Konstrukcja wektorowa sieci odwrotnej – cd.

Można udowodnić, że długość wektora jednostkowego w sieci odwrotnej jest odwrotnością długości wektora jednostkowego w sieci rzeczywistej, skorygowaną za pomocą członu cosinusowego. Na przykład:

$$|\vec{a}^*| = \frac{1}{|\vec{a}| \cdot \cos(\vec{a}, \vec{a})}$$
 \leftarrow oraz \vec{a}^*

W przypadku układu prostokątnego (gdzie α , β , γ są kątami prostymi) $|\vec{a}^*| = \frac{1}{|\vec{a}|}$.

Można również udowodnić, że objętość komórki elementarnej w sieci odwrotnej jest odwrotnością objętości komórki elementarnej w sieci rzeczywistej:

$$V^* = \frac{1}{V}$$

Konstrukcja geometryczna sieci odwrotnej

Konstrukcja geometryczna:

Do każdej rodziny płaszczyzn sieciowych w sieci rzeczywistej należy wystawić prostą prostopadłą, na której zaznaczane są węzły w odległości n/d od początku układu współrzędnych w sieci odwrotnej.

- d odległość międzypłaszczyznowa w rodzinie płaszczyzn sieciowych w sieci rzeczywistej
- n liczba całkowita (węzły odkładamy na prawo i na lewo od początku układu współrzędnych)

Początek układu współrzędnych w obu sieciach nie musi się pokrywać.

Wskaźniki węzłów zaznaczanych na prostej w sieci odwrotnej są całkowitą wielokrotnością wskaźników Millera prostopadłej rodziny płaszczyzn sieciowych.

Właściwości sieci odwrotnej

Obie konstrukcje, wektorowa i geometryczna, wykonane dla danej sieci rzeczywistej prowadzą do tej samej sieci odwrotnej:

Płaszczyzny sieciowe w sieci odwrotnej nazywane są warstwicami.

Przez początek układu współrzędnych przechodzi warstwica zerowa (warstwica 0), po obu jej stronach jest położona warstwica pierwsza (warstwica 1 oraz warstwica -1).

Można wykazać, że:

- Sieć rzeczywista P, A, B, C prowadzi do sieci odwrotnej odpowiednio P, A, B, C.
- Sieć rzeczywista typu F prowadzi do sieci odwrotnej typu I i vice versa.
- Pojawienie się dodatkowych węzłów w sieci rzeczywistej powoduje znikniecie pewnych węzłów w sieci odwrotnej. Fakt ten jest wykorzystywany np. przy określaniu typu sieci Bravais na podstawie dyfrakcji.

Omówione zagadnienia:

- Węzły, proste sieciowe, płaszczyzny sieciowe symbole
- Mozaikowa budowa kryształu rzeczywistego
- Sieć odwrotna:
 - konstrukcja wektorowa
 - konstrukcja geometryczna
 - właściwości