Algebraic subtyping for algebraic effects and handlers

AXEL FAES, KU Leuven AMR HANY SALEH, KU Leuven TOM SCHRIJVERS, KU Leuven

Algebraic effects and handlers are a very active area of research. An important aspect is the development of an optimising compiler. Eff is an ML-style language with support for effects and forms the testbed for the optimising compiler. However, the type-&-effect system of Eff is unsatisfactory. This is due to the lack of some elegant properties. It is also awkward to implement and use in practice.

 $Additional\ Key\ Words\ and\ Phrases:\ algebraic\ effect\ handler,\ algebraic\ subtyping,\ effects,\ optimised\ compilation$

CONTENTS

Abstı	1	
Contents		
List of Figures		
List o	2	
1	Introduction	2
1.1	Motivation	3
1.2	Goals	3
1.3	Results	3
2	Background	3
3	Related Work (Algebraic Subtyping)	4
4	Related Work (Eff)	4
4.1	Types and terms	4
4.2	Type System	5
4.2.1	Subtyping	5
4.2.2	Typing rules	5
5	Core Language (EffCore)	6
5.1	Types and terms	7
5.2	Type system	7
5.3	Typing rules	7
5.4	Reformulated typing rules	9
6	Proofs	14
6.1	Instantiation	14
6.2	Weakening	14
6.3	Substitution	14
6.4	Soundness	14
7	Type Inference	14
7.1	Polar types	14
7.2	Unification	14
7.3	Principal Type Inference	15
8	Implementation	20
9	Evaluation	20

Authors' addresses: Axel Faes, Department of Computer Science, KU Leuven, axel.faes@student.kuleuven.be; Amr Hany Saleh, Department of Computer Science, KU Leuven, amrhanyshehata.saleh@kuleuven.be; Tom Schrijvers, Department of Computer Science, KU Leuven, tom.schrijvers@kuleuven.be.

	10 Conclusion	20
	Acknowledgments	20
	References	20
	LIST OF FIGURES	
1	Terms of Eff	4
2	Types of Eff	4
3	Subtyping for pure and dirty types of Eff	5
4	Typing of Eff	6
5	Terms of EffCore	7
6	Types of EffCore	8
7	Relationship between Equivalence and Subtyping	8
8	Equations of distributive lattices for types	9
9	Equations for function, handler and dirty types	9
10	Equations of distributive lattices for dirts	10
11	Subtyping for dirts of EffCore	10
12	Typing of EffCore	11
13	Definitions for typing schemes and reformulated typing rules	12
14	Reformulated typing rules of EffCore	13
15	Polar types of EffCore	14
16	Bisubstitutions	15
17	Parameterisation and typing	15
18	Constraint solving	16
19	Constraint decomposition	17
20	Biunification algorithm	18
21	Type inference algorithm	19

LIST OF TABLES

1 INTRODUCTION

The specification for a type-&-effect system with algebraic subtyping for algebraic effects and handlers is given in this document. The formal properties of this system are studied in order to find which properties are satisfied compared to other type-&-effect systems. The proposed type-&-effect system builds on two very recent developments in the area of programming language theory.

Algebraic subtyping. In his December 2016 PhD thesis, Stephen Dolan (University of Cambridge, UK), has presented a novel type system that combines subtyping and parametric polymorphism in a particulary attractive and elegant fashion. A cornerstone of his design are the algebraic properties that the subtyping relation should respect.

Algebraic effects and handlers. These are a new formalism for formally modelling side-effects (e.g. mutable state or non-determinism) in programming languages, developed by Matija Pretnar (University of Ljubjana) and Gordon Plotkin (University of Edinburgh). This approach is gaining a lot of traction, not only as a formalism but also as a practical feature in actual programming languages (e.g. the Koka language developed by Microsoft Research). We are collaborating with Matija Pretnar on the efficient implementation of one such language, called Eff. Axel Faes has contributed to this collaboration during a project he did for the Honoursprogramme of the Faculty of Engineering Science.

1.1 Motivation

Algebraic effects and handlers benefit from a custom type-&-effect system, a type system that also tracks which effects can happen in a program. Several such type-&-effect systems have been proposed in the literature, but all are unsatisfactory. We attribute this to the lack of the elegant properties of Dolan's type system. Indeed the existing type-&-effect systems are not only theoretically unsatisfactory, but they are also awkward to implement and use in practice.

Research questions.

- How can Dolan's elegant type system be extended with effect information?
- Which properties are preserved and which aren't preserved?
- What advantages are there to an type-&-effect system based on Dolan's elegant type system?

