

План

Зачем смотреть на данные История визуализации и инфографики Правила визуализации

Одномерный анализ
Описательные статистики, их визуализации
Первичные действия при анализе признака
Визуализация отдельных признаков

Многомерный анализ
Визуализация пары признаков
Визуализация «алгоритм» – «алгоритм/признак»
ЗD-визуализации

Dummy-визуализации

Игра «Что изображено?»

Одномерный анализ (Univariate Analysis)

- исследование отдельных признаков здесь: «одномерные графики»

устанавливаем природу признаков проверяем логичность признаков для каждого признака

- **РМИ**
- область значений
- распределение
- особенности (аномалии, пропуски и т.п.)
- устойчивость
- важность

если что-то нарушается... пользуемся этим

Что просто визуализировать

- статистики признаков (описательные из МС)
- характеристики признаков (важности, AUC и т.п.)

Описательные статистики – среднее

$$x_1 \leq \ldots \leq x_m$$

Выборочное среднее

$$\operatorname{mean}(X) = \frac{x_1 + \ldots + x_m}{m}$$

Усечённое среднее

$$\frac{x_k + \ldots + x_{m-k+1}}{m-2k+2}$$

- + весовые схемы
 - + сглаживание

Медиана

$$\operatorname{median}(X) = q_{0.5}(X) = \frac{x_{\lfloor m/2 \rfloor} + x_{\lceil m/2 \rceil}}{2}$$

Мода (частое значение)

$$mode(X) = \underset{x}{arg max} | \{i \in \{1, 2, ..., m\} | x = x_i | \}$$

mid-range (mid-extreme)

$$\operatorname{mid-range}(X) = \frac{x_1 + x_m}{2}$$

тоже одно из решений оптимизационных задач...

midhinge

midhinge(X) =
$$\frac{q_{0.25} + q_{0.75}}{2}$$

Описательные статистики – характерные элементы

Минимум

Максимум

 \mathcal{X}_1

 \mathcal{X}_{m}

Квантиль – значение, которое с.в. не превышает с заданной вероятностью

$$X = \{x_1, \dots, x_m\}$$

Квартили

$$q_{0.75}(X), q_{0.5}(X), q_{0.25}(X)$$

Дец<mark>и</mark>ли

$$q_{01}(X), q_{02}(X), \dots, q_{08}(X), q_{09}(X)$$

Процентили

$$q_{1\%}(X), q_{2\%}(X), \dots, q_{98\%}(X), q_{99\%}(X)$$

Описательные статистики – характерные элементы

n-й элемент

 $nth(X,k) = x_k$

м.б. для какого-то специального порядка важная статистика!

Описательные статистики – разброс значений

Среднее линейное (абсолютное) отклонение Mean Absolute Deviation

$$\frac{1}{m} \sum_{i=1}^{m} |x_i - \operatorname{mid}(X)|$$

 $\operatorname{mid}(X)$ – любая формализация среднего

Среднеквадратическое отклонение
Mean Squared Error (MSE) / Mean Squared Deviation (MSD)

$$\sqrt{\frac{1}{m}\sum_{i=1}^{m}(x_i-\operatorname{mid}(X))^2}$$

Описательные статистики – абсолютные вариации

Чаще: стандартное отклонение

$$\operatorname{std}(X) = \sqrt{\frac{\sum_{i=1}^{m} (x_i - \operatorname{mean}(X))^2}{m-1}}$$

Размах

$$\operatorname{range}(X) = x_m - x_1$$

Median Absolute Deviation (MAD)

$$MAD(X) = median(\{| median(X) - x_i |\}_{i=1}^m)$$

тоже обобщается на п-мерный случай

Дисперсия (рассеяние, разброс)

$$var(X) = std^2(X)$$

Среднее квартильное расстояние Интерквартильный размах

$$q_{0.75}(X) - q_{0.25}(X)$$

Описательные статистики – абсолютные вариации

Совет:

$$\text{mid}_2(\{|x_i - \text{mid}_1(X)|\}_{i=1}^m)$$

 mid_1 , mid_2 – любые формализации среднего

Есть фундаментальный подход к оценке среднего, а вариация описывается с помощью него

Максимальное абсолютное отклонение (Maximum Absolute Deviation)

$$\max(\{|x_i - \min(X)|\}_{i=1}^m)$$

Именно это оптимизирует mid-range

Тут могут быть любые функции!

Описательные статистики – относительные вариации

абсолютная вариация / среднее

Коэффициент вариации Coefficient of variation

$$\frac{\operatorname{std}(X)}{\operatorname{mean}(X)}$$

Индекс дисперсии Index of dispersion

$$\frac{\operatorname{std}^2(X)}{\operatorname{mean}(X)}$$

Относительный размах вариации (коэффициент осцилляции)

$$\frac{\operatorname{range}(X)}{\operatorname{mean}(X)}$$

Описательные статистики – центральные моменты

$$\mathbf{E}[(X-\mathbf{E}X)^k]$$

1, 0, дисперсия, ...

