第5章 STC单片机CPU子系统

何宾 2018.03

STC单片机CPU内核功能单元

--特殊功能寄存器

特殊功能寄存器 (Special Function Register, SFR), SFR是具有特殊功能的RAM区域,它是一系列控制寄存器和状态寄存器的集合。

- 这些寄存器用于对STC单片机内的各个功能模块进行管理、控制和监视。
- 注: (1) STC15系列单片机的SFR和高128字节的RAM共用相同的地址范围, 都使用80H~FFH的区域。因此,需要使用直接寻址方式访问SFR。
 - (2) 当寄存器地址能够被8整除时才可以进行位操作,其他区域不可以进行位操作。

STC单片机CPU内核功能单元

--特殊功能寄存器

地址	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	地址
0xF8	P7	СН	ССАР0Н	CCAP1H	CCAP2H				0xFF
0xF0	В	PWMCFG	PCA_PWM0	PCA_PWM1	PCA_PWM0	PWMCR	PWMIF	PWMFDCR	0xF7
0xE8	P6	CL	CCAP0L	CCAP1L	CCAP2L				0xEF
0xE0	ACC	P7M1	P7M0				CMPCR1	CMPCR2	0xE7
0xD8	CCON	CMOD	CCAPM0	CCAPM1	CCAPM2				0xDF
0xD0	PSW	T4T3M	T4H	T4L	тзн	T3L	T2H	T2L	0xD7
			RL_TH4	RL_TL4	RL_TH3	RL_TL3	RL_TH2	RL_TL2	
0xC8	P5	P5M1	P5M0	P6M1	P6M0	SPSTAT	SPCTL	SPDAT	0xCF
0xC0	P4	WDT_CONTR	IAP_DATA	IAP_ADDRH	IAP_ADDRL	IAP_CMD	IAP_TRIG	IAP_CONT	0xC7
								R	
0xB8	IP	SADEN	P_SW2		ADC_CONTR	ADC_RES	ADC_RESL		0xBF
0xB0	P3	P3M1	P3M0	P4M1	P4M0	IP2	IP2H	IPH	0xB7
0xA8	IE	SADDR	WKTCL	WKTCH	S3CON	S3BUF		1E2	0xAF
			WKCTL_CNT	WKTCH_CNT					
0xA0	P2	BUS_SPEED	AUXR1						0xA7
			P_SW1						
0x98	SCON	SBUF	S2CON	S2BUF		P1ASF			0x9F
0x90	P1	P1M1	P1M0	P0M1	P0M0	P2M1	P2M0	CLK_DIV	0x97
								PCON2	
0x88	TCON	тмор	TL0	TL1	TH0	TH1	AUXR	INT_CLK0	0x8F
			RL_TL0	RL_TL1	RL_TH0	RL_TH1		AUXR2	
0x80	P0	SP	DPL	DPH	S4CON	S4BUF		PCON	0x87

STC单片机CPU内核功能单元

--特殊功能寄存器

很明显,随着STC单片机所集成的外设数量的增加,占用的SFR数量增加。

- ◆ SFR可用的地址空间资源消耗完了。
 - □ 意味着CPU和外设打交道的主要通道控制寄存器和状态寄存器无法在 SFR空间内设置?
- ◆ 这对传统单片机来说是一个巨大的挑战!!! 怎么办???
 - □ STC从15系列单片机开始,开创性的使用了扩展的SFR,即XSFR,使得未来STC将更多外设集成到MCU内部时,不再遇到传统SFR空间的限制。

注:详见增强型PWM一章内容介绍

特殊功能寄存器 --端口控制寄存器组

在SFR中,提供了用于对单片机P0组端口、P1组端口、P2组端口、P3组端口、P4组端口和P5组端口的控制寄存器。

注:对于64脚封装的IAP15W4K58S4单片机而言,还提供了P6和P7端口

P0端口寄存器组,包括:

- P0寄存器
- P0M0寄存器
- P0M1寄存器

P0寄存器 (SFR地址80H)

- PO寄存器中每一个比特位与STC单片机外部PO组内的引脚一
 - 一对应,如下表所示,复位值为0xFF。

比特	B7	B6	B5	B4	В3	B2	B1	B0
名字	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0

特殊功能寄存器 --端口控制寄存器组

POMO寄存器 (SFR地址94H)

■ P0M0寄存器,也称为端口0模式配置寄存器0,该寄存器中每位的说明如下表,复位值为0x00。

比特			<u> </u>	<u> </u>	B3	<u>R2</u>	<u>R1</u>	$\mathbf{R0}$
名字	P0M0.7	P0M0.6	P0M0.5	P0M0.4	P0M0.3	P0M0.2	P0M0.1	P0M0.0
ром.	安方	器(SI	R#bt	-93H				
OIVI	י שי	13 (Si	1/162					
PON	/11寄存	器,也	称为端	□0模	式配置	寄存器	1. 该智	存器
中每	位的说	明如下	表所示	,复位	值为0x	00.		
比特	B7	B6	B5	B4	В3	B2	B1	B0
名字	P0M1.7	P0M1.6	P0M1.5	P0M1.4	P0M1.3	P0M1.2	P0M1.1	P0M1.0

PyM1.x和PyM0.x的组合含义

P0M1	P0M0	含义
0	0	准双向端口,与传统8051 I/O模式兼容。其灌电流可达20mA,拉
		电流为270µA
		(注:由于制造误差,拉电流实际在150~270µA之间)
0	1	推挽输出,即:强上拉输出,电流可达到20mA。因此,在使用时
		需要接入限流电阻
1	0	仅为输入(高阻)
1	1	开漏 (Open Drain) ,内部上拉电阻断开。在该模式下,既可以读
		外部状态也可以对外输出高电平/低电平。因此,需要加上拉电阻,
		否则读不到外部状态,也不能对外输出高电平。

端口控制寄存器组

寄存器名字	SFR地址	功能	复位值
P1	90H	P1端口寄存器	0xFF
P1M0	92H	P1端口模式寄存器0	0x00
P1M1	91H	P1端口模式寄存器1	0x00
P2	A0H	P2端口寄存器	0xFF
P2M0	96H	P2端口模式寄存器0	0x00
P2M1	95H	P2端口模式寄存器1	0x00
P3	В0Н	P3端口寄存器	0xFF
P3M0	B2H	P3端口模式寄存器0	0x00
P3M1	B1H	P3端口模式寄存器1	0x00
P4	C0H	P4端口寄存器	0xFF
P4M0	B4H	P4端口模式寄存器0	0x00
P4M1	взн	P4端口模式寄存器1	0x00
P5	C8H	P5端口寄存器	xx111111B
P5M0	CAH	P5端口模式寄存器0	xx000000B
P5M1	С9Н	P5端口模式寄存器1	xx000000B

特殊功能寄存器

--时钟分频器

CPU分频器允许CPU运行在不同的速度。

□ 用户通过配置用户SFR空间地址为0x97的CLK_DIV (PCON2) 寄存器来控制CPU的时钟速度,复位值为00000000B。

比特	В7	В6	В5	B4	В3	B2	B1	В0
名字	MCKO_S1	MCKO_SO	ADRJ	Tx_Rx	MCLKO_2	CLKS2	CLKS1	CLKS0

特殊功能寄存器 ---时钟分频器

其中,CLKS2~CLKS0比特位用于对主时钟进行分频,如下所示。

CLKS2	CLKS1	CLKS0	含义		
0	0	0	主时钟频率/1		
0	0	1	主时钟频率/2		
0	1	0	主时钟频率/4		
0	1	1	主时钟频率/8		
1	0	0	主时钟频率/16		
1	0	1	主时钟频率/32		
1	1	0	主时钟频率/64		
1	1	1	主时钟频率/128		

注:主时钟可以是内部的R_C时钟,也可以是外部输入时钟/外部晶体振荡器产生的时钟。

特殊功能寄存器 --时钟分频器

其中,B6和B7比特位用于控制在STC单片机引脚MCLKO (P5.4) 或者 MCLKO_2 (P1.6) 输出时钟的频率,如下表所示。

MCKO_S1	MCKO_SO	含义
0	0	主时钟不对外输出时钟
0	1	输出时钟,输出时钟频率=SYSclk的时钟频率
1	0	输出时钟,输出时钟频率=SYSclk的时钟频率/2
1	1	输出时钟,输出时钟频率=SYSclk的时钟频率/4

注: SYSclk为系统时钟。

STC15W系列单片机通过CLK_DIV寄存器的B3位 (MCLKO 2) 选择:

- 在MCLKO/P5.4口对外输出时钟.
- 还是在MCLKO_2/XTAL2/P1.6口对外输出时钟。

CLKO_2	含义
0	在MCLKO/P5.4口对外输出时钟
1	在MCLKO_2/XTAL2/P1.6口对外输出时钟

STC单片机中断系统原理及功能 -- INT_CLKO寄存器

外部中断允许和时钟输出寄存器。

■ 该寄存器是STC15系列单片机新增加的寄存器,该寄存器位于SFR地址为 0x8F的位置。在复位时,该寄存器的内容设置为x0000000。

比特	В7	В6	В5	B4	В3	B2	B1	В0
名字		EX4	EX3	EX2	MCKO_S2	T2CLK0	T1CLKO	TOCLKO

注: 在此只介绍和中断有关的比特位。