二元关系

离散数学

马晓星

南京大学・计算机科学与技术系

回顾

- 直觉概率分析: 三门问题
- 概率的公理化: 概率空间
- 条件概率与贝叶斯定理
- 随机变量及其期望与方差

提要

- 二元关系
 - 有序对与笛卡尔积
 - 关系与函数
 - 关系的表示
- 关系的运算
- 关系的性质
 - 自反
 - 传递
 - 对称

集合与关系

- 集合中元素无序,元素之间的"关系"难以直接体现
- 体现关系的前提是区分"主""客"-"有序对"
 - 君君臣臣,父父子子,尊卑有别,长幼有序
 - "平等"也是一种关系

有序对(Ordered pair)

- (a,b)是集合{{a},{a,b}}的简写
 - 卡齐米日·库拉托夫斯基 Kazimierz Kuratowski 1921
 - 这是现代通用的定义

- 有序对可以有其他的集合论定义方式:
 - Norbert Wiener 1914: $(a, b) := \{\{\{a\}, \emptyset\}, \{\{b\}\}\}\}$
 - Felix Hausdorff 2924: $(a,b) \coloneqq \{\{a,1\},\{b,2\}\}$, where 1 and 2 are two distinct objects different from a and b.

有序对(Ordered pair)

• (a,b)是集合{{a},{a,b}}的简写

• 次序的体现

- (x, y) = (u, v) iff $x = u \perp y = v$
- 若 $\{x\},\{x,y\}\}=\{\{u\},\{u,v\}\}, 则\{x\}=\{u\}$ 或 $\{x\}=\{u,v\},$ 因此x=u。
- 假设y≠v
- (1) 若x = y, 左边= {{x}}, 而 $v \neq x$, : 右边 \neq {{x}};
- (2) 若 $x\neq y$,则必有 $\{x,y\}=\{u,v\}$,但y既非u,又非v,矛盾。

笛卡尔乘积(Cartesian Product)

• 对任意集合A,B 笛卡尔积

$$A \times B = \{ (a,b) \mid a \in A, b \in B \}$$

• \emptyset : $\{1,2,3\}\times\{a,b\} = \{(1,a),(3,a),(3,a),(1,b),(2,b),(3,b)\}$

• 若A,B是有限集合, $|A \times B| = |A| \times |B|$

例题

•
$$A = \{1,2\}, \quad \mathcal{P}(A) \times A = ?$$

•
$$|A| = m, |B| = n, |A \times B| = ?$$

•
$$\emptyset \times \mathcal{P}(\emptyset) = ?$$

•
$$|\mathcal{P}(\emptyset) \times \mathcal{P}(\mathcal{P}(\emptyset))| = ?$$

关系 (Relation) 的定义

● 若A,B是集合,从A到B的一个(二元)关系是 $A \times B$ 的一个子集. $R \subseteq A \times B$

是一个集合。

- 集合的元素是有序对
- 可以是空集
- 集合R是从A到B的一个二元关系关系意味着 $\forall r \in R. \exists x, y. (r = (x, y))$

其中 $x \in A, y \in B$.

二元关系

- 相关记号: 令 *R* ⊆ *A*×*B*
 - $(a,b) \in R$ 可简记为 aRb
 - (a,b) ∉ R 可简记为 ¬aRb 或者 a Rb
 - aRb ∧ bRc 可简记为 aRbRc
 - 例如: $A = \{1,2\}, B = \{3,4,5\}, R = \{(1,3),(2,3),(1,5)\}$ 为从A到B的关系,有: 1R3, 2R3, 1R5

二元关系

- 关系意味着什么?
 - 两类对象之间建立起来的联系!

- 例子
 - 常用的数学关系: 不大于、整除、集合包含等
 - 网页链接、文章引用、相互认识

特殊的二元关系

• 集合A上的**空关**系 \emptyset : 空关系即空集

• 全域关系 E_A : $E_A = \{(x,y) \mid x,y \in A\}$

• 恒等关系 I_A : $I_A = \{(x,x) \mid x \in A\}$

关系的一些相关术语

- 关系的定义域、值域和域: 设R为从A到B的关系 ($R \subseteq A \times B$)
 - R的定义域 Domain $Dom(R) = \{x \mid \exists y \in B.(x,y) \in R\}$
 - R的值域 Range $Ran(R) = \{y \mid \exists x \in A.(x,y) \in R\}$
 - R的域 Field $Fld(R) = Dom(R) \cup Ran(R)$
 - 例如: $A = \{1,2,3\}$, $B = \{r,s\}$, $R = \{(1,2),(2,s),(3,r)\}$ 其定义域、值域和域分别是什么?