Описательные статистики – моменты

$$\mathbf{E}[X^k]$$

Описательные статистики – стандартизованные моменты Standardized moments

$$\frac{\mathbf{E}[(X-\mathbf{E}X)^k]}{\mathbf{D}[X]^{k/2}}$$

$$k = 1$$

$$k = 2$$

Асимметрия – skewness

$$k = 3 \qquad \frac{\mathbf{E}[(X - \mathbf{E}X)^3]}{\mathbf{D}[X]^{3/2}}$$

Эксцесса (островершинность) – kurtosis

$$k = 4 \qquad \frac{\mathbf{E}[(X - \mathbf{E}X)^4]}{\mathbf{D}[X]^2} - 3$$

инвариантны относительно изменения масштаба

Описательные статистики – другое

Стандартная ошибка среднего

$$\frac{\operatorname{std}(X)}{\sqrt{m}}$$

ДЗ Понятные и простые иллюстрации, почему перечисленные статистики важны + ещё описательные статистики

Визуализация описательных статистик: задача Biological Response

Чётко видны группы

Визуализация описательных статистик: задача Biological Response

Фантастика? Дугообразная зависимость у трёх групп признаков!

ВОПРОС: Какие это признаки?

ОТВЕТ: это были бинарные признаки!

У них std зависит от mean (поскольку $x_i^2 = x_i$)!

[0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0]

mean
$$(\{x_i\}_{i=1}^m) = \frac{1}{m} \sum_{l=1}^m x_i \equiv p$$

$$\operatorname{std}(\{x_{i}\}_{i=1}^{m}) = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - \frac{1}{m} \sum_{l=1}^{m} x_{i}\right)^{2} = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - p\right)^{2} =$$

$$= \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i}^{2} - 2px_{i} + p^{2}\right) = \sqrt{\frac{1}{m}} \sum_{i=1}^{m} \left(x_{i} - 2px_{i} + p^{2}\right) =$$

$$= \sqrt{\frac{1 - 2p}{m}} \sum_{i=1}^{m} x_{i} + p^{2} = \sqrt{(1 - 2p)p + p^{2}} = \sqrt{p - p^{2}} = \sqrt{p(1 - p)}$$

Визуализация важностей признаков: задача Biological Response

Потом: целые группы признаков можно удалять без существенной потери качества

Визуализация важностей признаков: задача Biological Response

Есть подгруппы признаков!

Меняйте масштаб!

Аналогично – исследование сложности «классификации» объектов

Исследование частей выборки (фолдов)

Подозрительная унимодальная зависимость!

Что значит?

Как правильно показывать важности признаков

Сортировка, среднее значение, вертикальная ориентация

Правило столбцовых диаграмм

Правило:

- упорядочивать по убыванию/возрастанию показателя (а не по алфавиту)
- дать ориентир что хорошо / что плохо
- правильная ориентация делает визуализацию понятнее

Про важности в отдельной лекции

Важности признаков

Придумываем признаки и анализируем «AllState»

Что часто делается в начале задачи

Задача «Give Me Some Credit»

Статистика признаков

признак	ક	Age	Доход	#90	#	#60	# в сем
вначения	[0, 1] есть дроби!	0, 1, 21-109	целые	0-17, 96, 98	0-26, 32, 54	0-9, 96, 98	0-10, 13, 20
# уникальных значений	84500	86	11866	19	26	12	13
неизвестных значений			19831				
AUC	0.7815	0.6329	0.5554	0.6613	0.5432	0.6247	0.5499

Смотрим на сами признаки

```
for name in data.columns:
    if data[name].nunique() <8:</pre>
       u = data[name].unique()
   else:
       u = data[name].unique()[:8]
   if type(data[name].tolist()[0]) is str:
       print ('%25s %10d %10s %10s %s' % (name, data2[name].nunique(), '', 'str', str(u)))
   elif type(data2[name].tolist()[0]) is pd.tslib.Timestamp:
       print ('%25s %10d %10s %10s %s' % (name, data2[name].nunique(), '', 'time', ''))
   else:
       print ('%25s %10d %10.2f %10.2f %s' % (name, data2[name].nunique(), data2[name].mean(),
data2[name].std(), str(u)))
                              4
                                        2.20 0.97 [1 2 3 4]
                 Класс
                                     7442.45 269.63 [5001 5002 ...]
                           8404
                 Номер
                Bec, T
                           124
                                       38.27
                                                   7.30 [ 41.1 44.4 ...]
                           8404
                                                   time
                Начало
                               45
                                       63.78
                                                   5.13 [ 66. 61. ...]
        Количество, шт
```

- распределение значений признака
 - распределение обучение / тест
- распределение целевой переменной (ех: класс 0 / 1)
 - такие же вопросы для пропусков, выбросов

Александр Дьяконов (dyakonov.org)

Вверху – гистограмма распределения по значениям признака Отдельно по объектам с большим значением целевого признака

Внизу – диаграмма рассеивания «признак – цель»

Визуализация отдельных признаков

Гистограммы предпочтительнее плотностей

ЗАДАЧА «М-магазин»

Распределение возраста покупателей

Так обычно выглядит распределение!

