Sprawozdanie 4

Jan Bronicki 249011 Przemysław Kudełka 235336

Cel ćwiczenia

Znalezienie punktów równowagi układu równań poprzez użycie linearyzacji Jakobianem.

Na początku należy wyznaczyć punkty równowagi danego systemu, następnie, dla danych punktów równowagi obliczyć macierz Jakobian'a i podstawić wartości punktu równowagi. Następnie należy obliczyć wyznacznik z Jakobianu z podstawionymi wartościami danego punktu równowagi od którego została odjęta macierz własności własnych λI . Następnie wyliczamy trzy wartości λ 'y. Jeśli wszystkie wartości są ujemne to oznacza, że system jest stabilny w pobliżu punktu równowagi.

Zadanie 1

Równanie systemu:

$$\begin{cases} \dot{x} = \sigma y - \sigma x \\ \dot{y} = -xz + rx - y \\ \dot{z} = xy - bz \end{cases}$$

Właściwości systemu:

$$\begin{cases} \sigma = 10 \\ b = \frac{8}{3} \end{cases}$$

Zerujemy pochodne:

$$\begin{cases} 0 = \sigma y - \sigma x \\ 0 = -xz + rx - y \\ 0 = xy - bz \end{cases}$$

Wyznaczamy punkty równowagi:

$$\begin{cases} X_{e_1} = (0,0,0) \\ X_{e_2} = (-2\sqrt{\frac{2}{3}}\sqrt{r-1}, -2\sqrt{\frac{2}{3}}\sqrt{r-1}, r-1) \\ X_{e_3} = (2\sqrt{\frac{2}{3}}\sqrt{r-1}, 2\sqrt{\frac{2}{3}}\sqrt{r-1}, r-1) \end{cases}$$

Tworzymy Jakobian:

$$DF = \begin{bmatrix} -\sigma & \sigma & 0\\ -z+r & -1 & -x\\ y & x & -b \end{bmatrix}$$

Rozpatrujemy punkt równowagi X_{e_1} o wartościach (0,0,0), tak więc podstawiamy odpowiednie wartościx,y,z otrzymując macierz A:

$$A = \begin{bmatrix} -10 & 10 & 0 \\ r & -1 & 0 \\ 0 & 0 & -\frac{8}{3} \end{bmatrix}$$

Liczymy wyznacznik:

$$\det\left(A - \lambda I\right) = \left| \begin{bmatrix} -10 & 10 & 0 \\ r & -1 & 0 \\ 0 & 0 & -\frac{8}{3} \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right| = \left| \begin{matrix} -10 - \lambda & 10 & 0 \\ r & -1 - \lambda & 0 \\ 0 & 0 & -\frac{8}{3} - \lambda \end{matrix} \right| = (-\frac{8}{3} - \lambda)(10 + 11\lambda + \lambda^2 - 10r\lambda)$$

Otrzymujemy następujące λ :

$$\begin{cases} \lambda_1 = -\frac{8}{3} \\ \lambda_2 = \frac{1}{2} (-\sqrt{40R + 81} - 11) \\ \lambda_3 = \frac{1}{2} (\sqrt{40R + 81} - 11) \end{cases}$$

Możemy zaobserwować że λ_1 oraz λ_2 są zawsze ujemne, a λ_3 jest ujemna, dla r w przedziale 0 < r < 1.

Zadanie 2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Wnioski

Metoda linearyzacji za pomocą Jakobianu pozwala na określenie stabilności danego systemu nieliniowego, w okolicy jego punktów równowagi.

Kod źródłowy

```
clc; clear; close all;
   options = odeset('RelTol', 1e-8, 'AbsTol', 1e-10);
   tspan = [0 \ 50];
  x0 = [9; 8; 27]; \% x0, y0, z0
   [t, x] = ode45(@(t, x) ode1(t, x), tspan, x0, options);
   plot3(x(:, 1), x(:, 2), x(:, 3));
   grid minor
   xlabel("x")
10
   ylabel("y")
11
  zlabel ("z")
12
   legend("f(x,y)")
   title ("Zadanie 2")
14
15
   function dxdt = ode1(t, x)
16
       sigma = 10;
17
       r = 28;
18
       b = 8/3;
19
20
       dxdt = zeros(3, 1);
       dxdt(1) = sigma * x(2) - sigma * x(1);
22
       dxdt(2) = -x(1) \cdot *x(3) + r \cdot *x(1) - x(2);
23
       dxdt(3) = x(1) \cdot * x(2) - b \cdot * x(3);
24
  end
25
```