Chứng minh các điểm thuộc một đường tròn

Trần Quang Hùng - Trường THPT chuyên KHTN

Tóm tắt nội dung

Trong hình học có một phương pháp vô cùng đơn giản nhưng rất hữu ích để chứng minh các điểm thuộc cùng một đường tròn đó là dùng định nghĩa. Ta sẽ chứng minh các điểm cách đều một điểm cho trước hoặc cùng nhìn một đoạn thẳng dưới một góc vuông. Cách này thường hay bị lãng quên khi chúng ta biết các công cụ mạnh về góc nội tiếp hay tứ giác nội tiếp, nhưng thực sự đó luôn là một phương pháp hay và hữu ích. Chúng ta hãy tìm hiểu kỹ hơn qua các ví dụ sau.

Chúng ta hãy bắt đầu với một ví dụ kinh điển, đó là đường tròn 9 điểm Euler.

Bài 1 (Đường tròn Euler). Cho tam giác ABC. Các đường cao AA_1, BB_1, CC_1 đồng quy tại H. Các trung tuyến AA_2, BB_2, CC_2 . A_3, B_3, C_3 lần lượt là trung điểm HA, HB, HC. Chứng minh rằng 9 điểm $A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2, C_3$ cùng thuộc một đường tròn.

Đây là một bài toán kinh điển với rất nhiều lời giải, lời giải dưới đây tôi xin trình bày thông qua một bổ đề rất quan trọng của hình học

Bổ đề 1.1. Cho tam giác ABC nội tiếp đường tròn (O), trực tâm H. M là trung điểm của BC. Chứng minh rằng $HA \parallel OM$ và HA = 2OM.

 $Giải \ bổ \ đề.$ Gọi AD là đường kính của (O). Ta dễ thấy $CD \perp AC \perp HB$ suy ra $HB \parallel DC$. Tương tự $HC \parallel DB$. Từ đó suy ra tứ giác HBDC là hình bình hành.

Vậy M là trung điểm chung của HD và BC, vậy OM là đường trung bình của tam giác DHA nên $HA \parallel OM$ và HA = 2OM.

Giải bài toán. Gọi (O,R) là đường tròn ngoại tiếp tam giác ABC, N là trung điểm OH. Theo bổ đề $HA \parallel OA_2$ và $HA = 2OA_2$. Vì A_3 là trung điểm HA nên suy ra $HA_3 \parallel OA_2$ và $HA_3 = 2OA_2$ hay tứ giác HA_3OA_2 là hình bình hành, vậy N là trung điểm A_2A_3 .

Tam giác $A_1A_2A_3$ vuông tại A_1 nên A_1, A_2, A_3 thuộc đường tròn $(N, \frac{A_2A_3}{2})$ (1).

Cũng theo bổ đề và A_3 là trung điểm HA nên suy ra $AA_3 \parallel OA_2$ và $\overline{A}A_3 = 2OA_2$ hay tứ giác AOA_2A_3 là hình bình hành. Vậy $A_2A_3 = OA = R$ (2).

Từ (1), (2) suy ra A_1 , A_2 , A_3 thuộc đường tròn $(N, \frac{R}{2})$. Tương tự ta có 9 điểm A_1 , A_2 , A_3 , B_1 , B_2 , B_3 , C_1 , C_2 , C_3 thuộc đường tròn $(N, \frac{R}{2})$.

Nhận xét. Với cách làm này không những ta chỉ ra 9 điểm thuộc một đường tròn mà ta còn chỉ rõ tâm N là trung điểm OH (nên cũng thuộc đường thẳng Euler) và bán kính bằng một nửa bán kính đường tròn ngoại tiếp. Đó là các kết quả rất kinh điển mà các cách làm khác có thể không suy ra cùng một lúc được.

Bài 2. Cho tứ giác ABCD nội tiếp. Gọi G_a, G_b, G_c, G_d lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC. Chứng minh rằng G_a, G_b, G_c, G_d thuộc một đường tròn.

Bổ đề 2.1. Cho tứ giác ABCD. Gọi G_a, G_b, G_c, G_d lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC. Thì AG_a, BG_c, CG_c, DG_d đồng quy tại G và $\frac{GG_a}{GA} = \frac{GG_b}{GB} = \frac{GG_c}{GC} = \frac{GG_d}{GD} = \frac{1}{3}$. G thường được gọi là trọng tâm tứ giác ABCD.

