[4]	
-----	--

Q.6		Attempt any two:	
	i.	Discuss at least three use cases of supervised learning in business	5
		domain.	
	ii.	How unsupervised learning can be utilized to improve the efficiency	5
		of health care applications?	
	iii.	List and describe the applications of Reinforcement learning.	5

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 CS6CW07 Machine Learning

Programme: Ph.D.

Branch/Specialisation: CSE

(Course Work)

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. In, the weighted sum of inputs through an activation function is 1 passed. Such activation function is known as sigmoid function.
 - (a) Logistic regression
- (b) Linear regression
- (c) Supervised learning
- (d) KNN algorithm
- ii. Stochastic processes are widely used as mathematical models of **1** systems and phenomena that appear to vary in a
 - (a) Correlation

(b) Fixed manner

(c) Random manner

- (d) Algorithmic way
- iii. Naive Bayes classifiers uses Bayes theorem which provides a way of 1 calculating......
 - (a) Output class

- (b) Priory probability P(A)
- (c) Posterior probability P(A|B)
- (d) p value
- iv. Support Vector Machine (SVM) is a supervised machine learning 1 algorithm used for......
 - (a) Clustering

(b) Regression

(c) Classification

- (d) Both (b) and (c)
- v. The output of the unsupervised learning methods might be less 1 accurate because-
 - (a) Input data is not labelled, and algorithms do not know the exact output in advance.
 - (b) Input data is not known, and algorithms are fuzzy.
 - (c) Learning algorithms are not very robust.
 - (d) None of these

P.T.O.

vi.	allow market analysts to establish associations amongst data objects inside large databases.	1
	(a) Clustering (b) Association rules	
	(c) Trading (d) Establishment rules	
vii.	Which among the following applications can have a solution with Reinforcement Learning?	1
	(a) Path planning (b) Parking (c) Football (d) All of these	
viii.	The reinforcement learning algorithms on self-driving cars, will be best tested in the following suitable library.	1
	(a) CARLA (b) PyTorch	
	(c) OpenAI Gym (d) None of these	
ix.	Powered by machine learning and artificial intelligence, robots are-	1
	(a) Writing news stories (b) Working in hotels	
	(c) Managing traffic (d) All of these	
X	Which of the followings are most widely used tools and metrics to	1
	assess a machine learning model?	
	(a) Confusion matrix	
	(b) Cost sensitive accuracy	
	(c) Area under the ROC curve	
	(d) All of these	
i.	What is the use of hypothesis in machine learning?	2
ii.	Differentiate between simple linear and multiple linear regressions.	3
iii.	Explain estimation with cross-validation with the help of suitable example.	5
iv.	Give a detailed introduction to the resampling methods.	5
i.	Write a short note on Decision tree classifier.	2
ii.	Elucidate the working of K-NN supervised learning algorithm.	8
	Highlight the effects of increasing/decreasing the value of k?	
iii.	Discuss different supervised learning methods by focusing on their advantages and disadvantages.	8
i.	Write the advantages and disadvantages of K-means clustering.	3
ii.		<i>3</i>
11.	Illustrate the functioning of Un-supervised machine learning algorithms with the help of appropriate example.	,

Q.2

OR

Q.3

OR

Q.4

OR iii. Cluster the following eight points (with (x, y) representing locations) 7 into three clusters:

A1(2, 10), A2(2, 5), A3(8, 4), A4(5, 8), A5(7, 5), A6(6, 4), A7(1, 2), A8(4, 9)

Initial cluster centers are A1(2, 10), A4(5, 8) and A7(1, 2).

The distance function between two points a = (x1, y1) and b = (x2, y2) is defined as-

$$P(a, b) = |x^2 - x^1| + |y^2 - y^1|$$

Apply K-Means Algorithm to find the three cluster centers after the second iteration.

- Q.5 i. Differentiate Reinforcement learning with Supervised learning. Also 4 list various Reinforcement Learning Algorithms.
 - ii. In the given image, you can view that room represents a state Agent's movement from one room to another represents an action.

Consider the situation; there are five rooms in a building which are connected by doors. Each room is numbered 0 to 4. The outside of the building can be one big outside area (5). Doors number 1 and 4 lead into the building from room 5.

The scoring/reward system is as below:

- (a) Doors which lead directly to the goal have a reward of 100.
- (b) Doors which is not directly connected to the target room gives zero reward.
- (c) As doors are two-way, and two arrows are assigned for each room
- (d) Every arrow in the above image contains an instant reward value How do you train the agent to reach the end goal with the shortest path and maximized reward using Q-learning algorithm?
- OR iii. Explain the working of reinforcement learning making use of MDP 6 model.

P.T.O.

Scheme of Marking

Faculty of Engineering End Sem (Even) Examination May-2022 CS6CW07 Machine Learning

Programme: Ph.D. Branch/Spec.alisation: (Course Work).

Note: The Paper Setter should provide the answer wise splitting of the marks in the scheme below.

Q.1	i)	a .	1
	ii)	c	1
	iii)	C	1.
	iv)	d	1
	v)	a	1
	vi)	b	1
. 1	vii)	d	1
100	viii)	a	1
	ix)	d	1
	x)	d	1
Q.2	i.	The hypothesis is one of the commonly used concepts of statistics in Machine Learning. It is specifically used in Supervised Machine learning, where an ML model learns a function that best maps the input to corresponding outputs with the help of an available dataset. [2]	
	ii.	[1] mark for each difference	
	iii.	[4] marks for explanation and 1 mark for example.	
OR	iv.	[5] marks if adequate matter is written, otherwise on prorata.	
Q.3	i.	The decision tree classifier creates the classification model by building a decision tree. Each node in the tree specifies a test on an attribute, each branch descending from that node corresponds to one of the possible values for that attribute. [2]	
	ii.	working of K-NN supervised learning algorithm [6] Effect of increasing and decreasing K [2]	

OR	iii.	[2] marks for each supervised learning methods, at least 4 techniques should be written.
Q.4	i.	[1] mark for each advantage and disadvantage
	ii.	[5] marks for working and [2] marks if discussed any example.
OR	iii.	[7] marks for correctly determining the three cluster centers after the second iteration, otherwise on prorata basis.
Q.5	i.	[3] marks for the differentiation and [1] mark for listing various Reinforcement Learning Algorithms.
	ii.	[6] marks for correctly finding the shortest path through process. Step marking may be done according to the steps correctly written.
OR	iii.	[5] Marks for explanation as per the question. [3] marks may be awarded if MDP model has not taken.
Q.6		
	i.	[5] marks for 3 and more use cases. [3] Marks if only two usecases is written.
	ii.	[5] Marks if application of unsupervised learning is adequately discussed. Otherwise on prorata basis.
	iii.	[1] mark for each application of reinforcement learning, max [5].
