Lecture 9: Rootfinding methods

Jamie Haddock

Table of contents

1	Roc	otfinding problems
	1.1	Rootfinding problem
		Conditioning, error, and residual
2	Fixe	ed-point iteration
	2.1	Fixed-point iterative method
	2.2	Algorithm
	2.3	Series analysis
	2.4	Linear convergence
	2.5	Contraction maps

1 Rootfinding problems

Many problems in engineering, various sciences, data science, and machine learning can be rephrased as finding a root of a given function! It is so important an archetypical problem that we study a variety of methods for this generic problem formulation, but you will see that many may be familiar from specific applications where they may go under different names.

1.1 Rootfinding problem

Definition: Rootfinding problem

Given a continuous function f of a variable input v, the **rootfinding problem** is to find a real input r, called a **root** such that

$$f(\mathbf{r}) = \mathbf{0}.$$

In Calculus, you have likely already encountered such a problem. In *optimization*, we often seek a *stationary* point of a given objective function as candidates for the maximizer or minimizer of a given function $L(\mathbf{x})$. Mathematically, this is seeking \mathbf{x} so that

$$\nabla L(\mathbf{x}) = \mathbf{0}.$$

In this class, we'll focus on the case where the rootfinding problem is defined by continuous scalar function f of a scalar variable; that is, we seek r so that

$$f(r) = 0.$$

1.2 Conditioning, error, and residual

In the rootfinding problem, the data is the function f, and the result is a root. How does the result change in response to perturbations in f?

The perturbation to the function could be due to rounding in the evaluation of values of f, or evaluating f may require computation via an inexact algorithm (sometimes evaluating relatively simple functions require complicated algorithms).

Assum4 f has at least one continous derivative near a roor r. Suppose f is perturbed to $\tilde{f}(x) = f(x) + \epsilon$ (constant perturbation). As a result, the root (if it exists) will be perturbed to $\tilde{r} = r + \delta$ such that $\tilde{f}(\tilde{r}) = 0$. We compute here an absolute condition number κ_r , which is the ratio $|\delta/\epsilon|$ as $\epsilon \to 0$.

Using Taylor's theorem, we have

$$0 = \tilde{f}(\tilde{r}) = f(r+\delta) + \epsilon \approx f(r) + f'(r)\delta + \epsilon = f'(r)\delta + \epsilon.$$

Theorem: Condition number of rootfinding

If f is differentiable at a root r, then the absolute condition number of r with respect to constant changes in f is

$$\kappa_r = |f'(r)|^{-1}.$$

We say $\kappa_r = \infty$ if f'(r) = 0.

Let's see what this condition number looks like visually!

```
f = x \rightarrow (x-1)*(x-2); # function of which we wish to find a root interval = [0.8, 1.2] plot(f,interval...,ribbon=0.03, aspect_ratio=1, xlabel="x",yaxis=("f(x)",[-0.2,0.2])) scatter!([1],[0],title="Well-conditioned root")
```

Well-conditioned root

The possible values for the perturbed root lie within the intersection of the ribbon with the x-axis. The width of this region is similar in length to the vertical thickness of the ribbon.

```
f = x \rightarrow (x-1)*(x-1.01); #a new function for us to rootfind!

plot(f, interval..., ribbon=0.03, aspect_ratio=1, xlabel="x", yaxis=("f(x)", [-0.2, 0.2]))
scatter!([1], [0], title="Poorly-conditioned root")
```


The bound on the constant perturbation to f (the vertical width of the band) is the same as before, but now the potential displacement of the root (the horizontal width of the intersection of the band with the x-axis) is much wider! In fact, the root could even cease to exist under possible perturbations.

If |f'| is small at the root, it may not be possible to get a small error in a computed estimate of the root. We can't measure this error, but, as usual, can measure the **residual**.

Definition: Rootfinding residual

If \tilde{r} approximates a root r of function f, then the **residual** at \tilde{r} is $f(\tilde{r})$.

Define $g(x) = f(x) - f(\tilde{r})$ and note that \tilde{r} is a root of g. Next, note then that $f(\tilde{r}) = g(x) - f(x)$, so we see that the residual is the distance of f to an exactly solved rootfinding problem. This is the backward error!