1.2 Goals

The goal of this thesis is to derive a type-&-effect system that extends Dolan's elegant type system with effect information. This type-&-effect system should inherit Dolan's harmonious combination of subtyping (in our case induced by a lattice structure on the effect information) with parametric polymorphism and preserve all of its desirable properties (both low-level algebraic properties and high-level meta-theoretical properties like type soundness and the existence of principal types). Afterwards this type-&-effect system The following approach is taken:

- (1) Study of the relevant literature and theoretical background.
- (2) Design of a type-&-effect system derived from Dolan's, that integrates effects.
- (3) Proving the desirable properties of the proposed type-&-effect system: type soundness, principal typing, ...
- (4) Time permitting: Design of a type inference algorithm that derives the principal types of programs without type annotations and proving its correctness.
- (5) Time permitting: Implementation of the algorithm and comparing it to other algorithms (such as row polymorphism based type-&-effect systems).

1.3 Results

Describe what the resulting product is and how it is useful or provides an advantage over other solutions.

2 BACKGROUND

In this section, I will provide the background necessary to be able to read the text. This includes an introduction into programming languages (and programming language theory) and algebraic effect handlers

Dolan's type system and Eff are discussed in further chapters and thus shouldn't need to be explained in this section.

3 RELATED WORK (ALGEBRAIC SUBTYPING)

Subtyping is a partial order which is a reflexive transitive binary relation satisfying antisymmetry (subtyping rules). The subtyping order also forms a distributive lattice (equivalence rules).

4 RELATED WORK (EFF)

The type-&-effect system that is used in Eff is based on subtyping and dirty types [1].

4.1 Types and terms

Terms. Figure 1 shows the two types of terms in EFF. There are values v and computations c. Computations are terms that can contain effects. Effects are denoted as operations Op which can be called.

```
value v := x
                                                   variable
                 true
                                                   true
                 false
                                                   false
                                                   function
                  \lambda x.c
                                                   handler
                  {
                     return x \mapsto c_r,
                                                       return case
                     [\operatorname{Op} y k \mapsto c_{\operatorname{Op}}]_{\operatorname{Op} \in O}
                                                       operation cases
\mathsf{comp}\,c \ ::= \ v_1\,v_2
                                                   application
                                                   sequencing
                 do x \leftarrow c_1; c_2
                                                   conditional
                  if e then c_1 else c_2
                  let rec f x = c_1 in c_2
                                                   rec definition
                  \operatorname{return} v
                                                   returned val
                                                   operation call
                  0pv
                  handle c with v
                                                   handling
```

Fig. 1. Terms of Eff

Types. Figure 2 shows the types of EFF. There are two main sorts of types. There are (pure) types A, B and dirty types $\underline{C}, \underline{D}$. A dirty type is a pure type A tagged with a finite set of operations Δ , which we call dirt, that can be called. This finite set Δ is an over-approximation of the operations that are actually called. The type $\underline{C} \Rightarrow \underline{D}$ is used for handlers because a handler takes an input computation \underline{C} , handles the effects in this computation and outputs computation \underline{D} as the result.

Fig. 2. Types of Eff

4.2 Type System

4.2.1 Subtyping. The dirty type $A ! \Delta$ is assigned to a computation returning values of type A and potentially calling operations from the set Δ . This set Δ is always an over-approximation of the actually called operations, and may safely be increased, inducing a natural subtyping judgement $A ! \Delta \leq A ! \Delta'$ on dirty types. As dirty types can occur inside pure types, we also get a derived subtyping judgement on pure types. Both judgements are defined in Figure 3. Observe that, as usual, subtyping is contravariant in the argument types of functions and handlers, and covariant in their return types.

Subtyping			
Sub-bool	$S \cup B - \longrightarrow$ $A' \leqslant A \qquad \underline{C} \leqslant \underline{C}'$	$\begin{array}{ccc} Sub - \Rightarrow & & & \\ \underline{C'} \leqslant \underline{C} & & \underline{D} \leqslant \underline{D'} \end{array}$	SUB-! $A \leqslant A'$ $\Delta \subseteq \Delta'$
bool ≤ bool	$\overline{A \to \underline{C} \leqslant A' \to \underline{C'}}$	$\underline{C \Rightarrow \underline{D} \leqslant \underline{C'} \Rightarrow \underline{D'}}$	$A ! \Delta \leqslant A' ! \Delta'$

Fig. 3. Subtyping for pure and dirty types of Eff

4.2.2 Typing rules. Figure 4 defines the typing judgements for values and computations with respect to a standard typing context Γ .

Values. The rules for subtyping, variables, and functions are entirely standard. For constants we assume a signature Σ that assigns a type A to each constant k, which we write as $(k : A) \in \Sigma$.

