Cognome	
Nome	Non scrivere qui
MATRICOLA LILIII	
CORSO AMB CIV GEST MEC ELN INF TEL	1 2 3 4
Università di Parma— Facoltà di Ingegneria	
Esame scritto di Analisi matematica 2	
A.A. 2017-2018 — PARMA, 3 LUGLIO 2018 ————————————————————————————————————	
Riempite immediatamente questo foglio scrivendo IN STAMP fate una barra sul Corso. Scrivete cognome e nome (in stampa Il tempo massimo per svolgere la prova è di tre ore . Non potal termine della prova.	atello) su ogni foglio a quadretti.
È obbligatorio consegnare sia il testo, sia tutti i fogli ricevuti quadretti dentro quello con il testo. Potete usare solo il materiale ricevuto e il vostro materiale di calcolatrici, foglietti ecc.). Non usate il colore rosso.	
Nell'apposito spazio, dovete riportare sia la risposta che lo svolgimento (o traccia dello svolgimento).	
_	$t \in [-1, 3.]$ $t \in [-1, 3.]$ $y = -4 + 4t$ $y = -4 + 6t$
Svolgim a pap AB $\begin{cases} x(t) = -3 + \frac{7}{2}\cos t \\ y(t) = 2 - \frac{7}{2}\sin t \end{cases}$ La curva percorre La circonferenta di dal punto iniziale $R_{a} = (-3, \frac{11}{2})$ al punto finale $R_{b} = (-3, \frac{11}{2})$ al punto finale $R_{b} = (-3, \frac{11}{2})$ Il vettore tangente nel punto $P_{0} = (-3 + \frac{7}{4})$ La velocità scalare in P_{0} è: Il $\overrightarrow{UP_{0}} = \frac{7}{2}$	equazione $(x+3)+(y-2)^2=(\frac{7}{2})^2$ $R=\frac{7}{2}$ $R=\frac{7}{2}$ $R=\frac{7}{2}$ $R=\frac{7}{2}$ iri. $(\Delta t)=\frac{7}{2}\pi-(-\frac{\pi}{2})=4\pi$ \Rightarrow tempo di 29%

AN2-3/up18-2B

c) Sia γ una curva nel piano.

Se il punto $P_0=(-4,-3)$ appartiene al sostegno di γ e in tale punto il vettore tangente è $\mathbf{v} = \frac{15}{2}\mathbf{i} - 4\mathbf{j}$, allora $\|\vec{\mathbf{v}}\| = \sqrt{\left(\frac{45}{2}\right)^2 + \left(-4\right)^2} = \sqrt{\frac{225}{4} + 46} = \sqrt{\frac{289}{4}} = \frac{15}{2}$ i [versori] normali in P_0 sono ... $\vec{N}_{ant} = 4\vec{\lambda} + \frac{15}{2}\vec{j}$ $= \vec{N}_{ant} = \frac{8\vec{\lambda}}{17}\vec{\lambda} - \frac{15}{17}\vec{j}$ $= \vec{N}_{ant} = 4\vec{\lambda} + \frac{15}{2}\vec{j}$ $= \vec{N}_{ant} = \frac{8\vec{\lambda}}{17}\vec{\lambda} + \frac{15}{17}\vec{j}$ e la retta normale in P_0 ha equazione cartesiana ... $\gamma = \frac{15}{15/2} = \frac{8}{15}$ /morm $\gamma = \frac{15}{8} \times \frac{9}{2}$ d) Sia $\gamma : [-3,3] \to \mathbb{R}^3$ definita da $\gamma : [-3,3] \to \mathbb{R}^3$ definita da $(4=-3+\frac{15}{8}(x+4))$

$$\begin{cases} x(t) = -\frac{4}{3}t^2 \\ y(t) = t \\ z(t) = -\frac{4}{3}t^3 \end{cases} t \in [-3, 3].$$

Svolgim, a pap. 4B

Il piano passante per $P_1 = (-3, 9, \frac{17}{3})$ e perpendicolare alla retta tangente trovata

ha equazione: ... $\lambda = \frac{4}{a} \times + \frac{1}{9} \times + 6$

e) Considerate la funzione $f(x,y) = -4 + 2\sqrt{x^2 + (y-2)^2}$.