Fact:

The backward error in a root estimate is equal to the residual.

To summarize – we can't expect a small error in a root approximation if the condition number is large, but we can gauge the backward error from the residual!

2 Fixed-point iteration

We typically employ iterative methods to approximate a solution to the rootfinding problem. The first method relies on a reformulation of the rootfinding problem as a **fixed-point problem**.

2.1 Fixed-point iterative method

Definition: Fixed-point problem

Given a function g, the **fixed-point problem** is to find a value p, called a **fixed point**, such that g(p) = p.

We may pass back and forth between equivalent fixed-point and rootfinding problems (meaning they have the same set of solutions).

• Given a rootfinding problem defined by f, we can define g(x) = x - f(x). Note that a root r satisfying f(r) = 0 is a fixed-point of g:

$$g(r) = r - f(r) = r.$$

(There are many other possible reductions.)

• Given a fixed-point problem defined by g, we can define f(x) = x - g(x). Note that a fixed-point p satisfying g(p) = p is a root of f:

$$f(p) = p - g(p) = p - p = 0.$$

2.2 Algorithm

The reason that we are interested in transforming our problem to a fixed-point problem is that there is a very simple method for approximating a solution. This method is known as the **fixed-point iteration** or **fixed-point iterative method**.

Given function g and initial value x_1 , define

$$x_{k+1} = g(x_k),$$
 $k = 1, 2, \cdots.$

Let's apply this technique to an equivalent fixed-point problem derived from a rootfinding problem for a quadratic polynomial f(x).

```
f = Polynomial([3.5,-4,1])
r = roots(f)
rmin,rmax = extrema(r)
@show rmin,rmax;
```

(rmin, rmax) = (1.2928932188134525, 2.7071067811865475)

```
g = x \rightarrow x - f(x)
```

#43 (generic function with 1 method)

```
plt = plot([g x->x],2,3,l=2,label=["y=g(x)" "y=x"], xlabel="x", ylabel="y", aspect_ratio=1,title="Finding of the context of
```


$$x = 2.1;$$

 $y = g(x)$

2.59

x=2.1 is not a fixed-point, but y=g(x) is much closer to the fixed-point near 2.7 than x! Let's take this as our next x value.

plot!([x,y],[y,y],arrow=true,color=3,label="")

Now, we compute another new x value by calculating y = g(x) and taking this as our new x value.

```
x = y; y = g(x)
plot!([x,x],[x,y], arrow=true, color = 4,label="")
plot!([x,y],[y,y], arrow=true, color = 3,label="")
```


We can repeat this a few times to see what happens!

```
for k = 1:5
    x = y
    y = g(x)
    plot!([x,x],[x,y],color=4,label="");
    plot!([x,y],[y,y],color=3,label="")
end
plt
```


Let's measure the error in our current approximation of the fixed-point!

```
abs(y-rmax)/rmax
```

0.0001653094344995643

Now, let's try to find the other fixed point near 1.29 using this method.

```
plt = plot([g x->x],1,2,l=2,label=["y=g(x)" "y=x"],aspect_ratio=1,xlabel="x",ylabel="y",title="Divergen
x = 1.3; y=g(x);
arrow=false
for k = 1:5
    plot!([x,y],[y,y],arrow=arrow,color=3)
    x = y
    y = g(x)
    plot!([x,x],[x,y],arrow=arrow,color=4)
    if k>2; arrow=true; end
end
plt
```


This time the fixed-point iterative method is making worse and worse approximations to the fixed-point that are moving away from the solution.

What do you notice that is different in this case?

2.3 Series analysis

Suppose fixed-point p is the desired limit of an iteration x_1, x_2, \cdots . Consider the error sequence $\epsilon_1, \epsilon_2, \cdots$ where $\epsilon_k := x_k - p$.

By the definition of the iteration, we have

$$\epsilon_{k+1}+p=g(\epsilon_k+p)=g(p)+g'(p)\epsilon_k+\frac{1}{2}g''(p)\epsilon_k^2+\cdots,$$

assuming that g has at least two continuous derivatives.