A handler expression has type $A ! \Delta \cup O \Rightarrow B ! \Delta$ iff all branches (both the operation cases and the return case) have dirty type $B ! \Delta$ and the operation cases cover the set of operations O. Note that the intersection $\Delta \cap O$ is not necessarily empty. The handler deals with the operations O, but in the process may re-issue some of them (i.e., $\Delta \cap O$).

When typing operation cases, the given signature for the operation $(0p: A_{0p} \to B_{0p}) \in \Sigma$ determines the type A_{0p} of the parameter x and the domain B_{0p} of the continuation k. As our handlers are deep, the codomain of k should be the same as the type $B ! \Delta$ of the cases.

Computations. With the following exceptions, the typing judgement $\Gamma \vdash c : \underline{C}$ has a straightforward definition. The return construct renders a value v as a pure computation, i.e., with empty dirt. An operation invocation $\operatorname{Op} v$ is typed according to the operation's signature, with the operation itself as its only operation. Finally, rule With shows that a handler with type $\underline{C} \Rightarrow \underline{D}$ transforms a computation with type \underline{C} into a computation with type \underline{D} .

Fig. 4. Typing of Eff

5 CORE LANGUAGE (EFFCORE)

EFFCORE is a language with row-based effects, intersection and union types and effects and is subtyping based.

Define your problem very clearly. Provide a formal definition if possible, using mathematical definitions.

5.1 Types and terms

Terms. Figure 5 shows the two types of terms in EFFCORE. There are values v and computations c. Computations are terms that can contain effects. Effects are denoted as operations Op which can be called. The function term is explicitly annotated with a type and type abstraction and type application has been added to the language. These terms only work on pure types.

```
value v := x
                                                 λ-variable
                                                 let-variable
                 â
                 true
                                                 true
                 false
                                                 false
                                                 function
                 \lambda x.c
                                                 handler
                                                    return case
                     return x \mapsto c_r,
                     [\mathsf{Op}\,y\,k\mapsto c_{\mathsf{Op}}]_{\mathsf{Op}\in O}
                                                    operation cases
                  }
\mathsf{comp}\; c \; ::= \; v_1 \, v_2
                                                 application
                                                 let
                 let \hat{\mathbf{x}} = c_1 in c_2
                  if e then c_1 else c_2
                                                 conditional
                  \operatorname{return} v
                                                 returned val
                 0p υ
                                                 operation call
                  handle c with v
                                                 handling
```

Fig. 5. Terms of EffCore

Types. Figure 6 shows the types of EffCore. There are two main sorts of types. There are (pure) types A, B and dirty types \underline{C} , \underline{D} . A dirty type is a pure type A tagged with a finite set of operations Δ , which we call dirt, that can be called. It can also be an union or intersection of dirty types. In further sections, the relations between dirty intersections or unions and pure intersections or unions are explained. The finite set Δ is an over-approximation of the operations that are actually called. Row variables are introduced as well as intersection and unions. The .(DOT) is used to close rows that do not end with a row variable. The type $\underline{C} \Rightarrow \underline{D}$ is used for handlers because a handler takes an input computation \underline{C} , handles the effects in this computation and outputs computation \underline{D} as the result.

5.2 Type system

5.3 Typing rules

Figure 12 defines the typing judgements for values and computations with respect to a standard typing context Γ .

Values. The rules for subtyping, variables, type abstraction, type application and functions are entirely standard. For constants we assume a signature Σ that assigns a type A to each constant k, which we write as $(k : A) \in \Sigma$.

A handler expression has type $A ! \Delta \cup O \Rightarrow B ! \Delta$ iff all branches (both the operation cases and the return case) have dirty type $B ! \Delta$ and the operation cases cover the set of operations O. Note that the intersection $\Delta \cap O$ is not necessarily empty (with \cap being the intersection of the operations, not to be confused with the \sqcap type). The handler deals with the operations O, but in the process may re-issue some of them (i.e., $\Delta \cap O$).

```
typing contexts \Gamma ::= \epsilon \mid \Gamma, x : A \mid \Gamma, \hat{\mathbf{x}} : \forall \bar{\alpha}.B
monomorphic typing contexts \Xi ::= \epsilon \mid \Xi, x : A
 polymorphic typing contexts \Pi ::= \epsilon \mid \Pi, \hat{\mathbf{x}} : [\Xi]A
                         (pure) type A, B ::= bool
                                                                                                    bool type
                                                         A \rightarrow C
                                                                                                    function type
                                                         C \Rightarrow D
                                                                                                    handler type
                                                                                                    type variable
                                                                                                    recursive type
                                                         \mu\alpha.A
                                                          Т
                                                                                                    top
                                                          \perp
                                                                                                    bottom
                                                         A \sqcap B
                                                                                                    intersection
                                                         A \sqcup B
                                                                                                    union
                          dirty type \underline{C}, \underline{D} ::= A ! \Delta
                                        dirt \Delta ::= Op
                                                                                                    operation
                                                          δ
                                                                                                    dirt variable
                                                                                                    empty dirt
                                                          \Delta_1 \sqcap \Delta_2
                                                                                                    intersection
                                                          \Delta_1 \sqcup \Delta_2
                                                                                                    union
                        All operations \Omega ::=
                                                        \bigcup \mathsf{Op}_i | \mathsf{Op}_i \in \Sigma
```

