需求分析

1引言

1.1 编写目的

经过小组讨论,本项目拟实现一个能够进行**公式识别和计算**的软件。此文档对项目进行了需求分析,明确了软件的功能、性能和界面要求,以便更好地进行开发管理工作。

本文档的预期读者包括但不仅限于以下人员:

- 需求分析人员
- 测试人员
- 项目管理人员
- 功能实现人员
- 教职员工
- 学生

1.2 项目背景

表1项目背景

软件系统名称	公式识别计算系统
任务提出者	浙江大学2020年暑学期 C++项目管理和工程实践 公式识别计算组
开发者	浙江大学2020年暑学期 C++项目管理和工程实践 公式识别计算组
用户	教职员工、学生

相关背景介绍:

浙江大学C++项目管理和工程实践课程强调学生的动手实践。理论课上,老师深入介绍当前流行的C++开发流程,C++代码框架和C++使用倾向,实验课则让同学以3-4人为一个小组,完成一个符合要求的大作业,以锻炼同学的动手能力、协作能力和开发能力。

相关定义:

- 用户场景
 - 是软件工程或系统工程中对系统如何反应外界请求的描述,是一种通过用户的使用场景来获取需求的技术。

2项目描述

2.1 项目提出及意义

在实际的学习和工作过程中,数学公式经常出现。人们常常会花费大量的时间在公式的输入和计算上。有时候,人们需要把纸质的公式变成电子版,这件事如果由人工来做,实在是费时费力。因此,公式识别和计算系统应运而生。它不仅能够由用户上传图片,识别图片中的公式、对公式进行简单的在线编辑,还可以由用户输入数据,进行公式的计算。有了这个系统,人们的工作量将会大幅度地降低,工作效率能够有质的提升。

2.2 项目具体内容介绍

公式识别和计算系统能够识别用户上传的公式图片,生成对应的Latex公式。对于生成的Latex公式,系统可以渲染公式的实际效果,也能对其进行编辑。此外,此系统可以由用户输入公式中变量的具体数值,进行计算,返回数值化的结果。

2.3 研究现状

在公式识别这一块,全世界有许多知名的软件和网站,如海马扫描、InftyReader、百度智能云和Mathpix等。其中,海马扫描识别出的公式是文本公式,不包含任何格式,而后三者可以返回可编辑的Latex公式,可用性更高。其中Mathpix无论是准确度还是性能都十分出色,甚至可以支持手写字体。对于公式的计算,wolframalpha这一款网站有非常好的实现。wolframalpha支持各类的公式计算。此外,它还可以解方程、数列迭代、计算概率、求积分等等,性能十分强大。

3用户场景

3.1 用例

用例	识别公式
主要参与者	用户
目标	进行公式识别
前提条件	联网
触发器	点击导入按钮,选择图片
工作流程	1. 用户导入指定图片 2. 上传图片调用接口进行识别 3. 接收返回的json文件,进行解析 4. 显示Latex公式
异常	1. 导入后公式无法识别
优先级	必须实现
何时可用	二次增量
使用频率	经常
使用方式	通过桌面版软件
次要参与者	无
用例	公式计算
主要参与者	用户
目标	对公式进行计算
前提条件	公式成功识别,Latex公式没有语法错误
触发器	用户确认计算
工作流程	1. 用户提交数据 2. 软件进行计算 3. 显示结果

用例	公式计算
异常	 用户提交数据无反应 浮点异常 计算符无法解析
优先级	必须实现
何时可用	首次增量
使用频率	经常
使用方式	通过桌面版软件
次要参与者	无
用例	Latex公式编辑
主要参与者	用户
目标	进行Latex公式的编辑
前提条件	文本框可视,用户发生编辑操作
触发器	用户对文本框进行编辑
工作流程	1. 对用户操作进行响应,更改文本内容
异常	1. 公式无法编辑
优先级	必须实现
何时可用	首次增量
使用频率	有时
使用方式	通过桌面版软件
次要参与者	无
用例	Latex公式渲染
主要参与者	用户

用例	Latex公式渲染
目标	对Latex公式进行渲染显示
前提条件	联网
触发器	用户光标离开文本框一定时间或提交应用请求
工作流程	1. 将公式上传,在线渲染 2. 下载svg文件 3. 显示图片
异常	1. 云端无法响应 2. 公式无法显示
优先级	必须实现
何时可用	首次增量
使用频率	频繁
使用方式	通过桌面版软件
次要参与者	无
用例	Latex渲染图片下载
主要参与者	用户
目标	下载Latex渲染图片
前提条件	无
触发器	用户提交下载请求
工作流程	1. 用户提交下载请求 2. 用户选择下载路径和形式 3. 下载图片
异常	1. 图片无法下载
优先级	可以实现
何时可用	三次增量

