Predicting the Tsunami Behavior from Historical Data

Nouha osama Alsaleh

Table of content

- 1. Problem statement
- 2. Dataset
- 3. tools
- 4. Data model
- 5. communication
- 6. resourses

Problem statement

OMAN 2011

Data

 Tsunami historical events data from (Homeland Infrastructure Foundation)

26,824 rows (entry)and 105 columns

Data cleaning
Replacing empty fields with NAAN

Handle missing data

Remove entries before AD

FEATURES

Findings

Higher tsunami frequincoes countries

1.Japan

2. USA

3. Indonisia

Peaks of tsunami is mostly 1 or 3

Explosions and earthquakes are the most effective triggers for tsunami

ALGORITHMS

1. linear regression

	MSE	MAE	R^2	
Before feature engineering	7.88e-15	1.14e-28	1.0	
After feature engineering	0.74	1.01	0.61	

2. Sequential neural network

Feature engineering:

ExtraTreesClassifier

Top_corr_features

Tools

Data processing

Numpy

pandas

Visualization

Matplotlib

Seaborn

Modeling

Keras and tensorflow

Scikit-learn

communication

original

predicted

recourses

https://data.world/dhs/historical-tsunami-event

THANK YOU ANY QUESTIONS?