二元关系的表示

- 假设 $A = \{a, b, c, d\}, B = \{\alpha, \beta, \gamma\}$ // 假设为有限集合
- 集合表示: $R = \{(a, \beta), (b, \alpha), (c, \alpha), (c, \gamma)\}$

	α	β	γ
a	$\lceil 0 \rceil$	1	0
b	1	0	0
\mathcal{C}	1	0	1
d	$\lfloor 0$	0	0

0-1矩阵表示

二元关系和有向图

有向图 (V_D, E_D)

A和B是集合

有序对集合

 $(x,y) \in R$

若A=B, R中存在序列: $(x_1,x_2), (x_2,x_3),...,(x_{n-1},x_n)$

顶点集 $V_D = A \cup B$

有向边集 E_D

从x到y有一条边

图D中存在从 x_1 到 x_n 的长度为n-1的通路

函数是一种特殊的关系

16

• 若f是从A到B的一个函数, $R = \{(x, f(x)) | x \in A\}$ 是一个从A到B的一个关系。

● A 和 B 为非空集合, 若关系 $R \subseteq A \times B$ 满足 对于A 中的每个元素a, B 中都有且仅有一个元素 b 使得 aRb 则 R 是一个从 A 到 B 的函数。

• 如何用逻辑公式表达上述条件?

关系的运算

关系的运算(1)

- 关系是集合, 所有的集合运算对关系均适用
 - 例子:
 - 自然数集合上: "<" ∪ "=" 等同于 "≤"
 - 自然数集合上: "≤" ∩ "≥"等同于"="
 - 自然数集合上: "<" ∩ ">"等同于Ø
 - -- 请注意"类型"问题(是哪个笛卡尔积的子集)。

关系的运算(2)

- 与定义域和值域有关的运算: 设R为从A到B的关系
 - $R \uparrow S = \{ (x, y) \mid x \in S \land xRy \},$
 - $R \uparrow S \subseteq R$
 - $R[S] = \{ y \mid \exists x (x \in S \land (x, y) \in R) \} = \operatorname{Ran}(R \uparrow S)$
 - $R[S] \subseteq Ran(R)$
 - 有时我们用R(a)表示R[{a}]

例: $A = \{1,2,3,4,5\}, B = \{1,3,5,6\}, A$ 上关系R: $R = \{(1,2),(1,4),(2,3),(3,5),(5,2)\}$ 求 $R \uparrow B$, R[B]、R(1)和R(2)

关系的运算(3)

• 逆运算

$$R^{-1} = \{ (x, y) \mid (y, x) \in R \}$$

- 注意:如果R是从A到B的关系,则 R^{-1} 是从B到A的。
- $(R^{-1})^{-1} = R$

例:
$$(R_1 \cup R_2)^{-1} = R_1^{-1} \cup R_2^{-1}$$

 $(x,y) \in (R_1 \cup R_2)^{-1} \Leftrightarrow (y,x) \in (R_1 \cup R_2)$
 $\Leftrightarrow (y,x) \in R_1$ 或 $(y,x) \in R_2$
 $\Leftrightarrow (x,y) \in R_1^{-1}$ 或 $(x,y) \in R_2^{-1}$

关系的运算(4)

• 关系的复合(合成, Composition)

设 $R_1 \in A \times B$, $R_2 \in B \times C$, $R_1 = \{ (a,c) \in A \times C \mid \exists b \in B . ((a,b) \in R_1 \land (b,c) \in R_2) \}$

关系的复合运算: 举例

• 设 $A = \{a, b, c, d\}, R_1, R_2 为 A$ 上的关系,其中:

$$R_1 = \{(a,a), (a,b), (b,d)\}, \qquad R_2 = \{(a,d), (b,c), (b,d), (c,b)\}$$

则:

$$R_2 \circ R_1 = \{(a, d), (a, c), (a, d)\}$$

 $R_1 \circ R_2 = \{(c, d)\}$
 $R_1^2 = R_1 \circ R_1 = \{(a, a), (a, b), (a, d)\}$

关系的复合运算的性质(1)

• 结合律

给定
$$R_1 \in A \times B, R_2 \in B \times C, R_3 \subseteq C \times D$$
,则有:
$$R_3 \circ (R_2 \circ R_1) = (R_3 \circ R_2) \circ R_1$$

证明左右两个集合相等.

