

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190304502

FCC REPORT

(Bluetooth)

Applicant: ShenZhen Aratek Biometrics Technology Co., Ltd.

Address of Applicant: 2F, T2-A Building, ShenZhen Software Park, South Area, Hi-

Tech Park, Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Mobile ID Terminal

Model No.: Marshall, Marshall L, Marshall U, Marshall M, Marshall C,

Marshall S, Marshall 8, BM5510, BM5520

FCC ID: 2AGUJMARSHALL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Mar., 2019

Date of Test: 14 Mar., to 16 May, 2019

Date of report issued: 16 May, 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	16 May, 2019	Original

Tested by:

Over them Date: 16 May, 2019

Reviewed by: Date: 16 May, 2019

Project Engineer

3 Contents

		Page
1	1 COVER PAGE	1
2	2 VERSION	2
3		3
4	4 TEST SUMMARY	4
5	5 GENERAL INFORMATION	5
	5.1 CLIENT INFORMATION	5
	5.2 GENERAL DESCRIPTION OF E.U.T.	5
		6
	5.4 DESCRIPTION OF SUPPORT UNITS	6
		6
		6
		6
	5.8 TEST INSTRUMENTS LIST	7
6	6 TEST RESULTS AND MEASUREMENT DATA	8
	6.1 ANTENNA REQUIREMENT	8
		9
	6.3 CONDUCTED OUTPUT POWER	12
		15
		18
		22
		24
		27
		45
		45
		48
7	7 TEST SETUP PHOTO	53
R	8 FUT CONSTRUCTIONAL DETAILS	54

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna Requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Spurious Emission	15.205 & 15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	ShenZhen Aratek Biometrics Technology Co., Ltd.	
Address:	2F, T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China	
Manufacturer:	ShenZhen Aratek Biometrics Technology Co., Ltd.	
Address:	2F,T2-A Building, ShenZhen Software Park, South Area, Hi-Tech Park, Shenzhen, Guangdong, China	

5.2 General Description of E.U.T.

2 General Description of E.G.T.					
Product Name:	Mobile ID Terminal				
Model No.:	Marshall, Marshall L, Marshall U, Marshall M, Marshall C, Marshall S, Marshall 8, BM5510, BM5520				
Operation Frequency:	2402MHz~2480MHz				
Transfer rate:	1/2/3 Mbits/s				
Number of channel:	79				
Modulation type:	GFSK, π/4-DQPSK, 8DPSK				
Modulation technology:	FHSS				
Antenna Type:	Internal Antenna				
Antenna gain:	2.4 dBi				
Power supply:	Rechargeable Li-ion Battery DC3.8V-10000mAh				
AC adapter:	Model: RH-050250US Input: AC100-240V, 50/60Hz, 0.6A Output: DC 5.0V, 2500mA				
Test Sample Condition:	The test samples were provided in good working order with no visible defects.				
Remark:	Item No.: Marshall, Marshall L, Marshall U, Marshall M, Marshall C, Marshall S, Marshall 8, BM5510, BM5520 were identical inside, the electrical circuit design, layout, components used and internal wiring, with difference being model name and shell color.				

Operation	Operation Frequency each of channel for GFSK, π/4-DQPSK, 8DPSK						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
			•••		•••		•••
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	19 2421MHz 39 2441MHz 59 2461MHz						
Remark: Cha	Remark: Channel 0, 39 &78 selected for GFSK, π/4-DQPSK and 8DPSK.						

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test Modes:	
Non-hopping mode:	Keep the EUT in continuous transmitting mode with worst case data rate.
Hopping mode:	Keep the EUT in hopping mode.
Remark	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.54 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.84 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366 Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Project No.: CCISE1903045

