Module 4: Bayesian Methods Lecture 1: Why Bayes?

Peter Hoff

Departments of Statistics and Biostatistics University of Washington

Outline

Bayesian learning

Probability of a rare event

Predictive models

Probability and information

We often use "probability" informally to express belief or information.

This use can be made mathematically formal via Bayesian theory:

- Probability can numerically quantify rational beliefs
- There is a relationship between probability and information
- Bayes' rule is a rational method for updating information

Inductive learning via Bayes' rule is referred to as Bayesian inference.

Bayesian methods

Bayesian methods are data analysis tools that are derived from the principles of Bayesian inference.

Bayesian methods provide:

- parameter estimates with good statistical properties;
- parsimonious descriptions of observed data;
- predictions for missing data and forecasts of future data;
- a computational framework for model estimation, selection and validation.

Statistical induction

Induction: Reasoning from specific cases to a general principle.

Statistical induction: Using a data sample to infer population characteristics.

Notation:

Parameter: θ quantifies unknown population characteristics

Data: y quantifies the outcome of a survey or experiment

Our goal is to make inference about θ given y.

Ingredients of a Bayesian analysis

Parameter and sample spaces:

sample space: ${\cal Y}$ is the set of all possible datasets

parameter space: Θ is the set of all possible θ -values

Quantifying information:

prior distribution: $p(\theta)$ fined for all $\theta \in \Theta$, describes our belief that θ is the true value of the population parameter.

sampling model: $p(y|\theta)$ fined for $\theta \in \Theta, y \in \mathcal{Y}$, describes our belief that y will be the experimental outcome, for each θ .

Updating information:

Bayes' rule: After obtaining data y, the posterior distribution is calculated

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\tilde{\theta})p(\tilde{\theta}) \ d\tilde{\theta}}.$$

Role of prior information

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int_{\Theta} p(y|\tilde{\theta})p(\tilde{\theta}) d\tilde{\theta}}$$

$$\frac{p(\theta_{a}|y)}{p(\theta_{b}|y)} = \frac{p(y|\theta_{a})}{p(y|\theta_{b})} \frac{p(\theta_{a})}{p(\theta_{b})}.$$

Bayes' rule does not tell us what our beliefs should be.

It tells us how they should change after seeing new information.

Probability of a rare event

Suppose we are interested in the prevalence of a rare genetic mutation in a human subpopulation.

A random sample of 20 individuals from the population are sampled and genotyped.

Parameter and sample space

$$\Theta = [0,1] \qquad \mathcal{Y} = \{0,1,\ldots,20\} \,.$$

Sampling model

Before the sample is obtained, the number of individuals with the mutation is unknown. Let Y denote this to-be-determined value.

Sampling model: If the value of θ were known, a reasonable sampling model for Y would be a binomial $(20, \theta)$ probability distribution:

$$Y|\theta \sim \mathsf{binomial}(20,\theta)$$
 .

Prior distribution

Posterior distribution

$$\{\theta|Y=0\}\sim\mathsf{beta}(2,40)$$

Sensitivity analysis

$$\theta \sim \mathsf{beta}(a,b) \Rightarrow \{\theta | Y = y\} \sim \mathsf{beta}(a+y,b+n-y)$$

$$E[\theta|Y=y] = \frac{a+y}{a+b+n}$$

$$= \frac{n}{w+n}\bar{y} + \frac{w}{w+n}\theta_0$$

where $\theta_0 = a/(a+b)$ is the prior expectation of θ and w = a+b.

Sensitivity analysis

$$E[\theta|Y=0] = \frac{n}{w+n}\bar{y} + \frac{w}{w+n}\theta_0$$

$$= \frac{20}{w+20} \times 0 + \frac{w}{w+20} \times \theta_0$$

$$= \frac{w}{w+20} \times \theta_0$$

Comparison to non-Bayesian methods

Non-Bayesian estimate:

$$\hat{\theta} = \bar{y} = y/n$$

For our data, $\hat{\theta} = 0$.

Non-Bayesian confidence interval:

$$ar{y} \pm 1.96 \sqrt{ar{y}(1-ar{y})/n}$$
 (Wald interval)

For our data, 0 ± 0 .

"Adjusted Wald interval"

$$\hat{\theta} \pm 1.96\sqrt{\hat{\theta}(1-\hat{\theta})/n}$$
, where $\hat{\theta} = \frac{n}{n+4}\bar{y} + \frac{4}{n+4}\frac{1}{2}$.

Can be seen as approximately Bayesian.

Example: diabetes progression

Goal:

Predict diabetes progression Y as a function of explanatory variables x.

- Y is a subject's yearly diabetes progression index
- x is a 100-dimensional vector, including sex, age, genotype, ...

Building a predictive model

We need to

- build a predictive model,
- evaluate its predictive accuracy.

We will do this using out-of-sample validation.

Data on 442 subjects. We divide these into

- n = 342 training cases, with which to fit the model;
- $n_{\text{test}} = 100$ test cases, with which to evaluate the model.

Sampling model and parameter space

Data:

- item Y_i is a subject i's progression;
- $\mathbf{x}_i = (x_{i,1}, \dots, x_{i,100})$ are i's explanatory variables.

Linear regression model:

$$Y_i = \beta_1 x_{i,1} + \beta_2 x_{i,2} + \cdots + \beta_{100} x_{i,100} + \sigma \epsilon_i.$$

Parameters to estimate include

- $\beta = (\beta_1, \ldots, \beta_{100})$
- σ

Prior distribution

The role of the Bayesian prior:

Idealistic: $p(\beta)$ should exactly describe your prior information about β .

Realistic: $p(\beta)$ should pture the gross features of our information

about β .

In our example we believe that $\beta_j \approx 0$ for many j.

We will use a prior such that

$$Pr(\beta_j = 0) = 1/2$$
 for each

Posterior distribution

$$\begin{array}{rcl} \Pr(\beta_j \neq 0) & = & 1/2 \text{ for each } j \in \{1, \dots 100\} \\ \Pr(\beta_j \neq 0 | \mathbf{Y}, \mathbf{X}) & \geq & 1/2 \text{ for only six } j \end{array}$$

Out of sample validation

How well does the model perform?

Out of sample predictive performance: Compare $y_{i,\text{test}}$ to $\hat{y}_{i,\text{test}}$, where

$$\hat{y}_{i, ext{test}} = \hat{oldsymbol{eta}}^T \mathbf{x}_{i, ext{test}}$$

Important! $\hat{\beta}$ is estimated from the 342 training subjects, not the test subjects.

Prediction error

$$SPE(\hat{eta}) = \frac{1}{100} \sum (y_{i,\text{test}} - \hat{y}_{i,\text{test}})^2$$

Out of sample validation

y_{test}

2

 y_{test}

Summary

The Bayesian approach provides

- models for rational, quantitative learning;
- estimators that work for small and large sample sizes;

• methods for generating statistical procedures in complicated problems.