Subletime a page 4B-5B i) Determinate il dominio di f, spiegate di che insieme si tratta e disegnatelo se non è tutto il piano.

ii) Scrivete l'equazione del grafico di f, spiegate di quale tipo di superficie si tratta (anche l'intersezione con il piano (x,y) e per gli eventuali coni circolari calcolate l'angolo di apertura) e disegnate con cura il grafico.

iii) L'equazione del piano tangente al grafico di f nel punto P_0 corrrispondente a $(x_0 = 3, y_0 = -2)$ è: $\dots = \frac{6}{5} \times -\frac{8}{5} y - \frac{4}{5}$

iv) La derivata direzionale di $\,f\,$ nel punto ($x_0\,=\,3\,,\,y_0\,=\,-\,2\,)\,$ nella direzione del punto $P_1 = (1, -4) \text{ vale } \dots \frac{\sqrt{2}}{5}$

f) Le soluzioni dell'equazione differenziale $\frac{1}{5}y''(x) + \frac{1}{5}y'(x) + \frac{13}{4}y(x) = 0$ sono ... $y(x) = C_1 e^{-\frac{1}{2}x}$ Sen $(4x) + C_2 e^{-\frac{1}{2}x}$ $(4x) + C_2 e^{-\frac{1}{2}x}$ Calcoli: eq. (cavatt. $\frac{1}{5}t^2 + \frac{1}{5}t + \frac{13}{4} = 0$ $t^2 + t + \frac{65}{4} = 0$ $t_{1/2} = \frac{-1 \pm \sqrt{-64}}{2}$ $\Delta < 0$

t1,2=-1=41 SOLN FOND. 41(x)= e-1=x Sen(4x) 42(x)= e cos(4x)

1) (Sul foglio a quadretti) Considerate la funzione

Svolpin. a pap. 58-68-78
$$f(x,y) = (y-4+x^2)(y+5).$$

- a) Determinate gli eventuali punti stazionari di f nel suo dominio e studiatene la natura.
- b) Dopo averne giustificato l'esistenza, determinate il massimo e il minimo assoluti di f nell'insieme

$$E = \{(x, y) \in \mathbb{R}^2 : x^2 - 5 \le y \le 0\}.$$

2) (Sul foglio a quadretti) Sia E l'insieme definito da $E=E_1\cup E_2$ con Svolphim. A pap. 8B-9B

$$E_1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, y \ge 0\}$$

$$E_2 = \text{triangolo di vertici } (-3,0), (3,0), (3,-3).$$

- a) Disegnate E.
- b) Eventualmente suddividendolo, scrivete l'insieme $\,E\,$ come normale rispetto a $\,x\,;$ ripetete come normale rispetto a $\,y\,.$
- c) Calcolate l'integrale doppio

$$\int_{E} \frac{1}{9} |y| dx dy.$$

3) (Sul foglio a quadretti) Determinate la soluzione del seguente problema di Cauchy:

$$\begin{cases} \frac{1}{2}y''(x) + y'(x) + \frac{1}{2}y(x) = 3e^{-x} \\ y(0) = -3 \\ y'(0) = 1. \end{cases}$$

Risposta: ...
$$y(x) = -3e^{-x} - 2xe^{-x} + 3x^2e^{-x}$$

AN2, 31712018 - 4B

b)
$$P_0 = (-3 + \frac{7}{4}\sqrt{2}, 2 + \frac{7}{4}\sqrt{2})$$
 comisponde to $= \frac{7}{4}\pi$

$$\begin{cases}
-3 + \frac{7}{4}\sqrt{2} = -3 + \frac{7}{2} \text{ cost} & \text{cost} = \frac{\sqrt{2}}{2} \\
2 + \frac{7}{4}\sqrt{2} = 2 - \frac{7}{2} \text{ sent} & \text{sent} = -\frac{\sqrt{2}}{2}
\end{cases}$$

