Parâmetros de reticulados e criptografia

Fábio C. C. Meneghetti

IMECC — Unicamp

5 de abril de 2022

Noções de criptografia

Objetivos da criptografia:

- confidencialidade
- integridade
- autenticação
- não-repúdio

• **criptografia simétrica:** uma única chave, que encripta e decripta as mensagens

- **criptografia simétrica:** uma única chave, que encripta e decripta as mensagens
 - é necessário um método seguro para que Alice e Bob combinem previamente esta chave

- **criptografia simétrica:** uma única chave, que encripta e decripta as mensagens
 - é necessário um método seguro para que Alice e Bob combinem previamente esta chave
- criptografia assimétrica: duas chaves

- **criptografia simétrica:** uma única chave, que encripta e decripta as mensagens
 - é necessário um método seguro para que Alice e Bob combinem previamente esta chave
- criptografia assimétrica: duas chaves
 - chave pública, encripta mensagens

- **criptografia simétrica:** uma única chave, que encripta e decripta as mensagens
 - é necessário um método seguro para que Alice e Bob combinem previamente esta chave
- criptografia assimétrica: duas chaves
 - chave pública, encripta mensagens
 - chave secreta, decripta mensagens

 o objetivo dos algoritmos de encriptação é garantir que um atacante (Eva) precise de muito tempo (décadas/séculos) para desvendar a mensagem, mesmo com as máquinas mais potentes conhecidas

- o objetivo dos algoritmos de encriptação é garantir que um atacante (Eva) precise de muito tempo (décadas/séculos) para desvendar a mensagem, mesmo com as máquinas mais potentes conhecidas
- para garantir essa dificuldade, precisamos garantir que para quebrar o esquema, Eva precisaria resolver um problema matemático difícil

- o objetivo dos algoritmos de encriptação é garantir que um atacante (Eva) precise de muito tempo (décadas/séculos) para desvendar a mensagem, mesmo com as máquinas mais potentes conhecidas
- para garantir essa dificuldade, precisamos garantir que para quebrar o esquema, Eva precisaria resolver um problema matemático difícil
- "difícil" pode ter dois sentidos:

- o objetivo dos algoritmos de encriptação é garantir que um atacante (Eva) precise de muito tempo (décadas/séculos) para desvendar a mensagem, mesmo com as máquinas mais potentes conhecidas
- para garantir essa dificuldade, precisamos garantir que para quebrar o esquema, Eva precisaria resolver um problema matemático difícil
- "difícil" pode ter dois sentidos:
 - um problema que tentou-se atacar por muito tempo, sem sucesso (ex: fatoração em primos, criptografia RSA)

- o objetivo dos algoritmos de encriptação é garantir que um atacante (Eva) precise de muito tempo (décadas/séculos) para desvendar a mensagem, mesmo com as máquinas mais potentes conhecidas
- para garantir essa dificuldade, precisamos garantir que para quebrar o esquema, Eva precisaria resolver um problema matemático difícil
- "difícil" pode ter dois sentidos:
 - um problema que tentou-se atacar por muito tempo, sem sucesso (ex: fatoração em primos, criptografia RSA)
 - um problema NP-difícil ou NP-completo (ex: caixeiro viajante)

Complexidade

 P: pode ser resolvido em tempo polinomial por uma máquina de Turing determinística

Complexidade

- P: pode ser resolvido em tempo <u>polinomial</u> por uma máquina de Turing determinística
- NP: pode ser resolvido em tempo polinomial por uma máquina de Turing não-determinística

Complexidade |

- P: pode ser resolvido em tempo polinomial por uma máquina de Turing determinística
- NP: pode ser resolvido em tempo polinomial por uma máquina de Turing não-determinística
- NP-difícil: todo problema NP pode ser reduzido em tempo polinomial a um problema NP-difícil

Complexidade |

- **P:** pode ser resolvido em tempo <u>polinomial</u> por uma máquina de Turing determinística
- NP: pode ser resolvido em tempo polinomial por uma máquina de Turing não-determinística
- NP-difícil: todo problema NP pode ser reduzido em tempo polinomial a um problema NP-difícil
- **NP-completo:** NP ∩ NP-difícil

 Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)
- o concurso NIST Post-Quantum Cryptography Standardization é a tentativa de construir um padrão para criptografia resistente a computadores quânticos

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)
- o concurso NIST Post-Quantum Cryptography Standardization é a tentativa de construir um padrão para criptografia resistente a computadores quânticos
- Finalistas do Round 3:

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)
- o concurso NIST Post-Quantum Cryptography Standardization é a tentativa de construir um padrão para criptografia resistente a computadores quânticos
- Finalistas do Round 3:
 - baseados em reticulados: 3 de encriptação, 2 de assinatura

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)
- o concurso NIST Post-Quantum Cryptography Standardization é a tentativa de construir um padrão para criptografia resistente a computadores quânticos
- Finalistas do Round 3:
 - baseados em reticulados: 3 de encriptação, 2 de assinatura
 - baseados em códigos: 1 de encriptação

- Computadores quânticos são uma ameaça à criptografia tradicional, pois já foram encontrados algoritmos polinomiais para computadores quânticos que resolvem problemas clássicos em tempo polinomial
 - ex: algoritmo de Shor, resolve fatoração em primos (quebra RSA)
- o concurso NIST Post-Quantum Cryptography Standardization é a tentativa de construir um padrão para criptografia resistente a computadores quânticos
- Finalistas do Round 3:
 - baseados em reticulados: 3 de encriptação, 2 de assinatura
 - baseados em códigos: 1 de encriptação
 - baseados polinômios multivariados: 1 de assinatura

Criptografia baseada em reticulados

Os algoritmos de criptografia em reticulados, a grosso modo, podem ser divididos em dois conjuntos:

 aqueles que utilizam diretamente reticulados em sua formulação (GGH)

Criptografia baseada em reticulados

Os algoritmos de criptografia em reticulados, a grosso modo, podem ser divididos em dois conjuntos:

- aqueles que utilizam diretamente reticulados em sua formulação (GGH)
- aqueles que podem ser reduzidos em tempo polinomial a problemas em reticulados (ex: NTRU, LWE, SIS, Ring-LWE, Ring-SIS)

Distâncias mínimas generalizadas

Seja $\Lambda \subset \mathbb{R}^n$ reticulado k-dimensional.

• a (1ª) distância mínima é

$$\lambda_1 = \min_{v \in \Lambda \setminus \{0\}} \lVert v \rVert_2$$

Distâncias mínimas generalizadas

Seja $\Lambda \subset \mathbb{R}^n$ reticulado k-dimensional.

• a (1ª) distância mínima é

$$\lambda_1 = \min_{v \in \Lambda \setminus \{0\}} \lVert v \rVert_2$$

ullet a j-ésima distância mínima $(j \in \{1,\ldots,k\})$ é

$$\lambda_{j} = \min \left\{ \max \left\{ \left\| v_{1} \right\|, \ldots, \left\| v_{j} \right\|
ight\} \; \middle| \; v_{1}, \ldots, v_{j} \; ext{\'e conjunto LI em } \Lambda
ight\}$$

Figure: $\Lambda = \langle (1,1), (1.5,0) \rangle_{\mathbb{Z}} \subset \mathbb{R}^2$.

Figure: $\Lambda = \langle (1,1), (1.5,0) \rangle_{\mathbb{Z}} \subset \mathbb{R}^2$.

• temos:
$$\lambda_1 = ||b_1 - b_2|| = ||(-0.5, 1)|| = \frac{\sqrt{5}}{2}$$
, e $\lambda_2 = ||b_1|| = \sqrt{2}$

Seja Λ reticulado com distância mínima λ_1

• SVP (problema do vetor mais curto): dada uma matriz geradora B de Λ , encontrar $v \in \Lambda$ tal que $||v||_2 = \lambda_1$.

- SVP (problema do vetor mais curto): dada uma matriz geradora B de Λ , encontrar $v \in \Lambda$ tal que $||v||_2 = \lambda_1$.
- CVP (problema do vetor mais próximo): dada uma matriz geradora B de Λ , e $x \in \mathbb{R}^n$, encontrar $v \in \Lambda$ que minimize $||x v||_2$.

- SVP (problema do vetor mais curto): dada uma matriz geradora B de Λ , encontrar $v \in \Lambda$ tal que $||v||_2 = \lambda_1$.
- CVP (problema do vetor mais próximo): dada uma matriz geradora B de Λ , e $x \in \mathbb{R}^n$, encontrar $v \in \Lambda$ que minimize $||x v||_2$.
- SIVP (problema dos vetores independentes mais curtos): dada uma matriz geradora B de Λ , encontrar um conjunto LI $\{v_1, \ldots, v_k\}$ tal que $\max_{i \in \{1, \ldots, k\}} ||v_i||_2 = \lambda_k$.