Fig. 6. Types of EffCore

$$A_{1} \leqslant A_{2} \leftrightarrow A_{1} \sqcup A_{2} \equiv A_{2}$$

$$A_{1} \leqslant A_{2} \leftrightarrow A_{1} \equiv A_{1} \sqcap A_{2}$$

$$\Delta_{1} \leqslant \Delta_{2} \leftrightarrow \Delta_{1} \sqcup \Delta_{2} \equiv \Delta_{2}$$

$$\Delta_{1} \leqslant \Delta_{2} \leftrightarrow \Delta_{1} \equiv \Delta_{1} \sqcap \Delta_{2}$$

$$\underline{C}_{1} \leqslant \underline{C}_{2} \leftrightarrow \underline{C}_{1} \sqcup \underline{C}_{2} \equiv \underline{C}_{2}$$

$$\underline{C}_{1} \leqslant \underline{C}_{2} \leftrightarrow \underline{C}_{1} \equiv \underline{C}_{1} \sqcap \underline{C}_{2}$$

Fig. 7. Relationship between Equivalence and Subtyping

When typing operation cases, the given signature for the operation $(0p: A_{0p} \to B_{0p}) \in \Sigma$ determines the type A_{0p} of the parameter x and the domain B_{0p} of the continuation k. As our handlers are deep, the codomain of k should be the same as the type $B ! \Delta$ of the cases.

Computations. With the following exceptions, the typing judgement $\Gamma \vdash c : \underline{C}$ has a straightforward definition. The return construct renders a value v as a pure computation, i.e., with empty dirt. In this case, this is defined as a set with the .(DOT) as the only element. An operation invocation Op v is typed according to the operation's signature, with the operation itself as its only

$$A \sqcup A \equiv A$$

$$A_1 \sqcup A_2 \equiv A_2 \sqcup A_1$$

$$A_1 \sqcap A_2 \equiv A_2 \sqcap A_1$$

$$A_1 \sqcup (A_2 \sqcup A_3) \equiv (A_1 \sqcup A_2) \sqcup A_3$$

$$A_1 \sqcap (A_2 \sqcap A_3) \equiv (A_1 \sqcap A_2) \sqcap A_3$$

$$A_1 \sqcap (A_1 \sqcap A_2) \equiv A_1$$

$$A_1 \sqcap (A_1 \sqcup A_2) \equiv A_1$$

$$A_1 \sqcap (A_2 \sqcup A_3) \equiv (A_1 \sqcup A_2) \sqcap (A_1 \sqcup A_3)$$

$$A_1 \sqcap (A_2 \sqcup A_3) \equiv (A_1 \sqcap A_2) \sqcup (A_1 \sqcap A_3)$$

Fig. 8. Equations of distributive lattices for types

$$(A_1 \to \underline{C}_1) \sqcup (A_2 \to \underline{C}_2) \equiv (A_1 \sqcap A_2) \to (\underline{C}_1 \sqcup \underline{C}_2)$$

$$(A_1 \to \underline{C}_1) \sqcap (A_2 \to \underline{C}_2) \equiv (A_1 \sqcup A_2) \to (\underline{C}_1 \sqcap \underline{C}_2)$$

$$(A_1 \Rightarrow \underline{C}_1) \sqcup (A_2 \Rightarrow \underline{C}_2) \equiv (A_1 \sqcap A_2) \Rightarrow (\underline{C}_1 \sqcup \underline{C}_2)$$

$$(A_1 \Rightarrow \underline{C}_1) \sqcap (A_2 \Rightarrow \underline{C}_2) \equiv (A_1 \sqcup A_2) \Rightarrow (\underline{C}_1 \sqcup \underline{C}_2)$$

$$(\underline{C}_1 \sqcup \underline{C}_2) \equiv (A_1 ! \Delta_1 \sqcup A_2 ! \Delta_2) \equiv (A_1 \sqcup A_2) ! (\Delta_1 \sqcup \Delta_2)$$

$$(\underline{C}_1 \sqcap \underline{C}_2) \equiv (A_1 ! \Delta_1 \sqcap A_2 ! \Delta_2) \equiv (A_1 \sqcap A_2) ! (\Delta_1 \sqcap \Delta_2)$$

Fig. 9. Equations for function, handler and dirty types

operation. Finally, rule With shows that a handler with type $\underline{C} \Rightarrow \underline{D}$ transforms a computation with type \underline{C} into a computation with type \underline{D} .