$$\text{pana 2 volte per Po}$$

$$\gamma'(t) = (-\frac{7}{2} \text{ sent}, -\frac{7}{2} \text{ cost}) \quad \gamma'(t_0) = \vec{V}_p = \frac{7}{4}\sqrt{2}\vec{\lambda} - \frac{7}{4}\sqrt{2}\vec{J}$$

$$\|\vec{V}_{poll}\| = \sqrt{(\frac{7}{4}\sqrt{2})^2 + (-\frac{7}{4}\sqrt{2})^2} = \sqrt{\frac{49}{8} + \frac{49}{8}} = \sqrt{\frac{49}{4}} = \frac{7}{2} \quad (= \text{Reiveouf}).$$

d)
$$P_0 = (-3, -\frac{3}{2}, \frac{9}{2})$$
 comisponde a $t_0 = -\frac{3}{2}$

$$\begin{cases}
-3 = -\frac{4}{3}t^2 & \text{then } t^2 = \frac{9}{4} \rightarrow t = \pm \frac{3}{2} \\
\frac{3}{2} = t & \text{then } t^3 = -\frac{27}{8} \rightarrow t = -\frac{3}{2}
\end{cases}$$

Essendo il piano Lalla nette =0 il vettore direttore della retta rimelta NORMALE al piano =0 Npiano = (4,1,-9) - Allora

piano per Pr Intan: (P-Pr). Npiano=0

$$4(x+3)+(y-9)-9(x-\frac{17}{3})=0 4x+y-9x+12-9+51=0$$

$$\chi = \frac{4}{9}x+\frac{1}{9}y+6$$

e) is downf = $\{(x,y) \in \mathbb{R}^2 : x^2 + (y-z)^2 > 0 \} = \mathbb{R}^2 \text{ in quanto } x^2 + (y-z)^2 \in \mathbb{R}^2 \}$ where x = 0 is downf = x = 0 in quanto x = 0

Si tratta di un CONO CIRCOLARE di V(0,2,-4), verso l'alto,

AN2, 3/7/2018 - 5B

$$\alpha = 2$$
 ($\hat{ap} = \arctan \frac{1}{2} \approx 26,6^{\circ}$), $(1 \times 20) = 2\sqrt{x^2 + (y-2)^2} = 4$
 $0 < \hat{ap} < 45^{\circ}$ $\sqrt{x^2 + (y-2)^2} = 2 > 0$ (.)² $\times x^2 + (y-2)^2 = 4$ CIRCONF. di

iii)
$$\nabla f(x,y) = \left(\frac{2 \times \sqrt{\frac{2(y-2)}{\sqrt{x_+^2(y-2)^2}}}, \frac{2(y-2)}{\sqrt{x_+^2(y-2)^2}}\right)$$

$$\nabla \beta(3,-2) = \left(\frac{6}{5}, -\frac{8}{5}\right)$$

Piano tamp ha Eq. "

$$Z = \frac{6}{5} \times -\frac{8}{5} y + 6 - \frac{18}{5} - \frac{16}{5}$$

$$Z = \frac{6}{5} \times -\frac{8}{5} y - \frac{4}{5}$$

$$Z = \frac{6}{5} \times -\frac{8}{5} y - \frac{4}{5}$$

$$Z = \frac{6}{5}x - \frac{8}{5}y - \frac{4}{5}$$

$$\frac{2}{2} - \frac{1}{2} = \frac{4}{5}$$

iv)
$$\vec{G} = \frac{P_1 - P_0}{||P_1 - P_0||}$$
 con $P_0 = (3, -2)$ $P_1 = (1, -4)$

$$\vec{v} = \frac{-2\vec{\lambda} - 2\vec{j}}{\sqrt{(-1)^2 + (-1)^2}} = \frac{-2\vec{\lambda} - 2\vec{j}}{2\sqrt{2}} = -\frac{\sqrt{2}}{2}\vec{\lambda} - \frac{\sqrt{2}}{2}\vec{j}$$

$$\frac{\partial f}{\partial \vec{v}}(3,-2) = \nabla f(3,-2) \cdot \vec{v} = \frac{6}{5}(-\frac{\sqrt{2}}{2}) - \frac{8}{5}(-\frac{\sqrt{2}}{2}) = -\frac{3}{5}\sqrt{2} + \frac{4}{5}\sqrt{2} = \frac{1}{5}\sqrt{2} \approx 0.28$$

$$\nabla f(x,y) = (2x(y+5), (y+5) + (y-4+x^2))$$

P,Ti STAZ.
$$\nabla f(x,y) = (0,0)$$
 $\begin{cases} 2 \times (y+5) = 0 \\ (y+5) + (y-4+x^2) = 0 \end{cases}$ $\begin{cases} x=0 \ 0 \ y=-5 \\ \cdots \end{cases}$