用例	Latex渲染图片下载
使用频率	有时
使用方式	通过桌面版软件
次要参与者	无

3.2 用例图

4验收标准

4.1 功能需求

4.1.1 识别公式

- 由用户导入图片,调用接口,返回json数据(Latex公式)。
- 支持svg, jpg和png格式。

4.1.2 公式编辑

- 支持正常的文本编辑。
- 不支持实时语法检查。
- 在用户光标离开编辑框一定时间或提交应用请求之后,隐藏文本框,进行Latex 公式渲染。
- 在提交prettify请求之后,可以对公式进行美化。

4.1.3 公式渲染

• 对于非法公式,提示公式不合法。

- 展示公式形式为svg格式。
- 在点击公式渲染区或提交编辑请求时,进入公式编辑模式。

4.1.4 公式计算

- 软件返回所需要的变量,由用户提供数值,进行计算。
- 结果不提供解析值,只返回数值值。
- 支持基本初等函数、包括三角函数、指数、对数和幂函数。
- 支持数学常量 π 和e。
- 拟支持连加∑和连乘∏计算
- 拟支持特殊变量符号, 如 ϕ , ϵ , ρ 等。
- 拟支持输入数据的简单数学表示, 拟支持分数, 基本初等函数和数学常数。
- 拟支持结果精度设置。
- 拟支持结果科学计数法展示。
- 不计划支持大数计算。

4.1.5 渲染结果下载

- 支持多种图片形式,至少包括svg,jpg,png等形式。
- 支持文件路径设置,文件名设置。

4.2 性能需求

4.2.1 系统配置

只支持Windows 10系统。

4.2.2 访问容量

本软件初版只支持单用户访问。

4.2.3 响应速度

本软件响应速度和用户网络状况大幅相关,因此很难有整体的性能要求。对于公式计算部分和公式编辑部分,响应时间应当小于1s。

4.3 可用性需求

界面整体应当简洁美观,布局合理,能够清晰呈现信息,突出重点内容。

4.4 安全性需求

软件调用百度API的部分,因为内含用户的key信息,为了保证信息不被泄露,拟对其进行AES加密。

软件调用Mathpix的API的部分,因为使用的是临时令牌,不包含用户信息,所以不予加密。

4.5 可维护性需求

4.5.1 可复原性需求

在程序崩溃之后,下次运行应当尽可能还原当时的数据。

4.5.2 可测试性需求

系统的各个子模块都可以进行单元测试,在适当干预下,确保单元测试能显示系统中任意的中间结果,以清楚的描述方式说明系统的输出,根据要求显示所有的输入,跟踪及显示逻辑控制流程,显示带说明的错误信息,并适应软件开发每一阶段结束的检查要求。

4.5.3 可扩展性需求

系统可以进行一定程度的拓展,例如在测试阶段可以选择在短时间内为系统添加一个小功能。

5运行环境规定

5.1 客户端

操作系统为Windows 10,网络质量良好。对计算机无性能要求。

目前软件的推荐分辨率为1920*1080.

5.2 编译环境要求

- Qt 5.0+
- Visual Studio 2019
- 安装curl库, rapidjson库

6开发技术规划

6.1 开发计划

6.2 迭代计划与分工

• 第一轮迭代

。 MVVM框架搭建: 徐江雨

。 GUI框架搭建: 唐子豪

。 表达式树设计: 鞠紫盈、林炬乙

。 公式识别接口设计: 徐江雨

• 公式渲染接口设计: 唐子豪

。 公式识别令牌加密: 唐子豪

• 第二轮迭代

。 表达式树设计 (Algorithm层): 鞠紫盈

。 GUI优化 (View-ViewModel层) : 唐子豪

。 计算界面设计 (View-ViewModel层): 林炬乙

。 CppCurl封装测试, json解析 (Model层): 徐江雨

• 整体结构优化: 徐江雨

6.3 开发工具

应用场景	工具
版本控制	Git, Github
开发环境	Windows 10, Qt 5.14.2, VS 2019
编程语言	C++17

应用场景	工具	
架构	MVVM	
文档	markdown, Latex	
图表制作	markdown, drawio, Office	
交流协作	QQ, Trello	
CI	AppVeyor(计划后续迭代实现)	

6.4 目前进度

目前基本完成第二次迭代, 在进行修整工作。

整体情况如下图所示:

下方有状态栏,右下角点击后可以编辑Latex公式。