Report No: CCISE190304502

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
Laan Antonna	SCHWARZBECK	FMZB1519B	00044	03-18-2018	03-17-2019	
Loop Antenna	SCHWARZBECK	FINIZD 1319D	03		03-17-2020	
PiCanil og Antonna	SCHWARZBECK	VULB9163	497	03-18-2018	03-17-2019	
BiConiLog Antenna	SCHWARZBECK	VULB9103	C		03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2018	03-17-2019	
Hom Antenna	SCHWARZBECK	DDNA9120D	910	03-18-2019	03-17-2020	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919I)	
D 175		03-18-2018	03-17-2019			
Pre-amplifier	HP	8447D	8447D 2944A09358	03-18-2019	03-17-2020	
Due eventifier	CD	DAD 4040	44004	03-18-2018	03-17-2019	
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2018	03-17-2019	
Spectrum analyzer	Ronde & Schwarz	F3F30	101454	03-18-2019	03-17-2020	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019	
FMT (D)	5	50007	404070	03-18-2018	03-17-2019	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020	
Cabla	7DE01	7400 NII NII 04	4000450	03-18-2018	03-17-2019	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020	
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2018	03-17-2019	
Cable	WIICKU-CUAX	IVIFR04039	K1U/42-3	03-18-2019	03-17-2020	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2018	03-17-2019	
Cable	SUMINER	SUCUPLEXIUU	30193/4PE	03-18-2019	03-17-2020	
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A	
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2018	03-17-2019	
EIVII Test Receiver	Ronde & Schwarz	ESCI	101169	03-18-2019	03-17-2020	
Dulas Limitar	OOLINAADZDEOK OODAM 0000 0704	03-18-2018	03-17-2019			
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020	
LION	CLIAGE	MNIOOEOD	4 4 4 7	03-18-2018	03-17-2019	
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
O-kl-	10	115	N1/A	03-18-2018	03-17-2019	
Cable	HP	10503A	N/A	03-18-2019	03-17-2020	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and measurement data

6.1 Antenna Requirement

Standard requirement:

FCC Part 15 C Section 15.203 & 247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Bluetooth antenna is an Internal antenna which permanently attached, and the best case gain of the antenna is 2.4 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 k	Hz, Sweep time=auto	
Limit:	Frequency range	Limit (c	dBuV)
-	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the log	arithm of the frequency.	
Test setup:	Reference	e Plane	
	AUX Equipment E.U.T Filter AC power EMI Receiver Remark E.U.T EMI Receiver E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m		
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Hopping mode		
Test results:	Pass		

Measurement Data:

Product name:	Mobile ID Terminal	Product model:	Marshall
Test by:	Carey	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	₫B	<u>d</u> B	dBu₹	dBu∜	<u>d</u> B	
1	0.162	32.85	0.17	10.77	43.79	65.34	-21.55	QP
2	0.174	20.10	0.16	10.77	31.03	54.77	-23.74	Average
1 2 3	0.234	29.16	0.14	10.75	40.05		-22.25	
4 5 6 7 8 9	0.502	21.30	0.12	10.76	32.18	46.00	-13.82	Average
5	0.555	21.30	0.12	10.76	32.18			Average
6	0.608	29.62	0.13	10.77	40.52		-15.48	
7	0.963	25.53	0.13	10.86	36.52	56.00	-19.48	QP
8	0.963	14.32	0.13	10.86	25.31	46.00	-20.69	Average
9	2.567	23.38	0.15	10.94	34.47		-21.53	
10	2.664	15.40	0.16	10.93	26.49	46.00	-19.51	Average
11	6.951	24.17	0.25	10.80	35.22	60.00	-24.78	QP
12	20.704	16.10	0.28	10.92	27.30			Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile ID Terminal	Product model:	Marshall
Test by:	Carey	Test mode:	BT Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Kead Level	Factor	Loss	Level	Limit	Over Limit	Remark
<u></u>	MHz	dBu∇	₫B	dB	—dBu∀	dBu₹	<u>ab</u>	
1	0.166	36.93	0.97	10.77	48.67	65.16	-16.49	QP
2	0.170	21.41	0.96	10.77	33.14	54.94	-21.80	Average
3	0.442	18.95	0.97	10.74	30.66	47.02	-16.36	Average
1 2 3 4 5 6 7 8	0.627	20.63	0.97	10.77	32.37	46.00	-13.63	Average
5	0.665	29.28	0.97	10.77	41.02	56.00	-14.98	QP
6	1.005	14.39	0.97	10.87	26.23	46.00	-19.77	Average
7	2.915	17.33	0.99	10.92	29.24	46.00	-16.76	Average
8	3.190	27.17	0.99	10.91	39.07	56.00	-16.93	QP
9	5.362	28.84	1.01	10.84	40.69	60.00	-19.31	QP
10	6.769	13.67	1.02	10.81	25.50	50.00	-24.50	Average
11	6.951	29.15	1.02	10.80	40.97	60.00	-19.03	QP
12	20.377	29.28	0.69	10.93	40.90	60.00	-19.10	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)		
Limit:	For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
	GFSK mod	de				
Lowest channel	-0.46	30.00	Pass			
Middle channel	1.83	30.00	Pass			
Highest channel	1.25	30.00	Pass			
	π/4-DQPSK r	node				
Lowest channel	-1.38	21.00	Pass			
Middle channel	0.84	21.00	Pass			
Highest channel	0.29	21.00	Pass			
	8DPSK mode					
Lowest channel	-1.20	21.00	Pass			
Middle channel	1.03	21.00	Pass			
Highest channel	0.42	21.00	Pass			