Se
$$X=0 \rightarrow 2^{\alpha}eq^{\alpha}$$
 $2y+1=0$ $y=-\frac{1}{2}$ $P_0=(0,-\frac{1}{2})$

Se
$$y=-5$$
 $\rightarrow 2^{4}eq^{4}e$ $x=g$ $x=\pm 3$ $P_{1}=(3,-5)$ $P_{2}=(-3,-5)$

3 P.Ti STAZ.:
$$P_0 = (0, -\frac{1}{2})$$
 $P_1 = (3, -5)$
 $P_2 = (-3, -5)$

$$Hf(x,y) = \begin{pmatrix} 2(y+s) & 2x \\ 2x & 2 \end{pmatrix} \qquad Hf(0,-\frac{1}{2}) = \begin{pmatrix} 9 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\det Hf(0,-\frac{1}{2}) = 18 > 0 \qquad \frac{2^{2}f}{2x^{2}} = 9 > 0$$

$$= \delta (0,-\frac{1}{2}) = P. \text{ To di} \qquad \left(\frac{2^{2}f}{2y^{2}} = 2 > 0\right)$$
MINITO LOCALE

$$H_{f}(3,-5) = \begin{pmatrix} 0 & 6 \\ 6 & 2 \end{pmatrix} det H_{f}(3,-5) = -36 < 0 \rightarrow (3,-5) \in P_{f}^{To}$$

 $dr S \in UA$

 $H_f(-3,-5) = \begin{pmatrix} 0 & -6 \\ -6 & 2 \end{pmatrix}$ det $H_f(-3,-5) = -36 < 0 \rightarrow (-3,-5) \in P, \text{Tod}$.

b) E è la parte di piano compresa tra la parabola y= x-s (parabola di base y=x²abbassatadi 5 → V(0,-5) Ny=0 verso l'alto x=±15)

e l'anex -

1°) E E CHIUSO in quanto contiene (-15)

tutti i punti del bordo (costi
tuiti dalla parabola edall'ane

X entrambi per X E [-15, 15]).

E è LIMITATO > E CB6 (0,0) (il
punto di E più lontano da (0,0) è

(0,-5) che dista 5 da (0,0))

f è continua ou R², e quindi ou E,

in quanto prodotto di 2 polinomi (uno di 2º grado in xiy) e uno di 1º grado iny).

Allora vale il Teorema di Weierstrass che ci garantisce l'esistenza del MASSIMO e del MINIMO ampluti di f su E. AN2-317118-7B

2°) C'è un punto di MINIMO LOCALE înterno a E
$$(0, -\frac{1}{2})$$
 in ani $f(0, -\frac{1}{2}) = -\frac{81}{4} = -20,25$.

3°) Studio del bordo di E

$$\begin{cases} x = t \\ y = t^2 - 5 \end{cases} \quad t \in [-\sqrt{5}, \sqrt{5}] \quad g_1(t) = f(t, t^2 - 5) = (t^2 - 5 - 4 + t^2)(t^2) = (2t^2 - 9)(t^2) = 2t^4 - 9t^2 \end{cases}$$

TEMPI
$$t = -\sqrt{5}$$
 $t = -\frac{3}{2}$ $t = 0$ $t = \frac{3}{2}$ $t = \sqrt{5}$

Punti
$$\left(-\sqrt{5},0\right)\left(-\frac{3}{2},-\frac{4}{4}\right)\left(9-5\right)\left(\frac{3}{2},-\frac{44}{4}\right)\left(\sqrt{5},0\right)$$