5.4 Reformulated typing rules

$$\Delta \sqcup \Delta \equiv \Delta$$

$$\Delta_1 \sqcup \Delta_2 \equiv \Delta_2 \sqcup \Delta_1$$

$$\Delta_1 \sqcap \Delta_2 \equiv \Delta_2 \sqcap \Delta_1$$

$$\Delta_1 \sqcup (\Delta_2 \sqcup \Delta_3) \equiv (\Delta_1 \sqcup \Delta_2) \sqcup \Delta_3$$

$$\Delta_1 \sqcup (\Delta_1 \sqcap \Delta_2) \equiv \Delta_1$$

$$0 \sqcup \Delta \equiv \Delta$$

$$\Omega \sqcup \Delta \equiv \Delta$$

$$\Delta_1 \sqcup (\Delta_2 \sqcup \Delta_3) \equiv (\Delta_1 \sqcup \Delta_2) \sqcup (\Delta_1 \sqcup \Delta_3)$$

$$\Delta_1 \sqcup (\Delta_2 \sqcup \Delta_3) \equiv (\Delta_1 \sqcup \Delta_2) \sqcup (\Delta_1 \sqcup \Delta_3)$$

Fig. 10. Equations of distributive lattices for dirts

Subtyping of dirts
$$\begin{array}{c} \text{Sub-!-Row-Row} \\ & n \geq 0 \quad m \geq 0 \quad p \geq 0 \\ & \underbrace{\{Op_1,...,Op_n,Op_{n+m+1},...,Op_{n+m+p},\delta_1\} \leqslant \quad \{Op_1,...,Op_n,Op_{n+1},...,Op_{n+m},\delta_2\}} \\ & \underbrace{\{\delta_1\} \leqslant \{Op_{n+1},...,Op_{n+m},\delta_3\} \quad \{\delta_3\} = \{Op_{n+m},...,Op_{n+m+p},\delta_2\}} \\ & \text{Sub-!-Dot-Row} \\ & n \geq 0 \quad m \geq 0 \quad p \geq 0 \\ & \underbrace{\{Op_1,...,Op_n,Op_{n+m+1},...,Op_{n+m+p},.\} \leqslant \quad \{Op_1,...,Op_n,Op_{n+1},...,Op_{n+m},\delta_2\}} \\ & \underbrace{\{Op_{n+1},...,Op_{n+m+p},\delta_3\} \quad \{\delta_3\} = \{Op_{n+m},...,Op_{n+m+p},\delta_2\}} \\ & \text{Sub-!-Row-Dot} \\ & n \geq 0 \quad m \geq 0 \quad \{Op_1,...,Op_n,\delta_1\} \leqslant \{Op_1,...,Op_n,Op_{n+1},Op_{n+m},.\} \\ & \underbrace{\{\delta_1\} \leqslant \{Op_{n+1},Op_{n+m},.\}} \\ & \underbrace{\{Op_{n+1},Op_{n+m},.\}} \\ & \underbrace{\{Op_{n+1},$$