Test plot as follows:

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 and KDB 558074		
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak		
Limit:	N/A		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.8 for details		
Test mode:	Non-hopping mode		
Test results:	Pass		

Measurement Data:

Test channel		20dB Occupy Bandwidth (kHz)		
	GFSK	π/4-DQPSK	8DPSK	
Lowest	828	1128	1170	
Middle	828	1128	1170	
Highest	828	1128	1170	

Test plot as follows:

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak			
Limit:	a) 0.025MHz or the 20dB bandwidth (whichever is greater) b) 0.025MHz or two-thirds of the 20dB bandwidth (whichever is greater)			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result			
	GFSK					
Lowest	1004	828	Pass			
Middle	1004	828	Pass			
Highest	1004	828	Pass			
	π/4-DQPSK mode					
Lowest	1008	752	Pass			
Middle	1004	752	Pass			
Highest	1004	752	Pass			
	8DPSK mode					
Lowest	1012	780	Pass			
Middle	1004	780	Pass			
Highest	1000	780	Pass			

Note: According to section 6.4

Mode	20dB bandwidth (kHz) (worse case)	Limit (kHz) (Carrier Frequencies Separation)
GFSK	828	828
π/4-DQPSK	1128	752
8DPSK	1170	780

Test plot as follows:

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak			
Limit:	15 channels			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Hopping mode			
Test results:	Pass			

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak					
Limit:	0.4 Second					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Hopping mode					
Test results:	Pass					

Measurement Data (Worse case):

Mode	Packet Dwell time (second)		Limit (second)	Result
	DH1	0.12544		
GFSK	DH3	0.26784	0.4	Pass
	DH5	0.31083		
	2-DH1	0.12928		
π/4-DQPSK	2-DH3	0.24768	0.4	Pass
	2-DH5	0.31168		
	3-DH1	0.12928		
8DPSK	3-DH3	0.26688	0.4	Pass
	3-DH5	0.31168		

Note:

The test period = 0.4 Second/Channel x 79 Channel = 31.6 s

Calculation Formula: Dwell time = Ton time per hop * Hopping numbers * Period

For example:

DH1 time slot=0.392*(1600/ (2*79)) * 31.6=125.44ms

DH3 time slot=1.674*(1600/ (4*79)) * 31.6=267.84ms

DH5 time slot=2.914*(1600/ (6*79)) * 31.6=310.83ms

Test plot as follows:

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29-1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode and hopping mode
Test results:	Pass

Test plot as follows:

6.9.2 Radiated Emission Method

To at Danwinson aut	Test Requirement: FCC Part 15 C Section 15.209 and 15.205							
•	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10: 2013							
Test Method:								
Test Frequency Range:	2.3GHz to 2.5GHz							
Test Distance:	3m	Γ		T	<u> </u>		<u> </u>	
Receiver setup:	Frequency	Detect	or	RBW	V	BW	Remark	
	Above 1GHz	Peak		1MHz		ИHz	Peak Value	
		RMS		1MHz	l	ИHz	Average Value	
Limit:	Frequen	су	Lim	nit (dBuV/m @3	3m)		Remark	
	Above 10	GHz		54.00			erage Value	
				74.00		F	Peak Value	
Test setup:	Horn Anlanna Antenna Tower AE							
Test Procedure:	ground at a determine the second second at a determine the second second and the second secon	3 meter come position as set 3 minch was minch was minch was minch wertical ent. Is pected ele antenna in table was eading. Seriver system and width with the period width with the period being the minch would be reprinted to the period would be reprinted to the period would be reprinted to the position of the period would be reprinted to the period would be reprinted to the position of the period would be reprinted to the position of the po	ambe of th eters nounte varie he ma polar missic was t s turne em w with M f the I sting orted e re-te	r. The table wat e highest radial away from the ed on the top of the ed on the top of the ed on the EUT was set to Peak laximum Hold EUT in peak mould be stopp. Otherwise the	as rota ation. interform f a variater to of the franten as arra s from ees to Detect Mode. ode we ed an e emis ne usine	erence- riable-h four me field stre anged to a 1 mete 360 de et Functi vas 10dE d the pe sions th ng peak	receiving eight antenna sters above the ength. Both set to make the coits worst case or to 4 meters egrees to find the sion and solver than the eak values of that did not have as quasi-peak or	
Test Instruments:	Refer to sectio	-						
Test mode:	Non-hopping m	node						
Test results:	Passed							

GFSK Mode:

oduc	t Name:				1	Product N	Marsha	Marshall				
st By	/ :				-	Test mod	DH1 T	DH1 Tx mode				
st Ch	nannel:	Low	Lowest channel			ı	Polarizati	Vertica	Vertical			
st Vo	oltage:	AC	120/60Hz			ı	Environm	ent:	Temp:	24℃	Huni: 57	%
									•			
110	Level (dBuV/n	1)	1									1
100			-									+
											_	
80										FCC PA	ART 15 (PK	
												ţ
00										FCC PA	ART 15 (AV	\
60												
60	~~~~~	June	~~~~	~~~	m	~~~~	~~~	-	~~~~	mm	www.	L
40	~~~~	Jun		~~	~~	~~~~	~~~	· · · · · · · · · · · · · · · · · · ·	your	2		
J	~~~~~	V	~~~~	<u></u>	~~	~~~~	~~~~~		· ····	2		_
J		Jun			~~	~~~~	~~~		~~~~~	2		
40		Jun		www		~~~~~	and the same			2		-
40		-June				~~~~				2		
40	2310 2320) ~~~~			2350 Fred	quency (N	1Hz)			2		104
40	2310 2320		nt anno		Fred			Orray		2		104
40		ReadA	ant enna Factor	Cable	Fred Preamp		Limit	Over Limit	Remark	2		104
40		ReadA	Antenna Factor	Cable	Fred Preamp Factor		Limit Line		Remark	2		104