关系的复合运算的性质(2)

• 复合关系的逆关系

给定
$$R_1 \in A \times B, R_2 \in B \times C$$
, 则:
$$(R_2 \circ R_1)^{-1} = R_1^{-1} \circ R_2^{-1}$$

同样,证明左右两个集合相等

$$(x,y) \in (R_2 \circ R_1)^{-1} \Leftrightarrow (y,x) \in R_2 \circ R_1$$

$$\Leftrightarrow \exists t \in B. ((y,t) \in R_1 \land (t,x) \in R_2)$$

$$\Leftrightarrow \exists t \in B. ((t,y) \in R_1^{-1} \land (x,t) \in R_2^{-1})$$

$$\Leftrightarrow (x,y) \in R_1^{-1} \circ R_2^{-1}$$

关系的复合运算的性质(3)

- 给定 $F \subseteq A \times B$, $G \subseteq B \times C$, $H \subseteq B \times C$, 则:
 - 对集合并运算满足分配律:

$$(G \cup H) \circ F = (G \circ F) \cup (H \circ F)$$

• 对集合交运算:

$$(G \cap H) \circ F \subseteq (G \circ F) \cap (H \circ F)$$

注意: 等号不成立。考虑 $A = \{a\}, B = \{s,t\}, C = \{b\};$ $F = \{(a,s),(a,t)\}, G = \{(s,b)\}, H = \{(t,b)\};$ $G \cap H = \emptyset$, 但是 $(G \circ F) \cap (H \circ F) = \{(a,b)\}$

0-1 矩阵运算

- 令0-1矩阵 $M_1 = [a_{i,j}], M_2 = [b_{i,j}]$:
 - $\mathfrak{Z}(Join)$: $C = M_1 \wedge M_2$: $c_{i,j} = 1$ iff. $a_{i,j} = b_{i,j} = 1$
 - 并(Meet): $C = M_1 \vee M_2$: $c_{i,j} = 1$ iff. $a_{i,j}$ 或者 $b_{i,j} = 1$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$\mathbf{A} \vee \mathbf{B} = \begin{bmatrix} 1 \vee 0 & 0 \vee 1 & 1 \vee 0 \\ 0 \vee 1 & 1 \vee 1 & 0 \vee 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

$$\mathbf{A} \wedge \mathbf{B} = \begin{bmatrix} 1 \wedge 0 & 0 \wedge 1 & 1 \wedge 0 \\ 0 \wedge 1 & 1 \wedge 1 & 0 \wedge 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

0-1 矩阵运算

- 令 $r \times s$ 矩阵 $M_1 = [a_{i,j}]; s \times t$ 矩阵 $M_2 = [b_{i,j}]$:
 - $C = M_1 \odot M_2$: $c_{i,j} = 1$ iff. $\exists k (a_{i,k} = 1 \land b_{k,j} = 1)$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}. \qquad \mathbf{A} \odot \mathbf{B} = \begin{bmatrix} (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \\ (0 \wedge 1) \vee (1 \wedge 0) & (0 \wedge 1) \vee (1 \wedge 1) & (0 \wedge 0) \vee (1 \wedge 1) \\ (1 \wedge 1) \vee (0 \wedge 0) & (1 \wedge 1) \vee (0 \wedge 1) & (1 \wedge 0) \vee (0 \wedge 1) \end{bmatrix}$$

$$= \begin{bmatrix} 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \\ 0 \vee 0 & 0 \vee 1 & 0 \vee 1 \\ 1 \vee 0 & 1 \vee 0 & 0 \vee 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

关系运算的矩阵算法(1)

●命题

$$M_{R_1 \cup R_2} = M_{R_1} \vee M_{R_2}$$
 $M_{R_1 \cap R_2} = M_{R_1} \wedge M_{R_2}$
 $M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$

若R是有限集合A上的关系, $M_{R^n} = M_R \odot ... \odot M_R = (M_R)^n$

关系运算的矩阵算法(2)

• $M_{R_2 \circ R_1} = M_{R_1} \odot M_{R_2}$ 证明:

关系的性质

关系的性质: 自反性 reflexivity

- 集合A上的关系 R 是:
 - 自反的 reflexive: 定义为: 对所有的 $a \in A$, $(a,a) \in R$
 - 反自反的 irreflexive: 定义为: 对所有的 $a \in A$, $(a, a) \notin R$
 - 注意区分"非"与"反": 反自反不是自反的否定。

```
设 A = \{1,2,3\}, R \subseteq A \times A R = \{(1,1), (1,3), (2,2), (2,1), (3,3)\} 是自反的 R = \{(1,2), (2,3), (3,1)\} 是反自反的 R = \{(1,2), (2,2), (2,3), (3,1)\} 既不是自反的,也不是反自反的
```