Fig. 11. Subtyping for dirts of EffCore

Fig. 12. Typing of EffCore

$$\Xi \mathsf{Def} \\ \Xi \operatorname{contains} \operatorname{free} \lambda \operatorname{-bound} \operatorname{variables} \\ \mathsf{SubScheme} \\ [\Xi_2]A_2 \leqslant [\Xi_1]A_1 \leftrightarrow A_2 \leqslant A_1, \Xi_1 \leqslant \Xi_2 \\ \mathsf{SubInst} \\ [\Xi_2]A_2 \leqslant^{\forall} [\Xi_1]A_1 \leftrightarrow \rho([\Xi_2]A_2) \leqslant [\Xi_1]A_1 \text{for some substitution } \rho \\ \operatorname{(instantiate type + dirt vars)} \\ \mathsf{Inter} \\ dom(\Xi_1 \sqcap \Xi_2) = dom(\Xi_1) \cup dom(\Xi_2) \\ (\Xi_1 \sqcap \Xi_2)(x) = \Xi_1(x) \sqcap \Xi_2(x), \operatorname{interpreting} \Xi_i(x) = \top \operatorname{if} x \in dom(\Xi_i) \text{ (for } i \in \{1,2\}) \\ \overline{\Xi_1} \text{ and } \Xi_2 \text{ have greatest lower bound: } \Xi_1 \sqcap \Xi_2 \\ \mathsf{SubstEq} \\ \rho([\Xi]A) \equiv [\rho(\Xi)]\rho(A) \\ \mathsf{Eq} \\ [\Xi_2]A_2 \equiv^{\forall} [\Xi_1]A_1 \leftrightarrow [\Xi_2]A_2 \leqslant^{\forall} [\Xi_1]A_1, [\Xi_1]A_1 \leqslant^{\forall} [\Xi_2]A_2 \\ \mathsf{WeakeningMono} \\ \Xi_2 \leqslant^{\forall} \Xi_1 \leftrightarrow dom(\Xi_2) \supseteq dom(\Xi_1), \Xi_2(x) \leqslant^{\forall} \Xi_1(x) \mid x \in dom(\Xi_1) \\ \mathsf{WeakeningPoly} \\ \Pi_2 \leqslant^{\forall} \Pi_1 \leftrightarrow dom(\Pi_2) \supseteq dom(\Pi_1), \Pi_2(\hat{\mathbf{x}}) \leqslant^{\forall} \Pi_1(\hat{\mathbf{x}}) \mid \hat{\mathbf{x}} \in dom(\Pi_1) \\ \mathsf{WeakeningPoly} \\ \Pi_2 \leqslant^{\forall} \Pi_1 \leftrightarrow dom(\Pi_2) \supseteq dom(\Pi_1), \Pi_2(\hat{\mathbf{x}}) \leqslant^{\forall} \Pi_1(\hat{\mathbf{x}}) \mid \hat{\mathbf{x}} \in dom(\Pi_1) \\ \mathsf{VeakeningPoly} \\ \mathsf{In} \in \mathsf{Volume}$$

Fig. 13. Definitions for typing schemes and reformulated typing rules

Fig. 14. Reformulated typing rules of EffCore

6 PROOFS

- 6.1 Instantiation
- 6.2 Weakening
- 6.3 Substitution
- 6.4 Soundness
- 7 TYPE INFERENCE
- 7.1 Polar types

Fig. 15. Polar types of EffCore

7.2 Unification

To operate on polar type terms, we generalise from substitutions to bisubsti- tutions, which map type variables to a pair of a positive and a negative type term. The definitions for bisubstitions are given in Figure 16.

The presence of explicit type application in F, F_{ω} and CoC makes the exact parameterisation of a polymorphic type relevant. Conversely, in ML, the parameterisation is irrelevant and all that matters is the set of possible instances.

$$\xi = [A^+/\alpha, A^-/\alpha]$$

$$\xi'(\alpha^+) = \alpha \qquad \xi'(\alpha^-) = \alpha \qquad \xi'(_) = _$$

$$\xi(\underline{C}^+) \equiv \xi(A^+ ! \Delta^+) \equiv \xi(A^+) ! \xi(\Delta^+) \qquad \xi(\underline{C}^-) \equiv \xi(A^- ! \Delta^-) \equiv \xi(A^-) ! \xi(\Delta^-)$$

$$\xi(\Delta_1^+ \sqcup \Delta_2^+) \equiv \xi(\Delta_1^+) \sqcup \xi(\Delta_2^+) \qquad \xi(\Delta_1^- \sqcap \Delta_2^-) \equiv \xi(\Delta_1^-) \sqcap \xi(\Delta_2^-)$$

$$\xi(0p) \equiv 0p \qquad \qquad \xi(0p) \equiv 0p$$

$$\xi(0p) \equiv 0 \qquad \qquad \xi(0p) \equiv 0 \qquad \qquad \xi(0p) \equiv 0 \qquad \qquad \xi(\Omega) \equiv \Omega$$

$$\xi(A_1^+ \sqcup A_2^+) \equiv \xi(A_1^+) \sqcup \xi(A_2^+) \qquad \qquad \xi(A_1^- \sqcap A_2^-) \equiv \xi(A_1^-) \sqcap \xi(A_2^-)$$

$$\xi(\bot) \equiv \bot \qquad \qquad \xi(\bot) \equiv \bot \qquad \qquad \xi(\bot) \equiv \bot$$

$$\xi(bool) \equiv bool$$

$$\xi(A^- \to A^+) \equiv \xi(A^-) \to \xi(A^+) \qquad \qquad \xi(A^+ \to A^-) \equiv \xi(A^+) \to \xi(A^-)$$

$$\xi(A^- \to A^+) \equiv \xi(A^-) \to \xi(A^+) \qquad \qquad \xi(A^+ \to A^-) \equiv \xi(A^+) \to \xi(A^-)$$

$$\xi(\mu\alpha.A^+) \equiv \mu\alpha.\xi'(A^+) \qquad \qquad \xi(\mu\alpha.A^-) \equiv \mu\alpha.\xi'(A^-)$$

