3.2.1.1 Constituents of the atom

Constituents of an atom

•	Particle	Charge (C)	Relative charge	Mass (kg)	Relative Mass	Specific Charge (Ckg ⁻¹)
	Proton	+1.6 × 10 ⁻¹⁹	+1	1.67(3) × 10 ⁻²⁷	1	9.58×10 ⁷
	Neutron	0	0	1.67(5) × 10 ⁻²⁷	1	0
	Electron	-1.6 × 10 ⁻¹⁹	-1	9.11×10 ⁻³¹	0.0005	1.76×10 ¹¹

· Specific charge

• specific charge =
$$\frac{\text{charge}}{\text{mass}}$$

• Unit = C kg⁻¹

Nuclide notation

 \bullet ${}_{Z}^{A}X$

• A = nucleon / mass number = number of protons + number of neutrons

• Z = proton / atomic number = number of protons

• X = symbol for the element

Isotopes

• Atoms with the same number of protons but different numbers of neutrons

Nuclide

· A type of nucleus

3.2.1.2 Stable and unstable nuclei

• The strong nuclear force (SNF)

• One of the 4 fundamental forces of nature

 Keeps the nucleus stable by counteracting the electrostatic force of repulsion between protons in the nucleus and keeping protons and neutrons together

• Only acts on nucleons, has a very short range

• Short-range attraction up to separation of 3 fm (1 fm = 10⁻¹⁵ m)

o Very-short range repulsion for separations less than about 0.5 fm

· Unstable nuclei

• Too many protons / neutrons / both

• SNF not enough to keep them stable

• Decay in order to become stable (type depends on the amount of each nucleon)

Alpha decay

Too many protons and neutrons

· Alpha particle emitted

• ${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}\alpha$

• Beta-minus decay

• Too many neutrons (neutron-rich)

• A neutron changes into a proton

- Fast-moving electron (beta particle) + an antineutrino (antiparticle with no charge) emitted
- ${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + {}_{-1}^{0}\beta + \bar{v}$
- Neutrino (\bar{v})
 - At first scientists believed that only an electron was emitted from the nucleus during betaminus decay
 - Observation of energy levels before + after decay showed that energy was not conserved (some energy was lost)
 - Neutrinos were hypothesised for the loss of energy and later observed

3.2.1.3 Particles, antiparticles and photons

- EM waves
 - Emitted by a charged particle when it loses energy
 - When a fast-moving electron is stopped / slows down / changes direction
 - When an electron in a shell of an atom moves to a different shell of lower energy

- Photon model of EM radiation
 - EM waves are emitted as short burst of waves
 - Each burst = a packet of EM waves = a proton
 - Photons transfer energy and have <u>no mass</u>
 - The energy of photons is directly proportional to the frequency of EM radiation

$$\circ E = hf = \frac{hc}{\lambda}$$

- $h = \text{Planck constant} = 6.63 \times 10^{-34} \text{ Js}$
- Rest energy
 - Unit = MeV (millions of electron volts) = 1.60×10^{-13} J
 - 1 electron volt = the energy transferred when an electron is moved through a p.d. of 1 V
 - 1 eV = 1.60×10^{-19} J
- Antiparticle
 - Same rest energy and mass as the particle but all other properties are opposite
 - For every type of particle there is an antiparticle
- Types of antiparticles

	Particle	Antiparticle		
	Electron	Positron		
•	Proton	Antiproton		
	Neutron	Antineutron		
	Neutrino	Antineutrino		

- Annihilation
 - Where a particle and a corresponding antiparticle meet and their mass is converted into radiation energy
 - Two photons moving in opposite directions are produced in the process so momentum is conserved

- PET scanner
 - Position emission topography
 - Allows 3D images of the inside of the body to be taken
 - Position-emitting isotope administered to patient, some reach the brain via the blood system
 - As positions are released they annihilate with electrons already in the patients system
 - Two gamma photons released for each annihilation which can be easily detected
 - Image built up gradually
- Pair production
 - A photon is converted into a particle and a corresponding antiparticle
 - Can only occur when the photon has an energy greater than the total rest energy of both particles
 - \circ Minimum energy of a photon needed, $hf_{\min} = 2 \times \text{rest energy} = 2E_0$
 - Excess energy = converted into KE of particles

3.2.1.4 Particle interactions

- Four fundamental interactions
 - Gravity
 - Electromagnetic
 - Weak nuclear
 - Strong nuclear / strong interaction
- Exchange particles model

0

- Forces between particles are caused by exchange particles (force carriers)
- Exchange particles carry energy and momentum between the particles experiencing the force
- Each fundamental force has its own exchange particles

Interaction	Exchange particle / gauge bosons	Range (m)	Acts on	Strength
Strong nuclear	Pions (particles) Gluon (quarks)	10 ⁻¹⁵	Hadrons	Strongest
Weak nuclear	W boson (W^+ or W^-)	10-18	All particles	2nd weakest
EM	Virtual photon (γ)	Infinite	Charged particles	2nd strongest
Gravity	*Graviton	Infinite	Particles with mass	Weakest

• Momentum transferred from one particle to another

Repel Attract

- The weak nuclear force
 - Responsible for beta decay, electron capture and electron-proton collisions
 - Exchange particles = W bosons (W^+ or W^-)
 - o Non-zero rest mass
 - Very short range ≤ 0.001 fm
 - o Positively or negatively charged
- Electron capture / electron-proton collisions
 - Same equation + different exchange particle
 - $p + e^- \rightarrow n + v_e$ Electron capture