 $Giải \ bổ \ dề. \ Gọi \ E, F \ là trung điểm} \ AC, BD. \ vì \ G_a \ là trọng tâm tam giác \ BCD \ nên theo tính chất trọng tâm <math>G_a$ thuộc CF và $G_aC = \frac{2}{3}CF$. Vậy gọi K là trung điểm G_aC suy ra $FG_a = G_aK = KC$. Vì E là trung điểm AC nên $EK \parallel AG_a$ mặt khác G_a là trung điểm FK nên AG_a đi qua trung điểm G của FF. Cũng từ tính chất đường trung bình dễ thấy $GG_a = \frac{1}{2}EK = \frac{1}{4}AG_a$ hay $\frac{GG_a}{GA} = \frac{1}{3}$.

Chứng minh tương tự ta có AG_a , BG_c , CG_c , DG_d đi qua trung điểm G của EF và $\frac{GG_a}{GA} = \frac{GG_b}{GB} = \frac{GG_c}{GC} = \frac{GG_d}{GD} = \frac{1}{3}$. Đó là điều phải chứng minh.

 $Giải \ bài \ toán. \ Gọi \ AG_a, BG_c, CG_c, DG_d \ \text{đồng quy tại} \ G, \, \text{gọi} \ (O,R) \ \text{là đường tròn ngoại tiếp tứ giác} \ ABCD. \ Gọi \ O_g \ \text{là điểm thuộc tia đối tia} \ GO \ \text{sao cho} \ \frac{GO_g}{GO} = \frac{1}{3}. \ \text{Theo bổ đề} \ \frac{GG_a}{GA} = \frac{1}{3} \ \text{nên theo} \ \text{định lý Thales đảo} \ O_gG_a \parallel OA \ \text{và} \ O_gG_a = \frac{1}{3}OA = \frac{R}{3} \ \text{hay} \ G_a \in (O_g, \frac{R}{3}).$

Ta thấy G, O, O_g xác định tổng quát với A, B, C, D nên tương tự $G_b, G_c, G_d \in (O_g, \frac{R}{3})$ vậy G_a, G_b, G_c, G_d thuộc một đường tròn. Đó là điều phải chứng minh.

Nhận xét. Với cách làm này không những ta chỉ ra được G_a, G_b, G_c, G_d thuộc một đường tròn mà còn chỉ ra tâm của đường tròn này thuộc OG và bán kính bằng một phần ba bán kính đường tròn ngoại tiếp tứ giác ABCD.

Bài 3. Cho tam giác ABC nội tiếp đường tròn (O). AD là đường kính của (O). M là trung điểm BC. H là trực tâm tam giác. Gọi X,Y,Z lần lượt là hình chiếu của D lên HB,HC,BC. Chứng minh rằng X,Y,Z,M thuộc một đường tròn.

Chứng minh. Gọi HB giao DY tại I, HC giao DX tại K, J là trung điểm IK. Theo chứng minh bổ đề 1.1 thì M cũng là trung điểm HD.

Ta dễ thấy K là trực tâm tam giác IHD nên $\angle KDI = \angle KHI = \angle HCD$ (chú ý $HI \parallel DC$) và $\angle CHD = \angle KID$. Từ đây dễ suy ra $\triangle KID \sim \triangle DHC$.

Mặt khác CM, DJ là hai trung tuyến tương ứng, vậy $\triangle DIJ \sim \triangle CHM$, từ đó $\angle JDI = \angle HCM$. Từ đây dễ suy ra $DJ \perp BC$ tại Z hay $Z \in (MJ)$.

Theo chứng minh bài 1. Đường tròn đường kính (MJ) là đường tròn Euler của tam giác IHD, theo tính chất đường tròn Euler thì $X,Y\in (MJ)$. Từ đó ta có X,Y,Z,M đều cùng nằm trên đường tròn đường kính (MJ). Đó là điều phải chứng minh.

Bài 4. Cho tam giác ABC. Lấy M, N thuộc tia BC sao cho MN = BC và M nằm giữa B, C. D, E lần lượt là hình chiếu của M lên AC, AB. Chứng minh rằng các điểm A, D, E, H thuộc một đường tròn.

Chứng minh. Gọi MD giao ME tại K. Ta thấy $HB \parallel MK$ do cùng vuông góc AC suy ra góc đồng vị $\angle HBC = \angle KMN$. Tương tự $\angle HCB = \angle KNM$. Kết hợp giả thiết BC = MN suy ra tam giác $\triangle BHC = \triangle KMN$ suy ra $S_{BHC} = S_{KMN}$ hay $HK \parallel BC$. $BC \perp HA$ vậy $HK \perp HA$ hay H thuộc đường tròn đường kính (AK). Dễ thấy $E, D \in (AK)$ vậy $H, D, E \in (AK)$ hay A, D, E, H thuộc một đường tròn.