- SVP (problema do vetor mais curto): dada uma matriz geradora B de Λ , encontrar $v \in \Lambda$ tal que $||v||_2 = \lambda_1$.
- CVP (problema do vetor mais próximo): dada uma matriz geradora B de Λ , e $x \in \mathbb{R}^n$, encontrar $v \in \Lambda$ que minimize $||x v||_2$.
- SIVP (problema dos vetores independentes mais curtos): dada uma matriz geradora B de Λ , encontrar um conjunto LI $\{v_1, \ldots, v_k\}$ tal que $\max_{i \in \{1, \ldots, k\}} ||v_i||_2 = \lambda_k$.
- suas diversas variações: GapSVP, GapCVP, BDD etc.

Complexidade destes problemas

• SVP: é demonstrado NP-difícil para reduções aleatórias, e para a versão do problema na norma $\|\cdot\|_{\infty}$

Complexidade destes problemas

- SVP: é demonstrado NP-difícil para reduções aleatórias, e para a versão do problema na norma $\|\cdot\|_{\infty}$
- CVP: é NP-completo

Complexidade destes problemas

- SVP: é demonstrado NP-difícil para reduções aleatórias, e para a versão do problema na norma $\|\cdot\|_{\infty}$
- CVP: é NP-completo
- SIVP: é NP-completo

No caso de termos uma base ortogonal, são fáceis!

Seja b_1, \ldots, b_n base ortogonal de Λ .

• SVP: $\|v\|^2 = \alpha_1^2 \|b_1\|^2 + \dots + \alpha_n^2 \|b_n\|^2$ (basta tomar $\min_i \alpha_i = 1$ e o resto 0)

000000 Chiptograna Chiptograna en reticulados Oddissinas Oddos

No caso de termos uma base ortogonal, são fáceis!

Seja b_1, \ldots, b_n base ortogonal de Λ .

- SVP: $\|v\|^2 = \alpha_1^2 \|b_1\|^2 + \dots + \alpha_n^2 \|b_n\|^2$ (basta tomar $\min_i \alpha_i = 1$ e o resto 0)
- CVP: $\|v x\|^2 = (\alpha_1 \beta_1)^2 \|b_1\|^2 + \dots + (\alpha_n \beta_n)^2 \|b_n\|^2$ (basta tomar $\alpha_i = \lfloor \beta_i \rceil$)

Gaussianas

• definiremos a função gaussiana com parâmetros $\mu \in \mathbb{R}^n$, s > 0 como a função $\rho_{u,s} \colon \mathbb{R}^n \to \mathbb{R}_+$,

$$\rho_{\mu,s}(x) = \exp\left(-\pi \cdot \frac{\|x - \mu\|^2}{s^2}\right)$$

e $\rho_s := \rho_{0,s}$.

Gaussianas

• definiremos a função gaussiana com parâmetros $\mu \in \mathbb{R}^n$, s>0 como a função $\rho_{u,s} \colon \mathbb{R}^n \to \mathbb{R}_+$,

$$\rho_{\mu,s}(x) = \exp\left(-\pi \cdot \frac{\|x - \mu\|^2}{s^2}\right)$$

e $\rho_s := \rho_{0,s}$.

• essa gaussiana não é normalizada: $\int_{\mathbb{R}^n} \rho_{\mu,s}(x) dx = s^n$. Assim, dividimos por s^n para encontrar a função densidade de probabilidade.

Gaussianas

• definiremos a função gaussiana com parâmetros $\mu \in \mathbb{R}^n$, s>0 como a função $\rho_{u,s} \colon \mathbb{R}^n \to \mathbb{R}_+$,

$$\rho_{\mu,s}(x) = \exp\left(-\pi \cdot \frac{\|x - \mu\|^2}{s^2}\right)$$

e $\rho_s := \rho_{0,s}$.

