visHexMulComp

January 18, 2018

visHexMulComp	Function to visualise multiple component planes of a supra-hexagonal
	grid

Description

visHexMulComp is supposed to visualise multiple component planes of a supra-hexagonal grid

Usage

```
visHexMulComp(sMap, which.components = NULL, rect.grid = NULL,
margin = rep(0.1, 4), height = 7, title.rotate = 0, title.xy = c(0.45,
1), colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow",
"wb"),
ncolors = 40, zlim = NULL, border.color = "transparent",
gp = grid::gpar(), newpage = TRUE)
```

Arguments

sMap an object of class "sMap"

which.components

an integer vector specifying which compopnets will be visualised. By default, it

is NULL meaning all components will be visualised

rect.grid a vector specifying the number of rows and columns for a rectangle grid wherein

the component planes are placed. By defaul, it is NULL (decided on according

to the number of component planes that will be visualised)

margin margins as units of length 4 or 1

height a numeric value specifying the height of device

title.rotate the rotation of the title title.xy the coordinates of the title

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-

white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http://

html-color-codes.info/color-names

2 visHexMulComp

ncolors the number of colors specified

zlim the minimum and maximum z values for which colors should be plotted, de-

faulting to the range of the finite values of z. Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals

cover the range, so that values just outside the range will be plotted

border.color the border color for each hexagon

gp an object of class gpar, typically the output from a call to the function gpar (i.e.,

a list of graphical parameter settings)

newpage logical to indicate whether to open a new page. By default, it sets to true for

opening a new page

Value

invisible

Note

none

See Also

```
visVp, visHexComp, visColorbar
```

Examples

```
# 1) generate data with an iid matrix of 1000 x 3
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),</pre>
matrix(rnorm(1000*3, mean=0.5, sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1", "S1", "S1", "S2", "S2", "S2", "S3", "S3", "S3")</pre>
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data)</pre>
# 3) visualise multiple component planes of a supra-hexagonal grid
visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
gp=grid::gpar(cex=0.8))
# 3a) visualise only the first 6 component planes
visHexMulComp(sMap, which.components=1:6, colormap="jet", ncolors=20,
zlim=c(-1,1), gp=grid::gpar(cex=0.8))
\sharp 3b) visualise only the first 6 component planes within the rectangle grid of 3 X 2
visHexMulComp(sMap, which.components=1:6, rect.grid=c(3,2),
colormap="jet", ncolors=20, zlim=c(-1,1), gp=grid::gpar(cex=0.8))
```