VALORI
$$f(-\sqrt{5},0) = 5(-4+5) = 5 = f(\sqrt{5},0)$$

 $f(-\frac{3}{2},-\frac{14}{4}) = (-\frac{14}{4},-4+\frac{9}{4})(-\frac{14}{4}+5) = (-\frac{9}{2})(\frac{9}{4}) = -\frac{81}{8} = -10,125$
 $f(+\frac{3}{2},-\frac{14}{4}) = -\frac{81}{8}$ $f(0,-5) = 0$

$$\begin{cases} x = t \\ y = 0 \end{cases} \quad \begin{cases} x = t \\ y = 0 \end{cases} \quad \begin{cases} y = (t) = f(t, 0) = (t^2 + t) \cdot 5 = 5t^2 - 20 \\ y = (t) = 10t \quad y_2'(t) = 0 \end{cases} \quad \begin{cases} y = (t) - (t) \cdot 5 = 5t^2 - 20 \\ y = (t) = 10t \quad y_2'(t) = 0 \end{cases}$$

TEMPI $t=-\sqrt{5}$ t=0 $t=\sqrt{5}$ PUNTI $(-\sqrt{5},0)$ (0,0) $(\sqrt{5},0)$ VALORI $f(-\sqrt{5},0)=f(\sqrt{5},0)=5$ f(0,0)=-20

4°) CONCLUSIONE: nel punto di minimo locale interno (UNICO CANDIDATO interno ad E) $f(0,-\frac{1}{2})=-\frac{81}{4}$, sul bondo dE f \in Compresa tra -20 e 5 = D

min
$$f(x_1y) = -\frac{81}{4} = f(0, -\frac{1}{2})$$
 max $f(x_1y) = 5 = f(\pm \sqrt{5}, 0)$.

@ Studio DE con i MOLTIPLICATORI di LAGRANGE a pap. 10B ES.2) a) E, è la metà del CERCHIO CHIUSO (interno+bordo) di C(0,0) e R=3 con y 20 (quindi al di sopra dell'arrex

$$\xi_{x,y} = \left\{ (x,y) \in \mathbb{R}^2 : -3 \le y \le 0, -2y - 3 \le x \le 3 \right\}$$

$$y = -\frac{1}{2}x - \frac{3}{2} \quad \frac{1}{2}x = -y - \frac{3}{2} \quad x = -2y - 3$$

$$E_{2,y} = \{ (x,y) \in \mathbb{R}^2 : 0 \le y \le 3 - \sqrt{9 - y^2} \le x \le \sqrt{9 - y^2} \}$$

C) Poiche rella funtione intervanda compare (y) per S usando $E \times dobbiamo$ comunque dividere E nellea regione con $y \ge 0$ e con $y \le 0$ per peter eliminare il $I \circ I$ $E_{A_1 \times} = \begin{cases} (x_1 y) \in \mathbb{R}^2 : -3 \le x \le 3, -\frac{1}{2} \times -\frac{3}{2} \le y \le 0 \end{cases}$ $E_{2_1 \times} = \begin{cases} (x_1 y) \in \mathbb{R}^2 : -3 \le x \le 3, 0 \le y \le \sqrt{9-x^2} \end{cases}$. Usando dunque $E \times 0$ otheriamo $E \times 0$ is $E = \frac{1}{2} = \frac$

$$= -\frac{1}{18} \int_{-3}^{3} \left[0 - \left(-\frac{1}{2} \times -\frac{3}{2} \right)^{2} \right] dx + \frac{1}{18} \int_{-3}^{3} (9 - x^{2}) dx =$$

$$= -\frac{1}{4} x^{2} - \frac{3}{2} x - \frac{9}{4}$$

$$= +\frac{1}{18} \left[\frac{x^{3}}{12} + \frac{3}{4} x^{2} + \frac{9}{4} x \right]_{-3}^{3} + \frac{1}{18} \left[9 x - \frac{x^{3}}{3} \right]_{-3}^{3} =$$

$$= \frac{1}{18} \left[\frac{27}{12} + \frac{27}{4} + \frac{27}{4} + \frac{27}{4} + \frac{27}{4} \right] + \frac{1}{18} \left[27 - 9 + 27 - 9 \right] =$$

$$= \frac{1}{18} (18 + \frac{1}{18})_{-36} = 1 + 2 = \boxed{3}$$

ES.3) Eq. e our associata $\frac{1}{2}y''(x)+y'(x)+\frac{1}{2}y(x)=0$ Eq. e cavatt. $\frac{1}{2}t^2+t+\frac{1}{2}=0$ $t^2+2t+1=0$ $(t+1)^2=0$ $t_1=-1$ con molt 2

