

Dr. Jordan Hanson - Whittier College Dept. of Physics and Astronomy April 24, 2020

1 Memory Bank

- 1. $v_d = i/(nqA)$... Charge drift velocity in a current i in a conductor with number density n and area A.
- 2. P = IV ... Relationship between power, current, and voltage.
- 3. $\vec{F} = q\vec{v} \times \vec{B}$... The Lorentz force on a charge q with velocity \vec{v} in a magnetic field \vec{B} .
- 4. $\vec{F} = I\vec{L} \times \vec{B}$... The Lorentz force on a conductor of length \vec{L} carrying a current I in a magnetic field \vec{B} .
- 5. $\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$... Ampère's Law.
- 6. $\epsilon = -Nd\phi/dt$... Faraday's Law.
- 7. $\phi = \vec{B} \cdot \vec{A}$... Definition of magnetic flux.
- 8. Faraday's Law using Inductance, M: $emf = -M \frac{dI}{dt}$.
- 9. Typically, we refer to mutual inductance between two objects as M, and self inductance as L. Self-inductance: $\Delta V = -L(dI/dt)$.
- 10. Units of inductance: V s A⁻¹, which is called a Henry, or H.
- 11. $B = \mu_0 nI$... The B-field of a solenoid, n = N/L is the turn density, and I is the current.