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	t Name:	Mobile ID Terminal Carey			Prod	duct Mod	el:	Marshall		
st By	:				Test	mode:		DH1 Tx mode		
st Ch	annel:	Lowes	st channel			Pola	rization:		Horizontal	
st Vo	Itage:	AC 12	:0/60Hz			Env	ironment		Temp: 24℃	Huni: 57%
	W. Sandari Malai								1966	
110	Level (dBuV/m)		Tr.		91				
100				-						
										Λ
80									FCC P	ART 15 (PK)
									1001	AKI IS ING
60									FCC P	ART 15 (AV)
	~~~~~~	v	~~~	more	money	m	m	mym	mil	annu de
40									2	
20										
o.	2310 2320				2350					240
					Freque	ncy (MHz)				
		ReadA	int enna	Cable	Preamp	20 752	Limit	Over	121 21	
	Freq		Factor					Limit	Kemark	100
	MHz	dBu∀	dB/m	dВ	dВ	dBuV/m	dBuV/m	₫B		175A
1	2390.000	20.32	27.08		0.00	52.09	74.00	-21.91	Peak	
2	2390.000	8.34	27.08	4.69	0.00	40.11	54.00	-13.89	Average	

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor							
	MHz	MHz dBuV dB/π		d <u>B</u>	<u>dB</u>	dBuV/m dBuV/m		<u>ab</u>		
1 2	2483.500 2483.500									

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



Freq		Antenna Factor						Remark
MHz	dBu∜	<u>dB</u> /m	d <u>B</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
2483.500 2483.500	20.76 8.46	27.35 27.35	4.81 4.81	0.00 0.00	52.92 40.62	74.00 54.00	-21.08 -13.38	Peak Average

### Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# π/4-DQPSK mode

roduct Name:	duct Name:   Mobile ID Terminal   Product Model:   M			Ma	Marshall			
est By:	Carey			Test m	ode:	2D	H1 Tx mod	e
est Channel:	Lowest channel			Polariz	ation:	Ve	rtical	
est Voltage:	AC 120/60Hz			Enviro	nment:	Те	mp: 24℃	Huni: 57%
	Pri							
110 Level (dBuV/m								
100								
80							FCC PA	ART 15 (PK)
60							FCC PA	ART 15 (AV)
00								
······································	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	···	www	-	mm	~~~	my	1 Com
40	m		~~~	~~~		~~~~	mer	l Lum
·····	v		~~~				2	1 Luna
·····	v		~~~				2	· · · · ·
40	v		·~~~				2	mun 1
40	v	2	2350	•		~~~~	2	240
40	v	2	2350 Frequence	cy (MHz)		~~~~	2	240
40 20 0 2310 2320	ReadAntenna Level Factor	Cable	Frequenc Preamp		Limit Line	Over Limit	Remark	240
40 20 2310 2320	Level Factor	Cable Loss	Frequenc Preamp Factor		Line	Limit	Remark	240

### Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∜	dB/mdB		<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq	ReadAntenna Level Factor		Cable Preamp Loss Factor					
MHz	dBu₹	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	ā <u>ā</u>	
2483.500 2483.500								Peak Average

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	2DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq	ReadAnt Freq Level Fa		Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	— <u>d</u> B/m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500								

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



### 8DPSK mode

Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			



	Freq		Antenna Factor						Remark
	MHz	MHz dBuV	ıV —dB/m — dE	dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2390.000 2390.000								

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:		Mobil	le ID Term	inal		P	roduct M	odel:	Marshall	Marshall		
st By:		Carey	y			T	est mode	:	3DH1 Tx m	ode		
st Chan	nel:	Lowe	st channe	ļ		P	olarizatio	n:	Horizontal			
st Volta	ge:	AC 12	20/60Hz	0Hz			nvironme	ent:	Temp: 24°C	Huni: 57%		
Law	al IdDedUna					•						
110 Levi	el (dBuV/m)		1			77						
100				-								
80					_				FCC I	PART 15 (PK)		
									1001	ART IS IN		
60									FCCI	PART 15 (AV)		
~	man	man.	my	~~~~	m	ma	ym	more	many	ham by		
40									2	~~~		
40												
20												
0231	0 2320				2350					2404		
0231	0 2320					iency (MH	łz)			2404		
0231	0 2320				Frequ	5,00				2404		
0231		ReadA	ntenna Factor	Cable I	Frequ Preamp		Limit	Over	Remark	240-		
0231	Freq I	Level 1	Factor	Loss l	Frequ Preamp Factor	Level	Limit Line	Limit	Remark	240-		
0231		ReadAi Level I	ntenna Factor dB/m	Cable I Loss I	Frequ Preamp Factor	Level	Limit		Remark	240-		
1 2	Freq I 	Level 1	Factor	Loss l	Frequence Freamp Factor dB	Level dBuV/m 52.10	Limit Line dBuV/m 74.00	Limit ———————————————————————————————————		240-		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	<u> </u>			ReadAntenna Cable Preamp Freq Level Factor Loss Factor						
		dBu∜	dB/m		<u>ab</u>	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2483.500 2483.500									

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	3DH1 Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						Remark
