Math 310: Problem Set 7 Avinash lyer

Problem 1

Let $D \subseteq \mathbb{R}$ and $c \in \mathbb{R}$. Show that the following are equivalent:

- (i) c is a limit point of D.
- (ii) There is a sequence $(x_n)_n$ in $D \setminus \{c\}$ with $(x_n)_n \to c$.
- (\Rightarrow) Let c be a limit point of D. Then, taking $\delta_n = 1/n$, let $x_n \in \dot{V}_{\delta_n}(c)$. Then, $(x_n)_n \to c$.
- (\Leftarrow) Let $(x_n)_n$ be a sequence in $D \setminus \{c\}$ with $(x_n)_n \to c$.

Then, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ with, $\forall n \geq N$, $|x_n - c| < \varepsilon$. Thus, $\forall \varepsilon > 0$, $\exists x_n$ such that $x_n \in \dot{V}_{\varepsilon}(c)$. Thus, c is a limit point.

Problem 2

Show that f can have at most one limit at c.

Suppose toward contradiction that $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} f(x) = L_2$, where $L_1 \neq L_2$. Then, $\exists \varepsilon_0 > 0$ such that $V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2) = \emptyset$.

Let δ_1 be such that $|x-c| < \delta_1 \Rightarrow |f(x)-L_1| < \varepsilon_0$, and δ_2 be such that $|x-c| < \delta_2 \Rightarrow |f(x)-L_2| < \varepsilon_0$. Set $\delta = \min(\delta_1, \delta_2)$.

Then, $|x-c|<\delta\Rightarrow |f(x)-L_1|<\varepsilon_0$ and $|x-c|<\delta\Rightarrow |f(x)-L_2|<\varepsilon_0$. So, $\exists k$ such that $f(k)\in V_\varepsilon(L_1)$ and $f(k)\in V_\varepsilon(L_2)$. \bot

Problem 3

Show that the following are equivalent:

- (i) $\lim_{x\to c} f(x) = L$
- (ii) For every sequence $(x_n)_n$ in $D \setminus \{c\}$ such that $(x_n)_n \to c$, we have $(f(x_n))_n \to L$.
- (\Rightarrow) Let $\lim_{x\to c} f(x) = L$. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|x-c| < \delta \Rightarrow |f(x)-L| < \varepsilon$.

So, $\forall \varepsilon > 0$, $\exists f(x_k) \in V_{\varepsilon}(L)$, such that $x_k \in \dot{V}_{\delta}(c)$. So, we have a sequence $(x_n)_n \to c$ defined by $\delta(\varepsilon, c)$, where $(f(x_n))_n \to L$.

(⇐) Assume toward contradiction that $\lim_{x\to c} f(x) \neq L$. Then, $\exists \varepsilon_0$ such that $\forall \delta > 0$, $\exists x \in \dot{V}_\delta(c) \cap D$ such that $|f(x) - L| > \varepsilon_0$.

Let $\delta_n = \frac{1}{n}$. Then, $\exists x_n \in \dot{V}_{1/n}(c) \cap D$ with $|f(x_n) - L| > \varepsilon_0$.

Since 0 < |x - c| < 1/n, $(x_n)_n \in D \setminus \{c\}$ and $(x_n)_n \to c$, meaning $(f(x_n))_n \to L$. However, $|f(x_n) - L| > \varepsilon_0$. \perp

Problem 4

If $\lim_{x\to c} f = L$ exists, show that there is a $\delta > 0$ such that

$$\sup_{x\in\dot{V}_{\delta}(c)}|f(x)|<\infty$$

Let $\varepsilon=1$. Then, $\exists \delta>0$ such that $\forall x\in \dot{V_\delta}(c)$, |f(x)-L|<1. Therefore,

$$|f(x)| = |f(x) - L + L|$$

$$\leq |f(x) - L| + |L|$$

$$< 1 + |L|$$

Triangle Inequality

So,

$$\sup_{x \in \dot{V}_{\delta}(c)} |f(x)| \le 1 + |L|$$

Problem 5

Establish the following limits:

(a)

$$\lim_{x \to 1} \frac{3x}{1+x} = \frac{3}{2}$$

(b)

$$\lim_{x \to 6} \frac{x^2 - 3x}{x + 3} = 2$$

(c)

$$\lim_{x\to 0}\mathbf{1}_{\mathbb{Q}}=0$$

(d)

$$\lim_{x \to 0} \frac{x^2}{|x|} = 0$$

Problem 6

For which values of $k = 0, 1, 2, \dots$ does

$$\lim_{x\to 0} x^k \sin(1/x)$$

exist?

$$k=0$$
: Suppose $k=0$. Let $(a_n)_n\in(0,1)$ be a sequence defined by $a_n=\frac{2}{(4n+1)\pi}$, and let $(b_n)_n\in(0,1)$

Math 310: Problem Set 7 Avinash lyer

be a sequence defined by $\frac{1}{\pi n}$. Then,

$$(f(a_n))_n = (1, 1, 1, ...),$$

and

$$(f(b_n))_n = (0, 0, 0, \dots),$$

meaning that $(f(a_n))_n \to 1$ and $(f(b_n))_n \to 0$. Let $(c_n)_n = (a_1, b_1, a_2, b_2, \dots)$. Then, $(f(c_n))_n$ has a subsequence $(f(a_n))_n \to 1$ and a subsequence $(f(b_n))_n \to 0$. Therefore, $(f(c_n))_n$ is divergent, meaning the limit does not exist.

 $k \neq 0$: Suppose $k \neq 0$. Let $(x_n)_n$ be an arbitrary sequence in $D \setminus \{0\}$ such that $(x_n)_n \to 0$. Then,

$$|f(x_n)| = \left| x_n \sin\left(\frac{1}{x_n}\right) \right|$$

$$\leq |x_n|$$

$$\to 0$$

meaning $(f(x_n))_n \to 0$.

Problem 7

Assume $f(x) \ge 0$ for all $x \in D$ and suppose $\lim_{x \to c} f :=: L$ exists. Show that $L \ge 0$ and

$$\lim_{x \to c} \sqrt{f} = \sqrt{L}$$

Let $(x_n)_n \in D \setminus \{c\}$ such that $(x_n)_n \to c$. Then, $(f(x_n))_n \to L$, by the sequential definition of limits. Since $f(x_n) \ge 0$ for all x_n , by the properties of sequences, it must be the case that $L \ge 0$.

Similarly, it must be the case that $\left(\sqrt{f(x_n)}\right)_n \to \sqrt{L}$ by the properties of sequences — meaning that $\lim_{x\to c} \sqrt{f} = \sqrt{L}$.