自反性与恒等关系

- R 是 A 上的自反关系 ⇔ I_A ⊆ R,
 - 这里 I_A 是集合A上的恒等关系,即: $I_A = \{(a,a) \mid a \in A\}$
 - 直接根据定义证明:
 - ⇒ 只需证明: 对任意(a,b), 若 $(a,b) \in I_A$,则 $(a,b) \in R$
 - ← 只需证明: 对任意的a, 若 $a \in A$, 则 $(a,a) \in R$

自反关系的有向图和0-1矩阵

关系的性质:对称性 Symmetry

- 集合A上的关系R是:
 - 对称的 symmetric: 若 $(a,b) \in R$, 则 $(b,a) \in R$
 - 反对称的 antisymmetric: $\Xi(a,b) \in R \perp (b,a) \in R$,则a = b
 - 非对称的 asymmetric: $\dot{a}(a,b) \in R 则(b,a) \notin R$

```
设 A = \{1,2,3\}, R \subseteq A \times A \{(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)\} 是对称的 \{(1,2),(2,3),(2,2),(3,1)\} 是反对称的,但不是非对称的
```

理解对称性

- 关系R满足对称性: 对任意(a,b),若 $(a,b) \in R$,则 $(b,a) \in R$
 - 注意: Ø是对称关系。
- 反对称并不是对称的否定

令: $A = \{1,2,3\}, R \subseteq A \times A$ $R = \{(1,1),(2,2)\}$ 既是对称的,也是反对称的; \emptyset 是对称关系,也是反对称关系。

对称性与逆关系

- R 是集合A上的对称关系 \Leftrightarrow $R^{-1} = R$
 - ⇒ 证明一个集合等式 $R^{-1} = R$
 - 若 $(a,b) \in R^{-1}$,则 $(b,a) \in R$,由R的对称性可知 $(a,b) \in R$,因此: $R^{-1} \subseteq R$;同理可得: $R \subseteq R^{-1}$;
 - ← 只需证明:对任意的(a,b) 若(a,b) ∈ R,则(b,a) ∈ R.

对称关系的有向图和0-1矩阵

关系的性质: 传递性 transitivity

- 集合A上的关系R是
 - 传递的 transitive: 若 $(a,b) \in R$, $(b,c) \in R$, 则 $(a,c) \in R$

```
设 A = \{1,2,3\}, R \subseteq A \times A R = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,3)\} 传递的 R = \{(1,2), (2,3), (3,1)\} 是非传递的 \{(1,3)\}? \emptyset?
```

传递性与关系的乘幂

- 关系的复合(乘)运算满足结合律,可以用 R^n 表示 $R \circ R \circ \cdots \circ R$ (n是正整数)
- 命题: $(a,b) \in \mathbb{R}^n$ 当且仅当: 存在 $t_1, t_2, ..., t_{n-1} \in A$, 满足: $(a,t_1), (t_1,t_2), ..., (t_{n-2},t_{n-1}), (t_{n-1},b) \in \mathbb{R}$ 。
 - 对 $n \ge 1$ 用数学归纳法: n = 1, trivial. 奠基 n = 2,直接由关系复合的定义可得; 归纳 基于: $R^n = R^{n-1} \circ R$
- 集合A上的关系R是传递关系 ⇔ R^2 ⊆ R
 - 必要性: \Rightarrow 任取 $(a,b) \in \mathbb{R}^2$,根据上述命题以及R的传递性可得 $(a,b) \in \mathbb{R}$ 。
 - 充分性: \Leftarrow 若 $(a,b) \in R$, $(b,c) \in R$, 则 $(a,c) \in R^2$, 由 $R^2 \subseteq R$ 可得 $(a,c) \in R$, 于是R是传递关系。

传递关系的有向图和0-1矩阵

一些常用关系的性质

	=	<u>≤</u>	<		≡ ₃	Ø	E
自反	√	√	×	1	1	×	
反自反	×	×	✓	×	×	✓	×
对称	✓	×	×	×	✓	✓	✓
反对称	1	1	1	√	×	✓	×
传递	✓	✓	✓	✓	✓	✓	✓

关系运算与性质的保持

	自反	反自反	对称	反对称	传递
R_1^{-1}	√		✓		
$R_1 \cap R_2$	✓	✓	✓	✓	√
$R_1 \cup R_2$	√	✓	√	×	×
$R_1 \circ R_2$	✓	×	×	×	x

小结

- 关系: 笛卡尔积的子集
- 关系的运算
 - 集合运算; 复合运算; 逆
- **0-1**矩阵运算
- 关系的性质
 - reflexivity, ir-~; symmetry, anti-~; transitivity
 - 图特征; 矩阵特征