Proton – electron collision

$$p+e^-\to n+v_e$$

• Beta-plus: $p \rightarrow n + e^+ + v_e$

• Beta-minus: $n \rightarrow p + e^- + \overline{v_e}$

• Other W boson interactions

3.2.1.5 Classification of particles

- Classifying particles
 - All particles are either hadrons or leptons
 - Leptons = fundamental particles, cannot be broken down any further + do not experience SNF
 - Hadrons = formed of quarks (fundamental particles), experiences SNF, tend to decay through weak interaction
 - Both experience weak interaction, gravitational interaction and electromagnetic interaction (if charged)
- Types of hadrons
 - Baryons / antibaryons
 - o Formed of 3 quarks / antiquarks
 - o Protons and all hadrons (incl. neutrons) that eventually decay into protons
 - Baryons = protons, neutrons, etc., antibaryons = antiprotons, antineutrons, etc.
 - Mesons
 - o Formed of 1 quark + 1 antiquark
 - o Hadrons that do not include protons in their decay products
 - \circ Pion / π meson
 - The lightest and most stable meson
 - Produced in high energy particle collisions, discovered in cosmic rays
 - Exchange particle for SNF
 - Different charges: π^+ , π^- , π^0
 - o Kaon / K meson
 - Heavier + less stable
 - Produced by the strong interaction between pions and protons
 - Eventually decay into pions (many possibilities)
 - Different charges: K^+ , K^0 , K^-
- Baryon number

- 1 = baryon, -1 = antibaryon, 0 = not a baryon
- A quantum number
- Always conserved in particle interactions
- Proton
 - The only stable baryon
 - All baryons will eventually decay into a proton
- Types of leptons
 - Electron
 - Stable
 - Relative charge = -1
 - Neutrino = electron neutrino
 - Muon / y⁻
 - Heavier than electrons
 - More unstable
 - Relative change = -1
 - Neutrino = muon neutrino
 - Decay into electrons

- Neutrinos / v_e, v_u
 - Negligible mass
 - o 0 charge
 - o Only interact through weak interaction
 - o The most abundant leptons in the universe
- Antimuon / y+
 - Decays into positions

- Lepton number
 - Gives the number of leptons
 - 1 = lepton, -1 = antilepton, 0 = not a lepton
 - 2 types
 - Electron lepton number: +1 for electrons and electron neutrinos, and -1 for positrons and electron antineutrinos
 - Muon lepton number: +1 for muons and muon neutrinos, and -1 for anti-muons and muon antineutrinos
 - o Both conserved during reactions

Strangeness

- A quantum number
- Reflect the fact that strange particles are always created in pairs
- Always conserved in strong interactions
- Change by 0, +1 or -1 in weak interactions
- Strange particles
 - Particles which are produced by the strong nuclear interaction but decay by the weak interaction
 - Strange particles are created in twos
 - e.g. kaons (decay into pions through the weak interaction), assume all others are non-strange particles
- Investigating particle physics
 - Particle accelerators may be built
 - These are very expensive + produce huge amounts of data
 - Scientific investigations rely on collaboration of scientists internationally

3.2.1.6 Quarks and antiquarks

• Properties of quarks

•	Quark particle	Charge Q	Strangeness S	Baryon number B
	Up u	+2/3	0	+1/3
	Down d	-1/3	0	+1/3
	Strange s	-1/3	-1	+1/3

Properties of antiquarks

•	Antiquark particle	Charge Q	Strangeness S	Baryon number B
	Up \overline{u}	-2/3	0	-1/3
	Down \overline{d}	+1/3	0	-1/3
	Strange \overline{s}	+1/3	+1	-1/3

• Combination of quarks and antiquarks in baryons / antibaryons

	Particle	Combination	Baryon number
	Proton	uud	1
•	Neutron	udd	1
	Antiproton	$\overline{uu}\overline{d}$	-1
	Antineutron	$\overline{\mathrm{u}}\overline{\mathrm{d}}\overline{\mathrm{d}}$	-1

• Combination of quarks and antiquarks in mesons

	Particle	Combination	Charge (e)	Strangeness	Baryon number
	π^0	$u\overline{u}$ or $d\overline{d}$	0	0	0
	π^+	ud	+1	0	0
•	π-	$\overline{\mathrm{u}}\mathrm{d}$	-1	0	0
	K ⁰	$d\overline{s}$ or $\overline{d}s$	0	$d\overline{s} = +1, \overline{d}s = -1$	0
	K ⁺	us	+1	+1	0
	K-	u s	-1	-1	0

- Neutron decay
 - Decay into proton as neutrons are baryons
 - A down quark changes to an up quark
 - $n \rightarrow p + e^- + \overline{v_e}$

3.2.1.7 Applications of conservation laws

- Properties conserved in particle interactions
 - Energy and momentum: always
 - Reactants rest energy < products rest energy = reactants KE > products KE
 - · Charge: always
 - Baryon number: always
 - Electron lepton number: always
 - Muon lepton number: always
 - Strangeness: only in strong interactions
 - All conservation laws obeyed = the interaction is possible
- β decay
 - β⁻ decay
 - o A neutron in a neutron-rich nucleus will decay into a proton
 - o A down quark changes to an up quark
 - \circ $n \rightarrow p + e^- + \overline{v_e}$
 - β⁺ decay
 - o A proton in a proton-rich nucleus changes into a neutron
 - An up quark changes to a down quark
 - $p \rightarrow n + e^+ + v_e$