Fig. 16. Bisubstitutions

$$\forall \alpha \forall \beta. \alpha \to \beta \to \alpha \qquad \forall \beta \forall \alpha. \alpha \to \beta \to \alpha$$

$$\{\alpha \to \beta \to \alpha \mid \alpha, \beta \text{types}\} \qquad \{\alpha \to \beta \to \alpha \mid \beta, \alpha \text{types}\}$$

Fig. 17. Parameterisation and typing

Thus, when manipulating constraints, an ML type checker need only preserve equivalence of the set of instances, and not equivalence of the parameterisation. This freedom is not much used in plain ML, since unification happens to preserve equivalence of the parameterisation. However, this freedom is what allows MLsub to eliminate subtyping constraints.

7.3 Principal Type Inference

We introduce a judgement form $\Pi \triangleright e : [\Xi f k!!] A^+$, stating that $[\Xi f k!!] A^+$ is the principal typing scheme of e under the polar typing context Π .

Atomic constraint solving

$$\beta \leqslant A - \frac{\beta}{\theta = [\mu\alpha.\beta^- \sqcap [\alpha/\beta^-](A^-)/\beta^-]}$$

$$\frac{A^+ \leqslant \beta}{\theta = [\mu\alpha.\beta^+ \sqcup [\alpha/\beta^+](A^+)/\beta^+]}$$

$$\frac{\beta \leqslant \gamma}{\theta = [\mu\alpha.\beta \sqcap [\alpha/\beta^-](\gamma)/\beta^-] \equiv [\alpha \sqcap \gamma/\alpha^-]}$$

$$\frac{\delta \leqslant \Delta - \frac{\Delta}{\theta = \alpha}}{\frac{\Delta^+ \leqslant \delta}{\theta = \alpha}}$$

$$\frac{\Delta^+ \leqslant \delta}{\theta = \alpha}$$

$$\frac{\delta_1 \leqslant \delta_2}{\theta = \alpha}$$

Fig. 18. Constraint solving

Subi (partial function)
$$subi(A^{+} ! \Delta^{+} \leqslant A^{-} ! \Delta^{-}) = \{A^{+} \leqslant A^{-}, \Delta^{+} \leqslant \Delta^{-}\}$$

$$subi(A_{1}^{-} \to \underline{C}_{1}^{+} \leqslant A_{2}^{+} \to \underline{C}_{2}^{-}) = \{A_{2}^{+} \leqslant A_{1}^{-}, \underline{C}_{1}^{+} \leqslant \underline{C}_{2}^{-}\}$$

$$subi(\underline{C}_{1}^{-} \to \underline{D}_{1}^{+} \leqslant \underline{C}_{2}^{+} \to \underline{D}_{2}^{-}) = \{\underline{C}_{2}^{+} \leqslant \underline{C}_{1}^{-}, \underline{D}_{1}^{+} \leqslant \underline{D}_{2}^{-}\}$$

$$subi(bool \leqslant bool) = \{\}$$

$$subi(\mu\alpha.A^{+} \leqslant A^{-}) = \{A^{+} [\mu\alpha.A^{+}/\alpha] \leqslant A^{-}\}$$

$$subi(A^{+} \leqslant \mu\alpha.A^{-}) = \{A^{+} \leqslant A^{-} [\mu\alpha.A^{-}/\alpha]\}$$

$$subi(A^{+} \leqslant A_{1}^{-} \sqcap A_{2}^{+}) = \{A^{+} \leqslant A^{-}, A_{2}^{+} \leqslant A^{-}\}$$

$$subi(A^{+} \leqslant A_{1}^{-} \sqcap A_{2}^{-}) = \{A^{+} \leqslant A_{1}^{-}, A^{+} \leqslant A_{2}^{-}\}$$

$$subi(\Delta^{+} \leqslant \top) = \{\}$$

$$subi(\Delta^{+} \leqslant \top) = \{\}$$

$$subi(\Delta^{+} \leqslant \Delta^{-}) = \{\Delta^{+} \leqslant \Delta^{-}, \Delta^{+}_{2} \leqslant \Delta^{-}\}$$

$$subi(\Delta^{+} \leqslant \Delta^{-}) = \{\Delta^{+} \leqslant \Delta^{-}, \Delta^{+}_{1} \leqslant \Delta^{-}\}$$

$$subi(\Delta^{+} \leqslant \Delta^{-}) = \{\}$$

$$subi(\Delta^{+} \leqslant \Delta^{-}) = \{\}$$

Fig. 19. Constraint decomposition

```
Start biunify(C) = biunify(\emptyset; C) Empty biunify(H; \epsilon) = 1 Redundant c \in H \overline{biunify(H; c :: C)} = biunify(H; C) Atomic c = atomic \overline{biunify(H; c :: C)} = biunify(\theta_c(H \cup \{c\}); \theta_c(C)).\theta_c Decompose \underline{subisucceeds} \overline{biunify(H; c :: C)} = biunify(H \cup \{c\}; subi(c) :: C)
```