Bài 5. Cho tam giác ABC. Các đường cao AA', BB', CC' đồng quy tại H. O là tâm đường tròn ngoại tiếp tam giác ABC. Đường tròn (A', A'O) cắt BC tại A_1, A_2 . Định nghĩa tương tự các điểm B_1, B_2, C_1, C_2 . Chứng minh sáu điểm $A_1, A_2, B_1, B_2, C_1, C_2$ thuộc một đường tròn.

Chứng minh. Gọi N là trung điểm OH cũng là tâm đường tròn Euler của tam giác ABC. Ta đã biết kết quả quen thuộc là bán kính đường tròn Euler bằng $\frac{R}{2}$. Khi đó áp dụng định lý Pythagore và công thức trung tuyến ta có

$$HA_1^2 = HA'^2 + A'A_1^2 = HA'^2 + A'O^2 = 2NA'^2 + \frac{OH^2}{2} = \frac{R^2 + OH^2}{2}$$

Như vậy A_1 thuộc $\mathscr{C}(H, \frac{R^2 + OH^2}{2})$. Chứng minh tương tự, ta có A_2, B_1, B_2, C_1, C_2 cũng thuộc \mathscr{C} . Đó là điều phải chứng minh.

Bài 6. Cho tam giác ABC nhọn, các đường cao AA_1, BB_1, CC_1 đồng quy tại H. A_2, B_2, C_2 lần lượt thuộc đoạn thẳng AA_1, BB_1, CC_1 sao cho $S_{A_2BC} + S_{B_2CA} + S_{C_2AB} = S_{ABC}$. Chứng minh rằng A_2, B_2, C_2, H thuộc một đường tròn.

Chứng minh. Qua B_2 , C_2 lần lượt dựng các đường thẳng vuông góc với BB_1 , CC_1 chúng cắt nhau tại P. Dựng hình bình hành ABDC, vì B_2 , C_2 lần lượt thuộc đoạn BB_1 , CC_1 nên P nằm ở miền trong hình bình hành ABDC.

Ta dễ thấy $PB_2 \parallel CA, PC_2 \parallel AB$ nên $S_{PCA} = S_{B_2CA}, S_{PAB} = S_{C_2AB}$ (*). Nếu P nằm ở miền trong tam giác BCD thì $S_{B_2CA} + S_{C_2AB} = S_{PCA} + S_{PAB} > S_{ABC}$ vô lý vì trái với giả thiết, vậy P nằm ở miền trong tam giác ABC.

Khi đó kết hợp giả thiết $S_{PCA} + S_{PAB} + S_{PBC} = S_{ABC} = S_{A_2BC} + S_{B_2CA} + S_{C_2AB}$. Theo (*) suy ra $S_{PBC} = S_{A_2BC}$ suy ra $PA_2 \parallel BC$ hay $PA_2 \perp AA_1$.

Từ đây dễ thấy A_2, B_2, C_2 thuộc đường tròn đường kính (PH) hay A_2, B_2, C_2, H thuộc một đường tròn, ta có điều phải chứng minh.

Bài 7. Cho tam giác ABC. P là điểm bất kỳ. PA, PB, PC cắt đường tròn ngoại tiếp (O) của tam giác ABC tại A_1, B_1, C_1 . A_2, B_2, C_2 đối xứng A_1, B_1, C_1 qua trung điểm BC, CA, AB. Chứng minh rằng A_2, B_2, C_2 và trực tâm H của tam giác ABC cùng thuộc một đường tròn.

Chứng minh. Gọi G là trọng tâm tam giác ABC theo bài toán quen thuộc về đường thẳng Euler thì G thuộc đoạn OH và $OG = \frac{1}{3}OH$ (1).

Gọi A_3, B_3, C_3 lần lượt là trung điểm BC, CA, AB, theo giả thiết A_3 là trung điểm A_1A_2 vậy G là trọng tâm chung của tam giác ABC và AA_1A_2 .

Gọi A_4,B_4,C_4 lần lượt là trung điểm $AA_1,BB_1,CC_1.$ Vì G là trọng tâm của tam giác AA_1A_2 nên $\frac{\dot{G}A_4}{GA_2}=\frac{1}{3}$ (2).

Gọi K là trung điểm OP, vì AA_1 là dây cung của (O) nên $OA_4 \perp AA_1$, từ đây suy ra A_4 thuộc đường tròn đường kính (OP) tâm K hay $KA_4 = \frac{OP}{2}$.

Gọi I là điểm thuộc tia đối tia GK sao cho $\frac{GK}{GI} = \frac{1}{3}$ (3).

Từ (1) và (3) ta dễ thấy IH song song KO và IH = 2KO = OP.

Từ (2) và (3) ta dễ thấy IA_2 song song KA_4 và $IA_2 = 2KA_4 = OP$.