- essa gaussiana não é normalizada: $\int_{\mathbb{R}^n} \rho_{\mu,s}(x) dx = s^n$. Assim, dividimos por s^n para encontrar a função densidade de probabilidade.
- após normalizar, a substituição $s=\sqrt{2\pi}\sigma$ retorna aos parâmetros (μ,σ) usuais de gaussianas

Seja Λ reticulado de posto completo (dim $\Lambda = n$)

• para qualquer conjunto da forma $x + \Lambda$, definimos

$$\mathcal{P}_{\mu,s}(x+\Lambda) := \frac{1}{s^n} \rho_{\mu,s}(x+\Lambda) = \sum_{v \in \Lambda} \frac{1}{s^n} \rho_{\mu,s}(x+v)$$

Seja Λ reticulado de posto completo (dim $\Lambda = n$)

• para qualquer conjunto da forma $x + \Lambda$, definimos

$$\mathcal{P}_{\mu,s}(x+\Lambda) \coloneqq \frac{1}{s^n} \rho_{\mu,s}(x+\Lambda) = \sum_{v \in \Lambda} \frac{1}{s^n} \rho_{\mu,s}(x+v)$$

• isto define uma distribuição de probabilidade sobre

$$\mathbb{R}^n/\Lambda = \{x + \Lambda : x \in \mathbb{R}^n\},\,$$

que é topologicamente equivalente ao toro *n*-dimensional.

• vemos que a distribuição $\mathcal{P}_s(x+\Lambda)$ é aproximadamente uniforme

• uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

• uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

- uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

 - ② $(v + \Lambda) \cap (w + \Lambda) = \emptyset$ para $v \neq w$ em Λ .

- uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

 - ② $(v + \Lambda) \cap (w + \Lambda) = \emptyset$ para $v \neq w$ em Λ .
- existe uma bijeção $\mathcal{D} \to \mathbb{R}^n/\Lambda$ dada por $x \mapsto (x + \Lambda)$

- uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

 - ② $(v + \Lambda) \cap (w + \Lambda) = \emptyset$ para $v \neq w$ em Λ .
- existe uma bijeção $\mathcal{D} \to \mathbb{R}^n/\Lambda$ dada por $x \mapsto (x + \Lambda)$
 - isso significa que podemos fixar uma região fundamental \mathcal{D} e olhar para a distribuição $\rho_{\mu,s}(x+\Lambda)$ definida sobre \mathcal{D} .

- uma região fundamental de Λ é um conjunto $\mathcal{D} \subset \mathbb{R}^n$ mensurável, tal que

 - ② $(v + \Lambda) \cap (w + \Lambda) = \emptyset$ para $v \neq w$ em Λ .
- existe uma bijeção $\mathcal{D} \to \mathbb{R}^n/\Lambda$ dada por $x \mapsto (x + \Lambda)$
 - isso significa que podemos fixar uma região fundamental \mathcal{D} e olhar para a distribuição $\rho_{\mu,s}(x+\Lambda)$ definida sobre \mathcal{D} .
- a distribuição uniforme sobre $\mathcal{D} \simeq \mathbb{R}^n/\Lambda$ é dada por $u(x) = \frac{1}{\det \Lambda} = \frac{1}{\operatorname{vol} \mathcal{D}}$

Soma de Poisson

 A fórmula da soma de Poisson é uma (inesperada) relação entre o reticulado dual

$$\Lambda^* = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle \in \mathbb{Z} \ \forall v \in \Lambda \} \simeq \mathsf{Hom}(\Lambda, \mathbb{Z})$$

e transformadas de Fourier!

 A fórmula da soma de Poisson é uma (inesperada) relação entre o reticulado dual

$$\Lambda^* = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle \in \mathbb{Z} \ \forall v \in \Lambda \} \simeq \mathsf{Hom}(\Lambda, \mathbb{Z})$$

- e transformadas de Fourier!
- A transformada de Fourier de uma função $f: \mathbb{R}^n \to \mathbb{C}$ é dada por:

$$\hat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle x, y \rangle} f(x) \, \mathrm{d}x$$

Soma de Poisson

 A fórmula da soma de Poisson é uma (inesperada) relação entre o reticulado dual

$$\Lambda^* = \{ w \in \mathbb{R}^n \mid \langle w, v \rangle \in \mathbb{Z} \ \forall v \in \Lambda \} \simeq \mathsf{Hom}(\Lambda, \mathbb{Z})$$

e transformadas de Fourier!