Fig. 20. Biunification algorithm

monomorphic typing contexts
$$\Xi : ::= \epsilon \mid \Xi^-, x : A^-$$
 polymorphic typing contexts $\Pi ::= \epsilon \mid \Pi, \hat{\mathbf{x}} : [\Xi^-]A^+$

Expressions

$$\begin{array}{c} \text{Var-}\Xi \\ \hline \Pi \triangleright x : [x : \alpha]\alpha \end{array} \qquad \begin{array}{c} \text{Var-}\Pi \\ \hline (\hat{\mathbf{x}} : [\Xi^-]A^+) \in \Pi \\ \hline \Pi \triangleright \hat{\mathbf{x}} : [\Xi^-]C^+ \\ \hline \Pi \triangleright \lambda x . c : [\Xi^-]C^+ \\ \hline \Pi \triangleright \lambda x . c : [\Xi^-](D^-(x) \to C) \end{array}$$

$$\begin{array}{c} \text{Hand} \\ \hline H \Vdash c_r : [\Xi, x : A](B \mid \Delta) \\ \hline H \vdash \{\text{return } x \mapsto c_r, [\text{Op } y \mid k \mapsto c_{\text{Op}}]\text{Ope}O\} : [\Xi](A \mid \Delta \cup O \Rightarrow B \mid \Delta) \\ \hline 0 \downarrow \text{ope}O \Rightarrow B \mid \text{Op} \Rightarrow$$

Fig. 21. Type inference algorithm

8 IMPLEMENTATION

Describe the approach itself, in such detail that a reader could also implement this approach if s/he wished to do that.

9 EVALUATION

Novel approaches to problems are often evaluated empirically. Describe the evaluation process in such detail that a reader could reproduce the results. Describe in detail the setup of an experiment. Argue why this experiment is useful, and what you could learn from it. Be precise about what you want to measure, or about the hypothesis that you are testing. Discuss and interpret the results in terms of your experimental questions. Summarize the conclusions of the experimental evaluation.

10 CONCLUSION

Briefly recall what the goal of the work was. Summarize what you have done, summarize the results, and present conclusions. Conclusions include a critical assessment: where the original goals reached? Discuss the limitations of your work. Describe how the work could possibly be extended in the future, mitigating limitations or solving remaining problems.

ACKNOWLEDGMENTS

I would like to thank Amr Hany Saleh for his continuous guidance and help.

REFERENCES

- [1] Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Logical Methods in Computer Science 10, 4 (2014). https://doi.org/10.2168/LMCS-10(4:9)2014
- [2] Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic effects and handlers. J. Log. Algebr. Meth. Program. 84, 1 (2015), 108–123. https://doi.org/10.1016/j.jlamp.2014.02.001
- [3] Stephen Dolan and Alan Mycroft. 2017. Polymorphism, Subtyping, and Type Inference in MLsub. In *Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017)*. ACM, New York, NY, USA, 60–72. https://doi.org/10.1145/3009837.3009882
- [4] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers. In Proceedings of the 1st International Workshop on Type-Driven Development (TyDe 2016). ACM, New York, NY, USA, 15–27. https://doi.org/10. 1145/2976022.2976033
- [5] Daan Leijen. 2014. Koka: Programming with row polymorphic effect types. arXiv preprint arXiv:1406.2061 (2014).
- [6] Daan Leijen. 2017. Type Directed Compilation of Row-typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872
- [7] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897
- [8] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4 (2013). https://doi.org/10.2168/LMCS-9(4:23)2013
- [9] Matija Pretnar. 2014. Inferring Algebraic Effects. Logical Methods in Computer Science 10, 3 (2014). https://doi.org/10. 2168/LMCS-10(3:21)2014
- [10] Matija Pretnar. 2015. An introduction to algebraic effects and handlers. invited tutorial paper. *Electronic Notes in Theoretical Computer Science* 319 (2015), 19–35.
- [11] Didier Rémy. 1994. Theoretical Aspects of Object-oriented Programming. MIT Press, Cambridge, MA, USA, Chapter Type Inference for Records in Natural Extension of ML, 67–95. http://dl.acm.org/citation.cfm?id=186677.186689