Почему два горба?

Распределение по возрасту

Что значит?

Отношение плотностей – есть явный выброс!

Проблемы визуализаторов – параметры по умолчанию

увеличили число бинов

Проблемы визуализаторов – выбросы

Что будет если не устранять выбросы...

```
def make_clips(data, name):
    return (data[name].clip(lower=data[name].quantile(0.01),
upper=data[name].quantile(0.99)).values)
```

Ещё раз о параметрах по умолчанию: «Liberty»

Что интересного в распределении целевого признака?

a transformed count of hazards or pre-existing damages

Ещё раз о параметрах по умолчанию: «Liberty»

Из-за правильной визуализации

немонотонная зависимость паттерны – «тройки»

Выбирать:

число бинов ширина столбцов

Построение гистограммы

Подбирайте число корзинок (бинов). Совет: можно совмещать!

Выводы о признаках Распределения дат рождения пациентов (по полу)

Когда смотрим частые значения

1980-01-01	4850
1970-01-01	3013
1977-07-07	1321
2000-06-07	447
2017-04-01	155
2000-01-01	127
2009-04-01	109

Выводы о признаках

значения по умолчанию ⇒ точная дата неизвестна при этом пол «Ж» ⇒ тоже неверно Стоит ли доверять другой информации?

Выводы о признаках

Использование визуализации для выбора трансформации

https://www.kaggle.com/thykhuely/mercari-interactive-eda-topic-modelling

«AllState»

Анализ распределения

Q-Q (quantile-quantile) plot

https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot

ДЗ Провести анализ применимости графика. (похожие распределения, + шум, + искажение)

Визуализация отдельных признаков

Приёмы

- взять подвыборку
- менять число бинов!
- самому выбирать бины!

Зачем

- логичность признака
- типичные значения
- области типичных значений
 - преобразования признака

Сравнение:

- при разных значениях целевого
 - на обучении и контроле

Визуализация категориальных признаков

не видно мелкие категории категорий может быть много

Как быть?

Визуализация категориальных признаков

Визуализация категориальных признаков

Не использовать 3D-эффекты Мелкие категории → «остальное» Площадь всех категорий = 100% Диаграмма-пирог – не рекомендуется

Когда информации для визуализации мало – таблицы!

Образование	%
Высшее	65.1
Среднее спец	25.5
Неполное высшее	4.8
Среднее	3.6
Высшее х2	0.8
кфмн	0.2

Можно ещё логарифмировать...

Зачем ещё нужно логарифмирование

число представителей одной из ~30000 групп в выборке

логарифм этого числа

Распределения на признаках – природа признаков

Задача «Liberty»: целочисленный признак – вещественный или категориальный?

barplot(table(train[,21]))

Распределение значений признака

Среднее цели на значениях признака

Категориальные признаки «AllState»

	mean	count		cat107			
	cat101		A	3259.510800	75		
A	2454.139844	106721	В	19845.900000	2		
В	1292.020000	3	С	2076.430704	213		
С	2778.283638	$1697\overline{1}$	D	2636.230164	3225		
D	2812.990306	17171	E	2871.429175	12521		
E	4458.574286	7	F	3072.621189	47310		
F	3560.151861	10139	G	3149.791915	28560		
G	3450.680947	10944	H	3124.043153	23461		
H	1320.720000	1	I	2913.988215	20066		
I	4590.935254	669 <mark>0</mark>	J	3084.531566	22405		
J	4603.863790	7259	K	2946.549609	20236		
K	3240.165000	2	L	3003.206170	6976		
L	5321.419556	3173	M	3074.337929	2067		
M	5540.292766	3669	N	3053.982033	797		
N	2192.720000	1	0	2950.613520	125		
0	6870.387172	2493	P	3138.672300	100		
Q	7057.470264	2762	Q	2985.114143	140		
R	8564.376594	138	R	3063.068000	5		
S	8993.138439	173	S	5553.495000	2		
U	15972.490000	1	Ū	3546.898438	32		

Как распределение меняется при переходе к контролю

смотреть как меняются распределения обучение – контроль

История про о-трэвел и волшебный признак.

Итог

Гистограммы очень хороши

- **быстро оценить форму распределения**
 - придумать деформацию

но надо настраивать вручную (впрочем, любую визуализацию)

Есть много описательных статистик

хороши как признаки

Смотреть по признакам

распределения, распределения обучение / тест, распределения целевой переменной, аномальности в распределении, пропуски, естественность порядка значений

Приёмы:

деформация признака (чаще логарифмирование) масштабирование

Итог

- не используйте сложных средств визуализации
- Досконально понимать, как происходит сама визуализация!
- не используйте параметров по умолчанию при визуализации
- «Посмотреть на данные» это тоже процедура, которая нуждается в обучении, т.е.
 - настройке параметров
 - м.б. очистка данных от выбросов
 - м.б. изменение шкалы (например, логарифмирование)