• A transformada de Fourier de uma função $f: \mathbb{R}^n \to \mathbb{C}$ é dada por:

$$\hat{f}(y) = \int_{\mathbb{R}^n} e^{-2\pi i \langle x, y \rangle} f(x) dx$$

• em particular, a transformada de fourier de ρ_s é $s^n \rho_{1/s}$

Colocamos as seguinte condições de regularidade sobre $f: \mathbb{R}^n \to \mathbb{C}$:

Colocamos as seguinte condições de regularidade sobre $f: \mathbb{R}^n \to \mathbb{C}$:

- (R2) $\sum_{v \in \Lambda} |f(v+u)|$ converge uniformemente para u dentro de um compacto de \mathbb{R}^n
- (R3) a transformada de Fourier \hat{f} satisfaz: $\sum_{w \in \Lambda^*} \hat{f}(w)$ é absolutamente convergente

Colocamos as seguinte condições de regularidade sobre $f: \mathbb{R}^n \to \mathbb{C}$:

- ② (R2) $\sum_{v \in \Lambda} |f(v+u)|$ converge uniformemente para u dentro de um compacto de \mathbb{R}^n
- ③ (R3) a transformada de Fourier \hat{f} satisfaz: $\sum_{w \in \Lambda^*} \hat{f}(w)$ é absolutamente convergente

Theorem (Soma de Poisson)

Se $f: \mathbb{R}^n \to \mathbb{C}$ satisfaz (C1), (C2) e (C3),

$$\sum_{v \in \Lambda} f(v) = \frac{1}{\det \Lambda} \cdot \sum_{w \in \Lambda^*} \hat{f}(w)$$

Parâmetro de suavidade

O parâmetro de suavidade de um reticulado Λ é definido como

$$\eta_{\varepsilon}(\Lambda) \coloneqq \inf \left\{ s > 0 \; \middle| \; \rho_{1/s}(\Lambda^* \setminus \{0\}) \le \varepsilon \right\}$$

Figura 3.8: Parâmetro de suavização dos reticulados \mathbb{Z}^2 e hexagonal.

Figura 3.9: Parâmetro de suavização dos reticulados BCC, FCC e \mathbb{Z}^3 .

• o parâmero de suavização nos diz que se $s \geq \eta_{\varepsilon}(\Lambda)$ é o parâmetro de ρ_s , então a distribuição $\mathcal{P}_s(x+\Lambda)$ está ε -próxima da distribuição uniforme!

- o parâmero de suavização nos diz que se $s \geq \eta_{\varepsilon}(\Lambda)$ é o parâmetro de ρ_s , então a distribuição $\mathcal{P}_s(x+\Lambda)$ está ε -próxima da distribuição uniforme!
- Porque? Pela soma de Poisson:

$$\mathcal{P}_s(x+\Lambda) = \frac{1}{s^n} \rho_s(x+\Lambda) = \frac{1}{\det \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle x, w \rangle} \rho_{1/s}(w)$$

- o parâmero de suavização nos diz que se $s \geq \eta_{\varepsilon}(\Lambda)$ é o parâmetro de ρ_s , então a distribuição $\mathcal{P}_s(x+\Lambda)$ está ε -próxima da distribuição uniforme!
- Porque? Pela soma de Poisson:

$$\mathcal{P}_s(x+\Lambda) = \frac{1}{s^n} \rho_s(x+\Lambda) = \frac{1}{\det \Lambda} \sum_{w \in \Lambda^*} e^{2\pi i \langle x, w \rangle} \rho_{1/s}(w)$$

ullet do fato que $\left\|e^{2\pi i\langle x,w
angle}
ight\|=1$, temos que

$$\left| \sum_{w \in \Lambda^* \setminus \{0\}} e^{2\pi i \langle x, w \rangle} \rho_{1/s}(w) \right| \leq \varepsilon \implies \mathcal{P}_s(x + \Lambda) \in \frac{1}{\det \Lambda} [1 - \varepsilon, 1 + \varepsilon]$$

• em outras palavras, $\eta_{\varepsilon}(\Lambda)$ é o menor s>0 tal que

$$\det \Lambda \cdot \|\mathcal{P}_s - u\|_{\infty} < \varepsilon$$

$$\det \Lambda \cdot \|\mathcal{P}_s - u\|_{\infty} < \varepsilon$$

Figura 3.10: Gráfico de $\mathcal{P}_s^{\Lambda}(x)$ em função de x, para $s \in \{0.5, 0.7, 1, 2\}$.