Kết hợp hai điều trên suy ra $IA_2 = IH$ hay $A_2 \in (I, IH)$. Tương tự ta có $B_2, C_2 \in (I, IH)$ hay A_2, B_2, C_2, H thuộc đường tròn tâm I bán kính IH = 2OP. Ta có điều phải chứng minh.

Để rèn luyện thêm phương pháp này các bạn hãy làm một số bài tập sau đây.

Luyện tập

Bài 8. Cho tam giác ABC trực tâm H. A', B', C' là trung điểm BC, CA, AB. Đường tròn (A', A'H) cắt BC tại A_1, A_2 . Tương tự có B_1, B_2, C_1, C_2 . Chứng minh rằng sáu điểm $A_1, A_2, B_1, B_2, C_1, C_2$ thuộc một đường tròn.

- **Bài 9.** Cho tam giác ABC có bán kính đường tròn ngoại tiếp là R. A', B', C' là trung điểm BC, CA, AB. Dường tròn (A,R) cắt B'C' tại A_1 , A_2 . Tương tự có B_1 , B_2 , C_1 , C_2 . Chứng minh rằng sáu điểm A_1 , A_2 , B_1 , B_2 , C_1 , C_2 thuộc một đường tròn.
- **Bài 10.** Cho bốn điểm A, B, C, D thuộc một đường tròn.
- a) Gọi H_a , H_b , H_c , H_d lần lượt là trực tâm các tam giác BCD, CDA, DAB, ABC. Chứng minh rằng H_a , H_b , H_c , H_d cùng thuộc một đường tròn.
- b) Gọi N_a, N_b, N_c, N_d lần lượt là tâm đường tròn Euler các tam giác BCD, CDA, DAB, ABC. Chứng minh rằng N_a, N_b, N_c, N_d cùng thuộc một đường tròn.
- **Bài 11.** Cho tam giác ABC, phân giác AD. đường cao AH, trung tuyến AM. P,Q là hình chiếu của B,C lên AD.
 - a) Chứng minh rằng H, M, P, Q thuộc một đường tròn tâm K.
 - b) Chứng minh rằng K nằm trên đường tròn Euler của tam giác ABC.
- Bài 12. Cho tứ giác ABCD nội tiếp và AC,BD vuông góc với nhau tại K. X,Y,Z,T theo thứ tự là trung điểm của AB,BC,CD,DA.XK,YK,ZK,TK theo thứ tự cắt CD,DA,AB,BC tại X',Y',Z',T'. Chứng minh rằng X,Y,Z,T,X',Y',Z',T' cùng thuộc một đường tròn.
- Bài 13 (TTT2 số 38). Cho tam giác ABC và điểm M nằm trong tam giác sao cho MA, MB, MC đôi một khác nhau. Các điểm X,Y,Z theo thứ tự là trung điểm của các cung BMC, CMA, AMB. Chứng minh rằng M,X,Y,Z cùng thuộc một đường tròn.
- **Bài 14.** Cho hai đường tròn (O_1) , (O_2) cắt nhau tại A, B. Tiếp tuyến với (O_1) tại A cắt (O_2) tại C. Tiếp tuyến với (O_2) tại A cắt (O_1) tại D. E là điểm đối xứng của A qua B. Chứng minh rằng A, C, D, E cùng thuộc một đường tròn.
- **Bài 15.** Cho tam giác nhọn ABC. Từ A kể tới đường tròn đường kính BC các tiếp tuyến AA_1 , AA_2 . Tương tự có B_1 , B_2 ; C_1 , C_2 . Chứng minh rằng các điểm A_1 , A_2 , B_1 , B_2 , C_1 , C_2 cùng thuộc một đường tròn.
- Bài 16 (TTT2 số 46). Cho ba đường tròn (O_1) , (O_2) , (O_3) cùng đi qua điểm M. Các điểm M_1 , M_2 , M_3 theo thứ tự thuộc (O_1) , (O_2) , (O_3) sao cho MM_1 , MM_2 , MM_3 theo thứ tự song song với O_2O_3 , O_3O_1 , O_1O_2 . chứng minh rằng M, M_1 , M_2 , M_3 cùng thuộc một đường tròn.

Cuối cùng, tác giả xin được bày tỏ lời cảm ơn chân thành tới thầy Nguyễn Minh Hà, người đã cho tác giả nhiều lời nhận xét quan trọng và đã cung cấp thêm cho tác giả nhiều bài toán tham khảo rất hay cho bài viết này.

Tài liệu

- [1] Nguyễn Minh Hà, Nguyễn Xuân Bình, Toán nâng hình học 10 NXB GD 2000
- [2] Coxeter, Geometry Revisited The Mathematical Association of America; 1ST edition (1967)
- [3] Diễn đàn toán học http://www.mathlinks.ro