Soli FONDATT, y1(x)=ex y2(x)=x.ex Soli Eque omp. y(x)=C1ex+c2xex (C1,c2eIR)

Solue particolare $y(x) = Kx^2e^{-x}$ perché il 2° m è nella forma $3.e^{-x}$ cioè costante. e^{dx} con d=-1, ma si deve moltiplicare per x^2 enendo d=-1 solue dell'eq. caratt. con molteplicità 2.

 $\bar{y}'(x) = -kx^2e^{-x} + 2kxe^{-x} = (-kx^2 + 2kx)e^{-x}$ $\bar{y}''(x) = -(-kx^2 + 2kx)e^{-x} + (-2kx + 2k)e^{-x} = (kx^2 - 4kx + 2k)e^{-x}$ Sostituendo rell'eq. "e otteniamo:

 $\frac{1}{2}(Kx^{2}-4Kx+2K)e^{-x}+(-Kx^{2}+2Kx)e^{-x}+\frac{1}{2}Kx^{2}e^{-x}=3e^{-x} \quad \forall x \in \mathbb{R}$ $(\frac{1}{2}Kx^{2}-2Kx+K-kx+2Kx+\frac{1}{2}Kx^{2}-3)e^{-x}=0 \quad \forall x \in \mathbb{R}$ $(K-3)e^{-x}=0 \quad \forall x \in \mathbb{R} \quad \text{Poiche} \quad e^{-x}\neq 0 \quad \forall x \in \mathbb{R} = 8 \quad \text{deviessere}$ $\text{mecenaniamente} \quad K=3$

 $\overline{y}(x) = 3x^2e^{-x}$

AN2-317/18-10B

Tutte le sol. dell'eq. Le sons deunque :

$$y(x) = C_1 e^{-x} + C_2 x e^{-x} + 3x^2 e^{-x}$$

PBdi (AUCHY
$$y'(x) = -C_1 e^{-x} + C_2 e^{-x} - C_2 x e^{-x} - 3x e^{-x} + 6x e^{-x}$$

$$\int y(0) = C_1 = -3$$

$$\begin{cases} C_1 = -3 \\ C_2 = 1 + C_1 = -2 \end{cases}$$

CATORI di LAGRANGE

CATORI di LAGRANGE

Lato (1)
$$g(x,y) = x^2 - y - 5$$
 $\nabla g(x,y) = (2x,-1)$ $\nabla f(x,y) = (2x(y+5), x^2 + 2y + 1)$

Lato (1) $g(x,y) = x^2 - y - 5$ $\nabla g(x,y) = (2x,-1)$ $\nabla f(x,y) = (2x(y+5), x^2 + 2y + 1)$

$$\int_{0}^{1} 2x(y+5) = 2\lambda \times \int_{0}^{1} 4^{\alpha} e^{x} \cdot 2x(y+5-\lambda) = 0 \quad \text{deg}(x+2y+1) = 0 \quad \text{deg}(x+$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2} = 9 \times^{2} \frac{9}{4}$$

$$8e \lambda = y+5 \Rightarrow 29 \times^{2} + 3y + 6 = 0 \Rightarrow x^{2} + 3(x^{2} - 5) + 6 = 0 \qquad 4x^{2$$

Lato ②
$$g(x,y) = y$$
 $\nabla g(x,y) = (0,1)$

$$\begin{cases}
2 \times (y+5) = 0 \\
x^2 + 2y + 1 = \lambda \\
y = 0 \times \in [-\sqrt{5}, \sqrt{5}]
\end{cases}$$

$$\begin{cases}
0,0 \times \lambda = 1 \\
(2^{\alpha} = q^{\alpha}) - \lambda = 1
\end{cases}$$