Gaussianas discretas

 a discretização de uma gaussiana sobre um reticulado Λ é a distribuição de probabilidade

$$D_{\Lambda,s}(v) = \frac{\rho_s(v)}{\rho_s(\Lambda)}, \qquad v \in \Lambda$$

Gaussianas discretas

 a discretização de uma gaussiana sobre um reticulado Λ é a distribuição de probabilidade

$$D_{\Lambda,s}(v) = \frac{\rho_s(v)}{\rho_s(\Lambda)}, \qquad v \in \Lambda.$$

ullet porém, se s é muito pequeno, $D_{\Lambda,s}$ não terá "cara" de gaussiana

Gaussianas discretas

• a discretização de uma gaussiana sobre um reticulado Λ é a distribuição de probabilidade

$$D_{\Lambda,s}(v) = \frac{\rho_s(v)}{\rho_s(\Lambda)}, \qquad v \in \Lambda.$$

- ullet porém, se s é muito pequeno, $D_{\Lambda,s}$ não terá "cara" de gaussiana
- o parâmetro de suavidade tem a ver com o quão "suave" é a gaussiana discretizada, no sentido de ter formato de gaussiana

Problema DGS

 as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)

Problema DGS

- as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)
- este problema é relevante pois alguns dos mais modernos esquemas criptográficos baseados em reticulados (LWE, SIS) são baseados nele

- as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)
- este problema é relevante pois alguns dos mais modernos esquemas criptográficos baseados em reticulados (LWE, SIS) são baseados nele
- **Problema DGS** $_{\varphi}$: Dado um reticulado Λ e um número $s > \varphi(\Lambda)$, obtenha uma amostra de $D_{\Lambda,s}$

- as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)
- este problema é relevante pois alguns dos mais modernos esquemas criptográficos baseados em reticulados (LWE, SIS) são baseados nele
- **Problema DGS** $_{\varphi}$: Dado um reticulado Λ e um número $s > \varphi(\Lambda)$, obtenha uma amostra de $D_{\Lambda,s}$
- Porque este é um problema difícil?

- as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)
- este problema é relevante pois alguns dos mais modernos esquemas criptográficos baseados em reticulados (LWE, SIS) são baseados nele
- **Problema DGS** $_{\varphi}$: Dado um reticulado Λ e um número $s > \varphi(\Lambda)$, obtenha uma amostra de $D_{\Lambda,s}$
- Porque este é um problema difícil?
 - se os parâmetros (φ) forem escolhidos apropriadamente, então com alta probabilidade são amostrados vetores curtos. Isso equivale a, com alta probabilidade, resolver uma versão aproximada do SVP

- as gaussianas discretas são base para o problema DGS (amostragem gaussiana discreta)
- este problema é relevante pois alguns dos mais modernos esquemas criptográficos baseados em reticulados (LWE, SIS) são baseados nele
- **Problema DGS** $_{\varphi}$: Dado um reticulado Λ e um número $s > \varphi(\Lambda)$, obtenha uma amostra de $D_{\Lambda,s}$
- Porque este é um problema difícil?
 - ullet se os parâmetros (arphi) forem escolhidos apropriadamente, então com alta probabilidade são amostrados vetores curtos. Isso equivale a, com alta probabilidade, resolver uma versão aproximada do SVP
 - mais formalmente: se $s>\sqrt{2n}\eta_{\varepsilon}(\Lambda)$, então com alta probabilidade são amostrados vetores de norma $\leq \sqrt{n}s$

- ullet A poly-time algorithm to solve LWE_{p,Ψ_lpha} implies in a poly-time ${
 m \underline{quantum}}$ algorithm to GapSVP.
 - In [REGEV09], lemma 3.20 reduces $DGS_{\sqrt{n\gamma(n)/\lambda_1(L^*)}}$ to $GapSVP_{100\sqrt{n\gamma(n)}}$ and theorem 3.1 (quantum) reduces $DGS_{\sqrt{2n\eta_k(L)/\alpha}}$ to LWE_{p,Ψ_α} for $0<\alpha<1$ and $\alpha\cdot p<2\sqrt{n}$
- A poly-time algorithm to solve $LWE_{p,\Psi_{\alpha}}$ implies in a poly-time <u>quantum</u> algorithm to SIVP In [REGEV09], lemma 3.17 reduces $DGS_{\gamma(n)}$ to $GIVP_{2\sqrt{n}\phi(L)}$ (GIVP is a generalization of SIVP) and theorem 3.1 (quantum) reduces $DGS_{\sqrt{2n}\eta_{\nu}(L)/\alpha}$ to $LWE_{p,\Psi_{\alpha}}$ for $0<\alpha<1$ and $\alpha\cdot p<2\sqrt{n}$
- Fonte: Regev On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. (2009)

Problema GapSPP

O próprio problema de determinar o parâmetro de suavização constitui um problema criptográfico com parâmetros $\varepsilon > 0$, $\gamma > 1$, dado a seguir.