	MHz	dBu∜	dB/m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500	21.04 8.76	27.35 27.35	4.81 4.81	0.00 0.00	53.20 40.92	74.00 54.00	-20.80 -13.08	Peak Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.10 Spurious Emission

# 6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB 558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane						
Test Instruments:	Refer to section 5.8 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						



Test plot as follows:









# 6.10.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 1	5.209	)			1	
Test Method:	ANSI C63.10: 2013							
Test Frequency Range:	9 kHz to 25 GHz							
Test Distance:	3m							
Receiver setup:	Frequency	Detec	tor	RBW	VBV	٧	Remark	
·	30MHz-1GHz	Quasi-p	eak	120kHz	300kl	Ηz	Quasi-peak Value	
		Peal	<	1MHz	ЗМН	lz	Peak Value	
	Above 1GHz	RMS	3	1MHz	ЗМН	lz	Average Value	
Limit:	Frequenc	y	Lim	it (dBuV/m @	93m)		Remark	
	30MHz-88N	ИHz		40.0		(	Quasi-peak Value	
	88MHz-216	MHz		43.5		(	Quasi-peak Value	
	216MHz-960	MHz		46.0		(	Quasi-peak Value	
	960MHz-10	SHz		54.0		(	Quasi-peak Value	
	Al 4 O	1_		54.0			Average Value	
	Above 1GI	ΗZ		74.0			Peak Value	
Test setup:	Below 1GHz  Antenna Tower  Search Antenna  RF Test Receiver  Ground Plane							
Above 1GHz  Hern An  Ground Reference Plane  Test Receiver							a Tower	
Test Procedure:		1GHz) al	oove 1	the ground a	t a 3 me	eter o	.8m(below 1GHz) chamber. The table of the highest	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





	<ul><li>2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li><li>3. The antenna height is varied from one meter to four meters above the</li></ul>
	ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	<ol><li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li></ol>
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.8 for details
Test mode:	Non-hopping mode
Test results:	Pass
Remark:	<ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> </ol>
	9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.



### Measurement Data (worst case):

### **Below 1GHz:**

Product Name:	Mobile ID Terminal	Product Model:	Marshall
Test By:	Carey	Test mode:	BT Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



### Remark:

5

156.458

348.027

48.81

43.67

9.15

14.57

2.56

3.09

29.16

28.56

31.36

32.77

43.50 -12.14 QP

46.00 -13.23 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Na	me:	Mobile	e ID Termi	Terminal Product Model: Marshall					Marshall						
st By:		Carey	'			Tes	Test mode:			BT Tx mode			BT Tx mode		
st Frequ	ency:	30 MH	30 MHz ~ 1 GHz					Polarization:							
st Voltag	je:	AC 12	20/60Hz			Env	/ironmen	t:	Temp:	24℃	Huni: 57%				
70 70 60 50 40	el (dBuV/m	2		3	a/M	4 Virginian	5	6	M. J.		ART 15.247				
10	Mary Mary Mary	A .	A Para	100	hadra Francis	200 lency (MH			500	_e nterelarine	1000				
		D46	intenna	Cabla	Preamp	200	Limit	Over							
	Freq	Level		Loss	Factor	Level			Remark						
	MHz	dBu∜			<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>							
5 :	30.105 55.027 93.440 162.041 270.375 338.400	45.43 37.99 39.67 47.45 40.12 50.92	10.62 11.60 10.98 9.37 13.10 14.38	0.72 1.36 2.02 2.60 2.86 3.06	29. 98 29. 80 29. 56 29. 12 28. 50 28. 53	23.11 30.30	40.00 43.50 43.50	-13.21 -18.85 -20.39 -13.20 -18.42 -6.17	QP QP QP QP						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



# **Above 1GHz:**

	-									
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	45.19	35.99	6.80	41.81	46.17	74.00	-27.83	Vertical		
4804.00	45.74	35.99	6.80	41.81	46.72	74.00	-27.28	Horizontal		
	Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	36.31	35.99	6.80	41.81	37.29	54.00	-16.71	Vertical		
4804.00	36.28	35.99	6.80	41.81	37.26	54.00	-16.74	Horizontal		
			Test ch	nannel: Midd	dle channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4882.00	46.68	36.38	6.86	41.84	48.08	74.00	-25.92	Vertical		
4882.00	46.32	36.38	6.86	41.84	47.72	74.00	-26.28	Horizontal		
Detector: Average Value										

4882.00	46.32	36.38	6.86	41.84	47.72	74.00	-26.28	Horizontal				
	Detector: Average Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization				
4882.00	37.41	36.38	6.86	41.84	38.81	54.00	-15.19	Vertical				
4882.00	37.82	36.38	6.86	41.84	39.22	54.00	-14.78	Horizontal				

Test channel: Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	46.48	36.71	6.91	41.87	48.23	74.00	-25.77	Vertical			
4960.00	46.46	36.71	6.91	41.87	48.21	74.00	-25.79	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	37.74	36.71	6.91	41.87	39.49	54.00	-14.51	Vertical			
4960.00	37.18	36.71	6.91	41.87	38.93	54.00	-15.07	Horizontal			
1											

### Remark

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.