Since g(p) = p, we have

$$\epsilon_{k+1} = g'(p)\epsilon_k + O(\epsilon_k^2).$$

Now, if the iteration is to converge to p, we must have the errors converging to 0. If this is the case, we can neglect the second quadratic term and conclude that $\epsilon_{k+1} \approx g'(p)\epsilon_k$. This will be convergent if |g'(p)| < 1, but we see that the errors must grow (and not vanish) if |g'(p)| > 1.

Fact:

Fixed-point iteration for a differentiable g(x) converges to a fixed point p if the initial error is sufficiently small and |g'(p)| < 1. The iteration diverges for all initial values if |g'(p)| > 1.

In our previous example, we have $g(x) = x - (x^2 - 4x + 3.5) = -x^2 + 5x - 3.5$ and g'(x) = -2x + 5. Near p = 2.71 (the convergent fixed point), we have $g'(p) \approx -0.42$, indicating convergence. Near p = 1.29 (the divergent fixed point), we get $g'(p) \approx 2.42$ which is consistent with the observed divergence.

2.4 Linear convergence

Our prediction of the convergence of the error, given our work above, is that the errors will approximately satisfy

$$|\epsilon_{k+1}| = \sigma |\epsilon_k|$$

for $\sigma = |g'(p)| < 1$. This is known as **linear convergence**.

Definition: Linear convergence

Suppose a sequence x_k approaches limit x^* . If the error sequence $\epsilon_k = x_k - x^*$ satisfies

$$\lim_{k\to\infty}\frac{|\epsilon_{k+1}|}{|\epsilon_k|}=\sigma<1,$$

then the sequence x_k displays linear convergence. The number σ is called the convergence rate.

```
g = x \rightarrow x - f(x)
x = [2.1]
for k = 1:12
    push!(x, g(x[k]))
end
13-element Vector{Float64}:
 2.1
 2.59
 2.7419000000000002
 2.69148439
 2.713333728386328
 2.7044887203327885
 2.7081843632566587
 2.7066592708954196
 2.7072919457529734
 2.7070300492259465
2.707138558717502
 2.707093617492436
 2.7071122335938966
err = 0. abs(x - rmax)/rmax
```

```
err = @. abs(x - rmax)/rmax
plot(0:12,err,m=:o, xaxis="iteration number",yaxis=("error",:log10),title="Convergence of fixed-point i")
```


Fact: Linear convergence in practice

When graphed on a log-linear scale, the errors lie on a straight line whose slope is the log of the convergence rate. This phenomena (and the reduction of error scaling with σ) manifest most strongly at later iterations.

```
y = log.(err[5:12])
p = Polynomials.fit(5:12,y,1) #fit a linear function to the logarithm of the error sequence (i.e., fit
sig = exp(p.coeffs[2])
```

0.41448513854854707

```
[ err[i+1]/err[i] for i in 8:11 ]
```

4-element Vector{Float64}:

- 0.41376605208171086
- 0.4143987269383
- 0.4141368304124451
- 0.4142453399049934

These agree well!

2.5 Contraction maps

Definition: Lipschitz condition

A function g is said to satisfy a **Lipschitz condition** with constant L on the interval $S \subset \mathbb{R}$ if, for all $s, t \in S$,

$$|g(s) - g(t)| \le L|s - t|.$$

A function satisfying a Lipschitz condition (for any L) is known to be continuous on S. Do you see why?

If L < 1, we call g a **contraction mapping** because applying g decreases distances between points.

Theorem: Contraction mapping

Suppose g satisfies a Lipschitz condition with L<1 on an interval S. Then S contains exactly one fixed point p of g. If x_1, x_2, \cdots are generated by the fixed point iteration defined by g and x_1, x_2, \cdots all lie within S, then

$$|x_k-p| \leq L^{k-1}|x_1-p|$$

for all k > 1.

Corollary:

If $|g'(x)| \le L < 1$ for all x in an interval S, then S contains exactly one fixed point p of g. If x_1, x_2, \cdots are generated by the fixed point iteration defined by g and x_1, x_2, \cdots all lie within S, then

$$|x_k - p| \le L^{k-1}|x_1 - p|$$

for all k > 1.