Problema GapSPP

O próprio problema de determinar o parâmetro de suavização constitui um problema criptográfico com parâmetros $\varepsilon>0$, $\gamma>1$, dado a seguir.

- **Problema** γ -**GapSPP** ε : dada uma base B de um reticulado Λ , determinar se:
 - $\eta_{\varepsilon}(\Lambda) \leq 1$
 - $\eta_{\varepsilon}(\Lambda) \geq \gamma$

Problema GapSPP

O próprio problema de determinar o parâmetro de suavização constitui um problema criptográfico com parâmetros $\varepsilon > 0$, $\gamma > 1$, dado a seguir.

- **Problema** γ -**GapSPP** ε : dada uma base B de um reticulado Λ , determinar se:
 - $\eta_{\varepsilon}(\Lambda) \leq 1$
 - $\eta_{\varepsilon}(\Lambda) \geq \gamma$

É mostrado que este problema está nas classes de complexidade AM e SZK.

• concluiremos comentando que o parâmetro de suavidade é equivalente a uma outra quantidade chamada de *fator de achatamento*, muito usada na área de codificação para canais Wiretap e AWGN

- concluiremos comentando que o parâmetro de suavidade é equivalente a uma outra quantidade chamada de *fator de achatamento*, muito usada na área de codificação para canais Wiretap e AWGN
- o fator de achatamento é o valor $\epsilon_{\Lambda}(\sigma)$ tal que que $\eta_{\epsilon_{\Lambda}(\sigma)}(\Lambda) = \sqrt{2\pi}\sigma$

- concluiremos comentando que o parâmetro de suavidade é equivalente a uma outra quantidade chamada de *fator de achatamento*, muito usada na área de codificação para canais Wiretap e AWGN
- o fator de achatamento é o valor $\epsilon_\Lambda(\sigma)$ tal que que $\eta_{\epsilon_\Lambda(\sigma)}(\Lambda) = \sqrt{2\pi}\sigma$
 - o parâmetro de suavização é o parâmetro s que produz um achatamento ε

- concluiremos comentando que o parâmetro de suavidade é equivalente a uma outra quantidade chamada de *fator de achatamento*, muito usada na área de codificação para canais Wiretap e AWGN
- o fator de achatamento é o valor $\epsilon_\Lambda(\sigma)$ tal que que $\eta_{\epsilon_\Lambda(\sigma)}(\Lambda) = \sqrt{2\pi}\sigma$
 - o parâmetro de suavização é o parâmetro s que produz um achatamento ε
 - o fator de achatamento é o achatamento ε produzido por um parâmetro $\sigma=\frac{s}{\sqrt{2\pi}}$

- concluiremos comentando que o parâmetro de suavidade é equivalente a uma outra quantidade chamada de *fator de achatamento*, muito usada na área de codificação para canais Wiretap e AWGN
- o fator de achatamento é o valor $\epsilon_\Lambda(\sigma)$ tal que que $\eta_{\epsilon_\Lambda(\sigma)}(\Lambda) = \sqrt{2\pi}\sigma$
 - o parâmetro de suavização é o parâmetro s que produz um achatamento ε
 - o fator de achatamento é o achatamento ε produzido por um parâmetro $\sigma=\frac{s}{\sqrt{2\pi}}$
 - em outras palavras, um é a função inversa do outro, a menos da constante $\sqrt{2\pi}$

- o fator de achatamento é usado para
 - construir códigos que atingem a capacidade no canal AWGN (com ruído aditivo gaussiano branco)

- o fator de achatamento é usado para
 - construir códigos que atingem a capacidade no canal AWGN (com ruído aditivo gaussiano branco)
 - obter sigilo no canal Wiretap (fator de achatamento pequeno ganho de sigilo grande)

- o fator de achatamento é usado para
 - construir códigos que atingem a capacidade no canal AWGN (com ruído aditivo gaussiano branco)
 - obter sigilo no canal Wiretap (fator de achatamento pequeno ganho de sigilo grande)
 - outras aplicações na área de teoria da informação

Para ler mais

- Regev On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. (2009)
- Peikert A decade of lattice cryptography (2016)
- Dissertação: fabiom.net/docs/dissertacao.pdf
- Esta apresentação: