Probability Theory 1 – Proposed solution of moed aleph exam 2021

1. (a) Since $Z \sim Bin(4, 1/2)$, the support of the distribution of Z is $\{0, 1, 2, 3, 4\}$. Moreover, the value of Z uniquely determines the value of the pair (X, Y). It holds that

$$\mathbb{P}(X = 0, Y = 2) = \mathbb{P}(Z = 0) = \binom{4}{0} (1/2)^0 (1 - 1/2)^{4-0} = 1/16;$$

$$\mathbb{P}(X = 1, Y = 2) = \mathbb{P}(Z = 1) = \binom{4}{1} (1/2)^4 = 1/4;$$

$$\mathbb{P}(X = 2, Y = 2) = \mathbb{P}(Z = 2) = \binom{4}{2} (1/2)^4 = 3/8;$$

$$\mathbb{P}(X = 2, Y = 3) = \mathbb{P}(Z = 3) = \binom{4}{3} (1/2)^4 = 1/4;$$

$$\mathbb{P}(X = 2, Y = 4) = \mathbb{P}(Z = 4) = \binom{4}{4} (1/2)^4 = 1/16.$$

The results are summarised in the table below.

	X = 0	X = 1	X=2
Y=2	1/16	1/4	3/8
Y = 3	0	0	1/4
Y=4	0	0	1/16

(b) Using the table from (a) we conclude that

$$P(X = 0) = P(X = 0, Y = 2) + P(X = 0, Y = 3) + P(X = 0, Y = 4)$$

= 1/16 + 0 + 0 = 1/16;

$$P(X = 1) = P(X = 1, Y = 2) + P(X = 1, Y = 3) + P(X = 1, Y = 4)$$

= 1/4 + 0 + 0 = 1/4;

and

$$P(X = 2) = P(X = 2, Y = 2) + P(X = 2, Y = 3) + P(X = 2, Y = 4)$$

= $3/8 + 1/4 + 1/16 = 11/16$.

Similarly

$$P(Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 2) + P(X = 2, Y = 2)$$

= 1/16 + 1/4 + 3/8 = 11/16;

$$P(Y = 3) = P(X = 0, Y = 3) + P(X = 1, Y = 3) + P(X = 2, Y = 3)$$

= 0 + 0 + 1/4 = 1/4;

and

$$P(Y = 4) = P(X = 0, Y = 4) + P(X = 1, Y = 4) + P(X = 2, Y = 4)$$

= 0 + 0 + 1/16 = 1/16.

(c) One can calculate $\mathbb{E}(X+Y)$ using the linearity of expectation and the marginal distributions of X and Y calculated in Part (b) of this question. However, it is easier to observe that X+Y=Z+2 (this inequality is immediate from the definition of X,Y and Z). Hence

$$\mathbb{E}(X+Y) = \mathbb{E}(Z+2) = \mathbb{E}(Z) + 2 = 4 \cdot 1/2 + 2 = 4,$$

where the second equality holds by the linearity of expectation and the third equality holds since $Z \sim Bin(4, 1/2)$.

2. (a) It follows from the description of the experiment that $X \sim Geom(1/7)$. Hence

$$\mathbb{P}(X \ge 10) = \sum_{k=10}^{\infty} \mathbb{P}(X = k) = \sum_{k=10}^{\infty} 1/7 \cdot (1 - 1/7)^{k-1} = \frac{1}{7} \left(\frac{6}{7}\right)^9 \cdot \sum_{i=0}^{\infty} (6/7)^i$$
$$= \frac{1}{7} \left(\frac{6}{7}\right)^9 \frac{1}{1 - 6/7} = \left(\frac{6}{7}\right)^9.$$

We conclude that $\mathbb{P}(X < 10) = 1 - \mathbb{P}(X \ge 10) = 1 - (6/7)^9$.

(b) Y = 0 if and only if we drew from the urn k black balls for some $k \in \mathbb{N} \cup \{0\}$ and then one white ball. It thus follows by the law of total probability that

$$\mathbb{P}(Y=0) = \sum_{k=1}^{\infty} \mathbb{P}(Y=0|X=k)\mathbb{P}(X=k) = \sum_{k=1}^{\infty} (4/6)^{k-1} \cdot 1/7 \cdot (6/7)^{k-1}$$
$$= 1/7 \cdot \sum_{k=1}^{\infty} (4/7)^{k-1} = 1/7 \cdot \frac{1}{1-4/7} = 1/3.$$

(c) X = Y + 1 if and only if we drew from the urn k red balls for some $k \in \mathbb{N} \cup \{0\}$ and then one white ball. It thus follows by the law of total probability that

$$\mathbb{P}(X = Y + 1) = \sum_{k=1}^{\infty} \mathbb{P}(X = k, Y = k - 1) = \sum_{k=1}^{\infty} \mathbb{P}(Y = k - 1 | X = k) \mathbb{P}(X = k)$$
$$= \sum_{k=1}^{\infty} (2/6)^{k-1} \cdot 1/7 \cdot (6/7)^{k-1} = 1/7 \cdot \sum_{k=1}^{\infty} (2/7)^{k-1}$$
$$= 1/7 \cdot \frac{1}{1 - 2/7} = 1/5.$$

3. (a) This statement is true. Assume that $\mathbb{P}(X \geq a) \geq \mathbb{P}(Y \geq a)$ for every $a \in \mathbb{N}$. Note that

$$\mathbb{E}(X) = \sum_{k=1}^{\infty} k \mathbb{P}(X = k) = \sum_{k=1}^{\infty} \sum_{a=1}^{k} \mathbb{P}(X = k)$$
$$= \sum_{a=1}^{\infty} \sum_{k=a}^{\infty} \mathbb{P}(X = k) = \sum_{a=1}^{\infty} \mathbb{P}(X \ge a),$$

where the third equality follows by changing the order of summation. Similarly, $\mathbb{E}(Y) = \sum_{a=1}^{\infty} \mathbb{P}(Y \geq a)$. Therefore

$$\mathbb{E}(X) = \sum_{a=1}^{\infty} \mathbb{P}(X \ge a) \ge \sum_{a=1}^{\infty} \mathbb{P}(Y \ge a) = \mathbb{E}(Y),$$

where the above inequality holds by the assumption that $\mathbb{P}(X \geq a) \geq \mathbb{P}(Y \geq a)$ holds for every $a \in \mathbb{N}$.

- (b) This statement is false. Consider random variables $X \sim U(\{1,5\})$ and Y = 2. Clearly $Supp(X) \subseteq \mathbb{N}$ and $Supp(Y) \subseteq \mathbb{N}$. Moreover $\mathbb{E}(X) = \frac{1+5}{2} = 3 > 2 = \mathbb{E}(Y)$, but $\mathbb{P}(X \ge 2) = \mathbb{P}(X = 5) = 1/2 < 1 = \mathbb{P}(Y = 2) = \mathbb{P}(Y \ge 2)$.
- (c) This statement is false. Consider random variables $X \sim U(\{1,2\})$ and Y = 3 X. Clearly $Supp(X) \subseteq \mathbb{N}$ and $Supp(Y) \subseteq \mathbb{N}$. However

$$\rho(X,Y) = \rho(X,3-X) = \rho(X,-X) = -1,$$

where the second and third equalities hold by properties of ρ that were discussed in the lectures.

- 4. (a) For every $1 \le i \le n-2$, let X_i be the indicator random variable for the event that $Y_{i+1} = 2Y_i$ and $Y_{i+2} = Y_i$. It is evident that the only possible values for such a triple (Y_i, Y_{i+1}, Y_{i+2}) are (1, 2, 1), (2, 4, 2) and (3, 6, 3). It follows that $\mathbb{E}(X_i) = \mathbb{P}(X_i = 1) = 3/6^3 = 1/72$ for every $1 \le i \le n-2$. Since $X = \sum_{i=1}^{n-2} X_i$, it follows by the linearity of expectation that $\mathbb{E}(X) = \sum_{i=1}^{n-2} \mathbb{E}(X_i) = (n-2)/72$.
 - (b) For every $1 \le i \le n-2$ it holds that $Var(X_i) = \mathbb{E}(X_i^2) (\mathbb{E}(X_i))^2 = \mathbb{E}(X_i) (\mathbb{E}(X_i))^2 = 1/72 1/72^2$, where the second equality holds since X_i is an indicator random variable and thus $X_i^2 = X_i$.

Next, fix some $1 \le i < j \le n-2$. If j > i+2, then $\{i, i+1, i+2\} \cap \{j, j+1, j+2\} = \emptyset$, implying that X_i and X_j are independent. In particular, $Cov(X_i, X_j) = 0$. Suppose then that j = i+1. We then have

$$Cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j) = \mathbb{P}(X_i = 1, X_{i+1} = 1) - 1/72^2$$

= $\mathbb{P}(Y_{i+1} = 2Y_i = 2Y_{i+2} = 4Y_{i+1}) - 1/72^2 = 0 - 1/72^2 = -1/72^2$.

Finally, suppose that j = i + 2. We then have

$$Cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j) = \mathbb{P}(X_i = 1, X_{i+2} = 1) - 1/72^2$$

= $3/6^5 - 1/72^2 = 1/72^2$,

where $\mathbb{P}(X_i = 1, X_{i+2} = 1) = 3/6^5$ since $X_i = X_{i+2} = 1$ if and only if $(Y_i, Y_{i+1}, Y_{i+2}, Y_{i+3}, Y_{i+4}) \in \{(1, 2, 1, 2, 1), (2, 4, 2, 4, 2), (3, 6, 3, 6, 3)\}.$

We conclude that

$$Var(X) = \sum_{i=1}^{n-2} Var(X_i) + 2 \sum_{1 \le i < j \le n-2} Cov(X_i, X_j)$$

$$= \sum_{i=1}^{n-2} Var(X_i) + 2 \sum_{i=1}^{n-3} Cov(X_i, X_{i+1}) + 2 \sum_{i=1}^{n-4} Cov(X_i, X_{i+2})$$

$$= (n-2)/72 - (n-2)/72^2 - 2(n-3)/72^2 + 2(n-4)/72^2$$

$$= (n-2)/72 - n/72^2.$$

(c) Note that

$$\mathbb{P}(X \ge n/2) \le \mathbb{P}(X \ge \mathbb{E}(X) + n/3) \le \mathbb{P}(|X - \mathbb{E}(X)| \ge n/3)$$
$$\le \frac{Var(X)}{(n/3)^2} \le 1/n,$$

where in the first inequality we used the value of $\mathbb{E}(X)$ as calculated in Part (a), the third inequality is Chebyshev's inequality, and in the last inequality we used the value of Var(X) as calculated in Part (b). We conclude that

$$\lim_{n \to \infty} \mathbb{P}(X \ge n/2) = 0$$

as claimed.